Quantum Fisher and Skew information for Unruh accelerated Dirac qubit

Subhashish Banerjee,1,∗ Ashutosh Kumar Alok,1,† and S. Omkar2,‡

1Indian Institute of Technology Jodhpur, Jodhpur 342011, India
2Indian Institute of Science Education and Research, Thiruvananthapuram, India

(Dated: October 3, 2018)

We develop a Bloch vector representation of Unruh channel for a Dirac field mode. This is used to provide a unified, analytical treatment of quantum Fisher and Skew information for a qubit subjected to the Unruh channel, both in its pure form as well as in the presence of experimentally relevant external noise channels. The time evolution of Fisher and Skew information is studied along with the impact of external environment parameters such as temperature and squeezing. The external noises are modelled by both purely dephasing phase damping as well as the squeezed generalized amplitude damping channels. An interesting interplay between the external reservoir temperature and squeezing on the Fisher and Skew information is observed, in particular, for the action of the squeezed generalized amplitude damping channel. It is seen that for some regimes, squeezing can enhance the quantum information against the deteriorating influence of the ambient environment. Similar features are also observed for the analogous study of Skew information, highlighting the similar origin of the Fisher and Skew information.

I. INTRODUCTION

The Unruh effect [1, 2] predicts that the Minkowski vacuum as seen by an observer accelerating uniformly will appear as a warm gas emitting black-body radiation at the Unruh temperature. The Unruh effect produces a decoherence-like effect [3]. It degrades the quantum information shared between an inertial observer and an accelerated observer, as seen in the latter’s frame, in the case of bosonic or Dirac field modes [4–6]. The studies on Unruh effect form a part of the endeavour to understand relativistic aspects of quantum information [7–15], see for example the review [16].

In this work we take up the problem of studying Fisher and its variant Skew information [17–19] for the Unruh effect on a Dirac field mode in the context of open quantum systems [20–22]. The Fisher information plays a key role in the estimation of unknown state parameters and provides a lower bound on the error of estimation [23]. Estimation of initial state parameters has been of interest for quiet some time [24] and in recent years this approach has been turned towards state estimation in the context of open quantum systems [25, 26]. Another variant of the Fisher information is the Skew information, which is related to the infinitesimal form of the quantum Hellinger distance [27]. In recent times Skew information has been shown to satisfy some nice properties relevant to the coherence in the system [28–30]. Both the quantum Fisher and Skew information are two different aspects of the classical Fisher information in the quantum regime [31], with the Skew and Fisher information being related to the Hellinger and Bures distance, respectively [32, 33]. These notions have also been used in recent times to provide a diagnostic for the general evolution of the quantum system, that is, whether the dynamics is Markovian or non-Markovinan [34].

Here, we develop a Bloch vector representation characterizing the Unruh channel acting on a qubit, to provide analytical expressions for quantum Fisher and Skew information, both with and without external noises. For the external noises, we take the experimentally relevant [35, 36] purely dephasing QND (Quantum non-demolition) [37] as well as the squeezed generalized amplitude damping (SGAD) noise [38, 39]. The QND channel is a purely quantum effect incorporating decoherence without dissipation, while the SGAD channel is a very general noisy channel in that it incorporates both the effects of finite temperature and bath squeezing. We observe the non-trivial interplay between temperature and bath squeezing on the Fisher and Skew information. In particular, it is observed that in some regimes squeezing can play a constructive role in enhancing the information against the deteriorating influence of temperature.

Plan of the work is as follows. In Sec. II we briefly discuss the importance of quantum Fisher information in the context of estimation theory and motivate the use of the Bloch vector formalism for the study of Unruh effect with(out) external noises. We then develop the Bloch vector formalism characterizing the Unruh channel. In the next section quantum Fisher information for the Unruh channel without any external noise is studied. In Sec. V we extend the above by incorporating the effect of external noises, both the purely dephasing phase damping as well as SGAD channels. Since the Skew information is another variant of the quantum Fisher information, we probe Skew information both for the pure Unruh channel as well as for the cases where the channel is affected by external noises, QND as well as SGAD. Finally we make our conclusions.

∗ subhashish@iitj.ac.in
† akalok@iitj.ac.in
‡ omkar.shrm@gmail.com
II. QUANTUM FISHER INFORMATION IN THE BLOCH VECTOR FORMALISM

With the advent of experimental progress, estimation theory has become a powerful tool for activities such as state reconstruction, tomography and metrology [40]. Quantum Fisher information plays a prominent role in these activities where a question of central importance is the determination of an unknown parameter characterizing the system and to reduce the error in these estimations. Their roots are related to the famous Cramer-Rao bounds [18, 41] which is related to the fundamental bounds on the efficiency of the estimation problem. Quantum Fisher information is the quantum counterpart of Rao bounds [18, 41] which is related to the fundamental bounds of estimation of probe states with the feature of best resistance to noise. In both of these works, a systematic study was made of the problem of Fisher information in terms of Bloch vector representation offered by the Bloch vector visualization. This enables us to study the in-field mode. Here, using the Kraus operators characterization our constructions are analytic in nature. Quantum squeezing, a quantum correlation, on the Fisher information plays a prominent role in estimation of an unknown parameter characterizing the system and to reduce the error in these estimations from the prospective of the estimation theory has become a powerful tool for activities such as state reconstruction, tomography and metrology [40].

A straightforward application of Choi’s theorem now yields the following Kraus operators for the Unruh channel generating the maximally entangled two Dirac field modes state $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ in which the second mode is Unruh accelerated. This results in [3]

$$\rho_U = \frac{1}{2} \begin{pmatrix} \cos^2 r & 0 & 0 & \cos r \\ 0 & \sin^2 r & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \cos r & 0 & 0 & 1 \end{pmatrix},$$

where r is the Unruh parameter given by $\cos r = \frac{1}{\sqrt{e^{-\frac{2\pi a_u}{\omega}} + 1}}$. Here a_u is the uniform Unruh acceleration and ω is the Dirac particle frequency. As a_u ranges from ∞ to 0, $\cos r \in (\frac{1}{\sqrt{2}}, 1]$. The spectral decomposition of the above state gives

$$\rho_U = \sum_{j=0}^{3} |\xi_j\rangle\langle\xi_j|,$$

where $|\xi_j\rangle$ are the eigenvectors normalized to the value of the eigenvalue. Choi’s theorem [43, 44], by making use of channel-state duality, then provides a root to obtaining the Kraus operators relevant to the channel generating the state in Eq. 2. Essentially, each $|\xi_j\rangle$ yields a Kraus operator obtained by folding the d^2 elements of the eigenvector into a $d \times d$ matrix, by taking each sequential d-element segment of $|\xi_j\rangle$, writing it as a column, and then juxtaposing these columns to form the matrix [44]. Here $d = 2$.

Spectral decomposition of ρ_U, Eq. 3, yields the following eigenvectors, corresponding to two non-vanishing eigenvalues

$$|\xi_0\rangle = (\cos r, 0, 0, 1),$$

$$|\xi_1\rangle = (0, \sin r, 0, 0).$$

A straightforward application of Choi’s theorem now yields the following Kraus operators for the Unruh channel \mathcal{E}_U as

$$\mathcal{K}_1^U = \begin{pmatrix} \cos r & 0 \\ 0 & 1 \end{pmatrix}; \quad \mathcal{K}_2^U = \begin{pmatrix} 0 & 0 \\ \sin r & 0 \end{pmatrix},$$

whereby

$$\mathcal{E}_U(\rho) = \sum_{j=1,2} \mathcal{K}_j^U \rho (\mathcal{K}_j^U)^\dagger,$$

with the completeness condition

$$\sum_{j=1,2} (\mathcal{K}_j^U)^\dagger \mathcal{K}_j^U = I.$$
From the above Kraus representation, it would appear that the Unruh channel is formally similar to an AD channel [45], which models the effect of a zero temperature bath [37, 38, 45]. This is surprising as the Unruh effect corresponds to a finite temperature and would naively be expected to correspond to finite temperature channels such as the GAD or SGAD channels.

Any two level system can be represented in the Bloch vector formalism as

$$\rho = \frac{1}{2} \left(I + \vec{\zeta} \cdot \sigma \right),$$ \hspace{1cm} (8)

where σ are the standard Pauli matrices. For the initial state $\rho = |0\rangle \langle 0| \cos^2 \frac{\theta}{2} + |1\rangle \langle 1| e^{i\phi} \cos \frac{\theta}{2} \sin \frac{\theta}{2} + |1\rangle \langle 0| e^{-i\phi} \cos \frac{\theta}{2} \sin \frac{\theta}{2} + |0\rangle \langle 1| \sin^2 \frac{\theta}{2}$, the Bloch vector can be seen to be $\vec{\zeta}_0 = (\cos \phi \sin \theta, -\sin \phi \sin \theta, \cos \theta)$. Evolving this state under the Unruh channel, characterized by the above Kraus operators leads to a state, which could be called the Unruh-Dirac (UD) qubit state, whose Bloch vector is

$$\vec{\zeta} = \begin{pmatrix} \cos r \cos \phi \sin \theta \\ -\cos r \sin \phi \sin \theta \\ \cos^2 r \cos \theta - \sin^2 r \end{pmatrix} = A \vec{\zeta}_0 + C. \hspace{1cm} (9)$$

From this A and C can be found to be

$$A = \begin{pmatrix} \cos r & 0 & 0 \\ 0 & \cos r & 0 \\ 0 & 0 & \cos^2 r \end{pmatrix}, \hspace{1cm} C = \begin{pmatrix} 0 \\ 0 \\ -\sin^2 r \end{pmatrix}. \hspace{1cm} (10)$$

This, we believe, is a new result with the A and C matrices completely characterizing the Unruh channel and will be used in the investigations below.

IV. QUANTUM FISHER INFORMATION FOR UNRUH CHANNEL WITHOUT EXTERNAL NOISE

That the Unruh channel is an inherently noisy channel is made explicit by its Kraus representation Eqs. (5) and (6). Here we will estimate the UD qubit state using quantum Fisher information. For this purpose we will make use of A and C from Eq. (10) and $\vec{\zeta}$ from Eq. (9) as inputs in Eq. (1).

When no external noise is acting, i.e., for the case of the pure Unruh channel, it can be seen that

$$F_\theta = \cos^2 r, \hspace{1cm} F_\phi = \cos^2 r \sin^2 \theta. \hspace{1cm} (11)$$

The Fisher information with respect to the parameter θ, F_θ, is independent of the state parameter θ while the Fisher information with respect to the parameter ϕ, F_ϕ is state dependent and depends upon θ. It should be noted that both these expressions of Fisher information have no ϕ dependence. Also it can be observed from the above expressions that the Fisher information cannot be increased by increasing the Unruh acceleration. This is consistent with the fact that the Unruh acceleration produces a thermal like effect and quantum estimation would be expected not to increase with increase in temperature.

This is also evident from Fig. 1, where F_θ is plotted as a function of the Unruh parameter r whereas F_ϕ, is plotted with respect to r and θ. As r goes from $\pi/4$ to 0, i.e., $\cos r$ goes from $1/\sqrt{2}$ to 1, which implies the Unruh acceleration a decreasing from infinity to zero, F_θ increases to 1. Since the Unruh acceleration is directly proportional to temperature, as acceleration decreases, temperature also decreases and quantum Fisher information increases. This is also seen for F_ϕ, albeit only for $\theta = \pi$.

Further, it can be seen from above that F_θ depends upon the Unruh parameter r. It should be noted that this result is obtained for an Unruh channel, by accelerating one partner of the maximally entangled state, as indicated in the previous section. It is interesting to observe here that for an analogous study of Unruh effect on a different state, not necessarily maximally entangled, F_θ was shown to be independent of r [42]. This suggests that Fisher information which is an important tool in state estimation could also be used as a witness for quantum correlations.

V. QUANTUM FISHER INFORMATION FOR UNRUH CHANNEL WITH EXTERNAL NOISE

Now we will analyze the effect of external noise on the Unruh channel using the Bloch vector formalism of Quantum Fisher information. For this, we consider two general external noisy channels: a) phase damping channel, which is of the QND kind and involves pure dephasing and b) the SGAD channel, which includes the effects of decoherence along with dissipation and accounts for finite bath temperature as well as squeezing. We adopt the following procedure. Starting from the UD qubit state, Eq. (9), application of the external noise channel results in

$$\rho_{in} \xrightarrow{E(\text{phase/SGAD})} \rho_{new}. \hspace{1cm} (12)$$

From ρ_{new}, we get the new Bloch vector $\vec{\zeta}_{\text{new}}$ which is related to the original state Bloch vector as

$$\vec{\zeta}_{\text{new}} = A' \vec{\zeta} + C' = A'(A\vec{\zeta}_0 + C) + C'$$

$$= AA'\vec{\zeta}_0 + (A'C + C') = A_{\text{new}}\vec{\zeta}_0 + C_{\text{new}}. \hspace{1cm} (13)$$

Here $\vec{\zeta}$ and $\vec{\zeta}_0$ are as in Eq. (9). From the above equation, it can be seen that the effect of the external noise channel on the Unruh channel is encoded in $A_{\text{new}} = A'A$ and $C_{\text{new}} = (A'C + C')$. Thus we need to find out A' and C' for the desired channels using the Kraus operator formalism.
A. Phase damping channel

In the context of open quantum systems, one is interested in the dynamics of the system of interest, for example, the UD qubit in this case, by taking into account the effect of the ambient environment on its evolution. Let the total Hamiltonian \(H \) be \(H = H_S + H_R + H_{SR} \), where \(H_S, H_R \) are the system and reservoir Hamiltonians, respectively and \(H_{SR} \) is the interaction between the two. If \([H_S, H_{SR}] = 0 \), then it implies decoherence without dissipation, that is, pure dephasing. This is a purely quantum mechanical effect and such an interaction is called a QND interaction. The phase damping channel is a well known noisy channel incorporating QND interaction.

The Kraus operators corresponding to the phase damping channel, modelling the QND interaction of a qubit, with the two levels having a separation of \(\hbar \omega_0 \), interacting with a squeezed thermal bath are [37]

\[
K_1 = \sqrt{\frac{1 + e^{-(\hbar \omega_0)^2 \gamma(t)}}{2}} \begin{pmatrix} e^{-i \hbar \omega_0 t} & 0 \\ 0 & 1 \end{pmatrix}; \\
K_2 = \sqrt{\frac{1 - e^{-(\hbar \omega_0)^2 \gamma(t)}}{2}} \begin{pmatrix} -e^{-i \hbar \omega_0 t} & 0 \\ 0 & 1 \end{pmatrix}. \quad (14)
\]

Assuming an Ohmic bath spectral density with an upper cut-off frequency \(\omega_c \), it can be shown that

\[
\gamma(t) = \left(\frac{\omega_0 k_B T}{\pi \hbar \omega_c} \right) \cosh(2s) \left(2\omega_c t \tan^{-1}(\omega_c t) + \ln \left[\frac{1}{1 + \omega_c^2 t^2} \right] \right) - \left(\frac{\omega_0 k_B T}{2 \pi \hbar \omega_c} \right) \sinh(2s) \left(4\omega_c(t - a) \tan^{-1}[2\omega_c(t - a)] \
-4\omega_c(t - 2a) \tan^{-1}[\omega_c(t - 2a)] + 4a\omega_c \tan^{-1}(2a\omega_c) + \ln \left[\frac{1 + \omega_c^2 (t - 2a)^2}{1 + 4a^2 \omega_c^2} \right] + \ln \left[\frac{1}{1 + 4a^2 \omega_c^2} \right] \right). \quad (15)
\]

Here \(T \) is the reservoir temperature, while \(a \) and \(s \) are bath squeezing parameters. For the Unruh channel in the presence of phase damping noise the modified Bloch vector for the UD qubit, Eq. (13), is

\[
\zeta_{\text{new}} = \begin{pmatrix} \cos r \sin \theta \cos(\phi + \omega_0 t)e^{-(\hbar \omega_0)^2 \gamma(t)/4} \\ -\cos r \sin \theta \sin(\phi + \omega_0 t)e^{-(\hbar \omega_0)^2 \gamma(t)/4} \\ \cos^2 r \cos \theta - \sin^2 r \end{pmatrix}. \quad (16)
\]

The analytical expressions for the quantum Fisher information with respect to parameters \(\theta \) and \(\phi \) are
(a) Variation of F_θ (Fisher information with respect to the parameter θ) and (b) F_ϕ (Fisher information information with respect to parameter ϕ) for QND interaction with bath for a time (t) and and Unruh parameter (r). The parameter settings are $\theta = \pi/4, \phi = \pi/4, a = 0, T = 0.5, s = 0.5, \omega_0 = 1, \omega_c = 100, \gamma_0 = 0.1$.

\[F_\theta = \cos^2 r \left(2(1 + \cos 2r) + \cos(2r - \theta) + 4e^{\frac{\gamma(t)\hbar \omega_0}{2}} (\cos \theta - 1 - 6 \cos \theta + \cos(2r + \theta)) \right) \]
\[F_\phi = e^{-\frac{\gamma(t)\hbar \omega_0}{2}} \cos^2 r \sin^2 \theta, \]

respectively. The above expressions of the Fisher information reduce, for $\gamma(t) = 0$, to their pure Unruh counterparts in Eq. (11). Also, both F_θ and F_ϕ are independent of the azimuthal angle ϕ, as in the pure Unruh case.

From Fig. 2 it can be seen that both F_θ and F_ϕ decrease with time with increase in Unruh acceleration parametrized by r. However, for $r < 0.2$, F_θ is stable with the evolution of time. In Fig. 3 profiles of F_θ and
with respect to T and s are depicted. It is evident that the Fisher information decreases with increasing T. Also, squeezing is seen to have a depleting effect on the Fisher information.

B. SGAD channel

Usually, $[H_S,H_{SR}] \neq 0$, implying decoherence along with dissipation. Lindbladian evolution \cite{21,46,47} is a general class of evolutions which incorporates the effects of decoherence and dissipation. The SGAD channel is a very general Lindbladian noisy channel incorporating the effects of bath squeezing, dissipation and decoherence. The Kraus operators for this channel are \cite{38,39}

\[
K_1 = \sqrt{p_1} \begin{bmatrix} \sqrt{1-\alpha} & 0 \\ 0 & 1 \end{bmatrix}, \\
K_2 = \sqrt{p_1} \begin{bmatrix} 0 & \sqrt{\alpha} \\ \sqrt{\alpha} & 0 \end{bmatrix}, \\
K_3 = \sqrt{p_2} \begin{bmatrix} \sqrt{1-\mu} & 0 \\ 0 & \sqrt{1-\nu} \end{bmatrix}, \\
K_4 = \sqrt{p_2} \begin{bmatrix} 0 & \sqrt{\mu e^{-i\phi_s}} \\ \sqrt{\mu e^{-i\phi_s}} & 0 \end{bmatrix},
\]

where $p_1 + p_2 = 1$ \cite{38}, and

\[
p_2 = \frac{1}{(A + B - C - 1)^2 - 4D} \times \left[A^2 B + C^2 + A(B^2 - C - B(1 + C) - D) - (1 + B)D - C(B + D - 1) \right. \\
\left. \pm 2\sqrt{D(B - AB + (A - 1)C + D)(A - AB + (B - 1)C + D)} \right],
\]

(19)

with

\[
A = \frac{2N + 1}{2N} \frac{\sin^2(\gamma_0 a t/2)}{\sin(\gamma_0(2N + 1)t/2)} \exp(-\gamma_0(2N + 1)t/2), \\
B = \frac{N}{2N + 1}(1 - \exp(-\gamma_0(2N + 1)t)), \\
C = A + B + \exp(-\gamma_0(2N + 1)t), \\
D = \cosh^2(\gamma_0 a t/2) \exp(-\gamma_0(2N + 1)t).
\]

(20)

Also,

\[
\nu = \frac{N}{(p_2)(2N + 1)}(1 - e^{-\gamma_0(2N + 1)t}), \\
\mu = \frac{2N + 1}{2(p_2)N \sinh(\gamma_0(2N + 1)t/2)} \exp\left(-\frac{\gamma_0}{2}(2N + 1)t\right), \\
\alpha = \frac{1}{p_1} \left(1 - p_2[\mu(t) + \nu(t)] - e^{-\gamma_0(2N + 1)t}\right).
\]

(21)

Further, $N = N_{th}[\cosh^2(s) + \sinh^2(s)] + \sinh^2(s)$, $a = \sinh(2s)(2N_{th} + 1)$ where $N_{th} = 1/(e^{\omega_0/k_B T} - 1)$ is the Planck distribution giving the number of thermal photons at the frequency ω_0 while s and ϕ_s are bath squeezing parameters.

Under the action of the SGAD channel, the effective Bloch vector Eq. (13) becomes

\[
\zeta_{\text{new}} = \begin{pmatrix}
\cos r \sin \theta \left((p_1 \sqrt{1-\alpha} + p_2 \sqrt{(1-\mu)(1-\nu)}) \cos \phi + p_2 \sqrt{\mu \nu} \cos(\phi - \phi_s) \right) \\
- \cos r \sin \theta \left((p_1 \sqrt{1-\alpha} + p_2 \sqrt{(1-\mu)(1-\nu)}) \sin \phi - p_2 \sqrt{\mu \nu} \sin(\phi - \phi_s) \right) \\
(1 - 2p_1 \alpha - 2p_2 \mu) \cos^2 r \cos^2 \frac{\theta}{2} - (1 - 2p_2 \nu) \left(\sin^2 r \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} \right)
\end{pmatrix}.
\]

(22)

As a result, the Fisher information with respect to the Unruh qubit parameters θ and ϕ, i.e., F_θ and F_ϕ, respectively, can be shown to be
FIG. 4. (a) Variation of F_θ (Fisher information with respect to the parameter θ) and (b) F_ϕ (Fisher information information with respect to parameter ϕ) for SGAD interaction with bath interaction time (t) and Unruh parameter (r). The parameter settings are $T = 0.5$, $s = 0.5$, $\theta = \pi/4$, $\phi = \pi/4$, $\phi_s = 0$, $\omega_0 = 0.1$, $\gamma_0 = 0.1$.

$$
F_\theta = \frac{\cos^2 \theta (A_+^2 + B_-^2) + \sin^2 \theta C^2 + (CD + (A_+ + B_+) \cos \theta)^2 \sin^2 \theta}{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_-^2) \sin^2 \theta},
$$
$$
F_\phi = \frac{\sin^2 \theta (A_-^2 + B_+^2) + (A_+ B_- + A_- B_+) \sin^4 \theta}{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_-^2) \sin^2 \theta}.
$$

VI. SKEW INFORMATION

Another variant of Fisher information which accounts for the amount of information in the quantum state with respect to its non commutation with a conserved quantity is the Skew information [25, 27, 31, 48]. This can be shown to have a metrical structure given by the quan-
tum Hellinger distance [31] which in turn is related to the quantum affinity and is intrinsically connected to the quantum Chernoff distance [49]. In this sense Skew and Fisher information are variants of the same fundamental quantity with Fisher deriving its metrical origin from the Bures distance [33]. Recently there has been a lot of activity concerning the connection between the Skew information and quantum coherence [29, 30]. We thus find it instructive to compute the Skew information for the present problem of Unruh channel with and without the influence of external noisy channels.

The Skew information in terms of Bloch vector $\vec{\zeta}(\alpha)$ is given by

$$S_q(\alpha) = \frac{2|\partial_\alpha \vec{\zeta}(\alpha)|^2}{1 + \sqrt{1 - |\vec{\zeta}(\alpha)|^2}} + \left[\vec{\zeta}(\alpha) \cdot \partial_\alpha \vec{\zeta}(\alpha)\right]^2$$

$$\times \left(\frac{1}{1 - |\vec{\zeta}(\alpha)|^2} - \frac{1}{1 + \sqrt{1 - |\vec{\zeta}(\alpha)|^2}}\right),$$

where q denotes quantum and α is the parameter to be estimated, for example, the polar and azimuthal angles θ and ϕ, respectively, of the UD qubit. From here on we will abbreviate $S_q(\alpha)$ by S_α.

Using the Bloch vector $\vec{\zeta}(\alpha)$, Eq. (9), the Skew information for the pure Unruh channel with respect to the parameters θ and ϕ, i.e., S_θ and S_ϕ, respectively, can be shown to be

$$S_\theta = \frac{\cos^2 r \left(7 + 2 \cos 2\theta + 8 \cos^2 \frac{\theta}{2} \sin 2r + 2 \cos 2r \sin^2 \theta\right)}{4 \left(1 + \cos^2 \frac{\theta}{2} \sin 2r\right)^2},$$

$$S_\phi = \frac{2 \cos^2 r \sin^2 \theta}{1 + \cos^2 \frac{\theta}{2} \sin 2r}.$$

Unlike the analogous case of Fisher information F_θ for the pure Unruh channel, Eq. (11), we see that S_θ depends both on r and θ.

From Fig. 6, it is seen that the Skew information, for the pure Unruh channel, with respect to the parameter θ, decreases with increase in the Unruh parameter r, a behaviour which is consistent with that of its Fisher counterpart. However, in contrast to the Fisher information, for a given r, there is a general trend of increase in S_θ as θ goes from 0 to 2π. This increase is more dramatic for higher values of Unruh acceleration. The behaviour of S_ϕ is similar to that of its Fisher counterpart F_ϕ, Fig. 1(b). However for higher values of r ($\phi > 0.5$), S_ϕ has a steeper fall as compared to its corresponding F_ϕ, Fig. 1.

A. Phase Damping

The Skew information with respect to parameters θ and ϕ, S_θ and S_ϕ, due to the influence of the phase damping (QND) noise channel on the UD quubit are given by

$$S_\theta = \frac{2 \cos^2 r \left(e^{-\frac{1}{2} \gamma (\hbar \omega_0)^2} \cos^2 \theta + \cos^2 r \sin^2 \theta\right)}{1 + \sqrt{1 - \mathcal{H}}},$$

$$+ \mathcal{G}^2 \sin^2 \theta \left(\frac{1}{1 - \mathcal{H}} - \frac{1}{1 + \sqrt{1 - \mathcal{H}}}\right),$$

$$S_\phi = \frac{2 e^{-\frac{1}{2} \gamma (\hbar \omega_0)^2} \cos^2 r \sin^2 \theta}{1 + \sqrt{1 - \mathcal{H}}}. \quad (27)$$

Here \mathcal{G} and \mathcal{H} are

$$\mathcal{G} = e^{-\gamma (\hbar \omega_0)^2} \cos^4 r \left(\cos \theta + e^{\frac{1}{2} \gamma (\hbar \omega_0)^2} (\sin^2 r - \cos^2 r \cos \theta)\right),$$

$$\mathcal{H} = (\sin^2 r - \cos^2 r \cos \theta)^2 - e^{-\frac{1}{2} \gamma (\hbar \omega_0)^2} \cos^2 r \sin^2 \theta. \quad (28)$$
In the absence of external noise, S_θ and S_ϕ reduces to their pure Unruh counterparts in Eq. (26).

The variation of Skew informations S_θ and S_ϕ with respect to time of evolution t, Unruh parameter r and temperature (T) and squeezing (s) are depicted in Fig. 7 and Fig. 8, respectively. Once more we see that the behaviour of Skew information is similar to its Fisher counterpart.

B. SGAD

As a result of action of SGAD channel on UD qubit, the Skew information with respect to parameters θ and ϕ are respectively given by
FIG. 8. (a) Variation of S_{θ} (Skew information with respect to the parameter θ) and (b) S_{ϕ} (Skew information information with respect to parameter ϕ) for QND interaction with bath at temperature (T) and squeezing (s). The parameter settings are $r = \pi/8$, $\theta = \pi/4$, $\phi = \pi/4$, $a = 0$, $\omega_0 = 1$, $\omega_c = 100$, $\gamma_0 = 0.1$, $t = 2$

\[
S_{\theta} = \frac{2 (\cos^2 \theta (A_+^2 + B_+^2) + C^2 \sin^2 \theta)}{1 + \sqrt{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta}} + \left(\frac{1}{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta} \right) \times \left(\frac{1}{1 + \sqrt{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta}} \right)
\]

\[
S_{\phi} = \frac{2 (A_+^2 + B_+^2) \sin^2 \theta}{1 + \sqrt{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta}} + \left(\frac{1}{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta} \right) \times \left(\frac{1}{1 + \sqrt{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta}} \right) \times \frac{1}{1 + \sqrt{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta}} \times \left(\frac{1}{1 + \sqrt{1 - (F - C \cos^2 \frac{\theta}{2})^2 - (A_+^2 + B_+^2) \sin^2 \theta}} \right)
\]

where A, B, C, D, F are as in Eq. (24). The above equation reduces to Eq. (26), in the absence of external noise.

Like its Fisher counterpart, it can be seen from Fig. 9, that both S_{θ} and S_{ϕ} decrease with time for all values of r. The behaviour of these two Skew informations with respect to the parameters T and s are depicted in Fig. 10 (a) and (b), respectively. Qualitatively they are similar to their Fisher counterparts in Fig. 5. Hence the rich structure exhibited by F_{θ} and F_{ϕ} are also seen here for their Skew counterparts.

From the behaviour of Skew information, as observed in this section, we see that it is, baring a few differences, quite similar to the corresponding Fisher information. This is consistent with the notion that the Fisher and Skew information are variants of the same information content.

VII. CONCLUSIONS

Quantum Fisher information plays a prominent role in state estimation and reconstruction, tomography and metrology. Its variant, Skew information is gaining prominence in studies probing into the nature of quantum coherence. In this work, we provide a detailed exposition of both the Fisher and Skew information, for an Unruh-Dirac qubit. An important feature of this work is that by using the Bloch vector formalism, a clear and unified treatment of Unruh effect both in its pure form as well as in the presence of experimentally relevant external noise channels is provided. The use of Bloch vector representation, developed here for the Unruh effect, enables us to provide analytical expressions for quantum Fisher and Skew information, both with and without external noises. We study the evolution of Fisher and Skew information with time and also the impact of external environ-
ment parameters such as temperature and squeezing on their evolution. The external noises are modelled by both purely dephasing phase damping as well as the squeezed generalized amplitude damping (SGAD) noise channels. An interesting interplay between the external reservoir temperature and squeezing on the Fisher and Skew information is observed, in particular, for the action of the SGAD channel. It is seen that for some regimes, squeezing can enhance the quantum information against the debilitating influence of the noise channels. Similar features are also observed for the analogous study of Skew information, highlighting the similar origin of the Fisher and Skew information. These studies, we hope, to be a contribution in the direction of efforts towards understanding and implementing relativistic quantum information.

[1] P. C. W. Davies, J. Phys. A 8, 609 (1975); W. G. Unruh, Phys. Rev. D 14, 870 (1976).
[2] L. C. B. Crispino, A. Higuchi and G. E. A. Matsas, Rev. Mod. Phys. 80, 787 (2008).
[3] S. Omkar, S. Banerjee, R. Srikanth and A. K. Alok, arXiv:1408.1477 [quant-ph].
[4] P. M. Alsing and G. J. Milburn, Phys. Rev. Lett. 91, 180404 (2003).
[5] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[6] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).
[7] M. Czachor, Phys. Rev. A 55, 72 (1977).
[8] A. Peres, P. F. Scudo and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[9] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[10] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[11] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).
[12] M. Czachor, Phys. Rev. A 55, 72 (1977).
[13] A. Peres, P. F. Scudo and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[14] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[15] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[16] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).
[17] M. Czachor, Phys. Rev. A 55, 72 (1977).
[18] A. Peres, P. F. Scudo and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[19] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[20] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[21] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).
[22] M. Czachor, Phys. Rev. A 55, 72 (1977).
[23] A. Peres, P. F. Scudo and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[24] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[25] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[26] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).
[27] M. Czachor, Phys. Rev. A 55, 72 (1977).
[28] A. Peres, P. F. Scudo and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[29] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[30] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[31] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).
[32] M. Czachor, Phys. Rev. A 55, 72 (1977).
[33] A. Peres, P. F. Scudo and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[34] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[35] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[36] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).
[37] M. Czachor, Phys. Rev. A 55, 72 (1977).
[38] A. Peres, P. F. Scudo and D. R. Terno, Phys. Rev. Lett. 88, 230402 (2002).
[39] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
[40] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[41] Z. Tian, J. Wang and J. Jing, Annals Phys. 332, 98 (2013).