Universal abelian covers of rational surface singularities and multi-index filtrations

A. Campillo F. Delgado † S.M. Gusein-Zade ‡

In [1] and [2], there were computed the Poincaré series of some (multi-index) filtrations on the ring of germs of functions on a rational surface singularity. These Poincaré series were written as the integer parts of certain fractional power series, an interpretation of whom was not given. Here we show that, up to a simple change of variables, these fractional power series are specializations of the equivariant Poincaré series for filtrations on the ring \(O_{\tilde{S},0} \) of germs of functions on the universal abelian cover \((\tilde{S},0)\) of the surface \((S,0)\). We compute these equivariant Poincaré series. From another point of view universal abelian covers of rational surface singularities were studied in [6].

Let \((S,0)\) be an isolated complex rational surface singularity and let \(\pi : (X, D) \to (S,0)\) be a resolution of it (not necessarily the minimal one). Here \(X\) is a smooth complex surface, the exceptional divisor \(D = \pi^{-1}(0)\) is a normal crossing divisor on \(X\), all components \(E_\sigma (\sigma \in \Gamma)\) of the exceptional divisor \(D\) are isomorphic to the complex projective line \(\mathbb{C}\mathbb{P}^1\) and the dual graph of the resolution is a tree.

Let \(O_{S,0}\) be the ring of germs of analytic functions on \((S,0)\). For \(\sigma \in \Gamma\), i.e. for a component \(E_\sigma\) of the exceptional divisor, and for \(f \in O_{S,0}\), let \(v_\sigma(f)\) be the order of zero of the lifting \(f \circ \pi\) of the function \(f\) to the space \(X\) of the resolution along the component \(E_\sigma\). Let us choose several components \(E_1, \ldots, E_s\) of the exceptional divisor \(D\) \((\{1, \ldots, s\} \subset \Gamma)\). The valuations \(v_1, \ldots, v_s\) define a multi-index filtration \(\{J(\underline{v})\}\) on the ring \(O_{S,0}\): for \(\underline{v} = (v_1, \ldots, v_s) \in \mathbb{Z}_{\geq 0}^s\), \(J(\underline{v}) = \{f \in O_{S,0} : \underline{v}(f) \geq \underline{v}\}\) (here \(\underline{v}(f) = (v_1(f), \ldots, v_s(f)) \in \mathbb{Z}_{\geq 0}^s\), \(\underline{v}' \geq \underline{v}\).
if and only if \(v'_i \geq v_i \) for all \(i = 1, \ldots, s \). In [1], there was computed the Poincaré series \(P(t_1, \ldots, t_s) \) of this filtration (the definition of the Poincaré series of a multi-index filtration can be found e.g. in [1 2 3]). Let \((E_\sigma \circ E_\delta)\) be the intersection matrix of the components of the exceptional divisor. For \(\sigma \neq \delta \), the intersection number \(E_\sigma \circ E_\delta \) is equal to 1 if the components \(E_\sigma \) and \(E_\delta \) intersect (at one point) and is equal to zero if they don’t intersect; the self-intersection number \(E_\sigma \circ E_\sigma \) of each component \(E_\sigma \) is a negative integer.

Let \(d = \det(-(E_\sigma \circ E_\delta)) \) and let \((m_{\sigma \delta}) = -(E_\sigma \circ E_\delta)^{-1} \). All entries \(m_{\sigma \delta} \) are positive and \(m_{\sigma \delta} \in (1/d)\mathbb{Z} \). For \(\sigma \in \Gamma \), let \((m_{\sigma}) = (m_{\sigma 1}, \ldots, m_{\sigma s}) \in \mathbb{Q}_{\geq 0}^s \).

Let \(dE_\sigma \) be the “smooth part” of the component \(E_\sigma \) in the exceptional divisor \(D \), i.e., \(E_\sigma \) minus intersection points with all other components of the exceptional divisor \(D \).

For a fractional power series \(S(t_1, \ldots, t_s) \in \mathbb{Z}[[t_1^{1/d}, \ldots, t_s^{1/d}]] \), let \(\text{Int} S(t_1, \ldots, t_s) \) be its “integer part”, i.e., the sum of all monomials from \(S(t_1, \ldots, t_s) \) with integer exponents. In [1] it was shown that

\[
P(t_1, \ldots, t_s) = \text{Int} \prod_{\sigma \in \Gamma} (1 - t_1^{m_{\sigma 1}} \cdots t_s^{m_{\sigma s}})^{-\chi^{\cdot\dagger}(E_\sigma)},
\]

where \(t_1^{m_{\sigma 1}} \cdots t_s^{m_{\sigma s}} \) and \(\chi(X) \) is the Euler characteristic of the space \(X \).

A similar formula was obtained in [2] for the Poincaré series of the multi-index filtration on the ring \(\mathcal{O}_{\mathcal{S}, 0} \) defined by orders of a function germ on irreducible components of a curve \((C, 0) \subset (\mathcal{S}, 0)\).

In [1], the fractional power series

\[
Q(t) = \prod_{\sigma \in \Gamma} (1 - t_1^{m_{\sigma 1}} \cdots t_s^{m_{\sigma s}})^{-\chi^{\cdot\dagger}(E_\sigma)}
\]

(and a similar one in [2]) participated as a formal expression convenient to write the formula (1) for the Poincaré series \(P(t_1, \ldots, t_s) \). There was no interpretation of it.

In [3], there was defined an equivariant Poincaré series for an “equivariant” filtration on the ring \(\mathcal{O}_{V, 0} \) of germs of functions on a germ \((V, 0)\) of a complex analytic variety with an action of a finite group \(G \). This Poincaré series was computed for a divisorial filtration on the ring \(\mathcal{O}_{C^2, 0} \) and for the filtration defined by branches of a \(G \)-invariant plane curve singularity \((C, 0) \subset (C^2, 0)\) were the plane \(C^2 \) was equipped with a \(G \)-action.

Let \(p : (\tilde{\mathcal{S}}, 0) \to (\mathcal{S}, 0) \) be the universal abelian cover of the surface singularity \((\mathcal{S}, 0)\); see e.g. [5 6]. One can describe it in the following way. Let \(G = H_1(\mathcal{S} \setminus \{0\}) \) be the first homology group of the (nonsingular) surface \(\mathcal{S} \setminus \{0\} \). The order of the group \(G \) is equal to the determinant \(d \) of the minus
intersection matrix $-(E_\sigma \circ E_\delta)$ and moreover G is the cokernel $\mathbb{Z}^\Gamma / \text{Im } I$ of the map $I : \mathbb{Z}^\Gamma \to \mathbb{Z}^\Gamma$ defined by this matrix.

The group G acts on the germ $(\bar{S}, 0)$ and the restriction $p|_{\bar{S} \setminus \{0\}}$ of the map p to the complement of the origin is a (usual, nonramified) covering $\bar{S} \setminus \{0\} \to S \setminus \{0\}$ with the structure group G. One can lift the map p to a (ramified) covering $\bar{p} : (\bar{X}, \bar{D}) \to (X, D)$ where \bar{X} is a normal surface (generally speaking not smooth) and $\bar{X} \setminus \bar{D} \cong \bar{S} \setminus \{0\}$:

\[
(\bar{X}, \bar{D}) \xrightarrow{\bar{p}} (\bar{S}, 0) \\
\downarrow p \quad \downarrow p \\
(X, D) \xrightarrow{p} (S, 0)
\]

(one can define \bar{X} as the normalization of the fibre product $X \times_S \bar{S}$ of the varieties X and \bar{S} over S).

Let $g_\sigma, \sigma \in \Gamma$ be the element of the group G represented by the loop in $X \setminus D$ going around the component E_σ in the positive direction. The group G is generated by the elements g_σ for all $\sigma \in \Gamma$. For a point $x \in E_\sigma$ and for a point \bar{x} from the preimage $p^{-1}(x)$ of it, locally, in a neighbourhood of the point \bar{x}, the map $p : \bar{D} \to D$ is an isomorphism and the map $p : \bar{X} \to X$ is a ramified (over D) covering, the order d_σ of which coincides with the order of the generator g_σ of the group G.

Lemma 1 The order d_σ of the element $g_\sigma \in G$ is the minimal natural k such that km_σ is an integer for all $\delta \in \Gamma$.

Proof. This follows immediately from the fact that $\mathbb{Z}^\Gamma / \text{Im } I \cong \text{Im } m / \mathbb{Z}^\Gamma$ where $m : \mathbb{Z}^\Gamma \to \mathbb{Q}^\Gamma$ is the map given by the matrix $(m_{\sigma\delta})$ (i.e. minus the inverse of the map I). □

Let $R(G)$ be the ring of (virtual) representations of the group G. For $\sigma \in \Gamma$, let α_σ be the one-dimensional representation $G \to \mathbb{C}^* = \mathbf{GL}(1, \mathbb{C})$ of the group G defined by $\alpha_\sigma(g) = \exp(-2\pi \sqrt{-1} m_{\sigma\delta})$ (here the minus sign reflects the fact that the action of an element $g \in G$ on the ring $\mathcal{O}_{\bar{S}, 0}$ is defined by $(g : f)(x) = f(g^{-1}(x)))$.

Let us choose any component \bar{E}_i of the preimage $p^{-1}(E_i)$ of the component E_i and let \bar{v}_i be the corresponding divisorial valuation on the ring $\mathcal{O}_{\bar{S}, 0}$. On the space $\bigcup_{\alpha} \mathcal{O}_{\bar{S}, 0}^\alpha$ of all G-equivariant functions on $(\bar{S}, 0)$ (α runs over all nonequivalent 1-dimensional representations of the group G) the valuation \bar{v}_i does not depend on the choice of the component \bar{E}_i.

In [3], there was defined the equivariant Poincaré series of the multi-index filtration defined by the divisorial valuations $\bar{v}_1, \ldots, \bar{v}_s$.

\[
\]
Theorem 1 The equivariant Poincaré series \(P^G(t_1, \ldots, t_s) \) of the \(s \)-index filtration defined by the set of divisorial valuations \(\{ \tilde{v}_1, \ldots, \tilde{v}_s \} \) is given by the formula:

\[
P^G(t_1, \ldots, t_s) = \prod_{\sigma \in \Gamma} (1 - \alpha_\sigma t_1^{d_{1\sigma}} \cdots t_s^{d_{s\sigma}})^{-e(E_\sigma)}.
\]

For a power series \(S(t_1, \ldots, t_s) = \sum_{v \in \mathbb{Z}^s_{\geq 0}} s_v t^v \in R(G)[[t_1, \ldots, t_s]] \) \((R(G) \) is the ring of representations of the group \(G \)), let its reduction \(\text{red} S(t_1, \ldots, t_s) \) be the series \(\sum_{v \in \mathbb{Z}^s_{\geq 0}} (\dim s_v) t^v \in \mathbb{Z}[t_1, \ldots, t_s] \).

Corollary. One has \(\text{red} P^G(t_1, \ldots, t_s) = Q(t_1^{d_1}, \ldots, t_s^{d_s}) \), where \(Q(t) \) is the fractional power series defined by (2).

Proof of Theorem 1 For short we shall say that an effective divisor on \(\tilde{D} = \bigcup E_\sigma \) (or on \(\tilde{D} = p^{-1}(\tilde{D}) \)) is Cartier if it is the intersection with \(\tilde{D} \) (or with \(\tilde{D} \)) of the strict transform of a Cartier divisor on \((S, 0) \) (or on \((\tilde{S}, 0) \)). From [3] it follows that the equivariant Poincaré series \(P^G(t) \) is equal to the integral with respect to the Euler characteristic of the monomial \(\alpha t^\omega \) over the space of \(G \)-invariant effective Cartier divisors on \(\tilde{D} \). Here \(\alpha \in R(G) \) and \(\tilde{\omega} \in \mathbb{Z}^s_{\geq 0} \) are functions (in fact semigroup homomorphisms) on the space of \(G \)-invariant Cartier divisors on \(\tilde{D} \): a \(G \)-invariant Cartier divisor defines the orders of zero of the corresponding \((G\text{-equivariant}) \) function along the components \(E_i \) and also the corresponding 1-dimensional representation of the group \(G \).

Thus to compute the equivariant Poincaré series \(P^G(t) \) one has to describe the space of \(G \)-invariant effective Cartier divisors on \(\tilde{D} \) and the corresponding functions \(\omega \) and \(\alpha \) on it.

Lemma 2 Any \(G \)-invariant effective divisor on \(\tilde{D} \) is a Cartier divisor.

Proof. It is sufficient to show this for the divisor \(\sum_{\tilde{x} \in p^{-1}(x)} \tilde{x} \) for a point \(x \in E_\sigma \), i.e. for the \(G \)-orbit of a point from \(\tilde{E}_\sigma \). The isotropy group \(G_{\tilde{x}} \) of a point \(\tilde{x} \in p^{-1}(x) \) is the cyclic subgroup of the group \(G \) of order \(d_\sigma \) generated by the element \(g_\sigma \) (this element acts trivially on \(p^{-1}(E_\sigma) \)).
Let us take the germ at the point x of a smooth curve L_σ on (X, D) transversal to the exceptional divisor D. By the Artin criterion (see, e.g., [7], Lemma on page 156), the divisor $d \cdot L_\sigma$ is the strict transform of a Cartier divisor on $(S, 0)$ (in fact already $d_\sigma L_\sigma$ is one with this property), i.e. there exists a function $f_\sigma : S \to \mathbb{C}$ such that the strict transform of the divisor $\{ f_\sigma = 0 \}$ is $d \cdot L_\sigma$. Let $\tilde{f}_\sigma = f_\sigma \circ \pi$ be the lifting of the function f_σ to the space X of the resolution and let $\tilde{\alpha}_\sigma = f_\sigma \circ \pi \circ p$ be the lifting of the function f_σ to the space \tilde{X} of the modification of the universal abelian cover $(\tilde{S}, 0)$ (\tilde{f}_σ is a G-invariant function on \tilde{X}). Let us describe the divisor $\{ \tilde{f}_\sigma = 0 \}$. Let $\tilde{L}_{\sigma, \tilde{x}}$ be the germ at the point $\tilde{x} \in p^{-1}(x)$ of the preimage under the map p of the curve $L_\sigma \subset X$.

The order of zero of the function \tilde{f}_σ along $\tilde{L}_{\sigma, \tilde{x}}$ is equal to d. The order of zero of the function \tilde{f}_σ along the component \tilde{E}_δ is equal to $d \cdot m_\delta$. The ramification order of the map p over the component \tilde{E}_δ is equal to d_δ. Therefore the order of zero of the function $\tilde{f}_\sigma = \tilde{f}_\sigma \circ p$ along the preimage of the component \tilde{E}_δ is equal to $d \cdot d_\delta \cdot m_\delta$. This (integer) number is divisible by d (since $d_\delta m_\delta$ is an integer: see Lemma [1]). Therefore the zero divisor of the function \tilde{f}_σ is divisible by d, i.e. the order of zero of this function along each component of its zero set is divisible by d. This means that a root $\sqrt[\alpha]{\tilde{f}_\sigma}$ of degree d of the function \tilde{f}_σ (i.e. a branch of this root) is well defined up to multiplication by a root of degree d of a G-equivariant complex analytic function on \tilde{X} and thus it is the lifting of a G-equivariant function on $(\tilde{S}, 0)$ (see e.g. [4, page ?]). □

Corollary. Each G-invariant divisor on the universal abelian cover $(\tilde{S}, 0)$ of the rational surface singularity $(S, 0)$ is a Cartier one.

Lemma [2] means that the space of G-invariant effective Cartier divisors on \tilde{D} is in one to one correspondence with the space of all effective divisors on \tilde{D}. As it follows from the proof of Lemma [2] the order of zero of the G-equivariant function \tilde{f}_σ (corresponding to one point $x \in \tilde{E}_\sigma$) along the component \tilde{E}_δ is equal to $d_\delta m_\sigma$. One has to find the (one-dimensional) representation α_σ with respect to which the function \tilde{f}_σ is G-equivariant.

Lemma 3

$$\alpha_\sigma(g_\delta) = \exp(-2\pi \sqrt{-1} m_\sigma) .$$

Proof. The element g_δ of the group G acts trivially on the preimage $p^{-1}(\tilde{E}_\delta)$ of the component \tilde{E}_δ of the exceptional divisor and acts by multiplication by
\[
\exp\left(\frac{2\pi}{d_\delta} \sqrt{-1}\right) \text{ on the normal line to it. The order of zero of the function } \tilde{f}_\sigma \text{ along the preimage } p^{-1}(E_\delta) \text{ is equal to } m_{\sigma_\delta}d_\delta. \text{ Therefore }
\]
\[
g_\delta \cdot f_\sigma = \exp\left(-\frac{2\pi \sqrt{-1} m_{\sigma_\delta}d_\delta}{d_\delta}\right) = \exp(-2\pi \sqrt{-1} m_{\sigma_\delta}).
\]
\[\Box\]

Now Theorem follows from the usual arguments used e.g. in [1, 3]. The space of effective divisors on \(\bullet E_\delta\) is the direct product of the spaces of effective divisors on the components \(E_\sigma\). Each of the latter ones is the disjoint union of symmetric powers \(S^k E_\sigma\) of the component \(E_\sigma\). Therefore
\[
P^G(t_1, \ldots, t_s) = \prod_{\sigma \in \Gamma} \left(\sum_{k=0}^{\infty} \chi(S^k E_\sigma) \cdot \alpha_\sigma^k t^k \right),
\]
(this follows from the fact that \(\nu\) and \(\alpha\) are semigroup homomorphisms). The well-known formula
\[
\sum_{k=0}^{\infty} \chi(S^k X) t^k = (1 - t)^{-\chi(X)}
\]
implies the equation (3). \[\Box\]

A similar result holds for the filtration on the ring \(\mathcal{O}_{\tilde{S},0}\) defined by orders of a function germ on branches of a \(G\)-invariant curve \((\tilde{C},0) \subset (\tilde{S},0)\). Let \(\tilde{C} = \bigcup_{i=1}^{r} \tilde{C}_i\) where \(\tilde{C}_i\) are irreducible \(G\)-invariant components of the curve \(\tilde{C}\) (generally speaking each curve \(\tilde{C}_i\) consists of several irreducible components permutated by the group \(G\)). Each curve \(\tilde{C}_i\) is the preimage under the map \(p\) of an irreducible curve \(C_i\) on \((S,0)\). The curve \(\tilde{C} = \bigcup_{i=1}^{r} \tilde{C}_i\) defines an \(r\)-index filtration on the space \(\bigcup_{\alpha} \mathcal{O}_{\tilde{S},0}^\alpha\) of \(G\)-equivariant functions on the surface \((\tilde{S},0)\) (or on the space \(\bigcup_{\alpha} \mathcal{O}_{\tilde{C},0}^\alpha\) of \(G\)-equivariant functions on the cuvre \((\tilde{C},0))\). Let \(\varphi_i : (C,0) \to (\tilde{S},0)\) be a parametrization (uniformization) of an irreducible component of the curve \(\tilde{C}_i\). For a \(G\)-equivariant function germ \(f\), let \(\tilde{w}_i(f)\) be the order of zero of the function \(f \circ \varphi_i\) at the origin: \(f \circ \varphi_i(\tau) = a\tau^{\tilde{w}_i(f)} + \text{ terms of higher degree, } a \neq 0\). The valuations \(\tilde{w}_1, \ldots, \tilde{w}_r\) define a multi-index filtration in the usual way.

Let \(\pi : (X,\mathcal{D}) \to (S,0)\) be a resolution of the surface singularity \((S,0)\) which at the same time is an embedded resolution of the curve \((C,0) \subset (S,0)\),
\(C = \bigcup_{i=1}^{r} C_i \). Let \(\overline{C}_i \) be the strict transform of the curve \(C_i \) in \(X \). Let \(E_1, \ldots, E_s \) be all the components of the exceptional divisor \(D \) of the resolution. Let \(\hat{E}_i \) be the “smooth part” of the component \(E_i \) in the total transform \(\pi^{-1}(C) \) of the curve \(C \), i.e. \(E_i \) minus intersection points with all other components of the total transform \(\pi^{-1}(C) \). Let \(m_i = (m_{i1}, \ldots, m_{is}) \in \mathbb{Q}^s_{\geq 0} \), \(d = (d_1, \ldots, d_s) \in \mathbb{Z}_{\geq 0}^s \), and a 1-dimensional representation \(\alpha \) of the group \(G \) \((i = 1, \ldots, s)\) be defined as above. The same arguments as in the proof of Theorem 1 imply the following statement.

Theorem 2 The equivariant Poincaré series \(P^G(t_1, \ldots, t_r) \) of the \(r \)-index filtration defined by the set of valuations \(\{\tilde{w}_1, \ldots, \tilde{w}_r\} \) is given by the formula:

\[
P^G(t_1, \ldots, t_r) = \left(\prod_{i=1}^{s} \left(1 - \alpha_i T^{d_i} m_i \right)^{-\chi(\hat{E}_i)} \right) \bigg|_{T_i \mapsto \prod_{j \in \emptyset} t_j} \prod_{j \in \emptyset} t_j
\]

(here \(T = (T_1, \ldots, T_s) \); in the substitution above, \(\prod_{j \in \emptyset} t_j \) is supposed to be equal to 1).

References

[1] Campillo A., Delgado F., Gusein-Zade S.M. Poincaré series of a rational surface singularity. Invent. math. 155, 41–53 (2004).

[2] Campillo A., Delgado F., Gusein-Zade S.M. Poincaré series of curves on rational surface singularities. Comment. Math. Helv., 80, no.1, 95–102 (2005).

[3] Campillo A., Delgado F., Gusein-Zade S.M. On Poincaré series of filtrations on equivariant functions of two variables. Moscow Math. J., 7, no.2, 243–255 (2007).

[4] Laufer H. B. Normal two-dimensional singularities. Ann. of Math. Studies, 71. Princeton Univ. Press, Princeton, NJ, 1971.

[5] Neumann W.D., Wahl J. Universal abelian covers of surface singularities. In: Trends in singularities, 181–190, Trends Math., Birkhuser, Basel, 2002.

[6] Okuma T. Universal abelian covers of rational surface singularities. J. London Math. Soc. (2), 70, no.2, 307–324 (2004).
[7] Pinkham H. Singularités rationelles de surfaces. In: Séminaire sur les singularités des surfaces. Lecture Notes in Math. 777, 147–178. Springer, Berlin–Heidelberg–New York, 1980.