ALGEBRAIC MONOIDS WITH AFFINE UNIT GROUP ARE AFFINE

ALVARO RITTATORE

ABSTRACT. In this short note we prove that any irreducible algebraic monoid whose unit group is an affine algebraic group is affine.

1. INTRODUCTION

Let k be an algebraically closed field of arbitrary characteristic. An algebraic monoid is an algebraic variety M with an associative product $M \times M \rightarrow M$ which is a morphism of algebraic varieties, such that there exists a neutral element 1 for this product. In this case, it can be proved that the unit group $G(M)$ – i.e. the group of invertible elements – is an algebraic group, open in M (see \cite[Thm. 1]{8} and Lemma 4).

It is easy to show that the action $(G(M) \times G(M)) \times M \rightarrow M$, $((a, b), m) \mapsto amb^{-1}$ is regular, with open orbit $G(M) \cong (G(M) \times G(M))/\Delta(G(M))$, where $\Delta(G(M))$ is the diagonal. In other words, M is a $G(M)$-embedding. Moreover, it is a simple embedding, i.e. there exists an unique closed orbit, namely the center of M – the minimum ideal of M – (see \cite[Thm. 1]{8} and Lemma 4).

It is well known that if G is a quasi-affine algebraic group, then G is affine (see for example \cite[Thm. 7.5.3]{3}); in \cite[Thm. 4.4]{7}, Renner proved the analog for algebraic monoids, namely that any quasi-affine algebraic monoid is affine. In particular, if M is an affine algebraic monoid, then $G(M)$ is quasi-affine and hence affine. Conversely, in \cite[Prop. 1]{8} it is proved that if M is an irreducible affine embedding of a (necessarily affine) algebraic group G, then M is an algebraic monoid of unit group $G(M) = G$. These observations lead naturally to the following conjecture (presented as an open problem by Renner in \cite{7}), communicated to the author by E.B. Vinberg:

Let M be an irreducible algebraic monoid whose unit group $G(M)$ is affine, then M is also affine.

A partial affirmative answer was given in \cite{8}, where it is proved that any irreducible reductive monoid – i.e. with reductive unit group – is affine, and those monoids are classified in combinatorial terms. In this note we give an affirmative answer to the above conjecture (see Theorem 2). Our methods are based on a generalization to the context of algebraic monoids of results by F. Knop, H. Kraft, D. Luna and T. Vust about line bundles over affine algebraic groups (\cite{6}). In the last section, we deal with the non-irreducible case, showing that any algebraic monoid M with unit group affine and dense in M is an affine algebraic variety.
The author would like to thank M. Brion and W. Ferrer Santos for many useful suggestions and remarks.

2. MAIN RESULTS

We begin this section by recalling a well known fact about algebraic monoids (see [7]).

Lemma 1. Let \(M \) be a normal irreducible algebraic monoid with affine unit group \(G \). Then \(M \) is quasi-projective.

Proof. Since \(M \) is a simple \(G \)-embedding, of closed orbit its center, we can apply Sumihiro’s theorem ([9]) and obtain a finite dimensional \((G \times G)\)-module \(V \) and a \((G \times G)\)-equivariant open immersion \(M \hookrightarrow \mathbb{P}(V) \).

Let \(X \) be an algebraic variety, and \(\pi : L \to X \) the line bundle associated to an invertible coherent sheaf on \(X \). Recall that the zero section \(\sigma_0 : X \to L \) is defined in the following way: let \(U \subset X \) be a trivializing open subset of \(L \), and identify \(\pi^{-1}(U) \cong U \times \mathbb{k} \). Then \(\sigma_0|_U : U \to U \times \mathbb{k}, \sigma_0(x) = (x, 0) \) (it is an easy exercise to prove that this is well defined, see for example [5, p. 128]). We will denote as \(L^* = L \setminus \sigma_0(X) \).

The following key result is due to Demazure and Fujita (see [1, Lemma 1.1.13], [2] or [3]).

Lemma 2. Let \(X \) be a projective normal algebraic variety, \(\mathcal{L} \) an ample invertible sheaf, and \(\pi : L \to X \) the line bundle associated to an invertible coherent sheaf on \(X \). Recall that the zero section \(\sigma_0 : X \to L \) is defined in the following way: let \(U \subset X \) be a trivializing open subset of \(L \), and identify \(\pi^{-1}(U) \cong U \times \mathbb{k} \). Then \(\sigma_0|_U : U \to U \times \mathbb{k}, \sigma_0(x) = (x, 0) \) (it is an easy exercise to prove that this is well defined, see for example [5, p. 128]). We will denote as \(L^* = L \setminus \sigma_0(X) \).

The following result is a generalization of [6, Lemmas 4.2 and 4.3].

Lemma 3. Let \(G \) be an affine algebraic group and \(X \) a projective normal \(G \)-embedding, \(\pi : L \to X \) be a \((G \times G)\)-linearized line bundle, and consider the commutative diagram:
If we denote as \(H = (i^*L)^* = (i^*L) \setminus \sigma_0(G) \), then \(H \cong G \times \k^* \) and \(L^* \) is an \(H \)-embedding.

Proof. Since \(L \) is \((G \times G)\)-linearized, then \(G \) acts on the fibre \(\pi^{-1}(1) \cong \k \) as the diagonal \(\Delta(G) \subset G \times G \), i.e. \(g \cdot l = (g, g) \cdot l \) for all \(l \in \pi^{-1}(1) \). Hence, \(G \) acts by multiplication with a character \(\lambda : G \to \k^* \). Moreover, for all \(g \in G \) and \(l \in \pi^{-1}(g) \) we have that
\[
(a, g^{-1}ag) \cdot l = ((1, g^{-1})(a, a)(a, g)) \cdot l = (1, g^{-1})(\lambda(a)(1, g) \cdot l) = \lambda(a)l.
\]

Extend \(\lambda : G \to \k^* \) to \(G \times G \) by \(\tilde{\lambda}(g, g') = \lambda(g) \), and change the linearization by considering \((a, b) \star l = \tilde{\lambda}^{-1}(a, b) \cdot l = \lambda^{-1}(a, b) \cdot l \). Then \(L \) is trivial over \(G \), and \(H = (i^*L)^* \cong G \times \k^* \) is an algebraic group such that \(H 	imes H \) acts on \(L^* \) by \((l, s)(g, g') \cdot l = st^{-1}(g, g') \star l\); it is clear that \(H \) is an open orbit for this action. \(\square \)

Theorem 1. Let \(M \) be a normal irreducible algebraic monoid with unit group an affine algebraic group \(G \). Then there exists a \((G \times G)\)-linearized line bundle \(\pi : N \to M \), such that \(N^* \) is an affine algebraic monoid with unit group \(H = \pi^{-1}_N(G) \cong G \times \k^* \). Moreover, \(\pi : N^* \to M \) is a morphism of algebraic monoids, and is the quotient of \(N^* \) by \(\pi^{-1}(1) \cong \k^* \).

Proof. By Sumihiro’s theorem, there exists an open \((G \times G)\)-equivariant immersion \(\varphi : M \hookrightarrow X \), where \(X \) is a projective \(G \)-embedding. It is clear that we can suppose that \(X \) is normal, and that there exists a very ample invertible \((G \times G)\)-linearizable sheaf \(\mathcal{L} \) on \(X \) (see [12] Proposition 2.4). Let \(\pi : L \to X \) be the line bundle associated to the dual of \(\mathcal{L} \), and \(N = \varphi^*(M) \) its restriction to \(M \).

By Lemma [12] \(N \) is a \(H = \pi^{-1}_N(G) \)-embedding. Let \(\mu_1 : H \times L^* \to L^*, \mu_1(h, l) = (h, 1) \cdot l, \mu_2 : L^* \times H \to L^*, \mu_2(l, h) = (1, h^{-1}) \cdot l \). Since both \(\mu_1 \) and \(\mu_2 \) coincide with the product on \(H \) when restricted to \(H \times H = (H \times L^*) \cap (L^* \times H) \), they induce a morphism \(\mu : U = H \times L^* \cap L^* \times H \to L^* \). Since \(L^* = \text{Spec} R(X, L) \setminus \{0\} \) is a quasi-affine normal variety by Lemma [2] and clearly \(\text{codim}(L^* \times L^*) \setminus U \geq 2 \), we can extend the morphism \(\mu \) to a morphism \(\mu : L^* \times L^* \to \text{Spec} R(X, L) \).

It suffices to prove that \(\mu(N^* \times N^*) \subseteq N^* \). Indeed, if this is the case then \(\mu \) is an associative product in \(N^* \), since it is associative on the open subset \(H \times H \subset N^* \times N^* \times N^* \). Then \(N^* \) is a quasi-affine algebraic monoid, and it follows from the result of Renner cited at the introduction (see [14] Thm. 4.4) that \(N^* \) is an affine algebraic monoid.

In order to prove that \(\mu(N^* \times N^*) \subseteq N^* \), consider \(u, v \in N^* \). There exists an affine open subset \(V \subseteq M \) such that \(\pi(u) \pi(v) \in V \) and \(\pi^{-1}(V) \cong V \times \k^* \). Let \(m : M \times M \to M \) be the product and consider \(W = m^{-1}(V) \subset M \times M; \) let \(W' = \pi^{-1}(W) \cap (H \times N^*) \). Then \(W' \) is an open subset of \(\pi^{-1}(W) \), with complement of codimension greater than 2, such that \(\mu(W') \subset \pi^{-1}(V) \). Since \(N^* \) and hence \(\pi^{-1}(W) \) are normal, it follows that \(\mu|_{W'} : W' \to \pi^{-1}(V) \) extends to a
morphism $\tilde{\mu}: \pi^{-1}(W) \to \pi^{-1}(V)$. Since both μ and $\tilde{\mu}$ are continuous functions and $\mu |_{W'} = \tilde{\mu} |_{W'}$, it follows that $\mu |_{\pi^{-1}(W)} = \tilde{\mu}$; in particular, $\mu(u, v) \in \pi^{-1}(V) \subset N^*$. By construction, the map $\pi: N^* \to M$ is a morphism of algebraic monoids, with central kernel $\pi^{-1}(1) \cong \mathbb{k}^*$. Hence, M is a quotient of N^* by \mathbb{k}^*.

Theorem 2. Let G be an affine algebraic group and M an algebraic monoid with unit group G, affine algebraic group. Then M is affine.

Proof. We can assume without loss of generality that M is normal (see for example [8, Lemma 1]) Applying Theorem 1 we deduce that M is the quotient of an affine algebraic variety by an algebraic torus, and hence it is affine. \hfill \square

3. The non-irreducible case

Let G be a non-connected affine algebraic group, and assume that M is an algebraic monoid with unit group G. In order to obtain a better control of the geometry of M it is natural to impose the density condition $G = M$, as the following examples show:

Examples

1. Let S be an arbitrary algebraic variety and $s_0 \in S$. Then $m: S \times S \to S$, $m(s, t) = s_0$ is an associative product. If M is an arbitrary algebraic monoid, then the products on M and S extend to a product μ on $M \cup S$ (disjoint union) by $\mu(a, s) = s$ for all $a \in M$ and $s \in S$. Then $M \cup S$ is an algebraic monoid, of unit group $G(M)$ and zero s_0.

2. Assume now that M has a zero 0, and consider the equivalence relationship on $M \cup S$ induced by $0 \sim s_0$. Then μ induces a product $\tilde{\mu}$ on $N = (M \cup S)/\sim$, in such a way that N is an algebraic monoid with unit group $G(M)$. Observe that N can be realized as the closed subvariety $N \cong (M \times \{s_0\}) \cup \{0\} \times S \subset M \times S$.

The following lemma is an easy generalization of [8, Thm. 1], where the case of irreducible algebraic monoids is treated, hence we omit the proof.

Lemma 4. Let M be an algebraic monoid of unit group G, dense in M. Then M is a simple G-embedding, with unique closed orbit the center of M. \hfill \square

The following theorem generalizes [8, Prop. 2], where it is proved that if an algebraic monoid verifies the density condition $G(M) = M$, then any two irreducible components are isomorphic.

Theorem 3. Let M be an algebraic monoid with affine dense unit group G and center Y. Let $G = \bigcup_{i=1}^n G_i$, where $1 \in G_1$, be the decomposition in irreducible components of G; then $M = \bigcup_{i=1}^n M_i$. If we set $M_i = G_i \cdot Y$, $i = 1, \ldots, n$, then M_i is an affine algebraic monoid of unit group G_i, and $M_i \cong M_1$ as an algebraic variety for all $i = 1, \ldots, n$. In particular, M is an affine algebraic variety.

Moreover, $M_i \cap Y \subset G_i \cdot Y_1 = Y_1 \cdot G_i$, where Y_1 denotes the center of M_1.

Proof. Consider $\mu: M \times M \to M$, the product on M; then for all $j = 1, \ldots, n$, $M_1 \cdot M_j = \mu(M_1 \times M_j)$ is irreducible and contains $1 \cdot M_j = M_j$. Hence $M_1 \cdot M_j = M_j$; in particular, M_1 is an algebraic monoid with unit group G_1 and it follows from Theorem 2 that M_1 is an affine algebraic variety. Moreover, if $g_i \in G_i$, then
$\ell_{g_i} : M_1 \rightarrow M_i$, $\ell_{g_i}(m) = g_im$ is an isomorphism with inverse $\ell_{g_i}^{-1}$, and thus M is an affine algebraic variety.

In order to prove the last assertion, observe that $G_1 \cdot Y_1 \subset M_1 \cdot Y_1 \subset M_i \cap Y$, and that since G_1 is normal in G, it follows that $G_i \cdot Y_1 = Y_1 \cdot G_i$. □

Corollary 1. Let M be an algebraic monoid with zero $0 \in M$ satisfying the density condition. Then every irreducible component of M contains 0. □

References

1. M. Brion and S. Kumar, *Frobenius splitting methods in geometry and representation theory*, Progress in Mathematics, no. 231, Birkhäuser, Boston, 2005.
2. M. Demazure, *Anneaux gradués normaux*, Introduction à la théorie des singularités II. Méthodes algébriques et géométriques (Lê Dũng Tráng, ed.), Travaux en cours, Hermann, Paris, 1979, pp. 35 – 72.
3. W. Ferrer Santos and A. Rittatore, *Actions and invariants of algebraic groups*, Pure and Applied Math., no. 269, Chapman & Hall/CRC, 2005.
4. T. Fujita, *Semipositive line bundles*, J. Fac. Sci. Univ. Tokio 30 (1983), 353 – 378.
5. R. Hartshorne, *Algebraic geometry*, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.
6. F. Knop, H. Kraft, D. Luna, and T. Vust, *Local properties of algebraic group actions*, Algebraic Transformation Groups and Invariant Theory (H. Kraft et al, ed.), DMV Seminar, BV. 13, Birkhäuser, 1989, pp. 63–75.
7. L. Renner, *Quasi-affine algebraic monoids*, Semigroup Forum 30 (1984), no. 2, 167–176.
8. A. Rittatore, *Algebraic monoids and group embeddings*, Transform. Groups 3 (1998), no. 4, 375–396.
9. H. Sumihiro, *Equivariant completion*, J. Math. Kyoto Univ. 14 (1974), 1–28.

Alvaro Rittatore

Facultad de Ciencias
Universidad de la República
Iguá 4225
11400 Montevideo
Uruguay

e-mail: alvaro@cmat.edu.uy