A Three Species Ecological Model with A Prey, Predator and Competitor to the Predator and Optimal Harvesting of the Prey

A.V. PapaRao\(^1\), K. L. Narayan\(^2\) and Shahnaz Bathul\(^3\)

\(^1\)Department of Basic Sciences & Humanities, VITS - Deshmukhi - 508284, India
\(^2\)Department of Humanities & Sciences, SLC’SIE T, Hyderabad - 501510, India
\(^3\)Department of Mathematics, JNTU College of Engineering, Hyderabad-500085, India

E-mail: paparao.alla@gmail.com

Keywords: Prey, Predator, Competitor, Equilibrium points, Normal Steady State, Local stability, Global stability, Trajectories, Numerical examples.

Abstract: The present paper is devoted to an analytical investigation of three species ecological model with a Prey \((N_1)\), a predator \((N_2)\) and a competitor \((N_3)\) to the Predator without effecting the prey \((N_1)\). In addition to that, the species are provided with alternative food. The model is characterized by a set of first order non-linear ordinary differential equations. All the eight equilibrium points of the model are identified and local and global stability criteria for the equilibrium states except fully washed out and single species existence are discussed. Further exact solutions of perturbed equations have been derived. The analytical stability criteria are supported by numerical simulations using mat lab. Further we discussed the effect of optimal harvesting on the stability.

1. **Introduction:**

Ecology relates to the study of living beings in relation to their living styles. Research in the area of theoretical ecology was initiated by Lotka [15] and by Volterra [16]. Since then many mathematicians and ecologists contributed to the growth of this area of knowledge as reported in the treatises of Paul Colinvaux [14], Freedman [2], Kapur [3,4] etc. Recently Archana Reddy [1] discussed the stability analysis of two interacting species with harvesting of both species. Lakshmi Narayan and Pattabhiramacharyulu [5, 6] and Shiva Reddy [7, 8] et al., Ravidra Reddy [9,10,11] et al. Shanker [12] et al and Papa Rao [13] have discussed different prey-predator models in detail. T.K.kar [17] studied the stability of several species models by incorporating the harvesting term. Inspired from that, we discussed a more general three species model. The model is characterized by a set of first order ordinary differential equations. All the eight equilibrium points of the model are identified and stability criteria for some equilibrium states are discussed. Further we discussed the effect of optimal harvesting on the stability.

2. **Basic Equations:**

The model equations for a three species Prey - Predator and competitor to the predator system is given by the following system of first order ordinary differential equations employing the following notation:

\[
\begin{align*}
\frac{dN_1}{dt} &= a_1N_1 - \alpha_{11}N_1^2 - \alpha_{12}N_1N_2 - qEN_1 \\
\frac{dN_2}{dt} &= a_2N_2 - \alpha_{22}N_2^2 + \alpha_{21}N_1N_2 - \alpha_{23}N_2N_3 \\
\frac{dN_3}{dt} &= a_3N_3 - \alpha_{33}N_3^2 - \alpha_{32}N_2N_3
\end{align*}
\]

(2.1)
Where \(N_1 \), \(N_2 \) and \(N_3 \) are the populations of the prey and predator and a competitor to the predator with the natural growth rates \(a_1 \), \(a_2 \) and \(a_3 \) respectively,
\(\alpha_{11} \) is rate of decrease of the prey due to insufficient food
\(\alpha_{12} \) is rate of decrease of the prey due to inhibition by the predator,
\(\alpha_{21} \) is rate of increase of the predator due to successful attacks on the prey,
\(\alpha_{22} \) is rate of decrease of the predator due to insufficient food other than the prey,
\(\alpha_{23} \) is rate of decrease of the predator due to the competition with the third species
\(\alpha_{33} \) is rate of decrease of the Competitor to the predator due to insufficient food
\(\alpha_{32} \) is rate of decrease of the competitor to the predator due to the competition with the predator
\(q \) Catchability coefficient of prey \((N1)\), \(E \): effort applied to the harvest of the prey
Throughout the analysis, we assume that \((a_1-qE) > 0\).

3. Equilibrium states:
The system under investigation has eight equilibrium states. They are
I. \(E_1 \): The fully washed out state \(\overline{N}_1 = 0; \overline{N}_2 = 0, \overline{N}_3 = 0 \) (3.1)
II. \(E_2 \): The state in which only the predator survives and the prey and competitor to the predator are washed out
\[
\overline{N}_1 = 0, \overline{N}_2 = \frac{a_2}{\alpha_{22}}, \overline{N}_3 = 0
\] (3.2)
III. \(E_3 \) : The state in which both the prey and the predators washed out and competitor to the predator survive
\[
\overline{N}_1 = 0, \overline{N}_2 = 0, \overline{N}_3 = \frac{a_3}{\alpha_{33}}
\] (3.3)
IV. \(E_4 \): The state in which both the predator and competitor to the predator washed out and prey survive
\[
\overline{N}_1 = \left(\frac{a_1 - qE}{\alpha_{11}}\right), \overline{N}_2 = 0, \overline{N}_3 = 0
\] (3.4)
V. \(E_5 \) : The state in which both the prey and the predators exist and competitor to the predator washed out
\[
\overline{N}_1 = \left(\frac{(a_1 - qE)\alpha_{22} - a_2\alpha_{12}}{\alpha_{11}\alpha_{22} + \alpha_{12}\alpha_{21}}\right), \overline{N}_2 = \left(\frac{a_2\alpha_{11} + (a_1 - qE)\alpha_{21}}{\alpha_{11}\alpha_{22} + \alpha_{12}\alpha_{21}}\right), \overline{N}_3 = 0
\] This case arise only when \((a_1 - qE)\alpha_{22} > a_2\alpha_{12}\) (3.5)
VI. \(E_6 \): The state in which both prey and competitor to the predator exist and predator washed out
\[
\overline{N}_1 = \left(\frac{a_1 - qE}{\alpha_{11}}\right), \overline{N}_2 = 0, \overline{N}_3 = \frac{a_3}{\alpha_{33}}
\] (3.6)
VII. \(E_7 \): The state in which both predator and competitor to the predator exist and prey washed out
\[
\overline{N}_1 = 0, \overline{N}_2 = \frac{a_2\alpha_{33} - a_3\alpha_{23}}{\alpha_{22}\alpha_{33} - \alpha_{23}\alpha_{32}}, \overline{N}_3 = \frac{a_2\alpha_{22} - a_3\alpha_{32}}{\alpha_{22}\alpha_{33} - \alpha_{23}\alpha_{32}}
\] (3.7)
The equilibrium state exist only when \(a_2\alpha_{33} > a_3\alpha_{23}, a_3\alpha_{22} > a_2\alpha_{32} & \alpha_{22}\alpha_{33} > \alpha_{23}\alpha_{32} \)
VIII. E8: The state in which prey, predator and competitor to the predator exist

\[
\mathbf{N} = \left(a_1 - qE \right) \left(\alpha_{12} \alpha_{33} - \alpha_{23} \alpha_{32} \right) - \alpha_{12} \left(\alpha_{23} \alpha_{33} - \alpha_{32} \alpha_{33} \right), \quad \mathbf{N} = \frac{\alpha_{11} \left(\alpha_{12} \alpha_{33} - \alpha_{23} \alpha_{32} \right) + \alpha_{12} \alpha_{21} \alpha_{33}}{\alpha_{11} \left(\alpha_{22} \alpha_{33} - \alpha_{23} \alpha_{32} \right) + \alpha_{12} \alpha_{21} \alpha_{33}}
\]

The equilibrium state exist only when

\[
a_1 \alpha_{12} > a_2 \alpha_{32}, a_1 \alpha_{12} > (a_1 - qE) \alpha_{32},
\]

\[
(a_1 - qE) \left(\alpha_{23} \alpha_{33} - \alpha_{23} \alpha_{32} \right) > \alpha_{12} \left(\alpha_{23} \alpha_{33} - \alpha_3 \alpha_{23} \right),
\]

\[
(a_1 \alpha_{33} > a_2 \alpha_{33})
\]

\[
& \alpha_{23} \alpha_{33} > \alpha_{23} \alpha_{32}
\]

4 The stability of the equilibrium states:

Let \(N = (N_1, N_2, N_3)^T = \overline{N} + U \) (4.1)

Where \(U = (u_1, u_2, u_3)^T \) is the perturbation over the equilibrium state. \(\overline{N} = (\overline{N}_1, \overline{N}_2, \overline{N}_3)^T \). The basic equations (2.1), (2.2) and (2.3) are quasi-linearized to obtain the equations for the perturbed state.

\[
\frac{dU}{dt} = AU
\]

Where

\[
A = \begin{bmatrix}
 a_1 - 2\alpha_{11} N_1 - \alpha_{12} N_2 - qE & -\alpha_{12} N_1 & 0 \\
 -\alpha_{21} N_2 & a_2 - 2\alpha_{22} N_2 + \alpha_{21} N_1 - \alpha_3 N_3 & -\alpha_{23} N_2 \\
 0 & -\alpha_{32} N_3 & a_3 - 2\alpha_{33} N_3 - \alpha_{33} N_2
\end{bmatrix}
\]

The characteristic equation for the system is \(\det \left[A - \lambda I \right] = 0 \) (4.3)

The equilibrium state is stable, if three roots of the equation (4.3) are negative in case they are real or the roots have negative real parts in case they are complex.

The local and global stability of the equilibrium states E1, E3, and E4 are found to be unstable. Reaming is stable. We restricted our study to the equilibrium states E5, E6, E7 and E8.

4.1. Stability of the equilibrium state E5:

One of the Eigen values of variational matrix A, is \(\alpha_{3} - \alpha_{32} \overline{N}_2 \) and the other two are obtained from the quadratic equation

\[
\lambda^2 + (\alpha_{11} \overline{N}_1 + \alpha_{22} \overline{N}_2) \lambda + (\alpha_{11} \alpha_{22} + \alpha_{12} \alpha_{21}) \overline{N}_1 \overline{N}_2 = 0
\]

(4.1.1)

In (4.1.1), the sum of the roots, \(- (\alpha_{11} \overline{N}_1 + \alpha_{22} \overline{N}_2)\), is negative and the product of the roots, \((\alpha_{11} \alpha_{22} + \alpha_{12} \alpha_{21}) \overline{N}_1 \overline{N}_2\), is positive. Therefore the roots of (4.1.1) are real and negative or complex conjugates having negative real parts. Thus the state will be asymptotically stable when

\(a_1 < \alpha_{3} \overline{N}_2 \)

The solution of the perturbed equations are:

\[
u_1 = A_1 e^{s_1 t} + B_1 e^{s_3 t} + C_1 e^{s_3 t}
\]

(4.1.2)

\[
u_2 = A_2 e^{s_1 t} + B_2 e^{s_3 t} + C_2 e^{s_3 t}
\]

(4.1.3)

\[
u_3 = u_3 e^{(\alpha_{3} - \alpha_{32} \overline{N}_2) t}
\]

(4.1.4)

where \(s_1 = a_3 - \alpha_{32} \overline{N}_2 \) and \(s_2, s_3 \) are roots of equation (4.1.1)
\[A_1 = \left[\frac{u_{i0} \alpha_{22} \overline{N}_1}{(s_1 - s_2)} + \frac{u_{i0} s_1}{(s_1 - s_2)} + \frac{u_{j0} \alpha_{22} \alpha_{22} \overline{N}_1 \overline{N}_2}{(s_1 - s_2)(s_1 - s_3)} \right], \quad B_1 = \left[\frac{u_{i0} \alpha_{22} \overline{N}_2}{(s_2 - s_1)} + \frac{u_{i0} s_2}{(s_2 - s_1)} + \frac{u_{j0} \alpha_{22} \alpha_{22} \overline{N}_1 \overline{N}_2}{(s_2 - s_1)(s_2 - s_3)} \right] \]

\[C_1 = \left[\frac{u_{j0} \alpha_{22} \alpha_{12} \overline{N}_1 \overline{N}_2}{(s_1 - s_2)(s_3 - s_2)} \right], \quad A_2 = \left[\frac{-(u_{i0} \alpha_{21} + u_{j0} \alpha_{11}) \overline{N}_1}{(s_1 - s_2)} - \frac{u_{j0} s_1}{(s_1 - s_2)} + \frac{u_{j0} \alpha_{11} \alpha_{22} \alpha_{22} \overline{N}_1 \overline{N}_2 + u_{j0} \alpha_{22} \overline{N}_2 s_1}{(s_1 - s_2)(s_1 - s_3)} \right], \quad C_2 = \left[\frac{u_{j0} \alpha_{22} \alpha_{22} \overline{N}_1 \overline{N}_2 + u_{j0} \alpha_{22} \overline{N}_2 s_1}{(s_1 - s_2)(s_1 - s_3)} \right] \]

\[u_{i0}, u_{j0} \text{ and } u_{j0} \text{ are the initial strengths of } u_1, u_2 \text{ and } u_3 \text{ respectively} \]

4.2. Stability of the equilibrium state E_6:

The Eigen values of variational matrix A, are \(-a_1 - qE, -a_3 \) & \(a_2 + \frac{\alpha_{21}}{\alpha_{11}}(a_1 - qE) - \frac{\alpha_{23}}{\alpha_{33}} a_3 \)

the state will be asymptotically stable when \(a_2 + \frac{\alpha_{21}}{\alpha_{11}}(a_1 - qE) < \frac{\alpha_{23}}{\alpha_{33}} a_3 \)

The solution of the perturbed equations are:

\[u_i = A_3 e^{\left(a_2 + \frac{\alpha_{21}}{\alpha_{11}}(a_1 - qE) - \frac{\alpha_{23}}{\alpha_{33}} a_3 \right) t} + B_4 e^{-a_3 t} \quad (4.2.1) \]

\[u_2 = u_{j0} e^{\left(a_2 + \frac{\alpha_{21}}{\alpha_{11}}(a_1 - qE) - \frac{\alpha_{23}}{\alpha_{33}} a_3 \right) t} \quad (4.2.2) \]

\[u_3 = A_4 e^{\left(a_2 + \frac{\alpha_{21}}{\alpha_{11}}(a_1 - qE) - \frac{\alpha_{23}}{\alpha_{33}} a_3 \right) t} + B_4 e^{-a_3 t} \quad (4.2.3) \]

Where

\[A_3 = \frac{-u_{j0} (a_1 - qE) \alpha_{33} \alpha_{12}}{a_2 \alpha_1 \alpha_{33} + \alpha_{33} (a_1 + a_1) (a_1 - qE) - \alpha_{11} \alpha_{22} a_3}, \]

\[B_3 = u_{j0} + \frac{u_{j0} (a_1 - qE) \alpha_{33} \alpha_{12}}{a_2 \alpha_1 \alpha_{33} + \alpha_{33} (a_1 + a_1) (a_1 - qE) - \alpha_{11} \alpha_{22} a_3} \]

\[A_4 = \frac{-u_{j0} a_2 \alpha_{21} \alpha_{11}}{a_2 \alpha_1 \alpha_{33} + \alpha_{21} (a_1 - qE) + (a_3 - a_3) \alpha_{11} a_3}, \]

\[B_4 = u_{j0} + \frac{u_{j0} a_2 \alpha_{21} \alpha_{11}}{a_2 \alpha_1 \alpha_{33} + \alpha_{21} (a_1 - qE) + (a_3 - a_3) \alpha_{11} a_3} \]

where \(u_{i0}, u_{j0} \) and \(u_{j0} \) are the initial strengths of \(u_1, u_2 \) and \(u_3 \) respectively

4.3. Stability of the equilibrium state E_7:

One of the Eigen values of variational matrix A, is \(a_1 - qE - \alpha_{22} \overline{N}_2\) and the other two are obtained from the quadratic equation

\[\lambda^2 + (\alpha_{22} \overline{N}_2 + \alpha_{22} \overline{N}_2) \lambda + (\alpha_{22} \alpha_{33} - \alpha_{22} \alpha_{22}) \overline{N}_2 \overline{N}_3 = 0 \quad (4.3.1) \]
In (4.3.1), the sum of the roots, \(-\left(\alpha_{22} N_2 + \alpha_{33} N_3\right)\), is negative and the product of the roots, \(\left(\alpha_{22}\alpha_{33} - \alpha_{23}\alpha_{32}\right)N_2 N_3\), is positive. Therefore the roots of (4.3.1) are real and negative or complex conjugates having negative real parts. Thus the state will be asymptotically stable when \((a_i - qE) < \alpha_{12} N_2\).

The solution of the perturbed equations are:

\[
\begin{align*}
 u_1 &= u_{10}e^{s_1 t} \\
 u_2 &= A_2 e^{s_1 t} + B_2 e^{s_2 t} + C_2 e^{s_3 t} \\
 u_3 &= A_3 e^{s_1 t} + B_3 e^{s_2 t} + C_3 e^{s_3 t}
\end{align*}
\]

Where \(s_1 = a_1 - qE - \alpha_{12} N_2\) and \(s_2, s_3\) are roots of equation (4.3.1)

\[
A_5 = \left[\frac{u_{20} s_1}{(s_1 - s_2)} + \frac{u_{10} \alpha_{23} N_2 s_1}{(s_1 - s_2)(s_1 - s_3)}\right]
\]

\[
A_6 = \left[\frac{u_{30} s_1}{(s_1 - s_2)} - \frac{u_{10} \alpha_{23} N_2 s_1}{(s_1 - s_2)(s_1 - s_3)}\right]
\]

\[
B_5 = \left[\frac{u_{12} \alpha_{23} N_2 s_2}{(s_2 - s_1)} + \frac{u_{10} \alpha_{23} N_2 s_1}{(s_2 - s_1)(s_2 - s_3)}\right]
\]

\[
B_6 = \left[\frac{u_{32} \alpha_{23} N_2 s_2}{(s_2 - s_1)} - \frac{u_{10} \alpha_{23} N_2 s_1}{(s_2 - s_1)(s_2 - s_3)}\right]
\]

\[
C_5 = \left[\frac{u_{10} \alpha_{23} N_2 s_3}{(s_3 - s_2)(s_3 - s_1)}\right]
\] and \(C_6 = \left[\frac{u_{10} \alpha_{23} N_2 s_3}{(s_3 - s_2)(s_3 - s_1)}\right]\)

where \(u_{10}, u_{20}\) and \(u_{30}\) are the initial strengths of \(u_1, u_2\) and \(u_3\) respectively

4.4. Stability of the equilibrium state \(E_q\):

In this case the characteristic equation of co-existing state is

\[
\lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3 = 0
\]

where

\[
b_1 = \alpha_{11} N_1 + \alpha_{22} N_2 + \alpha_{33} N_3, \quad b_2 = \alpha_{11} \alpha_{33} N_1 N_3 + (\alpha_{22} \alpha_{33} - \alpha_{23} \alpha_{32}) N_2 N_3 + (\alpha_{11} \alpha_{22} + \alpha_{12} \alpha_{21}) N_1 N_2
\]

\[
b_3 = (\alpha_{12} \alpha_{21} \alpha_{33} + \alpha_{22} \alpha_{11} \alpha_{33} - \alpha_{11} \alpha_{22} \alpha_{32}) N_1 N_2 N_3
\]

By Routh-Hurwitz criteria, when

\[
D_1 = b_1 = \alpha_{11} N_1 + \alpha_{22} N_2 + \alpha_{33} N_3 > 0, \quad D_2 = b_1 b_2 - b_3 > 0 \quad \text{and} \quad D_3 = b_3 (b_1 b_2 - b_3) > 0
\]

Therefore the roots of (4.4.1) are real and negative or complex conjugates having negative real parts. Thus the state will be asymptotically stable

The solution of the perturbed equations are:

\[
\begin{align*}
 u_1 &= A_5 e^{s_1 t} + B_5 e^{s_2 t} + C_5 e^{s_3 t} \\
 u_2 &= A_6 e^{s_1 t} + B_6 e^{s_2 t} + C_6 e^{s_3 t} \\
 u_3 &= A_7 e^{s_1 t} + B_7 e^{s_2 t} + C_7 e^{s_3 t}
\end{align*}
\]

Where \(s_1, s_2\) and \(s_3\) are roots of equation (4.4.1)
\[A_i = \left[\frac{u_{10}(s_1 + \alpha_{12} N_2) + (s_1 + \alpha_{13} N_3) - u_{20} \alpha_{12} N_1 (s_1 + \alpha_{13} N_3) - u_{10} \alpha_{12} \alpha_{23} N_1 N_2 + u_{10} \alpha_{12} \alpha_{23} N_1 N_2}{(s_1 - s_2)(s_1 - s_3)} \right] \]

\[B_i = \left[\frac{u_{10}(s_2 + \alpha_{22} N_2) + (s_2 + \alpha_{23} N_3) - u_{20} \alpha_{12} N_1 (s_2 + \alpha_{23} N_3) - u_{10} \alpha_{12} \alpha_{23} N_1 N_2 + u_{10} \alpha_{12} \alpha_{23} N_1 N_2}{(s_2 - s_1)(s_2 - s_3)} \right] \]

\[C_i = \left[\frac{u_{10}(s_3 + \alpha_{22} N_2) + (s_3 + \alpha_{23} N_3) - u_{20} \alpha_{12} N_1 (s_3 + \alpha_{23} N_3) - u_{10} \alpha_{12} \alpha_{23} N_1 N_2 + u_{10} \alpha_{12} \alpha_{23} N_1 N_2}{(s_3 - s_1)(s_3 - s_2)} \right] \]

\[A_j = \left[\frac{u_{20}(s_1 + \alpha_{11} N_1) + (s_1 + \alpha_{13} N_3) - u_{30} \alpha_{12} \alpha_{23} N_1 N_2 (s_1 + \alpha_{13} N_3) + u_{10} \alpha_{12} \alpha_{23} N_1 N_2}{(s_1 - s_2)(s_1 - s_3)} \right] \]

\[B_j = \left[\frac{u_{20}(s_2 + \alpha_{11} N_1) + (s_2 + \alpha_{32} N_3) - u_{30} \alpha_{12} \alpha_{23} N_1 N_2 (s_2 + \alpha_{32} N_3) + u_{10} \alpha_{12} \alpha_{23} N_1 N_2}{(s_2 - s_1)(s_2 - s_3)} \right] \]

\[C_j = \left[\frac{u_{20}(s_3 + \alpha_{11} N_1) + (s_3 + \alpha_{32} N_3) - u_{30} \alpha_{12} \alpha_{23} N_1 N_2 (s_3 + \alpha_{32} N_3) + u_{10} \alpha_{12} \alpha_{23} N_1 N_2}{(s_3 - s_1)(s_3 - s_2)} \right] \]

Where \(u_{10}, u_{20} \) and \(u_{30} \) are the initial strengths of \(u_1, u_2 \) and \(u_3 \) respectively

5. Global Stability

5.1. Theorem

Let the Lapnou function for the case \(E \) be:

\[V(N_1, N_2) = \left\{ N_1 - \bar{N}_1 - \bar{N}_1 \ln \left[\frac{N_1}{\bar{N}_1} \right] \right\} + \left\{ N_2 - \bar{N}_2 - \bar{N}_2 \ln \left[\frac{N_2}{\bar{N}_2} \right] \right\} \]

(5.1.1)

Differentiating \(V \) w.r.t \(t \) we get

\[\frac{dV}{dt} = \left(\frac{N_1 - \bar{N}_1}{\bar{N}_1} \right) dN_1 + \left(\frac{N_2 - \bar{N}_2}{\bar{N}_2} \right) dN_2 \]

(5.1.2)

\[\frac{dV}{dt} = - \left(\alpha_{13} + \frac{1}{2} [\alpha_{12} - \alpha_{21}] \right) \left[N_1 - \bar{N}_1 \right]^2 - \left(\alpha_{22} + \frac{1}{2} [\alpha_{12} - \alpha_{21}] \right) \left[N_2 - \bar{N}_2 \right]^2 \]

(5.1.3)

\[\frac{dV}{dt} < 0 \]

Therefore, \(E_\infty (\bar{N}_1, \bar{N}_2) \) is globally asymptotically stable
5.2. Theorem
Let the Lapnouv function for the case E_6 is:

$$V(N_1, N_3) = (N_1 - \bar{N}_1) - N_1 \ln \left(\frac{N_1}{\bar{N}_1} \right) + (N_3 - \bar{N}_3) - N_3 \ln \left(\frac{N_3}{\bar{N}_3} \right)$$

(5.2.1)

Differentiating V w.r.to ‘t’ we get

$$\frac{dV}{dt} = \left(\frac{N_1 - \bar{N}_1}{N_1} \right) \frac{dN_1}{dt} + \left(\frac{N_3 - \bar{N}_3}{N_3} \right) \frac{dN_3}{dt}$$

(5.2.2)

$$\frac{dV}{dt} = -\alpha_{11} \left[N_1 - \bar{N}_1 \right]^2 - \alpha_{33} \left[N_3 - \bar{N}_3 \right]^2$$

(5.2.3)

$$\frac{dV}{dt} < 0$$

Therefore, $E_6(\bar{N}_1, \bar{N}_3)$ is globally asymptotically stable.

5.3. Theorem
Let the Lapnouv function for the case E_7 is:

$$V(N_2, N_3) = (N_2 - \bar{N}_2) - N_2 \ln \left(\frac{N_2}{\bar{N}_2} \right) + (N_3 - \bar{N}_3) - N_3 \ln \left(\frac{N_3}{\bar{N}_3} \right)$$

(5.3.1)

Differentiating V w.r.to ‘t’ we get

$$\frac{dV}{dt} = \left(\frac{N_2 - \bar{N}_2}{N_2} \right) \frac{dN_2}{dt} + \left(\frac{N_3 - \bar{N}_3}{N_3} \right) \frac{dN_3}{dt}$$

(5.3.2)

$$\frac{dV}{dt} < -\left(\alpha_{22} + \frac{1}{2} \alpha_{23} \right) \left[N_2 - \bar{N}_2 \right]^2 - \left(\alpha_{33} + \frac{1}{2} \alpha_{32} \right) \left[N_3 - \bar{N}_3 \right]^2$$

(5.3.3)

$$\frac{dV}{dt} < 0$$

Therefore, $E_7(\bar{N}_2, \bar{N}_3)$ is globally asymptotically stable.

5.4. Theorem
The equilibrium point $E_8(\bar{N}_1, \bar{N}_2, \bar{N}_3)$ is globally asymptotically stable.

Proof: Let us consider the following Lyapunov function

$$V(\bar{N}_1, \bar{N}_2, \bar{N}_3) = \left[N_1 - \bar{N}_1 - \bar{N}_1 \ln \left(\frac{N_1}{\bar{N}_1} \right) \right] + \left[N_2 - \bar{N}_2 - \bar{N}_2 \ln \left(\frac{N_2}{\bar{N}_2} \right) \right] + \left[N_3 - \bar{N}_3 - \bar{N}_3 \ln \left(\frac{N_3}{\bar{N}_3} \right) \right]$$

(5.4.1)

Differentiating V w.r.to ‘t’ we get

$$\frac{dV}{dt} = \left(\frac{N_1 - \bar{N}_1}{N_1} \right) \frac{dN_1}{dt} + \left(\frac{N_2 - \bar{N}_2}{N_2} \right) \frac{dN_2}{dt} + \left(\frac{N_3 - \bar{N}_3}{N_3} \right) \frac{dN_3}{dt}$$

(5.4.2)

$$\frac{dV}{dt} < -\alpha_{11} \left[N_1 - \bar{N}_1 \right]^2 - \left(\alpha_{22} + \frac{1}{2} \alpha_{23} \right) \left[N_2 - \bar{N}_2 \right]^2 - \left(\alpha_{33} + \frac{1}{2} \alpha_{32} \right) \left[N_3 - \bar{N}_3 \right]^2$$

(5.4.3)

$$\frac{dV}{dt} < 0$$

Therefore, $E_8(\bar{N}_1, \bar{N}_2, \bar{N}_3)$ is globally asymptotically stable.
6. Numerical example:

1. Let $a_1=2; a_2=3; a_3=4; \alpha_{11}=0.1; \alpha_{12}=0.2; \alpha_{22}=0.1; \alpha_{21}=0.3; \alpha_{23}=0.2; \alpha_{33}=0.2; \alpha_{32}=0.1$

Fig 6.1.1: The Phage diagram of N1, N2, N3 for system of Eq (2.1) $qE=0$

Fig 6.1.2: The Variation of N1, N2 & N3 with respective Time (t) for system of Eq (2.1) For $qE =0$

Fig 6.1.3: The Phage diagram of N1, N2, N3 for system of Eq (2.1)
The Variation of N_1, N_2 & N_3 with respective Time (t) for system of Eq (2.1)

Comparative phage diagram for Eq (2.1) with $q_E \neq 0$ and $q_E = 0$

The above graph shows the variation with initial strengths 10, 15, 25 of prey, predator and competitor populations respectively.

2. Let $a_1=2$; $a_2=3$; $a_3=4$; $a_{11}=0.1$; $a_{12}=0.12$; $a_{22}=0.2$; $a_{21}=0.13$; $a_{23}=0.14$; $a_{33}=0.3$; $a_{32}=0.15$

The Phage diagram of N_1, N_2, N_3 for system of Eq (2.1) for $q_E = 0$
Fig 6.2.2: The Variation of N1, N2 & N3 with respective Time (t) for system of Eq (2.1)
For qE = 0

Fig 6.2.3: The Phage diagram of N1, N2, N3 for system of Eq (2.1)

Fig 6.2.4: The Variation of N1, N2 & N3 with respective Time (t) for system of Eq (2.1)
The above graph shows the variation with initial strengths 40, 30, 20 of prey, predator and competitor populations respectively

7. Conclusion:
In the analysis of the considered prey, predator and a competitor to the predator and optimal harvesting of the prey model, we discussed the local, global stability of the model and exact solutions of perturbed equations have been derived for stable cases. Two set of Numerical examples are studied for which first example with complex roots and second example with real roots. And also study the stability of the system (2.1) with harvesting \(qE \neq 0 \) and without harvesting \(qE = 0 \). From the graphs shown fig 6.1.5 and 6.2.5 it is evident that the harvesting of the prey does not have any influence on the stability.

8. References
[1] Archana Reddy. R; Pattabhi Ramacharyulu N.Ch & Krishna Gandhi.B., A stability analysis of two competitive interacting species with harvesting of both the species at a constant rate. International journal of scientific computing (1) January-June 2007: pp 57-68.
[2] Freedman H. I., Deterministic Mathematical Models in Population Ecology, Decker, New York, 1980.
[3] Kapur J.N., Mathematical Modeling in Biology and Medicine. Affiliated east west, 1985.
[4] Kapur J.N., Mathematical modeling, wiley, easter, 1985.
[5] Lakshmi Narayan K., and Pattabhiramacharyulu N.Ch. “A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with a Gestation Period for Interaction”, Int.J. Open Problems Compt. Math. Vol.1, June 2008, 71-79.
[6] Lakshmi Narayan K., & Pattabhiramacharyulu, N. CH “A Prey - Predator Model with cover for Prey and an Alternative Food for the Predator and Constant Harvesting of Both the Species” Jordan Journal of Mathematics and Statistics” Vol 2(1),2009, pp.43-45
[7] Shiva Reddy K., Lakshmi Narayan K., and Pattabhiramacharyulu,N.Ch., “A Three Species Eco system consisting of A Prey And Two Predators”, International J. of Math.Sci.&Engg. Appls. Vol 4 No. IV(October, 2010), pp. 129-145.
[8] Shiva Reddy K., Lakshmi Narayan K., and Pattabhiramacharyulu N. Ch., “A Three Species Eco system consisting of A Prey, Predator and Super Predator”. International J. of Mathematics Applied in Science and Technology, Vol 2, No.1(2010), pp.95-107.

[9] Ravindra Reddy, Lakshmi Narayan K., Pattabhiramacharyulu N. Ch., “On Global Stability of Two Mutually Interacting Species With Limited Resources for Both the Species” Int. j. of Contemp. Math. Sciences, Vol.6, 2011, No.9, pp.401-407.

[10] Ravindra Reddy, Lakshmi Narayan K., and others. “A model of Two Mutually Interacting Species With Limited Resources for Both the Species”, Int. J. of Engg. Re. Ind. App., Vol 2, No. II, pp.281-291.

[11] Ravindra Reddy, Lakshmi Narayan K., Pattabhiramacharyulu N. Ch., “A model of Two Mutually Interacting Species With Limited Resources and Harvesting of Both the Species at a constant rate”, Int. J. of Math. Sci. & Engg. Appl., Vol 4, No. III, (August 2010), pp.97-106.

[12] Shanker N Lakshminarayan K., Pattabhiramacharyulu N. Ch. “On the global Stability of a four Species: A Prey-Predator-Host-Commensal-Mutual-Syn Eco-System-II(Prey and Predator Washed Out States)”, International J. of Math. Sci. & Engg. Appls. Vol 4 No. V (December, 2010), pp. 409-427.

[13] Paparao A.V, Lakshmi Narayan K, “A prey–predator model with a cover linearly varying with the prey population and an alternative food for the predator” IJOPCM (vol2, No: 2, June 2009).

[14] Paul Colinvaux, Ecology, John Wiley and Sons Inc., New York, 1977.

[15] Lotka A.J., Elements of Physical Biology, Williams and Wilkins, Baltimore, New York, 1925.

[16] Volterra V, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931.

[17] T.K. Kar, and K.S. Chaudhuri, “Harvesting in two Prey one predator fishery: A Bionomic model. ANZIAMJ.2004,45:443-456.