Effect of Water Vapor on the Destruction of Ozone in the Stratosphere Perturbed by CIX or NO\textsubscript{x} Pollutants

S. C. Liu, T. M. Donahue, R. J. Cicerone, and W. L. Chameides

Department of Atmospheric and Oceanic Science, Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan 48109

We describe results of a self-consistent one-dimensional coupled flow calculation for O\textsubscript{3}, NO\textsubscript{x}, HO\textsubscript{x}, CIX, H\textsubscript{2}O, H\textsubscript{2}, CH\textsubscript{4}, H\textsubscript{2}O\textsubscript{2}, and N\textsubscript{2}O densities between 10 and 120 km. Our results agree well with observations for the normal mid-latitude atmosphere over this altitude range. We have varied CIX, NO\textsubscript{x}, and H\textsubscript{2}O independently in our model. We show that the effect of depletion of ozone by CIX is to remove ozone preferentially above 30 km and to lower the altitude of maximum ozone density. This leads to enhanced solar heating of the lower stratosphere and tropopause and suggests the possibility of an increased flux of water into the stratosphere. We show that increasing water vapor in the stratosphere greatly enhances the rate of destruction of O\textsubscript{3} by CIX and also causes an increase in the rate of destruction of O\textsubscript{3} in the NO\textsubscript{x}-perturbed atmosphere.

INTRODUCTION

Recently, a number of studies have been published showing the effect on the earth’s ozone layer of increasing the concentration of odd chlorine, or CIX (Cl + ClO + HCl) in the stratosphere [Molina and Rowland, 1974; Cicerone et al., 1974; Crutzen, 1974a; Wofsy et al., 1975]. We wish to report here the result of calculations that show the influence of the amount of water vapor in the stratosphere on the effectiveness of a specific level of CIX or NO\textsubscript{x} (NO + NO\textsubscript{2} + HNO\textsubscript{3}) in ozone removal. Our calculations are for a steady state and cover the range 10–120 km. We employ a one-dimensional coupled flow calculation using Hunt en’s [1975] eddy diffusion coefficient. Originally, we were motivated to perform this exercise by realizing that in the presence of CIX from chlorocarbons, ozone is preferentially destroyed at high altitudes and the altitude of the peak O\textsubscript{3} concentration tends to be lowered. Thus the heating rate near the tropopause due to absorption by O\textsubscript{3} is thereby increased. This could lead to an increase in the temperature of the tropopause [Ramathan et al., 1976] and thus decrease the ‘cold trap’ effect on water vapor [Stanford, 1973]. This in turn would increase the water vapor abundance in the stratosphere. On the other hand, a more uniform reduction of ozone such as by NO\textsubscript{x} pollutants might decrease water vapor in the stratosphere. Since H\textsubscript{2}O (H + OH + HO\textsubscript{2}) plays such an important role in O\textsubscript{3} chemistry, it seems to us important to assess the effect of changes in water concentration on the natural and the perturbed stratosphere. It is particularly significant in the case of CIX pollution because not only does H\textsubscript{2}O destroy O\textsubscript{3} catalytically in its own right but OH attacks HCl to release Cl and thus reinitiates the CIX catalytic chain reaction.

CALCULATION METHOD AND BOUNDARY CONDITIONS

In our calculation we have self-consistently treated O\textsubscript{3} (O\textsubscript{3} + O), HO\textsubscript{2}, NO\textsubscript{x}, CIX, H\textsubscript{2}O\textsubscript{2}, H\textsubscript{2}, CH\textsubscript{4}, H\textsubscript{2}O\textsubscript{2}, and N\textsubscript{2}O following the methods developed and described by Liu and Donahue [1974a, b, c, 1975a, 1976]. In the standard (i.e., ‘unperturbed’) atmosphere we have assumed a mixing ratio of 10-8 ppb of HCl to release Cl and thus reinitiates the CIX catalytic chain reaction.

Copyright © 1976 by the American Geophysical Union.

OH + HO\textsubscript{2} \rightarrow H\textsubscript{2}O + O\textsubscript{2}

by assuming in these calculations a ‘high’ value [Hochanadel et al., 1972], 2 \times 10-16 cm3 s-1, and a ‘low’ value [Kaufman, 1975], 2 \times 10-17 cm3 s-1, and analyzing in detail the sensitivity of our results to variations of this rate constant. Liu and Donahue [1974a] have shown that Anderson’s [1971] measurements of OH densities can be reconciled with this range of values for k\textsubscript{18} provided certain constraints are placed on a
TABLE 1. Daily Averaged Photodissociation Rates of Relevant Species at 120 km for Equinoctial Conditions at 30° Latitude

Reaction	Rate, s⁻¹	Reference
O + hv → O + O	1.26 × 10⁻⁴	Hudson et al. [1969]
O + hv → O₂ + O(P)	4.4 × 10⁻⁴	Ackerman [1970]
O + hv → O₂ + O’(D)	2.1 × 10⁻⁴	Ackerman [1970]
H₂O + hv → H + OH	5.0 × 10⁻⁴	Thompson et al. [1963]
NO₂ + hv → NO + O	5.3 × 10⁻⁴	Schumb et al. [1955]
HNO₃ + hv → NO + OH	8.6 × 10⁻⁸	Johnston and Graham [1973]
H₂CO + hv → H₂ + CO	4.1 × 10⁻⁴	Calvert et al. [1972]
HCl + hv → H + Cl	1.1 × 10⁻⁸	Myer and Samson [1970]
NO + hv → NO + O₂	1.0 × 10⁻²	Schott and Davidson [1958]

Solar flux data are taken from Ackerman [1970].

The lower value of k₁₈ usually calls for about 3 times as much HOₓ in the stratosphere for a given amount of water. There is, accordingly, less O₃ in models using the low value of k₁₈. The role of (R20), whose rate constant is also poorly known, is discussed by Donahue et al. [1976].

Below 10 km we have assumed the amount of ozone present to be 0.54 × 10⁶ cm⁻³, a quantity taken from the tables of

TABLE 2. Reactions and Rate Constants With References

Reaction	Rate Constant, cm³ s⁻¹	cm⁻³ s⁻¹	Reference
R1	CI + O₃ → CI(O) + O₃	2.4 × 10⁻¹² exp (-340/RT)	Zahniser et al. [1975]
R2	O₂ + CI → CI + O₃	1.2 × 10⁻¹⁰ exp (-250/T)	Benson et al. [1973]
R3	ClO + NO → Cl + NO₂	1.7 × 10⁻¹¹	Cline and Watson [1974]
R4	Cl + CH₃ → Cl⁻ + CH₄	5.4 × 10⁻¹³ exp (-1125/T)	Davis et al. [1975b]
R5	HCl + OH → CI + H₂O	2.1 × 10⁻¹³ exp (-310/T)	Zahniser et al. [1974]
R6	HCl + Cl → Cl⁻ + H₂O	1.9 × 10⁻¹³ exp (-3600/T)	Wong and Beller [1971]
R7	Cl + HO₂ → Cl⁻ + HO₂	2.3 × 10⁻¹⁰	Davis et al. [1975a]
R7a	H₂ + Cl → Cl⁻ + H₂	6.0 × 10⁻¹⁰	Benson et al. [1969]
R8	H + Cl → Cl⁻ + H	8.0 × 10⁻¹⁰ exp (-2650/T)	Benson et al. [1969]
R9	H + Cl → Cl⁻ + Cl	1.0 × 10⁻¹⁰ exp (-1600/T)	Benson et al. [1969]
R10	H₂O + O(P) → 2OH	3.5 × 10⁻¹⁰	Garvin and Hampson [1974]
R11	CH₄ + O(P) → OH + CH₃	5.0 × 10⁻¹⁰	Davis and Hampson [1974a]
R12	CH₄ + O(P) → H²O + CH₃	2.95 × 10⁻¹³ exp (-1770/T)	Davis et al. [1975a]
R13	H₂ + O(P) → OH + H	2.9 × 10⁻¹⁰	Garvin and Hampson [1974]
R13a	H₂ + O → OH + H	3.0 × 10⁻¹⁰ exp (-4480/T)	Baulch et al. [1973]
R14	H + O₃ → OH + O₃	2.6 × 10⁻¹⁰	Hampson et al. [1973a]
R15	H + O₃ → M + HO₂ + M	6.0 × 10⁻¹⁰ exp (290/T)	Garvin and Hampson [1974]
R16a	H + HO₂ → H₂O + O	4.2 × 10⁻¹⁰ exp (-350/T)	Garvin and Hampson [1974]
R16b	H + HO₂ → H₂O + O	8.3 × 10⁻¹⁰ exp (-500/T)	Lloyd [1973]
R17	OH + O → H₂ + O₂	8.0 × 10⁻¹¹	Baulch et al. [1973]
R18	OH + HO₂ → H₂O + O₂	see text	Wilson [1973]
R19	OH + O₂ → HO₂ + O₂	1.3 × 10⁻¹⁰ exp (-950/T)	Anderson and Kaufman [1973]
R20	HO₂ + O → OH + O₂	8.0 × 10⁻¹⁰ exp (-500/T)	Lloyd [1973]
R21	HO₂ + O → OH + O₂	1.0 × 10⁻¹⁰ exp (-1250/T)	Garvin and Hampson [1974]
R22	HO₂ + HO₂ → H₂O₂ + O₂	3.0 × 10⁻¹⁰ exp (-500/T)	Hampson et al. [1973a]
R23	H₂O + OH → HO₂ + H₂O	1.7 × 10⁻¹¹ exp (-910/T)	Hampson et al. [1973a]
R24	H₂O + NO → OH + NO₂	1.1 × 10⁻¹² exp (-1000/T)	Davis et al. [1973]
R25	NO₂ + O(P) → 2NO	1.1 × 10⁻¹⁰	Garvin and Hampson [1974]
R25a	NO₂ + O(P) → NO + O₂	1.1 × 10⁻¹⁰	Garvin and Hampson [1974]
R26	NO + O → NO₂ + O	9.0 × 10⁻¹⁰ exp (-1200/T)	Hampson et al. [1973a]
R27	NO + O → NO₂ + M	7.0 × 10⁻¹⁰	Becker et al. [1973]
R28	NO + O → NO + O₂	1.7 × 10⁻¹¹ exp (-300/T)	Baulch et al. [1973]
R29	NO + O → OH + M + HNO₂ + M	1.0 × 10⁻⁷/(3.5 × 10⁻⁷T + 2.5 [M])	Anderson et al. [1974]
R30	HNO₂ + OH → H₂O + NO₃	0.89 × 10⁻¹⁰	Margitan et al. [1975]
R31	NO + NO → 2NO₂	8.7 × 10⁻¹⁰	Harker and Johnston [1973]
R32	NO₂ + O₃ → NO₃ + O₃	1.1 × 10⁻¹⁰ exp (-2450/T)	Garvin and Hampson [1974]
R33	NO₃ + O → M + NO₂ + M	1.0 × 10⁻¹⁰	Hammond et al. [1973b]
R34	O + O → M + O₂ + M	10.0 × 10⁻¹⁰ exp (510/T)	Garvin and Hampson [1974]
R35	O + O → 2O	2.96 × 10⁻¹⁰ exp (-2300/T)	Hammond et al. [1973c]
R36	O + O → M + O₂ + M	2.76 × 10⁻¹⁰ exp (710/T)	Campbell and Thrush [1967]

*Methane oxidation chain of Chameides and Walker [1973] is adopted.
† Best fit to the results of Anderson et al. [1974] and Tsang [1973].
Hering and Borden [1967] as appropriate to the equinoxes. This quantity is added to the integrated amounts obtained above 10 km in calculating the total column ozone abundance for all of our models.

RESULTS: STANDARD AND CIX-PERTURBED ATMOSPHERE

In Figure 1 we show some of the profiles of species obtained from our calculations for standard conditions and, where appropriate, for high and low values of \(k_{i8} \). Figure 2 shows standard ozone profiles for both values of \(k_{i8} \). Also shown in Figure 2 is the effect of adding 8 ppb CIX on the ozone densities. The preferential removal of ozone at high altitude is obvious. As a result of this perturbation, the altitude of the ozone maximum is decreased, leading to an increase in the solar and infrared heating rates below the ozone maximum [Ramanathan et al., 1976]. For example, when \(k_{i8} \) is high and 15 ppb of CIX is present, the ozone maximum is lowered from 24 to 22 km, and the solar heating rate at 10, 15, and 20 km is 13%, 16%, and 19% larger, respectively. Ramanathan et al. [1976] have indicated that this kind of change in the ozone distribution might increase the temperature at the tropopause by several degrees. The saturation vapor pressure doubles for a 4\(^\circ\)K rise in tropopause temperature and increases by an order of magnitude for a 15\(^\circ\)K rise. Thus in the presence of CIX the water vapor concentration at the tropopause would increase [Stanford, 1973]. In the NO\(_x\)-perturbed stratosphere, however, the ozone density profile is affected more uniformly [McElroy et al., 1974] and thus could lead to a decrease of water vapor concentration at the tropopause [Ramanathan et al., 1976].

To assess the effect of changing the amount of water vapor in the stratosphere on the ozone distribution, we have repeated the steady state calculations for water vapor mixing ratios at 10 km ranging from 10\(^{-4}\) to 30 ppm. When the water vapor mixing ratio at the tropopause is lower than about 1 ppm, the water vapor present in the stratosphere will be produced mostly from methane because oxidation of methane is an important source of water vapor at the tropopause [Hunten, 1973]. In the NO\(_x\)-perturbed stratosphere, however, the ozone density profile is affected more uniformly [McElroy et al., 1974] and thus could lead to a decrease of water vapor concentration at the tropopause [Ramanathan et al., 1976].

In the case of 3 ppm H\(_2\)O at 10 km the H\(_2\) mixing ratio will grow from 0.5 ppm at 10 km to more than 4 ppm at 90 km as a result of conversion of H\(_2\)O and CH\(_4\). But with virtually no H\(_2\)O at 10 km the H\(_2\) mixing ratio reaches only a little more than 3 ppm, since the increase comes only from the conversion of methane to H\(_2\)O and the subsequent production of odd hydrogen from H\(_2\)O.

Figure 2 also shows the effect of increasing the H\(_2\)O mixing ratio to 30 ppm on the ozone distribution already modified by the presence of 8 ppb CIX. (We plot profiles for large increases in CIX and H\(_2\)O for the sake of obtaining a clear separation of the curves.) Figures 4 and 5 show the percentage reduction in O\(_3\) column abundances as CIX is added to the atmosphere and the H\(_2\)O mixing ratio at 10 km is varied. Again, results are shown for two choices of \(k_{i8} \).

Before discussing the effects of varying the water vapor source, we call attention to rate constants for the reaction (R16),

\[
H + HO_2 \rightarrow H_2 + O_2
\]

In the case of 3 ppm H\(_2\)O at 10 km the H\(_2\) mixing ratio will grow from 0.5 ppm at 10 km to more than 4 ppm at 90 km as a result of conversion of H\(_2\)O and CH\(_4\). But with virtually no H\(_2\)O at 10 km the H\(_2\) mixing ratio reaches only a little more than 3 ppm, since the increase comes only from the conversion of methane to H\(_2\)O and the subsequent production of odd hydrogen from H\(_2\)O.
newly measured by Davis et al. [1975a] and Zahniser et al. [1975], i.e., $2.4 \times 10^{-11} \exp\left(-340/RT\right)$, and for the reaction (R4),

$$\text{Cl} + \text{CH}_4 \rightarrow \text{HCl} + \text{CH}_3$$

where k_4 is $5.4 \times 10^{-11} \exp\left(-1125/T\right)$ according to Davis et al. [1975b]. In early (pre-1975) studies of stratospheric CIX, k_4 was taken to be $4.3 \times 10^{-11} \exp\left(-250/T\right)$ [see, e.g., Stolarski and Cicerone, 1974] based on Clyne and Watson’s room temperature rate of 1.85×10^{-11} [Watson, 1974]. Also, k_4 was taken to be $8.8 \times 10^{-11} \exp\left(-1900/T\right)$ in the early studies, based on Davis et al. [1970]. The use of the new rates k_1 and k_8 in our model has significantly reduced the effect of a given amount of CIX on O_3 compared to that in previous models. In this result we agree with Crutzen as quoted by Hammond [1975] and with Wosy et al. [1975]. Our results for the new rates k_1 and k_8, compared to those for the old k_1 and k_8, are that 1 ppb of CIX reduces the total amount of O_3 by 0.6% compared to 2.2%, 3 ppb of CIX reduces O_3 by 1.9% compared to 6.4%, and 5 ppb of CIX reduces O_3 by 3.6% compared to 10.4%. These comparisons are made for the larger value of k_8. In case the smaller value is more nearly correct the reduction in the integrated O_3 abundance for a given combination of CIX and water vapor concentrations could be much greater, as can be seen in Figures 2, 4, and 5. Thus unless the amount of water vapor in the stratosphere were to change significantly from its present value, the time scale for a specified amount of ozone destruction by CIX could be appreciably greater than first calculated [Cicerone et al., 1974; Crutzen, 1974a; Wosy et al., 1975]. Even this conclusion is dangerous, however, based as it is on the assumed high value of k_8. Donahue et al. [1976] discuss this further. The 10% ozone destruction level is reached with less than 6 ppb of CIX if the low value of k_8 is correct.

Figures 4 and 5 also demonstrate the principal points that we wish to make in this paper. The effects produced by changing H_2O are significant. In particular, when the CIX pollution level is 1 ppb, the percentage ozone reduction goes from 0.6% to 2.9% if the amount of H_2O is tripled (9 ppm at 10 km) and to 9.7% if it is increased by a factor of 10 (for the high value of k_8). Again for the low value of k_8 a much more dramatic effect occurs, i.e., a 6.8% reduction for 1 ppb of CIX and 3 times normal H_2O and a 16.6% reduction for 10 times normal H_2O. Of course if the stratosphere were to dry out for some reason, the changes would occur in the opposite sense. The reason that water vapor has such a great influence is that it is converted by reaction with $O(1D)$ into odd hydrogen. All forms of odd hydrogen destroy ozone catalytically in their own right, but in addition to this direct effect there is a special indirect effect on ozone destruction. The HCl produced by reactions of Cl with CH in reaction (R4) is attached by OH (R5),

$$\text{OH} + \text{HCl} \rightarrow \text{Cl} + \text{H}_2\text{O}$$

thus reinitiating the CIX catalytic chain. Figures 7, 8, 10, and 11 quantitatively demonstrate the nature of the effects just described. Figure 6 shows the methane distribution as a function of altitude for the standard atmosphere with high and low values of k_8, where the influence of the enhanced destruction of CH_4 by OH when k_8 is low is apparent. Much
more striking, however, is the rapid destruction of methane by Cl in the formation of HCl through reaction (R4) when 8 ppb of CI is present. At 45 km the methane density has been cut by an order of magnitude compared to the normal value as a result of the presence of CI. Tropospheric CH₄ is also affected by CI-induced O₃ losses in the stratosphere, feeding back on the stratosphere (Chameides et al., 1976).

In Figure 7 the densities of HOx are plotted for the low value of k_{18} in three cases: (1) the standard atmosphere, (2) with 8 ppb of CI and normal H₂O, and (3) with 8 ppb of CI and 3 times the normal H₂O. It is interesting that the presence of CI increases the amount of HO₂ considerably below the ozone maximum and decreases it above. The reason is to be found in the preferential destruction of O₃ above the maximum by CI released from chlorocarbons. This decrease in optical depth enhances O(D) production from O₃ at low altitudes, as is demonstrated by the curves showing the O(D) densities. Since O(D) interacting with H₂O and CH₄ is an important source of OH, the result is an increase in HO₂ at low altitudes. Conversely, above 40 km, where the atmosphere is optically thin for production of O(D), the O(D) density is lower because the O₃ density is lower. Thus the HO₂ density in the presence of CI is reduced at higher altitudes. Figure 8 shows the CI species as they are affected by the addition of water to the stratosphere: the conversion of HCl to CI by OH can be easily detected below 40 km. Above 50 km, because the H₂O density increases by a larger factor than does the OH density for a given increase in water vapor concentration, CI is preferentially converted to HCl by the reaction of H₂O with Cl.

In Figures 9 and 10 we show the major sinks of O₂ for the standard atmosphere with high and low values of k_{18}, respectively. These figures show that the odd hydrogen reactions dominate the loss of O₂ above 55 and below 20 km. The Chapman reaction (R35) between O₃ and O dominates only in a narrow range near 50 km, and the NO₂ catalytic cycle is in control from 20 to about 40 km, where the ozone density is largest. The effect of increasing the odd hydrogen density by reducing k_{18} is apparent in a comparison of Figures 9 and 10, particularly in the region where the Chapman reaction prevails. This region stretches from 43 to 56 km when k_{18} is large but only from 43 to 47 km when k_{18} is small. Figure 11 in turn, when compared with Figure 10, shows the changes in the dominant sinks of O₂ when 8 ppb of CI is added. The CI-O reaction rate in the CI cycle at 40 km jumps from 3×10^9 cm⁻³ s⁻¹ to more than 8×10^9 cm⁻³ s⁻¹. The NO₂ + O reaction rate is reduced when CI becomes dominant because of the decreased amount of O₂ leading to less NO₂ and less O. While the H₂O + O₂ reaction rate is not shown in Figure 11, its dependence upon the addition of CI and water vapor is similar to that of OH + O₂.

Note that for low k_{18} there is a significant amount of H₂O₂ near 25 km as a result of the large concentrations of HO₂.

Fig. 7. Profiles of odd hydrogens and O(tD) for the standard atmosphere (solid line), with 8 ppb of CI and normal H₂O (dashed line) and with 8 ppb of CI and 3 times H₂O at the tropopause (dash-dotted line). Low value of k_{18} is used here.

Fig. 8. Profiles of CI, ClO, and HCl for atmosphere with 8 ppb of CI and normal H₂O (solid line) and for atmosphere with 8 ppb of CI and 3 times H₂O (dashed line). Low value of k_{18} is used here.

Fig. 9. Sinks of O₂ for the standard atmosphere with high k_{18}.

Fig. 10. Same as Figure 9 but with low k_{18}.
The decrease in ozone density caused by an increase in the water vapor content of the stratosphere in our model occurs predominantly below about 22 km and above about 45 km. HO₃ destruction of O₃ dominates NO₃ destruction below 24 km and begins to compete seriously again above 40 km. It is the effect of HO₃ below 22 km that causes us to find that increasing the H₂O mixing ratio even by very small amounts causes the ozone column content to decrease, whereas others [McElroy et al., 1974; Crutzen, 1974b] found the opposite. McElroy et al. located their lower boundary at 28 km and multiplied the O₃ profile below that level by the change calculated at 28 km [Wofsy, 1974]. This exercise cannot duplicate the large effect of HO₃ on O₃ that we find below 24 km. Our disagreement with Crutzen [1974b] may be due to different reaction rate constants. We note that Rao-Vuppurutri [1974] also finds that increased H₂O leads to decreased O₃.

In a sense, our result is disturbing because it suggests that the ozone layer is necessarily unstable against runaway destruction from perturbations (even natural ones that may have occurred in the past) allowing water into the stratosphere. Such a conclusion is not warranted, however, for the nature of the perturbation, the exact nature and location of the change in ozone density, the changes in temperature accompanying the perturbation, and the temperature dependences of all important rate constants must all be considered. Thus a perturbation like the one we describe here resulting from chlorocarbons, which removes the top of the layer of O₃ and causes the temperature to rise below 25 km and fall above 25 km, will cause HO₃ to have different effects at high and low altitudes. The rate constants for the steps in the ozone-destroying reactions:

\[\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2 \]
\[\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2 \]
\[\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2 \]

increase with increasing temperature, while the rate constant for the reaction between HO₃ and NO₂ that produces the sink for NO₂,

\[\text{OH} + \text{NO}_2 + \text{M} \rightarrow \text{HNO}_3 + \text{M} \]

decreases with increasing temperature. Thus as the temperature increases at low altitude, the destruction of ozone from HO₂ and from NO₂ tends to be augmented, but the opposite is true at high altitude. As a consequence, the ozone will tend to recover and the opacity to grow at high altitude, leading to a decrease in temperature below. Effects such as these certainly must be taken into account in a complete time-dependent theory of the phenomena we are describing in this note.
CONCLUSION

This paper draws attention to the very large influence of water vapor in the stratosphere on the catalytic destruction of ozone, particularly by odd chlorine originating from photolysis of chlorocarbon. A change in water vapor concentration, either an increase or a decrease, could conceivably result from changes in the environment affecting the so-called cold trap for water vapor, the production of methane, or both. The destruction of ozone by pollutants is particularly sensitive to the amount of H2O present in the stratosphere in the case of odd chlorine produced by photolysis of chlorocarbon because of the conversion of HCl to Cl by OH. The effects considered depend strongly on the value of the rate constant for the reaction of OH with H2O producing water vapor, because it determines the amount of odd hydrogen in equilibrium with a given amount of water vapor.

Acknowledgments. This work has greatly benefited from discussion with J. G. Anderson and W. R. Kuhn. The research was supported in part by the Atmospheric Sciences Section, National Science Foundation (NSF) grants DES 74-11478 and DES 74-11478 and by NASA grant NSG-7187. We also acknowledge the National Center for Atmospheric Research (sponsored by NSF) for computer time.

REFERENCES

Ackerman, M., Ultraviolet solar radiation related to mesospheric processes, Inst. Aeronaut. Spatiale Belge Brussels, A-77, 149-159, 1970.

Ackerman, M. D., Frimout, A., Girard, M., Gottiniger, C., Muller, Stratospheric HCl from infrared spectra, Geophys. Res. Lett., 3, 81, 1976.

Anderson, J. G., Rocket measurement of OH in the mesosphere, J. Geophys. Res., 76, 7820-7824, 1971.

Anderson, J. G., and F. Kaufman, Kinetics of the reaction OH (v = 0) + O3 --> O2 + HO2, Chem. Phys. Lett., 19, 483-486, 1973.

Anderson, J. G., J. J. Margitan, and F. Kaufman, Gas phase recombination of OH with NO and NO2, J. Chem. Phys., 60, 3310-3317, 1974.

Baulch, D. L., D. D. Drysdale, D. G. Horne, and A. E. Lloyd, Evaluated kinetic data for high temperature reactions, in Homogeneous Gas Phase Reactions of the H2-N2-O System, vol. 2, Chemical Rubber Co. Press, Cleveland, Ohio, 1973.

Becker, K. H., W. Groth, and D. Thraan, Mechanism of the air afterglow, J. Chem. Phys., 46, 14th Combustion Symposium, p. 353-363, Combust. Inst., Pittsburgh, Pa., 1973.

Bemand, P. P., M. A. A. Clyne, and R. T. Watson, Reactions of chlorine oxide radicals, 4. Rate constants for the reactions Cl + O3 + ClO, O + O3, ClO + O3, NO + ClO, NO + ClO, O + ClO, J. Chem. Soc. Faraday Trans., Sect. 1, 69, 1356, 1973.

Benson, S. W., F. R. Cruickshank, and R. Shaw, Iodine monochloride and Iodine monochloride peroxide, J. Atmos. Chem., 1, 70, 2250-2259, 1974.
Kaufman, F., Hydrogen chemistry: Perspective on experiment and theory, in *Atmosphere of Earth and Planets*, edited by B. M. McCormack, pp. 219-232, D. Reidel, Dordrecht, Netherlands, 1975.

Liu, S. C., and T. M. Donahue, The aeronomy of hydrogen in the atmosphere of earth, *J. Atmos. Sci.*, 31, 1118-1136, 1974a.

Liu, S. C., and T. M. Donahue, Mesospheric hydrogen related to exospheric escape mechanisms, *J. Atmos. Sci.*, 31, 1466-1470, 1974b.

Liu, S. C., and T. M. Donahue, Realistic model of hydrogen constituents in the lower atmosphere and escape flux from the upper atmosphere, *J. Atmos. Sci.*, 31, 2238-2242, 1974c.

Liu, S. C., and T. M. Donahue, The aeronomy of the upper atmosphere of Venus, *Icarus*, 24, 148-156, 1975a.

Liu, S. C., and T. M. Donahue, The regulation of hydrogen and oxygen escape from Mars, *Icarus*, in press, 1976.

Lloyd, A. C., Evaluated and estimated kinetic data for gas phase reactions of the hydroperoxyl radical, *Rep. 10447*, Nat. Bur. of Stand., Washington, D.C., 1973.

Lovelock, J. E., Natural halocarbons in the air and in the sea, *Nature*, 256, 193-194, 1975.

Margitan, J. J., F. Kaufman, and J. G. Anderson, Kinetics of the reaction OH + HNO₃ → H₂O + NO₂, *Int. J. Chem. Kinet.*, Symp. 1, 3310-3317, 1975.

McElroy, M. B., S. C. Wofsy, J. E. Penner, and J. C. McConnell, Atmosphere ozone: Possible impact of stratospheric aviation, *J. Atmos. Sci.*, 31, 287-303, 1974.

Metzger, P. H., and G. R. Cook, A reinvestigation of the absorption cross section of molecular oxygen in the 1050-1800Å region, *J. Quant. Spectros. Radiat. Transfer*, 4, 107-116, 1964.

Molina, M. J., and F. S. Rowland, Stratospheric sink for chlorofluoromethanes: Chlorine atom catalyzed destruction of ozone, *Nature*, 249, 810-812, 1974.

Myer, J. A., and A. R. Samson, Vacuum-ultraviolet absorption cross section of CO, HCl, and ICN between 1050 and 2100Å, *J. Chem. Phys.*, 52, 266-271, 1970.

National Academy of Sciences, Environmental impact of stratospheric flight, Biological and climatic effects of aircraft emission in the stratosphere, Washington, D. C., 1975.

Ramanathan, V., L. B. Callis, and R. E. Boughner, Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric concentration of ozone and nitrogen-dioxide, *J. Atmos. Sci.*, in press, 1976.

Rao-Vupputuri, R. K., A zonally averaged circulation model of the stratosphere incorporating radiative heating and ozone photochemistry in an oxygen-hydrogen-nitrogen atmosphere, Proceedings of the Third Conference on the CIAP, pp. 390-402, Dep. of Transp., Washington, D. C., 1974.

Rowland, F. S., and M. J. Molina, Chlorofluoromethanes in the environment, *Rev. Geophys. Space Phys.*, 13, 1-35, 1975.

Schott, G., and N. Davidson, Shock waves in chemical kinetics: The decomposition of NO₂ at high temperatures, *J. Amer. Chem. Soc.*, 80, 1841-1853, 1958.

Schumb, W. C., C. N. Satterfield, and R. L. Wentworth, *Hydrogen Peroxide*, pp. 266-291, Reinhold, New York, 1955.

Stanford, J. L., Possible sink for stratosphere water vapor at the winter antarctic pole, *J. Atmos. Sci.*, 30, 1431-1436, 1973.

Stolarski, R. S., and R. J. Cicerone, Stratospheric chlorine: A possible sink for ozone, *Can. J. Chem.*, 52, 1610-1615, 1974.

Thompson, B. A., F. Hartceck, and R. R. Reeves, Jr., Ultraviolet absorption coefficients of CO₂, CO, H₂O, H₂O, NH₃, NO, SO₂, and CH₄ between 1800 and 4000 Å, *J. Geophys. Res.*, 60, 6431-6436, 1963.

Tsang, W., Comparison between experimental and calculated rate constant for dissociation and combination reactions involving small polyatomic molecules, *Int. J. Chem. Kinet.*, 5, 947-963, 1973.

Watson, R. T., Chemical kinetics data survey 8: Rate constants of ClO₂ of atmospheric interest, *NBSIR 74-516*, Nat. Bur. of Stand., Washington, D. C., 1974.

Wilson, W. E., Jr., A critical review of the gas-phase reaction kinetics of the hydroxyl radical, *J. Phys. Chem. Ref. Data*, 1, 535-573, 1973.

Wofsy, S. C., Atmospheric photochemistry of N₂, H₂, and Cl-containing radicals, Proceedings of the Third Conference on the CIAP, pp. 359-375, Dep. of Transp., Washington, D. C., 1974.

Wofsy, S. C., and M. B. McElroy, Stratospheric halogen-ozone chemistry, paper presented at the 169th ACS National Meeting, Amer. Chem. Soc., Philadelphia, Pa., 1975.

Wofsy, S. C., M. B. McElroy, and N. D. Sze, Freon consumption: Implication for atmospheric ozone, *Science*, 187, 535-537, 1975.

Wong, E. L., and F. Belles, Rate measurement for the reaction of hydrogen chloride and deuterium chloride with atomic oxygen, *NASA Tech. Note TN D-6495*, 1971.

Zahniser, M. S., F. Kaufman, and J. G. Anderson, Kinetics of the reaction of OH with HCl, *Chem. Phys. Lett.*, 27, 507-510, 1974.

Zahniser, M. S., F. Kaufman, and J. G. Anderson, Kinetics of Cl + O₃ → ClO + O₂, *Chem. Phys. Lett.*, 37, 226, 1975.

(Received October 14, 1975; revised February 10, 1976; accepted February 10, 1976.)