Spectral Inclusion for C_0-Semigroups Drazin Invertible and Quasi-Fredholm Operators

A. Tajmouati · M. Amouch · M. R. F. Alhomidi Zakariya

Received: 19 January 2016 / Revised: 24 July 2017 / Published online: 19 September 2017 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract Let $(T(t))_{t \geq 0}$ be a C_0-semigroups and A be its infinitesimal generator. In this work, we prove that the spectral inclusion for $(T(t))_{t \geq 0}$ remains true for the Drazin invertible and quasi-Fredholm spectra. Also, we will give conditions under which facts A is quasi-Fredholm, A is Drazin invertible and A is B-Fredholm are equivalent.

Keywords Banach space operators · C_0-semigroups · Spectral inclusion · Drazin invertible operator · Quasi-Fredholm operator

Mathematics Subject Classification 47A16 · 47D06 · 47D03

1 Introduction and Preliminaries

Let X a Banach space and $B(X)$ the Banach algebra of all bounded linear operators on X. for $T \in B(X)$, by T^*, $N(T)$, $R(T)$, $R^\infty(T) = \bigcap_{n \geq 0} R(T^n)$, $N^\infty(T) =$

Communicated by Poom Kumam.

A. Tajmouati
abdelaziz.tajmouati@usmba.ac.ma

M. Amouch
mohamed.amouch@gmail.com

M. R. F. Alhomidi Zakariya
zakariya1978@yahoo.com

1 Faculty of Sciences Dhar Al Mahraz Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2 Department of Mathematics, Faculty of Sciences, University Chouaib Doukkali, 24000 El Jadida, Morocco
\[\bigcup_{n \geq 0} N(T^n), \rho(T) \text{ and } \sigma(T), \] we denote, respectively, the adjoint, the null space, the range, the hyper-range, the hyper-kernel, the resolvent set and the spectrum of \(T \).

Let \(T \in B(X) \), the ascent \(a(T) \) and the descent \(d(T) \) of \(T \) are defined in [16] by \(a(T) = \inf \{ n \in \mathbb{N} : N(T^n) = N(T^{n+1}) \} \) and \(d(T) = \inf \{ n \in \mathbb{N} : R(T^n) = R(T^{n+1}) \} \), respectively.

The operator \(T \) is said to be Drazin invertible if \(d(T) < \infty \) and \(a(T) < \infty \). It is well known that \(T \) is Drazin invertible if and only if \(T = T_1 \oplus T_2 \) where \(T_1 \) is invertible and \(T_2 \) is nilpotent, see [9, Corollary 2.2]. This is equivalent to the fact that there exists an integer \(n \) such that the space \(R(T^n) \) is closed and the restriction of \(T \) of \(R(T^n) \) viewed as a map from \(R(T^n) \) into \(R(T^n) \) is invertible, see [2, Theorem 2.5]. The Drazin spectrum of \(T \) is defined by

\[\sigma_D(T) = \{ \lambda \in \mathbb{C} : \lambda - T \text{ is not Drazin invertible} \}. \]

Similarly, from [7], \(T \) is left (respect right) generalized Drazin invertible if and only if \(T = T_1 \oplus T_2 \) such that \(T_1 \) is left (respect right) invertible and \(T_2 \) is quasi-nilpotent.

Recall that \(T \) is said to be semi-regular or Kato operator, if \(R(T) \) is closed and \(N(T) \subset R^\infty(T) \), see for example [1]. In addition, \(T \) is said to be pseudo-Fredholm operator if there exist two closed \(T \)-invariant subspaces \(M \) and \(N \) such that \(X = M \oplus N \) and \(T = T|M \oplus T|N \) with \(T|M \) is semi-regular and \(T|N \) is nilpotent. This is equivalent to the fact that there exists an integer \(n \) such that \(R(T^n) \) is closed and the restriction of \(T \) of \(R(T^n) \) viewed as a map from \(R(T^n) \) into \(R(T^n) \) is semi-regular. The quasi-Fredholm spectrum is defined by

\[\sigma_{QF}(T) = \{ \lambda \in \mathbb{C} : \lambda - T \text{ is not quasi-Fredholm} \}, \]

see [7,10,11] for more information.

Similarly, from [3] \(T \) is said to be a B-Fredholm operator, if there exists an integer \(n \) such that the space \(R(T^n) \) is closed and the restriction of \(T \) of \(R(T^n) \) viewed as a map from \(R(T^n) \) into \(R(T^n) \) is Fredholm.

Let \(T \in B(X) \) and \(x \in X \), the local resolvent of \(T \) at \(x \) noted \(\rho_T(x) \) is defined as the union of all open subset \(U \) of \(\mathbb{C} \) for which there is an analytic function \(f : U \to X \) such that the equation \((T - \mu I)f(\mu) = x \) holds for all \(\mu \in U \). The local spectrum \(\sigma_T(x) \) of \(T \) at \(x \) is defined by \(\sigma_T(x) = \mathbb{C} \setminus \rho_T(x) \). Evidently \(\rho_T(x) \) is an open subset of \(\mathbb{C} \) and \(\sigma_T(x) \) is closed. If \(f(z) = \sum_{i=0}^{\infty} x_i (z - \mu)^i \) (in a neighborhood of \(\mu \)), then \(\mu \in \rho_T(x) \) if and only if there exists a sequence \((x_i)_{i \geq 0} \subseteq X \), \(x_0 = x \), \((T - \mu)x_{i+1} = x_i \), and \(\sup_i \| x_i \|^t < \infty \), see [8].

Let \(T = (T(t))_{t \geq 0} \) be a strongly continuous semigroup \((C_0\text{-semigroup in short})\) with infinitesimal generator \(A \) on \(X \). We will denote the type (growth bound) of \(T \) by \(\omega_0 \):

\[\omega_0 = \inf \{ \omega \in \mathbb{R} : \text{there exists M such that } \| T(t) \| \leq Me^{\omega t}, t \geq 0 \}, \]

see [4,5,13] for more information. Also, in [4,5,13] the authors showed that

\[e^{t\nu(A)} \subseteq \nu(T(t)) \subseteq e^{\nu(A)} \bigcup \{0\} \]
where \(v(.) \in \{\sigma_p(\cdot), \sigma_{ap}(\cdot), \sigma_r(\cdot)\} \) is the point spectrum, approximative spectrum or residual spectrum.

The semigroup \(T(t) \) is called differentiable for \(t > t_0 \) if for every \(x \in X, t \to T(t)x \) is differentiable for \(t > t_0 \). \(T(t) \) is called differentiable if it is differentiable for \(t > 0 \). If \(B(\lambda, t)x = \int_t^1 e^{\lambda(t-s)} T(s)x ds \), then \(B(\lambda, t)x \) is differentiable in \(t \) with \(B(\lambda, t)x = T(t)x + \lambda B(\lambda, t)x \) and \(B'_{\lambda}(t) \) is a bounded linear operator in \(X \), see [5, 13].

Spectral inclusions for various reduced spectra of a \(C_0 \)-semigroup were studied by authors in [4, 5] for point spectrum, approximative spectrum and residual spectrum. Also, the spectral equality for a \(C_0 \)-semigroup was studied by authors in [15] for semi-regular, essentially semi-regular and semi-Fredholm spectrum, respectively. In this work, we will continue in this direction, we will prove that the spectral inclusion for Drazin and quasi-Fredholm spectra. Also, we will show that if \((T(t))_{t \geq 0} \) is a \(C_0 \)-semigroup with infinitesimal generator \(A \) such that the equality \(\lim_{t \to \infty} \frac{1}{t^2} \|T(t)\| = 0 \) holds for some \(n \in \mathbb{N} \), then the infinitesimal generator \(A \) is quasi-Fredholm if and only if it is Drazin invertible if and only if it is \(B \)-Fredholm.

2 Main Results

We start by given the following two lemmas which are proved in [5]. They will be used to prove our main result.

Lemma 2.1 [5] Let \((A, D(A))\) be the infinitesimal generator of a strongly continuous semigroup \((T(t))_{t \geq 0}\) and \(B(\lambda, t) = \int_0^1 e^{\lambda(t-s)} T(s)x ds\) is a bounded operator from \(X\) to \(D(A)\). Then, for every \(\lambda \in \mathbb{C}, t > 0 \) and \(n \in \mathbb{N} \), the following statements hold:

1. \((e^{\lambda t} - T(t))^n(x) = (\lambda - A)^n B(\lambda, t)x, \quad \lambda \in \mathbb{C}, x \in X;\)
2. \((e^{\lambda t} - T(t))^n(x) = B(\lambda, t)\lambda^n(\lambda - A)^n x, \quad \lambda \in \mathbb{C}, x \in D(A);\)
3. \(R(e^{\lambda t} - T(t))^n \subseteq R(\lambda - A)^n;\)
4. \(N(\lambda - A)^n \subseteq N(e^{\lambda t} - T(t))^n.\)

Let \(Y\) be a Banach space that is continuously embedded in \(X\) (in symbols: \(Y \hookrightarrow X\)). We need the following lemma.

Lemma 2.2 [5] Let \((A, D(A))\) be the infinitesimal generator of a strongly continuous semigroup \((T(t))_{t \geq 0}\) on \(X\) and assume that the restricted semigroup \((T(t))_{t \geq 0}\) is strongly continuous on some \((T(t))_{t \geq 0}\)-invariant Banach space \(Y \hookrightarrow X\). Then the infinitesimal generator of \((T(t))_{t \geq 0}\) is the part \((A_1, D(A_1))\) of \(A\) in \(Y\).

The following two lemmas which are proved in [15] will be used in the sequel.

Lemma 2.3 [15, Lemma 3.1] Let \(A\) the infinitesimal generator of \(C_0\)-semigroup \((T(t))_{t \geq 0}\) and \(B(\lambda, t) = \int_0^t e^{\lambda(t-s)} T(s)x ds\) is a linear bounded operator on \(X\). Then there exist \(C\) and \(D\) tow operator such that \((\lambda - A), B(\lambda, t), C, D\) are mutually commuting operators, for all \(x \in D(A)\) and \((\lambda - A) + DB(\lambda, t) = I, t > 0.\)

Lemma 2.4 [15, Lemma 3.2] Let \((\lambda - A), B(\lambda, t), C, D\) be mutually commuting operators in \(D(A)\) such that \(C(\lambda - A) + DB(\lambda, t) = I, t > 0\). Then we have:
(1) For every positive integer \(n \) there are \(C_n, D_n \in D(A) \) such that \((\lambda - A)^n, B^n(\lambda, t), C_n, D_n \) are mutually commuting and
\[
(\lambda - A)^n C_n + B^n(\lambda, t) D_n = I.
\]

(2) For every positive integer \(n \), \(R(e^{\lambda t} - T(t))^n = R(\lambda - A)^n \cap R(B^n(\lambda, t)) \) and \(N((e^{\lambda t} - T(t))^n) = N((\lambda - A)^n) + N(B^n(\lambda, t)). \) Further \(R^\infty(e^{\lambda t} - T(t)) = R^\infty(\lambda - A) \cap R^\infty(B(\lambda, t)) \) and \(N^\infty(e^{\lambda t} - T(t)) = N^\infty(\lambda - A) + N^\infty(B(\lambda, t)). \)

(3) \(N^\infty(\lambda - A) \subseteq R^\infty(B(\lambda, t)) \) and \(N^\infty(B(\lambda, t)) \subseteq R^\infty(\lambda - A). \)

Now, we give some spectral results for differentiable \(C_0 \)-semigroup.

Lemma 2.5 Let \((A, D(A))\) be the infinitesimal generator of a strongly continuous semigroup \((T(t))_{t \geq 0} \), \(B(\lambda, t) = \int_0^t e^{\lambda(t-s)} T(s) xds \) is a bounded operator from \(X \) to \(D(A) \). If \(T(t) \) is differentiable for \(t > t_0 \), then for every \(\lambda \in \mathbb{C}, t > t_0 \) and \(n \in \mathbb{N} \), the following statements hold:

1. \((a) : (\lambda e^{\lambda t} - AT(t))^n(x) = (\lambda - A)^n B(\lambda, t)^n(x), \ \lambda \in \mathbb{C}, x \in X; \)
2. \((b) : (\lambda e^{\lambda t} - T(t))^n(x) = B(\lambda, t)^n(\lambda - A)^n(x) \lambda \in \mathbb{C}, x \in D(A). \)

Proof Assuming now that \(t > t_0 \) and differentiating \((a) \) and \((b) \) in \((1) \) of Lemma 2.1 with respect to \(t \) and \(n = 1 \), we obtain
\[
\lambda e^{\lambda t} x - AT(t)x = (\lambda I - A) B'(\lambda, t)x \quad \text{for every} \quad x \in X;
\]
\[
\lambda e^{\lambda t} x - AT(t)x = B'(\lambda, t)x(\lambda I - A) \quad \text{for every} \quad x \in D(A).
\]

This gives \((a) \) and \((b) \) for \(n = 1 \). By induction, we obtain \((a) \) and \((b) \) for all \(n \in \mathbb{N} \). The rest of Lemma follows from \((1) \). \(\square \)

Proposition 2.1 Let \(T(t)_{t > 0} \) be a \(C_0 \)-semigroup and let \(A \) be its infinitesimal generator. If \(T(t) \) is differentiable for \(t > t_0 \) and \(\lambda \in \sigma_A(x) \) for \(x \in X \), then
\[
\lambda e^{\lambda t} \in \sigma_{AT(t)}(x).
\]

Proof Let \(t > t_0 \) be fixed and suppose that \(\lambda e^{\lambda t} \notin \sigma_{AT(t)}(x) \), then there exist a sequence \((x_i)_{i \in \mathbb{N}} \) of \(X \) such that \(x_0 = x, (\lambda e^{\lambda t} - AT(t))x_i = x_{i-1} \) and \(\sup_i \| x_i \|^{\frac{1}{t}} < \infty \).

We put \(y_i = B'(\lambda, t)x_i \), as \(B'(\lambda, t) \) is a bounded linear operator in \(X \), we have \(y_0 = x_0 = x, \ y_0 \in D(A), \)
\[
(\lambda - A)y_i = (\lambda - A)B'(\lambda, t)x_i B'(i-1)(\lambda, t)x_i
\]
\[
= (\lambda e^{\lambda t} - AT(t))B'(i-1)(\lambda, t)x_i
\]
\[
= B'(i-1)(\lambda, t)(\lambda e^{\lambda t} - AT(t))x_i
\]
\[
= B'(i-1)(\lambda, t)x_{i-1}
\]
\[
y_{i-1}
\]
Therefore $(\lambda - A)y_i = y_{i-1}$. On the other hand
\[\|y_i\| = \|B^i(\lambda, t)x_i\| < \|B^i(\lambda, t)\|\|x_i\| < M^i\|x_i\|, \]
then
\[\sup_i \|y_i\|^\frac{1}{t} < \sup_i \|x_i\|^\frac{1}{t} < \infty. \]
So that $\lambda \notin \sigma_A(x)$. \hfill \Box

Denote by $\sigma_{su}(A)$ the subjectivity spectrum of A. It is known that $\bigcup_{x \in X} \sigma_A(x) = \sigma_{su}(A)$ for a closed operator A. Hence the following corollary holds.

Corollary 2.1 Let $T(t)_{t > 0}$ be a C_0-semigroup and let A be its infinitesimal generator. If $T(t)$ is differentiable for $t > t_0$ and $\lambda \in \sigma_{su}(A)$, then $\lambda e^{\lambda t} \in \sigma_{su}(AT(t))$.

Proposition 2.2 Let $T(t)_{t > 0}$ be a C_0-semigroup and let A be its infinitesimal generator. If $T(t)$ is differentiable for $t > t_0$ and $\lambda \in \sigma_{ap}(A)$, then $\lambda e^{\lambda t} \in \sigma_{ap}(AT(t))$.

Proof For $t > t_0$, since $\lambda e^{\lambda t} - AT(t) = (\lambda - A)B'(\lambda, t)$ and $B'(\lambda, t)$ is bounded linear operator, then $\lambda e^{\lambda t} - AT(t)$ is a bounded linear operator. It is easy to check that for $x \in D(A)$, $B'(\lambda, t)Ax = AB'(\lambda, t)x$. If $\lambda \in \sigma_{ap}(A)$, then there exists sequence $(x_n)_{n \in \mathbb{N}} \in D(A)$ satisfying $\|x_n\| = 1$ and $\|\lambda - A\|x_n \to 0$. From (1) of Lemma 2.5, we obtain the result. \hfill \Box

By an outline of the proof of [6, Theorem 2.1], we obtain the following result.

Proposition 2.3 Let $T(t)_{t > 0}$ be a C_0-semigroup and let A be its infinitesimal generator. If $T(t)$ is differentiable for $t > t_0$ and $\lambda \in \nu(A)$, then $\lambda e^{\lambda t} \in \nu(AT(t))$. where $\nu(\cdot) \in \{\sigma_\gamma(\cdot), \sigma_\pi(\cdot), \sigma_{ve}(\cdot)\}$ and $\sigma_\gamma(\cdot), \sigma_\pi(\cdot), \sigma_{ve}(\cdot)$ denote the regular spectrum, essential regular spectrum and left essential spectrum.

In the next theorem, we will prove that the spectral inclusion of C_0-semigroups remains true for the Drazin invertible and quasi-Fredholm spectra.

Theorem 2.1 Let $(T(t))_{t \geq 0}$ a C_0-semigroup, with infinitesimal generator A. Then
\[e^{t\sigma_D(A)} \subseteq \sigma_D(T(t)). \]

Proof Let $t_0 > 0$ be fixed and suppose that $(e^{\lambda t_0} - T(t_0))$ is Drazin invertible for some $\lambda \in \mathbb{C} \setminus \{0\}$. Then $M := R(e^{\lambda t_0} - T(t_0))$ is closed and the restricted semigroup $(e^{\lambda t_0} - T(t_0)|_M)$ is invertible. We show that $(\lambda - A)$ is Drazin invertible. To this end, in the first we show that $R(\lambda - A)$ is closed. Let $x \in R((\lambda - A))$, that is, there exist $u_k \in D(A^n), k = 1, 2, ..., \text{ such that } (\lambda - A)^n u_k \to x$, hence
\[(e^{\lambda t_0} - T(t_0))^n u_k := B(\lambda, t_0)^n(\lambda - A)^n u_k \]

\[\Box \]
by Lemma 2.1. Also,
\[B(\lambda, t_0)^n(\lambda - A)^nu_k \to B(\lambda, t_0)^nx. \]

Hence
\[(e^{\lambda t_0} - T(t_0))^nu_k \to B(\lambda, t_0)^nx. \]

Since \(M := R(e^{\lambda t_0} - T(t_0))^n \) is closed, then
\[B(\lambda, t_0)^nx \in R(e^{\lambda t_0} - T(t_0))^n. \]

Hence there exists \(u \in D(A^n) \) such that
\[B(\lambda, t_0)^nx = (e^{\lambda t_0} - T(t_0))^nu. \]

In the other hand, From Lemma 2.1, we have that
\[(e^{\lambda t_0} - T(t_0))^nu = B(\lambda, t_0)^n(\lambda - A)u, \]

hence
\[B(\lambda, t_0)^nx = B(\lambda, t_0)^n(\lambda - A)u. \]

This implies that,
\[x - (\lambda - A)^nu \in N(B(\lambda, t_0)) \subseteq R(\lambda - A)^n. \]

So \(x \in R(\lambda - A)^n \), and hence \(R(\lambda - A)^n \) is closed.

Now, let us to show that \((\lambda - A_{\lambda R(\lambda - A)^n}) \) is invertible. For this, as \((e^{\lambda t_0} - T(t_0)|M) \) is invertible, then \((e^{\lambda t_0} - T(t_0)|M) \) is bounded below and \(R(e^{\lambda t_0} - T(t_0)|M) = R(e^{\lambda t_0} - T(t_0))^{n+1} \) is onto. We show that \((\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) \) is bounded below. Since \((e^{\lambda t_0} - T(t_0)|M) \) is bounded below, then \((e^{\lambda t_0} - T(t_0)|M) \) is injective and \(R(e^{\lambda t_0} - T(t_0)|M) \) is closed. We show that \((\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) \) is injective and \((\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) \) is closed. For all \(x \in D(A) \) we have

\[\{0\} = N(e^{\lambda t_0} - T(t_0)|M \cap D(A)) = N(\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) \]
\[+ N(B(\lambda, t_0)) \cap R(B^n(\lambda, t_0)), \]

then \(N(\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) = \{0\} \), therefore \((\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) \) is injective. As \(R(e^{\lambda t_0} - T(t_0))^{n+1} \) is closed, then \((\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) = R(\lambda - A)^{n+1} \) is also closed. On the other hand, as \(R(e^{\lambda t_0} - T(t_0)|M) \) is onto, we can easily verify that \(R(\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) \) is onto. In fact one can verify that
\[R(\lambda - A_{\lambda R(\lambda - A)^n} \cap D(A)) = R(\lambda - A)^{n+1} = R(\lambda - A)^n. \]
We have $R(\lambda - A)^{n+1} \subset R(\lambda - A)^n$ and if $y \in R(\lambda - A)^n$, then there exist $x \in D(A^n)$ such that $y = R(\lambda - A)^n x$ and by (1) of Lemma 2.3, we have

$$(\lambda - A)^n x = (\lambda - A)^n C_n (\lambda - A)^n x + D_n B^n (\lambda, t) (\lambda - A)^n x$$

and as $R(e^{\lambda t_0} - T(t_0)) | (e^{\lambda t_0} - T(t_0))^n = R(e^{\lambda t_0} - T(t_0))^{n+1}$ is onto, then there exist $x' \in X$ such that $(e^{\lambda t_0} - T(t_0))^n x = (e^{\lambda t_0} - T(t_0))^{n+1} x' = (\lambda - A)^{n+1} B^{n+1} (\lambda, t) x'$, therefore $y \in R(\lambda - A)^n$ and then $R(\lambda - A | R(\lambda - A)^n \cap D(A))$ is onto.

Finally, $(\lambda - A | R(\lambda - A)^n \cap D(A))$ is Drazin invertible. □

Corollary 2.2 For the infinitesimal generator A of a strongly continuous semigroup $(T(t))_{t \geq 0}$, one has the spectral inclusion

$$e^{t \sigma_v(A)} \subseteq \sigma_v(T(t))$$

where $\sigma_v(\cdot)$ is the left Drazin and right Drazin spectra.

The following example shows that the inclusion in Theorem 2.1 is strict.

Example 1 Let X be the Banach space of continuous functions on $[0, 1]$ which are equal to zero at $x = 1$ with the supremum norm. Define

$$(T(t)f)(x) := \begin{cases} f(x + t) & \text{if } x + t \leq 1; \\ 0 & \text{if } x + t > 1. \end{cases}$$

$T(t)$ is obviously a C_0-semigroup on X. Its infinitesimal generator A is given on

$$D(A) = \{ f : f \in C^1([0, 1]) \cup X, f' \in X \}$$

by

$$Af = f' \text{ for } f \in D(A).$$

One checks easily that for every $\lambda \in \mathbb{C}$ and $g \in X$ the equation $\lambda f - f' = g$ has a unique solution $f \in X$ given by

$$f(t) = \int_t^1 e^{\lambda (t - s)} g(s) ds.$$
\[e^{t\sigma_D(A)} \subseteq \sigma_D(T(t)). \]

is strict.

Theorem 2.2 For the infinitesimal generator \(A \) of a strongly continuous semigroup \((T(t))_{t \geq 0} \), we have the following inclusion:

\[e^{t\sigma_QF(A)} \subseteq \sigma_{QF}(T(t)). \]

Proof Let \(t_0 > 0 \) be fixed and suppose that \((e^{\lambda t_0} - T(t_0)) \) is quasi-Fredholm, for some \(\lambda \in \mathbb{C} \setminus \{0\} \). Then \(M := R(e^{\lambda t_0} - T(t_0))^n \) is closed and the restricted semigroup \((e^{\lambda t_0} - T(t_0)|_M) \) is semi-regular.

We show that \((\lambda - A) \) is quasi-Fredholm, to this end we show that \(R(\lambda - A)^n \) is closed and \((\lambda - A)|_{R(\lambda - A)^n \cap D(A)} \) is semi-regular. That is, \((R(\lambda - A)|_{R(\lambda - A)^n \cap D(A)}) \) is closed and \(N(\lambda - A)|_{R(\lambda - A)^n \cap D(A)} \) is quasi-Fredholm.

As \(M := R(e^{\lambda t_0} - T(t_0))^n \) is closed, then by the same argument as in the proof of Theorem 2.1, we conclude that \(R(\lambda - A)^n \) is closed. Since \((e^{\lambda t_0} - T(t_0)|_M) \) is semi-regular, then \(R(e^{\lambda t_0} - T(t_0)|_M) = R(e^{\lambda t_0} - T(t_0))^n + 1 \) is closed, this implies that \(R(\lambda - A)|_{R(\lambda - A)^n \cap D(A)} = R(\lambda - A)^n + 1 \) is closed. On the other hand, by Lemma 2.1 we have that

\[N(\lambda - A)|_{R(\lambda - A)^n \cap D(A)} \subseteq N(e^{\lambda t_0} - T(t_0)|_M \cap D(A) \subseteq N(e^{\lambda t_0} - T(t_0)|_M) \]

Since \((e^{\lambda t_0} - T(t_0)|_M) \) is semi-regular, then \(N(e^{\lambda t_0} - T(t_0)|_M) \subseteq R^\infty (e^{\lambda t_0} - T(t_0)|_M) = R^\infty (\lambda - A)|_{R(\lambda - A)^n \cap D(A)} \cap R^\infty B(\lambda, t_0) \subset R^\infty (\lambda - A)|_{R(\lambda - A)^n \cap D(A)}, \) hence \((\lambda - A)|_{R(\lambda - A)^n \cap D(A)} \) is semi-regular. Finally, we conclude that \((\lambda - A) \) is quasi-Fredholm.

\[\square \]

Remark 1 For an operator \(T \in B(X) \) we have \(\sigma_D(T) \subseteq \sigma_{QF}(T) \), this implies by Example 1 the inclusion spectral in Theorem 2.2 is strict.

Let \(A \) be the infinitesimal generator of a \(C_0 \)-semigroup \((T(t))_{t \geq 0} \). In the next Theorem, we will use the concept of the weak* -integral. For more information of this integral, see [17, Appendix 1].

In the following, we will give condition on \((T(t))_{t \geq 0} \) under which facts \(A \) is Drazin invertible, \(A \) is \(B \)-Fredholm and \(A \) is \(Q \)-Fredholm are equivalent.

Theorem 2.3 Let \(A \) be the infinitesimal generator of a \(C_0 \)-semigroup \((T(t))_{t \geq 0} \).

If \(\lim_{t \to \infty} \frac{1}{t^n} ||T(t)|| = 0 \), for some \(n \in \mathbb{N} \), the following assertions are equivalent:

1. \(A \) is quasi-Fredholm;
2. \(A \) is Drazin invertible;
3. \(A \) is \(B \)-Fredholm.

Proof (1) \(\Rightarrow \) (2):

Since \(A \) is quasi-Fredholm, then \(R(A^n) \) closed and \(A|_{R(A^n) \cap D(A)} \) is semi-regular. Let \(y \in N(A|_{R(A^n) \cap D(A)}) \), then there exists \(x \in (R(A^n) \cap D(A^n)) \) such that \(y = A^n x \). We integer by parts in the following formula:

\[\square \]
\[T(t)x - x = \int_0^t T(s)Ax\,ds, \]

we obtain that
\[T(t)x = x + tA + \frac{t^2}{2!}A^2 + \int_0^t \frac{(t-s)^2}{2!}T(s)A^3x\,ds. \]

We repeat this operation for \(n \) times, we obtain that
\[T(t)x = \sum_{k=0}^{n-1} \frac{t^k}{k!}A^kx + \int_0^t \frac{(t-s)^{n-1}}{(n-1)!}T(s)A^n x\,ds. \]

Hence,
\[T(t)x = \sum_{k=0}^{n-1} \frac{t^k}{k!}A^kx + y \int_0^t \frac{(t-s)^{n-1}}{(n-1)!} ds \]
\[= \sum_{k=0}^{n-1} \frac{t^k}{k!}A^kx + \frac{t^n}{n!}y. \]

As \(\lim_{t \to \infty} \frac{1}{t} \|T(t)\| = 0 \), then \(y = 0 \), this implies that
\[N(A_{|(R(A^n) \cap D(A))}) = \{0\}. \]

On the other hand, let \((T(t))_{t \geq 0}\) with infinitesimal generator \(A' \) the adjoint semigroup of \((T(t))_{t \geq 0}\). Since \(A_{|(R(A^n) \cap D(A))} \) is semi-regular, then \(A'_{|(R(A^n) \cap D(A'))} \) is also semi-regular, see [12, Proposition 1.6]. Using the following formula
\[T(t)x' - x' = \text{weak}^* \int_0^t (s)x'\,ds, \quad \forall x' \in (R(A^n) \cap D(A')), \quad \text{for all } t \geq 0 \]
which is proved in [17, Proposition 1.2.2] and by the same argument as above, we get
\[N(A'_{|(R(A^n) \cap D(A'))}) = \{0\}. \] This is equivalent to the fact that
\[\overline{R(A_{|(R(A^n) \cap D(A))})} = (R(A^n) \cap D(A)). \]

Hence \(R(A_{|(R(A^n) \cap D(A))}) = (R(A^n) \cap D(A)) \), since \((R(A^n) \cap D(A))\) is closed. From this it follows that \(A_{|(R(A^n) \cap D(A))} \) is surjective and hence it is invertible. Finally, \(A \) is Drazin invertible.

(2) \(\Rightarrow \) (1): is clear.

(1), (2) and (3) are equivalent, since the class of Drazin invertible operator is a subclass of B-Fredholm operator and the class of B-Fredholm operator is a subclass of quasi-Fredholm operator. \(\square \)
The following example shows that the condition $\lim_{t \to \infty} \frac{1}{t^n} \| T(t) \| = 0$, for some $n \in \mathbb{N}$ in Theorem 2.3 is needed for conclusion.

Example 2 Let H be a Hilbert space with an orthonormal basis $\{e_n\}_1^\infty$ and T be unilateral weighted shift operator on H defined by $Aeon = w_n e_{n+1}$, $n = 1, 2, \ldots$ [14, p. 51]. Let $T(t) = e^{tA}$ be the semigroup generated by A, $t \geq 0$ and $w_n = 1$. Easy to see that $\| T(t) \| = e^t$, thus, $\lim_{t \to \infty} \frac{1}{t^n} \| T(t) \| \neq 0$, for all $n \in \mathbb{N}^\times$. We know (see [1, Theorem 2.86 and Example 3.30]) that $\sigma(A) = \{ \lambda \in \mathbb{C}, |\lambda| \leq 1 \}$ and $\sigma_{ap}(A) = \{ \lambda \in \mathbb{C}, |\lambda| = 1 \}$, thus, A is semi-regular then A quasi-Fredholm. On the other hand A is not surjective so $R(A^n) \supset R(A^{n+1})$ this implies that $A^n : R(A^n) \to R(A^n)$ is not invertible; therefore, A is not Drazin invertible.

Acknowledgements The authors thank the referees for his suggestions and comments thorough reading of the manuscript.

References

1. Aiena, P.: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer Academic Press (2004)
2. Aiena, P., Biondi, M.T., Carpintero, C.: On Drazin Invertibility. Proc. Am. Math. Soc. **136**, 2839–2848 (2008)
3. Berkani, M.: On a class of quasi-Fredholm operators. Integral Equ. Oper. Theory **34**, 244–603 (1999)
4. Clément, Ph, Heijmans, H.J.A.M., Angenent, S., van Duijn, C.J., de Pagter, B.: One-Parameter Semigroups. Centre for Mathematics and Computer Science, Amsterdam (1987)
5. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)
6. Elkoutri, A., Taoudi, M.A.: Spectral inclusions and stability results for strongly continuous semigroups. IJMMS **37**, 2379–2387 (2003)
7. Hocine, K.M., Benharrat, M., Messirdi, B.: Left and right generalized Drazin invertible operators. Linear and Multilinear Algebra **63**(8), 1635–1648 (2015)
8. Laursen, K.B., Neumann, M.M.: An Introduction to Local Spectral Theory, London Mathematical Society Monograph, New Series, vol. 20. Clarendon Press, Oxford (2000)
9. Lay, D.C.: Spectral analysis using ascent, descent, nullity and defect. Math. Ann. **184**, 197–214 (1970)
10. Mbekhta, M.: Decomposition de Kato généralisé . C. R. Acad. Sci. Paris **303** série I, No 20, 255–276 (1990)
11. Mbekhta, M.: Opérateur pseudo-Fredholm I: Résolvant généralisé. J. Oper. Theory **24**, 255–276 (1990)
12. Mbekhta, M.: On the generalized resolvent in Banach spaces. J. Math. Anal. Appl. **189**, 362–377 (1995)
13. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
14. Pearcy, C.: Topics in Operator Theory. American Mathematical Society, Rhode Island (1979)
15. Tajmouati, A., Amouch, M., Alhomidi Zakariya, M.R.F.: Spectral Equality for C_0-Semigroups and Spectral Inclusion of B-Fredholm. Rendiconti del Circolo Matematico di Palermo series2 **65**(3), 425–434 (2016)
16. Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis. Wiley, New York (1980)
17. Van Neerven, J.M.A.M.: The Adjoint of a Semigroup of Linear Operator, Lecture Notes in Mathematics, vol. 1529. Springer, Berlin (1992)