Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61,742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis

Ali Pormohammad b,*, Saied Ghorbani b,1, Behzad Baradaran c,d, Alireza Khatami b, Raymond J. Turner a,**, Mohammad Ali Mansournia e,***, Demetrios N. Kyriacou f,g, Juan-Pablo Idrovo h, Nathan C. Bahr i

a Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
b Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
c Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
d Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
e Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
f Department of Emergency Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
g Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
h Division of GI, Trauma and Endocrine Surgery, Department of Surgery, University of Colorado, Denver Aurora, Colorado, USA
i Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA

ARTICLE INFO

Keywords:
COVID-19
SARS-CoV-2
Coronavirus
Severe acute respiratory syndrome coronavirus
meta-Analysis

ABSTRACT

Introduction: In the current time where we face a COVID-19 pandemic, there is no vaccine or effective treatment at this time. Therefore, the prevention of COVID-19 and the rapid diagnosis of infected patients is crucial.

Method: We searched all relevant literature published up to February 28, 2020. We used Random-effect models to analyze the appropriateness of the pooled results.

Result: Eighty studies were included in the meta-analysis, including 61,742 patients with confirmed COVID-19 infection. 62.5% (95% CI 54.5–79, p < 0.001) of patients had a history of recent travel endemic area or contact with them. The most common symptoms among COVID-19 infected patients were fever 87% (95% CI 73–93, p < 0.001), and cough 68% (95% CI 55.5–74, p < 0.001), respectively. The laboratory analysis showed that thrombocytosis was present in 61% (95% CI 41–78, p < 0.001), and lymphopenia in 57.5% (95% CI 42–79, p < 0.001). The most common radiographic signs were bilateral involvement in 81% (95% CI 62.5–87, p < 0.001), consolidation in 73.5% (95% CI 50.5–91, p < 0.001), and ground-glass opacity 73.5% (95% CI 40–90, p < 0.001) of patients. Case fatality rate (CFR) in <15 years old was 0.6%, in >50 years old was 39.5%, and in all range group was 6%.

Conclusions: Fever and cough are the most common symptoms of COVID-19 infection in the literature published to date. Thrombocytosis, lymphopenia, and increased CRP were common lab findings although most patients included in the overall analysis did not have laboratory values reported. Among Chinese patients with COVID-19, rates of hospitalization, critical condition, and hospitalization were high in this study, but these findings may be biased by reporting only confirmed cases.

* Corresponding author.
** Corresponding author.
*** Corresponding author.

E-mail addresses: pormohammadali@yahoo.com, ali.pormohammad@ucalgary.ca (A. Pormohammad), turnerr@ucalgary.ca (R. J. Turner), mansournia_m@sina.tums.ac.ir (M.A. Mansournia).
1 Equally first author.

https://doi.org/10.1016/j.micpath.2020.104390
Received 18 April 2020; Received in revised form 2 June 2020; Accepted 6 July 2020
Available online 15 July 2020
0882-4010/© 2020 Published by Elsevier Ltd.
1. Introduction

In December 2019, the new COVID-19 coronavirus was recognized as a cause of respiratory illness. The first reports of pneumonia were from people who worked or lived in the Huanan seafood wholesale market in Wuhan, China raising concerns about a zoonotic viral infection [1,2]. Phylogenetic analysis showed that the COVID-19 belong to the beta-coronavirus [1]. Epidemiological studies have shown that the virus is spread relatively easily and can be transmitted by aerosol, droplets, and through infected surfaces [3]. The COVID-19 has now spread to more than 50 countries from December 2019 to February 2020 [4]. Most symptoms are non-specific in patients with respiratory disease. According to the latest WHO report, out of 83,652 confirmed cases of COVID-19 worldwide, 2791 deaths occurred in China and 67 deaths is recorded in other countries [4].

Thus far, 6 coronaviruses that are able to infect humans have been identified, coronavirus infections are typically asymptomatic or associated with mild respiratory symptoms [1]. The first coronavirus to cause severe disease in humans was the Severe Acute Respiratory Syndrome virus (SARS), which was appeared in the Guangdong province of southern China in 2002, there were 8098 reported case and 774 deaths [5]. In Saudi Arabia in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV), which was transmitted from the camels to humans, caused 2458 infections with 848 deaths [6].

Clinical studies have shown that COVID-19 can rapidly cause pulmonary damage and severe respiratory symptoms [3]. There is no vaccine or targeted treatment currently available for COVID-19 infection. Treatment is largely supportive although multiple experimental antiviral medications are being evaluated [7,8]. Thus, prevention and rapid diagnosis of infected patients is crucial. To date, the published clinical studies are quite small and give variable findings. With this in mind, here we evaluate the clinical features and laboratory findings using a large sample size of COVID-19 infected patients in order to assist in its understanding, prevention and treatment.

2. Methods

2.1. Search strategy

This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) guidelines [9]. We searched all studies published up to February 28, 2020 from the following databases: Embase, Scopus, PubMed, Web of Science and the Cochrane library. Search medical subject headings (MeSH) terms used were: “COVID-19”, “Coronavirus”, “severe acute respiratory syndrome coronavirus”, and all their synonyms like “Wuhan Coronavirus”, “SARS-CoV-2”, and “COVID-19”. Moreover, we searched for unpublished and grey literature with Google scholar, Center for Disease Controls (CDC) and WHO databases. We also examined references of included articles to find additional relevant studies. There was no language restriction and all included studies are written in English or Chinese languages, the latter were translated by https://translate.google.com.

![Fig. 1. Flow Diagram of Literature Search and Study Selection (PRISMA flow chart).](attachment:flow_diagram.png)
Table 1
Characterization of Included Studies with total 61, 742 COVID-19 Confirmed Patients. All Studies are Retrospective, from China, and Published in 2020.

First Author	Sampling Center	Sampling Center Location	Sampling Center Name	Sample Collection Time	N Confirmed Patients	Mean age in years (IQR)	N sex (male)	Reference standard	
Nanshan Chen	Wuhan Jinyintan Hospital	Wuhan, China	Jinyintan Hospital	Jan 1 to Jan 20, 2020	5–24	99	55.5 (21–82)	67	RT-PCR
Kaiyuan Sun	Multicenter	Beijing, China	Multicenter	Jan 20– Jan 29, 2020	42	288	49 (2–89)	62.3	CDC guideline
Jie Li	DaZhou Central Hospital	DaZhou, China	Central Hospital	Jan 22–Feb 10, 2020	1–21	17	45.1 (32–65)	9	RT-PCR
Dawei Wang	Zhongnan Hospital of Wuhan	Wuhan, China	Central Hospital	Jan 1–Jan 28, 2020	6–34	138	56 (42–68)	75	RT-PCR
Chaolin Huang	Jin Yintan Hospital (Wuhan)	Wuhan, China	Hospital	Dec 31, 2019–UN	NA	41	49 (41–58)	30	RT-PCR
Weijie Guan	Multicenter	Beijing, China	Multicenter	NA	1099	47	640	RT-PCR	
Yang Yang	NA	Wuhan, China	Tongji Hospital in Wuhan	Jan 14–29, 2020	15 day	29	56 (26–79)	21	RT-PCR
Adam Bernheim	Multicenter	Beijing, China	Multicenter	Jan 18–Feb 2, 2020	12 days	121	45 (18–80)	61	RT-PCR & CT scan
Feng Pan	Union Hospital	Wuhan, China	Union Hospital	Jan 12–Feb 5, 2020	NA	21	40 (25–63)	15	RT-PCR
jin Zhang	No.7 hospital of Wuhan	Wuhan, China	No.7 Hospital	Jan 16th to Feb 3rd, 2020	NA	140	57 (25–87)	71	RT-PCR
Yichun Cheng	Tongji hospital in Wuhan	Wuhan, China	Tongji Hospital	Jan 28–Feb 2020	10 (7–13)	710	63 (51–71)	374	RT-PCR
Ming Yen	Hong Kong Shenzhen Hospital	Hong Kong, China	Hospital	Jan 15–Feb 1, 2020	NA	21	56 (37–65)	13	RT-PCR
SiJia Tian	Beijing Emergency Medical Service	Beijing, China	Hospital	Jan 20 to Feb 10, 2020	Feb 10	262	47.5 (1–94)	127	RT-PCR
Qun Li	NA	Wuhan, China	NA	NA	425	15–89	240	WHO guideline	
De Chang	3 hospitals in Beijing	Beijing, China	Hospital	Jan 16–Jan 29, 2020	Feb 4	13	34 (34–48)	10	NA
Xiao-Wei Xu	Zhejiang province	Zhejiang, China	Provice	Jan 10–Feb 26, 2020	10 days	62	41 (32–52)	36	WHO guideline
Fengxia Song	Center for Disease Control, Shanghai	Shanghai, China	Hospital	Jan 20–Jan 27, 2020	NA	51	49 (16–76)	25	CT scan & nucleic acid test
Michael Chung	Multicenter	Beijing, China	Multicenter	Jan 18–27, 2020	NA	21	51 (29–77)	13	CT scan, NA
Zunyou Wu (CDC)	Multicenter	Wuhan, China	Multicenter	through February 11, 2020	15 days	44,672	22,981	nucleic acid test	result rt-pcr
Bing-Liang Zhang	Hospitalized death	Wuhan, China	Hospitalized hospital	January 11, 2020 to February 10	30 day	82	72.5 (1–98)	54	rt-pcr

First Author	Sampling Center	Sampling Center Location	Sampling Center Name	Sample Collection Time	N Confirmed Patients	Mean age in years (IQR)	N sex (male)	Reference standard	
Bo Hu	Multicenter	Beijing, China	Multicenter	Jan 8 to Feb 9	20 day	50	62	34	rt-pcr
Chuangsheng Zheng	Union Hospital, Wuhan	Wuhan, China	Hospital	Jan 16–Jan 20, 2015	30 day	64	35	23	rt-pcr
Lin Fu	Union Hospital	Wuhan, China	Hospital	Jan 1–Jan 30	30 day	200	99	rt-pcr	
Fei Zhou	Multicenter	Beijing, China	Multicenter	NA	191	56	119	rt-pcr	
Guo-Qing Qian	Multicenter	Beijing, China	Multicenter	as of 11 February	NA	91	50	37	rt-pcr and clinical
Guoping Zhang	Zhongnan Hospital	Wuhan, China	Hospital	Jan 2–February 10, 2020	NA	221	55	108	rt-pcr
Qiannan Guo	Tongji Hospital	Wuhan, China	Hospital	UN	11	57.55	9	rt-pcr	
Hang Fu	Chengu, hospital	Wuhan, China	Hospital	Jan 1 to Feb 20	NA	52	44.5	rt-pcr	
Heshui Shi	Union Hospital	Wuhan, China	Hospital	Dec 20, 2019, and Jan 23	NA	81	49.5	42	rt-pcr
Huijun Chen	Multicenter	Wuhan, China	Multicenter	20-Jan	NA	9	26–40	rt-pcr	
Jian Wu	Multicenter	Wuhan, China	Multicenter	Jan 22-Jan	NA	80	46.1	39	rt-pcr
Jianli Cao	Multicenter	Wuhan, China	Multicenter	3-Jan	NA	102	rt-pcr		
Jie Liu	Union Hospital	Wuhan, China	Hospital	Jan 16–Jan 25, 2019	NA	64	35	23	rt-pcr
Jing Yuan	Shenzhen hospital	Shenzhen, China	Hospital	Jan 23–Feb 21, 2020	NA	25	28	8	rt-pcr
Jinjun Zhang	Multicenter	Wuhan, China	Multicenter	Jan 20 to Feb 20, 2020	30 DAY	478	46.9	238	rt-pcr
Jin-Wei Ai	Hubai	Hubai, China	Hospital	UN	102	50.38	52	rt-pcr	
Jiong Wu	Yancheng City	Yancheng, China	City	22-Jan	NA	80	44	42	rt-pcr
Jun Chen	Shanghai	Shanghai, China	Hospital	Jan 20 to Feb 6, 2020	14 day	249	51	126	rt-pcr
Kaiyuan Sun	Multicenter	Wuhan, China	Multicenter	Jan 13 and Jan 31	NA	507	46	281	rt-pcr
Kaiyue Diao	Wuhan	Wuhan, China	Hospital	January 17th to February 5th	30 DAY	6	47.5	3	rt-pcr
Kenneth W. Tsang	Hong Kong	Hong Kong, China	University	February 22, 2003, and March 22	30 DAY	10	52.5	5	rt-pcr
Kui Liu	Multicenter	Wuhan, China	Multicenter	December 30, 2019 to January 24	24 DAY	137	57	61	rt-pcr
L. Zhang	Multicenter	Wuhan, China	Multicenter	Jan 13, 2020, to Feb 26	40 DAY	28	65	17	rt-pcr
Lei Liu	Hospital in Chongqing	Chongqing, China	Hospital	January 20 to February 3, 2020	14 DAY	51	45	32	rt-pcr
lei du	Wuhan Stadium Cabin Hospital	Wuhan, China	Hospital	Feb 13 to Feb 29, 2010	14 DAY	545	50	264	rt-pcr
Lei Wang	Zhongzhou University	Wuhan, China	University	Jan 21 to Feb 5, 2020	14 DAY	18	39	10	rt-pcr
Li Yan	Tongji Hospital	Wuhan, China	Hospital	January 10th to February 18th	18 DAY	375	58.83	220	rt-pcr
Li-Li Ren	Wuhan	Wuhan, China	Hospital	December 18 to December 29, 2019	12 DAY	5	UN	3	rt-pcr
Lin Fu	Union Hospital	Wuhan, China	Hospital	January 1 to January 30	30 DAY	200	99	rt-pcr	
Xianning Li	Multicenter	Wuhan, China	Multicenter	24-Feb	NA	292	47.83	134	rt-pcr

(continued on next page)
Table 1 (continued)

Author, Year	Location	Collection Period	Date of Diagnosis	Days Positive	Number of Positive	Test Method
Matt Arentz [71], Evergreen hospital	-	February 20 to March 5	-	15	91	RTPCR
Naihlin Yang [72], Zhejiang	-	25th January to 28th February	NA	10	3	RTPCR
Ping Wu [73], Yichang Central People’s Hospital	-	February 8 to 15	NA	38	65	RTPCR
Qifang Bi [74], Shenzhen,	-	January 14 to February 12	25	391	45	RTPCR
Qiuqiong Ruan [75], Multicenter	-	-	-	150	-	RTPCR
Tao Yue [76], Renmin hospital	-	-	NA	55	70.7	RTPCR
Wen Zhao [77], Beijing YouAn Hospital	-	January 1 to February 10	14	77	52	RTPCR
Yani Kuang [78], Zhejiang	-	January 17	NA	143	47	RTPCR
Yani Kuang [79], Zhejiang	-	1-Jan	NA	944	47.4	RTPCR
Wen Chen [80], Hospital of Guangxi Zhaung	-	15-Jan	NA	85	41	RTPCR
Xiaomin Lue [81], Renmin hospital	-	Jan 30 to Feb 5	25	403	56	RTPCR
Xiaoqiu Han [82], Union Hospital,	-	December 20th to February 2	12	17	40	RTPCR
Xin Li [83], Wuhan	-	As of February 13	NA	25	71.48	RTPCR
Yan Deng [84], Wuhan	-	January 1	NA	225	54	RTPCR
Yang Wu [85], Wuhan	-	13-Jan	NA	14	59	RTPCR
Yang Li [86], Guangdong	-	December 8, 2019	NA	13	-	RTPCR
Yanli Liu [87], Hospital of Wuhan	-	January 2 to February	NA	109	55	RTPCR
Ying Huang [88], Wuhan	-	January 21 and February 10	20	36	69.22	RTPCR
Ying Wen [89], Multicenter	-	-	NA	417	45.4	RTPCR
Yingjie Wu [90], Wuhan	-	10-Jan	NA	402	198	RTPCR
Xuhai Wang [91], Wuhan	-	December 16 to February 17	30	90	45	RTPCR
Zhibing Lu [92], Multicenter	-	January 1 to February 15	15	123	57.78	RTPCR
Zhiqiang Hu [93], Multicenter	-	From Jan 28 to Feb 9, 2020	19	24	-	RTPCR
Ping Yu [94], Shanghai	-	7-Jan-20	NA	4	74.25	RTPCR
Ali Aminian [95], Tehran	-	9-Feb	NA	4	63.5	RTPCR
Hui Yu [96], Wuhan	-	Feb 3 to Mar 3	NA	105	1-16 year	RTPCR
Matthieu Million [97], France, multi center	-	March 3rd to March 31	NA	1061	43.6	RTPCR

Bai shaoli Gansu Prov center 22-January NA 8 53.71 4 Rt pcr

NA = not known, RT-PCR = Real Time Polymerase Chain Reaction, CDC = Centers for Disease Control and Prevention, WHO = World Health Organization, CT scan = CT scan of chest, N = number, IQR = interquartile range.

2.2. Study selection

Duplicate studies were removed using EndNote X7 (Thomson Reuters, New York, NY, USA). Records were initially screened by title and abstract by independently two authors (AP, SG). The full-text of potentially eligible records was retrieved and examined. Any discrepancies were resolved by consensus.

2.3. Inclusion criteria

Studies had to fulfill the following pre-determined criteria to be eligible for inclusion in our meta-analysis. Studies were included if they reported the number of confirmed cases of patients with demographic data, [AND] [OR] clinical data, [AND] [OR] laboratory data, [AND] [OR] risk factor data. Confirmed patients were defined as any patient with positive nucleic acid testing (most of the studies with Real-Time PCR) or those meeting CDC and WHO criteria at the time of their publication.

2.4. Exclusion criteria

Studies were excluded if they did not report number of confirmed cases, were letters to the editor or individual case reports or reviews. News reports were also excluded.

2.5. Data extraction

All included publications were published in 2020 and all patients are from China. The following items were extracted from each article: first author, Center and study location in China, sample collection time period, patient follow-up time, reference standard for infection confirmation, number of confirmed cases, and all demographic, clinical, laboratory data, and risk factor data. Two of our authors (AP and SG) independently extracted data and differences were resolved by consensus.

2.6. Quality assessment

Quality assessments of studies were performed by two reviewers independently according to the Critical Appraisal Checklist recommended by the Joanna Briggs Institute [11], and disagreements were resolved by consensus. The checklist is composed of nine questions that reviewers addressed for each study. The ‘Yes’ answer for each question received one point. Thus, final scores for each study could range from zero to nine (Table S2 in Supplementary Material).

2.7. Analysis

Data cleaning and preparation was done in Microsoft Excel 2010 (Microsoft©, Redmond, WA, USA) and further analyses were carried out via Comprehensive Meta-Analysis Software Version 2.0 (Biostat, Englewood, NJ). Determination of heterogeneity among the studies was undertaken using the chi-squared test (Cochran’s Q) to assess the appropriateness of pooling data. We used Random effect model (M – H heterogeneity) for pooled results [12]. P values reflect study heterogeneity with <0.05 being significant. We also used the Begg’s and Egger’s tests based on the symmetry assumption to detect publication bias.

3. Results

3.1. Characteristics of included studies

The process of study selection is displayed in Fig. 1. A total of 36,115 reports were screened for the analysis of patients with COVID-19, 36,014 were excluded after title and abstract screening and the full text of 342 reports were reviewed in full text. We excluded studies that did not report sufficient data and finally 80 studies met the inclusion criteria (Fig. 1). Characteristics of the selected articles are summarized in Table 1. Of the 80 studies that were included in the analysis, 79
studies were in English and the one of them was in the language of Chinese [13]. All studies were retrospective, published in 2020, and all patients were from China.

Table 2
Demographics, baseline characteristics, and clinical outcomes of patients with confirmed COVID-19.

Age, years	Clinical presentation*	Confidence interval 95%	Heterogeneity test, I2 (%)**	Heterogeneity test, P Value**	Number of Studies
48 (mean)	43–50	98	<0.001	23	
Sex (Male)	55 (%)	50–57.5	88.4	<0.001	24
Fever	87 (%)	73–93	98	<0.001	18
Cough	68 (%)	55.5–74	86	<0.001	18
Fatigue	39 (%)	29–52.5	93	<0.001	14
Spum production/Expectoration	31 (%)	19–39	<0.001	9	
Myalgia	24 (%)	14–43	<0.001	2	
Dyspnea	24 (%)	12.6–32	92	<0.001	11
Sore throat	14 (%)	7.8–17	52	0.06	9
Headache	14 (%)	8.3–18	77	<0.001	16
Diarrhea	8 (%)	4.6–11.4	70	<0.001	18
Rhinorrhea	7 (%)	3–12	0.43	6	
Nausea and vomiting	6.5 (%)	2.7–13	<0.001	6	

Table 3
Meta-analysis on clinical presentation of case fatality rate (CFR) in different age groups of confirmed COVID-19 cases.

Age groups (year)	CFR (%)	Confidence Interval	patients	Number Studies	Included patients	Heterogeneity test*
All Range	6	4–8	49	54,252	89.6	<0.001
<50	28.5	28–39	14	1935	97	<0.001
<15	0.6	0–3	1	82	0	1

Case fatality rate (CFR), * Greater than 50% is considered high heterogeneity, less than 50% is considered low heterogeneity. A low p value (<0.05) is consistent with high heterogeneity. Case fatality rate (CFR).

3.2. Quality assessment

Quality assessment of included studies were performed based on the Critical Appraisal Checklist and the final scores for quality of included studies were in English and the one of them was in the language of Chinese [13]. All studies were retrospective, published in 2020, and all patients were from China.
Table 2 shows that 61,742 confirmed patients with COVID-19 infection were included in the Meta-analysis, of which 55% (95% CI 50–57.5, p < 0.001) were male. The most of the patients had fever 87% (95% CI 83.5–89.5, p < 0.001) and cough 68% (95% CI 65.5–71.4, p < 0.001). A much smaller proportion of patients had sore throat 14% (95% CI 7.8–17, p = 0.06), headache 14% (95% CI 8.3–18, p < 0.001), diarrhea 8% (95% CI 4.6–11.4, p < 0.001), rhinorrhea 7% (95% CI 3–12, p = 0.43) or nausea and vomiting 6.5% (95% CI 2.7–13, p < 0.001). Most patients required hospitalization 81% (95% CI 68–94, p < 0.001), 25.6% (95% CI 6.7–48, p < 0.001) were deemed to be in critical condition and the mortality rate was 6% (95% CI 4–8.5, p < 0.001) between all infected patients. Table 3 shows that case fatality rate (CFR) in <15 years old age groups was 0.6% (95% CI 0–0.9, p > 0.5), >50 years old was 39.5% (95% CI 28.5–52, p < 0.001) (Fig. 2), all range group was 6% (95% CI 4–8.5, p < 0.001) (Fig. 3).

3.3. Demographics, baseline characteristics, and clinical characterisation

The majority of patients, 62.5% (95% CI 54.5–79, p < 0.001), had a history of recent travel endemic area or contact with them. A significant minority of patients (39.5%, 95% CI 20–56, p < 0.001) had a history of chronic diseases and 26.5% (95% CI 9.6–49, p < 0.001) had exposure at the seafood market(s) (Table 4).
7

Table 4
Clinical Characteristics and Comorbid Conditions of patients with confirmed COVID-19.

Risk Factor	Patients with risk factor (%)	Confidence interval 95%	Heterogeneity test, I² (%)	Heterogeneity test, P Value	Number of Studies reporting
History of recent travel endemic area or contact with them	62.5	54.5-79	96	<0.001	11
Chronic diseases	39.5	20-56	95	<0.001	6
Exposure to seafood market	26.5	9-49	95	<0.001	8
Sick contacts with respiratory illness	18	4-39.6	97	<0.001	7
Hypertension	18	8-24.6	97.5	<0.001	17
ARDS	17.5	4-26.7	95.7	<0.001	8
Diabetes	9	4-15	96	<0.001	11
Current smoker	8.2	3.7-15	69	0.01	8
Chronic liver disease	7	3.8-8.4	6	0.38	12
Digestive system disease	4.5	2.5-4.9	95	<0.001	8
Health care worker	16	2-4.6	79	0.008	12
Past smoker	4	1.1-7.5	80	0.02	6
Cardiovascular and cerebrovascular diseases	3.3	2-2.5	98	<0.001	14
Chronic respiratory disease	3.2	0.6-8	93	<0.001	7
Cancer	2.7	0.4-7.4	96.3	<0.001	9

ARDS = acute respiratory distress syndrome * Greater than 50% is considered high heterogeneity, less than 50% is considered low heterogeneity. A low p value (<0.05) is consistent with high heterogeneity.

Table 5
Laboratory features for confirmed patients with COVID-19.

Risk Factor	Patients with risk factor (%)	Confidence interval 95%	Total Number of Studies
Leukocytes (WBCs) (mean)	6.2 (× 10⁹/L)	5.3-6.9	2961
Increase	18.3	6.4-25.6	17
Decreased	28 (%)	21-33	1212
Neutrophils (mean)	4.6 (× 10⁹/L)	3.1-5.1	12
Increased	0.94	0.9-1.06	3161
Decreased	57.5	42-79	18
Platelets (mean)	196.5 (× 10⁹/L)	167-205	2900
Increase	61	5-30	15
Decreased	32	19.7-46.5	880
CRP (mean)	79 (mg/L)	65-91	1300
Increased	113	106-132	4
ESR (mean)	44	46.5-57	320
Albumin (mean)	36.8	24.5-46	420
Decreased	81	72-87	5
Interleukin-6 (mean)	8.1	6.8-8.6	509
Increased	56	42-61	6
LDH (mean)	286	268-294	2383
Increased	69.3	58-83	12

CRP = C Reaction Protein, ESR = Erythrocyte sedimentation rate. WBCs = White blood cells.

* Increased or Decreased refers to values above or below the normal range.

3.5. Laboratory findings of patients infected with COVID-19

The laboratory analysis and features showed that the most infected patients had increased platelets 61% (95% CI 41-78, p < 0.001), and CRP 79% (95% CI 65-91, p < 0.001), while others showed decreased lymphocytes, 57.5% (95% CI 42-79, p < 0.001) (Table 5).

3.6. Chest X-ray and CT scan findings in patients infected with COVID-19

Analysis showed that the most abnormality which finding with Chest X-ray and CT are bilateral involvement of chest radiography 81% (95% CI 62.5-87, p < 0.001), consolidation 73.5% (95% CI 50.5-91, p < 0.001), and ground-glass opacity 73.5% (95% CI 40-90, p < 0.001) (Table 6).

4. Discussion

COVID-19 belongs to the Coronavirus family and is the newest serious zoonotic virus after the related viruses SARS and MERS [23,24]. Prior to 2002, coronaviruses were associated with mild respiratory illness, but with the emergence of SARS in 2002, MERS in 2012, and now in late 2019, COVID-19, establishes that coronaviruses can be associated with severe respiratory disease. Genetic variation and phylogenetic analysis of these viruses show that the COVID-19 virus has 84% homology to other beta-coronaviruses, 96% sequence similarity at the whole genome level to a bat coronavirus and 79.5% similarity to the SARS virus [8,25]. These results suggest that bats are important coronavirus reservoirs.

A study by Adam Bernheim et al. showed that among 121 COVID-19 patients, fever, cough and sputum production were the most common clinical symptoms [3]. Our study found utilizing data from 52,251 patients with COVID-19 infection, that in additional to these, fatigue and myalgia (muscle soreness) were also common.

The large data set here finds that 81% of patients required hospitalization, 25.6% were found to be in critical condition and the mortality rate was 6% between all infected patients. The mortality rate is lower than some studies (for example, 11% in Nanshan et al. [14]), but still higher than many viral infections. It should be recognized that these numbers are bias due to the data set including publications related to screening practices (e.g. only those with symptoms being screened) increased the % value. The true mortality rate from COVID-19 is almost certainly much lower than that found in this study. As more data emerges from screening asymptomatic or mildly symptomatic individuals in China and around the world, the true mortality rate will be better understood. Additionally, at the time of submission of this
The manuscript only ~50% of reported infected patients had recovered (gisalnddatamaps.arcgis.com). Lymphopenia, age, multilobular infiltration, smoking history, hypertension, and bacterial coinfection have been reported as mortality risk factors. Underlying cardiovascular disease (40%) and bilateral pneumonia (81%) were common among those who have died. Recent travel endemic area or contact with them, exposure to persons with respiratory symptoms, and seafood market exposures were common amongst those contracting COVID-19. Among 2361 COVID-19 patients with laboratory data available, leukocytosis was found in 18.3% and leukopenia in 28% with lymphocytopenia in 57.5%. Among 2200 patients, thrombocytosis occurred in 61% and in a smaller sample (n = 290) CRP was increased in 79%.

A study by Yu Zhao et al. showed that ACE2 is a COVID-19 virus receptor and that it is normally expressed on pulmonary alveolar epithelial cells [26]. ACE2 activates the RAS cascade, which can lead to hypertension. The pathology in this pathway can also stimulate fibrogenesis, inflammation, cell hypertrophy, and cell proliferation [27,28]. ACE2 expression is increased in people with pulmonary ARDS and acute respiratory injury [29]. The data collected here shows that ARDS occurred in 17.5% of reported patients with COVID-19 infection.

4.1. Limitations

Several limitations of this study exist. Publication bias and study heterogeneity are unavoidable in this type of study, therefore it should be considered when interpreting the outcomes of the reports and our final data set. Further, this study likely overestimates disease severity due to lack of screening of asymptomatic or mildly symptomatic individuals and subsequent publication bias related to these factors. It is very likely that many infected persons have not been detected, thus falsely elevating the rates of hospitalization, critical condition, and mortality.

5. Conclusions

Fever and cough are the most common symptoms of COVID-19 infection in the literature published to date. Thrombocytosis, lymphopenia, and increased CRP were common lab findings although most patients included in the overall analysis did not have laboratory values reported. The most common radiographic sign was bilateral involvement in and consolidation. Among Chinese patients with COVID-19, rates of hospitalization, critical condition, and hospitalization were high in this study, but these findings may be biased by reporting of only confirmed cases.

Declaration of competing interest

The authors have declared that no competing interests exist.

Acknowledgments

None.

Table 6

Abnormality (%)	Confidence interval 95%	Heterogeneity test, I² (%)	Heterogeneity test, P Value	Number of Studies	
Bilateral involvement of chest radiography	81	62.5–87	93	<0.001	18
Consolidation	73.5	50.5–91	89	<0.001	9
Ground-glass opacity	73.5	40–90	97	<0.001	16
Unilateral involvement of chest radiography	18.5	8.5–29.5	94	<0.001	9

* Greater than 50% is considered high heterogeneity, less than 50% is considered low heterogeneity. A low p value (<.05) is consistent with high heterogeneity. CT scan = CT scan.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.micpath.2020.104390.

Funding

Dr. Bahr receives funding from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health, K23 NS110470.

Author contributions

Conceived and designed the study: AP, SG, Comprehensive research: SG, AK, AP, Analyzed the data: A P, MAM, Wrote and revised the paper: AP, SG, BB, AK, RT, MAM, NB, DK, JPI, Participated in data analysis and manuscript editing: AP, SG, BB, AK, RT, MAM, NB, DK, JPI.

Ethical statement

The manuscript is a systematic review, so the ethical approval was not required for the study.

References

[1] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al., A novel coronavirus from patients with pneumonia in China, N. Engl. J. Med. (2019), 2020.
[2] J.F.-W. Chan, S. Yuan, K.-H. Kok, K.K.-W. To, H. Chu, J. Yang, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet (2020).
[3] A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, et al., Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology (2020) 2004653.
[4] WHO. Rational Use of Personal Protective Equipment for Coronavirus Disease 2019 (COVID-19) 2020, Feb 27.
[5] W. Lai, N. Zhong, W. Tan, Overview on SARS in Asia and the world, Respirology 8 (2003) S2–S5.
[6] J. Zheng, S. Hassan, A.N. Albagi, A.N. Alshukairi, N.M. Amor, N. Mukhtar, et al., Middle East respiratory syndrome coronavirus seropositivity in camel handlers and their families, Pakistan, Emerg. Infect. Dis. 25 (2019) 2307.
[7] A. Cantini, Virtual Screening of an FDA Approved Drugs Database on Two Designed Using Generative Deep Learning Approaches, 2020.
[8] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, Ann. Intern. Med. 151 (2009) 264–269.
[10] A. Pormohammad, S. Ghorbani, A. Khatami, R. Farzi, B. Baradaran, D.L. Turner, et al., Comparison of confirmed COVID-19 with SARS and MERS cases-Clinical characteristics, laboratory findings, radiographic signs and outcomes: a systematic review and meta-analysis, Rev. Med. Virol. (2020 Jun 5), e2112.
[11] Z. Munn, S. Moola, D. Riitano, K. Li, The development of a critical appraisal tool for use in systematic reviews: addressing questions of prevalence, Int. J. Health Pol. Manag. 3 (2014) 123.
[12] N. Mantel, W. Haenszel, Statistical aspects of the analysis of data from retrospective studies, J. Natl. Cancer Inst. 22 (1959) 719–748.
[13] L. Chen, H. Liu, W. Liu, J. Liu, K. Liu, J. Shang, et al., Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia, Chin. J. Tuberc. Respir. Dis. (Zhonghua Jie He He Xi Za Zhi) 43 (2020) E005.
[14] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet (2020),
T. Yao, Y. Gao, Q. Cui, J. Shen, B. Peng, Y. Chen, et al., Clinical Characteristics of 55 Cases of Deaths with COVID-19 Pneumonia in Wuhan, China, Retrospective Case Series, 2020.

W. Zhao, S. Yu, X. Zha, N. Wang, Q. Pang, T. Li, et al., Clinical Characteristics and Durations of Hospitalized Patients with COVID-19 in Beijing: a Retrospective Cohort Study, medRxiv, 2020.

Y. Kuang, S. He, S. Lin, R. Zhu, R. Zhou, J. Wang, et al., Clinical Characteristics and CT Manifestations of 143 Hospitalized Patients with 2019 Novel Coronavirus Disease (COVID-19) outside Wuhan: A Multi-Center Study in Taizhou City, 2020. Zhejiang, China. Zhejiang, China (3/14/2020).

Y. Kuang, H. Zhang, R. Zhou, S. Lin, M. Lin, J. Wang, et al., Epidemiological and Clinical Characteristics of 944 Cases of 2019 Novel Coronavirus Infection of Non-COVID-19 Exporting City, 2020. Zhejiang, China. Zhejiang, China (February 20, 2020).

W. Chen, C. Chen, L. Huang, K. Ye, L. Lv, Z. Qin, et al., Clinical Characteristics of 85 Patients Infected by SARS-CoV-2 in Guangxi, 2020. China.

X. Luo, H. Xia, W. Yang, B. Wang, T. Guo, J. Xiong, et al., Characteristics of Patients with COVID-19 during Epidemic Ongoing Outbreak in Wuhan, China, MedRxiv, 2020.

X. Han, Y. Gao, N. Jiang, Y. Chen, O. Alwalid, X. Zhang, et al., Novel coronavirus pneumonia (COVID-19) progression course in 17 discharged patients: comparison of clinical and thin-section CT features during recovery, Clin. Infect. Dis. (2020).

X. Li, L. Wang, S. Yan, F. Yang, L. Xiang, J. Zhu, et al., Clinical characteristics of 25 death cases with COVID-19: a retrospective review of medical records in a single medical center, Wuhan, China, Int. J. Infect. Dis. (2020).

Y. Deng, W. Liu, K. Liu, Y.-Y. Fang, J. Shang, K. Wang, et al., Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study, Chin. Med. J. (2020).

J. Hou, X. Wan, Q. Shen, Y. Leng, Z. Xia, B. Zhao, et al., Epidemiologic and Clinical Characteristics of Surgical Patients Infected with COVID-19 in Wuhan, 2020. Available at: SSRN 3550044.

Y. Liu, H. Chen, K. Tang, Y. Guo, Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy, J. Infect. (2020).

Y. Liu, W. Sun, J. Li, L. Chen, Y. Wang, L. Zhang, et al., Clinical Features and Progression of Acute Respiratory Distress Syndrome in Coronavirus Disease 2019, medRxiv, 2020.

Y. Huang, H. Zhou, R. Yang, Y. Xu, X. Feng, P. Gong, Clinical Characteristics of 36 Non-survivors with COVID-19 in Wuhan, China, medRxiv, 2020.

Y. Wen, L. Wei, Y. Li, X. Tang, S. Feng, K. Leung, et al., Epidemiological and Clinical Characteristics of COVID-19 in Shenzhen, the Largest Migrant City of China, medRxiv, 2020.

Y. Wu, W. Guo, H. Liu, B. Qi, K. Liang, B. Xu, et al., Clinical Outcomes of 402 Patients with COVID-2019 from a Single Center in Wuhan, China, medRxiv, 2020.

Y. Wang, C. Dong, Y. Hu, C. Li, Q. Ren, X. Zhang, et al., Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study, Radiology (2020) 200843.

Z. Lu, M. Chen, Y. Fan, X. Wu, L. Zhang, T. Guo, Clinical Characteristics and Risk Factors for Fatal Outcome in Patients with 2019-Coronavirus Infected Disease (COVID-19) in Wuhan, 2020. Available at: SSRN 3546069.

Z. Hu, C. Song, C. Xu, G. Jin, Y. Chen, X. Xu, et al., Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. (2020) 1–6.

P. Yu, J. Zhu, Z. Zhang, Y. Han, A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period, J. Infect. Dis. (2020).

A. Aminian, S. Safari, A. Razeghian-Jahromi, M. Ghorbani, C.P. Delaney, COVID-19 outbreak and surgical practice: unexpected fatality in perioperative period, Ann. Surg. 10 (2020).

H. Yu, J. Shao, Y. Guo, Y. Xiang, C. Sun, H.-T. Zhang, et al., Data-driven discovery of clinical routes for severity detection in COVID-19 pediatric cases, medRxiv (2020).

M. Million, J.-C. Lagier, P. Gautret, P. Colson, P.-E. Fournier, S. Amrane, et al., Full-length Title: Early Treatment of COVID-19 Patients with Hydroxychloroquine and Azithromycin: A Retrospective Analysis of 1061 Cases in Marseille, France. Travel Medicine and Infectious Disease, 2020, p. 101738.