A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC)

Ferrat Dincoglan, Murat Beyzadeoglu, Omer Sager*, Selcuk Demiral, Bora Uysal, Hakan Gamsiz, Onurhan Colak, Fatih Ozcan and Bahar Dirican

Department of Radiation Oncology; University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey

Received: 06 April, 2020
Accepted: 20 April, 2020
Published: 21 April, 2020

*Corresponding author: Dr. Omer Sager, Department of Radiation Oncology; University of Health Sciences, Tevfik Saglam Cad. 06018, Etlik, Kecioren, Ankara, Turkey, Tel: +90 312 304 4683; Fax: +90 312 304 4680; E-mail: omersager@gmail.com

Keywords: Chemodectoma; Temporal bone; Radiation Therapy (RT); Stereotactic Radiosurgery (SRS)

Abstract

Chemodectomas of head and neck region are rare, highly vascularized tumors which are categorized with respect to their site of origin and may be observed with periodical imaging or treated using either a single modality or multimodal approach including the primary management strategies of surgery and Radiation Therapy (RT). Temporal Bone Chemodectomas (TBC) include the tympanomastoid chemodectomas with modified Fisch Class A and B, and tympanojugular chemodectomas with modified Fisch Class C and D. An indolent disease course with low growth rate is typical for the majority of these mostly benign tumors, however, abrupt manifestation with severe symptomatology may also occur rarely in affected patients due to the mass effect with or without local invasion of critical neurovascular structures such as the internal carotid artery, jugular bulb, and lower cranial nerves. Affected patients may suffer from a plethora of symptoms such as otalgia, vertigo, pulsatile tinnitus, hearing impairment, headache, dysphagia, and dizziness. While surgery has been the traditional primary mode of treatment for these tumors, RT and more recently radiosurgery have been incorporated in management to achieve optimal therapeutic outcomes. Herein, we provide a concise review of RT for temporal bone chemodectomas.

Introduction

Chemodectomas of head and neck region are rare, highly vascularized tumors which are categorized with respect to their site of origin and may be observed with periodical imaging or treated using either a single modality or multimodal approach with the primary management strategies of surgery and Radiation Therapy (RT) [1–6]. Temporal Bone Chemodectomas (TBC) include the tympanomastoid chemodectomas with modified Fisch Class A and B, and tympanojugular chemodectomas with modified Fisch Class C and D [6,7]. First description of TBC dates back to 1945 [8]. An indolent disease course with low growth rate is typical for the majority of these mostly benign tumors, however, abrupt manifestation with severe symptomatology may also occur rarely in affected patients due to the mass effect with or without local invasion of critical neurovascular structures such as the inner ear, internal carotid artery, jugular bulb, and lower cranial nerves [1,2]. Affected patients may suffer from a plethora of symptoms such as otalgia, vertigo, pulsatile tinnitus, hearing impairment, headache, dysphagia, and dizziness [1,2]. While surgery has been the traditional primary mode of treatment for these tumors, RT and more recently radiosurgery have been incorporated in management to achieve optimal therapeutic outcomes [1–7]. Herein, we provide a concise review of RT for temporal bone chemodectomas.

Irradiation for management of temporal bone chemodectomas

A growing body of literature spanning about three-quarters of a century has focused on different aspects of chemodectomas and their management with surgery, RT, and radiosurgery [1–76]. Over the years, there have been significant improvements in the discipline of radiation oncology incorporating contemporary radiotherapeutic strategies such as Image Guided Radiation Therapy (IGRT), Adaptive Radiation Therapy (ART), Intensity Modulated Radiation Therapy (IMRT), Breathing Adapted Radiation Therapy (BART), and stereotactic irradiation with Stereotactic Radiosurgery (SRS), Hypofractionated Stereotactic Radiation Therapy (HFSRT), and Stereotactic Body Radiation Therapy (SBRT) [1,2,77–83]. Radiosurgery in the forms of SRS...
and HFSRT has proved to be safe and effective for management of several intracranial and extracranial disorders [1,2,84-102].

While studies conducted in the earlier periods may be subject to considerations about the use of relatively older RT techniques to deliver a wide range of doses for management, current RT practice involves incorporation of modernized treatment equipment and planning systems along with optimization of delivered dose under image guidance for an improved therapeutic ratio for TBC. Prescribed doses for either conventionally fractionated RT or radiosurgery protocols are being substantiated with accumulating evidence. Normal tissue sparing has been improved by use of intensity modulation techniques. In this context, conventionally fractionated RT and radiosurgery as SRS, FSRT, or HFSRT are now considered as a viable part of multimodality TBC management. While management of advanced, incompletely resected, or recurrent lesions with irradiation has been widely accepted as common practice, accumulating evidence in favor of irradiation has been supported by several studies as well as systemic reviews and metaanalyses assessing its utility as the primary mode of management [56,63-65,73-76,103-110].

In the context of irradiation options, radiosurgery offers the advantage of delivering stereotactically focused and high dose radiation to the well defined treatment volume with steeper dose gradients around the target thereby achieving improved normal tissue sparing. Ultimate effect is possibly achieved by complex interactions of endothelial inflammation, vascular endothelial damage around the tumor-supplying vessels and apoptosis [111,112]. Irradiation of small volumes typically without any margins allows for delivery of high doses with radiosurgery. Clearly, this highly sophisticated technology warrants robust immobilization and image guidance for precise radiation delivery. Negligible doses around the target with radiosurgery allows for respecting the tolerance of critical surrounding structures, leading to an improved toxicity profile compared to surgery [103,104]. Additional favorable aspects of radiosurgical management may include shortening of overall treatment time with expedited recovery typically as an outpatient procedure, earlier return to daily life, improved functional preservation and quality of life, and cost-effectiveness [1,103-106].

In a comprehensive review of paraganglioma management using irradiation and surgery, local control rates were found to be 93.7%, 89.1%, and 78.2% with treatment modalities of SRS, external beam RT, and surgery, respectively with statistical significance [65]. Mortality rate was 9.2% with surgery vs none with SRS [65]. As for morbidity, cranial nerve palsies were increased with surgery but decreased with external beam RT and SRS compared to the preoperative levels [65].

Clearly, comparative assessment of treatment modalities based on retrospective data may be prone to confounding factors such as considerable variations in patient and tumor characteristics among the included studies. Nevertheless, accumulating evidence suggests that RT and particularly radiosurgery is being increasingly considered to have an expanding indication for management of these tumors.

Conclusion and future perspectives

Chemodectomas of the head and neck region require thorough consideration since management with a given modality may be associated with substantial deterioration in quality of life of the affected patients along with morbidity and even mortality due to the intricate anatomy and intimate association of some lesions with vital neurovascular structures. There has been significant progress from the standpoint of both surgery and RT in recent years with particularly radiosurgical management being supported by accumulating data and suggested as a viable alternative or supplementary treatment modality for a considerable group of affected patients. Nevertheless, rather than selecting one modality over another, it is more plausible to individualize management taking into account factors including age, tumor size, location, growth rate, symptomatology, comorbidities, performance status and patient preferences to improve the therapeutic ratio. Particle therapy, staged treatment of selected patients, and incorporation of systemic agents merit further research to improve outcomes of management.

References

1. Sager O, Dincoglan F, Beyzadeoglu M (2015) Stereotactic radiosurgery of glomus jugulare tumors: current concepts, recent advances and future perspectives. CNS Oncol 4: 105-114. Link: https://bit.ly/2XLyyeZ

2. Sager O, Beyzadeoglu M, Dincoglan F, Gamsiz H, Demiral S, et al. (2014) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of glomus jugulare tumors. Tumori 100: 184-188. Link: https://bit.ly/3eWVWzj

3. Powell S, Peters N, Harmer C (1992) Chemodectoma of the head and neck: results of treatment in 84 patients. Int J Radiat Oncol Biol Phys 22: 919-924. Link: https://bit.ly/2VkPnx8

4. Moore GR, Robbins JP, Seale DL, Fitz-Hugh GS, Constable WC (1973) Chemodectomas of the middle ear. A comparison of therapeutic modalities. Arch Otalaryngol 98: 330-335. Link: https://bit.ly/3bnHR2S

5. Spector GJ, Fierstein J, Oghra JH (1976) A comparison of therapeutic modalities of glomus tumors in the temporal bone. Laryngoscope 86: 690-696. Link: https://bit.ly/2XPobab7

6. Prasad SC, Minoune HA, D’Orazio F, Medina M, Bacciu A, et al. (2014) The role of wait-and-scan and the efficacy of radiotherapy in the treatment of temporal bone paragangliomas. Otol Neurotol 35: 922-931. Link: https://bit.ly/2VovJ6zc

7. Sivalingam S, Konishi M, Shin SH, Lope Ahmed RA, Piazza P, et al. (2012) Surgical management of tympanojugular paragangliomas with intradural extension, with a proposed revision of the Fisch classification. Audiol Neurotol 17: 243-255. Link: https://bit.ly/2XMnWzQ

8. Rosenwasser H (1945) Carotid body tumor of the middle ear and mastoid. Arch Otalaryngol 41: 64-67. Link: https://bit.ly/34MzLnO

9. Winship T, Klopp CT, Jenkins WH (1948) Glomus jugulare tumors. Cancer 1: 441-448. Link: https://bit.ly/3aj4bfz

10. Zettergren L, Lindstrom J (1951) Glomus tympanicum. Its occurrence in middle ear and mastoid. Acta Pathol Microbiol Scand 28: 157-164. Link: https://bit.ly/3bnHR8F

11. Rosenwasser H (1952) Glomus jugulare tumors. Cancer 5: 441-448. Link: https://bit.ly/2RRkheh

Citation: Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC). Arch Otolaryngol Rhinol 6(2): 016-020. DOI: https://dx.doi.org/10.17352/2455-1759.000115
53. Verniers DA, Keus RB, Schouwenburg PF, Bartelink H (1992) Radiation therapy, an important mode of treatment for head and neck chemodectomas. Eur J Cancer 28A: 1028-1033. Link: https://bit.ly/2Kv0kYt

54. Jekunen A, Kajanti M, Lehtonen H, Mäntylä M (1994) The role of radiotherapy in tympanojugular chemodectomas. Acta Oncol 33: 978-979. Link: https://bit.ly/2wW4yrs

55. de Jong AL, Coker NJ, Jenkins HA, Goepfert H, Alford BR (1995) Radiation therapy in the management of paragangiomas of the temporal bone. Am J Otol 16: 283-289. Link: https://bit.ly/3apUEWW

56. Hinerman RW, Mendenhall WM, Amendur RJ, Stringer SP, Antonelli PJ, et al. (2001) Definitive radiotherapy in the management of chemodectomas arising in the temporal bone, carotid body, and glomus vagale. Head Neck 23: 363-371. Link: https://bit.ly/2VkyBgo

57. Elshaikh MA, Mahmoud-Ahmed AS, Kinney SE, Wood BG, Lee JH, et al. (2002) Recurrent head-and-neck chemodectomas: a comparison of surgical and radiotherapeutic results. Int J Radiat Oncol Biol Phys 52: 953-956. Link: https://bit.ly/2xH1Eh

58. Feigenberg SJ, Mendenhall WM, Hinerman RW, Amendur RJ, Friedman WA, et al. (2002) Radiosurgery for paragangioma of the temporal bone. Head Neck 24: 384-389. Link: https://bit.ly/2QXks85

59. Saringer W, Kitz K, Czerny C, Kornfehl J, Gosttner W, et al. (2002) Paragangliomas of the temporal bone: results of different treatment modalities in 53 patients. Acta Neurochir (Wien) 144: 1255-1264. Link: https://bit.ly/2KKh4rW

60. Zabel A, Milker-Zabel S, Huber P, Schulz-Ertner D, Schlegel W, et al. (2004) Fractionated stereotactic conformal radiotherapy in the management of large neurovascular malformations of the skull base. Int J Radiat Oncol Biol Phys 58: 1445-1450. Link: https://bit.ly/2zaaDZov

61. Dall'Igna C, Antunes MB, Dall'Igna DP (2005) Radiation therapy for glomus tumors of the temporal bone. Braz J Otorhinolaryngol 71: 752-757. Link: https://bit.ly/2QRQ3at

62. Chino JP, Sampson JH, Tucci DL, Brizel DM, Kirkpatrick JP (2009) Paraganglioma of the head and neck: long-term local control with radiotherapy. Am J Clin Oncol 32: 304-307. Link: https://bit.ly/2VFSvB7

63. Hinerman RW, Amendur RJ, Morris CG, Kirwan J, Mendenhall WM (2008) Definitive radiotherapy in the management of paragangliomas arising in the head and neck: a 35-year experience. Head Neck 30: 1431-1438. Link: https://bit.ly/2VgX6d5

64. van Hulstijn LT, Corssmit EP, Coremans IE, Smit JW, Jansen JC, et al. (2013) Regression and local control rates after radiotherapy for jugulotympanic paragangliomas: systematic review and meta-analysis. Radiother Oncol 106: 161-168. Link: https://bit.ly/2yp4rIw

65. Suárez C, Rodrigo JP, Bodecker CC, Llorente JL, Silver CE, et al. (2013) Jugular and vagal paragangliomas: Systematic study of management with surgery and radiotherapy. Head Neck 35: 1195-1204. Link: https://bit.ly/2y2ZKnY

66. Combs SE, Salehi-Allameh B, Habermehl D, Kessel KA, Welzel T, et al. (2014) Clinical response and tumor control based on long-term follow-up and patient-reported outcomes in patients with chemodectomas of the skull base and head and neck region treated with highly conformal radiotherapy. Head Neck 36: 22-27. Link: https://bit.ly/3q477Ll

67. Dupin C, Lang P, Dessard-Diana B, Simon JM, Cuenca X, et al. (2014) Treatment of head and neck paragangliomas with external beam radiation therapy. Int J Radiat Oncol Biol Phys 89: 353-359. Link: https://bit.ly/2KS55rG

68. Gandia-González ML, Kusak ME, Moreno NM, Sárraga JG, Rey G, et al. (2014) Jugulotympanic paragangliomas treated with Gamma Knife radiosurgery: a single-center review of 58 cases. J Neurosurg 121: 1158-1165. Link: https://bit.ly/34PznEY

69. Gillo P, Morris CG, Amendur RJ, Wernig JW, Dziegielewski PT, et al. (2014) Radiotherapy for benign head and neck paragangliomas: a 45-year experience. Cancer 120: 3738-3743. Link: https://bit.ly/2XLdpwJ

70. Scheick SM, Morris CG, Amendur RJ, Bova FJ, Friedman WA, et al. (2018) Long-term Outcomes After Radiosurgery for Temporal Bone Paragangliomas. Am J Clin Oncol 41: 223-226. Link: https://bit.ly/3b3nYBD

71. Marchetti M, Pinzi V, Tramacere I, Bianchi LC, Ghelmetti F, et al. (2017) Radiosurgery for Paragangliomas of the Head and Neck: Another Step for the Validation of a Treatment Paradigm. World Neurosurg 98: 281-287. Link: https://bit.ly/2VmYpsb

72. Cao KL, Feuvret L, Herman P, Bolle S, Jouffroy T, et al. (2018) Protontherapy of head and neck paragangliomas: A monocentric study. Cancer Radiother 22: 31-37. Link: https://bit.ly/2VnZ1S

73. Suarez C, Fernandez-Alvarez V, Neumann HP, Boedecker CC, Offergeld C, et al. (2015) Modern trends in the management of head and neck paragangliomas. Eur Arch Otorhinolaryngol 272: 3595-3599. Link: https://bit.ly/3cw1HP

74. Sahyouni R, Mahboubi H, Moshtagh O, Goshastabi K, Sahyouni S, et al. (2018) Radiosurgery of Glomus Tumors of Temporal Bone: A Meta-analysis. Otol Neurotol 39: 488-493. Link: https://bit.ly/2XOUvOZ

75. Jansen TTG, Timmers HJJM, Marres HAM, Kaanders JHAM, Kunst HPM (2015) Modern comparative analysis of traditional and radiosurgery for symptomatic splenomegaly in splenomyeloproliferative disorders. Tumori 101: 84-90. Link: https://bit.ly/3atj7Li

76. Jansen TTG, Kaanders JHAM, Beute GN, Timmers HJJM, Marres HAM, et al. (2018) Surgery, radiotherapy or a combined modality for jugulotympanic paraganglioma of Fisch class C and D. Clin Otolaryngol 43: 652-661. Link: https://bit.ly/2ypAZW

77. Sager O, Beyzaedegol M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) Evaluation of active breathing control-moderate deep inspiration breath-hold in definitive non-small cell lung cancer radiotherapy. Neoplasma 59: 333-340. Link: https://bit.ly/2VFvbn1

78. Uysal B, Beyzaedegol M, Sager O, Dinçoglan F, Demiral S, et al. (2013) Dosimetric evaluation of intensity modulated radiotherapy and 4-field 3-d conformal radiotherapy in prostate cancer treatment. Balkan Med J 30: 54-57. Link: https://bit.ly/2K9Zai

79. Dinçoglan F, Beyzaedegol M, Sager O, Oysul K, Kahya YE, et al. (2013) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99: 76-82. Link: https://bit.ly/2KbbVXE

80. Sager O, Beyazdeegol M, Dinçoglan F, Demiral S, Uysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. Tumori 101: 84-90. Link: https://bit.ly/3ao9oC

81. Sager O, Dinçoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2017) Spinal Irradiation: A Concise Review of the Literature. J App Hem Bl Tran 1: 101. Link: https://bit.ly/3cAi6m3

82. Sager O, Dinçoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of replanning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident seroma. Jpn J Radiol 36: 401-406. Link: https://bit.ly/2RR50eM

83. Sager O, Dinçoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Breathing adapted radiotherapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10: 369-374. Link: https://bit.ly/34Os7t3

84. Sirin S, Oysul K, Surenkoc S, Sager O, Dinçoglan F, et al. (2011) Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: a single center experience. Vojnosanit Pregl 68: 961-966. Link: https://bit.ly/340902i

Citation: Dincoglan F, Beyzaedegol M, Sager O, Demiral S, Uysal B, et al. (2020) A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC). Arch Otolaryngol Rhinol 6(2): 016-020. DOI: https://dx.doi.org/10.17352/2455-1759.000115
Dincoglan F, Sager O, Gamsiz H, Demiral S, Uysal B, et al. (2012) Management of arteriovenous malformations by stereotactic radiosurgery: A single center experience. UHOD-Uluslararasi Hematoloji-Onkoloji Dergisi 22: 107-112. Link: https://bit.ly/2RsQnQx

Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2012) Stereotactic radiosurgery for intracranial tumors: A single center experience. Guhane Med J 54: 190-196. Link: https://bit.ly/2Klx9c

Dincoglan F, Beyzadeoglu M, Sager O, Siren S, et al. (2012) Image-guided positioning in intracranial non-invasive stereotactic radiosurgery for the treatment of brain metastasis. Tumori 98: 630-635. Link: https://bit.ly/3brf7H

Surenkok S, Sager O, Dincoglan F, Gamsiz H, Demiral S, et al. (2013) Stereotactic radiosurgery in pituitary adenomas: A single center experience. UHOD-Uluslararasi Hematoloji-Onkoloji Dergisi 22: 255-260. Link: https://bit.ly/3aojSM

Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: A single center experience. Tumori 99: 617-622. Link: https://bit.ly/2KcQQP

Demiral S, Beyzadeoglu M, Uysal B, Oysul K, Kahya YE, et al. (2013) Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer. Neoplasma 60: 322-327. Link: https://bit.ly/2zii0v

Dincoglan F, Beyzadeoglu M, Sager O, Uysal B, Demiral S, et al. (2013) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of meningiomas: A single center experience. J BUON 18: 717-722. Link: https://bit.ly/2XQ6psS

Dincoglan F, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of pulmonary oligometastases by stereotactic body radiotherapy. Tumori 100: 179-183. Link: https://bit.ly/2KjC7Tc

Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2014) Management of patients with ≥ 4 brain metastases using stereotactic radiosurgery boost after whole brain irradiation. Tumori 100: 302-306. Link: https://bit.ly/2RSTmm

Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of linear accelerator (Linac)-based stereotactic radiosurgery (SRS) for cerebral cavernous malformations: A 15-year single-center experience. Ann Saudi Med 34: 54-58. Link: https://bit.ly/2zdk24Y

Gamsiz H, Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, et al. (2014) Treatment Outcomes for Single Modality Management of Glomus Jugulare Tumors With Stereotactic Radiosurgery. Otol Neurotol 37: 1406-1410. Link: https://bit.ly/2XQW5Lw

Shaprio S, Kellermeyer B, Ramadan J, Jones G, Wiseman B, et al. (2018) Outcomes of Primary Radiosurgery Treatment of Glomus Jigulae Tumors: Systematic Review With Meta-analysis. Otol Neurotol 39: 1079-1087. Link: https://bit.ly/2z2z25e

Tran Ba Huy P (2014) Radiotherapy for glomus jugulare paraganglioma. Eur Ann Otorhinolaryngol Head Neck Dis 131: 223-226. Link: https://bit.ly/3bmTJbj

Hafez RFA, Morgan MS, Fahmy OM, Hassan HT (2018) Long-term effectiveness and safety of stereotactic gamma knife surgery as a primary sole treatment in the management of glomus jugulare tumor. Clin Neurol Neurosci 186: 34-37. Link: https://bit.ly/2KnFG9u

Tripathi M, Rekhapalli R, Batish A, Kumar N, Onam AS, et al. (2019) Safety and Efficacy of Primary Multisession Dose Fractionated Gamma Knife Radiosurgery for Jugular Paragangliomas. World Neurosurg 131: e136-e148. Link: https://bit.ly/2VMqZj

Dobberpuhl MR, Maxwell S, Feddock J, St Clair W, Bush ML (2016) Treatment Outcomes for Single Modality Management of Glomus Jigulae Tumors With Stereotactic Radiosurgery. Otol Neurosurg 37: 1406-1410. Link: https://bit.ly/3coWOaS

Sharp CD, Jawahar A, Warren AC, Elrod JW, Nanda A, et al. (2003) Gamma knife irradiation increases cerebral endothelial expression of intercellular adhesion molecule 1 and E-selectin. Neurosurgery 53: 154-160; e497-502. Link: https://bit.ly/3bmTJbj

Balagamwala EH, Chao ST, Suh JH (2012) Principles of radiobiology of stereotactic radiosurgery and clinical applications in the central nervous system. Technol Cancer Res Treat 11: 3-13. Link: https://bit.ly/3eDtxUM