Revisiting Active Sets for Gaussian Process Decoders

Pablo Moreno-Muñoz* Cilie W. Feldager* Søren Hauberg
Section for Cognitive Systems
Technical University of Denmark (DTU)
{pabmo,cife,sohau}@dtu.dk

Abstract
Decoders built on Gaussian processes (GPs) are enticing due to the marginalisation over the non-linear function space. Such models (also known as GP-LVMs) are often expensive and notoriously difficult to train in practice, but can be scaled using variational inference and inducing points. In this paper, we revisit active set approximations. We develop a new stochastic estimate of the log-marginal likelihood based on recently discovered links to cross-validation, and we propose a computationally efficient approximation thereof. We demonstrate that the resulting stochastic active sets (SAS) approximation significantly improves the robustness of GP decoder training, while reducing computational cost. The SAS-GP obtains more structure in the latent space, scales to many datapoints, and learns better representations than variational autoencoders, which is rarely the case for GP decoders.

1 Introduction
Generative models can be viewed as regression models from unknown inputs. That is, we assume \(x = f(z) \), where \(f \) is an unknown mapping from latent variables \(z \) to observations \(x \). Given the inherent difficulty of this task, it is perhaps sensible to marginalize the unknown mapping \(f \) to avoid the brittleness of point estimates. This is the driving idea in the Gaussian process latent variable (GP-LVM) (Lawrence, 2005), which places a Gaussian process (GP) prior over the unknown mapping \(f \) and marginalizes accordingly. This contrasts contemporary generative models that predominantly operate with point-estimates of \(f \) (Kingma and Welling, 2013; Sohl-Dickstein et al., 2015). While conceptually elegant, the GP-LVM is, however, notoriously difficult to train and the conceptual benefits are often not realized in practice.

Exact inference involves computing the marginal likelihood, but (like other GP methods) its cubic complexity in the number of observations \(O(N^3) \) limits the scalability of the GP-LVM. However, the idea of marginalizing the decoder is sufficiently attractive to motivate the development of scalable and reliable training techniques: Its Bayesian formulation (Titsias and Lawrence, 2010) variationally integrates out the latent variables \(z \) to obtain an evidence lower bound. Using auxiliary inducing variables, Snelson and Ghahramani (2006) expanded GP regression, which is also applicable in the unsupervised learning setting (i.e. the GP-LVM).

However, considering inducing variables here involves dangers. First, the convergence of inducing points is well-studied in the supervised GP scenario, where inputs are fixed, but it differs from the unsupervised case where the inputs are estimated. Bauer et al. (2016) notes that even in the supervised setting, inducing points are “not completely trivial to optimise, and often tricks [...] are required”, and we hypothesize that this is further complicated in the unsupervised setting where we optimize both latent and inducing variables while they interact.

In this paper, we revisit active sets for scaling GP decoders, a sparse approximation predominantly used before the seminal work of Snelson and Ghahramani (2006). From a practical viewpoint, active

*Equal contribution.
sets are fixed inducing variables that belong to the training dataset. We make links between such active sets and cross-validation, allowing us to lean on a recent result from Fong and Holmes (2020) which, in turn, links cross validation and the log-marginal likelihood. We show how these links allow for a stochastic estimate of the log-marginal likelihood, and that active sets can be seen as a computationally efficient approximation of this. Practically, this amounts to repeatedly and randomly sampling active sets rather than trying to find the optimal active set. We denote this framework as stochastic active sets (SAS). We demonstrate that SAS consistently results in significantly better-fitted GP decoders over models trained using inducing points.

Historical remarks. Methods based on subsets of data diminish the computational demand and were first introduced in a GP context in the foundational work on sparse approximations by Smola and Bartlett (2001). Back then, Quinonero-Candela and Rasmussen (2005) had already pointed out the main difficulties behind the optimal selection of subsets:

> "Traditionally, sparse models have very often been built upon a carefully chosen subset of the training inputs. [...] In sparse Gaussian processes it has also been suggested to select the inducing inputs X_n from among the training inputs. Since this involves a prohibitive combinatorial optimization, greedy optimization approaches have been suggested [...]. Recently, Snelson and Ghahramani (2006) have proposed to relax the constraint that the inducing variables must be a subset of training/test cases, turning the discrete selection problem into one of continuous optimization."

This explains how inducing variables reshaped the Gaussian process community, effectively banishing other subset-based methods. Our work builds on the advances made in stochastic optimization in the time since active sets were left behind. We show a third way over those considered by Quinonero-Candela and Rasmussen (2005): instead of optimizing the active set, we average with respect to it.

To justify our approach, we establish a link between active sets and cross validation (CV). The latter has a long history for model selection in GPs, dating at least to the seminal work of Wahba (1990). For probabilistic models, Rasmussen and Williams (2006) point to the utility of CV variants within negative log-probabilities. Building on results from Fong and Holmes (2020) linking CV and log-marginal likelihoods, we argue that, for GP-LVMs, active sets combine more gracefully with stochastic optimization. The remainder of this paper elaborates on this viewpoint and demonstrates it empirically.

2 Gaussian Process Decoders

The Gaussian process latent variable model (GP-LVM) (Lawrence, 2005) defines a decoder which is a non-linear mapping\(^2\) $x = f(z)$ from the latent space $\mathcal{Z} \in \mathbb{R}^D$ to observation space $\mathcal{X} \in \mathbb{R}^D$. The prior on this map is a Gaussian process (GP) so it is drawn like $f \sim \mathcal{GP}(0, k_\theta(\cdot, \cdot))$, where k_θ is the covariance function or kernel and K_{NN} denotes the evaluated kernel function so the i,jth element of K_{NN} equals $k_\theta(z_i, z_j)$. For clarity, we omit the dependence on covariance function parameters, θ.

The original version of the GP-LVM starts from one-dimensional observations $x = \{x_n\}_{n=1}^N$ and latent variables $z = \{z_n\}_{n=1}^N$, and factorises the joint distribution of the model as $p(x, f|z) = p(x|f, z)p(f|z)$. Here the conditional distributions correspond to the likelihood model and the prior

$$ p(x|f, z) = \prod_{n=1}^N \mathcal{N}(x_n|f(z_n), \sigma^2), \quad p(f|z) = \mathcal{N}(f(z)|0, K_{NN}). \quad (1) $$

When the data dimensionality is $D > 1$, the model factorises across dimensions, and we have different mappings f per dth feature. One of the principal assumptions of the GP-LVM is that the prior $p(f)$ regularises the smoothness of all mappings equally, so we only consider one kernel. This assumption can be relaxed if needed, but at increased computational cost and with more learnable hyperparameters.

\(^2\)We use $\{x, z\}$ to denote observations and latent variables respectively, since we do not consider inducing variables. Notice that Lawrence (2005) use the notation $\{y, x\}$.

Mapping marginalization. A GP prior over the non-linear decoder f allows for marginalisation of f to obtain a closed-form expression of the marginal likelihood of the GP-LVM

$$p(x|z) = \int p(x|f, z)p(f|z)df = \mathcal{N}(x|0, K_{NN} + \sigma^2 I).$$

On a log-scale, this gives the following objective function (Lawrence, 2004), which can be optimized w.r.t. both hyperparameters θ and latent variables z

$$\mathcal{L} = -\frac{DN}{2} \log 2\pi - \frac{D}{2} \log |K_{NN} + \sigma^2 I| - \frac{1}{2} \text{tr}((K_{NN} + \sigma^2 I)^{-1} xx^\top).$$

(2)

The difficulties of training the GP-LVM using this objective function are evident above, as the evaluation cost grows cubically with the number of observations N. Furthermore, notice that observations x are no longer independent (in contrast with Eq. 1) once f is integrated out. The log-marginal likelihood will be the starting point for our approach in Sec. 3.

Bayesian extension. In the seminal works of Lawrence (2004, 2005), the GP-LVM is first derived as a non-linear extension of probabilistic principal component analysis (PPCA) (Tipping and Bishop, 1999). Considering the isotropic prior on the latent variables z, such that $p(z_n) = \mathcal{N}(z_n|0, I) \forall z_n \in z$, the general idea is to optimize them rather than introducing marginalization. From a full probabilistic perspective, one could also be interested in the posterior distribution over z, which leads to using Bayesian inference for the GP-LVM approach. This is the driving idea of Titsias and Lawrence (2010), where variational methods are introduced. In particular, latent variables are not easy to marginalize, mainly due to their presence in the kernel mappings, so a lower-bound on the log-marginal likelihood $\log p(x) = \log \int p(x|z)p(z)dz$ of the model is derived.

So far, the Bayesian GP-LVM model (Titsias and Lawrence, 2010) has been considered as the standard methodology to apply GPs to large unsupervised datasets with $10^4 - 10^6$ observations, e.g. in regression (Bui and Turner, 2015), classification (Gal et al., 2015) and representation learning (Märtsens et al., 2019) tasks.

3 Stochastic Active Sets

Our key objective is a computationally efficient estimate of the log-marginal likelihood in Eq. 2, as this is known to be a good measure of generalization performance (Rasmussen and Ghahramani, 2000; Germain et al., 2016). Another popular measure of generalization performance is cross validation (CV) (Geisser and Eddy, 1979; Vehtari and Lampinen, 2002), which is arguably mostly used outside the realm of Bayesian models. Recently, Fong and Holmes (2020) linked these two measures, effectively showing that the marginal likelihood is equivalent to the average over exhaustive leave-R-out CV scores. In particular, the average is w.r.t. the size of the hold-out set. More precisely, let

$$S_{CV}(x|R) = \frac{1}{C} \sum_{p=1}^{C} \frac{1}{R} \sum_{n \in R_p} \log p(x_n|x_{A_p}, z) = \frac{1}{R} E_{A_p} \left[\sum_{n \in R_p} \log p(x_n|x_{A_p}, z) \right],$$

(3)

denote the leave-R-out CV using log-predictive scoring functions $\log p(x_n|x_{A_p}, z)$. Here A_p denotes the active set indices of the training data, such that $A_p \subset \{1, 2, \ldots, N\}$ and $R_p = \{1, 2, \ldots, N\} \setminus A_p$ are the remaining hold-out samples. The subscript $p \in C$ denotes the permutation, and we average over all $C = \binom{N}{R}$ possible hold-out sets. We use use R to indicate the size of the hold-out set $R_p (R = \|R_p\|)$ and let $A = \|A_p\| = N - R$. If we average $S_{CV}(x|R)$ over all possible sizes of the hold-out set, then Fong and Holmes (2020) has shown that we recover the exact log-marginal likelihood,

$$\log p(x|z) = \sum_{r=1}^{N} S_{CV}(x|r) = S_{CCV}(x|R) + S_{PCV}(x|R).$$

(4)

Here, $S_{PCV}(x|R) = E_A[\log p(x_A|z_A)]$ and $S_{CCV}(x|R) = \sum_{r=1}^{R} S_{CV}(x|r)$ is the cumulative CV score, which reduces to a sum of expectations over the predictive factors. Further details on S_{CV} and S_{CCV} can be found in the Appendix. Fong and Holmes (2020) used Eq. 4 to argue in favor of using the marginal likelihood over cross-validation for model selection.

3We drop the permutation subscript p in A and R to avoid cluttered notation.
We next seek to extend the previous SAS approach to the Bayesian GP-LVM, where we aim to obtain
where we used Eq. 2.22 from Rasmussen and Williams (2006) to obtain

Alternatively, we consider the variational inference scheme, where an auxiliary distribution
Appendix and the training methodology using SAS is in Alg. 1.

where we remark that the summation can be mini-batched. This approach is equivalent to the
variables \(z\) the model, since the one usually considered in supervised GP tasks. In the latter, we refer to \(p(x)\) as the marginal likelihood of the model, since \(z\) are also integrated out.

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]

\[\mathbb{E}_{q(z|x)} \left[\log p(x, z|x) \right] \approx \sum_{n \in \mathcal{R}} \log p(x_n|x_{A_n}, z) + \log p(x_{A_n}|z_{A_n}) \]
introduced into the formulation. Therefore, we are able to build the evidence lower bound (ELBO) of
the model using Jensen’s inequality as
\[
\log p(x) \geq \int q(z) \log p(x|z) p(z) dz = \mathbb{E}_{q(z)} [\log p(x|z)] - \text{KL} [q(z)||p(z)],
\]
which is equivalent to the one obtained by Titsias and Lawrence (2010, Eq. 8). At this point, the
computational cost is \(O(N^3)\), since the ELBO requires evaluating \(\log p(x|z)\), where we invert \(K_{NN}\).

The expectation in Eq. 7 can also benefit from a stochastic SAS approximation, just as with inducing
points (Hensman et al., 2013). Thus, the lower bound can be approximated as
\[
\mathcal{L}_{\text{ELBO}} \approx \sum_{n \in \mathcal{R}} \mathbb{E}_{q(z_n)} [\log p(x_n|x_A, z)] + \mathbb{E}_{q(z_A)} [\log p(x_A|z_A)] - \sum_{n=1}^{N} \text{KL} [q(z_n)||p(z_n)], \tag{8}
\]
where we consider mean-field VI to factorize the distribution \(q(z)\). The Bayesian GP-LVM shares
high-level similarities with other generative models that marginalize the latent variable according to a
simple prior (Rezende and Mohamed, 2015). The proposed SAS approximation (8) scales similarly
to mini-batched inducing point approximations, but we will later see that SAS behaves notably better
in practice. Algorithmically, the approach is simple, and the summary code is provided in Alg. 2.

Algorithm 1 SAS for GP decoders
1: **Input:** Observed data \(x\)
2: **Parameters:** Initialize \(\theta, \phi\) // \(\theta, \phi \) if NA
3: **for** \(e\) **in** epochs **do**
4: **for** \(b\) **in** batches **do**
5: Sample \(x_{\text{batch}} \sim x\)
6: \(x_R, x_A \leftarrow \text{random_split}(x_{\text{batch}})\)
7: if amortized then
8: Get \(\{z_R, z_A\} \leftarrow g(x_R, x_A|\phi)\)
9: **end if**
10: Compute \(K_{AA}^{-1}\) // via Cholesky
11: Evaluate \(\log p(x_A|z_A)\)
12: Evaluate \(\log p(x_n|x_A, z), \forall x_n \in x_R\)
13: Evaluate Eq. 6
14: **do** Adam\((\theta, \phi)\) step for \(\mathcal{L}\)
15: **end for**
16: **end for**
NA: Non-amortized.

Algorithm 2 SAS for Bayesian GP decoders
1: **Input:** Observed data \(x\)
2: **Parameters:** Initialize \(\theta, \phi\) // \(\theta, \mu, \sigma\) if NA
3: **for** \(e\) **in** epochs **do**
4: **for** \(b\) **in** batches **do**
5: Sample \(x_{\text{batch}} \sim x\)
6: \(x_R, x_A \leftarrow \text{random_split}(x_{\text{batch}})\)
7: if amortized then
8: Get \(\mu_z \leftarrow g_{\mu}(x_R, x_A|\phi)\)
9: Get \(\sigma_z \leftarrow g_\sigma(x_R, x_A|\phi)\)
10: **end if**
11: Sample \(\{z_R, z_A\} \sim q(\mu_z, \sigma_z)\) // RT
12: Compute \(K_{AA}^{-1}\) // via Cholesky
13: Evaluate \(\mathcal{L}\) in Eq. 8
14: **do** Adam\((\theta, \phi)\) step for \(\mathcal{L}_{\text{ELBO}}\)
15: **end for**
16: **end for**
NA: Non-amortized, RT: Reparametrization trick.

3.2 The Role of Amortization

Early after the emergence of the seminal GP-LVM (Lawrence, 2005), the lengthy optimization
required obtaining a result in which all latent representations \(z_n\) became noticeable. An additional
consideration is that, while most approaches to non-linear low-dimensionality reduction focus on preserv-
ing similarities, the GPLVM does the opposite. This property was initially discussed by Lawrence
and Quinonero-Candela (2006), since in some sense the GP-LVM is dissimilarity preserving, such
that different observations will generally be represented far away from each other. In practice, we are
often more interested in embeddings that reflect the true distance between the observed objects in their
representations, particularly those that are close together. This observation inspired back constraints
for locality preservation (Lawrence and Quinonero-Candela, 2006), which enforces latent variables \(z\)
 to be an explicit function of observations \(z = g(x|\phi)\) parameterized by \(\phi\). This is similar to the
stochastic encoder applied in variational autoencoders (Kingma and Welling, 2013; Rezende and
Mohamed, 2015). This idea was also extended to the VI framework in GP-LVMs by Bui and Turner
(2015) using a recognition model, e.g. \(q(z_n) = \mathcal{N}(z_n|g_{\mu}(x_n|\phi), g_\sigma(x_n|\phi))\) and more recently, to
accelerate hyperparameter learning in GPs with hierarchical attention networks (Liu et al., 2020).

In our context, we assume the mappings to be neural networks (NNs) like Bui and Turner (2015),
referring to them as amortization networks. We find such networks accelerate learning very nicely
when used in conjunction with SAS. It is also worth noting that amortization has been empirically
shown to improve generalization performance (Shu et al., 2018).
4 Related Work

Marginal likelihood approximations were used in GPs (Smola and Bartlett, 2001; Csató and Opper, 2002) before the apparition of pseudo-inputs (Snelson and Ghahramani, 2006) and the associated variational inference framework (Titsias, 2009). In the former case, stochastic approximations to the ELBO were first presented by Hensman et al. (2013, 2015), in line with the Bayesian counterpart of SAS. In terms of active sets, Seeger et al. (2003) empirically observed that the approximation was generally stable for optimisation, even if the size of A was a small fraction of the training size only. However, they also observed that random selection of active sets led to non-smooth fluctuations, making it difficult to converge through exact gradient ascent. Particularly, the issue with re-selecting of A motivated Snelson and Ghahramani (2006) as a smoother optimization alternative, and we find that SAS also circumvents this problem via stochastic estimates as shown in Sec. 5.

The connection between cross-validation and GPs was already described in Rasmussen and Williams (2006) as an alternative for model selection. However, the equivalence between exhaustive CV and the log-marginal likelihood provided in Fong and Holmes (2020) provides a novel perspective that we exploit. Additionally, the notion of back constraints has recently been considered in Lalchand et al. (2022) for GP-LVMs with inducing points, where a doubly stochastic formulation is used. More recently, amortization networks have been used to drastically reduce the number of inducing points in supervised GPs.

5 Experiments

In this section, we evaluate the performance of the SAS approach for stochastic learning of GP decoders, both the deterministic GP-LVM (Lawrence, 2004) and its Bayesian counterpart (Titsias and Lawrence, 2010). For this purpose, we consider three different datasets: MNIST (LeCun et al., 1998), FASHION MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009). For a fair comparison of our model with baseline methods, we use the same amortization across models, namely a neural network (three linear layers ReLU activation functions) for all models in all experiments and all GPs use an quadratic exponentiated kernel. In all experiments, the learning rates are set in the range \([10^{-4}, 10^{-2}]\), the maximum number of epochs considered is 300 and we use the ADAM optimizer (Kingma and Ba, 2015). For SAS experiments, we only consider batch sizes greater than the active set size, as this is a requirement for SAS.

Performance metrics of the SAS-GP decoders are given in terms of the negative log-predictive density (NLPD), root mean-square error (RMSE) and mean absolute error (MAE). In all cases, we optimize w.r.t. an approximation to the log-marginal likelihood $\log p(x|z)$ in the deterministic scenario or w.r.t. a lower bound on the $\log p(x)$ of the model in the Bayesian cases. We also provide PYTORCH code that allows for reproducing all experiments and models. We monitor the run-time of convergence as we suspect that rotating active sets (see Fig. 1) across the dataset is a fast way to capture the correlation structure of the regression problem.

5.1 Representation performance

First, we analysed our SAS approach and the approximate optimization procedure on an unsupervised version of MNIST, FMNIST and CIFAR-10, where we took the full training corpus for learning two-dimensional latent representations of images. The approximation curves are included in Fig. 2, where we observe convergence in less than 2h runtime in CPU for most cases. For all experiments, we can observe that for larger active set sizes A, the SAS approaches take longer time to complete the 300 epochs, as the computational cost of inversion is higher.

Evaluation with SOTA methods. We also tested the performance of representation learning in the state-of-the-art methods with and without GPs for unsupervised scenarios. Results are shown in Fig. 4. We include a short description of the models considered:

- SAS-GP DECODER — It uses stochastic active sets to approximate the log-marginal likelihood $\log p(x|z)$. The training methodology is described in Alg. 1.

Please see the supplementary material for more details.

The code is publicly available in the repository: https://github.com/pmorenoz/SASGP/ including baselines.
Figure 2: Approximate log-marginal likelihood (upper row) for SAS and ELBO curves (lower row) for Bayesian SAS. We fix the batch size in Alg. 1 to be $B = 1024$ and study the convergence for different active set sizes A. All values in the curves displayed are per-epoch.

Figure 3: Latent representation in a 2-dimensional space Z for the 10 MNIST and FMNIST classes learnt with SAS and Bayesian SAS. Notice that the likelihood model of the GP decoder is controlled by a vanilla RBF kernel. The examples have been obtained using an active set size $A = 800$.

Figure 4: Illustration of latent space mappings $z_n \in Z$ on test data for different SAS models and baselines (rows) and different datasets (columns). The models have been trained on full MNIST and FMNIST.
• **Bayesian SAS-GP Decoder** — It uses stochastic active sets to approximate the ELBO in Eq. (8) on \(\log p(\mathbf{x}) \). See Alg. 2.

• **Bayesian GP-LVM** — It is based on the model in Titsias and Lawrence (2010). Means and variance parameters are generated by an amortization NN as in Bui and Turner (2015). The model is trained using stochastic variational inference (Hensman et al., 2013).

• **GP-LVM** — We used the model proposed by Lawrence (2005) enhanced with an NN encoding to the latent space. The model is trained using maximum likelihood (ML).

• **Variational Autoencoder (VAE)** — (Kingma and Welling, 2013) The NN encoder has the same architecture as the amortization function used in the SAS-GP models.

For the SAS-GP decoder and GP-LVM, a neural network encodes the latent variables. Likewise, for the Bayesian SAS-GP decoder and the Bayesian GP-LVM, two neural networks each encode the latent means and latent variances. We refer to this encoding as amortization. All models use a Gaussian likelihood\(^7\).

Table 1: Comparative metrics for SAS and Bayesian SAS on MNIST, FMNIST and CIFAR-10.

MODEL	SAS	BAYESIAN SAS				
ACTIVE SET SIZE	**A = 100**	**A = 200**	**A = 400**	**A = 100**	**A = 200**	**A = 400**
MNIST/RMSE ↓	2.55 ± 0.98	2.47 ± 0.98	2.41 ± 0.93	2.16 ± 0.02	2.08 ± 0.02	1.99 ± 0.02
MNIST/MAE ↓	1.61 ± 0.97	1.55 ± 0.99	1.51 ± 0.96	1.11 ± 0.02	1.04 ± 0.02	0.96 ± 0.01
MNIST/NLPD ↓	2.99 ± 1.41	2.92 ± 1.38	2.84 ± 1.31	2.33 ± 0.03	2.26 ± 0.02	2.17 ± 0.02
MNIST/RMSE ↓	2.37 ± 0.95	2.31 ± 0.94	2.25 ± 0.90	1.99 ± 0.17	1.88 ± 0.20	1.85 ± 0.13
FNIST/MAE ↓	1.48 ± 0.91	1.42 ± 0.91	1.39 ± 0.89	1.11 ± 0.02	1.02 ± 0.03	0.98 ± 0.02
FNIST/NLPD ↓	2.76 ± 1.33	2.71 ± 1.31	2.65 ± 1.23	2.16 ± 0.18	2.07 ± 0.19	2.04 ± 0.12
CIFAR10/RMSE ↓	2.66 ± 1.08	2.55 ± 1.06	2.55 ± 1.03	2.74 ± 1.07	2.64 ± 1.08	2.57 ± 1.02
CIFAR10/MAE ↓	1.77 ± 1.06	1.69 ± 1.06	1.69 ± 1.02	1.84 ± 1.03	1.76 ± 1.05	1.71 ± 1.03
CIFAR10/NLPD ↓	3.20 ± 1.55	3.07 ± 1.44	3.02 ± 1.89	3.24 ± 1.53	3.14 ± 1.53	3.06 ± 1.45

All metrics are \((\times 10^{-1})\).

5.2 Evaluation metrics

In this section, we are interested in the evaluation of the GP decoder with the *standard* error metrics used for GPs. In Tab. 1 we provide RMSE, MAE and NLPD for the three datasets considered in this experiment. Interestingly, the performance usually improves with larger active set sizes \(A \), as the SAS model captures captures the underlying correlation of datapoints better and this enhances the approximation. This happens for both deterministic and Bayesian cases. Additionally, we observe that the NLPD metric is generally better for smaller active set sizes \(A \). This can also be noticed in Fig. 2, where loss curves have a better convergence for the lowest \(A \).

Classification accuracy. We are interested in evaluating the structure of the representation. For this purpose, we trained a (one) nearest neighbour classifier on the encoded, two-dimensional latent variables and we tested the accuracy using encoded test data. Tab. 2 shows the mean and standard deviations of test the accuracy.

MODEL	MNIST	FMNIST
Bayesian SAS-GP Dec. (ours)	0.63 ± 0.022	0.63 ± 0.020
Bayesian GP-LVM	0.18 ± 0.033	0.24 ± 0.043
VAE	0.54 ± 0.026	0.58 ± 0.008

Runtime and convergence of SAS approximation. The loss curves obtained for the (sparse) Bayesian GP-LVM model and the Bayesian SAS-GP decoder are shown in Fig. 5. We observe that the two methods scale similarly, but that SAS is faster by a notable constant within stochastic optimization. Additionally, we observe the performance of the SAS approximation to closely fit the exact log-marginal likelihood \(\log p(\mathbf{x}|\mathbf{z}) \). For the plot in Fig. 5, we computed the exact probability for a subset of MNIST \(N = 40,000 \) samples.

\(^7\)Pytorch (Paszke et al., 2019) and Pyro (Bingham et al., 2019) are available on public repositories.
6 Conclusion

State-of-the-art representation learning is generally based on neural networks, as this allows for scaling to large datasets. However, often we want reliable uncertainty estimates from the model and we can achieve these with Gaussian process decoders if we can scale them sufficiently. We have reviewed the main difficulties to obtain decent performances with GP-LVM approaches when applied to large-scale learning, even with inducing variables. Revisiting active set approximations, we considered a stochastic viewpoint to approximate the marginal likelihood while simultaneously keeping the model marginalized. We formulated our stochastic active sets (SAS) approach for both deterministic and Bayesian versions of GP decoders. We found that our approach works well with amortization, such that a neural network encoder approximately inverts the GP decoder. While amortization also helps when using inducing points, we found the combination with SAS to be particularly efficient and robust.

Empirically, we illustrated the advantage of our method first on image-based observations, where our approach learns better representations using fewer computational resources compared to inducing point methods. We further demonstrated that our approach easily scales to nearly 10^6 observations. In this experiment, we found that the learnt representations are qualitatively on par with those obtained by a comparable autoencoder. This is an important finding as, beyond small datasets, GP decoders generally recover less useful representations compared with models based on neural networks. From this result, we speculate that improvements in training might be enough to get state-of-the-art representations with GP decoders.

Additional benefits. Besides the empirical benefits demonstrated by SAS in the previous section, we have also observed other practical benefits worth reporting. First, we have observed that SAS easily runs in 32-bit numerical precision, unlike inducing point methods that generally require 64-bits of precision (when reporting running times we consistently used 64 bits). Similarly, the jitter usually added to the Cholesky factorization is of less importance in SAS. Second, we note that our implementation is surprisingly free of additional tricks and no numerical heuristics were needed to realize a reliable implementation.

Limitations and future work. Stochastic active sets rely on the Gaussian likelihood, and this is perhaps the strongest limitation. This works well for continuous data, but many data sources are inherently discrete and this requires a suitable likelihood, e.g. the discretized mixture of logistics (Salimans et al., 2017). Having more powerful likelihoods would surely improve the GP decoders, but this requires realization of further developments using SAS.

Future work will focus on applying the SAS approach in the supervised setting as well, and building SAS-like methods for discrete data. Other possible directions include extending the decoder with deep kernels (Wilson et al., 2016) to capture more features in the data and applying convolutional GPs (Van der Wilk et al., 2017) which are more suited to high-dimensional images.
Acknowledgements

The authors want to thank Simon Bartels for the fruitful discussions during the early stages of our investigation. This work was supported by research grants (15334, 42062) from VILLUM FONDEN. This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 757360). This work was funded in part by the Novo Nordisk Foundation through the Center for Basic Machine Learning Research in Life Science (NNF20OC0062606). This work was further supported by the Pioneer Centre for AI, DNRF grant number P1.

References

M. Bauer, M. van der Wilk, and C. E. Rasmussen. Understanding probabilistic sparse Gaussian process approximations. In Advances in neural information processing systems (NIPS), pages 1533–1541, 2016.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic programming. Journal of Machine Learning Research (JMLR), 20:28:1–28:6, 2019.

T. D. Bui and R. E. Turner. Stochastic variational inference for Gaussian process latent variable models using back constraints. In Black Box Learning and Inference NIPS Workshop, 2015.

L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):641–668, 2002.

E. Fong and C. C. Holmes. On the marginal likelihood and cross-validation. Biometrika, 107(2):489–496, 2020.

Y. Gal, Y. Chen, and Z. Ghahramani. Latent Gaussian processes for distribution estimation of multivariate categorical data. In International Conference on Machine Learning (ICML), pages 645–654. PMLR, 2015.

S. Geisser and W. F. Eddy. A predictive approach to model selection. Journal of the American Statistical Association, 74(365):153–160, 1979.

P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien. PAC-Bayesian theory meets Bayesian inference. Advances in Neural Information Processing Systems (NeurIPS), 29, 2016.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Uncertainty in Artificial Intelligence (UAI), pages 282–290, 2013.

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classification. In Artificial Intelligence and Statistics (AISTATS), pages 351–360, 2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on Learning Representations (ICLR), 2015.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114, 2013.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.

V. Lalchand, A. Ravuri, and N. D. Lawrence. Generalised GPLVM with stochastic variational inference. International Conference on Artificial Intelligence and Statistics (AISTATS), pages 7841–7864, 2022.

N. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research (JMLR), 6(11), 2005.

N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. In Advances in Neural Information Processing Systems (NIPS), pages 329–336, 2004.

N. D. Lawrence and J. Quinonero-Candela. Local distance preservation in the GP-LVM through back constraints. In International Conference on Machine Learning (ICML), pages 513–520, 2006.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

S. Liu, X. Sun, P. J. Ramadge, and R. P. Adams. Task-agnostic amortized inference of Gaussian process hyperparameters. Advances in Neural Information Processing Systems (NeurIPS), 33:21440–21452, 2020.
K. Märtens, K. Campbell, and C. Yau. Decomposing feature-level variation with covariate Gaussian process latent variable models. In International Conference on Machine Learning (ICML), pages 4372–4381. PMLR, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems (NeurIPS), 32, 2019.

J. Quinonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research (JMLR), 6(Dec):1939–1959, 2005.

C. Rasmussen and Z. Ghahramani. Occam’s razor. Advances in Neural Information Processing Systems (NIPS), 13, 2000.

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning, volume 2. MIT Press, 2006.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International Conference on Machine Learning (ICML), pages 1530–1538. PMLR, 2015.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics, pages 400–407, 1951.

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications. In International Conference on Learning Representations (ICLR), Toulon, France, 2017.

M. W. Seeger, C. K. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse Gaussian process regression. In International Workshop on Artificial Intelligence and Statistics (AISTATS), pages 254–261. PMLR, 2003.

R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon. Amortized inference regularization. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In Advances in Neural Information Processing Systems (NIPS), pages 619–625, 2001.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances in Neural Information Processing Systems (NIPS), pages 1257–1264, 2006.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning (ICML), pages 2256–2265. PMLR, 2015.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial Intelligence and Statistics (AISTATS), pages 567–574, 2009.

M. Titsias and N. D. Lawrence. Bayesian Gaussian process latent variable model. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pages 844–851, 2010.

M. Van der Wilk, C. E. Rasmussen, and J. Hensman. Convolutional Gaussian processes. In Advances in Neural Information Processing Systems (NIPS), pages 2849–2858, 2017.

A. Vehtari and J. Lampinen. Bayesian model assessment and comparison using cross-validation predictive densities. Neural Computation, 14(10):2439–2468, 2002.

G. Wahba. Spline models for observational data. SIAM, 1990.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In Artificial Intelligence and Statistics (AISTATS), pages 370–378. PMLR, 2016.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
Checklist

1. For all authors:
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes] We put particular attention on active sets, scalability and the connection between marginal likelihood of GPs and CV.
 (b) Did you describe the limitations of your work? [Yes] See Section 6.
 (c) Did you discuss any potential negative societal impacts of your work? [N/A]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results:
 (a) Did you state the full set of assumptions of all theoretical results? [Yes] In Section 3 and the Appendix.
 (b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.

3. If you ran experiments:
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] We provide an URL for the Pytorch code, which will be available in a public repository. Additionally, experiments files will be included and details on the data can be found in the Appendix.
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] Set up of GP decoder variables (A, initial $θ$, etc) used in the experiments, further details on initialization, algorithms and optimization are provided in the Appendix.
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] All our experiments consider multiple initialization and seeds for randomness, which are reflected on the metrics and figures.
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] A description of computational resources used is provided in the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets:
 (a) If your work uses existing assets, did you cite the creators? [Yes] In the experiments and in the scripts.
 (b) Did you mention the license of the assets? [Yes] In the appendix and scripts.
 (c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]