Supplementary Information for
Prolactin-mediated restraint of maternal aggression in lactation

Teodora Georgescu, Zin Khant Aung, David R. Grattan, Rosemary S. E. Brown

Rosemary Brown
Email: rosie.brown@otago.ac.nz

This PDF file includes:

- Supplementary text
- Figures S1 to S9
- Legend for Movie
- SI References
- Tables S1 to S12

Other supplementary materials for this manuscript include the following:

- Movie S1
Animals

VGlu2- and VGat-ires-Cre mice, originally developed by Brad Lowell1, were purchased from Jackson Labs [and (Slc17a6tm2(cre)Jowl/MwarJ, stock number 028863) and (Slc32a1tm2(cre)Jowl/MwarJ, stock number 028862), respectively]. These mice were crossed with our Prlrlox/lox mice to generate glutamatergic neuron-specific Prlr deleted mice (Prlrlox/lox/VGlu2-Cre) and GABAergic neuron-specific Prlr deleted mice (Prlrlox/lox/VGat-Cre). As Cre-mediated inversion deletes the Prlr gene and knocks in EGFP in its place in Prlrlox/lox mice2, EGFP expression in the brain was used as a marker for both successful recombination and for the normal pattern of receptor expression.

Prlr-iCre mice were crossed with Ai9 Cre-dependent tdTomato mice3, generating mice that express tdTomato specifically in Prlr-expressing neurons (Prlr-iCre/tdTomato mice). To assess the effect of prolactin on changes in intra-cellular calcium, Prlr-iCre mice were crossed with Cre-dependent calcium indicator GCaMP6f (B6.Cg\textsuperscript{-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze}, stock number 024105) mice from Jackson Labs, generating mice that express GCaMP6f specifically in Prlr-expressing neurons.

Immunohistochemistry

Immunohistochemistry for fluorescent pSTAT5 in brain tissue from Prlrlox/lox/VGlu2-Cre mice and control Prlrlox/lox mice was conducted as previously described4. Briefly, an antigen retrieval procedure was performed on all tissue before immunohistochemistry for pSTAT5. Sections were incubated in anti-pSTAT5 primary antibody (1:1000; polyclonal rabbit anti-pSTAT5; Tyr-694; Cell Signalling Technology, Inc., Beverly, MA) for 48 h at 4 °C, followed by a 60-min incubation in biotinylated goat anti-rabbit IgG (1:200; Vector Laboratories, Peterborough, United Kingdom). Sections were then incubated in Biotin-XX Tyramide (0.3%; Invitrogen, Carlsbad, CA), before being incubated in a Streptavidin 647 IgG (1:400, AlexaFluor; Invitrogen) for 2 h at 37 °C. For dual immunofluorescent labelling of GFP and ERα, sections from virgin and lactating Prlrlox/lox/VGlu2-Cre mice (n = 4-6/group) were incubated in anti-GFP primary antibody (polyclonal chicken anti-GFP; 1:5000; Aves Labs) for 48 h 4 °C, followed by a 60-min incubation in biotinylated goat anti-chicken IgG (1:500; Vector Laboratories). Sections were then incubated in Biotin-XX Tyramide (0.3%; Invitrogen,), before being incubated in a Streptavidin 568 IgG (1:400, AlexaFluor; Invitrogen) for 2 h at 37 °C. Tissue was incubated in anti-ERα primary antibody (1: 5000; polyclonal rabbit anti-ERα, 06-935; Sigma-Aldrich) for 48 h at 4 °C, followed by a 4 h incubation in goat anti-rabbit 488 IgG (1:500, AlexaFluor; Invitrogen) for 4 h at 21 °C.

To evaluate transfection and loss of functional Prlr expression in the VMN of AAV-Cre injected Prlrlox/lox mice, one series of brain tissue each was used to label GFP and pSTAT5 by chromogenic immunohistochemistry. To label GFP, sections were incubated in polyclonal rabbit anti-GFP (1:10 000; A-
645; Life Technologies) for 48 h at 4 °C. To label pSTAT5, sections were incubated in anti-pSTAT5 primary antibody as above. For GFP and pSTAT5 labelling, sections were incubated for 90 min in biotinylated goat anti-rabbit IgG (detailed above). Peroxidase labelling was visualized with nickel-diaminobenzidine tetrahydrochloride using glucose oxidase to produce a black nuclear precipitate. The GFP and prolactin-induced pSTAT5 labelling in the VMN were assessed in all AAV-Cre and AAV-control administered Prlrlox/lox and C57BL/6J mice. Only Prlrlox/lox/AAV-Cre mice showing widespread GFP labelling and the complete absence of pSTAT5 labelling throughout the VMN were included for analysis of maternal aggression.

To assess intruder-induced activation of Prlr-expressing neurons, groups of virgin and lactating (day 2-3 of lactation) Prlr-iCre/tdtomato female mice (n = 5-9/group) had a wildtype juvenile male mouse (19-25 days old) introduced to the home cage for 15 min at 1000 h. Separate control groups of virgin and lactating mice were generated where mice were not exposed to an intruder. Mice were anaesthetized 90 min following introduction of intruder and brains collected and processed as described above. One series of tissue was used to examine cFos immunoreactivity in tdtomato-expressing cells by immunofluorescence. Sections were incubated in anti-cFos primary antibody (1:5000; polyclonal rabbit anti-cFos; ab190289; Abcam, Cambridge, MA) for 48 h 4 °C, followed by a 60-min incubation in biotinylated goat anti-rabbit IgG (1:200; Vector Laboratories). Sections were then incubated in Biotin-XX Tyramide (0.3%; Invitrogen), before being incubated in a Streptavidin 647 IgG (1:400, AlexaFluor; Invitrogen) for 2 h at 37 °C. Quantification of tdtomato and cFos labelling was undertaken by counting the total number of cFos-labelled cells with and without tdtomato, in two sections per animal. Sections were anatomically matched between each different animal.

To assess AAV-hM3Dq transfection, groups of Prlr-iCre/AAV-mCherry and Prlr-iCre/AAV-hM3Dq mice were administered with 1.5 mg/kg CNO (saline/0.5% DMSO; i.p.) 45 minutes prior to transcardial perfusion with 4% paraformaldehyde. Brains and sections were collected as above and one series of tissue used to label mCherry (as a marker of successful AAV transfection) and cFos (as a marker of CNO-induced cellular activation in AAV-hM3Dq administered mice) by dual label chromogenic immunohistochemistry. Briefly, sections were incubated in rabbit anti-cFos primary antibody (1:10 000; ab190289, Abcam) for 48 h at 4 °C, followed by a 60-min incubation in biotinylated goat anti-rabbit IgG (1:200; Vector Laboratories). Peroxidase labeling was visualized with nickel-diaminobenzidine tetrahydrochloride using glucose oxidase to produce a black nuclear precipitate. Subsequently, sections were incubated in anti-mCherry primary antibody (1:10 000; rabbit anti-mCherry; ab167453, Abcam) for 48 h at 4 °C, followed by a 120-min incubation in peroxidase goat anti-rabbit IgG (1:200; Vector Laboratories). Peroxidase labelling was visualized with diaminobenzidine tetrahydrochloride using glucose oxidase to produce a brown cytoplasmic precipitate. Immunolabelling for mCherry and cFos were assessed in the VMN of all AAV-hM3Dq-injected and control AAV-mCherry-injected Prlr-iCre mice. Data was separately analyzed
for bilateral and unilateral AAV-hM3Dq transfection and no statistical difference was detected between these two groups. Mice showing both unilateral or bilateral AAV-hM3Dq transfection, as indicated by mCherry expression, were included for behavioral analysis (n=8-10/group).

To identify fiber projections from Prlr-expressing VMN cells, brains were collected from day 3 lactating Prlr-iCre/tdTomato mice injected with AAV5-EF1a-DIO-hChR2(H13R)-eYFP-WPRE. Two series of 30-μm-thick sections were cut throughout the forebrain and brainstem, and incubated with anti-GFP primary antibody (1:5000; polyclonal chicken anti-GFP; Aves Labs) for 48 h 4 °C, followed by a 3 h incubation in goat anti-chicken 488 (1:500, AlexaFluor; Invitrogen) at 37 °C. Only animals (n = 2-3) showing exclusive transfection of the VMNvl, with no cell body labelling present in the anatomically-close ARN, were included for analysis. Importantly, areas showing high levels of YFP-labelling of fibers did not show YFP-positive staining in cells bodies, which would have been indicative of retrograde transport of the marker, suggesting that the observed fiber staining was localized exclusively in projections from the VMN.

Fluorescent images for characterizing Prlr-expressing neurons were collected with a Nikon A1 Inverted Confocal microscope and x20 objective. Z stacks were taken 1.2 μm apart. Fluorescent images for assessing projections from Prlr-expressing VMN neurons were collected with a Ti2E Nikon Inverted microscope and x10 objective to acquire whole brain images. Briefly, the area containing a brain section was defined, the area scanned with two filters, individual images in the area were stitched together automatically and Z stacks were collected 4 μm apart. Chromogenic images were collected using an Olympus AX70 Light Microscope and x10 objective.

Resident-intruder test

All intruder mice were group housed. A yellow plastic block was used as a novel object. Animal behaviors were recorded from a profile view of the cage using a Canon Legria HF G50 camera. Manual behavioral annotation was performed on a frame-by-frame basis by a researcher blind to treatment and/or genotype. If a behavior was not observed during the test, then the test-duration of 15 min was assigned as latency time. In order to give an indicator of length of behavioral episodes, number of bouts and total time were reported separately. It should be noted that in these studies, changes in the number of attacking bouts consistently aligned with changes in total time attacking.

To investigate the effect of Prlr deletion from glutamatergic neurons in lactating mice, groups of Prlr^{lox/lox}/VGlut2-Cre and Cre-negative control Prlr^{lox/lox} mice (n = 8-10/group) underwent a resident-intruder test on day 2-3 of lactation. Separate groups of Prlr^{lox/lox}/VGlut2-Cre and Cre-negative control Prlr^{lox/lox} mice (n = 8-10/group) were generated and underwent the resident-intruder test to assess whether Prlr deletion from glutamatergic neurons altered intruder-directed aggression in virgin females (n = 5/group). Groups of GABAergic neuron-specific Prlr^{lox/lox}/VGat-Cre and Cre-negative control Prlr^{lox/lox}
mice were generated and underwent the resident-intruder test as virgins (n = 5-6/group) or during lactation day 2-3 (n = 4-5/group) to assess whether effects on intruder-directed aggression were specific to glutamatergic neurons.

Elevated Plus Maze

The elevated plus maze (EPM) was used to assess anxiety-related behavior in separate cohorts of lactating day 2-4 Prlr^{lox/lox}/VGlut2-Cre and control Prlr^{lox/lox} mice (n = 6-8/group). Animals were placed in the centre of the maze facing a closed arm. Behavior was recorded for 5 min, and recordings were analyzed using TopScan (CleverSys, Inc.). Analyzed parameters were the number of entries in each arm, the time spend in each arm and the total distance travelled in the maze. An arm entry was categorized when at least 75% of the animal’s body was in the arm.

Ex vivo brain slice electrophysiology and calcium imaging

Intracellular calcium imaging and electrophysiological recordings were made from adult (10-20 weeks) Prlr-iCre/GCaMP6f or Prlr-iCre/AAV-hM3Dq diestrus female and lactating mice. Mice were injected with a terminal dose of sodium pentobarbital (100 mg/kg, i.p.), decapitated, brains rapidly extracted and submerged in a choline chloride solution containing: 92mM choline chloride, 2.5mM KCl, 1.2mM Na_{H2}PO₄, 30mM NaHCO₃, 20mM HEPES, 25mM Glucose, 2mM L-Ascorbic acid, 2mM Thiourea, 3mM sodium pyruvate, 10 mM MgCl₂, 0.5mM CaCl₂, and bubbled with 5% CO₂ and 95% O₂. Coronal brain slices (200µm) were cut using a vibratome (VT1000S; Leica). The slices were incubated for 10 min at 30°C in the same choline chloride solution listed above. Slices recovered for a minimum of 1 h at room temperature in oxygenated HEPES holding solution containing: 92mM NaCl, 2.5mM KCl, 1.2mM Na_{H2}PO₄, 30mM NaHCO₃, 20mM HEPES, 25mM Glucose, 2mM L-Ascorbic acid, 2mM thiourea, 3mM sodium pyruvate, 1.3mM MgCl₂, 2.4mM CaCl₂.

Coronal brain slices (200µm) were transferred to a chamber and visualised using an upright microscope (Olympus, Tokyo, Japan). Slices were perfused at a rate of approx. 1.5-2 ml/min with oxygenated warm (30°C) aCSF solution containing: 127mM NaCl, 1.9mM KCl, 1.2mM NaH₂PO₄, 26mM NaHCO₃, 10mM Glucose, 1.3mM MgCl₂, 2.4mM CaCl₂. Slices were illuminated through a 40X immersion objective, using the xenon arc light source (300 W; filtered by a GFP filter cube, excitation 470–490 nm; Chroma) and shutter of a λDG-4 (Sutter Instruments, Novato, CA, USA). Epifluorescence images were (495 nm long pass and emission 500–520 nm) collected using a Hamamatsu ORCA-ER digital CCD camera (Hamamatsu Photonics, Shizuoka, Japan). The µ-manager 1.4 software controlled and synchronized the light source, shutter and camera.

For whole-cell recordings, glass pipettes were filled with an internal solution containing: 120mM K-gluconate, 15M KCl, 0.5mM Na₂EGTA, 2mM Mg₂ATP, 0.4mM Na₂GTP, 10mM HEPES, and 5mM Na₂-phosphocreatine (adjusted to pH 7.2 with KOH; adjusted to 290 mOsm with sucrose). Electrophysiological
signals were recorded using a Multiclamp 700B amplifier connected to a Digidata 1440A digitizer (Molecular Devices). Signals were low-pass filtered at 2 kHz and digitized at a rate of 10 kHz. Signal acquisition was carried out with pClamp 10 (Molecular Devices).

A focal plane including at least one fluorescent cell was chosen and acquisitions (100-ms light exposure at 2 Hz) were started. All pharmacological compounds were bath applied for 5 min following a 2-min baseline period. At the end of the recordings, the responsiveness of fluorescent cells was tested by bath application of 20mM KCl. The solutions were measured to reach the bath in 1 min. Changes in intracellular calcium concentration were estimated by measuring GCaMP6f fluorescence variations. Prolactin was purchased from Sigma (L6520, Sigma-Aldrich, St. Louis, MO, USA) and CNO was purchased from Advanced Molecular technologies (AMTA056, Rocco Drive, Scoresby, Victoria, 3179, Australia).

For calcium imaging analysis, time series of images were processed in ImageJ and regions of interest were selected. Average fluorescence intensity of in-focus individual neuronal cell bodies selections was measured in each individual frame. To correct for fluorescence bleaching, a linear regression was calculated using the slope of the signal. Fluorescence intensity data was analyzed and processed using Excel and Prism. Relative changes in fluorescence (ΔF/F) for each region of interest were calculated were F is the mean baseline fluorescence intensity. The fluorescence change was represented as a percentage. Prolactin was considered to have an effect on \([\text{Ca}^{2+}]_i\) if the GCaMP6f fluorescence increased by more than twice the standard deviation of the baseline period. If this criterion was not met, the effect of prolactin on the number of calcium spikes was analyzed instead. Cells were considered either excited or inhibited if the calcium spike frequency changed by at least 20% of the baseline event frequency. For calculating number of calcium events, total spike counts were collected using the pClamp 10 event threshold search.

Statistical Analysis

Data are reported as mean ± SEM (unless specified) and statistical analysis was undertaken using GraphPad Prism 9 (GraphPad Software, LLC.). Full statistical analysis for the data presented in figures has been reported in Source Data. Statistical significance was established as \(p < 0.05\). Differences in control and intruder-induced cFos immunolabelling in virgin and lactating animals were compared by two-way ANOVA and a Šidák multiple comparison test was used to identify statistically significant changes. One-way ANOVAs were used to compare the number of pSTAT5-labelled nuclei in groups of Prl\(^{lox/lox}\) and Prl\(^{lox/lox}\)/VGlut-Cre mice, and Fisher’s Uncorrected LSD test was used to identify statistically significant changes. Differences between vehicle and CNO injected animals in hM3Dq or mCherry-injected mice were compared by two-way ANOVA (Šidák post-hoc test).

All latency data were analyzed using survival analysis and curve comparison with the Mantel-Cox Log-rank test. When a significant main effect was found in the comparison of more than two curves, each two
individual curves were compared pairwise. Where correction for multiple comparisons was needed, \(p \)-values were adjusted with the Benjamini-Hochberg False Discovery Rate method, using an online calculator (Carbocation Corporation, 2016). Hazard ratios (HR) have been provided as an estimate of the effect size for the comparison of latency data (included in supplementary tables). Number of bouts and total time investigating or attacking were compared by \(t \)-test (when comparing 2 groups) or one-way ANOVA (Tukey post-hoc test). For calcium imaging, all group comparisons were performed using repeated measures multiple comparisons one-way ANOVA (Tukey post-hoc test) unless otherwise stated.
Lactating PrP<sup>PrP_F / VGlut-Cre

Novel Object

a

Latency to attack (seconds)

Percent of animals

p = 0.7798

p = 0.6809

Attacking bouts (number)

p = 0.3911

Time attacking (seconds)

p = 0.1356

p = 0.0006

Percent of animals

Latency to investigate (seconds)

p = 0.8188

p = 0.8280

Investigating bouts (number)

p = 0.7664

p = 0.7101

Time investigating (seconds)

p = 0.2767

p = 0.9657

Virgin PrP<sup>PrP_F / VGlut-Cre

♀ Juvenile intruder

Latency to attack (seconds)

Percent of animals

p = 0.6733

p = 0.297

Attacking bouts (number)

Time attacking (seconds)

p = 0.6672

p = 0.008

Percent of animals

Latency to investigate (seconds)

p = 0.8188

p = 0.8280

Investigating bouts (number)

p = 0.7664

p = 0.7101

Time investigating (seconds)

p = 0.2767

p = 0.9657

♂ Juvenile intruder
Fig. S1. Intruder or object-directed aggressive behavior (a-c) and investigative-behavior (d-f) in lactating Prlr^{lox/lox}/VGlu-t-Cre mice and virgin Prlr^{lox/lox}/VGat-Cre mice. Latencies to attack (a) or investigate (d), bouts of behavior (b, e) and total time undertaking attacking (c) or investigating (f) are reported.
Fig. S2. Fertility (a), and number of live pups per litter (b) in PrlR^{lox/lox}/VGlut-Cre mice and control PrlR^{lox/lox} mice. The time taken from introduction of a stud male to the presence of a copulatory vaginal plug (that led to a successful pregnancy) is used as an indicator of fertility (a). Number of live pups per litter (b) was recorded on day 3 of lactation where day of parturition was counted as day 1 of lactation. Litter size was adjusted to 6 pups per litter on day 3 of lactation and pup weight on day 4 and day 20 are reported (c). Pups from both PrlR^{lox/lox}/VGlut-Cre and control PrlR^{lox/lox} lactating mice significantly increased weight during lactation but there was no difference in pup weight gain between groups.
Fig. S3. Anxiety-behavior in the elevated plus maze was not different in lactating Prlr^{lox/lox}/VGlut-Cre mice compared to control Prlr^{lox/lox} mice.
Fig. S4. a-c) Intruder-directed investigative behavior in lactating Prl_{lox/lox}/VGlut-Cre, virgin Prl_{lox/lox}/VGlut-Cre mice and in lactating Prl_{lox/lox}/VGat-Cre mice. Compared to lactating control Prl_{lox/lox} mice, lactating Prl_{lox/lox}/VGlut-Cre mice show reduced bouts of investigating (b) and spent less time investigating (c) a C57BL/6J juvenile male intruder.
Fig. S5. Fertility (a), and number of live pups per litter on day 3 of lactation (b) in Prlr^{lox/lox} mice administered with an AAV-control, wildtype C57BL/6J mice administered with AAV-Cre and in mice with a VMN-specific deletion of the prolactin receptor (Prlr^{lox/lox}/AAV-Cre). c-e) Intruder-directed investigative behavior in Prlr^{lox/lox}/AAV-control, C57BL/6J/AAV-Cre (B6/AAV-Cre) and Prlr^{lox/lox}/AAV-Cre mice. Compared to lactating control groups, lactating Prlr^{lox/lox}/AAV-Cre mice show longer latencies to investigate (c) and spent significantly less time investigating (e) a C57BL/6J juvenile male intruder. Different letters represent statistically different groups ($P < 0.05$).
Fig. S6. Intruder-directed investigative behavior in virgin C57BL/6J female mice receiving either vehicle or prolactin (5 mg/kg, i.p., 45 minutes prior to testing) administration (a-c) and day 2-4 lactating C57BL/6J mice receiving either vehicle or a D2-receptor agonist, bromocriptine, to suppress endogenous prolactin release (5 mg/kg, i.p., 2 hours prior to testing; d-f).
Fig. S7. Intruder-directed investigative behavior in hM3Dq-injected and control mCherry-injected virgin (g-i) or lactating (j-l) Prlr-iCre mice following vehicle and CNO (1.5mg/kg; i.p.) administration. In hM3Dq-injected lactating females, CNO induced an increase in the total time spend investigating the intruder. Different letters represent statistically different groups ($P < 0.05$).
Fig. S8. Serial sections through the brain showing the distribution of GFP-labelled fibres (cyan) derived from prolactin-responsive neurons in the VMN, following unilateral administration of AAV5-EF1a-DIO-hChR2(H13R)-eYFP-WPRE into the VMN of Prlr-iCre mice. Note the predominately ipsilateral distribution extending from the AVPV (a-c), LPO (a), LS (a-c), VP (a,b), BNST (d,e), MPOA (d,e), PeVN (d,e), PVN (f), LH (d-g), SON (f), MeA (h,i), SNR (j), PAG (k,l), DpME (k), PBN (m,n), reticular nucleus (o). AVPV, anteroventral periventricular region; BNST, bed nucleus of the stria terminalis; DpME, deep mesencephalic nucleus; LH, lateral hypothalamic area; LPO, lateral preoptic area; LS, lateral septal nucleus; MPOA, medial preoptic area; MeA, medial amygdala; PAG, periaqueductal gray; PBN, parabrachial nucleus; PeVN, periventricular hypothalamic nucleus; PVN, paraventricular nucleus; SON, supraoptic nucleus; SNR, substantia nigra, reticular part; VMN, ventromedial nucleus; VP, ventral pallidum.
Fig. S9. Immunofluorescent labelling for Prlr-expressing glutamatergic neurons (indicated by GFP-labelling, cyan; a) and ERα (magenta; b) in the VMN and Arc of female Prlrllox/lox/VGlut-Cre mice (c shows composite image of GFP and ERα immunofluorescence). d) Approximately 80% of Prlr-expressing glutamatergic neurons express ERα in the VMN. Note the presence of many additional ERα-immunoreactive cells that do not co-express Prlr (a-c).
Movie S1 (separate file). Resident intruder test from a control C57Bl6/AAV-Cre dam (top panel) and a VMN specific Prlr deleted (Prlr^{lox/lox}/AAV-Cre) dam (bottom panel) following introduction of a juvenile male intruder.

SI References

1. Vong, L. *et al.* Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. *Neuron* **71**, 142-154, doi:10.1016/j.neuron.2011.05.028 (2011).

2. Brown, R. S. *et al.* Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. *J Neurosci* **36**, 9173-9185, doi:10.1523/JNEUROSCI.1471-16.2016 (2016).

3. Madisen, L. *et al.* A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. *Nat Neurosci* **13**, 133-140, doi:10.1038/nn.2467 (2010).

4. Brown, R. S. E. *et al.* Acute Suppression of LH Secretion by Prolactin in Female Mice Is Mediated by Kisspeptin Neurons in the Arcuate Nucleus. *Endocrinology* **160**, 1323-1332, doi:10.1210/en.2019-00038 (2019).

5. Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. *Methods Mol Biol* **1183**, 221-242, doi:10.1007/978-1-4939-1096-0_14 (2014).
Table S1. Figure 1 Statistical Analysis

Figure	Panel	Test Description	N	Statistics	Post-hoc Test	Statistics	p (post test)	
	a	Log-rank (Mantel-Cox) test	Virgin	c²	p	n/a		
			Lactating	4.786	0.0287	n/a		
b		Paired t test	Virgin	t, df	p	n/a		
			Lactating	t=3.055, df=19	0.0065	n/a		
c		Paired t test	Virgin	t, df	p	n/a		
			Lactating	t=3.275, df=19	0.004	n/a		
g		Two-way ANOVA	Prlr^{lox/lox} virgin	12	F (DFn, DFd)	p	Prlr^{lox/lox}:Virgin vs. Prlr^{lox/lox}:Lactating	0.1731
			Prlr^{lox/lox} lactating	8	F (1, 30) = 3.579	0.0682	Prlr^{lox/lox}:Virgin vs. Prlr^{lox/lox}/VGlut-Cre:Virgin	0.2343
			Prlr^{lox/lox}/VGlut-Cre virgin	9	F (1, 30) = 18.17	0.0002	Prlr^{lox/lox}:Virgin vs. Prlr^{lox/lox}/VGlut-Cre:Lactating	0.1076
			Prlr^{lox/lox}/VGlut-Cre lactating	5	F (1, 30) = 0.6909	0.4413	Prlr^{lox/lox}:Lactating vs. Prlr^{lox/lox}/VGlut-Cre:Virgin	0.0041
			Prlr^{lox/lox}/VGlut-Cre lactating	5	F (1, 30) = 0.6909	0.4413	Prlr^{lox/lox}/VGlut-Cre:Virgin vs. Prlr^{lox/lox}/VGlut-Cre:Lactating	0.0028
h		Log-rank (Mantel-Cox) test	Prlr^{lox/lox}	10	c²	p	n/a	
		Lactating - male juvenile intruder	Prlr^{lox/lox}/VGlut-Cre	8	7.371	0.0066	n/a	
		Log-rank (Mantel-Cox) test	Prlr^{lox/lox}	9	c²	p	n/a	
		Lactating - male adult intruder	Prlr^{lox/lox}/VGlut-Cre	8	10.52	0.0012	n/a	
		Log-rank (Mantel-Cox) test	Prlr^{lox/lox}	11	c²	p	n/a	
		Lactating - female adult intruder	Prlr^{lox/lox}/VGlut-Cre	6	0	>0.9999	n/a	
		Log-rank (Mantel-Cox) test	Prlr^{lox/lox}	5	c²	p	n/a	
	Prlr$^{lox/lox}$/VGlu-Cre	5	0	>0.9999				
------------------	------------------------------	---	---	---------				
Virgin - male juvenile intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	4	c2	p	n/a			
Log-rank (Mantel-Cox) test	**Prlr$^{lox/lox}$/VGlu-Cre**	5	0.2582	0.6114				
Lactating - male juvenile intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	10	t, df	p	n/a			
Lactating - male adult intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	8	t=2.037, df=16	0.0585				
Unpaired t test	**Prlr$^{lox/lox}$/VGlu-Cre**	9	t, df	p	n/a			
Lactating - female adult intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	11	t, df	p	n/a			
Unpaired t test	**Prlr$^{lox/lox}$/VGlu-Cre**	5	t, df	p	n/a			
Virgin - male juvenile intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	4	t=0.9155, df=7	0.3904				
Unpaired t test	**Prlr$^{lox/lox}$/VGlu-Cre**	5	t=2.96, df=15	0.0247				
Lactating - male juvenile intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	10	t, df	p	n/a			
Lactating - male adult intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	8	t=2.756, df=16	0.014				
Unpaired t test	**Prlr$^{lox/lox}$/VGlu-Cre**	9	t, df	p	n/a			
Lactating - female adult intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	11	t=2.374, df=15	0.0314				
Unpaired t test	**Prlr$^{lox/lox}$/VGlu-Cre**	6	t, df	p	n/a			
Lactating - female adult intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	5	t=1,323, df=7	0.2276				
Virgin - male juvenile intruder	**Prlr$^{lox/lox}$/VGlu-Cre**	4	t, df	p	n/a			
Table S2. Figure 2 Statistical Analysis

Figure	Panel	Test	N	Statistics	Post-hoc test	Statistics	p (post test)				
2	c	Log-rank (Mantel-Cox) test	$Pr^{lox/lox}$/ AAV-control	8	c^2	p	28.42	<0.0001	Benjamini-Hochberg False Discovery Rate	$Pr^{lox/lox}$/ AAV-control vs. $Pr^{lox/lox}$/ AAV-Cre	0.0003
			$Pr^{lox/lox}$/ AAV-Cre	8					$Pr^{lox/lox}$/ AAV-control vs. B6/ AAV-Cre	0.4978	
			B6/ AAV-Cre	6					$Pr^{lox/lox}$/ AAV-Cre vs. B6/ AAV-Cre	0.00045	
2	d	One-way ANOVA	$Pr^{lox/lox}$/ AAV-control	8	F	p	11.72	0.0005	Tukey's multiple comparisons test	$Pr^{lox/lox}$/ AAV-control vs. $Pr^{lox/lox}$/ AAV-Cre	0.0014
			$Pr^{lox/lox}$/ AAV-Cre	8					$Pr^{lox/lox}$/ AAV-control vs. B6/ AAV-Cre	0.9708	
			B6/ AAV-Cre	6					$Pr^{lox/lox}$/ AAV-Cre vs. B6/ AAV-Cre	0.0017	
2	e	One-way ANOVA	$Pr^{lox/lox}$/ AAV-control	8	F	p	15.89	<0.0001	Tukey's multiple comparisons test	$Pr^{lox/lox}$/ AAV-control vs. $Pr^{lox/lox}$/ AAV-Cre	0.0005
			$Pr^{lox/lox}$/ AAV-Cre	8					$Pr^{lox/lox}$/ AAV-control vs. B6/ AAV-Cre	0.7519	
			B6/ AAV-Cre	6					$Pr^{lox/lox}$/ AAV-Cre vs. B6/ AAV-Cre	0.0002	
Table S3. Figure 3 Statistical Analysis

Figure	Panel	Test	N	Statistics	Post-hoc test	Statistics	p (post test)
b	One-way RM ANOVA	7	F	32.4	<0.0003	Tukey's multiple comparisons test	Baseline vs. Prolactin 250nM: 0.0035 Baseline vs. Wash: 0.7955 Prolactin 250nM vs. Wash: 0.0005
c	One-way RM ANOVA	14	F	38.04	<0.0001	Tukey's multiple comparisons test	Baseline vs. Prolactin 250nM: <0.0001 Baseline vs. Wash: 0.5899 Prolactin 250nM vs. Wash: 0.0002
d	Gehan-Breslow-Wilcoxon test	12	c²	0.6944	0.4047	n/a	
e	Paired t test	12	t, df	t=0.1421, df=11	0.8896	n/a	
f	Paired t test	12	t, df	t=0.3949, df=11	0.7004	n/a	
g	Log-rank (Mantel-Cox) test	Vehicle 10	c²	0.316	0.574	n/a	
h	Unpaired t test	Vehicle 10	t, df	t=0.4289, df=19	0.6728	n/a	
i	Unpaired t test	Vehicle 10	t, df	t=0.8655, df=19	0.3976	n/a	
Figure	Panel	Test	N	Statistics	Post-hoc test	Statistics	p (post test)
--------	-------	------	----	------------	--------------	------------	--------------
4a					Tukey's multiple comparisons test		0.0001
4b					Tukey's multiple comparisons test		0.001
4g					Benjamini-Hochberg False Discovery Rate		
h					Šídák’s multiple comparisons test		0.3334
i					Šídák’s multiple comparisons test		0.2654
j					Benjamini-Hochberg False Discovery Rate		
k					Šídák’s multiple comparisons test		0.5785
l					Šídák’s multiple comparisons test		0.7406

Table S4. Figure 4 Statistical Analysis

- Virgin no intruder vs virgin intruder
- Virgin no intruder vs lactating no intruder
- Lactating no intruder vs lactating intruder
- Virgin no intruder vs lactating intruder
- Virgin intruder vs lactating intruder
- Virgin intruder vs lactating intruder
- Virgin intruder vs lactating intruder
-Virgin no intruder vs virgin intruder
-Lactating no intruder vs lactating intruder
-Virgin no intruder vs lactating intruder
-Virgin intruder vs lactating intruder
Table S1. Supplementary Figure 1 Statistical Analysis

Figure	Panel	Test	N	Statistics	
a		Log-rank (Mantel-Cox) test	Prllox/Lox	c2	p
		Lactating - novel object	Prllox/Lox/VGlut-Cre	9	0 >0.9999
		Log-rank (Mantel-Cox) test	Prllox/Lox	c2	p
		Lactating - female juvenile intruder	Prllox/Lox/VGlut-Cre	11	0.07815 0.7798
		Log-rank (Mantel-Cox) test	Prllox/Lox	c2	p
		Virgin - juvenile male intruder	Prllox/Lox/VGat-Cre	5	1.2 0.2733
b		Unpaired t test	Prllox/Lox	t, df	p
		Lactating - novel object	Prllox/Lox/VGlut-Cre	9	n/a n/a
		Unpaired t test	Prllox/Lox	t, df	p
		Lactating - female juvenile intruder	Prllox/Lox/VGlut-Cre	11	t=0.4188, df=16 0.6809
		Unpaired t test	Prllox/Lox	t, df	p
		Virgin - juvenile male intruder	Prllox/Lox/VGat-Cre	5	t=1.108, df=9 0.2967
c		Unpaired t test	Prllox/Lox	t, df	p
		Lactating - novel object	Prllox/Lox/VGlut-Cre	9	n/a n/a
		Unpaired t test	Prllox/Lox	t, df	p
		Lactating - female juvenile intruder	Prllox/Lox/VGlut-Cre	11	t=0.8815, df=16 0.3911
		Unpaired t test	Prllox/Lox	t, df	p
		Virgin - juvenile male intruder	Prllox/Lox/VGat-Cre	5	t=1.108, df=9 0.2967
d		Log-rank (Mantel-Cox) test	Prllox/Lox	c2	p
		Lactating - novel object	Prllox/Lox/VGlut-Cre	9	2.224 0.1358
		Log-rank (Mantel-Cox) test	Prllox/Lox	c2	p
		Lactating - female juvenile intruder	Prllox/Lox/VGlut-Cre	11	11.73 0.0006
		Log-rank (Mantel-Cox) test	Prllox/Lox	c2	p
		Virgin - juvenile male intruder	Prllox/Lox/VGat-Cre	5	0.1849 0.6672
e		Unpaired t test	Prllox/Lox	t, df	p
		Lactating - novel object	Prllox/Lox/VGlut-Cre	11	t=0.2324, df=18 0.8188
		Unpaired t test	Prllox/Lox	t, df	p
		Lactating - female juvenile intruder	Prllox/Lox/VGlut-Cre	11	t=0.2234, df=16 0.826
		Unpaired t test	Prllox/Lox	t, df	p
		Virgin - juvenile male intruder	Prllox/Lox/VGat-Cre	5	t=1.158, df=9 0.2767
f		Unpaired t test	Prllox/Lox	t, df	p
		Lactating - novel object	Prllox/Lox/VGlut-Cre	10	t=0.3022, df=16 0.7664
		Unpaired t test	Prllox/Lox	t, df	p
Intruder Type	Strain	Sample Size	t-Value	df	p-Value
--------------------------------	----------------------	-------------	---------	-----	---------
Lactating - female juvenile intruder	Prllox/lox/VGlut-Cre	7	0.3784	16	0.7101
Unpaired t test	Prllox/lox	5			
Virgin - juvenile male intruder	Prllox/lox/VGat-Cre	6	0.04423	9	0.9657
Table S6. Supplementary Figure 2 Statistical Analysis

Figure	Panel	Test	N	Statistics	Post-hoc test	Statistics	p (post test)		
S3	a	Unpaired t test	Prlr^{lox/lox}	12	t, df	p	0.1553	n/a	
			Prlr^{lox/lox}/VGlut-Cre	10	t=1.477, df=20	0.1553	n/a		
	b	Unpaired t test	Prlr^{lox/lox}	12	t, df	p	0.1983	n/a	
			Prlr^{lox/lox}/VGlut-Cre	10	t=1.331, df=20	0.1983	n/a		
	c	Two-way RM ANOVA	Day 4 - Prlr^{lox/lox}		F (DFn, DFd)	p	Šídák's multiple comparisons test	Prlr^{lox/lox}:Day 4 vs. Prlr^{lox/lox}:Day 20	<0.0001
			Day 20 - Prlr^{lox/lox}		F (1, 16) = 2.613	0.1255		Prlr^{lox/lox}/VGlut-Cre:Day 4 vs. Prlr^{lox/lox}/VGlut-Cre:Day 20	<0.0001
			Day 4 - Prlr^{lox/lox}/VGlut-Cre		F (1, 16) = 0.2114	0.6518	Šídák's multiple comparisons test	Prlr^{lox/lox}:Day 4 vs. Prlr^{lox/lox}/VGlut-Cre:Day 4	0.3648
Figure	Panel	Test	N	Statistics					
--------	-------	--------------------	----	--------------------					
S3	a	Unpaired t test	8	t, df					
		Prl\(^{lox/lox}\)		p					
		Prl\(^{lox/lox}\)/VGlut-Cre	6	t=1.646, df=12	0.1256				
	b	Unpaired t test	8	t, df					
		Prl\(^{lox/lox}\)		p					
		Prl\(^{lox/lox}\)/VGlut-Cre	6	t=0.2556, df=12	0.8026				
	c	Unpaired t test	8	t, df					
		Prl\(^{lox/lox}\)		p					
		Prl\(^{lox/lox}\)/VGlut-Cre	6	t=0.8801, df=12	0.3961				
Table S8. Supplementary Figure 4 Statistical Analysis

Figure	Panel	Test	N	Statistics	
	a	Log-rank (Mantel-Cox) test	Prllox/lox	c2	0.3577 0.5498
		Lactating - male juvenile intruder	Prllox/lox/VGlut-Cre	8	
		Log-rank (Mantel-Cox) test	Prllox/lox	c2	2.224 0.1358
		Lactating - male adult intruder	Prllox/lox/VGlut-Cre	8	
		Log-rank (Mantel-Cox) test	Prllox/lox	c2	1.024 0.3116
		Lactating - female adult intruder	Prllox/lox/VGlut-Cre	6	
		Log-rank (Mantel-Cox) test	Prllox/lox	c2	0.0224 0.881
		Virgin - male juvenile intruder	Prllox/lox/VGat-Cre	5	
		Log-rank (Mantel-Cox) test	Prllox/lox	c2	3.186 0.0743
		Lactating - male juvenile intruder	Prllox/lox/VGlut-Cre	8	
		Unpaired t test	Prllox/lox	t, df = 2.406, df = 16	p 0.0286
		Lactating - male juvenile intruder	Prllox/lox/VGlut-Cre	8	
		Unpaired t test	Prllox/lox	t, df = 2.091, df = 15	p 0.054
		Lactating - male adult intruder	Prllox/lox/VGlut-Cre	8	
		Unpaired t test	Prllox/lox	t, df = 0.5312, df = 15	p 0.6031
		Lactating - female adult intruder	Prllox/lox/VGlut-Cre	6	
		Unpaired t test	Prllox/lox	t, df = 1.068, df = 8	p 0.3168
		Virgin - male juvenile intruder	Prllox/lox/VGat-Cre	5	
		Unpaired t test	Prllox/lox	t, df = 2.382, df = 7	p 0.0487
		Lactating - male juvenile intruder	Prllox/lox/VGlut-Cre	8	
	b	Unpaired t test	Prllox/lox	t, df = 3.699, df = 16	p 0.0019
		Lactating - male juvenile intruder	Prllox/lox/VGlut-Cre	8	
		Unpaired t test	Prllox/lox	t, df = 0.5183, df = 15	p 0.6118
		Lactating - male adult intruder	Prllox/lox/VGlut-Cre	8	
		Unpaired t test	Prllox/lox	t, df = 1.490, df = 15	p 0.1569
		Lactating - female adult intruder	Prllox/lox/VGlut-Cre	6	
		Unpaired t test	Prllox/lox	t, df = 1.805, df = 8	p 0.1088
		Virgin - male juvenile intruder	Prllox/lox/VGat-Cre	5	
		Unpaired t test	Prllox/lox	t, df = 0.4232, df = 7	p 0.6848
		Lactating - male juvenile intruder	Prllox/lox/VGlut-Cre	5	
Table S9. Supplementary Figure 5 Statistical Analysis

Figure	Panel	Test	N	Statistics	Post-hoc test	Statistics	p (post test)	
	a	One-way ANOVA	Prlrsamy/ AAV-control	8	F p	Tukey's multiple comparisons test	Prlrsamy/ AAV-control vs. B6/ AAV-Cre	0.7878
			Prlrsamy/ AAV-Cre	7	0.7262 0.4974		B6/ AAV-Cre vs. Prlrsamy/ AAV-Cre	0.4654
S5	c	One-way ANOVA	Prlrsamy/ AAV-control	8	F p	Tukey's multiple comparisons test	Prlrsamy/ AAV-control vs. B6/ AAV-Cre	0.9733
			Prlrsamy/ AAV-Cre	8	0.9626 0.3997		Prlrsamy/ AAV-control vs. Prlrsamy/ AAV-Cre	0.4035
			B6/ AAV-Cre	6			B6/ AAV-Cre vs. Prlrsamy/ AAV-Cre	0.5874
	c	Log-rank (Mantel-Cox) test	Prlrsamy/ AAV-control	8	c2 p	Benjamini-Hochberg False Discovery Rate	Prlrsamy/ AAV-control vs. Prlrsamy/ AAV-Cre	0.5181
			Prlrsamy/ AAV-Cre	8	2.316 0.3141		Prlrsamy/ AAV-control vs. B6/ AAV-Cre	0.5956
			B6/ AAV-Cre	6			Prlrsamy/ AAV-Cre vs. B6/ AAV-Cre	0.49185
	d	One-way ANOVA	Prlrsamy/ AAV-control	8	F p	Tukey's multiple comparisons test	Prlrsamy/ AAV-control vs. Prlrsamy/ AAV-Cre	0.0148
			Prlrsamy/ AAV-Cre	8	5.858 0.0104		Prlrsamy/ AAV-control vs. B6/ AAV-Cre	0.037
			B6/ AAV-Cre	6			Prlrsamy/ AAV-Cre vs. B6/ AAV-Cre	0.9779
	e	One-way ANOVA	Prlrsamy/ AAV-control	8	F p	Tukey's multiple comparisons test	Prlrsamy/ AAV-control vs. Prlrsamy/ AAV-Cre	0.0034
			Prlrsamy/ AAV-Cre	8	12.04 0.0004		Prlrsamy/ AAV-control vs. B6/ AAV-Cre	0.5812
			B6/ AAV-Cre	6			Prlrsamy/ AAV-Cre vs. B6/ AAV-Cre	0.0007
Table S10. Supplementary Figure 6 Statistical Analysis

Figure	Panel	Test	N	Statistics
S6	a	Gehan-Breslow-Wilcoxon test	12	c², p
				0.5198, 0.4709
	b	Paired t test	11	t, df, p
				t=1.221, df=10, 0.2503
	c	Paired t test	12	t, df, p
				t=2.669, df=11, 0.0218
	d	Log-rank (Mantel-Cox) test	Vehicle 10	c², p
				0.00914, 0.9238
				Bromocortine 11
	e	Unpaired t test	Vehicle 10	t, df, p
				t=2.988, df=19, 0.0076
				Bromocortine 11
	f	Unpaired t test	Vehicle 10	t, df, p
				t=0.1061, df=18, 0.9167
				Bromocortine 11
Table S11. Supplementary Figure 7 Statistical Analysis

Figure	Panel	Test	N	Statistics	Post-hoc test	p (post test)			
					Benjamini-Hochberg False Discovery Rate				
a		Log-rank (Mantel-Cox) test	hM3Dq 13	c²	df	p	hM3Dq-Veh vs hM3Dq-CNO	0.6799	
					mCherry-Veh vs mCherry-CNO	0.9902			
					hM3Dq-Veh vs mCherry-Veh	0.4552			
					hM3Dq-CNO vs mCherry-CNO	0.9153			
b		Two-way RM ANOVA	hM3Dq 13	F (DFn, DFd)	p	Šídák's multiple comparisons test	hM3Dq-Veh vs hM3Dq-CNO	0.9031	
					Treatment x Virus	0.9794			
					Treatment	0.9724			
					Virus	0.0649			
					hM3Dq-Veh vs mCherry-Veh	0.136			
					hM3Dq-CNO vs mCherry-CNO	0.143			
c		Two-way RM ANOVA	hM3Dq 13	F (DFn, DFd)	p	Šídák's multiple comparisons test	hM3Dq-Veh vs hM3Dq-CNO	0.9757	
					Treatment x Virus	0.9289			
					Treatment	0.7798			
					Virus	0.2324			
					hM3Dq-Veh vs mCherry-Veh	0.5044			
					hM3Dq-CNO vs mCherry-CNO	0.5721			
d		Log-rank (Mantel-Cox) test	hM3Dq 10	c²	df	p	Benjamini-Hochberg False Discovery Rate	hM3Dq-Veh vs hM3Dq-CNO	0.3149
					mCherry-Veh vs mCherry-CNO	0.046			
					hM3Dq-Veh vs mCherry-Veh	0.27			
					hM3Dq-CNO vs mCherry-CNO	0.0548			
e		Two-way RM ANOVA	hM3Dq 10	F (DFn, DFd)	p	Šídák's multiple comparisons test	hM3Dq-Veh vs hM3Dq-CNO	0.5295	
					Treatment x Virus	0.5711			
					Treatment	0.0571			
					Virus	0.0516			
					hM3Dq-Veh vs mCherry-Veh	0.1669			
					hM3Dq-CNO vs mCherry-CNO	0.8699			
f		Two-way RM ANOVA	hM3Dq 10	F (DFn, DFd)	p	Šídák's multiple comparisons test	hM3Dq-Veh vs hM3Dq-CNO	0.0047	
					Treatment x Virus	0.0439			
					Treatment	0.0185			
					Virus	0.0654			
					hM3Dq-Veh vs mCherry-Veh	0.9488			
					hM3Dq-CNO vs mCherry-CNO	0.9975			
					hM3Dq-CNO vs mCherry-CNO	0.0125			
Table S12. Supplementary Figure 9 Statistical Analysis

Figure	Panel	Test	N	Statistics				
S9	d	Unpaired t test - VMN	Virgin	19	t, df	p	t=0.2593, df=45	0.7966
		Lactating	28		t=0.5994, df=45	0.5519		
		Unpaired t test - Arc	Virgin	19	t, df	p	t=0.2593, df=45	0.7966
		Lactating	28		t=0.5994, df=45	0.5519		