Neck circumference in Latin America and the Caribbean: A systematic review and meta-analysis [version 1; peer review: 2 approved]

Patricia A. Espinoza López, Kelly Jéssica Fernández Landeo, Rodrigo Ricardo Pérez Silva Mercado, Jesús José Quiñones Ardela, Rodrigo M. Carrillo-Larco

1School of Medicine “Alberto Hurtado”, Universidad Peruana Cayetano Heredia, Lima, Peru
2Department of Epidemiology and Biostatistics London, School of Public Health, Imperial College London, London, UK
3CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru

Abstract

Background: High neck circumference (NC) is associated with high burden diseases in Latin American and the Caribbean (LAC). NC complements established anthropometric measurements for early identification of cardio-metabolic and other illnesses. However, evidence about NC has not been systematically studied in LAC. We aimed to estimate the mean NC and the prevalence of high NC in LAC.

Methods: We conducted a systematic review in MEDLINE, Embase, Global Health and LILACS. Search results were screened and studied by two reviewers independently. To assess risk of bias of individual studies, we used the Hoy et al. scale and the Newcastle-Ottawa scale. We conducted a random-effects meta-analysis.

Results: In total, 182 abstracts were screened, 96 manuscripts were reviewed and 85 studies (n= 51,978) were summarized. From all the summarized studies, 14 were conducted in a sample of the general population, 23 were conducted with captive populations and 49 studies were conducted with patients. The pooled mean NC in the general population was 35.69 cm (95% IC: 34.85cm-36.53cm; I²: 99.6%). In our patient populations, the pooled mean NC in the obesity group was 42.56cm (95% CI 41.70cm-43.42cm; I²: 92.40%). Across all studied populations, there were several definitions of high NC; thus, prevalence estimates were not comparable. The prevalence of high NC ranged between 37.00% and 57.69% in the general population. The methodology to measure NC was not consistently reported.

Conclusions: Mean NC in LAC appears to be in the range of estimates from other world regions. Inconsistent methods and definitions hamper cross-country comparisons and time trend analyses. There is a need for consistent and comparable definitions of NC so that it can be incorporated as a standard anthropometric indicator in surveys.
and epidemiological studies.

Keywords
Anthropometrics, cardio-metabolic risk factor, obesity

Corresponding author: Rodrigo M. Carrillo-Larco (rcarrill@ic.ac.uk)

Author roles: Espinoza López PA: Conceptualization, Formal Analysis, Investigation, Writing – Original Draft Preparation; Fernández Landeo KJ: Conceptualization, Formal Analysis, Investigation, Writing – Original Draft Preparation; Pérez Silva Mercado RR: Conceptualization, Formal Analysis, Investigation, Writing – Original Draft Preparation; Quiñones Ardela JJ: Conceptualization, Formal Analysis, Investigation, Writing – Original Draft Preparation; Carrillo-Larco RM: Conceptualization, Formal Analysis, Methodology, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust through an International Training Fellowship to RMC-L [214185, https://doi.org/10.35802/214185].

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Espinoza López PA et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Espinoza López PA, Fernández Landeo KJ, Pérez Silva Mercado RR et al. Neck circumference in Latin America and the Caribbean: A systematic review and meta-analysis [version 1; peer review: 2 approved] Wellcome Open Research 2021, 6:13 https://doi.org/10.12688/wellcomeopenres.16560.1

First published: 26 Jan 2021, 6:13 https://doi.org/10.12688/wellcomeopenres.16560.1
Abbreviations
Body Mass Index: BMI, Latin American and the Caribbean: LAC, Neck Circumference: NC, Obstructive Sleep Apnea - Hypopnea Syndrome: OSAHS, Waist Circumference: WC

Introduction
Anthropometric indicators have an important role in public health because they are risk factors or diagnostic criteria for some highly prevalent non-communicable diseases (e.g., cancers and cardio-metabolic diseases)\(^1\)-\(^4\). Weight, height, body mass index (BMI) and waist circumference (WC) have been broadly studied in terms of prevalence and time trends\(^5\)-\(^9\), and their long-term association with health outcomes has been studied by large cohorts in many world regions\(^1\)-\(^3\). This evidence for neck circumference (NC) lacks globally and in Latin American and the Caribbean (LAC), where novel and inexpensive anthropometric indicators could contribute to the prevention and early identification of non-communicable diseases\(^6\)-\(^8\).

Unlike BMI, there have been no efforts to summarize mean NC and prevalence estimates of high NC in LAC. This evidence could provide a baseline parameter of this anthropometric indictor to inform future research and surveillance plans, while also characterizing population groups in terms of their NC profile. In addition, a critical appraisal of the available evidence about NC in LAC lacks, thus research gaps, needs and methodological issues have not been identified to improve the formulation of future research. With evidence that NC appears to be a risk factor for many diseases (e.g. cardio-metabolic diseases and obstructive sleep apnea), in a similar magnitude as other anthropometric indicators\(^7\)-\(^10\), it becomes relevant to understand the current status of NC so that it could be incorporated in population-based surveys or epidemiological studies.

To summarize the evidence about NC in LAC, to provide pooled estimates of mean levels and prevalences, and to highlight research needs and methodological caveats, we conducted a systematic review and meta-analysis of the scientific evidence about NC in LAC populations.

Methods
Protocol and registration
This is a systematic review of the scientific literature with meta-analysis of summary data. The methodology and reporting followed the PRISMA guideline (see reporting guidelines)\(^1\). The protocol was prepared before conducting the review and is available online\(^3\).

Eligibility criteria
This review included original studies with the following populations: LAC adults either from the general population, captive/closed populations (e.g., workers) or patients from any healthcare facility. We excluded patients who had conditions that could have biased the NC measurement (e.g., cervical masses, thyroid diseases, cervical fractures or congenital anomalies). We excluded studies with LAC immigrants in countries outside the LAC region. Studies should have reported that NC was measured, regardless of the methodology; in other words, if NC was not directly measured (i.e., NC was self-reported), this study was excluded. We excluded case reports, case series, letters, editorials, narrative reviews, clinical trials and systematic reviews.

Information sources and search
We conducted the search in MEDLINE, Embase and Global Health, these three were searched through OVID; we also searched LILACS, a LAC specific search engine. The search was conducted on 27 September 2020. The complete search strategy is available as extended data\(^3\).

Study selection
First, two authors (KFL, RPSM / PEL, JQA) independently screened the titles and abstracts of the search results. Second, the same reviewers independently studied the full text of the selected articles. Likewise, the full text of the selected articles was analyzed to ensure that multiple publications of the same study were included once only (e.g., national survey with multiple publications). Discrepancies between reviewers were resolved by consensus between them or by discussions with a third reviewer (RMC-L). If the information reported in the original article was not enough to assess the eligibility criteria, we tried to contact the corresponding author of these studies. Those articles which corresponding authors did not answer to our communications after two weeks were excluded from this review.

Data collection process
Two authors (KFL, RPSM / PEL, JQA) independently extracted the information from the included articles using a standard form for each of the population groups herein studied (general population, captive population and patients). Any differences between the two reviewers were resolved by consensus between them or by discussions with a third reviewer (RMC-L). The extraction form we used was developed before data collection and was not modified during the extraction process.

Data items
The following information was extracted from all articles: title, first author, country, publication year, year of data collection, study design, sample size, mean age and age range of the study population, men proportion, instrument and method to measure NC, cut-off point of high NC overall and by gender, prevalence of high NC overall and by gender, and mean NC overall and by gender. From articles with a sample of the general population, we also extracted information on whether it was a national sample. From articles with a captive population, we also extracted the origin of the population (e.g., students or elderly in nursing homes). From articles with patients we recorded the underlying disease. Additionally, the following information was extracted from the case-control studies: proportion of cases and controls, mean NC for cases and controls, and prevalence of high NC for cases and controls.

Risk of bias of individual studies
Two authors (KFL, RPSM / PEL, JQA) independently assessed the risk of bias of the articles using the risk of bias tool for prevalence studies by Hoy et al.\(^1\); we used the Newcastle-Ottawa scale for the case-control and cohort studies\(^6\). Discrepancies between the two reviewers were solved by discussion with a third reviewer (RMC-L). Items that did not apply
(e.g., acceptable case definition for prevalence studies) to our selected reports were not assessed.

Synthesis of results
We conducted a quantitative synthesis (meta-analysis) of mean NC only, because evidence from prevalence estimates was largely heterogeneous (e.g., different definitions) and scarcer than for mean estimates. We decided to conduct the meta-analysis when there were at least three individual estimates. We only conducted the meta-analysis for overall mean estimates (i.e., not sex-stratified). Using the mean estimates along with the corresponding standard errors computed from the confident intervals [standard error = (upper limit - lower limit)/3.92], we conducted a random-effects meta-analysis in STATA v16.1 (College Station, Texas 77845 USA); we used the metan function with the randomi option for a random-effects model following the DerSimonian & Laird method.

Ethics
This is a systematic review of the scientific literature in which human subjects were not directly studied. We did not request approval by an Ethics Committee. All authors had access to the collated data and are collectively responsible for the accuracy of results and conclusions. All authors approved the submitted version. The funder had no role in the study design, analyses, interpretation or conclusions.

Results
Study selection
The article search yielded 323 results; of these, 182 titles and abstracts were screened and then, 96 manuscripts were studied. We finally included 85 (n=51,978) studies (Figure 1) 16-100.

Neck circumference in the general population
Of the total selected articles, 14 studies 16-25 were conducted in a sample of the general population (one study also contributed to the captive population group13). The 14 studies followed a cross-sectional design. Most of them were from Brazil (10) 16-18,20-24,26,28 while the rest were from Argentina12, Chile29, Colombia32 and Venezuela33. The age of the study population was ≥18 years old, except in one study which was ≥15 years35. The total sample was 24,401, with a mean age of 39.73 years. The instrument or methodology to measure NC was detailed in 11 studies (Table 1) 15-19,21-27,29.

Mean NC was available from 12 articles (n=20,284) 16,17,19-24,26-28, though the pooled mean NC was based on 11 estimates 16,19-24,26-29; the overall pooled mean NC was 35.69cm (95% IC: 34.85cm-36.53cm; P: 99.6%) (Table 1). The minimum and maximum mean NC in men were 38.17cm and 39.70cm, respectively; while these numbers in women were 33.11cm and 35.90cm, respectively (Table 1). The prevalence of high NC was available from 3 studies 11,12,15, all of which used different thresholds for men and women; for men, the cut-off points ranged between 37cm and 41cm, while for women the range was between 34cm and 35cm. Based on these definitions, the prevalence of high NC in the general population went from 37.00% to 57.69% (Table 1). One study19 reported the prevalence of high NC stratified by sex; for men, high NC was defined at >39cm while for women this cut-off point was >35cm, yielding a prevalence of 48.70% in men and 44.80% in women (Table 1).

Neck circumference in captive populations
Of the total selected articles, 23 reports30-51 included captive populations and 138 of these reports provided 2 estimates (i.e., two different populations). Studies followed a cross-sectional, case-control and cohort design. Most of the articles were from Brazil (19)30-33,37-45,48-51 while the others were from Chile (3)30,36,46 and Peru (1)37. The instrument and methodology to measure NC was reported in 19 studies (Table 2) 39,31-34,36,37,39-46,48,49,51.

Of the 23 articles in this group, 22 articles (n=18,173) reported the mean NC. Additionally, 14 studies 29,31-36,41-45,48-51 established different cut-off points for high NC for men and women, with a minimum and maximum value for men of 37cm and 42cm, respectively; while the values for women were 34 cm and 36.10 cm, respectively (Table 2). From all the captive population articles, 4 of these included university students31,32,34,47 and also reported the mean NC (Table 2). The minimum and maximum mean NC in this captive population were 33.66cm and 37.10cm, respectively; in men were 39.19cm and 40.20cm, respectively; and in women the minimum and maximum values were 32.02cm and 33.50cm, respectively (Table 2).

Of all the articles with captive populations, 4 of these included elderly people9,42,44,45 and also reported the mean NC. The minimum and maximum mean NC in this captive population were 34.60cm and 36.94cm, respectively; in men were 39.19cm and 40.20cm, respectively; and in women the minimum and maximum values were 33.50cm and 36.38cm, respectively (Table 2).

The prevalence of high NC was available from 3 studies11,42,50 of all which used different thresholds for men and women; for men, the cut-off points ranged between 34cm and 40.5cm, while for women the range was between 34cm and 35cm (Table 2). Based on these definitions, the prevalence of high NC in the overall sample of captive populations went from 54.25% to 62%; while for men and women it went from 50.79% to 56.66%, from 50.22% to 62.10% and from 50.22% to 62.10% respectively (Table 2).

Neck circumference in patients
Of the total selected studies, 49 reports32-100 were conducted with patients. Studies followed a cross-sectional, case-control and cohort design. Most of the articles were from Brazil (35)32-35,37,39,41,42,45,76,78,79,80,81,91,93,95-97,99 while the others were from Chile (5)34,68,73,90,94, Mexico (4)64,67,81,100, Peru (3)35,97,99 and Argentina (2)58,98. The most frequently studied patients were those with Obstructive Sleep Apnea - Hypopnea Syndrome (OSAHS) (22)35,37,38,42,44,45,49,50,78,89,91,93,95,97,99 and obesity (13)52,71,73,80,82,85,91,92,95,99,100; other diseases included HIV/AIDS,
sleep disorders, bronchiectasis, depression, stroke, epilepsy, hepatic and cardiovascular pathologies. The instrument or methodology to measure NC was reported in 29 studies. We found 1 report, which contributed with 2 estimates (e.g., one report provided more than one set of estimates).

Of the 49 studies in this group, 44 studies reported the mean NC. The overall pooled mean NC in patients with OSAHS (19 estimates; n=4,141) was 41.09 cm (95% CI 40.42 cm-41.77 cm; I²: 94.80%), and for those with obesity (13 estimates; n=1,952) was 41.09 cm (95% CI 40.42 cm-41.77 cm; P: 94.80%), and for those with obesity (13 estimates; n=1,952) was 41.09 cm (95% CI 40.42 cm-41.77 cm; P: 94.80%).
Table 1. Synthesis of population-based studies.

First Author	Country	Data Year	Study Design	Sample	Mean Age	Age Range	Men Proportion	Instrument	Measured How	Cut Point for Men (cm)	Cut Point for Women (cm)	Mean Overall	Mean Men	Mean Women	Prevalence Elevated Overall	Prevalence Elevated Men	Prevalence Elevated Women	Contribution to Meta-analysis
Moraes, W., et al.	Brazil	2018	Cross-sectional	130	≥18	32.31	Measuring tape	The cricothyroid cartilage height level was used as a reference for the measurement. For men, the NC was measured just below the cartilage because of the greater prominence of this region.	37.00	34.00	57.69	No						
Neves, T., et al.	Brazil	2015	Cross-sectional	1132	15–65	48.76	Measuring tape		39.00	35.00	36.17	Yes						
Ribeiro, L., et al.	Brazil	2014	Cross-sectional	950	47.40	≥18	34.64	Measuring tape	At the middle high of the neck, below the laryngeal prominence (Adam’s apple), around the neck, parallel to the floor.	39.50	34.50	35.50	Yes					
Méndez-Pérez, B., et al.	Venezuela	2016	Cross-sectional	365	43.90	≥18	48.40	Measuring tape		41.00	35.00	0.37	No					
Leite, J., et al.	Brazil	2013	Cross-sectional	993	41.80	20–80	46.12	At the level of the cricothyroid membrane.	4.00	38.00	36.33	Yes						
Volaco, A., et al.	Brazil	2010	Cross-sectional	1042	20.20	20–80	44.91	Measuring tape		36.20	39.40	33.60	Yes					
Mora, R., et al.	Chile	2015	Cross-sectional	4906	31.50	≥15	40.00	Measuring tape	At the level of most prominence of the cricoid cartilage (Adam’s apple).	4.00	35.00	36.90	Yes					
First Author	Country	Data Year	Study Design	Population Type	Sample	Mean Age	Age Range	Men Proportion	Instrument	Measured How	Cut Point Mean	Cut Point Women	Mean Overall	Mean Men	Mean Women	Prevalence Elevated Overall	Prevalence Elevated Men	Prevalence Elevated Women
-------------	--------	-----------	--------------	--	--------	----------	-----------	----------------	-------------------------------	--	----------------	----------------	-------------	----------	------------	-----------------------------	------------------------	--------------------------
Tavares, C. et al.	Brazil	2011	Cross-sectional	Healthcare professionals	159	43.20	21.38	21.38	Measuring tape	Above the thyroid cartilage prominence.	39.60	36.10	33.66	36.95	32.02			
Dantas, E. et al.	Brazil	2010	Cross-sectional	University students	406	20.95	18 - 58	37.80	Measuring tape	Below the superior border of the prominence of the larynx.	39.00	35.00	37.10					
De Siquiera, K. et al.	Brazil	2011	Cross-sectional	University students	159	43.20	21.38	39.30	Measuring tape	Midpoint of the neck height	34.00	33.00	33.00					
Alves, H. et al.	Brazil	2010	Cross-sectional	Female nurse	71.0	42.00	18 - 59	0.00	Measuring tape	The measuring tape was positioned just below the top edge of the laryngeal prominence.	39.00	35.00	33.70					
Santosa, D. et al.	Brazil	2008	Cross-sectional	Professional urban bus drivers	404	38.20	≥18	100.00	Measuring tape	Right above the cricoid cartilage and perpendicular to the long axis of the neck, with the participant in a sitting position.	36.62	39.50	33.90					
Pacheco, A. et al.	Chile	2004	Case-Control	Japanese descendants in São Paulo, Brazil	1221	51.50	35 - 74	48.50	Measuring tape	The base of the neck, below the laryngeal prominence.	35.11	39.70	33.50					
Hausherr, M. et al.	Brazil	2004	Cross-sectional	Active or retired civil servants of universities or research institutions	152	53.30	≥18	100.00	Measuring tape	Just above the cricoid cartilage and perpendicular to the long axis of the neck.	40.00	42.00						
Genta, P. et al.	Brazil	2012	Cross-sectional	Elderly at a health center	411	70.00	≥18	26.00	Measuring tape	The base of the neck, below the laryngeal prominence.	35.11	39.70	33.50					
Nogueira, M. et al.	Brazil	2015	Cross-sectional	Adults attending at a health center	126	36.30	18 - 59	19.00	Measuring tape	At the base of the neck, at the height of the cricoid cartilage. In men with prominence, NC was measured below prominence.	37.00	34.00	36.10	40.10	34.50	54.80	86.70	41.80
Carvalho, P. et al.	Brazil	2015	Cross-sectional	Elderly at a health center	405	65.28	≥18	14.80	Measuring tape	Just above the cricoid cartilage and perpendicular to the long axis of the neck.	40.50	35.70	36.94	40.10	36.38	54.25	50.79	54.99
First Author	Country	Data Year	Study Design	Population Type	Sample	Mean Age	Age Range	Men Proportion	Instrument	Measured How	Cut Point Men	Cut Point Women	Mean Overall	Mean Men	Mean Women	Prevalence Elevated Overall	Prevalence Elevated Men	Prevalence Elevated Women
--------------------	---------	-----------	--------------	---	--------	----------	-----------	----------------	--------------------------	--	----------------	----------------	-------------	----------	-------------	-----------------------------	-------------------------	--------------------------
Da Silva, A. et al	Brazil	2011	Cross-Sectional	General outpatient nutrition clinic of a public university hospital specialized in cardiology	129	55.60	≥35	36.40	Measuring tape	Long the axis of the neck at the midpoint of the cervical spine to the midanterior of the neck	37.00	34.00	36.60	40.30	35.70			
Closs, V. et al	Brazil	2012	Cross-Sectional	Elderly at a health center	513	68.50	60–103	36.37	Over laryngeal prominence.		36.86	39.19	35.53					
Petriça, G. et al	Brazil	2016	Cross-Sectional	Elderly at a health center	170	66.50	≥60	0.00	Measuring tape	Above thyroid cartilage	34.60	34.60						
Pizarro-Montaner, C et al	Chile	2011	Cross-Sectional	Cohort Miners	111	34.70	25–44	100.00	Measuring tape	Below laryngeal prominence.	37.00	39.95	39.95					
Perrià, L. et al	Peru	2011	Cross-Sectional	Medical students	46	19.60	18–23	50.00	Measuring tape		35.40	37.30	33.50					
Dias de Jesus, E et al	Brazil	2011	Cross-Sectional	Elderly caregivers	34	43.68	≥18	100.00	Measuring tape	Horizontal plane of Frankfort.	34.00	35.87	35.87	62.00	62.00			
Ferreira, A. et al	Brazil	2016	Cross-Sectional	Mura abiria	495	42.10	18–81	42.20	Measuring tape		37.00	34.00	36.68					
Ramires, AR et al	Brazil	2011	Cross-Sectional	Sedentary woman	60	33.90	≥18	0.00	Measuring tape	Below laryngeal prominence.	35.00	33.78	55.00					
Mora, R. et al	Chile	2016	Cross-Sectional	Outdoor Gym Users	1023	31.50	≥15	70.97	Measuring tape	Cricoid cartilage prominence.	41.00	35.00	38.22	39.30	35.60			
Spuríboldi, D. et al	Brazil	2016	Cross-Sectional	Sedentary women	100	44.59	25–75	0.00	Measuring tape	Cricoid cartilage level.	35.84	35.84						
mean NC was 42.56 cm (95% CI 41.70 cm - 43.42 cm; P: 92.40%) (Table 3). In studies that included patients with OSAHS, the minimum and maximum mean NC were 37.40 cm and 44.50 cm, respectively (Table 3). Studies with obese patients, the minimum and maximum mean NC were 37.01 cm and 44.41 cm, respectively (Table 3).

Additionally, 12 studies established different cut-off points for elevated NC for men and women, with a minimum and maximum value for men of 37 cm and 43 cm, respectively; while the values for women were 34 cm and 41 cm, respectively. The prevalence of high NC was available from 7 studies, all of which used different thresholds for all, men and women. Overall, the cut-off points for high NC ranged between 40 cm and 42 cm; for men, the cut-off points ranged between 37 cm and 43 cm, while for women the range was between 34 cm and 41 cm (Table 3). Based on these definitions, the prevalence of high NC in the general sample of patient population went from 30.4% to 86.6%; while for men and women it went from 34.2% to 95%, and from 26.6% to 65.8%, respectively (Table 3).

Risk of bias of individual studies
From all the cross-sectional studies, only 4 studies are considered as a close representation of the general population. Finally, analyzing the risk of bias of the prevalence studies included, the majority represent a moderate risk (7,17,24,25,31,33-35,45,57,58,59,65,69,70,73,78,87,91,96,97); some are low risk (16,18,23,25,26,32,34,44,49) (16); no study represents a high risk (Table 4 – Table 6).

Regarding the risk of bias of the case-control studies, in all the studies (7) the sample selection adequately represented the corresponding cases. In addition, concerning the risk of bias of the cohort studies (7,8,10,12,14,90,91), all the studies had an adequate follow-up of the cohorts (Table 4 – Table 6).

Discussion
Summary of evidence
This is a systematic review and meta-analysis to estimate the mean NC and the prevalence of high NC in adults from LAC. We summarized evidence from 14 studies in the general population; 23 from captive populations (e.g., students); and 49 studies with patients (mostly OSAHS and obesity). The mean NC in the general population ranged between 33.60 cm and 36.98 cm, whilst the minimum was 34.2% and the prevalence of high NC in the general population ranged between 34 cm and 41 cm (Table 3). From all the cross-sectional studies, only 4 studies (7,19,22,25,29) were conducted with a nationally representative sample. Therefore, information on mean NC and prevalence of high NC at the national level is missing in most countries of LAC. NC is an inexpensive and non-invasive anthropometric indicator, as it is the case with BMI or WC. Once standard procedures to measure NC and standard thresholds to define high NC are defined, NC could be implemented in large national surveys (e.g., DHS or WHO STEPS) to expand the arsenal of anthropometric indicators strongly associated with morbidity and mortality of cardio-metabolic diseases.

Limitations of the reviewed reports
The main limitation we found in the original reports was the lack of details on how NC was measured; that is, they did not consistently report the instruments (e.g., inelastic tape) and how NC was assessed. The same problem was observed regarding the cut-off points to define high NC; that is, there were not consistent and comparable thresholds. These limitations have overall implications and for our review as well. First, the high heterogeneity in methods and definitions hampers comparisons across studies/countries; also, the heterogeneity makes it difficult to study time trends. Regarding our review, the inconsistent methods and lack of standard definitions could explain the large heterogeneity reported in the meta-analyses, and also prevented us from conducting more meta-analyses, for example of prevalence estimates. We argue that the dearth of homogenous reporting and methodology is due to the lack of international standardization in the measurement of NC, which could be explained by how novel this anthropometric indicator is. There is a need for an international standardized measurement of NC which would allow cross-country and time trends analyses.

Another limitation of the reviewed studies was that only 4 (19,22,25,29) were conducted with a nationally representative sample. Therefore, information on mean NC and prevalence of high NC at the national level is missing in most countries of LAC. NC is an inexpensive and non-invasive anthropometric indicator, as it is the case with BMI or WC. Once standard procedures to measure NC and standard thresholds to define high NC are defined, NC could be implemented in large national surveys (e.g., DHS or WHO STEPS) to expand the arsenal of anthropometric indicators strongly associated with morbidity and mortality of cardio-metabolic diseases.

Limitations of the review
Our review has some limitations. First, although we used major global search engines (MEDLINE, EMBASE and Global Health), and one specific for LAC (LILACS), we did not search grey literature sources. These sources could have contributed few more results to our review; however, we doubt they would have substantially changed the conclusions. Most likely, they would have exhibited the same -or more severe- limitations as those herein pinpointed. Second, some studies did not report all the information. Even though we tried to contact the authors of the reports with missing information, 6/16 answered to our requests. As NC becomes a more popular anthropometric indicator, and standard methods and definitions are established by international or regional organizations, we believe that studies including NC information would provide more comprehensive methods and results. Hopefully, our work would spark interest in NC and about the relevance to have standard procedures, as there are with BMI and other anthropometric indicators. Third, our review could not find estimates for all countries in LAC, and neither did other multi-country endeavors (e.g., ELANS). Therefore, we cannot conclusively state that our estimates represent the scenario across the region. Nonetheless, our work adds to the
Table 3. Synthesis of hospital-based studies.

First Author	Country	Study Design	Disease	Sample	Mean Age	Men Proportion	Case Proportion	Instrument	Measure of Neck	Cut Point for Men (cm)	Cut Point for Women (cm)	Mean Overall	Mean Men	Mean Women	Mean Cases	Mean Controls	Prevalence Elevated Over all	Prevalence Elevated Men	Prevalence Elevated Women	Prevalence Elevated Cases	Prevalence Elevated Controls		
de Paiva, R, et al.	Brazil	Case-Control	Obesity	45	46.50	31.10	68.90	43.40	44.60	39.50	47.20												
Zonato, A, et al.	Brazil	Cross-sectional	OSAHS/Public Clinic	307	50.00	67.00	33.00	41.00	41.00	65.00	75.00												
Zonato, A, et al.	Brazil	Cross-sectional	OSAHS/Private Clinic	317	48.00	87.00	13.00	43.00	43.00	43.00	43.00												
Sutherland, K, et al.	Brazil	Cross-sectional	OSAHS	137	48.10	69.50	30.50	41.80	41.80	41.80	41.80												
Pinto, J, et al.	Brazil	Cross-sectional	Sleep disorders	82	43.76	80.50	19.50	39.87	39.87	39.87	39.87												
Oliveira, N, et al.	Brazil	Cross-sectional	HIV/AIDS	35	43.90	51.40	48.60	37.00	34.00	35.20	35.20												
Musman, S, et al.	Brazil	Cross-sectional	Sleep disorders	323	44.80	59.13	40.87	40.00	42.00	37.00	42.00												
Salas, C, et al.	Chile	Cross-sectional	OSAHS	1044	53.20	76.00	24.00	42.10	38.30	38.30	38.30												
Saban, M, et al.	Argentina	Cross-sectional	OSAHS	302	56.00	55.96	44.04	40.00	42.00	37.00	42.00												
Moura, P, et al.	Brazil	Cohort	OSAHS	102	46.70	55.90	44.10	38.47	40.86	35.44	38.47												
Straz, P, et al.	Brazil	Cross-sectional	OSAHS	10	48.00	40.00	60.00	40.25	40.25	40.25	40.25												
De Castro, J, et al.	Brazil	Case-Control	OSAHS	95	49.00	49.00	51.00	40.00	43.20	43.20	43.20												
Boemke, L, et al.	Brazil	Cross-sectional	Non-alcoholic fatty liver disease	82	41.70	33.00	67.00	41.70	41.70	41.70	41.70												
Hiraj, M, et al.	Brazil	Cross-sectional	OSAHS	48	34.00	79.20	20.80	40.00	40.00	38.00	100.00												
Borges, R, et al.	Brazil	Cross-sectional	OSAHS	93	46.00	58.10	41.90	38.56	40.31	35.31	38.56												
Saldaña, R, et al.	Mexico	Cross-sectional	OSAHS	10	44.00	60.00	40.00	41.80	41.80	41.80	41.80												
First Author	Country	Study Design	Disease	Sample	Mean Age	Men Proportion	Case Proportion	Instrument Measured How	Neck Circumference (cm)	Cut Point (cm) for Men	Cut Point (cm) for Women	Men Mean	Men Overall	Men Mean	Women Mean	Men Mean	Cases	Mean Controls	Prevalence Elevated Overall	Prevalence Elevated Men	Prevalence Elevated Women	Prevalence Elevated Cases	Prevalence Elevated Controls
-----------------------	---------	--------------	---------	--------	----------	---------------	------------------	------------------------	-------------------------	------------------------	------------------------	----------	-------------	----------	-------------	----------	-------	------------	--------------------------	--------------------------	----------------------------	----------------------------	----------------------------
Castorena-Maldonado, A, et al.	Mexico	Case-Control	OSAHS	61	35.50	62.30	37.70	Measuring tape	At the level of the cricothyroid membrane.	39.80	34.50	39.20	39.20	30.40	30.40								
Jorguera, A, et al.	Chile	Cross-Sectional	OSAHS	40	52.27	80.00	20.00	Measuring tape	41.55	41.55	41.55	41.55											
De Castro, J, et al.	Peru	Cohort	OSAHS	40	46.40	91.00	9.00	Tape	37.00	34.00	34.00	34.00	30.40	30.40									
Rodriguez, A, et al.	Brazil	Cross-Sectional	Depression	79	XXX	24.10	75.90	Measuring tape	The participant standing upright and the measurement was taken at mid-neck height.	39.80	34.50	34.50	34.50										
Aguirre, L, et al.	Brazil	Cross-Sectional	Obesity	38	42.00	13.16	86.84	Measuring tape	Horizontally at the level of the cricoid cartilage.	45.00	41.00	42.00	42.00	40.60	40.60								
Chavarría-González, C, et al.	Peru	Cross-Sectional	Obesity	230	49.76	56.50	43.50	Measuring tape	Midpoint of the neck.	37.66	37.66	37.66	37.66										
De Menezes, R, et al.	Brazil	Cross-Sectional	Obesity	1089	38.10	28.30	71.70	Measuring tape	At the level of the cricoid cartilage.	42.00	42.00	42.00	42.00	42.00	42.00								
Corrêa, F, et al.	Brazil	Case-Control	OSAHS	37	33.94	33.94	33.94	Measuring tape	41.55	35.50	35.50	35.50											
Pires Jr., R, et al.	Brazil	Cohort	OSAHS	28	40.80	52.10	47.90	Measuring tape	38.30	38.30	38.30	38.30											
Farias, J, et al.	Brazil	Cross-Sectional	Bronchiectasis	21	51.60	42.90	57.10	Measuring tape	38.81	38.81	38.81	38.81											
Schmidek, V, et al.	Brazil	Cross-Sectional	Obstructive Sleep Apnea	123	61.90	60.20	39.80	Measuring tape	Midpoint of the neck.	37.66	37.66	37.66	37.66										
Amorim, T, et al.	Brazil	Cross-Sectional	Acute myocardial infarction	34	68	58.8	41.2	Measuring tape	37.30	34.70	34.70	34.70	36.10	36.10									
Neto, F., et al.	Brazil	Cross-Sectional	OSAHS	90	46	51	49	Measuring tape	41.30	41.30	41.30	41.30	36.40	36.40									
Lopes, E, et al.	Brazil	Cross-Sectional	Obesity	147	40.71	34.69	65.31	Measuring tape	42.30	45.40	45.40	45.40	39.14	39.14									
Freire, L, et al.	Brazil	Cross-Sectional	OSAHS	50	57.52	42	58	Measuring tape	Portal points stood up straight, with their heads positioned in the horizontal plane of Frankfort. Below the laryngeal prominence and applied perpendicularly along the neck axis.	39.14	35.30	35.30	35.30	35.30	35.30								
Siganidaki, Q, et al.	Brazil	Cross-Sectional	Obesity	156	44.46	0	100	Measuring tape	Cross-cartilage	37.01	37.01	41.25	32.55										
Study Information	Neck Circumference (cm)																						
-------------------	------------------------																						
First Author	Country	Study Design	Disease	Sample	Mean Age	Men Proportion	Case Proportion	Instrument	Measured How	Cut Point (cm)	Cut Point for Men (cm)	Mean Overall	Mean Men	Mean Women	Mean Cases	Mean Controls	Prevalence Elevated Overall	Prevalence Elevated Men	Prevalence Elevated Women	Prevalence Elevated Cases	Prevalence Elevated Controls		
Martinhos, F, et al.	Brazil	Cross-sectional	Obesity	45	46.5	31.11	68.88	Measuring tape	Orciod cartilage	43.4	43.46	39.5	38.8	38.8	38	38	38	38	38				
Correa, M, et al.	Brazil	Cross-sectional	Obesity	81	42	27.16	62.84	Measuring tape	Orciod cartilage	38.8	38.8	38	38	38	38	38	38	38	38				
Magalhaes, E, et al.	Brazil	Case-Control	Obesity	88	49.2	21.6	78.4	Measuring tape	Orciod cartilage	43.4	43.46	39.5	38.8	38.8	38	38	38	38	38				
Miranda, G, et al.	Brazil	Cross-sectional	Obesity	456	43.7	63.8	36.2	Measuring tape	Orciod cartilage	40	40.8	41.6	38.1	51.8	38.1	51.8	38.1	51.8	38.1				
Sakkas, P, et al.	Chile	Cohort	Stroke	89	64.39	64	36	Below larynx	-	40	40.8	41.6	38.1	51.8	38.1	51.8	38.1	51.8	38.1				
Mendes, C, et al.	Brazil	Cohort	Obesity	42	42.5	40.5	59.5	Measuring tape	Orciod cartilage	42.2	42.7	40.5	42.2	42.2	42.2	42.2	42.2	42.2	42.2				
Gorria, J, et al.	Mexico	Cohort	Cardiovascular disease	112	55	34.51	65.49	Measuring tape	Orciod cartilage	39.31	37.4	38.93	37.4	38.93	37.4	38.93	37.4	38.93	37.4				
Lima, J, et al.	Brazil	Cohort	Obesity	42	42.5	40.5	59.5	Measuring tape	Orciod cartilage	42.2	42.7	40.5	42.2	42.2	42.2	42.2	42.2	42.2	42.2				
Padilha, L, et al.	Brazil	Cross-sectional	Obesity	20	48.54	0	100	Landmarks	-	41.77	41.77	41.77	41.77	41.77	41.77	41.77	41.77	41.77	41.77				
Bruch, J, et al.	Brazil	Cross-sectional	Chronic Hepatitis C	58	51.6	44.8	55.2	Measuring tape	By the smallest circumference just above the laryngeal prominence with patient sitting down or standing up, with the spine erect and the head in the Frankfurt horizontal plane.	37	34	37.3	34.6	40	37.3	34.6	40	37.3	34.6	40			
Sakkas, F, et al.	Chile	Cross-sectional	Obesity	1464	54.4	65.23	34.77	Measuring tape	Orciod cartilage	40	41.6	43.2	38.2	41.6	38.2	41.6	38.2	41.6	38.2				
Oliveira, D, et al.	Brazil	Cross-sectional	Obesity	60	36	25	75	Measuring tape	Laryngeal prominence	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.1				
Venturin, M, et al.	Brazil	Cross-sectional	Epilepsy	98	35.97	60.2	39.8	Measuring tape	Laryngeal prominence	39	35	34.06	33.71	34.41	34.06	33.71	34.41	34.06	33.71	34.41			
Barros, L, et al.	Brazil	Cross-sectional	Obesity	14	46.8	14.3	85.7	Measuring tape	Laryngeal prominence	43	41	41.3	41.3	41.3	41.3	41.3	41.3	41.3	41.3				
Gallegos, C, et al.	Argentina	Cross-sectional	Obesity	22	61	86.37	13.63	Measuring tape	Laryngeal prominence	44.5	44.5	44.5	44.5	44.5	44.5	44.5	44.5	44.5	44.5				
Strafin, R, et al.	Brazil	Cross-sectional	Obesity	120	XXX	24	76	Measuring tape	Laryngeal prominence	44.29	51.5	42	44.29	51.5	42	44.29	51.5	42	44.29				
Orel, S, et al.	Mexico	Cross-sectional	Obesity	21	XXX	28.58	71.42	Measuring tape	Laryngeal prominence	44.41	47.7	43.1	44.41	47.7	43.1	44.41	47.7	43.1	44.41				
Table 4. Summary table about risk of bias for cross-sectional studies.

First Author	External Validity				Internal Validity						
	1. A close	2. True or close	3. Random	4. Non-response bias	5. Directly from the	6. Acceptable	7. Measured	8. Same mode	9. Length of	10. Numerator(s) and	
	representation	representation	selection	minimal	subjects	case definition	was reliability and validity	mode of data	the shortest	denominator(s)	appropriate
								collection	prevalence		
Moraes, W. et al.	NO	YES	YES	YES	YES	NA	UNCLEAR	YES	YES	YES	LOW
Neves, T. et al.	NO	UNCLAR	UNCLAR	NO	YES	NA	YES	YES	YES	YES	MODERATE
Ribeiro, L. et al.	NO	YES	YES	YES	YES	NA	YES	YES	YES	YES	LOW
Méndez, B. et al.	YES	YES	YES	YES	YES	NA	UNCLEAR	YES	YES	YES	LOW
Leite, J. et al.	NO	YES	YES	YES	YES	NA	UNCLEAR	YES	YES	YES	LOW
Tavares, C. et al.	NO	UNCLAR	UNCLAR	YES	YES	NA	UNCLEAR	YES	YES	YES	MODERATE
Dantas, E. et al.	NO	NO	NO	YES	YES	NA	YES	YES	YES	YES	MODERATE
De Siqueira, K. et	NO	YES	YES	YES	YES	NA	YES	YES	YES	YES	LOW
De Alexandria, F.	NO	NO	NO	NO	YES	NA	YES	YES	YES	YES	MODERATE
Alves, H. et al.	NO	YES	YES	YES	YES	NA	YES	YES	YES	YES	LOW
Santos, D. et al.	NO	UNCLAR	UNCLAR	YES	YES	NA	UNCLEAR	YES	YES	YES	MODERATE
Pedreros, A. et al.	NO	UNCLAR	UNCLAR	YES	YES	NA	UNCLEAR	YES	YES	YES	MODERATE
Hauser, M. et al.	NO	UNCLAR	UNCLAR	NO	YES	NA	YES	YES	YES	YES	MODERATE
Noqueira, M. et al.	NO	UNCLAR	UNCLAR	YES	YES	NA	YES	YES	YES	YES	MODERATE
Barbosa, P. et al.	NO	UNCLAR	UNCLAR	YES	YES	NA	YES	YES	YES	YES	MODERATE
Frizon, V. et al.	NO	UNCLAR	UNCLAR	YES	YES	NA	YES	YES	YES	YES	MODERATE
Coelho, H. et al.	NO	NO	NO	YES	YES	NA	YES	YES	YES	YES	MODERATE
Da Silva, A. et al.	NO	UNCLAR	UNCLAR	YES	YES	NA	YES	YES	YES	YES	MODERATE
First Author	Risk of Bias – Prevalence Studies										
--------------	----------------------------------										
Zonato, A.	1. A close representation										
	2. True or close representation										
	3. Random selection										
	4. Non-response bias minimal										
	5. Directly from the subjects										
	6. Acceptable case definition										
	7. Measured reliability and validity										
	8. Same mode of data collection										
	9. Length of the shortest period										
	10. Numerator(s) and denominator(s) appropriate										
	11. Summary										
	Zonato, A. et al. NO										
	Sutherland, K. et al. NO										
	Pinto, J. et al. NO										
	Oliveira, N. et al. NO										
	Sabat, M. et al. NO										
	Souza, F. et al. NO										
	Boemmel, L. et al. NO										
	Hiraj, M. et al. NO										
	Borges, P. et al. NO										
	Saldivia, R. et al. NO										
	Jorquera, A. et al. NO										
	Rodrigues, A. et al. NO										
	Aguiar, I. et al. NO										
	Saldivia, P. et al. NO										
	Chávez, C. et al. NO										
	De Menezes, R. et al. NO										

External Validity

- NO
- UNCLAR
- YES
- NA
- UNCLEAR
- MODERATE
- YES
- YES
- YES
- MODERATE
| First Author | External Validity | Internal Validity | 11. Summary | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Faria, N. et al. | NO | UNCLEAR | MODERATE |
| Schommer, V. et al. | NO | UNCLEAR | MODERATE |
| Amaro, T. et al. | NO | UNCLEAR | MODERATE |
| Volacho, A. et al. | NO | NO | LOW |
| Stabe, C. et al. | YES | NO | LOW |
| Zununcio, V. et al. | NO | NO | LOW |
| Chaves, T. et al. | NO | YES | MODERATE |
| Alfie, J. et al. | YES | YES | LOW |
| Soares, M. et al. | NO | YES | LOW |
| Ruiz, A. et al. | NO | YES | LOW |
| Polesel, D. et al. | NO | YES | LOW |
| Mora, R. et al. | YES | YES | LOW |
| Closs, V. et al. | NO | UNCLEAR | LOW |
| Petreça, D. et al. | NO | NO | MODERATE |
| Peralta, C. et al. | NO | YES | MODERATE |
| Dos reis, E. et al. | NO | YES | MODERATE |
| Ferreira, A. et al. | NO | YES | LOW |
| Ramires, A. et al. | NO | UNCLEAR | MODERATE |
| Mora, R. et al. | NO | UNCLEAR | MODERATE |
| First Author | 1. A close representation | 2. True or close representation | 3. Random selection | 4. Non-response bias minimal | 5. Directly from the subjects | 6. Acceptable case definition | 7. Measured was reliability and validity | 8. Same mode of data collection | 9. Length of the shortest prevalence period | 10. Numerator(s) and denominator(s) appropriate | 11. Summary |
|--------------|--------------------------|-------------------------------|-------------------|-----------------------------|-----------------------------|--------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|-----------------------------|
| Sgariboldi, D. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Nerbass, F. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Lucas, E. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Freire, L. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Sgariboldi, D. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Martinho, F. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Correa, M. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Menezes, D. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Miño, F. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Padilha, L. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Bruch, J. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Saldias, F. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Oliveira, D. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Venturi, M. et al. | NO | UNCLEAR | YES | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Barbosa, L. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | YES | YES | YES | YES | YES | MODERATE |
| Gallego, C. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Serafim, P. et al. | NO | UNCLEAR | UNCLEAR | NO | YES | NA | NO | YES | YES | YES | YES | MODERATE |
| Oriol, S. et al. | NO | UNCLEAR | UNCLEAR | YES | YES | NA | NO | YES | YES | YES | YES | MODERATE |
Table 5. Summary table about risk of bias for case-control studies.

First Author	Selection	Comparability	Exposure			
Genta, P. et al.	A	A	A			
De Paiva, R. et al.	A	A	A			
De Castro, J. et al.	A	A	A			
Castorena-Maldonado, A. et al.	A	A	A			
Cunha, F. et al.	A	A	A			
Magalhaes, E. et al.	A	A	A			
Saldias, P. et al.	A	A	A			
First Author	Selection	Comparability	Exposure	Risk of Bias - Cohort Studies	Outcome of the Exposed Cohort	Outcome of the Non-Exposed Cohort
------------------------	---	---------------	----------	--------------------------------	-------------------------------	----------------------------------
Moura, P. et al.	Unclear	NA	NA	NA	NA	NA
De Castro, J. et al.	NA	NA	NA	NA	NA	NA
Prescinotto, R. et al.	NA	NA	NA	NA	NA	NA
Mendes, C. et al.	NA	NA	NA	NA	NA	NA
Garcia, J. et al.	NA	NA	NA	NA	NA	NA
Lima, J. et al.	NA	NA	NA	NA	NA	NA
Pizarro-Montaner.	NA	NA	NA	NA	NA	NA

Table 6: Summary table about risk of bias for cohort studies.
Results in context
NC has been associated with several cardiometabolic risk factors: insulin resistance, elevated cholesterol, triglycerides, LDL-cholesterol and obesity. Moreover, NC has also been associated with SAHOS. Nevertheless, and despite that NC appears to be as good (or even better) as other anthropometric indicators (e.g., BMI), NC has not been subject to extensive research. In this work we propose the first systematic review and meta-analysis to reveal the overall mean NC in LAC, and to highlight research needs. Our work is the starting point to raise awareness about NC as a potential anthropometric indicator, while signaling the need for NC cut-off points in LAC.

A multinational study (ELANS conducted in 2014–2015) was conducted in eight LAC countries and they found a mean NC of 35.60cm, which is virtually the same as our pooled mean estimate. This similarity could be explained by the fact that we covered the same countries. Notably, the ELANS study included populations in more countries than those herein summarized, yet we included older and more recent studies, and we also summarized evidence from a larger sample. Overall, mean NC in LAC appears to be ~35cm, though this deserves further verification following consistent methods and including countries for which evidence is still unavailable.

Studies in Asia reported a mean NC between 31cm and 44cm. Our pooled estimates fall within this range. As it is the case with other anthropometric indicators (e.g., BMI), LAC is usually in the middle of the distribution. Reasons behind this could be diet and nutrition, phenotypes, opportunities to exercise, and access to preventive healthcare, all of which vary widely across countries and regions. As more evidence about NC in LAC becomes available, we would be in a stronger position to study determinants and outcomes for high NC to identify reasons for cross-country and cross-region comparisons.

The mean NC and prevalence of high NC was larger in captive populations in comparison to the general population. This could be explained by the underlying profile of each captive group. For example, in bus drives, miners, sedentary women and adults - elderly waiting for medical attention, those variables were higher due to the fact that these people have a long working day which could condition a sedentary lifestyle. However, in other population groups (e.g., university students, health professionals, outdoor gym users) the mean NC and prevalence of high NC was lower than in the general population. This could be because those groups have healthier lifestyles and are more concerned about their health (due to their profession).

We also found that the mean NC in the group of OSAH and obese is higher than the general population (41.09cm and 42.56cm vs 35.69cm). This is concordant with the studies that considered NC as an anthropometric measure useful for assessing the risk and severity of OSAH and also it is known for its strong relationship with obesity. A higher NC in this group of patients can be explained by the accumulation of fat around the neck contributing to the airway narrowing and at the same time facilitating its obstruction. NC could be incorporated as part of the standard of care for OSAH patients.

Currently, there are no guides that include NC as an official anthropometric measure; however, there are studies that found NC as a reliable index and highlight the fact that it is an economical test easy to use which takes less time and correlates well with other anthropometric parameters such as BMI, WC and hip circumference. Our findings indicate that NC could be used either in clinical practice and epidemiologic studies.

Conclusions
In this systematic review and meta-analysis, the mean NC in LAC was 35cm in the general population; although there were different thresholds, the prevalence of high NC ranged between 37.00% and 57.69%. The methodology to measure NC was inconsistently reported and evidence lacks from several countries in LAC. Even though NC could be a novel anthropometric indicator closely related with different diseases and health outcomes, NC has been seriously understudied in LAC. This work highlights the current evidence about NC in LAC and pinpoints research gaps.

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.

Extended data
Figshare: Supplementary Material. https://doi.org/10.6084/m9.figshare.1355053

This project contains the following extended data:
- Supplementary Material.docx (Document with study search strategy)

Reporting guidelines
Figshare: PRISMA checklist for ‘Neck circumference in Latin America and the Caribbean: A systematic review and meta-analysis’ https://doi.org/10.6084/m9.figshare.1355053
References

1. Prospective Studies Collaboration, Whittock G, Lewington S, et al.: Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009; 373(9695): 1083–96. PubMed Abstract | Publisher Full Text | Free Full Text

2. Woodward M, Huxley R, Ueshima H, et al.: The Asia Pacific Cohort Studies Collaboration: A Decade of Achievements. Glob Heart. 2012; 7(4): 343–351. PubMed Abstract | Publisher Full Text

3. The Global BMI Mortality Collaboration, DI Angelantonio E, Bhupathiraju S, et al.: Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016; 388(10046): 776–86. PubMed Abstract | Publisher Full Text | Free Full Text

4. Bandera EV, Fay SH, Giovannucci E, et al.: The use and interpretation of anthropometric measures in cancer epidemiology: A perspective from the world cancer research fund international continuous update project. Int J Cancer. 2016; 138(11): 2391–2397. PubMed Abstract | Publisher Full Text

5. Lee CMY, Huxley RR, Wildman RP, et al.: Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008; 61(7): 646–653. PubMed Abstract | Publisher Full Text

6. Haringiú MR, Querini MA, Medeiros A: Neck circumference as a useful marker of obesity: a comparison with body mass index and waist circumference. J Pak Med Assoc. 2012; 62(1): 36–40. PubMed Abstract | Publisher Full Text

7. Al-Mendalawi MD: Considerations when Using Neck Circumference as a Screening Tool. Oman Med J. 2016; 31(5): 396–397. PubMed Abstract | Publisher Full Text | Free Full Text

8. Ben-Noun LL, Lao A: Relationship between neck circumference and cardiovascular risk factors. Exp Clin Cardiol. 2006; 11(1): 14–20. PubMed Abstract | Publisher Full Text | Free Full Text

9. Tyler JA, Acosta FM, Sanchez-Delgado G, et al.: Association of Neck Circumference with Anthropometric Indicators and Body Composition Measured by DXA in Young Spanish Adults. Nutrients. 2020; 12(2): 514. PubMed Abstract | Publisher Full Text | Free Full Text

10. Fatí C, Deshmukh J, Yadav S, et al.: Neck circumference: A novel anthropometric tool for screening obesity in adults. Int J Collab Res Intern Med Public Health. 2017; 9(7).

Reference Source

11. Moher D, Liberati A, Tetzlaff J, et al.: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009; 6(7): e1000097. PubMed Abstract | Publisher Full Text | Free Full Text

12. Lopez PAE, Landeo KJF, Mercado RRPS, et al.: Average of neck circumference in Latin American adults: protocol for a systematic review and meta-analysis. medRxiv. 2020. PubMed Abstract | Publisher Full Text

13. Mercado RRPS, Larco RC: Supplementary Material, figshare. Thesis. 2021. http://www.doi.org/10.6084/m9.figshare.13550534

14. Hoy D, Brooks P, Woolf A, et al.: Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012; 65(9): 934–939. PubMed Abstract | Publisher Full Text

15. Wells GA, Shea B, O’Connell D, et al.: The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. The Ottawa Hospital Research Institute. Canada. 2014. Reference Source

16. Moraes W, Poyares D, Zalcman L, et al.: Association between body mass index and sleep duration assessed by objective methods in a representative sample of the adult population. Sleep Med. 2013; 14(4): 312–8. PubMed Abstract | Publisher Full Text

17. Neves T, Tez CA, Ferriolli E, et al.: Correlation between muscle mass, nutritional status and physical performance of elderly people. Osteoporos Int. 2018; 4(4): 145–9. PubMed Abstract | Publisher Full Text | Free Full Text

18. Bessa L, Cruz LAB, de Lima RLS, et al.: Correlation between Neck Circumference and Pulse Wave Velocity: A Population-based Study. Artery Res. 2020; 26(1): 48–55. PubMed Abstract | Publisher Full Text

19. Méndez-Pérez B, Martín-Rojo J, Castro V, et al.: The Venezuelan Study of Nutrition and Health: Anthropometric profile and pattern of physical activity. Latin American Study of Nutrition and Health Study Group. An Venez Nutr. 2017; 30(1): 53–67. Reference Source

20. Leite JRRS, Sômer JMLP, Horimoto ARR, et al.: Heritability and Sex-Specific Genetic Effects of Self-Reported Physical Activity in a Brazilian Highly Admixed Population. Hum Hered. 2019; 84(3): 151–158. PubMed Abstract | Publisher Full Text | Free Full Text

21. Volaco A, Martins CM, Soares JQ, et al.: Neck Circumference and its Correlation to Other Anthropometric Parameters and Finnish Diabetes Risk Score (FINDRISC). Curr Diabetes Res. 2018; 14(5): 464–471. PubMed Abstract | Publisher Full Text

22. Stabe C, Vasques ACJ, Lima MMO, et al.: Neck circumference as a simple tool for identifying the metabolic syndrome and insulin resistance: results from the Brazilian Metabolic Syndrome Study. Clin Endocrinol (Oxf). 2013; 78(6): 874–81. PubMed Abstract | Publisher Full Text

23. Zanuncio V, Pessoa MC, Pereira F, et al.: Neck circumference, cardiometabolic risk, and Framingham risk score: Population-based study. Rev Nutr. 2017; 30(6): 771–81. Publisher Full Text

24. Amorim TC, Tavares AS, Lima TDF, et al.: Opinion of hypertensive patients on treatment effectiveness and disease-associated risk factors. Rev Bras Clín Med. São Paulo. 2012; 10(6): 490–4. Reference Source

25. Alfie J, Díaz M, Páez O, et al.: Relación entre la circunferencia del cuello y el diagnóstico de hipertensión arterial en el Registro Nacional de Hipertensión Arterial (RENAITA). Rev Arg Cardiol. 2012; 80(4): 275–279. PubMed Abstract | Publisher Full Text

26. Soares M, Tuflik S, Martinho F, et al.: Systematic Evaluation of the Upper Airway in a Sample Population: Factors Associated with Obstructive Sleep Apnea Syndrome. Otolaryngol Head Neck Surg. 2015; 153(4): 663–70. PubMed Abstract | Publisher Full Text

27. Ruiz AJ, Sepúlveda MAR, Franco OH, et al.: The associations between sleep disorders and anthropometric measures in adults from three Colombian cities at different altitudes. Maturitas. 2016; 94(1): 1–10. PubMed Abstract | Publisher Full Text

28. Polese DN, Hirotsu C, Nozoe KT, et al.: Waist circumference and postmenopausal stages as the main associated factors for sleep apnea in women: a cross-sectional population-based study. Menopause. 2015; 22(8): 835–44. PubMed Abstract | Publisher Full Text

29. Mora R, Weisstaub G, Greene M, et al.: Waist circumference and anthropometric measures in healthcare professionals in Rio de Janeiro, Brazil. Obes Facts. 2017; 10(1): 160. PubMed Abstract | Publisher Full Text

30. Tavares C, Queiroz F, Ansel J, et al.: Association between high blood pressure and anthropometric measures in urban Amazonian populations. Rev Chil Nutr. 2017; 3(6): 463–71. PubMed Abstract | Publisher Full Text | Free Full Text

31. De Siqueira K, Garcia J, Moura M, et al.: Can neck-thigh ratio (ntr) be an anthropometric index to diagnose metabolic syndrome? Acta paul enferm. 2018; 31(5): 376–80. PubMed Abstract | Publisher Full Text | Free Full Text

32. De Alessandria F, Soares A, Pureza A, et al.: Correlation between neck circumference, body mass index and lipid profile of female nursing professionals of a university hospital in Belém, Pará, Brazil. Brasilia Med. 2013; 50(1): 39–46. PubMed Abstract | Publisher Full Text

33. de Vasconcelos HCA, Fragoso LVC, Marinho NBP, et al.: Correlation between anthropometric indicators and sleep quality among Brazilian university students. Rev Esc Enferm USP. 2013; 47(6): 852–9. PubMed Abstract | Publisher Full Text

34. Santos DB, Bittencourt LG, de Assis Viegas CA, et al.: Daytime sleepiness and attention in city bus drivers of two capitals of Brazil. Rev Port Pneumol. 2013; 19(4): 152–6. PubMed Abstract | Publisher Full Text

35. Pedreros LA, Calderón JR, Moraga CF: Nutritional status, body composition and anthropometric indicators of miners exposed to intermittent chronic hypobaric hypoxia at moderate altitude (0-2500 m). Rev Chil Nutr. 2018; 45(3): 199–204. PubMed Abstract | Publisher Full Text

36. de Macedo MAD, Belenghi AMR, Benešová IM, et al.: Association between TSH levels within the reference range and adiposity markers at the baseline of the ELSA-Brasil study. PLoS One. 2020; 15(2): e0228801. PubMed Abstract | Publisher Full Text | Free Full Text

37. Genta PR, Marcondes BF, Danzi NJ, et al.: Ethnicity as a risk factor for obstructive sleep apnea: comparison of Japanese descendants and white males in São Paulo, Brazil. Braz J Med Biol Res. 2008; 41(8): 728–33. PubMed Abstract | Publisher Full Text

38. Saad MAN, Rosa MLG, Lima GB, et al.: Can neck circumference predict insulin resistance in older people? A cross-sectional study at primary care in Brazil. Cad Saude Publica. 2017; 33(8): e00060916. PubMed Abstract | Publisher Full Text

39. Barbosa P, Dos Santos R, Santos J, et al.: Circumference of the neck and its association with anthropometric parameters of body adiposity in adults. BRASPIR. 2017; 32(4): 315–20. Reference Source

Page 20 of 25
nutricional como predictores de la síndrome de apnea obstructiva del sueño. Rev Nutr. 2016; 29(5): 665–78.
Publisher Full Text

82. Sgarbolidi D, Pazzanotte-Forti EM: Predictive Equations for Maximum Respiratory Pressures of Women According to Body Mass. Respir Care. 2016; 61(4): 466–74.
PubMed Abstract | Publisher Full Text

83. Martinho FL, Tangerina RP, Moura SMGT, et al. : Systematic head and neck physical examination as a predictor of obstructive sleep apnea in class III obese patients. Braz J Med Biol Res. 2006; 41(12): 1093-7.
PubMed Abstract | Publisher Full Text

84. Correa CM, Gismondi RA, Cunha AR, et al. : Twenty-four hour Blood Pressure in Obese Patients with Moderate-to-Severe Obstructive Sleep Apnea. Arq Bras Cardiol. 2017; 109(4): 313–20.
PubMed Abstract | Publisher Full Text | Free Full Text

85. Magalhães E, Marques FO, Goviânia CS, et al. : Use of simple clinical predictors on preoperative diagnosis of difficult endotracheal intubation in obese patients. Braz J Anesthesiol. 2013; 63(3): 262-6.
PubMed Abstract | Publisher Full Text

86. Duarte RLD, Fornesca LBD, Magalhães-da-Silva FJ, et al. : Validation of the STOP-Bang questionnaire as a means of screening for obstructive sleep apnea in adults in Brazil. J Bras Pneumol. 2017; 43(6): 456–63.
PubMed Abstract | Publisher Full Text | Free Full Text

87. Saldias PT, Jorquera JA, Díaz PO. Valor predictivo de la historia clínica y oximetría nocturna en la pesquisa de pacientes con apneas obstructivas del sueño. Rev Med Chile. 2010; 138(8): 941–50.
Publisher Full Text

88. Medeiros CAM, De Bruijn VMS, De Castro-Silva C, et al. : Neck circumference, a bedside clinical feature related to mortality of acute ischemic stroke. Rev Assoc Med Bras (1992). 2011; 57(5): 559-64.
PubMed Abstract | Publisher Full Text

89. Miño FMA, Fuentes BCE, Martínez LFT, et al. : Obesidad, síndrome de apnea-hipopnea del sueño y somnolencia diurna excesiva en población de riesgo cardiovascular. Rev Chil Nutr. 2008; 35(2): 129-14.
Reference Source

90. García J, Rodríguez-Gonzales A, Solís J, et al. : Relación entre la circunferencia del cuello y parámetros polisomnográficos en pacientes con síndrome de apnea obstructiva del sueño. Acta de Otorrinolaringología & Cirugía de Cabeza y Cuello. 2014; 42(1): 18-22.
Reference Source

91. Lima JA, Ganem EM, De Cerqueira BGP: Reevaluation of the airways of obese patients undergone bariatric surgery after reduction in body mass index. Rev Bras Anestesiol. 2011; 61(1): 31-40.
PubMed Abstract | Publisher Full Text

92. Bonfante ILP, Chacon-Mikahil MPT, Brunelli DT, et al. : Obese with higher FNDC5/insulin levels have a better metabolic profile, lower lipopolysaccharide levels and type 2 diabetes risk. Arch Endocrinol Metab. 2017; 61(6): 524-33.
PubMed Abstract | Publisher Full Text

93. Bruch JP, Álvare-Da-Silva MR, Alves BC, et al. : Reduced Hand Grip Strength In Overweight And Obese Chronic Hepatitis C Patients. Arq Gastroenterol. 2016; 53(1): 31-5.
PubMed Abstract | Publisher Full Text

94. Peñafiel FS, Rossela GS, Mezab JC, et al. : Rendimiento de los cuestionarios de sueño en la pesquisa de pacientes adultos con síndrome de apnea obstructiva del sueño según sexo. Revista Médica de Chile. 2015; 147(10): 1291–302.
Publisher Full Text

95. Venturi M, Neves GSLM, Pontes IM, et al. : Risk and determinant factors for obstructive sleep apnea in patients with epilepsy. Arq Neuropsiquiatr. 2011; 69(5): 924–7.
PubMed Abstract | Publisher Full Text

96. Forseca LBD, Silva EA, Lima NM, et al. : STOP-Bang questionnaire: translation to Portuguese and cross-cultural adaptation for use in Brazil. J Bras Pneumol. 2016; 42(4): 266–72.
PubMed Abstract | Publisher Full Text | Free Full Text

97. Gallego C, Simkin P, Menéndez P: Titulación domiciliaria de CPAP en el síndrome de apnea del sueño; ¿una, 3 o 7 noches? Rev Am Med Res. 2009; 9(3): 133-9.
Reference Source

98. Serafim MP, Santo MA, Gadducci AV, et al. : Very low-calorie diet in candidates for bariatric surgery: change in body composition during rapid weight loss. Clinics (Sao Paulo). 2019; 74: e560.
PubMed Abstract | Publisher Full Text | Free Full Text

99. Orioí-López SA, Luna-Robledo EJ, Hernández-Bernal CE, et al. : ¿Qué representa mayor dificultad, la ventilación o la intubación en el paciente obeso? Revista Mexicana de Anestesiología. 2014; 37(2): 80-90.
Reference Source

100. Fisberg M, Kovalskis L, Gómez G, et al. : Latin American Study of Nutrition and Health (ELANS): rationale and study design. BMC Public Health. 2016; 16: 93.
PubMed Abstract | Publisher Full Text | Free Full Text

101. Atae-Jafari A, Namazi N, Djalahin S, et al. : Neck circumference and its association with cardiometabolic risk factors: a systematic review and meta-analysis. Diabetol Metab Syndr. 2018; 10: 72.
PubMed Abstract | Publisher Full Text | Free Full Text

102. Sanei P, Shahdadian F, Moradi S, et al. : Neck circumference in relation to glycemic parameters: a systematic review and meta-analysis of observational studies. Diabetol Metab Syndr. 2019; 11(1): 50.
PubMed Abstract | Publisher Full Text | Free Full Text

103. Davies RJ, Ali NJ, Stradling JR: Neck circumference and other clinical features in the diagnosis of the obstructive sleep apnoea syndrome. Thorax. 1992; 47(2): 101–5.
PubMed Abstract | Publisher Full Text | Free Full Text

104. NCD Risk Factor Collaboration (NCD-RisC): Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128· 9 million children, adolescents, and adults. Lancet. 2017; 390(10133): 2627-42.
PubMed Abstract | Publisher Full Text | Free Full Text

105. Kim SE, Park BS, Park SH, et al. : Predictors for Presence and Severity of Obstructive Sleep Apnea in Snoring Patients: Significance of Neck Circumference. J Sleep Med. 2015; 12(2): 34-8.
Publisher Full Text

106. Arbab S, Ataoglu HE, Tuna M, et al. : Neck circumference, metabolic syndrome and obstructive sleep apnea syndrome; Evaluation of possible linkage. Med Sci Moni. 2013; 19: 111-7.
PubMed Abstract | Publisher Full Text | Free Full Text

107. Paredes Fernández M: Síndrome de la apnea obstructiva del sueño .Descripción y tratamiento. Farm Prof. 2001; 15(3): 62–9.
Reference Source

108. Cho JH, Choi JH, Suh JD, et al. : Comparison of Anthropometric Data Between Asian and Caucasian Patients With Obstructive Sleep Apnea: A Meta-Analysis. Clin Exp Otorhinolaryngol. 2016; 9(1): 1-7.
PubMed Abstract | Publisher Full Text | Free Full Text

109. Aswathappa J, Garg S, Kuttty K, et al. : Neck Circumference as an Anthropometric Measure of Obesity in Diabetics. North Am J Med Sci. 2013; 5(1): 28-31.
PubMed Abstract | Publisher Full Text | Free Full Text

110. Patil C, Deshmukh J, Yadav S, et al. : Neck circumference: A novel anthropometric tool for screening obesity in adults. Int J Collab Res Intern Med Public Health. 2017; 9(7).
Reference Source
This is an interesting article that reviews the little-used measurement of neck circumference and the advantages and limitations of this measure as reported in the literature. The review of the use in different studies is helpful and the authors suggest that it would be a convenient and useful addition to the arsenal of anthropometric measures currently in use. The review and suggestion for the use of measuring neck circumference is convincing as the neck is relatively accessible for measurement and this could be a useful addition in studies that require anthropometry.

I recommend indexing.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Yes

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Population research which usually includes anthropometric assessment of candidates for randomized controlled studies

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 02 February 2021

https://doi.org/10.21956/wellcomeopenres.18249.r42342

© 2021 Alfie J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jose Alfie
1 Hypertension Section, Internal Medicine Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
2 Sociedad Argentina de Hipertension Arterial, Buenos Aires, Argentina

The increase in neck circumference, a measure of ectopic fat, is associated with higher cardiometabolic risk and obstructive sleep apnea beyond classical anthropometric measures of obesity.

The authors performed a systematic review and meta-analysis to estimate the mean neck circumference and the prevalence of high neck circumference in Latin America and the Caribbean. I find the article correctly written and analyzed.

Although the measurement of neck circumference differs between studies, the net impact of these differences is probably minimal compared to different definitions of abdominal obesity. This, added to the fact that to measure the circumference of the neck it is not necessary to ask the patient to get up from the chair or to remove their clothes, it represents advantages over other anthropometric measurements.

The objective of the study was to establish mean values and the prevalence of high neck circumference in Latin America and the Caribbean. This was based on statistical definitions provided by the selected studies. Another approach to define normality and cutoff values could be based on the consequences of increased neck circumference on metabolism, blood pressure, and obstructive sleep apnea.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Yes

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: My area of expertise is high blood pressure. I am the first author of one of the articles selected in the current metaanalysis (25).

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.