Genomic deletions in \textit{OPA1} in Danish patients with autosomal dominant optic atrophy

Gitte J Almind1,*, Karen Grønskov1, Dan Milea2,3, Michael Larsen1,3,4, Karen Brøndum-Nielsen1,4 and Jakob Ek1,5

Abstract

\textbf{Background:} Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in \textit{OPA1} located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89\% of cases. Although deletions of \textit{OPA1} were recently reported in ADOA, the frequency of \textit{OPA1} genomic rearrangements in Denmark, where ADOA has a high prevalence, is unknown. The aim of the study was to identify copy number variations in \textit{OPA1} in Danish ADOA patients.

\textbf{Methods:} Forty unrelated ADOA patients, selected from a group of 100 ADOA patients as being negative for \textit{OPA1} point mutations, were tested for genomic rearrangements in \textit{OPA1} by multiplex ligation probe amplification (MLPA). When only one probe was abnormal results were confirmed by additional manually added probes. Segregation analysis was performed in families with detected mutations when possible.

\textbf{Results:} Ten families had \textit{OPA1} deletions, including two with deletions of the entire coding region and eight with intragenic deletions. Segregation analysis was possible in five families, and showed that the deletions segregated with the disease.

\textbf{Conclusion:} Deletions in the \textit{OPA1} gene were found in 10 patients presenting with phenotypic autosomal dominant optic neuropathy. Genetic testing for deletions in \textit{OPA1} should be offered for patients with clinically diagnosed ADOA and no \textit{OPA1} mutations detected by DNA sequencing analysis.

Background

Autosomal dominant optic atrophy (ADOA) is the most common hereditary optic neuropathy. The phenotype is characterized by bilateral subnormal visual acuity, colour vision defect, a partial or absolute centrocoecal scotoma, optic nerve pallor, and subnormal retinal nerve fiber layer and ganglion cell layer thickness [1,2]. The disease has incomplete penetrance and variable expression, ranging from subclinical visual manifestations to legal blindness [3]. The highly variable phenotype, both within and between pedigrees, suggests that genetic and/or environmental cofactors influence the expression of the disease. Kjer’s optic atrophy or optic atrophy 1 (MIM #165500) [4], the ADOA originally described by Kjer, is caused by mutations in \textit{OPA1} (chromosome 3q28-q29). A specific frameshift mutation in exon 28 is particularly common in Denmark with evidence for a founder effect [5-7]. Other loci for ADOA include \textit{OPA4} on chromosome 18q12.2-q12.3 [8] and \textit{OPA5} on chromosome 22q12.1-q13.1 [9]. Dominant mutations in \textit{OPA3} have been recently reported in ADOA associated with cataract [10]. The gene most commonly involved in ADOA is \textit{OPA1} [11,12] in which 205 unique pathogenic mutations have been identified http://lbbma.univ-angers.fr/eOPA1 [13]. Many mutations have only been found in a single family. The prevalence of \textit{OPA1} mutations in ADOA patients ranges from 32 to 89\%, suggesting the existence of other causative genes or alternative types of genetic defects, including genomic rearrangements [14-18].

Genomic deletions or duplications have been found to account for various genetic disorders [19-21]. Marchbank et al. [22] were first to identify complete deletion of \textit{OPA1} as a cause of ADOA. Recently, Fuhrmann et al. have shown that genomic aberrations may explain up to 12.9\% of cases of Kjer-type ADOA [23]. Because a large fraction of our ADOA cases lacked a molecular diagnosis, in spite of having typical family
histories in most cases, we initiated a study of copy number variation and other genomic rearrangements at the OPA1 locus to supplement the results of direct sequencing. We investigated 40 index patients diagnosed on clinical grounds with ADOA who had previously been found negative for mutations in OPA1 by DNA sequence analysis.

Methods
Patients and control subjects
One hundred unrelated index patients, of Danish origin, with clinically diagnosed ADOA were retrieved from the Danish opthalmogenetics register and DNA repository of the National Eye Clinic at the Kennedy Center. The study included only cases from families with at least two affected members and an autosomal dominant pattern of inheritance. The diagnosis was based on routine clinical procedures, the standard being refraction and determination of best corrected visual acuity, color vision testing, visual evoked potential recording, fundus photography, Goldmann manual kinetic perimetry, and slit-lamp biomicroscopy of the anterior segment, vitreous, and posterior pole. No other inflammatory, ischemic, toxic causes of optic neuropathies were detected. Genomic DNA was obtained from leucocytes using Chemagic Magnetic Separation Module I (Chemagen, Baesweiler, Germany). The patients were screened for mutations in all coding regions and exon-intron boundaries by direct sequencing using BigDye chemistry and analyzed using an ABI 3130 instrument (Applied Biosystems, Foster City, CA, USA) (unpublished data). Of the 100 index patients, 40 were not harboring an identifiable OPA1 mutation. DNA from these 40 index patients was then analyzed for genomic rearrangements in OPA1 using multiplex ligation probe amplification (MLPA). The study was performed in accordance to the Helsinki declaration and was approved by the local ethics committee. Patients and healthy relatives had given their written informed consent.

MLPA Analysis
MLPA analysis was performed using a commercial kit (P229-B1, MRC-Holland, Amsterdam, The Netherlands) following the manufacturer’s instructions. The MLPA KIT P229-B1 contains probes for 30 of 31 exons in OPA1. Additional MLPA probes were designed in-house to amplify regions narrowing down the identified deletions and to confirm initial findings. For the reactions we used 150 ng of patient DNA. The reactions were separated and visualized on an ABI 3130 Genetic Analyzer and further analyzed using GeneMarker (SoftGe-
Discussion

The main finding of our study is that in a series of 40 unrelated ADOA patients \textit{OPA1} deletions were found in 10. The 40 patients were selected from a cohort of 100 unrelated ADAO patients of whom 60 were found to have mutations in \textit{OPA1} by sequence analysis (data not shown). Thus assuming that the 60 patients do not have further mutations in \textit{OPA1}, we find a frequency of 10% of deletions in \textit{OPA1} in Danish ADOA patients. Notably, the two patients with complete deletions of \textit{OPA1} did not present with any other symptoms than classical ADOA, supporting that haploinsufficiency is the pathogenic mutational mechanism causing classical non-syndromic ADOA phenotype. Additional studies are needed to determine the extent of the deletion by mapping the deletion breakpoints, which is beyond the scope of this report.

Our study is an agreement with the report of Fuhrmann et al. [23] who showed that ADOA can be related

Table 1 Clinical data of ADOA patients with deletions in \textit{OPA1}

Patient	Age at diagnosis (y)	BCVA at diagnosis	Refraction, spherical equivalent	Color vision, Farnsworth Panel D-15	Visual Field	Disc and fundus appearance	VEP
DOA101	23	0.4/0.3	-6.5/-7.0	Dyschromatopsia, tritan axis	Normal outer boundaries, relative central scotoma	Temporal pallor	Borderline subnormal
DOA102	52	0.7/0.9	-3.5/-4.25			Temporal pallor	Pathological
DOA103	12	1.0/1.0 (0.2/0.2 at age 37 y)	-4.25/-3.5	Few errors on saturated, more on unsaturated, tritan axis	Centrocoecal scotoma OU, age 37 y	Small, evenly shaped disks	N/A
DOA104	28	0.4/0.2	+0.75/+1.0	No significant abnormality	Outer borders normal, mild relative central scotoma	Normal	
DOA105	43	0.4/0.2	-3.75/-3.25	Tritan errors	Outer borders normal, mild relative central scotoma	Temporal pallor	Borderline subnormal
DOA106	52	0.5/0.5	plano/plano	N/A	N/A	Temporal pallor	N/A
DOA107	54	0.1/0.3	plano/-2.75	Dyschromatopsia, no specific axis	Outer borders normal	Atrophy, temporal pallor	Normal
DOA108	33	0.6/0.6	-1.25/-1.5	Mild trian-axis dyschromatopsia	Outer borders normal	Mild temporal pallor	Normal
DOA109	30	0.3/0.4	+4.0/+3.0	Dyschromatopsia, no specific axis	Outer borders normal, mild relative central scotoma	Temporal pallor and atrophy	Anomalous configuration
DOA110	16	0.3/0.3	-1.75/-1.25	Dyschromatopsia, no specific axis	Outer borders normal, mild relative central scotoma	Temporal pallor	Delayed implicit times
to genomic rearrangements of OPA1. We found OPA1 deletions in 10 out of 40 patients selected from a cohort of 100 patients corresponding to a frequency of 10%, which is comparable to 12.9% found by Fuhrmann et al. [23], however, contrary to Fuhrmann et al. [23] we found no duplications. The rearrangements are scattered throughout the gene, affecting single or multiple exons, or even whole gene deletions. Furthermore, the deletions described in this study are different from the rearrangements found by Fuhrmann et al. [23], showing that they arise as separate events, rather than being hotspots for rearrangements. Therefore, we suggest that deletion and duplication analysis of OPA1 should be included in the routine genetic analysis of ADOA patients.

Several studies of various genes have shown that deletions or duplications not detectable with sequencing or screening strategies such as single strand conformational polymorphism (SSCP), contribute to the mutational load, which is confirmed by our study [20,24]. Thus, genomic rearrangements have to be considered in diseases where a proportion of patients apparently do not harbor mutations in the disease causing gene/genes, since these will be left unrecognized by sequence analysis which is the preferred method for mutation analysis.

MLPA is a fast and relatively cheap method to analyze for gene dosage differences among large groups of patients.

Conclusion

OPA1 genomic deletions account for about 10% of ADOA cases in a Danish population, registered at the national center for hereditary eye diseases. Our findings suggest that an analysis of genomic rearrangements is mandatory in the investigation and diagnosis of ADOA.

Acknowledgements

We wish to thank Nuzha Biari, Kennedy Center, Glostrup, Denmark for technical assistance; Hans Ulrik Møller, Viborg Hospital, Viborg, Denmark and Toke Bek, Aarhus University Hospital, Aarhus, Denmark for clinical assistance. We are grateful to all the patients and their relatives for participating in this study. Very special thanks to Thomas Rosenberg for initiating the work and for help and advice. The work was funded by the Michaelsen Foundation, The Danish Eye Research Foundation and the AP Møller Foundation.

Author details

1. Center for Applied Human Molecular Genetics, The Kennedy Center, Glostrup, Denmark.
2. Ophthalmology Department, Angers University Hospital, Angers, France.
3. Department of Ophthalmology, Glostrup Hospital, Glostrup, Denmark.
4. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
5. Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark.

Figure 2 Pedigrees of three ADOA families A. Family DOA105, B. Family DOA110 C. Family DOA108. Index patients are indicated with an arrow. Filled symbols are individuals affected with ADOA, open symbols are either unaffected or not known. Individuals investigated by deletion analysis are shown with a “+del” (deletion present) or “-del” (no deletion) below symbol.
Dominant optic atrophy (OPA1)

Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Ophthalmol Suppl 1959, 164:1-147.

A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder effect. Hum Mol Genet 2001, 10:498-502.

Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis. Hum Mol Genet 1994, 3:977-980.

A second locus on chromosome 18q12-12.3 changes the phenotype of a dominant optic atrophy family: evidence that haploinsufficiency is the cause of disease. J Med Genet 2002, 39:45-50.

Molecular and clinical survey of mutations in the OPA1 gene in patients with autosomal dominant optic atrophy. Hum Mutat 2003, 21:41-52.

A comprehensive survey of the OPA1 gene in patients with autosomal dominant optic atrophy. Invest Ophthalmol Vis Sci 2002, 43:1715-1724.

A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder effect. Hum Mol Genet 2001, 10:498-502.

Comparison is made with congenital adrenal hyperplasia: first technical report. Clin Chim Acta 2009, 402:164-170.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

doi:10.1186/1471-2350-12-49

Cite this article as: Almind et al.: Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy. BMC Medical Genetics 2011 12:49.