The Enhancer of Trithorax and Polycomb Corto Interacts with Cyclin G in *Drosophila*

Juliette Salvaing¹*, Anja C. Nagel², Emmanuèle Mouchel-Vielh¹, Sébastien Bloyer¹, Dieter Maier², Anette Preiss², Frédérique Peronnet¹*

1 Laboratoire de Biologie du Développement, UMR 7622, Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie-Paris 6, Paris, France,
2 Institut für Genetik (240), Universität Hohenheim, Stuttgart, Germany

Abstract

Background: Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown.

Methodology/Principal Findings: In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the *Drosophila* ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene.

Conclusions/Significance: Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.

Introduction

In *Drosophila*, the Bithorax-complex (BX-C) contains the three Hox genes, Ultrabithorax (*Ubx*), abdominal-A (*abd-A*) and Abdominal-B (*Abd-B*), that specify the identities of the third thoracic segment (T3) and the eight abdominal segments (A1 to A8) [1]. These genes are expressed in spatially regulated patterns during embryonic development thanks to maternal, gap and pair-rule proteins. Their large cis-regulatory sequences are modular and allow parasegmental regulation. These sequences contain different classes of elements such as initiation elements that respond to early segmentation gene products, insulators and promoter targeting sequences (reviewed in [2]).

Hox expression is maintained in the original pattern during later stages of development by the Polycomb-group (PcG) and trithorax-group (trxG) genes. In mutants of PcG or trxG genes, Hox patterns are established correctly but are not maintained. PcG proteins keep Hox genes silenced whereas TrxG proteins keep Hox genes activated thus counteracting PcG action [3,4]. PcG and TrxG proteins are required for the maintenance of many gene expression patterns [5]. These maintenance proteins form heteromultimeric complexes that bind to chromatin and alter its structure. Current models propose that PcG complexes lead to compact, transcriptionally inactive chromatin, whereas TrxG complexes maintain chromatin in an open conformation that facilitates transcription. In *Drosophila*, several Pcg and TrxG complexes have been purified so far: the Polycomb Repressive Complex 1 (PRC1), the Polycomb Repressive Complex 2 (PRC2), the PhoRC complex, the Pcl-PRC2 complex, the Trithorax Activating Complex 1 (TAC1) and the Brahma Complex (BRM) also called SWI/SNF complex. They are extremely large complexes that contain several proteins including chromatin modifying enzymes such as histone methyl-transferases, acetyltransferases or deacetylases [5-8].

Although most PcG mutations suppress trxG mutations and vice versa, a large screen to identify modifiers of the trxG gene *adbl* allowed isolation of enhancers that were previously identified as PcG (*E(z), E(Pc), Asx, Scm, Psc*) and trxG (*ash1*) [9]. These genes were then called Enhancers of Trithorax and Polycomb (ETPs). Further molecular data showed that some ETPs encode members of PRC...
complexes, such as E(Z), PSC or SCM, while some do not. Recently, Grimaud et al. proposed to reclassify these maintenance proteins, the label PcG being kept for members of PRC silencing complexes and the label TrxG for members of complexes that counteract PcG-mediated silencing [10]. A third class of proteins would be represented by PcG/TrxG DNA-binding recruiters or specific co-factors. We will keep here the term ETP for those maintenance proteins that play a dual role in PcG and TrxG functions without belonging to any PcG or TrxG complexes identified so far. The GAGA factor, Gaf, encoded by *Trithorax-like* (*Trl*), falls into this category. Indeed, it was first described as an activator of *Hox* genes, and later shown to play a role in the recruitment of PcG complexes without co-purifying with any PRC silencing complexes [11,12]. The HMG protein Dsp1 also meets the criteria to be an ETP: *dpl* mutants exhibit *Hox* gene loss-of-function phenotypes but Dsp1 is also important for PcG recruitment to chromatin [13,14]. We have previously shown that corto behaves genetically as an ETP. corto mutants present PcG as well as trxG phenotypes and enhance the phenotypes of some PcG, trxG and ETP mutants [15,16]. Corto directly interacts with Gaf and Dsp1 suggesting that ETPs are involved in collaborative processes [16,17].

PcG, TrxG and ETP proteins bind DNA sequences called PRE/TRE that carry the information for the active or silent state of the gene they control (reviewed in [18]). Some PRE/TRE have been shown to maintain this transcriptional state throughout cellular divisions in absence of the initial activator or repressor [19,20]. Despite massive efforts towards identification of PcG complex targets at genome scale [21–23], the mechanism by which the active or inactive state of PRE/TRE is conserved throughout several cell cycles remains still largely unknown. Many PcG and ETP mutants [4x, corto, E(z), Psc, ph, Psc, Su(z)2, Trl] exhibit proliferation defects as well as chromosome condensation and segregation defects. This suggests that maintenance proteins play a general role in cell cycle control [24–28]. An attractive hypothesis is that ETPs are critical to maintain the correct association of PcG or TrxG complexes with chromatin during the cell cycle.

In a two-hybrid screen using Corto as bait, we isolated Cyclin G (CycG), the *Drosophila* homologue of the mammalian Cyclin G1 and G2 (CycG1, CycG2). Vertebrate CycG1 is a transcriptional target of the tumor suppressor p53 [29,30]. It is possibly involved in cell proliferation as it is overexpressed in certain cancer cells [31,32]. However, CycG1 induces G2/M arrest and cell death in response to DNA damage [33–35]. Vertebrate CycG2 acts as a negative regulator of cell cycle, as shown by its high level in cells in which G1/S arrest has been induced by growth inhibitory signals [36,37].

Here, we address the interactions between Corto and CycG both in vivo and in vitro. We show that CycG plays an essential role during development. Moreover, we show that CycG is targeted to many sites on polytene chromosomes where it co-localizes partially with Corto and with the PdG factor PH. As an ETP, corto maintains * Abd-B* repression in embryos. This could be achieved by association between Corto and CycG since both proteins bind to * Abd-B* regulatory elements, including the * tab-7* PRE and the promoter.

Results

Drosophila Cyclin G interacts with Corto

To further investigate Corto function, we performed a two-hybrid screen for potential Corto partners. As bait, we used the amino-terminal half of Corto containing a chromodomain [16]. A positive clone spanning almost the full-length *CG11525* cDNA (positions 43 to 2263; Accession number NM 079870) encoding Cyclin G (CycG) was isolated. Subsequent two-hybrid assays showed that the chromodomain was not sufficient for interaction with CycG, and that CycG did not interact with the C-terminal half of Corto (figure 1A).

Then, we performed GST pull-down assays. *In vitro* translated CycG protein was retained on GST-Corto beads containing the full-length protein and on GST-C1/324 beads containing the amino-terminal half of Corto, but not on the other GST-Corto fusion proteins tested (figure 1B). Reciprocally, *in vitro* translated Corto protein was retained on GST-CycG beads which contained the full-length CycG protein. Corto was not retained on GST-CycG-215/366 which contains the cyclin domain but was bound by the N-terminal part of CycG. These results corroborate the two-hybrid results and indicate that the amino-terminal half of Corto interacts with the amino-terminal end of CycG.

CycG is an essential gene in flies

The cyclin domain of *Drosophila* CycG is highly similar to the cyclin domains of vertebrate CycG1 and CycG2 (42% and 46% identity, respectively; figure 2A). In agreement with genome annotations, Northern blot analysis revealed 5 different mRNAs ranging between 2.0 and 3.5 kb. All transcripts were found throughout development although notably less abundant in third instar larvae (figure 2B). Antibodies were raised against the N-terminal part of CycG. Two isoforms of 68 kDa and 60 kDa were revealed in total embryonic extracts whereas only the 68 kDa species was found in chromatin extracts (figure 2C). Three translation start sites are predicted in CycG using ATGpr software [38], resulting in putative proteins with molecular weights of 63, 50 and 30 kDa, respectively (figure 2A). Our antisera do not allow testing for the presumptive 30 kDa isoform. However, the two isoforms we detect probably correspond to the two larger predicted proteins.

Since no mutant of *CG11525/CycG* was available, we designed a P(UAS::dsCycG) construct to inactivate the gene by RNA-interference (RNAi) as described previously [39]. Tissue specific RNAi using various Gal4 driver lines resulted in a considerable downregulation of CycG activity as visualized by reduction of CycG mRNA and CycG protein levels (figure 3), respectively. Ubiquitous downregulation of CycG (*da::Gal4; UAS::dsCycG or Act::Gal4; UAS::dsCycG*) animals led to lethality of late third instar larvae or pharates. However, the percentage of dead animals varied depending on the transgenic line: lethality of *da::Gal4* > *UAS::dsCycG* was estimated to 31% in females and 56% in males whereas no *da::Gal4* > *UAS::dsCycG* or *Act::Gal4* > *UAS::dsCycG* adults were obtained (table 1). Lethality was complete in *Act::Gal4* > *UAS::dsCycG* males and reached 86% in *Act::Gal4* > *UAS::dsCycG* females. We observed that males of this genotype never undergo metamorphosis and stop their development as third instar larvae, dying after a few days, whereas most females die as late pharates. Thus, these two lines interfere with CycG activity to different degrees, indicative of partial inactivation. Overexpression of CycG with an ubiquitous driver (*da::Gal4* > *UAS::CycG* or *Act::Gal4* > *UAS::CycG*) suppressed the lethality induced by *UAS::dsCycG* suggesting that it was linked to specific inactivation of CycG and not to off-target effects (table 1). Taken together, these results show that CycG plays an essential role during development.

Corto and CycG interact in vivo and co-localize at multiple sites on polytene chromosomes

In vivo physical interactions between Corto and CycG were first analysed by co-immunoprecipitation of total embryonic protein...
extracts (figure 4A). Only the 68 kDa and not the 60 kDa CycG isoform co-immunoprecipitated with Corto. We cannot exclude that the latter may be hidden by co-migrating IgG. To confirm this result, we co-transfected Schneider S2 cells with pAct::Corto-Flag and pAct::Myc-CycG and probed for interaction using anti-Flag and anti-Myc antibodies. Myc-CycG co-immunoprecipitated with Corto-Flag and conversely (figure 4B–C).

Corto was previously shown to bind polytene chromosomes at multiple discrete loci suggesting that it might participate in the regulation of many genes [17]. Using CycG antisera, we first showed that CycG is ubiquitously expressed in embryos and larvae (not shown). To test whether interactions between Corto and CycG could take place on chromatin, we explored the binding of CycG to polytene chromosomes (figure 5A). We detected CycG at multiple discrete sites. 30 to 40% of these sites overlapped with Corto binding sites suggesting that Corto and CycG could indeed interact on chromatin.

We next asked whether Corto was essential for CycG recruitment to chromatin, and analysed CycG fixation on polytene chromosomes derived from corto07128/Df(3R)6–7 larvae. On the whole, no modification of the CycG binding pattern was observed (data not shown) suggesting that CycG recruitment does not depend on Corto. We have previously shown that Corto shares many sites on polytene chromosomes with PcG proteins ([16,17]...
and figure 5C). We observed that CycG also shares many sites with PH (figure 5B). Moreover, some sites were simultaneously occupied by Corto, CycG and PH, suggesting that the interaction between Corto and CycG could be related to PcG function (figure 5D, E).

corto participates in the regulation of Abd-B expression in embryos

Previous findings indicate that corto is involved in the regulation of Hox genes such as Scr or Ubx in larvae [15,17]. Interestingly, in corto germinal clone embryos, Ubx was strongly down-regulated in
parasegments (PS) 11–12 whereas normally expressed in more anterior segments ([15] and figure 6A). In wild-type embryos, Abd-B expression domain extends from PS10 to 13 [40,41]. In light of Corto germinal clone embryos, the expression of Abd-B is not only increased in the normal Abd-B expression domain but also extended more anteriorly than PS10 (figure 6B). Moreover, discontinuous ectopic expression of Abd-B occurred in some anterior parasegments indicative of homeotic transformation towards more posterior identities. These results suggest that Corto participates in maintenance of Abd-B repression in embryos.

Corto and Cyclin G bind the iab-7 PRE and the promoter of Abd-B

Co-localization of Corto and CycG proteins on polytene chromosomes raises the possibility that CycG and Corto belong to a complex that regulates Abd-B expression. To address this possibility, we investigated whether both proteins bind to Abd-B cis-regulatory sequences in embryos. We performed immunoprecipitation on formaldehyde cross-linked chromatin (XChIP) from 0–14h embryos. The co-immunoprecipitated DNA was amplified using primer pairs corresponding either to the promoter region of Abd-B (generating fragment p10), to the iab-7 PRE (generating fragments p9, p8 and p7) or to p49 as a negative control. We found that Corto and CycG were both present on the promoter and on the iab-7 PRE (figure 7). As previously described for Polycomb (Pc), we observed prominent binding for the p9 fragment that contains the minimal PRE [42,43]. These results strongly suggest that Corto and CycG directly regulate Abd-B expression.

Discussion

We have identified Cyclin G as a new binding partner of the ETP Corto in Drosophila melanogaster. Corto inactivation leads to lethality showing that this gene is essential in flies. Mammalian genomes encode two G-type cyclins, CycG1 and CycG2, the first one being mainly nuclear whereas the second is mainly cytoplasmic [46]. Drosophila has a single homologue, however, it produces at least two different protein isoforms, only the larger being associated with chromatin. These isoforms could combine CycG1 and CycG2 functions. In Drosophila, large scale two-hybrid screens suggested binding of CycG to various Cyclin-Dependent Kinases (CDK) (Cdc2 and Cdk4) [47,48]. Corto and CycG interact in vitro as well as in vivo and form a complex in embryos and presumably also on chromatin. Moreover, Corto interacts with the amino-terminal domain of CycG, which is compatible with the simultaneous binding of CDK and cell-cycle control function of CycG.

Requirement of Ptg, trxG and ETP genes in cell-cycle control has already been shown in Drosophila [49,50]. Interestingly, Ptg and trxG genes are also involved in self-renewal and proliferation of hematopoietic stem cells in vertebrates [51,52]. One way they might control cell proliferation is by an epigenetic regulation of genes involved in cell cycle and cell proliferation. Indeed, homologues of Drosophila E2a and Brm participate in the transcriptional regulation of Cyclin A and E in vertebrates, and in Drosophila, Cyclin A is a Ptg target [53–55]. Alternatively, Ptg, TrxG or ETP proteins may interact directly with cell cycle

Genotype	Lethality observed (%)	Emerged flies
X/Y ; UAS:dsCycG2/+ ; da:Gal4/+	31	230
X/Y ; UAS:dsCycG2/+ ; da:Gal4/+	56	185
X/Y ; UAS:dsCycG3; da:Gal4	100	-
X/Y ; UAS:dsCycG3; da:Gal4	100	-
Act::Gal4/X ; UAS:dsCycG2/+	86	18
Act::Gal4/Y ; UAS:dsCycG2/+	100	-
Act::Gal4/X ; UAS:dsCycG3/+	100	-
Act::Gal4/Y ; UAS:dsCycG3/+	100	-
X/Y ; UAS:CycG/+ ; da:Gal4/UAS:dsCycG	0	145
X/Y ; UAS:CycG/+ ; da:Gal4/UAS:dsCycG	0	153
Act::Gal4/X ; UAS:CycG/+ ; UAS:dsCycG3/+	0	168
Act::Gal4/Y ; UAS:CycG/+ ; UAS:dsCycG3/+	0	112

doi:10.1371/journal.pone.0001658.t001

Figure 4. Corto and CycG interact in vivo. A. CycG co-immunoprecipitates with Corto in embryonic extracts. Protein extracts from 0–14 h embryos were incubated with rabbit anti-Corto antibodies (IP) or rabbit preimmune serum (mock). Western blot analysis was performed using rat anti-Corto antibodies (left) or rat anti-CycG antibodies (right). Note specific precipitation of Corto (70 kDa) and the 68 kDa CycG species (arrows). The asterisk labels unspecific IgG signals in all panels. B. Myc-CycG co-immunoprecipitates with Corto-Flag in S2 cell extracts. S2 cells were co-transfected with pAct::Corto-Flag and pAct::Myc-CycG. Proteins extracts were incubated with either mouse anti-Flag antibodies (IP) or mouse anti-HA antibodies (mock). Western blot analysis was performed using mouse anti-Flag antibodies (left) or mouse anti-Myc antibodies (right). Specific precipitation of Corto-Flag (left) or Myc-CycG (right) is indicated by arrows. C. Corto-Flag co-immunoprecipitates with Myc-CycG in S2 cell extracts. S2 cells were co-transfected with pAct::Corto-Flag and pAct::Myc-CycG. For immunoprecipitation we used either mouse anti-Myc antibodies (IP) or mouse anti-HA antibodies (mock), and for detection, mouse anti-Myc antibodies (left) or mouse anti-Flag antibodies (right). Specific precipitation of Myc-CycG (left) or Corto-Flag (right) is indicated by arrows. 4% of the starting material used in each IP (input) and 50% of the immunoprecipitated material were loaded onto the gel in all our assays.

doi:10.1371/journal.pone.0001658.g004
regulatory proteins. Indeed, it has been shown that Brm interacts with Cyclin E, that Mel-18, a human homologue of Posterior Sex Combs, interacts with Cyclin D2 possibly blocking its interaction with Cdks [56,57] and we show here that the ETP Corto interacts with CycG. These interactions reveal a potential role for these maintenance proteins in regulating the cell cycle independently of transcriptional regulation. This could be a widespread mechanism by which PcG, TrxG and ETP coordinate the chromatin activity status.

CycG and Corto co-localize on many sites on polytene chromosomes suggesting that they may have regulated associations. Our data show that Corto represses Abd-B in embryos and although we were not able to test the role of CycG in regulating Abd-B expression in embryos, we observed that both Corto and CycG bind the iab-7 PRE and promoter of Abd-B suggesting that they could cooperate in this function. Nevertheless, neither Corto nor CycG were detected on the BX-C locus in salivary glands suggesting that they regulate Abd-B in a tissue-specific manner. The role of the CycG-Corto interaction needs to be further investigated. CycG could regulate Corto activity directly on chromatin by recruiting other factors like kinases or phosphatases thus modifying the phosphorylation status of Corto itself, of histones or other proteins at PRE/TRE and promoters. It has been shown that binding of the PcG protein Bmi1 to chromatin correlates with its phosphorylation status [58,59]. It will be interesting to investigate whether Corto and CycG bind the iab-7 PRE and promoter of Abd-B simultaneously, to examine their phosphorylation status when bound to chromatin, and to determine if their presence correlates with Abd-B transcriptional activity. One interesting possibility would be that CycG is involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG.

Materials and Methods

Drosophila strains and genetics

Details on Drosophila strains can be found in Flybase [60]. corto420 and corto07128 are strong hypomorphic alleles; corto420/TM6B was a gift from Roland Rosset [27]. corto-deficient germline clones were obtained as previously described [15]. Other strains were obtained from either Bloomington or Kyoto Drosophila stock centers. CycG transgenic lines were established by standard P-element mediated transformation.

Plasmid constructs

Corto-GST fusions and pBS-Corto were previously described [16]. The pHG-CycG plasmid served for PCR amplification of full-length or truncated forms of CycG that were subsequently cloned.
Figure 6. Expression of Hox genes in *corto* mutant embryos. A. Anti-Ubx antibody staining of *w*¹¹¹⁸ embryos, or embryos depleted of maternal and zygotic Corto. Upper row, lateral view and lower row, dorsal view. (B) Dorsal view. In wild-type embryos (left), Ubx is expressed from parasegment PS5 to PS12 with a higher expression in PS6. In *corto* embryos (right), the anterior boundary of *Ubx* is not modified but *Ubx* is strongly downregulated in PS11 and PS12 (arrowheads). Parasegment numbers are indicated in white and the anterior border of *Ubx* expression by arrows. B. Anti-AbdB antibody staining of *w*¹¹¹⁸ embryos, or embryos depleted of maternal and zygotic Corto. Upper row, close-ups of the ventral nerve chord. In wild-type embryos (left), *Abd-B* is expressed in a decreasing gradient from PS13 to PS10. In *corto* embryos (right), this gradient extends anteriorly to PS9 and PS8. Moreover, expression of *Abd-B* seems to be higher in PS9 to PS10. Lower row, dorsal view of whole mount embryos showing ectodermal *Abd-B* expression; note ectopic expression of *Abd-B* in anterior parasegments in *corto* mutant embryos (arrows).

doi:10.1371/journal.pone.0001658.g006
into pGEX4T-1. Full length cDNAs were subcloned into pENTR/D-TOPO® and transferred into Gateway® vectors: corto into pAWF to obtain pAct::Corto-Flag, and CycG into pAMW to obtain pAct::Myc-CycG [61].

\[P(\text{UAS::CycG})\] was constructed by cloning the entire cDNA as EcoRI/XhoI fragment into pUAST [62]. UAS::dsCycG was constructed as outlined before [39]. About 600 nucleotide coding sequence (codons 72 to 268) was chosen to prepare the RNAi-construct. This segment shows only limited identity to other Drosophila genes and none of them conforms to an optimal siRNA.

Two possible “Off-Targets” were found, LvpL encoding a larval protein with a predicted role in glucose metabolism and CG15639 encoding an unknown product. In both cases, 21 nucleotides are identical with a GC content of 55–58% instead of the optimal 43–53% [63]. Cloning details are available upon request.

Antibodies

Corto and Polyhomeotic (PH) antibodies were used as described previously [17]. Antibodies against Abd-B (clone 1A2E9) were obtained from the Developmental Studies Hybridoma Bank. Polyclonal antibodies against CycG were raised against the N-terminal 276 amino-acids of CycG fused to maltose binding protein in rabbit, rat and guinea pig. Their specificity was checked on CycG protein generated by \textit{in vitro} transcription/translation. Monoclonal anti-Flag M2 and anti-HA was from Sigma (F-3165, H-3663) and anti-Myc clone 9E10 from Santa-Cruz Biotechnology.

Histology

Antibody staining of embryos and larvae was performed using rabbit anti-CycG (1:10) or mouse monoclonal anti-Abd-B (1:10) [64]. Co-immunostaining of polytene chromosomes was performed with rabbit anti-Corto (1:40) and guinea-pig anti-CycG (1:40) according to [16]. Secondary antibodies (Alexa Fluor® 594 goat anti-rabbit IgG and Alexa Fluor® 488 goat anti-guinea pig; Molecular Probes) were used at a 1:1000 dilution.

Protein-protein interactions

A two-hybrid screen was performed using pEG-C1/324 that encodes amino-acids 1 to 324 of Corto as bait [16]. The embryonic RFLY1 library [65] was transformed into EGY48SHD spec [MATa his3, top1, wu3, LexAop(x6)-LEU2] containing the bait. \textit{In vitro} transcription/translation and GST pull-down assays were performed as described [16].

For co-immunoprecipitation, 1 g of 0–14 h \textit{u1110} embryos were homogenized in RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 0.5% NP40, 0.1% SDS, 1 mM PMSF) with protease inhibitors (Roche Diagnostics). 500 µl of total extract (about 1 mg) were pre-cleared with protein A plus protein G agarose beads (for polyclonal antibody IP) or protein G beads (for monoclonal anti-Myc, anti-Flag or anti-HA). Input was 20 µl of this mixture. Incubation was with 10 µl of either rabbit pre-immune or Corto antiserum, mouse anti-Flag, anti-Myc or anti-HA overnight at 4°C. The appropriate beads were added and further incubated for
2 h at 4°C. The supernatant was kept; the beads were washed five times with RIPA buffer and finally resuspended in 40 μl of Laemmli buffer. 20 μl of input (4%), 20 μl of supernatant and half of the beads (20 μl) were loaded. Immunoprecipitates were detected with respective antisera developed in rat. *Drosophila* S2 cells were cultured at 25°C in Scherial medium supplemented with 10% fetal calf serum and antibiotics. Cells were transfected using Effectene transfection reagent according to the manufacturer (Qiagen). Commodity, 2×10^6 cells were transfected with 1 μg of each DNA. Cells were collected after 48 h of incubation and homogenized in 500 μl of RIPA buffer.

Immunoprecipitation of crosslinked chromatin (XChIP)

Chromatin from 0–14 h embryos was formaldehyde crosslinked and immunoprecipitated as described [66] using rabbit anti-Corto (1:20), rabbit anti-CycG (1:20), guinea-pig anti-CycG (1:20) or rabbit pre-immune sera (mock) (1:20). Three independent immunoprecipitations were performed and further analysed. The precipitated DNA was dissolved in 100 μl of TE [10 mM Tris (pH 8.0), 1 mM EDTA] and 1 μl was used per PCR reaction. Three primer pairs spanning the *tad-7* PRE (p7, p8, p9) and one primer pair from the promoter region of *Abd-B* (p10) were used [42,45]. rp49 was used as negative control [primers 5′CCC AAG ATC GTG AAG AAG CG 3′ and 5′ AGA TAC TGT CCC TTG AAG CG 3′]. PCR schemes were as follows: 94°C for 5 minutes; 94°C for one minute, 45°C (p7, p9), 50°C (p8, p10, rp49) for one minute, 72°C for one minute, 36 cycles; 72°C for 10 minutes. 5 μl samples were taken every 2 cycles from the 29th to the 33rd cycle to determine the linear range of amplification. PCR products were quantified using ImageJ and results of three independent experiments were normalized against the mock immunoprecipitation.

Acknowledgments

We thank Dr S. Celniker, R. Finley, T.D. Murphy, the Developmental Studies Hybridoma Bank and the Bloomington stock center for reagents, Dr J. Deutsch, J-M. Gibert, N. Randsholt and J. Szaswinski for critically reading of the manuscript, and V. Ribeiro and N. Salmon for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: AP AN FP JS EM SB DM. Performed the experiments: AN JS EM SB DM. Analyzed the data: AP AN FP JS EM SB DM. Wrote the paper: AP FP.

References

1. Lewis EB (1978) A gene complex controlling segmentation in *Drosophila*. Nature 276: 565–570.

2. Maeda RK, Karch F (2006) The ABC of the BX-C: the bithorax complex explained. Development 133: 1413–1422.

3. Ingham PW (1983) A clonal analysis of the requirement for the trithorax gene in the diversification of segments in *Drosophila*. J Embryol Exp Morphol 89: 349–365.

4. Moebele A, Paro R (1994) Spreading the silence: epigenetic transcriptional regulation during *Drosophila* development. Dev Genet 15: 478–494.

5. Brock HW, Fisher CL (2005) Maintenance of gene expression patterns. Dev Dyn 233: 635–650.

6. Ringrose I, Paro R (2004) Regulation of Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443.

7. Schuettengruber B, Chiarrodotto D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 130: 735–745.

8. Nekrasov M, Klymenko T, Frateman S, Papp B, Okasha K, et al. (2007) Polycomb PCRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. Embry J 26: 4078–4088.

9. Gildea JJ, Lopez R, Shearn A (2000) A screen for new trithorax group genes in *Drosophila*. Nucleic Acids Res 28: 1590–1600.

10. Decoville M, Giacomello E, Leng M, Locker D (2001) DSP1, an HMG-like protein, is involved in the regulation of homeotic genes. Genetics 157: 237–244.

11. Farkas G, Gausz J, Galloni M, Reuter G, Gyurkovics H, et al. (1994) The transcriptional activation domain of Ultrabithorax interacts with Pc-G and trx-G genes and maintains the anterior boundary of the *Ubx* expression in *Drosophila* embryos. J Biol Chem 274: 11022–11029.

12. Taokaoka K, Osaka K, Sano T, Oshima T, Oso Y, et al. (1995) Cyclin G: a new mammalian cyclin with homology to fission yeast Cyclin C. Oncogene 8: 2113–2118.

13. O’Dor E, Beck SA, Brock HW (2006) Polycomb group mutants exhibit mitotic defects in neuroblast cell cycles of *Drosophila* embryos. Dev Biol 298: 312–322.

14. Decoville M, Giacomello E, Leng M, Locker D (2001) DSP1, an HMG-like protein, is involved in the regulation of homeotic genes. Genetics 157: 237–244.

15. Dejardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, et al. (2005) Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Cell 128: 735–745.

16. Rapaille C, Prives C (1999) A role of cyclin G in the process of apoptosis. Oncogene 18: 4066–4075.

17. Kimura SH, Ikawa M, Ito A, Okabe M, Nojima H (2001) Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. Oncogene 20: 3290–3300.

18. Seo HR, Lee DH, Lee HJ, Back M, Bae S, et al. (2006) Cyclin G1 overcomes radiation-induced G2 arrest and increases cell death through transcriptional activation of cyclin B1. Cell Death Differ 13: 1473–1484.

19. Bates S, Rowan S, Vousden K (1996) Characterization of human cyclin G1 and G2 DNA damage inducible genes. Oncogene 13: 1103–1109.

20. Bennett DA, Don AS, Blake T, McKenzie JL, Rouenbaum H, et al. (2002) Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B’ subunits in active complexes and induces nuclear aberrations in a G1/S phase cell cycle arrest. J Biol Chem 277: 24749–24767.

21. Salamon AA, Nishikawa T, Swinell MB (1998) Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 14: 384–390.
39. Nagel AC, Maier D, Preiss A (2002) Green fluorescent protein as a convenient and versatile marker for studies on functional genomics in Drosophila. Dev Genes Evol 212: 93–98.

40. Celiusser SE, Keelan DJ, Lewis EB (1989) The molecular genetics of the bithorax complex of Drosophila: characterization of the products of the Abdominal-B domain. Genes Dev 3: 1424–1436.

41. Deletrizzi M, Bienz M (1990) Expression of Abdominal-B homeoproteins in Drosophila embryos. Development 108: 323–329.

42. Breiling A, O'Neil EP, D'Eloiseo D, Turner BM, Orlando V (2004) Epigenome changes in active and inactive polycomb-group-controlled regions. EMBO Rep 5: 976–982.

43. Dejardin J, Cavalli G (2004) Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. Enmb J 23: 857–868.

44. Martin CH, Mayeda CA, Davis CA, Ericsson CL, Knaefels JD, et al. (1995) Complete sequence of the bithorax complex of Drosophila. Proc Natl Acad Sci U S A 92: 8398–8402.

45. Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412: 651–655.

46. Horne MC, Godbly GL, Donaldson KL, Tran D, Neubauer M, et al. (1996) Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J Biol Chem 271: 6050–6061.

47. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302: 1727–1736.

48. Stanyon CA, Liu G, Mangiola BA, Patel N, Giot L, et al. (2004) A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol 5: R96.

49. Remillieux-Leschelle N, Santamaria P, Randsholt NB (2002) Regulation of larval hematopoiesis in Drosophila melanogaster: a role for the multi sex combs gene. Genetics 162: 1259–1274.

50. Narbonne K, Besse F, Brissard-Zaahraoui J, Pret AM, Busson D (2004) polyhomeotic is required for somatic cell proliferation and differentiation during ovarian follicle formation in Drosophila. Development 131: 1389–1400.

51. Lessard J, Sauvageau G (2003) Polycomb group genes as epigenetic regulators of normal and leukemic hematopoiesis. Exp Hematol 31: 567–585.

52. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, et al. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.

53. Coisy M, Roure V, Ribot M, Philippa A, Mucharit C, et al. (2004) Cyclin A repression in quiescent cells is associated with chromatin remodeling of its promoter and requires Brahma/SNF2alpha. Mol Cell 15: 43–56.

54. Tonini T, Bagella L, D'Andrilli G, Claudio PP, Giordano A (2004) Ezh2 reduces the ability of HDAC1-dependent pRb/p130 transcriptional repression of cyclin A. Oncogene 23: 4930–4937.

55. Martinez AM, Colombo S, Dejardin J, Bantignies F, Cavalli G (2006) Polycomb group-dependent Cyclin A repression in Drosophila. Genes Dev 20: 501–513.

56. Martinez AM, Zraly CB, Horvitz HJ, Saint R, et al. (2002) Drosophila cyclin E interacts with components of the Brahma complex. Enmb J 21: 3377–3389.

57. Chan T, Rho SB, Byun HJ, Lee JY, Kang G (2005) The polycomb group gene product Md-18 interacts with cyclin D2 and modulates its activity. FEBS Lett 579: 5275–5280.

58. Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, et al. (1999) Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J Cell Sci 112 (Pt 24): 4627–4639.

59. Voncken JW, Niesen H, Neufeld B, Remmefahr U, Dahlmanns V, et al. (2005) MAPKAP kinase SpK phosphorylates and regulates chromatin association of the polycomb group protein Brml. J Biol Chem 280: 5170–5176.

60. Crosby MA, Goodman JL, Strelts VB, Zhang P, Gelbart WM (2007) FlyBase: genomes by the dozen. Nucleic Acids Res 35: D486–491.

61. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, et al. (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22: 326–330.

62. LaJeunesse D, Shearn A (1999) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415.

63. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, et al. (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22: 326–330.

64. Lajunesse D, Shearn A (1996) E(z), a polycomb group gene or a trithorax group gene? Development 122: 2189–2197.

65. Finley RI Jr., Thomas BJ, Zipursky SL, Brent R (1996) Isolation of Drosophila cyclin D, a protein expressed in the morphogenetic furrow before entry into S phase. Proc Natl Acad Sci U S A 93: 3011–3015.

66. Cavalli G, Orlando V, Paro R (1999) Mapping DNA target sites of chromatin-associated proteins by formaldehyde cross-linking in Drosophila embryos. In: Bickmore WA, ed. Chromosome Structural Analysis: A Practical Approach: UK: Oxford University Press. pp 20–57.