ELEMENTARY APPROACH TO HOMOGENEOUS C*-ALGEBRAS

PIOTR NIEMIEC

ABSTRACT. An elementary proof of Fell’s theorem on models of homogeneous C*-algebras is presented. A spectral theorem and a functional calculus for finite systems of elements which generate homogeneous C*-algebras are proposed.

1. Introduction. In 1961, Fell [9] introduced models for n-homogeneous C*-algebras in terms of certain fibre bundles. It is a natural generalization of the commutative Gelfand-Naimark theorem, which gives models for commutative C*-algebras. However, Fell’s proof involves the machinery of (general) operator fields and, as such, is more advanced than Gelfand’s theory of commutative Banach algebras. Tomiyama and Takesaki [28] gave another proof of Fell’s theorem, which involved techniques of von Neumann algebras. In this paper, we propose a new proof of this theorem (starting from the very beginning), which is elementary and resembles the standard proof of the commutative Gelfand-Naimark theorem. We avoid the abstract language of fibre bundles; instead of them we introduce n-spaces, which are counterparts of locally compact Hausdorff spaces in the commutative case. These are locally compact Hausdorff spaces endowed with a (continuous) free action of the group \(\mathcal{U}_n = \mathcal{U}_n / Z(\mathcal{U}_n) \) where \(\mathcal{U}_n \) is the unitary group of \(n \times n \) matrices and \(Z(\mathcal{U}_n) \) is its center.

Our approach to the subject mentioned above enables us to generalize the spectral theorem (for a normal Hilbert space operator) to the context of finite systems generating homogeneous C*-algebras. It also...
allows building so-called n-functional calculus for such systems. These and related topics are discussed in the present paper.

The paper is organized as follows. Section 2 is devoted to an operator-valued version of the Stone-Weierstrass theorem, which plays an important role in our proof of Fell’s theorem on homogeneous C^*-algebras (presented is Section 5). In Section 3, we define and establish basic properties of so-called n-spaces $(X,.)$ (which, in fact, are the same as Fell’s fibre bundles) and, corresponding to them, C^*-algebras $C^*(X,.)$. These investigations are continued in the next part where we define spectral n-measures and characterize by means of them all representations of $C^*(X,.)$ for any n-space $(X,.)$. In Section 5, we give a new proof of Fell’s characterization of homogeneous C^*-algebras. In Section 6, we formulate the spectral theorem for finite systems of elements which generate n-homogeneous C^*-algebras and build the n-functional calculus for them.

Notation and terminology. If a C^*-algebra A has a unit e, the spectrum of x is denoted by $\sigma(x)$, and it is the set of all $\lambda \in \mathbb{C}$ for which $x - \lambda e$ is noninvertible in A. For two self-adjoint elements a and b of A we write $a \leq b$ provided $b - a$ is nonnegative. If $a \leq b$ and $b - a$ is invertible in A, we shall express this by writing $a < b$ or $b > a$. The C^*-algebra of all bounded operators on a (complex) Hilbert space H is denoted by $B(H)$. Representations of unital C^*-algebras need not preserve unities and they are understood as $*$-homomorphisms into $B(H)$ for some Hilbert space H. A representation of a C^*-algebra is n-dimensional if it acts on an n-dimensional Hilbert space. A *map* is a continuous function.

2. Operator-valued Stone-Weierstrass theorem. The classical Stone-Weierstrass theorem finds many applications in functional analysis and approximation theory. It reached many generalizations as well, see e.g., [2, 10, 11, 14, 17, 21, 27] and the references therein (consult also [5, Corollary 11.5.3], [9, Theorem 1.4] and [23, subsection 4.7]). A first significant counterpart of it for general C^*-algebras was established by Glimm [11]. Much later, Longo [17] and Popa [21] proved independently a stronger version of Glimm’s result, solving a long-standing problem in theory of C^*-algebras. In comparison to the classical Stone-Weierstrass theorem or, for example, to its generaliza-
tion by Timofte [27], Glimm’s and Longo’s-Popa’s theorems are not settled in function spaces. In this section, we propose another version of the theorem under discussion which takes place in spaces of functions taking values in C^*-algebras. As such, it may be considered as its very natural generalization. Although the results of Glimm and Longo and Popa are stronger and more general than ours, they involve advanced machinery of C^*-algebras and advanced language of this theory, while our approach is very elementary and its proof is similar to Stone’s [24, 25]. To formulate our result, we need to introduce the following notion.

Definition 2.1. Let X be a set, x and y distinct points of X, and let \mathcal{A} be a unital C^*-algebra. A collection \mathcal{F} of functions from X to \mathcal{A} spectrally separates points x and y if there is $f \in \mathcal{F}$ such that $f(x)$ and $f(y)$ are normal elements of \mathcal{A} and their spectra are disjoint. If \mathcal{F} spectrally separates any two distinct points of X, we say that \mathcal{F} spectrally separates points of X.

The reader should notice that a collection of complex-valued functions spectrally separates two points if and only if it separates them.

Whenever \mathcal{A} is a unital C^*-algebra and a is a self-adjoint element of \mathcal{A}, let us denote by $M(a)$ the real number $\max \sigma(a)$. Further, if X is a locally compact Hausdorff space and $f : X \to \mathcal{A}$ is a map, we say that f vanishes at infinity if and only if for every $\varepsilon > 0$ there is a compact set $K \subset X$ such that $\|f(x)\| < \varepsilon$ for any $x \in X \setminus K$. The set of all \mathcal{A}-valued maps on X vanishing at infinity is denoted by $C_0(X, \mathcal{A})$. Notice that $C_0(X, \mathcal{A})$ is a C^*-algebra when it is equipped with pointwise actions and the supremum norm induced by the norm of \mathcal{A}. Moreover, $C_0(X, \mathcal{A})$ is unital if and only if X is compact (recall that we assume here that \mathcal{A} is unital).

A full version of our Stone-Weierstrass type theorem has the following form.

Theorem 2.2. Let X be a locally compact Hausdorff space, and let \mathcal{A} be a unital C^*-algebra. Let E be a $*$-subalgebra of $C_0(X, \mathcal{A})$ such that:

$$(AX0)$$ if X is noncompact, then for each $z \in X$ either $f_0(z)$ is invertible in \mathcal{A} for some $f_0 \in E$ or $f(z) = 0$ for any $f \in E$;
and for any two points \(x \) and \(y \) of \(X \) one of the following two conditions is fulfilled:

1. (AX1) either \(x \) and \(y \) are spectrally separated by \(\mathcal{E} \), or
2. (AX2) \(M(f(x)) = M(f(y)) \) for any self-adjoint \(f \in \mathcal{E} \).

Then the (uniform) closure of \(\mathcal{E} \) in \(C_0(X, \mathcal{A}) \) coincides with the *-algebra \(\Delta_2(\mathcal{E}) \) of all maps \(u \in C_0(X, \mathcal{A}) \) such that for any \(x, y \in X \) and each \(\varepsilon > 0 \) there exists \(v \in \mathcal{E} \) with \(\|v(z) - u(z)\| < \varepsilon \) for \(z \in \{x, y\} \).

As a consequence of the above result we obtain the following result, which is a special case of [5, Corollary 11.5.3].

Proposition 2.3. Let \(X \) be a locally compact Hausdorff space, and let \(\mathcal{A} \) be a unital \(C^* \)-algebra. A *-subalgebra \(\mathcal{E} \) of \(C_0(X, \mathcal{A}) \) is dense in \(C_0(X, \mathcal{A}) \) if and only if \(\mathcal{E} \) spectrally separates points of \(X \) and for every \(x \in X \) the set \(\mathcal{E}(x) := \{f(x) : f \in \mathcal{E}\} \) is dense in \(\mathcal{A} \).

It is worth noting that we know no characterization of dense *-subalgebras of \(C_0(X, \mathcal{A}) \) in case \(\mathcal{A} \) does not have a unit.

The proof of Theorem 2.2 is partially based on the original proof of the Stone-Weierstrass theorem given by Stone [24, 25]. However, the key tool in our proof is the so-called Loewner-Heinz inequality (for the discussion on this inequality, see [1, page 150]), first proved by Loewner [18]:

Theorem 2.4. Let \(a \) and \(b \) be two self-adjoint nonnegative elements in a \(C^* \)-algebra such that \(a \leq b \). Then, for every \(s \in (0, 1) \), \(a^s \leq b^s \).

The proof of Theorem 2.2 is preceded by several auxiliary results. For simplicity, the unit of \(\mathcal{A} \) will be denoted by 1 and the function from \(X \) to \(\mathcal{A} \) constantly equal to 1 will be denoted by \(1_X \). We also preserve the notation of Theorem 2.2. Additionally, \(\overline{\mathcal{E}} \) stands for the (uniform) closure of \(\mathcal{E} \) in \(C_0(X, \mathcal{A}) \).

Lemma 2.5. Suppose \(X \) is compact. Then \(1_X \in \overline{\mathcal{E}} \) if and only if for every \(x \in X \) there is \(f \in \mathcal{E} \) such that \(f(x) \) is invertible in \(\mathcal{A} \).
Lemma 2.7. Suppose X is compact and $1_X \in \overline{E}$. Let $x \in X$ and $\delta > 0$ be arbitrary. For any self-adjoint $f \in \Delta_2(\mathcal{E})$, there are self-adjoint $g, h \in \overline{E}$ such that $g(x) = f(x) = h(x)$ and $g - \delta \cdot 1_X \leq f \leq h + \delta \cdot 1_X$.

Proof. It follows from the definition of $\Delta_2(\mathcal{E})$ (and the fact that $*$-homomorphisms between C^*-algebras have closed ranges) that for every $y \in X$ there is an $f_y \in \overline{E}$ with $f_y(z) = f(z)$ for $z \in \{x, y\}$. Replacing, if needed, f_y by $(f_y + f_y^*)/2$, we may assume that f_y is self-adjoint. Let $U_y \subset X$ consist of all $z \in X$ such that $\|f_y(z) - f(z)\| < \delta$. Take a finite number of points x_1, \ldots, x_p for which $X = \bigcup_{j=1}^p U_{x_j}$. For simplicity, put $V_j = U_{x_j}$ and $g_j = f_{x_j}$ ($j = 1, \ldots, p$). Observe that $f - \delta \cdot 1_X \leq g_j$ on V_j and $g_j(x) = f(x)$. We define, by induction, functions $h_1, \ldots, h_p \in \overline{E}$: $h_1 = g_1$ and $h_k = (h_{k-1} + g_k + |h_{k-1} - g_k|)/2$ for $k = 2, \ldots, p$ where $|u| = \sqrt{u^*u}$ for each $u \in \overline{E}$. Since \overline{E} is a C^*-algebra, we clearly have $h_k \in \overline{E}$. Use induction to show that $h_j(x) = f(x)$ and $g_j \leq h_p$ for $j = 1, \ldots, p$. Then $h = h_p$ is the function we searched for. Indeed, $h(x) = f(x)$, and for any $y \in X$, there is $j \in \{1, \ldots, p\}$ such that $y \in V_j$, which implies that $f(y) - \delta \cdot 1 \leq g_j(y) \leq h(y)$.

Now if we apply the above argument to the function $-f$, we shall obtain a self-adjoint function $h' \in \overline{E}$ such that $-f(x) = h'(x)$ and $-f \leq h' + \delta \cdot 1_X$. Then put $g := -h'$ to complete the proof. \qed

Lemma 2.6. Suppose X is compact and $1_X \in \overline{E}$. Let $x \in X$ and $\delta > 0$ be arbitrary. For any self-adjoint $f \in \Delta_2(\mathcal{E})$, there are self-adjoint $g, h \in \overline{E}$ such that $g(x) = f(x) = h(x)$ and $g - \delta \cdot 1_X \leq f \leq h + \delta \cdot 1_X$.
self-adjoint elements of A such that $0 \leq a_j \leq b$, $b a_j = a_j b$ ($j = 1, \ldots, k$) and $\|b\| \leq r$, then $a_s \leq (\sum_{j=1}^{k} a_j^n)^{1/n} \leq b + \varepsilon \cdot 1$ for any $s \in \{1, \ldots, k\}$ and $n \geq N$.

Proof. Let $N > 2$ be such that $\sqrt[n]{k} \leq 1 + \varepsilon/r$ for each $n \geq N$, and let a_1, \ldots, a_k, b be as in the statement of the lemma. Then since $a_j^n \leq \sum_{j=1}^{k} a_j^n$, Theorem 2.4 yields $a_s \leq (\sum_{j=1}^{k} a_j^n)^{1/n}$. Further, since b commutes with a_j, we get $a_j^n \leq b^n$, and consequently, $\sum_{j=1}^{k} a_j^n \leq k b^n$. So, another application of Theorem 2.4 gives us $(\sum_{j=1}^{k} a_j^n)^{1/n} \leq \sqrt[n]{k} b$. So, it suffices to have $\sqrt[n]{k} b \leq b + \varepsilon \cdot 1$ which is fulfilled for $n \geq N$ because $\|(\sqrt[n]{k} - 1)b\| \leq (\sqrt[n]{k} - 1)r \leq \varepsilon$.

Lemma 2.8. Suppose X is compact and $1_X \in \mathcal{E}$. If $f \in \Delta_2(\mathcal{E})$ commutes with every member of \mathcal{E}, then $f \in \mathcal{E}$.

Proof. Since $\Delta_2(\mathcal{E})$ is a \ast-algebra, we may assume that f is self-adjoint. Fix $\delta > 0$. By Lemma 2.6, for every $x \in X$, there is an $f_x \in \mathcal{E}$ with $f_x(x) = f(x)$ and $f_x \leq f + \delta \cdot 1_X$. Let $U_x \subset X$ consist of all $y \in X$ such that $f_x(y) > f(y) - \delta \cdot 1$. We infer from the compactness of X that $X = \bigcup_{j=1}^{k} U_{x_j}$ for some points $x_1, \ldots, x_k \in X$. For simplicity, we put $V_j = U_{x_j}$ and $g_j = f_{x_j}$. We then have

\[(2.1)\quad g_j(x) \geq f(x) - \delta \cdot 1 \quad \text{for any } x \in V_j\]

and

\[(2.2)\quad g_j(x) \leq f(x) + \delta \cdot 1 \quad \text{for any } x \in X.\]

It follows from the compactness of X that there is a constant $c > 0$ such that $g_j + c \cdot 1_X \geq 0$ ($j = 1, \ldots, k$) and $f + (c - \delta) \cdot 1_X \geq 0$. Further, there is an $r > 0$ such that $f + (c + \delta) \cdot 1_X \leq r \cdot 1_X$. Now let $N = N(\delta, r, k)$ be as in Lemma 2.7. Since f commutes with each member of \mathcal{E}, we conclude from that lemma and from (2.2) that $g_j(x) + c \cdot 1 \leq [\sum_{j=1}^{k} (g_j(x) + c \cdot 1)^n]^{1/n} \leq f(x) + (c + 2\delta) \cdot 1$ for any $x \in X$. Finally, since $1_X \in \mathcal{E}$, the function

$$ g := \left[\sum_{j=1}^{k} (g_j + c \cdot 1_X)^n \right]^{1/n} - c \cdot 1_X $$
belongs to \overline{E}. What is more, $g < f + 2\delta \cdot 1_X$ and $g(x) \geq g_j(x) \geq f(x) - \delta \cdot 1$ for $x \in V_j$ (cf., (2.1)). This gives $f - \delta \cdot 1_X \leq g$ on the whole space X, and therefore $-\delta \cdot 1_X \leq g - f \leq 2\delta \cdot 1_X$, which is equivalent to $\|g - f\| \leq 2\delta$ and finishes the proof. \hfill \square

Lemma 2.9. Suppose X is compact, $1_X \in \overline{E}$ and there exists an equivalence relation \mathcal{R} on X such that two points x and y are spectrally separated by \mathcal{E} whenever $(x, y) \notin \mathcal{R}$. Then every map $g: X \to C\cdot 1 \subset A$ which is constant on each equivalence class with respect to \mathcal{R} belongs to \overline{E}.

Proof. By Lemma 2.8, we only need to check that $g \in \Delta_2(\mathcal{E})$. We may assume that $g: X \to \mathbb{R} \cdot 1$. Let x and y be arbitrary. Write $g(x) = \alpha \cdot 1$ and $g(y) = \beta \cdot 1$. If $(x, y) \in \mathcal{R}$, then both x and y belong to the same equivalence class, and hence $\alpha = \beta$. Then $g(z) = (\alpha \cdot 1_X)(z)$ for $z \in \{x, y\}$ (and $\alpha \cdot 1_X \in \overline{E}$). Now assume that $(x, y) \notin \mathcal{R}$. Then, by assumption, there is an $f \in \mathcal{E}$ such that both $f(x)$ and $f(y)$ are normal and $\sigma(f(x)) \cap \sigma(f(y)) = \emptyset$. Let $\varphi: \mathbb{C} \to \mathbb{R}$ be a map such that $\varphi|_{\sigma(f(x))} \equiv \alpha$ and $\varphi|_{\sigma(f(y))} \equiv \beta$. There is a sequence of polynomials $p_1(z, z), p_2(z, z), \ldots$, which converge uniformly to φ on $K := \sigma(f(x)) \cup \sigma(f(y))$. Then $p_n(f, f^*) \in \mathcal{E}$ and, for $w \in \{x, y\}$, $[p_n(f, f^*)](w) = p_n(f(w), [f(w)]^*)$. Since $f(w)$ is normal and its spectrum is contained in K, we see that

$$\lim_{n \to \infty} [p_n(f, f^*)](w) = \varphi(f(w)).$$

Now notice that $\varphi(f(x)) = \alpha \cdot 1 = g(x)$ and $\varphi(f(y)) = \beta \cdot 1 = g(y)$ finishes the proof. \hfill \square

We recall that, if X is a compact Hausdorff space and \mathcal{R} is a closed equivalence relation on X, then the quotient topological space X/\mathcal{R} is Hausdorff as well.

Lemma 2.10. Suppose X is compact and there is a closed equivalence relation \mathcal{R} on X such that $M(f(x)) = M(f(y))$ for each self-adjoint $f \in \mathcal{E}$ whenever $(x, y) \in \mathcal{R}$. Let $\pi: X \to X/\mathcal{R}$ denote the canonical projection, $f \in \overline{E}$ be self-adjoint, a and b two real numbers, and let $U = \{x \in X: a \cdot 1 < f(x) < b \cdot 1\}$. Then $\pi^{-1}(\pi(U)) = U$ and $\pi(U)$ is open in X/\mathcal{R}.
Put α that the sets π follow from the definition of R be a partition of unity such that β (which is compact and Hausdorff). Now let γ and δ (2.4)

and η (2.3) then

Suppose ζ We infer from (2.3) and (2.4) that ω Let η (2.4)

simplicity, we put ν such that $\xi \in R$ follows from the fact that η 1, θ ω η ξ

there is an $x \in U$ such that $(x, y) \in R$. We then have $\alpha < f(x) < b \cdot 1$, $M(f(x)) = M(f(y))$ and $M(-f(x)) = M(-f(y))$ (the last two relations follow from the fact that $f \in \mathcal{E}$). The first of these relations says that $[-M(-f(x)), M(f(x))] \subset (a, b)$, from which we infer that $[-M(-f(y)), M(f(y))] \subset (a, b)$, and consequently $y \in U$. \hfill \Box

The following is a special case of Theorem 2.2.

Lemma 2.11. Suppose X is compact, $1_X \in \mathcal{E}$ and, for any $x, y \in X$, one of conditions (AX1)–(AX2) is fulfilled. Then $\Delta_2(\mathcal{E}) = \overline{\mathcal{E}}$.

Proof. We only need to show that $\Delta_2(\mathcal{E})$ is contained in $\overline{\mathcal{E}}$. Let $f \in \Delta_2(\mathcal{E})$ be self-adjoint, and let $\delta > 0$. We shall construct $w \in \overline{\mathcal{E}}$ such that $\|w - f\| \leq 3\delta$. By Lemma 2.6, for each $x \in X$, there are functions $u_x, v_x \in \overline{\mathcal{E}}$ such that $u_x(x) = f(x) = v_x(x)$ and $u_x - \delta \cdot 1_X < f < v_x + \delta \cdot 1_X$. Let $G_x \subset X$ consist of all $y \in X$ such that $v_x(y) - \delta \cdot 1 < f(y) < u_x(y) + \delta \cdot 1$. Since $x \in G_x$ and X is compact, there is a finite system $x_1, \ldots, x_k \in X$ for which $X = \bigcup_{j=1}^k G_{x_j}$. For simplicity, we put $W_j = G_{x_j}$, $p_j = u_{x_j}$ and $q_j = v_{x_j}$. Observe that then

\[(2.3) \quad p_j(x) - \delta \cdot 1 < f(x) < q_j(x) + \delta \cdot 1 \quad \text{for any } x \in X\]

and

\[(2.4) \quad q_j(x) - \delta \cdot 1 < f(x) < p_j(x) + \delta \cdot 1 \quad \text{for any } x \in W_j.\]

Let D_j consist of all $x \in X$ such that $-2\delta \cdot 1 < p_j(x) - q_j(x) < 2\delta \cdot 1$. We infer from (2.3) and (2.4) that $W_j \subset D_j$, and thus $X = \bigcup_{j=1}^k D_j$. Further, let R be an equivalence relation on X given by the rule: $(x, y) \in R \iff M(u(x)) = M(u(y))$ for each self-adjoint $u \in \mathcal{E}$. It follows from the definition of R that R is closed in $X \times X$. Denote by $\pi: X \to X/R$ the canonical projection. We deduce from Lemma 2.10 that the sets $\pi(D_1), \ldots, \pi(D_k)$ form an open cover of the space X/R (which is compact and Hausdorff). Now let $\beta_1, \ldots, \beta_k: X/R \to [0, 1]$ be a partition of unity such that $\beta_j^{-1}((0, 1]) \subset \pi(D_j)$ for $j = 1, \ldots, k$. Put $\alpha_j = (\beta_j \circ \pi) \cdot 1: X \to \mathbb{C} \cdot 1 \subset A$. Lemma 2.9 combined with
conditions (AX1)–(AX2) yields that \(\alpha_1, \ldots, \alpha_k \in \overline{\mathcal{E}} \). Define \(w \in \overline{\mathcal{E}} \) by

\[
w = \sum_{j=1}^{k} \alpha_j p_j.
\]

Since \(\sum_{j=1}^{k} \alpha_j = 1_X \), we conclude from (2.3) that \(w \leq f + \delta \cdot 1_X \). So, to end the proof, it is enough to check that \(f(x) \leq w(x) + 3\delta \cdot 1 \) for each \(x \in X \). This inequality will be satisfied, provided

\[
(2.5) \quad \alpha_j(x)(f(x) - 3\delta \cdot 1) \leq \alpha_j(x)p_j(x)
\]

for any \(j \). We consider two cases. If \(x \in D_j \), then \(p_j(x) > q_j(x) - 2\delta \cdot 1 > f(x) - 3\delta \cdot 1 \) (by (2.3)) and consequently (2.5) holds. Finally, if \(x \notin D_j \), then \(\pi(x) \notin \pi(D_j) \) (see Lemma 2.10) and therefore \(\alpha_j(x) = 0 \), which easily gives (2.5).

\[\square\]

Proof of Theorem 2.2. We only need to check that \(\Delta_2(\mathcal{E}) \subset \overline{\mathcal{E}} \). We consider two cases.

First assume \(X \) is compact. Let \(\mathcal{E}' = \mathcal{E} + \mathbb{C} \cdot 1_X \). Observe that \(\mathcal{E}' \) is a *-algebra and, for any two points \(x \) and \(y \), one of the conditions (AX1)–(AX2) is fulfilled with \(\mathcal{E} \) replaced by \(\mathcal{E}' \). Consequently, it follows from Lemma 2.11 that \(\overline{\mathcal{E}} = \Delta_2(\mathcal{E}') \). But \(\overline{\mathcal{E}} = \overline{\mathcal{E}} + \mathbb{C} \cdot 1_X \). So, for any \(g \in \Delta_2(\mathcal{E}) \), we clearly have \(g \in \Delta_2(\mathcal{E}') \), and hence \(g = f + \lambda \cdot 1_X \) for some \(f \in \overline{\mathcal{E}} \) and \(\lambda \in \mathbb{C} \). If \(\lambda = 0 \), then \(g = f \in \overline{\mathcal{E}} \), and we are done. Otherwise, \(1_X = (g - f)/\lambda \in \Delta_2(\mathcal{E}) \), which implies that the assumptions of Lemma 2.5 are satisfied. We infer from that lemma that \(1_X \in \overline{\mathcal{E}} \) and, therefore, \(g \in \overline{\mathcal{E}} \) as well.

Now assume that \(X \) is noncompact. Let \(\hat{X} = X \cup \{\infty\} \) be the one-point compactification of \(X \). Every function \(f \in C_0(X, \mathcal{A}) \) admits a unique continuous extension \(\hat{f}: \hat{X} \to \mathcal{A} \), given by \(\hat{f}(\infty) = 0 \). Denote by \(\hat{\mathcal{E}} \) the *-subalgebra of \(C(\hat{X}, \mathcal{A}) \) consisting of all extensions of (all) functions from \(\mathcal{E} \). We claim that, for any \(x, y \in \hat{X} \), one of the conditions (AX1)–(AX2) is fulfilled with \(\mathcal{E} \) replaced by \(\hat{\mathcal{E}} \). Indeed, if both \(x \) and \(y \) differ from \(\infty \), this follows from our assumptions about \(\mathcal{E} \). And if, for example, \(y = \infty \neq x \), condition (AX0) implies that either \(M(\hat{f}(x)) = M(\hat{f}(y)) \) for each \(f \in \mathcal{E} \) or \(\hat{u}(x) \) is invertible in \(\mathcal{A} \) for some \(u \in \mathcal{E} \). But then \(f = u^*u \in \mathcal{E} \) is normal and \(0 \notin \sigma(\hat{f}(x)) \), while \(\sigma(\hat{f}(y)) = \{0\} \), which shows that \(x \) and \(y \) are spectrally separated by \(\hat{\mathcal{E}} \). So, it follows from the first part of the proof that the closure of \(\hat{\mathcal{E}} \) in \(C(\hat{X}, \mathcal{A}) \) coincides with \(\Delta_2(\hat{\mathcal{E}}) \). But the closure of \(\hat{\mathcal{E}} \) coincides with
\{ \hat{f} \colon f \in \mathcal{E} \} \text{ and } \Delta_2(\mathcal{E}) = \{ \hat{f} \colon f \in \Delta_2(\mathcal{E}) \}. \text{ We infer from these that } \Delta_2(\mathcal{E}) = \mathcal{E}, \text{ and the proof is complete.} \qed

Proof of Proposition 2.3. The necessity of the condition is clear (since, for any two distinct points } x \text{ and } y \text{ in } X \text{ and any elements } a \text{ and } b \text{ of } \mathcal{A}, \text{ there is a function } f \in \mathcal{C}_0(X, \mathcal{A}) \text{ such that } f(x) = a \text{ and } f(y) = b). \text{ To prove the sufficiency, assume } \mathcal{E} \text{ spectrally separates points of } X \text{ and, for each } x \in X, \text{ the set } \mathcal{E}(x) \text{ is dense in } \mathcal{A}. \text{ First notice that then for each } x \in X \text{ there is an } f \in \mathcal{E} \text{ such that } f(x) \text{ is invertible in } \mathcal{A}. \text{ This shows that all assumptions of Theorem 2.2 are satisfied. According to that result, we only need to show that, for any two distinct points } x \text{ and } y \text{ of } X, \text{ the set } L := \{(f(x), f(y)) \colon f \in \mathcal{E}\} \text{ is dense in } \mathcal{A} \times \mathcal{A}. \text{ Since } x \text{ and } y \text{ are spectrally separated by } \mathcal{E}, \text{ the proof of Lemma 2.9 shows that } (1,0), (0,1) \in \overline{\mathcal{E}}. \text{ Further, since both } \mathcal{E}(x) \text{ and } \mathcal{E}(y) \text{ are dense in } \mathcal{A}, \text{ we conclude that } \{ f(x) \colon f \in \mathcal{E} \} = \{ f(y) \colon f \in \mathcal{E} \} = \mathcal{A} \text{ and, therefore, for arbitrary two elements } a \text{ and } b \text{ of } \mathcal{A}, \text{ there are } u, v \in \mathcal{E} \text{ for which } u(x) = a \text{ and } v(y) = b. \text{ Then } (a,b) = (u(x), u(y)) \cdot (1,0) + (v(x), v(y)) \cdot (0,1) \in \overline{\mathcal{E}} \text{ (we use here the coordinatewise multiplication), and we are done.} \qed

3. Topological \textit{n}-spaces. In Fell’s characterization of homogeneous \textit{C*}-algebras \cite{9} (consult also \cite[Theorem IV.1.7.23]{3} and \cite{28}) special fibre bundles appear. To make our lecture as simple and elementary as possible, we avoid this language and, instead of using fibre bundles, we shall introduce so-called \textit{n}-spaces (see Definition 3.1 below). To this end, let } M_n \text{ be the } \textit{C*}-algebra of all complex } n \times n \text{-matrices. Let } \mathcal{U}_n \text{ be the unitary group of } M_n \text{ and } I \text{ its neutral element. Let } \mathbb{T} = \{ z \in \mathbb{C} \colon |z| = 1 \}. \text{ Let } \mathcal{U}_n \text{ denote the compact topological group } \mathcal{U}_n/(\mathbb{T} \cdot I), \text{ and let } \pi_n \colon \mathcal{U}_n \to \mathcal{U}_n \text{ be the canonical homomorphism. Members of } \mathcal{U}_n \text{ will be denoted by } u \text{ and } v. \text{ The (probabilistic) Haar measure on } \mathcal{U}_n \text{ will be denoted by } du. \text{ For any } A \in M_n \text{ and } u \in \mathcal{U}_n, \text{ let } u. A \text{ denote the matrix } U A U^{-1} \text{ where } U \in \mathcal{U}_n \text{ is such that } \pi_n(U) = u. \text{ It is easily seen that the function }

\mathcal{U}_n \times M_n \ni (u, A) \longmapsto u \cdot A \in M_n

\text{is a well-defined continuous action of } \mathcal{U}_n \text{ on } M_n \text{ (which means that } j.A = A \text{ where } j \text{ is the identity of } \mathcal{U}, \text{ and } u.(vA) = (uv).A \text{ for any } u, v \in \mathcal{U}_n \text{ and } A \in M_n). \text{ More generally, for any } \textit{C*}-algebra } \mathcal{A}, \text{ let } M_n(\mathcal{A}) \text{ be the algebra of all } n \times n \text{-matrices with entries in } \mathcal{A}. (M_n(\mathcal{A})
may naturally be identified with $A \otimes M_n$.) For any matrix $A \in M_n(A)$ and each $u \in \mathcal{U}_n$, $u.A$ is defined as UAU^{-1} where $U \in \mathcal{U}_n$ is such that $\pi_n(U) = u$, and UAU^{-1} is computed in a standard manner.

Definition 3.1. A pair (X,\cdot) is said to be an n-space if X is a locally compact Hausdorff space and $\mathcal{U}_n \times X \ni (u, x) \mapsto u.x \in X$ is a continuous free action of \mathcal{U}_n on X. Recall that the action is free if and only if the equality $u.x = x$ (for some $x \in X$) implies that u is the identity of \mathcal{U}.

Let (X,\cdot) be an n-space. Let $C^*(X,\cdot)$ be the $*$-algebra of all maps $f \in C_0(X,M_n)$ such that $f(u.x) = u.f(x)$ for any $u \in \mathcal{U}_n$ and $x \in X$. $C^*(X,\cdot)$ is a C^*-subalgebra of $C_0(X,M_n)$.

By a morphism between two n-spaces (X,\cdot) and (Y,\ast), we mean any proper map $\psi : X \to Y$ such that $\psi(u.x) = u \ast \psi(x)$ for any $u \in \mathcal{U}_n$ and $x \in X$. (A map is proper if the inverse images of compact sets under this map are compact.) A morphism which is a homeomorphism is said to be an isomorphism. Two n-spaces are isomorphic if there exists an isomorphism between them.

The reader should notice that the (natural) action of \mathcal{U}_n on M_n is not free. However, one may check that the set \mathcal{M}_n of all irreducible matrices $A \in M_n$ (that is, $A \in \mathcal{M}_n$ if and only if every matrix $X \in M_n$ which commutes with both A and A^\ast is of the form λI where $\lambda \in \mathbb{C}$) is open in M_n (and, thus, \mathcal{M}_n is locally compact) and the action $\mathcal{U}_n \times \mathcal{M}_n \ni (u, A) \mapsto u.A \in \mathcal{M}_n$ is free, which means that (\mathcal{M}_n,\cdot) is an n-space.

In this section, we establish basic properties of C^*-algebras of the form $C^*(X,\cdot)$ where (X,\cdot) is an n-space. To this end, recall that, whenever $(\Omega, \mathcal{M}, \mu)$ is a finite measure space and $f : \Omega \ni \omega \mapsto (f_1(\omega), \ldots, f_k(\omega)) \in \mathbb{C}^k$ is an \mathcal{M}-measurable (which means that $f^{-1}(U) \in \mathcal{M}$ for every open set $U \subset \mathbb{C}^k$) bounded function, then $\int_{\Omega} f(\omega) \, d\mu(\omega)$ is (well) defined as

$$\left(\int_{\Omega} f_1(\omega) \, d\mu(\omega), \ldots, \int_{\Omega} f_k(\omega) \, d\mu(\omega) \right).$$

If $\| \cdot \|$ is any norm on \mathbb{C}^k, then

$$\left\| \int_{\Omega} f(\omega) \, d\mu(\omega) \right\| \leq \int_{\Omega} \| f(\omega) \| \, d\mu(\omega).$$
In particular, the above rules apply to matrix-valued measurable functions.

From now on, \(n \geq 1 \) and an \(n \)-space \((X,.)\) are fixed. A set \(A \subset X \) is said to be invariant provided \(u.a \in A \) for any \(u \in \mathcal{U}_n \) and \(a \in A \). Observe that, if \(A \) is closed or open and \(A \) is invariant, then \(A \) is locally compact and consequently \((A,.)\) is an \(n \)-space (when the action of \(\mathcal{U}_n \) is restricted to \(A \)). We begin with:

Lemma 3.2. For each \(f \in C_0(X,M_n) \), let \(f^U : X \to M_n \) be given by:

\[
f^U(x) = \int_{\mathcal{U}_n} u^{-1}.f(u.x) \, du \quad (x \in X).
\]

(a) For any \(f \in C_0(X,M_n) \), \(f^U \in C^*(X,.) \).
(b) If \(f \in C_0(X,M_n) \) and \(x \in X \) are such that \(f(u.x) = u.f(x) \) for any \(u \in \mathcal{U}_n \), then \(f^U(x) = f(x) \).
(c) Let \(A \subset X \) be a closed invariant nonempty set. Every map \(g \in C^*(A,.) \) extends to a map \(\tilde{g} \in C^*(X,.) \) such that \(\sup_{a \in A} \|g(a)\| = \sup_{x \in X} \|\tilde{g}(x)\| \).
(d) For any \(x \in X \) and \(A \in M_n \), there is an \(f \in C^*(X,.) \) with \(f(x) = A \).
(e) Let \(x \) and \(y \) be two points of \(X \) such that there is no \(u \in \mathcal{U}_n \) for which \(u.x = y \). Then, for any \(A, B \in M_n \), there is an \(f \in C^*(X,.) \) such that \(f(x) = A \) and \(f(y) = B \).
(f) \(C^*(X,.) \) has a unit if and only if \(X \) is compact.

Proof. It is clear that \(f^U \) is continuous for every \(f \in C_0(X,M_n) \). Further, if \(K \subset X \) is a compact set such that \(\|f(x)\| \leq \varepsilon \) for each \(x \in X \setminus K \), then \(\|f^U(z)\| \leq \varepsilon \) for any \(z \in X \setminus \mathcal{U}_n.K \) where \(\mathcal{U}_n.K = \{u.x : u \in \mathcal{U}_n, \ x \in K\} \). The note that \(\mathcal{U}_n.K \) is compact leads to the conclusion that \(f^U \in C_0(X,M_n) \). Finally, for any \(v \in \mathcal{U}_n \), any representative \(V \in \mathcal{U}_n \) of \(v \) and each \(x \in X \), we have:

\[
f^U(v.x) = \int_{\mathcal{U}_n} u^{-1}.f(uv.x) \, du = \int_{\mathcal{U}_n} (uv^{-1})^{-1}.f(u.x) \, du
\]

\[
= \int_{\mathcal{U}_n} v.[u^{-1}.f(u.x)] \, du = \int_{\mathcal{U}_n} V[u^{-1}.f(u.x)]V^{-1} \, du
\]

\[
= V \cdot \left(\int_{\mathcal{U}_n} u^{-1}.f(u.x) \, du \right) \cdot V^{-1} = v.f^U(x),
\]
which proves (a). Point (b) is a simple consequence of the definition of f^U. Further, if g is as in (c), it follows from Tietze’s type theorem that there is a $G \in C_0(X, M_n)$ which extends g and satisfies $\sup_{a \in A} \|g(a)\| = \sup_{x \in X} \|G(x)\|$ (if X is noncompact, consider the one-point compactification $\hat{X} = X \cup \{\infty\}$ of X, and note that then the set $\hat{A} = A \cup \{\infty\}$ is closed in \hat{X} and g extends continuously to \hat{A}). Then $\bar{g} = G^U$ is a member of $C^*(X,.)$ (by (a)) which we searched for (see (b)).

We turn to (d) and (e). Let $K = \mathfrak{U}_n, \{x\}$ and $f_0: K \to M_n$ be given by $f_0(u.x) = u.A$ ($u \in \mathfrak{U}_n$). Since the action of \mathfrak{U}_n on X is free, f_0 is a well-defined map. Since K is compact, (c) yields the existence of $f \in C^*(X,.)$ which extends f_0. To prove (e), we argue similarly: put $L = \mathfrak{U}_n, \{x,y\}$, and let $g_0: L \to M_n$ be given by $g_0(u.x) = u.A$ and $g_0(u.y) = u.B$ ($u \in \mathfrak{U}_n$). We infer from the assumption of (e) that g_0 is a well defined map. Consequently, since L is compact, there exists, by (c), a map $g \in C^*(X,.)$ which extends g_0. This finishes the proof of (e), while point (f) immediately follows from (d).

\[\text{Proposition 3.3.} \]

(a) For every closed two-sided ideal I in $C^*(X,.)$, there exists a (unique) closed invariant set $A \subset X$ such that I coincides with the ideal I_A of all functions $f \in C^*(X,.)$ which vanish on A. Moreover, $C^*(X,.)/I$ is “naturally” isomorphic to $C^*(A,.)$.

(b) Let $k \leq n$, and let $\pi: C^*(X,.) \to M_k$ be a nonzero representation. Then $k = n$, and there is a unique point $x \in X$ such that $\pi(f) = f(x)$ for $f \in C^*(X,.)$.

(c) Let $(Y,*)$ be an n-space. For every $*$-homomorphism $\Phi: (X,.) \to (Y,*)$, there is a unique pair (U, φ) where U is an open invariant subset of Y, $\varphi: (U,*) \to (X,.)$ is a morphism of n-spaces and

\[
[\Phi(f)](y) = \begin{cases} f(\varphi(y)) & \text{if } y \in U \\ 0 & \text{if } y \notin U. \end{cases}
\]

In particular, $C^*(X,.)$ and $C^*(Y,*)$ are isomorphic if and only if so are $(X,.)$ and $(Y,*)$.

\text{Proof.} The uniqueness of the set A in (a) follows from point (e) of
Lemma 3.2. To show its existence, let A consist of all $x \in X$ such that $f(x) = 0$ for any $f \in \mathcal{I}$. It is clear that A is closed and invariant and that $\mathcal{I} \subset \mathcal{I}_A$. To prove the converse inclusion we shall involve Theorem 2.2 for $\mathcal{E} = \mathcal{I}$. First of all, it follows from Lemma 3.2 (d) that, for each $x \in X$, the set $\mathcal{I}(x) := \{f(x) : f \in \mathcal{I}\}$ is a two-sided ideal in M_n. Since $\{0\}$ is the only proper ideal of M_n, we conclude that $\mathcal{I}(x) = \{0\}$ for $x \in A$ and $\mathcal{I}(x) = M_n$ for $x \in X \setminus A$. This shows that condition (AX0) of Theorem 2.2 is satisfied. Further, if x and y are arbitrary points of X, then either:

- $x, y \in A$; in that case, (AX2) is fulfilled; or
- $x \in A$ and $y \notin A$ (or conversely); in that case, there is $f \in \mathcal{I}$ such that $f(y) = 1$, and $f(x) = 0$ (since $x \in A$)—this implies that x and y are spectrally separated by \mathcal{I}; or
- $x, y \notin A$ and $y = u.x$ for some $u \in \mathcal{U}_n$; in that case, (AX2) is fulfilled since, for any self-adjoint $f \in \mathcal{I}$, $f(y) = u.f(x)$ and consequently $\sigma(f(x)) = \sigma(f(y))$; or
- $x, y \notin A$ and $y \notin \mathcal{U}_n \{x\}$; in that case, there are $f_1 \in \mathcal{I}$ and $f_2 \in C^*(X, .)$ such that $f_1(x) = 1 = f_2(x)$ and $f_2(y) = 0$ (cf., Lemma 3.2 (e)), then $f = f_1f_2 \in \mathcal{I}$ is such that $f(x) = 1$ and $f(y) = 0$, and hence x and y are spectrally separated by \mathcal{I}.

Now, according to Theorem 2.2, it suffices to check that $\mathcal{I}_A \subset \Delta_2(\mathcal{I})$ (since \mathcal{I} is closed). To this end, we fix $f \in \mathcal{I}_A$ and two arbitrary points x and y of X. We consider similar cases as above:

1°) If $x, y \in A$, we have nothing to do because then $f(x) = f(y) = 0$.
2°) If $x \in A$ and $y \notin A$ (or conversely), then there is $g \in \mathcal{I}$ such that $g(y) = f(y)$. But also $g(x) = 0 = f(x)$, and we are done.
3°) If $x, y \notin A$ and $y = u.x$ for some $u \in \mathcal{U}_n$, then there is a $g \in \mathcal{I}$ with $g(x) = f(x)$. Then also $g(y) = g(u.x) = u.g(x) = u.f(x) = f(y)$, and we are done.
4°) Finally, if $x, y \notin A$ and $y \notin \mathcal{U}_n \{x\}$, there are functions $g_1, g_2 \in \mathcal{I}$ and $h_1, h_2 \in C^*(X, .)$ such that $g_1(x) = f(x)$, $g_2(y) = f(y)$, $h_1(x) = 1 = h_2(y)$ and $h_1(y) = 0 = h_2(x)$. Then $g = g_1h_1 + g_2h_2 \in \mathcal{I}$ satisfies $g(z) = f(z)$ for $z \in \{x, y\}$.

The arguments (1°)–(4°) show that $f \in \Delta_2(\mathcal{I})$, and thus $\mathcal{I} = \mathcal{I}_A$. It follows from Lemma 3.2 (c) that the $*$-homomorphism $C^*(X, .) \ni f \mapsto f|_A \in C^*(A, .)$ is surjective. What is more, its kernel coincides with $\mathcal{I}_A = \mathcal{I}$ and therefore $C^*(X, .)/\mathcal{I}$ and $C^*(A, .)$ are isomorphic.
We now turn to (b). We infer from (a) that there is a closed invariant set $A \subset X$ such that $\ker(\pi) = J_A$. Since π is nonzero, A is nonempty. Further, $k^2 \geq \dim \pi(C^*(X, .)) = \dim(C^*(X, .)/\ker(\pi)) = \dim C^*(A, .) \geq n^2$ (by Lemma 3.2 (d) and by (a)), and thus $k = n$, $\dim C^*(A, .) = n^2$ and π is surjective. Fix $a \in A$, and observe that $A = \mathfrak{U}_n\{a\}$ because otherwise $\dim C^*(A, .) > n^2$ (thanks to Lemma 3.2 (e)). Now define $\Phi: M_n \to M_n$ by the rule $\Phi(X) = f(a)$ where $\pi(f) = X$. It may easily be checked (using the fact that $\ker(\pi) = J_{\mathfrak{U}_n\{a\}}$) that Φ is a well defined one-to-one \ast-homomorphism of M_n. We conclude that there is a $u \in \mathfrak{U}_n$ for which $\Phi(X) = u.X$ (in the algebra of matrices this is quite an elementary fact; however, this follows also from [23, Corollary 2.9.32]). Put $x = u^{-1}a$ and note that then $f(a) = \Phi(\pi(f)) = u.\pi(f)$, and consequently $\pi(f) = u^{-1}.f(a) = f(x)$, for each $f \in C^*(X, .)$. The uniqueness of x follows from Lemma 3.2 (d), (e).

We turn to (c). Let $\Phi: C^*(X, .) \to C^*(Y, \ast)$ be a \ast-homomorphism of C^*-algebras. Put

$$U = Y \setminus \{y \in Y : [\Phi(f)](y) = 0 \quad \text{for each } f \in C^*(X, .)\}.$$

It is clear that U is invariant and open in Y. For any $y \in U$, the function $C^*(X, .) \ni f \mapsto [\Phi(f)](y) \in M_n$ is a nonzero representation and therefore, thanks to (b), there is a unique point $\varphi(y) \in X$ such that $[\Phi(f)](y) = f(\varphi(y))$ for each $f \in C^*(X, .)$. In this way, we have obtained a function $\varphi: U \to X$ for which (3.1) holds. By the uniqueness in (b), we see that $\varphi(u.y) = u.\varphi(y)$ for any $u \in \mathfrak{U}_n$ and $y \in U$. So, to prove that φ is a morphism of n-spaces, it remains to check that φ is a proper map. First we shall show that φ is continuous. Suppose, to the contrary, that there is a set $D \subset U$ and a point $b \in U \cap D$ (\overline{D} is the closure of D in Y) such that $a := \varphi(b) \notin \varphi(\overline{D})$ (the closure taken in X). Let V be an open neighborhood of a whose closure is compact and disjoint from $F := \overline{\varphi(\overline{D})}$. Let $\langle \cdot, \cdot \rangle$ be the standard inner product on M_n, that is, $\langle X,Y \rangle = \text{tr}(Y^*X)$ (‘tr’ is the trace) and let $\|X\|_2 := \sqrt{\text{tr}(X^*X)}$. Take an irreducible matrix $Q \in M_n$ with $\|Q\|_2 = 1$. For simplicity, put $B = \{X \in M_n : \|X\|_2 \leq 1\}$. Our aim is to construct $f \in C^*(X, .)$ such that $f(a) = Q$ and $f^{-1}(\{Q\}) \subset V$. Observe that there is a compact convex nonempty set K such that

(3.2) $Q \notin K \subset B$ and $\{u.a : u \in \mathfrak{U}_n, u.Q \notin K\} \subset V$.
implies that $Z \subset \mathbb{R}$ gives F from (3.1) that holds. Since $g_0(W \setminus V) \subset K$ (by (3.2)) and the set K (being compact, convex and nonempty) is a retract of M_n, there is a map $g_1 \in C_0(X \setminus V, M_n)$ such that $g_1(X \setminus V) \subset K$ and $g_1(x) = g_0(x)$ for $x \in W \setminus V$. Finally, there is a $g \in C_0(X, M_n)$ which extends both g_0 and g_1, and $g(X) \subset B$. Now put $g = g_{\Phi} \in C^*(X, \cdot)$, and notice that $f(a) = Q$ (by Lemma 3.2 (b)). We claim that

$$f^{-1}([Q]) \subset V.$$

Let us prove the above relation. Let $x \in X \setminus V$. Then $g(x) = g_1(x) \in K$, and hence $g(x) \notin Q$ (see (3.2)). The set $\mathcal{G} := \{u \in \mathcal{U}_n : u^{-1}.g(u.x) \notin Q\}$ is open in \mathcal{U}_n and nonempty, which implies that its Haar measure is positive. Further, $|\langle u^{-1}.g(u.x), Q\rangle| \leq 1$ for any $u \in \mathcal{U}_n$ and $\langle u^{-1}.g(u.x), Q\rangle \neq 1$ for $u \in \mathcal{G}$ (since $g(X) \subset B$). We infer from these remarks that $\int_{\mathcal{U}_n} \langle u^{-1}.g(u.x), Q\rangle \, du \neq 1$. Equivalently, $\langle f(x), Q\rangle \neq 1$, which implies that $f(x) \neq Q$ and finishes the proof of (3.3). For $m \geq 1$, let

$$C_m = \{y \in Y : ||\Phi(f)(y) - Q||_2 \leq 2^{-m}\}$$

and

$$F_m = \{x \in X : ||f(x) - Q||_2 \leq 2^{-m}\}.$$

Since $f \in C_0(X, M_n)$ and $\Phi(f) \in C_0(Y, M_n)$, F_m is compact and C_m is a compact neighborhood of b. Consequently, $C_m \cap D \neq \emptyset$. We infer from (3.1) that $\varphi(C_m \cap D) \subset F_m \cap F$. Now the compactness argument gives $F \cap \bigcap_{m=1}^{\infty} F_m \neq \emptyset$. Let c belong to this intersection. Then $f(c) = Q$ and $c \notin V$, which contradicts (3.3) and finishes the proof of the continuity of φ.

To see that φ is proper, take a compact set $K \subset X$ and note that $L = \mathcal{U}_n.K$ is compact as well. Let $G \subset X$ be an open neighborhood of L with compact closure. Take a map $\beta \in C_0(X, M_n)$ such that $\beta(x) = I$ for $x \in L$ and β vanishes off G. Let $f = \beta_{\Phi} \in C^*(X, \cdot)$ and observe that $f(x) = I$ for $x \in L$. Since $\Phi(f) \in C_0(Y, M_n)$, the set $Z := \{y \in Y : \Phi(f)(y) = I\}$ is a compact subset of Y. But (3.1) implies that $Z \subset U$ and $\varphi^{-1}(K) \subset Z$. This finishes the proof of the
fact that \(\varphi \) is a morphism. The uniqueness of the pair \((U, \varphi)\) follows from Lemma 3.2 and is left to the reader.

Now if \(\Phi \) is a \(\ast \)-isomorphism of \(C^\ast \)-algebras, then \(U = Y \) (by Lemma 3.2 (d)) and thus \(\Phi(f) = f \circ \varphi \). Similarly, \(\Phi^{-1} \) is of the form \(\Phi^{-1}(g) = g \circ \psi \) for some morphism \(\psi : (X,.) \rightarrow (Y,\ast) \). Then \(f = f \circ (\varphi \circ \psi) \) for each \(f \in C^\ast(X,.) \), and the uniqueness in (c) gives \((\varphi \circ \psi)(x) = x \) for each \(x \in X \). Similarly, \((\psi \circ \varphi)(y) = y \) for any \(y \in Y \), and consequently \(\varphi \) is an isomorphism of \(n \)-spaces. The proof is complete. \(\square \)

4. Representations of \(C^\ast(X,.) \). In this section, we will characterize all representations of \(C^\ast(X,.) \) for an arbitrary \(n \)-space \((X,.)\). But first we shall give a ‘canonical’ description of all continuous linear functionals on \(C^\ast(X,.) \). We underline here that we are not interested in the formula for the norm of a functional. The results of the section will be applied in the next two parts where we formulate our version of Fell’s characterization of homogeneous \(C^\ast \)-algebras (Section 5) and a counterpart of the spectral theorem for finite systems of operators which generate \(n \)-homogeneous \(C^\ast \)-algebras (Section 6).

Definition 4.1. Let \((X,.)\) be an \(n \)-space. Let \(\mathcal{B}(X) \) denote the \(\sigma \)-algebra of all Borel subsets of \(X \); that is, \(\mathcal{B}(X) \) is the smallest \(\sigma \)-algebra of subsets of \(X \) which contains all open sets. For any \(u \in \mathcal{U}_n \) and \(A \in \mathcal{B}(X) \), the set \(u.A := \{u.a: a \in A\} \) is Borel as well. We shall denote by \(\chi_A : X \rightarrow \{0,1\} \) the characteristic function of \(A \). Further, \(\mathcal{B}C^\ast(X,.) \) stands for the \(C^\ast \)-algebra of all bounded Borel (i.e., \(\mathcal{B}(X) \)-measurable) functions \(f : X \rightarrow M_n \) such that \(f(u.x) = u.f(x) \) for any \(u \in \mathcal{U}_n \) and \(x \in X \).

An \(n \)-measure on \((X,.)\) is an \(n \times n \)-matrix \(\mu = [\mu_{jk}] \) where \(\mu_{jk} : \mathcal{B}(X) \rightarrow \mathbb{C} \) is a regular (complex-valued) measure and \(\mu(u.A) = u.\mu(A) \) for any \(u \in \mathcal{U}_n \) and \(A \in \mathcal{B}(X) \) (here, of course, \(\mu(A) = [\mu_{jk}(A)] \in M_n \)). The set of all \(n \)-measures on \((X,.)\) is denoted by \(M(X,.) \).

For any bounded Borel function \(f : X \rightarrow M_n \) and an \(n \times n \)-matrix \(\mu = [\mu_{jk}] \) of complex-valued regular Borel measures we define the
integral $\int f \, d\mu$ as the complex number

$$\sum_{j,k} \int_X f_{jk} \, d\mu_{kj},$$

where $f(x) = [f_{jk}(x)]$ for $x \in X$. We emphasize that in the formula for $\int f \, d\mu$, f_{jk} meets μ_{kj} (not μ_{jk} (!)).

The first purpose of this section is to prove the following

Theorem 4.2. For every continuous linear functional $\varphi: C^*(X,\cdot) \to \mathbb{C}$ there exists a unique $\mu \in \mathcal{M}(X,\cdot)$ such that $\varphi(f) = \int f \, d\mu$ for any $f \in C^*(X,\cdot)$.

The above result is a simple consequence of the next one.

Proposition 4.3. Let $\mu = [\mu_{jk}]$ be an $n \times n$-matrix of complex-valued regular Borel measures on X. Then $\mu \in \mathcal{M}(X,\cdot)$ if and only if, for every map $f \in C_0(X,M_n)$,

$$(4.1) \quad \int f \, d\mu = \int f^\mu \, d\mu.$$

Proof. For any $n \times n$-matrix A we shall write A_{jk} to denote the suitable entry of A. We adapt the same rule for functions $f \in C_0(X,M_n)$ and matrix-valued measures. Further, for two arbitrarily fixed indices (j,k) and (p,q), the function $\mathfrak{U}_n \ni u \mapsto u_{jk} \overline{u}_{pq} \in \mathbb{C}$ is well defined and continuous (although $'u_{jk}'$ is not well defined). Observe that for any $A \in M_n$, $u \in \mathfrak{U}_n$ and an index (p,q) one has:

$$(u.A)_{p,q} = \sum_{j,k} u_{pj} \overline{u}_{qk} \cdot A_{jk}$$

and

$$(u^{-1}.A)_{p,q} = \sum_{j,k} u_{kq} \overline{u}_{jp} \cdot A_{jk}.$$

Further, for $u \in \mathfrak{U}_n$ and a complex-valued regular Borel measure ν on X, let ν^u be the (complex-valued regular Borel) measure on X given
by $\nu^u(A) = \nu(u.A)$ ($A \in \mathfrak{B}(X)$). It follows from the transport measure theorem that, for any $g \in C_0(X, \mathbb{C})$,

$$\int_X g(u.x) \, d\nu^u(x) = \int_X g(x) \, d\nu(x).$$

We adapt the above notation also for $n \times n$-matrix μ of measures: $\mu^u(A) = \mu(u.A)$. Notice that $(\mu^u)_{jk} = (\mu_{jk})^u$.

Now assume that $\mu \in \mathcal{M}(X,\cdot)$. This means that, for any $u \in \mathfrak{U}_n$, $u.\mu = \mu^u$. For $f \in C_0(X,M_n)$ and $x \in X$, we have

$$(f^\mu)_{pq}(x) = \sum_{j,k} \int_{\mathfrak{U}_n} u_{kj} f_{jp}(u.x) \, du,$$

and therefore, by Fubini’s theorem,

$$\int f^\mu \, d\mu = \sum_{p,q} \int_X (f^\mu)_{p,q} \, d\mu_{qp}$$

$$= \sum_{p,q} \sum_{j,k} \int_X \int_{\mathfrak{U}_n} u_{kj} f_{jp}(u.x) \, du \, d\mu_{qp}(x)$$

$$= \sum_{j,k} \int_{\mathfrak{U}_n} \int_X f_{jk}(u.x) \, d(\sum_{p,q} u_{kj} f_{jp} \cdot \mu_{qp})(x) \, du$$

$$= \sum_{j,k} \int_{\mathfrak{U}_n} \int_X f_{jk}(u.x) \, d(u.\mu)_{kj}(x) \, du$$

$$= \sum_{j,k} \int_{\mathfrak{U}_n} \int_X f_{jk}(u.x) \, d(\mu_{kj})^u(x) \, du$$

$$= \sum_{j,k} \int_X f_{jk}(x) \, d\mu_{kj}(x)$$

$$= \int f \, d\mu,$$

which gives (4.1). Conversely, assume (4.1) if fulfilled for any $f \in C_0(X,M_n)$ and fix a compact \mathcal{G}_δ subset K of X and an index (p,q). Let $g \in C_0(X,\mathbb{C})$ be arbitrary, and let $f \in C_0(X,M_n)$ be such that $f_{pq} = g$ and $f_{jk} = 0$ for $(j,k) \neq (p,q)$. Applying (4.1) for such an f,
we obtain

\[(4.2) \quad \int_X g \, d\mu_{qp} = \sum_{j,k} \int_{U_n} \int_X \mu_{qk} \|u\|_p \cdot g(u,x) \, du \, d\mu_{kj}(x).\]

Further, since K is compact and G, there is a sequence $(g_k)_{k=1}^\infty \subset C_0(X,\mathbb{C})$ such that $g_k(x) \subset [0,1]$ and $\lim_{k \to \infty} g_k(x) = \chi_K(x)$ for any $x \in X$. Substituting $g = g_k$ in (4.2) and letting $k \to \infty$, we obtain (by Lebesgue’s dominated convergence theorem as well as Fubini’s):

\[
\mu_{q,p}(K) = \sum_{j,k} \int_{U_n} \int_X \mu_{qk} \|u\|_p \cdot \chi_K(u,x) \, du \, d\mu_{kj}(x).
\]

We infer from the arbitrariness of (p,q) in the above formula that

\[
\mu(K) = \int_{U_n} \mu(u^{-1}.K) \, du.
\]

Now, if $v \in U_n$, the set $v.K$ is also compact and G, and therefore

\[
\mu(v.K) = \int_{U_n} \mu(u^{-1}.v.K) \, du
= \int_{U_n} v.\mu(u^{-1}.K) \, du
= v.\left(\int_{U_n} \mu(u^{-1}.K) \, du\right)
= v.\mu(K).
\]

Finally, since μ is regular, the relation $\mu(v.A) = v.\mu(A)$ holds for any $A \in \mathcal{B}(X)$, and we are done. \(\square\)

Proof of Theorem 4.2. Note that the function $P: C_0(X,M_n) \ni f \mapsto f^M \in C^*(X,\mathbb{C})$ is a continuous linear projection (that is, $P(f) = f$ for $f \in C^*(X,\mathbb{C})$). So, if $\varphi: C^*(X,\mathbb{C}) \to \mathbb{C}$ is a continuous linear functional, so is $\psi := \varphi \circ P: C_0(X,M_n) \to \mathbb{C}$. Since $C_0(X,M_n)$ is isomorphic, as a Banach space, to $[C_0(X,\mathbb{C})]^n$, the Riesz-type representation
theorem yields that there is a unique $n \times n$-matrix μ of complex-valued regular Borel measures such that $\psi(f) = \int f \, d\mu$. Observe that $\psi(f^u) = \psi(f)$ for any $f \in C_0(X, M_n)$, and hence $\mu \in M(X,.)$, thanks to Proposition 4.3. The uniqueness of μ follows from the above construction, Proposition 4.3 and the uniqueness in the Riesz-type representation theorem. \hfill \Box

Now we turn to representations of $C^*(X,.)$. To this end, we introduce

Definition 4.4. An operator-valued n-measure on the n-space $(X,.)$ is any function of the form $E: \mathcal{B}(X) \ni A \mapsto [E_{jk}(A)] \in M_n(\mathcal{B}(\mathcal{H}))$ (where $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space) such that:

(M1) for any $h, w \in \mathcal{H}$ and $j, k \in \{1, \ldots, n\}$, the function

$$E_{jk}^{(h,w)}: \mathcal{B}(X) \ni A \mapsto \langle E_{jk}(A)h, w \rangle \in \mathbb{C}$$

is a (complex-valued) measure,

(M2) for any $u \in \mathfrak{U}_n$ and $A \in \mathcal{B}(X)$, $E(u.A) = u.E(A)$.

In other words, an operator-valued n-measure is an $n \times n$-matrix of operator-valued measures which satisfies axiom (M2). The operator-valued n-measure E is regular if and only if $E_{jk}^{(h,w)}$ is regular for any h, w and j, k.

Recall that if $\mu: \mathcal{B}(X) \to \mathcal{B}(\mathcal{H})$ is an operator-valued measure and $f: X \to \mathbb{C}$ is a bounded Borel function, $\int_X f \, d\mu$ is a bounded linear operator on \mathcal{H}, defined by an implicit formula:

$$\left\langle \left(\int_X f \, d\mu \right)h, w \right\rangle = \int_X f \, d\mu^{(h,w)}, \quad (h, w \in \mathcal{H}),$$

where $\mu^{(h,w)}(A) = \langle \mu(A)h, w \rangle \quad (A \in \mathcal{B}(X))$. Now assume that $E = [E_{jk}]: \mathcal{B}(X) \to M_n(\mathcal{B}(\mathcal{H}))$ is an n-measure and $f = [f_{jk}]: X \to M_n$ is a bounded Borel function. We define $\int f \, dE$ as a bounded linear operator on \mathcal{H} given by

$$\int f \, dE = \sum_{j,k} \int_X f_{jk} \, dE_{kj}.$$
We are now ready to introduce

Definition 4.5. A spectral n-measure is any operator-valued regular n-measure $E : \mathcal{B}(X) \to M_n(\mathcal{B}(\mathcal{H}))$ such that

\begin{equation}
\left(\int f \, dE \right)^* = \int f^* \, dE,
\end{equation}

\begin{equation}
\int f \cdot g \, dE = \int f \, dE \cdot \int g \, dE
\end{equation}

for any $f, g \in \mathcal{B}C^*(X,\cdot)$. (The product $f \cdot g$ is computed pointwise as the product of matrices.) In other words, a spectral n-measure is an operator-valued regular n-measure $E : \mathcal{B}(X) \to M_n(\mathcal{B}(\mathcal{H}))$ such that the operator

\begin{equation}
\mathcal{B}C^*(X,\cdot) \ni f \mapsto \int f \, dE \in \mathcal{B}(\mathcal{H})
\end{equation}

is a representation of a C^*-algebra $\mathcal{B}C^*(X,\cdot)$.

The main result of this section is the following.

Theorem 4.6. Let (X,\cdot) be an n-space and $\pi : C^*(X,\cdot) \to \mathcal{B}(\mathcal{H})$ a representation. There is a unique spectral n-measure $E : \mathcal{B}(X) \to M_n(\mathcal{B}(\mathcal{H}))$ such that

\begin{equation}
\pi(f) = \int f \, dE \quad (f \in C^*(X,\cdot)).
\end{equation}

In particular, every representation of $C^*(X,\cdot)$ admits an extension to a representation of $\mathcal{B}C^*(X,\cdot)$.

In the proof of the above result we shall involve the following:

Lemma 4.7. Let $\mu : \mathcal{B}(X) \to \mathbb{R}_+$ be a regular measure. For any $f \in \mathcal{B}C^*(X,\cdot)$ and $\varepsilon > 0$, there exists $g \in C^*(X,\cdot)$ such that

\[\sup_{x \in X} \|g(x)\| \leq \sup_{x \in X} \|f(x)\| \quad \text{and} \quad \int_X \|f(x) - g(x)\| \, d\mu(x) < \varepsilon. \]

Proof. Let $f = [f_{jk}] \in \mathcal{B}C^*(X,\cdot)$, and let $M > 0$ be such that

\[\sup_{x \in X} \|f(x)\| \leq M. \]
It follows from the regularity of μ that, for each (j,k), there is a compact set L_{jk} such that $\mu(X \setminus L_{jk}) \leq \frac{\varepsilon}{2mn^2}$

and $f_{jk}|_{L_{jk}}$ is continuous. Put

$$L = \bigcap_{j,k} L_{jk}$$

and $K = \cup_n L$. Then K is compact and invariant, and

$$\mu(X \setminus K) \leq \frac{\varepsilon}{2M}.$$

What is more, $f|_{K}$ is continuous (this follows from the facts that $f|_{L}$ is continuous and $f(u.x) = u.f(x)$). Now Lemma 3.2 (c) yields the existence of $g \in C^*(X,\cdot)$ such that $\sup_{x \in X} \|g(x)\| \leq \sup_{x \in X} \|f(x)\|$ and $g|_{K} = f|_{K}$. Then:

$$\int_X \|f(x) - g(x)\| \, d\mu(x) = \int_{X \setminus K} \|f(x) - g(x)\| \, d\mu$$

$$\leq 2M \cdot \mu(X \setminus K)$$

$$= \varepsilon,$$

and we are done.

\[\square \]

Proposition 4.8. Let $E = [E_{jk}]: \mathcal{B}(X) \to M_n(\mathcal{B}(\mathcal{H}))$ be a regular n-measure.

(a) E satisfies (4.3) for any $f \in \mathcal{B}C^*(X,\cdot)$ if and only if (4.3) is fulfilled for any $f \in C^*(X,\cdot)$, if and only if $(E_{jk}(A))^* = E_{kj}(A)$ for each $A \in \mathcal{B}(X)$;

(b) E is spectral if and only if (4.3) and (4.4) are satisfied for any $f, g \in C^*(X,\cdot)$.

Proof. For any complex-valued regular Borel measure ν on X we shall denote by $|\nu|$ the variation of ν. Recall that $|\nu|$ is a nonnegative finite regular Borel measure on X. Further, for any $h, w \in \mathcal{H}$ and $j, k \in \{1, \ldots, n\}$, let $E^{(h,w)}_{jk}$ be as in Definition 4.4. Finally, $\langle \cdot, \cdot \rangle$ stands for the scalar product of \mathcal{H}.

We begin with (a). Fix \(h, w \in \mathcal{H} \) and \(j, k \in \{1, \ldots, n\} \). First assume that (4.3) is fulfilled for any \(f \in C^*(X, \cdot) \). Let \(E^{(h, w)} := [E_{jk}^{(h, w)}] \), and note that \(E^{(h, w)} \in \mathcal{M}(X, \cdot) \) since \(E_{pq}(u.A) = \sum_{j,k} u_{pj} \pi_{qk} \cdot E_{jk}(A) \).

Thus, \(E_{pq}^{(h, w)}(u.A) = \sum_{j,k} u_{pj} \pi_{qk} \cdot E_{jk}^{(h, w)}(A) = (u.E^{(h, w)}(A))_{pq} \).

Observe that \((E^{(h, w)})^* \in \mathcal{M}(X, \cdot) \) as well where \((E^{(h, w)})^*(A) = (E^{(h, w)}(A))^* \) (because \((u.P)^* = u.P^* \) for any \(P \in M_n \)). Further, for each \(f \in C^*(X, \cdot) \), we have

\[
\int f^* \, dE^{(h, w)} = \sum_{j,k} \int_X (f^*)_{jk} \, dE_{kj}^{(h, w)} = \sum_{j,k} \int_X f_{kj} \, dE_{kj}^{(h, w)}
\]

and, on the other hand,

\[
\int f^* \, dE^{(h, w)} = \langle \left(\int f^* \, dE \right) h, w \rangle = \langle \left(\int f \, dE \right)^* h, w \rangle = \langle \left(\int f \, dE \right) w, h \rangle = \int f \, dE^{(w, h)}.
\]

The uniqueness in Theorem 4.2 implies that \((E^{(h, w)})^* = E^{(w, h)} \), which means that, for each \(A \in \mathfrak{B}(X) \), \(\langle (E_{jk}(A))w, h \rangle = \langle (E_{kj}(A))^* w, h \rangle = \langle (E_{kj}(A))^* w, h \rangle \). We conclude that \((E_{jk}(A))^* = E_{kj}(A) \). Finally, if the last relation holds for any \(j, k \in \{1, \ldots, n\} \), then for every \(f \in \mathfrak{B}C^*(X, \cdot) \) we get:

\[
\left(\int f \, dE \right)^* = \sum_{j,k} \left(\int_X f_{jk} \, dE_{kj} \right)^* = \sum_{j,k} \int_X \overline{f}_{jk} \, d(E_{kj})^*
\]

\[
= \sum_{j,k} \int_X (f^*)_{kj} \, dE_{jk} = \int f^* \, dE.
\]

This completes the proof of (a).

We now turn to (b). We assume that (4.3) and (4.4) are fulfilled for any \(f, g \in C^*(X, \cdot) \). We know from (a) that actually (4.3) is satisfied for any \(f \in \mathfrak{B}C^*(X, \cdot) \). The proof of (4.4) is divided into three steps, stated below.
Step 1. If $\xi \in \mathcal{BC}^*(X,.)$ is such that

\begin{equation}
\int g \cdot \xi \, dE = \int g \, dE \cdot \int \xi \, dE
\end{equation}

for any $g \in C^*(X,.)$, then

$$\int f \cdot \xi \, dE = \int f \, dE \cdot \int \xi \, dE \text{ for any } f \in \mathcal{BC}^*(X,.)$$

Proof of Step 1. Fix $f \in \mathcal{BC}^*(X,.)$, $h, w \in \mathcal{H}$ and $\varepsilon > 0$. Let $M \geq 1$ be such that $\sup_{x \in X} \|\xi(x)\| \leq M$. Put

$$v = \left(\int \xi \, dE \right) h$$

and

$$\mu = \sum_{j,k} (|E_{jk}^{(h,w)}| + |E_{jk}^{(v,w)}|).$$

Since μ is finite and regular, Lemma 4.7 gives us a map $g \in C^*(X,.)$ such that

$$\int_X \|f(x) - g(x)\| \, d\mu(x) \leq \frac{\varepsilon}{M}.$$

Then (4.6) holds and, therefore, (remember that $M \geq 1$):

$$\left| \left\langle \int f \cdot \xi \, dE - \int f \, dE \cdot \int \xi \, dE \right\rangle_{h,w} \right|$$

$$\leq \left| \left\langle \int f \cdot \xi \, dE - \int g \cdot \xi \, dE \right\rangle_{h,w} \right|$$

$$+ \left| \left\langle \int g \, dE \cdot \int \xi \, dE - \int f \, dE \cdot \int \xi \, dE \right\rangle_{h,w} \right|$$

$$= \left| \sum_{j,k} \int_X ((f - g)\xi)_{jk} \, dE_{kj}^{(h,w)} \right|$$

$$+ \left| \sum_{j,k} \int_X (g_{jk} - f_{jk}) \, dE_{kj}^{(v,w)} \right|$$

$$\leq \sum_{j,k} \int_X \|(f(x) - g(x))\xi(x)\| \, d|E_{kj}^{(h,w)}|(x)$$
\[+ \sum_{j,k} \int_X \|g(x) - f(x)\| \, d|E_{kj}^{(v,w)}|(x) \]
\[\leq M \int_X \|f(x) - g(x)\| \, d\mu(x) \leq \varepsilon. \]

Step 2. For any \(f \in \mathfrak{B}C^*(X,.) \) and \(g \in C(X,.) \), (4.4) holds.

Proof of Step 2. It follows from Step 1 and our assumptions in (b) that
\[\int g^* \cdot f^* \, dE = \int g^* \, dE \cdot \int f^* \, dE. \]
Now it suffices to apply (4.3):
\[\int f \cdot g \, dE = \left(\int g^* \cdot f^* \, dE \right)^* = \left(\int g^* \, dE \cdot \int f^* \, dE \right)^* \]
\[= \int f \, dE \cdot \int g \, dE. \]

Step 3. The condition (4.4) is satisfied for any \(f, g \in \mathfrak{B}C^*(X,.) \).

Proof of Step 3. Just apply Step 2 and then Step 1. \(\square \)

Proof of Theorem 4.6. According to Proposition 4.8 (b), it suffices to show that there exists a regular \(n \)-measure \(E : \mathfrak{B}(X) \to M_n(\mathcal{B}(\mathcal{H})) \) such that (4.5) holds and that such an \(E \) is unique. According to Theorem 4.2, for any \(h, w \in \mathcal{H} \) there is a unique \(\mu_{(h,w)}^{(h,w)} = [\mu_{jk}^{(h,w)}] \in \mathcal{M}(X,.) \) such that
\[(4.7) \quad \langle \pi(f)h, w \rangle = \int f \, d\mu^{(h,w)} \]
for each \(f \in C^*(X,.) \) (\(\langle \cdot, - \rangle \) is the scalar product of \(\mathcal{H} \)). Now, for any \(j, k \in \{1, \ldots, n\} \) and each \(A \in \mathfrak{B}(X) \), there is a unique bounded operator on \(\mathcal{H} \), denoted by \(E_{jk}(A) \), for which \(\mu_{jk}^{(h,w)}(A) = \langle (E_{jk}(A))h, w \rangle \) \((h, w \in \mathcal{H})\). We put \(E(A) = [E_{jk}(A)] \in M_n(\mathcal{B}(\mathcal{H})). \)
We want to show that \(E(u.A) = u.E(A) \). Since \(\mu^{(h,w)} \in \mathcal{M}(X,.) \), we obtain:
\[\langle (E_{pq}(u.A))h, w \rangle = (\mu^{(h,w)}(u.A))_{pq} = (u.\mu^{(h,w)}(A))_{pq} \]
\[= \sum_{j,k} u_{pj} \, \pi_{qk} \cdot \mu_{jk}^{(h,w)}(A) = \sum_{j,k} u_{pj} \, \pi_{qk} \cdot \langle (E_{jk}(A))h, w \rangle \]
HOMOGENEOUS C*-ALGEBRAS 1617

\[\langle (u.E(A))_{pq}h, w \rangle, \]

which shows that indeed \(E(u.A) = u.E(A) \). Further, observe that \(E^{(h,w)}_{jk} = \mu_{jk}^{(h,w)} \), and thus \(E \) is an operator-valued regular \(n \)-measure and

\[\left\langle \left(\int f \, dE \right) h, w \right\rangle = \langle \pi(f)h, w \rangle \]

(thanks to (4.7)). Consequently,

\[\int f \, dE = \pi(f), \]

and we are done.

The uniqueness of \(E \) follows from the above construction, and its proof is left to the reader. \(\square \)

Example 4.9. Let \((X,.)\) be an \(n \)-space, and let \(E = [E_{jk}] : \mathfrak{B}(X) \to M_n(\mathfrak{B}(\mathcal{H})) \) be a spectral \(n \)-measure. We denote by \(\mathfrak{B}_{inv}(X) \) the \(\sigma \)-algebra of all invariant Borel subsets of \(X \) (that is, \(A \in \mathfrak{B}(X) \) belongs to \(\mathfrak{B}_{inv}(X) \) if and only if \(u.A = A \) for any \(u \in \mathfrak{U}_n \)). Let

\[F : \mathfrak{B}_{inv}(X) \ni A \mapsto \sum_j E_{jj}(A) \in \mathfrak{B}(\mathcal{H}). \]

Then, for every \(A \in \mathfrak{B}_{inv}(X) \), one has:

1. \(E_{jk}(A) = 0 \) whenever \(j \neq k \),
2. \(E_{11}(A) = \ldots = E_{nn}(A) = \frac{1}{n} F(A) \),

and \(F \) is a spectral measure (possibly with \(F(X) \neq I_H \) where \(I_H \) is the identity operator on \(\mathcal{H} \)). Let us briefly prove these claims. Since \(E(A) = E(u.A) = u.E(A) \) for any \(u \in \mathfrak{U}_n \), conditions (E1)–(E2) are fulfilled. Further, if \(j_A : X \to M_n \) is given by \(j_A(x) = \chi_A(x) \cdot I \) where \(I \in M_n \) is the unit matrix, then \(j_A \in \mathfrak{B} C^*(X,.) \) and, for \(B \in \mathfrak{B}_{inv}(X) \),

\[F(A \cap B) = \int j_{A \cap B} \, dE = \int j_A \cdot j_B \, dE \]

\[= \int j_A \, dE \cdot \int j_B \, dE = F(A)F(B). \]

What is more, Proposition 4.8 (a) implies that \(F(A) \) is self-adjoint, and hence \(F \) is indeed a spectral measure. One may also easily check
that \(F(X) = I_H \) if and only if the representation \(\pi_E: C^*(X,.) \ni f \mapsto \int f \, dE \in B(H) \) is nondegenerate.

The spectral measure \(F \) defined above corresponds to the representation of the center \(Z \) of \(C^*(X,.) \). It is a simple exercise that \(Z \) consists precisely of all \(f \in C_0(X, C \cdot I) \) which are constant on the sets of the form \(\mathcal{U}_n, \{x\} \ (x \in X) \). Thus, \(\mathfrak{B}_{inv}(X) \) may naturally be identified with the Borel \(\sigma \)-algebra of the spectrum of \(Z \), and consequently, \(F \) is the spectral measure induced by the representation \(\pi_E|_Z \) of \(Z \).

Conditions (E1)–(E2) show that a nonzero spectral \(n \)-measure \(E \) for \(n > 1 \) never satisfies the condition of a spectral measure—that \(E(A \cap B) = E(A)E(B) \). Indeed, \(E(X) \neq (E(X))^2 \).

The next result is well known. For the reader’s convenience, we give its short proof.

Lemma 4.10. Let \(\mathcal{A} \) be a \(C^* \)-algebra, and let \(\pi: \mathcal{A} \to M_n \) (where \(n \geq 1 \) is finite) be a nonzero irreducible representation of \(\mathcal{A} \). Then \(\pi \) is surjective.

Proof. Let \(J = \pi(\mathcal{A}) \). Since \(\pi \) is irreducible, \(J' = C \cdot I \), and consequently, \(J'' = M_n \). But it follows from von Neumann’s double commutant theorem that \(J'' = J + C \cdot I \) (here we use the fact that \(n \) is finite). So, the facts that \(J \) is a \(* \)-algebra and \(M_n = J + C \cdot I \) imply that \(J \) is a two-sided ideal in \(M_n \). Consequently, \(J = \{0\} \) or \(J = M_n \). But \(\pi \neq 0 \), and hence \(J = M_n \). \(\square \)

With the aid of the above lemma and Theorem 4.6, we shall now characterize all irreducible representations of \(C^*(X,.) \).

Proposition 4.11. Every nonzero irreducible representation \(\pi \) of \(C^*(X,.) \) (where \((X,.) \) is an \(n \)-space) is \(n \)-dimensional and has the form \(\pi(f) = f(x) \) (for some \(x \in X \)).

Proof. Let \(\pi: C^*(X,.) \to B(H) \) be a nonzero irreducible representation. It follows from Theorem 4.6 that there is a spectral \(n \)-measure \(E: \mathfrak{B}(X) \to B(H) \) such that (4.5) holds. Let \(\mathfrak{B}_{inv}(X) \) and \(F: \mathfrak{B}_{inv}(X) \to B(H) \) be as in Example 4.9. Then \(F \) is a (regular)
spectral measure (with $F(X) = I_\mathcal{H}$ because π is nondegenerate) and, for any $A \in \mathfrak{B}_{inv}(X)$ and $f \in C^*(X,.)$, we have

$$\int f \, dE \cdot \int \chi_A I \, dE = \int \chi_A I \, dE \cdot \int f \, dE$$

(where I is the unit $n \times n$-matrix). Since π is irreducible, we deduce that, for every $A \in \mathfrak{B}_{inv}(X)$, $\int \chi_A I \, dE$ is a scalar multiple of the identity operator on \mathcal{H}. This implies that we may think of F as a complex-valued (spectral) measure. But $\mathfrak{B}_{inv}(X)$ is naturally ‘isomorphic’ to the σ-algebra of all Borel sets of X/\mathfrak{U}_n (which is locally compact) and thus F is supported on a set $S := \mathfrak{U}_n.a$ for some $a \in X$. But then

$$\int \chi_X I \, dE = \int \chi_S I \, dE,$$

and consequently, $\pi(f) = \int f \big|_S \, dE_S$, where E_S is the restriction of E to $\mathfrak{B}(S)$. Since the vector space $\{f \big|_S; \ f \in C^*(X,.)\}$ is finite dimensional (and its dimension is equal to n^2), we infer that $\mathcal{A} := \pi(C^*(X,.)$) is finite dimensional as well and $\dim \mathcal{A} \leq n^2$. So, the irreducibility of π implies that \mathcal{H} is finite dimensional, while Lemma 4.10 shows that $\dim \mathcal{H} \leq n$. Finally, Proposition 3.3 (b) completes the proof.

5. Homogeneous C^*-algebras.

Definition 5.1. A C^*-algebra is said to be n-homogeneous (where n is finite) if and only if every nonzero irreducible representation of it is n-dimensional.

Our version of Fell’s characterization of n-homogeneous C^*-algebras [9] reads as follows.

Theorem 5.2. For a C^*-algebra \mathcal{A} and finite $n \geq 1$, the following conditions are equivalent:

(i) \mathcal{A} is an n-homogeneous C^*-algebra;
(ii) there is an n-space $(X,.)$ such that \mathcal{A} is isomorphic (as a C^*-algebra) to $C^*(X,.)$.

What is more, if \mathcal{A} is n-homogeneous, the n-space $(X,.)$ appearing in (ii) is unique up to isomorphism.
Proof of Theorem 5.2. We infer from Proposition 3.3 (c) that the \(n \)-space \((X,.)\) appearing in (ii) is unique up to isomorphism. In addition, it easily follows from Proposition 4.11 that \(C^*(X,.) \) is \(n \)-homogeneous for any \(n \)-space \((X,.)\). So, it remains to show that (i) implies (ii).

To this end, assume \(A \) is \(n \)-homogeneous, and let \(\mathcal{X} \) be the set of all representations (including the zero one) \(\pi: A \rightarrow M_n \), equipped with the topology of pointwise convergence. Since each representation is a bounded linear operator of norm not greater than 1, \(\mathcal{X} \) is compact. Consequently, \(X := \mathcal{X} \setminus \{0\} \) is locally compact. We define an action of \(\mathcal{U}_n \) on \(X \) by the formula:

\[(u.\pi)(a) = u.\pi(a) \quad (a \in A, \pi \in X, u \in \mathcal{U}_n).\]

It is easily seen that the action is continuous. What is more, Lemma 4.10 ensures us that it is free as well. So, \((X,.)\) is an \(n \)-space. The next step of construction is very common. For any \(a \in A \), let \(\tilde{a}: X \rightarrow M_n \) be given by \(\tilde{a}(\pi) = \pi(a) \). It is clear that \(\tilde{a} \in C_0(X,M_n) \) (indeed, if \(X \) is noncompact, then \(\mathcal{X} = X \cup \{0\} \) is a one-point compactification of \(X \) and \(\tilde{a} \) extends to a map on \(\mathcal{X} \) which vanishes at 0).

We also readily have \(\tilde{a}(u.\pi) = u.\tilde{a}(\pi) \) for any \(u \in \mathcal{U}_n \). So, we have obtained a \(* \)-homomorphism \(\Phi: A \ni a \mapsto \tilde{a} \in C^*(X,.) \). It follows from (i) (and the fact that all irreducible representations separate points of a \(C^* \)-algebra) that \(\Phi \) is one-to-one and, consequently, \(\Phi \) is isometric. So, to end the proof, it suffices to show that \(\mathcal{E} = \Phi(A) \) is dense in \(C^*(X,.) \).

To this end, we involve Theorem 2.2. It follows from Lemma 4.10 that condition (AX0) is fulfilled. Further, let \(\pi_1 \) and \(\pi_2 \) be arbitrary members of \(X \).

We consider two cases. First assume that \(\pi_2 = u.\pi_1 \) for some \(u \in \mathcal{U}_n \). Then \(\tilde{a}(\pi_2) = u.\tilde{a}(\pi_1) \), and consequently, \(\sigma(\tilde{a}(\pi_1)) = \sigma(\tilde{a}(\pi_2)) \) \((a \in A)\). So, in that case (AX2) holds. Now assume that there is no \(u \in \mathcal{U}_n \) for which \(\pi_2 = u.\pi_1 \). We shall show that, in that case:

\begin{equation}
\pi_1(a) = 0 \quad \text{and} \quad \pi_2(a) = I \quad \text{for some} \ a \in A.
\end{equation}

Let \(\mathcal{M} \subset M_{2n} \) consist of all matrices of the form

\[
\begin{pmatrix}
\pi_1(x) & 0 \\
0 & \pi_2(x)
\end{pmatrix}
\quad \text{with} \ x \in A.
\]

Since \(\mathcal{M} \) is a finite-dimensional \(C^* \)-algebra, it is singly generated (see, e.g., [22]) and unital (cf., [26, subsection 1.11]).
Lemma 4.10, \mathcal{M} contains matrices of the form
\[
\begin{pmatrix}
I & 0 \\
0 & A
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
B & 0 \\
0 & I
\end{pmatrix}
\quad \text{for some } A, B \in M_n.
\]

We conclude that the unit of \mathcal{M} coincides with the unit of M_{2n}. This, combined with the fact that \mathcal{M} is singly generated, yields that there is $z \in \mathcal{A}$ such that, for $A_j = \pi_j(z)$ ($j = 1, 2$), we have
\[
\mathcal{M} = \left\{ \begin{pmatrix} p(A_1, A_1^*) & 0 \\
0 & p(A_2, A_2^*) \end{pmatrix} : p \in \mathcal{P} \right\}
\]

where \mathcal{P} is the free algebra of all polynomials in two noncommuting variables. Observe that then $M_n = \pi_j(\mathcal{A}) = \{p(A_j, A_j^*) : p \in \mathcal{P}\}$ ($j = 1, 2$), which means that A_1 and A_2 are irreducible matrices. What is more, A_1 and A_2 are not unitarily equivalent, that is, there is no $u \in \mathbb{U}_n$ for which $A_2 = u A_1$ (indeed, if $A_2 = u A_1$, then $\pi_2 = u \pi_1$ since, for every $x \in \mathcal{A}$, there is a $p \in \mathcal{P}$ such that $\pi_j(x) = p(A_j, A_j^*)$). These two remarks imply that
\[
\begin{pmatrix}
0 & 0 \\
0 & I
\end{pmatrix}
\in \mathcal{M},
\]

because the $*$-commutant in M_{2n} of the matrix
\[
\begin{pmatrix}
A_1 & 0 \\
0 & A_2
\end{pmatrix}
\]
consists of matrices of the form
\[
\begin{pmatrix}
X & 0 \\
0 & Y
\end{pmatrix}
\]
(this follows from the so-called Schur’s lemma on intertwining transformations; see [6, Theorem 1.5, Corollary 1.8]; cf., also [19, Proposition 5.2.1]), and consequently,
\[
\begin{pmatrix}
0 & 0 \\
0 & I
\end{pmatrix}
\in \mathcal{M}'' = \mathcal{M}.
\]

So, there is an $a \in \mathcal{A}$ such that
\[
\begin{pmatrix}
0 & 0 \\
0 & I
\end{pmatrix}
= \begin{pmatrix}
\pi_1(a) & 0 \\
0 & \pi_2(a)
\end{pmatrix},
\]
which gives (5.1). Replacing a by $(a + a^*)/2$, we may assume that a is self-adjoint. Then $f = \widehat{a} \in \mathcal{E}$ is self-adjoint (and hence normal) and
\[\sigma(f(\pi_1)) \cap \sigma(f(\pi_2)) = \emptyset, \] which shows that \(\pi_1 \) and \(\pi_2 \) are spectrally separated by \(\mathcal{E} \). According to Theorem 2.2, it therefore suffices to check that each \(g \in C^*(X,.) \) belongs to \(\Delta_2(\mathcal{E}) \). To this end, we fix \(\pi_1, \pi_2 \in X \) and consider the same two cases as before. If \(\pi_2 = u.\pi_1 \), it follows from Lemma 4.10 that there is an \(x \in \mathcal{A} \) for which \(\pi_1(x) = g(\pi_1) \). Then \(\tilde{x}(\pi_1) = g(\pi_1) \) and \(\tilde{x}(\pi_2) = u.\tilde{x}(\pi_1) = u.g(\pi_1) = g(\pi_2) \), and we are done.

Finally, if \(\pi_2 \neq u.\pi_1 \) for any \(u \in \mathcal{U}_n \), (5.1) implies that there are points \(a_1, a_2 \in \mathcal{A} \) such that \(\pi_1(a_1) = I = \pi_2(a_2) \) and \(\pi_1(a_2) = 0 = \pi_2(a_1) \). Moreover, there are points \(x, y \in \mathcal{A} \) such that \(\pi_1(x) = g(\pi_1) \) and \(\pi_2(y) = g(\pi_2) \) (by Lemma 4.10). Put \(z = xa_1 + ya_2 \in \mathcal{A} \) and note that \(\tilde{x}(\pi_j) = g(\pi_j) \) for \(j = 1, 2 \), which means that \(g \in \Delta_2(\mathcal{E}) \). The whole proof is complete. \(\square \)

Definition 5.3. Let \(\mathcal{A} \) be an \(n \)-homogeneous \(C^* \)-algebra. By an \(n \)-spectrum of \(\mathcal{A} \) we mean any \(n \)-space \((X,.)\) such that \(\mathcal{A} \) is isomorphic to \(C^*(X,.) \). It follows from Theorem 5.2 that an \(n \)-spectrum of \(\mathcal{A} \) is unique up to isomorphism of \(n \)-spaces. By concrete \(n \)-spectrum of \(\mathcal{A} \) we mean the \(n \)-space of all nonzero representations \(\pi : \mathcal{A} \to M_n \) endowed with the pointwise convergence topology and the natural action of \(\mathcal{U}_n \).

The trivial algebra \(\{0\} \) is \(n \)-homogeneous and its \(n \)-spectrum is the empty \(n \)-space.

The reader interested in general ideas of operator spectra should consult [6, subsection 2.5]; [7, 8, 9]; [4] as well as [12, 13]; [15, 16]; [20].

Our approach to \(n \)-homogeneous \(C^* \)-algebras allows us to prove briefly the following

Proposition 5.4. Let \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) be two \(n \)-homogeneous \(C^* \)-algebras such that \(\mathcal{A}_1 \subset \mathcal{A}_2 \).

(a) Every representation \(\pi_1 : \mathcal{A}_1 \to M_n \) is extendable to a representation \(\pi_2 : \mathcal{A}_2 \to M_n \).

(b) If every \(n \)-dimensional representation (including the zero one) of \(\mathcal{A}_1 \) has a unique extension to an \(n \)-dimensional representation of \(\mathcal{A}_2 \), then \(\mathcal{A}_1 = \mathcal{A}_2 \).
Proof. We begin with (a). We may and do assume that \(\pi_1 \) is nonzero. For \(j = 1, 2 \), let \((X_j,.)\) denote an \(n\)-spectrum of \(A_j \), and let \(\Psi_j: A_j \to C^*(X_j,.) \) be a *-isomorphism of \(C^*-\)algebras. Let \(j: A_1 \to A_2 \) be the inclusion map. Then \(\Phi := \Psi_2 \circ j \circ \Psi_1^{-1}: C^*(X_1,.) \to C^*(X_2,.) \) is a one-to-one *-homomorphism. We infer from Proposition 3.3 that there are an invariant open (in \(X_2 \)) set \(U \) and a morphism \(\varphi: (U,.) \to (X_1,.) \) such that (3.1) holds. We claim that

\[
(5.2) \quad \varphi(U) = X_1.
\]

Since \(\varphi \) is proper, the set \(F := \varphi(U) \) is closed in \(X_1 \). It is also invariant. So, if \(F \neq X_1 \), we may take \(b \in X_1 \setminus F \) and apply Lemma 3.2 (c) to get a function \(f \in C^*(X_1,.) \) such that \(f\big|_F \equiv 0 \) and \(f(b) = I \). Then \(\Phi(f) = 0 \), by (3.1), which contradicts the fact that \(\Phi \) is one-to-one. So, (5.2) is fulfilled.

Further, Proposition 3.3 yields that there is an \(x \in X_1 \) such that \(\pi_1(\Psi_1^{-1}(f)) = f(x) \) for any \(f \in C^*(X_1,.) \). It follows from (5.2) that we may find \(z \in U \) for which \(\varphi(z) = x \). Now define \(\pi_2: A_2 \to M_n \) by \(\pi_2(a) = [\Psi_2(a)](z) \) \((a \in A_2)\). It remains to check that \(\pi_2 \) extends \(\pi_1 \). To see this, for \(a \in A_1 \) put \(f = \Psi_1(a) \), and note that \(\pi_2(a) = [\Psi_2(a)](z) = [\Psi_2(\Psi_1^{-1}(f))](z) = [\Phi(f)](z) = f(\varphi(z)) = f(x) = \pi_1(a) \) (cf., (3.1)).

Now, if the assumption of (b) is satisfied, the above argument shows that \(\varphi \) is one-to-one (since different points of \(X_2 \) correspond to different \(n\)-dimensional representations of \(A_2 \)). It may also easily be checked that, for every \(z \in X_2 \setminus U \), the representation \(A_2 \ni a \mapsto [\Psi_2(a)](z) \in M_n \) vanishes on \(A_1 \) (use (3.1) and the definition of \(\Phi \)). So, we conclude from the uniqueness of the extension of the zero representation of \(A_1 \) that \(U = X_2 \), and hence, both \(\varphi \) and \(\Phi \) are isomorphisms. Consequently, \(A_1 = A_2 \), and we are done. \(\square \)

6. Spectral theorem and \(n\)-functional calculus. Whenever \(A \) is a unital \(C^*-\)algebra and \(x_1,\ldots,x_k \) are arbitrary elements of \(A \), let \(C^*(x_1,\ldots,x_k) \) denote the \(C^*-\)subalgebra of \(A \) generated by \(x_1,\ldots,x_k \), and let \(C^*_1(x_1,\ldots,x_k) \) be the smallest \(C^*-\)subalgebra of \(A \) which contains \(x_1,\ldots,x_k \) as well as the unit of \(A \) (so, \(C^*_1(x_1,\ldots,x_k) = C^*(x_1,\ldots,x_k) + \mathbb{C} \cdot 1 \) where \(1 \) is the unit of \(A \)). We would like to distinguish those systems \((x_1,\ldots,x_k)\) for which one of these two \(C^*-\)algebras defined above is \(n\)-homogeneous. However, the property of
being n-homogeneous is not hereditary for $n > 1$. That is, when $n > 1$, every nonzero n-homogeneous C^*-algebra contains a C^*-subalgebra which is not n-homogeneous (namely, a nonzero commutative one). This results in the class of distinguished systems possibly depending on the choice of C^*-algebras related to them. Fortunately, this does not happen, which is explained in the following.

Lemma 6.1. Let A be a unital C^*-algebra and $x_1, \ldots, x_k \in A$. If $C^*_1(x_1, \ldots, x_k)$ is n-homogeneous for some $n > 1$, then

$$C^*_1(x_1, \ldots, x_k) = C^*(x_1, \ldots, x_k).$$

Proof. Suppose, to the contrary, that the assertion is false. Observe that $\mathcal{I} := C^*(x_1, \ldots, x_k)$ is a two-sided ideal in $\mathcal{B} := C^*_1(x_1, \ldots, x_k)$, since

$$\mathcal{B} = \mathcal{I} + \mathbb{C} \cdot 1 \quad (1 = \text{the unit of } A).$$

Moreover, \mathcal{B}/\mathcal{I} is isomorphic (as a C^*-algebra) to \mathbb{C}, which means that the canonical projection $\pi: \mathcal{B} \rightarrow \mathcal{B}/\mathcal{I}$ may be considered as a one-dimensional (nonzero) representation. It is obviously irreducible, which contradicts the fact that \mathcal{B} is n-homogeneous (since $n > 1$). \quad \Box

Taking into account the above result, we may now introduce

Definition 6.2. A system (x_1, \ldots, x_k) of elements of an (unnecessarily unital) C^*-algebra A is said to be n-homogeneous (where $n \geq 1$ is finite) if the C^*-subalgebra $C^*(x_1, \ldots, x_k)$ of A generated by x_1, \ldots, x_k is n-homogeneous.

This part of the paper is devoted to studies of (finite) n-homogeneous systems. We begin with:

Proposition 6.3. Let (x_1, \ldots, x_k) be an n-homogeneous system in a C^*-algebra A. Let (\mathfrak{X}, \cdot) be the concrete n-spectrum of $C^*(x_1, \ldots, x_k)$, and let

$$(6.1) \quad \sigma_n(x_1, \ldots, x_k) := \{ (\pi(x_1), \ldots, \pi(x_k)) : \pi \in \mathfrak{X} \}$$

be equipped with the topology inherited from $(M_n)^k$ and with the action

$$u.(A_1, \ldots, A_k) := (u.A_1, \ldots, u.A_k)$$
(where \(u \in U_n \) and \((A_1, \ldots, A_k) \in \sigma_n(x_1, \ldots, x_k) \)).

(Sp1) The pair \((\sigma_n(x_1, \ldots, x_k), \cdot) \) is an \(n \)-space.

(Sp2) The function

\[
H: (\mathcal{X}, \cdot) \ni \pi \mapsto (\pi(x_1), \ldots, \pi(x_k)) \in (\sigma_n(x_1, \ldots, x_k), \cdot)
\]

is an isomorphism of \(n \)-spaces.

(Sp3) Every member of \(\sigma_n(x_1, \ldots, x_k) \) is irreducible; that is, if \((A_1, \ldots, A_k) \in \sigma_n(x_1, \ldots, x_k) \) and \(T \in M_n \) commutes with each of \(A_1, A_1^*, \ldots, A_k, A_k^* \), then \(T \) is a scalar multiple of the unit matrix.

(Sp4) The set \(\sigma_n(x_1, \ldots, x_k) \) is either compact or its closure in \((M_n)^k \) coincides with \(\sigma_n(x_1, \ldots, x_k) \cup \{0\} \).

Proof. Let \(\pi_0: A \to M_n \) be the zero representation, and let \(\Omega = \mathcal{X} \cup \{\pi_0\} \) be equipped with the pointwise convergence topology. Then \(\Omega \) is compact (cf., the proof of Theorem 5.2). If \(\pi_1, \pi_2 \in \Omega \), then the set \(\{x \in C^*(x_1, \ldots, x_k): \pi_1(x) = \pi_2(x)\} \) is a \(C^* \)-subalgebra of \(C^*(x_1, \ldots, x_k) \). This implies that the function \(\tilde{H}: \Omega \ni \pi \mapsto (\pi(x_1), \ldots, \pi(x_k)) \in \sigma_n(x_1, \ldots, x_k) \cup \{0\} \) is one-to-one. It is obviously seen that \(\tilde{H} \) is surjective and continuous. Consequently, \(\tilde{H} \) is a homeomorphism (since \(\Omega \) is compact). This proves (Sp4) and shows that \(\sigma_n(x_1, \ldots, x_k) \) is locally compact. It is also clear that \(H(u, \pi) = u.H(\pi) \), which is followed by (Sp1) and (Sp2). Finally, for any \(\pi \in \mathcal{X} \), \(C^*(\pi(x_1), \ldots, \pi(x_k)) = \pi(C^*(x_1, \ldots, x_k)) = M_n \) (see Lemma 4.10), which yields (Sp3) and completes the proof. \(\square \)

Definition 6.4. Let \((x_1, \ldots, x_k) \) be an \(n \)-homogeneous system in a \(C^* \)-algebra. The \(n \)-space \((\sigma_n(x_1, \ldots, x_k), \cdot) \) defined by (6.1) is said to be the \(n \)-spectrum of \((x_1, \ldots, x_k) \). According to Proposition 6.3, the \(n \)-spectrum of \((x_1, \ldots, x_k) \) is an \(n \)-spectrum of \(C^*(x_1, \ldots, x_k) \).

Proposition 6.5. Let \(x = (x_1, \ldots, x_k) \) be an \(n \)-homogeneous system in a \(C^* \)-algebra. There exists a unique \(*\)-homomorphism

\[
\Phi_x: C^*(\sigma_n(x), \cdot) \longrightarrow C^*(x)
\]

such that \(\Phi_x(p_j) = x_j \), where \(p_j: \sigma_n(x) \ni (A_1, \ldots, A_k) \mapsto A_j \in M_n \) \((j = 1, \ldots, k)\). Moreover, \(\Phi_x \) is a \(*\)-isomorphism of \(C^* \)-algebras.
Proof. Let \((X,.)\) be the concrete \(n\)-spectrum of \(C^*(x)\), and let \(H: (X,.) \to (\sigma_n(x),.)\) be the isomorphism as in point (Sp2) of Proposition 6.3. For \(x \in C^*(x)\) let \(\tilde{x} \in C(X,.)\) be given by \(\tilde{x}(\pi) = \pi(x)\). The proof of Theorem 5.2 shows that the function \(C^*(x) \ni x \mapsto \tilde{x} \in C^*(X,.)\) is a \(*\)-isomorphism of \(C^\ast\)-algebras. Consequently, \(\Psi: C^*(x) \ni x \mapsto \tilde{x} \circ H^{-1} \in C^*(\sigma_n(x),.)\) is a \(*\)-isomorphism as well. A direct calculation shows that \(\Psi(x_j) = p_j\) \((j = 1,\ldots,k)\). This implies that \(C^*(p_1,\ldots,p_k) = C^*(\sigma_n(x),.)\), from which we infer the uniqueness of \(\Phi_x\). To convince about its existence, just put \(\Phi_x = \Psi^{-1}\).

We are now ready to introduce the following:

Definition 6.6. Let \(x = (x_1,\ldots,x_k)\) be an \(n\)-homogeneous system, and let \(\Phi_x\) be as in Proposition 6.5. For every \(f \in C^*(\sigma_n(x_1,\ldots,x_k),.)\), we denote by \(f(x_1,\ldots,x_k)\) the element \(\Phi_x(f)\). The assignment \(f \mapsto f(x_1,\ldots,x_k)\) is called the \(n\)-functional calculus.

The reader familiar with functional calculus on normal operators (or normal elements in \(C^\ast\)-algebras) has to be careful with the \(n\)-functional calculus, because its main disadvantage is that its values are not \(n\)-homogeneous elements in general. Therefore, we cannot speak of the \(n\)-spectrum of \(f(x_1,\ldots,x_k)\) in general. What is more, it may happen that \(\sigma_n(x_1,\ldots,x_k)\) is compact, but \(j(x_1,\ldots,x_k)\), where \(j\) is constantly equal to the unit matrix, differs from the unit of the underlying \(C^\ast\)-algebra \(A\) from which \(x_1,\ldots,x_k\) were taken. This happens precisely when \(C^*(x_1,\ldots,x_k)\) has a unit, but this unit is not the unit of \(A\).

As a consequence of Theorem 4.6 and Proposition 6.5 we obtain the spectral theorem (for \(n\)-homogeneous systems) announced before.

Theorem 6.7. Let \(T = (T_1,\ldots,T_k)\) be an \(n\)-homogeneous system of bounded linear operators acting on a Hilbert space \(\mathcal{H}\). There exists a unique spectral \(n\)-measure \(E_T: \mathfrak{B}(\sigma_n(T)) \to M_n(\mathcal{B}(\mathcal{H}))\) such that

\[
\int p_j \, dE_T = T_j \quad (j = 1,\ldots,k)
\]

where \(p_j: \sigma_n(T) \ni (A_1,\ldots,A_k) \mapsto A_j \in M_n\).
Definition 6.8. Let $T = (T_1, \ldots, T_k)$ be an n-homogeneous system of bounded Hilbert space operators, and let E_T be the spectral n-measure as in Theorem 6.7. E_T is called the spectral n-measure of T, and the assignment

$$ \mathfrak{B} C^*(\sigma(T), .) \ni f \mapsto f(T_1, \ldots, T_n) := \int f \, dE_T \in \mathcal{B}(\mathcal{H}) $$

is called the extended n-functional calculus.

There is nothing surprising in the following

Proposition 6.9. Let \mathcal{M} be a von Neumann algebra acting on a Hilbert space \mathcal{H}, and let $T = (T_1, \ldots, T_k)$ be an n-homogeneous system of operators belonging to \mathcal{M}. Let $X = \sigma_n(T)$.

(a) For any $f \in \mathfrak{B} C^*(X, .), f(T) \in \mathcal{M}$.

(b) If $f^{(1)}, f^{(2)}, \ldots \in \mathfrak{B} C^*(X, .)$ converge pointwise to $f: X \to M_n$ and

$$ \sup_{m \geq 1} \|f^{(m)}(x)\| < \infty, $$

then $f \in \mathfrak{B} C^*(X, .)$ and $\lim_{m \to \infty}(f^{(m)}(T))h = (f(T))h$ for each $h \in \mathcal{H}$.

Proof. We begin with (a). It is clear that $g(T) \in \mathcal{M}$ for $g \in C^*(X, .)$. Let $E_T = [E_{pq}]$. Denote by \langle , \rangle the scalar product of \mathcal{H}, and fix $f = [f_{pq}] \in \mathfrak{B} C^*(X, .)$. We shall show that $f(T)$ belongs to the closure of $\{g(T): g \in C^*(X, .)\}$ in the weak operator topology of $\mathcal{B}(\mathcal{H})$, which will give (a). To this end, we fix $h_1, w_1, \ldots, h_r, w_r \in \mathcal{H}$ and $\varepsilon > 0$. Put $\mu = \sum_{s=1}^r \sum_{p,q}|E_{pq}^{(h_s, w_s)}|$. By Lemma 4.7, there is a $g = [g_{pq}] \in C^*(X, .)$ such that

$$ \int_X \|f(x) - g(x)\| \, d\mu(x) \leq \varepsilon. $$
But then, for each $s \in \{1, \ldots, r\}$,

\[
\left| \left\langle \left(\int f \, dE_T - \int g \, dE_T \right) h_s, w_s \right\rangle \right| \\
= \left| \sum_{p,q} \int_X (f_{pq} - g_{pq}) \, dE^{(h_s,w_s)}_{qp} \right| \\
\leq \sum_{p,q} \int_X |f_{pq} - g_{pq}| \, d|E^{(h_s,w_s)}_{qp}| \\
\leq \int_X \|f(x) - g(x)\| \, d\mu(x) \\
\leq \varepsilon,
\]

and we are done (since $f(T) = \int f \, dE_T$ and $g(T) = \int g \, dE_T$).

We turn to (b). It is clear that $f \in \mathfrak{B}C^*(X,\cdot)$. Replacing $f^{(m)}$ by $f^{(m)} - f$, we may assume $f = 0$. Observe that, then,

\[
\lim_{m \to \infty} \left((f^{(m)})^* f^{(m)} \right)_{pq}(x) = 0
\]

for any $x \in X$ and $p, q \in \{1, \ldots, n\}$, and the functions $((f^{(1)})^* f^{(1)})_{pq}$, $((f^{(2)})^* f^{(2)})_{pq}, \ldots$ are uniformly bounded. Therefore (by Lebesgue’s dominated convergence theorem), for any $h \in H$,

\[
\|((f^{(m)}(T))h\|^2 = \left\langle (f^{(m)}(T))^* f^{(m)}(T) h, h \right\rangle \\
= \left\langle \left(\int (f^{(m)})^* f^{(m)} \, dE_T \right) h, h \right\rangle \\
= \sum_{p,q} \int_X ((f^{(m)})^* f^{(m)})_{pq} \, dE^{(h,h)}_{qp} \to 0 \quad (m \to \infty),
\]

which finishes the proof. \hfill \Box

We end the paper with the note that the above result enables defining the extended n-functional calculus for n-homogeneous systems in W^*-algebras.

REFERENCES

1. R. Bhatia, Matrix analysis, Springer, New York, 1997.
2. E. Bishop, A generalization of the Stone-Weierstrass theorem, Pac. J. Math. 11 (1961), 777–783.
3. B. Blackadar, *Operator algebras. Theory of C*-algebras and von Neumann algebras*, Encycl. Math. Sci. 122: Operator algebras and non-commutative geometry III, Springer-Verlag, Berlin, 2006.

4. W.-M. Ching, *Topologies on the quasi-spectrum of a C*-algebra*, Proc. Amer. Math. Soc. 46 (1974), 273–276.

5. J. Dixmier, *C*-algebras, North-Holland Publishing Company, Amsterdam, 1977.

6. J. Ernest, *Charting the operator terrain*, Mem. Amer. Math. Soc. 171 (1976), 207 pages.

7. J.M.G. Fell, *C*-algebras with smooth dual, Illinois J. Math. 4 (1960), 221–230.

8. ______, *The dual spaces of C*-algebras*, Trans. Amer. Math. Soc. 94 (1960), 365–403.

9. ______, *The structure of algebras of operator fields*, Acta Math. 106 (1961), 233–280.

10. M.I. Garrido and F. Montalvo, *On some generalizations of the Kakutani-Stone and Stone-Weierstrass theorems*, Extr. Math. 6 (1991), 156–159.

11. J. Glimm, *A Stone-Weierstrass theorem for C*-algebras*, Ann. Math. 72 (1960), 216–244.

12. D.W. Hadwin, *An operator-valued spectrum*, Not. Amer. Math. Soc. 23 (1976), A-163.

13. ______, *An operator-valued spectrum*, Ind. Univ. Math. J. 26 (1977), 329–340.

14. D. Hofmann, *On a generalization of the Stone-Weierstrass theorem*, Appl. Categ. Struct. 10 (2002), 569–592.

15. J.S. Kim, Ch.R. Kim and S.G. Lee, *Reducing operator valued spectra of a Hilbert space operator*, J. Korean Math. Soc. 17 (1980), 123–129.

16. S.G. Lee, *Remarks on reducing operator valued spectrum*, J. Korean Math. Soc. 16 (1980), 131–136.

17. R. Longo, *Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split W*-inclusions*, Inv. Math. 76 (1984), 145–155.

18. K. Löwner, *Über monotone Matrixfunctionen*, Math. Z. 38 (1934), 177–216.

19. P. Niemiec, *Unitary equivalence and decompositions of finite systems of closed densely defined operators in Hilbert spaces*, Diss. Math. (Rozprawy Mat.) 482 (2012), 1–106.

20. C. Pearcy and N. Salinas, *Finite-dimensional representations of separable C*-algebras*, Not. Amer. Math. Soc. 21 (1974), A-376.

21. S. Popa, *Semiregular maximal abelian *-subalgebras and the solution to the factor state Stone-Weierstrass problem*, Inv. Math. 76 (1984), 157–161.

22. T. Saitô, *Generations of von Neumann algebras*, in *Lecture on operator algebras* Lect. Notes Math. 247, Springer, Berlin, 1972, 435–531.

23. S. Sakai, *C*-Algebras and W*-Algebras, Springer-Verlag, Berlin, 1971.
24. M.H. Stone, *Application of the theory of Boolean rings to general topology*, Trans. Amer. Math. Soc. 41 (1937), 375–481.

25. ______, *The generalized Weierstrass approximation theorem*, Math. Mag. 21 (1948), 167–184.

26. M. Takesaki, *Theory of operator algebras* I, Encycl. Math. Sci. 124, Springer-Verlag, Berlin, 2002.

27. V. Timofte, *Stone-Weierstrass theorems revisited*, J. Approx. Theory 136 (2005), 45–59.

28. J. Tomiyama and M. Takesaki, *Applications of fibre bundles to the certain class of C*-algebras*, Tôhoku Math. J. 13 (1961), 498–522.

Instytut Matematyki, Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, 30-348 Kraków, Poland

Email address: piotr.niemiec@uj.edu.pl