Global Lorentz gradient estimates for quasilinear equations with measure data for the strongly singular case: $1 < p \leq \frac{3n-2}{2n-1}$

Le Cong Nhana, Le Xuan Truongb

aFaculty of Applied Sciences, HCMC University of Technology and Education, Ho Chi Minh City, Vietnam

bDepartment of Mathematics and Statistics, University of Economics Ho Chi Minh City, Vietnam

Abstract

In this paper, we study the global regularity estimates in Lorentz spaces for gradients of solutions to quasilinear elliptic equations with measure data of the form

$$\left\{ \begin{array}{l}
\text{div}(A(x, \nabla u)) = \mu \quad \text{in } \Omega, \\
u = 0 \quad \text{on } \partial \Omega,
\end{array} \right.$$

where μ is a finite signed Radon measure in Ω, $\Omega \subset \mathbb{R}^n$ is a bounded domain such that its complement $\mathbb{R}^n \setminus \Omega$ is uniformly p-thick and A is a Carathéodory vector valued function satisfying growth and monotonicity conditions for the strongly singular case $1 < p \leq \frac{3n-2}{2n-1}$. Our result extends the earlier results [19, 22] to the strongly singular case $1 < p \leq \frac{3n-2}{2n-1}$ and a recent result [18] by considering rough conditions on the domain Ω and the nonlinearity A.

MSC2010: primary: 35J60, 35J61, 35J62; secondary: 35J75, 42B37.

Keywords: quasilinear equation; measure data; capacity.

Contents

1 Introduction and main results

2 Local interior and boundary comparison estimates

3 Applications of comparison estimates

4 Proof of Theorem 1.6

1. Introduction and main results

In this paper we study the gradient regularity of solutions to the following quasilinear elliptic equations with measure data

$$\left\{ \begin{array}{l}
\text{div}(A(x, \nabla u)) = \mu \quad \text{in } \Omega, \\
u = 0 \quad \text{on } \partial \Omega,
\end{array} \right.$$

Email addresses: nhanlc@hcmute.edu.vn (Le Cong Nhan), lxuantruong@gmail.com (Le Xuan Truong)

Preprint submitted to Elsevier.
where Ω is a bounded open subset of \mathbb{R}^n, $(n \geq 2)$, and μ is a finite signed Radon measure in Ω. The nonlinearity $A : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a Carathéodory vector valued function and satisfies the following growth and monotonicity conditions:

$$|A(x, \xi)| \leq \beta |\xi|^{p-1},$$

(1.2)

$$\langle A(x, \xi) - A(x, \eta), \xi - \eta \rangle \geq \alpha \left(|\xi|^2 + |\eta|^2 \right)^{(p-2)/2} |\xi - \eta|^2$$

(1.3)

for every $(\xi, \eta) \in \mathbb{R}^n \times \mathbb{R}^n \setminus \{(0,0)\}$ and a.e. $x \in \mathbb{R}^n$. Here α and β are positive constants, and p will be considered in the range

$$1 < p \leq \frac{3n - 2}{2n - 1}.$$

(1.4)

As the regularity of boundary of Ω is concerned, we assume a capacity density condition on Ω which is known weaker than the Reifenberg flatness condition. More precisely, by a capacity density condition on Ω we mean the complement $\mathbb{R}^n \setminus \Omega$ is uniformly p-thick, that is, there exist constants $c_0, r_0 > 0$ such that for all $0 < t \leq r_0$ and all $x \in \mathbb{R}^n \setminus \Omega$ there holds

$$\text{cap}_p \left(\overline{B_t(x)} \cap (\mathbb{R}^n \setminus \Omega), B_{2t}(x) \right) \geq c_0 \text{cap}_p \left(\overline{B_t(x)}, B_{2t}(x) \right).$$

(1.5)

Here for a compact set $K \subset B_{2t}(x)$ we define the p-capacity of K, $\text{cap}(K, B_{2t}(x))$ by

$$\text{cap}_p (K, B_{2t}(x)) = \inf \left\{ \int_{\Omega} |\nabla \varphi|^p \, dx : \varphi \in C_0^\infty (B_{2t}(x)) \text{ and } \varphi \geq \chi_K \right\},$$

where χ_K is the characteristic function of K. It is noticed that the domain satisfying (1.5) includes Lipschitz domains or domain satisfying a uniform exterior corkscrew condition which means that there exist constants $c_0, r_0 > 0$ such that for all $0 < t \leq r_0$ and all $x \in \mathbb{R}^n \setminus \Omega$, there is $y \in B_t(x)$ such that $B_{t/c_0}(y) \subset \mathbb{R}^n \setminus \Omega$.

Under these conditions, our main goal in this paper is to establish the following global gradient estimate in Lorentz spaces

$$\|\nabla u\|_{L^{s,t}(\Omega)} \leq C \left\| M_1(\mu)^{1/(p-1)} \right\|_{L^{s,t}(\Omega)}$$

(1.6)

where s lies below or near the natural exponent p, i.e., $s < p + \varepsilon$ for some small ε depending on n, p, α, β, μ, and Ω, and $t \in (0, \infty]$. Here M_1 is the fractional maximal function defined for each nonnegative locally finite measure μ in \mathbb{R}^n by

$$M_1(\mu)(x) = \sup_{\rho > 0} \frac{\mu(B_\rho(x))}{\rho^{n-1}}, \quad x \in \mathbb{R}^n.$$

And the Lorentz spaces $L^{s,t}(\Omega)$, with $1 < s < \infty$, and $0 < t \leq \infty$, is the set of measurable functions f on Ω such that

$$\|f\|_{L^{s,t}(\Omega)} = \left[s \int_0^\infty (\lambda^s \{ x \in \Omega : |f(x)| > \lambda \})^{t/s} \frac{d\lambda}{\lambda} \right]^{1/t} < \infty.$$
if \(t \neq \infty \). It is also noticed that if \(s = t \) then the Lorentz space \(L^{s,s} (\Omega) \) is the usual Lebesgue space \(L^s (\Omega) \).

If \(t = \infty \) the space \(L^{s,\infty} (\Omega) \) is the weak \(L^s \) or Marcinkiewicz space with quasi-norm

\[
\| f \| = \sup_{\lambda > 0} \lambda \left| \{ x \in \Omega : |f(x)| > \lambda \} \right|^{1/s}.
\]

For \(1 < r < s < \infty \) then one has

\[
L^s (\Omega) \subset L^{s,\infty} (\Omega) \subset L^r (\Omega).
\]

It is worth mentioning that the local version of (1.6) was first obtained by G. Mingione in [14] for the regular case \(2 \leq p \leq n \) and then extended several authors in recent. For example, Nguyen Cong Phuc [19] obtained the global Lorentz estimate for solutions of (1.1) in the ‘possibly singular’ case \(2 - 1/n < p \leq n \) by using a capacity-density condition on \(\Omega \) and the assumptions (1.2)-(1.3). Therein, the author proved the \(L^{s,t} (\Omega) \) estimates of solution for all \(0 < s < p + \varepsilon, 0 < t \leq \infty \) for some \(\varepsilon > 0 \). Afterward a similar result is obtained by M. P. Tran [22] to the singular case \(\frac{2n - 2}{n - 2} < p \leq 2 - \frac{1}{n} \) with the rough conditions on the domain \(\Omega \) and the nonlinearity \(A \) in which the author exploits some comparison estimates in [17]. In [17] by using the good-\(\lambda \) type inequality Q-H. Nguyen and Nguyen Cong Phuc proved a global gradient estimates in the weighted Lorentz space for solution to (1.1) in the singular case \(\frac{3n - 2}{3n - 2} < p \leq 2 - \frac{1}{n} \) when the nonlinearity \(A \) satisfies the small BMO condition in the \(x \)-variable and the domain \(\Omega \) satisfies the so-called Reifenberg flatness condition. More precisely the authors showed the \(L^{s,t} (\Omega) \) estimates of solution for all \(0 < s < \infty, 0 < t \leq \infty \). And in a very recent result [18] under similar conditions on \(A \) and the regularity of \(\Omega \), the authors proved a weighted Calderón-Zygmund type inequality for \(1 < p \leq \frac{3n - 2}{3n - 1} \).

Our aim in this paper is to extend these results. By considering the remaining ‘strongly singular’ case \(1 < p \leq \frac{3n - 2}{3n - 1} \) and without the hypothesis of Reifenberg flat domain on \(\Omega \) and small BMO semi-norms of \(A \), we show that the estimate (1.6) holds for all \(2 - p < s < p + \varepsilon \) and \(0 < t \leq \infty \) (see Theorem 1.6).

To state our main result, we need some preliminary results on \(p \)-capacity, a decomposition of measure \(\mu \) and the definition of renormalized solution which is can be found in [6].

For \(\mu \in \mathfrak{M}_b (\Omega) \) (the set of finite signed measures in \(\Omega \)), we will tacitly extend it by zero to \(\Omega^c := \mathbb{R}^n \setminus \Omega \). We let \(\mu^+, \mu^- \), and \(|\mu| \) be the positive part, negative part, and the total variation of a measure \(\mu \in \mathfrak{M}_b (\Omega) \) respectively. Let us also recall that a sequence \(\{ \mu_k \} \subset \mathfrak{M}_b (\Omega) \) converges to \(\mu \in \mathfrak{M}_b (\Omega) \) in the narrow topology of measures if

\[
\lim_{k \to \infty} \int_{\Omega} \varphi \, d\mu_k = \int_{\Omega} \varphi \, d\mu,
\]

for every bounded and continuous function \(\varphi \) on \(\Omega \).

We denote by \(\mathfrak{M}_0 (\Omega) \) the set of all measures \(\mu \in \mathfrak{M}_b (\Omega) \) which are absolutely continuous with respect to the \(p \)-capacity, i.e. which satisfy \(\mu (B) = 0 \) for every
Borel set $B \subset \subset \Omega$ such that $\text{cap}_p(B, \Omega) = 0$. We also denote by $\mathcal{M}_s(\Omega)$ the set of all measures $\mu \in \mathcal{M}(\Omega)$ which are singular with respect to the p-capacity.

It is known that any $\mu \in \mathcal{M}_b(\Omega)$ can be written uniquely in the form $\mu = \mu_0 + \mu_s$ where $\mu_0 \in \mathcal{M}_0(\Omega)$ and $\mu_s \in \mathcal{M}_s(\Omega)$ (see [3]). It is also known that any $\mu_0 \in \mathcal{M}_0(\Omega)$ can be written in the form $\mu_0 = f - \text{div}(F)$ where $f \in L^1(\Omega)$ and $F \in L^{\frac{p}{p-1}}(\Omega, \mathbb{R}^n)$.

To define renormalized solutions, we need some following tools. For $k > 0$, we define the usual two-sided truncation operator T_k by

$$T_k(s) = \max\{\min\{s, k\}, -k\}, \quad s \in \mathbb{R}.$$

For our purpose, the following notion of gradient is needed. If u is a measurable function defined in Ω, finite a.e., such that $T_k(u) \in W^{1,p}_0(\Omega)$ for any $k > 0$, then there exists a measurable function $v : \Omega \to \mathbb{R}^n$ such that $\nabla T_k(u) = v\chi_{\{|u|<k\}}$ a.e. in Ω for all $k > 0$ (see [2, Lemma 2.1]). In this case, we define the gradient ∇u of u by $\nabla u := v$. It is known that $v \in L^1_{\text{loc}}(\Omega, \mathbb{R}^n)$ if and only if $u \in W^{1,1}_{\text{loc}}(\Omega)$ and then v is the usual weak gradient of u. On the other hand, for $1 < p \leq 2 - \frac{4}{n}$, by looking at the fundamental solution we see that in general distributional solutions of (1.1) may not even belong to $u \in W^{1,1}_{\text{loc}}(\Omega)$.

We now define the renormalized solutions to (1.1) where the right-hand side is assumed to be in $L^1(\Omega)$ or in $\mathcal{M}_0(\Omega)$ (see [3] for the definition and some other equivalent definitions of renormalized solutions).

Definition 1.1. Let $\mu = \mu_0 + \mu_s \in \mathcal{M}_b(\Omega)$, with $\mu_0 \in \mathcal{M}_0(\Omega)$ and $\mu_s \in \mathcal{M}_s(\Omega)$. A measurable function u defined in Ω and finite a.e. is called a renormalized solution of (1.1) if $T_k(u) \in W^{1,p}_0(\Omega)$ for any $k > 0$, $|\nabla u|^{p-1} \in L^r(\Omega)$ for any $0 < r < \frac{n}{n-1}$, and u has the following additional property. For any $k > 0$ there exist nonnegative Radon measures $\lambda^+_k, \lambda^-_k \in \mathcal{M}_0(\Omega)$ concentrated on the sets $\{u = k\}$ and $\{u = -k\}$, respectively, such that $\mu^+_k \to \mu^+_s$, $\mu^-_k \to \mu^-_s$ in the narrow topology of measures and that

$$\int_{\{|u|<k\}} (A(x, \nabla u, \nabla \varphi) dx = \int_{\{|u|<k\}} \varphi d\mu_0 + \int_\Omega \varphi d\lambda^+_k - \int_\Omega \varphi d\lambda^-_k,$$

for every $\varphi \in W^{1,p}_0(\Omega) \cap L^\infty(\Omega)$.

Remark 1.2. It is known that if $\mu \in \mathcal{M}_0(\Omega)$ then there is one and only one renormalized solution of (1.1) (see [3, 4]). However, to the best of our knowledge, for a general $\mu \in \mathcal{M}_b(\Omega)$ the uniqueness of renormalized solutions of (1.1) is still an open problem.

Remark 1.3. By [4, Lemma 4.1] we have

$$\|\nabla u\|_{L^{\frac{(p-1)n}{n-1}, \infty}(\Omega)} \leq C \left(|\mu|_1(\Omega)\right)^{\frac{1}{p-1}},$$

which implies that

$$\left(\frac{1}{R^n} \int_\Omega |\nabla u|^{\gamma_1} \right)^{1/\gamma_1} \leq C_{\gamma_1} \left[|\mu|_1(\Omega)\right]^{1/(p-1)} \left[\frac{R}{\text{diam}(\Omega)}\right]^{-1/(p-1)}$$

for any $0 < \gamma_1 < \frac{(p-1)n}{n-1}$, where $R = \text{diam}(\Omega)$.

4
Let us also recall the Hardy-Littlewood maximal function M is defined for each locally integrable function f in \mathbb{R}^n by
\[
M(f)(x) = \sup_{\rho>0} \int_{B_\rho(x)} |f(y)| dy, \quad \forall x \in \mathbb{R}^n.
\]

Remark 1.4. In [10] the operator M is bounded from $L^s(\mathbb{R})$ to $L^{s,\infty}(\mathbb{R})$ for $s \geq 1$, that is,
\[
|\{x \in \mathbb{R}^n : M(f) > \lambda\}| \leq \frac{C}{\lambda^s} \int_{\mathbb{R}^n} |f|^s dx \quad \text{for all } \lambda > 0.
\]

Remark 1.5. In [1, 10] it allows us to present a boundedness property of maximal function M in the Lorentz space $L^{s,t}(\mathbb{R}^n)$ for $s > 1$ as follows:
\[
\|M(f)\|_{L^{s,t}(\mathbb{R}^n)} \leq C \|f\|_{L^{s,t}(\mathbb{R}^n)}.
\]

We are now ready to state the main result of the paper.

Theorem 1.6. Let $\mu \in M_b(\Omega)$ and $1 < p \leq \frac{3n-2}{2n-1}$. There exists $\varepsilon > 0$ such that for any $2 - p < s < p + \varepsilon$ and $t \in (0, \infty)$, then there exists a renormalized solution u to (1.1) such that
\[
\|\nabla u\|_{L^{s,t}(\Omega)} \leq C \|\mathcal{M}_1(|\mu|)|^{1/p-1}\|_{L^{s,t}(\Omega)}.
\]

Here the constant C depends only on n, p, Λ, q, and $\text{diam}(\Omega)/r_0$.

For the proofs of the above theorem: we follow the approach developed by [14, 19] and use some new comparison estimates obtained recently by [18], but technically our present is somewhat different form that of [14, 18]. It is also possible to apply some results developed for quasilinear equations with given measure data, or linear/nonlinear potential and Calderón-Zygmund theories (see [2, 4, 6, 7, 8, 12, 13, 14, 16, 19, 20, 21]), to some new comparison estimates in the singular case $1 < p \leq \frac{3n-2}{2n-1}$.

The paper is organized as follows. In Section 2 we present some important comparison estimates that are needed for the proof of main result and its applications are given in Sections 3. In Section 4 we complete the proof of Theorem 1.6.

2. Local interior and boundary comparison estimates

Let $u \in W^{1,p}_1(\Omega)$ be a solution of (1.1) and for each ball $B_{2R} = B_{2R}(x_0) \subset \subset \Omega$, we consider the unique solution $w \in u + W^{1,p}_1(B_{2R})$ to the equation
\[
\begin{aligned}
- \text{div} (A(x, \nabla w)) &= 0 \quad \text{in } B_{2R}, \\
w &= u \quad \text{on } \partial B_{2R}.
\end{aligned}
\]

Then the following well-known version of Gehring’s lemma holds for function w defined above, see [3, Theorem 6.7 and Remark 6.12] and also [19, Lemma 2.1].
Lemma 2.1. Let \(w \) be the solution to (2.1). Then there exists a constant \(\theta_0 = \theta_0(n, p, \alpha, \beta) > 1 \) such that for any \(t \in (0, p] \) and any balls \(B_p(y) \subset B_2R(x_0) \) the following reverse Hölder type inequality holds

\[
\left(\frac{1}{B_{p/2}(y)} \int_{B_{p/2}(y)} |\nabla w|^{p\theta_0} \, dx \right)^{1/p\theta_0} \leq C \left(\frac{1}{B_p(y)} \int_{B_p(y)} |\nabla w|^t \, dx \right)^t
\]

with a constant \(C = C(n, p, \alpha, \beta, t) \).

The next comparison estimate gives an estimate for the difference \(\nabla u - \nabla w \) in terms of the total variation of \(\mu \) in \(B_{2R} \) and the norm of \(\nabla u \) in \(L^{2-p}(B_{2R}) \) in the "strongly singular" case \(1 < p \leq \frac{3n-2}{2n-1} \). This result was proved by Q.-H. Nguyen [18, Lemma 2.1]. Similar estimates for the other case, i.e., \(p > \frac{3n-2}{2n-1} \) was given in [13, 6, 8, 17].

Lemma 2.2. Let \(u \) and \(w \) be solution to (1.1) and (2.1) respectively and assume that \(1 < p \leq \frac{3n-2}{2n-1} \). Then

\[
\left(\frac{1}{B_{2R}} \int_{B_{2R}} |\nabla (u - w)|^{\gamma_1} \, dx \right)^{1/\gamma_1} \leq C \left(\frac{1}{B_0(x_0)} \int_{B_0(x_0)} |\mu|^{(B_2R)} \right)^{1/(p-1)} + \frac{1}{B_{2R}} \int_{B_{2R}} |\nabla u|^{2-p} \, dx,
\]

for any \(0 < \gamma_1 < \frac{n(p-1)}{n-1} \).

Lemmas 2.1 and 2.2 can be extended up to boundary. As \(\mathbb{R}^n \setminus \Omega \) is uniformly \(p \)-thick with constants \(c_0, \rho_0 > 0 \), there exists \(1 < p_0 = p_0(n, p, c_0) < p \) such that \(\mathbb{R}^n \setminus \Omega \) is uniformly \(p_0 \)-thick with constants \(c_0 = c(n, p, c_0) \) and \(\rho_0 \). This is by now a classical result due to Lewis [11] (see also [15]). Moreover, \(p_0 \) can be chosen near \(p \) so that \(p_0 \in (np/(n+p), p) \). Thus, since \(p_0 < n \), we have

\[
\text{cap}_{p_0} \left(\overline{B_t(x) \cap (\mathbb{R}^n \setminus \Omega)} \cap B_{2t}(x) \right) \geq c \text{cap}_{p_0} \left(B_t(x), B_{2t}(x) \right) \geq C(n, p, c_0) t^{n-p_0},
\]

for all \(0 < t \leq \rho_0 \) and for all \(x \in \mathbb{R}^n \setminus \Omega \).

Fix \(x_0 \in \partial \Omega \) and \(0 < R \leq \rho_0/10 \). With \(u \in W^{1,p}_0(\Omega) \) being a solution to (1.1), we now consider the unique solution \(w \in u + W^{1,p}_0(\Omega_{10R}(x_0)) \) to the following equation

\[
\begin{align*}
- \text{div}(A(x, \nabla w)) &= 0 & \text{in } \Omega_{10R}(x_0), \\
w &= u & \text{on } \partial \Omega_{10R}(x_0),
\end{align*}
\]

where we define \(\Omega_{10R}(x_0) = \Omega \cap B_{10R}(x_0) \) and extend \(u \) by zero to \(\mathbb{R}^n \setminus \Omega \) and \(w \) by \(u \) to \(\mathbb{R}^n \setminus \Omega_{10R}(x_0) \).

Then we have the following version of Lemma 2.1 up to the boundary, see [19, Lemma 2.5] for its proof.

Lemma 2.3. Let \(w \) be solution to (2.2). Then there exists a constant \(\theta_0 = \theta_0(n, p, \alpha, \beta) > 1 \) such that for any \(t \in (0, p] \) the following reverse Hölder type inequality

\[
\left(\frac{1}{B_{p/2}(y)} \int_{B_{p/2}(y)} |\nabla w|^{p\theta_0} \, dx \right)^{1/p\theta_0} \leq C \left(\frac{1}{B_p(y)} \int_{B_p(y)} |\nabla w|^t \, dx \right)^t
\]

holds for any balls \(B_{3p}(y) \subset B_{10R}(x_0) \) with a constant \(C = C(n, p, \alpha, \beta, t) \).
As a consequence, we have another version of reverse Hölder type inequality.

Lemma 2.4. Let \(w \) be solution to (2.2). Then there exists a constant \(\theta_0 = \theta_0(n, p, \alpha, \beta) > 1 \) such that for any \(t \in (0, p] \) and for \(0 < \sigma_1 < \sigma_2 < 1 \) it holds that

\[
\left(\int_{B_{\sigma_1 \rho}(y)} |\nabla w|^{p \theta_0} \, dx \right)^{1/p \theta_0} \leq C \left(\int_{B_{\sigma_2 \rho}(y)} |\nabla w|^t \, dx \right)^t
\]

for any balls \(B_\rho(y) \subset B_{10R}(x_0) \) with a constant \(C = C(n, p, \alpha, \beta, t, \rho_1, \rho_2) \).

Proof. Let \(x_1, x_2, \ldots, x_m \in B_{\sigma_1}(0) \) be such that

\[
B_{\sigma_1}(0) \subset \bigcup_{i=1}^m B_{\sigma_2 - \sigma_1}(x_i)
\]

For \(\rho > 0 \), let \(B_{\rho}(y) \subset B_{10R}(x_0) \), then we find that

\[
B_{\sigma_1 \rho}(y) \subset \bigcup_{i=1}^m B_{(\sigma_2 - \sigma_1) \rho}(y + \rho x_i)
\]

(2.3)

Also noticed that since \(B_{(\sigma_2 - \sigma_1) \rho}(y + \rho x_i) \subset B_{\sigma_2 \rho}(y) \) for all \(i = 1, \ldots, m \), by Lemma 2.3 there exist \(\theta_0 = \theta_0(n, p, \alpha, \beta) \) and \(C = C(n, p, \alpha, \beta, t) \) such that for each \(t \in (0, p] \) it holds that, for all \(i = 1, \ldots, m \)

\[
\left(\int_{B_{(\sigma_2 - \sigma_1) \rho}(y + \rho x_i)} |\nabla w|^{p \theta_0} \, dx \right)^{1/p \theta_0} \leq C \left(\int_{B_{(\sigma_2 - \sigma_1) \rho}(y + \rho x_i)} |\nabla w|^t \, dx \right)^t.
\]

(2.4)

From (2.3) and (2.4) for any \(t \in (0, p] \) we have

\[
\left(\int_{B_{\sigma_1 \rho}(y)} |\nabla w|^{p \theta_0} \, dx \right)^{1/p \theta_0} \leq C \sum_{i=1}^m \left(\int_{B_{(\sigma_2 - \sigma_1) \rho}(y + \rho x_i)} |\nabla w|^{p \theta_0} \, dx \right)^{1/p \theta_0}
\]

\[
\leq C \sum_{i=1}^m \left(\int_{B_{(\sigma_2 - \sigma_1) \rho}(y + \rho x_i)} |\nabla w|^t \, dx \right)^t
\]

\[
\leq C \left(\int_{B_{\sigma_2 \rho}(y)} |\nabla w|^t \, dx \right)^t.
\]

Thus the proof is complete. \(\blacksquare \)

We also present here the counterpart of Lemma 2.2 up to the boundary, see [18, Lemma 2.3].
Lemma 2.5. Let $1 < p \leq \frac{3n-2}{2n-1}$, and let u, w be solution to (1.1) and (2.2) respectively. Then we have

$$\left(\int_{B_{10R}(x_0)} |\nabla (u - w)|^{\gamma_1} dx \right)^{1/\gamma_1} \leq C \left[\frac{\mu(B_{10R}(x_0))}{R^{n-1}} \right]^{1/(p-1)} + C \frac{\mu(B_{10R}(x_0))}{R^{n-1}} \int_{B_{10R}(x_0)} |\nabla u|^{2-p} dx,$$

for any $0 < \gamma_1 < \frac{(p-1)n}{n-1}$.

3. Applications of comparison estimates

Our approach to Theorem 1.6 is based on the following technical lemma which allows one to work with balls instead of cubes. A version of this lemma appeared for the first time in [23]. It can be viewed as a version of the Calderón-Zygmund-Krylov-Safonov decomposition that has been used in [5] and [14]. A proof of this lemma, which uses Lebesgue differentiation theorem and the standard Vitali covering lemma, can be found in [4] with obvious modifications to fit the setting here.

Lemma 3.1. Assume that $A \subset \mathbb{R}^n$ is a measurable set for which there exist $c_1, r_1 > 0$ such that

$$|B_t(x) \cap A| \geq c_1 |B_t(x)|$$

holds for all $x \in A$ and $0 < t \leq r_1$. Fix $0 < r < r_1$ and let $C \subset D \subset A$ be measurable sets for which there exists $0 < \varepsilon < 1$ such that

(i) $|C| < \varepsilon r^n |B_r|,$

(ii) for all $x \in A$ and $\rho \in (0, r]$, if $|C \cap B_{\rho}(x)| \geq \varepsilon |B_{\rho}(x)|$, then $B_{\rho}(x) \cap A \subset D.$

Then we have the estimate $|C| \leq \frac{c}{c_1} |D|.$

In order to apply Lemma 3.1 we need the following proposition, whose proof relies essentially on the comparison estimates in the previous section.

Proposition 3.2. There exist constants A, $\theta_0 > 1$, depending only on n, p, α, β, and c_0, so that the following holds for any $T > 1$ and $\lambda > 0$. Let u be a solution of (1.1) with A satisfying (1.2) and (1.3). Assume that for some ball $B_{\rho}(y)$ with $10\rho \leq r_0$ we have

$$\left\{ x \in B_{\rho}(y) : \mathcal{M}(\chi_A |\nabla u|^{\gamma_1})(x)^{1/\gamma_1} \leq \lambda, \mathcal{M}_1(\chi_A |\mu|)(x)^{1/(p-1)} \leq T^{-\gamma} \lambda \right\} \neq \emptyset,$$

where $0 < \gamma_1 < \min \left\{ \theta_0 \frac{p \theta_0}{p-1} \frac{(p-1)n}{n-1} \right\}$ and $\gamma = \frac{\rho_0}{\gamma_1 (p-1)} - 1 > 0$. Then

$$\left\{ x \in B_{\rho}(y) : \mathcal{M}(\chi_A |\nabla u|^{\gamma_1})(x)^{1/\gamma_1} > AT \lambda, \mathcal{M}(\chi_A |\nabla u|^{2-p})(x)^{1/(2-p)} \leq T^{\gamma} \lambda \right\} \leq T^{-p \theta_0} |B_{\rho}(y)|$$

(3.3)
Proof. From the assumption (3.2), we imply that there exists \(x_1 \in B_\rho(y) \) such that
\[
[M(\chi_\Omega |\nabla u|^{\gamma_1})(x_1)]^{1/\gamma_1} \leq \lambda \quad \text{and} \quad [M(\chi_\Omega |\mu|^{\gamma_1})(x_1)]^{1/(p-1)} \leq T^{-\gamma}\lambda. \tag{3.4}
\]
On the other hand (3.3) is trivial if the set on the left hand side is empty, so we may assume that there is \(x_2 \in B_\rho(y) \) so that
\[
[M(\chi_\Omega |\nabla u|^{2-p})(x_2)]^{1/(2-p)} \leq TL. \tag{3.5}
\]
It follows from (3.4) that for any \(x \in B_\rho(y) \)
\[
[M(|\chi_\Omega \nabla u|^{\gamma_1})(x)]^{1/\gamma_1} \leq \max\{[M(\chi_{B_{2\rho}(y)} \nabla u|^{\gamma_1})(x)]^{1/\gamma_1}, 3^n\lambda\}. \tag{3.6}
\]
From the last estimate, we observe that (3.3) is also trivial provided \(A \geq 3^n \) and \(B_{4\rho}(y) \subset \mathbb{R}^n \setminus \Omega \). Thus it suffices to consider two cases: the case \(B_{4\rho}(y) \subset \Omega \) and the case \(B_{4\rho}(y) \cap \partial \Omega \neq \emptyset \).

1. The case \(B_{4\rho}(y) \subset \Omega \). Let \(w \in u + W^{1,p}_0(B_{4\rho}(y)) \) be the unique solution to the Dirichlet problem
\[
\begin{align*}
\text{div}A(x, \nabla w) &= 0 \quad \text{in} \quad B_{4\rho}(y), \\
w &= u \quad \text{on} \quad \partial B_{4\rho}(y).
\end{align*}
\]
By Chebyshev inequality and weak type (1,1) estimate for the maximal function we have
\[
\left| \left\{ x \in B_\rho(y) : M(\chi_{B_{2\rho}(y)} |\nabla u|^{\gamma_1})(x) > AT\lambda \right\} \right| \\
\leq \left| \left\{ x \in B_\rho(y) : M(\chi_{B_{2\rho}(y)} |\nabla w|^{\gamma_1})(x) > AT\lambda/2 \right\} \right| \\
+ \left| \left\{ x \in B_\rho(y) : M(\chi_{B_{2\rho}(y)} |\nabla u - \nabla w|^{\gamma_1})(x) > AT\lambda/2 \right\} \right| \\
\leq C(\lambda) -p\theta_0 \int_{B_{2\rho}(y)} |\nabla w|^{p\theta_0} dx + C(\lambda) -\gamma_1 \int_{B_{2\rho}(y)} |\nabla u - \nabla w|^{\gamma_1} dx.
\]
Using Lemma 2.1 we have
\[
\left(\int_{B_{2\rho}(y)} |\nabla w|^{p\theta_0} dx \right)^{\gamma_1/p\theta_0} \leq C \int_{B_{4\rho}(y)} |\nabla u|^{\gamma_1} dx \\
\leq C \int_{B_{4\rho}(y)} |\nabla u|^{\gamma_1} dx + C \int_{B_{4\rho}(y)} |\nabla u - \nabla w|^{\gamma_1} dx
\]
and hence
\[
\left| \left\{ x \in B_\rho(y) : M(\chi_{B_{2\rho}(y)} |\nabla u|^{\gamma_1})(x) > AT\lambda \right\} \right| \\
\leq C(\lambda) -p\theta_0 |B_\rho(y)| \left(\int_{B_{4\rho}(y)} |\nabla u|^{\gamma_1} dx \right)^{p\theta_0/\gamma_1} \\
+ C(\lambda) -\gamma_1 |B_\rho(y)| \int_{B_{4\rho}(y)} |\nabla u - \nabla w|^{\gamma_1} dx \\
+ C(\lambda) -\gamma_1 |B_\rho(y)| \int_{B_{4\rho}(y)} |\nabla u - \nabla w|^{\gamma_1} dx. \tag{3.7}
\]
On the other hand, by Lemma 2.2 we have that
\[
\left(\int_{B_{4p}(y)} |\nabla (u - w)|^{\gamma_1} \, dx \right)^{\frac{1}{\gamma_1}} \leq C \left(\frac{\|B_{4p}(y)\|}{\rho^{n-1}} \right)^{-\frac{1}{p-1}} + \frac{\|B_{4p}(y)\|}{\rho^{n-1}} \int_{B_{4p}(y)} |\nabla u|^{2-p} \, dx
\]
\[
\leq C \left(\frac{\|B_{5p}(x_1)\|}{\rho^{n-1}} \right)^{-\frac{1}{p-1}} + C \frac{\|B_{5p}(x_1)\|}{\rho^{n-1}} \int_{B_{5p}(x_1)} |\nabla u|^{2-p} \, dx,
\]
which implies, due to (3.5) and (3.6)
\[
\int_{B_{4p}(y)} |\nabla (u - w)|^{\gamma_1} \, dx \leq C \left(\frac{\|B_{5p}(x_1)\|}{\rho^{n-1}} \right)^{-\frac{1}{p-1}} + C \frac{\|B_{5p}(x_1)\|}{\rho^{n-1}} \int_{B_{5p}(x_1)} |\nabla u|^{2-p} \, dx.
\]
Combining (3.7) and (3.8) and noting that \(T > 1 \), one has
\[
\left| \left\{ x \in B_{4p}(y) : \mathcal{M} \left(\chi_{B_{2p}(y)} |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > AT\lambda, \quad \mathcal{M} \left(\chi_{\Omega} |\nabla u|^{2-p} \right) (x)^{1/(2-p)} \leq T\lambda \right\} \right| \\
\leq C \left[(AT)^{-p\theta_0} + A^{-p\theta_0} T^{-p\theta_0(\gamma_1+1)(p-1)} + A^{-\gamma_1} T^{-\gamma_1(\gamma_1+1)(p-1)} \right] |B_{4p}(y)|
\]
\[
\leq \left[CA^{-p\theta_0} + CA^{-\gamma_1} \right] T^{-p\theta_0} |B_{4p}(y)|.
\]
By choosing \(A \geq \max \left\{ 3^n, (4C)^{1/\gamma_1} \right\} \) we have that
\[
\left| \left\{ x \in B_{4p}(y) : \mathcal{M} \left(\chi_{B_{2p}(y)} |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > AT\lambda, \quad \mathcal{M} \left(\chi_{\Omega} |\nabla u|^{2-p} \right) (x)^{1/(2-p)} \leq T\lambda \right\} \right| \leq \frac{1}{2} T^{-p\theta_0} |B_{4p}(y)|,
\]
which in view of (3.6) yields (3.3).

2. The case \(B_{4p}(y) \cap \partial\Omega \neq \emptyset \). Let \(x_3 \in \partial\Omega \) be a boundary point such that \(|y - x_3| = \text{dist}(y, \partial\Omega) < 4p \). And let us define \(w \in u + W_{10, p}(\Omega_{10p}(x_3)) \) to be the unique solution to the Dirichlet problem
\[
\begin{align*}
\text{div} A(x, \nabla w) &= 0 \quad \text{in} \quad \Omega_{10p}(x_3), \\
w &= u \quad \text{on} \quad \partial\Omega_{10p}(x_3).
\end{align*}
\]
Here we also extend \(u \) by zero to \(\mathbb{R}^n \setminus \Omega \) and then extend \(w \) by \(u \) to \(\mathbb{R} \setminus \Omega_{10p}(x_3) \). Using similar argument as in (3.7) in which Lemma 2.3 is exploited instead of Lemma 2.1.
we have
\[\left\{ x \in B_\rho(y) : \mathcal{M} \left(\chi_{B_\rho(y)} |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > AT\lambda \right\} \]
\[\leq C (AT\lambda)^{-\rho_0} |B_\rho(y)| \left(\frac{1}{B_{\rho(y)}(y)} |\nabla u|^{\gamma_1} \, dx \right)^{\rho_0/\gamma_1} \]
\[+ C (AT\lambda)^{-\rho_0} |B_\rho(y)| \left(\frac{1}{B_{\rho(y)}(y)} |\nabla u - \nabla w|^{\gamma_1} \, dx \right)^{\rho_0/\gamma_1} \]
\[+ C (AT\lambda)^{-\gamma_1} |B_\rho(y)| \int_{B_{\rho(y)}(y)} |\nabla u - \nabla w|^{\gamma_1} \, dx. \] (3.9)
On the other hand, since
\[B_{6\rho}(y) \subset B_{10\rho}(x_3) \subset B_{14\rho}(y) \subset B_{15\rho}(x_1) \subset B_{16\rho}(x_2) \]
it follows from Lemma 2.5 that
\[\int_{B_{6\rho}(y)} |\nabla (u - w)|^{\gamma_1} \, dx \leq CT^{-\rho_0+\gamma_1} \lambda^{\gamma_1} \] (3.10)
Combining (3.9) and (3.10) and the fact that \(T > 1 \) we have
\[\left\{ x \in B_\rho(y) : \mathcal{M} \left(\chi_{B_\rho(y)} |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > AT\lambda, \]
\[\mathcal{M} \left(\chi_{\Omega} |\nabla u|^{2-p} \right) (x)^{1/(2-p)} \leq T\lambda \right\} \leq \left[CA^{-\rho_0} + CA^{-\gamma_1} \right] T^{-\rho_0} |B_\rho(y)|. \]
By choosing \(A \geq \max \left\{ 3^n, (4C)^{1/\gamma_1} \right\} \) we arrive at
\[\left\{ x \in B_\rho(y) : \mathcal{M} \left(\chi_{B_\rho(y)} |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > AT\lambda, \]
\[\mathcal{M} \left(\chi_{\Omega} |\nabla u|^{2-p} \right) (x)^{1/(2-p)} \leq T\lambda \right\} \leq \frac{1}{2} T^{-\rho_0} |B_\rho(y)| \] (3.11)
Thus (3.8) follows from (3.9) and (3.11).

The Proposition 3.2 can be rewritten as follows.

Proposition 3.3. There exist constants \(A, \theta_0 > 1 \), depending only on \(n, p, \alpha, \beta, \) and \(c_0 \), so that the following holds for any \(T > 1 \) and \(\lambda > 0 \). Let \(u \) be a solution of (1.1) with \(A \) satisfying (1.2) and (13). Suppose that for some ball \(B_\rho(y) \) with \(10\rho \leq r_0 \) we have
\[\left\{ x \in B_\rho(y) : \mathcal{M} \left(\chi_{\Omega} |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > AT\lambda, \]
\[\mathcal{M} \left(\chi_{\Omega} |\nabla u|^{2-p} \right) (x)^{1/(2-p)} \leq T\lambda \right\} \geq T^{-\rho_0} |B_\rho(y)|. \]
Then
\[B_\rho(y) \subset \left\{ x \in \mathbb{R}^n : \mathcal{M} \left(\chi_{\Omega} |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > \lambda \text{ or } \mathcal{M}_1 \left(\chi_{\Omega} |\nabla u| \right) (x)^{1/(p-1)} > T^{-\gamma_1} \lambda \right\}, \]
where \(\gamma \) and \(\gamma_1 \) as in Proposition 3.3.
Applying Lemma 3.1 with $t < A T > x$

Proof. Let Λ, ρ, α, and β be constants satisfying (1.2), so that the following holds for any $A T > 0$.

With the aid of Lemma 3.1 and Proposition 3.3 we get the main result of this section which is used later.

Lemma 3.4. There exist constants A, $\theta_0 > 1$, depending only on n, p, α, β, and c_0, so that the following holds for any $T > 1$. Let u be a solution of (1.1) with A satisfying (1.2) and (1.3). Let B_0 be a ball of radius R_0. Fix a real number $0 < r \leq \min\{r_0, 2R_0\}/10$ and suppose that there exists $\lambda > 0$ such that

$$\left| \left\{ x \in \mathbb{R}^n : \mathcal{M} \left(\chi_\Omega |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > \Lambda \right\} \right| < T^{-\rho_0 r^n} |B_1|. \quad (3.12)$$

Then for any integer $i \geq 0$ it holds that

$$\left| \left\{ x \in B_0 : \mathcal{M} \left(\chi_\Omega |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > \Lambda (A T)^{i+1} \right\} \right|$$

$$\leq c(n) T^{-\rho_0} \left| \left\{ x \in B_0 : \mathcal{M} \left(\chi_\Omega |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > \Lambda (A T)^i \right\} \right|$$

$$+ c(n) \left| \left\{ x \in B_0 : \mathcal{M}_1 \left(\chi_\Omega |\mu| \right) (x)^{1/(p-1)} > \Lambda T^{-\gamma} (A T)^i \right\} \right|$$

$$+ \left| \left\{ x \in B_0 : \mathcal{M} \left(\chi_\Omega |\nabla u|^{2-p} \right) (x)^{1/(2-p)} > \Lambda (A T)^{i+1} \right\} \right| .$$

Proof. Let A and $\theta_0 > 1$ be as in Proposition 3.3 and set

$$C = \left\{ x \in B_0 : \mathcal{M} \left(\chi_\Omega |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > \Lambda (A T)^{i+1}, \right. \right.

$$\text{and } \mathcal{M} \left(\chi_\Omega |\nabla u|^{2-p} \right) (x)^{1/(2-p)} \leq \Lambda (A T)^{i+1} \left\}, \right. \right.

and

$$D = \left\{ x \in B_0 : \mathcal{M} \left(\chi_\Omega |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > \Lambda (A T)^i \right. \right.

$$\text{or } \mathcal{M}_1 \left(\chi_\Omega |\mu| \right) (x)^{1/(p-1)} > \Lambda T^{-\gamma} (A T)^i \left\} \right. \right.$$

It is first noticed that since $A T > 1$ we deduce from (3.12) that

$$|C| \leq T^{-\rho_0 r^n} |B_1| .$$

On the other hand, if $x \in B_0$ and $\rho \in (0, r]$ hold $|C \cap B_\rho(x)| \geq T^{-\rho_0} |B_\rho(x)|$, then $10 \rho \leq r_0$ and therefore by applying Proposition 3.3 with $\lambda = \Lambda (A T)^i$ we have

$$B_\rho(x) \cap B_0 \subset D.$$

Applying Lemma 3.1 with $A = B_0$ and $\varepsilon = T^{-\rho_0}$ with noting that the condition (3.1) holds for all $0 < t < 2R_0$ we obtain

$$|C| \leq c(n) T^{-\rho_0} |D|$$

$$\leq c(n) T^{-\rho_0} \left| \left\{ x \in B_0 : \mathcal{M} \left(\chi_\Omega |\nabla u|^{\gamma_1} \right) (x)^{1/\gamma_1} > \Lambda (A T)^i \right\} \right|$$

$$+ c(n) T^{-\rho_0} \left| \left\{ x \in B_0 : \mathcal{M}_1 \left(\chi_\Omega |\mu| \right) (x)^{1/(p-1)} > \Lambda T^{-\gamma} (A T)^i \right\} \right| .$$
Thus the proof is complete.

4. Proof of Theorem 1.6

Let B_0 be a ball of radius $R_0 \leq 2 \text{diam} (\Omega)$ that contains Ω. Then it is noticed that $\text{diam} (\Omega) \leq 2R_0$. We also extend u and μ to be zero in $\mathbb{R}^n \setminus \Omega$. We will show that

$$\| \nabla u \|_{L^{s,t} (\Omega)} \leq C \left\| \mathcal{M}_1 (|\mu|)^{1/p-1} \right\|_{L^{s,t} (B_0)}$$

(4.1)

where $2 - p < s < p + \varepsilon$ and $0 < t \leq \infty$. Here $\varepsilon > 0$ is a small number depending only on $n, p, \alpha, \beta,$ and c_0. In what follows we consider only the case $t \neq \infty$ as for $t = \infty$ the proof is similar. Moreover, to prove (4.1) we may assume that

$$\| \nabla u \|_{L^{s,t} (\Omega)} \neq 0.$$

Let $r = \min \{ r_0, \text{diam} (\Omega) \} / 10$. For $T > 1$ we first claim that there is $\Lambda > 0$ such that

$$\left\| \chi_{\Omega} \right\|_{L^{\gamma_1} (\Omega)} (x)^{1/\gamma_1} > \Lambda \right\| < T^{-p\theta_0} r^n |B_1|.$$

(4.2)

Indeed, by weak type $(1,1)$ estimate for the maximal function we have

$$\left\| \chi_{\Omega} \right\|_{L^{\gamma_1} (\Omega)} (x)^{1/\gamma_1} > \Lambda \right\| < \frac{c(n)}{\Lambda^{\gamma_1}} \int_{\Omega} |\nabla u|^{\gamma_1} dx.$$

By choosing Λ such that

$$\frac{c(n)}{\Lambda^{\gamma_1}} \int_{\Omega} |\nabla u|^{\gamma_1} dx = T^{-p\theta_0} r^n |B_1|.$$

(4.3)

Let $A, \theta_0 > 1$ be as in Lemma 3.4 and let $0 < \gamma_1 < \min \left\{ \frac{\theta_0}{p-1}, \frac{(p-1)n}{n-1} \right\}$ and $\gamma = p\theta_0/\gamma_1 (p-1) - 1$. For $0 < t < \infty$ we consider the sum

$$S = \sum_{i=1}^{\infty} \left(\left(AT \right)^{s_i} \left\| \mathcal{M}_i (|\nabla u|^{\gamma_1})^{1/\gamma_1} > \Lambda (AT)^i \right\| \right)^{t/s}$$
It is noticed that
\[C^{-1} S \leq \left\| M (|\nabla u| / \Lambda)^{1/\gamma_1} \right\|_{L^s,t(B_0)}^{f} \leq C \left[S + |B_0|^{1/\gamma_1} \right] \] \tag{4.4}

By (4.5) and Lemma 3.4, we have
\[S \leq c(n) \sum_{i=1}^{\infty} \left[(AT)^{s_i} T^{-p_{i,0}} \right] \left\{ x \in B_0 : M \left| \nabla u \right|^{1/\gamma_1} > \Lambda (AT)^{-i-1} \right\} \right]^{f/\gamma_1}
+ c(n) \sum_{i=1}^{\infty} \left[(AT)^{s_i} \left\{ x \in B_0 : M_1 \left(|\mu| / \Lambda^{p-1} \right)^{1/(p-1)} \right\} \right]^{f/\gamma_1}
+ \sum_{i=1}^{\infty} \left[(AT)^{s_i} \left\{ x \in B_0 : M_1 \left(|\mu| / \Lambda^{p-1} \right)^{1/(p-1)} \right\} \right]^{f/\gamma_1}
\leq C \left[(AT)^{s_i} T^{-p_{i,0}} \right]^{f/\gamma_1} \left(S + |B_0|^{f/\gamma_1} \right) + C \left\| M_1 \left(|\mu| / \Lambda^{p-1} \right)^{1/(p-1)} \right\|_{L^{s,t}(B_0)}^{f/\gamma_1}
+ \left\| \left[M \left(\left| \nabla u \right| / \Lambda T \right)^{2-p} \right]^{1/(2-p)} \right\|_{L^{s,t}(B_0)}^{f/\gamma_1} \tag{4.5}

Since \(A \) and \(C \) are fixed, then \(T^{1-\frac{s}{2p}} \ll 1 \) for \(T \) large enough if \(s < p \), that is, \(s < p + \varepsilon \) with \(\varepsilon = p (\theta_0 - 1) \). In this case, the estimate (4.5) gives us
\[S \leq C \left| B_0 \right|^{f/\gamma_1} + C \left\| M_1 \left(|\mu| / \Lambda^{p-1} \right)^{1/(p-1)} \right\|_{L^{s,t}(B_0)}^{f/\gamma_1}
+ \left\| \left[M \left(\left| \nabla u \right| / \Lambda T \right)^{2-p} \right]^{1/(2-p)} \right\|_{L^{s,t}(B_0)}^{f/\gamma_1}. \tag{4.6} \]

Combining (4.4) and (4.6) and using the boundedness of \(M \) on \(L^{s/(2-p),t}(\mathbb{R}^n) \) where \(s/(2-p) > 1 \) and \(t \geq 0 \), we have
\[\left\| \nabla u \right\|_{L^{s,t}(\Omega)} \leq C \left(B_0 \right)^{1/\gamma_1} \Lambda + \left\| M_1 \left(|\mu| / \Lambda^{p-1} \right)^{1/(p-1)} \right\|_{L^{s,t}(B_0)}^{f/\gamma_1} + T^{-1} \left\| \nabla u \right\|_{L^{s,t}(B_0)}^{f/\gamma_1}, \]
and hence for \(T \) sufficiently large one has
\[\left\| \nabla u \right\|_{L^{s,t}(\Omega)} \leq C \left(B_0 \right)^{1/\gamma_1} \Lambda + \left\| M_1 \left(|\mu| / \Lambda^{p-1} \right)^{1/(p-1)} \right\|_{L^{s,t}(B_0)}^{f/\gamma_1}. \tag{4.7} \]

We now estimate \(\Lambda \). It follows from (4.8) and \(\gamma_1 < \frac{n-1}{n+q} \) and the standard estimate for equations with measure data (see [2, Theorem 4.1]) that
\[\Lambda \leq C r^{-n/\gamma_1} \left\| \nabla u \right\|_{L^{\gamma_1}(\Omega)} \]
\[\leq C \min \left\{ r_0, \text{diam} \left(\Omega \right) \right\}^{-n/\gamma_1} \text{diam} \left(\Omega \right)^{n/\gamma_1} \left(\frac{|\mu| (\Omega) \left(\text{diam} \left(\Omega \right)^{n-1} \right)^{1/(p-1)} \right), \]

On the other hand, since \(R_0 \leq 2 \text{diam} \left(\Omega \right) \), we have
\[\Lambda \leq C \left(n, p, \text{diam} \left(\Omega \right) / r_0 \right) M_1 \left(|\mu| \right) \left(x \right)^{1/(p-1)} \tag{4.8} \]
for any \(x \in B_0 \). Finally the proof follows from (4.7) and (4.8).
References

[1] D. R. Adams and L. I. Hedberg, *Function spaces and potential theory*, Springer-Verlag, Berlin, 1996.

[2] P. Benilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vazquez, *An L^1 theory of existence and uniqueness of solutions of nonlinear elliptic equations*, Ann. Scuola Norm. Sup. Pisa (IV) **22** (1995), 241–273.

[3] L. Boccardo, T. Gallouët, and L. Orsina, *Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data*, Ann. Inst. H. Poincaré Anal. Non Linéaire **13** (1996), 539–551.

[4] S.-S. Byun and L. Wang, *Elliptic equations with BMO coefficients in Reifenberg domains*, Comm. Pure Appl. Math. **57** (2004), 1283–1310.

[5] L. Caffarelli and I. Peral, *On $W^{1,p}$ estimates for elliptic equations in divergence form*, Comm. Pure Appl. Math. **51** (1998), 1–21.

[6] G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, *Renormalized solutions of elliptic equations with general measure data*, Ann. Scuola Norm. Super. Pisa (IV) **28** (1999), 741–808.

[7] F. Duzaar and G. Mingione, *Gradient estimates via non-linear potentials*, Amer. J. Math. **133** (2011), 1093–1149.

[8] F. Duzaar and G. Mingione, *Gradient estimates via linear and nonlinear potentials*, J. Funct. Anal. **259** (2010), 2961–2998.

[9] E. Giusti, *Direct Methods in the Calculus of Variations*, World Scientific, River Edge, NJ, 2003.

[10] L. Grafakos, *Classical and Modern Fourier Analysis*, Pearson Education, Inc., Upper Saddle River, NJ, (2004), xii+931 pp.

[11] J. L. Lewis, *Uniformly fat sets*, Trans. Amer. Math. Soc. **308** (1988), 177196.

[12] T. Mengesha and N. C. Phuc, *Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains*, J. Differential Equations **250** (2011), 1485–2507.

[13] G. Mingione, *The Calderón-Zygmund theory for elliptic problems with measure data*, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) **6** (2007), 195–261.

[14] G. Mingione, *Gradient estimates below the duality exponent*, Math. Ann. **346** (2010), 571–627.

[15] P. Mikkonen, *On the Wolff potential and quasilinear elliptic equations involving measures*, Ann. Acad. Sci. Fenn. Math. Diss. **104** (1996), 71.

[16] Q.-H. Nguyen, *Potential estimates and quasilinear parabolic equations with measure data*, Submitted for publication, [arXiv:1405.2587v2](http://arxiv.org/abs/1405.2587v2).
[17] Q.-H. Nguyen and N. C. Phuc, *Good-λ and Muckenhoupt-Wheeden type bounds in quasilinear measure datum problems, with applications*, Math. Ann. **374** (2019), 67–98.

[18] Q.-H. Nguyen and N. C. Phuc, *Existence and regularity estimates for quasilinear equations with measure data: the case* $1 < p \leq \frac{3n-2}{2n-1}$, Submitted for publication, arXiv:2003.03725

[19] N. C. Phuc, *Global integral gradient bounds for quasilinear equations below or near the natural exponent*, Ark. Mat. **52** (2014), 329–354.

[20] N. C. Phuc, *Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations*, Adv. Math. **250** (2014), 387–419.

[21] N. C. Phuc, *Corrigendum to: Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations*, Adv. Math. **328** (2018), 1353–1359.

[22] M. P. Tran, *Good-λ type bounds of quasilinear elliptic equations for the singular case*, Nonlinear Analysis, 178 (2019) 266–281.

[23] L. Wang, *A geometric approach to the Calderón-Zygmund estimates*, Acta Math. Sin. (Engl. Ser.) **19** (2003), 381–396.