Appendix to:
EFSA (European Food Safety Authority), 2018. Conclusion on the peer review of the pesticide risk assessment of the active substance dimethenamid-P. EFSA Journal 2018;16(3):5211, 169 pp. doi:10.2903/j.efsa.2018.5211
© European Food Safety Authority, 2018

Appendix A – List of end points for the active substance and the representative formulation

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Dimethenamid-P
Function (e.g. fungicide)	Herbicide
Rapporteur Member State	Germany
Co-rapporteur Member State	Bulgaria

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	(S)-2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylthyl)acetamide
Chemical name (CA)	2-chloro-N-(2,4-dimethyl-3-thienyl)-N-[(1S)-2-methoxy-1-methylthyl]-acetamide
CIPAC No	638
CAS No	163515-14-8
EC No (EINECS or ELINCS)	-
FAO Specification (including year of publication)	–
Minimum purity of the active substance as manufactured	930 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	1,1,1,2-Tetrachloroethane (TCE): < 1.0 g/kg
Molecular formula	C$_{12}$H$_{18}$ClNO$_2$S
Molar mass	275.8 g/mol
Structural formula	![Structural formula](image)
Physical and chemical properties (Regulation (EU) No 283/2013, Annex Part A, point 2)

Property	Value	Reference
Melting point (state purity)	Solidification point below –50 °C	(99.4 %)
Boiling point (state purity)	No boiling point detected until 280 °C	(99.4 %)
Temperature of decomposition (state purity)	101 °C (slow decomposition)	(94.0 %)
Appearance (state purity)	colour: clear yellow brown (at room temperature)	
	physical state: liquid	
	odour: faint aromatic	(99.4 %)
Vapour pressure (state temperature, state purity)	3.47 x 10⁻³ Pa at 20 °C (98.6 %)	
	2.51 x 10⁻³ Pa at 25 °C (98.6 %)	
Henry’s law constant	4.8 x 10⁻⁴ Pa m³ mol⁻¹ (25 °C)	
Solubility in water (state temperature, state purity and pH)	1499 mg/L at 25 °C (pH 6.16) (98.6 %)	
	There is no dissociation in water therefore pH dependence on solubility is not applicable	
Solubility in organic solvents (state temperature, state purity)	heptane 310 – 330 (all in g/L of solvent)	
	hexane 310 – 330 at 20 °C (96.4 %)	
	toluene > 1000	
	dichloromethane > 1000	
	methanol > 1000	
	acetone > 1000	
	ethyl acetate > 1000	
	acetonitrile > 1000	
Surface tension (state concentration and temperature, state purity)	52.0 mN/m (0.1 % (w/w), 20 °C)	(99.4 %)
	50.7 mN/m (0.5 % (w/w), 20 °C)	
Partition coefficient (state temperature, pH and purity)	log P_{OW} = 1.89 at 25 °C (94.45 %)	
	Effect of pH was not investigated since there is no dissociation in water.	
Dissociation constant (state purity)	UV spectrophotometric investigation gave no indication of dissociation of dimethenamid taking place between pH of 1 and 11 at 25 °C (98.0 %)	
UV/VIS absorption (max.) incl. ε (state purity, pH)	λ_{max} = 236 nm; ε = 7560 L mol⁻¹ cm⁻¹ (99.4 %)	
	ε = 31.6 L mol⁻¹ cm⁻¹ at 297.5 nm decreasing to ε = 1.2 L mol⁻¹ cm⁻¹ at 400.0 nm	
Flammability and self-heating (state purity)	Flammability not required. TAS is a liquid and does not evolve highly flammable gases. Auto-ignition temperature: 395 °C (97.9 %)	
Flash point (state purity)	79 °C (93.5 %)	
Explosive properties (state purity)	The result of the explosive impact test indicated that technical dimethenamid is not an impact explosive sensitive compound. (96.73 %)	
Oxidising properties (state purity)	not oxidising	
List of representative uses evaluated - BAS 656 12 H

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days)	Remarks			
Maize - ZEAMX	EU	BAS 656 12 H	F	Annual monocotyled onous and dicotyledonous weeds	EC 720	spraying	BBCH 00-09	144-864	100-400	576-864	n.a.	Range 0.8-1.2 L/ha possible not safe - risk assessment for non-target terrestrial plants not finalised
Maize - ZEAMX	EU	BAS 656 12 H	F	Annual monocotyled onous and dicotyledonous weeds	EC 720	spraying	BBCH 10-16	144-864	100-400	576-864	n.a.	Range 0.8-1.2 L/ha possible not safe - risk to mammals, risk assessment for non-target terrestrial plants not finalised
Sugar Maize - ZEAMS	EU	BAS 656 12 H	F	Annual monocotyled onous and dicotyledono	EC 720	spraying	BBCH 00-09	144-864	100-400	576-864	n.a.	Range 0.8-1.2 L/ha possible not safe -
Crop and/or situation (a)	Member State or Country	Product name	FG or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks			
--------------------------	------------------------	--------------	-------------	---------------------------------------	-------------	------------	-------------------------------	----------------	---------			
Sugar Maize - ZEAMS	EU	BAS 656 12 H	F	us weeds	EC 720	spraying	BBCH 10-16	144-864	100-400	576-864	n.a.	Range 0.8-1.2 L/ha possible not safe - risk assessment for non-target terrestrial plants not finalised
Soybean - GLXMA	EU	BAS 656 12 H	F	Annual monocotyled onous and dicotyledono us weeds	EC 720	spraying	BBCH 00-09	144-864	100-400	576-864	n.a.	Range 0.8-1.2 L/ha possible not safe - risk assessment for non-target terrestrial plants not finalised
Crop and/or situation (a)

Crop
- Sunflower - HELAN
- Sugar Beet - BEAVA
- Sugar Beet - BEAVA

Member State or Country
- EU

Product name
- BAS 656 12 H

Pests or Group of pests controlled (c)
- Annual monocotyledonous and dicotyledonous weeds

Preparation
- Type: EC
- Conc. of as (i), g/L: 720
- Method: spraying
- Growth stage & season (j): BBCH 00-09
- Number min/max (k): 1
- Interval between applications (min): -

Application rate per treatment
- g as/ha min-max (l): 144-864
- Water L/ha min-max: 100-400
- g as/ha min-max (l): 576-864

PHI (days) (m)
- Sunflower - HELAN: n.a.
- Sugar Beet - BEAVA: n.a.
- Sugar Beet - BEAVA: n.a.

Remarks
- Range 0.8-1.2 L/ha possible not safe - risk assessment for non-target terrestrial plants not finalised
- Range 0.8-1.2 L/ha possible not safe - risk assessment for non-target terrestrial plants not finalised
| Crop and/or situation (a) | Member State or Country | Product name | F G or I (b) | Pests or Group of pests controlled (c) | Preparation | Application | Application rate per treatment | PHI (days) (m) | Remarks | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sugar Beet - BEAVA | EU | BAS 656 12 H | F | Annual monocotyled monos and dicotylenous weeds | EC | 720 | spraying BBCH 12-18 | 54-504 | 100-400 | 216-504 | Max rate 720 g a.s./year Splitting: 2 applications BBCH 12 – BBCH 15: 0.3-0.6 L product/ha From BBCH 16: 0.3-0.7 L product/ha not safe - risk assessment for non-target terrestrial plants not finalised |
| Sugar Beet - BEAVA | EU | BAS 656 12 H | F | Annual monocotyled monos and dicotylenous weeds | EC | 720 | spraying BBCH 12-18 | 54-288 | 100-400 | 216-288 | Max rate 720 g a.s./year Splitting: 3 applications 0.3-0.4 L product/ha not safe - risk assessment for non-target terrestrial plants not finalised |
Table: Use of Dimethenamid-P

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation (d-f)	Application (j)	Application rate per treatment (l)	PHI (days) (m)	Remarks

- **Crop and/or situation**: (a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure).
- **Member State or Country**: (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- **Product name**: (c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
- **Preparation**: (d-f) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- **Application**: (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- **Application rate per treatment**: (l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha)
- **PHI (days)**: (m) PHI - minimum pre-harvest interval

* For uses where the column "Remarks" is marked in grey further consideration is necessary.

Uses should be crossed out when the notifier no longer supports this use(s).

- **(a)** For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure).
- **(b)** Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- **(c)** e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
- **(d)** e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- **(e)** GCPF Codes - GIFAP Technical Monograph No 2, 1989
- **(f)** All abbreviations used must be explained
- **(g)** Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- **(h)** Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
- **(i)** g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). **In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).**
- **(j)** Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- **(k)** Indicate the minimum and maximum number of application possible under practical conditions of use
- **(l)** The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- **(m)** PHI - minimum pre-harvest interval
List of representative uses evaluated - BAS 830 01 H

Crop and/or situation	Member State or Country	Product name	F G or I	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks
Winter Oilseed Rape - BRSNW	EU	BAS 830 01 H	F	Annual monocotyledonous and dicotyledonous weeds	SE 333 (167 quinmerac)	spraying BBCH 00-09	1 - 66.5-500 (quinmerac: 33.5-250) 100-400 (quinmerac: 134-250) n.a.	Range 0.8-1.5 L/ha possible	
Winter Oilseed Rape - BRSNW	EU	BAS 830 01 H	F	Annual monocotyledonous and dicotyledonous weeds	SE 333 (167 quinmerac)	spraying BBCH 10-18	1 - 66.5-500 (quinmerac: 33.5-250) 100-400 (quinmerac: 134-250) n.a.	Range 0.8-1.5 L/ha possible	

* For uses where the column "Remarks" is marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).
(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant-type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of application possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (name of active substance or the respective variant)

Regulation (EC) N° 1107/2009 Article 8.1(g)

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
Tree nuts	DE, AT	Spectrum	F	Annual grasses & Dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 00-55	1 N/A	0.864-0.216 100-400 0.864 F From 1st year after planting, apply between rows with screen (PRNDA, PRNDU, CSNSS, CYLAV, CYLMA, IUGRE – almonds, chestnut, hazelnut, lambert nut, walnut)					
Pome fruit	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 00-76	1 N/A	0.864-0.216 100-400 0.864 F apply under trees (MABSD, PYUCO, CYDOB, ABOME, EIOJA, MSPGE – Apple, Pear, Quince, Black chokeberry, Loquat, Medlar)					
Pome fruit	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 91-97	1 N/A	0.864-0.216 100-400 0.864 F apply under trees (MABSD, PYUCO, CYDOB, ABOME, EIOJA, MSPGE – Apple, Pear, Quince, Black chokeberry, Loquat, Medlar)					
Stone fruit	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 00-76	1 N/A	0.864-0.216 100-400 0.864 F apply under trees (PRNAR, PRNAV, PRNCE, PRNPS, PRPNP, PRNDD, PRNDI, PRNDS – apricots, peaches, cherries, plums and others)					
Stone fruit	DE, AT,	Spectrum	F	Annual	EC 720 g/L	Spraying BBCH 91-97	1 N/A	0.864-100-400 0.864 F apply under trees						
Crop and/or situation (a)	Member State or Country	Product name	FG or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
---------------------------	-------------------------	--------------	-------------	--	-------------	-------------	--------------------------------	---------------	---------					
Sugar beet, fodder beet, red beet	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	monocotyledonous and dicotyledonous weeds	EC 720 g/L Spraying	BBCH 00-09	SP	1	N/A	0.216	(PRNAR, PRNAV, PRNCE, PRNPS, PRPNP, PRNDD, PRND, PRNDS – apricots, peaches, cherries, plums and others)			
Sugar beet, fodder beet, red beet	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L Spraying	BBCH 12-18	SP	3 (5)	N/A	0.720-0.180	100-400	0.720	F	max of 720 g as/ha, season can be applied with max 3 times in split applications
Horse radish, turnip, swede	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L Spraying	BBCH 12-16	SP	1	N/A	0.504-0.126	100-400	0.504	F	Pre emergence, intended minor use
"F" = PHI is covered by the time period remaining between application and harvest														
Swedes and turnip	DE, PL, BE, NL	Spring-bok	F	Weeds (general)	EC 200 g/L Spraying	BBCH 00-09	SP	1	N/A	0.500-0.100	100-500	0.500	F	1.2 L/ha in pre-EM
Or 0.4 L/ha in pre-EM
+ 2+ 0.4 L/ha in pot-EM |
| Spring, Welsh onions & similar | DE, AT, BE, BG, HR, CZ, FR, GR | Spectrum | F | Annual monocotyledonous and dicotyledonous weeds | EC 720 g/L Spraying | BBCH 12-14 | SP | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 | F |
| Crop and/or situation (a) | Member State or Country | Product name | Pests or Group of pests controlled (c) | Preparation | Application | Application rate per treatment | PHI (days) (m) | Remarks | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| HU, IT, LU, NL, PT, RO, SI, ES | Pumpkin hybr., cucumber, zucchini, patisson, melon (edible and inedible peel) | Spectrum | Annual monocotyle-donous and dicotyledo-nous weeds | EC 720 g/L | Spraying SP | BBCH 12-16 | 1 | N/A | 0.850-0.212 | 100-400 | 0.864 | F |
| DE, AT, BE, BG, HR, CZ | Oil pumpkin | Spectrum | Annual monocotyle-donous and dicotyledo-nous weeds | EC 720 g/L | Spraying SP | Pre-planting | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 | F |
| DE, AT | Oil pumpkin | Spectrum | Annual monocotyle-donous and dicotyledo-nous weeds | EC 720 g/L | Spraying SP | BBCH 00-09 | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 | F |
| DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES | Sweetcorn | Spectrum | Annual monocotyle-donous and dicotyledo-nous weeds | EC 720 g/L | Spraying SP | BBCH 00-09 | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 | F | Range 0.8-1.2 l/ha possible |
| DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES | Sweetcorn | Spectrum | Annual monocotyle-donous and dicotyledo-nous weeds | EC 720 g/L | Spraying SP | BBCH 10-16 | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 | F | Range 0.8-1.2 l/ha possible |
| DE, AT | Flowering | Spring- | Weeds | EC 200 g/L | Spraying | BBCH 10-16 | 1 | N/A | 0.500- | 100-500 | 0.300- | F | Post transplanting, not earlier |
| Crop and/or situation (a) | Member State or Country | Product name | F G or I (b) | Pests or Group of pests controlled (c) | Preparation | Application | Application rate per treatment | PHI (days) (m) | Remarks |
|--------------------------|-------------------------|--------------|-------------|---------------------------------------|-------------|------------|-----------------------------|----------------|---------|
| brassica (Cauliflower, Broccoli) transplanted | BE, CZ, EE, FR, GR, HU, IT, LV, LT, LU, PL, ES, UK | bok (general) | | | | | | than 5-7 days after transplanting |
| Brussels sprouts | DE, AT, BE, BG, HR, CZ | Spectrum | F | Annual monocotyledonous and dicotyledonous weeds | EC 720 g/L | Spraying SP | BBCH 12-16 | 1 N/A | 0.720-0.180 | 100-400 | 0.720 90 | seeded crop and planted crop, after taking roots |
| Head cabbage (White, Red, Savoy, Spring cabbage) transplanted | DE, AT, BE, CZ, EE, FR, GR, HU, IT, LV, LT, LU, PL, ES, UK | Spring-bok (general) | | | | | | |
| Head cabbage (White, Red, Savoy, Spring cabbage) transplanted | DE, AT, BE, CZ, EE, FR, GR, HU, IT, LV, LT, LU, PL, ES, UK | Spring-bok (general) | | | | | | |
| Head cabbage (White, Red, Savoy, Spring cabbage) (seed plant) direct drilled | DE, AT, BE, CZ, EE, FR, GR, HU, IT, LV, LT, LU, PL, ES, UK | Spring-bok (general) | | | | | | |
| Leafy brassica transplanted | DE, AT, BE, CZ, EE, FR, | Spring-bok (general) | | | | | | |

www.efsa.europa.eu/efsajournal EFSA Journal 2018;16(3):5211
Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
Leafy brassica transplanted	DE, AT, BE, CZ, EE, FR, GR, HU, IT, LV, LT, LU, PL, ES, UK	Spring-bok	F	Weeds (general)	EC 200 g/L	Spraying SP	BBCH 10-18	1	N/A	0.500-0.100	100-500	0.500	F	Post transplanting, not earlier than 5-7 days after transplanting
Green beans with pods	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Wing P	F	Annual weeds	EC 212.5 g/L	Spray	BBCH 00-09 (February-April)	1	N/A	0.425-0.213	200-400	0.850	F	
Green beans with pods	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Wing P	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 00-09	1	N/A	0.720-0.180	100-400	0.720	F	
Green beans with pods	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Wing P	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 11-14	1	N/A	0.720-0.180	100-400	0.720	F	
Climbing fresh beans with pods	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Wing P	F	Annual weeds	EC 212.5 g/L	Spray	BBCH 00-09 or BBCH 10-14 (February-May)	1	N/A	0.425-0.213	200-400	0.850	F	
Climbing fresh beans with pods	DE, AT, BE, BG, CZ, HU,	Wing P	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 00-09	1	N/A	0.720-0.180	100-400	0.720	F	
Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
--------------------------	-------------------------	--------------	-------------	-------------------------------------	-------------	-------------	---------------------------------	---------------	---------					
Climbing fresh beans with pods	NL, PL, RO, SK, SE, GB	dicotyledonous weeds	Wing P	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 11-14	1 N/A	0.720-0.180	100-400	0.720 F			
Leek transplanted	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Weeds (general)	Spring-bok	Annual monocotyledonous and dicotyledonous weeds	EC 200 g/L	Spraying SP	BBCH 10-18	1 N/A	0.500-0.100	100-500	0.500 F			
Leek transplanted	DE, PL, BE, NL, FR, IT, ES, PT, GR	Weeds (general)	Spring-bok	Annual monocotyledonous and dicotyledonous weeds	EC 200 g/L	Spraying SP	BBCH 10-18	1 N/A	0.500-0.060	100-500	0.300-0.500 F			
Leek	ES	Spectrum	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 00-09	1 N/A	0.864-0.216	100-400	0.864 F			
Leek	FR, GR, IT, ES	Spectrum	F	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 10-18	1 N/A	0.864-0.216	100-400	0.864 F			
Vicia beans (dry)	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Annual weeds	Wing P	Annual monocotyledonous and dicotyledonous weeds	EC 212.5 g/L	Spray	BBCH 00-09 or BBCH 10-14 (February-May)	1 N/A	0.425-0.213	200-400	0.850 F			
Vicia beans (dry)	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Annual monocotyledonous and dicotyledonous weeds	Wing P	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 00-09	1 N/A	0.720-0.180	100-400	0.720 F			
Vicia beans (dry)	DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB	Annual monocotyledonous and dicotyledonous weeds	Wing P	Annual monocotyledonous and dicotyledonous weeds	EC 720 g/L	Spraying SP	BBCH 11-14	1 N/A	0.720-0.180	100-400	0.720 F	Submitted as minor crop		
Crop and/or situation (a)	Member State or Country	Product name	FG or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
--------------------------	------------------------	--------------	-------------	---------------------------------------	-------------	------------	-------------------------------	---------------	---------					
					Type	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s./L min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l)	
					(d-f)	(i)	(f-h)	(i)	(k)	(l)	(m)	(n)	(o)	
					Spray	BBCH 00-09	00-09 (#February-March)	1	N/A	0.425-0.213	200-400	0.850	F	Minor uses
					Spray	BBCH 00-09	00-09 (#February-March)	1	N/A	0.964-0.216	100-400	0.864	F	Range 0.8-1.2 L/ha possible
					Spray	BBCH 00-09	00-18 (#February-March)	1	N/A	0.850-0.125	100-400	0.500	F	
					Spray	BBCH 00-09	00-09 (#February-March)	1	N/A	0.864-0.216	100-400	0.500	F	
					Spray	BBCH 00-09	00-09 (#February-March)	1	N/A	0.850-0.125	100-400	0.500	F	
					Spray	BBCH 00-09	00-09 (#February-March)	1	N/A	0.850-0.125	100-400	0.500	F	Post emergence “f” = PHI is covered by the time remaining between application and harvest

Crop and/or situation (a):
- NL, PL, RO, SK, SE, GB
- DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB
- DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES
- DE, AT, BE, BG, HR, CZ, SK, HU, PL, BG, RO, UA, BY, RU, SE, LT, EE, LV
- DE, AT, BE, BG, HR, CZ, EE, FR, HU, LV, LT

Member State or Country:
- NL, PL, RO, SK, SE, GB
- DE, AT, BE, BG, CZ, HU, NL, PL, RO, SK, SE, GB
- DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES
- DE, AT, BE, BG, HR, CZ, SK, HU, PL, BG, RO, UA, BY, RU, SE, LT, EE, LV

Product name:
- dicotyledonous weeds
- Wing P
- Spectrum
- BAS 830 01
- BAS 830 01
- Spring-bok

Preparation:
- Spray
- BBCH 00-09
- BBCH 00-09
- BBCH 00-09
- BBCH 00-09

Application:
- BBCH 00-09 (#February-March)
- BBCH 00-09 (#February-March)
- BBCH 00-18 (#February-March)
- BBCH 00-09 (#February-March)
- BBCH 00-09 (#February-March)

Application rate per treatment:
- 0.425-0.213
- 0.964-0.216
- 0.850-0.125
- 0.864-0.216
- 0.850-0.125

PHI (days) (m):
- 1
- N/A
- 1
- N/A
- 1

Remarks:
- Minor uses
- Range 0.8-1.2 L/ha possible
- Post emergence “f” = PHI is covered by the time remaining between application and harvest
| Crop and/or situation (a) | Member State or Country | Product name | F Gö r I (b) | Pests or Group of pests controlled (c) | Preparation | Application | Application rate per treatment | PHI (days) (m) | Remarks | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Oilseed rape | NL, PL, RO, SI, SK, SE, GB | Spring-bok | F | Weeds (general) | EC 200 g/L | Spraying SP | BBCH 10-18 | 1 | N/A | 0.500-0.100 | 100-500 | 0.500 F | Post emergence “f” = PHI is covered by the time remaining between application and harvest |
| Soybean | CZ, HU, RO, HR, BG, DE, AT | Spectrum | F | Annual monocotyledonous and dicotyledonous weeds | EC 720 g/L | Spraying SP | BBCH 00-09 | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 F | Range 0.8-1.2 L/ha possible |
| Maize | FR, NL, CZ, HU, RO, BE, BG, DE, AT, GR, IT, PT, ES, SI, HR, SK | Wing P | F | Annual weeds | EC 212.5 g/L | Spray | BBCH 00-09 or BBCH 10-16 (April-May) | 1 | N/A | 0.425-0.213 | 200-400 | 0.850 F |
| Maize | FR, NL, CZ, HU, RO, BE, BG, DE, AT, GR, IT, PT, ES, SI, HR, SK | Spectrum | F | Annual monocotyledonous and dicotyledonous weeds | EC 720 g/L | Spraying SP | BBCH 10-16 | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 F | Range 0.8-1.2 L/ha possible |
| Maize | DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL | Spectrum | F | Annual monocotyledonous and dicotyledonous weeds | EC 720 g/L | Spraying SP | BBCH 10-16 | 1 | N/A | 0.864-0.216 | 100-400 | 0.864 F | Range 0.8-1.2 L/ha possible |

Note: The table provides information on the pesticide risk assessment of the active substance dimethenamid-P for different crops and situations, including details on the product name, pest control, application methods, and PHI (post-application interval).
Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks			
PT, RO, SI, ES	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyle-donous and dicotyle-donous weeds	EC 720 g/L Spraying SP	BBCH 13-16	1 N/A	0.864-0.216	100-400	0.864	F	
Millet	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyle-donous and dicotyle-donous weeds	EC 720 g/L Spraying SP	BBCH 13-16	1 N/A	0.864-0.216	100-400	0.864	F	
Sorghum	DE, AT, BE, BG, HR, CZ, FR, GR, HU, IT, LU, NL, PT, RO, SI, ES	Spectrum	F	Annual monocotyle-donous and dicotyle-donous weeds	EC 720 g/L Spraying SP	BBCH 13-16	1 N/A	0.864-0.216	100-400	0.864	F	
Witloof, Chicory root	FR	Spectrum	F	Annual grasses & Dicotyle-donous weeds	EC 720 g/L Spraying SP	BBCH 12-18	3 (5-10) N/A	0.33-1.0	100-400	0.720	90	Split Application 3x0.33 L/ha

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval

www.efsa.europa.eu/efsajournal 17 EFSA Journal 2018;16(3):5211
Further information, Efficacy

Effectiveness (Regulation (EU) No 284/2013, Annex Part A, point 6.2)

Effectiveness of dimethenamid-P is considered sufficient using the max. recommended field rates as outlined in the GAP-tables.

Adverse effects on field crops (Regulation (EU) No 284/2013, Annex Part A, point 6.4)

Dimethenamid-P is selective in all tested maize, sunflower, soya bean, sugarbeet varieties. Based on the long term experiences the risk of phytotoxicity is considered as acceptable.

Observations on other undesirable or unintended side-effects (Regulation (EU) No 284/2013, Annex Part A, point 6.5)

Highly sensitive plants such as lettuce may be affected in pre-emergence applications up to a maximum distance of 5 m from the treated field, if no drift reducing application technique is used. However, dimethenamid-P can be considered as sufficiently safe for adjacent crops.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism	M656 PH 023	M656 PH 030	M656 PH 031	M656 PH 032	M656 PH 043	M656 PH 045
Not finalised	Not finalised	Not finalised	Not finalised	Not finalised	Not finalised	

Activity against target organism	M656PH 047	M656PH 054	M656H 055	M656PH 027 Na salt	M656PH 062 ethyl-ester
Not finalised	Not finalised	Not finalised	Not finalised	Not finalised	Not finalised
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	HPLC-UV
Impurities in technical a.s. (analytical technique)	GC-FID
Plant protection product (analytical technique)	HPLC-UV

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Category	Definition
Food of plant origin	Dimethenamid (sum of stereoisomers) + metabolites M26 and M30, expressed as dimethenamid-P
Food of animal origin	Sum of metabolites M26 and M30, expressed as dimethenamid-P
Soil	Sum of stereoisomers of dimethenamid
Sediment	Not required
Water	Sum of stereoisomers of dimethenamid
Air	Sum of stereoisomers of dimethenamid
Body fluids and tissues	Open

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Method	LOQ for analyte for dimethenamid-P + M30 (analyte for dimethenamid-P + M30)
LC-MS/MS	0.01 mg/kg per analyte for dimethenamid-P + M30 (maize whole plant, maize seed, sugar beet leaves, sugar beet roots, rape seed, strawberries, onions, dried beans), confirmatory method and ILV (strawberries, dried beans, rape seed, maize forage, maize seed) are available.
LC-MS/MS (QuEChERS)	0.01 mg/kg per analyte for dimethenamid-P + M30 (grape, lettuce, barley grain), confirmatory method is available

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Method	LOQ for analyte for M26 and M30 (analyte for M26 and M30)
LC-MS/MS	0.01 mg/kg for M26 and M30 (muscle, kidney, liver, fat, milk, egg), confirmatory method and ILV (muscle, kidney, liver, fat, egg) is available.

Soil (analytical technique and LOQ)

Method	LOQ for sum of stereoisomers of dimethenamid
LC-MS/MS	0.005 mg/kg sum of stereoisomers of dimethenamid, confirmatory method is available.

Water (analytical technique and LOQ)

Method	LOQ for sum of stereoisomers of dimethenamid in drinking water and surface water, confirmatory method is available, ILV for drinking water is available.
LC-MS/MS	0.03 μg/L sum of stereoisomers of dimethenamid in drinking water and surface water, confirmatory method is available, ILV for drinking water is available.
Air (analytical technique and LOQ)

LOQ
LC-MS/MS, LOQ = 1.5 µg/m³ sum of stereoisomers of dimethenamid, confirmatory method is available.

Body fluids and tissues (analytical technique and LOQ)

LOQ
Body fluids and tissues: LC-MS/MS, LOQ = 0.01 mg/kg for sum of stereoisomers of dimethenamid, confirmatory method is available.
Open

Classification and labelling with regard to physical and chemical data (Regulation (EU) No 283/2013, Annex Part A, point 10)

Substance

Substances
Dimethenamid-P
Harmonised classification
None

Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:

- None

1 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

2 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

The toxicological dossier of dimethenamid-P is based on studies performed on both dimethenamid as racemic mixture (50:50 R/S isomers) and on the S-isomer alone that has been shown to retain the herbicidal activity. Comparison of acute, short term toxicity, genotoxicity and developmental toxicity performed on both substances has determined that they present a similar toxicological profile at equivalent dose levels and that all available studies for the racemic mixture could be considered in the hazard identification and characterisation of dimethenamid-P; */** refer to studies performed on dimethenamid-P and dimethenamid racemate respectively.

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	94 % (based on urinary (7.6-12.4 %) and biliary (82.2-75.1 %) excretion within 72 h; single dose 10 mg/kg bw)** considered appropriate for the derivation of the AOEL or 85 % (based on urinary (30 %) and biliary (50 %) excretion plus amount in carcass and cage wash within 72 h; single dose 250 mg/kg bw)*
Toxicokinetics	No toxicokinetic parameters (C_{max}, T_{max}, Plasma T1/2) for parent and metabolites are available for DMTA-P* Values from a study performed with DMTA: Toxicokinetic parameters for parent and metabolites (10 mg/kg bw p.o.)** Whole blood: AUC = 80.66-139.78 µg Eq x h/g (males-females) C_{max} 5-10 µg Eq/mL male/females T_{max} 72 h, T_{1/2} 255 h (male) and 359 h (female) Plasma: AUC_{1-∞} (10 mg/kg bw) = 2.85-3.41 (male-female) C_{max} 0.07-0.13 µg Eq/mL male/females T_{max} 1-4 h T_{1/2} 63 h (male) and 56 h (female)
Distribution	Widely (highest residues in rat erythrocytes due to species specific binding to haemoglobin)**
Potential for bioaccumulation	No evidence for accumulation potential* (binding to rat haemoglobin but not to human haemoglobin**)
Rate and extent of excretion	Rapid, 40.9-54.9 % in urine, 46.4-32.2 % in faeces and 2-2.4 % in cage wash (high dose 250 mg/kg bw; male and female, respectively); about 90 % excreted within 168 h* 79.6 % in bile (10 mg/kg bw; male) and 50.3 % (250 mg/kg bw; female) within 72 h*
Metabolism in animals	Extensively metabolised (> 40 metabolites; < 2 % excreted as parent in faeces), primarily via glutathione conjugation; Main metabolite M656PH025 (iso); main biotransformation steps are glutathione conjugation, enzymatic cleavage of the tripeptide intermediate and subsequent metabolic reactions on the resulting cysteine
conjugate (N-acetylation of the cysteine moiety, hydrolysis of S-conjugates to the mercaptan (followed by S-methylation), oxidation of the sulphur atom to form sulphoxides and sulphones; o-demethylation; hydroxylation, conjugation with glucuronic acid, replacement of the chlorine atom by hydrogen (reduction) or by a hydroxyl group (hydrolysis), dimerisation of a mercaptan)*

** In vitro metabolism **

Metabolism of the racemate and dimethenamid-P in rat liver slices is qualitatively and quantitatively comparable.

\(^{14}\text{C-}\text{dimethenamid-P is extensively metabolised by hepatocytes from dogs, rats and humans. All metabolites detected after incubation with human hepatocytes were also present in animal hepatocyte samples, except for the metabolite M656PH007. M656PH007 was found in the in-vivo rat study.}\)

** Toxicologically relevant compounds (animals and plants) **

dimethenamid-P

** Toxicologically relevant compounds (environment) **

dimethenamid-P and metabolite M656PH051

* Based on data of dimethenamid-P

** Based on data with dimethenamid racemate

** Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2) **

Rat LD\(_{50}\) oral	429 mg/kg bw*	H302 Acute Tox Cat.4
Rat LD\(_{50}\) dermal	> 2000 mg/kg bw*	
Rat LC\(_{50}\) inhalation	> 5.16 mg/L air (4-h, head/nose-only)*	
Skin irritation	Non-irritant*	
Eye irritation	Non-irritant*	
Skin sensitisation	Sensitising (Buehler-test*; Magnusson and Kligman***)	H317 Skin Sens. 1
Phototoxicity	Non-phototoxic * in vitro (3T3 NRU-PT test)(a) – data needed	

* Based on data of dimethenamid-P

** Based on data with dimethenamid racemate

**(a) The 3T3 NRU-PT test might not be appropriate test for UVB absorbers as dimethenamid-P

** Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3) **

Target organ / critical effect	Liver (weight increases, biochemical and histopathological changes) and decreased body weight gain in rats, dogs and mice.
Relevant oral NOAEL	90-day, rat: 34 mg/kg bw per day**
90-day, rat: 37 mg/kg bw per day* |
Relevant dermal NOAEL

| 90-day, dog: 4.3 mg/kg bw per day** |

Relevant inhalation NOAEL

| 21-day, rabbit: 1190 mg/kg bw per day (systemic toxicity)** |
| LOAEL 1190 mg/kg bw per day (local effects)** |

Relevant inhalation NOAEL

| No data - not required |

* Based on data of dimethenamid-P
** Based on data with dimethenamid racemate

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies
Ames test: overall negative* (-S9: 1x positive, 3x negative; +S9: 3x negative)
Ames test: negative**
V79/HGPRT: negative*/**
Forward mutations in L5178Y mouse lymphoma cells (TK +/- locus assay): negative*
UDS, rat primary hepatocytes: negative*
UDS, rat primary hepatocytes: positive**

In vivo studies
Mouse Micronucleus test: negative*
UDS, rat primary hepatocytes: negative**
Rat micronucleus test, dimethenamid-Pl: negative

Photomutagenicity

| Not submitted – data needed |

Potential for genotoxicity

| dimethenamid-P is unlikely to be genotoxic |

* Based on data of dimethenamid-P
** Based on data with dimethenamid racemate

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)
Liver (weight increases, biochemical and histopathological changes), decreased body weight gain in mice only

Relevant long-term NOAEL
2-year, rat: 5 mg/kg bw per day**
18-month, mouse: 40 mg/kg bw per day**

Carcinogenicity (target organ, tumour type)

| Rat: no evidence of carcinogenicity |
| Mouse: no evidence of carcinogenicity |
| dimethenamid-P is unlikely to pose a hazard to humans |

Relevant NOAEL for carcinogenicity
2-year, rat: 80 mg/kg bw per day (the highest dose tested);
18-month, mouse: 411 mg/kg bw per day (the highest dose tested)

* Based on data of dimethenamid-P
** Based on data with dimethenamid racemate
Reproductive toxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect

Adult: bw (gain) ↓ liver weight ↑
Reproductive and fertility: no evidence for impairment of fertility and reproduction
Offspring: bw (gain) ↓ during lactation

Relevant parental NOAEL

37.5 mg/kg bw per day**

Relevant reproductive NOAEL

145 mg/kg bw per day (the highest dose tested)**

Relevant offspring NOAEL

37.5 mg/kg bw per day**

* Based on data of dimethenamid-P
** Based on data with dimethenamid racemate

Developmental toxicity

Developmental target / critical effect

Maternal:
Rat: food intake and bw gain ↓*
Rabbit: food intake & bw gain ↓, clinical signs**
Developmental:
Rat: delayed ossification*
Rabbit: embryolethality**

Relevant maternal NOAEL

Rat: LOAEL 25 mg/kg bw per day*
Rabbit: 37.5 mg/kg bw per day**

Relevant developmental NOAEL

Rat: 25 mg/kg bw per day*
Rabbit: 75 mg/kg bw per day**

* Based on data of dimethenamid-P
** Based on data with dimethenamid racemate

Neurotoxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity

No findings indicative of neurotoxic potential reported
NOAEL_neurotoxicity: 600 mg/kg bw per day*
NOAEL_systemic: 200 mg/kg bw per day*

Repeated neurotoxicity

No findings indicative of neurotoxic potential reported
NOAEL_neurotoxicity: 323 mg/kg bw per day*
NOAEL_systemic: 63 mg/kg bw per day*

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)

No data submitted for delayed neurotoxicity or developmental neurotoxicity

* Based on data of dimethenamid-P
** Based on data with dimethenamid racemate
Other toxicological studies (Regulation (EU) No 283/2013, Annex Part A, point 5.8)

| Supplementary studies on the active substance | Binding of dimethenamid to haemoglobin, production of methaemoglobin**:
- no effect on methaemoglobin in rat blood
- binding of dimethenamid to rat haemoglobin
- primarily to globin, but practically no binding to human haemoglobin
Liver enzyme induction of dimethenamid:
Induction of P-450 dependent liver enzymes in rats
4-day, rat: NOAEL = 25 mg/kg bw per day**
4-week immunotoxicity of dimethenamid-P in female mice:
No evidence for immunotoxicity up to 1167 mg/kg bw per day, the highest dose tested*
Liver enzyme induction of dimethenamid:
Induction of P-450 dependent liver enzymes in rats
4-day, rat: NOAEL = 25 mg/kg bw per day**
Liver enzyme induction of dimethenamid:
Induction of P-450 dependent liver enzymes in rats
4-day, rat: NOAEL = 25 mg/kg bw per day** |
| Endocrine disrupting properties | No endocrine effects on the estrogen, androgen or thyroid hormone system* |
| Studies performed on metabolites or impurities | Toxicity studies of metabolites: |
| M656PH003 (plant (non-edible), animal (non-edible) & groundwater) (M3) | Structural alerts: Inconclusive alert chromosomal aberration in vitro; covered by the toxicological testing of dimethenamid-P and M656PH043 |
| M656PH010 (groundwater metabolite) (M10) | No data provided - pending on further assessment in the fate and behaviour in the environment, repeated-dose toxicity including genotoxicity profile may be needed to perform a consumer risk assessment. |
| M656PH011 (plant & animal) (M11) | Structural alerts: Inconclusive alert chromosomal aberration in vitro; covered by the toxicological testing of dimethenamid-P and M656PH043 |
| M656PH014 (animal & plant) (M14) | Structural alerts for genotoxicity: no |
| M656PH023 (plant & groundwater) (M23) | Structural alerts: inconclusive for chromosomal aberration in vitro
LD₅₀ oral, rat: 5000 mg/kg bw
Bacterial mutagenicity, gene mutation assay, micronucleus in vivo test: negative; no concern for genotoxic potential
28-day, rat: NOAEL: 357 mg/kg bw per day) based on increased absolute and relative liver weight with concurrent increase in triglycerides
The toxicological profile of the metabolite is covered by the reference values of the parent; if refinement is needed, an ADI of 0.36 mg/kg bw per day (UF 1000) may apply. |
M656PH026 (plant & animal) (M26)

- Based on QSAR analysis no concern for genotoxicity
- Based on structure similarity with metabolite M656PH025 (major metabolite in rat - bile), its toxicological profile is covered by the reference values of the parent.

M656PH027 (plant, animal & groundwater) (M27)

- Rat oral LD₅₀ > 5000 mg/kg bw
- Bacterial mutagenicity, gene mutation assay, micronucleus in vivo test: negative; no concern for genotoxic potential
- 28-day, rat: NOAEL: 341 mg/kg bw per day, based reduced ovary weight in females
- The toxicological profile of the metabolite is covered by the reference values of the parent; if refinement is needed, an ADI of 0.34 mg/kg bw per day (UF 1000) may apply

M656PH030 (plant & animal) (M30)

- Bacterial mutagenicity, gene mutation assay: negative; micronucleus in vitro test: positive; micronucleus in vivo test: negative; the metabolite is unlikely to be genotoxic
- Based on read-across from metabolites M26, M31 and M25, the metabolite is covered by the reference values of the parent

M656PH031 (plant & groundwater) (M31)

- Bacterial mutagenicity, gene mutation assay, chromosomal aberration in vitro test: negative
- 28-day, rat: no adverse signs of toxicity, NOAEL: 1068 mg/kg bw per day
- The toxicological profile of the metabolite is covered by the reference values of the parent; if refinement is needed, an ADI of 1 mg/kg bw per day (UF 1000) may apply.

M656PH032 (hen & groundwater) (M32)

- Structural alerts: chromosomal aberration in vitro and bacterial mutagenicity: negative; the metabolite is unlikely to be genotoxic
- Based on read across from M26, the toxicological profile of the metabolite is covered by the reference values of the parent.

M656PH040 (plant, glycoside of M656PH011) (M40)

- Structural alerts: Inconclusive alert chromosomal aberration in vitro; covered by the toxicological testing of dimethenamid-P and M656PH043

M656PH043 (groundwater) (M43)

- Bacterial mutagenicity, gene mutation assay: negative; micronucleus in vitro test: positive, micronucleus in vivo test: negative
- Repeated-dose toxicity data relevant to consumer exposure has to be provided.
| Identifier | Type | Structural alerts for genotoxicity | Bacterial mutagenicity, gene mutation assay, micronucleus \textit{in vitro} test | 28-day, rat: No adverse signs of toxicity, NOAEL: | Toxicological profile of the metabolite is covered by the reference values of the parent; if refinement is needed, an ADI may apply. | |
|---|---|---|---|---|---|---|
| M656PH045 | groundwater | no | negative | 1174 mg/kg bw per day | a | |
| M656PH047 | groundwater | no | negative | 967 mg/kg bw per day (corrected for 90.7 % purity) | b | |
| M656PH049 | groundwater | According to QSAR no concern for genotoxicity | Repeated-dose toxicity data relevant to consumer exposure has to be provided | | |
| M656PH050 | plant & groundwater | Structural alerts for genotoxicity: no | | | |
| M656PH051 | plant & groundwater | Structural alerts: inconclusive gene mutation in bacterial cells (Ames test) | Repeated-dose toxicity data relevant to consumer exposure has to be provided, including clarification of the genotoxicity profile of the metabolite | | |
| M656PH052 | groundwater | According to QSAR no concern for genotoxicity | Repeated-dose toxicity data relevant to consumer exposure has to be provided | | |
| M656PH053 | groundwater(isomer 1 and 2) | Structural alerts for genotoxicity: no | Repeated-dose toxicity data relevant to consumer exposure has to be provided on the metabolite for both isomers 1 and 2 | | |
| Compound | Description | Genotoxicity Alerts | Toxicological Profile |
|----------|-------------|---------------------|-----------------------|
| M656PH054 (groundwater) (M54) | Structural alerts: inconclusive chromosomal aberration *in vitro*; Bacterial mutagenicity, gene mutation assay: negative; micronucleus *in vitro* test: positive; micronucleus *in vivo* test: negative | 28-day, rat: food consumption in males ↓, bw development in male and female ↓, NOAEL 346 mg/kg bw per day; corrected for 86.5 % purity. The toxicological profile of the metabolite is covered by the reference values of the parent; if refinement is needed, an ADI of 0.35 mg/kg bw per day (UF 1000) may apply. |
| M656H055 (groundwater) (M55) | Structural alerts: inconclusive for chromosomal aberration *in vitro* for presumed degradates; Bacterial mutagenicity, gene mutation assay, micronucleus *in vivo* test: negative | Repeated-dose toxicity data relevant to consumer exposure has to be provided on the metabolite. |
| M656PH059 (groundwater) (isomer 1, 2, 3) (M59) | Structural alerts for genotoxicity: no | Repeated-dose toxicity data relevant to consumer exposure has to be provided on the metabolite for the three isomers 1, 2 and 3. |
| M656PH062 (groundwater) (M62) | Structural alerts for genotoxicity: no; Bacterial mutagenicity, gene mutation assay: negative;* micronucleus *in vitro* test: positive micronucleus *in vivo* test: negative* | 28-day, rat: NOAEL: 103 mg/kg bw per day, based on liver toxicity with centrilobular hypertrophy and clinic-chemical changes*. The toxicological profile of the metabolite is covered by the reference values of the parent; if refinement is needed, an ADI of 0.1 mg/kg bw per day (UF 1000) may apply. * The ethyl ester derivative of M656PH062 was tested. |
| M656PH081 (plant) (M81) | Structural alerts for genotoxicity: no | Based on structural similarity with metabolite M656PH027, the toxicological profile of the metabolite is covered by the reference values of the parent. |
| M656PH096 (animal) (M96) | Structural alerts for genotoxicity: no | |
| M656PH098 (animal) (M98) | Structural alerts for genotoxicity: no | |

*based on studies performed with racemic dimethenamid
Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No adverse health effects during research, production and use of dimethenamid-P and its formulations.

Summary³ (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

Value (mg/kg bw (per day))	Study	Uncertainty factor	
Acceptable Daily Intake (ADI)	0.04², ⁴	90-day, dog, supported by 2-year, rat	100
Acute Reference Dose (ARfD)	0.08⁴	Maternal toxicity in developmental toxicity study in rats	300¹(¹)
Acceptable Operator Exposure Level (AOEL)	0.04²	90-day, dog	100³
Acute Acceptable Operator Exposure Level (AAOEL)	0.08	Maternal toxicity in developmental toxicity study in rats	300¹(¹, ³)

¹ additional UF of 3 as based on a LOAEL
² Based on studies performed with racemic dimethenamid
³ Correction for limited oral absorption/bioavailability not necessary.
⁴ Reference values are applicable to metabolites M3, M11, M23*, M26, M27*, M30, M31*, M32, M40, M45*, M47*, M54*, M62* and M81
*if refinement is needed, specific reference values of the metabolites may be applied

Previously set ref values: ADI 0.02 mg/kg bw per day; ARfD 0.25 mg/kg bw; AOEL 0.04 mg/kg bw per day (European Commission, 2003)

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulations

BAS 830 01 H:
2 % for the concentrate (333 g/L) and 43 % for the dilution (1.25 g/L) based on in vitro human skin*

BAS 656 12 H:
0.4 % for the concentrate (720 g/L), 39 % for the dilution (3.6 g/L) and 31 % for the dilution (0.72 g/L) based on in vitro human skin*

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

BAS 656 12 H
Use: maize, soybean, sunflower, sugar beet; tractor mounted equipment, application rate: 0.864 kg a.s./ha

Exposure estimates (model): % of AOEL/AAOEL
UK POEM
Without PPE: 4695
PPE (gloves m/l + appl.): 745

German model
Without PPE: 498
PPE (gloves m/l + appl., coverall appl.): 36

³ If available include also reference values for metabolites
	% of AOEL/AAOEL	\% of AOEL
EFSA (2014)		
Without PPE (with workwear):	123/330	
PPE (workwear, gloves m/l + gloves appl.):	11/52	
BAS 830 01 H		
Use: winter oilseed rape, tractor mounted equipment, application rate: 0.5 kg a.s./ha		
Exposure estimates (model)		
UK POEM		
Without PPE	3842	
PPE (gloves m/l + appl.)	595	
German model		
Without PPE	331	
PPE (gloves m/l, coverall appl.)	81	
EFSA (2014)		
Without PPE (with workwear):	120/317	
PPE (workwear, gloves m/l+ appl.):	9/55	
BAS 656 12 H		
Krebs et al. (2000)	% of AOEL	
Without PPE	70	
EFSA (2014)		
Potential	1053	
With workwear	118	
With workwear and gloves	67	
BAS 830 01 H		
Krebs et al. (2000)	% of AOEL	
Without PPE	27	
EFSA (2014)		
Potential	672	
With workwear	75	
Bystanders and residents

BAS 656 12 H
Martin et al. (2008)
Bystander (adult):
Bystander (child):
Resident (adult):
Resident (child):
EFSA (2014) (50 % drift reduction, 5 m distance)

Bystander child

- **Drift**: 83
- **Vapour**: 1
- **Deposits**: 4
- **Re-entry**: 71

Bystander adult

- **Drift**: <1
- **Vapour**: 2
- **Deposits**: 2
- **Re-entry**: 40

Resident child

- **Drift**: 75
- **Vapour**: 3
- **Deposits**: 3
- **Re-entry**: 142(*)
- **Sum**: 160(*)

Resident adult

- **Drift**: 14
- **Vapour**: <1
- **Deposits**: 1
- **Re-entry**: 79
- **Sum**: 72
BAS 830 01 H

Martin et al. (2008)	% of (A)AOEL
Bystander (adult):	25
Bystander (child):	19
Resident (adult):	2
Resident (child):	3

EFSA (2014) (50% drift reduction, 10m distance)

Bystander child
- Drift: 43
- Vapour: 1
- Deposits: 2
- Re-entry: 45

Bystander adult
- Drift: 9
- Vapour: 1
- Deposits: 1
- Re-entry: 25

Resident child
- Drift: 40
- Vapour: 3
- Deposits: 1
- Re-entry: 91
- Sum: 98

Resident adult
- Drift: 8
- Vapour: 1
- Deposits: 1
- Re-entry: 50
- Sum: 45

(*) Tier 1 estimation, that may be overestimated for herbicide treatment at early stages of plant growth – but representative GAPs include later stage of plant growth.
Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance:

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]:

Substance: dimethenamid-P
Regulation (EC) No 2015/1221:
Warning, Acute Tox. 4, H302: Harmful if swallowed
Warning, Skin Sens. 1, H317: May cause an allergic skin reaction

Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:

Substances
dimethenamid-P
Regulation (EC) No 2015/1221:
Warning, Acute Tox. 4, H302: Harmful if swallowed
Warning, Skin Sens. 1, H317: May cause an allergic skin reaction

4 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

5 Commission Regulation (EU) 2015/1221 of 24 July 2015 amending Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures, for the purposes of its adaptation to technical and scientific progress. OJ L 197, 25.7.2015, 10-23.

6 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Section 3 Residues in or on treated products food and feed

Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
OECD Guideline 501	Root crops	Sugar beet	Early post emergence, 3 x 0.45 kg as/ha, 3-14C-thienyl labelled racemic dimethenamid	Roots & leaves with tops: 126 DAT
	Cereals/grass crops	Maize	Early post emergence, 1 x 1.3 kg as/ha, 3-14C-thienyl labelled racemic dimethenamid and 1 x 0.72 kg as/ha 3-14C-thienyl labelled dimethenamid-P	Forage: 30 DAT Forage/husks and grain/cobs: 81 DAT Mature plants: 120 DAT
	Pulses/Oilseeds	Soybean seed	Soil application, Pre-emergence, 1 kg/ha, 2-14C-thienyl labelled dimethenamid-P	Mature plants: 119 DAT

Residues for parent dimethenamid-P and its metabolites in edible parts of the plants are all below 0.01 mg/kg. Only metabolites M26, M30 (maize forage, DAT 30) and M26 (soybean leaves) contribute to more than 10 % TRR. No parent was detected all crops investigated. A slightly different metabolic pattern between new and old studies was noted and since the specific enantiomeric behaviour of dimethenamid was not investigated in the plant metabolism, a different metabolic pathway through the different crops it cannot be excluded. The isomeric behaviour was investigated in fate section and no switch between R and S isomers occurred (see section 4) however, the isomeric behaviour in plant would be desirable to be investigated also.

Rotational crops (metabolic pattern)	Crop groups	Crop(s)	PBI (days)	Comments
OECD Guideline 502	Root/tuber crops	Radish Carrot	30, 120, 365 200	Confined rotational studies with dimethenamid-P (1.2N), spinach, radish and wheat and dimethenamid (R/S) (5.1N), in lettuce, carrot and spring wheat
	Leafy crops	Spinach Lettuce	30, 120, 365 200	
	Cereal (small grain)	Wheat spring Wheat	30, 120, 365 11, 190	
	Other			

Rotational crop and primary crop metabolism similar? Yes

Processed commodities (standard hydrolysis study)	Conditions	Recovery of 14C-M30 (%)		
OECD Guideline 507	20 min, 90 °C, pH 4	96.3	90.8-102	5.8
	60 min, 100 °C, pH 5	98.0	95.4-102	3.7
	20 min, 120 °C, pH 6	95.1	94.4-96.3	1.1
Residue pattern in processed commodities similar to residue pattern in raw commodities?

- Dimethenamid-P metabolite M30 is hydrolytically stable under the representative processing conditions. The formation of any hydrolysis products was negligible.

Plant residue definition for monitoring (RD-Mo)
OECD Guidance, series on pesticides No 31
Dimethenamid (sum of stereoisomers) + M26 and M30, expressed as dimethenamid-P

Plant residue definition for risk assessment (RD-RA)
OECD Guidance, series on pesticides No 31
Dimethenamid (sum of stereoisomers) of + metabolites M26 and M30, expressed as dimethenamid-P

Conversion factor (monitoring to risk assessment)
Conversion factor (monitoring to risk assessment)
Not necessary

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)

Animal	Dose (mg/kg bw per day)	Duration (days)	N rate/comment
Laying hen (parent)	10	4	
Goat (parent)	8.9	4	
Goat (M30)	0.57	10	
Pig	No metabolism study in pigs was performed, since the metabolite patterns in rodents (rats) and ruminants (goat) did not differ significantly.		
Fish	Not required as no residues of parent dimethenamid-P or its metabolites were detected in commodities with a potential use as fish feed and the log P OW is 1.98.		

- The studies conducted with dimethenamid (R/S) are not relevant since was never found in the feed items, therefore only study with M30 is considered.
- Metabolite M30 was mostly excreted via faeces and urine. Radioactive TRR found in milk, liver and kidney was equal to 0.018 mg eq/kg, 0.219 mg eq/kg and 0.243 mg eq/kg, respectively. M26 and M30 were the major compounds found in all animal commodities.
- For poultry, a metabolism study conducted with M26 or M30 is required (data gap).

| Time needed to reach a plateau concentration in milk and eggs (days) | 3 days |

Animal residue definition for monitoring (RD-Mo)
OECD Guidance, series on pesticides No 31
Sum of metabolites M26 and M30, expressed as dimethenamid-P except poultry.

Animal residue definition for risk assessment (RD-RA)
OECD Guidance, series on pesticides No 31
Ruminant: -Sum of metabolites M26 and M30, expressed as dimethenamid-P.
Poultry: no data available (data gap)

Conversion factor (monitoring to risk assessment)
Conversion factor (monitoring to risk assessment)
Not applicable since the derived residue definition for monitoring and risk assessment are similar.
Metabolism in rat and ruminant similar (Yes/No)
Fat soluble residues (Yes/No) (FAO, 2009)

Residues in succeeding crops (Regulation (EU) No 283/2013, Annex Part A, point 6.6.2)

| **Confined rotational crop study** (Quantitative aspect) | **OECD Guideline 502** | Radioactive residues were taken up via the roots. TRR levels amounted to 0.93 mg/kg in non-edible parts of the plants (wheat hay, PBI 30 days). TRRs in edible crop parts at normal harvest were up to 0.2 mg/kg at PBI 30 days and up to 0.076 mg/kg at PBI ~120 days (both wheat grain). No residues >0.01 mg/kg were detected at PBI 365 days. All identified components accounted for less than 0.03 mg/kg each |
| **Field rotational crop study** | **OECD Guideline 504** | No field rotational crop study was available. |
Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1) OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Month)	Sum* (M26+M30)		
			Dimethenamid-P	M26	M30	
High water content	Maize whole plant	-20	24	3	24	24
High oil content	Oilseed rape	-20	13	6	6	-
	soybean seed	24	1	1	1	
	sunflower	24	1	3		
High protein content	Dry bean	-20	24	24	18	-
High starch content	Maize seed*	-20	24	18		
High acid content	Strawberry	-20	24	12	18	18

*No storage stability was demonstrated for M30 residues in high starch content matrices (data gap)
*a when considered together with M30, M26 is stable up to 18 and 24 months in high acid and high water content crops respectively.

Animal commodity	T (°C)	Stability (Month/Year)

No study regarding the storage stability of dimethenamid-P in animal commodities was submitted and they are required (data gap)
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3)
OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg) (c)	HR (mg/kg) (d)	STMR (mg/kg)
Maize	NEU	7 x<0.025	Storage stability on M30 residues in starch commodities was not demonstrated (data gap).	0.03*	0.025	0.025
	SEU	8 x<0.025				
Sweet corn	NEU	4 x <0.025		0.03	0.025	0.025
	SEU	4 x<0.025	Maize cob with husks at silage stage was used from maize trials.			
Soya bean seed	NEU	8 x<0.025		0.03*	0.025	0.025
	SEU	8 x<0.025				
Sunflower seed	NEU	7 x<0.025		0.03*	0.025	0.025
	SEU	7 x<0.025				
Sugar beet root	NEU	5 x<0.025	Sufficient residue trials to support the representative GAP is required (data gap).	-	-	-
	SEU	3x<0.025		-	-	-
Oilseed rape seed	NEU	14 x<0.025		0.03*	0.025	0.025
	SEU	12 x<0.025				
MRL application	Tree nuts, pome fruit, stone fruit	N+SEU/outdoor -	No trials were provided and according to the REG 283/2013, at least three trials are required, to demonstrate that no residues above the LOQ are expected.	0.03*	0.025	0.025
Sugar beet, fodder beet, red beet	NEU	5 x<0.025	No sufficient residue trials were provided for the representative GAP in sugar beet, therefore no MRL can be proposed.	-	-	-
	SEU	3x<0.025		-	-	-

RD-Mo: dimethenamid (sum of stereoisomers) + M26 and M30, expressed as dimethenamid-P
RD-RA: dimethenamid (sum of stereoisomers) + M26 and M30, expressed as dimethenamid-P

Representative uses

- Maize NEU: 7 x<0.025
 - Maize SEU: 8 x<0.025
- Sweet corn NEU: 4 x<0.025
 - Sweet corn SEU: 4 x<0.025
- Soya bean seed NEU: 8 x<0.025
 - Soya bean seed SEU: 8 x<0.025
- Sunflower seed NEU: 7 x<0.025
 - Sunflower seed SEU: 7 x<0.025
- Sugar beet root NEU: 5 x<0.025
 - Sugar beet root SEU: 3x<0.025
- Oilseed rape seed NEU: 14 x<0.025
 - Oilseed rape seed SEU: 12 x<0.025

MRL application

- Tree nuts, pome fruit, stone fruit N+SEU/outdoor: -
- Sugar beet, fodder beet, red beet NEU: 5 x<0.025
 - Sugar beet, fodder beet, red beet SEU: 3x<0.025
| Crop | Region/Indoor (a) | Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b) | Recommendations/comments (OECD calculations) | MRL proposals (mg/kg) | HR (mg/kg) (c) | STMR (mg/kg) (d) |
|-------------------------------------|-------------------|--|---|----------------------|----------------|-----------------|
| Swedes, Turnips, horseradish | NEU | 8 x <0.025 | Extrapolation from sugar beet residue trials is acceptable only for NEU use | 0.03* | 0.025 | 0.025 |
| | SEU | 4 x <0.025 | | | | |
| Spring, Welsh onions & similar | NEU | 2x < 0.025, 0.029, 0.042 | MRL calculated with OECD MRL calculator. | 0.07 | 0.042 | 0.027 |
| | | | According to the GAP uses in SEU Member States are intended as well, but no trials were provided. However, extrapolation from leeks is possible | 0.07 | 0.042 | 0.027 |
| Leek | SEU | 4x <0.025 | | 0.03* | 0.025 | 0.025 |
| Cucumber | NEU | 4x <0.025 | Residue data address identical GAPs; the data sets may therefore be combined to cover the entire group of cucurbits with edible peel. | 0.03* | 0.025 | 0.025 |
| Zucchini | NEU | 4x <0.025 | | | | |
| Melon | NEU | 4x <0.025 | Residue data address identical GAPs; the data sets may therefore be combined to cover the entire group of cucurbits with inedible peel. | 0.03* | 0.025 | 0.025 |
| Pumpkin | NEU | 4x <0.025 | | | | |
| Sweet corn | NEU | 4x <0.025 | Maize cob with husks at silage stage was used from maize trials. | 0.03* | 0.025 | 0.025 |
| | SEU | 4x <0.025 | | | | |
| Flowering brassicas | NEU | 2x <0.025 | | 0.03* | 0.025 | 0.025 |
| | SEU | 4x <0.025 | | | | |
| Brussels sprout | NEU | 4x <0.025 | | 0.03* | 0.025 | 0.025 |
| Head cabbage | NEU | 2x <0.025, 0.03 | | 0.03* | 0.025 | 0.025 |
| | SEU | 3x <0.025 | | | | |
| Leafy | NEU | 3x <0.025, 0.027 | | 0.09 | 0.063 | 0.026 |

(a) **Crop Region/Indoor**: NEU = Northern Europe, SEU = Southern Europe.
(b) Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs. RD-Mo: dimethenamid (sum of stereoisomers) + M26 and M30, expressed as dimethenamid-P. RD-RA: dimethenamid (sum of stereoisomers) + M26 and M30, expressed as dimethenamid-P.
(c) **Recommendations/comments**: Extrapolation from sugar beet residue trials is acceptable only for NEU use.
(d) **MRL proposals (mg/kg)**: According to the GAP uses in SEU Member States are intended as well, but no trials were provided. However, extrapolation from leeks is possible.
(e) **HR (mg/kg)**: Residue data address identical GAPs; the data sets may therefore be combined to cover the entire group of cucurbits with edible peel.
(f) **STMR (mg/kg)**: MRL calculated with OECD MRL calculator. Maize cob with husks at silage stage was used from maize trials.
Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
brassicas
- **SEU** | 8x <0.025, 0.032, 0.040, 0.063 | | | | |
- **NEU** | 8x <0.025 | 8x <0.025 | 0.03* | 0.025 | 0.025 |
- **Vicia beans (dry)** | 8x <0.25 | 8x <0.025 | 0.03* | 0.025 | 0.025 |
- **Lupine** | 8x <0.025 | 8x <0.025 | Extrapolation form dry beans. | 0.03* | 0.025 | 0.025 |
- **Millet, sorghum**
 - **NEU** | 7x <0.025 | 7x <0.025 | Extrapolation from maize | 0.03* | 0.025 | 0.025 |
 - **SEU** | 8x <0.025 | 8x <0.025 | | | |
- **Witloof** | - | - | - | - | - | - |
- **Chicory root** | - | - | Etrapolation from sugar beet residue trials, however only the NEU use is supported. | 0.03* | 0.025 | 0.025 |

Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region	Residue data (mg/kg)	Recommendations/comments

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments

Residue trials on honey bees products used for human consumptions are required according to REG 283/2013 and have to be provided (data gap)

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.
(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3 x <0.01, 0.01, 6 x 0.02, 0.04, 0.08, 3 x 0.10, 2 x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.
(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HRMo).
(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMRA).
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Maximum dietary burden (mg/kg)	Comment	
Representative uses				
Maize (corn field,) stover	0.02*	1.33	HR	
Maize (corn pop), stover	0.02*	1.33	HR	
Maize (corn field, pop) grain	0.02*	STMR	N/A	
Maize (corn field, pop) milled by-products	0.02*	STMR	N/A	
Maize (corn, field) hominy meal	0.02*x 6	STMR*PF(default)	N/A	
Maize (corn) gluten feed	0.02*x2.5	STMR*PF(default)	N/A	
Maize (corn) gluten feed	0.02*x1	STMR*PF(default)	N/A	
Distille’r maize grains	0.02*x3.3	STMR*PF(default)		
Soybean seed	0.02*	STMR	N/A	
Soybean meal	0.02*x1.3	STMR*PF(default)		
Soybean meal	0.02*x13	STMR*PF(default)		
Soybean fodder	0.02	STMR	0.024*1.5	HR*PF(default)
Soybean silage	0.02	STMR	0.024*0.5	HR*PF(default)
Canola (meal)	0.02*x2	STMR*PF(default)	N/A	
Sunflower (meal)	0.02*x2	STMR*PF(default)	N/A	
MRL application				
Cabbage	0.02*	STMR	0.02*	HR
Kale leaves	0.02*	STMR	0.023	HR
Turnip tops	0.02*	STMR, extrapolated from sugar beet tops	0.02*	HR, extrapolated from sugar beet tops
Turnip roots	0.02*	STMR, extrapolated from sugar beet root	0.02*	HR, extrapolated from sugar beet root
Feed commodity	Median dietary burden	Comment	Maximum dietary burden	Comment
----------------------	-----------------------	--	------------------------	--
	(mg/kg)		(mg/kg)	
Swede roots	0.02*	STMR, extrapolated from beet root	0.02*	HR, extrapolated from beet root
Bean seed	0.02*	STMR	N/A	
Lupin seed	0.02*	STMR, extrapolated from dry beans	N/A	
Millet grain	0.02*	STMR, extrapolated from maize grain	N/A	
Millet stover	0.02*	STMR, extrapolated from maize stover	1.33	HR, extrapolated from maize stover
Sorghum grain	0.02*	STMR, extrapolated from maize grain	N/A	
Sorghum stover	0.02*	STMR, extrapolated from maize stover	1.33	HR, extrapolated from maize stover

Note: In the DB calculation, the residue were considered only as sum of M26 and M30.
Residues from livestock feeding studies (Regulation (EU) No 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish	
Highest expected intake (mg/kg bw/d) & (mg/kg DM for fish)	Beef cattle: 0.012 & Dairy cattle: 0.016	Ram/Ewe: 0.014 & Lamb: 0.018	Breeding: 0.010 & Finishing: 0.003	Broiler: 0.003 & Turkey: 0.004	Carp & Trout
Intake >0.004 mg/kg bw	Yes & Yes	Yes (Breeding) & Yes (Layer)	Yes/No	Yes & No	
Feeding study submitted	No & No	No & No	No & No	No & No	

| Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates |
|---|---|---|---|---|---|
| Level | Beef: N & Dairy: N | Lamb: N & Ewe: N | N rate Breed/Finish | B or T: N & Layer: N | N rate Carp/Tout |
| Estimated HR^(a) at 1N MRL proposals |

- **Muscle**
- **Fat**
- **Meat**^(b)
- **Liver**
- **Kidney**
- **Milk**^(a)
- **Eggs**

Method of calculation^(c)
(a): Estimated HR calculated at 1N level *(estimated mean level for milk).*
(b): HR in meat calculated for mammalian on the basis of 20 % fat + 80 % muscle and 10 % fat + 90 % muscle for poultry
(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations

Median expected intake (mg/kg bw/d)	Beef cattle	Ram/Ewe	Breeding	Broiler	Poultry	Fish
(mg/kg DM for fish)	Dairy cattle	Lamb	Finishing	Layer		
Ruminant	Beef cattle: N	Lam Ewe: N	Breeding: N	Broiler: N	Product: N	Fish: N
Pig/Swine						
Poultry						
Fish						

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates

Level

- Beef: N
- Dairy: N
- Ewe: N
- Layer: N
- B or T: N

N rate

- Breeding/Finish
- Level
- N rate

Meat(a)	Fat	Liver	Kidney	Milk	Eggs
Muscle					

Method of calculation(c)

- STMR in meat calculated on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
- When the mean level is set at the LOQ, the STMR is set at the LOQ.
- The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

Notes

- (a): STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
- (b): When the mean level is set at the LOQ, the STMR is set at the LOQ.
- (c): The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

For ruminants, no feeding studies are available although they are needed (data gap).
For poultry is pending the final outcome on the required metabolism study conducted with M26/M30 (OPEN)

Plant products:

Conversion factors for plant are not necessary since the residue definitions for monitoring and risk assessment are similar.

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

Dimethenamid and M26 was not found in edible parts >0.01mg/kg, while hydrolysis studies conducted with M30 showed the compound is stable under standard processing conditions. Thus processing factors are not needed for human consumption.

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)
Including all uses (intended uses + MRLs according to Regulation (EC) No 396/2005).

ADI	0.04 mg/kg bw per day
TMDI according to EFSA PRIMo	Highest TMDI: 1.9 % ADI (UK, toddler)
NTMDI, according to (to be specified)	Highest NTMDI: 2.4 % ADI (DE children, 2-4 years)
IEDI (% ADI), according to EFSA PRIMo	Not necessary
NEDI (% ADI), according to (to be specified)	Not necessary
Factors included in the calculations	None

| ARfD |
|------|-------------------|
| IESTI (% ARfD), according to EFSA PRIMo | Highest IESTI: 5.7 % ARfD (BE children, melon) |
| NESTI (% ARfD), according to (to be specified) | Highest NESTI: <1.1 % ARfD (DE children, 2-4 years, apples/pears) |
| Factors included in IESTI and NESTI | None |

Consumer risk assessment limited to the representative uses

ADI	0.08 mg/kg bw
TMDI (% ADI), according to EFSA PRIMo	Highest TMDI: 1.4 % ADI (UK, toddler)
NTMDI (% ADI), according to (to be specified)	Highest NTMDI: <1 % ADI (DE general population, 14-80 years)
IEDI (% ADI), according to EFSA PRIMo	Not necessary
NEDI (% ADI), according to (to be specified)	Not necessary
Factors included in the calculations	None
IESTI (% ARfD, according to EFSA PRIMo)	Highest IESTI: 2.3 % ARfD (DE adult, sweet corn)
NESTI (% ARfD, according to (to be specified)	Highest NESTI: <1 % ARfD (DE children, 2-4 years, sugar beet)
Factors included in IESTI and NESTI	None
Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s) expected to be present above 0.75 µg/L

Concentration	Intakes via drinking water						
[µg/L]⁷	[mg/kg bw per day]	[% ADI]					
	Adult	Toddler	Infant	Adult	Toddler	Infant	
M03	0.114	0.0000	0.0000	0.0002	0.01	0.03	0.04
M23	0.309	0.0001	0.0000	0.0003	0.03	0.08	0.12
M27	4.389	0.0015	0.0003	0.0006	0.37	1.10	1.65
M31	13.677	0.0046	0.0013	0.0020	1.14	3.42	5.13
M45	2.382	0.0008	0.0002	0.0036	0.20	0.60	0.89
M47	1.179	0.0012	0.0003	0.0054	0.30	0.90	1.35
M54	3.608	0.0010	0.0003	0.0047	0.26	0.78	1.17
M62	3.131	0.0000	0.0001	0.0002	0.01	0.03	0.04
Sum	28.789	0.0096	0.0028	0.0032	2.40	7.20	10.80

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code(a)	Commodity/Group	MRL/Import tolerance(b) (mg/kg) and Comments	
Plant commodities			
Representative uses			
401050	Sunflower	0.03*	The cGAP of both NEU and SEU are supported by a sufficient number of field trials
401060	Oilseed rape	0.03*	The cGAP of both NEU and SEU are supported by a sufficient number of field trials
401070	Soya bean	0.03*	The cGAP of both NEU and SEU are supported by a sufficient number of field trials
500030	Maize	0.03*	The cGAP of both NEU and SEU are supported by a sufficient number of field trials
234000	Sweet corn	0.03*	Maize cob with husks at silage stage was used from maize trials.
900010	Sugar beet	-	The cGAP of both NEU and SEU are supported by a sufficient number of CFT field trials. No sufficient data available, three NEU residue trials and one SEU residue trials are required (data gap)
MRL application			
0100000	Tree nuts	-	At least three trials to confirm that no residues are present above the LOQ are required
0130000	Pome fruits	-	At least three trials to confirm that no residues are present above the LOQ are required
0140000	Stone fruits	-	No sufficient data available, three NEU residue trials and one SEU residue trials are required (data gap)
0213010	Beet root	-	No sufficient residue trials are available (see data gap on sugar beet)
0213020	Carrots	-	No trials were provided.

⁷ parent equivalents
Code	Commodity/Group	MRL/Import tolerance (mg/kg) and Comments
0213040	Horseradish	0.03* The extrapolation from sugar beet trials is possible only for NEU GAP. From SEU, no sufficient trials were provided.
0213100	Swedes	0.03*
0213110	Turnips	0.03*
0220040	Spring onions/green onions and Welsh onions	0.07 The cGAP of NEU is supported by a sufficient number of field trials. The GAP of SEU is covered by extrapolation from leeks.
0232000	Cucurbits with edible peel	0.03* The cGAP of NEU is supported by a sufficient number of field trials.
0233000	Cucurbits with inedible peel	0.03*
0241000	Flowering brassica	0.03* The cGAP of NEU and SEU is supported by a sufficient number of field trials.
0242000	Head brassica	0.03* The cGAP of both NEU and SEU are supported by a sufficient number of field trials
0243000	Leafy brassica	0.09 The cGAP of NEU and SEU is supported by a sufficient number of field trials.
0255000	Witloof	- At least two trials to be provided demonstrating that no residues above LOQ occurs
0260010	Beans (with pods)	0.03* The cGAP of NEU is supported by a sufficient number of field trials.
0270060	Leeks	0.03* The cGAP of SEU is supported by a sufficient number of field trials
0300010	Beans	0.03* The cGAP of NEU is supported by a sufficient number of field trials.
0300040	Lupine	0.03* The cGAP of NEU is supported by a sufficient number of field trials, extrapolated from dry beans.
0500040	Millet	0.03* The cGAP of both NEU and SEU are supported by a sufficient number of field trials, extrapolated from maize
0500080	Sorghum	0.03* The cGAP of both NEU and SEU are supported by a sufficient number of field trials, extrapolated from maize
0900030	Chicory root	0.03* The extrapolation from sugar beet trials is possible only for NEU GAP. From SEU, no sufficient trials were provided.

Animal commodities

no MRLs proposed for the time being

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005
(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.
Section 4 Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralisation after 100 days	23.1 – 35.8 % after 120 d, \[^{14}\text{C}-\text{thienyl}]\text{-dimethenamid (n} = 2)
Non-extractable residues after 100 days	17.5 – 23.5 % after 119 - 120 d, \[^{14}\text{C}-\text{thienyl}]\text{-dimethenamid–P (n} = 3)
Metabolites requiring further consideration	39.5 – 43.5 % after 119 - 120 d, \[^{14}\text{C}-\text{thienyl}]\text{-dimethenamid (n} = 4)
	39.9 – 43.0 % after 119 - 120 d, \[^{14}\text{C}-\text{thienyl}]\text{-dimethenamid–P (n} = 3)

Laboratory studies:
- Met M656PH023 – 3.56 – 12.2 % after 14-69 d, max. after 58 d (n= 6), \[^{14}\text{C}-\text{thienyl}]\text{-dimethenamid & -dimethenamid–P}
- Met M656PH027 – 3.8 – 13.32 % at 21-120 d, max. after 32 d (n= 6), \[^{14}\text{C}-\text{thienyl}]\text{-dimethenamid & -dimethenamid–P}
- Met M656PH031 - 2.2 – 10.34 % at 14– 89 d, max. after 42 d (n= 6), \[^{14}\text{C}-\text{thienyl}]\text{-dimethenamid & -dimethenamid–P}

Field dissipation studies:
- Met M656PH023 - <1.25 % – 13.44 % at 0 – 122 d (n= 9), max. after 28 d, dimethenamid
- Met M656PH027 - <1.25 %– 7.99 % at 7 – 93 d (n= 9), max. after 7 d, dimethenamid
- Met M656PH031 – not determined

Field degradation studies:
- Met M656PH023 - <LOQ % – 4.20 % at 16 – 62 d (n= 6), max. after 28 - 31 d, dimethenamid-P
- Met M656PH027 - <LOQ % – 7.37 % at 28 – 185 d (n= 6), max. after 182 - 185 d , dimethenamid-P
- Met M656PH031 - <LOQ % – 8.56 % at 17 – 31 d (n= 6), max. after 28 d, dimethenamid-P

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Mineralisation after 100 days	No data, not required for the representative uses applied for
Non-extractable residues after 100 days	No data, not required for the representative uses applied for
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	No data, not required for the representative uses applied for

\(^8\) n corresponds to the number of soils.
Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)
Light: Unknown metabolite (region 5): 5.5 % after 23 d (n= 1) - [14C-thienyl] - dimethenamid-P
Dark control: All < 2 %

Mineralisation at study end
Light: 5.8 & 12.3 % after 9 & 23 d, [14C-thienyl] - dimethenamid (n= 2) 10.1 % after 23 d, [14C-thienyl]- dimethenamid-P (n= 1)
Dark control: nd & 0.3 % after 9 & 23 d, [14C-thienyl] - dimethenamid (n= 2) 0.4 % after 23 d, [14C-thienyl]- dimethenamid-P (n= 1)

Non-extractable residues at study end
Light: 27.3 & 8.4 % after 9 & 23 d, [14C-thienyl] - dimethenamid (n= 2) 8.4 % after 23 d, [14C-thienyl]- dimethenamid-P (n= 1)
Dark control: 6.6 & 2.7 % after 9 & 23 d, [14C-thienyl] - dimethenamid (n= 2) 2.3 % after 23 d, [14C-thienyl]- dimethenamid-P (n= 1)
Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Dark aerobic conditions

Soil type	pH	T. (°C)	Moisture	Compound	DT₅₀ (d)	DT₉₀ (d)	DT₅₀ (d) 20 °C pF2	Kinetic, chi² error	Ref.
BBA 2.2	5.8 (CaCl₂)	20	40 % MWHC	DMTA-P	12.8	42.55	9.8	3.5 %	SFO, 1995/ Platz, 2008
BBA 2.3	6.6 (CaCl₂)	20	40 % MWHC	DMTA-P	13.3	44.1	9.0	4.6 %	SFO, 2008
Flaach	7.49 (n.a.)	20	40 % MWHC	DMTA-P	7.69	25.56	4.8	2.3 %	SFO, 2008
Elliot	6.4 (n.a.)	23	75 % of FC	DMTA-P	9.32	30.97	11.4	8.5 %	SFO, 2008
Borstel	5.9 (CaCl₂)	20	50 % MWHC	DMTA-P	31.4	104.6	30.6	2.8 %	SFO, 2008
				S-enant.	31.6	104.9	-	2.8 %	SFO, 2014
				R.-enant.	30.9	102.8	-	1.5 %	SFO, 2014
Calke	4.6 (CaCl₂)	20	pF2	DMTA-P	21.9	72.84	21.93	3.9 %	Unsworth, 2014

Geometric mean (n = 6): 12.2

pH dependent

n.a. information on buffer solution not available

(... not included in geometric mean

DMTA: dimethenamid, DMTA-P: dimethenamid-P
S-enant.: S-enantiomer of dimethenamid-P, R-enant.: S-enantiomer of dimethenamid-P

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Dark aerobic conditions

Metabolite M656PH023 (modelling and persistence endpoints)
Soil type

BBA 2.2
BBA 2.3
Flaach
Peer review of the pesticide risk assessment of the active substance dimethenamid-P

Soil	Soil type	pH	T. (°C)	Moisture	DT$_{50}$ (d)	DT$_{90}$ (d)	f.f.*	DT$_{50}$ (d) 20 °C pF2	Kinetic, chi2 error	Ref.
BBA 2.2	Loamy Sand	5.8	(CaCl$_2$)	20	40 % MWHC	61.3	203.5	0.1007	47.1	SFO, 10.8 %
BBA 2.3	Sandy Loam	6.6	(CaCl$_2$)	20	40 % MWHC	39.4	130.8	0.0572	26.5	SFO, 11.6 %
Flaach	Sandy Clay loam	7.49	(n.a.)	20	40 % MWHC	37.7	125.1	0.0425	23.5	SFO, 19.6 %
Elliot	Clay loam	6.4	(n.a.)	23	75 % of FC	55.93	185.83	0.1205	78.13	SFO, 12.1 %
						63.63	211.43	(0.100)5	(68.6)3	SFO, 26.9 %
Borstel	Sand	5.9	(CaCl$_2$)	20	50 % MWHC	85.2	283	0.0918	82.7	SFO, 5.6 %
Calke	Sandy loam	4.6	(CaCl$_2$)	20	pF2	103.3	343.1	0.0385	103.3	SFO, 12.4 %

DT$_{50}$ values

Soil	Soil type	pH	T. (°C)	Moisture	DT$_{50}$ (d)	DT$_{90}$ (d)	f.f.*	DT$_{50}$ (d) 20 °C pF2	Kinetic, chi2 error	Ref.
BBA 2.2	Loamy Sand	5.8	(CaCl$_2$)	20	40 % MWHC	60.6	201.3	0.1251	46.3	SFO, 10.0 %

Dark aerobic conditions

Metabolite M656PH031 (modelling and persistence endpoints)

Soil	Soil type	pH	T. (°C)	Moisture	DT$_{50}$ (d)	DT$_{90}$ (d)	f.f.*	DT$_{50}$ (d) 20 °C pF2	Kinetic, chi2 error	Ref.
BBA 2.2	Loamy Sand	5.8	(CaCl$_2$)	20	40 % MWHC	60.6	201.3	0.1251	46.3	SFO, 10.0 %

n.a. information on buffer solution not available
+ formation fraction from active substance to metabolite
(…) not included in geometric mean and arithmetic mean
§ soil incubation with DMTA-P, * soil incubation with DMTA

Dark aerobic conditions

Metabolite M656PH027 (modelling and persistence endpoints)

Soil	Soil type	pH	T. (°C)	Moisture	DT$_{50}$ (d)	DT$_{90}$ (d)	f.f.*	DT$_{50}$ (d) 20 °C pF2	Kinetic, chi2 error	Ref.
BBA 2.2	Loamy Sand	5.8	(CaCl$_2$)	20	40 % MWHC	60.6	201.3	0.1251	46.3	SFO, 10.0 %

n.a. information on buffer solution not available
+ formation fraction from active substance to metabolite
(…) not included in geometric mean and arithmetic mean
§ soil incubation with DMTA-P, * soil incubation with DMTA

Dark aerobic conditions

Metabolite M656PH031 (modelling and persistence endpoints)

Soil	Soil type	pH	T. (°C)	Moisture	DT$_{50}$ (d)	DT$_{90}$ (d)	f.f.*	DT$_{50}$ (d) 20 °C pF2	Kinetic, chi2 error	Ref.
BBA 2.2	Loamy Sand	5.8	(CaCl$_2$)	20	40 % MWHC	60.6	201.3	0.1251	46.3	SFO, 10.0 %

n.a. information on buffer solution not available
+ formation fraction from active substance to metabolite
(…) not included in geometric mean and arithmetic mean
§ soil incubation with DMTA-P, * soil incubation with DMTA

Dark aerobic conditions

Metabolite M656PH027 (modelling and persistence endpoints)

Soil	Soil type	pH	T. (°C)	Moisture	DT$_{50}$ (d)	DT$_{90}$ (d)	f.f.*	DT$_{50}$ (d) 20 °C pF2	Kinetic, chi2 error	Ref.
BBA 2.2	Loamy Sand	5.8	(CaCl$_2$)	20	40 % MWHC	60.6	201.3	0.1251	46.3	SFO, 10.0 %
Soil Type	pH	T. (°C)	Moisture	DT₅₀ (d)	DT₉₀ (d)	Kinetic, chi² error	DT₅₀ (d) 20 °C pF2	Kinetic, chi² error at pF2 & 20°C	Ref.	
-----------	---------	---------	----------	---------------------	---------------------	---------------------	-------------------------------	-------------------------------	------------------------	
BBA	Sandy Loam	6.6	20	40 % MWHC	44.3	0.1710	94.0	SFO, 10.1 %	Platz, 2008	
	Sandy Clay loam	7.49	20	40 % MWHC	33.1	0.1331	20.6	SFO, 4.5 %	Koenig, 1996/ Platz, 2008	
	Clay loam	6.4	23	75 % of FC	45.6§	0.110§	60.7§	SFO, 7.1 %	Platz (2008)	
	Clay loam	6.4	23	75 % of FC	49.35	0.109§	56.0§	SFO, 12.8 %	Platz (2008)	
Borstel	Sand	5.9	20	50 % MWHC	87.2	0.0588	82.2	SFO, 3.7 %	Platz, 2008	
Calke	Sandy loam	4.6	20	pF2	149.2	0.0390	149.2	SFO, 2.0 %	Unsworth, 2014	

DT₅₀ values

Soil Type	pH	T. (°C)	Moisture	DT₅₀ (d)	DT₉₀ (d)	Kinetic, chi² error	DT₅₀ (d) 20 °C pF2	Kinetic, chi² error at pF2 & 20°C	Ref.
Li10	Loamy Sand	6.9 (H₂O)	20	40 % MWHC	37	122	29.1	SFO, 2.4 %	Class & Heinz, 2014
LUFA 5M	Loamy Sand	7.9 (H₂O)	20	40 % MWHC	22	73	17.4	SFO, 6.7 %	Class & Heinz, 2014
LUFA 2.2	Loamy Sand	5.9 (H₂O)	20	40 % MWHC	40	334	36.2	SFO, 7.4 %	Class & Heinz, 2014

Geometric mean (n=3)

Soil Type	pH	T. (°C)	Moisture	DT₅₀ (d)	DT₉₀ (d)	Kinetic, chi² error	DT₅₀ (d) 20 °C pF2	Kinetic, chi² error at pF2 & 20°C	Ref.
Li10	Loamy Sand	6.9 (H₂O)	20	40 % MWHC	95	314	74.9	SFO, 6.0 %	Class & Heinz, 2014
LUFA 5M	Loamy Sand	7.9 (H₂O)	20	40 % MWHC	43	142	34.0	SFO, 15.8 %	Class & Heinz, 2014
LUFA	Loamy Sand	5.9	20	40 % MWHC	87	289	62.3	SFO, 6.0 %	Class & Heinz, 2014

Dark aerobic conditions

Metabolite M656PH054 (persistence and modelling endpoints)

Geometric mean (n=3)

Dark aerobic conditions

Metabolite M656PH047 (persistence and modelling endpoints)

Dark aerobic conditions

Metabolite M656PH043 (persistence and modelling endpoints)

Soil	Soil type	pH	T. (°C)	Moisture	DT₅₀ (d)	DT₉₀ (d)	Kinetic, chi² error	DT₅₀ (d) 20 °C pF2	Kinetic, chi² error at pF2 & 20°C	Ref.
Li10	Loamy sand (H₂O)	6.9	40 % MWHC	21	154	DFOP, 3.4 %	25.4	SFO, 11.4 %	Class & Heinz, 2014	
LUFA 5M	Loamy sand (H₂O)	7.9	40 % MWHC	10	34	SFO, 8.1 %	8.1	SFO, 8.1 %		
LUFA 2.2	Loamy sand (H₂O)	5.9	40 % MWHC	30	364	FOMC, 3.5 %	31.6	SFO, 10.1 %		

Geometric mean (n=3) 18.7

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Field dissipation studies

Dimethenamid (persistence endpoints)

Trial no	Location	Soil type	Soil pH (n.a.)	Depth (cm)	DT₅₀ not.nor. (d)	DT₉₀ not.nor. (d)	Kinetic, Parameters, chi² error	Ref.	
R10283	Niederaula, Germany	Loamy sand	6.5	40	- ¹⁾	- ¹⁾	- ¹⁾	- ¹⁾	Fricker & Hertl, 1995a
R10284	Goslar, Germany	Silty loam	7.6	40	- ¹⁾	- ¹⁾	- ¹⁾	- ¹⁾	
R10242	Brevelay, France	Sandy silty loam	5.9	50	1.93	21.80	FOMC, α: 0.841, β: 1.057, 12.45 %	Fricker & Hertl, 1995b	
R10243	Degre, France	Loam	6.0	50	35.12	116.69	SFO, 17.9 %		
R10244	Vergoignan, France	Sand	6.1	30	16.47	54.72	SFO, 8.2 %	Carrier & Blanz, 1997	
R10245	Cestas, France	Sandy loam	4.9	30	16.22*	53.87*	SFO, 16.0 %		
R10246	Budrio, Italy	Sandy loam	7.4	50	10.08	33.60	SFO, 17.8 %	Carrier, 1997	
R10247	Mezzolara, Italy	Sandy loam	7.4	50	9.06	30.08	SFO, 16.3 %		
R10248	Argenta, Italy	Loam	7.4	50	15.31	50.84	SFO, 7.9 %		

n.a.: not available
* residue value at day 2 removed as outlier
¹⁾ no statistically reliable fit could be obtained
Field degradation studies

Dimethenamid-P (persistence endpoints)

Trial no	Location	Soil type	pH (CaCl₂)	Depth (cm)	DT₅₀ not.norm. (d)	DT₉₀ not.norm. (d)	Kinetic; Parameters, chi² error	Ref.
L110061	Goch-Nierswalde, Germany	Silt loam	5.85	90	20.4	67.7	SFO, 10.5 %	Bayer & Marwitz (2014a)/Wiedemann (2014a)
L110062	Stotzheim, France (North)	Silt loam	7.11	90	17.6	58.6	SFO, 17.3 %	
L110063	Meauzac, France (South)	Sandy loam	7.55	90	14.5	48.1	SFO, 13.8 %	
L110064	Utrera, Spain	Sand	6.93	90	16.5	54.7	SFO, 12.8 %	
L110481	Wilson, United Kingdom	Silt loam	6.84	90	17.6	167	FOMC, α: 0.955, β: 16.3, 14.2 %	
L110482	Lentzke, Germany	Sandy loam	5.73	90	10.2	68.2	FOMC, α: 1.36, β: 15.4, 9.3 %	

Field degradation studies after direct application of metabolite M656PH027

Metabolite M656PH027 (persistence endpoints)

Trial no	Location	Soil type	pH (CaCl₂)	Depth (cm)	DT₅₀ not.norm. (d)	DT₉₀ not.norm. (d)	Kinetic; Parameters, chi² error	Ref.
L110330	Goch-Nierswalde, Germany	Silt loam	6.36	90	31.4	104	SFO, 11.2 %	Bayer & Marwitz (2014b)/Wiedemann (2014a)
L110331	Stotzheim, France (North)	Silt loam	5.47	90	12	40	SFO, 3.7 %	
L110332	Meauzac, France (South)	Loam	7.49	90	19.4	64.3	SFO, 14.6 %	
L110333	Utrera, Spain	Loamy sand	6.92	90	23.7	78.6	SFO, 9.6 %	

Field degradation studies

Dimethenamid-P (modelling endpoints)

Trial no	Location	Soil type	pH (CaCl₂)	Depth (cm)	DT₅₀ 20 °C, pF2 (d)	Kinetic, chi² error at 20 °C, pF2	Ref.
L110061	Goch-Nierswalde, Germany	Silt loam	5.85	90	12.6	SFO, 10.1 %	Bayer & Marwitz (2014b)/Wiedemann (2014b)
L110062	Stotzheim, France (North)	Silt loam	7.11	90	10.4	SFO, 16.4 %	
L110063	Meauzac, France (South)	Sandy loam	7.55	90	10.9	SFO, 8.2 %	
L110064	Utrera, Spain	Sand	6.93	90	9.7	SFO, 8.0 %	
L110481	Wilson, United Kingdom	Silt loam	6.84	90	13.8	SFO, 10.4 %	
L110482	Lentzke, Germany	Sandy loam	5.73	90	6.9	SFO, 8.2 %	
Germany

Geometric mean (n = 6) 10.5
pH dependent No

Field degradation studies after direct application of metabolite M656H027

Metabolite M656H027 (modelling endpoints)
Trial no
L110330
L110331
L110332
L110333
Geometric mean (n = 4)
pH dependent

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

Dimethenamid-P
DT₅₀ (d)
Geometric mean, n=12, laboratory and field data

Metabolite M656H027
Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)
Laboratory and field data are not from the same population and should therefore be used separately

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)
Soil accumulation and plateau concentration

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

| No data |

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

| No data |
Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Soil photolysis

soil	Soil type	compound	conditions	DT_{50} (d) experimental	Kinetic, chi2 error	Ref.
Elliot	Clay loam	Dimethenamid	light	27.21	SFO, 2.9 %	Nietschmann & Yu, 1997
		Dimethenamid-P		34.84	SFO, 3.6 %	
		Dimethenamid & Dimethenamid-P	Dark control	3)	3)	

3) negligible degradation, concentration of active substance remained >90% until end of study

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Parent dimethenamid-P

Soil	Soil Type	OC %	Soil pH (CaCl₂)	K_F (mL/g)	K_Foc (mL/g)	1/n	Ref.
Eu-1	Sandy clay loam	1.4	5.6	6.61	474	0.92	Tong & Su, 1997 & Addendum Paulick, 2007
Eu-2	Clay loam	2.03	8.0	2.51	123	0.96	
Eu-3	Sandy loam	2.38	5.5	2.14	90	1.00	
Eu-4	Silt loam	1.22	6.6	1.23	101	1.07	
Eu-5	Sand	3.43	3.9	13.49	393	0.94	
US-1	Clay	0.99	8.0	2.09	211	1.05	
US-2	Clay loam	2.3	6.4	2.51	105	0.97	
US-3	Loam	1.22	7.3	3.02	247	1.03	
US-4	Sandy loam	0.35	7.0	0.72	205.71	1.04	
US-5	Silt loam	1.51	6.7	1.95	129	0.96	

Geometric mean (n=10) 2.58 177
Median (n=10) 167.4
Arithmetic mean (n=10) 207.9 0.994
pH dependence No

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Metabolite M656PH023

Soil	Soil Type	OC %	Soil pH (CaCl₂)	K_F (mL/g)	K_Foc (mL/g)	1/n	Ref.
Nierswalder Wildacker	Silt Loam	1.85	5.7	0.14	7.62	0.68	Sacchi, 2013
Li10	Loamy Sand	0.93	6.0	0.10	10.53	0.76	
LUFA 2.1	Sand	0.60	5.6	0.13	22.39	0.87	
LUFA 2.3	Sandy Loam	0.99	6.7	0.12	12.46	0.70	
LUFA 5M	Sandy Loam	1.07	7.4	0.07	6.29	0.60	

Geometric mean (n=5) 0.109 10.71
Metabolite M656PH031

Soil	Soil Type	OC %	Soil pH (CaCl₂)	K_F (mL/g)	K_Foc (mL/g)	l/n	Ref.
Nierswalder Wildacker	Silt loam	1.85	5.7	< 0.1*	< 5	-	Sacchi, 2013
Li 10	Loamy sand	0.93	6.0	< 0.1*	< 11	-	
LUFA 2.1	Sand	0.60	5.6	< 0.1*	< 17	-	
LUFA 2.3	Sandy loam	0.99	6.7	< 0.1*	< 10	-	
LUFA 5M	Sandy loam	1.07	7.4	< 0.1*	< 9	-	
LUFA 2.1	Sand	0.52	5.2	< 0.1*	< 19	-	Class, 2011
Li 10	Loamy sand	0.88	5.9	< 0.1*	< 11	-	
Nierswalder Wildacker	Silt loam	1.63	6.5	< 0.1*	< 6	-	
LUFA 2.3	Sandy loam	1.09	6.9	< 0.1*	< 9	-	
La Gironda	Silty clay loam	3.84	7.5	< 0.1*	< 3	-	

* adsorption too poor to determine reliable Freundlich coefficients or exponents

Metabolite M656PH027

Soil	Soil Type	OC %	Soil pH (CaCl₂)	K_F (mL/g)	K_Foc (mL/g)	l/n	Ref.
Nierswalder Wildacker	Silt loam	1.85	5.7	0.16	8.55	1.14	Sacchi, 2013
Li 10	Loamy sand	0.93	6.0	0.09	9.89	0.97	
LUFA 2.1	Sand	0.60	5.6	0.05	7.73	1.00	
LUFA 2.3	Sandy loam	0.99	6.7	0.11	10.96	0.98	
LUFA 5M	Sandy loam	1.07	7.4	0.14	13.54	0.94	
Sora	Silt loam	1.9	6.4	0.076	4.0	0.992	Class & Dorn, 2004
LUFA 3A	Loam	2.44	7.2	0.12	4.92	0.940	
Birnbaum	Loamy sand	0.8	6.1	0.036	4.50	0.937	
Bruch West	Sandy loam	2.72	7.3	0.030	1.10	0.910	

Soil	Soil Type	OC %	Soil pH (CaCl₂)	K_F (mL/g)	K_Foc (mL/g)	l/n	Ref.
Lu 10	Loamy sand	0.75	4.1	0.229	30.5	-	Class & Walter, 2014a
LuFA 5M	Loamy sand	2.03	7.2	< 0.1*	< 5	-	
LuFA 2.2	Sandy loam	1.47	5.4	< 0.1*	< 7	-	
Li 10	Loamy sand	0.84	6.4	< 0.1*	< 12	-	
La Gironda	Sandy clay loam	1.22	7.4	< 0.1*	< 8	-	

* adsorption too poor to determine reliable Freundlich coefficients or exponents

Metabolite M656PH043

Soil	Soil Type	OC %	Soil pH (CaCl₂)	K_d (mL/g)	K_ac (mL/g)	l/n	Ref.
Schifferstadt	Sand	0.75	4.1	0.229	30.5	-	Class & Walter, 2014a
LuFA 5M	Loamy sand	2.03	7.2	< 0.1*	< 5	-	
LuFA 2.2	Sandy loam	1.47	5.4	< 0.1*	< 7	-	
Li 10	Loamy sand	0.84	6.4	< 0.1*	< 12	-	
La Gironda	Sandy clay loam	1.22	7.4	< 0.1*	< 8	-	

* adsorption too poor to determine reliable Freundlich coefficients or exponents

Metabolite M656PH047

Soil	Soil Type	OC %	Soil pH (CaCl₂)	K_d (mL/g)	K_ac (mL/g)	l/n	Ref.
Schifferstadt	Sand	0.75	4.1	< 0.1*	< 13	-	Class & Walter, 2014a
LuFA 5M	Loamy sand	2.03	7.2	< 0.1*	< 5	-	
LuFA 2.2	Sandy loam	1.47	5.4	< 0.1*	< 7	-	
Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1) and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

Soil	Soil Type	OC %	Soil pH (CaCl₂)	Kd (mL/g)	Koc (mL/g)	1/n	Ref.
Schifferstadt	Sand	0.75	4.1	0.217	28.9	-	Class & Walter, 2014a
LUFA 5M	Loamy sand	2.03	7.2	< 0.1*	< 5	-	
LUFA 2.2	Sandy loam	1.47	5.4	< 0.1*	< 7	-	
Li 10	Loamy sand	0.84	6.4	< 0.1*	< 12	-	
La Gironda	Sandy clay loam	1.22	7.4	< 0.1*	< 8	-	

* adsorption too poor to determine reliable Freundlich coefficients or exponents

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Aged resiudes leaching

Soil	Soil Type	OC %	Soil pH (CaCl₂)	Kd (mL/g)	Koc (mL/g)	1/n	Ref.
BBA 2.1	Sand	0.2	7.6				
BBA 2.2	Sandy loam	1.5	7.0				
BBA 2.3	Loamy sand	0.7	7.9				
Möhlin	Silt loam	0.9	7.0				
Flaach	Sandy clay	0.8	8.3				

Leachate:
3.3 – 40.2 % total radioactivity in leachate
n.d. – 33.4 % dimethenamid
1.4 – 0.5 % M656PH023
0.5 – 1.4 % M656PH027
0.1 – 2.5 % M656PH031

Ageing: 31 and 22 days at 20 °C and 40 % MWHC

Elution (mm): 200 mm deionised water
Time period (d): 2 d
soils:
BBA 2.1 (Sand, 0.2 % oc, pH 6.3)
BBA 2.2 (Sandy loam, 2.3 % oc, pH 7.0)

Leachate:
22.7 & 23.8 % total radioactivity in leachate
< 0.1 % dimethenamid
10.9 & 16.7 % M656PH023
0.7 & 2.4 % M656PH027
1.0 & 2.3 % M656PH031
Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter study Burgener, 1996	Duration	3 years (Mai 1992 - Mai 1995)
location	Itingen, Switzerland	
Number of lysimeter	2 lysimeter,	
Dimensions of lysimeter	depth: 1.2 m, area: 1.0 m²	
Crop cultivation	Pre-emergence application one day after sowing of corn in May 1992 After harvest of corn, sowing of winter rye (first year) and winter whear (second year) in October 1992 and 1993 After harvest sowing of winter rape in August 1994	
Application rate (g/ha)	1 x 1440 g/ha on lysimeter 1 2 x 1440 g/ha on lysimeter 2	
Application date	First application on the 21st May 1992 Second application on the 14th May 1993	
Soil properties of upper soil horizon (0-30 cm depth)	Borstel sandy soil: 83.5 % sand 10.9 % silt 5.6 % clay 1.05 % oc pH 6.1	
Total precipitation (mm)	3140	
Total amount of leachate (L)	Lysimeter 1: 1178 Lysimeter 2: 1332	
Compound	Maximum estimated annual concentrations in the lysimeter leachate over the three years study duration [µg/L]	
Dimethenamid-P	< 0.05	
M656PH003	0.1	
M656PH010	0.07	
M656PH023	1	
M656PH027 (rotamer 1+2)	4	
M656PH032	1.5	
M656PH043 (rotamer 1+2)	1.2	
M656PH045 (rotamer 1+2)	2	
M656PH047 (rotamer 1+2)	1.2	
M656PH049	1	
M656PH050	0.5	
M656PH051	1.1	
M656PH052	0.9	
M656PH053 (isomer 1)	1.6	
M656PH053 (isomer 2)	2	
M656PH054 (rotamer 1+2)	3.3	
M656H055	0.7	
M656PH059 (isomer 1)	0.8	
M656PH059	0.4	
Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1)
Hydrolytic degradation of the active substance and metabolites > 10 %

pH	Stability at 25 °C
pH 5	
pH 7	
pH 9	

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

Experimental:
DT_{50} : 15.56 d $[^{14}$C-thienyl]- dimethenamid-P, light intensity: 1.1×10^3 W/m2
DT_{50} : 17.29 d $[^{14}$C-thienyl]- dimethenamid, light intensity: 8.55×10^2 W/m2
No metabolites < 5 %, $[^{14}$C-thienyl]- dimethenamid-P & - dimethenamid

Calculation:
Estimated DT$_{50}$: 0.3 – 0.2 d (April – May, Central European conditions)

Quantum yield of direct phototransformation in water at Σ > 290 nm

0.007402 mol Einstein$^{-1}$

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

No data submitted, substance considered not readily biodegradable

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Parent dimethenamid-P
System identifier (indicate fresh, estuarine or marine)
whole system (suspended sediment test $^{a)}$)
Pond, Biederthal

$^{a)}$ No suspended sediment was added to the system

$^{b)}$ Temperature of incubation = temperature of the environmental media collected or std temperature of 20 °C
Water / sediment study (Regulation (EU) No 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) No 284/2013, Annex Part A, point 9.2.2)

Parent dimethenamid-P

Water/ Sediment System	T. (°C)	Whole system	Reference	
		DegT₅₀ (d)	DegT₉₀ (d)	Kinetic model
River Rhine, DMTA	20	19.8	65.8	SFO
Pond Anwil, DMTA	20	35.1	116.5	SFO
River Rhine, DMTA-P	20	28	93.1	SFO
Geometric Mean (n=3)		**26.9**		

DMTA dimethenamid, DMTA-P: dimethenamid-P

Parent dimethenamid-P

Distribution	18.15 – 22.8 % maximum in the sediment at day 7 – 14 with subsequent decline to 2 – 4.6 % at the end of the studies						
Water/ Sediment System	T. (°C)	Water	Sediment	Reference			
		DisT₅₀ (d)	DisT₉₀ (d)	Kinetic model	DisT₅₀ (d)	DisT₉₀ (d)	Kinetic model
River Rhine, DMTA	20	11.1	57.7	FOMC	28.5	94.7	SFO
Pond Anwil, DMTA	20	21.4	86.2	DFOP	38.2	126.9	SFO
River Rhine, DMTA-P	20	15.36	74.99	DFOP	38	126	SFO

DMTA dimethenamid, DMTA-P: dimethenamid-P

Metabolites

- **Water phase:**
 - Met M656P H023 – max. 9.6 % on d 100 (end of study)
 - Met M656P H027- max. 6.3 % on d 100 (end of study)
 - Met M656P H003 – max. 9.1 % on d 105 (end of study)

- **Sediment phase:**
 - Met M656P H003 – max. 6 % on d 105 (end of study)

Mineralisation and non extractable residues (from parent dosed experiments)

Water / sediment system	Mineralisation at end of study	Max. non-extractable residues in sed.	Non-extractable residues at end of study			
	x% AR	after d	x% AR	after d	x% AR	after d
River Rhine, DMTA	2.7	105	53.5	105	53.5	105
Pond Anwil, DMTA	2.1	105	49.3	105	49.3	105
River Rhine, DMTA-P	6.6	100	36.2	77	35.6	100

DMTA dimethenamid, DMTA-P: dimethenamid-P

Fate and behaviour in air (Regulation (EU) No 283/2013, Annex Part A, point 7.3.1)

- **Direct photolysis in air:** Not studied - no data requested
- **Photochemical oxidative degradation in air:**
 - DT₅₀ of 0.2 d derived by the Atkinson model (version 1.92 for a 12 h day and a OH concentration of 1.5 10⁶
| Volatilisation |
|----------------|
| Dimethenamid-P vapour pressure: 3.47×10^{-3} Pa (20 °C), thus substance is semivolatile (volatilisation from plant surfaces and soil expected) |
| from plant surfaces (BBA guideline): 26.1 % after 24 hours |
| from soil surfaces (BBA guideline): no data |

Metabolites
No data

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure:

| Soil: Dimethenamid-P, M656PH023, M656PH027 and M656PH031 |
| Surface water: Dimethenamid-P, M656PH003, M656PH023, M656PH027 and M656PH031 |
| Sediment: Dimethenamid-P |
| Groundwater: Dimethenamid-P, M656PH003, M656PH010, M656PH023, M656PH027 and M656PH031, M656PH032, M656PH043, M656PH045, M656PH047, M656PH049, M656PH050, M656PH051, M656PH052 (sum of isomers), M656PH053 (isomer 1 und 2), M656PH054, M656P055, M656PH059 (isomer 1, 2 und 3) and M656PH062 |
| Air: Dimethenamid-P |

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

| Soil: |
| No data |
Groundwater monitoring in Germany:
- 20 groundwater wells with shallow groundwater (1 to 10 m distance of groundwater to soils surface) in four maize growing regions in Germany: Southern Upper Rhine Valley (4 wells), Lower Bavarian Hilly Country (5 wells), Altmark/Prignitz region (3 wells), Northwest German Lowlands (8 wells)
- Free provision of the plant protection products Clio® Super or Clio® Top Pack containing dimethenamid-P to farmers within a distance of approx. 1 km up-gradient from the monitoring wells in 2007, 2008 and 2009, recording of size and location of fields treated with dimethenamid-P
- Application rates of Clio® Super or Clio® Top Pack equivalent to 968.4 g/ha dimethenamid-P in 2007 & 2008 and 807 g/ha dimethenamid-P in 2009 to maize, growth stage 12-16
- Groundwater sampling bimonthly interval between May 2007 and March 2010 and on a quarterly interval between June 2010 and March 2013. Modelling of response time showed that at 11 of the monitored wells all concentration peaks of the sponsored applications seasons should have reached the wells during sampling time, at 5 additional wells two of the three application peaks reached the well during the sampling time.
- Results:
 - M656PH003, M656PH010, M656PH031, M656PH032 and M656PH043: no detections > LOQ
 - M656PH054: detection at 1 well, maximum concentration of 0.047 µg/L
 - M656PH045: detection at 2 wells, maximum concentration of 0.045 µg/L
 - M656PH023: detection at 3 wells, maximum concentration of 0.379 µg/L
 - M656PH047: detection at 4 wells, maximum concentration of 0.149 µg/L
 - M656PH027: detection at 5 wells, maximum concentration of 1.680 µg/L

Groundwater monitoring in the Netherlands:
- 80 groundwater wells with shallow groundwater (depth of groundwater not provided) corn producing areas of the province North Brabant, The Netherlands
- No information provided on the amount of use and the duration of use of dimethenamid-P containing products in the catchment of the wells, the distance of the wells to areas treated with dimethenamid-P and the amount of areas treated with dimethenamid-P upstream of the wells
- No information provided on the hydrogeology, pedology or climate of the agricultural area or on the catchment of the wells or their response time
- Groundwater sampling once in the period from 08 January to 16 April 2013
- Results:
 - M656PH003, M656PH032 and M656PH043: no detections > LOQ
 - M656PH010 and M656PH031: detection at 1 well, maximum concentration of 0.033 and 0.042 µg/L, respectively
 - M656PH047: detection at 3 wells, maximum concentration of 0.459 µg/L
 - M656PH054: detection at 5 wells, maximum concentration of 0.076 µg/L
 - M656PH045: detection at 13 wells, maximum concentration of 0.213 µg/L
 - M656PH023: detection at 23 wells, maximum concentration of 0.810 µg/L
 - M656PH027: detection at 30 wells, maximum concentration of 1.209 µg/L
Groundwater monitoring in Germany (open literature study):
- Measurements of M656PH027 and M656PH023 from 2006 to 2008 at 228 and 232 monitoring points located in three federal states of Germany
- No information provided on the amount of use or the duration of use of dimethenamid-P containing products in the catchment of the wells, the distance of the wells to areas treated with dimethenamid-P and the amount of areas treated with dimethenamid-P upstream of the wells
- No information provided on the hydrogeology, pedology or climatic conditions of the areas upstream of the wells or the depth of the groundwater level tapped by the wells; no information provided on the catchment of the wells or their response time
- M656PH027 and M656PH023 were not detected in concentrations >1 µg/L in any of the groundwater samples

Surface water monitoring in five European rivers:
- Measurements of dimethenamid-P and the metabolites M656H003, M656H027, M656H023, and M656H031 in the five European rivers, the Rott river (eastern Bavaria, Germany), the Adda and Oglio rivers (northern tributaries of the Po river, Italy) and the Sió and Danube river (central-western part of Hungary) since they all drain areas with relatively intensive cultivation of corn
- No information provided on the catchments and on the area of the catchments that was used for cultivation with crops and the area that were treated with dimethenamid-P was provided. Information on the amount of dimethenamid-P used in the catchments also missing
- Surface water samples were taken in 2009, biweekly during the application season and weekly thereafter for five months (April to beginning of September in Italy, May to end of September in Hungary) or weekly from May to November (Germany)
- Results:
 - Dimethenamid-P reached maximum concentration 0.46 µg/L (Germany, Rott) to 0.51 µg/L (Hungary, Sió), while lower peak concentrations were measured in the other 3 rivers (<LOQ to 0.02 µg/L)
 - M656PH003 was detected once in the river Rott with a concentration of 0.02 µg/L
 - M656PH023 was detected with a maximum concentrations of 0.11 µg/L at river Rott and lower concentrations at the other 4 rivers (n.d. – 0.01 µg/L)
 - M656PH027 was detected with a maximum concentrations of 0.13 µg/L at river Rott and lower concentrations at the other 4 rivers (<LOQ – 0.02 µg/L)
 - M656PH031 was detected with a maximum concentrations of 0.12 µg/L at river Rott and lower concentrations at the other 4 rivers (<LOQ – 0.01 µg/L)

Surface water monitoring in the Lake Geneva (open literature study):
- Water samples from the Lake Geneva were collected at 9 different depths on April 26, 2004, April 26, 2005 and September 6, 2004 from a site in the middle of the lake
- No information provided on the catchment of the Lake Geneva and on the area of the catchment that is used for agriculture and that was treated with dimethenamid-P or on the amount of dimethenamid-P used in the catchment in the Lake
- Dimethenamid was detected only at one sampling date at both depth ranges with an average concentration of 0.001 µg L⁻¹

Surface water monitoring in a small area of the catchment of the Lake Greifensee, Switzerland (open literature study):
- Surface water measurements in a small area of the catchment of the Lake Greifensee, 25 km southeast of Zurich, Switzerland, which drains into the river Aa Mönchaltorf
- Dimethenamid was investigated over a period of 67 days after a controlled application of 0.75 kg ha⁻¹ on 13 cornfields on May 8, 2000
- First 9 days after application remained very dry with only 3 mm of rain. During the
two following weeks, three rain events resulted in a total of 51 mm precipitation. However, only the 6th rainfall event (46 mm, ~20-30 days after application) caused the first substantial hydrolytic response from the catchment as well as major loss of herbicides

- total mass losses of dimethenamid from the fields of the catchment accounted for 0.27% of its total amount applied
- dissipation of dimethenamid from soil was described by first-order kinetics with a field DT50 of 13 days as median value from 11 fields

Air monitoring in Central France (open literature study):
- dimethenamid-P was measured on three rural sites (Saint Martin d’Auxigny, Oysonville and Saint Aignan) and two urban sites (Tour and Orléans) in 3 sampling campaigns in 2006, 2007 and 2008
- The rural sampling site at Saint Martin d’Auxigny was surrounded by orchards, the agricultural area of the sampling site Saint Aignan was dominated by vineyards and the agricultural area of the sampling site Oysonville was dominated by arable crops such as maize, wheat, soybean, barley and sunflowers
- no information provided, if dimethenamid-P was really applied in any of the areas close to the sampling site during the sampling campaigns, the size and distance of any treated areas or the amount of dimethenamid-P used on any areas in vicinity of the sampling site
- Dimethenamid was detected at a low frequency of 2% at concentrations ranging from 0.16 to 0.74 ng m⁻³ in the 262 air samples
PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Active substance	dimethenamid-P
Crop/ Application scenario	864 g a.s./ha pre-emergence application to maize

PEC(s) (mg/kg)	Single application	Single application	Multiple application	Multiple application
Initial	Actual	Time weighted average	Actual	Time weighted average
	1.152		1.152	
Plateau concentration	<0.001 mg/kg after 10 yr			

| Crop/ Application scenario | 500 g a.s./ha pre-emergence application to winter oilseed rape |

PEC(s) (mg/kg)	Single application	Single application	Multiple application	Multiple application
Initial	Actual	Time weighted average	Actual	Time weighted average
	0.667		0.667	
Plateau concentration	<0.001 mg/kg after 10 yr			

Metabolite	M656PH023
Method of calculation	Molecular weight relative to the parent: 0.983
DT₅₀ (d): 63.9 days	
Kinetics: SFO	
Lab: longest, non-normalized DT₅₀ value	

Application data	Product BAS 656 12 H with 720 g/L dimethenamid-P:
Parent dimethenamid-P	DT₅₀ (d): 35.1 days
Method of calculation	Kinetics: SFO
Field data: longest, non-normalized DT₅₀ value	

Application data	Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac:
Parent dimethenamid-P	DT₅₀ (d): 63.9 days
Method of calculation	Kinetics: SFO
Lab: longest, non-normalized DT₅₀ value	

- Crop: maize
- Depth of soil layer: 5 cm
- Soil bulk density: 1.5 g/cm³
- % plant interception: 0 % (Pre-emergence)
- Number of applications: 1
- Application rate(s): 864 g a.s./ha

- Crop: winter oilseed rape
- Depth of soil layer: 5 cm
- Soil bulk density: 1.5 g/cm³
- % plant interception: 0 % (Pre-emergence)
- Application rate(s): 500 g dimethenamid-P/ha (+ 250 g quinmerac/ha)
Application rate assumed: 114.4 g/ha (assumed M656PH023 is formed at a maximum of 13.44% of the applied dose of 864 g a.s./ha)

Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac:
Application rate assumed: 66.0 g/ha (assumed M656PH023 is formed at a maximum of 13.44% of the applied dose of 500 g a.s./ha)

Metabolite	M656PH023			
Crop/ Application scenario	864 g a.s./ha pre-emergence application to maize			
PEC\(_{(s)}\) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.1525		0.1533	
Plateau concentration	0.0007 mg/kg after 10 yr			

Crop/ Application scenario 500 g a.s./ha pre-emergence application to winter oilseed rape

Metabolite	M656PH027
Method of calculation	Molecular weight relative to the parent: 1.165
DT\(_{50}\) (d): 31.3 days	
Kinetics: SFO	
Field: longest, non-normalized DT\(_{50}\) from field studies	

Application data

Product BAS 656 12 H with 720 g/L dimethenamid-P:
Application rate assumed: 134.1 g/ha (assumed M656PH027 is formed at a maximum of 13.32% of the applied dose of 864 g a.s./ha)

Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac:
Application rate assumed: 77.6 g/ha (assumed M656PH027 is formed at a maximum of 13.32% of the applied dose of 500 g a.s./ha)
Metabolite M656PH027

Crop/ Application scenario	864 g a.s./ha pre-emergence application to maize
PEC (s) (mg/kg)	**PEC (s)** (mg/kg)
Single application	Single application
Actual	Time weighted average
Actual	Actual
Initial	0.179
Plateau concentration	< 0.001 mg/kg after 10 yr

Metabolite M656PH031

Crop/ Application scenario	500 g a.s./ha pre-emergence application to winter oilseed rape
PEC (s) (mg/kg)	**PEC (s)** (mg/kg)
Single application	Single application
Actual	Time weighted average
Actual	Actual
Initial	0.104
Plateau concentration	< 0.001 mg/kg after 10 yr

Metabolite M656PH031

- **Metabolite M656PH031**
- **Method of calculation**
 - Molecular weight relative to the parent: 1.258
 - DT$_{50}$ (d): 103.3 days
 - Kinetics: SFO
 - Lab: longest, non-normalized DT$_{50}$ value

Application data

- **Product BAS 656 12 H with 720 g/L dimethenamid-P**
 - Application rate assumed: 112.4 g/ha (assumed M656PH031 is formed at a maximum of 10.34 % of the applied dose of 864 g a.s./ha)

- **Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac**
 - Application rate assumed: 65.0 g/ha (assumed M656PH031 is formed at a maximum of 10.34 % of the applied dose of 500 g a.s./ha)

Metabolite M656PH031

Crop/ Application scenario	864 g a.s./ha pre-emergence application to Maize
PEC (s) (mg/kg)	**PEC (s)** (mg/kg)
Single application	Single application
Actual	Time weighted average
Actual	Actual
Initial	0.150
Plateau concentration	0.0035 mg/kg after 10 yr
Plateau concentration	0.1534
Crop/ Application scenario | 500 g a.s./ha pre-emergence application to winter oilseed rape
---|---
PEC_(s) (mg/kg) | Single application Actual | Single application Time weighted average | Multiple application Actual | Multiple application Time weighted average
Initial | 0.0867 | | 0.0902 | |
Plateau concentration | 0.0035 mg/kg after 10 yr | | | |
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Property	Value
Version control no. of FOCUS software:	FOCUS PELMO 5.5.3
Molecular weight (g/mol): Parent dimethenamid-P	275.8
K_{OC} (mL/g): Parent dimethenamid-P	167.4 (Median, $n=10$)
Freundlich exponent $1/n$: Parent dimethenamid-P	0.994 (arithmetic mean, $n=10$)
DT_{50} (d): Parent dimethenamid-P	11.3 (geometric mean of normalised laboratory and field DT_{50} values, $n=12$)
Crop uptake factor: Parent dimethenamid-P	0.5
Molecular weight (g/mol): Metabolite M656PH023	271
K_{OC} (mL/g): Metabolite M656PH023	11.9 (arithmetic mean, $n=5$)
Freundlich exponent $1/n$: Metabolite M656PH023	0.722 (arithmetic mean, $n=5$)
DT_{50} (d): Metabolite M656PH023	28.2 (geometric mean of normalised laboratory DT_{50} values, $n=5$)
Formation fraction from dimethenamid-P to M656H023:	0.138 (arithmetic mean of laboratory data, $n=5$)
Crop uptake factor:	0
Molecular weight (g/mol): Metabolite M656PH031	347
K_{OC} (mL/g): Metabolite M656PH031	1 (default)
Freundlich exponent $1/n$: Metabolite M656PH031	0.9 (default)
DT_{50} (d): Metabolite M656PH031	51.94 (geometric mean of normalised laboratory DT_{50} values, $n=6$)
Formation fraction from dimethenamid-P to M656H023:	0.0751 (arithmetic mean of laboratory data, $n=6$)
Crop uptake factor:	0
Molecular weight (g/mol): Metabolite M656PH027	321.4
K_{OC} (mL/g): Metabolite M656PH027	7.2 (arithmetic mean, $n=5$)
Freundlich exponent $1/n$: Metabolite M656PH027	0.979 (arithmetic mean, $n=5$)
DT_{50} (d): Metabolite M656PH027	14.3 (geometric mean of normalised laboratory DT_{50} values, $n=4$)
Formation fraction from dimethenamid-P to M656H027:	0.1062 (arithmetic mean of laboratory data, $n=6$)
Formation fraction from M656H031 to M656H027: 1.0 (default)	
Crop uptake factor:	0

Metabolites M656PH003 (M3), M656PH010 (M10), M656PH032 (M32), M656PH043 (M43), M656PH045 (M45), M656PH047 (M47), M656PH049 (M49), M656PH050 (M50), M656PH051 (M51), M656PH052 (M52), M656PH053 (M53), M656PH054 (M54), M656H055 (M55), M656PH059 (M59) and M656PH062 (M62) only found in the lysimeter leachate

Estimated using transfer factors derived from the ratio of the modelled groundwater concentration of M656H027 (calc) and the M656H027 concentrations measured in the lysimeter (meas):

1. Transfer factor = M656H027_{calc}/ M656H027_{meas}
2. Metabolite X_{calc} = Transfer factor * Metabolite X_{meas}

Metabolite X= Metabolite in question only found in the lysimeter leachate but not in soil studies

These calculations were considered not acceptable by the peer review. However, it was agreed that the PEC_{GW} for these metabolites based on the lysimeter transfer factors should remain in the list of endpoints.
and be used to provide indicative levels for the non
relevance assessment of the metabolites in
groundwater.

Application rate	Product BAS 656 12 H with 720 g/L dimethenamid-P:
Crop: maize	BBCH: 00-09 (pre-mergence) & 10-16 (post-mergence)
	Application rate (g a.s./ha): 1 x 864
	Canopy interception (%): 0 (pre-mergence) & 25 (post-
	emergence)
	Soil relevant application rate (g a.s./ha): 864 (pre-
	mergence) & 648 (post-mergence)
	Time of application: 7 days before and after pre-def-
	ined crop emergence of the respective FOCUS loca-
	tions
Crop: soybeans &	BBCH: 00-09 (pre-mergence)
sunflowers	Application rate (g a.s./ha): 1 x 864
	Canopy interception (%): 0 (pre-mergence)
	Soil relevant application rate (g a.s./ha): 864 (pre-
	mergence)
	Time of application: 7 days before pre-defined crop
	emergence of the respective FOCUS locations
Crop: sugar beet	BBCH: 00-09 (pre-mergence)
	Application rate (g a.s./ha): 1 x 864
	Canopy interception (%): 0 (pre-mergence)
	Soil relevant application rate (g a.s./ha): 864 (pre-
	mergence)
	Time of application: 7 days before pre-defined crop
	emergence of the respective FOCUS locations

Tier 2b: For pre-mergence application of BAS 656 12 H to sugar beet, additional PECGW values were calculated assuming only one application of BAS 656 12 H every second or every third year.

Crop: sugar beet	BBCH: 12-18 (post-mergence)
	Application rate (g a.s./ha): 1 x 720
	Canopy interception (%): 20 (post-mergence)
	Soil relevant application rate (g a.s./ha): 576 (pre-
	mergence)
	Time of application: 7 days after the pre-defined crop
	emergence of the respective FOCUS locations

| Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac: |
|--------------------------|---|
| Crop: winter oilseed rape| BBCH: 00-09 (pre-mergence) & 12-18 (pre-mergence) |
| | Application rate (g a.s./ha): 1 x 500 |
| | Canopy interception (%): 0 (pre-mergence) & 40 (post-mergence) |
Soil relevant application rate (g a.s./ha): 500 (pre-emergence) & 300 (post-emergence)
Time of application: 7 days before and after the pre-defined crop emergence of the respective FOCUS locations

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Scenario	Parent (µg/L)	Metabolite (µg/L)		
	M656PH023	M656PH027	M656PH031	
Chateaudun	<0.001	0.407	2.876	8.594
Hamburg	0.001	1.292	4.965	14.336
Kremsmunster	0.001	1.007	3.877	10.453
Okehampton	0.002	1.419	3.338	8.527
Piacenza	0.001	0.671	2.394	6.448
Porto	<0.001	0.182	1.280	4.170
Sevilla	<0.001	0.002	0.725	2.419
Thiva	<0.001	0.142	1.871	5.956
Maize, pre-emergence, 864 g ha\(^{-1}\) (indicative PECgw values. Data gap)

Scenario	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51		
Châteaudun	0.07	0.05	1.1	0.9	1.4	0.9	0.7	0.4	0.8		
Hamburg	0.1	0.09	1.9	1.5	2.5	1.5	1.2	0.6	1.4		
Kremsmünster	0.1	0.07	1.5	1.2	1.9	1.2	1.0	0.5	1.1		
Okehampton	0.08	0.06	1.3	1.0	1.7	1.0	0.8	0.4	0.9		
Piacenza	0.06	0.04	0.9	0.7	1.2	0.7	0.6	0.3	0.7		
Porto	0.03	0.02	0.5	0.4	0.6	0.4	0.3	0.2	0.3		
Sevilla	0.02	0.01	0.3	0.2	0.4	0.2	0.2	0.1	0.2		
Thiva	0.05	0.03	0.7	0.6	0.9	0.6	0.5	0.2	0.5		
	M52			M53 iso 1	M53 iso 2	M54 (rota 1+2)	M55	M59 iso 1	M59 iso 2	M59 iso 3	M62
Châteaudun	0.6	1.2	1.4	2.4	0.5	0.6	0.3	1.2	1.4		
Hamburg	1.1	2.0	2.5	4.1	0.9	1.0	0.5	2.0	2.5		
Kremsmünster	0.9	1.6	1.9	3.2	0.7	0.8	0.4	1.6	1.9		
Okehampton	0.8	1.3	1.7	2.8	0.6	0.7	0.3	1.3	1.7		
Piacenza	0.5	1.0	1.2	2.0	0.4	0.5	0.2	1.0	1.2		
Porto	0.3	0.5	0.6	1.0	0.2	0.2	0.1	0.5	0.6		
Sevilla	0.2	0.3	0.4	0.6	0.1	0.1	0.1	0.3	0.4		
Thiva	0.4	0.8	0.9	1.6	0.3	0.4	0.2	0.8	0.9		

iso = isomer, rota = rotamer

Maize, post-emergence, 864 g a.s. ha\(^{-1}\)

Scenario	Parent (µg/L)	Metabolite (µg/L)	M656PH023	M656PH027	M656PH031
Châteaudun	<0.001	0.255	2.220	6.758	
Hamburg	0.001	0.834	3.931	11.292	
Kremsmünster	<0.001	0.660	2.902	8.017	
Okehampton	0.002	0.984	2.614	6.778	
Piacenza	0.001	0.469	1.931	5.067	
Porto	<0.001	0.125	0.944	3.143	
Sevilla	<0.001	0.001	0.560	1.870	
Thiva	<0.001	0.093	1.549	4.749	
Maize, post-emergence, 864 g ha\(^{-1}\) (indicative PECgw values. Data gap)

Scenario	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun	0.06	0.04	0.8	0.7	1.1	0.7	0.6	0.3	0.6
Hamburg	0.1	0.07	1.5	1.2	2.0	1.2	1.0	0.5	1.1
Kremsmünster	0.07	0.05	1.1	0.9	1.5	0.9	0.7	0.4	0.8
Okehampton	0.07	0.05	1.0	0.8	1.3	0.8	0.7	0.3	0.7
Piacenza	0.05	0.03	0.7	0.6	1.0	0.6	0.5	0.2	0.5
Porto	0.02	0.02	0.4	0.3	0.5	0.3	0.2	0.1	0.3
Sevilla	0.01	0.01	0.2	0.2	0.3	0.2	0.1	0.1	0.2
Thiva	0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.4

Scenario	M52	M53	M53 iso 2	M54 (rota 1+2)	M55	M59 iso 1	M59 iso 2	M59 iso 3	M62
Châteaudun	0.5	0.9	1.1	1.8	0.4	0.4	0.2	0.9	1.1
Hamburg	0.9	1.6	2.0	3.2	0.7	0.8	0.4	1.6	2.0
Kremsmünster	0.7	1.2	1.5	2.4	0.5	0.6	0.3	1.2	1.5
Okehampton	0.6	1.0	1.3	2.2	0.5	0.5	0.3	1.1	1.3
Piacenza	0.4	0.8	1.0	1.6	0.3	0.4	0.2	0.8	1.0
Porto	0.2	0.4	0.5	0.8	0.2	0.2	0.1	0.4	0.5
Sevilla	0.1	0.2	0.3	0.5	0.1	0.1	0.1	0.2	0.3
Thiva	0.3	0.6	0.8	1.3	0.3	0.3	0.2	0.6	0.8

iso= isomer, rota= rotamer

Soybeans, pre-emergence, 864 g a.s. ha\(^{-1}\)

Scenario	Parent (µg/L)	Metabolite (µg/L)		
	M656PH023	M656PH027	M656PH031	
Piacenza	0.001	0.404	1.692	4.980

Soybeans, pre-emergence, 864 g ha\(^{-1}\) (indicative PECgw values. Data gap)

Scenario	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Piacenza	0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.5

Scenario	M52	M53	M53 iso 2	M54 (rota 1+2)	M55	M59 iso 1	M59 iso 2	M59 iso 3	M62
Piacenza	0.4	0.7	0.8	1.4	0.3	0.3	0.2	0.7	0.8

iso= isomer, rota= rotamer
Sunflowers, pre-emergence, 864 g a.s. ha\(^{-1}\)

Scenario	Parent (µg/L)	Metabolite (µg/L)		
		M656PH023	M656PH027	M656PH031
Piacenza	0.002	0.951	3.025	7.751
Sevilla	<0.001	0.010	1.134	3.728

Sunflowers, pre-emergence, 864 g ha\(^{-1}\) (indicative PECgw values. **Data gap**)

Scenario	M3	M10	M32	M43	M45	M47	M49	M50	M51
Piacenza	0.08	0.05	1.1	0.9	1.5	0.9	0.8	0.4	0.8
Sevilla	0.03	0.02	0.4	0.3	0.6	0.3	0.3	0.1	0.3

Scenario	M52	M53	M54	M55	M59	M59	M59	M62	
Piacenza	0.7	1.2	1.5	2.5	0.5	0.6	0.3	1.2	1.5
Sevilla	0.3	0.5	0.6	0.9	0.2	0.2	0.1	0.5	0.6

iso = isomer, rotamer = rotamer

Sugar beet, pre-emergence, 864 g a.s. ha\(^{-1}\)

Scenario	Parent (µg/L)	Metabolite (µg/L)		
		M656PH023	M656PH027	M656PH031
Chateaudun	<0.001	1.002	4.440	12.217
Hamburg	0.001	1.150	4.539	13.300
Jokioinen	<0.001	0.733	7.231	24.996
Kremsmunster	<0.001	0.893	3.699	9.924
Okehampton	0.001	1.202	3.121	7.862
Piacenza	0.001	0.752	3.161	9.031
Porto	0.001	0.612	2.841	7.650
Sevilla	<0.001	0.569	4.881	10.244
Thiva	<0.001	0.171	2.255	7.104
Sugar beet, pre-emergence, 864 g ha\(^{-1}\) (indicative PECgw values. Data gap)

Scenario	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun	0.1	0.08	1.7	1.3	2.2	1.3	1.1	0.6	1.2
Hamburg	0.1	0.08	1.7	1.4	2.3	1.4	1.1	0.6	1.2
Jokioinen	0.2	0.1	2.8	2.2	3.6	2.2	1.8	0.9	2.0
Kremsmünster	0.09	0.06	1.4	1.1	1.8	1.1	0.9	0.5	1.0
Okehampton	0.08	0.05	1.2	0.9	1.6	0.9	0.8	0.4	0.9
Piacenza	0.08	0.06	1.2	0.9	1.6	0.9	0.8	0.4	0.9
Porto	0.07	0.05	1.1	0.9	1.4	0.9	0.7	0.4	0.8
Sevilla	0.1	0.09	1.8	1.5	2.4	1.5	1.2	0.6	1.3
Thiva	0.06	0.04	0.8	0.7	1.1	0.7	0.6	0.3	0.6

Scenario	M52	M53 is 1	M53 is 2	M54 (rota 1+2)	M55	M59 is 1	M59 is 2	M59 is 3	M62
Châteaudun	1.0	1.8	2.2	3.7	0.8	0.9	0.4	1.8	2.2
Hamburg	1.0	1.8	2.3	3.7	0.8	0.9	0.5	1.8	2.3
Jokioinen	1.6	2.9	3.6	6.0	1.3	1.4	0.7	2.9	3.6
Kremsmünster	0.8	1.5	1.8	3.1	0.6	0.7	0.4	1.5	1.8
Okehampton	0.7	1.2	1.6	2.6	0.5	0.6	0.3	1.2	1.6
Piacenza	0.7	1.3	1.6	2.6	0.6	0.6	0.3	1.3	1.6
Porto	0.6	1.1	1.4	2.3	0.5	0.6	0.3	1.1	1.4
Sevilla	1.1	2.0	2.4	4.0	0.9	1.0	0.5	2.0	2.4
Thiva	0.5	0.9	1.1	1.9	0.4	0.5	0.2	0.9	1.1

iso= isomer, rota= rotamer

Sugar beet, pre-emergence, 864 g a.s. ha\(^{-1}\) (Tier 2b, application only every second year)

Scenario	Parent (µg/L)	Metabolite (µg/L)	M656PH023	M656PH027	M656PH031
Châteaudun	<0.001	0.504	2.238	5.915	
Hamburg	<0.001	0.347	2.041	5.894	
Jokioinen	<0.001	0.195	3.516	10.523	
Kremsmünster	<0.001	0.358	1.890	5.190	
Okehampton	0.001	0.620	1.632	3.997	
Piacenza	0.001	0.391	1.516	3.725	
Porto	<0.001	0.312	1.227	2.882	
Sevilla	<0.001	0.133	2.226	4.880	
Thiva	<0.001	0.046	1.199	3.763	
Sugar beet, pre-emergence, 864 g ha\(^{-1}\) (Tier 2b, application only every second year) (indicative PECgw values. Data gap)

Scenario	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun	0.06	0.04	0.8	0.7	1.1	0.7	0.6	0.3	0.6
Hamburg	0.05	0.04	0.8	0.6	1.0	0.6	0.5	0.3	0.6
Jokioinen	0.09	0.06	1.3	1.1	1.8	1.1	0.9	0.4	1.0
Kremsmünster	0.05	0.03	0.7	0.6	0.9	0.6	0.5	0.2	0.5
Okehampton	0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.4
Piacenza	0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.4
Porto	0.03	0.02	0.5	0.4	0.6	0.4	0.3	0.2	0.3
Sevilla	0.06	0.04	0.8	0.7	1.1	0.7	0.6	0.3	0.6
Thiva	0.03	0.02	0.5	0.4	0.6	0.4	0.3	0.2	0.3

Scenario	M52	M53 iso 1	M53 iso 2	M54 (rota 1+2)	M55	M59 iso 1	M59 iso 2	M59 iso 3	M62
Chateaudun	0.5	0.9	1.1	1.9	0.4	0.4	0.2	0.9	1.1
Hamburg	0.5	0.8	1.0	1.7	0.4	0.4	0.2	0.8	1.0
Jokioinen	0.8	1.4	1.8	2.9	0.7	0.7	0.4	1.4	1.8
Kremsmünster	0.4	0.8	0.9	1.6	0.3	0.4	0.2	0.8	0.9
Okehampton	0.4	0.7	0.8	1.3	0.3	0.3	0.2	0.7	0.8
Piacenza	0.3	0.6	0.8	1.3	0.3	0.3	0.2	0.6	0.8
Porto	0.3	0.5	0.6	1.0	0.2	0.2	0.1	0.5	0.6
Sevilla	0.5	0.9	1.1	1.8	0.4	0.5	0.2	0.9	1.1
Thiva	0.3	0.5	0.6	1.0	0.2	0.2	0.1	0.5	0.6

iso= isomer, rota= rotamer

Sugar beet, pre-emergence, 864 g a.s. ha\(^{-1}\) (application only every third year)

Scenario	Parent (µg/L)	Metabolite (µg/L)	M656PH023	M656PH027	M656PH031
Chateaudun	<0.001	0.303	1.444	4.053	
Hamburg	<0.001	0.274	1.441	4.068	
Jokioinen	<0.001	0.131	2.280	8.442	
Kremsmünster	<0.001	0.245	1.340	3.359	
Okehampton	<0.001	0.470	1.161	2.651	
Piacenza	<0.001	0.289	0.914	2.459	
Porto	<0.001	0.250	0.774	2.034	
Sevilla	<0.001	0.092	1.561	3.703	
Thiva	<0.001	0.034	0.938	2.893	
Sugar beet, pre-emergence, 864 g ha\(^{-1}\) (Tier 2b, application only every third year) (indicative PECgw values.

Data gap

Scenario	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun	0.04	0.03	0.5	0.4	0.7	0.4	0.4	0.2	0.4
Hamburg	0.04	0.03	0.5	0.4	0.7	0.4	0.4	0.2	0.4
Jokoinen	0.06	0.04	0.9	0.7	1.1	0.7	0.6	0.3	0.6
Kremsmünster	0.03	0.02	0.5	0.4	0.7	0.4	0.3	0.2	0.4
Okehampton	0.03	0.02	0.4	0.3	0.6	0.4	0.3	0.1	0.3
Piacenza	0.02	0.02	0.3	0.3	0.5	0.3	0.2	0.1	0.3
Porto	0.02	0.01	0.3	0.2	0.4	0.2	0.2	0.1	0.2
Sevilla	0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.4
Thiva	0.02	0.02	0.4	0.3	0.5	0.3	0.2	0.1	0.3

Scenario	M52	M53 iso 1	M53 iso 2	M54 (rota 1+2)	M55	M59 iso 1	M59 iso 2	M59 iso 3	M62
Châteaudun	0.3	0.6	0.7	1.2	0.3	0.3	0.1	0.6	0.7
Hamburg	0.3	0.6	0.7	1.2	0.3	0.3	0.1	0.6	0.7
Jokoinen	0.5	0.9	1.1	1.9	0.4	0.5	0.2	0.9	1.1
Kremsmünster	0.3	0.5	0.7	1.1	0.2	0.3	0.1	0.5	0.7
Okehampton	0.3	0.5	0.6	1.0	0.2	0.2	0.1	0.5	0.6
Piacenza	0.2	0.4	0.5	0.8	0.2	0.2	0.09	0.4	0.5
Porto	0.2	0.3	0.4	0.6	0.1	0.2	0.08	0.3	0.4
Sevilla	0.4	0.6	0.8	1.3	0.3	0.3	0.2	0.6	0.8
Thiva	0.2	0.4	0.5	0.8	0.2	0.2	0.09	0.4	0.5

Sugar beet, post-emergence, 720 g a.s. ha\(^{-1}\)

Scenario	Parent (µg/L)	Metabolite (µg/L) M656PH023	M656PH027	M656PH031
Châteaudun	<0.001	0.537	3.077	8.454
Hamburg	0.001	0.607	3.158	9.075
Jokoinen	<0.001	0.304	5.022	17.208
Kremsmünster	<0.001	0.446	2.499	6.772
Okehampton	0.001	0.678	2.077	5.412
Piacenza	0.001	0.414	2.085	5.987
Porto	0.001	0.330	1.833	5.008
Sevilla	0.001	0.158	2.775	6.289
Thiva	<0.001	0.078	1.601	4.961
Sugar beet, post-emergence, 720 g a.s. ha\(^{-1}\) (indicative PECgw values. Data gap)

Scenario	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun	0.08	0.05	1.2	0.9	1.5	0.9	0.8	0.4	0.8
Hamburg	0.08	0.06	1.2	0.9	1.6	0.9	0.8	0.4	0.9
Jokoinen	0.1	0.09	1.9	1.5	2.6	1.5	1.3	0.6	1.4
Kremsmünster	0.06	0.04	0.9	0.7	1.2	0.7	0.6	0.3	0.7
Okehampton	0.05	0.04	0.8	0.6	1.0	0.6	0.5	0.3	0.6
Piacenza	0.05	0.04	0.8	0.6	1.0	0.6	0.5	0.3	0.6
Porto	0.05	0.03	0.7	0.5	0.9	0.5	0.5	0.2	0.5
Sevilla	0.07	0.05	1.0	0.8	1.4	0.8	0.7	0.3	0.8
Thiva	0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.4

Scenario	M52	M53 iso 1	M53 iso 2	M54 (rota 1+2)	M55	M59 iso 1	M59 iso 2	M59 iso 3	M62
Châteaudun	0.7	1.2	1.5	2.6	0.5	0.6	0.3	1.2	1.5
Hamburg	0.7	1.3	1.6	2.6	0.6	0.6	0.3	1.3	1.6
Jokoinen	1.1	2.0	2.5	4.2	0.9	1.0	0.5	2.0	2.5
Kremsmünster	0.6	1.0	1.2	2.1	0.4	0.5	0.2	1.0	1.2
Okehampton	0.5	0.8	1.0	1.7	0.4	0.4	0.2	0.8	1.0
Piacenza	0.5	0.8	1.0	1.7	0.4	0.4	0.2	0.8	1.0
Porto	0.4	0.7	0.9	1.5	0.3	0.4	0.2	0.7	0.9
Sevilla	0.6	1.1	1.4	2.3	0.5	0.6	0.3	1.1	1.4
Thiva	0.4	0.6	0.8	1.3	0.3	0.3	0.2	0.6	0.8

iso= isomer, rota= rotamer

Winter oilseed rape, pre-emergence, 500 g a.s. ha\(^{-1}\)

Scenario	Parent (µg/L)	Metabolite (µg/L)		
		M656PH023	M656PH027	M656PH031
Chateaudun	<0.001	0.249	3.248	9.327
Hamburg	0.003	1.608	6.270	12.285
Kremsmunster	0.002	0.788	3.221	7.561
Okehampton	0.003	1.287	3.250	7.133
Piacenza	0.008	1.285	4.137	8.250
Porto	0.005	1.285	3.170	7.428
Winter oilseed rape, pre-emergence, 500 g ha\(^{-1}\) (indicative PECgw values. **Data gap**)

Scenario	PECgw [µg L\(^{-1}\)]	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun	0.08	0.06	1.2	1.0	1.6	1.0	0.8	0.4	0.9	
Hamburg	0.2	0.1	2.4	1.9	3.1	1.9	1.6	0.8	1.7	
Kremsmünster	0.08	0.06	1.2	1.0	1.6	1.0	0.8	0.4	0.9	
Okehampton	0.08	0.06	1.2	1.0	1.6	1.0	0.8	0.4	0.9	
Piacenza	0.1	0.07	1.6	1.2	2.1	1.2	1.0	0.5	1.1	
Porto	0.08	0.06	1.2	1.0	1.6	1.0	0.8	0.4	0.9	
Châteaudun										
	Scenario	M52	M53 iso 1	M53 iso 2	M54 (rota 1+2)	M55	M59 iso 1	M59 iso 2	M59 iso 3	M62
Chateaudun	0.7	1.3	1.6	2.7	0.6	0.7	0.3	1.3	1.6	
Hamburg	1.4	2.5	3.1	5.2	1.1	1.3	0.6	2.5	3.1	
Kremsmünster	0.7	1.3	1.6	2.7	0.6	0.6	0.3	1.3	1.6	
Okehampton	0.7	1.3	1.6	2.7	0.6	0.7	0.3	1.3	1.6	
Piacenza	0.9	1.7	2.1	3.4	0.7	0.8	0.4	1.7	2.1	
Porto	0.7	1.3	1.6	2.6	0.6	0.6	0.3	1.3	1.6	

iso= isomer, rota= rotamer

Winter oilseed rape, pre-emergence, 500 g a.s. ha\(^{-1}\) (application only every second year)

Scenario	Parent (µg/L)	Metabolite (µg/L)	M656PH023	M656PH027	M656PH031
Chateaudun	<0.001	0.098	1.836	5.078	
Hamburg	0.001	0.683	2.987	6.283	
Kremsmünster	0.001	0.364	1.924	4.058	
Okehampton	0.002	0.595	1.669	3.370	
Piacenza	0.003	0.526	2.114	3.815	
Porto	0.002	0.555	1.530	3.128	
Winter oilseed rape, pre-emergence, 500 g ha\(^{-1}\) (Tier 2b, application only every second year) (indicative PECgw values. Data gap)

Scenario	PECgw [µg L\(^{-1}\)]	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun		0.05	0.03	0.7	0.6	0.9	0.6	0.5	0.2	0.5
Hamburg		0.07	0.05	1.1	0.9	1.5	0.9	0.7	0.4	0.8
Kremsmünster		0.05	0.03	0.7	0.6	1.0	0.6	0.5	0.2	0.5
Okehampton		0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.5
Piacenza		0.05	0.04	0.8	0.6	1.1	0.6	0.5	0.3	0.6
Porto		0.04	0.03	0.6	0.5	0.8	0.5	0.4	0.2	0.4

iso= isomer, rota= rotamer

Winter oilseed rape, post-emergence, 500 g a.s. ha\(^{-1}\)

Scenario	Parent (µg/L)	Metabolite (µg/L)	M656PH023	M656PH027	M656PH031
Chateaudun	<0.001	0.087	1.950	5.488	
Hamburg	0.002	0.738	3.888	7.548	
Kremsmünster	0.001	0.344	2.126	4.741	
Okehampton	0.003	0.664	2.257	4.593	
Piacenza	0.003	0.384	2.313	4.342	
Porto	0.005	0.684	2.286	4.632	
Peer review of the pesticide risk assessment of the active substance dimethenamid-P

Winter oilseed rape, post-emergence, 500 g ha\(^{-1}\) (indicative PECgw values. Data gap)

Scenario	PECgw [µg L\(^{-1}\)]	M3	M10	M32	M43 (rota 1+2)	M45 (rota 1+2)	M47 (rota 1+2)	M49	M50	M51
Châteaudun	0.05 0.03 0.7	0.6	0.6	1.0	0.6	0.5	0.2	0.5		
Hamburg	0.10 0.07 1.5	1.2	1.9	1.2	1.0	0.5	1.1			
Kremsmünster	0.05 0.04 0.8	0.6	1.1	0.6	0.5	0.3	0.6			
Okehampton	0.06 0.04 0.9	0.7	1.1	0.7	0.6	0.3	0.6			
Piacenza	0.06 0.04 0.9	0.7	1.2	0.7	0.6	0.3	0.6			
Porto	0.06 0.04 0.9	0.7	1.2	0.7	0.6	0.3	0.6			

Scenario	M52 M53 iso 1 M53 iso 2 M54 (rota 1+2) M55 M59 iso 1 M59 iso 2 M59 iso 3 M62
Châteaudun	0.4 0.8 1.0 1.6 0.3 0.4 0.2 0.8 1.0
Hamburg	0.9 1.6 1.9 3.2 0.7 0.8 0.4 1.6 1.9
Kremsmünster	0.5 0.9 1.1 1.8 0.4 0.4 0.2 0.9 1.1
Okehampton	0.5 0.9 1.1 1.9 0.4 0.5 0.2 0.9 1.2
Piacenza	0.5 0.9 1.1 1.9 0.4 0.5 0.2 0.9 1.2
Porto	0.5 0.9 1.1 1.9 0.4 0.5 0.2 0.9 1.2

iso= isomer, rota= rotamer

PEC surface water and PEC sediment (Regulation (EU) No 284/2013, Annex Part A, points 9.2.5/9.3.1)

Parent dimethenamid-P

Parameters used in FOCUSsw step 1 and 2

Parameter Description	Value
Molecular weight (g/mol)	275.8
Water solubility at 25 °C (mg/L)	1449
\(K_{oc}\) (mL/g)	167.4 (median, n=10)
\(DT_{50}\) soil (d): geometric mean of normalised laboratory and field values (n = 12)	
\(DT_{50}\) water/sediment system (d): geometric mean of total system, laboratory data, n=3	
\(DT_{50}\) sediment (d)	1000 d (default)

Application rates used in FOCUSsw step 1 and 2

Product	Value
Product BAS 656 12 H with 720 g/L dimethenamid-P	
Crop: Maize	
Application rate (g a.s./ha)	1 x 864
Crop interception (%)	no interception & minimal crop cover
season of application	March - May

Version control no. of FOCUS calculator:

Step 1-2, version 2.1	
Molecular weight (g/mol)	275.8
Water solubility at 25 °C (mg/L)	1449
\(K_{oc}\) (mL/g)	167.4 (median, n=10)
\(DT_{50}\) soil (d): geometric mean of normalised laboratory and field values (n = 12)	
\(DT_{50}\) water/sediment system (d): geometric mean of total system, laboratory data, n=3	
\(DT_{50}\) sediment (d)	1000 d (default)

www.efsa.europa.eu/efsajournal 82 EFSA Journal 2018;16(3):5211
Application rates used in FOCUSsw step 3 & 4

Crop	Application rate (g/ha)	Season of application
Crop: soy beans, sunflowers and sugar beets	1 x 864	March - May
Crop: sugar beets	1 x 720	March - May & Jun-Sep
Crop: winter oilseed rape	500 g/ha dimethenamid-P (+ 250 g/ha quinmerac)	Jun - Sep & Oct-Feb
Crop: maize	1 x 864	30 d before emergence (pre-merge)

Parameters used in FOCUSsw step 3 & 4

Parameter	Value
Molecular weight (g/mol)	275.8
Water solubility at 25 °C (mg/L)	1449
Vapour pressure (Pa) at 25 °C	2.51 x 10^{-3}
K_{oc} (mL/g)	167.4, Median (n = 10)
1/n	0.99 (median/ arithmetic mean, n=10)
DT_{50} soil (d)	11.3 d (geometric mean of normalised laboratory and field DT_{50} values (n = 12))
DT_{50} water (d)	26.9 (geometric mean of total system, laboratory data, n=3)
DT_{50} sediment (d)	1000 (default)
DT_{50} crop (d)	10
Crop uptake factor	0.5
Wash off coefficient: PRZM (cm^-1)	0.5
MACRO (mm^-1)	0.05
Modelling 2: data gap	DT_{50} water (d): 1000 d (default) with DT_{50} sediment (d): 26.9 d (geometric mean of total system, laboratory data, n=3)

Application rates used in FOCUSsw step 3 & 4

Crop	Application rate (g a.s./ha)	Application window
Crop: wheat	500 g/ha	30 d before emergence (pre-merge)
Crop: soy beans	1 x 864	30 d before emergence (pre-merge)
Crop: sugar beets	1 x 720	30 d before emergence (pre-merge)
Crop: winter oilseed rape	500 g/ha dimethenamid-P (+ 250 g/ha quinmerac)	30 d before emergence (pre-merge)
Crop: maize	1 x 864	30 d before emergence (pre-merge)
Crop: Soy beans
BBCH: 00-09 (pre-emergence)
Application rate (g a.s./ha): 1 x 864
Application window: 30 d before emergence (pre-emergence)

Crop: sunflowers
BBCH: 00-09 (pre-emergence)
Application rate (g a.s./ha): 1 x 864
Application window: 30 d before emergence (pre-emergence)

Crop: sugar beets
BBCH: 00-09 (pre-emergence)
Application rate (g a.s./ha): 1 x 864
Application window: 30 d before emergence (pre-emergence)

Crop: sugar beets
BBCH: 12-18 (post-emergence)
Application rate (g a.s./ha): 1 x 720
Application window: 30 d after emergence (post-emergence)

Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac:

Crop: winter oilseed rape
BBCH: 00-09 (pre-emergence) & 10-16 (post-emergence)
Application rate (g a.s./ha): 1 x 500 g/ha dimethenamid-P (+ 250 g/ha quinmerac)
Application window: 30 d before emergence (pre-emergence) & 30 d after emergence (post-emergence)

Application scenario	FOCUS model	$\text{PEC}_{\text{SW, max}}$ (µg/L)	$\text{PEC}_{\text{SED, max}}$ (µg/kg)
Maize, soybeans, sunflowers, sugar beets 1 x 864 g/ha, pre-emergence	FOCUS Step 1	243.394	394.711
North Europe		43.142	71.564
South Europe		79.986	133.198
Maize, 1 x 864 g/ha, post-emergence	FOCUS Step 1	243.394	394.711
North Europe		33.931	56.156
South Europe		61.564	102.381
Application scenario

FOCUS model	PEC_{SW}, max (µg/L)	PEC_{SED}, max (µg/kg)

Sugar beets, 1 x 720 g/ha, post-emergence
- FOCUS Step 1: 243.394
- FOCUS Step 2: 328.926
- North Europe, Mar-May: 29.811
- South Europe, Mar-May: 54.374

Winter oilseed rape 1 x 500 g/ha, pre-emergence
- FOCUS Step 1: 140.853
- FOCUS Step 2: 228.421
- North Europe, Oct-Feb: 56.949
- South Europe, Oct-Feb: 46.288

Winter oilseed rape 1 x 500 g/ha, post-emergence
- FOCUS Step 1: 140.853
- FOCUS Step 2: 228.421
- North Europe, June-Sept: 16.438
- North Europe, Oct-Feb: 35.628
- South Europe, June-Sept: 22.835
- South Europe, Oct-Feb: 29.231

Application scenario

FOCUS STEP 3 Scenario	Water body	PEC_{SW}, Global max (µg/L)	PEC_{SED}, Global max (µg/kg)

Maize, 1 x 864 g/ha, pre-emergence
- D3: ditch 4.524 0.990
 - D4: pond 0.212 0.293
 - stream 3.721 0.135
- D5: pond 0.215 0.285
 - stream 4.025 0.153
- D6: ditch 4.578 1.204
- R1: pond 0.330 0.514
 - stream 10.478 1.853
- R2: stream 7.504 1.490
- R3: stream 16.982 4.430
- R4: stream 46.070 5.991

Maize, 1 x 864 g/ha, post-emergence
- D3: ditch 4.528 1.037
Application scenario: Soy beans, 1 x 864 g/ha, pre-emergence

Water body	FOCUS STEP 3 Scenario	PEC$_{SW}$, Global max (µg/L)	PEC$_{SED}$, Global max (µg/kg)
stream	D3	23.084	13.736
	R4	13.805	3.169

Application scenario: sunflowers, 1 x 864 g/ha, pre-emergence

Water body	FOCUS STEP 3 Scenario	PEC$_{SW}$, Global max (µg/L)	PEC$_{SED}$, Global max (µg/kg)
stream	D5	20.477	3.859
	R3	38.356	7.615

Application scenario: Sugar beets, 1 x 864 g/ha, pre-emergence

Water body	FOCUS STEP 3 Scenario	PEC$_{SW}$, Global max (µg/L)	PEC$_{SED}$, Global max (µg/kg)
stream	D3	3.772	0.870
	D4	3.727	0.154
	R1	20.477	3.859
	R3	38.356	7.615

Application scenario: Sugar beets, 1 x 720 g/ha, post-emergence

Water body	FOCUS STEP 3 Scenario	PEC$_{SW}$, Global max (µg/L)	PEC$_{SED}$, Global max (µg/kg)
stream	D3	3.772	0.870
	D4	3.160	0.145
	R1	3.597	0.661
Application scenario: Winter oilseed rape, 1 x 500 g/ha, pre-emergence

Application scenario	FOCUS STEP 3 Scenario	Water body	PEC\textsubscript{SW}, Global max (µg/L)	PEC\textsubscript{SED}, Global max (µg/kg)
	D2	ditch	8.318	6.796
		stream	5.206	3.882
	D3	ditch	3.191	1.339
	D4	pond	0.427	0.964
		stream	2.743	0.463
	D5	pond	0.207	0.523
		stream	2.959	0.525
	R1	pond	0.122	0.138
		stream	2.096	0.203
	R3	stream	6.044	1.270

Application scenario: Winter oilseed rape, 1 x 500 g/ha, post-emergence

Application scenario	FOCUS STEP 3 Scenario	Water body	PEC\textsubscript{SW}, Global max (µg/L)	PEC\textsubscript{SED}, Global max (µg/kg)
	D2	ditch	20.377	15.351
		stream	12.707	8.999
	D3	ditch	3.181	0.936
	D4	pond	0.787	1.728
		stream	2.747	0.860
	D5	pond	0.306	0.764
		stream	2.960	0.521
	R1	pond	0.136	0.181
		stream	2.096	0.203
	R3	stream	11.180	2.728

Application scenario: Maize, 1 x 864 g/ha, pre-emergence

Application scenario	FOCUS STEP 3 & 4 Scenario	Water body	FOCUS Step 4 mitigation measures				
			5 m D	10 m D	20 m D	10 m D + R	20 m D + R
			PEC\textsubscript{sw}, Global max [µg L-1]				
	D3	ditch	1.483	0.786	0.409	0.786	0.409
	D4	pond	0.187	0.137	0.090	0.137	0.090
		stream	1.577	0.842	0.440	0.842	0.440
	D5	pond	0.190	0.139	0.093	0.139	0.093
		stream	1.706	0.911	0.476	0.911	0.476
	D6	ditch	1.535	0.838	0.460	0.838	0.460
	R1	pond	0.314	0.282	0.253	0.164	0.095
		stream	10.478	10.478	10.478	4.442	2.266
	R2	stream	7.504	7.504	7.504	3.362	1.750
Application scenario

FOCUS STEP 3 & 4 Scenario	Water body	FOCUS Step 4 mitigation measures				
		5 m D	10 m D	20 m D	10 m D + R	20 m D + R
D3	ditch	1.484	0.792	0.416	0.792	0.416
D4	pond	0.198	0.145	0.095	0.145	0.095
D5	stream	1.683	0.901	0.471	0.902	0.471
D6	pond	0.212	0.159	0.109	0.159	0.109
R1	stream	11.503	11.503	11.503	5.208	2.723
R2	stream	9.647	9.647	9.647	4.247	2.200
R3	stream	25.173	25.173	25.173	11.382	5.948
R4	stream	28.803	28.803	28.803	13.093	6.863

PECsw, Global max [µg L⁻¹]

Drift mitigation using no-spray buffer zones

Runoff mitigation using vegetated filter strips

Application scenario

FOCUS STEP 3 & 4 Scenario	Water body	FOCUS Step 4 mitigation measures				
		5 m D	10 m D	20 m D	10 m D + R	20 m D + R
R3	stream	23.084	23.084	23.084	10.548	5.539
R4	stream	13.805	13.805	13.805	6.285	3.295

PECsw, Global max [µg L⁻¹]

Drift mitigation using no-spray buffer zones

Runoff mitigation using vegetated filter strips
Application scenario

FOCUS STEP 3 & 4 Scenario	Water body	FOCUS Step 4 mitigation measures		
5 m D	10 m D	20 m D	10 m D + R	20 m D + R
5 m D	10 m D	20 m D		
5 m D	10 m D	20 m D		
PEC_{sw}, Global max [µg L⁻¹]				

Sugar beet, 1 x 720 g/ha, post-emergence

D3	ditch	1.237	0.657	0.345	0.657	0.345
D4	pond	0.169	0.125	0.084	0.125	0.084
	stream	1.346	0.723	0.380	0.723	0.380
R1	pond	0.249	0.221	0.195	0.133	0.078
	stream	5.200	5.200	5.200	2.375	1.246

D Drift mitigation using no-spray buffer zones
R Runoff mitigation using vegetated filter strips

sunflowers, 1 x 864 g/ha, pre-emergence

D5	pond	0.190	0.140	0.094	0.140	0.094
	stream	1.584	0.845	0.441	0.845	0.441
R1	pond	0.339	0.308	0.279	0.174	0.100
	stream	43.354	43.354	43.354	19.801	10.394
R3	stream	37.897	37.897	37.897	16.627	8.594

D Drift mitigation using no-spray buffer zones
R Runoff mitigation using vegetated filter strips

Winter oilseed rape, 1 x 500 g/ha, pre-emergence

D2	ditch	8.318	8.318	8.318	8.318	8.318
	stream	5.206	5.206	5.206	5.206	5.206
D3	ditch	0.870	0.472	0.249	0.472	0.249
D4	pond	0.425	0.420	0.416	0.420	0.416
	stream	1.005	0.710	0.710	0.710	0.710
D5	pond	0.207	0.207	0.207	0.207	0.207
	stream	0.644	0.644	0.644	2.754	1.445
R1	pond	0.076	0.075	0.050	0.075	0.050
	stream	0.644	0.644	0.644	2.754	1.445
R3	stream	0.076	0.075	0.050	0.075	0.050

D Drift mitigation using no-spray buffer zones
R Runoff mitigation using vegetated filter strips
Application scenario	FOCUS STEP 3 & 4 Scenario	Water body	FOCUS Step 4 mitigation measures				
			5 m D	10 m D	20 m D	10 m D + R	20 m D + R
Winter oilseed rape, 1 x 500 g/ha, post-emergence	D2	ditch	20.377	20.377	20.377	20.377	20.377
		stream	12.707	12.707	12.707	12.707	12.707
	D3	ditch	0.876	0.485	0.258	0.485	0.258
	D4	pond	0.783	0.776	0.770	0.776	0.770
		stream	1.342	1.342	1.342	1.342	1.342
	D5	pond	0.306	0.306	0.306	0.306	0.306
		stream	1.089	0.584	0.342	0.584	0.342
	R1	pond	0.116	0.084	0.055	0.084	0.055
		stream	0.877	0.877	0.877	0.406	0.211
	R3	stream	11.180	11.180	11.180	5.095	2.671

D Drift mitigation using no-spray buffer zones
R Runoff mitigation using vegetated filter strips

Metabolite M656PH003

Parameters used in FOCUSsw step 1 and 2

- Molecular weight (g/mol): 241.4
- Water solubility at 25 °C (mg/L): 1449 (Water solubility of parent (at 25 °C))
- Koc (mL/g): 0 / 10000 (worst case default values for water and sediment)
- DT₅₀ soil (d): 1000 (default)
- DT₅₀ water/sediment system (d): 1000 (default)
- DT₅₀ water (d): 1000 (default)
- DT₅₀ sediment (d): 1000 (default)
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 14.4%
- Soil: no formation

Application rates used in FOCUSsw step 1 and 2

- Product BAS 656 12 H with 720 g/L dimethenamid-P:
 - Crop: Maize
 - Application rate (g a.s./ha): 1 x 864
 - Crop interception (%): no interception & minimal crop cover
 - Season of application: March- May
- Crop: soy beans, sunflowers and sugar beets
 - Application rate (g/ha): 1 x 864
 - Crop interception (%): no interception
 - Season of application: March- May

Version control no. of FOCUS calculator:

Step 1-2, version 2.1
Application scenario

FOCUS model	**Metabolite M656PH003**	**PEC\(_{SW, \text{max}}\) (µg/L)**	**PEC\(_{SED, \text{max}}\) (µg/kg)**
Maize, soybeans, sunflowers, sugar beets
1 x 864 g a.s./ha, pre-emergence

FOCUS Step 1 | 1.0015 | 6.983
FOCUS Step 2
North Europe | 1.0015 | 6.983
South Europe | 1.0015 | 6.983

Maize
1 x 864 g a.s./ha, post-emergence

FOCUS Step 1 | 1.0015 | 6.963
FOCUS Step 2
North Europe | 1.0015 | 6.963
South Europe | 1.0015 | 6.963

Sugar beet
1 x 720 g a.s./ha, post-emergence

FOCUS Step 1 | 0.8346 | 5.819
FOCUS Step 2
North Europe | 0.8346 | 5.803
South Europe | 0.8346 | 5.803

Crop: sugar beets

Application rate (g/ha): 1 x 720

Crop interception (%): no interception & minimal crop cover

Season of application: March-May

Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac.

Crop: winter oilseed rape

Application rate (g/ha): 500 g/ha dimethenamid-P (+ 250 g/ha quinmerac)

Crop interception (%): no interception & minimal crop cover

Season of application: Oct-Feb
Application scenario: Winter oilseed rape (1 x 500 g a.s./ha, pre-emergence)

FOCUS model	Metabolite M656PH003	
	PEC\(_{SW, \text{max}}\) (µg/L)	PEC\(_{SED, \text{max}}\) (µg/kg)
FOCUS Step 1	0.580	2.482
FOCUS Step 2	0.580	2.482
North Europe	0.580	2.475
South Europe	0.580	2.475

Application scenario: Winter oilseed rape (1 x 500 g a.s./ha, post-emergence)

FOCUS model	Metabolite M656PH003	
	PEC\(_{SW, \text{max}}\) (µg/L)	PEC\(_{SED, \text{max}}\) (µg/kg)
FOCUS Step 1	0.580	2.482
FOCUS Step 2	0.580	2.482
North Europe	0.580	2.475
South Europe	0.580	2.475

Metabolite M656PH023

Version control no. of FOCUS calculator:
Step 1-2, version 2.1

Parameters used in FOCUSsw step 1 and 2
- Molecular weight (g/mol): 271
- Water solubility at 25°C (mg/L): 1449 (Water solubility of parent (at 25 °C))
- Koc (mL/g): 11.9 (arithmetic mean, n=5)
- DT\(_{50}\) soil (d): 28.2 (Geometric mean of normalized (pF 2, 20 °C) laboratory DT\(_{50}\) n = 5)
- DT\(_{50}\) water/sediment system (d): 1000 (default)
- DT\(_{50}\) water (d): 1000 (default)
- DT\(_{50}\) sediment (d): 1000 (default)
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 11.4 %
- Soil: 13.4 %

Application rates used in FOCUSsw step 1 and 2
- Product BAS 656 12 H with 720 g/L dimethenamid-P:
 - Crop: Maize
 - Application rate (g a.s./ha): 1 x 864
 - Crop interception (%): no interception & minimal crop cover
 - Season of application: March- May
- Crop: soy beans, sunflowers and sugar beets
 - Application rate (g/ha): 1 x 864
 - Crop interception (%): no interception
 - Season of application: March- May
Crop: sugar beets
Application rate (g/ha): 1 x 720
Crop interception (%): no interception & minimal crop cover
season of application: March-May
Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac:
Crop: winter oilseed rape
Application rate (g/ha): 500 g/ha dimethenamid-P (+ 250 g/ha quinmerac)
Crop interception (%): no interception & minimal crop cover
season of application: Oct-Feb

Application scenario	FOCUS model	Metabolite M656PH023	
		PEC_{SW, \text{max}}	PEC_{SED, \text{max}}
		(\mu g/L)	(\mu g/kg)
Maize, soybeans, sunflowers, sugar beets 1 x 864 g/ha, pre-emergence	FOCUS Step 1	38.220	4.442
	FOCUS Step 2	7.654	0.909
	North Europe	14.411	1.712
	South Europe		
Maize 1 x 864 g/ha, post-emergence	FOCUS Step 1	37.218	4.442
	FOCUS Step 2	5.953	0.707
	North Europe	11.028	1.311
	South Europe		
Sugar beet 1 x 720 g/ha, post-emergence	FOCUS Step 1	31.849	3.702
	FOCUS Step 2	5.343	0.623
	North Europe	9.754	1.160
	South Europe		
Application scenario

Metabolite M656PH023	FOCUS model	PEC\textsubscript{SW, max} (µg/L)	PEC\textsubscript{SED, max} (µg/kg)	
Winter oilseed rape 1 x 500 g/ha, pre-emergence	FOCUS Step 1	22.117	2.571	
	FOCUS Step 2	North Europe	10.298	1.224
		South Europe	8.340	0.991

Application scenario

Metabolite M656PH023	FOCUS model	PEC\textsubscript{SW, max} (µg/L)	PEC\textsubscript{SED, max} (µg/kg)	
Winter oilseed rape 1 x 500 g/ha, post-emergence	FOCUS Step 1	22.117	2.571	
	FOCUS Step 2	North Europe	6.382	0.759
		South Europe	5.207	0.619

Parameters used in FOCUSsw step 1 and 2

- **Molecular weight (g/mol):** 321.4
- **Water solubility at 25 °C (mg/L):** 1449 (Water solubility of parent (at 25 °C))
- **K\textsubscript{oc} (mL/g):** 7.0 (arithmetic mean, n=6)
- **DT\textsubscript{50} soil (d):** 14.3 (geometric mean, lab data at 20 °C, pF2, n=4)
- **DT\textsubscript{50} water/sediment system (d):** 1000 (default)
- **DT\textsubscript{50} water (d):** 1000 (default)
- **DT\textsubscript{50} sediment (d):** 1000 (default)
- **Maximum occurrence observed (% molar basis with respect to the parent):** Total Water and Sediment: 6.3 %
- **Soil: 13.3 %**

Application rates used in FOCUSsw step 1 and 2

- **Product BAS 656 12 H with 720 g/L dimethenamid-P:**
 - **Crop:** Maize
 - **Application rate (g a.s./ha):** 1 x 864
 - **Crop interception (%):** no interception & minimal crop cover
 - **season of application:** March - May
- **Crop:** soy beans, sunflowers and sugar beets
 - **Application rate (g/ha):** 1 x 864
 - **Crop interception (%):** no interception
 - **season of application:** March - May
Crop: sugar beets
Application rate (g/ha): 1 x 720
Crop interception (%): no interception & minimal crop cover
season of application: March - May

Product BAS 830.01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac:

Crop: winter oilseed rape
Application rate (g/ha): 500 g/ha dimethenamid-P (+ 250 g/ha quinmerac)
Crop interception (%): no interception & minimal crop cover
season of application: Oct-Feb

Application scenario	FOCUS model	Metabolite M656PH027
	FOCUS Step 1	PEC_SW, max (µg/L)
		PEC_SED, max (µg/kg)
Maize, soybeans, sunflowers, sugar beets 1 x 864 g/ha, pre-emergence	44.525	5.229
	FOCUS Step 2	
	North Europe	7.815
	South Europe	15.054

Application scenario	FOCUS model	Metabolite M656PH027
	FOCUS Step 1	PEC_SW, max (µg/L)
		PEC_SED, max (µg/kg)
Maize 1 x 864 g/ha, post-emergence	44.525	5.229
	FOCUS Step 2	
	North Europe	6.005
	South Europe	1.359

Application scenario	FOCUS model	Metabolite M656PH027
	FOCUS Step 1	PEC_SW, max (µg/L)
		PEC_SED, max (µg/kg)
Sugar beet 1 x 720 g/ha, post-emergence	37.104	4.358
	FOCUS Step 2	
	North Europe	5.306
	South Europe	10.132
Application scenario

Application scenario	FOCUS model	Metabolite M656PH027		
		PEC\textsubscript{SW, max} (µg/L)	PEC\textsubscript{SED, max} (µg/kg)	
Winter oilseed rape 1 x 500 g/ha, pre-emergence	FOCUS Step 1	25.767	3.026	
	FOCUS Step 2	North Europe	10.807	1.285
		South Europe	8.712	1.036
Winter oilseed rape 1 x 500 g/ha, post-emergence	FOCUS Step 1	25.767	3.026	
	FOCUS Step 2	North Europe	6.617	0.787
		South Europe	5.361	0.637

Metabolite M656PH031

Version control no. of FOCUS calculator:
Step 1-2, version 2.1

Parameters used in FOCUSsw step 1 and 2

- Molecular weight (g/mol): 347
- Water solubility at 25 °C (mg/L): 1000 (default)
- K\textsubscript{oc} (mL/g): 1 (worst case)
- DT\textsubscript{50} soil (d): 51.9 (geometric mean, lab data at 20 °C, pF2, n=5)
- DT\textsubscript{50} water/sediment system (d): 1000 (default)
- DT\textsubscript{50} water (d): 1000 (default)
- DT\textsubscript{50} sediment (d): 1000 (default)
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: not formed
- Soil: 10.34 %

Application rates used in FOCUSsw step 1 and 2

- Product BAS 656 12 H with 720 g/L dimethenamid-P:
 - Crop: Maize
 - Application rate (g a.s./ha): 1 x 864
 - Crop interception (%): no interception & minimal crop cover
 - season of application: March- May
- Crop: soy beans, sunflowers and sugar beets
 - Application rate (g/ha): 1 x 864
 - Crop interception (%): no interception
 - season of application: March- May
Crop: sugar beets
Application rate (g/ha): 1 x 720
Crop interception (%): no interception & minimal crop cover
season of application: March- May
Product BAS 830 01 H with 333 g/L dimethenamid-P & 167 g/L quinmerac:
Crop: winter oilseed rape
Application rate (g/ha): 500 g/ha dimethenamid-P (+ 250 g/ha quinmerac)
Crop interception (%): no interception & minimal crop cover
season of application: Jun-Sep and Oct-Feb

Application scenario	FOCUS model	Metabolite M656PH031	
		PEC\textsubscript{SW, max} (µg/L)	PEC\textsubscript{SED, max} (µg/kg)
Maize, soybeans, sunflowers, sugar beets 1 x 864 g/ha, pre-emergence	FOCUS Step 1	37.418	0.374
	FOCUS Step 2		
	North Europe	7.094	0.071
	South Europe	14.189	0.142

Application scenario	FOCUS model	Metabolite M656PH031	
		PEC\textsubscript{SW, max} (µg/L)	PEC\textsubscript{SED, max} (µg/kg)
Maize 1 x 864 g/ha, post-emergence	FOCUS Step 1	37.418	0.374
	FOCUS Step 2		
	North Europe	5.321	0.053
	South Europe	10.642	0.106

Application scenario	FOCUS model	Metabolite M656PH031	
		PEC\textsubscript{SW, max} (µg/L)	PEC\textsubscript{SED, max} (µg/kg)
Sugar beet 1 x 720 g/ha, post-emergence	FOCUS Step 1	31.182	0.312
	FOCUS Step 2		
	North Europe	4.730	0.047
	South Europe	9.459	0.095
# Application scenario	FOCUS model	Metabolite M656PH031
		PEC_{SW, max} (µg/L)
Winter oilseed rape 1 x 500 g/ha, pre-emergence	FOCUS Step 1	21.654
	FOCUS Step 2	21.654
	North Europe	10.264
	South Europe	8.211
Winter oilseed rape 1 x 500 g/ha, post-emergence	FOCUS Step 1	21.654
	FOCUS Step 2	21.654
	North Europe	6.158
	South Europe	4.926

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

| Not performed |

PEC

Maximum concentration

| Not performed |
Section 5 Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Colinus virginianus	Dimethenamid-P	Acute	LD$_{50}$	1068
Colinus virginianus	Dimethenamid-P	Long-term	LD$_{50}$/10	106.8
Colinus virginianus	Dimethenamid	Long-term	NOAEL	114
(racemic mixture)	(racemic mixture)			
Mammals				
Rat	Dimethenamid-P	Acute	LD$_{50}$	466 (sexes combined)
Rat	Dimethenamid	Acute	LD$_{50}$	397
Rat	Preparation	Acute	LD$_{50}$	>500
Rat	BAS 656 08 H	Acute		<2000
Rat	Dimethenamid-P	Long-term	NOAEL	25.0

Endocrine disrupting properties (Annex Part A, points 8.1.5)
No indication on the potential for endocrine disrupting properties.

Additional higher tier studies (Annex Part A, points 10.1.1.2):
No data adequate for risk assessment submitted.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
No data submitted.

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

BAS 656 12 H in maize, sweet corn*, soybean, sunflower, and beets at 1 x 864 g a.s./ha [includes splitting in 2 or 3 applications 5-10 day interval in sugar beet]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
Bare soil BBCH 00-09	Small granivorous bird	Acute	21.3	50	10
Maize/ sweet corn BBCH 10-16	Small omnivorous bird	Acute	137.2	7.8	10
Sugar beet BBCH 12-18$^{(1)}$	Small omnivorous bird	Acute	114.3	9.3	10
Bare soil BBCH 00-09	Small granivorous bird	Long-term	5.22	20.1	5
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
--------------------	---	------------	------------------------	-----	---------
Maize/Sweet corn	Small omnivorous bird	Long-term	29.67	3.6	5
BBCH 10-16					
Sugar beet	Small omnivorous bird	Long-term	24.73	4.3	5
BBCH 12-18^1					

Tier 1 (Birds)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Maize/Sweet corn	Medium granivorous bird 100 % seed	Acute	5.702	187	10
BBCH 10-29					
Maize/Sugar maize	Small insectivorous bird 100 % soil dwelling arthropods	Acute	9.072	118	10
BBCH 10-19 Leaf					
development					
Maize/Sweet corn	Small omnivorous bird 25 % crop leaves 25 % weed seeds 50 % ground arthropods	Acute	20.736	52	10
BBCH 10-29					
Maize/Sweet corn	Medium herbivorous/granivorous bird 100 % leaves	Acute	48.038	22	10
BBCH 10-29					
Maize/Sweet corn	Small insectivorous bird 50 % ground arthropods 50 % foliar arthropods	Acute	23.155	46	10
BBCH 10-19					
Sugar beet	Small insectivorous bird 100 % soil dwelling arthropods	Acute	7.8	136.1	10
BBCH 10-19^1					
(spring)					
Sugar beet	Small omnivorous bird 25 % crop leaves 25 % weed seeds 50 % ground arthropods	Acute	17.3	61.8	10
BBCH 10-19^1					
Maize/Sweet corn	Medium granivorous bird 100 % seed	Long-term	1.374	78	5
BBCH 10-29					
Maize/Sweet corn	Small insectivorous bird 100 % soil dwelling arthropods	Long-term	2.610	41	5
BBCH 10-19					
Maize/Sweet corn	Small omnivorous bird 25 % crop leaves 25 % weed seeds 50 % ground arthropods	Long-term	4.991	21	5
BBCH 10-29					
Maize/Sweet corn	Medium herbivorous/granivorous bird 100 % leaves	Long-term	10.395	10	5
BBCH 10-29					
Maize/Sweet corn	Small insectivorous bird 50 % ground arthropods 50 % foliar arthropods	Long-term	5.174	21	5
BBCH 10-19					
Sugar beet	Small insectivorous bird 100 % soil dwelling arthropods	Long-term	2.2	47.4	5
BBCH 10-19^1					
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
------------------	---	------------	------------------------	-----	---------
Sugar beet	Small omnivorous bird		4.1	25.7	5
BBCH 10-19† (spring)	25 % crop leaves 25 % weed seeds 50 % ground arthropods	Long-term	4.1	25.7	5
Higher tier (birds):	Not required				
Screening Step (Mammals)					
Bare soil	Small granivorous mammal	Acute	12.42	37.5	10
BBCH 00-10					
Maize/Sweet corn	Small herbivorous mammal	Acute	117.85	4.0	10
BBCH 10-16					
Sugar beet	Small herbivorous mammal	Acute	85.25	5.5	10
BBCH 12-18†					
Bare soil	Small granivorous mammal	Long-term	3.022	8.3	5
BBCH 00-10					
Maize/Sweet corn	Small herbivorous mammal	Long-term	53.1	0.47	5
BBCH 10-16					
Sugar beet	Small herbivorous mammal	Long-term	16.6	1.5	5
BBCH 12-18†					
Tier 1 (Mammals)					
Maize/Sweet corn	Small insectivorous mammal	Acute	6.6	71	10
BBCH 10-19	100 % ground arthropods				
Maize/Sweet corn	Small herbivorous mammal	Acute	117.8	4	10
BBCH 10-29	All maize shoots + later grass				
Maize/Sweet corn	Small omnivorous mammal	Acute	14.9	31.4	10
BBCH 10-29	25 % weeds 50 % weed seeds 25 % ground arthropods				
Maize/Sweet corn	Additional species: Large herbivorous mammal	Acute	30.3	15	10
BBCH 10-29	100 % crop leaves				
Sugar beet	Small insectivorous mammal	Acute	5.5	85.2	10
BBCH 10-19	100 % ground arthropods				
Sugar beet	Large herbivorous mammal	Acute	25.3	18.4	10
BBCH 10-39	100 % crop leaves				
Sugar beet	Small herbivorous mammal	Acute	12.4	37.6	10
BBCH 10-39	25 % weeds 50 % weed seeds 25 % ground arthropods				
Sugar beet	Small insectivorous mammals “shrew”	Acute	4.1	98.0	10
BBCH 10-19†					
Sugar beet	Large herbivorous mammals “lagomorph”	Acute	18.7	21.2	10
BBCH 10-39†					
Sugar beet	Small omnivorous mammals “mouse”	Acute	9.2	43.3	10
BBCH 10-39†					
Sugar beet	Small insectivorous mammals “shrew”	Acute	3.3	121.4	10
BBCH 10-19†					
### Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Sugar beet BBCH 10-39¹ | Large herbivorous mammals “lagomorph” | Acute | 15.1 | 26.3 | 10 |
Sugar beet BBCH 10-39¹ | Small omnivorous mammals “mouse” | Acute | 7.4 | 53.7 | 10 |
Maize/Sweet corn BBCH 10-19 | Small insectivorous mammal 100 % ground arthropods | Long-term | 1.923 | 13 | 5 |
Maize/Sweet corn BBCH 10-29 | Small herbivorous mammal All maize shoots + later grass | Long-term | 33.11 | **0.76** | 5 |
Maize/Sweet corn BBCH 10-29 | Small omnivorous mammal 25 % weeds 50 % weed seeds 25 % ground arthropods | Long-term | 3.57 | 7.0 | 5 |
Maize/Sweet corn BBCH 10-29 | Additional species: Large herbivorous mammal 100 % crop leaves | Long-term | 7.6 | **3.3** | 5 |
Sugar beet BBCH 10-19 | Small insectivorous mammal 100 % ground arthropods | Long-term | 1.6 | 15.6 | 5 |
Sugar beet BBCH 10-39 | Large herbivorous mammal 100 % ground arthropods | Long-term | 5.46 | **4.6** | 5 |
Sugar beet BBCH 10-39 | Small omnivorous mammal 25 % weeds 50 % weed seeds 25 % ground arthropods | Long-term | 2.98 | 8.4 | 5 |
Sugar beet BBCH 10-19² 2 applications | Small insectivorous mammal 100 % ground arthropods | Long-term | 1.493 | 16.8 | 5 |
Sugar beet BBCH 10-39² 2 applications | Large herbivorous mammal 100 % crop leaves | Long-term | 5.082 | **4.9** | 5 |
Sugar beet BBCH 10-39² 2 applications | Small omnivorous mammal 25 % weeds 50 % weed seeds 25 % ground arthropods | Long-term | 2.772 | 9 | 5 |
Sugar beet BBCH 10-19³ 3 applications | Small insectivorous mammal 100 % ground arthropods | Long-term | 0.995 | 25.1 | 5 |
Sugar beet BBCH 10-39³ 3 applications | Large herbivorous mammal 100 % crop leaves | Long-term | 3.388 | 7.4 | 5 |
Sugar beet BBCH 10-39³ 3 applications | Small omnivorous mammal 25 % weeds 50 % weed seeds 25 % ground arthropods | Long-term | 1.848 | 13.5 | 5 |

Higher tier (Mammals): Based on the data submitted no higher tier refinement can be conducted.

The acute and long-term risk to small herbivorous mammals for dimethenamid-P for the intended use in maize/sweet corn was discussed at the Pesticides Peer Review Meeting 165 (September 2017). Considering that small herbivorous mammals are not expected to be in the maize field at the earlier growth stages (BBCH 10-16) of maize, the experts considered that the ‘large herbivorous mammals’ scenario’ and ‘small omnivorous mammal’ scenario should be considered in the risk assessment for these uses.

Risk from bioaccumulation and food chain behaviour not relevant Log kow ≤ 3

Risk from consumption of contaminated water
Scenarios

Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Puddle scenario, Screening step				
1) Birds: Application rate (in g a.s./ha) /EP: 864 / 106.8 = 8.1; 50 < koc < 500 L/kg), TER calculation not needed				
2) Mammals: Application rate (in g a.s./ha)/ EP: 864/ 25 = 34.6; 50 <koc < 500 L/kg), TER calculation not needed				
1) Worst case				
2) 2 applications with 360 g a.s. / ha, 5 – 10 d distance				
3) 3 applications with 240 g a.s/ha each, 5 – 10 d distance				
*reported in the GAP as ‘sugar maize’

The risk to birds from the intended use on sunflowers is covered by the risk assessment for the uses on maize.

BAS 830 01 H (contains 333 g/L dimethenamid-P and 67 g/L quinmerac) in winter oilseed rape at 1 x 1.5 L preparation/ha, corresponding to 500 g dimethenamid-P/ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Tier 1 (Birds)						
Bare soil BBCH 00-09	Small granivorous bird “finch”	Acute	a) 12.35 b)	a) 86.5 b) 68.3	10	
Bare soil BBCH 00-09	Small omnivorous bird “lark”	Acute	a) 8.7 b)	a) 123 b) 96.9	10	
Bare soil BBCH 00-09	Small insectivorous bird “wagtail”	Acute	a) 5.45 b)	a) 196 b) 155	10	
Oilseed rape BBCH 10-18 (shoots)	Large herbivorous bird "goose"	Acute	a) 19.5 b)	a) 54.8 b) 43.2	10	
Oilseed rape BBCH 10-18	Small omnivorous bird “lark”	Acute	a) 12 b)	a) 89.0 b) 70.3	10	
Oilseed rape BBCH 10-18	Medium herbivorous/granivorous bird "pigeon"	Acute	a) 27.8 b)	a) 38.4 b) 30.3	10	
Oilseed rape BBCH 10-18	Small insectivorous bird “wagtail”	Acute	a) 5.45 b)	a) 196 b) 154.7	10	
Bare soil BBCH 00-09	Small granivorous bird “finch”	Long-term	a) 3.02 b)	a) 35.4 b) 27.1	5	
Bare soil BBCH 00-09	Small insectivorous bird “wagtail”	Long-term	a) 1.56 b)	a) 68.5 b) 52.3	5	
Bare soil BBCH 00-09	Small omnivorous bird “lark”	Long-term	a) 2.17 b)	a) 49.2 b) 37.6	5	
Oilseed rape BBCH 10-18 (shoots)	Large herbivorous bird "goose"	Long-term	a) 4.21 b)	a) 25.4 b) 19.4	5	
Growth stage | Indicator or focal species | Time scale | DDD (mg/kg bw per day) | TER | Trigger |
---|---|---|---|---|---|
Oilseed rape BBCH 10-18 | Small omnivorous bird “lark” | Long-term | a) 2.89 b) 2.89 | a) 37.0 b) 28.3 | 5 |
Oilseed rape BBCH 10-18 | Medium herbivorous/ granivorous bird “pigeon” | Long-term | a) 6.02 b) 6.02 | a) 17.7 b) 13.5 | 5 |
Oilseed rape BBCH 10-18 | Small insectivorous bird “wagtail” | Long-term | a) 1.56 b) 1.71 | a) 68.5 b) 52.3 | 5 |

Higher tier (birds):
Not required

Tier 1 (Mammals)

Bare soil BBCH 00-10 | Small omnivorous mammal “mouse” | Acute | 7.15 | 65 | 10 |
Oilseed rape BBCH 10-19 | Small insectivorous mammal “shrew” | Acute | 3.8 | 122 | 10 |
Oilseed rape (all season) | Large herbivorous mammal "largomorph" | Acute | 17.6 | 26.6 | 10 |
Oilseed rape BBCH 10-29 | Small omnivorous mammal “mouse” | Acute | 8.6 | 54.2 | 10 |
Bare soil BBCH 00-10 | Small omnivorous mammal “mouse” | Long-term | a) 1.56 b) 1.56 | a) 17 b) 15 | 5 |
Oilseed rape BBCH 10-19 | Small insectivorous mammal “shrew” | Long-term | a) 1.11 b) 1.11 | a) 23 b) 20 | 5 |
Oilseed rape (all season) | Large herbivorous mammal "largomorph" | Long-term | a) 3.79 b) 3.79 | a) 6.6 b) 5.9 | 5 |
Oilseed rape BBCH 10-29 | Small omnivorous mammal “mouse” | Long-term | a) 2.07 b) 2.07 | a) 12 b) 10 | 5 |

Higher tier (Mammals):
Not required

Risk from bioaccumulation and food chain behaviour not relevant Log kow ≤ 3

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Puddle scenario, Screening step
1) Birds: Application rate (in g a.s./ha) /EP = 500 / 106.8 = 4.6; 50 < koc < 500 L/kg), TER calculation not needed
2) Mammals: Application rate (in g a.s./ha) /EP = 500/ 25 = 20; 50 < koc < 500 L/kg), TER calculation not needed

a) Active substance dimethenamid-P
b) Representative formulation BAS 830 01 H: TER values for birds are calculated via LD₅₀ (mix) = \(\sum(X_i/\text{LD}_{50}(X))^{1/5} \)
1265 for acute assessment and via TER (mix) for long-term assessment, respectively. Note that dimethenamid-P is driving the acute risk and no additional mixture toxicity assessment is necessary to address the acute risk for mammals.

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity
Laboratory tests				
Fish				
Oncorhynchus mykiss	a.s. (racemic mixture)	Acute 96 h (static)	Mortality, LC$_{50}$	2.6 mg a.s./L$_{50}$ (mm)
Oncorhynchus mykiss	a.s.	Acute 96 h (flow-through)	Mortality, LC$_{50}$	6.3 mg a.s./L$_{50}$ (mm)
Oncorhynchus mykiss	BAS 656 07 H2	Acute 96 h (static)	Mortality, LC$_{50}$	7.94 mg prep./L$_{50}$ (nom) (corresponding to 5.11 mg a.s./L)
Oncorhynchus mykiss	BAS 830 01 H	Acute 96 h (static)	Mortality, LC$_{50}$	19.8 mg prep./L$_{50}$ (nom) (corresponding to 6.07 mg dimethenamid-P/L and 3.02 mg quinmerac/L)
Oncorhynchus mykiss	M3	Acute 96 h (static)	Mortality, LC$_{50}$	60.8 mg metabolite/L$_{50}$ (mm)
Oncorhynchus mykiss	M23	Acute 96 h (static)	Mortality, LC$_{50}$	> 87 mg metabolite/L$_{50}$ (mm)
Oncorhynchus mykiss	M27	Acute 96 h (static)	Mortality, LC$_{50}$	> 100 mg metabolite/L$_{50}$ (mm)
Oncorhynchus mykiss	a.s. (racemic mixture)	Chronic (ELS, flow-through)	Growth, NOEC, EC$_{10}$	0.12 mg a.s./L$_{10}$ (mm)
Aquatic invertebrates				
Americamysis bahia1 (former name: Mysidopsis bahia)	a.s. racemic mixture	48 h	Mortality, LC$_{50}$	> 9.2 mg a.s./L$_{50}$ (mm)
		96 h (flow-through)		3.2 mg a.s./L$_{50}$ (mm)
Daphnia magna	BAS 656 07 H2	48 h (static)	Mortality, EC$_{50}$	17.1 mg prep./L$_{50}$ (nom) (corresponding to 11.0 mg a.s./L)
Group	Test substance	Time-scale (Test type)	End point	Toxicity[^1]
--------------------------	---------------------------	------------------------	-------------------------	---
Daphnia magna	BAS 830 01 H	48 h (static)	Mortality, EC_{50}	58.7 mg prep./L\textsubscript{(nom)} (corresponding to 18.0 mg dimethenamid-P/L and 8.95 mg quinmerac/L)
Daphnia magna	M3	48 h (static)	Mortality, EC\textsubscript{50}	> 101.6 mg metabolite/L\textsubscript{(mm)}
Daphnia magna	M23	48 h (static)	Mortality, EC\textsubscript{50}	> 95 mg metabolite/L\textsubscript{(mm)}
Daphnia magna	M27	48 h (static)	Mortality, EC\textsubscript{50}	> 100 mg metabolite/L\textsubscript{(mm)}
Daphnia magna	M31	48 h (static)	Mortality, EC\textsubscript{50}	> 100 mg metabolite/L\textsubscript{(mm)}
Daphnia magna	a.s. racemic mixture	21 d (semi-static)	Reproduction, NOEC, EC_{10}	0.68 mg a.s./L\textsubscript{(mm)}, 0.94 mg a.s./L\textsubscript{(mm)}
Algae				
Pseudokirchneriella subcapitata (syn. *Selenastrum capricornutum*)	a.s.	72 h		
72 h				
72 h				
96 h				
96 h				
96 h				
120 h				
120 h				
120 h				
120 h (static)	Growth rate: E\textsubscript{r}C_{50}			
Yield: E\textsubscript{y}C_{50}				
Biomass: E\textsubscript{b}C_{50}				
Growth rate: E\textsubscript{r}C_{50}				
Yield: E\textsubscript{y}C_{50}				
Biomass: E\textsubscript{b}C_{50}				
Growth rate: E\textsubscript{r}C_{50}				
Yield: E\textsubscript{y}C_{50}				
Biomass: E\textsubscript{b}C_{50}				
NOEC	0.0303			
0.0185				
0.0191				
0.0339				
0.0168				
0.0140				
0.0378				
0.0188				
0.0143				
0.0030 mg a.s./L\textsubscript{(nom)}				
0.0663				
0.0138				
0.0138 mg a.s./L\textsubscript{(nom)}				
0.0448 mg a.s./L\textsubscript{(nom)}				
Desmodesmus subspicatus	a.s.	72 h		
72 h				
72 h (static)	Growth rate: E\textsubscript{r}C_{50}			
Yield: E\textsubscript{y}C_{50}	> 0.0509			
0.0183 mg a.s./L\textsubscript{(mm)}				
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
-------------------------------	----------------	------------------------	--	-----------
Navicula pelliculosa	a.s.	72 h 72 h 96 h 96 h 120 h 120 h (static)	Growth rate: \(E_{rC_{50}}\) Biomass: \(E_{bC_{50}}\) Growth rate: \(E_{rC_{50}}\) Biomass: \(E_{bC_{50}}\) NOEC	0.287 0.154 4.048 0.596 1.717 0.352 0.056 mg a.s./L\(_{\text{mm}}\)
Ankistrodesmus bifraianu	a.s.	72 h 72 h (static)	Growth rate: \(E_{rC_{50}}\) Yield: \(E_{yC_{50}}\)	0.0370 0.0097 mg a.s./L\(_{\text{mm}}\)
Chlamydomonas reinhardtii	a.s.	72 h 72 h (static)	Growth rate: \(E_{rC_{50}}\) Yield: \(E_{yC_{50}}\)	0.2245 0.0854 mg a.s./L\(_{\text{nom}}\)
Monoraphidium griffithii	a.s.	72 h 72 h (static)	Growth rate: \(E_{rC_{50}}\) Yield: \(E_{yC_{50}}\)	0.0250 0.0066 mg a.s./L\(_{\text{nom}}\)
Neochloris aquatica	a.s.	72 h 72 h (static)	Growth rate: \(E_{rC_{50}}\) Yield: \(E_{yC_{50}}\)	> 1.000 0.3680 mg a.s./L\(_{\text{nom}}\)
Planktosphaeria botryoides	a.s.	72 h 72 h (static)	Growth rate: \(E_{rC_{50}}\) Yield: \(E_{yC_{50}}\)	0.9120 0.1110 mg a.s./L\(_{\text{nom}}\)
Schroederia setigera	a.s.	72 h 72 h (static)	Growth rate: \(E_{rC_{50}}\) Yield: \(E_{yC_{50}}\)	> 0.4055 0.1267 mg a.s./L\(_{\text{nom}}\)
Desmodesmus subspicatus	BAS 656 07 H²	72 h (static)	\(E_{rC_{50}}\) \(E_{yC_{50}}\)	0.1327 0.0492 mg prep./L\(_{\text{nom}}\) (corresponding to 0.0854 and 0.0317 mg a.s./L)
Pseudokirchneriella subcapitata	BAS 830 01 H	72 h (static)	\(E_{rC_{50}}\) \(E_{yC_{50}}\)	0.166 0.0656 mg prep./L\(_{\text{nom}}\) (\(E_{rC_{50}}\): corresponding to 0.051 mg dimethenamid-P/L and 0.025 mg quinmerac/L; \(E_{yC_{50}}\): corresponding to 0.02 mg dimethenamid-P/L and 0.01 mg quinmerac/L)
Group	Test substance	Time-scale (Test type)	End point	Toxicity
--	----------------	------------------------	--------------------------	----------
Desmodesmus subspicatus (syn. Scenedesmus subspicatus)	M3	72 h (static)	E_{50}, E_{95}	97.4
				68.5 mg
				metabolite/L$_{(mm)}$
Pseudokirchneriella subcapitata (syn. Selenastrum capricornutum)	M23	72 h (static)	E_{50}, E_{95}	94 mg
				metabolite/L$_{(mm)}$ > 94 mg
				metabolite/L$_{(mm)}$
Pseudokirchneriella subcapitata (syn. Selenastrum capricornutum)	M27	72 h (static)	E_{50}/E_{95}	> 208 mg
				metabolite/L$_{(mm)}$
Pseudokirchneriella subcapitata	M31	72 h (static)	E_{50}/E_{95}	> 100 mg
				metabolite/ L$_{(nom)}$
Higher plant				
Lemna gibba	a.s.	14 d (semi-static)	Frond number, E_{50}, Frond dry weight, E_{50}, NOEC (dry weight, phytotoxicity)	0.01443
				0.00599 mg
				a.s./L$_{(mm)}$
				0.000424 mg
				a.s./L$_{(mm)}$
Lemna gibba	a.s.	7 d (static)	Frond number, E_{50}, Frond dry weight, E_{50}, Frond number, E_{50}, Frond dry weight, E_{50}	0.0568
				0.0434
				0.0168
				0.0190 mg
				a.s./L$_{(mm)}$
Lemna gibba (with sediment)	a.s.	7 d (static)	Frond number, E_{50}, Frond dry weight, E_{50}, Frond number, E_{50}, Frond dry weight, E_{50}	0.0763
				> 0.1242
				0.0255
				0.0380 mg
				a.s./L$_{(mm)}$
Glyceria maxima	a.s.	14 d (static)	Dry weight, E_{50}, Total length, E_{50}, Fresh/wet weight, E_{50}, Dry weight, E_{50}, Total length, E_{50}, Fresh/wet weight, E_{50}, # of leaves, E_{50}	> 1.0
				0.184
				0.402
				0.934
				0.109
				0.221
				0.318 mg a.s./L$_{(nom)}$
Group	Test substance	Time-scale (Test type)	End point	Toxicity \(^1\)
-----------------------	----------------	------------------------	---	--
Acorus calamus	a.s.	13 d (static)	Total length, Fresh/wet weight, Root formation \(E_{50}/E_{C50}\)	\(> 1.314 \text{ mg a.s./L}_{(\text{mm})}\)
Iris pseudacorus	a.s.	13 d (static)	Total length, root formation \(E_{50}\), Fresh/wet weight, \(E_{50}\)	\(> 0.754 \text{ mg a.s./L}_{(\text{mm})}\)
			Total length, root formation \(E_{C50}\), Fresh/wet weight, \(E_{C50}\)	\(0.2020 \text{ mg a.s./L}_{(\text{mm})}\)
				\(> 0.754 \text{ mg a.s./L}_{(\text{mm})}\)
Ludwigia palustris	a.s.	13 d (static)	Total length, \(E_{50}\), Fresh/wet weight, \(E_{50}\)	0.0280
			Total length, \(E_{C50}\), Fresh/wet weight, \(E_{C50}\)	0.0183 mg a.s./L_{(\text{mm})}
				0.033
				0.043 mg a.s./L_{(\text{mm})}
Mentha aquatica	a.s.	13 d (static)	Total length, \(E_{50}\), Fresh/wet weight, \(E_{50}\)	0.180
			Total length, \(E_{C50}\), Fresh/wet weight, \(E_{C50}\)	\(> 1.088 \text{ mg a.s./L}_{(\text{mm})}\)
				0.206
				\(> 1.088 \text{ mg a.s./L}_{(\text{mm})}\)
Sparganium erectum	a.s.	13 d (static)	Total length, Root formation \(E_{50}\), Fresh/wet weight, \(E_{50}\)	\(> 0.451\)
			Total length, Root formation \(E_{C50}\), Fresh/wet weight, \(E_{C50}\)	\(0.243 \text{ mg a.s./L}_{(\text{mm})}\)
				\(> 0.451\)
				0.369 mg a.s./L_{(\text{mm})}
Veronica beccabunga	a.s.	13 d (static)	Total length, \(E_{50}\), Fresh/wet weight, \(E_{50}\)	0.100
			Total length, \(E_{C50}\), Fresh/wet weight, \(E_{C50}\)	0.227 mg a.s./L_{(\text{mm})}
				0.104
				0.323 mg a.s./L_{(\text{mm})}
Ceratophyllum demersum	a.s.	9 d \(E_{C50}\) (static)	Total length, \(E_{50}\), Fresh/wet weight, \(E_{50}\)	0.00983
			Total length, \(E_{C50}\), Fresh/wet weight, \(E_{C50}\)	0.0157 mg a.s./L_{(\text{mm})}
				0.0135
				0.0279 mg a.s./L_{(\text{mm})}
Group	Test substance	Time-scale (Test type)	End point	Toxicity1
-----------------------------	-------------------------	------------------------	--	--------------
Crassula recurva	a.s.	12 d E_{50} (E_{50}) (static)	Total length, E_{50}	0.0755
> 0.340 mg a.s./L (mm)
Total length, E_{50} | 0.0795
> 0.340 mg a.s./L (mm) |
| *Elodea densa* | a.s. | 12 d E_{50} (E_{50}) (static) | Total length, E_{50} | 0.165
> 0.239 mg a.s./L (mm)
Total length, E_{50} | 0.188
> 0.239 mg a.s./L (mm) |
| *Myriophyllum spicatum* | a.s. | 9 d E_{50} (E_{50}) (static) | Total length, E_{50} | 0.0671
> 0.3065 mg a.s./L (mm)
Total length, E_{50} | 0.0884
> 0.3065 mg a.s./L (mm) |
| *Potamogeton crispus* | a.s. | 9 d E_{50} (E_{50}) (static) | Total length, E_{50} | 0.158
> 0.214 mg a.s./L (mm)
Total length, E_{50} | 0.191
> 0.214 mg a.s./L (mm) |
| *Vallisneria spiralis* | a.s. | 12 d E_{50} (E_{50}) (static) | Total length, E_{50} | > 0.261 mg a.s./L (mm) |
| *Monoraphidium griffithii* | a.s. | 6 h exposure period 24 h exposure period Each + 72 h growth phase (static) | E_{50} / E_{50} | > 2.4
> 1.2 mg a.s./L (nom) |
| *(TTE study)* | | | E_{50} / E_{50} | > 1.2 mg a.s./L (nom) |
| *(TTE study)* | | | E_{50} / E_{50} | > 1.2 (extrapolated: 2.485) |
| *(TTE study)* | | | E_{50} / E_{50} | 0.388 mg a.s./L (nom) |
Group	Test substance	Time-scale (Test type)	End point	Toxicity 1
Lemma gibba (TTE study) 3	a.s.	**Scenario A:**	Frond number, dry weight, $E_{\text{fr}}C_{50}$ / $E_{\text{fr}}C_{50}$	> 0.500
		12 h exposure period:	Frond number, dry weight, $E_{\text{fr}}C_{50}$ / $E_{\text{fr}}C_{50}$	> 0.500
		24 h exposure period:	Dry weight, $E_{\text{d}}C_{50}$	0.288
		36 h exposure period:	Dry weight, $E_{\text{d}}C_{50}$	0.458
		Each + 7 d growth phase (static)	Dry weight, $E_{\text{d}}C_{50}$	0.253 mg a.s./L(nom)
		Scenario B:	Frond number, dry weight, $E_{\text{fr}}C_{50}$ / $E_{\text{fr}}C_{50}$	> 0.250 peak
		“0.250 mg/L max. peak”:	Frond number, dry weight, $E_{\text{fr}}C_{50}$ / $E_{\text{fr}}C_{50}$	> 0.500 peak mg a.s./L(nom)
		“0.500 mg max. peak”:	Frond number, dry weight, $E_{\text{fr}}C_{50}$ / $E_{\text{fr}}C_{50}$	
		Double peak exposure + 7 d growth phase (static)	Dry weight, $E_{\text{d}}C_{50}$	
Lemma gibba (non-GLP TTE) 3	a.s.	2 x 24 h peaks separated by non-exposure periods varying between 1 and 7 d + 6 d growth phase (static)	Frond number, $E_{\text{fr}}C_{50}$ / $E_{\text{fr}}C_{50}$	> 0.250 mg a.s./L(nom)
Ceratophyllum demersum (TTE study) 3	a.s.	24 h exposure period:	Dry weight, Total length, Fresh/wet weight, $E_{\text{d}}C_{50}$ / $E_{\text{d}}C_{50}$	> 3.0
		48 h exposure period:	Dry weight, Total length, Fresh/wet weight, $E_{\text{d}}C_{50}$ / $E_{\text{d}}C_{50}$	> 3.0 mg a.s./L(nom)
		Each + 7 d growth phase (static)		
Lemma gibba	BAS 656 07 H2	7 d (static)	Frond number, $E_{\text{fr}}C_{50}$	0.054
			Frond number, $E_{\text{fr}}C_{50}$	0.0085 mg prep./L(nom) (corresponding to 0.0347 and 0.0055 mg a.s./L)
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
------------------	----------------	------------------------	------------------------------------	-----------
Lemma gibba	BAS 830 01 H	7 d (static)	Frond number, E₅₀, E₅₀	0.573
			Dry weight, E₅₀, E₅₀	> 0.810
			Frond number, E₅₀, E₅₀	0.0863
			Dry weight, E₅₀, E₅₀	0.1302 mg
			prep./Lₑₑₑ (nom)	
			(E₅₀ frond no; corresponding to	
			0.1755 mg dimethenamid-P/L	
			and 0.0873 mg quinmerac/L;	
			E₅₀ dry weight: corresponding to	
			>0.248 mg dimethenamid-P/L	
			and >0.123 mg quinmerac/L;	
			E₅₀ frond no: corresponding to	
			0.0264 mg dimethenamid-P/L	
			and 0.0132 mg quinmerac/L;	
			E₅₀ dry weight: corresponding to	
			0.0399 mg dimethenamid-P/L	
			and 0.0198 mg quinmerac/L)	
Lemma gibba	M31	7 d (static)	Frond number, Dry weight, E₅₀/E₅₀	> 100 mg
			(nom)	metabolite/ L (nom)
Lemma gibba	M62	7 d (semi-static)	Frond number, Dry weight, E₅₀	> 100
			E₅₀	
			Frond number, Dry weight, E₅₀	54.57
			E₅₀	72.87 mg
			metabolite/ L (nom)	
Lemma gibba	M43	7 d (static)	Frond number, Dry weight, E₅₀/E₅₀	> 100 mg
			(nom)	metabolite/ L (nom)
Lemma gibba	M55	7 d (static)	Frond number, Dry weight, E₅₀/E₅₀	> 143 mg
			(nom)	metabolite/ L (nom)
Further testing on aquatic organisms				
Combined SSD, 20 species	a.s.	-	HC₅	0.01545 mg a.s./L
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
-----------------------------	---------------------------------	------------------------	---	----------------------
(algae + aquatic plants)	The SSD analysis was performed with the software ETX 2.0. The following species data were included in the calculation with the above listed endpoints indicated in bold: Algae: *Monoraphidium griffithii*, *Ankistrodesmus bibernanus*, *Pseudokirchneriella subcapitata*, *Chlamydomonas reinhardtii*, *Planktosphaeria botryoides*, *Navicula pelliculosa*, *Neochloris aquatica* Aquatic plants: *Ceratophyllum demersum*, *Lemna gibba*, *Ludwigia palustris*, *Crassula recurva*, *Myriophyllum spicatum*, *Veronica beccabunga*, *Glyceria maxima*, *Iris pseudacorus*, *Potamogeton crispus*, *Mentha aquatic*, *Elodea densa*, *Sparganium erectum*, *Acorus calamus*	The median estimate of the HC5 is 13.7 µg/L. The assessment factor is set at 3. Therefore the corresponding RAC is 4.57 µg a.s./L.		

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)
No indication of endocrine disrupting properties of DMTA-P

¹ nominal concentration; ² mean measured concentration; prep.: preparation; a.s.: active substance
³ formulation similar to BAS 656 12 H
³ Time-to-effect (TTE) studies were not used for the risk assessment
Bioconcentration in fish (Annex Part A, point 8.2.2.3)

Parameter	Active substance
\(\log \text{P}_{\text{O/W}} \)	1.89
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	58* (whole fish), Not required
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	Not required
Annex VI Trigger for the bioconcentration factor	Not required
Clearance time (days) \((\text{CT}_{50}) \)	Not required
\((\text{CT}_{90}) \)	
Level and nature of residues (%) in organisms after the 14 day depuration phase	Not required

* based on total \(^{14}\text{C}\)
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) No 284/2013, Annex Part A, point 10.2)

BAS 656 12 H

FOCUS$_{sw}$ step 1-2 - TERs for dimethenamid-P – BAS 656 12 H in maize, soybeans and sunflowers and FOCUS$_{sw}$ step 3 in maize at 1 x 864 g a.s./ha

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americanysis bahia	Daphnia magna	Monoraphidium griffithii	Lenma gibba	
	LC$_{50}$	NOEC	EC$_{50}$	NOEC	EC$_{50}$	EC$_{50}$	EC$_{50}$
FOCUS Step 1	243.39	10.68	0.49	13.15	2.79	0.10	0.059
North Europe	43.14	60.27	2.78	74.17	15.76	0.58	0.33
South Europe	79.99	32.51	1.50	40.01	8.50	0.31	0.18
FOCUS Step 2*							
North Europe	33.93	76.63	3.54	94.31	20.04	0.74	0.42
South Europe	61.56	42.23	1.95	51.98	11.05	0.41	0.23
FOCUS Step 3* pre-emergence in maize							
D3/ditch	4.524	574.71	26.53	707.34	150.31	5.53	3.2
D4/pond	0.212	12264.15	566.04	15094.34	3207.55	117.9	67.9
D4/stream	3.721	698.74	32.25	859.98	182.75	6.72	3.9
D5/pond	0.215	12093.02	558.14	14883.72	3162.79	116.28	67.0
D5/stream	4.025	645.96	29.81	795.03	168.94	6.21	3.6
D6/ditch	4.578	567.93	26.21	699.00	148.54	5.46	3.1
R1/pond	0.33	7878.79	363.64	9696.97	2060.61	75.76	43.6
R1/stream	10.478	248.14	11.45	305.40	64.90	2.39	1.4
R2/stream	7.504	346.48	15.99	426.44	90.62	3.33	1.9
R3/stream	16.982	153.10	7.07	188.43	40.04	1.47	0.8
R4/stream	46.07	56.44	2.60	69.46	14.76	0.54	0.3
FOCUS Step 3* post-emergence in maize							
D3/ditch	4.528	574.20	26.50	706.71	150.18	5.52	3.18
D4/pond	0.226	11504.42	530.97	14159.29	3008.85	110.6	63.72

www.efs.europa.eu/efsajournal 115 EFSA Journal 2018;16(3):5211
D4/stream 3.954 657.56 30.35 809.31 171.98 **6.32** 3.64
D5/pond 0.24 10833.33 500.00 13333.33 2833.33 104.2 60.00
D5/stream 3.636 715.07 33.00 880.09 187.02 **6.88** **3.96**
D6/ditch 4.532 573.70 26.48 706.09 150.04 5.52 3.18
R1/pond 0.655 3969.47 183.21 4885.50 1038.17 38.2 21.98
R1/stream 11.503 226.03 10.43 278.19 59.12 2.17 1.25
R2/stream 9.647 269.51 12.44 331.71 70.49 2.59 1.49
R3/stream 25.173 103.29 4.77 127.12 27.01 **0.99** 0.57
R4/stream 28.803 **90.27** **4.17** **111.10** 23.61 **0.87** **0.50**

Trigger

* based on a single application in pre-emergence maize/soybeans/sunflowers
+ based on a single application in post-emergence maize
[Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]
**[If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

TERs shown in **bold** fall below the relevant trigger

FOCUSsw step 1-3 - TERs for dimethenamid-P — BAS 656 12 H in sugar beets at 1 x 864 g a.s./ha (pre-emergence) and 1 x 720 g a.s./ha (post-emergence), respectively, and FOCUSsw step 3 - TERs for dimethenamid-P — BAS 656 12 H in soybeans and sunflowers at 1 x 864 g/ha

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americanysis bahia	Daphnia magna	Monoraphidium griffithii	Lemma gibba	
	LC₅₀	NOEC	EC₅₀	NOEC	EC₅₀	EC₅₀	
FOCUS Step 1 Sugar beets	243.394	10.7	0.49	13.14	2.8	0.10	0.06
FOCUS Step 2’ Sugar beets							
North Europe	29.81	87.22	4.03	107.34	22.81	**0.84**	**0.48**
South Europe	54.37	**47.82**	**2.21**	**58.85**	12.51	**0.46**	**0.26**
FOCUS Step 2’							
North Europe	29.81	**87.22**	**4.03**	107.34	22.81	**0.84**	**0.48**
Peer review of the pesticide risk assessment of the active substance dimethenamid-P

www.efsa.europa.eu/efsajournal

117 | EFSA Journal 2018;16(3):5211

South Europe	42.09	61.77	2.85	76.02	16.15	0.59	0.34

FOCUS Step 3 Sugar beets, 864 g/ha, pre-emergence

Scenario	D3/ditch	D4/pond	D4/stream	R1/pond	R1/stream	R3/stream	Trigger
FOCUS/ditch	4.524	0.219	3.727	1.972	20.477	38.356	100
D4/ditch	574.71	11872.15	697.61	1318.46	126.97	67.79	10
D4/stream	26.53	547.95	32.20	60.85	5.86	3.13	100
R1/ditch	707.34	14611.87	858.60	1622.72	156.27	83.43	16
R1/stream	150.31	3105.02	182.45	344.83	33.21	17.73	5
R3/stream	5.53	114.2	6.71	12.7	1.22	0.65	0.38

FOCUS Step 3 Sugar beets, 720 g/ha, post-emergence

Scenario	D3/ditch	D4/pond	D4/stream	R1/pond	R1/stream	R3/stream	Trigger
FOCUS/ditch	3.772	0.192	3.16	0.279	3.597	5.7	100
D4/ditch	689.29	13541.67	822.78	9319.00	722.82	456.14	10
D4/stream	31.81	625.00	37.97	430.11	33.36	21.05	100
R1/ditch	848.36	16666.67	1012.66	11469.53	889.63	561.40	16
R1/stream	180.28	3541.67	215.19	2437.28	189.05	119.30	5
R3/stream	6.63	130.2	7.91	89.6	6.95	4.39	0.38

FOCUS Step 3 Soybeans, 864 g/ha, pre-emergence

Scenario	R3/stream	R4/stream	Trigger
FOCUS/ditch	23.084	13.805	100
D3/ditch	112.63	188.34	10
D3/stream	5.20	8.69	100
D4/stream	138.62	231.80	100
R1/ditch	29.46	49.26	10
R1/stream	0.108	1.81	100
R3/stream	0.62	1.10	100

FOCUS Step 3 Sunflowers, 864 g/ha, pre-emergence

Scenario	D5/pond	D5/stream	R1/pond	R1/stream	R3/pond	R3/stream	R4/pond	R4/stream	Trigger
D5/ditch	0.215	3.745	0.279	3.597	0.355	5.7	100		
D5/stream	12093.02	822.78	9319.00	722.82	7323.94	456.14	100		
D5/stream	558.14	37.97	430.11	33.36	338.03	21.05	100		
D5/stream	14883.72	1012.66	11469.53	889.63	9014.08	561.40	100		
D5/stream	3162.79	215.19	2437.28	189.05	1915.49	119.30	100		
D5/stream	116.3	7.91	89.6	6.95	70.4	4.39	0.38		

FOCUS Step 3 Sunflowers, 864 g/ha, pre-emergence

Scenario	R3/stream	R4/stream	Trigger
D5/ditch	23.084	13.805	100
D5/stream	112.63	188.34	10
D5/stream	5.20	8.69	100
D5/stream	138.62	231.80	100
R1/ditch	29.46	49.26	10
R1/stream	0.108	1.81	100
R3/stream	0.62	1.10	100

Notes:
- * based on a single pre-emergence application in sugar beet
- + based on a single post-emergence application in sugar beet
- # Only scenarios where the trigger is not met at FOCUS step 1-2 should be included in step 3.
- ** If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.

TERs shown in bold fall below the relevant trigger.
FOCUS Step 4 - TER values for dimethenamid-P follow – BAS 656 12 H in maize at 1 x 864 g as/ha in pre-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemma gibba
		LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀ (µg/L)	E₅₀ (µg/L)
step 4 pre-emergence maize: 5 m drift mitigation							
D3/ditch	1.483	1753.20	80.92	2157.79	458.53	16.86	9.71
D4/pond	0.187	13903.74	641.71	17112.30	3636.36	133.69	77.01
D5/pond	1.577	1648.70	76.09	2029.17	431.20	15.85	9.13
D5/stream	0.19	13684.21	631.58	16842.11	3578.95	131.58	75.79
R1/pond	1.706	1524.03	70.34	1875.73	398.59	14.65	8.44
R1/stream	0.134	1353.81	68.18	2084.69	443.00	16.73	9.38
step 4 pre-emergence maize: 10 m drift mitigation							
D3/ditch	0.314	1753.20	80.92	2157.79	458.53	16.86	9.71
D4/pond	0.137	18978.10	875.91	23357.66	4963.50	182.48	105.11
D5/pond	0.842	3087.89	142.52	680.48	143.20	381.62	811.46
R1/pond	0.282	3102.63	143.20	381.48	811.46	29.83	17.18
FOCUS Scenario / water body

PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant	
Oncorhyn-chus mykiss	**Oncorhynchus mykiss**	**Americamysis bahia**	**Daphnia magna**	**Monoraphidium griffithii**	**Lemna gibba**		
LC$_{50}$ (µg/L)	NOEC (µg/L)	LC$_{50}$ (µg/L)	NOEC (µg/L)	E$_{50}$ (µg/L)	E$_{50}$ (µg/L)		
2600	120	3200	680	25	14.4		
R1/stream	10.478	248.14	11.45	305.40	64.90	2.39	1.37
R2/stream	7.504	346.48	15.99	426.44	90.62	3.33	1.92
R3/stream	16.982	153.10	7.07	188.43	40.04	1.47	0.85
R4/stream	46.07	56.44	2.60	69.46	14.76	0.54	0.31

step 4 pre-emergence maize: 20 m drift mitigation

D3/ditch	0.409	6356.97	293.40	7823.96	1662.59	61.12	35.2
D4/pond	0.09	28888.89	1333.33	35555.56	7555.56	277.78	160.0
D4/stream	0.44	5909.09	272.73	7272.73	1545.45	56.82	32.7
D5/pond	0.093	27956.99	1290.32	34408.60	7311.83	268.82	154.8
D5/stream	0.476	5462.18	252.10	6722.69	1428.57	52.52	30.3
D6/ditch	0.46	5652.17	260.87	6956.52	1478.26	54.35	31.3
R1/pond	0.253	10276.68	474.31	12648.22	2687.75	98.81	56.9
R1/stream	10.478	248.14	11.45	305.40	64.90	2.39	1.4
R2/stream	7.504	346.48	15.99	426.44	90.62	3.33	1.9
R3/stream	16.981	153.11	7.07	188.45	40.04	1.47	0.8
R4/stream	46.07	56.44	2.60	69.46	14.76	0.54	0.3
FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba
	LC₅₀ (µg/L)	NOEC (µg/L)					
step 4 pre-emergence maize: 10 m drift + runoff mitigation							
D3/ditch	0.786	3307.89	152.67	4071.25	865.14	31.81	18.32
D4/pond	0.137	18978.10	875.91	23357.66	4963.50	182.48	105.11
D4/stream	0.842	3087.89	142.52	3800.48	807.60	29.69	17.10
D5/pond	0.139	18705.04	863.31	23021.58	4892.09	179.86	103.60
D5/stream	0.911	2854.01	131.72	3512.62	746.43	27.44	15.81
D6/ditch	0.838	3102.63	143.20	3818.62	811.46	29.83	17.18
R1/pond	0.164	15853.66	731.71	19512.20	4146.34	152.44	87.80
R1/stream	4.442	585.32	27.01	720.40	153.08	5.63	3.24
R2/stream	3.362	773.35	35.69	951.81	202.26	7.44	4.28
R3/stream	6.946	374.32	17.28	460.70	97.90	3.60	2.07
R4/stream	20.86	124.64	5.75	153.40	32.60	1.20	0.69

step 4 pre-emergence maize: 20 m drift + runoff mitigation

| D3/ditch | 0.409 | 6356.97 | 293.40 | 7823.96 | 1662.59 | 61.12 | 35.2 |
| D4/pond | 0.09 | 28888.89 | 1333.33 | 35555.56 | 7555.56 | 277.78 | 160.0 |
FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba	
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)	
D4/stream	0.44	5909.09	272.73	7272.73	1545.45	56.82	32.7
D5/pond	0.093	27956.99	1290.32	34408.60	7311.83	268.82	154.8
D5/stream	0.476	5462.18	252.10	6722.69	1428.57	52.52	30.3
D6/ditch	0.46	5652.17	260.87	6956.52	1478.26	54.35	31.3
R1/pond	0.095	27368.42	1263.16	33684.21	7157.89	263.16	151.6
R1/stream	2.266	1147.40	52.96	1412.18	300.09	11.03	**6.4**
R2/stream	1.75	1485.71	68.57	1828.57	388.57	14.29	**8.2**
R3/stream	3.498	743.28	34.31	914.81	194.40	**7.15**	**4.1**
R4/stream	10.909	238.34	11.00	293.34	62.33	**2.29**	**1.3**
TER criterion	100	10	100	10	10	**10**	**10**

TERs shown in bold fall below the relevant trigger.
FOCUS Step 4 - TER values for dimethenamid-P – BAS 656 12 H in maize at 1 x 864 g as/ha in post-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Onocorhynchus mykiss	*Onocorhynchus mykiss*	*Americanysis bahia*	*Daphnia magna*	*Monoraphidium griffithii*	*Lemna gibba*
		LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)
step 4 post-emergence maize: 5 m drift mitigation							
D3/ditch	1.484	1752.02	80.86	2156.33	458.22	16.85	9.7
D4/pond	0.198	13131.31	606.06	16161.62	3434.34	126.26	72.7
D4/stream	1.683	1544.86	71.30	1901.37	404.04	14.85	8.6
D5/pond	0.212	12264.15	566.04	15094.34	3207.55	117.92	67.9
D5/stream	1.542	1686.12	77.82	2075.23	440.99	16.21	9.3
D6/ditch	1.506	1726.43	79.68	2124.83	451.53	16.60	9.6
R1/pond	0.632	4113.92	189.87	5063.29	1075.95	39.56	22.8
R1/stream	11.503	226.03	10.43	278.19	59.12	2.17	1.3
R2/stream	9.647	269.51	12.44	331.71	70.49	2.59	1.5
R3/stream	25.173	103.29	4.77	127.12	27.01	0.99	0.6
R4/stream	28.803	**90.27**	**4.17**	111.10	23.61	**0.87**	**0.5**

step 4 post-emergence maize: 10 m drift mitigation

D3/ditch	0.792	3282.83	151.52	4040.40	858.59	31.57	18.2
D4/pond	0.145	17931.03	827.59	22068.97	4689.66	172.41	99.3
FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemma gibba	
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	EC₅₀ (µg/L)	EC₅₀ (µg/L)	
D4/stream	0.902	2882.48	133.04	3547.67	753.88	27.72	16.0
D5/pond	0.159	16352.20	754.72	20125.79	4276.73	157.23	90.6
D5/stream	0.825	3151.52	145.45	3878.79	824.24	30.30	17.5
D6/ditch	0.813	3198.03	147.60	3936.04	836.41	30.75	17.7
R1/pond	0.589	4414.26	203.74	5432.94	1154.50	42.44	24.4
R1/stream	11.503	226.03	10.43	278.19	59.12	2.17	1.3
R2/stream	9.647	269.51	12.44	331.71	70.49	2.59	1.5
R3/stream	25.173	103.29	4.77	127.12	27.01	0.99	0.6
R4/stream	28.803	90.27	4.17	111.10	23.61	0.87	0.5
step 4 post-emergence maize: 20 m drift mitigation							
D3/ditch	0.416	6250.00	288.46	7692.31	1634.62	60.10	34.6
D4/pond	0.095	27368.42	1263.16	33684.21	7157.89	263.16	151.6
D4/stream	0.471	5520.17	254.78	6794.06	1443.74	53.08	30.6
D5/pond	0.109	23853.21	1100.92	29357.80	6238.53	229.36	132.1
D5/stream	0.434	5990.78	276.50	7373.27	1566.82	57.60	33.2
FOCUS Scenario / water body

	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant	
		Oncorhynchus mykiss	Oncorhynchus mykiss	Americanysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba	
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	EᵣC₅₀ (µg/L)	EᵣC₅₀ (µg/L)		
D6/ditch	0.437	2600	120	3200	680	25	14.4	
R1/pond	0.55	5949.66	274.60	7322.65	1556.06	57.21	33.0	
R1/stream	11.503	218.18	5818.18	1236.36	45.45	26.2		
R2/stream	9.647	278.19	12.44	331.71	70.49	2.59	1.5	
R3/stream	25.173	103.29	4.77	127.12	27.01	0.99	0.6	
R4/stream	28.803	90.27	4.17	111.10	23.61	0.87	0.5	

step 4 post-emergence maize: 10 m drift + runoff mitigation

D3/ditch	0.792	3282.83	151.52	4040.40	858.59	31.57	18.2
D4/pond	0.145	17931.03	827.59	22068.97	4689.66	172.41	99.3
Table: Pesticide Risk Assessment

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhynchus mykiss	*Oncorhynchus mykiss*	*Americamysis bahia*	*Daphnia magna*	*Monoraphidium griffithii*	*Lemna gibba*
		LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀ (µg/L)	E₅₀ (µg/L)
D4/stream	0.902	2600	120	3200	680	25	14.4
D5/pond	0.159	2882.48	133.04	3547.67	753.88	27.72	16.0
D5/stream	0.825	16352.20	754.72	20125.79	4276.73	157.23	90.6
D6/ditch	0.813	3151.52	145.45	3878.79	824.24	30.30	17.5
R1/pond	0.305	3198.03	147.60	3936.04	836.41	30.75	17.7
R1/stream	0.508	8524.59	393.44	10491.80	2229.51	81.97	47.2
R2/stream	4.247	499.23	23.04	614.44	130.57	4.80	2.8
R3/stream	11.382	612.20	28.26	753.47	160.11	5.89	3.4
R4/stream	13.093	198.58	9.17	244.41	51.94	1.91	1.1

Step 4: Post-emergence maize: 20 m drift + runoff mitigation

D3/ditch	0.416	6250.00	288.46	7692.31	1634.62	60.10	34.6
D4/pond	0.095	27368.42	1263.16	33684.21	7157.89	263.16	151.6
D4/stream	0.471	5520.17	254.78	6794.06	1443.74	53.08	30.6
D5/pond	0.109	23853.21	1100.92	29357.80	6238.53	229.36	132.1
D5/stream	0.434	5990.78	276.50	7373.27	1566.82	57.60	33.2
Focus Step 4 - TER values for dimethenamid-P – BAS 656 12 H in soybeans at 1 x 864 g as/ha in pre-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba	
	LC50 (µg/L)	NOEC (µg/L)	LC50 (µg/L)	NOEC (µg/L)	LC50 (µg/L)	NOEC (µg/L)	
D6/ditch	0.437	5949.66	274.60	7322.65	1556.06	57.21	33.0
R1/pond	0.17	15294.12	705.88	18823.53	4000.00	147.06	84.7
R1/stream	2.723	954.83	44.07	1175.17	249.72	9.18	5.3
R2/stream	2.2	1181.82	54.55	1454.55	309.09	11.36	6.5
R3/stream	5.948	437.12	20.17	538.00	114.32	4.20	2.4
R4/stream	6.863	378.84	17.49	466.27	99.08	3.64	2.1
TER criterion	100	10	100	10	10	10	10

TERs shown in **bold** fall below the relevant trigger.
Step 4 Pre-Emergence Soybeans: 5 m Drift Mitigation

	R3/stream	R4/stream					
	23.084	112.63	5.20	138.62	29.46	1.08	0.62
	13.805	188.34	8.69	231.80	49.26	1.81	1.04

Step 4 Pre-Emergence Soybeans: 10 m Drift Mitigation

	R3/stream	R4/stream					
	23.084	112.63	5.20	138.62	29.46	1.08	0.62
	13.805	188.34	8.69	231.80	49.26	1.81	1.04

Step 4 Pre-Emergence Soybeans: 20 m Drift Mitigation

	R3/stream	R4/stream					
	23.084	112.63	5.20	138.62	29.46	1.08	0.62
	13.805	188.34	8.69	231.80	49.26	1.81	1.04

Step 4 Pre-Emergence Soybeans: 10 m Drift + Runoff Mitigation

	R3/stream	R4/stream					
	10.548	246.49	11.38	303.38	64.47	2.37	1.37
	6.285	413.68	19.09	509.15	108.19	3.98	2.29

Step 4 Pre-Emergence Soybeans: 20 m Drift + Runoff Mitigation

	R3/stream	R4/stream					
	5.539	469.40	21.66	577.72	122.77	4.51	2.60
	3.295	789.07	36.42	971.17	206.37	7.59	4.37
TER criterion	100	10	100	10	10	10	10
FOCUS Step 4 - TER values for dimethenamid-P – BAS 656 12 H in sugar beet at 1 x 864 g a.s./ha in pre-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemma gibba
	padding	LC₉₀ (µg/L)	NOEC (µg/L)	LC₉₀ (µg/L)	NOEC (µg/L)	E₅₀ (µg/L)	E₅₀ (µg/L)
		2600	120	3200	680	25	14.4

step 4 pre-emergence sugar beet: 5 m Drift mitigation

	D3/ditch	D4/pond	D4/stream	R1/pond	R1/stream	R3/stream
PEC global max	1.483	0.189	1.578	1.948	20.477	38.356
(µg/L)	1753.20	13756.61	1647.66	1334.70	126.97	**67.79**
Fish acute	80.92	634.92	76.05	61.60	5.86	**3.13**
Fish ELS	2157.79	16931.22	2027.88	1642.71	156.27	**83.43**
Invertebrates acute	458.53	3597.88	430.93	349.08	33.21	**17.73**
Invertebrates prolonged	16.86	132.28	15.84	12.83	1.22	**0.65**
Algae	9.71	76.19	9.13	7.39	0.70	**0.38**

step 4 pre-emergence sugar beet: 10 m Drift mitigation

	D3/ditch	D4/pond	D4/stream	R1/pond	R1/stream	R3/stream
PEC global max	0.787	0.144	0.847	1.912	20.477	38.356
(µg/L)	3303.68	18055.56	3069.66	1359.83	126.97	**67.79**
Fish acute	152.48	833.33	141.68	62.76	5.86	**3.13**
Fish ELS	4066.07	22222.22	3778.04	1673.64	156.27	**83.43**
Invertebrates acute	864.04	4722.22	802.83	355.65	33.21	**17.73**
Invertebrates prolonged	31.77	173.61	29.52	13.08	**1.22**	**0.65**
Algae	18.30	100.00	17.00	**7.53**	**0.70**	**0.38**
Peer review of the pesticide risk assessment of the active substance dimethenamid-P

Table 1: Drift and runoff mitigation factors for different scenarios.

Scenario/Pathway	Distance	Drift Mitigation	Runoff Mitigation				
step 4 pre-emergence sugar beet: 20 m Drift mitigation							
D3/ditch	0.409	6356.97	293.40	7823.96	1662.59	61.12	35.21
D4/pond	0.0978	26584.87	1226.99	32719.84	6952.97	255.62	147.24
D4/stream	0.445	5842.70	269.66	7191.01	1528.09	56.18	32.36
R1/pond	1.875	1386.67	64.00	1706.67	362.67	13.33	7.68
R1/stream	20.477	126.97	5.86	156.27	33.21	1.22	0.70
R3/stream	38.356	67.79	3.13	83.43	17.73	0.65	0.38

step 4 pre-emergence sugar beet: 10 m Drift + runoff mitigation

Scenario/Pathway	Distance	Drift Mitigation	Runoff Mitigation				
D3/ditch	0.787	3303.68	152.48	4066.07	864.04	31.77	18.30
D4/pond	0.144	18055.56	833.33	22222.22	4722.22	173.61	100.00
D4/stream	0.847	3069.66	141.68	3778.04	802.83	29.52	17.00
R1/pond	0.836	3110.05	143.54	3827.75	813.40	29.90	17.22
R1/stream	9.340	278.37	12.85	342.61	72.81	2.68	1.54
R3/stream	17.504	148.54	6.86	182.82	38.85	1.43	0.82

step 4 pre-emergence sugar beet: 20 m Drift + runoff mitigation

Scenario/Pathway	Distance	Drift Mitigation	Runoff Mitigation				
D3/ditch	0.409	6356.97	293.40	7823.96	1662.59	61.12	35.21
D4/pond	0.0978	26584.87	1226.99	32719.84	6952.97	255.62	147.24
Focus Step 4 - TER values for dimethenamid-P – BAS 656 12 H in sugar beet at 1 x 720 g as/ha in post-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba	
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)	
	2600	120	3200	680	25	14.4	

step 4 post-emergence sugar beet: 5 m drift mitigation

FOCUS Scenario / water body	PEC global max (µg/L)	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant			
	D3/ditch	1.237	2101.86	97.01	2586.90	549.72	20.21	11.64
	D4/pond	0.169	15384.62	710.06	18934.91	4023.67	147.93	85.21
	D4/stream	1.346	1931.65	89.15	2377.41	505.20	18.57	10.70
	R1/pond	0.265	9811.32	452.83	12075.47	2566.04	94.34	54.34
	R1/stream	3.597	722.82	33.36	889.63	189.05	**6.95**	**4.00**
	R3/stream	5.7	456.14	21.05	561.40	119.30	**4.39**	**2.53**
FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant	
-----------------------------	-----------------------	------------	----------	---------------------	-------------------------	-------	-------------	
		Oncorhyn-chus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba	
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	EC₅₀ (µg/L)	EC₅₀ (µg/L)		
	2600	120	3200	680	25	14.4		

step 4 post-emergence sugar beet: 10 m drift mitigation

D3/ditch	0.657	3957.38	182.65	4870.62	1035.01	38.05	21.9
D4/pond	0.125	20800.00	960.00	25600.00	5440.00	200.00	115.2
D4/stream	0.723	3596.13	165.98	4426.00	940.53	34.58	19.9
R1/pond	0.237	10970.46	506.33	13502.11	2869.20	105.49	60.8
R1/stream	3.597	722.82	33.36	889.63	189.05	**6.95**	**4.0**
R3/stream	5.7	456.14	21.05	561.40	119.30	**4.39**	**2.5**

step 4 post-emergence sugar beet: 20 m drift mitigation

D3/ditch	0.345	7536.23	347.83	9275.36	1971.01	72.46	41.7
D4/pond	0.084	30952.38	1428.57	38095.24	8095.24	297.62	171.4
D4/stream	0.38	6842.11	315.79	8421.05	1789.47	65.79	37.9
R1/pond	0.211	12322.27	568.72	15165.88	3222.75	118.48	68.2
R1/stream	3.597	722.82	33.36	889.63	189.05	**6.95**	**4.0**
R3/stream	5.7	456.14	21.05	561.40	119.30	**4.39**	**2.5**
FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba	
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀ (µg/L)	E₅₀ (µg/L)	
	2600	120	3200	680	25	14.4	

step 4 post-emergence sugar beet: 10 m drift + runoff mitigation

	D3/ditch	D4/pond	D4/stream	R1/pond	R1/stream	R3/stream
	0.657	0.125	0.723	0.14	1.631	2.603

	3957.38	20800.00	3596.13	18571.43	1594.11	998.85
	182.65	960.00	165.98	857.14	73.57	46.10
	4870.62	25600.00	4426.00	22857.14	1961.99	1229.35
	1035.01	5440.00	940.53	4857.14	416.92	261.24
	38.05	200.00	34.58	178.57	15.33	9.60
	41.7	171.4	37.9	177.8	16.9	10.5
FOCUS Scenario / water body

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhyn-chus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemma gibba
		LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)
		2600	120	3200	680	25	14.4

step 4 post-emergence sugar beet: 20 m drift + runoff mitigation

Step	Type	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
D3/ditch	0.345	7536.23	347.83	9275.36	1971.01	72.46	41.7	
D4/pond	0.084	30952.38	1428.57	38095.24	8095.24	297.62	171.4	
D4/stream	0.38	6842.11	315.79	8421.05	1789.47	65.79	37.9	
R1/pond	0.081	32098.77	1481.48	39506.17	8395.06	308.64	177.8	
R1/stream	0.854	3044.50	140.52	3747.07	796.25	29.27	16.9	
R3/stream	1.366	1903.37	87.85	2342.61	497.80	18.30	10.5	
TER criterion		100	10	100	10	10	10	
Focus Step 4 - TER values for dimethenamid-P – BAS 656 12 H in sunflower [1 x 864 g as/ha] pre-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
	Oncorhynchus mykiss	*Oncorhynchus mykiss*	*Americanmys bahia*	*Daphnia magna*	*Monoraphidium griffithii*	*Lemna gibba*	
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	EC₅₀	ErC₅₀ (µg/L)	
	2600	120	3200	680	25	14.4	

Step 4 pre-emergence sunflower: 5 m drift mitigation

Scenario / water body	D5/pond	D5/stream	R1/pond	R1/stream	R3/stream	R4/stream
	0.19	1.58	0.34	9.41	43.35	37.89
	13684.21	1641.41	7669.62	276.39	59.97	68.61
	631.58	75.76	353.98	12.76	2.77	3.17
	16842.11	2020.20	9439.53	340.17	73.81	84.44
	3578.95	429.29	2005.90	72.29	15.68	17.94
	131.58	15.78	73.75	2.66	0.58	0.66
	75.79	9.09	42.48	1.53	0.33	0.38

Step 4 pre-emergence sunflower: 10 m drift mitigation

Scenario / water body	D5/pond	D5/stream	R1/pond	R1/stream	R3/stream	R4/stream
	0.14	0.84	0.30	9.41	43.35	37.89
	18571.43	3076.92	8441.56	276.39	59.97	68.61
	857.14	142.01	389.61	12.76	2.77	3.17
	22857.14	3786.98	10389.61	340.17	73.81	84.44
	4857.14	804.73	2207.79	72.29	15.68	17.94
	178.57	29.59	81.17	2.66	0.58	0.66
	102.86	17.04	46.75	1.53	0.33	0.38
Table: FOCUS Scenario / water body PEC global max (µg/L)

Scenario / water body	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
Step 4 pre-emergence sunflower: 20 m drift mitigation						
D5/pond	0.094	27659.57	1276.60	34042.55	7234.04	265.96
D5/stream	0.441	5895.69	272.11	7256.24	1541.95	56.69
R1/pond	0.279	9319.00	430.11	11469.53	2437.28	89.61
R1/stream	9.407	276.39	12.76	340.17	72.29	2.66
R3/stream	43.354	59.97	2.77	73.81	15.68	0.58
R4/stream	37.897	68.61	3.17	84.44	17.94	0.66
Step 4 pre-emergence sunflower: 10 m drift + runoff mitigation						
D5/pond	0.14	18571.43	857.14	22857.14	4857.14	178.57
D5/stream	0.845	3076.92	142.01	3786.98	804.73	29.59
R1/pond	0.174	14942.53	689.66	18390.80	3908.05	143.68
R1/stream	3.958	656.90	30.32	808.49	171.80	6.32
R3/stream	19.801	131.31	6.06	161.61	34.34	1.26
R4/stream	16.627	156.37	7.22	192.46	40.90	1.50
Peer review of the pesticide risk assessment of the active substance dimethenamid-P

FOCUS Scenario / water body

Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhynchus mykiss	*Oncorhynchus mykiss*	*Americamysis bahia*	*Daphnia magna*	*Monoraphidium griffithii*	*Lemna gibba*
		LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	EC₅₀ E₉₅₀ (µg/L)	E₉₅₀ (µg/L)
		2600	120	3200	680	25	14.4

Step 4 pre-emergence sunflower: 20 m drift + runoff mitigation

Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhynchus mykiss	*Oncorhynchus mykiss*	*Americamysis bahia*	*Daphnia magna*	*Monoraphidium griffithii*	*Lemna gibba*
		LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	EC₅₀ E₉₅₀ (µg/L)	E₉₅₀ (µg/L)
		2600	120	3200	680	25	14.4

D5/pond	0.094	27659.57	1276.60	34042.55	7234.04	265.96	153.19
D5/stream	0.441	5895.69	272.11	7256.24	1541.95	56.69	32.65
R1/pond	0.1	26000.00	1200.00	32000.00	6800.00	250.00	144.00
R1/stream	2.014	1290.96	59.58	1588.88	337.64	12.41	7.15
R3/stream	10.394	250.14	11.55	307.87	65.42	2.41	1.39
R4/stream	8.594	302.54	13.96	372.35	79.12	2.91	1.68

| TER criterion | | 100 | 10 | 100 | 10 | 10 | 10 |
FOCUS_{xw} step 4 - TERs dimethenamid-P – BAS 656 12 H in maize at 1 x 864 g a.s./ha in pre-emergence and post-emergence

FOCUS Scenarios	Primary producers SSD-RAC [µg a.s./L]	FOCUS Step 4 – maize (pre-emergence)	FOCUS Step 4 – maize (post-emergence)			
		PEC_{xw, max} [µg/L]	TER (RAC/PEC)	PEC_{xw, max} [µg/L]	TER (RAC/PEC)	
5 m Drift mitigation	D3/ditch	4.57	1.483	3.08	1.484	3.08
	D4/pond	0.347	0.187	24.44	0.198	23.08
	D4/stream	1.577	2.90	1.683	2.72	
	D5/pond	0.19	24.05	0.212	21.56	
	D5/stream	1.706	2.68	1.542	2.96	
	D6/ditch	0.535	8.54	1.506	3.03	
	R1/pond	0.314	14.55	0.632	7.23	
	R1/stream	10.478	0.44	11.503	0.40	
	R2/stream	7.504	0.61	9.647	0.47	
	R3/stream	16.982	0.27	25.173	0.18	
	R4/stream	46.07	0.10	28.803	0.16	
10 m Drift mitigation	D3/ditch	4.57	0.786	5.81	0.792	5.77
	D4/pond	0.137	33.36	0.145	31.52	
	D4/stream	0.842	5.43	0.902	5.07	
	D5/pond	0.139	32.88	0.159	28.74	
	D5/stream	0.911	5.02	0.825	5.54	
	D6/ditch	0.838	5.45	0.813	5.62	
	R1/pond	0.282	16.21	0.589	7.76	
	R1/stream	10.478	0.44	11.503	0.40	
	R2/stream	7.504	0.61	9.647	0.47	
	R3/stream	16.982	0.27	25.173	0.18	
	R4/stream	46.07	0.10	28.803	0.16	
20 m Drift mitigation	D3/ditch	4.57	0.409	11.17	0.416	10.99
	D4/pond	0.09	50.78	0.095	48.11	
	D4/stream	0.44	10.39	0.471	9.70	
	D5/pond	0.093	49.14	0.109	41.93	
	D5/stream	0.476	9.60	0.434	10.53	
	D6/ditch	0.46	9.93	0.437	10.46	
	R1/pond	0.253	18.06	0.55	8.31	
	R1/stream	R2/stream	R3/stream	R4/stream		
----------------	-----------	-----------	-----------	-----------		
	10.478	7.504	16.981	46.07		
	0.44	0.61	0.27	0.10		
	11.503	9.647	25.173	28.803		
	0.40	0.47	0.18	0.16		
	10 m Drift + runoff mitigation					
D3/ditch	0.786	5.81	0.792	5.77		
D4/pond	0.137	33.36	0.145	31.52		
D4/stream	0.842	5.43	0.902	5.07		
D5/pond	0.139	32.88	0.159	28.74		
D5/stream	0.911	5.02	0.825	5.54		
D6/ditch	0.838	5.45	0.813	5.62		
R1/pond	0.164	27.87	0.305	14.98		
R1/stream	4.442	1.03	5.208	0.88		
R2/stream	3.362	1.36	4.247	1.08		
R3/stream	6.946	0.66	11.382	0.40		
R4/stream	20.86	0.22	13.093	0.35		
	20 m Drift + runoff mitigation					
D3/ditch	0.409	11.17	0.416	10.99		
D4/pond	0.09	50.78	0.095	48.11		
D4/stream	0.44	10.39	0.471	9.70		
D5/pond	0.093	49.14	0.109	41.93		
D5/stream	0.476	9.60	0.434	10.53		
D6/ditch	0.46	9.93	0.437	10.46		
R1/pond	0.095	48.11	0.17	26.88		
R1/stream	2.266	2.02	2.723	1.68		
R2/stream	1.75	2.61	2.2	2.08		
R3/stream	3.498	1.31	5.948	0.77		
R4/stream	10.909	**0.42**	6.863	0.67		
FOCUS Scenarios

FOCUS Scenarios	Primary producers SSD-RAC [µg a.s./L]	FOCUS Step 4 – pre-emergence soybeans	TER (RAC/PEC)
		PEC_{sw. max} [µg/L]	
5 m Drift mitigation			
R3/stream	4.57	23.084	0.20
R4/stream	13.805		0.33
10 m Drift mitigation			
R3/stream	4.57	23.084	0.20
R4/stream	13.805		0.33
20 m Drift mitigation			
R3/stream	4.57	23.084	0.20
R4/stream	13.805		0.33
10 m Drift + runoff mitigation			
R3/stream	4.57	10.548	0.43
R4/stream	6.285		0.73
20 m Drift + runoff mitigation			
R3/stream	4.57	5.539	0.83
R4/stream	3.295		1.39
FOCUSsw step 4 - TERs dimethenamid-P – BAS 656 12 H in pre-emergence sunflower at 1 x 864 g a.s./ha

FOCUS Scenarios	Primary producers SSD-RAC [µg a.s./L]	FOCUS Step 4 – pre-emergence sunflower	TER (RAC/PEC)
		PECsw.max [µg/L]	
5 m Drift mitigation			
D5/pond		0.19	24.05
D5/stream		1.584	2.89
R1/pond		0.339	13.48
R1/stream		9.407	0.49
R3/stream		43.354	0.11
R4/stream		37.897	0.12
10 m Drift mitigation			
D5/pond		0.14	32.64
D5/stream		0.845	5.41
R1/pond		0.308	14.84
R1/stream		9.407	0.49
R3/stream		43.354	0.11
R4/stream		37.897	0.12
20 m Drift mitigation			
D5/pond		0.094	48.62
D5/stream		0.441	10.36
R1/pond		0.279	16.38
R1/stream		9.407	0.49
R3/stream		43.354	0.11
R4/stream		37.897	0.12
10 m Drift + runoff mitigation			
D5/pond		0.14	32.64
D5/stream		0.845	5.41
R1/pond		0.174	26.26
R1/stream		3.958	1.15
R3/stream		19.801	0.23
R4/stream		16.627	0.27
20 m Drift + runoff mitigation			
D5/pond		0.094	48.62
D5/stream		0.441	10.36
R1/pond		0.1	45.70
TERs shown in bold indicate high risk (PEC > SSD-RAC)

R1/stream	2.014	2.27
R3/stream	10.394	0.44
R4/stream	8.594	0.53
FOCUSsw step 4 - TER (FOCUS step 4) calculations considering the algae SSD-RAC in the refined risk assessment for dimethenamid-P following one application [1 x 864 g a.s./ha pre-emergence] in sugar beets or [1 x 720 g a.s./ha, post-emergence] respectively, in sugar beets

FOCUS Scenarios	Primary producers SSD-RAC [µg a.s./L]	FOCUS Step 4 – pre-emergence	FOCUS Step 4 – post-emergence	TER	TER
		PECsw. max [µg/L]	(RAC/PEC)		
		5 m Drift mitigation			
D3/ditch		1.483	3.08	1.237	3.69
D4/pond		0.189	24.18	0.169	27.04
D4/stream		1.578	2.90	1.346	3.40
R1/pond		1.948	2.35	0.265	17.25
R1/stream		20.477	**0.22**	3.597	1.27
R3/stream		38.356	**0.12**	5.7	**0.80**
		10 m Drift mitigation			
D3/ditch		0.787	5.81	0.657	6.96
D4/pond		0.144	31.74	0.125	36.56
D4/stream		0.847	5.40	0.723	6.32
R1/pond		1.912	2.39	0.237	19.28
R1/stream		20.477	**0.22**	3.597	1.27
R3/stream		38.356	**0.12**	5.7	**0.80**
		20 m Drift mitigation			
D3/ditch		0.409	11.17	0.345	13.25
D4/pond		0.0978	46.73	0.084	54.40
D4/stream		0.445	10.27	0.38	12.03
R1/pond		1.875	2.44	0.211	21.66
R1/stream		20.477	**0.22**	3.597	1.27
R3/stream		38.356	**0.12**	5.7	**0.80**
		10 m Drift + runoff mitigation			
D3/ditch		0.787	5.81	0.657	6.96
D4/pond		0.144	31.74	0.125	36.56
D4/stream		0.847	5.40	0.723	6.32
R1/pond		0.836	5.47	0.14	32.64
R1/stream		9.34	**0.49**	1.631	2.80
R3/stream		17.504	**0.26**	2.603	1.76
		20 m Drift + runoff mitigation			
D3/ditch		0.409	11.17	0.345	13.25
	TERs	PEC	SSD-RAC		
----------------	------	------	---------		
D4/pond	0.0978	46.73	0.084	54.40	
D4/stream	0.445	10.27	0.38	12.03	
R1/pond	0.436	10.48	0.081	56.42	
R1/stream	4.898	0.93	0.854	5.35	
R3/stream	9.188	0.50	1.366	3.35	

TERs shown in bold indicate high risk (PEC > SSD-RAC)
BAS 830 01 H

FOCUS_{sw} step 1-3 - TERs for dimethenamid-P – BAS 830 01 H in winter oilseed rape at 1 x 500 g a.s./ha

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant
		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemma gibba
		LC₅₀	NOEC	EC₅₀	NOEC	E_{C50}	E_{C50}
	2600 µg/L	120 µg/L	3200 µg/L	680 µg/L	25 µg/L	14.4 µg/L	
FOCUS Step 1	140.85	18.46	0.85	22.72	4.83	0.18	0.10
FOCUS Step 2							
North Europe	56.95	45.65	2.11	56.19	11.94	0.44	0.26
South Europe	46.29	56.17	2.59	69.13	14.69	0.54	0.31
FOCUS Step 2							
North Europe	35.63	72.97	3.37	89.81	19.09	0.70	0.40
South Europe	29.23	88.95	4.11	109.48	23.26	0.86	0.49
FOCUS Step 3							
pre-emergence							
D2/ditch	8.318	312.58	14.43	384.71	81.75	3.01	1.73
D2/stream	5.206	499.42	23.05	614.68	130.62	4.80	2.77
D3/ditch	3.191	814.79	37.61	1002.82	213.10	7.83	4.51
D4/pond	0.427	6088.99	281.03	7494.15	1592.51	58.6	33.72
D4/stream	2.743	947.87	43.75	1166.61	247.90	9.11	5.25
D5/pond	0.207	12560.39	579.71	15458.94	3285.02	120.8	69.57
D5/stream	2.959	878.68	40.55	1081.45	229.81	8.45	4.87
R1/pond	0.122	21311.48	983.61	26229.51	5573.77	204.9	118.03
R1/stream	2.096	1240.46	57.25	1526.72	324.43	11.9	6.87
R3/stream	6.044	430.18	19.85	529.45	112.51	4.14	2.38
FOCUS Step 3							
post-emergence							
D2/ditch	20.377	127.59	5.89	157.04	33.37	1.23	0.71
D2/stream	12.707	204.61	9.44	251.83	53.51	1.97	1.13
D3/ditch	3.181	817.35	37.22	1005.97	213.77	7.86	4.53
D4/pond	0.787	3303.68	152.48	4066.07	864.04	31.8	18.30
Table: TERs for Dimethenamid-P

Scenario	Afuct	Afpest	Afwater	Teruct	Terpest	Terwater	
D4/stream	2.747	946.49	43.68	1164.91	247.54	**9.10**	**5.24**
D5/pond	0.306	8496.73	392.16	10457.52	2222.22	81.7	47.06
D5/stream	2.96	878.38	40.54	1081.08	229.73	**8.45**	**4.86**
R1/pond	0.136	19117.65	882.35	23529.41	5000.00	183.8	105.88
R1/stream	2.096	1240.46	57.25	1526.72	324.43	11.9	**6.87**
R3/stream	11.18	232.56	10.73	286.23	60.82	**2.24**	**1.29**

Trigger: *

* based on a single application in pre-emergence winter oilseed rape (worst case application during Oct-Feb)
+ based on a single application in post-emergence winter oilseed rape (worst case application during Oct-Feb)

[Only scenarios where the trigger is not met at FOCUS step 1-2 should be included in step 3.]

*If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.

TERs shown in **bold** fall below the relevant trigger.
FOCUS Step 4 - TER values for dimethenamid-P – BAS 830 01 H in winter oil seed rape (OSR) [1 x 500 g a.s./ha] pre-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
		Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)	
step 4 pre-emergence OSR: 5 m drift mitigation							
D2/ditch	8.32	312.58	14.43	384.71	81.75	3.00	1.7
D2/stream	5.21	499.42	23.05	614.68	130.62	4.80	2.8
D3/ditch	0.87	2988.51	137.93	3678.16	781.61	28.74	16.6
D4/pond	0.43	6117.65	282.35	7529.41	1600.00	58.14	33.5
D4/stream	1.01	2587.06	119.40	3184.08	676.62	24.75	14.3
D5/pond	0.21	12560.39	579.71	15458.94	3285.02	119.05	68.6
D5/stream	1.08	2402.96	110.91	2957.49	628.47	23.15	13.3
R1/pond	0.10	25000.00	1153.85	30769.23	6538.46	50.00	144.0
R1/stream	0.77	3394.26	156.66	4177.55	887.73	32.47	18.7
R3/stream	6.04	430.18	19.85	529.45	112.51	4.14	2.4
step 4 pre-emergence OSR: 10 m drift mitigation							
D2/ditch	8.32	312.58	14.43	384.71	81.75	3.00	1.7
D2/stream	5.21	499.42	23.05	614.68	130.62	4.80	2.8
D3/ditch	0.47	5508.47	254.24	6779.66	1440.68	53.19	2.8
D4/pond	0.42	6190.48	285.71	7619.05	1619.05	59.52	30.6
D4/stream	0.71	3661.97	169.01	4507.04	957.75	35.21	34.3
D5/pond	0.21	12560.39	579.71	15458.94	3285.02	119.05	20.3
D5/stream	0.57	4529.62	209.06	5574.91	1184.67	43.86	68.6
FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
----------------------------	-----------------------	------------	---------	--------------------	-------------------------	-------	--------------
		Oncorhynchus mykiss	Oncorhynchus mykiss	Americaenis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)	
R1/pond	0.08	34666.67	1600.00	42666.67	9066.67	312.50	25.3
R1/stream	0.41	6403.94	295.57	7881.77	1674.88	60.98	180.0
R3/stream	6.04	430.18	19.85	529.45	112.51	4.14	35.1

step 4 pre-emergence OSR: 20 m drift mitigation

	D2/ditch	D2/stream	D3/ditch	D4/pond	D4/stream	D5/pond	D5/stream	R1/pond	R1/stream	R3/stream
	8.32	312.58	14.43	384.71	81.75	3.00	1.7	4.80	2.8	
D2/stream	5.21	499.42	23.05	614.68	130.62	57.6	34.3			
D3/ditch	0.25	10441.77	481.93	12851.41	2730.92	100.00	4.14			
D4/pond	0.42	6250.00	288.46	7692.31	1634.62	59.52	35.1			
D4/stream	0.71	3661.97	169.01	4507.04	957.75	35.21	20.3			
D5/pond	0.21	12560.39	579.71	15458.94	3285.02	119.05	68.6			
D5/stream	0.30	8666.67	400.00	10666.67	2266.67	83.33	48.0			
R1/pond	0.05	52000.00	2400.00	64000.00	13600.00	500.00	288.0			
R1/stream	0.21	12322.27	568.72	15165.88	3222.75	119.05	68.6			
R3/stream	6.04	430.18	19.85	529.45	112.51	4.14	2.4			

step 4 pre-emergence OSR: 10 m drift + runoff mitigation

	D2/ditch	D2/stream	D3/ditch	D4/pond	D4/stream	D5/pond	D5/stream	R1/pond	R1/stream	R3/stream
	8.32	312.58	14.43	384.71	81.75	3.00	1.7	4.80	2.8	
D2/stream	5.21	499.42	23.05	614.68	130.62	57.6	34.3			
D3/ditch	0.47	5508.47	254.24	6779.66	1440.68	53.19	30.6			
D4/pond	0.42	6190.48	286.71	7619.05	1619.05	59.52	34.3			
D4/stream	0.71	3661.97	169.01	4507.04	957.75	35.21	20.3			
FOCUS Scenario / water body	PEC global max (μg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant			
-----------------------------	-----------------------	------------	----------	---------------------	------------------------	-------	---------------			
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americanysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba				
	LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅ₐₐ₅₀ (µg/L)	E₅ₐₐ₅₀ (µg/L)				
D5/pond	0.21	12560.39	579.71	15458.94	3285.02	119.05	68.6			
D5/stream	0.57	4529.62	209.06	5574.91	1184.67	43.86	25.3			
R1/pond	0.08	34666.67	1600.00	42666.67	9066.67	312.50	180.0			
R1/stream	0.41	6403.94	295.57	7881.77	1674.88	60.98	35.1			
R3/stream	2.75	944.08	43.57	1161.95	246.91	9.09	5.2			
step 4 pre-emergence OSR: 20 m drift + runoff mitigation										
D2/ditch	8.32	312.58	14.43	384.71	81.75	3.00	1.7			
D2/stream	5.21	499.42	23.05	614.68	130.62	4.80	2.8			
D3/ditch	0.25	10441.77	481.93	12851.41	2730.92	100.00	57.6			
D4/pond	0.42	6250.00	288.46	7692.31	1634.62	59.52	34.3			
D4/stream	0.71	3661.97	169.01	4507.04	957.75	35.21	20.3			
D5/pond	0.21	12560.39	579.71	15458.94	3285.02	119.05	68.6			
D5/stream	0.30	8666.67	400.00	10666.67	2266.67	83.33	48.0			
R1/pond	0.05	52000.00	2400.00	64000.00	13600.00	500.00	288.0			
R1/stream	0.21	12322.27	568.72	15165.88	3222.75	119.05	68.6			
R3/stream	1.45	1799.31	83.04	2214.53	470.59	17.24	9.9			
TER criterion	100	10	100	10	10	10	10			
FOCUS Step 4 - TER values for dimethenamid-P – BAS 830 01 H in winter oilseed rape (OSR) [1 x 500 g a.s./ha] post-emergence

FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
	Oncorhynchus mykiss	**Oncorhynchus mykiss**	**Americanmysis bahia**	**Daphnia magna**	**Monoraphidium griffithii**	**Lemna gibba**	
LC₅₀ (µg/L)	**NOEC (µg/L)**	**LC₅₀ (µg/L)**	**NOEC (µg/L)**	**E₀C₅₀ (µg/L)**	**E₀C₅₀ (µg/L)**		
step 4 post-emergence OSR: 5 m drift mitigation	5.89	157.04	33.37	1.23	0.707		
D2/ditch	20.377	127.59	3200	680	25		
D2/stream	204.61	9.44	251.83	53.51	1.97	1.133	
D3/ditch	0.876	2968.04	136.99	3652.97	776.26	28.54	16.438
D4/pond	0.783	3320.56	153.26	4086.85	868.45	31.93	18.391
D4/stream	1.342	1937.41	89.42	2384.50	506.71	18.63	10.730
D5/pond	0.306	8496.73	392.16	10457.52	2222.22	81.70	47.059
D5/stream	1.089	2387.51	110.19	2938.48	624.43	22.96	13.223
R1/pond	0.116	22413.79	1034.48	27586.21	5862.07	215.52	124.138
R1/stream	0.877	2964.65	136.83	3648.80	775.37	28.51	16.420
R3/stream	11.18	232.56	10.73	286.23	60.82	2.24	1.288

step 4 post-emergence OSR: 10 m drift mitigation

D2/ditch	20.377	127.59	5.89	157.04	33.37	1.23	0.707
D2/stream	204.61	9.44	251.83	53.51	1.97	1.133	
D3/ditch	0.485	5360.82	247.42	6597.94	1402.06	51.55	29.691
D4/pond	0.776	3350.52	154.64	4123.71	876.29	32.22	18.557
D4/stream	1.342	1937.41	89.42	2384.50	506.71	18.63	10.730
D5/pond	0.306	8496.73	392.16	10457.52	2222.22	81.70	47.059
FOCUS Scenario / water body

PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant
Oncorhyn-chus mykiss	Oncorhyn-chus mykiss	Americanysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba	
LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)	
2600	120	3200	680	25	14.4	

step 4 post-emergence OSR: 20 m drift mitigation

Scenario	D2/ditch	D2/stream	D3/ditch	D4/pond	D4/stream	D5/pond	D5/stream	R1/pond	R1/stream	R3/stream
	20.377	12.707	0.258	0.77	1.342	0.306	0.342	0.055	0.877	11.18
	127.59	204.61	10077.52	3376.62	1937.41	8496.73	7602.34	47272.73	2964.65	232.56
	5.89	9.44	465.12	155.84	89.42	392.16	350.88	2181.82	136.83	10.73
	157.04	251.83	12403.10	4155.84	2384.50	10457.52	9356.73	58181.82	3648.80	286.23
	33.37	53.51	2635.66	883.12	506.71	2222.22	9356.73	12363.64	775.37	60.82
	1.23	1.97	96.90	32.47	18.63	81.70	73.10	454.55	28.51	2.24
	0.707	1.133	55.814	18.701	10.730	47.059	42.105	261.818	16.420	1.288
Table 1: Toxicological Data for Dimethenamid-P

FOCUS Scenario / Water Body	PEC Global Max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic PLant
		Oncorhyn-chus mykiss	Oncorhyn-chus mykiss	Americanysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba
		LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀C₅₀ (µg/L)	E₅₀C₅₀ (µg/L)
		2600	120	3200	680	25	14.4

step 4 post-emergence OSR: 10 m drift + runoff mitigation

	D2/ditch 20.377	D2/stream 12.707	D3/ditch 0.485	D4/pond 0.776	D4/stream 1.342	D5/pond 0.306	D5/stream 0.584	R1/pond 0.084	R1/stream 0.406	R3/stream 5.095
LC₅₀ (µg/L)	127.59	204.61	536.82	335.52	1937.41	8496.73	4452.05	30952.38	6403.94	510.30
NOEC (µg/L)	5.89	9.44	247.42	154.64	89.42	392.16	205.48	1428.57	295.79	23.55
LC₅₀ (µg/L)	157.04	251.83	6597.94	4123.71	2384.50	10457.52	5479.45	38095.24	7881.77	628.07
NOEC (µg/L)	33.37	53.51	1402.06	876.29	506.71	2222.22	1164.38	2979.52	1674.88	133.46
E₅₀C₅₀ (µg/L)	1.23	1.97	51.55	32.22	18.63	81.70	42.81	297.62	61.58	4.91

step 4 post-emergence OSR: 20 m drift + runoff mitigation

	D2/ditch 20.377	D2/stream 12.707	D3/ditch 0.258	D4/pond 0.77	D4/stream 1.342	D5/pond 0.306	D5/stream 0.342	R1/pond 0.055
LC₅₀ (µg/L)	127.59	204.61	10077.52	3376.62	1937.41	8496.73	7602.34	47272.73
NOEC (µg/L)	5.89	9.44	465.12	155.84	89.42	392.16	350.88	2181.82
LC₅₀ (µg/L)	157.04	251.83	12403.10	4155.84	2384.50	10457.52	9356.73	58181.82
NOEC (µg/L)	33.37	53.51	2635.66	883.12	506.71	2222.22	1988.30	12363.64
E₅₀C₅₀ (µg/L)	1.23	1.97	96.90	32.47	18.63	81.70	73.10	454.55
E₅₀C₅₀ (µg/L)	0.707	1.133	55.814	18.701	10.730	47.059	42.105	261.818
FOCUS Scenario / water body	PEC global max (µg/L)	Fish acute	Fish ELS	Invertebrates acute	Invertebrates prolonged	Algae	Aquatic plant	
-----------------------------	-----------------------	------------	----------	---------------------	-------------------------	------	--------------	
	Oncorhynchus mykiss	Oncorhynchus mykiss	Americamysis bahia	Daphnia magna	Monoraphidium griffithii	Lemna gibba		
LC₅₀ (µg/L)	NOEC (µg/L)	LC₅₀ (µg/L)	NOEC (µg/L)	E₅₀ (µg/L)	E₅₀ (µg/L)			
R1/stream	0.211	12322.27	568.72	15165.88	3222.75	118.48	68.246	
R3/stream	2.671	973.42	44.93	1198.05	254.59	**9.36**	**5.391**	
TER criterion								
	100	10	100	10	10	10	10	
FOCUSsw step 4 - TER (FOCUS step 4) calculations considering the algae SSD-RAC in the refined risk assessment for dimethenamid-P following one application [1 x 500 g a.s./ha] in pre-emergence and post-emergence winter oilseed rape

FOCUS Scenarios	Primary producers SSD-RAC [µg a.s./L]	FOCUS Step 4 – Oil seed rape (pre-emergence)	FOCUS Step 4 – Oil seed rape (post-emergence)		
		PEC_{sw, max} [µg/L]	TER (RAC/PEC)	PEC_{sw, max} [µg/L]	TER (RAC/PEC)
5 m Drift mitigation					
D2/ditch		8.32	0.55	20.377	0.22
D2/stream		5.21	0.88	12.707	0.36
D3/ditch		0.87	5.25	0.876	5.22
D4/pond		0.43	10.63	0.783	5.84
D4/stream		1.01	4.52	1.342	3.41
D5/pond		0.21	21.76	0.306	14.93
D5/stream		1.08	4.23	1.089	4.20
R1/pond		0.1	45.70	0.116	39.40
R1/stream		0.77	5.94	0.877	5.21
R3/stream		6.04	0.76	11.18	0.41
10 m Drift mitigation					
D2/ditch		8.32	0.55	20.377	0.22
D2/stream		5.21	0.88	12.707	0.36
D3/ditch		0.47	9.72	0.876	5.22
D4/pond		0.42	10.88	0.783	5.84
D4/stream		0.71	6.44	1.342	3.41
D5/pond		0.21	21.76	0.306	14.93
D5/stream		0.57	8.02	1.089	4.20
R1/pond		0.08	57.13	0.116	39.40
R1/stream		0.41	11.15	0.877	5.21
R3/stream		6.04	0.76	11.18	0.41
20 m Drift mitigation					
D2/ditch		8.32	0.55	20.377	0.22
D2/stream		5.21	0.88	12.707	0.36
D3/ditch		0.25	18.28	0.258	17.71
D4/pond		0.42	10.88	0.77	5.94
D4/stream		0.71	6.44	1.342	3.41
D5/pond		0.21	21.76	0.306	14.93
D5/stream		0.3	15.23	0.342	13.36
R1/pond		0.05	91.40	0.055	83.09
Drift + runoff mitigation

Distance	Type	TER	SSD-RAC	High Risk	
10 m	D2/ditch	8.32	0.55	20.377	0.22
	D2/stream	5.21	0.88	12.707	0.36
	D3/ditch	0.47	9.72	0.485	9.42
	D3/stream	0.42	10.88	0.776	5.89
	D4/ditch	0.71	6.44	1.342	3.41
	D4/stream	0.21	21.76	0.306	14.93
	D5/ditch	0.57	8.02	0.584	7.83
	D5/stream	0.08	57.13	0.084	54.40
	R1/pond	0.41	11.15	0.406	11.26
	R1/stream	2.75	1.66	5.095	0.90

Distance	Type	TER	SSD-RAC	High Risk	
20 m	D2/ditch	8.32	0.55	20.377	0.22
	D2/stream	5.21	0.88	12.707	0.36
	D3/ditch	0.25	18.28	0.258	17.71
	D3/stream	0.42	10.88	0.77	5.94
	D4/ditch	0.71	6.44	1.342	3.41
	D4/stream	0.21	21.76	0.306	14.93
	D5/ditch	0.57	8.02	0.584	7.83
	D5/stream	0.08	57.13	0.084	54.40
	R1/pond	0.41	11.15	0.406	11.26
	R1/stream	2.75	1.66	5.095	0.90

TERs shown in bold indicate high risk (PEC > SSD-RAC)
Fish acute TER values for the metabolites M656H003, M656H023 and M656H027 using the worst-case FOCUS Step 1 PEC_{SW,max} values

Test substance	Test organism	96 h LC_{50} [µg/L]	Crop	FOCUS Step	PEC_{SW,max} [µg/L]	TER_A	Trigger value
M656H003	*O. mykiss*	60800	maize (pre- & post-emergence), soybeans, sunflowers	1	0.997	60983	100
			sugar beets (post-emergence)	1	0.831	73165	100
M656H023	*O. mykiss*	> 87000	maize (pre- & post-emergence), soybeans, sunflowers	1	38.220	> 2276	100
			sugar beets (post-emergence)	1	31.849	> 2732	100
M656H027	*O. mykiss*	> 100000	maize (pre- & post-emergence), soybeans, sunflowers	1	42.686	> 2343	100
			sugar beets (post-emergence)	1	35.572	> 2811	100

Acute TER values for *D. magna* exposed to metabolites M656H003, M656H023, M656H027 and M656H031 using the worst-case FOCUS Step 1 PEC_{SW,max} values

Test substance	Test organism	48 h EC_{50} [µg/L]	Crop	FOCUS Step	PEC_{SW,max} [µg/L]	TER_A	Trigger value
M656H003	*D. magna*	> 101600	maize (pre- & post-emergence), soybeans, sunflowers	1	0.997	> 101906	100
			sugar beets (post-emergence)	1	0.831	> 122262	100
M656H023	*D. magna*	> 95000	maize (pre- & post-emergence), soybeans, sunflowers	1	38.220	> 2486	100
			sugar beets (post-emergence)	1	31.849	> 2983	100
M656H027	*D. magna*	> 100000	maize (pre- & post-emergence), soybeans, sunflowers	1	42.686	> 2343	100
			sugar beets (post-emergence)	1	35.572	> 2811	100
M656H031	*D. magna*	> 100000	maize (pre- & post-emergence), soybeans, sunflowers	1	24.857	> 4023	100
			sugar beets (post-emergence)	1	20.714	> 4828	100
TER values for algae\(^1\) exposed to major metabolites using worst-case FOCUS Step 1 PEC\(_{SW, \text{max}}\) values

Test substance	Test organism	72 h EC\(_{50}\) [µg/L]	Crop	FOCUS Step	PEC\(_{SW, \text{max}}\) [µg/L]	TER	Trigger value
M656H003	*D. subspicatus*	68500	maize (pre- & post-emergence), soybeans, sunflowers, sugar beets (post-emergence)	1	0.997	68706	10
M656H023	*P. subcapitata*	> 94000	maize (pre- & post-emergence), soybeans, sunflowers, sugar beets (post-emergence)	1	38.220	> 2459	10
M656H027	*P. subcapitata*	> 208000	maize (pre- & post-emergence), soybeans, sunflowers, sugar beets (post-emergence)	1	42.686	> 4873	10
M656H031	*P. subcapitata*	> 100000	maize (pre- & post-emergence), soybeans, sunflowers, sugar beets (post-emergence)	1	24.857	> 4023	10

1) Where several endpoints are available for the same group or where several endpoints are available for one study based on different effect parameters, the lowest (most sensitive) endpoint is used in the TER calculations.

TER values for the aquatic plant *Lemna gibba*\(^1\) exposed to metabolites M656H031, M656H062, M656PH043 and M656H055 using worst-case FOCUS Step 1 PEC\(_{SW, \text{max}}\) values

Test substance	Test organism	7 d EC\(_{50}\) [µg/L]	Crop	FOCUS Step	PEC\(_{SW, \text{max}}\) [µg/L]	TER\(_{LT}\)	Trigger value
M656H031	*L. gibba*	> 100000	maize (pre- & post-emergence), soybeans, sunflowers, sugar beets (post-emergence)	1	24.857	4023	10
M656H062	*L. gibba*	> 54570	maize (pre- & post-emergence), soybeans, sunflowers, sugar beets (post-emergence)	1	243.394 #	> 224	10
M656PH043	*L. gibba*	> 100000	maize (pre- & post-emergence), soybeans, sunflowers, sugar beets (post-emergence)	1	202.828 #	> 493	10
1) Where several endpoints are available for the same group or where several endpoints are available for one study based on different effect parameters, the lowest (most sensitive) endpoint is used in the TER calculations.

For the metabolites M656H062 (tested with Reg. No. 403 121; for details see above), M656PH043 and M656H055, the worst-case Step 1 PEC value for the active substance is used for TER calculations (for justifications see above)

Compound	Species	Threshold	Effect	PEC Step 1	TER Calculation	
M656H055	L. gibba	> 143000	maize	243.394	> 588	
			soybeans, sunflowers		10	
			sugar beets (post-emergence)	202.828	> 705	10
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)

THIS PART DOES NOT REFLECT THE NEW EFSA GD ON BEES WHICH HAS NOT YET BEEN TAKEN NOTE BY EC. THIS WAS BECAUSE OF DIFFERENCES BETWEEN THE DATA REQUIREMENTS AND THE MORE DETAILED APPROACHES PROPOSED BY THE NEW EFSA GD ON BEES.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Honeybee				
	Dimethenamid-P			
	(BAS 656 H)	Acute	48h oral toxicity (LD₅₀)	118.8 µg as/bee**
			48h contact toxicity (LD₅₀)	93.8 µg as/bee**
	BAS 830 01 H	Acute	48h oral toxicity (LD₅₀)	233.9 µg product/bee (103.0 µg as/bee)
			48h contact toxicity (LD₅₀)	> 454.0 µg product/bee (>200.0 µg as/bee)
	BAS 656 12 H	Acute	48 h oral (LD₅₀)	190.6 µg product/bee (122.4 µg a.s./bee)
			48 h contact (LD₅₀)	232.2 µg product/bee (149.1 µg a.s./bee)
Bumblebee				
	Dimethenamid-P			
	(BAS 656 H)	Acute	48h oral toxicity (LD₅₀)	> 158 µg as/bee
			48h contact toxicity (LD₅₀)	> 200 µg as/bee
Honeybee				
larvae	Dimethenamid-P			
	(BAS 656 H)	Bee brood development	NOED larvae (96 h)	49.6 µg as/larvae*
			NOEC larvae (96 h)	1.464 g as/kg food*
Honeybee	Dimethenamid-P	Chronic	10 d-LD₅₀	0.693 g a.s./kg diet
	(BAS 656 H)		10 day NOED	8.7 µg a.s./bee/day
			10 day LC₅₀	0.693 g a.s./kg diet
			10 day NOEC	0.321 g a.s./kg diet
Honeybee	-	Sub-lethal effects (behavioural and reproductive)	NOEC hypopharyngeal glands	No data

* Endpoints from a single dose in-vitro laboratory study. Sub-lethal effects were seen and not all food was consumed (i.e. the toxicity may be underestimated)

** Endpoints from studies conducted in autumn using old bees (3-5 weeks).

Potential for accumulative toxicity: No data

Semi-field test (Cage and tunnel test)
As BAS 656 H and BAS 830 01 H does not pose an unacceptable risk to honeybees, further tests are not
necessary.

Field tests
As BAS 656 H and BAS 830 01 H does not pose an unacceptable risk to honeybees, further tests are not necessary.

Risk assessment for – [representative use] at [application rate] g a.s./ha [x number of applications]

ETRs were not calculated, as the EFSA Bee GD is not officially noted yet.
The recommended use pattern for BAS 830 01 H includes application in winter oilseed rape at a maximum application rate of up to 1702.5 g product/ha (500 g dimethenamid-P/ha).

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Honeybee	BAS 830 01 H (1702.5 g product/ha)	HQ oral	7.3	50
Honeybee	BAS 830 01 H (1702.5 g product/ha)	HQ contact	< 3.8	50
Honeybee	-	ETR acute adult oral	-	-
Honeybee	-	ETR chronic adult oral	-	-
Honeybee	-	ETR larvae	-	-
Honeybee	-	ETR hpg	-	-

The recommended use pattern for BAS 656 12 H includes application in maize, sugar beets, soybeans at a maximum application rate of up to 864 g dimethenamid-P/ha.

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Honeybee	BAS 656 12 H* (864 g dimethenamid-P/ha)	HQ oral	7.3	50
Honeybee	BAS 656 12 H* (864 g dimethenamid-P/ha)	HQ contact	9.2	50
Honeybee	-	ETR acute adult oral	-	-
Honeybee	-	ETR chronic adult oral	-	-
Honeybee	-	ETR larvae	-	-
Honeybee	-	ETR hpg	-	-

* tested as technical dimethenamid-P
Bumble bees: Regarding the risk assessment of bumblebees no risk assessments currently exists. However, the endpoints obtained for acute oral and acute contact exposure to dimethenamid-P indicate a huge margin of safety and it can be concluded that low risk is expected from the use of dimethenamid-P as contained in BAS 830 01 H and BAS 656 12 H according the proposed uses.
Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	BAS 656 07 H	Mortality, LR₅₀	> 1.400 L/ha
		Reproduction, ER₅₀	> 1.400 L/ha
Aphidius rhopalosiphi	BAS 656 07 H	Mortality, LR₅₀	< 1.400 L/ha
Aphidius rhopalosiphi	BAS 656 08 H	Mortality, LR₅₀	0.0663 L/ha

Typhlodromus pyri | BAS 830 01 H | Mortality, LR₅₀ | > 3 L/ha |

Aphidius rhopalosiphi | BAS 830 01 H | Mortality, LR₅₀ | 0.0336 L/ha |

Additional species	Test Substance	End point	Toxicity
Aleochara bilineata	BAS 656 07 H	Mortality, LR₅₀	> 1.400 L/ha
		Reproduction, ER₅₀	> 1.400 L/ha
Chrysoperla carnea	BAS 656 07 H	Mortality, LR₅₀	> 1.400 L/ha
		Reproduction, ER₅₀	> 1.400 L/ha
Poecilus cupreus	BAS 656 07 H	Mortality, LR₅₀	> 1.400 L/ha
		Reproduction, ER₅₀	> 1.400 L/ha
Pardosa sp.	BAS 656 07 H	Mortality, LR₅₀	> 1.400 L/ha
		Reproduction, ER₅₀	> 1.400 L/ha

1) Study was carried out with BAS 656 07 H (a similar formulation to BAS 656 12 H).
2) Study was carried out with BAS 656 08 H (a similar formulation to BAS 656 12 H).

First tier risk assessment for BAS 656 12 H in maize, Sweet corn, soybean, sunflower, and beets at 1.2 L prep./ha (equivalent to 864 g a.s./ha) [1x, includes splitting in 2 or 3 applications 5-10 day interval in sugar beet]

Test substance	Species	Effect (LR₅₀ L/ha)	HQ in-field	HQ off-field¹	Trigger
BAS 656 07 H	*Typhlodromus pyri*	> 1.400	0.86	0.237 (1 m: 2.77 %)	2
BAS 656 08 H	*Aphidius rhopalosiphi*	0.0663	18	0.2 (1 m: 2.77 %)	2

¹indicate distance assumed to calculate the drift rate

First tier risk assessment for – BAS 830 01 H at 1.5 L prep./ha (500 g dimethenamid-p/ha + 250 g Quinmerac/ha) [1x, includes splitting in 2 or 3 applications 5-10 day interval in sugar beet]

Test substance	Species	Effect (LR₅₀ L/ha)	HQ in-field	HQ off-field¹	Trigger
BAS 830 01 H	*Typhlodromus pyri*	> 3 000	0.5	0.01385 (1 m: 2.77 %)	2
BAS 830 01 H	*Aphidius rhopalosiphi*	33.6	44.6	1.2366 (1 m: 2.77 %)	2

¹indicate distance assumed to calculate the drift rate

Extended laboratory tests, aged residue tests
Table: Species, Life stage, and test results

Species	Life stage	Test substance, substrate	Time scale	Dose (L/ha)	End point	% effect	ER$_{50}$
Aphidius rhopalosiphi	adults	BAS 656 07 H, barley seedlings, 3D	2 d	0.14$_{\text{(ini)}}$ 1.4$_{\text{(ini)}}$	Mortality, reproduction	0 %; 23 %; 0 %; 46 %	>1.400 L prep./ha
Aphidius rhopalosiphi	adults	BAS 830 01 H, barley seedlings, 3D	2 d	0.1875 – 3$_{\text{(ini)}}$	Mortality, reproduction	max. 6.7 %; max. 8.2 %	> 3 L prep./ha
Aleochara bilineata	adults	BAS 830 01 H, sandy soil, 2D	28 d	1.5$_{\text{(ini)}}$ 3.0$_{\text{(ini)}}$	Reproduction	8.3 % 23.3 %	> 3 L prep./ha

1 Study was carried out with BAS 656 07 H (a similar formulation to BAS 656 12 H).

Risk assessment for – for BAS 656 12 H in maize, Sweet corn, soybean, sunflower, and beets at 1.2 L prep./ha (equivalent to 864 g a.s./ha) [1x, 1x; includes splitting in 2 or 3 applications 5-10 day interval in sugar beet]

Species	ER$_{50}$ (mL/ha)	In-field rate (mL/ha)	Corrected Off-field rate (mL/ha)
Aphidius rhopalosiphi	1 400$_{\text{1)}}$	1 200	332(1 m: 2.77 %; 3D)

1 indicate distance assumed to calculate the drift rate and if 3D or 2D.

Risk assessment for – BAS 830 01 H in winter oilseed rape at 1.5 L prep./ha (500 g dimethenamid-p/ha + 250 g Quinmerac/ha [1x]

Species	ER$_{50}$ (mL/ha)	In-field rate (mL/ha)	Corrected Off-field rate$_{1}$
Aphidius rhopalosiphi	3 000	1 500	415.5 (1 m: 2.77 %; 3D)
Aleochara bilineata	3 000	1 500	41.55 (1 m: 2.77 %; 2D)

1 indicate distance assumed to calculate the drift rate and if 3D or 2D.

Additional tables

Semi-field tests
- Not required

Field studies
- Not required

Additional specific test
- Not required
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation
(Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013
Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity
Earthworms					
Eisenia fetida	Dimethenamid-P	Incorporated/5 %	Chronic, 56 d	Growth, reproduction, mortality reproduction	NOEC = 25.4 mg a.s./kg d.w.soil; ER₁₀ = 22.9 mg as/kg dry soil; ER₂₀ = 26.3 mg as/kg dry soil
Eisenia fetida	M 23	Incorporated/5 % peat	Chronic, 56 d	Growth, reproduction, mortality	NOEC = 8.32 mg a.s./kg d.w.soil;
Eisenia fetida	M 27	Incorporated/5 % peat	Chronic, 56 d	Growth, reproduction, mortality	NOEC = 10.56 mg a.s./kg d.w.soil
Eisenia fetida	M 31	Incorporated/5 % peat	Chronic, 56 d	Growth, reproduction, mortality	NOEC = 100 mg a.s./kg d.w.soil
Eisenia fetida	BAS 656 12 H	Incorporated/5 %	Chronic, 56 d	Growth, reproduction, mortality	NOEC = 40 mg a.s./kg d.w.soil; NOEC = 20 mg a.s./kg d.w.soil; NOEC = 80 mg a.s./kg d.w.soil; ER₁₀, mortality = 153 mg a.s./kg d.w.soil; ER₂₀, mortality = 162 mg a.s./kg d.w.soil; ER₁₀, repro = 19.3 mg a.s./kg d.w.soil; ER₂₀, repro = 22.8 mg a.s./kg d.w.soil
Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity
---------------------	----------------	----------------------------------	------------	---	--
Eisenia fetida	BAS 830 01 H	Incorporated/5%	Chronic, 56 d	Growth, reproduction, mortality	NOEC = 89 mg prep./kg dw soil (corresponding to 26 mg dimethenamid-P/kg dry soil and 13 mg quinmerac/kg dry soil) ER10, repro = 73.3 mg a.s./kg d.w.soil; ER20, repro = 106.3 mg a.s./kg d.w.soil
Other soil macroorganisms					
Folsomia candida	Dimethenamid-P	Incorporated/5% peat	Chronic	Mortality	NOEC = 12.5 mg a.s./kg d.w.soil \ ER10 = 8.1 mg a.s./kg d.w.soil \ ER20 = 20.8 mg a.s./kg d.w.soil NOEC = 25 mg a.s./kg d.w.soil \ ER10 = 14.8 mg a.s./kg d.w.soil \ ER20 = 21.3 mg a.s./kg d.w.soil
Folsomia candida	BAS 656 12 H	Incorporated/5% peat	Chronic, 28 d	Reproduction	NOEC = 18.75 mg prep./kg d.w.soil (corresponding to 12.1 mg dimethenamid-P/kg dry soil) \ ER10 = 25 mg a.s./kg d.w.soil \ ER20 = 36.5 mg a.s./kg d.w.soil
Test organism	Test substance	Application method of test a.s./OM¹	Time scale	End point	Toxicity
--------------------	--------------------	---	------------	-------------------------	---
Folsomia candida	BAS 830 01 H	Incorporated/5 % peat	Chronic, 28 d	Reproduction	NOEC = 75 mg prep./kg d.w.soil (corresponding to 22 mg dimethenamid-P/kg dry soil and 11 mg quinmerac/kg dry soil)
Folsomia candida	M 23	Incorporated/5 % peat	Chronic, 28 d	Growth, reproduction, behaviour	NOEC = 200 mg a.s./kg d.w.soil²
Folsomia candida	M 27	Incorporated/5 % peat	Chronic, 28 d	Mortality, reproduction	NOEC = 200 mg a.s./kg d.w.soil²
Folsomia candida	M 31	Incorporated/5 % peat	Chronic, 28 d	Mortality, reproduction	NOEC = 200 mg a.s./kg d.w.soil²
Hypoaspis aculeifer	Dimethenamid-P	Incorporated/5 % peat	Chronic, 14 d	Mortality, Reproduction	NOEC = 1000 mg a.s./kg d.w.soil
NOEC = 500 mg a.s./kg d.w.soil					
ER₁₀= 634 mg a.s./kg d.w.soil					
ER₂₀= 855 mg a.s./kg d.w.soil					
Hypoaspis aculeifer	BAS 830 01 H	Incorporated/5 % peat	Chronic, 28 d	Reproduction	NOEC = 1000 mg prep./kg d.w.soil²
(corresponding to 293 mg dimethenamid-P/kg dry soil and 147 mg quinmerac/kg dry soil)					
Hypoaspis aculeifer	M 23	Incorporated/5 % peat	Chronic, 14 d	Mortality, Reproduction	NOEC≥ 200 mg as/kg d.w.soil
NOEC = 140 mg a.s./kg d.w.soil					
ER₁₀= 91.7 mg as/kg d.w.soil					
ER₂₀= 151 mg as/kg d.w.soil					
Test organism	Test substance	Application method of test a.s./OM\(^1\)	Time scale	End point	Toxicity
-----------------	----------------	---	------------	---------------------------------	---
Hypoaspis aculeifer	M 27	Incorporated/5 % peat	Chronic, 14 d	Growth, reproduction, behaviour	NOEC = 200 mg a.s./kg d.w.soil\(^2\) ER\(_{10}\) = 185 mg as/kg d.w.soil ER\(_{20}\) = 285 mg as/kg d.w.soil
Hypoaspis aculeifer	M 31	Incorporated/5 % peat	Chronic, 14 d	Growth, reproduction, behaviour	NOEC = 500 mg a.s./kg d.w.soil\(^2\) ER\(_{10}\) = 86 mg as/kg d.w.soil ER\(_{20}\) = 801 mg as/kg d.w.soil

\(^1\) To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).

\(^2\) Highest concentration tested.

Higher tier testing (e.g. modelling or field studies) Not required

Nitrogen transformation	M 23 (metabolite of Dimethenamid-P)	28 d aerob	< 25 % effect at day 28 at 1.0 mg a.s./kg d.w.soil
Nitrogen transformation	M 27 (metabolite of Dimethenamid-P)	28 d aerob	< 25 % effect at day 28 at 1.0 mg a.s./kg d.w.soil
Nitrogen transformation	M 31 (metabolite of Dimethenamid-P)	28 d aerob	< 25 % effect at day 28 at 1.0 mg a.s./kg d.w.soil
Nitrogen transformation	BAS 656 07 H	28 d	< 25 % effect at day 28 at 7.0 L prep./ha (equivalent to 4.93 kg a.s./ha)
Nitrogen transformation	BAS 830 01 H	28 d Aerob	< 25 % difference from the control at 22.7 mg prep./kg dry soil, equivalent to 15.0 L prep./ha.
Carbon transformation	M 23 (metabolite of Dimethenamid-P)	28 d aerob	< 25 % effect at day 28 at 1.0 mg a.s./kg d.w.soil
Carbon transformation	M 27 (metabolite of Dimethenamid-P)	28 d aerob	< 25 % effect at day 28 at 1.0 mg a.s./kg d.w.soil
Carbon transformation	M 31 (metabolite of Dimethenamid-P)	28 d aerob	< 25 % effect at day 28 at 1.0 mg a.s./kg d.w.soil
Carbon transformation

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Eisenia fetida	Dimethenamid-P	Chronic	1.152	20	5
Eisenia fetida	BAS 656 012 H	Chronic	1.152	17	5
Eisenia fetida	M 23	Chronic	0.1533*	54	5
Eisenia fetida	M 27	Chronic	0.179	59	5
Eisenia fetida	M 31	Chronic	0.1534*	652	5

Other soil macroorganisms

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Folsomia candida	Dimethenamid-P	Chronic	1.152	7	5
Hypoaspis aculeifer	Dimethenamid-P	Chronic	1.152	434	5
Folsomia candida	M 23	Chronic	0.1533*	1304	5
Hypoaspis aculeifer	M 23	Chronic	0.1533*	652	5
Folsomia candida	M 27	Chronic	0.179	1117	5
Hypoaspis aculeifer	M 27	Chronic	0.179	1117	5
Folsomia candida	M 31	Chronic	0.1534*	1303	5
Hypoaspis aculeifer	M 31	Chronic	0.1534*	3259	5
Folsomia candida	BAS 656 12 H	Chronic	1.2 L/ha (corresponding to 1.152 mg as/kg dw)	11	5

* PECsoil accu

Toxicity/exposure ratios for soil organisms

BAS 656 12 H at 1.2 L prep./ha (equivalent to 864 g a.s./ha) g a.s./ha [1x; includes splitting in 2 or 3 applications 5 - 10 day interval in sugar beet]

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Eisenia fetida	Dimethenamid-P	Chronic	0.667	38	5
Eisenia fetida	BAS 830 01 H	Chronic	1.5 L prep./ha (corresponding to 2.27 mg prep./kg dw)	39	5
Eisenia fetida	M 23	Chronic	0.0884 *	94	5
Eisenia fetida	M 27	Chronic	0.104	102	5
Eisenia fetida	M 31	Chronic	0.0902 *	1109	5

BAS 830 01 H in winter oilseed rape at 1.5 L prep./ha (500 g dimethenamid-P/ha + 250 g Quinmerac/ha [1x]

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Eisenia fetida	Dimethenamid-P	Chronic	0.667	38	5
Eisenia fetida	BAS 830 01 H	Chronic	1.5 L prep./ha (corresponding to 2.27 mg prep./kg dw)	39	5
Eisenia fetida	M 23	Chronic	0.0884 *	94	5
Eisenia fetida	M 27	Chronic	0.104	102	5
Eisenia fetida	M 31	Chronic	0.0902 *	1109	5
Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
--------------------	----------------	------------	----------	-----	---------
Other soil macroorganisms					
Folsomia candida	Dimethenamid-P	Chronic	0.667	19	5
Hypoaspis aculeifer	Dimethenamid-P	Chronic	0.667	750	5
Folsomia candida	M 23	Chronic	0.0884 *	2262	5
Hypoaspis aculeifer	M 23	Chronic	0.0884 *	1131	5
Folsomia candida	M 27	Chronic	0.104	1923	5
Hypoaspis aculeifer	M 27	Chronic	0.104	1923	5
Folsomia candida	M 31	Chronic	0.0902 *	2271	5
Hypoaspis aculeifer	M 31	Chronic	0.0902 *	5543	5
Folsomia candida	BAS 830 01 H	Chronic	1.5 L prep./ha (corresponding to 2.27 mg prep./kg dw)	33	5
Hypoaspis aculeifer	BAS 830 01 H	Chronic	1.5 L prep./ha (corresponding to 2.27 mg prep./kg dw)	440	5

* PECsoil accu
Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides as ER$_{50}$ tests should be provided.

Screening for herbicidal efficacy:
M 23 and M 27 pre-and post emergence: no herbicidal effects up to 1000 g metabolite/ha (visual observation)
M 31 pre emergence: no herbicidal effects up to 1000 g metabolite/ha (visual observation)
Groundwater metabolites M656PH023, M656PH030, M656PH031, M656PH032, M656PH043, M656PH045, M656PH047, M656PH054, M656H055, the Na-salt of M656PH027 and the ethylester derivative for M656PH062 pre- and post emergence: less herbicidal effects than parent

Laboratory dose response tests

Species	Test substance	ER$_{50}$ (mL prep./ha)2 vegetative vigour	ER$_{30}$ (mL prep./ha)2 emergence	Exposure1 (mL prep./ha)2	TER	Trigger
Lactuca sativa	BAS 656 12 H	Data gap	28.6	33.24 (1 m)	0.86	5
				6.84 (5 m)	4.2	
				3.48 (10 m)	8.2	
				3.32 (1 m + 90 % drift reduction)	8.6	
Lolium multiflorum	BAS 830 01 H	527 (biomass) 188 (phytotoxicity)	> 94	41.55 (1 m)	2.3	5
				8.55 (5 m)	11	
				4.155 (1 m + 75 % drift reduction)	9	

Extended laboratory studies: Not required
Semi-field and field test: Not required

1 based on Ganzelmeier drift data.
2 for preparations indicate whether dose is expressed in units of a.s. or preparation.
Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	400 mg a.s./L

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.
No data submitted.

Available monitoring data concerning effect of the PPP.
No data submitted.

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds

Compartment	Parent (dimethenamid-P)*
soil	Parent (dimethenamid-P)*
water	Parent (dimethenamid-P)*
sediment	Parent (dimethenamid-P)*
groundwater	Parent (dimethenamid-P)*

1 metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

* in the absence of an enantioselective method measured as as sum of stereoisomers of dimethenamid.
Classification and labelling with regard to ecotoxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance	dimethenamid-P
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁹:	
Category:	Aquatic Acute 1, H400; Aquatic Chronic 1, H410 (Very toxic to aquatic life with long lasting effects)
M-factor:	Acute: 10; chronic: 10
Symbol:	GHS09
based on the EC₅₀ (14 d) of 0.014 mg/L and NOEC (14 d) of 0.0037 mg/L for *Lemna gibba*;	
Peer review proposal¹⁰ for harmonised classification according to Regulation (EC) No 1272/2008:	

⁹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

¹⁰ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.