Effects of Relative Humidity on the Vector of Rose Rosette Disease, Phyllocoptes fructiphilus (Eriophyidae), and Incidence of Disease Symptoms

Authors: Monterrosa, Alejandra, Iriarte, Fanny B., Paret, Mathews L., and Joseph, Shimat V.

Source: Florida Entomologist, 104(3) : 173-177

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.104.0305
Effects of relative humidity on the vector of rose rosette disease, *Phyllocopites fructiphilus* (Eriophyidae), and incidence of disease symptoms

Alejandra Monterrosa\(^1\), Fanny B. Iriarte\(^2\), Mathews L. Paret\(^2\), and Shimat V. Joseph\(^1\)*

Abstract

The eriophyid mite *Phyllocopites fructiphilus* Keifer (Acari: Eriophyidae) transmits rose rosette virus to rose (*Rosa* spp.; Rosaceae) while feeding, which causes serious disease referred to as rose rosette disease. Although there is no cure once rose plants are infected with rose rosette virus, understanding the response of *P. fructiphilus* and rose rosette disease to abiotic factors such as relative humidity may help to develop management strategies for the disease. The major objective of the current study was to determine the effect of relative humidity on the abundance of *P. fructiphilus*, as well as the incidence and severity of rose rosette disease symptoms. An experiment was conducted in environmentally controlled chambers where potted pink double knock-out rose plants were maintained at 20, 60, and 95% relative humidity after introducing about 20 *P. fructiphilus* individuals by attaching a 7-cm-long, field-collected terminal to the branches of potted plants. The densities of *P. fructiphilus* were recorded at biweekly intervals for 12 wk. The proportion of terminals with rose rosette disease symptoms (disease incidence) and severity of rose rosette disease symptoms was assessed using the Horsfall-Barratt scale at biweekly intervals for 14 wk. The results show that the number of *P. fructiphilus* individuals was significantly greater under a moderate 60% relative humidity than under a high (95%) or low (20%) relative humidity (*P* < 0.05). However, the incidence and severity of rose rosette disease symptoms were significantly higher under 95% relative humidity than under 20% relative humidity (*P* < 0.05). The implications of these results on the breeding program and management of *P. fructiphilus* and the incidence of rose rosette disease are discussed.

Key Words: eriophyid mite; Eriophyidae; *Rosa* spp.; rose rosette virus; Emaravirus; nursery

Resumen

El ácaro eriófido *Phyllocopites fructiphilus* Keifer (Acari: Eriophyidae) transmite el virus de la roseta a la rosa (*Rosa* spp.; Rosaceae) mientras se alimenta, lo que causa la grave enfermedad conocida como enfermedad de la roseta de la rosa. Aunque no existe cura una vez que las plantas de rosas están infectadas con el virus de la roseta de rosas, al comprender la respuesta de *P. fructiphilus* y la enfermedad de la roseta de rosas a factores abióticos como la humedad relativa puede ayudar a desarrollar estrategias de manejo para la enfermedad de la roseta de rosas. El objetivo principal del presente estudio fue determinar el efecto de la humedad relativa en la abundancia de *P. fructiphilus*, así como la incidencia y gravedad de los síntomas de la enfermedad de la roseta de rosas. Se realizó un experimento en cámaras de control ambiental donde se mantuvieron plantas de rosas rosadas con doble knock-out en macetas a 20, 60 y el 95% de humedad relativa después de introducir aproximadamente 20 individuos de *P. fructiphilus* mediante la colocación de una terminal recolectada en el campo de 7 cm de largo a las ramas de las plantas en macetas. Se registró la densidad de *P. fructiphilus* a intervalos quincenales durante 12 semanas. Se evaluó la proporción de terminales con síntomas de la enfermedad de la roseta de rosas (incidencia de la enfermedad) y la gravedad de los síntomas de la enfermedad de la roseta de rosas mediante la escala de Horsfall-Barratt a intervalos quincenales durante 14 semanas. Los resultados muestran que el número de individuos de *P. fructiphilus* fue significativamente mayor bajo una humedad relativa moderada del 60% que bajo una humedad relativa alta (95%) o baja (20%) (*P* < 0.05). Sin embargo, la incidencia y la gravedad de los síntomas de la enfermedad de la roseta de rosas fueron significativamente más altas con el régimen de humedad relativa del 95% que con el régimen de humedad relativa del 20% (*P* < 0.05). Se discuten las implicaciones de estos resultados en el programa de mejoramiento y manejo de *P. fructiphilus* y la incidencia de la enfermedad de la roseta de las rosas.

Palabras Clave: ácaro eriófido; Eriophyidae; *Rosa* spp.; virus de la roseta de la rosa; Emaravirus; guardería

*\(^1\)*Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223, USA; E-mail: Alejandra.Monterrosa@uga.edu (A. M.), svjoseph@uga.edu (S. V. J.)

*\(^2\)*Plant Pathology Department, University of Florida, North Florida Research and Education Center, 155 Research Road, Quincy, Florida 32351, USA; E-mail: fbiarite@ufl.edu (F. B. I.), paret@ufl.edu (M. L. P.)

*Corresponding author; E-mail: svjoseph@uga.edu

2021 — Florida Entomologist — Volume 104, No. 3
understood poorly. In 1940, biology of regions impacted by rose rosette disease in the US (Barreca 2012). The breaux (Oudemans) (Acari: Acaridae) (Sánchez-Ramos et al. 2007), and farris (Coleoptera: Bostrichidae) (Norhisham et al. 2013), storage mites, Tyrophagus putrescentiae (Schrank) (Acari: Acaridae), Tyrophagus neiswanderi Johnston and Bruce (Acari: Acaridae), and Acarus farris (Oudemans) (Acari: Acaridae) (Sánchez-Ramos et al. 2007), and the spider mite Tetranychus telarius L. (Acari: Tetranychidae) (Bou- breau 1958). Relative humidity varies drastically across various regions impacted by rose rosette disease in the US (Barreca 2012). The biology of Phyllocoptes fructiphilus under various relative humidity regimes is understood poorly. In 1940, Phyllocoptes fructiphilus was first described on Rosa californica Cham. & Schltdl. (Rosaceae) in California, USA, and it still is not reported from major rose nurseries in the southern San Joaquin Valley in California, USA. Although the exact reason is unclear, perhaps low relative humidity in the southern San Joaquin Valley does not favor population growth of Phyllocoptes fructiphilus compared to that in eastern regions of the US. Thus, it is critical to understand the performance of Phyllocoptes fructiphilus under varying relative humidity conditions. This information will improve our understanding of the ecology of Phyllocoptes fructiphilus to develop an effective, tailored, and region-specific integrated pest management program. The major objective of the current study was to determine the effect of relative humidity on both the abundance of Phyllocoptes fructiphilus, as well as on the incidence and severity of rose rosette disease symptoms.

Materials and Methods

The experiment was conducted in environmentally controlled chambers at the University of Georgia, Griffin campus, Georgia, USA, in 2018. Potted ‘Pink Double Knock-Out’ rose plants (3.7 L) were obtained from a wholesale nursery in Dearing, Georgia, USA. There was no incidence of rose rosette disease in the nursery or on the roses planted in surrounding landscapes. The random sepal samples were collected from rose plants and were devoid of Phyllocoptes fructiphilus. The experiment was conducted in 3 environmentally controlled growth chambers and was programmed at 20, 60 and 95% relative humidity. The temperature of all 3 chambers was set at 28 °C with a 16:8 h (L:D) photoperiod. The 4 potted rose plants were introduced into each chamber and were acclimated to the conditions in chambers for 7 d before Phyllocoptes fructiphilus was introduced. The relative humidity regimes 20, 60, and 95% were the treatments, and the 4 rose plants were the replications. To prevent desiccation, all the rose plants were monitored daily to ensure sufficient moisture in the potting soil, and were irrigated as needed for the duration of the experiment. Before introducing Phyllocoptes fructiphilus into the chamber, rose terminal samples were sampled randomly from the potted rose plants to confirm the absence of any mites on them. There were no rose rosette disease symptoms on rose plants before introducing Phyllocoptes fructiphilus.

Phyllocoptes fructiphilus-infested rose terminals (about 7 cm long) were collected from rose rosette disease symptomatic rose shrubs in the landscape within the Griffin campus. The rose rosette virus on the rose shrubs was confirmed using a modified real time reverse transcription PCR (RT-qPCR) using primers developed by Babu et al. (2016) at the plant disease diagnostic laboratory at the University of Florida North Florida Research and Education Center in Quincy, Florida, USA. On 15 Oct 2018, each plant in the chamber was infested with Phyllocoptes fructiphilus by attaching field-collected rose terminals on 2 terminals of each rose plant in the chamber using paper clips. Each rose plant received about 20 Phyllocoptes fructiphilus individuals. A rose terminal consisted of an opened flower bud and 3 leaves.

After 2 wk of infestation, 2 sepal were collected from each potted rose plant to determine the number of Phyllocoptes fructiphilus individuals. The sampling continued at 2-wk intervals for up to 12 wk. The number of Phyllocoptes fructiphilus individuals was quantified directly per sepal under 40× magnification using a dissecting microscope (Leica Microsystems, Wetzlar, Germany). Phyllocoptes fructiphilus has a subtriangular shield that tapers out to a point approaching the anterior end. This shield, on the mite’s ventral side, allows distinction among species (Otero-Colina et al. 2018).

Approximately 10 wk after Phyllocoptes fructiphilus infestation, rose plants started to show rose rosette disease symptoms. The number of rose rosette disease symptomatic and total terminals was counted, and then the proportion of symptomatic terminals per plant was determined. The severity of rose rosette disease symptoms was assessed using the Horsfall-Barratt scale starting 10 wk post-infestation (Horsfall & Barratt 1945). To confirm rose rosette virus, the rose rosette disease symptomatic and non-symptomatic leaves were collected randomly from rose plants in the chambers, and leaf tissues were tested using the modified RT-qPCR technique mentioned above at 12 wk post-infestation.

The Phyllocoptes fructiphilus data were subjected to ANOVA by wk using the PROC GLM general linear model procedure in SAS (SAS 2012). The data were square-root transformed to establish homogeneity of variance using the PROC Univariate procedure in SAS (2012) before analysis, where relative humidity was the treatment factor. To determine the overall effect of relative humidity treatments, the number of Phyllocoptes fructiphilus collected over 12 wk was pooled, square-root transformed, and subjected to ANOVA by wk using the general linear model procedure in SAS (2012). The data on the incidence of rose rosette disease symptoms were log-transformed (ln[x + 1]), whereas the severity of rose rosette disease symptoms assessed using the Horsfall-Barratt scale was arcsine square-root transformed before analysis. The transformed data were subjected to ANOVA by wk using the general lin-
Results

The number of *P. fructiphilus* was significantly greater in sepals with 60% relative humidity than in those with 20% relative humidity at 2 wk after infestation (*F* = 4.1; *df* = 2, 14; *P* = 0.040; Fig. 1A). At 4 wk after infestation, there was no significant difference in the number of *P. fructiphilus* among relative humidity levels (*F* = 2.5; *df* = 2, 14; *P* = 0.116). A significantly greater number of *P. fructiphilus* occurred on sepals under 60% relative humidity than under 20% or 95% relative humidity at 6 wk after infestation (*F* = 6.1; *df* = 2, 14; *P* = 0.013; Fig. 1A). The number of *P. fructiphilus* was not significantly different in sepals among relative humidity levels at 8 wk after infestation (*F* = 3.1; *df* = 2, 14; *P* = 0.082). Overall, the number of *P. fructiphilus* was significantly greater on sepals under 60% relative humidity than under 20 or 95% relative humidity (*F* = 5.7; *df* = 2, 14; *P* = 0.015; Fig. 1B).

At 10 wk after infestation, there was no difference in the incidence of rose rosette disease (*F* = 4.2; *df* = 2, 6; *P* = 0.073; Fig. 2A). The Horsfall-Barratt scale showed that the severity of rose rosette disease on plants was significantly greater under 95% relative humidity than under 20% relative humidity (*F* = 8.9; *df* = 2, 6; *P* = 0.016; Fig. 2B). At 12 wk after infestation, the incidence of rose rosette disease symptoms on plants was significantly greater under 95% relative humidity than under 20% and 60% relative humidity (*F* = 8.7; *df* = 2, 6; *P* = 0.017; Fig. 2A). The Horsfall-Barratt scale showed that the severity of rose rosette disease on plants was significantly greater under 95% relative humidity than under 20% relative humidity (*F* = 10.3; *df* = 2, 6; *P* = 0.012; Fig. 2B). At 10 and 12 wk after infestation, the severity of rose rosette disease on plants was not significantly different between 60 and 95% relative humidity. At 14 wk after infestation, the incidence of rose rosette disease was not significantly different on 14 wk after infestation (*F* = 3.8; *df* = 2, 6; *P* = 0.087). Rose rosette virus was confirmed on symptomatic plant samples under various relative humidity regimes. The severity of rose rosette disease on plants was significantly greater under 95% relative humidity than under 20 and 60% relative humidity (*F* = 13.6; *df* = 2, 6; *P* = 0.005; Fig. 2B).

Discussion

The results show that the number of *P. fructiphilus* individuals was greater under a moderate relative humidity (60%) than under a high relative humidity (95%) or low relative humidity (20%). Previous studies on a spider mite, *T. telarius*, showed that the total oviposition of female *T. telarius* was reduced by more than half when the relative humidity increased to 95% from 35% (Boubreaux 1958). Variation in relative humidity also can affect biological control activity. The predaceous mite *Phytoseiulus persimilis* Athias-Henriot (Acari: Phytoseiidae) provided greater pest control on the two-spotted spider mite *Tetranychus urticae* (Koch) (Acari: Tetranychidae) under 60 to 85% relative humidity than under lower relative humidity (Stenseth 1979). This suggests that the performance of a specific biological control agent should be studied carefully to match when the abundance of *P. fructiphilus* is high across various stages. The success of biological control could be increased if the agent(s) could reduce the *P. fructiphilus* to very low density, because few individuals could transmit the rose rosette virus through feeding.

In the current study, the incidence and severity of rose rosette disease symptoms were noticeably higher under the high (95%) relative humidity regimen than under the low (20%) relative humidity regimen. This result could impact rose breeding programs. Rose genotypes and cultivars are field-tested for various horticultural attributes and resistance to diseases, including rose rosette disease (Byrne 2015). The data suggest that rose genotypes tested for horticultural attributes and disease resistance to other than rose rosette disease research may not necessarily express rose rosette disease symptoms if infected with rose rosette virus, and viable studies could be conducted. In contrast, rose rosette disease genotype or cultivar screening should be conducted under high relative humidity conditions to ensure reliable results. The rose plants maintained in the greenhouse at 21 °C and about 40% relative humidity also can affect biological control activity. The predaceous mite *Phytoseiulus persimilis* Athias-Henriot (Acari: Phytoseiidae) provided greater pest control on the two-spotted spider mite *Tetranychus urticae* (Koch) (Acari: Tetranychidae) under 60 to 85% relative humidity than under lower relative humidity (Stenseth 1979). This suggests that the performance of a specific biological control agent should be studied carefully to match when the abundance of *P. fructiphilus* is high across various stages. The success of biological control could be increased if the agent(s) could reduce the *P. fructiphilus* to very low density, because few individuals could transmit the rose rosette virus through feeding.

Fig. 1. Mean (± SE) number of *Phyllocoptes fructiphilus* under various relative humidity regimes (A) by wk and (B) for the duration of the experiment. The same letters within a wk after infestation or bars are not significantly different (ANOVA followed by Tukey’s HSD test; *α* = 0.05). Where no differences were observed, no letters are included.
Fig. 2. Mean (± SE) (A) proportion of rose rosette disease symptomatic terminals and (B) value of the Horsfall-Barratt scale on the severity of rose rosette disease. The same letters within a wk after infestation are not significantly different (ANOVA followed by Tukey’s HSD test; \(\alpha = 0.05 \)). Where no differences were observed, no letters are included.
Rose rosette virus infection was asymptomatic (Fife et al. 2020).

Relative humidity can vary drastically from western states to eastern states in the US (Barreca 2012). The data suggest that region-specific integrated pest management strategies for *P. fructiphilus* and rose rosette disease should be developed. For example, based on the data, rose rosette virus infected rose plants in a region with high relative humidity ranges have a high probability of rose rosette disease symptom expression. Thus, these rose plants may need comprehensive management to reduce rose rosette virus transmission. In contrast, those plants shipped from the regions with low relative humidity should be subjected to rigorous diagnostic tests, especially before being shipped to regions with high relative humidity. More studies are warranted to determine the effects of relative humidity under low- and high-temperature regimes to improve the management of vector and reduce rose rosette virus transmission.

Acknowledgments

We appreciate D. Westbury and C. Julian for data collection. The project was funded through USDA Crop Protection and Pest Management Grant (2017-70006-27268) and the University of Georgia Hatch project.

References Cited

Amrine Jr JW, Hindal DF, Stanzy TA, Williams RL, Coffman CC. 1988. Transmission of the rose rosette disease agent to *Rosa multiflora* by *Phyllocopetes fructiphilus* (Acari: Eriophyidae). Entomological News 99: 239–252.

Amrine J. 1996. *Phyllocopetes fructiphilus* and biological control of *multiflora* rose, pp. 741–749 in Lindquist EE, Sabelis MW, Bruin J [eds.], World Crop Pests, Vol. 6: Eriophyoid Mites, Their Biology, Natural Enemies and Control. Elsevier BV, Amsterdam, Netherlands.

Allington WB, Staples R, Viehmeyer G. 1968. Transmission of *Rose rosette virus* by the eriophyid mite *Phyllocopetes fructiphilus*. Journal of Economic Entomology 61: 1137–1140.

Babu B, Dankers H, Newberry E, Baker C, Schubert T, Knox G, Paret M. 2014. First report of *Rose rosette virus* associated with *Rose rosette disease* infecting *multiflora* roses in Florida. Disease Notes 98: 1449. https://doi.org/10.1094/PDIS-05-14-0501-PDN

Babu B, Jayaprakash A, Jones D, Schubert TS, Baker C, Washburn BK, Miller SH, Poduch K, Knox GW, Ochoa-Corona FM, Paret ML. 2016. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of rose rosette virus using multiple gene targets. Journal of Virological Methods 235: 41–50.

Barreca AI. 2012. Climate change, humidity, and mortality in the United States. Journal of Environmental Economics and Management 63: 19–34.

Boubreaux HB. 1958. The effect of relative humidity on egg laying, hatching and survival in various spider mites. Journal of Insect Physiology 2: 65–72.

Byrne DH. 2015. Advances in rose breeding and genetics in North America. Acta Horticulturae 1064: 89–98.

Crowe FL. 1983. Witches’ broom of rose: a new outbreak in several central states. Plant Disease 67: 544–546.

Fatnassi H, Pizzol J, Senoussi R, Biondi A, Desneux N, Poncet C, Boulard T. 2015. Within-crop air temperature and humidity outcomes on spatio-temporal distribution of the key rose pest *Frankliniella occidentalis*. PLoS ONE 10: e0126655. https://doi.org/10.1371/journal.pone.0126655

Fife A, Bolton S, Griesheimer JL, Paret M, Martini K. 2020. First report of *Phyllocopetes fructiphilus* Keller (Eriophyidae), the vector of the rose rosette virus, in Florida, USA. Florida Entomologist 103: 411–414.

Grant G. 2019. We must be vigilant to keep rose rosette disease in check. Tyler Morning Telegraph. https://tylerpaperc.com/lifestyle/we-must-be-vigilant-to-keep-rose-rosette-disease-in-check/article_059eab16-66da-11e9-8e76-1fed218315e4.html (last accessed 4 Jun 2021).

Horsfall JG, Barratt RW. 1945. An improved grading system for measuring plant disease. Phytopathology 35: 655. (abstract)

Hoy M. 2013. Eriophyid mite vector of *Rose rosette disease* (RRD). UF/IFAS Featured Creatures Publication #EENY-558. University of Florida, Gainesville, Florida, USA. http://entnemdept.ufl.edu/creatures/ORN/ph_frutctiphilus.htm (last accessed 4 Jun 2021).

Jeppson LR, Keller HH, Baker EW. 1975. Mites injurious to economic plants. University of California Press, Oakland, California, USA.

Laney AG, Keller KE, Martin RR, Tanetzakis LE. 2011. A discovery 70 years in the making: characterization of the *Rose rosette virus*. Journal of General Virology 92: 1727–1732.

Norisham AR, Abood F, Rita M, Hakeem KR. 2013. Effect of humidity on egg hatchability and reproductive biology of the bamboo borer (*Dinoderus minutus* Fabricius). Springer Plus 2: 9. https://doi.org/10.1186/2193-1801-2-9 (last accessed 4 Jun 2021).

Otero-Colina G, Ochoa R, Armine Jr JW, Hammond J, Jordan R, Bauchan GR. 2018. Eriophyid mites found on healthy and rose rosette diseased roses in the United States. Journal of Environmental Horticulture 36: 146–153.

Pemberton HB, Ong K, Windham M, Olson J, Byrne DH. 2018. What is rose rosette disease? HortScience 53: 592–595.

RRD EDD – Rose Rosette Disease, EDDMapS. 2020. Early Detection & Distribution Mapping System. The University of Georgia – Center for Invasive Species and Ecosystem Health, Athens, Georgia, USA. https://www.eddmaps.org/distribution/usstate.cfm?sub=4248 (last accessed 4 Jun 2021).

Sánchez-Ramos I, Alvarez-Alfageme F, Castañera P. 2007. Effects of relative humidity on development, fecundity and survival of three storage mites. Experimental and Applied Acarology 41: 87–100.

SAS. 2012. SAS Version 9.4. SAS Institute Inc., Cary, North Carolina, USA.

Stenseth C. 1979. Effect of temperature and humidity on the development of *Phytoseiulus persimilis* and its ability to regulate populations of *Tetranychus urticae* (Acarina: Phytoseiidae: Tetranychidae). Entomophaga 24: 311–317.

Tipping PW, Sindermann AB. 2000. Natural and augmented spread of *Rose rosette disease* of *multiflora* rose in Maryland. Disease Notes 84: 1344. https://doi.org/10.1094/PDIS.2000.84.12.1344C (last accessed 4 Jun 2021).

USDANASS. 2017. Census of Agriculture 2012; Census of Horticultural Specialties 2014. https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Census_of_Horticulture_Specialties/HORTIC.pdf (last accessed 4 Jun 2021).

Wagonk HK, Nichols CW. 1966. Report of new or unusual plant pathogen: witches’ broom (Rosette of Rose). PI Path A-66-11. Bureau of Plant Pathology, California Department of Agriculture, Sacramento, California, USA.

Wagonk HK, Nichols CW. 1970. Report of new or unusual plant pathogen: witches’ broom (Rosette of Rose). PI Path A-70-7. Bureau of Plant Pathology, California Department of Agriculture, Sacramento, California, USA.