Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9

Shuo Huang1 · Yibo Zhang2 · Hui Ren2 · Xiang Li1 · Xin Zhang2 · Zeyuan Zhang2 · Chuanliang Zhang2 · Shengjie Liu2 · Xiaoting Wang2 · Qingdong Zeng1 · Qilin Wang2 · Ravi P. Singh3 · Sridhar Bhavani3 · Jianhui Wu2 · Dejun Han2 · Zhensheng Kang1

Received: 11 November 2021 / Accepted: 18 May 2022 / Published online: 20 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Key message Four stable QTL for adult plant resistance were identified in wheat line Changwu 357-9, including a new QTL on 2AL showing significant interaction with Yr29 to reduce stripe rust severity.

Abstract Stripe rust (yellow rust) is a serious disease of bread wheat (Triticum aestivum L.) worldwide. Genetic resistance is considered the most economical, effective and environmentally friendly method to control the disease and to minimize the use of fungicides. The current study focused on characterizing the components of stripe rust resistance and understanding the interactions in Changwu 357-9 (CW357-9)/Avocet S RIL population. A genetic linkage map constructed using a new GenoBaits Wheat 16K Panel and the 660K SNP array had 5104 polymorphic SNP markers spanning 3533.11 cM. Four stable QTL, consistently identified across five environments, were detected on chromosome arms 1BL, 2AL, 3DS, and 6BS in Changwu357-9. The most effective QTL QYrCW357-1BL was Yr29. The 6BS QTL was identified as Yr78, which has been combined with the 1BL QTL in many wheat cultivars and breeding lines. The novel QTL on 2AL with moderate effect showed a stable and significant epistatic interaction with Yr29. The QTL on 3DL should be same as QYrsn.nwafu-3DL and enriches the overall stripe rust resistance gene pool for breeding. Polymorphisms of flanking AQP markers AX-110020417 (for QYrCW357-1BL), AX-110974948 (for QYrCW357-2AL), AX-109466386 (for QYrCW357-3DL), and AX-109995005 (for QYrCW357-6BS) were evaluated in a diversity panel including 225 wheat cultivars and breeding lines. These results suggested that these high-throughput markers could be used to introduce QYrCW357-1BL, QYrCW357-2AL, QYrCW357-3DL, and QYrCW357-6BS into commercial wheat cultivars. Combinations of these genes with other APR QTL should lead to higher levels of stripe rust resistance along with the beneficial effects of multi-disease resistance gene Yr29 on improving resistance to other diseases.

Abbreviations

ANOVA Analysis of variance
APR Adult plant resistance
AQP Allele-specific quantitative PCR

Communicated by Reem Aboukhaddour.

Shuo Huang, Yibo Zhang, and Hui Ren contributed equally to this work.

✉ Jianhui Wu
wujh@nwafu.edu.cn
✉ Dejun Han
handj@nwafu.edu.cn
✉ Zhensheng Kang
kangzs@nwsuaf.edu.cn

1 State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
2 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
3 International Maize and Wheat Improvement Center (CIMMYT), 56237 El Batan, Texcoco, Estado de Mexico, Mexico
Introduction

Wheat (*Triticum aestivum* L.) is a major cereal crop consumed widely throughout the world, and production is often constrained by diseases and pests causing substantial yield losses. Stripe rust (yellow rust) caused by *Puccinia striiformis* Westend. *f*. sp. *tritici* Eriks. occurs in almost all wheat-producing regions. This disease causes significant economic losses in terms of reduced grain production and additional costs associated with disease management (Hovmøller et al. 2010; McIntosh et al. 1995). The most profitable and environmentally friendly strategy for farmers to control wheat rusts in both developing and developed countries is to grow genetically resistant wheat varieties (Krattinger et al. 2009).

The application of genomic tools and development of genotyping platforms for wheat improvement have lagged behind other cereals such as rice and maize for a long period largely due to its allohexaploid nature (AABBDD genome), huge genome size (~17 Gb) and highly repetitive elements (>80%). Recent advances in sequencing technology, however, radically changed the landscape and provided opportunities to overcome these difficulties. Over the past few years, great progress was made in developing the reference genome assembly of polyploid wheat and its progenitors, including *T. urartu* (AA genome) (Ling et al. 2018), *Aegilops tauschii* (DD genome) (Jia et al. 2013; Luo et al. 2013, 2017; Zhao et al. 2017), and wild emmer wheat (*T. turgidum* ssp. *dicoccoides*) (AABB genome) (Avni et al. 2017). Subsequent exon capture sequencing and resequencing technologies now accelerate marker development and establish haplotypes associated with resistant and susceptible lines (Cobo et al. 2018; Krasileva et al. 2017; Hao et al. 2020). Single nucleotide polymorphisms (SNPs) as the most abundant and important type of DNA variation were used to develop several high-throughput SNP genotyping platforms such as the 9K, 16K, 35K, 55K, 90K, and 660K high-density SNP chips (Cavanagh et al. 2013; Wang et al. 2014; Jia and Zhao 2016; Qiao et al. 2022). A target sequencing (GBS) system with capture-in-solution (liquid chip) technology known as the wheat 16K SNP array with the advantage of greater power for detection of genetic diversity by linkage disequilibrium decay analysis and genome-wide association studies than the one-amplicon-one-SNP system was developed by a multiple single nucleotide polymorphism (mSNP) approach (Guo et al. 2021).

More than 80 permanently named stripe rust resistance (*R*) genes (*Yr1–Yr83*) and many QTLs have been mapped on all 21 wheat chromosomes (Li et al. 2020; McIntosh et al. 2017). These genes/QTL can be categorized as all-stage resistance (ASR) and adult plant resistance (APR) or high-temperature adult plant resistance (HTAPR) based on the growth stage at which they can be detected. ASR is often race-specific, qualitatively inherited and controlled by a single gene, whereas APR and HTAPR are more quantitative with individual genes having minor effectiveness, but when combined there are additive effects such that agronomically acceptable levels of resistance are achieved. The added advantage of this type of resistance is durability that is based on the thesis that the genes conferring this type of resistance are non-specific or that any erosion of effectiveness will be a gradual process rather than a ‘boom and bust’ characteristic of widespread use of single ASR genes (Chen 2005, 2013; Lagudah 2011; Chen and Line 1995), most recently evidenced in China with the emergence of the now-prevalent *Yr26*-virulent race group, including CYR34. This race group not only overcame *Yr26* but also possessed a wide array of virulence for other well-known ASR genes (Wu et al. 2020, 2021; Huang et al. 2021). Therefore, identification and characterization of APR or HTAPR genes will enrich the overall stripe rust resistance gene pool and thereby accelerate development of wheat cultivars with durable, high-level resistance that can also be combined with effective all-stage resistance (Chen 2013; Liu et al. 2018).

Changwu 131 and Changwu 134 developed by Dr. Zengji Liang (Agricultural and rural Bureau of Changwu County, Xianyang, China) have been commercial wheat cultivars in China for many years. Changwu 357-9 (CW357-9), one of those prefixed as “Changwu” derivatives, has shown a high level of resistance to stripe rust since its release in 1989. However, little was known about the genetic basis of the resistance to stripe rust in this line. The objectives of this study were to: (1) investigate the genetic basis of stripe rust resistance in Changwu 357-9 using a recombinant inbred line (RIL) population tested in multiple environments, (2) identify and map QTL in CW357-9 with significant additive and epistatic effects on resistance to stripe rust using the
wheat 16K SNP array, and (3) develop and validate AQP markers closely linked to three identified QTL.

Materials and methods

Plant materials

The 167 F_3-derived F_6 recombinant inbred line (RIL) population was derived from a cross of susceptible Avocet S (AvS) and resistant Changwu 357-9 (CW357-9). A panel of 225 Chinese wheat cultivars/breeding lines and Yr gene carriers were evaluated for response to stripe rust across multiple field environments, and the data were used to determine the prevalence of resistance genes/QTL identified in CW357-9 based on flanking SNP markers (Zhou et al. 2021). The wheat cultivars Avocet S (AvS), Mingxian 169 (MX169), and Xiaoyan 22 (XY22) were used as susceptible controls.

Greenhouse evaluation

In previous studies, CW357-9 was tested in seedling with Pst races CYR23, CYR29, CYR31, CYR32, CYR33, V26/CH4 2, V26/Gui22, Su11-4, Su11-5, and Su11-7, and it was susceptible to the currently predominant races CYR32, CYR33, and V26/Gui22 (Wu et al. 2016). In the present study, we used additional three potentially predominant races PST-Lab.1, PST-Lab.2, and PST-V26 collected from field and separated in our laboratory to identify the type of inheritance in CW357-9. The testing regime for seedlings and determination of virulence/avirulence characteristics of PST-Lab.1, PST-Lab.2, and PST-V26 were previously reported in Huang et al. (2021). Infection types (ITs) of all plants were recorded 18 to 21 days after inoculation when the symptoms were fully developed on the susceptible control (AvS and MX169), and based on a 0–9 scale as previously described (Line and Qayoum 1992). The records of IT data were repeated three times to ensure reliability.

Field experiments

The 167 F_6 RILs and parents for disease assessment were grown in five different environments including Jiangyou (JY) in Sichuan province and Yangling (YL) in Shaanxi province during 2017–2018 and 2018–2019, and Tianshui (TS) in Gansu province in 2018–2019, designated as 2018JY, 2018YL, 2019YL, and 2019TS, respectively. Lines carrying $Yr29$ (Pavon 76, Attila, and Avocet-Yr29) were included as checks. The locations in Sichuan and southern Gansu experience cool, wet weather that is ideal for natural stripe rust survival and spread. At each location, 30 seeds of each line were planted as 1-m single rows and a 30-cm row spacing with a mixture of MX169 and XY22 as susceptible spreaders sown after every 20 rows. Trials at Yangling were inoculated with a mixture of Pst races PST-Lab.1, PST-Lab.2 and PST-V26 suspended in a light oil (1:300) sprayed onto MX169 and XY22 at flag leaf emergence. Two replicates of the RILs were planted in each environment. Stripe rust assessments on adult plants were made 5–25 April at Jiangyou (JY), 3–17 May at Yangling (YL), and 10–15 June at Tianshui (TS), when AvS and XY22 displayed 80% severity or more. Infection types (IT) using a 0 (resistant) to 9 (susceptible) scale (Line and Qayoum 1992) and disease severities (DS) based on the modified Cobb Scale (Peterson et al. 1948) were used to evaluate the adult plant responses to stripe rust. IT and DS of homozygous (not segregated) lines were recorded as single values, and for heterozygous (segregated) lines IT and DS were recorded as two or more values, but later not used in QTL detection. Disease assessment was made at least twice, and the highest IT and DS for each line were used for phenotypic and QTL analyses.

Phenotypic analysis

ANOVA of the mean IT and DS for the RILs in each environment was undertaken to determine the effects of genotype (G), environment (E), and $G \times E$ interaction. Pearson’s correlation coefficient (r) analysis and ANOVA were conducted using the “AOV” function in QTL IciMapping software 4.1 with the default parameters (Meng et al. 2015). Broad-sense heritabilities (h^2_b) of resistance were based on the equation

$$h^2_b = \frac{\sigma^2_g}{\sigma^2_g + \sigma^2_e + \sigma^2_{ge} + \sigma^2_{re}},$$

where σ^2_g, σ^2_e, and σ^2_{ge} represent the genotypic, environmental, and genetic by environmental variances, respectively, and σ^2_{re} the error variance. In addition, the mean phenotypic values for all five environments were used to evaluate the genetic effects and find the best confidence region for each QTL (Mu et al. 2019).

SNP calling and clustering

Genomic DNA were extracted from pools of 10–15 plants from each parent and RIL at the jointing stage using the CTAB protocol (Clarke 2009), and DNA quality was assessed using a NanoDrop ND-1000 (Thermo Scientific, Wilmington, DE, USA). The RILs and parents were genotyped by a new wheat 16K SNP array from Mol Breeding (Shijiazhuang in Hebei province; http://www.molbreeding.com). The wheat 660K SNP array from CapitalBio Corporation (Beijing; http://www.capitalbio.com) was used to genotype the two parents. The distribution of SNPs from the 16K array is shown in Table S1. The procedure for marker clustering was described in Huang et al. (2021).
Linkage map construction and QTL analysis

A Chi-squared (χ2) test for goodness of fit to a 1:1 segregation ratio was performed for each SNP before processing by including those <10% missing values and major allele frequencies (MAF) ≤ 95%. One marker was selected from each co-segregating marker group using the “BIN” function in IciMapping V4.2 software. The selected markers were used to generate the genetic map using the “MAP” function in IciMapping V4.2 software and drawn in Mapchart V2.3 (Meng et al. 2015; Voorrips 2002). Combining the calculated value by 1000 permutations at a probability of 0.01, the logarithm of odds (LOD) score to determine significant QTL was 6.8 in all five environments. Recombination fractions were converted to cM using the Kosambi function (Kosambi 1943). The phenotypic data including IT, DS, and mean values from all environments were used to identify the QTL. Inclusive composite interval mapping with the additive tool (ICIM-ADD) in IciMapping V4.2 was performed to detect QTL. The phenotypic variances explained (PVE) by individual QTL and additive effects at the LOD peaks were also obtained. Due to low marker density, some QTL mapped in potentially large regions. To further narrow down the flanking intervals of target loci, significant SNPs from 660K SNP array were converted into allelic specific quantitative PCR (AQD) markers by JasonGen Biological Technology Co., Ltd (Beijing; http://www.jasongen.com) to genotype the RIL population.

Epistasis

Genotyped SNP markers associated with stripe rust resistance across five environments, were used for pairwise interaction analysis in Network version 2.1 (Yang et al. 2008). QTL effects were evaluated by the mixed linear model (MLM) approach. A ‘‘2D genome scan’’ option was used to map epistatic QTL with or without single-locus effects. additive × additive (A*A) epistatic effects of mapped using the ‘‘map epistasis’’ function. F values were used to control the error rate by permutation tests.

Results

Genetic linkage map

Of the 20,995 SNPs, 5104 (24.4%) showed polymorphism between the parents. By using the “BIN” function in QTL IciMapping 4.2, redundant polymorphic SNPs were removed showing >10% missing data and distorted segregation. Finally, 841 SNPs were chosen to construct the genetic linkage map; they were distributed in 22 linkage groups spanning 3533.11 cM. The A, B, and D genomes included 290 (34.48%), 374 (44.47%), and 177 (21.05%) markers covering lengths of 1268.96, 1356.53, and 1012.27 cM with average marker intervals of 4.38, 3.63, and 5.72 cM, respectively. Only chromosome 2D had two linkage groups; the other chromosomes were each represented by a single linkage group (Table S1).

Phenotypic evaluation

The CW357-9 seedlings were resistant (IT 3-4) to PST-Lab.1 and PST-Lab.2, but susceptible (IT 8-9) to PST-V26. CW357-9 was highly resistant (IT 1-2, DS ≤ 5%) at the adult plant stage in the field, whereas AvS was highly susceptible (IT 8-9) in all experiments. Based on these results, CW357-9 possessed both seedling resistance to two potentially predominant races PST-Lab.1 and PST-Lab.2 and APR in the field. In the seedling test, all the RILs and two parents were phenotyped by PST-Lab.1 to identified ASR. In the field experiments, both IT and DS data for RILs showed continuous distributions (Fig. 1), indicating that resistance in CW357-9 was quantitatively inherited. Pearson’s correlation coefficients of pairwise comparisons of IT and DS ranged from 0.60–0.85 and 0.58–0.88 (P < 0.001) (Table 1), respectively. Broad-sense heritabilities for both IT and DS were 0.92 (Table 2). P values in the ANOVA for IT and DS were highly significant (P < 0.0001) for RILs, environments, and line × environment interactions. Lack of significant variation between the replicates suggested that genetically controlled resistance was the main source of phenotypic variation in the RIL population (Table 2). These results indicated that the QTL conferring resistance was effective in the five environments.

Additive QTL for stripe rust resistance

Two QTL for seedling resistance to race PST-Lab.1 were detected on chromosomes arms 2BL and 4DL, but did not confer resistance in field, indicating that isolate PST-V26 was prevalent in field experiments. Both IT and DS data from the field environments were used to detect QTL at the adult plant stage. Four consistent QTL on chromosome arms 1BL, 2AL, 3DL, and 6BS, designated as QYrCW357-1BL, QYrCW357-2AL, QYrCW357-3DL, and QYrCW357-6BS, respectively, were identified in all five environments using the ICIM method in QTL IciMapping 4.2. All detected QTL were derived from the resistant parent CW357-9 (Table 3; Fig. 2a, b). QYrCW357-1BL with the largest effect was closely linked to markers AX-110020417 and 16k-16852 and explained 19.8–28.8% and 23.9–29.1% of variation in IT and DS, respectively (Table 3; Fig. 2a). QYrCW357-2AL located in a 3 cM interval spanned by markers 16k-4252 and 16k-4207 explained 4.0–10.0% and 5.8–12.9% of the phenotypic variation in IT and DS, respectively, across environments.
QYrCW357-6BS, linked to 16k-15955 and AX-109914318, explained 2.8–8.1% (IT) and 2.6–8.3% (DS) of the phenotypic variances, respectively. QTL on 3DL, flanked by 16k-9333 and 16k-9526, explained 2.8–8.1% and 9.1–16.4% of the variation in IT and DS, respectively. All QTL had additive effects (Table 3).

Epistatic interaction detected by QTL Network version 2.1

Significant epistatic interactions were detected across all field traits using QTL Network version 2.1. Two different intervals on 1BL and 2AL corresponding to the markers

Table 1 Correlation coefficients (r) for stripe rust infection type (IT) and disease severity (DS) in the AvS × CW357-9 RIL population tested in five field environments

Environment	r value based on IT (DS) b			
	2018YL	2018JY	2019JY	2019YL
2018JY	0.70 (0.72)	–	–	–
2019JY	0.85 (0.88)	0.73 (0.80)	–	–
2019Y1	0.71 (0.70)	0.67 (0.63)	0.69 (0.67)	–
2019TS	0.61 (0.61)	0.76 (0.75)	0.60 (0.58)	0.67 (0.63)

aYL, TS, and JY are abbreviations for Yangling, Tianshui, and Jiangyou, respectively

bAll r values were significant at $P=0.001$

Table 2 Analysis of variance (ANOVA) for stripe rust infection type (IT) and disease severity (DS) data for the AvS × CW357-9 RIL population evaluated at Yangling and Jiangyou in 2017 and 2018 and Tianshui in 2018

Source of variation	IT				DS			
df	Mean square	F value	P-value	df	Mean square	F value	P-value	
RILs	166	38.8	39.3	<0.0001	166	6850.3	54.3	<0.0001
Replicates	1	6.8	6.9		1	1872.6	14.8	
Environments	4	217.8	220.9	<0.0001	4	37,363.6	296.2	<0.0001
Line × environment	660	3.1	3.1	<0.0001	660	561.9	4.5	<0.0001
Error	662	0.99			662	126.1		
h2b	0.92				0.92			
Table 3 Summary of stripe rust APR QTL detected in the A\textsc{v}S\times\textsc{cW}357-9 RIL population using IciMapping 4.1

QTL	Environment	Marker interval	Genetic position	LODb	PVEc	Addd
QYrCW357-JBL	2018YL-IT	AX-110020417	16k-16852	152	10.5	25.7
	2018YL-DS	AX-110020417	16k-16852	153	10.6	25.8
	2018Y-IT	AX-110020417	16k-16852	153	12.1	28.8
	2018Y-DS	AX-110020417	16k-16852	153	10.2	24.9
	2019YL-IT	AX-110020417	16k-16852	153	9.8	24.3
	2019YL-DS	AX-110020417	16k-16852	153	12.4	29.1
	2019Y-IT	AX-110020417	16k-16852	153	8.0	19.8
	2019Y-DS	AX-110020417	16k-16852	153	9.8	23.9
	2019TS-IT	AX-110020417	16k-16852	153	9.8	24.5
	2019TS-DS	AX-110020417	16k-16852	153	10.9	26.4
IT_mean	AX-110020417	16k-16852	153	11.4	27.5	1.0
DS_mean	AX-110020417	16k-16852	153	11.8	27.9	13.7
QYrCW357-2AL	2018YL-IT	AX-110020417	16k-9514	22	2.5	3.3
	2018YL-DS	AX-110020417	16k-9514	22	3.6	5.4
	2018Y-IT	AX-110020417	16k-9514	22	4.0	4.2
	2018Y-DS	AX-110020417	16k-9514	22	3.7	4.6
	2019YL-IT	AX-110020417	16k-9514	22	6.0	8.1
	2019YL-DS	AX-110020417	16k-9514	22	6.1	8.3
	2019Y-IT	AX-110020417	16k-9514	22	4.2	4.6
	2019Y-DS	AX-110020417	16k-9514	22	3.7	3.8
	2019TS-IT	AX-110020417	16k-9514	22	4.2	3.2
	2019TS-DS	AX-110020417	16k-9514	22	4.9	5.4
IT_mean	AX-110020417	16k-9514	22	4.7	3.8	
DS_mean	AX-110020417	16k-9514	22	4.4	3.9	
QYrCW357-3DL	2018YL-IT	AX-110020417	16k-15955	51	9.2	11.6
	2018YL-DS	AX-110020417	16k-15955	51	8.9	11.0
	2018Y-IT	AX-110020417	16k-15955	51	9.2	11.6
	2018Y-DS	AX-110020417	16k-15955	51	8.9	11.0
	2019YL-IT	AX-110020417	16k-15955	51	7.0	7.9
	2019YL-DS	AX-110020417	16k-15955	51	4.4	3.4
	2019Y-IT	AX-110020417	16k-15955	51	7.7	9.2
	2019Y-DS	AX-110020417	16k-15955	51	10.2	10.4
IT_mean	AX-110020417	16k-15955	51	10.0	9.3	
DS_mean	AX-110020417	16k-15955	51	10.6	11.7	

a YL, TS, and JY are abbreviations for Yangling, Tianshui, and Jiangyou, respectively; Mean, average data from five environments

b LOD, logarithm of odds score

c PVE, percentage of phenotypic variance explained by individual QTL

d Add, additive effect of resistance allele. A negative value indicates that the resistance allele is from CW357-9

© Springer
AX-110020417-16k-16852 (QYrCW357-1BL or Yr29) and 16k-4252-AX-110974948 (QYrCW357-2AL) showed an estimated additive by additive interaction (A*A) effects of 0.24–0.34 and 3.24–4.50 in IT and DS, respectively (Table 4). The QTL on 1BL and 2AL showed a significant epistatic interaction for reduced stripe rust severity, whereas the presence of the 3DL and 6BS QTL were not detected for epistatic effects.

Table 4 Epistatic interaction between the locus on 1BL and 2AL identified by QTL Network version 2.1

Traits	QTL1a	Flanking interval	QTL2b	Flanking interval	A1*A2c effect
2018YL-IT	QYrCW357-1BL (Yr29)	AX-110020417-16k-16852	QYrCW357-2AL	16k-4252-AX-110974948	0.26**
2018YL-DS	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	3.55**	
2018YJ-IT	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	0.24*
2018YJ-DS	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	3.24*
2019YL-IT	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	0.34**
2019YL-DS	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	3.98**
2019YJ-IT	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	0.34*
2019YJ-DS	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	4.50**
2019TS-IT	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	3.64*
2019TS-DS	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	0.25*
IT_mean	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	4.08**
DS_mean	AX-110020417-16k-16852	AX-110020417-16k-16852	AX-110020417-16k-16852	16k-4252-AX-110974948	

*P<0.005; **P<0.001

aFirst QTL and interval of a pair of interacting QTL

bSecond QTL and interval of a pair of interacting QTL

cA1*A2 is the additive × additive interaction or epistatic effect across different environments
QTL combinations and interaction

In order to investigate the effects of QTL combinations, RILs were classified into five genotypic groups based on all field tests (Table S2). RILs with all four QTLs \(QYrCW357-1BL, QYrCW357-2AL, QYrCW357-3DL, \) and \(QYrCW357-6BS \) were more resistant (lower IT and DS) than all others, displaying resistance similar to CW357-9 (Fig. 3a, b; Table S2). Among these genes, the combination of \(QYrCW357-1BL \) and \(QYrCW357-2AL \) showed the most significant effect in reducing stripe rust severity (Fig. 3c, d). RILs with none of the four stable QTLs had mean IT and DS values of 8.2 and 88.6%, respectively; RILs with only one QTL (1BL or 2AL) had mean values of 6.9 and 71.0% for the 1BL locus (similar to Avocet-\(Yr29 \) in Table S3) and 7.2 and 76.1% for 2AL, respectively (Fig. 3c, d). The group combining \(QYrCW357-1BL \) and \(QYrCW357-2AL \), with mean IT and DS of 4.6 and 36.0%, respectively, showed significant effect in reducing IT and DS (Fig. 3c–f).

Polymorphisms of AQP markers for stripe rust resistance in wheat genotypes

To determine the robustness of identified markers for stripe rust resistance in CW357-9, genotyping of the 225-accession panel for polymorphic AQP markers \(AX-110020417, AX-110974948, AX-109466386 \) and \(AX-109995005 \) represented for \(QYrCW357-1BL, QYrCW357-2AL, QYrCW357-3DL, \) and \(QYrCW357-6BS, \) respectively, suggested these markers were significantly associated with the DS scores of the wheat panel (Table S4). The genotyping assays generated three groups for different combination, enabled by testing the user-friendly markers for validation of both epistatic and additive effects (Fig. 4). Wheat lines with both \(QYrCW357-1BL \) (or \(Yr29 \)) and \(QYrCW357-2AL \) were on the average more resistant than lines without them, but some accessions containing the QTL were highly susceptible, indicating that the effects of the two QTL alone could be influenced by recombination between markers, genetic background, and environment. However, wheat lines combining all four loci had the lowest average DS in Yangling and Tianshui (Fig. 4). Sequences for the AQP markers \(AX-110020417, \)
AX-110974948, AX-109466386, and AX-109914318 are provided in Table S4.

Discussion

There is now strong evidence that pyramiding multiple partially effective resistance genes with additive or positive interaction in a single wheat cultivar can lead to more durable resistance than a single highly effective all-stage resistance gene (Huang et al. 2019). The data also suggest that the level of resistance required to protect yield potential and to prevent significant disease spread will require about four genes (Huang et al. 2019, 2021; Zeng et al. 2019). In addition, the numbers of epistatic interactions are frequently larger than the number of additive QTL, and the importance and number of epistatic interactions in terms of both the number of loci involved and effects may be greater than the additive QTL (Malmberg et al. 2005; Liu et al. 2022). CW357-9 is such a wheat genotype combining four partial APR QTL with both epistatic and additive effects and has maintained highly resistance for more than ten years in China.

Four stable QTL for APR in CW357-9

QYrCW357-1BL with the largest effect on APR, spanned by the markers AX-110020417 and 16k-16852, was mapped on chromosome arm 1BL (Table 3; Fig. 2a). Yr29, the only designated Yr gene on 1BL, closely linked to, and commonly identified by, marker csLV46G22 has been mapped in many studies (William et al. 2003; Cobo et al. 2018; Kolmer et al. 2012; Lan et al. 2014, 2015; Ponce-Molina et al. 2018; Rosewarne et al. 2012). This
multi-pathogen resistance allele \((Lr46/Yr29/Pm39/Sr58/Ltn2)\) was widely used in CIMMYT germplasm (Singh et al. 2013; Lan et al. 2015; Kolmer et al. 2015; Rosewarne et al. 2006, 2008). Genotyping of CW357-9 and \(Yr29\) carriers (Pavon 76, Attila, AVSYr29NIL) with the PCR makers \(AX-110020417\) and \(cslLV46G22\) showed that CW357-9 and \(Yr29\) shared an allele that differed from AvS. CW357-9 also showed leaf tip necrosis in our field (Fig. 1a). Thus, \(QYrCW357-9\) also likely to be \(Yr29\).

The second QTL \(QYrCW357-2AL\) conferring APR explained 4.0–12.9% of the phenotypic variation in IT and DS was flanked by markers \(I6k-4252\) and \(AX-110974948\) (Table 3; Fig. 2b). Many genes for APR were previously mapped on chromosome arm 2AL, including \(QYr.caas-2AL\) in Zhong 892 (Liu et al. 2015), \(QYr.qin.nwafu-2AL\) in QN142 (Zeng et al. 2019), and \(Yrxy2\) in Xiaoyan 54 (Zhou et al. 2011) closely linked to the markers \(IWB11764, AX-94895021,\) and \(Xqwm794\), respectively. Two additional QTL closely linked to markers \(IWA7339\) and \(IWA544\), respectively, were detected by genome-wide association analysis (GWAS) (Fig. 5a and b, Table S3). Based on the integrated genetic map (Bulli et al. 2016) (F. Cui, personal communication) and physical map in IWGSC RefSeq v1.0 (IWGSC 2018) (Fig. 5, Table S5), the QTL on 2AL was presented in the different location with previous QTL, indicating that \(QYrCW357-2AL\) appeared to be a new stripe rust resistance gene.

\(QYrCW357-3DL\) with minor effects was detected on 3DL (Table 3). In a previous study, \(QYrsn.nwafu-3DL\) in Shaannong 33 flanked by \(AX-109466386\) (180,398,197) and \(AX-110284733\) (414,838,337) was mapped in a similar physical region based on IWGSC RefSeq v1.0 (Huang et al. 2021; IWGSC 2018). Genotyping of \(QYrsn.nwafu-3DL\)-linked AQP marker \(AX-109466386\) showed that CW357-9 and Shaannong 33 had the same allele that differed from AvS. In addition, similar level of explanation was found for PVE. Based on the integrated map (Huang et al. 2021), these results indicated that \(QYrCW357-3DL\) and \(QYrsn.nwafu-3DL\) should be same and different from other QTL genes in the region.

Dong et al. (2017) mapped \(QYr.ucw-6B\) (\(Yr78\)) close to the marker \(IWA7257\). Several studies confirmed that \(QYrsn.nwafu-6BS\) in Shaannong 33, \(QYr.wgp-6B.1\) in Stephens, \(QYr.sun-6BS\) in Janz, and \(QYrMa.wgp-6BS\) in Madsen were \(Yr78\) (Huang et al. 2021; Dong et al. 2017; Liu et al. 2018). In our study, \(QYrCW357-6BS\), flanked by the markers \(I6k-15955\) and \(AX-109914318\), explained 6.6–11.7% of the phenotypic variation in IT and DS (Table 3). Genotyping result of CW357-9, Shaannong 33, Stephens, Madsen, and AvS with the marker \(IWA7257\) (\(Yr78\)) showed that CW357-9, Shaannong 33, Stephens, and Madsen presented different alleles with AvS, suggesting that \(QYrCW357-6BS\) likely to be same with \(Yr78\).

\(Yr29\) and \(Yr78\) are frequently combined in Chinese wheat germplasm

Combinations of \(QYrCW357-1BL\) (\(Yr29\)) on chromosome arm 1BL and \(QYrCW357-6BS\) (\(Yr78\)) on 6BS were detected in several Shaanxi wheat cultivars, including Qinnong 142 (Zeng et al. 2019), Shaannong 33 (Huang et al. 2021), and Xinong3517 (Huang unpublished data). These cultivars were highly resistant in the field at Shaanxi, Gansu, and Sichuan provinces, which are hotspot regions for over-season survival of \(Pst\) and have frequent occurrence of stripe rust. In this study, most carrier varieties with \(Yr29\) and \(Yr78\) were from Sichuan (12, 21.4%), Henan (9, 16.1%), and Shandong (8, 14.3%). Similar results reported in Huang et al. (2021) indicate varieties carrying \(Yr29\) and \(Yr78\) are common in these provinces.

Gene–gene interaction contributing to stripe rust resistance

A method of MAS based on QTLs with epistatic effects was proposed (Liu et al. 2003). Changwu 357–9 with desirable agronomic traits and a high level of durable resistance to stripe rust can be used as a parent for marker-assisted breeding for favorable epistatic interactions. Based on the epistatic analysis of field IT and DS, \(QYrCW357-1BL\) (or \(Yr29\)) and \(QYrCW357-2AL\) showed a significant interaction (Table 4, Fig. 2). \(Yr29\) is present in many wheat cultivars around the world and has remained effective for more than 60 years (Cobo et al. 2017). The novel locus on chromosome arm 2AL interacted with \(Yr29\) and other genes to confer an acceptable level of resistance to stripe rust in Chinese wheat Changwu 357–9 (Fig. 2c–f, Table S2). Based on genotyping of the flanking AQP markers, these results suggested that these markers can be used for developing new cultivars with high-level of durable resistance to stripe rust (Table S4). In addition, further exploration may provide insight for understanding the interactions observed between \(QYrCW357-1BL\) or \(Yr29\) and \(QYrCW357-2AL\) in this study as well as functional mechanisms that contribute to this resistance gene network.

Conclusion

\(CW357-9\) with durable resistance to stripe rust for more than a decade carries a 4-gene combination of APR genes, including \(Yr29\), \(Yr78\), \(QYrCW357-2AL\), and \(QYrCW357-3DL\) with additive and epistatic effects. The QTL on chromosome arms 2AL and 3DL were novel. The key points from
this work were: (1) \textit{QYrCW357-2AL} and \textit{QYrCW357-3DL} can be selected to enrich the overall stripe rust resistance gene pool for breeding; (2) the combination of \textit{Yr78} and \textit{Yr29} is frequent among wheat cultivars and breeding lines in China; and (3) the discovery of favorable epistatic interaction between \textit{Yr29} and \textit{QYrCW357-2AL}. Finally, CW357-9 not only represents a useful breeding parent but the markers developed here can be potentially used in MAS to develop new cultivars with potentially durable resistance. Field trials in disease nurseries will still be required to determine that lines with the selected resistance gene combination confer an acceptable level of protection from stripe rust.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00122-022-04133-9.

Acknowledgements The authors are grateful to Prof. R.A. McIntosh, Plant Breeding Institute, University of Sydney, for language editing and proofreading of the draft manuscript. This study was supported financially by National Key R&D Program of China (2021YFD1401000 and 2021YFD1200600), International Cooperation and Exchange of the National Natural Science Foundation of China (31961430191), National Science Foundation for Young Scientists in China (31901494 and 31901869), National Natural Science Foundation of China (31971890), China Postdoctoral Science Foundation funding (2021M702698), and National “111 plan” (BP0719026).

Author contribution statement SH designed and conducted the experiments, analyzed the data, and wrote the manuscript. YBZ, HR, XL, XZ, CLZ, QDZ, and QLW participated in creation of the genetic population and revised the manuscript. YBZ, HR, XL, XZ, CLZ, QDZ, and QLW participated in genotyping. RPS, SB, and ZSK participated in revision and assisted in analysis of the SNP array data. YBZ, HR, ZYZ, EL, XZ, QDZ, and QLW participated in analysis of the data, and wrote the manuscript. YBZ, HR, XL, XZ, CLZ, QDZ, and QLW contributed to genotyping. RPS, SB, and ZSK participated in revision and proofreading of the draft manuscript. This study was funded by the Department of Plant Protection and Exchange of the National Natural Science Foundation of China (31961430191), National Science Foundation for Young Scientists in China (31901494 and 31901869), National Natural Science Foundation of China (31971890), China Postdoctoral Science Foundation funding (2021M702698), and National “111 plan” (BP0719026).

Funding This study was funded by the Department of Plant Protection at the University of Northwest A&F.

Data availability All data, models, or code generated or used during the study are available from the corresponding author by request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccarelli M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Ashkushk K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

Bansal UK, Hayden MJ, Keller B, Wellings CR, Park RF, Bariana HS (2009) Relationship between wheat rust resistance genes \textit{Yr7} and \textit{Sr48} and a microsatellite marker. Plant Pathol 58:1039–1043

Boukhatem N, Baret PV, Mingeot D, Jacquemien JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118

Bulli P, Zhang J, Chao S, Chen X, Pumphrey M (2016) Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3 6:2227–2233

Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

Chen C, He ZH, Lu JL, Li J, Ren Y, Ma CX, Xia XC (2016) Molecular mapping of stripe rust resistance gene \textit{Yr22} in Chinese wheat cultivar Jiaxi 21. Mol Breed 36:118

Chen X (2013) Review Article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. Amer J Plant Sci 4:608–627

Chen XM (2005) Epidemiology and control of stripe rust \textit{[Puccinia striiformis f. sp. tritici]} on wheat. Can J Plant Pathol 27:314–337

Chen XM, Line RF (1995) Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to \textit{Puccinia striiformis}. Phytopathology 85:573–578

Clarke J. D. 2009. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Csh Protoc pdb.prot5177

Cobo N, Wanjigi H, Lagudah E, Dubcovsky J (2018) A high-resolution map of wheat, an adult plant stripe rust resistance locus in the same chromosomal region as \textit{Yr29}. Plant Genome-US 12:180055

Dong Z, Hegarty JM, Zhang J, Zhang W, Chao S, Chen X, Zhou Y, Dubcovsky J (2017) Validation and characterization of a QTL for adult plant resistance to stripe rust (Guo et al. 2021) on wheat chromosome arm 6BS (\textit{Yr79}). Theor Appl Genet 130:2127–2137

Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoor A, Wellings CR (2004) \textit{Yr29} for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

Guo Z, Yang Q, Huang F, Zheng H, Sang Z, Xu Y, Zhang C, Wu K, Tao J, Prasanna BM, Olsen MS, Wang Y, Zhang J (2021) Xu Y (2021) Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun. https://doi.org/10.1016/j.xplc.2021.100230

Hao C, Jiao C, Hou J, Li T, Liu H, Wang Y, Zheng J, Liu H, Bi Z, Xu F, Zhao J, Ma L, Wang Y, Majeed U, Liu X, Appels R, Maccaferri M, Tuberosa R, Lu H, Zhang X (2020) Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol Plant 13:1733–1751

Hovmoller MS, Walter S, Justesen AF (2010) Escalating threat of \textit{Puccinia graminis} to wheat. Annu Rev Phytopathol 48:247-267

Huang S, Liu S, Zhang Y, Xie Y, Wang X, Jiao H, Wu S, Zeng Q, Wang Q, Singh RP, Bhavnani S, Kang Z, Wang C, Han D, Wu J (2021)
Genome-Wide Wheat 55K SNP-based mapping of stripe rust resistance loci in wheat cultivar Shannong 33 and their allel frequencies in current Chinese wheat cultivars and breeding lines. Plant Dis 105:1048–1056

International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191–7203

Jia J, Zhao G, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xion X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zhou H, Zhang R, Xu J, Gao J, Middleton C, Qian Z, Liu G, Wang J, Yang H, Liu X, He Z, Mao L, Wang J (2013) *Aegilops tauschii* draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

Jia JZ, Zhao G (2016) Wheat 660 SNP array developed by CAAS. https://wheat.pw.usda.gov/ggpages/topics/Wheat660_SNP_array_developed_by_CaaS.pdf

Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of *Puccinia striformis f. sp. tritici* in elite ICARDa wheat (*Triticum aestivum L.*). *Theor Appl Genet* 129:1095–1107

Kolmer JA, Lin M, Bai G (2012) Genetics of leaf rust resistance in the winter wheat line CI3327. *Crop Sci* 52:2166

Kolmer JA, Lagudah ES, Lillemo M, Lin M, Bai G (2015) The *Lr46* gene conditions partial adult-plant resistance to stripe rust, stem rust, and powdery mildew in Thatcher wheat. *Crop Sci* 55:2557–2565

Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clis- lond S, Simmonds J, Ramirez-Gonzalez RH, Wang X, Borrill P, Fosker C, Aylng S, Phillips AL, Uaay C, Dubcovsky JV (2017) Uncovering hidden variation in polyploid wheat. *Proc Natl Acad Sci USA* 114:E913–E921

Kratttinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. *Science* 323:1360–1363

Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. *Euphytica* 179:81–91

Lan C, Rosewarne GM, Singh RP, Herrera-Foessel SA, Huerta-Espino J, Basnet BR, Zhang Y, Yang E (2014) QTLC characterization of resistance to leaf rust and stripe rust in the spring wheat line Franklin#1. Mol Breed 34:789–803

Lan C, Zhang Y, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES, Singh RP (2015) Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. *Theor Appl Genet* 128:549–561

Li J, Dundas I, Dong C, Li G, Trehotanw R, Yang Z, Hoxha S, Zhang P (2020) Identification and characterization of a new stripe rust resistance gene *Yr83* on rye chromosome 6R in wheat. *Theor Appl Genet* 133:1095–1107

Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of *Puccinia striformis* (the cause of stripe rust of wheat) in North America 1968–1987. US Department of Agriculture Technical Bulletin, p 74

Ling H, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijik MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C (2018) Genome sequence of the progenitor of wheat A genome subgenome *Triticum urartu*. *Nature* 557:424–428

Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X (2015) Genome-Wide Linkage Mapping of QTL for adult-plant resistance to stripe rust in a Chinese wheat population Linmai 2 × Zhong 892. *PLoS ONE* 10:e145462

Liu L, Wang MN, Feng JY, See DR, Chao SM, Chen XM (2018) Combination of all-stage and high-temperature adult-plant resistance QTLs confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. *Theor Appl Genet* 131:1835–1849

Liu S, Wang X, Zhang Y, Jin Y, Xia Z, Xiang M., Huang S, Qiao L, Zheng W, Zeng Q, Wang Q, Yu R, Singh RP, Bhavani, S, Kang Z, Han D, Wang C and Wu J (2022) Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. *Theor Appl Genet* 135:351–365

Liu P, Zhu J, Lou X, Lu Y (2003) A method for marker-assisted selection based on QTLs with epistatic effects. *Genetica* 119:75–86

Luo M, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Yang Y, McGuire PE, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan L, Wang Z, Xia Z, Xiao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai X, Dawson MW, Müller H, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu F, Bevan MW, Lenoy P, Li P, You FM, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvořák J (2017) Genome sequence of the progenitor of the D genome *Aegilops tauschii*. *Nature* 551:498–502

Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Paster- nak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Simkova H, Dolezel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of *Aegilops tauschii*, the wheat D-genome progenitor. *P Natl Acad Sci USA* 110:7940–7945

Malmberg RL, Held S, Waita A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in *Arabidopsis thaliana* grown in the field and in the greenhouse. *Genetica* 171:2013–2027

McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, And Xia XC (2017) Catalogue of gene symbols for wheat: 2017 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/gene/macgene/supplement2017.pdf

Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop J 3:269–283

Narouya Y, Garland-Campbell KA, Carter AH (2015) Genome-wide association mapping for stripe rust (*Puccinia striiformis* f. sp. *tritici*) in US Pacific Northwest winter wheat (*Triticum aestivum* L.). *Theor Appl Genet* 128:1083–1101

Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can J Res 26:496–500

Ponce-Molina LJ, Huerta-Espino J, Singh RP, Basnet BR, Alvarado G, Randhawa MS, Lan CX, Aguilar-Rincón VH, Lozano-Oroz L, Garcia-Zavala JJ (2018) Characterization of leaf rust and stripe rust resistance in spring wheat ‘Chilero.’ *Plant Dis* 102:421–427

Qiao L, Li H, Wang J, Zhao J, Zheng X, Wu B, Du W, Wang J, Zheng J (2022) Analysis of genetic regions related to field grain number per spike from Chinese wheat founder parent Linfen 5064. Front Plant Sci 12:808136

Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Identification of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. *Theor Appl Genet* 124:1283–1294
Rosewarne GM, Singh RP, Huerta-Espino J, Rebettke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, Lagudah ES (2006) Leaf tip necrosis, molecular markers and beta1-proteasome genes associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Basnet BR, Bhavani S, Lagudah ES (2013) Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Basnet BR, Bhavani S, Lagudah ES (2013) Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Basnet BR, Bhavani S, Lagudah ES (2013) Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Basnet BR, Bhavani S, Lagudah ES (2013) Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

Vazquez MD, Zemetra T, Peterson CJ, Chen XM, Heesacker A, Mundt CC (2015) Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions. Theor Appl Genet 128:1307–1318

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wiekeke R, Pleske J, Lillee M, Mather D, Appels R, Dolferus R, Brown-Guedira M, Hayden M, Edwards KJ, Zhou L, Han D, Kang Z, Chen XM (2019) Genome-wide mapping for stripe rust resistance loci in common wheat cultivar Qinmeng 142. Plant Dis 103:439–447

Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955

Zhou C, Liu D, Zhang X, Wu Q, Liu S, Zeng Q, Wang Q, Wang C, Li C, Singh RP, Bhavani S, Kang Z, Han D, Zheng W, Wu J (2021) Combined linkage and association mapping reveals two major QTL for stripe rust adult plant resistance in Shaanmai 155 and their haplotype variation in common wheat germplasm. Crop J. https://doi.org/10.1016/j.cj.2021.09.006

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.