Rifampin pharmacokinetics/pharmacodynamics in the hollow fiber model of *Mycobacterium kansasii*

Shashikant Srivastava1,2,3,*, Gunavanthi D. Boorgula1, Jann-Yuan Wang4, Hung-Ling Huang5,6, Dave Howe7, Tawanda Gumbo7,8, Scott K Heysell9

1Department of Pulmonary Immunology, University of Texas Health Centre, Tyler, Texas, USA.

2Department of Immunology, UT Southwestern Medical Center, Dallas, Texas, USA.

3Department of Pharmacy Practice, Texas Tech University Health Science Center, Dallas, Texas, USA.

4Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.

5Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.

6Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.

7Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas.

8Department of Medicine, University of Cape Town, Observatory, South Africa.

9Division of Infectious Diseases and International Health, University of Virginia, USA.

Corresponding author:

Shashikant Srivastava, Ph.D.

Department of Pulmonary Immunology, University of Texas Health Centre, 11937 US Highway 271, Tyler, Texas, 75708, USA

Phone: (903) 877-7684

e-mail: Shashi.kant@uthot.edu
Supplemental Figure 1. Changes in the number of viable THP-1 cells in the HFS-\textit{Mkn} upon rifampin treatment.

Consistent with the \textit{Mkn} kill seen with different rifampin doses, the number of viable THP-1 cells did not change significantly from baseline to day 28. This indicates intracellular \textit{Mkn} kill by rifampin, hence THP-1 cell survival.
Supplemental Figure 2. Rifampin minimum inhibitory concentration on study day 28.

Representative figure for day 28 of the HFS-Mkn study. There was no change in the rifampin MIC of the laboratory strain in any HFS-Mkn unit, except in the systems with rifampin exposure of $fC_{\text{max}}/\text{MIC}=26.88$ where the MIC changed from baseline 0.125 mg/L to 8 mg/L.
Supplemental Figure 3. Time-to-positive as second pharmacodynamics method in the HFS-Mkn study.

(A) The time-to-positive (TTP) in the non-treated control systems decreased from 2.93 days to 0.625 days by the end of the HFS-Mkn study indicating intracellular bacterial growth. Whereas, the TTP in all rifampin treated systems increased indicating bacterial kill. (B) Exponential growth model showing relationship between TTP and Mkn bacterial burden in the HFS-Mkn over time.