Integrating a genome-wide association study with transcriptome analyses to identify candidate genes and pathways for feed conversion ratio in Yorkshire pigs

Yuanxin Miao1,2,3, Quanshun Mei1,2, Chuanke Fu1,2, Mingxing Liao1,2,4, Xinyun Li1,2, Shuhong Zhao1,2, Tao Xiang1,2*

*Correspondence: Tao.Xiang@mail.hzau.edu.cn

1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China;
2 The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China;
3 Full list of author information is available at the end of the article

Abstract

Background: Feed conversion ratio (FCR) is an important productive trait that largely affects profits in pig industry. Elucidating the genetic mechanisms underpinning the FCR potentially promote the efficiencies of improving FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses in different tissues in Yorkshire pigs (YY), aimed at identifying key genes and signaling pathways significantly associated with FCR.

Results: A total of 61 significant single nucleotide polymorphism (SNPs) were detected by GWAS in YY. All of these SNPs are located on porcine chromosome (SSC) 5 and the covered region was considered as a quantitative trait locus (QTL) region for FCR. Some genes that distributed around these significant SNPs were considered as the candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to the transcriptome analyses in hypothalamus, TPH2 exhibits abilities of regulating the intestinal motility by a serotonergic synapse and an oxytocin signaling pathway. In addition, GRIP1 is
involved in a glutamatergic and GABAergic signaling pathway, which regulates FCR through
affecting the appetite in pigs. Moreover, GRIP1, FRS2, CNOT2, TRHDE regulates the
metabolism in various tissues by a thyroid hormone signaling pathway.

Conclusions: Synthesizes results from GWAS and transcriptome analyses, TPH2, GRIP1, FRS2,
TRHDE, CNOT2 genes were considered as candidate genes for regulating FCR in Yorkshire pigs.
These findings help to improve the understandings of the genetic mechanism of FCR and
potentially optimize the design of breeding schemes.

Keywords: GWAS, Transcriptomics, Feed conversion ratio, Pigs
Improving feed conversion ratio (FCR) has become an imperative goal for the pig industry since it largely affects the economic profits [1, 2]. FCR is influenced by many factors, such as the level of metabolism, body composition and physical activities. Besides, genetic effect is also non-negligible for improving FCR [1, 3, 4]. FCR can be improved through artificial selection, but the progress is time-consuming and expensive [5]. Elucidating the genetic mechanisms underpinning FCR and identifying the significantly associated genes of FCR potentially enhance the efficiency of the improvement of FCR.

Genome-wide association analysis (GWAS) is an effective method to detect genetic variants and candidate genes associated with FCR, such as [6-8]. Overall, a large number of SNPs located on SSC 1, SSC 4, SSC 6, SSC 7 and SSC X have been identified significantly associated with FCR. Some QTL regions and candidate genes have been reported to be associated with FCR by using GWAS [9-12]. Therein, the marker WU_10.2_7_18377044 on SSC 7 have been reported explaining about 2.37% of phenotypic variance for residual feed intake (RFI), and DRGA0001676 on SSC 1 explained 3.22% and 5.46% of phenotypic variance for FCR and RFI, respectively [6]. Furthermore, QTL regions for the component trait of RFI were detected on SSC 1, 8, 9, 13 and 18 [8]. In addition, MC4R, XIRP2, TTC29, SOGA1, GRK5, PROX1, NMBR, KCTD16, ASGR1, PRKCQ, PITRM1 and TIAM1 have been reported as candidate genes for FCR in pigs by GWAS [9-12].

Transcriptome sequencing has also been comprehensively used to identify candidate genes and to unravel the molecular mechanisms for FCR. The pathways of hormonal regulation, notch signaling, and Wnt signaling in pituitary tissue have been reported to regulate FCR in pigs [13].
Also, VA metabolism, which can regulate fatty acid and steroid hormones metabolism, has been found to be associated with FCR in liver tissue of pig [14]. Moreover, in skeletal muscle tissue, genes involved in mitochondrial energy metabolism were down-regulated and genes involved in skeletal muscle differentiation and proliferation were up-regulated in skeletal muscle tissues of pigs with high FCR [15]. Gradient boosting machine learning for muscle transcriptomes indicated that FKBP5, MUM1, AKAP12, FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and FRAS1 were related to FCR in pigs [16]. Transcriptomes in caecal and colonic mucosal tissues indicated energy and lipid metabolism can affect the FCR in pigs, and GUCA2A, GUCA2B, HSP70.2, NOS2, PCK1, SLCs, and CYPs were positively associated with FCR in pigs [17]. Although these studies have successfully identified some important signaling pathways and candidate genes of FCR, the molecular mechanisms of FCR are still remain to be clarified to a large extent. So far, to our knowledge, few studies have integrated results of GWAS and transcriptome analyses to identify the major genes and crucial signaling pathways of FCR in pigs. Thus, the objectives of our study were to identify QTLs and unravel the genetic architecture affecting FCR in Yorkshire pigs by performing both GWAS and transcriptome analyses in pig tissues that are related to the progress of FCR. This integrated analysis may help to enhance the power and efficiency of identifying candidate genes and key signaling pathways of FCR in Yorkshire pigs.

Materials and Methods

Phenotypic recordings

In this study, all the FCR (= feed intake/weight gain) were measured in Yorkshire pigs by a pig performance testing system in a national pig nucleus herd in the interval 30 to 100 kg. In total, 14
401 pigs had FCR recordings. All of the phenotypic recordings were measured between the year 2017 and 2020. Pedigrees can be traced back for ten generations. Totally, there are 19811 pigs existing in the pedigree.

Genotypes

The SNP markers were genotyped on 3672 YY pigs by using Illumina PorcineSNP60 Genotyping BeadChip (Vanraden, 1992). SNPs were mapped to pig chromosomes using the pig genome build 10.2 [18]. Quality controls were applied as follows: animals with call-rate smaller than 90% were first removed; SNPs with call-rate smaller than 90% were removed as well; SNPs with minor allele frequency smaller than 0.05 were filtered out; SNPs that deviated strongly from Hardy Weinberg equilibrium within breed (p < 10-7) were also excluded. After quality control, 31236 SNPs distributed over the 18 porcine autosomes were used for genome-wide association analysis.

Statistic model for genomic prediction

The single-step GBLUP (ssGBLUP) method was used to predict genomic breeding values (GEBVs) [19, 20]:

\[
y = Xb + Zu + e
\]

(1)

where \(y \) contained phenotypic recordings for FCR; \(Xb \) indicated the fixed effects, including unit-year-month effect, sex effect and covariate for the starting weight; \(u \) was random additive effect and \(Z \) was the incidence matrix to relate the additive effects to the phenotypic recordings; \(e \) was a vector of residual effects. It was assumed that the random additive effects followed normal distribution, as: \(u \sim N(0, H \sigma_u^2) \), where \(H \) was the combined pedigree and genomic information
relationship matrix [19].

After estimating GEBVs, together with the pedigree information, de-regressed EBVs (DEBV) for all the involved animals were calculated as [21].

\[
\text{DEBV}_i = \mu + \sum_{j=1}^{k} Z_{ij}u_j + \epsilon_i
\]

(2)

Where \(\text{DEBV}_i \) was the DEBV of animal \(i \) for the FCR, \(\mu \) was the overall mean, \(k \) was the total SNP markers number (31236), \(Z_{ij} \) was the allelic state at locus \(j \) in individual \(i \); \(u_j \) was the random effect of marker \(j \); and \(\epsilon_i \) was a random residual effect assumed to be normally distributed \(\epsilon_i \sim N(0, \sigma^2_e) \), where \(I \) was an identity matrix and \(\sigma^2_e \) was the residual variance [22-24].

Genome-wide association studies

The genome-wide association study was performed on 3672 genotyped pigs, by using MLMA (mixed linear model based association analysis) option of GCTA software [25]. All the SNPs were used for the association analysis. The mixed linear model was:

\[
y = 1\mu + xb + wg + e
\]

(3)

where \(y \) was the vector of DEBVs for FCR in the genotyped Yorkshire pigs; \(\mu \) was the overall mean and \(1 \) was a vector of ones; \(x \) was a vector of SNP genotypes, with entries 0, 1, 2 for genotypes AA, AB and BB, respectively; \(b \) was the fixed additive genetic effect of analyzed SNP; \(g \) was a vector of random polygenic effects and \(w \) was the incidence matrix relating the DEBVs to the corresponding random polygenic effects. It was assumed that \(g \) followed a normal distribution.
with mean of 0 and variance of $A\sigma^2_g$, where A was the pedigree-based additive relationship matrix.

e was a vector of residual effects, following a normal distribution as $e \sim N (0, D\sigma^2_e)$, where D was a diagonal matrix with elements $d_{ii} = (1 - r^2_{DEBV})/r^2_{DEBV}$ and r^2_{DEBV} was the reliabilities for DEBVs. Significant test of SNP effects was implemented by a two-sided t-test. Bonferroni corrections were set as the genome-wide significant threshold ($-\log_{10}(0.05/\text{number of SNPs}) = 5.796$).

Detection of LD block and QTL analysis

Significant SNPs located within 1 Mb from each other were considered belonging to a same QTL region. Detection of LD block was performed in chromosomal regions where the identified significantly associated SNPs existed by the software Haplovie [26]. NCBI Remap was used to transfer the significant regions on SSC 5 aligned to the Sscrofa 10.2 genome assembly to that aligned to Sscrofa 11.1 genome assembly. Then, QTLs which are located in these significant regions were identified by being searched in a pig QTL database (pigQTLdb, https://www.animalgenome.org/cgi-bin/QTLdb/SS/index).

Candidate gene search and integrating analysis with transcriptome data

Genes that are located in the identified QTL region and 0.5 Mb flanking these loci were considered as candidate genes for regulating FCR [8, 27]. Then we used an omics knowledgebase, ISwine (http://iswine.iomics.pro), to search candidate genes based on genome, transcriptome, quantitative traits and annotation information [28]. Transcriptome analyses in different tissues (muscle, liver, fat, hypothalamus) collected from Yorkshire pigs with high or low performance of
FCR were implemented in previous studies in our lab [29]. Subsequently, the genes identified by ISwine and GWAS were integrated analyzed with transcriptome results. Database for Annotation, Visualization and Integrated Discovery software (DAVID bioinformatics resources: https://david.ncifcrf.gov/) was used for functional classification and pathway analysis for all the identified genes.

Results

Genome-wide association analyses for FCR

In total, 61 SNPs reached the significant thresholds of 5.796, which was calculated as the Bonferroni correction (=−log10(0.05/31326)) [30]. All the significantly associated SNPs (61 SNPs) are located on SSC 5. Among these SNPs, most of them (54 SNPs) are located within the region of 36.1-44.3 Mb on SSC 5, while 5 SNPs are located within the region of 47.1-47.8Mb and 2 SNPs are located within the region of 33.4–34.5Mb.

LD block, associated regions analysis and candidate genes identified for FCR

Several linkage disequilibrium (LD) blocks were detected in the regions where the 61 significantly associated SNPs located: 3 LD blocks were detected in the region of 33.4-34.5Mb on SSC 5; 3 LD blocks were detected in the region of 36.1- 44.3Mb on SSC 5 and 1 LD block was detected in the region of 47.1- 47.8Mb on SSC 5 (Figure 2). The region 33.4-34.5 Mb, 36.1- 44.3 Mb, 47.1- 47.8 Mb on SSC 5 maps on the Sscrofa 10.2 genome assembly was transfer to 30.2-31.3 Mb,
33.6-41.08 Mb, 43.8-44.5 Mb on SSC 5 aligned to the Sscrofa 11.1 genome assembly by NCBI Remap. Then, pigQTLdb [31] was used to identified QTLs in these regions, and the results showed these regions contained QTLs regulating the traits of days to 110 kg, feed intake, average daily gain, body weight, loin percentage, intramuscular fat content, average backfat thickness, etc. (Table S1). Feed intake and growth traits are tightly related to the performance FCR. Thus, these regions were also considered as crucial QTL regions associated with FCR.

All the detailed information of the significantly associated SNPs identified by GWAS and the putative candidate genes in this QTL region is shown in Table S2. Among the identified 61 significantly associated SNPs, 26 SNPs are located within some different genes. These significant SNPs together with their corresponding genes are shown in Table 1. Some other genes located in the 0.5 Mb genome region flanking the significantly associated SNPs were also considered as candidate genes, including revealed fibroblast growth factor receptor substrate 2 (FRS2), tryptophan hydroxylase 2 (TPH2), thyrotropin releasing hormone degrading enzyme (TRHDE), GLI pathogenesis related 1 (GLIPR1) and fatty acyl-CoA reductase 2 (FAR2) etc. ISwine platform [28] was also used to identify candidate genes for FCR in pigs. All the candidate genes identified by ISwine platform are shown in Table S3. Based on the results from ISwine, TRHDE, TPH2, FAR2, FRS2, GLIPR1 genes were confirmed as candidate genes for regulating FCR in Yorkshire pigs.

Integrated analysis between GWAS and transcriptome analyses

To clarify the genetic mechanisms that involved in the regulation of FCR in pigs, we integrated the GWAS results with a previously published transcriptome data of FCR, by using DAVID [32].
The discovered signaling pathways and possible major genes are showed in Figure 3. It showed that a mutation in TPH2 gene may influence the expression of neurotransmitter serotonin (5-HT), which mediates colonic motility by the secretion of hypothalamic oxytocin (Figure 3a). In addition, a mutation in GRIP1 gene may influence the aggregation of GABA and glutamate, which mediates appetite of pigs (Figure 3c). Notably, a thyroid hormone signaling pathway, which is regulated by GRIP1, FRS2, CNOT2, TRHDE genes, was significantly differently expressed in pigs with high or low FCR. The thyroid hormone signaling pathway participates in the regulation of metabolism in various tissues (Figure 3b).

Discussion

QTLs, LD blocks and candidate genes for FCR

Feed efficiency (FE) is an important economic trait that largely affects the economic profit of breeding industry. Identification of major genes regulating FE may help to enhance the efficiency of improving FE through technology of molecular breeding. FE is a complex trait that is regulated by many genes located in different chromosomes. So far, only a few candidate genes have been identified due to the difficulty of collecting a large number of FCR recordings and ratio trait is usually hard to be analyzed accurately. Some QTL regions associated with feed efficiency have been identified in previous studies, for example, 27-33 Mb on SSC 1, 63.8-64.0 Mb on SSC 4, 32.4-38.9 Mb and 77.8-84.2 Mb on SSC 16, 26-35 Mb on SSC 18 [8, 27, 33]; the genes CTSK, IGF2BP, MC4R, MAP3K5, DSCAM were detected as the candidate genes for feed efficiency [33, 34]. These genes mainly related to lipid metabolic process, inositol phosphate metabolism and insulin signaling pathways. In the
current study, we implemented a genome-wide association analysis for FCR in a large Yorkshire population. Our analyses identified a series of novel significant SNPs located in the 33.4-34.5 Mb, 36.1- 44.3 Mb, 47.1- 47.8 Mb on SSC 5. LD analysis showed these regions are highly linked, and many QTLs related to feed intake and growth traits were located in these regions. Logically, these regions were considered as candidate QTL regions for FCR. Genes located within 1Mb of the significantly associated SNPs, including Fatty acyl CoA reductase 2 (FAR2), Interleukin-1 receptor-associated kinase-3 (IRAK3), and tyrosyl-tRNA synthetase 2 (YARS2), were inferred as candidate genes regulating FCR in our study.

FAR2 gene spanned from 44.38Mb to 44.55Mb on SSC5. It is a key gene for fatty acid β-oxidation, acetyl-CoA translocation, peroxisome biogenesis, and the glyoxylate cycle [35]. Moreover, FAR2 were associated with insulin resistance [36]. Previous studies reported that lipid metabolism can explain the variation of FCR [14, 37, 38]. Therefore, the gene FAR2 might be a candidate gene for FCR.

IRAK3 belongs to serine-threonine kinases and it is negatively correlated with mitochondrial oxidative stress marker SOD2. It has been reported that high IRAK3 and low SOD2 cause weight loss [39, 40]. Previous studies reported that decreased IRAK3 was associated with increased mitochondrial reactive oxygen species (ROS) [41] and some other studies reported that ROS can decrease muscle mass by regulating mitochondrial biogenesis and the expression of antioxidant gene [42, 43]. Mitochondrial energy metabolism is a potential factor affecting the Feed conversion ratio in pigs [15]. Therefore, IRAK3 is worthy to be further functionally investigated.

YARS2 is a key gene binds tyrosine to the homologous mt-tRNA for the synthesis of
mitochondrial proteins. The mutations of YARS2 can lead to mitochondrial respiratory chain complex deficiencies and are related to mitochondrial myopathy [44, 45]. YARS2 has not been functionally characterized in pigs. However, since its function involves mitochondrial protein synthesis and mitochondrial respiratory, it might be an important candidate gene for FCR in pigs.

GRIP1 control appetite through glutamatergic and GABAergic signaling

In this study, we integrated GWAS results with transcriptome analyses, aiming at identifying candidate genes and biological pathways of FCR in pigs. The performances of feed intake have been found significantly different in FCR divergent selection pigs, meanwhile feed intake is a major physiological process associated with variations of FCR [46-48]. GABA (γ-amino-butyric acid) and glutamate, which express in hypothalamic neurons, can promote feeding and weight gain, while GRIP1 can interact with the C termini of AMPA receptors and clustered at both glutamatergic and GABAergic synapses [49-51]. In addition, the genes associated with GABAergic synapse (GNG13, GABRA5, GABRE, GABRQ, GAD2, HAP1, PRKCG) and Glutamatergic synapse (GNG13, GRM4, KCNJ3, PRKCG, SLC17A6, SLC17A7) were detected differently expressing in hypothalamic tissue in pigs with high or low performance of FCR [52]. Therefore, GRIP1 may control appetite through glutamatergic (Figure 4a) and GABAergic signaling pathway (Figure 4b). Moreover, two informative SNPs in GRIP1 were identified significantly associated with backfat thickness in pigs [53]. So, GRIP1 was an important candidate gene for FCR in pigs.

TPH2 affects 5-HT secretion, thereby mediates intestinal motility through hypothalamus oxytocin signaling pathway
Brain-gut interactions may be an important factor for Feed conversion ratio in pigs[54]. The central neurotransmitter serotonin (5-hydroxytryptamine, 5-HT), produced by tryptophan hydroxylase 2 (Tph2), mediates colonic motility by regulating oxytocin (OT) synthesis in the hypothalamus [55, 56]. In addition, knockout TPH2 in mice showed depleted 5-HT in brain and the mice showed an increased food consumption, modest impairment of sleep and respiration accompanied [57]. Therefore, TPH2 can regulate appetite and intestinal motility by affecting the secretion of 5-HT. In our results, a significant SNP (SNPID) has been found locating in the TPH2 gene. Moreover, transcriptome sequencing in hypothalamic of pigs with extremely high or low feed efficient exhibited that the genes related to serotonergic synapse (GNG13, ALOX5, KCNN2, KCNJ3, PTGS1, PRKCG) and oxytocin signaling pathway (CACNB4, CAMKK2, NPR1, OXT, KCNJ3, PRKCG) were differentially expressed [52]. RNA-seq in caecal and colonic mucosa exhibited the genes NOS2, related to gastrointestinal peristalsis, was a candidate gene for FCR [17]. Therefore, the SNPs within TPH2 may change the expression of this gene, and thereby affecting the secretion of 5-HT. Sequentially 5-HT regulates intestinal motility through hypothalamus oxytocin signaling pathway.

GRIP1, FRS2, CNOT2, TRHDE affects metabolic processes

Thyroid hormone (TH), regulated by the thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH), is involved in regulating many metabolic processes essential for growth and development, including basal metabolic rate, facultative thermogenesis, skeletal muscle growth, regulation of body weight, and lipid metabolism [58-60]. Thyroid hormone receptors (TR) mediates the biological effects of thyroid hormone (T3) [61]. In our result, many
candidate genes participated in regulating TH signaling, including GRIP1, FRS2, CNOT2, TRHDE and so on. Among them, GRIP1 acts as a coactivator for TR, strengthening the combination of TR and TH [62, 63]. FRS2 involved in FGF21-AMPK signaling and it can be induced to express to accelerate the energy metabolism by the thyroid hormone [64]. CNOT2 is an important regulator for energy metabolism, cellular stress and fatty acid metabolism in the skeletal muscles. The heterozygous intragenic deletion of CNOT2 displayed disordered phenotypes of learning disability, developmental delay, and hypothyroidism [65, 66]. TRHDE is an extracellular peptidase that specifically degrades the TRH to regulate appetite and metabolism [67, 68]. SNP association analysis in a New Urumqi Sheep population showed that TRHDE gene significantly associated with body weight [69]. Moreover, transcriptome sequencing in hypothalamic of pigs with high or low FCR exhibited that the genes involved in thyroid hormone signaling pathway (TRH, PIK3CG, PLCD4, PRKCG) and Autoimmune thyroid disease (SLA-DMB, SLA-DMA) were different expression [52]. Therefore, different FCR pigs were mediated by thyroid signaling pathway in hypothalamic, thus showing different phenotypes and gene differential expression in muscle, fat, liver and others tissues.

It has been reported that TH stimulated oxidation to maintain ATP synthesis by increasing proton leakage from the mitochondrial inner membrane in skeletal muscle and TH regulated the contractile function, regeneration, and transport of skeletal muscle [70-72]. Transcriptome analysis in skeletal muscle exhibited that the mitochondrial energy metabolism and skeletal muscle differentiation and proliferation were associated with FCR [15]. TH also targeted at the metabolic activities of lipid in fat and liver, such as cholesterol synthesis, cholesterol efflux, bile acid synthesis, fatty acid metabolism and hepatic steatosis [73-77]. Transcriptome analysis in adipose
tissue indicated that lipid metabolism affects the FCR in pigs [37]. Liver is an important tissue for
maintain the homeostasis of metabolic processes. Transcriptome analysis in liver revealed that
vitamin A, fatty acid, and steroid hormone metabolism were related to FCR [14].

Conclusions

This study detected a novel QTL region on SSC 5 that is significantly associated with feed
conversion ratio in Yorkshire pigs. An integrative analysis of the GWAS results and transcriptome
results in different tissues has been used to identify candidate genes and signaling pathways that
play a decisive role in feed conversion ratio in pigs. Important genomic mutation that results in
changing the RNA expression of hypothalamus, muscle, fat, liver, caecal and colonic mucosa in
pigs with high or low FCR was elaborated by combining results from genomic and transcriptome
analyses in different tissues. We concluded that through controlling feed intake and thyroid
hormone signaling pathway in hypothalamic, GRIP1, TPH2, FRS2, CNOT2, TRHDE genes
regulate metabolism in different pig tissues, resulting in a variation of FCR. These findings shed
new light on the importance of the genomic and transcriptome interactions in regulating feed
conversion ratio in pigs and offer a better understanding of the molecular mechanisms regulating
feed conversion ratio in pigs.

Abbreviations

CNOT2: CCR4-NOT transcription complex subunit 2; DEBV: de-regressed estimated breeding values; FAR2:
fatty acyl-CoA reductase 2; FCR: Feed conversion ratio; FRS2: fibroblast growth factor receptor substrate 2;
GEBVs: genomic estimated breeding values; GRIP1: GLI pathogenesis related 1; GWAS: genome-wide
association study; IRAK3: interleukin 1 receptor associated kinase 3; LD block: linkage disequilibrium block;
MLMA: mixed linear model based association analysis; pigQTLdb: pig QTL database; QTL: quantitative trait
locus; TIAM1: SNP: single nucleotide polymorphism; ssGBLUP: single-step genotype best linear unbiased
prediction; TPH2: tryptophan hydroxylase 2; TRHDE: thyrotropin releasing hormone degrading enzyme; YARS2:
YY: Yorkshire pigs;
Acknowledgements

Not applicable.

Authors' contributions

Tao xiang, Shuhong Zhao and Xinyun Li conceived and designed the experiments; Yuanxin Miao, Quanshun Mei and Chuanke Fu analyzed the data; Yuanxin Miao and Mingxing Liao contributed materials/analysis tools; Yuanxin Miao, Tao Xiang, Shuhong Zhao wrote the manuscript and all authors contributed to finalizing the writing.

Funding

This research was supported by the National Natural Science Foundation of China (31802039), the Fundamental Research Funds for the Central Universities (project number 2662018QD001), the Natural Science Foundation of Hubei Provincial (2018CFB305), and the research fund from Jingchu University of Technology (QDJ201902).

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding author upon request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Author details

1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China;
2 The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China;
3 Jingchu University of Technology, Jingmen 44800, China;
4 Agriculture and Rural Affairs Administration of Jingmen City, Jingmen 448000, China

References

1. Patience JF, Rossoni-Serao MC, Gutierrez NA. A review of feed efficiency in swine: biology and application. J Anim Sci Biotechnol. 2015; 6:33.
2. Saintilan R, Meroui I, Brossard L, Tribout T, Dourmad JY, Sellier P, et al. Genetics of residual feed intake in growing pigs: Relationships with production traits, and nitrogen and phosphorus excretion traits. J Anim Sci. 2013; 91:2542-2554.
3. Gilbert H, Bidanel JP, Gruand J, Caritez JC, Billon Y, Guillouet P, et al. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. J Anim Sci. 2007; 85:3182-3188.
4. Beaulieu AD, Williams NH, Patience JF. Response to dietary digestible energy concentration in growing pigs fed cereal grain-based diets. J Anim Sci. 2009; 87:965-976.
5. Gilbert H, Bidanel JP, Billon Y, Lagant H, Guillouet P, Sellier P, et al. Correlated responses in sow appetite, residual feed intake, body composition, and reproduction after divergent selection for residual feed intake in the growing pig. J Anim Sci. 2012; 90:1097-1108.
6. Ding R, Yang M, Wang X, Quan J, Zhuang Z, Zhou S, et al. Genetic Architecture of Feeding Behavior and Feed Efficiency in a Duroc Pig Population. Front Genet. 2018; 9:220.
7. Horodyska J, Hamill RM, Varley PF, Reyer H, Wimmers K. Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs. *PLoS One*. 2017; **12**:e0173482.

8. Do DN, Ostersen T, Strathe AB, Mark T, Jensen J, Kadarmideen HN. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. *BMC Genet*. 2014; **15**:27.

9. Do DN, Strathe AB, Ostersen T, Pant SD, Kadarmideen HN. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. *Front Genet*. 2014; **5**:307.

10. Bai C, Pan Y, Wang D, Cai F, Yan S, Zhao Z, et al. Genome-wide association analysis of residual feed intake in Junmu No. 1 White pigs. *Anim Genet*. 2017; **48**:686-690.

11. Fan B, Lkhagvadorj S, Cai W, Young J, Smith RM, Dekkers JC, et al. Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. *Meat Sci*. 2010; **84**:645-650.

12. Silva EF, Lopes MS, Lopes PS, Gasparino E. A genome-wide association study for feed efficiency-related traits in a crossbred pig population. *Animal*. 2019; **13**:2447-2456.

13. Piorkowska K, Zukowski K, Tyra M, Szynzal-Dzida M, Szulc K, Skrzyczek E, et al. The Pituitary Transcriptional Response Related to Feed Conversion in Pigs. *Genes (Basel)*. 2019; **10**.

14. Zhao Y, Hou Y, Liu F, Liu A, Jing L, Zhao C, et al. Transcriptome Analysis Reveals that Vitamin A Metabolism in the Liver Affects Feed Efficiency in Pigs. *G3 (Bethesda)*. 2016; **6**:3615-3624.

15. Liu C, Zhang X, Jing H, Miao Y, Zhao L, Han Y, et al. Research on drug-receptor interactions and prediction of drug activity via oriented immobilized receptor capillary electrophoresis. *Electrophoresis*. 2015; **36**:2433-2441.

16. Messad F, Louveau I, Koffi B, Gilbert H, Gondret F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. *BMC Genomics*. 2019; **20**:659.

17. Tan Z, Wang Y, Yang T, Xing K, Ao H, Chen S, et al. Differentially expressed genes in the caecal and colonic mucosa of Landrace finishing pigs with high and low food conversion ratios. *Sci Rep*. 2017; **7**:14886.

18. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. Analyses of pig genomes provide insight into porcine demography and evolution. *Nature*. 2012; **491**:393-398.

19. Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree and genomic information. *J Dairy Sci*. 2009; **92**:4656-4663.

20. Christensen OF, Lund MS. Genomic prediction when some animals are not genotyped. *Genet Sel Evol*. 2010; **42**:2.

21. Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding values and weighting information for genomic regression analyses. *Genet Sel Evol*. 2009; **41**:55.

22. Campos GS, Reimann FA, Cardoso LL, Ferreira CER, Junqueira VS, Schmidt PI, et al. Genomic prediction using different estimation methodology, blending and cross-validation techniques for growth traits and visual scores in Hereford and Bradford cattle. *J Anim Sci*. 2018; **96**:2579-2595.

23. Lee S, Dang C, Choy Y, Do C, Cho K, Kim J, et al. Comparison of genome-wide association and
genomic prediction methods for milk production traits in Korean Holstein cattle.
Asian-Australas J Anim Sci. 2019; 32:913-921.

24. Saatchi M, Ward J, Garrick DJ. Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations. J Anim Sci. 2013; 91:1538-1551.

25. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011; 88:76-82.

26. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21:263-265.

27. Sahana G, Kadlecova V, Hornshoj H, Nielsen B, Christensen OF. A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait. J Anim Sci. 2013; 91:1041-1050.

28. Fu Y, Xu J, Tang Z, Wang L, Yin D, Fan Y, et al. A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model. Commun Biol. 2020; 3:502.

29. Jing L, Hou Y, Wu H, Miao Y, Li X, Cao J, et al. Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs. Sci Rep. 2015; 5:11953.

30. Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics. 2008; 9:516.

31. Hu ZL, Dracheva S, Jang W, Maglott D, Bastiaansen J, Rothschild MF, et al. A QTL resource and comparison tool for pigs: PigQTLDB. Mamm Genome. 2005; 16:792-800.

32. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4:44-57.

33. Zhang ZY, Ren J, Ren DR, Ma JW, Guo YM, Huang LS. Mapping quantitative trait loci for feed consumption and feeding behaviors in a White Duroc x Chinese Erhualian resource population. J Anim Sci. 2009; 87:3458-3463.

34. Fontanesi L, Scotti E, Buttazoni L, Dall’Olio S, Davoli R, Russo V. A single nucleotide polymorphism in the porcine cathepsin K (CTSK) gene is associated with back fat thickness and production traits in Italian Duroc pigs. Mol Biol Rep. 2010; 37:491-495.

35. bin Yusof MT, Kershaw MJ, Soanes DM, Talbot NJ. FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaporthe oryzae. PLoS One. 2014; 9:e99760.

36. Burghardt KJ, Goodrich JM, Dolinoy DC, Ellingrod VL. Gene-specific DNA methylation may mediate atypical antipsychotic-induced insulin resistance. Bipolar Disord. 2016; 18:423-432.

37. Xu Y, Qi X, Hu M, Lin R, Hou Y, Wang Z, et al. Transcriptome Analysis of Adipose Tissue Indicates That the cAMP Signaling Pathway Affects the Feed Efficiency of Pigs. Genes (Basel). 2018; 9.

38. Lee J, Karnuah AB, Rekaya R, Anthony NB, Aggrey SE. Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens. Mol Genet Genomics. 2015; 290:1673-1682.

39. Hulsmans M, Geeraert B, De Keyzer D, Mertens A, Lannoo M, Vanaudenaerde B, et al. Interleukin-1 receptor-associated kinase-3 is a key inhibitor of inflammation in obesity and metabolic syndrome. PLoS One. 2012; 7:e30414.

40. Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P. PPAR agonist-induced reduction
of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irlak expression. PloS One. 2013; 8:e62253.

443 Hulsman M, Van Dooren E, Mathieu C, Holvoet P. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PloS One. 2012; 7:e32794.

444 Barbieri E, Sestili P. Reactive oxygen species in skeletal muscle signaling. J Signal Transduct. 2012; 2012:982794.

445 Lee KP, Shin YJ, Cho SC, Lee SM, Bahn YJ, Kim JY, et al. Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis. Free Radic Biol Med. 2014; 77:298-306.

446 Sommerville EW, Ng YS, Alston CL, Dallabona C, Gilberti M, He L, et al. Clinical Features, Molecular Heterogeneity, and Prognostic Implications in YARS2-Related Mitochondrial Myopathy. JAMA Neurol. 2017; 74:686-694.

447 Riley LG, Heeney MM, Rudinger-Thirion J, Frugier M, Campagna DR, Zhou R, et al. The phenotypic spectrum of germline YARS2 variants: from isolated sideroblastic anemia to mitochondrial myopathy, lactic acidosis and sideroblastic anemia 2. Haematologica. 2018; 103:2008-2015.

448 Young JM, Cai W, Dekkers JC. Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in Yorkshire swine. J Anim Sci. 2011; 89:639-647.

449 Barea R, Dubois S, Gilbert H, Sellier P, van Milgen J, Noblet J. Energy utilization in pigs selected for high and low residual feed intake. J Anim Sci. 2010; 88:2062-2072.

450 Herd RM, Arthur PF. Physiological basis for residual feed intake. J Anim Sci. 2009; 87:E64-71.

451 Wu Q, Palmiter RD. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol. 2011; 660:21-27.

452 Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006; 443:289-295.

453 Delgado TC. Glutamate and GABA in Appetite Regulation. Front Endocrinol (Lauan). 2013; 4:103.

454 Hou Y, Hu M, Zhou H, Li C, Li X, Liu X, et al. Neuronal Signal Transduction-Involved Genes in Pig Hypothalamus Affect Feed Efficiency as Revealed by Transcriptome Analysis. Biomed Res Int. 2018; 2018:5862571.

455 Lee JB, Park HB, Yoo CK, Kim HS, Cho IC, Lim HT. Association of a missense mutation in the positional candidate gene glutamate receptor-interacting protein 1 with backfat thickness traits in pigs. Asian-Australas J Anim Sci. 2017; 30:1081-1085.

456 Reyer H, Oster M, Magowan E, Murani E, Sauerwein H, Dannenberger D, et al. Feed-efficient pigs exhibit molecular patterns allowing a timely circulation of hormones and nutrients. Physiol Genomics. 2018; 50:726-734.

457 Xi TF, Li DN, Li YY, Qin Y, Wang HH, Song NN, et al. Central 5-hydroxytryptamine (5-HT) mediates colonic motility by hypothalamus oxytocin-colonic oxytocin receptor pathway. Biochem Biophys Res Commun. 2019; 508:959-964.

458 Li Z, Yang HY, Wang Y, Zhang ML, Liu XR, Xiong Q, et al. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting. J Biomed Res. 2017; 31:445-452.

459 van Lingen M, Sidorova M, Alenina N, Klemptin F. Lack of Brain Serotonin Affects Feeding and
Differentiation of Newborn Cells in the Adult Hypothalamus. *Front Cell Dev Biol.* 2019; 7:65.

Brent GA. Mechanisms of thyroid hormone action. *J Clin Invest.* 2012; 122:3035-3043.

Tata JR. The road to nuclear receptors of thyroid hormone. *Biochim Biophys Acta.* 2013; 1830:3860-3866.

Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. *Physiol Rev.* 2014; 94:355-382.

Williams GR. Neurodevelopmental and neurophysiological actions of thyroid hormone. *J Neuroendocrinol.* 2008; 20:784-794.

Paul BD, Shi YB. Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during *Xenopus laevis* metamorphosis. *Cell Res.* 2003; 13:459-464.

Hayashi M, Futawaka K, Matsushita M, Hatai M, Yoshikawa N, Nakamura K, et al. Cigarette Smoke Extract Disrupts Transcriptional Activities Mediated by Thyroid Hormones and Its Receptors. *Biol Pharm Bull.* 2018; 41:383-393.

Videla LA, Vargas R, Riquelme B, Fernandez J, Fernandez V. Thyroid Hormone-Induced Expression of the Hepatic Scaffold Proteins Sestrin2, beta-Klotho, and FRS2alpha in Relation to FGF21-AMPK Signaling. *Exp Clin Endocrinol Diabetes.* 2018; 126:182-186.

Alesi V, Loddo S, Cali F, Orlando V, Genovese S, Ferretti D, et al. A heterozygous, intragenic deletion of CNOT2 recapitulates the phenotype of 12q15 deletion syndrome. *Am J Med Genet A.* 2019; 179:1615-1621.

Arora R, S NK, S S, Fairoze MN, Kaur M, Sharma A, et al. Transcriptome profiling of longissimus thoracis muscles identifies highly connected differentially expressed genes in meat type sheep of India. *PloS One.* 2019; 14:e0217461.

Schomburg L, Turwitt S, Prescher G, Lohmann D, Horsthemke B, Bauer K. Human TRH-degrading ectoenzyme cDNA cloning, functional expression, genomic structure and chromosomal assignment. *Eur J Biochem.* 1999; 265:415-422.

Freudenberg J, Lee HS, Han BG, Shin HD, Kang YM, Sung YK, et al. Genome-wide association study of rheumatoid arthritis in Koreans: population-specific loci as well as overlap with European susceptibility loci. *Arthritis Rheum.* 2011; 63:884-893.

Zhang L, Ma X, Xuan J, Wang H, Yuan Z, Wu M, et al. Identification of MEF2B and TRHDE Gene Polymorphisms Related to Growth Traits in a New Ujjumqin Sheep Population. *PloS One.* 2016; 11:e0159504.

Barbe P, Larrouy D, Boulanger C, Chevillotte E, Viguerie N, Thalamas C, et al. Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. *FASEB J.* 2001; 15:13-15.

Simonides WS, Thelen MH, van der Linden CG, Muller A, van Hardeveld C. Mechanism of thyroid-hormone regulated expression of the SERCA genes in skeletal muscle: implications for thermogenesis. *Biosci Rep.* 2001; 21:139-154.

Simonides WS, van Hardeveld C. Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. *Thyroid.* 2008; 18:205-216.

Rocha VZ, Libby P. The multiple facets of the fat tissue. *Thyroid.* 2008; 18:175-183.

Klein I, Danzi S. Thyroid disease and the heart. *Circulation.* 2007; 116:1725-1735.

Chiang JY. Bile acids: regulation of synthesis. *J Lipid Res.* 2009; 50:1955-1966.

Oppenheimer JH, Schwartz HL, Lane JT, Thompson MP. Functional relationship of thyroid
hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. *J Clin Investig.* 1991; 87:125-132.

Liu YY, Heymann RS, Moatamed F, Schultz JJ, Sobel D, Brent GA. A mutant thyroid hormone receptor alpha antagonizes peroxisome proliferator-activated receptor alpha signaling in vivo and impairs fatty acid oxidation. *Endocrinology.* 2007; 148:1206-1217.

Figures

Figure 1: Manhattan plot of genome-wide associated analysis studies for FCR. The solid line indicate Bonferroni corrected p-value=5.796.
Figure 2: Linkage disequilibrium block on chromosome 5. Markers in blocks shown in bold.

Legends: (a) Linkage disequilibrium block detected in the regions from 33.4 to 34.5 Mb on SSC5, (b) Linkage disequilibrium block detected in the regions from 36.1 to 44.3 Mb on SSC5, (c) Linkage disequilibrium block detected in the regions from 47.1 to 47.8 Mb on SSC5. SNPs in red boxes are significantly associated with FCR.
Figure 3: Theoretical models of functional actions of candidate genes in modulating feed
conversion ratio. (a) TPH2 regulates the intestinal motility by serotonergic synapse and oxytocin signaling pathway in hypothalamus. TPH2 produces 5-HT and 5-HT transmits signals to oxytocin neurons through serotonergic synapse, and subsequently regulates intestinal peristalsis under the action of the oxytocin signaling pathway. (b) GRIP1, FRS2, CNOT2, TRHDE genes regulate the metabolism in various tissues by a thyroid hormone signaling pathway. GRIP1, FRS2, CNOT2 and TRHDE regulate the thyroid signaling pathway in hypothalamus first and subsequently, the thyroid signaling pathway participate in regulating the metabolism in skeletal muscle, liver and fat. (c) GRIP1 regulates the appetite by a glutamatergic and GABAergic signaling.
Figure 4: GRIP1 regulates the appetite by a glutamatergic synapse (a) and GABAergic synapse (b).
Figure 5: 5-HT, produced by TPH2, regulates the serotonergic synapse pathway (a) and oxytocin signaling pathway (b) in hypothalamus.
Table 1 Summary information of within genes significant SNPs for FCR trait

SNP ID	bp (SSC10.2)	bp (SSC11.1)	Pvalue	Genes
rs80841312	36496185	33897913	4.39E-07	CCT2
rs80786392	36510853	33912700	4.51E-07	BEST3\ CNT2
rs80837106	36589679	33991092	4.51E-07	CCT2
rs80845463	36621274	34022700	4.51E-07	CCT2
rs81383707	36721314	34122773	4.54E-07	MYRFL
rs80964888	36532511	33934311	4.72E-07	BEST3\ CNT2
rs332237334	36353885	33842149	4.79E-07	FRS2
rs81344478	36357722	33838344	4.79E-07	FRS2
rs80850598	37318776	34747588	4.93E-07	PTPRB
rs81287625	36826851	34177721	5.25E-07	MYRFL
rs345043801	36469745	33871482	6.03E-07	CCT2
rs80785563	36544839	33946621	6.03E-07	BEST3\ CNT2
rs80989707	36568996	33970407	6.35E-07	CCT2
rs339913443	38629120	35929672	6.61E-07	TPH2
rs80835055	36838800	34189654	7.00E-07	MYRFL
rs81000718	37249647	34677764	7.01E-07	PTPRB
rs80892229	37369531	34769398	7.44E-07	PTPRB
rs323754097	39138147	36346640	9.75E-07	TRHDE
rs81383732	38337110	35634440	1.01E-06	ZFC3H1
rs	Marker1	Marker2	p-value	Candidate Gene(s)
-------------	---------	---------	-----------	---------------------------
rs80811321	34095144	30820701	1.26E-06	GRIP1
rs8132542	47441081	44096325	1.37E-06	TMTC1
rs81212454	42358084	38794710	1.46E-06	GLIPR1, KRR1
rs8138391	42378400	38815027	1.46E-06	GLIPR1, KRR1
rs81331039	47398882	44127767	1.49E-06	TMTC1
rs81331835	47404818	44121830	1.49E-06	TMTC1
rs81383984	47782626	44464360	1.58E-06	FAR2

Additional Files

Additional file 1: Table S1. Description of quantitative traits loci (QTL) regions for the significant regions associated with FCR.

Additional file 2: Table S2. Summary information of significant SNPs and candidate genes for FCR trait.

Additional file 3: Table S3. Candidate genes for FCR in pigs indentified by ISwine website.