FREDHOLM CRITERIA FOR PSEUDODIFFERENTIAL OPERATORS AND
INDUCED REPRESENTATIONS OF GROUPOID ALGEBRAS

VICTOR NISTOR

Abstract. We characterize the groupoids for which an operator is Fredholm if, and only if, its principal symbol and all its boundary restrictions are invertible. A groupoid with this property is called Fredholm. Using results on the Effros-Hahn conjecture, we show that an almost amenable, Hausdorff, second countable groupoid is Fredholm. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. We show that the desingularization of groupoids preserves the class of Fredholm groupoids.

Contents

1. Introduction 1
2. Fredholm groupoids 2
3. Relation to the Effros-Hahn conjecture 3
4. Desingularization and Fredholm conditions 4
References 5

1. Introduction

We obtain necessary and sufficient conditions for operators modeled by groupoids to be Fredholm. Examples include operators obtained by desingularization of singular spaces by successively blowing up the lowest dimensional singular strata. We begin with a general study of Fredholm conditions for pseudodifferential operators in the framework of Fredholm groupoids. A Fredholm groupoid is, by definition, a locally compact groupoid with a Haar system for which the Fredholm property is equivalent to the invertibility of the principal symbol and of its fiberwise boundary restrictions. We obtain a general characterization of Fredholm groupoids. In particular, using some results of Renault [31, 32] and Ionescu and Williams [13], we show that an almost amenable, second-countable, Hausdorff groupoid is Fredholm.

Let G be a groupoid with base M modeling the analysis on some singular space. An $A(G)$-tame submanifold $L \subset M$ is one that has, by definition, a tubular neighborhood on which $A(G)$ becomes a pull-back Lie algebroid. The “desingularization” $[G : L]$ of G along L [24] is the a groupoid model-ling the analysis on the space obtained by blowing-up L. The space of units of the desingularization $[G : L]$ is $[M : L]$, the blow-up of M along L. The desingularization groupoid is not a blown-up space, however. We use the explicit structure of the desingularized groupoid $[G : L]$ (see [24]) to show that it is Fredholm if G is. Our results specialize to yield Fredholm conditions for operators on manifolds with cylindrical and poly-cylindrical ends, on manifolds that are asymptotically Euclidean or asymptotically hyperbolic, on products of such manifolds, on manifolds that locally at infinity are products of such manifolds, and on others. Most of the (generally) easy proofs are contained in [25], this paper being a summary and update of some results in that paper. We thank Ingrid and Daniel Beltită, Claire Debord, Siegfried

Date: February 16, 2016.
V.N. has been partially supported by ANR-14-CE25-0012-01.
Manuscripts available from http://iecl.univ-lorraine.fr/Victor.Nistor/
AMS Subject classification (2010): 47L80 (primary), 46N20, 58J40, 58H05.
2. Fredholm Groupoids

Recall that a groupoid G is a small category in which every morphism is invertible. We shall write $G \rightrightarrows M$ for a groupoid with objects (or units) M. The domain and range of a morphism therefore give rise to maps $d, r : G \to M$. We refer to [21, 24] for the results and concepts used—but not recalled—in this paper. Let $G \rightrightarrows M$ be a locally compact groupoid endowed with a Haar system $(\lambda_x)_{x \in M}$. We denote by $C^*(G)$ the C^*-algebra of G and by $C^*_r(G)$ the reduced C^*-algebra of G. Also, we denote $G_A := d^{-1}(A)$ and $G^A_B := d^{-1}(A) \cap r^{-1}(B)$. If A is invariant, in the sense that $G_A = G^A := r^{-1}(A)$, then G_A is a groupoid.

As usual, we associate to any $g \in G$ the reduced enveloping C^*-algebra $\mathcal{C}_r(G)$. If $A \subseteq \mathcal{C}_r(G)$ is invertible for any $x \in M$, then A factors through $\mathcal{C}_r(G_A)$.

Definition 2.2. A locally compact groupoid $G \rightrightarrows M$ is called Fredholm if:

(i) $G_{M_0} \cong M_0 \times M_0$ for some open, dense, G-invariant subset $M_0 \subseteq M$.

(ii) For any $a \in C^*_r(G)$, we have that $1 + \pi_x(a)$, $x_0 \in M_0$, is Fredholm if, and only if, $1 + \pi_x(a)$ is invertible for any $x \in F := M \setminus M_0$.

Both M_0 and F are uniquely determined by G, so this notation will remain fixed in what follows. Also, in Definition 2.2, all representations $\pi_{x_0}, x_0 \in M_0$, are unitarily equivalent to the vector representation $\pi_0 : C^*(G) \to \mathcal{L}(L^2(M_0))$ obtained by identifying $r : G_{x_0} \simeq M_0$.

Recall [33] that if A is a C^*-algebra with unit, then a set \mathcal{F} of representations of A is called invertibility sufficient if the following condition is satisfied: “$a \in A$ is invertible if, and only if, $\phi(a)$ is invertible for all $\phi \in \mathcal{F}$.” If A does not have a unit, we replace A with $A^+ := A \oplus \mathbb{C}$ and \mathcal{F} with $\mathcal{F}^+ := \mathcal{F} \cup \{\chi_0 : A^+ \to \mathbb{C}\}$ [26]. The following two results give a first characterization of Fredholm groupoids.

Theorem 2.3. Let $G \rightrightarrows M$ be a Fredholm groupoid. Then

(i) The vector representation $\pi_0 : C^*_r(G) \to \mathcal{L}(L^2(M_0))$ is injective.

(ii) The canonical projection induces an isomorphism $C^*_r(G)/C^*_r(G_{M_0}) \cong C^*_r(G_F)$.

(iii) $\{\pi_x, x \in F\}$ is an invertibility sufficient set of representations of $C^*_r(G_F)$.

For index theory, the first two conditions of the theorem are enough. Invertibility sufficient families of representations consist of non-degenerate representations. A non-degenerate representation of a (closed, two-sided) ideal in a C^*-algebra has a unique extension to the whole algebra.

The following strong converse of Theorem 2.3 holds true.

Theorem 2.4. Let $G \rightrightarrows M$ be a locally compact groupoid satisfying the three conditions (i-iii) of Theorem 2.3. Then, for any unital C^*-algebra Ψ containing $C^*_r(G)$ as an essential ideal and for any $a \in \Psi$, we have that $\pi_0(a)$ if Fredholm if, and only if, $\pi_x(a)$ is invertible for each $x \in M_0$ and the image of a in $\Psi/C^*_r(G)$ is invertible.
3. Relation to the Effros-Hahn conjecture

We now want to obtain some more concrete and easier to use conditions for a groupoid \(\mathcal{G} \) to be Fredholm. We shall say that a locally compact groupoid \(\mathcal{G} \) has the weak inclusion property (wi-property, for short) if every irreducible representation of \(C^*(\mathcal{G}) \) is weakly contained in a representation of \(C^*(\mathcal{G}) \) induced from a representation of an isotropy subgroup \(\mathcal{G}'_y := d^{-1}(y) \cap r^{-1}(y) \) (equivalently, if every primitive ideal of \(C^*(\mathcal{G}) \) contains an ideal induced from a representation of an isotropy subgroup \(\mathcal{G}'_y \)). A groupoid \(\mathcal{G} \) with the wi-property and such that all the groups \(\mathcal{G}'_y \) are amenable will be called EH-amenable. Recall that a locally compact groupoid \(\mathcal{G} \) satisfies the generalized Effros-Hahn (EH) conjecture if every primitive ideal of \(C^*(\mathcal{G}) \) is induced from a representation of an isotropy group \(\mathcal{G}'_y \) [8, 13, 14, 30, 40].

Example 3.1. Let \(\mathcal{G} \supseteq B \) be a locally trivial bundle of groups (so \(d = r \)) with typical fiber a locally compact group \(G \). Also, let \(f : M \to B \) be a continuous map that is a local fibration. Then \(f^+(\mathcal{G}) \) is a locally compact groupoid with a Haar system that satisfies the generalized EH conjecture, and hence it has the wi-property. It will be EH-amenable if, and only if, the group \(G \) is amenable.

Recall that a groupoid is called metrically amenable if the canonical surjection \(C^*(\mathcal{G}) \to C^*_r(\mathcal{G}) \) is injective \([38]\). We shall need two results from \([26]\) (see also \([9]\)).

Proposition 3.2. Let \(\mathcal{G} \supseteq F \) be an EH-amenable locally compact groupoid. Then the family of regular representations \(\{\pi_y, y \in F\} \) of \(C^*(\mathcal{G}) \) is invertibility sufficient. In particular, \(\mathcal{G} \) is metrically amenable.

The class of EH-amenable groupoids is closed under extensions.

Proposition 3.3. Let \(\mathcal{G} \supseteq M \) be a locally compact groupoid, \(M_0 \subset M \) be a \(\mathcal{G} \)-invariant open subset, and \(F := M \setminus M_0 \). Then \(\mathcal{G} \) is EH-amenable if, and only if, both \(\mathcal{G}_F \) and \(\mathcal{G}_{M_0} \) are EH-amenable. The same holds if one replaces “is EH-amenable” with “satisfies the generalized EH conjecture” or “has the wi-property.”

The following result leads to more applicable Fredholm conditions.

Proposition 3.4. Let \(\mathcal{G} \supseteq M \) be a Hausdorff, locally compact groupoid with an open, dense, \(\mathcal{G} \)-invariant subset \(M_0 \subset M \) such that \(\mathcal{G}_{M_0} \simeq M_0 \times M_0 \). If \(\mathcal{G} \) is EH-amenable, then \(\mathcal{G} \) is Fredholm.

Let \(U_i \subset U_{i+1} \subset M \) be open, \(\mathcal{G} \)-invariant subsets of \(M \), with \(U_{-1} = \emptyset \) and \(U_N = M \). If \(\mathcal{G}_{U_{i+1} \setminus U_i} \) is topologically amenable for all \(i \), then we shall say that the locally compact groupoid \(\mathcal{G} \supseteq M \) is almost amenable. By combining the above two propositions with the proof of the generalized EH conjecture \([13, 31, 32]\) for amenable, Hausdorff, second countable groupoids, we obtain the following result.

Theorem 3.5. Let \(\mathcal{G} \supseteq M \) be an almost amenable, Hausdorff, second countable groupoid. Then \(\mathcal{G} \) satisfies the generalized EH conjecture. If also \(\mathcal{G}_{M_0} \simeq M_0 \times M_0 \) for an open, dense, \(\mathcal{G} \)-invariant subset \(M_0 \subset M \), then \(\mathcal{G} \) is Fredholm.

We are interested in Fredholm groupoids because of their applications to Fredholm conditions. Let \(\mathcal{G} \) be a continuous family groupoid \([15]\) and \(\Psi^m(\mathcal{G}) \) be the space of order \(m \), classical pseudodifferential operators \(P = (P_x)_{x \in M} \) on \(\mathcal{G} \) \([2, 11, 22, 27, 39]\) for Lie groupoids, which are continuous family groupoids). Recall that, by definition, each \(P_x \in \Psi^m(\mathcal{G}_x), x \in M \). Also, \(P \) acts on \(M_0 \) via \(P_{x_0} : H^s(M_0) \to H^{s-m}(M_0), x_0 \in M_0 = r(\mathcal{G}_{x_0}) \simeq \mathcal{G}_{x_0} \). The following result is interesting only in the case \(M \) compact.

Theorem 3.6. Let \(\mathcal{G} \supseteq M \) be a Fredholm, continuous family groupoid and let \(M_0 \subset M \) be the dense, \(\mathcal{G} \)-invariant subset such that \(\mathcal{G}_{M_0} \simeq M_0 \times M_0 \). We have

\[P : H^s(M_0) \to H^{s-m}(M_0), P \in \Psi^m(\mathcal{G}), \text{ is Fredholm } \iff P \text{ is elliptic and } P_x : H^s(\mathcal{G}_x) \to H^{s-m}(\mathcal{G}_x) \text{ is invertible for all } x \in F := M \setminus M_0. \]

This theorem is proved by considering \(a := (1 + \Delta)^{(s-m)/2} P(1 + \Delta)^{-s/2} \), which belongs to the closure of \(\Psi^0(\mathcal{G}) \), by the results in \([17]\). For the next theorem, however, one has to consider the Cayley transform of \(P \) instead of the operator \(a \).
Theorem 3.7. Let $\mathcal{G} \supseteq M$ be as in Theorem 3.6 and let $P \in \Psi^m(\mathcal{G})$ be an elliptic operator. Then its essential spectrum is

$$
\sigma_{ess}(P) = \begin{cases}
\cup_{x \in F} \sigma(P_x) & \text{if } m > 0 \\
\cup_{x \in F} \sigma(P_x) \cup \text{Im}(\sigma_0(P)) & \text{if } m \leq 0.
\end{cases}
$$

The above two theorems extend to operators acting on vector bundles on M. The operators P_x are the analogues in our setting of the “limit operators” considered in [5, 28] and many other references. See also [3, 6, 10, 11, 15, 16, 17, 18, 19, 20, 23, 29, 34, 35, 36, 37] and the references therein for related results.

4. Desingularization and Fredholm Conditions

We want an ample supply of Fredholm groupoids. In this section, we recall the desingularization procedure along a “tame” submanifold of the set of units of a Lie groupoid [24]. Recall the thick pull-back and let U be as in Theorem 4.2. Then we glue $\mathcal{G} \times [0,1] \cup H \times (0,1]$ for a vector bundle H with the set of unit vectors in U for some fixed metric.

Construction of the desingularization. Step one. We first consider the adiabatic groupoid \mathcal{H}_{ad} of \mathcal{H} [11, 17, 27]. It is a Lie groupoid with units $L \times [0,\infty)$ and Lie algebroid $A(\mathcal{H}_{ad}) = A(\mathcal{H}) \times [0,\infty) \to L \times [0,\infty)$, which, as a vector bundle, is the pull-back of $A(\mathcal{H}) \to L$ to $L \times [0,\infty) \to L$. The Lie algebroid structure on the sections of $A(\mathcal{H}_{ad})$ is not that of a pull-back, but is given by $[X,Y](t) = t[X(t), Y(t)]$. As a set, \mathcal{H}_{ad} is the disjoint union $\mathcal{H}_{ad} := A(\mathcal{H}) \times \{0\} \sqcup \mathcal{H} \times (0,\infty)$.

The groupoid structure of \mathcal{H}_{ad} is such that $A(\mathcal{H}) \times \{0\}$ has the Lie groupoid structure of a bundle of Lie groups and $\mathcal{G} \times (0,\infty)$ has the product Lie groupoid structure (that is, $[0,\infty)$ has only units, and all orbits are reduced to a single point).

Step two. Let $\pi : S \to L$ be the projection. We denote also by π the resulting map $S \times [0,\infty) \to L \times [0,\infty)$. Then we consider the Lie groupoid $\pi^{++}(\mathcal{H}_{ad})$.

Step three. Let $\mathbb{R}_+^\ast = (0,\infty)$ act by dilations on the $[0,\infty)$ variable on $\pi^{++}(\mathcal{H}_{ad})$ and consider the semi-direct product $\pi^{++}(\mathcal{H}_{ad}) \rtimes \mathbb{R}_+^\ast$. We then define

$$
[[\mathcal{G} : L]] := \pi^{++}(\mathcal{H}_{ad}) \rtimes \mathbb{R}_+^\ast, \text{ if } \mathcal{G} = \pi^{++}(\mathcal{H}) \text{ for a vector bundle } \pi : M \to L.
$$

Step three. Let $\mathcal{G} \supseteq M$ be a Lie algebroid and $L \subset M$ be an $\mathcal{G}(\pi)$-tame submanifold. Let $W := M \setminus L$ and let U be as in Theorem 4.2. Then we glue \mathcal{G}_W^{π} and $[[\mathcal{G}_W^{\pi} : L]]$ along the common open subset $[12, 24]$ to obtain $[[\mathcal{G} : L]]$.

If \mathcal{G} is Hausdorff, then $[[\mathcal{G}_W^{\pi} : L]]$ is also Hausdorff, [24]. We denote by $[M : L]$ the blow-up of M with respect to L, it is obtained by replacing L with the set of unit vectors S of its normal bundle in M. So $S = [M : L] \setminus (M \setminus L) = [M : L] \setminus W$. Let \mathcal{G} be as in Theorem 4.2. We then have the following structural result for the desingularization $\mathcal{K} := [[\mathcal{G} : L]]$.

\[\]
Proposition 4.3. The desingularization $K := [[G : L]]$ is a Lie groupoid with units $[M : L]$. The subset $S \subset [M : L]$ is closed and K-invariant. The restriction $K_S = [[G : L]] \times G^L_W$ is isomorphic to the fibered pull-back $\pi^*_+ (A(K) \times \mathbb{R}_+^*)$ to S via the natural projection $\pi : S \to L$, where $A(K) \times \mathbb{R}_+^*$ is regarded as a bundle of Lie groups. The inclusion $G^L_W \to G$ induces an isomorphism $C^*(G^L_W) \simeq C^*(G)$.

One sees that the resulting glued set is a Hausdorff groupoid as in [12].

Theorem 4.4. Let $G \rightrightarrows M$ be a Lie groupoid. Let us assume that G is Fredholm. Let $L \subset M$ be an $A(G)$-tame submanifold. Then $[[G : L]]$ is also Fredholm.

Desingularization preserves the class of Fredholm groupoids.

Theorem 4.5. Let us assume that G is obtained from a pair groupoid $M \times M$ (with M smooth) by a sequence of desingularizations with respect to tame submanifolds. Then G is a Hausdorff Fredholm Lie groupoid.

This theorem can be used to obtain Fredholm conditions for operators on polyhedral domains, as well as on some other stratified spaces.

References

[1] B. Ammann, R. Lauter, and V. Nistor. Pseudodifferential operators on manifolds with a Lie structure at infinity. Ann. of Math. (2), 165(3):717–747, 2007.
[2] I. Androulidakis and G. Skandalis. Pseudodifferential calculus on a singular foliation. J. Noncommut. Geom., 5(1):125–152, 2011.
[3] I. Beltit˘a and D. Beltit˘a. Coadjoint dynamical systems of solvable lie groups. arXiv:1512.00558 [math.RT].
[4] A. Connes. Noncommutative geometry. Academic Press, San Diego, 1994.
[5] M. Damak and V. Georgescu. Self-adjoint operators affiliated to C^*-algebras. Rev. Math. Phys., 16(2):257–280, 2004.
[6] C. Debord, J.-M. Lescure, and F. Rochon. Pseudodifferential operators on manifolds with fibred corners. preprint
[7] B. Monthubert. Pseudodifferential calculus on manifolds with corners and groupoids. Proc. Amer. Math. Soc., 127(10):2871–2881, 1999.
[8] S. Echterhoff. The primitive ideal space of twisted covariant systems with continuously varying stabilizers. Amer. J. Math., 124(3):567–593, 2002.
[9] V. Georgescu and A. Iftimovici. Crossed products of C^*-algebras. In Operator theory, operator algebras and applications, volume 242 of Oper. Theory Adv. Appl., pages 173–183, 2014.
[10] V. Georgescu and A. Iftimovici. Crossed products of C^*-algebras and spectral analysis of quantum Hamiltonians. Comm. Math. Phys., 228(3):519–560, 2002.
[11] V. Georgescu and V. Nistor. The essential spectrum of N-body systems with asymptotically homogeneous order-zero interactions. C. R. Math. Acad. Sci. Paris, 352(12):1023–1027, 2014.
[12] M. Gualtieri and Songhao Li. Symplectic groupoids of log symplectic manifolds. Int. Math. Res. Not. IMRN, (11):3022–3074, 2014.
[13] M. Ionescu and D. Williams. The generalized Effros-Hahn conjecture for groupoids. Indiana Univ. Math. J., 58(6):2489–2508, 2009.
[14] M. Ionescu and D. Williams. Irreducible representations of groupoid C^*-algebras. Proc. Amer. Math. Soc., 137(4):1323–1332, 2009.
[15] R. Lauter, B. Monthubert, and V. Nistor. Pseudodifferential analysis on continuous family groupoids. Doc. Math., 5:625–655 (electronic), 2000.
[16] R. Lauter and S. Moroianu. Fredholm theory for degenerate pseudodifferential operators on manifolds with fibered boundaries. Comm. Partial Differential Equations, 26:233–283, 2001.
[17] R. Lauter and V. Nistor. Analysis of geometric operators on open manifolds: a groupoid approach. In Quantization of singular symplectic quotients, volume 198 of Progr. Math., pages 181–229. Birkhäuser, Basel, 2001.
[18] M. M˘antoiu. C^*-algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators. J. Reine Angew. Math., 550:211–229, 2002.
[19] M. M˘antoiu, Radu Purice, and Serge Richard. Spectral and propagation results for magnetic Schrödinger operators; a C^*-algebraic framework. J. Funct. Anal., 250(1):42–67, 2007.
[20] R. Mazzeo and R. Melrose. Pseudodifferential operators on manifolds with fibred boundaries. Asian J. Math., 2:833–866, 1998.
[21] I. Moerdijk and J. Mrˇcun. On integrability of infinitesimal actions. Amer. J. Math., 124(3):567–593, 2002.
[22] B. Monthubert. Pseudodifferential calculus on manifolds with corners and groupoids. Proc. Amer. Math. Soc., 127(10):2871–2881, 1999.
[23] V. E. Nazaksinski˘ı, A. Yu. Savin, B. Yu. Sternin, and B.-W. Shulze. On the index of elliptic operators on manifolds with edges. Mat. Sb., 196(9):23–58, 2005.
[24] V. Nistor. Desingularization of Lie groupoids and pseudodifferential operators on singular spaces. [math.DG] http://arxiv.org/abs/1512.08013.
[25] V. Nistor. Desingularization of Lie groupoids, the ‘edge pseudodifferential calculus,’ and Fredholm conditions for singular spaces. MPIM Preprint, december, 2015.
[26] V. Nistor and N. Prudhon. Exhausting families of representations and spectra of pseudodifferential operators. preprint [math.OA], http://arxiv.org/abs/1411.7921.
[27] V. Nistor, A. Weinstein, and Ping Xu. Pseudodifferential operators on differential groupoids. Pacific J. Math., 189(1):117–152, 1999.
[28] V. Rabinovich, S. Roch, and B. Silbermann. Limit operators and their applications in operator theory, volume 150 of Operator Theory: Advances and Applications. Birkhäuser, 2004.
[29] V. Rabinovich, B.-W. Schulze, and N. Tarkhanov. C*-algebras of singular integral operators in domains with oscillating conical singularities. Manuscripta Math., 108(1):69–90, 2002.
[30] J. Renault. A groupoid approach to C*-algebras, volume 793 of LNM. Springer, 1980.
[31] J. Renault. Représentation des produits croisés d’algèbres de groupoïdes. J. Operator Theory, 18(1):67–97, 1987.
[32] J. Renault. The ideal structure of groupoid crossed product C*-algebras. J. Operator Theory, 25(1):3–36, 1991. With an appendix by G. Skandalis.
[33] S. Roch. Algebras of approximation sequences: structure of fractal algebras. In Singular integral operators, factorization and applications, volume 142 of Oper. Theory Adv. Appl., pages 287–310. Birkhäuser.
[34] S. Roch, P. Santos, and B. Silbermann. Non-commutative Gelfand theories. Universitext. Springer-Verlag London, Ltd., London, 2011.
[35] W. Rungrottheera, B.-W. Schulze, and M. W. Wong. Iterative properties of pseudo-differential operators on edge spaces. J. Pseudo-Differ. Oper. Appl., 5(4):455–479, 2014.
[36] E. Schrohe. Fréchet algebra techniques for boundary value problems on noncompact manifolds: Fredholm criteria and functional calculus via spectral invariance. Math. Nachr., 199:145–185, 1999.
[37] E. Schrohe and B.-W. Schulze. Boundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities. I. In Pseudo-differential calculus and mathematical physics, volume 5 of Math. Top., pages 97–209. Akademie Verlag, Berlin, 1994.
[38] A. Sims and D. Williams. Amenability for Fell bundles over groupoids. Illinois J. Math., 57(2):429–444, 2013.
[39] E. Van Erp and R. Yuncken. A groupoid approach to pseudodifferential operators. [math.DG], 2015.
[40] D. Williams. Crossed products of C*-algebras, volume 134 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.

Université de Lorraine, UFR MIM, Ile du Saulcy, CS 50128, 57045 METZ, France and Inst. Math. Romanian Acad. PO BOX 1-764, 014700 Bucharest Romania
E-mail address: victor.nistor@univ-lorraine.fr