A Comparative study to Evaluate the Efficacy of Supervised Exercise Program and Cyriax Physiotherapy on Pain and Function in Lateral Epicondylitis

Gouri Kalaskar¹, Pratik Phansopkar²

¹Resident, ²Associate Professor & HOD, Department of Musculoskeletal Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India

Abstract

Background: Lateral epicondylitis is a musculotendinous degenerative disease of the extensors origin that occurs at the humerus lateral epicondyle. Various methodologies of treatment are utilized in the board of lateral epicondylitis.

Objectives: The study will investigate the efficacy of the supervised exercise programme and cyriax physiotherapy on the refinement of pain and the functional within Lateral epicondylitis patients.

Methods: Participants (n=30) with Lateral Epicondylitis (tennis elbow) shall be recruited to participate in a comparative experimental study. Subjects will be randomized 1:1 to either (1) Supervised Exercise Programme group, or (2) Cyriax Physiotherapy group. Over a 4-week time period, a 3 times in week for the total of 12 sessions, subjects in supervised exercise programme group will receive the Extensor Carpi Radialis Brevis muscle’s static stretching along with the wrist extensor’s eccentric strengthening and Ultrasound. While those in group of cyriax physiotherapy will receive transverse deep friction massage for the time of 10 min instantly amid by Mill’s manipulation/manoeuvre and Ultrasound. The study will be conclude at the 4 weeks.

Discussion: Effectiveness of the interventions on the pain and the functional improvement will be assessed by VAS (visual analogue scale) and the Tennis Elbow Function Scale (TEFS) respectively. The findings of the study will greatly contribute for the evidence on the utilization of the supervised exercise programme and therefore the cyriax physiotherapy in tennis elbow condition.

Conclusion: After the statistical analysis of the results, final statements regarding the conclusion of which treatment approaches is effective will be made.

Keywords: Cyriax Physiotherapy, Supervised Exercise Programme, Lateral Epicondylitis, VAS, TEFS.

Introduction

The disorder essentially inside the radio humeral joint with constant impairing pain within the elbow, is named as tendonitis, tennis elbow, lateral epicondylalgia or lateral epicondylitis¹. The precise explanation for tendonitis isn’t however identified. It is quite common in people whose jobs demand recurring
forearm movements (e.g., court game sportsmen and woodworkers). It’s normally because of additional fast, wearisome, recurrent eccentric contractions and gliding joint gripping activities. It normally affects dominant arm. The typical amount of associate degree episode of epicondylitis in span of six months and two years. In tennis elbow macroscopic and microscopic lesions appears within the muscle named Extensor Carpi Radialis Brevis (ECRB). The absence of acute inflammatory cells in the pathological excision of ECRB tendons suggests that lateral epicondylitis is not a foremost inflammatory disorder. Instead, immature fibroblasts and disorganised, nonfunctional vascular elements have invaded the tissue. Angiofibroblastic hyperplasia was invented by Nirschl and Pettrone to characterise this granulation-like tissue. The radial recurrent artery was established by Schneberger and Masquelet as the dominant vascular supply to the ECRB tendon. Two hypovascular zones were discovered after further investigation: the first 2–3cm away from the extensor muscle insertion and the second on the lateral epicondyle. A common cause of lateral epicondylitis is repetitive microtrauma from overwork of the wrist extensor muscles. A propitious and not proven cause of lateral epicondylitis is microtrauma in the context of hypovascularity, which prevents healing.

The primary complaints in lateral epicondylitis includes lessened strength in grip, inflated pain and reduced functional activity. The diagnosis established by the examination which might evoke the pain, on the lateral epicondylar facet, tenderness on palpation, resisted extension of finger, resisted extension of the wrist joint, and wrist joint flexion passive in nature (cozen’s test). Although various studies are directed on this clinical condition treatment, until now the foremost effectual management plan isn’t in agreement whether or not it’s standard or surgical. Since lateral epicondylitis is a clinical condition, radiological testing is rarely necessary and reserved for those who do not improve. X-ray is the first line of inquiry when there is a suggestion of radio-capitellar osteoarthritis or other bony pathology.

The treatment methods used in medicinal orthopaedic are largely dependent over the kind of condition, cyriax includes manipulations and deep friction massage. Techniques of manipulation (small-amplitude, rapid and passive movement with thrust, also called “C grade mobilisation”) are accustomed to reduce tiny gristly displaced particles in the spine in joints of periphery (slack objects). Manipulation is often required to reinstate usual movability in a joint that has been limited by ligamentous adhesion or when bones have become subluxed. Deep friction is an effective treatment for soft tissue lesions caused by trauma or overuse. The logic for incorporating deep friction (a form of soft tissue mobilisation) is backed up by decades of research that confirms and explains the positive effect of movement on muscle and skeletal tissues healing. Supervised exercise program comprehensive of static stretching with eccentric strengthening where, Static stretching is described as slowly placing the muscle tendon unit in a maximum stretch and keeping it there for an expanded period of time. The optimum position of stretching is evaluated by the patient’s mild discomfort and/or pain. It is difficult to activate the stretch reflex, which induces contraction of the muscle tendon unit rather than relaxation, when static stretching is done slowly. Furthermore, since the viscoelastic structure of muscle tendon unit that elongates, the muscle tendon unit’s resistance is low in slow static stretching than in fast static stretching. Only the harmed tendon, not all tendons around the skeletal field, should be stretched with static stretching exercises, according to therapists.

Methods/Design

Aim

To evaluate the efficacy of the Supervised Exercise Programme and therefore the Cyriax Physiotherapy on pain and functional improvement in tennis elbow.
Study setting:

This study will be carried out in the Musculoskeletal Physiotherapy OPD of Ravi Nair Physiotherapy College, Sawangi (Meghe), Wardha, after approval from Institutional Ethics Committee of Datta Meghe Institute Of Medical Sciences, Deemed to be University. Before inclusion, all the participants will be informed regarding the aim and procedure of research. Those participants who will meet the inclusion criteria must give the written informed consent. In a comparative study, the participants (N=30) diagnosed with lateral epicondylitis (LE) will be enrolled for 4 weeks\(^4\). Fig. 1. Show’s the flow chart of the study.

TRIAL DESIGN:

A comparative study in which the patients will be randomized into two group independent design. Group I will be Supervised Exercise Programme group and Group II will be assigned with Cyriax physiotherapy which basically includes Deep Fraction Massage and Mill’s manipulation.

PARTICIPANTS:

Based on the criteria of inclusion and exclusion participants will be involved in the study. The subjects in the 20-50 years of age group of both the genders will be included. Subjects who are going to be having pain on passive wrist flexion with the elbow extension also with wrist pain on resisted extension incorporated in study\(^5\). Also the participants with chronic lateral
epicondylitis and will be having tenderness on the lateral epicondyle of humerus on palpation will be encompassed.

Subjects who will be having cervical radiculopathy, neurological impairments, any preceding trauma to elbow region, any surgeries to elbow region and elbow pain acquired from any other pathology than tennis elbow (lateral epicondylitis) will be eliminated from the study. The subjects who are getting to be having neuromuscular diseases, peripheral nervous disorder and any of them who are getting to be receiving corticosteroid injection in previous 6 months before the study period begins, will not be considered in to avoid further complications.

PARTICIPANT TIMELINE:

Each patient will be required to complete 4 weeks of interventions like supervised exercise programme and cyriax physiotherapy after enrolment in the study.

Recruitment:

The patients who are already undergoing rehabilitation in our IPD or coming to the physiotherapy OPD and diagnosed with lateral epicondylitis will be systematically assessed for the eligibility in the study according to the criteria of inclusion and exclusion. After fulfilling the eligibility criteria for their enrollment in the study, the informed patient consent will be cumulated taken after elaborating the purpose and procedure of the study.

SAMPLE SIZE CONSIDERATION:

This comparative study is an experimental two-group design that examines efficacy of the two interventions – the supervised exercise programme and physiotherapy of cyriax in lateral epicondylitis (tennis elbow) treatment16. 30 participants will be enrolled to the group I and group II and will be randomized by cheat method.

INTERVENTION DESIGN:

Group I - Supervised Exercise Programme

All the participants of administered supervised exercise programme will undergo static stretching of Extensor Carpi Radialis Brevis (ECRB) in a flash followed by the wrist extensors eccentric strengthening. The position of the steady stretch will be held for 30-45 seconds, this intervention will be carried out 3 counts prior and 3 counts after the segment of strengthening eccentric in nature treatment for 6 repetitions in total17. In each repetition of stretching there will be 30 seconds of interim. After the manual treatment there will be 5 min application of therapeutic ultrasound with parameters of1MHz frequency, 1:4 ratio of pulsed mode with 0.8 W/cm2 intensity.18

Group II – Cyriax Physiotherapy

All the participants will get Cyriax physiotherapy that involves transverse deep friction massage for ten minute which will be straight away accompanied by Mill’s manipulation/ manoeuvre. With the side of the fingertip of the thumb on the area of tenderness after palpating the anterior and lateral side of the lateral epicondylar surface of the humerus transverse deep friction massage will be applied. After achieving the effect of numbing, the tendon is made ready for Mill’s manipulation. Manoeuvre of Mill’s is thrust of a low in amplitude and high in velocity in the end range of elbow extension. It will be single application19. With therapeutic ultrasound parameters as above for 5 min.

OUTCOME MEASURES:

1) Visual Analogue Scale - VAS will evaluate the pain, in which is a horizontal bar of 10 cm with two ends zero cm is a “minimum imaginable pain” and ten cm “worst pain imaginable”. Patient will have to draw out a upright line on the horizontal scale according to their present level of pain.

2) Tennis Elbow Function Scale (TEFS) – The Functional activity of elbow will be evaluated on Tennis Elbow function Scale which have ten group of activities and their rating will be based on discomfort i.e. ‘No discomfort’ to ‘Extreme discomfort’. This
scale is scores in relation with VAS in combination for pain related function.

Data Collection and Management:

The assessment data will be collected from a predetermined spreadsheet with the baseline characteristics variable. The hard copies of assessment forms and signed consent forms will be stored securely at the study site. Data collection and documentation will be done under the guidance of the principal investigators. The study documentation will be evaluated thoroughly for accuracy.

Statistical Analysis

To perform the comparison between the two groups, t-tests will be used for the demographic measures and initial scores on outcome measures. For the interpretation of the results, we will significant differences. Significance will be set at P less than 0.05. Data will be coded and entered in MS excel worksheet and analysed using appropriate statistical software.

Discussion

The study is aimed at assessing the efficacy on pain and functional improvement of the interventions like cyriax physiotherapy and supervised exercise programme with therapeutic ultrasound in lateral epicondylitis (tennis elbow). Earlier studies have proved that both these interventions are beneficial in pain reduction and function improvement. But amongst the two which one is more better and well tolerated by the patients is not known. Also above mentioned each intervention along with therapeutic ultrasound not yet performed in any studies published till now. Henceforth which intervention amongst the two will be helpful for the patients of lateral epicondylalgia is the main aim of this research.

To conclude we aim at finding out improvement in pain and the functional efficacy through supervised exercise programme and cyriax physiotherapy on lateral epicondylitis. Hence which intervention is more beneficial on these outcome measures is to be analysed.

Ethics and Dissemination:

The ethical clearance will be obtained from Institutional Ethics Committee of Datta Meghe Institute of Medical Sciences, Deemed to be University. The main findings regarding the efficacy of the Supervised exercise program and Cyriax physiotherapy in patients with Lateral Epicondylitis on pain and function will be published in a peer-reviewed journal.

Patient Consent: The informed consent will be obtained from the patient on a printed form with signatures and give the proof of confidentiality.

Author’s contribution: The study was created and designed by all of the authors, and the final manuscript was approved for publication by all of them.

Declaration of interests: The authors declare no conflicting interest.

Funding: None

References

1. Viswas R, Ramachandran R, Korde Anantkumar P. Comparison of Effectiveness of Supervised Exercise Program and Cyriax Physiotherapy in Patients with Tennis Elbow (Lateral Epicondylitis): A Randomized Clinical Trial. *Sci World J*. 2012;2012:1-8. doi:10.1100/2012/939645

2. Cho Y-T, Hsu W-Y, Lin L-F, Lin Y-N. Kinesio taping reduces elbow pain during resisted wrist extension in patients with chronic lateral epicondylitis: a randomized, double-blinded, cross-over study. *BMC Musculoskelet Disord*. 2018;19(1):193. doi:10.1186/s12891-018-2118-3

3. Blanchette M-A, Normand MC. Impairment assessment of lateral epicondylitis through electromyography and dynamometry. :11.
4. Raut A, Risalder P, Naqvi WM, Wane M, Sahu A. Case report of a spastic diplegic cerebral palsy patient: Clinical decision making in physical therapy. Published online 2020:5.

5. Nirschl RP, Sobel J. Conservative Treatment of Tennis Elbow. *Phys Sportsmed*. 1981;9(6):43-54. doi:10.1080/00913847.1981.11711096

6. Goyal C, Naqvi W, Sahu A. Xia-Gibbs Syndrome: A Rare Case Report of a Male Child and Insight into Physiotherapy Management. *Cureus*. 12(8). doi:10.7759/cureus.9622

7. Schneeberger AG, Masquelet AC. Arterial Vascularization of the Proximal Extensor Carpi Radialis Brevis Tendon: *Clin Orthop*. 2002;398:239-244. doi:10.1097/00003086-200205000-00033

8. Goyal C, Naqvi WM, Sahu A. An atypical case of febrile infection-related epilepsy syndrome following acute encephalitis: impact of physiotherapy in regaining locomotor abilities in a patient with neuroregression. *Pan Afr Med J*. 2020;36. doi:10.11604/pamj.2020.36.101.23855

9. Bagayoko ND, Brockmeier SF. Current controversies in the management of lateral epicondylitis. *Curr Orthop Pract*. 2012;23(5):480-485. doi:10.1097/BCO.0b013e31825aa6e3

10. Shamsoddini A, Hollisaz MT. Effects of Taping on Pain, Grip Strength and Wrist Extension Force in Patients with Tennis Elbow. *Trauma Mon*. 2013;18(2):71-74. doi:10.5812/traumamon.12450

11. Speers CJ, Bhogal GS, Collins R. Lateral elbow tendinosis: a review of diagnosis and management in general practice. *Br J Gen Pract*. 2018;68(676):548-549. doi:10.3399/bjgp18X699725

12. Ombregt L. Principles of treatment. In: *A System of Orthopaedic Medicine*. Elsevier; 2013:83-115. e5. doi:10.1016/B978-0-7020-3145-8.00005-3

13. Tendinopathy: The role of stretching - ProQuest. Accessed April 27, 2021. https://search.proquest.com/openview/d678b09e570d574bdc73b39dc291936e/1?pq-origsite=gscholar&cbl=54991

14. Nagrale AV, Herd CR, Ganvir S, Ramteke G. Cyriax Physiotherapy Versus Phonophoresis with Supervised Exercise in Subjects with Lateral Epicondylalgia: A Randomized Clinical Trial. *J Man Manip Ther*. 2009;17(3):171-178. doi:10.1179/jmt.2009.17.3.171

15. Knutsen EJ, Calfee RP, Chen RE, Goldfarb CA, Park KW, Osei DA. Factors Associated With Failure of Nonoperative Treatment in Lateral Epicondylitis. *Am J Sports Med*. 2015;43(9):2133-2137. doi:10.1177/0363546515590220

16. Dimitrios S. Lateral elbow tendinopathy: Evidence of physiotherapy management. *World J Orthop*. 2016;7(8):463. doi:10.5312/wjo.v7.i8.463

17. Stasinopoulos D, Johnson MI. It may be time to modify the Cyriax treatment of lateral epicondylitis. *J Bodyw Mov Ther*. 2007;11(1):64-67. doi:10.1016/j.jbmt.2006.03.005

18. G M, Begum M, Laxmi V R, Ramanathan K. The Effect Of Ultrasound And Stretching Exercise Versus Ultrasound And Strengthening Exercise To Relieve Pain And To Improve Functional Activity In Lateral EpicondylitiS. *Int J Physiother Occup Ther TJPRC IJPOT*. 2016;2:9-16.

19. Vijay Kage AJP. Effectiveness of Cyriax Physiotherapy in Subjects with Tennis Elbow. *J Nov Physiother*. 2013;3(03). doi:10.4172/2165-7025.1000156

20. Vaidya L, Kumar K, Naqvi W, Narang S, Pisulkar G, Dadlani M. Revision of total hip replacement surgery in elderly patient and its recovery based on periprosthetic fracture rehabilitation. Published online 2020:11.

21. Wane M, Naqvi WM, Vaidya L, Kumar K. Kinesiophobia in a Patient With Postoperative Midshaft Fracture: A Case Report of Its Impact on Rehabilitation in a 16-Year-Old Girl. *Cureus*. 2020;12(11). doi:10.7759/cureus.11333
22. Stasinopoulos D, Stasinopoulos I. Comparison of effects of Cyriax physiotherapy, a supervised exercise programme and polarized polychromatic non-coherent light (Bioptron light) for the treatment of lateral epicondylitis. *Clin Rehabil*. 2006;20(1):12-23. doi:10.1191/0269215506cr921oa