Emissions Investigating of Carbon Dioxide Generated by the Iraqi Cement Industry

Mahir Mahmod Hason*1, Ali Omran Al-Sulttani2, Imad Shakir Abbood3, Ammar Nasiri Hanoon4

*1Corresponding author, Ministry of Science and Technology, Disaster Management Center, Baghdad, Iraq, mahir.mahmod@gmail.com, Tel.: 009647834057225.

2Department of Water Resources Engineering, University of Baghdad, Baghdad, Iraq.

3Engineering Affairs Department, Sunni Endowment Diwan, Baghdad, Iraq. University of Baghdad, Baghdad, Iraq.

4Department of Reconstruction and Projects, University of Baghdad, Iraq

Abstract

The most used material in the world after water is concrete, which depends mainly on its manufacture of cement leading to the emission of carbon dioxide (CO2), flying dust, and other greenhouse gasses (GHGs) resulting in pollution of the atmosphere. The emission of CO2 from cement production is approximately 5% of the global anthropogenic CO2. This research focuses on investigating the amount of CO2 emission from the Iraqi General Cement Company plants includes the cement factories of Kirkuk, Al-Qa’em, Fallujah, and Kubaisa, using the GHGs Protocol Measures Program (specifically cement based-method). The data required for cement production was provided by the Iraqi Ministry of Industry and Minerals throughout 25 years. The results showed that the largest amount of CO2 emissions cumulatively over 25 years was from the Kubaisa plant with an average emission amount of approximately 7,613,605 tons/25 years. While the lowest cumulative amount of emission was by Fallujah cement plant represented by about 868,341 tons/25 years. On the other hand, the highest and lowest production amount was from Kubaisa and Fallujah plants at 105% and 0.6% in 1989 and 2008 respectively relative to the design capacity. Shifting to renewable and clean energies that limit the amount of CO2 emitted to the atmosphere is highly recommended, although this requires facing problematic challenges.

Keywords: Carbon dioxide; emission; atmosphere, cement industry
1 Introduction

Greenhouse gases (GHGs) are available in the atmosphere which characterized by their ability to absorb infrared rays, which helps to increase the atmosphere temperature and thus contribute to global warming: water vapour, Carbon Dioxide (CO$_2$), Nitrous Oxide (N$_2$O), Methane (CH$_4$), Ozone (O$_3$), and Chlorofluorocarbons (CFCs)(1). The CO$_2$ is considered one of the most important gasses of GHGs. There are three main anthropogenic sources of CO$_2$ emissions to the atmosphere; oxidized fossil fuels, deforestation and carbonate analysis (2). The cement industry is the major contributing impact to air pollution and the associated negative effects on humans.

The Energy Technology Perspectives (ETP) predicted the rapid growth in the global demand for cement production of about 2.9% per year for the period from 2003 to 2050. This will guide to increasing the worldwide economy in 2050 by 3.6 times higher than current today (Figure 1-a).

Cement production is a major source of carbon dioxide emissions, due to the large use of coal or fossil fuels to operate clinker furnaces (3-5). More than 150 countries worldwide produce cement (6, 7) and/or clinker, which is the main input material in cement. Global estimated CO$_2$ emissions to the atmosphere from the total cement plants of about 5% (8, 9). The key factor for the industry is cement since it represents the primary material to produce concrete which utilized in structures, building material, tunnels, dams and other civil engineering construction industries (10-15). Emissions causing by the release of CO$_2$ during the calcination of limestone, the main raw material used in cement production. CO$_2$ emissions from the total cement plants are estimated for the period from 1840 to 2000 (Figure 1-b).

![Figure 1: (a) Worldwide Demand of cement (1970-2050), and (b) Worldwide atmospheric CO$_2$ and cement production (1840-2000) (6, 16)](image)

High levels of CO$_2$ in the atmosphere contribute more damage than benefits to the Earth (7). Generally, the benefits of carbon dioxide can be summarized by the growth of trees and other plants with very green leaves. While the negative impacts are numerous, including global warming, rising sea levels, melting ice, ocean acidification, and ice loss in the Arctic Sea, which leads to violent tropical storms (17).
Sunlight penetrates the atmosphere in the form of ultraviolet rays and visible light. Some of these rays are bounced back into space in the form of infrared or heat. CO$_2$ molecules reflect these long wavelengths to the Earth again by absorbing the infrared radiation. The result is an increase in Earth's temperature. Scientists recognise that the blame is not on the Sun and volcanoes for climate change.

According to the Intergovernmental Panel on Climate Change (IPCC). CO$_2$ emissions from volcanic are a maximum of 0.01 compared to the anthropogenic emissions of CO$_2$ released by humans since 1750 (2, 18). Air-polluted carbon dioxide is distinguished from other forms of pollution as a rapidly spreading. Its impact is not limited to the source region (as in the case of other polluting gases), but extends to neighbouring and remote areas and even globally due to its effect to the atmosphere. Unlike other forms of pollution (water, solid waste, etc.), the CO$_2$ emission cannot or is difficult to be contained after it leaves the source. Thus, it must be controlled or treated before it goes out into the atmosphere since it is often multiple sources and invisible to the naked eye.

Globally, one of the most important problems facing researchers is the availability of data regarding the quantities of CO$_2$ emission from cement production. It has been documented that some worldwide assessments have been significantly exaggerated (11). Therefore, this research has demonstrated the quantities of CO$_2$ emitted from Iraqi General Cement Company factories for 25 years by cement based-method due to the importance of cement industry for the local, regional and global levels in the construction and other economic sectors (19), resulting in toxic emissions, solid waste and the scraping of agricultural lands,

2 Cement Industry in Iraq and Cement production process

Cement manufacturing in Iraq is considered one of the oldest and strongest domestic industries that have an impact on the national economic perspective because of its direct relationship with the works of urban renaissance in terms of establishing projects and housing complexes (20). This industry is gradually growing according to the plans drawn up by the public and private sectors. The Iraqi factories can produce 32 million tons annually. Besides, there are plants in progress that will add new quantities. There are about 18 government factories and more than 5 private sector factories in Iraq. It is worth noting that most of the factories are suspended since 2014 due to armed operations, economic issues and financial austerity.

Global cement factories including Iraq produced million tons of CO$_2$ emissions and great pollution to the environment through its primitive dust emission techniques (19, 21, 22). It was documented that the emission of dust and the accumulation of solid waste from Iraqi cement plant (such as Kirkuk plant) threat the current and future generations due to the large quantities that were emitted at levels exceeded the much-permitted level (23, 24). Although cement factories in some governorates, such as Najaf and Kufa, were constructed away from farms and residential neighbourhoods, the expansion of the two cities and agriculture near factories over the years and the increase in the number of residents caused an environmental contradiction in those areas.
The cement manufacturing requires many processes (Figure 2) including the calcination process, heating the calcium carbonate or limestone (the principal raw material used to produce cement) at a temperature of 1400 °C (11).

\[\text{CaCO}_3 + \text{heat} \rightarrow \text{CaO} + \text{CO}_2 \]

This leads to break the carbonate and release CO₂ to the air. To reach these temperatures, huge quantities of fossil fuels were burned leading to another emission of CO₂.

Figure 2: Flowchart of cement production and corresponding GHGs emissions (22, 25, 26)

3 Atmospheric Concentration of Carbon Dioxide

Human activities have changed the atmospheric concentration of CO₂ (27). Many researchers are pursuing to decrease the CO₂ concentration in the atmosphere to control the steady increase in Earth's temperature. The CO₂ ratio should be kept at around 380 ppm. The increase in CO₂ concentration is considered one of the most critical and serious issues facing the world, especially after the massive industrial revolution that occurred in the twentieth century. Currently, the concentration of CO₂ exceeds more than 417 parts per million (ppm) in the atmosphere (Figure 3-a). Whereas, in 1958, was about 315 ppm (Figure 3-b). In other words, 102 ppm during 62 years.

Due to the growing millions of tons of CO₂ gas in the atmosphere based on the expansion of various human industrial activities (28), it is expected that this trend will continue to escalate (Figure 3-b). Fresh air contains 0.03% of CO₂ of the air volume. Thus, any incline or decline caused by human or nature leads to quantitative or qualitative changes in these natural components and accordingly cause inevitable pollution.

No one knows for sure the consequences or the effects of the rapid increase in the concentration of CO₂ in the atmosphere in the next decades. Scientists realize that CO₂ causes the increase in atmospheric temperature, sea levels, ocean acidity and Earth's climate change. Pollution scientists believe that if the increase in the flow of this gas to the atmosphere remains, this will lead to a rise in the global temperature and may result in melting ice in the Polar Regions, sea-level rise, floods and a great disruption in the ecosystem.
Figure 3: Concentration of (a) current global CO$_2$ and (b) Historical annual CO$_2$ emission, 1955-2020 (www.CO$_2$.earth)

4 Study Area

The geographical locations for the cement factories were taken from the official website of the Iraqi Ministry of Industry and Minerals. The plant coordinates (longitudinal and altitude) were placed, demonstrated and illustrated by GIS and remote sensing techniques using ArcMap software (29, 30). The study area involves the Iraqi General Cement Company factories, which consists of Kirkuk, Al-Qa'em, Fallujah, and Kubaisa cement plants as shown in Figure 4. The period was chosen for 25 years from 1989 to 2013 based on the available data. The reason for not including the years after 2014 to the current date of this study, the interruption of production in these plants due to armed conflicts in the study area as well as the poor economic situations of the country.
5 Methodology

Emission portfolios and release impact evaluations for the cement industry can be determined according to two categories of evidence, previous literature information or actual measurement such as NOVA or Gasmet devices (Figure 5). This would provide noticeably with various results. In situ evaluation affords a best-integrated method. But considering the factional correlation of data management is respectful as well (27).

Figure 5: Measurements devices of gaseous pollutants

Annual production data for four cement factories were explored. Records were collected from the Iraqi Ministry of Industry and Minerals, General Cement Company for each plant. Installed both at the stack and the boiler output since the production of clinker is the peak energy- and emission- severe progression in the manufacturing of cement, accounting for more than $80–85\%$ of the overall environmental impact score.

In this research, the GHGs Protocol Initiative tool was adopted utilizing the cement-based method. This protocol establishes a unified comprehensive global framework for measuring and managing greenhouse gas emissions from private and public sector operations and mitigation procedures. One of the most important international accounting tools is the GHG Protocol, which is the most tool used by government and business leaders to understand, measure and manage greenhouse gas emissions.

This method calculates emissions from the calcination of calcium carbonate and the combustion of organic carbon in the raw mixture. The following equation and Table 1 were used to calculate the CO$_2$ emission according to the cement-based method (31):

$$CO_2\text{Emission} = P_{\text{cem}} \times \frac{\text{Clinker}}{\text{Cement}} \times \frac{\text{RM}}{\text{Clinker}} \times \frac{\text{CaCO}_3\text{ equivalent}}{\text{RM}} \times \frac{\text{CO}_2\text{ (m. w.)}}{\text{CaCO}_3\text{ (m. w.)}}$$

Where,

$P_{\text{cem}} =$ mass of cement produced

Clinker = mass of clinker

Cement = mass of cement

RM = mass of raw material

CaCO$_3$ equivalent = mass of CaCO$_3$ equivalent

CO$_2$ (m.w.) = molecular weight of CO$_2$

CaCO$_3$ (m.w.) = molecular weight of CaCO$_3$
Table 1: Default value (to be used only when plant-specific values are not available)

Material	Percentage
Clinker to Cement Ratio (%) - 100% Portland output	95%
Clinker to Cement Ratio (%) - Portland Pozzolana cement	75%
Clinker to Cement Ratio (%) - Portland Slag cement	55%
Tonne of Raw Material per Tonne of Clinker	1.54
CaCO₃ Equivalent to Raw Material Ratio (%)	78%

The annual cement production data for the factories of Iraqi General Cement Company is presented in Table 2, including the Kirkuk, Al-Qa’em, Fallujah, and Kubaisa cement plants throughout 25 years from 1989 to 2013. Taking into account that the study factories have suspended the production after 2013 due to the armed terrorist conflicts and the challenging economic circumstances of the government.

Table 2: Cement production by the Iraqi General Cement Company (http://icsc.gov.iq)

Year	Quantity of cement produced (ton/year)*			
	Kirkuk	Fallujah	Al-Qa’em	Kubaisa
Design capacity	2,000,000	1,000,000	291,000	2,000,000
1989	1,285,696	227,093	90,367	2,098,311
1990	1,296,513	188,746	164,611	1,915,201
1991	156,481	40,636	0	518,572
1992	276,480	100,208	10,046	1,003,150
1993	237,930	83,144	163,674	905,887
1994	197,286	79,518	79,915	853,581
1995	86,320	51,762	66,763	590,875
1996	128,477	41,600	83,502	331,300
1997	201,607	61,439	146,070	379,406
1998	162,173	62,844	178,905	366,703
1999	368,324	72,874	258,396	469,240
2000	495,370	81,861	324,800	620,320
2001	636,193	113,120	371,491	863,394
2002	866,937	154,398	413,814	799,783
2003	274,953	54,110	185,875	202,831
2004	216,371	48,871	123,282	197,497
2005	373,695	57,956	135,830	245,913
2006	439,355	19,161	162,109	211,174
2007	341,945	5,266	154,193	251,940
2008	325,174	1,620	148,740	277,150
2009	193,954	11,717	206,130	208,531
2010	309,707	14,717	416,803	142,792
2011	292,572	65,671	429,089	169,694
2012	415,384	39,476	639,606	479,504
2013	516,890	51,604	779,511	1,060,695
6 Results and Discussion

In this research, the calculation of CO₂ emissions was achieved using the cement-based method outlined earlier in the research methodology. Data was entered for the cement produced for each cement factory (Kirkuk, Fallujah, Al-Qa’em, and Kubaisa cement factories) as shown in Table 3. It is observed as well from Figure 6 that the highest amount of the CO₂ emission was in 1989 from Kubaisa cement factory, reaching 1,053,565 tons annually, with a noticeable output rate of approximately 105%. In contrast, the lowest emission amount was in 2008 from the Fallujah cement factory, regardless of the stoppage data in 1991 of the Al-Qa’em cement factory. Figure 6 shows the amount of CO₂ emission from the cement factories of the Iraqi General Cement Company (1989-2013).

Table 3. CO₂ emissions details of the study area

Location	CO₂ emissions (ton/year)	Kirkuk	Fallujah	Al-Qa'em	Kubaisa
Maximum Value		650,981	114,024	391,394	1,053,565
The highest percentage relative to the design capacity	65%	78%	78%	105%	
Minimum Value		43,341	813	5,044	71,696
The lowest percentage relative to the design capacity	%4	0.6%	1%	7%	
The cumulative amount of CO₂ emissions during 25 years	5,069,111	868,341	2,878,765	7,613,605	
Design capacity		1,004,203	146,112	502,102	1,004,203

Figure 6: CO₂ emissions from the Iraqi General Cement Company plants (1989-2013)
In general, from a cumulative point of view, it is clear from Figure 7 that Kubaisa cement factory has the largest cumulative amount of CO2 emissions during the study years during the period (1989-2013) with a cumulative emission amount of approximately 7,613,605 tons of CO2, and the lowest cumulative amount of CO2 emissions for the same period of Fallujah cement factory, equals to 868,341 tons of CO2.

The production of cement causes many pollutants to be released into the atmosphere and inevitably leads to problems such as air pollution (32). The Iraqi government should supervise the process of manufacturing cement industries as regulatory authorities, and therefore these factories will implement the protocols and maintain the balance. Besides, factories should also install advanced machines for measuring toxic gases released into the atmosphere (32).

7 Conclusions

Greenhouse gas emissions accounting is a very significant part of greening. It is important to keep track of the emission values and allow the company to compare its performance throughout the industry years. Cement production plays a huge role in Iraq’s economy if the government uses this industry in the correct ways like the developed countries such as the USA, China and India. Although this industry has a positive role in economic development, it poses threats to environmental health.

The current study aims to investigate the CO2 emission amount from the Iraqi General Cement Company plants throughout 25 years. Cement based-method is a vital technique in this range. It was observed that the highest recorded amount of CO2 emissions was in 1989 from the Kubaisa cement factory, as it reached 1,053,565 tons per year, with a production rate of approximately 105% compared to the design capacity. On the contrary, the lowest emission rate was from the Fallujah cement factory of 813 tons in 2008. Based on the obtained results, the lowest percentage with a production rate of 0.6% of design capacity was
from Fallujah Plant. Besides, Kubaisa factory has the largest cumulative amount of CO₂ emissions during the study years (1989-2013) of approximately 7,613,605 tons of CO₂. Whereas, the lowest cumulative amount of CO₂ emissions was from Fallujah cement factory of 868,341 tons of CO₂ for the same period.

8 Recommendations

Carbon Dioxide emission can be minimized in several ways: Utilizing renewable and clean energies are highly recommended as alternatives to reduce the amount of CO₂ emitted to the atmosphere. Also, study and implement methods of reserving CO₂ even though this requires to face many challenges. CO₂ gas treatment employing up-to-date technology before it is released into the atmosphere. Moreover, recycling and converting CO₂ into other useful chemicals products, such as methanol, which is used as an alternative and environmentally friendly fuel. It is worth mentioning that several organizations, Georgia Institute of Technology, the University of Calgary in Canada, the University of Columbia, the Center for Advanced Technology in Arizona and the Swiss Federal Institute of Technology in Zurich, proposed to absorb part of the CO₂ from the atmosphere just as the forest trees do.

9 References

1. Sameen MI, Al Kubaisy MA, Nahhas FH, Ali AA, Othman N, Hason MM. Sulfur Dioxide (SO₂) Monitoring Over Kirkuk City Using Remote Sensing Data. Journal of Civil & Environmental Engineering. 2014;4(5):1. https://doi.org/10.4172/2165-784x.1000155.
2. Andrew RM. Global CO 2 emissions from cement production. Earth System Science Data. 2018;10(1):195.
3. Gupta M, Coyle I, Thambimuthu K, editors. CO2 capture technologies and opportunities in Canada. 1st Canadian CC&S Technology Roadmap Workshop; 2003.
4. Gao T, Shen L, Shen M, Liu L, Chen F, Gao L. Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020. renewable and sustainable energy reviews. 2017;74:522-37. https://doi.org/10.1016/j.rser.2017.02.006.
5. Ke J, McNeil M, Price L, Khanna NZ, Zhou N. Estimation of CO2 emissions from China’s cement production: methodologies and uncertainties. Energy Policy. 2013;57:172-81. https://doi.org/10.1016/j.enpol.2013.01.028.
6. Taylor M, Tam C, Gielen D. Energy efficiency and CO2 emissions from the global cement industry. Korea. 2006;50(2.2):61.7.
7. Zeb K, Ali Y, Khan MW. Factors influencing environment and human health by cement industry. Management of Environmental Quality: An International Journal. 2019. https://doi.org/10.1108/meq-06-2018-0112.
8. Müller N, Harnisch J. How to Turn Around the Trend of Cement Related Emissions in the Developing World. 1998.
9. Melsmani Y. Initial National Communication of the Syrian Arab Republic, Submitted to the United Nations Framework Convention on Climate Change. MSEA/UNDP/GEF, Damascus, 2010.
10. Hanle LJ, Jayaraman KR, Smith JS. CO2 emissions profile of the US cement industry. Washington DC: Environmental Protection Agency. 2004.
11. Szabó L, Hidalgo I, Císcar JC, Soria A, Russ P. Energy consumption and CO2 emissions from the world cement industry. European Commission Joint Research Centre, Report EUR. 2003;20769.

12. Mahmod HM, Aznieta AFN, Gatea SJ. Evaluation of rubberized fibre mortar exposed to elevated temperature using destructive and non-destructive testing. KSCE Journal of Civil Engineering. 2017;21(4):1347-58. https://doi.org/10.1007/s12205-016-0721-0.

13. Danraka MN, Mahmod HM, Oluwatosin O-kJ, Student P. Strengthening of Reinforced Concrete Beams using FRP Technique: A Review. International Journal of Engineering Science. 2017;7(6):13199. http://ijesc.org/.

14. Jabbar S, Hejazi F, Mahmod HM. Effect of an opening on reinforced concrete hollow beam web under torsional, flexural, and cyclic loadings. Latin American Journal of Solids and Structures. 2016;13(8):1576-95. https://doi.org/10.1590/1679-782512629.

15. Mahmod M, Hanoon AN, Abed HJ. Flexural behavior of self-compacting concrete beams strengthened with steel fiber reinforcement. Journal of Building Engineering. 2018;16:228-37. https://doi.org/10.1016/j.jobe.2018.01.006.

16. Davidovits J. Global warming impact on the cement and aggregates industries. World resource review. 1994;6(2):263-78.

17. Benhelal E, Zahedi G, Shamsaei E, Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. Journal of cleaner production. 2013;51:142-61. https://doi.org/10.1016/j.jclepro.2012.10.049.

18. IPCC. Fourth assessment report: Climate change 2007. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge, UK: Cambridge University Press., 2007.

19. Xu J-H, Fleiter T, Eichhammer W, Fan Y. Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis. Energy policy. 2012;50:821-32. https://doi.org/10.1016/j.enpol.2012.08.038.

20. Anand S, Vrat P, Dahiya R. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. Journal of environmental management. 2006;79(4):383-98. https://doi.org/10.1016/j.jenvman.2005.08.007.

21. Akhmetov A. Decomposition analysis of industry sector CO2 emissions from fossil fuel combustion in Kazakhstan. International Journal of Energy & Environment. 2015;6(1).

22. Xu J-H, Fleiter T, Fan Y, Eichhammer W. CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050. Applied Energy. 2014;130:592-602. https://doi.org/10.1016/j.apenergy.2014.03.004.

23. Al-Taece MF, Al-Jalaby AB. The Economics Effects of Environmental Pollution Sorts for Kirkuk Cement Factory and Its Future Expectations. 3;2009:191-218.

24. Moustafa K. التلوث البيئي في المنطقة العربية: سمات ومتغيرات. التحليل البيئي، 2018. https://doi.org/10.31221/osf.io/6zca9.

25. Vanderborght B, Brodmann U. The cement CO2 protocol: CO2 emissions monitoring and reporting protocol for the cement industry. World Business Council for Sustainable Development. 2001.

26. Wang Y, Zhu Q, Geng Y. Trajectory and driving factors for GHG emissions in the Chinese cement industry. Journal of Cleaner Production. 2013;53:252-60.

27. Mosca S, Benedetti P, Guerriero E, Rotatori M. Assessment of nitrous oxide emission from cement plants: Real data measured with both Fourier transform infrared and nondispersive infrared techniques. Journal of the Air & Waste Management Association. 2014;64(11):1270-8. https://doi.org/10.1080/10962247.2014.936986.
28. Mikulčić H, Vujanović M, Duić N. Reducing the CO2 emissions in Croatian cement industry. Applied energy. 2013;101:41-8. https://doi.org/10.1016/j.apenergy.2012.02.083.

29. Hason MM, Abbood IS, Hanoon AN. Surface Area Evaluation of Mosul Dom Lake using Satellite Imagery Technique. MATTER: International Journal of Science and Technology. 2020;6(1). https://doi.org/10.20319/mijst.2020.61.85100.

30. Mahir Mahmood H, Mustafa AH. Area Change Monitoring of Dokan & Darbandikhan Iraqi Lakes Using Satellite Data. 2018. http://doi.org/10.5281/zenodo.1284844.

31. GHG P. Cement Sector Emissions Calculation Tool: India Version 1.0. Cement Tool Guidance Document. India2005. p. 1-31.

32. Lei Y, Zhang Q, Nielsen C, He K. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990–2020. Atmospheric Environment. 2011;45(1):147-54. https://doi.org/10.1016/j.atmosenv.2010.09.034.