Introduction

Chronic gastrocutaneous fistula (GCFs), defined as fistula present for > 4 weeks, can occur after removal of long-standing percutaneous endoscopic gastrostomy (PEG) tubes, as well as after other interventions, such as removal of the AspireAssist tube (Aspire Bariatrics, King of Prussia, Pennsylvania, United States), usually placed for weight loss. Chronic GCFs tend to be recalcitrant to standard endoscopic therapy because they are often of a large caliber, but short and fibrotic with high-flow output. Surgery has historically been the mainstay of treatment, but new endoscopic alternatives have emerged. These include tissue destruction of the epithelial lining in the tract (using silver nitrate, argon plasma coagulation [APC] or electrocautery) followed by tract closure using either through-the-scope (TTS) or over-the-scope clips (OTSC), banding, or plugging the fistula tract with collagen, fibrin or other biomaterials [1–5]. These techniques, however, may have only short-term benefit with fistula recurrence over the long term in up to 35% of patients [1, 2]. More recently, several variants of endoscopy-assisted transcutaneous suturing techniques have been described [6–8]. However, these tend to be complex procedures that require more than one operator.

The OverStitch endoscopic suturing device (Apollo Endosurgery, Austin, Texas, United States) has been predominantly used for bariatric-related endoscopy procedures. To our knowledge, only two case reports have described the use of the OverStitch endoscopic suturing device for chronic GCF closure [9, 10].
In both cases, a single layer directly on the fistula edges was used for closure. While in these two specific cases technical success was achieved, there was no long-term follow up. Anecdotally, eventual failure is not uncommon with this technique. The reason for this is likely multifactorial. First, the chronic nature of the fistula and/or prior attempted therapy results in a lack of surrounding healthy tissue. Second, as there are only a few bites taken, the tension on each bite is high, which increases the risk of the sutures cutting through the tissue, potentially leading to fistula recurrence.

Considering the limitation of the aforementioned methods, we propose the multi-layer endoscopic suturing technique as a simple, single-operator, robust method to close a GCF. This novel technique addresses many of the challenges of the previously described methods.

Patients and methods

This was a single-center retrospective study of five patients, four of whom underwent endoscopic suturing for chronic GCF and one for postsurgical gastric leak. The GCF was formed due to the AspireAssist tube in four patients. The AspireAssist tube is a 26F silicone percutaneous endoscopic gastrostomy tube, with a gastric segment with five aspiration holes to allow stomach contents to be aspirated easily. It is inserted to promote weight loss and can reside in situ for >1 year. All procedures were performed by the same operator (V.K). Procedure time was defined as the time from the introduction of the scope to its withdrawal. Technical success was defined as fistula closure on the day of the procedure, and clinical success was defined as no fistula or leak recurrence at last follow up. Patients were followed up until death or December 31, 2020.

This retrospective study was approved by our Institutional Review Board for Human Research and complied with Health Insurance Portability and Accountability Act (HIPAA) regulations (CR00032640/IRB00116742).

Endoscopic multi-layer suturing procedure

We performed an endoscopic multi-layer suturing procedure in all patients (▶ Video 1). First, a standard esophagogastroduodenoscope (EGD; GIF-Q180, OLYMPUS, Tokyo, Japan) was used to apply APC at 50 watts circumferentially at the gastric margins of the fistula to create a 10-mm dark brown rim to promote scarring (▶ Fig. 1, ▶ Fig. 2). APC also was applied to the fistula tract for internal lining devitalization.

The EGD scope was then removed and exchanged with a therapeutic double channel endoscope (GIF-2TH180, OLYMPUS, Tokyo, Japan) preloaded with the Overstitch Generation 2 device (Apollo Endosurgery, Austin, Texas, United States). We used Prolene 2–0 sutures. The scope was advanced to the fistula, which was usually found on the anterior gastric wall. First, we performed closure of the fistula itself. The tissue helix was used to assist in acquisition of full-thickness bites. A running suture was placed by taking a bite through the gastric wall 1 cm left of the fistula, and then another bite was taken through the gastric wall 1 cm to the right of the fistula. This pattern was repeated from distal to proximal until the entire fistula was included.
(usually for 6 bites) Then the T-tag was released and the suture was brought together to form a plication using the cinch, resulting in complete fistula closure (Fig. 3).

Once the fistula was closed with the first suture, we proceeded to form a second layer on top, with the purpose of reinforcing the GCF closure by plicating the healthy gastric wall around the fistula site. Another suture was loaded into the system, and new full-thickness bites were taken in the healthy gastric wall surrounding the GCF. The first bite was taken distal and to the left of the fistula on the anterior wall, followed by another bite distal and to the right of the fistula on the greater curvature and/or the posterior wall (depending on the exact location of the fistula), followed by a third bite on the anterior wall more proximally and then followed by a fourth bite on the greater curvature and/or the posterior wall, and so on again from distal to proximal (Fig. 3, Fig. 4). This running suture pattern was repeated for a total of eight bites. Then the T-tag was dropped and the suture was cinched, resulting in closure of the gastric walls over the fistula. If there was sufficient space in the lumen, another suture was loaded into the system taking full-thickness bites in a manner similar to previous, with the aim of achieving a third reinforcing layer. The end result was that the fistula was closed and buried in layers of healthy gastric mucosa (Fig. 5). This resulted in further isolation of the fistula from the gastric content flow, allowing it to close.

Results

Overall, five patients were included in this study, of whom four (80%) were women. The average age was 57 years (standard deviation [SD] 14) and the mean BMI was 34.5 (SD 9). All patients were intubated and underwent the procedure under general anesthesia. The mean procedural time was 59 minutes (SD 11).
Technical success, defined as fistula closure on the day of the procedure, was achieved in all five patients, with no immediate complications as per the American Society for Gastrointestinal Endoscopy lexicon. All patients were discharged home on the same day, with antiemetics and analgesia as needed.

After a median follow up of 5 months (range 2–23 months), no patient died and there was no fistula or leak recurrence (100% clinical success) (Fig. 6). No late adverse events were observed during follow up. We did not have any cases of clinically significant gastric stenosis. As compared to the size of the stomach, we estimate the stomach volume was reduced by about 15% to 20% as a result of the procedure, and therefore, we would not anticipate clinically significant weight loss.

Conclusions
In conclusion, we have demonstrated the safe and efficient use of a novel single-operator multi-layer endoscopic suturing procedure for robust and definitive fistula closure. Larger prospective studies are needed to better define its clinical utility and for comparative analysis with currently available endoscopic techniques.

Competing interests
Dr. Kumbhari is a consultant for Medtronic, Pentax Medical, Boston Scientific, FujiFilm; a consultant for and has received research support from Apollo Endosurgery; and has received research support from ERBE USA.

References
[1] Currais P, Faias S, Francisco F et al. Gastrocutaneous fistulas after PEG removal in adult cancer patients: frequency and treatment options. Surg Endosc 2020; 35: 2211–2216
[2] Mehfooz A, Muhammad Z, Pophali PA et al. Mo2004 Novel Management strategies for failed PEG related fistulas. Gastrointest Endosc 2016; 83: A8491
[3] Duddempudi S, Ghevariya V, Singh M et al. Treatment of persistently leaking post PEG tube gastrocutaneous fistula in elderly patients with combined electrochemical cauterity and endoscopic clip placement. South Med J 2009; 102: 585–588
[4] Singhal S, Changela K, Culliford A et al. Endoscopic closure of persistent gastrocutaneous fistulae, after percutaneous endoscopic gastrostomy (PEG) tube placement, using the over-the-scope-clip system. Therap Adv Gastroenterol 2015; 8: 182–188
[5] Maluf-Filho F, Hondo F, Halwan B et al. Endoscopic treatment of Roux-en-Y gastric bypass-related gastrocutaneous fistulas using a novel biomaterial. Surg Endosc 2009; 23: 1541–1545
[6] Schulman AR, Alhara H, Thompson CC. Treatment of gastrocutaneous fistula after percutaneous gastrostomy placement. Gastrointest Endosc 2016; 84: 851–852
[7] Haito-Chavez Y, Ngamruengphong S, Chen Y-I et al. Novel hybrid technique for closure of refractory gastrocutaneous fistula: endoscopically guided percutaneous suturing. Gastrointest Endosc 2017; 85: 252–253
[8] Moran RA, Brewer Gutierrez O, Yang J et al. Endoscopically guided percutaneous suturing to facilitate closure of a large gastrocutaneous fistula with an over-the-scope clip. Endoscopy 2018; 50: E309–E311
[9] Armengol-Miro JR, Dot J, Abu-Suboh Abadia M et al. New endoscopic suturing device for closure of chronic gastrocutaneous fistula in an immunocompromised patient. Endoscopy 2011; 43: E403–E404
[10] Kantsevoy SV, Thuluvath PJ. Successful closure of a chronic refractory gastrocutaneous fistula with a new endoscopic suturing device (with video). Gastrointest Endosc 2012; 75: 688–690

Jovani Manol et al. Multi-layer endoscopic suturing... Endosc Int Open 2021; 09: E1520–E1523 | © 2021. The Author(s).