Abstract

We point out that the hierarchy between the measured values of the CKM phase and the strong CP phase has a natural origin in supersymmetry with spontaneous CP violation and low energy supersymmetry breaking. The underlying reason is simple and elegant: in supersymmetry the strong CP phase is protected by an exact non-renormalization theorem while the CKM phase is not. We present explicit examples of models which exploit this fact and discuss corrections to the non-renormalization theorem in the presence of supersymmetry breaking. This framework for solving the strong CP problem has generic predictions for the superpartner spectrum, for CP and flavor violation, and predicts a preferred range of values for electric dipole moments.

*Work supported by the Department of Energy, Contracts DE-AC03-76SF00515 (GH) and DE-AC02-76CH03000 (MS)
1 Introduction

Despite it’s impressive phenomenological success the Standard Model has serious short-comings which should be understood as pointers towards physics beyond the standard model. One such shortcoming is the puzzling hierarchy between the CP violating phase in the CKM matrix and the strong CP phase θ. This “strong CP problem” [1] has recently become more severe as results from the B-factories now clearly favor a unitarity triangle with three large angles [2, 3], implying that the complex phase in the CKM matrix is of order one. In contrast, the strong CP phase which is the only other CP violating parameter in the Standard Model has been experimentally bounded to be tiny, $\theta \leq 10^{-10}$ from measurements of electric dipole moments of the neutron and 199Hg [4, 5, 6].

In the Standard Model this hierarchy between the two CP violating phases is puzzling because the phases have a common origin: the Yukawa couplings of the quarks. The CKM matrix is the unitary transformation matrix which takes one from the basis with a diagonal up quark Yukawa matrix Y_u to the basis with a diagonal down quark Yukawa matrix Y_d. An irremovable large phase in the CKM matrix implies at least one irremovable large phase in the Yukawa matrices. This then requires a fine-tuning of the strong CP phase to one part in 10^{10} because θ depends on the phases in the Yukawa matrices via

$$\theta = \theta - \text{argdet}Y_u - \text{argdet}Y_d. \quad (1)$$

Here, we denote the physical (re-phase invariant) theta angle with θ to distinguish it from the basis dependent unphysical “bare” θ.

Several resolutions of the puzzle have been proposed. The axion mechanism [7] promotes θ to a field. QCD dynamics gives this field a potential with a minimum at zero. Experimental searches for the axion have come up empty-handed, and – when combined with constraints from cosmology and astrophysics – they have reduced the allowed parameter space to a narrow window [2]. Another proposed solution, a vanishing up quark mass [8], is on the verge of being ruled out by using partially quenched chiral perturbation
theory to compare lattice calculations to experiment [9].

There are also proposals based on specific models which we may classify as “high-scale solutions” [10]-[14], the most famous of which is the Nelson-Barr mechanism [10]. These models use a symmetry (parity or CP) to enforce $\theta = 0$ at high scales. But in the Standard Model both P and CP are badly broken, and it becomes a challenging and cumbersome model building task to design realistic models which predict $\theta < 10^{-10}$ also at low energies after including all renormalization effects. While some of the models in the literature work, they lack the appeal of the axion and $m_u = 0$ solution which attempt to solve the strong CP problem with symmetries at low energies and are therefore relatively robust against changes in the high-energy theory and renormalization.

Recently, we pointed out [15] that by marrying spontaneous CP violation with supersymmetry one can construct viable high-scale solutions in which θ is automatically insensitive to radiative corrections and new high energy physics. Our proposal makes use of the fact that in supersymmetry the strong CP phase θ is not renormalized because of a non-renormalization theorem [16]. This makes the task of building a successful model much easier. One only needs to make sure that θ is zero at the tree level. Loop corrections are automatically absent if supersymmetry breaking occurs at energies much below the spontaneous CP violation.

In our previous publication [15] we briefly introduced our framework and presented an example model. The basic ingredients of the framework are

- spontaneous CP violation
- SUSY non-renormalization theorems
- flavor and CP preserving SUSY breaking such as gauge mediation

In this paper we discuss our mechanism in more detail and provide a number of arguments and calculations to corroborate the claims made in [15]. In particular, in Section 2 we review our general framework. In Section 3 we show that a sufficiently large CKM phase can be generated from wave function renormalization. We also review the supersymmetric non-renormalization theorem for θ. Section 4 is devoted to explicit models, we
discuss a Nelson-Barr model in which the CKM phase is generated at the tree level. We further present a model in which the CKM phase vanishes at tree level but is generated at the loop level from strongly coupled CP violating dynamics. In Section 4 we discuss the spectrum of supersymmetry breaking masses which is required for a successful implementation of our scheme. In Section 5 we determine the expected size of $\bar{\theta}$ from radiative corrections in the Standard Model and from supersymmetry breaking. Sections 6 and 7 contain our predictions, summary and conclusions. In Appendices A – D we define our notation, show that a large CKM phase from wave function renormalization requires strong coupling and present calculational details regarding the renormalization and non-renormalization of $\bar{\theta}$.

2 The framework

In this section we summarize the basic ingredients of our framework. More details on each will be given in the following sections.

We require CP and supersymmetry to be exact at high energies. At such energies our theory is therefore described by a supersymmetric Lagrangian with coupling constants which can be chosen real. We will think of this Lagrangian as an effective Lagrangian valid up to a cut-off scale which we call M_{Pl} for convenience. But this scale could be any other high scale of new physics such as the GUT scale or the string scale. Our Lagrangian also contains higher dimensional operators suppressed by the cut-off. Such operators are also required to be supersymmetric and CP preserving.

Since the Standard Model is neither SUSY nor CP symmetric both symmetries must be spontaneously broken. We denote the scales at which the symmetry breaking is mediated to the MSSM fields by M_{CP} and M_{SUSY}, respectively. Note that this is a somewhat unconventional definition for M_{SUSY}. To be completely clear, in gauge mediation superpartner masses are proportional to F/M_{SUSY} in our notation, and in minimal supergravity we would have $M_{SUSY} = M_{Pl}$.

In order for our mechanism to work we require that $M_{CP} \gg M_{SUSY}$ as
shown in Figure 1. Therefore the theory is still supersymmetric at M_{CP} and the well-known non-renormalization theorems apply. In particular the strong CP phase $\bar{\theta}$ is not renormalized. This makes building models of spontaneous CP violation which solve the strong CP problem relatively easy. We only need to require vanishing of $\bar{\theta} = 0$ at the tree level, the non-renormalization theorem guarantees that this remains true after quantum corrections. However, the CKM phase is renormalized so that a non-vanishing Φ_{CKM} can be obtained from quantum corrections as in our example model of Ref. [15] or already at the tree level as in the models of Nelson and Barr.

At the much lower scale M_{SUSY} Kaehler potential couplings of MSSM fields to the supersymmetry breaking sector are generated. These couplings turn into soft supersymmetry breaking masses once the SUSY breaking fields are replaced by their vacuum expectation values. It is important that these couplings to the SUSY breaking sector do not yet exist at the scale M_{CP}. This is because they would be renormalized and would pick up phases from the CP violating dynamics. We discuss this issue in more detail in Section 3.

At scales below M_{SUSY} the theory is simply the MSSM with soft masses. Thus the low-energy CP violating parameters can be determined using the well-known renormalization group equations of the MSSM. This renormalization only generates negligibly small contributions to $\bar{\theta}$ if the soft SUSY
breaking parameters are real and flavor universal. We review the arguments which prove this in gauge mediated supersymmetry breaking in Section 6.

3 CKM phase from wave functions

In this section we show explicitly that wave function renormalization does not contribute to θ. This is crucial to our mechanism because wave function renormalization is not constrained by $N = 1$ supersymmetry. However, and this is important for our model of CP violation from wave functions in Section 4, wave function renormalization of the quarks contributes to the CKM phase. We show that a large CKM phase can be generated entirely from renormalization of the quark kinetic terms if the Z-matrices appearing in the renormalization deviate from the unit matrix by order one. Finally we discuss the (non)renormalization of θ and Φ_{CKM} in supersymmetry.

To begin, consider the following Lagrangian containing the kinetic terms of the SM quarks and their Yukawa couplings

$$\mathcal{L}_{\text{kinetic}} = \bar{Q}i\not\!D Z Q + \bar{D}i\not\!D Z d + \bar{U}i\not\!D Z u$$

$$\mathcal{L}_{\text{yukawa}} = \bar{Q} \hat{Y}_u H_u U + \bar{Q} \hat{Y}_d H_d D .$$

We use two-component spinor notation, Q are the $SU(2)$-doublet quarks, D and U are $SU(2)$-singlets. Z_i denote wave function renormalization factors which in general are complex, Hermitian and positive definite 3×3 matrices. Such matrices can always be written as the square of other positive definite Hermitian matrices $Z_i = (T_i)^{-2}$. Thus we can always change from this most general basis to canonical fields by a Hermitian basis change $Q \rightarrow T_Q Q$, $U \rightarrow T_u U$ and $D \rightarrow T_d D$ which leads to new Yukawa matrices

$$Y_u = T_Q \hat{Y}_u T_u , \quad Y_d = T_Q \hat{Y}_d T_d$$

It is important to note that this basis change does not shift θ. This is most easily seen by writing $T = U^\dagger SU$ with unitary U and real-diagonal
Rescaling the quark fields by the real matrix S does not change θ and potential contributions from U and U^\dagger cancel.

It is now easy to see that the contribution to θ from quark masses (see Eq. (4)) vanishes if the only phases in the quark sector are in the Z_i. This follows because

$$\text{argdet}Y_{u/d} = \text{argdet}T_Q + \text{argdet}\hat{Y}_{u/d} + \text{argdet}T_{u/d} = 0$$

by hermiticity of T and reality of $\hat{Y}_{u/d}$.

Note that the phases contained in the Z-factors are physical and lead to a non-vanishing CKM phase. In fact, arbitrary quark masses and CKM matrices can be obtained as can be seen from the example $\hat{Y}_u = \hat{Y}_d = T_Q = 1$, $T_u \propto \text{diag}(m_u, m_c, m_t)$, and $T_d \propto \text{V}_{\text{CKM}} \text{diag}(m_d, m_s, m_b)\text{V}_{\text{CKM}}^\dagger$.

We remark one more result here which is important for the model in Section 4.2. In order to generate an order one CKM phase from wave function factors the Z’s cannot be close to the unit matrix. In other words if – for example – nontrivial δZ’s (with $Z = 1 + \delta Z$) are generated dynamically from loops, then this dynamics needs to be strongly coupled so that $\delta Z \sim O(1)$. If the δZ’s are small, then a large CP violating phase cannot be generated. While this is plausible, it turns out to be difficult to prove. A somewhat pedestrian derivation is given in Appendix B.

To summarize, what we have discussed above outlines a possible strategy for solving the strong CP problem: if one can construct a model with vanishing bare θ, real Yukawa matrices, but complex Hermitian wave function factors Z_i, then θ vanishes even for large CP violation in the CKM matrix.1

However, the above is not yet a solution to the strong CP problem. In the presence of CP-violating dynamics reality of the Yukawa matrices in Eq. (3) is not enforced by any symmetries, and it is in general just as miraculous as a vanishing strong CP phase $\bar{\theta}$. But we will show in the following Section that supersymmetry and its nonrenormalization theorems can naturally give complex phases in the kinetic terms and real Yukawa matrices.

1We have not yet shown that this is stable under radiative corrections. We will deal with this in Section 6 where we discuss renormalization of θ.

3.1 Supersymmetry

As we will now explain, the situation improves dramatically in the presence of supersymmetry. This is essentially because in supersymmetry $\bar{\theta}$ and the Yukawa matrices \hat{Y} are holomorphic quantities which are protected by non-renormalization theorems. However, the wave function factors Z_i stem from the Kaehler potential and are renormalized. Thus, if it can be arranged in a model that $\bar{\theta}$ remains zero at the tree level, then the nonrenormalization theorem guarantees this also at the quantum level. The CKM phase is renormalized and can be generated either at the tree level or by loops.

More explicitly, a supersymmetric Lagrangian can be written as

$$\mathcal{L} = \int d^4\theta \ K + \int d^2\theta \ W + W_{\text{gauge}},$$

(6)

where K is the Kaehler potential, W the superpotential, and W_{gauge} contains the gauge kinetic terms. Matter fermion masses are given by second variations of the superpotential $\hat{M}_{ij} \equiv \partial^2 W / \partial \phi_i \partial \phi_j$ times wave function renormalization factors from the Kaehler potential. The wave function renormalization is determined from the kinetic terms $Z_{ij} \equiv \partial^2 K / \partial \phi_i \partial \phi_j^*$. Since Z_{ij} is positive definite and hermitian it can be written as the square of a non-singular hermitian matrix $Z = T^{-2}$.

Chiral superfields in the original basis are related to fields in the canonical basis by $\phi_k \rightarrow T_{ki} \phi_i$, and the general expression for properly normalized fermion masses is

$$M_{ij} = -\frac{1}{2} T_{ik} \hat{M}_{kl} T_{jl}.$$

(7)

It follows that the contribution to $\bar{\theta}$ from $\text{arg det} \ M$ vanishes if the couplings (and vevs) in W are real. This remains true for arbitrary complex Kaehler potential couplings.

In the MSSM, we have

$$\hat{M}_u = \hat{Y}_u v_u, \quad \hat{M}_d = \hat{Y}_d v_d$$

(8)

where v_u and v_d are the vevs of the up- and down-type MSSM Higgs fields, respectively. The quark mass matrices are defined in terms of $\hat{M}_{u,d}$ with
products of wave function factors $T_{Q,u,d}$ as in the non-supersymmetric case.

We are now ready to discuss the non-renormalization of $\bar{\theta} = \theta - \text{arg det } M$. We showed above that $\text{arg det } M$ is not renormalized. To understand the renormalization of θ it is convenient to define the superfield

$$\tau = \frac{1}{g^2} + i \frac{\theta}{8\pi^2}$$

and work in a basis in which the gauge-kinetic term is $\int d^2 \theta \frac{1}{4} W_\alpha W^\alpha$, and where no wave function renormalization is performed. In this basis τ is renormalized at one loop only [17, 18]

$$\tau(\mu) = \tau(\mu_0) - \frac{b_0}{8\pi^2} \log(\mu/\mu_0).$$

(10)

Here μ and μ_0 are real renormalization scales and b_0 is the one-loop β function coefficient. Taking the imaginary part on both sides shows that θ is also not renormalized.

So far, we have ignored mass thresholds. A superfield with a mass m between μ and μ_0 should be integrated out at the scale m. This gives a shift $\delta \tau = -t_2/8\pi^2 \log(m)$, and if m is complex we have $\theta \to \theta - t_2 \text{arg } m$. Here t_2 is the Dynkin index in the color representation of the field which was integrated out ($t_2 = 1$ for a quark). This is exactly what is needed for $\bar{\theta}$ to be invariant, because the massive field should not be included in the $\text{arg det } M$ term in the definition of $\bar{\theta}$ in the low energy theory. We discuss the non-perturbative generalization of this non-renormalization theorem in Appendix C.

To end this section, we wish to clarify a potential confusion stemming from the possibility of redefining the phase of the gluino field via an anomalous R-symmetry transformation. In the absence of a gluino mass this appears to allow rotating away the θ-angle. However, in order for supersymmetry breaking to generate a gluino mass as required for phenomenology,
the R-symmetry has to be broken in the theory. If this breaking is sponta-
neous then the theory has an R-axion, and we have re-discovered the axion
solution to the strong CP problem (with its associated phenomenological
constraints). If the breaking is explicit θ cannot be rotated away.

4 The CP violating sector

In this section we discuss the requirements on the sector of the theory which
is responsible for breaking CP. We also give two examples and emphasize the
trouble with models without SUSY.

The job of the CP violating sector is to produce a CKM phase of order
one while avoiding a tree level contribution to $\bar{\theta}$. Quantum corrections to $\bar{\theta}$
are automatically taken care of by the non-renormalization theorem and low
energy SUSY breaking as discussed in Sections 3 and 5.

There are two possible strategies for generating the CKM phase. The first
was proposed long ago by Nelson and by Barr. In their scenario, the ordinary
quarks mix with ultra-heavy vector-like quarks via complex couplings. As we
will review in the next subsection this mixing generates a CKM phase at the
tree level while a clever choice of Yukawa couplings (or equivalently of field
content and global symmetries) forbids the tree level contribution to $\bar{\theta}$. The
other possibility was proposed in our recent publication [15]. In our scenario,
CP violation only couples to the MSSM at the loop level. This automatically
guarantees a vanishing $\bar{\theta}$, and the CKM phase must be generated from loops
which renormalize the quark wave functions. We review this scenario in the
second subsection.

Spontaneous CP violation requires some fields to have potentials which
are minimized at complex vacuum expectation values. For simplicity we will
omit the specific potentials. They are not difficult to construct even though
the Lagrangian is real because of the underlying CP invariance. A simple
example is given by the superpotential

\[W = \Xi (\Sigma^2 + \mathcal{E}^2) \]

(11)
with singlet chiral superfields Ξ and Σ, whose scalar potential force a complex vev for \(\Sigma = \pm i \mathcal{E} \).

4.1 Nelson-Barr

In Nelson-Barr models [10], CP violation is communicated to the quarks already at the tree level. The non-trivial model-building feat is to arrange the superpotential such that \(\theta = 0 \) at the tree level. A relatively simple choice is to add a vector-like 4th singlet down quark. The superfields \(D_4 + \bar{D}_4 \) have \((SU(3), SU(2))_{U(1)}\) quantum numbers \((\bar{3}, 1)_{1/3} + (3, 1)_{-1/3}\) and couple in the superpotential to the MSSM fields and three complex vevs \(\Sigma_i \) as follows

\[
W = Q_i \hat{M}_{ij} D_j \quad i, j = 1..4 .
\]

(12)

Abusing notation, we defined \(Q_4 \equiv \bar{D}_4 \), and the mass matrix \(\hat{M} \) is

\[
\hat{M} = \begin{pmatrix} \hat{Y}_d H_d & 0 \\ r \Sigma & \mu \end{pmatrix}.
\]

(13)

Here \(\mu \gg M_{\text{weak}} \) contributes to the mass of the vector-like fermions, and all couplings and \(\mu \) are real because of the underlying CP symmetry. This form of the Lagrangian can be enforced by additional global symmetries. A similar mixing could also be introduced in the up-sector and everything is straightforwardly extended to a GUT.

One can easily verify that \(\arg \det \hat{M} = 0 \), and therefore \(\vec{\theta} = 0 \) at the tree level as desired. The CKM matrix is the mismatch of the basis in which

\[
Y_u Y_u^\dagger = \hat{Y}_u \hat{Y}_u^T \quad \text{and} \quad Y_d Y_d^\dagger = \hat{Y}_d \left(1 - \frac{aa^\dagger}{|a|^2 + \mu^2} \right) \hat{Y}_d^T
\]

(14)

are diagonal. Here we have defined the three-vector \(a^\dagger = (r_1 \Sigma_1, r_2 \Sigma_2, r_3 \Sigma_3) \) and used the approximation \(\hat{Y}_d H_d \ll r \Sigma \sim \mu \) to compute the down quark Yukawa matrix. We see that if the vevs \(\Sigma_i \) are complex and \(a_i \gg \mu \) the down quark matrix has large phases giving an unsuppressed CKM phase as desired.

As discussed in previous sections, supersymmetry guarantees that \(\vec{\theta} \) remains zero at the loop level as well. If we had considered this model without
SUSY as originally proposed by Nelson, then we would have to worry about loops involving the heavy fermions and Σ fields which contribute to θ. In order to make the Nelson-Barr models safe without SUSY one needs to take the couplings r_i very small ($\sim 10^{-3} - 10^{-4}$) while simultaneously tuning $r_i\Sigma_i \sim \mu$.

4.2 CKM phase from loops

In this section we review an example model which was presented in our first paper [15]. In this model the CKM phase stems from wave function renormalization factors Z_i of the quarks. The Z_i factors arise from loops of heavy superfields with complex masses.

Here we will describe an $SU(5)$ GUT version of the model. In addition to the usual three generations of $\mathbf{5}_i + 10$, matter fields we also require a vector-like $\mathbf{5}_4 + \mathbf{10}_4$ (models with one or several $10 + \mathbf{10}$ or both $\mathbf{5} + \mathbf{5}$ and $10 + \mathbf{10}$ are of course also possible). Furthermore, we have the usual Higgs H_u and H_d and three generations of gauge singlet superfields $F_i + \overline{F}_i$. The superpotential contains the usual MSSM couplings as well as

$$ W_{CP} = r_{ij}\mathbf{5}_i F_j \mathbf{5}_4 + s\Sigma_{ij} F_i \overline{F}_j + M \mathbf{5}_4 \overline{\mathbf{5}}_4 . $$

M, r and s are real, the indices i, j run over 1..3, and the matrix Σ_{ij} is assumed to have complex entries from spontaneous CP breaking.

To determine the low-energy CP violation we integrate out the massive fields F and $\mathbf{5}_4 + \overline{\mathbf{5}}_4$. The low energy superpotential which derives from Eq. (15) vanishes when inserting the equations of motion for F’s and $\mathbf{5}_4$, but the diagram of Figure 2 generates a non-canonical complex kinetic term for $\mathbf{5}_i$. Note that for CP violation to be mediated to the MSSM fields the CP breaking sector needs to violate flavor, otherwise the resulting kinetic term for $\mathbf{5}_i$ would be diagonal and real. For $\Sigma > M$ the Feynman diagram is easily

3A more minimal CP violating sector with only two F’s and no \overline{F} would work as well. Note also that we have vanishing vevs for F and \overline{F}, with a non-vanishing and complex $r < \overline{F} > \sim M$ this model would essentially be Nelsons’.
Figure 2: Figure of wave function renormalization for the $\overline{5}_i$ following from the superpotential in Eq. (15).

evaluated. It’s CP violating part involving the vev of Σ is finite and can be expanded to give

$$\delta Z_\Sigma \sim \frac{1}{16\pi^2} \, r^\dagger \frac{\Sigma^\dagger \Sigma}{M_{CP}^2} \, r$$

(16)

where M_{CP} is the scale at which spontaneous CP breaking is mediated to the quarks, $M_{CP}^2 \sim s^2 tr \left[\Sigma^\dagger \Sigma \right]$.

As discussed in Section 3, a sufficiently large phase in the CKM matrix can only be generated when wave function renormalization is large which requires $r \sim 4\pi$. This implies that the one-loop approximation is not reliable. Therefore, it is most useful to parameterize the wave function coefficient by an arbitrary hermitian matrix Z_Σ.

As it stands, this model is incomplete because of the large Yukawa coupling r. The problem is that if the scale of CP violation is below the Planck scale then the Yukawa coupling runs to values of order one within one e-folding even if it is 4π at the Planck scale. A large Yukawa coupling at the lower scale M_{CP} can be arranged by letting the F_i‘s and $\overline{5}_4 + 5_4$ interact with a new strong gauge group. It is easy to modify this model to include these interactions. We present such a model in Appendix C, where we also show that the relevant non-perturbative effects in r and the new strong gauge coupling can be determined exactly and do not contribute to $\bar{\theta}$.

12
4.3 Reproducing the quark masses and CKM matrix

We make some general remarks on models with CP violation from kinetic terms. Since wave function renormalization factors are required to be large (and not computable in perturbation theory) and flavor violating, their effects on quark masses and mixing angles are important. This suggests two different basic scenarios (models which interpolate between the two extreme cases are of course also possible):

A) The hierarchical structure of the Yukawa couplings is generated at a scale above M_{CP}, and the wave function renormalization is only responsible for generating the necessary phases. In the process, the strong dynamics necessarily changes at least some of the mixing angles completely, but the quark mass hierarchy is essentially unchanged.

B) Flavor and CP violation have a common origin. At scales above M_{CP} the Yukawa couplings are either universal ($\hat{Y}_i^j \propto \delta_i^j$) because of non-abelian flavor symmetries, or have “random” $O(1)$ entries (flavor anarchy), and the entire flavor structure including the hierarchy stems from the wave function renormalization factors T. Models in which flavor originates from wave function renormalization have been built by Nelson and Strassler [19]. Their models, when adapted to incorporate our mechanism, generate flavor and solve the strong CP problem.

4.4 The trouble with models without SUSY

Note that the necessity of strong coupling $r \sim 4\pi$ underlines why supersymmetry is so important to our approach: Non-SUSY models of CP violation induced by non-canonical kinetic terms have been discussed in the literature, with the new sector coupling only to the doublet quarks [12], or to the singlets [13]. Without SUSY no non-renormalization theorem protects the colored fermion masses from CP violating vertex corrections, which occur at some – possibly high – loop level. However, because of the required large coupling for r, arbitrarily high loop diagrams can still violate the bound on θ. Turning the argument around, EDM data put severe constraints on the
model parameters, in particular the coupling r. For example, because of a
vertex correction at four loops the authors of Ref. [12] were forced to take
$r < 1$, and therefore their model cannot produce large CKM CP violation.
Like the one(s) in [13], it is super-weak and therefore ruled out. In general,
this is the fate of non-SUSY models with CP violation from kinetic terms;
supersymmetry and its non-renormalization theorems appear to be necessary
ingredients for this mechanism to yield realistic models with a large CKM
phase.

5 SUSY breaking

In this section we discuss the constraints on SUSY breaking and communica-
tion which follow from our solution to the strong CP problem. The non-
renormalization theorems guarantee $\theta = 0$ with exact SUSY. However, after
SUSY breaking θ is renormalized, and we find that avoiding large contribu-
tions from loops including superpartners forces the SUSY breaking masses to
be highly degenerate. Furthermore, flavor preserving SUSY parameters, such
as the gaugino masses and $B\mu$ are required to be real to a high accuracy. We
also argue that low-energy SUSY breaking models such as gauge mediation
are most compatible with our mechanism. This is because the CP violating
dynamics renormalizes the SUSY breaking masses and spoils the necessary
degeneracies if soft masses are already present at the high scale M_{CP}. We
give a more detailed discussion of the renormalization of θ in gauge mediation
in Section 6 and Appendix D where we also give more references.

To begin, note that in the MSSM Eq. (1) is generalized to

$$\tilde{\theta} = \theta - \arg \det Y_u - \arg \det Y_d - 3 \arg (v_u v_d) - 3 \arg m_{\tilde{g}}.$$ (17)

This immediately implies a strong constraint on SUSY breaking parameters
as the gluino mass and the Higgs vevs have to be real to one part in 10^{10}. The
reality of the Higgs vevs translates into constraints on parameters in the
Higgs potential. In particular, a complex $B\mu$ induces complex vevs already
at the tree level. We discuss further constraints on the Higgs potential in
Figure 3: Lowest order SUSY diagrams contributing to θ. A cross denotes a left-right mass insertion.

Phases of all other flavor-blind MSSM parameters are constrained because they feed into colored fermion masses through radiative corrections from the diagrams of Figure 3. We summarize these constraints as

$$\arg m_{\tilde{g}}, \arg B\mu < 10^{-10}, \arg A_0, \arg \mu < 10^{-8}, \arg m_{\tilde{\gamma}, \tilde{Z}, \tilde{W}} < 10^{-7} \quad (18)$$

where A_0 denotes the proportionality constant of the A-terms $A = A_0 Y$. We note that these constraints are much more stringent than the bounds on soft phases from direct contributions to EDM’s which only require phases to be smaller than order 10^{-2}.

The diagrams in Figure 3 also lead to strong constraints on both real and imaginary parts of flavor violating soft masses. The contributions to θ are proportional to traces over flavor violating quantities such as $\text{Im} tr \left[Y_x^\dagger A_x \right]$, $\text{Im} tr \left[Y_x^{-1} A_x \right]$, $\text{Im} tr \left[Y_x^{-1} m_q^2 A_x m_x^2 \right]$ where $x = u, d$, see Appendix D. The most natural way to satisfy the bounds on θ is to assume proportionality and degeneracy

$$A_{u,d} \propto Y_{u,d}, \quad m_{q,\tilde{u},\tilde{d}}^2 \propto 1 \quad (19)$$

Deviations from Eq. (19), parameterized as δA and δm^2, are very constrained, see Appendix D. For generic deviations which are not “aligned” with the Yukawa matrices, the constraints on some of the matrix elements are as
strong as
\[
\frac{\delta A}{m_0} < 10^{-13} \quad \frac{\delta m^2}{(m_0)^2} < 10^{-6},
\] (20)

where \(m_0\) denotes the average superpartner mass scale. These bounds apply at \(m_0\). They require a much higher degree of “flavor blindness” from the mechanism of supersymmetry breaking and mediation than FCNC bounds.

Note also that the contributions to \(\mathbf{\theta}\) from loops with flavor violation in superpartner masses do not decouple in the limit of heavy superpartners. Thus the bounds (20) apply equally for heavier superpartners. This is in contrast to the case of FCNCs.

5.1 Why do we need \(M_{CP} > M_{SUSY}\)?

For example, minimal supergravity (mSUGRA) is not compatible with our solution to the strong CP problem; this can be seen as follows. The Kaehler potential relevant for squark masses in mSUGRA is
\[
\int d^4 \theta \ Z_{ij} Q_i^\dagger Q_j + \frac{S^\dagger S}{M_{Pl}^2} X_{ij} Q_i^\dagger Q_j
\] (21)

for the quark \(SU(2)\)-doublets and similar terms for the singlets. If we assume a SUSY breaking expectation value for the \(F\)-component of the superfield \(S\) scalar masses result
\[
(m_{\tilde{q}}^2)_{ij} = (T X T)_{ij} \frac{F^* F}{M_{Pl}^2},
\] (22)

where \(Z = T^{-2}\) as in Section 3. Of course, we can always work in a basis where \(T = 1\) at \(M_{Pl}\), but in general \(X\) will not be proportional to the unit matrix in this same basis. Partial alignment \(X \simeq Z\) can be achieved by imposing non-abelian flavor symmetries [20], but residual non-degeneracies are expected to violate the bounds Eq. (20) by orders of magnitude [21]. This is the usual flavor problem of mSUGRA.

In our scenario, the situation for a SUSY breaking mechanism where superpartner masses are generated at scales above \(M_{CP}\) is even worse. This is because the flavor- and CP-violating dynamics at \(M_{CP}\) renormalizes \(Z\) and
X in Eq. (21) differently. So, even if we had somehow arranged $X = Z$ at M_{Pl}, this alignment would be spoiled at scales below M_{CP}. To illustrate this point we give the one-loop renormalization of the right-handed down squark masses in the second model of the previous Section. Ignoring all coupling constants except r_{ij} this is $m^2(\mu)/m^2(M_{Pl}) \sim (\mu/M_{Pl})^{r/16\pi^2}$ which is completely non-universal when $r \sim 4\pi$.

We conclude that SUSY models with spontaneous CP violation require a mechanism of SUSY breaking and mediation in which the scalar masses are generated below M_{CP}. We will therefore discuss gauge mediation as a compatible SUSY breaking mechanism in more detail in the next section.

Of course, any other mechanism of SUSY breaking which generates universal scalar masses at low scales is compatible with our scheme. A preliminary look at gaugino mediation \cite{23} with the CPX dynamics at M_{Pl} on the visible sector brane suggests that gaugino mediation is also compatible with the constraints Eq. (20).

6 Renormalization of $\bar{\theta}$ in gauge mediation

In this section we summarize results on the renormalization of $\bar{\theta}$ in the MSSM with gauge mediated supersymmetry breaking (GMSB). That gauge mediation is compatible with solutions to the strong CP problem based on spontaneous CP violation has been known for some time \cite{24}. We quote here only the most important results with further details provided in Appendix D.

In GMSB, the superpartner masses arise from loop diagrams involving the SM gauge interactions and messenger particles with SUSY violating masses. The dominant contributions to the scalar masses from these diagrams have loop momenta of order of the messenger mass; at higher energies the scalar masses are power-suppressed. Thus by separating the messenger scale (which we have been calling M_{SUSY}) and CPX scale $M_{CP} > M_{SUSY}$, one can sup-

\footnote{The only known exception to this is anomaly mediation \cite{22} where the special form of supersymmetry breaking proportional to the conformal anomaly enforces $X = Z$ at all scales. Therefore, anomaly mediation works very nicely with our scenario, we briefly discuss it in Section 6.1.}
press the dangerous renormalization of the scalar masses from the CPX sector.

The leading contributions to $\bar{\theta}$ in GMSB can be divided into two classes which we discuss in turn. Contributions which arise in the effective theory below M_{CP} from renormalizable interactions and are relatively model-independent and contributions from higher dimensional operators suppressed by the scale M_{CP} which are model-dependent but can always be made small by taking $M_{CP} \gg M_{SUSY}$.

At the renormalizable level the only flavor violating couplings in the effective theory below M_{CP} are the Yukawa couplings. The gauge-mediated soft SUSY violating masses are approximately given by $A_x = 0$ and $m_\tilde{x}^2 = (m_0)^2$. Using the flavor symmetries one can then show that the renormalization of $\bar{\theta}$ from SUSY breaking can always be written in terms of the hermitian matrices $h_x = Y_x Y_x^\dagger$ in the combination $\det [h_u, h_d]$, the Jarlskog invariant, see Appendix A. The leading contribution is $\delta \bar{\theta} \sim 10^{-29} \tan^6 \beta$ which is smaller than the leading finite SM renormalization $\delta \bar{\theta} \sim 10^{-19}$, see Appendix D.

The other class of contributions to $\bar{\theta}$ involve higher dimensional operators generated from integrating out the strong CPX dynamics at M_{CP}. For example

$$\int d^4 \theta \frac{D^\dagger D D^\dagger D}{M_{CP}^2} \text{ and } \left(\frac{\alpha_s}{4\pi} \right)^2 \frac{X^\dagger X}{M_{CP}^2} D^\dagger D. \tag{23}$$

Here D is the right-handed down quark superfield and X is the superfield whose F-component is the source of supersymmetry breaking. The first of these operators is generated from the CPX violating dynamics directly whereas the second comes from computing the two-loop gauge mediation diagram for scalar masses but restricting the loop momenta to be above the scale M_{CP}. Because of the strongly coupled CPX dynamics at M_{CP} the coefficients of these operators are not calculable and flavor-off-diagonal. Both operators lead to contributions to δm^2 which are proportional to $(M_{SUSY}/M_{CP})^2$. The bounds given in Eq. (20) then constrain

$$\frac{M_{SUSY}}{M_{CP}} \lesssim 10^{-3}. \tag{24}$$
Combining this with the fact that the gauge mediation scale is bounded from below by roughly 10^4 GeV we learn that $M_{CP} \gtrsim 10^7$ GeV, well out of reach of any current or planned accelerator. Both scales are a priori unknown so that we cannot predict the size of $\bar{\theta}$.

We discuss implications on superpartner masses and electric dipole moments in Section 7. For a brief compilation of values of $\bar{\theta}$ induced by renormalization see Table 1 in Section 8.

6.1 Anomaly mediation

Even though SUSY breaking and mediation are at high scales in anomaly mediation (AMSB) \cite{22}, the superpartner masses at the weak scale are determined by supersymmetric low-energy couplings. They are ultra-violet insensitive and therefore independent of the CPX dynamics. The resulting soft terms are approximately flavor-universal, and contributions to $\bar{\theta}$ are similar to the contributions from renormalizable couplings in gauge mediation, negligibly small. A complete model of course requires a solution to the problem of negative slepton masses. Any solution which retains the UV-insensitivity and flavor-universality is compatible with our framework. A nice example is given by \cite{25}.

6.2 Contributions from higher dimensional operators

In this section we discuss a number of different corrections to $\bar{\theta}$ which are model dependent. They include higher dimensional operators in the superpotential, corrections to the gauge kinetic functions, Kaehler potential terms which renormalize the superpotential after SUSY breaking, and higher derivative operators. All of these operators may arise from quantum gravity dynamics suppressed by the Planck scale, but some may also arise from CPX dynamics and are therefore only suppressed by M_{CP}.

i. Higher dimensional operators in the superpotential: We showed in Section 3.1 that in the absence of SUSY breaking the only contributions to $\bar{\theta}$ can come from the superpotential. Therefore the most dangerous couplings
are direct couplings of CP violating vevs to the MSSM or any colored fields in the superpotential. In order for our mechanism to work we must assume that there are no such couplings at the renormalizable level. For example, we cannot have the couplings $\Sigma H_u H_d$ or $\Sigma T \bar{T}$. Both of these couplings can easily be forbidden by a symmetry under which Σ transforms and the MSSM fields are neutral. At the non-renormalizable level we may have

$$\int d^2 \theta \left(\frac{\Sigma}{M_{Pl}} \right)^k W_\alpha W^\alpha + \left(\frac{\Sigma}{M_{Pl}} \right)^l \mu H_u H_d + \left(\frac{\Sigma}{M_{Pl}} \right)^m Q \bar{Y}_u U H_u . \quad (25)$$

Each of these operators, if present, would give a contribution to $\bar{\theta}$ which is proportional to powers of M_{CP} / M_{Pl} and could be important if M_{CP} is large and the exponents k, l, m are small. Again, these superpotential operators are strongly constrained by symmetries and even in the absence of symmetries superpotentials need not be generic because of the non-renormalization theorems. For example, in our model in Section 4.2, one can define a $U(1)$ symmetry under which only Σ and \bar{F} are charged and which forbids all these terms.

\textit{ii. Kaehler potential terms involving SUSY breaking:} Higher dimensional operators in the Kaehler potential which couple the MSSM fields to fields with SUSY breaking vevs can give rise to superpotential terms proportional to SUSY breaking. For example, a Kaehler potential term $X^\dagger / M_{Pl}^2 Q H_d D$ with complex coefficient gives rise to a superpotential Yukawa coupling with a coefficient F / M_{Pl}. The same operator with M_{Pl} replaced by M_{CP} is suppressed by powers of SM gauge couplings over $16\pi^2$ if SUSY breaking and CPX dynamics are not strongly coupled to each other. None of these operators are dangerous of the SUSY breaking scale is sufficiently low.

\textit{iii. Higher derivative Kaehler terms:} Kaehler potential terms involving the covariant derivative D_α suppressed by M_{Pl} or M_{CP} generate effective $d^2 \theta$ terms with ordinary derivatives. For example

$$\int d^4 \theta \frac{Q H_d (D_\alpha)^2 D}{M_{CP}^2} \longrightarrow \int d^2 \theta \frac{Q H_d D}{M_{CP}^2} \ . \quad (26)$$

These operators can have different flavor structure from the Yukawa couplings and at one-loop give a flavor non-universal renormalization of the soft
SUSY breaking scalar masses which are suppressed by \((M_{\text{SUSY}}/M_{\text{CP}})^2\). We find the same bound as from the higher dimensional operators in Eq. (23):
\[M_{\text{SUSY}}/M_{\text{CP}} \lesssim 10^{-3}. \]

iv. Phases in the SUSY breaking sector: If \(\Sigma\) couples directly to the SUSY breaking sector, then one has to worry about generating a complex SUSY breaking vev \(F\). A phase in \(F\) contributes directly to \(\theta\) via the gluino mass. It is easy to see that couplings of \(\Sigma\) in the superpotential of the dynamical SUSY breaking sector lead to complex \(F\). We therefore need to forbid such couplings; this can be arranged in the same way as superpotential couplings of \(\Sigma\) to the MSSM fields can be forbidden. Phases in the Kaehler potential are less dangerous because of hermiticity of the Kaehler potential. At tree level, and in looking at simple toy models we found \(F \propto \det Z_{\text{SUSY}}\) which is real. Here, \(Z_{\text{SUSY}}\) is a wave function renormalization factor in the Kaehler potential of the SUSY breaking sector.

A more general analysis of phases in SUSY breaking sectors including loop corrections is desirable but beyond the scope of this paper. In any case, such phases can always be avoided by separating the SUSY breaking and CPX sectors. For example, if the SUSY breaking sector does not carry the global flavor symmetries of \(\Sigma\), then couplings of \(\Sigma\) to the SUSY breaking sector have to be of the form \(\text{Tr} (\Sigma^\dagger \Sigma)\) and are therefore real.

v. Phases in the MSSM Higgs sector: We already showed that phases in \(\mu\) or \(B\mu\) are strongly constrained. \(m_{H_u}^2\) and \(m_{H_d}^2\) and the supersymmetric quartic couplings are automatically real, but one might worry about phases from higher dimensional operators in the Kaehler potential for \(H_u\) and \(H_d\). For example,
\[
\int d^4\theta \frac{c}{M^2} H_u^2 H_u^\dagger H_d + h.c.
\]
with complex \(c\) and \(M = M_{\text{Pl}}\) or \(M = M_{\text{CP}}\) leads to complex phases in the Higgs vevs which are suppressed by \((M_{\text{weak}}/M)^2\). This is harmless even for the lowest possible values of \(M_{\text{CP}}\) and unsuppressed coupling constant \(c\).
7 Predictions

Our framework requires tight constraints on the flavor (and CP) structure of the SUSY breaking soft terms which have various testable consequences. We predict [15]

1. Supersymmetry

2. Minimal flavor violation, i.e., there are no significant new sources of flavor violation beyond the Yukawa couplings at energies near the weak scale. This has well-known implications for B-physics [26, 27].

3. No measurable new CP violation in the quark sector beyond the SM, in particular no new CP violation in the B-system. For example, $\sin 2\beta$ is large as in the SM [26]. We might expect the phases in the lepton mixing matrices to be large in analogy with the quarks.

4. Almost degenerate first and second generation scalars of each gauge quantum number. Generic violations of quark mass universality are very tightly constrained (see Eq. (20)). However, by aligning squark masses with quark masses

$$m_\tilde{q}^2 = m_0^2 (1 + c_u Y_u^\dagger Y_u + c_d Y_d^\dagger Y_d),$$

$$m_\tilde{x}^2 = m_0^2 (1 + c_y Y_x^\dagger Y_x),$$

(28)

the renormalization of $\bar{\theta}$ remains small ($< 10^{-10}$) as can be seen from Eqs. (D-4)-(D-7), even though this ansatz allows for more flavor violation than Eq. (19). In this Ansatz the (real) coefficients $c_{u,d}$ are not expected to be arbitrarily large since at some point the contribution to 3rd generation superpartners becomes very large. Imposing $c_i < 1/Y_3^2$, where Y_3 denotes the Yukawa of the top, bottom and tau, gives $\Delta m < 1$ GeV for the difference between the first and second generation scalars. This is a prediction which should be tested at a linear collider. We stress that this degeneracy holds independent of the SUSY breaking mechanism. It follows only from demanding that the
radiative corrections to $\bar{\theta}$ not be too large (and a reasonable constraint on the c_i). Note that this also bypasses possible FCNC problems since the resulting off-diagonal squark masses obey

$$\frac{\Delta m^2_{\tilde{q}}}{m_0^2} (12,13,23) \leq (V_{ub}V_{cb}^*, V_{ub}V_{tb}^*, V_{cb}V_{tb}^*) \lesssim (10^{-5}, 10^{-2}, 10^{-1})$$

(29)

where $\Delta m^2_{\tilde{q}}(ij)$ denotes the mixing between the ith and jth generation. These values are within the experimental bounds [28].

5. At the renormalizable level, the radiatively induced strong CP phase is of the order $\bar{\theta} \simeq 10^{-19}$. However, depending on the model dependent ratios M_{SUSY}/M_{CP} and M_{CP}/M_{Pl}, the strong phase $\bar{\theta}$ can be as large as 10^{-10}. Thus, the corresponding hadron electric dipole moments can be close to the experimental bound and might be measured soon [29].

6. A weak electric dipole moment d_f is a contribution to the 5-dimensional operator $d_f \frac{i}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f E^{\mu\nu}$. The EDMs for quarks and leptons arise from 1-loop diagrams like Figure 3 with an external photon attached to wherever possible. In the general MSSM with arbitrary phases the experimental bound from the electron EDM $d_e < 1.8 \times 10^{-27} ecm$ [3], and from the neutron EDM $d_n < 6.3 \times 10^{-26} ecm$ [2] require the phases of μ, A-terms and the gaugino masses to be less than 10^{-2}, e.g. [30]. Since the dipole moments are linear in the soft SUSY phases we conclude that the phases which are constrained by Eqs. (18) and (20) give weak quark and lepton EDMs which are at least five orders of magnitude below their experimental bounds. Note that improvements of the experimental EDM limits further strengthen the bounds Eq. (18), thus weak EDMs are always smaller than strong EDMs in our framework.

7. Large flavor-preserving phases in the soft terms with their associated “SUSY CP-problem” have no place in our framework, see the bounds in Eq. (13). This simplifies in particular the phenomenological analysis of the Higgs potential.
8 Summary and concluding remarks

We presented a new theory of CP with supersymmetry and spontaneous CP violation. CP is assumed to break spontaneously and CP violation is communicated to the MSSM fields at the scale M_{CP}. SUSY breaking is communicated to the MSSM at the lower scale M_{SUSY}. With these ingredients, a natural solution to the strong CP problem arises, because at the scale of CP violation the strong CP phase θ is protected by a non-renormalization theorem of the unbroken supersymmetry. At lower energies SUSY is broken and the non-renormalization theorem does not apply, but we showed that the generated θ is much smaller than the experimental bound if SUSY breaking is sufficiently flavor-universal. Because of the non-renormalization theorem at high scales a successful model for the CP violating sector only needs to ensure $\theta = 0$ at the tree level which is easy to arrange. The CKM phase is generated either at the tree level as in Nelson-Barr models or else at the loop level from wave function renormalization as we proposed in [15].

We have explicitly shown that low scale gauge mediation with $M_{SUSY} < M_{CP}$ is compatible with our framework, but other mechanisms can also be implemented. A model independent constraint is that SUSY breaking has to be CP conserving and either flavor-universal or else flavor-aligned as in Eq. (28). A summary of values of θ in some theories discussed in this paper is compiled in Table 1.

From the low energy point of view, our theory is the MSSM with miniscule flavor violation and no significant phases beyond those already present in the SM. The only possible deviation from this picture is that higher dimensional operators may bring the nucleon EDMs into experimental reach. Our proposal requires supersymmetry, and the strong constraints on the superpartner spectrum from the renormalization of θ automatically also nullify the SUSY phases and FCNC problems. We have pointed out many of the testable signatures for B-physics, collider and nucleon EDM experiments. Note that our proposal does not require light superpartners; by low scale SUSY breaking we mean that its mediation to the MSSM occurs below M_{CP}.
In our paper we have given two explicit examples of CP violence, but we stress that our solution to the strong CP problem can be incorporated in a much larger class of models because our main tool, the non-renormalization of $\bar{\theta}$ in SUSY, is general. It would be interesting to combine our theory of CP with a theory of flavor, e.g. with [19]. This is because a necessary ingredient in our CP violating sectors is flavor violation. Thus there may be elegant models in which both goals are achieved at one. Such a model could also include grand unification.

Finally, we briefly comment on cosmological issues. The spontaneous breaking of CP leads to the formation of domain walls. Such domain walls are potentially problematic because they can over-close the universe. However, in our theory the scale of CP-breaking is sufficiently high that several possible mechanisms (including inflation) exist to avoid this problem. Baryogenesis can occur in a number of different ways such as CP-asymmetrical decays of GUT-scale or M_{CP}-scale particles, the Affleck-Dine mechanism, or

Table 1: Magnitude of $\bar{\theta}$ from renormalization starting from $\bar{\theta}_{\text{tree}} = 0$ in some theories discussed in text. Here, SM denotes the Standard Model (SM) and MSSM$_{\text{gen}}$ a generic minimal supersymmetric model. In the minimal supersymmetric model denoted as MSSM$_{\text{flav}}$ flavor violation is minimal, i.e., not bigger than in the SM. This suppresses large radiative corrections to $\bar{\theta}$ that are present in MSSM$_{\text{gen}}$. Note that the MSSM with gauge mediated SUSY breaking (GMSB) belongs to class MSSM$_{\text{flav}}$. The last column corresponds to contributions from higher dimensional operators (HDO) in GMSB. Now the size of $\bar{\theta}$ depends on the hierarchy between the scale of SUSY breaking M_{SUSY} and the scale of spontaneous CP violation M_{CP}. The last line shows the contributions to $\bar{\theta}$ from RGE running in the SM and MSSM$_{\text{flav}}$.

	SM	MSSM$_{\text{gen}}$	MSSM$_{\text{flav}}$	HDO$_{\text{GMSB}}$
$\bar{\theta}$	$\sim 2 \cdot 10^{-19}$	$\frac{\alpha_s}{4\pi}$	$\sim 2 \cdot 10^{-19}$	$(\frac{\alpha_s}{4\pi})^2(M_{\text{SUSY}}/M_{CP})^2$
$\delta \bar{\theta}_{\text{RGE}}$	10^{-30}			$10^{-29} \tan(\beta)^6$
Acknowledgements

We thank Bill Bardeen, Wilfried Buchmüller, Koichi Hamaguchi, David E. Kaplan, Ann Nelson, Michael Peskin, and Tsutomu Yanagida for stimulating questions and discussions. MS was supported by the Department of Energy under contract DE-AC02-76CH03000.

A Notation

We settle here our notation of quark masses and the CKM mixing matrix V_{CKM}.

\[M_u = \text{diag}(m_u, m_c, m_t) \quad , \quad M_d = \text{diag}(m_d, m_s, m_b) \] (A-1)

\[M_u = V_u Y_u U_u^\dagger v_u \quad , \quad M_d = V_d Y_d U_d^\dagger v_d \] (A-2)

We will also use the normalized mass matrices

\[\hat{M}_u = \text{diag}(\frac{m_u}{m_t}, \frac{m_c}{m_t}, 1) \quad , \quad \hat{M}_d = \text{diag}(\frac{m_d}{m_b}, \frac{m_s}{m_b}, 1) . \] (A-3)

Here, the unitary matrices, $U_{u,d}, V_{u,d}$ diagonalize the Yukawas $Y_{u,d}$, which are given in the basis with canonical kinetic terms.

\[Y_u Y_u^\dagger v_u^2 = V_u^\dagger M_u^2 V_u \] (A-4)

\[Y_d Y_d^\dagger v_d^2 = V_d^\dagger M_d^2 V_d \] (A-5)

\[V_{CKM} = V_u V_d^\dagger \] (A-6)

The amount of weak CP violation in the SM is given by the Jarlskog determinant

\[\det[h_u, h_d]_{SM} = 2i J(m_t^2 - m_c^2)(m_t^2 - m_u^2)(m_c^2 - m_u^2) \]
\[(m_b^2 - m_s^2)(m_b^2 - m_d^2)(m_s^2 - m_d^2)/\nu^{12} \] (A-7)
Here, $v = 174$ GeV, $h_u = Y_uY_u^\dagger$, $h_d = Y_dY_d^\dagger$, $J = s_{12}s_{13}s_{23}c_{12}c_{13}c_{23}\sin\phi_{CKM}$ and $s_{ij} = \sin\phi_{ij}$, $c_{ij} = \cos\phi_{ij}$ where ϕ_{ij} and ϕ_{CKM} are the angles and phase of the CKM matrix in PDG parameterization. Numerically, $J \approx 2 \cdot 10^{-5}$ \cite{3}.

B The CKM phase

In this Appendix, we show that the heavy sector has to couple strongly to the SM fermions to yield an $O(1)$ CKM phase from CP violation in the quark kinetic terms. In particular, the ansatz $Z^{-1/2} = 1 + \epsilon H$, where H is hermitian and has order 1 entries, leads to the observed pattern of quark masses, mixing and CP violation only if the parameter $\epsilon \gtrsim 1$.

To begin, we note that if the initial Yukawas do not have the right (hierarchical) eigenvalues, then large rescaling is required from the wave function renormalization, which implies $\epsilon \gtrsim 1$ (We give a proof for this further down below). Thus, we only have to exclude the possibility that the Yukawas \hat{Y} already have approximately the correct eigenvalues to correspond to the SM quark masses but that the CP phase (and possibly also the mixing angles) are generated from wave function renormalization with small ϵ. Without loss of generality, we work in a basis in which $\hat{Y}_u \approx M_u/v_u$ is diagonal. It is furthermore general to choose $\hat{Y}_d \approx O M_d/v_d$ where O is a general orthogonal (real) matrix. Finally, since we are only concerned with determining the CKM matrix, we are free to re-scale \hat{Y}_u and \hat{Y}_d such that the largest eigenvalue in each is approximately equal to one.

The CKM matrix is then the unitary transformation between the basis in which the following two matrices h_u, h_d are diagonal

$$ h_u = \frac{1}{\sqrt{Z_Q}} \hat{M}_u \frac{1}{Z_u} \hat{M}_u \frac{1}{\sqrt{Z_Q}}, \quad h_d = \frac{1}{\sqrt{Z_Q}} O \hat{M}_d \frac{1}{Z_d} \hat{M}_d O^T \frac{1}{\sqrt{Z_Q}} \quad (B-1) $$

Now we assume that ϵ is small and show that one cannot generate a sufficient amount of CP violation. First, note that $V_{CKM} = O$ if all $Z_i = 1$. Anticipating this to still be approximately true when the Z_i differ from 1 perturbatively, we rotate h_d by O so that it’s unperturbed component is already
diagonal. We now have

\[V_{CKM} = V_u O(V_d^O)^\dagger \]

(B-2)

where \(V_u \) diagonalizes \(h_u \) and \(V_d^O \) diagonalizes

\[h_d^O = (O^T \frac{1}{\sqrt{Z_Q}} O) \hat{M}_d \frac{1}{Z_d} \hat{M}_d (O^T \frac{1}{\sqrt{Z_Q}} O) . \]

(B-3)

In order to determine the eigenvalues and unitary matrices \(V_u \) and \(V_d^O \), we use standard non-degenerate perturbation theory familiar from quantum mechanics. First, we parameterize \((Z_Q)^{-1/2} = 1 + \epsilon H \) and \(Z_{u,d}^{-1} = 1 + \epsilon J_{u,d} \). To linear order in \(\epsilon \) we have

\[h_u = \hat{M}_u^2 + \epsilon \Delta_u, \quad h_d^O = \hat{M}_d^2 + \epsilon \Delta_d^O, \]

(B-4)

where

\[\Delta_u = \{ H, \hat{M}_u^2 \} + \hat{M}_u J_u \hat{M}_u, \quad \Delta_d^O = \{ H^O, \hat{M}_d^2 \} + \hat{M}_d J_d \hat{M}_d, \]

(B-5)

and \(H^O = O^T H O \). Here, the unperturbed “Hamiltonians” \(\hat{M}_u^2 \) and \(\hat{M}_d^2 \) are already diagonal. The perturbed eigenvalues to order \(\epsilon \) are then

\[(\hat{M}_u^2)_i + \epsilon (\Delta_u)_{ii} = (\hat{M}_u^2)_i \left[1 + \epsilon (2(H^O_{ii})_ii + (J_{u,ii})_ii) \right], \]

(B-6)

and a similar expression for the down sector. Thus we see that the renormalizations of individual quark masses are multiplicative, this implies e.g. that there are no corrections to \(m_u \) proportional to \(m_t \). Here, we discovered this property to linear order in \(\epsilon \), it is straightforward to extend this analysis to higher order. We have computed the corrections up to second order and also verified our results numerically without expanding in \(\epsilon \). This verifies our claim that large corrections to masses can only come from non-perturbatively large \(\epsilon \).

The unitary matrices which diagonalize \(h_u \) and \(h_d^O \) are

\[(V_u)_{ij} = \delta_{ij} + \epsilon \left(\frac{(\Delta_u)_{ij}}{(\hat{M}_u^2)_i - (\hat{M}_u^2)_j} \right)_{i\neq j} \]

(B-7)

\[(V_d^O)_{ij} = \delta_{ij} + \epsilon \left(\frac{(\Delta_d^O)_{ij}}{(\hat{M}_d^2)_i - (\hat{M}_d^2)_j} \right)_{i\neq j} \]

(B-8)
Since contributions to the CKM angles from the different terms above are additive in perturbation theory (i.e. $\Pi_i(1 + \epsilon_i) = 1 + \Sigma_i \epsilon_i$), we discuss each of them in turn.

Non-vanishing J_d (contributions from J_u are smaller) in Eq. (B-8) lead to complex corrections to the CKM matrix elements of order

$$\delta V_{ub} \sim \epsilon \frac{m_d}{m_b}, \quad \delta V_{cb} \sim \epsilon \frac{m_s}{m_b}, \quad \delta V_{us} \sim \epsilon \frac{m_d}{m_s}. \quad (B-9)$$

This is most significant for δV_{cb} and gives $\phi_{CKM} \lesssim \epsilon m_s/m_b/V_{cb} \sim \epsilon$.

The case of non-trivial Z_Q (i.e. non-vanishing H) is slightly more complicated. Assuming that the matrix H has entries of order one, and choosing the angles in O similar to the experimental values in V_{CKM} we find for the Jarlskog invariant (see Appendix A)

$$J \lesssim 2\epsilon(\theta_{12}\theta_{23} - \theta_{13})\theta_{12}, \quad (B-10)$$

where θ_{ik} are the angles of O in the parameterization of the PDG \cite{2}. We extract $\sin \phi_{CKM}$ by dividing by the angles. This yields the bound

$$\sin \phi_{CKM} \lesssim 2\epsilon |V_{ub}|/|V_{cb}| \quad (B-11)$$

which is too small since data imply $\sin \phi_{CKM} \sim \mathcal{O}(1)$.

A comment on the usefulness of our expansion in ϵ is in order: There are many small parameters in the problem with the potential danger of factors such as m_t/m_u ruining the expansion. We believe that such factors do not occur. This is manifest to order ϵ from our expressions above, and we have verified it explicitly to second order. Furthermore, extensive numerical study \cite{32} has shown that our results are not affected by higher order corrections in ϵ: large departures from canonical kinetic terms are required if we want to generate sufficient CKM CP-violation from wave function renormalization.

C Strong interactions at M_{CP}

The model of Section 4.2 is incomplete because renormalization from the Planck scale to M_{CP} drives the Yukawa coupling r to values which are
too small to give sufficient CP violation in the quark kinetic terms. The model can be fixed by introducing a new gauge group $SU(N)$ under which $\bar{5}_4$ and F transform in the fundamental representation and 5_4 and \bar{F} are anti-fundamentals. The superpotential (15) remains invariant. The $SU(N)$ theory has 8 flavors (5 from $\bar{5}_4 + 5_4$ and 3 from $F + \bar{F}$) and its gauge coupling becomes strong in the IR for $N \geq 3$. The strong gauge interactions then also drive the Yukawa coupling r to large values as can be seen from the sign of the beta function (schematically, ignoring coefficients)

$$16\pi^2 \frac{d}{d(\log \mu)} r = r \left(r^2 - g_N^2 \right)$$ \hspace{1cm} (C-1)

where g_N is the coupling of the new strong $SU(N)$.

At the scale M_{CP}, the F’s and 5_4’s are massive. Integrating them out leads to non-canonical CP violating kinetic terms for the right handed down quarks (and lepton doublets), vanishing $\bar{\theta}$ and no new superpotential couplings to all orders in perturbation theory as described in Section 6.2.

But what about non-perturbative effects which could arise from the strong $SU(N)$ dynamics? These effects can be deduced from Seiberg’s solution of supersymmetric QCD \[18\], \[33\]. Most important here are the matching relations for the strong interaction scale across mass thresholds. After integrating out F’s and 5_4’s the $SU(N)$ gauge theory is flavor-less and confines. Gaugino condensation generates a superpotential $W = \Lambda^3_{IR} = (\Lambda^{3N-8}_{UV} M^5 \det(\Sigma))^{1/N}$ where M and Σ are defined in Section 4.2, and $\Lambda_{UV/IR}$ is the “QCD” scale of the one-loop $SU(N)$ beta function below/above M_{CP}. This superpotential is complex, but it does not couple to any MSSM fields and is therefore harmless. We should also worry about direct non-perturbative contributions to θ of the GUT $SU(5)$ group. These can be determined from the $SU(5)$ scale matching. The phase of the scale of the $SU(5)$ group at the high scale Λ^{8-N}_{5UV} vanishes because of CP invariance. This is the statement that $\theta = 0$ at the Planck scale. At lower scales, after integrating out F’s and 5_4’s, the phase is determined by scale matching: $\Lambda^8_{5IR} = \Lambda^{8-N}_{5UV} M^N$. This is also real. At even lower scales the dynamics of the $SU(N)$ theory and the $SU(5)$ are completely decoupled so that no further scale matching for the $SU(5)$ theory
is required. This proves that $\tilde{\theta} = 0$ in the effective supersymmetric theory below M_{CP} even after including non-perturbative dynamics in the strongly coupled $SU(N)$ and the coupling r.

D Radiatively generated strong CP phase

We start with a discussion of contributions to $\tilde{\theta}$ from the renormalization of quark masses in the SM. Corrections can be written as $m = m_0 (1 + x)$ and we will use $\arg \det(1 + x) = \text{Im} \, \text{tr} \, [x]$ for small x. Using the flavor symmetries, it is easy to show that corrections to $\tilde{\theta}$ can always be written as the imaginary part of traces over the hermitian matrices $h_u = Y_u Y_u^\dagger$ and $h_d = Y_d Y_d^\dagger$ (here we work in the basis with canonical kinetic terms). The lowest order non-vanishing contribution to $\tilde{\theta}$ arises at 6th order in $h_{u,d}$. It is related to the Jarlskog determinant (see Appendix A) by

$$\text{Im} \, \text{tr} \left[h_u h_d h_u^2 h_d^2 \right] = \det[h_u, h_d]$$

Expressions involving n powers of h arise from diagrams with at least n loops. Alternatively, they arise in a step-wise linear approximation to the RGEs with at least n steps [30]. This defines our power counting: 1 Higgs loop or 1 RGE step both give $h_{u,d}/(16\pi^2)$. Higher orders in n are suppressed and one can show that Eq. (D-1) is indeed the trace with the largest imaginary part. But at 6-loops a cancellation occurs between diagrams where up and down quarks are interchanged because $\text{Im} \, \text{tr} \left[h_u h_d h_u^2 h_d^2 \right] + (u \leftrightarrow d) = 0$. An extra loop with a photon splits the isospin symmetry. Thus, the RGE induced correction to $\tilde{\theta}$ in the SM is [34, 33]

$$\theta_{\text{SM}}^{\text{RGE}} \approx \frac{\alpha}{4\pi} \left(\frac{\Delta t}{16\pi^2} \right)^6 \det[h_u, h_d]_{\text{SM}}$$

which is approximately $\theta_{\text{SM}}^{\text{RGE}} \approx 10^{-30}$ for $\Delta t = \log M_{\text{Pl}}/M_Z$.

The largest contribution to $\tilde{\theta}$ in the SM arises from the finite and strongly GIM-suppressed four-loop cheburashka diagram [33]

$$\theta_{\text{SM}}^{\text{finite}} = \frac{7}{9 \, 4\pi} \left(\frac{\alpha_W}{4\pi} \right)^2 \frac{m_\tau^2 m_e^2}{m_W^4} J \ln \frac{m_\tau^2}{m_b^2} \ln \frac{m_b^2}{m_c^2} \left(\ln \frac{m_b^2}{m_c^2} + \frac{2}{3} \ln \frac{m_c^2}{m_b^2} \right)$$

31
which gives $\theta_{SM}^{finite} \approx 2 \cdot 10^{-19}$ using $\alpha_s = 0.2$ and $J = 2 \cdot 10^{-5}$ and is consistent with earlier estimates [34].

In the MSSM, the leading divergent diagrams which renormalize θ cancel because of the SUSY non-renormalization theorem. However, there are new finite contributions from one-loop quark and gluino mass corrections which involve supersymmetry breaking. The diagrams for gluino and quark mass renormalization are proportional to soft A_x terms and soft masses \tilde{m}_x^2, m_q^2 and yield ($x = u, d$)

\[
\theta_{g}^A \approx \frac{\alpha_s}{4\pi} \frac{v_x^2}{m_0^2} \text{Im} \text{tr} \left[Y_x A^\dagger_x \right] \quad (D-4)
\]

\[
\theta_{g}^m \approx \frac{\alpha_s}{4\pi} \frac{v_x v_y}{m_0^2} \text{Im} \text{tr} \left[h_x Y_x m_x^2 Y_x^\dagger m_q^2 \right] \quad (D-5)
\]

and similar expressions for quark mass contributions

\[
\theta_{q}^A \approx \frac{\alpha_s}{4\pi} \frac{1}{m_0^2} \text{Im} \text{tr} \left[Y_x^{-1} A_x \right] \quad (D-6)
\]

\[
\theta_{q}^m \approx \frac{\alpha_s}{4\pi} \frac{v_y}{m_0^4 v_x} \text{Im} \text{tr} \left[Y_x^{-1} m_q^2 Y_x m_x^2 \right] \quad (D-7)
\]

Here m_0 is an effective average soft mass, v_x are the Higgs vevs and $y \neq x$. The size of the induced θ depends crucially on the flavor structure of the soft breaking parameters. Arbitrary A-terms and soft masses can violate the experimental bound on θ by many orders of magnitude. On the other hand, for soft terms which satisfy exact proportionality and degeneracy as in Eq. (19) these contributions to θ vanish. However, proportionality and degeneracy are not stable under renormalization. The RGEs for the soft terms [36] involve products of h_u and h_d. Inserting the renormalized soft masses into the one-loop diagrams Figure 3, and using arguments very similar to the SM discussion above one finds [30]

\[
\theta_{RGE}^{SUSY} \approx \frac{\alpha_s}{4\pi} \left(\frac{\Delta t}{16\pi^2} \right)^5 \frac{v_u^2}{m_0^2} \tan^6 \beta \text{det}[h_u, h_d]_{SM} \quad (D-8)
\]

\(^5\)We use the soft Lagrangian as $-\mathcal{L}_{soft} \supset \bar{Q} A_u H_u \bar{U} + \bar{Q} A_d H_d \bar{D} + 1/2 m_{\tilde{g}} \tilde{g} \tilde{g} + B_{\mu} H_u H_d + c.c. + \bar{Q} i m_{\tilde{q}}^2 \tilde{Q} + \bar{U} i m_{\tilde{u}}^2 \tilde{U} + \bar{D} i m_{\tilde{d}}^2 \tilde{D}$, see e.g. [36].
This gives $\theta^{RGE}_{\text{SUSY}} \approx 10^{-29} - 10^{-19}$ for $\tan \beta$ ranging from 1 to 50.

Thus in the MSSM with strictly proportional and universal soft terms at a high scale (e.g. M_{SUSY} in GMSB) the contributions from diagrams involving superpartners are smaller than the finite diagram in the SM. Diagrams which are similar to the leading SM contribution Eq. (D-3) but involve superpartners or charged Higgses are suppressed by the heavier superpartner and Higgs masses and are therefore smaller than Eq. (D-3).

Let us work out the constraints on A-terms and soft masses if we allow for additional flavor violating contributions. We parameterize the departure from proportionality and degeneracy as $\delta A, \delta m^2$. From Eq. (D-6) follows immediately for the A-terms

$$\text{Im} \ tr \left[Y^{-1} \frac{\delta A}{m_0} \right] \leq 10^{-8} \quad (D-9)$$

We need non-universality for both soft masses in Eq. (D-7) for a non-zero contribution to \bar{g}. For example, our power counting discussed previously gives $m_0^2 \simeq m_0^2 (1 + h_x/(16\pi^2))$ thus

$$\text{Im} \ tr \left[Y^{-1} h_x Y \frac{\delta m^2}{m_0^2} \right] \leq 10^{-6} \quad (D-10)$$

These bounds are generally much more severe than the bounds from FCNCs, see e.g. [28]. The constraints on the smallest elements of δA and δm^2 are quoted in Eq. (20).

References

[1] For reviews, see: M. Dine, [hep-ph/0011376]; R. D. Peccei, DESY-88-109 in Jarlskog, C. (Ed.): CP Violation 503-551.

[2] D. E. Groom et al. [Particle Data Group Collaboration], Eur. Phys. J. C 15, 1 (2000).

[3] A. Ali and D. London, Eur. Phys. J. C 18, 665 (2001), [hep-ph/0012153]; M. Ciuchini et al., [hep-ph/0012305]; S. Mele, [hep-ph/0103040]; A. Hocker et al., [hep-ph/0112293].
[4] R. J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Phys. Lett. B 88, 123 (1979), Erratum-ibid. B 91, 487 (1980); V. Baluni, Phys. Rev. D 19, 2227 (1979); M. Pospelov and A. Ritz, Nucl. Phys. B 573, 177 (2000), hep-ph/9908508.

[5] P. G. Harris et al., Phys. Rev. Lett. 82, 904 (1999).

[6] M. V. Romalis, W. C. Griffith and E. N. Fortson, Phys. Rev. Lett. 86, 2505 (2001), hep-ex/0012001.

[7] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977). S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[8] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).

[9] A. G. Cohen, D. B. Kaplan and A. E. Nelson, JHEP 9911, 027 (1999), hep-lat/9909091; S. R. Sharpe and N. Shoresh, Nucl. Phys. Proc. Suppl. 83, 968 (2000), hep-lat/9909090. A. C. Irving et al. [UKQCD Collaboration], Phys. Lett. B 518, 243 (2001), hep-lat/0107023. D. R. Nelson, G. T. Fleming and G. W. Kilcup, hep-lat/0110112.

[10] A. Nelson, Phys. Lett. B 136, 387 (1984); S. M. Barr, Phys. Rev. Lett. 53, 329 (1984).

[11] M. A. Beg and H.-S. Tsao, Phys. Rev. Lett. 41, 278 (1978); R. N. Mohapatra and G. Senjanovic, Phys. Lett. B 79, 283 (1978); R. N. Mohapatra and A. Rasin, Phys. Rev. Lett. 76, 3490 (1996), hep-ph/9511391; C. Hamzaoui and M. Pospelov, hep-ph/0105270. B. Holdom, Phys. Rev. D 61, 011702 (2000), hep-ph/9907361.

[12] H. Georgi and S. L. Glashow, Phys. Lett. B 451, 372 (1999), hep-ph/9807393.

[13] D. Bowser-Chao, D. Chang and W. Keung, hep-ph/9811258.

[14] S. L. Glashow, hep-ph/0110178.
[15] G. Hiller and M. Schmaltz, Phys. Lett. B 514, 263 (2001), hep-ph/0105254.

[16] J. Ellis, S. Ferrara and D. V. Nanopoulos, Phys. Lett. B 114, 231 (1982).

[17] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 229, 381 (1983); V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 260, 157 (1985) [Yad. Fiz. 42, 1499 (1985)]; N. Arkani-Hamed and H. Murayama, JHEP 0006, 030 (2000), hep-th/9707133.

[18] K. Intriligator and N. Seiberg, Nucl. Phys. Proc. Suppl. 45BC, 1 (1996), hep-th/9509066.

[19] A. E. Nelson and M. J. Strassler, JHEP0009, 030 (2000), hep-ph/0006251.

[20] P. Pouliot and N. Seiberg, Phys. Lett. B 318, 169 (1993), hep-ph/9308363; D. B. Kaplan and M. Schmaltz, Phys. Rev. D 49, 3741 (1994), hep-ph/9311281; A. Pomarol and D. Tommasini, Nucl. Phys. B 466, 3 (1996), hep-ph/9507462.

[21] M. Dine, R. G. Leigh and A. Kagan, Phys. Rev. D 48, 2214 (1993), hep-ph/9303296.

[22] L. Randall and R. Sundrum, Nucl. Phys. B 557, 79 (1999), hep-th/9810155; G. F. Giudice, M. A. Luty, H. Murayama and R. Rattazzi, JHEP 9812, 027 (1998), hep-ph/9810442.

[23] D. E. Kaplan, G. D. Kribs and M. Schmaltz, Phys. Rev. D 62, 035010 (2000), hep-ph/9911293; Z. Chacko, M. A. Luty, A. E. Nelson and E. Ponton, JHEP 0001, 003 (2000), hep-ph/9911323; M. Schmaltz and W. Skiba, Phys. Rev. D 62, 095005 (2000), hep-ph/0001172; Phys. Rev. D 62, 095004 (2000), hep-ph/0004210.
[24] S. M. Barr and G. Segre, Phys. Rev. D 48, 302 (1993); S. M. Barr, Phys. Rev. D 56, 1475 (1997), hep-ph/9612396. G. F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999), hep-ph/9801271.

[25] N. Arkani-Hamed, D. E. Kaplan, H. Murayama and Y. Nomura, JHEP 0102, 041 (2001), hep-ph/0012103.

[26] A. J. Buras and R. Buras, Phys. Lett. B 501, 223 (2001), hep-ph/0008273.

[27] G. Buchalla, G. Hiller and G. Isidori, Phys. Rev. D 63, 014015 (2001), hep-ph/0006136. A. Ali, E. Lunghi, C. Greub and G. Hiller, hep-ph/0112300.

[28] J. S. Hagelin, S. Kelley and T. Tanaka, Nucl. Phys. B 415, 293 (1994); F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, Nucl. Phys. B 477, 321 (1996), hep-ph/9604387.

[29] R. Golub and K. Lamoreaux, Phys. Rept. 237, 1 (1994).

[30] M. Dugan, B. Grinstein and L. Hall, Nucl. Phys. B 255, 413 (1985).

[31] for example, Quantum Mechanics by C. Cohen-Tannoudji, B. Diu, F. Laloe. Wiley, 1977.

[32] FORTRAN or Mathematica codes STRONGCKMFITTER 7.58b are available from the authors by request.

[33] M. Graesser and B. Morariu, Phys. Lett. B 429, 313 (1998), hep-th/9711054.

[34] J. Ellis and M. K. Gaillard, Nucl. Phys. B 150, 141 (1979).

[35] I. B. Khriplovich, Phys. Lett. B 173, 193 (1986).

[36] S. P. Martin and M. T. Vaughn, Phys. Rev. D 50, 2282 (1994), hep-ph/9311340.