Introduction into Calculus over Division Ring

Aleks Kleyn

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Abstract. Based on twin representations of division ring in an Abelian group I consider D-vector spaces over division ring. Morphism of D-vector spaces is linear map of D-vector spaces.

I consider derivative of function f of continuous division ring as linear map the most close to function f. I explore expansion of map into Taylor series and method to find solution of differential equation.

The norm in D-vector space allows considering of continuous mapping of D-vector spaces. Differential of mapping f of D-vector spaces is defined as linear mapping the most close to map f.
Contents

Chapter 1. Preface ... 5
 1.1. Preface to Version 1 ... 5
 1.2. Preface to Version 3 ... 6
 1.3. Preface to Version 4 ... 8
 1.4. Preface to Version 5 ... 9
 1.5. Conventions .. 9

Chapter 2. D^*_\ast-Linear Map 11
 2.1. D^*_\ast-Linear Map .. 11
 2.2. 1-Form on a D^*_\ast-Vector space 13
 2.3. Twin Representations of Division Ring 16
 2.4. D-Vector Space .. 17

Chapter 3. Linear Map of Division Ring 19
 3.1. Additive Map of Ring .. 19
 3.2. Additive Map of Division Ring 21
 3.3. Polylinear Map of Division Ring 27

Chapter 4. Linear Map of D-Vector Spaces 33
 4.1. Linear Map of D-Vector Spaces 33
 4.2. Polyladditive Map of D-Vector Spaces 37

Chapter 5. Differentiable Maps 41
 5.1. Topological Division Ring 41
 5.2. Differentiable Map of Division Ring 45
 5.3. Table of Derivatives of Map of Division Ring 52

Chapter 6. Differentiable Maps of D-Vector Space 55
 6.1. Topological D-Vector Space 55
 6.2. Differentiable Maps of D-Vector Space 57

Chapter 7. Quaternion Algebra 65
 7.1. Linear Function of Complex Field 65
 7.2. Quaternion Algebra ... 66
 7.3. Linear Function of Division Ring of Quaternions 67
 7.4. Differentiable Map of Division Ring of Quaternions ... 71

Chapter 8. Derivative of Second Order of Map of Division Ring ... 77
 8.1. Derivative of Second Order of Map of Division Ring ... 77
 8.2. Taylor Series ... 78
 8.3. Integral .. 83
CHAPTER 1

Preface

1.1. Preface to Version 1

The way of charms and disappointments.

However I would put it another way. When you understand that the reason for your disappointments is in your expectations, you start to examine surrounding landscape. You found yourself on the path where nobody went before. New impressions are stronger then impressions from travel along well known and trodden road.

Author is unknown. The Adventures of an Explorer.

In mathematics like in everyday life there are statements that after studying become obvious. It may appear surprising when you first time meet that these statements are false in new conditions.\footnote{I experienced such sensation when I considered Rolle’s theorem in the calculus over division ring. After numerous attempts to change statement of Rolle’s theorem, I came to a conclusion that it is false even for complex numbers. It is enough to consider function $w = z^2$. $z = 0$ is the only point where derivative equal 0. However we can connect points $z = 0.5$ and $z = -0.5$ by curve that does not pass through point $z = 0$.}

When I started to study linear algebra over division ring I was ready to different surprises related with noncommutativity of product. However large number of statements similar to statements of linear algebra over field relaxed my attention. Nevertheless I met first deep problem in linear algebra: definition of polylinear form and tensor product assumes that product is commutative. The firm belief that solving of particular problems gives key to solving of general problem, was main motive, prompting me to consider calculus over division ring. This book introduces technique of differentiation of mapping over division ring. Since the possibility of linear approximation of mapping is at the heart of calculus, this book is natural consequence of book \cite{3}. In calculus like in linear algebra we see statements that we know well. However we see a lot of new statements.

The first considered definition of derivative was based on classic definition of derivative. However considering of derivative of function x^2, I discovered that I cannot express this derivative analytically. To answer the question of existence of derivative I decided to conduct calculating experiment. The best candidate for calculating experiment is division ring of quaternions. Simple calculations make it clear that sometimes derivative does not exist. It causes that the set of differentiable functions is very small, and such theory of differentiation is not interesting.\footnote{Search in papers and books shows that this is a deep problem. Mathematicians try to solve this problem suggesting different definitions of derivative. These definitions are based on}
Analysis of calculating experiment shows that an expression that depends on increment of argument appears even derivative does not exist. We know such tool in functional analysis. This is the Fréchet derivative and the Gâteaux derivative in the space of linear operators.

When I defined the Gâteaux D^*-derivative, I put attention that differential does not depend on using of the Gâteaux D^*-derivative or the Gâteaux D-derivative. This caused me to change text and I started from definition of differential.

The concept of D^{**}-vector space is powerful tool for study of linear spaces over division ring. However the Gâteaux differential does not fit in frame of D^{**}-vector space. It follows from example 5.2.2 that D-vector space is the most appropriate model for studying of the Gâteaux differential.

The considering of D^{**}-linear maps leads to the concept of twin representations of division ring in Abelian group. Abelian group, in which we define twin representation of division ring D, is called D-vector space. Since we define multiplication over elements of division ring D from left, as well as right, then homomorphisms of D-vector spaces cannot keep this operation. This leads to concept of additive map which is morphism of D-vector space.

Consideration of the Gâteaux differential as additive map leads to new structure for definition of derivative. In contrast to the Gâteaux D^*-derivative components of the Gâteaux differential do not depend on direction. However components of the Gâteaux differential are defined non-uniquely and their number is uncertain. It is evident that when we consider calculus over field, the Gâteaux D^*-derivative and components of the Gâteaux differential coincide with derivative. These structures appear as result of different constructions. When product is commutative these structures coincide. However noncommutativity breaks expected relationship. In spite of difference in behavior, these structures are supplemental.

December, 2008

1.2. Preface to Version 3

Discussing the notion of derivative which I introduced in this book, I realized that the subject of the book is very complex. This is the reason why in this part of preface I want to consider in more detail the concept of differentiation.

When we study functions of one variable, the derivative in selected point is a number. When we study function of multiple variables, we realize that it is not enough to use number. The derivative becomes vector or gradient. When we study maps of vector spaces, this is a first time that we tell about derivative as operator. However since this operator is linear, than we can represent derivative as product over matrix. Again we express the derivative as a set of numbers.

different properties of derivative of function of real or complex variable. These definitions are very interesting. However my task is the study of common rules for differentiation of maps of complete division ring of characteristic 0.

In this book I use notations introduced in [3].

Design of additive mapping which I made proving theorem 4.1.9, is instructive methodically. From the time when I started to learn differential geometry, I accepted the fact that we can everything express using tensor, that we enumerate components of tensor by indexes and this relationship is permanent. Once I saw that it was not the case, I found myself unprepared to recognize it. It got month before I was able to write down expression that I saw by my eyes. The problem was because I tried to write down this expression in tensor form.
Surely, such behavior of derivative weaken our attention. When we consider objects which are more complex than fields or vector spaces, we still try to see an object which can be written as a factor before an increment and which does not depend on the increment. Quaternion algebra is the most simple model of continuous division ring. However, an attempt to define derivative as linear map is doomed to failure. Only certain linear functions are differentiable in this sense.

The question arises as to whether there exists an alternative method if the set of linear maps restricts our ability to study infinitesimal behavior of map? The answer on this question is affirmative. Let us consider the quaternion algebra. The quaternion algebra is normed space. We know two types of derivative in normed space. Strong derivative or the Fréchet derivative is analogue of the derivative which we know very well. When I wrote about attempt to find derivative as linear map as increment of argument, I meant the Fréchet derivative. Besides strong derivative there exits weak derivative or the Gâteaux derivative. The main idea is that derivative may depend on direction.

Vadim Komkov defines the Gâteaux derivative for quaternion algebra ([9], p. 322) at the point \(q \) in the direction of \(q_1 \) to be the quantity \(q_2 \) such that, for \(\epsilon > 0 \)

\[
f(q + \epsilon q_1) - f(q) = \epsilon (q_1 q_2)
\]

He made this definition according to definition [1]-3.1.2, page 177. This definition does not have difference from the Fréchet derivative. This phenomenon remains in general case. Every time when we try to extract the Gâteaux derivative as factor, the identification of the Gâteaux derivative and the Fréchet derivative occurs.

A linear map of division ring is homomorphism of its additive group and homomorphism of its multiplicative group in one map. Homomorphism of multiplicative group is restrictive factor. This is why it is mind to get rid of homomorphism of multiplicative group and to consider only homomorphism of additive group. It is evident that the set of homomorphisms of additive group is more wide than the set of linear maps. However, because we defined two operations in division ring, additive map has a special structure. This is why I selected these map into separate set and called them additive maps.

Even in this case some elements of linearity remain. The center of division ring is field. As a consequence, additive map is linear over center. When division ring has characteristic 0 and does not have discrete topology, we can embed real field into center of division ring. As a consequence, the definition of derivative as additive map appears equivalent to the definition of the Gâteaux derivative.

Qualitative change happens exactly here. In additive map we cannot extract an argument as factor. We cannot extract increment from derivative. Is this idea fundamentally new? I do not think so. Derivative is a map. It is the map of differential of an argument to differential of function. Even additive map of increment of argument allows approximate the increment of function by polynomial of first power. The structure of polynomial over division ring is different from structure of polynomial over field. I consider some properties of polynomial in section 8.2. Using obtained theorems I explore Taylor series expansion of map and method to find solution of differential equation.

In the beginning I also tried to define derivative of map over division ring as Fréchet derivative. However, I saw that this derivative does not satisfy to basic rules of differentiation, and I realized that this is wrong way. To make sure that the problem is fundamental, and is not inherent in the logic of my research, I made
computation in the division ring of quaternions. That is where I discovered that
the derivative is dependent on the direction.

At this time I studied maps of D-vector spaces, and idea of additive map
became leading one in this research. In preface to version 1 (section 1.1) I wrote
about impressions of explorer who found oneself for the first time in unfamiliar
land. Expecting to see familiar landscapes, explorer does not notice initially the
peculiarity of new places. I experience such change of impressions during this year
when I wrote the book.

I did not realize right away that derivative which I discovered is the Gâteaux
derivative. I could see difference between my derivative and the Gâteaux derivative.
I had to come a long way before realizing that two definitions are equivalent. Like
explorer, who tried to see familiar landscapes, I considered possibility to extract
increment from derivative. As a consequence, the Gâteaux D^{\star}-derivative emerged.

If we consider new concepts, what will survive in the future? Surely, the
Gâteaux derivative and the Gâteaux partial derivative will be basic concepts. Com-
ponents of the Gâteaux derivative are important for considering of structure of the
Gâteaux derivative. I do not think that I will consider the Gâteaux D^{\star}-derivative
in other cases except the Gâteaux derivative of first order. Primary advantage of
the Gâteaux D^{\star}-derivative is that it allows you to explore conditions when map is
continuous.

May, 2009

1.3. Preface to Version 4

Quaternion algebra is the simplest example of division ring. This is why I verify
theorems in quaternion algebra to see how they work. Quaternion algebra is similar
to complex field and so it is natural to search some parallel.

In real field any additive map automatically turns out to be linear over real
field. This statement is caused by statement that real field is completion of rational
field and is corollary of theorem 3.2.2.

However the statement changes for complex field. Not every additive map of
complex field is linear over complex field. Conjugation is the simplest example of
such map. As soon as I discovered this extremely interesting statement, I returned
to question about analytical representation of additive map.

Exploring additive maps, I realized that I too abruptly expanded the set of
linear maps while switching from field to division ring. The reason for this was
not a very clear understanding of how to overcome the noncommutativity of the
product. However during the process of research it became more evident that any
additive map is linear over some field. For the first time I used this concept when
constructing the tensor product and the concept took shape in a subsequent study.

During constructing the tensor product of division rings D_1, \ldots, D_n I assumed
existence of field F such that additive map of division ring D_i is linear over this
field for any i. If all division rings have characteristic 0, then according to theorem
3.2.2 such field always exists. However dependence of tensor product on selected
field F arises here. To get rid of this dependence, I assume that field F is maximal
field that possesses stated property.
If $D_1 = ... = D_n = D$, then such field is center $Z(D)$ of division ring D. If the product in division ring D is commutative1.5, then $Z(D) = D$. So, starting with additive map, I arrive at concept of linear map, which is generalization of linear map over field.

My decision to explore the Gâteaux derivative as linear map was influenced by following.

- Linear map of field is homogeneous polynomial of degree one.
- For continuous field derivative of function of field is homogeneous polynomial of degree one that is good approximation to change of function.

The same time we explore the derivative as linear map of field. At the transition to division ring we can save the same link between derivative and additive map.

Research in area of complex numbers and quaternions revealed one more interesting phenomenon. In spite of the fact that complex field is extension of real field, the structure of linear map over complex field is different from the structure of linear map over real field. This difference leads to the statement that conjugation of complex numbers is additive map but not linear map over complex field.

Similarly, the structure of linear map over division ring of quaternions is different from the structure of linear map over complex field. The source of difference is statement that the center of quaternion algebra has more simple structure, than complex field. This difference leads to the statement that conjugation of quaternion satisfies to equation

$$\overline{p} = \frac{1}{2}(p + ipi + jpj + kpk)$$

Consequently, the problem to find a mapping satisfying to a theorem similar to the Riemann theorem (theorem 7.1.1), is a nontrivial task for quaternions.

August, 2009

1.4. Preface to Version 5

Recently, in internet, I found the book [11], where Hamilton found similar description of calculus in quaternion algebra. Although this book was written more than 100 years ago, I recommend to read this book everybody who are interested in problems of calculus over quaternion algebra.

December, 2009

1.5. Conventions

(1) Function and map are synonyms. However according to tradition, correspondence between either rings or vector spaces is called map and map of either real field or quaternion algebra is called function. I also follow this tradition.

(2) In any expression where we use index I assume that this index may have internal structure. For instance, considering the algebra A we enumerate coordinates of $a \in A$ relative to basis \overline{e} by an index i. This means that a is a vector. However, if a is matrix, then we need two indexes, one enumerates rows, another enumerates columns. In the case, when index has structure, we begin the index from symbol \cdot in the corresponding

1.5In other words, division ring is field.
position. For instance, if I consider the matrix a^i_j as an element of a vector space, then I can write the element of matrix as a^{-i}_j.

(3) I assume sum over index s in expression like

$$(s)_0^1 a (s)_1^0 a$$

(4) We can consider division ring D as D-vector space of dimension 1. According to this statement, we can explore not only homomorphisms of division ring D_1 into division ring D_2, but also linear maps of division rings. This means that map is multiplicative over maximum possible field. In particular, linear map of division ring D is multiplicative over center $Z(D)$. This statement does not contradict with definition of linear map of field because for field F is true $Z(F) = F$. When field F is different from maximum possible, I explicit tell about this in text.

(5) In spite of noncommutativity of product a lot of statements remain to be true if we substitute, for instance, right representation by left representation or right vector space by left vector space. To keep this symmetry in statements of theorems I use symmetric notation. For instance, I consider $D\star$-vector space and $\star D$-vector space. We can read notation $D\star$-vector space as either D-star-vector space or left vector space. We can read notation $D\star$-linear dependent vectors as either D-star-linear dependent vectors or vectors that are linearly dependent from left.

(6) We consider algebra A which is finite dimensional vector space over center. Considering expansion of element of algebra A relative basis \mathbf{e} we use the same root letter to denote this element and its coordinates. However we do not use vector notation in algebra. In expression a^i, it is not clear whether this is component of expansion of element a relative basis, or this is operation $a^i = aa$. To make text more clear we use separate color for index of element of algebra. For instance,

$a = a^i \mathbf{e}_i$

(7) When we consider finite dimensional algebra we identify the vector of basis \mathbf{e}_0 with unit of algebra.

(8) Without a doubt, the reader of my articles may have questions, comments, objections. I will appreciate any response.
CHAPTER 2

\section*{D*-Linear Map}

\subsection*{2.1. D*-Linear Map}

In this subsection we assume \(V, W \) are \(D^* \)-vector spaces.

\textbf{Definition 2.1.1.} Let us denote by \(L(D^*; V; W) \) set of \(D^* \)-linear maps \(A: V \to W \) of \(D^* \)-vector space \(V \) into \(D^* \)-vector space \(W \). Let us denote by \(L(D^*; V; W) \) set of \(D^* \)-linear maps \(A: V \to W \) of \(D^* \)-vector space \(V \) into \(D^* \)-vector space \(W \).

We can consider division ring \(D \) as \(D^* \)-vector space of dimension 1. Correspondingly we can consider set \(L(D^*; D; W) \) and \(L(D^*; V; D) \).

\textbf{Definition 2.1.2.} Let us denote by \(L(T^*; S; R) \) set of \(T^* \)-representations of division ring \(S \) in additive group of division ring \(R \). Let us denote by \(L(T^*; S; R) \) set of \(T^* \)-representations of division ring \(S \) in additive group of division ring \(R \).

\textbf{Theorem 2.1.3.} Suppose \(V, W \) are \(D^* \)-vector spaces. Then set \(L(D^*; V; W) \) is an Abelian group relative composition law \((2.1.1) \)

\[\pi^* (\alpha + \beta) = \pi^* \alpha + \pi^* \beta \]

\textbf{Proof.} We need to show that map \(\alpha + \beta: V \to W \)

defined by equation \((2.1.1) \) is \(D^* \)-linear map of \(D^* \)-vector spaces. According to definition \([3]-4.4.2\)

\[(a^* \pi)^* \alpha = a^* (\pi^* \alpha) \]

\[(a^* \pi)^* \beta = a^* (\pi^* \beta) \]

We see that

\[(a^* \pi)^* (\alpha + \beta) = (a^* \pi)^* \alpha + (a^* \pi)^* \beta \]

\[= a^* (\pi^* \alpha + \pi^* \beta) \]

\[= a^* (\pi^* (\alpha + \beta)) \]

We need to show also that this operation is commutative.

\[\pi^* (\alpha + \beta) = \pi^* \alpha + \pi^* \beta \]

\[= \pi^* \alpha + \pi^* \beta \]

\[= \pi^* (\alpha + \beta) \]
Definition 2.1.4. D_\ast_\ast-Linear map $\overline{A} + \overline{B}$ is called sum of D_\ast_\ast-linear maps \overline{A} and \overline{B}. □

Theorem 2.1.5. Let $\mathbf{f} = (a_1, a \in I)$ be a D_\ast_\ast-basis in vector space \overline{V} and $\mathbf{e} = (b_1, b \in J)$ be a D_\ast_\ast-basis in vector space \overline{W}. Let $A = (a_i, a \in I, b \in J)$ be arbitrary matrix. Then map

\[
\overline{A} : \overline{V} \rightarrow \overline{W}
\]

defined by equation

\[
b = a_\ast_\ast A \tag{2.1.2}
\]

relative to selected D_\ast_\ast-bases is a D_\ast_\ast-linear map of vector spaces.

Proof. Theorem 2.1.5 is inverse statement to theorem [3]-4.4.3. Suppose $v_\ast_\ast A = v_\ast_\ast A_\ast_\ast e$. Then

\[
(a_\ast_\ast v)_\ast_\ast A = a_\ast_\ast v_\ast_\ast A_\ast_\ast e = a_\ast_\ast (v_\ast_\ast A) \tag{2.1.3}
\]

Theorem 2.1.6. Let \mathbf{f} be a D_\ast_\ast-basis in vector space \overline{V} and \mathbf{e} be a D_\ast_\ast-basis in vector space \overline{W}. Suppose D_\ast_\ast-linear map \overline{A} has matrix $A = (a_i, a \in I, b \in J)$ relative to selected D_\ast_\ast-bases. Let $m \in D$. Then matrix

\[
a(Am)_b = a^b m \tag{2.1.4}
\]

defines D_\ast_\ast-linear map

\[
\overline{A}m : \overline{V} \rightarrow \overline{W}
\]

which we call \ast_\ast-product of D_\ast_\ast-linear map \overline{A} over scalar.

Proof. The statement of the theorem is corollary of the theorem 2.1.5. □

Theorem 2.1.7. Set $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ is \ast_\ast-D-vector space.

Proof. Theorem 2.1.3 states that $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ is an Abelian group. It follows from theorem 2.1.6 that element of division ring D defines \ast_\ast-transformation on the Abelian group $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$. From theorems 2.1.5, [3]-4.1.1, and [3]-4.1.3 it follows that set $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ is \ast_\ast-D-vector space.

Writing elements of basis \ast_\ast-D-vector space $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ as \ast-rows or \ast-rows, we represent \ast-D-vector space $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ as \ast_\ast-D- or \ast_\ast-D-vector space. I want to stress that choice between \ast_\ast-D- and \ast_\ast-D-linear combination in \ast-D-vector space $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ does not depend on type of vector spaces \overline{V} and \overline{W}.

To select the type of vector space $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ I draw attention to the following observation. Let \overline{V} and \overline{W} be D_\ast_\ast-vector spaces. Suppose $\mathcal{L}(D_\ast_\ast; \overline{V}; \overline{W})$ is \ast_\ast-D-vector space. Then we can represent the operation of \ast-row of drc linear maps $\overline{A}a$ on \ast-row of vectors \mathbf{f} as matrix

\[
\begin{pmatrix}
1 \\
\vdots \\
n
\end{pmatrix}
\ast_\ast
\begin{pmatrix}
\overline{A}_1 & \ldots & \overline{A}_m
\end{pmatrix}
= \begin{pmatrix}
1 \overline{f}_\ast_\ast \overline{A}_1 & \ldots & 1 \overline{f}_\ast_\ast \overline{A}_m \\
\vdots & \ddots & \vdots \\
n \overline{f}_\ast_\ast \overline{A}_1 & \ldots & n \overline{f}_\ast_\ast \overline{A}_m
\end{pmatrix}
\]

This notation is coordinated with matrix notation of action of \ast_\ast-D-linear combination $\overline{A}_\ast_\ast a$ of D_\ast_\ast-$linear$ maps \overline{A}. □
Ambiguity of notation
\(v^* A^* m \)
is corollary of theorem 2.1.7. We may assume that meaning of this notation is clear from the text. To make notation more clear we will use brackets. Expression
\[w = v^*[A^* m] \]
means that \(*_D\)-linear composition of \(*_D\)-linear maps \(A^c \) maps the vector \(v \) to the vector \(w \). Expression
\[w = v^* A^* B \]
means that \(*_D\)-product of \(*_D\)-linear maps \(A \) and \(B \) maps the vector \(v \) to the vector \(w \).

2.2. 1-Form on a \(D^*_D\)-Vector space

Definition 2.2.1. \(1-D^*_D\)-form on vector space \(V \) is \(D^*_D\)-linear map
\[
\tilde{b} : V \rightarrow D
\]
(2.2.1)

We can write value of \(1-D^*_D\)-form \(\tilde{b} \), defined for vector \(\overrightarrow{a} \), as
\[
\tilde{b}(\overrightarrow{a}) = \overrightarrow{a}^* \tilde{b}
\]

Theorem 2.2.2. Set \(\mathcal{L}(D^*_D; V; D) \) is \(*D\)-vector space.

Proof. \(D^*_D\)-vector space of dimension 1 is equivalent to division ring \(D \).

Theorem 2.2.3. Let \(\overrightarrow{e} \) be a \(D^*_D\)-basis in vector space \(V \). \(1-D^*_D\)-form \(\tilde{b} \) has presentation
\[
< \overrightarrow{a}, \tilde{b} > = a^* b
\]
relative to selected \(D^*_D\)-basis, where vector \(\overrightarrow{a} \) has expansion
\[
\overrightarrow{a} = a^* \overrightarrow{e}
\]
and
\[
\tilde{b} = \langle i \overrightarrow{e}, \tilde{b} \rangle
\]
(2.2.4)

Proof. Because \(\tilde{b} \) is \(1-D^*_D\)-form, it follows from (2.2.3) that
\[
< \overrightarrow{a}, \tilde{b} >= a^* \langle \overrightarrow{a}, \tilde{b} \rangle = a^* \langle \overrightarrow{a}, \tilde{b} \rangle
\]
(2.2.2) follows from (2.2.5) and (2.2.4).

Theorem 2.2.4. Let \(\overrightarrow{e} \) be a \(D^*_D\)-frame in vector space \(V \). \(1-D^*_D\)-form (2.2.1) is uniquely defined by values (2.2.4) into which \(1-D^*_D\)-form \(\tilde{b} \) maps vectors of frame.

Proof. Statement follows from theorems 2.2.3 and [3]-4.3.3.

Theorem 2.2.5. Let \(\overrightarrow{e} \) be a \(D^*_D\)-frame in vector space \(V \). The set of \(1-D^*_D\)-forms \(\tilde{d}^i \) such that
\[
< \overrightarrow{a}, \tilde{d}^i > = i \delta^i
\]
is \(*_D\)-basis \(\tilde{d} \) of vector space \(\mathcal{L}(D^*_D; V; D) \).
Proof. Since we assume \(i b = i \delta^j \), then according to theorem 2.2.4 there exists the 1-\(D^* \)-form \(\overline{\delta}^j \) for given \(j \). If we assume that there exists 1-\(D^* \)-form \(\overline{b} = \overline{\delta}^j b = \overline{0} \) then \(\langle i \overline{\pi}, \overline{\delta}^j \rangle \) \(j b = 0 \). According to equation (2.2.6), \(i b = i \delta^j j b = 0 \). Therefore, 1-\(D^* \)-forms \(\overline{b}^j \) are linearly independent. □

Definition 2.2.6. Let \(\overline{V} \) be \(D^* \)-vector space. \(*D \)-vector space \(\overline{V}^* = L(D^*; \overline{V}; D) \) is called dual space of \(D^* \)-vector space \(\overline{V} \). Let \(\overline{e} \) be a \(D^* \)-basis in vector space \(\overline{V} \). \(*D \)-basis \(\overline{d} \) of vector space \(\overline{V}^* \), satisfying to equation (2.2.6), is called \(*D \)-basis dual to \(D^* \)-basis \(\overline{e} \). □

Theorem 2.2.7. Let \(\overline{A} \) be passive transformation of basis manifold \(\overline{B}(\overline{V}, G \mathcal{L}_{n}^{D^*}) \). Let \(D^* \)-basis

\[
(2.2.7) \quad \overline{e}' = A^* \overline{e}
\]

be image of \(D^* \)-basis \(\overline{e} \). Let \(\overline{B} \) be passive transformation of basis manifold \(\overline{B}(\overline{V}^*, G \mathcal{L}_{n}^{D^*}) \) such, that \(*D \)-basis

\[
(2.2.8) \quad \overline{d}' = \overline{d}^* \overline{B}
\]

is dual to \(D^* \)-basis. Then

\[
(2.2.9) \quad \overline{B} = A^{-1}^*.
\]

Proof. From equations (2.2.6), (2.2.7), (2.2.8) it follows

\[
(2.2.10) \quad i \delta^j = \langle i \overline{\pi}, \overline{\delta}^j \rangle = i A^k \langle \overline{\pi}, \overline{d}^k \rangle = i B^j \]

Equation (2.2.9) follows from equation (2.2.10). □

Hereinafter we will consider following models of division ring

* Let us consider division ring \(D \) as \(D^* \)-vector space \(D^* \). We define representation of division ring \(D \) as \(T^* \)-shift \(a^* \)

\[
b \ast a \ast d = (ba) \ast d
\]

This corresponds to product

\[
b(ad) = (ba)d
\]

in division ring \(D \). 1-\(D^* \)-form has form

\[
\langle a, b \rangle = ab
\]

We define representation of division ring \(D \) in dual \(*D \)-vector space \(*D \) as \(*T \)-shift \(*a \)

\[
d \ast a \ast b = d \ast (ab)
\]

We can select arbitrary element \(d \neq 0 \) of division ring \(D \) as basis of \(*D \)-vector space \(*D \). Corresponding dual basis of \(*D \)-vector space \(*D \) has
form \(f = d^{-1} \). In this case \(\langle d, f \rangle = df = e \). Passive transformation \(a^* \) maps basis \(d \) into basis \(d' = ad \). Dual passive transformation \(a^{-1} \) maps basis \(f \) into basis
\[
f' = f a^{-1} = d^{-1} a^{-1} = (ad)^{-1} = d'^{-1}
\]

Let us consider division ring \(D \) as \(*D \)-vector space \(\star D \). We define representation of division ring \(D \) as \(*T \)-shift \(*a \)
\[
d \ast a \ast b = (ab)
\]
This corresponds to product
\[
(da)b = d(ab)
\]
in division ring \(D \). \(1\)-\(*D \)-form has form
\[
\langle b, a \rangle = ba
\]
We define representation of division ring \(D \) in dual \(D^* \)-vector space \(D^* \) as \(T \)-shift \(a^* \)
\[
b \ast a \ast d = (ba) \ast d
\]
We can select arbitrary element \(d \neq 0 \) of division ring \(D \) as basis dual to basis \(e \). In this case \(< f, d > = fd = e \). Passive transformation \(a^* \) maps basis \(d \) into basis \(d' = da \). Dual passive transformation \(a^{-1} \) maps basis \(f \) into basis
\[
f' = a^{-1} f = a^{-1} d^{-1} = (da)^{-1} = d'^{-1}
\]

Let us consider division ring \(D \) as vector space over field \(F \). Assume vectors \(j \overline{e} \in D \) form basis over field \(F \). \(\overline{e} \in D \) has expansion \(\overline{e} = a^j j \overline{e} \).
Passive transformation of basis has form
\[
\overline{e} = A^j j \overline{e}
\]
1-form has form \(\overline{b} = d^j j b \), where \(d^j \) is basis dual to basis \(\overline{e} \). In this case
\[
\langle \overline{e}, \overline{b} \rangle = a^i \langle i \overline{e}, d^j \rangle j b
\]
We cannot state that \(d^j \in D \). Otherwise we get
\[
\langle i \overline{e}, d^j \rangle = i \overline{e} d^j = i \delta^j
\]
It would follow from this that there exist zero divisor in division ring \(D \).
Linear map \(\overline{A} : D \to D \) over field \(F \) corresponds to \(D \)-valued 1-form \(b \). Therefore
\[
a^i A^j = B^j_{ik} a^i b^k
\]
Since \(a^i \) are arbitrary, then
\[
A^j = B^j_{ik} b^k
\]
2.3. Twin Representations of Division Ring

Theorem 2.3.1. We can introduce structure of \(\star D \)-vector space in any \(D^\star \)-vector space defining \(\star D \)-product of vector over scalar using equation

\[
\varpi m = \varpi^\star \delta m
\]

Proof. We verify directly that the map

\[
f : D \to \varpi^*
\]

defined by equation

\[
f(m) = \varpi m
\]

defines \(\star T \)-representation of the ring \(D \). \(\square \)

We can formulate the theorem 2.3.1 by other way.

Theorem 2.3.2. Suppose we defined an effective \(T^\star \)-representation \(f \) of ring \(D \) on the Abelian group \(\varpi \). Then we can uniquely define an effective \(\star T \)-representation \(h \) of ring \(D \) on the Abelian group \(\varpi \) such that diagram

\[
\begin{array}{ccc}
\varpi & \xrightarrow{h(a)} & \varpi \\
\downarrow f(b) & & \downarrow f(b) \\
\varpi & \xrightarrow{h(a)} & \varpi
\end{array}
\]

is commutative for any \(a, b \in D \). \(\square \)

We call representations \(f \) and \(h \) **twin representations of the division ring** \(D \).

Theorem 2.3.3. In vector space \(\varpi \) over division ring \(D \) we can define \(D^\star \)-product and \(\star D \)-product of vector over scalar. According to theorem 2.3.2 these operations satisfy equation

\[
(2.3.1) \quad (a \varpi b) = a(\varpi b)
\]

Equation (2.3.1) represents **associative law for twin representations**. This allows us writing of such expressions without using of brackets.

Proof. In section 2.1 there is definition of \(\star D \)-product of \(D^\star \)-linear map \(\overline{A} \) over scalar. According to theorem 2.3.1 \(\star T \)-representation of division ring \(D \) in \(\star D \)-vector space \(\mathcal{L}(D^\star; \varpi; \varpi) \) can be carried into \(D^\star \)-vector space \(\varpi \) according to rule

\[
\varpi^\star \overline{A} m = (\varpi^\star \overline{A})^\star [\delta m] = (\varpi^\star \overline{A}) m
\]

We can also define \(D^\star \)-product of \(D^\star \)-linear map \(\overline{A} \) over scalar. However in general we cannot carry this \(T^\star \)-representation of division ring \(D \) in \(\star D \)-vector space \(\mathcal{L}(D^\star; \varpi; \varpi) \) into \(D^\star \)-vector space \(\varpi \). Indeed, in case of \(D^\star \)-product we get

\[
\varpi^\star (m \overline{A}) = \varpi^\star f^\star (m \overline{A}) = \varpi^\star (mA)^\star \overline{v}
\]

Since product in division ring is noncommutative, we cannot express this expression as product of \(\varpi^\star \overline{A} \) over \(m \).
The analogy of the vector space over field goes so far that we can assume an existence of the concept of basis which serves for $D*$-product and $\ast D$-product of vector over skalar.

Theorem 2.3.4. In vector space D^\ast_\ast-basis manifold and $\ast D$-basis manifold are different

$$B(\nabla, D^\ast_\ast) \neq B(\nabla, \ast D)$$

Proof. To prove this theorem we use the standard representation of a matrix. Without loss of generality we prove theorem in coordinate vector space D^n.

Let $\mathbf{f} = (\mathbf{f}_i, i, j, i \in i, |i| = n)$ be the set of vectors of vector space D^n. \mathbf{f} is evidently D^\ast_\ast-basis and $\ast D$-basis. For arbitrary set of vectors $(\mathbf{f}_i, i \in i, |i| = n)$ D^\ast_\ast-coordinate matrix

$$f = \begin{pmatrix}
 f_1^1 & \ldots & f_1^n \\
 \ldots & \ldots & \ldots \\
 f_n^1 & \ldots & f_n^n
\end{pmatrix} \quad (2.3.2)$$

relative to basis \mathbf{f} coincide with $\ast D$-coordinate matrix relative to basis \mathbf{f}.

Let the set of vectors $(\mathbf{f}_i, i \in i, |i| = n)$ be D^\ast_\ast-basis. According to theorem [3]-4.9.3 matrix (2.3.2) is \ast_\ast-nonsingular matrix.

Let the set of vectors $(\mathbf{f}_i, i \in i, |i| = n)$ be $\ast D$-basis. According to theorem [3]-4.9.3 matrix (2.3.2) is \ast_\ast-nonsingular matrix.

Therefore, if the set of vectors $(\mathbf{f}_i, i \in i, |i| = n)$ is D^\ast_\ast-basis and $\ast D$-basis their coordinate matrix (2.3.2) is \ast_\ast-nonsingular and \ast_\ast-nonsingular matrix. The statement follows from theorem [3]-4.8.9. \hfill \Box

From theorem 2.3.4 it follows that in vector space ∇ there exists D^\ast_\ast-basis \mathbf{f} which is not $\ast D$-basis.

2.4. D-Vector Space

For many problems we may confine ourselves to considering of $D*$-vector space or $\ast D$-vector space. However there are problems where we forced to reject simple model and consider both structures of vector space at the same time. Such space we call D-vector space.

Assume D^\ast_\ast-basis \mathbf{p} and $\ast D$-basis \mathbf{p}_\ast in D-vector space ∇. Vector \mathbf{p} of D^\ast_\ast-basis \mathbf{p} has expansion

$$\mathbf{p} = \mathbf{p}_j i p_{12} \quad \mathbf{p} = \mathbf{p}_\ast \ast i p_{12} \quad (2.4.1)$$

relative to $\ast D$-basis \mathbf{p}_\ast. Vector \mathbf{p}_j of $\ast D$-basis \mathbf{p}_\ast has expansion

$$\mathbf{p}_j = p_{21}^k i \mathbf{p} \quad \mathbf{p}_j = p_{21}^\ast \ast i \mathbf{p} \quad (2.4.2)$$

relative to D^\ast_\ast-basis \mathbf{p}.

It is easy to see from design that p_{12} is coordinate matrix of D^\ast_\ast-basis \mathbf{p} relative to $\ast D$-basis \mathbf{p}_\ast. \ast-rows of matrix p_{12} are D^\ast_\ast-linearly independent.

In the same way, p_{21} is coordinate matrix of $\ast D$-basis \mathbf{p}_\ast relative to D^\ast_\ast-basis \mathbf{p}. \ast-rows of matrix p_{21} are $\ast D$-linearly independent.

From equations (2.4.1) and (2.4.2) it follows

$$\mathbf{p} = \mathbf{p}_j i p_{12} = p_{21}^k i \mathbf{p} \quad \mathbf{p} = \mathbf{p}_\ast \ast i p_{12} = (p_{21}^\ast \ast \mathbf{p})_\ast \ast i p_{12} \quad (2.4.3)$$

From equation (2.4.3) we see that order of brackets is important.
Though matrices p_{21} and p_{12} are not inter inverse, we see that equation (2.4.3) represents identical transformation of D-vector space. It is possible to write this transformation as

$$\begin{align*}
\overline{\mathbf{p}}_j &= p_{21}^i \overline{\mathbf{p}} = p_{21}^i (\overline{\mathbf{p}}_k \overline{\mathbf{p}}_{12}) \\
\overline{\mathbf{p}}_j &= p_{21}^{**} \overline{\mathbf{p}} = p_{21}^{**} (\overline{\mathbf{p}}_* \overline{\mathbf{p}}_{12})
\end{align*}$$

(2.4.4)

From comparison of equations (2.4.3) and (2.4.4) it follows that change of order of brackets changes order of summation. These equations express the symmetry in choice of D^{*}-basis $\overline{\mathbf{p}}$ and D^{*}-basis $\overline{\mathbf{p}}_{*}$.

Vector $\mathbf{r} \in \mathbf{V}$ has expansion

$$\mathbf{r} = r^i \overline{\mathbf{p}}_j = \overline{\mathbf{p}}_j r^2$$

(2.4.5)

Let us substitute (2.4.1) into (2.4.5)

$$\mathbf{r} = r^i \overline{\mathbf{p}}_j (\overline{\mathbf{p}}_{12}) = \overline{\mathbf{p}}_* \mathbf{r}$$

(2.4.6)

Let us substitute (2.4.5) into (2.4.3)

$$\mathbf{r} = r^i \overline{\mathbf{p}}_j (\overline{\mathbf{p}}_{12}) = \overline{\mathbf{p}}_{12} \overline{\mathbf{p}}_{12} r^* \overline{\mathbf{p}}_*$$

(2.4.7)

Definition 2.4.1. Coordinates of vector \mathbf{r} relative D^{*}-basis $\overline{\mathbf{p}}_{*}$ are called D^{**}-component of coordinates of vector \mathbf{r}. Coordinates of vector \mathbf{r} relative D^{*}-basis $\overline{\mathbf{p}}$ are called D^{*}-component of coordinates of vector \mathbf{r}.

Remark 2.4.2. To avoid the overuse of notation, we follow the rule below. If the product contains a D^{**}-component of coordinates of vector or a D^{*}-component of coordinates of vector, or we use corresponding indexes, we may skip symbol *, because it is clear from notation which components of vector we use. We extend similar convention for case of D^{*}-basis $\overline{\mathbf{p}}_{*}$ and D^{**}-basis $\overline{\mathbf{p}}$. We do not use convention in case when brief notation is ambiguous.

We see in map (2.4.7) that we use transformation of D^{*}-basis. Expansion of vector relative D^{*}-basis is the same before and after transformation. We defined active and passive transformations of basis manifold of D^{*}-vector space in section [3-5.2]. By analogy we assume that transformation (2.4.3) is passive transformation.
CHAPTER 3

Linear Map of Division Ring

3.1. Additive Map of Ring

Definition 3.1.1. Homomorphism

\[f : R_1 \rightarrow R_2 \]

of additive group of ring \(R_1 \) into additive group of ring \(R_2 \) is called additive map of ring \(R_1 \) into ring \(R_2 \).

According to definition of homomorphism of additive group, additive map \(f \) of ring \(R_1 \) into ring \(R_2 \) holds

\[f(a + b) = f(a) + f(b) \]

We do not expect that additive map of ring holds product.

Theorem 3.1.2. Let us consider ring \(R_1 \) and ring \(R_2 \). Let maps

\[f : R_1 \rightarrow R_2 \]
\[g : R_1 \rightarrow R_2 \]

be additive maps. Then map \(f + g \) is additive.

Proof. Statement of theorem follows from chain of equations

\[(f + g)(x + y) = f(x + y) + g(x + y) = f(x) + f(y) + g(x) + g(y)\]
\[= (f + g)(x) + (f + g)(y)\]

\(\square\)

Theorem 3.1.3. Let us consider ring \(R_1 \) and ring \(R_2 \). Let map

\[f : R_1 \rightarrow R_2 \]

be additive map. Then maps \(af, fb, a, b \in R_2 \) are additive.

Proof. Statement of theorem follows from chain of equations

\[(af)(x + y) = a(f(x + y)) = a(f(x) + f(y)) = af(x) + af(y)\]
\[= (af)(x) + (af)(y)\]
\[(fb)(x + y) = (f(x + y)b = (f(x) + f(y))b = f(x)b + f(y)b\]
\[= (fb)(x) + (fb)(y)\]

\(\square\)
Theorem 3.1.4. We may represent additive map of ring R_1 into associative ring R_2 as
\[f(x) = (s)0f G(s)(x) (s)1f \]
where $G(s)$ is set of additive maps of ring R_1 into ring R_2.\(^{3.1}\)

Proof. The statement of theorem follows from theorems 3.1.2 and 3.1.3. □

Definition 3.1.5. Let commutative ring P be subring of center $Z(R)$ of ring R. Map
\[f : R \rightarrow R \]
of ring R is called multiplicative over commutative ring P, if
\[f(px) = pf(x) \]
for any $p \in P$. □

Definition 3.1.6. Let commutative ring F be subring of center $Z(D)$ of ring R. Additive, multiplicative over commutative ring F, map
\[f : R \rightarrow R \]
is called linear map over commutative ring F. □

Definition 3.1.7. Let commutative ring P be subring of center $Z(R)$ of ring R. Map
\[f : R \rightarrow R \]
of ring R is called projective over commutative ring P, if
\[f(px) = f(x) \]
for any $p \in P$. Set
\[Px = \{ px : p \in P, x \in R \} \]
is called direction x over commutative ring P.\(^{3.2}\)

Example 3.1.8. If map f of ring R is multiplicative over commutative ring P, then map
\[g(x) = x^{-1}f(x) \]
is projective over commutative ring P. □

Definition 3.1.9. Denote $A(R_1; R_2)$ set of additive maps
\[f : R_1 \rightarrow R_2 \]
of ring R_1 into ring R_2. □

Theorem 3.1.10. Let map
\[f : D \rightarrow D \]
is additive map of ring R. Then
\[f(nx) = nf(x) \]
for any integer n.

\(^{3.1}\)Here and in the following text we assume sum over index that is written in brackets and used in product few times. Equation (3.1.2) is recursive definition and there is hope that it is possible to simplify it.

\(^{3.2}\)Direction over commutative ring P is subset of ring R. However we denote direction Px by element $x \in R$ when this does not lead to ambiguity. We tell about direction over commutative ring $Z(R)$ when we do not show commutative ring P explicitly.
3.2. Additive Map of Division Ring

Theorem 3.2.1. Let map \(f : D_1 \to D_2 \) is additive map of division ring \(D_1 \) into division ring \(D_2 \). Then
\[
 f(ax) = af(x)
\]
for any rational \(a \).

Proof. Let \(a = \frac{p}{q} \). Assume \(y = \frac{1}{q}x \). Then
\[
 f(x) = f(qy) = qf(y) = qf \left(\frac{1}{q}x \right)
\]
From equation (3.2.1) it follows
\[
 \frac{1}{q}f(x) = f \left(\frac{1}{q}x \right)
\]
From equation (3.2.2) it follows
\[
 f \left(\frac{p}{q}x \right) = pf \left(\frac{1}{q}x \right) = \frac{p}{q}f(x)
\]

Theorem 3.2.2. Additive map
\[
 f : D_1 \to D_2
\]
of division ring \(D_1 \) into division ring \(D_2 \) is multiplicative over field of rational numbers.

Proof. Corollary of theorem 3.2.1.

We cannot extend the statement of theorem 3.2.2 for arbitrary subfield of center \(Z(D) \) of division ring \(D \).

Theorem 3.2.3. Let complex field \(C \) be subfield of the center of division ring \(D \). There exists additive map
\[
 f : D_1 \to D_2
\]
of division ring \(D_1 \) into division ring \(D_2 \) which is not multiplicative over field of complex numbers.
Proof. To prove the theorem it is enough to consider the complex field \(\mathbb{C} \) because \(\mathbb{C} = \mathbb{Z}(\mathbb{C}) \). The function \(z \mapsto \overline{z} \) is additive. However the equation

\[
\overline{az} = a\overline{z}
\]

is not true. □

The theory of complex vector spaces so well understood that the proof of theorem 3.2.3 easily leads to the following design. Let for some division ring \(D \) fields \(F_1, F_2 \) be such that \(F_1 \neq F_2, F_1 \subset F_2 \subset Z(D) \). In this case there exists map \(I \) of division ring \(D \) that is linear over field \(F_1 \), but not linear over field \(F_2 \). It is easy to see that this map is additive.

Let \(D_1, D_2 \) be division rings of characteristic 0. According to theorem 3.1.4 additive map

\[
(3.2.3) \quad f : D_1 \to D_2
\]

has form \((3.1.2) \). Let us choose map \(G_{(s)}(x) = G(x) \). Additive map

\[
(3.2.4) \quad f(x) = (s)_0 f G(x) (s)_1 f
\]

is called additive map generated by map \(G \). Map \(G \) is called generator of additive map.

Theorem 3.2.4. Let \(F, F \subset Z(D_1), F \subset Z(D_2) \), be field. Additive map \((3.2.4) \) generated by \(F \)-linear map \(G \) is multiplicative over field \(F \).

Proof. Immediate corollary of representation \((3.2.4) \) of additive map. For any \(a \in F \)

\[
f(ax) = (s)_0 f G(ax) (s)_1 f = (s)_0 f aG(x) (s)_1 f = a (s)_0 f G(x) (s)_1 f = af(x)
\]

□

Theorem 3.2.5. Let \(D_1, D_2 \) be division rings of characteristic 0. Let \(F, F \subset Z(D_1), F \subset Z(D_2) \), be field. Let \(G \) be \(F \)-linear map. Let \(\mathcal{B} \) be basis of division ring \(D_2 \) over field \(F \). Standard \(F \)-representation of additive map \((3.2.4) \) has form

\[
(3.2.5) \quad f(x) = f_G^{ij} j\mathcal{B} G(x) j\mathcal{B}
\]

Expression \(f_G^{ij} \) in equation \((3.2.5) \) is called standard \(F \)-component of additive map \(f \).

\(^{3.3} \)For instance, in case of complex numbers map \(I \) is map of complex conjugation. The set of maps \(I \) depends on the division ring. We consider these operators when we explorer map of division ring when structure of operation changes. For instance, the map of complex numbers \(z \mapsto \overline{z} \).

\(^{3.4} \)Representation of additive map using components of additive map is ambiguous. We can increase or decrease number of summands using algebraic operations. Since dimension of division ring \(D \) over field \(F \) is finite, standard representation of additive map guarantees finiteness of set of items in the representation of map.
PROOF. Components of additive map \(f \) have expansion
\[
(s)p\hat{f} = (s)p\hat{f}^i \xi \eta
\]
relative to bais \(\eta \). If we substitute (3.2.6) into (3.2.4), we get
\[
f(x) = (s)0\hat{f}^i \xi \eta \quad (s)_1\hat{f}^j \eta
\]
If we substitute expression
\[
f_{ij}^i = (s)_0\hat{f}^i (s)_1\hat{f}^j
\]
to equation (3.2.7) we get equation (3.2.5).
\[\square\]

Theorem 3.2.6. Let \(D_1, D_2 \) be division rings of characteristic 0. Let \(F, F \subset Z(D_1), F \subset Z(D_2) \), be field Let \(G \) be \(F \)-linear map. Let \(\eta \) be basis of division ring \(D_1 \) over field \(F \). Let \(kl(B) \) be structural constants of division ring \(D_2 \). Then it is possible to represent additive map (3.2.4) generated by \(F \)-linear map \(G \) as
\[
f(a) = a_i \hat{G}^i \hat{\xi} \quad \hat{G}^j = (s)_k \hat{G}^i \hat{G}^j \eta_k \eta_j
\]

Proof. According to theorem 3.2.4 additive map of division ring \(D \) is linear over field \(F \). Let us consider map
\[
f(a) = a_i \hat{G}^i \hat{\xi} \quad \hat{G}^j = (s)_k \hat{G}^i \hat{G}^j \eta_k \eta_j
\]
and map
\[
\hat{G} : D_1 \rightarrow D_2 \quad a = a_i \hat{\xi} \rightarrow G(a) = a_i \hat{G}^j \eta_j
\]
\[
x_i \in F \rightarrow \hat{G}^j \eta_j \in F
\]
According to theorem \([3]-4.4.3\) additive map \(f(a) \) relative to bases \(\xi \) and \(\eta \) has form (3.2.8). From equations (3.2.5) and (3.2.10) it follows
\[
f(a) = a_i \hat{G}^i \hat{\xi} \quad \hat{G}^j = (s)_k \hat{G}^i \hat{G}^j \eta_k \eta_j
\]
From equations (3.2.8) and (3.2.11) it follows
\[
a_i \hat{G}^i \hat{\xi} = a_i \hat{G}^i \hat{G}^j \eta_j \quad a_i \hat{G}^i \hat{G}^j \eta_j = a_i \hat{G}^i \hat{G}^j \eta_j
\]
Since vectors \(\hat{\xi} \) and \(\hat{\eta} \) are linear independent over field \(F \) and values \(a_k \) are arbitrary, then equation (3.2.9) follows from equation (3.2.12).
\[\square\]

Theorem 3.2.7. Let field \(F \) be subring of center \(Z(D) \) of division ring \(D \) of characteristic 0. \(F \)-linear map generating additive map is nonsingular map.

Proof. According to isomorphism theorem we can represent additive map (3.2.13) as composition
\[
f(x) = f_1(x + H)
\]
of canonical map \(x \rightarrow x + H \) and isomorphism \(f_1 \). \(H \) is ideal of additive group of division ring \(D \). Let ideal \(H \) be non-trivial. Then there exist \(x_1 \neq x_2 \), \(f(x_1) = f(x_2) \). Therefore, image under map \(f \) contains cyclic subgroup. It conflict with statement that characteristic of division ring \(D \) equal 0. Therefore, either \(H = \{0\} \) and canonical map is nonsingular \(F \)-linear map or \(H = D \) and canonical map is singular map.
\[\square\]

Definition 3.2.8. Additive map that is linear over center of division ring is called linear map of division ring.
Theorem 3.2.9. Let D be division ring of characteristic 0. Linear map
\[(3.2.13)\]
$f : D \to D$
has form
\[(3.2.14)\]
f(x) = (s)_0 f x (s)_1 f$
Expression $(s)_p f$, $p = 0, 1$, in equation (3.2.14) is called component of linear map f.

Theorem 3.2.10. Let D be division ring of characteristic 0. Let \mathcal{E} be the basis of division ring D over center $Z(D)$. Standard representation of linear map (3.2.14) of division ring has form\(^{3.5}\)
\[(3.2.15)\]
f(x) = f^{ij} \ e x j \ e
Expression f^{ij} in equation (3.2.15) is called standard component of linear map f.

Theorem 3.2.11. Let D be division ring of characteristic 0. Let \mathcal{E} be basis of division ring D over field $Z(D)$. Then it is possible to represent linear map (3.2.13) as
\[(3.2.16)\]
f(a) = a^i \ f^j \ e_k \ e
\[a = a^i \ e_i \ e \in Z(D) \quad k f^i \in Z(D) \quad a \in D \]
\[(3.2.17)\]
f^{ij} = f^{kr} \ k_i B^p \ p_i B^j

Theorem 3.2.12. Consider matrix
\[(3.2.18)\]
$B = \left(B_i^j \delta^k_i \delta^r_j \right)$
whose rows and columns are indexed by \cdot^i_j and \cdot^{kr}, respectively. If $\det B \neq 0$, then, for given coordinates of linear transformation $i f^j$, the system of linear equations (3.2.17) with standard components of this transformation f^{kr} has the unique solution. If $\det B = 0$, then the equation
\[(3.2.19)\]
$\text{rank} \left(B_i^j \delta^k_l \delta^r_j \right) = \text{rank} B$
is the condition for the existence of solutions of the system of linear equations (3.2.17) In such case the system of linear equations (3.2.17) has infinitely many solutions and there exists linear dependence between values $i f^j$.

Proof. Equation (3.2.14) is special case of equation (3.2.4) when $G(x) = x$. Theorem 3.2.10 is special case of theorem 3.2.5 when $G(x) = x$. Theorem 3.2.11 is special case of theorem 3.2.6 when $G(x) = x$. The statement of the theorem 3.2.12 is corollary of the theory of linear equations over field. \(\square\)

Theorem 3.2.13. Standard components of the identity mapping have the form
\[(3.2.20)\]
f^{kr} = \delta^0_i \delta^0_j

\(^{3.5}\)Representation of linear map of division ring using components of linear map is ambiguous. We can increase or decrease number of summands using algebraic operations. Since dimension of division ring D over field $Z(D)$ is finite, standard representation of linear map guarantees finiteness of set of items in the representation of map.
PROOF. The equation (3.2.20) is corollary of the equation
\[x = 0 \overline{e} x 0 \overline{e} \]
Let us show that the standard components (3.2.20) of a linear transformation satisfy to the equation
\[i \delta^j = f^{kr} k_i B^p p_r B^j \]
which follows from the equation (3.2.17) if \(f = \delta \). From equations (3.2.20), (3.2.21), it follows that
\[i \delta^j = 0_i B^p p_0 B^j \]
The equation (3.2.22) is true, because, from equations
\[j \overline{e} 0 \overline{e} = 0 \overline{e} j \overline{e} = j \overline{e} \]
it follows that
\[0_r B^j = r \delta^j \quad r_0 B^j = r \delta^j \]
If \(\det B \neq 0 \), then the solution (3.2.20) is unique. If \(\det B = 0 \), then the system of linear equations (3.2.21) has infinitely many solutions. However, we are looking for at least one solution. □

Theorem 3.2.14. If \(\det B \neq 0 \), then standard components of the zero mapping \(z : A \to A \quad z(x) = 0 \) are defined uniquely and have form \(z^i_j = 0 \). If \(\det B = 0 \), then the set of standard components of the zero mapping forms a vector space.

Proof. The theorem is true because standard components \(z^i_j \) are solution of homogeneous system of linear equations
\[0 = z^{kr} k_i B^p p_r B^j \]
\[□ \]

Remark 3.2.15. Consider equation
\[a^{kr} k \overline{e} x r \overline{e} = b^{kr} k \overline{e} x r \overline{e} \]
From the theorem 3.2.14, it follows that only when condition \(\det B \neq 0 \) is true, from the equation (3.2.23), it follows that
\[a^{kr} = b^{kr} \]
Otherwise, we must assume equality
\[a^{kr} = b^{kr} + z^{kr} \]
Despite this, in case \(\det B = 0 \), we also use standard representation because in general it is very hard to show the set of linear independent vectors. If we want to define operation over linear mappings in standard representation, then as well as in the case of the theorem 3.2.13 we choose one element from the set of possible representations. □

Theorem 3.2.16. Let field \(F \) be subring of center \(Z(D) \) of division ring \(D \) of characteristic 0. Linear map of division ring is multiplicative over field \(F \).

Proof. Immediate corollary of definition 3.2.8. □
Theorem 3.2.17. Expression
\[f^{kr} = f^{ij} q_k B^p p_j B^r \]
is tensor over field \(F \)
\[i f'^j = i A^k \ k f'^l \ l A^{-1} j \]

Proof. \(D \)-linear map has form (3.2.16) relative to basis \(\mathcal{e} \). Let \(\mathcal{e}' \) be another basis. Let
\[i e' = i A^j \ j e \]
be transformation mapping basis \(\mathcal{e} \) to basis \(\mathcal{e}' \). Since additive map \(f \) is the same, then
\[f(x) = x^k \ k f'^l \ l A^{-1} \]
Let us substitute [3]-8.2.8), (3.2.27) into equation (3.2.28)
\[f(x) = x^k \ k f'^l \ l A^{-1} j e \]
Because vectors \(j e \) are linear independent and components of vector \(x^i \) are arbitrary, the equation (3.2.26) follows from equation (3.2.29). Therefore, expression \(k f^r \) is tensor over field \(F \). \(\square \)

Definition 3.2.18. The set
\[\ker f = \{ x \in D_1 : f(x) = 0 \} \]
is called kernel of additive map
\[f : D_1 \to D_2 \]
of division ring \(D_1 \) into division ring \(D_2 \). \(\square \)

Theorem 3.2.19. Kernel of additive map
\[f : D_1 \to D_2 \]
is subgroup of additive group of division ring \(D_1 \).

Proof. Let \(a, b \in \ker f \). Then
\[f(a) = 0 \]
\[f(b) = 0 \]
\[f(a + b) = f(a) + f(b) = 0 \]
Therefore, \(a + b \in \ker f \). \(\square \)

Definition 3.2.20. The additive map
\[f : D_1 \to D_2 \]
of division ring \(D_1 \) into division ring \(D_2 \) is called singular, when
\[\ker f \neq \{0\} \]
\(\square \)
Theorem 3.2.21. Let D be division ring of characteristic 0. Let \mathcal{F} be basis of division ring D over center $Z(D)$ of division ring D. Let

\begin{align*}
(3.2.30) \quad & f : D \to D \quad f(x) = (s)_{0}f x (s)_{1}f \\
(3.2.31) \quad & g : D \to D \quad g(x) = (t)_{0}g x (t)_{1}g \\
(3.2.32) \quad & f : D \to D \quad f(x) = (s)_{0}f x (s)_{1}f \\
(3.2.33) \quad & g : D \to D \quad g(x) = (t)_{0}g x (t)_{1}g
\end{align*}

be linear maps of division ring D. Map

\begin{align*}
(3.2.34) \quad & h(x) = g f(x) = g(f(x)) \\
(3.2.35) \quad & h(x) = (t)_{0}h x (t)_{1}h \\
(3.2.36) \quad & h = h_{pr} p_{r} x r_{r}
\end{align*}

where

\begin{align*}
(3.2.37) \quad & (t)_{0}h = (t)_{0}g (s)_{0}f \\
(3.2.38) \quad & (t)_{1}h = (s)_{1}f (t)_{1}g \\
(3.2.39) \quad & h_{pr} = g^{ij} f^{kl} p_{ij} B^{p} r_{ij} B^{r}
\end{align*}

Proof. Map (3.2.34) is additive because

$h(x + y) = g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = h(x) + h(y)$

Map (3.2.34) is multiplicative over $Z(D)$ because

$h(ax) = g(f(ax)) = g(a f(x)) = ah(x)$

If we substitute (3.2.30) and (3.2.32) into (3.2.34), we get

\begin{align*}
(3.2.40) \quad & h(x) = (t)_{0}g f(x) (t)_{1}g = (t)_{0}g (s)_{0}f x (t)_{1}f (t)_{1}g
\end{align*}

Comparing (3.2.40) and (3.2.35), we get (3.2.37), (3.2.38).

If we substitute (3.2.31) and (3.2.33) into (3.2.34), we get

\begin{align*}
(3.2.41) \quad & h(x) = g^{ij} f^{kl} p_{ij} x r_{ij} B^{r} p_{ij} B^{p} x r_{ij} B^{r}
\end{align*}

Comparing (3.2.41) and (3.2.36), we get (3.2.39). □

3.3. Polylinear Map of Division Ring

Definition 3.3.1. Let $R_{1}, ..., R_{n}$ be rings and S be module. We call map

\begin{align*}
(3.3.1) \quad & f : R_{1} \times ... \times R_{n} \to S
\end{align*}

polyadditive map of rings $R_{1}, ..., R_{n}$ into module S, if

\begin{align*}
& f(p_{1}, ..., p_{i} + q_{i}, ..., p_{n}) = f(p_{1}, ..., p_{i}, ..., p_{n}) + f(p_{1}, ..., q_{i}, ..., p_{n})
\end{align*}

for any $1 \leq i \leq n$ and for any $p_{i}, q_{i} \in R_{i}$. Let us denote $\mathcal{A}(R_{1}, ..., R_{n}; S)$ set of polyadditive maps of rings $R_{1}, ..., R_{n}$ into module S. □
Theorem 3.3.2. Let $R_1, ..., R_n, P$ be rings of characteristic 0. Let S be module over ring P. Let

$$f : R_1 \times ... \times R_n \to S$$

be polyadditive map. There exists commutative ring F which is for any i is subring of center of ring R_i and such that for any i and $b \in F$

$$f(a_1, ..., b a_i, ..., a_n) = b f(a_1, ..., a_i, ..., a_n)$$

Proof. For given $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$ map $f(a_1, ..., a_n)$ is additive by a_i. According to theorem 3.1.10, we can select ring of integers as ring F. □

Definition 3.3.3. Let $R_1, ..., R_n, P$ be rings of characteristic 0. Let S be module over ring P. Let F be commutative ring which is for any i is subring of center of ring R_i. Map $f : R_1 \times ... \times R_n \to S$ is called polylinear over commutative ring F, if map f is polyadditive, and for any i, $1 \leq i \leq n$, for given $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$ map $f(a_1, ..., a_n)$ is multiplicative by a_i. If ring F is maximum ring such that for any i, $1 \leq i \leq n$, for given $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$ map $f(a_1, ..., a_n)$ is linear by a_i over ring F, then map f is called polylinear map of rings $R_1, ..., R_n$ into module S. Let us denote $L(R_1, ..., R_n; S)$ set of polylinear maps of rings $R_1, ..., R_n$ into module S. □

Theorem 3.3.4. Let D be division ring of characteristic 0. Polylinear map

$$(3.3.2) \quad f : D^n \to D, d = f(d_1, ..., d_n)$$

has form

$$(3.3.3) \quad d = (s)_0 f^n \quad \sigma_s(d_1) \quad (s)_1 f^n \quad \sigma_s(d_n) \quad (s)_n f^n$$

σ_s is a transposition of set of variables $\{d_1, ..., d_n\}$

$$\sigma_s = \begin{pmatrix}
 d_1 & ... & d_n \\
 \sigma_s(d_1) & ... & \sigma_s(d_n)
\end{pmatrix}$$

Proof. We prove statement by induction on n.

When $n = 1$ the statement of theorem is corollary of theorem 3.2.9. In such case we may identify (3.6) $(p = 0, 1)$

$$(s)_p f^1 = (s)_p f$$

Let statement of theorem be true for $n = k - 1$. Then it is possible to represent map $(3.3.2)$ as

![Diagram](image)

3.6 In representation $(3.3.3)$ we will use following rules.
- If range of any index is set consisting of one element, then we will omit corresponding index.
- If $n = 1$, then σ_s is identical transformation. We will not show such transformation in the expression.
3.3. Polylinear Map of Division Ring

\[d = f(d_1, ..., d_k) = g(d_k)(d_1, ..., d_{k-1}) \]

According to statement of induction polyadditive map \(h \) has form

\[d = (t_0)h^{k-1} \sigma_t(d_1) (t_1)h^{k-1} ... \sigma_t(d_{k-1}) (t_k)h^{k-1} \]

According to construction \(h = g(d_k) \). Therefore, expressions \((t_i)h\) are functions of \(d_k \). Since \(g(d_k) \) is additive map of \(d_k \), then only one expression \((t_i)h\) is additive map of \(d_k \), and rest expressions \((t_i)h\) do not depend on \(d_k \).

Without loss of generality, assume \(p = 0 \). According to equation (3.2.14) for given \(t \)

\[(t_0)h^{k-1} = (t_0)g \]

Assume \(s = tr \). Let us define transposition \(\sigma_s \) according to rule

\[\sigma_s = \sigma_{tr} = \begin{pmatrix} d_k & d_1 & ... & d_{k-1} \\ d_k & \sigma_t(d_1) & ... & \sigma_t(d_{k-1}) \end{pmatrix} \]

Suppose

\[(tr)_{q+1}f^k = (t)qh^{k-1} \]

for \(q = 1, ..., k - 1 \).

\[(tr)qf^k = (tr)qg \]

for \(q = 0, 1 \). We proved step of induction. \(\square \)

Definition 3.3.5. Expression \((s)pf^n\) in equation (3.3.3) is called **component of polylinear map** \(f \).

Theorem 3.3.6. Let \(D \) be division ring of characteristic 0. Let \(\overline{v} \) be basis in division ring \(D \) over field \(Z(D) \). **Standard representation of polylinear map of division ring** has form

\[f(d_1, ..., d_n) = (t)j_{i_1}...i_n \overline{v} \sigma_t(d_1) i_1 \overline{v} ... \sigma_t(d_n) i_n \overline{v} \]

Index \(t \) enumerates every possible transpositions \(\sigma_t \) of the set of variables \(\{d_1, ..., d_n\}\). Expression \((t)j_{i_1}...i_n \overline{v} \) in equation (3.3.4) is called **standard component of polylinear map** \(f \).

Proof. Components of polylinear map \(f \) have expansion

\[(s)pf^n = (s)pf^{n} \]

relative to basis \(\overline{v} \). If we substitute (3.3.5) into (3.3.3), we get

\[d = (s)0f^{n_{j_1}} ... (s)nf^{n_{j_n}} \overline{v} \]

Let us consider expression

\[(t)f^{j_0...j_n} = (s)0f^{n_{j_1}} ... (s)nf^{n_{j_n}} \]

The right-hand side is supposed to be the sum of the terms with the index \(s \), for which the transposition \(\sigma_s \) is the same. Each such sum has a unique index \(t \). If we substitute expression (3.3.7) into equation (3.3.6) we get equation (3.3.4). \(\square \)

Theorem 3.3.7. Let \(\overline{v} \) be basis of division ring \(D \) over field \(Z(D) \). Polyadditive map (3.3.2) can be represented as \(D \)-valued form of degree \(n \) over field \(Z(D) \)

\[f(a_1, ..., a_n) = a_1^{i_1} ... a_n^{i_n} i_1 ... i_n \]

\(^{3.7}\)We proved the theorem by analogy with theorem in [2], p. 107, 108
where
\[a_j = a_j^{i_1...i_n} \]
(3.3.9)
and values \(i_1...i_n f \) are coordinates of \(D \)-valued covariant tensor over field \(F \).

Proof. According to theorem 3.3.2, the equation (3.3.8) follows from the chain of equations

\[f(a_1, ..., a_n) = f(a_1^{i_1}, ..., a_n^{i_n}) = a_1^{i_1} ... a_n^{i_n} f(i_1 e, ..., i_n e) \]

Let \(\mathbf{e}' \) be another basis. Let

\[\mathbf{e}' = i A_j^{i_1...i_n} \]
(3.3.10)
be transformation, mapping basis \(\mathbf{e} \) into basis \(\mathbf{e}' \). From equations (3.3.10) and (3.3.9) it follows

\[i_1...i_n f' = f(i_1 e', ..., i_n e') \]
\[= f(i_1 A_j^{i_1...j_n}, ..., i_n A_j^{i_1...j_n}) \]
\[= i_1 A_j^{i_1...j_n} f(j_1 e', ..., j_n e') \]
\[= i_1 A_j^{i_1...j_n} f(j_1 e', ..., j_n e') \]
(3.3.11)
From equation (3.3.11) the tensor law of transformation of coordinates of polylinear map follows. From equation (3.3.11) and theorem [3]-8.2.1 it follows that value of the map \(f(\overline{a_1}, ..., \overline{a_n}) \) does not depend from choice of basis. \(\square \)

Polylinear map (3.3.2) is **symmetric**, if

\[f(d_1, ..., d_n) = f(\sigma(d_1), ..., \sigma(d_n)) \]
for any transposition \(\sigma \) of set \(\{d_1, ..., d_n\} \).

Theorem 3.3.8. If polyadditive map \(f \) is symmetric, then

\[\overline{i_1...i_n f} = \sigma(i_1)...\sigma(i_n) \overline{f} \]
(3.3.12)

Proof. Equation (3.3.12) follows from equation

\[a_1^{i_1} ... a_n^{i_n} f = f(a_1, ..., a_n) \]
\[= f(\sigma(a_1), ..., \sigma(a_n)) \]
\[= a_1^{i_1} ... a_n^{i_n} \sigma(i_1)...\sigma(i_n) f \]
\[\square \]

Polylinear map (3.3.2) is **skew symmetric**, if

\[f(d_1, ..., d_n) = |\sigma| f(\sigma(d_1), ..., \sigma(d_n)) \]
for any transposition \(\sigma \) of set \(\{d_1, ..., d_n\} \). Here

\[|\sigma| = \begin{cases} 1 & \text{transposition } \sigma \text{ even} \\ -1 & \text{transposition } \sigma \text{ odd} \end{cases} \]

Theorem 3.3.9. If polylinear map \(f \) is skew symmetric, then

\[\overline{i_1...i_n f} = |\sigma| \sigma(i_1)...\sigma(i_n) \overline{f} \]
(3.3.13)
3.3. Polylinear Map of Division Ring

Proof. Equation (3.3.13) follows from equation
\[a_1^{i_1} \ldots a_n^{i_n} f = f(a_1, \ldots, a_n) \]
\[= |\sigma| f(\sigma(a_1), \ldots, \sigma(a_n)) \]
\[= a_1^{i_1} \ldots a_n^{i_n} |\sigma| \sigma(i_1) \ldots \sigma(i_n) f \]
\[\square \]

Theorem 3.3.10. The polylinear over field \(F \) map (3.3.2) is polylinear iff
\[f = (t)^{f_{i_0 \ldots i_n}^{i_0 \sigma_t(j_1)} B_{k_1}^{k_{i_1}} B_{l_1}^{l_{i_1}} \ldots i_{n-1} \sigma_t(j_n) B_{k_n}^{k_{i_n}} B_{l_n}^{l_{i_n}} t_n \sigma_t} \]
(3.3.14)
\[f^p = (t)^{f_{i_0 \ldots i_n}^{i_0 \sigma_t(j_1)} B_{k_1}^{k_{i_1}} B_{l_1}^{l_{i_1}} \ldots i_{n-1} \sigma_t(j_n) B_{k_n}^{k_{i_n}} B_{l_n}^{l_{i_n}} B_{p}} \]
(3.3.15)

Proof. In equation (3.3.4), we assume
\[d_i = d_i^{j_i} j_i \]
Then equation (3.3.4) gets form
\[f(d_1, \ldots, d_n) = (t)^{f_{i_0 \ldots i_n}^{i_0 \sigma_t(j_1)} B_{k_1}^{k_{i_1}} B_{l_1}^{l_{i_1}} \ldots i_{n-1} \sigma_t(j_n) B_{k_n}^{k_{i_n}} B_{l_n}^{l_{i_n}} t_n \sigma_t} \]
(3.3.16)
\[= d_1^{i_1} \ldots d_n^{j_n} (t)^{f_{i_0 \ldots i_n}^{i_0 \sigma_t(j_1)} B_{k_1}^{k_{i_1}} B_{l_1}^{l_{i_1}} \ldots i_{n-1} \sigma_t(j_n) B_{k_n}^{k_{i_n}} B_{l_n}^{l_{i_n}} \sigma_t^{(j_1) \ldots (j_n)}} \]
From equation (3.3.8) it follows that
\[f(\bar{a}_1, \ldots, \bar{a}_n) = a_1^{i_1} \ldots a_n^{i_n} \bar{a}_1^{i_1} \ldots \bar{a}_n^{i_n} f^p \]
Equation (3.3.14) follows from comparison of equations (3.3.16) and (3.3.8). Equation (3.3.15) follows from comparison of equations (3.3.16) and (3.3.17). \[\square \]
CHAPTER 4

Linear Map of D-Vector Spaces

4.1. Linear Map of D-Vector Spaces

Definition 4.1.1. Suppose V and W are D-vector spaces. We call map $A : V \rightarrow W$ **additive map of D-vector spaces** if

$$A(p + q) = A(p) + A(q)$$

for any $p, q \in V$. Let us denote $A(D; V; W)$ set of additive maps $A : V \rightarrow W$ of D-vector space V into D-vector space W.

It is evident that $D^{*\ast}$-linear map as well $^{\ast\ast}D$-linear map are additive maps. Set of morphisms of D-vector space is wider then set of morphisms of $D^{*\ast}$-vector space. To consider additive map of vector space, we will follow method used in section [3]-4.4.

Theorem 4.1.2. Let D be division ring of characteristic 0. Let $^{\ast\ast}p$ be $D^{*\ast}$-basis of D-vector space V over division ring D and $v \in V$

$$\bar{v} = v^{\ast\ast}\bar{p}$$

Let $^{\ast\ast}p$ be $D^{*\ast}$-basis of D-vector space W over division ring D. Additive map $A : V \rightarrow W$ relative to $D^{*\ast}$-basis $^{\ast\ast}p$ and $D^{*\ast}$-basis $^{\ast\ast}p$ has form

$$A(\bar{v}) = i A^j(v^j) \bar{p}$$

where $i A^j(v^j)$ additively depends on one variable v^j and does not depends on the rest of coordinates of vector v.

Proof. According to definition 4.1.1

$$A(\bar{v}) = A(v^{\ast\ast}\bar{p}) = A\left(\sum_i v^i \bar{p}^i\right) = \sum_i A(v^i) \bar{p}^i$$

For any given i vector $A(v^i, \bar{p}) \in W$ has only expansion

$$A(v^i, \bar{p}) = i A^j(v^j) \bar{p}^j \quad A(v^i, \bar{p}) = i A(v^i)^{\ast\ast} \bar{p}$$

relative to $D^{*\ast}$-basis $^{\ast\ast}p$. Let us substitute (4.1.3) into (4.1.2). We get (4.1.1).

Definition 4.1.3. Additive map $i A^j : D \rightarrow D$

is called **partial additive map of variable v^j**.
We can write additive map as product of matrices

\[(4.1.4) \quad \mathcal{A}((v)) = (iA^1(v^j) \ldots iA^m(v^j)) \ast \begin{pmatrix} i\overline{r} \\ \vdots \\ m\overline{r} \end{pmatrix}\]

Let us define product of matrices

\[(4.1.5) \quad (v^1 \ldots v^n) \ast \begin{pmatrix} 1A^1 \ldots 1A^m \\ \vdots \\ nA^1 \ldots nA^m \end{pmatrix} = (iA^1(v^j) \ldots iA^m(v^j))\]

where $A = (iA^j)$ is matrix of partial additive maps. Using the equation (4.1.5), we can write the equation (4.1.4) in the form

\[(4.1.6) \quad \mathcal{A}((v)) = (v^1 \ldots v^n) \ast \begin{pmatrix} 1A^1 \ldots 1A^m \\ \vdots \\ nA^1 \ldots nA^m \end{pmatrix} \ast \begin{pmatrix} i\overline{r} \\ \vdots \\ m\overline{r} \end{pmatrix}\]

Definition 4.1.4. Let field P be subring of center $Z(D)$ of division ring D. Map $\mathcal{A} : V \to W$ of D-vector space V into D-vector space W is called **multiplicative over field P**, if

$\mathcal{A}(p\overline{x}) = p\mathcal{A}(\overline{x})$

for any $p \in P$. □

Definition 4.1.5. Let field P be subring of center $Z(D)$ of division ring D. Map $\mathcal{A} : V \to W$ of D-vector space V into D-vector space W is called **projective over field P**, if

$\mathcal{A}(p\overline{x}) = \mathcal{A}(\overline{x})$

for any $p \in P$. Set

$P\overline{x} = \{p\overline{x} : p \in P ; \overline{x} \in V\}$

is called **direction \overline{x} over field P**. □

Definition 4.1.6. Let field F be subring of center $Z(D)$ of division ring D. Additive map $\mathcal{A} : V \to W$ of D-vector space V into D-vector space W that is multiplicative over field F is called **linear map over field F**. □

Definition 4.1.7. Additive map $\mathcal{A} : V \to W$ of D-vector space V into D-vector space W that is linear over center of division ring is called **linear map of D-vector spaces**. Let us denote $\mathcal{L}(D;V;W)$ set of linear maps $\mathcal{A} : V \to W$ of D-vector space V into D-vector space W. □
We can write linear map as product of matrices
\[
\mathbf{A}(\mathbf{v}) = \begin{pmatrix}
1 A_1^1(v^1) & \cdots & 1 A_m^1(v^1) \\
\vdots & \ddots & \vdots \\
1 A_1^n(v^n) & \cdots & 1 A_m^n(v^n)
\end{pmatrix} \ast \begin{pmatrix}
i^1 \\
i^2 \\
\vdots \\
i^m
\end{pmatrix}
\]
where \(A = (i A_i^j(v^i)) \) is matrix of partial linear maps.

Theorem 4.1.8. Let field \(F \) be subring of center \(Z(D) \) of division ring \(D \) of characteristic 0. Linear map of \(D \)-vector space is multiplicative over field \(F \).

Proof. The statement of theorem is corollary of definitions 4.1.6, 4.1.7, because \(a \in F \Rightarrow a \in Z(D) \).

Theorem 4.1.9. Let \(D \) be division ring of characteristic 0. Let \(\mathbf{w} \) be \(D^* \)-basis of \(D \)-vector space \(\mathbf{V} \) over division ring \(D \) and \(\mathbf{v} \in \mathbf{V} \)
\[
\mathbf{v} = v^* \mathbf{v}
\]
Let \(\mathbf{w} \) be \(D^* \)-basis of \(D \)-vector space \(\mathbf{W} \) over division ring \(D \) and \(\mathbf{w} \in \mathbf{W} \)
\[
\mathbf{w} = w^* \mathbf{w}
\]
Linear map
\[
\mathbf{A} : \mathbf{V} \to \mathbf{W} \quad \mathbf{w} = \mathbf{A}(\mathbf{v})
\]
relative to \(D^* \)-basis \(\mathbf{v} \) and \(D^* \)-basis \(\mathbf{w} \) has form
\[
A^j = i A^j(v^i) = i(s)0 A^j \ v^i \ i(s)_1 A^j
\]
Proof. According to theorem 4.1.2 we can write linear map \(\mathbf{A}(\mathbf{v}) \) as (4.1.1). Because for given indexes \(i, j \) partial additive map \(i A^j(v^i) \) is linear with respect to variable \(v^i \), than according to (3.2.14) it is possible to represent expression \(i A^j(v^i) \) as
\[
i A^j(v^i) = i(s)0 A^j \ v^i \ i(s)_1 A^j
\]
where index \(s \) is numbering items. Range of index \(s \) depends on indexes \(i \) and \(j \). Combining equations (4.1.2) and (4.1.10), we get
\[
\mathbf{A}(\mathbf{v}) = i A^j(v^i) \ \mathbf{w} = i(s)0 A^j \ v^i \ i(s)_1 A^j \ \mathbf{w}
\]
In equation (4.1.11), we add also by index \(i \). Equation (4.1.9) follows from comparison of equations (4.1.7) and (4.1.11).

Definition 4.1.10. Expression \(i(s)_1 A^j \) in equation (4.1.11) is called component of linear map \(\mathbf{A} \).

4.1 Coordinate representation of map (4.1.8) depends on choice of basis. Equations change form if, for instance, we choose \(\mathbf{*D} \)-basis \(\mathbf{v} \) in \(D \)-vector space \(\mathbf{w} \).
Theorem 4.1.11. Let \(D \) be division ring of characteristic 0. Let \(\overline{\mathcal{B}} \) be a \(D^{\ast}\)-basis of \(D\)-vector space \(\overline{\mathcal{V}} \), \(\overline{\mathcal{F}} \) be a \(D^{\ast}\)-basis of \(D\)-vector space \(\overline{\mathcal{U}} \), and \(\overline{\mathcal{P}} \) be a \(D^{\ast}\)-basis of \(D\)-vector space \(\overline{\mathcal{W}} \). Suppose diagram of maps

\[
\begin{array}{c}
\overline{\mathcal{V}} \\
\downarrow \overline{A} \\
\overline{\mathcal{U}} \\
\downarrow \overline{B} \\
\overline{\mathcal{W}}
\end{array}
\]

is commutative diagram where linear map \(\overline{A} \) has presentation

\[
(4.1.12) \quad \overline{\pi} = \overline{A}(\overline{\mathcal{V}}) = i \overline{A^i}(v^i) \quad \overline{\rho} = i_{(s)0}A^j \quad v^i \quad i_{(s)1}A^j \quad \overline{\rho}
\]

relative to selected bases and linear map \(\overline{B} \) has presentation

\[
(4.1.13) \quad \overline{w} = \overline{B}(\overline{\mathcal{V}}) = j B^k(v^j) \quad \overline{r} = j_{(t)0}B^k \quad v^j \quad j_{(t)1}B^k \quad \overline{r}
\]

relative to selected bases. Then map \(\overline{C} \) is linear map and has presentation

\[
(4.1.14) \quad \overline{\pi} = \overline{C}(\overline{\mathcal{V}}) = i \overline{C^k}(v^i) \quad \overline{r} = i_{(u)0}C^k \quad v^i \quad i_{(u)1}C^k \quad \overline{r}
\]

relative to selected bases, where

\[
(4.1.15) \quad \begin{align*}
&i_{(u)0}C^k = i_{(s)0}C^k \quad = j B^k(i_{(s)1}A^j) \\
&i_{(u)1}C^k = i_{(s)1}C^k \quad = j_{(t)0}B^k \quad i_{(s)0}A^j \quad j_{(t)1}B^k
\end{align*}
\]

Proof. The map \(\overline{C} \) is additive map because

\[
\begin{align*}
\overline{C}(\overline{\pi} + \overline{r}) &= \overline{B}(\overline{A}(\overline{\pi} + \overline{r})) \\
&= \overline{B}(\overline{A}(\overline{\pi}) + \overline{A}(\overline{r})) \\
&= \overline{B}(\overline{A}(\overline{\pi})) + \overline{B}(\overline{A}(\overline{r})) \\
&= \overline{C}(\overline{\pi}) + \overline{C}(\overline{r})
\end{align*}
\]

The map \(\overline{C} \) is multiplicative over field \(Z(D) \) because for \(a \in Z(D) \)

\[
\overline{C}(\overline{a} \overline{b}) = \overline{B}(\overline{A}(\overline{a} \overline{b})) = \overline{B}(\overline{a} \overline{A}(\overline{b})) = \overline{a} \overline{B}(\overline{A}(\overline{b})) = \overline{a} \overline{C}(\overline{b})
\]

Equation (4.1.14) follows from substituting (4.1.12) into (4.1.13). \(\square \)

Theorem 4.1.12. For linear map \(\overline{A} \) there exists linear map \(\overline{B} \) such that

\[
\begin{align*}
\overline{A}(a \overline{b}) &= \overline{B}(\overline{a}) \\
j_{(s)0}B^j &= i_{(s)0}A^j \quad a \\
j_{(s)1}B^j &= b \quad i_{(s)1}A^j
\end{align*}
\]

Proof. Additivity of map \(\overline{B} \) immediately follows from chain of equations

\[
\begin{align*}
\overline{B}(\overline{x} + \overline{y}) &= \overline{A}(a(\overline{x} + \overline{y}))b = \overline{A}(a \overline{x} + a \overline{y})b = \overline{A}(a \overline{x}b) + \overline{A}(a \overline{y}b) = \overline{B}(\overline{x}) + \overline{B}(\overline{y})
\end{align*}
\]

The map \(\overline{B} \) is multiplicative over field \(Z(D) \) because for \(c \in Z(D) \)

\[
\overline{B}(c \overline{x}) = \overline{A}(ac \overline{x}b) = \overline{A}(ca \overline{x}b) = c \overline{A}(a \overline{x}b) = c \overline{B}(\overline{x})
\]

According to equation (4.1.9)

\[
\begin{align*}
j_{(s)0}B^j \quad v^i \quad j_{(s)1}B^j &= i_{(s)0}A^j \quad (a v^i b) i_{(s)1}A^j = (i_{(s)0}A^j \quad a) v^i \quad (b \quad i_{(s)1}A^j)
\end{align*}
\]
Theorem 4.1.13. Let D be division ring of characteristic 0. Let
\[\mathcal{A}: \mathcal{V} \to \mathcal{W} \]
additive map of D-vector space \mathcal{V} into D-vector space \mathcal{W}. Then $\mathcal{A}(0) = 0$.

Proof. Corollary of equation
\[\mathcal{A}(x + 0) = \mathcal{A}(x) + \mathcal{A}(0) \]

Definition 4.1.14. The set
\[\ker \mathcal{A} = \{ x \in \mathcal{V} : \mathcal{A}(x) = 0 \} \]
is called kernel of additive map
\[\mathcal{A}: \mathcal{V} \to \mathcal{W} \]
of D-vector space \mathcal{V} into D-vector space \mathcal{W}.

Definition 4.1.15. The additive map
\[\mathcal{A}: \mathcal{V} \to \mathcal{W} \]
of D-vector space \mathcal{V} into D-vector space \mathcal{W} is called singular, if
\[\ker \mathcal{A} = \mathcal{V} \]

4.2. Polyadditive Map of D-Vector Spaces

Definition 4.2.1. Let D be division ring of characteristic 0. Suppose $\mathcal{V}_1, ..., \mathcal{V}_n$,
$\mathcal{W}_1, ..., \mathcal{W}_m$ are D-vector spaces. We call map
\[\mathcal{A}: \mathcal{V}_1 \times ... \times \mathcal{V}_n \to \mathcal{W}_1 \times ... \times \mathcal{W}_m \]
polyadditive map of \times-D-vector space $\mathcal{V}_1 \times ... \times \mathcal{V}_n$ into \times-D-vector space $\mathcal{W}_1 \times ... \times \mathcal{W}_m$, if
\[\mathcal{A}(p_1, ..., p_i + q_i, ..., p_n) = \mathcal{A}(p_1, ..., p_i, ..., p_n) + \mathcal{A}(p_1, ..., q_i, ..., p_n) \]
for any $1 \leq i \leq n$ and for any $p_i, q_i \in \mathcal{V}_i$.

Definition 4.2.2. Let us denote $A(D): \mathcal{V}_1, ..., \mathcal{V}_n; \mathcal{W}_1, ..., \mathcal{W}_m)$ set of polyadditive maps of \times-D-vector space $\mathcal{V}_1 \times ... \times \mathcal{V}_n$ into \times-D-vector space $\mathcal{W}_1 \times ... \times \mathcal{W}_m$.

Theorem 4.2.3. Let D be division ring of characteristic 0. For each $k \in K = [1, n]$
let p_k be $D^*_+\text{-basis}$ in D-vector space \mathcal{V}_k and $v_k \in \mathcal{V}_k$
\[v_k = v_k^* p_k \]
For each $l, 1 \leq l \leq m$, let p_l be $D^*_+\text{-basis}$ in D-vector space \mathcal{W}_l and $\overline{v}_l \in \mathcal{W}_l$
\[\overline{v}_l = w_l^* p_l \]
Polyadditive map (4.2.1)
\[\overline{v}_1 \times ... \times \overline{v}_m = \mathcal{A}(v_1, ..., v_n) \]
relative to basis \(\overrightarrow{a}_1 \times ... \times \overrightarrow{a}_n \) and basis \(\overrightarrow{v}_1 \times ... \times \overrightarrow{v}_m \) has form

(4.2.4) \[
\begin{align*}
\overrightarrow{w}_l^j &= i_1, ..., i_n A^j_l (v_{i_1}^1, ..., v_{i_n}^n) \\
&= i_1, ..., i_n(s) A^j_l A^n_j i_1, ..., i_n(s) A^n_j i_1, ..., i_n(s) A^n_j \---------------------
\end{align*}
\]

Range \(S \) of index \(s \) depends on values of indexes \(i_1, ..., i_n \). \(\sigma_s \) is a transposition of set of variables \(\{ v_{i_1}^1, ..., v_{i_n}^n \} \).

Proof. Since we may consider map \(\overrightarrow{A} \) into \(\times \)-vector space \(\overrightarrow{W}_1 \times ... \times \overrightarrow{W}_m \) componentwise, then we may confine to considering of map

(4.2.5) \[
\overrightarrow{A}_l : \overrightarrow{v}_1 \times ... \times \overrightarrow{v}_n \rightarrow \overrightarrow{W}_l \quad \overrightarrow{w}_l = \overrightarrow{A}_l(\overrightarrow{v}_1, ..., \overrightarrow{v}_n)
\]

We prove statement by induction on \(n \).

When \(n = 1 \) the statement of theorem is statement of theorem 4.1.9. In such case we may identify \((p = 0, 1) \)

\[
i(s) p A^{i_j} = i(s) p A^j
\]

Let statement of theorem be true for \(n = k - 1 \). Then it is possible to represent map (4.2.5) as

\[
\begin{align*}
\overrightarrow{v}_1 \times ... \times \overrightarrow{v}_k & \overset{\overrightarrow{A}_l}{\longrightarrow} \overrightarrow{W}_l \\
& \downarrow \overrightarrow{C}_l(\overrightarrow{v}_k) \\
\overrightarrow{v}_1 \times ... \times \overrightarrow{v}_{k-1} & \overset{\overrightarrow{B}_l}{\longrightarrow} \overrightarrow{B}_l
\end{align*}
\]

\[
\overrightarrow{w}_l = \overrightarrow{A}_l(\overrightarrow{v}_1, ..., \overrightarrow{v}_k) = \overrightarrow{C}_l(\overrightarrow{v}_k)(\overrightarrow{v}_1, ..., \overrightarrow{v}_{k-1})
\]

According to statement of induction polyadditive map \(\overrightarrow{B}_l \) has form

\[
\overrightarrow{w}_l^j = i_1, ..., i_{k-1},(t) B^{(k-1)\overrightarrow{w}_l^j} \sigma_t(v_{i_1}^1) ... \sigma_t(v_{i_{k-1}}^{(k-1)\overrightarrow{w}_l^j} i_1, ..., i_{k-1},(t) B^{(k-1)\overrightarrow{w}_l^j} i_1, ..., i_{k-1},(t) B^{(k-1)\overrightarrow{w}_l^j} \]

According to construction \(\overrightarrow{B}_l = \overrightarrow{C}_l(\overrightarrow{v}_k) \). Therefore, expressions \(i_1, ..., i_{k-1},(t) B^{(k-1)\overrightarrow{w}_l^j} \sigma_t(v_{i_1}^1) ... \sigma_t(v_{i_{k-1}}^{(k-1)\overrightarrow{w}_l^j} \) are functions of \(\overrightarrow{v}_k \). Since \(\overrightarrow{C}_l(\overrightarrow{v}_k) \) is additive map of \(\overrightarrow{v}_k \), then only one expression \(i_1, ..., i_{k-1},(t) B^{(k-1)\overrightarrow{w}_l^j} \) is additive map \(\overrightarrow{v}_k \), and rest expressions \(i_1, ..., i_{k-1},(t) B^{(k-1)\overrightarrow{w}_l^j} \) do not depend on \(\overrightarrow{v}_k \).

Without loss of generality, assume \(p = 0 \). According to theorem 4.1.9

\[
i_1, ..., i_{k-1}(t) B^{(k-1)\overrightarrow{w}_l^j} i_1, ..., i_{k-1}(t) B^{(k-1)\overrightarrow{w}_l^j} = i_{k_1} i_1, ..., i_{k-1}(t) B^{(k-1)\overrightarrow{w}_l^j} i_{k_1} i_1, ..., i_{k-1}(t) B^{(k-1)\overrightarrow{w}_l^j} C^{k_1} i_{k_1} i_1, ..., i_{k-1}(t) \]

Assume \(s = tr \). Let us define transposition \(\sigma_s \) according to rule

\[
\sigma_s = \sigma(tr) = \begin{pmatrix} v_{i_1}^1 & \cdots & v_{i_{k-1}}^1 \\
\sigma(v_{i_1}^1) & \cdots & \sigma(v_{i_{k-1}}^1) \end{pmatrix}
\]

\[^4,^3\text{In representation (4.2.4) we will use following rules.}\]

- If range of any index is set consisting of one element, then we will omit corresponding index.
- If \(n = 1 \), then \(\sigma_s \) is identical transformation. We will not show such transformation in the expression.
Suppose
\[i_{k_1} \ldots i_{k_{q-1}} (tr)^{q+1} A_{kj} = i_{k_1} \ldots i_{k_{q-1}} sqB_{(k-1)j} \]
for \(q = 1, \ldots, k - 1 \).
\[i_{k_1} \ldots i_{k_{q-1}} (tr)^{q} A_{kj} = i_{k_1} \ldots i_{k_{q-1}} (tr)qC_{kj} \]
for \(q = 0, 1 \). We proved step of induction. \(\square \)

Definition 4.2.4. Expression \(i_{k_1} \ldots i_{n(s)} p A_{n}^{k_j} \) in equation (4.2.4) is called component of polyadditive map \(A \). \(\square \)
CHAPTER 5

Differentiable Maps

5.1. Topological Division Ring

Definition 5.1.1. Division ring D is called topological division ring\(^5\) if D is topological space and the algebraic operations defined in D are continuous in the topological space D. □

According to definition, for arbitrary elements $a, b \in D$ and for arbitrary neighborhoods W_{a-b} of the element $a-b$, W_{ab} of the element ab there exists neighborhoods W_a of the element a and W_b of the element b such that $W_a - W_b \subset W_{a-b}$, $W_aW_b \subset W_{ab}$. For any $a \neq 0$ and for arbitrary neighborhood $W_{a^{-1}}$ there exists neighborhood W_a of the element a, satisfying the condition $W^{-1}_a \subset W_{a^{-1}}$.

Definition 5.1.2. Absolute value on division ring D\(^2\) is a map $d \in D \rightarrow |d| \in R$ which satisfies the following axioms
\begin{itemize}
 \item $|a| \geq 0$
 \item $|a| = 0$ if, and only if, $a = 0$
 \item $|ab| = |a| \cdot |b|$
 \item $|a + b| \leq |a| + |b|$
\end{itemize}

Division ring D, endowed with the structure defined by a given absolute value on D, is called valued division ring. □

Invariant distance on additive group of division ring D
\[d(a, b) = |a - b| \]
defines topology of metric space, compatible with division ring structure of D.

Definition 5.1.3. Let D be valued division ring. Element $a \in D$ is called limit of a sequence $\{a_n\}$
\[a = \lim_{n \to \infty} a_n \]
if for every $\epsilon \in R$, $\epsilon > 0$ there exists positive integer n_0 depending on ϵ and such, that $|a_n - a| < \epsilon$ for every $n > n_0$. □

Theorem 5.1.4. Let D be valued division ring of characteristic 0 and let $d \in D$. Let $a \in D$ be limit of a sequence $\{a_n\}$. Then
\[\lim_{n \to \infty} (a_n d) = ad \]
\[\lim_{n \to \infty} (d a_n) = da \]

\(^5\)I made definition according to definition from [6], chapter 4
\(^2\)I made definition according to definition from [4], IX, §3.2
Proof. Statement of the theorem is trivial, however I give this proof for completeness sake. Since \(a \in D \) is limit of the sequence \(\{a_n\} \), then according to definition 5.1.3 for given \(\epsilon \in R, \epsilon > 0 \), there exists positive integer \(n_0 \) such, that \(|a_n - a| < \epsilon/d \) for every \(n > n_0 \). According to definition 5.1.2 the statement of theorem follows from inequalities

\[
|a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < \epsilon/d|d| = \epsilon
\]

\[
|da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d|\epsilon/|d| = \epsilon
\]

for any \(n > n_0 \).

Definition 5.1.5. Let \(D \) be valued division ring. The sequence \(\{a_n\}, a_n \in D \) is called fundamental or Cauchy sequence, if for every \(\epsilon \in R, \epsilon > 0 \) there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that \(|a_p - a_q| < \epsilon \) for every \(p, q > n_0 \).

Definition 5.1.6. Valued division ring \(D \) is called complete if any fundamental sequence of elements of division ring \(D \) converges, i.e. has limit in division ring \(D \).

So far everything was good. Ring of characteristic 0 contains ring of integers. Division ring of characteristic 0 contains field of rational numbers. However this does not mean that complete division ring \(D \) of characteristic 0 contains field of real numbers. For instance, absolute value \(|x| = 1 \) determines discrete topology on valued division ring and is not interesting for us, because any fundamental sequence is constant map.

Later on, speaking about valued division ring of characteristic 0, we will assume that homeomorphism of field of rational numbers \(Q \) into division ring \(D \) is defined.

Theorem 5.1.7. Complete division ring \(D \) of characteristic 0 contains as subfield an isomorphic image of the field \(R \) of real numbers. It is customary to identify it with \(R \).

Proof. Let us consider fundamental sequence of rational numbers \(\{p_n\} \). Let \(p' \) be limit of this sequence in division ring \(D \). Let \(p \) be limit of this sequence in field \(R \). Since immersion of field \(Q \) into division ring \(D \) is homeomorphism, then we may identify \(p' \in D \) and \(p \in R \).

Theorem 5.1.8. Let \(D \) be complete division ring of characteristic 0 and let \(d \in D \). Then any real number \(p \in R \) commute with \(d \).

Proof. Let us represent real number \(p \in R \) as fundamental sequence of rational numbers \(\{p_n\} \). Statement of theorem follows from chain of equations

\[
pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp
\]

based on statement of theorem 5.1.4.

Theorem 5.1.9. Let \(D \) be complete division ring of characteristic 0. Then field of real numbers \(R \) is subfield of center \(Z(D) \) of division ring \(D \).

Proof. Corollary of theorem 5.1.8.

Definition 5.1.10. Let \(D \) be complete division ring of characteristic 0. Set of elements \(d \in D, |d| = 1 \) is called unit sphere in division ring \(D \).
Definition 5.1.11. Let D_1 be complete division ring of characteristic 0 with absolute value $|x|_1$. Let D_2 be complete division ring of characteristic 0 with absolute value $|x|_2$. Function

$$f : D_1 \rightarrow D_2$$

is called continuous, if for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$|x' - x|_1 < \delta$$

implies

$$|f(x') - f(x)|_2 < \epsilon$$

□

Theorem 5.1.12. Let D be complete division ring of characteristic 0. Since index s in expansion (3.2.14) of additive map

$$f : D \rightarrow D$$

belongs to finite range, then additive map f is continuous.

Proof. Suppose $x' = x + a$. Then

$$f(x') - f(x) = f(x + a) - f(x) = f(a) = (s)_0 f (a) f (s)_1 f$$

$$|f(x') - f(x)| = |(s)_0 f (a) f (s)_1 f| < |(s)_0 f (s)_1 f| |a|$$

Let us denote $F = |(s)_0 f (s)_1 f|$. Then

$$|f(x') - f(x)| < F|a|$$

Suppose $\epsilon > 0$ and let us assume $a = \frac{\epsilon}{F} e$. Then $\delta = |a| = \frac{\epsilon}{F}$. According to definition 5.1.11 additive map f is continuous. □

Similarly, since index s belongs to countable range, then for continuity of additive map f it is necessary that series $| (s)_0 f | | (s)_1 f |$ converges. Since index s belongs to continues range, then for continuity of additive map f it is necessary that integral $\int | (s)_0 f | | (s)_1 f | ds$ exist.

Definition 5.1.13. Let

$$f : D_1 \rightarrow D_2$$

map of complete division ring D_1 of characteristic 0 with absolute value $|x|_1$ into complete division ring D_2 of characteristic 0 with absolute value $|x|_2$. Value

$$(5.1.1) \quad \|f\| = \sup \frac{|f(x)|_2}{|x|_1}$$

is called norm of map f. □

Theorem 5.1.14. Let D_1 be complete division ring of characteristic 0 with absolute value $|x|_1$. Let D_2 be complete division ring of characteristic 0 with absolute value $|x|_2$. Let

$$f : D_1 \rightarrow D_2$$

be map which is multiplicative over field R. Then

$$(5.1.2) \quad \|f\| = \sup \{|f(x)|_2 : |x|_1 = 1\}$$
PROOF. According to definition 3.1.5
\[\frac{|f(x)|}{|x|} = \frac{|f(rx)|}{|rx|} \]
Assuming \(r = \frac{1}{|x|} \), we get
\[(5.1.3) \quad \frac{|f(x)|}{|x|} = \left| f \left(\frac{x}{|x|} \right) \right| \]
Equation (5.1.2) follows from equations (5.1.3) and (5.1.1).

Theorem 5.1.15. Let
\[f : D_1 \rightarrow D_2 \]
additive map of complete division ring \(D_1 \) into complete division ring \(D_2 \). Since \(||f|| < \infty \), then map \(f \) is continuous.

Proof. Because map \(f \) is additive, then according to definition 5.1.13
\[|f(x) - f(y)| \leq ||f|| |x - y| \]
Let us assume arbitrary \(\epsilon > 0 \). Assume \(\delta = \frac{\epsilon}{||f||} \). Then
\[|f(x) - f(y)| \leq ||f|| \delta = \epsilon \]
follows from inequality
\[|x - y| < \delta \]
According to definition 5.1.11 map \(f \) is continuous.

Theorem 5.1.16. Let \(D \) be complete division ring of characteristic 0. Either continuous map \(f \) of division ring which is projective over field \(P \), does not depend on direction over field \(P \), or value \(f(0) \) is not defined.

Proof. According to definition 3.1.7, map \(f \) is constant on direction \(Pa \). Since \(0 \in Pa \), then we may assume
\[f(0) = f(a) \]
Based on continuity. However this leads to uncertainty of value of map \(f \) in direction 0, when map \(f \) has different values for different directions \(a \).

If projective over field \(R \) map \(f \) is continuous, then we say that function \(f \) is continuous in direction over field \(R \). Since for any \(a \in D, a \neq 0 \) we may choose \(a_1 = |a|^{-1}a, f(a_1) = f(a) \), then it is possible to make definition more accurate.

Definition 5.1.17. Let \(D \) be complete division ring of characteristic 0. Projective over field \(R \) function \(f \) is continuous in direction over field \(R \), if for every as small as we please \(\epsilon > 0 \) there exists such \(\delta > 0 \), that
\[|x' - x| < \delta \quad |x'| = |x| = 1 \]
implies
\[|f(x') - f(x)| < \epsilon \]

Theorem 5.1.18. Let \(D \) be complete division ring of characteristic 0. Projective over field \(R \) function \(f \) is continuous in direction over field \(R \) if this function is continuous on unit sphere of division ring \(D \).
5.2. Differentiable Map of Division Ring

Definition 5.2.1. Let D be valued division ring.\footnote{I made definition according to definition [1]-3.1.1, page 177.} Function

$$f : D \to D$$

is called \textbf{$D\star$-differentiable in the Fréchet sense} on the set $U \subset D^{\star}$, if at every point $x \in U$ the increment of the function f can be represented as

$$f(x + h) - f(x) = h \frac{df(x)}{d_x} + o(h)$$

where o is such continuous map $o : D \to D$

that

$$\lim_{h \to 0} \frac{|o(h)|}{|h|} = 0$$

According to definition 5.2.1, the \textbf{Fréchet $D\star$-derivative of map f at point x}

$$\frac{df(x)}{d_x} \in \mathcal{L}(D, D)$$

generates a homomorphism

$$\Delta f = \Delta_x \frac{df(x)}{d_x}$$

which maps increment of argument into increment of function.

If we multiply both sides of equation (5.2.1) by h^{-1}, then we get equation

$$h^{-1}(f(x + h) - f(x)) = \frac{df(x)}{d_x} + h^{-1}o(h)$$

Alternative definition of the Fréchet $D\star$-derivative

$$\frac{df(x)}{d_x} = \lim_{h \to 0} (h^{-1}(f(x + h) - f(x)))$$

follows from equations (5.2.3) and (5.2.2).

In contrast to derivative of map over field F the Fréchet $D\star$-derivative of map of division ring D is not linear map. Indeed, the Fréchet $D\star$-derivative is $\star D$-linear map; however, in general, it is not $D\star$-linear map. In fact,

$$f(x + h)a - f(x)a = h \frac{df(x)}{d_x}a + o(h)$$

\footnote{Like in remark [3]-4.4.5 we may define $D\star$-differentiability of map $f : S \to D$ of valued division ring S into valued division ring D according to rule

$$f(x + h) - f(x) = F(h)\frac{df(x)}{d_x} + o(h)$$

where $F : S \to D$ is homomorphism of division rings. However, based on isomorphism theorem, we may confine ourselves by case of maps of division ring D into D.}
Differentiable Maps

(5.2.5) \[a f(x + h) - a f(x) = ah \frac{df}{dx} + o(h) \]

However, in general,
\[ah \frac{df}{dx} \neq ha \frac{df}{dx} \]

Similar problem arises when we differentiate product of maps. According to definition 5.2.1

(5.2.6) \[f(x + h)g(x + h) - f(x)g(x) = h\frac{df(x)g(x)}{dx} + o(h) \]

It is possible to represent expression in left side as

\[
\begin{align*}
&f(x + h)g(x + h) - f(x)g(x) \\
\text{(5.2.7)} &\quad = f(x + h)g(x + h) - f(x)g(x + h) + f(x)g(x + h) - f(x)g(x) \\
&\quad = (f(x + h) - f(x))g(x + h) + f(x)(g(x + h) - g(x))
\end{align*}
\]

According to definition 5.2.1, it is possible to represent (5.2.7) as

\[
\begin{align*}
&f(x + h)g(x + h) - f(x)g(x) \\
\text{(5.2.8)} &\quad = \left(h\frac{df(x)}{dx} + o(h) \right) \left(g(x) + h\frac{dg(x)}{dx} + o(h) \right) \\
&\quad + f(x) \left(h\frac{dg(x)}{dx} + o(h) \right)
\end{align*}
\]

Since, in general,
\[f(x)h \frac{dg}{dx} \neq hf(x) \frac{dg}{dx} \]
then it is natural to anticipate that map \(f(x)g(x) \) is not \(D\star \)-differentiable in the Fréchet sense.

Thus definition the Fréchet \(D\star \)-derivative is extremely restricted and does not satisfy standard definition of differentiation. To find solution of problem of differentiation, let us consider this problem on the other hand.

Example 5.2.2. Let us consider increment of map \(f(x) = x^2 \).

\[
\begin{align*}
f(x + h) - f(x) &= (x + h)^2 - x^2 \\
&= xh + hx + h^2 \\
&= xh + hx + o(h)
\end{align*}
\]

As can be easily seen, the component of the increment of the function \(f(x) = x^2 \) that is linearly dependent on the increment of the argument, is of the form
\[xh + hx \]

Since product is non commutative, we cannot represent increment of map \(f(x + h) - f(x) \) as \(Ah \) or \(hA \) where \(A \) does not depend on \(h \). It results in the unpredictable behavior of the increment of the function \(f(x) = x^2 \) when the increment of the argument converges to 0. However, since infinitesimal \(h \) is infinitesimal like \(h = ta, a \in D, t \in \mathbb{R}, t \to 0 \), the answer becomes more definite
\[
(xa + ax)t
\]
Definition 5.2.3. Let D be complete division ring of characteristic 0. The function

$$ f : D \to D $$

is called **differentiable in the Gâteaux sense** on the set $U \subset D$, if at every point $x \in U$ the increment of the function f can be represented as

$$ f(x + a) - f(x) = \partial f(x)(a) + o(a) = \frac{\partial f(x)}{\partial x}(a) + o(a) $$

where the Gâteaux derivative $\partial f(x)$ of map f is linear map of increment a and $o : D \to D$ is such continuous map that

$$ \lim_{a \to 0} \frac{|o(a)|}{|a|} = 0 $$

□

Remark 5.2.4. According to definition 5.2.3 for given x, the Gâteaux derivative $\partial f(x) \in \mathcal{L}(D; D)$. Therefore, the Gâteaux derivative of map f is map

$$ \partial f : D \to \mathcal{L}(D; D) $$

Expressions $\partial f(x)$ and $\frac{\partial f(x)}{\partial x}$ are different notations for the same function. We will use notation $\frac{\partial f(x)}{\partial x}$ to underline that this is the Gâteaux derivative with respect to variable x. □

Theorem 5.2.5. It is possible to represent the Gâteaux differential $\partial f(x)(a)$ of map f as

$$ (5.2.10) \quad \partial f(x)(a) = \frac{(s)_0 \partial f(x)}{\partial x} a + \frac{(s)_1 \partial f(x)}{\partial x} $$

PROOF. Corollary of definitions 5.2.3 and theorem 3.2.9. □

Definition 5.2.6. Expression $\frac{(s)_p \partial f(x)}{\partial x}$, $p = 0, 1$, is called component of the Gâteaux derivative of map $f(x)$. □

Theorem 5.2.7. Let D be division ring of characteristic 0. The Gâteaux derivative of function

$$ f : D \to D $$

is multiplicative over field R.

PROOF. Corollary of theorems 5.1.9, 3.2.4, and definition 5.2.3. □

From theorem 5.2.7 it follows

$$ (5.2.11) \quad \partial f(x)(ra) = r \partial f(x)(a) $$

for any $r \in R$, $r \neq 0$ and $a \in D$, $a \neq 0$. Combining equation (5.2.11) and definition 5.2.3, we get known definition of the Gâteaux differential

$$ (5.2.12) \quad \partial f(x)(a) = \lim_{t \to 0, t \in R} (t^{-1}(f(x + ta) - f(x))) $$

Definitions of the Gâteaux derivative (5.2.9) and (5.2.12) are equivalent. Using this equivalence we tell that map f is called differentiable in the Gâteaux sense on

5.5 I made definition according to definition [1]-3.1.2, page 177.
the set \(U \subset D \), if at every point \(x \in U \) the increment of the function \(f \) can be represented as
\[
(f(x + ta) - f(x) = t\partial f(x)(a) + o(t)
\]
where \(o : R \to D \) is such continuous map that
\[
\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0
\]
Since infinitesimal \(ta \) is differential \(dx \), then equation (5.2.10) gets form
\[
\partial f(x)(dx) = \frac{\partial f(x)_{(s)}0}{\partial x} \partial f(x)_{(s)}1 \frac{dx}{dx} + \frac{\partial f(x)_{(s)}0}{\partial x} \frac{dx}{dx} a - 1 a
\]

Theorem 5.2.8. Let \(D \) be division ring of characteristic 0. Let \(\mathfrak{P} \) be basis of
division ring \(D \) over center \(Z(D) \) of division ring \(D \). Standard representation
of the Gâteaux differential (5.2.10) of map
\[
f : D \to D
\]
has form
\[
\partial f(x)(a) = \frac{\partial i f(x)}{\partial x} i a j \mathfrak{P}
\]
Expression \(\frac{\partial i f(x)}{\partial x} \) in equation (5.2.15) is called standard component of the
Gâteaux differential of map \(f \).

Proof. Statement of theorem is corollary of theorem 3.2.10.

Theorem 5.2.9. Let \(D \) be division ring of characteristic 0. Let \(\mathfrak{P} \) be basis of division
ring \(D \) over center \(Z(D) \) of division ring \(D \). Then it is possible to represent the
Gâteaux differential of map \(f \) as
\[
\partial f(x)(a) = a^i \frac{\partial f_j}{\partial x^i} j \mathfrak{P}
\]
where \(a \in D \) has expansion
\[
a = a^i i \mathfrak{P} \quad a^i \in F
\]
relative to basis \(\mathfrak{P} \) and Jacobian matrix of map \(f \) has form
\[
\frac{\partial f^j}{\partial x^i} = \frac{\partial k f(x)}{\partial x^i} k_i B^p p_j B^j
\]
Proof. Statement of theorem is corollary of theorem 3.2.11.

To find structure similar to derivative in commutative calculus we need extract
derivative from differential of map. For this purpose we need take the increment of argument outside brackets.\(^5\)\(^6\) It is possible to take \(a \) outside brackets using equations
\[
\frac{(s)0}{\partial x} a \frac{(s)1}{\partial x} f(x) = \frac{(s)0}{\partial x} a \frac{(s)1}{\partial x} f(x) a^{-1} a
\]
\(^5\)\(^6\)It is possible when all \(\frac{(s)0}{\partial x} f(x) = e \) or all \(\frac{(s)1}{\partial x} f(x) = e \). Therefore definition [1]-3.1.2,
page 177, leads us either to definition of the Fréchet \(D^\ast \)-derivative, or to definition of the Fréchet
\(\ast D \)-derivative.
Definition 5.2.10. Let D be complete division ring of characteristic 0 and $a \in D$. We define the Gâteaux D^*-derivative $\frac{\partial f(x)(a)}{\partial x}$ of map $f : D \to D$ using equation

$$\frac{(s)\partial f(x)}{\partial x} a (s)_{\partial f(x)} = aa^{-1} (s)\partial f(x) a (s)_{\partial f(x)} \frac{\partial f(x)}{\partial x}$$

We define the Gâteaux $+D$-derivative $\frac{\partial f(x)(a)}{\partial x}$ of map $f : D \to D$ using equation

$$\frac{\partial f(x)(a)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} a$$

Let us consider the basis $1e = 1$, $2e = i$, $3e = j$, $4e = k$ of division ring of quaternions over real field. From straightforward calculation, it follows that standard D^*-representation of the Gâteaux differential of map x^2 has form

$$\partial x^2(a) = (x + x_1)a + x_2ai + x_3aj + x_4ak$$

For representation of the Gâteaux D^*-derivative we also use notation

$$\frac{\partial f(x)(a)}{\partial x} f(x)(a) = \partial_x f(x)(a)$$

For representation of the Gâteaux $+D$-derivative we also use notation

$$\frac{\partial f(x)(a)}{\partial x} f(x)(a) = \partial f(x)(a)$$

Based on duality principle [3]-[4.3.8, we will study D^*-derivative, keeping in mind that dual statement is true for $+D$-derivative.

Because product is not commutative, concept of fraction is not defined in division ring. We need explicitly show from which side denominator has an effect on numerator. Symbol $*$ in denominator of fraction implements this function. According to definition

$$\frac{\partial f}{\partial x} = (\partial_x)^{-1}\partial f$$
$$\frac{\partial f}{+\partial x} = f(\partial_x)^{-1}$$

Thus, we may represent the Gâteaux D^*-derivative of function f as ratio of change of function to change of argument. We do not extend this remark to components of the Gâteaux differential. In this case we consider notation $\frac{\partial}{\partial x}$ and $\frac{\partial}{+\partial x}$ not as fraction, but as symbol of operator.

Then we can write equation (5.2.18) as

$$\frac{\partial f(x)(dx)}{dx} = dx(\partial_x)^{-1}\partial f(x)(dx)$$

It is easy to see that we wrote D^*-differential of variable x in denominator of fraction in equation (5.2.20), however we multiply fraction by differential of variable x.

Theorem 5.2.11. Let D be complete division ring of characteristic 0. The Gâteaux D^*-derivative is projective over field of real numbers R.

Formula: $(s)\partial f(x) a (s)_{\partial f(x)} = aa^{-1} (s)\partial f(x) a (s)_{\partial f(x)} \frac{\partial f(x)}{\partial x}$
PROOF. Corollary of theorems 5.2.7 and example 3.1.8. □

From theorem 5.2.11 it follows

\(\frac{\partial f(x)(ra)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} \) \hspace{1cm} (5.2.21)

for every \(r \in R, r \neq 0 \) and \(a \in D, a \neq 0 \). Therefore the Gâteaux \(D^* \)-derivative is well defined in direction \(a \) over field \(R, a \in D, a \neq 0 \), and does not depend on the choice of value in this direction.

Theorem 5.2.12. Let \(D \) be complete division ring of characteristic 0 and \(a \neq 0 \). The Gâteaux \(D^* \)-derivative and the Gâteaux \(D^* \)-derivative of map \(f \) of division ring \(D \) are bounded by relationship

\(\frac{\partial f(x)(a)}{\partial x} = a \frac{\partial f(x)(a)}{\partial x} \) \hspace{1cm} (5.2.22)

PROOF. From equations (5.2.18) and (5.2.19) it follows

\(\frac{\partial f(x)(a)}{\partial x} = \partial f(x)(a)a^{-1} = a \frac{\partial f(x)(a)}{\partial x} a^{-1} \) □

Theorem 5.2.13. Let \(D \) be complete division ring of characteristic 0. The Gâteaux differential satisfies to relationship

\(\partial(f(x)g(x))(a) = \partial f(x)(a)g(x) + f(x)\partial g(x)(a) \) \hspace{1cm} (5.2.23)

PROOF. Equation (5.2.23) follows from chain of equations

\(\partial(f(x)g(x))(a) = \lim_{t \to 0} t^{-1}(f(x + ta)g(x + ta) - f(x)g(x)) \)

\(= \lim_{t \to 0} t^{-1}(f(x + ta)g(x + ta) - f(x)g(x + ta)) \)

\(+ \lim_{t \to 0} t^{-1}(f(x)g(x + ta) - f(x)g(x)) \)

\(= \lim_{t \to 0} t^{-1}(f(x + ta) - f(x))g(x) \)

\(+ f(x)\lim_{t \to 0} t^{-1}(g(x + ta) - g(x)) \)

based on definition (5.2.12). □

Theorem 5.2.14. Let \(D \) be complete division ring of characteristic 0. Suppose the Gâteaux derivative of map \(f : D \to D \) has expansion

\(\partial f(x)(a) = \frac{\partial f(x)(a) \partial f(x)}{\partial x} a \cdot \frac{\partial f(x)}{\partial x} \) \hspace{1cm} (5.2.24)

Suppose the Gâteaux differential of map \(g : D \to D \) has expansion

\(\partial g(x)(a) = \frac{\partial g(x)(a) \partial g(x)}{\partial x} a \cdot \frac{\partial g(x)}{\partial x} \) \hspace{1cm} (5.2.25)

Components of the Gâteaux differential of map \(f(x)g(x) \) have form

\(\frac{s_0 \partial f(x)(g(x))}{\partial x} = \frac{s_0 \partial f(x)}{\partial x} \cdot g(x) \hspace{1cm} (5.2.26) \)

\(\frac{s_1 \partial f(x)(g(x))}{\partial x} = \frac{s_1 \partial f(x)}{\partial x} \cdot g(x) \) \hspace{1cm} (5.2.27)
5.2. Differentiable Map of Division Ring

Proof. Let us substitute (5.2.24) and (5.2.25) into equation (5.2.23)

\[
\frac{\partial(f(x)g(x))(a)}{\partial x} = (a)\frac{\partial f(x)(a)}{\partial x}g(x) + f(x)a\frac{\partial g(x)(a)}{\partial x}
\]

Based (5.2.28), we define equations (5.2.26), (5.2.27).

□

Theorem 5.2.15. Let \(D \) be complete division ring of characteristic 0. The Gâteaux \(D^* \)-derivative satisfy to relationship

\[
\frac{\partial f(x)g(x)}{\partial x}(a) = \frac{\partial f(x)(a)}{\partial x}g(x) + a^{-1}f(x)a\frac{\partial g(x)(a)}{\partial x}
\]

Proof. Equation (5.2.29) follows from chain of equations

\[
\frac{\partial f(x)g(x)}{\partial x}(a) = a^{-1}\frac{\partial f(x)g(x)(a)}{\partial x}
\]

\[
= a^{-1}(\partial f(x)(a)g(x) + f(x)\partial g(x)(a))
\]

\[
= a^{-1}\frac{\partial f(x)(a)}{\partial x}g(x) + a^{-1}f(x)a\frac{\partial g(x)(a)}{\partial x}
\]

\[
= \frac{\partial f(x)(a)}{\partial x}g(x) + a^{-1}f(x)a\frac{\partial g(x)(a)}{\partial x}
\]

□

Theorem 5.2.16. Let \(D \) be complete division ring of characteristic 0. Either the Gâteaux \(D^* \)-derivative does not depend on direction, or the Gâteaux \(D^* \)-derivative in direction 0 is not defined.

Proof. Statement of theorem is corollary of theorem 5.2.11 and theorem 5.1.16.

□

Theorem 5.2.17. Let \(D \) be complete division ring of characteristic 0. Let unit sphere of division ring \(D \) be compact. If the Gâteaux \(D^* \)-derivative \(\frac{\partial f(x)(a)}{\partial x} \) exists in point \(x \) and is continuous in direction over field \(R \), then there exist norm \(\|\partial f(x)\| \) of the Gâteaux \(D^* \)-differential.

Proof. From definition 5.2.10 it follows

\[
|\partial f(x)(a)| = |a| \left| \frac{\partial f(x)(a)}{\partial x} \right|
\]

From theorems 5.1.18, 5.2.11 it follows, that the Gâteaux \(D^* \)-derivative is continuous on unit sphere. Since unit sphere is compact, then range the Gâteaux \(D^* \)-derivative of function \(f \) at point \(x \) is bounded

\[
\left| \frac{\partial f(x)(a)}{\partial x} \right| < F = \sup \left| \frac{\partial f(x)(a)}{\partial x} \right|
\]

According to definition 5.1.13

\[
\|\partial f(x)\| = F
\]

□
Theorem 5.2.18. Let D be complete division ring of characteristic 0. Let unit sphere of division ring D be compact. If the Gâteaux D-derivative $\frac{\partial f(x)(a)}{\partial \ast x}$ exists in point x and is continuous in direction over field R, then function f is continuous at point x.

Proof. From theorem 5.2.17 it follows

\begin{equation}
|\partial f(x)(a)| \leq \|\partial f(x)\||a|
\end{equation}

From (5.2.9), (5.2.31) it follows

\begin{equation}
|f(x + a) - f(x)| < |a| \|\partial f(x)\|
\end{equation}

Let us assume arbitrary $\epsilon > 0$. Assume

$$
\delta = \frac{\epsilon}{\|\partial f(x)\|}
$$

Then from inequality

$$
|a| < \delta
$$

it follows

$$
|f(x + a) - f(x)| \leq \|\partial f(x)\| \delta = \epsilon
$$

According to definition 5.1.11 map f is continuous at point x. \qed

Theorem 5.2.18 has interesting generalization. If unit sphere of division ring D is not compact, then we may consider compact set of directions instead of unit sphere. In this case we may speak about continuity of function f along selected set of directions.

5.3. Table of Derivatives of Map of Division Ring

Theorem 5.3.1. Let D be complete division ring of characteristic 0. Then for any $b \in D$

\begin{equation}
\partial(b)(a) = 0
\end{equation}

Proof. Immediate corollary of definition 5.2.3. \qed

Theorem 5.3.2. Let D be complete division ring of characteristic 0. Then for any $b, c \in D$

\begin{align}
\partial(bf(x)c)(a) &= b\partial f(x)(a)c \\
\frac{(s)_0 \partial bf(x)c}{\partial x} &= (s)_0 b \frac{\partial f(x)}{\partial x} \\
\frac{(s)_1 \partial bf(x)c}{\partial x} &= (s)_1 (\partial f(x))_c \\
\frac{\partial bf(x)c}{\partial \ast x}(a) &= a^{-1}b \partial f(x)(a) \frac{\partial f(x)(a)}{\partial \ast x}
\end{align}

Proof. Immediate corollary of equations (5.2.23), (5.2.26), (5.2.27), (5.2.29) because $\partial b = \partial c = 0$. \qed
Theorem 5.3.3. Let D be complete division ring of characteristic 0. Then for any $b, c \in D$

\[(5.3.6) \quad \partial(bxc)(h) = bhc\]

\[(5.3.7) \quad (1)_0 \partial bxc \over \partial x = b\]

\[(5.3.8) \quad (1)_1 \partial bxc \over \partial x = c\]

\[(5.3.9) \quad \partial bxc \over \partial \ast x (h) = h^{-1}bhc\]

Proof. Corollary of theorem 5.3.2, when $f(x) = x$.

Theorem 5.3.4. Let D be complete division ring of characteristic 0. Then for any $b \in D$

\[(5.3.10) \quad \partial(xb - bx)(h) = hb - bh\]

\[(5.3.11) \quad (1)_0 \partial(xb - bx) \over \partial x = 1 \quad (1)_1 \partial(xb - bx) \over \partial x = b\]

\[(5.3.12) \quad (2)_0 \partial(xb - bx) \over \partial x = -b \quad (2)_1 \partial(xb - bx) \over \partial x = 1\]

\[(5.3.13) \quad \partial(xb - bx) \over \partial \ast x (h) = h^{-1}bhc\]

Proof. Corollary of theorem 5.3.2, when $f(x) = x$.

Theorem 5.3.5. Let D be complete division ring of characteristic 0. Then

\[(5.3.14) \quad \partial(x^2)(a) = xa + ax\]

\[(5.3.15) \quad \partial x^2 \over \partial x (a) = a^{-1}xa + x\]

\[(5.3.16) \quad (1)_0 \partial x^2 \over \partial x = x \quad (1)_1 \partial x^2 \over \partial x = e\]

\[(5.3.17) \quad (2)_0 \partial x^2 \over \partial x = e \quad (2)_1 \partial x^2 \over \partial x = x\]

Proof. (5.3.14) follows from example 5.2.2 and definition 5.2.10. (5.3.15) follows from example 5.2.2 and equation (5.2.14).

\[\text{5.7 The statement of the theorem is similar to example VIII, [11], p. 451. If product is commutative, then the equation (5.3.14) gets form}\]

\[\partial(x^2)(h) = 2hx\]

\[\frac{dx^2}{dx} = 2x\]
5. Differentiable Maps

Theorem 5.3.6. Let D be complete division ring of characteristic 0. Then

\[(5.3.13)\]
\[\partial(x^{-1})(h) = -x^{-1}hx^{-1}\]
\[\frac{\partial x^{-1}}{\partial x}(h) = -h^{-1}x^{-1}hx^{-1}\]
\[\frac{(1)\partial x^{-1}}{\partial x} = -x^{-1} \quad \frac{(1)\partial x^{-1}}{\partial x} = x^{-1}\]

Proof. Let us substitute $f(x) = x^{-1}$ in definition $(5.2.12)$.\[\partial f(x)(h) = \lim_{t \to 0, \ t \in \mathbb{R}} (t^{-1}((x + th)^{-1} - x^{-1}))\]
\[= \lim_{t \to 0, \ t \in \mathbb{R}} (t^{-1}(x^{-1}(x + th) - x^{-1}(x + th)^{-1}))\]
\[= \lim_{t \to 0, \ t \in \mathbb{R}} (t^{-1}(1 - x^{-1}(x + th)))(x + th)^{-1})\]
\[= \lim_{t \to 0, \ t \in \mathbb{R}} (-x^{-1}h(x + th)^{-1})\]

Equation $(5.3.13)$ follows from chain of equations $(5.3.14)$.

\[\square\]

Theorem 5.3.7. Let D be complete division ring of characteristic 0. Then

\[(5.3.15)\]
\[\partial(xax^{-1})(h) = hax^{-1} - xax^{-1}hx^{-1}\]
\[\frac{\partial xax^{-1}}{\partial x}(h) = ax^{-1} - h^{-1}xax^{-1}hx^{-1}\]
\[\frac{(1)\partial x^{-1}}{\partial x} = 1 \quad \frac{(1)\partial x^{-1}}{\partial x} = ax^{-1}\]
\[\frac{(2)\partial x^{-1}}{\partial x} = -xax^{-1} \quad \frac{(2)\partial x^{-1}}{\partial x} = x^{-1}\]

Proof. Equation $(5.3.15)$ is corollary of equations $(5.2.23)$, $(5.3.6)$, $(5.3.15)$.

\[\square\]
CHAPTER 6

Differentiable Maps of D-Vector Space

6.1. Topological D-Vector Space

Definition 6.1.1. Given a topological division ring D and D^*_*-vector space \mathbf{V} such that \mathbf{V} has a topology compatible with the structure of the additive group of \mathbf{V} and the map

$$(a, \mathbf{v}) \in D \times \mathbf{V} \rightarrow a\mathbf{v} \in \mathbf{V}$$

is continuous, then \mathbf{V} is called a **topological D^*_*-vector space**.

Definition 6.1.2. Given a topological division ring D and D-vector space \mathbf{V} such that \mathbf{V} has a topology compatible with the structure of the additive group of \mathbf{V} and maps

$$(a, \mathbf{v}) \in D \times \mathbf{V} \rightarrow a\mathbf{v} \in \mathbf{V}$$

$$(\mathbf{v}, a) \in \mathbf{V} \times D \rightarrow \mathbf{v}a \in \mathbf{V}$$

are continuous, then \mathbf{V} is called a **topological D-vector space**.

Definition 6.1.3. The map

$$f : F \rightarrow A$$

of set F to an arbitrary algebra A is called A-valued function. The map

$$f : F \rightarrow \mathbf{V}$$

of set F to D^*_*-vector space \mathbf{V} is called D^*_*-vector function. The map

$$f : F \rightarrow \mathbf{V}$$

of set F to D-vector space \mathbf{V} is called D-vector function.

We consider following definitions in this section for topological D-vector space. However definitions do not change, if we consider topological D^*_*-vector space.

Definition 6.1.4. Let \(\mathbf{e}\) be D^*_*-basis of D-vector space \mathbf{V} of dimension n. We represent an arbitrary map

$$f : \mathbf{V} \rightarrow A$$

of D-vector space \mathbf{V} to set A as **function**

$$f' : D^n \rightarrow A$$

of n D-valued variables; function f' is defined by equation

$$f'(a_1, ..., a_n) = f(a^*_*\mathbf{e})$$

6.1 I made definition according to definition from [5], p. TVS I.1
Definition 6.1.5. Function
\[f : \mathbb{V} \rightarrow A \]
of topological D-vector space \mathbb{V} of dimension n to topological space A is called **continuous with respect to set of the arguments** if for arbitrary neighborhood U of image of element $\mathbf{a} = a^* \mathbf{e} \in \mathbb{V}$ for every $a_i \in D$ there exist such neighborhood V_i, that
\[f'(V_1, ..., V_n) \subset U \]

Theorem 6.1.6. **Continuous function**
\[f : \mathbb{V} \rightarrow A \]
of topological D-vector space \mathbb{V} of dimension n to topological space A is continuous with respect to set of arguments.

Proof. Let $b = f(a^* \mathbf{e}) \in A$ and U be neighborhood of point b. Since map f is continuous, there exists such neighborhood V of vector $\mathbf{a} = a^* \mathbf{e}$ that $f(V) \subseteq U$. Since additive operation is continues, then there exists such neighborhood E_i of vector \mathbf{e}_i and neighborhood W_i of $a_i \in D$ that $W_i \ast E \subset V$.

Definition 6.1.7. **Norm on D-vector space** \mathbb{V} over non-discrete valued division ring D is a map
\[\mathbf{v} \in \mathbb{V} \rightarrow \| \mathbf{v} \| \in \mathbb{R} \]
which satisfies the following axioms
\begin{itemize}
 \item $\| \mathbf{v} \| \geq 0$
 \item $\| \mathbf{v} \| = 0$ if, and only if, $\mathbf{v} = \mathbf{0}$
 \item $\| \mathbf{v} + \mathbf{w} \| \leq \| \mathbf{v} \| + \| \mathbf{w} \|$
 \item $\| a \mathbf{v} \| = |a| \| \mathbf{v} \|$ for all $a \in D$ and all $\mathbf{v} \in \mathbb{V}$
\end{itemize}

If D is a non-discrete valued division ring, D-vector space \mathbb{V}, endowed with the structure defined by a given norm on \mathbb{V}, is called **normed D-vector space**.

Invariant distance on additive group of D-vector space \mathbb{V}
\[d(\mathbf{a}, \mathbf{b}) = \| \mathbf{a} - \mathbf{b} \| \]
defines topology of metric space compatible with structure of D-vector space \mathbb{V}.

Definition 6.1.8. Let D be complete division ring of characteristic 0. Let
\[\overline{A} : \mathbb{V} \rightarrow \mathbb{W} \]
map of normed D-vector space \mathbb{V} with norm $\| \mathbf{v} \|_1$ to normed D-vector space \mathbb{W} with norm $\| \mathbf{v} \|_2$. Value
\[\| \overline{A} \| = \sup \frac{\| \overline{A}(\mathbf{v}) \|_2}{\| \mathbf{v} \|_1} \]
is called **norm of map** \overline{A}.

6.2 I made definition according to definition from [4], IX, §3.3
6.2. Differentiable Maps of D-Vector Space

Definition 6.2.1. The function $\mathbf{f} : \mathbb{V} \to \mathbb{W}$ of normed D-vector space \mathbb{V} with norm $\|x\|_1$ to normed D-vector space \mathbb{W} with norm $\|x\|_2$ is called **differentiable in the Gâteaux sense on the set** $U \subset \mathbb{V}$, if at every point $x \in U$ the increment of the function \mathbf{f} can be represented as

$$\mathbf{f}(x + a) - \mathbf{f}(x) = \partial \mathbf{f}(x)(a) + o(a)$$

where the Gâteaux derivative $\partial \mathbf{f}(x)$ of map \mathbf{f} is linear map of increment a and $o : \mathbb{V} \to \mathbb{W}$ is such continuous map that

$$\lim_{a \to 0} \frac{\|o(a)\|_2}{\|a\|_1} = 0$$

□

Remark 6.2.2. According to definition 6.2.1 for given x, the Gâteaux differential $\partial \mathbf{f}(x) \in \mathcal{L}(D; \mathbb{V}; \mathbb{W})$. Therefore, the Gâteaux differential of map \mathbf{f} is map $\partial \mathbf{f} : \mathbb{V} \to \mathcal{L}(D; \mathbb{V}; \mathbb{W})$ □

Theorem 6.2.3. Let D be division ring of characteristic 0. Let $*p$ be D_*-basis of D-vector space \mathbb{V} over division ring D and $\mathbf{h} \in \mathbb{V}$

$$\mathbf{h} = h_*p$$

Let $*\mathbf{p}$ be D_*-basis of D-vector space \mathbb{W} over division ring D. It is possible to represent the Gâteaux differential $\partial \mathbf{f}(x)(\mathbf{h})$ of map \mathbf{f} as

$$\partial \mathbf{f}(x)(\mathbf{h}) = \left(s_0 \frac{\partial f^i(x)}{\partial x^i} \right) h^i + \left(s_1 \frac{\partial f^j(x)}{\partial x^j} \right) j^r$$

Proof. Corollary of definition 6.2.1 and theorem 4.1.9. □

Definition 6.2.4. Expression $i_{(s)p} \frac{\partial f^i(x)}{\partial x^i}$, $p = 0, 1$, is called component of the Gâteaux derivative of map $\mathbf{f}(x)$. □

Theorem 6.2.5. Let D be complete division ring of characteristic 0. Let field F be subring of center $Z(D)$ of division ring D. The Gâteaux derivative of the function $\mathbf{f} : \mathbb{V} \to \mathbb{W}$ of normed D-vector space \mathbb{V} to normed D-vector space \mathbb{W} is multiplicative over field F.

Proof. Corollary of theorem 4.1.8, and definition 6.2.1. □

6.3 When dimension of D-vector space \mathbb{V} equal 1, we can identify it with division ring D. Than we speak about map of division ring D into D-vector space \mathbb{W}. When dimension of D-vector space \mathbb{W} equal 1, we can identify it with division ring D. Than we speak about map of D-vector space \mathbb{V} into division ring D. In both cases we will omit corresponding index, because this index has single value.
Theorem 6.2.6. Let D be complete division ring of characteristic 0. The Gâteaux derivative of the function

$$\mathcal{F} : \mathbb{V} \to \mathbb{W}$$

of normed D-vector space \mathbb{V} to normed D-vector space \mathbb{W} is multiplicative over field R.

Proof. Corollary of theorems 5.1.9, 6.2.5. □

From theorem 6.2.6 it follows

$$\partial \mathcal{F}(\mathbb{x})(r\mathbb{a}) = r\partial \mathcal{F}(\mathbb{x})(\mathbb{a})$$

for every $r \in R$, $r \neq 0$ and $\mathbb{a} \in \mathbb{V}$, $\mathbb{a} \neq 0$. Combining equation (6.2.3) and definition 6.2.1, we get known definition of the Gâteaux differential

$$\partial \mathcal{F}(\mathbb{x})(\mathbb{a}) = \lim_{t \to 0} \frac{\mathcal{F}(\mathbb{x} + t\mathbb{a}) - \mathcal{F}(\mathbb{x})}{t}$$

for every $\mathbb{a} \in \mathbb{V}$, $\mathbb{a} \neq 0$. Combining equation (6.2.3) and definition 6.2.1, we get known definition of the Gâteaux differential

$$\partial \mathcal{F}(\mathbb{x})(\mathbb{a}) = \lim_{t \to 0} \frac{\mathcal{F}(\mathbb{x} + t\mathbb{a}) - \mathcal{F}(\mathbb{x})}{t}$$

where $\mathbb{a} : R \to \mathbb{W}$ is such continuous map that

$$\lim_{t \to 0} \|\mathbb{a}(t)\|_2 = 0$$

Since infinitesimal \mathbb{a} is differential $d\mathbb{x}$, then equation (6.2.2) gets form

$$\partial \mathcal{F}(\mathbb{x})(d\mathbb{x}) = \sum_{j=1}^{n} \left(\frac{\partial \mathcal{F}_{j}(\mathbb{x})}{\partial x^i} \right) dx^i \left(\frac{\partial \mathcal{F}_{j}(\mathbb{x})}{\partial x^i} \right)_r$$

Definition 6.2.7. Let D be division ring of characteristic 0. Let \mathbb{p}^\ast be D^\ast-basis of D-vector space \mathbb{V} over division ring D and $\mathbb{h} \in \mathbb{V}$

$$\mathbb{h} = h^\ast \mathbb{p}$$

Let \mathbb{p} be D^\ast-basis of D-vector space \mathbb{W} over division ring D. If we consider the Gâteaux derivative of map \mathcal{F} with respect to variable v^i assuming that other coordinates of vector \mathbb{v} are fixed, then corresponding additive map

$$\frac{\partial \mathcal{F}(\mathbb{v})}{\partial v^i}(h^i) = \lim_{t \to 0} \frac{\mathcal{F}(f^1, ..., v^i + th^i, ..., v^n) - \mathcal{F}(\mathbb{v})}{t}$$

is called the Gâteaux partial derivative of map f^j with respect to variable v^i. □

Theorem 6.2.8. Let D be division ring of characteristic 0. Let \mathbb{p}^\ast be D^\ast-basis of D-vector space \mathbb{V} over division ring D and $\mathbb{h} \in \mathbb{V}$

$$\mathbb{h} = h^\ast \mathbb{p}$$

Let \mathbb{p} be D^\ast-basis of D-vector space \mathbb{W} over division ring D. Let the Gâteaux partial derivatives of map \mathcal{F} are continuous on the set $U \subseteq \mathbb{V}$. Than on the set U the Gâteaux derivative of map \mathcal{F} and the Gâteaux partial derivatives hold

$$\partial \mathcal{F}(\mathbb{v})(\mathbb{h}) = \sum_{i=1}^{n} \left(\frac{\partial \mathcal{F}_{j}(\mathbb{v})}{\partial x^i} \right)_{r} \mathbb{p}$$
6.2. Differentiable Maps of D-Vector Space

Proof. From theorem 4.1.2 it follows that we can expand the Gâteaux derivative of map \tilde{f} into sum (6.2.8) of partial additive maps. Our task is to clarify when these partial additive maps become the Gâteaux partial derivatives.

According to definitions 6.2.4,

$$\partial f(x)(h) = \lim_{t \to 0} (t^{-1}(f(x + th) - f(x)))$$

(6.2.9)

$$-f^j(x, x^2 + th^2, ..., x^n + th^n) + f^j(x, x^2 + th^2, ..., x^n + th^n) - ... - f^j(x_1, ..., x^n)) j \tilde{r}$$

From equations (6.2.7) and (6.2.9), up to infinitesimal with respect to t, it follows that

$$\partial f(x)(h) = \lim_{t \to 0} \left(\left(\frac{\partial f^j(x, x^2 + th^2, ..., x^n + th^n)}{\partial x^1}(h^1) + \... + \frac{\partial f^j(x, x^2 + th^2, ..., x^n + th^n)}{\partial x^n}(h^n) \right) j \tilde{r} \right)$$

(6.2.10)

Therefore, for the equation (6.2.8) to follow from the equation (6.2.10) it is necessary that the Gâteaux partial derivatives be continuous. □

We can represent the Gâteaux derivative $\frac{\partial f^j(x)}{\partial x^i}(h^i)$ as product of matrices

(6.2.11)

$$\partial f(x)(h) = \left(\frac{\partial f^1(x)}{\partial x^1}(h^1) \quad ... \quad \frac{\partial f^m(x)}{\partial x^1}(h^1) \right) * \left(\begin{array}{c} 1 \tilde{r} \\ ... \\ m \tilde{r} \end{array} \right)$$

where matrix $\frac{\partial f(x)}{\partial x^i}(h^i)$ is called the Jacobi-Gâteaux matrix of mapping.

If $f : \mathcal{V} \to D$ is map of D-vector space \mathcal{V} into division ring D, then the Jacobi-Gâteaux matrix of map f has form

$$\left(\frac{\partial f^1(x)}{\partial x^1}(h^1) \\ ... \\ \frac{\partial f^m(x)}{\partial x^1}(h^1) \right)$$

If $f : D \to \mathcal{W}$ is map of division ring D into D-vector space \mathcal{W}, then the Jacobi-Gâteaux matrix of map f has form

$$\left(\frac{\partial f^1(x)}{\partial x}(h) \\ ... \\ \frac{\partial f^m(x)}{\partial x}(h) \right)$$

Definition 6.2.9. Let function $\tilde{f} : \mathcal{V} \to \mathcal{W}$ of normed D-vector space \mathcal{V} to normed D-vector space \mathcal{W} be differentiable in the Gâteaux sense on the set $U \times W$. Assume we selected $D^*_{\tilde{r}}$-basis \tilde{r} in D-vector
space \mathbb{V}. Assume we selected D^*_r-basis \mathbb{F}_r in D-vector space \mathbb{W}. We define the Gâteaux D^*_r-derivative \(\frac{\partial f(\mathbb{F})(\mathbb{F})}{(\partial^*_r)\mathbb{F}} \) of map f. using equation (6.2.12)

\[
\frac{\partial f(\mathbb{F})(\mathbb{F})}{(\partial^*_r)\mathbb{F}} = \pi^* \cdot \frac{\partial f(\mathbb{F})(\mathbb{F})}{(\partial^*_r)\mathbb{F}} = a^i \cdot \frac{\partial f(\mathbb{F})(\mathbb{F})}{(\partial^*_r)x^i} \cdot \mathbb{F}
\]

Expression \(\frac{\partial f(\mathbb{F})(\mathbb{F})}{(\partial^*_r)x^i} \) in equation (6.2.12) is called the Gâteaux partial D^*_r-derivative of map f^j with respect to variable x^i. \(\square \)

Definition 6.2.10. Let function \(\mathcal{F} : \mathbb{V} \rightarrow \mathbb{W} \) of normed D-vector space \mathbb{V} to normed D-vector space \mathbb{W} be differentiable in the Gâteaux sense on the set $U \times W$. Assume we selected $*_r$-D-basis \mathbb{F}_r in D-vector space \mathbb{V}. Assume we selected $*_D$-D-basis \mathbb{F}_D in D-vector space \mathbb{W}. We define the Gâteaux $*_D$-derivative \(\frac{\partial \mathcal{F}(\mathbb{F})(\mathbb{F})}{(*_D)\mathbb{F}} \) of map \mathcal{F} using equation (6.2.13)

\[
\frac{\partial \mathcal{F}(\mathbb{F})(\mathbb{F})}{(*_D)\mathbb{F}} = \frac{\partial \mathcal{F}(\mathbb{F})(\mathbb{F})}{(*_D)\mathbb{F}} = \mathbb{F} = \mathbb{F} \cdot \frac{\partial f(\mathbb{F})(\mathbb{F})}{(*_D)x^i} \cdot a
\]

Expression \(\frac{\partial f(\mathbb{F})(\mathbb{F})}{(*_D)x^i} \) in equation (6.2.13) is called the Gâteaux partial $*_D$-derivative of map f^j with respect to variable x^i. \(\square \)

For representation of the Gâteaux $*_D$-derivative we also use notation

\[
\frac{\partial \mathcal{F}(\mathbb{F})(\mathbb{F})}{(*_D)\mathbb{F}} = \frac{\partial \mathcal{F}(\mathbb{F})(\mathbb{F})}{(*_D)\mathbb{F}} = \mathbb{F} = \mathbb{F} \cdot \frac{\partial f(\mathbb{F})(\mathbb{F})}{(*_D)x^i} \cdot a
\]

Theorem 6.2.11. Let D be division ring of characteristic 0. Let function \(\mathcal{F} : \mathbb{U} \rightarrow \mathbb{V} \) of normed D-vector space \mathbb{U} to normed D-vector space \mathbb{V} be differentiable in the Gâteaux sense at point \mathbb{F}. Then

\[
\frac{\partial \mathcal{F}(\mathbb{F})(\mathbb{F})}{(*_D)\mathbb{F}} = \mathbb{F}
\]

Proof. Corollary of definitions 6.2.1 and theorem 4.1.13. \(\square \)

Theorem 6.2.12. Let D be division ring of characteristic 0. Let \mathbb{U} be normed D-vector space with norm $\|x\|_1$. Let \mathbb{V} be normed D-vector space with norm $\|y\|_2$. Let \mathbb{W} be normed D-vector space with norm $\|z\|_3$. Let function \(\mathcal{F} : \mathbb{U} \rightarrow \mathbb{V} \)
be differentiable in the Gâteaux sense at point \(\mathbf{x} \) and norm of the Gâteaux derivative of map \(\mathbf{f} \)

\[
\| \partial \mathbf{f}(\mathbf{x}) \| = F \leq \infty
\]

finite. Let function

\[
\mathbf{f}: \mathbb{V} \rightarrow \mathbb{W}
\]

be differentiable in the Gâteaux sense at point

\[
\mathbf{y} = \mathbf{f}(\mathbf{x})
\]

and norm of the Gâteaux derivative of map \(\mathbf{g} \)

\[
\| \partial \mathbf{g}(\mathbf{y}) \| = G \leq \infty
\]

finite. Map

\[
\mathbf{g} \mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))
\]

differentiable in the Gâteaux sense at point \(\mathbf{x} \)

\[
\partial \mathbf{g} \mathbf{f}(\mathbf{x})(\mathbf{a}) = \partial \mathbf{g}(\mathbf{f}(\mathbf{x}))(\partial \mathbf{f}(\mathbf{x})(\mathbf{a}))
\]

\[
\partial (\mathbf{g} \mathbf{f})(\mathbf{x})(\mathbf{a}) = \mathbf{g}(\partial \mathbf{f}(\mathbf{x})(\mathbf{a})) + \mathbf{g}(\partial \mathbf{f}(\mathbf{x})(\mathbf{a}))
\]

Proof. According to definition 6.2.1

\[
\mathcal{G}(\mathbf{y} + \mathbf{b}) - \mathcal{G}(\mathbf{y}) = \partial \mathcal{G}(\mathbf{y})(\mathbf{b}) + \mathbf{e}_1(\mathbf{b})
\]

where \(\mathcal{G}_1: \mathbb{V} \rightarrow \mathbb{W} \) is such continuous map that

\[
\lim_{{\mathbf{b} \to \mathbf{0}}} \frac{||\mathbf{e}_1(\mathbf{b})||_3}{||\mathbf{b}||_2} = 0
\]

According to definition 6.2.1

\[
\mathcal{G}(\mathbf{x} + \mathbf{a}) - \mathcal{G}(\mathbf{x}) = \partial \mathcal{G}(\mathbf{x})(\mathbf{a}) + \mathbf{e}_2(\mathbf{a})
\]

where \(\mathbf{e}_2: \mathbb{U} \rightarrow \mathbb{V} \) is such continuous map that

\[
\lim_{{\mathbf{a} \to \mathbf{0}}} \frac{||\mathbf{e}_2(\mathbf{a})||_2}{||\mathbf{a}||_1} = 0
\]

According to (6.2.24) increment of vector \(\mathbf{x} \in \mathbb{U} \) in direction \(\mathbf{a} \) leads to increment of vector \(\mathbf{y} \) in direction

\[
\mathbf{e} = \partial \mathcal{G}(\mathbf{x})(\mathbf{a}) + \mathbf{e}_2(\mathbf{a})
\]
According to definition 4.1.1, we get
\[
\frac{\|\partial \mathcal{F}(\mathcal{X})(\mathcal{V}_2(\mathcal{X})) - \mathcal{V}_1(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}_2(\mathcal{X}))\|}{\|\mathcal{V}\|} \leq \lim_{\mathcal{V} \to \mathcal{V}_0}(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}_2(\mathcal{X})) - \mathcal{V}_1(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}_2(\mathcal{X}))\|_3
\]
From (6.2.16) it follows
\[
\lim_{\mathcal{V} \to \mathcal{V}_0}(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}_2(\mathcal{X})) - \mathcal{V}_1(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}_2(\mathcal{X}))\|_3 \leq G \lim_{\mathcal{V} \to \mathcal{V}_0}(\mathcal{V}_1(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}_2(\mathcal{X}))\|_3
\]
According to theorem 6.2.11
\[
\lim_{\mathcal{V} \to \mathcal{V}_0}(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}_2(\mathcal{X})) - \mathcal{V}_1(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}_2(\mathcal{X})) = 0
\]
Therefore,
\[
\lim_{\mathcal{V} \to \mathcal{V}_0}(\mathcal{V}_1(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}_2(\mathcal{X}))\|_3 = 0
\]
From equations (6.2.28), (6.2.29), (6.2.30) it follows
\[
\lim_{\mathcal{V} \to \mathcal{V}_0}(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}_2(\mathcal{X})) - \mathcal{V}_1(\partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}_2(\mathcal{X}))\|_3 = 0
\]
According to definition 6.2.1
\[
\mathcal{F}(\mathcal{X} + \mathcal{V}) - \mathcal{F}(\mathcal{X}) = \partial \mathcal{F}(\mathcal{X})(\mathcal{V}) + \mathcal{V}(\mathcal{X})
\]
where \(\varphi : \mathcal{U} \to \mathcal{W} \) is such continuous map that
\[
\lim_{\pi \to 0} \frac{\|\varphi(\pi)\|_3}{\|\pi\|_1} = 0
\]

Equation (6.2.18) follows from (6.2.27), (6.2.31), (6.2.32).

From equation (6.2.18) and definition 6.2.9 it follows that
\[
\pi, \frac{\partial g f(x)(\pi)}{(\partial^* x)^k} = \frac{\partial f(x)}{(\partial^* x)^k} \frac{\partial g f(x)(\pi)}{(\partial^* x)^k} \frac{\partial f(x)(\pi)}{(\partial^* x)^k} \frac{\partial g f(x)(\pi)}{(\partial^* x)^k} \frac{\partial f(x)(\pi)}{(\partial^* x)^k}
\]
(6.2.33)

Since increment \(\pi \) is arbitrary, then equation (6.2.19) follows from equation (6.2.33).

From equation (6.2.18) and theorem 6.2.3 it follows that
\[
\frac{(st)_0 \partial g f(x)}{\partial x^i} \frac{(st)_1 \partial g f(x)}{\partial x^i} \frac{(s)_0 \partial g f(x)}{\partial x^i} \frac{(s)_1 \partial g f(x)}{\partial x^i} \frac{(t)_0 \partial f(x)}{\partial x^i} \frac{(t)_1 \partial f(x)}{\partial x^i} \frac{(s)_0 \partial g f(x)}{\partial x^i} \frac{(s)_1 \partial g f(x)}{\partial x^i} \frac{(t)_0 \partial f(x)}{\partial x^i} \frac{(t)_1 \partial f(x)}{\partial x^i}
\]
(6.2.34)

(6.2.21), (6.2.22) follow from equation (6.2.34).
CHAPTER 7

Quaternion Algebra

7.1. Linear Function of Complex Field

Theorem 7.1.1 (the Cauchy-Riemann equations). Let us consider complex field C as two-dimensional algebra over real field. Let

(7.1.1) $\cdot c_0 = 1\cdot c_1 = i$

be the basis of algebra C. Then in this basis product has form

(7.1.2) $\cdot c_0^2 = -\cdot c_0$

and structural constants have form

(7.1.3) $\cdot c B_{00} = 1\cdot c B_{01} = 1$

$\cdot c B_{10} = 1\cdot c B_{11} = -1$

Matrix of linear function $y^j = x^j f^j_i$

of complex field over real field satisfies relationship

(7.1.4) $f^0_0 = f^1_1$

(7.1.5) $f^0_1 = -f^1_0$

Proof. Equations (7.1.2) and (7.1.3) follow from equation $i^2 = -1$. Using equation (3.2.17) we get relationships

(7.1.6) $f^0_0 = f^{kr}\cdot c B_{k0}^p\cdot c B_{pr}^0 = f^{0r}\cdot c B_{00}^0\cdot c B_{0r}^0 + f^{1r}\cdot c B_{10}^1\cdot c B_{1r}^0 = f^{00} - f^{11}$

(7.1.7) $f^0_1 = f^{kr}\cdot c B_{k0}^p\cdot c B_{pr}^1 = f^{0r}\cdot c B_{00}^1\cdot c B_{0r}^1 + f^{1r}\cdot c B_{10}^1\cdot c B_{1r}^1 = f^{01} + f^{10}$

(7.1.8) $f^1_0 = f^{kr}\cdot c B_{k1}^p\cdot c B_{pr}^0 = f^{0r}\cdot c B_{01}^1\cdot c B_{0r}^0 + f^{1r}\cdot c B_{11}^1\cdot c B_{1r}^0 = -f^{01} - f^{10}$

(7.1.9) $f^1_1 = f^{kr}\cdot c B_{k1}^p\cdot c B_{pr}^1 = f^{0r}\cdot c B_{01}^1\cdot c B_{1r}^0 + f^{1r}\cdot c B_{11}^1\cdot c B_{0r}^1 = f^{00} + f^{11}$

(7.1.4) follows from equations (7.1.6) and (7.1.9). (7.1.5) follows from equations (7.1.7) and (7.1.8).

Theorem 7.1.2 (the Cauchy-Riemann equations). Since matrix

\[
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix}
\]

is Jacobian matrix of map of complex variable

$x = x^0 + x^1 i \rightarrow y = y^0(x^0, x^1) + y^1(x^0, x^1)i$
over real field, then

\begin{align}
\frac{\partial y^1}{\partial x^0} &= -\frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^0}{\partial x^0} &= \frac{\partial y^1}{\partial x^1}
\end{align}

(7.1.10)

PROOF. The statement of theorem is corollary of theorem 7.1.1. □

Theorem 7.1.3. Derivative of function of complex variable satisfies to equation

\begin{align}
\frac{\partial y}{\partial x^0} + i \frac{\partial y}{\partial x^1} = 0
\end{align}

(7.1.11)

PROOF. Equation

\begin{align}
\frac{\partial y^0}{\partial x^0} + i \frac{\partial y^1}{\partial x^0} + i \frac{\partial y^0}{\partial x^1} - \frac{\partial y^1}{\partial x^1} = 0
\end{align}

follows from equations (7.1.10). □

Equation (7.1.11) is equivalent to equation

\begin{align}
(1 \ i) \begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix} (1 \ i) = 0
\end{align}

(7.1.12)

The Gâteaux derivative of function of complex variable is total differential and has form

\begin{align}
\partial (f(x + yi))(dx, dy) = (1 \ i) \begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix} (dx \ dy)
\end{align}

(7.1.13)

where \(dx, dy \in R\). Therefore, a symbolic equation

\begin{align}
\partial (f(x + yi))(1, i) = 0
\end{align}

(7.1.14)

does not express relation between the Gâteaux derivative with the Cauchy-Riemann equations.

7.2. Quaternion Algebra

In this paper I explore the set of quaternion algebras defined in [8].

Definition 7.2.1. Let \(F\) be field. Extension field \(F(i, j, k)\) is called the quaternion algebra \(E(F, a, b)\) over the field \(F\) if multiplication in algebra \(E\) is defined according to rule

\begin{align}
\begin{array}{c|ccc}
& i & j & k \\
i & a & k & aj \\
j & -k & b & -bi \\
k & -aj & bi & -ab
\end{array}
\end{align}

(7.2.1)

where \(a, b \in F, ab \neq 0\).

Elements of the algebra \(E(F, a, b)\) have form

\[
x = x^0 + x^1 i + x^2 j + x^3 k
\]

\footnote{I follow definition from [8].}
7.3. Linear Function of Division Ring of Quaternions

where \(x^i \in F, i = 0, 1, 2, 3 \). Quaternion

\[\mathbf{x} = x^0 - x^1i - x^2j - x^3k \]

is called conjugate to the quaternion \(x \). We define the norm of the quaternion \(x \) using equation (7.2.2)

\[|x|^2 = x\mathbf{x} = (x^0)^2 - a(x^1)^2 - b(x^2)^2 + ab(x^3)^2 \]

From equation (7.2.2), it follows that \(E(F, a, b) \) is algebra with division only when \(a < 0, b < 0 \). In this case we can renorm basis such that \(a = -1, b = -1 \).

We use symbol \(E(F) \) to denote the quaternion division algebra \(E(F, -1, -1) \) over the field \(F \). Multiplication in algebra \(E(F) \) is defined according to rule (7.2.3)

\[
\begin{array}{ccc}
 i & j & k \\
 -1 & k & -j \\
 j & -k & i \\
 k & j & -i \\
\end{array}
\]

In algebra \(E(F) \), the norm of the quaternion has form (7.2.4)

\[|x|^2 = x\mathbf{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 \]

In this case inverse element has form (7.2.5)

\[x^{-1} = |x|^{-2} \mathbf{x} \]

We will use notation \(H = E(R, -1, -1) \).

The inner automorphism of quaternion algebra \(H \)

\[p \rightarrow qpq^{-1} \]

(7.2.6)

\[q(ix + jy + kz)q^{-1} = ix' + jy' + kz' \]

describes the rotation of the vector with coordinates \(x, y, z \). The norm of quaternion \(q \) is irrelevant, although usually we assume \(|q| = 1 \). If \(q \) is written as sum of scalar and vector

\[q = \cos \alpha + (ia + jb + kc) \sin \alpha \quad a^2 + b^2 + c^2 = 1 \]

then (7.2.6) is a rotation of the vector \((x, y, z) \) about the vector \((a, b, c) \) through an angle \(2\alpha \).

7.3. Linear Function of Division Ring of Quaternions

Theorem 7.3.1. Let us consider division ring of quaternions \(E(F) \) as four-dimensional algebra over field \(F \). Let \(0 \mathbf{e} = 1, 1 \mathbf{e} = i, 2 \mathbf{e} = j, 3 \mathbf{e} = k \) be basis of algebra \(E(F) \). Then in this basis structural constants have form

\[
\begin{array}{cccc}
 00 & B^0 &=& 1 \\
 01 & B^1 &=& 1 \\
 02 & B^2 &=& 1 \\
 03 & B^3 &=& 1 \\
 10 & B^1 &=& 1 \\
 11 & B^0 &=& -1 \\
 12 & B^3 &=& 1 \\
 13 & B^2 &=& -1 \\
 20 & B^2 &=& 1 \\
 21 & B^3 &=& -1 \\
 22 & B^0 &=& -1 \\
 23 & B^1 &=& 1 \\
 30 & B^3 &=& 1 \\
 31 & B^2 &=& 1 \\
 32 & B^1 &=& -1 \\
 33 & B^0 &=& -1 \\
\end{array}
\]

Standard components of \(F \)-linear function and coordinates of corresponding linear map over field \(F \) satisfy relationship

\[\text{See [10], p.643.} \]
7. Quaternion Algebra

Using equation (7.3.5) we get relationships

\[0f^0 = f^{kr} k_0 B^p p_0 B^0 \]
\[= f^{00} B^0 + f^{11} B^1 + f^{22} B^2 + f^{33} B^3 \]
\[= f^{00} - f^{11} - f^{22} - f^{33} \]

\[0f^1 = f^{kr} k_0 B^p p_1 B^1 \]
\[= f^{01} B^1 + f^{10} B^0 + f^{23} B^2 + f^{32} B^3 \]
\[= f^{01} + f^{10} + f^{23} + f^{32} \]

\[0f^2 = f^{kr} k_0 B^p p_2 B^2 \]
\[= f^{02} B^2 + f^{13} B^3 + f^{21} B^1 + f^{30} B^0 \]
\[= f^{02} + f^{13} + f^{21} + f^{30} \]

\[0f^3 = f^{kr} k_0 B^p p_3 B^3 \]
\[= f^{03} B^3 + f^{12} B^2 + f^{21} B^1 + f^{30} B^0 \]
\[= f^{03} + f^{12} + f^{21} + f^{30} \]

\[1f^0 = f^{kr} k_1 B^p p_0 B^0 \]
\[= f^{01} B^1 + f^{10} B^0 + f^{23} B^2 + f^{32} B^3 \]
\[= f^{01} - f^{10} + f^{23} - f^{32} \]

Proof. Value of structural constants follows from multiplication table (7.2.3).
7.3. Linear Function of Division Ring of Quaternions

\[f^1 = f^{kr} \quad k_1 B^p \quad \rho \quad B^1 \]
\[= f^{00} \quad 01 \quad B^3 \quad _{16}B^1 + f^{11} \quad 11 \quad B^0 \quad _{01}B^1 + f^{22} \quad 21 \quad B^3 \quad _{32}B^3 + f^{33} \quad 31 \quad B^2 \quad _{23}B^1 \]
\[= f^{00} - f^{11} + f^{22} + f^{33} \]

\[f^2 = f^{kr} \quad k_1 B^p \quad \rho \quad B^2 \]
\[= f^{03} \quad 01 \quad B^3 \quad _{13}B^2 + f^{12} \quad 11 \quad B^0 \quad _{02}B^2 + f^{21} \quad 21 \quad B^3 \quad _{31}B^2 + f^{30} \quad 31 \quad B^2 \quad _{20}B^2 \]
\[= -f^{03} - f^{12} - f^{21} + f^{30} \]

\[f^3 = f^{kr} \quad k_1 B^p \quad \rho \quad B^3 \]
\[= f^{02} \quad 01 \quad B^3 \quad _{12}B^3 + f^{13} \quad 11 \quad B^0 \quad _{03}B^3 + f^{20} \quad 21 \quad B^3 \quad _{30}B^3 + f^{31} \quad 31 \quad B^2 \quad _{21}B^3 \]
\[= f^{02} - f^{13} - f^{20} - f^{31} \]

\[f^0 = f^{kr} \quad k_2 B^0 \quad \rho \quad B^0 \]
\[= f^{02} \quad 02 \quad B^2 \quad _{23}B^0 + f^{13} \quad 12 \quad B^3 \quad _{33}B^0 + f^{20} \quad 22 \quad B^0 \quad _{00}B^0 + f^{31} \quad 32 \quad B^1 \quad _{11}B^0 \]
\[= -f^{02} - f^{13} - f^{20} + f^{31} \]

\[f^1 = f^{kr} \quad k_2 B^p \quad \rho \quad B^1 \]
\[= f^{03} \quad 02 \quad B^3 \quad _{23}B^1 + f^{12} \quad 12 \quad B^3 \quad _{32}B^1 + f^{21} \quad 22 \quad B^0 \quad _{01}B^1 + f^{30} \quad 32 \quad B^1 \quad _{10}B^1 \]
\[= f^{03} - f^{12} - f^{21} - f^{30} \]

\[f^2 = f^{kr} \quad k_2 B^p \quad \rho \quad B^2 \]
\[= f^{00} \quad 02 \quad B^2 \quad _{26}B^2 + f^{11} \quad 12 \quad B^3 \quad _{31}B^2 + f^{22} \quad 22 \quad B^0 \quad _{02}B^2 + f^{33} \quad 32 \quad B^1 \quad _{13}B^2 \]
\[= f^{00} + f^{11} - f^{22} + f^{33} \]

\[f^3 = f^{kr} \quad k_2 B^p \quad \rho \quad B^3 \]
\[= f^{01} \quad 02 \quad B^2 \quad _{21}B^3 + f^{10} \quad 12 \quad B^3 \quad _{30}B^3 + f^{23} \quad 22 \quad B^0 \quad _{03}B^3 + f^{32} \quad 32 \quad B^1 \quad _{12}B^3 \]
\[= -f^{01} + f^{10} - f^{23} - f^{32} \]

\[f^0 = f^{kr} \quad k_3 B^p \quad \rho \quad B^0 \]
\[= f^{03} \quad 03 \quad B^3 \quad _{33}B^0 + f^{12} \quad 13 \quad B^2 \quad _{22}B^0 + f^{21} \quad 23 \quad B^1 \quad _{11}B^0 + f^{30} \quad 33 \quad B^0 \quad _{00}B^0 \]
\[= -f^{03} + f^{12} - f^{21} - f^{30} \]

\[f^1 = f^{kr} \quad k_3 B^p \quad \rho \quad B^1 \]
\[= f^{02} \quad 03 \quad B^3 \quad _{32}B^1 + f^{13} \quad 13 \quad B^2 \quad _{23}B^1 + f^{20} \quad 23 \quad B^0 \quad _{01}B^1 + f^{31} \quad 33 \quad B^0 \quad _{01}B^1 \]
\[= -f^{02} - f^{13} - f^{20} - f^{31} \]

\[f^2 = f^{kr} \quad k_3 B^p \quad \rho \quad B^2 \]
\[= f^{01} \quad 03 \quad B^3 \quad _{31}B^2 + f^{10} \quad 13 \quad B^2 \quad _{20}B^2 + f^{23} \quad 23 \quad B^1 \quad _{13}B^2 + f^{32} \quad 33 \quad B^0 \quad _{02}B^2 \]
\[= f^{01} - f^{10} - f^{23} - f^{32} \]
Let us write equation (7.3.9) as product of matrices
\[
\begin{pmatrix}
0 & 0 & f^1 & 0 \\
1 & f^1 & 0 & 0 \\
2 & 0 & f^2 & 0 \\
3 & 0 & 0 & f^3
\end{pmatrix}
= \begin{pmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{00} \\
f^{11} \\
f^{22} \\
f^{33}
\end{pmatrix}
\]

Let us write equation (7.3.3) as product of matrices
\[
\begin{pmatrix}
0 & f^1 \\
1 & 0 \\
2 & f^3 \\
3 & f^2
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
-1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{01} \\
f^{10} \\
f^{23} \\
f^{32}
\end{pmatrix}
\]
Let us write equation (7.3.5) as product of matrices
\[
\begin{pmatrix}
0 & f^2 \\
1 & f^3 \\
2 & f^0 \\
3 & f^1
\end{pmatrix}
= \begin{pmatrix}
1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & -1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 & f^2 \\
f^3 & 1 \\
f^0 & -1 \\
f^1 & 1
\end{pmatrix}
\]
(7.3.12)

Let us write equation (7.3.7) as product of matrices
\[
\begin{pmatrix}
0 & f^3 \\
1 & f^2 \\
2 & f^1 \\
3 & f^0
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
0 & f^3 \\
f^2 & 1 \\
f^1 & -1 \\
f^0 & 1
\end{pmatrix}
\]
(7.3.13)

We join equations (7.3.10), (7.3.11), (7.3.12), (7.3.13) into equation (7.3.9).

7.4. Differentiable Map of Division Ring of Quaternions

Theorem 7.4.1. Since matrix \(\frac{\partial y}{\partial x} \) is Jacobian matrix of map \(x \to y \) of division ring of quaternions over real field, then
\[
\begin{align*}
\frac{\partial y^0}{\partial x^0} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^1}{\partial x} - \frac{\partial y^2}{\partial x} - \frac{\partial y^3}{\partial x} \\
\frac{\partial y^1}{\partial x^1} &= \frac{\partial y^1}{\partial x} + \frac{\partial y^2}{\partial x} + \frac{\partial y^3}{\partial x} \\
\frac{\partial y^2}{\partial x^2} &= \frac{\partial y^0}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^2}{\partial x} + \frac{\partial y^3}{\partial x} \\
\frac{\partial y^3}{\partial x^3} &= \frac{\partial y^0}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^2}{\partial x} + \frac{\partial y^3}{\partial x}
\end{align*}
\]
(7.4.1)
\[
\begin{align*}
7. \text{ Quaternion Algebra}

\frac{\partial y^1}{\partial x^0} &= \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} - \frac{\partial y^1}{\partial x} \\
\frac{\partial y^2}{\partial x^0} &= \frac{\partial y^2}{\partial x} + \frac{\partial y^2}{\partial x} + \frac{\partial y^2}{\partial x} - \frac{\partial y^2}{\partial x} \\
\frac{\partial y^3}{\partial x^0} &= \frac{\partial y^3}{\partial x} + \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} \\
\frac{\partial y^0}{\partial x^1} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^0}{\partial x} + \frac{\partial y^0}{\partial x} - \frac{\partial y^0}{\partial x} \\
\frac{\partial y^1}{\partial x^1} &= \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} - \frac{\partial y^1}{\partial x} \\
\frac{\partial y^2}{\partial x^1} &= \frac{\partial y^2}{\partial x} + \frac{\partial y^2}{\partial x} - \frac{\partial y^2}{\partial x} - \frac{\partial y^2}{\partial x} \\
\frac{\partial y^3}{\partial x^1} &= \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} + \frac{\partial y^3}{\partial x} \\
\frac{\partial y^0}{\partial x^2} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^0}{\partial x} + \frac{\partial y^0}{\partial x} - \frac{\partial y^0}{\partial x} \\
\frac{\partial y^1}{\partial x^2} &= \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} - \frac{\partial y^1}{\partial x} \\
\frac{\partial y^2}{\partial x^2} &= \frac{\partial y^2}{\partial x} + \frac{\partial y^2}{\partial x} - \frac{\partial y^2}{\partial x} - \frac{\partial y^2}{\partial x} \\
\frac{\partial y^3}{\partial x^2} &= \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} + \frac{\partial y^3}{\partial x} \\
\frac{\partial y^0}{\partial x^3} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^0}{\partial x} + \frac{\partial y^0}{\partial x} - \frac{\partial y^0}{\partial x} \\
\frac{\partial y^1}{\partial x^3} &= \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^1}{\partial x} - \frac{\partial y^1}{\partial x} \\
\frac{\partial y^2}{\partial x^3} &= \frac{\partial y^2}{\partial x} + \frac{\partial y^2}{\partial x} - \frac{\partial y^2}{\partial x} - \frac{\partial y^2}{\partial x} \\
\frac{\partial y^3}{\partial x^3} &= \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} - \frac{\partial y^3}{\partial x} + \frac{\partial y^3}{\partial x}
\end{align*}
\]
7.4. Differentiable Map of Division Ring of Quaternions

\[
\begin{align*}
\frac{\partial^{30} y}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} - \frac{\partial y^3}{\partial x^3} \\
\frac{\partial^{31} y}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial^{32} y}{\partial x} &= \frac{\partial y^0}{\partial x^0} - \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} - \frac{\partial y^3}{\partial x^3} \\
\frac{\partial^{33} y}{\partial x} &= \frac{\partial y^0}{\partial x^0} - \frac{\partial y^1}{\partial x^1} - \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3}
\end{align*}
\]

(7.4.7)

\[
\begin{align*}
\frac{\partial^{20} y}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} - \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial^{21} y}{\partial x} &= \frac{\partial y^0}{\partial x^0} - \frac{\partial y^1}{\partial x^1} - \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial^{22} y}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} - \frac{\partial y^2}{\partial x^2} - \frac{\partial y^3}{\partial x^3} \\
\frac{\partial^{23} y}{\partial x} &= -\frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} - \frac{\partial y^2}{\partial x^2} - \frac{\partial y^3}{\partial x^3}
\end{align*}
\]

(7.4.8)

Proof. The statement of theorem is corollary of theorem 7.3.1.

Theorem 7.4.2. Quaternionic map

\[f(x) = \overline{x} \]

has the Gâteaux derivative

\[\partial f(h) = -\frac{1}{2}(h + ihi + jhj + khk) \]

Proof. Jacobian matrix of the map \(f \) has form

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\]

From equations (7.4.5) it follows that

\[\frac{\partial^{00} y}{\partial x} = \frac{\partial^{11} y}{\partial x} = \frac{\partial^{22} y}{\partial x} = \frac{\partial^{33} y}{\partial x} = \frac{1}{2} \]

From equations (7.4.6), (7.4.7), (7.4.8) it follows that

\[\frac{\partial^{ij} y}{\partial x} = 0 \quad i \neq j \]

Equation (7.4.9) follows from equations (5.2.15), (7.4.10), (7.4.11).

Theorem 7.4.3. Quaternion conjugation satisfies equation

\[\overline{x} = -\frac{1}{2}(x + ixi + jxj + kxk) \]

Proof. The statement of theorem follows from theorem 7.4.2 and example 8.3.4.
Theorem 7.4.4. The norm of quaternion satisfies equations\(^7.3\)
\[
\partial(|x|^2)(h) = x\overline{h} + \overline{x}h \tag{7.4.12}
\]
\[
\partial(|x|)(h) = \frac{1}{2\sqrt{x\overline{h} + \overline{x}h}} \tag{7.4.13}
\]

Proof. The equation \((7.4.12)\) follows from theorem 7.4.2 and equations \((7.2.4)\), \((5.2.23)\). Since \(x\overline{h} + \overline{x}h \in R\), than the equation \((7.4.13)\) follows from the equation \((7.4.12)\). \(\square\)

Theorem 7.4.5. Since matrix \(\left(\begin{array}{cccc} \frac{\partial y^0}{\partial x^0} & \frac{\partial y^1}{\partial x^0} & \frac{\partial y^2}{\partial x^0} & \frac{\partial y^3}{\partial x^0} \\ \frac{\partial y^0}{\partial x^1} & \frac{\partial y^1}{\partial x^1} & \frac{\partial y^2}{\partial x^1} & \frac{\partial y^3}{\partial x^1} \\ \frac{\partial y^0}{\partial x^2} & \frac{\partial y^1}{\partial x^2} & \frac{\partial y^2}{\partial x^2} & \frac{\partial y^3}{\partial x^2} \\ \frac{\partial y^0}{\partial x^3} & \frac{\partial y^1}{\partial x^3} & \frac{\partial y^2}{\partial x^3} & \frac{\partial y^3}{\partial x^3} \end{array}\right)\) is Jacobian matrix of map \(x \rightarrow y\) of division ring of quaternions over real field, then
\[
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^1}{\partial x^0} & \frac{\partial y^2}{\partial x^0} & \frac{\partial y^3}{\partial x^0} \\
\frac{\partial y^0}{\partial x^1} & \frac{\partial y^1}{\partial x^1} & \frac{\partial y^2}{\partial x^1} & \frac{\partial y^3}{\partial x^1} \\
\frac{\partial y^0}{\partial x^2} & \frac{\partial y^1}{\partial x^2} & \frac{\partial y^2}{\partial x^2} & \frac{\partial y^3}{\partial x^2} \\
\frac{\partial y^0}{\partial x^3} & \frac{\partial y^1}{\partial x^3} & \frac{\partial y^2}{\partial x^3} & \frac{\partial y^3}{\partial x^3}
\end{pmatrix}
= \begin{pmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}
\begin{pmatrix} \frac{\partial^3 y}{\partial x^3} & \frac{\partial^2 y}{\partial x^2} & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \\ \frac{\partial^3 y}{\partial x^3} & \frac{\partial^2 y}{\partial x^2} & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \\ \frac{\partial^3 y}{\partial x^3} & \frac{\partial^2 y}{\partial x^2} & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \\ \frac{\partial^3 y}{\partial x^3} & \frac{\partial^2 y}{\partial x^2} & \frac{\partial y}{\partial x} & \frac{\partial y}{\partial x} \end{pmatrix}
\]

Proof. The statement of theorem is corollary of theorem 7.3.2. \(\square\)

Theorem 7.4.6. We can identify quaternion \((7.4.14)\)
\[
a = a^0 + a^1 i + a^2 j + a^3 k
\]
and matrix
\[
J_a = \begin{pmatrix} a^0 & -a^1 & -a^2 & -a^3 \\ a^1 & a^0 & -a^3 & a^2 \\ a^2 & a^3 & a^0 & -a^1 \\ a^3 & -a^2 & a^1 & a^0 \end{pmatrix}
\]

Proof. The product of quaternions \((7.4.14)\) and
\[
x = x^0 + x^1 i + x^2 j + x^3 k
\]
has form
\[
a x = a^0 x^0 - a^1 x^1 - a^2 x^2 - a^3 x^3 + \left(a^0 x^1 + a^1 x^0 + a^2 x^3 - a^3 x^2\right)i
\]
\[
+ \left(a^0 x^2 + a^2 x^0 + a^3 x^1 - a^1 x^3\right)j + \left(a^0 x^3 + a^3 x^0 + a^1 x^2 - a^2 x^1\right)k
\]
\(^7.3\)The statement of the theorem is similar to example X, [11], p. 455.
Therefore, function \(f_a(x) = ax \) has Jacobian matrix \((7.4.15)\). It is evident that \(f_a \circ f_b = f_{ab} \). Similar equation is true for matrices

\[
\begin{pmatrix}
 a^0 & -a^1 & -a^2 & -a^3 \\
 a^1 & a^0 & -a^3 & a^2 \\
 a^2 & a^3 & a^0 & -a^1 \\
 a^3 & -a^2 & a^1 & a^0 \\
\end{pmatrix}
\begin{pmatrix}
 b^0 & -b^1 & -b^2 & -b^3 \\
 b^1 & b^0 & -b^3 & b^2 \\
 b^2 & b^3 & b^0 & -b^1 \\
 b^3 & -b^2 & b^1 & b^0 \\
\end{pmatrix}
\begin{pmatrix}
 a^0 b^0 - a^1 b^1 - a^2 b^2 - a^3 b^3 \\
 -a^0 b^0 - a^1 b^1 + a^2 b^2 + a^3 b^3 \\
 a^0 b^0 + a^1 b^1 - a^2 b^2 - a^3 b^3 \\
 a^0 b^0 + a^1 b^1 + a^2 b^2 + a^3 b^3 \\
\end{pmatrix}
\]

Therefore, we can identify the quaternion \(a \) and the matrix \(J_a \).

\(\square \)
CHAPTER 8

Derivative of Second Order of Map of Division Ring

8.1. Derivative of Second Order of Map of Division Ring

Let D be valued division ring of characteristic 0. Let
\[f : D \to D \]
function differentiable in the Gâteaux sense. According to remark 5.2.4 the Gâteaux derivative is map
\[\partial f : D \to \mathcal{L}(D; D) \]
According to theorems 3.1.2, 3.1.3 and definition 5.1.13 set $\mathcal{L}(D; D)$ is normed D-vector space. Therefore, we may consider the question, if map ∂f is differentiable in the Gâteaux sense.

According to definition 6.2.1
\begin{equation}
(8.1.1) \quad \partial f(x + a_2)(a_1) - \partial f(x)(a_1) = \partial(\partial f(x)(a_1))(a_2) + \sigma_2(a_2)
\end{equation}
where $\sigma_2 : D \to \mathcal{L}(D; D)$ is such continuous map, that
\[\lim_{a_2 \to 0} \frac{\|\sigma_2(a_2)\|}{|a_2|} = 0 \]
According to definition 6.2.1 map $\partial(\partial f(x)(a_1))(a_2)$ is linear map of variable a_2. From equation (8.1.1) it follows that map $\partial(\partial f(x)(a_1))(a_2)$ is linear map of variable a_1.

Definition 8.1.1. Polylinear map
\begin{equation}
(8.1.2) \quad \partial^2 f(x)(a_1; a_2) = \frac{\partial^2 f(x)}{\partial x^2}(a_1; a_2) = \partial(\partial f(x)(a_1))(a_2)
\end{equation}
is called the Gâteaux derivative of second order of map f. \hfill \Box

Remark 8.1.2. According to definition 8.1.1 for given x the Gâteaux differential of second order $\partial^2 f(x) \in \mathcal{L}(D, D; D)$. Therefore, the Gâteaux differential of second order of map f is map
\[\partial^2 f : D \to \mathcal{L}(D, D; D) \]

Theorem 8.1.3. It is possible to represent the Gâteaux differential of second order of map f as
\begin{equation}
(8.1.3) \quad \partial^2 f(x)(a_1; a_2) = \frac{(s_0) \partial^2 f(x)}{\partial x^2} \sigma_s(a_1) + \frac{(s_1) \partial^2 f(x)}{\partial x^2} \sigma_s(a_2) + \frac{(s_0) \partial^2 f(x)}{\partial x^2} \sigma_s(a_1) \frac{(s_1) \partial^2 f(x)}{\partial x^2}
\end{equation}

Proof. Corollary of definition 8.1.1 and theorem 4.2.3. \hfill \Box
Definition 8.1.4. Expression \(\frac{\partial^2 f(x)}{\partial x^2} \), \(p = 0, 1 \), is called component of the Gâteaux derivative of map \(f(x) \).

By induction, assuming that we defined the Gâteaux derivative \(\partial^{n-1} f(x) \) of order \(n - 1 \), we define

\[
\partial^n f(x)(a_1; \ldots; a_n) = \frac{\partial^n f(x)}{\partial x^n}(a_1; \ldots; a_n) = \partial(\partial^{n-1} f(x)(a_1; \ldots; a_{n-1}))(a_n)
\]

the Gâteaux derivative of order \(n \) of map \(f \). We also assume \(\partial^0 f(x) = f(x) \).

8.2. Taylor Series

Let us consider polynomial in one variable over division ring \(D \) of power \(n \), \(n > 0 \). We want to explore the structure of monomial \(p_k(x) \) of polynomial of power \(k \).

It is evident that monomial of power 0 has form \(a_0, a_0 \in D \). Let \(k > 0 \). Let us prove that

\(p_k(x) = p_{k-1}(x)xa_k \)

where \(a_k \in D \). Actually, last factor of monomial \(p_k(x) \) is either \(a_k \in D \), or has form \(x^l, l \geq 1 \). In the later case we assume \(a_k = 1 \). Factor preceding \(a_k \) has form \(x^l, l \geq 1 \). We can represent this factor as \(x^{l-1}x \). Therefore, we proved the statement.

In particular, monomial of power 1 has form \(p_1(x) = a_0xa_1 \).

Without loss of generality, we assume \(k = n \).

Theorem 8.2.1. For any \(m > 0 \) the following equation is true

\[
\partial^m(f(x)x)(h_1; \ldots; h_m) = \partial^m f(x)(h_1; \ldots; h_m)x + \partial^{m-1} f(x)(h_1; \ldots; h_{m-1})h_m \\
+ \partial^{m-1} f(x)(\widehat{h_1}; \ldots; h_{m-1}; h_m)h_1 + \ldots \\
+ \partial^{m-1} f(x)(h_1; \ldots; h_{m-1}; h_m)h_{m-1}
\]

where symbol \(\widehat{h} \) means absence of variable \(h \) in the list.

PROOF. For \(m = 1 \), this is corollary of equation (5.2.23)

\[
\partial(f(x)x)(h_1) = \partial f(x)(h_1)x + f(x)h_1
\]

Assume, (8.2.1) is true for \(m - 1 \). Than

\[
\partial^{m-1}(f(x)x)(h_1; \ldots; h_{m-1}) = \partial^{m-1} f(x)(h_1; \ldots; h_{m-1})x + \partial^{m-2} f(x)(h_1; \ldots; h_{m-2})h_{m-1} \\
+ \partial^{m-2} f(x)(\widehat{h_1}; \ldots; h_{m-2}; h_{m-1})h_1 + \ldots \\
+ \partial^{m-2} f(x)(h_1; \ldots; h_{m-2}; h_{m-1})h_{m-2}
\]

\(8.1 \) We suppose

\[
\frac{\partial^2 f(x)}{\partial x^2} = \frac{(s)p\partial^2 f(x)}{\partial x^2} \]
Using equations (5.2.23) and (5.3.2) we get
\[
\partial^n(f(x))_{(h_1; \ldots; h_m)} = \partial^n f(x)_{(h_1; \ldots; h_m)} x + \partial^{n-1} f(x)_{(h_1; \ldots; h_m)} h_m
\]
\[
+ \partial^{n-2} f(x)_{(h_1, \ldots, h_m)} h_1 + \ldots
\]
(8.2.3)
\[
+ \partial^{n-2} f(x)_{(h_1, \ldots, h_m)} h_1 \cdot h_m
\]
The difference between equations (8.2.1) and (8.2.3) is only in form of presentation. We proved the theorem.

\textbf{Theorem 8.2.2.} The Gâteaux derivative $\partial^n p_n(x)_{(h_1, \ldots, h_m)}$ is symmetric polynomial with respect to variables h_1, \ldots, h_m.

\textbf{Proof.} To prove the theorem we consider algebraic properties of the Gâteaux derivative and give equivalent definition. We start from construction of monomial.

Assume $p_n(x)$ we build symmetric polynomial $r_n(x)$ according to following rules

- If $p_n(x) = a_0 x a_1$, then $r_n(x) = a_0 x a_1$
- If $p_n(x) = p_{n-1}(x) a_n$, then
 \[
 r_n(x_1, \ldots, x_n) = r_{n-1}(x_1, \ldots, x_{n-1}) x_n a_n
 \]
 where square brackets express symmetrization of expression with respect to variables x_1, \ldots, x_n.

It is evident that
\[
p_n(x) = r_n(x_1, \ldots, x_n) \quad x_1 = \ldots = x_n = x
\]
We define the Gâteaux derivative of power k according to rule
\[
\partial^k p_n(x)_{(h_1, \ldots, h_k)} = r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x
\]
(8.2.4)
According to construction, polynomial $r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n)$ is symmetric with respect to variables $h_1, \ldots, h_k, x_{k+1}, \ldots, x_n$. Therefore, polynomial (8.2.4) is symmetric with respect to variables h_1, \ldots, h_k.

For $k = 1$, we will prove that definition (8.2.4) of the Gâteaux derivative coincides with definition (5.2.18).

For $n = 1$, $r_1(h_1) = a_0 h_1 a_1$. This expression coincides with expression of the Gâteaux derivative in theorem 5.3.3.

Let the statement be true for $n \leq 1$. The following equation is true
\[
r_n(h_1, x_2, \ldots, x_n) = r_{n-1}(h_1, x_2, \ldots, x_{n-1}) a_n + r_{n-1}(x_2, \ldots, x_n) a_n
\]
(8.2.5)
Assume $x_2 = \ldots = x_n = x$. According to suggestion of induction, from equations (8.2.4), (8.2.5) it follows that
\[
r_n(h_1, x_2, \ldots, x_n) = \partial p_{n-1}(x)_{(h_1)} x a_n + p_{n-1}(x)_{(h_1)} a_n
\]
According to theorem 8.2.1
\[
r_n(h_1, x_2, \ldots, x_n) = \partial p_n(x)_{(h_1)}
\]
This proves the equation (8.2.4) for $k = 1$.

Let us prove now that definition (8.2.4) of the Gâteaux derivative coincides with definition (8.1.4) for $k > 1$.
According to definition (8.2.3)

\[R_{n-k}(x_1, ..., x_n) = r_n(h_1, ..., h_{k-1}, x_k, ..., x_n) \]

Assume \(P_{n-k}(x) = R_{n-k}(x_1, ..., x_n), x_k = ... = x_n = x. \) Therefore

\[P_{n-k}(x) = \partial^{k-1}p_n(x)(h_1; ...; h_{k-1}) \]

According to definition of the Gateaux derivative (8.1.4)

\[\partial P_{n-k}(x)(h_k) = \partial(\partial^{k-1}p_n(x)(h_1; ...; h_{k-1}))(h_k) \]

According to definition (8.2.4) of the Gateaux derivative

\[\partial P_{n-k}(x)(h_k) = R_{n-k}(h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \]

According to definition (8.2.6), from equation (8.2.8) it follows that

\[\partial P_{n-k}(x)(h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \]

From comparison of equations (8.2.7) and (8.2.9) it follows that

\[\partial^k p_n(x)(h_1; ...; h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \]

Therefore equation (8.2.4) is true for any \(k \) and \(n \).

We proved the statement of theorem. \(\square \)

Theorem 8.2.3. For any \(n \geq 0 \) following equation is true

\[\partial^{n+1}p_n(x)(h_1; ...; h_{n+1}) = 0 \]

Proof. Since \(p_0(x) = a_0, a_0 \in D, \) then for \(n = 0 \) theorem is corollary of theorem 5.3.1. Let statement of theorem is true for \(n - 1 \). According to theorem 8.2.1 when \(f(x) = p_{n-1}(x) \) we get

\[\partial^{n+1}p_n(x)(h_1; ...; h_{n+1}) = \partial^{n+1}(p_{n-1}(x)xa_n)(h_1; ...; h_{n+1}) \]

\[= \partial^{n+1}p_{n-1}(x)(h_1; ...; h_m)xa_n \]

\[+ \partial^n p_{n-1}(x)(h_1; ...; h_{m-1})h_m a_n \]

\[+ \partial^n p_{n-1}(x)(\hat{h}_1; ...; h_{m-1}; h_m)h_1 a_n + ... \]

\[+ \partial^{m-1} p_{n-1}(x)(h_1; ...; \hat{h}_{m-1}; h_m)h_{m-1}a_n \]

According to suggestion of induction all monomials are equal 0. \(\square \)

Theorem 8.2.4. If \(m < n \), then following equation is true

\[\partial^m p_n(0)(h) = 0 \]

Proof. For \(n = 1 \) following equation is true

\[\partial^0 p_1(0) = a_0 xa_1 = 0 \]
Assume that statement is true for \(n - 1 \). Then according to theorem 8.2.1
\[
\frac{\partial^n}{\partial x^n}(p_{n-1}(x)\alpha_n)(h_1; \ldots; h_m)
\]
\[
=\frac{\partial^n}{\partial x^n}p_{n-1}(x)(h_1; \ldots; h_m)\alpha_n + \frac{\partial^{n-1}}{\partial x^{n-1}}p_{n-1}(x)(h_1; \ldots; h_m)h_m\alpha_n
\]
\[
+\frac{\partial^{n-1}}{\partial x^{n-1}}p_{n-1}(x)(h_1; \ldots; h_m)h_m a_1 + \ldots
\]
\[
+\frac{\partial^{n-1}}{\partial x^{n-1}}p_{n-1}(x)(h_1; \ldots; h_m)h_m a_n
\]
First term equal 0 because \(x = 0 \). Because \(m - 1 < n - 1 \), then rest terms equal 0 according to suggestion of induction. We proved the statement of theorem. \(\square \)

When \(h_1 = \ldots = h_n = h \), we assume
\[
\frac{\partial^n f(x)}{\partial x^n}(h) = \frac{\partial^n f(x)}{\partial x^n}(h_1; \ldots; h_n)
\]
This notation does not create ambiguity, because we can determine function according to number of arguments.

Theorem 8.2.5. For any \(n > 0 \) following equation is true
\[
\frac{\partial^n}{\partial x^n}p_n(x)(h) = n!p_n(h)
\]

Proof. For \(n = 1 \) following equation is true
\[
\frac{\partial}{\partial x}p_1(x)(h) = \frac{\partial}{\partial x}(a_0\alpha_1)(h) = a_0 h a_1 = 1! p_1(h)
\]
Assume the statement is true for \(n - 1 \). Then according to theorem 8.2.1
\[
\frac{\partial^n}{\partial x^n}p_n(x)(h) = \frac{\partial^n}{\partial x^n}p_{n-1}(x)(h)\alpha_n + \frac{\partial^{n-1}}{\partial x^{n-1}}p_{n-1}(x)(h)h_a_n
\]
\[
+\ldots + \frac{\partial^{n-1}}{\partial x^{n-1}}p_{n-1}(x)(h)h_a_n
\]
First term equal 0 according to theorem 8.2.3. The rest \(n \) terms equal, and according to suggestion of induction from equation (8.2.13) it follows
\[
\frac{\partial^n}{\partial x^n}p_n(x)(h) = n\frac{\partial^{n-1}}{\partial x^{n-1}}p_{n-1}(x)(h)ha_n = n(n-1)!p_{n-1}(h)ha_n = n!p_n(h)
\]
Therefore, statement of theorem is true for any \(n \). \(\square \)

Let \(p(x) \) be polynomial of power \(n \).\(^8\)
\[
p(x) = p_0 + p_{1i_1}(x) + \ldots + p_{ni_n}(x)
\]
We assume sum by index \(i_k \) which enumerates terms of power \(k \). According to theorem 8.2.3, 8.2.4, 8.2.5
\[
\frac{\partial^k}{\partial x^k}p(x)(h_1; \ldots; h_k) = k!p_{ki_k}(x)
\]
Therefore, we can write
\[
p(x) = p_0 + (n!)^{-1}\partial p(0)(x) + (2n!)^{-1}\partial^2 p(0)(x) + \ldots + (n!)^{-1}\partial^n p(0)(x)
\]
This representation of polynomial is called **Taylor polynomial**. If we consider substitution of variable \(x = y - y_0 \), then considered above construction remain true for polynomial
\[
p(y) = p_0 + p_{1i_1}(y - y_0) + \ldots + p_{ni_n}(y - y_0)
\]
Therefore
\[
p(y) = p_0 + (n!)^{-1}\partial p(y_0)(y - y_0) + (2n!)^{-1}\partial^2 p(y_0)(y - y_0) + \ldots + (n!)^{-1}\partial^n p(y_0)(y - y_0)
\]
\(^8\)I consider Taylor polynomial for polynomials by analogy with construction of Taylor polynomial in [7], p. 246.
Assume that function \(f(x) \) is differentiable in the Gâteaux sense at point \(x_0 \) up to any order.\(^8\)

Theorem 8.2.6. If function \(f(x) \) holds

\[
(8.2.14) \quad f(x_0) = \partial f(x_0)(h) = \ldots = \partial^n f(x_0)(h) = 0
\]

then for \(t \to 0 \) expression \(f(x + th) \) is infinitesimal of order higher than \(n \) with respect to \(t \)

\[
f(x_0 + th) = o(t^n)
\]

Proof. When \(n = 1 \) this statement follows from equation (5.2.13).

Let statement be true for \(n - 1 \). Map

\[
f_1(x) = \partial f(x)(h)
\]

satisfies to condition

\[
f_1(x_0) = \partial f_1(x_0)(h) = \ldots = \partial^{n-1} f_1(x_0)(h) = 0
\]

According to suggestion of induction

\[
f_1(x_0 + th) = o(t^{n-1})
\]

Then equation (5.2.12) gets form

\[
o(t^{n-1}) = \lim_{t \to 0, t \in \mathbb{R}} (t^{-1} f(x + th))
\]

Therefore,

\[
f(x + th) = o(t^n)
\]

\[\square\]

Let us form polynomial

\[
(8.2.15) \quad p(x) = f(x_0) + (1!)^{-1} \partial f(x_0)(x - x_0) + \ldots + (n!)^{-1} \partial^n f(x_0)(x - x_0)
\]

According to theorem 8.2.6

\[
f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n)
\]

Therefore, polynomial \(p(x) \) is good approximation of map \(f(x) \).

If map \(f(x) \) has the Gâteaux derivative of any order, the passing to the limit \(n \to \infty \), we get expansion into series

\[
f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \partial^n f(x_0)(x - x_0)
\]

which is called Taylor series.

\(^8\)I explore construction of Taylor series by analogy with construction of Taylor series in [7], p. 248, 249.
8.3. Integral

Concept of integral has different aspect. In this section we consider integration as operation inverse to differentiation. As a matter of fact, we consider procedure of solution of ordinary differential equation

\[\partial f(x)(h) = F(x; h) \]

Example 8.3.1. I start from example of differential equation over real field.

(8.3.1) \[y' = 3x^2 \]
(8.3.2) \[x_0 = 0 \quad y_0 = 0 \]

Differentiating one after another equation (8.3.1), we get the chain of equations

(8.3.3) \[y'' = 6x \]
(8.3.4) \[y''' = 6 \]
(8.3.5) \[y^{(n)} = 0 \quad n > 3 \]

From equations (8.3.1), (8.3.2), (8.3.3), (8.3.4), (8.3.5) it follows expansion into Taylor series

\[y = x^3 \]

Example 8.3.2. Let us consider similar differential equation over division ring

(8.3.6) \[\partial(y)(h) = hx^2 + xhx + x^2h \]
(8.3.7) \[x_0 = 0 \quad y_0 = 0 \]

Differentiating one after another equation (8.3.6), we get the chain of equations

(8.3.8) \[\partial^2(y)(h_1; h_2) = h_1h_2x + h_1xh_2 + h_2h_1x + xh_1h_2 + xh_2h_1 \]
(8.3.9) \[\partial^3(y)(h_1; h_2; h_3) = h_1h_2h_3 + h_1h_3h_2 + h_2h_1h_3 + h_3h_1h_2 + h_2h_3h_1 + h_3h_2h_1 \]
(8.3.10) \[\partial^n(y)(h_1; \ldots; h_n) = 0 \quad n > 3 \]

From equations (8.3.6), (8.3.7), (8.3.8), (8.3.9), (8.3.10) expansion into Taylor series follows

\[y = x^3 \]

Remark 8.3.3. Differential equation

(8.3.11) \[\partial(y)(h) = 3hx^2 \]
(8.3.12) \[x_0 = 0 \quad y_0 = 0 \]

also leads to answer \(y = x^3 \). It is evident that this map does not satisfies differential equation. However, contrary to theorem 8.2.2 second derivative is not symmetric polynomial. This means that equation (8.3.11) does not possess a solution.
Example 8.3.4. It is evident that, if function satisfies to differential equation
\begin{equation}
\partial(y)(h) = (s)0 f h (s)1 f
\end{equation}
then The Gâteaux derivative of second order
\[\partial^2 f(x)(h_1; h_2) = 0 \]
Than, if initial condition is \(y(0) = 0 \), then differential equation (8.3.13) has solution
\[y = (s)0 f x (s)1 f \]

8.4. Exponent

In this section we consider one of possible models of exponent.
In a field we can define exponent as solution of differential equation
\begin{equation}
y' = y
\end{equation}
It is evident that we cannot write such equation for division ring. However we can use equation
\begin{equation}
\partial(y)(h) = y'h
\end{equation}
From equations (8.4.1), (8.4.2) it follows
\begin{equation}
\partial(y)(h) = yh
\end{equation}
This equation is closer to our goal, howevver there is the question: in which order we should multiply \(y \) and \(h \)? To answer this question we change equation
\begin{equation}
\partial(y)(h) = \frac{1}{2}(yh + hy)
\end{equation}
Hence, our goal is to solve differential equation (8.4.4) with initial condition \(y(0) = 1 \).

For the statement and proof of the theorem 8.4.1 I introduce following notation.
Let
\[\sigma = \begin{pmatrix} y & h_1 & \cdots & h_n \\ \sigma(y) & \sigma(h_1) & \cdots & \sigma(h_n) \end{pmatrix} \]
be transposition of the tuple of variables
\[(y \ h_1 \ \cdots \ h_n) \]
Let \(p_{\sigma}(h_i) \) be position that variable \(h_i \) gets in the tuple
\[(\sigma(y) \ \sigma(h_1) \ \cdots \ \sigma(h_n)) \]
For instance, if transposition \(\sigma \) has form
\[\begin{pmatrix} y & h_1 & h_2 & h_3 \\ h_2 & y & h_3 & h_1 \end{pmatrix} \]
then following tuples equal
\[(\sigma(y) \ \sigma(h_1) \ \sigma(h_2) \ \sigma(h_3)) = (h_2 \ y \ h_3 \ h_1) = (p_{\sigma}(h_2) \ p_{\sigma}(y) \ p_{\sigma}(h_3) \ p_{\sigma}(h_1)) \]
Theorem 8.4.1. If function \(y \) is solution of differential equation (8.4.4) then the Gâteaux derivative of order \(n \) of function \(y \) has form
\[
\partial^n(y)(h_1, ..., h_n) = \frac{1}{2^n} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_n)
\]
where sum is over transpositions
\[
\sigma = \begin{pmatrix} y & h_1 & \ldots & h_n \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix}
\]
of the set of variables \(y, h_1, ..., h_n \). Transposition \(\sigma \) has following properties

1. If there exist \(i, j, i \neq j \), such that \(p_{\sigma}(h_i) \) is situated in product (8.4.5) on the left side of \(p_{\sigma}(h_j) \) and \(p_{\sigma}(h_j) \) is situated on the left side of \(p_{\sigma}(y) \), then \(i < j \).
2. If there exist \(i, j, i \neq j \), such that \(p_{\sigma}(h_i) \) is situated in product (8.4.5) on the right side of \(p_{\sigma}(h_j) \) and \(p_{\sigma}(h_j) \) is situated on the right side of \(p_{\sigma}(y) \), then \(i > j \).

Proof. We prove this statement by induction. For \(n = 1 \) the statement is true because this is differential equation (8.4.4). Let the statement be true for \(n = k - 1 \). Hence
\[
\partial^{k-1}(y)(h_1, ..., h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})
\]
where the sum is over transposition
\[
\sigma = \begin{pmatrix} y & h_1 & \ldots & h_{k-1} \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{pmatrix}
\]
of the set of variables \(y, h_1, ..., h_{k-1} \). Transposition \(\sigma \) satisfies to conditions (1), (2) in theorem. According to definition (8.1.4) the Gâteaux derivative of order \(k \) has form
\[
\partial^k(y)(h_1, ..., h_k) = \partial(\partial^{k-1}(y)(h_1, ..., h_{k-1}))(h_k)
\]
\[
= \frac{1}{2^{k-1}} \partial \left(\sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)(h_k)
\]
From equations (8.4.4), (8.4.7) it follows that
\[
\partial^k(y)(h_1, ..., h_k)
\]
\[
= \frac{1}{2^{k-1}} \sum_{\sigma} \sigma(yh_k)\sigma(h_1)\ldots\sigma(h_{k-1}) + \sum_{\sigma} \sigma(h_ky)\sigma(h_1)\ldots\sigma(h_{k-1})
\]
It is easy to see that arbitrary transposition \(\sigma \) from sum (8.4.8) forms two transpositions
\[
\tau_1 = \begin{pmatrix} y & h_1 & \ldots & h_{k-1} & h_k \\ \tau_1(y) & \tau_1(h_1) & \ldots & \tau_1(h_{k-1}) & \tau_1(h_k) \\ h_ky & h_1 & \ldots & h_{k-1} \\ \sigma(h_ky) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \\ y & h_1 & \ldots & h_{k-1} & h_k \\ \tau_2(y) & \tau_2(h_1) & \ldots & \tau_2(h_{k-1}) & \tau_2(h_k) \\ yh_k & h_1 & \ldots & h_{k-1} \\ \sigma(yh_k) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{pmatrix}
\]

(8.4.9)
From (8.4.8) and (8.4.9) it follows that
\[
\partial^k(y)(h_1, ..., h_k)
\]
(8.4.10)
\[
= \frac{1}{2^k} \left(\sum_{\tau_1} \tau_1(y)\tau_1(h_1)\cdots \tau_1(h_{k-1})\tau_1(h_k) \\
+ \sum_{\tau_2} \tau_2(y)\tau_2(h_1)\cdots \tau_2(h_{k-1})\tau_2(h_k) \right)
\]
In expression (8.4.10) \(p_{\tau_1}(h_k)\) is written immediately before \(p_{\tau_1}(y)\). Since \(k\) is smallest value of index then transposition \(\tau_1\) satisfies to conditions (1), (2) in the theorem. In expression (8.4.10) \(p_{\tau_2}(h_k)\) is written immediately after \(p_{\tau_2}(y)\). Since \(k\) is largest value of index then transposition \(\tau_2\) satisfies to conditions (1), (2) in the theorem.

It remains to show that in the expression (8.4.10) we get all transpositions \(\tau\) that satisfy to conditions (1), (2) in the theorem. Since \(k\) is largest index then according to conditions (1), (2) in the theorem \(\tau(h_k)\) is written either immediately before or immediately after \(\tau(y)\). Therefore, any transposition \(\tau\) has either form \(\tau_1\) or form \(\tau_2\). Using equation (8.4.9), we can find corresponding transposition \(\sigma\) for given transposition \(\tau\). Therefore, the statement of theorem is true for \(n = k\). We proved the theorem.

Theorem 8.4.2. The solution of differential equation (8.4.4) with initial condition \(y(0) = 1\) is exponent \(y = e^x\) that has following Taylor series expansion
\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
\]
(8.4.11)

Proof. The Gâteaux derivative of order \(n\) has \(2^n\) items. In fact, the Gâteaux derivative of order 1 has 2 items, and each differentiation increase number of items twice. From initial condition \(y(0) = 1\) and theorem 8.4.1 it follows that the Gâteaux derivative of order \(n\) of required solution has form
\[
\partial^n(0)(h, ..., h) = 1
\]
(8.4.12)
Taylor series expansion (8.4.11) follows from equation (8.4.12).

Theorem 8.4.3. The equation
\[
e^{a+b} = e^a e^b
\]
(8.4.13)
is true iff
\[
ab = ba
\]
(8.4.14)

Proof. To prove the theorem it is enough to consider Taylor series
\[
e^a = \sum_{n=0}^{\infty} \frac{1}{n!} a^n
\]
(8.4.15)
\[
e^b = \sum_{n=0}^{\infty} \frac{1}{n!} b^n
\]
(8.4.16)
\[
e^{a+b} = \sum_{n=0}^{\infty} \frac{1}{n!} (a + b)^n
\]
(8.4.17)
Let us multiply expressions (8.4.15) and (8.4.16). The sum of monomials of order 3 has form

\[\frac{1}{6}a^3 + \frac{1}{2}a^2b + \frac{1}{2}ab^2 + \frac{1}{6}b^3 \]

and in general does not equal expression

\[\frac{1}{6}(a+b)^3 = \frac{1}{6}a^3 + \frac{1}{6}a^2b + \frac{1}{6}aba + \frac{1}{6}ba^2 + \frac{1}{6}bab + \frac{1}{6}b^2a + \frac{1}{6}b^3 \]

The proof of statement that (8.4.13) follows from (8.4.14) is trivial. □

The meaning of the theorem 8.4.3 becomes more clear if we recall that there exist two models of design of exponent. First model is the solution of differential equation (8.4.4). Second model is exploring of one parameter group of transformations. For field both models lead to the same function. I cannot state this now for general case. This is the subject of separate research. However, if we recall that quaternion is analogue of transformation of three dimensional space then the statement of the theorem becomes evident.
CHAPTER 9

Derivative of Second Order of Map of D-Vector Space

9.1. Derivative of Second Order of Map of D-Vector Space

Let D be valued division ring of characteristic 0. Let V be normed D-vector space with norm $||y||_V$. Let W be normed D-vector space with norm $||z||_W$. Let $\overline{f}: V \rightarrow W$

function differentiable in the Gâteaux sense. According to remark 6.2.2 the Gâteaux derivative is map $\partial f: V \rightarrow \mathcal{L}(D; V; W)$

According to theorems 3.1.2, and definition 6.1.8 set $\mathcal{L}(D; V; W)$ is normed D-vector space. Therefore, we may consider the question, if map $\partial \overline{f}$ is differentiable in the Gâteaux sense.

According to definition 6.2.1

\[
\lim_{\pi_2 \rightarrow \overline{\pi}} \frac{||\pi_2(\overline{\pi}_2)||}{||\pi_2||_V} = 0
\]

According to definition 6.2.1 map $\partial (\partial \overline{f}(\pi))(\pi_1))(\overline{\pi}_2)$ is linear map of variable $\overline{\pi}_2$. From equation (9.1.1) it follows that map $\partial (\partial \overline{f}(\pi))(\pi_1))(\overline{\pi}_2)$ is linear map of variable π_1.

Definition 9.1.1. Polylinear map

(9.1.2) $\partial^2 \overline{f}(\pi)(\pi_1; \pi_2) = \partial (\partial \overline{f}(\pi))(\pi_1))(\pi_2)$

is called the Gâteaux derivative of second order of map \overline{f}.

Remark 9.1.2. According to definition 9.1.1 for given π the Gâteaux derivative of second order $\partial^2 \overline{f}(\pi) \in \mathcal{L}(D; V, V; W)$. Therefore, the Gâteaux derivative of second order of map \overline{f} is map

$\partial^2 \overline{f}: V \rightarrow \mathcal{L}(D; V, V; W)$

Theorem 9.1.3. Let $\overline{\pi}$ be D^*_π-basis of D-vector space \overline{V} over division ring D. Let $\overline{\pi}$ be D^*_π-basis of D-vector space \overline{W} over division ring D. The Gâteaux differential of second order of map \overline{f} relative to D^*_π-basis $\overline{\pi}$ and D^*_π-basis
9. Derivative of Second Order of Map of D-Vector Space

The Gâteaux mixed partial derivative of map f^j with respect to variables v^i, v^j.

Theorem 9.1.6. Let D be division ring of characteristic 0. Let \mathcal{F} be D^*_s-basis of D-vector space \mathcal{V} over division ring D. Let \mathcal{F} be D^*_s-basis of D-vector space \mathcal{W} over division ring D. The Gâteaux partial derivative

$$
\frac{\partial^2 f^k(x)}{\partial v^i \partial v^j}(h^i, h^j) = \frac{\partial}{\partial v^i} \left(\frac{\partial f^k(x)}{\partial v^j}(h^i) \right)(h^j)
$$

is called the Gâteaux mixed partial derivative of map f^j with respect to variables v^i, v^j.

Proof. To prove theorem we will use notation $f^k(v^i, v^j)$, assuming, that rest variables have given values. The statement of theorem follows from following chain of equations

$$
\frac{\partial^2 f(v^i, v^j)}{\partial v^i \partial v^j}(h^i, h^j) = \frac{\partial}{\partial v^i} \left(\frac{\partial f(v^i, v^j)}{\partial v^j}(h^i) \right)(h^j)
$$

$$
= \lim_{t \to 0} t^{-1} \left(\frac{\partial f(v^i + h^i t, v^j)}{\partial v^j}(h^j) - \frac{\partial f(v^i, v^j)}{\partial v^j}(h^j) \right)
$$

$$
= \lim_{t \to 0} t^{-1} \left(f(v^i + h^i t, v^j + h^j t) - f(v^i + h^i t, v^j) - f(v^i, v^j + h^j t) + f(v^i, v^j) \right)
$$

$$
= \lim_{t \to 0} t^{-1} \left(f(v^i + h^i t, v^j + h^j t) - f(v^i, v^j + h^j t) - f(v^i + h^i t, v^j) + f(v^i, v^j) \right)
$$

$$
= \lim_{t \to 0} t^{-1} \left(\frac{\partial f(v^i, v^j + h^j t)}{\partial v^j}(h^j) - \frac{\partial f(v^i, v^j)}{\partial v^j}(h^j) \right)
$$

$$
= \frac{\partial}{\partial v^j} \left(\frac{\partial f(v^i, v^j)}{\partial v^j}(h^i) \right)(h^j)
$$

$$
= \frac{\partial^2 f(v^i, v^j)}{\partial v^i \partial v^j}(h^i, h^j)
$$

9.1 I proved the theorem the same way it is done for theorem in [7], p. 405, 406.
By induction, assuming that the Gâteaux derivative \(\partial^{n-1} f(x) \) of order \(n - 1 \) is defined, we define

\[
\partial^n f(x) = \partial (\partial^{n-1} f(x)(x_1; \ldots; x_{n-1}))(x_n)
\]

the Gâteaux derivative of order \(n \) of map \(f \). We also assume \(\partial^0 f(x) = f(x) \).

9.2. Homogeneous Map

Definition 9.2.1. The map \(\mathcal{F} : V \to W \)

of \(D \)-vector space \(V \) into \(D \)-vector space \(W \) is called **homogeneous map of degree \(k \)** over field \(F \), if for any \(a \in F \)

\[
\mathcal{F}(av) = a^k \mathcal{F}(v)
\]

Theorem 9.2.2 (Euler’s theorem). Let map \(\mathcal{F} : V \to W \)

of \(D \)-vector space \(V \) into \(D \)-vector space \(W \) be homogeneous map of degree \(k \) over field \(F \subset Z(D) \).

\[
\partial \mathcal{F}(v)(v) = k \mathcal{F}(v)
\]

PROOF. Let us differentiate equation (9.2.1) with respect to \(a \)

\[
\frac{d}{da} (\mathcal{F}(av)) \Delta a = \frac{d}{da} (a^k \mathcal{F}(v)) \Delta a
\]

From theorem 6.2.12 it follows

\[
\frac{d}{da} (\mathcal{F}(av)) \Delta a = \partial \mathcal{F}(av)(\partial (av)(\Delta a))
\]

\[
= \partial \mathcal{F}(av) \left(\frac{d}{da} (av) \Delta a \right)
\]

\[
= \partial \mathcal{F}(av)(\Delta a)
\]

From theorem 6.2.5 and equation (9.2.4) it follows

\[
\frac{d}{da} (\mathcal{F}(av)) \Delta a = \partial \mathcal{F}(av)(\Delta a)
\]

It is evident that

\[
\frac{d}{da} (a^k \mathcal{F}(v)) = ka^{k-1} \mathcal{F}(v)
\]

Let us substitute (9.2.5) and (9.2.6) in (9.2.3)

\[
\frac{d}{da} (\mathcal{F}(av)) \Delta a = \partial \mathcal{F}(av)(\Delta a)
\]

Because \(\Delta a \neq 0 \), than (9.2.2) follows from (9.2.7) under the condition \(a = 1 \).
Let map
\[\overline{f} : \mathbb{V} \rightarrow \mathbb{W} \]
from \(D \)-vector space \(\mathbb{V} \) into \(D \)-vector space \(\mathbb{W} \) be homogeneous map of degree \(k \) over field \(F \subset Z(D) \). From theorem 6.2.5 it follows
\[
(9.2.8) \quad \partial \overline{f}(a\overline{v})(a\overline{v}) = a\partial \overline{f}(a\overline{v})(\overline{v})
\]
From equations (9.2.2), (9.2.1) it follows
\[
(9.2.9) \quad \partial \overline{f}(a\overline{v})(a\overline{v}) = k\overline{f}(a\overline{v}) = k a^k \overline{f}(\overline{v}) = a^k \partial \overline{f}(\overline{v})(\overline{v})
\]
From equations (9.2.8), (9.2.9) it follows
\[
(9.2.10) \quad \partial \overline{f}(a\overline{v})(\overline{v}) = a^{k-1} \partial \overline{f}(\overline{v})(\overline{v})
\]
However from equation (9.2.10) it does not follow that map
\[\partial \overline{f} : \mathbb{V} \rightarrow A(D; \mathbb{V}; \mathbb{W}) \]
is homogeneous map of degree \(k - 1 \) over field \(F \).
References

[1] L. P. Lebedev, I. I. Vorovich, Functional Analysis in Mechanics, Springer, 2002
[2] P. K. Rashevsky, Riemann Geometry and Tensor Calculus, Moscow, Nauka, 1967
[3] Aleks Kleyn, Lectures on Linear Algebra over Division Ring, eprint arXiv:math.GM/0701238 (2010)
[4] N. Bourbaki, General Topology, Chapters 5 - 10, Springer, 1989
[5] N. Bourbaki, Topological Vector Spaces, Chapters 1 - 5, Transl. by H. G. Eggleston & S. Madan, Springer, 2003
[6] L. S. Pontryagin, Selected Works, Volume Two, Topological Groups, Gordon and Breach Science Publishers, 1986
[7] Flihtengolts G. M., Differential and Integral Calculus Course, volume 1, Moscow, Nauka, 1969
[8] I. M. Gelfand, M. I. Graev, Representation of Quaternion Groups over Locally Compact and Functional Fields, Funct. Anal. Appl. 2 (1968) 19 - 33; Izrail Moiseevich Gelfand, Semen Grigorevich Gindikin, Izrail M. Gelfand: Collected Papers, volume II, 435 - 449, Springer, 1989
[9] Vadim Komkov, Variational Principles of Continuum Mechanics with Engineering Applications: Critical Points Theory, Springer, 1986
[10] Sir William Rowan Hamilton, The Mathematical Papers, Vol. III, Algebra, Cambridge at the University Press, 1967
[11] Sir William Rowan Hamilton, Elements of Quaternions, Volume I, Longmans, Green, and Co., London, New York, and Bombay, 1899
Index

1-D^\ast-form 13

A-valued function 55

absolute value on division ring 41

additive map of division ring generated by
map G 22

additive map of ring 19

additive mapping of D-vector spaces 33

associative law for twin representations 16

norm of quaternion 67

Cauchy sequence in valued division ring 42

complete division ring 42

component of the Gâteaux derivative of
map $\overline{f}(\overline{x})$ 57

component of the Gâteaux derivative of
second order of map of division ring 78

component of the Gâteaux derivative of
second order of map $\overline{f}(\overline{x})$ 90

component of linear map f of division ring
24

component of linear map of D-vector space
35

component of polyadditive map A 39

component of polylinear map of division
ring 29

continuous function of division ring 43

D-valued variable 55

D-vector function 55

D-vector space 17

direction in D-vector space \overline{V} over field P
34

direction in ring D over commutative ring
P 20

D^\ast-vector function 55

D^\ast-component of coordinates of vector \overline{r} 18

dual space of D^\ast-vector space 14

function continuous with respect to set of
arguments 56

function is projective over field R and
continuous in direction over field R 44

function of n D-valued variables 55

function of D-vector space \overline{V} to D—Hyph
vector space \overline{W} differentiable in the
Gâteaux sense 57

function of division ring differentiable in
the Gâteaux sense 47

function of division ring D^\ast-differentiable
in the Fréchet sense 45

fundamental sequence in valued division
ring 42

the Gâteaux s^\ast-D-derivative of map \overline{f} of D-
vector space \overline{V} to D-vector space \overline{W} 60

the Gâteaux derivative of map \overline{f} of normed
D-vector space \overline{V} to normed D-vector
space \overline{W} 57

the Gâteaux derivative of map f 47

the Gâteaux derivative of order n of map \overline{f}
91

the Gâteaux derivative of order n of map f
78

the Gâteaux derivative of second order of
map of division ring 77

the Gâteaux differential of map \overline{f} of
normed D-vector space \overline{V} to normed
D-vector space \overline{W} 57

the Gâteaux differential of map f 47

the Gâteaux differential of second order of
map of division ring 77

the Gâteaux differential of second order of
mapping \overline{f} 89

the Gâteaux D^\ast-s-derivative of map \overline{f} of D-
vector space \overline{V} to D-vector space \overline{W} 60

the Gâteaux D-s-derivative of map f of
division ring D 49

the Gâteaux mixed partial derivative of
map f^j with respect to variables v^i, v^j
90

the Gâteaux partial derivative of map f^j
with respect to variable v^j 58
the Gâteaux partial $D^\ast\cdot$-derivative of map f^b with respect to variable x^a 60
the Gâteaux partial $D^\ast\cdot$-derivative of map f^b with respect to variable x^a 60
the Gâteaux $\ast D$-derivative of map f of division ring D 49
generator of additive map 22
homogeneous map of degree k over field F 91
the Jacobi-Gâteaux matrix of map of D-vector space 59
kernel of additive map of D-vector space 37
kernel of additive map of division ring 26
limit of sequence in valued division ring 41
linear map of D-vector spaces 34
linear map of D-vector spaces over field F 34
linear map of division ring 23
map of D-vector space, multiplicative over field 34
map of D-vector space, projective over field 34
map of division ring, projective over commutative ring 20
map of ring D, linear over commutative ring 20
map of ring, multiplicative over commutative ring 20
map polylinear over commutative ring 28
norm of map \mathbf{A} of normed D-vector space 56
norm of mapping of division ring 43
norm on D-vector space 56
normed D-vector space 56
partial additive map of variable v^t 33
polyadditive map of rings 27
polyadditive mapping of (n)-D-vector spaces 37
polylinear map of rings 28
polylinear skew symmetric map 30
polylinear symmetric map 30
quaternion algebra E over the field F 66
$\ast,\ast D$-basis dual to $D^\ast\cdot\cdot$-basis of vector space 14
singular linear map of division ring 26
singular linear map of D-vector space 37
standard component of the Gâteaux differential of map f 48
standard component of linear map of division ring 24
standard component of polylinear map f of division ring 29
standard F-component of additive map f 22
standard F-representation of additive map of division ring 22
standard representation of the Gâteaux differential of map of division ring over field F 48
standard representation of linear map of division ring 24
standard representation of polylinear map of division ring 29
$\ast D$-product of $D^\ast\cdot\cdot$-linear map A over scalar 12
$\ast D$-component of coordinates of vector \mathbf{r} 18
sum of $D^\ast\cdot\cdot$-linear maps 12
Taylor polynomial 81
Taylor series 82
the Fréchet $D\cdot\cdot$-derivative of map f of division ring D at point x 45
topological D-vector space 55
topological division ring 41
topological $D^\ast\cdot\cdot$-vector space 55
twin representations of division ring 16
unit sphere in division ring 42
valued division ring 41
CHAPTER 12

Special Symbols and Notations

\(i_0^A)^{A^1} \) component of linear map \(A \) of D-vector space \(35 \)
\(i_1, ..., i_n)^{A^1} \) component \(p \) of polyadditive map \(A \) \(39 \)
\(\|A\| \) norm of map \(A \) of normed D-vector space \(56 \)
\(i^A \) partial additive map of variable \(i^i \) \(33 \)
\(A(D, \overline{V}, \overline{W}) \) set of additive maps of D-vector space \(\overline{V} \) into D-vector space \(\overline{W} \) \(33 \)
\(A(R_1; R_2) \) set of additive maps of ring \(R_1 \) into ring \(R_2 \) \(20 \)
\(A(D; \overline{V}_1, ..., \overline{V}_n, \overline{W}_1, ..., \overline{W}_m) \) set of polyadditive mappings \(37 \)
\(A(R_1, ..., R_n; S) \) set of polyadditive maps of rings \(R_1, ..., R_n \) into module \(S \) \(27 \)
\(\mathcal{L}(R_1, ..., R_n; S) \) set of polylinear maps of rings \(R_1, ..., R_n \) into module \(S \) \(28 \)

\((a) \frac{\partial f(x)}{\partial x^i} \) component of the Gâteaux derivative of map \(f(x) \) \(57 \)
\((a) \frac{\partial f(x)}{\partial x} \) component of the Gâteaux derivative of map \(f(x) \) \(57 \)
\((a) \frac{\partial^2 f(x)}{\partial x^i \partial x^j} \) component of the Gâteaux derivative of second order of map \(f(x) \) \(47 \)
\((a) \frac{\partial^2 f(x)}{\partial x^i \partial x^j} \) component of the Gâteaux derivative of second order of map \(f(x) \) \(47 \)
\(\frac{df(x)}{dx} \) the Fréchet \(D^* \)-derivative of map \(f(x) \) \(45 \)
\(\frac{\partial f(x)}{\partial x} \) the Gâteaux \(D^* \)-derivative of map \(f(x) \) \(60 \)

\(\frac{\partial f(x)}{\partial x} \) the Gâteaux derivative of map \(f(x) \) \(47 \)
\(\frac{\partial^2 f(x)}{\partial x^2} \) the Gâteaux derivative of second order of map \(f(x) \) \(77 \)
\(\frac{\partial^2 f(x)}{\partial x^2} \) the Gâteaux derivative of second order of map \(f(x) \) \(77 \)
\(\frac{\partial^2 f(x)}{\partial x^2} \) the Gâteaux derivative of second order of map \(f(x) \) \(77 \)
\(\frac{\partial^2 f(x)}{\partial x^2} \) the Gâteaux derivative of second order of map \(f(x) \) \(77 \)
\(\frac{\partial f(x)}{\partial x} \) the Gâteaux Jacobian of map of \(D \)-vector space 59

\(\left(\partial^* \partial \right) f(x) \) the Gâteaux partial \(D^* \)-derivative of map \(f^b \) with respect to variable \(v^a \) 60

\(\frac{\partial^j f(x)}{\partial v^i} \) the Gâteaux partial \(D^* \)-derivative of map \(f^b \) with respect to variable \(v^a \) 60

\(\left(\partial^* \partial \right) f(x)(x) \) the Gâteaux partial \(D^* \)-derivative of map \(f^b \) with respect to variable \(v^a \) 60

\(\frac{\partial f(x)(a)}{\partial x} \) the Gâteaux \(D \)-derivative of map \(f \) of division ring \(D \) 49

\(\frac{\partial f(x)}{\partial x} \) standard component of the Gâteaux differential of map \(f \) 48

\(E(F; a, b) \) quaternion algebra over the field \(F \) 66

\(\delta_p f \) component of linear map \(f \) of division ring 24

\(\delta_p f^a \) component of polylinear map of division ring 29

\(\| f \| \) norm of map \(f \) of division ring 43

\(f^i_j \) standard \(F \)-component of additive map \(f \) 22

\(f^{ij} \) standard component of linear map \(f \) of division ring 24

\(\delta f^{i_{i_1} \ldots i_n} \) standard component of polylinear map \(f \) of division ring 29

\(H \) quaternion algebra over real field 67

\(\text{ker} \mathbb{H} \) kernel of additive map of \(D \)-vector space 37

\(\text{ker} f \) kernel of additive map of division ring 26

\(\lim_{n \to \infty} a_n \) limit of sequence in valued division ring 41

\(\mathcal{L}(D^*_x; V; W) \) \(* \)-vector space of \(D^*_x \)-linear maps of \(D^*_x \)-vector space \(V \) into \(D^*_x \)-vector space \(W \) 11

\(\mathcal{L}(D; V; W) \) set of linear maps of \(D \)-vector space \(V \) into \(D \)-vector space \(W \) 34

\(\mathcal{L}(D^*_x D; V; W) \) \(* \)-vector space of \(* \)-\(D \)-linear maps of \(* \)-\(D \)-vector space \(V \) into \(* \)-\(D \)-vector space \(W \) 11

\(\mathcal{L}(sT; S; R) \) set of \(sT \)-representations of division ring \(S \) in additive group of division ring \(R \) 11

\(\mathcal{L}(T; S; R) \) set of \(T \)-representations of division ring \(S \) in additive group of division ring \(R \) 11

\(r \) \(D \)-component of coordinates of vector \(v \) 18

\(r^* \) \(D \)-component of coordinates of vector \(v \) 18

\(\nabla^* \) dual space of \(D^*_x \)-vector space \(\nabla \) 14
Введение в математический анализ над телом

Александр Клейн

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Аннотация. В книге рассматриваются парные представления тела в абелевой группе и D-векторные пространства над телом. Морфизмы D-векторных пространств являются линейными отображениями D-векторных пространств.

Я изучаю производную функции f непрерывных тел как линейное отображение, наиболее близкое к функции f. Я изучаю разложение отображения в ряд Тейлора и метод решения дифференциального уравнения.

Норма в D-векторном пространстве позволяет рассматривать непрерывные отображения D-векторных пространств. Дифференциал отображения f D-векторных пространств определён как линейное отображение, наиболее близкое к отображению f.
Оглавление

Глава 1. Предисловие ... 5
1.1. Предисловие к изданию 1 .. 5
1.2. Предисловие к изданию 3 .. 7
1.3. Предисловие к изданию 4 .. 8
1.4. Предисловие к изданию 5 .. 10
1.5. Соглашения ... 10

Глава 2. D^*-линейное отображение 13
2.1. D^*-линейное отображение ... 13
2.2. 1-D^*-форма на векторном пространстве 15
2.3. Парные представления тела ... 18
2.4. D-векторное пространство ... 20

Глава 3. Линейное отображение тела 23
3.1. Аддитивное отображение кольца 23
3.2. Аддитивное отображение тела .. 25
3.3. Полилинейное отображение тела 32

Глава 4. Линейное отображение D-векторных пространств 37
4.1. Линейное отображение D-векторных пространств 37
4.2. Полиаддитивное отображение D-векторного пространства ... 42

Глава 5. Дифференцируемые отображения 45
5.1. Топологическое тело ... 45
5.2. Дифференцируемое отображение тела 49
5.3. Таблица производных Гато отображения тела 57

Глава 6. Дифференцируемые отображения D-векторного пространства 61
6.1. Топологическое D-векторное пространство 61
6.2. Дифференцируемые отображения D-векторного пространства ... 63

Глава 7. Алгебра кватернионов ... 71
7.1. Линейная функция комплексного поля 71
7.2. Алгебра кватернионов ... 72
7.3. Линейная функция тела кватернионов 74
7.4. Дифференцируемое отображение тела кватернионов 78

Глава 8. Производная второго порядка отображения тела 83
8.1. Производная второго порядка отображения тела 83
8.2. Ряд Тейлора ... 84
8.3. Интеграл ... 89
Глава 1

Предисловие

1.1. Предисловие к изданию 1

Дорога очарований и разочарований.

Но я бы сказал наоборот. Когда ты понимаешь, что причина твоих разочарований - в твоих ожиданиях, ты начинаешь присматриваться к окружающему ландшафту. Ты оказался на тропе, по которой до тебя никто не ходил. И новые впечатления куда сильнее, чем если бы ты шёл по дороге многократно про-таптанной и хорошо изученной.

Автор неизвестен. Записки путешественника.

В математике, как и в обычной жизни, есть утверждения, которые после изучения становятся очевидными. И когда эти утверждения в новых условиях не работают, это в первый момент вызывает удивление.

Когда я начал изучать линейную алгебру над телом, я был готов к разным сюрпризам, связанным с некоммутативностью умножения. Но большое количество утверждений, похожих на утверждения линейной алгебры над полем, повидимому, ослабили моё внимание. И тем не менее, уже в линейной алгебре я встретил первую серьёзную проблему: определение полилинейных форм и тензорного произведения подразумевает коммутативность умножения. Твёрдая уверенность, что решение конкретной задачи даст ключ к решению общей задачи, была основным мотивом, побуждающим меня изучать математический анализ над телом. Предлагаемая книга вводит в методы дифференцирования отображений над телом и является естественным следствием книги [3], поскольку в основе математического анализа лежит возможность линейного приближения к отображению. В анализе, как и в линейной алгебре, мы встречаем утверждения, которые нам хорошо знакомы. Однако есть немало новых и неожиданных утверждений.

Первое определение производной, которое я рассмотрел, было основано на классическом определении производной. Однако при попытке рассмотреть производную функции x^2 я обнаружил, что не могу эту производную выразить аналитически. Чтобы ответить на вопрос, существует ли производная, я

1.1 Подобного рода ощущение я испытал, когда пытался сформулировать теорему Ролля при изучении математического анализа над телом. После многократных попыток изменить формулировку теоремы Ролля я понял, что это утверждение неверно даже в случае комплексных чисел. Достаточно рассмотреть функцию $w = z^2$. $z = 0$ - единственная точка, где производная равна 0. Однако точки $z = 0.5$ и $z = -0.5$ могут быть соединены кривой, не проходящей через точку $z = 0$.

5
решил провести вычислительный эксперимент. Самый лучший кандидат для вычислительного эксперимента - это тело кватернионов. Несложные расчёты показали, что в некоторых случаях производная действительно не существует. Это приводит к тому, что множество дифференцируемых функций крайне бедно, а сама теория дифференцирования не представляет серьёзного интереса. Анализ вычислительного эксперимента обнаруживает, что даже если производная не существует, возникает выражение, зависящее от приращения аргумента. Подобная конструкция известна в функциональном анализе. Речь идёт о производных Фреше и Гато в пространстве линейных операторов.

Когда я определил D^\ast-производную Гато, я обратил внимание, что дифференциал не зависит от того, использую ли я D^\ast-производную Гато или $\ast D$-производную Гато. Поэтому я изменил характер изложения и начал с определения дифференциала.

Концепция D^\ast-векторного пространства является мощным инструментом изучения линейных пространств над телом. Однако дифференциал Гато не укладывается в рамках D^\ast-векторного пространства. Пример 5.2.2 приводит к выводу, что D-векторное пространство - наиболее адекватная модель для изучения дифференциала Гато.

Изучение D^\ast-линейных отображений приводит к концепции парных представлений тела в абелевой группе. Абелева группа, в которой определено парное представление тела D, называется D-векторным пространством. Поскольку умножение на элементы тела D определено слева и справа, гомоморфизмы D-векторных пространств не могут сохранять эту операцию. Это приводит к концепции аддитивного отображения, которое является морфизмом D-векторных пространств.

Рассмотрение дифференциала Гато как аддитивное отображение приводит к новой конструкции для определения производной. В отличии от D^\ast-производной Гато компоненты дифференциала Гато не зависят от направления. Однако компоненты дифференциала Гато определены не однозначно и неопределенно их количество. Очевидно, что, когда мы рассматриваем математический анализ над полем, D^\ast-производная Гато и компоненты дифференциала Гато совпадают с производной. Эти конструкции возникают в результате различных построений. Когда произведение коммутативно эти конструкции совпадают. Но как только произведение становится не коммутативным, ожидаемая связь разрушается. Несмотря на различные в поведении, эти конструкции взаимно дополняют друг друга.

Декабрь, 2008

1. Поиск в статьях и книгах показал, что это действительно серьёзная проблема. Математики пытаются решать эту задачу, предлагая разные определения производной, основанные на тех или иных свойствах производной функции действительного или комплексного переменного. Эти конструкции очень интересны. Но моя задача рассмотреть общие закономерности для дифференцирования отображений полного тела характеристики 0.

2. В этой книге я использую обозначения, введенные в [3].

3. Построение аддитивного отображения, выполненное при доказательстве теоремы 4.1.9, весьма поучительно методически. С того самого момента, когда я начал изучать дифференциальную геометрию, я пришёл к факту, что всё сводится к тензорам, что компоненты тензора нумеруются с помощью индексов и эта связь неразрывна. В тот момент, когда это оказалось не так, я оказался не готов признать это. Понадобился месяц прежде, чем я смог записать выражение, которое я видел глазами, но которое я не мог записать до этого, так как пытался выразить его в тензорной или операторной форме.
1.2. Предисловие к изданию 3

Обсуждая понятие производной, приведенное в этой книге, я понял, что это очень сложная тема. Поэтому в этой части введения я хочу рассмотреть более подробно концепцию дифференцирования.

Когда мы изучаем функции одной переменной, то производная в заданной точке является числом. Когда мы изучаем функцию нескольких переменных, выясняется, что числа недостаточно. Производная становится вектором или градиентом. При изучении отображений векторных пространств мы впервые говорим о производной как об операторе. Но так как этот оператор линейен, то мы можем представить производную как умножение на матрицу, т. е. опять мы выражаем производную как набор чисел.

Без сомнения, подобное поведение производной ослабляет наше внимание. Когда мы переходим к объектам, более сложным чем поля или векторные пространства, мы по-прежнему пытаемся увидеть объект, который можно записать как множитель перед приращением и который от приращения не зависит. Алгебра кватернионов - это самая простая модель непрерывного тела. Однако попытка определить производную как линейное отображение обречена на неудачу. Только линейная функция, да и то не любая, дифференцируема в этом смысле.

Если множество линейных отображений ограничивает наше возможность изучения поведения отображений в малом, существует ли альтернатива. Ответ на этот вопрос положительный. Рассмотрим алгебру кватернионов. Алгебра кватернионов - это нормированное пространство. Мы знаем два типа производных в нормированном пространстве. Сильная производная или производная Фреше является аналогом той производной, к которой мы привыкли. Когда я писал о попытке найти производную как линейное отображение приращения аргумента, я имел в виду производную Фреше. Номимо сильной производной существует слабая производная или производная Гато. Основная идея состоит в том, что производная может зависеть от направления.

Вадим Комков даёт определение производной Гато для тела кватернионов ([9], с. 322) следующим образом. Положим q_2 является производной Гато в направлении q_1, если для $\epsilon > 0$ справедливо

$$f(q + \epsilon q_1) - f(q) = \epsilon (q_1 q_2)$$

Это определение сделано согласно определению [1]-3.1.2, стр. 256 и не сильно отличается от производной Фреше. Это явление сохраняется и в общем случае. Всякий раз, когда мы пытаемся выделить производную Гато как множитель, происходит отождествление производной Гато и производной Фреше.

Линейное отображение тела - это гомоморфизм его аддитивной группы и гомоморфизм его мультипликативной группы в одном отображении. Ограни-чивающим фактором является гомоморфизм мультипликативной группы. Поэтому есть смысл отложить в сторону гомоморфизм мультипликативной группы и рассматривать только гомоморфизм аддитивной группы. Очевидно, что множество гомоморфизмов аддитивной группы гораздо шире, чем множество линейных отображений. Однако, так как в теле определены две операции, аддитивное отображение имеет специальную структуру. Поэтому я выделил эти отображения в отдельный класс и назвал их аддитивными отображениями.
Даже в этом случае сохраняются некоторые элементы линейности. Центр тела является полем. В результате аддитивное отображение оказывается линейным над центром. Если тело имеет характеристику 0 и не имеет дискретную топологию, то мы можем вложить поле действительных чисел в центр тела. В результате определение производной как аддитивного отображения оказывается эквивалентным определению производной Гато.

Именно здесь происходит качественный скачок. В аддитивном отображении мы не можем выделить аргумент как множитель. Мы не можем выделить приращение из производной. Является ли эта концепция принципиально новой? Я не думаю. Производная - это отображение. Это отображение дифференциала аргумента в дифференциал функции. Даже аддитивная функция приращения аргумента позволяет аппроксимировать приращение функции полиномом первой степени. Структура полинома над телом отличается от структуры полинома над полем. Я рассматриваю некоторые свойства полинома в разделе 8.2. Опираясь на полученные результаты, я изучаю разложение отображения в ряд Тейлора и метод решения дифференциального уравнения.

Я вначале также пытался определить производную отображения над телом как производную Фреше. Но увидел, что эта производная не удовлетворяет основным правилам дифференцирования, я понял, что это неверный путь. Чтобы убедиться, что проблема фундаментальна, а не в логике моих построений, я выполнил расчёт в теле кватернионов. Именно здесь я обнаружил, что производная зависит от направления.

В это время я изучал отображения D-векторных пространств, и концепция аддитивного отображения стала ведущей идеей в этом исследовании. В предисловии к изданию 1 (раздел 1.1) я писал о впечатлениях путешественника, оказавшегося впервые в незнакомых краях. Желая увидеть знакомые пейзажи, путешественник не сразу замечает необычность новых мест. Такую смену впечатлений я испытал на протяжении этого года пока я писал книгу.

Я не сразу осознал, что найденная мною производная является производной Гато. Я даже видел различия между моей производной и производной Гато. Потребовался длинный путь, пока я понял, что два определения эквивалентны. Подобно путешественнику, который пытался увидеть знакомые пейзажи, я читал варианты как можно выделить приращение из производной. В результате появилась D^*-производная Гато.

Что уцелело из введенных понятий в будущем? Без сомнения основными понятиями будет собственно производная Гато и частные производные Гато. Компоненты производной Гато важны для исследования структуры производной Гато. Я не думаю, что D^*-производная Гато будет меня интересовать за пределами производных Гато первого порядка. Основное преимущество D^*-производной Гато состоит в том, что она позволяет изучить условия, когда отображение непрерывно.

Май, 2009

1.3. Предисловие к изданию 4

Алгебра кватернионов - самый простой пример тела. Поэтому я проверяю полученные мной теоремы в алгебре кватернионов, чтобы увидеть как они работают. Алгебра кватернионов похожа на поле комплексных чисел и поэтому естественно искать некоторые параллели.
В поле действительных чисел любое аддитивное отображение автоматически оказывается линейным над полем действительных чисел. Это связано с тем, что поле действительных чисел является пополнением поля рациональных чисел и является следствием теоремы 3.2.2.

Однако в случае комплексных чисел ситуация меняется. Не всякое аддитивное отображение поля комплексных чисел оказывается линейным над полем комплексных чисел. Операция сопряжения - простейший пример такого отображения. Когда я обнаружил этот крайне интересный факт, я вернулся к вопросу об аналитическом представлении аддитивного отображения.

Изучая аддитивные отображения, я понял, что я слишком резко расширил множество линейных отображений при переходе от поля к телу. Причиной этому было не вполне ясное понимание как преодолеть некоммутативность произведения. Однако в процессе построений становилось всё более очевидным, что любое аддитивное отображение линейно над некоторым полем. Впервые эта концепция появилась при построении тензорных произведений и отчётливо проявилась в последующем исследовании.

При построении тензорного произведения тел $D_1, ..., D_n$ я предполагаю существование поля F, над которым аддитивное преобразование тела D_i линейно для любого i. Если все тела имеют характеристику 0, то согласно теореме 3.2.2 такое поле всегда существует. Однако здесь возникает зависимость тензорного произведения от выбранного поля F. Чтобы избавиться от этой зависимости, я предполагаю, что поле F - максимальное поле, обладающее указанным свойством.

Если $D_1 = ... = D_n = D$, то такое поле является центром $Z(D)$ тела D. Если произведение в теле D коммутативно, то $Z(D) = D$. Следовательно, начав с аддитивного отображения, я пришёл к концепции линейного отображения, которая является обобщением линейного отображения над полем.

На моё решение изучать производную Гастро как линейное отображение повлияли следующие обстоятельства.

- Линейное отображение поля - это в тоже время однородный многочлен первой степени.
- Для непрерывных полей производная функции поля - это однородный многочлен первого порядка, аппроксимирующий изменение функции. Одновременно мы рассматриваем производную как линейное отображение поля. При переходе к телу мы можем сохранить ту же связь производной и аддитивного отображения.

Исследование в области комплексных чисел и кватернионов проявили ещё одно интересное явление. Несмотря на то, что поле комплексных чисел является расширением поля действительных чисел, структура линейного отображения над полем комплексных чисел отличается от структуры линейного отображения над полем действительных чисел. Это различие приводит к тому, что операция сопряжения комплексных чисел является аддитивным отображением, но не является линейным отображением над полем комплексных чисел.

Аналогично, структура линейного отображения над телом кватернионов отличается от структуры линейного отображения над полем комплексных чисел. Причина различия в том, что центр алгебры кватернионов имеет более...

1.5 Иными словами, тело является полем.
простую структуру, чем поле комплексных чисел. Это отличие приводит к тому, что операция сопряжения кватерниона удовлетворяет равенству

\[\overline{p} = -\frac{1}{2}(p + ipi + jpj + kpk) \]

Вследствие этого задача найти отображения, удовлетворяющие теореме подобной теореме Римана (теорема 7.1.1), является нетривиальной задачей для кватернионов.

Август, 2009

1.4. Предисловие к изданию 5

Недавно в интернете я нашёл книгу [11], в которой Гамильтон нашёл аналогоичное описание дифференциального исчисления в алгебре кватернионов. И хотя эта книга написана более чем 100 лет назад, я рекомендую прочесть эту книгу всем, кому интересны проблемы анализа в алгебре кватернионов.

Декабрь, 2009

1.5. Соглашения

(1) Функция и отображение - синонимы. Однако существует традиция соответствие между кольцами или векторными пространствами называть отображением, а отображение поля действительных чисел или алгебры кватернионов называть функцией. Я тоже следую этой традиции.

(2) В любом выражении, где появляется индекс, я предполагаю, что этот индекс может иметь внутреннюю структуру. Например, при рассмотрении алгебры \(A \) координаты \(a \in A \) относительно базиса \(\mathbb{F} \) пронумерованы индексом \(i \). Это означает, что \(a \) является вектором. Однако, если \(a \) является матрицей, нам необходимо два индекса, один нумерует строки, другой - столбцы. В том случае, когда мы уточняем структуру индекса, мы будем начинать индекс с символа - в соответствующей позиции. Например, если я рассматриваю матрицу \(a_{ij} \) как элемент векторного пространства, то я могу записать элемент матрицы в виде \(a^i_{\cdot j} \).

(3) В выражении вида

\[(s)_{\cdot 0}a x (s)_{\cdot 1}^a\]

предполагается сумма по индексу \(s \).

(4) Тело \(D \) можно рассматривать как \(D \)-векторное пространство размерности 1. Соответственно этому, мы можем изучать не только гомоморфизм тела \(D_1 \) в тело \(D_2 \), но и линейное отображение тел. При этом подразумевается, что отображение мультипликативно над максимально возможным полем. В частности, линейное отображение тела \(D \) мультипликативно над центром \(Z(D) \). Это не противоречит определению линейного отображения поля, так как для поля \(F \) справедливо \(Z(F) = F \). Если поле \(F \) отлично от максимально возможного, то я это явно указываю в тексте.

(5) Несмотря на некоммутативность произведения многие утверждения сохраняются, если заменить например правое представление на левое представление или правое векторное пространство на левое векторное пространство. Чтобы сохранить эту симметрию в формулировках
теорем я пользуюсь симметричными обозначениями. Например, я рассма-триваю $D\ast$-векторное пространство и $\ast D$-векторное пространство. Запись $D\ast$-векторное пространство можно прочесть как D-star-векторное пространство либо как левое векторное пространство. Запись $D\ast$-линейно зависимости векторы можно прочесть как D-star-линейно зависимости векторы либо как векторы, линейно зависимые слева.

(6) Мы будем рассматривать алгебру A, которая является конечно мер-ным векторным пространством над центром. При разложении эле-мента алгебры A относительно базиса e мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. Однако в алгебре не принято использовать векторные обозначения. В выражении a^2 не ясно - это компонента разложения элемента a относительно базиса или это операция возведения в степень. Для об-легчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например,

$$a = a^i e_i$$

(7) При рассмотрении конечномерной алгебры мы будем отождествлять вектор базиса e_0 с единицей алгебры.

(8) Без сомнения, у читателя моих статей могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.
Глава 2

D^*_s-линейное отображение

2.1. D^*_s-линейное отображение

В этом разделе мы положим, что \mathcal{V}, \mathcal{W} - это D^*_s-векторные пространства.

Определение 2.1.1. Обозначим $\mathcal{L}(D^*; \mathcal{V}; \mathcal{W})$ множество D^*_s-линейных отображений

$$\overline{A} : \mathcal{V} \rightarrow \mathcal{W}$$

D^*_s-векторного пространства \mathcal{V} в D^*_s-векторное пространство \mathcal{W}. Обозначим $\mathcal{L}^{*}(D^*; \mathcal{V}; \mathcal{W})$ множество *D-линейных отображений

$$\overline{A} : \mathcal{V} \rightarrow \mathcal{W}$$

*D-векторного пространства \mathcal{V} в *D-векторное пространство \mathcal{W}. □

Мы можем рассматривать тело D как одномерное D^*_s-векторное пространство. Соответственно мы можем рассматривать множества $\mathcal{L}(D^*; D; \mathcal{W})$ и $\mathcal{L}(D^*; \mathcal{V}; D)$.

Определение 2.1.2. Обозначим $\mathcal{L}(sT; S; R)$ множество sT-представлений тела S в аддитивной группе тела R. Обозначим $\mathcal{L}(T^*; S; R)$ множество T^*-представлений тела S в аддитивной группе тела R. □

Теорема 2.1.3. Предположим, что \mathcal{V}, \mathcal{W} - D^*_s-векторные пространства. Тогда множество $\mathcal{L}(D^*; \mathcal{V}; \mathcal{W})$ является абелевой группой относительно закона композиции

(2.1.1) \[\overline{x^*} (\overline{A} + \overline{B}) = \overline{x^* A + x^* B} \]

Доказательство. Нам надо показать, что отображение

$$\overline{A} + \overline{B} : \mathcal{V} \rightarrow \mathcal{W}$$

определенное равенством (2.1.1), - это D^*_s-линейное отображение D^*_s-векторных пространств. Согласно определению [3]-4.4.2

\[
(a^* x^*)^* \overline{A} = a^* (x^* \overline{A}) \\
(a^* x^*)^* \overline{B} = a^* (x^* \overline{B})
\]

Мы видим, что

\[
(a^* x^*)^* (\overline{A} + \overline{B}) = (a^* x^*)^* \overline{A} + (a^* x^*)^* \overline{B} \\
= a^* (x^* \overline{A}) + a^* (x^* \overline{B}) \\
= a^* (x^* (\overline{A} + \overline{B}))
\]
Нам надо показать так же, что эта операция коммутативна.

\[x^* (A + B) = x^* A + x^* B \]

\[= x^* B + x^* A \]

\[= x^* (B + A) \]

Определение 2.1.4. \(D^* \)-линейное отображение \(A + B \) называется суммой \(D^* \)-линейных отображений \(A \) и \(B \).

Теорема 2.1.5. Пусть \(f = (\alpha_f, a \in I) - D^* \)-базис в векторном пространстве \(V \) и \(\bar{e} = (\bar{e}, b \in J) - D^* \)-базис в векторном пространстве \(W \). Пусть \(A = (\alpha A^b) \), \(a \in I, b \in J \) - произвольная матрица. Тогда отображение

\[\bar{A} : V \rightarrow W \]

определённое равенством

\[b = a^* A \]

относительно выбранных \(D^* \)-базисов, является \(D^* \)-линейным отображением векторных пространств.

Доказательство. Теорема 2.1.5 является обратным утверждением теоремы [3]-4.4.3. Предположим \(\pi^* \bar{A} = v^* A^* \bar{e} \). Тогда

\[(a^* \bar{e})^* \bar{A} = a^* v^* A^* \bar{e} \]

\[= a^* (v^* \bar{A}) \]

Теорема 2.1.6. Пусть \(\bar{f} = D^* \)-базис в векторном пространстве \(V \) и \(\bar{e} = D^* \)-базис в векторном пространстве \(W \). Предположим \(D^* \)-линейное отображение \(\bar{A} \) имеет матрицу \(A = (\alpha A^b) \) относительно выбранных \(D^* \)-базисов. Пусть \(m \in D \). Тогда матрица

\[a (Am)^b = a A^b m \]

определяет \(D^* \)-линейное отображение

\[\bar{A} m : V \rightarrow W \]

которое мы будем называть \(D \)-произведением \(D^* \)-линейного отображения \(\bar{A} \) на скаляр.

Доказательство. Утверждение теоремы является следствием теоремы 2.1.5.

Теорема 2.1.7. Множество \(L(D^*; V; W) \) является \(\ast \)-\(D \)-векторным пространством.

Доказательство. Теорема 2.1.3 утверждает, что \(L(D^*; V; W) \) - абелевая группа. Из теоремы 2.1.6 следует, что элемент тела \(D \) порождает \(\ast \)-преобразование на абелевой группе \(L(D^*; V; W) \). Из теорем 2.1.5, [3]-4.1.1 и [3]-4.1.3 следует, что множество \(L(D^*; V; W) \) является \(\ast \)-\(D \)-векторным пространством.

Выписывая элементы базиса \(\ast \)-\(D \)-векторного пространства \(L(D^*; V; W) \) в виде \(\ast \)-строки или \(\ast \)-строки, мы представим \(\ast \)-\(D \)-векторное пространство...
2.2. 1-\(D^*\)-форма на векторном пространстве

\(\mathcal{L}(D^*; V; W)\) как \(_D\)- или \(_*D\)-векторное пространство. При этом надо иметь в виду, что выбор между \(_*D\) и \(_*_D\)-линейной зависимостью в \(_D\)-векторном пространстве \(\mathcal{L}(D^*; V; W)\) не зависит от типа векторных пространств \(V\) и \(W\).

Для того, чтобы выбрать тип векторного пространства \(\mathcal{L}(D^*; V; W)\) мы обратим внимание на следующее обстоятельство. Допустим \(V\) и \(W\) - \(_*D\)-векторные пространства. Допустим \(\mathcal{L}(D^*; V; W)\) - \(_*_D\)-векторное пространство. Тогда действие \(__D\)-строки \(D^*\)-линейных отображений \(A\) на \(_*\)-строку векторов \(b\) можно представить в виде матрицы

\[
\begin{pmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{pmatrix}\cdot
\begin{pmatrix}
A^1 \\
\vdots \\
A^n
\end{pmatrix} =
\begin{pmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
A^1 \\
\vdots \\
A^n
\end{pmatrix}
\]

Эта запись согласуется с матричной записью действия \(_*_D\)-линейной комбинации \(__A_D\)-линейных отображений \(A\).

Следствием теоремы 2.1.7 является неоднозначность записи

\(v___D^_D a\)

Мы можем предположить, что смысл этой записи ясен из контекста. Однако желательно избежать. Мы будем пользоваться для этой цели скобками. Выражение

\(w = v___D^_D [A___D^_D m]\)

означает, что \(_*_D\)-линейная комбинация \(___D\)-линейных отображений \(A\) отображает вектор \(v\) в вектор \(w\). Выражение

\(w = v___D^_D B\)

означает, что \(_*\)-произведение \(___D\)-линейных отображений \(A\) и \(B\) отображает вектор \(v\) в вектор \(w\).

2.2. 1-\(D^*\)-форма на векторном пространстве

Определение 2.2.1. 1-\(D^*\)-форма на векторном пространстве \(_V\) - это \(_D\)-линейное отображение

(2.2.1)

\(\overline{b} : _V \to D\)

Мы можем значение 1-\(D^*\)-формы \(\overline{b}\), определённое для вектора \(__\pi\), записывать в виде

\(\overline{b}(__\pi) = <__\pi, \overline{b}>\)

Теорема 2.2.2. Множество \(\mathcal{L}(D^*; _V; D)\) является \(_D\)-векторным пространством.

Доказательство. \(_*_D\)-векторное пространство размерности 1 эквивалентно телу \(D\).

Теорема 2.2.3. Пусть \(___\pi\) - \(_*D\)-базис в векторном пространстве \(_V\). 1-\(D^*\)-форма \(\overline{b}\) имеет представление

(2.2.2)

\(<__\pi, \overline{b}> = a___D^_D b\)

относительно выбранного \(D\)-базиса, где вектор \(__\pi\) имеет разложение

(2.2.3)

\(__\pi = a___D^_D ___\pi\)
Доказательство. Так как \(b \) - 1-\(D^* \)-форма, из (2.2.3) следует, что

(2.2.4) \[\langle b, b \rangle = \langle a^* e, b \rangle = a_i < i e, b > \]

(2.2.2) следует из (2.2.5) и (2.2.4).

\[\square \]

Теорема 2.2.4. Пусть \(\overline{e} \) - \(D^* \)-базис в векторном пространстве \(V \). 1-\(D^* \)-форма (2.2.1) однозначно определена значениями (2.2.4), в которые 1-\(D^* \)-форма \(b \) отображает вектора базиса.

Доказательство. Утверждение является следствием теорем 2.2.3 и [3]-4.3.3.

\[\square \]

Теорема 2.2.5. Пусть \(\overline{e} \) - \(D^* \)-базис в векторном пространстве \(V \). Множество 1-\(D^* \)-форм \(\overline{d} \) таких, что

(2.2.6) \[\langle \overline{e}, \overline{d} \rangle = i \delta^j \]

является \(* \)-\(D^* \)-базисом \(\overline{d} \) векторного пространства \(L(D^*; V; D) \).

Доказательство. 1-\(D^* \)-форма \(\overline{d} \) существует для данного \(j \) согласно теореме 2.2.4, если положить \(i b = i \delta^j \). Если предположить, что существует 1-\(D^* \)-форма \(\overline{b} \) то \(\langle \overline{e}, \overline{d} \rangle > j b = 0 \). Согласно равенству (2.2.6)

(2.2.7) \[\langle \overline{e}, \overline{d} \rangle = i \delta^j \]

Следовательно, 1-\(D^* \)-формы \(\overline{d} \) линейно независимы.

Определение 2.2.6. Пусть \(\overline{V} \) - \(D^* \)-векторное пространство. \(* \)-\(D^* \)-векторное пространство

(2.2.8) \[\overline{V}^* = L(D^*; \overline{V}; D) \]

называется дуальным пространством к \(D^* \)-векторному пространству \(\overline{V} \). Пусть \(\overline{e} \) - \(D^* \)-базис в векторном пространстве \(\overline{V} \). \(* \)-\(D^* \)-базис \(\overline{d} \) векторного пространства \(\overline{V}^* \), удовлетворяющий равенству (2.2.6), называется \(* \)-\(D^* \)-базисом, дуальным \(D^* \)-базису \(\overline{e} \).

\[\square \]

Теорема 2.2.7. Пусть \(A \) - пассивное преобразование многообразия базисов \(B(\overline{V}, GL_{n}^{D^*}) \). Допустим \(D^* \)-базис

(2.2.9) \[\overline{e} = A^* \overline{e} \]

является образом \(D^* \)-базиса \(\overline{e} \). Пусть \(\overline{B} \) - пассивное преобразование многообразия базисов \(B(\overline{V}^*, GL_{n}^{D^*}) \) такое, что \(* \)-\(D^* \)-базис

(2.2.10) \[\overline{d} = \overline{d}^* \overline{B} \]

dуален \(D^* \)-базису. Тогда

(2.2.11) \[B = A^{-1} * \].
ДОКАЗАТЕЛЬСТВО. Из равенств (2.2.6), (2.2.7), (2.2.8) следует

\[i \delta^j = \langle e_i, d^j \rangle = A^k \langle k, e_i \rangle B^j = A^k \delta^i B^j \]

(2.2.10)

Равенство (2.2.9) следует из равенства (2.2.10). □

В дальнейшем мы будем рассматривать следующие модели тела

- Рассмотрим тело \(D \) как \(D^{*} \)-векторное пространство \(D^{*} \). Представление тела \(D \) определено посредством \(T^{*} \)-сдвига \(a^{*} \)

\[b \ast a \ast d = (ba) \ast d \]

Это соответствует закону умножения

\[b(ad) = (ba)d \]

в теле \(D \). 1-\(D^{*} \)-форма имеет вид

\[< a, b > = ab \]

Представление тела \(D \) в дуальном \(*D \)-векторном пространстве \(*D \) определено посредством \(*T \)-сдвига \(*a \)

\[d \ast a \ast b = d \ast (ab) \]

Мы можем выбрать произвольный элемент \(d \neq 0 \) тела \(D \) в качестве базиса \(D^{*} \)-векторного пространства \(D^{*} \). Соответственно дуальный базис \(*D \)-векторного пространства \(*D \) имеет вид \(f = d^{-1} \). При этом \(< f, d > = df = e \). Пассивное преобразование \(a^{*} \) отображает базис \(d \) в базис \(f \), дуальное ему пассивное преобразование \(*a^{-1} \) отображает базис \(f \) в базис

\[f' = fa^{-1} = d^{-1}a^{-1} = (ad)^{-1} = d^{-1} \]

- Рассмотрим тело \(D \) как \(*D \)-векторное пространство \(*D \). Представление тела \(D \) определено посредством \(*T \)-сдвига \(*a \)

\[d \ast a \ast b = d \ast (ab) \]

Это соответствует закону умножения

\[(da)b = d(ab) \]

в теле \(D \). 1-\(*D \)-форма имеет вид

\[< b, a > = ba \]

Представление тела \(D \) в дуальном \(D^{*} \)-векторном пространстве \(D^{*} \) определено посредством \(T^{*} \)-сдвига \(a^{*} \)

\[b \ast a \ast d = (ba) \ast d \]

Мы можем выбрать произвольный элемент \(d \neq 0 \) тела \(D \) в качестве базиса \(*D \)-векторного пространства \(*D \). Соответственно дуальный базис \(D^{*} \)-векторного пространства \(D^{*} \) имеет вид \(f = d^{-1} \). При этом \(< f, d > = fd = e \). Пассивное преобразование \(*a \) отображает базис \(d \) в
базис $d' = da$. Дуальное ему пассивное преобразование $a\star$ отображает базис f в базис
$$f' = a^{-1} f = a^{-1} d^{-1} = (da)^{-1} = d'$$

- Рассмотрим тело D как векторное пространство над полем F. Допустим векторы $j\pi \in D$ порождают базис над полем F. $\pi \in D$ имеет разложение $\pi = a^j j\epsilon$. Пассивное преобразование базиса имеет вид
$$i\pi' = iA^j j\pi$$
1-форма имеет вид $\bar{b} = d^j j^\epsilon b$, где $\bar{\pi}$ - базис, дуальный базису π. При этом
$$< \pi, \bar{b} > = a^i < i\pi, d^j > j^\epsilon b$$
Мы не можем утверждать, что $d^j \in D$. В противном случае мы должны потребовать
$$< i\pi, d^j > = i\epsilon d^j = i^\delta j$$
откуда следовало бы существование делителей нуля в теле D.

Линейное отображение $A : D \to D$ над полем F соответствует D-значной 1-форме b. Следовательно
$$a^i A^j = B^j_{ik} a^i b^k$$
Так как a^i произвольны, то
$$iA^j = B^j_{ik} b^k$$

2.3. Парные представления тела

Теорема 2.3.1. В любом $D^*,*$-векторном пространстве можно определить структуру *D-векторного пространства, определяя *D-произведение вектора на скаляр равенством
$$\pi m = \pi^* \delta m$$

Доказательство. Непосредственная проверка доказывает, что отображение
$$f : D \to \overline{V}$$
определенное равенством
$$f(m) = \overline{\pi m}$$
определяет *T-представление кольца D.

Мы можем иначе сформулировать теорему 2.3.1.

Теорема 2.3.2. Если мы определили эффективное T^*-представление f тела D на абелевой группе \overline{V}, то мы можем однозначно определить эффективное *T-представление h тела D на абелевой группе \overline{V} такое, что диаграмма

\[
\begin{array}{ccc}
\overline{V} & \xrightarrow{h(a)} & \overline{V} \\
\downarrow f(b) & & \downarrow f(b) \\
\overline{V} & \xrightarrow{h(a)} & \overline{V}
\end{array}
\]

коммутативна для любых $a, b \in D$.

\[
\square
\]
Мы будем называть представления f и h парными представлениями тела D.

Теорема 2.3.3. В векторном пространстве V над телом D мы можем определить D^*-произведение и $*_D$-произведение вектора на скаляр. Согласно теореме 2.3.2 эти операции удовлетворяют равенству

$$(a\overline{m})b = a(\overline{mb})$$

(2.3.1)

Равенство (2.3.1) представляет закон ассоциативности для парных представлений. Это позволяет нам писать подобные выражения не пользуясь скобками.

Доказательство. В разделе 2.1 дано определение $*_D$-произведения D^*-линейного отображения A на скаляр. Согласно теореме 2.3.1 T^*-представление тела D в $*_D$-векторном пространстве $\mathcal{L}(D^*; V; W)$ может быть перенесено в D^*-векторное пространство \overline{W} согласно правилу

$$\overline{V^*}(Am) = (\overline{V^*}A)^*\delta m = (\overline{V^*}A)m$$

Мы можем также определить D^*-произведение D^*-линейного отображения A на скаляр. Однако, вообще говоря, это T^*-представление тела D в $*_D$-векторном пространстве $\mathcal{L}(D^*; V; W)$ не может быть перенесено в D^*-векторном пространстве \overline{W}. Действительно, в случае D^*-произведения мы имеем

$$\overline{V^*}(mA) = v^*\overline{f^*}(mA) = v^*(mA)^*\overline{\tau}$$

Поскольку произведение в теле не коммутативно, мы не можем выразить полученное выражение как произведение v^*A на скаляр m.

Аналогия с векторными пространствами над полем заходит столь далеко, что мы можем предположить существование концепции базиса, который годится для D^*-произведения и $*_D$-произведения вектора на скаляр.

Теорема 2.3.4. В векторном пространстве строк D^*-многообразие базисов и $*_D$-многообразие базисов отличны

$$\mathcal{B}(\overline{V}, D^*) \neq \mathcal{B}(\overline{V}, *_D)$$

Доказательство. При доказательстве этой теоремы мы будем пользоваться стандартным представлением матрицы. Не нарушая общности, мы проведём доказательство в координатном векторном пространстве D^n.

Пусть $\overline{\tau} = (\overline{\tau}_i = (\delta^j_i), i, j \in \tau, |i| = n)$ - множество векторов векторного пространства D^n. Очевидно, $\overline{\tau}$ является одновременно D^*-базисом и $*_D$-базисом. Для произвольного множества векторов $(\overline{f}_i, i \in \tau, |i| = n)$ D^*-координатная матрица

$$(2.3.2)$$

$$f = \begin{pmatrix} f_1^1 & \cdots & f_1^n \\ \vdots & \ddots & \vdots \\ f_n^1 & \cdots & f_n^n \end{pmatrix}$$

относительно базиса $\overline{\tau}$ совпадает с $*_D$-координатной матрицей относительно базиса $\overline{\tau}$.

Если множество векторов $(\overline{f}_i, i \in \tau, |i| = n)$ - D^*-базис, то согласно [3]-4.9.3 матрица (2.3.2) - $*_D$-невырожденная матрица.
Если множество векторов \(f_i, i \in i, |i| = n \) - *D-базис, то согласно теореме [3]-4.9.3 матрица (2.3.2) - *-невырожденная матрица.

Следовательно, если множество векторов \(f_i, i \in i, |i| = n \) порождают D*,-базис и *D-базис, их координатная матрица (2.3.2) является *-невырожденной и *-невырожденной матрицей. Утверждение следует из теоремы [3]-4.8.9. □

Из теоремы 2.3.4 следует, что в векторном пространстве V существует D*-базис \(\overline{F} \), который не является *D-базисом.

2.4. D*-векторное пространство

При изучении многих задач мы вполне можем ограничиться рассмотрением D*-векторного пространства либо *D-векторного пространства. Однако есть задачи, в которых мы вынуждены отказаться от простой модели и одновременно рассматривать обе структуры векторного пространства. Подобного рода пространство мы будем называть D*-векторное пространство.

Допустим, что в D*-векторном пространстве V определены D*-базис \(\overline{F} \) и *D-базис \(\overline{F} \). Вектор i-p Д*-базиса *p имеет разложение

\[
\overline{p}_j = p_{21}^i \overline{f}_j \quad \overline{p}_j = p_{21}^i \overline{f}_j
\]

относительно *D-базиса \(\overline{F} \). Вектор i-p *D-базиса \(\overline{F} \) имеет разложение

\[
\overline{p}_j = p_{21}^i \overline{f}_j
\]

относительно D*-базиса \(\overline{F} \).

Нетрудно видеть из построения, что p12 - координатная матрица D*-базиса \(\overline{F} \) относительно *D-базиса \(\overline{F} \). *-строки матрицы p12 D*-линейно независимы.

Аналогично, p21 - координатная матрица *D-базиса \(\overline{F} \) относительно D*-базиса \(\overline{F} \). *-столбцы матрицы p21 *D-линейно независимы.

Из равенств (2.4.1) и (2.4.2) следует

\[
\overline{p}_j = p_{21}^i \overline{f}_j \quad \overline{p}_j = p_{21}^i \overline{f}_j
\]

Из равенства (2.4.3) видно, что порядок скобок сокращают. Хотя матрицы p21 и p12 не являются взаимно обратными, мы можем сказать, что равенство (2.4.3) описывает тождественное преобразование D-векторного пространства. Это преобразование можно записать также в виде

\[
\overline{p}_j = p_{21}^i \overline{f}_j
\]

Из сравнения равенств (2.4.3) и (2.4.4) следует, что изменение порядка скобок приводит к изменению порядка суммирования. Эти равенства выражают симметрию в выборе D*-базиса \(\overline{F} \) и *D-базиса \(\overline{F} \).

Вектор \(r \in V \) имеет разложение

\[
r = r^i \overline{f}_j \quad r = r^i \overline{f}_j
\]

Подставим (2.4.1) в (2.4.5)

\[
r^i \overline{f}_j p_{12} = \overline{f}_j r^i \quad r^i \overline{f}_j p_{12} = \overline{f}_j r^i
\]
2.4. D-векторное пространство

Подставим (2.4.5) в (2.4.3)

\[(2.4.7) \quad r^i \cdot \overline{p} = r^i \cdot \overline{p}_j \cdot p_{12}^j = r^i \cdot p_{21}^k \cdot k \cdot \overline{p}^j \cdot p_{12}^j \]

Определение 2.4.1. Координаты

\[r^* = \left(\begin{array}{c} r^1 \\ \vdots \\ r^n \end{array} \right)\]

вектора τ относительно *D-базиса \overline{p} называются D^*-компонентой координат вектора τ. Координаты

\[^*r = \left(\begin{array}{c} ^*r^1 \\ \vdots \\ ^*r^n \end{array} \right)\]

вектора τ относительно D^*-базиса \overline{p} называются *D-компонентой координат вектора τ.

Замечание 2.4.2. Чтобы не перегружать текст символикой, мы будем следовать соглашению. Если D^*-компонента координат вектора или *D-компонента координат вектора участвует в операции умножения или мы записываем соответствующие индексы, то мы будем опускать символ *, так как из записи будет ясно, какие компоненты вектора мы используем. Аналогичное соглашение распространяется на *D-базис \overline{p} и D^*-базис \overline{p}. Мы не будем соглашением в тех случаях, когда сокращённая запись может быть прочтена неоднозначно.

В отображении (2.4.7) мы видим, что D^*-базис подвергается определённому преобразованию. Разложение вектора относительно D^*-базиса остаётся неизменным до и после преобразования. В разделе [3]-5.2 мы определили активное и пассивное преобразования на многообразии базисов D^*-векторного пространства. По аналогии мы можем предположить, что преобразование (2.4.3) является пассивным преобразованием.
Глава 3

Линейное отображение тела

3.1. Аддитивное отображение кольца

Определение 3.1.1. Гомоморфизм

\[f : R_1 \to R_2 \]

аддитивной группы кольца \(R_1 \) в аддитивную группу кольца \(R_2 \) называется аддитивным отображением кольца \(R_1 \) в кольцо \(R_2 \).

Согласно определению гомоморфизма аддитивной группы, аддитивное отображение \(f \) кольца \(R_1 \) в кольцо \(R_2 \) удовлетворяет свойству

(3.1.1) \[f(a + b) = f(a) + f(b) \]

Мы не требуем, чтобы аддитивное отображение кольца сохраняло произведение.

Теорема 3.1.2. Рассмотрим кольцо \(R_1 \) и кольцо \(R_2 \). Пусть отображения

\[f : R_1 \to R_2 \]
\[g : R_1 \to R_2 \]

являются аддитивными отображениями. Тогда отображение \(f + g \) также является аддитивным.

Доказательство. Утверждение теоремы следует из цепочки равенств

\[(f + g)(x + y) = f(x + y) + g(x + y) = f(x) + f(y) + g(x) + g(y) \]
\[= (f + g)(x) + (f + g)(y) \]

Теорема 3.1.3. Рассмотрим кольцо \(R_1 \) и кольцо \(R_2 \). Пусть отображение

\[f : R_1 \to R_2 \]

является аддитивным отображением. Тогда отображения \(af, fb, \ a, b \in R_2 \), также являются аддитивными.

Доказательство. Утверждение теоремы следует из цепочки равенств

\[(af)(x + y) = a(f(x + y)) = a(f(x) + f(y)) = af(x) + af(y) \]
\[= (af)(x) + (af)(y) \]
\[(fb)(x + y) = (f(x + y))b = (f(x) + f(y))b = f(x)b + f(y)b \]
\[= (fb)(x) + (fb)(y) \]
Теорема 3.1.4. Мы можем представить аддитивное отображение кольца R_1 в ассоциативное кольцо R_2 в виде

\[(3.1.2) \quad f(x) = \sum_s f(s) G(s)(x) \quad (s)f\]

где $G(s)$ - множество аддитивных отображений кольца R_1 в кольцо R_2.\(^{3.1}\)

Доказательство. Утверждение теоремы следует из теорем 3.1.2 и 3.1.3.

Определение 3.1.5. Пусть коммутативное кольцо P является подкольцом центра $Z(R)$ кольца R. Отображение

\[f : R \to R\]

кольца R называется **мультипликативным над коммутативным кольцом** P, если

\[f(px) = pf(x)\]

для любого $p \in P$.\(^{3.1}\)

Определение 3.1.6. Пусть коммутативное кольцо F является подкольцом центра $Z(D)$ кольца R. Аддитивное, мультипликативное над коммутативным кольцом F отображение

\[f : R \to R\]

называется **линейным отображением над коммутативным кольцом** F.\(^{3.1}\)

Определение 3.1.7. Пусть коммутативное кольцо P является подкольцом центра $Z(R)$ кольца R. Отображение

\[f : R \to R\]

cольца R называется **проективным над коммутативным кольцом** P, если

\[f(px) = f(x)\]

dля любого $p \in P$. Множество

\[Px = \{px : p \in P, x \in R\}\]

называется **направлением** x **над коммутативным кольцом** P.\(^{3.2}\)

Пример 3.1.8. Если отображение f кольца R мультипликативно над коммутативным кольцом P, то отображение

\[g(x) = x^{-1}f(x)\]

проективно над коммутативным кольцом P.\(^{3.2}\)

Определение 3.1.9. Обозначим $A(R_1; R_2)$ множество аддитивных отображений

\[f : R_1 \to R_2\]
cольца R_1 в кольцо R_2.\(^{3.2}\)

3.1 Здесь и в дальнейшем мы будем предполагать сумму по индексу, который записан в скобках и встречается в произведении несколько раз. Равенство (3.1.2) является рекурсивным определением и есть надежда, что мы можем его упростить.

3.2 Направление над коммутативным кольцом P является подмножеством кольца R. Однако мы будем обозначать направление Px элементом $x \in R$, когда это не приводит к неоднозначности. Мы будем говорить о направлении над коммутативным кольцом $Z(R)$, если мы явно не указываем коммутативное кольцо P.
Теорема 3.1.10. Пусть отображение
\[f : D \to D \]
является аддитивным отображением кольца \(R \). Тогда
\[f(nx) = nf(x) \]
для любо го целого \(n \).

ДОКАЗАТЕЛЬСТВО. Мы докажем теорему индукцией по \(n \). При \(n = 1 \) утверждение очевидно, так как
\[f(1x) = f(x) = 1f(x) \]
Допустим уравнение справедливо при \(n = k \). Тогда
\[f((k + 1)x) = f(kx + x) = f(kx) + f(x) = kf(x) + f(x) = (k + 1)f(x) \]
\[\square \]

3.2. Аддитивное отображение тела

Теорема 3.2.1. Пусть отображение
\[f : D_1 \to D_2 \]
является аддитивным отображением тела \(D_1 \) в тело \(D_2 \). Тогда
\[f(ax) = af(x) \]
для любого рационального \(a \).

ДОКАЗАТЕЛЬСТВО. Запишем \(a \) в виде \(a = \frac{p}{q} \). Положим \(y = \frac{1}{q}x \). Тогда
\[f(x) = f(qy) = qf(y) = qf \left(\frac{1}{q}x \right) \]
Из равенства (3.2.1) следует
\[\frac{1}{q}f(x) = f \left(\frac{1}{q}x \right) \]
Из равенства (3.2.2) следует
\[f \left(\frac{p}{q}x \right) = pf \left(\frac{1}{q}x \right) = \frac{p}{q}f(x) \]
\[\square \]

Теорема 3.2.2. Аддитивное отображение
\[f : D_1 \to D_2 \]
тела \(D_1 \) в тело \(D_2 \) мультипликативно над полем рациональных чисел.

ДОКАЗАТЕЛЬСТВО. Следствие теоремы 3.2.1.

Мы не можем распространить утверждение теоремы 3.2.2 на произвольное подполе центра \(Z(D) \) тела \(D \).
Теорема 3.2.3. Пусть поле комплексных чисел C является подполем центра тела D. Существует аддитивное отображение $f : D_1 \to D_2$ тела D_1 в тело D_2, которое не мультипликативно над полем комплексных чисел.

Доказательство. Для доказательства теоремы достаточно рассмотреть поле комплексных чисел C так как $C = Z(C)$. Функция $z \to \overline{z}$ аддитивна. Однако равенство $az = a\overline{z}$ неверно. □

Теория комплексных векторных пространств настолько хорошо изучена, что из доказательства теоремы 3.2.3 легко вытекает следующая конструкция.

Пусть для некоторого тела D существуют поля F_1, F_2, такие что $F_1 \not= F_2$, $F_1 \subset F_2 \subset Z(D)$. В этом случае существует отображение I тела D, линейное над полем F_1, но не линейное над полем F_2. Нетрудно видеть, что это отображение аддитивно.

Пусть D_1, D_2 - тела характеристики 0. Согласно теореме 3.1.4 аддитивное отображение

(3.2.3) $f : D_1 \to D_2$

имеет вид (3.1.2). Выберем отображение $G_{(s)}(x) = G(x)$. Аддитивное отображение

(3.2.4) $f(x) = (s)_{0} f G(x) (s)_{1} f$

называется аддитивным отображением, порождённым отображением G. Отображение G мы будем называть образующей аддитивного отображения.

Теорема 3.2.4. Пусть $F, F \subset Z(D_1), F \subset Z(D_2)$, - поле. Аддитивное отображение (3.2.4), порождённое F-линейным отображением G, мультипликативно над полем F.

Доказательство. Непосредственное следствие представления (3.2.4) аддитивного отображения. Для любого $a \in F$

$$f(ax) = (s)_{0} f G(ax) (s)_{1} f = (s)_{0} f aG(x) (s)_{1} f = a (s)_{0} f G(x) (s)_{1} f = af(x)$$

□

Теорема 3.2.5. Пусть D_1, D_2 - тела характеристики 0. Пусть $F, F \subset Z(D_1), F \subset Z(D_2)$, - поле. Пусть G - F-линейное отображение. Пусть \overline{f} -

3. Например, в случае комплексных чисел оператор I является оператором комплексного сопряжения. Множество операторов I зависит от рассматриваемого тела. Эти операторы представляют для нас интерес, когда мы рассматриваем отображения тела, при которых меняется структура операции. Например, отображение комплексных чисел $z \to \overline{z}$.
3.2. Аддитивное отображение тела

базис тела D_2 над полем F. Стандартное F-представление аддитивного
отображения (3.2.4) имеет вид

$$(3.2.5) \quad f(x) = f_{G}^{ij} q G(x) j q$$

Выражение f_{G}^{ij} в равенстве (3.2.5) называется стандартной F-компен-
tой аддитивного отображения f.

ДОКАЗАТЕЛЬСТВО. Компоненты аддитивного отображения f имеют раз-
lожение

$$(3.2.6) \quad (s) p f = (s) p f^i j p$$

относительно базиса \overline{q}. Если мы подставим (3.2.6) в (3.2.4), мы получим

$$(3.2.7) \quad f(x) = (s) a f^i j p G(x) (s) a f^j j p$$

Подставив в равенство (3.2.7) выражение

$$f_{G}^{ij} = (s) a f^i j p$$

мы получим равенство (3.2.5).

Теорема 3.2.6. Пусть D_1, D_2 - тела характеристики 0. Пусть F, $F \subset Z(D_1), F \subset Z(D_2)$, - поле. Пусть $G - F$-линейное отображение. Пусть \overline{p} - базис тела D_1 над полем F. Пусть \overline{q} - базис тела D_2 над полем F. Пусть $k i, B^p$ - структурные константы тела D_2. Тогда аддитивное отображение (3.2.4), порождённое F-линейным отображением G, можно записать в виде

$$(3.2.8) \quad f(a) = a^i i f^j j p \quad k f^j \in F$$

$$(3.2.9) \quad a = a^i i p \quad a^i \in F \quad a \in D_1$$

так как векторы $r^i j p$ линейно независимы над полем F и величины a^i произвольны, то из равенства (3.2.9) следует

$$(3.2.10) \quad G : D_1 \rightarrow D_2 \quad a = a^i i G^j j q G(a) = a^i i G^j j q$$

$$(3.2.11) \quad f(a) = a^i i G^j j q F_{G}^{k l} k q l q j q$$

из равенств (3.2.8) и (3.2.11) следует

$$(3.2.12) \quad a^i i f^j j q = a^i i G^j j q f_{G}^{k l} k q l q j q = a^i i G^j j q F_{G}^{k l} k l B^p pr B^j pr j q$$

\square

Теорема 3.2.7. Пусть поле F является подкольцом центра $Z(D)$ тела D ха-
рakterистики 0. F-линейное отображение, порождающее аддитивное отоб-
ражение, является невырожденным отображением.

3.4. Представление аддитивного отображения с помощью компонент аддитивного отображе-
ния неоднозначно. Чисто алгебраическими методами мы можем увеличить либо уменьшить
число слагаемых. Если размерность тела D над полем F конечна, то стандартное представ-
ление аддитивного отображения гарантирует конечность множества слагаемых в представ-
лении отображения.
Докажем это. Согласно теореме об изоморфизмах аддитивное отображение (3.2.13) можно представить в виде композиции

\[f(x) = f_1(x + H) \]

канонического отображения \(x \rightarrow x + H \) и изоморфизма \(f_1 \). \(H \) - идеал аддитивной группы тела \(D \). Допустим идеал \(H \) нетривиален. Тогда существуют \(x_1 \neq x_2, f(x_1) = f(x_2) \). Следовательно, образ при отображении \(f \) содержит циклическую подгруппу. Это противоречит утверждению, что характеристика тела \(D \) равна 0. Следовательно, \(H = \{0\} \) и каноническое отображение является невырожденным \(F \)-линейным отображением либо \(H = D \) и каноническое отображение является вырожденным отображением.

Определение 3.2.8. Аддитивное отображение, линейное над центром тела, называется линейным отображением тела.

Теорема 3.2.9. Пусть \(D \) является телом характеристики 0. Линейное отображение

(3.2.13) \[f : D \rightarrow D \]

имеет вид

(3.2.14) \[f(x) = (s)_p f, s_1 f \]

Выражение \((s)_p f, p = 0, 1 \), в равенстве (3.2.14) называется компонентой линейного отображения \(f \).

Теорема 3.2.10. Пусть \(D \) - тело характеристики 0. Пусть \(\overline{\mathbf{x}} \) - базис тела \(D \) над центром \(Z(D) \). Стандартное представление линейного отображения (3.2.14) тела имеет вид

(3.2.15) \[f(x) = f^j i \overline{\mathbf{x}} \]

Выражение \(f^i j \) в равенстве (3.2.15) называется стандартной компонентой линейного отображения \(f \).

Теорема 3.2.11. Пусть \(D \) является телом характеристики 0. Пусть \(\overline{\mathbf{x}} \) - базис тела \(D \) над полем \(Z(D) \). Тогда линейное отображение (3.2.13) можно записать в виде

(3.2.16) \[f(a) = a^i i f^j \overline{\mathbf{x}} \quad k f^j \in Z(D) \]

(3.2.17) \[a = a^i \overline{\mathbf{x}} \quad a^j \in Z(D) \quad a \in D \]

Теорема 3.2.12. Рассмотрим матрицу

(3.2.18) \[B = (B^j_i) \]

\(\overline{\mathbf{x}} \) представление линейного отображения тела с помощью компонент линейного отображения неоднозначно. Число алгебраическими методами мы можем увеличить либо уменьшить число слагаемых. Если размерность тела \(D \) над полем \(Z(D) \) конечна, то стандартное представление линейного отображения гарантирует конечность множества слагаемых в представлении отображения.
строки которой пронумерованы индексом \(i \) и столбцы пронумерованы индексом \(j \). Если \(\det B \neq 0 \), то для заданных координат линейного преобразования \(f^j \) система линейных уравнений (3.2.17) относительно стандартных компонент этого преобразования \(f^{kr} \) имеет единственное решение. Если \(\det B = 0 \), то условием существования решения системы линейных уравнений (3.2.17) является равенство

(3.2.19) \[\operatorname{rank} (B^j_i, f^j) = \operatorname{rank} B \]

В этом случае система линейных уравнений (3.2.17) имеет бесконечно много решений и существует линейная зависимость между величинами \(f^j \).

ДОКАЗАТЕЛЬСТВО. Равенство (3.2.14) является частным случаем равенства (3.2.4) при условии \(G(x) = x \). Теорема 3.2.10 является частным случаем теоремы 3.2.5 при условии \(G(x) = x \). Теорема 3.2.11 является частным случаем теоремы 3.2.6 при условии \(G(x) = x \). Утверждение теоремы 3.2.12 является следствием теоремы линейных уравнений над полем.

Теорема 3.2.13. Стандартные компоненты тождественного отображения имеют вид

(3.2.20) \[f^{kr} = \delta^k_0 \delta^r_0 \]

ДОКАЗАТЕЛЬСТВО. Равенство (3.2.20) является следствием равенства

\[x = 0 \vec{e} x_0 \vec{e} \]

Убедимся, что стандартные компоненты (3.2.20) линейного преобразования удовлетворяют уравнению

(3.2.21) \[\delta^j_i = f^{kr} k^p_i B^p_{kr} B^j \]

которое следует из равенства (3.2.17) если \(f = \delta \). Из равенств (3.2.20), (3.2.21) следует

(3.2.22) \[\delta^j_i = 0_i B^p_p 0^j \]

Равенство (3.2.22) верно, так как из равенств

\[j \vec{e} 0 \vec{e} = 0 \vec{e} j \vec{e} = j \vec{e} \]

следует

\[0_r B^j = r \delta^j = r 0^j \]

Если \(\det B \neq 0 \), то решение (3.2.20) единствено. Если \(\det B = 0 \), то система линейных уравнений (3.2.21) имеет бесконечно много решений. Однако нас интересует по крайней мере одно.

Теорема 3.2.14. Если \(\det B \neq 0 \), то стандартные компоненты нулевого отображения

\[z : A \rightarrow A \quad z(x) = 0 \]

определены однозначно и имеют вид \(z^j_i = 0 \). Если \(\det B = 0 \), то множество стандартных компонент нулевого отображения порождает векторное пространство.
ДОКАЗАТЕЛЬСТВО. Теорема верна, поскольку стандартные компоненты z_{ij} являются решением однородной системы линейных уравнений

$$0 = z_{kr}^{^k p} B_{^p p} B^j$$

Замечание 3.2.15. Рассмотрим равенство

$$(3.2.23) a_{kr}^{^k r} x_{^r r} = b_{kr}^{^k r} x_{^r r}$$

Из теоремы 3.2.14 следует, что только при условии $\det B \neq 0$ из равенства $$(3.2.23)$$ следует

$$(3.2.24) a_{kr}^{^k r} = b_{kr}^{^k r}$$

В противном случае мы должны предполагать равенство

$$(3.2.25) a_{kr}^{^k r} = b_{kr}^{^k r} + z_{kr}^{^k r}$$

Несмотря на это, мы и в случае $\det B = 0$ будем пользоваться стандартным представлением так как в общем случае указать множество линейно независимых векторов - задача достаточно сложная. Если мы хотим определиться операцией над линейными отображениями, записанными в стандартном представлении, то также как в случае теоремы 3.2.13 мы будем выбирать представитель из множества возможных представлений.

Теорема 3.2.16. Пусть поле F является подкольцом центра $Z(D)$ тела D характеристики 0. Линейное отображение тела мультипликативно над полем F.

ДОКАЗАТЕЛЬСТВО. Непосредственное следствие определения 3.2.8.

Теорема 3.2.17. Выражение

$$(3.2.26) k f^r = f_{ij}^{ik} B_{^q q} B^r$$

является тензором над полем F.

ДОКАЗАТЕЛЬСТВО. D-линейное отображение относительно базиса $\vec{\xi}$ имеет вид (3.2.16). Пусть $\vec{\xi}'$ - другой базис. Пусть

$$(3.2.27) i \vec{e}' = i A^j_{^j j} \vec{e}$$

преобразование, отображающее базис $\vec{\xi}$ в базис $\vec{\xi}'$. Так как аддитивное отображение f не меняется, то

$$(3.2.28) f(x) = x_{^k k} f_{^n n}^{^q q} i \vec{e}$$

Подставим [3]-(8.2.8), (3.2.27) в равенство (3.2.28)

$$(3.2.29) f(x) = x_{^i i} A^{^{-1} k}_{^k k} f_{^q q}^{^l l} A^j_{^j j} i \vec{e}$$

Так как векторы $j \vec{e}$ линейно независимы и компоненты вектора $x_{^i}$ произвольны, то равенство (3.2.26) следует из равенства (3.2.29). Следовательно, выражение $k f^r$ является тензором над полем F.

□
3.2. Аддитивное отображение тела

Определение 3.2.18. Множество

$$\ker f = \{ x \in D_1 : f(x) = 0 \}$$

называется ядром аддитивного отображения

$$f : D_1 \to D_2$$

tела $$D_1$$ в тело $$D_2$$. □

Теорема 3.2.19. Ядро аддитивного отображения

$$f : D_1 \to D_2$$

является подгруппой аддитивной группы тела $$D_1$$. Доказательство. Пусть $$a, b \in \ker f$$. Тогда

$$f(a) = 0$$
$$f(b) = 0$$
$$f(a + b) = f(a) + f(b) = 0$$

Следовательно, $$a + b \in \ker f$$. □

Определение 3.2.20. Аддитивное отображение

$$f : D_1 \to D_2$$

tела $$D_1$$ в тело $$D_2$$ называется вырожденным, если

$$\ker f \neq \{0\}$$

Теорема 3.2.21. Пусть $$D$$ - тело характеристики 0. Пусть $$\bar{e}$$ - базис тела $$D$$ над центром $$Z(D)$$ тела $$D$$. Пусть

$$(3.2.30) f : D \to D$$

$$f(x) = (s)_0 f x (s)_1 f$$

$$(3.2.31) = f^{ij} \bar{e} x \bar{e}$$

$$(3.2.32) g : D \to D$$

$$g(x) = (t)_0 g x (t)_1 g$$

$$(3.2.33) = g^{ij} \bar{e} x \bar{e}$$

линейные отображения тела $$D$$. Определение

$$h(x) = gf(x) = g(f(x))$$

является линейным отображением

$$(3.2.34) h(x) = (ts)_0 h x (ts)_1 h$$

$$(3.2.35) = h^{pr} \bar{e} x \bar{e}$$

где

$$(3.2.36) (ts)_0 h = (t)_0 g (s)_0 f$$

$$(3.2.37) (ts)_1 h = (s)_1 f (t)_1 g$$

$$(3.2.38) h^{pr} = g^{ij} f^{kl} i k B^{pr} l j B^{r}$$
ДОКАЗАТЕЛЬСТВО. Отображение (3.2.34) аддитивно так как
\(h(x + y) = g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = h(x) + h(y) \)
Отображение (3.2.34) мультипликативно над \(Z(D) \) так как
\(h(ax) = g(f(ax)) = g(af(x)) = ah(x) \)
Если мы подставим (3.2.30) и (3.2.32) в (3.2.34), то мы получим
\(h(x) = (t_0)g f(x) (t)g = (t_0)g (s_0) f x (s) f (t)g \)
Сравнивая (3.2.40) и (3.2.35), мы получим (3.2.37), (3.2.38).
Если мы подставим (3.2.31) и (3.2.33) в (3.2.34), то мы получим
\(h(x) = g^{ij} i x f(x) j \)
(3.2.41)
\(= g^{ij} i x f^{kl} k x j \)
\(= g^{ij} i x f^{kl} k R i j B^r p e x \)
Сравнивая (3.2.41) и (3.2.36), мы получим (3.2.39).

3.3. Полилинейное отображение тела

Определение 3.3.1. Пусть \(R_1, \ldots, R_n \) - кольца и \(S \) - модуль. Мы будем называть отображение
(3.3.1)
\(f : R_1 \times \ldots \times R_n \to S \)
полилинейным отображением колец \(R_1, \ldots, R_n \) в модуль \(S \), если
\(f(p_1, \ldots, p_i + q_i, \ldots, p_n) = f(p_1, \ldots, p_i, \ldots, p_n) + f(p_1, \ldots, q_i, \ldots, p_n) \)
для любого \(1 \leq i \leq n \) и для любых \(p_i, q_i \in R_i \). Обозначим \(A(R_1, \ldots, R_n ; S) \) множество полилинейных отображений колец \(R_1, \ldots, R_n \) в модуль \(S \).

Теорема 3.3.2. Пусть \(R_1, \ldots, R_n, P \) - кольца характеристики 0. Пусть \(S \) - модуль над кольцом \(P \). Пусть
\(f : R_1 \times \ldots \times R_n \to S \)
полилинейное отображение. Существует коммутативное кольцо \(F \), которое для любого \(i \) является подкольцом центра кольца \(R_i \), и такое, что для любого \(i \) и \(b \in F \)
\(f(a_1, \ldots, ba_i, \ldots, a_n) = bf(a_1, \ldots, a_i, \ldots, a_n) \)

ДОКАЗАТЕЛЬСТВО. Для заданных \(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \) отображение \(f(a_1, \ldots, a_n) \) аддитивно по \(a_i \). Согласно теореме 3.1.10, мы можем выбрать кольцо целых чисел в качестве кольца \(F \).

Определение 3.3.3. Пусть \(R_1, \ldots, R_n, P \) - кольца характеристики 0. Пусть \(S \) - модуль над кольцом \(P \). Пусть \(F \) - коммутативное кольцо, которое для любого \(i \) является подкольцом центра кольца \(R_i \). Отображение
\(f : R_1 \times \ldots \times R_n \to S \)
называется полилинейным над коммутативным кольцом \(F \), если отображение \(f \) полилинейно, и для любого \(i, 1 \leq i \leq n \), для заданных \(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \) отображение \(f(a_1, \ldots, a_n) \) мультипликативно по \(a_i \). Если кольцо \(F \) - максимальное кольцо такое, что для любого \(i, 1 \leq i \leq n \), для заданных \(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \) отображение \(f(a_1, \ldots, a_n) \) линейно по \(a_i \) над кольцом \(F \), то
отображение \(f \) называется **полилинейным отображением** колец \(R_1, \ldots, R_n \) в модуль \(S \). Обозначим \(\mathcal{L}(R_1, \ldots, R_n; S) \) множество полилинейных отображений колец \(R_1, \ldots, R_n \) в модуль \(S \).

Теорема 3.3.4. Пусть \(D \) - тело характеристики 0. Полилинейное отображение

(3.3.2) \[f : D^n \to D, d = f(d_1, \ldots, d_n) \]

имеет вид

(3.3.3) \[d = (s)_0 f^n \cdot \sigma_s(d_1) (s)_1 f^n \cdot \sigma_s(d_2) (s)_n f^n \]

\(\sigma_s \) - перестановка множества переменных \(\{d_1, \ldots, d_n\} \)

\[\sigma_s = \begin{pmatrix} d_1 & \ldots & d_n \\ \sigma_s(d_1) & \ldots & \sigma_s(d_n) \end{pmatrix} \]

Доказательство. Мы докажем утверждение индукцией по \(n \).

При \(n = 1 \) доказанное утверждение является следствием теоремы 3.2.9. При этом мы можем отождествить \((s)_p f^1 = (s)_p f \)

Допустим, что утверждение теоремы справедливо при \(n = k - 1 \). Тогда отображение (3.3.2) можно представить в виде

![Diagram](image)

\[d = f(d_1, \ldots, d_k) = g(d_k)(d_1, \ldots, d_{k-1}) \]

Согласно предположению индукции полиаддитивное отображение \(h \) имеет вид

\[d = (t)_0 h^{k-1} \cdot \sigma_t(d_1) (t)_1 h^{k-1} \cdot \sigma_t(d_2) (t)_{k-1} h^{k-1} \]

Согласно построению \(h = g(d_k) \). Следовательно, выражения \((t)_h h \) являются функциями \(d_k \). Поскольку \(g(d_k) \) - аддитивная функция \(d_k \), то только одно выражение \((t)_h h \) является аддитивной функцией переменной \(d_k \), и остальные выражения \((t)_h h \) не зависят от \(d_k \).

Не нарушая общности, положим \(p = 0 \). Согласно равенству (3.2.14) для заданного \(t \)

\[(t)_0 h^{k-1} = (t)_0 g d_k (t)_1 g \]

Положим \(s = tr \) и определим перестановку \(\sigma_s \) согласно правилу

\[\sigma_s = \sigma_{tr} = \begin{pmatrix} d_k & d_1 & \ldots & d_{k-1} \\ \sigma_t(d_1) & \ldots & \sigma_t(d_{k-1}) \end{pmatrix} \]

3.6 В представлении (3.3.3) мы будем пользоваться следующими правилами.

- Если область значений какого-либо индекса - это множество, состоящее из одного элемента, мы будем опускать соответствующий индекс.
- Если \(n = 1 \), то \(\sigma_s \) - тождественное преобразование. Это преобразование можно не указывать в выражении.
Положим

\[(tr)_{q+1}f^k = (tr)_{q}f^{k-1}\]

для \(q = 1, ..., k - 1\).

\[(tr)_{q}f^k = (tr)_{q}g\]

для \(q = 0, 1\). Мы доказали шаг индукции. □

Определение 3.3.5. Выражение \((s)_p f^n\) в равенстве (3.3.3) называется компонентой полилинейного отображения \(f\).

\[\text{Определение 3.3.5. Выражение } (s)_p f^n \text{ в равенстве (3.3.3) называется компонентой полилинейного отображения } f.\]

\[\text{Определение 3.3.5. Выражение } (s)_p f^n \text{ в равенстве (3.3.3) называется компонентой полилинейного отображения } f.\]

\[\text{Теорема 3.3.6. Пусть } D - \text{ тело характеристики 0. Допустим } \overline{\epsilon} - \text{ базис тела } D \text{ над полем } Z(D). \ \text{Стандартное представление полилинейного отображения } D \text{ имеет вид}\]

(3.3.4)

\[f(d_1, ..., d_n) = (t) f_{i_1, ..., i_n} \sigma_1(d_1) i_1 \overline{\epsilon} ... \sigma_1(d_n) i_n \overline{\epsilon}\]

Индекс \(t\) нумерует все возможные перестановки \(\sigma_1\) множества переменных \(\{d_1, ..., d_n\}\). Выражение \((t) f_{i_1, ..., i_n}\) в равенстве (3.3.4) называется стандартной компонентой полилинейного отображения \(f\).

ДОКАЗАТЕЛЬСТВО. Компоненты полилинейного отображения \(f\) имеют разложение

(3.3.5)

\[(s)_p f^n = (s)_p f^{n}_{i_1 \overline{\epsilon}} \]

относительно базиса \(\overline{\epsilon}\). Если мы подставим (3.3.5) в (3.3.3), мы получим

(3.3.6)

\[d = (s)_0 f^{n}_{j_1 \overline{\epsilon}} \sigma_1(j_1) (s)_1 f^{n}_{j_2 \overline{\epsilon}} ... \sigma_1(d_n) (s)_n f^{n}_{j_n \overline{\epsilon}}\]

Рассмотрим выражение

(3.3.7)

\[(t) f^{j_1 \overline{\epsilon} ... j_n} = (s)_0 f^{n}_{j_1 \overline{\epsilon}} ... (s)_n f^{n}_{j_n \overline{\epsilon}}\]

В правой части подразумевается сумма тех слагаемых с индексом \(s\), для которых перестановка \(\sigma_s\) совпадает. Каждая такая сумма будет иметь уникальный индекс \(t\). Подставив в равенство (3.3.6) выражение (3.3.7) мы получим равенство (3.3.4).

\[\text{Теорема 3.3.6. Пусть } \overline{\epsilon} - \text{ базис тела } D \text{ над полем } Z(D). \ \text{Стандартное представление полилинейного отображения } D \text{ имеет вид}\]

(3.3.4)

\[f(d_1, ..., d_n) = (t) f_{i_1, ..., i_n} \sigma_1(d_1) i_1 \overline{\epsilon} ... \sigma_1(d_n) i_n \overline{\epsilon}\]

где

\[a_j = a^j_{i_1} \overline{\epsilon}\]

(3.3.9)

\[i_1 ... i_n f = f(i_1 \overline{\epsilon}, ..., i_n \overline{\epsilon})\]

и величины \(i_1 ... i_n f\) являются координатами \(D\)-значного ковариантного тензора над полем \(F\). □

3.7 Теорема доказана по аналогии с теоремой в [2], с. 107, 108
Доказательство. Согласно теореме 3.3.2 равенство (3.3.8) следует из цепочки равенств
\[f(a_1, \ldots, a_n) = f(a_1^{i_1}, \ldots, a_n^{i_n}) + a_1^{i_1} \ldots a_n^{i_n} f(i_1, \ldots, i_n) \]
Пусть \(\overline{\mathbf{e}} \) - другой базис. Пусть
\((3.3.10) \overline{\mathbf{e}} = A^j_i \overline{\mathbf{e}} \)
преобразование, отображающее базис \(\overline{\mathbf{e}} \) в базис \(\overline{\mathbf{e}} \). Из равенств (3.3.10) и (3.3.9) следует
\[\sigma_{i_1}^{j_1} \ldots \sigma_{i_n}^{j_n} f(i_1, \ldots, i_n) = f(i_1, \ldots, i_n) = a_1^{i_1} \ldots a_n^{i_n} f(i_1, \ldots, i_n) \]
Из равенства (3.3.11) следует тензорный закон преобразования полилинейного отображения. Из равенства (3.3.11) и теоремы [3.8.2.1] следует, что значение отображения \(f(a_1, \ldots, a_n) \) не зависит от выбора базиса. □

Полилинейное отображение (3.3.2) **симметрично**, если
\[f(d_1, \ldots, d_n) = f(\sigma(d_1), \ldots, \sigma(d_n)) \]
для любой перестановки \(\sigma \) множества \(\{d_1, \ldots, d_n\} \).

Теорема 3.3.8. Если полилинейное отображение \(f \) **симметрично**, то
\[(3.3.12) \ i_1 \ldots i_n f = \sigma(i_1) \ldots \sigma(i_n) f \]

Доказательство. Равенство (3.3.12) следует из равенства
\[a_1^{i_1} \ldots a_n^{i_n} f = f(a_1, \ldots, a_n) \]
\[= f(\sigma(a_1), \ldots, \sigma(a_n)) \]
\[= a_1^{\sigma(i_1)} \ldots a_n^{\sigma(i_n)} \sigma(i_1) \ldots \sigma(i_n) f \]

Полилинейное отображение (3.3.2) **косо симметрично**, если
\[f(d_1, \ldots, d_n) = |\sigma| f(\sigma(d_1), \ldots, \sigma(d_n)) \]
для любой перестановки \(\sigma \) множества \(\{d_1, \ldots, d_n\} \). Здесь
\[|\sigma| = \begin{cases} 1 & \text{перестановка} \sigma \text{ чётная} \\ -1 & \text{перестановка} \sigma \text{ нечётная} \end{cases} \]

Теорема 3.3.9. Если полилинейное отображение \(f \) **косо симметрично**, то
\[(3.3.13) \ i_1 \ldots i_n f = |\sigma| \sigma(i_1) \ldots \sigma(i_n) f \]

Доказательство. Равенство (3.3.13) следует из равенства
\[a_1^{i_1} \ldots a_n^{i_n} f = f(a_1, \ldots, a_n) \]
\[= |\sigma| f(\sigma(a_1), \ldots, \sigma(a_n)) \]
\[= a_1^{\sigma(i_1)} \ldots a_n^{\sigma(i_n)} |\sigma| \sigma(i_1) \ldots \sigma(i_n) f \]

□
Теорема 3.3.10. Отображение (3.3.2) полилинейное над полем F полилинейно тогда и только тогда, когда

\begin{align}
(3.3.14) & \quad j_1...j_n f = (t) f^{i_0...i_n}_{i_0\sigma_1(j_1)B_{k_1}^{i_1}k_1i_1...i_{n-1}\sigma_1(j_n)B_{k_n}^{i_n}k_ni_n}B_l^{i_n}l_n e^i \\
(3.3.15) & \quad j_1...j_n f^p = (t) f^{i_0...i_n}_{i_0\sigma_1(j_1)B_{k_1}^{i_1}k_1i_1...i_{n-1}\sigma_1(j_n)B_{k_n}^{i_n}k_ni_n}B^p
\end{align}

Доказательство. В равенстве (3.3.4) положим

$$d_i = d_i^{j_i}j_i e^i$$

Тогда равенство (3.3.4) примет вид

$$f(d_1,...,d_n) = (t) f^{i_0...i_n}_{i_0\sigma_1(j_1)j_1}i_1 e^i ... \sigma_1(d_n^{i_n}j_n e^i) i_n e^i$$

(3.3.16)

$$=d_1^{j_1}...d_n^{j_n} (t) f^{i_0...i_n}_{i_0\sigma_1(j_1)j_1}i_1 e^i ... \sigma_1(j_n e^i) i_n e^i$$

$$=d_1^{j_1}...d_n^{j_n} (t) f^{i_0...i_n}_{i_0\sigma_1(j_1)B_{k_1}^{i_1}k_1i_1}B^{i_1}1_i$$

$$... l_n-1\sigma_1(j_n)B_{k_n}^{i_n}k_ni_n}B^l_{i_n}l_n e^i$$

Из равенства (3.3.8) следует

(3.3.17)

$$f(\overline{a}_1,...,\overline{a}_n) = a_1^{i_1}...a_n^{i_n} i_1...i_n f^p e^p$$

Равенство (3.3.14) следует из сравнения равенств (3.3.16) и (3.3.8). Равенство (3.3.15) следует из сравнения равенств (3.3.16) и (3.3.17).
Глава 4

Линейное отображение D-векторных пространств

4.1. Линейное отображение D-векторных пространств

Определение 4.1.1. Пусть \mathbf{V} и \mathbf{W} - D-векторные пространства. Мы будем называть отображение $A: \mathbf{V} \to \mathbf{W}$ аддитивным отображением D-векторных пространств, если

$$A(p + q) = A(p) + A(q)$$

для любых $p, q \in \mathbf{V}$. Обозначим $A(D; \mathbf{V}; \mathbf{W})$ множество аддитивных отображений

$$A: \mathbf{V} \to \mathbf{W}$$

D-векторного пространства \mathbf{V} в D-векторное пространство \mathbf{W}. \hfill \Box

Очевидно, что D^*-линейное отображение, так же как D^*-линейное отображение являются аддитивными отображениями. Множество морфизмов D-векторного пространства шире, чем множество морфизмов D^*-векторного пространства. Чтобы рассмотреть аддитивное отображение векторных пространств, мы будем следовать методике, предложенной в разделе [3]-4.4.

Теорема 4.1.2. Пусть D - тело характеристики 0. Допустим $v^* - D^*$-базис в D-векторном пространстве \mathbf{V} над телом D и $v \in \mathbf{V}$

$$v = v^* \cdot \overline{v}$$

Допустим $\overline{v}^* - D^*$-базис в D-векторном пространстве \mathbf{W} над телом D. Аддитивное отображение

$$A: \mathbf{V} \to \mathbf{W}$$

относительно D^*-базиса \overline{v} и D^*-базиса \overline{v}^* имеет вид

$$(4.1.1) \quad A(v) = A(v^* \cdot \overline{v}) = i A^j(v^* \cdot \overline{v}) \cdot \overline{v}$$

где $i A^j(v^*)$ аддитивно зависит от одной переменной v^* и не зависит от остальных координат вектора \overline{v}.

Доказательство. Согласно определению 4.1.1

$$(4.1.2) \quad A(v) = A(v^* \cdot \overline{v}) = A \left(\sum_i v^* \cdot \overline{v}_i \right) = \sum_i A(v^* \cdot \overline{v}_i)$$

Для любого заданного i вектор $A(v^* \cdot \overline{v}_i) \in \mathbf{W}$ имеет единственное разложение

$$(4.1.3) \quad A(v^* \cdot \overline{v}_i) = i A^j(v^* \cdot \overline{v}) = i A(v^*)^* \cdot \overline{v}_i$$

относительно D^*-базиса \overline{v}^*. Подставив (4.1.3) в (4.1.2), мы получим (4.1.1). \hfill \Box
Определение 4.1.3. Аддитивное отображение

\[iA^i : D \to D \]

называется частным аддитивным отображением переменной \(v^i \). \(\square \)

Мы можем записать аддитивное отображение в виде произведения матриц (4.1.4)

\[
\overline{\lambda}(\overline{v}) = (iA^1(v^i) \ldots iA^m(v^i))^* \left(\begin{array}{c} 1r \\ \vdots \\ mr \end{array} \right)
\]

Определим произведение матриц (4.1.5)

\[
(v^1 \ldots v^n)^* \begin{pmatrix} 1A^1 & \ldots & 1A^m \\ \vdots & \ddots & \vdots \\ nA^1 & \ldots & nA^m \end{pmatrix} = (iA^1(v^i) \ldots iA^m(v^i))
\]

где \(A = (iA^i) \) - матрица частных аддитивных отображений. Используя равенство (4.1.5), мы можем записать равенство (4.1.4) в виде (4.1.6)

\[
\overline{\lambda}(\overline{v}) = (v^1 \ldots n^m)^* \begin{pmatrix} 1A^1 & \ldots & 1A^m \\ \vdots & \ddots & \vdots \\ nA^1 & \ldots & nA^m \end{pmatrix}^* \left(\begin{array}{c} 1r \\ \vdots \\ mr \end{array} \right)
\]

Определение 4.1.4. Пусть поле \(F \) является подкольцом центра \(Z(D) \) тела \(D \). Отображение

\[\overline{A} : \overline{V} \to \overline{W} \]

\(D \)-векторного пространства \(\overline{V} \) в \(D \)-векторное пространство \(\overline{W} \) называется мультипликативным над полем \(P \), если

\[\overline{A}(p\overline{v}) = p\overline{A}(\overline{v}) \]

для любого \(p \in P \). \(\square \)

Определение 4.1.5. Пусть поле \(P \) является подкольцом центра \(Z(D) \) тела \(D \). Отображение

\[\overline{A} : \overline{V} \to \overline{W} \]

\(D \)-векторного пространства \(\overline{V} \) в \(D \)-векторное пространство \(\overline{W} \) называется проективным над полем \(P \), если

\[\overline{A}(p\overline{v}) = \overline{A}(\overline{v}) \]

для любого \(p \in P \). Множество

\[I\overline{v} = \{ p\overline{v} : p \in P, \overline{v} \in \overline{V} \} \]

называется направлением \(\overline{v} \) над полем \(P \). \(\square \)

Определение 4.1.6. Пусть поле \(F \) является подкольцом центра \(Z(D) \) тела \(D \). Аддитивное отображение

\[\overline{A} : \overline{V} \to \overline{W} \]

\(D \)-векторного пространства \(\overline{V} \) в \(D \)-векторное пространство \(\overline{W} \), мультипликативное над полем \(F \), называется линейным отображением над полем \(F \). \(\square \)
Определение 4.1.7. Аддитивное отображение
\[\overline{\mathbf{A}} : \overline{V} \rightarrow \overline{W} \]
Д-векторного пространства \(\overline{V} \) в D-векторное пространство \(\overline{W} \), линейное над центром тела, называется линейным отображением D-векторных пространств. Обозначим \(\mathcal{L}(D;\overline{V};\overline{W}) \) множество линейных отображений
\[\overline{A} : \overline{V} \rightarrow \overline{W} \]
D-векторного пространства \(\overline{V} \) в D-векторное пространство \(\overline{W} \).

Мы можем записать линейное отображение в виде произведения матриц
\[\overline{A}(\overline{v}) = \left(\begin{array}{ccc} A_1(\overline{u}) & \ldots & A_m(\overline{u}) \\ \vdots & \ddots & \vdots \\ A_1(\overline{v}) & \ldots & A_m(\overline{v}) \end{array} \right) \left(\begin{array}{c} \overline{u} \\ \vdots \\ \overline{v} \end{array} \right) \]
где \(A = (iA^j(v^i)) \) - матрица частных линейных отображений.

Теорема 4.1.8. Пусть поле \(F \) является подкольцом центра \(Z(D) \) тела \(D \) характеристики 0. Линейное отображение D-векторного пространства мультипликативно над полем \(F \).

Доказательство. Утверждение теоремы является следствием определений 4.1.6, 4.1.7, так как \(a \in F \Rightarrow a \in Z(D) \).

Теорема 4.1.9. Пусть \(D \) - тело характеристики 0. Допустим \(\overline{\bar{v}} \) - D*-базис в D-векторном пространстве \(\overline{V} \) над телом \(D \) и \(\overline{\bar{v}} \in \overline{V} \)
\[\overline{\bar{v}} = v^{\star} \overline{\bar{v}} \]
Допустим \(\overline{\bar{r}} \) - D*-базис в D-векторном пространстве \(\overline{W} \) над телом \(D \) и \(\overline{\bar{r}} \in \overline{W} \)
\[\overline{\bar{r}} = w^{\star} \overline{\bar{r}} \]
Линейное отображение
\[\overline{A} : \overline{V} \rightarrow \overline{W} \]
относительно D*-базиса \(\overline{\bar{v}} \) и D*-базиса \(\overline{\bar{r}} \) имеет вид
\[w^j = iA^j(v^i) = i(s_0)A^j v^i i(s_1)A^j \]
Доказательство. Согласно теореме 4.1.2 линейное отображение \(\overline{A} (\overline{v}) \) можно записать в виде (4.1.1). Так как для заданных индексов \(i, j \) частное аддитивное отображение \(iA^j(v^i) \) линейно по переменной \(v^i \), то согласно (3.2.14) выражении \(iA^j(v^i) \) можно представить в виде
\[iA^j(v^i) = i(s_0)A^j v^i i(s_1)A^j \]
где индекс \(s \) нумерует слагаемые. Множество значений индекса \(s \) зависит от индексов \(i \) и \(j \). Комбинируя равенства (4.1.2) и (4.1.10), мы получим
\[\overline{A}(\overline{v}) = iA^j(v^i) \overline{\bar{r}} = i(s_0)A^j v^i i(s_1)A^j \overline{\bar{r}} \]
(4.1.11)

Координатная запись отображения (4.1.8) зависит от выбора биазиса. Равенства изменяют свой вид, если например мы выберем \(\star * D \)-базис \(\overline{\bar{v}} \) в D-векторном пространстве \(\overline{W} \).
В равенстве (4.1.11) мы суммируем также по индексу i. Равенство (4.1.9) следует из сравнения равенств (4.1.7) и (4.1.11).

Определение 4.1.10. Выражение $i(s)pA^j$ в равенстве (4.1.11) называется компонентой линейного отображения \overline{A}.

Доказательство. Отображение C аддитивно, так как
\[
C(a + b) = B(A(a + b)) = B(A(a) + A(b)) = B(A(a)) + B(A(b)) = C(A(a)) + C(A(b))
\]
Определим C мультипликативно над полем $Z(D)$, так как для $a \in Z(D)$
\[
C(ab) = B(A(ab)) = B(aA(b)) = aB(A(b)) = aC(A(b))
\]
Равенство (4.1.14) следует из подстановки (4.1.12) в (4.1.13).

4.2 Индекс u оказался составным индексом, $u = st$. Однако не исключено, что некоторые слагаемые в (4.1.15) могут быть объединены вместе.
4.1. Линейное отображение D-векторных пространств

Теорема 4.1.12
Для линейного отображения \overline{A} существует линейное отображение \overline{B} такое, что

$$
\overline{A}(a\overline{v}b) = \overline{B}(\overline{v})
$$

$$
j_{(s)}0B^j = i_{(s)}0A^j a
$$

$$
j_{(s)}1B^j = b_i(i_{(s)}1A^j)
$$

Доказательство. Аддитивность отображения \overline{B} непосредственно следует из цепочки равенств

$$
\overline{B}(\overline{v} + \overline{w}) = \overline{A}(a(\overline{v} + \overline{w})b) = \overline{A}(a\overline{v}b + a\overline{w}b) = \overline{A}(a\overline{v}b) + \overline{A}(a\overline{w}b) = \overline{B}(\overline{v}) + \overline{B}(\overline{w})
$$

Отображение \overline{B} мультипликативно над полем $Z(D)$, так как для $c \in Z(D)$

$$
\overline{B}(c\overline{v}) = \overline{A}(ac\overline{v}b) = \overline{A}(ca\overline{v}b) = c\overline{A}(a\overline{v}b) = c\overline{B}(\overline{v})
$$

Согласно равенству (4.1.9)

$$
\overline{B}(j_{(s)}v^i) j_{(s)}0B^j = i_{(s)}0A^j (a^j b_i(i_{(s)}1A^j) = (i_{(s)}0A^j a^j) (b_i(i_{(s)}1A^j)
$$

Теорема 4.1.13
Пусть D - тело характеристики 0. Пусть $A : \overline{V} \rightarrow \overline{W}$ аддитивное отображение D-векторного пространства \overline{V} в D-векторное пространство \overline{W}. Тогда $\overline{A}(0) = 0$.

Доказательство. Следствие равенства

$$
\overline{A}(\overline{v} + \overline{0}) = \overline{A}(\overline{v}) + \overline{A}(\overline{0})
$$

Определение 4.1.14
Множество

$$
\ker\overline{A} = \{ \overline{v} \in \overline{V} : \overline{A}(\overline{v}) = \overline{0} \}
$$

называется **ядром аддитивного отображения** $\overline{A} : \overline{V} \rightarrow \overline{W}$ D-векторного пространства \overline{V} в D-векторное пространство \overline{W}.

Определение 4.1.15
Аддитивное отображение $A : \overline{V} \rightarrow \overline{W}$ D-векторного пространства \overline{V} в D-векторное пространство \overline{W} называется **вырожденным**, если

$$
\ker\overline{A} = \overline{V}
$$
4.2. Полиаддитивное отображение D-векторного пространства

Определение 4.2.1. Пусть D - тело характеристики 0. Пусть $\overline{V}_1, ... , \overline{V}_n, \overline{W}_1, ..., \overline{W}_m$ - D-векторные пространства. Мы будем называть отображение

\[\mathbf{A} : \overline{V}_1 \times ... \times \overline{V}_n \rightarrow \overline{W}_1 \times ... \times \overline{W}_m \]

полиаддитивным отображением \times-D-векторного пространства $\overline{V}_1 \times ... \times \overline{V}_n$ в \times-D-векторное пространство $\overline{W}_1 \times ... \times \overline{W}_m$, если

\[\mathbf{A}(\overline{p}_1, ..., \overline{p}_i + \overline{q}_i, ..., \overline{p}_n) = \mathbf{A}(\overline{p}_1, ..., \overline{p}_i, ..., \overline{p}_n) + \mathbf{A}(\overline{p}_1, ..., \overline{q}_i, ..., \overline{p}_n) \]

для любого $1 \leq i \leq n$ и для любых $\overline{p}_i, \overline{q}_i \in \overline{V}_i$. □

Определение 4.2.2. Обозначим $A(D; \overline{V}_1, ..., \overline{V}_n; \overline{W}_1, ..., \overline{W}_m)$ множество полиаддитивных отображений \times-D-векторного пространства $\overline{V}_1 \times ... \times \overline{V}_n$ в \times-D-векторное пространство $\overline{W}_1 \times ... \times \overline{W}_m$. □

Теорема 4.2.3. Пусть D - тело характеристики 0. Для каждого $k \in K = [1, n]$ допустим \overline{p}_k - D^*-базис в D-векторном пространстве \overline{V}_k и $\overline{p}_k \in \overline{V}_k$

\[\overline{p}_k = v_k \ast \overline{p}_k \]

Для каждого $l, 1 \leq l \leq m$, допустим \overline{t}_l - D^*-базис в D-векторном пространстве \overline{W}_l и $\overline{t}_l \in \overline{W}_l$

(4.2.2) \[\overline{t}_l = w_l \ast \overline{t}_l \]

Полиаддитивное отображение (4.2.1)

(4.2.3) \[\overline{w}_1 \times ... \times \overline{w}_m = \mathbf{A}(\overline{v}_1, ..., \overline{v}_n) \]

относительно базиса $\overline{p}_1 \times ... \times \overline{p}_n$ и базиса $\overline{t}_1 \times ... \times \overline{t}_m$ имеет вид

(4.2.4) \[\overline{w}_l = i_{1}...i_{n} \mathbf{A}_l^j (v_{i_1}^{1}, ..., v_{i_n}^{n}) \]

\[= i_1...i_n(s)0 \mathbf{A}_l^j (v_{i_1}^{1}) \sigma_s(v_{i_2}^{2}) \sigma_s(v_{i_3}^{3})
\]

Область значений S индекса s зависит от значений индексов $i_1, ..., i_n$. σ_s - перестановка множества переменных $\{v_{i_1}^{1}, ..., v_{i_n}^{n}\}$.

Доказательство. Так как отображение \mathbf{A} в \times-D-векторное пространство $\overline{W}_1 \times ... \times \overline{W}_m$ можно рассматривать покомпонентно, то мы можем ограничиться рассмотрением отображения

(4.2.5) \[\mathbf{A}_l : \overline{V}_1 \times ... \times \overline{V}_n \rightarrow \overline{W}_l \]

Мы докажем утверждение индукцией по n.

При $n = 1$ доказываемое утверждение является утверждением теоремы 4.1.9. При этом мы можем отождествить \mathbf{A}_l (4.2.4) и \mathbf{A}_l (4.2.5) с отождествением $\mathbf{A} (p = 0, 1)$

\[i_{1}...i_n p A_{1}^{1}j = i(s)p A_{j}^{1} \]

В представлении (4.2.4) мы будем пользоваться следующими правилами.

- Если область значений какого-либо индекса - это множество, состоящее из одного элемента, мы будем опускать соответствующий индекс.
- Если $n = 1$, то σ_s - тождественное преобразование. Это преобразование можно не указывать в выражении.
4.2. Полиаддитивное отображение D-векторного пространства

Допустим, что утверждение теоремы справедливо при $n = k - 1$. Тогда отображение (4.2.5) можно представить в виде

$$
V_1 \times \ldots \times V_k \xrightarrow{A_l} W_l
$$

$$
V_1 \times \ldots \times V_{k-1} \xrightarrow{B_l} W_l
$$

$$
\mathbf{m}_l = \overline{A}_l(\mathbf{v}_1, \ldots, \mathbf{v}_k) = \overline{C}_l(\mathbf{v}_k)(\mathbf{v}_1, \ldots, \mathbf{v}_{k-1})
$$

Согласно предположению индукции полиаддитивное отображение \overline{B}_l имеет вид

$$
w^j_l = \sigma_l(v^i_1) v^i_1 \ldots \sigma_l(v^i_{k-1}) v^i_{k-1}
$$

Согласно построению $\overline{B}_l = \overline{C}_l(\mathbf{v}_k)$. Следовательно, выражения $i_1 \ldots i_{k-1} B_{(k-1)j}^l$ являются функциями \mathbf{v}_k. Поскольку $\overline{C}_l(\mathbf{v}_k)$ - аддитивная функция \mathbf{v}_k, то только одно выражение $i_1 \ldots i_{k-1} B_{(k-1)j}^l$ является аддитивной функцией \mathbf{v}_k, и остальные выражения $i_1 \ldots i_{k-1} B_{(k-1)j}^l$ не зависят от \mathbf{v}_k.

Не нарушая общности, положим $p = 0$. Согласно теореме 4.1.9

$$
i_1 \ldots i_{k-1}(t) B_{(k-1)j}^l = i_1 \ldots i_{k-1} (t) 0^k \text{C}_l^j v^i_k \text{v}_k^i \ldots \text{v}_{k-1} \text{v}_{k-1} \text{C}_l^{kj}
$$

Положим $s = tr$ и определим перестановку σ_s согласно правилу

$$
\sigma_s = \sigma(tr) = \left(\begin{array}{cccc}
\sigma((v^i_1)) & \sigma((v^i_1)) & \ldots & \sigma((v^i_1)) \\
\sigma((v^i_k)) & \sigma((v^i_k)) & \ldots & \sigma((v^i_k)) \\
\sigma((v^i_{k-1})) & \sigma((v^i_{k-1})) & \ldots & \sigma((v^i_{k-1}))
\end{array}\right)
$$

Положим

$$
i_k i_1 \ldots i_{k-1} (t)(q+1) A_{kj}^l = i_1 \ldots i_{k-1} (tr(q+1)) C_{kj}^l
$$

для $q = 1, \ldots, k - 1$.

$$
i_k i_1 \ldots i_{k-1} (tr) A_{kj}^l = i_k i_1 \ldots i_{k-1} (tr(q+1)) C_{kj}^l
$$

для $q = 0, 1$. Мы доказали шаг индукции.

Определение 4.2.4. Выражение $i_1 \ldots i_n (s) A^k_j$ в равенстве (4.2.4) называется компонентой полиаддитивного отображения \overline{A}. □
Глava 5

Дифференцируемые отображения

5.1. Топологическое тело

Определение 5.1.1. Тело D называется топологическим телом5.1, если D является топологическим пространством, и алгебраические операции, определённые в D, непрерывны в топологическом пространстве D. □

Согласно определению, для произвольных элементов $a, b \in D$ и для произвольных окрестностей W_{a-b} элемента $a-b$, W_{ab} элемента ab существуют такие окрестности W_a элемента a и W_b элемента b, что $W_a - W_b \subseteq W_{a-b}$, $W_a W_b \subseteq W_{ab}$.

Если $a \neq 0$, то для произвольной окрестности $W_{a^{-1}}$ существует окрестность W_a элемента a, удовлетворяющая условию $W_{a^{-1}} \subseteq W_{a^{-1}}$.

Определение 5.1.2. Норма на теле D5.2 - это отображение $d \in D \to |d| \in R$

такое, что

• $|a| \geq 0$
• $|a| = 0$ равносильно $a = 0$
• $|ab| = |a| |b|$
• $|a + b| \leq |a| + |b|$

Тело D, наделённое структурой, определяемой заданием на D нормы, называется нормированным телом. □

Инвариантное расстояние на аддитивной группе тела D

$$d(a, b) = |a - b|$$

определяет топологию метрического пространства, согласующуюся со структурой тела в D.

Определение 5.1.3. Пусть D - нормированное тело. Элемент $a \in D$ называется пределом последовательности $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

если для любого $\epsilon \in R$, $\epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_n - a| < \epsilon$ для любого $n > n_0$. □

Теорема 5.1.4. Пусть D - нормированное тело характеристики 0 и пусть $d \in D$. Пусть $a \in D$ - предел последовательности $\{a_n\}$. Тогда

$$\lim_{n \to \infty} (a_n d) = ad$$

5.1 Определение дано согласно определению из [6], глава 4
5.2 Определение дано согласно определению из [4], гл. IX, §3, п\textdegree{}2

45
Дифференцируемые отображения

\[\lim_{n \to \infty} (da_n) = da \]

Доказательство. Утверждение теоремы тривиально, однако я привожу доказательство для полноты текста. Поскольку \(a \in D \) - предел последовательности \(\{a_n\} \), то согласно определению 5.1.3 для заданного \(\epsilon \in R, \epsilon > 0 \), существует натуральное число \(n_0 \) такое, что \(|a_n - a| < \epsilon/|d| \) для любого \(n > n_0 \).

Согласно определению 5.1.2 утверждение теоремы следует из неравенств

\[|a_n d - ad| = |(a_n - a)d| = |a_n - a||d| < \epsilon/|d||d| = \epsilon \]
\[|da_n - da| = |d(a_n - a)| = |d||a_n - a| < |d|\epsilon/|d| = \epsilon \]

для любого \(n > n_0 \).

Определение 5.1.5. Пусть \(D \) - нормированное тело. Последовательность \(\{a_n\} \), \(a_n \in D \) называется фундаментальной или последовательностью Коши, если для любого \(\epsilon \in R, \epsilon > 0 \) существует, зависящее от \(\epsilon \), натуральное число \(n_0 \) такое, что \(|a_p - a_q| < \epsilon \) для любых \(p, q > n_0 \).

Определение 5.1.6. Нормированное тело \(D \) называется полным если любая фундаментальная последовательность элементов данного тела сходится, т. е. имеет предел в этом теле.

До сих пор всё было хорошо. Кольцо целых чисел содержит в кольце характеристики 0. Поле рациональных чисел содержит в теле характеристики 0. Однако это не означает, что поле действительных чисел содержит в полном теле \(D \) характеристики 0. Например, мы можем определить норму на теле, тождественно равную 1. Эта норма определяет на нормированном теле дискретную топологию и не представляет для нас интереса, так как любая фундаментальная последовательность является постоянным отображением.

В дальнейшем, говоря о нормированном теле характеристики 0, мы будем предполагать, что определён гомеоморфизм поля рациональных чисел \(Q \) в теле \(D \).

Теорема 5.1.7. Полное тело \(D \) характеристики 0 содержит в качестве подполя изоморфный образ поля \(R \) действительных чисел. Это поле обычно отождествляют с \(R \).

Доказательство. Рассмотрим фундаментальную последовательность рациональных чисел \(\{p_n\} \). Пусть \(p' \) - предел этой последовательности в теле \(D \). Пусть \(p \) - предел этой последовательности в поле \(R \). Так как вложение поля \(Q \) в тело \(D \) гомеоморфно, то мы можем отождествить \(p' \in D \) и \(p \in R \).

Теорема 5.1.8. Пусть \(D \) - полное тело характеристики 0 и пусть \(d \in D \). Тогда любое действительное число \(p \in R \) коммутирует с \(d \).

Доказательство. Мы можем представить действительное число \(p \in R \) в виде фундаментальной последовательности рациональных чисел \(\{p_n\} \). Утверждение теоремы следует из цепочки равенств

\[pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp \]

основанной на утверждении теоремы 5.1.4.

Теорема 5.1.9. Пусть \(D \) - полное тело характеристики 0. Тогда поле действительных чисел \(R \) является подполя центра \(Z(D) \) тела \(D \).
Определение 5.1.10. Пусть D - полное тело характеристики 0. Множество элементов $d \in D$, $|d| = 1$ называется единственной сферой в теле D.

Определение 5.1.11. Пусть D_1 - полное тело характеристики 0 с нормой $|x|_1$. Пусть D_2 - полное тело характеристики 0 с нормой $|x|_2$. Функция $f : D_1 \to D_2$ называется непрерывной, если для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta > 0$, что $|x' - x|_1 < \delta$ влечёт $|f(x') - f(x)|_2 < \epsilon$.

Теорема 5.1.12. Пусть D - полное тело характеристики 0. Если в разложении (3.2.14) аддитивного отображения $f : D \to D$ индекс s принимает конечное множество значений, то аддитивное отображение f непрерывно.

Доказательство. Положим $x' = x + a$. Тогда

$$f(x') - f(x) = f(x + a) - f(x) = f(a) = (s)0f\ a (s)1f$$

$$|f(x') - f(x)| = (s)0f\ a (s)1f < (|(s)0f| (s)1f)|a|$$

Положим $F = (|(s)0f| (s)1f)$. Тогда

$$|f(x') - f(x)| < F|a|$$

Выберем $\epsilon > 0$ и положим $a = F\epsilon$. Тогда $\delta = |a| = \frac{\epsilon}{F}$. Согласно определению 5.1.11 аддитивное отображение f непрерывно.

Аналогично, если индекс s принимает счетное множество значений, то для непрерывности аддитивного отображения f мы требуем, что бы ряд $|(s)0f| (s)1f|$ сходился. Если индекс s принимает непрерывное множество значений, то для непрерывности аддитивного отображения f мы требуем, что бы интеграл $\int (s)0f (s)1f|ds$ существовал.

Определение 5.1.13. Пусть $f : D_1 \to D_2$ отображение полного тела D_1 характеристики 0 с нормой $|x|_1$ в полное тело D_2 характеристики 0 с нормой $|y|_2$. Величина

$$(5.1.1) \quad \|f\| = \sup \frac{|f(x)|_2}{|x|_1}$$

называется нормой отображения f.

Доказательство. Следствие теоремы 5.1.8.
Теорема 5.1.14. Пусть D_1 - полное тело характеристики 0 с нормой $|x|_1$. Пусть D_2 - полное тело характеристики 0 с нормой $|x|_2$. Пусть $f : D_1 \rightarrow D_2$ отображение, мультипликативное над полем R. Тогда

(5.1.2) $\|f\| = \sup\{|f(x)|_2 : |x|_1 = 1\}$

Доказательство. Согласно определению 3.1.5

$\frac{|f(x)|_2}{|x|_1} = \frac{|f(rx)|_2}{|rx|_1}$

Полагая $r = \frac{1}{|x|_1}$, мы получим

(5.1.3) $\frac{|f(x)|_2}{|x|_1} = |f\left(\frac{x}{|x|_1}\right)|_2$

Равенство (5.1.2) следует из равенств (5.1.3) и (5.1.1). □

Теорема 5.1.15. Пусть $f : D_1 \rightarrow D_2$ аддитивное отображение полного тела D_1 в полное тело D_2. Отображение f непрерывно, если $\|f\| < \infty$.

Доказательство. Поскольку отображение f аддитивно, то согласно определению 5.1.13

$|f(x) - f(y)|_2 = |f(x - y)|_2 \leq \|f\| |x - y|_1$

Возьмём произвольное $\epsilon > 0$. Положим $\delta = \frac{\epsilon}{\|f\|}$. Тогда из неравенства

$|x - y|_1 < \delta$

следует

$|f(x) - f(y)|_2 \leq \|f\| \delta = \epsilon$

Согласно определению 5.1.11 отображение f непрерывно. □

Теорема 5.1.16. Пусть D - полное тело характеристики 0. Либо непрерывное отображение f тела, проективное над полем P, не зависит от направления над полем P, либо значение $f(0)$ не определено.

Доказательство. Согласно определению 3.1.7, отображение f постоянно на направлении Pa. Так как $0 \in Pa$, то естественно положить по непрерывности

$f(0) = f(a)$

Однако это приводит к неопределённости значения отображения f в направлении 0, если отображение f имеет разное значение для разных направлений a. □

Если проективная над полем R функция f непрерывна, то мы будем говорить, что функция f непрерывна по направлению над полем R. Поскольку для любого $a \in D$, $a \neq 0$ мы можем выбрать $a_1 = |a|^{-1}a$, $f(a_1) = f(a)$, то мы можем сделать определение более точным.
Определение 5.1.17. Пусть D - полное тело характеристики 0. Проективная над полем R функция f непрерывна по направлению над полем R, если для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta > 0$, что

$$|x' - x|_1 < \delta \quad |x'|_1 = |x|_1 = 1$$

влечёт

$$|f(x') - f(x)|_2 < \epsilon$$

Теорема 5.1.18. Пусть D - полное тело характеристики 0. Проективная над полем R функция f непрерывна по направлению над полем R тогда и только тогда, когда эта функция непрерывна на единичной сфере тела D.

Доказательство. Следствие определений 5.1.11, 3.1.7, 5.1.17.

5.2. Дифференцируемое отображение тела

Определение 5.2.1. Пусть D - нормированное тело. Функция $f : D \rightarrow D$ называется D^\star-дифференцируемой по Фреше на множестве $U \subset D$,

и в каждой точке $x \in U$ изменение функции f может быть представлено в виде

$$(5.2.1) \quad f(x + h) - f(x) = h \frac{df(x)}{dx} + o(h)$$

где o - такое непрерывное отображение

$${o : D \rightarrow D}$$

что

$$(5.2.2) \quad \lim_{h \rightarrow 0} \frac{|o(h)|}{|h|} = 0$$

Согласно определению 5.2.1, D^\star-производная Фреше отображения f в точке x

$$\frac{df(x)}{dx} \in \mathcal{L}(D, D)$$

порождает гомоморфизм

$$\Delta f = \Delta x \frac{df(x)}{dx}$$

отображающий приращение аргумента в приращение функции.

5.3 Определение дано согласно определению [1]-3.1.1, стр. 256.

5.4 Так же как в замечании [3]-4.4.5 мы можем определить D^\star-дифференцируемость отображения $f : S \rightarrow D$ нормированного тела S в нормированное тело D согласно правилу

$$f(x + h) - f(x) = F(h) \frac{df(x)}{dx} + o(h)$$

где

$$F : S \rightarrow D$$

gомоморфизм тел. Однако, опираясь на теоремы об изоморфизмах, мы можем ограничиться случаем отображений тела D в D.

Если мы умножим обе части равенства (5.2.1) на h^{-1}, то мы получим равенство

\[(5.2.3)\quad h^{-1}(f(x + h) - f(x)) = \frac{df(x)}{dx} + h^{-1} o(h)\]

Из равенств (5.2.3) и (5.2.2) следует альтернативное определение D^*-производной Фреше

\[(5.2.4)\quad \frac{df(x)}{dx} = \lim_{h \to 0} (h^{-1}(f(x + h) - f(x)))\]

Отличие D^*-производной Фреше отображения тела D от производной отображения поля F состоит в том, что прежде всего D^*-производная Фреше не является линейным отображением. Более точно, D^*-производная Фреше является $\star D$-линейным отображением, однако, вообще говоря, не является D^*-линейным отображением. Действительно,

\[(5.2.5)\quad a f(x + h) - a f(x) = ah \frac{df(x)}{dx} + o(h)\]

Однако, вообще говоря,

\[ah \frac{df(x)}{dx} \neq h a \frac{df(x)}{dx}\]

Подобная проблема возникает при дифференцировании произведения функций. Согласно определению 5.2.1

\[(5.2.6)\quad f(x + h)g(x + h) - f(x)g(x) = h \frac{df(x)g(x)}{dx} + o(h)\]

Выражение в левой части можно представить в виде

\[(5.2.7)\quad = f(x + h)g(x + h) - f(x)g(x + h) + f(x)g(x + h) - f(x)g(x)\]

Согласно определению 5.2.1, мы можем представить (5.2.7) в виде

\[(5.2.8)\quad f(x + h)g(x + h) - f(x)g(x) = \left(h \frac{df(x)}{dx} + o(h) \right) \left(g(x) + h \frac{dg(x)}{dx} + o(h) \right)\]

+ $f(x) \left(h \frac{dg(x)}{dx} + o(h) \right)$

Так как, вообще говоря,

\[f(x)h \frac{dg(x)}{dx} \neq hf(x) \frac{dg(x)}{dx}\]

то естественно ожидать, что функция $f(x)g(x)$ не является D^*-дифференцируемой по Фреше.

Таким образом, определение D^*-производной Фреше весьма ограниченно и не удовлетворяет стандартному определению операции дифференцирования. Чтобы найти решение проблемы дифференцирования, рассмотрим эту проблему с другой стороны.
Пример 5.2.2. Рассмотрим приращение функции $f(x) = x^2$.

\[
\begin{align*}
 f(x + h) - f(x) &= (x + h)^2 - x^2 \\
 &= x^2 + 2xh + h^2 - x^2 \\
 &= xh + hx + h^2 \\
 &= xh + hx + o(h)
\end{align*}
\]

Как мы видим компонента приращения функции $f(x) = x^2$, линейно зависящая от приращения аргумента, имеет вид $xh + hx$

Так как произведение некоммутативно, то мы не можем представить приращение функции $f(x + h) - f(x)$ в виде Ah или hA, где A не зависит от h. Следствием этого является непредсказуемость поведения приращения функции $f(x) = x^2$, когда приращение аргумента стремится к 0. Однако, если бесконечно малая величина h будет бесконечно малой величиной вида $h = ta, a \in D, t \in R, t \to 0$, то ответ становится более определённым $(xa + ax)t$

Определение 5.2.3. Пусть D - полное тело характеристики 0. Функция $f : D \to D$ дифференцируема по Гато на множестве $U \subset D$, если в каждой точке $x \in U$ изменение функции f может быть представлено в виде

\[
(5.2.9) \quad f(x + a) - f(x) = \partial f(x)(a) + o(a) = \frac{\partial f(x)}{\partial x}(a) + o(a)
\]

где производная Гато $\partial f(x)$ отображения f - линейное отображение приращения a и $o : D \to D$ - такое непрерывное отображение, что

\[
\lim_{a \to 0} \frac{|o(a)|}{|a|} = 0
\]

Замечание 5.2.4. Согласно определению 5.2.3 при заданном x производная Гато $\partial f(x) \in \mathcal{L}(D; D)$. Следовательно, производная Гато отображения f является отображением

\[
\partial f : D \to \mathcal{L}(D; D)
\]

Выражения $\partial f(x)$ и $\frac{\partial f(x)}{\partial x}$ являются разными обозначениями одной и той же функции. Мы будем пользоваться обозначением $\frac{\partial f(x)}{\partial x}$, если хотим подчеркнуть, что мы берём производную Гато по переменной x.

Теорема 5.2.5. Мы можем представить дифференциал Гато $\partial f(x)(a)$ отображения f в виде

\[
(5.2.10) \quad \partial f(x)(a) = (s)_{0} \frac{\partial f(x)}{\partial x} a (s)_{1} \frac{\partial f(x)}{\partial x}
\]

Доказательство. Следствие определения 5.2.3 и теоремы 3.2.9.
Определение 5.2.6. Выражение \((s)p\frac{\partial f(x)}{\partial x} \), \(p = 0, 1 \), называется компонентой производной Гато отображения \(f(x) \).

Теорема 5.2.7. Пусть \(D \) - тело характеристики 0. Производная Гато функции

\[
f : D \to D
\]
мультитпликативна над полем \(R \).

Доказательство. Следствие теорем 5.1.9, 3.2.4 и определения 5.2.3.

Из теоремы 5.2.7 следует

\[
(5.2.11) \quad \partial f(x)(ra) = r\partial f(x)(a)
\]

для любых \(r \in R, r \neq 0 \) и \(a \in D, a \neq 0 \). Комбинируя равенство (5.2.11) и определение 5.2.3, мы получим знакомое определение дифференциала Гато

\[
(5.2.12) \quad \partial f(x)(a) = \lim_{t \to 0, t \in R} (t^{-1}(f(x + ta) - f(x)))
\]

Определяния производной Гато (5.2.9) и (5.2.12) эквивалентны. На основе этой эквивалентности мы будем говорить, что отображение \(f \) дифференцируемо по Гато на множестве \(U \subset D \), если в каждой точке \(x \in U \) изменение функции \(f \) может быть представлено в виде

\[
(5.2.13) \quad f(x + ta) - f(x) = t\partial f(x)(a) + o(t)
\]

где \(o : R \to D \) - такое непрерывное отображение, что

\[
\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0
\]

Если бесконечно малая \(ta \) является дифференциалом \(dx \), то равенство (5.2.10) примет вид

\[
(5.2.14) \quad \partial f(x)(dx) = (s)0\frac{\partial f(x)}{\partial x}dx (s)1\frac{\partial f(x)}{\partial x}
\]

Теорема 5.2.8. Пусть \(D \) - тело характеристики 0. Пусть \(\overline{e} \) - базис тела \(D \) над центром \(Z(D) \) тела \(D \). Стандартное представление дифференциала Гато (5.2.10) отображения

\[
f : D \to D
\]

имеет вид

\[
(5.2.15) \quad \partial f(x)(a) = \frac{\partial^{ij} f(x)}{\partial x} \overline{e} a \overline{e}
\]

Выражение \(\frac{\partial^{ij} f(x)}{\partial x} \) в равенстве (5.2.15) называется стандартной компонентой дифференциала Гато отображения \(f \).

Доказательство. Утверждение теоремы является следствием теоремы 3.2.10.

Теорема 5.2.9. Пусть \(D \) - тело характеристики 0. Пусть \(\overline{e} \) - базис тела \(D \) над центром \(Z(D) \) тела \(D \). Тогда дифференциал Гато отображения

\[
f : D \to D
\]
можно записать в виде

\[\partial f(x)(a) = a^i \frac{\partial f^j}{\partial x^i} j \bar{\mathbf{e}} \]

где \(a \in D \) имеет разложение

\[a = a^i \bar{\mathbf{e}} \quad a^i \in F \]

относительно базиса \(\bar{\mathbf{e}} \) и матрица Якоби отображения \(f \) имеет вид

\[\frac{\partial f^j}{\partial x^i} = \frac{\partial^{kr} f^j(x)}{\partial x^k} B^p_{pr} B^j

Доказательство. Утверждение теоремы является следствием теоремы 3.2.11.

Чтобы найти конструкцию, подобную производной в коммутативном случае, мы должны выделить производную из дифференциала отображения. Для этого мы должны вынести приращение аргумента за скобки.

5.6 Мы можем вынести \(a \) за скобки, опираясь на равенства

\[\frac{(s)_0}{\partial x} \frac{\partial f(x)}{a} \frac{(s)_1}{\partial x} \frac{\partial f(x)}{a} = \frac{(s)_0}{\partial x} \frac{\partial f(x)}{a} \frac{(s)_1}{\partial x} \frac{\partial f(x)}{a} = \frac{(s)_0}{\partial x} \frac{\partial f(x)}{a} \frac{(s)_1}{\partial x} \frac{\partial f(x)}{a} = \frac{(s)_0}{\partial x} \frac{\partial f(x)}{a} \frac{(s)_1}{\partial x} \frac{\partial f(x)}{a}

Определение 5.2.10. Пусть \(D \) - полное тело характеристики 0 и \(a \in D \). \(D^* \)-производная Гато \(\frac{\partial f(x)}{\partial x} \) отображения \(f : D \to D \) определена равенством

\[\frac{\partial f(x)}{\partial x}(a) = a \frac{\partial f(x)}{\partial x} \]

\(D^* \)-производная Гато \(\frac{\partial f(x)}{\partial x} \) отображения \(f : D \to D \) определена равенством

\[\frac{\partial f(x)}{\partial x}(a) = \frac{\partial f(x)(a)}{\partial x} \]

Рассмотрим базис \(1, e = i, 3e = j, 4e = k \) тела кватернионов над полем действительных чисел. Из непосредственных вычислений следует, что стандартное \(D^* \)-представление дифференциала Гато отображения \(x^2 \) имеет вид

\[\frac{dx^2(a)}{x} = (x + x_1)a + x_2ai + x_3aj + x_4ak \]

Для представления \(D^* \)-производной Гато мы также будем пользоваться записью

\[\frac{\partial f(x)}{\partial x}(a) = \frac{\partial f(x)}{\partial x} f(x)(a) = \frac{\partial f(x)}{\partial x} f(x)(a) \]

5.6 Это возможно в том случае, если все \((s)_0 \frac{\partial f(x)}{\partial x} = e \) либо все \((s)_1 \frac{\partial f(x)}{\partial x} = e \). Поэтому определение [1]-3.1.2, стр. 256, приводит нас либо к определению \(D^* \)-производной Фреше, либо к определению \(D^* \)-производной Фреше.
Для представления *D-производной Гато мы также будем пользоваться записью

\[\frac{\partial f(x)(a)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} = \frac{\partial f(x)}{\partial x} \]

Опираясь на принцип двойственности [3]-4.3.8, мы будем изучать D*-производную, имея в виду, что двойственное утверждение справедливо для *D-производной.

Поскольку произведение не коммутативно, понятие дроби не определено в теле. Мы должны явно указать, с какой стороны знаменатель действует на числитель. Эту функцию выполняет символ * в знаменателе дроби. Согласно определению

\[\frac{\partial f}{\partial x} = (\partial x)^{-1} \frac{\partial f}{\partial x} \]

Таким образом, мы можем представить D*-производную Гато функции f как отношение изменения функции к изменению аргумента. Это замечание не распространяется на компоненты дифференциала Гато. В этом случае мы рассматриваем запись \(\frac{\partial}{\partial x} \) и \(\frac{\partial}{\partial x} \) не как дроби, а как символы операторов.

При этом равенство (5.2.18) можно записать в виде

(5.2.20) \[\frac{\partial f(x)}{\partial x} = dx(\partial x)^{-1} \frac{\partial f(x)}{dx} \]

Нетрудно видеть, что в знаменателе дроби в равенстве (5.2.20) мы записали D*-дифференциал переменной x, а умножаем дробь на дифференциал переменной x.

Теорема 5.2.11. Пусть D - полное тело характеристики 0. D*-производная Гато проективна над полем действительных чисел R.

Доказательство. Следствие теоремы 5.2.7 и примера 3.1.8.

Из теоремы 5.2.11 следует

(5.2.21) \[\frac{\partial f(x)(ra)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} \]

для любых \(r \in R, r \neq 0 \) и \(a \in D, a \neq 0 \). Следовательно, D*-производная Гато хорошо определена в направлении \(a \) над полем R, \(a \in D, a \neq 0 \), и не зависит от выбора значения в этом направлении.

Теорема 5.2.12. Пусть D - полное тело характеристики 0 и \(a \neq 0 \). D*-производная Гато и *D*-производная Гато отображения f тела D связаны соотношением

(5.2.22) \[\frac{\partial f(x)(a)}{\partial x} = a \frac{\partial f(x)(a)}{\partial x} a^{-1} \]

Доказательство. Из равенств (5.2.18) и (5.2.19) следует

\[\frac{\partial f(x)(a)}{\partial x} = \partial f(x)(a)a^{-1} = a \frac{\partial f(x)(a)}{\partial x} a^{-1} \]

□
Теорема 5.2.13. Пусть D - полное тело характеристики 0. Дифференциал Гато удовлетворяет соотношению

(5.2.23) \[\partial(f(x)g(x))(a) = \partial f(x)(a) \, g(x) + f(x) \, \partial g(x)(a) \]

Доказательство. Равенство (5.2.23) следует из цепочки равенств

\[
\begin{align*}
\partial(f(x)g(x))(a) &= \lim_{t \to 0} (t^{-1}(f(x + ta)g(x + ta) - f(x)g(x))) \\
&= \lim_{t \to 0} (t^{-1}(f(x + ta)g(x + ta) - f(x)g(x + ta))) \\
&+ \lim_{t \to 0} (t^{-1}(f(x)g(x + ta) - f(x)g(x))) \\
&= \lim_{t \to 0} (t^{-1}(f(x + ta) - f(x)))g(x) \\
&+ f(x) \lim_{t \to 0} (t^{-1}(g(x + ta) - g(x)))
\end{align*}
\]

основанной на определении (5.2.12).

□

Теорема 5.2.14. Пусть D - полное тело характеристики 0. Допустим дифференциал Гато отображения $f : D \to D$ имеет разложение

(5.2.24) \[\partial f(x)(a) = \frac{\partial f(x)}{a} \left(f(a) \right) \]

Допустим дифференциал Гато отображения $g : D \to D$ имеет разложение

(5.2.25) \[\partial g(x)(a) = \frac{\partial g(x)}{a} \left(g(a) \right) \]

Компоненты дифференциала Гато отображения $f(x)g(x)$ имеют вид

(5.2.26) \[\frac{\partial f(x)g(x)}{a} = \frac{\partial f(x)}{a} f(a) + f(x) \frac{\partial g(x)}{a} g(a) \]

(5.2.27) \[\frac{\partial (f(x)g(x))}{a} = \frac{\partial f(x)}{a} g(x) + f(x) \frac{\partial g(x)}{a} g(x) \]

Доказательство. Подставим (5.2.24) и (5.2.25) в равенство (5.2.23)

(5.2.28) \[\partial(f(x)g(x))(a) = \partial f(x)(a) \, g(x) + f(x) \, \partial g(x)(a) \]

= \left(\frac{\partial f(x)}{a} f(a) + f(x) \frac{\partial g(x)}{a} g(a) \right) \\
= \left(\frac{\partial f(x)}{a} f(a) + f(x) \frac{\partial g(x)}{a} g(a) \right)

Опираясь на (5.2.28), мы определяем равенства (5.2.26), (5.2.27).

□

Теорема 5.2.15. Пусть D - полное тело характеристики 0. D-производная Гато удовлетворяет соотношению

(5.2.29) \[\frac{\partial f(x)g(x)}{a} = \frac{\partial f(x)}{a} a^{-1} f(x)g(x)(a) \]

Доказательство. Равенство (5.2.29) следует из цепочки равенств

\[
\begin{align*}
\frac{\partial f(x)g(x)}{a} &= a^{-1} \partial f(x)g(x)(a) \\
&= a^{-1} \left(\partial f(x)(a)g(x) + f(x) \partial g(x)(a) \right) \\
&= a^{-1} \partial f(x)(a)g(x) + a^{-1} f(x) a^{-1} \partial g(x)(a) \\
&= \frac{\partial f(x)}{a} g(x) + a^{-1} f(x) a^{-1} \partial g(x)(a)
\end{align*}
\]

□
Теорема 5.2.16. Пусть D - полное тело характеристики 0. Либо D^*-производная Гато не зависит от направления, либо D^*-производная Гато в направлении 0 не определена.

Доказательство. Утверждение теоремы является следствием теоремы 5.2.11 и теоремы 5.1.16.

Теорема 5.2.17. Пусть D - полное тело характеристики 0. Пусть единичная сфера тела D компактна. Если D^*-производная Гато $\frac{\partial f(x)(a)}{\partial x}$ существует в точке x и непрерывна по направлению над полем R, то существует норма $\|\partial f(x)\|$ дифференциала Гато.

Доказательство. Из определения 5.2.10 следует

\begin{equation}
|\partial f(x)(a)| = |a| \left| \frac{\partial f(x)(a)}{\partial x} \right|
\end{equation}

Из теорем 5.1.18, 5.2.11 следует, что D^*-производная Гато непрерывна на единичной сфере. Так как единичная сфера компактна, то множество значений D^*-производной Гато функции f в точке x ограничено

\begin{equation}
\left| \frac{\partial f(x)(a)}{\partial x} \right| < F = \sup \left| \frac{\partial f(x)(a)}{\partial x} \right|
\end{equation}

Согласно определению 5.1.13

\begin{equation}
\|\partial f(x)\| = F
\end{equation}

Теорема 5.2.18. Пусть D - полное тело характеристики 0. Пусть единичная сфера тела D компактна. Если D^*-производная Гато $\frac{\partial f(x)(a)}{\partial x}$ существует в точке x и непрерывна по направлению над полем R, то отображение f непрерывно в точке x.

Доказательство. Из теоремы 5.2.17 следует

\begin{equation}
|\partial f(x)(a)| \leq \|\partial f(x)\||a|
\end{equation}

Из (5.2.9), (5.2.31) следует

\begin{equation}
|f(x + a) - f(x)| < |a| \|\partial f(x)\|
\end{equation}

Возьмём произвольное $\epsilon > 0$. Положим

\begin{equation}
\delta = \frac{\epsilon}{\|\partial f(x)\|}
\end{equation}

Тогда из неравенства

\begin{equation}
|a| < \delta
\end{equation}

следует

\begin{equation}
|f(x + a) - f(x)| \leq \|\partial f(x)\| \delta = \epsilon
\end{equation}

Согласно определению 5.1.11 отображение f непрерывно в точке x.

Теорема 5.2.18 имеет интересное обобщение. Если единичная сфера тела D не является компактной, то мы можем рассмотреть компактное множество направлений вместо единичной сферы. В этом случае, мы можем говорить о непрерывности функции f вдоль заданного множества направлений.
5.3. Таблица производных Гато отображения тела

Теорема 5.3.1. Пусть D - полное тело характеристики 0. Тогда для любого $b \in D$

$$\partial(b)(a) = 0$$

Доказательство. Непосредственное следствие определения 5.2.3. □

Теорема 5.3.2. Пусть D - полное тело характеристики 0. Тогда для любых $b, c \in D$

$$\partial(bf(x)c)(a) = b\partial f(x)(a)c$$

$$(s)_0\partial bf(x)c = (s)_0\partial f(x)$$

$$(s)_1\partial bf(x)c = (s)_1\partial f(x)c$$

$$\partial bf(x)c = a^{-1}b_0\partial f(x)(a)c$$

Доказательство. Непосредственное следствие равенств (5.2.23), (5.2.26), (5.2.27), (5.2.29), так как $\partial b = \partial c = 0$. □

Теорема 5.3.3. Пусть D - полное тело характеристики 0. Тогда для любых $b, c \in D$

$$\partial(bxc)(h) = bhc$$

$$(1)_0\partial bxc = b$$

$$(1)_1\partial bxc = c$$

$$\partial bf(x)c = h^{-1}bhc$$

Доказательство. Следствие теоремы 5.3.2, когда $f(x) = x$. □

Теорема 5.3.4. Пусть D - полное тело характеристики 0. Тогда для любого $b \in D$

$$\partial(xb - bx)(h) = hb - bh$$

$$(1)_0\partial(xb - bx) = 1$$

$$(1)_1\partial(xb - bx) = b$$

$$(2)_0\partial(xb - bx) = -b$$

$$(2)_1\partial(xb - bx) = 1$$

$$\partial(xb - bx)(h) = h^{-1}bhc$$

Доказательство. Следствие теоремы 5.3.2, когда $f(x) = x$. □
Теорема 5.3.5. Пусть D - полное тело характеристики 0. Тогда

(5.3.11)

\[
\partial (x^2)(a) = xa + ax
\]

(5.3.12)

\[
\frac{\partial x^2}{\partial x}(a) = a^{-1}xa + x
\]

и

\[
\frac{(1)\partial x^2}{\partial x} = x, \quad \frac{(1)\partial x^2}{\partial x} = e
\]

Доказательство. (5.3.11) следует из примера 5.2.2 и определения 5.2.10. (5.3.12) следует из примера 5.2.2 и равенства (5.2.14).

Теорема 5.3.6. Пусть D - полное тело характеристики 0. Тогда

(5.3.13)

\[
\partial (x^{-1})(h) = -x^{-1}hx^{-1}
\]

и

\[
\frac{\partial x^{-1}}{\partial x}(h) = -h^{-1}x^{-1}hx^{-1}
\]

(5.3.14)

\[
\frac{(1)\partial x^{-1}}{\partial x} = -x^{-1}, \quad \frac{(1)\partial x^{-1}}{\partial x} = e
\]

Доказательство. Подставим $f(x) = x^{-1}$ в определение (5.2.12).

(5.3.14) \[
\partial f(x)(h) = \lim_{t \to 0, t \in R} (t^{-1}((x + th)^{-1} - x^{-1}))
\]

= \lim_{t \to 0, t \in R} (t^{-1}((x + th)^{-1} - x^{-1}(x + th)(x + th)^{-1}))

= \lim_{t \to 0, t \in R} (t^{-1}(1 - x^{-1}h(x + th)^{-1})

= \lim_{t \to 0, t \in R} (t^{-1}((x + th)(x + th)^{-1} - 1))

= \lim_{t \to 0, t \in R} (-h^{-1}x(x + th)^{-1})

Равенство (5.3.13) следует из цепочки равенств (5.3.14).

5.7 Утверждение теоремы аналогично примеру VIII, [11], с. 451. Если произведение коммутативно, то равенство (5.3.11) принимает вид

\[
\partial (x^2)(h) = 2hx
\]

\[
\frac{dx^2}{dx} = 2x
\]

5.8 Утверждение теоремы аналогично примеру IX, [11], с. 451. Если произведение коммутативно, то равенство (5.3.13) принимает вид

\[
\partial (x^{-1})(h) = -hx^{-2}
\]

\[
\frac{dx^{-1}}{dx} = -x^{-2}
\]
Теорема 5.3.7. Пусть D - полное тело характеристики 0. Тогда

$$\partial(xax^{-1})(h) = hax^{-1} - xax^{-1}hx^{-1}$$

$$\frac{\partial(xax^{-1})}{\partial x}(h) = ax^{-1} - h^{-1}xax^{-1}hx^{-1}$$

$$\begin{align*}
\frac{\partial x^{-1}}{\partial x} &= 1 \\
\frac{\partial x^{-1}}{\partial x} &= ax^{-1}
\end{align*}$$

$$\begin{align*}
\frac{\partial x^{-1}}{\partial x} &= -xax^{-1} \\
\frac{\partial x^{-1}}{\partial x} &= x^{-1}
\end{align*}$$

Доказательство. Равенство (5.3.15) является следствием равенств (5.2.23), (5.3.6), (5.3.15). □
Глава 6

Дифференцируемые отображения D-векторного пространства

6.1. Топологическое D-векторное пространство

Определение 6.1.1. Пусть D - топологическое тело. D_{**}-векторное пространство \mathbf{V} называется топологическим D_{**}-векторным пространством \(^{6.1}\), если \mathbf{V} наделено топологией, согласующейся со структурой аддитивной группы в \mathbf{V}, и отображение

$$(a, \mathbf{v}) \in D \times \mathbf{V} \rightarrow a\mathbf{v} \in \mathbf{V}$$

непрерывно. \(\square\)

Определение 6.1.2. Пусть D - топологическое тело. D-векторное пространство \mathbf{V} называется топологическим D-векторным пространством, если \mathbf{V} наделено топологией, согласующейся со структурой аддитивной группы в \mathbf{V}, и отображения

$$(a, \mathbf{v}) \in D \times \mathbf{V} \rightarrow a\mathbf{v} \in \mathbf{V}$$

и

$$(\mathbf{v}, a) \in \mathbf{V} \times D \rightarrow \mathbf{v}a \in \mathbf{V}$$

непрерывны. \(\square\)

Определение 6.1.3. Отображение

$$f : F \rightarrow A$$

множества F в произвольную алгебру A называется A-значной функцией. Отображение

$$f : F \rightarrow \mathbf{V}$$

множества F в D_{**}-векторное пространство \mathbf{V} называется D_{**}-вектор-функцией. Отображение

$$f : F \rightarrow \mathbf{V}$$

множества F в D-векторное пространство \mathbf{V} называется D-вектор-функцией. \(\square\)

Мы рассматриваем последующие определения в этом разделе для топологического D-векторного пространства. Однако определения не изменятся, если мы будем рассматривать топологическое D_{**}-векторное пространство.

Определение 6.1.4. Допустим \mathbf{F} - D_{**}-базис D-векторного пространства \mathbf{V} размерности n. Произвольное отображение

$$f : \mathbf{V} \rightarrow A$$

\(^{6.1}\)Определение дано согласно определению из [5], с. 21
Определение 6.1.5. Функция

$$f : \mathbb{V} \to A$$

tопологического D-векторного пространства \mathbb{V} размерности n в топологическое пространство A называется **непрерывной по совокупности аргументов**
если для произвольной окрестности U образа элемента $\overline{a} = a^* + \overline{e} \in \mathbb{V}$ для каждого $a_i \in D$ существуют такие окрестности V_i, что

$$f(V_1, \ldots, V_n) \subset U$$

Теорема 6.1.6. Непрерывная функция

$$f : \mathbb{V} \to A$$

tопологического D-векторного пространства \mathbb{V} размерности n в топологическое пространство A непрерывна по совокупности аргументов.

Доказательство. Пусть $b = f(a^*, \overline{e}) \in A$ и U окрестность точки b. Так как отображение f непрерывно, то существует такая окрестность V вектора $\overline{a} = a^* + \overline{e}$, что $f(V) \subseteq U$. Так как аддитивная операция непрерывна, то существуют такие окрестности E_i вектора \overline{e}_i и окрестности W_i элемента $a_i \in D$, что $W^* \cdot E_i \subseteq V$.

Определение 6.1.7. Норма на D-векторном пространстве \mathbb{V} над недискретным нормированным телом $D^6.2$ - это отображение

$$\overline{v} \in \mathbb{V} \to \|\overline{v}\| \in R$$

tакое, что

- $\|\overline{v}\| \geq 0$
- $\|\overline{v}\| = 0$ равносильно $\overline{v} = \overline{0}$
- $\|\overline{v} + \overline{w}\| \leq \|\overline{v}\| + \|\overline{w}\|$
- $\|a\overline{v}\| = |a|\|\overline{v}\|$ для всех $a \in D$ и $\overline{v} \in \mathbb{V}$

D-векторное пространство \mathbb{V} над недискретным нормированным телом D, наделённое структурой, определяемой заданием на \mathbb{V} нормы, называется **нормированным D-векторным пространством**.

Инвариантное расстояние на аддитивной группе D-векторного пространства \mathbb{V}

$$d(\overline{v}, \overline{b}) = \|\overline{v} - \overline{b}\|$$

определяет в \mathbb{V} топологию метрического пространства, согласующуюся со структурой D-векторного пространства в \mathbb{V}.

$^6.2$Определение дано согласно определению из [4], гл. IX, §3, п. 3
Определение 6.1.8. Пусть D - полное тело характеристики 0. Пусть
\[A : V \to W \]
отображение нормированного D-векторного пространства V с нормой $\| \|_1$ в нормированное D-векторное пространство W с нормой $\| \|_2$. Величина
\[\| A \| = \sup \frac{\| A(x) \|_2}{\| x \|_1} \]
называется нормой отображения A. □

6.2. Дифференциируемые отображения D-векторного пространства

Определение 6.2.1. Функция
\[f : V \to W \]
nормированного D-векторного пространства V с нормой $\| \|_1$ в нормированное D-векторное пространство W с нормой $\| \|_2$ называется дифференцируемой по Гато на множестве $U \subset V$, если в каждой точке $x \in U$ изменение функции f может быть представлено в виде
\[f(x + \alpha) - f(x) = \partial f(x)(\alpha) + o(\alpha) \]
где производная Гато $\partial f(x)$ отображения f - линейное отображение приращения π и $\pi : V \to W$ - такое непрерывное отображение, что
\[\lim_{\alpha \to 0} \frac{\| \pi(\alpha) \|_2}{\| \alpha \|_1} = 0 \]

Замечание 6.2.2. Согласно определению 6.2.1 при заданном x дифференциал Гато $\partial f(x)$ $\in \mathcal{L}(D; V; W)$. Следовательно, дифференциал Гато отображения f является отображением
\[\partial f : V \to \mathcal{L}(D; V; W) \]

Теорема 6.2.3. Пусть D - тело характеристики 0. Допустим $\tilde{p} - D^*_*$-базис в D-векторном пространстве V над телом D и $\tilde{h} \in V$
\[\tilde{h} = h^*p \]
Допустим $\tilde{p} - D^*_*$-базис в D-векторном пространстве W над телом D. Мы можем представить дифференциал Гато $\partial f(x)(\tilde{h})$ отображения f в виде
\[\partial f(x)(\tilde{h}) = \sum_{ij} \frac{\partial f^j(x)}{\partial x^i} h^i (s) \tilde{p}^j(x) \]

Доказательство. Следствие определения 6.2.1 и теоремы 4.1.9. □

6.3 Если размерность D-векторного пространства V равна 1, то мы можем отождествить его с телом D. Тогда мы будем говорить об отображении тела D в D-векторное пространство W. Если размерность D-векторного пространства W равна 1, то мы можем отождествить его с телом D. Тогда мы будем говорить об отображении D-векторного пространства V в тело D. В обоих случаях мы будем опускать соответствующие индексы, так как эти индексы имеют единственное значение.
Определение 6.2.4. Выражение $\sum_{i,p} x_i \partial f^j(\overline{x}) = \frac{\partial f^j(\overline{x})}{\partial x^i}, p = 0, 1$, называется компонентой производной Гато отображения $\overline{f}(\overline{x})$.

 Теорема 6.2.5. Пусть D - полное тело характеристики 0. Пусть поле F является подкольцом центра $Z(D)$ тела D. Производная Гато функции $\overline{f} : V \rightarrow W$ нормированного D-векторного пространства V в нормированное D-векторное пространство W мультипликативна над полем F.

 Доказательство. Следствие теоремы 4.1.8 и определения 6.2.1.

 Теорема 6.2.6. Пусть D - полное тело характеристики 0. Производная Гато функции $\overline{f} : V \rightarrow W$ нормированного D-векторного пространства V в нормированное D-векторное пространство W мультипликативна над полем R.

 Доказательство. Следствие теорем 5.1.9, 6.2.5.

 Из теоремы 6.2.6 следует

 $\frac{\partial \overline{f}(\overline{x})}{\partial t}(t\overline{x}) = r\frac{\partial \overline{f}(\overline{x})}{\partial \overline{x}}$

 для любых $r \in R, r \neq 0$ и $\overline{x}, \overline{y} \in V, \overline{x} \neq \overline{y}$. Комбинируя равенство (6.2.3) и определение 6.2.1, мы получим знакомое определение дифференциала Гато

 $\frac{\partial \overline{f}(\overline{x})}{\partial \overline{x}} = \lim_{t \to 0} (t^{-1}(\overline{f}(\overline{x} + th) - \overline{f}(\overline{x})))$

 Определения производной Гато (6.2.1) и (6.2.4) эквивалентны. На основе этой эквивалентности мы будем говорить, что отображение \overline{f} дифференцируемо по Гато на множестве $U \subset D$, если в каждой точке $\overline{x} \in U$ изменение функции \overline{f} может быть представлено в виде

 $\overline{f}(\overline{x} + th) - f(\overline{x}) = t\partial f(\overline{x}) + o(t)$

 где $\partial f(\overline{x})$ - такое непрерывное отображение, что

 $\lim_{t \to 0} \frac{\|o(t)\|}{|t|} = 0$

 Если бесконечно малая h является дифференциалом $d\overline{x}$, то равенство (6.2.2) примет вид

 $\frac{\partial \overline{f}(\overline{x})}{\partial \overline{x}}(d\overline{x}) = \sum_{i, p} x_i \frac{\partial f^j(\overline{x})}{\partial x^i} dx^i + \sum_{i, p} x_i \frac{\partial f^j(\overline{x})}{\partial x^i} j r$

 Определение 6.2.7. Пусть D - тело характеристики 0. Допустим $\overline{f} - D^*$-базис в D-векторном пространстве \overline{V} над телом D и $\overline{h} \in \overline{V}$

 $\overline{h} = h^* \overline{p}$

 Допустим $\overline{f} - D^*$-базис в D-векторном пространстве \overline{W} над телом D. Если мы рассмотрим производную Гато отображения \overline{f} по переменной v^i при условии, что остальные координаты вектора \overline{v} постоянны, то соответствующий аддитивный оператор

 $\frac{\partial \overline{f}(\overline{v})}{\partial v^i}(h^i) = \lim_{t \to 0} (t^{-1}(f^j(v^1, ..., v^i + th^i, ..., v^n) - f^j(\overline{v})))$
6.2. Дифференцируемые отображения D-векторного пространства

частной производной Гато отображения f^j по переменной v^i.

Теорема 6.2.8. Пусть D - тело характеристики 0. Допустим $\overline{\mathcal{P}} - D^*\ast$-базис в D-векторном пространстве \overline{V} над телом D и $\overline{h} \in \overline{V}$

$\overline{h} = h^* \overline{\mathcal{P}}$

Допустим $\overline{\mathcal{P}} - D^*\ast$-базис в D-векторном пространстве \overline{W} над телом D. Пусть частные производные Гато отображения $\overline{f} : \overline{V} \to \overline{W}$ непрерывны в области $U \subseteq \overline{V}$. Тогда на множестве U производная Гато отображения \overline{f} и частные производные Гато связаны соотношением

(6.2.8) $\partial \overline{f}(\overline{x})(\overline{h}) = \partial f^j(x^1, x^2, ..., x^n) \partial x^i(h^i)$

Доказательство. Из теоремы 4.1.2 следует, что мы можем разложить производную Гато отображения \overline{f} в сумму (6.2.8) частных аддитивных отображений. Наша задача: выяснить, при каком условии эти частные аддитивные отображения становятся частными производными Гато.

Согласно определению 6.2.4,

$\partial \overline{f}(\overline{x})(\overline{h}) = \lim_{t \to 0} (t^{-1}(\overline{f}(\overline{x} + t\overline{h}) - \overline{f}(\overline{x})))$

$= \lim_{t \to 0} (t^{-1}(f^j(x^1 + th^1, x^2 + th^2, ..., x^n + th^n) - f^j(x^1, x^2, ..., x^n) - \ldots - f^j(x^1, ..., x^n))) \overline{\mathcal{P}}$

(6.2.9)

Из равенств (6.2.7) и (6.2.9) с точностью до бесконечно малой по сравнению с t следует

(6.2.10) $\partial \overline{f}(\overline{x})(\overline{h}) = \lim_{t \to 0} \left(\frac{\partial f^j(x^1, x^2, ..., x^n + th^n)}{\partial x^i}(h^i) + \ldots + \frac{\partial f^m(x^1, ..., x^n)}{\partial x^n}(h^n) \right) \overline{\mathcal{P}}$

Следовательно, для того, чтобы из равенства (6.2.10) следовало равенство (6.2.8), необходимо, чтобы частные производные Гато были непрерывны. □

Мы можем записать производную Гато в виде произведения матриц

(6.2.11) $\partial \overline{f}(\overline{x})(\overline{h}) = \binom{\frac{\partial f^j(x^1)}{\partial x^1}(h^1)}{\ldots} \binom{\frac{\partial f^m(x^1)}{\partial x^1}(h^1)}{\binom{\ldots}{\ldots} \binom{\ldots}{\ldots}} (\overline{\mathcal{P}})$

где матрица $\frac{\partial \overline{f}(\overline{x})}{\partial \overline{x}} = \left(\frac{\partial f^j(x^1)}{\partial x^i}(h^i) \right)$ называется матрица Якоби-Гато отображения.
Если \(\overline{f} : \nabla \to D \) - отображение D-векторного пространства \(\nabla \) в тело \(D \), то матрица Якоби-Гато отображения \(\overline{f} \) имеет вид
\[
\begin{pmatrix}
\frac{\partial f(x)}{\partial x^1}(h^1) \\
\vdots \\
\frac{\partial f(x)}{\partial x^n}(h^n)
\end{pmatrix}
\]
Если \(f : D \to \overline{W} \) - отображение тела \(D \) в D-векторное пространство \(\overline{W} \), то матрица Якоби-Гато отображения \(f \) имеет вид
\[
\begin{pmatrix}
\frac{\partial f^1(x)}{\partial x}(h) \\
\vdots \\
\frac{\partial f^m(x)}{\partial x}(h)
\end{pmatrix}
\]
Определение 6.2.9. Пусть функция
\(\overline{f} : \overline{\nabla} \to \overline{W} \)
нормированного D-векторного пространства \(\nabla \) в нормированное D-векторное пространство \(\overline{W} \) дифференцируема по Гато на множестве \(U \times W \). Допустим мы выбрали \(D^* \)-базис \(\overline{\pi} \) в D-векторном пространстве \(\overline{\nabla} \). Допустим мы выбрали \(D^* \)-базис \(\pi \) в D-векторном пространстве \(\overline{W} \). \(D^* \)-производная Гато \(\partial \overline{f}(\pi)(\overline{\pi}) \) отображения \(\overline{f} \) определена равенством
(6.2.12)
\[
\partial \overline{f}(\pi)(\overline{\pi}) = \pi \cdot \frac{\partial \overline{f}(\pi)(\overline{\pi})}{(\partial^* \pi)} = \alpha \cdot \frac{\partial f^j(x)(\pi)}{(\partial^* x^i)}
\]
Выражение \(\frac{\partial f^j(x)(\pi)}{(\partial^* x^i)} \) в равенстве (6.2.12) называется частными \(D^* \)-производными Гато отображения \(f^j \) по переменной \(x^i \). \(\square \)

Для представления \(D^* \)-производной Гато мы также будем пользоваться записью
\[
\begin{align*}
\frac{\partial \overline{f}(\pi)}{(\partial^* \pi)} &= \frac{\partial \overline{f}(\pi)}{(\partial^* x^i)} \\
\frac{\partial f^j(x)(\pi)}{(\partial^* x^i)} &= \frac{\partial f^j(x)(\pi)}{(\partial^* x^i)}
\end{align*}
\]
Определение 6.2.10. Пусть функция
\(\overline{f} : \overline{\nabla} \to \overline{W} \)
нормированного D-векторного пространства \(\nabla \) в нормированное D-векторное пространство \(\overline{W} \) дифференцируема по Гато на множестве \(U \times W \). Допустим мы выбрали \(D^* \)-базис \(\overline{\pi} \) в D-векторном пространстве \(\overline{\nabla} \). Допустим мы выбрали \(D^* \)-базис \(\pi \) в D-векторном пространстве \(\overline{W} \). \(D^* \)-производная Гато \(\partial \overline{j}(\pi)(\overline{\pi}) \) отображения \(\overline{f} \) определена равенством
(6.2.13)
\[
\partial \overline{j}(\pi)(\overline{\pi}) = \pi \cdot \frac{\partial \overline{j}(\pi)(\overline{\pi})}{(\partial^* \pi)} = \alpha \cdot \frac{\partial j^j(x)(\pi)}{(\partial^* x^i)}
\]
Выражение \(\frac{\partial j^j(x)(\pi)}{(\partial^* x^i)} \) в равенстве (6.2.13) называется частными \(D^* \)-производными Гато отображения \(j^j \) по переменной \(x^i \). \(\square \)
Для представления \({}^*D \)-производной Гато мы также будем пользоваться записью

\[
\frac{\partial ({}^*D^j f(x))}{({}^*\partial x)^i} = \frac{\partial}{({}^*\partial x)^i} j f(x) = \left({}^*\partial_i \right)^j f(x)
\]

Теорема 6.2.11. Пусть \(D \) - тело характеристики 0. Пусть функция \(f: U \to V \) нормированного \(D \)-векторного пространства \(U \) в нормированное \(D \)-векторное пространство \(V \) дифференцируема по Гато в точке \(x \). Тогда

\[
\frac{\partial f(x)(a)}{({}^*\partial)} = \frac{\partial ({}^*f(x))}{({}^*\partial)} f(x)(a) = \left({}^*\partial \right) f(x)(a)
\]

Теорема 6.2.12. Пусть \(D \) - тело характеристики 0. Пусть \(U \) - нормированное \(D \)-векторное пространство с нормой \(\|x\|_1 \). Пусть \(V \) - нормированное \(D \)-векторное пространство с нормой \(\|y\|_2 \). Пусть \(W \) - нормированное \(D \)-векторное пространство с нормой \(\|z\|_3 \). Пусть функция \(f: U \to V \) дифференцируема по Гато в точке \(x \) и норма дифференциала Гато отображения \(f \) конечна. Пусть функция \(g: V \to W \) дифференцируема по Гато в точке \(y = f(x) \) и норма дифференциала Гато отображения \(g \) конечна. Функция \(gf: U \to W \) дифференцируема по Гато в точке \(x \)

(6.2.14) \[\frac{\partial (gf)}{(\partial x^i)} = \left({}^*\partial \right) f(x)(a) \]

конечна. Пусть функция \(f: U \to V \) дифференцируема по Гато в точке \(x \)

(6.2.15) \[f = f(x) \]

и норма дифференциала Гато отображения \(f \) конечна. Функция \(f \) дифференцируема по Гато в точке \(x \)

(6.2.16) \[\frac{\partial (gf)}{(\partial x^i)} = \left({}^*\partial \right) f(x)(a) \]

конечна. Пусть функция \(f: U \to V \) дифференцируема по Гато в точке \(x \)

(6.2.17) \[f = f(x) \]

и норма дифференциала Гато отображения \(f \) конечна. Функция \(f \) дифференцируема по Гато в точке \(x \)

(6.2.18) \[\frac{\partial (gf)}{(\partial x^i)} = \left({}^*\partial \right) f(x)(a) \]

(6.2.19) \[\frac{\partial (gf)}{(\partial x^i)} = \left({}^*\partial \right) f(x)(a) \]

(6.2.20) \[\frac{\partial (gf)}{(\partial x^i)} = \left({}^*\partial \right) f(x)(a) \]

(6.2.21) \[\frac{\partial (gf)}{(\partial x^i)} = \left({}^*\partial \right) f(x)(a) \]

(6.2.22) \[\frac{\partial (gf)}{(\partial x^i)} = \left({}^*\partial \right) f(x)(a) \]
6. Дифференцируемые отображения D-векторного пространства

ДОКАЗАТЕЛЬСТВО. Согласно определению 6.2.1
(6.2.23) \[g(y + b) - g(y) = \partial g(y)(b) + o_1(b) \]
где \(o_1 : V \to W \) - такое непрерывное отображение, что
\[\lim_{b \to 0} \frac{\|o_1(b)\|_3}{\|b\|_2} = 0 \]
Согласно определению 6.2.1
(6.2.24) \[f(x + a) - f(x) = \partial f(x)(a) + o_2(a) \]
где \(o_2 : U \to V \) - такое непрерывное отображение, что
\[\lim_{a \to 0} \frac{\|o_2(a)\|_2}{\|a\|_1} = 0 \]
Согласно (6.2.24) смещение вектора \(x \in U \) в направлении \(a \) приводит к смещению вектора \(y \) в направлении \(b \)
(6.2.25) \[\bar{b} = \partial f(x)(a) + o_2(a) \]
Используя (6.2.15), (6.2.25) в равенстве (6.2.23), мы получим
\[g(f(x + a)) - g(f(x)) = \partial g(f(x))(\partial f(x)(a) + o_2(a)) + o_1(\partial f(f(x))(a) + o_2(a)) \]
(6.2.26) \[\frac{\partial g(f(x))(\partial f(x)(a) + o_2(a))}{\|\bar{a}\|_1} - \frac{o_1(\partial f(f(x))(a) + o_2(a))}{\|\bar{a}\|_1} \]
Согласно определению 6.2.1, 4.1.1 из равенства (6.2.26) следует
(6.2.27) \[\frac{\partial g(f(x))(\partial f(x)(a) + o_2(a))}{\|\bar{a}\|_1} \leq \lim_{\pi \to \sigma} \frac{\partial g(f(x))(\sigma_2(\pi))}{\|\sigma\|_1} \]
Найдём предел
(6.2.28) \[\leq \lim_{\pi \to \sigma} \frac{\|\partial g(f(x))(\sigma_2(\pi))\|_3}{\|\sigma\|_1} + \lim_{\pi \to \sigma} \frac{\|\sigma_1(\partial f(x)(\pi) + o_2(\sigma))\|_3}{\|\sigma\|_1} \]
Из (6.2.16) следует
(6.2.29) \[\lim_{\pi \to \sigma} \frac{\|\partial g(f(x))(\sigma_2(\pi))\|_3}{\|\sigma\|_1} \leq G \lim_{\pi \to \sigma} \frac{\|\sigma_2(\pi)\|_2}{\|\sigma\|_1} = 0 \]
Из (6.2.14) следует

\[
\lim_{\pi \to \overline{\pi}} \frac{\|v_1(\partial \overline{f}(\pi) + v_2(\pi))\|_3}{\|\pi\|_1} = \lim_{\pi \to \overline{\pi}} \frac{\|v_1(\partial \overline{f}(\pi) + v_2(\pi))\|_3}{\|\pi\|_2} \leq \lim_{\pi \to \overline{\pi}} \frac{\|v_1(\partial \overline{f}(\pi) + v_2(\pi))\|_3}{\|\pi\|_2} \leq \lim_{\pi \to \overline{\pi}} \frac{\|\partial \overline{f}(\pi)\|_1 + \|v_2(\pi)\|_2}{\|\pi\|_1} \leq \lim_{\pi \to \overline{\pi}} \frac{\|\partial \overline{f}(\pi)\|_1}{\|\pi\|_1}.
\]

Согласно теореме 6.2.11

\[
\lim_{\pi \to \overline{\pi}} (\partial \overline{f}(\pi) + v_2(\pi)) = 0
\]

Следовательно,

(6.2.30) \[
\lim_{\pi \to \overline{\pi}} \frac{\|v_1(\partial \overline{f}(\pi) + v_2(\pi))\|_3}{\|\pi\|_1} = 0
\]

Из равенств (6.2.28), (6.2.29), (6.2.30) следует

(6.2.31) \[
\lim_{\pi \to \overline{\pi}} \frac{\|\partial \overline{f}(\pi)) (\pi) - \partial \overline{f}(\pi)\|_3}{\|\pi\|_1} = 0
\]

Согласно определению 6.2.1

(6.2.32) \[
\overline{f}(\pi) - \overline{f}(\pi) = \partial \overline{f}(\pi) + v(\pi)
\]

где \(\overline{f} : \overline{U} \to \overline{W} \) - такое непрерывное отображение, что

\[
\lim_{\pi \to \overline{\pi}} \frac{\|\overline{\pi}(\pi)\|_3}{\|\pi\|_1} = 0
\]

Равенство (6.2.18) следует из (6.2.27), (6.2.31), (6.2.32).

Из равенства (6.2.18) и определения 6.2.9 следует

(6.2.33) \[
\overline{\pi}, \partial \overline{f}(\pi)|_{\overline{U}} = \partial \overline{f}(\pi)|_{\overline{U}} = \partial \overline{f}(\pi)|_{\overline{U}} = \partial \overline{f}(\pi)|_{\overline{U}}
\]

Так как приращение \(\overline{\pi} \) произвольно, то равенство (6.2.19) следует из равенства (6.2.33).

Из равенства (6.2.18) и теоремы 6.2.3 следует

(6.2.34) \[
\frac{\partial g f^k(\pi)}{\partial x^i} a^i \frac{\partial g f^k(\pi)}{\partial x^i} = \frac{\partial g f^k(\pi)}{\partial f^j(\pi)} a^i \frac{\partial g f^k(\pi)}{\partial f^j(\pi)} = \frac{\partial g f^k(\pi)}{\partial f^j(\pi)} a^i \frac{\partial g f^k(\pi)}{\partial f^j(\pi)}
\]

(6.2.21), (6.2.22) следуют из равенства (6.2.34).
Глава 7

Алгебра кватернионов

7.1. Линейная функция комплексного поля

Теорема 7.1.1 (Уравнения Коши-Римана). Рассмотрим поле комплексных чисел \mathbb{C} как двумерную алгебру над полем действительных чисел. Положим

\(c\mathbf{e}_0 = 1 \quad c\mathbf{e}_1 = i \)

базис алгебры \mathbb{C}. Тогда в этом базисе произведение имеет вид

\(c\mathbf{e}_2 \cdot c\mathbf{e}_1 = -c\mathbf{e}_0 \)

и структурные константы имеют вид

\(c\mathbf{B}_{00} = 1 \quad c\mathbf{B}_{01} = 1 \)
\(c\mathbf{B}_{10} = 1 \quad c\mathbf{B}_{11} = -1 \)

Матрица линейной функции \(y^j = x^j f^j \)

поля комплексных чисел над полем действительных чисел удовлетворяет соотношению

\(f_{00}^0 = f_{10}^1 \quad f_{10}^0 = -f_{00}^1 \)

Доказательство. Равенства (7.1.2) и (7.1.3) следуют из равенства \(i^2 = -1 \). Пользуясь равенством (3.2.17) получаем соотношения

\(f_{00}^0 = f_{10}^0 \quad f_{10}^0 = f_{01}^1 \quad f_{11}^0 = f_{00}^1 \quad f_{11}^1 = -f_{01}^0 \)

(7.1.6) \(f_{00}^0 = f_{10}^0 \quad f_{10}^0 = f_{01}^1 \quad f_{11}^0 = f_{00}^1 \quad f_{11}^1 = -f_{01}^0 \)

Из равенств (7.1.6) и (7.1.9) следует (7.1.5). Из равенств (7.1.7) и (7.1.8) следует (7.1.5).

Теорема 7.1.2 (Уравнения Коши-Римана). Если матрица

\[
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix}
\]

является матрицей Якоби функции комплексного переменного

\(x = x^0 + x^1 i \rightarrow y = y^0(x^0, x^1) + y^1(x^0, x^1)i \)
7. Алгебра кватернионов

над полем действительных чисел, то

\[
\frac{\partial y^1}{\partial x^0} = -\frac{\partial y^0}{\partial x^1}, \\
\frac{\partial y^0}{\partial x^1} = \frac{\partial y^1}{\partial x^0}
\]

ДОКАЗАТЕЛЬСТВО. Следствие теоремы 7.1.1. □

Теорема 7.1.3. Производная функции комплексного переменного удовлетворяет равенству

\[
\frac{\partial y}{\partial x^0} + i \frac{\partial y}{\partial x^1} = 0
\]

ДОКАЗАТЕЛЬСТВО. Равенство

\[
\frac{\partial y^0}{\partial x^0} + i \frac{\partial y^0}{\partial x^1} + i \frac{\partial y^1}{\partial x^0} - \frac{\partial y^1}{\partial x^1} = 0
\]

следует из равенств (7.1.10). □

Равенство (7.1.11) эквивалентно равенству

\[
\begin{pmatrix}
1 & i \\
i & 1
\end{pmatrix}
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix}
\begin{pmatrix}1 \\
i
\end{pmatrix} = 0
\]

Производная Гато функции комплексного переменного является полным дифференциалом и имеет вид

\[
\partial(f(x + yi))(dx, dy) = \begin{pmatrix}
1 & i \\
i & 1
\end{pmatrix}
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^0}{\partial x^1} \\
\frac{\partial y^1}{\partial x^0} & \frac{\partial y^1}{\partial x^1}
\end{pmatrix}
\begin{pmatrix}dx \\
dy
\end{pmatrix}
\]

где \(dx, dy \in \mathbb{R}\). Поэтому символическое уравнение

\[
\partial(f(x + yi))(1, i) = 0
\]

не выражает связь производной Гато с уравнениями Коши-Римана.

7.2. Алгебра кватернионов

В этой статье я рассматриваю множество кватернионных алгебр, определяемых в [8].

Определение 7.2.1. Пусть \(F\) - поле. Расширение \(F(i, j, k)\) поля \(F\) называется алгеброй \(E(F, a, b)\) кватернионов над полем \(F\), если произведение в алгебре \(E\) определено согласно правилам

\[
\begin{array}{ccc}
i & a & k \\
j & -k & b \\
k & -aj & -bi
\end{array}
\]

где \(a, b \in F, ab \neq 0\).

7.1 Я буду следовать определению из [8].
Элементы алгебры $E(F, a, b)$ имеют вид

$$x = x^0 + x^1 i + x^2 j + x^3 k$$

где $x^i \in F$, $i = 0, 1, 2, 3$. Кватернион

$$\overline{x} = x^0 - x^1 i - x^2 j - x^3 k$$

называется сопряжённым кватерниону x. Мы определим норму кватерниона x равенством

$$(7.2.2) |x|^2 = x\overline{x} = (x^0)^2 - a(x^1)^2 - b(x^2)^2 + ab(x^3)^2$$

Из равенства (7.2.2) следует, что $E(F, a, b)$ является алгеброй с делением только когда $a < 0$, $b < 0$. Тогда мы можем пронормировать базис так, что $a = -1$, $b = -1$.

Мы будем обозначать символом $E(F)$ алгебру $E(F, -1, -1)$ кватернионов с делением над полем F. Произведение в алгебре $E(F)$ определено согласно правилам

$$(7.2.3)$$

$$\begin{array}{ccc|ccc}
 i & j & k & i & j & k \\
 j & k & -1 & -j & i & j \\
 k & j & -1 & -j & i & j \\
\end{array}$$

В алгебре $E(F)$ норма кватерниона имеет вид

$$(7.2.4) |x|^2 = x\overline{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2$$

При этом обратный элемент имеет вид

$$(7.2.5) x^{-1} = |x|^{-2}\overline{x}$$

Мы будем полагать $H = E(R, -1, -1)$.

Внутренний автоморфизм алгебры кватернионов $H^7.2$

$$p \rightarrow qpq^{-1}$$

$$(7.2.6) q(ix + jy + kz)q^{-1} = ix' + jy' + kz'$$

описывает вращение вектора с координатами x, y, z. Если q записан в виде суммы скаляра и вектора $q = \cos \alpha + (ia + jb + kc) \sin \alpha$ $a^2 + b^2 + c^2 = 1$

то (7.2.6) описывает вращение вектора (x, y, z) вокруг вектора (a, b, c) на угол 2α.

7.2 См. [10], с. 643.
7. Алгебра кватернионов

7.3. Линейная функция тела кватернионов

Теорема 7.3.1. Рассмотрим тело кватернионов $E(F)$ как четырёхмерную алгебру над полем F. Положим $0i = 1, 1i = i, 2i = j, 3i = k$ - базис алгебры $E(F)$. Тогда в этом базисе структурные константы имеют вид

\[
\begin{align*}
00B^0 &= 1 \\
01B^1 &= 1 \\
02B^2 &= 1 \\
03B^3 &= 1 \\
10B^1 &= 1 \\
11B^2 &= -1 \\
12B^3 &= 1 \\
13B^4 &= -1 \\
20B^2 &= 1 \\
21B^3 &= -1 \\
22B^4 &= -1 \\
23B^1 &= 1 \\
30B^3 &= 1 \\
31B^4 &= 1 \\
32B^1 &= -1 \\
33B^0 &= -1
\end{align*}
\]

Стандартные компоненты F-линейной функции и координаты соответствующего линейного преобразования над полем F удовлетворяют соотношениям

\[
\begin{align*}
(7.3.1) & \quad \begin{cases}
0f^0 = 0f^0 - f^{01} + f^{02} - f^{03} \\
1f^1 = 1f^1 - f^{01} + f^{12} + f^{13} \\
2f^2 = 2f^2 + f^{01} - f^{02} + f^{03} \\
3f^3 = 3f^3 \end{cases} \\
(7.3.2) & \quad \begin{cases}
4f^0 = 4f^0 - f^{01} - f^{22} + f^{33} \\
4f^1 = 4f^1 - f^{01} + f^{12} + f^{33} \\
4f^2 = 4f^2 + f^{01} - f^{22} + f^{33} \\
4f^3 = 4f^3 - f^{01} + f^{12} - f^{22}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
(7.3.3) & \quad \begin{cases}
0f^1 = 0f^1 + f^{10} + f^{23} - f^{32} \\
1f^0 = 1f^0 - f^{10} - f^{23} + f^{32} \\
2f^3 = 2f^3 + f^{10} - f^{23} + f^{32} \\
3f^2 = 3f^2 + f^{10} - f^{13} + f^{20}
\end{cases} \\
(7.3.4) & \quad \begin{cases}
4f^0 = 4f^0 + f^{10} + f^{23} + f^{32} \\
4f^1 = 4f^1 - f^{10} + f^{23} + f^{32} \\
4f^2 = 4f^2 + f^{10} - f^{23} + f^{32} \\
4f^3 = 4f^3 - f^{10} - f^{23} - f^{32}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
(7.3.5) & \quad \begin{cases}
0f^2 = 0f^2 - f^{13} + f^{20} + f^{31} \\
1f^3 = 1f^3 - f^{13} - f^{20} + f^{31} \\
2f^0 = 2f^0 - f^{13} - f^{20} + f^{31} \\
3f^1 = 3f^1 - f^{13} + f^{20} - f^{31}
\end{cases} \\
(7.3.6) & \quad \begin{cases}
4f^0 = 4f^0 + f^{13} + f^{20} + f^{31} \\
4f^1 = 4f^1 + f^{13} - f^{20} - f^{31} \\
4f^2 = 4f^2 - f^{13} - f^{20} + f^{31} \\
4f^3 = 4f^3 - f^{13} + f^{20} + f^{31}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
(7.3.7) & \quad \begin{cases}
0f^3 = 0f^3 + f^{12} - f^{21} + f^{30} \\
1f^2 = 1f^2 - f^{12} + f^{21} + f^{30} \\
2f^1 = 2f^1 - f^{12} + f^{21} - f^{30} \\
3f^0 = 3f^0 - f^{12} - f^{21} + f^{30}
\end{cases} \\
(7.3.8) & \quad \begin{cases}
4f^0 = 4f^0 - f^{12} - f^{21} + f^{30} \\
4f^1 = 4f^1 + f^{12} - f^{21} - f^{30} \\
4f^2 = 4f^2 - f^{12} + f^{21} + f^{30} \\
4f^3 = 4f^3 + f^{12} - f^{21} - f^{30}
\end{cases}
\end{align*}
\]

Доказательство. Значение структурных констант следует из таблицы умножения (7.2.3). Пользуясь равенством (3.2.17) получаем соотношения

\[
\begin{align*}
0f^0 &= f^{kr}B^r \cdot p_{k0}B^0 \\
&= f^{00}00B^0 + f^{11}10B^1 + f^{22}22B^2 + f^{33}33B^3 \\
&= f^{00} - f^{11} - f^{22} - f^{33} \\
0f^1 &= f^{kr}B^r \cdot p_{k1}B^1 \\
&= f^{01}01B^1 + f^{10}10B^1 + f^{23}23B^3 + f^{32}32B^3 \\
&= f^{01} + f^{10} + f^{23} - f^{32}
\end{align*}
\]
7.3. Линейная функция тела квaternionов

\[f^2 = f^{kr}_{k0} B^2 \]
\[= f^{02}_{00} B^0 - f^{13} B^1 + f^{20} B^2 + f^{31} B^3 \]
\[= f^{02} - f^{13} + f^{20} + f^{31} \]

\[f^3 = f^{kr}_{k0} B^3 \]
\[= f^{03}_{00} B^0 + f^{12} B^1 + f^{21} B^2 + f^{33} B^3 \]
\[= f^{03} + f^{12} - f^{21} + f^{30} \]

\[f^0 = f^{kr}_{k1} B^0 \]
\[= -f^{01} + f^{10} + f^{23} - f^{32} \]

\[f^1 = f^{kr}_{k1} B^1 \]
\[= f^{00}_{01} B^0 + f^{11} B^1 + f^{22} B^2 + f^{33} B^3 \]
\[= f^{00} + f^{11} + f^{22} + f^{33} \]

\[f^2 = f^{kr}_{k1} B^2 \]
\[= f^{03}_{01} B^0 + f^{12} B^1 + f^{21} B^2 + f^{30} B^3 \]
\[= f^{03} - f^{12} - f^{21} + f^{30} \]

\[f^3 = f^{kr}_{k1} B^3 \]
\[= f^{02}_{01} B^1 + f^{13} B^2 + f^{20} B^3 + f^{31} B^4 \]
\[= f^{02} - f^{13} - f^{20} + f^{31} \]

\[f^0 = f^{kr}_{k2} B^0 \]
\[= -f^{02} - f^{13} - f^{20} + f^{31} \]

\[f^1 = f^{kr}_{k2} B^1 \]
\[= f^{03}_{02} B^0 + f^{12} B^2 + f^{21} B^3 + f^{30} B^4 \]
\[= f^{03} - f^{12} - f^{21} + f^{30} \]

\[f^2 = f^{kr}_{k2} B^2 \]
\[= f^{00}_{02} B^2 + f^{11} B^3 + f^{22} B^4 \]
\[= f^{00} + f^{11} + f^{22} + f^{33} \]

\[f^3 = f^{kr}_{k2} B^3 \]
\[= f^{01}_{02} B^3 + f^{10} B^4 \]
\[= -f^{01} + f^{10} + f^{23} - f^{32} \]
7.3.2. Теорема 7.3.2. Положим

\[
\begin{align*}
3f^0 &= f^k_3B^0, \\
3f^1 &= f^k_1B^1, \\
3f^2 &= f^k_2B^2, \\
3f^3 &= f^k_3B^3,
\end{align*}
\]

Мы группируем эти соотношения в системы линейных уравнений (7.3.1), (7.3.5), (7.3.7).

(7.3.2) - это решение системы линейных уравнений (7.3.1).

(7.3.4) - это решение системы линейных уравнений (7.3.3).

(7.3.6) - это решение системы линейных уравнений (7.3.5).

(7.3.8) - это решение системы линейных уравнений (7.3.7).

\[
\begin{align*}
7.3.8 \quad \text{и} \quad 7.3.7, \quad \text{тогда}\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
0f^0 & 0f^1 & 0f^2 & 0f^3 \\
1f^1 & 1f^0 & 1f^3 & 1f^2 \\
2f^2 & 2f^3 & 2f^0 & 2f^1 \\
3f^3 & 3f^2 & 3f^3 & 3f^0
\end{pmatrix}
\end{align*}
\]

(7.3.9) \quad 7.3.9 \quad \text{и} \quad 7.3.8 \\

Доказательство. Запишем равенство (7.3.1) в виде произведения матриц

\[
\begin{align*}
\begin{pmatrix}
0f^0 & 0f^1 & 0f^2 & 0f^3 \\
1f^1 & 1f^0 & 1f^3 & 1f^2 \\
2f^2 & 2f^3 & 2f^0 & 2f^1 \\
3f^3 & 3f^2 & 3f^3 & 3f^0
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\end{align*}
\]

(7.3.10) \quad 7.3.10 \\

\[
\begin{align*}
\begin{pmatrix}
f^{00} & -f^{32} & -f^{13} & -f^{21} \\
f^{11} & -f^{23} & -f^{02} & -f^{30} \\
f^{22} & -f^{10} & -f^{31} & -f^{03} \\
f^{33} & -f^{01} & -f^{20} & -f^{12}
\end{pmatrix}
\end{align*}
\]
7.3. Линейная функция тела кватернионов

Запишем равенство (7.3.3) в виде произведения матриц

\[
\begin{pmatrix}
0 f^1 \\
1 f^0 \\
2 f^3 \\
3 f^2
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{01} \\
f^{10} \\
f^{23} \\
f^{32}
\end{pmatrix}
\]

(7.3.11)

\[
=\begin{pmatrix}
-1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
f^{01} \\
f^{10} \\
f^{23} \\
f^{32}
\end{pmatrix}
\]

Запишем равенство (7.3.5) в виде произведения матриц

\[
\begin{pmatrix}
0 f^2 \\
1 f^3 \\
2 f^0 \\
3 f^1
\end{pmatrix} =
\begin{pmatrix}
1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{02} \\
f^{13} \\
f^{20} \\
f^{31}
\end{pmatrix}
\]

(7.3.12)

\[
=\begin{pmatrix}
-1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
f^{02} \\
f^{13} \\
f^{20} \\
f^{31}
\end{pmatrix}
\]

Запишем равенство (7.3.7) в виде произведения матриц

\[
\begin{pmatrix}
0 f^3 \\
1 f^2 \\
2 f^1 \\
3 f^0
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & -1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & -1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{03} \\
f^{12} \\
f^{21} \\
f^{30}
\end{pmatrix}
\]

(7.3.13)

\[
=\begin{pmatrix}
-1 & -1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
f^{03} \\
f^{12} \\
f^{21} \\
f^{30}
\end{pmatrix}
\]

Мы объединяем равенства (7.3.10), (7.3.11), (7.3.12), (7.3.13) в равенстве (7.3.9).
7.4. Дифференцируемое отображение тела кватернионов

Теорема 7.4.1. Если матрица \(\left(\frac{\partial y^i}{\partial x^j} \right) \) является матрицей Якоби функции \(x \rightarrow y \) тела кватернионов над полем действительных чисел, то

\[
\begin{align*}
\frac{\partial y^0}{\partial x^0} & = \frac{\partial y^0}{\partial x^0} - \frac{\partial y^1}{\partial x^1} \frac{\partial y^2}{\partial x^2} \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^0}{\partial x^1} & = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^0}{\partial x^2} & = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} - \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^0}{\partial x^3} & = \frac{\partial y^0}{\partial x^0} - \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} - \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^1}{\partial x^0} & = \frac{\partial y^1}{\partial x^0} + \frac{\partial y^2}{\partial x^1} + \frac{\partial y^3}{\partial x^2} \\
\frac{\partial y^2}{\partial x^0} & = \frac{\partial y^1}{\partial x^0} + \frac{\partial y^2}{\partial x^1} - \frac{\partial y^3}{\partial x^2} \\
\frac{\partial y^3}{\partial x^0} & = \frac{\partial y^1}{\partial x^0} - \frac{\partial y^2}{\partial x^1} + \frac{\partial y^3}{\partial x^2} \\
\frac{\partial y^1}{\partial x^1} & = \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^2}{\partial x^1} & = \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} - \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^3}{\partial x^1} & = \frac{\partial y^1}{\partial x^1} - \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^1}{\partial x^2} & = \frac{\partial y^1}{\partial x^2} + \frac{\partial y^2}{\partial x^3} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^2}{\partial x^2} & = \frac{\partial y^1}{\partial x^2} + \frac{\partial y^2}{\partial x^3} - \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^3}{\partial x^2} & = \frac{\partial y^1}{\partial x^2} - \frac{\partial y^2}{\partial x^3} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^1}{\partial x^3} & = \frac{\partial y^1}{\partial x^3} + \frac{\partial y^2}{\partial x^3} + \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^2}{\partial x^3} & = \frac{\partial y^1}{\partial x^3} + \frac{\partial y^2}{\partial x^3} - \frac{\partial y^3}{\partial x^3} \\
\frac{\partial y^3}{\partial x^3} & = \frac{\partial y^1}{\partial x^3} - \frac{\partial y^2}{\partial x^3} + \frac{\partial y^3}{\partial x^3}
\end{align*}
\]

(7.4.1)
7.4. Дифференцируемое отображение тела кватернионов

\[\begin{align*}
4 \frac{\partial y^0}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
4 \frac{\partial y^1}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
4 \frac{\partial y^2}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} + \frac{\partial y^3}{\partial x^3} \\
4 \frac{\partial y^3}{\partial x} &= \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^2} - \frac{\partial y^3}{\partial x^3}
\end{align*} \]

(7.4.5)

(7.4.6)

\[\begin{align*}
4 \frac{\partial x^0}{\partial y} &= \frac{\partial x^0}{\partial y^0} + \frac{\partial x^1}{\partial y^1} + \frac{\partial x^2}{\partial y^2} + \frac{\partial x^3}{\partial y^3} \\
4 \frac{\partial x^1}{\partial y} &= \frac{\partial x^0}{\partial y^0} + \frac{\partial x^1}{\partial y^1} + \frac{\partial x^2}{\partial y^2} + \frac{\partial x^3}{\partial y^3} \\
4 \frac{\partial x^2}{\partial y} &= \frac{\partial x^0}{\partial y^0} + \frac{\partial x^1}{\partial y^1} + \frac{\partial x^2}{\partial y^2} + \frac{\partial x^3}{\partial y^3} \\
4 \frac{\partial x^3}{\partial y} &= \frac{\partial x^0}{\partial y^0} + \frac{\partial x^1}{\partial y^1} + \frac{\partial x^2}{\partial y^2} + \frac{\partial x^3}{\partial y^3}
\end{align*} \]

Доказательство. Следствие теоремы 7.3.1. □

Теорема 7.4.2. Отображение кватернионов

\[f(x) = \mathbf{x} \]

имеет производную Гато

\[\partial f(x) = \frac{1}{2}(h + 2ihi + jhj + kk) \]

(7.4.9)

Доказательство. Матрица Якоби отображения \(f \) имеет вид

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\]
Из равенств (7.4.5) следует

\[\frac{\partial^{00} y}{\partial x} = \frac{\partial^{11} y}{\partial x} = \frac{\partial^{22} y}{\partial x} = \frac{\partial^{33} y}{\partial x} = -\frac{1}{2} \]

Из равенств (7.4.6), (7.4.7), (7.4.8) следует

\[\frac{\partial^{ij} y}{\partial x} = 0 \quad i \neq j \]

Равенство (7.4.9) следует из равенств (5.2.15), (7.4.10), (7.4.11).

Теорема 7.4.3. Сопряжение кватернионов удовлетворяет равенству

\[\bar{x} = -\frac{1}{2}(x + ix + jxj + kxk) \]

Доказательство. Утверждение теоремы следует из теоремы 7.4.2 и примера 8.3.4.

Теорема 7.4.4. Норма кватерниона удовлетворяет равенствам

\[(\lvert x \rvert^2)(h) = x\bar{h} + \bar{x}h \]

\[(\lvert x \rvert)(h) = \frac{1}{2\sqrt{x\bar{h} + \bar{x}h}} \]

Доказательство. Равенство (7.4.12) следует из теоремы 7.4.2 и равенств (7.2.4), (5.2.23). Так как \(x\bar{h} + \bar{x}h \in R \), то равенство (7.4.13) следует из равенства (7.4.12).

Теорема 7.4.5. Если матрица \(\left(\frac{\partial y_i}{\partial x_j} \right) \) является матрицей Якоби функции \(x \to y \) тела кватернионов над полем действительных чисел, то

\[
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^1}{\partial x^0} & \frac{\partial y^2}{\partial x^0} & \frac{\partial y^3}{\partial x^0} \\
\frac{\partial y^0}{\partial x^1} & \frac{\partial y^1}{\partial x^1} & \frac{\partial y^2}{\partial x^1} & \frac{\partial y^3}{\partial x^1} \\
\frac{\partial y^0}{\partial x^2} & \frac{\partial y^1}{\partial x^2} & \frac{\partial y^2}{\partial x^2} & \frac{\partial y^3}{\partial x^2} \\
\frac{\partial y^0}{\partial x^3} & \frac{\partial y^1}{\partial x^3} & \frac{\partial y^2}{\partial x^3} & \frac{\partial y^3}{\partial x^3}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
\frac{\partial^{00} y}{\partial x} & -\frac{\partial^{32} y}{\partial x} & -\frac{\partial^{13} y}{\partial x} & -\frac{\partial^{21} y}{\partial x} \\
\frac{\partial^{11} y}{\partial x} & \frac{\partial^{23} y}{\partial x} & -\frac{\partial^{02} y}{\partial x} & -\frac{\partial^{00} y}{\partial x} \\
\frac{\partial^{22} y}{\partial x} & -\frac{\partial^{10} y}{\partial x} & \frac{\partial^{31} y}{\partial x} & -\frac{\partial^{33} y}{\partial x} \\
\frac{\partial^{33} y}{\partial x} & \frac{\partial^{01} y}{\partial x} & -\frac{\partial^{20} y}{\partial x} & \frac{\partial^{12} y}{\partial x}
\end{pmatrix}
\]

Доказательство. Следствие теоремы 7.3.2.

\[\text{Утверждение теоремы аналогично примеру X, [11], с. 455.}\]
7.4. Дифференцируемое отображение тела кватернионов

Теорема 7.4.6. Мы можем отождествить кватернион

(7.4.14) \[a = a^0 + a^1 i + a^2 j + a^3 k \]

и матрицу

(7.4.15) \[J_a = \begin{pmatrix} a^0 & -a^1 & -a^2 & -a^3 \\ a^1 & a^0 & -a^3 & a^2 \\ a^2 & a^3 & a^0 & -a^1 \\ a^3 & -a^2 & a^1 & a^0 \end{pmatrix} \]

Доказательство. Произведение кватернионов (7.4.14) и

\[x = x^0 + x^1 i + x^2 j + x^3 k \]

имеет вид

\[ax = a^0 x^0 - a^1 x^1 - a^2 x^2 - a^3 x^3 + (a^0 x^1 + a^1 x^0 + a^2 x^3 - a^3 x^2) i + (a^1 x^0 + a^2 x^1 + a^3 x^3 - a^0 x^2) j + (a^2 x^0 + a^3 x^1 + a^0 x^3 - a^1 x^2) k \]

Следовательно, функция \(f_a(x) = ax \) имеет матрицу Якоби (7.4.15). Очевидно, что \(f_a \circ f_b = f_{ab} \). Аналогичное равенство верно для матриц

\[\begin{pmatrix} a^0 & -a^1 & -a^2 & -a^3 \\ a^1 & a^0 & -a^3 & a^2 \\ a^2 & a^3 & a^0 & -a^1 \\ a^3 & -a^2 & a^1 & a^0 \end{pmatrix} \begin{pmatrix} b^0 & -b^1 & -b^2 & -b^3 \\ b^1 & b^0 & -b^3 & b^2 \\ b^2 & b^3 & b^0 & -b^1 \\ b^3 & -b^2 & b^1 & b^0 \end{pmatrix} = \begin{pmatrix} a^0 b^0 - a^1 b^1 - a^2 b^2 - a^3 b^3 - a^0 b^0 + a^1 b^1 - a^2 b^2 + a^3 b^3 \\ -a^2 b^2 - a^3 b^3 - a^2 b^2 + a^3 b^3 \\ a^0 b^0 + a^1 b^1 - a^0 b^0 + a^1 b^1 - a^0 b^0 + a^1 b^1 \\ a^2 b^2 - a^3 b^3 + a^2 b^2 - a^3 b^3 + a^2 b^2 + a^3 b^3 + a^2 b^2 + a^3 b^3 + a^2 b^2 + a^3 b^3 \\ -a^0 b^0 - a^1 b^1 - a^2 b^2 - a^3 b^3 - a^0 b^0 - a^1 b^1 - a^2 b^2 - a^3 b^3 - a^0 b^0 - a^1 b^1 \\ a^0 b^0 + a^1 b^1 - a^2 b^2 + a^3 b^3 + a^0 b^0 + a^1 b^1 - a^2 b^2 + a^3 b^3 + a^0 b^0 + a^1 b^1 \end{pmatrix} \]

Следовательно, мы можем отождествить кватернион \(a \) и матрицу \(J_a \). \(\square \)
Глава 8

Производная второго порядка отображения тела

8.1. Производная второго порядка отображения тела

Пусть D - нормированное тело характеристики 0. Пусть $f : D \to D$ функция, дифференцируемая по Гато. Согласно замечанию 5.2.4 производная Гато является отображением $\partial f : D \to \mathcal{L}(D; D)$

Согласно теоремам 3.1.2, 3.1.3 и определению 5.1.13 множество $\mathcal{L}(D; D)$ является нормированным D-векторным пространством. Следовательно, мы можем рассмотреть вопрос, является ли отображение ∂f дифференцируемым по Гато.

Согласно определению 6.2.1

$\partial f(x + a_2)(a_1) - \partial f(x)(a_1) = \partial(\partial f(x)(a_1))(a_2) + \tau_2(a_2)$

где $\tau_2 : D \to \mathcal{L}(D; D)$ - такое непрерывное отображение, что

$\lim_{a_2 \to 0} \frac{\|\tau_2(a_2)\|}{|a_2|} = 0$

Согласно определению 6.2.1 отображение $\partial(\partial f(x)(a_1))(a_2)$ линейно по переменной a_2. Из равенства (8.1.1) следует, что отображение $\partial(\partial f(x)(a_1))(a_2)$ линейно по переменной a_1.

Определение 8.1.1. Полилинейное отображение

$\partial^2 f(x)(a_1; a_2) = \frac{\partial^2 f(x)}{\partial x^2}(a_1; a_2) = \partial(\partial f(x)(a_1))(a_2)$

называется производной Гато второго порядка отображения f.

Замечание 8.1.2. Согласно определению 8.1.1 при заданном x дифференциал Гато второго порядка $\partial^2 f(x) \in \mathcal{L}(D, D; D)$. Следовательно, дифференциал Гато второго порядка отображения f является отображением $\partial^2 f : D \to \mathcal{L}(D, D; D)$

Теорема 8.1.3. Мы можем представить дифференциал Гато второго порядка отображения f в виде

$\partial^2 f(x)(a_1; a_2) = \frac{\sigma_s(a_1)}{\sigma_s(a_1)} \frac{\partial^2 f(x)}{\partial x^2}(a_1; a_2)$

ДОКАЗАТЕЛЬСТВО. Следствие определения 8.1.1 и теоремы 4.2.3.
Определение 8.1.4. Мы будем называть выражение \(\frac{\partial^2 f(x)}{\partial x^2} \), \(p = 0, 1 \), компонентой производной Гато отображения \(f(x) \).

По индукции, предполагая, что определена производная Гато \(\partial^{n-1} f(x) \) порядка \(n-1 \), мы определяем

\[
\partial^n f(x)(a_1; ..., a_n) = \frac{\partial^n f(x)}{\partial x^n}(a_1; ..., a_n) = \partial(\partial^{n-1} f(x)(a_1; ..., a_{n-1}))(a_n)
\]

производную Гато порядка \(n \) отображения \(f \). Мы будем также полагать \(\partial^0 f(x) = f(x) \).

8.2. Ряд Тейлора

Рассмотрим многочлен одной переменной над телом \(D \) степени \(n, n > 0 \).

Нас интересует структура одночлена \(p_k(x) \) многочлена степени \(k \).

Очевидно, что одночлен степени 0 имеет вид \(a_0, a_0 \in D \). Пусть \(k > 0 \). Докажем, что

\[
p_k(x) = p_{k-1}(x)a_k
\]

где \(a_k \in D \). Действительно, последний множитель одночлена \(p_k(x) \) является либо \(a_k \in D \), либо имеет вид \(x^l, l \geq 1 \). В последнем случае мы положим \(a_k = 1 \). Множитель, предшествующий \(a_k \), имеет вид \(x^l, l \geq 1 \). Мы можем представить этот множитель в виде \(x^{l-1}x \). Следовательно, утверждение доказано.

В частности, одночлен степени 1 имеет вид \(p_1(x) = a_0x_1 \).

Не нарушая общности, мы можем положить \(k = n \).

Теорема 8.2.1. Для произвольного \(m > 0 \) справедливо равенство

\[
\partial^m (f(x);x)(h_1; ..., h_m)
\]

(8.2.1)

\[
= \partial^m f(x)(h_1; ..., h_m)x + \partial^{m-1} f(x)(h_1; ..., h_{m-1})h_m
\]

\[
+ \partial^{m-1} f(x)(\hat{h_1}; ..., h_{m-1}; h_m)h_{m-1} + ...
\]

\[
+ \partial^{m-1} f(x)(h_1; ..., \hat{h_{m-1}}; h_m)h_{m-1}
\]

где символ \(\hat{h} \) означает отсутствие переменной \(h^i \) в списке.

ДОКАЗАТЕЛЬСТВО. Для \(m = 1 \) - это следствие равенства (5.2.23)

\[
\partial(f(x);x)(h_1) = \partial f(x)(h_1)x + f(x)h_1
\]

Допустим, (8.2.1) справедливо для \(m - 1 \). Тогда

\[
\partial^{m-1} f(x)(h_1; ..., h_{m-1})
\]

(8.2.2)

\[
= \partial^{m-1} f(x)(h_1; ..., h_{m-1})x + \partial^{m-2} f(x)(h_1; ..., h_{m-2})h_{m-1}
\]

\[
+ \partial^{m-2} f(x)(\hat{h_1}, ..., h_{m-2}; h_{m-1})h_{m-2} + ...
\]

\[
+ \partial^{m-2} f(x)(h_1; ..., \hat{h_{m-2}}; h_{m-1})h_{m-2}
\]

8. Мы полагаем

\[
\frac{\partial^2 f(x)}{\partial x^2} = \frac{\partial^2 f(x)}{\partial x \partial x}
\]
Пользуясь равенствами (5.2.23) и (5.3.2) получим

\[\partial^m f(x)(h_1; \ldots; h_{m-1}; h_m) = \partial^m f(x)(h_1; \ldots; h_{m-1}; h_m) + \partial^{m-1} f(x)(h_1; \ldots; h_{m-2}; h_{m-1})h_m \]

(8.2.3) \[+ \partial^{m-2} f(x)(\widehat{h_1}, \ldots, h_{m-2}, h_{m-1}; h_m)h_1 + \]

\[+ \partial^{m-2} f(x)(\widehat{h_1}, \ldots, h_{m-2}, h_{m-1}; h_m)h_{m-2} \]

Равенства (8.2.1) и (8.2.3) отличаются только формой записи. Теорема доказана.

Теорема 8.2.2. Производная Гато \(\partial^m p_n(x)(h_1, \ldots, h_m) \) является симметричным многочленом по переменным \(h_1, \ldots, h_m \).

Доказательство. Для доказательства теоремы мы рассмотрим алгебраические свойства производной Гато и дадим эквивалентное определение. Мы начнём с построения одночлена. Для произвольного одночлена \(a \) имеем:

1. Если \(p_1(x) = a_0x_1 \), то \(r_1(x_1) = a_0x_1a_1 \)
2. Если \(p_n(x) = p_{n-1}(x)a_n \), то \(r_n(x_1, \ldots, x_n) = r_{n-1}(x_1, \ldots, x_{n-1})x_n\hat{a}_n \)

где квадратные скобки выражают симметризацию выражения по переменным \(x_1, \ldots, x_n \).

Очевидно, что \(p_n(x) = r_n(x_1, \ldots, x_n) \quad x_1 = \ldots = x_n = x \)

Мы определим производную Гато порядка \(k \) согласно правилу

(8.2.4) \[\partial^k p_n(x)(h_1, \ldots, h_k) = r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x \]

Согласно построению многочлен \(r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \) симметричен по переменным \(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n \). Следовательно, многочлен (8.2.4) симметричен по переменным \(h_1, \ldots, h_k \).

При \(k = 1 \) мы докажем, что определение (8.2.4) производной Гато совпадает с определением (5.2.18).

Для \(n = 1 \), \(r_1(h_1) = a_0h_1a_1 \). Это выражение совпадает с выражением производной Гато в теореме 5.3.3.

Пусть утверждение справедливо для \(n - 1 \). Справедливо равенство

(8.2.5) \[r_n(h_1, x_2, \ldots, x_n) = r_{n-1}(h_1, x_2, \ldots, x_{n-1})x_n\hat{a}_n + r_{n-1}(x_2, \ldots, x_n)h_1\hat{a}_n \]

Положим \(x_2 = \ldots = x_n = x \). Согласно предположению индукции, из равенств (8.2.4), (8.2.5) следует

\[r_n(h_1, x_2, \ldots, x_n) = \partial p_{n-1}(x)(h_1)xa_n + p_{n-1}(x)h_1a_n \]

Согласно теореме 8.2.1

\[r_n(h_1, x_2, \ldots, x_n) = \partial p_n(x)(h_1) \]

что доказывает равенство (8.2.4) для \(k = 1 \).

Докажем теперь, что определение (8.2.4) производной Гато совпадает с определением (8.1.4) для \(k > 1 \).
Пусть равенство (8.2.4) верно для \(k - 1 \). Рассмотрим произвольное слагаемое многочлена \(r_n(h_1, \ldots, h_{k-1}, x_k, \ldots, x_n) \). Определим переменные \(h_1, \ldots, h_{k-1} \) с элементами тела \(D \), мы рассмотрим многочлен

\[
R_{n-k}(x_k, \ldots, x_n) = r_n(h_1, \ldots, h_{k-1}, x_k, \ldots, x_n)
\]

Положим \(P_{n-k}(x) = R_{n-k}(x_k, \ldots, x_n), x_k = \ldots = x_n = x \). Следовательно

\[
P_{n-k}(x) = \partial^{k-1} p_n(x)(h_1; \ldots; h_{k-1})
\]

Согласно определению (8.1.4) производной Гато

\[
\partial P_{n-k}(x)(h_k) = \partial(\partial^{k-1} p_n(x)(h_1; \ldots; h_{k-1}))(h_k)
\]

(8.2.7)

Согласно определению производной Гато (8.2.4)

(8.2.8)

\[
\partial P_{n-k}(x)(h_k) = R_{n-k}(h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x
\]

Согласно определению (8.2.6), из равенства (8.2.8) следует

(8.2.9)

\[
\partial P_{n-k}(x)(h_k) = r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x
\]

Из сравнения равенств (8.2.7) и (8.2.9) следует

\[
\partial^k p_n(x)(h_1; \ldots; h_k) = r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x
\]

Следовательно равенство (8.2.4) верно для любых \(k \) и \(n \).

Утверждение теоремы доказано. \(\square \)

Теорема 8.2.3. Для произвольного \(n \geq 0 \) справедливо равенство

(8.2.10)

\[
\partial^{n+1} p_n(x)(h_1; \ldots; h_{n+1}) = 0
\]

Доказательство. Так как \(p_0(x) = a_0, a_0 \in D \), то при \(n = 0 \) теорема является следствием теоремы 5.3.1. Пусть утверждение теоремы верно для \(n - 1 \). Согласно теореме 8.2.1 при условии \(f(x) = p_{n-1}(x) \) мы имеем

\[
\partial^{n+1} p_n(x)(h_1; \ldots; h_{n+1}) = \partial^{n+1}(p_{n-1}(x)x a_n)(h_1; \ldots; h_{n+1})
\]

\[
= \partial^{n+1} p_{n-1}(x)(h_1; \ldots; h_{m})x a_n + \partial^n p_{n-1}(x)(h_1; \ldots; h_{m-1})h_m a_n + \ldots + \partial^m p_{n-1}(x)(h_1; \ldots; h_{m-1})h_m a_n + \ldots
\]

Согласно предложению индукции все одночлены равны 0. \(\square \)

Теорема 8.2.4. Если \(m < n \), то справедливо равенство

(8.2.11)

\[
\partial^m p_n(0)(h) = 0
\]

Доказательство. Для \(n = 1 \) справедливо равенство

\[
\partial^0 p_1(0) = a_0x a_1 = 0
\]
Допустим, утверждение справедливо для $n - 1$. Тогда согласно теореме 8.2.1

$$
\partial^n (p_{n-1}(x) x a_n) (h_1; \ldots; h_m)
$$

$$
= \partial^n p_{n-1}(x) (h_1; \ldots; h_m) x a_n + \partial^{n-1} p_{n-1}(x) (h_1; \ldots; h_m-1) h_m a_n
$$

$$
+ \partial^{n-1} p_{n-1}(x) (h_1; \ldots; h_m-1) h_1 a_n + \ldots
$$

$$
+ \partial^1 p_{n-1}(x) (h_1; \ldots; h_m-1) h_{m-1} a_n
$$

Первое слагаемое равно 0 так как $x = 0$. Так как $m - 1 < n - 1$, то остальные слагаемые равны 0 согласно предположению индукции. Утверждение теоремы доказано.

Если $h_1 = \ldots = h_n = h$, то мы положим

$$
\partial^n f(x)(h) = \partial^n f(x)(h_1; \ldots; h_n)
$$

Эта запись не будет приводить к неоднозначности, так как по числу аргументов ясно, о какой функции идёт речь.

Теорема 8.2.5. Для произвольного $n > 0$ справедливо равенство

(8.2.12) \[\partial^n p_n(x)(h) = n! p_n(h) \]

Доказательство. Для $n = 1$ справедливо равенство

$$
\partial^1 p_1(x)(h) = \partial (a_0 x a_1)(h) = a_0 h a_1 = 1! p_1(h)
$$

Допустим, утверждение справедливо для $n - 1$. Тогда согласно теореме 8.2.1

(8.2.13) \[\partial^n p_n(x)(h) = \partial^n p_{n-1}(x)(h) x a_n + \partial^{n-1} p_{n-1}(x)(h) h a_n + \ldots + \partial^1 p_{n-1}(x)(h) h_{n-1} a_n \]

Первое слагаемое равно 0 согласно теореме 8.2.3. Остальные n слагаемых равны, и согласно предположению индукции из равенства (8.2.13) следует

$$
\partial^n p_n(x)(h) = n \partial^{n-1} p_{n-1}(x)(h) h a_n = n(n - 1)! p_{n-1}(h) h a_n = n! p_n(h)
$$

Следовательно, утверждение теоремы верно для любого n.

Пусть $p(x)$ - многочлен степени n.

$$
p(x) = p_0 + p_{1i} (x) + \ldots + p_{ni} (x)
$$

Мы предполагаем сумму по индексу i_k, который нумерует слагаемые степени k. Согласно теоремам 8.2.3, 8.2.4, 8.2.5

$$
\partial^k p(x)(h_1; \ldots; h_k) = k! p_{ki_1} (x)
$$

Следовательно, мы можем записать

$$
p(x) = p_0 + (1)!^{-1} \partial p(0)(x) + (2)!^{-1} \partial^2 p(0)(x) + \ldots + (n)!^{-1} \partial^n p(0)(x)
$$

Это представление многочлена называется **формула Тейлора для многочлена**. Если рассмотреть замену переменных $x = y - y_0$, то рассмотренное построение остаётся верным для многочлена

$$
p(y) = p_0 + p_{1i_1} (y - y_0) + \ldots + p_{ni} (y - y_0)
$$

\[8.2Я\]" рассма.
откуда следует
\[p(y) = p_0 + (1!)^{-1} \partial p(y_0)(y - y_0) + (2!)^{-1} \partial^2 p(y_0)(y - y_0) + \ldots + (n!)^{-1} \partial^n p(y_0)(y - y_0) \]

Предположим, что функция \(f(x) \) в точке \(x_0 \) дифференцируема в смысле Гато до любого порядка.

Теорема 8.2.6. Если для функции \(f(x) \) выполняется условие

\[f(x_0) = \partial f(x_0)(h) = \ldots = \partial^n f(x_0)(h) = 0 \]

то при \(t \to 0 \) выражение \(f(x + th) \) является бесконечно малой порядка выше \(n \) по сравнению с \(t \)

\[f(x_0 + th) = o(t^n) \]

Доказательство. При \(n = 1 \) это утверждение следует из равенства \((5.2.13)\).

Пусть утверждение справедливо для \(n - 1 \). Для отображения

\[f_1(x) = \partial f(x)(h) \]

выполняется условие

\[f_1(x_0) = \partial f_1(x_0)(h) = \ldots = \partial^{n-1} f_1(x_0)(h) = 0 \]

Согласно предположению индукции

\[f_1(x_0 + th) = o(t^{n-1}) \]

Тогда равенство \((5.2.12)\) примет вид

\[o(t^{n-1}) = \lim_{t \to 0, t \in \mathbb{R}} (t^{-1} f(x + th)) \]

Следовательно,

\[f(x + th) = o(t^n) \]

Составим многочлен

\[(8.2.15) \quad p(x) = f(x_0) + (1!)^{-1} \partial f(x_0)(x - x_0) + \ldots + (n!)^{-1} \partial^n f(x_0)(x - x_0) \]

Согласно теореме 8.2.6

\[f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n) \]

Следовательно, полином \(p(x) \) является хорошей аппроксимацией отображения \(f(x) \).

Если отображение \(f(x) \) имеет производную Гато любого порядка, то переходя к пределу \(n \to \infty \), мы получим разложение в ряд

\[f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \partial^n f(x_0)(x - x_0) \]

который называется **рядом Тейлора**.

8.3 Я рассматриваю построение ряда Тейлора по аналогии с построением ряда Тейлора в [7], с. 248, 249.
8.3. Интеграл

Понятие интеграла имеет разные аспекты. В этом разделе мы рассмотрим интегрирование, как операцию, обратную дифференцированию. По сути дела, мы рассмотрим процедуру решения обыкновенного дифференциального уравнения

$$\partial f(x)(h) = F(x; h)$$

Пример 8.3.1. Я начну с примера дифференциального уравнения над полем действительных чисел.

(8.3.1)
$$y' = 3x^2$$

(8.3.2)
$$x_0 = 0 \quad y_0 = 0$$

Последовательно дифференцируя равенство (8.3.1), мы получаем цепочку уравнений

(8.3.3)
$$y'' = 6x$$

(8.3.4)
$$y''' = 6$$

(8.3.5)
$$y^{(n)} = 0 \quad n > 3$$

Из уравнений (8.3.1), (8.3.2), (8.3.3), (8.3.4), (8.3.5) следует разложение в ряд Тейлора

$$y = x^3 + \square$$

Пример 8.3.2. Рассмотрим аналогичное дифференциальное уравнение над телом

(8.3.6)
$$\partial(y)(h) = hx^2 + xhx + x^2h$$

(8.3.7)
$$x_0 = 0 \quad y_0 = 0$$

Последовательно дифференцируя равенство (8.3.6), мы получаем цепочку уравнений

(8.3.8)
$$\partial^2(y)(h_1; h_2) = h_1h_2x + h_1xh_2 + h_2h_1x + xh_1h_2 + h_2xh_1 + xh_2h_1$$

(8.3.9)
$$\partial^3(y)(h_1; h_2; h_3) = h_1h_2h_3 + h_1h_3h_2 + h_2h_1h_3 + h_3h_1h_2 + h_2h_3h_1 + h_3h_2h_1$$

(8.3.10)
$$\partial^n(y)(h_1; \ldots; h_n) = 0 \quad n > 3$$

Из уравнений (8.3.6), (8.3.7), (8.3.8), (8.3.9), (8.3.10) следует разложение в ряд Тейлора

$$y = x^3 + \square$$

Замечание 8.3.3. Дифференциальное уравнение

(8.3.11)
$$\partial(y)(h) = 3hx^2$$

(8.3.12)
$$x_0 = 0 \quad y_0 = 0$$
так же приводит к решению $y = x^3$. Очевидно, что это отображение не удовлетворяет дифференциальному уравнению. Однако, вопреки теореме 8.2.2 вторая производная не является симметричным многочленом. Это говорит о том, что уравнение (8.3.11) не имеет решений.

Пример 8.3.4. Очевидно, если функция удовлетворяет дифференциальному уравнению

(8.3.13) $\partial(y)(h) = (s)_0 f \ h \ (s)_1 f$

то вторая производная Гато

$$\partial^2 f(x)(h_1; h_2) = 0$$

Следовательно, если задано начальное условие $y(0) = 0$, то дифференциальное уравнение (8.3.13) имеет решение

$$y = (s)_0 f \ x \ (s)_1 f$$

8.4. Экспонента

В этом разделе мы рассмотрим одну из возможных моделей построения экспоненты.

В поле мы можем определить экспоненту как решение дифференциального уравнения

(8.4.1) $y' = y$

Очевидно, что мы не можем записать подобное уравнение для тела. Однако мы можем воспользоваться равенством

(8.4.2) $\partial(y)(h) = y'h$

Из уравнений (8.4.1), (8.4.2) следует

(8.4.3) $\partial(y)(h) = yh$

Это уравнение уже ближе к нашей цели, однако остаётся открытым вопрос в каком порядке мы должны перемножать y и h. Что бы ответить на этот вопрос, мы изменяем запись уравнения

(8.4.4) $\partial(y)(h) = \frac{1}{2}(yh + hy)$

Следовательно, наша задача - решить дифференциальное уравнение (8.4.4) при начальном условии $y(0) = 1$.

Для формулировки и доказательства теоремы 8.4.1 я введу следующее обозначение. Пусть

$$\sigma = \begin{pmatrix} y \\ \sigma(y) \\ h_1 \\ \sigma(h_1) \\ \vdots \\ h_n \\ \sigma(h_n) \end{pmatrix}$$

перестановка кортежа переменных

$$\begin{pmatrix} y \\ h_1 \\ \vdots \\ h_n \end{pmatrix}$$

Обозначим $p_\sigma(h_i)$ позицию, которую занимает переменная h_i в кортеже

$$\begin{pmatrix} \sigma(y) \\ \sigma(h_1) \\ \vdots \\ \sigma(h_n) \end{pmatrix}$$
Например, если перестановка σ имеет вид

$$
\begin{pmatrix}
y & h_1 & h_2 & h_3 \\
h_2 & y & h_3 & h_1
\end{pmatrix}
$$

tо следующие кортежи равны

$$(\sigma(y) \quad \sigma(h_1) \quad \sigma(h_2) \quad \sigma(h_3)) = (h_2 \quad y \quad h_3 \quad h_1)$$

$$
= \left(p_\sigma(h_2) \quad p_\sigma(y) \quad p_\sigma(h_3) \quad p_\sigma(h_1) \right)
$$

Теорема 8.4.1. Производная Гато порядка n функции y, удовлетворяющей дифференциальному уравнению (8.4.4) имеет вид

$$(8.4.5) \quad \partial^n(y)(h_1, ..., h_n) = \frac{1}{2^n} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_n)$$

где сумма выполнена по перестановкам

$$\sigma = \left(y \quad \sigma(y) \quad h_1 \quad \ldots \quad h_n \quad \sigma(h_1) \quad \ldots \quad \sigma(h_n) \right)$$

множества переменных y, h_1, h_n. Перестановка σ обладает следующими свойствами

1. Если существуют i, j, $i \neq j$, такие, что $p_\sigma(h_i)$ располагается в произведении (8.4.5) левее $p_\sigma(h_j)$ и $p_\sigma(h_j)$ располагается левее $p_\sigma(y)$, то $i < j$.

2. Если существуют i, j, $i \neq j$, такие, что $p_\sigma(h_i)$ располагается в произведении (8.4.5) правее $p_\sigma(h_j)$ и $p_\sigma(h_j)$ располагается правее $p_\sigma(y)$, то $i > j$.

Доказательство. Мы докажем это утверждение индукцией. Для $n = 1$ утверждение верно, так как это дифференциальное уравнение (8.4.4). Пусть утверждение верно для $n = k - 1$. Следовательно

$$(8.4.6) \quad \partial^{k-1}(y)(h_1, ..., h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})$$

где сумма выполнена по перестановкам

$$\sigma = \left(y \quad h_1 \quad \ldots \quad h_{k-1} \quad \sigma(y) \quad \sigma(h_1) \quad \ldots \quad \sigma(h_{k-1}) \right)$$

множества переменных y, h_1, h_{k-1}. Перестановка σ удовлетворяет условиям (1), (2), сформулированным в теореме. Согласно определению (8.1.4) производная Гато порядка k имеет вид

$$(8.4.7) \quad \partial^k(y)(h_1, ..., h_k) = \partial(\partial^{k-1}(y)(h_1, ..., h_{k-1}))(h_k)$$

$$= \frac{1}{2^{k-1}} \partial \left(\sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)(h_k)$$

Из равенств (8.4.4), (8.4.7) следует

$$(8.4.8) \quad \partial^k(y)(h_1, ..., h_k) = \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma} \sigma(yh_k)\sigma(h_1)\ldots\sigma(h_{k-1}) + \sum_{\sigma} \sigma(h_ky)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)$$
Нетрудно видеть, что произвольная перестановка σ из суммы (8.4.8) порождает две перестановки

\[
\tau_1 = \begin{pmatrix}
 y & h_1 & \ldots & h_{k-1} & h_k \\
 \tau_1(y) & \tau_1(h_1) & \ldots & \tau_1(h_{k-1}) & \tau_1(h_k)
\end{pmatrix}
\]

(8.4.9)

\[
\tau_2 = \begin{pmatrix}
 y & h_1 & \ldots & h_{k-1} & h_k \\
 \sigma(h_ky) & \sigma(h_1) & \ldots & \sigma(h_{k-1})
\end{pmatrix}
\]

Так как k - самое большое значение индекса, то перестановка τ_1 удовлетворяет условиям (1), (2), сформулированным в теореме. В выражении (8.4.10) $p_{\tau_1}(y)$ записано непосредственно после $p_{\tau_2}(y)$. Так как k - самое большое значение индекса, то перестановка τ_2 удовлетворяет условиям (1), (2), сформулированным в теореме.

Нам осталось показать, что в выражении (8.4.10) перечислены все перестановки τ, удовлетворяющие условиям (1), (2), сформулированным в теореме. Так как k - самый большой индекс, то согласно условиям (1), (2), сформулированным в теореме, $\tau(h_k)$ записано непосредственно перед $\tau_1(y)$. Следовательно, утверждение теоремы верно для $n = k$. Теорема доказана.

Теорема 8.4.2. Решением дифференциального уравнения (8.4.4) при начальном условии $y(0) = 1$ является экспонента $y = e^x$ которая имеет следующее разложение в ряд Тейлора

\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
\]

Доказательство. Производная Гато порядка n содержит 2^n слагаемых. Действительно, производная Гато порядка 1 содержит 2 слагаемых, и каждое дифференцирование увеличивает число слагаемых вдвое. Из начального условия $y(0) = 1$ и теоремы 8.4.1 следует, что производная Гато порядка n исходного решения имеет вид

(8.4.12)

\[
\partial^n(0)(h, \ldots, h) = 1
\]

Из равенства (8.4.12) следует разложение (8.4.11). в ряд Тейлора.
Теорема 8.4.3. Равенство

(8.4.13) \(e^{a+b} = e^a e^b \)

справедливо тогда и только тогда, когда

(8.4.14) \(ab = ba \)

Доказательство. Для доказательства теоремы достаточно рассмотреть ряды Тейлора

(8.4.15) \(e^a = \sum_{n=0}^{\infty} \frac{1}{n!} a^n \)

(8.4.16) \(e^b = \sum_{n=0}^{\infty} \frac{1}{n!} b^n \)

(8.4.17) \(e^{a+b} = \sum_{n=0}^{\infty} \frac{1}{n!} (a + b)^n \)

Перемножим выражения (8.4.15) и (8.4.16). Сумма одночленов порядка 3 имеет вид

(8.4.18) \(\frac{1}{6} a^3 + \frac{1}{2} a^2 b + \frac{1}{2} ab^2 + \frac{1}{6} b^3 \)

и не совпадает, вообще говоря, с выражением

(8.4.19) \(\frac{1}{6} (a + b)^3 = \frac{1}{6} a^3 + \frac{1}{6} a^2 b + \frac{1}{6} ba a + \frac{1}{6} ba^2 + \frac{1}{6} bab + \frac{1}{6} b^2 a + \frac{1}{6} b^3 \)

Доказательство утверждения, что (8.4.13) следует из (8.4.14) тривиально. □

Смысл теоремы 8.4.3 становится яснее, если мы вспомним, что существует две модели построения экспоненты. Первая модель - это решение дифференциального уравнения (8.4.4). Вторая - это изучение однопараметрической группы преобразований. В случае поля обе модели приводят к одной и той же функции. Я не могу этого утверждать сейчас в общем случае. Это вопрос отдельного исследования. Но если вспомнить, что кватернион является аналогом преобразования трёхмерного пространства, то утверждение теоремы становится очевидным.
Глава 9

Производная второго порядка отображения D-векторного пространства

9.1. Производная второго порядка отображения D-векторного пространства

Пусть \(D \)-нормированное тело характеристики 0. Пусть \(\mathbf{V} \)- нормированное \(D \)-векторное пространство с нормой \(\|y\|_V \). Пусть \(\mathbf{W} \)- нормированное \(D \)-векторное пространство с нормой \(\|z\|_W \). Пусть \(\mathbf{f} : \mathbf{V} \rightarrow \mathbf{W} \) функция, дифференцируемая по Гато. Согласно замечанию 6.2.2 производная Гато является отображением \(\partial \mathbf{f} : \mathbf{V} \rightarrow \mathcal{L}(D; \mathbf{V}; \mathbf{W}) \)

Согласно теоремам 3.1.2, 3.1.3 и определению 6.1.8 множество \(\mathcal{L}(D; \mathbf{V}; \mathbf{W}) \) является нормированным \(D \)-векторным пространством. Следовательно, мы можем рассмотреть вопрос, является ли отображение \(\partial \mathbf{f} \) дифференцируемым по Гато.

Согласно определению 6.2.1

| (9.1.1) \(\partial \mathbf{f}(\mathbf{x} + \mathbf{a}_2)(\mathbf{a}_1) - \partial \mathbf{f}(\mathbf{x})(\mathbf{a}_1) = \partial(\partial \mathbf{f}(\mathbf{x})(\mathbf{a}_1))(\mathbf{a}_2) + \mathbf{a}_2(\mathbf{a}_2) \) |

где \(\mathbf{a}_2 : \mathbf{V} \rightarrow \mathcal{L}(D; \mathbf{V}; \mathbf{W}) \) - такое непрерывное отображение, что

\[
\lim_{\mathbf{a}_2 \rightarrow \mathbf{a}} \frac{\|\mathbf{a}_2(\mathbf{a}_2)\|}{\|\mathbf{a}_2\|_V} = 0
\]

Согласно определению 6.2.1 отображение \(\partial(\partial \mathbf{f}(\mathbf{x})(\mathbf{a}_1))(\mathbf{a}_2) \) линейно по переменной \(\mathbf{a}_2 \). Из равенства (9.1.1) следует, что отображение \(\partial(\partial \mathbf{f}(\mathbf{x})(\mathbf{a}_1))(\mathbf{a}_2) \) линейно по переменной \(\mathbf{a}_1 \).

Определение 9.1.1. Полилинейное отображение

| (9.1.2) \(\partial^2 \mathbf{f}(\mathbf{x})(\mathbf{a}_1; \mathbf{a}_2) = \partial(\partial \mathbf{f}(\mathbf{x})(\mathbf{a}_1))(\mathbf{a}_2) \) |

называется производной Гато второго порядка отображения \(\mathbf{f} \) \(\square \)

Замечание 9.1.2. Согласно определению 9.1.1 при заданном \(\mathbf{x} \) производная Гато второго порядка \(\partial^2 \mathbf{f}(\mathbf{x}) \in \mathcal{L}(D; \mathbf{V}; \mathbf{V}; \mathbf{W}) \). Следовательно, производная Гато второго порядка отображения \(\mathbf{f} \) является отображением

\[
\partial^2 \mathbf{f} : \mathbf{V} \rightarrow \mathcal{L}(D; \mathbf{V}; \mathbf{V}; \mathbf{W})
\]

Теорема 9.1.3. Допустим \(\mathbf{e}_D \)-D*-базис в D-векторном пространстве \(\mathbf{V} \) над телом \(D \). Допустим \(\mathbf{e}_D \)-D*-базис в D-векторном пространстве \(\mathbf{W} \) над...
9. Производная второго порядка отображения D-векторного пространства

tелом D. Дифференциал Гато второго порядка отображения \mathbf{f} относительно D^*-базиса π и D^*-базиса π^* имеет вид

$$\frac{\partial^2 f(x)}{\partial \pi_1 \partial \pi_2}(\pi_1; \pi_2) = \frac{\partial^2 f^3(x)}{\partial \pi_1 \partial \pi_2} \sigma_1 + \frac{\partial^2 f^3(x)}{\partial \pi_1 \partial \pi_2} \sigma_2.$$

ДОКАЗАТЕЛЬСТВО. Следствие определения 9.1.1 и теоремы 4.2.3. □

Определение 9.1.4. Мы будем называть выражение

$$(s)_p \frac{\partial^2 f^3(x)}{\partial \pi_1 \partial \pi_2}, \quad p = 0, 1, 2,$$ компонентой производной Гато второго порядка отображения $\mathbf{f}(\pi)$.

□

Определение 9.1.5. Пусть D - тело характеристики 0. Допустим D^*-базис в D-векторном пространстве V над телом D. Допустим D^*-базис в D^*-векторном пространстве W над телом D. Частная производная Гато

$$\frac{\partial^2 f^k(\pi)}{\partial \pi_1 \partial \pi_2}(h^i, h^j) = \frac{\partial}{\partial \pi_1} \left(\frac{\partial f^k(\pi)}{\partial \pi_2}(h^i) \right)(h^j)$$

называется смешанной частной производной Гато отображения f^j по переменным v^i, v^j.

□

Теорема 9.1.6. Пусть D - тело характеристики 0. Допустим D^*-базис в D-векторном пространстве V над телом D. Допустим D^*-базис в D^*-векторном пространстве W над телом D. Пусть частные производные Гато отображения $\mathbf{f} : V \rightarrow W$ непрерывны и дифференцируемы в смысле Гато в области $U \subseteq V$. Пусть смешанные частные производные Гато второго порядка непрерывны в области $U \subseteq V$. Тогда на множестве U смешанные частные производные Гато удовлетворяют равенству

$$\frac{\partial^2 f^k(\pi)}{\partial \pi_1 \partial \pi_2}(h^i, h^j) = \frac{\partial^2 f^k(\pi)}{\partial \pi_1 \partial \pi_2}(h^j, h^i).$$

ДОКАЗАТЕЛЬСТВО. Для доказательства теоремы мы будем пользоваться обозначением $f^k(\pi) = f^k(v^i, v^j)$, подразумевая, что остальные переменные имеют заданные значения. Утверждение теоремы следует из следующей цепочки

$\footnote{Доказательство теоремы сделано по аналогии с доказательством теоремы [7], с. 405, 406.}$. }
равенств
\[
\frac{\partial^2 f(v^i, v^j)}{\partial v^i \partial v^j}(h^j, h^i) = \frac{\partial}{\partial v^i} \left(\frac{\partial f(v^i, v^j)}{\partial v^j}(h^j) \right)(h^i) = \lim_{t \to 0} t^{-1} \left(\frac{\partial f(v^i + h^i t, v^j)}{\partial v^j}(h^j) - \frac{\partial f(v^i, v^j)}{\partial v^j}(h^j) \right) = \lim_{t \to 0} t^{-2} \left(f(v^i + h^i t, v^j + h^j t) - f(v^i, v^j) - f(v^i + h^i t, v^j) - f(v^i, v^j + h^j t) \right) + f(v^i, v^j) = \lim_{t \to 0} t^{-1} \left(\frac{\partial f(v^i, v^j + h^j t)}{\partial v^i}(h^i) - \frac{\partial f(v^i, v^j)}{\partial v^i}(h^i) \right) = \frac{\partial}{\partial v^j} \left(\frac{\partial f(v^i, v^j)}{\partial v^i}(h^i) \right)(h^j) = \frac{\partial^2 f(v^i, v^j)}{\partial v^i \partial v^j}(h^i, h^j)
\]

По индукции, предполагая, что определена производная Гато \(\partial^{n-1} f(x) \) порядка \(n - 1 \), мы определим
\[
(9.1.6) \quad \partial^n f(x) = \partial(\partial^{n-1} f(x)(a_1; \ldots; a_{n-1}))(a_n)
\]
производную Гато порядка \(n \) отображения \(f \). Мы будем также полагать \(\partial^n f(x) = f(x) \).

9.2. Однородное отображение

Определение 9.2.1. Отображение \(\mathcal{f} : V \to W \)

\(D \)-векторного пространства \(V \) в \(D \)-векторное пространство \(W \) называется однородным отображением степени \(k \) над полем \(F \), если для любого \(a \in F \)
\[
(9.2.1) \quad \mathcal{f}(a v) = a^k \mathcal{f}(v)
\]

\[\square\]

Теорема 9.2.2 (теорема Эйлера). Пусть отображение \(\mathcal{f} : V \to W \)

\(D \)-векторного пространства \(V \) в \(D \)-векторное пространство \(W \) однородно степени \(k \) над полем \(F \subset Z(D) \).
\[
(9.2.2) \quad \partial \mathcal{f}(v)(v) = k \mathcal{f}(v)
\]

\[\square\]
98 9. Производная второго порядка отображения D-векторного пространства

ДОКАЗАТЕЛЬСТВО. Продифференцируем равенство (9.2.1) по \(a\)

\[
\frac{d}{da}(f(a\overline{v}))\Delta a = \frac{d}{da}(a^k\overline{f}(\overline{v}))\Delta a
\]

Из теоремы 6.2.12 следует

\[
\frac{d}{da}(f(a\overline{v}))\Delta a = \partial f(a\overline{v})(\partial (a\overline{v}))(\Delta a)
\]

(9.2.4)

\[
= \partial f(a\overline{v})\left(\frac{d(a\overline{v})}{da}\Delta a\right)
\]

(9.2.5)

\[
= \partial f(a\overline{v})(\overline{v}\Delta a)
\]

Из теоремы 6.2.5 и равенства (9.2.4) следует

(9.2.6)

\[
\frac{d}{da}(a^k\overline{f}(\overline{v})) = k\overline{f}(\overline{v})
\]

Подставим (9.2.5) и (9.2.6) в (9.2.3)

(9.2.7)

\[
\partial f(a\overline{v})(\overline{v})\Delta a = k\overline{f}(\overline{v})\Delta a
\]

Так как \(\Delta a \neq 0\), то (9.2.2) следует из (9.2.7) при условии \(a = 1\). \□

Пусть отображение \(\overline{f} : \overline{V} \to \overline{W}\)

D-векторного пространства \(\overline{V}\) в D-векторное пространство \(\overline{W}\) однородно степени \(k\) над полем \(F \subset Z(D)\). Из теоремы 6.2.5 следует

(9.2.8)

\[
\partial f(a\overline{v})(a\overline{v}) = a\partial f(a\overline{v})(\overline{v})
\]

Из равенств (9.2.2), (9.2.1) следует

(9.2.9)

\[
\partial f(a\overline{v})(a\overline{v}) = k\overline{f}(a\overline{v}) = ka\overline{f}(\overline{v}) = a\partial f(\overline{v})\overline{v} = a^k\overline{f}(\overline{v})(\overline{v})
\]

Из равенств (9.2.8), (9.2.9) следует

(9.2.10)

\[
\partial f(a\overline{v})(\overline{v}) = a^{k-1}\partial f(\overline{v})(\overline{v})
\]

Однако из равенства (9.2.10) не следует, что отображение \(\partial f : \overline{V} \to A(D; \overline{V}; \overline{W})\)

однородно степени \(k - 1\) над полем \(F\).

9.2 Для отображения поля справедливо

\[
\partial f(x)(h) = \frac{df(x)}{dx} h
\]
Глава 10

Список литературы

[1] И. И. Ворович, Л. П. Лебедев, Функциональный анализ и его приложения в механике сплошной среды, М., Вузовская книга, 2000
[2] П. К. Рашевский, Риманова геометрия и тензорный анализ, М., Наука, 1967
[3] Александр Клейн, Лекции по линейной алгебре над телом, eprint arXiv:math.GM/0701238 (2010)
[4] Н. Бурбаки, Общая топология, Использование вещественных чисел в общей топологии, перевод с французского С. Н. Крачковского под редакцией Д. А. Райкова, М. Наука, 1975
[5] Н. Бурбаки, Топологические векторные пространства, перевод с французского Д. А. Райкова, М. Иностранная литература, 1959
[6] Понтрягин Л. С., Непрерывные группы, М. Едиториал УРСС, 2004
[7] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, том 1, М. Наука, 1969
[8] I. M. Gelfand, M. I. Graev, Representation of Quaternion Groups over Localy Compact and Functional Fields, Funct. Anal. Prilozh. 2 (1968) 20 - 35; Izrail Moiseevich Gelfand, Semen Grigorevich Gindikin, Izrail M. Gelfand: Collected Papers, volume II, 435 - 449, Springer, 1989
[9] Vadim Komkov, Variational Principles of Continuum Mechanics with Engineering Applications: Critical Points Theory, Springer, 1986
[10] Sir William Rowan Hamilton, The Mathematical Papers, Vol. III, Algebra, Cambridge at the University Press, 1967
[11] Sir William Rowan Hamilton, Elements of Quaternions, Volume I, Longmans, Green, and Co., London, New York, and Bombay, 1899
Глава 11

Предметный указатель

1-∗D*-форма 15

A-значная функция 61

∗D-производная Гато отображения f Д-векторного пространства в Д-векторное пространство W 66

D-вектор-функция 61

D-значная переменная 62

D*-вектор-функция 61

D*-производная Гато отображения f Д-векторного пространства в Д-векторное пространство W 66

D*-компонента координат вектора 21

D*-производная Гато функции f тела D 53

D*-производная Фреше отображения f тела D в точке x 49

D-векторное пространство 20

∗D*-базис, дуальный D*-базису в векторном пространстве 16

Д-произведение D-линейного отображения A на скаляр 14

*D-компонента координат вектора 21

*D-производная Гато функции f тела D 53

аддициональное отображение D-векторных пространств 37

аддициональное отображение кольца 23

аддициональное отображение тела, порожденное отображением G 26

алгебра E кватернионов над полем F 72

вырожденное аддициональное отображение D-векторного пространства 41

вырожденное аддициональное отображение тела 31

дифференциал Гато второго порядка отображения f 96

дифференциал Гато второго порядка отображения f 83

дифференциал Гато отображения f нормированного D-векторного пространства W в нормированное D-векторное пространство W 63

дифференциал Гато отображения f 51

dуальное пространство к D*-векторному пространству 16

eдиничная сфера в теле 47

закон ассоциативности для парных представлений 19

компонент линейного отображения D-векторного пространства 40

компонент линейного отображения f тела 28

компонент полиаддиционального отображения 43

компонент полилинейного отображения 34

компонент производной Гато второго порядка отображения f 96

компонент производной Гато второго порядка отображения тела 84

компонент производной Гато отображения f 52

линейное отображение D-векторных пространств 29

линейное отображение D-векторных пространств над полем F 38

линейное отображение тела 28

матрица Якоби-Гато отображения D-векторного пространства 65

направление в D-векторном пространстве над полем P 38
направление в теле D над коммутативным кольцом P 24
непрерывная функция тела 47
норма кватерниона 73
норма на D-векторном пространстве 62
норма на теле 45
норма отображения тела 47
норма отображения \mathcal{A} нормированного D-векторного пространства 63
нормированное D-векторное пространство 62
нормированное тело 45
образующая аддитивного отображения 26
однородное отображение степени k над полем F 97
отображение D-векторного пространства, мультипликативное над полем 38
отображение D-векторного пространства, проективное над полем 38
отображение полилинейное над коммутативным кольцом 45
отображение кольца D, линейное над коммутативным кольцом F 24
отображение кольца, мультипликативное над коммутативным кольцом 24
отображение кольца, проективное над коммутативным кольцом 24
парные представления тела 19
полиаддитивное отображение (n)-D-векторных пространств 42
полиаддитивное отображение кольца 32
полилинейное косо симметричное отображение 35
полилинейное отображение кольца 33
полилинейное симметричное отображение 35
полное тело 46
последовательность Коши в нормированное тело 46
предел последовательности в нормированном теле 45
производная Гато второго порядка отображения f 83
производная Гато отображения \mathcal{A} нормированного D-векторного пространства \mathcal{W} в нормированное D-векторное пространство \mathcal{W} 63
производная Гато отображения f 51
производная Гато порядка n отображения f 97
производная Гато порядка n отображения f тела 84
ряд Тейлора 88
смещенная частная производная Гато отображения f^j по переменным v^i, v^j 96
стандартная F-компонент аддитивного отображения f 27
стандартная компонента дифференциала Гато отображения f 52
стандартная компонента линейного отображения тела 28
стандартная компонента полилинейного отображения f тела 34
степенное представление аддитивного отображения тела 27
степенное представление дифференциала Гато отображения тела над полем F 52
степенное представление линейного отображения тела 28
степенное представление полилинейного отображения тела 34
сумма D^*-линейных отображений 14
tопологическое D-векторное пространство 61
tопологическое D^*-векторное пространство 61
tопологическое тело 45
формула Тейлора для многочлена 87
функция n D-значных переменных в нормированное тело 46
функция D-векторного пространства \mathcal{W} в D-векторное пространство \mathcal{W}, дифференцируемая по Гато 63
функция проективна над полем R и непрерывна по направлению над полем R 48
функция тела, D^*-дифференцируемая по Фреше 49
функция тела, дифференцируемая по Гато 51
функция, непрерывная по совокупности аргументов 62
частная D-производная Гато отображения f по переменной x^1 66
частная D^*-производная Гато отображения f^j по переменной x^i 66
частная производная Гато отображения f^j по переменной v^i 65
частное аддитивное отображение переменной v^i 38
ядро аддитивного отображения D-векторного пространства 41
ядро аддитивного отображения тела 31
Глава 12

Специальные символы и обозначения

1\(^{st}\) компонента линейного отображения \(\mathbb{A} \) \(D \)-векторного пространства 40
2\(^{nd}\) компонента линейного отображения \(\mathbb{A} \) \(D \)-векторного пространства 43

||\(\mathbb{A} || \) норма отображения \(\mathbb{A} \) нормированного \(D \)-векторного пространства 63

\(iA^1 \) частное аддитивное отображение переменной \(v \) 38

\(A(D; V; W) \) множество аддитивных отображений \(D \)-векторного пространства \(V \) в \(D \)-векторное пространство \(W \) 37

\(\mathcal{A}(R_1; R_2) \) множество аддитивных отображений кольца \(R_1 \) в кольцо \(R_2 \) 24

\(\mathcal{A}(D; V_1, \ldots, V_n; W_1, \ldots, W_m) \) множество полиаддитивных отображений 42

\(\mathcal{A}(R_1, \ldots, R_n; S) \) множество полиаддитивных отображений колец \(R_1, \ldots, R_n \) в модуль \(S \) 32

\(\mathcal{L}(R_1, \ldots, R_n; S) \) множество полилинейных отображений колец \(R_1, \ldots, R_n \) в модуль \(S \) 33

\(\frac{\partial^m f}{\partial x^m} \) компонента производной Гато высшего порядка отображения \(f \) 84

\(\frac{\partial f}{\partial x} \) производная Гато отображения \(f \) 51

\(\frac{\partial f}{\partial x^2} \) производная Гато второго порядка отображения \(f \) 83

\(\frac{\partial f}{\partial x^3} \) производная Гато второго порядка отображения \(f \) 83
дифференциал Гато второго порядка отображения f тела 83

$\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} (a_1; a_2)$ дифференциал Гато

отображения \mathbb{F} в D-векторное пространство W 66

$\frac{\partial f(x)}{\partial x}$ частная производная Гато функции f тела D 53

$\frac{\partial f(x)}{\partial x}$ частная производная D-векторного пространства 65

$(x^a \partial_j) f(x)(\bar{\alpha})$ частная D-производная Гато отображения f по переменной x^a 66

$\frac{\partial f(x)}{\partial x}$ частная D-производная Гато отображения f по переменной x^a 66

$\frac{\partial^2 f(x, y)}{\partial x \partial y}$ смешанная частная производная Гато отображения f по переменным x, y 96

$\frac{\partial f(x)}{\partial x}$ частная производная Гато отображения f по переменной x 45

$\lim_{n \to \infty} a_n$ предел последовательности в нормированном теле 45

$L(D^*_*, \mathbb{V}; W)$ пространство D^*_*-линейных отображений D^*_*-векторного пространства \mathbb{V} в D^*_*-векторное пространство W 13

$L(D; \mathbb{V}; W)$ множество линейных отображений D-векторного пространства \mathbb{V} в D-векторное пространство W 39

$L(T; S; R)$ множество T-представлений тела S в аддитивной группе тела R 13

$L(T^*; S; R)$ множество T^*-представлений тела S в аддитивной группе тела R 13

r^* компонента координат вектора \mathbb{F} 21

\mathbb{F}^* двуэное пространство к D^*-векторному пространству \mathbb{V} 16