Thirty-day suicidal thoughts and behaviors among hospital workers during the first wave of the Spain COVID-19 outbreak

Philippe Mortier\textsuperscript{1,2} | Gemma Vilagut\textsuperscript{1,2} | Montse Ferrer\textsuperscript{1,2,3} | Consol Serra\textsuperscript{2,4,5} |
Juan D. Molina\textsuperscript{6,7,8,9} | Nieves Lópeze-Fresneña\textsuperscript{10} | Teresa Puig\textsuperscript{3,11,12,13} |
José M. Pelayo-Terán\textsuperscript{14} | José I. Pijoan\textsuperscript{2,15} | José I. Emparanza\textsuperscript{2,16} |
Merixell Espuga\textsuperscript{17} | Nieves Plana\textsuperscript{2,18} | Ana González-Pinto\textsuperscript{9,19} |
Rafael M. Ortí-Lucas\textsuperscript{9,20} | Alma M. de Saláz\textsuperscript{21} | Cristina Rius\textsuperscript{9,22} |
Enric Aragonés\textsuperscript{23,24} | Isabel del Cura-González\textsuperscript{25,26,27} | Andrés Aragón-Peña\textsuperscript{27,28} |
Mireia Campos\textsuperscript{29} | Mara Parellada\textsuperscript{9,10} | Aurora Pérez-Zapata\textsuperscript{18} |
Maria João Forjaz\textsuperscript{30,31} | Ferran Sanz\textsuperscript{32,33,34} | Josep M. Haro\textsuperscript{3,9,35} |
Víctor Pérez-Solà\textsuperscript{3,4,9} | Ronald C. Kessler\textsuperscript{37} | Ronny Bruffaerts\textsuperscript{38} |
Jordi Alonso\textsuperscript{1,2,33} | the MINDCOVID Working Group

\textsuperscript{1}Health Services Research Unit, IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
\textsuperscript{2}CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
\textsuperscript{3}Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
\textsuperscript{4}Parc de Salut Mar PSMAR, Barcelona, Spain
\textsuperscript{5}CISAL-Centro de Investigación en Salud Laboral, IMIM/UPF, Barcelona, Spain
\textsuperscript{6}Villaverde Mental Health Center, Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, Hospital Universitario 12 de Octubre, Madrid, Spain
\textsuperscript{7}Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
\textsuperscript{8}Faculty of Health Sciences, Francisco de Vitoria University, Madrid, Spain
\textsuperscript{9}CIBER Salud Mental (CIBERSAM), Madrid, Spain
\textsuperscript{10}Hospital General Universitario Gregorio Marañón, Madrid, Spain
\textsuperscript{11}Department of Epidemiology and Public Health, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
\textsuperscript{12}Biomedical Research Institute Sant Pau (IBB Sant Pau), Barcelona, Spain
\textsuperscript{13}CIBER Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
\textsuperscript{14}Hospital El Bierzo, León, Spain
\textsuperscript{15}Hospital Universitario Cruces/OSI EEC, Bilbao, Spain
\textsuperscript{16}Hospital Universitario Donostia, San Sebastian, Spain
\textsuperscript{17}Occupational Health Service, Hospital Universitari Vall d’Hebron, Barcelona, Spain
\textsuperscript{18}Príncipe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain
\textsuperscript{19}Hospital Universitario Arava-Santiago, Vitoria-Gasteiz, Spain
\textsuperscript{20}Hospital Clinic Universitari, Valencia, Spain
\textsuperscript{21}UGC Salud Mental, Hospital Universitario Torrecárdenas, Almería, Spain

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Depression and Anxiety Published by Wiley Periodicals LLC
Abstract

Background: Healthcare workers are a key occupational group at risk for suicidal thoughts and behaviors (STB). We investigated the prevalence and correlates of STB among hospital workers during the first wave of the Spain COVID-19 outbreak (March–July 2020).

Methods: Data come from the baseline assessment of a cohort of Spanish hospital workers (n = 5450), recruited from 10 hospitals just after the height of the coronavirus disease 2019 (COVID-19) outbreak (May 5–July 23, 2020). Web-based self-report surveys assessed 30-day STB, individual characteristics, and potentially modifiable contextual factors related to hospital workers’ work and financial situation.

Results: Thirty-day STB prevalence was estimated at 8.4% (4.9% passive ideation only, 3.5% active ideation with or without a plan or attempt). A total of n = 6 professionals attempted suicide in the past 30 days. In adjusted models, 30-day STB remained significantly associated with pre-pandemic lifetime mood (odds ratio [OR] = 2.92) and anxiety disorder (OR = 1.90). Significant modifiable factors included a perceived lack of coordination, communication, personnel, or supervision at work (population-attributable risk proportion [PARP] = 50.5%), and financial stress (PARP = 44.1%).

Conclusions and Relevance: Thirty-day STB among hospital workers during the first wave of the Spain COVID-19 outbreak was high. Hospital preparedness for virus outbreaks should be increased, and strong governmental policy response is needed to increase financial security among hospital workers.

KEYWORDS
COVID-19 outbreak, hospital workers, suicidal thoughts and behaviors
1 | INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has presented hospital workers with unprecedented challenges in terms of workload as well as health- and work-related risk and stress exposures. The latter includes exposure to COVID-19 patients and stress about getting infected or infecting loved ones, but also moral injury, that is, psychological distress resulting from actions, or the lack of them, that violate one’s moral or ethical code (Litz et al., 2009). In the current context, moral injury may result from the lack of hospital preparedness for the pandemic, and may lead to traumatic experiences such as having to prioritize care, or seeing patients suffer or die from COVID-19 (Greenberg et al., 2020). In line with these concerns, rates of depression, anxiety, and sleep problems among healthcare workers during COVID-19 outbreaks are high (Muller et al., 2020; Pappa et al., 2020; Vindegaard & Benros, 2020), and those in direct contact with affected patients report posttraumatic stress and psychological distress (Kisely et al., 2020). These adverse mental health outcomes are well-known risk factors for suicidal thoughts and behaviors (STB; Franklin et al., 2017). High rates of STB among healthcare professionals during virus outbreaks can therefore be expected (Gunnell et al., 2020) especially since this population segment already has increased risk for suicidal ideation (Tysen et al., 2001) and suicide (Dutheil et al., 2019; Hawton et al., 2011) under normal working conditions. No research to date focused on STB during a virus outbreak in this key occupational group at risk (Salazar de Pablo et al., 2020). In addition, previous studies among hospital workers active during the COVID-19 pandemic predominantly focused on health care workers (mostly doctors or nurses; Muller et al., 2020), while many hospital workers not involved in patient care may also be at risk for adverse mental health.

Spain was among those countries whose healthcare systems came under extreme pressure during the first wave of the COVID-19 pandemic (March–July 2020; Arango, 2020). The Spanish government declared a state of alarm on March 14, 2020, and between the beginning of March and mid-April, more than 2000 new cases were reported daily. The healthcare system nearly collapsed during April–May due to lack of intensive care unit beds, ventilators, and healthcare personnel (Red Nacional de Vigilancia Epidemiológica [RENAVE], 2020). By the time the situation stabilized in early July, Spain had the eighth highest number of confirmed cases (i.e., 249,659 on 01/07/2020), and the fifth highest COVID death rate (i.e., 0.7/100,000 on 01/07/2020) in the world (Roser et al., 2020).

We present data from the MIND/COVID project (MIND/COVID-19, 2020), a national multiple-cohort study of the mental health impact of the COVID-19 pandemic in Spain. We report here on the baseline assessment of the hospital workers cohort, conducted just after the height of the virus outbreak (May 5–July 23, 2020), when demands on the Spanish public healthcare system were substantially increased. The objectives of the current report are to examine baseline prevalence of 30-day STB and to investigate the relationship of potentially modifiable contextual factors related to hospital workers’ perceived work and financial situation, with 30-day STB.

2 | METHODS

2.1 | Study design, population, and sampling

The study design consists in a multicenter, prospective, observational cohort study of Spanish hospital workers. A convenience sample of 10 hospitals from four autonomous communities in Spain (i.e., the Basque Country, Castile and Leon, Catalonia, and the Community of Madrid) agreed to participate. Hospitals were selected to reflect the geographical and sociodemographic variability in Spain. All participating hospitals came from regions with high COVID-19 caseloads.

Here we report on the baseline assessment of the cohort, which consists of de-identified web-based self-report surveys (May 5–July 23, 2020), conducted soon after the first wave of the COVID-19 outbreak in Spain. In each participating hospital, hospital representatives contacted all employed hospital workers to participate using the hospitals’ administrative email distribution lists (i.e., census sampling). The invitation email included an anonymous link to access the web-based survey platform (qualtrics.com). Informed consent was obtained from all participants at the first survey page. Two reminder emails were sent within a 2–4 weeks period after the initial invitation.

The study complies with the principles established by national and international regulations, including the Declaration of Helsinki and the Code of Ethics. The study was approved by the Research Integrity and Good Scientific Practices Committee of IMIM-Parc de Salut Mar, Barcelona, Spain (2020/9203/I), and by all participating centers’ institutional review boards (IRBs).

2.2 | Measures

2.2.1 | STB

A modified self-report version of selected items from the Columbia Suicide Severity Rating Scale (C-SSRS; Posner et al., 2011), also used in other large-scale epidemiological studies (e.g., Nock et al., 2014), assessed suicidal thoughts and behaviors in the past 30 days, including passive suicidal ideation (“wish you were dead or would go to sleep and never wake up”), active suicidal ideation (“have thoughts of killing yourself”), suicide plans (“think about how you might kill yourself [e.g., taking pills, shooting yourself] or work out a plan of how to kill yourself”), and suicide attempt (“make a suicide attempt [i.e., purposefully hurt yourself with at least some intent to die]”).

2.2.2 | Potentially modifiable contextual factors

Potentially modifiable contextual factors refer to factors that are related to hospital workers’ work and financial situation, that are relevant with regard to the COVID-19 outbreak, and that are potentially modifiable in the future.

Six work-related factors were assessed: (1) the average weekly hours worked, categorized into 40 h/week or less, 41–50 h/week,
and 51 h or more per week; (2) the perceived lack of coordination, communication, personnel, or supervision at work, using four 5-level Likert-type items ranging from “none of the time” to “all of the time.” Items were summed and rescaled to a 0.0–4.0 Likert scale (Cronbach α = .858); (3) the perceived frequency of lack of protective equipment, using a 5-level Likert-type item ranging from “none of the time” to “all of the time;” (4) the perceived efficiency of the available protective equipment, using a 4-level Likert-type item ranging from “sufficient” to “completely insufficient;” (5) having had to make decisions regarding prioritizing care among COVID-19 patients (assessed among medical doctors and nurses only); and (6) having had patient(s) in care that died from COVID-19. All items included a specific time frame, that is, “since the onset of the virus outbreak in Spain.”

Two factors related to hospital workers’ financial situation were assessed: (1) having suffered a significant loss in personal or familial income due to the COVID-19 pandemic; and (2) financial stress, using two 5-level Likert-type items that assessed stress regarding one’s financial situation (Dohrenwend et al., 1978) and stress regarding job loss or loss of income because of COVID-19, with response options ranging from “none” to “very severe.” Items were summed and rescaled to 0.0–4.0 Likert scale (Cronbach α = .821).

2.2.3 Individual characteristics

Twelve individual characteristics were assessed: (1) age; (2) gender; (3) marital status; (4) having children in care; (5) self-reported lifetime mental disorders before the onset of the COVID-19 outbreak, using Composite International Diagnostic Interview (CIDI) 3.0 adapted screener items (Kessler & Üstün, 2004), including mood (i.e., depressive and bipolar disorders), anxiety (i.e., panic, generalized anxiety, and obsessive–compulsive disorders), substance use (i.e., alcohol, illicit drugs, and prescription drugs with or without prescription), and other disorders; (6) profession, categorized into five categories: medical doctors, nurses, auxiliary nurses, other professions involved in patient care (i.e., midwives; dentists or odontologists; pharmaceutical, laboratory, or radiology technicians; psychologists, physiotherapists, social workers, patient transport) and other professions not involved in patient care (i.e., administrative and management personnel, logistic support [e.g. food, maintenance, supplies], research-only personnel); (7) the frequency of direct exposure to COVID-19 patients during professional activity, using one 5-level Likert type item, ranging from “none of the time” to “all of the time;” (8) changes in assigned functions, team, or working location, categorized into having changed to a specific COVID-19-related work location (e.g., emergency room, COVID ward, fever clinic, intensive care unit, quarantine center, field hospital), having changed of team or assigned functions, and all others; (9) the frequency of working at home during the COVID-19 outbreak, using a 6-level Likert item, ranging from “never” to “always;” (10) COVID-19 infection history, categorized into having been hospitalized for COVID-19, having had a positive COVID-19 test or medical diagnosis not requiring hospitalization, and all others; (11) having been in isolation of quarantine because of exposure to COVID-19-infected person(s); and (12) having close ones infected with COVID-19.

2.3 Data representativeness and quality

A total of 5450 hospital workers participated (response rate = 11.8%). It is important to note that the survey view rate (i.e., the proportion of hospital workers that opened the invitation email; Eysenbach, 2004) is unknown, except for one hospital (26.4%), suggesting low survey view rates, and questioning the validity of the response rate as an indicator of data representativeness. Post-stratification weights were used in all analyses to adjust for potential nonresponse bias, taking into account sample versus target population differences in age, gender, and profession. Differences in post-stratifying variables between our sample and the target population were small, suggesting good data representativeness.

For this study, analyses were restricted to n = 5169 (94.8%) that completed all STB items. An additional n = 5 were excluded because they did identify with neither male or female gender (of those, n = 1 reported 30-day passive ideation only; n = 2 reported a 30-day suicide attempt). No statistical differences in gender or age were found between those that completed the STB items and those that did not (females 80.8% vs. 82.1%, χ²(1) = 0.315, p = .574; mean age 42.9 vs. 42.1, t(5448) = −1.18, p = .240). Median % missingness per variable in the analysis sample was 1.4% (see Table S3). Missing data were handled using multivariate imputation by chained equations (van Buuren, 2012).

2.4 Statistical analysis

All analyses were conducted with SAS version 9.4, and R version 3.6.2. First, prevalence estimates of 30-day STB were estimated, both total and stratified by individual characteristics, with associated modified Rao–Scott χ² tests and Fisher-Exact tests. Second, we estimated multivariable associations between 30-day STB and individual characteristics. Logistic regression was used for all multivariable analysis. Third, we estimated the multivariable association between 30-day STB and each potentially modifiable contextual factor separately, adjusting for all individual characteristics. Fourth, we identified the subset of individual characteristics and potentially modifiable contextual factors that best explain STB in multivariable models, using the lasso shrinkage method (Hastie et al., 2009), optimizing the Bayesian Information Criterion. Variance was estimated using the Taylor series linearization method taking into account post-stratification and within-hospital clustering of data. Potential deviations from a continuous linear effect in the logit were assessed using likelihood ratio tests comparing full categorical versus continuous variable specifications. All analyses were adjusted for hospital membership and time of survey. Fifth, population-attributable risk proportions (PARP; Krysinska & Martin, 2009), and...
associated bootstrap percentile confidence intervals (500 replications), were simulated based on individuals’ predicted probabilities estimated by the multivariable logistic regression equations (Nock et al., 2015). PARP provide estimates of the proportions of STB that could potentially be attributed to specific predictor variables assuming a causal pathway between these predictor variables and STB.

3 | RESULTS

Prevalence of 30-day STB was estimated at 8.4% (Table 1). Of those, more than half (4.9% in total) were passive suicidal ideation only. The others (3.5%) consisted of active suicidal ideation without plan or attempt (0.8%) and with plan or attempt (2.7%). A total of n = 6 reported a 30-day suicide attempt. Thirty-day STB was substantially elevated among those with pre-existing mood and anxiety disorders (any STB range 13.5%–22.3%; plan or attempt range 4.8%–9.6%) and among those with a hospitalization for COVID-19 (any STB = 12.6%; plan or attempt = 8.1%). STB was also elevated among those aged 18–29, non-married respondents, those without children in care, those that had frequent exposure to COVID-19 patients, those that changed to specific COVID-19-related work locations, and those that never worked at home. Any STB ranged from 6.2% to 12.0% across hospitals (Table S1).

In multivariable analysis of individual characteristics (Table 2), STB remained strongly associated with pre-existing mood and anxiety disorders (any STB OR range 2.12–3.22; plan or attempt OR range 2.62–4.64). Detailed analysis of age showed that odds for STB increased slightly between age 30 and 49, and declined for those aged 50 or more. Those with female gender, married or having children in care all had lower odds for any STB (OR range 0.62–0.80). Female gender and being married was also protective for plan or attempt (OR range = 0.40–0.68). No clear associations were found between STB and professional status. The frequency of direct exposure to COVID-19 patients was positively associated with any STB (OR = 1.11), and passive suicidal ideation only (OR = 1.17). Those working more frequently at home had generally lower odds for STB (OR range 0.78–0.82). No significant associations were found with COVID-19 infection history and with having been isolated or quarantined.

Next, we analyzed each of the potentially modifiable contextual factors separately, each time adjusting for individual characteristics (Table 3). The perceived lack of coordination, communication, personnel, or supervision at work as well as the degree of financial stress were consistently associated with all 30-day STB outcomes (OR range 1.18–1.87). Perceived frequency of lack of protective material (OR = 1.18), and significant loss in personal or familial income (OR = 1.35) were also associated with any STB, but only with passive ideation in the detailed analyses. Having to make decisions regarding prioritizing care among COVID-19 patients was only associated with active suicidal ideation with plan or attempt (OR = 1.57).

In multivariable models including the variables selected after lasso shrinkage (Table 4), 30-day STB outcomes remained significantly associated with pre-existing mood and anxiety disorders (OR range 1.63–5.05), the perceived lack of coordination, communication, personnel, or supervision at work (OR range 1.35–1.85), and the degree of financial stress (OR range 1.28–1.50), with OR generally being higher for active ideation, plan, or attempt.

Approximately 50.5% of 30-day STB was potentially attributable to a perceived lack of coordination, communication, personnel, or supervision at work (Figure 1), and approximately 44.1% of STB was potentially attributable to financial stress. Interventions that completely eliminate both these risk factors could potentially eliminate 73.3% of any 30-day STB (61.5%–61.6% of 30-day passive or active ideation only, and 81.3% of active ideation with plan or attempt). PARP for pre-existing mental disorders were 35.8% for any 30-day STB, 24.8% for passive ideation only, and 47.7%–49.5% for active ideation, plan, or attempt. Additionally eliminating pre-existing mental disorders could increase reductions in 30-day STB to 83.5% (71.2% for passive ideation only, and 80.1%–90.4% for active ideation, plan, or attempt).

4 | DISCUSSION

Approximately 8.4% of hospital workers had 30-day STB during the first wave of the Spain COVID-19 pandemic. Of those, about 4 out of 10 had active suicidal ideation (3.5% in total), including 6 hospital workers with a 30-day suicide attempt. Substantial proportions of 30-day STB were associated with perceived lack in communication, coordination, personnel, or supervision (50.5%) and with financial stress (44.1%).

A major strength of this study is the large probability sample of hospital workers, opposed to the high amount of small samples used in mental health research among healthcare professionals during virus outbreaks (median n = 333 [IQR 131–769]; Kisely et al., 2020). This enabled us to provide detailed analyses of all presumed precursor states in the suicidal spectrum (Ribeiro et al., 2016). Despite the large sample size, few cases of 30-day suicide attempt were included, precluding detailed analysis of this outcome. An important limitation of our study is the low survey response rate (11.8%), in line with the low and declining survey response rates among healthcare professionals worldwide (Cho et al., 2013). While nonresponse bias may affect prevalence estimates in either direction, the expected bias in associations is substantially lower (Amaya & Presser, 2016). We adjusted all estimates for potential nonresponse bias using post-stratification weights. Differences in poststratifying variables between our sample and the census population were small, and COVID-19 infection rates in our sample were very similar to official prevalence estimates among healthcare professionals. Two other limitations of this study are worth mentioning: (1) only those hospital workers with institutional email addresses were eligible, which excludes hospital workers with jobs that are potentially subcontracted to external services (e.g., food and cleaning services), and those who lost their job by time of survey invitation; and (2) although we adjusted all analyses for time of survey, we did not investigate how
**Table 1** Thirty-day prevalence of suicidal thoughts and behaviors (STB), total, and stratified by individual characteristics \((n = 5164)\)

|                          | Any STB \((n = 395)\) | Passive ideation only \((n = 243)\) | Active ideation without plan or attempt \((n = 41)\) | Active ideation with plan or attempt \((n = 111)\) |
|--------------------------|------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                          | \(n\) | \(\% (SE)\) |
| **Total**                |       |              |              |              |              |              |              |              |
|                          |       | 8.4 (0.8)    | 4.9 (0.5)    | 0.8 (0.2)    | 2.7 (0.3)    |              |              |              |
| **Age**                  |       |              |              |              |              |              |              |              |
| 50 years or more         | 1730  | 37.0 (2.1)   | 7.6 (0.6)    | 4.7 (0.5)    | 0.1 (0.0)    | 2.9 (0.5)    |              |              |
| 30–49 years              | 2553  | 47.7 (1.1)   | 7.5 (1.1)    | 4.3 (0.6)    | 1.0 (0.3)    | 2.2 (0.3)    |              |              |
| 18–29 years              | 881   | 15.3 (1.6)   | 12.7 (1.8)   | 7.2 (1.3)    | 2.1 (0.6)    | 3.3 (0.6)    |              |              |
| **Modified Rao–Scott (R–S) \(\chi^2\) test or Fisher-Exact (F-E) test** |       |              |              |              |              |              |              |              |
|                          |       |               | \(R–S \chi^2(2) = 12.59, p = .002^*\) | \(R–S \chi^2(2) = 8.63, p = .013^*\) | \(F–E p < .001^*\) | \(R–S \chi^2(2) = 2.66, p = .265\) | |
| **Gender**               |       |              |              |              |              |              |              |              |
| Male                     | 992   | 22.7 (1.3)   | 8.5 (1.0)    | 3.1 (0.5)    | 1.3 (0.5)    | 4.1 (0.5)    |              |              |
| Female                   | 4172  | 77.3 (1.3)   | 8.3 (0.8)    | 5.4 (0.6)    | 0.7 (0.1)    | 2.2 (0.3)    |              |              |
| **Marital status**       |       |              |              |              |              |              |              |              |
| Single, divorced, or legally separated, or widowed | 2753 | 52.1 (2.0) | 10.7 (1.2) | 6.1 (1.0) | 1.3 (0.3) | 3.3 (0.4) |              |              |
| Married                  | 2411  | 47.9 (2.0)   | 5.8 (0.3)    | 3.6 (0.3)    | 0.3 (0.1)    | 1.9 (0.5)    |              |              |
| **Having children in care** |       |              |              |              |              |              |              |              |
| Children in care         | 1974  | 38.7 (0.8)   | 5.8 (0.7)    | 3.5 (0.3)    | 0.3 (0.1)    | 2.0 (0.5)    |              |              |
| No children in care      | 3190  | 61.3 (0.8)   | 10.0 (1.0)   | 5.8 (0.7)    | 1.1 (0.2)    | 3.1 (0.4)    |              |              |
| **Lifetime mental disorders before onset COVID-19 outbreak** |       |              |              |              |              |              |              |              |
| Lifetime mood disorder   | 568   | 12.1 (0.7)   | 22.3 (1.8)   | 9.9 (1.9)    | 2.8 (0.6)    | 9.6 (1.3)    |              |              |
| No lifetime mood disorder| 4596  | 87.9 (0.7)   | 64.6 (0.6)   | 4.2 (0.3)    | 0.6 (0.1)    | 1.7 (0.2)    |              |              |
| **Modified Rao–Scott (R–S) \(\chi^2\) test or Fisher-Exact (F-E) test** |       |              | \(R–S \chi^2(1) = 15.79, p < .001^*\) | \(R–S \chi^2(1) = 10.20, p = .001^*\) | \(F–E p = .002^*\) | \(R–S \chi^2(1) = 2.57, p = .109\) | |
| **Continues**            |       |              |              |              |              |              |              |              |
### Table 1 (Continued)

| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test | Any STB ($n = 395$) | Passive ideation only ($n = 243$) | Active ideation without plan or attempt ($n = 41$) | Active ideation with plan or attempt ($n = 111$) |
|---|---|---|---|---|
| **Lifetime substance use disorder** | | | | |
| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test | | | | |
| Lifet ime substance use disorder | $\chi^2(1) = 50.69, p < .001^*$ | $\chi^2(1) = 31.63, p < .001^*$ | $\chi^2(1) = 9.38, p = .002^*$ | $\chi^2(1) = 25.02, p < .001^*$ |
| No lifetime substance use disorder | 67 | 1.4 (0.2) | 9.6 (3.8) | 1.5 (1.4) | 0.0 (0.0) | 0.8 (0.2) | 8.1 (3.0) | 2.6 (0.3) |
| **Other lifetime mental disorder** | | | | |
| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test | | | | |
| Lifetime substance use disorder | $\chi^2(1) = 3.22, p = .073$ | $\chi^2(1) = 0.02, p = .899$ | $\chi^2(1) = 16.09, p < .001^*$ | $\chi^2(1) = 4.22, p = .040^*$ |
| No lifetime substance use disorder | 135 | 2.4 (0.3) | 15.1 (3.4) | 5.2 (2.2) | 0.9 (0.2) | 0.5 (0.5) | 9.5 (3.1) | 2.5 (0.3) |
| **Number of lifetime mental disorders** | | | | |
| Two or more | 454 | 9.9 (0.8) | 25.1 (1.6) | 10.8 (2.3) | 3.2 (0.7) | 11.2 (2.1) | |
| Exactly one | 1710 | 33.1 (1.1) | 9.2 (0.9) | 5.5 (0.6) | 0.9 (0.2) | 2.8 (0.4) | |
| Zero | 3000 | 57.0 (1.2) | 4.9 (0.6) | 3.5 (0.4) | 0.4 (0.1) | 1.1 (0.3) | |
| Profession | | | | |
| Medical doctor | 1372 | 20.8 (0.4) | 7.2 (1.7) | 4.0 (1.0) | 1.0 (0.4) | 2.2 (0.5) | |
| Nurse | 1635 | 30.6 (0.6) | 8.3 (1.0) | 5.2 (0.5) | 0.8 (0.2) | 2.2 (0.5) | |
| Auxiliary nurse | 681 | 18.8 (1.6) | 10.9 (1.8) | 5.9 (1.3) | 1.5 (0.6) | 3.5 (0.7) | |
| Other profession involved in patient care | 568 | 12.8 (0.7) | 7.3 (0.9) | 3.6 (0.8) | 0.4 (0.3) | 3.3 (0.7) | |
| Other profession not involved in patient care | 908 | 17.0 (1.6) | 7.9 (1.2) | 5.2 (1.0) | 0.2 (0.1) | 2.5 (0.6) | |
| Frequency of direct exposure to COVID-19 patients | | | | |
| All of the time | 1478 | 29.3 (2.6) | 10.4 (0.7) | 6.6 (0.6) | 1.1 (0.3) | 2.6 (0.5) | |
| Most of the time | 918 | 18.1 (1.0) | 9.8 (2.0) | 5.6 (1.5) | 1.0 (0.3) | 3.2 (0.5) | |
| Some of the time | 1351 | 26.3 (1.3) | 7.9 (1.2) | 4.0 (0.4) | 1.0 (0.5) | 2.8 (0.6) | |
| A little of the time | 707 | 13.6 (0.8) | 5.9 (1.3) | 3.6 (1.2) | 0.3 (0.2) | 2.0 (0.7) | |
| None of the time | 710 | 12.8 (2.1) | 5.3 (0.7) | 3.0 (0.9) | 0.1 (0.1) | 2.3 (0.5) | |
TABLE 1 (Continued)

|                              | n   | % (SE) | Any STB (n = 395) | Passive ideation only (n = 243) | Active ideation without plan or attempt (n = 41) | Active ideation with plan or attempt (n = 111) |
|-----------------------------|-----|--------|-------------------|---------------------------------|-----------------------------------------------|-----------------------------------------------|
|                             |     |        | % (SE)            | % (SE)                          | % (SE)                                        | % (SE)                                        |
| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test |     |        |                   |                                 |                                               |                                               |
| Charges at work             |     |        |                   |                                 |                                               |                                               |
| Changed to specific COVID-19-related work location | 1679 | 31.9 (2.2) | 10.7 (1.1)       | 6.6 (0.7)                        | 1.5 (0.2)                                     | 2.7 (0.4)                                     |
| Changed of team or assigned functions$^b$ | 1316 | 25.5 (1.0) | 8.5 (1.2)        | 4.9 (1.0)                        | 0.7 (0.2)                                     | 2.9 (0.4)                                     |
| No changes in assigned functions, team, or work location | 2169 | 42.6 (1.6) | 6.5 (0.6)        | 3.6 (0.4)                        | 0.4 (0.2)                                     | 2.5 (0.4)                                     |
| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test |     |        |                   |                                 |                                               |                                               |
| Frequency of working at home |     |        |                   |                                 |                                               |                                               |
| Always                      | 195 | 25.0 (0.8) | 33.3 (1.0)       | 1.9 (0.8)                        | 0.0 (0.0)                                     | 1.5 (0.8)                                     |
| Almost always               | 158 | 23.6 (0.6) | 53.2 (2.1)       | 3.8 (1.8)                        | 1.1 (1.2)                                     | 0.5 (0.5)                                     |
| Often                       | 266 | 46.1 (0.6) | 24.1 (1.1)       | 2.0 (1.0)                        | 0.1 (0.1)                                     | 0.2 (0.2)                                     |
| Sometimes                   | 452 | 81.1 (1.1) | 7.0 (1.3)        | 2.6 (0.7)                        | 0.9 (0.5)                                     | 3.5 (0.9)                                     |
| Seldom                      | 471 | 83.1 (0.7) | 7.4 (1.7)        | 3.5 (0.6)                        | 1.0 (0.5)                                     | 2.9 (1.3)                                     |
| Never                       | 3622 | 74.2 (2.9) | 9.2 (1.0)        | 5.6 (0.6)                        | 0.8 (0.2)                                     | 2.8 (0.4)                                     |
| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test |     |        |                   |                                 |                                               |                                               |
| COVID-19 infection history  |     |        |                   |                                 |                                               |                                               |
| Having been hospitalized for COVID-19 | 55  | 13.0 (2.2) | 12.6 (4.8)       | 4.5 (2.4)                        | 0.0 (0.0)                                     | 8.1 (4.6)                                     |
| Positive COVID-19 test or medical COVID-19 diagnosis$^c$ | 845 | 16.6 (2.0) | 10.0 (2.6)       | 5.9 (1.8)                        | 1.0 (0.5)                                     | 3.2 (0.6)                                     |
| None of the above           | 4264 | 82.0 (2.2) | 7.9 (0.6)        | 4.7 (0.4)                        | 0.8 (0.2)                                     | 2.5 (0.3)                                     |
| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test |     |        |                   |                                 |                                               |                                               |
| Isolation or quarantine because of COVID-19 |     |        |                   |                                 |                                               |                                               |
| Having been isolated or quarantined | 1258 | 23.3 (1.3) | 8.7 (1.7)        | 4.6 (1.0)                        | 1.1 (0.4)                                     | 2.9 (0.5)                                     |
| Not having been isolated or quarantined | 3906 | 76.7 (1.3) | 8.3 (0.6)        | 5.0 (0.5)                        | 0.7 (0.1)                                     | 2.6 (0.2)                                     |
| Modified Rao–Scott (R–S) $\chi^2$ test or Fisher-Exact (F-E) test |     |        |                   |                                 |                                               |                                               |
| Close ones infected with COVID-19 |     |        |                   |                                 |                                               |                                               |

(Continues)
TABLE 1 (Continued)

|                        | n   | % (SE) | Any STB (n = 395) | Passive ideation only (n = 243) | Active ideation without plan or attempt (n = 41) | Active ideation with plan or attempt (n = 111) |
|------------------------|-----|--------|-------------------|--------------------------------|--------------------------------------------------|-----------------------------------------------|
| Partner, children, or parents | 730 | 14.4 (2.0) | 9.5 (1.9) | 5.5 (1.5) | 0.5 (0.2) | 3.5 (0.7) |
| Other family, friends, or othersd | 3175 | 60.3 (1.3) | 8.5 (0.7) | 4.8 (0.5) | 0.9 (0.2) | 2.8 (0.4) |
| None of the above | 1259 | 25.3 (1.9) | 7.3 (0.7) | 4.6 (0.5) | 0.8 (0.4) | 1.9 (0.3) |

Modified Rao–Scott (R–S) χ² test or Fisher-Exact (F-E) test

R–S χ²(2) = 2.59, p = .273
R–S χ²(2) = 0.53, p = .766
F–E p = .273
R–S χ²(2) = 3.91, p = .141

Abbreviation: COVID-19, coronavirus disease 2019.
Statistically significant (α = .05).
Fisher-Exact test could not be estimated due to computational limitations; the modified Rao–Scott χ² test is shown.
The category “changed of team or assigned functions” excludes those that changed to a specific COVID-19-related work location.
The category “positive COVID-19 test or medical COVID-19 diagnosis” excludes those having been hospitalized for COVID-19.
The category “other family, friends, or others” excludes having a partner, children, or parents infected with COVID-19.
| Age                  | n     | % (SE or Med) (SE or Med) (IQR) | Any STB (n = 395) OR (95% CI)a | Passive ideation only (n = 243) OR (95% CI)a | Active ideation without plan or attempt (n = 41) OR (95% CI)b | Active ideation with plan or attempt (n = 111) OR (95% CI)c |
|---------------------|-------|---------------------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Spline 18–29 years  | 4167  | 77.3 (1.3)                      | 0.80 (0.67–0.97)*               | 1.46 (1.05–2.04)*                            | 0.42 (0.23–0.78)                                            | 0.40 (0.28–0.58)                                            |
| Spline 30–49 years  | 2411  | 47.9 (2.0)                      | 0.75 (0.59–0.95)*               | 0.82 (0.54–1.24)                             | 0.69 (0.31–1.58)                                            | 0.68 (0.46–0.99)                                            |
| Spline 50+ years    | 1974  | 38.7 (0.8)                      | 0.62 (0.43–0.89)*               | 0.62 (0.42–0.91)*                            | 0.46 (0.20–1.06)                                            | 0.63 (0.37–1.10)                                            |
| Gender—female (vs. |       |                                 |                                 |                                               |                                                             |                                                             |
| male)               | 1372  | 20.8 (0.4)                      | 0.78 (0.48–1.27)                | 0.64 (0.37–1.13)                             | 2.60 (0.64–10.58)                                           | 1.00 (0.43–2.31)                                           |
| Marital status—married (vs. single, divorced, or legally separated, or widowed) | 2411 | 47.9 (2.0) | 0.75 (0.59–0.95)* | 0.82 (0.54–1.24) | 0.69 (0.31–1.58) | 0.68 (0.46–0.99)* |
| Children in care (vs. no children in care) | 1769 | 38.7 (0.8) | 0.62 (0.43–0.89)* | 0.62 (0.42–0.91)* | 0.46 (0.20–1.06) | 0.63 (0.37–1.10) |
| Lifetime mood disorder before onset COVID-19 outbreak | 1893 | 37.9 (1.1) | 2.12 (1.59–2.83)* | 1.82 (1.41–2.36)* | 2.64 (1.41–4.93)* | 2.62 (1.49–4.62)* |
| Lifetime anxiety disorder before onset COVID-19 outbreak | 67 | 1.4 (0.2) | 0.62 (0.30–1.30) | 0.21 (0.04–1.26) | 0.24 (0.02–2.97) | 1.34 (0.68–2.63) |
| Lifetime substance use disorder before onset COVID-19 outbreak | 135 | 2.4 (0.3) | 1.63 (0.96–2.77) | 1.03 (0.38–2.80) | 0.56 (0.09–3.44) | 3.71 (1.90–7.23)* |
| Other lifetime mental disorder before onset COVID-19 outbreak | 1372 | 20.8 (0.4) | 0.78 (0.48–1.27) | 0.64 (0.37–1.13) | 2.60 (0.64–10.58) | 1.00 (0.43–2.31) |
| Profession           |       |                                 |                                 |                                               |                                                             |                                                             |
| Medical doctor       | 1635  | 30.6 (0.6)                      | 0.66 (0.43–1.00)                | 0.54 (0.34–0.87)*                            | 1.94 (0.46–8.27)                                           | 0.86 (0.45–1.65)                                           |
| Nurse                | 681   | 18.8 (1.6)                      | 0.80 (0.56–1.14)                | 0.59 (0.38–0.91)*                            | 3.78 (0.89–16.04)                                           | 1.23 (0.62–2.46)                                           |
| Frequency of direct exposure to COVID-19 patients (scaled 0–4) | 1679 | 31.9 (2.2) | 1.27 (0.88–1.85) | 1.40 (0.92–2.12) | 1.68 (0.76–3.73) | 0.91 (0.48–1.75) |
| Frequency of working at home (scaled 0–5) | 1316 | 25.5 (1.0) | 1.17 (0.93–1.48) | 1.22 (0.85–1.75) | 1.24 (0.54–2.81) | 1.09 (0.67–1.76) |
| (Continues)
| COVID-19 infection history | n  | % (SE or Med (SE) (IQR)) | Any STB (n = 395) OR (95% CI) | Passive ideation only (n = 243) OR (95% CI) | Active ideation without plan or attempt (n = 41) OR (95% CI) | Active ideation with plan or attempt (n = 111) OR (95% CI) |
|---------------------------|----|--------------------------|-----------------------------|---------------------------------------------|------------------------------------------------|------------------------------------------------|
| Having been hospitalized for COVID-19 | 55  | 1.3 (0.2)                | 1.43 (0.46–4.44)            | 1.05 (0.33–3.38)                           | 1.37 (0.10–18.32)                                     | 2.30 (0.71–7.42)                                     |
| Positive COVID-19 test or medical COVID-19 diagnosis<sup>a</sup> | 845 | 16.6 (2.0)               | 1.32 (0.84–2.07)            | 1.44 (0.78–2.63)                           | 0.94 (0.40–2.20)                                     | 1.24 (0.75–2.05)                                     |
| None of the above | 4264 | 82.0 (2.2) | (ref) | (ref) | (ref) | (ref) |
| Having been isolated or quarantined because of COVID-19 | 1258 | 23.3 (1.3) | 0.80 (0.63–1.01) | 0.71 (0.49–1.04) | 1.30 (0.63–2.68) | 0.78 (0.50–1.23) |
| Close ones infected with COVID-19 | | | | | | |
| Partner, children, or parents | 730  | 14.4 (2.0)                | 1.32 (0.80–2.18)            | 1.28 (0.65–2.51)                           | 0.68 (0.24–1.94)                                     | 1.72 (0.80–3.68)                                     |
| Other family, friends or others<sup>e</sup> | 3175 | 60.3 (1.3)               | 1.26 (0.94–1.69)            | 1.15 (0.84–1.58)                           | 1.02 (0.51–2.01)                                     | 1.60 (0.81–3.17)                                     |
| None of the above | 1259 | 25.3 (1.9) | (ref) | (ref) | (ref) | (ref) |

Abbreviations: COVID-19, coronavirus disease 2019; IQR, interquartile range.
<sup>a</sup>Statistically significant (α = .05).
<sup>b</sup>All analyses adjust for time of survey (weeks), hospital membership, and all predictors shown in the rows.
<sup>c</sup>Due to data sparseness, the model was estimated using Penalized Maximum Likelihood Estimation (Firth-type Estimation).
<sup>d</sup>The category "changed of team or assigned functions" excludes those that changed to a specific COVID-19-related work location.
<sup>e</sup>The category "positive COVID-19 test or medical COVID-19 diagnosis" excludes those having been hospitalized for COVID-19.
<sup>f</sup>The category "other family, friends or others" excludes having a partner, children, or parents infected with COVID-19.
**TABLE 3** Multivariable associations between 30-day suicidal thoughts and behaviors (STB) and potentially modifiable contextual factors (n = 5164)

| Work-related factors | Average weekly hours worked | n   | % (SE) or Med (SE) (IQR) | Any STB (n = 395) OR (95% CI)<sup>a</sup> | Passive ideation only (n = 243) OR (95% CI)<sup>a</sup> | Active ideation without plan or attempt (n = 41) OR (95% CI)<sup>a</sup> | Active ideation with plan or attempt (n = 111) OR (95% CI)<sup>a</sup> |
|----------------------|-----------------------------|-----|--------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
|                      | 51 h or more                | 775 | 13.4 (1.1)               | 0.78 (0.49–1.25)                        | 0.80 (0.42–1.55)                                 | 1.12 (0.50–2.50)                                                 | 0.61 (0.32–1.17)                                                 |
|                      | 41–50 h                     | 1354| 25.6 (2.2)               | 0.78 (0.71–0.84)*                       | 0.84 (0.72–0.99)*                                | 0.75 (0.38–1.45)                                                 | 0.61 (0.43–0.87)*                                                |
|                      | 40 h or less                | 3035| 61.0 (3.0)               | (ref)                                    | (ref)                                           | (ref)                                                           | (ref)                                                           |
| Perceived lack of communication, coordination, personnel, or supervision (scaled 0.0–4.0)<sup>c</sup> | 1.9 (0.1) (1.0–2.5) | 1.48 (1.33–1.64)* | 1.36 (1.20–1.53)* | 1.87 (1.37–2.56)* | 1.67 (1.44–1.94)* |
| Perceived lack of coordination (scaled 0–4) | 1.6 (0.1) (0.8–2.4) | 1.36 (1.18–1.57)* | 1.27 (1.08–1.49)* | 1.53 (1.16–2.03)* | 1.54 (1.27–1.86)* |
| Perceived lack of communication (scaled 0–4) | 1.5 (0.1) (0.7–2.3) | 1.37 (1.22–1.53)* | 1.22 (1.07–1.40)* | 1.76 (1.35–2.31)* | 1.59 (1.30–1.94)* |
| Perceived lack of personnel (scaled 0–4) | 1.5 (0.2) (0.3–2.6) | 1.22 (1.11–1.33)* | 1.18 (1.10–1.27)* | 1.49 (1.16–1.91)* | 1.24 (1.02–1.50)* |
| Perceived lack of supervision (scaled 0–4) | 1.1 (0.1) (0.0–2.1) | 1.28 (1.22–1.34)* | 1.24 (1.13–1.36)* | 1.39 (1.11–1.75)* | 1.34 (1.21–1.49)* |
| Perceived frequency of lack of protective equipment (scaled 0–4) | 1.8 (0.1) (1.1–2.6) | 1.18 (1.05–1.34)* | 1.21 (1.07–1.36)* | 1.23 (0.92–1.64)* | 1.08 (0.90–1.30) |
| Perceived inefficiency of protective equipment (scaled 0–3) | 0.3 (0.0) (0.0–1.1) | 0.85 (1.33) | 1.04 (0.79–1.38) | 1.05 (0.79–1.39) | 1.05 (0.80–1.37) |
| Having to make decisions regarding prioritizing care among COVID-19 patients | 858 | 14.9 (1.3) | 1.18 (0.79–1.75) | 1.07 (0.67–1.70) | 0.96 (0.43–2.16) | 1.57 (1.07–2.32)* |
| Having patient(s) in care that died from COVID-19 | 1993 | 37.8 (2.7) | 1.07 (0.85–1.36) | 1.46 (0.79–2.71) | 0.99 (0.50–1.99) | 0.64 (0.40–1.02) |

| Financial factors | Significant loss in personal or familial income | 1058 | 20.4 (0.9) | 1.32 (1.03–1.69)* | 1.43 (1.05–1.95)* | 0.97 (0.51–1.84) | 1.13 (0.65–1.95) |
|                   | Financial stress (scaled 0.0–4.0)<sup>d</sup>,<sup>e</sup> | 0.7 (0.0) (0.0–1.7) | 1.39 (1.31–1.48)* | 1.32 (1.16–1.51)* | 1.14 (0.90–1.46) | 1.60 (1.28–2.00)* |
|                   | Stress related to job or income loss due to COVID-19 (scaled 0–4)<sup>e</sup> | 0.2 (0.0) (0.0–1.4) | 1.27 (1.18–1.37)* | 1.21 (1.04–1.42)* | 1.01 (0.81–1.25) | 1.44 (1.16–1.79)* |
|                   | Stress related to financial situation (scaled 0–4)<sup>e</sup> | 0.6 (0.0) (0.0–1.6) | 1.38 (1.31–1.45)* | 1.32 (1.21–1.45)* | 1.27 (1.01–1.61)* | 1.52 (1.30–1.78)* |

Abbreviations: COVID-19, coronavirus disease 2019; IQR, interquartile range.

*Statistically significant (α = .05).

<sup>a</sup>Each cell represents a separate regression model, each time adjusting for time of survey (weeks), hospital membership, and all individual characteristics (i.e., age, gender, marital status, having children in care, lifetime mental disorders before onset COVID-19 outbreak, profession, frequency of direct exposure to COVID-19 patients, changes in assigned functions, team or work location, frequency of working at home, COVID-19 infection history, having been isolated or quarantined related to COVID-19, and COVID-19 infection of close ones).

<sup>b</sup>Due to data sparseness, the model was estimated using Penalized Maximum Likelihood Estimation (Firth-type Estimation).

<sup>c</sup>The Perceived lack of communication, coordination, personnel, or supervision scale is created using the four 5-level Likert-type items shown in the rows below (see Section 2.2).

<sup>d</sup>The Financial stress scale is created using the two 5-level Likert-type items shown in the rows below (see Section 2.2).

<sup>e</sup>Likelihood ratio tests for linearity of effect were significant, and models including polynomials suggest a better model fit when including a quadratic term. For ease of interpretability, we present here the models including the linear term only; models including the quadratic term are presented in Table S5.
|                          | Any STB (n = 395) | Passive ideation only (n = 243) | Active ideation without plan or attempt (n = 41) | Active ideation with plan or attempt (n = 111) |
|--------------------------|------------------|---------------------------------|-----------------------------------------------|-----------------------------------------------|
|                          | % (SE) or Med (SE) (IQR) | OR (95% CI)                      | OR (95% CI)                                   | OR (95% CI)                                   |
| **Individual characteristics** |                  |                                 |                                               |                                               |
| Age                      |                  |                                 |                                               |                                               |
| Spline 18-29 years       | 0.91 (0.82–1.01) | 0.94 (0.84–1.04)                 | 0.81 (0.71–0.92)*                             | 0.94 (0.82–1.07)                              |
| Spline 30-49 years       | 1.04 (1.01–1.07)*| 1.03 (0.99–1.08)                 | 1.02 (0.96–1.08)                              | 1.06 (1.03–1.10)*                             |
| Spline 50+ years         | 0.93 (0.89–0.98)*| 0.95 (0.88–1.03)                 | 0.76 (0.61–0.96)*                             | 0.92 (0.86–0.98)*                             |
| Gender—female (vs. male) | 4167 77.3 (1.3) | 0.82 (0.69–0.98)*                | 1.52 (1.04–2.22)*                             | 0.45 (0.24–0.83)*                             |
| Marital status—married (vs. single, divorced, or legally separated, or widowed) | 2411 47.9 (2.0) | 0.73 (0.55–0.96)*                | 0.78 (0.48–1.25)                              | 0.71 (0.29–1.74)                              |
| Children in care (vs. no children in care) | 1974 38.7 (0.8) | 0.61 (0.42–0.89)*                | 0.60 (0.41–0.87)*                             | 0.56 (0.23–1.38)                              |
| Lifetime mood disorder before onset COVID-19 outbreak | 568 12.1 (0.7) | 2.92 (2.40–3.54)*                | 2.09 (1.46–2.99)*                             | 5.05 (2.68–9.52)*                             |
| Lifetime anxiety disorder before onset COVID-19 outbreak | 1893 37.9 (1.1) | 1.90 (1.40–2.58)*                | 1.63 (1.24–2.14)*                             | 2.24 (1.17–4.29)*                             |
| Frequency of direct exposure to COVID-19 patients (scaled 0–4) | 1.9 (0.1) (0.9–3.1) | 1.05 (0.95–1.16)                 | 1.10 (1.02–1.19)*                             | 1.07 (0.82–1.39)                              |
| Frequency of working at home (scaled 0–5) | 0.0 (0.2) (0.0–0.1) | 0.84 (0.73–0.96)*                | 0.84 (0.75–0.95)*                             | 0.94 (0.69–1.26)                              |
| **Potentially modifiable contextual factors** |                  |                                 |                                               |                                               |
| Perceived lack of communication, coordination, personnel, or supervision (scaled 0.0–40) | 1.9 (0.1) (1.0–2.5) | 1.44 (1.27–1.63)*                | 1.35 (1.13–1.61)*                             | 1.85 (1.34–2.56)*                             |
| Perceived inefficiency of protective equipment (scaled 0–3) | 0.3 (0.0) (0.0–1.1) | 0.89 (0.73–1.08)                 | 0.90 (0.71–1.15)                              | 0.86 (0.64–1.15)                              |
| Financial stress (scaled 0.0–40) | 0.7 (0.0) (0.0–1.7) | 1.34 (1.26–1.43)*                | 1.28 (1.14–1.44)*                             | 1.10 (0.86–1.41)                              |

Note: Individual characteristics and potentially modifiable contextual factors included in the final multivariable models are selected using the lasso shrinkage method, optimizing the Bayesian Information Criterion.

Abbreviations: COVID-19, coronavirus disease 2019; IQR, interquartile range.

*Statistically significant (α = .05).

*All analyses adjust time of survey (weeks), hospital membership, and all predictors shown in the rows.

Due to data sparseness, the model was estimated using Penalized Maximum Likelihood Estimation (Firth-type Estimation).

Likelihood ratio tests for linearity of effect were significant, and models including polynomials suggest a better model fit when including a quadratic term. For ease of interpretability, we present here the models including the linear term only; models including the quadratic term are presented in Table S6.
impact of the COVID-19 pandemic, and points to the need of increasing financial security for hospital workers active during the COVID-19 outbreak. Third, our results suggest that those hospital workers with a history of mental disorder are at increased risk for STB during high-stress periods such as a virus outbreak, in line with a stress-diathesis etiological model of suicide (van Heeringen & Mann, 2014). Importantly, a recent meta-analysis documented an absolute lack of research on effective interventions for mental disorders and STB among healthcare personnel, both on the individual- and on the organizational level (Petrie et al., 2019). Our study points to the need for adequate mental health support for hospital workers active during virus outbreaks (Vieta et al., 2020). When suicidal ideation is present, suicide prevention guidelines recommend additional support for healthcare workers such as crisis helplines or online interventions (Gunnell et al., 2020; Moutier, 2020; Wasserman et al., 2020), which should take into account specific experiences such as moral injury and COVID-19-related traumatic experiences.

5 | CONCLUSION

This study provides the first empirical evidence for a potential increase of STB among hospital workers during virus outbreaks, and suggests important associations with a lack in hospital preparedness, financial stress, and pre-existing adverse mental health. Future research should confirm our findings by including a non-pandemic control condition, and by using a prospective study design including objective markers of hospital functioning and hospital workers’ financial situation. The COVID-19 pandemic has revealed how dependent we are as a society on a well-functioning healthcare system. Improving future mental health and promoting fair financial and working conditions among hospital workers should therefore be an absolute priority.

The MINDCOVID Working Group is formed by

Itxaso Alayo, Jordi Alonso, Manuel Alonso, Mar Álvarez-Villalba, Benedikt Amann, Franco F. Amigo, Gerard Anmella, Andrés Aragón, Núria Aragonès, Enric Aragonès, Ana Isabel Arizón, Angel Asunso, Alfons Ayora, Laura Ballester, Puri Barbas, Josep Basora, Elena Bereciartua, Inés Bravo, Ignasi Bolíbar, Xavier Bonfill, Ronny Bruffaerts, Alberto Cotillas-Rodero, Paula Cristóbal-Narváez, Andrés Cuartero, Concha de Paz, Isabel del Cura-González, Maria Jesús del Yerro, Joke De Vocht, Domingo Díaz, Joan Domènech-Abella, José Luís Domingo, José I. Emparanza, Mireia Espallargues, Meribell Espuga, Patricia Esteban-Burdeus, Mireia Félez-Nobrega, M. Isabel Fernández, Tania Fernández, Montse Ferrer, Yolanda Ferreres, Giovanna Fico, María João Forjaz, Rosa García-Barranco, Carles García-Ribera, J. Manuel García-Torrecillas, Araceli Garrido-Barral, Elisa Gil, María Giola-Insigna, Marta Gómez, Javier Gómez, Ana González-Pinto, Josep Maria Haro, Margarita Hernando, Milagros Iriberri, Leontien Jansen, Núria Jiménez, Xavi Jiménez, Ronald C. Kessler, Amparo Larrauri, Fernando León-Vázquez, Mayte López-Atanes, Nieves López-Fresneña, Carmen López-Rodriguez, Juan A. López-Rodríguez, Germán López-Cortacans, Alba...
Marcos, Jesús Martín, Vicente Martín, Mercedes Martínez-Cortés, Raquel Martínez-Martínez, Alma D. Martínez de Salazar, Isabel Martínez, Marco Marzola, Nolva Mata, Josep Maria Molina, Juan D. Molina, Emilia Molinero, Philippe Mortier, Carmen Muñoz-Ruízpérez, Andrea Murró, Lydia Navarro, Beatriz Olaya, Jorge Olmedo-Galindo, Rafael M. Ortí-Lucas, Rafael Padrós, Meritxell Pallejà, Raúl Parra, Julio Pascual, José María Pelayo-Terán, Rosa Pla, Nieves Plana, Coro Pérez-Aznar, Beatriz Pérez-Gómez, Víctor Pérez-Solà, Aurora Pérez-Zapata, José Ignacio Pijoan, Elena Polentinos-Castro, Beatriz Puertolas, María Teresa Puig, Álex Quiéz, María Jesús Quintana, Antonio Quiroga, David Rentero, Cristina Rey, Cristina Rius, Carmen Rodríguez-Blázquez, M. José Rojas-Giraldo, Yamina Romero-Barzola, Gabriel Rubio, Pedro Ruiz, Mercedes Rumayor, Margarita Sàenz, Jesús Sánchez, Ignacio Sánchez-Arcilla, Ferran Sanz, Consol Serra, Victòria Serra-Sutton, Manuela Serrano, Silvia Solà, Sara Solera, Miguel Soto, Alejandra Tarragó, Natividad Tolosa, Mireia Vázquez, Margarita Viciola, Eduard Vieta, Gemma Vilagut, Wouter Voorspoels, Sara Yago-González, Jesús Yáñez-Sánchez, Yolanda Zapico, Luis María Zorita, Iñaki Zorrilla, and Saloa L. Zurbano.

ACKNOWLEDGMENTS
The authors would like to sincerely thank Puri Barbans and Franco Amigo for the management of the project as well as all hospital workers that participated in the study. This study was as well as supported by Fondo de Investigación Sanitaria, Instituto de Salud Carlos III (Ministerio de Ciencia e Innovación/FEDER (COV20/0071)); ISCIII (Sara Borrell, CD18/00049) (PM); FPU (FPU15/05728) (LB); ISCIII (PFIS, FI18/00012) (BP); Generalitat de Catalunya (2017SGR452).

CONFLICT OF INTEREST STATEMENT
Eduard Vieta reports personal fees from Abbott, personal fees from Allergan, personal fees from Angelini, grants from Novartis, grants from Ferrer, grants and personal fees from Janssen, personal fees from Lundbeck, personal fees from Sage, personal fees from Sanofi, outside the submitted work. Juan D. Molina reports personal fees from Janssen, personal fees and nonfinancial support from Otsuka, personal fees and nonfinancial support from Lundbeck, personal fees from Angelini, personal fees and nonfinancial support from Accord, outside the submitted work. In the past 3 years, Ronald C. Kessler was a consultant for Datastat, Inc., Sage Pharmaceuticals, and Takeda. All other authors reported no conflict of interest.

AUTHOR CONTRIBUTIONS
Philippe Mortier, Gemma Vilagut, and Jordi Alonso reviewed the literature. Philippe Mortier, Gemma Vilagut, Montse Ferrer, Jordi Alonso, Enric Aragonès, Víctor Pérez-Solà, Josep M. Haro, Ronald C. Kessler, and Ronny Bruffaerts conceived and designed the study. Consol Serra, Juan D. Molina, Nieves López-Fresneña, Teresa Puig, José M. Pelayo-Terán, José I. Pijoan, José I. Emparanza, Meritxell Espuga, Nieves Plana, Ana González-Pinto, Consol Serra, Enric Aragonès, Isabel del Cura-González, Andrés Aragón-Peña, Mireia Campos, Aurora Pérez-Zapata, Eduard Vieta, and Víctor Pérez-Solà acquired the data. Philippe Mortier and Gemma Vilagut cleaned and analyzed the data. Philippe Mortier, Gemma Vilagut, and Jordi Alonso drafted the initial version of the manuscript. All authors reviewed the initial draft and made critical contributions to the interpretation of the data and approved the manuscript. The corresponding authors attest that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

DATA AVAILABILITY STATEMENT
The de-identified participant data as well as the study protocol and statistical analysis plan used for this study are available upon reasonable request from the corresponding authors (Philippe Mortier and Jordi Alonso) as long as the main objective of the data sharing request is replicating the analysis and findings as reported in this paper.

ORCID
Philippe Mortier https://orcid.org/0000-0003-2113-6241
Juan D. Molina https://orcid.org/0000-0001-8561-8130
Ronald C. Kessler https://orcid.org/0000-0003-4831-2305
Jordi Alonso https://orcid.org/0000-0001-8627-9636

REFERENCES
Alfonso-Sánchez, J. L., Martin-Moreno, J. M., Martínez, I. M., & Martínez, A. A. (2020). Epidemiological study and cost analysis of suicide in Spain: Over 100 years of evolution. Archives of Suicide Research, 24(suppl 2), S356–S369. https://doi.org/10.1080/13811118.2019.1612802
Amaya, A., & Presser, S. (2016). Nonresponse bias for univariate and multivariate estimates of social activities and roles. Public Opinion Quarterly, 81(1), nfw007. https://doi.org/10.1093/poq/nfw007
Arango, C. (2020). Lessons learned from the coronavirus health crisis in Madrid, Spain: How COVID-19 has changed our lives in the last 2 weeks. Biological Psychiatry, 88(7), e33–e34. https://doi.org/10.1016/j.biopsych.2020.04.003
Bernal, M., Haro, J. M., Bernert, S., Brugha, T., de Graaf, R., Bruffaerts, R., Lépine, J. P., de Girolamo, G., Vilagut, G., Gasquet, I., Torres, J. V., Kovess, V., Heider, D., Neeleman, J., Kessler, R., & Alonso, J. (2007). Risk factors for suicide ideation in Europe: Results from the ESEMEd study. Journal of Affective Disorders, 101(1–3), 27–34. https://doi.org/10.1016/j.jad.2006.09.018
Brooks, E., Gendel, M. H., Early, S. R., & Gundersen, D. C. (2018). When doctors struggle: Current stressors and evaluation recommendations for physicians contemplating suicide. Archives of Suicide Research, 22(4), 519–528. https://doi.org/10.1080/13811118.2017.1372827
Cho, Y. I., Johnson, T. P., & VanGeest, J. B. (2013). Enhancing surveys of health care professionals. Evaluation & the Health Professions, 36(3), 382–407. https://doi.org/10.1177/0163287113496425
Dohrenwend, B. S., Krasnoff, L., Askenasy, A. R., & Dohrenwend, B. P. (1978). Exemplification of a method for scaling life events: the Peri Life Events Scale. Journal of Health and Social Behavior, 19(2), 205–229. https://doi.org/10.1177/002214657801900209
Dutheil, F., Aubert, C., Pereira, B., Dambrun, M., Moustafa, F., Mermillod, M., Baker, J. S., Trousselard, M., Lesage, F. X., & Navel, V. (2019). Suicide among physicians and health-care workers: A systematic review and meta-analysis. PLOS One, 14(12), e0226361. https://doi.org/10.1371/journal.pone.0226361
European Centre for Disease Prevention and Control. (2020). Preparedness for COVID-19. Retrieved from https://www.ecdc.europa.eu/en/covid-19/preparedness-and-response
Eyseenbach, G. (2004). Improving the quality of web surveys: The Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Journal of Medical Internet Research, 6(3), e34. https://doi.org/10.2196/jmir.6.3.e34
Franklin, J. C., Ribeiro, J. D., Fox, K. R., Bentley, K. H., Kleiman, E. M., Huang, X., Musacchio, K. M., Jaroszewski, A. C., Chang, B. P., & Nock, M. K. (2017). Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin, 143(2), 187–232. https://doi.org/10.1037/bul0000084

Fridner, A., Belkic, K., Marini, M., Minucci, D., Pavan, L., & Schenck-Gustafsson, K. (2009). Survey on recent suicidal ideation among female university hospital physicians in Sweden and Italy (the HOYPE study): Cross-sectional associations with work stressors. Gender Medicine, 6(1), 314–328. https://doi.org/10.1016/j.genn.2009.04.006

Gunnell, D., Appleby, L., Arensman, E., Hawton, K., John, A., Kapur, N., ... Yip, P. S. (2020). Suicide risk and prevention during the COVID-19 pandemic. The Lancet Psychiatry, 7(6), 468–471. https://doi.org/10.1016/S2215-0366(20)30171-1

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Springer series in statistics. The elements of statistical learning—Data mining, inference, and prediction. Springer. https://doi.org/10.1007/b94608

Hawton, K., Agerbo, E., Simkin, S., Platt, B., & Mellonby, R. J. (2011). Risk of suicide in medical and related occupational groups: A national study based on Danish case population-based registers. Journal of Affective Disorders, 134(1–3), 320–326. https://doi.org/10.1016/j.jad.2011.05.044

Hem, E., Granvold, N., Aasland, O., & Ekeberg, Ø. (2000). The prevalence of suicidal ideation and suicidal attempts among Norwegian physicians. Results from a cross-sectional survey of a nationwide sample. European Psychiatry, 15(3), 183–189. https://doi.org/10.1016/S0924-9338(00)00227-3

Kessler, R. C., & Üstün, T. B. (2004). The World Mental Health (WMH) Survey Initiative version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). International Journal of Methods in Psychiatric Research, 13(2), 93–121. https://doi.org/10.1002/mpr.168

Kisely, S., Warren, N., McMahon, L., Dalais, C., Henry, I., & Siskind, D. (2020). Occurrence, prevention, and management of the psychological effects of emerging virus outbreaks on healthcare workers: rapid review and meta-analysis. BMJ, 369, m1642. https://doi.org/10.1136/bmj.m1642

Kovess-Masfety, V., Boyd, A., Haro, J. M., Bruffaerts, R., Villagut, G., Lépine, J. P., Gasquet, I., & Alonso, J. (2011). High and low suicidality in Europe: A fine-grained comparison of France and Spain within the ESEMeD surveys. Journal of Affective Disorders, 133(1–2), 247–256. https://doi.org/10.1016/j.jad.2011.04.014

Krysinika, K., & Martin, G. (2009). The struggle to prevent and evaluate: Application of population attributable risk and preventive fraction to suicide prevention research. Suicide and Life-Threatening Behavior, 39(5), 548–557. https://doi.org/10.1177/10497315093395548

Litz, B. T., Stein, N., Delaney, E., Lebowitz, L., Nash, W. P., Silva, C., ... Vist, G. E. (2020). The mental health impact of the covid-19 pandemic on healthcare workers, and interventions to help them: A rapid systematic review. Psychiatry Research, 293(August), 113441. https://doi.org/10.1016/j.psychres.2020.113441

Mortier Christine (2020). Suicide Prevention in the COVID-19 Era. JAMA Psychiatry. http://dx.doi.org/10.1001/jamapsychiatry.2020.3746

Muller, A. E., Hafstad, E. V., Himels, J. P. W., Smelslund, G., Flottorp, S., Stensland, S. Ø., Stroobants, S., Van de Velde, S., & Vist, G. E. (2020). The mental health impact of the covid-19 pandemic on healthcare workers, and interventions to help them: A rapid systematic review. Psychiatry Research, 293(August), 113441. https://doi.org/10.1016/j.psychres.2020.113441

Nock, M. K., Borges, G., & Ono, Y. (Eds.). (2012). Suicide: Global perspectives from the WHO World Mental Health Surveys. Cambridge University Press.

Nock, M. K., Stein, M. B., Heeringa, S. G., Ursano, R. J., Colpe, L. J., Fullerton, C. S., Hwang, I., Naifeh, J. A., Sampson, N. A., Schoenbaum, M., Zaslavsky, A. M., & Kessler, R. C. (2014). Prevalence and correlates of suicidal behavior among soldiers. JAMA Psychiatry, 71(5), 514. https://doi.org/10.1001/jamapsychiatry.2014.30

Pappa, S., Ntella, V., Giannakoula, V. G., Papoutsi, E., & Katsanouou, P. (2020). Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 88(January), 901–907. https://doi.org/10.1016/j.bbi.2020.05.026

Persie, K., Crawford, J., Baker, S. T. E., Dean, K., Robinson, J., Veness, B. G., Randall, J., McGorry, P., Christensen, H., & Harvey, S. B. (2019). Interventions to reduce symptoms of common mental disorders and suicidal ideation in physicians: A systematic review and meta-analysis. The Lancet Psychiatry, 6(3), 225–234. https://doi.org/10.1016/S2215-0366(18)30509-1

Posner, K., Brown, G. K., Stanley, B., Brent, D. A., Yershova, K. V., Oquendo, M. A., Currier, G. W., Melvin, A. G., Greenhill, L., Shen, S., & Mann, J. J. (2011). The Columbia—Suicide Severity Rating Scale: Initial validity and internal consistency findings from three multisite studies with adolescents and adults. American Journal of Psychiatry, 168(12), 1266–1277. https://doi.org/10.1176/appi.ajp.2011.10111704

Red Nacional de Vigilancia Epidemiológica (RENAVE). Ministerio de Sanidad, España. (2020). Retrieved from https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/home.htm

Ribeiro, J. D., Franklin, J. C., Fox, K. R., Bentley, K. H., Kleiman, E. M., Chang, B. P., & Nock, M. K. (2016). Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: A meta-analysis of longitudinal studies. Psychological Medicine, 46(2), 225–236. https://doi.org/10.1017/S0033291715001804

Roser, M., Ritchie, H., Ortiz-Ospina, E., & Hasell, J. (2020). Coronavirus Pandemic (COVID-19). Retrieved from https://ourworldindata.org/coronavirus

Sala-Rodriguez, G., Gaucher-Serrano, J., Catalan, A., Arango, C., Moreno, C., Ferrer, F., Shin, J. I., Sullivan, S., Brondino, N., Solmi, M., & Fusar-Poli, P. (2020). Impact of coronavirus syndromes on physical and mental health of health care workers: Systematic review and meta-analysis. Journal of Affective Disorders, 275, 48–57. https://doi.org/10.1016/j.jad.2020.06.022

Sharif, S., Amin, F., Hafiz, M., Benzel, E., Peev, N., & Dahan, R. H. ... World Spinal Column Society Executive Board. (2020). COVID-19—Depression and Neurosurgeons. World Neurosurgery, 21(1), 1–9. https://doi.org/10.1016/j.wneu.2020.06.007

Thomson, S., Figueras, J., Evertovits, T., Jowett, M., Mladovsky, P., Maresso, A., … Kluge, H. (2013). Economic Crisis, Health Systems and Health in Europe Impact and implications for policy. European Observatory on Health Systems and Policies Series IV–16.

Tyssen, R., Vaglum, P., Granvold, N. T., & Ekeberg, Ø. (2001). Suicidal ideation among medical students and young physicians: a nationwide and prospective study of prevalence and predictors. Journal of Affective Disorders, 64(1), 69–79. https://doi.org/10.1016/S0165-0327(00)00205-6

van Buuren, S. (2012). Flexible imputation of missing data. Chapman & Hall. https://doi.org/10.1201/b11826
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Mortier P, Vilagut G, Ferrer M, et al. Thirty-day suicidal thoughts and behaviors among hospital workers during the first wave of the Spain COVID-19 outbreak. *Depression Anxiety*. 2020;38:528–544. https://doi.org/10.1002/da.23129