THE KAKEYA MAXIMAL OPERATOR ON THE VARIABLE LEBESGUE SPACES

HIROKI SAITO AND HITOSHI TANAKA

Abstract. We shall verify the Kakeya (Nikodym) maximal operator K_N, $N \gg 1$, is bounded on the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^2)$ when the exponent function $p(\cdot)$ is N-modified locally log-Hölder continuous and log-Hölder continuous at infinity.

1. Introduction

The purpose of this paper is to investigate the boundedness of the Kakeya (Nikodym) maximal operator on the variable Lebesgue spaces. Given a measurable function $p(\cdot) : \mathbb{R}^n \to [1, \infty)$, we define the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$ to be the set of measurable functions such that for some $\lambda > 0$,

$$
\rho_{p(\cdot)}(f/\lambda) = \int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} \, dx < \infty.
$$

$L^{p(\cdot)}(\mathbb{R}^n)$ is a Banach space when equipped with the norm

$$
\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} = \inf\{\lambda > 0 : \rho_{p(\cdot)}(f/\lambda) \leq 1\}.
$$

The variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$ generalizes the classical Lebesgue space $L^p(\mathbb{R}^n)$: if $p(\cdot) \equiv p_0$, then $L^{p(\cdot)}(\mathbb{R}^n) = L^{p_0}(\mathbb{R}^n)$. Variable Lebesgue spaces have been studied in the past twenty years (see [1, 3, 4, 6, 7, 8, 9, 13, 14, 15]). For a locally integrable function f on \mathbb{R}^n the Hardy-Littlewood maximal operator M is defined by

$$
Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \, dy,
$$

where we have used Q to denote the family of all cubes in \mathbb{R}^n with sides parallel to the coordinate axes and $\int_Q f(x) \, dx$ to denote the usual integral average of f over Q. Let $\mathcal{P}(\mathbb{R}^n)$ be the class of all functions $p(\cdot)$ for which the Hardy-Littlewood maximal operator M is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$. By the classical Hardy-Littlewood maximal theorem, any constant function $p(\cdot) \equiv p_0$ with $1 < p_0 < \infty$ belongs to $\mathcal{P}(\mathbb{R}^n)$. In [7], L. Diening showed that $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ if and only if there exists a positive constant c such that for any family of pairwise disjoint cubes π and any $f \in L^{p(\cdot)}(\mathbb{R}^n)$,

$$
\left\| \sum_{Q \in \pi} \frac{1}{|Q|} \int_Q |f(y)| \, dy \chi_Q \right\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq c \|f\|_{L^{p(\cdot)}(\mathbb{R}^n)},
$$

where χ_E stands for the characteristic function of a measurable set $E \subset \mathbb{R}^n$. This result implies, for example, that $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ if and only if $p'(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, where $p'(x) = \frac{p(x)}{p(x) - 1}$. However, since this result is very general, some simple sufficient conditions for which $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ has

2010 Mathematics Subject Classification. 42B25, 46E30.

Key words and phrases. Nikodym maximal operator; Kakeya maximal operator; variable Lebesgue spaces.

The second author is supported by the FMSP program at Graduate School of Mathematical Sciences, the University of Tokyo, and Grant-in-Aid for Scientific Research (C) (No. 23540187), the Japan Society for the Promotion of Science.
been studied by many authors (see [6, 3, 14, 15]). In [5], D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer give a new and simpler proof of the boundedness of the Hardy-Littlewood maximal operator M on variable Lebesgue space $L^{p(·)}(\mathbb{R}^n)$.

Theorem 1.3. We have the following theorem.

Let $N \gg 1$ and $0 < p_− < p_+ < \infty$. Suppose that $p(·)$ is bounded from $L^{p(·)}(\mathbb{R}^2)$ to $L^{p(·)}(\mathbb{R}^2)$ and that $p(·)$ is continuous. Then there exist positive constants c such that

$$
K_N \|f\|_{L^{p(·)}(\mathbb{R}^2)} \leq CN^c.
$$

Thus, in the framework of the variable Lebesgue spaces, we are interested in a small positive constant c such that N^c bounds from above $\|K_N\|_{L^{p(·)}(\mathbb{R}^2) \rightarrow L^{p(·)}(\mathbb{R}^2)}$.

The main result of this paper is the following (Theorem 1.3). The technique of the proof of this theorem is due to [3], which is used the machinery of Calderón-Zygmund cubes. We apply this technique to the rectangles in \mathcal{B}_N. For the precise estimate we need the following notion.
The letter \(C \) will be used for constants that may change from one occurrence to another. Constants with subscripts, such as \(C_1, C_2 \), do not change in different occurrences.

2. Proof of Theorem 1.3

The following argument is due to T. Kopaliani [12] (see also [11]). Recall that the conjugate function \(p'(x) \) is defined by \(\frac{1}{p'(x)} + \frac{1}{p(x)} = 1 \). The following generalized Hölder inequality and a duality relation can be found in [13]:

\[
\int_{\mathbb{R}^2} |f(x)g(x)| \, dx \leq 2\|f\|_{p()}\|g\|_{p'()},
\]

\[
\|f\|_{p()} \leq \sup_{\|g\|_{p'(\cdot)} \leq 1} \int_{\mathbb{R}^2} |f(x)g(x)| \, dx.
\]

Suppose that \(K_N \) is bounded from \(L^{p(\cdot)}(\mathbb{R}^2) \) to \(L^{p(\cdot)}(\mathbb{R}^2) \). Then for every rectangle \(R \in \mathcal{B}_N \) we have

\[
\|K_N\|_{L^{p(\cdot)} \to L^{p(\cdot)}} \geq \|K_N f\|_{p()} \geq \left\| \int_R f(y) \, d\chi_R \right\|_{p(\cdot)} = \int_R f(y) \, d\|\chi_R\|_{p(\cdot)}
\]

for all nonnegative \(f \) with \(\|f\|_{p(\cdot)} \leq 1 \). Taking supremum all such \(f \), we have

\[
\|K_N\|_{L^{p(\cdot)} \to L^{p(\cdot)}} \geq 1 \left\| \chi_R \right\|_{p'(\cdot)} \|\chi_R\|_{p(\cdot)}
\]

for all \(R \in \mathcal{B}_N \), where \(|R| \) denotes the area of the rectangle \(R \).

Suppose that \(p(\cdot) \) is continuous and is not constant. Then we can find two closed squares \(B_1 \) and \(B_2 \) in \(\mathbb{R}^2 \) with \(|B_1|, |B_2| < 1 \), such that

\[
p_+(B_1) < p_-(B_2).
\]
Without loss of generality we may assume that
\[B_1 = [0, s] \times [0, s] \text{ and } B_2 = [0, s] \times [t - s, t] \text{ for some } t > s > 0. \]

We take \(N \) with \(t/N < s \) and let \(R = [0, t/N] \times [0, t] \). Then we have \(R \in \mathcal{B}_N \) and
\[|R \cap B_1| = |R \cap B_2| = \frac{st}{N}. \]

Observe now that the following embeddings hold:
\[L^{p(\cdot)}(B_2) \hookrightarrow L^{p^{-1}(B_2)}(B_2), \]
\[L^{p(\cdot)}(B_1) \hookrightarrow L^{(p_+(B_1))'}(B_1), \]
where \(\frac{1}{(p_+(B_1))} + \frac{1}{p_+(B_1)} = 1 \). It follows that
\[\frac{1}{|R|} \|\chi_R\|_{p(\cdot)} \|\chi_{R \cap B_2}\|_{L^{p(\cdot)}(B_2)} \|\chi_{R \cap B_1}\|_{L^{p(\cdot)}(B_1)} \geq \frac{1}{|R|} \|\chi_{R \cap B_2}\|_{L^{p^{-1}(B_2)}(B_2)} \|\chi_{R \cap B_1}\|_{L^{(p_+(B_1))'}(B_1)} \]
\[= |R|^{-1} \cdot |R \cap B_2|^{-1} \cdot |R \cap B_1| \cdot t^{-2} \cdot (st)^{1 + \frac{1}{p_+(B_2)} - \frac{1}{p_+(B_1)}} \cdot N^{cN} \]
where we have used \(|B_1|, |B_2| < 1 \). Since by (2.2) \(p_+(B_1) - \frac{1}{p_+(B_2)} > 0 \), we conclude by (2.1) that \(\|K_N\|_{L^{p(\cdot)} \rightarrow L^{p(\cdot)}} \) has a lower bound \(N^\varepsilon \) with \(\varepsilon > 0 \).

3. Proof of Theorem 1.5

In what follows we shall prove Theorem 1.5. We need two lemmas.

Lemma 3.1. Let \(N \gg 1 \). Suppose that \(p(\cdot) \) is \(N \)-modified locally log-Hölder continuous. Then, for any rectangle \(R \in \mathcal{B}_N \),
\[|R|^{p_+(\cdot) - p_-(\cdot)} \leq N^{cN}. \]

Proof. When \(|R| \geq 1 \), there is nothing to prove. Suppose that \(|R| < 1 \). Since \(p(\cdot) \) is continuous, there exist \(x, y \in R \) such that \(p(x) = p_-(R) \) and \(p(y) = p_+(R) \). It follows that
\[|R|^{p_+(\cdot) - p_-(\cdot)} = |R|^{p(y) - p(x)} \leq \left(\frac{|x - y|^2}{N} \right)^{\frac{1}{p(y) - p(x)}} \]
\[= \exp \left\{ \left(\frac{1}{p(y)} - \frac{1}{p(x)} \right) \log \left(\frac{|x - y|^2}{N} \right) \right\} = \exp \left\{ \left(\frac{1}{p(x)} - \frac{1}{p(y)} \right) \log \left(\frac{N}{|x - y|^2} \right) \right\} \]
\[\leq \exp \left\{ \log (N^{cN}) \right\} = N^{cN}, \]
where we have used \(|x - y| < \sqrt{N} \) and the \(N \)-modified local log-Hölder continuity of \(p(\cdot) \). \(\square \)

Lemma 3.2 ([3, Lemma 2.4]). Suppose that \(p(\cdot) \) is log-Hölder continuous at infinity. Let \(P(x) = (e + |x|)^{-M} \), \(M \geq 2 \). Then there exists a constant \(c \) depending on \(M \), \(p(\infty) \) and \(e_\infty \) such that given any set \(E \) and any function \(F \) such that \(0 \leq F(y) \leq 1 \), \(y \in E \),
\[\int_E F(y)^{p(y)} \, dy \leq c \int_E F(y)^{p(\infty)} \, dy + c \int_E P(y)^{p(\infty)} \, dy, \]
\[\int_E F(y)^{p(\infty)} \, dy \leq c \int_E F(y)^{p(y)} \, dy + c \int_E P(y)^{p(\infty)} \, dy. \]
The estimate for f. We shall verify that, if $\lambda_1 = C_1^{p} - C_2$, then

\begin{equation}
\rho_p(\frac{T_k f_1}{\lambda_1}) = \int_{\mathbb{R}^2} \left(\frac{T_k f_1(x)}{\lambda_1} \right)^{p(x)} \, dx \leq C.
\end{equation}

It follows from H"older’s inequality that

\[
\rho_p(\frac{T_k f_1}{\lambda_1}) \\
= \sum_{Q \in \mathcal{D}_k} \int_Q \left(\frac{1}{\lambda_1} \right)^{p(x)} \left(\int_{R(Q)} f_1(y) \, dy \right)^{p(x)} \, dx \\
\leq \sum_{Q \in \mathcal{D}_k} \int_Q \left(\frac{1}{\lambda_1} \right)^{p(x)} \left(\int_{R(Q)} f_1(y) \frac{p(p-R(Q))}{p} \, dy \right)^{\frac{p}{p-R(Q)}} \, dx \\
= \sum_{Q \in \mathcal{D}_k} \int_Q \left(\frac{1}{\lambda_1} \right)^{p(x)} \left(\frac{1}{|R(Q)|} \right)^{\frac{p}{p-R(Q)}} \left(\int_{R(Q)} f_1(y) \frac{p(p-R(Q))}{p} \, dy \right)^{\frac{p}{p-R(Q)}} \, dx.
\]

There holds, for $|R(Q)| \geq 1$,

\[
\left(\frac{1}{C_1^{p}} \right)^{p(x)} \left(\frac{1}{|R(Q)|} \right)^{\frac{p(p-R(Q))}{p-R(Q)}} \leq \left(\frac{1}{|R(Q)|} \right)^{p}.
\]
where we have used $C_1 \geq 1$ and $\frac{p(x)}{p_{-}(R(Q))} \geq 1$. Also, there holds, for $|R(Q)| < 1$,

$$
\left(\frac{1}{C_1^p} \right)^{p(x)} \left(\frac{1}{|R(Q)|} \right)^{p_{-}(R(Q))} \leq \left(\frac{1}{|R(Q)|} \right)^{p_{-}(p(x))} \left(\frac{1}{|R(Q)|} \right)^{p_{-}(R(Q))} = \left(\frac{1}{|R(Q)|} \right)^{p_{-}(p(x)) - p_{-}} \left(\frac{1}{|R(Q)|} \right)^{p_{-}} \leq \left(\frac{1}{|R(Q)|} \right)^{p_{-}},
$$

where we have used

$$
C_1 \geq |R(Q)|^{\frac{1}{p_{+}(R(Q))} - \frac{1}{p_{-}(R(Q))}} \text{ and } \frac{p(x)}{p_{+}(R(Q))} \leq 1.
$$

We see that by the definition of f_1

$$
\left(\int_{R(Q)} f_1(y) \frac{p_{-}(R(Q))}{p_{-}(y)} dy \right)^{p_{-}(p(x))} \leq \left(\int_{R(Q)} f_1(y)^{p(y)} dy \right)^{p_{-}(p(x))} \left(\int_{R(Q)} f_1(y)^{p(y)} dy \right)^{p_{-}} \leq \left(\int_{R(Q)} f_1(y)^{p(y)} dy \right)^{p_{-}} \leq \left(\int_{R(Q)} f_1(y)^{p(y)} dy \right)^{p_{-}} \leq 1.
$$

These yield

$$
\rho \left(\frac{T_k f_1}{\lambda_1} \right) \leq \sum_{Q \in D_k} \int_Q \left(\frac{1}{C_2} \right)^{p(x)} \left(\int_{R(Q)} f_1(y)^{\frac{p(y)}{p_{-}}} dy \right)^{p_{-}} dx.
$$

Therefore, since $R(Q) \supset Q$ and $\frac{\mu(x)}{p_{-}} \geq 1$,

$$
\rho \left(\frac{T_k f_1}{\lambda_1} \right) \leq \frac{1}{(\log N)^2} \int_{\mathbb{R}^2} K_N \left[\frac{p(x)}{p_{-}} \right](x)^{p_{-}} dx \leq C \int_{\mathbb{R}^2} f_1(x)^{p(x)} dx \leq C,
$$

where we have used \textbf{[11]}.

The estimate for f_2. We shall verify that, if $\lambda_2 = C_2$, then

$$
\rho \left(\frac{T_k f_2}{\lambda_2} \right) = \int_{\mathbb{R}^2} \left(\frac{T_k f_2(x)}{\lambda_2} \right)^{p(x)} dx \leq C.
$$

Since $f_2 \leq 1$, we immediately see that

$$
F = \frac{1}{\lambda_2} \int_{R(Q)} f_2(y) dy \leq 1.
$$
Therefore, by Lemma 3.2 with $P(x) = (e + |x|)^{-2}$,
\[
\rho_{p(\cdot)} \left(\frac{T_k f_2}{\lambda_2^2} \right) = \sum_{Q \in D_k} \int_Q \left(\frac{1}{\lambda_2^2} \int_{R(Q)} f_2(y) \, dy \right)^{p(x)} \, dx \\
\leq C \sum_{Q \in D_k} \int_Q \left(\frac{1}{\lambda_2^2} \int_{R(Q)} f_2(y) \, dy \right)^{p(\infty)} \, dx + C \sum_{Q \in D_k} \int_Q P(x)^{p(\infty)} \, dx.
\]
Since $p(\infty) \geq 2$ and the cubes $Q \in D_k$ are disjoint, we can immediately estimate the second term:
\[
\sum_{Q \in D_k} \int_Q P(x)^{p(\infty)} \, dx = \int_{\mathbb{R}^2} P(x)^{p(\infty)} \, dx \leq C.
\]
We shall estimate the first term. It follows that
\[
\sum_{Q \in D_k} \int_Q \left(\frac{1}{\lambda_2^2} \int_{R(Q)} f_2(y) \, dy \right)^{p(\infty)} \, dx \\
\leq \frac{1}{(\log N)^2} \sum_{Q \in D_k} \int_Q K_n f_2(x)^{p(\infty)} \, dx \\
\leq C \int_{\mathbb{R}^2} f_2(x)^{p(\infty)} \, dx,
\]
where we have used (11). Since $f_2 \leq 1$ we can apply Lemma 3.2 again,
\[
\int_{\mathbb{R}^2} f_2(x)^{p(\infty)} \, dx \leq C \int_{\mathbb{R}^2} f_2(x)^{p(x)} \, dx + C \int_{\mathbb{R}^2} P(x)^{p(\infty)} \, dx \leq C.
\]
Altogether, we obtain (32).

Conclusion. The estimates (31), (32) and Lemma 3.1 yield the theorem.

References

[1] C. Capone, D. Cruz-Uribe and A. Fiorenza, *The fractional maximal operator and fractional integrals on variable L^p spaces*, Rev. Mat. Iberoam., **23** (2007), no. 3, 743–770.

[2] A. Córdoba, *The Kakeya maximal function and the spherical summation multiplier*, Amer. J. Math., **99** (1977), no. 1, 1–22.

[3] D. Cruz-Uribe, L. Diening and A. Fiorenza, *A new proof of the boundedness of maximal operators on variable Lebesgue spaces*, Boll. Unione Mat. Ital. (9), **2** (2009), no. 1, 151–173.

[4] D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Pérez, *The boundedness of classical operators on variable L^p spaces*, Ann. Acad. Sci. Fenn. Math., **31** (2006), no. 1, 239–264.

[5] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, *The maximal function on variable L^p spaces*, Ann. Acad. Sci. Fenn. Math., **28** (2003), no. 1, 223–238, and **29** (2004), no. 1, 247–249.

[6] L. Diening, *Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$*, Math. Inequal. Appl., **7**(2) (2004), no. 2, 245–253.

[7] , *Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces*, Bull. Sci. Math., **129** (2005), no. 8, 657–700.

[8] , *Habilitation*, Universität Freiburg, 2007.

[9] L. Diening, P. Hästö and A. Nekvinda, *Open problems in variable exponent Lebesgue and Sobolev spaces*, FSDONA 2004 Proceedings, pages 38–52, Academy of Sciences of the Czech Republic, Prague, 2005.

[10] L. Grafakos, *Modern Fourier Analysis*, volume 250 of Graduate Texts in Mathematics. Springer, New York, 2nd edition, 2008.

[11] V. Kokilashvili and A. Meskhi, *Two-weighted norm inequalities for the double Hardy transforms and strong fractional maximal functions in variable exponent Lebesgue space*, Spectral theory, function spaces and inequalities, 105–124, Oper. Theory Adv. Appl., **219** (2012).

[12] T. S. Kopaliani, *A note on strong maximal operator in $L^{p(\cdot)}(\mathbb{R}^n)$ spaces*, Proc. A. Razmadze Math. Inst., **145** (2007), 43–46.

[13] O. Kováčik and J. Rákosník, *On spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}*$, Czechoslovak Math. J., **41**(116) (1991), no. 4, 592–618.
[14] A. K. Lerner, *On some questions related to the maximal operator on variable L^p spaces*, Trans. Amer. Math. Soc., 362 (2010), no. 8, 4229–4242.
[15] A. Nekvinda, *Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$*, Math. Inequal. Appl., 7 (2004), no. 2, 255–265.
[16] J.-O. Strömberg, *Maximal functions associated to rectangles with uniformly distributed directions*, Ann. Math. (2), 107 (1978), no. 2, 399–402.

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan

E-mail address: j1107703@gmail.com

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, 153-8914, Japan

E-mail address: htanaka@ms.u-tokyo.ac.jp