Comprehensive and Collaborative Pharmacist Transitions of Care Service for Underserved Patients with Chronic Obstructive Pulmonary Disease

Jennifer Kim, PharmD, BCPS, BCACP1-3 Amy Lin, PharmD4 Randy Absher, PharmD, BCPS1 Tanya Makhlouf, PharmD1 Casey Wells, PharmD Candidate3

1 Cone Health, Greensboro, North Carolina, United States
2 Area Health Education Center, Greensboro, North Carolina, United States
3 University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
4 Nebraska Medicine, Omaha, Nebraska, United States

Corresponding author: Jennifer Kim, 336-832-7885, jen.kim@conehealth.com

Citation: Kim J, Lin A, Absher R, Makhlouf T, Wells C. Comprehensive and collaborative pharmacist transitions of care service for underserved patients with chronic obstructive pulmonary disease. *Chronic Obstr Pulm Dis*. 2020; Published online November 25, 2020.

Running head: Pharmacist comprehensive and collaborative transitions of care

Abbreviations: COPD, chronic obstructive pulmonary disease; US, United States; HR, hazard ratio; NNH, number needed to harm; CMS, Centers for Medicare & Medicaid Services; HRRP, Hospital Readmissions Reduction Program; DRG, diagnosis-related group; ED, emergency department; EHR, electronic health record; PCP, primary care provider; GOLD, Global Initiative for Chronic Obstructive Lung Disease

Keywords: implementation science, quasi-experimental study design, chronic obstructive pulmonary disease, care transitions, interdisciplinary

Funding: no funding was provided in direct support of this research

Abstract
Background

Mortality risk from chronic obstructive pulmonary disease (COPD) increases significantly in the first year after a 30-day hospital readmission.

Objective

To evaluate a comprehensive and collaborative pharmacist transitions of care service for patients hospitalized with COPD compared to usual care.

Design, Setting, and Participants

This was an institutional review board approved, within-site, retrospective study, including underserved adult patients with a primary care provider at the study clinic, admitted to the affiliated hospital with a primary diagnosis of COPD exacerbation.

Intervention

The service comprised of discharge counseling, medication reconciliation, medication access assistance, therapy changes, and post-discharge long-term follow up.

Main Outcomes and Measures

The primary outcome was a 180-day composite of COPD-related hospitalizations and emergency department (ED) visits. Secondary outcomes were 30-, 60-, 90-, and 180-day events, costs, pharmacist interventions, time to follow up, and pneumonia.

Results

Sixty-five patients were identified with a total of 101 index admissions. The mean age was 62.5 years, approximately 55.3% were female, and 67.7% were black or African American. The primary composite was significantly lower in the pharmacist intervention group compared to usual care [mean difference 0.82, P = 0.0364, 95% confidence interval (CI) 0.05-1.60], driven by lower 30-day hospitalizations in the intervention group.
(mean difference 0.15, P = 0.0099, 95% CI 0.04-0.27). Within the intervention group, the primary composite was significantly lower after the intervention compared to before the intervention (P < 0.0247), driven by 30-day hospitalizations (P = 0.0019) and 30- and 60-day ED visits (P = 0.0020 and 0.0310, respectively). Cost associated with COPD-related hospitalizations was significantly lower in the pharmacist intervention group compared to usual care ($173,808, P = 0.0330) as well as before intervention ($79,662, P = 0.0233). The most common pharmacist intervention was patient education. There was no significant difference in time to follow up or pneumonia.

Conclusions
A comprehensive, collaborative pharmacist transitions of care service significantly reduced 30-day COPD-related hospital readmissions, ED re-visits, and associated costs in an underserved population.

Introduction
Chronic lower respiratory disease is the fourth leading cause of death in the United States (U.S.).1 Risk of mortality from chronic obstructive pulmonary disease (COPD) increases significantly in the first year after readmission within 30 days of a hospitalization [hazard ratio (HR) 2.48, 95% confidence interval (CI), 1.10-5.59].2 For patients readmitted within 30 days, the estimated absolute increase in mortality risk is 4\% at 30 days [number needed to harm (NNH), 25], 17\% at 6 months (NNH, 6), 19\% at 1 year (NNH, 6) and 24\% at 3 years (NNH, 5). The 5-year mortality rate is 40-70\% depending on COPD severity. For patients with severe disease, the 2-year mortality rate is about 50\%.3

In the past, the U.S. healthcare system was sustained by prospective payment, minimizing hospital length of stay and maximizing turnover.4 To improve quality of care and reduce readmissions risks, the Centers for Medicare & Medicaid Services (CMS) Hospital Readmissions Reduction Program (HRRP) became effective in 2012.5 Hospitals are now penalized up to 1\% of diagnosis-related group (DRG) payments (3\% for fiscal year 2015 and onward) for excess readmissions, totaling nearly $1.9 billion in penalties.6 In 2013, myocardial infarction, heart failure, and pneumonia were included in the HRRP 30-day readmission penalties. By 2015, CMS added COPD and elective hip or knee replacement to these conditions. The Agency of Healthcare Research and Quality also considers COPD an ambulatory care-sensitive condition for which outpatient care can reduce hospitalization.7

On average, a COPD-related emergency department (ED) visit costs $647, while an admission ranges from $7,242 (simple) to $44,909 (intensive care unit with intubation).8 These costs increase over the years, and costs can be compounded by
continuous readmissions. Around 20% of patients hospitalized for COPD exacerbation are readmitted within 30 days of discharge. Additionally, a history of 2 or more exacerbations in the previous year predicts the 30-day readmission of COPD patients (HR, 2.47; 95% CI, 1.51-4.05), suggesting that many opportunities exist to prevent readmissions and their associated consequences.

Pharmacists have been increasingly involved in reducing readmissions, with an array of activities including discharge counseling, medication reconciliation, therapy changes, dispensing, post-discharge phone calls, and face-to-face visits.9-24 The National Transitions of Care Coalition supports pharmacist inclusion to help reduce readmissions.25 Specific to COPD, pharmacist discharge medication reconciliation for elderly (N = 29) reduced 30-day readmissions from 22.2% to 16.0%.9 Another study of pharmacists dispensing inhalers and providing discharge counseling (N = 620) reduced 30- and 60-day readmissions from 21.4% to 8.7% (p = 0.0016), and 33% to 23% (p = 0.0056), respectively.10 A therapeutic interchange program for COPD patients was associated with reduced 30-day readmissions (8.3% of 1,535 control patients vs 5.8% of 1,350 intervention patients; P = 0.012), in addition to reduced average inhaled medication cost from $311 to $221 (P < 0.01).11 The purpose of this study is to evaluate a comprehensive and collaborative pharmacist COPD transitions of care service.

Methods

Setting

The study site was a primary care internal medicine residency clinic located within a 536-bed community teaching hospital. Of approximately 2,000 total patients,
the payer mix consists of 45% Medicare, 17% Medicaid, 19% commercial, and 20% uninsured. The clinic serves adult patients regardless of financial or insurance status. An estimated 50-70% of the population is indigent, approximately 69% are black or African American, 24% are white or Caucasian, 60% are female, and 40% are male.

Clinical Process

A pharmacist was added to the internal medicine residency team in 2015. At that time, attending physicians requested pharmacist involvement with transitions of care. The hospital 30-day readmission rate for COPD was 19.6%, which was consistent with the national average.26 For the transitions of care daily workflow (Figure 1), the pharmacist identified patients using an electronic health record (EHR) function called patient lists. All patients admitted to the hospital while the pharmacist was on service, whose primary care provider (PCP) was on the internal medicine residency team, were reviewed by the pharmacist, who then provided discharge counseling, medication reconciliation, medication access assistance, and therapy optimization (contacted physicians with recommendations and implemented changes).

After discharge, the pharmacist called patients by phone within 1 week to further evaluate medication use and symptoms (Figure 1). At clinic appointments, the pharmacist met with patients, PCPs, and nurses to complete medication reconciliation and assist with other interventions (e.g. vaccines, smoking cessation) and education. During these visits, the pharmacist collaborated with the clinic social worker and financial counselor, as well as community pharmacies, if needed for medication access. Following clinic visits, the pharmacist called patients monthly for 3 months, and then
every 3-6 months. The pharmacist utilized teach-back during all patient interactions and provided handouts during face-to-face encounters.

Other pharmacist activities included COPD education to attending and resident physicians annually (1-hour lecture, 30-minute device education). Additionally, the procured and managed inhaled medication samples (bronchodilators, inhaled corticosteroids) for immediate access, and helped with long-term medication access as well. Pharmacy residents and students on rotation participated in all activities.

Design

This is a retrospective study approved by the health system institutional review board. Adult patients were included if they had a PCP from a physician residency clinic and were admitted to the hospital with a primary diagnosis of COPD (diagnosis-related group codes beginning with J44.027) during a 3-year period (May 2016 through April 2019). Patients who received pharmacist intervention as described above were assigned to the intervention group; those who did not receive the service were assigned to the usual care group. Each new patient admission during this time period was counted as an index admission. Subsequent admissions for the same patients were only counted as additional index admissions if they occurred more than 180 days after the first index admission. Hospitalizations were excluded if they were not found in the EHR due to occurring within another health system without electronic charting or with an EHR that does not interface with the EHR used in the study, or for patients with PCPs outside the study health system.
Data Analysis

The primary outcome was a composite of COPD-related hospital admissions and ED visits. Secondary outcomes include 30-, 60-, 90-, 180-day COPD-related hospital admissions and ED visits, associated costs, pharmacist interventions, time to follow up, and pneumonia. Hospital visits were evaluated by chart review; any requiring acute treatment for COPD were considered COPD-related. ED visits resulting in hospital admissions were counted as hospital admissions and rather than individual ED visits. Associated costs described in the literature were used for the cost analysis (average COPD-related ED visit $647, simple admission $7,242, intensive care unit with intubation $44,909).8

A power calculation was performed after implementation of the pharmacist service but prior to data collection and analysis using PASS software (version 16.0.1, NCSS LLC, Kaysville, Utah).28 Stata software (version 15.2, Stata Corporation, College Station, Texas) was utilized to analyze data.29 The estimated sample size needed was 50 index admissions (power = 0.80 with a 2-sided alpha of 0.05) to detect an anticipated 66% relative risk, presuming a readmission rate of approximately 35% based on internal data. Visit data, length of stay, and costs were compared using t-tests (paired t-tests for pre-post data). Pharmacist interventions were characterized with descriptive statistics.

Results

Sixty-five patients were identified with a total of 101 index admissions, the groups were matched according to baseline characteristics (Table 1). The mean age was 62.5 years,
approximately 55.3% were female, and 67.7% were black or African American. The mean forced expiratory volume in 1 second (FEV1) was 60.3% predicted, median stage was 2 based on Global Initiative for Chronic Obstructive Lung Disease (GOLD)\(^\text{37}\), about 52% were smokers, 32% had coexisting asthma, and 45% had congestive heart failure. For the primary 180-day composite outcome, significantly less hospital admissions and ED visits were observed with pharmacist intervention compared to usual care [80 vs 35, mean difference 0.82; \(P = 0.0364\), 95% confidence interval (CI) 0.05-1.60] (Table 2). These outcomes were driven by 30-day hospitalizations (mean difference 0.15; \(P = 0.0099\), 0.04-0.27). Additionally, pre-post analysis within the intervention group (Table 3) revealed the primary composite was significantly lower after the intervention compared to before (\(P < 0.0247\)), driven by 30-day hospitalizations (\(P = 0.0019\)) and 30- and 60-day ED visits (\(P = 0.0020\) and 0.0310, respectively).

Cost associated with COPD-related hospitalizations was significantly lower in the pharmacist intervention group compared to usual care (mean difference $173,808, \(P = 0.0330\)) (Table 4), and compared to before intervention (mean difference $79,662, \(P = 0.0233\)) (Table 5). The most common pharmacist interventions included patient education (30%), medication access assistance (23%), sending refill requests to PCPs (11%), therapy changes (8%), and smoking cessation support (8%) (Figure 2). The most common therapy change (59%) was the addition of a long-acting muscarinic antagonist (Figure 3). Although numerically lower, there were no significant differences between usual care and pharmacist intervention regarding time to follow up (mean days to phone call 5.3 and 3.0, respectively, \(P = 0.2573\); mean days to appointment 18.8 vs 12.7, respectively, \(P = 0.3126\)) or pneumonia (5 vs 2, respectively, \(P = 0.4378\)).
Discussion

The comprehensive pharmacist intervention resulted in significantly lower hospital admissions and ED visits. Pharmacists have also demonstrated reduced COPD readmissions in a variety of other settings. A constellation of interventions with multidisciplinary collaboration can yield the most significant changes, as suggested by Eisenhower. Our 30-day pre-post hospital admission comparison, a common outcome seen in the literature and associated with significantly increased mortality risk, resulted in an absolute risk reduction of 22% and a relative risk reduction of 84.6%, exceeding those previously published (Table 5).

We attributed our outcomes to a collation of activities (discharge counselling, medication reconciliation, access and adherence support, and inpatient and outpatient therapy changes), collaboration with team members (physicians, nurses, community pharmacists, social worker, financial counselor, and case managers), and physician acceptance. A similar interprofessional post-discharge service resulted in a 0% readmission rate, although a pre-post comparison was not elucidated.24 Linking community pharmacists to inpatient pharmacists and other team members, and inclusion of other disciplines such as respiratory therapy, have also demonstrated reduced hospital readmissions. Focusing on medication adherence can have a substantial impact, as inhaler adherence rates may be as low as 10-40%.35

Regarding other health-system interventions which may have impacted our findings, another COPD transitions of care program demonstrated reduced readmission rates from 62% to 41%, a 33.9% relative risk reduction. However, this program
disbanded prior to initiation of our pharmacist transitions of care service. Upon review, we found no patient in our study enrolled in this program. To our knowledge, no new hospital COPD initiatives were implemented during the study. Other services could have blunted outcomes; still, we found some outcomes to be statistically significant as described above. This suggests that adding pharmacist intervention to standard care, or on top of or integrated into quality improvement initiatives, can further improve care---the aforementioned impact of multidisciplinary collaboration advocated by Eisenhower.⁹

Between-group outcomes beyond 30 days, and pre-post outcomes beyond 60 days were not statistically lower in our study. It is possible that more frequent follow up should occur. For instance, after the first post-discharge PCP visit, we followed up every 1 to 6 months. Perhaps following up monthly or every 1 to 3 months would have a significant impact. Outcomes beyond 30 days were numerically lower and, therefore, could be clinically and financially meaningful. We also had a small sample size. A larger population can be sampled by expanding services throughout the health system or to other institutions, including other high-risk conditions, and dedicating more time or personnel.

The clinical pharmacist activities evolved during the time of the study, from placing recommendations initially, to implementing therapy changes using shared decision-making with team and patient discussion (clinical pharmacist practitioner license obtained in 2016). In 2017, the pharmacist was approved by the medical director to automatically refer patients to pulmonary rehabilitation and became involved in teaching pulmonary rehabilitation medication education classes. Other pharmacist activities included primary care clinic visits, teaching and administrative duties, and
quality initiatives. Therefore, the pharmacist capture rate varied over time and was
difficult to monitor (estimated around 50-80% during the study). We also did not capture
patients with hospital visits in other health systems. Also, the pharmacist only
intervened in patients who were admitted to the hospital rather than those who visited
the ED without hospitalization. Some patients were not admitted to the hospital long
enough for pharmacist identification. In 2019, the pharmacist implemented a new
process to capture all patients who visit the hospital for COPD.

In 2017, the GOLD refined ABCD grouping such that pharmacotherapy
recommendations are based on exacerbation history and symptoms, irrespective of
spirometry. Patients hospitalized with one or more COPD exacerbations in the past
year are recommended to be at least on a long-acting muscarinic antagonist (LAMA).
The preferred next step is to add a long-acting beta agonist (LABA). Inhaled
corticosteroids may be combined with LABA or LAMA-LABA therapy for patients with
elevated blood eosinophils, ongoing symptoms, or exacerbations (two or more, or one
hospitalization, per year). There were also new inhalers FDA-approved during the time
of our study. The pharmacist used the most recent guidelines and considered the new
inhalers, which may have facilitated practice change in the intervention group.

As in our population, minorities and patients of lower socioeconomic status are
disproportionately affected by COPD, challenging hospitals with higher readmission
rates and penalties from CMS. Specific socioeconomic factors listed in the literature
include Medicaid insurance, low income, smoking, non-adherence to medications, and
poor literacy. Compounding these challenges is the lack of resources supporting
indigent care. These populations may stand to benefit most from pharmacist integration.
The cost analysis was based on previous literature indicating simple admissions are estimated to be $7,242. Some of the admissions in our study may have been considered complex, and cost may have been underestimated in these instances. Considering inflation and the potential that some of our admissions may have been complex, our cost estimates are relatively conservative. The associated cost reduction from was approximately $62,465 per year and comprised a portion of the pharmacist position, which is a co-funded clinical faculty role. Extrapolating these findings can justify full-time positions focused on transitions of care.

Although direct revenue from pharmacist billing was not monitored in our study, institutions can pursue transitions of care remuneration using various methods. Post-discharge phone calls, clinic appointments, and telephone follow up are reimbursable ambulatory care services (e.g. transitions of care management, clinic visits, chronic care management). The National Committee for Quality Assurance includes post-discharge medication reconciliation as a performance metric in the Healthcare Effectiveness Data and Information Set. Patient satisfaction can influence the Hospital Consumer Assessment of Healthcare Providers and Systems survey, which is a component of the Medicare Hospital Value-Based Purchasing program. Inhaler prescriptions and vaccines may increase revenue and medication therapy management claims in the community pharmacy setting. Adherence rates may also be measured. Ultimately, these activities help to avoid Medicare HRRP readmission penalties, which may correlate to hundreds of thousands of dollars depending on the size of the organization. We selected outcomes based on data accessible to investigators and encourage others to adapt outcomes pertinent to their setting.
Conclusions

The comprehensive and collaborative pharmacist transitions of care service for COPD patients significantly reduced 30-day COPD-related hospital readmissions, ED re-visits, and associated costs in an underserved population.

Declaration of Interest: none of the authors of this manuscript have conflicts of interest or financial relationships to disclose.

References

1. Centers for Disease Control and Prevention. Ten leading causes of death and injury. Injury Prevention & Control. Available from https://www.cdc.gov/injury/wisqars/LeadingCauses.html. (accessed 2018 Sept 21).
2. Guerrero M, Crisafulli E, Liapikou A, et al. Readmissions for acute exacerbation within 30 days of discharge is associated with a subsequent progressive increase in mortality risk in COPD patients: A long-term observational study. *PLoS One*. 2016;11(3):e0150737.
3. Goodridge DM. COPD as a life-limiting illness: Implications for advanced practice nurses. Medscape. Available from https://www.medscape.com/viewarticle/551088_2. (accessed 2018 May 26).
4. Kosecoff J, Kahn KL, Rogers WH, et al. Prospective payment system and impairment at discharge: the ‘quicker-and-sicker’ story revisited. *JAMA*. 1990;264(15):1908-83.

5. Boozary AS, Manchin J, Wicker RF. The Medicare hospital readmissions reduction program: Time for reform. *JAMA*. 2015;314(4):347-8.

6. American Hospital Association Fact Sheet: Hospital Readmissions Reduction Program. Available from https://www.aha.org/other-resources/2018-01-18-aha-fact-sheet-hospital-readmissions-reduction-program. (accessed 2018 March 22).

7. Agency for Healthcare Research and Quality Indicators. Fact Sheet: Prevention Quality Indicators. Available from https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/systems/hospital/qitoolkit/complete_qitoolkit.pdf. (accessed 2019 Sept 2).

8. Dalal AA, Shah M, D'Souza AO, and Rane P. Costs of COPD exacerbations in the emergency department and inpatient setting. *Respir Med*. 2011;105:454-60.

9. Eisenhower C. Impact of a pharmacist-conducted medication reconciliation at discharge on readmissions of elderly patients with COPD. *Ann Pharmacother*. 2014;48(2):203-8.

10. Blee J, Roux RK, Gautreaux S, Sherer JT, Garey KW. Dispensing inhalers to patients with chronic obstructive pulmonary disease on hospital discharge: Effects on prescription filling and readmission. *Am J Health-Syst Pharm*. 2015;72:1204-8.

11. McGurran MA, Richter LM, Leedahl ND, Leedahl DD. Impact of a comprehensive COPD therapeutic interchange program on 30-day readmission rates in hospitalized patients. *PT*. 2019;44(4):185-91.
12. Anderegg SV, Wilkinson ST, Couldry RJ, Grauer DW, Howser E. Effects of a hospital-wide pharmacy practice model change on readmission and return to emergency department rates. *Am J Health-Syst Pharm.* 2014;71(17):1469-79.

13. Mekonnen AB, McLachlan AJ, Brien JE. Effectiveness of pharmacist-led medication reconciliation programmes on clinical outcomes at hospital transitions: A systematic review and meta-analysis. *BMJ Open.* 2016;6(2): e010003.

14. Jackevicius CA, Leon NKD, Lu L, Chang DS, Warner AL, Mody FV. Impact of a multidisciplinary heart failure post-hospitalization program on heart failure readmission rates. *Ann Pharmacother.* 2015;49(11):1189-96.

15. Tedesco GW, Mcconaha JL, Skomo ML, Higginbotham SK. A Pharmacist’s impact on 30-day readmission rates when compared to the current standard of care within a patient-centered medical home. *J Pharm Pract.* 2016;29(4):368-73.

16. Hale GM, Hassan SL, Hummel SL, Lewis C, Ratz D, Brenner M. Impact of a pharmacist-managed heart failure postdischarge (bridge) clinic for Veterans. *Ann Pharmacother.* 2017;51(7):555-62.

17. Budiman T, Snodgrass K, Komatsu Chang A. Evaluation of pharmacist medication education and post-discharge follow-up in reducing readmissions in patients with ST-segment elevation myocardial infarction (STEMI). *Ann Pharmacother.* 2016;50(2):118-24.

18. Kalista T, Lemay V, Cohen L. Postdischarge community pharmacist-provided home services for patients after hospitalization for heart failure. *J Am Pharm Assoc (2003).* 2015;55(4):438-42.
19. Arnold ME, Buys L, Fullas F. Impact of pharmacist intervention in conjunction with outpatient physician follow-up visits after hospital discharge on readmission rate. *Am J Health Syst Pharm*. 2015;72(11 Suppl 1):S36-42.

20. Walker PC, Bernstein SJ, Jones JN, et al. Impact of a pharmacist-facilitated hospital discharge program: a quasi-experimental study. *Arch Intern Med*. 2009;169(21):2003-10.

21. Schnipper JL, Kirwin JL, Cotugno MC, et al. Role of pharmacist counseling in preventing adverse drug events after hospitalization. *Arch Intern Med*. 2006;166(5):565-71.

22. Crotty M, Rowett D, Spurling L, Giles LC, Phillips PA. Does the addition of a pharmacist transition coordinator improve evidence-based medication management and health outcomes in older adults moving from the hospital to a long-term care facility? Results of a randomized, controlled trial. *Am J Geriatr Pharmacother*. 2004;2(4):257-64.

23. Vicencio D. Preventing readmissions with help from pharmacists. H&HN. Available from https://www.hhnmag.com/articles/3391-preventing-readmissions-with-help-from-pharmacists. (accessed 2019 April 20).

24. Portillo EC, Wilcox A, Seckel E, et al. Reducing COPD readmission rates: using a COPD care service during care transitions. *Fed Pract*. 2018;35(11):30-36.

25. National Transitions of Care Coalition. Advisors Council. Available from http://www.ntocc.org/AboutUs/AdvisorsCouncil.aspx. (accessed 2019 July 4).

26. Hospital Compare. Medicare.gov. Hospital profile, unplanned hospital visits for chronic obstructive pulmonary disease. July 1, 2014 to June 30, 2017. Available
27. Centers for Medicare & Medicaid Services. ACO #9—Prevention Quality Indicator (PQI): Ambulatory Care Sensitive Conditions: Admissions for Chronic Obstructive Pulmonary Disease (COPD) or Asthma in Older Adults. A Blueprint for the CMS Measures Management System, Health Services Advisory Group, Inc. Available from https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/sharedsavingsprogram/Downloads/ACO-9.pdf. (accessed 2019 April 20).

28. PASS 16. Power Analysis and Sample Size Software. Kaysville, UT: NCSS, LLC; 2018. ncss.com/software/pass. (accessed 2018 Sept 14).

29. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC; 2017.

30. Wright EA, Graham JH, Maeng D, et al. Reductions in 30-day readmission, mortality, and costs with inpatient-to-community pharmacy follow up. J Am Pharm Assoc. 2019;58:178-86.

31. Luder HR, Frede SM, Kirby JA, et al. TransitionRx: impact of community pharmacy postdischarge medication therapy management on hospital readmission rate. J Am Pharm Assoc. 2015;55(3):246-54.
32. Heaton PC, Frede S, Kordahi A, et al. Improving care transitions through medication therapy management: A community partnership to reduce readmissions in multiple health systems. *J Am Pharm Assoc.* 2019;59(3):319-28.

33. Patton AP, Liu Y, Hartwig DM, et al. Community pharmacy transitions of care services and rural hospital readmissions: A case study. *J Am Pharm Assoc.* 2017. 57(3S):S252-S258.e3.

34. Coughlin S, Liang WE, Parthasarathy S. Retrospective assessment of home ventilation to reduce rehospitalization in chronic obstructive pulmonary disease. *J Clin Sleep Med.* 2015;11(6):663-70.

35. Abdulsalim S, Unnikrishnan MK, Manu MK, et al. Structured pharmacist-led intervention programme to improve medication adherence in COPD patients: a randomized controlled study. *Res Social Adm Pharm.* 2018;14(10):909-14.

36. Pulliam G, Perkins E. COPD GOLD quality initiative to prevent readmissions. 2016. https://www.conehealth.com/app/files/public/7242/16-copd-gold.pdf. Accessed January 21, 2020.

37. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. *Am J Respir Crit Care Med.* 2017;195(5):557-582.

38. Braman SS. Hospital readmissions for COPD: we can meet the challenge. *J COPD F.* 2015;2(1):4-7.

39. National Committee for Quality Assurance. Healthcare Effectiveness Data and Information Set. Available from https://www.ncqa.org/hedis/measures/. (accessed 2019 April 20).
40. Centers for Medicare & Medicaid Services. Hospital Consumer Assessment of Healthcare Providers and Systems: Patients’ Perspectives of Care Survey. Available from https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/HospitalQualityInits/HospitalHCAHPS.html. (accessed 2018 Nov 25).

41. Pharmacy Quality Alliance measures used by CMS in the star ratings. Update on medication quality measures in Medicare Part D plan star ratings-2017. Available from http://pqaalliance.org/measures/cms.asp. (accessed 2019 April 20).

42. Centers for Medicare & Medicaid Services. Quality measures. Available from https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/QualityMeasures/index.html. (accessed 2019 April 20).

Table 1. Patient characteristics

Characteristic	Intervention (N = 33)	Usual Care (N = 32)
Demographic and Clinical Characteristics

Category	Group 1	Group 2
Age (years), mean (SD)	61.8 (8.4)	63.3 (9.6)
Sex		
Male, n (%)	15 (45.0)	12 (37.5)
Female, n (%)	18 (55.0)	20 (62.5)
Race or ethnicity		
Black or African, n (%)	22 (67.0)	22 (68.8)
White or Caucasian, n (%)	9 (27.0)	10 (31.3)
Other, n (%)	2 (0.06)	0 (0)
FEV1, mean % predicted (SD)	52.8 (14.8)	58.3 (19.2)
COPD Stage, median (SD)	2 (0.61)	2 (0.77)
Smoking status		
Current smoker, n (%)	20 (60.6)	14 (43.8)
Former smoker, n (%)	13 (39.4)	17 (53.1)
Never smoker, n (%)	0 (0)	1 (3.1)
Asthma, n (%)	12 (36.4)	9 (28.1)
Congestive heart failure, n (%)	16 (48.0)	13 (40.6)
Primary coverage		
Medicare, n (%)	24 (72.7)	22 (68.8)
Medicaid, n (%)	5 (15.2)	7 (21.9)
	Pre-Proof	Usual Care
--------------------------------	-----------	------------
None, n (%)	3 (9.1)	2 (6.3)
Commercial, n (%)	1 (3.0)	1 (3.1)

Table 2. Pharmacist intervention compared to usual care chronic obstructive pulmonary disease events following index admission
Index	Usual care (52 IAs)	Intervention (49 IAs)	P value	Mean difference (95% Confidence Interval)
admissions (IAs), total = 101				
Composite hospital visits				
admissions and emergency department visits				
Total, n	80	35	0.0364	0.82 (0.05-1.60)
30-day, n	12	2	0.0102	0.19 (0.05-0.33)
31- to 60-day, n	10	2	0.0613	0.15 (-0.01-0.31)
61- to 90-day, n	17	6	0.0859	0.20 (-0.03-0.44)
Time Period	n	No.	95% CI	
------------------	---	-----	--------------	
91- to 180-day	40	25	0.26 (0.20-0.72)	
Hospital admissions				
Total, n	43	19	0.03 (0.04-0.84)	
30-day, n	9	1	0.01 (0.04-0.27)	
31- to 60-day, n	6	2	0.17 (0.03-0.18)	
61- to 90-day, n	9	3	0.11 (0.03-0.25)	
91- to 180-day, n	18	13	0.08 (0.15-0.31)	
Emergency department visits				
Total, n	37	19	0.10 (0.08-0.85)	
Table 3. Chronic obstructive pulmonary disease events before and after pharmacist intervention group index admissions

Total index admissions	Before	After	P value	Mean difference
	intervention	intervention	difference	(95%)
49				
	Total, n	30-day, n	31- to 60-day, n	61- to 90-day, n
------------------	----------	-----------	------------------	------------------
Composite hospital visits (admissions and emergency department visits)	77	28	13	8
	35	2	2	5
		0.0247	0.0002	0.0101
			0.86 (0.11-1.60)	0.53 (0.27-0.79)
				0.04 (-0.16-0.24)
Hospital admissions

	Total, n	30-day, n	31- to 60-day, n	61- to 90-day, n	91- to 180-day, n
	30	13	5	1	11
	19	1	2	3	13
	0.1947	0.0019	0.2611	0.3223	0.6594
	0.22 (-0.12-0.57)	0.24 (0.10-0.39)	0.06 (-0.05-0.17)	-0.04 (-0.12-0.04)	-0.04 (-0.23-0.14)

Emergency department visits

	Total, n	30-day, n	31- to 60-day, n	61- to 90-day, n	91- to 180-day, n
	47	15	5	1	11
	16	1	2	3	13
	0.0233	0.0020	0.0110	0.0023	0.0023
	0.63 (0.09-1.18)	0.29 (0.11-0.46)	0.0023	0.0023	0.0023
Table 4. Pharmacist intervention compared to usual care cost associated with events following index admissions

Total index admissions = 101	Usual care (52 IAs)	Intervention (49 IAs)	Difference	P value
Total associated costs, USD	335,345	147,950	187,395	0.0307

31- to 60-day, n = 8
0.0310 0.16 (0.02-0.31)

61- to 90-day, n = 7
0.3765 0.08 (-0.10-0.27)

91- to 180-day, n = 17
0.5276 0.10 (-0.22-0.42)
Costs	311,406	137,598	173,808	0.0330
Costs associated with hospital admissions, USD	23,939	10,352	13,587	0.1014
Costs associated with emergency department visits, USD				
Table 5. Costs associated with events before and after pharmacist intervention

Total index admissions =	Before intervention	After intervention	Difference	P value
Total index admissions				
49	247,669	147,950	99,719	0.1228

associated costs, USD
Costs	217,260	137,598	79,662	0.0233
hospital				
admisions				
USD				
Costs	30,409	10,352	20,057	0.1947
emergency				
departmen				
visits				
USD				
Table 6. Published pharmacist transitions of care interventions focused on chronic obstructive pulmonary disease and impact on 30-day readmissions

Authors	Interventions	Absolute risk reduction	Relative risk reduction
Eisenhower C	Discharge medication reconciliation	6.2%	27.9%
(2014)⁹			
Blee J, et al	Inhaler dispensing plus counseling	12.7%	59.5%
(2015)¹⁰			
McGurran MA, et al (2019)11 Comprehensive therapeutic interchange program

Current study

Discharge counseling, medication reconciliation, medication access assistance, therapy changes, and post-discharge long-term follow up

McGurran MA, et al (2019)11 Comprehensive therapeutic interchange program
2.5%

Figure 1. Pharmacist Transitions of Care Process

- Discharge counseling, medication reconciliation, medication access assistance, therapy recommendations and changes
- Phone and clinic follow up within 7 days
- Further recommendations and therapy changes, patient education, help with long-term medication access and adherence
- Phone follow up every 1-6 months
Figure 2. Description of pharmacist interventions

PHARMACIST INTERVENTIONS

- Education (n=51)
- Financial assistance (n=38)
- Refills processed (n=19)
- Therapy changes (n=17)
- Smoking cessation support (n=14)
- Pulmonary rehabilitation referral (n=13)
- Change inhaler device (n=6)
- Immunization recommendation (n=5)
- Other (n=5)
Figure 3. Description of therapy changes made by pharmacist
LAMA, long-acting muscarinic antagonist; LABA, long-acting beta agonist; LTRA, leukotriene receptor antagonist; ICS, inhaled corticosteroid