Fourier knots

Christoph Lamm

Rückertstr. 3,
65187 Wiesbaden, Germany,
e-mail: christoph.lamm@web.de

Abstract
We show that every knot has a checkerboard diagram and that every knot is the closure of a rosette braid. We define Fourier knots of type \((n_1, n_2, n_3)\) as knots which have parametrizations where each coordinate function \(x_i(t)\) is a finite Fourier series of length \(n_i\), and conclude that every knot is a Fourier knot of type \((1, 1, n)\) for some natural number \(n\).

1 Rosette braids

Let \(B_n\) be the braid group on \(n\) strings, \(\pi : B_n \to S_n\) be the map to the symmetric group on \(n\) letters and \(P_n = \ker(\pi)\) be the pure braid group on \(n\) strings. The generators of \(P_n\) are denoted by \(A_{i,j}\). If \(\pi_0\) is a permutation, then \(k(\pi_0)\) denotes its number of cycles.

Definition 1.1
A braid of the form

\[
\prod_{i=1}^{n} \left[\prod_{j=dd}^{\sigma^{e_{i,j}}_j} \prod_{j=even}^{\sigma^{f_{i,j}}_j} \right], \quad \varepsilon_{i,j} \in \{\pm 1\}
\]

is called a rosette braid of type \((s, n)\). The set of rosette braids of type \((s, n)\) is denoted by \(\mathcal{R}(s, n)\).

Lemma 1.2

a) i) \(\alpha \in \mathcal{R}(s, 1) \Rightarrow k(\pi(\alpha)) = 1\).

ii) \(\alpha \in \mathcal{R}(s, s) \Rightarrow \pi(\alpha) = \text{id} \).

iii) \(\alpha \in \mathcal{R}(s, ns + 1) \Rightarrow k(\pi(\alpha)) = 1\).

b) For each generator \(A_{i,j}\) of \(P_n\) there is an \(\alpha \in \mathcal{R}(s, s)\), so that \(A_{i,j} = \alpha\).
Figure 1: A rosette braid of type (4, 3) and a checkerboard diagram of type (4, 3)

Proof:

a) Proposition i) is true for \(s = 2 \), because then the braid word has the form \(\sigma \pm \). An element of \(\mathcal{R}(s, 1) \) is built out of an element of \(\mathcal{R}(s - 1, 1) \) by a Markov-II-move (insertion of \(\sigma \pm \)). Because the number of components is unchanged by a Markov-II-move, we conclude by induction that the proposition holds for all \(s \).

ii) As shown in part i), the permutation \(\pi(\alpha) \) of a braid \(\alpha \in \mathcal{R}(s, 1) \) consists of one cycle. Hence the permutation of a braid in \(\mathcal{R}(s, s) \) is the trivial permutation on \(s \) letters. Part iii) is an immediate consequence.

b) We consider the two strings \(i \) and \(j \) (\(i < j \)) of the braid \(\alpha_{i,j} \). If as above \(\pi_1 = \pi(\alpha) \) is the permutation of a braid \(\alpha \in \mathcal{R}(s, 1) \), then \(\pi_1 \) is a cycle of length \(s \). Hence there is a \(k \) with \(1 \leq k < s \), so that \(\pi_1^k(i) > \pi_1^k(j) \), and thus the strings \(i \) and \(j \) cross each other. It is possible to arrange the strings in such a way that all strings but \(i \) and \(j \) can be pulled tight and the strings \(i, j \) form the generators \(\alpha_{i,j} \) or \(\alpha_{i,j}^{-1} \).

\[\blacksquare \]

Theorem 1.3

Let \(\alpha \in B_s \) be a braid, with closure a knot. Then \(\alpha \) is conjugate to a rosette braid of type \((s, ns + 1)\) for a suitable \(n \).

Proof: Let \(\alpha \in B_s \) be a braid, so that \(\alpha \) is a knot. Let \(\delta \) be an arbitrary braid in \(\mathcal{R}(s, 1) \) and \(\pi_1 \) its permutation. The permutations \(\pi(\alpha) \) and \(\pi_1 \) are conjugate in the symmetric group because both consist of one cycle. Let \(\beta \in B_s \) be a braid, so that \(\pi(\beta)^{-1} \pi(\alpha) \pi(\beta) = \pi_1 \). Then \(\delta^{-1} \beta^{-1} \alpha \beta \) is a pure braid and because of Lemma 1.2 we can write it as an element of \(\mathcal{R}(s, ns) \) for a suitable \(n \). Multiplication with \(\delta \) yields \(\beta^{-1} \alpha \beta \) as an element of \(\mathcal{R}(s, ns + 1) \). Hence we have shown that \(\alpha \) is conjugate to a rosette braid of type \((s, ns + 1)\).

\[\blacksquare \]

The braid index of a knot \(K \) is denoted by \(br(K) \).

Corollary 1.4

Every knot \(K \) is the closure of a rosette braid with \(br(K) \) strings.
Figure 2: \(\delta \) and \(\gamma \) to modify the permutation of a braid which constitutes a plat. The \(\delta' \) and \(\gamma' \) are the mirrored operations for the lower plat closure.

2 Checkerboard diagrams

Definition 2.1

A knot diagram is called a **checkerboard diagram of type** \((2b, n)\), if it is the plat closure of a braid \(\sigma_2^{\varepsilon_2} \ldots \sigma_{2b-2}^{\varepsilon_{2b-2}} \cdot \alpha \) with \(\alpha \in \mathcal{R}(2b, n) \) and \(\varepsilon_2, \ldots, \varepsilon_{2b-2} \in \{\pm 1\} \).

Let \(\pi_0 \) be the permutation of the braid \(\sigma_2^{\varepsilon_2} \ldots \sigma_{2b-2}^{\varepsilon_{2b-2}} \cdot \alpha \in B_{2b} \). The plat-operations \(\delta, \gamma, \delta' \) and \(\gamma' \) which we need for Lemma 2.2 are defined in Figure 2.4

Lemma 2.2

Let \(K \) be a knot which is given as a plat closure of a braid \(\alpha \in B_s \). Then there is a sequence of operations \(\delta, \delta', \gamma \) and \(\gamma' \) which transforms the plat \(\pi \) to a plat \(\beta \) with \(\pi(\beta) = \pi_0 \).

Proof: Using the operations of Figure 2, the permutation \(\pi_0 \) can be produced step by step. We start with string 1 and move its end-position to the position \(\pi_0(1) = 1 \). Then, travelling along the knot we can successively adjust the end-positions at the upper and lower plat-closure of the braid. The result is a plat with permutation \(\pi_0 \). \(\square \)

Theorem 2.3

Every knot with bridge number \(b \) has a checkerboard diagram of type \((2b, 2nb)\) for a suitable \(n \).

Proof: In Lemma 2.2 we succeeded to represent the knot \(K \) as a plat \(\bar{\alpha} \) with \(\pi(\alpha) = \pi_0 \). We consider the pure braid \(\beta = \sigma_2 \sigma_4 \ldots \sigma_{s-2} \cdot \alpha \). By Lemma 1.2 the braid \(\beta \) can be written as a rosette braid \(\beta' \) of type \((s, ns)\) for some natural number \(n \). Hence \(\sigma_2^{-1} \sigma_4^{-1} \ldots \sigma_{s-2}^{-1} \cdot \beta' \) is a checkerboard diagram for \(K \). If we
choose the plat representative of K with $2b(K)$ strings, then the checkerboard diagram is of type $(2b(K), 2nb(K))$. \qed

3 Fourier knots

We call a series of the form

$$\sum_{i=1}^{n} \alpha_i \cos(2\pi m_i t + \varphi_i)$$

with $t, \alpha_i, \varphi_i \in \mathbb{R}, m_i \in \mathbb{N} \ (i = 1, \ldots, n)$ a finite Fourier series of length n.

Definition 3.1

A knot is a Fourier knot of type (n_1, n_2, n_3) if it can be parametrized by coordinate functions $x_1, x_2, x_3 : [0, 1] \to \mathbb{R}$ which are finite Fourier series of length $n_1 \leq n_2 \leq n_3$.

Remark 3.2

The Fourier knots of type $(1, 1, 1)$ are the Lissajous knots. They were studied in the articles [1], [2] and [6]. Not all knots are Lissajous knots, but the next theorem proclaims that every knot is a Fourier knot of an especially simple type. Fourier knots were also defined in [3] and [8].

Theorem 3.3

Every knot K is a Fourier knot of type $(1, 1, n_K)$ for some $n_K \in \mathbb{N}$.

Proof: We consider a Fourier knot of type $(1, 1, n)$ and its projection on the x-y-plane. By [6] the knot diagram is a checkerboard diagram. Conversely, by Theorem 2.3 every knot has a checkerboard diagram. The height-function in z-direction can be approximated by a finite Fourier series. \qed

Remark 3.4

The trefoil knots and the figure-eight knot are not Lissajous knots. They are Fourier knots of type $(1, 1, 2)$. The parametrizations of [1] (with a correction of misprints) are

$$x_1(t) = \cos(2t + 6), \quad x_2(t) = \cos(3t + 0.15), \quad x_3(t) = \cos(4t + 1) + \cos(5t)$$

for a trefoil and
\[x_1(t) = \cos(2t + 0.8), \ x_2(t) = \cos(3t + 0.15), \ x_3(t) = \cos(4t + 1) + \cos(5t) \]
for the figure-eight knot. Here we use the interval \(t \in [0, 2\pi] \), in order to have the same parametrization as in [1].

Definition 3.5

If \(K \) is a knot, the *Fourier index* of \(K \) is the smallest number \(n \) for which \(K \) is a Fourier knot of type \((1, 1, n)\).

It is not known if there are knots with arbitrarily high Fourier index.

Acknowledgement: I thank J. Kneissler for discussions on braids and plats.

References

[1] Bogle, M.G.V./Hearst, J.E./Jones, V.F.R./Stoilov, L.: *Lissajous knots*, J. Knot Theory and Ramifications 3, 121–140 (1994).
[2] Jones, V.F.R/Przytycki, J.H.: *Lissajous knots and billiard knots*, Banach Center Publications 42, 145-163 (1998).
[3] Kauffman, L.H.: *Fourier knots*, in *Ideal Knots*, Vol. 19 in Series on Knots and Everything, ed. by A. Stasiak, V. Katrich, L. Kauffman, World Scientific, 1998.
[4] Kawauchi, A.: *A Survey of Knot Theory*, Birkhäuser Verlag (1996).
[5] Kneissler, J. A.: *Woven braids and their closures*, J. Knot Theory and Ramifications, 8, 201–214 (1999).
[6] Lamm, C.: *There are infinitely many Lissajous knots*, Manuscripta Math. 93, 29–37 (1997).
[7] Murasugi, K.: *Remarks on rosette knots*, Math. Ann. 158, 290–292 (1965).
[8] Trautwein, A. K.: *Harmonic knots*, PhD-thesis, University of Iowa (1995).