Search for Long-Lived Particles in e^+e^- Collisions

J. P. Lees,1 V. Poireau,1 V. Tisserand,1 E. Grauges,2 A. Palano,3a,3b G. Eigen,4 B. Stuju,4 D. N. Brown,5 L. T. Kerth,5 Yu. G. Kolomensky,5 M. J. Lee,5 G. Lynch,5 H. Koch,5 T. Schroeder,6 C. Hearty,7 T. S. Mattison,7 J. A. McKenna,7 R. Y. So,7 A. Khan,8 V. E. Blinov,9a,9b,9c A. R. Buzyaev,9 V. P. Druzhinin,9 V. B. Golubev,9a,9b E. A. Kravchenko,9 A. P. Onuchin,9a,9b,9c S. I. Serednyakov,9a,9b Yu. I. Skovpen,9a,9b E. P. Solodov,9a,9c K. Yu. Todyshev,9a,9b A. J. Lankford,10 B. Dey,11 O. Long,11 C. Campagnari,12 M. Franco Sevilla,12 T. M. Hong,12 D. Kovalskyi,12 J. D. Richman,12 C. A. West,12 A. M. Eisner,13 W. S. Lockman13 W. Panduro Vazquez,13 B. A. Schumm,13 A. Seiden,13 D. S. Chao,14 C. H. Cheng,14 B. Echenard,14 K. T. Flood,14 D. G. Hiltin,14 T. S. Miyashita,14 F. Ongmongkolkul,14 F. C. Porter,14 M. Röhrken,14 R. Andreassen,15 Z. Huard,15 B. T. Meadows,15 B. G. Pushpawela,15 M. D. Sokoloff,15 L. Sun,15 P. C. Bloom,16 W. T. Ford,16 A. Gaz,16 J. G. Smith,16 S. R. Wagner,16 R. Ayad,17 W. H. Toki,17 B. Spaan,18 D. Bernard,19 M. Verderi,19 S. Playfer,20 D. Bettoni,21a C. Bozzi,21a R. Calabrese,21a,21b G. Cibinetto,21a,21b I. Garzia,21a,21b E. Luppi,21a,21b L. Piemontese,21a V. Santoro,21a A. Catalletta,22 R. de Sangro,22 G. Finocchiaro,22 S. Martellotti,22 P. Patteri,22 I. M. Peruzzi,22 M. Piccolo,22 M. Rama,22 A. Zallo,22 R. Contr,22 M. Ronge,22,23b S. Passaggio,22a C. Patrignani,22a,22b E. Robutti,22b B. Bhuyan,22v Prasad,22a A. Adametz,22u Uwer,22 H. M. Lacker,22 A. Mallik,23a C. Chen,23a J. Cochran,23a S. Prell,23a H. Ahmed,23b A. V. Gritsan,23b N. Arnaud,23b M. Davier,24 D. Derkach,24 G. Grosdidier,24 F. Le Diberder,24 A. M. Lutz,24 B. Malascheu,24 P. Roudeau,24 A. Stocchi,24 G. Wormser,25 D. J. Lange,25 D. W. G. S. Leith,25 W. T. Ford,25 A. Gaz,25 J. G. Smith,25 S. R. Wagner,25 R. Ayad,26 D. J. Lange,26 D. M. Wright,26 A. Gaz,26 J. G. Smith,26 S. R. Wagner,26 R. Ayad,27 O. Long,27 C. Campagnari,28 M. Franco Sevilla,28 T. M. Hong,28 D. Kovalskyi,28 J. D. Richman,28 PRL 114, 171801 (2015) PHYSICAL REVIEW LETTERS week ending 1 MAY 2015
We present a search for a neutral, long-lived particle \(L \) that is produced in \(e^+e^- \) collisions and decays at a significant distance from the \(e^+e^- \) interaction point into various flavor combinations of two oppositely charged tracks. The analysis uses an \(e^+e^- \) data sample with a luminosity of 489.1 fb\(^{-1} \) collected by the BABAR detector at the \(\Upsilon(4S) \), \(\Upsilon(3S) \), and \(\Upsilon(2S) \) resonances and just below the \(\Upsilon(4S) \). Fitting the two-track mass distribution in search of a signal peak, we do not observe a significant signal, and set 90% confidence level upper limits on the product of the inclusive production cross section, branching fraction, and reconstruction efficiency for six possible two-body \(L \) decay modes as a function of the \(L \) mass. The efficiency is given for each final state as a function of the mass, lifetime, and transverse momentum of the candidate, allowing application of the upper limits to any production model. In addition, upper limits are provided on the branching fraction \(B(\bar{B} \rightarrow X_sL) \), where \(X_s \) is a strange hadronic system.

Recent anomalous astrophysical observations [1–3] have generated interest in GeV-scale hidden-sector states that may be long-lived [4–12]. Searches for long-lived particles have been performed both in the sub-GeV [13–15] and multi-GeV [16–21] mass ranges. Dedicated experiments to search for such particles have been proposed [22] or are under construction [23]. However, the \(\mathcal{O}(1 \text{ GeV}/c^2) \) mass range has remained mostly unexplored, especially in a heavy-flavor environment. \(B \) factories offer an ideal laboratory to probe this regime. Previously, the only \(B \)-factory results were from a search for a heavy neutralino by the Belle Collaboration [24].

We search, herein, for a neutral, long-lived particle \(L \), which decays into any of the final states \(f = e^+e^-, \mu^+\mu^- , e^+\mu^- , \pi^+\pi^- , K^+K^- , \) or \(K^\pm\pi^\mp \). A displaced vertex and two-body decay kinematics constitute the main means for background suppression, and the search is performed by fitting the distribution of the \(L \)-candidate mass.

The results are presented in two ways. In the “model-independent” presentation, no assumption is made regarding the production mechanism of the \(L \). Rather, we present limits on the product of the inclusive production cross section \(\sigma(e^+e^- \rightarrow LX) \), branching fraction \(B(L \rightarrow f) \), and efficiency \(e(f) \) for each of the two-body final states \(f \), where \(X \) is any set of particles. As Supplemental Material to this Letter [25], we provide tables of the efficiency as a function of the \(L \) mass, lifetime, and transverse momentum of the candidate, allowing application of the upper limits to any production model. In addition, upper limits are provided on the branching fraction \(B(\bar{B} \rightarrow X_sL) \), where \(X_s \) is a strange hadronic system.
motivated by Higgs-portal models of dark matter and other hidden sectors [8–11].

The data were collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC National Accelerator Laboratory. The sample consists of $404.0 \pm 1.7 \text{ fb}^{-1}$ collected at a c.m. energy corresponding to the $\Upsilon(4S)$ resonance, an “off-resonance” sample of $43.74 \pm 0.20 \text{ fb}^{-1}$ collected about 40 MeV below the $\Upsilon(4S)$ peak, $27.85 \pm 0.18 \text{ fb}^{-1}$ collected at the $\Upsilon(3S)$, and $13.56 \pm 0.09 \text{ fb}^{-1}$ taken at the $\Upsilon(2S)$ [27]. The $\Upsilon(4S)$ sample contains $(448.4 \pm 2.2) \times 10^6 BB$ pairs, and the $\Upsilon(3S)$ and $\Upsilon(2S)$ samples have $(121.3 \pm 1.2) \times 10^6 \Upsilon(3S)$ and $(98.3 \pm 0.9) \times 10^6 \Upsilon(2S)$ mesons, respectively [28]. An additional $\Upsilon(4S)$ sample of $20.37 \pm 0.09 \text{ fb}^{-1}$ is used to validate the analysis procedure and is not included in the final analysis.

The BABAR detector and its operation are described in detail in Refs. [29] and [30]. Charged-particle momenta are measured in a tracking system consisting of a five-layer, double-sided silicon vertex detector (SVT) and a 40-layer drift chamber (DCH), both located in a 1.5 T axial magnetic field. Electron and photon energies are measured in a CsI (TI) electromagnetic calorimeter (EMC) inside the magnet coil. Charged-particle identification (PID) is performed using an internally reflecting, ring-imaging Cherenkov detector, as well as the energy loss measured by the SVT, DCH, and EMC. Muons are identified mainly with the instrumented magnetic-flux return.

Using Monte Carlo (MC) simulations, we determine both the signal mass resolution and reconstruction efficiency. The events are produced with the EVTTGEN [31] event generator, taking the L spin to be zero. We generate two types of signal MC samples. In the first type, which is used to create the efficiency tables [25] for the model-independent presentation, the L is produced at 11 different masses, $m_0^{MC} = 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9$, and 9.5 GeV/c^2. For $m_0^{MC} \leq 4 \text{ GeV/c}^2$, the L is created in the process $e^+e^- \rightarrow BB$, with one B meson decaying to $L + N\pi$ ($N = 1, 2,$ or 3) and the other B decaying generically. At higher masses, the production process is $\Upsilon(4S) \rightarrow L + N\pi$. In both cases, the L is produced uniformly throughout the available phase space, with an average transverse decay distance of 20 cm. The events are subsequently reweighted to obtain efficiencies for other decay lengths. Note that these specific processes do not reflect preferred hypotheses about the production mechanism, nor do the results depend on these processes. Rather, they are a convenient method to populate the kinematic range for the efficiency tables.

The second type of signal MC sample, used for the model-dependent presentation of the results, contains $B \rightarrow X_s L$ decays, for the seven mass values $m_0^{MC} = 0.5, 1, 2, 3, 3.5, 4,$ and 4.5 GeV/c^2. The X_s is nominally taken to be $10\% K, 25\% K' (892),$ and $65\% K' (1680)$ [32], with the high-mass tail of the X_s spectrum suppressed by phase-space limitations, especially for heavy L states. This choice of X_s composition results in an L-momentum spectrum as a function of m_0^{MC} that reproduces the dimuon spectrum for $B \rightarrow X_s \mu^+\mu^-$ in events generated with EVTTGEN using the BTOXSLL model [31]. The other B meson in the event decays generically.

In addition to the signal MC samples, background MC samples are used for optimizing the event selection criteria and studying the signal extraction method. The background samples are $e^+e^- \rightarrow BB$ (produced with EVTTGEN [31]), $e^+e^- \rightarrow \mu^+\mu^-$ (KK2F [33]), e^+e^- (BHWIDTH [34]), and $q\bar{q}$ events (JETSET [35]), where q is a $u, d, s,$ or c quark. The detector response is simulated with GEANT4 [36].

The L candidates are reconstructed from pairs of oppositely charged tracks, identified as either e^+e^-, $\mu^+\mu^-$, $e^+\mu^+$, $\pi^+\pi^-$, K^+K^-, or $K^+\pi^-$. The PID efficiency depends on the track momentum, and is in the range 0.96–0.99 for electrons, 0.60–0.88 for muons, and 0.90–0.98 for kaons and pions. The pion misidentification probability is less than 0.01 for the electron PID criteria, less than 0.03 for the muon criteria, and averages at 0.06 for the kaon criteria. A track may have different PID assignments and may appear in multiple pairs. Each track must satisfy $d_0/\sigma_{d_0} > 3$, where d_0 is the transverse distance of closest approach of the track to the e^+e^- interaction point (IP), and σ_{d_0} is the d_0 uncertainty, calculated from the SVT and DCH hit position uncertainties during the track reconstruction. The two tracks are fit to a common vertex, and the χ^2 value of the fit is required to be smaller than 10 for one degree of freedom. The two-dimensional vector \vec{r} between the IP and the vertex in the transverse plane must have length $r \equiv |\vec{r}|$ in the range $1 < r < 50 \text{ cm}$, and the uncertainty on r is required to satisfy $\sigma_r < 0.2 \text{ cm}$. We require the angle α between \vec{r} and the L-candidate transverse-momentum vector to satisfy $\alpha < 0.01 \text{ rad}$. The uncertainty σ_α on the measured L-candidate mass m must be less than 0.2 GeV/c^2. The L candidate is discarded if either of the tracks has SVT or DCH hits located between the IP and the vertex, or if the vertex is within the material of the beam pipe wall, the DCH support tube, or the DCH inner cylinder. Candidates must satisfy the following decay-mode-specific invariant-mass criteria: $m_{e^+e^-} > 0.44 \text{ GeV/c}^2$, $m_{\mu^+\mu^-} > 0.37 \text{ GeV/c}^2$ or $m_{\mu^+\mu^-} > 0.5 \text{ GeV/c}^2$, $m_{e^+\mu^-} > 0.48 \text{ GeV/c}^2$, $m_{e^-\mu^+} > 0.86 \text{ GeV/c}^2$, $m_{K^+K^-} > 1.35 \text{ GeV/c}^2$, and $m_{K^+\pi^-} > 1.05 \text{ GeV/c}^2$. These criteria reject background from $K^0_S \rightarrow \pi^+\pi^-$ and $\Lambda \rightarrow \pi^+\pi^-\pi^0$ decays. In addition, other than in the $\mu^+\mu^-$ mode, they exclude low-mass regions in which the mass distributions of background MC events are not smooth and, therefore, are incompatible with the background description method outlined below. We require at least one of the tracks of $L \rightarrow \mu^+\mu^-$ candidates with $m \geq 8 \text{ GeV/c}^2$ to have an SVT hit. This rejects candidates that decay into $\mu^+\mu^-$ within the material of the final-focusing magnets and, thus, have poor mass resolution. These selection criteria are
found to yield near-optimal signal sensitivity given the broad range of \(m \) and \(r \) values of this search.

For each decay mode, we determine the full efficiency \(\epsilon \), including the impact of detector acceptance, trigger, reconstruction, and selection criteria, for different values of \(m_0^{\text{MC}} \), \(c \tau \), and \(p_T \). The efficiency, which is tabulated in Ref. [25], reaches a maximal value of \(\epsilon = 52\% \) for \(L \rightarrow \pi^+ \pi^- \) decays with \(m = 2 \text{ GeV}/c^2 \), \(p_T > 4 \text{ GeV}/c \), and \(c \tau = 6 \text{ cm} \). The dominant factor affecting \(\epsilon \) is the average transverse flight distance \(\langle r \rangle = c \tau(p_T)/m \). Reflecting the \(1 < r < 50 \text{ cm} \) requirement, \(\epsilon \) drops rapidly when \(\langle r \rangle \) goes below 1 cm or above 50 cm. In addition, \(\epsilon \) has some dependence on the \(L \) polar-angle \(\theta \), measured with respect to the direction of the \(e^+e^- \) center of mass. For a \(1 + \cos^2 \theta \) distribution in the c.m. frame, the strongest dependence is observed for track momentum \(p < 0.3 \text{ GeV}/c \), where \(\epsilon \) is decreased by 22% relative to that of a uniform \(\cos \theta \) distribution. For \(p > 2 \text{ GeV}/c \), \(\epsilon \) varies by no more than 8%. Similarly, the efficiency depends weakly on whether \(L \) is a scalar or a vector particle. For a longitudinally polarized vector, \(\epsilon \) typically varies by a few percent relative to the scalar case, with the greatest impact being an efficiency reduction of 25% for \(p_T < 0.3 \text{ GeV}/c \), \(m = 7 \text{ GeV}/c^2 \).

The dominant source of background consists of hadronic events with high track multiplicity, where large-\(\phi \) tracks originate mostly from \(K_0^0 \), \(\Lambda \), \(K^\pm \), and \(\pi^\pm \) decays, as well as particle interactions with detector material. Random overlaps of such tracks comprise the majority of the background candidates.

We extract the signal yield for each final state as a function of \(L \) mass with unbinned extended maximum-likelihood fits of the \(m \) distribution. The procedure is based on the fact that signal MC events peak in \(m \) while the background distribution varies slowly. The fit probability density functions (PDFs) for signal and background are constructed separately for each mode and each data sample. The PDFs account for the signal mass resolution, which is evaluated separately in each of 11 mass regions, where each region straddles the \(m_0^{\text{MC}} \) value of one of the signal MC samples of the first type. In region \(i \), the value of the signal PDF for a candidate with hypothesis mass \(m_0 \), measured mass \(m \), and mass resolution uncertainty \(\sigma_m \) is \(P_{SM}(m) = H^i_S[(m - m_0)/\sigma_m] \), where \(H^i_S(x) \) is the histogram of the mass pull \(x = (m^{\text{MC}} - m_0^{\text{MC}})/\sigma_m^{\text{MC}} \) for signal MC events of true mass \(m_0^{\text{MC}} \), measured mass \(m^{\text{MC}} \), and \(\sigma_m^{\text{MC}} \) uncertainty. This PDF accounts correctly for the large variation in \(\sigma_m \) with \(r \) and \(m \).

The background PDF \(P_B(m) \) is obtained from the data, so as not to rely on the background simulation, with the following procedure. First, we create a variable-bin-width histogram \(H^i_B(m) \) of the data \(m \) distribution. The width of a histogram bin, whose lower edge is in \(m \) region \(i \), is \(w_i = nR_i \), where \(n = 15 \), and \(R_i \) is the rms width of the signal \(m - m_0^{\text{MC}} \) distribution in that region. The value of \(R_i \) ranges from about 6 MeV/c^2 for \(m_0^{\text{MC}} = 0.5 \text{ GeV}/c^2 \) to 180 MeV/c^2 for \(m_0^{\text{MC}} = 9.5 \text{ GeV}/c^2 \). We obtain \(P_B(m) \) by fitting \(H^i_B(m) \) with a second-order polynomial spline, with knots located at the bin boundaries. Simulation studies of the background mass distribution show that the choice \(n = 15 \) is sufficiently large to prevent \(P_B(m) \) from conforming to signal peaks and, thus, hiding statistically significant signals, yet sufficiently small to avoid high false-signal yields due to background fluctuations. Figure 1 shows the \(m \) distributions of the data (with uniform mass bins) and the background PDFs.

We scan the data in search of an \(L \) signal, varying \(m_0 \) in steps of 2 MeV/c^2. At each scan point, we fit the data in the full mass range using the PDF \(n_S P_S + n_B P_B \), where the signal and background yields \(n_S \) and \(n_B \) are determined in the fit. The statistical significance \(S = \text{sign}(n_S)\sqrt{2\log(L_S/L_B)} \), where \(L_S \) is the maximum likelihood for \(n_S \) signal events over the background yield, and \(L_B \) is the likelihood for \(n_S = 0 \), is calculated for each scan point. The distributions of \(S \) values for all the scan points are nearly normal.

Significance values greater than 3 are found in two scan points, both in the \(\mu^+ \mu^- \) mode in the \(\Upsilon(4S) \) and \(\Upsilon(3S) + \Upsilon(2S) \) data. The highest significance is \(S = 4.7 \), with a signal yield of 13 events at the low-mass threshold of \(m_0 = 0.212 \text{ GeV}/c^2 \). The second-highest significance of \(S = 4.2 \) occurs at \(m_0 = 1.24 \text{ GeV}/c^2 \).
corresponding to a signal yield of 10 events. To obtain the \(p \) values for these significances, we perform the scans on a large number of \(m_{\mu^+\mu^-} \) spectra generated according to the background PDF, obtained from the data with a finer binning of \(n = 5 \). With this choice of \(n \), the generated spectra are not sensitive to fluctuations of the order of the signal resolution (which correspond to \(n = 1 \)), yet include features that are much smaller than the resolution of the PDF (\(n = 15 \)). We find that the probability for \(S \geq 4.7 \) (4.2) anywhere in the \(\mu^+\mu^- \) spectrum with \(m_{\mu^+\mu^-} < 0.37 \text{ GeV}/c^2 \) \((m_{\mu^+\mu^-} > 0.5 \text{ GeV}/c^2) \) is \(4 \times 10^{-4} \) (8 \times 10^{-3})

The \(p \) values are consistent with the naive expectation \(p(S)w/R \), where \(p(S) \) is the \(p \) value without the “look-elsewhere effect,” \(w \) is the width of the mass region under study, and \(R \) is the average value of \(R \). We do not include the other modes in the calculation of the \(p \) values. Doing so would naively multiply the \(p \) values by about six. Further study provides strong indication for material-interaction background in the 0.212 \text{ GeV}/c^2 region. Specifically, most of the 34 \(\mu^+\mu^- \) vertices with \(m_{\mu^+\mu^-} < 0.215 \text{ GeV}/c^2 \) occur inside or at the edge of detector-material regions, including 10 of the vertices that also pass the \(e^+e^- \) selection criteria and 10 that pass the \(\pi^+\pi^- \) criteria. Thus, the peak is consistent with misidentified photon conversions and hadronic interactions close to the mass threshold. We conclude that a significant signal is not observed.

Systematic uncertainties on the signal yields are calculated for each scan fit separately. The dominant uncertainty is due to the background PDF, and is evaluated by repeating the scans with \(n = 20 \), which is the maximal plausible value for \(n \) that does not lead to a large probability for false-signal detection. This uncertainty is a few signal events on average, and generally decreases with mass. An additional uncertainty is evaluated by taking \(R_i \) from events with \(p_T < 0.8 \text{ GeV}/c \) or \(p_T > 0.8 \text{ GeV}/c \). To estimate uncertainties due to the weak signal PDF dependence on \(r \) and \(m \), we repeat the scans after obtaining \(H^r_S \) from signal MC events with either \(r < 4 \text{ cm} \) or \(r > 4 \text{ cm} \), as well as from signal MC events from adjacent mass regions. The uncertainty due to the signal mass resolution is evaluated by comparing the mass pull distributions of \(K^0 \) mesons in data and MC, whose widths differ by 5%. A conservative uncertainty of 2% on the signal reconstruction efficiencies is estimated from the \(K^0 \) reconstruction efficiency in data and MC. Smaller uncertainties on the efficiency, of up to 1%, arise from particle identification and the finite size of the signal MC sample. The total uncertainties on the efficiency are reported in the efficiency tables [25].

Observing that the likelihood \(L^S \) is a nearly normal function of the signal yield, it is analytically convolved with a Gaussian representing the systematic uncertainties in \(n_S \), obtaining the modified likelihood function \(L^S \). The 90% confidence level upper limit \(U^S \) on the signal yield is calculated from \(\int_{L^S=0}^{L^S} d\sigma / \int_{L^S=0}^{L^S} d\sigma \). Dividing \(U^S \)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{(color online). The 90% confidence level upper limits on \(\sigma(e^+e^- \rightarrow LX)[B(L \rightarrow f)]c(f) \) as a function of \(L \) mass for the \(T(4S) \) + off-resonance sample (red lower points) and for the \(T(3S) + \Upsilon(2S) \) sample (blue upper points). The limits include the systematic uncertainties on the signal yield.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{(color online). Implications of the results for Higgs-portal scenarios, showing the 90% confidence level upper limits on the product of branching fractions \(B(B \rightarrow Xf)L[B(L \rightarrow f)] \) as a function of \(L \) mass for each final state \(f \) and for different values of \(ct \). The limits include all systematic uncertainties.}
\end{figure}
by the luminosity yields an upper limit on the product $\sigma(e^+ e^- \to L X)B(L \to f)\epsilon(f)$. This limit is shown for each mode as a function of m_0 in Fig. 2, and given in the Supplemental Material [25].

Determining the efficiency from the $B \to X_c L$ signal MC sample, we obtain upper limits on the product of branching fractions $B(B \to X_c L)B(L \to f)$ for each of the final states f. These limits are shown in Fig. 3.

In conclusion, we have performed a search for long-lived particles L produced in $e^+ e^-$ collisions. No signal is observed, and upper limits on $\sigma(e^+ e^- \to L X)B(L \to f)\epsilon(f)$ and on $B(B \to X_c L)B(L \to f)$ are set at 90% confidence level for six two-body final states f. We provide detailed efficiency tables to enable application of our results to any specific model [25].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom), BSF (USA-Israel). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).

[1] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).
[2] O. Adriani et al. (PAMELA Collaboration), Nature (London) 458, 607 (2009).
[3] M. Ackermann et al. (Fermi LAT Collaboration), Phys. Rev. Lett. 108, 011103 (2012).
[4] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 79, 115008 (2009).
[5] R. Essig, P. Schuster, and N. Toro, Phys. Rev. D 80, 015003 (2009).
[6] F. Bossi, Adv. High Energy Phys. 2014, 1 (2014).
[7] P. Schuster, N. Toro, and I. Yavin, Phys. Rev. D 81, 016002 (2010).
[8] F. Bezrukov and D. Gorbunov, J. High Energy Phys. 07 (2013) 140.
[9] C. Cheung and Y. Nomura, J. High Energy Phys. 11 (2010) 103.
[10] K. Schmidt-Hoberg, F. Staub, and M. W. Winkler, Phys. Lett. B 727, 506 (2013).
[11] J. D. Clarke, R. Foot, and R. R. Volkas, J. High Energy Phys. 02 (2014) 123.
[12] A. E. Nelson and J. Scholtz, Phys. Rev. D 91, 014009 (2015).
[13] S. Andreas, C. Niebuhr, and A. Ringwald, Phys. Rev. D 86, 095019 (2012).
[14] S. N. Gninenko, Phys. Rev. D 85, 055027 (2012).
[15] T. Adams et al. (NuTeV Collaboration), Phys. Rev. Lett. 87, 041801 (2001).
[16] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 97, 161802 (2006).
[17] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 071801 (2009).
[18] F. Abe et al. (CDF Collaboration), Phys. Rev. D 58, 051102 (1998).
[19] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 720, 277 (2013).
[20] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 108, 251801 (2012).
[21] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 719, 280 (2013).
[22] R. Essig, P. Schuster, N. Toro, and B. Wojtsekhowski, J. High Energy Phys. 02 (2011) 1.
[23] O. Moreno (HPS Collaboration), arXiv:1310.2060.
[24] D. Liventsev et al. (Belle Collaboration), Phys. Rev. D 87, 071102 (2013).
[25] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.114.171801 for the efficiency tables.
[26] The term “transverse” refers throughout this Letter to projections of vectors onto the plane transverse to the direction of the $e^+ e^-$ center of mass system.
[27] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).
[28] G. D. McGregor, Report No. SLAC-R-912, 2008.
[29] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[30] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 729, 615 (2013).
[31] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[32] J. Beringer et al. Particle Data Group, Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition.
[33] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63, 113009 (2001).
[34] S. Jadach, W. Placzek, and B. F. L. Ward, Phys. Lett. B 390, 298 (1997).
[35] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
[36] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).