Encapsulation of Crabtree’s Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment

Alexios Grigoropoulos, Alasdair I. McKay, Alexandros P. Katsoulidis, Robert P. Davies, Anthony Haynes, Lee Brammer, Jianliang Xiao, Andrew S. Weller,* and Matthew J. Rosseinsky*

In memory of Gérard Férey

Abstract: Crabtree’s catalyst was encapsulated inside the pores of the sulfonated MIL-101(Cr) metal–organic framework (MOF) by cation exchange. This hybrid catalyst is active for the heterogeneous hydrogenation of non-functionalized alkenes either in solution or in the gas phase. Moreover, encapsulation inside a well-defined hydrophilic microenvironment enhances catalyst stability and selectivity to hydrogenation over isomerization for substrates bearing ligating functionalities. Accordingly, the encapsulated catalyst significantly outperforms its homogeneous counterpart in the hydrogenation of olefinic alcohols in terms of overall conversion and selectivity, with the chemical microenvironment of the MOF host favouring one out of two competing reaction pathways.

Metal–organic frameworks (MOFs) are crystalline and permanently porous materials that have emerged as promising hosts for the immobilization of organometallic catalysts, since they allow control of the steric and chemical microenvironment around the encapsulated catalytically active species. This in turn can promote catalytic activity and selectivity through extended coordination sphere interactions. These concepts lie behind the exceptional reactivity and selectivity of metalloenzymes, however their transfer to the design and synthesis of artificial catalysts is challenging. Several examples of MOF-supported catalysts showing exceptional overall catalytic activity have been reported. Enhancement of selectivity between products of a single reaction pathway by control of the steric or the chemical microenvironment has also been demonstrated.

Crabtree’s catalyst is one of the best commercially available homogeneous catalysts for hydrogenation of alkenes. However, it is deactivated in solution under hydrogenation conditions, forming catalytically inactive polymeric hydride clusters. This self-association reaction can be attenuated via modification of the coordination sphere of Ir or employment of larger weakly coordinating anions. Substrates bearing ligating functionalities such as olefinic alcohols show a more complicated behavior with Crabtree’s catalyst since isomerization can also take place in parallel with hydrogenation.

Here we use the Na+ salt of sulfonated MIL-101(Cr) MOF (1-SO3Na) to provide the anionic framework host for encapsulation of the cationic component of Crabtree’s catalyst [Ir(rod)(PCy3)(py)]PF6 (2-PF6) by cation exchange, forming 2@1-SO3Na (Scheme 1). Encapsulation of cation 2 inside a well-defined, anionic and hydrophilic microenvironment forms an efficient heterogeneous catalyst for the hydrogenation of non-functionalized alkenes in solution, enables hydrogenation in the gas phase, and most importantly enhances the catalyst’s activity and selectivity for the hydrogenation of olefinic alcohols by suppressing the

Copyright © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
competing isomerization reaction. The MOF chemical microenvironment directs substrates along one of two distinct reaction pathways.

The sulfonated analogue of MIL-101(Cr) (1-SO$_3$H)\cite{10} is a robust, readily synthesized anionic MOF. It is isostructural with pristine MIL-101(Cr)\cite{11} with two charge-balancing cations per formula unit, [H$_2$Na$_2$$_2$][Cr$_3$(μ$_3$O)(BDC-SO$_3$)$_3$] (x = 1.8 ± 0.1, Figure S1, H$_2$BDC-SO$_3$Na = 2-sulfoterephthalic acid sodium salt). Each cubic unit cell (a = 87.63(3) Å) contains 8 bigger and 16 smaller mesopores, large enough to accommodate 2 (Figures S2 and S3). The cations within 1-SO$_3$H can be partially exchanged with Ag$^+$ or [Rh(cod)-(dppe)]$^+$ [dppe = 1,2-bis(diphenylphosphino)ethane].\cite{12} To increase the number of exchangeable Na$^+$ cations, 1-SO$_3$H was treated with AcONa/AcOH buffer solution (pH 4.7), forming [H$_2$Na$_2$$_2$][Cr$_3$(μ$_3$O)(BDC-SO$_3$)$_3$] (1-SO$_3$Na, y = 0.2 ± 0.1, Table S1).

Compound 1-SO$_3$Na remains crystalline and mesoporous (Figures 1a,b) with only a small change in the cubic unit cell parameter (a = 87.99(4) Å) and a slight increase in the measured porosity (BET surface area = 2005 m2 g$^{-1}$, V$_p$ = 0.91 cm3 g$^{-1}$) and the pore size distribution, compared to 1-SO$_3$H (Figure S9).

After establishing an appropriate cation exchange protocol using [Cp*,Co]$^+$ as a cationic probe (Table S2 and Figures S6, S9-S12), as we have shown previously,\cite{13} 2-PF$_6$ was used as a cationic guest precursor. Since water can poison the catalytically active species,\cite{14} cation exchange was carried out using desolvated 1-SO$_3$Na as the anionic host in dry and degassed acetone, producing 2@1-SO$_3$Na. Crystallinity and particle morphology were retained after cation exchange with only a minor change in the cubic unit cell parameter (a = 87.74(3) Å, Figure 1a, see Le Bail fit in Figure S7 and SEM images in Figures S11 and S12), whereas BET surface area (1570 m2 g$^{-1}$ and pore volume (0.70 cm3 g$^{-1}$) were reduced, compared to 1-SO$_3$Na (Figure 1b).

ICP-OES after digestion of 2@1-SO$_3$Na gave an Ir content of 2.28 wt%, indicating that 7% of the Na$^+$ cations have been exchanged with 2 (Table S3), which is close to the upper limit of about 9% calculated by accounting for the guest-limit space of the host MOF and the size of the cationic guest (Figures S1–S3). ICP-OES also showed an equimolar Ir/P ratio, and only one broad peak was observed (δ$_p$ = 15.65, fwhm = 15 ppm) in the 19F[1H] MAS NMR spectrum of 2@1-SO$_3$Na, assigned to the PCy$_3$ ligand (Figure 1c). Signals arising from the [PF$_6$]$^-$ anion were not observed either in the 19F[1H] MAS or the 3P[1H] solution NMR spectra of 2@1-SO$_3$Na after digestion, in contrast with the respective spectra of 2-PF$_6$ (Figures 1c and S13). The down-field chemical shift and peak broadening observed for the signal due to the PCy$_3$ ligand in the 19F[1H] MAS NMR spectrum of 2@1-SO$_3$Na, compared to 2-PF$_6$, likely originate from the different anion environment surrounding 2.\cite{15}

The 1H solution NMR spectrum of 2@1-SO$_3$Na after digestion showed three low intensity peaks at δ = 8.22, 7.58 and 7.16 ppm, assigned to pyridine (Figure S14). Treatment of 2@1-SO$_3$Na with D$_2$ gas resulted in deuteration of the cod ligand and formation of [D$_3$]-cyclooctane, as detected by 1H MAS NMR spectroscopy (Figure S15). These analytical and spectroscopic data are consistent with cation 2 being encapsulated intact inside the mesopores of 1-SO$_3$Na by a simple cation exchange process.

To explore the possible interaction of the sulfonate groups decorating the pore walls of 1-SO$_3$Na with the Ir center of 2 after encapsulation, the tosylate anion [OT$^-$], was selected to model the BDC-SO$_3$ linker. Two new complexes were synthesized, [Ir(cod)(PCy$_3$)(py)][OT$^-$] (2-OT$_5$) and [Ir(cod)(PCy$_3$)(OT$^-$)] (3), in which OT$^-$ acts as a counter anion or as a ligand to Ir, respectively (Figures 2a,b, Figures S16, S17, Table S4). 31P[1H] and 1H EXSY NMR spectroscopy in CD$_2$Cl$_2$ (Figures S18–S20) revealed that a dynamic reversible ligand exchange takes place between complexes 2-OT$_5$ and 3, with OT$^-$ replacing pyridine in the coordination sphere of Ir (Figure 2c). This suggests that the sulfonate groups in 2@1-SO$_3$Na may also play a non-spectator role, with potential implications in catalysis, as discussed next.

The catalytic performance of 2@1-SO$_3$Na was benchmarked against 2-PF$_6$ in the hydrogenation of non-functionalized alkenes in CH$_2$Cl$_2$ under mild conditions (Table 1). Control experiments verified that 1-SO$_3$Na does not catalyze

Figure 1. a) Comparison of PXRD patterns and unit cell parameter ($Fd3m$ space group) for 2@1-SO$_3$Na (magenta), 1-SO$_3$Na (red), 1-SO$_3$H (green) and MIL-101(Cr) (calculated, black).\cite{16} Le Bail fits are included in the supporting information. b) N$_2$ uptake of the desolvated materials at 77 K (BET = surface area, V$_p$ = pore volume). c) 31P[1H] MAS NMR spectrum of 2-PF$_6$ (black) and 2@1-SO$_3$Na (red). Spinning side bands are marked with an asterisk.
the hydrogenation of oct-1-ene (4). Introduction of 2@1-SO\textsubscript{Na} as the catalyst afforded complete hydrogenation of 4 to n-octane, at loadings as low as 50 ppm (entries 1–3). When the loading was reduced to 10 ppm (entry 4), conversion of 4 to n-octane reached 83% (TON = 8.3 × 104). Homogeneous catalyst 2-\text{PF}_6 under identical conditions produced comparable results, demonstrating that encapsulation is not detrimental to catalytic activity.

The branched, but unhindered, aliphatic alkene, 3-methylhex-1-ene (5) was also completely hydrogenated using 2@1-SO\textsubscript{Na} at 1000 ppm loading (entries 5 and 6). The hindered aliphatic alkene, 2-methylhex-1-ene (6) was only partially hydrogenated with either catalyst after 20 h (entries 7 and 8). Conversion did not increase any further after 72 h in either system, reflecting catalyst deactivation. When cyclohexene (7) was employed as a substrate, conversion reached 69% in 3 h with 2@1-SO\textsubscript{Na} as the catalyst but increased only to 81% after 20 h. On the contrary, 100% conversion was observed with 2-\text{PF}_6 in 3 h (entries 9 and 10).

The different response observed for this bulkier substrate is consistent with hydrogenation taking place within the pores and not on the surface of 2@1-SO\textsubscript{Na}. The heterogeneity of the reaction was further established by carrying out a leaching test (Figure S21). Recycling of 2@1-SO\textsubscript{Na} was also possible with a small decrease in activity (82% conversion) during the third cycle (Figure S22).

Compound 2@1-SO\textsubscript{Na} is a versatile catalyst which can also be employed in a gas/solid reaction,[21] as demonstrated by the complete hydrogenation of but-1-ene over 2@1-SO\textsubscript{Na} in 2.5 h (4000 μmol of but-1-ene hydrogenated per 1 mg of Ir). Although finely ground solid 2-\text{PF}_6 was also active, dispersion of 2 in the porous anionic solid-state support increases the number of accessible catalytic sites in 2@1-SO\textsubscript{Na}, resulting in a sixfold increase in activity compared to the non-porous solid 2-\text{PF}_6 (Figure 3). Recycling of 2@1-SO\textsubscript{Na} was also successful upon exposure to fresh but-1-ene (Figure S23).

The mesopores of 2@1-SO\textsubscript{Na} are hydrophilic due to the presence of H-bond accepting sulfonate groups as well as Lewis acidic CrIII sites and Na+ cations. Therefore, the reactivity of Crabtree’s catalyst with substrates bearing functional groups that can interact with such an environment could significantly change due to encapsulation. We chose to explore this by using olefinic alcohols as substrates, whose fundamental characteristic is the competition between hydrogenation and isomerization upon turnover.[22] Hydrogenation of a series of olefinic alcohols was carried out under a 20-fold excess of H\textsubscript{2} (Table 2).

Table 1: Hydrogenation of non-functionalized alkenes with heterogeneous 2@1-SO\textsubscript{Na} and homogeneous 2-\text{PF}_6 catalysts.[24]

Entry	Substrate Loading (ppm)	Rate at 20 °C (h)	2@1-SO\textsubscript{Na} Conversion (%)	TON	2-\text{PF}_6 Conversion (%)	TON
1	1000H	3 > 99 > 990	100	1000		
2	1000H	20 100 10000	100	1000		
3	50H	24 83 83000	94	94000		
4	10H	24 83 83000	94	94000		
5	5 1000H	3 > 99 > 990	100	1000		
6	5 1000H	20 100 1000	-	-		
7	6 1000H	3 10 100	12	120		
8	6 1000H	20 26 260	37	370		
9	7 1000H	3 69 690	100	1000		
10	7 1000H	20 81 810	-	-		

[a] CH\textsubscript{2}Cl\textsubscript{2} solvent, T = 20 °C. [b] Conversion (%) based on GC. [c] alkene = 0.5 mL, V = 1 mL, 8 mmol of H\textsubscript{2}. [d] alkene = 1.0 mL, V = 4 mL, 16 mmol of H\textsubscript{2}. [e] alkene = 1.0 mL, V = 10 mL, 48 mmol of H\textsubscript{2}. [f] alkene = 1.5 mL, V = 12 mL, 48 mmol of H\textsubscript{2}.

Figure 2. a) Single crystal structure of 2-\text{OTs} (OTs counter anion is not shown for clarity). b) Single crystal structure of 3. c) Reversible ligand exchange between 2-\text{OTs} and 3 in CD\textsubscript{3}Cl\textsubscript{2}.

Figure 3. Conversion of but-1-ene into n-butane in a gas/solid hydrogenation reaction over 2@1-SO\textsubscript{Na} (red) and 2-\text{PF}_6 (blue). Conditions: T = 20 °C, P\textsubscript{H2} < 4 bar, 0.5 mg of solid catalyst used.
of 8a–10a to 8b–10b was also achieved with 2@1-SO$_{\text{Na}}$, albeit in 24 h (Table 2, entries 1–6). Isomerization products were again not detected. Conversion in 3 h correlates well with the steric hindrance around the double bond of the substrate: 10% for 10a (more hindered), increasing to 22% for 9a (less hindered), and reaching 34% for 8a (linear). Olefinic alcohols 8a–10a were hydrogenated considerably slower with 2@1-SO$_{\text{Na}}$, compared to the sterically comparable non-functionalized alkenes 4 and 5 (Table 1). This is consistent with a strong interaction between the hydroxyl group of the olefinic alcohols and the chemical microenvironment of 2@1-SO$_{\text{Na}}$.

Substrates which are intrinsically more susceptible to isomerization, such as the homoallylic (11a) and allylic (12a, 13a) alcohols,[23],[24] revealed a significant enhancement of reactivity and selectivity to hydrogenation with 2@1-SO$_{\text{Na}}$, compared to its homogeneous counterpart. The homogeneous catalyst 2-PF$_{3}$ afforded 56% conversion of 11a in 3 h and 57% in 24 h, indicative of catalyst deactivation (Table 2, entries 7 and 8, Figure S25). Moreover, isomerization of 11a was also observed, producing a negligible amount of the internal olefinic alcohol 11c and traces of the aldehyde 11d. As a result, selectivity to hydrogenation and formation of n-butanol (11b) was only 86% for the homogeneous system.

By contrast, the heterogeneous catalyst 2@1-SO$_{\text{Na}}$ afforded complete conversion and 100% selectivity to hydrogenation and formation of 11b (Table 2, entries 7 and 8, Figure S26). Monitoring conversion over time for both systems (Figure S27) verified that 2-PF$_{3}$ was deactivated after 3 h, whereas 2@1-SO$_{\text{Na}}$ remained productive, affording full conversion in 6 h. Although traces of the internal olefin 11c were detected in short reaction times, 11c was subsequently also hydrogenated to 11b. The encapsulated catalyst is thus more stable, more active with respect to overall conversion, and more selective.

The superior performance of 2@1-SO$_{\text{Na}}$ was even more pronounced in the hydrogenation of allylic alcohols that can isomerize directly to the respective aldehydes. Conversion under hydrogenation conditions for trans-pent-2-en-1-ol (12a, entries 9 and 10) and trans-crotyl alcohol (13a, entries 11 and 12) in 3 h with 2-PF$_{3}$ was 69% and 54%, respectively (Figure S28). Conversion did not increase after 24 h, indicating catalyst deactivation. Selectivity to hydrogenation was poor: 61% for alcohol 12b in 3 h with a substantial amount of the aldehyde 12d formed (35% selectivity), and 31% for alcohol 13b in 3 h with the aldehyde 13d now being the main product (54% selectivity). By contrast, overall conversion with 2@1-SO$_{\text{Na}}$ as the catalyst reached 96% for 12a and 82% for 13a in 24 h (Figure S29). Isomerization to the aldehydes 12d and 13d was significantly suppressed, resulting in ≥90% selectivity for the alcohols 12b and 13b.

To probe the effect of the sulfonate group on stability and selectivity, we also investigated the homogeneous hydrogenation of crotyl alcohol using 2-OT$_{3}$s and 3 as catalysts (Figure S30). Higher conversions were observed compared to 2-PF$_{3}$ (77% for 2-OT$_{3}$s and 83% for 3 in 24 h) in accordance with OT$_{3}$s being a more strongly coordinating anion, hence prolonging the catalyst’s lifetime.[25] By contrast, selectivity to hydrogenation did not significantly improve (39% for 2-OT$_{3}$s and 53% for 3), remaining considerably lower than that of 2@1-SO$_{\text{Na}}$ (≥90%).

The reaction pathways for the hydrogenation or isomerization of olefinic alcohols with the homogeneous catalyst 2-PF$_{3}$ likely share the same starting point, the formation of a cationic Ir$_{3}^{3+}$-dihydride complex in which the hydrosilyl group is also coordinated to Ir (Scheme 2, intermediate I), followed by migratory insertion (intermediate II).[13],[14] Bifurcation into separate, competitive pathways then occurs: i) hydrogenation to the respective alcohol via reductive elimination (pathway A) or ii) isomerization to the internal olefin via β-elimination, which requires an appropriately orientated vacant coordination site, followed by off-cycle tautomerization to the aldehyde (pathway B).

The significantly improved selectivity to hydrogenation observed with 2@1-SO$_{\text{Na}}$ suggests that isomerization is suppressed. We propose that this could take place due to

Table 2: Substrate conversion$^{[9]}$ and product selectivity$^{[10,11]}$ for hydrogenation of olefinic alcohols with heterogeneous 2@1-SO$_{\text{Na}}$ and homogeneous 2-PF$_{3}$ catalysts.$^{[9]}$

Entry	Substrate	f [h]	2@1-SO$_{\text{Na}}$ Conv	b	c	d	2-PF$_{3}$ Conv	b	c	d
1	8a	3	34	100	n.d.$^{[9]}$	n.d.	100	100	n.d.	n.d.
2	8a	24	100	100	n.d.	n.d.	–	–	–	–
3	9a	3	22	100	n.d.	n.d.	100	100	n.d.	n.d.
4	9a	24	100	100	n.d.	n.d.	–	–	–	–
5	10a	3	10	100	n.d.	n.d.	100	100	n.d.	n.d.
6	10a	24	100	100	n.d.	n.d.	–	–	–	–
7	11a	3	33	95	5	n.d.	56	85	13	2
8	11a	24	100	100	n.d.	n.d.	57	86	12	2
9	12a	3	41	93	n.d.	7	69$^{[e]}$	61	n.d.	35
10	12a	24	96	92	n.d.	8	62$^{[e]}$	55	n.d.	19
11	13a	3	26	92	n.d.	8	54$^{[e]}$	31	n.d.	54
12	13a	24	82	90	n.d.	10	59$^{[e]}$	28	n.d.	26

[a] Based on 1H NMR using mesitylene as standard for verifying mass-balance. [b] Yield of each product over total conversion. [c] 0.1 mol% loading, [substrate] = 0.5 m M in CH$_{2}$Cl$_{2}$, V = 0.7 mL, ≈ 8 mmol of H$_{2}$. [d] Not detected. [e] Formation of ill-defined condensation products was also observed, especially in 24 h.
omment controls reactivity and selectivity of the encapsulated catalyst, allowing discrimination between two distinct reaction pathways.

Acknowledgements

The EPSRC is thanked for support for this work through the UK Catalysis Hub Consortium under grants EP/K014706/1, EP/K014668/1, EP/K014854/1, EP/K014714/1, and EP/M013219/1. A.S.W. also acknowledges EPSRC for funding (EP/M024210/1). M.J.R. is a Royal Society Research Professor.

Conflict of interest

The authors declare no conflict of interest.

Keywords: allylic alcohols · Crabtree’s catalyst · encapsulation · hydrogenation · metal–organic frameworks

How to cite: Angew. Chem. Int. Ed. 2018, 57, 4532–4537
Angew. Chem. 2018, 130, 4622–4627

[1] a) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444; b) B. Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016, 28, 8819–8860; c) H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415–5418, and references therein.
[2] a) J. Gascon, A. Corma, F. Kaptijn, F. X. Llabrés i Xamena, ACS Catal. 2014, 4, 361–378; b) A. H. Chuhtai, N. Ahmad, H. A. Younus, A. Laypkov, F. Verpoort, Chem. Soc. Rev. 2015, 44, 6804–6849; c) A. Grigoropoulos in Modern Developments in Catalysis, World Scientific (Europe), London, 2016, pp. 123–158; d) S. M. J. Rogge, A. Bayvinka, I. Hajek, H. Garcia, A. I. Olivos-Suarez, A. Sepulveda-Escibano, A. Vimont, G. Clet, P. Bazin, F. Kaptijn, M. Daturi, E. V. Ramos-Fernandez, F. X. Llabrés i Xamena, V. Van Speybroeck, J. Gascon, Chem. Soc. Rev. 2017, 46, 3134–3184.
[3] a) S. W. Ragsdale, Chem. Rev. 2006, 106, 3317–3337; b) M. Zhao, H.-B. Wang, L.-N. Ji, Z.-W. Mao, Chem. Soc. Rev. 2013, 42, 8360–8375; c) R. H. Holm, E. I. Solomon, Chem. Rev. 2014, 114, 3367–3368, and references therein.
[4] a) C. W. Jones, Top. Catal. 2010, 53, 942–952; b) M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, Chem. Rev. 2014, 43, 1660–1733 and 1734–1787; c) C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012–3035; d) S. Hübner, J. G. de Vries, V. Farina, Adv. Synth. Catal. 2016, 358, 3–25.
[5] a) A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440–7444; Angew. Chem. 2012, 124, 7558–7562; b) L. Mitchell, P. Williamson, B. Ehrlichová, A. E. Anderson, V. R. Seymour, S. E. Ashbrook, N. Acreri, L. M. Daniels, R. I. Walton, M. L. Clarke, P. A. Wright, Chem. Eur. J. 2014, 20, 17185–17197; c) K. Manna, T. Zhang, M. Carboni, C. W. Abney, W. Lin, J. Am. Chem. Soc. 2014, 136, 13182–13185; d) H. Fei, S. M. Cohen, J. Am. Chem. Soc. 2015, 137, 2191–2194; e) Z. Li, J.-D. Xiao, H.-L. Jiang, ACS Catal. 2016, 6, 5359–5365; f) A. M. Fracaroli, P. Siman, D. A. Nagib, M. Suzuki, H. Furukawa, F. D. Toste, O. M. Yaghi, J. Am. Chem. Soc. 2016, 138, 8352–8355; g) N. C. Thacker, Z. Lin, T. Zhang, J. C.
[6] a) J. Canivet, S. Aguado, Y. Schuurman, D. Farrusseng, J. Am. Chem. Soc. 2013, 135, 4195–4198; b) A. M. Rasero-Almansa, A. Corma, M. Gilhula, F. Sanchez, Green Chem. 2014, 16, 3522–3527; c) S. A. Burgess, A. Kassie, S. A. Baranowski, K. J. Fritzsching, K. Schmidt-Rohr, C. M. Brown, C. R. Wade, J. Am. Chem. Soc. 2016, 138, 1780–1783; d) M. Rimoldi, A. Nakamura, N. A. Vermeulen, J. J. Henkelis, A. K. Blackburn, J. T. Hupp, J. F. Stoddart, O. K. Farha, Chem. Sci. 2016, 7, 4980–4984; e) A. Burgun, C. J. Coghlan, D. M. Huang, W. Chen, S. Horike, S. Kitagawa, J. F. Alvino, G. F. Metha, C. J. Sumby, C. J. Doonan, Angew. Chem. Int. Ed. 2017, 56, 8412–8416; Angew. Chem. 2017, 129, 8532–8536.

[7] a) Z. Guo, C. Xiao, R. V. Maligal-Ganesh, L. Zhou, T. W. Goh, X. Li, D. Tesfagaber, A. Thieli, W. Huang, ACS Catal. 2014, 4, 1340–1348; b) S. Yuan, Y. P. Chen, J. S. Qin, W. Lu, L. Zou, Q. Zhang, X. Wang, X. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2016, 138, 8912–8919; c) L. Liu, T.-Y. Zhou, S. G. Telfer, J. Am. Chem. Soc. 2017, 139, 13936–13943.

[8] a) D. J. Xiao, J. Oktawiec, P. J. Milner, J. R. Long, J. Am. Chem. Soc. 2016, 138, 14371–14379; b) W. Shi, L. Cao, H. Zhang, X. Zhou, B. An, Z. Lin, R. Dai, J. Li, C. Wang, W. Lin, Angew. Chem. Int. Ed. 2015, 54, 9704–9709; Angew. Chem. 2015, 129, 9836–9841; c) L. Li, Q. Yang, S. Chen, X. Hou, B. Liu, J. Lu, H.-L. Jiang, Chem. Commun. 2017, 53, 10026–10029.

[9] R. Crabtree, Acc. Chem. Res. 1979, 12, 331–337.

[10] a) D. F. Chodosh, R. H. Crabtree, H. Felkin, S. Morehouse, G. E. Morris, Inorg. Chem. 1982, 21, 1307–1311; b) Y. Xu, M. A. Celik, A. L. Thompson, H. Cai, M. Yurtsever, B. Odell, J. C. Green, D. M. P. Mingos, J. M. Brown, Angew. Chem. Int. Ed. 2009, 48, 582–585; Angew. Chem. 2009, 121, 590–593.

[11] a) H. M. Lee, T. Jiang, E. D. Stevens, S. P. Nolan, Organometallics 2001, 20, 1255–1258; b) L. D. Vazquez-Serrano, B. T. Owens, J. M. Buriaik, Inorg. Chem. Acta 2006, 359, 2786–2797; c) E. L. Kolychev, S. Kronig, K. Brandhorst, M. Freytag, P. G. Jones, M. Tamm, J. Am. Chem. Soc. 2013, 135, 12448–12459.

[12] a) S. P. Smidt, N. Zimmermann, M. Studer, A. Pfaltz, Chem. Eur. J. 2004, 10, 4685–4693; b) G. L. Moxham, T. M. Douglas, S. K. Brayshaw, G. Kociok-Kohn, J. P. Lowe, A. S. Weller, Dalton Trans. 2006, 5492–5505.

[13] H. Li, C. Mazet, Acc. Chem. Res. 2016, 49, 1232–1241.

[14] a) G. Stork, D. E. Kahne, J. Am. Chem. Soc. 1983, 105, 1072–1073; b) R. H. Crabtree, M. W. Davis, J. Am. Chem. Soc. 1986, 108, 2655–2661.

[15] a) D. T. Genna, A. G. Wong-Foy, A. J. Matzger, M. S. Sanford, J. Am. Chem. Soc. 2013, 135, 10586–10589; b) A. Grigoropoulos, G. F. S. Whitehead, N. Perret, A. P. Katsoulidis, F. M. Chadwick, R. P. Davies, A. Haynes, L. Brammer, A. S. Weller, J. Xiao, M. J. Rossinsky, Chem. Sci. 2016, 7, 2037–2050.

[16] a) G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Adv. Mater. 2011, 23, 3294–3297; b) Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, H.-L. Jiang, Chem. Eur. J. 2014, 20, 14976–14980; c) J. Juan-Alcañiz, R. Gielisse, A. B. Lago, E. V. Ramos-Fernandez, P. Serra-Crespo, T. Devic, N. Guillou, C. Serre, F. Kapteijn, J. Gascon, Catal. Sci. Technol. 2013, 3, 2311–2318.

[17] G. Ferey, C. Mallet-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surlé, I. Marjolati, Science 2005, 309, 2040–2042.

[18] Y. Zhang, B. Li, R. Krishna, Z. Wu, D. Ma, Z. Shi, T. Pham, K. Forrest, B. Space, S. Ma, Chem. Commun. 2015, 51, 2714–2717.

[19] D. T. Genna, L. Y. Pfund, D. C. Samblanet, A. G. Wong-Foy, A. J. Matzger, M. S. Sanford, ACS Catal. 2016, 6, 3569–3574.

[20] Note: Although we cannot discount chemical shift changes in the 31P SS NMR spectrum due to the presence of paramagnetic CrIII centers, no significant changes were reported when molecular species were incorporated into pristine MIL-101(Cr). See reference [17].

[21] a) D. Yang, S. O. Odoh, J. Borycz, T. C. Wang, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi, B. C. Gates, ACS Catal. 2016, 6, 235–247; b) F. M. Chadwick, A. I. McKay, A. J. Martinez-Martinez, M. N. Rees, T. Kramer, S. A. Macgregor, A. S. Weller, Chem. Sci. 2017, 8, 6014–6029.

[22] a) M. Moreno, L. N. Kissell, J. B. Jasinski, F. P. Zamborini, ACS Catal. 2012, 2, 2602–2613; b) E. Sadeghmoghaddam, H. Gu, Y.-S. Shon, ACS Catal. 2012, 2, 1838–1845.

[23] a) L. Mantilli, C. Mazet, Tetrahedron Lett. 2009, 50, 4141–4144; b) L. Mantilli, D. Gérard, S. Torche, B. Besnard, C. Mazet, Angew. Chem. Int. Ed. 2009, 48, 5143–5147; Angew. Chem. 2009, 121, 5245–5249.

[24] R. Uma, C. Crevisy, R. Grec, Chem. Rev. 2003, 103, 27–51.

[25] a) A. Rifat, G. Kociok-Kohn, J. W. Steed, A. S. Weller, Organometallics 2004, 23, 428–432; b) E. Piras, F. Lang, H. Ruegger, D. Stein, M. Wörle, H. Grützmacher, Chem. Eur. J. 2006, 12, 5849–5858.

[26] J. J. Verendel, O. Pámis, M. Diéguez, P. G. Andersson, Chem. Rev. 2014, 114, 2130–2169.

[27] U. Hintermair, G. Francio, W. Leitner, Chem. Commun. 2011, 47, 3691–3701.

Manuscript received: October 20, 2017
Accepted manuscript online: January 28, 2018
Version of record online: March 22, 2018
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Grigoropoulos, A; Mckay, AI; Katsoulidis, AP; Davies, RP; Haynes, A; Brammer, L; Xiao, J; Weller, AS; Rosseinsky, MJ

Title:
Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment

Date:
2018-04-16

Citation:
Grigoropoulos, A; Mckay, AI; Katsoulidis, AP; Davies, RP; Haynes, A; Brammer, L; Xiao, J; Weller, AS; Rosseinsky, MJ, Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (17), pp. 4532 - 4537

Persistent Link:
http://hdl.handle.net/11343/221332

File Description:
Published version