COVID-19 and dermatology

ÜLKER GÜL

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Part of the Medical Sciences Commons

Recommended Citation
GÜL, ÜLKER (2020) "COVID-19 and dermatology," Turkish Journal of Medical Sciences: Vol. 50: No. 8, Article 1. https://doi.org/10.3906/sag-2005-182
Available at: https://journals.tubitak.gov.tr/medical/vol50/iss8/1

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
COVID-19 and dermatology

Ülker GÜL*

Department of Dermatology, Gülhane Faculty of Medicine, Health Sciences University, İstanbul, Turkey

Background/aim: Sars-CoV-2 virus infection (COVID-19) was observed in China in the last months of 2019. In the period following, this infection spread all over the world. In March 2020 the World Health Organization announced the existence of a pandemic. The aim of this manuscript is to investigate skin diseases associated with COVID-19 under three main headings: skin problems related to personal protective equipment and personal hygiene measures, skin findings observed in SARS-CoV-2 virus infections, and skin findings due to COVID-19 treatment agents.

Materials and methods: In PubMed, Google Scholar databases, skin lesions related to personal protective equipment and personal hygiene measures, skin findings observed in SARS-CoV-2 virus infections and skin findings due to COVID-19 treatment agents subjects are searched in detail.

Results: Pressure injury, contact dermatitis, itching, pressure urticaria, exacerbation of preexisting skin diseases, and new skin lesion occurrence/new skin disease occurrence may be due to personal protective equipment. Skin problems related to personal hygiene measures could include itching, dryness, and contact dermatitis. Skin findings may also be observed in SARS-CoV-2 virus infections. The incidence of skin lesions due to COVID-19 was reported to be between 0.2% and 29%. Many skin lesions including maculopapular, urticarial, vesicular, chilblain-like, thrombotic/ischemic, etc. are observed in COVID-19 patients. Some authors have stated that there is an absence of SARS-CoV-2 virus infection-specific skin findings. However, in asymptomatic or presymptomatic COVID-19 patients in particular, skin lesions can lead to the diagnosis of COVID-19. In addition, skin lesions may occur due to COVID-19 treatment agents.

Conclusion: Many skin lesions may appear as a result of COVID-19. Even in the absence of a COVID-19 diagnosis, skin findings should be evaluated carefully in this pandemic period.

Key words: SARS-CoV-2, COVID-19, dermatology, skin findings

1. Introduction
SARS-CoV-2 virus infection (COVID-19) was observed in China in the last months of 2019. In the period following, this infection spread all over the world. In March 2020 the World Health Organization announced the existence of a pandemic [1–3].

Skin is the largest organ in our body. Factors such as external changes, infectious agents, internal events, and medications can cause symptoms in the skin. This manuscript presents a review of the literature for COVID-19 and dermatology.

2. Occupational exposure of dermatologists to SARS-CoV-2 virus
Some cases of occupational exposure are symptomatic or even serious, and some cases exhibit mild symptoms or none at all. Therefore, especially in mild or asymptomatic cases, skin findings may lead to the diagnosis of COVID-19 [1–7].

PCR false-negative cases were found in 33%–41% of COVID-19 cases [6,7]. Furthermore, skin lesions may also precede COVID-19 symptoms [8].

Dermatological examinations require the examination of body areas such as the face, oral mucosa, etc. while being in close contact with the patient [9,10]. For this reason, COVID-19 diagnosed patients may be a source of infection during the pandemic period. In addition, due to the presence of asymptomatic cases or COVID-19 carriers, dermatologists may also be infected. Dermatologists should be careful when preparing for examinations and should always wear personal protective equipment and obey personal hygiene rules [10–14].

3. COVID-19 and skin diseases
In this manuscript, skin diseases associated with COVID-19 are investigated under the following headings:
3.1. Skin lesions related to personal protective equipment (PPE) and personal hygiene (PH) measures

During the pandemic period, all people have been practicing heightened personal hygiene (frequent disinfectant use and washing). Healthcare workers in particular have been exposed to the regular use of PPE such as the N95 mask, gloves, goggles, and gowns [13–20]. Skin problems related to PH measures and PPE were most frequently observed in the hands (15%–85%) and face (12%–87%). Less frequently, they were seen on the legs, trunk, and all over the body. As the frequency of PH application increases and PPE usage time increases (in hours and days), the incidence of skin lesions increases. Depending on the degree of protection and hygiene, among health care workers 11%–89% reported erythema, 13%–87% papule/edema, 9%–91% exudation/crust, 12%–88% scratches, 12%–88% fissure, 30%–70% lichenification, and 16%–84% blisters [15]. According to one questionnaire 49.0% of health workers reported mask-related skin reactions, and among these 41.8% had facial skin problems and 6.2% had eye symptoms [16].

Skin lesions observed due to prolonged contact with PPE and excessive PH are listed in Table 1 [15–30].

3.1.1. Pressure injury

The N95 masks, goggles, and face shields used as PPE can squeeze and rub the cheeks, forehead, and nasal bridge, which can easily cause mechanical damage to the skin. As a result, ecchymosis, maceration, abrasion, and erosion have been observed. The nasal bridge was the most commonly affected area (83.1%). In addition, lesions may occur where the stems of N95 masks create pressure, such as the ears [10,18–20,22–25]. In one study, facial indentation was observed in 18.8% of cases, and lesions caused by mask stems were observed in 22.3% of cases; 8.9% (n: 36) of those affected removed their masks because they could not tolerate them [16]. Skin indentation may be mild or serious. Most mild skin indentations regress spontaneously; however, if the ulceration is not properly managed, secondary infections may occur [10].

3.1.2. Contact dermatitis (CD)

3.1.2.1. Face

CD is one of the important problems to emerge due to mask use. Lesions often occur on the nose and cheeks [26]. Both N95 and surgical masks contain formaldehyde and other preservatives. For this reason, allergic contact dermatitis (ACD) may occur. Friction, warmth, and moisture from respiration may enhance these symptoms. Skin barrier dysfunction and skin microbiota disorder make patients more vulnerable to mask side effects [16,27,28].

3.1.2.2. Body

Skin dermatoses most commonly develop where gowns adhere tightly to the skin. Friction, moisture, and warmth in these regions may increase the risk of ACD [25].

3.1.2.3. Hands

CD has frequently been observed in the hands during the pandemic period. Hand hygiene is extremely important. The causes of CD in the hands are frequent contact with disinfectants and frequent washing. After exposure to 60%–80% alcohol, chlorine-based disinfectants, peroxyacetic acid, and chloroform users may develop adverse reactions (e.g., irritant CD). In addition, the frequency and duration of skin cleaning has increased. Excessive hygiene applications also increase CD [10,19,26]. Atopic diathesis, low humidity, frequency of hand washing, wet work, glove use, and duration of work are important risk factors for the development and/or aggravation of hand dermatitis. Hand dermatitis often appears in the form of irritant CD. Less commonly, ACD may occur. For the aim of CD prevention, applying hand cream frequently is recommended [18,21,30]. Excessive washing of the skin and repeated application of disinfectants (e.g., bleach and alcohol) should be avoided [19].

Prolonged use of gloves also causes CD. In one study, dry skin (73.4%), itching (56.3%), and rash (37.5%) were reported due to the use of permanent gloves [17].

Table 1. Skin lesions related to personal protective equipment and personal hygiene measures.

Protection type	Personal protective equipment	Personal hygiene measures	
Protection agents	N95 masks (mask and stems), goggles and face shields	N95 and surgical masks, goggles, gowns, gloves	Disinfectants, soaps, frequent washing
Diseases	· Pressure injury · Pressure urticaria	· Contact dermatitis · Itching · Exacerbation of preexisting skin diseases · New skin disease	· Contact dermatitis · Itching · Exacerbation of preexisting skin diseases · New skin disease

Table 1.
3.1.3. Itching

Itching is observed at rates between 14.8% and 55.2% depending on the degree of protection. The incidence of itching was 79% when protection was in use for more than 3 days. Itching was observed at the rate of 37% when using PPE 0–4 h a day and 67% when using PPE for more than 4 h. This is especially relevant for healthcare professionals [15]. In one study, mask-related itching was observed at a rate of 15% [16]. In another study, facial itching was reported at 51% due to mask use, and itching of the hands was reported at 56.3%, due to glove use [17].

3.1.4. Pressure urticaria

Pressure urticaria is rarely observed [10,27,29]. Antihistamines such as cetirizine and loratadine are preferred for treating pressure urticaria, and antileukotriene agents may be added if needed [10].

3.1.5. Exacerbation of preexisting skin diseases including seborrheic dermatitis and acne

In one study, exacerbation was reported in 43.6% (n = 44) of acne patients, in 37.5% (n = 9) with seborrheic dermatitis, and in all 14 acne rosacea patients [16]. Prolonged wearing of masks and goggles may aggravate existing acne vulgaris. Plausible mechanisms include the rupture of comedones induced by pressure and friction, occlusion of the pilosebaceous duct, microcirculation dysfunction due to long-term pressure, and a humid environment which is conducive to bacteria proliferation [10].

3.1.6. New skin lesion occurrence/new skin disease occurrence

Frequent disinfection of the hands and the wearing of latex gloves may result in pompholyx presenting with blisters and itching. The long-term wearing of protective clothing may cause sweating, which can lead to dermatitis and folliculitis. Frequent use of shoe covers may cause fungal infections of the feet (19). The regular use of N95 masks has been found to cause acne (59.6%) [17,25].

3.2. Skin findings observed in SARS-CoV-2 virus infections

The reported incidence of skin lesions was 0.2% in 1099 cases of SARS-CoV-2 infection in China [31,32]. In another study, this rate was 4.9% (5/103) [33]. Skin rash was reported in 29% (14/48) of patients in an Italian study [34]. In another Italian study, cutaneous manifestations were reported in 20.4% (18/88) of confirmed COVID-19 patients [35].

Many skin lesions are observed in COVID-19 (Table 2) [8,36,37]. The largest series (373 cases) observing skin lesions was from Galván Casas et al. [8]. Some authors stated that there were no SARS-CoV-2 virus infection-specific skin findings [38]. However, some skin lesions may help to diagnose COVID-19 [8,38].

Time to onset of skin lesions: The relationship between skin lesions and the primary symptoms of COVID-19 has been studied and in one study 5.9% of cases show skin lesions before primary symptoms, 56.8% cases show lesions with the primary findings, and 37.3% show lesions after the primary symptoms (Table 3) [8]. In a study analyzing 18 publications, in 12.5% (9/72) of the patients, skin lesions were observed before the onset of respiratory symptoms or COVID-19 diagnosis [39]. As a result, particularly in asymptomatic or presymptomatic COVID-19 patients, skin lesions can lead to a diagnosis of COVID-19 [8].

The relationship between skin lesions and disease severity: There is no evidence that the extent of cutaneous involvement is related to disease severity [38,39]. On the other hand, in 2 separate reports COVID-19 and skin lesion severity were linked in 2 patients [34,36].

Age and gender characteristics of skin lesions: In a study reporting on 18 articles and 3 additional cases, mean patient age was 53.6 years. In this study, males accounted for 38.9% of cases, females accounted for 27.8% of cases, and gender was not reported in 37.5% of cases [39].

Location of lesions: In an evaluation of publications, the majority of lesions were localized on the trunk (66.7%, 50/72); however, 19.4% (14/72) of patients experienced cutaneous manifestations on the hands and feet [39].

Skin lesion healing time: Generally, lesions spontaneously healed in all patients within 10 days. The majority of studies reported no correlation between COVID-19 severity and skin lesions [39].

Table 2. Incidence of skin lesions in all COVID-19 cases and among all COVID-19 skin findings.

Study	Maculapapular (%)	Urticarial (%)	Vesicular (%)			
	All COVID-19 cases	All skin findings	All COVID-19 cases	All skin findings	All COVID-19 cases	All skin findings
Recalcati [35]	15.9	77.8	3.4	16.7	1.1	5.6
Hedou [33]	1.9	40	1.9	40		
Galván Casas	47	19	1.4	1.5		
Zhang [45]						
Tammaro [49]						
Histopathologic examination: In most of the literature, histological findings were not reported [39].

Skin findings observed in COVID-19

3.2.1. Maculopapular exanthema (MPE)

The incidence of MPE is seen in Table 2, and time of occurrence is in Table 3 [8,33,35]. In a study analyzing 18 publications, MPE was the most common cutaneous manifestation of COVID-19 (36.1%) [39]. Maculopapular exanthema may also be observed during the asymptomatic period [8]. It has also been seen in children [40].

Maculopapular exanthema accompanying COVID-19 is nonspecific (some cases have a purpuric component). Scaling may be found, and itching is present in half of the patients [8,37,41]. Purpura may also be present, either punctiform or over larger areas [8,39,41,42]. Lesions may be located in perifollicular areas. Target-like purpuric or pseudovesicular plaques can also be seen [8,43,44]. Some were described as similar to pityriasis rosea, erythema elevatum diutinum, or erythema multiforme. Differential diagnosis should be performed to account for other infections and drug reactions [8].

Zhang et al. found urticaria in 1.4% of COVID-19 patients. In this study, there were 82 nonsevere patients, 58 severe patients, and a total of 140 cases. Urticaria was observed in 1.2% of nonsevere patients and in 1.7% of severe patients [45].

3.2.2. Urticarial lesions

Urticarial lesions incidence is listed in Table 2, and time of occurrence is in Table 3 [8,33,35,45]. In an analysis of 18 articles, urticaria was found in 9.7% of cases [39]. Urticaria may be the first sign of COVID-19 [8,46,47]. Urticaria was also seen during the asymptomatic phase [8,33]. It has also been reported in children [40]. Urticaria is mainly located on the face and upper body [33]. It is mostly distributed on the trunk or disperse. A few cases were palmar. Itching was very common when urticariform lesions were present (92%) [8]. A case of cold urticaria has also been reported in the literature [42]. Differential diagnosis should be performed to rule out other infections and drug reactions [8].

Zhang et al. found urticaria in 1.4% of COVID-19 patients. In this study, there were 82 nonsevere patients, 58 severe patients, and a total of 140 cases. Urticaria was observed in 1.2% of nonsevere patients and in 1.7% of severe patients [45].

3.2.3. Vesicular eruptions

The incidence of vesicular eruptions is seen in Table 2, and the time of occurrence is in Table 3 [8,35,49]. Vesicular eruptions have also been observed during the asymptomatic phase [8]. In one study analyzing 18 publications, papulovesicular rash was found in 34.7% of cases [39].

Some lesions were on the trunk and consisted of small monomorphic vesicles that were chickenpox-like. Lesions appeared in middle aged patients. Itching was common (68%) [8]. Two out of 130 patients had isolated herpetiform lesions appear on their trunks during their inpatient stay [49]. In the lesions, vesicles surrounded by erythematous halos were observed [49].

3.2.4. Acral lesions

Acral lesions in COVID-19 are mentioned in different publications under different names [8,37,50–56]. Galván Casas et al. have divided acral lesions into 2 groups as follows [8]:

3.2.4.a. Chilblains-like lesions (perniosis-like lesions and pseudo-chilblain)

The cutaneous manifestations consisted of erythematoviolaceous papules and macules, with possible vesicles, bullous, or pustules on the acral area [8,32,53,54]. These lesions resembled chilblains and had purpuric areas, affecting the hands and feet [8,53]. They were usually asymmetrical [8]. In an analysis of 18 publications, chilblains-like lesions were found in 19% of cases [39]. They occurred before the main symptoms in 7% of the cases. (Table 3) [8]. In another study, lesions were found in 25.4% of asymptomatic patients [55]. Chilblains-like lesions appeared more commonly after the onset of the disease and were not associated with severe disease [8]. The appearance time of the lesions was 10 days after the onset of the disease [55]. They may cause pain (32%) or itching (30%). Chilblains-like lesions affected children and teenage patients at a higher rate [8,51,53,55]. Chilblains in youth are a potential sign of COVID-19 infection [52]. No significant difference in gender was noticed
target lesions were observed in two patients. Lesions were on the back and then spread to the face and limbs within 1 week, without involvement of palms or soles. All patients were treated with systemic corticosteroids and had progressive resolution of the skin lesions within 2–3 weeks. Histopathological examination showed nonspecific findings. Three patients had their oral cavity examined, which revealed palatal macules and petechiae [61]. It was reported that a female COVID-19 patient had generalized exanthematous pustulosis with erythema multiforme-like lesions [62]. In another paper it was found that atypical erythema multiforme palmar plaques lesions were formed due to Sars-Cov-2 [63].

- Vasculitis [64]
- Transient livedo reticularis [65]
- Nonpuritic annular fixed plaques: In a 39-year-old male with a fever of 39 °C, nonpuritic annular fixed plaques were observed. This rash was located on the upper limbs, chest, neck, abdomen, and palms, sparing the face and mucous membranes. Blood count, electrolytes, C-reactive protein, and anti-DNA antibodies were at normal levels. Histological findings were unspecific but consistent with viral exanthemata [66].
- An increased number of herpes zoster and superficial fungal infection cases were observed in COVID-19 patients [8].
- Oral herpes simplex virus type 1 reactivation was seen in an intubated patient in intensive care [33].

3.2.6. Oral mucosa lesions
In three cases (two suspected and one confirmed), painful ulcers and blisters in the oral cavity (desquamative gingivitis) were observed [68]. Galván Casas et al. also reported enanthem in COVID-19 cases [8,68].

3.3. Skin findings due to COVID-19 treatment agents
The treatment agents for COVID-19 can also cause skin lesions. In cases of COVID-19 with skin lesions, drug eruptions should be considered in the differential diagnosis. Below are the cutaneous side effects of the treatment agents used in COVID-19.

3.3.1. Hydroxychloroquine (HCQ)
Hydroxychloroquine is an antimalarial agent which also has antinflammatory and immunomodulatory activities. Hydroxychloroquine is used for short term COVID-19 treatment. However, some people use HCQ for long-term treatment without a doctor's recommendation due to COVID-19 phobia. For these reasons, all patients having skin lesions should be questioned about their use
of HCQ during the pandemic period. HCQ may cause adverse cutaneous drug eruptions (ACDRs). In 6 of 180 patients diagnosed with cutaneous lupus erythematosus and dermatomyositis ACDRs have been observed. ACDRs occurred 5 to 14 days after initiation of HCQ treatment and none were life threatening. Eruptions were characterized as lichenoid, urticarial, or exanthematous and resolved after discontinuation of HCQ treatment [69]. In one case, generalized pustular figurate erythema was seen [70]. One of the important side effects of HCQ is hydroxychloroquine-induced pruritus [71]. Moreover, it may cause acute generalized exanthematous pustulosis, urticaria, mucocutaneous dyspigmentation, Stevens–Johnson-like eruptions, alopecia, the bleaching of hair, and psoriasis flare-ups [72].

3.3.2. Azithromycin
Azithromycin is widely used and is generally considered a safe medicine. Azithromycin rarely causes skin reactions such as Bullous fixed drug eruption, Stevens–Johnson syndrome, DRESS, leukocytoclastic vasculitis, hypersensitivity syndrome, etc. [73–77].

3.3.3. Favipiravir
Favipiravir is a nucleoside analog that is well-known as a broad-spectrum antiviral drug. In the commercial drug prospectus, skin rash (< 1%) and eczema (<0.5%) pruritus are reported. In COVID-19 treatment with favipiravir, cutaneous adverse effects have not been observed [78].

3.3.4. Remdesivir
Remdesivir is a monophosphoramidate prodrug of an adenosine analog. Some adverse skin effects have been reported including itching and swelling (especially of the face, tongue, and throat). In one study, Wang et al. found skin rash in 7% of the remdesivir group and 3% of a placebo group of COVID-19 patients. Remdesivir was discontinued due to cutaneous adverse effects in 2 cases (1%) [79]. In another study, skin rash was observed in a total of 4 cases [3 cases (9%) in invasive ventilation and 1 case (5%) in noninvasive oxygen support] [80].

3.3.5. Oseltamivir
Oseltamivir has been approved for influenza treatments and may cause cutaneous side effects such as angioedema, Stevens–Johnson syndrome, toxic epidermal necrolysis, etc., however this is rare [81–85].

3.3.6. Combination of lopinavir/ritonavir
Lopinavir/ritonavir is an HIV-1 protease inhibitor. Cutaneous adverse effects are given below [86–88].
- Common: maculopapular rash, eczema, seborrheic dermatitis, night sweats, and pruritus,
- Uncommon: alopecia, capillaritis, and vasculitis,
- Rare: Steven–Johnson syndrome, erythema multiforme, and acute generalized exanthematous pustulosis.

4. Conclusion
Many skin lesions may appear during the COVID-19 pandemic period: skin lesions related to personal protective equipment and personal hygiene measures, skin findings observed in SARS-CoV-2 virus infections, and cutaneous drug eruption due to COVID-19 treatment agents. Even in the absence of a COVID-19 diagnosis, skin findings should be evaluated carefully in this pandemic period. In asymptomatic or presymptomatic COVID-19 patients, skin lesions can lead to the diagnosis of COVID-19.

Conflict of interest
There are no financial conflicts of interest to disclose.

References
1. Hafeez A, Ahmad S, Siddqui SA, Ahmad M, Mishra S. A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention. Eurasian Journal of Medicine and Oncology 2020; 4(2):116-125. doi:10.14744/ejmo.2020.90853
2. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Bio-medica: Atenei Parmensis 2020; 91(1):157-160. doi:10.23750/abm.v91i1.9397
3. Zhao N, Zhou ZL, Wu L, Zhang XD, Han SB et al. An update on the status of COVID-19: a comprehensive review. European Review for Medical and Pharmacological Sciences 2020; 24(8):4597-4606. doi:10.26355/eurrev_202004_21046
4. Nishiura H, Kobayashi T, Miyama T, Suzuki A, Jung SM et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). International Journal of Infectious Diseases 2020; 94: 154-155. doi:10.1016/j.ijid.2020.03.020
5. Hu Z, Song C, Xu C, Jin G, Chen Y et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China. Life Sciences 2020; 63 (5): 706-711. doi:10.1007/s11427-020-1661-4
6. Dong X, Cao YY, Lu XY, Zhang J, Du H et al. Eleven faces of coronavirus disease 2019. Allergy 2020; 10.1111/all.14289. doi:10.1111/all.14289
7. Ai T, Yang Z, Hou H, Zhan C, Chen C et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020: 200642. doi:10.1148/radiol.2020200642
8. Galván Casas C, Catalá A, Carretero Hernández G, Rodriguez-Jiménez P, Fernández Nieto D et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. British Journal of Dermatology 2020. doi:10.1111/bjd.19163
9. Zhang Z, Zhang L, Wang Y. COVID-19 indirect contact transmission through the oral mucosa must not be ignored. Journal of Oral Pathology & Medicine 2020; 49 (5): 450-451. doi:10.1111/opj.13019

10. Yan Y, Chen H, Chen L, Cheng B, Diao P et al. Consensus of Chinese experts on protection of skin and mucous membrane barrier for health-care workers fighting against coronavirus disease 2019. Dermatologic Therapy 2020; e13310. doi:10.1111/dth.13310

11. Kwatra SG, Sweren RJ, Grossberg AL. Dermatology practices as vectors for COVID-19 transmission: A call for immediate cessation of nonemergent dermatology visits. Journal of the American Academy of Dermatology 2020; 82 (5): e179-e180. doi:10.1016/j.jaad.2020.03.037

12. Gisondi P, Piaserico S, Conti A, Naldi L. Dermatologists and SARS-CoV-2: The impact of the pandemic on daily practice. Journal of the European Academy of Dermatology and Venereology 2020. doi: 10.1111/jdv.16515

13. Wollina U. Challenges of COVID-19 pandemic for dermatology. Dermatologic Therapy 2020: e13430. doi:10.1111/dth.13430

14. Borgatta L, Fisher M, Robbins N. Hand protection and protection from hands: hand-washing, germicides and gloves. Women & Health 1989; 15(4): 77-92.

15. Pei S, Xue Y, Zhao S, Alexander N, Mohamad G et al. Occupational skin conditions on the frontline: A survey among 484 Chinese healthcare professionals caring for Covid-19 patients. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16570

16. Zuo Y, Hua W, Luo Y, Li L. Skin reactions of N95 masks and medial masks among health care personnel: A self-report questionnaire survey in China. Contact Dermatitis 2020. doi:10.1111/cod.13555

17. Foo CC, Goon AT, Leow YH, Goh CL. Adverse skin reactions to personal protective equipment against severe acute respiratory syndrome--a descriptive study in Singapore. Contact Dermatitis 2006; 55(5): 291-294.

18. Lin P, Zhu S, Huang Y, Li L, Tao J et al. Adverse skin reactions among healthcare workers during the coronavirus disease 2019 outbreak: A survey in Wuhan and its surrounding regions. British Journal of Dermatology 2020. doi:10.1111/bjd.19089

19. Zhang B, Zhai R, Ma L. COVID-19 epidemic: Skin protection for health care workers must not be ignored. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16573

20. Lan J, Song Z, Miao X, Li H, Li Y et al. Skin damage among health care workers managing coronavirus disease-2019. Journal of the American Academy of Dermatology 2020; 82 (5): 1215-1216. doi:10.1016/j.jaad.2020.03.014

21. Darlenski R, MD, Tsankov N. Covid-19 pandemic and the skin - What should dermatologists know? Clinics in Dermatology 2020. doi:10.1016/j.clindermatol.2020.03.012

22. Oranges T, Janowska A, Dini V. Reply to: "Skin damage among health care workers managing coronavirus disease-2019". The Journal of the American Academy of Dermatology 2020; 82 (6): e233–e234. doi:10.1016/j.jaad.2020.04.003

23. Jiang W, Cao W, Liu Q. Wearing the N95 mask with a plastic handle reduces pressure injury. Journal of the American Academy of Dermatology 2020; 82: e191-192. pii: S0190-9622(20)30532-6. doi:10.1016/j.jaad.2020.04.001

24. Payne A. Covid-19: skin damage with prolonged wear of FFP3 masks. British Medical Journal 2020; 369:m1743. doi:10.1136/bmj.m1743

25. Gheisari M, Araghi F, Moravej H, Tabary M, Dadkhahfar S. Skin reactions to non-glove personal protective equipment: An emerging issue in the COVID-19 pandemic. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16492

26. Balato A, Ayala F, Bruze M, Crepy MN, Gonçalo M, Duus Johansen J et al. European task force on contact dermatitis statement on coronavirus 19 disease (COVID-19) outbreak and the risk of adverse cutaneous reactions. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16557

27. Donovan J, Judd L, Holness L, Skotnicki-Grant S, Nethercott J. Skin reactions following use of N95 facial masks. Dermatitis 2007; 18: 104.

28. Donovan J, Skotnicki-Grant S. Allergic contact dermatitis from formaldehyde textile resins in surgical uniforms and nonwoven textile masks. Dermatitis 2006; 18 (1): 40-44.

29. Gheisari M, Araghi F, Moravej H, Tabary M, Dadkhahfar S. Skin reactions to non-glove personal protective equipment: An emerging issue in the COVID-19 Pandemic. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16492

30. Abtahi-Naeini B. Frequent handwashing amidst the COVID-19 outbreak: prevention of hand irritant contact dermatitis and other considerations. Health Science Reports 2020; 3(2):e163. doi:10.1002/hsr2.163

31. Guan W, Ni Z, Hu Y, Liang W, Ou C et al. Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine 2020. doi:10.1056/NEJMoa2002032

32. Alamrithan A, Aldaraji W. A case of COVID-19 presenting in the Middle East. Clinical and Experimental Dermatology 2020. doi:10.1111/ced.14243

33. Hedou M, Carsuzaa F, Chary E, Hainaut E, Cazenave-Roblot F, Masson Regnault M. Comment on “Cutaneous manifestations in COVID-19: a first perspective “ by Recalcati S. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16519

34. Mahé A, Birkel E, Krieger S, Merklen C, Bottlaender L. A distinctive skin rash associated with Coronavirus Disease 2019? Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16471
35. Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16387

36. Esteban A, Pérez-Santiago I, Silva E, Guillen-Climent S, García-Vázquez A, Ramón M. Cutaneous manifestations in COVID-19: a new contribution. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16474

37. Fernandez-Nieto D, Jimenez-Cauhe J, Suarez-Valle A, Suarez-Valle A, Moreno-Arrones OM, Saceda-Corrado D et al. Characterization of acute acro-ischemic lesions in non-hospitalized patients: a case series of 132 patients during the COVID-19 outbreak. Journal of the American Academy of Dermatology 2020. doi:10.1016/j.jaad.2020.04.093

38. Mungmungpuntipantip R, Wiwanitkit V. COVID-19 and cutaneous manifestations. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16483

39. Sachdeva M, Gianotti R, Shah M, Lucia B, Tosi T et al. Cutaneous manifestations of COVID-19: Report of three cases and a review of literature. Journal of Dermatological Science 2020. doi:10.1016/j.jdermsci.2020.04.011

40. Morey-Olivé M, Espiau M, Mercadal-Hally M, Lera-Carballo E, Garcia-Patos V. Cutaneous manifestations in the current pandemic of coronavirus infection disease (COVID 2019). Anales de Pediatría (English Edition) 2020. doi:10.1016/j.anpeds.2020.04.002

41. Gianotti R, Veraldi S, Recalcati S, Cusini M, Ghislanzoni M et al. Cutaneous clinico-pathological findings in three COVID-19-positive patients observed in the metropolitan area of Milan, Italy. Acta Dermato-Venereologica 2020. doi:10.2340/00015555-3490

42. Bouaziz JD, Duong T, Jachiet M, Velter C, Lestang P et al. Vascular skin symptoms in COVID-19: a french observational study. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16544

43. Chesser H, Chambliss JM, Zwemer E. Acute hemorrhagic edema of infancy after 39 coronavirus infection with recurrent rash. Case Reports in Pediatrics 2017; 2017: 5637503.

44. Joob B, Wiwanitkit V. COVID-19 can present with a rash and be mistaken for Dengue. Journal of the American Academy of Dermatology 2020. pii: S0190-9622(20)30454-0. doi:10.1016/j.jaad.2020.03.036

45. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020. doi:10.1111/all.14238

46. Henry D, Ackerman M, Sancelme E, Finon A, Esteve E. Urticarial eruption in COVID-19 infection. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16472

47. van Damme C, Berlingin E, Sausset S, Accaputo O. Acute urticaria with pyrexia as the first manifestations of a COVID-19 infection. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16523

48. Torres T, Puig L. Managing cutaneous immune-mediated diseases during the COVID-19 pandemic. American Journal of Clinical Dermatology 2020. doi:10.1007/s40257-020-00514-2

49. Tammaro A, Adebano GAR, Parissela FR, Pezzuto A, Rello J. Cutaneous manifestations in COVID-19: the experiences of Barcelona and Rome. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16530

50. Landa N, Mendieta-Eckert M, Fonda-Pascual P, Aguirre T. Chilblain-like lesions on feet and hands during the COVID-19 pandemic. International Journal of Dermatology 2020. doi:10.1111/ijd.14937

51. Andina D, Snguerra-Morel L, Bascuas-Arribas M, Gaiter-Tristán J, Alonso-Cadenas JA et al. Chilblains in children in the setting of COVID-19 pandemic. Pediatric Dermatology 2020. doi:10.1111/pde.14215

52. López-Robles J, de la Hera I, Pardo J, Martínez J, Cutillas-Maro E. Chilblain-like lesions: a case series of 41 patients during the COVID-19 pandemic. Clinical and Experimental Dermatology 2020. doi:10.1111/ced.14275

53. Recalcati S, Barbagallo T, Frasin LA, Pretiniani F, Cogliardi A et al. Acral cutaneous lesions in the Time of COVID-19. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16533

54. Torres-Navarro I, Abril-Pérez C, Roca-Ginés J, Sánchez-Aráez J, Botella-Estrada R, Évole-Buselli M. Comment on 'Two cases of COVID-19 presenting with a clinical picture resembling chilblains: first report from the Middle East': pernio unrelated to COVID-19. Clinical and Experimental Dermatology 2020. doi:10.1111/ced.14255

55. Piccolo V, Neri I, Filippeschi C, Oranges T, Argenziano G et al. Chilblain-like lesions during COVID-19 epidemic: a preliminary study on 63 patients. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16526

56. Kolivras A, Dehavay F, Delplace D, Feoli F, Meiers I et al. Coronavirus (COVID-19) infection initiated chilblains: a case report with histopathological findings. Journal of the American Academy of Dermatology Case Reports 2020. doi:10.1016/j.jdercr.2020.04.011

57. Zhang Y, Cao W, Xiao M, Li Y, Yang Y et al. Clinical and coagulation characteristics of 7 patients with critical COVID-19 pneumonia and acro-ischemia. Zhonghua Xue Ye Xue Za Zhi 2020; 41(0):E006. doi:10.3760/cma.j.issn.0253-2727.2020.0006

58. Li T, Lu H, Zhang W. Clinical observation and management of COVID-19 patients. Emerging Microbes & Infections 2020; 9 (1): 687-690. doi:10.1080/22221751.2020.1741327

59. Zhang Y, Xiao M, Zhang S, Xia P, Cao W et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. New England Journal of Medicine 2020; 382 (17): e38. doi:10.1056/NEJMmc2007575

60. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis 2020; 18(4): 844-847.
61. Jimenez-Cauhe J, Ortega-Quijano D, Carretero-Barrio I, Suarez-Valle A, Saceda-Corralo D et al. Erythema multiforme-like eruption in patients with COVID-19 infection: clinical and histological findings. Clinical and Experimental Dermatology 2020. doi:10.1111/ced.14281

62. Robustelli Test E, Vezzoli P, Carugno A, Raponi F, Gianatti A et al. Acute generalized exanthematous pustulosis with erythema multiforme-like lesions in a COVID-19 woman. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16613

63. Janah H, Zinebi A, Elbenayre J. Atypical erythema multiforme palmar plaques lesions due to Sars-Cov-2. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/jdv.16623

64. Castelnovo L, Capelli F, Tamburello A, Maria Faggipoli P, Mazzone A. Symmetric cutaneous vasculitis in COVID-19 pneumonia. Journal of the European Academy of Dermatology and Venereology 2020. doi:10.1111/1468-3083.14569

65. Manalo IF, Smith MK, Cheeley J, Jacobs R. A Dermatologic manifestation of COVID-19: transient livedo reticularis. Journal of the American Academy of Dermatology 2020. doi:10.1016/j.jaad.2019.04.068

66. Amatore F, Macagno N, Mailhe M, Demarez B, Gaudy-Granget EM, Vezzoli P, Carugno A, Raponi F, Gianatti A et al. Acute generalized exanthematous pustulosis induced by HIV necrolysis after treatment with oseltamivir: case report. Archivos Argentinos de Pediatria 2010; 108 (3): e76-8. doi:10.1590/S0325-00002010000300013

67. Schwartz RA, Janniger CK. Generalized pustular figurate erythema: A newly delineated severe cutaneous drug reaction linked with hydroxychloroquine. Dermatologic Therapy 2020; e13380. doi:10.1111/dth.13380

68. Gül Ü, Cakmak SK, Kiliç A, Gonul M, Bilgili S. A case of hydroxychloroquine induced pruritus. European Journal of Dermatology 2006; 16(5): 586-587.

69. Salido M, Joven B, D’Cruz DP, Khamasha MA, Hughes GR. Increased cutaneous reactions to hydroxychloroquine (Plaquenil) possibly associated with formulation change: comment on the letter by Alarcón. Arthritis & Rheumatology 2002; 46(12): 3392-3396.

70. Das A, Sancheti K, Podder I, Das NK. Azithromycin induced bullous fixed drug eruption. Indian Journal of Pharmacology 2016; 48 (1): 83-85. doi:10.4103/0253-7613.174565

71. Sriratanaviriyakul N, Nguyen LP, Henderson MC, Albertson TE. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome associated with azithromycin presenting like septic shock: a case report. Journal of Medical Case Reports 2014; 8: 332. doi:10.1186/1752-1471-8-332

72. Aihara Y, Ito S, Kobayashi Y, Aihara M. Stevens-Johnson syndrome associated with azithromycin followed by transient reactivation of herpes simplex virus infection. Allergy. 2004; 59(1): 118.

73. Cascaval RI, Lancaster DJ. Hypersensitivity syndrome associated with azithromycin. American Journal of Medicine 2001; 110(4): 330-331. doi:10.1016/S0002-9343(00)00724-5

74. Odemis E, Kalyoncu M, Okten A, Yildiz K. Azithromycin-induced leukocytoclastic vasculitis. Journal of Rheumatology 2003; 30(10): 2292.

75. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E et al. Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine 2020. doi:10.1056/NEJMoa2007016

76. Nordstrom BL, Oh K, Sacks ST, L’Italien GJ. Skin reactions in patients with influenza treated with oseltamivir: a retrospective cohort study. Antiviral Therapy 2004; 9(2): 187-195.

77. Luna P, Zuazaga M, Chede C, Entin E, Larralde M. Toxic epidermal necrolysis after treatment with oseltamivir (Tamiflu). European Journal of Dermatology 2005; 15 (2): 97-98.

78. Smith EV, Pynn MC, Blackford S, Leopold DJ. Stevens-Johnson syndrome secondary to oseltamivir (Tamiflu). British Journal of General Practice 2010; 60(571): 133-134. doi:10.3399/bjgp10X483292

79. Zuo W, Wen LP, Li J, Mei D, Fu Q, Zhang B. Oseltamivir induced Stevens-Johnson syndrome/toxic epidermal necrolysis-case report. Medicine (Baltimore) 2019; 98 (19): e15553. doi:10.1097/MD.0000000000015553

80. Luna P, Zuazaga M, Chede C, Entin E, Larralde M. Toxic epidermal necrolysis after treatment with oseltamivir: case report. Archives Argentinos de Pediatria 2010; 108 (3): e76-8. doi:10.1590/S0325-00752010000300013

81. Calista D. Maculo-papular rash induced by lopinavir/ritonavir. British Journal of Dermatology 2005; 153: 97-98.