Cytosolic Activation of Aromatic and Heterocyclic Amines. Inhibition by Dicoumarol and Enhancement in Viral Hepatitis B

Silvio De Flora, Carlo Bennicelli, Francesco D’Agostini, Alberto Izzotti, and Anna Camoirano

Institute of Hygiene and Preventive Medicine, University of Genoa, Italy

The aromatic amines 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, and 3-amino-1-methyl-SH-pyrido[4,3-b]indole (Trp-P-2) were activated by rat liver cytosolic fractions to form mutagenic metabolites in Salmonella typhimurium strains TA98, TA98NR, and TA98/1,8-DNP6. In the case of the Trp-P-2, the cytosolic activation was even more potent than the microsomal activation, which is classically ascribed to N-hydroxylation and subsequent esterification. The cytosolic activation was almost independent of NADPH-dependent, but induced by pretreatment of rats with 3-methylcholanthrene and especially Aroclor 1254 but not by phenobarbital, and cd inhibited by dicoumarol. The hypothesis is that, following a preliminary oxidative step in the cytosol (pure cytosolic activation) or in microsomes via prostaglandin H synthase (mixed microsomal-cytosolic activation), an oxidized intermediate of amino compounds may serve as substrate for DT diaphorase activity and bioclinically reduced to the corresponding N-hydroxyamino derivative. Purified DT diaphorase, in the presence of either NADPH or NADH as electron donor, produced mutagenic derivatives from IQ and Trp-P-2. An NADPH-dependent activation of Trp-P-2 also occurred in the liver cytosol of woodchucks (Marmota monax), but was not inhibited by dicoumarol. As previously demonstrated with liver S-12 fractions in both humans and woodchucks, the cytosolic activation of Trp-P-2 was enhanced in animals affected by hepatitis B virus infection. This enhanced metabolism, which persisted even after appearance of primary hepatocellular carcinoma in virus carriers, is likely to be ascribed to mechanisms other than DT diaphorase induction, such as glutathione depletion. — Environ Health Perspect 102(Suppl 6):69–74 (1994)

Key words: aromatic amines, heterocyclic amines, metabolism, cytosol, mutagenicity, dicoumarol, DT diaphorase, viral hepatitis

Introduction

The first metabolic step in the hepatic activation of mutagenic and carcinogenic aromatic amines (1) and of food-derived heterocyclic amines (2) consists in the microsomal oxidation of the exocyclic amino group, which is primarily catalyzed by cytochromes P4501A1 and especially P4501A2 (3). The N-hydroxyamino derivatives are further esterified to form more reactive species, e.g., via O-sulfation (4) or O-acylation, which takes place both in mammalian liver cytosol (5) and bacterial cells (6). An alternative pathway, especially in extrahepatic tissues, proceeds via one-electron oxidation catalyzed by microsomal prostaglandin H synthase (PHS) (7,8).

Less attention has been paid to the exclusive activation of these compounds in the liver cytosol, although an activation of aromatic amines to mutagenic metabolites has already been reported to occur in the presence of rat liver cytosolic fractions in bacterial test systems (9-11). We present herein the results of studies investigating the liver cytosolic metabolism of the aromatic amines 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 3-amino-1-methyl-SH-pyrido[4,3-b]indole (Trp-P-2). The cytosolic activation of all these compounds was inhibited by dicoumarol, a rather specific inhibitor of DT diaphorase activity (12). Addition of purified DT diaphorase, using either NADH or NADPH as electron donor, produced mutagenic derivatives of heterocyclic amines. In addition, in agreement with a previous study using S-12 fractions (13), the activation of Trp-P-2 by liver S-105 fractions was enhanced in woodchucks naturally infected with hepatitis B virus (WHV).

Materials and Methods

Chemicals and Biochemicals

Test mutagens included the heterocyclic amines Trp-P-2, IQ, and MeIQ (gifts of T Sugimura and K Wakabayashi, National Cancer Center Research Institute, Tokyo, Japan), and the aromatic amines 2AF (Ega-Chemie KG, Steinheim/Albuch, Germany), 2AAF and 2AA (both from Sigma Chemical Co., St. Louis, MO). All test mutagens were dissolved and diluted in dimethylsulfoxide (DMSO). Dicoumarol (Sigma) was dissolved in 0.01 N NaOH. DT diaphorase (EC 1.6.99.2), purified from the liver cytosol of 3-methylcholanthrene-treated rats (14), was a gift from L Ernster, C Lind, and J Segura Aguilar (Arrhenius Laboratory, University of Stockholm, Sweden). Its molecular activity, as assayed with menadione as substrate (15), was 72,500 mole/mole FAD/min.

Animals

Four groups (five animals each) of male adult Sprague-Dawley rats (Morini strain) were either untreated or treated with one of the following inducers (all of them diluted in corn oil): phenobarbital (Merck AG, Darmstadt, Germany) 3 ip injections of 60 mg/kg during the 3 days before killing, 3-methylcholanthrene (Fluka AG, Buchs, Switzerland) single ip injection of 80 mg/kg 24 hr before killing, or Aroclor 1254 (Monsanto Co., St. Louis, MO) single ip injection of 500 mg/kg 5 days before killing.
The livers of 17 woodchucks (Marmota monax), either uninfected or infected with WHV or additionally carrying primary hepatocellular carcinoma (PHC), were kindly supplied by P. Milman (Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA).

Preparation of Liver Subcellular Fractions

Liver preparations were obtained as previously described (16). They included: a) whole cell homogenates, obtained by homogenizing, in a Potter-Elvehjem apparatus, minced livers in a 50 mM Tris-0.25 M sucrose solution, pH 7.4 (3 ml/g wet tissue); b) S-12 fractions, i.e., supernatants obtained by twice centrifuging cell homogenates for 20 min at 12,000g; c) S-105 or cytosolic fractions, i.e., supernatants obtained by centrifuging S-12 fractions for 1 hr at 105,000g; and d) microsomal fractions, i.e., the corresponding pellets, washed once and resuspended in a 50 mM Tris 0.1 M EDTA solution, pH 7.4, supplemented with 20% glycerol (0.5 mg/g of original tissue). All the cell preparations were divided into small aliquots and immediately stored at -80°C until use. For use in mutagenicity assays, liver preparations were thawed and incorporated, in varying amounts, into S-9 mix, i.e., an NADPH-generating system composed of 8 mM MgCl₂, 33 mM KCl, 5 mM G6P, 4 mM NADP⁺ and 100 mM sodium phosphate, pH 7.4; in assays with microsomes this mix was supplemented with yeast G6PD (8 IU/ml).

Mutagenicity Assays

The mutagenicity of test compounds in the presence of the above described metabolic systems, at the doses indicated under Results, was evaluated in the Salmonella reversion test, according to the plate incorporation procedure (17), using the S. typhimurium strains TA98 (gift of BN Ames, University of California, Berkeley, CA) and its nitroreductase- or O-acetyltransferase-deficient derivatives TA98NR and TA98/1,8-DNP₆ (gifts of H.S. Rosenkranz, University of Pittsburgh, PA). Briefly, two consecutive preincubation steps were performed, the first (10 min at 37°C) involving the mixture of 500 µl of either of metabolic systems or its control (lacking liver preparations and/or cofactors) with 100 µl of either dimethylsulfoxide or its solvent, the second (30 min at 37°C) involving incubation with 100 µl of either test mutagens or their controls (DMSO) before plating in top agar with the appropriate Salmonella strain. All the assays were performed in triplicate plates.

Results

The mutagenicity assay of the heterocyclic amines Trp-P-2, IQ, and MeIQ in strain TA98 of S. typhimurium, in the presence of varying amounts of liver subcellular fractions from Aroclor-treated rats (Figure 1), showed that the activation by reconstituted cytosol plus microsomal fractions is even greater than that produced by the original postmitochondrial fractions. In addition,

![Figure 1](image1.png)

Figure 1. Metabolic activation of Trp-P-2 (20 ng/plate), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (8 ng/plate) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (2 ng/plate) to mutagenic metabolites in strain TA98 of S. typhimurium, in the presence of varying amounts of liver post-mitochondrial (S-12), cytosolic (S-105), microsomal, or reconstituted cytosolic plus microsomal fractions from Aroclor-treated rats. The assays were carried out either in the presence (●●●) or in the absence (○○○) of 50 µM dicycromol.

![Figure 2](image2.png)

Figure 2. Metabolic activation of Trp-P-2 (20 ng/plate), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (8 ng/plate) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (2 ng/plate) to mutagenic metabolites in strain TA98 of S. typhimurium, in the presence of varying amounts of liver cytosolic fractions from either uninduced, phenobarbital-, 3-methylcholanthrene-, or Aroclor 1254-induced rats. The assays were carried out either in the presence (●●●) or in the absence (○○○) of 50 µM dicycromol.
cytosolic fractions were as active (IQ and MeIQ) or even more active (Trp-P-2) than the corresponding microsomal fractions, at equivalent weight of liver, in activating these heterocyclic amines. The addition of dicoumarol resulted in a significant decrease of the mutagenicity of all three compounds, and especially of Trp-P-2, in the presence of S-12, S-105, or S-105 plus microsomal fractions, but not in the presence of pure microsomal fractions (Figure 1). As assessed with Trp-P-2, the activation by either S-12 or S-105 fractions was characteristically NADPH- or NADPH-dependent, the mutagenic response being poor when no pyridine nucleotide was included in the composition of S9 mix (data not shown).

As shown in the experiment reported in Figure 2, the cytosolic activation of Trp-P-2, IQ, and MeIQ to mutagenic metabolites was poor when liver preparations from either untreated or phenobarbital-treated rats were used; whereas, metabolism was stimulated by pretreatment of rats with 3-methylcholanthrene and even more with Aroclor 1254. Again, addition of dicoumarol inhibited the cytosolic activation of these heterocyclic amines, to a marked extent in the case of Trp-P-2. Inhibition by dicoumarol was dose-dependent (Figure 3).

The mutagenicity of Trp-P-2 in the presence of rat liver S-12 or S-105 fractions was similar in the S. typhimurium strains TA98 and TA98NR; whereas, it was decreased but not abolished (about half in the experiment shown in Figure 4) in TA98/1,8-DNP. Inhibition by dicoumarol was evident and significant ($p<0.001$, as assessed by Student’s t-test) in all three strains (Figure 4).

Four separate experiments with IQ and one experiment with Trp-P-2 indicated that addition of purified DT diaphorase, in the presence of either NADH or NADPH as electron donor, resulted in a poor (from 1.9- to 4.6-fold) yet reproducible and dose-dependent enhancement of mutagenicity, which was inhibited by dicoumarol (Table 1).

Similar indications were provided by experiments with the aromatic amines 2AF, 2AAF, and 2AA, shown in Figure 5. All three compounds were activated not only by S-12 but also by rat liver S-105 fractions, and dicoumarol produced a significant decrease of mutagenicity.

The activation of Trp-P-2 to mutagenic metabolites was also obtained in the presence of woodchuck liver S-105 fractions (Figure 6). The results of these experiments are expressed as relative metabolic efficiency (RME), i.e., the ratio of mean revertants induced by Trp-P-2 in the presence of each liver preparation to mean revertants induced by Trp-P-2 in the presence of S105 buffer. In spite of a considerable interindividual variabiliy, activation by liver S-105 fractions from WHV-infected animals (mean ± SD = 8.1 ± 10.3) was sig-

![Figure 3](image-url)
Figure 3. Decrease of Trp-P-2 (20 ng/plate) mutagenicity in strain TA98 of *S. typhimurium*, in the presence of liver cytosolic fractions (50 µl/plate) from Aroclor-treated rats, as related to the amounts of dicoumarol (5-50 µM).

![Figure 4](image-url)
Figure 4. Mutagenicity of Trp-P-2 (50 ng/plate) in strains TA98, TA98NR, and TA98-1,8-DNP of *S. typhimurium* following activation by either S-12 (2.5 µl/plate) or S-105 (12.5 µl/plate) fractions from Aroclor-treated rats, either in the presence (dashed columns) or in the absence (open columns) of 50 µM dicoumarol.

![Figure 5](image-url)
Figure 5. Mutagenicity of varying amounts of the aromatic amines 2-aminofluorene, 2-acetylaminofluorene, and 2-aminoanthracene in strain TA98 of *S. typhimurium* after activation by either S-12 (○) or S-105 (△) fractions from Aroclor-treated rats, either in the absence (○, △) or presence (●, △) of 50 µM dicoumarol. Based on preliminary dose-response curves, 10 µl S-12 and 20 µl S-105 were used for 2AF and 2AA activation, whereas 40 µl S-12 and 80 µl S-105 were used for 2AAF activation.

Exp.	Compound, no. 10 µg/plate	Electron donor	Purified DT diaphorase	Revertants per plate
1	IQ	NADH (4 mM)	—	120 ± 3 141 ± 23
		+ (1U)	—	312 [x2.6] 139 [x1.0]
2	IQ	NADH (4 mM)	—	44 ± 1 47 ± 8
		+ (2U)	—	203 [x4.6] NT
		+ (1U)	—	128 [x2.9] NT
		+ (0.5U)	—	105 [x2.4] NT
3	IQ	NADPH (4 mM)	—	62 ± 14 59 ± 11
		+ (2U)	—	203 [x3.3] 74 [x1.2]
		—	+ (2U)	73 ± 8 66 ± 19
		—	+ (2U)	171 [x2.3] 88 [x1.3]
4	IQ	NADPH (4 mM)	—	85 ± 22 93 ± 15
		+ (1U)	—	173 [x2.0] 97 [x1.0]
		—	+ (1U)	67 ± 10 64 ± 9
		—	+ (1U)	126 [x2.9] 71 [x1.1]
5	Trp-P-2	NADPH (4 mM)	—	44 ± 8 51 ± 7
		+ (1U)	—	91 [x2.1] 54 [x1.1]

*Results are expressed as mean SD of triplicate plates in the absence of DT diaphorase and of individual results in its presence. Values between brackets indicate the relative increase of revertants produced by the pure enzyme.
nificantly greater than that from uninfected animals (2.7 ± 0.55) (p<0.05, as assessed by Student's t-test). The former value did not significantly differ from that produced by the nontumorous tissue preparations of WHV carriers bearing PHC (4.6 ± 1.57). Within this group of animals, the liver cytosol from the cancer tissue was significantly less efficient in activating Trp-P-2 than the surrounding nontumorous tissue (p<0.05, as assessed by Student's t-test for paired data). Activation by woodchuck liver cytosol was almost exclusively NADPH dependent, but was not affected by addition of dicumarol (data not shown). There was a high (r = 0.88) and significant (p<0.001) correlation between activation by woodchuck liver S-105 fractions, as reported in the present study, and activation by the corresponding S-12 fractions, as it had been reported in a previous study (13) (Figure 7).

Discussion

The results of the present study provide evidence that liver cytosol can contribute to the activation not only of aromatic amines, but also of heterocyclic amines. The production of mutagenic metabolites by microsomal and cytosolic fractions was of the same order of magnitude for the two imidazooquinolines; whereas, cytosolic fractions were even more effective than microsomal fractions in activating the tryptophan pyridines product.

In any case, as assessed with all three heterocyclic amines, the mutagenic response obtained in the presence of cytosolic and microsomal fractions was less than additive, as compared to the effect of the original S-12 fractions. At least in the case of Trp-P-2, activation was even better by reconstituting cytosolic and microsomal fractions. These results suggest that, besides an exclusive cytosolic metabolism, an interaction between microsomal and cytosolic pathways can also occur, such interaction being better expressed when the two subfractions are reconstituted in the experimental system used. The potentiating effect of the cytosol towards microsomal activation had been previously reported with aromatic and heterocyclic amines, such as 3-amino-5H-pyrido[4,3-b]indole (18), 2AF (19), and IQ (20). However, in the last two studies the cytosol alone failed to activate 2AF and IQ. In another laboratory, where 2AF, 2AAF, and 2AA had been reported to be activated by the cytosol alone (9), the cytosol was also found to enhance the S-9 activation of the same compounds (21).

The cytosolic activation of IQ, MelIQ, Trp-P-2, 2AF, 2AAF, and 2AA, as assessed in the present study, was a) NADPH dependent, b) uninduced by phenobarbital but induced by 3-methylcholanthrene and, even more, by Aroclor 1254, and c) inhibited by dicumarol, with top efficiency in the case of Trp-P-2. Dicumarol decreased the mutagenic response induced in the presence of either S-12 or S-105 fractions but not in the presence of microsomes. In preliminary assays carried out in our laboratory, the S-12-mediated mutagenicity of MelIQ and Trp-P-2 and, in addition, of a cigarette smoke condensate which among other compounds contains heterocyclic amines (22) and various quinones (23) had been found to be decreased by dicumarol (24). Inhibition by dicumarol of S-12 and S-105 activation of Trp-P-2 occurred in all tester strains, irrespective of their sensitivity to this compound, which was similar in TA98 and its nitroreductase-deficient derivative TA98NR, and lower (yet still appreciable) in the O-acetyltransferase-deficient derivative TA98/1,8-DNP6. This suggests that the results obtained in the presence of liver subfractions are not affected by further metabolism in bacterial cells.

All these patterns converge in suggesting a possible role of DT diaphorase in the cytosolic activation of aromatic and heterocyclic amines. In fact, this FAD-containing flavoprotein is mostly localized in the cell cytosol, where it utilizes both reduced pyridine nucleotides as electron donors, dicumarol being the most potent inhibitor (12). Moreover, DT diaphorase is induced in rat liver cytosol by 3-methylcholanthrene and even more by Aroclor 1254, but not by phenobarbital (25,26). However, an involvement of DT diaphorase in the metabolism of amino compounds is difficult to be interpreted, because it is obvious that these molecules cannot per se accept electrons. We raise the hypothesis that the amino group may undergo a preliminary oxidation to form an intermediate, acting as a substrate for DT diaphorase. For instance, as shown with pyrolysis products of trypto-
phan and glutamic acid, heterocyclic amines can be oxidized in the cytosol by hydrogen peroxide plus various peroxidases or catalase (27,28). Alternatively, as reported in the Introduction, amines can undergo a one-electron oxidation catalyzed by microsomal PHS (7,8), which can explain a combined microsomal-cytoisolic activation of these compounds. It has been reported that PHS can oxidize 2AF to 2-nitrofluorene (29), and possibly IQ to nitro-IQ (30).

It is likely that N-hydroxy compounds are common metabolites to heterocyclic amines and their nitroderivatives, via monoxygenases and nitroreductases, respectively (31). In this study, however, bacterial nitroreductases did not affect the cytosolic activation of Trp-P-2. Therefore, we propose that, following a preliminary oxidation to the nitroso- or the nitro-derivative, either in the cytosol or in the endo-

plasmic reticulum, DT diaphorase may catalyze one or two consecutive two-electron reductions, as it is typical for this enzyme activity (at least with quinones) (32). The weak yet consistent generation of mutagenic derivatives following addition of purified DT diaphorase to IQ or Trp-P-2, in the presence of either NADH or NADPH, may possibly be ascribed to traces of oxi-
dized amines in the reaction mixture. It is noteworthy that DT diaphorase has already been shown to metabolize nitrocom-
pounds, such as 4-nitroquinoline 1-oxide (24,33) and dinitropyrenes (DPN) (34).

In the case of DNP isomers, activation by liver cytosol contrasts with detoxification by microsomal or S-12 fractions (34,35). Extensive studies now in progress in our laboratory show that the mutagenicity of 1,3-DNP, 1,6-DNP, and 1,8-DNP is inhibited by rat liver S-12 or microsomal fractions, irrespective of Aroclor induction, as well as by cytosolic fractions from Aroclor-treated rats. The mutagenicity of 1,3-DNP is considerably enhanced only by using the cytosol from uninduced rats, with an NADPH-dependent and dicoumarol-
inhibitable mechanism. The mutagenicity of all these compounds is also enhanced by reduced glutathione (unpublished data).

Trp-P-2 was also activated by the liver cytosol of woodchucks, and cytosolic activa-
tion correlated with S-12 activation, which had been investigated in a previous study using the same liver specimens (13). The cytosolic activation was NADPH de-

pendent but was not inhibited by dicoumarol, which rules out any involvement of DT diaphorase in this rodent species. Therefore, different mechanisms appear to be involved in the cytosolic activation of Trp-P-2 in rat and woodchuck liver.

Previous studies using liver postmito-

chondrial fractions from patients affected by chronic active hepatitis (36), wild-

caught woodchucks affected by chronic active hepatitis (37), and the specimens of captive woodchucks analyzed in this study (13), had demonstrated that infection with the specific hepadnaviruses, i.e., hepatitis B virus (HBV) in humans and WHV in woodchucks, results in an enhanced activa-
tion of Trp-P-2 to mutagenic metabolites. This inducing effect has been confirmed now by using woodchuck liver cytosolic fractions. Moreover, in agreement with the data obtained by testing the corresponding S-12 fractions, stimulation of the cytosolic activation of Trp-P-2 in WHV-infected animals persisted also after PHC formation. The cancer tissue itself, in accordance with the resistant hepatocyte model (38), exhibited a reduced Trp-P-2-activating abil-

ity, as compared to the surrounding non-
carcinogenic tissue. Since all these effects were not affected by dicoumarol, and DT diaphorase activity was not altered by WHV infection (13), other cytosolic mech-

anisms, such as the marked depletion of hepatocellular glutathione produced by

WHV (13), are likely to account for the modula-
tion of the cytosolic metabolism of procarcinogens in viral hepatitis B.

Heterocyclic amines produce higher levels of DNA adducts in the liver than in other organs, which correlates with their hepatocarcinogenicity (39). Taking into account that humans are exposed ubiquitously to these compounds through the ingestion of cooked foods, an enhancement of their metabolic activation in the liver of hepa-
naviruses carriers, both in the cytosol and the endoplasmic reticulum, may bear relevance in the etiopathogenesis of the PHC forms associated with HBV infection.

REFERENCES

1. Miller EC, Miller JA. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47:2327–2345 (1981).
2. Ishii K, Yamazoe Y, Kamataki T, Kato R. Metabolic activation of glutamic acid pyrolysis products, 2-aminoo-6-

methylpyridino[1,2-a:3',2'-d]imidazole and 2-aminoo-

dipyrido[1,2-a:3',2'-d]imidazole, by purified cytochrome P450. Chem Biol Interact 38:1–13 (1981).
3. Gonzales FA, Gelboin HV. Human cytochromes P450: evolution, catalytic activities and interindividual variations in expres-

sion. In: New Horizons in Biological Dosimetry (Gleddhill BF, Mauro F, eds). New York:Wiley-Liss, 1991;11–20.
4. Nagao M, Fujita Y, Wakabayashi K, Sugimura T. Ultimate forms of mutagenic and carcinogetic heterocyclic amines pro-
duced by pyrolysis. Biochem Biophys Res Commun 114:626–631 (1983).
5. Yamazoe Y, Shimada M, Kamataki T, Kato R. Covalent bind-

ing of N-hydroxy-Trp-P-2 to DNA by cytosolic proline-dependen-
d system. Biochem Biophys Res Commun 107:165–172 (1982).
6. Saito K, Yamazoe Y, Kamataki T, Kato R. Mechanism of acti-

vation of proximate mutagens in Ames' tester strains: the acetyl-CoA dependent enzyme in Salmonella typhimurium

TA98 deficient in TA98/1,8-DNP6 catalyzes DNA-binding as the cause of mutagenicity. Biochem Biophys Res Commun

116:141–147 (1983).
7. Kadlubar F, Frederick C, Weiss C, Zenser T. Prostaglandin endoperoxide synthetase-mediated reaction of carcinogenic aromatic amines and their binding to DNA and protein. Biochem Biophys Res Commun 108:253–258 (1982).
8. Petry TW, Krauss RS, and Eling TE. Prostaglandin H synth-

ememediated bioactivation of the amino acid pyrolyse prod-

tuct Trp-P-2. Carcinogenesis 7:1397–1400 (1986).
9. Forster R, Green MHL, Priestley A. Apparent activation of 2-

acetylaminofluorene and other aromatic amines by cytosolic preparations. Mutat Res 85:187–194 (1981).
10. McGregor DB, McConville M, Menzies C, Prentice RD. Differing activation pathways for 2-acetylaminofluorene to a mutagen in vitro. Mutat Res 102:29–50 (1982).
11. Ayrton AD, Neville S, Ioannides C. Cytosolic activation of 2-

aminoanthracene: implications in its use as diagnostic mutagen in the Ames test. Mutat Res 265:1–8 (1992).
12. Ernster L, Danielson L, Liurgren M. DT-Diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm, and properties. Biochim Biophys Acta 58:171–188 (1962).
13. De Flora S, Hietanen E, Bartsch H, Camoirano A, Izzotti A, Bagnasco M, Millman I. Enhanced metabolic activation of chemical hepatocarcinogens in woodchucks infected with hepatitis B virus. Carcinogenesis 10:1099–1106 (1989).
14. Höjeberg B, Blomberg K, Stenberg S, Lind C. Biospecific
absorption of hepatic DT-diaphorase on immobilized dicoumarol. I. Purification of cytosolic DT-diaphorase from control and 3-methylcholanthrene-treated rats. Arch Biochem Biophys 207:205–216 (1981).

15. Morelli A, Benatti U, Lenzerini L, Serratore B, Salamino F, Melloni E, Michetti M, Pontremoli S, De Flora A. The interference of leucocytes and platelets with measurements of glucose-6-phosphate dehydrogenase activity of erythrocytes with low activity variants of the enzyme. Blood 58:642–644 (1981).

16. Petrilli FL, Camoirano A, Bennicelli C, Zanacchi P, Astengo M, De Flora S. Specificity and inducibility of the metabolic reduction of chromium (VI) mutagenicity by subcellular fractions of rat tissues. Cancer Res 45:3179–3187 (1985).

17. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215 (1983).

18. Nemoto M, Kusumi S, Takayama S, Nagao M, Sugimura T. Metabolic activation of 3-amino-5H-pyrido[4,3-b]indole, a highly mutagenic principle of tryptophan pyrrolsates, by rat liver enzymes. Chem Biol Interact 27:191–198 (1979).

19. Saccone GTP, Pariza MW. Enhancement of hepatic microsome-mediated bacterial mutagenesis by the rat liver soluble protein fraction. Mutat Res 88:135–145 (1981).

20. Abu-Shakra A, Ioannides C, Walker R. Metabolic activation of 2-amino-3-methylimidazo[4,5-f]quinoline by hepatic preparations. Contribution of the cytosolic fraction and its significance to strain differences. Mutagenesis 1:367–370 (1986).

21. Forster R, Green MHL, Priestley A. Enhancement of S9 activation by S105 cytosolic fraction. Carcinogenesis 2:1081–1085 (1981).

22. Sugimura T. Carcinogenicity of mutagenic heterocyclic amines formed during the cooking process. Mutat Res 150:33–41 (1985).

23. IARC. Tobacco smoking. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. International Agency for Research on Cancer, Vol 38. Lyon: International Agency for Research on Cancer, 1986.

24. De Flora S, Bennicelli C, Camoirano A, Serra D, Hochstein P. Influence of DT diaphorase on the mutagenicity of organic and inorganic compounds. Carcinogenesis 9:611–617 (1988).

25. De Flora S, Morelli A, Basso C, Romano M, Serra D, De Flora A. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium (VI) and reverting its mutagenicity. Cancer Res 42:3188–3196 (1985).

26. Talalay P, Prochaska HJ. Mechanisms of induction of NAD (PH) quinone reductase. Chem Scripta 27A:61–66 (1987).

27. Yagi M. Oxidation of tryptophan-Ph-1 and P-2 by beef liver catalase-H2O2 intermediate: comparison with horseradish peroxidase. Cancer Biochem Biophys 4:105–117 (1979).

28. Yamada M, Tsuda M, Nagao M, Mori M, Sugimura T. Degradation of mutagens from pyrolysates of tryptophan, glutamic acid and globulin by myeloperoxidase. Biochem Biophys Res Commun 90:769–776 (1979).

29. Boyd JA, Harvan DJ, Eling TE. The oxidation of 2-amino-2-methylpropan-1-ol by prostaglandin endoperoxide synthetase; comparison with other peroxides. J Biol Chem 258:8246–8254 (1983).

30. Wild D, Degen GH. Prostaglandin H synthase-dependent mutagenic activation of heterocyclic aromatic amines of the IQ-type. Carcinogenesis 8:541–545 (1987).

31. Dirr Å, Wild D. Synthesis and mutagenic activity of nitro-imidazoles. A study on the mechanism of the genotoxicity of heterocyclic amines and nitroanilines. Mutagenesis 3:147–152 (1988).

32. Thor H, Smith MT, Hartzell P, Bellomo G, Jewell SA, Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implication of oxidative stress in intact cells. J Biol Chem 257:12419–12425 (1982).

33. Nagao M, Sugimura T. Molecular biology of the carcinogen 4-nitroquinoline 1-oxide. Adv Cancer Res 29:131–169 (1976).

34. Winston GW, Traynor CA, Shane BS, Hajos AKD. Modulation of the mutagenicity of three dinitropyrene isomers in vitro by rat-liver S9, cytosolic, and microsomal fractions following chronic ethanol ingestion. Mutat Res 279:289–298 (1992).

35. Shah AB, Combes RD, Rowland IR. Activation and detoxification of 1,8-dinitropyrene by mammalian hepatic fractions in the Salmonella mutagenicity assay. Mutagenesis 3:45–49 (1990).

36. De Flora S, Romano M, Basso C, Serra D, Astengo M, Picciotto A. Metabolic activation of hepatocarcinogens in chronic hepatitis B. Mutat Res 144:213–219 (1985).

37. De Flora S, Camoirano A, Romano M, Astengo M, Cesaroni G, Millman I. Metabolism of mutagens and carcinogens in woodchuck liver and its relationships with hepatitis virus infection. Cancer Res 47:4052–4058 (1987).

38. Fairer E, Parker S, Gruenstein M. The resistance of putative premalignant liver cell populations, hyperplastic nodules, to the acute cytotoxic effects of some hepatocarcinogens. Cancer Res 36:3879–3887 (1976).

39. Nakabayashi K, Nagao M, Esumi H, Sugimura T. Food-derived mutagens and carcinogens. Cancer Res 52(Suppl 1): 2092s–2098s (1992).