Lawrence Berkeley National Laboratory
Recent Work

Title
Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific Environmental Tolerance.

Permalink
https://escholarship.org/uc/item/3q4340ns

Journal
mSystems, 6(3)

ISSN
2379-5077

Authors
Kothari, Ankita
Roux, Simon
Zhang, Hanqiao
et al.

Publication Date
2021-06-29

DOI
10.1128/msystems.00537-21

Peer reviewed
Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific Environmental Tolerance

Ankita Kothari,a Simon Roux,b Hanqiao Zhang,a Anatori Prieto,a Drishti Soneja,a John-Marc Chandonia,c Sarah Spencer,i,k Adam M. Deutschbauer,c,e Adam P. Arkin,c,f,g Eric J. Alm,h,i,j,k Aindrila Mukhopadhyay,c Matthew W. Fields,l,m Romy Chakraborty,a Aindrila Mukhopadhyay,a,c

ABSTRACT Viruses are ubiquitous microbiome components, shaping ecosystems via strain-specific predation, horizontal gene transfer and redistribution of nutrients through host lysis. Viral impacts are important in groundwater ecosystems, where microbes drive many nutrient fluxes and metabolic processes; however, little is known about the diversity of viruses in these environments. We analyzed four groundwater plasmidomes (the entire plasmid content of an environment) and identified 200 viral sequences, which clustered into 41 genus-level viral clusters (approximately equivalent to viral genera) including 9 known and 32 putative new genera. We used publicly available bacterial whole-genome sequences (WGS) and WGS from 261 bacterial isolates from this groundwater environment to identify potential viral hosts. We linked 76 of the 200 viral sequences to a range of bacterial phyla, the majority associated with Proteobacteria, followed by Firmicutes, Bacteroidetes, and Actinobacteria. The publicly available WGS enabled mapping bacterial hosts to several viral sequences. The WGS of groundwater isolates increased the depth of host prediction by allowing host identification at the strain level. The latter included 4 viruses that were almost entirely (>99% query coverage, >99% identity) identified as integrated in the genomes of Pseudomonas, Acidovorax, and Castellaniella strains, resulting in high-confidence host assignments. Lastly, 21 of these viruses carried putative auxiliary metabolite genes for metal and antibiotic resistance, which might drive their infection cycles and/or provide selective advantage to infected hosts. Exploring the groundwater virome provides a necessary foundation for integration of viruses into ecosystem models where they are key players in microbial adaption to environmental stress.

IMPACT To our knowledge, this is the first study to identify the bacteriophage distribution in a groundwater ecosystem shedding light on their prevalence and distribution across metal-contaminated and background sites. Our study is uniquely based on selective sequencing of solely the extrachromosomal elements of a microbiome followed by analysis for viral signatures, thus establishing a more focused
approach for phage identifications. Using this method, we detected several novel phage genera along with those previously established. Our approach of using the whole-genome sequences of hundreds of bacterial isolates from the same site enabled us to make host assignments with high confidence, several at strain levels. Certain phage genes suggest that they provide an environment-specific selective advantage to their bacterial hosts. Our study lays the foundation for future research on directed phage isolations using specific bacterial host strains to further characterize groundwater phages, their life cycles, and their effects on groundwater microbiome and biogeochemistry.

KEYWORDS groundwater, virus, phage, plasmidome, viral sequences, metal resistance, antibiotic resistance, extrachromosomal DNA, viral genome, viral host

Viruses are known to influence the structure and diversity of microbial communities by infection and lysis of microbial cells. Their influence has been widely studied in aquatic communities (1), where they are predicted to infect approximately one-third of seawater microbes at any given time (2). In marine ecosystems, major biogeochemical cycles are known to be influenced by viruses affecting community composition, metabolic activity, and evolutionary trajectories (2, 3). As the recent focus on exploration of viruses in aquatic environments has been on marine ecosystems (4–9), freshwater environments remained mostly unexplored despite their importance as a drinking water supply (10). Most studies of viral diversity in freshwater systems have been conducted in lakes, across all continents and from pole to pole (11–15). Collectively, these studies revealed a large diversity of viruses specific to and/or mostly identified in freshwater ecosystems, mostly phages with double-stranded DNA (dsDNA) genomes, but also including eukaryotic viruses and phages with single-stranded DNA (ssDNA) and RNA genomes (16–18). Comparatively, viral diversity in groundwater systems has been much less studied, but recent metagenomic studies suggested that groundwater viral communities were clearly distinct from other freshwater environments, that their diversity and structure reflected changes in environmental parameters, including especially pH level and the presence of contaminants, and that viruses may significantly influence groundwater microbe dynamics (19, 20). The Oak Ridge Field Research Center (ORFRC) (21–23) is a well-studied U.S. Department of Energy site that includes groundwater areas with and without metal contamination, referred to as the contaminated and background sites, respectively. It has been well characterized in terms of the physical parameters, microbiome distribution, and fluctuation in response to different environmental stresses and thus served as an excellent model groundwater system for studies. We chose this environment to study the incidence of viruses in groundwater microbiome.

Identification of viral sequences in the environment is difficult given the lack of approaches similar to rRNA gene profiling in bacteria and their isolation remains challenging because of the difficulties in identifying the bacterial host(s) and our limited ability to culture them. Recently, research has been directed toward exploring viral diversity from metagenome data (7, 24, 25), thus circumventing these limitations and providing direct insights into the composition of environmental viral communities (26). In this study, we explored an alternate method to sifting through large amounts of chromosomal DNA sequences to find viral sequences by specifically searching circular DNA sequence data generated from the plasmidome analysis. Specifically, we mined the plasmidome data from a well-characterized groundwater system and analyzed the resulting viral sequences complete with genomic and ecological contexts.

RESULTS AND DISCUSSION

New viruses detected in the circular DNA data sets. To study groundwater viruses, we leveraged existing data focused on extrachromosomal circular DNA templates by identifying viruses from plasmidome data sets (Fig. 1). This method primarily identifies active (intracellular) and lysogenic phages. Viruses and plasmids can coexist stably, support the transfer of each other to new hosts (27), or even form a hybrid (28). Given
that both can be found as extrachromosomal circular DNA molecules, we used VirSorter, a tool designed to predict bacterial and archaeal virus sequences on the plasmidome assemblies (29), and identified 200 sequences as groundwater viral sequences from 13,770 plasmidome contigs (Fig. S1A). We then categorized viral sequences into viral clusters (approximately equivalent to known viral genera) using shared gene content information and network analytics (30, 31). Clustering of the 200 groundwater viral sequences with publicly available bacterial and archaeal viruses revealed that 85 groundwater viral genomes formed 41 viral clusters with at least one representative of groundwater virus (Table S3). Of these 41 clusters, 9 included a reference viral genome (Fig. 2) and 32 were putative new viral genera. The details on the size of different clusters are depicted in Fig. S1B. The largest identified virus was a circular 296,356-bp contig (see virus size distribution in Fig. 3) and was part of a novel viral cluster. Although more viral sequences were identified from the background than contaminated groundwaters, the fractions of all contigs identified as viral sequence were similar across both sites (Fig. S1A). There was little overlap between viral clusters from background and contaminated sites, with only 3 instances of viral sequences being in the same cluster from contaminated and background sites. Thus, the 200 groundwater viruses spanned a wide variety of sizes and included representatives of both known and novel viral genera.

Certain aspects of the viral clusters provide evidence of optimal clustering of groundwater viruses. All 9 viral clusters with known reference viral genomes were circular DNA viruses. The viral cluster with 14 representatives had 11 representatives belonging to the family Microviridae, subfamily Gokushovirinae, which are 4.5- to 6-kb, circular single-stranded DNA viruses. Interestingly, the 3 viral contigs that are clustered are from the background site and are also in the same size range (4.61, 4.78, and 5.09 kb). At least one virus (GW460_nc_scaffold_3616, 8,250 bp) from the background site is an inovirus (5 to 15 kb, circular single-stranded DNA genomes with rod-shaped or filamentous virions [32]) clustering with known inovirus Ralstonia phage 1 NP-2014. The genomes of inoviruses are known to be chromosomally integrated or replicated as a plasmid (33), which may be why this virus was recovered from plasmidome data.

Host predictions. Once we identified viral genomes and their clusters, we sought to identify the range of hosts that these viruses infect. Using the 261 ORFRC bacterial isolates, we were able to assign bacterial hosts to 20 viral genomes (Fig. 4) of the 200, indicating that we were able to predict hosts for 10% of the viral genomes identified (Table S4). As expected, the maximum number of predictions were made using
tetranucleotide frequency (16 bacterial strains predicted as hosts), followed by BLAST (9 bacterial strains predicted as hosts) and CRISPR (2 bacterial strains predicted as hosts) analysis (Fig. S2A). All 9 viral sequences that had a bacterial host genus predicted via BLAST also had strain-level predictions using BLAST99. An example of host prediction via BLAST99 is depicted in Fig. S2B, where the entire viral sequence was found in five different *Acidovorax* strains. Interestingly, 7 viral genomes were assigned hosts using both BLAST and tetranucleotide frequency methods, and 6 of them were predicted to have the same bacterial-host genus, increasing the confidence in their host prediction. Out of 20, 10 viral genomes had *Pseudomonas* predicted as the bacterial host, and overall, 18 viral genomes were assigned to *Proteobacteria*. This could be attributed to the fact that of 261 ORFRC isolates, over 50% were pseudomonads and over 85% were *Proteobacteria*. This makes it easier to identify them as host strains. Thus, several ORFRC bacterial genus and strains belonging to the phyla *Proteobacteria*, *Actinobacteria*, and *Firmicutes* were predicted as hosts for the viruses.

We also leveraged the complete archael and bacterial genome sequences available on NCBI, to make predictions of bacterial hosts for the 200 viral genomes. No hits were found using the 311 archael strains. Using the 14,028 bacterial strains, host predictions could be made for about 36.5% (73 of 200) of the viral genomes, with a vast majority assigned to the phylum *Proteobacteria* (Table S4). Other bacterial hosts were in the phyla *Actinobacteria*, *Bacteroidetes*, *Firmicutes*, *Chlamydiae*, and *Chloroflexi*. Again, the maximum number of predictions (71) were made using tetranucleotide frequency, followed by BLAST analysis (5 bacterial strains predicted as hosts) (Fig. S2A). The BLAST99 analysis had no hits, so strain-specific bacterial host predictions were not made. Interestingly, all 5 viral genomes that had predictions with BLAST also had predictions using the tetranucleotide frequency method. Although a higher number of viral sequences could be assigned to bacterial hosts using whole-genome sequences (WGS) from NCBI than ORFRC, the probability of finding a host for every bacterial WGS tested was higher with ORFRC strains (7.6%) than NCBI strains (0.5%), highlighting the benefits of including bacterial strains from the same environment as the viral sequence.
itself. More importantly, strain-specific host assignments could only be made using groundwater bacterial isolates, and such high-resolution host assignment is important when designing experiments aimed at isolating specific phages.

Using the ORFRC and NCBI strain host predictions together, we were able to assign bacterial hosts to 38% (76 of 200) of the viral genomes (Fig. 5). Around 17 viruses had host predictions based on both ORFRC and NCBI strains (Fig. S2A), with the same bacterial phyla predicted as hosts (Table S4). Differences like this could be attributed to the nonoverlapping nature of the strains from NCBI and ORFRC and differences in the strength of host prediction methods. Next, we compared host prediction between members of the same viral cluster.

FIG 3 Size distribution of viruses from the background and contaminated groundwaters. The circular viral sequences are depicted in blue, while the rest are in red.

FIG 4 Viral host predictions based on BLAST, high-stringency BLAST (BLAST99), tetranucleotide frequency (4-mer), and CRISPR methods using whole-genome sequence (WGS) information from 261 ORFRC bacterial isolates. The details of the 20 viruses (‘a’ to ‘t’) are provided in Table S4. The viruses ‘h’ and ‘p’ are assigned to hosts in the class Betaproteobacteria and the family Comamonadaceae. The rest of the viruses are assigned to the indicated genera. The phylogenetic tree was made from 16S rRNA sequence of 261 ORFRC strains. The viral sequence ‘s’ appears twice because it was predicted to infect two different genera based on the different prediction methods.
The bacterial host predictions mostly remained consistent within the same viral cluster. The minor discrepancy seen in the viral clusters can likely be explained on further analysis; for instance, the exceptional viral cluster VC_138_0 consists of 10 members, with six being groundwater viruses, and their hosts were predicted to be either Burkholderiales or Pseudomonadales based on the prediction method used. Interestingly, the four known viruses they cluster with were Bordetella virus BPP1, Pseudomonas phage AF, Pseudomonas phage vB_PaeP_Tr60_Ab31, and Xanthomonas citri phage CP2, indicating that members of this cluster infect both Burkholderiales and Pseudomonadales. Thus, consistent patterns of host prediction emerge within the same viral cluster.

Presence of metabolic genes. In addition to affecting groundwater biogeochemistry through their physical contribution to dissolved organic matter and the lysis of their hosts, viruses can also affect the diversity and function of microbial populations through the incorporation and expression of auxiliary metabolic genes (AMGs) (4, 34). AMG definitions are still being refined (35), but generally, these genes are not involved in viral replication or structure but instead allow viruses to directly manipulate host metabolism during infection. Examination of all the viral sequences revealed a total of 1,486 hits classified into known Pfam categories (Fig. S3). Exploring Pfam domains associated with microbial metabolism resulted in the identification of 51 unique putative AMGs (Table S5). Since these viral sequences are from a site where metal and antibiotic resistance genes are routinely seen (36–38), all the unique PFAM hits were manually curated to identify metal and antibiotic resistance genes (Table S5). We found that the metal resistance genes identified as putative AMGs were those providing resistance to copper, while the antibiotic resistance genes in the list of putative AMGs were annotated as multiresistance beta-lactamase, providing resistance to β-lactam antibiotics; multidrug efflux pumps in the AcrB/AcrD/AcrF family, providing multidrug resistance; and streptomycin adenylyltransferase, providing resistance to streptomycin. An excellent example is viral sequence GW456_c_scaffold_130, which was annotated to encode metal and antibiotic resistance genes along with signature phage genes, consistent with a complete phage genome (Fig. 6; annotation details are provided in Table S6). The compilation of all the data discussed is available in Table S7. To the best of our knowledge, this is the first report of the presence of metal and antibiotic resistance genes on viral sequences. The presence of metal and antibiotic resistance genes suggests that groundwater viruses may manipulate metal tolerance mechanisms, enabling their hosts to adapt to environmental stressors.

Conclusion. We demonstrate identification of novel viruses by leveraging plasmidome data for exploring environmental viral communities. Our analyses revealed the presence of novel viruses, likely representing new viral genera, in the underexplored
groundwater environment. Using different data sets, we achieved bacterial host predictions for a substantial number of the viral sequences. Several of these phages carry genes related to signaling and tolerance mechanisms, thus likely augmenting ecosystem function by modifying the metabolism of their bacterial hosts. Interestingly, we found genes annotated to provide tolerance to metals, which is significant source of stress at this site. These predictions form the basis of future work on guiding phage isolation efforts and functional assessment of virus-host linkages. The ability to isolate phages would open new avenues for targeted manipulation of specific subsets of bacteria, thus allowing the systematic dissection of a microbiome for probing community dynamics and function.

MATERIALS AND METHODS

Groundwater sample collection and sequencing analysis. The groundwater samples were obtained from the Oak Ridge Field Research Center (ORFRC) site (21–23) and included samples from metal-contaminated (wells FW104 and FW106) and background (wells GW456 and GW460) areas. The metal-contaminated site was characterized by chronically high concentrations of radionuclides (e.g., uranium), nitric acid, organics, salts, mercury, and other heavy metals (36). The level of contaminants in the background site is available in the supplemental material of a previous study (37) exploring the plasmidome. The plasmidome study (37) described the circular DNA isolation (plasmidome analysis) procedure from 5 liters of groundwater from background sites (GW456 and GW460), followed by sequencing, assembly, annotation, and other analyses. Additionally, for the present study, we also used plasmidome sequence data from two contaminated-site samples comprising 8 liters groundwater from FW104 and FW106 and subjected to the same analysis (unpublished data; sequencing data available via MG-RAST IDs mgm4830571.3 and mgm4830867.3).

To extract DNA from bacteria on a filter, we used a modified version of the alkaline hydrolysis plasmid DNA isolation method (39). The remnant linear DNA fragments were removed by plasmid-safe ATP-dependent DNase (Epicentre Biotechnologies, Madison, WI) at 37°C for 48 h with double the recommended ATP and enzyme amounts. The lack of chromosomal DNA contamination was confirmed by PCR with degenerate 16S rRNA primers. The plasmid DNA was amplified with phi29 DNA polymerase (New England Biolabs, Ipswich, MA) as previously described (40) for 6 days at 18°C. This was followed by ethanol precipitation and use of a NanoDrop instrument to concentrate and quantify the DNA. The lack of chromosomal DNA contamination in plasmid DNA extracted from groundwater samples F and G was confirmed by PCR with degenerate 16S rRNA primers.

All DNA was sequenced using Illumina MiSeq reagent v3 kit (paired-end protocol). Trimmomatic 0.36 (41) (http://www.usadellab.org/cms/?page=trimmomatic) was used to trim the reads with the following parameters: IlluminaClip:TruSeq3-PE.fa:2:30:10, Leading:3 Trailing:3 SlidingWindow:4:15 MinLen: 36. IDBA-UD (42) (used for de novo read assembly with the parameter “-pre_correction”). Assembled sequences were searched against the SILVA 16S rRNA database (43) using BLASTn; all scaffolds with

FIG 6 Example of a viral contig carrying auxiliary metabolite genes. Map of the virus (gw456_c_scaffold_130) from background groundwater with phage-related genes highlighted in green (darker green represents true hallmark genes of viruses), metal (copper, cobalt, zinc, cadmium, lead, mercury, and arsenic) resistance genes highlighted blue, antibiotic (spectinomycin and fosfomycin) resistance genes highlighted in pink, and the metabolism (lactate dehydrogenase) gene in yellow. The viral contig was annotated via Prokka in KBase and the annotations for virus-associated genes were updated on the map using VirSorter predictions; details are in Table S6.
>200-bp identity to 16S rRNA to 16S rRNA were recovered with RNAmmer v1.2

(a) Isolation of bacterial strains. The bacterial isolates were obtained via direct-plating under aerobic or anaerobic conditions at 25 to 30°C in the dark, using ORFRC groundwater or sediment extract as the inoculum, or via two-step isolation: enrichment incubation of 1 ml groundwater in 9 ml liquid medium aerobically for 2 weeks followed by direct plating for isolation. A subset of isolates were obtained from biofilm reactors (CDC reactors) that were fed ORFRC groundwater and had nonporous glass beads as a matrix for biofilm formation. Washed biofilm beads from the reactors were used as the inoculum. For direct plating, rich-medium (Luria-Bertani) or R2A agar plates. Individual colonies developed at 30°C over 48 h and were then inoculated into corresponding liquid media and grown at 30°C for 48 h. The cultures were centrifuged, and the genomic DNA was extracted using the Qiagen DNeasy kit (Qiagen, Venlo, the Netherlands) according to the manufacturer’s instructions. All samples were eluted in Qiagen’s AE buffer: 10 mM Tris-Cl, 0.5 mM EDTA (pH 9.0). Genomic DNA was stored at −20°C followed by transfer into a 384-well plate for automated library preparation. The isolated genomic DNA was normalized to 0.2 ng/μl in 10 mM Tris (pH 8.0), and libraries were prepared using the Illumina Nextera XT kit at 1:12 reaction volume on a SPT Labtech Mosquito HV. Final libraries were purified using solid-phase reversible immobilization beads, and sequenced on an Illumina NextSeq 500 with 150-bp paired-end reads. The program Cutadapt v1.12 was used to remove adapter sequences with the parameters: -a CTGTCTCTTAT -A CTGTCTCTTAT (48). We performed sliding-window quality filtering with Trimmomatic v0.36 (parameters: -phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:5:20 MINLEN:50) (41). All genomes were assembled de novo using SPAdes v3.9.0 with the following options (k 21,33,55,77 –careful) (49). Genome quality was validated with the program checkM v1.0.6 using the lineage_wf pipeline with default parameters (47), and all draft genomes met the criteria of contamination of <10% and completeness of >95%. The 16S rRNA gene sequences were recovered with RNaMMer v1.2 (−5 bac −m ssu) and taxonomically classified with SINTAX (usearch v9.2.64) against the RiboSoma1 Database Project (RDP) (50) 16S rRNA gene training set v16 with species names and the following parameters: –strand both –sintax_cutoff 0.8 (51, 52). The whole-genome sequences (WGS) of 261 bacterial isolates (details in Table S2) from ORFRC were combined to form a database for further bioinformatic analyses. The WGS of the 261 strains are available at

(b) Whole genome sequencing and de novo assembly. Cultures were revived from glycerol stocks by streaking onto R2A agar plates. Individual colonies developed at 30°C over 48 h and were then inoculated into corresponding liquid media and grown at 30°C for 48 h. The cultures were centrifuged, and the genomic DNA was extracted using CytoScape (46). Since the groundwater from background site was spiked with Desulfuvbrio vulgaris Hildenborough (ATCC 29579), Escherichia coli DH1 (ATCC 33849), and E. coli strain J-2561 as controls for the plants during the virome decontamination mode, with every contig that was not identified as viral being considered a microbial contig. The final set of viral contigs was formed by compiling sequences detected as VirSorter categories 1 and 2 along with prophage categories 4 and 5 (Table S1). Thus, we focused on the 200 viral sequences with high-confidence assignments (VirSorter categories 1, 2, 4, and 5) and ignored the low-confidence assignments (VirSorter categories 3 and 6). VComTACT2 (45) was used to perform viral cluster analysis, and the results were visualized using Cytoscape (46). After sequencing, the assembly of all contigs (including plasmid and viral DNA) along with prediction of circular sequences using bioinformatic analyses, was performed as described previously (37). Briefly, all plasmid sequences obtained were subjected to a pipeline method for postassembly detection of circularity among scaffolds with the following criteria to identify the complete closed circular scaffolds referred to as “circular scaffolds” or simply circular plasmids: (i) scaffold length of >2 kb, (ii) >34-bp homology (E value > 1e−5) at the ends of the scaffold in the correct direction, and (iii) at least two read pairs mapping on opposite ends of the contig, a maximum of 500 bp from the end.
Host prediction and diversity. Three different previously published approaches (53, 54) for predicting hosts based on similarities between (i) bacterial genome-encoded CRISPR spacer and viral genome (55), (ii) viral and microbial genomes due to integrated prophages or gene transfers (56), and (iii) viral and host genome nucleotide signatures (here, tetranucleotide frequency similarity) (30) were used as described below. The confidence in assignment via these three methods to different clades in bacterial classification was estimated previously (57), with CRISPR-based predictions being the most accurate, while the tetranucleotide frequency-based predictions were the least accurate at the genus level.

(i) BLAST-based identification of sequence similarity between viral contigs and host genome. All 200 viral contigs were compared to all archaeal and bacterial genomes with BLASTn (threshold of 50 for bit score and 0.001 for E value), to identify regions of similarity between a viral contig and a microbial genome, indicative of a prophage integration or horizontal gene transfer. As previously established (54), host prediction was made when an NCBI genome displayed a region similar to the viral contig of ≥ 4.9 kb at $\geq 70\%$ identity. When one viral sequence had hits to multiple bacterial strains, the top 5 hits (based on bit score) were A functional annotation of all virus-encoded predicted proteins was filtering turned off). Given that the accuracy of this approach for detecting phage hosts strongly depends on the maximum number of mismatches allowed between the CRISPR spacer and the viral sequence, the results were filtered to allow 0 or 1 mismatch. Only the CRISPR spacers that matched viral sequences were then compared back with the bacterial WGS with no mismatch to come up with bacterial host predictions. Based on this method, strain-level bacterial-host predictions were made.

(ii) Matches between viral contigs and CRISPR spacers. CRISPR arrays were predicted for all ORFRC microbial genomes with CRISPR Recognition Tool (CRT) (58) using default settings (repeat settings used 3 minimum repeats, a minimum repeat length of 19, a maximum repeat length of 38, and a search window of 8, along with spacer settings using a minimum spacer length of 19 and a maximum spacer length of 48). We used previously published (54, 59) BLAST parameters for identifying the target of CRISPR spacers (i.e., using the BLASTn-short task, a maximum expect value of 1, a gap opening penalty of 10, a gap extension penalty of 2, a word size of 7, and dust filtering turned off). Given that the accuracy of this approach for detecting phage hosts strongly depends on the maximum number of mismatches allowed between the CRISPR spacer and the viral sequence, the results were filtered to allow 0 or 1 mismatch. Only the CRISPR spacers that matched viral sequences were then compared back with the bacterial WGS with no mismatch to come up with bacterial host predictions. Based on this method, strain-level bacterial-host predictions were made.

(iii) Nucleotide composition similarity: comparison of tetranucleotide frequency. Bacterial and archaeal viruses tend to have a genome composition close to the genome composition of their host, a signal that can be used to predict virus-host pairs (54, 57, 60). Here, canonical tetranucleotide frequencies (also referred to as 4-mers) were observed for all viral and host sequences using Jellyfish (61), and mean absolute error (that is, the average of absolute differences) between tetranucleotide-frequency vectors was computed with in-house Perl and Python scripts for each pair of viral and host sequence as previously reported (57). A viral contig was then assigned if the average of absolute differences (d) between tetranucleotide-frequency vectors was <0.001. When multiple strains had hits to one viral sequence, the top five hits (based on lowest distance) were analyzed to determine the lowest common ancestor of the group. This lowest common ancestor was then assigned as the host to the virus. Based on this method, genus-level bacterial-host predictions were made.

Phylogenetic tree construction. For constructing the phylogenetic tree using ORFRC isolates, the 16S rRNA sequences from all 261 strains were aligned using Muscle (62). The evolutionary history was inferred by using the maximum-likelihood method based on the Tamura-Nei model using MEGA7 (63). The tree with the highest log likelihood ($-7,846.44$) is shown. The initial tree(s) for the heuristic search was obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood (MCL) approach and then selecting the topology with superior log likelihood value. The analysis involved 255 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 519 positions in the final data set. All branches were collapsed at the genus level. For the phylogenetic tree depicting NCBI isolates, existing trees were downloaded using NCBI Taxonomy and collapsed to genus levels.

Viral sequence annotation. A functional annotation of all virus-encoded predicted proteins was based on a comparison to the Pfam domain database v.32 (64) with Hmmscan (65) (threshold of 30 for bit score and 10 $^{-10}$ for E value). The Pfam categories were assigned based on Pfam target name as previously described (57), and any Pfam target name not categorized earlier is referred to as “not categorized.” All contigs were also uploaded to KBase for annotation. To specifically identify metal and antibiotic resistance genes, all the unique Pfam target names and their descriptions were manually curated.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.

FIG S1, TIFF file, 8.2 MB.
FIG S2, TIFF file, 9.7 MB.
FIG S3, PDF file, 0.2 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.1 MB.
TABLE S3, XLSX file, 0.04 MB.
TABLE S4, XLSX file, 0.4 MB.
TABLE S5, XLSX file, 0.1 MB.
TABLE S6, XLSX file, 0.02 MB.
TABLE S7, XLSX file, 0.02 MB.

ACKNOWLEDGMENTS

We thank Terry C. Hazen (University of Tennessee, Knoxville) for providing ORFRC groundwater samples for the isolation of bacterial strains. We thank Austin Hendricks and Jon Penterman for assistance as a part of the molecular biology MIT core facility, MIT BioMicroCenter (https://openwetware.org/wiki/BioMicroCenter). We thank Albert Tang, University of California, Berkeley, for help with data analysis. We do not have any conflict of interest.

This work was part of the ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Science Focus Area Program at Lawrence Berkeley National Laboratory and is supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research under contract number DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The work conducted by the U.S. Department of Energy Joint Genome Institute (SR) is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Part of the sequencing work by S.S. and E.J.A. was funded by the National Cancer Institute of the NIH under award P30-CA14051. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

1. Sime-Ngando T. 2014. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol 5:355. https://doi.org/10.3389/fmicb.2014.00355.
2. Brum JR, Sullivan MB. 2015. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol 13:147–159. https://doi.org/10.1038/nrmicro3404.
3. Rohwer F, Thurber RV. 2009. Viruses manipulate the marine environment. Nature 459:207–212. https://doi.org/10.1038/nature07860.
4. Breitbart M, Bonnain C, Malik K, Sawaya NA. 2018. Phage puppet masters of the marine microbial realm. Nat Microbiol 3:754–766. https://doi.org/10.1038/s41564-018-0166-y.
5. Coutinho FH, Gregoracci GB, Walter JM, Thompson CC, Thompson FL. 2018. Metagenomics sheds light on the ecology of marine microbes and their viruses. Trends Microbiol 26:955–965. https://doi.org/10.1016/j.tim.2018.05.015.
6. Kauffman KM, Brown JM, Sharma RS, Vanlansberge D, Elsherbini J, Polz M, Kelly L. 2018. Viruses of the Nahant Collection, characterization of 251 marine Vibrioaceae viruses. Sci Data 5:180114. https://doi.org/10.1038/sdata.2018.114.
7. Andreani J, Verneau J, Raoult D, Levasseur A, La Scola B. 2018. Deciphering viral presence: two novel partial giant viruses detected in marine metagenome and in a mine drainage metagenome. Virol J 15:66. https://doi.org/10.1186/s12985-018-0976-9.
8. Yu DT, Han LL, Zhang LM, He JZ. 2018. Diversity and distribution characteristics of viruses in soils of a marine-terrestrial ecotone in East China. Microb Ecol 75:375–386. https://doi.org/10.1007/s00248-017-1049-0.
9. Weynberg KD. 2018. Viruses in marine ecosystems: from open waters to coral reefs. Adv Virus Res 101:1–38. https://doi.org/10.1016/bs.avir.2018.02.001.
10. Appelo CAJ, Postma D. 2004. Geochemistry, groundwater and pollution. CRC Press, Boca Raton, FL.
11. Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, Colombet J, Sime-Ngando T, Debrosis D. 2012. Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS One 7:e33641. https://doi.org/10.1371/journal.pone.0033641.
12. Mohiuddin M, Schellhorn H. 2015. Spatial and temporal dynamics of virus occurrence in two freshwater lakes captured through metagenomic analysis. Front Microbiol 6:960. https://doi.org/10.3389/fmicb.2015.00960.
13. Skvortsov T, de Leeuw C, Quinn JP, McGrath JW, Allen CC, McElarney Y, Watson C, Arkhipova K, Lavigne R, Kulakov LA. 2016. Metagenomic characterisation of the viral community of Lough Neagh, the largest freshwater lake in Ireland. PLoS One 11:e0150361. https://doi.org/10.1371/journal.pone.0150361.
14. de Cárcer DA, López-Bueno A, Pearce DA, Alcamí A. 2015. Biodiversity and distribution of polar freshwater DNA viruses. Sci Adv 1:e1400127. https://doi.org/10.1126/sciadv.1400127.
15. Green JC, Rahman F, Saxton MA, Williamson KE. 2015. Metagenomic assessment of viral diversity in Lake Matoaka, a temperate, eutrophic freshwater lake in southeastern Virginia, USA. Aquat Microb Ecol 75:117–128. https://doi.org/10.3354/am01752.
16. Dijkeng A, Kuzmickas R, Anderson NG, Spiro DJ. 2009. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One 4:e7264. https://doi.org/10.1371/journal.pone.0007264.
17. Zawar-Reza P, Argüello-Astorga GR, Kraberger S, Julian L, Stainton D, Broady PA, Vararsi A. 2014. Diverse small circular single-stranded DNA viruses identified in a freshwater pond on the McMurdo Ice Shelf (Antarctica). Infect Genet Evol 26:132–138. https://doi.org/10.1016/j.meegid.2014.05.018.
18. Dayaram A, Galatowitsch ML, Argüello-Astorga GR, van Bysterveldt K, Kraberger S, Stainton D, Harding JS, Roumagnac P, Martin DP, Lefeuvre P, Vararsi A. 2016. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem. Infect Genet Evol 39:304–316. https://doi.org/10.1016/j.meegid.2016.02.011.
19. Costeira R, Doherty R, Allen CC, Larkin MJ, Kulakov LA. 2019. Analysis of viral and bacterial communities in groundwater associated with contaminated land. Sci Total Environ 656:1413–1426. https://doi.org/10.1016/j.scitotenv.2018.11.429.
20. Overholt WA, Hölzer M, Geesink P, Diezel C, Marz M, Käsel K. 2020. Inclusion of Oxygen Nanopore long reads improves all microbial and viral metagenome-assembled genomes from a complex aquifer system. Environ Microbiol 22:4000–4013. https://doi.org/10.1111/1462-2920.15186.
21. Watson D, Kostka J, Fields M, Jardine P. 2004. The Oak Ridge field research center conceptual model. NABIR Field Research Center, Oak Ridge, TN.
22. Bruce GM, Flack SM, Mongan TR, Widner TE. 1999. Mercury releases from Bruce GM, Flack SM, Mongan TR, Widner TE. 1999. Mercury releases from
60. Ogilvie LA, Bowler LD, Caplin J, Dedi C, Diston D, Cheek E, Taylor H, Ebdon JE, Jones BV. 2013. Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences. Nat Commun 4:2420. https://doi.org/10.1038/ncomms3420.

61. Marcais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. https://doi.org/10.1093/bioinformatics/btr011.

62. Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. Bmc Bioinformatics 5:113–119. https://doi.org/10.1186/1471-2105-5-113.

63. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054.

64. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. 2019. The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995.

65. Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7: e1002195. https://doi.org/10.1371/journal.pcbi.1002195.