Quantitative Computation Tree Logic Model Checking Based on Generalized Possibility Measures

Yongming Li*, Zhanyou Ma

College of Computer Science, Shaanxi Normal University, Xi’an, 710062, China

Abstract

We study generalized possibilistic computation tree logic model checking in this paper, which is an extension of possibilistic computation logic model checking introduced by Y. Li, Y. Li and Z. Ma [20]. The system is modeled by generalized possibilistic Kripke structures (GPKS, in short), and the verifying property is specified by a generalized possibilistic computation tree logic (GPoCTL, in short) formula. Based on generalized possibility measures and generalized necessity measures, the method of generalized possibilistic computation tree logic model checking is discussed, and the corresponding algorithm and its complexity are shown in detail. Furthermore, the comparison between PoCTL introduced in [20, 25] and GPoCTL is given. Finally, a thermostat example is given to illustrate the GPoCTL model-checking method.

Keywords: Model checking; possibility theory; generalized possibilistic Kripke structure; generalized possibilistic computation tree logic; quantitative property.

1. Introduction

Model checking [13] is a formal verification technique consisting of three main steps: modeling the system, specifying the properties of the system (i.e., specification), and verifying whether the properties hold in the system using model-checking algorithms. Systems are usually represented using boolean state-transition models or Kripke structures. Properties of the system are often specified using temporal logics. The verification step gives a boolean answer: either true (the system satisfies the specification) or false with counterexample (the system violates
Boolean transition models are useful for the representation and verification of computation systems, such as hardware and software systems. However, boolean state-transition models are often inadequate for the representation of systems that are not purely computational but partly physical, such as hardware and software systems that interact with a physical environment and Cyber-Physical Systems (CPS). Many quantitative extensions of the state-transition model have been proposed for this purpose, such as models that embed state changes into time ([1]), models that assign probabilities ([1]) or possibilities ([19]) to state changes with uncertainties.

Furthermore, for the application to quantitative models and quantitative specifications, quantitative model-checking approaches have been proposed recently. Different approaches are applicable to different models types including timed ([1]), probabilistic and stochastic ([15]), multi-valued ([2–4]), quality of service or soft constraints ([21]), discounted sources-restricted ([5]), possibilistic ([20]), etc, methods.

Although possibilistic CTL is more expressive than CTL, it is too restrictive ([20]). Some uncertainties, which can be described using possibility theory, still could not be handled directly using possibilistic computation tree logic model checking as noted in [20], e.g. those systems modeled by possibilistic Kripke structures with vague label functions (see the definition of generalized possibilistic Kripke structures in Section 3 in this paper). To deal with uncertainties in possibility theory, more powerful quantitative model checking is needed. For this purpose, we shall study quantitative model checking based on generalized possibilistic measures in this paper. Here, the models of systems are formalized as generalized possibilistic Kripke structures (GPKS). Compared with possibilistic Kripke structures (PKS), the initial distribution and state-transition distribution of GPKS have no normal condition restrictions, and the labeling function of GPKS is fuzzy and contains vague information. The specification is quantitative CTL which is called generalized possibilistic CTL (GPoCTL, in short), the interpre-
tation of GPoCTL formula is also quantitative, even if the GPKS is also a PKS, and more possibilistic quantitative information is contained in GPoCTL compared with that in PoCTL, for example, the necessity measure is also introduced in the interpretation of GPoCTL formulae. The related model checking approach and its complexity are presented, and some comparisons are made between PoCTL and GPoCTL.

Since we can use fuzzy sets to represent multi-valued simulation, the techniques used in this paper have some similarities to those used in multi-valued cases ([3]). Of course, some essential differences exist. Indeed, possibilistic measures and necessity measures are used in GPoCTL. There is not any measure introduced for multi-valued cases. We give an illustrative example to show the approach proposed in this paper is efficient and reasonable. In fact, we expect that GPoCTL model checking will be used in the verification of expert systems and diagnosis of intelligent systems.

The content of this paper is arranged as follows. Section 2 gives some introduction of possibility theory, PoCTL and PKS defined in [19, 20]. Some possibility measures and necessity measures related to PKS and PoCTL are also studied. The necessity measures introduced in this section are new and not defined in [19, 20]. In Section 3 we give the notion of generalized possibilistic Kripke structures, the related generalized possibility measures induced by the generalized possibilistic Kripke structures. Section 4 introduces the notion of GPoCTL. In Section 5, the GPoCTL model checking approach is discussed and the related algorithm is presented. Section 6 shows the relationship between GPoCTL and PoCTL. A thermostat example is given in Section 7. The paper ends with a conclusion.

2. Preliminaries

In this section, we give some basic knowledge about the possibility theory, and recall the possibilistic computation tree logic (PoCTL, in short) introduced in [20].
2.1. Possibility theory

Possibility theory is an uncertainty theory devoted to the handling of incomplete information and is an alternative to probability theory. It differs from the latter by the use of a pair of dual set-functions (possibility and necessity measures) instead of only one. This feature makes it easier to capture partial ignorance. Besides, it is not additive and makes sense on ordinal structures. Professor Lotfi Zadeh ([27]) first introduced possibility theory in 1978 as an extension of his theory of fuzzy sets and fuzzy logic. Didier Dubois and Henri Prade ([7, 10–12]) further contributed to its development.

For simplicity, assume that the universe of discourse U is a nonempty set, and assume that all subsets are measurable. A possibility measure is a function Π from the powerset 2^U to $[0, 1]$ such that:

1. $\Pi(\emptyset) = 0$,
2. $\Pi(U) = 1$, and
3. $\Pi(\bigcup E_i) = \bigvee \Pi(E_i)$ for any subset family $\{E_i\}$ of the universe set U, where we use $\bigvee_{i \in I} a_i$ to denote the supremum or the least upper bound of the family of real numbers $\{a_i\}_{i \in I}$, dually, we use $\bigwedge_{i \in I} a_i$ to denote the infimum or the largest lower bound of the family of real numbers $\{a_i\}_{i \in I}$.

If Π only satisfies the conditions (1) and (3), then we call Π a generalized possibility measure.

It follows that, the generalized possibility measure on a nonempty set is determined by its behavior on singletons:

$$\Pi(E) = \bigvee_{x \in E} \Pi(\{x\}).$$

(1)

The function $\pi : U \rightarrow [0, 1]$ defined by $\pi(x) = \Pi(\{x\})$ is called the possibility distribution of Π, and the measure Π is unique defined by Eq. (1), i.e., Π is unique defined by the possibility distribution π.

Whereas probability theory uses a single number, the probability, to describe how likely an event is to occur, possibility theory uses two concepts, the possibility and the necessity of the event. For any set E, the necessity measure N is defined
by,
\[N(E) = 1 - \Pi(U - E). \]
\[(2) \]

A necessity measure is a function \(N \) from the powerset \(2^U \) to \([0, 1]\) such that:

1. \(N(\emptyset) = 0 \),
2. \(N(U) = 1 \),
3. \(N(\bigcap E_i) = \bigwedge N(E_i) \) for any subset family \(\{E_i\} \) of the universe set \(U \).

If \(N \) only satisfies the conditions (2) and (3), then we call \(N \) a generalized necessity measure.

It follows that \(\Pi(E) + N(U - E) = 1 \), and \(N \) is the dual of \(\Pi \) and vise versa. In general, \(\Pi \) and \(N \) are not self-dual, this is contrary to probability measure, which is self-dual. As a result, we need both possibility measure and necessity measure to treat uncertainty in the theory of possibility.

There are four cases that can be interpreted as follows: (1) \(N(E) = 1 \) means that \(E \) is necessary. \(E \) is certainly true. It implies that \(\Pi(E) = 1 \). (2) \(\Pi(E) = 0 \) means that \(E \) is impossible. \(E \) is certainly false. It implies that \(N(E) = 0 \). (3) \(\Pi(E) = 1 \) means that \(E \) is possible. It would not be surprised at all if \(E \) occurs. It leaves \(N(E) \) unconstrained. (4) \(N(E) = 0 \) means that \(E \) is unnecessary. It would not be surprised at all if \(E \) does not occur. It leaves \(\Pi(E) \) unconstrained.

We shall use possibility measures and necessity measures in the possibilistic computation tree logic model checking in this paper.

2.2. Possibilistic Kripke structures

Transition systems or Kripke structures are key representations for model checking. Corresponding to possibilistic model checking, we have the notion of possibilistic Kripke structures, which is defined as follows.

Definition 2.1. [19] A possibilistic Kripke structure is a tuple \(M = (S, P, I, AP, L) \), where

1. \(S \) is a countable, nonempty set of states;
2. \(P : S \times S \rightarrow [0, 1] \) is the transition possibility distribution such that for all states \(s \), \(\bigvee_{s' \in S} P(s, s') = 1 \);
(3) $I : S \rightarrow [0,1]$ is the initial distribution, such that $\bigvee_{s \in S} I(s) = 1$;

(4) AP is a set of atomic propositions;

(5) $L : S \rightarrow 2^{AP}$ is a labeling function that labels a state s with those atomic propositions in AP that are supposed to hold in s.

Furthermore, if the set S and AP are finite sets, then $M = (S, P, I, AP, L)$ is called a finite possibilistic Kripke structure.

The states s with $I(s) > 0$ are considered as the initial states. For state s and $T \subseteq S$, let $P(s, T)$ denote the possibility of moving from s to some state $t \in T$ in a single step, that is,

$$P(s, T) = \bigvee_{t \in T} P(s, t).$$

Paths in possibilistic Kripke structure M are infinite paths in the underlying digraph. They are defined as infinite state sequences $\pi = s_0s_1s_2 \cdots \in S^\omega$ such that $P(s_i, s_{i+1}) > 0$ for all $i \in I$. Let $\text{Paths}(M)$ denote the set of all paths in M, and $\text{Paths}_{\text{fin}}(M)$ denote the set of finite path fragments $s_0s_1 \cdots s_n$ where $n \geq 0$ and $P(s_i, s_{i+1}) > 0$ for $0 \leq i \leq n$. Let $\text{Paths}_M(s)$ ($\text{Paths}(s)$ if M is understood) denote the set of all paths in M that start in state s. Similarly, $\text{Paths}_{M-\text{fin}}(s)$ ($\text{Paths}_{\text{fin}}(s)$ if M is understood) denotes the set of finite path fragments $s_0s_1 \cdots s_n$ such that $s_0 = s$. The set of direct successors (called Post) and direct predecessors (named Pre) are defined as follows:

$$\text{Post}(s) = \{s' \in S \mid P(s, s') > 0\}; \quad \text{Pre}(s) = \{s' \in S \mid P(s', s) > 0\}.$$

Given a possibilistic Kripke structure M, the cylinder set of $\hat{\pi} = s_0 \cdots s_n \in \text{Paths}_{\text{fin}}(M)$ is defined as (11)

$$\text{Cyl}(\hat{\pi}) = \{\pi \in \text{Paths}(M) \mid \hat{\pi} \in \text{Pref}(\pi)\},$$

where $\text{Pref}(\pi) = \{\pi' \mid \pi'$ is a finite prefix of $\pi]\}$. Then as shown in (119), $\Omega = 2^{\text{Paths}(M)}$ is the algebra generated by $\{\text{Cyl}(\hat{\pi}) \mid \hat{\pi} \in \text{Paths}_{\text{fin}}(M)\}$ on $\text{Paths}(M)$. That is to say, $\Omega = 2^{\text{Paths}(M)}$ is the unique subalgebra of $2^{\text{Paths}(M)}$ which is closed under arbitrary unions and arbitrary intersections containing $\{\text{Cyl}(\hat{\pi}) \mid \hat{\pi} \in \text{Pref}(\pi)\}$.
Definition 2.2. [19] For a possibilistic Kripke structure M, a function $Po^M : Paths(M) \rightarrow [0,1]$ is defined as follows:

$$Po^M(\pi) = I(s_0) \land \bigwedge_{i=0}^{\infty} P(s_i, s_{i+1})$$

(3)

for any $\pi = s_0s_1 \cdots , \pi \in Paths(M)$. Furthermore, we define

$$Po^M(E) = \lor \{Po^M(\pi) \mid \pi \in E\}$$

(4)

for any $E \subseteq Paths(M)$, then, we have a well-defined function

$$Po^M : 2^{Paths(M)} \rightarrow [0,1],$$

Po^M is called the possibility measure over $\Omega = 2^{Paths(M)}$ as it satisfies the definition of possibility measure. If M is clear from the context, then M is omitted and we simply write Po for Po^M.

For the above possibility measure Po over $2^{Paths(M)}$, the corresponding necessity measure, write as Ne, is defined as follows,

$$Ne(E) = 1 - Po(\overline{E}),$$

where \overline{E} denotes the complement of the subset E, i.e., $\overline{E} = Paths(M) - E$.

2.3. Possibilistic computation tree logic

Definition 2.3. [25] (Syntax of PoCTL) PoCTL state formulae over the set AP of atomic propositions are formed according to the following grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid Po_J(\varphi)$$

where $a \in AP$, φ is a PoCTL path formula and $J \subseteq [0,1]$ is an interval with rational bounds.

PoCTL path formulae are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \sqcup \Phi_2 \mid \Phi_1 \sqcup^{\leq n} \Phi_2$$

where Φ, Φ_1, and Φ_2 are state formulae and $n \in \mathbb{N}$.?
Definition 2.4. (Semantics of PoCTL) Let \(a \in AP \) be an atomic proposition, \(M = (S, P, I, AP, L) \) be a possibilistic Kripke structure, state \(s \in S \), \(\Phi, \Psi \) be PoCTL state formulae, and \(\varphi \) be a PoCTL path formula. The satisfaction relation \(\models \) is defined for state formulae by

\[
\begin{align*}
 s \models a & \quad \text{iff } a \in L(s); \\
 s \models \neg \Phi & \quad \text{iff } s \notmodels \Phi; \\
 s \models \Phi \land \Psi & \quad \text{iff } s \models \Phi \text{ and } s \models \Psi; \\
 s \models \text{Po}_I(\varphi) & \quad \text{iff } \text{Po}(s \models \varphi) \in J, \text{ where } \text{Po}(s \models \varphi) = \text{Po}^M((\pi|\pi \in \text{Paths}(s), s \models \varphi)).
\end{align*}
\]

where \(M_s \) results from \(M \) by letting \(s \) be the unique initial state. Formally, for \(M = (S, P, I, AP, L) \) and state \(s, M_s \) is defined by \(M_s = (S, P, s, AP, L) \), where \(s \) denotes an initial distribution with only one initial state \(s \).

For path \(\pi \), the satisfaction relation \(\models \) for path formulae is defined by

\[
\begin{align*}
 \pi \models \diamond \Phi & \quad \text{iff } \pi[1] \models \Phi; \\
 \pi \models \Phi \sqcup \Psi & \quad \text{iff } \exists k \geq 0, \pi[k] \models \Psi \text{ and } \pi[i] \models \Phi \text{ for all } 0 \leq i < k; \\
 \pi \models \Phi \sqcup^\leq k \Psi & \quad \text{iff } \exists 0 \leq k \leq n, (\pi[k] \models \Psi \land (\forall 0 \leq i < k), \pi[i] \models \Phi)).
\end{align*}
\]

where if \(\pi = s_0s_1s_2 \cdots \), then \(\pi[k] = s_k \) for any \(k \geq 0 \).

In particular, the path formulae \(\diamond \Phi \) ("eventually") and \(\Box \Phi \) ("always") have the semantics

\[
\begin{align*}
 \pi = s_0s_1 \cdots \models \diamond \Phi \text{ iff } & s_j \models \Phi \text{ for some } j \geq 0, \\
 \pi = s_0s_1 \cdots \models \Box \Phi \text{ iff } & s_j \models \Phi \text{ for all } j \geq 0.
\end{align*}
\]

Alternatively, \(\diamond \Phi = \text{true} \sqcup \Phi \).

The intend meaning of the formula \(\text{Po}(s \models \varphi) \) is the possibility measure of those paths starting at state \(s \) satisfy the path formula \(\varphi \) for any state \(s \), that is,

\[
\text{Po}(s \models \varphi) = \text{Po}^M((\pi|\pi \in \text{Paths}(s), s \models \varphi)).
\]

Let us see how the necessity measure can be defined in the interpretation of the PoCTL formulae.
Since \(\pi \not\models \bigcirc \Phi \) iff \(\pi[1] \not\models \Phi \) iff \(\pi[1] \models \neg \Phi \) iff \(\pi \models \bigcirc \neg \Phi \), it follows that \(\{ \pi | \pi \in \text{paths}(s), \pi \not\models \bigcirc \Phi \} = \{ \pi | \pi \in \text{paths}(s), \pi \models \bigcirc \neg \Phi \} \), then we have

\[
\{ \pi | \pi \in \text{paths}(s), \pi \models \bigcirc \Phi \} = \frac{\{ \pi | \pi \in \text{paths}(s), \pi \not\models \bigcirc \Phi \}}{\{ \pi | \pi \in \text{paths}(s), \pi \models \bigcirc \neg \Phi \}}.
\]

Hence,

\[
Ne(s \models \bigcirc \Phi) = Ne^M(\{ \pi | \pi \in \text{paths}(s), \pi \models \bigcirc \Phi \}) = 1 - Po^M(\{ \pi | \pi \in \text{paths}(s), \pi \models \bigcirc \neg \Phi \}) = 1 - Po(s \models \bigcirc \neg \Phi).
\]

Similarly, we have the following equations,

\[
Ne(s \models \Phi \bigcup \Psi) = (1 - Po(s \models \neg \Psi \bigcup (\neg \Phi \land \neg \Psi))) \land (1 - Po(s \models \Box \neg \Phi)),
\]

\[
Ne(s \models \Phi \bigcup \exists^n \Psi) = (1 - Po(s \models \neg \Psi \bigcup \exists^n (\neg \Phi \land \neg \Psi))) \land (1 - Po(s \models \Box \exists^n \neg \Phi)),
\]

\[
Ne(s \models \Box \Phi) = 1 - Po(s \models \neg \Psi).
\]

\[
Ne(s \models \Diamond \Phi) = 1 - Po(s \models \neg \Psi).
\]

If we write a PoCTL state formula \(Ne_I(\varphi) \) for a path formula \(\varphi \), which have the semantics

\[
s \models Ne_I(\varphi) \text{ iff } Ne^M(\{ \pi \in \text{Paths}(s) | \pi \models \varphi \}) \in J
\]

for any PKS \(M \), then we have the following presentation of \(Ne_I(\varphi) \), where for interval \(j = [u, v], (u, v), [u, v), (u, v), DJ = [1 - v, 1 - u], [1 - v, 1 - u), (1 - v, 1 - u] \):

\[
Ne_I(\bigcirc \Phi) = \neg Po_DJ(\bigcirc \neg \Phi); \quad (5)
\]

\[
Ne_I(\Phi \bigcup \Psi) = \neg Po_DJ(\neg \Psi \bigcup (\neg \Phi \land \neg \Psi)) \land \neg Po_DJ(\Box \neg \Phi); \quad (6)
\]

\[
Ne_I(\Phi \bigcup \exists^n \Psi) = \neg Po_DJ(\neg \Psi \bigcup \exists^n (\neg \Phi \land \neg \Psi)) \land \neg Po_DJ(\Box \exists^n \neg \Phi); \quad (7)
\]

\[
Ne_I(\Box \Phi) = \neg Po_DJ(\bigcirc \neg \Psi); \quad (8)
\]

\[
Ne_I(\Diamond \Phi) = \neg Po_DJ(\neg \Psi). \quad (9)
\]
The above equalities are also the sources that we define the GPoCTL formula $Ne(\bigcirc \Phi)$, $Ne(\Phi \sqcup \Psi)$, $Ne(\Phi \sqcup^{\leq n} \Psi)$, $Ne(\Box \Phi)$ and $Ne(\Diamond \Phi)$ in Section 5.

3. Generalized possibilistic Kripke structures

In this section, we extend the notion of PKS and introduce the notion of generalized possibilistic Kripke structures, which is defined as follows.

Definition 3.1. A generalized possibilistic Kripke structure (GPKS, in short) is a tuple $M = (S, P, I, AP, L)$, where

1. S is a countable, nonempty set of states;
2. $P : S \times S \rightarrow [0, 1]$ is a function, called possibilistic transition distribution function;
3. $I : S \rightarrow [0, 1]$ is a function, called possibilistic initial distribution function;
4. AP is a set of atomic propositions;
5. $L : S \times AP \rightarrow [0, 1]$ is a possibilistic labeling function, which can be viewed as function mapping a state s to the fuzzy set of atomic propositions which are possible in the state s, i.e., $L(s, a)$ denotes the possibility or truth value of atomic proposition a that is supposed to hold in s.

Furthermore, if the set S and AP are finite sets, then $M = (S, P, I, AP, L)$ is called a finite generalized possibilistic Kripke structure.

Remark 1. (1) In Definition 3.1 if we require the transition possibility distribution and initial distribution to be normal, i.e., $\bigvee_{s' \in S} P(s, s') = 1$ and $\bigvee_{s \in S} I(s) = 1$, and the labeling function L is also crisp, i.e., $L : S \times AP \rightarrow \{0, 1\}$. Then we obtain the notion of possibilistic Kripke structure (PKS, in short). In this case, we also say that M is normal. This is one of the reasons why we call the structure defined in Definition 3.1 generalized possibilistic Kripke structure.

(2) The possibilistic transition function $P : S \times S \rightarrow [0, 1]$ can also be represented by a fuzzy matrix. For convenience, this fuzzy matrix is also written as P.

10
\[P = (P(s, t))_{s, t \in S} \]

\(P\) is also called the (fuzzy) transition matrix of \(M\). In [19], we also use the symbol \(A\) to represent a transition matrix. For the fuzzy matrix \(P\), its transitive closure is denoted by \(P^+\). When \(S\) is finite, and if \(S\) has \(N\) elements, i.e., \(N = |S|\), then \(P^+ = P \lor P^2 \lor \ldots \lor P^N\) [18], where \(P^{k+1} = P^k \circ P\) for any positive integer number \(k\). Here, we use the symbol \(\circ\) to represent the max-min composition operation of fuzzy matrices. Recall that the max-min composition operation of fuzzy matrixes is similar to ordinary matrix multiplication operation, just let ordinary multiplication and addition operations of real numbers be replaced by minimum and maximum operations of real numbers [27]. For a fuzzy matrix \(P\), the reflexive and transitive closure of \(P\), denoted by \(P^*\), is defined by \(P^* = P^0 \lor P^+\), where \(P^0\) denote the identity matrix.

For a generalized possibilistic Kripke structure \(M = (S, P, I, AP, L)\), using \(P^+\) and \(P^*\), we can get two generalized possibilistic Kripke structures \(M^+ = (S, P^+, I, AP, L)\) and \(M^* = (S, P^*, I, AP, L)\).

(3) A closely related notion is given by (discrete-time) fuzzy Markov chains [17] or (discrete-time) possibilistic Markov chains [8] or possibilistic Markov processes [16] which are used to model certain fuzzy systems. The only difference between possibilistic Kripke structures and fuzzy (or possibilistic) Markov chains lies in that there is no labeling function in the definition of fuzzy (or possibilistic) Markov chains. In [8], possibilistic Markov chains are used to model the evolution of the updating problem in a knowledge base that describes the state of an evolving system. Uncertainty comes from incomplete knowledge about the knowledge base, “one may only have some idea about what is/are the most plausible state(s) of the system, among possible one” [8]. This type of incomplete knowledge was described in terms of possibility distribution in [8], the degree of transition possibility distribution denotes the plausible degree of the next state. This provide us one kind of view on the justification of degree and transition of
possibilistic Kripke structures.

Example 3.1. Let us give some running examples of GPKSs, where states are represented by nodes and transitions by labeled edges. State names are depicted inside the ovals. Initial states are indicated by having an incoming arrow without source.

(1) Fig.1 shows a GPKS with fuzzy P and L;
(2) Fig.2 gives a GPKS with crisp P and fuzzy L;
(3) Fig.3 is a PKS;
(4) Fig.4 presents a GPKS with non-normal fuzzy P and crisp L.

![Fig.1. A GPKS with fuzzy P and L.](image1)

![Fig.2. A GPKS with crisp P and fuzzy L.](image2)

The similar notions and notations used for PKS are also applicable for GPKS.
Definition 3.2. (cf. [19]) For a generalized possibilistic Kripke structure M, a function $Po^M : Paths(M) \rightarrow [0, 1]$ is defined as follows:

$$Po^M(\pi) = I(s_0) \land \bigwedge_{i=0}^{\infty} P(s_i, s_{i+1})$$ \hspace{1cm} (10)

for any $\pi = s_0s_1 \cdots \in Paths(M)$. Furthermore, we define

$$Po^M(E) = \lor\{Po^M(\pi) \mid \pi \in E\}$$ \hspace{1cm} (11)

for any $E \subseteq Paths(M)$, then, we have a well-defined function

$$Po^M : 2^{Paths(M)} \rightarrow [0, 1],$$

Po^M is called the generalized possibility measure over $\Omega = 2^{Paths(M)}$ as it has the properties stated in Theorem 3.2. If M is clear from the context, then M is omitted and we simply write Po for Po^M.

13
For a generalized Kripke structure M, let us define a function $r_p : S \rightarrow [0, 1]$ as follows, which denotes the largest possibility of the paths in M initialized at the state s,

$$r_p(s) = \bigvee \{P(s, s_1) \land P(s_1, s_2) \land \cdots | s_1, s_2, \cdots \in S \}.$$

(12)

The role of the function r_p is stated in Theorem 3.2. How to calculate r_p? The following proposition gives an answer.

Proposition 3.1. For a finite generalized Kripke structure M, and a state s in M, we have

$$r_p(s) = \bigvee \{P^+(s, t) \land P^+(t, t) | t \in S \}.$$

(13)

In the matrix notation we have,

$$r_p = P^+ \circ D,$$

(14)

where $D = (P^+(t, t))_{t \in S}$.

In particular, P is normal iff $r_p(s) = 1$ for any state s.

Proof. Since S is finite, the image set of P is also finite. Observing that the meet operation \land does not generate new elements, it follows that the set $\{P(s, s_1) \land P(s_1, s_2) \land \cdots | s_1, s_2, \cdots \in S \}$ is also finite. Therefore, there exists a sequence $s_1, s_2, \cdots \in S$ such that $r_p(s) = P(s, s_1) \land P(s_1, s_2) \land \cdots$. Since S is finite, there exist $t \in S$ and $i < j$ such that $s_i = s_j = t$. In this case, $P(s, s_1) \land P(s_1, s_2) \land \cdots = (P(s, s_1) \land \cdots \land P(s_{i-1}, t)) \land (P(t, s_{i+1}) \land \cdots \land P(s_{j-1}, t)) \land \cdots \leq (P(s, s_1) \land \cdots \land P(s_{i-1}, t)) \land (P(t, s_{i+1}) \land \cdots \land P(s_{j-1}, t)) \leq P^+(s, t) \land P^+(t, t)$. Hence, $r_p(s) \leq \bigvee \{P^+(s, t) \land P^+(t, t) | t \in S \}$.

Conversely, for any $t \in S$, by the definition of P^+, it follows that there exists $s_1, \cdots, s_i = t \in S$ and s_{i+1}, \cdots, s_j such that $P^+(s, t) = P(s, s_1) \land \cdots \land P(s_{i-1}, t)$ and $P^+(t, t) = P(t, s_{i+1}) \land \cdots \land P(s_j, t)$. Let $\pi = ss_1 \cdots s_{i-1} t(s_{i+1} \cdots s_j)^\omega$, then $P^+(s, t) \land P^+(t, t) = P(s, \pi[1]) \land P(\pi[1], \pi[2]) \land \cdots$. Hence, $P^+(s, t) \land P^+(t, t) \leq r_p(s)$, and thus $\bigvee \{P^+(s, t) \land P^+(t, t) | t \in S \} \leq r_p(s)$.

14
Therefore, \(r_p(s) = \sqrt{[P^+(s, t) \wedge P^+(t, t)]|t \in S} \).

Furthermore, if \(P \) is normal, i.e., \(\bigvee_{t \in S} P(t, t') = 1 \) for any \(t \in S \), since \(S \) is finite, it follows that there exists \(t' \in S \) such that \(P(t, t') = 1 \) for any \(t \in S \). By this observation, from the state \(s \), we can choose a sequence of states \(s_1, s_2, \ldots \) such that \(P(s_i, s_{i+1}) = 1 \) for any \(i \geq 0 \). This sequence guarantees that \(r_p(s) = 1 \) for any state \(s \). Conversely, if \(r_p(s) = 1 \) for any state \(s \), then it is obvious that \(P \) is normal. \(\square \)

Theorem 3.1. Let \(M \) be a finite generalized possibilistic Kripke structure. Then the possibility measure of the cylinder sets is given by \(P_0(Cyl(s_0 \cdots s_n)) = I(s_0) \wedge \bigwedge_{i=0}^{n-1} P(s_i, s_{i+1}) \wedge r_p(s_n) \) when \(n > 0 \) and \(P_0(Cyl(s_0)) = I(s_0) \wedge r_p(s_0) \).

Proof. As \(Cyl(s_0 \cdots s_n) = \bigcup \{ \pi \in S^\omega | s_0 \cdots s_n \in Pref(\pi) \} \), we have

\[
P_0(Cyl(s_0 \cdots s_n)) = \bigvee \{ P_0(\pi) | s_0 \cdots s_n \in Pref(\pi) \} = \bigvee \{ I(s_0) \wedge \bigwedge_{i=0}^{\infty} P(s_i, s_{i+1}) | s_0 \cdots s_n \in S \} = \bigvee \{ I(s_0) \wedge \bigwedge_{i=0}^{n-1} P(s_i, s_{i+1}) \} \wedge \bigvee \{ I(s_{n+1}) \wedge \bigwedge_{i=n}^{\infty} P(s_i, s_{i+1}) | s_i \in S, i > n \} = I(s_0) \wedge \bigwedge_{i=0}^{n-1} P(s_i, s_{i+1}) \wedge r_p(s_n).
\]

\(\square \)

Theorem 3.2. \(P_0 \) is a generalized possibility measure \((\text{[14]})) on \(\Omega = 2^{\text{Paths}(M)} \), i.e., \(P_0 \) satisfies the following conditions:

1. \(P_0(\emptyset) = 0, P_0(\Omega) = \bigvee_{s \in S} I(s) \wedge r_p(s) \);
2. \(P_0(\bigcup_{i \in I} A_i) = \bigvee_{i \in I} P_0(A_i) \) for any \(A_i \in \Omega, i \in I \).

The proof is direct.

For the above generalized possibility measure \(P_0 \), the related generalized necessity is also denoted by \(Ne \), i.e., \(Ne(E) = 1 - P_0(\overline{E}) \) for any subset \(E \) of \(\text{Paths}(M) \).
4. Generalized possibilistic CTL

We shall give the temporal logic used for the specifications in this section. We shall introduce a new kind of quantitative temporal logics, which is called generalized possibilistic CTL.

Definition 4.1. (Syntax of GPACTL) Generalized possibilistic CTL (GPACTL, in short) state formulae over the set AP of atomic propositions are formed according to the following grammar:

$$
\Phi ::= \text{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid Po(\varphi)
$$

where $a \in AP$, φ is a PoCTL path formula.

PoCTL path formulae are formed according to the following grammar:

$$
\varphi ::= \bigcirc \Phi \mid \Phi_1 \sqcup \Phi_2 \mid \Phi_1 \sqcup \leq n \Phi_2 \mid
$$

where $\Phi, \Phi_1,$ and Φ_2 are state formulae and $n \in \mathbb{N}$.

Using the connectives \land and \neg, other connectives, such as disjunction \lor, implication \rightarrow, equivalence \leftrightarrow can be derived as usual,

$$
\Phi_1 \lor \Phi_2 = \neg (\neg \Phi_1 \land \neg \Phi_2),
$$

$$
\Phi_1 \rightarrow \Phi_2 = \neg \Phi_1 \lor \Phi_2,
$$

$$
\Phi_1 \leftrightarrow \Phi_2 = (\Phi_1 \rightarrow \Phi_2) \land (\Phi_2 \rightarrow \Phi_1).
$$

Definition 4.2. (Semantics of PoCTL) Let $a \in AP$ be an atomic proposition, $M = (S, P, I, AP, L)$ be a possibilistic Kripke structure, $s \in S$ be a state, Φ, Ψ be PoCTL state formulae, and φ be a PoCTL path formula. For state formula Φ, its semantics is a fuzzy set $\|\Phi\| : S \rightarrow [0, 1]$, which is defined recursively as follows, for any $s \in S$,

$$
\|\text{true}\|(s) = 1; \quad (15)
$$

$$
\|a\|(s) = L(s, a); \quad (16)
$$

16
\[||\Phi \land \Psi||(s) = ||\Phi||(s) \land ||\Psi||(s); \quad (17) \]
\[||\neg\Phi||(s) = 1 - ||\Phi||(s); \quad (18) \]
\[||Po(\varphi)|| (s) = Po(s \models \varphi). \quad (19) \]

For a path formula \(\varphi \), its semantics is a fuzzy set \(||\varphi|| : \text{Paths}(M) \to [0, 1] \), which is defined recursively for \(\pi \in \text{Paths}(M) \) as follows,

\[||\bigcirc \Phi||(\pi) = P(\pi[0], \pi[1]) \land ||\Phi||(\pi[1]); \]
\[||\Phi \sqcup \Psi||(\pi) = ||\Psi||(\pi[0]) \lor \bigvee_{j>0}((||\Phi||(\pi[0]) \land \land_{k<j} P(\pi[k - 1], \pi[k]) \land ||\Phi||(\pi[k])) \land P(\pi[j - 1], \pi[j]) \land ||\Psi||(\pi[j])); \]
\[||\Phi \sqcup^n \Psi||(\pi) = ||\Psi||(\pi[0]) \lor \bigvee_{0<j\leq n}((||\Phi||(\pi[0]) \land \land_{k<j} P(\pi[k - 1], \pi[k]) \land ||\Phi||(\pi[k])) \land P(\pi[j - 1], \pi[j]) \land ||\Psi||(\pi[j])); \]
\[||\square\Phi||(\pi) = \bigwedge_{i=0}^{\infty} \bigwedge_{j=0}^{i-1} P(\pi([j]), \pi([j + 1])) \land ||\Phi||(\pi([j])). \]

\(Po(s \models \varphi) \) is defined as follows

\[Po(s \models \varphi) = \bigvee_{\pi \in \text{Paths}(s)} Po^M(\pi) \land ||\varphi||(\pi). \quad (20) \]

Intuitively, \(Po(s \models \varphi) \) denotes the largest possibility of the paths strating at \(s \) satisfying the formula \(\varphi \).

Path formula \(\lozenge \Phi \) (“eventually”) defined by \(\lozenge \Phi = \text{true} \sqcup \Phi \) has the semantics

\[||\lozenge\Phi||(\pi) = \bigvee_{j=0}^{\infty} \bigwedge_{k<j} P(\pi[k - 1], \pi[k]) \land ||\Phi||(\pi[j]). \quad (21) \]

Dually, we have the following GPoCTL state formulae as presented in Eq.(5-9):

\[Ne(\bigcirc \Phi) = \neg Po(\bigcirc \neg \Phi); \quad (22) \]
$$Ne(\Phi \sqcup \Psi) = \neg Po(\neg \Psi \sqcup (\neg \Phi \land \neg \Psi)) \land \neg Po(\Box \neg \Phi);$$ (23)

$$Ne(\Phi \sqcup \leq n \Psi) = \neg Po(\neg \Psi \sqcup \leq n (\neg \Phi \land \neg \Psi)) \land \neg Po(\Box \leq n \neg \Phi);$$ (24)

$$Ne(\Box \Phi) = \neg Po(\Diamond \neg \Phi);$$ (25)

$$Ne(\Diamond \Phi) = \neg Po(\Box \neg \Phi).$$ (26)

Remark 2. By the semantics of GPoCTL, even if we use normal possibilistic Kripke structures as done in [19], the semantics of GPoCTL is still not the same as that of PoCTL. The semantics of GPoCTL contains more possibility information. We shall give explicit explanation using some examples in the following section.

5. GPoCTL model checking

Similar to multi-valued CTL model-checking problems [3], the GPoCTL model-checking problem can be stated as follows:

For a given finite generalized possibilistic Kripke structure M, a state s in M, and a PoCTL state formula Φ, compute the value $\|\Phi\|(s)$.

We write $M \models \Phi$ for this PoCTL model-checking problem.

$\|\Phi\|(s)$ can be calculated inductively on the length of Φ, $|\Phi|$, i.e., $|\Phi|$ denotes the number of subformulae of Φ, which is defined as follows:

- $|\Phi| = 1$ if $\Phi \in AP \cup \{\text{true}\}$.
- $|\Phi \land \Psi| = |\Phi| + |\Psi| + 1$.
- $|\neg \Phi| = |\Phi| + 1$.
- $|Po(\Box \Phi)| = |Po(\Box \Phi)| = |\Phi| + 1$.
- $|Po(\Phi \sqcup \Psi)| = |Po(\Phi \sqcup \leq n \Psi)| = |\Phi| + |\Psi| + 1$.

If $\Phi = a \in AP, \neg \Phi, \Phi_1 \land \Phi_2$, then we can compute $\|\Phi\|$ inductively using Eq.(16), Eq.(18) and Eq.(17). For the formula $\Phi = Po(\varphi)$, where φ is a path formula. Since $\|\Phi\|(s) = Po(s \models \varphi)$, the key point is to calculate $Po(s \models \varphi)$ for any state s.

There are four ways to construct path formula φ, i.e., $\varphi = \Box \Psi, \varphi = \Phi \sqcup \leq n \Psi, \varphi = \Phi \sqcup \Psi$ or $\varphi = \Box \Psi$ for some state formulae Φ and Ψ and $n \in \mathbb{N}$.

18
For $\varphi = \bigcirc \Phi$, the next-step operator, the calculation is as follows,

$$
\|P_0(\bigcirc \Psi)\|(s) = P_0(s \models \bigcirc \Psi)
= \bigvee_{\pi \in \text{Paths}(s)} P_0^M(\pi) \land \|\bigcirc \Psi\|((\pi))
= \bigvee_{\pi = ss_1s_2\ldots \in \text{Paths}(s)} P(s, s_1) \land P(s_1, s_2) \land \cdots \land P(s, s_1) \land \|\Psi\|(s_1)
= \bigvee_{s_1 \in S} P(s, s_1) \land \|\Psi\|((s_1)) \land \bigvee_{s_2, s_3, \ldots \in S} P(s_1, s_2) \land P(s_2, s_3) \cdots
= \bigvee_{s_1 \in S} P(s, s_1) \land \|\Psi\|((s_1)) \land r_P(s_1)
$$

where P is the transition matrix of M. We will give a matrix representation of the next-step operator. For this purpose, let us first fix some notations. For a state formula Φ, write D_Φ for the $|S| \times |S|$ matrix such that $D_\Phi(s, t) = \|\Phi\|(s)$ if $t = s$ and 0 otherwise, D_Φ is a diagonal fuzzy matrix with dimension $|S|$ such that the entry $D_\Phi(s, s)$ is $\|\Phi\|(s)$ for any $s \in S$, i.e., $D_\Phi = \text{diag}(\|\Phi\|(s))_{s \in S}$. For a function $f : S \longrightarrow [0, 1]$, we also use f to represent the column vector corresponding to the function f, i.e., $f = (f(s))_{s \in S}$. In the matrix-vector notation we thus have that the (column) vector $(P_0(s \models \bigcirc \Psi))_{s \in S}$ can be computed by multiplying P with the vector $D_\Psi \circ r_P$, i.e., we have

$$
P_0(\bigcirc \Psi) = (P_0(s \models \bigcirc \Psi))_{s \in S} = P \circ D_\Psi \circ r_P.
\tag{27}
$$

It follows that, checking the next-step operator thus reduces to two multiplications of fuzzy matrixes.

To calculate the possibility $P_0(s \models \varphi)$ for restricted until formula $\varphi = \Phi \sqcap \leq^n \Psi$, we have
In the matrix-notation we have a compact expression as follows,

$$||Po(\Phi \sqcup^N \Psi)|||(s) = \bigvee_{\pi=ss_1s_2\ldots\in \text{Paths}(s)} P^{M}(\pi) \wedge ||\Phi \sqcup^N \Psi|||(\pi)$$

$$= \bigvee_{\pi=ss_1s_2\ldots\in \text{Paths}(s)} P(s, s_1) \wedge P(s_1, s_2) \ldots \wedge ||\Psi|||(s) \vee \bigvee_{0<j\leq n} (||\Phi||(s)

\wedge \bigwedge_{k<j} P(s_{k-1}, s_k) \wedge ||\Phi||(s_k)) \wedge P(s_{j-1}, s_j) \wedge ||\Psi||(s_j))$$

$$= (||\Psi||(s) \wedge r(s)) \vee (\bigvee_{0<j\leq n} ||\Phi|||(s) \wedge \bigwedge_{k<j} P(s_{k-1}, s_k) \wedge ||\Phi||(s_k)

\wedge P(s_{j-1}, s_j) \wedge ||\Psi|||(s_j) \wedge r_P(s_j))$$

$$= \bigvee_{i=0}^n (D_\Phi \circ P)^i \circ D_\Psi \circ r_P(s)$$

In the matrix-notation we have a compact expression as follows,

$$||Po(\Phi \sqcup^N \Psi)|| = (||Po(\Phi \sqcup^N \Psi)|||(s))_{s \in S} = \bigvee_{i=0}^n (D_\Phi \circ P)^i \circ D_\Psi \circ r_P. \quad (28)$$

If we let \(N = |S|\), we know that \(\bigvee_{i=0}^n (D_\Phi \circ P)^i = (D_\Phi \circ P)^*\), the reflexive and transitive closure of the fuzzy matrix \(D_\Phi \circ P\), for any \(n \geq N\). In this case, we have

$$||Po(\Phi \sqcup^N \Psi)|| = (D_\Phi \circ P)^* \circ D_\Psi \circ r_P. \quad (29)$$

By the definition of \(\Phi \sqcup \Psi\), we can see that \(Po(s \models \Phi \sqcup \Psi) = \lim_{n \to \infty} ||Po(\Phi \sqcup^N \Psi)|||(s)\) for any state \(s\). It follows that

$$||Po(\Phi \sqcup \Psi)|| = (||Po(\Phi \sqcup \Psi)|||(s))_{s \in S} = (D_\Phi \circ P)^* \circ D_\Psi \circ r_P, \quad (30)$$

which can be computed effectively.

To calculate the possibility \(Po(s \models \varphi)\) for always operator \(\varphi = \Box \Phi\), note that

$$||\Box \Phi||(\pi) = \bigwedge_{i=0}^\infty \bigwedge_{j=0}^{i-1} P(\pi([j]), \pi([j+1])) \wedge ||\Phi||(\pi([i]))$$

then we have, for any state \(s\),

$$Po(s \models \Box \Phi) = \bigvee_{\pi \in \text{Paths}(s)} P_M(\pi) \wedge ||\Box \Phi||(\pi)$$

$$= \bigvee_{\pi \in \text{Paths}(s)} \bigwedge_{j=0}^\infty P(\pi([j]), \pi([j+1])) \wedge \bigwedge_{j=0}^\infty ||\Phi||(\pi([j]))$$
Unlike the next formula and until formula, it is not easy to give a matrix representation of \(Po(\Box \Phi) \). To give an effective method to compute \(Po(\Box \Phi) \), we use the fixpoint techniques.

First, let us give an observation.

Proposition 5.1. For any GPoCTL state formula \(\Phi \) and a finite GPKS \(M \), the image set of \(||\Phi|| \), denoted by \(\text{Im}(\Phi) \), is a finite subset of the unit interval \([0,1]\).

Proof. Write \(U \) the set of the union of the image set of atomic proposition \(a \) and its negation \(\neg a \) for \(a \in AP \), i.e., \(U = \cup \{ \text{Im}(||a||) \cup \text{Im}(||\neg a||) | a \in AP \} \). Since \(M \) is a finite GPKS, \(U \) is a finite subset of the unit interval \([0,1]\). Since the minimum operation and the maximum operation on \(U \) do not generate any new elements except the set \(U \), the image set of any state formula \(\Phi \) is contained in the set \(U \). It follows that the image set of \(||\Phi|| \) is also finite. \(\square \)

Proposition 5.2. For any GPoCTL state formula \(\Phi \) and a finite GPKS \(M \), the function defined by \(f(Z) = ||\Phi|| \land ||Po(\Box Z)|| \), where \(||Po(\Box Z)|| = P \circ D_Z \circ r_P \), which is from the set of possibility distributions over the state set \(S \) into itself, has a greatest fixpoint, and the greatest fixpoint of \(f \) is just \(||Po(\Box \Phi)|| \).

Proof. Let \(Z_0 = (1, 1, \cdots, 1)^T \) be the greatest vector with entries 1. Inductively, we can define \(Z_{i+1} = f(Z_i) \). Since \(f \) is monotong, i.e., if \(Z' \leq Z'' \), then \(f(Z') \leq f(Z'') \), where \(Z' \leq Z'' \) means that \(Z'(s) \leq Z''(s) \) for any state \(s \). Then we have the chain \(Z_0 \geq Z_1 \geq Z_2 \geq \cdots \geq Z_i \geq Z_{i+1} \geq \cdots \).

Since \(\text{Im}(||\Phi||) \) is finite, and the operations involved in the function \(f \) do not generate any new elements except \(U \), it follows that \(\text{Im}(Z_i) \subseteq U \), which means that \(Z_i \) is a function from the state set \(S \) into the finite set \(U \). Since the set of all the functions from \(S \) into \(U \) is a finite set, it follows that there exists \(k \) such that \(Z_{k+1} = Z_k \), i.e., \(f(Z_k) = Z_k \). We show that \(Z_k \) is the greatest fixpoint of \(f \). It is almost obvious that, if \(Z \) is a fixpoint of \(f \), then \(Z \leq Z_0 \). Since \(f \) is monotone, it follows that \(Z = f(Z) \leq Z_1 \). Inductively, we have \(Z \leq Z_k \). Hence, \(Z_k \) is the greatest fixpoint of \(f \).
Let $A = \|P_0(\square \Phi)\|$. Then A is defined as, $A(s) = \bigvee_{\pi \in \text{Paths}(s)} \bigwedge_{j=0}^{\infty} P(\pi([j], \pi([j+1]))) \wedge \bigwedge_{j=0}^{\infty} \|\Phi\|((\pi([j])))$, for any state s.

First, let us show that A is a fixpoint of f. For any state s, we have,

$$
\begin{align*}
f(A)(s) &= \|\Phi\|(s) \wedge \|P_0(\square A)\|(s) \\
&= \|\Phi\|(s) \wedge \bigvee_{s_1 \in S} P(s, s_1) \wedge A(s_1) \\
&= \|\Phi\|(s) \wedge \bigvee_{s_1 \in S} P(s, s_1) \wedge \bigwedge_{\pi \in \text{Paths}(s_1)} \bigwedge_{j=1}^{\infty} P(\pi([j], \pi([j+1]))) \wedge \bigwedge_{j=0}^{\infty} \|\Phi\|((\pi([j]))) \\
&= \bigwedge_{\pi \in \text{Paths}(s)} \bigwedge_{s_1 \in S} \bigwedge_{j=0}^{\infty} P(\pi([j], \pi([j+1]))) \wedge \bigwedge_{j=0}^{\infty} \|\Phi\|((\pi([j]))) \\
&= A(s)
\end{align*}
$$

Hence, A is a fixpoint of f.

Second, we want to show that A is the greatest fixpoint of f. If Z is a fixpoint of f, i.e., $Z = \|\Phi\| \wedge \|P_0(\square Z)\| = \|\Phi\| \wedge P \circ D_Z \circ r_p$, then we have,

$$
\begin{align*}
Z(s) &= \|\Phi\|(s) \wedge \bigvee_{s_1 \in S} P(s, s_1) \wedge Z(s_1) \wedge r_p(s_1) \\
&\leq \|\Phi\|(s) \wedge \bigvee_{s_1, s_2 \in S} P(s, s_1) \wedge \|\Phi\|(s_1) \wedge P(s_1, s_2) \wedge Z(s_2) \\
&\leq \|\Phi\|(s) \wedge \bigvee_{s_1, s_2, \ldots \in S} P(s, s_1) \wedge \|\Phi\|(s_1) \wedge P(s_1, s_2) \wedge \|\Phi\|(s_2) \wedge P(s_2, s_3) \wedge \cdots \\
&\leq \bigwedge_{\pi \in \text{Paths}(s)} \bigwedge_{s_1, s_2, \ldots \in S} P(\pi([j], \pi([j+1]))) \wedge \bigwedge_{j=0}^{\infty} \|\Phi\|((\pi([j]))) \\
&= A(s)
\end{align*}
$$

That is to say, $Z \leq A$. Hence, $A = \|P_0(\square \Phi)\|$ is the greatest fixpoint of f. □

What is its time complexity of the fixpoint computation of $f(Z) = \|\Phi\| \wedge \|P_0(\square Z)\|$? Let us give some analysis as follows: The nth iteration of the fixpoint computation of $f(Z)(s) = \|\Phi\|(s) \wedge \|P_0(\square Z)\|(s)$ computes the least upper bound
of the values of all paths of length n starting from s satisfying Φ. Since the state space S is finite, for any path π of length greater than $|S| + 1$, there exists a path π' of length at most $|S| + 1$, whose value is above the value π. Thus, the fixpoint computation converges after at most $|S| + 2$ iterations. Note each iteration of fixpoint computation of f involves only the operations of matrix product and the maximum and minimum operations of real numbers, each iteration takes at most $O(|S|^2)$. Thus, each fixpoint requires $O(|S|^3)$.

This completes the computation of the state formula $Po(\varphi)$.

In the calculation of $\left(\|\Phi\|\right)_s$ for a state formula Φ, we only need to perform (fuzzy) matrix multiplication at most $|S| + 3$ times or perform iteration of fixpoint computation of f at most $|S| + 2$ times. It follows that the time complexity of GPoCTL model checking of a finite generalized possibilistic Kripke structure M and a GPoCTL formula Φ can be presented as follows.

Theorem 5.1. (Time Complexity of GPoCTL Model Checking) For a finite possibilistic Kripke structure M and a GPoCTL formula Φ, the GPoCTL model-checking problem $M \models \Phi$ can be determined in time $O(\text{size}(M) \cdot \text{poly}(|S|) \cdot |\Phi|)$, where $|\Phi|$ denotes the number of subformulae of Φ, $\text{poly}(N)$ denotes the polynomial function of N.

The corresponding algorithm can be presented here.

Algorithm 1: Computing the greatest fixpoint

Input: A function f from the set of possibility distributions over the state set S into itself.

Output: The greatest fixpoint of f.

Procedure Fixpoint(x, f)

\[
x' \leftarrow f(x)
\]

while $x \neq x'$ do

\[
x \leftarrow x'
\]

23
\[x' \leftarrow f(x) \]
\[\text{end while} \]
return \(x \)
End Procedure

Algorithm 2: GPoCTL Model Checking

Input: A GPKS \(M \) and a GPoCTL formula \(\Phi \).
Output: The possibility \(s \models \Phi \), i.e., \(\|\Phi\|\(s\)\), for every state \(s \) in \(M \).

Procedure GPoCTLCheck(\(\Phi \))
Case \(\Phi \)
\(\text{true} \) return \((1)_{s\in S}\)
\(a \) return \((L(s,a))_{s\in S}\)
\(\neg \Phi \) return \((1 - \|\Phi\|\(s\))_{s\in S}\)
\(\Phi_1 \land \Phi_2 \) return \((\|\Phi_1\|\(s\) \land \|\Phi_2\|\(s\))_{s\in S}\)
\(Po(\bigcirc \Phi) \) return \(P \circ D_\Phi \circ r_P \)
\(Po(\Phi_1 \sqcup \leq^N \Phi_2) \) return \(\bigvee_{i=0}^N (D_{\Phi_1} \circ P) \circ D_{\Phi_2} \circ r_P \)
\(Po(\Diamond \Phi) \) return \((D_{\Phi_1} \circ P) \circ D_{\Phi_2} \circ r_P \)
\(Po(\Box \Phi) \) return Fixpoint((1)_{s\in S}, f_\Phi)
End Case
End Procedure

Here, \(P = (P(s,t))_{s,t\in S} \), \(D_\Phi = \text{diag}(\|\Phi\|\(s\))_{s\in S} \), \(r_P = P^+ \circ D \), \(P^+ = P \lor P^2 \lor \cdots \lor P^N \), \(D = (P^+(s,s))_{s\in S} \), \(P^* = P_0 \lor P^+ \), where \(N = |S| \), and \(P_0 \) denotes the \(N \times N \) identity matrix, \(f_\Phi(Z) = \|\Phi\| \land P \circ D_Z \circ r_P \). For a vector \(r = (r(i))_{i\in I} \), \(\neg r = (1 - r(i))_{i\in I} \).

We give an example to show the methods of this section.
Example 5.1. We give some calculations using Example 3.1. For the path formula $\varphi = \bigcirc a$, and for a path $\pi \in Paths(s_0)$, we can simply compute $\| \bigcirc a \|(\pi)$ as follows:

In Fig.1,

$$\| \bigcirc a \|(\pi) = \begin{cases} 0.6, & \text{if } \pi \in Cyl(s_0s_1), \\ 0.4, & \text{if } \pi \in Cyl(s_0s_3), \\ 0, & \text{otherwise}. \end{cases}$$

In Fig.2,

$$\| \bigcirc a \|(\pi) = \begin{cases} 0.6, & \text{if } \pi \in Cyl(s_0s_1), \\ 0.4, & \text{if } \pi \in Cyl(s_0s_3), \\ 0, & \text{otherwise}. \end{cases}$$

In Fig.3,

$$\| \bigcirc a \|(\pi) = \begin{cases} 0.8, & \text{if } \pi \in Cyl(s_0s_1), \\ 1, & \text{if } \pi \in Cyl(s_0s_3), \\ 0, & \text{otherwise}. \end{cases}$$

In Fig.4,

$$\| \bigcirc a \|(\pi) = \begin{cases} 0.8, & \text{if } \pi \in Cyl(s_0s_1), \\ 0.9, & \text{if } \pi \in Cyl(s_0s_3), \\ 0, & \text{otherwise}. \end{cases}$$

We can see that even in a PKS as in Fig.3, the path formula $\bigcirc a$ in GPoCTL is not crisp. As we know, all formulae in PoCTL, including state and path formulae, are crisp, see [20]. The semantics of GPoCTL, compared with that of PoCTL, contains more possibility information. Furthermore, using Algorithm 2, we can give the semantics of GPoCTL formulae $Po(\bigcirc(a \land b))$ and $Po(b \sqcup c)$ in the GPKS as shown in Fig.1 as follows, where X^T denotes the transposed fuzzy matrix of X.

$$Po(\bigcirc(a \land b)) = (Po(s \models \bigcirc(a \land b)))_{s \in S} = P \circ D_{a \land b} \circ r_p = (0.5, 0.4, 0, 0.5)^T,$$

$$Po(b \sqcup c) = (Po(s \models b \sqcup c))_{s \in S} = (D_b \circ P) \circ D_c \circ r_p = (0.6, 0.5, 0.7, 0.6)^T,$$

where

$$P = \begin{pmatrix} 0 & 0.8 & 0 & 0.9 \\ 0 & 0 & 0.2 & 0.5 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0.7 & 0.6 & 0 \end{pmatrix}, \quad D_{a \land b} = \text{diag}(0.8, 0.6, 0, 0.4), \quad D_b = \text{diag}(0.8, 1, 0, 0.5),$$

$$D_c = \text{diag}(0, 0, 0.7, 1) \text{ and } r_p = (0.6, 0.5, 0.9, 0.6)^T.$$
6. Semantics interpretation of GPoCTL in possibilistic Kripke structures and restricted GPoCTL

Another view of quantitative GPoCTL model checking can be presented as follows: For a given interval $J \subseteq [0, 1]$, and for a state formula Φ in GPoCTL, determine whether $||\Phi||_J(s) \in J$ for any state $s \in S$. Corresponding to this model checking, a related crisp formula Φ_J is defined using the semantics of Φ under a GPKS M as,

$$s \models \Phi_J \text{ iff } ||\Phi||_J(s) \in J.$$ \hspace{1cm} (31)

In fact, the formula Φ_J can be decided by the model-checking algorithm in the above section.

Concretely, for an atomic formula a in AP, states formulae Φ, Ψ, and a path formula φ, we have

$$s \models a_J \text{ iff } L(s, a) \in J;$$
$$s \models (\neg \Phi)_J \text{ iff } 1 - ||\Phi||_J(s) \in J;$$
$$s \models (\Phi \land \Psi)_J \text{ iff } ||\Phi||_J(s) \land ||\Psi||_J(s) \in J;$$
$$s \models (\text{Po}(\varphi))_J \text{ iff } \text{Po}(s \models \varphi) \in J,$$

where we write $\text{Po}_J(\varphi)$ as $(\text{Po}(\varphi))_J$ in the sequel.

The formula Φ_J is very similar to that used in PoCTL. We shall study the relationship between GPoCTL and PoCTL. For this purpose, we shall restrict the GPKS to PKS when we talk about the semantics of GPoCTL, since we only consider the semantics of PoCTL in the frame of PKS. In this case, we shall see the much more simple form of Φ_J.

In this section, all GPKS considered will be PKS. We have the following basic results.

Definition 6.1. For two state formulae Φ and Ψ in GPoCTL, and any interval $J, K \subseteq [0, 1]$, $\Phi_J \equiv \Psi_K$ iff “$s \models \Phi_J$ iff $s \models \Psi_K$” holds for any PKS M.

Lemma 1. For any $a \in AP$, (1) $a_{[0,1]} \equiv \text{true}$, (2) $a_{[0,0]} = \neg a$ for any interval $0 \in J \subseteq [0, 1]$, (3) $a_{[1,1]} = a$ for any interval $1 \in J \subseteq (0, 1]$.

26
Proof. For any PKS M and any state s in M, we have the following observation.

1. $s \models a_{[0,1]}$ iff $|a|(s) \in [0,1]$. Since $|a|(s) \in [0,1]$ always holds, it follows that $s \models a_{[0,1]}$. Note that $s \models true$ holds for any state s, we then have $a_{[0,1]} \equiv true$.

2. $s \models a_{[0,0]}$ iff $|a|(s) = 0$ iff $a \notin L(s)$ iff $s \models \neg a$. Note that for a PKS M, the labeling function L is crisp, i.e., $|a|(s) = L(s,a) = 0$ or 1, it follows that, for any interval $J \subseteq [0,1]$ such that $0 \in J$, $|a|(s) \in J$ iff $|a|(s) = 0$, i.e., $s \models a_j$ iff $|a|(s) = 0$. Hence, $a_j \equiv a_{[0,0]} = \neg a$ for any interval $0 \in J \subseteq [0,1]$.

3. $s \models a_{[1,1]}$ iff $|a|(s) = 1$ iff $a \in L(s)$ iff $s \models a$. Note that for a PKS M, the labeling function L is crisp, i.e., $|a|(s) = L(s,a) = 0$ or 1, it follows that, for any interval $J \subseteq (0,1]$ such that $1 \in J$, $|a|(s) \in J$ iff $|a|(s) = 1$, i.e., $s \models a_j$ iff $|a|(s) = 1$. Hence, $a_j \equiv a_{[1,1]} = a$ for any interval $1 \in J \subseteq (0,1]$. □

By the above lemma, we can write a as $a_{[1,1]}$ and $\neg a$ as $a_{[0,0]}$. Then it holds that $s \models a$ iff $a \in L(a)$ and $s \models \neg a$ iff $a \notin L(s)$. From atomic formulae a in AP, we can infer any state formulae of PoCTL from state formulae of GPoCTL, as presented in the following two theorems.

Theorem 6.1. For any state formula Φ in GPoCTL, and any interval $J \subseteq [0,1]$ with rational bounds, Φ_J is a state formula of PoCTL, i.e., there is an equivalent state formula Ψ in PoCTL such that $\Phi_J \equiv \Psi$.

Proof. The proof is proceeded inductively on the length of formula Φ, $|\Phi|$. For any PKS M and any state s in M, we have the following discussion.

If $|\Phi| = 1$, then $\Phi = a \in AP$ or $\Phi = true$, by Lemma Φ_J is a PoCTL state formula.

Assume that Φ_J is a PoCTL state formula for any GPoCTL state formula Φ with length $|\Phi| \leq n$. For a GPoCTL formula Φ with length $n + 1$, we want to show that Φ_J is a PoCTL state formula for any interval J. There are four forms of the interval J, that is, $J = [u,v], (u,v), [u,v)$ or (u,v) for $u,v \in [0,1]$. We give the proof for the case of the closed interval $J = [u,v]$, other cases are completely the same and thus omitted. In the following, J is always the closed interval $[u,v]$.\n
27
There are six cases to be considered.

Case 1: $\Phi = \Phi' \land \Phi''$ for two GPoCTL state formulae Φ' and Φ''.

Write $\Phi^{\geq u} = \Phi^{u,1}$ and $\Phi^{\leq t} = \Phi^{t,1}$. Since $\Phi^{u,1} \equiv \Phi^{\geq u} \land \Phi^{\leq t}$, it suffices to calculate $\Phi^{\geq u}$ and $\Phi^{\leq t}$.

Note that $s \models \Phi^{\geq u}$ iff $||\Phi'||(s) \land ||\Phi''||(s) \geq u$ iff $||\Phi' ||(s) \geq u$ and $||\Phi''||(s) \geq u$ iff $s \models \Phi'_{\geq u}$ and $s \models \Phi''_{\geq u}$, and $s \models \Phi^{\geq u} \land \Phi^{\geq u}$.

Therefore, $\Phi^{\geq u} \equiv \Phi'_{\geq u} \land \Phi''_{\geq u}$.

Note that $s \models \Phi^{\leq t}$ iff $||\Phi'||(s) \land ||\Phi''||(s) \leq v$ iff $||\Phi' ||(s) \leq v$ or $||\Phi''||(s) \leq v$ iff $s \models \Phi'_{\leq t}$ or $s \models \Phi''_{\leq t}$, and $s \models \Phi' \lor \Phi''_{\leq t}$.

Therefore, $\Phi^{\leq t} \equiv \Phi' \lor \Phi''_{\leq t}$.

Hence, $\Phi_{\ell} = \Phi^{1} \land \Phi_{\leq t} = (\Phi'_{\geq u} \land \Phi''_{\geq u}) \land (\Phi' \lor \Phi''_{\leq t})$. By the induction, we know that Φ_{ℓ} is a PoCTL state formula.

Case 2: $\Phi = \neg \Phi'$ for a GPoCTL formula Φ'.

Note that, $s \models \Phi_{\ell}$ iff $u \leq ||\Phi'||(s) \leq v$, iff $u \leq ||\neg \Phi' ||(s) \leq v$, iff $u \leq 1 - ||\Phi' ||(s) \leq v$, iff $1 - v \leq ||\Phi' ||(s) \leq 1 - u$, iff $s \models \Phi_{[1-v,1-u]}$.

Therefore, $\Phi_{\ell} \equiv \Phi'_{[1-v,1-u]}$. By the induction, we have Φ_{ℓ} is a PoCTL state formula.

Case 3: $\Phi = Po(\bigcirc \Phi')$.

Note that $s \models Po^{\geq u}(\bigcirc \Phi')$ iff $\forall s' \in S P(s, s') \land ||\Phi'||(s') \geq u$, iff there exists a state s_1 such that $P(s, s_1) \geq u$ and $\Phi'(s_1) \geq u$, iff there exists a state s_1 such that $P(s, s_1) \geq u$, and $s_1 \models \Phi'_{\geq u}$, iff $Po^{\geq u}(\{ s \in Paths(s) | s \models \bigcirc \Phi'_{\geq u} \}) \geq Po^{\geq u}(\{ s \in Paths(s) | s \models \bigcirc \Phi'_{\geq u} \})$.

Therefore, $Po^{\geq u}(\bigcirc \Phi') \equiv Po^{\geq u}(\bigcirc \Phi'_{\geq u})$.

Note that $s \models Po^{\leq t}(\bigcirc \Phi')$ iff $\forall s' \in S P(s, s_1) \land ||\Phi'||(s_1) \leq v$, iff for any state s_1, we have $P(s, s_1) \land \Phi'_{\leq t} \leq v$, iff for any state s_1, $P(s, s_1) \leq v$ or $||\Phi' ||(s_1) \leq v$, iff for any state s_1, if $||\Phi' ||(s_1) > v$, then $P(s, s_1) \leq v$, iff for any state s_1, if $s_1 \models \Phi'_{> v}$, then $P(s, s_1) \leq v$, iff $Po^{\leq t}(\{ s \in Paths(s) | s \models \bigcirc \Phi'_{> v} \}) = Po^{\leq t}(\cup \{ s \in Paths(s) | s \models \bigcirc \Phi'_{> v} \}) = Po^{\leq t}(\cup \{ s \in Paths(s) | s \models \bigcirc \Phi'_{> v} \}) = \bigvee \{ P(s, s_1) | s_1 \models \Phi'_{> v} \} \leq v$, iff $s \models Po^{\leq t}(\bigcirc \Phi'_{> v})$, where $\Phi'_{> v} = \Phi'_{(v,1)}$.

Therefore, $Po^{\leq t}(\bigcirc \Phi') \equiv Po^{\leq t}(\bigcirc \Phi'_{> v})$.

Hence, $Po_{\ell}(\bigcirc \Phi') = Po^{\geq u}(\bigcirc \Phi') \land Po^{\leq t}(\bigcirc \Phi') \equiv Po^{\geq u}(\bigcirc \Phi'_{\geq u}) \land Po^{\leq t}(\bigcirc \Phi'_{\leq t})$.

By the induction, we know that $Po_{\ell}(\bigcirc \Phi')$ is a PoCTL state formula.
Case 4: $\Phi = Po(\Phi' \sqcup \Phi'')$.

Note that $s \models \Phi_{\geq u}$ iff there exists a path $\pi = s_0s_1 \cdots$, and the integer j, such that $\bigwedge_{k \leq j} P(s_{k-1}, s_k) \land \bigwedge_{k \leq j} ||\Phi||_{(s_k)} \land ||\Phi'||_{(s_j)} \geq u$, iff there exists a path $\pi = s_0s_1 \cdots$, and a j, such that $\bigwedge_{k \leq j} P(s_{k-1}, s_k) \geq u$ and $\bigwedge_{k \leq j} ||\Phi||_{(s_k)} \land ||\Phi'||_{(s_j)} \geq u$, iff there exists a path $\pi \in Cyl(s_0 \cdots s_j)$ such that $\bigwedge_{k \leq j} P(s_{k-1}, s_k) \geq u$ and $\pi \models \Phi'_{\geq u} \sqcup \Phi''_{\geq u}$, iff $\sqrt[\|Po^M(\pi)||\pi \in Paths(s), \pi \models \Phi'_{\geq u} \sqcup \Phi''_{\geq u}] \geq u$, iff $s \models Po_{\geq u}(\Phi'_{\geq u} \sqcup \Phi''_{\geq u})$.

Therefore, $Po_{\geq u}(\Phi' \sqcup \Phi'') \equiv Po_{\geq u}(\Phi'_{\geq u} \sqcup \Phi''_{\geq u})$.

Note that $s \models \Phi_{\leq v}$ iff, for any path $\pi = s_0s_1 \cdots$, $||\Phi||_{(s)} \leq v$, and for any j, $\bigwedge_{k \leq j} P(s_{k-1}, s_k) \land \bigwedge_{k \leq j} ||\Phi||_{(s_k)} \land ||\Phi'||_{(s_j)} \leq v$, iff for any path $\pi = s_0s_1 \cdots$, $||\Phi||_{(s)} \leq v$, and for any j, $\bigwedge_{k \leq j} P(s_{k-1}, s_k) \leq v$ or $\bigwedge_{k \leq j} ||\Phi||_{(s_k)} \land ||\Phi'||_{(s_j)} \leq v$, iff for any path $\pi = s_0s_1 \cdots$, $||\Phi||_{(s)} \leq v$, and for any j, if $\bigwedge_{k \leq j} ||\Phi||_{(s_k)} \land ||\Phi'||_{(s_j)} > v$, then $\bigwedge_{k \leq j} P(s_{k-1}, s_k) \leq v$, iff for any path $\pi = s_0s_1 \cdots$, $||\Phi||_{(s)} \leq v$, and for any j, if $\pi \models \Phi'_{> v} \sqcup \Phi''_{> v}$, then $\bigwedge_{k \leq j} P(s_{k-1}, s_k) \leq v$, iff $s \models \Phi''_{\leq u}$, and $\sqrt[\|Po^M(\pi)||\pi \in Paths(s), \pi \models \Phi'_{> v} \sqcup \Phi''_{> v}] \leq v$, iff $s \models Po_{\leq u}(\Phi'_{> v} \sqcup \Phi''_{> v}) \land \Phi''_{> v}$.

Therefore, $Po_{\leq u}(\Phi' \sqcup \Phi'') \equiv Po_{\leq u}(\Phi'_{> v} \sqcup \Phi''_{> v}) \land \Phi''_{> v}$.

Hence, $Po(\Phi' \sqcup \Phi'') \equiv (Po_{\geq u}(\Phi'_{\geq u} \sqcup \Phi''_{\geq u})) \land (Po_{\leq u}(\Phi'_{> v} \sqcup \Phi''_{> v}) \land \Phi''_{> v})$. By the induction, we know that $Po(\Phi' \sqcup \Phi'')$ is a GPoCTL state formula.

Case 5: $\Phi = Po(\Phi' \sqcup \Phi'')$.

Similar to case 4, we have $Po(\Phi' \sqcup \Phi'') \equiv (Po_{\geq u}(\Phi'_{\geq u} \sqcup \Phi''_{\geq u})) \land (Po_{\leq u}(\Phi'_{> v} \sqcup \Phi''_{> v}) \land \Phi''_{> v})$. By the induction, we know that $Po(\Phi' \sqcup \Phi'')$ is a GPoCTL state formula.

Case 6: $\Phi = \Box \Phi'$.

Note that $s \models Po_{\geq u}(\Box \Phi')$ iff $\sqrt[\|\pi \in Paths(s)||\pi \models \Phi'||\pi \in Paths(s), \pi \models \Box \Phi'_{\geq u}] \geq u$, iff there exist a path $\pi = s_0s_1 \cdots$ with $s_0 = s$ such that $\bigwedge_{j=0}^{\infty} P(s_j, s_{j+1}) \land \bigwedge_{j=0}^{\infty} ||\Phi'||_{(s_j)} \geq u$, and $\bigwedge_{j=0}^{\infty} ||\Phi'||_{(s_j)} \geq u$, iff there exist a path $\pi = s_0s_1 \cdots$ with $s_0 = s$ such that $Po^M(\pi) \geq u$ and $\pi \models \Box \Phi'_{\geq u}$, iff $\sqrt[\|Po^M(\pi)||\pi \in Paths(s), \pi \models \Box \Phi'_{\geq u}] \geq u$, iff $s \models Po_{\geq u}(\Box \Phi'_{\geq u})$.

Therefore, $Po_{\geq u}(\Box \Phi') = Po_{\geq u}(\Box \Phi'_{\geq u})$.
Note that $s \models P_{\leq v}(\square \Phi')$ iff $\bigvee_{\pi \in \text{Paths}(s)} \bigwedge_{j=0}^{\infty} P(s_j, s_{j+1}) \land \bigwedge_{j=0}^{\infty} ||\Phi'||(s_j) \leq v$, iff for any path $\pi = s_0s_1 \cdots$ with $s_0 = s$, $\bigwedge_{j=0}^{\infty} P(s_j, s_{j+1}) \leq v$ or $\bigwedge_{j=0}^{\infty} ||\Phi'||(s_j) \leq v$, iff for any path $\pi = s_0s_1 \cdots$ with $s_0 = s$, if $\bigwedge_{j=0}^{\infty} ||\Phi'||(s_j) > v$, then $\bigwedge_{j=0}^{\infty} P(s_j, s_{j+1}) \leq v$, iff for any path $\pi = s_0s_1 \cdots$ with $s_0 = s$, if $\pi \models \Box \Phi'_{>v}$, then $P_0^M(\pi) \leq v$, iff $\bigwedge\{P_0^M(\pi) | \pi \in \text{Paths}(s), \pi \not\models \Box \Phi'_{>v}\} \leq v$, iff $s \models P_{\leq v}(\square \Phi')$.

Therefore, $P_{\leq v}(\Box \Phi') \equiv P_{\leq v}(\Box \Phi'_{>v})$.

Hence, $P_{\Box}(\Box \Phi') \equiv P_{\geq u}(\Box \Phi'_{>u}) \land P_{\leq v}(\Box \Phi'_{>v})$. By the induction, we have $P_{\Box}(\Box \Phi')$ is a PoCTL state formula.

For a GPoCTL state formula Φ and interval $J \subseteq [0, 1]$, when we use Φ_J as a state formula and give its semantics in PKS, we can get a restricted version of GPoCTL as defined as follows.

Definition 6.2. (Syntax of RGPoCTL) Restricted generalized possibilistic CTL (RGPoCTL, in short) state formulae over the set AP of atomic propositions are formed according to the following grammar:

$$
\Phi ::\ = \ true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid P_{\Box}(\varphi)
$$

where $a \in AP$, φ is a RPoCTL path formula and J is an interval of $[0, 1]$ with rational bounds.

RPoCTL path formulae are formed according to the following grammar:

$$
\varphi ::\ = \bigcirc \Phi \mid \Phi_1 \sqcup \Phi_2 \mid \Phi_1 \sqcup^m \Phi_2 \mid \Box \Phi
$$

where Φ, Φ_1, and Φ_2 are state formulae and $n \in \mathbb{N}$.

The semantics of RGPoCTL formulae is interpreted in PKS. Let $a \in AP$ be an atomic proposition, $M = (S, P, I, AP, L)$ be a possibilistic Kripke structure, s be a state, Φ, Ψ be RGPoCTL state formulae, and φ be a RGPoCTL path formula.
The satisfaction relation \models is defined for state formulae by,

- $s \models a$ iff $a \in L(s)$;
- $s \models \neg \Phi$ iff $s \not\models \Phi$;
- $s \models \Phi \land \Psi$ iff $s \models \Phi$ and $s \models \Psi$;
- $s \models Po_f(\varphi)$ iff $Po(s \models \varphi) \in J$.

where $Po(s \models \varphi) = \lor \{Po^M(\pi) \land \|\Phi\||\pi \in Paths(s)\}$. For path formula φ, and $\pi \in Paths(M)$, its semantics is a fuzzy set $\|\varphi\| : Paths(M) \rightarrow [0,1]$, which is defined recursively as follows,

\[
\|\bigcirc \Phi\|(|\pi|) = \begin{cases}
P(\pi([0]), \pi([1])), & \text{if } \pi \models \bigcirc \Phi; \\
0, & \text{otherwise.} \end{cases}
\]

\[
\|\Phi \uplus \Psi\|(|\pi|) = \lor \{ \bigwedge_{j=0}^{k} P(s_j, s_{j+1}) |\text{for any } j < k, s_j \models \Phi, \text{and } s_k \models \psi \};
\]

\[
\|\Phi \uplus \leq n \Psi\|(|\pi|) = \lor \{ \bigwedge_{j=0}^{k} P(s_j, s_{j+1}) |\text{for any } j < k, s_j \models \Phi, \text{and } s_k \models \psi \};
\]

\[
\|\Box \Phi\|(|\pi|) = \begin{cases}
\bigwedge_{j=0}^{\infty} P(s_j, s_{j+1}), & \text{if } \pi \models \Box \Phi; \\
0, & \text{otherwise.} \end{cases}
\]

Theorem 6.2. The state formulae of RGPoCTL are the same as those of PoCTL.

Proof. From the definition of state formulae in PoCTL and RGPoCTL, we know that they have the same atomic formulae $a \in AP$. The left is to show that they have the same state formula $Po_f(\varphi)$ for a path formula φ and an interval J.

We use the superior r to represent RGPoCTL formula, and p to represent the PoCTL formula. It is sufficient to show that $Po_f(\varphi) = Po_f(\varphi)$ for the same path formula φ (but with different semantics). This can be guaranteed by the fact $Po_f(s \models \varphi) = Po_p(s \models \varphi)$, where φ has four forms, $\bigcirc \Phi$, $\Phi \uplus \Psi$, $\Phi \uplus \leq n \Psi$ and $\Box \Phi$. We prove the later in four cases as follows.
Case 1: $\varphi = \Diamond \Phi$. In this case, $P^\varphi(s \models \varphi) = \bigvee \{P^M(\pi) \land (\Diamond \Phi)[\pi] \mid \pi \in \text{Paths}(s)\} = \bigvee \{P^M(\pi) \land P(s, \pi([1]))[\pi] \mid \pi \in \text{Paths}(s), \pi \models \Diamond \Phi\} = Po^\varphi(s \models \varphi)$.

Case 2: $\varphi = \Phi \sqcup \Psi$. In this case, $P^\varphi(s \models \varphi) = \bigvee \{P^M(\pi) \land (\Phi \sqcup \Psi)[\pi] \mid \pi \in \text{Paths}(s)\} = \bigvee \{P^M(\pi)[\pi] \mid \pi \models \Phi \sqcup \Psi\} = Po^\varphi(s \models \varphi)$.

Case 3: $\varphi = \Phi \sqcup \leq n \Psi$. The proof is similar to that of the case 2.

Case 4: $\varphi = \Box \Phi$. In this case, $P^\varphi(s \models \varphi) = \bigvee \{P^M(\pi) \land \bigwedge_{j=0}^{\infty} P(\pi([j]), \pi([j+1]))[\pi] \mid \pi \in \text{Paths}(s), \pi \models \Box \Phi\} = Po^\varphi(s \models \varphi)$.

Since the above fact, for a RGPOCTL path formula or a POCTL path formula φ, we write $P^\varphi(s \models \varphi)$ and $Po^\varphi(s \models \varphi)$ with the same symbol $Po(s \models \varphi)$, which have the same interpretation $P^M(\{\pi \in \text{Paths}(s) \mid \pi \models \varphi\})$ for any PKS M.

Since $P^\varphi(s \models \varphi) = Po^\varphi(s \models \varphi)$ for any state s for any PKS M, it follows that $P^\varphi(\varphi) = Po^\varphi(\varphi)$ for any path formula φ and interval J. Hence, RGPOCTL and POCTL have the same state formulae.

RGPOCTL and POCTL have the same state formulae, but with different semantics of path formulae. In this sense, POCTL can be seen as a qualitative version or a crisp counterpart of GP CTL, where we interpret GP CTL formulae in the frame of PKS models.

Moreover, if we further restrict the interval $J \subseteq [0, 1]$ with the form $(0, 1]$ (write > 0 in short) and $[1]$ (write $= 1$ in short), then we obtain a more narrow qualitative GP CT L, which is the same as qualitative POCTL as defined in [20], where the system models are PKS models. In this case, CTL is a proper subclass of qualitative POCTL (as shown in [20]), and thus, CTL is a proper subclass of GP CTL.

7. An illustrative example

We consider the thermostat example given in [3, 24]. A little revision is adopted for our purpose.
There are three models for the thermostat as shown in Fig.5. Fig.5(a) is a very simple thermostat that can run a heater if the temperature falls below a desired threshold. The system has one indicator (Below), a switch to turn it off and on (Running) and a variable indicating whether the heater is running (Heat). The system starts in state OFF and transits into IDLE1 when it is turned on, where it awaits the reading of the temperature indicator. When the temperature is determined, the system transits either into IDLE2 or into HEAT. The value of the temperature indicator is unknown in states OFF and IDLE1. We use three-valued GPKS: 1, 0 and 0.5 (Maybe), to model the system, assigning Below the value 0.5 in states OFF and IDLE1 since the temperature is not determined in these two states, as depicted in Fig.5(a). Note that each state in this and the other two systems in Fig.5 contains a self-loop with the value 1 which we omitted to avoid clutter.

Fig.5(b) shows another aspect of the thermostat system-running the air conditioner. The behavior of this system is similar to that of the heater, with one difference: this system handles the failure of the temperature indicator. If the temperature reading cannot be obtained in states AC or IDLE2, the system transits into state IDLE1.

Finally, Fig.5(c) gives a combined model, describing the behavior of the thermostat that can run both the heater and the air conditioner. In this model, we use the same three-valued GPKS. When the individual descriptions agree that the value of a variable or transition is 1 (resp., 0), it is mapped into 1 (resp., 0) in the combined model; all other values are mapped into 0.5.

For simplicity, we use the symbols r, b, a, ac, h to represent the atomic propositions Running, Below, Above, AC and Heat.

For this thermostat model, we can ask a number of questions as presented in [3]:

Prop. 1. Can the system transit into IDLE1 from everywhere?

Prop. 2. Can the heater be turned on when the temperature falls below a desired threshold?
Fig. 5. Models of the thermostat. (a) Heat only; (b) AC only; (c) combined model.

Prop. 3. Can the system be turned off in every computation?

Prop. 4. Is heat on only if air conditioning is off?

Prop. 5. Can heat be on when the temperature is above a threshold desired?

The above properties can be re-stated using possibility measures as follows:

Prop. 1p. What is the possibility (resp. necessity) that the system can transit into IDLE1 from everywhere?

Prop. 2p. What is the possibility (resp. necessity) that the heater can be turned on when the temperature falls below a desired threshold?

Prop. 3p. What is the possibility (resp. necessity) that the system can be turned off in every computation?

Prop. 4p. What is the possibility (resp. necessity) that heat is on only if air conditioning is off?

Prop. 5p. What is the possibility (resp. necessity) that heat can be on when the temperature is above a threshold desired?

The above properties can be described using GPoCTL formulae as presented...
in Table 1 and Table 2, respectively. The table also lists the values of these properties in each of the models given in Fig. 5. We use “−” to indicate that the result cannot be obtained from this model. For example, the two individual models disagree on the question of reachability of state IDLE\textsubscript{1} from every state in the model, whereas the combined model concludes that it is 0. We obtain more useful information than those presented in [3, 24].

Property	GPOCTL formula	Heat model	AC model	Combined model
Prop.1p	Po(□Po(IDLE\textsubscript{1}))	(1,1,0,0)	(1,1,1,1)	(1,1,0.5,1,0)
Prop.2p	Po(¬Heat ⊕ Below)	(1,1,1,1)	−	(1,1,0.5,1,0)
Prop.3p	Po(□Po(◊¬Runing)))	(1,1,1,1)	(1,1,1,1)	(1,1,1,1)
Prop.4p	Po(□(¬Ac → Heat))	−	−	(0,0,1,1)
Prop.5p	Po(□(Above → ¬Heat))	−	−	(1,1,0.5,1,1)

Table 1. Results of verifying properties of the thermostat system using possibility measure.

Property	GPOCTL formula	Heat model	AC model	Combined model
Prop.1p	Ne(□Ne(IDLE\textsubscript{1}))	(0,0,0,0)	(0,0,0,0)	(0,0,0,0)
Prop.2p	Ne(¬Heat ⊕ Below)	(0.5,0.5,0,1)	−	(0.5,0.5,0,1)
Prop.3p	Ne(□Ne(◊¬Runing)))	(0,0,0,0)	(0,0,0,0)	(0,0,0,0)
Prop.4p	Ne(□(¬Ac → Heat))	−	−	(0,0,0,0)
Prop.5p	Ne(□(Above → ¬Heat))	−	−	(0.5,0.5,0,0,5)

Table 2. Results of verifying properties of the thermostat system using necessity measure.

As an illustrative example, let us show how to compute Prop.1p. Let Φ = Po(□Po(IDLE\textsubscript{1})), then Po(□Po(IDLE\textsubscript{1})) = Po(□Φ). By Algorithm 2, we have ||Φ|| = P\textsubscript{i} ◦ D\textsubscript{idle\textsubscript{1}} ◦ r\textsubscript{p}, and ||Po(□Φ)|| is the greatest fixpoint of the operator f(Z) = ||Φ|| ∧ P ◦ D\textsubscript{Z} ◦ r\textsubscript{p}, where i = a, b, c denote GPKSs as shown in Fig. 5(a)-(c). By a simple calculation, we have Po(□Po(IDLE\textsubscript{1})) = (1, 1, 0, 0) for GPKS in Fig. 5(a), Po(□Po(IDLE\textsubscript{1})) = (1, 1, 1, 1) for GPKS in Fig. 5(b), and Po(□Po(IDLE\textsubscript{1})) = (1, 1, 0.5, 1, 0) for GPKS in Fig. 5(c). It means that the system shown in Fig. 5(a) can transit into IDLE\textsubscript{1} from the state OFF (with possibility
1) and IDLE1 (with possibility 1) and could not transit from other states, and the system shown in Fig.5.(b) can transit into IDLE1 from everywhere (with possibility 1), and the system shown in Fig.5.(c) can transit into IDLE1 from state OFF (with possibility 1), IDLE1 (with possibility 1), IDLE2 (with possibility 0.5) and AC (with possibility 1), and could not transit from state HEAT.

On the other hand, let \(\Psi = \text{Ne}(\bigcirc \text{IDLE1}) \), then \(\text{Ne}(\square \text{Ne}(\bigcirc \text{IDLE1})) = \text{Ne}(\square \Psi) \). Since \(||\Psi|| = \neg P_0(\bigcirc \neg \text{IDLE1}) \) and \(\text{Ne}(\square \Psi) = \neg P_0(\diamond \neg \Psi) \), using Algorithm 2, by a simple calculation, we have \(\text{Ne}(\square \text{Ne}(\bigcirc \text{IDLE1})) = (0,0,0,0) \) for GPKS in Fig.5(a) (b), and \(\text{Ne}(\square \text{Ne}(\bigcirc \text{IDLE1})) = (0,0,0,0,0) \) for GPKS in Fig.5(c). It means that it is unnecessary that the systems shown in Fig.5.(a), (b) and (c) could transit into IDLE1 from everywhere.

To sum up the results of Table 1 and Table 2 for Prop.1p, it is unnecessary that the systems shown in Fig.5.(a), (b) and (c) could transit into IDLE1 from everywhere. Furthermore, it is not possible that the system shown in Fig.5(a) can transit into IDLE1 from states IDLE2 and HEAT, and it is not possible that the system shown in Fig.5(c) can transit into IDLE1 from HEAT. It is possible that the system shown in Fig.5.(a) transits into IDLE1 from the state OFF (with possibility 1) and IDLE1 (with possibility 1), and the system shown in Fig.5.(b) transits into IDLE1 from everywhere (with possibility 1), and the system shown in Fig.5.(c) can transit into IDLE1 from state OFF (with possibility 1), IDLE1 (with possibility 1), IDLE2 (with possibility 0.5) and AC (with possibility 1).

8. Conclusion

We introduced possibilistic computation tree logic model checking based on generalized measures, which forms an extension of PoCTL model checking introduced in [20]. First, the system models were described as generalized possibilistic Kripke structures, and the properties of the systems were specified as generalized computation tree logic formulae. Then the corresponding model checking was discussed, and Algorithm 1-2 was provided to solve the generalized computation tree logic model-checking problems. Next, GPoCTL and PoCTL were compared
in detail. Compared with PoCTL, GPoCTL contains more possible and necessary information, even if we use PKS models. The logic GPoCTL is similar to CTL in multi-valued case. Of course, some measure information, including possibility measure and necessity measure, is contained in GPoCTL, whereas there is no measure information in multi-valued CTL model checking. An illustrative example in multi-valued case was used to verify our method.

Further case study needs to be provided. Another direction is the equivalence and abstraction techniques in GPoCTL. For linear-time properties, LTL model checking based on generalized measures using GPKS as system model is another future direction to study (cf. [19]).

Acknowledgments

The authors would like to thank the anonymous referees for helping them refine the ideas presented in this paper and improve the clarity of the presentation.

References
[8] D. Dubois, F. D. S. Cyr, H. Prade, *Updating, transition constraints and possibilistic Markov chains*, In: Advances in Intelligent Computing - IPMU’94 (Proc. of the Inter. Conf. IPMU’94, Paris, July 1994) (B. Bouchon-Meunier, R.R. Yager, L.A. Zadeh, eds.), Lecture Notes in Computer Science, Vol. 945, Springer Verlag, Berlin, 1995, 263-272.

[9] D. Dubois, F. D. S. Cyr, H. Prade, *Update postulates without inertia*, In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (Proc. of the Europ. Conf. ECSQARU’95, Fribourg, Switzerland, July 1995) (C. Froidevaux, J. Kohlas, eds.), Lecture Notes in Artificial Intelligence, Vol. 946, Springer Verlag, Berlin, 1995, 162-170.

[10] D. Dubois, H. Prade, *Possibility Theory*, New York: Plenum, 1988.

[11] D. Dubois, H. Prade, *Possibility theory, probability theory and multiple-valued logics: A clarification*, Annals of Mathematics and Artificial Intelligence, 32(2001) 35-66.

[12] D. Dubois, H. Prade, *Possibility theory and its applications: where do we stand*, Mathware and Soft Computing, 18(1)(2011) 18-31.

[13] M. Edmund, O. Grumberg, D. Peled, *Model Checking*, Cambridge: the MIT Press, 1999.

[14] M. Grabisch, T. Murofushi, M. Sugeno (eds), *Fuzzy Measures and Integrals*, Heidelberg New York: Physica-Verlag, 2000.

[15] M. Huth, M. Z. Kwiatkowska, *Quantitative analysis and model checking*, in: Logic in Computer Science, 1997, pp.111-122.

[16] H. Janssen, G. de Cooman and E.E. Kerre, *First results for a mathematical theory of possibilistic Markov processes*, in: Proceedings of IPMU’96, Vol. III (Information Processing and Management of Uncertainty in Knowledge-Based Systems), Granada, Spain (1996) pp. 1425-1431.

[17] R. Kruse, R. Buck-Emden, R. Cordes, *Processor power considerations - An application of fuzzy Markov chains*, Fuzzy Sets and Systems, 21(1987) 289-299.

[18] Y. Li, *Analysis of Fuzzy Systems*(in Chinese), Beijing, China: Science Press, 2005.

[19] Y. Li, L. Li, *Model checking of linear-time properties based on possibility measure*, IEEE Transactions on Fuzzy Systems, 21(5)(2013), 842-854.

[20] Y. Li, Y. Li, Z. Ma, *Computation tree logic model checking based on possibility measures*, Fuzzy Sets and Systems, http://dx.doi.org/10.1016/j.fss.2014.03.009.

[21] A. Lluch-Lafuente, U. Montanari, *Quantitative μ-calculus and CTL defined over constraint semirings*, Theoretical Computer Science, 346(2005) 135-160.
[22] M. Sugeno, *Theory of Fuzzy Integrals and its Applications*, PhD thesis, Tokyo Institute of Technology, 1974.

[23] K. McMillan, *Symbolic Model Checking*, Dordrecht, The Netherland: Kluwer, 1993.

[24] J. Wu, L. Zhao, *Multi-valued model checking via Groebner basis approach*, First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering(TASE’07).

[25] Y. Xue, H. Lei, Y. Li, *Computationg tree logic based on possibility measure*(in Chinese), Computer Engineering and Science, 33(9)(2011) 70-75.

[26] L.A. Zadeh, *Fuzzy sets*, Information and Control, 8(1965) 338-353.

[27] L.A. Zadeh, *Fuzzy sets as a basis for a theory of possibility*, Fuzzy Sets and Systems, 1 (1978) 3-28.