SERSbot: Revealing the Details of SERS Multianalyte Sensing Using Full Automation

David-Benjamin Gry, Bart de Nijs, Junyang Huang, Oren A. Scherman, and Jeremy J. Baumberg*

ABSTRACT: Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for molecular sensing. Its inherent specificity is what distinguishes SERS the most from other techniques and makes it a desirable platform for multianalyte sensing applications without the need for chemical recognition, e.g., via antibodies. The basic principle of SERS sensing is to employ the local field enhancements of optically excited collective electron oscillations (surface plasmons) that arise in nanopatterned metals to enhance the Raman scattering signals from analytes. Typically, desirable nanoscale features required for such field enhancements are achieved through either forming nanosized cavities, vertices, or sharp edges from noble metals.

Analytes bound and trapped inside SERS hotspots provide significantly lower (many orders of magnitude) detection limits compared to Raman sensing. Unlike Raman, which allows for relating peak intensities directly to the probed chemical composition and concentrations (linear system), deconvoluting SERS spectra in a multianalyte system, however, is not straightforward. This is because signal intensities, in addition to their cross sections and individual concentrations, now depend on analytes competing for various binding sites both inside and outside SERS-active hotspots.

In this study, we demonstrate this dependence by systematically analyzing and quantifying the SERS response of a multianalyte system of methyl viologen (MV2+) and a deuterated d8-MV2+ derivative (d8-MV2+). We find that the peak intensities are highly nonlinear as a result of competitive binding for several limited binding sites. Only by comparing the SERS response to a complex ligand/receptor type model (nested Hill−Langmuir equations), can the correct concentrations in mixtures be extracted. This result has far-reaching implications for many SERS sensors that target real analytes. If the chemical compositions are not entirely known, the concentrations cannot be determined.

To make this study possible, a high degree of reproducibility for SERS measurements is crucial. This is achieved by (1) using a simple colloidal gold SERS substrate, (2) employing more sophisticated data analysis tools such as independent component analysis (ICA), and (3) fully automating the substrate and sample preparation through combining a fully automated custom-built liquid handler and a SERS optical

Received: October 5, 2021
Accepted: November 17, 2021

© XXXX The Authors. Published by American Chemical Society

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
setup into a SERS robot or “SERSbot.” This SERSbot autonomously prepares the SERS substrates, mixes the analytes, controls aggregation and incubation times, and records the SERS spectra.

In previous studies5−8 we have characterized a simple yet robust SERS substrate formed by mixing gold nanoparticles (AuNPs) with an off-the-shelf molecular linker (cucurbit[n]-uril = CB[n], n = 5−8). This straightforward self-assembly protocol produces AuNP clusters with precise nanogaps, yielding highly repeatable SERS. Analytes mixed into the suspension are sequestered by the nanogaps, resulting in strong SERS signals. With such facile chemistry, reproducibility is only limited by extrinsic factors such as accurate pipetting of the AuNP, CB[n], and analyte solutions, as well as the timing of aggregation and incubation analyte, which is all taken care of by the SERSbot.9

■ EXPERIMENTAL SECTION

SERS Robot System Overview. The aim of the SERSbot is to fully automate sample preparation of our nanomaterials as well as the acquisition of SERS spectra. It is therefore composed of a custom-built liquid handling robot and a Raman microscope. The liquid handler is designed to automate all steps required to form the SERS substrate and deliver analytes (Figure 1a). This involves preparing concentration series and on-demand mixing of arbitrary analyte mixtures. To achieve this, the robot is equipped with two single-channel micropipettes, which operate on a 30 × 30 cm platform. Up to six different modules can be fixed to the platform. In the standard configuration, it contains two 96 multiwell plates, two pipette tip containers, and two additional modules for up to 32 glass vials (2 mL each) and six large (50 mL each) centrifuge tubes. The platform can be moved independently of the pipettes in the x, y, and z directions, allowing it to precisely position containers under the microscope objective for SERS measurements.

SERS Setup. The SERS setup operates in the near-infrared (NIR) at 785 nm pumped by a narrow-frequency volume Bragg grating filtered diode laser (Integrated Optics: 785 nm MatchBox) with up to 500 mW output power (Figure 1b). A cylindrical lens at the laser output shapes the beam profile to correct for astigmatism. After a beam expander (~3x) and a laser line clean-up filter, the beam reflects from a dichroic beam splitter, sending it into the back aperture of the microscope objective. The NA = 0.25 5x objective (Zeiss) is optimized for NIR applications. Focusing of the beam onto SERS samples mounted on the liquid handler platform is optimized once at the start of each full data run to give the largest signals. The collected SERS emission is transmitted through the dichroic beam splitter; the laser scatter is removed by two 33 nm full width at half-maximum (FWHM) 785 nm notch filters and then focused onto the entrance slit of a monochromator (Shamrock 63, 1200/mm grating) paired with a cooled EMCCD (Andor Newton 970FI).

Liquid Handler Robot Design. The liquid handler robot is built entirely using off-the-shelf components and three-dimensional (3D)-printed parts. The 30 × 30 cm main platform (x, y, z) and the two micropipettes (x1, y1, z1) are attached to motorized linear stages driven by stepper and belts/pulleys, allowing them to move along five axes with a resolution of <100 μm. The two linear stages (z1, z2) that move the micropipettes (STARLAB) up and down against gravity are counterbalanced by springs to prevent the tips from crashing into the main platform. The total footprint of the optics plus liquid handling measures 1 × 1 × 0.5 m (width × length × height) but could be readily compacted by 2−3-fold.

To make the robot fully autonomous, it is crucial to load fresh pipette tips while releasing and discarding the used ones. This is normally done manually by triggering the spring-loaded ejector mechanism of the micropipette. To release tips automatically, servo motors press the release buttons (Figure S1, Video S1 showing pipette tip release), with 100% reliability.

All mechanical components are controlled by an 8-bit microcontroller (Microchip AVR Attmega256), which receives G-code-like instructions from a PC via USB. To ensure correct and safe execution of every instruction, polling in conjunction with a three-way handshake and checksums are used. The stepper motors are driven by an integrated stepper-driver, each equipped with two full H-bridges and overcurrent protection (Allergo A4988). Stop-end switches at both ends of the linear stages prevent the platform and pipettes from overruns and also set the home position for each axis. The electronic pipette buttons (up, down, left, enter, dispense/aspirate) are contacted by wires connected through MOSFET drivers to the microcontroller. The firmware is written in C and AVR assembler and the high-level software in Python.

Sensing Protocol. The protocol (Figure 1c) for the sensing experiments starts with pipetting 7 μL of 32.5 μM CB[n] (n = 5 or 7), followed by 313 μL of 50 nm gold nanoparticles. To allow for the formation of CB[n] AuNP aggregates, the system then waits for an optimal 600 ± 0.1 s. While manual pipetting has ±5% accuracy, the SERSbot electronics delivers tolerances of ±0.1 s. Subsequently, the analyte or analyte mixture is added and stirred into the well plate (using the pipette tip to “suck and dispense” three times). It is left to infuse and equilibrate for exactly 60 s (±0.1 s), and then the well plate is moved by the SERSbot under the microscope objective so that a SERS spectrum is immediately taken (or, in other cases, placed manually under the Renishaw inVia).
problem of extracting the source spectra without analysis (PCA) technique, whose eigen-spectra and -scores represent source separation (BSS). Either the source spectra themselves or their scores is termed blind.

The idea of FastICA is based on the central limit theorem stating that the distribution of a mixture of uncorrelated random variables becomes Gaussian. For SERS signals, a simple measure of Gaussianity such as kurtosis proves to be sufficient.

This is similar to the widely employed principal component analysis (PCA) technique, whose eigen-spectra and -scores represent an orthogonal coordinate basis that maximizes the variance in the data. PCA works well for the classification of features in SERS spectra but fails to extract the true source spectra. For the spectral analysis of analyte mixtures (see section 3), independent component analysis (ICA) is preferable to reliably retrieve the source spectra and a priori source separation (BSS).

This assumes that the observed spectra are a linear combination of source spectra and, given only the observed spectra, the ICA algorithm can be executed, the spectral data requires some preprocessing. In the first step, PCA dimensionality reduction is performed, which reduces noise and removes spectral lines formed due to cosmic rays. ICA is prone to mistakenly identify these lines as independent components. The next step is to remove the sample mean and de-correlate (whitening) the spectral data such that . The resulting data vector after preprocessing is then fed into the ICA algorithm.

This implementation of ICA is based on a simple gradient descent (starting with a random guess for), in every round , with referring to the expected value, norm representing vector normalization, and , the whitened and zero-mean SERS spectra. The gradient descent algorithm for determining the source spectra and mixing coefficients is written in MATLAB (see Supporting Information (SI)) and is also available as a free Python implementation in the machine learning package "scikit-learn".

For SERS measurements, SERS spectra taken on the robot and the commercial Renishaw inVia Raman system are each averaged over three acquisitions of 10 s integration time. The laser power after the microscope objective of both systems is set to 1.5 mW. The Renishaw system uses a similar 5x objective (Renishaw). The reported counts are normalized to the laser power and total acquisition time (cps/mW).

Density Functional Theory (DFT)/Thermochemistry Calculations. The extracted spectra are compared with DFT calculations. This uses B3LYP at the 6-31G*/GD3 level of theory, SMD implicit water model, preoptimization in the gas phase, as well as counterpoise correction (see results in Figure S3). The test analyte molecules used later in the work here are methyl viologen (MV+) and its deuterated version (d6-MV+), allowing us to then evaluate the CB[7]:MV and CB[7]:d6-MV+ complexation enthalpy and Gibbs free energy.
calculating the empirical covariance and standard deviation timing for the aggregation (show good reproducibility despite the less precise manual pipetting, bottom). little variances, similarities between spectra are quantified using vertical offsets, as well as for MV2+ concentration series with d5-MV2+ concentration fixed at 4.6 μM and 0.9 μM.

 RESULTS AND DISCUSSION

SERSbot Characterization. To identify how well the SERSbot compares to manual pipetting/high-end Raman (Renishaw inVia), the assay protocol depicted in Figure 1c is used (first without any analyte present). This straightforward SERS substrate (Figure 2a) is used throughout the paper and comprises colloidally suspended AuNP aggregates providing plasmonically-active nanogaps delivering strong SERS enhancement. Each nanogap is precisely controlled by the molecular linker cucurbit[n]uril (CB[n], n = 5,7), exhibiting a fixed gap width of 0.9 nm.14 These CB[n] compared to other CB[n] homologues (n = 6,8), are used because of their enhanced water solubility over CB[n] (n = 6,8).15

For the SERSbot, a total of eight fresh CB[5]:AuNP samples were measured on different days (2–4 days) using the same AuNP stock suspension (Figure 2b, left). The spectra show typical CB[5] signals with a ring-breathing signature mode at 830 cm⁻¹. All eight spectra are almost perfectly congruent, exhibiting nearly identical backgrounds and peak intensities. As SERS spectra are usually known to exhibit background fluctuations, this emphasizes the robustness of the CB[5]:AuNP substrate.16 To make each spectrum more visible, they are also plotted with vertical offsets (Figure 2b, bottom).

For the commercial Raman system with careful manual pipetting, five fresh samples taken on consecutive days also show good reproducibility despite the less precise manual timing for the aggregation (±5 s). As both sets of spectra show little variances, similarities between spectra are quantified using a Pearson correlation coefficient (PCC) r(x,y), which is an accepted and useful figure of merit for quantifying reproducibility and repeatability. For the two spectra x and y, the PCC is defined as the ratio of the covariance cov(x,y) to the product of their standard deviations σx,σy. This is estimated by calculating the empirical covariance and standard deviation between the first spectrum of each set and the subsequent samples (Figure 2c). As expected, the correlation coefficient (here reported as 1 − r) obtained from both the SERSbot and the manual setup approaches zero, meaning that the spectra are nearly identical and highly reproducible. Average PCCs for both the best manual procedure and for the SERSbot are comparable.

With the high reproducibility of the CB[5]:AuNP aggregates, the noise performance of the SERSbot and commercial Raman system are compared. This is done by normalizing the sample variance of the CB[5] series to the peak intensity of its strongest vibration at 830 cm⁻¹ (Figure 2d). This normalization step is important to remove system-dependent efficiencies: the Renishaw system generates slightly higher counts for the same CB[5]:AuNP samples but its noise level is comparable (24.6 dB compared to 22.5 dB for the SERSbot setup). The only measurable contribution of the CB[5]:AuNP system on top of this noise floor is the variation arising from the ring-breathing mode (830 cm⁻¹).

The overall performance of the fully automated SERSbot is thus comparable to the best manual pipetting with a high-end Raman system for this very simple protocol. However, for more complex protocols, it is evident that the SERSbot will outperform manual pipetting and spectroscopy, particularly when consistent mixing of analytes is required.

This improved performance is found when introducing even a single analyte to the substrate (Figure 2e). We compare the robot setup to manual pipetting measuring the CB[5] mixed with an analyte of methyl viologen (MV2+). To do so, the protocol is extended. The first two steps, pipetting of CB[5], followed by AuNPs for 600 s aggregation time, remain the same. After this, the analyte or analyte mixture is added and stirred into the well plate (using the pipette tip to “suck and dispense” three times). It is left to infuse and equilibrate for exactly 60 s (±0.1 s), and eventually, a SERS spectrum is
taken. For every concentration, a total of three repeat samples are taken. To make comparison easier, the series dilution of MV2+ is performed by the SERSbot, which is then reused for the manual pipetting experiment. This ensures that there is no relative concentration uncertainty between the two experiments on the two different systems.

From the spectra (Figure 2d,g), the differences between the robotic system and manual pipetting/acquisition are highly evident. The manual data exhibits several times higher uncertainty (random error) for most data points (less apparent at low concentrations of MV2+). This proves that for liquid SERS measurements, not only precise timing and volumes are necessary but also reproducible mixing of the analyte into the suspension, which are very difficult to control for manual pipetting. This clearly shows the advantages of such measurements with the SERSbot.

For high MV2+ concentrations, the robotic system also shows an increase of random error, and the concentration series begins to deviate from the Langmuir–Hill fit (see the SI). The reason for this deviation and increased error is likely caused by MV2+ molecules contributing to the aggregation of AuNPs (Figure S2). This means that a substantial number of the probed nanogaps are no longer defined by the precise gap-spacing of CB[5], thus lowering the reproducibility of the SERS measurement. This is confirmed by the CB[5] ICA score, which decays for high MV2+ concentrations.

Quantitative Multianalyte SERS. To show the robustness and strength of the SERSbot in combination with ICA, we now demonstrate the system’s performance for a double analyte system with CB[7]:AuNP constructs. CB[7] is employed because it has been shown to be capable of sequestering small molecule analytes within its cavity, therefore adding additional binding sites to the system.15,18 Besides the CB[7] nanogap spacer (at a fixed concentration), the analytes used (Figure 3a) are methyl viologen (MV2+) and a deuterated isotopolog derivative d8-MV2+, where the hydrogen atoms on the central pyridinium rings are substituted for deuterium. Such chemically identical bialalyte systems have proven very useful in SERS to investigate the performance of nanogap systems.19 Four sets of measurements with a total of 60 spectra are taken, preparing each sample fresh. The first two sets of measurements (I and II) are concentration series of MV2+ and d8-MV2+, for calibrating and training the ICA. In III and IV, a competitive binding assay with MV2+ concentration series is performed while keeping the d8-MV2+ fixed (at 4.6 and 0.9 μM, respectively), thus combining three source spectra simultaneously (Figure 3b).

The employed ICA algorithm (see methods) runs through the entire data set and returns three independent components (Figure 3c). These components clearly resemble the individual spectra of CB[7], MV2+ and d8-MV2+, matching the measured SERS (Figure S2). This shows that ICA is indeed able to retrieve the source spectra without any a priori information from complex mixture data.

Plotting the extracted ICA scores against the MV2+ and d8-MV2+ concentrations (Figure 3d,e) reveals the expected sensing response in the nanogaps. Both can be fitted with the Hill–Langmuir equation20,21 (see section SI5) to retrieve the dissociation constants of MV2+ and d8-MV2+ binding into the nanogaps, Kd(MV2+) = 20 ± 5 μM, Kd(d8-MV2+) = 32 ± 5 μM. These represent the analyte concentration at half-occupation of the nanogaps. As expected from their chemical similarity (see DFT calculations in Figure S3), the binding for both molecules is nearly identical. These micromolar values evidence the strong binding affinity of the viologen derivatives to the hydrophobic CB[n]-filled nanogaps.

Competitive Binding Assay. The two molecules MV2+ and d8-MV2+ are structurally analogous and possess similar dissociation constants but have very different SERS spectra (Figure S2c), as the vibrational energies are inversely proportional to the square root of the reduced mass. They are thus ideal candidates to explore nanogap sensing chemistries in conjunction with our high-throughput SERSbot.

In a competitive binding assay (Figure 3f,g), mixtures of MV2+ and d8-MV2+ are prepared and added to the CB[7]:AuNPs according to the same protocol as for (I,III). Each sample contains a fixed concentration of d8-MV2+ (4.2 or 0.9 μM), while the MV2+ concentration is varied from 73 nM to 23 μM. As we show below, despite their chemical similarity, the SERSbot assay is clearly able to show how these analytes compete with each other due to the different binding sites available.23

Plotting the ICA scores from the SERS spectra of the MV2+ (red) against the MV concentration yields another Langmuir–Hill isotherm, which slightly deviates from the MV-only concentration series (Figure 3f,g). Surprisingly, the d8-MV2+ scores (blue) differ significantly from the expected ICA score values, despite the fixed concentration of d8-MV2+ for every data point (gray dashed lines). For MV2+ concentrations >10 μM, the d8-MV2+ scores are well below the expected values from the d8-MV2+ concentration series (Figure 3e). At such high MV2+ concentrations, the majority of SERS-probed nanogaps are occupied by MV2+, which therefore leads to d8-MV2+ scores below the expected values from the site competition. This evidences the limited number of sites available in the nanogap.

As the MV2+ concentration decreases, more d8-MV2+ molecules are sequestered by the nanogaps seen in the increasing d8-MV2+ scores. Countertuitively, these scores increase above the expected values, to a maximum at ~1 μM MV2+ concentration. For further decreases in MV2+ concentration, the d8-MV2+ scores decay back to the expected values c1, as shown in Figure 3e.

This peculiar behavior of the d8-MV2+ response is attributed to the presence of spare CB[7] molecules outside the plasmonically-active nanogaps, which form strong inclusion complexes [log(Kd(MV2+/CB7)) = −7] with MV2+/d8-MV2+. The probed nanogaps thus compete with CB[7] in sequestering d8-MV2+/MV2+, which prefer CB[7] (Kd(MV2+/CB7) ~20–30 μM vs Kd(MV2+/CB7) ~0.1 μM) by 200 to 300-fold. With this knowledge, it is evident how an increasing MV2+ concentration complexes preferentially with CB[7], thus promoting even more d8-MV2+ into the nanogaps. Once CB[7] is saturated with MV2+, the d8-MV2+ response reaches its maximum, and a further increase of MV2+ begins to displace d8-MV2+ inside the nanogaps. This leads to a drop of the d8-MV2+ signal for high MV2+ concentrations.

Nanogap Sensing Model. As shown in the previous section, the fixed concentration of d8-MV2+ produces different signal intensities (ICA scores) depending on the MV2+ concentration. Evidently, it is not possible to extract the analyte concentration simply by comparing peaks or peak ratios. Here, we introduce a quantitative model that incorporates all relevant sensing mechanisms to replicate and fit the measured data.
We assume that the plasmonic gaps act as receptors with a total nanogap binding site concentration \([G_0]\) (Figure 4a). The nanogaps sequester MV\(_{2+}\) and \(d_s\)-MV\(_{2+}\) to form the complexes \([G\cdot MV]\) and \([G\cdot dMV]\). In the same fashion, CB\([7]\) is assumed to have a total concentration of \([CB_0]\) and form the complexes \([CB\cdot MV]\) and \([CB\cdot dMV]\).

The dissociation constants are defined as

\[
K_{d}^{G\cdot MV} = \frac{[G][MV]}{[G\cdot MV]} \\
K_{d}^{G\cdot dMV} = \frac{[G][dMV]}{[G\cdot dMV]} \\
K_{d}^{CB\cdot MV} = \frac{[CB][MV]}{[CB\cdot MV]} \\
K_{d}^{CB\cdot dMV} = \frac{[CB][dMV]}{[CB\cdot dMV]}
\]

Together with the mass conservation equations

\[
[G_0] = [G] + [G\cdot MV] + [G\cdot dMV] \\
[MV_0] = [MV] + [G\cdot MV] + [CB\cdot MV] \\
[dMV_0] = [dMV] + [G\cdot dMV] + [CB\cdot dMV] \\
[CB_0] = [CB] + [CB\cdot MV] + [CB\cdot dMV]
\]

a system of eight equations is obtained.\(^{26}\) These can be solved numerically for the nanogap complexes \([G\cdot MV]\) and \([G\cdot dMV]\), which are directly proportional to the SERS intensity

\[
l_{SERS}^I \propto [G\cdot MV] \quad \text{and} \quad l_{SERS}^{dMV} \propto [G\cdot dMV]
\]

Directly using this model to replicate the experimental competitive binding assay as a function of the \([CB\cdot MV]_0; [d_s\cdot MV_2^+]\) ratio using the concentrations and extracted dissociation constants from our data yields a response, which does not fully reproduce the \(d_s\cdot MV_2^+\) peaking at \(\sim 1 \, \mu M\) (Figure 4a). This means that the model does not account for \(MV_2^+\) and \(d_s\cdot MV_2^+\) binding to the gold surface outside the SERS-active hotspots (Figure 4c). This means that the real dissociation constants are considerably lower (stronger affinity), and the effective concentration available for binding into the nanogaps is lower.

To compensate for this “unspecific” binding in our model, we first estimate the relative fractions of \(MV_2^+/d_s\cdot MV_2^+\) bound inside and outside the nanogaps. Electron microscopy of the fractal aggregates\(^{11}\) shows that every AuNP connects to \(\sim 2.5\) adjacent AuNPs. Approximating the AuNP shape as icosahedral (with 20-faced (111) facets), the effective MV\(_{2+}/d_s\cdot MV\(_{2+}\) concentrations available for nanogap binding are then \(\sim (2.5/20)^{-1} = 8\)-fold lower.

Including this geometry-specific factor into the model, a good fit of the measured data is now achieved (Figure 4b).

Most convincingly, the surprising peak at \(\sim 1 \, \mu M\) seen in Figure 3f,g is reproduced, supporting the validity of our model. The extracted dissociation constants are then \(K_{d}^{dMV} \sim 0.63 \, \mu M\) and \(K_{d}^{dMV} \sim 1.5 \, \mu M\), showing that the deuterated molecule again finds it harder to bind into the nanogap, likely due to changes in its solvation in the confined environment of the gap. The extraction of 10-fold lower \(K_d\) values in this competitive binding assay than in the single-component assays (Figure 3d,e) is due to the nonspecific analyte ‘theft’ outside the nanogaps and shows that understanding molecular binding in such real nanoconstruct substrates is important.\(^{27}\) The nanogaps possess much higher fundamental binding efficiencies for analytes than previously measured, emphasizing the need to remove surface sequestration outside nanogaps to maximize sensing detection limits.

Further increasing the CB\([7]\) concentration in this model calculation (Figure 5d) shifts the \(d_s\cdot MV_2^+\) detection peak below \(\sim 1 \, \mu M\) and sharpens it. Conversely, decreasing the CB\([7]\) concentration flattens the \(d_s\cdot MV_2^+\) signal, confirming that the presence of CB\([7]\) is essential to form this peak. The agreement between experiment and theory also confirms that analyte binding into nanogaps is reversible, as previously suggested.\(^{27}\)

From this model fit to the data, it is possible to extract the upper bound of the nanogap binding site concentration. The detection peak solely arises from the competitive binding of \(MV_2^+\) and \(d_s\cdot MV_2^+\) into the nanogaps. With increasing gap concentration, this competition disappears as sufficient binding sites are available for both compounds, while lower gap concentrations also do not shift the peak in the response. Sweeping the gap concentration (Figure 5d) shows the peak is found where the gap concentration matches the CB\([7]\) concentration \(\sim 10 \, \mu M\) or below. This approach thus provides a new way to independently estimate the number of
nanogap SERS binding sites per unit volume, which is required for quantitative SERS, without having further knowledge of the experimental parameters such as enhancement factor of the substrates. Without systematic data from the SERSbot, all such effects would be difficult to ascertain.

CONCLUSIONS

The full automation of vibrational molecular analysis by combining SERS measurements with a liquid handler into a SERS robot proves to be a viable option for providing and maintaining consistent high repeatability across an arbitrary number of samples. For the CB[n]:AuNP aggregates, this is achieved by accurately dispensing solutions of CB, gold nanoparticles, and analytes and carefully controlling aggregation and incubation times. The large spectral data sets produced are ideal for sophisticated data analysis, which enables quantitative and multiplexed characterization of systematically controlled sample sets. Using independent component analysis to characterize a mixture of two molecules (MV²⁺ and d₄-MV²⁺), we demonstrate the competition for various binding sites inside and outside the nanogap. Comparing the results to a ligand/receptor binding model confirms that the normally assumed Hill–Langmuir concentration dependence is altered. From this competitive binding assay, we also extract dissociation constants for ligand/nanogap binding, show their reversibility, and quantify competitive binding. Our nanogap sensing model confirms the subtle interactions in binding mechanisms involved, even in a seemingly simple setting. Indeed, for future work, we will extend the sensing capability to mixtures of even more analytes that the SERSbot will tackle autonomously.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acssensors.1c02116.

Photos of SERSbot, DFT and thermochemistry, raw spectra, methyl viologen in the nanogap, model comparison, Langmuir–Hill fit calculations, and MATLAB ICA code (PDF)

SERSbot pipette tip change (MP4)

AUTHOR INFORMATION

Corresponding Author

Jeremy J. Baumberg – Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom; orcid.org/0000-0002-9606-9488; Email: jjb12@cam.ac.uk

Authors

David-Benjamin Grys – Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom; orcid.org/0000-0002-4038-6388

Bart de Nijs – Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom; orcid.org/0000-0002-8234-723X

Junyang Huang – Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom

University of Cambridge, Cambridge CB3 0HE, United Kingdom

Oren A. Scherman – Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; orcid.org/0000-0001-8032-7166

Complete contact information is available at: https://pubs.acs.org/10.1021/acssensors.1c02116

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge financial support from EPSRC Grants (EP/L027151/1, RANT EP/R020965/1, EP/P029426/1) and ERC PICOFORCE (883703). D.-B.G. is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) Grant EP/L015889/1 for the EPSRC Centre for Doctoral Training in Sensor Technologies and Applications. B.d.N. acknowledges support from the Leverhulme Trust and the Isaac Newton Trust in the form of an ECF.

REFERENCES

(1) Yuan, Y.; Panwar, N.; Yap, S. H. K.; Wu, Q.; Zeng, S.; Xu, J.; Tjin, S. C.; Song, J.; Qu, J.; Yong, K. T. SERS-Based Ultrasonic Sensing Platform: An Insight into Design and Practical Applications. Coord. Chem. Rev. 2017, 337, 1–33.

(2) Gao, Z.; Burrows, N. D.; Valley, N. A.; Schatz, G. C.; Murphy, C. J.; Haynes, C. L. In Solution SERS Sensing Using Mesoporous Silica-Coated Gold Nanorods. Analyst 2016, 141, S088–S095.

(3) Hyvärinen, A.; Oja, E. Independent Component Analysis: Algorithms and Applications. Neural Networks 2000, 13, 411–430.

(4) Abell, J. L.; Lee, J.; Zhao, Q.; Szu, H.; Zhao, Y. Differentiating Intrinsic SERS Spectra from a Mixture by Sampling Induced Composition Gradient and Independent Component Analysis. Analyst 2012, 137, 73–76.

(5) Mahajan, S.; Lee, T.-C.; Biedermann, F.; Hugall, J. T.; Baumberg, J. J.; Scherman, O. A. Raman and SERS Spectroscopy of Cucurbit[n]Urils. Phys. Chem. Chem. Phys. 2010, 12, 10429.

(6) de Nijs, B.; Kamp, M.; Szabo, I.; Barrow, S. J.; Benz, F.; Wu, G.; Carnegie, C.; Chikkaraddy, R.; Wang, W.; Deacon, W. M.; Rosta, E.; Baumberg, J. J.; Scherman, O. A. Smart Supramolecular Sensing with Cucurbit[n]Urils: Probing Hydrogen Bonding with SERS. Faraday Discuss. 2017, 205, 505–515.

(7) Kasera, S.; Hermann, L. O.; Del Barrio, J.; Baumberg, J. J.; Scherman, O. A. Quantitative Multiplexing with Nano-Self-Assemblies in SERS. Sci. Rep. 2014, 4, No. 6785.

(8) Taylor, R. W.; Lee, T. C.; Scherman, O. A.; Esteban, R.; Azipurua, J.; Huang, F. M.; Baumberg, J. J.; Mahajan, S. Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]Urils “Glue.” ACS Nano 2011, 5, 3878–3887.

(9) Grys, D.-B.; Chikkaraddy, R.; Kamp, M.; Scherman, O. A.; Baumberg, J. J.; de Nijs, B. Eliminating Irreproducibility in SERS Substrates. J. Raman Spectrosc. 2020, 52, 412–419.

(10) Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52.

(11) Hyvärinen, A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans. Neural Networks 1999, 10, 626–634.

(12) Comon, P. Independent Component Analysis, A New Concept? Signal Process. 1994, 36, 287–314.

(13) Hyvärinen, A. In Fast ICA for Noisy Data Using Gaussian Moments, Proceedings International Symposium on Circuits and Systems, 1999, 5.
(14) Assaf, K. I.; Nau, W. M. Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chem. Soc. Rev. 2015, 44, 394–418.

(15) Barrow, S. J.; Kasera, S.; Rowland, M. J.; Del Barrio, J.; Scherman, O. A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406.

(16) Murray, J.; Kim, K.; Ogoshi, T.; Yao, W.; Gibb, B. C. The Aqueous Supramolecular Chemistry of Cucurbit[n]Urils, Pillar[n]Arenes and Deep-Cavity Cavitands. Chem. Soc. Rev. 2017, 46, 2479–2496.

(17) Mahajan, S.; Cole, R. M.; Speed, J. D.; Pelfrey, S. H.; Russell, A. E.; Bartlett, P. N.; Barnett, S. M.; Baumberg, J. J. Understanding the Surface-Enhanced Raman Spectroscopy “Background.” J. Phys. Chem. C 2010, 114, 7242–7250.

(18) Sigle, D. O.; Kasera, S.; Herrmann, L. O.; Palma, A.; De Nijs, B.; Benz, F.; Mahajan, S.; Baumberg, J. J.; Scherman, O. A. Observing Single Molecules Complexing with Cucurbit[7]Uril through Nanogap Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. Lett. 2016, 7, 704–710.

(19) Ru, E. C.; Le; Meyer, M.; Etchegoin, P. G. Bi-Analyte Surface Enhanced Raman Scattering for Unambiguous Evidence of Single Molecule Detection, 2005.

(20) Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Varga, B.; Juhasz, B.; Tosaki, A. The Hill Equation and the Origin of Quantitative Pharmacology. Arch. Hist. Exact Sci. 2012, 66, 427–438.

(21) Weiss, J. N. The Hill Equation Revisited: Uses and Misuses. FASEB J. 1997, 11, 835–841.

(22) Emmons, E. D.; Guicheteau, J. A.; Fountain, A. W.; Tripathi, A. Effect of Substituents on Surface Equilibria of Thiophenols and Isoquinolines on Gold Substrates Studied Using Surface-Enhanced Raman Spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 15953–15965.

(23) Tripathi, A.; Emmons, E. D.; Kline, N. D.; Christesen, S. D.; Fountain, A. W.; Guicheteau, J. A. Molecular Structure and Solvent Factors Influencing SERS on Planar Gold Substrates. J. Phys. Chem. C 2018, 122, 10205–10216.

(24) Ong, W.; Kaifer, A. E. Salt Effects on the Apparent Stability of the Cucurbit[7]Uril-Methyl Viologen Inclusion Complex. J. Org. Chem. 2004, 69, 1383–1385.

(25) Ma, D.; Zavalij, P. Y.; Isaacs, L. Acyclic Cucurbit[n]Urils Congeners Are High Affinity Hosts. J. Org. Chem 2010, 75, 4786–4795.

(26) Wang, Z. X. An Exact Mathematical Expression for Describing Competitive Binding of Two Different Ligands to a Protein Molecule. FEBS Lett. 1995, 360, 111–114.

(27) De Nijs, B.; Carnegie, C.; Szabó, I.; Grys, D.-B.; Chikkaraddy, R.; Kamp, M.; Barrow, S. J.; Readman, C. A.; Kleemann, M.-E.; Scherman, O. A.; Rosta, E.; Baumberg, J. J. Inhibiting Analyte Theft in Surface-Enhanced Raman Spectroscopy Substrates: Subnanomolar Quantitative Drug Detection. ACS Sens. 2019, 4, 2988.