In-silico design and ADMET predictions of some new imidazo[1,2-a]pyridine-3-carboxamides (IPAs) as anti-tubercular agents

Mustapha Abdullahi a,*, Niloy Das b, Shola Elijah Adeniji c, Alhassan Kabiru Usman a, Ahmad Muhammad Sani a

a Faculty of Sciences, Department of Pure and Applied Chemistry, Kaduna State University, Tafawa Balewa Way, Kaduna State, Nigeria
b Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
c Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044 Zaria, Kaduna State, Nigeria

A R T I C L E I N F O
Keywords:
In-silico design
Tuberculosis
Binding affinity
Pharmacokinetics
Molecular interactions
Hydrogen bond

A B S T R A C T

Tuberculosis (TB) is one of the leading infectious diseases worldwide even with the ravaging COVID-19 pandemic in recent times. This mandated further search and exploration of more possible anti-TB drug candidates against M. tuberculosis strains. As an extension of our previous work on the homology modeled cytochrome b subunit of the bc1 complex (QcrB) of Mycobacterium tuberculosis, an in-silico design was carried out in order to further explore more newly potential anti-TB compounds. Ligand 26 was selected as the lead template (scaffold A) based on our previous docking results and its less bulky structure. Successively, eight (8) new ligands (A1–A8) were designed with better binding affinities in comparison to the scaffold template (~6.8 kcal/mol) and isoniazid standard drug (~6.00 kcal/mol) respectively. In addition, three (3) designed ligands namely, A6, A2, and A7 with higher binding affinities were validated via ADME and toxicity prediction analysis, and the results showed zero violations of Lipinski rules with similar bioavailability, and high rate in gastrointestinal absorption, while toxicity parameters such as carcinogenicity and cytotoxicity were all predicted as non-toxic (inactiveness). The designed IPA compounds in the present study could serve as a promising gateway that could help the medicinal and synthetic chemist in the exploration of a new set of derivatives as anti-TB agents. Therefore, this research strongly recommends further experimental consideration of the newly designed IPA compounds through synthesis, in-vitro and in-vivo studies to validate the theoretical findings.

1. Introduction

Mycobacterium tuberculosis is the organism that causes one of the chronic infectious diseases popularly known as Tuberculosis (TB) responsible for the global high mortality rate [1]. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the cursor of the COVID-19 pandemic has continued to dominate the scientific research community and other media outlets in recent times [2,3]. Scientific evidence based on clinical perspective indicates that COVID-19 materializes regardless of TB manifestation, either after, during, or before an active diagnosis [2]. Therefore, TB should be given utmost attention even with its global declining rate of cases [1]. An imidazo [1, 2-a] pyridine-3-carboxamide (IPA) candidate (Q203) was reported to exhibit robust inhibitory activity against extensively drug-resistant (XDR) and multidrug-resistant (MDR) strains and it is currently in clinical trials [4]. Researchers are currently developing a keen interest in the synthesis of diverse series of compounds as anti-TB agents. Recently, benzo[d]imidazole-2-carboxamides and benzimidazo-zoquinazoline derivatives as new anti-TB agents were designed, synthesized, and tested for biological responses respectively [5,6]. Hence, the rapid increase in the occurrences of TB drug resistance attracts the need to find new therapeutics as well to discover novel drug targets that could effectively kill M. tuberculosis when exploited. Some of the promiscuous targets inhibited by more than one compound include DprE1, MmpL3, QcrB, etc [7]. The novel derivatives of Q203 (IPAs) as anti-TB agents were also reported to have the ability to block the growth of MDR and XDR strains of M. tuberculosis by targeting the respiratory cytochrome bc1 complex (QcrB) [7]. The QcrB subunit is an important component of the electron transport chain necessary for the synthesis of ATP as it catalyzes the transfer of an electron from the ubiquinol to the cytochrome c [8]. However, the interaction of bonded ligand to the QcrB subunit receptor remains unclear and the crystal structure is not

* Corresponding author.
E-mail address: mustychem19@gmail.com (M. Abdullahi).

https://doi.org/10.1016/j.jctube.2021.100276

Available online 20 September 2021
2405-5794/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
available in the Protein Data Bank (PDB) [9]. The search for more potent compounds is very tedious, costly, and time-consuming [10]. As such, the use of computational chemistry tools based on theoretical insights could come in handy with the aim to modify and design new compounds with better bioactivities. Some of the computational methods employed in computer-aided drug design include homology modeling, molecular docking simulation, pharmacokinetic predictions, and QSAR analysis amongst others. These computational approaches have been employed over the years to improve existing anti-tubercular agents through virtual screening for the identification and modification of potential hits [11,12]. Structure-based drug design (SBDD) solemnly depends on the knowledge and information of the 3D crystal structure of the targeted protein to design the ligands that can serve as better inhibitors [13]. In the case where the 3D experimental structure of the targeted protein is not reported, the experimental amino acid sequence can be used to build a homology model [14]. The homology modeling technique predicts the 3D structure of the targeted protein sequence based on the alignment of an experimentally known homologous protein as a template [15]. In our previous report, homology modeling and molecular docking studies were carried out on some IPAs anti-TB agents targeting the QcrB subunit. The homology modeling of the receptor built and predicted a new 3D structure of QcrB target in M. tuberculosis using QcrB subunit of M. smegmatis as template [12,16]. Furthermore, the results of molecular docking in the study further revealed the binding profiling of the 35 IPA

Table 1
Chemical structures of the designed imidazo[1,2-a] pyridine-3-carboxamides (IPAs).

Compound code	R₁	R₂	R₃
A1	Cl	Me	
A2	Cl	Me	
A3	H	Me	
A4	H	Et	
A5	H	Me	
A6	H	n-Pr	
A7	H	OMe	
A8	H	c-Pr	

Template scaffold A (-6.8kcal/mol)
labeled docked with the modeled protein. In the current study, the same 3D crystal structure of the QcrB modeled protein in *M. tuberculosis* was used to analyze the binding profiling and ADMET prediction of some newly designed compounds as potential hits of anti-TB candidates.

2. Methodology

2.1. Template selection and structural modifications

In our previous report, we have successfully carried out virtual screening of thirty-five (35) N-(2-phenoxy) ethyl imidazo[1,2-a] pyridine-3-carboxamides (IPAs) synthesized by Wang et al., (2019) with our homology modeled QcrB protein as the active target in the *Mycobacterium tuberculosis* [7,16]. As such, ligand 26 was selected as the template scaffold for further structural modification and rigorous molecular docking simulation. The structure of the newly designed ligands was drawn (Table 1) and optimized accurately at the density functional level of theory (B3LYP/6-31G**) in a vacuum using Spartan 14 [17].

2.2. Molecular docking, ADME analysis, and toxicity prediction

Molecular docking is the most preferable technique in structure-based drug design to predict the binding free energy and the binding mode of the protein and ligand compound [18]. Therefore, molecular docking simulation was carried out to determine the binding affinities and the residual interactions when the ligand molecules bind with the active pockets of the protein as macromolecule using AutoDock 4.2 module implemented in PyRx 0.8. Blind docking was performed for all the designed ligand molecules to predict the active binding pockets of the modeled QcrB protein as the targeted macromolecule [19]. To ensure that all ligand molecules are properly docked, the 3D grid box dimensions were adjusted as X: 203.60, Y: 177.43, Z: 211.23 for grid spacing of 1.875 Å on the whole protein structure to predict the best outcome of the docking task. Furthermore, the docking algorithm used was the Lamarckian Genetic Algorithm at default parametrized settings. After docking, protein and the ligands were obtained in PDBQT format, and complexes were formed using UCSF Chimera software while the visualization of residual interactions was done using Discovery Studio. Conventional drug was the Lamarckian Genetic Algorithm at default parametrized settings. Blind docking was performed for all the modeled QcrB protein as the targeted macromolecule [19].

Table 2

Compounds	Binding affinity (kcal/mol)	Bonding types	Interacting amino acid residues	Distance (Å)
Standard drug	−6.00	Conventional Hydrogen Bond	LEU58	2.09388
Hydrogen Bond		Conventional Hydrogen Bond	LEU59	2.84072
Pi-Anion	GLU159	3.32022		
Pi-Alkyl	LEU58	3.97204		
Pi-Alkyl	PRO221	5.18191		
Conventional Hydrogen Bond	A1	ALA385	2.52924	
Halogen	LEU348	2.87618		
(Fluorine)				
Pi-Sigma	PHE133	3.61502		
Pi-Alkyl	ALA385	3.67506		
Pi-Sigma	ALA385	3.60692		
Pi-Alkyl	T-shaped	PHE133	4.99664	
Amide-Pi Stacked	ALA385	4.12602		
Amide-Pi Stacked	ILE386	4.12602		
Alkyl	LEU129	5.40777		
Alkyl	ILE386	4.18797		
Alkyl	VAL345	3.40783		
Alkyl	ALA385	4.43333		
Alkyl	ALA385	4.32462		
Alkyl	ILE386	5.06303		
Alkyl	LEU129	5.19201		
Alkyl	PHE133	4.1159		
Alkyl	PHE134	4.35564		
Alkyl	PHE388	4.7971		
Alkyl	TYR389	4.48071		
Conventional Hydrogen Bond	A2	GLY56	2.08894	
Halogen	GLU159	3.59989		
(Fluorine)				
Pi-Alkyl	GLU159	4.31326		
Alkyl	LEU59	3.92938		
Alkyl	PRO221	4.39931		
Alkyl	LEU65	4.57881		
Alkyl	ARG111	4.54332		
Alkyl	PRO167	4.47863		
Alkyl	LEU65	4.48087		
Alkyl	LEU166	5.41423		
Alkyl	PRO167	5.16489		
Pi-Alkyl	ILE217	4.59328		
Pi-Alkyl	PRO221	4.71614		
Pi-Alkyl	PHE69	5.14437		
Pi-Alkyl	PHE69	4.72374		
Halogen	HIS114	3.36308		
(Fluorine)				
Pi-Anion	GLU159	3.94788		
Alkyl	LEU58	3.81904		
Alkyl	LEU59	4.09035		
Alkyl	PRO221	4.4197		
Alkyl	LEI65	4.40346		
Alkyl	LEU166	4.97961		
Pi-Alkyl	LEU58	5.39169		
Pi-Alkyl	LEU59	5.27014		
Pi-Alkyl	PRO221	4.32695		
Pi-Alkyl	PHE69	4.72942		
Pi-Alkyl	HIS114	5.15802		
Pi-Alkyl	HIS216	5.28912		
Carbon Hydrogen Bond	GLY163	3.31031		
Halogen	GLY163	3.31031		
(Fluorine)				
Halogen	HIS114	3.68598		
(Fluorine)				
Halogen	HIS216	3.05615		
(Fluorine)				
Pi-Sigma	LEU56	3.7055		
Alkyl	ALA97	3.69526		
Alkyl	ILE100	4.33314		
Alkyl	ARG111	4.58662		
Alkyl	PRO167	4.85181		

(continued on next page)
Fluorine), Pi-Anion, Alkyl, Pi-Alkyl were visualized in the complex with the amino acid residues of (GLY62, GLU159, LEU59, PRO221, LEU65, ARG111, PRO167, LEU65, LEU166, ILE217, PHE69) showed in Fig. 2. A7 as a ligand compound expressed (10.5 kcal/mol) binding affinity with the targeted modeled QcrB protein. Complex showed one Carbon Hydrogen Bond with the amino acid residue of (HIS216 at a distance of 3.78978 Å) and three different types of bonds such as Halogen Bonding. Table 2 (continued)

Compounds	Binding affinity (kcal/mol)	Bonding types	Interacting amino acid residues	Distance (Å)
Alkyl	ILE217	4.56014		
Alkyl	PRO221	4.85313		
Pi-Alkyl	PRO167	5.10454		
Pi-Alkyl	PHE69	5.29162		
Pi-Alkyl	HIS114	4.68175		
Pi-Alkyl	HIS216	5.24304		
A5	−10.3	Halogen (Fluorine)	HIS114	3.50679
A5	−10.3	Halogen (Fluorine)	LEU58	4.04364
A5	−10.3	Halogen (Fluorine)	PRO221	4.89791
A5	−10.3	Halogen (Fluorine)	LEU55	4.70392
A5	−10.3	Halogen (Fluorine)	ILE217	4.56661
A5	−10.3	Halogen (Fluorine)	LEU55	4.52788
A5	−10.3	Halogen (Fluorine)	LEU55	4.80007
A5	−10.3	Halogen (Fluorine)	LEU166	4.60995
A5	−10.3	Halogen (Fluorine)	PRO221	5.42632
A5	−10.3	Halogen (Fluorine)	LEU59	5.39063
A5	−10.3	Halogen (Fluorine)	PRO221	4.44757
A5	−10.3	Halogen (Fluorine)	PHE69	4.87213
A5	−10.3	Halogen (Fluorine)	HIS114	5.14963
A5	−10.3	Halogen (Fluorine)	HIS114	5.12793
A5	−10.3	Halogen (Fluorine)	HIS216	5.28053
A6	−11.0	Conventional Hydrogen Bond	GLU159	3.66252
A6	−11.0	Conventional Hydrogen Bond	LEU58	4.97455
A6	−11.0	Conventional Hydrogen Bond	LEU59	4.97455
A6	−11.0	Conventional Hydrogen Bond	LEU58	4.97241
A6	−11.0	Conventional Hydrogen Bond	VAL63	4.49813
A6	−11.0	Conventional Hydrogen Bond	ILE217	4.54423
A6	−11.0	Conventional Hydrogen Bond	LEU55	4.95044
A6	−11.0	Conventional Hydrogen Bond	LEU166	5.47454
A6	−11.0	Conventional Hydrogen Bond	LEU55	4.41666
A6	−11.0	Conventional Hydrogen Bond	PRO2167	5.21434
A6	−11.0	Conventional Hydrogen Bond	PRO221	4.89313
A6	−11.0	Conventional Hydrogen Bond	LEU59	5.17173
A6	−11.0	Conventional Hydrogen Bond	PHE69	5.20022
A6	−11.0	Conventional Hydrogen Bond	PHE69	5.12895
A6	−11.0	Conventional Hydrogen Bond	TYR213	5.39932
A7	−10.5	Carbon Hydrogen Bond	HIS216	3.78978
A7	−10.5	Carbon Hydrogen Bond	HIS114	3.60387
A7	−10.5	Carbon Hydrogen Bond	LEU58	4.03498
A7	−10.5	Carbon Hydrogen Bond	LEU59	3.97007
A7	−10.5	Carbon Hydrogen Bond	LEU55	5.01233
A7	−10.5	Carbon Hydrogen Bond	LEU55	4.53948
A7	−10.5	Carbon Hydrogen Bond	PRO2167	5.11711
A7	−10.5	Carbon Hydrogen Bond	PRO221	5.46251
A7	−10.5	Carbon Hydrogen Bond	LEU59	5.39657
A7	−10.5	Carbon Hydrogen Bond	PRO221	4.5088
A7	−10.5	Carbon Hydrogen Bond	PHE69	5.20022
A7	−10.5	Carbon Hydrogen Bond	HIS114	5.13828
A7	−10.5	Carbon Hydrogen Bond	HIS114	4.95511
A7	−10.5	Carbon Hydrogen Bond	HIS216	5.23027
A7	−10.5	Carbon Hydrogen Bond	HIS216	5.06078
A8	−9.0	Conventional Hydrogen Bond	ALA385	2.16555
A8	−9.0	Conventional Hydrogen Bond	ALA385	4.63904
A8	−9.0	Conventional Hydrogen Bond	ILE386	4.63904
A8	−9.0	Conventional Hydrogen Bond	LEU129	4.97501
A8	−9.0	Conventional Hydrogen Bond	MET126	4.10023
A8	−9.0	Conventional Hydrogen Bond	VAL345	4.60088
A8	−9.0	Conventional Hydrogen Bond	VAL345	4.60002
A8	−9.0	Conventional Hydrogen Bond	LEU348	5.44256
A8	−9.0	Conventional Hydrogen Bond	ALA385	4.26799
A8	−9.0	Conventional Hydrogen Bond	ALA385	4.0649
A8	−9.0	Conventional Hydrogen Bond	ALA385	4.75806
A8	−9.0	Conventional Hydrogen Bond	LEU129	5.14748
A8	−9.0	Conventional Hydrogen Bond	ALA385	4.62964
A8	−9.0	Conventional Hydrogen Bond	ILE386	4.76785
A8	−9.0	Conventional Hydrogen Bond	PHE133	4.51775
A8	−9.0	Conventional Hydrogen Bond	PHE388	4.91468
A8	−9.0	Conventional Hydrogen Bond	TYR389	3.85255

Fig. 1. (a) Schematic representation of predicted A6 ligand with protein complex interactions in the 2D diagram. Interactions are colored depending on their type. (b) The three-dimensional representation of the binding pose, interactions, H bond donor, and acceptor surface of predicted A6 ligand with the protein complex. (c) Targeted protein is depicted in surface view and A6 ligand compound as the stick in the binding pocket.
(Fluorine), Alkyl, Pi-Alkyl with the amino acid residues of (HIS114, LEU58, LEU59, LEU65, PRO167, PRO221, LEU59, PHE69, HIS114, HIS216) showed in Fig. 3. Furthermore, A3, A4, A5, A8 ligand molecules as complexes with the targeted modeled QcrB protein also revealed higher binding affinity than the template molecule and standard drug respectively. Based on the highest molecular docking scores as binding affinity, non-bond interactions and in comparison with the binding affinity of the standard drug, three ligand compounds (A6, A2, and A7) were considered for further analysis.

3.2. ADME and toxicity prediction

Molecular weight (acceptable range: \(\leq 500\)), number of hydrogen bond acceptors (acceptable range: \(\leq 10\)), lipophilicity (Log P) \(\leq 5\), and molar refractivity (40–130) indicates the five rules of Lipinski, are crucial parameters for a successful drug candidate [20]. All the ADME parameters including drug-likeness, pharmacokinetic profile, and water solubility were analyzed for the selected ligand molecules showed in Table 3. All the ligand molecules as A6, A2, and A7 revealed 0 violations in Lipinski rules, similar bioavailability, and a high rate of gastrointestinal absorption. Only the A2 ligand molecule has glycoprotein permeability. Toxicity prediction was analyzed to determine the compounds were whether toxic or not. Predicted results were shown in Table 4. Determination of carcinogenicity and cytotoxicity of A6, A2, A7 were
template scaffold (Ligand 26) was selected for the in-silico design of IPA compounds as potential hits of anti-TB candidates. The Ethical statement showed zero violations of Lipinski rules with similar bioavailability, and addition, all docking results of designed ligands with the targeted protein showed binding affinities ranging from (−8.5 kcal/mol to −11 kcal/mol). The drug-likeness and pharmacokinetic profile prediction results for the selected ligands with higher binding affinities (A6, A2, and A7) showed zero violations of Lipinski rules with similar bioavailability, and high rate in gastrointestinal absorption, while toxicity parameters such as carcinogenicity and cytotoxicity were all predicted as non-toxic (inactiveness).

4. Conclusion

As an extension of our previous work, this research adopted the in-silico approach in analyzing the binding profiles of some newly designed IPA compounds as potential hits of anti-TB candidates. The template scaffold (Ligand 26) was selected for the in-silico design strategy and ligand compounds (A1–A8) were designed which exhibited better binding affinities when compared with that of the scaffold template (6.8 kcal/mol) and isoniazid standard drug (6.00 kcal/mol). In addition, all docking results of designed ligands with the targeted protein showed binding affinities ranging from (−8.5 kcal/mol to −11 kcal/mol). The drug-likeness and pharmacokinetic profile prediction results for the selected ligands with higher binding affinities (A6, A2, and A7) showed zero violations of Lipinski rules with similar bioavailability, and high rate in gastrointestinal absorption, while toxicity parameters such as carcinogenicity and cytotoxicity were all predicted as non-toxic (inactiveness).

Ethical statement

Not applicable

CRediT authorship contribution statement

Mustapha Abdullahi: Conceptualization, Methodology, Data curation, Formal analysis, Supervision. **Niloy Das**: Software, Visualization, Validation, Writing - original draft. **Ahmed Muhammad Sani**: Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence this work reported in this paper.

References

1. Duarte R, Aguiar A, Pinto M, Furtado I, Tiberi S, Lohnroth K, et al. Different disease, same challenges: social determinants of tuberculosis and COVID-19. Pulmonology 2021;27(4):338-44. https://doi.org/10.1016/j.pulmoe.2021.02.002.
2. Visca D, Ong CWM, Tiberi S, Gents R, D’Ambrosio L, Chen B, et al. Tuberculosis and COVID-19 interaction: a review of biological, clinical and public health effects. Pulmonology 2021;27(2):151-65. https://doi.org/10.1016/j.pulmoe.2020.12.012.
3. Abdul-Hammed M, Adegboyi O, Falade VA, Adepoju AJ, Olusupo SB, Akinboade MW. Target-based drug discovery, ADMET profiling, and bioactivity studies of antibiotics as potential inhibitors of SARS-CoV-2 main protease (Mpro). VirusDisease 2021;1:29. https://doi.org/10.1007/s42250-020-00012-1.
4. Petro K, Biifani P, Jang J, et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 2019;13(9):1157-60. https://doi.org/10.1038/s41591-019-0352-0.
5. Jadhavkar PS, Patel KJ, Dhamelika TM, Saha N. Biogenous Chemistry of Benzimidazooquinazolines as new potential anti-TB chemotypes: design, synthesis, and biological evaluation. Bioorg Chem 2020;99(March):103774. https://doi.org/10.1016/j.bioorg.2020.103774.
6. Dhamelika TM, Patel KJ, Tiwari R, Vagalok S, Panda D, Sriman D, et al. Synthesis, and biological evaluation of benzo [d] imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem 2021;107:104538. https://doi.org/10.1016/j.bioorg.2020.104538.
7. Wang A, Lv K, Li L, Liu H, Tao Z, Wang B, et al. Design, synthesis and biological activity of N-(2-phenoxetyl)ethyl imidazo[1,2-a]pyridine-3-carboxamides as new antitubercular agents. Eur J Med Chem 2019;178:715-25. https://doi.org/10.1016/j.ejmech.2019.06.038.
8. Ko Y, Choi I. Putative 3D structure of QcrB from Mycobacterium tuberculosis cytochrome bc1 complex, a novel drug target for new series of antituberculosis agent Q203. Bull Korean Chem Soc 2016;37(5):725-31. https://doi.org/10.1002/bkcs.10765.
9. Pan Z, Wang Y, Gu X, Wang J, Cheng M. Refined homology model of cytochrome Bcc complex B subunit for virtual screening of potential anti-tuberculosis agents. J Biomol Struct Dyn 2020;38(16):4733-40. https://doi.org/10.1080/07391102.2019.1681916.
10. Abdullahi M, Shallangwa GA, Ibrahim MT, et al. QSAR studies on some C-14urea tetradeine compounds as potent anti-cancer agents against leukemia cell line (K562). J Turkish Chem Soc, Section A: Chem. 2018;5(3). 10.18596/jtcsa.457618.
11. Abdullahi M, Uzairu A, Shallangwa GA, Mamza P, Arthur DE, Ibrahim MT. In-silico modelling studies on some C14-urea tetradeine derivatives as potent anti-cancer agents against prostate (PC3) cell line. J King Saud Univ - Sci 2020;32(1):770-9. https://doi.org/10.1016/j.jsca.2020.04.001.
12. Abdullahi M, Elijah S. In-silico molecular docking and ADME / pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents. Chemistry Africa 2020;3(4):989-1000. https://doi.org/10.24255/020.00162-3.
13. Abdullahi M, Shallangwa GA, Uzairu A. In silico QSAR and molecular docking simulation of some novel ary1 sulfonamide derivatives as inhibitors of HSN1 influenza A virus subtype. Beni-Suef Univ J Basic Appl Sci 2020;9(1):1–12. https://doi.org/10.1007/s43089-019-0023-9.
14. Oduselu GO, Ajani OG, Ahamma YU, Bors R, Abedi E. Homology modeling and molecular docking studies of selected substituted benzof[4,7-imidazo-1-ylmethyl] benzimidamide scaffolds on plasmodium falciparum adenosylcytosine kinase receptor. Bioinform Biol Insights. 2019;13. 10.1177/11779221965553.
15. Mora Lagares L, Minovski N, Caballero Alfonso AY, Benfenati E, Wellens S, Culot M, et al. Homology modeling of the human p-glycoprotein (Abcb1) and its family of substrates and transporters. BioMedRes Int 2019;11:4058. https://doi.org/10.10507/jmcs.2019.10038.
16. Abdullahi M, Adeniyyi SE, Arthur DE, Haruna A. Homology modeling and molecular docking simulation of some novel imidazo[1,2-a]pyridine-3-carboxamide (IPA) series as inhibitors of Mycobacterium tuberculosis. J Genet Eng Biotechnol 2021;19(1):1-13. https://doi.org/10.1016/j.jgeb.2020.100021.
17. Abdullahi M, Uzairu A, Shallangwa GA, Mamza P, Arthur DE, Ibrahim MT. In-silico modelling studies on some C14-urea tetradeine derivatives as potent anti-cancer agents against prostate (PC3) cell line. J King Saud Univ - Sci 2020;32(1):770-9. https://doi.org/10.1016/j.jsca.2020.04.001.
18. Daggupati T, Pannanji R, Vepagavalli S. In silico screening and identification of potential gsk3 inhibitors. J Recept Signal Transd 2018;8(3):279-89. https://doi.org/10.1007/s41199-018-1479854.
19. Clee KA, Potla C, Sribhanna T, et al. Informatics in medicine unlocking molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: a computational study. Inf Med Unlocked 2020;19(March):100345. https://doi.org/10.1016/j.imu.2020.100345.