ON GAUSS-BONNET AND POINCARÉ-HOPF TYPE THEOREMS FOR COMPLEX ∂-MANIFOLDS

MAURÍCIO CORRÊA, FERNANDO LOURENÇO, DIOGO MACHADO, AND ANTONIO M. FERREIRA

To Omegar Calvo-Andrade on the occasion of his 60th birthday

Abstract. We prove a Gauss-Bonnet and Poincaré-Hopf type theorems for complex ∂-manifold $\tilde{X} = X - D$, where X is a complex compact manifold and D is a reduced divisor. We will consider the cases such that D has isolated singularities and also if D has a (not necessarily irreducible) decomposition $D = D_1 \cup D_2$ such that D_1, D_2 have isolated singularities and $C = D_1 \cap D_2$ is a codimension 2 variety with isolated singularities. As application, we obtain a generalization for the Dimca-Papadima formula.

1. Introduction

Let X be a compact complex manifold of dimension n. The classical Chern-Gauss-Bonnet theorem [7] say us that

$$\int_X c_n(\Omega^1_X) = (-1)^n \chi(X),$$

where $\chi(X)$ denotes the Euler characteristic of X. A complex ∂-manifold [23] is a complex manifold of the form $\tilde{X} = X - D$, where X is an n-dimensional complex compact manifold and $D \subset X$ is a divisor which is called by boundary divisor. S. Iitaka in [18] proposed a version of Gauss-Bonnet theorem for ∂-manifold [23]. Such version was independently proved by Y. Norimatsu [23], R. Silvotti [26] and P. Aluffi [2]:

Theorem (Norimatsu-Silvotti-Aluffi). Let \tilde{X} be a complex manifold such that $\tilde{X} = X - D$, where X is an n-dimensional complex compact manifold and D is a normally crossing hypersurface on X. Then

$$\int_X c_n(\Omega^1_X(\log D)) = (-1)^n \chi(\tilde{X}),$$

1991 Mathematics Subject Classification. Primary 32S65, 32S25, 14C17.
Key words and phrases. Logarithmic foliations, Gauss-Bonnet type Theorem, Poincaré index, Residues.
where $\Omega^1_\log (\log D)$ denotes the sheaf of logarithmic 1-forms along D and $\chi(X)$ denotes the Euler characteristic given by

$$\chi(X) = \sum_{i=1}^n \dim H^i_c(X, \mathbb{C}).$$

X. Liao has provided formulas in [21] in terms of Chern-Schwartz-MacPherson class.

On the other hand, the Poincaré-Hopf theorem applied for a compact complex manifold X with a holomorphic vector field $v \in H^0(X, TX)$, with isolated singularities, give us the following

$$\chi(X) = \sum_{p \in \text{Sing}(v) \cap X} \text{PH}(v, p),$$

where $\text{PH}(v, p)$ denotes the Poincaré-Hopf index of v on p. In [8] the first and third named authors have proved the following Poincaré-Hopf type theorem for ∂-manifolds with boundaries divisors having normal crossing singularities.

Theorem. Let \tilde{X} be a complex manifold such that $\tilde{X} = X - D$, where X is an n-dimensional complex compact manifold, D is a reduced normal crossing hypersurface on X. Let v be a holomorphic vector field on X, with isolated singularities (non-degenerate) and logarithmic along D. Then

$$\chi(\tilde{X}) = \sum_{x \in \text{Sing}(v) \cap \tilde{X}} \text{PH}(v, x),$$

where $\text{PH}(v, x)$ denotes the Poincaré-Hopf index of v at x.

In this work we will provide Gauss-Bonnet and Poincaré-Hopf type theorems for ∂-manifolds of the form $\tilde{X} = X - D$, where X is a complex compact manifold and D is a reduced divisor. We will consider the case such that D has isolated singularities and also if D has a (not necessarily irreducible) decomposition $D = D_1 \cup D_2$ such that D_1, D_2 have isolated singularities and $C = D_1 \cap D_2$ is a codimension 2 variety with isolated singularities.

Let us fix some notations before we state our main result: Let $W \subset X$ an analytic subspace and $v \in H^0(X, TX)$ a holomorphic vector field, we will denote by

$$\text{PH}(v, W) = \sum_{x \in W} \text{PH}(v, x),$$

$$\mu(D, W) = \sum_{x \in W} \mu_x(D),$$

$$\text{GSV}(v, D, W) = \sum_{x \in W} \text{GSV}(v, D, x),$$

where $\text{PH}(v, x)$ and $\text{GSV}(v, D, x)$ denote, respectively, the Poincaré-Hopf and GSV index of a vector field v at p and $\mu_x(D)$ is the Milnor number of D at x. We also will denote $S(W) := \text{Sing}(W)$ and $S(v, W) := [\text{Sing}(v) \cap W] \cup \text{Sing}(W)$.

We prove the following results:
Theorem 1.1. Let \tilde{X} be a complex manifold such that $\tilde{X} = X - D$, where X is an n-dimensional ($n \geq 3$) complex compact manifold and D is a reduced divisor on X. Given any (not necessarily irreducible) decomposition $D = D_1 \cup D_2$, where D_1, D_2 have isolated singularities and $C = D_1 \cap D_2$ is a codimension 2 variety and has isolated singularities,

(i) (Gauss-Bonnet type formula) the following formula holds

$$\int_X c_n(\Omega^1_X(\log D)) = (-1)^n \chi(\tilde{X}) + \mu(D_1, S(D_1)) + \mu(D_2, S(D_2)) - \mu(C, S(C)).$$

(ii) (Poincaré-Hopf type formula) if v is a holomorphic vector field on X, with isolated singularities and logarithmic along D, we have that

$$\chi(\tilde{X}) = \sum_{x \in \text{Sing}(v)} PH(v, x) - \sum_{x \in S(v, D)} GSV(v, D, x) + (-1)^{n-1} \sum_{x \in \text{Sing}(D)} \mu_x(D).$$

Moreover, if the vector field v has only non-degenerate singularities, then

$$\chi(\tilde{X}) = \sum_{x \in \text{Sing}(v) \cap [X - D_{\text{reg}}]} PH(v, x) - \sum_{x \in \text{Sing}(D)} [GSV(v, D, x) + (-1)^{n-1} \mu_x(D)].$$

Finally, we recover the Dimca-Papadima formula

$$\chi(\mathbb{P}^n \setminus D) = \sum_{i=0}^n (-1)^i (d-1)^i + (-1)^{n+1} \sum_{p \in \text{Sing}(D)} \mu_p(D),$$

see [11, Theorem 1] and [11, 14, 17]. In fact, we prove the following generalization.
Corollary 1.3. Given any (not necessarily irreducible) decomposition \(D = D_1 \cup D_2 \), where \(D_1, D_2 \) have isolated singularities and \(C = D_1 \cap D_2 \) is a codimension 2 variety and has isolated singularities. If \(\deg(D_i) = d_i \), for \(i = 1, 2 \), then
\[
\chi(\mathbb{P}^n \setminus D) = \sum_{i=0}^{n} \sigma_{n-i}(d_1-1, d_2-1) + (-1)^{n+1} \left[\mu(D_1, S(D_1)) + \mu(D_2, S(D_2)) - \mu(C, S(C)) \right],
\]
where \(\sigma_{n-i} \) is the complete symmetric function of degree \(n-i \).

Acknowledgments. We are grateful to Alexandr G. Aleksandrov for interesting and fruitful conversations. The first named author was partially supported by CNPq and CAPES and he is grateful to University of Oxford for hospitality.

2. Preliminaries

2.1. Logarithmic forms and logarithmic vector fields. Given \(X \) a complex manifold of dimension \(n \) and \(D \) a reduced hypersurface on \(X \). Let \(\Omega^q_X(D) \) be the sheaf of differential \(q \)-forms on \(X \) with at most simple poles along \(D \).

A logarithmic \(q \)-form along \(D \) on an open subset \(U \subset X \) is a meromorphic \(q \)-form \(\omega \) on \(U \), regular on \(U - D \) and such that both \(\omega \) and \(d\omega \) have at most simple poles along \(D \). Logarithmic \(q \)-forms along \(D \) form a coherent sheaf of \(\mathcal{O}_X \)-modules denoted by \(\Omega^q_X(\log D) \), in this case, for any open subset \(U \subset X \) we have
\[
\Gamma(U, \Omega^q_X(\log D)) = \{ \omega \in \Gamma(U, \Omega^q_X(D)) : d\omega \in \Gamma(U, \Omega^{q+1}_X(D)) \}.
\]
See for example [12], [19] and [24] for more details about the sheaf of logarithmic \(q \)-forms along \(D \).

Now, consider \(\Omega^1_X(\log D) \), the sheaf of logarithmic 1-form along \(D \), its dual sheaf is the sheaf of logarithmic vector fields along \(D \), denoted by \(\mathcal{T}_X(-\log D) \). We have an exact sequence
\[
\begin{array}{cccccc}
0 & \longrightarrow & T_X(-\log D) & \longrightarrow & T_X & \longrightarrow & \mathcal{J}_D & \longrightarrow & 0 \\
\end{array}
\]
where \(\mathcal{J}_D \) is the Jacobian ideal of \(D \) which is defined as the Fitting ideal
\[
\mathcal{J}_D := F^{n-1}(\Omega^1_X) \subset \mathcal{O}_D.
\]

Saito in [24] has showed that in general \(\Omega^1_X(\log D) \) and \(T_X(-\log D) \) are reflexive sheaves. If \(D \) is an analytic hypersurface with normal crossing singularities, the sheaves \(\Omega^1_X(\log D) \) and \(T_X(-\log D) \) are locally free, furthermore, the Poincaré residue map
\[
\text{Res} : \Omega^1_X(\log D) \longrightarrow \mathcal{O}_D \cong \bigoplus_{i=1}^N \mathcal{O}_{D_i}
\]
gives us the following exact sequence of sheaves on \(X \)
\[
\begin{array}{cccccc}
(2) & 0 & \longrightarrow & \Omega^1_X & \longrightarrow & \Omega^1_X(\log D) & \xrightarrow{\text{Res}} & \bigoplus_{i=1}^N \mathcal{O}_{D_i} & \longrightarrow & 0,
\end{array}
\]
where \(\Omega^1_X \) is the sheaf of holomorphics 1-forms on \(X \) and \(D_1, \ldots, D_N \) are the irreducible components of \(D \).
Now, if D is such that $\text{codim}_X(\text{Sing}(D)) > 2$ then there exist the following exact sequence of sheaves on X (see V. I. Dolgachev [13]):

$$
\begin{array}{cccccc}
0 & \longrightarrow & \Omega^1_X & \longrightarrow & \Omega^1_X(\log D) & \longrightarrow & \mathcal{O}_D & \longrightarrow & 0.
\end{array}
$$

Moreover, if $D = D_1 \cap D_2$, we have from [11] the following sequence

$$
\begin{array}{cccccc}
0 & \longrightarrow & \Omega^1_X & \longrightarrow & \Omega^1(\log D_1) \oplus \Omega^1(\log D_2) & \longrightarrow & \Omega^1(\log D_1) + \Omega^1(\log D_2) & \longrightarrow & 0,
\end{array}
$$

and since $\Omega^1(\log D_1) + \Omega^1(\log D_2) \cong \Omega^1(\log D)$ we obtain the exact sequence

$$
\begin{array}{cccccc}
0 & \longrightarrow & \Omega^1_X & \longrightarrow & \Omega^1(\log D_1) \oplus \Omega^1(\log D_2) & \longrightarrow & \Omega^1(\log D) & \longrightarrow & 0.
\end{array}
$$

2.2. **The GSV-Index.** X. Gomez-Mont, J. Sead and A. Verjovsky [16] introduced the GSV-index for a holomorphic vector field over an analytic hypersurface, with isolated singularities, on a complex manifold, generalizing the (classical) Poincaré-Hopf index. The GSV-index was extended for holomorphic vector fields on more general contexts. J. Seade e T. Suwa in [25], have defined the GSV-index for holomorphic vector fields on analytic subvarieties with isolated complete intersection singularity. J.-P. Brasselet, J. Seade and T. Suwa in [4], extended the notion of GSV-index for vector fields defined in certain types of analytical subvariety with non-isolated singularities.

In [15] X. Gomez-Mont introduced the homological index of holomorphic vector field on an analytic hypersurface with isolated singularities, which coincides with GSV-index. There is also the virtual index, introduced by D. Lehmann, M. Soares and T. Suwa [20], that via Chern-Weil theory can be interpreted as the GSV-index. M. Brunella [6] also present the GSV-index for foliations on complex surfaces by a different approach and in [9] the authors have introduced a GSV type index for varieties invariant by holomorphic Pfaff systems.

Let us recall the definition of the GSV-index ([5], Ch.3, 3.2). Let D be a hypersurface with isolated singularities on an n-dimensional complex manifold X and let v be a holomorphic vector fields on X, with isolated singularities, and logarithmic along D. Given a singular point $x_0 \in \text{Sing}(D)$, let h be an analytic function defining D on a neighborhood U_0 of x_0. The gradient vector field $\text{grad}(h)$ is nowhere vanishing away from x_0 (because x_0 is an isolated singularity) and it is normal to D.

Denote by v_\ast the restriction of v to the regular part $D_{\text{reg}} = D - \text{Sing}(D)$ of D. On the neighborhood U_0, suppose that the vector fields v is non-singular away from x_0. Since v is logarithmic along D, we have that $\text{grad}(h)(z)$ and $v_\ast(z)$ are linearly independent at each point $z \in U_0 \cap (D - \{x_0\})$. Assume that (z_1, \ldots, z_n) is a system of complex coordinates on U_0 and consider

$$
S_\varepsilon = \{ z = (z_1, \ldots, z_n) : \| z - x_0 \| = \varepsilon \}.
$$
the sphere sufficiently small so that \(K = D \cap S_\varepsilon \) is the link of the singularity of \(D \) at \(x_0 \) (see, for example, [22]). It is an \((2n - 1)\)-dimensional real oriented manifold. By using the Gram-Schmidt process, if necessary, the vector fields \(v_* \) and \(\operatorname{grad}(h) \) define a continuous map
\[
\phi_v := (v_*, \operatorname{grad}(h)) : K \rightarrow W_{2,n+1}
\]
where \(W_{2,n+1} \) is the Stiefel manifold of complex 2-frames in \(\mathbb{C}^{n+1} \).

Definition 2.1. The GSV-index of \(v \) in \(x_0 \in D \), denoted by \(\operatorname{GSV}(v, D, x_0) \), is defined as the degree of map \(\phi_v \).

Remark 2.2. In the definition 2.1 the vector fields \(v \) can be considered continuous rather than holomorphic vector fields. For more details see [5], [16], [27].

Remark 2.3. If \(x_0 \in D_{\text{reg}} \) is a regular point of \(D \), since \(v \) logarithmic along \(D \), we have that the Poincaré-Hopf index of \(v|_D \) in \(x_0 \) is defined and it coincides with the GSV-index. In this case, if \(x_0 \) is a non-degenerate singularity of \(v \), then \(\operatorname{PH}(v, x_0) = \operatorname{PH}(v|_D, x_0) \) and we have
\[
\operatorname{GSV}(v, D, x_0) = \operatorname{PH}(v, x_0).
\]

3. Proof of Theorems

In order to prove the Theorem 1.1 and the Theorem 1.2 we will prove the following preliminary result:

Theorem 3.1. Let \(X \) be an \(n \)-dimensional \((n \geq 3)\) complex compact manifold and \(D \) a reduce divisor on \(X \).

(i) If \(D = D_1 \cup D_2 \) is any (not necessarily irreducible) decomposition, where \(D_1, D_2 \) is isolated singularities and \(C = D_1 \cap D_2 \) is a codimension 2 variety and has isolated singularities, then
\[
\int_X c_n(\Omega^1_1(\log D)) = (-1)^n \left[\int_X c_n(TX) - \int_{D_1} c_{n-1}(TX - [D_1]) - \int_{D_2} c_{n-1}(TX - [D_2]) \right] + \\
+ \left[\int_C c_{n-2}(TX - [D_1] \oplus [D_2]) \right].
\]

(ii) If \(D \) is an isolated singularity, then
\[
\int_X c_n(\Omega^1_1(\log D)) = (-1)^n \left[\int_X c_n(TX) - \int_D c_{n-1}(TX - [D]) \right].
\]

Proof. From exact sequence [4] we obtain
\[
c(\Omega^1_1)c(\Omega^1_1(\log D)) = c(\Omega^1_1(\log D_1))c(\Omega^1_1(\log D_2)) = c(\Omega^1_1)c(\mathcal{O}_{D_1})c(\Omega^1_1)c(\mathcal{O}_{D_2}),
\]
where in last equality we use the following relations

\begin{equation}
 c(\Omega^1_X(\log D_i)) = c(\Omega^1_X)c(O_{D_i}), \quad i = 1, 2,
\end{equation}

which can be obtained from the exact sequence [3]. Thus, we get

\begin{equation}
 c(\Omega^1_X(\log D)) = c(O_{D_1})c(O_{D_2})c(\Omega^1_X),
\end{equation}

and, consequently,

\[
\int_X c_n(\Omega^1_X(\log D)) = \int_X \sum_{i_1+i_2+i_3=n} c_{i_1}(O_{D_1})c_{i_2}(O_{D_2})c_{i_3}(\Omega^1) = \\
= \int_X c_n(\Omega^1_X) + \sum_{i_2+i_3=n} \int_X c_{i_2}(O_{D_2})c_{i_3}(\Omega^1_X) + \sum_{i_1+i_3=n} \int_X c_{i_1}(O_{D_1})c_{i_3}(\Omega^1_X) + \\
+ \sum_{i_1+i_2+i_3=n} \int_X c_{i_1}(O_{D_1})c_{i_2}(O_{D_2})c_{i_3}(\Omega^1_X) = \\
\quad (9)
\]

\[
= (-1)^n \int_X c_n(T_X) + \sum_{i_2+i_3=n} \int_X c_1([D_2])^{i_2}c_{i_3}(\Omega^1_X) + \sum_{i_1+i_3=n} \int_X c_1([D_1])^{i_1}c_{i_3}(\Omega^1_X) + \\
+ \sum_{i_1+i_2+i_3=n} \int_X c_1([D_1])^{i_1}c_1([D_2])^{i_2}c_{i_3}(\Omega^1_X),
\]

where in the last step we are using that \(c_{i_j}(O_{D_j}) = c_1([D_j])^{i_j} \), since \(c(O_{D_j}) = c([D_j])^{-1} \), for \(j = 1, 2 \).

The proof will be finalized by calculating each sum on the right hand side. Indeed, in the first one, by using that \(c_1([D_2]) \) is Poincaré dual to the fundamental class of \(D_2 \), we obtain

\[
\sum_{i_2+i_3=n} \int_X c_1([D_2])^{i_2}c_{i_3}(\Omega^1_X) = \int_{D_2} \sum_{i_2+i_3=n} c_1([D_2])^{i_2-1}c_{i_3}(\Omega^1_X) \\
= \int_{D_2} c_{n-1}(\Omega^1_X - [D_2]^*) \\
= (-1)^{n-1} \int_{D_2} c_{n-1}(T_X - [D_2]),
\]

where in the last step we are using the relation between the Chern classes of a vector bundle and of its dual. Similarly, we obtain

\[
\sum_{i_1+i_3=n} \int_X c_1([D_1])^{i_1}c_{i_3}(\Omega^1_X) = (-1)^{n-1} \int_{D_1} c_{n-1}(T_X - [D_1]).
\]
Finally, the last sum can be calculated by using that \(c_1([D_1])c_1([D_2]) \) is Poincaré dual to the fundamental class of \(C = D_1 \cap D_2 \). Thus,

\[
\sum_{i_1 + i_2 + i_3 = n} \int_X c_1([D_1])^{i_1} c_1([D_2])^{i_2} c_3(\Omega_X) = \sum_{i_1 + i_2 + i_3 = n} \int_C c_1([D_1])^{i_1} c_1([D_2])^{i_2} c_3(\Omega_X)
\]

\[
= \int_C c_{n-2}(\Omega_X^1 - [D_2]^* - [D_1]^*)
\]

\[
= (-1)^{n-2} \int_C c_{n-2}(TX - [D_1] \oplus [D_2]).
\]

Therefore, we conclude that

\[
\int_X c_n(\Omega^1(\log D)) = (-1)^n \left[\int_X c_n(TX) - \int_{D_1} c_{n-1}(TX - [D_1]) - \int_{D_2} c_{n-1}(TX - [D_2]) \right] +
\]

\[
+ \int_C c_{n-2}(TX - [D_1] \oplus [D_2]).
\]

Now, suppose that \(D \) is an isolated singularity. Using (7) we obtain

\[
\int_X c_n(\Omega_X^1(\log D)) = \sum_{i=0}^n \int_X c_{n-i}(\Omega_X^1) c_i(\mathcal{O}_D)
\]

\[
= \int_X c_n(\Omega_X^1) + \sum_{i \geq 1} \int_X c_{n-i}(\Omega_X^1) c_i(\mathcal{O}_D).
\]

By the exact sequence

\[
0 \longrightarrow \mathcal{O}(-D) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_D \longrightarrow 0.
\]

we obtain that

\[
(10) \quad c_i(\mathcal{O}_D) = c_1([D])^i, \quad i = 1, \ldots, n,
\]

Thus, we can compute the last sum on right side:

\[
\sum_{i \geq 1} \int_X c_{n-i}(\Omega_X^1) c_i(\mathcal{O}_D) = \sum_{i \geq 1} \int_X c_{n-i}(\Omega_X^1) c_1([D])^i
\]

\[
= \sum_{i \geq 1} \int_D c_{n-i}(\Omega_X^1) c_1([D])^{i-1}
\]

\[
= (-1)^n \sum_{i \geq 1} \int_D c_{n-i}(TX) c_1([D]^*)^{i-1}
\]

\[
= (-1)^n \int_X c_n(TX - [D]),
\]
where in the second step we have used the fact that $c_1([D])$ is Poincaré dual of the fundamental class of D. Now, replacing the last identity in the initial equality, we obtain
\[
\int_X c_n(\Omega^1_X(\log D)) = \int_X c_n(T_X) + (-1)^n \int_X c_n(T_X - [D]) \\
= (-1)^n \int_X c_n(T_X) + (-1)^n \int_D c_{n-1}(T_X - [D])
\]
\[
= (-1)^n \left[\int_X c_n(T_X) - \int_D c_{n-1}(T_X - [D]) \right].
\]

\[\square\]

Proof of Theorem 1.1: By using the classical Chern-Gauss-Bonnet formula (1), we obtain
\[
\int_X c_n(T_X) = (-1)^n \int_X c_n(\Omega^1_X) = \chi(X).
\]
From [27, Theorem 3.9], we have that
\[
\int_{D_i} c_{n-1}(T_X - [D_i]) = \chi(D_i) + (-1)^{n-1} \sum_{p \in \text{Sing}(D_i)} \mu_p(D_i), \quad i = 1, 2.
\]
Moreover, since the complete intersection $C = D_1 \cap D_2$, its normal bundle is $(\{D_1 \oplus [D_2]\})_C$, and once again from [27, Theorem 3.9] we have that
\[
\int_C c_{n-2}(T_X - [D_1 \oplus D_2]) = \chi(C) + (-1)^{n-2} \sum_{p \in \text{Sing}(C)} \mu_p(C).
\]
Now, substituting (11), (12) and (13) in the formula of item (i) of Theorem 3.1, we get the desired formula
\[
\int_X c_n(\Omega^1_X(\log D)) = \left[(-1)^n \chi(\tilde{X}) + \sum_{p \in \text{Sing}(D_1)} \mu_p(D_1) + \sum_{p \in \text{Sing}(D_2)} \mu_p(D_2) + \sum_{p \in \text{Sing}(C)} \mu_p(C) \right].
\]

On the other hand, if v is a holomorphic vector field on X, with isolated singularities and logarithmic along D_1, D_2 and C, it follows from [27, Theorem 7.16] that for each $i = 1, 2$
\[
\int_{D_i} c_{n-1}(T_X - [D_i]) = \sum_{x \in S(v, D_i)} \text{GSV}(v, D_i, x)
\]
and
\[
\int_C c_{n-2}(T_X - [D_1 \oplus D_2]) = \sum_{x \in S(v, C)} \text{GSV}(v, C, x),
\]
Thus, using the Theorem 3.1, we obtain

\[D \text{ and Poincaré-Hopf theorems, we have} \]

Thus, we obtain

Using that \(\chi \) of the restriction \((T_{\chi}) \) in the item (i) of Theorem 3.1 we get

\[(-1)^n \int_X c_n(\Omega^1_X (\log D)) = \]

\[= \sum_{x \in \text{Sing}(v)} PH(v, x) - \sum_{x \in \mathcal{S}(v, D_1)} GSV(v, D_1, x) - \sum_{x \in \mathcal{S}(v, D_2)} GSV(v, D_2, x) + \sum_{x \in \mathcal{S}(v, C)} GSV(v, C, x). \]

Now, replacing it in the formula (14), we get

\[\chi(\tilde{X}) = \sum_{x \in \text{Sing}(v)} PH(v, x) - \sum_{x \in \mathcal{S}(v, D_1)} GSV(v, D_1, x) - \sum_{x \in \mathcal{S}(v, D_2)} GSV(v, D_2, x) + \]

\[+ \sum_{x \in \mathcal{S}(v, C)} GSV(v, C, x) + (-1)^{n-1} \left[\sum_{p \in \text{Sing}(D_1)} \mu_p(D_1) + \sum_{p \in \text{Sing}(D_2)} \mu_p(D_2) + \sum_{p \in \text{Sing}(C)} \mu_p(C) \right]. \]

\[\Box \]

Proof of Theorem 1.2: Using (11) in the formula (6), we obtain the following

\[\int_X c_n(\Omega^1_X (\log D)) = (-1)^n \left[\chi(X) - \int_D c_{n-1}(T_X - [D]) \right]. \]

On the other hand, it follows from [27, Theorem 3.9] that the top Chern number of the restriction \((T_X - [D]) \) is given by

\[\int_D c_{n-1}(T_X - [D]) = \chi(D) + (-1)^{n-1} \sum_{p \in \text{Sing}(D)} \mu_p(D). \]

Thus, we obtain

\[\int_X c_n(\Omega^1_X (\log D)) = (-1)^n \left[\chi(X) - \chi(D) + (-1)^n \sum_{p \in \text{Sing}(D)} \mu_p(D) \right]. \]

Using that \(\chi(\tilde{X}) = \chi(X) - \chi(D) \), we obtain the desired formula of item (i).

Let \(v \) be a holomorphic vector fields as described in item (ii). By Gauss-Bonnet and Poincaré-Hopf theorems, we have

\[\int_X c_n(T_X) = \chi(X) = \sum_{x \in \text{Sing}(v)} PH(v, x). \]

Since \(D \) is compact, it follows from [27, Theorem 7.16] that

\[\int_D c_{n-1}(T_X - [D]) = \sum_{x \in \mathcal{S}(v, D)} GSV(v, D, x). \]

Thus, using the Theorem 3.4 we obtain

\[\int_X c_n(T_X (-\log D)) = (-1)^n \left[\sum_{x \in \text{Sing}(v)} PH(v, x) - \sum_{x \in \mathcal{S}(v, D)} GSV(v, D, x) \right]. \]
Now, replacing it in the equality of item (i), we get

\[(-1)^n \chi(\tilde{X}) + \sum_{p \in \text{Sing}(D)} \mu_p(D) = (-1)^n \left[\sum_{x \in \text{Sing}(v)} PH(v, x) - \sum_{x \in S(v, D)} GSV(v, D, x) \right]. \]

Hence,

\[\chi(\tilde{X}) = \sum_{x \in \text{Sing}(v)} PH(v, x) - \sum_{x \in S(v, D)} GSV(v, D, x) + (-1)^{n-1} \sum_{x \in \text{Sing}(D)} \mu_p(D), \]

and the first formula of item (ii) is proved.

Finally, we observe that if \(x_0 \in \text{Sing}(D) \) is a non-degenerate singularity of \(D \) such that \(x_0 \) belongs to regular part of \(D \), then (see remark 2.3)

\[PH(v, x_0) - GSV(v, D, x_0) = 0 \]

and we obtain the formula. \(\square \)

4. Proof Corollary

First of all, let us show how recover the Dimca-Papadima formula: Let \(D \) be a reduced divisor on \(\mathbb{P}^n \) with isolated singularities and degree \(d \). The Dimca-Papadima formula say us that

\[\chi(\mathbb{P}^n \setminus D) = (-1)^n d_t(D) + \sum_{i=0}^{n-1} (-1)^i (d-1)^i, \]

where \(d_t(D) \) is the polar degree of \(D \). We can write

\[(-1)^n d_t(D) = (-1)^n (d-1)^n - (-1)^n \sum_{p \in \text{Sing}(D)} \mu_p(D). \]

Thus

\[(-1)^n (d-1)^n = (-1)^n d_t(D) + (-1)^n \sum_{p \in \text{Sing}(D)} \mu_p(D). \]

Let us first prove the formula

\[\chi(\mathbb{P}^n \setminus D) = (-1)^n (d-1)^n + \sum_{i=0}^{n-1} (-1)^i (d-1)^i - (-1)^n \sum_{p \in \text{Sing}(D)} \mu_p(D). \]

Indeed, it follows for Theorem 1.1 that

\[(-1)^n \chi(\mathbb{P}^n \setminus D) = \int_{\mathbb{P}^n} c_t(\Omega^1_{2\mathbb{P}^n}(\log D)) - \sum_{p \in \text{Sing}(D)} \mu_p(D). \]

The total Chern classe of \(c(\Omega^1_{2\mathbb{P}^n}(\log D)) \) is

\[c(\Omega^1_{2\mathbb{P}^n}(\log D)) = \frac{\big[c(\Omega^1_{2\mathbb{P}^n})\big]}{\big[c(\mathcal{O}_{\mathbb{P}^n}(-d))\big]} = c(\Omega^1_{\mathbb{P}^n} - \mathcal{O}_{\mathbb{P}^n}(-d)). \]
In particular, $c_n(\Omega^1_{\mathbb{P}^n}(\log D)) = c_n(\Omega^1_{\mathbb{P}^n} - \mathcal{O}_{\mathbb{P}^n}(-d)) = c_n(\Omega^1_{\mathbb{P}^n} \otimes \mathcal{O}_{\mathbb{P}^n}(d))$. Since $c_n(\Omega^1_{\mathbb{P}^n} \otimes \mathcal{O}_{\mathbb{P}^n}(d))) = (-1)^n c_n(T_{\mathbb{P}^n} \otimes \mathcal{O}_{\mathbb{P}^n}(-d)))$, we conclude that $c_n(\Omega^1_{\mathbb{P}^n}(\log D)) = (-1)^n c_n(T_{\mathbb{P}^n} \otimes \mathcal{O}_{\mathbb{P}^n}(-d)))$.

We have

$$c_n(T_{\mathbb{P}^n} \otimes \mathcal{O}_{\mathbb{P}^n}(-d))) = \sum_{i=0}^{n} (1-d)^i h^n = \sum_{i=0}^{n} (-1)^i(d-1)^i h^n.$$

Thus, we get

$$(-1)^n \chi(\mathbb{P}^n \setminus D) = (-1)^n \sum_{i=0}^{n} (-1)^i(d-1)^i - \sum_{p \in \text{Sing}(D)} \mu_p(D).$$

Now, we have

$$\chi(\mathbb{P}^n \setminus D) = (-1)^n(d-1)^n + \sum_{i=0}^{n-1} (-1)^i(d-1)^i - (-1)^n \sum_{p \in \text{Sing}(D)} \mu_p(D).$$

Then

$$\chi(\mathbb{P}^n \setminus D) = (-1)^n d_1(D) + \sum_{i=0}^{n-1} (-1)^i(d-1)^i.$$

The general formula can be computed by using (8) which give us

$$c_n(\Omega^1_{\mathbb{P}^n}(\log D)) = \left[\frac{c(\Omega^1_{\mathbb{P}^n})}{c(\mathcal{O}_{\mathbb{P}^n}(-d_1))c(\mathcal{O}_{\mathbb{P}^n}(-d_2))}\right]_n = \left[\frac{(1-h)^{n+1}}{(1-d_1 h)(1-d_2 h)}\right]_n.$$

It follows from [10] Proposition 4.4 that

$$\left[\frac{(1-h)^{n+1}}{(1-d_1 h)(1-d_2 h)}\right]_n = \sum_{i=0}^{n} \sigma_{n-i}(d_1-1,d_2-1) h^n,$$

where σ_{n-i} is the complete symmetric function of degree $n-i$.

References

[1] A. G. Aleksandrov, *Multidimensional residue theory and the logarithmic De Rham Complex*, Journal of Singularities, Volume 5, p. 1-18, 2012.

[2] P. Aluffi, *Chern classes for singular hypersurfaces*, Trans. Am. Math. Soc. 351 (1999), no. 10, 3989-4026.

[3] P. Baum and R. Bott, *Singularities of Holomorphic Foliations*, J. Differential Geom, 7 (1972), 279-342.

[4] J.-P. Brasselet, J. Seade and T. Suwa, *An explicit cycle representing the Fulton-Johnson class*, Singularités Franco-Japonaises, Sémin. Congr., 10, Soc. Math. France, Paris, p. 21-38, 2005.

[5] J.-P. Brasselet, J. Seade and T. Suwa, *Vector Fields on Singular Varieties*, Lecture Notes in Mathematics, Spring, 2009.

[6] M. Brunella, *Birational Geometry of Foliations*, Publicações Matemáticas, IMPA, Rio de Janeiro, 2010.

[7] S.S. Chern, *A Simple Intrinsic Proof of the Gauss-Bonnet Formula for Closed Riemannian Manifolds*, Ann. Math.45 (4), 1944, 747-752.
[8] M. Corrêa and D. Machado, *Residue formulas for logarithmic foliations and applications*, Transactions of the AMS, 2018. DOI: https://doi.org/10.1090/tran/7584, [arXiv:1611.01203v2].

[9] M. Corrêa; D. Machado, *GSV-index for holomorphic Pfaff systems*. 2016. [arXiv:1611.09376v3].

[10] F. Cukierman, M. Soares, I. Vainsencher, *Singularities of Logarithmic foliations*. Compositio Math. 142 131–142 (2006).

[11] A. Dimca and S. Papadima, *Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements*, Ann. of Math. (2) 158 (2003), 473-507.

[12] P. Deligne, *Equations différentielles à points singulier réguliers*, Lecture Notes in Mathematics, 163, Springer-Verlag, 1970.

[13] I. Dolgachev, *Logarithmic sheaves attached to arrangements of hyperplanes*, J. Math. Kyoto Univ. 47 (2007), n. 1, 35-64.

[14] T. Fassarella, N. Medeiros, *On the polar degree of projective hypersurfaces*, J. Lond. Math. Soc. (2) 86 (2012), 259-271.

[15] X. Gómez-Mont, *An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity*, J. Algebraic Geom. 7 (1998), 731-752.

[16] X. Gómez-Mont, J. Seade and A. Verjovsky, *The index of a holomorphic flow with an isolated singularity*, Math. Ann. 291 (1991), 737-751.

[17] J. Huh, *Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs*, J. Amer. Math. Soc. 25 (2012), 907-927.

[18] S. Iitaka, *Logarithmic forms of algebraic varieties*, J. Fac. Sci. Univ. Tokyo Sect. IA 23 (1976), 525-544.

[19] N. M. Katz, *The regularity theorem in algebraic geometry*, Actes Congres Intern. Math., 1970, t.1, 437-443.

[20] D. Lehmann, M. Soares and T. Suwa, *On the index of a holomorphic vector field tangent to a singular variety*, Bol. Soc. Bras. Mat. 26 (1995), pp. 183-199.

[21] X. Liao, *Chern classes for logarithmic vector fields*, Journal of Singularities, 5:109-114, 2012.

[22] J. Milnor, *Singular points of complex hypersurfaces*, Ann. of Math. Studies 61, Princeton Univ. Press, 1968.

[23] Y. Norimatsu, *Kodaira Vanishing Theorem and Chern Classes for ∂-Manifolds*, Proc. Japan Acad., 54, Ser. A. (1978), 107-108.

[24] K. Saito, *Theory of logarithmic differential forms and logarithmic vector fields*, J. Fac. Sci. Univ. Tokyo, 27(2), p. 265-291, 1980.

[25] J. Seade and T. Suwa, *A residue formula for the index of a holomorphic flow*, Math. Ann. 304 (1996), 621-634.

[26] R. Silvotti, *On a conjecture of Varchenko*, Invent. Math. 126 (1996), no. 2, 235-248.

[27] T. Suwa, *Indices of vector fields and residues of singular holomorphic foliations*, Actualités Mathématiques, Hermann Éditeurs des Sciences et des Arts, 1998.
Maurício Corrêa, Icex - UFMG, Av. Antônio Carlos 6627, 30123-970 Belo Horizonte -MG, Brazil
E-mail address: mauriciojr@ufmg.br

Fernando Lourenço, DEX - UFLA, Campus Universitário, Lavras MG, Brazil, CEP 37200-000
E-mail address: fernando.lourenco@dex.ufla.br

Diogo Machado, DMA - UFV, Avenida Peter Henry Rolfs, s/n - Campus Universitário, 36570-900 Viçosa- MG, Brazil
E-mail address: diogo.machado@ufv.br

Antonio M. Ferreira, DEX - UFLA, Campus Universitário, Lavras MG, Brazil, CEP 37200-000
E-mail address: antoniosilva@dex.ufla.br