Abstract

A modular, programmable, and high performance Power Gating strategy, called cluster based tunable sleep transistor cell Power Gating, has been introduced in the present paper with a few modifications. Furthermore, a detailed comparison of its performance with some of the other conventional Power Gating schemes; such as Cluster Based Sleep Transistor Design (CBSTD), Distributed Sleep Transistor Network (DSTN) etc.; has also been presented here. Considering the constraints of power consumption, performance, and the area overhead, while doing the actual implementation of any Power Gating scheme, it becomes important to deal with the various design issues like the proper sizing of the sleep transistors (STs), controlling the voltage
drop (IR drop) across the STs, and obviously maintaining a desired performance with lower amount of delay degradation. With this notion, we tried to find out an efficient Power Gating strategy which can reduce the overall power consumption of any CMOS circuit by virtue of reducing the standby mode leakage current. Taking the different performance parameters into account, for an example circuit, which is actually the conventional 4×4 multiplier design, we found that the modified tunable sleep transistor cell Power Gating gives very much promising results. The reported architecture of the 4×4 multiplier with the tunable sleep transistor cell Power Gating, is designed using 45 nm technology and it consumes 1.3638×10⁻⁵ Watt of Average Power while being operated with the nominal case of the bit configuration word, that is, "1000". At the same time, this design provides a delay of 2.5455×10⁻¹⁰ second, which conveys a 2.29% improvement in the performance with respect to the best case delay as obtained in case of the conventional Power Gating scheme. The entire simulation work has been done using SPICE, whereas the results are obtained for a Supply Voltage (Vdd) of 1 Volt and a frequency of 200 MHz.

References

- Ehsan Pakbaznia, Massoud Pedram, "Coarse-Grain MTCMOS Sleep Transistors Sizing Using Delay Budgeting," Design, Automation & Test in Europe (DATE), March 2008.
- C. Long and L. He, "Distributed sleep transistor network for power reduction," IEEE Trans. on Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 9, pp. 937–946, Sep. 2004.
- A. Sathanur, A. Pullini, L. Benini, A. Macii, E. Macii, and M. Poncino, "Timing-driven row-based power gating," in 2007 Proc. Int. Symp. on Low Power Electronics and Des. (ISLPED), pp. 104–109, Aug. 2007.
- L. M. L. Silva, A. Calimera, A. Macii, E. Macii, M. Poncino, "Power Efficient Variability Compensation Through Clustered Tunable Power-Gating," IEEE Journal On Emerging And Selected Topics in Circuits And Systems, vol. 1, no. 3, September 2011.
- A. Calimera, Luca Benini, A. Macii, E. Macii, M. Poncino, "Design of a Flexible Reactivation Cell for Safe Power-Mode Transition in Power-Gated Circuits," IEEE Transactions on Circuits and Systems-I, vol. 56, no. 9, September 2009.
- S. Mutoh, T. Douseki, and Y. Matsuya, "1-V power supply high-speed digital circuit technology with multi-threshold voltage CMOS," IEEE JSSC, pp. 847-854, 1995.
- M. Anis, S. Areibi, and M. Elmasry, "Design and optimization of multi-threshold CMOS (MTCMOS) circuits," TCAD, pp. 1324-1342, 2003.
- J. M. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Intrigated Circuits: A Design Perspective," 2nd edition, Prentice-Hall, Inc., 2003.
- K. Roy, S. Mukhopadhayay, H. Mahmoodi-Meimand, "Leakage Current Mechanism and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits," proceedings of IEEE, vol. 91, no. 2, February 2003.
- K. Yeo, K. Roy, "Low-Voltage, Low-Power VLSI Subsystems," Tata McGraw-Hill edition, 2009.
- Zhanping Chen, Liqiong Wei, Mark Johnson and Kaushik Roy, "Estimation of
Implementation of the Cluster based Tunable Sleep Transistor Cell Power Gating Technique for a 4×4 Multiplier Circuit

Standby Leakage Power in CMOS Circuits Considering Accurate Modeling of Transistor Stacks," International Symposium on Low Power Electronics and Design, proceedings, pp. 239-244, 1998.

- L. Wei, Z. Chen, K. Roy, M. C. Johnson, Y. Ye, V. K. De, "Design and Optimization of Dual-Threshold Circuits for Low-Voltage Low-Power Applications," IEEE Trans. on Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, March 1999.

- Chandramouli Gopalakrishnan, "High Level Techniques for Leakage Power Estimation and Optimization in VLSI ASICs," Graduate School Theses and Dissertation, Paper 1376, 2003.

- Subhramita Basak, Dipankar Saha, Sagar Mukherjee, Sayan Chatterjee, C. K. Sarkar, "Design and Analysis of a Robust, High Speed, Energy Efficient 18 Transistor 1-bit Full Adder Cell, modified with the concept of MVT Scheme," 3rd International Symposium on Electronic System Design, 2012.

- M. Johnson and K. Roy, "Subthreshold Leakage Control By Multiple Channel Length CMOS (McCMOS)," ECE Technical Reports. Paper 80.

- P. Verma, "Design of 4×4 bit Vedic Multiplier using EDA Tool," International Journal of Computer Applications, vol. 48, no. 20, June 2012.

Index Terms

Computer Science

Power Electronics

Keywords

multiplier Power Gating leakage power sub-threshold current delay critical path IR drop delay degradation CBSTD DSTN tunable sleep transistor cell
