ANDREWS-GORDON TYPE SERIES FOR THE LEVEL 5 AND 7
STANDARD MODULES OF THE AFFINE LIE ALGEBRA $A_2^{(2)}$

MOTOKI TAKIGIKU AND SHUNSUKE TSUCHIOKA

Abstract. We give Andrews-Gordon type series for the principal characters
of the level 5 and 7 standard modules of the affine Lie algebra $A_2^{(2)}$. We also
give conjectural series for some level 2 modules of $A_{13}^{(2)}$.

1. Introduction

In this paper, we use the q-Pochhammer symbol: for $n \in \mathbb{N}$ and $m \in \mathbb{N} \cup \{\infty\}$,
$$
(x; q)_{\infty} := \prod_{i \geq 0} (1 - xq^i), \quad (x; q)_n := \prod_{i=0}^{n-1} (1 - xq^i), \quad (a_1; q)_m := (a_1; q)_m \cdots (a_k; q)_m.
$$

1.1. The Andrews-Gordon identities. The Rogers-Ramanujan identities

$$
\sum_{n \geq 0} \frac{q^{n^2}}{(q; q)_n} = \frac{1}{(q, q^4; q^5)_{\infty}}, \quad \sum_{n \geq 0} \frac{q^{n^2 + n}}{(q; q)_n} = \frac{1}{(q^2, q^3; q^5)_{\infty}}
$$

was one of the motivations for inventing the vertex operators [15, §14] in the theory
of affine Lie algebras (see [22]). It started from Lepowsky-Milne’s observation [23]:

$$
\chi_{A_1^{(1)}}(2\Lambda_0 + \Lambda_1) = \frac{1}{(q, q^4; q^5)_{\infty}}, \quad \chi_{A_1^{(1)}}(3\Lambda_0) = \frac{1}{(q^2, q^3; q^5)_{\infty}}.
$$

Here, $\chi_A(\lambda)$ (called the principal character) stands for the principally specialized
character of the vacuum space $\Omega(V(\lambda))$ [11, §7] for the integrable highest weight
module (a.k.a. the standard module) $V(\lambda)$ associated with a dominant integral
weight $\lambda \in P^+$ of the affine Lie algebra $g(A)$. We obey the numbering of vertices
of the affine Dynkin diagram A in [15, §4] and duplicate $A_1^{(1)}$, $A_2^{(2)}$, $A_{odd}^{(2)}$ as Figure 1.

The level of $\sum_{i \in I} d_i \Lambda_i \in P^+$ is given by $\sum_{i \in I} \tilde{a}_i d_i$, where the colabel \tilde{a}_i is
the number written on the vertex α_i in the figure. We can expand $\chi_A(\lambda)$ into an explicit infinite product via Lepowsky’s numerator formula (see [4]).

After the success of vertex operator theoretic proofs of the Rogers-Ramanujan
identities [25, 26, 27], it has been expected that, for each A and λ, there should exist
“Rogers-Ramanujan type identities” whose infinite products are given by $\chi_A(\lambda)$.

The Andrews-Gordon identities (Theorem 1.1) can be seen as an instance of this
expectation because of an existence of a vertex operator theoretic proof for it [24].

Note that the infinite product (the right hand side) in Theorem 1.1 is equal to

Date: Jun 4, 2020.

2010 Mathematics Subject Classification. Primary 11P84, Secondary 05E10.

Key words and phrases. integer partitions, Rogers-Ramanujan identities, affine Lie algebras,
vertex operators, Andrews-Gordon identities, q-series, hypergeometric series.
\[A_1^{(1)} \sim \frac{1}{\alpha_0} \quad A_2^{(2)} \sim \frac{2}{\alpha_0} \quad A_2^{(2)} = \frac{1}{\alpha_1} - \frac{2}{\alpha_2} - \frac{3}{\alpha_3} - \cdots - \frac{2}{\alpha_{r-1}} \sim \frac{2}{\alpha_r} \]

Figure 1. The affine Dynkin diagrams \(A_1^{(1)}, A_2^{(2)}, A_2^{(2)}_{\text{odd}} \).

\(\chi_{A_1^{(1)}}((2k-i)\Lambda_0 + (i-1)\Lambda_1) \). This is the case of level \(2k-1 \) and the Rogers-Ramanujan identities \([1] \) are the cases when \(k = 2 \) and \(i = 2, 1 \). An even level analog is known as the Andrews-Bressoud identities (see [31, §2.2]).

Theorem 1.1 ([2]). Let \(1 \leq i \leq k \). Putting \(N_j = n_j + \cdots + n_{k-1} \), we have

\[
\sum_{n_1, \ldots, n_{k-1} \geq 0} q^{N_i^2 + \cdots + N_{k-1}^2 + N_i + \cdots + N_{k-1}} (q;q)_{n_1} \cdots (q;q)_{n_{k-1}} = \frac{(q^4, q^{2k+1-i}, q^{2k+1}; q^{2k+1})_{\infty}}{(q;q)_{\infty}}.
\]

As do the Rogers-Ramanujan identities, Theorem 1.1 has an interpretation as a partition theorem [12]. A partition theorem is a statement of the form “For any \(n \geq 0 \), partitions \((\lambda_1, \ldots, \lambda_t) \) of \(n \) with condition \(C \) are equinumerous to partitions of \(n \) with condition \(D \).” Theorem 1.1 is equivalent to the partition theorem, where

- \(C: 1 \leq \forall j \leq \ell - k + 1, \lambda_j - \lambda_{j+k-1} \geq 2 \) and \(\{|1 \leq j \leq \ell | \lambda_j = 1\} < i \),
- \(D: 1 \leq \forall j \leq \ell, \lambda_j \neq 0, \pm i \pmod{2k+1} \).

1.2. The main theorems. In this paper (see also [9, Conjecture 1.1]), “Andrews-Gordon type series” stands for an infinite sum of the form

\[
\sum_{i_1, \ldots, i_s \geq 0} \frac{(-1)^{\sum_{\ell=1}^s L_{\ell i}} q^{\sum_{\ell=1}^s a_{\ell i}(i_{\ell})^2 + \sum_{1 \leq j < k \leq s} a_{jk}i_jk + \sum_{\ell=1}^s B_{\ell i} k}}{(q^{C_{i_1}}; q^{C_{i_2}})_{i_1} \cdots (q^{C_{i_s}}; q^{C_{i_s}})_{i_s}},
\]

for some \((L_{\ell i})_{i \geq 1}, (B_{\ell i})_{i \geq 1} \in \mathbb{Z}^s, (C_{i})_{i \geq 1} \in \mathbb{N}^s \) and \((a_{jk})_{1 \leq j < k \leq s} \in \mathbb{Z}^{(s+1)/2} \). Usually, we would like to impose some non-degeneracy conditions such as \(a_{jk} > 0 \) for all \(1 \leq j < k \leq s \) in order not to make the problem trivial. In the rest, we put

\[
[x;q]_m = (x, q/x, q^2/x, \ldots, q^{m-1}/x)_m, \quad [a_1, \ldots, a_k; q]_m = [a_1; q]_m \cdots [a_k; q]_m
\]

for \(m \in \mathbb{N} \cup \{\infty\} \). The purpose of this paper is to give the following.

Theorem 1.2. Concerning level 5 standard modules for \(A_2^{(2)} \), we have

\[
\sum_{i,j,k \geq 0} (-1)^k q^{(i_{\ell}^2 + 8(i_{\ell} + 2j + 2k + 4j + i + 5j + k)} (q;q)_i (q^2;q^2)_j (q^2;q^2)_k = \frac{1}{[q^8, q^4, q^3, q^2; q^{16}]_{\infty}} (\chi_{A_2^{(2)}}(5\Lambda_0)),
\]

\[
\sum_{i,j,k \geq 0} (-1)^k q^{(i_{\ell}^2 + 8(i_{\ell} + 2j + 2k + 4j + i + 7j + 3k)} (q;q)_i (q^2;q^2)_j (q^2;q^2)_k = \frac{1}{[q^8, q^4, q^6, q^2; q^{16}]_{\infty}} (\chi_{A_2^{(2)}}(\Lambda_0 + 2\Lambda_1)),
\]

Theorem 1.3. Concerning level 7 standard modules for \(A_2^{(2)} \), we have

\[
\sum_{i,j,k \geq 0} q^{(i_{\ell}^2 + 8(i_{\ell} + 10i_{\ell} + 2j + 2k + 8j + i + 4j + 5k)} (q;q) (q^2;q^2)_j (q^2;q^2)_k = \frac{1}{[q, q^4, q^6, q^8, q^9; q^{20}]_{\infty}} (\chi_{A_2^{(2)}}(5\Lambda_0 + \Lambda_1)),
\]

\[
\sum_{i,j,k \geq 0} q^{(i_{\ell}^2 + 8(i_{\ell} + 10i_{\ell} + 2j + 2k + 8j + i + 8j + 9k)} (q;q) (q^2;q^2)_j (q^2;q^2)_k = \frac{1}{[q, q^4, q^5, q^6, q^8, q^9; q^{20}]_{\infty}} (\chi_{A_2^{(2)}}(\Lambda_0 + 3\Lambda_1)).
\]
Theorem 1.4. Concerning level 7 standard modules for $A_2^{(2)}$, we have

\[
\sum_{i,j,k,l \geq 0} (-1)^k q^{(i+j+2i+2j+k+4\ell)} (q;q)_i(q^2;q^2)_j(q^4;q^4)_k(q^4;q^4)_l
= \frac{1}{[q,q^2,q^4,q^5,q^7;q^{20}]_{\infty}} = \chi_{A_2^{(2)}}(5\Lambda_0),
\]

\[
\sum_{i,j,k,l \geq 0} (-1)^k q^{(i+j+2i+2j+k+4\ell)} (q;q)_i(q^2;q^2)_j(q^4;q^4)_k(q^4;q^4)_l
= \frac{1}{[q,q^2,q^4,q^5,q^7,q^8;q^{20}]_{\infty}} = \chi_{A_2^{(2)}}(3\Lambda_0 + 2\Lambda_1).
\]

Note that the level 5 module $V(3\Lambda_0 + \Lambda_1)$ is missing in Theorem 1.2, but

\[
\chi_{A_2^{(2)}}(3\Lambda_0 + \Lambda_1) = \frac{1}{[q,q^3,q^5,q^7;q^{16}]_{\infty}} = \frac{1}{(q;q^2)^{\infty}},
\]

can be written as a form of Andrews-Gordon type series (e.g. put $x = q$ in [22] (B)).

1.3. Comments on the proofs. The following steps are common in proving that a multim is equal to an infinite product.

(S1) Reduce the multim to a single sum.

(S2) Search for lists of identities which deduce the desired result.

The step (S1) for Theorem 1.2, 1.3, 1.4 uses a similar technique to the proof of Kanade-Russell’s conjectures of modulo 12 [38], I_5, I_6] by Bringmann et.al. [5] §4.10. For (S2), we employ Slater’s list [33] (see also Remark 1.1).

Theorem 1.5. (33) (39) = (83), (38) = (86), (99), (94))

\[
\sum_{n \geq 0} q^{2n^2} (q;q)_{2n} = \chi_{A_2^{(2)}}(5\Lambda_0), \quad \sum_{n \geq 0} q^{2n^2+2n} (q;q)_{2n+1} = \chi_{A_2^{(2)}}(\Lambda_0 + 2\Lambda_1),
\]

\[
\sum_{n \geq 0} q^{n^2+n} (q;q)_{2n} = \chi_{A_2^{(2)}}(7\Lambda_0), \quad \sum_{n \geq 0} q^{n^2+n} (q;q)_{2n+1} = \chi_{A_2^{(2)}}(3\Lambda_0 + 2\Lambda_1).
\]

1.4. Toward $A_2^{(2)}$ analog of the Andrews-Gordon identities. Let us recall the previous studies for $A_2^{(2)}$. For the level 2 case, the principal characters are obtained by inflating q to q^2 from the infinite products in [1]. For the level 3 (resp. level 4) case, the vacuum spaces are studied in [6] (resp. in [29]), which resulted in conjectural partition theorems (see [33] Theorem 5.2, Theorem 5.3, Conjecture 5.5, Conjecture 5.6, Conjecture 5.7) that were later proved in [3] [7] [33] (resp. [34]). The Andrews-Gordon type series are known as [21] Corollary 18) (resp. [34]), which are duplicated in Theorem 1.2, 1.3, 1.4 resp. Remark 1.1. For the level 3 case, see also [47].

For the level 5 and 7 cases, the infinite products in Theorem 1.2, Theorem 1.3, Theorem 1.4 appear in [14] Theorem 4, Theorem 3, [14] Theorem 1) and [8] Theorem 1.6) and [14] Theorem 2] respectively. Those partition theorems look quite different from those for the aforementioned level 3 and 4 cases [6] [29]. It is natural to investigate partition theorems via the vertex operators (other than [14] [8]) that are related with our identities (like Proposition 7.3). As far as we know, almost nothing is known on the level 6 case except [28] (1.3)–(1.6)] (see also [32]).
1.5. Toward A_{ord} level 2 analog of the Andrews-Gordon identities. Recently, related to the expectation mentioned in §4.1 some (conjectural) Andrews-Gordon type series for other affine Dynkin diagrams were found. A famous example is Kurşungöz’s reformulation [20, Conjecture 6.1] of Kanade-Russell conjectures of modulo 9 [18], which are regarded as the level 3 identities of $D_{4}^{(3)}$ (see §5.2).

Another actively studied levels and Lie types are level 2 of A_4, level 2 analog of the Andrews-Gordon identities. Recall the Euler’s identities

When $\ell = 2$, Andrews-Gordon type series for $\chi_{A_{4}^{(2)}}(0 A + A_1), \chi_{A_{4}^{(2)}}(A_3)$ are found as in [21, (21), (22)]. As shown by [16], they are related with the classical Göllnitz partition theorems [31, Theorem 2.42, Theorem 2.43]. When $\ell = 4$, Bringmann et.al. [5, §3, §4.1, §4.2] proved Andrews-Gordon type series for $\chi_{A_{4}^{(2)}}(A_0 + A_1), \chi_{A_{4}^{(2)}}(A_3), \chi_{A_{4}^{(2)}}(A_5)$ which were conjectured in [19, (3.2), (3.4), (3.6)] together with interpretations as partition theorems. See also [30].

Noting the principal characters for level 4 modules of $A_{4}^{(2)}$ coincide with some of those for level 2 of $A_{11}^{(2)}$ (see Remark 3.1), in Conjecture 6.1, Conjecture 6.2 we give conjectural Andrews-Gordon type series for

$$
\chi_{A_{3}^{(2)}}(A_0 + A_1), \chi_{A_{3}^{(2)}}(A_3), \chi_{A_{3}^{(2)}}(A_5), \chi_{A_{3}^{(2)}}(A_7).
$$

It would be interesting if one can find a pattern in Andrews-Gordon type series obtained so far. For example, some of them for level 4 and 5 modules of $A_{2}^{(2)}$ (resp. level 2 of $A_{11}^{(2)}$ and $A_{13}^{(2)}$) share a recursive structure as in Remark 3.1 and Remark 6.3 that we can also observe in the original (Theorem 1.1): namely, the Andrews-Gordon series for $\chi_{A_{4}^{(1)}}((2(k-1) - i)A_0 + (i - 1)A_1)$ is obtained by deleting n_{k-1} (or substituting $n_{k-1} = 0$) in that for $\chi_{A_{4}^{(1)}}((2k - i)A_0 + (i - 1)A_1)$.

We hope this paper contributes to the expectation mentioned in §4.1 which has been shared in the community since Lepowsky-Milne’s observation.

Organization of the paper. The paper is organized as follows. In [2] we show some auxiliary summation formulas via Euler’s identities, the q-binomial theorem and the q-WZ method. Then, we prove Theorem 1.2. Theorem 1.3. Theorem 1.3 in [3, 4, 6] respectively. In [8] (resp. [17]), we discuss some Andrews-Gordon type series related to level 2 (resp. level 3) modules of $A_{11}^{(2)}$ (resp. $A_{13}^{(2)}$).

Acknowledgments. We thank S. Kanade and M. Russell for helpful discussions. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University and the TSUBAME3.0 supercomputer at Tokyo Institute of Technology. S.T. was supported in part by JSPS Kakenhi Grants 17K14154, 20K03506 and by Leading Initiative for Excellent Young Researchers, MEXT, Japan. M.T. was supported in part by Start-up research support from Okayama University.

2. Preparations

Recall the Euler’s identities and the q-binomial theorem [13, (II.1),(II.2),(II.3)].

$$
\sum_{n \geq 0} \frac{x^n}{(q; q)_n} = (A) \frac{1}{(x; q)_\infty}, \quad \sum_{n \geq 0} q^{\frac{n(n+1)}{2}} x^n = (B) \frac{(-x; q)_\infty}{(q; q)_n}, \quad \sum_{n \geq 0} \frac{(a; q)_n}{(q; q)_n} x^n = (C) \frac{(-a; q)_\infty}{(x; q)_\infty}
$$
Lemma 2.1. For any $M \in \mathbb{Z}_{\geq 0}$, we have

\[
(1) \sum_{i,j \geq 0 \atop i+j=M} \frac{q^i}{(q^2;q^2)_i(q^2;q^2)_j} = \frac{1}{(q;q)_M},
\]

\[
(2) \sum_{i,j \geq 0 \atop i+j=M} (-1)^j \frac{q^{2(j)+i}}{(q^2;q^2)_i(q^2;q^2)_j} = \frac{(q;q^2)_M}{(q^2;q^2)_M},
\]

\[
(3) \sum_{i,j \geq 0 \atop i+j+2k=M} (-1)^j \frac{q^{ij+j+k}}{(q;q)_i(q;q)_j(q^2;q^2)_k} = \frac{(-q;q)_{[M/2]}}{(q;q)_{[M/2]}},
\]

\[
(4) \sum_{i,j \geq 0 \atop i+j=M} (-1)^j \frac{q^{3(i)+ij+2j}}{(q;q)_i(q;q)_j(q^2;q^2)_M} = \frac{(q;q)_{2M}}{(q^2;q^2)_M^2}.
\]

Proof. By (A), we get (1) as follows.

\[
\sum_{i,j \geq 0} \frac{q^i}{(q^2;q^2)_i(q^2;q^2)_j} x^{i+j} = \frac{1}{(x;q^2)_\infty} \frac{1}{(xq^2;q^2)_\infty} = \frac{1}{(x;q)_\infty} = \sum_{M \geq 0} \frac{x^M}{(q;q)_M}
\]

Similarly, we get (2) by (A), (B), (C) as follows.

\[
\sum_{i,j \geq 0} \frac{x^i}{(q^2;q^2)_i(q^2;q^2)_j} (-1)^j \frac{q^{2(j)+i}x^j}{(q;q)_i(q;q)_j(q^2;q^2)_k} = \frac{1}{(x;q^2)_\infty} \frac{1}{(x^2;q^2)_\infty} = \sum_{M \geq 0} \frac{(q;q^2)_M}{(q^2;q^2)_M} x^M.
\]

To prove (3), we calculate the generating series of both sides by (A), (B).

\[
\sum_{i,j \geq 0} (-1)^j \frac{q^{ij+j+k}}{(q;q)_i(q;q)_j(q^2;q^2)_k} x^{i+j+2k} = \left(\sum_{j \geq 0} \frac{(-xq)^j}{(q;q)_j} \sum_{i \geq 0} \frac{(xq^j)^i}{(q;q)_i} \right) \cdot \sum_{k \geq 0} \frac{(x^2q^k)^k}{(q^2;q^2)_k}
\]

\[
= \left(\sum_{j \geq 0} \frac{(-xq)^j}{(q;q)_j(xq^j;q^2)_\infty} \right) \cdot \frac{1}{(x;q^2)_\infty} \frac{1}{(x^2;q^2)_\infty} \sum_{j \geq 0} \frac{(xq)^j}{(q;q)_j} (-xq)^j.
\]

Thus, the generating series of the left hand side is equal to

\[
\frac{1}{(x;q^2)_\infty} \frac{1}{(x^2;q^2)_\infty} \frac{(-x^2q;q)^\infty}{(-xq;q)^\infty}
\]

by (C). We easily see that it is equal to the generating series of the right hand side:

\[
\sum_{M \geq 0} \frac{(-q;q)_{[M/2]}}{(q;q)_{[M/2]}} x^M = \sum_{N \geq 0} \frac{(-q;q)_N}{(q;q)_N} x^{2N+1} (1+x) = (1+x) \frac{(-x^2q;q)_\infty}{(x^2;q^2)_\infty}.
\]

In the proof of (4), we promise $1/(q;q)_n = 0$ if $n < 0$. For $M, j \geq 0$, we let

\[
f_{M,j} := (-1)^j \frac{q^{3(i)+(M-j)(j+2j)}}{(q;q)_M(q;q)_{M-j}(q;q)_j(q;q)_{2M}}
\]

so that it suffices to prove (by the q-WZ method \textbf{[17]}) $\sum_{j \geq 0} f_{M,j} = 1$ (note that $f_{M,j} = 0$ when $j > M$). The q-Zeilberger algorithm helps us finding an expression

\[
g_{M,j} = (-1)^j \frac{(1-q^{M+1-j}-q^{2M+2-j})q^{3(i)+(M-j)(j+2j)}}{(1+q^{M+1})(1-q^{2M+1})(q;q)_{M-j+1}(q;q)_{j-1}(q;q)_{2M}}
\]

for which we can verify that $g_{M,j} \neq 0 \Rightarrow 0 \leq j-1 \leq M$ and $f_{M+1,j} - f_{M,j} = g_{M,j+1} - g_{M,j}$ for any $M, j \geq 0$. This implies $\sum_{j \geq 0} f_{M+1,j} - \sum_{j \geq 0} f_{M,j} = 0$ for any $M \geq 0$. Now we only need to see $\sum_{j \geq 0} f_{0,j} = 1$, which is obvious. \qed
Hence, by Lemma 2.1 (2), we see (3)

Thus, we see (2) = (3)

for \(a = 0, 1 \). We rewrite the inner sum on \(j \) and \(k \) as

\[
\sum_{j,k \geq 0} (-1)^k q^{8(j)+2(2j)+4jk+(5+2a)j+(1+2a)k} (q^2)^j (q^2)^k
\]

By Lemma 2.1 (4) (with \(q \) replaced by \(q^2 \)), we see (2) is reduced to

\[
\sum_{i,M \geq 0} (-1)^M \frac{(q^2)^{2M}}{(q; q)^M} \sum_{j,k \geq 0} (-1)^{j+k} q^{6(j)+2j+4j+2(2a+1)} + (2a+1) M (q^2)^j (q^2)^k
\]

With (B), the inner sum on \(i \) is rewritten as

\[
\sum_{i \geq 0} q^{(i)}(q^2)^{2M+1} (q; q)^M = (-q^2)^{M+1} (q; q)^M = (-q; q)^{2M+1} (q; q)^M = 1 \frac{(q; q)^M}{(q^2; q^2)^M}
\]

Hence, by Lemma 2.1 (4), we see (3) \((q; q^2)_{\infty} \) is equal to

\[
\sum_{M \geq 0} (-1)^M q^{M + 2aM} (q^2)^M = \sum_{m,n \geq 0} (-1)^m q^{2m + 4n + 2mn + (1+2a)m + (2+2a)n} (q^2)^m (q^2)^n
\]

Finally we use (B) to rewrite the inner sum on \(m \) as

\[
\sum_{m \geq 0} (-1)^m q^{2m + (1+2a+2n)m} (q^2)^m = (q^{1+2a+2n}; q^2)^{\infty} = \frac{(q; q^2)^{\infty}}{(q^2; q^2)_{n+a}}
\]

Thus, we see (2) = \(\frac{(q; q^2)^{\infty}}{(q^2; q^2)_{\infty}} \) is equal to

\[
\sum_{n \geq 0} q^{4n+2(2a)n} (q; q^2)_{n+a} (q^2; q^2) = \sum_{n \geq 0} q^{2n^2 + 2an} (q; q^2)_{2n+a}
\]

which proves Theorem 1.2 in virtue of Theorem 1.3.
Remark 3.1. In [34, Theorem 2.2] the following identities are shown:

\[
\sum_{i, k \geq 0} (-1)^k q^{i(\frac{1}{2})+2j(\frac{1}{2})+2ik+i+k} (q; q)_i(q^2; q^2)_k = \frac{1}{[q^2, q^2, q^4; q^{14}]_{\infty}} (\chi_{A_2^{(2)}}(4A_0) = \chi_{A_2^{(2)}}(\Lambda_3)),
\]

(4)

\[
\sum_{i, k \geq 0} (-1)^k q^{i(\frac{1}{2})+2j(\frac{1}{2})+2ik+i+3k} (q; q)_i(q^2; q^2)_k = \frac{1}{[q, q^4, q^6; q^{14}]_{\infty}} (\chi_{A_2^{(2)}}(2A_0 + A_1) = \chi_{A_2^{(2)}}(A_0 + A_1)),
\]

(5)

\[
\sum_{i, k \geq 0} (-1)^k q^{i(\frac{1}{2})+2j(\frac{1}{2})+2ik+2i+3k} (q; q)_i(q^2; q^2)_k = \frac{1}{[q^2, q^2, q^6; q^{14}]_{\infty}} (\chi_{A_2^{(2)}}(2A_1) = \chi_{A_2^{(2)}}(\Lambda_3)).
\]

(6)

We remark that [11] and [13] coincide with double sums obtained by taking the “j = 0 part” of the triple sums in Theorem 1.3.

4. Proof of Theorem 1.3

Note that the Andrews-Gordon type series is of the form

\[
\sum_{i, j, k \geq 0} q^{i(\frac{1}{2})+8j(\frac{1}{2})+2i+2jk+8j+8k+(4+4\epsilon)+2(5+4\epsilon)k} (q; q)_i(q^2; q^2)_j(q^2; q^2)_k
\]

(7)

for \(a = 0, 1 \). We rewrite the inner sum on \(j \) and \(k \) in (7) as

\[
\sum_{j, k \geq 0} q^{8j(\frac{1}{2})+10j(\frac{1}{2})+8j+2i+4\epsilon+4j+2(5+4\epsilon)k} (q^2; q^2)_j(q^2; q^2)_k = \sum_{M \geq 0} \sum_{j+k=M} q^{2j(\frac{1}{2})+8j(\frac{1}{2})+4\epsilon+2i+4\epsilon} (q^2; q^2)_j(q^2; q^2)_k.
\]

By Lemma 2.1 (2) (with \(q \) replaced by \(-q\)), we see (7) is reduced to

\[
\sum_{i, M \geq 0} q^{(i+2M)+2jM+4M^2+4aM} (q; q)_i(q^2; q^2)_M.
\]

(8)

With (B), the inner sum on \(i \) is rewritten as

\[
\sum_{i \geq 0} q^{i(\frac{1}{2})+2M+M} (q; q)_i = (q; q)_{2M} = (q; q)_{2M} = \frac{1}{(q; q)_{2M}}.
\]

By (1), we see \((q; q^2)_{\infty}\) is reduced to

\[
\sum_{M \geq 0} q^{4M^2+4aM} (q; q^2)_M = \frac{1}{(q; q^2)_{\infty}}.
\]

This is equal to \((q; q^2)_{\infty} \cdot \chi_{A_2^{(2)}}(5 - 4a)A_0 + (1 + 2a)A_1)\) and proves Theorem 1.3.

Remark 4.1. In Slater’s list [33] (79) = (98), (96), there are identities whose infinite products matches those in Theorem 1.3 (but we do not need them).

\[
\sum_{n \geq 0} q^{n^2} (q; q)_{2n} = \chi_{A_2^{(2)}}(5A_0 + A_1), \quad \sum_{n \geq 0} q^{n^2+2n} (q; q)_{2n+1} = \chi_{A_2^{(2)}}(A_0 + 3A_1).
\]
5. Proof of Theorem 1.4

Note that the Andrews-Gordon type series is of the form
\[
\sum_{i,j,k,\ell \geq 0} (-1)^{k+1+(1-a)(j+k)} \frac{q^\left(\frac{j}{2}\right) + 2\left(\frac{k}{2}\right) + 8\left(\frac{j}{2}\right) + 4(i+j+k+2\ell) + (1+a)(1+2(j+k+2\ell))}{(q; q)_i(q^2; q^2)_j(q^2; q^2)_k(q^2; q^2)_\ell}
\]
(9)
for \(a = 0, 1\) (swapping \(j\) and \(k\) from the expression in Theorem 1.4 when \(a = 0\)). We rewrite the inner sum on \(j, k\) and \(\ell\) in (9) as
\[
\sum_{j,k,\ell \geq 0} (-1)^{k+1+(1-a)(j+k)} q^\left(\frac{j}{2}\right) + 2\left(\frac{k}{2}\right) + 8\left(\frac{j}{2}\right) + 4(j+k+2\ell) + (1+a)(1+2(j+k+2\ell))
\]
(10)
\[
q^j q^k (q^2; q^2)_j (q^2; q^2)_k (q^2; q^2)_\ell
\]
For (B), (12) is reduced to
\[
\sum_{i,M \geq 0} (-1)^{(1-a)M} \frac{q^\left(\frac{j}{2}\right) + 2\left(\frac{k}{2}\right) + 8\left(\frac{j}{2}\right) + 4(i+j+k+2\ell) + (1+a)(1+2(j+k+2\ell))}{(q; q)_i(q^2; q^2)_j(q^2; q^2)_k(q^2; q^2)_\ell}
\]
(11)
By Lemma 2.1 (3) (with \(q\) replaced by \(q^2\)), we see (10) is reduced to
\[
\sum_{i,M \geq 0} (-1)^{(1-a)M} \frac{q^\left(\frac{j}{2}\right) + 2\left(\frac{k}{2}\right) + 8\left(\frac{j}{2}\right) + 4(i+j+k+2\ell) + (1+a)(1+2(j+k+2\ell))}{(q; q)_i(q^2; q^2)_j(q^2; q^2)_k(q^2; q^2)_\ell}
\]
(12)
With (B), the inner sum on \(i\) is rewritten as
\[
\sum_{i \geq 0} q^{\left(\frac{j}{2}\right) + (1+M)i}_i = (-q^{1+M}; q)_\infty = (-q; q)_\infty = \frac{1}{(-q; q)_\infty}.
\]
Hence, (10)-(9, 2, 12) is equal to
\[
\sum_{M \geq 0} (-1)^{(1-a)M} q^{\left(\frac{j}{2}\right) + 2(k+2+) + 8(\frac{j}{2}) + 4(i+j+k+2\ell) + (1+a)(1+2(j+k+2\ell))}_{\ell}\]
(11)
Further, by Lemma 2.1 (1) (with \(q\) replaced by \(-q\)), we see (11) is equal to
\[
\sum_{m,n \geq 0} (-1)^{1-(a)(m+n)+n} q^{\left(\frac{m+n}{2}\right) + (1+a)(m+n)+n}_{(q^2; q^2)_m(q^2; q^2)_n}.
\]
(12)
Finally, by (B), (12) is reduced to
\[
\left\{
\begin{align*}
\sum_{n \geq 0} & q^{2(\frac{n}{2})+2n}_{(q^2; q^2)_n} \sum_{m \geq 0} (-1)^{m} q^{2(\frac{n}{2})+2m+n}_{(q^2; q^2)_m} = \sum_{n \geq 0} q^{2(\frac{n}{2})+2n}_{(q^2; q^2)_n} \frac{(q)q^{2n+1}_\infty}{q^2} = (a = 0), \\
\sum_{m \geq 0} & q^{2(\frac{m}{2})+2m}_{(q^2; q^2)_m} \sum_{n \geq 0} (-1)^{n} q^{2(\frac{m}{2})+2m+n}_{(q^2; q^2)_n} = \sum_{m \geq 0} q^{2(\frac{m}{2})+2m}_{(q^2; q^2)_m} \frac{(q)q^{2m+3}_\infty}{q^2} = (a = 1).
\end{align*}
\right.
\]
In each case, we see (9) = (12)/(q^2)_\infty is equal to
\[
\sum_{s \geq 0} q^{2s+2s}_{(q^2; q^2)_s} (q^2)_\infty = \sum_{s \geq 0} q^{2s+2s}_{(q^2; q^2)_s} (q; q)_{2s+a} = \sum_{s \geq 0} q^{2s+2s}_{(q^2; q^2)_s} (q; q)_{2s+a}.
\]
This proves Theorem 1.4 in virtue of Theorem 1.5.
6. Conjectures for level 2 modules of $A_{13}^{(2)}$

The level 2 principal characters of $A_{13}^{(2)}$ are

$$\chi_{A_{13}^{(2)}}((\delta_{0} + \delta_{1})\Lambda_{0} + \Lambda_{i}) = \frac{(q^{16}; q^{16})_{\infty} [q^{2i}; q^{16}]_{\infty}}{(q^{2}; q^{2})_{\infty} [q^{i}; q^{16}]_{\infty}}$$

where $0 \leq i \leq 7$ and δ is the Kronecker delta.

We give conjectural Andrews-Gordon type series for $\chi_{A_{13}^{(2)}}(\Lambda_{0} + \Lambda_{1})$ and $\chi_{A_{13}^{(2)}}(\Lambda_{2n+1})$, where $n = 1, 2, 3$. Note that $\chi_{A_{13}^{(2)}}(2\Lambda_{0}) = \chi_{A_{13}^{(2)}}(2\Lambda_{1})$ and $\chi_{A_{13}^{(2)}}(\Lambda_{2n})$, where $n = 1, 2, 3$, are obtained by inflating q to q^2 from infinite products with smaller period.

Conjecture 6.1. We have $F_{1}(2, 2, 2) = \chi_{A_{13}^{(2)}}(\Lambda_{3})$, $F_{1}(4, 2, 6) = \chi_{A_{13}^{(2)}}(\Lambda_{5})$ and $F_{1}(6, 4, 6) = \chi_{A_{13}^{(2)}}(\Lambda_{7})$, where

$$F_{1}(a, b, c) := \sum_{i, j, k \geq 0} (-1)^{k} \frac{q^{4(\frac{3}{2}) + 2(\frac{1}{2}) + 4i} + 2j + 4k + a + b + j + c}{(q; q)_{i}(q^{2}; q^{2})_{j}(q^{4}; q^{4})_{k}}.$$

Conjecture 6.2. We have $F_{2}(1, 3, 12) = \chi_{A_{13}^{(2)}}(\Lambda_{0} + \Lambda_{1})$, $F_{2}(1, 1, 8) = \chi_{A_{13}^{(2)}}(\Lambda_{3})$ and $F_{2}(3, 3, 16) = \chi_{A_{13}^{(2)}}(\Lambda_{7})$, where

$$F_{2}(a, b, c) := \sum_{i, j, k \geq 0} (-1)^{k} \frac{q^{4(\frac{3}{2}) + 2(\frac{1}{2}) + 4i} + 2j + 4k + a + b + j + c}{(q; q)_{i}(q^{2}; q^{2})_{j}(q^{4}; q^{4})_{k}}. \quad (13)$$

Conjecture 6.3. We have $F_{3}(1, 5, 1, 12) = \chi_{A_{13}^{(2)}}(\Lambda_{5})$, where

$$F_{3}(a, b, c, d) := \sum_{i, j, k, t \geq 0} (-1)^{k} \frac{q^{4(\frac{3}{2}) + 2(\frac{1}{2}) + 16i} + 2j + 4k + a + b + j + c}{(q; q)_{i}(q^{2}; q^{2})_{j}(q^{4}; q^{4})_{k}(q^{4}; q^{4})_{t}}.$$

Remark 6.4. One can prove $F_{2}(a, b, c) = F_{3}(a, 2a + 1, b, c)$ for $a, b, c \geq 0$ by rewriting the inner sum on i in (13) as

$$\sum_{i \geq 0} \frac{q^{(\frac{3}{2}) + 2j + 4k + a}i}{(q; q)_{i}} = \sum_{i \geq 0} \sum_{s, t \geq 0} \frac{q^{(\frac{3}{2}) + 2j + 4k + a}i + (\frac{3}{2}) + 2j + 4k + a + b + j + c}{(q; q)_{s}(q^{2}; q^{2})_{t}} = \sum_{s, t \geq 0} \frac{q^{(\frac{3}{2}) + 2j + 4k + a}i + 2st + 2j + 4k(s + 2t) + a + (2a + 1)t}{(q; q)_{s}(q^{2}; q^{2})_{t}}.$$

Here, the first equality follows from

$$\sum_{i \geq 0} \frac{q^{(\frac{3}{2})}i}{(q; q)_{i}(q^{2}; q^{2})_{j}} = \frac{1}{(q; q)_{M}} \text{ for } M \geq 0,$$

which is proved similarly to Lemma 2.7 (using (A) and (B)).

Hence, if Conjecture 6.2 is true, we have $F_{3}(1, 3, 3, 12) = \chi_{A_{13}^{(2)}}(\Lambda_{0} + \Lambda_{1})$, $F_{3}(1, 3, 1, 8) = \chi_{A_{13}^{(2)}}(\Lambda_{3})$, $F_{3}(3, 7, 3, 16) = \chi_{A_{13}^{(2)}}(\Lambda_{7})$ and Conjecture 6.3 gives the “missing” case.

Remark 6.5. The double sums (11) and (13) coincide with those obtained by taking the “$k = 0$ part” of the triple sums $F_{2}(1, 1, 8)$ and $F_{2}(1, 3, 12)$ in Conjecture 6.2.
7. Notes on Capparelli’s identities

We fix the conditions (C1) and (C2) on a partition $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ to recall Capparelli’s partition theorems (Theorem 7.1). See also [14, 15].

(C1) $1 \leq \forall j \leq \ell - 1$, $\lambda_j - \lambda_{j+1} \geq 2$,
(C2) $1 \leq \forall j \leq \ell - 1$, $\lambda_j - \lambda_{j+1} \leq 3 \implies \lambda_j + \lambda_{j+1} \equiv 0 \pmod{3}$

Theorem 7.1 ([3, 7, 15]). Let $a = 1, 2$. For any $n \geq 0$, partitions λ of n with condition C_a are equinumerous to those with condition D_a, where

C_a: (C1) and (C2) and $1 \leq \forall j \leq \ell, \lambda_i \neq a$,

D_a: $1 \leq \forall j \leq \ell, \lambda_j \neq \pm a \pmod{6}$, and $\lambda_1, \ldots, \lambda_{\ell(\lambda)}$ are distinct.

In [21, Theorem 10, Theorem 11], Kurşungöz showed we fix the conditions C_a and $f_a(x, q) := \sum_{\lambda \in C_a} x^{t(\lambda)} q^{\lambda}$ for $a = 1, 2$. Combining Theorem 7.1 and (14), (15) with (12), we have

$\sum_{i,j \geq 0} q^{4(i^2)+12(j^2)+6ij+2i+6j} (q; q)_i (q^3; q^2)_j x^{i+j+2}$,

$\sum_{i,j \geq 0} q^{4(i^2)+12(j^2)+6ij+3i+9j} (q; q)_i (q^3; q^2)_j x^{i+j+2} (1 + xq^{1+2i+3j})$

where C_a denote the set of partitions with the condition C_a and $f_a(x, q) := \sum_{\lambda \in C_a} x^{t(\lambda)} q^{\lambda}$.

Combining Theorem 7.1 and (12), (14, 15) with $x = 1$, Kurşungöz got the following identities.

Theorem 7.2 ([21 Corollary 18]). Concerning the level 3 modules of $A_2^{(2)}$, we have

$\sum_{i,j \geq 0} q^{2i^2+6ij+6j^2} (q; q)_i (q^3; q^3)_j = (-q^2, -q^3, -q^4, -q^6; q^6)_{\infty} \left(= \frac{1}{[q^2, q^3, q^{12}]_{\infty}} = \chi_{A_2^{(2)}(3A_0)} \right)$,

$\sum_{i,j \geq 0} q^{2i^2+6ij+6j^2+i+3j} (1 + q^{2i+3j+1}) (q; q)_i (q^3; q^3)_j = (-q, -q^3, -q^5, -q^6; q^6)_{\infty}$

$\left(= \frac{[q^2, q^{12}]_{\infty}}{[q, q^3, q^5, q^{12}]_{\infty}} = \chi_{A_2^{(2)}(A_0 + A_1)} \right)$.

Note that the left hand side of the latter is not an Andrews-Gordon type series in our sense (see [4, 5]. The purpose of this section is to prove

$\sum_{i,j,k \geq 0} q^{5(i^2)+5(j^2)+12(k^2)+3ij+6ik+6jk+(3-a)i+(2+a)j+6k} (q^2; q^2)_i (q^3; q^3)_j (q^3; q^3)_k = \chi_{A_2^{(2)}((5-2a)A_0 + (a-1)A_1)}$

for $a = 1, 2$. This follows from substituting $x = 1$ to Theorem 7.3.

Theorem 7.3. For $a = 1, 2$, we have

$f_a(x, q) = \sum_{i,j,k \geq 0} q^{5(i^2)+5(j^2)+12(k^2)+3ij+6ik+6jk+(3-a)i+(2+a)j+6k} (q^2; q^2)_i (q^3; q^3)_j (q^3; q^3)_k x^{i+j+2k}$.

Proof. Since the set of partitions with the conditions (C1), (C2) is a linked partition ideal (see [1, §8]), one can derive a q-difference equation algorithmically

$F(x) = (1 + xq^3)F(xq^3) + x(q^3a + q^3 + xq^6)F(xq^6) + x^2q^3(1 - xq^6)F(xq^6)$,

(16)
where \(F(x) := f_a(x, q) \). Putting \(F(x) =: \sum_{M \geq 0} f_M x^M \), by \([10]\) we have
\[
(1 - q^{3M}) f_M = q^{3M-3} (q^{3M+a} + q^{3M-a} + q^3) f_{M-1} + q^{6M-6}(1 + q^{3M-3}) f_{M-2} - q^{9M-12} f_{M-3}
\]
for all \(M \in \mathbb{Z} \) (we consider \(f_M = 0 \) for \(M < 0 \)). Putting \(g_M := q^{-3(M/2)} f_M \), we have
\[
(1 - q^{3M}) g_M = (q^{3M+a} + q^{3M-a} + q^3) g_{M-1} + (q^3 + q^{3M}) g_{M-2} - q^6 g_{M-3}.
\]
Putting \(G(x) := \sum_{M \geq 0} g_M x^M \), we have
\[
(1 - xq^3)(1 - x^2q^3) G(x) = (1 + xq^{3-a})(1 + xq^{3+a}) G(xq^3),
\]
and hence
\[
G(x) = \frac{(-xq^{3-a} - xq^{3+a}, q^3_\infty)}{(xq^3; q^3_\infty)(x^2q^3; q^3_\infty)} = \frac{(-xq^{3-a} - xq^{2+a}, q^2_\infty)}{(x^2q^3; q^3_\infty)},
\]
where the latter equality is because \(a = 1, 2 \). By (A) and (B) (in \([2]\)) we have
\[
G(x) = \sum_{i,j,k \geq 0} \frac{q^{2(j)+(3-a)i} q^{2(j)+(2+a)j} q^{3k}}{(q^2; q^2)_i (q^2; q^2)_j (q^3; q^3)_k} x^{i+j+2k}.
\]
Finally, since \(f_M := q^{3(M/2)} g_M \) we have
\[
F(x) = \sum_{i,j,k \geq 0} \frac{q^{4(j)+(3-a)i} q^{2(j)+(2+a)j} q^{3k}}{(q^2; q^2)_i (q^2; q^2)_j (q^3; q^3)_k} q^{3(i+j+2k)} x^{i+j+2k},
\]
which is precisely Theorem \([7,3]\).

\(\square \)

Remark 7.4. In place of \([17]\), if we write
\[
G(x) = \frac{(-xq^{2}; q^3_\infty)}{(x^2q^3; q^3_\infty)} \quad \text{for } a = 1 \quad \text{and } \quad G(x) = (1 + xq) \frac{(-xq^{3}; q^3_\infty)}{(x^2q^3; q^3_\infty)} \quad \text{for } a = 2,
\]
then we get the double sum expression \([14]\) and an alternative one to \([15]\)
\[
f_2(x, q) = \sum_{i,j \geq 0} \frac{q^{4(j)+(3-a)i} q^{2(j)+(2+a)j} q^{6(k)} q^{6(i+j+2k)}}{(q^2; q^2)_i (q^3; q^3)_j (q^6; q^6)_k} x^{i+j+2k} (1 + xq^{1+3i+6j}).
\]

Remark 7.5. We can reprove Theorem \([7,1]\) using the equation \([16]\). If we put
\[
G(x) = \sum_{M \geq 0} g_M x^M := F(x)(x; q^3)_\infty, \quad h_M := g_M/(q^3; q^3)_M \quad \text{and } \quad H(x) := \sum_{M \geq 0} h_M x^M,
\]
by a similar argument to the proof of Proposition \([7,3]\), we get
\[
(1 - x)(1 - xq^3) H(x) = (1 + xq^{3-a})(1 + xq^{3+a}) H(xq^6)
\]
and \(H(x) = (-xq^{3-a} - xq^{3+a}, q^6)_\infty/(x; q^3)_\infty \). Again, by similar arguments (using (A) and (B)), we see
\[
g_M = \sum_{i+j+k=M} \frac{1}{(q^3; q^3)_i (q^6; q^6)_j (q^6; q^6)_k} q^{6(j)+(3-a)i} q^{6(j)+(3+a)k},
\]
Since \(F(x) = G(x)(x; q^3)_\infty \), by Appell’s Comparison Theorem \([10]\) page 101 we get
\[
F(1) = (q^3; q^3)_\infty \lim_{M \to \infty} g_M = (q^3; q^3)_\infty \sum_{j,k \geq 0} \frac{q^{6(j)+(3-a)i} q^{6(j)+(3+a)k}}{(q^6; q^6)_j (q^6; q^6)_k} = (-q^3; q^3)_\infty (-q^{3-a}, -q^{3+a}; q^6)_\infty,
\]
which proves Theorem \([7,1]\)
References

[1] G.E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, vol.2, Addison-Wesley, 1976.
[2] G.E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc.Nat.Acad.Sci.U.S.A. 71 (1974), 4082-4085.
[3] G. Andrews, Schur’s theorem, Capparelli’s conjecture and q-trinomial coefficients, Contemp.Math. 166 AMS (1994), 141-154.
[4] M.K. Bos, Coding the principal character formula for affine Kac-Moody Lie algebras, Math.Comp. 72 (2003), 2001–2012.
[5] K. Bringmann, C. Jennings-Shaffer and K. Mahlburg, Proofs and reductions of various conjectured partition identities of Kanade and Russell, J.Reine Angew.Math.(to appear)
[6] S. Capparelli, Vertex operator relations for affine algebras and combinatorial identities, Mem.Amer.Math.Soc. 371.AMS (1987)
[7] S. Capparelli, A combinatorial generalization of the Rogers-Ramanujan identities, Amer.J.Math. 83 (1961) 393–399
[8] S. Capparelli, On some theorems of Hirschhorn, Comm.Algebra 32 (2004), 629-635.
[9] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer.J.Math. 83 (1961) 393–399
[10] J. Lepowsky, Some constructions of the affine Lie algebra A_{1}^{(1)}, Lectures in Appl.Math., 21 Amer.Math.Soc., Providence, RI, (1985), 375–397.
[11] J. Lepowsky and S. Milne, Lie algebraic approaches to classical partition identities, Adv.Math. 29 (1978), 15–59.
[12] J. Lepowsky and M. Primc, Structure of the standard modules for the affine Lie algebra A_{1}^{(1)}, Contemp.Math. 46 AMS (1985).
[13] J. Lepowsky and R. Wilson, Construction of the affine Lie algebra A_{1}^{(1)}, Comm.Math.Phys. 62 (1978), 43–53.
[14] J. Lepowsky and R. Wilson, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv.Math. 45 (1982), 21–72.
[15] J. Lepowsky and R. Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent.Math. 77 (1984), 199–290.
[16] J. McLaughlin and A.V. Sills, Ramanujan-Slater type identities related to the moduli 18 and 24, J.Math.Anal.Appl. 344 (2008), 765–777.
[29] D. Nandi, *Partition identities arising from the standard $A^{(2)}_2$-modules of level 4*, Ph.D. Thesis (Rutgers University), 2014.
[30] H. Rosengren, *Proofs of some partition identities conjectured by Kanade and Russell*, arXiv:1912.03689
[31] A.V. Sills, *An invitation to the Rogers-Ramanujan identities. With a foreword by George E. Andrews*, CRC Press, (2018).
[32] A.V. Sills, *A classical q-hypergeometric approach to the $A^{(2)}_2$ standard modules*, Analytic number theory, modular forms and q-hypergeometric series, 713-731, Springer Proc.Math.Stat. 221, Springer, 2017.
[33] L.J. Slater, *Further identities of the Rogers-Ramanujan type*, Proc.London Math.Soc.(2) 54 (1952), 147-167
[34] M. Takigiku and S. Tsuchioka, *A proof of conjectured partition identities of Nandi*, arXiv:1910.12361
[35] M. Tamba and C. Xie, *Level three standard modules for $A^{(2)}_2$ and combinatorial identities*, J.Pure Appl.Algebra 105 (1995), 53–92.

Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
E-mail address: takigiku@math.okayama-u.ac.jp

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan
E-mail address: tshun@kurims.kyoto-u.ac.jp