Shell model analysis of competing contributions to the double-beta decay of 48Ca

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

(Dated: May 3, 2014)

Background: Neutrinoless double beta decay, if observed, would reveal physics beyond the Standard Model (SM) of particle physics, namely it would prove that neutrinos are Majorana fermions and that the lepton number is not conserved.

Purpose: The analysis of the results of neutrinoless double beta decay observations requires an accurate knowledge of several nuclear matrix elements (NME) for different mechanism that may contribute to the decay. We provide a complete analysis of these NME for the decay of the ground state (g.s.) of 48Ca to the g.s. 0^+_1 and first excited 0^+_2 state of 48Ti.

Method: For the analysis we used the nuclear shell model with effective two-body interactions that were fine-tuned to describe the low-energy spectroscopy of pf-shell nuclei. We checked our model by calculating the two-neutrino transition probability to the g.s. of 48Ti. We also make predictions for the transition to the first excited 0^+_2 state of 48Ti.

Results: We present results for all NME relevant for the neutrinoless transitions to the 0^+_1 and 0^+_2 states, and using the lower experimental limit for the g.s. to g.s. half-life we extract upper limits for the neutrino physics parameters.

Conclusions: We provide accurate NME for the two-neutrino and neutrinoless double beta decay transitions in $A=48$ system, which can be further used to analyze the experimental results of double beta decay experiments when they become available.

PACS numbers: 23.40.Bw, 21.60.Cs, 23.40.-s, 14.60.Pq

Keywords: Double beta decay, Nuclear matrix elements, Shell model

I. INTRODUCTION

Neutrinoless double beta $(0\nu\beta\beta)$ decay, which can only occur by violating the conservation of the total lepton number, if observed it will reveal physics beyond the Standard Model, and it will represent a major milestone in the study of the fundamental properties of neutrinos [1]-[7]. Indeed, its discovery would decide if neutrinos are their own antiparticles [8], and would provide a hint about the scale of their absolute masses. That is why there are intensive investigations of this process, both theoretical and experimental. Recent results from neutrino oscillation experiments have demonstrated that neutrinos have mass and they can mix [9]-[11]. However, the neutrino oscillations experiments cannot be used to determine the neutrino mass hierarchy and the lowest neutrino mass. Neutrinoless double beta decay is viewed as one of the best routes to decide these unknowns. A key ingredient for extracting the absolute neutrino masses from $0\nu\beta\beta$ decay experiments is a precise knowledge of the nuclear matrix elements (NME) for this process.

There are potentially many mechanisms that could contribute to the neutrinoless double beta decay process that will be briefly reviewed below. Several of these mechanisms do not provide contributions to the decay rate that explicitly depend on the neutrino masses, but their effect would vanish if the neutrinos are not massive Majorana particles [8]. In all cases the half-lives depend on the nuclear matrix elements that need to be accurately calculated using low-energy nuclear structure models. In particular, if the exchange of light left-handed neutrinos is proven to be the dominant mechanism, one could be able to use the experimental results and the associated NME to extract the neutrino mass hierarchy and the lowest neutrino mass [2]. The two-neutrino double beta $(2\nu\beta\beta)$ decay is an associate process that is allowed by the Standard Model, and it was observed in about ten isotopes. Therefore, a good but not sufficient test of nuclear structure models would be a reliable description of the $2\nu\beta\beta$ half-lives.

Since most of the $\beta\beta$ decay emitters are open shell nuclei, many calculations of the NME have been performed within the pnQRPA approach and its extensions [12]-[23]. However, the pnQRPA calculations of the more common two-neutrino double beta decay half-lives, which were measured for about 10 cases [24], are very sensitive to the variation of the so called g_{pp} parameter (the strength of the particle-particle interactions in the 1^+ channel) [12]-[14], and this drawback still persists in spite of various improvements brought by its extensions [15]-[20], including higher-order QRPA approaches [21]-[23]. The outcome of these attempts was that the calculations became more stable against g_{pp} variation, but at present there are still large differences between the values of the NME calculated with different QRPA-based methods, which do not yet provide a reliable determination of the two-neutrino double beta decay half-life. Therefore, although the QRPA methods do not seem to be suited to predict the $2\nu\beta\beta$ decay half-lives, one can use the measured $2\nu\beta\beta$ decay half-lives to calibrate the g_{pp} parameters, which are further used to calculate the $0\nu\beta\beta$ decay NME [25]. Other methods that were recently used to provide NME

*Electronic address: mihai.horoi@cmich.edu
for most 0νββ decay cases of interest are the Interacting Boson Model (IBM-2) [26, 27], the Projected Hatree-Fock Bogoliubov (PHFB) [28], and the Generator Coordinate Method (GCM) [29].

Recent progress in computer power, numerical algorithms, and improved nucleon-nucleon effective interactions, made possible large scale shell model calculations (LSSM) of the 2νββ and 0νββ decay NME [30]-[32]. The main advantage of the large scale shell model calculations is that they seem to be less dependent on the effective interaction used, as far as these interactions are consistent with the general spectroscopy of the nucleus involved in the decay. Their main drawback is the limitation imposed by the exploding shell model dimensions on the size of the valence spaces that can be used. The most important success of the large scale shell model calculations was the correct prediction of the 2νββ decay half-life for 48Ca [30, 33]. In addition, these calculations did not have to adjust any additional parameter, i.e. given the effective interaction and the Gamow-Teller (GT) quenching factor extracted from the overall spectroscopy in the mass-region (including beta decay probabilities and charge-exchange strength functions), one can reliably predict the 2νββ decay half-life of 48Ca.

Clearly, there is a need to further check and refine these calculations, and to provide more details on the analysis of the NME that could be validated by experiments. We have recently revisited [34] the 2νββ decay of 48Ca using two recently proposed effective interactions for this mass region, GXPF1 and GXPF1A, calculating the NME and half-lives for the transition of the 48Ca g.s. to the g.s. and the first excited 2+ state of 48Ti.

In this paper we add to the analysis the 2νββ transition to the first excited 0+ state of 48Ti. We also extend our analysis [34] of the 0νββ decay of 48Ca by providing the NME associated with the most important 0νββ mechanisms for transitions to the g.s. 0+ and first excited 0+ state of 48Ti. Future experiments on double beta decay of 48Ca (CANDLES [37] and CARVEL [38]) may reach the required sensitivity of measuring such transitions, and our results could be also useful for planning these experiments.

II. TWO-NEUTRINO DOUBLE BETA DECAY

LSSM calculations of 2νββ decay NME can now be carried out rather accurately for many nuclei [39]. In the case of 48Ca, Ref. [30] reported for the first time a full pf-shell calculation of the NME for the 2νββ decay mode, for both transitions to the g.s. and to the 2+ state of 48Ti, with increased degree of confidence, which would allow us to consider similar calculations for the 0νββ decay mode of this nucleus [32]. The 2νββ transitions to excited states have longer half-lives, as compared with the transitions to the g.s., due to the reduced values of the corresponding phase space factors, but they were measured in some cases, such as 100Mo [43].

For the 2νββ decay mode the relevant NME are of Gamow-Teller type, and has the following expression for decays to states in the grand-daughter that have the angular momentum J = 0, 2 [1]-[6].

\[
M_{GT}^{2\nu}(J^+) = \frac{1}{\sqrt{J+1}} \sum_k \langle J^+_k | \sigma^- | 1^+_k \rangle \langle 1^+_k | \sigma^- | 0^+_1 \rangle \langle E_k + E_J \rangle^{J+1}.
\]

(1)

Here E_k is the excitation energy of the 1k+ state of intermediate odd-odd nucleus, and \(E_J = \frac{1}{2} Q_{\beta\beta}(J^+) + \Delta M \). \(Q_{\beta\beta}(J^+) \) is the Q-value corresponding to the \(\beta \beta \) decay to the final J^+_f state of the grand-daughter nucleus, and \(\Delta M \) is the mass difference between the parent and the intermediate nucleus 48Sc. The most common case is the decay to the 0^+_1 g.s. of the grand-daughter, but decays to the first excited 0^+_2 and 2^+_1 states are also investigated.

The 2νββ decay half-life expression is given by

\[
\left[T_{1/2}^{2\nu} \right]^{-1} = G_{GT}^{2\nu} |M_{GT}^{2\nu}(J)|^2
\]

(2)

where \(G_{GT}^{2\nu} \) are 2νββ phase space factors. Specific values of \(G_{GT}^{2\nu} \) for different 2νββ decay cases can be found in different reviews, such as Ref. [3]. For a recent analysis of \(G_{GT}^{2\nu} \) see Ref. [46]. In Ref. [34] we explicitly analyzed the dependence of the double-Gamow-Teller sum entering the NME Eq. (1) vs the excitation energy of the 1^+_f state in the intermediate nucleus 48Sc. This sum was recently investigated experimentally [33], and it was shown that indeed, the incoherent sum (using only absolute values of the Gamow-Teller matrix elements) would provide an incorrect NME, thus validating our prediction. We have also corrected by several orders of magnitude the probability of transition of the g.s. of 48Ca to the first excited 2^+_1 state of 48Ti reported in Ref. [30].

In Ref. [34] we fully diagonalized 250 1^+_f states in the intermediate nucleus to calculate the 2νββ decay NME for 48Ca. This procedure can be used for somewhat heavier nuclei using the J-scheme shell model code NuShellX [48], but for cases with large dimension one needs an alternative method. The pioneering work on 48Ca [30] used a strength-function approach that converges after a small number of Lanczos iterations, but it requires large scale shell model diagonalizations when one wants to check the convergence. Ref. [49] proposed an alternative method, which converges very quickly, but it did not provide a complete recipes for all its ingredients, and it was never used in practical calculations. Recently [57], we proposed a simple numerical scheme to calculate all coefficients of
the expansion proposed in Ref. [49]. Following Ref. [49], we choose as a starting Lanczos vector, \(L_1 \), either the initial or final state in the decay (only \(0^- \) to \(0^+ \) transitions are considered), to which we apply the Gamow-Teller operator. This approach is very efficient for large model spaces, as for example the \(j\ell S \) space (consisting of the \(0g_{7/2}, 1d_{5/2}, \) and \(2s_{1/2} \) orbits), which for the \(^{128}\text{Te} \) decay leads to m-scheme dimensions of the order of 10 billions necessary to calculate the g.s. of \(^{128}\text{Xe} \). In the calculation of \(^{48}\text{Ca} \) decay we use the standard quenching factor, \(qf = 0.77 \), for the Gamow-Teller operator \(\sigma \). We checked the result reported in Ref. [34] using this alternative method and we found the same result. The novel result report here for the first time is for the transition to the first excited \(0^+ \) state in \(^{48}\text{Ti} \) at 2.997 MeV. The matrix element when using GXPF1A interaction is 0.050, very close to that for the transition to the g.s. Using the phase space factor \(G_{0^+}^{2\nu} = 2.43 \times 10^{-22} \text{ MeV}^{-1} \) from Ref. [3] (a new set of phase space factors were recently proposed [46]), but for \(2\nu\beta\beta \) decays they differ only by 4\% from those of Ref. [3], we found that the half-life for this transition is \(1.6 \times 10^{24} \) y. We recall here that our results reported in [34] for the half-lives of the transitions to g.s. and to the first \(2^+ \) excited state are \(3.3 \times 10^{19} \) y and \(8.5 \times 10^{23} \) y, respectively. One can see that the transition to the first excited \(0^+ \) state at 2.997 MeV is predicted to compete with the transition to the first excited \(2^+_1 \) state at 0.994 MeV.

The half-life for the transition to the g.s. \(0^+_1 \) was measured by several groups with increased precision (see e.g. [24]). The most recent result from NEMO-3 (see [24] and references therein) is \(T_{1/2}^{0\nu} = 4.4^{+0.5}_{-0.4} \text{(stat.)} \pm 0.4 \text{(syst.)} \). Our GXPF1A result is marginally out of the recently reduced error bars. However, a recent publication [50] found a quenching factor of 0.74 for the pf-shell nuclei using GXPF1A interaction. The same quenching factor was proposed some time ago [51] using a different effective interaction. Using the smaller quenching factor of 0.74 brings the calculated half-life within the experimental limits. A comparison of the matrix elements and the associated half-lives for the two quenching factors used here is given in Table I. Potential observation of the \(2\nu\beta\beta \) transitions to the excited states of \(^{48}\text{Ti} \) could shed some light on the variation of the quenching factor for the Gamow-Teller operator in this nucleus. One should also mention that the excitation energy of the \(0^+_1 \) state \(^{48}\text{Ca} \) calculated with GXPF1A interaction is about 1 MeV higher than the experimental value, while it is about right for \(^{48}\text{Ca} \). Other available effective interactions do not provide a better description of this state. This result may raise concerns about the validity of the nuclear structure description of this state within the pf-shell. An experimental observation of the \(2\nu\beta\beta \) transition to this state could be used to validate (or not) our result.

III. NEUTRINOLESS DOUBLE BETA DECAY

The \(0\nu\beta\beta \) decay, \((Z, A) \rightarrow (Z + 2, A) + 2e^-\), requires the neutrino to be a massive Majorana fermion, i.e. it is identical to the antineutrino [8]. We already know from the neutrino oscillation experiments that some of the neutrinos participating in the weak interaction have mass, and that the mass eigenstates are mixed by the PNMS matrix \(U_{lk} \), where \(l \) is the lepton flavor and \(k \) is the mass eigenstate number (see e.g. Ref. [52]). However, the neutrino oscillations experiments cannot decide the mass hierarchy, the mass of the lightest neutrino, and some of the CP non-conserving phases of the PNMS matrix (assuming that neutrinos are Majorana particles).

Considering only contributions from the exchange of light, left-handed (chirality), Majorana neutrinos \(\nu_l \), the \(0\nu\beta\beta \) decay half-life is given by

\[
\left[T_{1/2}^{0\nu} \right]^{-1} = G^{0\nu} |M^{0\nu}_{\nu}|^2 \left(\frac{\langle m_{3\beta} \rangle}{m_e} \right)^2. \tag{3}
\]

Here, \(G^{0\nu} \) is the phase space factor, which depends on the \(0\nu\beta\beta \) decay energy, \(Q_{3\beta} \), the charge of the decaying nucleus \(Z \), and the nuclear radius [3] [40]. The effective neutrino mass, \(\langle m_{3\beta} \rangle \), is related to the neutrino mass eigenstates, \(m_k \), via the left-handed lepton mixing matrix, \(U_{ek} \),

\[
\langle m_{3\beta} \rangle / m_e \equiv \eta_{\nu L} = \sum_{k=\text{light}} m_k U_{ek}^2 / m_e. \tag{4}
\]

\(m_e \) is the electron mass. The NME, \(M^{0\nu}_{\nu} \), is given by

\[
M^{0\nu}_{\nu} = M^{0\nu}_{GT} - \left(\frac{g_\nu}{g_A} \right)^2 M^{0\nu}_F - M^{0\nu}_T, \tag{5}
\]

where \(M^{0\nu}_{GT} \), \(M^{0\nu}_F \) and \(M^{0\nu}_T \) are the Gamow-Teller (GT), Fermi (F) and tensor (T) matrix elements, respectively. Using closure approximation these matrix elements are defined as follows:
where O_{mn}^α are $0\nu\beta\beta$ transition operators, $\alpha = (GT, F, T)$, $| 0^+ \rangle$ is the g.s. of the parent nucleus, and $| 0^+_f \rangle$ is the final 0^+ state of the daughter nucleus. The two-body transition densities (TBTD) can be obtained from LSSM calculations \[36\]. Expressions for the anti-symmetrized two-body matrix elements (TBME) $(j_p j_{p'}; J_T$ $| \tau_1 \tau_2 O_{12}^\alpha | j_n j_{n'}; J_T T \rangle_a$ can be found elsewhere, e.g. Refs. [36, 53]. Assuming that one can unambiguously measures a $0\nu\beta\beta$ half-life, and one can reliably calculate the NME for that nucleus, one could use Eqs. (3) and (4) to extract information about the lightest neutrino mass and the neutrino mass hierarchy \[52\]. In addition, one could consider the contribution from the right-handed currents to the effective Hamiltonian, which can mix light and heavy neutrinos of both chiralities (L/R)

\[
\nu_{eL} = \sum_{k=\text{light}} U_{ek} \nu_{KL} + \sum_{k=\text{heavy}} U_{ek} N_{kL},
\]

\[
\nu_{eR} = \sum_{k=\text{light}} V_{ek} \nu_{kR} + \sum_{k=\text{heavy}} V_{ek} N_{kR},
\]

where η_{rL} was defined in Eq. 4, and

\[
\eta_{NL} = \sum_{k=\text{heavy}} U_{ek}^2 \frac{m_p}{M_k},
\]

\[
\eta_{NR} \approx \left(\frac{M_{W_L}}{M_{W_R}} \right)^4 \sum_{k=\text{heavy}} V_{ek}^2 \frac{m_p}{M_k},
\]

\[
< \lambda > = \epsilon \sum_{k=\text{light}} U_{ek} V_{ek},
\]

\[
< \eta > = \left(\frac{M_{W_L}}{M_{W_R}} \right)^2 \sum_{k=\text{light}} U_{ek} V_{ek}.
\]

Here ϵ is the mixing parameter for the right heavy boson W_R and the standard left-handed heavy boson W_L, $W_R \approx c W_1 + W_2$, M_{W_R} and M_{W_L} are their respective masses, and m_p is the proton mass. The $\eta_{\lambda'}$ and η_{η} are the R-parity violation contributions in supersymmetric (SUSY) Grand Unified Theories (GUT) related to the long range gluino exchange and squark-neutrino mechanism, respectively \[52\]. Finally, the η_{KK} term is due to possible Kaluza-Klein (KK) neutrino exchange in an extra-dimensional model \[56\]. The set of nuclear matrix elements $M_{0\nu}^\nu$, \tilde{X}_λ, \tilde{X}_η, $M_{0\nu}^\nu$, $M_{0\nu}^\nu$, and $M_{0\nu}^\nu$ are discussed in many reviews, e.g. Ref. \[52\]. The M_{KK}^ν analysis can be found in Ref. \[56\]. In particular, using the factorization ansatz \[56\] one gets

\[
\eta_{KK} M_{KK}^\nu = \frac{m_\tau > \lambda}{m_e} M_{0\nu}^\nu + m_p < m^{-1} > M_{0\nu}^\nu
\]

\[
\equiv \eta_{KK} M_{0\nu}^\nu + \eta_{KK} M_{0\nu}^\nu,
\]

where N_k are the heavy neutrinos that are predicted by several see-saw mechanisms for neutrino masses \[52\]. U_{lk} and V_{lk} are the left and right-handed components of the unitary matrix that diagonalizes the neutrino mass matrix \[54\]. One should also mention that there are several other mechanisms that could contribute to the $0\nu\beta\beta$ decay, such as the exchange of supersymmetric (SUSY) particles (e.g. gluino and squark exchange \[53\]), etc, whose effects are not directly related to the neutrino masses, but indirectly via the Schechter-Valle theorem \[8\]. Assuming that the masses of the light neutrinos are smaller than 1 MeV and the masses of the heavy neutrinos, M_k, are larger than 1 GeV, the particle physics and nuclear structure parts get separated, and the inverse half-life can be written as
where \(m > S_A \) and \(m^{-1} \) KK masses depend on the brane shift and bulk radius parameters, and are given in Table II of 56. One can see that the mass parameters \(m > S_A / m_e \) and \(m_p < m^{-1} \) has the effect of modifying \(\eta_{\nu L} \) and \(\eta_{NR} \) respectively. \(| m_p < m^{-1} | < 10^{-8} \) and it could in principle compete with \(\eta_{NR} \). \(| m > S_A / m_e | \) varies significantly with the model parameters and it could also compete with \(\eta_{\nu L} \). One needs to go beyond the factorization ansatz, and use information from several nuclei \([57]\) to discern any significant contribution from the KK mechanism.

Constraints from colliders experiments suggest that terms proportional with the mixing angles, \(\epsilon, U_{ck(heavy)}, \) and \(V_{ck(light)} \) are very small \([54]\). The present limits are \(| \lambda > | < 10^{-8} \) and \(| \eta > | < 10^{-9} \), but they are expected to be smaller. In addition, the contributions from \(\tilde{X}_\lambda \) and \(\tilde{X}_\eta \) terms in Eq. (8) would produce angular and energy distribution of the outgoing electrons different than that coming from all other terms \([2]\), and these signals are under investigation at SuperNEMO \([58]\). Here we assume that these contributions are small and can be neglected.

In addition, if \(| \lambda > | < 10^{-6} \), and \(| \eta_{\nu L} | < 10^{-8} \), and \(| \eta_{NR} | < 10^{-8} \). Then, the half-life can be written as

\[
\left[T_{1/2}^{0\nu} \right]^{-1} = G_{0\nu} | \tilde{\eta}_{\nu L} M_{\nu}^{0\nu} + \tilde{\eta}_N M_N^{0\nu} + \eta_{\nu} M_{\nu}^{0\nu} + \eta_{\nu} M_{\nu}^{0\nu} |^2 ,
\]

(11)

TABLE II: Matrix elements for 0\(\nu\) decay using GXPF1A interaction and two SRC models \([63]\), CD-Bonn (SRC1) and Argonne (SRC2). For comparison, the (a) values are taken from Ref. \([27]\), and the (b) value is taken from Ref. \([52]\) for \(g_{\nu\nu} = 1 \) and no SRC.

\(M_{\nu}^{0\nu} \)	\(M_N^{0\nu} \)	\(M_{\nu}^{0\nu} \)	\(M_{\nu}^{0\nu} \)	
\(0^+ \) SRC1	0.90	75.5	618	86.7
\(0^+ \) SRC2	0.82	52.9	453	81.8
others \(2^+ \)\(^{(a)}\)	46.3\(^{(a)}\)	392\(^{(b)}\)		
\(0^+ \) SRC1	0.80	57.2	486	84.2
\(0^+ \) SRC2	0.75	40.6	357	80.6

where we adjusted \(\eta_{\nu L} \) and \(\eta_{NR} \) for potential KK contributions, \(\tilde{\eta}_{\nu L} = \eta_{\nu L} + \eta_{KK} \) and \(\tilde{\eta}_N = \eta_{NR} + \eta_{KK} \).

If one neglects the SUSY and KK contributions until a hint of their existence is provided by colliders experiments or future results of 0\(\nu\beta\beta\) decay experiments show that these contributions are necessary \([57]\), then

\[
\left[T_{1/2}^{0\nu} \right]^{-1} = G_{0\nu} \left(| M_{\nu}^{0\nu} |^2 | \tilde{\eta}_{\nu L} |^2 + | M_N^{0\nu} |^2 | \eta_{NR} |^2 \right) ,
\]

(12)

where we used the fact that the interference between the left-handed terms and the right-handed terms is negligible \([52]\).

The structure of the \(M_N^{0\nu} \) is the same as that described in Eqs. (5)-(8), with slightly different neutrino potentials \(H_\alpha(r) \) (see e.g. page 68 of Ref. \([52]\)). A detailed description of the matrix elements of \(O_{ij}^{22} \) for the \(jj \)-coupling scheme consistent with the conventions used by modern shell model effective interactions is given in Ref. \([36]\). One should also mention that our method \([32]\) of calculating the TBME, Eq. (9), is different from that used in other shell model calculations \([32]\). We included in the calculations the recently proposed higher order terms of the nucleon currents, three old and recent parametrization of the short-range correlations (SRC) effects, finite size (FS) effects, intermediate states energy effects, and we treated careful few other parameters entering the into the calculations. We found very small variation of the NME with the average energy of the intermediate states, and FS cutoff parameters, and moderate variation vs the effective interaction and SRC parametrization. We could also show that if the ground state wave functions of the initial and final nucleus can be accurately described using only the valence space orbitals, the contribution from the core orbitals can be neglected. This situation is different from that of the nuclear parity-nonconservation matrix elements \([59]\), for which the "mean-field" type contribution from the core orbitals could be significant \([60]\). Another important result that clearly transpires from our formalism is that in the closure approximation the neutrinoless transition to the first excited \(2^+ \) state is zero. This result is due to the rotational invariance of the TBME entering Eq. (6) (see also Appendix of Ref. \([36]\)). The structure of the R-parity breaking SUSY mechanisms NME is similar to that of light and heavy neutrino exchange mechanisms, but with no \(\alpha = F \) component \([55]\). The neutrino potentials used here for the \(M_N^{0\nu} \) and those used for the most significant contributions to \(M_N^{0\nu} \) and \(M_{\nu}^{0\nu} \) NME are given in Ref. \([52]\), but for completeness they are reviewed in the Appendix with...
TABLE III: Single mechanism upper limits for neutrino physics parameters \(\eta \) extracted from the lower limit of the half-life for the transition to the ground state of \(^{48}\text{Ti} \) [52] and using the matrix elements from Table II.

| Mechanism | \(|\bar{\eta}_{\nu L}| \times 10^5 \) | \(|\bar{\eta}_{N}| \times 10^7 \) | \(|\bar{\eta}_{\nu N}| \times 10^8 \) | \(|\bar{\eta}| \times 10^7 \) |
|-----------|------------------|------------------|------------------|------------------|
| SRC1 | 3.79 | 4.52 | 5.52 | 3.93 |
| SRC2 | 4.16 | 6.45 | 7.53 | 4.17 |

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we analyzed the \(2\nu\beta\beta \) and several mechanisms that could compete to the \(0\nu\beta\beta \) decays of \(^{48}\text{Ca} \) using shell model techniques. We described very efficient techniques to calculate accurate \(2\nu\beta\beta \) NME for cases that involve large shell model dimensions. These techniques were tested for the case of \(^{48}\text{Ca} \), and we provided NME and half-lives for \(2\nu\beta\beta \) transitions to the g.s. and excited states of \(^{48}\text{Ti} \). These techniques can be used to make predictions for \(^{76}\text{Ge} \), \(^{82}\text{Se} \) using the \(jj44 \) model space \((0f_{5/2}, 1p, 0g_{9/2})\), and for \(^{128}\text{Te}, ^{130}\text{Te} \) and \(^{136}\text{Xe} \) using the \(jj55 \) model space.

We reviewed the main contributing mechanisms to the \(0\nu\beta\beta \) decay, and we showed that based on the present constraints from colliders one could reduce the contribution to the \(0\nu\beta\beta \) half-life to the relevant terms described in Eq. (11). A reliable analysis of the \(0\nu\beta\beta \) decay experimental data requires accurate calculations of the associated NME. We extended our recent analysis [36] of the \(0\nu\beta\beta \) NME for \(^{48}\text{Ca} \) to include the heavy neutrino exchange NME, the long range gluino exchange NME, and the squark-neutrino mechanism NME. We also presented for the first time shell model results of these new NME for the \(0\nu\beta\beta \) transitions to the g.s. and the first excited \(0^+ \) state in \(^{48}\text{Ti} \).

To extend this analysis to the \(A > 48 \) cases, more efforts have to be done to include all spin-orbit partners in the valence space and satisfy the Ikeda sum-rule, reduce the center-of-mass spurious contributions, and better understand the changes in the effective \(0\nu\beta\beta \) transition operators [53, 60]. In addition, the closure approximation used to calculate the NME within the shell model approach and by other methods (e.g. IBA-2 [26], PHFB [28], and GCM [29]) needs to be further checked for accuracy, especially for the heavy neutrino exchange, the long range gluino exchange, and the squark-neutrino mechanism. An analysis of the double beta decay of \(^{136}\text{Xe} \) that addresses some of these issues is in preparation.

V. APPENDIX

The matrix elements for the light and heavy neutrino exchange in Eq. (11) have the same structure as that described in Eqs. (3)-(6) of Ref. [36]. For \(M^{\nu\nu}_{0x} \) the neutrino potential is the same as in Eq. (7) of [36]

\[
H_\alpha(r) = \frac{2R}{\pi} \int_0^\infty f_\alpha(q^2r) \frac{h_\alpha(q^2)}{q + (E - \mu)} G_\alpha(q^2)qdq, \quad (13)
\]

with the same ingredients described in Eqs. (9)-(12) of [36]. Here we corrected the \((\mu_p - \mu_n)\) value to 4.71, an error that seems to be propagating for some time through the literature [7]. This correction explains the small difference between the \(M^{\nu\nu}_{0x} \) values of Table II and corresponding ones reported in Ref. [36]. Fortunately, this correction only changes the matrix elements by few percents. All other constants are the same as in Ref. [36]. In particular, we used \(g_A = 1.254 \) and \(R = 1.2A^{1/3} \) fm. For the \(M^{\nu\nu}_{N} \) there is a slight change in the neutrino potentials.
where m_e and m_p are the electron and proton mass, respectively.

The most significant contributions to $M_{\pi}^{0\nu}$ and $M_{\pi}^{0\nu}$ have a similar structure as $M_{\pi}^{\nu\nu}$ and $M_{\pi}^{\nu\nu}$, however, only the $\alpha = GT, T$ terms in Eq. (13) are contributing. The radial neutrino potentials for $M_{\pi}^{0\nu}$ have the same form as those used for $M_{\pi}^{\nu\nu}$, Eq. (14), but with different h_{α}:

$$h_{GT,T} = - \left(c^{1\pi} + c^{2\pi} \right) \left[\frac{m_e m_p q^2 / m^4_e}{1 + q^2 / m^2_e} + \frac{2 m_e m_p q^2 / m^4_e}{(1 + q^2 / m^2_e)^2} \right]$$

(15)

where m_π is the charged pion mass, 139 MeV. Expressions for $c^{1\pi}$ and $c^{2\pi}$ are given in Ref. [52]. The numerical values we used are $c^{1\pi} = -85.23$ and $c^{2\pi} = 368.0$.

The radial neutrino potentials for $M_{\pi}^{0\nu}$ have the same form as those used for $M_{\pi}^{\nu\nu}$, Eq. (13), but with different h_{α}:

$$h_{GT,T} = - \frac{1}{6} \frac{m^2}{m_e} \frac{q^2 / m^2_e}{(1 + q^2 / m^2_e)^2}$$

(16)

where m_u and m_d are the current up and down quark masses. In the calculation we used $m_u + m_d = 11.6$ MeV.

Acknowledgments

The author had useful conversations with B.A. Brown and S. Stoica. Support from the US NSF Grant PHY-1068217 and the SciDAC Grant NUCLEI is acknowledged.
[44] M. Horoi, B.A. Brown, T. Otsuka, M. Honma, and T. Mizusaki, Phys. Rev. C 73, 061305(R) (2006).
[45] M.J. Hornish, L. De Braekeleer, A.S. Barabash, and V.I. Umatov, Phys. Rev. C 74, 044314 (2006).
[46] J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012).
[47] M. Horoi, AIP Procs. 1304, 106 (2010).
[48] http://www.garsington.eclipse.co.uk.
[49] J. Engel, W. C. Haxton, and P. Vogel, Phys. Rev. C 46, 2153(R) (1992).
[50] A. L. Cole et al., Phys. Rev. C 86, 015809 (2012).
[51] G. Martinez-Pinedo, A. Poves, E. Caurier, A.P. Zuker, Phys. Rev. C 53, 2602 (1996).
[52] J.D. Vergados, H. Ejiri, and F. Simkovic, Rep. Prog. Phys. 75, 106301 (2012), arXiv:1205.0649v2 [hep-ph] (2012).
[53] A. Neacsu, S. Stoica, and M. Horoi, arXiv:1208.5728 [nucl-th] (2012).
[54] S. P. Das, F. F. Deppisch, O. Kittel, and J. W. F. Valle, Phys. Rev. D 86, 055006 (2012).
[55] A. Faessler, A. Meroni, S.T. Petcov, F. Simkovic, and J. Vergados, Phys. Rev. D 83, 113003 (2011).
[56] G. Bhattacharyya, H.V. Klapdor-Kleingrothaus, H. Pas, and A. Pilaftsis, Phys. Rev. D 67, 113001 (2003).
[57] F. Deppisch and H. Päs, Phys. Rev. Lett. 98, 232501 (2007).
[58] R. Arnold et al., arXiv:1005.1241 [hep-ex] (2010).
[59] M. Horoi and B.A. Brown, Phys. Rev. Lett. 74, 231 (1995).
[60] E.G. Adelberger and W.C. Haxton, Annu. Rev. Nucl. Part. Sci. 35, 501 (1985).
[61] F. Simkovic, A. Faessler, H. Muther, V. Rodin, and M. Stauf, Phys. Rev. C 79, 055501 (2009).
[62] A. Wodecki, W. A. Kaminski, and F. Simkovic, Phys. Rev. D 60, 115007 (1999).
[63] J. Menendez, A. Poves, E. Caurier and F. Nowacki, Nucl. Phys. A 818, 139 (2009).
[64] M. Blennow, E. Fernandez-Martinez, J Lopez-Pavon and J. Menendez, JHEP 07, 096 (2010).
[65] J. Engel and G. Hagen, Phys. Rev. C 79, 064317 (2009).
[66] J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011).