Towards Identifying Hindi/Urdu Noun Templates in Support of a Large-Scale LFG Grammar

Sebastian Sulger* & Ashwini Vaidya+

*Universität Konstanz
+University of Colorado at Boulder/Universität Konstanz

5th WSSANLP Workshop
COLING 2014, Dublin, Ireland
The situation

- Spoken and written Hindi/Urdu: heavy, *productive* use of complex predicates (CPs) across domains

- Different types of CPs:
 - Aspectual V+V CPs: *gīr par* ‘suddenly fall’ (lit. ‘fall fall’)
 - Permissive V+V CPs: *jane de* ‘let go’ (lit. ‘go give’)
 - N+V CPs: *yad kar* ‘remember’ (lit. ‘memory do’)

- In other languages:
 - *take a bath* (≈ ‘bathe’)
 - *give a stir* (≈ ‘stir’)
 - *in Betracht ziehen* ‘consider’ (lit. ‘in look-at pull’)

Most of these are restricted in use and/or much less productive than South Asian CPs.
The challenges

- General problem in deep and shallow parsing methods for Hindi/Urdu (and other South Asian languages): proper treatment of complex predicates
 - Automatic distinction of CPs from simplex verbs
 - Extraction of subcategorization frames
 - Semantic role labeling
 - Drawing semantic inferences

Research questions:

What existing resources may be employed to explore CP usage?
Can we confirm/reject existing theoretical hypotheses of N+V CPs?
How far can clustering algorithms take us?
How “good” / “coherent” are the resulting classes?
How can our LFG grammar benefit from the results?
Contents

1 Hindi/Urdu Noun-Verb Complex Predicates

2 Corpus study

3 Evaluation

4 Analysis

5 Grammar integration
Theconstruction

- Combination of noun and light verb to form a single predicational unit
- Noun contributes main predicational content (including argument(s)), light verb dictates case marking and expresses subtle lexical semantic differences
- Highly productive constructions
- [Ahmed and Butt, 2011]: proposal for different classes of N+V CPs based on a small case study of 45 nouns and 3 light verbs (kar ‘do’, ho ‘be’, hu- ‘become’)

N+V type	light verb	analysis	example N
CLASS A	+	+	psych predications
CLASS B	+	-	only agentive
CLASS C	+	+	subject not an undergoer

Table: Classes of nouns identified by [Ahmed and Butt, 2011]
Goals of the investigation

- How do the proposals by [Ahmed and Butt, 2011] hold up towards a larger empirical basis (i.e., bigger corpora)?
- Extend the set of light verbs
- Apply different strategies of acquiring knowledge about CPs:
 - “Brute-force” statistical approach, based on bigram extraction, collocation analysis and clustering [Butt et al., 2012]
 - “Seed list” approach, using knowledge amassed from treebanks and clustering, and evaluate clusters (this paper)
- Come up with noun templates:
 - Nouns using one template will behave in a coherent way with respect to the light verbs they may occur with
 - Of great use for Hindi/Urdu grammar: extend noun lexicon/coverage
 - May inform further work on semantic classification of CPs
Contents

1. Hindi/Urdu Noun-Verb Complex Predicates
2. Corpus study
3. Evaluation
4. Analysis
5. Grammar integration
In a recent corpus study on Hindi\(^1\), we used the approach below:

1. Collect corpus of 21 million words harvested from BBC Hindi website, Hindi wikipedia, and the Hindi-Urdu Treebank (HUTB) [Bhatt et al., 2009]
 - POS tagged, lemmatized using a state-of-the-art Hindi tagger [Reddy and Sharoff, 2011]
2. Look at a set of seven light verbs: *kar* ‘do’, *ho* ‘be’, *de* ‘give’, *le* ‘take’, *rak\(^h\)* ‘put’, *lag* ‘be attached’, *a* ‘come’ (seven most frequently occurring light verbs)

\(^1\) The corresponding Urdu study is pending.
Methodology

3. Make use of the annotations in the HUTB [Bhatt et al., 2009]
 - Includes dependency annotation scheme
 - Employs label *pof* (for *part of*) to annotate complex predicates
 - Extract all items that are tagged as nouns and carry *pof* label
 → “Seed list” of nouns that we know take part in N-V CPs

4. Extract bigrams of pattern *seed list noun item + light verb lemma* from corpus
 - Assume that noun occurs right next to verb [Mohanan, 1994]
 - Cases where noun is removed from verb are rare (∼1% in HUTB)

5. Apply cutoff value c (noun occurrences across all light verbs)
 - Initial value $c = 50$: make statements about well-attested nouns
 - Also applied cutoff of $c = 3$ for comparison purposes
Compute relative frequencies of nouns combined with light verbs
\((c = 50: \ 522 \ \text{nouns}; \ c = 3: \ 987 \ \text{nouns}) \)

Table: Relative frequencies of co-occurrence of nouns with light verbs

ID	noun	kar ‘do’	ho ‘be’	de ‘give’	le ‘take’	rak\(^h\) ‘put’	lag ‘attach’	a ‘come’
1	tanav ‘tension’	0.115	0.562	0.058	0.058	0.000	0.000	0.207
2	bhag ‘part’	0.149	0.365	0.119	0.253	0.000	0.000	0.115
3	ag ‘fire’	0.110	0.251	0.087	0.000	0.055	0.443	0.055
4	mazuri ‘sanction’	0.000	0.000	0.757	0.243	0.000	0.000	0.000
5	dhava ‘attack’	1.000	0.000	0.000	0.000	0.000	0.000	0.000
6	kripa ‘mercy’	0.409	0.486	0.000	0.000	0.105	0.000	0.000
Apply clustering algorithm to the data
- Clustering the nouns based on their occurrence patterns with light verbs
- k-means and GVM clustering\(^2\) applied

→ Problem: how to evaluate?
- We already know that our combinations ($seed$ list noun item + light verb lemma) form legitimate CPs.
- What we don’t know is how semantically coherent the clusters are.
- We also don’t know which k and c values give us the best (i.e. most expressive/semantically most coherent) clusters.

\(^2\)Greedy Variance Minimization, http://www.tomgibara.com/clustering/fast-spatial/
Contents

1 Hindi/Urdu Noun-Verb Complex Predicates

2 Corpus study

3 Evaluation

4 Analysis

5 Grammar integration
Preliminary evaluation using WordNet

- Hindi WordNet publicly available [Bhattacharyya, 2010]
- Follow the technique described by e.g. [Van de Cruys, 2006] for each $k = 2, ..., 10$ and for $c = \{3; 50\}$
 1. Extract synonyms, hypernyms and hyponyms for every noun in a cluster
 2. Choose cluster centroid: noun with most semantic relations with every other noun in cluster
 3. Extract co-hyponyms, i.e. the hyponyms of the hypernyms (sisters in the ontology tree), for each centroid from WordNet (along with their synonyms, hypernyms and hyponyms)
 4. Calculate coherence for each cluster: count number of nouns that overlap with nouns in centroid’s relations & divide by number of words in cluster
 5. Maximize coherence across k and c
Preliminary evaluation using WordNet

Size of k	$c = 3$	$c = 50$		
	GVM	k-means	GVM	k-means
5	0.049	0.060	0.107	0.122
6	0.066	0.055	0.121	0.119
7	0.089	0.056	0.104	0.110
8	0.084	0.089	0.108	0.109
9	0.082	0.081	0.095	0.097

Table: Semantic coherence values for $k = 5 - 9$

→ Most coherent clusters according to evaluation with $k = 5$, $c = 50$ using k-means algorithm
Contents

1 Hindi/Urdu Noun-Verb Complex Predicates
2 Corpus study
3 Evaluation
4 Analysis
5 Grammar integration
Figure: Cluster visualization for $k = 5$, $c = 50$ (using tool by [Lamprecht et al., 2013])

Cluster description:

- Cl. 1 (light green): *kar* ‘do’
- Cl. 2 (dark blue): *ho* ‘be’
- Cl. 3 (pink): *de* ‘give’
- Cl. 4 (dark green): alternating between *rakh* ‘keep’, *lag* ‘attach’, *a* ‘come’
- Cl. 5 (light blue): *le* ‘take’
Observations:

- Continuum between cl. 1/2: kar/ho alternation, psych predication [Ahmed and Butt, 2011]
- Continuum between cl. 1/3: kar/de alternation, “transfer”
- “Isolated” clusters 4/5: lexicalized *incorporated idioms* [Davison, 2005]

Figure: Cluster visualization for $k = 5, c = 50$ (using tool by [Lamprecht et al., 2013])
Productivity

Light verb	Gloss	Relative frequency
de	‘give’	0.75
kar	‘do’	0.08
le	‘take’	0.06
ho	‘be’	0.06
a	‘come’	0.02
rakʰ	‘keep’	0.02
lag	‘attach’	0.01

Table: LV properties of cluster 3, measured at centroid

- Frequencies: *likelihood* of nouns in group to co-occur with LVs
- Productive patterns *more likely* to be valid CPs, less productive patterns *more likely* to be non-CP combinations [Butt et al., 2012]
Contents

1 Hindi/Urdu Noun-Verb Complex Predicates
2 Corpus study
3 Evaluation
4 Analysis
5 Grammar integration
Grammar integration

Noun templates

Light verb	Gloss	Relative frequency
de	'give'	0.75
kar	'do'	0.08
le	'take'	0.06
ho	'be'	0.06
a	'come'	0.02
rak^h	'keep'	0.02
lag	'attach'	0.01

Table: LV properties of cluster 3, measured at centroid

Could define grammar templates that model “absolute” choices:

```
NVGROUP3 = { NV-CP-VERB = dE
            | NV-CP-VERB = kar
            | ~ NV-CP-VERB
            }.
```

iSArA NOUN @NVGROUP3.

signal (give/do)
Even better: noun templates with optimality choices

Light verb	Relative frequency
de	0.75
kar	0.08
le	0.06
ho	0.06
a	0.02
rak h	0.02
lag	0.01

Table: LV properties of cluster 3

Advantages:

- Do not make strict assertions about CP formation
- Rather, model statistical preferences over analyses
- Boost grammar coverage, robustness

Or: grammar templates that model preferences, via marks inspired by Optimality Theory (OT):

\[
\text{OPTIMALITYORDER } \text{cp-dispref } \text{non-cp-dispref} \\
\text{ +cp-pref } \text{ +non-cp-pref}. \\
\]

\[
\text{NVGROUP3} = \{ \text{NV-CP-VERB} = \text{dE} \\
\text{ OT-MARK cp-pref} \\
\text{ VERB = dE} \\
\text{ \sim NV-CP-VERB} \\
\text{ OT-MARK non-cp-dispref} \\
\text{ \sim \ldots} \\
\text{ NV-CP-VERB = \text{lag}} \\
\text{ OT-MARK cp-dispref} \\
\text{ VERB = lag} \\
\text{ \sim NV-CP-VERB} \\
\text{ OT-MARK non-cp-pref} \\
\}
\]

\[iSArA \text{ NOUN } @\text{NVGROUP3}. \quad \text{signal (give/do)}\]
Summary

- Some nouns heavily lexicalized towards a peculiar semantic configuration (i.e., compatible with a smaller subset of light verbs)
- Others may occur with a wider range of light verbs
- In dire need of further theoretical linguistic work to (possibly) link “noun templates” defined here with semantic classes

→ Use for grammar development?
 - Lexicon development
 - Can define templates, based on classification
 - Handle new coinages/borrowings, predict their usage

- Future work:
 - Apply method to Urdu data
 - Refine/narrow down clusters (using more data/more features/more light verbs)
Thank you all for your attention!
Ahmed, T. and Butt, M. (2011).
Discovering Semantic Classes for Urdu N-V Complex Predicates.
In Proceedings of the International Conference on Computational Semantics (IWCS 2011).

Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O., Sharma, D., and Xia, F. (2009).
A Multi-Representational and Multi-Layered Treebank for Hindi/Urdu.
In Proceedings of the Third Linguistic Annotation Workshop, pages 186–189, Suntec, Singapore. Association for Computational Linguistics.

Bhattacharyya, P. (2010).
IndoWordNet.
In Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC’10), pages 3785–3792.

Bögel, T., Butt, M., Hautli, A., and Sulger, S. (2009).
Urdu and the Modular Architecture of ParGram.
In Proceedings of the Conference on Language & Technology 2009. Center for Research in Urdu Language Processing (CRULP).

Butt, M., Bögel, T., Hautli, A., Sulger, S., and Ahmed, T. (2012).
Identifying Urdu Complex Predication via Bigram Extraction.
In Proceedings of COLING 2012, Technical Papers, pages 409 – 424, Mumbai, India.

Butt, M., Dyvik, H., King, T. H., Masuichi, H., and Rohrer, C. (2002).
The Parallel Grammar Project.
In Proceedings of the COLING-2002 Workshop on Grammar Engineering and Evaluation, pages 1–7.
Butt, M. and King, T. H. (2007). Urdu in a Parallel Grammar Development Environment. *Language Resources and Evaluation: Special Issue on Asian Language Processing: State of the Art Resources and Processing*, 41.

Davison, A. (2005). Phrasal predicates: How N combines with V in Hindi/Urdu. In Bhattacharya, T., editor, *Yearbook of South Asian Languages and Linguistics*, pages 83–116. Mouton de Gruyter.

Lamprecht, A., Hautli, A., Rohrdantz, C., and Bögel, T. (2013). A Visual Analytics System for Cluster Exploration. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations*, pages 109–114, Sofia, Bulgaria. Association for Computational Linguistics.

Mohanan, T. (1994). *Argument Structure in Hindi*. CSLI Publications.

Reddy, S. and Sharoff, S. (2011). Cross Language POS Taggers (and other Tools) for Indian Languages: An Experiment with Kannada using Telugu Resources. In *Proceedings of the Fifth International Workshop On Cross Lingual Information Access*, pages 11–19, Chiang Mai, Thailand. Asian Federation of Natural Language Processing.
Sulger, S., Butt, M., King, T. H., Meurer, P., Laczkó, T., Rákosi, G., Dione, C. B., Dyvik, H., Rosén, V., De Smedt, K., Patejuk, A., Cetinoglu, O., Arka, I. W., and Mistica, M. (2013).
ParGramBank: The ParGram Parallel Treebank.
In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 550–560, Sofia, Bulgaria. Association for Computational Linguistics.

Van de Cruys, T. (2006).
Semantic Clustering in Dutch.
In Proceedings of the Sixteenth Computational Linguistics in Netherlands (CLIN), pages 17–32.
Background — the Hindi/Urdu ParGram Grammar

- Computational LFG grammar in development in Konstanz
- Aim: large-scale LFG grammar for parsing Urdu/Hindi
- Overview publications are e.g. [Butt and King, 2007], [Bögel et al., 2009]
- Grammar is part of the ParGram project
 - Collaborative, world-wide research project
 - Development of parallel, linguistically well-motivated LFG grammars for a variety of languages
 - Features and analyses are kept parallel for easy transfer between languages
- Languages involved: English, German, French, Indonesian, Japanese, Norwegian, Welsh, Georgian, Hungarian, Turkish, Chinese, Urdu/Hindi
- Overview publications are e.g. [Butt et al., 2002], [Sulger et al., 2013]
Background — the Hindi/Urdu ParGram Grammar

Example parse:

kīsan \(\text{ṭrekṭar}=\text{ko} \) \(\text{bec-ta} \) \(\text{he} \)
farmer.M.Sg.Nom tractor.M.Sg.Obl=Acc sell-Impf.M.Sg be.Pres.3.Sg

‘The farmer sells the tractor.’

More information on the Hindi/Urdu ParGram Grammar:
http://ling.uni-konstanz.de/pages/home/pargram_urdu/

More information on ParGram: http://pargram.b.uib.no/
Grammar integration

Class A: psych predications

- Occur with all three light verbs examined by [Ahmed and Butt, 2011]

(1) a. larki=ne kahani yad k-i
girl.F.Sg=Erg story.F.Sg memory.F.Sg do-Perf.F.Sg
‘The girl remembered a/the story.’
(lit. ‘The girl did memory of the story.’)

b. larki=ko kahani yad he
girl.F.Sg=Dat story.F.Sg memory.F.Sg be.Pres.3.Sg
‘The girl remembers/knows a/the story.’
(lit. ‘Memory of the story is at the girl.’)

c. larki=ko kahani yad hu-i
girl.F.Sg=Dat story.F.Sg memory.F.Sg be.Perf-F.Sg
‘The girl came to remember a/the story.’
(lit. ‘Memory of the story became to be at the girl.’)
Class B: agentive CPs

- Require an agentive (ergative-marked) subject and light verb *kar* ‘do’

(2) a. bilal=ne makan tamir ki-ya
 Bilal.M.Sg=Erg house.M.Sg construction.F.Sg do-Perf.M.Sg
 ‘Bilal built a/the house.’
 (lit. ‘Bilal did construction of the house.’)

b. * bilal=ko makan tamir he
 Bilal.M.Sg=Dat house.M.Sg construction.F.Sg be.Pres.3.Sg

c. * bilal=ko makan tamir hu-a
 Bilal.M.Sg=Dat house.M.Sg construction.F.Sg be.Perf-M.Sg
Class C: subject not an undergoer

- Exclude the light verb *hu-* ‘become’

(3) a. bilal=ne yih ḫarṭ taslim k-i
 Bilal.M.Sg=Erg this condition.F.Sg acceptance.M.Sg do-Perf.F.Sg
 ‘Bilal accepted this condition.’
 (lit. ‘Bilal did acceptance of this condition.’)

b. bilal=ko yih ḫarṭ taslim ḫe
 Bilal.M.Sg=Dat this condition.F.Sg acceptance.M.Sg be.Pres.3.Sg
 ‘Bilal accepted this condition.’
 (lit. ‘Acceptance of this condition was at Bilal.’)

c. * bilal=ko yih ḫarṭ taslim hu-a
 Bilal.M.Sg=Dat this condition.F.Sg acceptance.M.Sg be.Perf-M.Sg
[Ahmed and Butt, 2011] looked at a set of three light verbs
Extending the set of light verbs brings up new questions
Nouns that occur with *kar* ‘do’ and *de* ‘give’ (but exclude other light verbs)

(4) a. nadya=ne ləɾki=ko paramarʃ ki-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc advice.M.Sg do-Perf.M.Sg
 ‘Nadya advised the girl.’
 (lit. ‘Nadya did advice to the girl.’)

b. nadya=ne ləɾki=ko paramarʃ di-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc advice.M.Sg give-Perf.M.Sg
 ‘Nadya advised the girl.’
 (lit. ‘Nadya gave advice to the girl.’)
Nouns that occur with *kar* ‘do’ only, not with *de* ‘give’

(5) a. bilal=ne maka=na tamir=ka khi=ya
 Bilal.M.Sg=Erg house.M.Sg construction.F.Sg do-Perf.M.Sg
 ‘Bilal built a/the house.’
 (lit. ‘Bilal did construction of a/the house.’)
 [Ahmed and Butt, 2011, p. 3]

b. * bilal=ne maka=na tamir=ka dî=ya
 Bilal.M.Sg=Erg house.M.Sg construction.F.Sg give-Perf.M.Sg
Nouns that occur with *le ‘take’ only, not with any other light verb

(6) a. nadya=ne lărki=ko god lý-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc lap.F.Sg take-Perf.M.Sg
 ‘Nadya adopted the girl.’
 (lit. ‘Nadya took lap to the girl.’)

b. * nadya=ne lărki=ko god kî-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc lap.F.Sg do-Perf.M.Sg

c. * nadya=ne lărki=ko god dî-ya
 Nadya.F.Sg=Erg girl.F.Sg=Acc lap.F.Sg do-Perf.M.Sg