MR Dacryocystography in the Evaluation of Patients with Obstructive Epiphora Treated by Means of Interventional Radiologic Procedures

B. Coskun, E. Ilgit, B. Onal, O. Konuk and G. Erbas

AJNR Am J Neuroradiol 2012, 33 (1) 141-147
doi: https://doi.org/10.3174/ajnr.A2889
http://www.ajnr.org/content/33/1/141
MR Dacryocystography in the Evaluation of Patients with Obstructive Epiphora Treated by Means of Interventional Radiologic Procedures

BACKGROUND AND PURPOSE: Most imaging techniques used for the evaluation of obstructive epiphora, such as DS DCG, rely on undesired ionizing radiation. We evaluated the efficacy of topical contrast-enhanced MR DCG in comparison with DS DCG in patients with obstructive epiphora who underwent balloon DCG or stent placement.

MATERIALS AND METHODS: Thirty-six LDSs of 21 patients treated with balloon DCG (n = 11) or stent placement (n = 11) were examined with MR DCG and DS DCG. Contralateral LDSs (n = 14) were also evaluated in patients with unilateral disease. A sterile 0.9% NaCl solution containing 1:100 diluted gadolinium chelate was instilled into conjunctival sacs. The 3D FSPGR sequence was used with a 1.5T scanner. MR and DS DCG findings were scored and compared according to morphology of the lacrimal sac, junction, and NLD and the presence of contrast media in the nasal cavity.

RESULTS: Comparison of MR DCG and DS DCG findings showed no significant statistical differences in reference to anatomic locations according to the McNemar test (P > .05). Good or very good agreement (κ value > 0.61) was observed according to the κ statistics.

CONCLUSIONS: Topical contrast-enhanced MR DCG is an effective and reliable noninvasive method for evaluation of the LDS in patients treated with IR procedures. This method avoids both cannulation and ionizing radiation and can, therefore, be repeated as often as is necessary in these complex patients.

MR Dacryocystography in the Evaluation of Patients with Obstructive Epiphora Treated by Means of Interventional Radiologic Procedures

BACKGROUND AND PURPOSE: Most imaging techniques used for the evaluation of obstructive epiphora, such as DS DCG, rely on undesired ionizing radiation. We evaluated the efficacy of topical contrast-enhanced MR DCG in comparison with DS DCG in patients with obstructive epiphora who underwent balloon DCG or stent placement.

MATERIALS AND METHODS: Thirty-six LDSs of 21 patients treated with balloon DCG (n = 11) or stent placement (n = 11) were examined with MR DCG and DS DCG. Contralateral LDSs (n = 14) were also evaluated in patients with unilateral disease. A sterile 0.9% NaCl solution containing 1:100 diluted gadolinium chelate was instilled into conjunctival sacs. The 3D FSPGR sequence was used with a 1.5T scanner. MR and DS DCG findings were scored and compared according to morphology of the lacrimal sac, junction, and NLD and the presence of contrast media in the nasal cavity.

RESULTS: Comparison of MR DCG and DS DCG findings showed no significant statistical differences in reference to anatomic locations according to the McNemar test (P > .05). Good or very good agreement (κ value > 0.61) was observed according to the κ statistics.

CONCLUSIONS: Topical contrast-enhanced MR DCG is an effective and reliable noninvasive method for evaluation of the LDS in patients treated with IR procedures. This method avoids both cannulation and ionizing radiation and can, therefore, be repeated as often as is necessary in these complex patients.

MR Dacryocystography in the Evaluation of Patients with Obstructive Epiphora Treated by Means of Interventional Radiologic Procedures

BACKGROUND AND PURPOSE: Most imaging techniques used for the evaluation of obstructive epiphora, such as DS DCG, rely on undesired ionizing radiation. We evaluated the efficacy of topical contrast-enhanced MR DCG in comparison with DS DCG in patients with obstructive epiphora who underwent balloon DCG or stent placement.

MATERIALS AND METHODS: Thirty-six LDSs of 21 patients treated with balloon DCG (n = 11) or stent placement (n = 11) were examined with MR DCG and DS DCG. Contralateral LDSs (n = 14) were also evaluated in patients with unilateral disease. A sterile 0.9% NaCl solution containing 1:100 diluted gadolinium chelate was instilled into conjunctival sacs. The 3D FSPGR sequence was used with a 1.5T scanner. MR and DS DCG findings were scored and compared according to morphology of the lacrimal sac, junction, and NLD and the presence of contrast media in the nasal cavity.

RESULTS: Comparison of MR DCG and DS DCG findings showed no significant statistical differences in reference to anatomic locations according to the McNemar test (P > .05). Good or very good agreement (κ value > 0.61) was observed according to the κ statistics.

CONCLUSIONS: Topical contrast-enhanced MR DCG is an effective and reliable noninvasive method for evaluation of the LDS in patients treated with IR procedures. This method avoids both cannulation and ionizing radiation and can, therefore, be repeated as often as is necessary in these complex patients.

MR Dacryocystography in the Evaluation of Patients with Obstructive Epiphora Treated by Means of Interventional Radiologic Procedures

BACKGROUND AND PURPOSE: Most imaging techniques used for the evaluation of obstructive epiphora, such as DS DCG, rely on undesired ionizing radiation. We evaluated the efficacy of topical contrast-enhanced MR DCG in comparison with DS DCG in patients with obstructive epiphora who underwent balloon DCG or stent placement.

MATERIALS AND METHODS: Thirty-six LDSs of 21 patients treated with balloon DCG (n = 11) or stent placement (n = 11) were examined with MR DCG and DS DCG. Contralateral LDSs (n = 14) were also evaluated in patients with unilateral disease. A sterile 0.9% NaCl solution containing 1:100 diluted gadolinium chelate was instilled into conjunctival sacs. The 3D FSPGR sequence was used with a 1.5T scanner. MR and DS DCG findings were scored and compared according to morphology of the lacrimal sac, junction, and NLD and the presence of contrast media in the nasal cavity.

RESULTS: Comparison of MR DCG and DS DCG findings showed no significant statistical differences in reference to anatomic locations according to the McNemar test (P > .05). Good or very good agreement (κ value > 0.61) was observed according to the κ statistics.

CONCLUSIONS: Topical contrast-enhanced MR DCG is an effective and reliable noninvasive method for evaluation of the LDS in patients treated with IR procedures. This method avoids both cannulation and ionizing radiation and can, therefore, be repeated as often as is necessary in these complex patients.

MR Dacryocystography in the Evaluation of Patients with Obstructive Epiphora Treated by Means of Interventional Radiologic Procedures

BACKGROUND AND PURPOSE: Most imaging techniques used for the evaluation of obstructive epiphora, such as DS DCG, rely on undesired ionizing radiation. We evaluated the efficacy of topical contrast-enhanced MR DCG in comparison with DS DCG in patients with obstructive epiphora who underwent balloon DCG or stent placement.

MATERIALS AND METHODS: Thirty-six LDSs of 21 patients treated with balloon DCG (n = 11) or stent placement (n = 11) were examined with MR DCG and DS DCG. Contralateral LDSs (n = 14) were also evaluated in patients with unilateral disease. A sterile 0.9% NaCl solution containing 1:100 diluted gadolinium chelate was instilled into conjunctival sacs. The 3D FSPGR sequence was used with a 1.5T scanner. MR and DS DCG findings were scored and compared according to morphology of the lacrimal sac, junction, and NLD and the presence of contrast media in the nasal cavity.

RESULTS: Comparison of MR DCG and DS DCG findings showed no significant statistical differences in reference to anatomic locations according to the McNemar test (P > .05). Good or very good agreement (κ value > 0.61) was observed according to the κ statistics.

CONCLUSIONS: Topical contrast-enhanced MR DCG is an effective and reliable noninvasive method for evaluation of the LDS in patients treated with IR procedures. This method avoids both cannulation and ionizing radiation and can, therefore, be repeated as often as is necessary in these complex patients.

MR Dacryocystography in the Evaluation of Patients with Obstructive Epiphora Treated by Means of Interventional Radiologic Procedures

BACKGROUND AND PURPOSE: Most imaging techniques used for the evaluation of obstructive epiphora, such as DS DCG, rely on undesired ionizing radiation. We evaluated the efficacy of topical contrast-enhanced MR DCG in comparison with DS DCG in patients with obstructive epiphora who underwent balloon DCG or stent placement.

MATERIALS AND METHODS: Thirty-six LDSs of 21 patients treated with balloon DCG (n = 11) or stent placement (n = 11) were examined with MR DCG and DS DCG. Contralateral LDSs (n = 14) were also evaluated in patients with unilateral disease. A sterile 0.9% NaCl solution containing 1:100 diluted gadolinium chelate was instilled into conjunctival sacs. The 3D FSPGR sequence was used with a 1.5T scanner. MR and DS DCG findings were scored and compared according to morphology of the lacrimal sac, junction, and NLD and the presence of contrast media in the nasal cavity.

RESULTS: Comparison of MR DCG and DS DCG findings showed no significant statistical differences in reference to anatomic locations according to the McNemar test (P > .05). Good or very good agreement (κ value > 0.61) was observed according to the κ statistics.

CONCLUSIONS: Topical contrast-enhanced MR DCG is an effective and reliable noninvasive method for evaluation of the LDS in patients treated with IR procedures. This method avoids both cannulation and ionizing radiation and can, therefore, be repeated as often as is necessary in these complex patients.
day, 4 = epiphora requiring wiping >10 times a day, 5 = constant tearing) at the time of MR DCG (Table 1).

All patients had DS DCG 1 day to 3 months (average, 27.90 days) before MR DCG examinations. The interval between the last intervention and MR DCG was at least 1 year and at most 12 years (mean, 6.33 years; median, 5 years). Exclusion criteria included a history of severe claustrophobia, and/or contraindications to MR imaging, such as severe claustrophobia and incompatible metallic implants.

MR Imaging

Eye drops containing 1:100 diluted gadobutrol (Gd-DO3A-butrol, Gadovist 1.0 mmol/mL; Bayer Healthcare, Berlin, Germany) in a sterile 0.9% NaCl solution were administered to 1 or both conjunctival sacs 4 times at 1-minute intervals while the patient was in a sitting position with his or her head in hyperextension. Then the patient was asked to lie down on the MR imaging table, and another 2 drops were administered to the conjunctival sacs before a 3-inch dual coil was placed on both orbits. After the localizer images were obtained, an–4

Table 1: Patients who underwent BD or nasolacrimal stent placement

No.	Age (yr)	Sex	Epiphoraa (grade)	Intervention	Time Intervalb (yr)	BD	Stent
1	65	F	0 0	– + – – –	–	12	–
2	39	F	0 1	– + + +	4	4	–
3	44	F	0 0	– + – +	5	–	–
4	40	F	0 0	– + – +	9	–	–
5	59	F	0 0	– + – – +	5	–	–
6	56	M	0 0	– – – +	1	–	–
7	44	M	0 0	– + – – –	1	–	–
8	42	F	0 0	– + – – – +	4	–	–
9	38	F	0 0	– + – – +	5	–	–
10	59	F	0 0	– – – – +	4	–	–
11	43	F	0 5	– – + +	4	–	–
12	60	F	2 2	– + – – – +	5	–	–
13	63	F	0 0	– – – – – +	12	–	–
14	47	F	0 0	– – – – – +	10	–	–
15	47	F	0 0	– – – – – +	11	–	–
16	37	F	1 0	– – – – – +	11	–	–
17	63	F	0 0	– + – – – +	7	–	–
18	53	M	0 0	– – + + +	5	–	–
19	43	F	0 3	– – – – – +	10	–	–
20	73	M	0 0	– + – – – +	7	–	–
21	58	F	0 0	– + – – – +	1	–	–

Note:–BD indicates balloon DCG; +, present; –, absent; R, right; L, left.

† At the time of MR DCG.

‡ The time interval between the last intervention and MR DCG.

§ Stent removed.

For the McNemar test, a k value of 0.00 represented poor, between 0.00 and 0.20 represented slight, between 0.21 and 0.40 represented fair, between 0.41 and 0.60 represented moderate, between 0.61 and 0.80 represented good agreement, and between 0.81 and 1.00 represented very good agreement.

DS DCG Imaging

All patients had DS DCG examinations 1 day to 3 months before the MR DCG examinations. Before the procedure, a topical anesthetic solution (0.4% benoxinate hydrochloride) was applied to the conjunctival sac. Following the dilation of the lower punctum, a flexible 23-ga lacrimal cannula was placed into the inferior canaliculus. After the acquisition of the mask images, 2–4 mL of nonionic contrast media was injected, and images (1 frame/s) were obtained in posteroanterior projection; the imaging procedure was stopped when it became apparent that either the imaging of the lacrimal drainage system was complete and the contrast media had reached the nasal cavity or when the reflux of the contrast media toward the superior punctum was observed.

Image Evaluation

MR images were reconstructed with the MIP algorithm by using a computer workstation (Advantage Windows Workstation 4.1, GE Healthcare). The images obtained by MR DCG and DS DCG were assessed by an experienced radiologist who was blinded to the clinical findings of the patients. The MR DCG evaluation was reviewed in the following order: axial, coronal, and postcaval image–coronal images and MIP reconstructed images. The findings of the MR and DS DCG examinations were randomly evaluated and scored in 4 consecutive locations, including the morphology of the lacrimal sacs, junctions, NLD, and nasal cavity for the presence of contrast media (Fig 1). For patients who had stents in their LDSs during MR DCG, the presence of contrast media in the stent and nasal cavity was evaluated. The evaluation of both the MR DCG and DS DCG images was based on a scoring system defined in Table 3.

Statistical Analysis

Statistical analysis was performed by using commercially available statistical software (Statistical Package for the Social Sciences, Version 10.0 for Windows; SPSS, Chicago, Illinois). MR DCG and DS DCG findings were compared by using the McNemar test and k statistics. For the McNemar test, a P value of < .05 was considered to indicate a significant difference. k values for the k statistic were interpreted as follows: <.00 represented poor, between 0.00 and 0.20 represented slight, between 0.21 and 0.40 represented fair, between 0.41 and 0.60 represented moderate, between 0.61 and 0.80 represented good agreement, and between 0.81 and 1.00 represented very good agreement.

Results

MR DCG was performed after topical contrast administration and diagnostic images were obtained successfully for each patient.

A total of 36 LDSs were evaluated with MR imaging in 21 patients who had undergone DS DCG examinations. Balloon DCG was performed in 11 LDSs (Fig 2), stent placement was performed in 11 LDSs (Fig 3), and contralateral LDSs were evaluated in 14 patients with unilateral diseases. No side effects occurred during or after the instillation of diluted eye drops.

The MR DCG and DS DCG findings were statistically compared with the above-referenced scoring system. In all LDSs (n = 36), no significant difference was determined for the morphological scoring of the lacrimal sacs, junctions, NLDs, and presence of the contrast media in the nasal cavity according to the McNemar test (P > .05). According to the k statistics, MR DCG and DS DCG analysis of the morphology of the lacrimal sacs, junctions, and NLDs showed very good agreement (k >
0.80); the observation of contrast media presence in the nasal cavity showed good agreement (\(\kappa = 0.786 \))

In the intervened (balloon DCG and stent placement) LDSs (n = 22), no significant difference was determined in lacrimal sacs, junctions, NLDs, and the presence of the contrast media in the nasal cavity according to the McNemar test (\(P > .05 \)). Very good agreement (\(\kappa = 0.842 \)) was observed in the lacrimal sacs, and good agreement (\(\kappa = 0.80 \)) was observed in the junctions, NLDs, and presence of contrast media in the nasal cavity with regard to the \(\kappa \) statistics. The results of the statistical analysis are summarized in Table 4.

In 5 of the LDSs, discrepancies were noted between the findings of the 2 methods. All patients had been treated by balloon DCG, and the discrepancies are summarized in Table 5.

Discussion

For many years, the treatment of obstructive epiphora was surgical external DCR. Despite its high success rate, its drawbacks included being an invasive procedure, often requiring general anesthesia, and the development of facial scar tissue.2,8-12 In recent years, endonasal endoscopic DCR has been developed as a less invasive treatment. In addition, IR methods such as balloon dilation and nasolacrimal polyurethane stent placement have been effectively used. Both endoscopic and

Table 2: Parameters obtained during the study

Series No.	View	FOV (cm)	TR (ms)	TE (ms)	Matrix	Thickness (mm)	NEX	FA (°)	Duration (min)
1	Coronal	10	11	2.7	320 × 256	1	2	20	3
2	Axial	10	11	2.7	320 × 256	1	2	20	4.5
3	Coronal (postmassage)	10	11	2.7	320 × 256	1	2	20	3

Note: FA = flip angle.

Table 3: Scoring system used to analyze and compare MR DCG and DS DCG images

Parameter	Small (1)	Normal (2)	Dilated (3)	Obstructed (1)	Stenotic (2)	Normal (3)	Dilated (4)	Obstructed (1)	Stenotic (2)	Normal (3)	Dilated (4)
Lacrimal sac		Normal	Dilated	Obstructed	Stenotic	Normal	Dilated	Obstructed	Stenotic	Normal	Dilated
Sac-NLD junction		Obstructed	Normal	Obstructed	Stenotic	Normal	Dilated	Obstructed	Stenotic	Normal	Dilated
Stent		Obstructed	Normal	Obstructed	Stenotic	Normal	Dilated	Obstructed	Stenotic	Normal	Dilated
NLD		Obstructed	Normal	Obstructed	Stenotic	Normal	Dilated	Obstructed	Stenotic	Normal	Dilated
Contrast media in the nasal cavity	Nonexistent (0)	Existent (1)	–	Nonexistent (0)	Existent (1)	–	–	Nonexistent (0)	Existent (1)	–	–

Note: – indicates absent.
IR-based methods are more easily tolerated by the patient compared with external DCR.4,5,13

It is important to determine the level of the obstruction before any surgical or radiologic treatment procedure. In addition to DS DCG, numerous imaging modalities have been used to evaluate the site and type of obstructive epiphora; these imaging techniques have a variety of advantages and limitations and are discussed in detail below. The lens of the eye is the most sensitive tissue to ionizing radiation in the region being studied, with a risk of subcapsular opacities and cataracts with a threshold-dependent deterministic effect.14,15

Therefore, the absence of ionizing radiation would be a great advantage for an imaging technique.

DS DCG is the criterion standard for the diagnosis of LDS obstruction, given its high spatial resolution, but it is not a functional method of analysis if performed with cannula-
tion. It also relies on ionizing radiation. Galloway et al observed that the exposure of the eye lens to radiation is approximately 1.2 mGy during DS DCG. Merc et al have measured the radiation dose as 1.1 mGy for DS DCG. Ilgit et al measured the mean absorbed radiation doses of 4.6 mGy ± 2.2 to the lens of the treated side and 38.5 mGy ± 17.5 to the contralateral lens during DCS, with the dose to the contralateral lens related to the specific technique used in this study. Wilhelm et al reported the mean radiation dose as 5.43 mGy. It also relies on ionizing radiation. Galloway et al observed that the exposure of the eye lens to radiation is approximately 1.2 mGy during DS DCG. Merc et al have measured the radiation dose as 1.1 mGy for DS DCG. Ilgit et al measured the mean absorbed radiation doses of 4.6 mGy ± 2.2 to the lens of the treated side and 38.5 mGy ± 17.5 to the contralateral lens during DCS, with the dose to the contralateral lens related to the specific technique used in this study. Wilhelm et al reported the mean radiation dose as 5.43 mGy.

Our study measured the mean absorbed radiation doses of 4.6 mGy ± 2.2 to the lens of the treated side and 38.5 mGy ± 17.5 to the contralateral lens during DCS, with the dose to the contralateral lens related to the specific technique used in this study. Wilhelm et al reported the mean radiation dose as 5.43 mGy. It also relies on ionizing radiation. Galloway et al observed that the exposure of the eye lens to radiation is approximately 1.2 mGy during DS DCG. Merc et al have measured the radiation dose as 1.1 mGy for DS DCG. Ilgit et al measured the mean absorbed radiation doses of 4.6 mGy ± 2.2 to the lens of the treated side and 38.5 mGy ± 17.5 to the contralateral lens during DCS, with the dose to the contralateral lens related to the specific technique used in this study. Wilhelm et al reported the mean radiation dose as 5.43 mGy.

Study	Year	No. of Patients	Cannulation	Topical	Sequence Technique
Goldberg et al	1993	11	Gd-DTPA	Gd-DTPA	T1WI (fat-sat)
Caldentemey et al	1998	11	Gd-DTPA	Gd-DTPA	FSE T2WI
Kirchoff et al	2000	11	Gd-DTPA	Gd-DTPA	SE T1WI (fat-sat)
Manfre et al	2000	36	Gd-DTPA	Gd-DTPA	SE T1WI (fat-sat)
Yoshikawa et al	2000	18	Gd-DTPA	Gd-DTPA	T1- and T2WI (fat-sat)
Takehara et al	2000	8	Gd-DTPA	Gd-DTPA	FSE T2WI, SE T1WI
Karagülle et al	2002	19	Gd-DTPA	Gd-DTPA	Heavily T2WI
Cüük et al	2010	35	Gd-DTPA	Saline solution	3D FSPGR
Our study	2011	21	Gd-DTPA	Saline solution	Single-shot SE T2WI (fat-sat)

Note:—fat-sat indicates fat-saturated; SE, spin-echo; –, absent.

Since the introduction of MR DCG with the administration of diluted gadolinium solution by Goldberg et al, several studies have been reported with different imaging parameters and sequences, including topical or intracanalicular administration of gadolinium or saline solutions (Table 6). In our study, a 3D FSPGR imaging technique was used, due to the fact that reformation of images with MIP is possible with this technique. In a previous study of Karagülle et al, this imaging technique was performed successfully and reliably for the evaluation of obstruction in the LDS.

Yoshikawa et al have compared topical applications of saline solution and Gd-DTPA solution. They reported that the images obtained after the application of the gadolinium solution provided more accurate information than those obtained after the application of the saline solution. Slight burning, irritation, or dryness was reported for iodinated contrast material instillation, but there were no reported adverse events due to intracanalicular or topical administration of gadolinium-based contrast media. Topical application of 1:100 diluted gadobutrol solution was well tolerated by all the patients in our study and showed none of the adverse effects attributable to the contrast media during and immediately after the instillation.

MR DCG examinations with contrast media mentioned in the literature have used gadolinium concentrated at 0.5 mmol/mL. In our study, we administered nonionic gadolinium-based MR imaging contrast agent (gadobutrol, Gd-DOTA-butrol; Gadovist 1.0 mmol/mL), which is more viscous (viscosity, 4.96 mPa at 37°C) and has twice the gadolinium concentration (1.0 mmol/mL) of the other gadolinium-based contrast agents. During the DS DCG examinations, Priebe et al administered the same contrast media into the LDSs of 3 patients who had a history of severe allergic reactions to iodinated contrast media. No side effects or complications were reported in these patients.

Topical application is a more physiologic technique than the cannulation method. Contrast material, like tears, is propelled to the LDS by blinking, muscular contraction, and capillary action after topical administration; thus, the LDS is not distended, unlike in DS DCG with intracanalicular injection. All 5 of the discrepancies between the 2 methods (illustrated in Figs 4 and 5) can be explained by this difference.

Conclusions

MR DCG is a useful imaging technique for the evaluation of LDS in patients treated with IR procedures, and it compares...
favorably with the criterion standard DS DCG. Our study is the first use of MR DCG in the evaluation of the LDS in a group of patients who underwent balloon DCS or stent placement with the topical application of a gadolinium-based contrast media with relatively high concentration. Among its advantages, this method requires no cannulation and avoids exposure of the radiosensitive lens to ionizing radiation.

References
1. Song HY, Jin YH, Kim JH, et al. Nonsurgical placement of a nasolacrimal polyurethane stents: long-term effectiveness. Radiology 1996;200:759–63
2. Mandeville JT, Woog JJ. Obstruction of the lacrimal drainage system. Curr Opin Ophthalmol 2002;13:503–09
3. Song HY, Ahn HS, Park CK, et al. Complete obstruction of the nasolacrimal system. Part I. Treatment with balloon dilatation. Radiology 1993;186:367–71
4. Ilgit E, Yuksel D, Unal M, et al. Transluminal balloon dilatation of the lacrimal drainage system for the treatment of epiphora. AJR Am J Roentgenol 1995;165:1517–24
5. Ilgit E, Onal B, Coskun B. Interventional radiology in the lacrimal drainage system. Eur J Radiol 2005;55:331–39
6. Goldberg RA, Heinz GW, Chiu L. Gadolinium magnetic resonance imaging dacyrocystography. Am J Ophthalmol 1993;115:738–41
7. Munk PL, Lin DT, Morris DC. Epiphora: treatment by means of dacyrcystoplasty with balloon dilatation of the nasolacrimal drainage apparatus. Radiology 1990;177:687–90
8. Becker BB. Recanalization of the obstructed nasolacrimal duct system. J Vasc Interv Radiol 2001;12:897–99
9. Allen K, Berlin AJ. Dacryocystorhinostomy failure: association with nasolacrimo-silicone intubation. Ophthalmic Surg 1989;20:486–89
10. Dryden RM, Wulc AE. Surgery of the lacrimal system. In: Waltman SR, Keates RH, Hoyt CS, eds. Surgery of the Eye. New York: Churchill-Livingstone; 1988:607–28
11. Glatt HJ. Dacryocystoplasty: an oculoplastic surgeon’s perspective (letter). Radiology 1991;180:289–90
12. Patrinely JR, Gigantelli JW. Dacryocystorhinostomy. In: Linberg JV, ed. Lacri-mal Surgery. New York: Churchill-Livingstone 1988; 151–67
13. Song HY, Jin YH, Kim JH, et al. Nonsurgical placement of a nasolacrimal polyurethane stent. Radiology 1995;194:233–37
14. Lipman RM, Tripathi BJ, Tripathi RC. Cataracts induced by microwave and ionizing radiation. Surv Ophthalmol 1988;33:200–10
15. Jackson A, Hardcastle MP, Shaw A, et al. Reduction of ocular lens dosage in dacyrocystography. Clin Radiol 1989;40:615–16
16. Baert AL, Heuck FH, Youker JE. Medical radiology, diagnostic imaging. In: Mulder DJ, Castelijns JA, eds. Modern Head and Neck Imaging. Springer-Verlag; 2000:211–35
17. Galloway JE, Kavie TA, Radlo GT. Digital subtraction macrodacrocystography: a new method of lacrimal system imaging. *Ophthalmology* 1984;91:956–62

18. Meric N, Bor D, Ilgit ET, et al. Comparison of eye lens dose measurement techniques in imaging and interventions of the lacrimal drainage system. *Phys Medica* 1998;14:95–100

19. Ilgit ET, Meric N, Bor D, et al. Lens of the eye: radiation dose in balloon dacryocystoplasty. *Radiology* 2000;217:54–57

20. Wilhelm K, Kramer S, Textor J, et al. Radiation exposure of radiation-sensitive risk organs—ocular lens, parotid gland, thyroid gland—in dacryocystography and therapy [in German]. *Rofo* 1998;168:270–74

21. Caldemeyer KS, Stockberger SM Jr, Broderick LS. Topical contrast-enhanced CT and MR dacryocystography: imaging the lacrimal drainage apparatus of healthy volunteers. *AJR Am J Roentgenol* 1998;171:1501–04

22. Robertson JS, Brown ML, Colvard DM. Radiation absorbed dose to the lens in dacryocintigraphy with 99mTcO4. *Radiology* 1979;113:747–50

23. Waite D, Whittet H, Shun-Shin G. Technical note: computed tomographic dacryocystography. *Br J Radiol* 1993;66:711–13

24. Karagulle T, Erden A, Erden I, et al. Nasolacrimal system: evaluation with gadolinium-enhanced MR dacryocystography with a three-dimensional fast spoiled gradient-recalled technique. *Eur Radiol* 2002;12:2343–48

25. Yoshikawa T, Hirota S, Sugimura K. Topical contrast-enhanced magnetic resonance dacryocystography. *Radiat Med* 2000;18:355–62

26. Amrith S, Goh PS, Wang SC. Tear flow dynamics in the human nasolacrimal ducts: a pilot study using dynamic magnetic resonance imaging. *Graefes Arch Clin Exp Ophthalmol* 2005;243:127–31

27. Hoffmann KT, Hosten N, Anders N, et al. High-resolution conjunctival contrast-enhanced MRI dacryocystography. *Neuroradiology* 1999;41:208–13

28. Kirchhof K, Hahnol S, Jansen O, et al. Gadolinium-enhanced magnetic resonance dacryocystography in patients with epiphora. *J Comput Assist Tomogr* 2000;24:327–31

29. Manfre L, de Maria M, Todaro E, et al. MR dacryocystography: comparison with dacryocystography and CT dacryocystography. *AJNR Am J Neuroradiol* 2000;21:1145–50

30. Pribe M, Mohr A, Grossmann J, et al. Gadobutrol: an alternative contrast agent for digital subtraction dacryocystography. *Eur Radiol* 2002;12:2083–86. Epub 2002 Mar 19

31. Takehara Y, Isoda H, Kurihashi K, et al. Dynamic MR dacryocystography: a new method for evaluating nasolacrimal duct obstructions. *AJR Am J Roentgenol* 2000;175:869–73

32. Cubuk R, Tasali N, Aydin S, et al. Dynamic MR dacryocystography in patients with epiphora. *Eur J Radiol* 2010;73:230–33