Bioinformatics resources for deciphering the biogenesis and action pathways of plant small RNAs

Dongliang Yu¹, Xiaoxia Ma¹, Ziwei Zuo¹,², Weishan Shao¹,², Huizhong Wang¹,² and Yijun Meng¹,²*

Abstract

The next-generation sequencing (NGS) technology has revolutionized our previous understanding of the plant genomes, relying on its innate advantages, such as high throughput and deep sequencing depth. In addition to the protein-coding gene loci, massive transcription signals have been detected within intergenic or intragenic regions. Most of these signals belong to non-coding ones, considering their weak protein-coding potential. Generally, these transcripts could be divided into long non-coding RNAs and small non-coding RNAs (sRNAs) based on their sequence length. In addition to the well-known microRNAs (miRNAs), many plant endogenous sRNAs were collectively referred to as small interfering RNAs. However, an increasing number of unclassified sRNA species are being discovered by NGS. The high heterogeneity of these novel sRNAs greatly hampered the mechanistic studies, especially on the clear description of their biogenesis and action pathways. Fortunately, public databases, bioinformatics softwares and NGS datasets are increasingly available for plant sRNA research. Here, by summarizing these valuable resources, we proposed a general workflow to decipher the RDR (RNA-dependent RNA polymerase)- and DCL (Dicer-like)-dependent biogenesis pathways, and the Argonaute-mediated action modes (such as target cleavages and chromatin modifications) for specific sRNA species in plants. Taken together, we hope that by summarizing a list of the public resources, this work will facilitate the plant biologists to perform classification and functional characterization of the interesting sRNA species.

Keywords: Database, Software, Next-generation sequencing (NGS), Biogenesis, Action, Plant small RNA

Review

Introduction

Ten years after the accomplishment of the first plant genome project (Mozo et al., 1999), the advent of the next-generation sequencing (NGS) technology has uncovered an unprecedentedly intricate scene of genomewide transcription in plants (Varshney et al., 2009; Kelly and Leitch, 2011; Jain, 2012). In addition to the already annotated protein-coding genes, the fact is emerging that millions of the non-coding RNAs (ncRNAs) are transcribed from the intergenic or the intragenic regions (Jiang, 2015; Wendel et al., 2016). These non-coding transcripts could be roughly classified into the long non-coding RNAs (lncRNAs; > 200 nt) (Chekanova, 2015) and the small non-coding RNAs (sRNAs; < 200 nt) (Chen, 2009). Owing to the relatively short read length of NGS, the sRNAs were easier to be cloned at the beginning of the plant ncRNA research. Expectedly, the explosive sRNA world immediately became a hot research topic for the plant biologists. Notably, some of these small transcription “noises”, which were once regarded as the degraded remnants, have been demonstrated to be generated through specific pathways and play essential roles in plant development (Chen, 2009).

One of the well studied sRNA species is microRNA (miRNA) (Jones-Rhoades et al., 2006; Voinnet, 2009). In plants, the transcription of most miRNA genes is driven by RNA polymerase II (Pol II), resulting in the production of the 5’ capped and 3’ poly(A) (polyadenylation)-tailed transcripts called primary microRNAs (pri-miRNAs). Relying on the highly complementary base pairing, stable
hairpin-like structures could form within the specific regions of the pri-miRNAs. These local hairpin structures are the featured substrates of Dicer-like 1 (DCL1). Followed by the DCL1-mediated two-step cropping in the nucleus, the pri-miRNAs are sequentially processed into the secondary precursors named as precursor microRNAs (pre-miRNAs), and then into the miRNA/miRNA* duplexes. After exporting to the cytoplasm, the mature miRNAs are selectively loaded into specific Argonaute (AGO)-centered protein complexes. In most cases, the miRNAs will be recruited by AGO1, although some exceptional cases have been reported for “miR172—AGO10” and “miR165/166—AGO10” in Arabidopsis (Arabidopsis thaliana), “miR168—AGO18” in rice (Oryza sativa), and “miR390—AGO7” in both plants (Fang and Qi, 2016). The AGO complex is guided by the recruited miRNA to bind onto a specific target transcript containing a region highly complementary to the miRNA. There are two major action modes of miRNA-guided gene silencing in plants. One is target cleavage which is considered as the most common mode (Voinnet, 2009), and the other is translational repression which has been observed in several studies (Chen, 2004; Gandikota et al., 2007; Li et al., 2013). Another class of plant sRNAs is collectively referred to as the small interfering RNAs (siRNAs), which could be further classified into heterochromatic small interfering RNAs (hc-siRNAs), trans-acting small interfering RNAs (ta-siRNAs), natural antisense transcript-derived small interfering RNAs (nat-siRNAs), and phased small interfering RNAs (phasiRNAs). Specifically, hc-siRNAs are encoded within the heterochromatic loci transcribed by RNA Pol IV. The single-stranded Pol IV transcripts are converted to double-stranded precursors through the RDR2 (RNA-dependent RNA polymerase 2)-dependent pathway. Then, the precursors are processed by DCL3 for the production of the 24-nt hc-siRNAs. The hc-siRNAs are incorporated into AGO4 to perform site-specific chromatin modifications (Xie et al., 2004; Qi et al., 2005; Henderson et al., 2006). In Arabidopsis, there are four TAS gene loci encoding ta-siRNAs. MiRNA-mediated cleavages (miR173 for TAS1 and TAS2, miR390 for TAS3, and miR828 for TAS4) of the primary TAS transcripts are the prerequisite for initiating ta-siRNA production. Through the RD6-dependent pathway, the cleaved TAS transcripts are converted to double-stranded precursors which will be subject to ta-siRNA processing by DCL4. Finally, most of the ta-siRNAs are loaded into AGO1 silencing complexes to guide target cleavages (Perragine et al., 2004; Vazquez et al., 2004; Allen et al., 2005; Gasciolli et al., 2005; Xie et al., 2005; Yoshikawa et al., 2005; Rajagopalan et al., 2006). For the nat-siRNAs, genome-wide studies in both Arabidopsis and rice showed that they were originated from the overlapping regions of the natural antisense transcript (NAT) pairs through the DCL1-dependent pathway or through the Pol IV-, RDR2-, and DCL3-dependent pathway (Zhang et al., 2012). Moreover, in Borsani et al.’s study (2005), 21- and 24-nt nat-siRNAs were demonstrated to be produced from a cis-NAT pair through the RDR6- and DCL1/2-dependent pathway (Borsani et al., 2005). A major class of phasiRNAs was identified in the reproductive tissues of Gramineae species, such as rice (Johnson et al., 2009) and maize (Zea mays) (Zhai et al., 2015). Notably, in rice, the processing of 21-nt phasiRNAs was highly dependent on DCL4, while the processing of 24-nt ones required the activity of DCL3b (Song et al., 2012). Komiyama and his colleagues (2014) reported that a portion of the DCL4-dependent, 21-nt phasiRNAs preferentially associated with MEL1 (the ortholog of Arabidopsis AGO5), and these 5′ C-started phasiRNAs originated from hundreds of lincRNA (long intergenic non-coding RNA) loci. In addition to the above mentioned sRNAs, some non-canonical sRNA species have been discovered, such as the AGO4-associated long siRNAs of 25-nt in length (Zilberman et al., 2003), the DCL3-dependent, AGO4-associated, 24-nt miRNAs called long miRNAs (Wu et al., 2010), the Pol IV- and DCL2/3/4-dependent, AGO2-associated double-strand break-induced sRNAs (Wei et al., 2012), the DCL-independent, AGO4-associated, 20- to 60-nt siRNAs (Ye et al., 2016), and the intron-derived, DCL2/3/4-dependent siRNAs (Chen et al., 2011). For a clear summarization, Fig. 1a provides a brief framework of the biogenesis and action pathways of the plant sRNAs. However, all of the recent discoveries just witnessed the emergence of the unexpectedly huge and complicated RNA world. It is still far from thorough understanding of the biogenesis and action pathways of the enormous sRNA population.

Fortunately, the valuable public resources have become increasingly available for the mechanistic studies on the plant sRNAs. Here, by taking the two model plants Arabidopsis and rice as an example, we provided a list of the currently available resources to the plant biologists, including the public databases, the bioinformatics softwares and the NGS datasets. Notably, most of the bioinformatics softwares listed here are online tools with user-friendly interface. By proposing a workflow for analyzing the biogenesis and action pathways of the plant sRNAs, we made a clear description for the specific applications of different sequencing datasets and bioinformatics toolkits at each analytical step. Finally, we anticipate that this workflow along with the list could advance the efficiency of data analysis and interpretation, thus facilitating the experimental design for the functional studies on the plant sRNAs. Below, we will introduce the public resources step by step according to the workflow shown in Fig. 1b.

Genomic features and transcription

By using the BLAST tool provided by the plant genomic databases, such as TAIR (the Arabidopsis information
resource) (Huala et al., 2001) for Arabidopsis and RGAP (rice genome annotation project) (Kawahara et al., 2013) or RAP-DB (the rice annotation project database) (Ohyanagi et al., 2006) for rice (Table 1), the genomic positions of the sRNA-coding loci could be obtained, facilitating the researchers to tell whether the sRNA loci are intergenic or intragenic. For mapping huge sRNA sequencing (sRNA-seq) datasets onto a plant genome, Bowtie should be selected as one of the powerful tools (Langmead et al., 2009). miRBase (the microRNA database) (Griffiths-Jones et al., 2006) and PLncDB (plant long non-coding RNA database) (Jin et al., 2013) are useful to check whether the sRNA is originated from a miRNA precursor or a lncRNA. Besides, ShortStack should be a useful tool to analyze the sRNA-seq data based on the available reference genomes (Axtell, 2013) (Table 2). It can output reports showing sRNA size distributions, repetitiveness, hairpin-association and phasing. One of its shortcomings is the requirement of bioinformatics experts for local installation and running.

Here, the workflow for analyzing the sRNA biogenesis and action pathways is proposed based on the scenario that the sRNAs are processed from their precursors transcribed from specific genomic loci (Fig. 1). If the sRNA precursor was experimentally cloned by using fine-scale methods such as RACE (rapid amplification of cDNA ends), the transcription boundary of the precursor-coding locus could be defined. In this case, the upstream region of user-defined length could be retrieved from the above mentioned genomic database, and be treated as the promoter region of this gene locus for cis-element analysis by using PlantCARE (a plant cis-acting regulatory element database) (Rombauts et al., 1999), PLACE (Plant cis-acting regulatory DNA elements database) (Higo et al., 1998), or the newly updated tools JASPAR (Mathelier et al., 2016) and the MEME suite (Bailey et al., 2015) (Table 2). The prediction results from these online tools might provide some valuable hints to infer the basic transcriptional features of this gene locus. For example, the coexistence of CAAT-box and TATA-box within the upstream region near to the transcription start site indicates the Pol II-driven transcription of the host gene (Lewin, 1990). Of course, we should acknowledge that the fine-scale cloning of the sRNA precursors is time consuming and laborious. The high-throughput solution is by analyzing the publicly available RNA sequencing (RNA-seq) data. Notably, distinct types of RNA-seq libraries were prepared with different purposes. For example, in a recent study, the poly(A)-tailed RNA-seq libraries were constructed for the detection of Pol II-dependent transcripts, while the rRNA-depleted total RNA-seq libraries were prepared for the identification of Pol IV-dependent transcripts (Li et al., 2015). After mapping such kind of RNA-seq data (Table 3) onto the plant genome by using a high-throughput
alignment tool, Bowtie 2 (Langmead and Salzberg, 2012) for example, the transcription boundaries of the sRNA precursor-coding loci could be delineated. Also based on the mapping result, the RNA polymerase dependence could be partially determined for the loci. Moreover, some of the sRNA-seq datasets, such as those originated from

![Table 1](Table1.png)

Note: the currently invalid URL is noted by parentheses
the **nrpd1** mutant (a Pol IV mutant) (Table 3), could also be used to investigate the polymerase dependence of the sRNA-coding loci. Notably, compared to Bowtie, Bowtie 2 is particularly efficient for long read (up to hundreds of nucleotides in length) mapping. Thus, Bowtie 2 is recommended to be employed for RNA-seq data analysis, while Bowtie is more suitable for sRNA-seq read mapping as mentioned above.
Table 3 List of sequencing data for plant small RNA research

Data type	Species	Dataset ID	Descriptiona	Reference
RNA-seq	Arabidopsis (Col-0)	GSE57215	dcl234 rep1	(Li et al., 2015)
		GSM1377353		
		GSM1377354	dcl234 rep2	
		GSM1377355	dcl234 rep3	
		GSM1377356	dcl234 rdr1 rep1	
		GSM1377357	dcl234 rdr1 rep2	
		GSM1377358	dcl234 rdr1 rep3	
		GSM1377359	dcl234 DSN	
		GSM1377360	dcl234 rdr1 DSN	
		GSM1377361	dcl234 rdr2 DSN	
		GSM1377362	dcl234 PolyA+ rep1	
		GSM1377363	dcl234 PolyA+ rep2	
		GSM1377364	dcl234 PolyA+ PolyA+ rep1	
		GSM1377365	dcl234 PolyA+ PolyA+ rep2	
		GSM1377366	dcl234 PolyA- rep1	
		GSM1377367	dcl234 PolyA- rep2	
		GSM1377368	dcl234 PolyA- PolyA- rep1	
		GSM1377369	dcl234 PolyA- PolyA- rep2	
Rice	GSE50778	GSM1229044	Nipponbare	(Wei et al., 2014)
		GSM1229045	Nipponbare dc3a RNAi-1	
		GSM1229046	Nipponbare dc3a RNAi-3	
DsRNA-seq	Arabidopsis	GSE23439	WT 1 × ribominus	(Zheng et al., 2010)
		GSM575243		
		GSM575244	WT 2 × ribominus	
		GSM575245	rdr6	
		GSE57215	dcl234 unopened flower buds rep1	(Li et al., 2015)
		GSM1377347	dcl234 unopened flower buds rep2	
		GSM1377348	dcl234 unopened flower buds rep3	
		GSM1377349	dcl234 unopened flower buds rep3	
		GSM1377350	dcl234 rdr1 unopened flower buds rep1	
		GSM1377351	dcl234 rdr1 unopened flower buds rep2	
		GSM1377352	dcl234 rdr1 unopened flower buds rep3	
Degradome-seq	Arabidopsis (Col-0)	GSE77549	WT 11-day-old seedlings	(Hou et al., 2016)
		GSM2054358	WT inflorescences	
		GSM2054359	WT inflorescences rep1	
		GSM2253889	WT inflorescences rep2	
		GSM2253890	rdr6 inflorescences rep1	
		GSM2253893	rdr6 inflorescences rep2	
		GSM2253891	ago7 inflorescences rep1	
		GSM2253894	ago7 inflorescences rep2	
		GSE52342	WT inflorescences	(Creasey et al., 2014)
		GSM1263708	ddm1-2 inflorescences	
		GSM1263709	rdr6–15 inflorescences	
		GSM1263710	ddm1–2 rdr6–15 inflorescences	
		GSE47121	Flower buds rep1	(Willmann et al., 2014)
		GSM1145327	Flower buds rep2	
		GSE11007	Inflorescences, dT primed	(Addo-Quaye et al., 2008)
		GSM278333	Inflorescences, dT primed	
		GSM278334	Inflorescences, random primed	
		GSM278335	Inflorescences, random primed	
GSM/GSE	Description	Study Details		
---------	-------------	---------------		
GSM278370	Seedlings, random primed			
GSE11094	WT inflorescences	(German et al., 2008)		
GSM280227	xrn4 inflorescences			
GSE55151	Young leaves	(Thatcher et al., 2015)		
GSM1330570	Mature leaves			
GSM1330571	Early senescence leaves rep 1			
GSM1330573	Early senescence leaves rep 2			
GSM1330572	Late senescence leaves rep 1			
GSM1330574	Late senescence leaves rep 2			
GSE11070	WT Flowers rep1	(Gregory et al., 2008)		
GSM284752	ein5-6 flowers rep1			
GSE71913	Unopened flower buds, abh1–1	(Yu et al., 2016b)		
GSM1847334	Unopened flower buds, abh1–8			
GSM1939001	Leaves, treated with translation inhibitor CHX rep1			
GSM1939002	Leaves, treated with translation inhibitor CHX rep2			
GSE66224	Immature inflorescences rep1	(Vandivier et al., 2015)		
GSM1617433	Immature inflorescences rep2			
GSE42467	Young panicles of ZH11 (japonica) at high temperature			
GSE66610	Nipponbare Leaves	(Baldrich et al., 2015)		
GSM1626143	Nipponbare Leaves			
GSM1626145	Nipponbare Leaves			
GSE62334	Nipponbare leaves			
GSE17398	Nipponbare seedlings	(Li et al., 2010)		
GSE19050	93-11 (indica) young inflorescences	(Zhou et al., 2010)		
GSE18251	Nipponbare seedlings	(Wu et al., 2009)		
GSE57215	Arabidopsis (Col-0)			
GSE14695	Whole aerials	(Fählgren et al., 2009)		
GSE44622	WT, flowers rep1	(Jeong et al., 2013)		
GSE23439	WT	(Zheng et al., 2010)		
GSE1087973	WT, flowers rep1			
GSE1087974	WT, flowers rep2			
GSE1087975	dcl1–7, flowers rep 1			
GSE1087976	dcl1–7, flowers rep 2			
GSM1087977	dcl234, flowers rep 1			
GSM1087978	dcl234, flowers rep 2			
GSM1087979	rdr2, flowers rep 1			
GSM1087980	rdr2, flowers rep 2			
GSM1087987	(Zhai et al., 2013)			
GSE1178880	WT flowers, rep1			
GSE1178881	WT flowers, rep2			
GSE1178882	WT flowers, rep3			
GSE1178883	hen1–8 flowers, rep1			
GSE1178884	hen1–8 flowers, rep2			
GSE1178885	hen1–8 flowers, rep3			
GSE26161	sRNAs cloned from total RNA			
GSE26161	(Zhang et al., 2011)			
GSE26161	sRNAs cloned from AGO2			
GSE28591	WT, flowers			
GSE28591	(Wang et al., 2011)			
GSE28591	WT, leaves			
GSE28591	WT, roots			
GSE28591	WT, seedlings			
GSE28591	AGO1-associated sRNAs, flowers			
GSE28591	AGO1-associated sRNAs, leaves			
GSE28591	AGO1-associated sRNAs, roots			
GSE28591	AGO1-associated sRNAs, seedlings			
GSE28591	AGO4-associated sRNAs, flowers			
GSE28591	AGO4-associated sRNAs, leaves			
GSE28591	AGO4-associated sRNAs, roots			
GSE28591	AGO4-associated sRNAs, seedlings			
GSE28591	sRNAs cloned from AGO10			
GSE10036	sRNAs cloned from AGO1			
GSE10036	(Mi et al., 2008)			
GSE10036	sRNAs cloned from AGO2			
GSE10036	sRNAs cloned from AGO4			
GSE10036	sRNAs cloned from AGO5			
GSE12037	sRNAs cloned from total RNA (AGO2 mock)			
GSE12037	(Montgomery et al., 2008)			
GSE12037	sRNAs cloned from AGO2			
GSE12037	sRNAs cloned from AGO7 mock			
GSE20748	Nipponbare WT seedlings			
GSE20748	(Wu et al., 2010)			
GSE20748	Nipponbare rdr2 seedlings			
GSE20748	Nipponbare dcl1 seedlings			
GSE20748	Nipponbare dcl3 seedlings			
GSE26405	ZH11 (japonica) high temperature panicles			
GSE26405	(Song et al., 2012b)			
GSE26405	ZH11 (japonica) rdr6 high temperature panicles			
GSE26405	ZH11 (japonica) low temperature panicles			
Precursor formation and processing

As introduced above, there are two major forms of sRNA precursors that could be processed by DCLs, i.e. the long double-stranded RNA (dsRNA) precursors and the single-stranded RNAs with short internal double-stranded regions (Fig. 1). The former ones could be synthesized either through the RDR-dependent (such as the precursors of the hc-siRNAs or the ta-siRNAs) pathway or through the RDR-independent (such as the NATs) pathway. However, the later ones are unexceptionally

Table 3 List of sequencing data for plant small RNA research (Continued)

Accession	Description
GSM648142	ZH11 (japonica) rdi6 low temperature panicles
GSE22763	GSM562942 93–11 (indica) WT seedlings
	GSM562944 93–11 (indica) dc4–1 seedlings
	GSM562943 93–11 (indica) WT panicles
	GSM562945 93–11 (indica) dc4–1 panicles
GSE35562	GSM913524 Dongjin hen1–3, leaves
	GSM913525 Dongjin WT, leaves
GSE50778	GSM1229047 Nipponbare WT
	GSM1229048 Nipponbare dc3, RNAi-1
	GSM1229049 Nipponbare dc3, RNAi-3
GSE32973	GSM816687 Nipponbare seedlings rep1
	GSM816688 Nipponbare seedlings rep2
	GSM816689 Nipponbare seedlings rep3
	GSM816700 Nipponbare seedlings dc4 RNAi rep1–1
	GSM816701 Nipponbare seedlings dc4 RNAi rep1–2
	GSM816702 Nipponbare seedlings dc4 RNAi rep2–1
	GSM816703 Nipponbare seedlings dc4 RNAi rep2–2
	GSM816730 Nipponbare panicles rep1–1
	GSM816731 Nipponbare panicles rep1–2
	GSM816732 Nipponbare panicles rep2
	GSM816745 Nipponbare panicles dc1 RNAi rep1–1
	GSM816746 Nipponbare panicles dc1 RNAi rep1–2
	GSM816747 Nipponbare panicles dc1 RNAi rep2–1
	GSM816748 Nipponbare panicles dc1 RNAi rep2–2
GSE20748	GSM520640 Nipponbare seedlings, sRNAs cloned from total RNA
	GSM520634 Nipponbare seedlings, sRNAs cloned from AGO4a
	GSM520635 Nipponbare seedlings, sRNAs cloned from AGO4b
	GSM520636 Nipponbare seedlings, sRNAs cloned from AGO16
GSE18250	GSM455962 Nipponbare seedlings, sRNAs cloned from AGO1a
	GSM455963 Nipponbare seedlings, sRNAs cloned from AGO1b
	GSM455964 Nipponbare seedlings, sRNAs cloned from AGO1c
PRJNA273330	SRX847816 Nipppare sRNAs cloned from AGO1a Rep1
	SRX847817 Nippbare sRNAs cloned from AGO1a Rep2
	SRX847818 Nippbare sRNAs cloned from AGO1b Rep1
	SRX847819 Nippbare sRNAs cloned from AGO1b Rep2
	SRX847820 Nippbare sRNAs cloned from AGO18 Rep1
	SRX847821 Nippbare sRNAs cloned from AGO18 Rep2
DRP000161	DRX000196 sRNA-IP in WT (Nipponbare)
	DRX000197 sRNA-IP in mel1 (Nipponbare)
	DRX000198 Total sRNA in WT (Nipponbare)
	DRX000199 Total sRNA in mel1 (Nipponbare)

Please see detailed descriptions of the datasets in the related references
generated through the RDR-independent pathways (such as the pri-miRNAs and the sirtrons). Thus, distinct bioinformatics toolkits should be selected to identify the sRNA precursors belonging to the two different types, respectively.

PlantNATsDB (plant natural antisense transcripts database) (Chen et al., 2012) provides the users with the genome-wide prediction results of both cis- and trans-NAT pairs of 70 plant species. Gene locus ID could be used as a query to see the possibility of this gene to form NAT pairs with other genes. Optionally, “batch download” could be selected to obtain the complete list of the predicted NAT pairs of a plant species. In the other way, the researchers could perform large-scale NAT prediction by using the program NATpipe (Yu et al., 2016a). The genome-independent feature of this software allows users to carry out NAT prediction solely based on the RNA-seq data. If the genomic information is available, then the predicted NATs could be classified into cis and trans ones. Additionally, if the sRNA-seq data is available, phase-distributed nat-siRNAs could be identified from the predicted NATs by using NATpipe.

RNAfold (Hofacker, 2003) and RNAshapes (Steffen et al., 2006) are both easy-to-use tools for local RNA secondary structure predictions. RNAfold is a web server allowing a query sequence of up to 10,000 nt in length, but its graphic outputs are difficult to be modified according to the users’ requirements. RNAshapes is a locally installed program with a strict length limitation (up to ~400 nt based our experience) of an input sequence. However, the outputs of RNAshapes could be graphically edited.

Recently, NGS-based, transcriptome-wide strategies have been developed to probe the RNA secondary structures, such as dsRNA sequencing (dsRNA-seq) (Kwok et al., 2015). The dsRNA-seq library is prepared by treating the total RNAs with the ribonuclease specific for the RNA extract, whether this sRNA is enriched in the AGO complex could be determined. The result could facilitate the researchers to deduce the action mode of this sRNA.

sRNA action modes and network construction

According to the current understanding, target cleavages and chromatin modifications are the two major action modes of the plant sRNAs. And, these two distinct regulatory pathways are largely predetermined by the association of the sRNAs with specific AGO complexes (Fang and Qi, 2016). Thus, AGO enrichment analysis is necessary for functional studies on the plant sRNAs. To date, sequencing data of the AGO-associated sRNA populations has been reported by several research groups (Table 3). In Arabidopsis, AGO1-, AGO2-, AGO4-, AGO5-, AGO7-, AGO9- and AGO10-associated sRNA sequencing datasets are available (Mi et al., 2008; Montgomery et al., 2008; Havecker et al., 2010; Wang et al., 2011; Zhu et al., 2011). And in rice, AGO1-, AGO4-, MEL1-, AGO16- and AGO18-associated sRNA sequencing datasets have been published (Wu et al., 2009; Wu et al., 2010; Komiya et al., 2014). By comparing the level of a sRNA in a specific AGO complex to that in the total RNA extract, whether this sRNA is enriched in the AGO complex could be determined. The result could facilitate the researchers to deduce the action mode of this sRNA.

A large portion of the miRNAs and some of the siRNAs such as the ta-siRNAs are incorporated into AGO1. These AGO1-associated sRNAs can recognize the highly complementary regions on the target transcripts, and inhibit gene expression through target cleavages. The high complementarity between the sRNA and its target forms an essential basis for the development of the target prediction tools. For plants, there are several user-friendly online tools for target prediction (Table 2), such as psRNATarget (a plant small RNA target analysis server) (Dai and Zhao, 2011), Small RNA Target Prediction (Jones-Rhoades and Bartel, 2004), and TAPIR (target prediction for plant microRNAs) (Bonnet et al., 2010). Compared to TAPIR, the former two tools are more flexible for different users’ purposes. By using psRNA-Target or Small RNA Target Prediction, the users can select one of the cDNA libraries provided by the tools, or can upload their own cDNA sequences for target prediction. However, TAPIR does not provide the pre-stored cDNA libraries for the users. Additionally, much more parameters are adjustable before performing analysis by using the former two tools. Thus, psRNATarget and Small RNA Target Prediction should be the efficient and easy-to-use tools for plant sRNA target prediction.

The 3’ cleavage remnants from the target transcripts are relatively stable in vivo, and could be detected by sequencing. This kind of high-throughput sequencing technology was called GMUCT’ (global mapping of uncapped and cleaved transcripts) (Willmann et al., 2014) or PARE (parallel analysis of RNA ends) (German et al., 2008; German et al., 2009), which is collectively referred to as degradome sequencing (degradome-seq) here. As
listed in Table 3, there are many degradome-seq datasets available to perform large-scale validation of the predicted sRNA targets. For analyzing the degradome-seq data, comPARE (PARE validated miRNA targets) and sPARTA-Web (small RNA-PARE target analyzer) (Kakrana et al., 2014) might be the easy-to-use online tools for the wet-lab researchers (Table 2). The difference between comPARE and sPARTA-Web is that the former was designed specifically for the miRNA target validation whereas the latter was developed for all of the sRNA target candidates. CleaveLand4 (Addo-Quaye et al., 2009) is also suitable for degradome-seq data-based validation of the sRNA targets. However, it is a Perl program, which requires extensive support from bioinformatics experts for local installation and running. Besides, our previously proposed workflow could also be referenced for degradome-seq data-based sRNA target validation (Meng et al., 2011b).

The AGO4-associated sRNAs, such as the hc-siRNAs, repress gene expression through chromatin modifications (Chen, 2009; Fang and Qi, 2016). By using BLAST or Bowtie, the genomic regions highly complementary to the AGO4-associated sRNAs could be identified with a genome-wide scale. Then, it will be interesting to investigate the chromatin status surrounding the complementary sites. Several epigenome databases are available for Arabidopsis, such as Arabidopsis epigenome maps (Lister et al., 2008), the SIGnAL Arabidopsis Methylation Mapping Tool (Zhang et al., 2006), and the Arabidopsis epigenome data displayed in the UCSC Genome Browser (Zhang et al., 2006; Zhang et al., 2007; Stroud et al., 2013). In some databases, in addition to the WT data, the epigenomes of diverse mutants are also available, which might be valuable to inspect the sRNA-guided chromatin modification pathways in detail. Although the rice epigenome data was reported nearly ten years ago (Li et al., 2008), and the database was established at that time, the web link is no long active. Fortunately, Plant Methylome DB provides researchers with the WT epigenomes of 40 species including Arabidopsis and rice.

“Target mimicry” was reported as a novel pathway for the regulation of the miRNA activities by the target mimics (Franco-Zorrilla et al., 2007). Although the online server TAPIR is not superior in sRNA target prediction, it provides a unique functional module for target mimic prediction (Bonnet et al., 2010). Besides, the recently established PceRBase (plant ceRNA database) stores the lists of the competing endogenous RNAs (similar to the target mimics) of 26 plant species for the users (Yuan et al., 2017).

Finally, researchers could construct a sRNA-centered regulatory network involving sRNA targets and target mimics by using Cytoscape (Shannon et al., 2003) or Gephi (Bastian et al., 2009). The expression levels of the sRNA precursors, the sRNA target genes and the target mimics could be partially uncovered by visiting PmiRKB (plant microRNA knowledge base) (Meng et al., 2011a), mirEX (Arabidopsis pri-miRNA expression atlas) (Bielewicz et al., 2012), AVT (AtGenExpress visualization tool) (Kilian et al., 2007; Goda et al., 2008), and Arabidopsis eFP Browser (Winter et al., 2007). The biological functions of the sRNA target genes could be analyzed by using agriGO (Du et al., 2010).

Conclusions

In the present work, we proposed a general workflow for deciphering the biogenesis and action pathways of the plant sRNAs by using a series of publicly available resources. Most of the recently reported sRNA-seq and dsRNA-seq datasets of Arabidopsis and rice were summarized in Table 3, emphasizing their importance for elucidating the RDR- and DCL-dependent biogenesis pathways of the plant endogenous sRNAs. However, we should acknowledged that several useful toolkits have not been included in the list of softwares for plant small RNA research. For example, the UEA sRNA workbench, that is downloadable for local installation, provides an user-friendly platform for sRNA-seq data processing (Stocks et al., 2012). It contains several useful tools, such as “adaptor remover” and “Filter” for sRNA-seq data pre-treatment, “miRCat” and “hairpin annotation” for miRNA prediction, and the ta-siRNA prediction tool. Besides, as noticed in Tables 1 and 2, several valuable databases and bioinformatics tools, including Rice epigenome maps and PNRD, are currently terminated for unknown reason. We hope that these useful resources could be activated again for the plant biologists. Summarily, more research efforts, from both the bioinformaticians and the experimental practitioners, are anticipated to devote to the plant sRNA research.

Abbreviations

AGO: Argonaute; AVT: AtGenExpress visualization tool; DCL: Dicer-like; degradome-seq: degradome sequencing; dsRNA: double-stranded RNA; dsRNA-seq: double-stranded RNA sequencing; GMUCT: Global mapping of uncapped and cleaved transcripts; hc-siRNA: heterochromatin small interfering RNA; lincRNA: long intergenic non-coding RNA; IncRNA: long non-coding RNA; miRNA: microRNA; NAT: Natural antisense transcript; nat-siRNA: natural antisense transcript-derived small interfering RNA; ncRNA: non-coding RNA; NGS: Next-generation sequencing; PARE: Parallel analysis of RNA ends; PceRBase: Plant ceRNA database; phasiRNA: phased small interfering RNA; PlantCARE: a plant cis-acting regulatory element database; PlantNATsDB: Plant natural antisense transcripts database; PlncDB: Plant long non-coding RNA database; PmiRKB: Plant microRNA knowledge base; Pol II: RNA polymerase II; poly(A): polyadenylation; pri-miRNA: primary transcript of microRNA; psRNATarget: a plant small RNA target prediction server; RACE: rapid amplification of cDNA ends; RAP-DB: the rice annotation project database; RDR: RNA-dependent RNA polymerase; RGAP: Rice genome annotation project; RNA-seq: RNA sequencing; rRNA: ribosomal RNA; siRNA: Small interfering RNA; sRNA: Small RNA; sRNA-seq: sRNA sequencing; TAIR: the Arabidopsis information resource; TAPIR: Target prediction for plant microRNAs; ta-siRNA: trans-acting small interfering RNA; WT: Wild type
Acknowledgements

The authors would like to apologize to those whose original works could not be cited in this paper. This work was funded by the National Natural Science Foundation of China (31571349) and [31601062], Zhejiang Provincial Natural Science Foundation of China [LQ16C060003] and [LY15C060006], and Hangzhou Scientific and Technological Program [20170452804].

Authors’ contributions

YM conceived the idea and prepared the manuscript, DY contributed to drafting and revising the manuscript, XM, ZZ and WS helped in preparing the tables, figures and formatting of the manuscript, HW reviewed and provided comments on the manuscript. All of the authors read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 June 2017 Accepted: 3 August 2017
Published online: 07 August 2017

References

Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762.
Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131.
Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221.
Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751.
Bailey TL, Johnson J, Grant CE, Noble WS (2015) The Meme suite. Nucleic Acids Res 43:W30–W49.
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YI, San Segundo B (2015) MicroRNA–transposons in Arabidopsis. Nature 508:411–415.
Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762.
Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131.
Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221.
Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751.
Bailey TL, Johnson J, Grant CE, Noble WS (2015) The Meme suite. Nucleic Acids Res 43:W30–W49.
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YI, San Segundo B (2015) MicroRNA–transposons in Arabidopsis. Nature 508:411–415.

Note

Received: 30 June 2017 Accepted: 3 August 2017
Published online: 07 August 2017

References

Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762.
Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131.
Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221.
Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751.
Bailey TL, Johnson J, Grant CE, Noble WS (2015) The Meme suite. Nucleic Acids Res 43:W30–W49.
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YI, San Segundo B (2015) MicroRNA–transposons in Arabidopsis. Nature 508:411–415.

Note

Received: 30 June 2017 Accepted: 3 August 2017
Published online: 07 August 2017

References

Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762.
Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131.
Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221.
Axtell MJ (2013) ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19:740–751.
Bailey TL, Johnson J, Grant CE, Noble WS (2015) The Meme suite. Nucleic Acids Res 43:W30–W49.
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YI, San Segundo B (2015) MicroRNA–transposons in Arabidopsis. Nature 508:411–415.
Meng Y, Gou L, Chen D, Mao C, Jin Y, Wu P, Chen M (2011a) PmiRKB: a plant microRNA knowledge base. Nucleic Acids Res 39:D181–D187
Meng Y, Shao C, Chen M (2011b) Toward microRNA-mediated gene regulatory networks in plants. Brief Bioinform 12:645–659
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127
Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141
Mozo T, Dewar K, Dunn P, Ecker J, Fischer S, Kloksa S, Lehach M, Marra M, Martienssen R, Meier-Ewert S et al (1999) A complete BAC-based physical map of the Arabidopsis Thaliana genome. Nat Genet 22:271–275
Nakano M, Nobukata K, Vernaraju K, Tej SS, Skogen JW, Meyers BC (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of miRNA and small RNA. Nucleic Acids Res 34:D731–D735
Ohyanagi H, Tanaka T, Sakai H, Shimogoto Y, Yamaguchi K, Hatabara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T et al (2006) The Rice annotation project database (RAP-DR): hub for Oryza Sativa Ssp. Japonica genome information. Nucleic Acids Res 34:D741–D744
Patel P, Ramachandruni SD, Kakrama A, Nakano M, Meyers BC (2016) miTRATA: a web-based tool for microRNA truncation and tailing analysis. Bioinformatics 32:450–452
Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/ SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2386–2397
Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428
Rajagopalan R, Vacheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis Thaliana. Genes Dev 20:3407–3425
Rombauts S, Dehais P, Van Montagu M, Rouzé P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C et al (2012) Roles of DCL1 and DCL3 in rice phased small RNAs and ACP1. Plant Cell 24:365–381
Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Swach F, Dalmaiy T, Mouton W (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061
Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364
Thatcher SR, Burd S, Wright C, Lers A, Green PJ (2015) Differential expression of miRNAs and their target genes in senescing leaves and silique: insights from deep sequencing of small RNAs and cleaved target RNAs. Plant Cell 27:920–934
Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530
Vazquez F, Vacheret H, Rajagopalan R, Lepers C, Gasciolo V, Mallory AC, Hilbert JL, Bartel DP, Crete P (2004) Endogenous trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2375
Vendivier LE, Campos R, Kuksa PP, Silverman IM, Wang LS, Gregory BD (2015) Dicer-like 3 produces transposable element-associated 24-nt siRNAs in Arabidopsis. Nucleic Acids Res 43:1334–1346
Vendivier LE, Campos R, Kuksa PP, Silverman IM, Wang LS, Gregory BD (2015) Dicer-like 3 produces transposable element-associated 24-nt siRNAs in Arabidopsis. Nucleic Acids Res 43:1334–1346
Vennet D (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687
Wang H, Zhang X, Lu J, Kiba T, WO J, Oj O, Hafner M, Tuschi T, Chua NH, Wang XJ (2011) Deep sequencing of small RNAs specifically associated with Arabidopsis AGO1 and AGO4 uncovers new AGO functions. Plant J 67:292–304
Wei L, Gu L, Song X, Cui X, Lu Z, Zhou M, Wang L, Hu F, Zhai J, Meyers BC et al (2014) Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci U S A 111:3877–3882
Wei W, Ba Z, Gao M, Wu Y, Ma Y, Arniad S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y (2012) A role for small RNAs in DNA double-strand break repair. Cell 149:101–112

Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37

Wilmann MR, Berkowitz ND, Gregory BD (2014) Improved genome-wide mapping of un capped and cleaved transcripts in eu karyotes-GMUCT 2.0. Methods 67:64–73

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009) Rice MicroRNA effector complexes and targets. Plant Cell 21:3421–3435

Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

Xie Z, Allen E, Wilken A, Carrington JC (2005) D I C E R-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis Thaliana. Proc Natl Acad Sci U S A 102:12984–12989

Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

Ye R, Chen Z, Lian B, Rowley MJ, Xia N, Chai J, Li Y, He XJ, Zierzbiick AT, Qi Y (2016) A Dicer-independent route for biogenesis of siRNAs that direct DNA methylation in Arabidopsis. Mol Cell 61:222–235

Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PARMD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989

Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

Yu D, Meng Y, Zuo Z, Xue J, Wang H (2016b) NATtype: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptsomes. Sci Rep 6:21666

Yu X, Willmann MR, Andersson SI, Gregory BD (2016a) Genome-wide mapping of uncapped and cleaved transcripts reveals a role for the nuclear mRNA cap-binding complex in Cotranslational RNA decay in Arabidopsis. Plant Cell 28:2385–2397

Yuan C, Meng X, Li X, Ilbing N, Ingle RA, Wang J, Chen M (2017) PoeRBase: a database of plant competing endogenous RNA. Nucleic Acids Res 45:D1014

Zhai J, Zhang H, Zhou H, Fang J, Zou Z, Wang H, Chen Z, Leung C et al (2012) Genome-wide analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e1003129

Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. Plant Cell 19:2477–2487

Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Genome-wide analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e1003129

Zhang X, Xia J, Li Y, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C et al (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13:R20

Zhang X, Yazaki J, Sundaresan A, Cokus S, Chen SW, Chen H, Henderson R, Shirin P, Pellegrini M, Jacobsen SE et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201

Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H (2011) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Gogt1-localized SNARE gene, MEMB12. Mol Cell 42:356–366

Zheng Q, Ryvkin P, Li F, Dragomir I, Valladares O, Yang J, Cao K, Wang LS, Gregory BD (2010) Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis. PLoS Genet 6:e1001141

Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X (2010) Degradome sequencing reveals endogenous small RNA targets in rice (Oryza Sativa L. Ssp. Indica). Front Biol 5:67–90

Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256

Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719