A BIEBERBACH THEOREM FOR CRYSTALLOGRAPHIC GROUP EXTENSIONS

JOHN G. RATCLIFFE AND STEVEN T. TSCHANTZ

ABSTRACT. In this paper we prove that for each dimension \(n \) there are only finitely many isomorphism classes of pairs of groups \((\Gamma, N)\) such that \(\Gamma \) is an \(n \)-dimensional crystallographic group and \(N \) is a normal subgroup of \(\Gamma \) such that \(\Gamma/N \) is a crystallographic group.

1. Introduction

An \(n \)-dimensional crystallographic group (\(n \)-space group) is a discrete group \(\Gamma \) of isometries of Euclidean \(n \)-space \(E^n \) whose orbit space \(E^n/\Gamma \) is compact. The \(3 \)-space groups are the symmetry groups of crystalline structures, and so are of fundamental importance in the science of crystallography.

In response to Hilbert’s Problem 18, L. Bieberbach [2] proved that for each dimension \(n \) there are only finitely many isomorphism classes of \(n \)-space groups. In this paper we prove a relative version of Bieberbach’s theorem. We prove that for each dimension \(n \) there are only finitely many isomorphism classes of pairs of groups \((\Gamma, N)\) such that \(\Gamma \) is an \(n \)-space group and \(N \) is a normal subgroup of \(\Gamma \) such that \(\Gamma/N \) is a space group.

Our relative Bieberbach theorem has a geometric interpretation in the theory of flat orbifolds. By Theorems 7, 8, and 10 of [8] the isomorphism classes of pairs of groups \((\Gamma, N)\) such that \(\Gamma \) is an \(n \)-space group and \(N \) is a normal subgroup of \(\Gamma \) such that \(\Gamma/N \) is a space group correspond to the affine equivalence classes of geometric orbifold fibrations of compact, connected, flat \(n \)-orbifolds. Therefore, our relative Bieberbach theorem is equivalent to the theorem that for each dimension \(n \) there are only finitely many affine equivalence classes of geometric orbifold fibrations of compact, connected, flat \(n \)-orbifolds. This is known for \(n = 3 \) by the work of Conway-Friedrichs-Huson-Thurston[4] and Ratcliffe-Tschantz [8].

We now outline the proof of our relative Bieberbach theorem. Let \(m \) be a positive integer less than \(n \). Let \(M \) be an \(m \)-space group and let \(\Delta \) be an \((n - m)\)-space group. Let \(\text{Iso}(\Delta, M) \) be the set of isomorphism classes of pairs \((\Gamma, N)\) where \(N \) is a normal subgroup of an \(n \)-space group \(\Gamma \) such that \(\Gamma \) is isomorphic to \(M \) and \(\Gamma/N \) is isomorphic to \(\Delta \). As there are only finitely many isomorphism classes of the groups \(\Delta \) and \(M \) by Bieberbach’s theorem [2], it suffices to prove that \(\text{Iso}(\Delta, M) \) is finite.

Next, we define a set \(\text{Out}(\Delta, M) \) in terms of \(\text{Out}(\Delta) \) and \(\text{Out}(M) \). That the set \(\text{Out}(\Delta, M) \) is finite follows easily from a theorem of Baues and Grunewald [1] that the outer automorphism group of a crystallographic group is an arithmetic group. We define a function \(\omega : \text{Iso}(\Delta, M) \rightarrow \text{Out}(\Delta, M) \). We prove that \(\text{Iso}(\Delta, M) \) is finite by showing that the fibers of \(\omega \) are finite by a cohomology of groups argument.
2. Normal Subgroups of Space Groups

A map \(\phi : E^n \rightarrow E^n \) is an isometry of \(E^n \) if and only if there is an \(a \in E^n \) and an \(A \in O(n) \) such that \(\phi(x) = a + Ax \) for each \(x \in E^n \). We shall write \(\phi = a + A \).

In particular, every translation \(\tau = a + I \) is an isometry of \(E^n \).

Let \(\Gamma \) be an \(n \)-space group. Define \(\eta : \Gamma \rightarrow O(n) \) by \(\eta(a + A) = A \). Then \(\eta \) is a homomorphism whose kernel is the group \(T \) of translations in \(\Gamma \). The image of \(\eta \) is a finite group \(\Pi \) called the point group of \(\Gamma \).

Let \(H \) be a subgroup of an \(n \)-space group \(\Gamma \). Define the \textit{span} of \(H \) by the formula

\[
\text{Span}(H) = \text{Span}\{a \in E^n : a + I \in H\}.
\]

Note that \(\text{Span}(H) \) is a vector subspace of \(E^n \). Let \(V^\perp \) denote the orthogonal complement of \(V \) in \(E^n \).

Theorem 1. (Theorem 2 [8]) Let \(N \) be a normal subgroup of an \(n \)-space group \(\Gamma \), and let \(V = \text{Span}(N) \).

1. If \(b + B \in \Gamma \), then \(BV = V \).
2. If \(a + A \in N \), then \(a \in V \) and \(V^\perp \subseteq \text{Fix}(A) \).
3. The group \(N \) acts effectively on each coset \(V + x \) of \(V \) in \(E^n \) as a space group of isometries of \(V + x \).

Let \(\Gamma \) be an \(n \)-space group. The \textit{dimension} of \(\Gamma \) is \(n \). If \(N \) is a normal subgroup of \(\Gamma \), then \(N \) is a \(m \)-space group with \(m = \dim(\text{Span}(N)) \) by Theorem 1(3).

Definition: Let \(N \) be a normal subgroup \(N \) of an \(n \)-space group \(\Gamma \), and let \(V = \text{Span}(N) \). Then \(N \) is said to be a \textit{complete normal subgroup} of \(\Gamma \) if

\[
N = \{a + A \in \Gamma : a \in V \text{ and } V^\perp \subseteq \text{Fix}(A)\}.
\]

Lemma 1. (Lemma 1 [8]) Let \(N \) be a complete normal subgroup of an \(n \)-space group \(\Gamma \), and let \(V = \text{Span}(N) \). Then \(\Gamma/N \) acts effectively as a space group of isometries of \(E^n/V \) by the formula \((N(b + B))(V + x) = V + b + Bx \).

Remark 1. A normal subgroup \(N \) of a space group \(\Gamma \) is complete precisely when \(\Gamma/N \) is a space group by Theorem 5 of [8].

Let \(N \) be a complete normal subgroup of an \(n \)-space group \(\Gamma \), let \(V = \text{Span}(N) \), and let \(V^\perp \) be the orthogonal complement of \(V \) in \(E^n \). Let \(\gamma \in \Gamma \). Then \(\gamma = b + B \) with \(b \in E^n \) and \(B \in O(n) \). Write \(b = \tilde{b} + b' \) with \(\tilde{b} \in V \) and \(b' \in V^\perp \). Let \(\overline{B} \) and \(B' \) be the orthogonal transformations of \(V \) and \(V^\perp \), respectively, obtained by restricting \(B \). Let \(\overline{\gamma} = \tilde{b} + \overline{B} \) and \(\gamma' = b' + B' \). Then \(\overline{\gamma} \) and \(\gamma' \) are isometries of \(V \) and \(V^\perp \), respectively.

Euclidean \(n \)-space \(E^n \) decomposes as the Cartesian product \(E^n = V \times V^\perp \). Let \(x \in E^n \). Write \(x = v + w \) with \(v \in V \) and \(w \in V^\perp \). Then

\[
(b + B)x = b + Bx = \tilde{b} + b' + Bv + Bw = (\tilde{b} + \overline{B}v) + (b' + B'w).
\]

Hence the action of \(\Gamma \) on \(E^n \) corresponds to the diagonal action of \(\Gamma \) on \(V \times V^\perp \) defined by the formula

\[
\gamma(v, w) = (\overline{\gamma}v, \gamma'w).
\]

Here \(\Gamma \) acts on both \(V \) and \(V^\perp \) via isometries. The kernel of the corresponding homomorphism from \(\Gamma \) to \(\text{Isom}(V) \) is the group

\[
K = \{b + B \in \Gamma : b \in V^\perp \text{ and } V \subseteq \text{Fix}(B)\}.
\]
We call K the kernel of the action of Γ on V. The group K is a normal subgroup of Γ. The action of Γ on V induces an effective action of Γ/K on V via isometries. The group Γ/K acts on V as a discrete group of isometries if and only if Γ/K is a finite group by Theorem 3(4) of [10].

The group N is the kernel of the action of Γ on V^\perp, and so the action of Γ on V^\perp induces an effective action of Γ/N on V^\perp via isometries. Orthogonal projection from E^n to V^\perp induces an isometry from E^n/V to V^\perp. Hence Γ/N acts on V^\perp as a space group of isometries by Lemma 1.

Let $\overline{\Gamma} = \{\overline{\gamma} : \gamma \in \Gamma\}$. If $\gamma \in \Gamma$, then $(\overline{\gamma})^{-1} = \overline{\gamma^{-1}}$, and if $\gamma_1, \gamma_2 \in \Gamma$, then $\overline{\gamma_1 \gamma_2} = \overline{\gamma_1} \overline{\gamma_2}$. Hence $\overline{\Gamma}$ is a subgroup of $\text{Isom}(V)$. The map $B : \Gamma \to \overline{\Gamma}$ defined by $B(\gamma) = \overline{\gamma}$ is an epimorphism with kernel K. The group $\overline{\Gamma}$ is a discrete subgroup of $\text{Isom}(V)$ if and only if Γ/N is finite by Theorem 3(4) of [10].

Let $\Gamma' = \{\gamma' : \gamma \in \Gamma\}$. If $\gamma \in \Gamma$, then $(\gamma')^{-1} = (\gamma^{-1})'$, and if $\gamma_1, \gamma_2 \in \Gamma$, then $\gamma_1' \gamma_2' = (\gamma_1 \gamma_2)'$. Hence Γ' is a subgroup of $\text{Isom}(V^\perp)$. The map $P' : \Gamma \to \Gamma'$ defined by $P'(\gamma) = \gamma'$ is epimorphism with kernel N, since N is a complete normal subgroup of Γ. Hence P' induces an isomorphism $P : \Gamma/N \to \Gamma'$ defined by $P(N\gamma) = \gamma'$.

The group Γ' is a space group of isometries of V^\perp with $V^\perp/\Gamma' = V^\perp/(\Gamma/N)$.

Let $\overline{\mathcal{N}} = \{\overline{\nu} : \nu \in \mathcal{N}\}$. Then $\overline{\mathcal{N}}$ is a subgroup of $\text{Isom}(V)$. The map $B : \mathcal{N} \to \overline{\mathcal{N}}$ defined by $B(\nu) = \overline{\nu}$ is an isomorphism. The group $\overline{\mathcal{N}}$ is a space group of isometries of V with $V/\overline{\mathcal{N}} = V/N$.

The action of Γ on V induces an action of Γ/N on V/N defined by

$$(N\gamma)(N\nu) = N\overline{\gamma} \overline{\nu}.$$

The action of Γ/N on V/N determines a homomorphism

$$\Xi : \Gamma/N \to \text{Isom}(V/N)$$

defined by $\Xi(N\gamma)(N\nu) = N\overline{\gamma} \overline{\nu}$, where $\overline{\gamma} : V/N \to V/N$ is defined by $\overline{\gamma}(N\nu) = N\overline{\nu}$.

Theorem 2. Let M be an m-space group, let Δ be an $(n-m)$-space group, and let $\Theta : \Delta \to \text{Isom}(E^m/M)$ be a homomorphism. Identify E^n with $E^m \times E^{n-m}$, and extend M to a subgroup N of $\text{Isom}(E^n)$ such that the point group of N acts trivially on $(E^m)^\perp = E^{n-m}$. Then there exists a unique n-space group Γ containing N as a complete normal subgroup such that $\Gamma' = \Delta$, and if $\Xi : \Gamma/N \to \text{Isom}(E^m/N)$ is the homomorphism induced by the action of Γ/N on E^m/N, then $\Xi = \Theta P$ where $P : \Gamma/N \to \Gamma'$ is the isomorphism defined by $P(N\gamma) = \gamma'$ for each $\gamma \in \Gamma$.

Proof. Let $\delta \in \Delta$. By Lemma 1 of [9], there exists $\hat{\delta} \in N_{E}(M)$ such that $\hat{\Theta}(\delta) = \Theta(\delta)$. The isometry $\hat{\delta}$ is unique up to multiplication by an element of M. Let $\delta = \hat{\delta} + D$, with $\hat{\delta} \in E^{n-m}$ and $D \in O(n-m)$, and let $\delta = \hat{\delta} + \tilde{D}$, with $\tilde{D} \in E^m$ and $\tilde{D} \in O(m)$. Let $\tilde{\delta} = \hat{\delta} + D$. Then $\overline{\delta} \overline{\delta}' = \delta$. Then $\hat{\delta}$ is an isometry of E^n such that $\delta = \hat{\delta}$ and $\overline{\delta}' = \delta$. The isometry $\hat{\delta}$ is unique up to multiplication by an element of N. We have that

$$\hat{\delta}^{-1} = -\tilde{D}^{-1} \tilde{\delta} + \tilde{D}^{-1} = -\tilde{D}^{-1} \hat{\delta} + D^{-1} \tilde{D} \times D^{-1},$$

and so $\overline{\hat{\delta}}^{-1} = (\hat{\delta})^{-1}$ and $(\hat{\delta})^{-1}' = \delta^{-1}$. We have that

$$\delta N \delta^{-1} = \delta \hat{\delta} N \hat{\delta}^{-1} = \hat{\delta} M \hat{\delta}^{-1} = M \overline{N}$$

and

$$(\delta N \hat{\delta}^{-1})' = \hat{\delta} N'(\hat{\delta}^{-1})' = \delta I'(\delta^{-1})' = \delta \{I'\} \delta^{-1} = \{I'\}.$$
Therefore $\hat{\delta}N\hat{\delta}^{-1} = N$.

Let Γ be the subgroup of $\text{Isom}(E^n)$ generated by $N \cup \{\delta : \delta \in \Delta\}$. Then Γ contains N as a normal subgroup, and the point group of Γ leaves E^m invariant. Suppose $\gamma \in \Gamma$. Then there exists $\nu \in N$ and $\delta_1, \ldots, \delta_k \in \Delta$ and $\epsilon_1, \ldots, \epsilon_k \in \{\pm 1\}$ such that $\gamma = \nu\delta_1^\epsilon_1 \cdots \delta_k^\epsilon_k$. Then we have

$$\gamma' = \nu'(\delta_1')^\epsilon_1 \cdots (\delta_k')^\epsilon_k = \delta_1^\epsilon_1 \cdots \delta_k^\epsilon_k.$$

Hence $\Gamma' = \Delta$, and we have an epimorphism $P' : \Gamma \to \Delta$ defined by $P'(\gamma) = \gamma'$. The group N is in the kernel of P', and so P' induces an epimorphism $P : \Gamma/N \to \Delta$ defined by $P(N\gamma) = \gamma'$. Suppose $P(N\gamma) = 1'$. By Lemma 1 of [9], we have that

$$P(N\gamma) = 1' \implies \gamma' = 1' \implies \delta_1^\epsilon_1 \cdots \delta_k^\epsilon_k = 1' \implies \Theta(\delta_1)^\epsilon_1 \cdots \Theta(\delta_k)^\epsilon_k = \overline{T},$$

$$\implies (\delta_1)^\epsilon_1 \cdots (\delta_k)^\epsilon_k = \overline{T},$$

$$\implies M(\delta_1)^\epsilon_1 \cdots M(\delta_k)^\epsilon_k = M$$

$$\implies M\overline{\delta_1}^\epsilon_1 \cdots \overline{\delta_k}^\epsilon_k = M \implies M\overline{\gamma} = M \implies \overline{\gamma} \in \Delta.$$

As $\gamma' = 1'$ and $\overline{\gamma} \in \Delta$, we have that $\gamma \in N$. Thus P is an isomorphism.

We next show that Γ acts discontinuously on E^n. Let C be a compact subset of E^n. Let K and L be the orthogonal projections of C into E^m and E^{n-m}, respectively. Then $C \subseteq K \times L$. As Δ acts discontinuously on E^{n-m}, there exists only finitely many elements $\delta_1, \ldots, \delta_k$ of Δ such that $L \cap \delta_i L \neq \emptyset$ for each i. Let $\gamma_i = \delta_i$ for $i = 1, \ldots, k$. The set $K_i = K \cap \gamma_i(K)$ is compact for each $i = 1, \ldots, k$. As N acts discontinuously on E^m, there is a finite subset F_i of N such that $K_i \cap \nu K_i \neq \emptyset$ for each i. Hence $K \cap \nu K \neq \emptyset$. Let $\nu_i \in F_i$ for each i and $\nu \in N$. Then $L \cap \gamma' L \neq \emptyset$, and so $\gamma' = \delta_i$ for some i. Hence $\gamma = \nu\gamma_i$ for some $\nu \in N$. Now we have that $K \cap \gamma_i K \neq \emptyset$, and so $K \cap \nu \gamma_i K \neq \emptyset$. Hence $\nu \in F_i$. Therefore $\gamma \in F$. Thus Γ acts discontinuously on E^n. Therefore Γ is a discrete subgroup of $\text{Isom}(E^n)$ by Theorem 5.3.5 of [7].

Let D_M and D_Δ be fundamental domains for M in E^m and Δ in E^{n-m}, respectively. Then their topological closures $\overline{D_M}$ and $\overline{D_\Delta}$ are compact sets. Let $x \in E^n$. Write $x = \overline{x} + x'$ with $\overline{x} \in E^m$ and $x' \in E^{n-m}$. Then there exist $\delta \in \Delta$ such that $\delta x' \in \overline{D_\Delta}$, and there exist $\nu \in N$ such that $\nu\delta \overline{x} \in \overline{D_M}$. We have that

$$\nu\delta x = \nu\delta \overline{x} + \nu\delta x' = \nu\delta \overline{x} + \delta x' \in \overline{D_M} \times \overline{D_\Delta}.$$

Hence the quotient map $\pi : E^n \to E^n/\Gamma$ maps the compact set $\overline{D_M} \times \overline{D_\Delta}$ onto E^n/Γ. Therefore E^n/Γ is compact. Thus Γ is an n-space group.

Let $\Xi : \Gamma/N \to \text{Isom}(E^n/N)$ be the homomorphism induced by the action of Γ/N on E^n/N. Let $\gamma \in \Gamma$. Then there exists $\delta \in \Delta$ such that $N\gamma = N\delta$. Then $\gamma' = (\delta)^\epsilon = \delta$, and we have that $\Xi = \Theta P$, since

$$\Xi(N\gamma) = \Xi(N\delta) = (\delta)_* = \delta_* = \Theta(\delta) = \Theta(\gamma') = \Theta P(N\gamma).$$

Suppose γ is an isometry of E^n such that $\gamma N\gamma^{-1} = N$ and $\gamma' \in \Delta$ and $\tau_* = \Theta(\gamma')$. Then $\gamma' \in \Gamma$. Now $\tau_* = \gamma_*'$, and so $\overline{\tau} = \overline{\gamma'}$ for some $\nu \in N$ by Lemma 1 of [9]. Then $\gamma = \nu\gamma'$. Hence $\gamma \in \Gamma$. Thus Γ is the unique n-space group that contains N as a complete normal subgroup such that $\Gamma' = \Delta$ and $\Xi = \Theta P$. \qed
3. Isomorphisms of Pairs of Space Groups

An affinity α of E^n is a map $\alpha: E^n \to E^n$ for which there is an element $a \in E^n$ and a matrix $A \in \text{GL}(n, \mathbb{R})$ such that $\alpha(x) = a + Ax$ for all $x \in E^n$. We write simply $\alpha = a + A$. The set $\text{Aff}(E^n)$ of all affinities of E^n is a group that contains $\text{Isom}(E^n)$ as a subgroup.

Let N_i be a complete normal subgroup of an n-space group Γ_i for $i = 1, 2$. We want to know when (Γ_1, N_1) is isomorphic to (Γ_2, N_2), that is, when there is an isomorphism $\zeta: \Gamma_1 \to \Gamma_2$ such that $\zeta(N_1) = N_2$. By a Theorem of Bieberbach an isomorphism $\zeta: \Gamma_1 \to \Gamma_2$ is equal to conjugation by an affinity ϕ of E^n. In this section, we determine necessary and sufficient conditions such that there exists an affinity ϕ of E^n such that $\phi(\Gamma_1, N_1)\phi^{-1} = (\Gamma_2, N_2)$.

Let ϕ be an affinity of E^n such that $\phi(\Gamma_1, N_1)\phi^{-1} = (\Gamma_2, N_2)$. Write $\phi = c + C$ with $c \in E^n$ and $C \in \text{GL}(n, \mathbb{R})$. Let $V_i = \text{Span}(N_i)$, for $i = 1, 2$. Let $a + I \in N_1$. Then $\phi(a + I)\phi^{-1} = Ca + I$. Hence $CV_1 \subseteq V_2$. Let $\overline{C}: V_1 \to V_2$ be the linear transformation obtained by restricting C. Let $\overline{C}': V_1^{\perp} \to V_2$ and $C' : V_1^{\perp} \to V_2^{\perp}$ be the linear transformations obtained by restricting C to V_1^{\perp} followed by the orthogonal projections to V_2 and V_2^{\perp}, respectively. Write $c = \tau + c'$ with $\tau \in V_2$ and $c' \in V_2^{\perp}$. Let $\overline{\phi}: V_1 \to V_2$ and $\phi': V_1^{\perp} \to V_2^{\perp}$ be the affine transformations defined by $\overline{\phi} = \tau + \overline{C}$ and $\phi' = c' + C'$.

Lemma 2. Let N_i be a complete normal subgroup of an n-space group Γ_i, with $V_i = \text{Span}(N_i)$, for $i = 1, 2$. Let $\phi = c + C$ be an affinity of E^n such that $\phi(\Gamma_1, N_1)\phi^{-1} = (\Gamma_2, N_2)$. Then \overline{C} and C' are invertible, with $\overline{C}^{-1} = \overline{C}^{-1}$ and $(C')^{-1} = (C^{-1})'$, and $(\overline{C}^{-1})' = -\overline{C}^{-1}\overline{C}'(C')^{-1}$. If $b + B \in \Gamma_1$, then $\overline{C}B' = CBC^{-1}C'$. Moreover $\overline{C}V_1^{\perp} \subseteq \text{Span}(Z(N_2))$.

Proof. We have that

$$\dim V_1 = \dim N_1 = \dim N_2 = \dim V_2.$$

Let $y \in E^n$ and write $y = \overline{\tau} + y'$ with $\overline{\tau} \in V_2$ and $y' \in V_2^{\perp}$. Then

$$\overline{\tau} = CC^{-1}(\overline{\tau}) = \overline{CC^{-1}(\tau)},$$

and so \overline{C} is invertible with $\overline{C}^{-1} = \overline{C}^{-1}$. We have that

$$y' = CC^{-1}y' = C((C^{-1})'(y') + (C^{-1})'(y')) = C(C^{-1})'(y') + C(C^{-1})'(y') = C(C^{-1})'(y') + \overline{C}(C^{-1})'(y') + C'(C^{-1})'(y').$$

Hence C' is invertible, with $(C')^{-1} = (C^{-1})'$, and $\overline{C}(C^{-1})' + \overline{C}'(C^{-1})' = 0$. Therefore $(C^{-1})' = -\overline{C}^{-1}\overline{C}'(C')^{-1}$.

Let $\gamma = b + B \in \Gamma_1$. Then $\phi \gamma \phi^{-1} \in \Gamma_2$. Let $w \in V_2^\perp$. Then we have

\[
\begin{align*}
 w &= CBC^{-1}w \\
 &= CB((C^{-1})'(w) + (C^{-1})'(w)) \\
 &= C(B(C^{-1})'(w) + B'(C^{-1})'(w)) \\
 &= CB(C^{-1})'(w) + CB'(C^{-1})'(w) \\
 &= CB(C^{-1})'(w) + CB'(C^{-1})'(w) + C'B'(C^{-1})'(w).
\end{align*}
\]

As $\phi \gamma \phi^{-1}(w) \in V_2^\perp$, we have that

\[
CB(C^{-1})'(w) + CB'(C^{-1})' = 0.
\]

Therefore

\[
CB(C^{-1})'(w) + CB'(C^{-1})' = 0.
\]

Hence $CB' = CB(C^{-1})'$.

Now suppose $\gamma \in N_1$. Then $\gamma = I'$ by Theorem 1(2). Hence $BC^{-1}C = CB(C^{-1})'$.

By Lemma 5 of [9], we deduce that $CB^{-1}CBV_1^\perp \subseteq \text{Span}(Z(N_1))$. As $\phi Z(N_1) \phi^{-1} = Z(N_2)$, we have that $CBV_1^\perp \subseteq \text{Span}(Z(N_2))$.

Theorem 3. Let N_i be a complete normal subgroup of an n-space group Γ_i, with $V_i = \text{Span}(N_i)$ for $i = 1, 2$. Let $\Xi_i : \Gamma_i/N_i \to \text{Isom}(V_i/N_i)$ be the homomorphism induced by the action of Γ_i/N_i on V_i/N_i for $i = 1, 2$. Let $\alpha : V_1 \to V_2$, and $\beta : V_1^\perp \to V_2^\perp$ be affinities such that $\alpha N_1 \alpha^{-1} = N_2$ and $\beta \Gamma_1 \beta^{-1} = \Gamma_2$.

Let $\alpha_* : V_1/N_1 \to V_2/N_2$ be the affinity defined by $\alpha_*(N_1 v) = N_2 \alpha(v)$, and let $\beta_* : \text{Aff}(V_1/N_1) \to \text{Aff}(V_2/N_2)$ be the isomorphism defined by $\alpha_*(\chi) = \beta_* \chi$.

Let $\gamma = b + B \in \Gamma_1$, then $DB' = CB^{-1}C D$.

Let $\Xi_i : \Gamma_i/N_i \to K_i$ be the isomorphism defined by $P_1(N_i \gamma) = \gamma'$ for each $i = 1, 2$, and let $p_1 : \Gamma_1/N_1 \to V_1^\perp$ be defined by $p_1(N_1 (b + B)) = b'$.

Let K_i be the connected component of the identity of the Lie group $\text{Isom}(V_i/N_i)$ for each $i = 1, 2$.

Note that $K_i = \{v + T \} \subseteq \text{Span}(Z(N_i))$ by Theorem 1 of [9]. Then the following are equivalent:

1. There exists an affinity $\phi = c + C$ of E^n such that $\phi(\Gamma_1, N_1) \phi^{-1} = (\Gamma_2, N_2)$, with $\phi = \alpha$, and $\phi' = \beta$, and $\phi = CB^{-1}$.

2. We have that

\[
\Xi_2 P_2^{-1} \beta_* P_1 = (Dp_1)_* \alpha_2 \Xi_1
\]

with $(Dp_1)_* : \Gamma_1/N_1 \to K_2$ a crossed homomorphism defined by

\[
(Dp_1)_*(N_1 (b + B)) = (Db' + T)_*
\]

and Γ_1/N_1 acting on K_2 by $N_1 (b + B) (v + T)_* = (CB^{-1} v + T)_*$ for each $b + B \in \Gamma_1$ and $v \in \text{Span}(Z(N_2))$.

3. We have that

\[
\alpha_2^{-1} \Xi_2 P_2^{-1} \beta_* P_1 = (C^{-1} Dp_1)_* \Xi_1
\]

with $(C^{-1} Dp_1)_* : \Gamma_1/N_1 \to K_1$ a crossed homomorphism defined by

\[
(C^{-1} Dp_1)_*(N_1 (b + B)) = (C^{-1} D(b') + T)_*.
\]
and Γ_1/N_1 acting on K_1 by $N_1(b+B)(v+T)_* = (\overline{B}v+T)_*$ for each $b+B \in \Gamma_1$ and $v \in \operatorname{Span}(Z(N_1))$.

Proof. Suppose there exists an affinity $\phi = c + C$ of E^n such that $\phi(\Gamma_1, N_1)\phi^{-1} = (\Gamma_2, N_2)$, with $\overline{c} = \alpha$, and $\phi' = \beta$, and $\overline{C} = D$. Let $\gamma = b + B \in \Gamma_1$. Then we have

$$\phi\gamma\phi^{-1} = (c + C)(b + B)(c + C)^{-1} = Cb + (I - CBC^{-1})c + CBC^{-1}.$$

Hence we have

$$\overline{\phi\gamma\phi^{-1}} = \overline{c} + \overline{C}\overline{b}' + (I - CBC^{-1})\overline{c} + CBC^{-1}$$

$$= (\overline{C}\overline{b}' + \overline{T})(\overline{c} + \overline{C})(\overline{b} + B)(\overline{c} + \overline{C})^{-1}$$

$$= (D\overline{b}' + \overline{T})\overline{c} + D(C^{-1}c + C^{-1}b') + D^{-1} + D^{-1}$$

and

$$\phi\gamma\phi^{-1}' = C'\overline{b}' + (I' - C'B'(C')^{-1})c' + C'B'(C')^{-1}$$

$$= (c' + C')(b' + B')(c' + C')^{-1}$$

$$= \phi'\gamma'(\phi')^{-1} = \beta\gamma'\beta^{-1}.$$

Observe that

$$\Xi_2P_2^{-1}\beta P_1(\gamma \gamma) = \Xi_2P_2^{-1}\beta(\gamma')$$

$$= \Xi_2P_2^{-1}(\beta\gamma')(\gamma')$$

$$= \Xi_2P_2^{-1}(\phi\gamma\phi^{-1})$$

$$= \Xi_2P_2^{-1}(\phi\gamma\phi^{-1})$$

$$= \Xi_2P_2^{-1}(\phi\gamma\phi^{-1})$$

and

$$\phi(x) = \alpha(x) + \beta(x')$$

for each $x \in E^n$, where $x = x + x'$ with $x \in V_1$ and $x' \in V_1^\perp$. Then ϕ is an affinity of E^n, with

$$\phi(y) = \overline{y} - \overline{C}^{-1}D\beta^{-1}(y') + \beta^{-1}(y')$$

for each $y \in E^n$ where $y = \overline{y} + y'$ with $\overline{y} \in V_2$ and $y' \in V_2^\perp$.

Write $\gamma = \gamma' + C'$ with $\gamma' \in V_1^\perp$ and $C' : V_1^\perp \to V_2^\perp$ a linear isomorphism. Write $\phi = c + C$ with $c \in E^n$ and C a linear isomorphism of E^n. Then $c = \overline{c} + c'$ and $C = \overline{C} + C$ for each $x \in E^n$ with $\overline{x} \in V_1$ and $x' \in V_1^\perp$. We have that $\overline{\phi} = \alpha$, and $\phi' = \beta$ and $\overline{C} = D$. We also have $\phi^{-1} = -C^{-1}c + C^{-1}$ and

$$\overline{\phi^{-1}}y = \overline{C}^{-1}y - \overline{C}^{-1}D(C')^{-1}y' + (C')^{-1}y'$$

for all $y \in E^n$ with $\overline{y} \in V_2$ and $y' \in V_2^\perp$.

Let $\gamma \in \Gamma_1$. Write $\gamma = b + B$ with $b \in E^n$ and $B \in O(n)$. Then we have

$$\phi\gamma\phi^{-1} = (c + C)(b + B)(c + C)^{-1} = Cb + (I - CBC^{-1})c + CBC^{-1}.$$
Let \(y \in E^n \). Write \(y = \overline{y} + y' \) with \(\overline{y} \in V_2 \) and \(y' \in V_2^\perp \). Then we have that

\[
\begin{align*}
CBC^{-1} &= CBC^{-1} \overline{y} - C^{-1}D(C')^{-1}y' + (C')^{-1}y' \\
&= C(BC^{-1} \overline{y} - BC^{-1}D(C')^{-1}y' + B'(C')^{-1}y' \\
&= \frac{CBC^{-1}}{\overline{y}} - CB \frac{BC^{-1}}{\overline{y}} D(C')^{-1}y' + DB'(C')^{-1}y' + C'B'(C')^{-1}y' \\
&= \frac{CBC^{-1}}{\overline{y}} + C'B'(C')^{-1}y'.
\end{align*}
\]

Hence \(CBC^{-1} = \overline{CBC^{-1}} \times C'B'(C')^{-1} \) as a linear isomorphism of \(E^n = V_2 \times V_2^\perp \).

Moreover, we have

\[
\begin{align*}
\overline{\phi \gamma \phi^{-1}} &= CB + CB' + (C - CB)\overline{\gamma} + CBC^{-1} \\
&= (CB' + C')\overline{\gamma} + \overline{\gamma} + CB + CB^{-1} \\
&= (DB' + T)\overline{\phi \gamma \phi^{-1}} = (DB' + T)\alpha \gamma \alpha^{-1},
\end{align*}
\]

and

\[
\begin{align*}
(\phi \gamma \phi^{-1})' &= C'B' + (I - C'B'(C')^{-1})c' + C'B'(C')^{-1} \\
&= (c' + C')\overline{c} + B'(c' + c') \\
&= \phi' \gamma' \phi^{-1} = \beta \gamma \beta^{-1}.
\end{align*}
\]

As \(\Xi_2 \mathcal{P}_2^{-1} \beta \mathcal{P}_1 = (Dp_1)_\ast \mathcal{P}_2^{-1} \), we have that \((\alpha \gamma \alpha^{-1})_\ast \) is an isometry of \(V_2/N_2 \). By Lemmas 1 and 7 of [7], we have that \(\alpha \gamma \alpha^{-1} \) is an isometry of \(V_2 \). Hence \(CBC^{-1} \) is an orthogonal transformation of \(V_2 \).

As \(\beta \Gamma_1 \beta^{-1} = \Gamma_2 \), we have that \(C'B'(C')^{-1} \) is an orthogonal transformation of \(V_2^\perp \). Hence \(CBC^{-1} = \overline{CBC^{-1}} \times C'B'(C')^{-1} \) is an orthogonal transformation of \(E^n = V_2 \times V_2^\perp \). Therefore \(\phi \gamma \phi^{-1} \) is an isometry of \(E^n \) for each \(\gamma \in \Gamma_1 \).

As \(\Gamma_1 \) acts discontinuously on \(E^n \) and \(\phi \) is a homeomorphism of \(E^n \), we have that \(\phi \Gamma_1 \phi^{-1} \) acts discontinuously on \(E^n \). Therefore \(\phi \Gamma_1 \phi^{-1} \) is a discrete subgroup of \(\text{Isom}(E^n) \) by Theorem 5.3.5 of [7]. Now \(\phi \) induces a homeomorphism \(\phi_\ast : E^n / \Gamma_1 \to E^n / \phi \Gamma_1 \phi^{-1} \) defined by \(\phi_\ast (\Gamma_1 x) = \phi \Gamma_1 \phi^{-1} \phi(x) \). Hence \(E^n / \phi \Gamma_1 \phi^{-1} \) is compact. Therefore \(\phi \Gamma_1 \phi^{-1} \) is a \(n \)-space group.

Now \(\phi_\ast : \Gamma_1 \to \phi \Gamma_1 \phi^{-1} \), defined by \(\phi_\ast (\gamma) = \phi \gamma \phi^{-1} \), is an isomorphism that maps the normal subgroup \(N_1 \) to the normal subgroup \(\phi N_1 \phi^{-1} \) of \(\phi \Gamma_1 \phi^{-1} \), and \(\phi \Gamma_1 \phi^{-1} / \phi N_1 \phi^{-1} \) is isomorphic to \(\Gamma_1 / N_1 \). Hence \(\phi \Gamma_1 \phi^{-1} / \phi N_1 \phi^{-1} \) is a space group. Therefore \(\phi N_1 \phi^{-1} \) is a complete normal subgroup of \(\phi \Gamma_1 \phi^{-1} \) by Theorem 5 of [8].

Now suppose \(\nu = a + A \in N_1 \). Then \(a' = 0 \) and \(A' = A' \), and so \(\nu' = I' \). Hence \(\phi \nu \phi^{-1} = \alpha \gamma \alpha^{-1} \) and \((\phi \nu \phi^{-1})' = I' \). As \(\alpha \gamma \alpha^{-1} = N_2 \), we have that \(\phi N_1 \phi^{-1} = N_2 \).

Moreover, as \(\beta \Gamma_1 \beta^{-1} = \Gamma_2 \), we have that \((\phi \Gamma_1 \phi^{-1})' = \Gamma_2 \).

Let \(\Xi : \phi \Gamma_1 \phi^{-1} / N_2 \to \text{Isom}(V_2 / N_2) \) be the homomorphism induced by the action of \(\phi \Gamma_1 \phi^{-1} / N_2 \) on \(V_2 / N_2 \). Let \(\gamma = b + B \in \Gamma_1 \), and let \(P : \phi \Gamma_1 \phi^{-1} / N_2 \to \Gamma_2 \) be the
isomorphism defined by \(P(N_2 \phi \gamma \phi^{-1}) = (\phi \gamma \phi^{-1})' \). Then we have that
\[
\Xi P^{-1}(\beta \gamma' \beta^{-1}) = \Xi P^{-1}((\phi \gamma \phi^{-1})')
\]
\[
= \Xi(N_2 \phi \gamma \phi^{-1})
\]
\[
= (P(N_2 \phi \gamma \phi^{-1})_*
\]
\[
= ((\beta \gamma' \beta^{-1})_* = (Db' + T) \alpha \gamma \alpha^{-1} \gamma_*
\]
\[
= (Db' + T)_* \alpha \gamma \alpha^{-1} \gamma_*$
\]
\[
= (Dp_1(N_1(b + B)))_*, \alpha_2(\gamma_*)
\]
\[
= (Dp_1(N_1 \gamma))_*, \alpha_2(\Xi_1(N_1 \gamma))
\]
\[
= \Xi_2 P^{-1}_2 \beta_2 P_1(N_1 \gamma) = \Xi_2 P^{-1}_2(\beta \gamma' \beta^{-1}).
\]

Hence we have that \(\Xi^{-1} P^{-1} = \Xi_2 P^{-1}_2 \). Therefore \(\phi \Gamma_1 \phi^{-1} = \Gamma_2 \) by Theorem 2. Thus \(\phi(N_1, N_1 \phi^{-1}) = (N_2, N_2) \).

Let \(\gamma = b + B \) and \(\gamma_1 = b_1 + B_1 \) be elements of \(\Gamma_1 \). Then we have that
\[
(Dp_1)_* (N_1 \gamma N_1 \gamma_1) = (Dp_1)_* (N_1(b + B b_1 + B B_1))
\]
\[
= (D(b + B b_1) + B T)_*,
\]
\[
= (D(b' + B b'_1) + T)_*,
\]
\[
= (Db' + DB b'_1 + T)_*,
\]
\[
= (Db' + CBC^{-1} Db'_1 + T)_*,
\]
\[
= (Db' + T)_* (CBC^{-1} Db'_1 + T)_*,
\]
\[
= (Db' + T)_* (N_1(b + B))(Db'_1 + T)_*,
\]
\[
= (Dp_1)_* (N_1 \gamma)(Dp_1)_* (N_1 \gamma_1).
\]

Therefore \((Dp_1)_* : \Gamma_1 / N_1 \rightarrow K_2 \) is a crossed homomorphism. Thus statements (1) and (2) are equivalent.

The equation \(\Xi_2 P^{-1}_2 \beta_2 P_1 = (Dp_1)_* \alpha_2 \Xi_1 \) is equivalent to the equation
\[
\alpha_2^{-1} \Xi_2 P^{-1}_2 \beta_2 P_1 = \alpha_2^{-1} (Dp_1)_* \alpha_2 \Xi_1.
\]

Observe that
\[
\alpha_2^{-1} (Dp_1)_* \alpha_2 \Xi_1 (N_1 \gamma) = \alpha_2^{-1} ((Dp_1)_* (N_1 \gamma) \alpha_2 \Xi_1 (N_1 \gamma))
\]
\[
= \alpha_2^{-1} ((Db' + T)_* \alpha_2 \Xi_1)
\]
\[
= \alpha_2^{-1} ((Db' + T)_* \alpha_2 \Xi_1 \alpha^{-1})
\]
\[
= \alpha_2^{-1} ((Db' + T)_* \alpha_2 \Xi_1 \alpha^{-1}) \alpha_*
\]
\[
= (\alpha^{-1} (Db' + T)_* \alpha_2 \Xi_1)
\]
\[
= (C^{-1} Db' + T)_* \Xi_1 (N_1 \gamma)
\]
\[
= (C^{-1} Dp_1)_* (N_1 \gamma) \Xi_1 (N_1 \gamma).
\]

Hence we have that \(\alpha_2^{-1} (Dp_1)_* \alpha_2 \Xi_1 = (C^{-1} Dp_1)_* \Xi_1 \). By the same argument as with \((Dp_1)_* : \Gamma_1 / N_1 \rightarrow K_2 \), we have that \((C^{-1} Dp_1)_* : \Gamma_1 / N_1 \rightarrow K_1 \) is a crossed homomorphism. Thus (2) and (3) are equivalent. \(\square \)
4. Outer Automorphism Groups of Space Groups

Through this section, let \(m \) be a positive integer less than \(n \). Let \(M \) be an \(m \)-space group and let \(\Delta \) be an \((n - m) \)-space group.

Definition: Define \(\text{Iso}(\Delta, M) \) to be the set of isomorphism classes of pairs \((\Gamma, N)\) where \(N \) is a complete normal subgroup of an \(n \)-space group \(\Gamma \) such that \(N \) is isomorphic to \(M \) and \(\Gamma/N \) is isomorphic to \(\Delta \). We denote the isomorphism class of a pair \((\Gamma, N)\) by \([\Gamma, N]\).

Let \(N \) be a complete normal subgroup of an \(n \)-space group \(\Gamma \), and let \(\text{Out}_E(N) \) be the Euclidean outer automorphism group of \(N \) defined in §4 of [9]. The group \(\text{Out}_E(N) \) is finite by Theorem 2 of [9]. The action of \(\Gamma \) on \(N \) by conjugation induces a homomorphism

\[
\mathcal{O}: \Gamma/N \to \text{Out}_E(N)
\]
defined by \(\mathcal{O}(N\gamma) = \gamma_*\text{Inn}(N) \) where \(\gamma_*(\nu) = \gamma
\nu\gamma^{-1} \) for each \(\gamma \in \Gamma \) and \(\nu \in N \). Let \(\alpha : N_1 \to N_2 \) be an isomorphism. Then \(\alpha \) induces an isomorphism

\[
\alpha_\#: \text{Out}(N_1) \to \text{Out}(N_2)
\]
defined by \(\alpha_\#(\zeta\text{Inn}(N_1)) = \alpha\zeta\alpha^{-1}\text{Inn}(N_2) \) for each \(\zeta \in \text{Aut}(N_1) \).

Lemma 3. Let \(N_i \) be a complete normal subgroup of an \(n \)-space group \(\Gamma_i \) for \(i = 1, 2 \). Let \(\mathcal{O}_i : \Gamma_i/N_i \to \text{Out}_E(N_i) \) be the homomorphism induced by the action of \(\Gamma_i \) on \(N_i \) by conjugation for \(i = 1, 2 \), and let \(\alpha : N_1 \to N_2 \) and \(\phi : \Gamma_1 \to \Gamma_2 \) and \(\beta : \Gamma_1/N_1 \to \Gamma_2/N_2 \) be isomorphisms such that the following diagram commutes

\[
\begin{array}{ccc}
1 & \to & N_1 & \to & \Gamma_1 & \to & \Gamma_1/N_1 & \to & 1 \\
\downarrow & & \downarrow \alpha & & \downarrow \phi & & \downarrow \beta \\
1 & \to & N_2 & \to & \Gamma_2 & \to & \Gamma_2/N_2 & \to & 1,
\end{array}
\]

where the horizontal maps are inclusions and projections, then \(\mathcal{O}_2 = \alpha_\#\mathcal{O}_1\beta^{-1} \).

Proof. Let \(\gamma \in \Gamma_1 \). Then we have that

\[
\mathcal{O}_2(N_2\phi(\gamma)) = \phi(\gamma)_*\text{Inn}(N_2),
\]

whereas

\[
\alpha_\#\mathcal{O}_1\beta^{-1}(N_2\phi(\gamma)) = \alpha_\#\mathcal{O}_1(N_1\gamma) = \alpha_\#(\gamma_*\text{Inn}(N_1)) = \alpha\gamma_*\alpha^{-1}\text{Inn}(N_2).
\]

If \(\nu \in N \), then

\[
\alpha\gamma_*\alpha^{-1}(\nu) = \alpha\gamma_*\alpha^{-1}(\nu) = \alpha(\gamma\alpha^{-1}(\nu)\gamma^{-1}) = \phi(\gamma)\nu\phi(\gamma)^{-1} = \phi(\gamma)_*(\nu).
\]

Hence \(\alpha\gamma_*\alpha^{-1} = \phi(\gamma)_* \). Therefore \(\mathcal{O}_2 = \alpha_\#\mathcal{O}_1\beta^{-1} \). \(\square \)

Definition: Define \(\text{Hom}_f(\Delta, \text{Out}(M)) \) to be the set of all homomorphisms from \(\Delta \) to \(\text{Out}(M) \) that have finite image.

The group \(\text{Out}(M) \) acts on the left of \(\text{Hom}_f(\Delta, \text{Out}(M)) \) by conjugation, that is, if \(g \in \text{Out}(M) \) and \(\eta \in \text{Hom}_f(\Delta, \text{Out}(M)) \), then \(g\eta = g_*\eta \) where \(g_* : \text{Out}(M) \to \)
\[\text{Out}(M)\] is defined by \(g \cdot (h) = ghg^{-1}\). Let \(\text{Out}(M) \setminus \text{Hom}_f(\Delta, \text{Out}(M))\) be the set of \(\text{Out}(M)\)-orbits. The group \(\text{Aut}(\Delta)\) acts on the right of \(\text{Hom}_f(\Delta, \text{Out}(M))\) by composition of homomorphisms. If \(\beta \in \text{Aut}(\Delta)\) and \(\eta \in \text{Hom}_f(\Delta, \text{Out}(M))\) and \(g \in \text{Out}(M)\), then
\[(g\eta)\beta = (g\ast \eta)\beta = g_{\ast} \eta \beta = g(\eta \beta).
Hence \(\text{Aut}(\Delta)\) acts on the right of \(\text{Out}(M) \setminus \text{Hom}_f(\Delta, \text{Out}(M))\) by
\[(\text{Out}(M)\eta)\beta = \text{Out}(M)(\eta \beta).
Let \(\delta, \epsilon \in \Delta\) and \(\eta \in \text{Hom}_f(\Delta, \text{Out}(M))\). Then we have that
\[\eta \delta \epsilon \eta^{-1} = \eta(\delta \epsilon \delta^{-1}) = \eta(\delta) \eta(\epsilon) \eta^{-1} = \eta(\delta) \cdot \eta(\epsilon) = (\eta(\delta) \eta)(\epsilon).
Hence \(\eta \delta \epsilon = \eta(\delta) \eta\). Therefore \(\text{Inn}(\Delta)\) acts trivially on \(\text{Out}(M) \setminus \text{Hom}_f(\Delta, \text{Out}(M))\).
Hence \(\text{Out}(\Delta)\) acts on the right of \(\text{Out}(M) \setminus \text{Hom}_f(\Delta, \text{Out}(M))\) by
\[(\text{Out}(M)\eta)(\beta \text{Inn}(\Delta)) = \text{Out}(M)(\eta \beta).
\textbf{Definition:} Define the set \(\text{Out}(\Delta, M)\) by the formula
\[\text{Out}(\Delta, M) = (\text{Out}(M) \setminus \text{Hom}_f(\Delta, \text{Out}(M)))/\text{Out}(\Delta).
If \(\eta \in \text{Hom}_f(\Delta, \text{Out}(M))\), let \([\eta] = (\text{Out}(M)\eta)\text{Out}(\Delta)\) be the element of \(\text{Out}(\Delta, M)\) determined by \(\eta\).

Let \((\Gamma, N)\) be a pair such that \([\Gamma, N] \in \text{Iso}(\Delta, M)\). Let \(O : \Gamma/N \to \text{Out}_E(N)\) be the homomorphism induced by the action of \(\Gamma\) on \(N\) by conjugation. Let \(\alpha : N \to M\) and \(\beta : \Delta \to \Gamma/N\) be isomorphisms. Then \(\alpha \# O \beta \in \text{Hom}_f(\Delta, \text{Out}(M))\).
Let \(\alpha' : N \to M\) and \(\beta' : \Delta \to \Gamma/N\) are isomorphisms. Observe that
\[\alpha' \# O \beta' = \alpha'_\# \alpha^{-1}_\# O \beta \beta^{-1} \beta' = (\alpha' \alpha^{-1})_\# O \beta (\beta^{-1} \beta') = (\alpha' \alpha^{-1})_\# \text{Inn}(M)_\# (\alpha \# O \beta (\beta^{-1} \beta')) = (\alpha' \alpha^{-1})_\# \text{Inn}(M)_\# (\alpha \# O \beta (\beta^{-1} \beta')).
Hence \([\alpha \# O \beta]\) in \(\text{Out}(\Delta, M)\) does not depend on the choice of \(\alpha\) and \(\beta\), and so \((\Gamma, N)\) determines the element \([\alpha \# O \beta]\) of \(\text{Out}(\Delta, M)\) independent of the choice of \(\alpha\) and \(\beta\).

Suppose \([\Gamma_i, N_i] \in \text{Iso}(\Delta, M)\) for \(i = 1, 2\), and \(\phi : (\Gamma_1, N_1) \to (\Gamma_2, N_2)\) is an isomorphism of pairs. Let \(\alpha : N_1 \to N_2\) be the isomorphism obtained by restricting \(\phi\), and let \(\beta : \Gamma_1/N_1 \to \Gamma_2/N_2\) be the isomorphism induced by \(\phi\). Let \(O_i : \Gamma_i/N_i \to \text{Out}_E(N_i)\) be the homomorphism induced by the action of \(\Gamma_i\) on \(N_i\) by conjugation for \(i = 1, 2\). Then \(O_2 = \alpha \# O_1 \beta^{-1}\) by Lemma 17. Let \(\alpha_1 : N_1 \to M\) and \(\beta_1 : \Delta \to \Gamma_1/N_1\) be isomorphisms. Let \(\alpha_2 = \alpha_1 \alpha^{-1}\) and \(\beta_2 = \beta \beta_1\). Then we have
\[(\alpha_2)_\# O_2 \beta_2 = (\alpha_1 \alpha^{-1})_\# \alpha \# O_1 \beta^{-1} \beta_2 = (\alpha_1)_\# O_1 \beta_1.
Hence \((\Gamma_1, N_1)\) and \((\Gamma_2, N_2)\) determine the same element of \(\text{Out}(\Delta, M)\). Therefore there is a function
\[\omega : \text{Iso}(\Delta, M) \to \text{Out}(\Delta, M)\]
defined by \(\omega([\Gamma, N]) = [\alpha \# O \beta]\) for any choice of isomorphisms \(\alpha : N \to M\) and \(\beta : \Delta \to \Gamma/N\).

\textbf{Lemma 4.} The set \(\text{Out}(\Delta, M)\) is finite.
Proof: The group Out(M) is arithmetic by Theorem 1.1 of [1]. Hence Out(M) has only finitely many conjugacy classes of finite subgroups, cf. §5 of [3]. As Δ is finitely generated there are only finitely many homomorphisms from Δ to a finite group G. Therefore Out(M)\cdotHom$_f(\Delta, \text{Out}(M))$ is finite. Hence Out(Δ, M) is finite.

5. Fiber Cohomology Classes

Consider $\omega : \text{Iso}(\Delta, M) \to \text{Out}(\Delta, M)$. Suppose $[\Gamma_1, N_1]$ and $[\Gamma_2, N_2]$ are in the same fiber of ω. We want to define a class $[\Gamma_1, N_1; \Gamma_2, N_2; \alpha, \beta]$ in the cohomology group $H^1(\Gamma_1/N_1, K_1)$ where Γ_1/N_1 acts on K_1 by $N_1(b + B)(v + T)_* = (\overline{B}v + \overline{T})_*$.

Let $\alpha_i : N_i \to M$ and $\beta_i : \Delta \to \Gamma_i/N_i$ be isomorphisms for $i = 1, 2$. Let $O_i : \Gamma_i/N_i \to \text{Out}(N_i)$ be the homomorphism induced by the action of Γ_i on N_i by conjugation for $i = 1, 2$. As $\omega([\Gamma_1, N_1]) = \omega([\Gamma_2, N_2])$, we have that $[(\alpha_1)\# O_1\beta_1] = [(\alpha_2)\# O_2\beta_2]$. Then there exists α_0 in Aut(M) and β_0 in Aut(Δ) such that $(\alpha_1)\# O_1\beta_1 = (\alpha_0)\# (\alpha_2)\# O_2\beta_2\beta_0$. We have that

$$O_1 = (\alpha_1^{-1}\alpha_0\alpha_2)\# O_2\beta_2\beta_0\beta_1^{-1}.$$

Let $\alpha : N_1 \to N_2$ be the isomorphism $\alpha_0^{-1}\alpha_1$, and let $\beta : \Gamma_1/N_1 \to \Gamma_2/N_2$ be the isomorphism $\beta_0\beta_1^{-1}$. Then $O_1 = \alpha\# O_2\beta$. Now α induces an isomorphism $\overline{\alpha} : \overline{N}_1 \to \overline{N}_2$ defined by $\overline{\alpha}(\overline{\nu}) = \alpha(\nu)$ for each ν in N_1. Let $V_i = \text{Span}(N_i)$ for $i = 1, 2$, and let $\overline{\alpha} : V_1 \to V_2$ be an affinity such that $\overline{\alpha}(\overline{N}_1\overline{\alpha}^{-1} = \overline{N}_2$ and $\overline{\alpha}_* = \overline{\alpha}$, that is, $\overline{\alpha}_*(\overline{\nu}) = \overline{\alpha}(\nu)$ for each ν in N_1.

Let $\Xi : \Gamma_i/N_i \to \text{Isom}(V_i/N_i)$ be the homomorphism induced by the action of Γ_i/N_i on V_i/N_i for $i = 1, 2$. Let $\Omega_i : \text{Isom}(V_i/N_i) \to \text{Out}(\Delta)$ be defined so that $\Omega_i(\zeta) = \text{Im}(N_i)\zeta$, where ζ is an isometry of V_i that lifts ζ and ζ_* is the automorphism of N_i defined by $\zeta_*(\nu) = \zeta_\nu\zeta_\nu^{-1}$ for $i = 1, 2$. Then we have that $\Omega_i\Xi_i = O_i$ for $i = 1, 2$. By Lemma 10 of [9], we have that

$$\Omega_1\Xi_1 = \alpha_0^{-1}\Omega_2\Xi_2 = \Omega_1(\alpha_0^{-1}\Xi_2\beta).$$

Let $\phi : \Gamma_1/N_1 \to \text{Aff}(V_1/N_1)$ and $\psi : \Gamma_1/N_1 \to \text{Aff}(V_1/N_1)$ be the homomorphisms defined by $\phi = \alpha_0^{-1}\Xi_2\beta$ and $\psi = \Xi_1$. Then we have that $\phi(g)\psi(g)^{-1}$ is in K_1 for each g in Γ_1/N_1 by Theorem 3 of [3]. As ψ takes values in Isom(V_1/N_1) and K_1 is a subgroup of Isom(V_1/N_1), we have that ϕ takes values in Isom(V_1/N_1).

Let g, h be in Γ_1/N_1, then we have that

$$\phi(gh)\psi(gh)^{-1} = \phi(g)\phi(h)(\psi(g)\psi(h))^{-1} = \phi(g)\phi(h)\psi(h)^{-1}\psi(g)^{-1} = \phi(g)g^{-1}\psi(g)\phi(h)\psi(h)^{-1}\psi(g)^{-1} = \phi(g)g^{-1}\psi(g)\phi(h)\psi(h)\psi(h)^{-1}.$$

with

$$\psi(N_1(b + B))_*(v + T) = (\overline{B} + \overline{T})_*(\overline{B} + \overline{T})^{-1} = (\overline{B}v + \overline{T})_*.$$

Hence the function $\phi\psi^{-1} : \Gamma_1/N_1 \to K_1$ is a crossed homomorphism, and so determines a class $[\Gamma_1, N_1; \Gamma_2, N_2; \alpha, \beta]$ in $H^1(\Gamma_1/N_1, K_1)$, cf. p. 105 of [3].

Let $[\Gamma, N]$ be a class in Isom(Δ, M), and let $V = \text{Span}(N)$. Let C be the centralizer of N in Aff(V). By Lemmas 6 and 8 of [3], we have that

$$C = \{v + T : v \in \text{Span}(Z(N))\}.$$
The group Γ/N acts on \mathcal{C} by $(N(b + B))(v + \mathbf{T}) = \overline{B}v + \mathbf{T}$ and Γ/N acts on $Z(N)$ by $(N(b + B))(u + I) = Bu + I$. We have a short exact sequence of (Γ/N)-modules

$$0 \to Z(N) \xrightarrow{\iota} \mathcal{C} \xrightarrow{\kappa} K \to 0$$

where $\iota(u + I) = u + \mathbf{T}$ and $\kappa(v + \mathbf{T}) = (v + \mathbf{T})$.

Let T be the group of translations of Γ. Then TN/N is a normal subgroup of Γ/N of finite index and TN/N is a subgroup of the group of translations of Γ/N of finite index by Theorem 16 of [8]. The group Γ/N acts on the abelian group TN/N by $(N(b + B))(a + I) = N(Ba + I)$, and so TN/N is a (Γ/N)-module. Moreover the group TN/N acts trivially on \mathcal{C}.

Lemma 5. Let $f : \Gamma/N \to \mathcal{C}$ be a crossed homomorphism, and let $f_{res} : TN/N \to \mathcal{C}$ be the restriction of f. Then f_{res} is a homomorphism of (Γ/N)-modules and the class of f in $H^1(\Gamma/N, \mathcal{C})$ is completely determined by f_{res}.

Proof. According to [6], p. 354, we have an exact sequence of homomorphisms

$$H^1(\Gamma/TN, \mathcal{C}) \xrightarrow{inf} H^1(\Gamma/N, \mathcal{C}) \xrightarrow{res} H^1(TN/N, \mathcal{C})^{\Gamma/N} \to H^2(\Gamma/TN, \mathcal{C}).$$

The group Γ/TN is finite and \mathcal{C} is a torsion-free, divisible, abelian group, and so $H^i(\Gamma/TN, \mathcal{C}) = 0$ for $i = 1, 2$ by Corollary IV.5.4 of [6]. Hence

$$res : H^1(\Gamma/N, \mathcal{C}) \to H^1(TN/N, \mathcal{C})^{\Gamma/N}$$

is an isomorphism. Here $res([f]) = [f_{res}]$. By the Universal Coefficients Theorem (p. 77 of [6]), we have that

$$H^1(TN/N, \mathcal{C})^{\Gamma/N} = \text{Hom}(TN/N, \mathcal{C})^{\Gamma/N}.$$

Here Γ/N acts on $\text{Hom}(TN/N, \mathcal{C})$ by $((N\gamma)h)(x) = (N\gamma)h(N\gamma^{-1}x)$ for each $\gamma \in \Gamma$, homomorphism $h : TN/N \to \mathcal{C}$, and element $x \in TN/N$. Therefore, we have that

$$\text{Hom}(TN/N, \mathcal{C})^{\Gamma/N} = \text{Hom}_{\Gamma/N}(TN/N, \mathcal{C}).$$

Hence $[f_{res}] = \{f_{res}\}$ and f_{res} is a homomorphism of (Γ/N)-modules. Therefore the class of f in $H^1(\Gamma/N, \mathcal{C})$ is completely determined by f_{res}. □

Lemma 6. Suppose that $\omega([\Gamma_1, N_1]) = \omega([\Gamma_2, N_2])$ with $O_1 = \alpha_2^{-1}O_2 \beta$. If the class $[\Gamma_1, N_1 ; \Gamma_2, N_2 ; \alpha, \beta]$ is in the image of $\kappa_* : H^1(\Gamma_1/N_1, \mathcal{C}_1) \to H^1(\Gamma_1/N_1, \mathcal{K}_1)$, then $[\Gamma_1, N_1] = [\Gamma_2, N_2]$.

Proof. Suppose that $[\Gamma_1, N_1 ; \Gamma_2, N_2 ; \alpha, \beta]$ is in the image of $\kappa_* : H^1(\Gamma_1/N_1, \mathcal{C}_1) \to H^1(\Gamma_1/N_1, \mathcal{K}_1)$. Then there is a crossed homomorphism $f : \Gamma_1/N_1 \to \mathcal{C}_1$ such that $\kappa_*([f]) = [\Gamma_1, N_1 ; \Gamma_2, N_2 ; \alpha, \beta]$.

By Lemma 5, the cohomology class $[f]$ is completely determined by the restriction (Γ_1/N_1)-module homomorphism $f_{res} : T_1N_1/N_1 \to C_1$.

To simplify notation, replace Γ_1/N_1 with Γ'_1. Then T_1N_1/N_1 corresponds to $T'_1 = \{b' + I' : b + I \in T_1\}$. Moreover Γ_1/N_1 acts on T'_1 by $(N_1(b + B))(b' + I') = B'b' + I'$ and f_{res} corresponds to a homomorphism of (Γ_1/N_1)-modules $f'_{res} : T'_1 \to C_1$.

The group T_1N_1/N_1 has finite index in the group of translations of Γ_1/N_1, and so T'_1 has finite index in the group of translations of Γ'_1. Hence $\{b' : b + I \in T_1\}$ contains a basis of the vector space V_1^\perp. Therefore $f'_{res} : T'_1 \to C_1$ induces a linear transformation $L : V_1^\perp \to \text{Span}(Z(N_1))$ such that $f'_{res}(b' + I') = L(b') + \mathbf{T}$ for each $b + I$ in T_1 and if $b + B$ is in Γ_1, then $LB' = \overline{B}L$.

Consider the function $h : \Gamma_1/N_1 \to C_1$ defined by $h(N_1(b + B)) = L(b') + \overline{T}$. Then h is a crossed homomorphism. If $b + I$ is in T_1, then

$$h_{res}(N_1(b + I)) = L(b') + \overline{T} = f'_{res}(b' + I') = f_{res}(N_1(b + I)).$$

Hence $h_{res} = f_{res}$. Therefore $[h] = [f]$ in $H^1(\Gamma_1/N_1, C_1)$ by Lemma 5.

Let $\tilde{\alpha} : V_1 \to V_2$ be the affinity defined above and write $\tilde{\alpha} = \overline{\tau} + \overline{C}$ with $\tau \in V_2$ and $\overline{C} : V_1 \to V_2$ a linear isomorphism. Define a linear transformation $D : V_1^+ \to \text{Span}(N_2)_2$ by $D = C \overline{L}$. If $b + B \in \Gamma_1$, then $DB' = C\overline{BC}'^{-1}D$. Let $p_1 : \Gamma_1/N_1 \to V_1^+$ be the crossed homomorphism defined by $p_1(N_1(b + B)) = b'$.

Then $h(N_1\gamma) = \overline{C}^{-1}Dp_1(N_1\gamma) + \overline{T}$. Observe that $\kappa_*([h]) = [h_*]$ where h_* is defined by $h_*(N_1\gamma) = (h(N_1\gamma))_*$. Thus $h_* = (\overline{C}^{-1}Dp_1)_*$. as defined in Theorem 3(3).

Let v be in $\text{Span}(Z(N_1))$, and let $f_v : \Gamma_1/N_1 \to K_1$ be the principal crossed homomorphism determined by $(v + I)_*$. Then we have that

$$f_v(N_1(b + B)) = (N_1(b + B))(v + \overline{T})_* = (\overline{B}v + \overline{T})_* = (\overline{B}v - v + \overline{T})_*.$$

Now we have that $[h_*] = [\Gamma_1, N_1; \Gamma_2, N_2; \alpha, \beta]$ in $H^1(\Gamma_1/N_1, K_1)$. Hence there exists v in $\text{Span}(Z(N_1))$ such that

$$(\tilde{\alpha}_v^{-1} \Xi_2 \beta)\Xi_1^{-1}f_v = (\overline{C}^{-1}Dp_1)_*.$$

Let $\tilde{\alpha}_v : V_1 \to V_2$ be the affinity defined by $\tilde{\alpha}_v = \tilde{\alpha}(v + \overline{T})$. Then $\tilde{\alpha}_vN_1\tilde{\alpha}_v^{-1} = N_2$ and $(\tilde{\alpha}_v)_* = \alpha_*$. By Lemma 6 of ([9], and so $(\tilde{\alpha}_v)_* = \alpha_*$. Observe that

$$((\tilde{\alpha}_v^{-1} \Xi_2 \beta)\Xi_1^{-1}f_v)(N_1(b + B))$$

$$= (\tilde{\alpha}_v^{-1} \Xi_2 \beta)(N_1(b + B))\Xi_1^{-1}(N_1(b + B))f_v(N_1(b + B))$$

$$= \tilde{\alpha}_v^{-1}(\Xi_2 \beta)(N_1(b + B))\tilde{\alpha}_v(\overline{B} + \overline{T})(\overline{B}v - v + \overline{T})_*$$

$$= \tilde{\alpha}_v^{-1}(\Xi_2 \beta)(N_1(b + B))\tilde{\alpha}_v(\overline{B} + \overline{T})_*(v - \overline{B}v + \overline{T})_*^{-1}$$

$$= \tilde{\alpha}_v^{-1}(\Xi_2 \beta)(N_1(b + B))\tilde{\alpha}_v(v - \overline{B}v + \overline{T})_*^{-1}$$

$$= \tilde{\alpha}_v^{-1}(\Xi_2 \beta)(N_1(b + B))\tilde{\alpha}_v((v + T)(\overline{B} + \overline{T})_*(v - \overline{B}v + \overline{T})_*^{-1}$$

$$= (\tilde{\alpha}_v)_*^{-1}(\Xi_2 \beta)(N_1(b + B))\tilde{\alpha}_v(\overline{B} + \overline{T})_*(\overline{B} + \overline{T})_*^{-1}$$

Hence we have

$$((\tilde{\alpha}_v)_v^{-1} \Xi_2 \beta)\Xi_1^{-1}f_v = ((\tilde{\alpha}_v)_v^{-1} \Xi_2 \beta)\Xi_1^{-1}.$$

Thus we have that

$$(\tilde{\alpha}_v)_v^{-1} \Xi_2 \beta = (\overline{C}^{-1}Dp_1)_* \Xi_1.$$

Let $P_i : \Gamma_i/N_i \to \Gamma_i'$ be the isomorphism defined by $P_i(N_i\gamma) = \gamma'$ for each $i = 1, 2$. Let $\beta' : \Gamma_1' \to \Gamma_2'$ be the isomorphism so that $P_2^{-1}\beta'P_1 = \beta$. Let $\hat{\beta} : V_1^+ \to V_2^+$ be an affinity such that $\hat{\beta}^{-1} = \hat{\beta}^{-1}$ and $\hat{\beta}_* = \beta_*$, that is, and $\hat{\beta}'\hat{\beta}^{-1} = (\beta'\gamma')$ for each γ in Γ_1. Then we have that

$$(\tilde{\alpha}_v)_v^{-1} \Xi_2 P_2^{-1} \hat{\beta}_* P_1 = (\overline{C}^{-1}Dp_1)_* \Xi_1.$$

Therefore there exists an affinity $\phi = c + C$ of E^n such that $\phi(\Gamma_1, N_1)\phi^{-1} = (\Gamma_2, N_2)$ with $\phi = \tilde{\alpha}_v$, $\phi' = \hat{\beta}$, and $\overline{C}' = D$ by Theorem 3. Thus $[\Gamma_1, N_1] = [\Gamma_2, N_2]$.

\[\square\]
Lemma 7. Suppose that $\omega([\Gamma, N]) = \omega([\Gamma_1, N_1])$ with $O = (\alpha_1)^{-1}O_1\beta_1$ and that $\omega([\Gamma, N]) = \omega([\Gamma_2, N_2])$ with $O = (\alpha_2)^{-1}O_2\beta_2$. If $[\Gamma, N; \Gamma_1, N_1; \alpha_i, \beta_i]$ for $i = 1, 2$ are in the same coset of the image of $\kappa_* : H^1(\Gamma/N, C) \to H^1(\Gamma/N, K)$ in $H^1(\Gamma/N, K)$, then $[\Gamma_1, N_1] = [\Gamma_2, N_2]$.

Proof. Let $b + B \in \Gamma$, and let $b_1 + B_1$ be an element of Γ_1 such that

$$N_1(b_1 + B_1) = \beta_1(N(b + B)).$$

As $O = (\alpha_1)^{-1}O_1\beta_1$, we have that

$$(b + B)_*\text{Inn}(N) = (\alpha_1)^{-1}O_1\beta_1(N(b + B))$$

= $$(\alpha_1)^{-1}O_1(\beta_1(N_1(b + B_1)))$$

= $$(\alpha_1)^{-1}((b_1 + B_1)_*\text{Inn}(N_1))$$

= $$(\alpha_1)^{-1}(b_1 + B_1)_*\alpha_1\text{Inn}(N)$$

= $$(\tilde{\alpha}_1)^{-1}(b_1 + B_1)_*(\tilde{\alpha}_1)\text{Inn}(N)$$

= $$(\tilde{\alpha}_1 + \overline{\alpha}_1)^{-1}(b_1 + B_1)_*(\tilde{\alpha}_1 + \overline{\alpha}_1)\text{Inn}(N).$$

The action of Γ/N on C is given by $N(b + B)(u + T) = \overline{B}u + T$ and is determined by the action of Γ/N on $Z(N)$ induced by conjugation. Now $\text{Inn}(N)$ acts trivially on $Z(N)$, and so the last computation implies that $\overline{B} = \overline{\tilde{C}_1} \cdot \tilde{C}_1$ on $\text{Span}(Z(N))$. Hence the pair of isomorphisms

$$\pi = (\beta_1 : \Gamma/N \to \Gamma_1/N_1, (\tilde{\alpha}_1)_1^{-1} : C_1 \to C)$$

is a change of groups isomorphism in the sense of [R] p. 108. Therefore we have an isomorphism $\pi^* : H^1(\Gamma_1/N_1, C_1) \to H^1(\Gamma/N, C)$ defined so that if $f_1 : \Gamma_1/N_1 \to C_1$ is a crossed homomorphism, then $\pi^*[f_1] = [\pi^*f_1]$ where $\pi^*f_1 : \Gamma/N \to C$ is the crossed homomorphism defined by $\pi^*f_1(x) = (\tilde{\alpha}_1)^{-1}(f_1(\beta_1(x))).$

Likewise the pair of isomorphisms

$$\varpi = (\beta_1 : \Gamma/N \to \Gamma_1/N_1, (\tilde{\alpha}_1)_2^{-1} : K_1 \to K)$$

is a change of groups isomorphism which induces an isomorphism ϖ^* such that the following diagram commutes

$$\begin{array}{ccc}
H^1(\Gamma_1/N_1, C_1) & \xrightarrow{\pi^*} & H^1(\Gamma/N, C) \\
\downarrow (\kappa_1)_* & & \downarrow \kappa_* \\
H^1(\Gamma_1/N_1, K_1) & \xrightarrow{\varpi^*} & H^1(\Gamma/N, K).
\end{array}$$

Now we have that $\omega([\Gamma_1, N_1]) = \omega([\Gamma_2, N_2])$ with $O_1 = (\alpha_2\alpha_1^{-1})^\#O_2\beta_2\beta_1^{-1}$. Moreover, we have that

$$[\Gamma_1, N_1; \Gamma_2, N_2; \alpha_2\alpha_1^{-1}, \beta_2\beta_1^{-1}] = [((\tilde{\alpha}_2\tilde{\alpha}_1)^{-1})_{2^{-1}}\Xi_2\beta_2\beta_1^{-1}][\Xi_1^{-1}].$$

For $i = 1, 2$, we have that

$$[\Gamma, N; \Gamma_i, N_i; \alpha_i, \beta_i] = [((\tilde{\alpha}_i)^{-1}\Xi_i\tilde{\beta}_i)\Xi_1^{-1}].$$
Let $\gamma \in \Gamma$. Observe that
\[
((\tilde{\alpha}_2)^{-1}\Xi_2\beta_2\Xi^{-1})((\tilde{\alpha}_1)^{-1}\Xi_1\beta_1\Xi^{-1})(N\gamma)
= \frac{((\tilde{\alpha}_2)^{-1}\Xi_2\beta_2)(N\gamma)\Xi(N\gamma)^{-1}\Xi(N\gamma)((\tilde{\alpha}_1)^{-1}\Xi_1\beta_1)(N\gamma))}{((\tilde{\alpha}_2)^{-1}\Xi_2\beta_2)(N\gamma)(\alpha_1)^{-1}(\Xi_1\beta_1)(N\gamma))^{-1}}
= \frac{((\tilde{\alpha}_2)^{-1}\Xi_2\beta_2)(N\gamma)(\alpha_1)^{-1}(\Xi_1\beta_1)(N\gamma))}{(\alpha_1)^{-1}(\tilde{\alpha}_2\alpha_1^{-1})^{-1}\Xi_2\beta_2\Xi^{-1}(\beta_1)(N\gamma))}\Xi_1\beta_1(N\gamma))^{-1}
= \frac{\omega^\ast(((\tilde{\alpha}_2\alpha_1^{-1})^{-1}\Xi_2\beta_2\Xi^{-1}(\beta_1)(N\gamma))\Xi_1\beta_1(N\gamma))}{\Xi_1\beta_1(N\gamma)}
.
\]

Hence we have that
\[
\omega^\ast(\Gamma_1, N_1; \Gamma_2, N_2; \alpha_2\alpha_1^{-1}, \beta_2\beta_1^{-1}) = [\Gamma, N; \Gamma_2, N_2; \alpha_2, \beta_2][\Gamma, N_1; \alpha_1, \beta_1]^{-1}.
\]
The right-hand side of the above equation is in the image of $\kappa_\ast : H^1(\Gamma/N, \mathbb{C}) \to H^1(\Gamma/N, \mathbb{K})$. Therefore $[\Gamma_1, N_1; \Gamma_2, N_2; \alpha_2\alpha_1^{-1}, \beta_2\beta_1^{-1}]$ is in the image of $(\kappa_1)_\ast : H^1(\Gamma_1/N_1, \mathbb{C}_1) \to H^1(\Gamma_1/N_1, \mathbb{K}_1)$. Hence $[\Gamma_1, N_1] = [\Gamma_2, N_2]$ by Lemma 6.

6. The relative Bieberbach Theorem

Let $[\Gamma, N]$ be a class in Isom(Δ, M), and let T be the group of translations of Γ. Then Γ/TN is a finite group, since Γ/T is finite. The group TN/N acts trivially on $Z(N)$, $TN/N, \mathbb{C}, \mathbb{K}$, and so the action of Γ/N on $Z(N)$, $TN/N, \mathbb{C}, \mathbb{K}$ induces an action of Γ/TN on $Z(N)$, $TN/N, \mathbb{C}, \mathbb{K}$ making $Z(N)$, $TN/N, \mathbb{C}, \mathbb{K}$ into (Γ/TN)-modules.

Lemma 8. The group $H^1(\Gamma/TN, \mathbb{K})$ is finite.

Proof. The short exact sequence $0 \to Z(N) \to C \to K \to 0$ of (Γ/TN)-modules induces an exact sequence of cohomology groups
\[
H^1(\Gamma/TN, \mathbb{C}) \to H^1(\Gamma/TN, \mathbb{K}) \to H^2(\Gamma/TN, Z(N)) \to H^2(\Gamma/TN, \mathbb{C})
.
\]
As explained in the proof of Lemma 5, the outside groups are trivial, and so $H^1(\Gamma/TN, \mathbb{K})$ is isomorphic to $H^2(\Gamma/TN, Z(N))$. The group $H^2(\Gamma/TN, Z(N))$ is a torsion group by Proposition IV.5.3 of [6]. As $Z(N)$ is a free abelian group of finite rank, the group $H^2(\Gamma/TN, Z(N))$ is finitely generated. Hence $H^2(\Gamma/TN, Z(N))$ is finite, and so $H^1(\Gamma/TN, \mathbb{K})$ is finite.

Lemma 9. The cokernel of $\kappa_\ast : H^1(TN/N, \mathbb{C})^{\Gamma/TN} \to H^1(TN/N, \mathbb{K})^{\Gamma/TN}$ is finite.

Proof. By the Universal Coefficients Theorem, we have that
\[
H^1(TN/N, \mathbb{C})^{\Gamma/TN} = \text{Hom}(TN/N, \mathbb{C})^{\Gamma/TN} = \text{Hom}_{\Gamma/TN}(TN/N, \mathbb{C}),
\]
\[
H^1(TN/N, \mathbb{K})^{\Gamma/TN} = \text{Hom}(TN/N, \mathbb{K})^{\Gamma/TN} = \text{Hom}_{\Gamma/TN}(TN/N, \mathbb{K}).
\]
The short exact sequence $0 \to Z(N) \to C \to K \to 0$ induces an exact sequence
\[
0 \to \text{Hom}(TN/N, Z(N)) \to \text{Hom}(TN/N, C) \to \text{Hom}(TN/N, K) \to \text{Ext}(TN/N, Z(N))
\]
by Theorem III.3.4 of [6] (with $R = \mathbb{Z}$). We have that $\text{Ext}(TN/N, Z(N)) = 0$ by Theorems I.6.3 and III.3.5 of [6], since TN/N is a free abelian group. Hence we have a short exact sequence of (Γ/TN)-modules
\[
0 \to \text{Hom}(TN/N, Z(N)) \to \text{Hom}(TN/N, C) \to \text{Hom}(TN/N, K) \to 0.
\]
Hence we have an exact sequence of cohomology groups
\[H^0(\Gamma/\TN, \Hom(\TN/N, C)) \to H^0(\Gamma/\TN, \Hom(\TN/N, K)) \to H^1(\Gamma/\TN, \Hom(\TN/N, Z(N))), \]
which is equivalent to an exact sequence
\[\Hom_{\Gamma/\TN}(\TN/N, C) \to \Hom_{\Gamma/\TN}(\TN/N, K) \to H^1(\Gamma/\TN, \Hom(\TN/N, Z(N))). \]
The group \(H^1(\Gamma/\TN, \Hom(\TN/N, Z(N))) \) is finite, since \(\Hom(\TN/N, Z(N)) \) is a free abelian group of finite rank. Hence the cokernel of \(\Hom_{\Gamma/\TN}(\TN/N, C) \to \Hom_{\Gamma/\TN}(\TN/N, K) \) is finite. Therefore the cokernel of \(\kappa_* : H^1(\TN/N, C)_{\Gamma/\TN} \to H^1(\TN/N, K)_{\Gamma/\TN} \) is finite.

Lemma 10. The cokernel of \(\kappa_* : H^1(\Gamma/N, C) \to H^1(\Gamma/N, K) \) is finite.

Proof. We have a short exact sequence \(1 \to \TN/N \to \Gamma/N \to \Gamma/\TN \to 1 \), and so we have a commutative diagram with horizontal exact sequences (cf. p. 354 of [5])
\[
\begin{array}{cccc}
0 & = H^1(\Gamma/\TN, C) & \to H^1(\Gamma/N, C) & \to H^1(\TN/N, C)_{\Gamma/\TN} & \to H^2(\Gamma/\TN, C) = 0 \\
\downarrow & \alpha & \downarrow & \beta & \downarrow \\
0 & \to H^1(\Gamma/\TN, K) & \to H^1(\Gamma/N, K) & \to H^1(\TN/N, K)_{\Gamma/\TN} & \to H^2(\Gamma/\TN, K)
\end{array}
\]
where the homomorphisms \(\alpha, \beta, \gamma \) are induced by \(\kappa : C \to K \). By the snake lemma (Lemma III.5.1 of [5]), we have an exact sequence
\[\text{coker}(\alpha) \to \text{coker}(\beta) \to \text{coker}(\gamma). \]
Now \(\text{coker}(\alpha) = H^1(\Gamma/\TN, K) \) is finite by Lemma 8, and \(\text{coker}(\gamma) \) is finite by Lemma 9. Hence \(\text{coker}(\beta) \) is finite. Thus the cokernel of \(\kappa_* : H^1(\Gamma/N, C) \to H^1(\Gamma/N, K) \) is finite. \(\square \)

Theorem 4. For each dimension \(n \), there are only finitely many isomorphism classes of pairs of groups \((\Gamma, N)\) such that \(\Gamma \) is an \(n \)-space group and \(N \) is a normal subgroup of \(\Gamma \) such that \(\Gamma/N \) is a space group.

Proof. Let \(m \) be a positive integer less than \(n \). Let \(M \) be an \(m \)-space group and let \(\Delta \) be an \((n - m)\)-space group. Let \(\text{Iso}(\Delta, M) \) be the set of isomorphism classes of pairs \((\Gamma, N)\) where \(N \) is a normal subgroup of an \(n \)-space group \(\Gamma \) such that \(N \) is isomorphic to \(M \) and \(\Gamma/N \) is isomorphic to \(\Delta \). As there are only finitely many isomorphism classes of the groups \(\Delta \) and \(M \) by Bieberbach’s theorem [2], it suffices to prove that \(\text{Iso}(\Delta, M) \) is finite.

In §4, we defined a function \(\omega : \text{Iso}(\Delta, M) \to \text{Out}(\Delta, M) \) with \(\text{Out}(\Delta, M) \) finite by Lemma 4. The fibers of \(\omega \) are finite by Lemmas 7 and 10. Therefore \(\text{Iso}(\Delta, M) \) is finite. \(\square \)

In view of Theorem 10 of [5], Theorem 4 is equivalent to the following theorem.

Theorem 5. For each dimension \(n \), there are only finitely many affine equivalence classes of geometric orbifold fibrations of compact, connected, flat \(n \)-orbifolds.
References

[1] O. Baues and F. Grunewald, Automorphism groups of polycyclic-by-finite groups and arithmetic groups, Publ. Math. Inst. Hautes Études Sci. 104 (2006), 213-268.
[2] L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume II, Math. Ann. 72 (1912), 400-412.
[3] A. Borel, Arithmetic properties of linear algebraic groups, Proc. Int. Congress Math., Stockholm (1992), 10-22.
[4] J. H. Conway, O. D. Friedrichs, D. H. Huson, W. P. Thurston, On three-dimensional space groups, Beiträge Algebra Geom. 42 (2001), 475-507.
[5] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Math., vol. 4, Springer-Verlag, New York, Heidelberg, and Berlin, 1971.
[6] S. Mac Lane, Homology, Springer-Verlag, New York, 1967.
[7] J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Second Edition, Graduate Texts in Math., vol. 149, Springer-Verlag, Berlin, Heidelberg, and New York, 2006.
[8] J. G. Ratcliffe and S. T. Tschantz, Fibered orbifolds and crystallographic groups, Algebr. Geom. Topol. 10 (2010), 1627-1664.
[9] J. G. Ratcliffe and S. T. Tschantz, On the isometry group of a compact flat orbifold, Geom. Dedicata 177 (2015), 43-60.
[10] J. G. Ratcliffe and S. T. Tschantz, The Calabi Construction for Compact Flat Orbifolds, Topology Appl. 178 (2014), 87-106.

Department of Mathematics, Vanderbilt University, Nashville, TN 37240

E-mail address: j.g.ratcliffe@vanderbilt.edu