The Relation between Serum Phosphorus Levels and Clinical Outcomes after Acute Myocardial Infarction

Doron Aronson1,2*, Michael Kapeliovich1, Haim Hammerman1,2, Robert Dragu1

1 Department of Cardiology, Rambam Medical Center, Haifa, Israel, 2 Rappaport Faculty of Medicine and Research Institute, Technion, Israel Institute of Technology, Haifa, Israel

Abstract

Background: Elevated serum phosphorus levels have been linked with cardiovascular disease and mortality with conflicting results, especially in the presence of normal renal function.

Methods: We studied the association between serum phosphorus levels and clinical outcomes in 1663 patients with acute myocardial infarction (AMI). Patients were categorized into 4 groups based on serum phosphorus levels (<2.50, 2.51–3.5, 3.51–4.50 and >4.50 mg/dL). Cox proportional-hazards models were used to examine the association between serum phosphorus and clinical outcomes after adjustment for potential confounders.

Results: The mean follow up was 45 months. The lowest mortality occurred in patients with serum phosphorus between 2.5–3.5 mg/dL, with a multivariable-adjusted hazard ratio of 1.24 (95% CI 0.85–1.80), 1.35 (95% CI 1.05–1.74), and 1.75 (95% CI 1.27–2.40) in patients with serum phosphorus of <2.50, 3.51–4.50 and >4.50 mg/dL, respectively. Higher phosphorus levels were also associated with increased risk of heart failure, but not the risk of myocardial infarction or stroke. The effect of elevated phosphorus was more pronounced in patients with chronic kidney disease (CKD). The hazard ratio for mortality in patients with serum phosphorus >4.5 mg/dL compared to patients with serum phosphorus 2.50–3.50 mg/dL was 2.34 (95% CI 1.55–3.54) with CKD and 1.53 (95% CI 0.87–2.69) without CKD.

Conclusion: We found a graded, independent association between serum phosphorus and all-cause mortality and heart failure in patients after AMI. The risk for mortality appears to increase with serum phosphorus levels within the normal range and is more prominent in the presence of CKD.

Introduction

Elevated phosphorus levels correlate with increased risk for vascular calcification in both animal models and humans with advanced chronic kidney disease (CKD). Several observational studies suggest that abnormalities of mineral metabolism contribute to cardiovascular disease (CVD) and mortality in individuals with CKD [1,2]. In some studies the association was apparent even in healthy populations with preserved renal function [3,4]. By contrast, several recent large studies found inconsistent associations between serum phosphorus and CVD. In the Atherosclerosis Risk in Communities Study, higher serum phosphorus was associated with increased risk for mortality but not of coronary disease [5]. An analysis of 7,259 postmenopausal women reported no associations between serum phosphorus and incident cardiovascular events during 4 years of follow-up [6].

The best known cardiovascular consequence of hyperphosphatemia is vascular calcification, which is a common complication of CKD, diabetes and aging. Vascular calcifications due to elevated phosphorus levels may potentially interact and aggravate several cardiovascular risk factors. The discordance between the results of previous studies may be explained if an elevated phosphorus level modifies the risk for specific cardiovascular events depending on individual patient susceptibility to heart failure [7], sudden arrhythmic death [8] or acute coronary events [9]. Few data are available with regard to the relationship between serum phosphorus and cardiovascular outcomes in patients with established CVD [10]. We studied the association between serum phosphorus levels and clinical outcomes in patients following acute myocardial infarction (AMI). This population represents a high risk group for mortality, heart failure and recurrent cardiovascular events.

Methods

The study cohort consisted of patients enrolled in a prospective longitudinal observational study designed to determine predictors of postinfarction HF, with data collection starting in 2001 [11,12]. The specific analysis of the relationship between serum phosphorus levels and clinical outcomes after AMI was not part of the initial study aims and was therefore analyzed retrospectively.

Acute myocardial infarction was diagnosed based on the Universal Definition of Myocardial Infarction [13]. Over the
Serum Phosphorus after Myocardial Infarction

Study Endpoints

The primary endpoint of the study was all-cause mortality. Secondary endpoints included rehospitalization for the development of heart failure, recurrent infarctions and ischemic stroke. Heart failure was defined as admission to hospital for the management of heart failure (defined by the presence of new symptoms of paroxysmal nocturnal dyspnea, orthopnea or edema with one or more concurrent signs, including ventricular gallop rhythm, jugular venous distention, bilateral post-tussive rales in at least the lower third of the lung fields, elevated venous pressure, or pulmonary venous congestion on X-ray with interstitial or alveolar edema).

Ischemic stroke was defined as a neurologic deficit of sudden onset that persisted for more than 24 hours, corresponded to a vascular territory in the absence of primary hemorrhage, was not explained by other causes (e.g., trauma, infection, or vasculitis), and was corroborated by an imaging study when possible [18].

Following hospital discharge, clinical endpoint information was acquired by reviewing the national death registry and by reviewing the hospital records for major clinical events if the patient had been re-hospitalized. To confirm the diagnosis of HF, all hospital records were abstracted. Data were collected on the course and care of the patient during the hospital stay, including admission notes, consultation notes, discharge summaries, and pertinent laboratory data.

Statistical Analysis

Continuous variables are presented as mean (SD) or medians (with interquartile ranges), and categorical variables as numbers and percentages. The baseline characteristics of the groups were compared using analysis of variance for continuous variables and by χ^2 statistic for categorical variables.

The association between serum phosphorus level and clinical and biochemical variables was assessed by univariable linear regression for each variable separately followed by multiple linear regression with backward selection. Variables considered for inclusion in the multivariable model included: age, gender, history of hypertension, history of diabetes, smoking status estimated GFR, baseline hemoglobin, Killip class and medications.

For the association with all-cause mortality, serum phosphorus was categorized into 4 groups (<2.5, 2.5 to 3.4, 3.5 to 4.5, and >4.5 mg/dL) to avoid assuming linearity. Survival curves were constructed using the Kaplan–Meier method, and comparisons were made using the log–rank test. Stepwise Cox proportional hazards models with backward selection were used to calculate hazard ratios (HRs) and 95% confidence intervals (CI) for serum phosphorus categories. The Cox models were adjusted for age, gender, serum calcium (corrected for albumin levels), history of diabetes, hypertension, smoking status, estimated glomerular filtration rate (eGFR) [15], thrombolytic therapy, coronary revascularization, anterior infarction, ST-elevation infarction, hemoglobin levels and medical therapy (beta blockers, angiotensin converting-enzyme inhibitors, loop diuretics, spironolactone and digoxin). The Cox models were also adjusted for left ventricular ejection fraction (LVEF). Similar models were used for the secondary endpoints of heart failure, recurrent infarction and stroke. The relation between the serum phosphorus as continuous variable and all-cause mortality was also assessed with the use of restricted cubic spline functions [19], which allowed us to explore nonlinear relationships between serum phosphorus and clinical outcome.

We assessed whether the effect of phosphorus levels on clinical outcome varied according to CKD status using traditional interaction testing and stratified analyses. The existence of an interaction was formally evaluated with the use of a Cox regression model incorporating terms for the main effect of serum phosphorus, the main effect of CKD (defined as eGFR <60 ml·min⁻¹/1.73 m²), and the interaction serum phosphorus and CKD.

Serum phosphorus levels were not correlated with serum calcium levels ($r = 0.02, P = 0.93$) but were highly correlated with the calcium-phosphorus product ($r = 0.95, P < 0.0001$) as previously described [3]. Therefore, only the associations of serum phosphorus and clinical outcomes were analyzed.

Differences were considered statistically significant at the 2-sided $P < 0.05$ level. Statistical analyses were performed using the SPSS statistical software version 16.0 (Chicago, IL) and STATA version 11.0 (College Station, TX).

Results

Between July 2001 and June 2009, a total of 1663 patients were recruited into the study. The majority of patients ($n = 1537, 81.6\%$) had serum phosphorus levels within the normal range, while 167 (10.0\%) patients had low serum phosphorus level and 139 (8.4\%) had hyperphosphatemia.

The clinical characteristics of the patients according to baseline phosphorus levels are shown in Table 1. Patients with higher phosphorus levels were more likely to be older and females, and had higher prevalence of hypertension and diabetes, and had...
reduced renal function and hemoglobin and higher C-reactive protein levels. Patients with higher phosphorus levels were less likely to undergo coronary revascularization and less likely to receive thrombolytic therapy; they presented with higher Killip and had lower LVEF. Use of beta blockers, angiotensin converting-enzyme inhibitors and statins was lower among patients with elevated serum phosphorus levels.

In a multivariable linear regression model, serum phosphorus levels were positively associated with age, female gender, history of hypertension and diabetes mellitus, eGFR, and presentation with high Killip class (Table 2).

Figure 1A shows the relationship between serum phosphorus level and eGFR. Although serum phosphorus levels were variable within each eGFR category, there was a clear graded inverse association between the severity of renal dysfunction and serum phosphorus levels.

Hyperphosphatemia was present in 6.2%, 4.7%, 15.8% and 43.4% of patients with eGFR ≥90, eGFR 60–89, eGFR 30–59 and eGFR ≤30 ml/min/1.73 m², respectively (P<0.0001). However, 50.4% of patients with hyperphosphatemia had eGFR ≥60. When cubic spline regression was used to explore the association between serum phosphorus and eGFR, we observed no change in serum phosphorus level at eGFR above 60 ml/min/1.73 m², with an approximately linear increase in serum phosphorus at eGFR below 60 ml/min/1.73 m² (Figure 1B).

Table 1. Baseline clinical characteristics.

Characteristic	Serum Phosphorus (mg/dL)	Value	P Value	Value	P Value	Value	P Value	Value	P Value
Age (years)	<2.5 (n = 167)	62 ± 13	0.001	61 ± 12	0.001	60 ± 13	0.001	65 ± 14	0.001
Female gender	29 (17)	152 (17)	<0.0001	129 (28)	0.0001	53 (38)	0.0001	<30 ml/min/1.73 m²	0.0001
Previous infarction	26 (16)	167 (19)	0.67	90 (19)	0.003	29 (21)	0.003	120 (24)	0.003
History of hypertension	77 (46)	430 (48)	0.003	243 (52)	0.003	89 (64)	0.003	50 (32)	0.003
Diabetes Mellitus	43 (26)	212 (24)	0.0001	150 (32)	0.0001	54 (39)	0.0001	162 (18)	0.0001
Current smoker	23 (14)	162 (18)	0.25	89 (19)	0.0001	19 (14)	0.0001	167 (19)	0.0001
eGFR (ml/min/1.73 m²)	78 ± 21	83 ± 24	0.0001	83 ± 27	0.0001	64 ± 33	0.0001	78 ± 21	0.0001
Hemoglobin (g/dL)	14 ± 2	14 ± 2	0.0001	14 ± 2	0.0001	13 ± 2	0.0001	14 ± 2	0.0001
C-reactive protein (mg/dL)	17.3 [4.3–48.6]	12.8 [5.0–31.9]	0.03	13.8 [6.1–41.0]	0.0001	18.1 [11.1–66.7]	0.0001	18.1 [11.1–66.7]	0.0001
Serum calcium (mg/dL)	8.8 ± 0.7	8.9 ± 0.6	<0.0001	9.0 ± 0.6	<0.0001	8.6 ± 0.9	<0.0001	8.6 ± 0.9	<0.0001
Calcium-phosphorus product (mg²/dL²)	18.5 ± 3.7	27.1 ± 3.5	<0.0001	35.2 ± 3.6	<0.0001	46.5 ± 9.2	<0.0001	46.5 ± 9.2	<0.0001
Thrombolytic therapy	53 (32)	188 (21)	<0.0001	90 (19)	<0.0001	18 (13)	<0.0001	188 (21)	<0.0001
Coronary revascularization	94 (56)	485 (55)	0.03	233 (46)	0.03	63 (46)	0.03	485 (55)	0.03
Killip class >1	33 (20)	157 (18)	<0.0001	100 (22)	<0.0001	73 (53)	<0.0001	157 (18)	<0.0001
Anterior infarction	74 (43)	358 (40)	0.02	214 (46)	0.02	73 (53)	0.02	358 (40)	0.02
LVEF <45%	33 (20)	157 (18)	<0.0001	100 (22)	<0.0001	73 (53)	<0.0001	157 (18)	<0.0001
Left ventricular ejection fraction (%)	44 ± 12	46 ± 12	<0.0001	45 ± 12	<0.0001	40 ± 13	<0.0001	44 ± 12	<0.0001
Medications									
Beta blockers	147 (89)	789 (89)	0.03	419 (90)	0.03	112 (81)	0.03	789 (89)	0.03
ACE inhibitors/ARBs	143 (87)	786 (88)	0.02	404 (87)	0.02	108 (79)	0.02	786 (88)	0.02
Anti-platelet agents	165 (99)	874 (98)	0.47	455 (98)	0.47	133 (96)	0.47	874 (98)	0.47
Statins	110 (66)	658 (74)	0.04	353 (76)	0.04	94 (68)	0.04	658 (74)	0.04

Values are expressed as number (%) of patients, mean value ± SD, or Median [Interquartile Range].
ACE = angiotensin converting enzyme; ARB = Angiotensin receptor blockers.
*Data available in 701 patients.

Serum Phosphorus and All-cause Mortality

Patients were followed between 2 and 5 years (mean 45 months). During follow up, 356 patients died (21.4%). Kaplan-Meier curves showed that the lowest mortality occurred in patients with serum phosphorus levels between 2.5–3.5 mg/dL. Mortality was higher in patients with hypophosphatemia and in patients with serum phosphorus between 3.5 and 4.0 mg/dL, with a marked increase in mortality among patients with hyperphosphatemia (Figure 2). Cubic spline analysis demonstrated that the relationship between serum phosphorus and the probability of mortality had a J-shaped relationship, increasing below 2.5 mg/dL and above 4.0 mg/dL (Figure 3).

Model 1 in Table 3 displays the results of the Cox proportional hazards model examining the relationship between serum phosphorus levels and all-cause mortality using 2.50–3.49 mg/dL as the reference category. After adjustment for other factors independently associated with mortality, the risk associated with low phosphorus level was no longer significant. The risk associated with elevated phosphorus levels was attenuated but remained statistically significant with increased risk for mortality even for patients with phosphorus levels within the normal range (Table 3).

Secondary Endpoint

The relationship between serum phosphorus and cardiovascular events had a similar pattern to that of mortality, with increased risk for events in patients with hyperphosphatemia (Table 3, Model 2).
Additional analyses for specific secondary endpoints suggested that the increased risk for cardiovascular events was mainly driven by the heart failure endpoint (Table 3, Model 3), while the relationship between elevated phosphorus level and reinfarction (Table 3, Model 4) and stroke (Table 3, Model 5) were not statistically significant.

Impact of Serum Phosphorus and Renal Function on Mortality

We also studied whether the relationship between serum phosphorus and mortality varied according to renal function. The study population was divided into 8 groups based on serum phosphorus categories (<2.50–3.49, 3.50–4.5, >4.5) and presence or absence of CKD. Cox regression analysis based on these 8 groups demonstrated that the increased risk for mortality in patients with elevated serum phosphorus level occurred mainly in patients with CKD (Figure 4). Within the group of patients with CKD (n = 345), the hazard ratio for mortality in patients with serum phosphorus >4.5 mg/dL compared to patients with serum phosphorus 2.50–3.50 was 2.34 (95% CI 1.55–3.54; P = 0.0001), whereas in patients without CKD (n = 1318), the HR for mortality associated with the presence of serum phosphorus >4.5 mg/dL was lower (HR 1.53, 95% CI 0.87–2.69; P = 0.14). Likelihood ratio tests demonstrated a significant interaction between serum phosphorus level and CKD with respect to mortality in an unadjusted model containing only the main effects of serum phosphorus and CKD (P = 0.022) but not in the adjusted model (P = 0.36).

Change in Serum Phosphorus during Hospital Course

During hospital stay, serum phosphorus level increased from 3.4 ± 0.9 mg/dL (measured at the morning of the first hospital day) to 4.4 ± 0.9 mg/dL (measured at the morning of the last hospital day). The change in serum phosphorus level was significantly associated with the severity of renal dysfunction (Figure 1). Cox regression analysis showed that the hazard ratio for mortality in patients with serum phosphorus >4.5 mg/dL compared to patients with serum phosphorus <2.50 mg/dL was 2.34 (95% CI 1.55–3.54; P < 0.0001), whereas in patients with serum phosphorus 2.50–3.50 mg/dL, the hazard ratio was lower (HR 1.53, 95% CI 0.87–2.69; P = 0.14). Likelihood ratio tests demonstrated a significant interaction between serum phosphorus level and CKD with respect to mortality in an unadjusted model containing only the main effects of serum phosphorus and CKD (P = 0.022) but not in the adjusted model (P = 0.36).

Table 2. Multiple Linear Regression Analysis with Serum Phosphorus as the Dependent Variable.

Independent Variable	Regression Coefficient (SE)	95% CI	P value
Age (per 10 years)	−0.07 (0.02)	−0.12 to −0.03	0.001
Female gender	0.28 (0.06)	0.16 to 0.39	<0.0001
Hypertension	0.13 (0.05)	0.04 to 0.23	0.004
Diabetes	0.14 (0.05)	0.04 to 0.24	0.005
Smoker	0.16 (0.05)	0.06 to 0.25	0.001
Ln estimated GFR	−0.34 (0.06)	−0.45 to −0.23	<0.0001
Killip Class >1	0.31 (0.06)	0.21 to 0.42	<0.0001

Figure 1. Relationship between serum phosphorus and renal function. A. Box-and-whisker plots of changes in serum phosphorus level according to the severity of renal dysfunction. The line within the box denotes the median and the box spans the interquartile range (25th to 75th percentiles). Whiskers extend from the 5th to 95th percentiles. B. Spline function graph of the relationship between estimated glomerular filtration rate and serum phosphorus, showing the shape of the relationship curve on a continuous basis. The blue area with dotted lines indicates the 95% confidence interval.

doi:10.1371/journal.pone.0058348.g001

Figure 2. Kaplan-Meier survival plot of mortality. Patients are divided by categories of serum phosphorus. P values are for the overall comparison among the groups using the log rank test.

doi:10.1371/journal.pone.0058348.g002
Figure 3. Cubic spline analysis. The plot describes the relationship between serum phosphorus as a continuous variable and the probability of mortality. The blue area indicates the 95% confidence interval. doi:10.1371/journal.pone.0058348.g003

Table 3. Unadjusted and Adjusted Cox’s proportional Hazards Models*.

Model	Unadjusted	Adjusted					
	Events, n (%)	HR (95% CI)	P value	P trend	HR (95% CI)	P value	P trend
All-cause mortality (Model 1)							
<2.50 mg/dL	34 (20.4)	1.28 (0.87–1.89)	0.23	<0.0001	1.24 (0.85–1.80)	0.94	0.001
2.50–3.50 mg/dL	150 (16.8)	1.0 (Referent)	–	1.0 (Referent)	–		
3.51–4.50 mg/dL	110 (20.4)	1.49 (1.16–1.93)	0.0002	1.35 (1.05–1.74)	0.018		
>4.50 mg/dL	63 (45.3)	3.58 (2.63–4.88)	<0.0001	1.75 (1.27–2.40)	0.001		
All cardiovascular events (Model 2)							
<2.50 mg/dL	30 (18.0)	1.06 (0.71–1.58)	0.77	<0.0001	1.04 (0.70–1.55)	0.84	0.002
2.50–3.50 mg/dL	153 (17.2)	1.0 (Referent)	–	1.0 (Referent)	–		
3.51–4.50 mg/dL	82 (1.6)	1.06 (0.81–1.38)	0.69	1.02 (0.78–1.34)	0.80		
>4.50 mg/dL	44 (31.7)	2.64 (1.88–3.69)	<0.0001	1.73 (1.22–2.45)	0.002		
Heart failure (Model 3)							
<2.50 mg/dL	18 (10.8)	1.11 (0.66–1.87)	0.70	<0.0001	0.99 (0.59–1.66)	0.96	0.03
2.50–3.50 mg/dL	90 (10.1)	1.0 (Referent)	–	1.0 (Referent)	–		
3.51–4.50 mg/dL	52 (11.2)	1.16 (0.82–1.65)	0.36	1.05 (0.74–1.49)	0.45		
>4.50 mg/dL	33 (23.7)	3.21 (2.13–4.85)	<0.0001	1.79 (1.17–2.73)	0.007		
Myocardial infarction (Model 4)							
<2.50 mg/dL	12 (7.2)	1.01 (0.55–1.89)	0.96	0.22	1.01 (0.55–1.88)	0.97	0.12
g/dL	62 (7.0)	1.0 (Referent)	–	1.0 (Referent)	–		
3.51–4.50 mg/dL	37 (8.0)	1.12 (0.74–1.70)	0.58	1.19 (0.79–1.80)	0.41		
>4.50 mg/dL	14 (10.0)	1.61 (0.87–2.99)	0.30	1.57 (0.87–2.82)	0.14		
Stroke (Model 5)							
<2.50 mg/dL	5 (3.0)	0.92 (0.32–2.66)	0.88	0.42	0.76 (0.44–3.05)	0.76	0.44
g/dL	23 (2.5)	1.0 (Referent)	–	1.0 (Referent)	–		
3.51–4.50 mg/dL	9 (1.9)	0.73 (0.34–1.58)	0.42	0.65 (0.61–3.46)	0.29		
>4.50 mg/dL	7 (5.0%)	2.02 (0.87–4.70)	0.10	1.46 (0.61–3.76)	0.40		

*All models were adjusted for age, gender, eGFR, hemoglobin, previous infarction, hypertension, diabetes mellitus, smoking, baseline hemoglobin, serum calcium, ST-elevation infarction, Killip class, coronary revascularization, LVEF.

1Heart failure, myocardial infarction or stroke.

doi:10.1371/journal.pone.0058348.g004
to peak level of 3.9±1.1 mg/dL (P<0.0001). After adjustment for other factors independently associated with mortality including baseline phosphorus levels, an increase in serum phosphorus levels was associated with increased risk of mortality (adjusted hazard ratio 1.14 per 1-SD increase [95% CI 1.08 to 1.21, P<0.0001]).

Discussion

The present study demonstrates a graded, independent association between serum phosphorus level and adverse clinical outcome in patients after AMI. The association was robust for the endpoints of incident all-cause mortality and heart failure. A higher risk for mortality was present even for serum phosphorus levels within the normal range. However, the association between serum phosphorus levels and mortality was more prominent in the presence of CKD.

In univariable analyses, the associations of phosphorus levels with the clinical outcome were J-shaped, with higher risks observed also in patients with hypophosphatemia. These findings are consistent with the known effects of low phosphorus levels on the cardiovascular system, such as decreased contractility and arrhythmias [20,21]. However, after adjustment for the relevant comorbid conditions, lower levels of serum phosphorus were no longer associated with increased mortality risk.

Blood level of phosphorus are affected by intake, output, and intracellular shift, with multiple regulatory factors at the level of intestinal absorption and excretion, flux into and out of bone, glomerular filtration, and tubular reabsorption [22,23]. In the present study, the relationship between serum phosphorus and renal function was biphasic, with no association between phosphorus and renal function for eGFR above 60 ml/min/1.73 m² and a linear increase in serum phosphorus for eGFR levels below 60 ml/min/1.73 m². However, elevated phosphorus levels were also present in patients with preserved renal function. These findings are consistent with previous studies demonstrating that only a small portion (~12%) of the variation in serum phosphorus concentrations could be explained by kidney function, cardiovascular risk factors, diet, and demographics [24]. Thus, factors determining serum phosphorus concentration are largely unknown, and the observed association of serum phosphorus concentrations with all-cause mortality and heart failure are unlikely to reflect differences in dietary intake or traditional cardiovascular risk factors [24].

Vascular calcification (especially when levels of calcium-phosphorus product are high) has been implicated as a potential mechanism for the association between elevated phosphorus levels and adverse cardiovascular outcomes [25,26]. Vascular calcification is not merely a function of an elevated calcium-phosphorus product, but a complex process regulated by several mediators, including fibroblast growth factor 23 (FGF-23), and the crystalization inhibitors uncarboxylated matrix Gla protein (ucMGP), inorganic pyrophosphate, and fetuin-A [27–32]. The hallmark of vascular calcification is calcium phosphate deposition, which can occur in the vasculature, myocardium, and cardiac valves. High phosphorus concentrations promote non-atherosclerotic arterial calcification by stimulating vascular smooth muscle cells (VSMCs) to transform from a contractile phenotype into an osteochondrogenic phenotype that promote mineralization of surrounding arterial tissue [25,33]. These phosphate-induced phenotypic changes in VSMCs appear to be dependent on the activity of sodium-dependent phosphate cotransporter PIT-1 [25,34,35]. Vascular calcification occur independently of atheroma and are an important cause of vascular stiffness leading to increased pulse wave velocity, increased cardiac work and left ventricular hypertrophy [25,36–39].

Cardiovascular mortality in CKD patients with hyperphosphatemia has been proposed to occur predominantly through arrhythmic mechanisms on a background of a susceptible myocardial substrate due to hypertrophy/fibrosis resulting from arterial stiffening [9,36]. In the Framingham heart study, higher serum phosphorus was associated with greater left ventricular mass and larger left ventricular internal dimensions in individuals without prior myocardial infarction, and this association was independent of hypertension [7]. Furthermore, in chronic hemodialysis patients, sudden death accounted for the greatest proportion of all deaths associated with hyperphosphatemia [2]. This may explain the strong association of serum phosphorus with all-cause mortality and heart failure in the present study of patients after AMI, who are at high risk for both heart failure and arrhythmic events.

By contrast, it is unclear whether hyperphosphatemia predisposes to atherosclerotic plaque rupture [9,36]. Thus, it is difficult to extrapolate the paradigm of hyperphosphatemic arterial medial calcification and arterial stiffening to the occurrence of acute myocardial infarctions. This may explain the weaker association of phosphorus levels with recurrent infarction and stroke in the present study. However, the association may also be confounded by coronary and cerebral events that lack a pathogenic link with vascular calcification such as periprocedural infarctions, stent thrombosis, and cerebral embolism due to atrial fibrillation and left ventricular thrombus.

Of note, similar heterogeneity with regard to the relationship between phosphorus and different cardiovascular outcomes has been reported in other studies. In 15,732 participants of the Atherosclerosis Risk in Communities Study with mean follow-up of 12.6 years, higher serum phosphorus was associated with increased risk for mortality but not coronary disease [5]. An analysis of 7,259 postmenopausal women reported no associations between serum phosphorus and incident cardiovascular events during 4 years of follow-up [6]. In a recent nested case-control study of men without CKD from the Health Professionals Follow-up Study, phosphorus levels were not associated with the development of incident CAD during 10 years of follow-up [40]. Collectively, these results suggest that the association between serum phosphorus level and different clinical endpoints may be dependent on the baseline clinical characteristics and risks of the study population.

Importantly, in some studies, the definition of incident CVD included congestive heart failure together with myocardial infarction, angina pectoris and cerebrovascular events [3,41]. Analyzed this way, our data also shows a significant association between serum phosphorus levels and CVD events. However, stratification according to specific endpoints provided insight into the apparent discordance with previous investigations.

To date, few studies have examined associations between serum phosphorus levels and cardiovascular disease in populations with established coronary disease. One group, however, reported a positive trend between higher serum phosphorus levels and an increased risk of mortality and CVD events during a 3-year follow-up period in patients with a previous myocardial infarction [10].

Formal interaction testing concerning the influence of CKD on the serum phosphorus association with survival was not statistically significant in multivariable models. Notwithstanding, an effect modification between serum phosphorus and eGFR is biologically plausible, and may be explained by the fact that several inhibitors of the calcification process are dysregulated in patients with CKD [42,43]. For example, the plasma concentrations of the inactive
unencapsulated pre-existent form of matrix Gla protein are markedly increased in CKD stage 4 [44]. In CKD, circulating fetuin-A and pyrophosphate are reduced compared to healthy subjects [45,46]. Thus, individuals with moderate or severe renal disease have an impaired ability to excrete phosphorus, and may be more susceptible to transient fluctuations in serum calcium and to post-prandial peaks in serum phosphorus [47].

Study Limitations

Our study has important limitations that must be acknowledged. Parathyroid hormone, vitamin D and FGF-23, also associated with adverse outcomes [27] were not measured. The cross-sectional design does not allow causal inference. Although we adjusted for multiple potential risk factors, another limitation of this observational study is that we cannot rule out the possibility of residual confounding. Thus, there remains the possibility that unmeasured confounders might explain the observed associations of phosphorus with mortality and heart failure.

Conclusions

We found a graded, independent association between serum phosphorus levels and all-cause mortality and heart failure in patients after AMI. The risk for mortality appears to increase with serum phosphorus levels within the normal range. Further studies are needed to determine the contributing mechanisms and clinical implications of the association between serum phosphorus and clinical outcome in the post-AMI setting.

Author Contributions

Conceived and designed the experiments: DA. Performed the experiments: DA MK HH. Analyzed the data: DA. Contributed reagents/materials/analysis tools: DA. Wrote the paper: DA.

References

1. Gutierrez OM, Mannstadt M, Isakova T, Raah-Hain JA, Tamez H, et al. (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359: 584–592.
2. Gauthier NK, Circul FS, Levin NW, Ulhertz-Sharers T, Port FK (2001) Association of elevated serum P0(4), Ca x P0(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol 12: 2131–2138.
3. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB Sr, et al. (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167: 879-885.
4. Foley RN, Collins AJ, Herzog CA, Ishani A, Kalra PA (2009) Serum phosphorus levels associated with coronary atherosclerosis in young adults. J Am Soc Nephrol 20: 397–404.
5. Foley RN, Collins AJ, Ishani A, Kalra PA (2008) Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J 156: 556-563.
6. Simon Y, Blackwell T, Ishani A, Cummings SR, Zwarad KE, et al. (2011) Serum calcium, phosphorus and cardiovascular events in post-menopausal women. Int J Cardiol 149: 335–340.
7. Dhingra R, Gona P, Benjamin EJ, Wang TJ, Aragam J, et al. (2010) Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur J Heart Fail 12: 512-518.
8. Ritz E, Wanner C (2008) The challenge of sudden death in dialysis patients. Clin J Am Soc Nephrol 3: 920–929.
9. Hoang H, Virmani R, Younis H, Burke AP, Kamm RD, et al. (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103: 1051-1056.
10. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G, et al. (2005) Relation between serum phosphorus level and cardiovascular event rate in people with coronary disease. Circulation 112: 2627–2633.
11. Aronson D, Mulsilah A, Lessick J, Dabbh N, Carasso S, et al. (2010) Impact of diastolic dysfunction on the development of heart failure in diabetic patients after acute myocardial infarction. Circ Heart Fail 3: 125–131.
12. Thygysen K, Alpert JS, White HD, Jaife AE, Apple FS, et al. (2007) Universal definition of myocardial infarction. Circulation 116: 2634–2639.
13. Bushinsky DA, Monk RD (1998) Electrolyte quintet: Calcium. Lancet 351: 506–511.
14. Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function–measured and estimated glomerular filtration rate. N Engl J Med 354: 2473–2483.
15. Bushinsky DA, Mulsilah A, Lessick J, Dabbh N, Carasso S, et al. (2010) Impact of diastolic dysfunction on the development of heart failure in diabetic patients after acute myocardial infarction. Circ Heart Fail 3: 125–131.
16. Brosius FC 3rd, Hostetter TH, Kolesovis E, Minnare MM, Moe SM, et al. (2006) Detection of chronic kidney disease in patients with or at increased risk of cardiovascular disease: a science advisory from the American Heart Association Kidney and Cardiovascular Disease Council: the Councils on High Blood Pressure Research, Cardiovascular Disease in the Young, and Epidemiology and Prevention; and the Quality of Care and Outcomes Research Interdisciplinary Working Group; developed in collaboration with the National Kidney Foundation. Circulation 114: 1083–1087.
17. Soleman M, Khabib R, Agoun Y, Mahamid R, Boudis M, et al. (2006) Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J Am Coll Cardiol 47: 962-968.
18. Bhabra R, Trifan G, Bahouh F, Lesick J, Aronson D (2011) Transient atrial fibrillation and rhythm of stroke after acute myocardial infarction. Thromb Haemost 106: 877-884.
19. Marrie RA, Dawson NV, Garland A (2009) Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J Clin Epidemiol 62: 311–317.e311.
20. O’Connor LR, Wheeler WS, Bethune JE (1977) Effect of hypophosphatemia on myocardial performance in man. N Engl J Med 297: 901–903.
21. Ognibene A, Cinglino R, Greiferstein A, Jargura D, Cugino A, et al. (1994) Ventricular tachycardia in acute myocardial infarction: the role of hypophosphatemia. J Am Soc Echocardiogr 7: 871–879.
22. Krenstaen B (2007) Phosphate metabolism in the setting of chronic kidney disease: significance and recommendations for treatment. Semin Dial 20: 286–294.
23. Mayer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80: 1373-1409.
24. de Boer HH, Rue TC, Kestenbaum B (2009) Serum phosphorus concentrations in the third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis 53: 899–907.
25. Kendrick J, Chocholc M (2011) The role of phosphate in the development and progression of vascular calcification. Am J Kidney Dis 58: 826–834.
26. Oh J, Wunsch R, Tuzzler M, Bahner M, Raggi P, et al. (2002) Advanced coronary and carotid atherosclerosis in young adults with childhood-onset chronic renal failure. Circulation 106: 1001–1005.
27. Parker BD, Schurges LJ, Brandenburg VM, Christenson RH, Vermeer C, et al. (2010) The associations of fibroblast growth factor 23 and unencapsulated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Am Intern Med 152: 649-649.
28. Jahnne-deChent W, Heiss A, Schafer D, Ketteler M (2011) Fibrin-A regulation of calcified matrix metabolism. Circ Res 108: 1494-1509.
29. Schafar C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, et al. (2005) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systematically acting inhibitor of ectopic calcification. J Clin Invest 112: 357–366.
30. Schurges LJ, Trunssen KJ, Knaps MH, Kwaalma J, Van Diest R, et al. (2005) Novel correlation-specific antibodies against matrix gamma-carboxyglutamic acid (Gla) protein: unencapsulated matrix Gla protein as marker for vascular calcification. Arterioscler Thromb Vase Biol 25: 1629–1633.
31. Reynolds J, Joannides AJ, Skpper FN, McNair R, Ketteler M, et al. (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15: 2857–2867.
32. Taddei S, Nani R, Bruno RM, Quatrini I, Nuti R (2011) Hypertension, left ventricular hypertrophy and chronic kidney disease. Heart Fail Rev 16: 615–629.
33. Mathew S, Tustin SS, Sugtanati T, Chaudhury LR, Rafa L, et al. (2008) The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol 19: 1092–1105.
34. Li X, Yang HY, Giachelli CM (2006) Role of the sodium-dependent phosphate co-transporter, PiT-1, in vascular smooth muscle cell calcification. Circ Res 98: 464–470.
35. Elam JT, Chaco TJ (2011) Phosphate: The new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis 220: 310–318.
36. Raggi P, Bousay A, Chusai-Taber S, Amin N, Dillon M, et al. (2002) Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 39: 695-701.
37. Hruska KA, Mathew S, Lund R, Ria P, Pratt R (2000) Hyperphosphatemia of chronic kidney disease. Kidney Int 74: 148–157.
39. Ayus JC, Mizani MR, Achinger SG, Thadhani R, Go AS, et al. (2005) Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J Am Soc Nephrol 16: 2778–2788.

40. Taylor EN, Rimm EB, Stampfer MJ, Curhan GC (2011) Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease. Am Heart J 161: 956–962.

41. Slinin Y, Foley RN, Collins AJ (2005) Calcium, phosphorus, parathyroid hormone, and cardiovascular disease in hemodialysis patients: the USRDS waves 1, 3, and 4 study. J Am Soc Nephrol 16: 1788–1793.

42. Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, et al. (2008) Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118: 1748–1757.

43. Shroff RC, McNair R, Skepper JN, Figg N, Schurgers LJ, et al. (2010) Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol 21: 103–112.

44. Schurgers LJ, Barreto DV, Barreto FC, Liabeuf S, Renard C, et al. (2010) The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 5: 568–575.

45. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, et al. (2003) Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361: 827–833.

46. Lomashvili KA, Khasawneh W, O’Neill WC (2005) Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol 16: 2495–2500.

47. Sullivan C, Sayre SS, Leon JB, Machekano R, Love TE, et al. (2009) Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 301: 629–635.