Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/125054/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Dharmawardena, Thavisha E., Kemper, Francisca, Srinivasan, Sundar, Scicluna, Peter, Marshall, Jonathan P., Wouterloot, Jan G. A., Greaves, Jane ORCID: https://orcid.org/0000-0002-3133-413X, Goldman, Stephen R., Th. van Loon, Jacco, Matsuura, Mikako ORCID: https://orcid.org/0000-0002-5529-5593, McDonald, Iain, He, Jinhua, Zijlstra, Albert A., Toalá, Jesús A., Wallström, Sofia H. J., Kim, Hyosun, Trejo, Alfonso, Ventura, Paolo, Lagadec, Eric, Boyer, Martha L., Liu, Tie, Rau, Gioia, Izumiura, Hideyuki, Cami, Jan, Holland, Wayne, Jones, Olivia and Shinnaga, Hiroko 2019. The Nearby Evolved Stars Survey: I. JCMT/SCUBA-2 Sub-millimetre detection of the detached shell of U Antliae. Monthly Notices of the Royal Astronomical Society 489 (3) , pp. 3218-3231. 10.1093/mnras/stz2334 file

Publishers page: https://doi.org/10.1093/mnras/stz2334
<https://doi.org/10.1093/mnras/stz2334>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
The Nearby Evolved Stars Survey: I. JCMT/SCUBA-2
Sub-millimetre detection of the detached shell of U Antliae

Thavisha E. Dharmawardena1,2,*, Francisca Kemper3,1, Sundar Srinivasan1,4, Peter Scicluna1, Jonathan P. Marshall1, Jan G. A. Wouterloot5, Jane Greaves6, Steven R. Goldman7, Jacco Th. van Loon8, Mikako Matsuura6, Iain McDonald9, Jinhua He10,11,12, Albert A. Zijlstra9,13, Jesús A. Toalá4, Sofia H. J. Wallström1,14, Hyosun Kim15, Alfonso Trejo1, Paolo Ventura16, Eric Lagadec17, Martha L. Boyer7, Tie Liu15,5, Gioia Rau18,19, Hideyuki Izumiura20, Jan Cami21,22, Wayne Holland23, Olivia Jones23, Hiroko Shinnaga24

1 Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan.
2 Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli 32001, Taoyuan, Taiwan.
3 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany
4 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Antigua Carretera a Patzcuaro # 8701, Ex-Hda. San José de la Huerta, Morelia, Michoacán, México C.P. 58089.
5 East Asian Observatory, 660 N A’ohoku Place, Hilo, Hawaii 96720, USA.
6 School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK.
7 STScI, 3700 San Martin Drive, Baltimore, MD 21218 USA
8 Lennard-Jones Laboratories, Keele University, ST5 5BG, UK.
9 Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester, M13 9PL, UK.
10 Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216, P. R. China.
11 Chinese Academy of Sciences South America Center for Astronomy, China-Chile Joint Center for Astronomy, Camino El Observatorio 1515, Las Condes, Santiago, Chile
12 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
13 Laboratory for Space Research, University of Hong Kong, Pokfulam Road, Hong Kong
14 Institute of Astronomy, KU Leuven, Celestijnlaan 200D bus 2401, 3001 Leuven, Belgium
15 Korea Astronomy and Space Science Institute, 776, Daedukdae-ro, Yusong-gu, Daejeon, 34055, Republic of Korea
16 INAF, Osservatorio Astronomico di Roma, Via Frascati 33, Monte Porzio Catone, 00077 Roma, Italy
17 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Grasse, France
18 NASA/GSFC, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771, USA
19 CRESST II and Department of Physics, Catholic University of America, Washington, DC 20064, USA
20 Okayama Branch Office, Subara Telescope, NOAO, NINS 3037-5 Honjo, Kagamigawa, Asakuchi, Okayama, 719-0232, JAPAN
21 Department of Physics and Astronomy and Centre for Planetary Science and Exploration (CPSEX), The University of Western Ontario, London, ON N6A 3K7, Canada
22 SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, CA 94043, USA
23 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
24 Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University 1-21-35 Korimoto, Kagoshima 890-0065 JAPAN

22 August 2019
We present the highest resolution single-dish submillimetre observations of the detached shell source U Antliae to date. The observations were obtained at 450 μm and 850 μm with SCUBA-2 instrument on the James Clerk Maxwell Telescope as part of the Nearby Evolved Stars Survey. The emission at 850 μm peaks at 40′′ with hints of a second peak seen at ∼ 20′′. The emission can be traced out to a radius of 56′′ at a 3σ level. The outer peak observed at 850 μm aligns well with the peak observed at Herschel/PACS wavelengths. With the help of spectral energy distribution fitting and radiative transfer calculations of multiple-shell models for the circumstellar envelope, we explore the various shell structures and the variation of grain sizes along the in the circumstellar envelope. We determine a total shell dust mass of \((2.0 ± 0.3) \times 10^{-5} \, M_\odot\) and established that the thermal pulse which gave rise to the detached shell occurred 3500 ± 500 years ago.

Key words: stars: AGB and post-AGB – stars: circumstellar matter – stars: mass-loss – stars: individual: U Ant

1 INTRODUCTION

In the final stages of stellar evolution stars expel their outer layers enriched with the products of nucleosynthesis into the interstellar medium (ISM). For intermediate-mass stars \((1M_\odot \leq M \leq 8M_\odot)\), the majority of this mass loss occurs while on the Asymptotic Giant Branch (AGB) in a pulsation-enhanced, radiation-pressure driven wind (Höfner & Olofsson 2018).

AGB stars are often treated as quasi-stable systems, without incorporating treatment of their evolution, while their winds are treated as spatially and temporally homogeneous outflows. The existence of complex structures such as elongations, detached shells and bipolar outflows (Zijlstra et al. 2001; Olofsson et al. 2010; Ramstedt et al. 2011; Cox et al. 2012; Maercker et al. 2012), indicates that the true mass-loss mechanisms are far more complex than commonly inferred. Particularly uncertain is the extent to which the stellar wind is enhanced in mass and/or momentum when the star undergoes a thermal pulse (He-shell flash). Thus, further observational constraints are required before we can statistically model mass loss from AGB stars accurately. By studying the extended dust emission and comparing it to constant-outflow models and detailed numerical simulations (e.g. Bowen & Willson 1991; Höfner 2008), we can study the properties of this non-uniformity and accurately determine time-variant mass-loss and dust-production rates and establish the properties of the grains that enter the ISM.

Of the variety of structures shown by AGB envelopes, detached dust shells are among the most striking features. They are thought to result from a period of strong mass loss due to a thermal pulse, during which the star may expand and brighten dramatically for a few centuries (Willems & de Jong 1988; Vassiliadis & Wood 1993; Marigo et al. 2017). According to predictions from evolutionary models (e.g., Mattsson et al. 2007) the mass-loss rate during the thermal pulse is more than an order of magnitude greater than before the thermal pulse, mainly driven by the temporal increase in luminosity. A faster wind speed during this period means that the older, slower wind in front of the density-enhanced wind piles up at the shock interface into a shell (Mattsson et al. 2007). Such a detached shell source would be observed as a nearly symmetrical ring of gas and dust surrounding a near empty region around the star (Zijlstra et al. 2001; Schöier et al. 2005).

Similar morphologies have been observed in a number of objects (e.g. Olofsson et al. 1988, 1990; Izumiya et al. 1996, 1997, 2011). After the thermal pulse the star’s luminosity rapidly diminishes to below pre-pulse levels, and then gradually recovers. This would have led to a drop in mass-loss rate and wind speed soon after the increase in both of these quantities (Steffen & Schönberner 2000). Because the effect of luminosity on mass-loss rate is greater than that on wind speed (e.g., Eriksson et al. 2014; Goldman et al. 2017), this reversal exacerbates the contrast in wind density in the wake of the shell.

U Antliae is a C-rich AGB star located at a distance of 268 ± 39 pc (van Leeuwen 2007). It is surrounded by a well-defined detached shell, estimated to have been expelled by the star ∼ 2800 years ago (Kerschbaum et al. 2010). Independent scattered-light, \(^{12}\)CO low-J rotational line emission, mid-IR and far-IR observations of U Ant all show radically different structure, making this source rather unique. We summarise the published results in Table A1 in the appendix and a schematic diagram showing their mean shell radii and FWHMs in Fig. A1.

Optical scattered-light observations by González Delgado et al. (2001, 2003) reveal four subshells at ∼ 25′′, 37′′, 43′′ and 46′′ from the star (hereafter ss1, ss2, ss3, ss4), with the innermost two shells only tentative detections. They derive shell widths of ∼ 3′′, ∼ 6′′, ∼ 3′′ and ∼ 10′′ for ss1, ss2, ss3 and ss4 respectively. These authors find ss3 to be dominated by line-scattered light (i.e. resonance scattered light) instead of dust-scattered light indicating that ss3 is dominated by gas instead of dust. Follow-up observations by Maercker et al. (2010) also observed ss3 and ss4 in optical scattered light at ∼ 43′′ and ∼ 50′′ with shell widths of ∼ 2′′ and ∼ 7′′. They find ss3 to be fainter in dust-scattered light and brighter in line-scattered light. While features appear at the positions of ss1 and ss2 in their azimuthally-averaged surface-brightness profiles, the authors argue that they are a result of substructure in ss3 and ss4 projected towards the inner regions of the detached shell.

Observations of thermal dust emission, however, tell...
a different story. Mid-IR and far-IR observations from AKARI show that the surface brightness peaks at ~ 41″ (Arimatsu et al. 2011). However, they assume the double shell model (including peak radii and FWHMs) presented in Maercker et al. (2010) when analysing their data. Izumiura et al. (1997) et al., suggest the presence of two shells at ~ 46″ and ~ 3′ based on IRAS images. The latter has not been recovered by any other observations to date. Curiously, far-IR observations from Herschel/PACS appear to be dominated by ss3, peaking at 40″ (Kerschbaum et al. 2010; Cox et al. 2012). As described, in all other instances ss3 is observed to have very faint emission in dust continuum but very bright in gas emission.

The shell has also been extensively observed in sub-mm CO lines. Olofsson et al. (1996) first mapped the gas shell in CO (1-0), (2-1) and (3-2), albeit at low resolution, locating the shell at 41″ (width = 13″). The APEX 12CO(3-2) radial profile (Maercker et al. 2010) clearly peaks at the location of ss3 and has a measured shell width of ~ 2.6″. High spatial resolution (1.5″) ALMA 12CO(3-2) and (1-0) observations by Kerschbaum et al. (2017) also only detect a single CO gas shell coinciding well with ss3. The CO shell is located at 42.5″ from the central source and has a measured width of ~ 5″. The ALMA observations also show filamentary substructure within the gas shell.

As mentioned above, Maercker et al. (2010) suggest that ss3 and ss4 are real, while ss1 and ss2 are filamentary substructures of ss3 and ss4 projected against the inner regions of the detached shell. They show that the small distance between ss3 and ss4 and the corresponding time scales (~ 110 yrs) suggest that these sub-shells could not have occurred due to multiple thermal pulses. The most likely scenario is a single thermal pulse ~ 2800 yrs ago gave rise to the detached shell following which a secondary mechanism shaped the single detached shell into the multiple sub-shells observed.

A model for multiple shell formation in AGB and post-AGB stars was proposed by Simis et al. (2001). They suggest alternating dust and gas shells 200 – 400 years apart formed as a result of dust and gas decoupling. In a similar vein for U Ant, Maercker et al. (2010) proposed the splitting of a single detached shell (located at the position of ss3) into two is an effect of gas-grain decoupling due to varying expansion velocities, resulting in a single, gas-rich sub-shell and a dust component at larger radii due to the higher expansion velocity. In this scenario the gas velocity slows down in the wind collision region while the dust sails through.

Should ss1 and ss2 be real, an as-of-yet unknown mechanism is required to explain their formation. One possibility is that instabilities at the interaction between the fast and slow winds may have created multiple shock fronts with dust decoupling in the swept back shock, resulting in ss1 and ss2 (González Delgado et al. 2001; Schönier et al. 2005; Kerschbaum et al. 2017). The presence of filamentary structure in the gas-rich shell in the ALMA observation by Kerschbaum et al. (2017) provides evidence for a reverse shock. Another is that these shells could be a result of density and velocity modulations which took place during the thermal pulse (Villaver et al. 2002; Maercker et al. 2010).

While U Ant is well studied from the optical to the far-IR, only a few sub-mm continuum observations of the source exists. Archival observations obtained using the JCMT/SCUBA instrument (the predecessor to SCUBA-2) in 1997 (PI: Greaves) were never published until now, and do not clearly show the detached shell due to a low signal-to-noise ratio (see Appendix E). U Ant was also part of a sample of three detached shell sources studied by Maercker et al. (2018) at 870 μm using APEX/LABOCA. The authors report a sub-mm excess in the detached shell when comparing the observed fluxes to the output from radiative transfer models derived by combining data from the optical to the far-IR and extrapolating to the sub-mm. They measure an excess which is 2.3 ± 0.3 times greater than the model predictions.

In this paper we present the highest angular-resolution (13″) submillimetre dust continuum detection of the detached shell of U Ant to date. The observation was obtained with the James Clerk Maxwell Telescope’s (JCMT) Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2; Holland et al. 2013) instrument, as part of the Nearby Evolved Stars Survey (NESS; Scicluna et al., in prep.).

Using this new sub-mm data, combined with archival Herschel/PACS data we study the dust properties and masses in this unique detached shell source. The analysis is carried out with the aim of reconciling the differences seen in the various types of observations. Using radiative transfer modelling we will evaluate whether our observations are consistent with the dust distribution over the multiple sub-shells as reported in the past.

As part of the NESS data release, the raw SCUBA-2 data used in this paper will be available in the near future. The scripts and reduced data required to reproduce the analysis, figures and tables presented in this paper is available in figshare from https://figshare.com/projects/UAnt_Submm/67421 under the project title UAnt_Submm.

2 OBSERVATIONS AND DATA REDUCTION

U Ant was observed on 18th of January 2018 as part of NESS (program ID: M17BL002) with SCUBA-2 on the JCMT. The observations were carried out at 450 μm (beam FWHM = 7.9″) and 850 μm (beam FWHM = 13″) using the CV-daisy scan pattern. The total observing time was 2.1 hours broken into four repeats.

The data were reduced using the modified SCUBA-2 pipeline presented in Dharmawardena et al. (2018) via Starlink (Currie et al. 2014) version 2018A. In general SCUBA-2 pipelines are built to handle bright point sources such as quasars or large extended structure such as molecular clouds. Compared to these evolved star circumstellar emission in the sub-mm is only marginally extended, leading to standard pipelines being unable to recover the circumstellar emission efficiently. Therefore in Dharmawardena et al. (2018) we developed a modified pipeline which can recover the marginally extended faint circumstellar emission optically while suppressing artefacts.

2.1 Removing CO(3-2) Contamination

The wide bandwidth of the SCUBA-2 instrument (790 μm – 940 μm) contains the frequency of the CO(3-2) rotational transition. If this transition is strong enough, it may contam-
inate measurements of the continuum flux1 (Drabek et al. 2012). Therefore we carry out 12CO(3-2) subtraction on our SCUBA-2 850 μm observation. A full description of the methodology used to carry out this subtraction is presented in appendix B.

We find a $\sim 30\%$ reduction in 850 μm flux when the subtraction is carried out. This is on the upper end of the range reported by Drabek et al. (2012) when extreme cases are excluded. In the analysis to follow we use the 12CO(3-2) subtracted SCUBA-2 850 μm observation.

2.2 Archival Herschel observations

We combine the SCUBA-2 observations with Herschel/PACS 70 μm and 160 μm imaging observations of U Ant as part of our analysis (FWHMs of 5.46 \times 5.76 and 10.65 \times 12.13 respectively). These data are a part of the Mass-loss of Evolved Stars (MESS) program (Groenewegen et al. 2011) and are publicly available for download via the Herschel Science Archive2. Here we use the Level 2.5 reduced products, the highest available pipeline-reduced data products calibrated using PACS calibration version PACS_CAL_27.0.

In addition to Herschel/PACS data we utilised the Herschel/SPRE data from the MESS survey. The SPIRE beam FWHMs are 18$''$ at 250 μm, 24$''$ at 350 μm, and 42$''$ at 500 μm, therefore the resolution of SCUBA-2 even at 850 μm is at least a factor of 1.5 better. As the primary goal of this project is to analyse the sub-mm emission from the detached shell of U Ant, in order to preserve the SCUBA-2 resolutions we opt to not include the SPIRE data when carrying out spatial observational analysis. Therefore, we only use the SPIRE data for the SED analysis when carrying out radiative transfer modelling in Sec. 3.2.2.

3 ANALYSIS AND RESULTS

3.1 Surface-brightness Profiles

The SCUBA-2 450 μm map has an RMS of 0.24 mJy arcsec$^{-2}$ and a pixel size of 2$''$ (see Fig. 1a). Presented in Fig. 1b, the final CO subtracted 850 μm map has an RMS of 0.02 mJy arcsec$^{-2}$ and a pixel size of 4$''$. The 850 μm image clearly shows a circumstellar envelope (CSE) extending over the full region of the detached shell of U Ant.

We derive the surface-brightness and PSF-subtracted residual profiles using the methods described in Dharmawardena et al. (2018) (see Fig. 2).

The uncertainties on the residual profiles are the quadrature sum of the uncertainty on the PSF and the uncertainty on the radial profile:

$$\sigma_{res}^2 = \sigma_{SB}^2 + \left[\frac{\sigma_{PSF}}{F_{PSF}(r = 0)} F_{PSF} \right]^2,$$

where σ_{res} is the uncertainty on the residual profile, σ_{SB} is the uncertainty on the surface brightness profile and σ_{PSF} is the uncertainty on the PSF after it is scaled to the central peak pixel. The fractional uncertainty on the PSF (i.e. $\frac{\sigma_{PSF}}{F_{PSF}(r = 0)}$) is equal to the fractional uncertainty on the peak of the radial profile to which the PSF is scaled. The shape of the SCUBA-2 PSF is well known, therefore no significant uncertainty arises due its shape. As we align the PSF with 0.1 pixel precision, any effects due to misalignment are negligible.

The 850 μm residual profile show a broad peak centred at 40$''$. We also observe hints of an additional inner peak centred at $\sim 20''$. The outer maximum corresponds well to their Herschel/PACS counterparts. The 850 μm residual profile has a surface-brightness extent of 56$''$ (0.07\pm0.01 pc) at 3σ detection limit ($R_{3\sigma}$), which is comparable to the $R_{3\sigma}$ we measure at both Herschel/PACS wavelengths.

The 450 μm profiles shows hints of emission from the detached shell once again at $\sim 40''$. However, the low signal-to-noise of the observation limits our ability to constrain this emission any further.

Background-subtracted total fluxes (central source + extended component: F_{total}) at 450 μm and 850 μm were measured to be 435\pm70 mJy and 199\pm34 mJy respectively. Fluxes at both wavelengths are derived using an aperture of 50$''$ (R_{50} at 850 μm) and a sky annulus from 80$''$ to 120$''$. The PSF-subtracted (or extended) component of the CSE accounts for 80% of the total flux at 850 μm.

3.2 Shell Modelling

We carry out two sets of modelling in order to discern the detached-shell properties of U Ant in a step-by-step manner. The first of these interprets the extended emission observed in the far-IR and sub-mm in isolation (further described in Sec.3.2.1). Here we fit the four-point Spectral Energy Distribution (SED) at each radial point of the extended circumstellar envelope derived by combining the residual profiles (following the subtraction of the central point sources) at each of the four wavelengths. By fitting the thermal dust emission of the extended CSE at each radial point we derive the dust Temperature (T), Spectral index of dust emissivity (β) and mass column density (Σ).

Second, we carry out self-consistent radiative-transfer modelling of the entire system, i.e. star + shell (further described in Sec.3.2.2). We do this in an attempt to compare structures suggested in the literature to the global SED and far-IR and sub-mm extended emission and potentially exclude some scenarios due to incompatibility with our observations of U Ant.

3.2.1 Radial point-to-point Spectral Energy Distribution Fitting

By combining all four residual profiles we derive the Spectral Energy Distributions (SEDs) at each radial point. These SEDs are fitted with a single-temperature blackbody model modified by an effective emissivity law (e.g., Hildebrand 1983; Gordon et al. 2014) using the method presented in Sec. 3.2 of Dharmawardena et al. (2018). This results in radial profiles for the dust T, β and Σ.

1 https://www.eaobservatory.org/jcmt/instrumentation/continuum/scuba-2//contamination/

2 http://www.cosmos.esa.int/web/herschel/science-archive
Figure 1. (a) 450 \(\mu\)m observation of U Ant (1 pix = 2\(\arcsec\)); (b) CO (3-2) subtracted 850 \(\mu\)m observation of U Ant (1 pix = 4\(\arcsec\)). Dashed white circle: 3\(\sigma\) surface-brightness extent (56\(\arcsec\)) at 850 \(\mu\)m. Filled white circle in the bottom left corner: SCUBA-2 beam (450 \(\mu\)m beam FWHM = 7.9\(\arcsec\) and 850 \(\mu\)m beam FWHM = 13\(\arcsec\)).

Figure 2. Surface-brightness and residual profiles of U Ant. Left hand panels: The blue dashed lines represent the source surface-brightness profiles and the grey solid lines represent the PSF profile of the instrument at the given wavelength; Right hand panels: The orange lines represents the PSF subtracted residual profiles for each wavelength.
As with Dharmawardena et al. (2018), the input dust model consists of a mixture of 90% amorphous carbon (optical constants from Zubko et al. 1996) and 10% silicon carbide (optical constants from Pégourié 1988). The grain size distribution is as prescribed by Kim et al. (1994) (a power-law with an exponential falloff); where we use a minimum grain size of 0.01 μm and an exponential scale factor of 1 μm, with a power-law slope of −3.5. This results in an effective emissivity at 160μm (σ_{eff,160}) of 26 cm²g⁻¹. We use this same dust model in the analysis throughout the entire paper in order to ensure consistency between the different types of modelling carried out.

The fitting is performed with the python package emcee (Foreman-Mackey et al. 2013), which uses affine-invariant Markov Chain Monte Carlo (MCMC) algorithms to carry out Bayesian inference on the SEDs to the specified model, and find the most probable value for each parameter at every radial point. The 1σ uncertainties of the profiles are the central 68% of the samples of the posterior generated by emcee with its median being used as the estimator.

We made several modifications to the SED fitting MCMC code presented by Dharmawardena et al. (2018) to suit this analysis. In particular, the limits in the T prior are set to 20 K < T < 300 K, with the inner temperature set to 1800 K. The β limits are set to be β > 1. We find these modifications allow for better converged results for U Ant.

As described in Sec. 4.2 of Dharmawardena et al. (2018), the curvature of the fitted modified blackbody depends on both β and T. The temperature is constrained by the peak of the SED at each individual radial point, thus by the Wien end of the SED (Shetty et al. 2009). Hence the T profile is constrained by the far-IR PACS detections. The β profile is constrained by the longer wavelength (λ ≥ 300μm) SCUBA-2 detections as it describes the Rayleigh-Jeans tail of the SED (Doty & Leung 1994; Shetty et al. 2009; Sadavoy et al. 2013). The Σ profile is constrained by either the PACS or the SCUBA-2 detections.

There is a known anti-correlation between T and β in all three-parameter modified blackbody models and the best way to overcome this degeneracy is to employ hierarchical Bayesian inference (Kelly et al. 2012). However as we lack the required sample size to carry out hierarchical Bayesian inference we use an informative prior on β (probability distribution function of β observed in M31). While it can not completely remove the degeneracy, it helps to minimise its impact.

The resulting T, β and Σ profiles are presented in Figure 3. Appendix C shows an example of the median modified black body model at one radial point to illustrate the quality of the fit.

By integrating over the Σ profile from 12" to 56" we derive a total dust mass of (2.0±0.3)×10⁻⁵ M☉ in the detached shell. This mass is assumed to be constant throughout the rest of this paper. This assumption may have an impact on the model SEDs and surface brightness profiles in Sec. 3.2.2, but the very low optical depth of the shell means the effects will be negligible.

3.2.2 Full Radiative Transfer Modelling

In order to qualitatively determine the location of the far-IR/sub-mm dust emission we generate models using the python radiative-transfer package HYPERION (Robitaille 2011). We compare the resulting model SEDs to the observed global SED of U Ant from optical to sub-mm (see Table D1 in the appendix). Further, we qualitatively compare the resulting surface-brightness profiles to those derived from the SCUBA-2 and PACS observation. The best fit model SEDs and surface-brightness profiles allow us to narrow down the most likely CSE structure of U Ant.

We choose six different model scenarios based on our observations and past literature reports. Since four distinct sub-shells have been reported we have experimented with scenarios that put all of the dust that we have measured in the radial SED fitting (Sec. 3.2.1) in one of each of these shells. For the fourth shell, two different radii were reported by Maercker et al. (2010) and Kerschbaum et al. (2010) using dust continuum observations. Therefore in total we arrive at five distinct model scenarios: Ms1; Ms2; Ms3, Ms4-M2010; Ms4-K2010. A sixth scenario sees all dust distributed between the four sub-shells with the mass distribution determined from literature (Moursshells; González Delgado et al. 2001, 2003; Maercker et al. 2010; Maercker et al. 2018). The input parameters for the individual models are presented in Table 1. While the detached shell has an expansion velocity of 20.5 km s⁻¹ (De Beck et al. 2010) we do not use this as input parameter as we have placed the sub-shells in their correct positions our static models.

In the case of U Ant, the angular resolution of the JCMT/SCUBA-2 at 850 μm is comparable to the distance...
Table 1. Input parameters for individual models

Model	Sub-shell	Shell Radius	% of total dust mass
Mss1	ss1	23.5'' – 26.5''	100%
Mss2	ss2	34'' – 40''	100%
Mss3	ss3	41.5'' – 44.5''	100%
Mss4-M2010	ss4	46.5'' – 53.5''	100%
Mss4-K2010	ss4	34'' – 46''	100%
Mfoursheells	ss1	23.5'' – 26.5''	22.5%
	ss2	34'' – 40''	22.5%
	ss3	41.5'' – 44.5''	5%
	ss4	46.5'' – 53.5''	50%

between the innermost and the outermost sub-shells. Therefore, we are only able to test the extreme scenarios presented above. Further exploration of the distribution of dust and finer shell structure is not informative as we are unable to meaningfully constrain the free parameters.

To derive the appropriate input synthetic stellar photosphere and its parameters required as input to Hyperion (e.g., stellar luminosity and effective temperature) we fit the observed global SED of U Ant from optical – mid-IR (0.5 – 10 μm) to the COMARCS stellar photosphere model grid (Aringer et al. 2009). Past reports have found that the optical depth of the detached shell of U Ant is very low from optical – sub-mm (e.g., Dharmawardena et al. 2018). We do not include an underlying contribution from the extended component in all four of the PACS and SCUBA-2 observations (see Sec. 3.1). This result is ~ 25% larger than the average reported in Dharmawardena et al. (2018), as expected for a bright detached shell source.

The peaks at 70 μm, 160μm and the outer peak at 850 μm align well at 40″, despite the large difference in resolution, and match the weak emission at 450 μm. Additionally, Kerschbaum et al. (2010) report the same peak-intensity radius, also using the MESS Herschel/PACS observations at 70 μm and 160μm. Interestingly, none of the scattered-light peaks correspond to this sub-mm peak and it is located between ss2 and ss3. Further, the inner broad peak observed only at 850 μm also does not correspond to any of the scattered light sub-shells and is located interior to ss1.

The aligned peaks in the SCUBA-2 and PACS profiles seen in Fig. 2 point towards the presence of a single dust shell, with a far-IR/sub-mm peak at ~ 40″. We expect the peak is somewhat smeared by the beam sizes of the corresponding instruments. Such a single dust shell is consistent with the single gas-rich shell reported by Kerschbaum et al. (2017) using ALMA observations. Kerschbaum et al. (2017) suggests the gas-rich shell to have strong gas and dust coupling resulting in the peaks observed in both the CO observations and dust continuum observations.

However we note another reason for the lack of distinct sub-shells could be the resolution of our observations. The separation between sub-shells is comparable to the FWHM of the SCUBA-2 beam (13″) resulting in the merging of shells in the observation. Nevertheless, if this were the case the multiple sub-shells should most likely have been visible in the Herschel/PACS 70μm observations which has a much smaller beam size of 6″, the approximate width of the shells in scattered light.

The additional emission peak at ~ 20″ seen at 850 μm cannot be due to thermal dust emission, as the lack of emission at this radius at shorter wavelengths would require the dust to have a temperature of ~ 4 K (according to Wien’s Law) which is unphysically low for dust so close to the star. Large or more amorphous grains radiate more efficiently at longer wavelengths (Testi et al. 2014), an effect that is expressed with low β value, but no evidence for such an effect is found in the radially-derived β values in Sec. 4.2. It thus remains unclear what the source of emission for this component is.

Following this, the inner brightness peak at 850 μm is most likely a result of projection effects due to emission from filament-like/chumpy substructure within the single shell, resulting in discernible structure in the inner region of the CSE when projected against the plane of the sky. This is consistent with suggestions by Maercker et al. (2010) and the gaseous filamentary structure observed in past ALMA observations (Kerschbaum et al. 2017). The substructure likely

4 DISCUSSION

4.1 Surface-brightness emission

We find that approximately 80% of the total flux is emitted from the extended component in all four of the PACS and SCUBA-2 observations (see Sec. 3.1). We expect the peak is somewhat smeared by the beam sizes of the corresponding instruments. Such a single dust shell is consistent with the single gas-rich shell reported by Kerschbaum et al. (2017) using ALMA observations. Kerschbaum et al. (2017) suggests the gas-rich shell to have strong gas and dust coupling resulting in the peaks observed in both the CO observations and dust continuum observations.

However we note another reason for the lack of distinct sub-shells could be the resolution of our observations. The separation between sub-shells is comparable to the FWHM of the SCUBA-2 beam (13″) resulting in the merging of shells in the observation. Nevertheless, if this were the case the multiple sub-shells should most likely have been visible in the Herschel/PACS 70μm observations which has a much smaller beam size of 6″, the approximate width of the shells in scattered light. The additional emission peak at ~ 20″ seen at 850 μm cannot be due to thermal dust emission, as the lack of emission at this radius at shorter wavelengths would require the dust to have a temperature of ~ 4 K (according to Wien’s Law) which is unphysically low for dust so close to the star. Large or more amorphous grains radiate more efficiently at longer wavelengths (Testi et al. 2014), an effect that is expressed with low β value, but no evidence for such an effect is found in the radially-derived β values in Sec. 4.2. It thus remains unclear what the source of emission for this component is.

Following this, the inner brightness peak at 850 μm is most likely a result of projection effects due to emission from filament-like/chumpy substructure within the single shell, resulting in discernible structure in the inner region of the CSE when projected against the plane of the sky. This is consistent with suggestions by Maercker et al. (2010) and the gaseous filamentary structure observed in past ALMA observations (Kerschbaum et al. 2017). The substructure likely
Figure 4. Comparison of model SEDs (synthetic photometry points connected by lines) with the observed SED (see Table D1). Black dots: observed SED; Grey dotted line: COMARCS model; Bright green dots: SCUBA-2 points; Dark green line: Mss1; Violet line: Mss2; Light green line: Mss3; Red line: Mss3-M2010; Gold line: Mss3-K2010; Blue line: Mfourshells.

Table 2. χ^2_p comparison between modelled and observed SED and surface brightness profiles.

Model	SED χ^2_p	Surface Brightness Profiles	χ^2_p		
	λ [µm]	70 µm	160 µm	450 µm	850 µm
Mss1	20596	6635	111	1	16
Mss2	2259	610	21	1	18
Mss3	635	148	15	1	19
Mss4-M2010	687	258	19	1	19
Mss4-K2010	1224	297	16	1	18
Mfourshells	1722	569	21	1	18

possesses different grain properties to that of the overall average detached shell, hence causing it to appear only at 850 µm and not at the PACS wavelengths. We discuss this further in Sec. 4.2 by analysing the T, Σ and β profiles.

R_{16} at 850 µm (56") coincides well with the outer edge of ss4 detected by González Delgado et al. (2001, 2003) and Maercker et al. (2010) in scattered light. This is also consistent with the outer-most shell in mid-IR previously reported by Arimatsu et al. (2011). This radius lies within the interquartile range measured for the sample of fifteen evolved stars by Dharmawardena et al. (2018).

Assuming a detached-shell expansion velocity of 20.5 km s$^{-1}$ (De Beck et al. 2010) and a distance of 268 ± 39 pc (van Leeuwen 2007), we trace the circumstellar shell out to a look-back age of 3500±500 yr at 850 µm at the 3σ level. This age is comparable to the ages obtained by Maercker et al. (2010) and Kerschbaum et al. (2017).

4.2 Radial variation in dust properties

In Figure 3 we present the T, Σ and β SED fitting results calculated using EMCEE. The innermost ∼10" region of all three profiles is compromised by PSF-subtraction effects on the residual profile, and are therefore not included in the analysis or the figure.

All three profiles are well constrained from 12" – 56", i.e. up to the R_{16} radius at 850µm. The temperature profile peaks at 40", aligning well with the peaks observed in surface-brightness residual profiles. The overall weighted-averaged temperature is 54 ± 2 K within the region with
Figure 5. Comparison of model surface-brightness profiles with the observed. The legend shown in the SCUBA-2 450 µm panel applies to all other panels too. From top to bottom the plots show 70 µm, 160 µm, 450 µm and 850 µm respectively. Black dots: Observed surface-brightness profiles; Dark green line: Mss1; Violet line: Mss2; Light green line: Mss3; Red line: Mss3-M2010; Gold line: Mss3-K2010; Blue line: Mfourshells.

As shown by the middle panel in Fig. 3, the radial variation of Σ clearly deviates from the uniform and constant mass-loss model overlaid in brown. The constant mass-loss model here is calculated by projecting a r^{-2} density distribution from 3-dimensions to 2-dimensions. From $\sim 12'' - 56''$ the Σ profile follows an overall flat profile with no discernible peaks to indicate the presence of the detached shell. This could be due to interference of the substructure within the detached shell. Line-of-sight confusion – a result of the substructure – could cause the dust mass to appear spread evenly throughout the CSE when using this method. Therefore while we are able to estimate the outer radius of the detached shell using these parameter profiles, we are unable to identify the inner region. We see a sharp decrease in Σ following this, indicating that approximately 3500 ± 500 ago there was an event of high mass injection to the CSE, i.e. the thermal pulse which gave rise to the detached shell.

The integrated dust mass from $12'' - 56''$, $(2.0 \pm 0.3) \times 10^{-5} M_\odot$ (statistical uncertainty only), is ~ 3 times smaller than that reported for ss4 by Maercker et al. (2010) based on optical scattered light. Given the likely uncertainties in measuring dust masses from scattered light these two measurements are probably consistent. The derived dust mass is consistent with those reported by Schöier et al. (2005); Arimatsu et al. (2011) and Maercker et al. (2018).

By studying the upper and the middle panels in Fig. 3, we see that the T and Σ are prior dominated from $\sim 80''$ outwards. The region immediately ahead of the thermal pulse constraints. The weighted-average dust temperature of the shell agrees well with the dust temperature reported in Schöier et al. (2005) using radiative transfer modelling. The temperature is also consistent with that expected for dust grain heating by the interstellar radiation field (ISRF). This suggests grains in this regions are heated by the same uniform ISRF and hence posses a similar temperature, giving rise to a single-temperature dust component.
(i.e. 56′′ − 80′′) suggests there may be emission from pre-
thermal pulse material below the 3σ level likely observed by
Herschel/PACS.

The final panel in Fig. 3 depicts the radial β variation of
the detached shell. The variation of β up to 56′′ is a di-
rect indicator that the grain properties vary radially. The dif-
ference from the canonical value of β for ISM dust (e.g.: Planck
Collaboration et al. 2014) demonstrates that there is no sub-
nstantial contribution from a swept up ISM dust com-
ponent. This supports arguments that the shell arises from a
variation in mass loss rather than an interaction between the
wind and the ISM (Wareing et al. 2007). Given the uncer-
tainties it is difficult to pinpoint the location of the changes in
β. The region beyond 56′′ is prior dominated as the best-
fit value of β is dictated by the SCUBA-2 data, which no
longer provide strong constraints beyond this radius.

The broad peak at 16′′ (β = 1.85) is aligned well with the
inner residual profile peak at 850 μm, indicating that grains in this region are different to that of the rest of the
shell, i.e. within the substructure of the shell. The dip at 40′′
(β = 1.1) is consistent with the peaks in both the temper-
ature and residual profiles. The minimum and maximum
values of β observed are intermediate to those expected for amorhous carbon and graphite (Mennella et al. 1998;
Draine 2016).

4.3 Self-consistent dust radiative transfer
modelling

The model SEDs in Fig. 4 are indistinguishable from one an-
other at wavelengths shorter than 11.6 μm, reproducing the
general trend in observed global SED and the COMARCS
model from the optical to mid-IR. From 11.6 μm onwards
the SEDs of all but the Mss1 align well with the observations
up to 500 μm.

As expected given previous reports (Kerschbaum et al.
2010; Maercker et al. 2010) and as seen in Fig. 4, the sce-
nario of only an inner shell is unlikely. This is consistent with the largest χ^2_p values being derived for this model ren-
dering it the least likely. This supports the suggestion by
Maercker et al. (2010) that ss1 is an artefact. For a similar
reason the model with all the dust in ss2 also does not pro-
vide a good fit. Given that the models of ss1 and ss2 do not
fit well, it is expected for the Mfourshells to also not fit well.

The reason for this is likely related to the temperatures of
dust at these distances, which is too warm to reproduce the
observed FIR emission.

Interestingly having all dust in ss3 best reproduces the
SED with having all dust in the outermost shell (M2010) fol-
lowing a close second. Further, having all dust in the K2010
variety of the outermost shell has a much larger χ^2_p mak-
ing it also unlikely (most likely due to warm dust in the
inner region overlapping with ss2). Therefore it is possible
that the detached shell of U Ant extends from 41′′ − 54′′.

Previous reports of shell 3 having little-to-no dust may be
premature, agreeing with the peak of the Herschel/PACS
radial profiles, which peak at the location of ss3 where the
gas emission peaks.

We note that similar to Maercker et al. (2018), none of
the models reproduce the flux at 850 μm, however they did
not account for the contribution of CO(3-2) to the 850 μm
flux. Our analysis – including CO subtraction – still pro-
duces an excess in flux ~ 3 times the model predictions.

This could be due to the difference in grain properties in
the substructure only visible at 850 μm. Further exploration
into dust properties (e.g.; size, shape and/or composition)
and emission mechanisms (e.g.: spinning dust grains) may
help understand this effect. Longer wavelength observation
at e.g. 1.1 and 1.3 mm from ALMA or the LMT will con-
tribute towards confirming the presence and shape of this
excess.

As seen in Fig. 5, at 70 μm and 160 μm none of the
model surface-brightness profiles reproduce the observed
surface-brightness profile up to ~ 40′′. While not align-
ning well, having all dust in ss3 best reproduces the shape of
the observed profile (only scaled up) once again agree-
ing with Herschel/PACS observations peaking within ss3.

It is followed closely by Mss1-M2010 which is the second-
best-fitting model, providing further evidence of the dust
emission being within 41′′ − 54′′ (with complex structure
and varying dust components as suggested below within the
shell).

In contrast to the PACS data, the inner regions of the
observed SCUBA-2 profiles are well reproduced by all mod-
els and begin to deviate only at ~ 30′′. However, at 450 μm
even with the lowest χ^2_p results, the low significance of the
flux prevents meaningful conclusions based on the current
450 μm data.

Results derived from the 850 μm profiles are signifi-
cantly different compared to the other three wavelengths,
with only a small deviation between the χ^2_p values. Mss1,
with the largest χ^2_p values at the other wavelengths (and
can therefore easily be ruled out as a possibility), is the low-
est χ^2_p at 850 μm. This could point towards the presence of a
different dust component emitting at this wavelength at
smaller projected separations from the star, suggesting the
presence of shell-substructure projected inwards.

We suggest two reasons for our inability to reproduce the
inner regions of the PACS profiles based on the fact that the
central source is much more compact than the models
predict. The first is that a present day MLR governed by a
steeper density power law (< −2) needs to be applied. This
would indicate that the present day MLR is increasing once
more, consistent with the gradual recovery of the luminosity
and MLR in the aftermath of the thermal pulse. The second
is that there is a cut off in the density distribution as a result
of the fast moving thermal pulse wind sweeping up the pre-
thermal pulse mass loss essentially leaving a cavity behind
it. In order for the central component to appear point like
at PACS 70 μm (the smallest beam FWHM: 5.46′′ × 5.76′′)
it must be no more than ~ 1/2 beam FWHM (e.g.; Table 2 in
Miettinen et al. 2015). Higher resolution observations (e.g.; from ALMA) are required to probe this region.

These scenarios become less significant at longer wave-
lengths as the beam size increases essentially smearing out
the emission. We therefore do not have a reasonable expla-
nation as to why the SCUBA-2 profiles begin to deviate
following the peak of the detached shell.

5 CONCLUSIONS

We present the highest resolution sub-mm observations of
the detached shell of U Ant at 850 μm to date using
The detached shell is clearly detected at 850 μm and marginally at 450 μm. It has a 3σ extent at 850 μm of 56″ (0.07 ± 0.01 pc), consistent with past publications. The PSF-subtracted residual profile at 850 μm shows two peaks centred at ∼ 20″ and at 40″. The outer peak is aligned well with the peaks of the Herschel/PACS residual profiles at 70 μm and 160 μm and the weak emission at 450 μm. Therefore the well aligned peaks at all four wavelengths can be explained by the presence of a single shell. Hence, the inner residual peak observed at 850 μm may be the result of substructure within the same shell, visible only at this longer sub-mm wavelength due to a difference in grain properties between the average shell and the sub-structure.

From radial point-to-point SED fitting we derive profiles for T, \(\Sigma \) and \(\beta \). The T profile has a weighted averaged temperature of 54±2 K (between 12″ - 56″) and is consistent with dust heated by ISRF. The sudden mass-loss increase at this longer sub-mm wavelength due to a difference in grain temperatures of 54±5\(^{\circ}\)K. We see hints of pre-thermal pulse mass loss in the \(\Sigma \) from ∼ 56″ - 80″. Radial variations in the dust properties would explain the variations seen in the \(\beta \) profile; this would indicate the presence of dust grains with \(\beta \) values intermediate to amorphous and graphitic carbon.

In all six of the model scenarios tested using radiative transfer modelling we are unable to reproduce the flux observed at 850 μm. This excess may be due to the substructure discussed above, however further analysis is required to better understand it. Resolved continuum observations at 1.1 and 1.3 mm will reveal the nature of this excess.

We find that the two best-fitting models to both the global SED and the observed surface-brightness profiles are that of all the dust concentrated in sub-shell three and all the dust concentrated in sub-shell four with both having very similar \(\chi^2 \) values. This is in disagreement with existing literature which claims that sub-shell three has little-to-no dust. The detached shell of U Ant thus likely extends from ∼ 41″ - 54″.

At PACS wavelengths none of the models reproduce the inner ∼ 40″ of the shell. At SCUBA-2 wavelengths the exact opposite occurs. The SCUBA-2 850 μm observation is best reproduced by the model scenario assuming a single inner shell which was previously ruled out.

Two scenarios could give rise to the models being unable to reproduce the inner regions of the PACS wavelengths: (i) A present day MLR governed by a steep power law needs to be applied since the present day MLR and luminosity may increase as a result of post-thermal pulse recovery; (ii) A cavity is formed as a result of the fast wind arising from the thermal pulse. Both these scenarios result in a highly compact central component which can not be constrained with current observations. These reasons become less significant at SCUBA-2 wavelengths as the beam size increases. Therefore we are unable to understand the reasoning for the deviations seen in SCUBA-2.

Comparing the observations, derived surface-brightness profiles, dust parameter profiles and the radiative transfer modelling, we suggest that the detached shell of U Ant is a single dust shell. Filamentary/clumpy substructure similar to that reported by Kerschbaum et al. (2017), within this shell appears closer to the central star due to line-of-sight projection effects. The grain properties of the substructure are different to that of the overall shell.

Continuum observations from ALMA and SOFIA/FORCAST along with complex 3-D hydrodynamical modelling in the future could help resolve the variations observed in the model comparisons. The high resolution observations will constrain the dust radii and the inner dust components allowing us to observe any cut off and therefore the correct dust density distribution. Further, polarimetric imaging observation in the sub-mm will help narrow down the dust grain shape and size thus constraining the properties of the substructure within the detached shell.

ACKNOWLEDGEMENTS

We thank the anonymous referee for their careful reading of the manuscript. TED wishes to thank Prof. Chung-Ming Ko at NCU for his support of this project. We are grateful to Matthias Maercker for the engaging discussions on the topic. This research has been supported under grants MOST104-2628-M-001-004-MY3 and MOST107-2119-M-001-031-MY3 from the Ministry of Science and Technology of Taiwan, and grant AS-IA-106-M03 from Academia Sinica. IM acknowledges support from the UK Science and Technology Facilities Council under grant ST/P000649/1. JHH is supported by the NSF of China under Grant Nos. 11873086 and U1631237, partly by Yunnan province (2017HC018), and also partly by the Chinese Academy of Sciences (CAS) through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile. MM is supported by an STFC fellowship.

The James Clerk Maxwell Telescope is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan; Academia Sinica Institute of Astronomy and Astrophysics; the Korea Astronomy and Space Science Institute; the Operation, Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments, budgeted from the Ministry of Finance (MOF) of China and administered by the Chinese Academy of Sciences (CAS), as well as the National Key R&D Program of China (No. 2017YFA0402700). Additional funding support is provided by the Science and Technology Facilities Council of the United Kingdom and participating universities in the United Kingdom and Canada. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. In addition to software cited above, this research made use of the SCIPY (Jones et al. 2001) and ASTROPY (The Astropy Collaboration et al. 2018) python packages. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. This research also made use of the Canadian Advanced Network for Astronomical Research (CANFAR, Gaudet et al. 2010). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/gaia).
Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.
REFERENCEs

Arimoto K., Izumiura H., Ueta T., Yamamura I., Onaka T., 2011, ApJ, 729, L19
Aringer B., Girardi L., Nowotny W., Marigo P., Lederer M. T., 2009, A&A, 503, 913
Beichman C. A., Neugebauer G., Habing H. J., Clegg P. E., Chester T. J., eds, 1988, Infrared astronomical satellite (IRAS) catalogs and atlases. Volume I: Explanatory supplement Vol. 1
Bowen G. H., Wilson L. A., 1991, ApJ, 375, L53
Cox N. L. J., et al., 2012, A&A, 537, A35
Currie M. J., Berry D. S., Jenness T., Gibb A. G., Bell G. S., Draper P. W., 2014, in Manset N., Forshaw P., eds, Astronomical Society of the Pacific Conference Series Vol. 485, Astronomical Data Analysis Software and Systems XXIII. p. 391
Cutri R. M., et al. 2012. VizieR Online Data Catalog, p. II/331
De Beck E., Decin L., de Koter A., Justtanont K., Verhoelst T., Kemper F., Menten K. M., 2010, A&A, 523, A18
Dharmawardena T. E., et al., 2018, MNRAS, 479, 536
Di Criscienzo M., et al., 2016, MNRAS, 462, 305
Doi Y., et al., 2015, PASJ, 67, 50
Doty S. D., Leung C. M., 1994, ApJ, 424, 729
Draabek E., et al., 2012, MNRAS, 426, 23
Draine B. T., 2016, ApJ, 831, 109
Eriksson K., Nowotny W., Höfner S., Aringer B., Wachtler A., 2014, A&A, 566, A95
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306
Gaia Collaboration et al., 2018, A&A, 616, A1
Gaudet S., et al., 2010, in Software and Cyberinfrastructure for Astronomy. p. 774011, doi:10.1117/12.858026
Goldman S. R., et al., 2017, MNRAS, 465, 403
González Delgado D., Olofsson H., Schwarz H. E., Eriksson K., Gustafsson B., 2001, A&A, 372, 885
González Delgado D., Olofsson H., Schwarz H. E., Eriksson K., Gustafsson B., Gledhill T., 2003, A&A, 399, 1021
Gordon K. D., et al., 2014, ApJ, 797, 85
Groenewegen M. A. T., et al., 2011, A&A, 526, A162
Hildebrand R. H., 1983, QJRAS, 24, 267
Höfner S., 2008, A&A, 491, L1
Höfner S., Olofsson H., 2018, A&Arv, 26, 1
Holland W. S., et al., 2013, MNRAS, 430, 2513
Ishihara D., et al., 2010, A&A, 514, A1
Izumiura H., Hashimoto O., Kawara K., Yamamura I., Waters L. B. F. M., 1996, A&A, 315, L221
Izumiura H., Waters L. B. F. M., de Jong T., Loup C., Bontekoe T. R., Kester D. J. M., 1997, A&A, 323, 449
Izumiura H., et al., 2011, A&A, 528, A29
Jenness T., Economou F., 2015, Astronomy and Computing, 9, 40
Jenness T., Stevens J. A., Archibald E. N., Economou F., Jessop N. E., Roebson E. I., 2002, MNRAS, 336, 14
Jones E., Oliphant T., Peterson P., et al., 2001, SciPy: Open source scientific tools for Python, http://www.scipy.org/
Kelly B. C., Shetty R., Stutz A. M., Kaufmann J., Goodman A. A., Launhardt R., 2012, ApJ, 752, 55
Kerschbaum F., et al., 2010, Astronomy and Astrophysics
Kerschbaum F., et al., 2017, A&A, 605, A116
Kim S.-H., Martin P. G., Hendry P. D., 1994, ApJ, 422, 164
Maercker M., Olofsson H., Eriksson K., Gustafsson B., Schöier F. L., 2010, A&A, 511, A37
Maercker M., et al., 2012, Nature, 490, 232
Maercker M., Silva T. K., Beck E. D., Brunner M., Mecina M., Jaldehag O., 2018, A&A
Marigo P., et al., 2017, ApJ, 835, 77
Mattsson L., Höfner S., Herwig F., 2007, A&A, 470, 339
Mennella V., Brucato J. R., Colangeli L., Palumbo P., Rotundi A., Bussoletti E., 1998, ApJ, 496, 1058
Miettinen O., et al., 2015
Mennella V., Brucato J. R., Colangeli L., Palumbo P., Rotundi A., Bussoletti E., 1998, ApJ, 496, 1058
Miettinen O., et al., 2015, A&A, 584, A32
Neugebauer G., et al., 1984, ApJ, 278, L1
Olofsson H., Eriksson K., Gustafsson B., 1988, A&A, 196, L1
Olofsson H., Carlstrom U., Eriksson K., Gustafsson B., Wilsson L. A., 1990, A&A, 230, L13
Olofsson H., Bergman P., Eriksson K., Gustafsson B., 1996, A&A, 311, 587
Olofsson H., Maercker M., Eriksson K., Gustafsson B., Schöier F., 2010, A&A, 515, A27
Parsons H., et al., 2018, ApJS, 234, 22
Pégourié B., 1988, A&A, 194, 335
Planck Collaboration et al., 2014, A&A, 571, A11
Ramstedt S., Maercker M., Olofsson G., Olofsson H., Schöier F. L., 2011, A&A, 531, A148
Robitaille T. P., 2011, A&A, 536, A79
Sadavoy S. I., et al., 2013, ApJ, 767, 126
Schöier F. L., Lindqvist M., Olofsson H., 2005, A&A, 436, 633
Shetty R., Kaufmann J., Schnee S., Goodman A. A., Ercolano B., 2009, ApJ, 696, 2234
Simis Y. J. W., Icke V., Dominik C., 2004, A&A, 371, 205
Skrutskie M. F., et al., 2006, AJ, 131, 1163
Smith B. J., Price S. D., Baker R. I., 2004, ApJS, 154, 673
Steffen M., Schönberner D., 2000, A&A, 357, 180
Testi L., et al., 2014, Protostars and Planets VI, pp 339–361
The Astropy Collaboration et al., 2018, preprint, (arXiv:1801.02634)
Vassiliadis E., Wood P. R., 1994, ApJS, 92, 125
Villaver E., García-Segura G., Manchado A., 2002, ApJ, 571, 880
Wareing C. J., Zijlstra A. A., O’Brien T. J., 2007, MNRAS, 382, 1233
Willems F. J., de Jong T., 1988, A&A, 196, 173
Zijlstra A. A., Chapman J. M., te Lintel Hekkert P., Likkel L., Comeron F., Norris R. P., Molster F. J., Cohen R. J., 2001, MNRAS, 322, 280
Zubko V. G., Mennella V., Colangeli L., Bussoletti E., 1996, MNRAS, 282, 1321
van Leeuwen F., 2007, A&A, 474, 653
APPENDIX A: PUBLISHED SHELL RADI"
AND SCHEMATIC DIAGRAM OF U ANT
Figure A1. Schematic diagram of the reported observations of U Ant showing mean Dust/Gas shell positions and FWHMs, arranged chronologically. A summary of the observations are presented in Tab. A1. The top most grey dashed lines represent multiple SCUBA-2 850 µm beam FWHMs (13″).
Table A1. Published Shell Radii of U Ant.

Publication	Mean Shell Radius (″)	Shell Thickness (″)	Observation and Shell Type
Olofsson et al. (1996)	41	13	SEST CO (1-0), (2-1), (3-2) - gas
Izumiura et al. (1997)	46	–	Far-IR IRAS - dust
	180	–	”
González Delgado et al. (2001) and (2003)	25	3	Optical scattered light - dust
González Delgado et al. (2003)	43	3	”
	46	10	”
Maercker et al. (2010)	43	2	Optical scattered light - dust
	50	7	”
	41	2.6	APEX CO (3-2) - gas
Kerschbaum et al. (2010) PACS	40	12	far-IR Herschel/PACS - dust
Cox et al. (2012)	42	–	Far-IR Herschel/PACS - dust
Kerschbaum et al. (2017)	42.5	5	ALMA CO (1-0) and (2-1) - gas

3σ surface brightness extent derived in this paper: 56 – Sub-mm SCUBA-2 850 μm - dust
APPENDIX B: CO-SUBTRACTION

In order to carry out 12CO(3-2) subtraction we use JCMT/HARP 12CO(3-2) heterodyne spectral observations obtained from 2017/01/03 to 2017/01/13, once again as part of the NESS survey. These maps use a 5×5 jiggle pattern to produce a $2' \times 2'$ map, oversampled with 4.8'' pixels. The HARP observations were reduced using standard JCMT Heterodyne REDUCE,SCIENCE,NARROWLINE pipeline (Jenness & Economou 2015) and binned to 4 km/s resolution. See figure B1. Using instructions provided by Parsons et al. (2018) (and in SCUBA-2 Data Reduction – Tutorial 5 webpage3) we generated the 12CO(3-2) subtracted SCUBA-2 850 μm observation.

As seen in Fig B1, HARP has two dead receptors meaning that no data was recorded for this section of the shell. Comparing the HARP observation to the ALMA CO observations by Kerschbaum et al. (2017) only the very edge of a small section of the shell falls within this missing pixel region and therefore has little effect on the CO flux (~ 15 pixels out of 154 pixels within the shell). In addition, the chop throw was set to 60'', smaller than the diameter of the shell, resulting in some self-subtraction. Between these two effects we estimate that approximately 30% of the CO flux is missing and therefore incorporate additional uncertainty to account for this.

3 https://www.eaobservatory.org/jcmt/science/reductionanalysis-tutorials/scuba-2-dr-tutorial-5/
APPENDIX C: EXAMPLE OF MCMC MODEL FIT

The methods used by MCMC provide a representative value of the fit (in this case the median) of each parameter. There is no best fit model for the data when using MCMC methods. In Fig. C1 we have shown the modified black body model resulting from the median output values (from a set of ~ 900000 samples from the posterior) of the MCMC fit at the $40''$ residual profile radial point (point 11). This median is used as the parameter values presented in Fig. 3.
Figure C1. Residual profile surface brightness (red points) overlaid with a model (black line) whose parameters are equal to the median of the posterior samples generated by MCMC. The chosen radial point is at 40'' (point 11).
U Ant was observed for project M96BI17 on 1997/10/17 and 1997/10/20 for a total of 2.1 hours. The data were re-processed using the SURF package, using the standard calibration factor for the 850N filter at the largest available aperture size of 60″ Jenness et al. (2002). The reduction process included correction for opacity using skydips taken around the observations (yielding $\tau(850\mu m)$ of 0.28-0.41 at zenith); cleaning with a 5-sigma clip, despiking, sky removal and bolometer weighting; and map reconstruction with median-regridding in 3 arcsec pixels, matching the native sampling of jiggle observations. The map was smoothed with a 9″ Gaussian to an effective resolution of approximately 17″ FWHM. There is no information in the map on scales larger than the 2′ chop throw, so the true zero level is poorly established. The surface-brightness profile is around an estimated overall flux-centroid of 10:35:13.0, -39:33:52 (J2000), south of the expected position of the star (attributed to a poor pointing model at far-south declinations). The noise is estimated from the dispersion among pixels in each annulus, converted to a standard error based on the number of independent beams within the annulus.
Table D1. Fluxes used to derive the wavelength dependent SED of U Ant.

Instrument/Survey	Wavelength (µm)	Flux (Jy)	Reference
Gaia	0.505	16.8 ± 0.3	Gaia Collaboration et al. (2018)
	0.623	73.1 ± 0.3	
	0.772	154 ± 2	
2MASS	1.24	591 ± 151	Skrutskie et al. (2006)
	1.66	1190 ± 370	
	2.16	1270 ± 490	
COBE/DIRBE	1.25	614 ± 36	Smith et al. (2004)
	2.22	1040 ± 30	
	3.52	725 ± 25	
	4.89	237 ± 10	
WISE	11.6	111 ± 27	Cutri et al. (2012)
	22.1	35.8 ± 0.3	
AKARI/IRC	8.61	264 ± 15	Ishihara et al. (2010); Doi et al. (2015)
	18.4	61.5 ± 2.3	
AKARI/FIS	65	25.8 ± 5.3	Arimatsu et al. (2011)
	90	20.1 ± 4.2	
	140	8.4 ± 3.1	
IRAS/ISSA	11.6	168 ± 7	Neugebauer et al. (1984); Beichman et al. (1988)
	23.9	44.8 ± 1.8	
	61.8	27.1 ± 2.7	
	102	21.1 ± 2.3	
Herschel/PACS	70	23.06 ± 0.03	Observations from Groenewegen et al. (2011)
	160	5.96 ± 0.02	- fluxes derived via aperture photometry in this paper
Herschel/SPIRE	250	1.81 ± 0.26	Observations from Groenewegen et al. (2011)
	350	0.716 ± 0.172	- fluxes derived via aperture photometry in this paper
	500	0.243 ± 0.104	
JCMT/SCUBA-2	450	0.435 ± 0.070	This paper
	850	0.199 ± 0.034	

Figure E1. (a): SCUBA 850 µm observation of U Ant from 1997 (1 pix = 3′). The off-centred red dot indicates the position of the star. It is off centre due to pointing accuracy problems in SCUBA; (b): Surface-brightness profile of the SCUBA observation.