HOLME TYPE THEOREM FOR SPECIAL LINEAR GROUPS

SHULIM KALIMAN

Abstract. Let Z be an affine algebraic variety and X be a smooth algebraic variety isomorphic to a semi-simple linear algebraic group whose Lie algebra is a sum of special linear Lie algebras. We show that if $\dim X \geq \max(2 \dim Z + 1, \dim TZ)$, then Z admits a closed embedding into X. We also show that for every smooth affine flexible variety Y there is a closed embedding of Z into $Y \times \mathbb{A}^n$ provided that $n \geq \dim Z - 1$ and $\dim Y + n \geq \max(2 \dim Z + 1, \dim TZ)$.

1. Introduction

All algebraic varieties which appear in this paper are considered over an algebraically closed field k of characteristic zero. If Z is an affine algebraic variety and TZ is its Zariski tangent bundle then we call $ED(Z) = \max(2 \dim Z + 1, \dim TZ)$ the embedding dimension of Z. Holme's theorem [Hol, Theorem 7.4] (later rediscovered in [Ka91] and [Sr]) states that Z admits a closed embedding into any affine space \mathbb{A}^n with $n \geq ED(X)$. In the smooth case (when $ED(Z) = 2 \dim Z + 1$) this fact was proven earlier by Swan [Swan, Theorem 2.1]. The latter result is sharp - examples of smooth irreducible d-dimensional affine algebraic varieties with $d \geq \frac{n}{2}$ such that they do no admit closed embeddings in \mathbb{A}^n were constructed in [BMS]. Recently Feller and van Santen [FS21] proved that if X is an affine variety isomorphic to a simple linear algebraic group and Z is smooth, then Z admits a closed embedding into X, provided that $\dim X > ED(Z)$. They also proved that for every n-dimensional algebraic group G there exist smooth irreducible d-dimensional affine algebraic varieties with $d \geq \frac{n}{2}$ such that they do not admit closed embeddings in G [FS21, Corollary 4.4]. In particular, their embedding result is optimal for even dimensions of X. However, they did not know whether their result is sharp in the case of an odd dimension of X and, in particular, a question posed in [FS21] asks whether a smooth affine algebraic variety of dimension 7 can be embedded properly into $\text{SL}_4(k)$. The main result of this paper is the following.

Date: July 15, 2021.

2020 Mathematics Subject Classification: 14E25, 14L30, 14R10.

Key words: closed embedding, injective immersion, affine algebraic variety, flexible variety, semi-simple Lie group.
Theorem 1.1. Let \(Z\) be an affine algebraic variety, \(Y\) be an algebraic variety of the form \(\mathbb{A}^{n_0} \times \text{SL}_{n_1}(k) \times \text{SL}_{n_2}(k) \times \ldots \times \text{SL}_{n_l}(k)\) where \(n_0 \geq 0, l \geq 1\) and \(n_i \geq 2\) for \(i \geq 1\). Suppose that \(\varphi : Y \to X\) is a finite morphism into a normal variety \(X\), \(\dim X \geq \text{ED}(Z)\) and \(\dim Z < \text{codim}_X X_{\text{sing}}\). Then \(Z\) admits a closed embedding into \(X\) with the image contained in \(X_{\text{reg}}\).

Thus, the question of Feller and van Santen has the positive answer. Recall that starting from dimension 2 affine spaces and linear algebraic groups without nontrivial characters are examples of so-called flexible varieties (a normal quasi-affine variety \(X\) is flexible if \(\text{SAut}(X)\) acts transitively on the smooth part \(X_{\text{reg}}\) of \(X\) where \(\text{SAut}(X)\) is the subgroup of the group \(\text{Aut}(X)\) of algebraic automorphisms of \(X\) generated by one-parameter unipotent subgroups). For such varieties we prove the following.

Theorem 1.2. Let \(Z\) be an affine algebraic variety, \(Y\) be a smooth affine algebraic variety of the form \(X_1 \times \mathbb{A}^n\) where \(X_1\) is flexible, \(n \geq \dim Z - 1\) and \(\dim Y \geq \text{ED}(Z)\). Suppose that \(\psi : Y \to W\) is a finite morphism into a normal variety \(W\) and \(\dim Z < \text{codim}_W W_{\text{sing}}\). Then \(Z\) admits a closed embedding into \(W\) with the image contained in \(W_{\text{reg}}\).

The proofs of Theorems 1.1 and 1.2 are heavily based on the theory of flexible varieties and the technique developed in [AFKKZ], [Ka20], [KaUd] and [Ka21] whose survey can be found in Section 2. In particular, we describe injective immersions of affine algebraic varieties into smooth flexible varieties. In section 3 we develop a criterion of properness for such injective immersion. Using this criterion and some simple facts about matrices we prove Theorem 1.1 in Section 4. Theorem 1.2 is proven in Section 5.

Acknowledgement. The author is grateful to L. Makar-Limanov for useful consultation.

2. Flexible varieties

Let us start with the main definitions in the theory of flexible varieties.

Definition 2.1. (1) Given an irreducible algebraic variety \(\mathcal{A}\) and a map \(\varphi : \mathcal{A} \to \text{Aut}(X)\) we say that \((\mathcal{A}, \varphi)\) is an algebraic family of automorphisms of \(X\) if the induced map \(\mathcal{A} \times X \to X, (\alpha, x) \mapsto \varphi(\alpha).x\) is a morphism (see [Ra]).

(2) If we want to emphasize additionally that \(\varphi(\mathcal{A})\) is contained in a subgroup \(G\) of \(\text{Aut}(X)\), then we say that \(\mathcal{A}\) is an algebraic \(G\)-family of automorphisms of \(X\).

(3) In the case when \(\mathcal{A}\) is a connected algebraic group and the induced map \(\mathcal{A} \times X \to X\) is not only a morphism but also an action of \(\mathcal{A}\) on \(X\) we call this family a connected algebraic subgroup of \(\text{Aut}(X)\).
(4) Following [AFKKZ, Definition 1.1] we call a subgroup G of $\text{Aut}(X)$ algebraically generated if it is generated as an abstract group by a family \mathcal{G} of connected algebraic subgroups of $\text{Aut}(X)$.

Definition 2.2. (1) A nonzero derivation δ on the ring A of regular functions on an affine algebraic variety X is called locally nilpotent if for every $0 \neq a \in A$ there exists a natural n for which $\delta^n(a) = 0$. This derivation can be viewed as a vector field on X which we also call locally nilpotent. The set of all locally nilpotent vector fields on X will be denoted by $\text{LND}(X)$. The flow of $\delta \in \text{LND}(X)$ is an algebraic \mathbb{G}_a-action on X, i.e., the action of the group $(\mathbb{k}, +)$ which can be viewed as a one-parameter unipotent group U in the group $\text{Aut}(X)$ of all algebraic automorphisms of X. In fact, every G_a-action is a flow of a locally nilpotent vector field (e.g., see [Fr, Proposition 1.28]).

(2) If X is a quasi-affine variety, then an algebraic vector field δ on X is called locally nilpotent if δ extends to a locally nilpotent vector field $\tilde{\delta}$ on some affine algebraic variety Y containing X such that $\tilde{\delta}$ vanishes on $Y \setminus X$ where $\text{codim}_Y (Y \setminus X) \geq 2$. Note that under this assumption δ generates a \mathbb{G}_a-action on X and we use again the notation $\text{LND}(X)$ for the set of all locally nilpotent vector fields on X.

Definition 2.3. (1) For every locally nilpotent vector fields δ and each function $f \in \text{Ker} \delta$ from its kernel the field $f \delta$ is called a replica of δ. Recall that such replica is automatically locally nilpotent.

(2) Let \mathcal{N} be a set of locally nilpotent vector fields on X and $G_{\mathcal{N}} \subset \text{Aut}(X)$ denotes the group generated by all flows of elements of \mathcal{N}. We say that $G_{\mathcal{N}}$ is generated by \mathcal{N}.

(3) A collection of locally nilpotent vector fields \mathcal{N} is called saturated if \mathcal{N} is closed under conjugation by elements in $G_{\mathcal{N}}$ and for every $\delta \in \mathcal{N}$ each replica of δ is also contained in \mathcal{N}.

Definition 2.4. Let X be a normal quasi-affine algebraic variety of dimension at least 2, \mathcal{N} be a saturated set of locally nilpotent vector fields on X and $G = G_{\mathcal{N}}$ be the group generated by \mathcal{N}. Then X is called G-flexible if for any point x in the smooth part X_{reg} of X the vector space $T_x X$ is generated by the values of locally nilpotent vector fields from \mathcal{N} at x (which is equivalent to the fact that G acts transitively on X_{reg} [FKZ, Theorem 2.12]). In the case of $G = \text{SAut}(X)$ we call X flexible without referring to $\text{SAut}(X)$ (recall that $\text{SAut}(X)$ is the subgroup of $\text{Aut} X$ generated by all one-parameter unipotent subgroups).

Notation 2.5. Further in this paper X is always a smooth quasi-affine variety and G is group acting transitively on X. By \mathcal{G} we denote a collection of subgroups of G such that G is algebraically generated by \mathcal{G}. Given a sequence $\mathcal{H} = (H_1, \ldots, H_s)$ of elements of \mathcal{G} we consider
the map
\[
(1) \quad \Phi_H : H \times X \rightarrow X \times_{p} X, \quad (h_s, \ldots, h_1, x) \mapsto ((h_s \cdot \ldots \cdot h_1) \cdot x, x)
\]
where \(H = H_s \times \ldots \times H_1 \). By \(\varphi_H : H \rightarrow X \) we denote the restriction of \(\Phi_H \) to \(H \times x_0 \) where \(x_0 \) is a fixed point of \(X \).

Proposition 2.6. Suppose that \(\mathcal{G} \) is closed under conjugations in \(G \). Then \(\mathcal{H} \) can be chosen so that for a dense open subset \(U \) of \(H \) the morphism \(\Phi_H \) is smooth on \(U \times X \) (in particular, \(\varphi_H \) is smooth on \(U \)). Furthermore, one can suppose that the codimension of \(H \setminus U \) in \(H \) is arbitrarily large.

Proof. The first statement follows from [AFKKZ, Proposition 1.16] and the second statement from [AFKKZ, p. 778, footnote]. \(\square \)

We shall use the notion of a perfect \(G \)-family of automorphisms of \(X \) (see [Ka21, Definition 2.7]). Without stating the formal definition of such families we need to emphasize some of their properties.

Proposition 2.7. ([Ka21, Proposition 2.8(3)]) Let \(\mathcal{A} \) be a perfect \(G \)-family of automorphisms of a smooth \(G \)-flexible variety \(X \) and \(H_0 \in \mathcal{G} \). Then \(H_0 \times \mathcal{A} \) is also a perfect \(G \)-family of automorphisms of \(X \).

Theorem 2.8. Let \(X \) be a smooth quasi-affine \(G \)-flexible variety, \(\mathcal{A} \) be a perfect \(G \)-family of automorphisms of \(X \), \(Q \) be a normal algebraic variety and \(\varphi : X \rightarrow Q \) be a dominant morphism. Suppose that \(Q_0 \) is a smooth open dense subset of \(Q \), \(X_0 \subset \varphi^{-1}(Q_0) \) and
\[
(2) \quad X_0 \times_{Q_0} X_0 = 2 \dim X - \dim Q.
\]
Let \(Y \) be the closure of \(\bigcup_{x \in X_0} \text{Ker}\{ \varphi : T_x X_0 \rightarrow T_{\varphi(x)} Q_0 \} \) in \(TX \) and
\[
(3) \quad \dim Y = 2 \dim X - \dim Q.
\]
Let \(Z \) be a locally closed reduced subvariety of \(X \) with \(\text{ED}(Z) \leq \dim Q \) and \(\dim Z < \text{codim}_{\varphi^{-1}(Q_0)}(\varphi^{-1}(Q_0) \setminus X_0) \). Then for a general element \(\alpha \in \mathcal{A} \) the morphism \(\varphi|_{\alpha(Z) \cap X_0} : \alpha(Z) \cap X_0 \rightarrow Q_0 \) is an injective immersion.

Proof. In the case of \(X_0 = \varphi^{-1}(Q_0) \) the statement of the combination of [Ka21, Theorem 2.6] and [Ka21, Proposition 2.8(5)]. In the general case the proof goes without change if one observes that \(\alpha(Z) \) does not meet \(\varphi^{-1}(Q_0) \setminus X_0 \) by the transversality theorem ([AFKKZ, Theorem 1.11]). \(\square \)

Proposition 2.9. Let the assumptions and conclusions of Proposition 2.6 hold. Suppose that \(H \) itself is an \(F \)-flexible variety. Let \(Z \) be a locally closed reduced subvariety of \(H \) with \(\text{ED}(Z) \leq \dim X \) (and by the conclusions of Proposition 2.6 with \(\dim Z < \text{codim}_{H}(H \setminus U) \)). Then for a general element \(\beta \in \mathcal{B} \) in any perfect \(F \)-family \(\mathcal{B} \) of automorphisms of \(H \) the morphism \(\varphi_{\mathcal{H}}|_{\beta(Z)} : \beta(Z) \rightarrow X \) is an injective immersion.
Proof. Since \(\varphi_H|_U : U \to X \) is a smooth morphism, Formulas (2) and (3) hold with \(\varphi : X \to Q, Q_0 \) and \(X_0 \) replaced by \(\varphi_H : H \to X, X \) and \(U \) respectively. Hence, the desired conclusion follows from Theorem 2.8. \(\square \)

Corollary 2.10. Let the assumptions and conclusions of Proposition 2.6 hold and \(Z \) be an affine algebraic variety with \(\text{ED}(Z) \leq \dim X \) (and by the conclusions of Proposition 2.6 with \(\dim Z < \text{codim}_H(H \setminus U) \)). Suppose that each element of \(G \) is a unipotent group, i.e. \(H \simeq \mathbb{A}^t \) where \(t \geq \dim X \). Then \(Z \) can be treated as a closed subvariety of \(H \) and for a general element \(\beta \in B \) in any perfect \(F \)-family \(B \) of automorphisms of \(H \) the morphism \(\varphi_H|_{\beta(Z)} : \beta(Z) \to X \) is an injective immersion.

Proof. The first statement follows from Holme’s theorem and the second from Proposition 2.9. \(\square \)

Since every smooth flexible variety \(X \) admits a morphism \(\varphi_H : H \to X \) as Corollary 2.10, we have the following.

Theorem 2.11. ([Ka21, Theorem 3.7]) Let \(Z \) be an affine algebraic variety and \(X \) be a smooth quasi-affine flexible variety of dimension at least \(\text{ED}(Z) \). Then \(Z \) admits an injective immersion into \(X \).

Remark 2.12. It is worth mentioning that if \(\varphi : Z \to X \) is an injective immersion, then it may happen that \(Z \) is not isomorphic to \(\varphi(Z) \). As an example one can consider the morphism \(\mathbb{A}^* \to \mathbb{A}^2, t \mapsto (x, y) = (t^2+1, t(t^2+1)) \) where \(t \) is a non-vanishing coordinate on \(\mathbb{A}^* \). It maps \(\mathbb{A}^* \) onto the polynomial curve given in \(\mathbb{A}^2 \) by the equation \(y^2 = x^3(x-1) \).

We have also the following fact in our disposal.

Theorem 2.13. ([Ka21, Theorem 3.2]) Let \(\psi : X \to Y \) be a finite morphism where \(X \) is a smooth flexible variety and \(Y \) is normal. Let \(Z \) be a quasi-affine algebraic variety which admits a closed embedding in \(X \). Suppose also that \(\dim Z < \text{codim}_Y Y_{\text{sing}} \). Then \(Z \) admits a closed embedding in \(Y \) with the image contained in \(Y_{\text{reg}} \).

3. Criterion of properness

In this section we describe some conditions under which injective immersion from Theorem 2.11 are proper (implicitly these conditions appeared already in [Ka20] and [Ka21]).

Lemma 3.1. Let Notation 2.5 hold. Then \(\mathcal{H} = (H_1, \ldots, H_s) \) can be chosen so that the morphism \(\varphi_{\mathcal{H}} : H \to X \) is surjective and equidimensional. In particular, \(\dim H \times_X H = 2 \dim H - \dim X \).

Proof. Since \(G \) acts transitively on \(X \) one can choose \(\mathcal{H} \) such that \(\varphi_{\mathcal{H}} : H \to X \) is surjective [APKKZ, Proposition 1.5]. By Chevalley’s theorem [Ha, Chap. II, Exercise 3.22] we can present \(X \) as a disjoint union \(X = \bigcup_i X^i \) of locally closed irreducible subsets \(X^i \) of \(X \) such
that the morphism $\varphi_{\mathcal{H}|\tilde{\mathcal{H}}^{-1}(X^i)} : \varphi_{\tilde{\mathcal{H}}}^{-1}(X^i) \to X^i$ is equidimensional of relative dimension k_i and, furthermore, $k_i > k_j$ if X^i is contained in the closure $\overline{X^j}$ of X^j. In particular, we can suppose that X^1 is a dense open subset of X and $k_1 = \dim H - \dim X$. Assume that $X \neq X^1$ and $k := \max_j k_j$. Let us show that increasing the number of elements in \mathcal{H} we can reduce $k - k_1$ which would yield the desired conclusion.

Put $\mathcal{H} = (\mathcal{H}, \mathcal{H}') = (H_1, \ldots, H_s, H_{s+1}, \ldots, H_t)$ and $\tilde{\mathcal{H}} = H_t \times \ldots \times H_1$, i.e., we have $\varphi_{\tilde{\mathcal{H}}} : \tilde{\mathcal{H}} \to X$. Recall that by definition $\varphi_{\tilde{\mathcal{H}}}^{-1}(x) = \{h = (h_s, \ldots, h_1) | h_s \circ \ldots \circ h_1(x_0) = x\}$ and $\varphi_{\tilde{\mathcal{H}}}^{-1}((h_t \circ \ldots \circ h_{s+1})^{-1}(x)) = k_i < k$ for a general h' and, hence, $\dim \varphi_{\tilde{\mathcal{H}}}^{-1}(x) < \dim H' + k$.

Now consider the case when $k_i = k$. Since the action of G is transitive by [AFKKZ, Proposition 1.5] we can choose \mathcal{H}' so that for every X^i with $k_i = k$ and each $x \in X^i$ the orbit $H'.x$ meets X^i. Since $k_i < k$ and $(h_t \circ \ldots \circ h_{s+1})^{-1}(x) \in X^i$ for a general $h' \in H'$ we see again that $\dim \varphi_{\tilde{\mathcal{H}}}^{-1}(x) < \dim H' + k$.

In particular, the maximal dimension \tilde{k} of fibers of $\varphi_{\tilde{\mathcal{H}}}$ is less that $\dim H' + k$, while the dimension of general fibers of $\varphi_{\tilde{\mathcal{H}}}$ is $\dim H' + k_1$. Hence, $\tilde{k} - (\dim H' + k_1) < k$ and we are done.

\begin{lemma}
Let Notation 2.5 hold. Suppose that Y is the closure of $\bigcup_{h \in H} \ker\{(\varphi_{\mathcal{H}})_* : T_h H \to T_{\varphi_{\mathcal{H}}(h)} X\}$ in TH. Then \mathcal{H} can be chosen so that $\dim Y = 2 \dim H - \dim X$.
\end{lemma}

\begin{proof}
By Lemma 3.1 we can suppose that $\varphi_{\mathcal{H}} : H \to X$ is surjective and equidimensional. By [H19, Chap. III, Corollary 10.7] we can present H as a disjoint union $H = \bigcup H^i$ of smooth subset H^i of H such that the morphism $\varphi_{\mathcal{H}|H^i} : H^i \to X^i := \varphi_{\mathcal{H}}(H^i)$ is smooth. Note that Y is the union of the closures Y^i of $\bigcup_{h \in H^i} \ker\{(\varphi_{\mathcal{H}})_* : T_h H \to T_{\varphi_{\mathcal{H}}(h)} X\}$ in TH. Thus, it suffices to show that $\dim Y^i \leq 2 \dim H - \dim X$.

Since $\varphi_{\mathcal{H}|H^i}$ is smooth we see that $\dim (\varphi_{\mathcal{H}})_*(T_h H) \geq \dim X_i$ for every $h \in H^i$. Hence, $\dim \ker(\varphi_{\mathcal{H}})_* |_{T_h H} \leq \dim H - \dim X_i$ and, therefore, $\dim Y^i = \dim H + \dim H^i - \dim X^i$. Since $\varphi_{\mathcal{H}}$ is equidimensional its fibers have dimension $\dim H - \dim X$ and, consequently, the dimension of the fibers of $\varphi_{\mathcal{H}|H^i}$ does not exceed $\dim H - \dim X$. On the other hand, because of smoothness the latter dimension is $\dim H^i - \dim X^i$. Hence, $\dim Y^i \leq 2 \dim H - \dim X$ which yields the desired conclusion.
\end{proof}
Remark 3.3. It may happen that under the assumptions of Lemmas 3.1 and 3.2 one cannot find a sequence \mathcal{H} for which the morphism $\varphi_{\mathcal{H}} : H \to X$ is smooth on H (see, [AFKKZ, Remark 1.9]).

Now we can remove the assumption that G is closed under conjugations in G which was used in Proposition 2.6 and, consequently, in Proposition 2.9.

Proposition 3.4. Let Notation 2.5 hold and \mathcal{H} be such that the conclusions of Lemmas 3.1 and 3.2 are true. Suppose that H itself is an F-flexible variety and Z is a closed subvariety of H with $\text{ED}(Z) \leq \dim X$. Then for a general element $\beta \in B$ in any perfect F-family B of automorphisms of H the morphism $\varphi_{\mathcal{H}}|_{\beta(Z)} : \beta(Z) \to X$ is an injective immersion.

Proof. Note that the assumption of Theorem 2.8 are satisfied with $g : X \to Q, Q_0$ and X_0 replaced by $\varphi_{\mathcal{H}} : H \to X, X$ and H respectively. This yields the desired conclusion. □

Now we can strengthen Corollary 2.10.

Corollary 3.5. Let Notation 2.5 hold and \mathcal{H} be such that the conclusions of Lemmas 3.1 and 3.2 are true. Let Z be an affine algebraic variety with $\text{ED}(Z) \leq \dim X$. Suppose that each element of G is a unipotent group, i.e. $H \simeq \mathbb{A}^t$ where $t \geq \dim X$. Then Z can be treated as a closed subvariety of H and for a general element $\beta \in B$ in any perfect F-family B of automorphisms of H the morphism $\varphi_{\mathcal{H}}|_{\beta(Z)} : \beta(Z) \to X$ is an injective immersion.

Proof. The first statement follows from Holme’s theorem and the second one from Proposition 3.4. □

Switching from injective immersions to closed embeddings requires the following consideration. Every nonzero polynomial $f \in \mathbb{A}^{[0]}_t$ of degree $k \geq 0$ can be presented as $f = f_0 + f_1 + \ldots + f_k$ where f_0 is a constant term and each f_i, $i \geq 1$ is a homogeneous polynomial of degree i. We call f_i the leading homogeneous part of f and denote it by \hat{f}_i. Given a subalgebra A of the polynomial ring $\mathbb{A}^{[t]}$ we denote by \hat{A} the algebra generated by $\{\hat{f} | f \in A\}$.

Proposition 3.6. Let the assumptions and conclusions of Corollary 3.5 be satisfied (in particular, $\varphi_{\mathcal{H}} : H \to X$ is surjective and equidimensional and $\text{ED}(Z) \leq \dim X$) and let X be affine. Suppose that $A \subset \mathbb{A}^{[t]}$ is the algebra $\varphi_{\mathcal{H}}^*({k[X]})$ (where $k[X]$ is the algebra of regular functions on X). Let V be the zero locus of the ideal of \hat{A} that consists of all polynomials in \hat{A} with zero constant terms. Suppose that the codimension of V in $H = \mathbb{A}^t$ is at least $\dim Z$. Then Z admits a closed embedding into X. Furthermore, if S is a closed subvariety of X such that $\dim Z < \text{codim}_X S$, then image of Z does not meet S.

Proof. Let \mathcal{A} be a perfect SAut(H)-family of automorphisms of $H \simeq \mathbb{A}^t$. Consider the natural embedding $\mathbb{A}^t \hookrightarrow \mathbb{P}^t$, $D = \mathbb{P}^t \setminus \mathbb{A}^t \simeq \mathbb{P}^{t-1}$ and $K = \text{SL}_t(k)$. Then we have the natural K-action on \mathbb{P}^t such that D is invariant under it and the restriction of the action to D is transitive. By Proposition 2.6 $K \times \mathcal{A}$ is still a perfect SAut(H)-family of automorphisms of H. That is, for a general β in K and a general α in \mathcal{A} the morphism $\varphi_H|_{\beta \circ \alpha(Z)} : \beta \circ \alpha(Z) \to X$ is still an injective immersion by Proposition 2.7 and Corollary 2.10.

By the assumption we can find generators b_1, \ldots, b_m of $k[X]$ such that for the polynomials $a_i = b_i \circ \varphi_H$ the set of common zeros of $\hat{a}_1, \ldots, \hat{a}_m$ in \mathbb{A}^t is V. Note also that a_1, \ldots, a_m can be viewed as coordinate functions of $\varphi_H : \mathbb{A}^t \to X \subset \mathbb{A}^m$ and they can be extended to rational functions on \mathbb{P}^t. The intersection R of the indeterminacy sets of these extensions is given by the common zeros of the homogeneous polynomials $\hat{a}_1, \ldots, \hat{a}_m$ in D. In particular, R has codimension at least $\dim Z$ in D. As before we treat Z as a subvariety of \mathbb{A}^t. Let P be the intersection of D with the closure of $\beta \circ \alpha(Z)$ in \mathbb{P}^t, i.e., $\dim P \leq \dim Z - 1$. Since the restriction of the K-action to D is transitive P does not meet R for general $\beta \in K$ and $\alpha \in \mathcal{A}$ by [AFKKZ, Theorem 1.15]. Hence, $\varphi_H|_{\beta \circ \alpha(Z)} : \beta \circ \alpha(Z) \to X$ is a proper morphism by [Ka20, Corollary 5.4]. Consequently, it is a closed embedding which yields the first claim. Since φ_H is equidimensional codim$_{\mathbb{A}^t} T = \text{codim}_X S$ for $T = \varphi^{-1}(S)$. Hence, by [AFKKZ, Theorem 1.15] we can suppose also that $\beta \circ \alpha(Z)$ does not meet T which yields the second claim and concludes the proof. □

Remark 3.7. The problem of finding the codimension of V in $H \simeq \mathbb{A}^t$ is the bottleneck of our technique. However, it is worth mentioning, perhaps, that the Krull dimension of \hat{A} coincides with the Krull dimension of A (in particular, polynomials a_1, \ldots, a_m as in the proof of Proposition 2.6 can be chosen so that for general $c_1, \ldots, c_m \in k$ the locus of common zeros of $\hat{a}_1 - c_1, \ldots, \hat{a}_m - c_m$ has codimension $\dim X \geq \text{ED}(Z) > \dim Z$). Let us sketch the proof of this fact supplied to the author by L. Makar-Limanov (furthermore, according to him the fact is well-known but, unfortunately, the author did not find an appropriate reference). Let B be a commutative finitely generated algebra and W be a finite-dimensional subspace of B which generates B as algebra and which contains 1 (we call such W a generating subset of B). Let W^n be the span of all products of n elements of W and let $f(n) = \dim W^n$. Recall that B has polynomial growth if there exist real positive numbers c and r such that for every n one has $f(n) \leq cn^r$. The Gelfand-Kirillov dimension $\text{gk}(B)$ of B is the infimum of the real numbers r such that the latter inequality holds for some c and all n.
It is known that every affine domain B has polynomial growth and the Gelfand-Kirillov dimension $\text{gk}(B)$ coincides with the Krull dimension of B \cite{BoKr}. Let U and \hat{U} be generating subspaces of A and \hat{A} respectively. Assume that $\text{gk}(\hat{A}) < \text{gk}(A)$. Choose $p \in \mathbb{R}$ such that $\text{gk}(\hat{A}) < p < \text{gk}(A)$. Then for a sufficiently large n one has $\dim \hat{U}^n < n^p$ and $\dim U^n > n^p$. However, we can always find a basis in U^n with linearly independent leading homogeneous forms. That is, $\dim U^n$ cannot exceed n^p. This contradiction yields the desired conclusion.

Definition 3.8. Let $\psi : \mathbb{A}^n \to X$ be a dominant morphism, $A = \psi^*(\mathbb{K}[X])$, \hat{A} be the algebra generated by the leading homogeneous parts of all polynomials from A and $V \subset \mathbb{A}^n$ be the zero locus of the ideal of \hat{A} that consists of all polynomials from \hat{A} with zero constant terms. Then we call V the associate subvariety of ψ.

The following trivial fact will be used for computing of the codimension of V.

Lemma 3.9. Let $\psi_i : \mathbb{A}^{n_i} \to X_i$, $i = 1, \ldots, l$ be dominant morphisms. Suppose that $\mathbb{A}^n = \mathbb{A}^{n_1} \times \ldots \times \mathbb{A}^{n_l}$ and $\psi = (\psi_1, \ldots, \psi_l) : \mathbb{A}^n \to X := X_1 \times \ldots \times X_l$. Let V (resp. V_i) be the associate subvariety of ψ (resp. ψ_i). Then $\text{codim}_{\mathbb{A}^n} V = \text{codim}_{\mathbb{A}^{n_1}} V_1 + \ldots + \text{codim}_{\mathbb{A}^{n_l}} V_l$.

Proof. A straightforward induction on l implies that V coincides with $(V_1 \times \mathbb{A}^{n_2} \times \ldots \times \mathbb{A}^{n_l}) \cap \ldots \cap (\mathbb{A}^{n_1} \times \ldots \times \mathbb{A}^{n_{l-1}} \times V_l)$ which yields the desired conclusion. \qed

4. **Main Theorem I**

In this section we shall prove our main result. Let us start with notations.

Notation 4.1. Given a polynomial f in several variables $\vec{z} = (z_1, \ldots, z_m)$ we denote as before its leading homogeneous part by \hat{f}. Given a matrix $f = [f_{i,j}]$ over the ring $\mathbb{K}[\vec{z}]$ we denote by \hat{f} the matrix $[\hat{f}_{i,j}]$.

The next fact is straightforward.

Lemma 4.2. Let a^i, $i = 1, 2$ be $(n \times n)$ matrices over $\mathbb{K}[\vec{z}]$ such that

$$a^i = \begin{bmatrix} \alpha^i & \beta^i \\ \gamma^i & \delta^i \end{bmatrix}$$

where $\delta^i \in \mathbb{K}[\vec{z}]$ and α^i is an $(n-1) \times (n-1)$ matrix. Let all entries of α^i, β^i, γ^i or δ^i be of degree k_i, l_i, m_i and $\deg \delta^i$. Suppose also that every entry of α^i, β^i or γ^i has only positive integer coefficients as an element of $\mathbb{K}[\vec{z}]$. Let

$$a^1 a^2 =: a = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
where \(d \in k[z] \) and \(\alpha \) is an \((n - 1) \times (n - 1)\) matrix. Then
\[
\hat{a} = \begin{pmatrix}
\hat{\alpha} & \hat{\beta} \\
\hat{\gamma} & \hat{d}
\end{pmatrix} = \begin{pmatrix}
\hat{\alpha}^1 \hat{\alpha}^2 & \hat{\alpha}^1 \hat{\beta}^2 \\
\hat{\gamma}^1 \hat{\alpha}^2 & \hat{\gamma}^1 \hat{\beta}^2
\end{pmatrix}.
\]

In particular, every entry of \(\hat{\alpha} \) is of degree \(k_1 + k_2 \), every entry of \(\hat{\beta} \) (resp. \(\hat{\gamma} \)) is of degree \(k_1 + l_2 \) (resp. \(k_2 + m_1 \)), \(\deg \hat{d} = m_1 + l_2 \) and each of these entries has positive integer coefficients.

Lemma 4.3. Let \(U \) (resp. \(L \)) be the unipotent subgroup of upper (resp. lower) triangular matrices in \(SL_n(k) \), i.e., \(U \times L \) is the affine space with coordinates \((a, b)\) where \(a = \{a_{i,j} | 1 \leq i < j \leq n\} \) and \(b = \{b_{i,j} | 1 \leq j < i \leq n\} \). Let \(a \in SL_n(k[a, b]) \) be of the form \(a = I + a_0 \) where \(I \) is the identity matrix and the \((i, j)\)-entry of \(a \) is \(a_{i,j} \) if \(i < j \) and 0 otherwise. Let \(b \in SL_n(k[a, b]) \) be of the form \(b = I + b_0 \) where the \((i, j)\)-entry of \(b \) is \(b_{i,j} \) if \(i > j \) and 0 otherwise. Suppose that \(c = ab \). Then
\[
\hat{c} = \begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
\]
where the \((n - 1) \times (n - 1)\) matrix \(\alpha \) coincides with the matrix obtained from \(a_0b_0 \) by the removal of the \(n \)th row and the \(n \)th column, \(\gamma = (b_{n,1}, \ldots, b_{n,n-1}) \) and \(\beta \) is the transpose of \((a_{1,n}, \ldots, a_{n-1,n})\). In particular, all entries of \(\alpha \) are homogeneous quadratic polynomials with positive integer coefficients.

Proof. The statement follows from the fact that \(ab = I + a_0 + b_0 + a_0b_0 \) and the \(n \)th row and the \(n \)th column of \(a_0b_0 \) have all zero entries. \(\square \)

Lemma 4.4. Let for \(k = 1,\ldots,r \) the notations \(U^k, L^k, a^k, b^k, a^k_{i,j}, b^k_{i,j} \) play the same role as \(U, L, a, b, a_{i,j}, b_{i,j} \) in Lemma 4.3, i.e., \(\prod_{k=1}^r U^k \times L^k \) can be viewed as the affine space with coordinates \((a, b)\) where \(a = (a^k_{i,j})_{i,j,k} \) and \(b = (b^k_{i,j})_{i,j,k} \). Let \(c = a^1b^1a^2b^2\ldots a^rb^r \in SL_n(k[a, b]) \). Then
\[
\hat{c} = \begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix}
\]
where every entry of the \((n - 1) \times (n - 1)\) matrix \(\alpha \) is a homogeneous polynomial of degree \(2r \), \(\deg \hat{d} = 2r - 2 \), every entry of \(\beta \) and \(\gamma \) is a homogeneous polynomial of degree \(2r - 1 \) and each of these polynomials has positive integer coefficients.

Proof. For \(r = 1 \) the statement follows from Lemma 4.3. Lemma 4.2 provides the induction step \(r - 1 \implies r \) and the desired conclusion. \(\square \)

Proposition 4.5. Let \(U^k, L^k, a^k, b^k, a^k_{i,j}, b^k_{i,j}, H \) be the same as in Lemma 4.4, i.e., the entries of the matrix \(c = a^1b^1a^2b^2\ldots a^rb^r \) are polynomials on the affine space \(H \). Let \(A \) be the subalgebra of \(k[H] \) generated by the entries of \(c \) and \(\hat{A} \) be the algebra generated by the leading homogeneous parts of elements of \(A \). Suppose that \(r \geq 2 \) and \(V \).
is the zero locus of the ideal in $\hat{\mathcal{A}}$ consisting of all polynomials with zero constant terms. Then the codimension of V in H is at least $n(n-2) + 1$.

Proof. Let $t = \dim H$. Recall that if a closed subvariety Z of \mathbb{P}^{n-1} does not meet a linear subspace of dimension $l-1$ then the codimension of Z is at least l. Hence, since V is the set of common zeros of a collection of homogeneous polynomials of positive degrees it suffices to find a linear subspace L of H of dimension $n(n-2) + 1$ which meets V at the origin only. Denote $b_{i,n}^1$ by v and consider L given by

(i) $a_{i,j}^1 = b_{i,j}^k = v$ for all $k = 3, \ldots, r$ and $\{(i, j)|1 \leq i < j \leq n\}$ and $\{(i', j')|1 \leq j' < i' \leq n\}$;

(ii) $a_{i,j}^1 = b_{i,j}^2 = 0$ for $\{(i, j)|1 \leq i < j \leq n\}$ and $\{(i', j')|1 \leq j' < i' \leq n\}$;

(iii) $a_{2,n}^1 = v$ and $a_{2,n}^2 = \ldots = a_{n-1,n}^2 = 0$.

Counting the number of equations we see that $\dim L = n(n-1) - (n-1) = n(n-2) + 1$. Since V is contained in the common zeros of non-constant entries of $\hat{\mathbf{c}}$ it remains to show that $\hat{\mathbf{c}}|L$ has all entries proportional to a power of v with one of them being nonzero. Let $\mathbf{c}' = \mathbf{a}^1 \mathbf{b}^1 \mathbf{a}^2 \mathbf{b}^2$ and $\mathbf{c}' = \mathbf{a}^3 \mathbf{b}^3 \ldots \mathbf{a}^r \mathbf{b}^r$, i.e., $\mathbf{c} = \mathbf{c}' \mathbf{c}'^r$. By Lemma 4.3 the matrices $\mathbf{a}^r \mathbf{b}^r$ have the same form as matrices participating in Lemma 4.2. Hence, Lemma 4.2 implies that $\hat{\mathbf{c}}|L = \mathbf{a}^1 \mathbf{b}^1 |L \mathbf{a}^2 \mathbf{b}^2|L$. In combination with Lemma 4.3 and the description of L this shows that $\hat{\mathbf{c}}|L$ is the matrix with all zero entries except for the one in position (n, n) which is v^2. Note again that $\hat{\mathbf{c}}|L = \hat{\mathbf{c}}' |L \hat{\mathbf{c}}'^r|L$ by Lemma 4.2. It follows from Lemma 4.4 that up to a nonzero coefficient every entry of $\hat{\mathbf{c}}'^r|L$ is a power of v. Hence, up to coefficients every entry of $\hat{\mathbf{c}}$ is a power of v and the one in position (n, n) is nonzero which yields the desired conclusion.

\[\square\]

Theorem 4.6. Let Z be an affine algebraic variety, Y be a variety of the form $\mathbb{A}^{n_0} \times \text{SL}_{n_1}(k) \times \text{SL}_{n_2}(k) \times \ldots \times \text{SL}_{n_l}(k)$ where $n_0 \geq 0, l \geq 1$ and $n_i \geq 2$ for $i \geq 1$. Suppose that $\varphi : Y \to X$ is a finite morphism into a normal variety X, $\dim X \geq \text{ED}(Z)$ and $\dim Z < \text{codim}_X X_{\text{sing}}$. Then Z admits a closed embedding in X with the image contained in X_{reg}.

Proof. By Theorem 2.13 it suffices to consider the case when X is isomorphic to $\mathbb{A}^{n_0} \times \text{SL}_{n_1}(k) \times \ldots \times \text{SL}_{n_l}(k)$. First we let $X = \text{SL}_n(k)$. The natural action of $G = \text{SL}_n(k)$ on X is transitive and G is generated by subgroups U and L as in Lemma 4.3. Consider $H = \prod_{k=1}^r U^k \times L^k$ as in Lemma 4.4 and the morphism

$\varphi : H \to X$, $\left(\mathbf{a}^1, \mathbf{b}^1, \ldots, \mathbf{a}^r, \mathbf{b}^r\right) \mapsto \mathbf{c} = \mathbf{a}^1 \mathbf{b}^1 \ldots \mathbf{a}^r \mathbf{b}^r$.

By Lemmas 3.1 and 3.2 we can suppose that φ is surjective, $\dim H \times_X H = 2 \dim H - \dim X$ and $\dim Y = 2 \dim H - \dim X$ where Y is the closure of the constructible set $\bigcup_{h \in H} \ker\{\varphi_* : T_hH \to T_{\varphi h(h)}X\}$ in TH. Since $H \simeq \mathbb{A}^t$ where $t > \dim X = n^2 - 1$ we can treat Z as a
closed subvariety of H by Holme’s theorem. By Corollary 3.5 we can suppose that $\varphi|_Z : Z \to X$ is an injective immersion. Let V be as in Proposition 4.5, i.e., $V \subseteq H$ is the associate subvariety of φ (see, Definition 3.8). Since $\text{ED}(Z) \leq \dim X$ we see that $\dim Z$ is at most $\frac{\dim X - 1}{2}$, whereas by Proposition 4.5 $\codim_H V \geq \frac{\dim X - 1}{2}$ (where the equality occurs only in the case $n = 2$). Hence, by Proposition 3.6 we can suppose that $\varphi|_Z : Z \to X$ is a closed embedding.

Returning to the case of $X = X_0 \times X_1 \times \ldots \times X_l$ where $X_0 \simeq \mathbb{A}^n_0$ and $X_i \simeq \text{SL}_{m_i}(k)$ for $i \geq 1$ we suppose that $\varphi_i : H^i \to \text{SL}_{m_i}(k)$ and $V_i \subseteq H^i$ play the same role for X_i as $\varphi : H \to \text{SL}(k)$ and $V \subseteq H$ for $\text{SL}(k)$. We also let $H^0 = \mathbb{A}^n_0$ act on $X_0 \simeq \mathbb{A}^n_0$ by translations which yields a linear isomorphism $\varphi_0 : H^0 \to X_0$. Let again $V_0 \subseteq H^0$ be the associate subvariety of φ_0. Then V_0 is the origin of \mathbb{A}^n_0 since φ_0 is linear, i.e., it has codimension n_0 in X_0. Consider $\tilde{\varphi} = (\varphi_0, \varphi_1, \ldots, \varphi_l) : \tilde{H} = H^0 \times H^1 \times \ldots \times H^l \to X$ and $B = \tilde{\varphi}^*(k[X])$. Let $\tilde{V} \subseteq \tilde{H}$ be the associate variety of $\tilde{\varphi}$. By Lemma 3.9 $\codim_{\tilde{H}} \tilde{V} = \codim_{H^0} V_0 + \ldots + \codim_{H^l} V_l$. Thus, by the earlier consideration $\codim_{\tilde{H}} \tilde{V} \geq \frac{\dim X - 1}{2}$ in \tilde{H}, whereas $\dim Z \leq \frac{\dim X - 1}{2}$. Treating Z as a closed subvariety of \tilde{H} we can suppose by Proposition 3.6 that $\varphi|_Z : Z \to X$ is a closed embedding which concludes the proof.

Corollary 4.7. Let Z be an affine algebraic variety and X be an algebraic variety isomorphic to a semi-simple linear algebraic group whose Lie algebra is a sum of special linear Lie algebras. Suppose that $\dim X \geq \text{ED}(Z)$. Then Z admits a closed embedding into X.

Proof. By virtue of Theorem 4.6 the claim follows from the fact that X is isomorphic to the quotient of a group $\text{SL}_{m_1}(k) \times \text{SL}_{m_2}(k) \times \ldots \times \text{SL}_{m_l}(k)$ with respect to a finite subgroup in its center. \hfill \Box

5. Main Theorem II

Lemma 5.1. Let $\varphi_i : H^i \simeq \mathbb{A}^n_i \to X_i$ be dominant morphisms to affine varieties X_i, $i = 1, 2$ and $V_i \subseteq H^i$ be the associate subvariety of φ_i. Let $V \subseteq H = H^1 \times H^2$ be the associate subvariety of $\varphi = (\varphi_1, \varphi_2) : H \to X = X_1 \times X_2$. Then $\codim_H V \geq \codim_{H^1} V_1 + 1$.

Proof. The proof follows from Lemma 3.9 and the fact that $\codim_{H^1} V_1 \geq 1$. \hfill \Box

Proposition 5.2. Let the assumptions of Lemma 5.1 hold, each X_i be smooth affine and φ_i be surjective and equidimensional. Suppose that S is a closed subvariety of X and Z is an affine algebraic variety such that $\codim_H V_2 \geq \dim Z - 1$ and $\dim Z < \text{ED}(X)$. Then there exists a closed embedding of Z into X such that the image of Z does not meet S.
Proof. By Lemma 5.1 \(\text{dim} \ Z \leq \text{codim}_H V \). Hence, the desired conclusion follows from Proposition 3.6. \(\square \)

Theorem 5.3. Let \(Z \) be an affine algebraic variety, \(Y \) be a smooth affine algebraic variety of the form \(X_1 \times \mathbb{A}^n \) where \(X_1 \) is flexible, \(n \geq \text{dim} Z - 1 \) and \(\text{dim} Y \geq \text{ED}(Z) \). Suppose that \(\psi : Y \rightarrow W \) is a finite morphism onto a normal variety \(W \) and \(\text{dim} Z < \text{codim}_W W_{\text{sing}} \). Then \(Z \) admits a closed embedding into \(W \) with the image contained in \(W_{\text{reg}} \). Furthermore, if \(R \) is a closed subvariety of \(W \) such that \(\text{dim} Z < \text{codim}_W R \), then one can suppose that the image does not meet \(R \).

Proof. Since \(X_1 \) is flexible \(\text{SAut}(X) \) acts transitively on \(X \). Hence, by Lemma 3.1 there exists a surjective equidimensional morphism \(\varphi_1 : H^1 \cong \mathbb{A}^n \rightarrow X_1 \). Let \(H^2 \cong \mathbb{A}^n \) and \(\varphi_2 : H^2 \rightarrow \mathbb{A}^n \) be a linear isomorphism. As we saw in the proof of Theorem 4.6 the associate subvariety \(V_2 \) of \(\varphi_2 \) is a singleton, i.e., its codimension in \(H^2 \) is \(n \). By Proposition 5.2 there exists a closed embedding of \(Z \) into \(Y \) such that the image does not meet \(\psi^{-1}(R) \). Hence, the desired conclusion follows from Theorem 2.13. \(\square \)

References

[AFKKZ] I. V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups. Duke Math. J. 162 (2013), no. 4, 767–823.

[BMS] S. Bloch, M. Pavaman Murthy, L. Szpiro, Zero cycles and the number of generators of an ideal, 38, 1989, Colloque en l’honneur de Pierre Samuel (Orsay, 1987), pp. 51-74.

[BoKr] W. Borho, H. Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220 (1976), no. 1, 1-24.

[FS21] P. Feller, I. van Stamphli, Existence of embedding of smooth varieties into linear algebraic groups, preprint, arXiv:2007.16164.

[FKZ] H. Flenner, S. Kaliman, and M. Zaidenberg, A Gromov-Winkelmann type theorem for flexible varieties, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2483-2510.

[Fr] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Springer, Berlin-Heidelberg-New York, 2006.

[Ha] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977.

[Hol] Holme, Audun, Embedding-obstruction for singular algebraic varieties in \(\mathbb{P}^N \), Acta Math. 135 (1975), no. 3-4, 155-185.

[Ka91] S. Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of \(k^n \) to automorphisms of \(k^n \), Proc. Amer. Math. Soc. 113 (1991), no. 2, 325-334.

[Ka20] S. Kaliman, Extensions of isomorphisms of subvarieties in flexible varieties, Transform. Groups 25 (2020), no. 2, 517-575.

[Ka21] S. Kaliman, Lines in affine toric varieties, Israel J. of Mathematics (to appear).
[KaUd] S. Kaliman, D. Udumyan, *On automorphisms of flexible varieties*, arXiv:2008.02221.

[Ra] C. P. Ramanujam, *A note on automorphism groups of algebraic varieties*, Math. Ann. 156 (1964), 25–33.

[Sr] V. Srinivas, *On the embedding dimension of an affine variety*, Math. Ann., 289 (1991), no.1, 25-132.

[Swan] R. G. Swan, *A cancellation theorem for projective modules in the metastable range*, Invent. Math. 27 (1974), 23-43.

University of Miami, Department of Mathematics, Coral Gables, FL 33124, USA

Email address: kaliman@math.miami.edu