SUPPLEMENTARY MATERIAL

Ailanthus altissima (Miller) Swingle fruit - new acyl β-sitosteryl glucoside and *in vitro* pharmacological evaluation

Sohail Khan\(^a\), Aftab Hussain\(^a\), Ansar Mehmood\(^b\), Rashad Mehmood\(^a\)*, Shagufta Perveen\(^c\), Muhammad Imran\(^d\)

\(^a\)Department of Chemistry, Hazara University, Mansehra-21120, Pakistan

\(^b\)Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan

\(^c\)Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh11451, Saudi Arabia

\(^d\)Department of Chemistry, Ghazi University, Dera Ghazi Khan-32200, Pakistan

Corresponding author. Email: rashadhej@gmail.com; Tel.: +92-997-414136; FAX: +92-997-414111
\(\beta \)-Sitosterol-3-O-(6’-O-13"-octadecenoyl)-\(\beta \)-D-glucoside (1), a new acyl \(\beta \)-sitosteryl glucoside, along with three known compounds \(\beta \)-sitosterol-3-O-\(\beta \)-D-glucoside (2), \(\beta \)-sitosterol (3) and methyl gallate (4) have been isolated from the ethyl acetate soluble fraction of methanolic extract of *Ailanthus altissima* fruits. Their structures were elucidated through spectroscopic data including 2D NMR, ESI-MS, methanolysis and oxidative cleavage of double bond. Antibacterial, antifungal, cytotoxic, phytotoxic and insecticidal activities were evaluated of compound 1, crude extract and its fractions so far for the first time. Pharmacological activities results showed that \(n \)-butanol fraction was good-active against *Pseudomonas aeruginosa* and *Salmonella typhi* bacteria, and moderate-active against *Microsporum canis* fungus. Crude extract, and \(n \)-butanol and aqueous fractions showed good cytotoxicity. Moreover, compound 1, extract and all fractions and showed notable phytotoxicity at higher concentrations, whereas all inactive against assayed insects.

Keywords: Simaroubaceae; *Ailanthus altissima*; \(\beta \)-Sitosterol-3-O-(6’-O-13"-octadecenoyl)-\(\beta \)-D-glucoside; antimicrobial; cytotoxicity; phytotoxicity
C No.	Multiplic	δ\textsubscript{C}	δ\textsubscript{H}
1	CH\textsubscript{2}	37.3	1.83 (1H, m), 1.03 (1H, m)
2	CH\textsubscript{2}	27.2	1.88 (1H, m), 1.55 (1H, m)
3	CH	79.7	3.49 (1H, t, J = 7.5 Hz)
4	CH\textsubscript{2}	38.9	2.31 (1H, m), 2.26 (1H, m)
5	C	140.3	---
6	CH	122.1	5.36-5.34 (1H, m)
7	CH\textsubscript{2}	32.0	1.92 (2H, m)
8	CH	31.9	1.45 (1H, m)
9	CH	50.2	0.88 (1H, m)
10	C	36.7	---
11	CH\textsubscript{2}	21.1	1.45 (2H, m)
12	CH\textsubscript{2}	39.8	1.98 (1H, m), 1.12 (1H, m)
13	C	42.3	---
14	CH	56.8	0.93 (1H, m)
15	CH\textsubscript{2}	24.3	1.56 (1H, m), 1.10 (1H, m)
16	CH\textsubscript{2}	28.3	1.88 (1H, m), 1.28 (1H, m)
17	CH	56.1	1.08 (1H, m)
18	CH\textsubscript{3}	11.9	0.67 (3H, s)
19	CH\textsubscript{3}	19.4	0.96 (3H, m)
20	CH	36.2	1.32 (1H, m)
21	CH\textsubscript{3}	18.8	0.89 (3H, d, J = 6.4 Hz)
22	CH\textsubscript{2}	34.0	1.31 (1H, m), 0.95 (1H, m)
23	CH\textsubscript{2}	26.2	1.30 (1H, m), 1.15 (1H, m)
24	CH	45.8	0.90 (1H, m)
25	CH	29.2	1.83 (1H, m)
26	CH\textsubscript{3}	19.8	0.79 (3H, m)
27	CH\textsubscript{3}	19.0	0.82 (3H, m)
28	CH\textsubscript{2}	22.7	1.41 (2H, m)
29	CH\textsubscript{3}	12.0	0.81 (3H, t, J = 7.4 Hz)
1'	CH	101.2	4.38 (1H, d, J = 8.0 Hz)
2'	CH	73.9	3.39 (1H, t, J = 9.0 Hz)
3'	CH	73.5	3.26 (1H, t, J = 9.0 Hz)
4'	CH	70.3	3.15 (1H, t, J = 8.5 Hz)
5'	CH	76.1	3.55 (IH, m)
6'	CH\textsubscript{2}	63.4	4.37 (1H, dd, J = 11.5, 1.5 Hz), 4.18 (1H, dd, J = 11.5, 7.5 Hz)
1''	C	174.4	---
2''	CH\textsubscript{2}	34.2	2.32 (2H, t, J = 7.5 Hz)
3''	CH\textsubscript{2}	25.0	1.60 (2H, m)
4''-11''	CH\textsubscript{2}×8	29.1-29.8	1.24-126 (16H, br s)
12''	CH\textsubscript{2}	25.6	2.79 (2H, m)
13''	CH	128.1	5.32-5.30 (1H, m)
14''	CH	130.0	5.32-5.30 (1H, m)
15''	CH\textsubscript{2}	27.2	2.00 (2H, m)
16''	CH\textsubscript{2}	31.9	1.26 (2H, m)
17''	CH\textsubscript{2}	23.1	1.26 (2H, m)
18''	CH\textsubscript{3}	14.1	0.85 (3H, t, J = 7.5 Hz)
Figure S1: 13C NMR of Compound 1
Figure S2: 1H NMR of Compound 1
Figure S3: Important HMBC (---) and COSY (——) correlations of 1
3.4. Pharmacological evaluation assays

3.4.1. Antibacterial bioassay

The antibacterial potential of methanolic extract and its fractions and compound 1 of *A. altissima* fruits was determined against Gram-positive *Staphylococcus aureus*, *Bacillus subtilis*, and Gram-negative *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella typhi*, *Shigella flexneri* bacteria by agar well diffusion method using Mueller-Hinton agar medium (Alves et al. 2000). Test samples were prepared by dissolving 3 mg in 1 mL DMSO. The strains were grown in Mueller-Hilton agar and broth. The strains were incubated at 37 °C for 24 hrs and diluted to approximately 10^6 CFU/mL. 100 μL of 10^6 CFU/mL containing bacterial suspension was spread over Mueller-Hilton agar and homogenized. After solidification, wells of 6 mm-diameters were made using sterile crock-borer. 100 μL test samples, imipenem 10 μg (positive control) and DMSO (negative control) were inoculated in respective wells and all wells were incubated at 37 °C for 24 hrs. Antibacterial activity was determined by measuring the diameter of zone of inhibition and results were expressed as: < 9 mm inactive; 9-12 mm partially active; 13-15 mm low active, 16-18 mm good active; >18 mm very active/significant. All reactions were performed in triplicate. Minimal inhibitory concentration (MIC) was measured by two fold dilution at various concentrations.

3.4.2. Antifungal bioassay

The *in vitro* antifungal activity of methanolic extract and its fractions and compound 1 of *A. altissima* fruits was evaluated by agar tube dilution method (Choudhary et al. 1995) against *Candida albicans*, *Candida glabrata*, *Fusarium solani*, *Microsporum canis* and *Aspergillus flavus* fungi. Each sample (20 mg) was dissolved in 1 mL sterile DMSO. The strains were cultured in sabouraud dextrose agar (SDA), the acidic (pH 5.5-5.6) media was prepared by mixing 32.5 g/500 ml distilled water containing glucose or maltose 2%. The media (4 mL) was transferred to screw caps tube and autoclaved at 121 °C for 15 min. Cooled the tubes at 50 °C and 66.6 μL test samples were employed. Solidify the tubes and each tube was inoculated with 4 mm diameter fungus plates. The plates were incubated for 3-7 hours at 27-29 °C. For positive control, amphotericin B used for *A. flavus* and miconozale used for others. DMSO was used as negative control. The test solution diffused with the growth of inoculated microorganisms. The percentage inhibition of fungal growth was measured. The results were expressed in percentage inhibition as: 0-39 low active; 40-59 moderate active; 60-69 good active; >70 significant active. All reactions were performed in triplicate.
3.4.3. Cytotoxicity/Brine shrimp lethality bioassay

To check *in vitro* cytotoxicity/brine shrimp activity, reported protocol was employed (Alves et al. 2000). The *Artemia salina* (shrimps) eggs were stored at 4 °C. Artificial seawater was prepared by dissolving 38 g sea salt in 1 liter double distilled water (pH 7.4), filtered it and was placed in small partition of hatching tray. 1 Milligram of shrimp eggs (*A. salina*) was added to the large partition of the tray, which was darkened with aluminum foil and incubated at 37 °C. The shrimp’s larvae were attracted by illuminated partition through perforation of the wall. It was permitted to stand for 48 hours at 25 °C to hatch and mature the shrimps. Each sample (20 mg) was dissolved in 2 mL respective solvent. From these solution, 5, 50 and 500 μL were transferred to vials in triplicate and adjusted at 10, 100, 1000 μg/mL concentrations and the solvents were evaporated. After 2 days, the shrimp larvae were matured. In each veil, added 10 shrimp’s larvae using Pasteur pipette and 5 mL seawater, and then incubated at 25-27 °C 24 hours under illumination. After 24 hours, the surviving larvae were counted and determine the LD$_{50}$ using Probit method by Finney computer program.

3.4.4. Phytotoxic bioassay

Phytotoxic activity of methanolic extract and its fractions of *A. altissima* fruits was evaluated against the *Lemna minor* using standard procedure (McLaughlin et al. 1991). The growth medium for *Lemna* was prepared by dissolving various constituents in distilled water (1L) and its pH was adjusted at 5.5-5.6 by adding KOH pellets. The medium was then autoclaved at 121 °C for 15 min. The each sample (30 mg) was dissolved in methanol/ethanol (10 ml) to prepare a stock solution. Three concentrations were prepared of 10, 100 and 1000 μg/ml by taking 10, 100 and 1000 μl of the stock in petri dish as three petri plates of each concentration. The solvent was allowed to evaporate overnight under sterile conditions. Each plate was inoculated with growth medium (20 mL) and *Lemna minor* plants (10), each containing a rosette of three fronds. Three other plates each were supplemented with growth media and reference growth inhibitors, served as negative control. All plates were kept in the growth cabinet for seven days. Total number of fronds per petri plate was counted and recorded on seventh day. Percent growth inhibition was calculated as % regulation as follows.

\[
\text{% Regulation} = 100 - \frac{\text{No. of fronds in test sample}}{\text{No. of frond in }-\text{ve control}} \times 100
\]
3.4.5. *Insecticidal activity*

Crude methanolic extract and its fractions and compound 1 of *A. altissima* fruits were evaluated against *Tribolium castaneum*, *Rhyzopertha dominica*, and *Callosobruchus analis* insects by impregnated filter paper test (Tabassum et al. 1997). Each sample was prepared by dissolving 20 mg in 2 mL volatile solvent (methanol/acetone). A filter paper placed in the petri plate (5 cm or 50 mm) and the whole sample of different concentrations was loaded over the filter paper and plates left for 24 hours to evaporate the solvent. After 24 hours, 10 healthy and active insects of same size and age of each species were placed in each petri plate and the plates were incubated at 27 °C for 24 hours with 50% relative humidity in growth chamber. Permethrin was used as positive control and volatile solvent was used as negative control. Total number of survivors per petri plate was counted and recorded on third day. The % mortality was calculated by the following formula:

\[
\% \text{ Mortality} = 100 - \frac{\text{No. of insects alive in test sample}}{\text{No. of insects alive in control}} \times 100
\]

References

Alves TMA, Silva AF, Brandao M, Grandi TSM, Smania EFA, Smania Jr A, Zani CL. 2000. Biological screening of Brazilian medicinal plants. Mem Inst Oswaldo Cruz Rio Janeiro. 95:367-373.

Choudhary MI, Dur-e-Shahwar Z, Jabbar A, Ali I, Atta-ur-Rahman. 1995. Antifungal steroidal lactones from *Withania coagulance*. Phytochemistry. 40:1243-1246.

Mclaughing JI, Chang CJ, Smith DL. 1991. Bench top bioassays for the discovery of bioactive natural products: an update In: studies in natural products chemistry. Atta ur Rehman (ed), Vol. 9. Elsevier Amsterdam. 383-409.

Tabassum R, Naqvi SNH, Azmi MA, Nurulain SM, Khan MF. 1997. Residual effect of a neem fraction nimolicine and an insect growth regulator dimilin against stored grain pest *Callosobruchus analis*. Proc Pak Cong Zool. 17:165-170.