A SIMPLE, RAPID METHOD FOR PREPARATION OF VIRUS ISOLATES FROM CELL CULTURE FOR ELECTRON MICROSCOPY

D. E. Skilling, J. E. Barlough, E. S. Berry,1 and A. W. Smith

Calicivirus Research Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331-4802

SUMMARY: A simple procedure for the rapid preparation of virus isolates from cell culture for negative-contrast electron microscopy was devised. Using only conventional centrifugation steps (i.e., without ultracentrifugation), the procedure produced consistent, fine-quality preparations of a variety of virus types differing in size, shape and buoyant density.

Key words: virus isolates; cells, cultured; electron microscopy; centrifugation.

I. INTRODUCTION

Negative-contrast electron microscopy (NCEM) is a simple and efficacious means of visualizing viruses present in cell culture supernatants and in clinical specimens of various kinds (1,2,7,12,21). Several NCEM approaches for improved results involving concentration of samples by centrifugation have been described (7,8,13,17,22,23). Conventional methods have utilized preparatory low-speed centrifugation (clarification) to remove unwanted debris, followed by ultracentrifugation to pellet virus particles (6–8,11,21,23).

We report here a simple and rapid procedure for the preparation of virus particles from cell culture material for NCEM that eliminates the need for an ultracentrifugation step. This technique is used routinely in our laboratory and has proven to be extremely useful for the rapid detection of viruses present in small quantities of cell culture material.

II. MATERIALS

A. Cell culture

Minimum essential medium Eagle, with Earle’s balanced salt solution without l-glutamine, No. 12-125Y, M.A. Bioproducts
HyClone fetal bovine serum, Lot no. 100418, HyClone Laboratories
l-Glutamine (100X), No. 320-5030, GIBCO
Penicillin-streptomycin solution, No. 600-5070
Gentamicin sulfate, No. G-7632, Sigma
Trypsin-EDTA (1X), No. 610-5300
Culture tubes, polystyrene, 16 x 125 mm, No. 25200, Corning

B. Centrifugation

Shel-lab incubator, CO2, dual-chamber, No. 350, Sheldon
Roller drum, No. 1240, Lab-line

C. Electron microscopy

MILLI-Q Water Purification System, Millipore
Parafilm, American Can
Grids, 300C (300 mesh, copper), Ted Pella
Formvar solution (0.5%), No. 01582, Electron Microscopy Sciences
Phosphotungstic acid (1.5%, pH 7.0), No. 19403
Folded filter paper, 18.5 cm, No. 12, Whatman
Germicidal lamp, No. G30T8, GTE Sylvania
Transmission electron microscope, No. EM 300, Philips

III. PROCEDURE

1. Passage clinical materials into culture tubes containing appropriate cell monolayers and 1.5 ml cell culture medium.
2. Incubate tubes at 37°C on a roller drum (0.33 rpm) until 4+ cytopathic effect is observed.
3. Harvest cultures by one or more freeze-thaw cycles (−70°C).
4. Vortex cultures and clarify at 850 × g for 10 min (room temperature) in a conventional centrifuge.
5. Transfer supernatants to polypropylene micro tubes.

1 To whom correspondence should be addressed.
and centrifuge at 2500 \times g for 10 min (room temperature) in a CENTRA®-4 bench-top centrifuge equipped with a model IEC 817 fixed-angle rotor.

6. Transfer supernatants to fresh micro tubes and respin at 8850 \times g for 20 min (room temperature) in the CENTRA®-4.

7. Resuspend pellets in 10 \mu l sterile-filtered distilled water.

8. Transfer one drop of each sample to Parafilm®.

9. Float individual Formvar-coated copper grids for 2 min on each drop, then blot dry with filter paper.

10. Touch each grid to a drop of sterile-filtered distilled water, then blot dry with filter paper.

11. Float each grid for 1 min on a drop of 1.5% phosphotungstic acid (pH 7.0), then remove excess stain with filter paper.

12. Leave all grids under ultraviolet light for at least 15 to 20 min.

13. Examine grids with an electron microscope at an accelerating voltage of 80 kV.

IV. DISCUSSION

Viruses of infected cell cultures identified by NCEM have included members both of DNA (Adenoviridae, Herpesviridae, Poxviridae and RNA (Picornaviridae, Caliciviridae, Coronaviridae, Reoviridae, Paramyxoviridae) virus families (Fig. 1). This technique has permitted detection of a wide variety of viral agents differing in size/shape and buoyant density. In our experience it has shown itself to be an especially reliable procedure for the rapid morphological identification of new virus isolates from cell culture. Only small volumes of material are required; with the development of cytopathic effect in a single culture tube, enough material is provided not only to passage the isolate onto

![Fig. 1](image_url)

Fig. 1. Representative examples of selected virus families, as revealed by NCEM. A, Adenoviridae (No. WADDL 82-5536-12), bovine, from bovine turbinate cell culture; B, Herpesviridae (No. M255T), bovine, from calf kidney cell culture; C, Poxviridae ("Pandora"), cetacean, from cutaneous lesion; D, Picornaviridae (No. OSU 475R), bovine, from calf kidney cell culture; E, Caliciviridae (No. SDZ 041), cetacean, from Vero cell culture; F, Coronaviridae (No. M254T), bovine, from calf kidney cell culture; G, Reoviridae (No. OSU 568R), bovine, from bovine turbinate cell culture; H, Paramyxoviridae (No. M14CN), bovine, from calf kidney cell culture; I, Paramyxoviridae (No. OSU 463CN), bovine, from Vero cell culture, illustrating typical “herringbone” nucleocapsid. Bars = 100 nm. A through H, \(\times 108571 \); I, \(\times 81905 \). Isolate A prepared from material kindly provided by Dr. J. F. Evermann, Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, Washington.
fresh monolayers but also to examine it by NCEM at the same time. In many cases we used this technique in conjunction with immune electron microscopy for preliminary serologic identification of isolates. It is useful for the identification both of cytopathic and non-cytopathic isolates, and we have obtained successful results by direct examination of clinical specimens, including feces and skin scrapings (Fig. 1 C). The success of the procedure lies in part in the intermediate centrifugation step (2500 × g for 10 min), which effectively cleans the preparation by removing most of the nonviral, particulate (cellular) debris remaining after preliminary clarification. Of corresponding significance is the final, moderate-speed centrifugation step (8850 × g for 20 min) which we have found to be most effective for pelleting many viruses and a desirable alternative to ultracentrifugation. The resulting pellets have produced clear, even spreading of virus particles on grids, with minimal amounts of unwanted virion aggregation ("clumping"), background staining, and subcellular debris (a frequent contaminant of ultracentrifuged preparations). Importantly, the ultrastructural integrity of most virus particles has been well preserved.

The major advantages of NCEM that have been cited traditionally are its speed, simplicity, and capability of identifying viruses on a morphological basis without the need for intermediate, specific reagents (1,2,6,7,12). Its major disadvantage is a relative insensitivity when compared to certain other techniques, such as enzyme immunoassay, radioimmunoassay, or virus isolation (1,2,22). Because of this, various preparatory procedures for concentrating virions from sample material have been described. These have included ultracentrifugation (3,7,8,19,20), pseudoreplication (10,16), density gradient centrifugation (4,9), immune electron microscopy (1,6,14,19,21,23), ammonium sulfate precipitation (5), and polyacrylamide hydrogel absorption (22). Some have concentrated viruses by simple low-speed centrifugation (13,17), although the validity of this type of procedure has been questioned (18). Of all these methods, ultracentrifugation has received without doubt the widest acclaim and acceptance for rapid viral diagnosis (1,6-8, 11,17). However, ultracentrifugation is not without its own disadvantages (sedimentation time, disruption of virion morphology, cosedimentation of subcellular debris, requirement for ready access to an ultracentrifuge) (9,15,20,22). With the procedure described in this report, the need for a relatively prolonged (1 or 2 h) ultracentrifugation step has been eliminated, decreasing sample manipulation and resulting in even greater simplification of the process. Importantly, the time required for the preparation of samples has been reduced considerably. Search time for the location and identification of isolates with the electron microscope has been minimized (usually averaging less than 1 min, frequently much less) by the fine, even quality of the final preparations. Although some degree of virion loss is inevitable in the two lower-speed centrifugation steps, this had had little effect on our ability to rapidly locate and identify isolates from cell culture supernatants. This procedure will probably prove useful for the detection and identification of a broad range of virus isolates in addition to those described in the present communication.

V. REFERENCES

1. Almeida, J. D. Practical aspects of diagnostic electron microscopy. Yale J. Biol. Med. 53:3-18: 1980.
2. Almeida, J. D. Rapid viral diagnosis by electron microscopy. Scand. J. Infect. Dis. [Suppl] 36:117-120: 1982.
3. Berry, E. S.; Shea, T. B.; Gablins, J. Two iridovirus isolates from Carassius auratus (L.). J. Fish Dis. 6:501-510: 1983.
4. Burroughs, J. V.; Doel, T. R.; Smale, C. J. et al. A model for vesicular exanthema virus, the prototype of the calicivirus group. J. Gen. Virol. 40:161-174: 1979.
5. Caull, E. O.; Ashley, C. R.; Egglesstone, S. I. An improved method for the routine identification of feline viruses using ammonium sulfate precipitation. FEMS Microbiol. Lett. 4:1-4: 1978.
6. England, J. J.: Reed, D. E. Negative contrast electron microscopic techniques for diagnosis of viruses of veterinary importance. Cornell Vet. 70:125-136: 1980.
7. Fryett, T. H.; Brydon, A. S.; Davies, H. Diagnostic electron microscopy of faeces. I. The viral flora of the faeces as seen by electron microscopy. J. Clin. Pathol. 27:603-614: 1974.
8. Hammond, G. W.; Hazeldon, P. R.; Chuang, I. et al. Improved detection of viruses by electron microscopy after direct ultracentrifuge preparation of specimens. J. Clin. Microbiol. 15:210-221: 1981.
9. Horzinek, M. C.; Osterhaus, A. D. M. E.; Ellens, D. J. Feline infectious peritonitis virus. Zentralbl. Veterinarmed. B 21:398-405: 1977.
10. Lee, F. K.; Nahmis, A. J.: Stagno, S. Rapid diagnosis of cytomegalovirus infection in infants by electron microscopy. N. Engl. J. Med. 299:1266-1270: 1978.
11. Madeley, C. R. Comparison of the features of astroviruses and caliciviruses seen in samples of faeces by electron microscopy. J. Infect. Dis. 139:519-523: 1979.
12. McFerran, J. B.; Clarke, J. K.; Curran, W. L. The application of negative contrast electron microscopy to routine virus diagnosis. Res. Vet. Sci. 12:253-257: 1971.
13. Narang, H. K.: Odd, A. A. A low-speed centrifugation technique for the preparation of grids for direct virus examination by electron microscopy. J. Clin. Pathol. 32:301-305: 1979.
14. Narang, H. K.; Odd, A. A. Enterovirus typing by immune electron microscopy using low-speed centrifugation. J. Clin. Pathol. 32:191-194: 1979.
15. Nelson, A. New approaches to ultracentrifugation. In: Maramorosch, K.; Koprowski, H., eds. Methods in virology, vol. V. New York: Academic Press: 1971:33-77.
16. Portnoy, B. I.; Conklin, R. H.; Mein, M. et al. Reliable identification of reovirus-like agent in diarrheal stools. J. Lab. Clin. Med. 89:560-563: 1977.
17. Rice, S. J.; Phillips, A. D. Rapid preparation of faecal specimens for detection of viral particles by electron microscopy. Med. Lab. Sci. 37:371-372: 1980.
18. Rodgers, F. G. Detection of rotavirus particles from patients with gastroenteritis. Lancet 1:1360-1361; 1980.

19. Smith, A. W.; Skilling, D. E.; Ritchie, A. E. Immunoelectron microscopic comparisons of caliciviruses. Am. J. Vet. Res. 39:1531-1533; 1978.

20. Stoddart, C. A.; Barlough, J. E.; Scott, F. W. Experimental studies of a coronavirus and coronavirus-like agent in a barrier-maintained feline breeding colony. Arch. Virol. 79:85-94; 1984.

21. Whitaker, H. K.; Alderson, C. The use of negative contrast electron microscopy (NCEM) for diagnosis of viral infections in animals. Annu. Proc. Am. Assoc. Vet. Lab. Diagnost. 23:321-350; 1980.

22. Whitby, H. J.; Rodgers, F. G. Detection of virus particles by electron microscopy with polyacrylamide hydrogel. J. Clin. Pathol. 33:484-487; 1980.

23. Zissis, G.; Lambert, J. P.; DeKegel, D. Routine diagnosis of human rotaviruses in stools. J. Clin. Pathol. 31:175-178; 1978.

1 M. A. Bioproducts, Walkersville, MD.
2 HyClone Laboratories, Inc., Logan, UT.
3 Gibco Laboratories, Grand Island, NY.
4 Sigma Chemical Co., St. Louis, MO.
5 Corning Glass Works, Corning, NY.
6 Sheldon Manufacturing, Inc., Portland, OR.
7 Lab-line Instruments, Inc., Melrose Park, IL.
8 Forma Scientific, Marietta, OH.
9 International Equipment Co., Needham Heights, MA.
10 Sarstedt, Inc., Princeton, NJ.
11 Millipore Corp., Bedford, MA.
12 American Can Co., Greenwich, CT.
13 Ted Pella Co., Tustin, CA.
14 Electron Microscopy Sciences, Ft. Washington, PA.
15 Whatman Ltd., England.
16 GTE Sylvania, Inc., Danvers, MA.
17 Philips Electronic Instruments, Inc., Mahwah, NJ.

Oregon Agricultural Experiment Station Technical Paper No. 7358.
Supported by the Oregon Agricultural Experiment Station, Project No. 785.