A new proof for the decidability of D0L ultimate periodicity

Vesa Halava1, Tero Harju1 and Tomi Kärki1,2

1Department of Mathematics
University of Turku, 20014 Turku, Finland
2Department of Teacher Education
University of Turku, PO Box 175, 26101 Rauma, Finland

We give a new proof for the decidability of the D0L ultimate periodicity problem based on the decidability of \(p \)-periodicity of morphic words adapted to the approach of Harju and Linna.

1 Introduction

L systems were originally introduced by A. Lindenmayer to model the development of simple filamentous organisms \cite{6,7}. The challenging and fruitful study of these systems in the 70s and 80s created many new results and notions \cite{9}. In this paper we consider the important problem of recognizing ultimately periodic D0L sequences.

Let \(\mathcal{A} \) be a finite alphabet and denote the empty word by \(\varepsilon \). A DOL system is a pair \((h,u)\), where \(h: \mathcal{A}^* \rightarrow \mathcal{A}^* \) is a morphism and \(u \) is a finite word over \(\mathcal{A} \). The language of the DOL system is \(L(h,u) = \{ h^i(u) \mid i \geq 0 \} \) and the limit set \(\lim L(h,u) \) consists of all infinite words \(w \) such that for all \(n \) there is a prefix of \(w \) longer than \(n \) belonging to \(L(h,u) \). Clearly, if the limit set is non-empty, then one can effectively find integers \(p \) and \(q \) such that \(h^p(u) \) is a proper prefix of \(h^{p+q}(u) \) and

\[
\lim L(h,u) = \bigcup_{i=0}^{q-1} \lim L(h^q, h^{p+i}(u)),
\]

where \(|\lim L(h^q, h^{p+i}(u))| = 1 \). Hence, we may restrict to DOL systems \((h,u)\) where \(h \) is prolongable on \(u \), i.e., \(h(u) = uy \) and \(h^n(y) \neq \varepsilon \) for all integers \(n \geq 0 \). In this case, \(h^n(u) \) is a prefix of \(h^{n+1}(u) \) and the limit is the following fixed point of \(h \):

\[
h^\omega(u) = \lim_{n \to \infty} h^n(u) = uyh(y)h^2(y)\cdots.
\]

An infinite word \(x \) is ultimately periodic if it is of the form \(x = uv^\omega = uvvy\cdots \), where \(u \) and \(v \) are finite words. The length \(|u| \) is a preperiod and the length \(|v| \) is a period of \(x \). An infinite word \(x \) is ultimately \(p \)-periodic if \(|v| = p \). The smallest period of \(x \) is called the period of \(x \).

Now we are ready to formulate the DOL ultimate periodicity problem: Given a morphism \(h \) prolongable on \(u \), decide whether \(h^\omega(u) \) is ultimately periodic. Note that in this problem we may assume that \(u \) is a letter. Indeed, if \(h(u) = uy \), then instead of \((h,u)\) we may consider \((h',a)\) where \(a \notin \mathcal{A} \) and \(h': (\mathcal{A} \cup \{a\})^* \rightarrow (\mathcal{A} \cup \{a\})^* \) where \(h'(a) = ay \) and \(h'(b) = h(b) \) for every \(b \in \mathcal{A} \). The limit \(h^\omega(u) \) is ultimately periodic if and only if \(h^\omega(a) \) is.

The decidability of the ultimate periodicity question for DOL sequences was proven by T. Harju and M. Linna \cite{4} and, independently, by J.-J. Pansiot \cite{8}; see also a more recent proof of J. Honkala \cite{5}. In
the binary case the problem was effectively solved by Séébold [10]. Here we show how the proof of [11] can be simplified using a recent result concerning the decidability of the \(p \)-periodicity problem.

Before giving the proof, we introduce the following notation. Given a morphism \(h : \mathcal{A}^* \to \mathcal{A}^* \), we call a letter \(b \in \mathcal{A} \) finite if \(\{h^n(b) \mid n \geq 0\} \) is a finite set. Otherwise, \(b \) is an infinite letter. Moreover, we say that a letter \(b \) is recurrent in \(h^\omega(a) \) if it occurs infinitely often in \(h^\omega(a) \). For a given morphism \(h \) prolongable on \(a \) and for an infinite word \(h^\omega(a) \), denote the set of finite letters by \(\mathcal{A}_f \), the set on infinite letters by \(\mathcal{A}_i \) and the set of recurrent letters by \(\mathcal{A}_r \). Also, denote by \(\mathcal{A}_1 \) the subset of \(\mathcal{A} \) which consists of the infinite letters occurring infinitely many times in \(h^\omega(a) \), i.e., \(\mathcal{A}_1 = \mathcal{A}_f \cap \mathcal{A}_r \).

Let us shortly describe how the sets \(\mathcal{A}_f \), \(\mathcal{A}_i \) and \(\mathcal{A}_r \) can be constructed. Note that if \(b \) is a mortal letter, i.e., \(h^n(b) = \varepsilon \) for some \(n \geq 1 \), then \(h^{i\mathcal{A}}(b) = \varepsilon \). Denote \(\hat{h} = h^{i\mathcal{A}} \) and denote the set of the mortal letters by \(\mathcal{M} \). Note also that \(b \) is a finite letter if and only if there exists a word \(u \in \{h^n(b) \mid n \geq 0\} \) such that \(u = h^n(u) \) for some \(p \geq 1 \). Clearly, \(\{h^n(b) \mid n \geq 0\} \) is finite if and only if \(\{h^n(b) \mid n \geq 0\} \) is finite. Hence, by replacing \(h \) with \(\hat{h} \) we may assume that \(h(b) = \varepsilon \) if \(b \in \mathcal{M} \). Moreover, let \(\mathcal{B} = \mathcal{A} \setminus \mathcal{M} \) and let \(g : \mathcal{B}^* \to \mathcal{B}^* \) be a morphism defined by \(g(b) = \mu h(b) \), where

\[
\mu(b) = \begin{cases}
\varepsilon, & \text{if } b \in \mathcal{M}, \\
 b, & \text{otherwise}.
\end{cases}
\]

Now \(g \) is non-erasing, and \(b \in \mathcal{A}_f \) if and only if \(\{g^n(b) \mid n \geq 0\} \) is finite. Namely, for any \(n \geq 0 \), we know by the definition of \(g \) that the word \(h^n(b) \) can be obtained by inserting a finite number of mortal letters to \(g^n(b) \). The set \(\{g^n(b) \mid n \geq 0\} \) is finite if and only if for some \(n \) all letters in \(g^n(b) \) belong to \(U_1 = \{b \in \mathcal{B} \mid g^i(b) \in \mathcal{B} \text{ for every } i \geq 0\} \). If \(U_i = \{b \in \mathcal{B} \mid g(b) \in U_{i-1} \} \), then \(U_{i-1} \subseteq U_i \) and

\[
\mathcal{A}_f \setminus \mathcal{M} = \bigcup_{i=1}^\infty U_i = U_{|\mathcal{A}|}.
\]

Hence, we can effectively calculate \(\mathcal{A}_f \) and \(\mathcal{A}_1 = \mathcal{A} \setminus \mathcal{A}_f \). In order to find the recursive letters, we construct a graph \(G \) where the set of vertices is \(\mathcal{A} \) and there is an edge from \(b \) to \(c \) if \(c \) occurs in the image \(h(b) \). Let \(h(a) = ax \). If there are infinitely many paths from a letter in \(x \) to the letter \(b \), then \(b \) occurs infinitely many times in \(h^\omega(a) \).

2 Decidability of the \(p \)-periodicity problem

Let \(p \geq 1 \), and let \(x = (x_n)_{n \geq 0} \) be an infinite word over \(\mathcal{A} = \{a_1, \ldots, a_d\} \). For \(0 \leq k \leq p - 1 \), we say that the letters occurring infinitely many times in positions \(x_n \), where \(n \equiv k \pmod{p} \), form the \(k \)-set of \(x \) modulo \(p \). It was shown in [3] that these \(k \)-sets can be effectively constructed for \(x = h^\omega(a) \), where \(h \) is prolongable on the word \(u \). This is based on the fact that there exist integers \(r \) and \(q \) such that

\[
|h^r(b)| \equiv |h^{r+q}(b)| \pmod{p}
\]

for every letter \(b \in \mathcal{A} \). The incidence matrix of \(h \) is the matrix \(M = (m_{i,j})_{1 \leq i,j \leq d} \) where \(m_{i,j} \) denotes the number of occurrences of \(a_i \) in \(h(a_j) \). The sequence of matrices \(M^n \pmod{p} \), where the entries are the residues modulo \(p \), must be ultimately periodic. Since \(|h^n(a_j)| \pmod{p} \) is the sum of the elements in the \(j \)-th column of \(M^n \), we conclude that the sequence \((|h^n(a_j)|)_{n \geq 0} \pmod{p} \) is ultimately periodic for every \(a_j \in \mathcal{A} \) and \([11]\) follows.

In order to find the \(k \)-sets of \(x \) modulo \(p \) we construct a directed graph \(G_h = (V, E) \) where the set of vertices \(V \) is \(\{(a, i) \mid a \in \mathcal{A}, 0 \leq i < p\} \) and there is an edge from \((c, i)\) to \((d, j)\) if, for some \(b \) in \(x \), the
Namely, if we say that a vertex \(h \) is the \(k \)th letter of \(h(b) \), then \(h \) belongs to the same \(\mathcal{A} \)-set of \(h^{\omega}(c) \) at position congruent to \(j \) (mod \(p \)) in \(x \); see Figure 1.

It is possible to construct such a graph by calculating the images \(h'(b) \) and \(h'^{+q}(b) \) for every \(b \in \mathcal{A} \). Namely, if \(b = x_l \) and \(c \) is the \(m \)th letter of \(h'(b) = y_1 \cdots y_n \) and \(d \) is the \(m' \)th letter of \(h^{\omega}(c) \), then we have

\[
\begin{align*}
i &\equiv |h'(x_0 \cdots x_{l-1})| + m - 1 \pmod{p}, \\
j &\equiv |h'^{+q}(x_0 \cdots x_{l-1})| + |h'(y_1 \cdots y_{m-1})| + m' - 1 \pmod{p}.
\end{align*}
\]

By (1), we have \(|h'^{+q}(x_0 \cdots x_{l-1})| \equiv |h'(x_0 \cdots x_{l-1})| \pmod{p} \), which together with (2) and (3) implies

\[
j \equiv |h^{\omega}(y_1 \cdots y_{m-1})| + i + m' - m \pmod{p}.
\]

We say that a vertex \((c, i) \in V\) is an initial vertex if there exists a letter \(b = x_l \) such that \(0 \leq l < |h'(a)| \), \(c \) is the \(m \)th letter of \(h'(b) \) and \(i \) satisfies (2). A vertex \((c, k)\) is called recurrent if there exist infinitely many paths starting from some initial vertex and ending in \((c, k)\). By construction, this means that \(c \) belongs to the \(k \)-set of \(x \) modulo \(p \).

Given a coding \(g \) and a morphism \(h: \mathcal{A}^* \to \mathcal{A}^* \) prolongable on \(a \), it is easy to see that the morphic word \(g(h^{\omega}(a)) \) is ultimately \(p \)-periodic if and only if \(g(b) = g(c) \) for all pairs of letters \((b, c)\) such that \(b \) and \(c \) belong to the same \(k \)-set of \(h^{\omega}(a) \) modulo \(p \). Since the \(k \)-sets of \(h^{\omega}(a) \) can be effectively constructed, we have the following result proved in [3].

Theorem 1. Given a positive integer \(p \), it is decidable whether a morphic word \(g(h^{\omega}(a)) \) is ultimately \(p \)-periodic.

3 Decidability of the D0L ultimate periodicity problem

Before the decidability proof, we give the following result proved in [1,2]; see also [5].

Theorem 2. Let \(h: \mathcal{A}^* \to \mathcal{A}^* \) be a morphism and \(u, v \in \mathcal{A}^* \). If there is a positive integer \(n \) such that \(h^n(u) = h^n(v) \), then \(h^{|\mathcal{A}|}(u) = h^{|\mathcal{A}|}(v) \).

This theorem can be proved by induction on the size of the alphabet and the induction step is based on elementary morphisms. A morphism \(h: \mathcal{A}^* \to \mathcal{B}^* \) is called elementary if there do not exist an alphabet \(\mathcal{B} \) smaller than \(\mathcal{A} \) and two morphisms \(f: \mathcal{A}^* \to \mathcal{B}^* \) and \(g: \mathcal{B}^* \to \mathcal{A}^* \) such that \(h = gf \).
Since elementary morphisms are injective, the claim is clear if \(h \) is elementary. Now assume that \(h = gf \) as above. Then \(h^n(u) = h^n(v) \) implies that \((fg)^n f(u) = (fg)^n f(v) \) and, by induction, \((fg)^{|x|} f(u) = (fg)^{|x|} f(v) \). This proves the claim, since \((fg)^{|x|+1} f(u) = (fg)^{|x|+1} f(v) \) and \(|x| \geq |y| + 1 \).

Using Theorem 1 and Theorem 2 and following the guidelines in Theorem 3, we give a new proof for the decidability of the DOL ultimate periodicity problem. The difference between the original proof of Harju and Linna and this proof is that we employ a new method obtained from \(p \)-periodicity as stated in Theorem 1.

Theorem 3. The ultimate periodicity problem is decidable for DOL sequences.

Proof. As explained above, it suffices to show that we can decide whether \(h^\omega(a) \) is ultimately periodic for a given morphism \(h: \mathcal{A}^* \rightarrow \mathcal{A}^* \) prolongable on \(a \). Without loss of generality, we assume that every letter of \(\mathcal{A} \) really occurs in \(h^\omega(a) \). Otherwise, we could consider a restriction of \(h \). Recall also that \(\mathcal{A} \) is the subset of \(\mathcal{A} \) which consists of the infinite letters occurring infinitely many times in \(h^\omega(a) \).

If \(\mathcal{A} = \emptyset \), then the sequence is ultimately periodic. Namely, if \(h(a) = ay \) and \(y \) contains infinite letters, then every image \(h^n(y) \) contains infinite letters and there must be at least one infinite letter occurring infinitely many times in \(h^\omega(a) = ayh(y)h^2(y) \cdots \), which means that \(\mathcal{A} \neq \emptyset \). Therefore, there is only one infinite letter and it is the letter \(a \) occurring once in the beginning of the word. Hence, \(h(a) = ay \) where \(y \) consists of finite letters. Then there must be integers \(n \) and \(p \) such that \(h^{n+p}(y) = h^n(y) \). Thus \(|h^n(y)h^{n+1}(y) \cdots h^{n+p-1}(y)| \) is a period of \(h^\omega(a) \).

Assume now that \(b \in \mathcal{A} \). We may write

\[
h^\omega(a) = u_0bu_1bu_2 \cdots ,
\]

where \(u_i \in (\mathcal{A} \setminus \{b\})^* \). If the set \(U = \{ u_i \mid i \geq 0 \} \) is infinite then \(h^\omega(a) \) cannot be ultimately periodic. Note that if there exists a \(c \in \mathcal{A} \) such that the letter \(b \) does not occur in any \(h^i(c) \), then \(U \) is infinite. This property is clearly decidable since if a letter occurs in \(h^i(c) \) for some \(i \), then it occurs in the image for \(i \leq |\mathcal{A}| \). Hence, we may assume that for each infinite letter \(c \) the letter \(b \) occurs in \(h^i(c) \) for some \(i \leq |\mathcal{A}| \).

Next we show that we may decide if \(U \) is infinite or not. First assume that \(U \) is infinite. Then there are arbitrarily long words in \(U \). Since each infinite letter from \(h^\omega(a) \) produces an occurrence of \(b \) in at most \(|\mathcal{A}| \) steps, there must be arbitrarily long words from \(\mathcal{A} \) in \(U \). This is possible only if for some \(c \in \mathcal{A} \) and integer \(s \leq |\mathcal{A}| \) we have \(h^s(c) = v_1c_2v_2 \), where for \(i = 1 \) or \(i = 2 \) we have \(v_i \in \mathcal{A}^* \) and \(h^s(v_i) \neq \varepsilon \) for every \(n \geq 0 \). This is a property that we can effectively check. Note that if \(h^s(v_i) = \varepsilon \) for some \(n \geq 0 \), then \(h^{|\mathcal{A}|}(v_i) = \varepsilon \). On the other hand, if there exists \(c \in \mathcal{A} \) satisfying the above conditions, the set \(U \) is clearly infinite. Hence, the finiteness of \(U \) can be verified and the finite set \(U \) can be effectively constructed.

Now assume that \(h^\omega(a) \) is ultimately periodic, i.e., \(h^\omega(a) = uv^\omega \), where \(v \) is primitive. Consider a subset \(U' \) of \(U \) containing the elements \(u_i \) occurring infinitely many times in \(h^\omega(a) \). Since \(b \) is in \(\mathcal{A} \), there exists an integer \(N \) such that \(|h^n(b)| \geq |v| \) for every \(n \geq N \). Hence, let \(n \geq N \). Since \(bu_i \) with \(u_i \in U' \) occurs in the periodic part of the sequence, we conclude that \(h^n(bu_i) \in w_n.\mathcal{A}^* \), where \(w_n \) is a conjugate of \(v \). Moreover, by the primitivity of \(v \) and \(w_n \), we have

\[
h^n(bu_i) \in w_n^t \quad \text{for all } u_i \in U'.
\]

Namely, assume that \(h^n(bu_i) = w^t_nw' \), where \(t \) is some positive integer and \(w' \) is a proper prefix of \(w_n \), i.e., \(w' \) is non-empty and \(w' \neq w_n \). Then \(h^n(bu_i)b \in w^t_nw'w_n.\mathcal{A}^* \) is a prefix of \(w^\omega_n \), which implies that the word \(w_n \) occurring after \(w' \) occurs inside \(w^2_n \). Since \(w_n \) is primitive, this is impossible.
Take now any two words u_i and $u_j \in U'$. By (4), we conclude that there exists m such that $h^\ell(bu_ibu_j) = h^\ell(bu_jbu_i)$ for all $\ell \geq m$. Moreover, by Theorem [2], we know that we may choose $m = |\sigma|$. Note that if the above does not hold for some u_i and u_j in U', then $h^\omega(a)$ cannot be ultimately periodic. Hence, let $m = |\sigma|$ and

$$h^m(bu_ibu_j) = h^m(bu_jbu_i),$$

for every $u_i, u_j \in U'$. Then the words $h^m(bu_i)$ and $h^m(bu_j)$ commute and by transitivity we can find a primitive word z such that

$$h^\ell(bu_i) \in z^* \quad \text{for all } u_i \in U', \ell \geq m.$$

This implies that $h^\omega(a)$ is ultimately $|z|$-periodic. Since we can test the ultimate $|z|$-periodicity of $h^\omega(a)$ by Theorem [1] the ultimate periodicity problem of $h^\omega(a)$ is decidable. \qed

References

[1] K. Culik, II (1978): The decidability of υ-local catenativity and of other properties of D0L systems. Information Processing Lett. 7(1), pp. 33–35, doi:10.1016/0020-0190(78)90035-2.

[2] A. Ehrenfeucht & G. Rozenberg (1978): Simplifications of homomorphisms. Inform. and Control 38(3), pp. 298–309, doi:10.1016/S0019-9958(78)90095-5.

[3] V. Halava, T. Harju, T. Kärki & M. Rigo (2010): On the periodicity of morphic words. In Y. Gao, H. Lu, S. Seki & S. Yu, editors: Developments in Language Theory, 14th International Conference, DLT 2010, London, ON, Canada, August 17-20, 2010. Proceedings, Lecture Notes in Comput. Sci. 6224, Springer, Berlin, pp. 209–217, doi:10.1007/978-3-642-14455-4_20.

[4] T. Harju & M. Linna (1986): On the periodicity of morphisms on free monoids. RAIRO Inform. Théor. Appl. 20(1), pp. 47–54.

[5] J. Honkala (2008): Cancellation and periodicity properties of iterated morphisms. Theoret. Comput. Sci. 391(1-2), pp. 61–64, doi:10.1016/j.tcs.2007.10.030.

[6] A. Lindenmayer (1968): Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theoret. Biol. 18, pp. 280–299, doi:10.1016/0022-5193(68)90079-9.

[7] A. Lindenmayer (1968): Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theoret. Biol. 18, pp. 300–315, doi:10.1016/0022-5193(68)90080-5.

[8] J.-J. Pansiot (1986): Decidability of periodicity for infinite words. RAIRO Inform. Théor. Appl. 20(1), pp. 43–46.

[9] G. Rozenberg & A. Salomaa (1986): The Book of L. Springer, Berlin.

[10] P. Séébold (1988): An effective solution to the D0L-periodicity problem in the binary case. EATCS Bull. 36, pp. 137–151.