A Faster Product for π and a New Integral for $\ln \frac{\pi}{2}$

Jonathan Sondow

1. INTRODUCTION. In [15] we derived an infinite product representation of e^γ, where γ is Euler’s constant:

$$e^\gamma = \left(\frac{2}{1} \right)^{1/2} \left(\frac{2^2}{1 \cdot 3} \right)^{1/3} \left(\frac{2^3 \cdot 4}{1 \cdot 3^3} \right)^{1/4} \left(\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right)^{1/5} \cdots. \quad (1)$$

Here the nth factor is the $(n + 1)$th root of the product

$$\prod_{k=0}^{n} \left(\frac{(-1)^{k+1/n}}{k} \right).$$

In the process we noticed a strikingly similar product representation of π:

$$\frac{\pi}{2} = \left(\frac{2}{1} \right)^{1/2} \left(\frac{2^2}{1 \cdot 3} \right)^{1/4} \left(\frac{2^3 \cdot 4}{1 \cdot 3^3} \right)^{1/8} \left(\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right)^{1/16} \cdots. \quad (2)$$

In this note we give three proofs of (2). The third leads to an analog for $\ln(\pi/2)$ of integrals for $\ln(4/\pi)$ [14] and γ [13], [14], [15]:

$$\ln \frac{\pi}{2} = - \int_{[0,1]} \frac{1-x}{(1+x) \ln x} \, dx, \quad (3)$$

$$\ln \frac{4}{\pi} = - \int_{[0,1]} \frac{1-x}{(1+xy) \ln xy} \, dx \, dy, \quad (4)$$

$$\gamma = - \int_{[0,1]} \frac{1-x}{(1-xy) \ln xy} \, dx \, dy.$$

Using (3), we sketch a derivation of (1) and (2) from the same function (a form of the polylogarithm [7]), accounting for the resemblance between the two products. The function also leads to a product for e (due to J. Guillera [5]),

$$e = \left(\frac{2}{1} \right)^{1/1} \left(\frac{2^2}{1 \cdot 3} \right)^{1/2} \left(\frac{2^3 \cdot 4}{1 \cdot 3^3} \right)^{1/3} \left(\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right)^{1/4} \cdots. \quad (5)$$
surprisingly close to product (1) for e^γ.

2. THE ALTERNATING ZETA FUNCTION. The logarithm of product (1), namely,

$$\gamma = \sum_{n=1}^{\infty} \frac{1}{n+1} \sum_{k=0}^{n}(-1)^{k+1} \binom{n}{k} \ln(k+1),$$

reminded us of the series (see [6] and [11])

$$\zeta^*(s) = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^{k+1} \binom{n}{k} (k+1)^{-s} \quad (s \in \mathbb{C}),$$

which gives the analytic continuation of the alternating zeta function $\zeta^*(s)$. The latter is defined by the Dirichlet series (see [12])

$$\zeta^*(s) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^s} \quad (\Re(s) > 0).$$

(For example, using the classic formula $\zeta^*(1) = \ln 2$ for the alternating harmonic series—for a new proof see [12]—one can derive the series $\ln 2 = \sum_{n=1}^{\infty} (2^n n)^{-1}$ from (7) by considering it when $s = 1$.) Differentiating (7) termwise and substituting the value of the derivative of ζ^* at $s = 0$,

$$\zeta^*'(0) = \frac{1}{2} \ln \frac{\pi}{2},$$

(see [11]), yields the series

$$\ln \frac{\pi}{2} = \sum_{n=1}^{\infty} \frac{1}{2^n} \sum_{k=0}^{n} (-1)^{k+1} \binom{n}{k} \ln(k+1),$$

and exponentiation produces product (2).

3. WALLIS'S PRODUCT AND EULER'S TRANSFORM. The pair of infinite products (1) and (2) calls to mind another pair, Wallis's product for π [17] and Pippenger's product for e [10]:
It is interesting to note that products (2) and (12), whose factors have exponents $1/2^n$, converge rapidly to numbers $\pi/2$ and $e/2$ whose irrationality has been proved (see, for example, [9]), whereas product (1), with exponents $1/(n+1)$, converges less rapidly to a number e^γ whose (expected) irrationality has not yet been proved.

We give a second proof of (2), using (11) and Euler's transformation of series

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} a_{k+1},$$

valid for any convergent series of complex numbers [7, sec. 33B], [11]. Applying (13) to the logarithm of Wallis's product

$$\ln \frac{\pi}{2} = \sum_{n=1}^{\infty} (-1)^{n-1} \ln \frac{n+1}{n}$$

gives

$$\ln \frac{\pi}{2} = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \ln \frac{k+2}{k+1}. \quad (15)$$

If we replace n by $n-1$, write the last logarithm as $\ln(k+2) - \ln(k+1)$, and the sum on k as the difference of two sums in the first of which we replace k by $k-1$, then the recursion $\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$ leads to (10), completing the second proof of (2). The first proof is basically the same, because in [11] we use Wallis's product to evaluate (9), and we take the Euler transform of (8) to get (7) for complex s with $\Re(s) > 0$.

Products (12) and (11) are linked by Stirling’s asymptotic formula $n! \sim (n/e)^n \sqrt{2\pi n}$: the formula is proved in [2] using (11) and is used in [10] to establish (12). Products (1) and (2) are linked by transformations: a hypergeometric one [15] for (1) and Euler's for (2). (To strengthen the link, we can write series (14) and (15) as integrals of hypergeometric functions—compare [15, Proof 1]—and then obtain (15) from (14) by a hypergeometric transformation equivalent to (13).) However, this link does not explain the remarkable resemblance between (1) and (2).

Euler's transformation accelerates the rate of convergence of a slowly converging series such as (14) (see [7, sec. 35B]). Thus, product (2) converges faster than product (11), as Figure 1 shows.
4. AVOIDING EULER. A third proof of (2) (due in part to S. Zlobin [18]) avoids using Euler’s transformation altogether (compare the proofs avoiding hypergeometric functions in [15]). We show that

\[I := \int_0^1 \int_0^\infty x^n \left(\frac{1-x}{2} \right)^{n+1} \, dx \, dy = \ln \frac{\pi}{2}. \]

This implies (2), because if we factor \((1-x)\) from the integrand and use the binomial theorem, then termwise integration (justified since the integrand is majorized by the series \(\sum 2^{-n-1}\)) yields (15) and, therefore, (2). To prove (16), we use the geometric series summations

\[\sum_{n=0}^{\infty} \left(\frac{1-x}{2} \right)^{n+1} = \frac{1-x}{1+x} = \frac{(1-x)^2}{1-x^2} = \sum_{n=0}^{\infty} (1-x)^2 x^{2n} \]

(17)
to write

\[I = \int_0^\infty \int_0^1 \sum_{n=0}^{\infty} (1-x)^2 x^{y+2n} \, dx \, dy. \]

The integrand is majorized by \(\sum (n+1)^{-2}\) (because

\[\max_{0 \leq x \leq 1} (1-x)^2 x^{2n} = \left(\frac{1}{n+1} \right)^2 \left(\frac{n}{n+1} \right)^2 < \frac{1}{(n+1)^2} \]

and \(x^y \leq 1\), so we may perform the integrations term by term, which by invoking (11) gives
\[I = \sum_{n=0}^{\infty} \ln \frac{(2n+2)^2}{(2n+1)(2n+3)} = \ln \frac{2^2}{1 \cdot 3} \cdot \frac{4^2}{3 \cdot 5} \cdot \frac{6^2}{5 \cdot 7} \cdots = \ln \frac{\pi}{2}. \]

This proves (16) and completes the third proof of (2).

Proof of (3). Equation (16) and the first equality in (17) yield

\[\int_0^\infty \int_0^1 x^y \frac{1-x}{1+x} \, dx \, dy = \ln \frac{\pi}{2}. \]

Reversing the order of integration (permitted since the integrand is nonnegative), we integrate with respect to \(y \) and arrive at formula (3).

Alternatively, one can derive (3) from (4) by making the change of variables \(u = xy, v = 1-x \) and integrating with respect to \(v \): the result is \(\ln 2 \) minus integral (3) (with \(u \) in place of \(x \)), and equality (3) follows.

5. RELATING THE PRODUCTS FOR \(\pi \) AND \(e^γ \). Recall that we derived product (2) for \(\pi \) from the alternating zeta function \(\zeta^*(s) \). Omitting details, we sketch a derivation of product (1) for \(e^γ \) from a generalization of \(\zeta^*(s) \). This accounts for the resemblance between the two products. (Formulas (18) and (19) are due to J. Guillera [5].)

We generalize series (7) for \(\zeta^*(s) \) by defining the function

\[f(t,s) = \sum_{n=0}^{\infty} t^{n+1} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (k+1)^{-s} \quad (-1 < t < 1, \ s \in \mathbb{C}), \]

(18)

so that \(f(1/2, s) = \zeta^*(s) \). Using integral (16) but replacing \((1-x)/2 \) with \(t(1-x) \), we can show that the formula obtained from (3) and (9),

\[\zeta^*(0) = -\frac{1}{2} \int_0^1 \frac{1-x}{(1+x) \ln x} \, dx, \]

extends to

\[f'(t, 0) = -t^2 \int_0^1 \frac{1-x}{(1-t(1-x)) \ln x} \, dx, \]

(19)

where the prime ' is shorthand for \(\partial / \partial s \).

We now derive product (1) by evaluating the integral \(\int_0^1 t^{-1} f'(t, 0) \, dt \) in two different ways. On the one hand, a glance at (18) reveals that this integral equals the right side of (6). On the other hand, substituting (19) into the integral and reversing the order of integration gives

\[\int_0^1 \frac{f'(t, 0)}{t} \, dt = -\int_0^1 \int_0^1 t \frac{(1-x)}{(1-t(1-x)) \ln x} \, dt \, dx = \int_0^1 \left(\frac{1}{\ln x} + \frac{1}{1-x} \right) \, dx. \]
The last is a classical integral for Euler's constant [1, sec. 10.3], [15], and (6) follows, implying (1).

Other products can be derived in the same way. For example, exponentiating the integral \(\int_0^1 t^{-2} f'(t,0) dt = 1 \) gives product (5) for \(e \), which converges more slowly than Pippenger's product for \(e \), because of the exponents \(1/n \) in (5), versus \(1/2^n \) in (12).

In order to identify the function \(f(t, s) \), we reverse the order of summation in (18) and sum the resulting series on \(n \). We then replace \(k \) with \(k - 1 \), obtaining

\[
f(t, s) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k + 1)^s} \sum_{n=k}^{\infty} \binom{n}{k} t^n = -\sum_{k=1}^{\infty} \frac{(t/(t-1))^k}{k^s}
\]

for \(t \) satisfying \(-1 < t \leq 1/2\) and for suitable \(s \). Therefore, \(f(t, s) \) and \(\zeta^*(s) \) are related to the function

\[
F(t, s) = \sum_{k=1}^{\infty} \frac{t^k}{k^s} \quad (-1 \leq t < 1, \Re(s) > 0)
\]

by the formulas

\[
f(t, s) = -F(t/(t-1), s),
\]

\[
\zeta^*(s) = -F(-1, s),
\]

for appropriate \(t \) and \(s \). (With \(t = 1/2 \), equations (18) and (20) verify that formulas (7) and (8) for \(\zeta^*(s) \) agree.) The function \(F(t, s) \), a special case of the Lerch zeta function \(\Phi(z, s, v) \) (see [3, sec. 1.11], [16, Sec. 64]), is the polylogarithm \(\text{Li}_s(t) \) when \(s \) is an integer [7, p. 189], [16, secs. 25, 64]. Relations (18) and (21) lead to an analytic continuation of \(F(t, s) \), and thus of the polylogarithm.
REFERENCES

1. G. Boros and V. Moll, *Irresistible Integrals: Symbolics, Analysis, and Experiments in the Evaluation of Integrals*, Cambridge University Press, Cambridge, 2004.

2. A. J. Coleman, A simple proof of Stirling's formula, *Amer. Math. Monthly* 58 (1951) 334-336.

3. A. Erdélyi et al., *Higher Transcendental Functions*, The Bateman Manuscript Project, vol. 1, McGraw-Hill, New York, 1953.

4. R. Graham, D. Knuth, O. Patashnik, *Concrete Mathematics*, 2nd ed., Addison-Wesley, Boston, 1994.

5. J. Guillera, personal communication, 25 July 2003.

6. H. Hasse, Ein Summierungsverfahren für die Riemannsche ζ-Reihe, *Math. Z.* 32 (1930) 458-464.

7. K. Knopp, *Theory and Application of Infinite Series*, Dover, New York, 1990.

8. L. Lewin, *Polylogarithms and Associated Functions*, Elsevier North-Holland, New York, 1981.

9. A. E. Parks, π, e, and other irrational numbers, *Amer. Math. Monthly* 93 (1986) 722-723.

10. N. Pippenger, An infinite product for e, *Amer. Math. Monthly* 87 (1980) 391.

11. J. Sondow, Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series, *Proc. Amer. Math. Soc.* 120 (1994) 421-424.

12. __________, Zeros of the alternating zeta function on the line ℜ(s) = 1, *Amer. Math. Monthly* 110 (2003) 435-437.

13. __________, Criteria for irrationality of Euler's constant, *Proc. Amer. Math. Soc.* 131 (2003) 3335-3344.

14. __________, Double integrals for Euler's constant and ln(4/π) (preprint); available at http://arXiv.org/abs/math.CA/0211148.

15. __________, An infinite product for e^γ via hypergeometric formulas for Euler's constant γ (preprint); available at http://arXiv.org/abs/math.CA/0306008.

16. J. Spanier and K. B. Oldham, *An Atlas of Functions*, Hemisphere, New York, 1987.

17. J. Wallis, Computation of π by successive interpolations, in *A Source Book in Mathematics, 1200-1800*, D. J. Struik, ed., Princeton University Press, Princeton, 1986, pp. 244-253; reprinted in *Pi: A Source Book*, 2nd ed., L. Berggren, J. Borwein, and P. Borwein, eds., Springer-Verlag, New York, 2000, pp. 68-77.

18. S. Zlobin, personal communication, 26 May 2003.

209 West 97th Street, New York, NY 10025
jsondow@alumni.princeton.edu