Perspective

Abnormal vaginal discharge among women of reproductive age in sub-Saharan Africa: the need for a paradigm shift from a syndromic approach to specific pathogen identification and directed treatment

Grant Murewanhema a, Enos Moyo a, Malizgani Mhango a, Itai Chitungo a, Perseverance Moyo a, Godfrey Musuka b, Mathias Dzobo a, Tafadzwa Dzinamarira b,c

a University of Zimbabwe, Harare, Zimbabwe
b ICAP at Columbia University, Harare, Zimbabwe

c Corresponding author: Tafadzwa Dzinamarira, ICAP at Columbia University, Harare, Zimbabwe
E-mail address: td2581@cumc.columbia.edu (T. Dzinamarira).

https://doi.org/10.1016/j.ijregi.2022.10.006
Received 15 September 2022; Received in revised form 26 October 2022; Accepted 26 October 2022
2772-7076/© 2022 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

A R T I C L E I N F O
Keywords:
Vaginal discharge
Treatment Decision-making
Sub Saharan Africa

A B S T R A C T

Background: An abnormal vaginal discharge is a frequent manifestation of reproductive tract infections, including sexually transmitted infections (STIs) and vulvovaginal candidiasis. It is also a manifestation of bacterial vaginosis, which has a prevalence of up to 50% among women of reproductive age. Reproductive tract infections are associated with a range of reproductive health challenges and increase the risk of HIV acquisition.

Methods: This study was performed to critically review and discuss the current diagnostic and treatment approaches to abnormal vaginal discharge among women of reproductive age in sub-Saharan Africa, and to call for a paradigm shift from the syndromic approach to specific pathogen identification and directed antimicrobial therapy.

Discussion: Young women have the highest incidence of HIV infection in sub-Saharan Africa. Countries in sub-Saharan Africa where the prevalence of both STIs and bacterial vaginosis is very high have been employing a syndromic approach for the treatment of abnormal vaginal discharge since around 1984. However, the syndromic approach has several limitations, with the potential to miss infections, over-diagnose and over-treat STIs, and propagate antimicrobial resistance, which is one of the greatest global health challenges of the 21st century.

Conclusions: The low to middle-income countries of sub-Saharan Africa must innovate and leverage improved diagnostics to capacitiate primary health care and other levels for point-of-care diagnostic testing, in order to provide an immediate diagnosis and treatment for women with an abnormal vaginal discharge.

1. Introduction

An abnormal vaginal discharge is a frequent symptom of reproductive tract infection in women of reproductive age. Reproductive tract infections encompass sexually transmitted infections (STIs), vulvovaginal candidiasis, and bacterial vaginosis (BV). STIs remain a significant global health challenge; they are more prevalent in developing countries, and even more so in sub-Saharan Africa (SSA) (Torrone et al., 2018). The World Health Organization (WHO) estimates a daily incidence of one million STIs, with the majority in SSA (WHO, 2022). In 2020, there were an estimated 374 million new infections with one of four STIs, namely Chlamydia trachomatis (129 million), Neisseria gonorrhoeae (82 million), Treponema pallidum subspecies pallidum (syphilis; 7.1 million), and Trichomonas vaginalis (TV) (156 million) (WHO, 2022). N. gonorrhoeae, C. trachomatis, and T. vaginalis cause an abnormal vaginal discharge. Vulvovaginal candidiasis is caused by Candida species, mainly Candida albicans. Bacterial vaginosis (BV) is the most prevalent microbiological cause of abnormal vaginal discharge (Majigo et al., 2021; Cleveland Clinic, 2022). It is a microbial dysbiosis of the female genital tract with a prevalence of 30–50% among women of reproductive age (Abdullateef et al., 2017; Bayigga et al., 2019). Various intravaginal practices by women of reproductive age in SSA explain the high prevalence of BV in this population (Majigo et al., 2021).

STIs have short- and long-term adverse reproductive health sequelae, can be transmitted vertically to the foetus, and can spread to uninfected partners, propagating long chains of transmission where multiple sexual partners are involved. Ulcerative and non-ulcerative STIs are significant risk factors for HIV infection, with a relative risk (RR) of 2.0–23.5 (Fleming & Wasserheit, 1999). BV is linked to miscarriage, preterm labour, preterm prelabour rupture of the membranes, and post-partum endometritis (Bayigga et al., 2019), and is a risk factor for HIV...
acquisition (Bayiggia et al., 2019). In a meta-analysis, BV was significantly associated with an increased risk of HIV acquisition (RR 1.6, 95% confidence interval 1.2–2.1) (Atashili et al., 2008). Correct identification and treatment of the aetiology of a vaginal discharge is critical for HIV prevention, vaginal health, and short- and long-term reproductive health. Physiological vaginal discharges do not require antimicrobial chemotherapy. Cervical and endometrial malignancies can cause an abnormal vaginal discharge and infectious aetiology may be suspected, leading to irrational antibiotic prescription.

The current treatment approaches for an abnormal vaginal discharge in SSA, based on syndromic approaches, are insufficient and no longer suitable. This study was performed to critically review the different approaches to diagnosis and propose a paradigm shift towards pathogen detection and directed therapy. It is argued that this will lead to effective treatment, reduce antimicrobial resistance (AMR), and raise early suspicion of malignancies.

2. The syndromic approach to the treatment of abnormal vaginal discharge

Syndromic or laboratory-based approaches are utilized in diagnosing STIs (Wi et al., 2019). The laboratory-based approach is the best; however, it is not always feasible in the low to middle-income countries (LMICs) of SSA (Garrett et al., 2018). Using this strategy can lead to treatment delays due to limited access to laboratory tests. Some women may be lost to follow-up before receiving care. As testing is expensive, women in SSA may not be able to afford to pay (Mayaud & Mabey, 2004). In 1984, the WHO established a syndromic approach to STIs for high-prevalence areas lacking diagnostic facilities, skilled healthcare personnel, and transport facilities, in order to address the challenges of the laboratory-based method. Many countries in SSA still utilize this strategy as standard of care (WHO, 2015).

The syndromic approach is premised upon the identification of recurrent clusters of clinical symptoms and easily recognizable signs. According to the signs and symptoms, the infections are categorized into syndromes such as ‘vaginal discharge syndrome’ and ‘genital ulcer syndrome’ (WHO, 2005). Flowcharts are employed for the diagnosis and to select the best intervention to address all significant causes of the syndrome (WHO/UNAIDS, 1999). This is fairly accurate when identifying STIs in symptomatic patients. It caters for mixed infections, common in SSA. The approach is economical, can be used at the primary healthcare level, requires fewer referrals to specialized facilities, and eliminates laboratory fees. It standardizes diagnosis, treatment, referral, and reporting, allowing for better programming and surveillance (Bosu, 1999). Treatment begins at first contact, preventing delays and losses to follow-up. In addition to breaking chains of transmission and reducing complications from untreated infections, this improves patient satisfaction. When the effectiveness of the drugs chosen is sufficient and properly monitored, this approach is linked to high cure rates (Altini & Coetzee, 2005).

However, there are several drawbacks. Significant proportions of the population have asymptomatic infections, hence the approach cannot be utilized in these (Yin et al., 2008). A syndromic diagnosis cannot reliably predict N. gonorrhoeae and C. trachomatis infections. Most women with a vaginal discharge lack these pathogens (Wi et al., 2019). Many STI diagnoses are missed when using a syndromic approach, hence the need for laboratory tests (Otieno et al., 2014). Syndromic approaches may lead to over-diagnosis and over-treatment, possibly increasing the burden of AMR, vaginal dysbiosis, and drug costs (Moges et al., 2013). Furthermore, treatment must be based on an accurate aetiological diagnosis due to the rising incidence of AMR in N. gonorrhoeae and the limited number of available treatment options (Garrett et al., 2018).

Over-treatment of the women’s partners, some of them without STIs, can have social and physical repercussions for the woman (Altini & Coetzee, 2005).

3. Current laboratory techniques for investigating abnormal vaginal discharge

Laboratory tests can identify the causative organisms of a discharge (Otieno et al., 2014). The Amsel criteria are used to diagnose BV clinically, while the Nugent score reads vaginal smears. The Nugent score has been used in research settings for reproducibility. BV is diagnosed on a Gram-stained smear by scoring the vaginal bacteria morphotypes (ISON & Hay, 2002). After interpreting the smear, the bacteria counts are summed, and the score is used to diagnose BV in a range of 0 to 10. There is a good correlation between the rapid clinical Amsel criteria and the laboratory Nugent score, as shown in Table 1.

Urogenital specimens are used to detect N. gonorrhoeae using culture and nucleic acid amplification tests (NAATs) (Papp et al., 2014). N. gonorrhoeae infections can also be diagnosed using stained urogenital tissues. Antigen tests and serology to detect antibodies have limited sensitivity and specificity (Meyer & Buder, 2020). Gram-stained smears can be used for point-of-care (POC) diagnostics in low-resource situations. Antimicrobial susceptibility testing is only possible through culture. N. gonorrhoeae is fastidious and cannot survive dehydration, hence must be inoculated immediately after collection. It needs selective and non-selective media, high humidity, a pH of 6.75 to 7.5, and a 4–6% carbon dioxide environment (Visser et al., 2020).

The NAAT is the most sensitive N. gonorrhoeae laboratory test and is superior to culture (Papp et al., 2014; Bromhead et al., 2013; Cook et al., 2005). NAATs are more sensitive in testing N. gonorrhoeae because live bacteria are independent (Papp et al., 2014). The NAAT is preferable to cultures because it can employ any sample type without live microorganisms. It requires fewer hands than culture and may be automated, thereby increasing the throughput (Cheng & Kirby, 2014). The N. gonorrhoeae NAAT can be performed together with C. trachomatis (Papp et al., 2014). Despite being sensitive, the NAAT has reduced accuracy due to genetic variation, the genomic plasticity of N. gonorrhoeae species, and the loss or modification of target regions (ISON & Hay, 2002). Specificity may be reduced by cross-reactive non-pathogenic Neisseria species, as well as the horizontal transfer of N. gonorrhoeae gene sequence to commensal Neisseria (Frosch & Meyer, 1992).

Table 2 shows various statistics of the methods used in the laboratory diagnosis of N. gonorrhoeae.

C. trachomatis is labile and hence caution is required when transferring and storing samples (Chernesky, 2005). The laboratory detection of C. trachomatis employs the use of NAATs, culture, and antibody and antigen tests.

C. albicans spores are present as normal flora in over 20% of women of reproductive age. Wet mount microscopic examination is costly and time-consuming. Yeast microscopy has a 50–60% sensitivity. Chromogenic media recognize C. albicans following incubation (Eckert et al., 1998).

T. vaginalis is identified by microscopy of vaginal secretions mixed with saline. Pear-shaped, tumbling trichomonads are 100% specific for T. vaginalis. Even with an experienced microscopist and quick specimen evaluation, direct microscopy is less sensitive than molecular assays. Liquid-based Pap tests are more accurate for microscopic examination, with sensitivity of 60–90% and specificity of 98–100%. Liquid culture T. vaginalis amplification improves sensitivity over direct microscopy. The most common culture is modified Diamond medium. Compared to molecular tests, culture sensitivity ranges from 44% to 75% for T. vaginalis detection. Based on the visualization of viable trichomonads, culture is 100% specific for detecting T. vaginalis (Patil et al., 2012). As with other STIs, the NAAT provides more sensitive and specific new methods for diagnosing T. vaginalis. The NAAT is more sensitive than non-amplified tests and preserves nucleic acid material but not live organisms. The sensitivity of the NAAT ranges from 76% to 100%, making it acceptable for screening asymptomatic patients (Andrea & Chapin, 2011). More details are presented in Supplementary Material File S1.
4. Leveraging on improved diagnostics to shift from a syndromic approach to specific pathogen-directed treatment

The increasing availability of POC tests and widespread availability of cartridge-based PCR assays imply that even the most remote settings can have improved access to diagnostics with a fairly rapid turnover of results. In some countries, the COVID-19 pandemic saw the decentralization of laboratory testing with real-time PCR and GeneXpert to lower levels of care. A study conducted in several countries in SSA, including South Africa, Rwanda, Zimbabwe, Nigeria, and Ethiopia, revealed laboratory capacity enhancement during the COVID-19 pandemic. The existing laboratories were expanded, while new ones were created. There was an expanded decentralization of laboratory capacity, and new capacities in existing laboratories, such as molecular biology, were added. Additional laboratory staff were also trained during the pandemic (Binder et al., 2021). As an example, Zimbabwe, which has one National Microbiology Reference Laboratory, decentralized diagnostic testing for COVID-19 from this single laboratory to provincial and district laboratories, leveraging on existing human resources and platforms. This became a game-changer in active COVID-19 surveillance, significantly improving the country’s testing capacity. POC testing can result in task-shifting of testing for STIs from laboratory scientists to nurses. A systematic review conducted in three continents revealed that if nurses are trained with the support of laboratory professionals, they can perform good-quality POC testing (Liikanen & Lehto, 2013). During the COVID-19 pandemic, the Ministry of Health and Child Care of Zimbabwe adopted task-shifting, based on WHO guidance, and capacitated nurses, microbiologists, and laboratory personnel at all levels to perform POC COVID-19 testing. Nurses in Zimbabwe have traditionally been capacitated to perform simple POC tests for malaria, syphilis, and HIV among other examples, and in a country that has been hit by a massive brain drain, this has allowed efficient use of the scarce human resources. SSA must leverage improved diagnostics arising from the COVID-19 pandemic to increase access to STI testing for the population and fight against irrational prescribing of antibiotics and widespread AMR.

A community-based strategy will increase diagnostic sensitivity and specificity in LMICs, since most services are self-funded. Clinicians can perform POC pH tests, employ potassium hydroxide (KOH), and microscopically check the vaginal fluid for clue cells, motile trichomonads, yeast buds, and pseudohyphae (Hillier et al., 2021). A study conducted among healthcare workers in SSA who had been trained in POC testing revealed that it was feasible to perform POC testing for STIs. However, some specimens may need to be sent to laboratories for confirmation of the diagnoses as a quality control measure (Parkes-Ratanshi et al., 2019). Regarding Candida infections, a pH >4.5 suggests BV or trichomoniasis. BV is diagnosed when there is a grey–white discharge, vaginal fluid pH >4.5, a positive whiff test, and clue cells on wet mount microscopy with >20% of total epithelial cells. Side room microscopic screening for motile T. vaginalis using a self-collected swab within 10 minutes offers a sensitivity of 45–60%, depending on experience. Confirmation is by using a fast antibody test, which boosts sensitivity to 94% and specificity to 95% (Sherrard et al., 2018). Candidiasis appears as budding yeast and pseudohyphae. Rapid immunochromatography strips can be used to detect N. gonorrhoeae, T. vaginalis, and C. trachomatis antibodies if resources permit. Undiagnosed cases should be referred for NAAT or examined for non-infectious reasons.

In a 2016 meta-analysis, microscopy screening for T. vaginalis and BV improved diagnostic accuracy, leading to better treatment, fewer misdiagnoses, and less overtreatment and missed treatment (Zemouri et al., 2016). Due to limited sensitivity and specificity and the impact of misinterpretation on relationship dynamics, it is necessary to apply risk assessment to combined syndromic and POC microscopy methods. Specific pathogen identification is ideal and can be facilitated by these POC microscopy methods; however, this will not always be possible in all settings. In low STI prevalence settings, the present authors strongly recommend leveraging the already available PCR platforms to perform laboratory-based NAATs.

5. Conclusions

The treatment of abnormal vaginal discharge in the LMICs of SSA has been based mainly on a syndromic approach; however, recent changes in the aetiology, antimicrobial susceptibility, and discoveries such as the association of STIs and BV with HIV acquisition among women of reproductive age, make correct pathogen identification and treatment critical. This would also be associated with a decreased incidence of AMR. The countries of SSA must work towards a shift from a syndromic approach to specific pathogen identification and directed treatment in order to effectively treat STIs and reduce the significant morbidity that results from them.

Declarations

None.

Funding

This study was not funded.

Table 1

	Sensitivity	Specificity	PPV	NPV	Reference
Ansell criteria	50%	98.2%	87.5%	88.8%	(Blujel et al., 2021)
Nugent score	65.6%	97.3%	80.8%	94.2%	(Chajaremont et al., 2004)

PPV, positive predictive value; NPV, negative predictive value.

Table 2

	Sensitivity	Specificity	PPV	Reference
Gram stain	95%	97%	-	(Menforth et al., 2018)
direct microscopy				(Thorley & Radcliffe, 2015)
Gram stain of	40–60%	-	-	
endocervical swabs				
Neisseria	85–95%	100%	-	(Meyer & Buder, 2020)
gonorrhoeae				
culture				
MALDI-TOF	-	-	99.3%	(Carannante et al., 2015; Buchanan et al., 2016)
NAAT	95–98%	95–98%	-	(Papp et al., 2014)

PPV, positive predictive value; MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight; NAAT, nucleic acid amplification test.
References

Abdulrahed RM, Jiayi MA, Abayomi F, Adeniran AS, Idris H. Bacterial vaginosis: Preva-
ience and associated risk factors among non-pregnant women of reproductive age
attending a Nigerian tertiary hospital. Malawi Med J 2017;29(4):290–3.

Altini L, Goetze D. Syndromic management of sexually transmitted infections. CME
2013;25(2):56–6.

Andrzej A, Chapkin C. Comparison of Aptima Trichomonal vaginosis Transcription-Mediated
Amplification Assay and BD Affirm VP III for Detection of T. vaginalis in Symptomatic
Women: Performance Parameters and Epidemiological Implications. J Clin Microbiol
2011;49(5):1866–9.

Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV
acquisition: a meta-analysis of published studies. AIDS 2008;22(12):1493–501.

Bayyiga L, Kasepe DP, DJ Anderson, Sekikubo M, Nakanjako D. Diversity of vaginal mi-
crobialis in sub-Saharan Africa and its effects on HIV transmission and prevention.
Am J Obstet Gynecol 2019;220(2):155–66.

Bhujel R, Mishra SK, Yadav SK, Bista KD, Parajuli K. Comparative study of Amsel’s criteria
and Nugent scoring for diagnosis of bacterial vaginosis in a tertiary care hospital,
Nepal. BMC Infect Dis 2021;21(1):825. doi:10.1186/s12879-021-06562-1.

Binder S, Ario AR, Hien H, Mayet N, Jani IV, Ikhwezu C, et al. African National Public
Health Institutes Responses to COVID-19: Innovations, Systems Changes, and Chal-
lenges. Health Secur. 2021;19(5). doi:10.1089/hsc.2021.0094.

Bosu W. Syndromic management of sexually transmitted diseases: is it rational or scien-
tific? Trop Med Int Health 1999;4:114–19.

Bromhead C, Miller A, Jones M, Whitley D. Comparison of the cobas 4800 CT/NG Test with
Culture for Detecting Neisseria gonorrhoeae in Genital and Nongenital Specimens in a
Low-Prevalence Population in New Zealand. J Clin Microbiol 2013;51(5):1505–9.

Buchanan R, Ball D, Dolphin H, Dave J. Matrix-assisted laser desorption-ionization time-of-
flight mass spectrometry for the identification of Neisseria gonorrhoeae. Clin Microbiol
 Infect 2016;22(19):815. doi:10.1016/j.cmi.2016.06.010.

Carannante A, De Carolis E, Vacca P, Vella A, Vocale C, De Francesco MA, et al. Eval-
uation of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry
(MALDI-TOF MS) for identification and clustering of Neisseria gonorrhoeae. BMC
 Microbiol 2015;15(1):274. doi:10.1186/s12866-015-0480-y.

ChaijareonKIT, Sirmak K, Burirachinruangan D, Kirwat O. Accuracy of Nugent’s score
and each Amsel’s criteria in the diagnosis of bacterial vaginosis. J Med Assoc Thai
2004;87(11):1270–4.

Cheng A, Kirby J. Evaluation of the Holocig gen-probe PANTHER, APTIMA Combo 2 assay
in a tertiary care teaching hospital. Am J Clin Pathol 2014;141(3):397–403.

Chernsky M. The laboratory diagnosis of Chlamydia trachomatis infections. Can J Infect
diseases Microbiol 2005;16(1):29–44.

Cleveland Clinic. Bacterial Vaginosis. Cleveland Clinic. 2022. Available from: https://my.clevelandclinic.org/health/diseases/3963-bacterial-vaginosis,

Cook RL, Hutchinson S, Østergaard I, Braithwaite RS, Ness RB. Systematic review: nonin-
vasive testing for Chlamydia trachomatis and Neisseria gonorrhoeae. Ann Intern Med
2005;142(11):919–26.

Eckert LO, Hayes SE, Stevens CE, Koutsy LA, Eschenbach DA, Holmes KK. Vulvovagi-
nal candidiasis: clinical manifestations, risk factors, management algorithm. Obstet
Gynecol 1998;92(5):757–65.

Fleming D, Wasserheit J. From epidemiological synergy to public health policy and prac-
tice: the contribution of other sexually transmitted diseases to sexual transmission of
HIV infection. Sex Transm Infect 1999;75(1):3–7.

Frosch M, Meyer T. Transformation-mediated exchange of virulence determinants by
cocultivation of pathogenic Neisseriae. FEMS Microbiol Lett 1992;100(3):345–9.