The possible members of the 5^1S_0 meson nonet

Shi-Chen Xue, Guan-Ying Wang, Guan-Nan Li, En Wang,† and De-Min Li†
School of Physics and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
(Dated: June 4, 2018)

The strong decays of the 5^1S_0 $q\bar{q}$ states are evaluated in the 2P_0 model with two types of space wave functions. Comparing the model expectations with the experimental data for the (2360), (2320), (2370), and (2500), we suggest that the (2360), (2320), and (2500) can be assigned as the members of the 5^1S_0 meson nonet, while the 5^1S_0 assignment for the (2370) is not favored by its width. The 5^1S_0 kaon is predicted to have a mass of about 2418 MeV and a width of about 163 MeV or 225 MeV.

PACS numbers: 14.40.Be, 13.25.-k

I. INTRODUCTION

In the framework of quantum chromodynamics (QCD), apart from the ordinary $q\bar{q}$ states, other exotic states such as glueballs, hybrids, and tetraquarks are permitted to exist in meson spectra. To identify these exotic states, one needs to distinguish them from the background of ordinary $q\bar{q}$ states, which requires one to understand well the conventional $q\bar{q}$ meson spectroscopy both theoretically and experimentally. To be able to understand the nature of a newly observed state, it is natural and necessary to exhaust the possible $q\bar{q}$ description before restoring to more exotic assignments.

TABLE I: The pseudoscalar states reported experimentally.

Isospin	States
$I = 1$	$\pi, \pi(1300), \pi(1800), \pi(2070), \pi(2360)$
$I = 0$	$\eta, \eta(1295), \eta(1760), \eta(2010), \eta(2190), \eta(2320)$
$I = 1/2$	$K, K(1460), K(1830)$

* The spin-parity of the $X(1835)$ is not determined experimentally, but the angular distribution of the radiative photon is consistent with expectations for a pseudoscalar [1].

As shown in Table I, many pseudoscalar states have been accumulated experimentally [2, 3]. Among these states, the assignments of the π, η, η', and K as the members of the 5^1S_0 meson nonet and the $\pi(1300), \eta(1295), \eta(1475)$, and $K(1460)$ as the members of the 2^1S_0 meson nonet have been widely accepted [2]. In our previous works, we suggested that the $\pi(1800), \eta(1760), X(1835)$, and $K(1830)$ can be identified as members of the 5^1S_0 meson nonet [4], the $\pi(2070), \eta(2190)$, and $\eta(2225)$ can be identified as the members of the 4^1S_0 meson [5], and the $X(2500)$ is the mainly $s\bar{s}$ member of the 5^1S_0 meson nonet [6], where the mixing of the $X(2500)$ and its isoscalar partner is not considered and other members of the 5^1S_0 meson nonet are not discussed. In this work, we shall address the possible SU(3) multiplet partners of the $X(2500)$. With the assignment of the $X(2500)$ as the $s\bar{s}$ member of the 5^1S_0 nonet, one can expect that other members of the 5^1S_0 nonet should be lighter than the $X(2500)$. Along this line, considering that other pseudoscalar states have discussed in our previous works [4, 5], we shall focus on the (2360) and (2320) shown in Table I, and check whether they can be explained as the 5^1S_0 $q\bar{q}$ states or not. Study on the pseudoscalar radial $q\bar{q}$ excitations in the mass region of 2.3 \sim 2.6 GeV is especially interesting because the pseudoscalar glueball is predicted to exist in this mass region [7–9].

The (2360) was observed in $\bar{p}p \rightarrow 3\pi^0, \pi^0\eta, \pi^0\eta', \eta\eta\pi^0$, and its mass and width are 2360 ± 25 MeV and 300 ± 100 MeV, respectively [10, 11]. The $(5^1S_0)\eta$ mass is expected to be 2316 ± 40 MeV in a relativistic independent quark model [12] or 2385 MeV in a relativistic quark model [13], both consistent with the (2360) mass. Thus, the (2360) appears a good candidate for the (5^1S_0) based on its measured mass.

FIG. 1: The π, η, and η'-trajectories with $M_n^2 = M_0^2 + (n - 1)\mu^2$ by fitting to the experimental masses of the mesons. π-trajectory: $M_0^2 = 0.019480 \pm 0.000001$ GeV2, $\mu^2 = 1.5387 \pm 0.0165$ GeV2, $\chi^2/\text{d.o.f} = 49.7/(5 - 2)$; η-trajectory: $M_0^2 = 0.19215 \pm 0.00002$ GeV2, $\mu^2 = 1.3179 \pm 0.0084$ GeV2, $\chi^2/\text{d.o.f} = 27.9/(5 - 2)$; η'-trajectory: $M_0^2 = 0.91734 \pm 0.00115$ GeV2, $\mu^2 = 1.2723 \pm 0.0092$ GeV2, $\chi^2/\text{d.o.f} = 19.9/(5 - 2)$. The meson masses used to fit are taken from Refs. [2, 3].

A series of the papers of Anisovich [14–18] indicate that with a good accuracy, the light $q\bar{q}$ meson states with different radial excitations fit to the following quasi-linear (n, M_n^2)-trajectories

$$M_n^2 = M_0^2 + (n - 1)\mu^2,$$

where M_n denotes the mass of the meson with radial quantum number n, M_0^2 and μ^2 are the parameters of the corresponding trajectory. The relation of Eq. (1) can be derived from the Regge phenomenology [19, 20]. One can use this relation to roughly estimate the masses for higher radial excitations. As displayed in Fig. 1, we find that in the (n, M_n^2)
plane, the three pseudoscalar meson groups, \([\pi, \pi(1300), \pi(1800), \pi(2070), \pi(2360)], [\eta, \eta(1295), \eta(1760), \eta(2100), \eta(2320)], [\eta', \eta(1475), X(1835), \eta(2225), X(2500)]\), approximately populate the \(\pi, \eta, \eta'\)-linear trajectories, respectively. With the assignment that the \([\pi(1800), \eta(1760), X(1835)]\) and \([\pi(2070), \eta(2100), \eta(2225)]\) belong to the \(3^1S_0\) and \(4^1S_0\) meson nets, respectively, one can naturally expect that the \(\pi(2360), \eta(2320),\) and \(X(2500)\) could belong to the \(5^1S_0\) net based on their masses.

Both the mass and width of a resonance are related to its inner structure. Although the masses of the \(\pi(2360), \eta(2320),\) and \(X(2500)\) are consistent with them also belonging to the \(5^1S_0\) meson net, their decay properties also need to be compared with model expectations in order to identify the possible candidates for the \(5^1S_0\) meson net. Below, we shall evaluate their strong decays in the framework of the \(3^3P_0\) model.

This paper is organized as follows. In Sec. II, we present the \(3^3P_0\) model parameters used in our calculations. The results and discussions are given in Sec. III. Finally, a short summary is given in Sec. IV.

II. MODEL AND PARAMETERS

The \(3^3P_0\) model has been widely used to study the strong decays of hadrons in literature [4–6, 21–36]. In the \(3^3P_0\) model, the meson strong decay takes place by producing a quark-antiquark pair with vacuum quantum number \(J^{PC} = 0^{++}\). The newly produced quark-antiquark pair, together with the \(q\bar{q}\) within the initial meson, regroups into two outgoing mesons in all possible quark rearrangement ways. Some detailed reviews on the \(3^3P_0\) model can be found in Refs. [4, 5, 21, 22, 29]. Here we give the main ingredients of the \(3^3P_0\) model briefly.

Following the conventions in Ref. [4], the transition operator \(T\) of the decay \(A \to BC\) in the \(3^3P_0\) model is given by

\[
T = -3\gamma \sum_m \langle l_{m-1} | 0 \rangle \int d^3p_1 d^3p_2 \delta^3(p_3 + p_4) \mathcal{Y}_m^m \left(\frac{p_1 - p_4}{2} \right) \chi_{1-m}^{34} \phi_0^{34} \omega_0^{34} \beta_3^{34} \langle p_3 | p_4 \rangle, \tag{2}
\]

where the \(\gamma\) is a dimensionless parameter denoting the production strength of the quark-antiquark pair \(q_3 \bar{q}_4\) with quantum number \(J^{PC} = 0^{++}\). \(p_1\) and \(p_2\) are the momenta of the created quark \(q_3\) and antiquark \(\bar{q}_4\), respectively. \(\chi_{1-m}^{34}\), \(\phi_0^{34}\), and \(\omega_0^{34}\) are the spin, flavor, and color wave functions of the \(q_3 \bar{q}_4\), respectively. The solid harmonic polynomial \(\mathcal{Y}_m^m(p) \equiv |p|^m \mathcal{Y}_m^m(\theta_p, \phi_p)\) reflects the momentum-space distribution of the \(q_3 \bar{q}_4\).

The \(S\) matrix of the process \(A \to BC\) is defined by

\[
\langle BC | S | A \rangle = I - 2\pi i \delta(E_A - E_B - E_C) \langle BC | T | A \rangle, \tag{3}
\]

where \(|A\rangle (|B\rangle, |C\rangle)\) is the mock meson defined by [37]

\[
|A(n_A^{25+1}L_A J_A M_{J_A})⟩(p_A) \equiv \sqrt{2E_A} \sum_{M_{J_A} M_{S_A}} \langle L_A M_{L_A} S_A M_{S_A} | J_A M_{J_A} \rangle \times \int d^3p_A \psi_{n_A L_A M_{L_A}}(p_A) \phi_0^{12} \omega_0^{12} \times \left(q_1 \left(\frac{m_{1-2}}{m_{1+2}} \right) P_A + p_A \right) \left(\frac{m_{1+2}}{m_{1-2}} \right) q_2 \left(\frac{m_{2-3}}{m_{2+3}} \right) P_A - p_A \right), \tag{4}
\]

Here \(m_1\) and \(m_2\) (\(p_1\) and \(p_2\)) are the masses (momenta) of the quark \(q_1\) and the antiquark \(\bar{q}_2\), respectively; \(P_A = p_1 + p_2\). \(p_A = \frac{m_{1-2}}{m_{1+2}} p_1 + \frac{m_{1+2}}{m_{1-2}} p_2\). \(\phi_0^{12}, \omega_0^{12}\), and \(\psi_{n_A L_A M_{L_A}}(p_A)\) are the spin, flavor, color, and space wave functions of the meson \(A\) composed of \(q_1 \bar{q}_2\) with total energy \(E_A\), respectively. \(n_A\) is the radial quantum number of the meson \(A\). \(S_A = s_{q_1} + s_{\bar{q}_2}\), \(J_A = L_A + S_A\). \(s_{q_1}(s_{\bar{q}_2})\) is the spin of \(q_1(\bar{q}_2)\), and \(L_A\) is the relative orbital angular momentum between \(q_1\) and \(\bar{q}_2\). \(\langle L_A M_{L_A} S_A M_{S_A} | J_A M_{J_A} \rangle\) denotes a Clebsch-Gordan coefficient.

The transition matrix element \(\langle BC | T | A \rangle\) can be written as

\[
\langle BC | T | A \rangle = \delta^3(p_A - P_B - P_C) M_{M_{J_A} M_{J_B} M_{J_C}}(P), \tag{5}
\]

where \(M_{M_{J_A} M_{J_B} M_{J_C}}(P)\) is the helicity amplitude. In the center of mass frame of meson \(A\), the helicity amplitude is

\[
M_{M_{J_A} M_{J_B} M_{J_C}}(P) = \gamma \sqrt{8E_A E_B E_C} \sum_{M_{J_A} M_{J_B} M_{J_C}} \times \frac{(m_{1-2}) (m_{2-3}) (m_{1+2}) (m_{1+2})}{(m_{1-2}) (m_{1-2}) (m_{1+2}) (m_{1+2})} \langle L_A M_{L_A} S_A M_{S_A} | J_A M_{J_A} \rangle \times \langle L_B M_{L_B} S_B M_{S_B} | J_B M_{J_B} \rangle \times \langle L_C M_{L_C} S_C M_{S_C} | J_C M_{J_C} \rangle \times (m_{1-2}) (m_{1-2}) (m_{1+2}) (m_{1+2}) \times f_1 (P, m_1, m_2, m_3) \times \bar{f}_2 (P, m_1, m_2, m_3), \tag{6}
\]

with \(f_1 = \langle \phi_0^{14} \phi_0^{12} \phi_0^{12} \rangle\) and \(\bar{f}_2 = \langle \phi_0^{14} \phi_0^{12} \phi_0^{12} \rangle\), and

\[
l(P, m_1, m_2, m_3) = \int d^3p \psi_{n_3 L_3 M_{L_3}} \left(\frac{m_{1-2}}{m_{1+2}} P_B + p \right) \times \phi_0^{14} \phi_0^{14} \phi_0^{14} \times \psi_{n_3 L_3 M_{L_3}} \left(\frac{m_{1+2}}{m_{1-2}} P_B + p \right) \mathcal{Y}_m^m (p), \tag{7}
\]

where \(P = P_B = -P_C\), \(p = p_3\), \(m_3\) is the mass of the created quark \(q_3\).

The partial wave amplitude \(M_{LS}(P)\) can be given by [38],

\[
M_{LS}(P) = \sum_{M_{J_A} M_{J_B} M_{J_C}} \langle L_A M_{L_A} S_A M_{S_A} | J_A M_{J_A} \rangle \times \langle J_B M_{J_B} J_C M_{J_C} | S_{M_S} \rangle \times \int d\Omega Y_{L_M}^m M_{M_{J_A} M_{J_B} M_{J_C}}(P). \tag{8}
\]

Various \(3^3P_0\) models exist in literature and typically differ in the choices of the pair-production vertex, the phase space conventions, and the meson wave functions employed. In this
work, we restrict to the simplest vertex as introduced originally by Micu [39] which assumes a spatially constant pair-production strength γ, adopt the relativistic phase space, and employ two types of meson space wave functions: the simple harmonic oscillator (SHO) wave functions and the relativized quark model (RQM) wave functions [40].

With the relativistic phase space, the decay width $\Gamma (A \rightarrow BC)$ can be expressed in terms of the partial wave amplitude

$$\Gamma (A \rightarrow BC) = \frac{\pi |P|}{4M_A^3} \sum LS |M^{LS} (P)|^2,$$

where $|P| = \sqrt{[M^2_A - (M_B + M_C)^2][M^2_A - (M_B - M_C)^2]2M_A}$, and M_A, M_B, and M_C are the masses of the mesons A, B, and C, respectively.

The parameters used in the 3P_0 model calculations involve the $q\bar{q}$ pair production strength γ, the parameters associated with the meson wave functions, and the constituent quark masses. In the SHO wave functions case (case A), we follow the parameters used in Ref. [25], where the SHO wave function scale is $\beta = \beta_A = \beta_B = \beta_C = 0.4$ GeV, the constituent quark masses are $m_u = m_d = 330$ MeV, $m_s = 550$ MeV, and $\gamma = 8.77$ obtained by fitting to 32 well-established decay modes. In the RQM wave functions case (case B), we take $m_u = m_d = 220$ MeV, and $m_s = 419$ MeV as used in the relativized quark model of Godfrey and Isgur [40], and $\gamma = 15.28$ by fitting to the same decay modes used in Ref. [25] except for three decay modes without the specific branching ratios $K^{*+} \rightarrow \rho K$, $K^{*-} \rightarrow K^+\pi$, and $d_2 \rightarrow \rho \rho$ [2]. The meson flavor wave functions follow the conventions of Refs. [24, 40]. We assume that the $a_0(1450)$, $K_0^*(1430)$, $f_0(1370)$, and $f_0(1710)$ are the ground scalar mesons as in Refs. [23, 24, 41]. Masses of the final state mesons are taken from Ref. [2].

III. RESULTS AND DISCUSSIONS

A. $\pi (2360)$

The decay widths of the $\pi (2360)$ as the $\pi (5^1S_0)$ are listed in Table II. The $\pi (5^1S_0)$ total width is predicted to be about 281 MeV in case A or 285 MeV in case B, both in agreement with the $\pi (2360)$ width of $\Gamma = 300^{+100}_{-50}$ MeV [10, 11]. The dependence of the $\pi (5^1S_0)$ width on the initial mass is shown in Fig. 2. Within the $\pi (2360)$ mass errors (2360 ± 25 MeV), in both cases, the predicted width of the $\pi (5^1S_0)$ always overlaps with the $\pi (2360)$ width. Therefore, the measured width for the $\pi (2360)$ supports that the $\pi (2360)$ can be identified as the $\pi (5^1S_0)$. The flux-tube model calculations in Ref. [42] also favor this assignment.

It is noted that for some decay modes such as $\pi \rho$, $\rho \rho$, ρK (1170), $\omega \rho$ (1235), $\rho \rho$ (1690), and KK^* (1780), the predictions in case A are similar with those in case B, while for other modes such as the πf_0 (1370), ηa_0 (1450), KK^* (1430), $\rho \rho$ (1450), KK^* (1410), KK^* (1680), $K(1460)$, πf_2 (1270), KK^* (1430), $\rho \rho$ (1320), and $\rho \rho$ (1990), there are some big variations between cases A and B. The similar behavior also exists in the flux-tube model (a variant of the 3P_0 model) calculations with different space wave functions [43, 44].

As shown in Eqs. (6) and (7), the partial width from the 3P_0 model depends on the overlap integrals of flavor, spin, and space wave functions of initial and final states. For a given decay mode, the overlap integrals of the flavor and spin wave functions of initial and final mesons are identical in both RQM and SHO cases, therefore, the partial width difference between the RQM and SHO cases results from the different choices of meson space wave functions. Generally speaking, the different space wave functions would lead to different decay widths. Especially, if the overlap is near to the nodes of space wave functions, the decay width would strongly depend on the details of wave functions, and the small wave function difference could generate a large discrepancy of the decay width. However, for some modes, the possibility that the different wave functions can give the similar decay widths also exists. To our knowledge, there is no some rules to judge whether the RQM and SHO wave functions can give the similar or different results before the numerical calculations.

The difference between the predictions in case A and those in case B provides a chance to distinguish among different meson space wave functions. At present, we are unable to conclude which type of wave function is more reasonable due to the lack of the branching ratios for the $\pi (2360)$. However, as suggested by Ref. [45], we should keep in mind that it is essential to treat the wave functions accurately in the 3P_0 model calculations.

B. $\eta (2320)$ and $X (2500)$

The $\eta (2320)$ was observed in $\bar{p}p \rightarrow \eta \eta \eta$ process, and its mass and width are 2320 ± 15 MeV and 230 ± 35 MeV [46]. The predicted $\eta (5^1S_0)$ mass in the relativistic quark model is about 2385 MeV [13], close to the $\eta (2320)$ mass. In the presence of the $X (2500)$ as the isoscalar member of the 5^1S_0 meson nonet [6], we shall discuss the possibility of the $\eta (2320)$ as the isoscalar partner of the $X (2500)$.

![Width vs Mass](image-url)
In a meson nonet, the two physical isoscalar states can mix. The mixing of the two isoscalar states can be parametrized as

$$\eta(5^1S_0) = \cos \phi \, n\bar{n} - \sin \phi \, s\bar{s},$$

$$X(2500) = \sin \phi \, n\bar{n} + \cos \phi \, s\bar{s},$$

where \(n\bar{n} = (u\bar{u}+d\bar{d})/\sqrt{2}\) and \(s\bar{s}\) are the pure \(5^1S_0\) nonstrange and strange states, respectively, and \(\phi\) is the mixing angle.

Accordingly, the partial widths for the \(\eta(5^1S_0)\) and \(X(2500)\) can be expressed as

$$\Gamma(\eta(5^1S_0) \to BC) = \frac{\pi P}{4(M_{\eta n\bar{n}}^S)^2} \sum_{LS} \left[\cos \phi M_{n\bar{n}\to BC}^S \right]^2,$$

$$- \sin \phi M_{s\bar{s}\to BC}^S \right]^2,$$

$$\Gamma(X(2500) \to BC) = \frac{\pi P}{4(M_{X(2500)}^S)^2} \sum_{LS} \left[\sin \phi M_{n\bar{n}\to BC}^S \right]^2,$$

$$+ \cos \phi M_{s\bar{s}\to BC}^S \right]^2.$$

Under the mixing of \(\eta(2320)\) and \(X(2500)\), their decays in the case A are listed in Table III and those in the case B are listed in Table IV. The dependence of the \(\eta(2320)\) and \(X(2500)\) total widths on the mixing angle \(\phi\) is displayed in Fig. 3. In order to simultaneously reproduce the measured widths for the \(\eta(2320)\) and \(X(2500)\), the mixing angle \(\phi\) is required to satisfy \(-0.5 \leq \phi \leq 0.45\) radians in case A or \(-0.69 \leq \phi \leq 0.59\) radians in case B. Below, we shall estimate the value of \(\phi\) to check whether it satisfies these constraints based on the mass-squared describing the mixing of two isoscalar mesons.

In the \(n\bar{n}\) and \(s\bar{s}\) bases, the mass-squared matrix describing the \(\eta(2320)\) and \(X(2500)\) mixing can be expressed as \([4, 5, 47]\)

$$M^2 = \left(M_{mn}^2 + 2A_m \sqrt{2}A_m X M_{s\bar{s}}^2 + A_m X^2 \right),$$

where \(M_{mn}\) and \(M_{s\bar{s}}\) are the masses of the pure \(5^1S_0\) \(n\bar{n}\) and \(s\bar{s}\), respectively, \(A_m\) denotes the total annihilation strength of the \(q\bar{q}\) pair for the light flavors \(u\) and \(d\). \(X\) describes the SU(3)-breaking ratio of the nonstrange and strange quark masses via the constituent quark mass ratio \(m_u/m_s\). Since the \(n\bar{n}\) is the orthogonal partner of the \(\pi(5^1S_0)\), one can expect that \(n\bar{n}\) degenerates with \(\pi(5^1S_0)\) in effective quark masses. Here we take \(M_{mn} = M_{\pi(5^1S_0)} = M_{\pi(2320)}\). The \(M_{s\bar{s}}\) can be obtained from the Gell-Mann-Okubo mass formula \(M_{s\bar{s}}^2 = 2M_{X(2500)}^2 - M_{n\bar{n}}^2\).
TABLE III: Decay widths of the $\eta'(2320)$ and $X(2500)$ as the 5^1S_0 isoscalar states with the SHO wave functions (in MeV). $c \equiv \cos \phi$, $s \equiv \sin \phi$. The masses of the $\eta'(2320)$ and $X(2500)$ are set to 2320 and 2470 MeV, respectively [3, 46]. A dash indicates that a decay mode is forbidden.

| Channel | Mode | $\eta'(2320)$ | $X(2500)$ | \(\Gamma, \text{MeV})
|---------|----------|--------------|-----------|
| 0\to 0 | \(\pi\eta_0(1450)\) | 3.69c^2 | 3.84c^2 |
| | \(\eta_f(1370)\) | 0.40c^2 | 0.79c^2 |
| | \(\eta' f(1370)\) | -- | 0.22c^2 |
| | \(K^*_0(1430)\) | 0.006c^2+0.07$cs+2.25$s^2$ | 1.17$c^2+1.98cs+0.84$s^2$ |
| 0\to 1 | \(KK'\) | 0.06$c^2+0.35cs+0.51$s^2 | 0.06$c^2+0.39cs+0.65$s^2 |
| | \(KK'(1680)\) | 1.51$c^2+5.40cs+4.82$s^2 | 2.29$c^2+5.11cs+2.85$s^2 |
| | \(KK'(1410)\) | 27.47$c^2−3.84cs+0.13$s^2 | 13.83$c^2+29.02cs+15.23$s^2 |
| | \(K(1460)K'\) | -- | 24.94$c^2−54.68cs+25.40$s^2 |
| | \(KK'(1830)\) | -- | 72.21$c^2−63.56cs+135.49$s^2 |
| 0\to 2 | \(\pi\eta_2(1320)\) | 10.99c^2 | 0.85c^2 |
| | \(\eta_f(1270)\) | 4.05c^2 | 1.60c^2 |
| | \(\eta' f(1270)\) | 0.96c^2 | 4.86c^2 |
| | \(K^*_0(1525)\) | 6.53c^2 | 9.61c^2 |
| | \(K^*_0(1430)\) | 10.90$c^2−18.89cs+8.19$s^2 | 0.43$c^2+5.34cs+16.51$s^2 |
| 0\to 3 | \(KK'_a(1780)\) | 0.007$c^2+0.05cs+0.10$s^2 | 9.25$c^2−5.95cs+0.96$s^2 |
| 0\to 4 | \(\pi\eta_4(2040)\) | 0.02c^2 | 0.83c^2 |
| 1\to 1 | \(\rho\rho\) | 2.63c^2 | 3.78c^2 |
| | \(\rho\rho(1450)\) | 84.95c^2 | 100.69c^2 |
| | \(\omega\omega\) | 0.83c^2 | 1.26c^2 |
| | \(\omega\omega(1420)\) | 24.43c^2 | 35.69c^2 |
| | \(\phi\phi\) | 1.16c^2 | 0.01c^2 |
| | \(KK'\) | 0.63$c^2+1.97cs+0.54$s^2 | 1.37$c^2−0.35cs+0.02$s^2 |
| | \(KK'(1410)\) | 3.30$c^2−11.29cs+9.65$s^2 | 42.44$c^2+104.60cs+64.44$s^2 |
| 1\to 2 | \(\rho\rho(1125)\) | 31.05c^2 | 28.29c^2 |
| | \(\omega\omega(1170)\) | 10.87c^2 | 7.57c^2 |
| | \(K'K'_a(1270)\) | 5.34$c^2−6.82cs+2.22$s^2 | 8.76$c^2+11.89cs+18.55$s^2 |
| | \(K'K'(1440)\) | 10.88$c^2+9.29cs+2.51$s^2 | 18.13$c^2+0.85cs+4.14$s^2 |
| 0\to 0 | \(KK'_a(1430)\) | 0.0004$c^2+0.002cs+0.003$s^2 | 18.39$c^2−20.81cs+5.83$s^2 |
| | Total width | 234.93$c^2−10.07cs+42.09$s^2 | 227.34$c^2+3.70cs+481.18$s^2 |
| | Experiment | 230±35 | 230$^{\pm 35}_{\eta(2320)}$ |

The masses of the two physical states $\eta'(2320)$ and $X(2500)$ can be related to the matrix M^2 by the unitary matrix

$$U = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix},$$

which satisfies

$$UM^2U^\dagger = \begin{pmatrix} M^2_{\eta'(2320)} & 0 \\ 0 & M^2_{X(2500)} \end{pmatrix}.$$

From Eqs. (14) and (16), one can have

$$8X^2(M^2_{K(5^1S_0)} - M^2_{\eta(2360)})^2 = \left[4M^2_{K(5^1S_0)} - (2 - X^2)M^2_{\eta(2360)} - (2 + X^2)M^2_{\eta'(2320)}\right] \times \left[(2 - X^2)M^2_{\eta(2360)} + (2 + X^2)M^2_{X(2500)} - 4M^2_{K(5^1S_0)}\right].$$

and

$$A_m = \frac{(M^2_{X(2500)} - 2M^2_{K(5^1S_0)} + M^2_{\eta(2360)})M^2_{\eta'(2320)} - 2M^2_{K(5^1S_0)}}{2(M^2_{\eta(2360)} - M^2_{K(5^1S_0)})X^2}.$$

Equation (17) is the generalized Schwinger’s nonet mass formula [47]. If the SU(3)-breaking effect is not considered, i.e., $X = 1$, Eq. (17) can be reduced to original Schwinger’s nonet mass formula [48]. With the masses of the $\pi(2360), \eta'(2320),$ and $X(2500)$, from Eqs. (17) and (18), we have

$$M_{K(5^1S_0)} = 2.418 \text{ GeV}, A_m = -0.085 \text{ GeV}^2$$

for $X = m_u/m_s = 330/550$ as used in case A, and

$$M_{K(5^1S_0)} = 2.418 \text{ GeV}, A_m = -0.111 \text{ GeV}^2$$

for $X = m_u/m_s = 220/419$ as used in case B. Then the unitary matrix U can be given by

$$U = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} = \begin{pmatrix} +0.995 & +0.102 \\ -0.102 & +0.995 \end{pmatrix}$$

for $X = 330/550$, and

$$U = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} = \begin{pmatrix} +0.994 & +0.109 \\ -0.109 & +0.994 \end{pmatrix}$$

for $X = 220/419$.

Equations (21) and (22) consistently give φ = −0.1 radians, which makes both the η(2320) and X(2500) widths in good agreement with experimental data. Also, both Eqs. (21) and (22) indicate that the η(2320) is mainly the nπ0, consistent with the π(2360) nearly degenerating with the η(2320), while the X(2500) is mainly the sπ0, consistent with our previous analysis [6]. Therefore, the η(2320) and X(2500), together with the π(2360), appear to be the convincing S_0^1 states.

In above discussions, we focus on the possibility of the pseudoscalar states π(2360), η(2320), and X(2500) as the S_0^1 mesons. Apart from the states listed in Table I, the X(2120) and X(2370) also probably are the $J^{PC} = 0^{-+}$ resonances. The X(2120) and X(2370) were observed by the BESIII collaboration in the $\pi^+\pi^-\eta'$ invariant mass spectrum and their spin parities are not determined [1]. Based on the observed decay mode $\pi^+\pi^-\eta'$, the possible J^{PC} for the X(2120) and X(2370) are $0^{-+}, 1^{-+}, \cdots$. The nature of the X(2120) and X(2370) are not clear [42, 49–52]. Since the X(2370) mass is also close to the quark model expectation for the S_0^1 mass [13], we shall discuss the possibility of the X(2370) as the isoscalar partner of the X(2500).

With the X(2370)-X(2500) mixing, the decay widths for the X(2370) are listed in Table V. The dependence of the X(2370) and X(2500) total widths on the mixing angle is plotted in Fig. 4. Obviously, the X(2370) width can not be reproduced in the whole region of the mixing angle. Therefore, our calculations do not support the S_0^1 assignment for the X(2370). Other calculations from the P_0^1 model suggest that the X(2370) is unlikely to be the 4^1S_0 $q\bar{q}$ state [50, 51]. If the X(2370) turns out to have $J^{PC} = 0^{-+}$ in future, in order to explain its properties, more complicated scheme such as the $q\bar{q}$-glueball mixing may be necessary, since the X(2370) mass is close to the pseudoscalar glueball mass of about 2.3 – 2.6 GeV predicted by the lattice QCD [7–9].

C. K(S_0^1)

As mentioned in Sec. III B, with the π(2360), η(2320), and X(2500) as the members of S^1_0 meson nonet, from Eq. (17), the K(S_0^1) mass is predicted to be about 2418 MeV as shown in Eqs. (19) and (20). At present, no candidate for the I($J^{PC}) = 1/2(0^-)$ state around 2418 MeV is reported experimentally. It is noted that with our estimated masses for

Channel	Mode	η(2320) Width	X(2500) Width
0→0'0'	$\pi_0(1450)$	93.36 GeV	141.51 GeV
	$\eta_0(1370)$	13.30 GeV	21.64 GeV
	$\eta'(1370)$	13.30 GeV	21.64 GeV
	$\eta_0(1710)$	1.46 GeV	3.42 GeV
	$K_0^*(1430)$	6.33 GeV	84.74 GeV
0→0'1'	$\eta(1400)$	4.31 GeV	0.97 GeV
0→0'2'	$\eta(1800)$	0.05 GeV	2.41 GeV
0→0'3'	$\eta(1900)$	0.10 GeV	9.93 GeV
0→0'4'	$\eta(2000)$	0.15 GeV	15.66 GeV
0→1'1'	$\rho(1235)$	171 GeV	96 GeV
0→1'2'	$\omega(1170)$	10.1 GeV	45.9 GeV
0→1'3'	$\eta(1400)$	2.54 GeV	3.12 GeV
Total width		262.3 GeV	257.7 GeV
Experiment		230 ± 35	230 ± 35
the $K(4^1S_0)$ and $K(5^1S_0)$. $M_{K(4^1S_0)} = 2153 \pm 20$ MeV \cite{5} and $M_{K(5^1S_0)} = 2418 \pm 49$ MeV, the K, $K(1460)$, $K(1830)$, $K(2153)$, and $K(2418)$ approximately populate a trajectory as shown in Fig. 5, which indicates that the $K(1533)$ and $K(2418)$ could be the good candidates for the 4^1S_0 and 5^1S_0 kaons, respectively.

The decay widths of the $K(2418)$ as the 5^1S_0 kaon are listed in Table VI. The total width of the $K(5^1S_0)$ is predicted to be about 163 MeV in case A or 225 MeV in case B. This could be of use in looking for the candidate for the 5^1S_0 kaon experimentally.

IV. SUMMARY AND CONCLUSION

In this work, we have discussed the possible members of the 5^1S_0 meson nonet by analysing the masses and calculating the strong decay widths in the $3P_0$ model with the SHO and RQM meson space wave functions. Both the mass and width for the $\pi(2360)$ are consistent with the quark model expectations for the $n(5^1S_0)$. In the presence of the $X(2500)$ as the 5^1S_0 isoscalar state, the possibility of the $\eta(2320)$ and $X(2370)$ as the isoscalar partner of the $X(2500)$ is discussed. The $X(2370)$ width can not be reproduced for any value of the mixing angle ϕ, thus, the assignment of the $X(2370)$ as the 5^1S_0 isoscalar state is not favored by its width. Both the $\eta(2320)$ and $X(2500)$ widths can be reproduced with $-0.5 \leq \phi \leq 0.45$ radians for the SHO wave functions or $-0.69 \leq \phi \leq 0.59$ for the RQM wave functions. The assignment of the $\eta(2360)$, $\eta(2320)$, and $X(2500)$ as the members of the 5^1S_0 nonet not only gives $\phi = -0.1$ radians, which naturally accounts for the $\eta(2320)$ and $X(2500)$ widths, but also shows that the 5^1S_0 kaon has a mass of about 2418 MeV. The K, $K(1460)$, $K(1830)$, $K(2153)$, and $K(2418)$ approximately populate a common trajectory. The $K(2418)$ is predicted to have a width of about 163 MeV for SHO wave functions or 225 MeV for the RQM wave functions. We tend to conclude that the $\pi(2360)$, $\eta(2320)$, $X(2500)$, together with the unobserved $K(2418)$, construct the 5^1S_0 meson nonet.

Our numerical results show that the $3P_0$ model predictions depend on the choice of meson space wave functions. It is essential to treat the wave functions accurately in the $3P_0$ model calculations. The difference between the predictions in SHO case and those in RQM case provides a chance to...
TABLE VI: Decay widths of the $K(2418)$ as the $S^1 S_0$ state in the P_0
model with two types of wave functions (in MeV). The initial state
mass is set to 2418 MeV.

Channel	Mode	Γ_1
$0^- \rightarrow 0^-$	$\pi K_0(1430)$	0.36 32.62
$K_{0s}(1450)$	0.96 19.08	
$\eta K_0(1430)$	0.03 0.36	
$\eta' K_0(1430)$	2.12 4.71	
$K_{0s}(1370)$	0.31 8.48	
$K_{0s}(1710)$	0.33 1.64	
$0^- \rightarrow 1^+$	πK^+	0.07 0.05
K_ρ	0.14 0.10	
$\pi K^+(1680)$	0.05 2.67	
$K_0(1700)$	1.84 0.35	
K_ω	5.75 0.10	
$\pi(1300) K^+$	8.11 7.11	
$K(1460) \rho$	9.69 2.14	
ηK^+	0.42 0.001	
$\eta' K^+$	0.02 0.10	
$\eta K^+(1410)$	0.03 9.51	
$\eta' K^+(1410)$	0.21 0.04	
$\eta K^+(1680)$	2.00 0.03	
K_ϕ	0.36 0.93	
$K_\phi(1680)$	10.41 0.04	
$\eta(1475) K^+$	5.17 0.03	
K_ω	0.05 0.03	
$K_{0s}(1420)$	0.03 2.81	
$K_{0s}(1650)$	0.49 0.32	
$K(1460) \omega$	3.39 0.58	
$0^- \rightarrow 2$	$\pi K_0^+(1430)$	0.19 13.75
$K_{0s}(1320)$	1.04 7.24	
$\eta K_0(1430)$	0.13 0.04	
$\eta' K_0(1430)$	0.27 0.23	
$K_{1s}(1525)$	5.74 0.05	
$K_{1s}(1270)$	0.15 2.86	
$0^- \rightarrow 3$	$\pi K_0^+(1780)$	9.77 6.14
$K_{0s}(1690)$	3.18 3.66	
$\eta K_0(1780)$	0.28 0.91	
$K_{0s}(1850)$	0.03 0.007	
$K_{0s}(1670)$	1.36 1.42	
$0^- \rightarrow 4^+$	$\pi K_0^+(2045)$	0.07 0.79
$0^- \rightarrow 1^1$	K_ρ	1.47 0.16
$K^+(1410) \rho$	12.60 13.47	
$K^+(1450)$	19.21 6.47	
$K^+ \phi$	0.03 0.93	
$K^+ \omega$	0.49 0.04	
$K^+(1410) \omega$	4.55 3.91	
$K^+(1420)$	5.94 2.21	
$0^- \rightarrow 1^2$	$K_{1s}(1235)$	6.66 4.15
$K_{1s}(1260)$	4.35 8.46	
$K_{1s}(1400)$	3.47 24.99	
$K_{1s}(1270)$	8.29 0.19	
$K_{1s}(1270)$	2.45 0.06	
$K^+(1380)$	2.40 0.63	
$K^+(1420)$	2.69 1.20	
$K_{1s}(1400)$	1.16 7.95	
$K_{1s}(1400)$	2.74 0.03	
$K_{1s}(1170)$	2.01 2.92	
$K^+(1285)$	1.21 1.73	
$0^- \rightarrow 2^1$	$K_{1s}(1320)$	8.40 1.71
$K_{1s}(1430)$	8.92 0.44	
$K_{1s}(1430)$	2.92 0.23	
$K^+(1525)$	0.000006 0.000008	
$K^+(1270)$	3.05 0.07	
\textbf{Total width}	\textbf{163.38} \textbf{224.98}	

FIG. 4: The total widths of the $\eta(2320)$ and $X(2500)$ dependence on
the ϕ in the P_0 model with two types of wave functions: (a) with the
SHO wave functions (b) with the RQM wave functions. The blue and
green band denote the measured widths for the $X(2500)$ and $X(2370)$,
respectively [1, 3].

FIG. 5: The K-trajectory with $M^2 = M^2_{K^0} + (n-1)r^2$. $M^2_{K^0} = 0.24669 \pm 0.00002\text{GeV}^2$, $r^2 = 1.456 \pm 0.026\text{GeV}^2$, χ^2/d.o.f. = 1.897/(4-2). In
our fit, we don’t use the data of $K(1460)$ since the $K(1460)$ mass
error is not given experimentally. The masses of the K and $K(1830)$
are taken from Ref. [2]. The masses of the $K(2153)$ and $K(2418)$
are taken to be 2153 \pm 20 MeV and 2418 \pm 49 MeV, respectively. The
$K(1460)$ mass is taken to be 1460 MeV [53].

distinguish among different meson space wave functions. To
conclude which type of wave function is preferable, the further
experimental study on the decays of $\pi(2360)$, $\eta(2320)$,
and $X(2500)$ is needed. Also, in our calculations, all the
states are assumed to be $q\bar{q}$. It is noted that some resonances
such as $h_1(1170)$, $h_1(1380)$, $f_1(1285)$, $h_1(1235)$, $a_1(1260)$,
and $K_{1s}(1270)$, can also be explained as the dynamically gener-
We would like to thank Dr. Qi-Fang Lü for valuable discussions. This work is partly supported by the National Natural Science Foundation of China under Grant Nos. 11505158, 11605158, the China Postdoctoral Science Foundation under Grant No.2015M582197, the Postdoctoral Research Sponsorship in Henan Province under Grant No.2015023, and the Academic Improvement Project of Zhengzhou University.

ACKNOWLEDGEMENTS

[1] M. Ablikim et al. [BESIII Collaboration], Confirmation of the X(1835) and observation of the resonances X(2120) and X(2370) in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta'$. Phys. Rev. Lett. 106, 072002 (2011).

[2] C. Patrignani et al. [Particle Data Group], Review of Particle Physics, Chin. Phys. C 40, no. 10, 100001 (2016).

[3] M. Ablikim et al. [BESIII Collaboration], Observation of pseudoscalar and tensor resonances in $J/\psi \rightarrow \gamma \phi\phi$, Phys. Rev. D 93, no. 11, 112011 (2016).

[4] D. M. Li and B. Ma, X(1835) and $\eta'(1760)$ observed by the BES Collaboration, Phys. Rev. D 77, 074004 (2008).

[5] D. M. Li and S. Zhou, Towards the assignment for the $4^{-}I_{S_{0}}$ meson nonet, Phys. Rev. D 78, 054013 (2008).

[6] T. T. Pan, Q. F. Lü, E. Wang and D. M. Li, Strong decays of the $X(2500)$ newly observed by the BESIII Collaboration, Phys. Rev. D 94, no. 5, 054030 (2016).

[7] C. J. Morningstar and M. J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60, 034509 (1999).

[8] A. Hart et al. [UKQCD Collaboration], On the glueball spectrum in $O(a)$ improved lattice QCD, Phys. Rev. D 65, 034502 (2002).

[9] Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006).

[10] A. V. Anisovich, C. A. Baker, C. J. Batty, D. V. Bugg, V. A. Nikonov, A. V. Sarantsev, V. V. Sarantsev, and B. S. Zou, Partial wave analysis of $p\bar{p}$ annihilation channels in flight with $I = 1, C = +1$, Phys. Lett. B 517, 261 (2001).

[11] A. V. Anisovich, C. A. Baker, C. J. Batty, D. V. Bugg, V. A. Nikonov, V. V. Sarantsev, and B. S. Zou, A partial wave analysis of $p\bar{p} \rightarrow \eta\eta\pi^2$, Phys. Lett. B 517, 273 (2001).

[12] V. V. Khruschev, Mass spectra of excited meson states consisting of c, d-quarks and antiquarks, arXiv:hep-ph/0504077.

[13] D. Ebert, R. N. Faustov, and V. O. Galkin, Mass spectra and Regge trajectories of light mesons in the relativistic quark model, Phys. Rev. D 79, 114029 (2009).

[14] A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, Systematics of $q\bar{q}$ states in the (n, m^2) and (J, M^2) planes, Phys. Rev. D 62, 051502 (2000).

[15] V. V. Anisovich, Systematics of $q\bar{q}$ states, scalar mesons and glueball, AIP Conf. Proc. 619, 197 (2002).

[16] V. V. Anisovich, Systematics of quark anti-quark states and scalar exotic mesons, Phys. Usp. 47, 45 (2004) [Usp. Fiz. Nauk 47, 49 (2004)].

[17] V. V. Anisovich, Systematics of quark anti-quark states: Where are the lightest glueballs?, AIP Conf. Proc. 717, 441 (2004).

[18] V. V. Anisovich, Systematization of tensor mesons and the determination of the 2^{++} glueball, JETP Lett. 80, 715 (2004) [Pisma Zh. Eksp. Teor. Fiz. 80, 845 (2004)].

[19] P. D. Collins, An introduction to Regge theory and high energy physics, Cambridge University Press, 1977.

[20] D. M. Li, B. Ma, and Y. H. Liu, Understanding masses of $c\bar{s}$ states in Regge phenomenology, Eur. Phys. J. C 51, 359 (2007).

[21] W. Roberts and B. Silvestre-Brac, General method of calculation of any hadronic decay in the $3P_0$ triplet model, Few-Body Syst. 11, 171 (1992).

[22] H. G. Blundell, Meson properties in the quark model: A look at some outstanding problems, hep-ph/9608473.

[23] T. Barnes, F. E. Close, P. R. Page, and E. S. Swanson, Higher quarkonia, Phys. Rev. D 55, 4157 (1997).

[24] T. Barnes, N. Black, and P. R. Page, Strong decays of strange quarkonia, Phys. Rev. D 68, 054014 (2003).

[25] F. E. Close and E. S. Swanson, Dynamics and decay of heavy-light hadrons, Phys. Rev. D 72, 094004 (2005).

[26] T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).

[27] B. Zhang, X. Liu, W. Z. Deng, and S. L. Zhu, $D_{sJ}(2860)$ and $D_{sJ}(2715)$, Eur. Phys. J. C 50, 617 (2007).

[28] G. J. Ding and M. L. Yan, Y(2175): Distinguish Hybrid State from Higher Quarkonium, Phys. Lett. B 657, 49 (2007).

[29] D. M. Li and B. Ma, The $\eta(2225)$: Distinguished Hybrid State observed by the BES Collaboration, Phys. Rev. D 77, 094021 (2008).

[30] D. M. Li and S. Zhou, Nature of the $\pi(1880)$ Phys. Rev. D 79, 014014 (2009).

[31] D. M. Li and E. Wang, Canonical interpretation of the $\eta(1870)$, Eur. Phys. J. C 63, 297 (2009).

[32] D. M. Li and B. Ma, Implication of BaBar’s new data on the $D_{sJ}(2710)$ and $D_{sJ}(2860)$, Phys. Rev. D 81, 014021 (2010).

[33] D. M. Li, P. F. Ji, and B. Ma, The newly observed open-charm states in quark model, Eur. Phys. J. C 71, 1582 (2011).

[34] Q. F. Lü and D. M. Li, Understanding the charmed states recently observed by the LHCb and BaBar Collaborations in the quark model, Phys. Rev. D 90, 054024 (2014).

[35] Q. F. Lü, T. T. Pan, Y. Y. Wang, E. Wang, and D. M. Li, Excited bottom and bottom-strange mesons in the quark model, Phys. Rev. D 94, 074012 (2016).

[36] G. Y. Wang, S. C. Xue, G. N. Li, E. Wang, and D. M. Li, Strong decays of the higher isovector scalar mesons, Phys. Rev. D 97, no. 3, 034030 (2018).

[37] C. Hayne and N. Isgur, Beyond the Wave Function at the Origin: Some Momentum Dependent Effects in the Nonrelativistic Quark Model, Phys. Rev. D 25, 1944 (1982).

[38] M. Jacob and G. C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7, 404 (1959).

[39] L. Micu, Decay rates of meson resonances in a quark model, Nucl. Phys. B 10, 521 (1969).

[40] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model
with Chromodynamics, Phys. Rev. D 32, 189 (1985).
[41] E. S. Ackleh, T. Barnes and E. S. Swanson, On the mechanism of open flavor strong decays, Phys. Rev. D 54, 6811 (1996).
[42] L. M. Wang, S. Q. Luo, Z. F. Sun and X. Liu, Constructing new pseudoscalar meson nonets with the observed X(2100), X(2500), and η(2225), Phys. Rev. D 96, no. 3, 034013 (2017).
[43] H. G. Blundell and S. Godfrey, The ζ(2220) revisited: Strong decays of the 1^3F_2 and 1^3F_4 $s\bar{s}$ mesons, Phys. Rev. D 53, 3700 (1996).
[44] R. Kokoski and N. Isgur, Meson Decays by Flux Tube Breaking, Phys. Rev. D 35, 907 (1987).
[45] Y. Lu, M. N. Anwar, and B. S. Zou, Coupled-Channel Effects for the Bottomonium with Realistic Wave Functions, Phys. Rev. D 94, no. 3, 034021 (2016).
[46] A. V. Anisovich, C. A. Baker, C. J. Batty, D. V. Bugg, V. A. Nikonov, A. V. Sarantsev, V. V. Sarantsev, and B. S. Zou, A study of $pp \rightarrow \eta\eta\eta$ for masses 1960-2410 MeV/c², Phys. Lett. B 496, 145 (2000).
[47] D. M. Li, H. Yu, and Q. X. Shen, Effects of flavor dependent qq annihilation on the mixing angle of the isoscalar octet singlet and Schwinger’s nonet mass formula, Chin. Phys. Lett. 18, 184 (2001).
[48] J. Schwinger, A Ninth Baryon?, Phys. Rev. Lett. 12, 237 (1964).
[49] J. S. Yu, Z. F. Sun, X. Liu, and Q. Zhao, Categorizing resonances X(1835), X(2120) and X(2370) in the pseudoscalar meson family, Phys. Rev. D 83, 114007 (2011).
[50] J. F. Liu et al. [BES Collaboration], X(1835) and the New Resonances X(2120) and X(2370) Observed by the BES Collaboration, Phys. Rev. D 82, 074026 (2010).
[51] S. Chen and J. Ping, Radial excitation states of η and η’ in the chiral quark model, Chin. Phys. C 36, 681 (2012).
[52] Z. G. Wang, Analysis of the X(1835) and related baryonium states with Bethe-Salpeter equation, Eur. Phys. J. A 47, 71 (2011).
[53] C. Daum et al. [ACCMOR Collaboration], Diffractive Production of Strange Mesons at 63-GeV, Nucl. Phys. B 187, 1 (1981).
[54] L. Roca, E. Oset, and J. Singh, Low lying axial-vector mesons as dynamically generated resonances, Phys. Rev. D 72, 014002 (2005).
[55] L. S. Geng, E. Oset, L. Roca, and J. A. Oller, Clues for the existence of two $K_1(1270)$ resonances, Phys. Rev. D 75, 014017 (2007).
[56] C. Garcia-Recio, L. S. Geng, J. Nieves, and L. L. Salcedo, Low-lying even parity meson resonances and spin-flavor symmetry, Phys. Rev. D 83, 016007 (2011).