Engineering magnetic topological insulators in Eu$_5$M$_2$X$_6$ Zintls

Nicodemos Varnava,1,1∗ Tanya Berry,2,3,4 Tyrel M. McQueen,2,3,4 and David Vanderbilt1

1Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2Institute for Quantum Matter and William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA
3Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
4Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States

Magnetic topological insulators provide a prominent material platform for quantum anomalous Hall physics and axion electrodynamics. However, the lack of material realizations with cleanly gapped surfaces hinders technological utilization of these exotic quantum phenomena. Here, using the Zintl concept and the properties of non-symmorphic space groups, we computationally engineer magnetic topological insulators. Specifically, we explore Eu$_5$M$_2$X$_6$ (M=metal, X= pnictide) Zintl compounds and find that Eu$_5$Ga$_2$Sb$_6$, Eu$_5$Tl$_2$Sb$_6$ and Eu$_5$In$_2$Bi$_6$ form stable structures with non-trivial Z$_2$ indices. We also show that epitaxial and uniaxial strain can be used to control the Z$_2$ index and the bulk energy gap. Finally, we discuss experimental progress towards the synthesis of the proposed candidates and provide insights that can be used in the search for robust magnetic topological insulators in Zintl compounds.

I. INTRODUCTION

Topology and symmetry have played a profound role in shaping modern condensed matter physics and materials science. One of the most paradigmatic examples are the 3D Z$_2$ topological insulators (TIs) protected by time-reversal symmetry$^{[1, 2]}$. Owing to their bulk band topology, these insulators possess an odd number of massless Dirac fermions with spin–momentum locking at their surfaces.

Although 3D topological insulators were originally proposed in time-reversal invariant systems, the Z$_2$ index can also be protected by a symmetry other than simple time-reversal (TR)$^{[3, 4]}$. These symmetries comprise of the proper rotations composed with TR and the improper rotations not composed with TR$^{[5]}$. If one or more of these symmetries is present in the magnetic point group, then the Z$_2$ index is well defined, and if this index is non-trivial we refer to it as a “magnetic TI” or equivalently an “axion insulator”.$^{[6–8]}$ Gapped surfaces of magnetic TIs can appear, in which case they will exhibit half-integer surface anomalous Hall conductivity (AHC), whose sign is determined by details of the magnetic order at the terminating surface. Manipulation of the surface termination and magnetic order can give rise to unidirectional 1D channels at hinges, surface steps and surface domain-walls$^{[6–8]}$. Their protection from backscattering by the surface gap, the absence of external magnetic fields and the existence of robust and controllable quantum point junctions$^{[9]}$ make AFM TIs a prominent future material platform for quantum Hall physics. Furthermore, if all surfaces are gapped and have the same sign of the surface AHC (in a global sense), then the long-sought topological magnetoelectric effect can be observed, for which an applied electric field induces a parallel magnetization and a magnetic field induces a parallel electric polarization with a quantized constant of proportionality given by $e^2/2h$.

The realization of magnetic TIs has become recently the focus of intense research$^{[10–12]}$ with various candidates appearing in the literature$^{[13–21]}$. The most prominent, MnBi$_2$Te$_4$'$^{[13, 14]}$, is a layered tetradymite compound with an A-type antiferromagnetic (AFM) order, i.e., with magnetization uniform in-plane but alternating from plane to plane along the stacking direction. Control over the surface termination on thin films of MnBi$_2$Te$_4$ has resulted in the realization of high-temperature quantum anomalous Hall effect$^{[22]}$ as well as axion insulating states$^{[23]}$. However, with the nature and existence of surface gaps still disputed$^{[16, 24]}$, there is an evident need for improvement in the crystal quality as well as the search for new material candidates.

To this end, a class of materials known as Zintl compounds have attracted the attention of the community as promising in realizing magnetic TIs. These are defined as valence precise intermetallic phases in which electropositive cations donate electrons to covalently bonded polyanions$^{[25]}$. Numerous such compounds have already been synthesized and characterized, featuring a variety of interesting physical properties including superconductivity$^{[26]}$, magnetoresistance$^{[27]}$ and thermoelectricity$^{[28]}$. Of particular interest in the search for magnetic TIs are the Zintls, in which the role of the cation is played by a divalent Eu$^{2+}$ and the magnetism comes from the localized, spin-polarized f-orbital manifold. Examples of Eu-based Zintls appearing in the literature as candidate magnetic TIs include EuIn$_2$As$_2$$^{[15]}$, EuSb$_2As_2$$^{[16]}$, EuCd$_2As_2$$^{[18]}$, EuIn$_2Sb_6$$^{[20]}$ and EuSb$_2$P$_2$$^{[21]}$.

In this work, we gain insight into why Zintls are such a promising platform, and then use this understanding to engineer magnetic TIs in Eu$_5$M$_2$X$_6$ (“526”) Zintls where M=Ga,In,Tl is a metal and X=As,Sb,Bi is a pnictide. The insight relies on the notion of the complete electron transfer (CET) limit. In this limit, a Zintl should

* Corresponding author; nvarnava@physics.rutgers.edu
be a trivial insulator, but in fact there is electron competition between cations and polyanions. In this way, Zintl compounds form complex crystal and band structures that depend strongly on the geometry of the cations and polyanions. For topologically nontrivial Zintl compounds, the presence of a spin-orbit coupling (SOC) induced bulk gap implies that the compound is away from the CET limit. The need to move away from the CET limit to obtain non-trivial topology, motivates us to use chemical substitution and structural perturbations to modify the crystal structure geometry and control the bands close to the Fermi level.

This insight was gained in part due to the discrepancy between our calculations on Eu$_5$In$_2$Sb$_6$ and those of Rosa et al. [20], who suggested that it has a non-trivial Z_2 index. Our calculations on the compound clarify that it in fact has a trivial Z_2 index. After private communications with the authors of Ref. 20, the discrepancy was identified to stem from a single transcription error in the cif file which was obtained from Park et al. [29]. Having understood the geometrical implications of the discrepancy, we use Eu$_5$In$_2$Sb$_6$ as our starting point to computationally design new magnetic TIs in the 526 Eu-based family of Zintl compounds. We achieve this by means of chemical substitution and epitaxial growth as well as uniaxial strain to control both the bulk band inversions and bulk energy gaps. Specifically, our theory indicates that Eu$_5$Ga$_2$Sb$_6$, Eu$_5$Tl$_2$Sb$_6$ and Eu$_5$In$_2$Bi$_6$ form dynamically stable structures with non-trivial Z_2 indices, and that epitaxial and uniaxial strain can be used to control their bulk energy gaps. However, the exact energy gaps are sensitive to the crystal structure and the magnetic configuration, which are not well established.

With this motivation, we attempted the synthesis of the Eu$_5$Ga$_2$Sb$_6$ compound, but were not successful in isolating it as a pure phase. We then set out to explore the limit of stability of Ga substituted Eu$_5$(In$_{2-x}$Ga$_x$)$_2$Sb$_6$ and find an upper solubility limit of $x \approx 0.4$ based on polycrystalline synthesis. We find that the lattice constant contracts as the Ga concentration is increased, indicating a movement away from the CET limit in a way that is anticipated to push Eu$_5$In$_2$Sb$_6$ towards a magnetic topological insulating state.

II. Eu$_5$In$_2$Sb$_6$

A. Background

The Zintl compound Eu$_5$In$_2$Sb$_6$ is a narrow-gap insulator that crystallizes in the orthorhombic space group (SG) Pbam (55) [29]. The prominent structural features are [InSb$_4$] (approximate) tetrahedra that form pairs in the ab plane through a short Sb-Sb bond, Fig. 1(a). Following the Zintl concept, these tetrahedra pairs form covalently bonded polyanions [In$_2$Sb$_6$]$^{10-}$, while the divalent Eu atoms are dispersed between the polyanions providing the positive balancing charge 5[Eu$^{2+}$]. Along the c-axis the polyanions form quasi 1D chains via sharing tetrahedra corners (Sb$_1$), Fig. 1(b). The compound has a layered structure along the c-axis with integer layers composed of Eu and Sb$_1$ and half-integer layers composed of In, Sb$_2$ and Sb$_3$, Fig. 1(b). This picture implies that in the CET limit, close to the Fermi level, the valence bands will have Sb-p character while those in the conduction will have Eu-d character.

With respect to magnetism, the divalent Eu atoms have fully-polarized $4f$ orbitals with localized magnetic moments. The compound undergoes two magnetic transitions, at 14K and 7K. The moments are believed be antiferromagnetically aligned in the ab plane, but the exact configuration still remains elusive. Importantly, the $4f$
states lie far from the Fermi level E_F, in a narrow window $[-1.7\text{eV}, -1.3\text{eV}]$. Thus treating them as core electrons has only a modest effect on the bulk bands near E_F.

The separation between the electronic and magnetic energy scales, the Zintl concept and the layered structure with all the Eu$^{2+}$ cations in the integer layers, point towards engineering of magnetic TIs. Namely, by setting the Eu f-electrons in the core we will consider the paramagnetic phase of Eu$^{2+}$, and use chemical substitution and structural perturbations such as epitaxial and uniaxial strain to tune the electronic band structure away from the CET limit and into the topological phase. In addition to tuning the topological phase, we will choose conditions under which the global energy gap is optimal. Since magnetism is not included in the calculation, the computational problem is greatly simplified. Recall that the topological index we are concerned with is the strong Z_2 index of 3D TR-invariant insulators which can be determined using the Fu-Kane criterion[30] and the tools of topological quantum chemistry[31]. As we explain in the Supplementary Information, the symmetry properties of the non-symmorphic SG 55 allow the determination of the topology just from the knowledge of inversion eigenvalues at Γ and Z. In addition, the large energy gap at the $k_z = \pi$ plane, of the order of 1.5eV, implies that no band inversion will occur at the Z point. This offers an extra degree of robustness since we can focus on causing a band inversion at the Γ point without worrying about band inversions at the Z point.

B. The band structure

In Fig. 1(c) we show the band structure of Eu$_5$In$_2$Sb$_6$ in the case where the Eu f-electrons were set in the core. We use a color map to indicate the p-orbital character of the corresponding states, which serves as a visual cue for spotting band inversions. In the Supplementary Information, we compare Fig. 1(c) with the band structure in the case where the putative A-type AFM configuration is assumed, to show that Eu magnetism only perturbs the states close to the Fermi level and therefore does not change the Z_2 index. However, we note that the exact bulk band gap is sensitive to the magnetic configuration. In Fig. 1(c), there is an evident band inversion, at the Y TRIM point, however the non-symmorphic symmetries force the same 4-dimensional representation, $Y_3 + Y_4$, at all states at Y so that Eu$_5$In$_2$Sb$_6$ is a trivial insulator. We also verify this using the Check Topological Mat. tool[32, 33] on the Bilbao crystallographic server[34–36].

The inset of Fig. 1(c) reproduces the band structure from Rosa et al. [20]. In this case, due to a single transcription error[37], the In atom was misplaced along the b-axis resulting in heavily distorted tetrahedra with two shorter (In-Sb$_1$) and two longer (In-Sb$_2$, In-Sb$_3$) bonds. An interpolation between the two structures in the absence of SOC, Supplementary Information, shows that as the tetrahedra become more heavily distorted, the character of the lowest conduction bands changes from Eu to In, signaling movement away from the CET limit. In this way, the overlap between conduction and valence bands increases. In the presence of SOC the increased overlap causes a band inversion at Γ making the Z_2 index non-trivial.

Even if these results are negative with respect to Eu$_5$In$_2$Sb$_6$ being a magnetic TI, they nevertheless point to the highly tunable band structure of the compound. Indeed, the same kind of distortion of the tetrahedra would occur if we decreased the interlayer distance and/or increased the in-plane bond lengths. Physically, this could be achieved either by applying compressive uniaxial strain along the c-axis, or expanding the a and b lattice constants through epitaxial strain.

To understand why such geometric distortion can cause band inversions, note that in the CET limit, the charge migrates from the Eu atoms to the In$_2$Sb$_6$ polyanions. Since the compound has a layered structure with all Eu atoms on the integer layers, most of the accumulated charge will be in the half-integers layers and the system behaves like a dimerized chain along the c-axis. We should be careful with this analogy, however, since integer layers also include Sb$_1$ atom, so this only applies approximately. Compressing the dimerized chain should move us away-from the CET limit by increasing the overlap between conduction and valence bands.

Using DFT, we can simulate the effect of uniaxial strain along the c-axis by multiplying the lattice constant c_0 by a coefficient λ_{uni}^c so that the strained lattice constant c is given by $c = \lambda_{\text{uni}}^c c_0$. We then relax the structure but keep c fixed, see Methods. Similarly, for epitaxial strain, we keep the in-plane lattice constants $a = \lambda_{\text{epi}}^{ab} a_0$, $b = \lambda_{\text{epi}}^{ab} b_0$ fixed and relax the structure.

Fig. 2 shows that a 10% compressive uniaxial strain or a 10% expansive epitaxial converts the Z_2 index from trivial to non-trivial. Of course, such extreme strains are impractical for any real applications, but these calculations provide insight into mechanisms that can drive Zintl compounds into topological phases. In the Supple-
mentary Information, we plot the evolution of the band structure as a function of the strain coefficients, which shows that the effect of displacing the In atom along the δ-axis is very similar to applying epitaxial and uniaxial strain.

III. TUNING BAND STRUCTURE PROPERTIES

A. Via chemical substitution

The sensitivity of the band structure to the position of the In atom motivates us to consider its isoelectronic substitution with Ga or Tl. In this way, we can apply chemical pressure while preserving the other properties. After relaxing the substituted structures (both the internal coordinates and lattice constants), we find that the system remains in SG 55 and the phonon frequencies all remain positive, indicating that the structures are dynamically stable, Supplementary Information. In the absence of SOC, Fig. 3(a),(b), the overlap between valence and conduction bands is increased compared to Eu$_5$In$_2$Sb$_6$, indicating that Eu$_5$Ga$_2$Sb$_6$ and Eu$_5$Tl$_2$Sb$_6$ are further away from the CET limit. Just like the case of the displaced In atoms, the lowest conduction states have mostly In-Sb$_1$ character and the highest valence states have mostly Sb$_2$-Sb$_3$ character. We note, however, that in the Ga and Tl substituted compounds the tetrahedra environment is not distorted. When SOC is included a band inversion at Γ occurs, exchanging positive and negative parity eigenvalues, Fig. 3(e),(f), resulting in a non-trivial Z_2 index. Here considering the putative A-type AFM configuration, Fig. 3(i),(j), does not change the topology and has a small effect on the bulk bands, moving the compounds further away from the CET limit.

Another way to alter the tetrahedra while preserving the chemical properties is to substitute the Sb in Eu$_5$In$_2$Sb$_6$ with either As or Bi. Since Sb atoms are three times more abundant than the In atoms and play a central role in determining the polyanion structure, such a substitution has much more severe effect than substitution by Ga or Tl. Fortunately, both Eu$_5$In$_2$As$_6$[38] and Eu$_5$In$_2$Bi$_6$[39] have been recently synthesized, so their crystallographic structures are known. We find that Eu$_5$In$_2$As$_6$ is closer to the CET limit, Fig. 3(c), and therefore is trivial, Fig. 3(g). Instead Eu$_5$In$_2$Bi$_6$ is away from the CET limit, Fig. 3(d), and has a non-trivial Z_2 index, Fig. 3(h). We also verify that the A-type AFM configuration does have a significant effect on the bulk bands and no effect on the topology Fig. 3(k),(l).

Table I contains a summary of some of the key fea-
FIG. 4. Effect of uniaxial strain on (a) direct and (b) indirect gap. (c) Comparison between band structures with \(\lambda_{\text{uni}} = 1.00 \) and \(\lambda_{\text{uni}} = 0.95 \).

Compound	a(\AA)	b(\AA)	c(\AA)	Z\(_x\)	Exists?	DG (meV)	IG (meV)
Eu\(_5\)In\(_2\)Sb\(_6\)	12.51	14.58	4.62	0	✓	45	23
Eu\(_5\)Ga\(_2\)Sb\(_6\)	12.47	14.32	4.54	1	X	16	-39
Eu\(_5\)Tl\(_2\)Sb\(_6\)	12.48	14.67	4.70	1	X	70	8
Eu\(_5\)In\(_2\)As\(_6\)	11.87	13.78	4.35	0	✓	54	54
Eu\(_5\)In\(_2\)Bi\(_6\)	7.77	24.08	4.70	1 ✓		77	-69

TABLE I. Key properties of the 526 Eu-based Zintl.

In Sec. IV we will discuss the experimental progress towards realizing the magnetic topological insulator in Eu\(_5\)Ga\(_2\)Sb\(_6\).

B. Via strain engineering

We have seen that we can use uniaxial and epitaxial strain to change the topological index by moving away from the CET limit. An important factor in this kind of engineering was the insensitivity of these systems to band inversions other than at the \(\Gamma \) and \(Z \) points due to the non-symmorphic nature of the space group. In this section, we show that moving away from the CET limit can also increase the direct and indirect band gaps. This is much less obvious than changing the topological index, as the gaps are determined by the global band structure properties, i.e., in the whole Brillouin zone. We use Eu\(_5\)In\(_2\)Bi\(_6\) as a case study since the presence of Bi gives rise to larger SOC-induced gaps.

Fig. 4(a),(b), show that uniaxial strain with \(\lambda_{\text{uni}} < 1.00 \) or \(\lambda_{\text{uni}} > 1.00 \) enhances the direct and indirect gaps. These kinds of uniaxial strain move the compound away from the CET limit by increasing the band overlap (in the absence of SOC). In Fig. 4(c) we compare the band structures with \(\lambda_{\text{uni}} = 1.00 \) and \(\lambda_{\text{uni}} = 0.95 \) to show that uniaxial strain can be used to remove electron and hole pockets. The same trends occur with epitaxial strain as we discuss in the Supplemental Information. Finally, we should note that the direct and indirect energy gaps will be sensitive to the exact magnetic configuration, but the trends should not depend on it.

IV. EXPERIMENTAL PROGRESS

Motivated by the strong theoretical predictions of magnetic topological insulating states in Eu\(_5\)Ga\(_2\)Sb\(_6\), we attempted its preparation following known synthetic recipes for Eu\(_5\)In\(_2\)Sb\(_6\)[20, 29, 40]. In agreement with prior reports[40], we were unable to find synthetic conditions in which to stabilize the Ga phase. Prior work on topological insulators has shown that solid solutions are a viable avenue to tune across topological phase transitions, e.g. Bi\(_{1-x}\)Sb\(_x\)[41, 42] and TlBiS\(_{2-x}\)Se\(_x\)[43]. With this in mind, we utilized polycrystalline synthesis to find the solid solubility limit of Ga in Eu\(_5\)In\(_{2-x}\)Ga\(_x\)Sb\(_6\). Fig. 5 summarizes our findings. As the structure of Eu\(_5\)In\(_2\)Sb\(_6\) is orthorhombic, with chains of (In/Ga)Sb\(_4\) tetrahedra aligned along the \(c \) axis, we find an expected conduction along the \(c \) axis, and a smaller change in the \(ab \) plane where the tetrahedral slightly contract, but retain optimum bonding environments for Eu. Specifically the \(c \) lattice parameter decreases from 4.634\AA{} to a minimum of 4.608\AA{}. The \(a \) lattice parameter decreases slightly from
FIG. 5. The c axis and b/a ratio of polycrystalline Eu$_{5}$In$_{2−x}$Ga$_{x}$Sb$_{6}$ show a systematic evolution with Ga substitution up to $x = 0.4$, the apparent solid solubility limit. Contraction of the c lattice constant with increased Ga concentration indicates movement away from the CET limit, in agreement with the DFT prediction.

12.530 Å to 12.520 Å over the same range, while b is unchanged within error (14.584 Å at $x = 0$). This contraction of the c axis should push the material further away from the CET limit and towards a topological state. Further evidence for successful substitution comes from the monotonic increase in the b/a ratio over the same composition range, implying a change in the relative shape in the ab plane. This demonstrates that partial replacement of In with Ga is possible, and motivates further work to both extend the phase stability line, and determine whether there is experimentally a change in topology in the chemically accessible range.

In addition, future work includes the synthesis of Eu$_{5}$In$_{2}$Bi$_{6}$ single crystals utilizing the flux technique. Prior works suggest the existence of Eu$_{5}$In$_{2}$Bi$_{6}$ in polycrystalline form, but as a minority phase, and phase purity could not be achieved [39]. By utilizing the flux technique we hope to segregate the thermodynamically unstable, Eu$_{5}$In$_{2}$Bi$_{6}$ phase in the single-crystal form. The single crystals would also allow us to understand the nature of transport and magnetism in Eu$_{5}$In$_{2}$Bi$_{6}$ and allow us to explore new avenues to the discovery of magnetic topological states of matter.

V. SUMMARY AND CONCLUSIONS

The Zintl concept is an example of a chemical concept that provides a bridge between the structural and electronic properties for a particular class of compounds. This is especially interesting for the engineering of topological insulators, which require inverted insulating gaps. In addition, the large number of Zintl compounds that have been synthesized means that there is a big enough search space to allow optimization of desired properties such as bulk and surface gaps. DFT is an indispensable tool in this search, since it allows accurate prediction of material properties.

In this work, we gain deeper understanding into how structural and electronic properties interact in the 526 family of Eu-based Zintl compounds. We use the Zintl concept to relate the layered structure to an ionic chain along c. By realizing that we need to move away from the CET limit, we find ways to change the topology and remove electron and hole pockets. These insights will be applicable in various other systems of Zintl compounds. For example, it was recently predicted that the Eu-based Zintl EuCd$_{2}$Sb$_{6}$ [44] becomes a 2D AFM TI under tensile strain. This is explained by the same mechanism we described here as all divalent Eu atoms are located in a single layer as for the 526 Zintl.

Finally we note that, due to the highly tunable energy gap in Zintls, whether the proposed candidates will have gapped bulk and surface gaps, depends will depend sensitively on the crystal structure, the magnetic configuration. Therefore, the aim of this work is to show and explain trends and provide motivation for further investigation and not to make quantitative prediction.

VI. METHODS

Density functional theory [45, 46] (DFT) based first principles calculations were performed using the projector augmented-wave (PAW) method as implemented in the VASP code [47, 48]. We used the PBE exchange-correlation functional as parametrized by Perdew-Burke-Ernzerhof [49].

The Brillouin zone sampling was performed by using a 11 \times 3 \times 15 k-mesh for Eu$_{5}$In$_{2}$Bi$_{6}$ and 5 \times 5 \times 15 for all other compounds. The energy cutoff is chosen 1.5 times as large as the values recommended for the relevant PAW pseudopotentials. Spin-orbit coupling (SOC) was included self-consistently. The Eu 4f states were treated by employing the GGA+U approach with the U value set to 5.0eV.

Structure relaxation calculations were performed using ISIF=3 tag for which forces and the stress tensor are calculated and all degrees of freedom are relaxed. To model the effect of uniaxial strain, one of the lattice constants was fixed and all other degrees of freedom were allowed to relax. Similarly we modeled epitaxial strain by fixing two of the lattice constants and allowing all other degrees of freedom to relax. Phonon calculations were carried out using the PHONOPY package [50]. Irreducible representations and their traces were calculated using Ivrsy [51]. Band structure plots were obtained using PyProcar [52].

Polycrystalline Eu$_{5}$In$_{2−x}$Ga$_{x}$Sb$_{6}$ were prepared in a manner similar to that previously reported for Eu$_{5}$In$_{2}$Sb$_{6}$, with equimolal replacement of In with Ga [29, 40]. Powder x-ray diffraction patterns were collected over an angular range of $5 − 90^\circ 2\theta$ on a Bruker D8 focus.
equipped with a LynxEye detector, 1mm incident slit, soller slits, and an air antiscatter shield, and indexed using Lebail refinements as implemented in Bruker TOPAS.

VII. ACKNOWLEDGEMENTS

We acknowledge constructive discussions with N. Peter Armitage, Collin Broholm, Vincent Morano, Priscila Rosa, Yuanfeng Xu, Zhijun Wang, Andrei Bernevig. N.V. thanks Sobhit Singh for teaching him how to perform phonon calculations and providing the VASP code to perform epitaxial and uniaxial strain calculations. This work was supported as part of the Institute for Quantum Matter and Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0019331.

VIII. COMPETING INTERESTS

The authors declare no competing interests.

IX. AUTHOR CONTRIBUTIONS

N.V. performed the DFT calculations and analysis under the supervision of D.V.. Experimental work was done by T.B. under the supervision of T.M.. N.V. wrote the manuscript with input from all authors.

[1] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys., 3045 (2010).
[2] Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[3] X. L. Qi, T. L. Hughes, and S. C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
[4] Andrew M. Essin, Joel E. Moore, and David Vanderbilt, “Magnetolectric polarizability and axion electrodynamics in crystalline insulators,” Phys. Rev. Lett. 102, 146805 (2009), see also Erratum: Phys. Rev. Lett. 103, 259902(E) (2009).
[5] Nicodemos Varnava, Ivo Souza, and David Vanderbilt, “Axion coupling in the hybrid wannier representation,” Phys. Rev. B 101, 155130 (2020).
[6] K. Yasuda, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, M. Kawasaki, F. Kagawa, and Y. Tokura, “Quantized chiral edge conduction on domain walls of a magnetic topological insulator,” Science 358, 1311–1314 (2017), https://www.science.org/doi/pdf/10.1126/science.aan5991.
[7] E. Khalaf, “Higher-order topological insulators and superconductors protected by inversion symmetry,” Phys. Rev. B 97, 205136 (2018).
[8] Nicodemos Varnava and David Vanderbilt, “Surfaces of axion insulators,” Phys. Rev. B 98, 245117 (2018).
[9] Nicodemos Varnava, Justin H. Wilson, J. H. Pixley, and David Vanderbilt, “Controllable quantum point junction on the surface of an antiferromagnetic topological insulator,” Nature Communications 12, 3998 (2021).
[10] Yoshinori Tokura, Kenji Yasuda, and Atsushi Tsukazaki, “Magnetic topological insulators,” Nature Reviews Physics 1, 126–143 (2019).
[11] Finyuang Wang, Jun Ge, Jiaheng Li, Yanzhao Liu, Yong Xu, and Jian Wang, “Intrinsic magnetic topological insulators,” The Innovation 2, 100098 (2021).
[12] B. Andrei Bernevig, Claudia Felser, and Haim Bie denkopf, “Progress and prospects in magnetic topological materials,” Nature 603, 41–51 (2022).
[13] M. M. Otrokov, I. I. Klionovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blancho-Rey, M. Hoffmann, I. P. Rusanov, A. Yu Vyazovskaya, S. V. Ere meev, Yu M. Koroteev, V. M. Kuznetsof, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Al fonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kuma r, A. Klimura, L. Petaccia, G. Di Santo, R. C. Villal, S. Schatz, K. Kifner, M. Unzelmann, C. H. Min, Simon Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov, “Prediction and observation of an antiferromagnetic topological insulator,” Nature 576, 416–422 (2019).
[14] Jiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan, and Yong Xu, “Intrinsic magnetic topological insulators in van der waals layered mnb2te4-family materials,” Science Advances 5 (2019), 10.1126/sciadv.aaw5685.
[15] Yuanfeng Xu, Zhida Song, Zhijun Wang, Hongming Weng, and Xi Dai, “Higher-order topology of the axion insulator EuIn2As2,” Phys. Rev. Lett. 122, 256402 (2019).
[16] Hang Li, Shun-Ye Gao, Shao-Feng Duan, Yuan-Feng Xu, Ke-Jia Zhu, Shang-Jie Tian, Jia-Cheng Gao, Wen-Hui Fan, Zhi-Cheng Rao, Jie-Rui Huang, Jia-Jun Li, Da-Yu Yan, Zheng-Tai Liu, Wan-Ling Liu, Yao-Bo Huang, Yu-Liang Li, Yi Liu, Guo-Bin Zhang, Peng Zhang, Takeshi Kondo, Shik Shin, He-Chang Lei, You-Guo Shi, Wen-Tao Zhang, Hong-Ming Weng, Tian Qian, and Hong Ding, “Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2Te3n+1,” Phys. Rev. X 9, 041039 (2019).
[17] Ilya I. Klionovskikh, Mikhail M. Otrokov, Dmitry Estyunin, Sergey V. Ere meev, Sergey O. Filnov, Alexander Koroleva, Eugene Shevechenko, Vladimir Voroshnin, Artem G. Rybkin, Igor P. Rusanov, Maria Blanco-Rey, Martin Hoffmann, Ziya S. Aliev, Mahammad B. Babanly, Imamaddin R. Amiraslanov, Nadir A. Abdullayev, Vladimir N. Zverev, Akio Klimura, Oleg E. Tereshchenko, Konstantin A. Kokh, Luca Petaccia, Giovanni Di Santo, Arthur Ernst, Pedro M. Echenique, Nazim T. Mamedov, Alexander M. Shikin, and Eugene V. Chulkov, “Tunable 3d/2d magnetism in the (mnb2te4)(bi2te3)m topological

...
insulators family,” npj Quantum Materials 5, 54 (2020).

[18] Junzhang Ma, Han Wang, Simin Nie, Changjiang Yi, Yuanfeng Xu, Hang Li, Jinamin Jandke, Wull Wulfhekel, Yaobo Huang, Damien West, Pierre Richard, Alla Chikina, Vladimir N. Strocov, Joël Mesot, Hongming Weng, Shengbai Zhang, Youguo Shi, Tian Qian, Ming Shi, and Hong Ding, “Emergence of nontrivial low-energy dirac fermions in antiferromagnetic eucd2as2,” Advanced Materials 32, 1907565 (2020), https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201907565.

[19] Yuanfeng Xu, Luis Elcoro, Zhi-Da Song, Benjamin J. Wieder, M. G. Vergniory, Nicolas Regnault, Yulin Chen, Claudia Felser, and B. Andrei Bernevig, “High-throughput calculations of magnetic topological materials.” Nature 586, 702–707 (2020).

[20] Priscila Rosa, Yuanfeng Xu, Marein Rahn, Jean Souza, Satya Kushwaha, Larissa Veiga, Alessandro Bombardi, Sean Thomas, Marc Janoschek, Eric Bauer, Mun Chan, Zhijun Wang, Joe Thompson, Neil Harrison, Pascoal Pagliuso, Andrei Bernevig, and Filip Ronning, “Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator.” npj Quantum Materials 5, 52 (2020).

[21] Gian Marco Pierantozzi, Alessandro De Vita, Chiara Bigi, Xin Gui, Hung-Ju Tien, Debashis Mondal, Federico Mazzola, Jun Fujii, Ivana Vobornik, Giovanni Vinal, Alessandro Sala, Cristina Africh, Tien-Lin Lee, Giorgio Rossi, Tai-Rong Chang, Weimei Xie, Robert J. Cava, and Giancarlo Panaccione, “Evidence of magnetism-induced topological protection in the axion insulator candidate EuSn$_2$P$_4$.” Proceedings of the National Academy of Sciences 119 (2022), 10.1073/pnas.2116575119, https://www.pnas.org/content/119/4/e2116575119.full.pdf.

[22] Yujun Deng, Yijun Yu, Meng Zhu Shi, Zhongxun Guo, Zihan Xu, Jing Wang, Xian Hui Chen, and Yuanfeng Xu, “Intrinsic magnetic topological insulator MnBi$_2$Te$_4$,” Science 367, 895–900 (2020).

[23] Chang Liu, Yongchao Wang, Hao Li, Yang Wu, Yaoxin Li, Jiaheng Li, Ke He, Yong Xu, Jinsong Zhang, and Yayu Wang, “Robust axion insulator and chern insulator phases in a two-dimensional antiferromagnetic topological insulator,” Nature Materials 19, 522–527 (2020).

[24] Pinyuan Wang, Jun Ge, Jiaheng Li, Yanzhao Liu, Yong Xu, and Jian Wang, “Intrinsic magnetic topological insulators,” The Innovation 2, 100098 (2021).

[25] Susan M. Kauzlarich, Alex Zevalkink, Eric Toberer, and G. Jeff Snyder, “Chapter 1 zintl phases: Recent developments in thermoelectrics and future outlook,” in Thermoelectric Materials and Devices (The Royal Society of Chemistry, 2017) pp. 1–26.

[26] Laura Deakin, Robert Lam, Frank Marsiglio, and Arthur Mar, “Superconductivity in Ba$_2$Sn$_3$Sb$_6$ and Sr$_2$SnSb$_4$,” Journal of Alloys and Compounds 338, 69–72 (2002), special Issue to Honor Professor H. Fritz Franzen.

[27] Julia Y. Chan, Susan M. Kauzlarich, Peter Klavins, Robert N. Shelton, and David J. Webb, “Colossal magnetoresistance in the transition-metal zintl compound Eu$_4$MnSb$_{11}$,” Chemistry of Materials 9, 3132–3135 (1997).

[28] Ke-Feng Liu and Sheng-Qing Xia, “Recent progresses on thermoelectric zintl phases: Structures, materials and optimization,” Journal of Solid State Chemistry 270, 252–264 (2019).

[29] Seon-Mi Park, Eun Sang Choi, Woun Kang, and Sung-Jin Kim, “Eu$_5$In$_2$Sb$_6$, Eu$_5$In$_2$–Zn$_2$Sb$_6$: rare earth zintl phases with narrow band gaps,” J. Mater. Chem. 12, 1839–1843 (2002).

[30] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007).

[31] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, “Topological quantum chemistry,” Nature 547, 298–325 (2017).

[32] M. G. Vergniory, L. Elcoro, Claudia Felser, Nicolas Regnault, B. Andrei Bernevig, and Zhijun Wang, “A complete catalogue of high-quality topological materials,” Nature 566, 480–485 (2019).

[33] Maia G. Vergniory, Benjamin J. Wieder, Luis Elcoro, Stuart S. P. Parkin, Claudia Felser, B. Andrei Bernevig, and Nicolas Regnault, “All topological bands of all stoichiometric materials,” (2021), arXiv:2105.09954.

[34] Mois I. Aroyo, Asen Kirov, Cesar Capillas, J. M. Perez-Mato, and Hans Wondratschek, “Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups,” Acta Crystallographica Section A 62, 115–128 (2006).

[35] Mois Ilia Aroyo, Juan Manuel Perez-Mato, Cesar Capillas, Eli Kroumov, Svetoslav Ivanchev, Gotzon Madariaga, Asen Kirov, and Hans Wondratschek, “Bilbao crystallographic server: I. databases and crystallographic computing programs,” Zeitschrift für Kristallographie - Crystalline Materials 221, 15–27 (2006).

[36] M. I. Aroyo, J. Perez-Mato, D Orobengoa, Emre Tasci, Gemma De la Flor Martin, and A Kirov, “Crystallography online: Bilbao crystallographic server,” Bulgarian Chemical Communications 43, 183–197 (2011).

[37] y$_{\text{na}}$ = 0.2419 was used in their calculation while y$_{\text{na}}$ = 0.2149 is reported in Park et al. [29].

[38] Amanda B. Childs, Sviatoslav Baranets, and Svilen Bobev, “Five new ternary indium-arsenides discovered. synthesis and structural characterization of the zintl phases Sr$_5$In$_2$As$_4$, Ba$_5$In$_2$As$_4$, Eu$_5$In$_2$As$_4$, Sr$_5$In$_2$As$_6$ and Eu$_5$In$_2$As$_6$,” Journal of Solid State Chemistry 278, 120889 (2019).

[39] Mathias Radziewski, Frank Stegemann, Steffen Klener, Yuemii Zhang, Boniface P. T. Fokwa, and Oliver Janka, “On the divalent character of the eu atoms in the ternary zintl phases Eu$_5$In$_2$P$_4$$_n$ and Eu$_5$As$_3$P$_3$ (Pn = As–Bi; M = Al,Ga),” Mater. Chem. Front. 4, 1231–1248 (2020).

[40] Udumula Subbarao, Sumanta Sarkar, Boby Joseph, and Sebastian C. Peter, “Magnetic and X-ray absorption studies on the RE$_5$X$_2$Sb$_6$ (RE=Eu, Yb; X=Al, Ga, In) compounds,” Journal of Alloys and Compounds 658, 395–401 (2016).

[41] Jeffrey C. Y. Teo, Liang Fu, and C. L. Kane, “Surface states and topological invariants in three-dimensional topological insulators: Application to Bi$_{1-x}$Sb$_x$,” Phys. Rev. B 78, 045426 (2008).

[42] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological dirac insulator in a quantum spin hall phase,” Nature 452, 970–974 (2008).

[43] T. Sato, Kouji Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Yoichi Ando, and T. Takahashi, “Unexpected mass acquisition of dirac fermions at the quantum phase transition of a topological insulator,” Nature Physics 7, 840–844 (2011).
[44] Runhan Li, Hao Wang, Ning Mao, Hongkai Ma, Baibiao Huang, Ying Dai, and Chengwang Niu, “Engineering antiferromagnetic topological insulator by strain in two-dimensional rare-earth pnictide EuCd$_2$Sb$_2$,” Applied Physics Letters 119, 173105 (2021), https://doi.org/10.1063/5.0063353.

[45] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).

[46] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).

[47] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).

[48] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).

[49] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

[50] Atsushi Togo and Isao Tanaka, “First principles phonon calculations in materials science,” Scripta Materialia 108, 1–5 (2015).

[51] Jiacheng Gao, Quansheng Wu, Clas Persson, and Zhijun Wang, “Irvsp: To obtain irreducible representations of electronic states in the vasp,” Computer Physics Communications 261, 107760 (2021).

[52] Uthpala Herath, Pedram Tavadze, Xu He, Eric Bousquet, Sobhit Singh, Francisco Muñoz, and Aldo H. Romero, “Pyprocar: A python library for electronic structure pre/post-processing,” Computer Physics Communications 251, 107080 (2020).
Supplementary Information for “Engineering magnetic topological insulators in Eu$_5$M$_2$X$_6$ Zints”

Nicodemos Varnava,1,∗ Tanya Berry,2,3,4 Tyrel M. McQueen,2,3,4 and David Vanderbilt1

1Department of Physics & Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2Institute for Quantum Matter and William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA
3Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
4Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States

I. MAGNETIC AND NON-MAGNETIC BAND STRUCTURE OF Eu$_5$In$_2$Sb$_6$

Supplementary Fig. 1 shows that band structure of Eu$_5$In$_2$Sb$_6$ when (a) the Eu f-electrons are set in the core, (b) when an A-type AFM configuration is assumed. In both case the Z_2 index is trivial. However, the band gap is sensitive to the magnetic configuration and the A-type AFM configuration appears to be metallic in contrast with the experimental observation that Eu$_5$In$_2$Sb$_6$ is in fact a narrow-gap semiconductor. Note that the presence of magnetism enhances moves the the compound further away from the CET limit. This is true for the compounds obtain from Eu$_5$In$_2$Sb$_6$ by chemical substitution.

Supplementary Figure 1. (a) Non-magnetic (b) A-type AFM band structure of Eu$_5$In$_2$Sb$_6$.

* Corresponding author; nvarnava@physics.rutgers.edu
II. DEGENERACIES AND THE PARITY CRITERION

Here we show that only band inversions at Γ and Z can alter the axion \mathbb{Z}_2 index for a nonmagnetic material in the centrosymmetric SG 55. As explained below, this is related to the non-symmorphic nature of SG 55. Briefly, states at all time reversal invariant momenta (TRIM) except Γ and Z form 4-dimensional irreducible representations (irreps) for which the number of odd-parity states is fixed modulo four. In view of the Fu-Kane criterion for the strong \mathbb{Z}_2 index, band inversions at these TRIM points cannot change the \mathbb{Z}_2 index. Indeed, if n_K is the total number of odd-parity states at a given TRIM point, then the criterion can be expressed as

$$\prod_{\mathbf{k}\in\text{TRIM}} (-1)^n_{\mathbf{k}}/2 \in \mathbb{Z}_2,$$

which remains unaffected when $n_{\mathbf{k}}$ is fixed modulo four.

We first explain how the 4-fold degeneracies arise. SG 55 can be regarded as generated by two glide mirrors $g_x = \{m_x|1/2,1/2,0\}$ and $g_y = \{m_y|1/2,1/2,0\}$ together with inversion I, all of which are good symmetries at all eight of the TRIM (see Table I). We can use the fact that $\{g_x, g_y\} = 0$ to show that if $|\psi_\mathbf{k}\rangle$ is an eigenstate of g_x, i.e., $g_x|\psi_\mathbf{k}\rangle = \alpha|\psi_\mathbf{k}\rangle$, then $g_x(g_y|\psi_\mathbf{k}\rangle) = -\alpha(g_y|\psi_\mathbf{k}\rangle)$. This implies $g_y|\psi_\mathbf{k}\rangle$, which has the same energy as $|\psi_\mathbf{k}\rangle$, is also an eigenstate of g_x with opposite eigenvalue. In addition, the Kramer’s partners $T|\psi_\mathbf{k}\rangle$ and $T g_y|\psi_\mathbf{k}\rangle$ will have g_x eigenvalues α^\ast and $-\alpha^\ast$ respectively. Taking into account that the g_x eigenvalues are $\alpha = \pm i(\pm 1)$ at $k_y = 0(\pi)$, we can conclude that Kramer’s partners, which are necessarily orthogonal to each other, have opposite(same) eigenvalues at $k_y = 0(\pi)$. This then implies that $|g_y\rangle, T|\psi_\mathbf{k}\rangle, g_y|\psi_\mathbf{k}\rangle$ and $T g_y|\psi_\mathbf{k}\rangle$ are mutually orthogonal at TRIM points where $k_y = \pi$ and they form 4D representations but is inconclusive when $k_y = 0$. Finally, note that we can apply the same line of thought after we swap the role of g_x and g_y leading to the conclusion that $|\psi_\mathbf{k}\rangle, T|\psi_\mathbf{k}\rangle, g_x|\psi_\mathbf{k}\rangle$ and $T g_x|\psi_\mathbf{k}\rangle$ form 4D dimensional representations at TRIM points where $k_x = \pi$. Putting these together we conclude that TRIM points where either $k_x = \pi$ or $k_y = \pi$ admit representations of at least degree four. In fact, using the computational tool BANDREP of the Bilbao Crystallographic Server, we find that SG 55 admits only 4-dimensional irreps at these TRIM points.

Group Symmetry	g_x	g_y	I
Vector representation	$(\tilde{x} + \frac{1}{2}, y + \frac{1}{2}, \tilde{z})$	$(\tilde{x} + \frac{1}{2}, y + \frac{1}{2}, \tilde{z})$	$(\tilde{x}, \tilde{y}, \tilde{z})$
Spinor representation	$-i\sigma_x$	$-i\sigma_y$	σ_0
Eigenvalues	$\alpha = \pm ie^{ik_x}/2$	$\beta = \pm ie^{ik_y}/2$	$\gamma = \pm 1$

Next we explain how the non-symmorphic symmetries constrain the inversion eigenvalues. Since

$$I g_x = g_x I e^{-ik_x + ik_y}$$
$$I g_y = g_y I e^{ik_x - ik_y}$$

depending on the TRIM point, inversion either commutes or anticommutes with g_x and g_y. In either case, g_x and g_y eigenstates are also inversion eigenstates. Considering the set of orthogonal states $\{|g_y\rangle, T|\psi_\mathbf{k}\rangle, g_y|\psi_\mathbf{k}\rangle, T g_y|\psi_\mathbf{k}\rangle\}$ at the TRIM points with $k_y = \pi$, we observe that Kramer’s partners share the same inversion eigenvalues, since they are real numbers, while states related by g_y will have opposite inversion eigenvalues when $k_x + k_y = \pi$, i.e., at the X,Y,U,T points, and same eigenvalues when $k_x + k_y = 2\pi$, i.e., at the S,R points. In the former case, the number of odd-parity states in each irreducible representation is 2 while in the latter is either 0 or 4. In either case band inversions can only change the parity count by 0 or 4 which does not affect the \mathbb{Z}_2 index.
III. DISPLACING THE In ATOM IN Eu$_2$In$_2$Sb$_6$

As we have seen in the main text displacing the In atom by modifying the y component of its Wyckoff position has the geometric effect of distorting the In-Sb tetrahedra by shortening the two In-Sb$_{1}$ bond and lengthening the In-Sb$_{2}$ and In-Sb$_{3}$ bonds.

The effect of the displacement on the band structure is shown in Supplementary Fig. 2. Here we focus on $k_z = 0$ plane, since $k_z = \pi$ remains gapped for all values of displacement, and the lowest conduction and highest valence bands, since they determined the topology and band gaps. For the actual structure, we see that the highest valence bands Supplementary Fig. 2(e) have primarily Sb character while the lowest conduction bands have primarily Eu character. This is what we should expect for a trivial insulator that follows the Zintl concept in which case we are at the limit of complete electron transfer for the Eu$^{+10}$ cations to the [In$_2$Sb$_6$]$^{-10}$ polyanion.

Now as we progressively displace the In atoms, the character of the lowest conduction bands changes from Eu to In signaling that we are moving away from the limit of complete electron transfer. In this way, the energy of the lowest conduction bands decreases and that of the highest valence bands increases. The increased overlap causes a band inversion at Γ when SOC is included which makes the Z_2 index non-trivial.

Supplementary Figure 2. Band structures without SOC for different values of the y-component of the In atom’s Wyckoff position. From the left to right the band structures interpolate between the actual $y_{\text{In}} = .2149$ and the one that was reported in $y_{\text{In}} = 2419$. The three rows, correspond to projections on the In (a)-(d), Sb (e)-(h) and Eu (i)-(l) atoms respectively.
IV. CHANGING THE TOPOLOGY OF Eu\textsubscript{5}In\textsubscript{2}Sb\textsubscript{6} THROUGH THE APPLICATION OF STRAIN

Here we show that applying compressive uniaxial strain along \textit{c} or expansive epitaxial strain in the \textit{a} – \textit{b} plane has a similar effect as displacing the In atom. In particular, Supplementary Fig. 3 shows the overlap between conduction and valence bands increases when either of these structural perturbations is applied, indicating that the compound is moving away from the CET limit. For extreme values of, around \(\sim 10\%\) compressive uniaxial strain or \(\sim 10\%\) expansive epitaxial strain, the \(\mathbb{Z}_2\) index changes. However, this not only impractical to realize due to the large magnitude of strain but the increased bandwidth of the strained bands results in metallic states.

Supplementary Figure 3. Band structures without SOC for different values of uniaxial (a)-(d) and epitaxial (e)-(h) strain. The color mapping indicates the \(p\)-orbital projection of the states.
V. STABLE Ga AND Tl SUBSTITUTED STRUCTURES

Starting from Eu$_5$In$_2$Sb$_6$ we substitute In with Ga or Tl and perform relaxation of the substituted structures (both the internal coordinates and lattice constants). We find that the system remains in SG 55. The structural parameters for Eu$_5$Ga$_2$Sb$_6$ and Eu$_5$Tl$_2$Sb$_6$ are given in Supplementary Tables I, II. To see whether the structures are dynamically stable, we calculate the phonon spectrum, Supplementary Fig. 4. Since the spectrum are positive this indicates that the structures are stable and could be synthesized.

Supplementary Table II. Structure parameters of Eu$_5$Ga$_2$Sb$_6$

Atom	x	y	z	Site	Sym.
Eu$_1$	0.33118	0.02082	0.00000	4g	..m
Eu$_2$	0.00000	0.00000	0.00000	2a	..2/m
Eu$_3$	0.91044	0.75223	0.00000	4g	..m
Sb$_1$	0.16526	0.82065	0.00000	4g	..m
Sb$_2$	0.15615	0.09174	0.50000	4h	..m
Sb$_3$	0.51984	0.09902	0.50000	4h	..m
Ga$_1$	0.32645	0.21143	0.50000	4h	..m

Supplementary Table III. Structure parameters of Eu$_5$Tl$_2$Sb$_6$

Atom	x	y	z	Site	Sym.
Eu$_1$	0.32862	0.02364	0.00000	4g	..m
Eu$_2$	0.00000	0.00000	0.00000	2a	..2/m
Eu$_3$	0.91530	0.75173	0.00000	4g	..m
Sb$_1$	0.16890	0.83477	0.00000	4g	..m
Sb$_2$	0.14766	0.09124	0.50000	4h	..m
Sb$_2$	0.53550	0.09370	0.50000	4h	..m
Tl$_1$	0.33215	0.21692	0.50000	4h	..m

Supplementary Figure 4. (a),(b) Crystal structure and phonon spectrum for Eu$_5$Ga$_2$Sb$_6$ (c),(d) Same for Eu$_5$Tl$_2$Sb$_6$.
VI. BAND GAP ENGINEERING USING EPITAXIAL STRAIN

In the main text we showed that uniaxial strain can be used to control the direct and indirect gaps of Eu₅In₂Bi₆. Here we present a similar analysis for epitaxial strain in Eu₅In₂Bi₆. Supplementary Fig. 5(a),(b) show that epitaxial strain with $\lambda_{\text{epi}}^c < 1.00$ or $\lambda_{\text{epi}}^a > 1.00$ enhance the direct and indirect gaps.

Supplementary Figure 5. Effect of uniaxial strain on (a) direct and (b) indirect gap. (c) Comparison between band structures with $\lambda_{\text{uni}}^{bc} = 1.00$ and $\lambda_{\text{uni}}^{bc} = 0.95$.