Experimental Confirmation that the Proton is Asymptotically a Black Disk

Martin M. Block
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208

Francis Halzen
Department of Physics, University of Wisconsin, Madison, WI 53706
(Dated: September 12, 2011)

Although experimentally accessible energies can not probe ‘asymtopia’, recent measurements of inelastic pp cross sections at the LHC at 7000 GeV and by Auger at 57000 GeV allow us to conclude that: i) both σ_{inel} and σ_{tot}, the inelastic and total cross sections for pp and ¯pp interactions, saturate the Froissart bound of ln^2 s, ii) when s → ∞, the ratio σ_{inel}/σ_{tot} is experimentally determined to be 0.509 ± 0.021, consistent with the value 0.5 required by black disk at infinite energies, and iii) when s → ∞, the forward scattering amplitude becomes purely imaginary, another requirement for the proton to become a totally absorbing black disk. Experimental verification of the hypotheses of analyticity and unitarity over the center of mass energy range 6 ≤ √s ≤ 57000 GeV are discussed. In QCD, the black disk is naturally made of gluons; our results suggest that the lowest-lying glueball mass is 2.97 ± 0.03 GeV.

Introduction: We discuss the implication of three new measurements of the high energy pp inelastic cross sections, σ_{inel}(√s), where √s is the cms (center of mass) energy. At √s = 7000 GeV, the Atlas collaboration [1] reports σ_{inel} = 69.4±2.4 (expt.)±6.9 (extr.) mb, with (expt.) and (extr.) the total experimental and extrapolation errors. The CMS collaboration [2], using a completely different technique, measures σ_{tot} = 68.0±2.0 (syst.)±2.4± (lum.)± (extr.), where (syst.) is the systematic error, (lum.) the error in luminosity and (extr.) is the extrapolation error for missing single and double diffraction events. Most recently, the Pierre Auger Observatory collaboration [3] reported a measurement of σ_{inel}(√s) in a cosmic ray beam consisting mostly of protons at that energy, was converted by a Glauber calculation into the pp inelastic cross section [4, 5], σ_{inel} = 90 ± 7 (stat.) ± 9.1 (syst.) ± 1.5 (Glaub.), with (stat.) the statistical, (syst.) the systematic errors and (Glaub.) the estimated error in the Glauber calculation. With a cosmic ray measurement at 57000 GeV it is likely that we are now experimentally as close to asymptopia (defined here as the energy behavior of hadron-proton cross sections near s → ∞) as we will ever get.

Block and Halzen (BH) [4, 5] have made an analyticity constrained amplitude fit to lower energy data (6 ≤ √s ≤ 2000 GeV) that shows that σ_{tot} for pp and pp asymptotically saturates the Froissart bound [6]. This note exploits the new higher energy measurements of σ_{inel} in order to make accurate predictions at asymptopia based only on measurements of pp and pp cross sections in the energy range 6 ≤ √s ≤ 57000 GeV. While the analyticity constrained amplitude model of BH [4, 5] yields the total cross sections and the ρ-value, the ratio of real and the imaginary parts of the forward scattering amplitude, an eikonal model, dubbed the ‘Aspen’ model [11], will be used to obtain the ratio of the inelastic to total cross sections, r(√s) ≡ σ_{inel}(√s)/σ_{tot}(√s). We will show that the resulting ρ-value and the ratio of σ_{inel}/σ_{tot} at √s = 57000 GeV are consistent with the proton being an expanding black disk, presumably of gluons; our fits to σ_{inel} and σ_{tot} will allow us to infer a lowest-lying glueball mass of 2.97 ± 0.03 GeV. Furthermore, we will show that both the Martin-Froissart bound [6, 7] on the pp and ¯pp total cross sections and the Martin bound [9] on the pp and ¯pp inelastic cross sections are saturated, from 6 ≤ √s ≤ 57000 GeV.

The Analytic Amplitude Model: Using this approach, BH was able to claim accurate predictions of the forward pp (¯pp) scattering properties, σ_{tot} ≡ Re f(θ_L = 0) and ρ ≡ Im f(θ_L = 0) , using the analyticity-constrained analytic amplitude model [4] that saturates the Froissart bound [6]: here f(θ_L) is the pp laboratory scattering amplitude with θ_L, the laboratory scattering angle and p is the laboratory momentum. By saturation of the Froissart bound, we mean that the total cross section σ_{tot} rises as ln^2 s. Furthermore the use of analyticity constraints allows one to anchor fits at 6 GeV to the very accurate low energy cross section measurements between 4 and 6 GeV in the spirit of Finite Energy Sum Rules (FESR) [10]. A local fit is made of the experimental values of σ± between 4 and 6 GeV, for both ¯pp and pp, from which BH [4] derive precise 6 GeV ‘anchor-points’ for σ± and their energy derivatives in Eq. [11]. The results are actually consistent with those obtained with old-fashioned FESR [8]. The model parameterizes the even and odd (under crossing) cross sections and fits 4 experimental quantities, σ_{pp}(ν), σ_{pp}(ν), ρ_{pp}(ν) and ρ_{pp}(ν) to the high energy parameterizations

\[σ^±(ν) = σ^0(ν) ± δ \left(\frac{ν}{m} \right)^{α−1}, \]
\[ρ^±(ν) = \frac{1}{σ^±(ν)} \left\{ \frac{π}{2} c_1 + c_2 π ln \left(\frac{ν}{m} \right) - β_p, cot(\frac{πμ}{2}) \left(\frac{ν}{m} \right)^{μ−1} + \frac{4π}{ν} f_p(0) ±δ tan(\frac{πα}{2}) \left(\frac{ν}{m} \right)^{α−1} \right\}, \]
where the upper sign is for pp and the lower sign is for $\bar{p}p$, and, for high energies, $\nu/m \simeq s/2m^2$. Here the even amplitude cross section σ^0 is given by

$$\sigma^0(\nu) \equiv \beta_{pp} \left(\frac{\nu}{m} \right)^{\mu-1} + c_0 + c_1 \ln \left(\frac{\nu}{m} \right) + c_2 \ln^2 \left(\frac{\nu}{m} \right),$$

(3)

where ν is the laboratory energy of the incoming proton (anti-proton), m the proton mass, and the ‘Regge intercept’ $\mu = 0.5$. The predictions for the pp and $\bar{p}p$ total cross sections are shown in Fig. 1. The dominant $\ln^2(s)$ term in the total cross section (Eq. (3)) saturates the Froissart bound [7]; it controls the asymptotic behavior of the cross sections. BH made a simultaneous fit [5] to the pp and $\bar{p}p$ data for the ρ value, the ratio of the real to the imaginary forward scattering amplitudes, shown in Fig. 2. From Eq. (2) and Eq. (3), we see that in the limit of $m \to \infty$, $\rho \to 0$ as $1/\ln s$, (albeit very slowly), a necessary condition for a black disk. Although the ρ-values are essentially the same for $\bar{p}p$ and pp for $\sqrt{s} > 100$ GeV, at the highest accelerator energies, ρ only changes from 0.135 at 7000 GeV to 0.132 at 14000 GeV. Clearly, we are nowhere near asymptopia, where $\rho = 0$.

With two low energy constraints at 6 GeV and 4 parameters, precise values for c_0 and β_{pp}, could be obtained [5]. The fitted values for the coefficients of $\sigma^0(\nu)$ of Eq. (3) for the fit for $6 \leq \sqrt{s} \leq 2000$ GeV are listed in Table I. Evaluating Eq. (3) at 57000 GeV, we predict $\sigma_{tot} = 134.8 \pm 1.5$ mb for pp interactions. We note that c_2, the coefficient of $\ln^2(s)$, is well-determined, having a statistical accuracy of $\sim 2\%$. Thus, experimental data show that the Froissart bound is satisfied for total cross sections σ_{tot} for both $\bar{p}p$ and pp in the energy interval $6 \leq \sqrt{s} \leq 2000$ GeV.

![FIG. 1: The fitted total cross section, σ_{tot}, for $\bar{p}p$ (dashed curve) and pp (dot-dashed curve) from Eq. (3), in mb vs. \sqrt{s}, the cms energy in GeV, taken from BH [3]. The $\bar{p}p$ data used in the fit are the (red) circles and the pp data are the (blue) squares. The fitted data were anchored by values of σ_{tot} and σ_{tot}, together with the energy derivatives $d\sigma_{tot}/d\nu$ and $d\sigma_{tot}/d\nu$ at 6 GeV using FESR, as described in Ref. [3]. The lowest (red) solid curve that starts at 100 GeV is our predicted inelastic cross section from Eq. (4), σ_{inel}, in mb, vs. \sqrt{s}, in GeV. The lowest energy inelastic data, the $\bar{p}p$ (red) diamonds, were not used in the fit, nor were the 3 high energy pp inelastic measurements, the (black) circle CMS value, the (green) square Atlas measurement and the (blue) diamond Auger measurement. As clearly seen, our inelastic prediction from Eq. (4), which also asymptotically behaves as $\ln^2(s)$, is in excellent agreement with the new measurements of the inelastic cross section at very high energy.](image)

TABLE I: Values of the parameters for the even amplitude, $\sigma^0(\nu)$, using 4 FESR analyticity constraints (taken from Ref. [5])

| c_0 | 37.32 mb | c_1 | -1.440 ± 0.070 mb | c_2 | 0.2817 ± 0.0064 mb | β_{pp} | 37.10 mb |

Aspen Model: The Aspen model [11] is an eikonal model that describes experimental $\bar{p}p$ and pp data for σ_{tot}, ρ and the slope parameter $B \equiv d[\ln \sigma_{tot}/dt]_{t=0}$, the logarithmic derivative of the forward differential elastic scattering cross section, where t is the square of the 4-momentum transfer. Among many other quantities, it allows one to accurately predict the ratio $r = \sigma_{tot}(\nu)/\rho_{tot}(\nu)$, i.e., the ratio of the elastic to total cross section for both $\bar{p}p$ and pp, as a function of energy, where again, the total cross sections have been anchored at 6 GeV by FESR constraints [10]. Details of the model are given in Ref. [4,11]. As is the case of the total cross sections, the values for r are essentially identical for $\bar{p}p$ and pp for cms energies $\sqrt{s} \geq 100$ GeV. The ratio r is plotted in Fig. 3. Again, we see that we are far from asymptopia, where the black disk model implies a ratio $r = 1/2$, whereas at 57000 GeV, we predict $r \sim 0.32$.

Inelastic cross section: We are now ready to evaluate $\sigma_{\text{inel}}(\nu) \equiv (1 - r(\nu))\sigma^0(\nu)$ numerically for $\sqrt{s} \geq 100$ GeV, using $r(\nu)$ obtained above, together with the fitted even amplitude cross section $\sigma^0(\nu)$ of Eq. (3) determined by the parameters of Table I. Since the approach is at this point purely numerical, we decided to fit the inelastic numbers with the same analytical parameterization as was used for the total cross section $\sigma^0(\nu)$ in Eq. (3). The analytic expression for the even amplitude high energy inelastic cross section $\sigma^0_{\text{inel}}(\nu)$ given by

$$
\sigma^0_{\text{inel}}(\nu) \equiv c^\text{inel}_{pp} \left(\frac{\nu}{m}\right)^{\mu} + c^\text{inel}_0 + c^\text{inel}_1 \ln \left(\frac{\nu}{m}\right) + c^\text{inel}_2 \ln^2 \left(\frac{\nu}{m}\right)
$$

accurately reproduces the numerical values of $\sigma_{\text{inel}}(\nu)$ to better than 4 parts in 10^4 over the energy range 100 $\leq \sqrt{s} \leq 100000$ GeV. This new result for $\sigma^0_{\text{inel}}(\nu)$ implies that the Froissart bound is also saturated for the high energy inelastic cross sections in the energy interval 100 $\leq \sqrt{s} \leq 57000$ GeV, and is shown as the lowest curve in Fig. 1. This result was anticipated theoretically, using analyticity and unitarity, by Andre Martin [9].

In Fig. 1, the lowest energy inelastic cross section datum points, the (red) diamonds, are $\bar{p}p$ inelastic cross sections. The LHC 7000 GeV pp inelastic cross section data points are the (black) circle from CMS [2] and the (green) square from Atlas [1], slightly separated for visual purposes. The (blue) diamond is the Auger inelastic cross section [3] for a 25% He4 contamination of their σ_p inelastic cross section at 57000 GeV. We emphasized that none of these experimental inelastic cross sections were used in our fits that predicted high energy inelastic cross sections. At 7000 GeV our prediction is $\sigma_{\text{inel}} = 69.0 \pm 1.3$ mb and at 57000 GeV $\sigma_{\text{inel}} = 92.9 \pm 1.6$ mb. Inspection of Fig. 1 shows that the $\ln^2(s)$ fit of Eq. (5) for $\sigma^0_{\text{inel}}(\nu)$ is in excellent agreement with all experimental data, up to the highest possible energy.

Evidence for a black disk: It is unlikely that there will ever be higher energy measurements for σ_{inel} for either $\bar{p}p$ or pp. If Froissart’s bound is saturated even at $\sqrt{s} = 57000$ GeV, then $\nu_{\text{max}} < 4.4\cdot 10^{18}$ GeV. It is impossible to state with certainty that the lower limit for ν_{max} is 10, or even 100, times the measured value. Even at a collider at 100000–1000000 GeV, \sqrt{s}, the Froissart bound may be so saturated that there is no measurable inelastic cross section.
or \(pp \) collisions, yet our results show that present measurements are far from asymptopia. Nevertheless, the data give us a consistent picture of asymptopia by the compelling evidence that both the elastic and inelastic cross sections saturate the Froissart bound. The addition of the inelastic cross section of Eq. (4) being as \(\ln^2 s \) now allows us to explore asymptopia experimentally; we find the limit of \(\sigma_{\text{inel}}(s)/\sigma_{\text{tot}}(s) \) as \(s \to \infty \) simply by taking the ratio of the \(\ln^2(s) \) terms in Eq. (5) and Eq. (6). We find the experimentally-determined value at infinity,

\[
\lim_{s \to \infty} \frac{\sigma_{\text{inel}}(s)}{\sigma_{\text{tot}}(s)} = \frac{c_2^{\text{inel}}}{c_2} = 0.509 \pm 0.011,
\]

a result compatible with the ratio 1/2 predicted for a black disk. Satisfying this ratio of the inelastic to the total cross section at infinity gives us the first experimental evidence that the proton becomes an expanding black disk at asymptopia. We have already shown that the second condition, \(\rho = 0 \), i.e., the amplitude is imaginary, is also satisfied. The model of Troshin [13] in which the elastic scattering dominates over the inelastic is thus falsified, whereas the models [14, 15] in which the proton becomes a black disk asymptotically are now justified experimentally.

Properties of a black disk: In impact parameter space \(b \), the elastic and total cross sections are given by

\[
\sigma_{\text{el}} = 4 \int d^2b \ |a(b, s)|^2, \quad \sigma_{\text{tot}} = 4 \int d^2b \ \text{Im} \ a(b, s).
\]

The amplitude \(a(s, b) \) of the black disk of radius \(R \) is given by

\[
a(b, s) = \frac{i}{2}, \quad 0 \leq b \leq R, \quad a(b, s) = 0, \quad b > R,
\]

so that (for details, see Ref. [12])

\[
\sigma_{\text{tot}} = 2\pi R^2, \quad \sigma_{\text{inel}} = \sigma_{\text{el}} = \pi R^2, \quad \frac{\sigma_{\text{inel}}}{\sigma_{\text{tot}}} = 0.5, \quad \frac{d\sigma_{\text{el}}}{dt} = \pi R^4 \left[\frac{J_1(qR)}{qR} \right]^2, \quad \text{where} \quad q^2 = -t.
\]

Using analyticity and unitarity, Andre Martin has recently found a more rigorous inelastic hadron-proton bound [9], using \(t = (2m_\pi)^2 \), i.e.,

\[
\sigma_{\text{inel}} < \frac{\pi}{4m_\pi^2} \ln^2 s, \quad \text{so that} \quad \sigma_{\text{tot}} < \frac{\pi}{2m_\pi^2} \ln^2 s
\]

where for the total cross section bound we have invoked the black disk ratio of 2 to 1. The use of \(m_\pi \) in the two-particle mass \(M = 2m_\pi \) is clearly wrong experimentally, since \(\frac{\pi}{2m_\pi^2} \ln^2(\nu/m) = 31.23 \ln^2(\nu/m) \) mb, whereas experimentally we have obtained \(c_2 \ln^2(\nu/m) = 0.2817 \ln^2(\nu/m) \) mb, a cross section two orders of magnitude smaller, implying that the scale is not set by the pion mass but by a mass scale one order of magnitude larger. Reinterpreting \(M = 2m_\pi \) in Eq. (10) as the lowest-lying glueball mass which we call \(M_{\text{glueball}} \), we find \(M_{\text{glueball}} = (2\pi/c_2)^{1/2} = 2.97 \pm 0.03 \) GeV. Obviously, the definition of this scale is still arguable.

Also, if the asymptotic proton is a black disk of gluons, the high energy behavior is flavor blind and the coefficient of the \(\ln^2 s \) term is the same for all reactions, from \(\pi p \) to \(\gamma p \) scattering. Support for this claim comes from both the COMPETE group [16] and Ishida and Igi [17].

Conclusions: We find that the \(\ln^2 s \) Froissart bound for the proton for \(\sigma_{\text{tot}} \) and \(\sigma_{\text{inel}} \) is saturated and that at infinite \(s \), (1) the experimental ratio \(\sigma_{\text{inel}}/\sigma_{\text{tot}} = 0.509 \pm 0.011 \), compatible with the black disk ratio of 0.5 and (2) the forward scattering amplitude is purely imaginary. We thus conclude that the proton becomes an expanding black disk at sufficiently ultra-high energies that are probably never accessible to experiment. The theory for these bounds is predicated on the pillar stones of analyticity and unitarity, which have now been experimentally verified up to 57000 GeV. Further, since \(\sigma_{\text{tot}} \) has been extrapolated up from the Tevatron, we expect no new large cross section physics between 2000 and 57000 GeV.

Finally, the lowest-lying glueball mass is measured to be \(M_{\text{glueball}} = 2.97 \pm 0.03 \) GeV. Reproducing these experimental results will be a task of lattice QCD.

Acknowledgments: In part, F. H. is supported by the National Science Foundation Grant No. OPP-0236449, by the DOE grant DE-FG02-95ER40896 and by the University of Wisconsin Alumni Research Foundation. M. M. B. thanks the Aspen Center for Physics, supported in part by NSF Grant No. 1066293, for its hospitality during this work.

[1] Atlas Collaboration, arXiv:1104.0326 [hep-ex] 2 April, 2011; to be published, Nature Comm.
[2] CMS Collaboration, CERN Document Server. [http://cdsweb.cern.ch/record/1373466?ln=en] August 27, 2011.
[3] Auger Collaboration. [arXiv:1107.4804 [astro-ph.HE]], (2011) , part 2., "Estimate of the proton-air cross section", R. Ulrich; Auger Collaboration, M. Mostafá, XXXI Physics in Collision Conference, Vancouver, Sept 1 2011.
[4] M. M. Block, Phys. Reports 436, 71 (2006).
[5] M. M. Block and F. Halzen, Phys. Rev. D 72, 036006 (2005); M. M. Block and F. Halzen, Phys. Rev. D 73, 054022 (2006).
[6] A. Martin, Nuovo Cimento 42, 930 (1966).
[7] M. Froissart, Phys. Rev. 123, 1053 (1961).
[8] K. Igi and M. Ishida, Phys. Rev. D 66, 034023 (2002).
[9] A. Martin, Phys. Rev. D 80, 065013 (2009).
[10] M. M. Block, Eur. Phys. J. C. 47, 697 (2006).
[11] M. M. Block, E. Gregores, F. Halzen and G. Pancheri, Phys. Rev. D 60, 054024 (1999).
[12] M. M. Block and R. H. Cahn, Rev. Mod. Phys. 57, 563 (1985).
[13] S. M. Troshin and N. E. Tyurin, Int. J. Mod. Phys. A22, 4437, 2007; arXiv:08103391 [hep-th], 2008.
[14] T. T. Chou and C. N. Yang, Phys. Rev 170, 1591 (1968).
[15] C. Bourrely, J. Soffer and T. T. Wu, Nucl. Phys. B247, 15 (1984); Z. Phys. C 37, 369 (1987).
[16] J. R. Cudell et al. (COMPETE Collab.), Phys. Rev. D 65, 074024 (2002).
[17] M. Ishida and K. Igi, Phys. Rev. D 79, 096003 (2009).