Development of an assay to assess genotoxicity by particulate matter extract

Priftis Alexandros¹, Papikinos Konstantinos¹, Koukoulanaki Marina¹, Kerasioti Efthalia¹, Stagos Dimitrios¹, Konstantinopoulos Konstantinos², Spandidos Demetrios³, Kermenidou Marianne⁴, Karakitsios Spyros⁴, Sarigiannis Dimosthenis⁴,⁵, Tsatsakis Arisitidis⁶ and Kouretas Demetrios¹

¹Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
²Coffee Island S.A., Patras 26334, Greece
³Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71409, Greece
⁴Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, 54124 Thessaloniki, Greece
⁵School of Advanced Study (IUSS), Environmental Health Engineering, Piazza della Vittoria 15, 27100 Pavia, Italy
⁶School of Medicine, University of Crete, Greece

Correspondence to: Professor Demetrios Kouretas, Department of Biochemistry & Biotechnology, University of Thessaly, Viopolis, Larissa, 41500, Greece
Email: dkouret@uth.gr

Abbreviations: ROS, reactive oxygen species; TPC, total polyphenolic content; CGA, chlorogenic acids; PM, particulate matter; XO, xanthine oxidase; SOD, superoxide dismutase; CAT, catalase.

Keywords: coffee beans, roasting, polyphenols, particulate matter, genotoxicity, antioxidant activity

Running title: PRIFTIS et al: DEVELOPMENT OF AN ASSAY TO ASSESS GENOTOXICITY BY PARTICULATE MATTER EXTRACT
Abstract

The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single strand breaks, easily visualized through electrophoresis. This assay utilizes a tiny amount (11 μg) of particulate matter (PM) extract compared to other, cell-based methods (~3000 μg). The negative impact of air pollution on human health has been extensively recognised. Among air pollutants, PM holds an eminent role reflected in the broad scientific and regulatory interest. PM toxicity highly depend on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; oxidative stress induction is consider one major mechanism among them. In this study the PM levels, the oxidative potential, the cytotoxicity and the genotoxicity of PM in the region of Larissa were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit particulate matter induced DNA damage. These extracts also displayed an inhibitory activity towards xanthine oxidase and catalase, while having no effect against superoxide dismutase. Overall, the study highlighted the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a tiny amount.
Introduction

Aerobic organisms are exposed to reactive oxygen species (ROS). Free radicals are essential at low levels as they participate in various cellular processes, including signalling pathways and defence against pathogens (1,2). ROS are mainly produced endogenously by mitochondria or during the ‘oxidative burst’ of macrophages, but they can also be produced by exogenous factors, such as environmental pollution, smoking and ionizing or ultraviolet radiation. Aerobic organisms possess a variety of antioxidant mechanisms to neutralize free radicals, including enzymes as well as non-enzymatic compounds (3,4). When in excess, free radicals may interact damage cellular macromolecules, causing oxidative stress (5). This condition has been associated with various pathological conditions like cancer, diabetes and neurodegenerative diseases (6–8).

Over the last thirty years particulate matter (PM) has emerged as a key pollutant, with well-known human health effects. Only in 2012 about 3.7 million premature deaths were caused (9). There are studies that show the implication of air pollutants in diseases of the cardiovascular system (10,11) as well as of the respiratory (12). There are even signs of genotoxicity which ultimately can lead to lung cancer (13–15). Some of these adverse health effects have been associated to PM-induced oxidative stress (16). PM generate ROS through two different mechanisms; (a) they use the oxidative components adsorbed on their surface, resulting in oxidation and (b) they generate ROS mainly in pulmonary epithelial and macrophage cells. However, fine and ultrafine particles have the capability to translocate into systemic circulation and eventually other organs and tissues might be subjected to local inflammation associated to ROS generation (10,17).

Since 2010 Greece faces a financial crisis with significant repercussion on per capita growth domestic product. This, in combination with heavy taxation of light oil heating diesel resulted in overwhelming use of biomass for domestic heating (18). Smaller PM fractions have been associated with biomass burning (19). The smaller PM fractions have higher oxidative potential per unit mass, because they have the ability to adsorb more chemical substances, exhibiting a large surface area per mass (19, in press). In addition to that, smaller particles are retained strongly by the lower respiratory system, a phenomenon that is more evident in children (21). Individual particle deposition across the three main regions of the respiratory tract depends on particle properties inter-individual physiology differences (22). Wood smoke particles are generally smaller than 1µm and consist of several toxic
compounds such as PAHs, quinones and metals, that enhance the particle-induced health effects (23).

Most commonly PM10 and PM2.5 are measured as indicators of air quality. Studies show that especially PM2.5 can lead to serious health problems, particularly due to their small aerodynamic diameter that allows them to reach the alveoli, through the induction of oxidative stress, inflammation and genotoxicity (24–27).

Based on the above, this study aims at assessing the oxidative stress induced by exposure to urban PM and the beneficial effect of consuming a highly anti-oxidant beverage such as coffee. Towards this aim, the detailed population exposure to PM during wintertime, as well as the chemical composition and the chemically induced oxidative stress were analysed. Following the chemical characterization of these samples, EA.hy926 cells were exposed at PM2.5 doses to assess particulate matter’s cytotoxicity.

One main problem for most of the PM-associated studies appears to be the small sample quantity of PM obtained through the filters of the monitors, a possible prohibiting factor in the experimental design (28). Cell culture experiments require a great amount of extract in order to obtain the desired concentration each time in the flask. With the method described herein, the amount of used extract was reduced to a minimum. Moreover, the possible protective effect of food extracts, such as coffee, was examined.

Coffee is a very popular beverage due to its pleasant characteristics (taste and aroma). Its worldwide annual production exceeds 8 Mt, with an average daily consumption of 2.3 billion cups (29). As a beverage coffee is rich in polyphenols and especially chlorogenic acid (CGA) (30). Numerous studies have investigated the quantity and the beneficial effects of CGA (31–33) and especially their antioxidant properties (34).

Materials and Methods

Field measurements

PM2.5 measurements were carried out from 10th to 22th of December 2015 at two different sampling sites in the urban area of Larisa, an urban background and a traffic site. PM2.5 particle fractions were collected using low volume air samplers (ENCO PM, TCR TECORA, Italy) equipped with PM2.5 sampling heads that meet the EN 14907 standards operating at a flow-rate of 38 L/min. Sampling duration was 24 h. The inlet sampling points were at a height of 10 m from the ground. PM2.5 were collected on PTFE membrane filters with PMP supporting ring (PALL Life Sciences, Ø 47 mm, pore size 2 μm, USA), which are
appropriate not only for gravimetric and chemical analysis of PM but also for genotoxicity tests. Filters were weighed at least three times before and after the sampling on an electronic microbalance with a sensitivity of ± 1 μg and were stored under controlled conditions of temperature (20-23°C) and relative humidity (30-40%).

Chemical analysis on PM filters

PM2.5 ambient concentrations were obtained and chemical analyses were conducted for black carbon content and elemental composition of the particles. Black carbon concentration levels were estimated using a non-destructive analysis method developed by a Magee Scientific SootScan™ Model OT21 Optical Transmissometer. The elemental constituents of PM2.5, were determined on one half of each 47 mm Teflon filter by ED-XRF using an Epsilon 5 XRF instrument (by PANanalytical, Netherlands). For the calibration of the instrument 27 micrometer thin standards were used. Corrections for instrument errors and the effect of the matrix on the X-ray emission intensities were also determined. Method detection limits were between 1 to 70 ng/cm² for Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, and Pb. All samples were measured in duplicate according to standard operating procedures.

DTT Assay

The oxidative potential of PM2.5 was estimated indirectly, on the basis of the rate of consumption of dithiothreitol (DTT) over time. The PM2.5 samples were stored at -20 °C in the dark prior to analysis. One fourth of a filter with a known mass of PM2.5 was added to a dark 4 ml vial and labelled. Subsequently 3 ml of 100μM DTT in 0.1M phosphate buffer were added into the vial and the amount of DTT lost was measured (from 0 to 15 minutes) at 37 °C. The vials were placed into a water bath and shaken. At known times an aliquot of 0.5 ml of the reaction mixture was removed and added to 0.5ml of 10% TCA. TCA was used in order to stop the reaction. When all time points were quenched, 50 μl of 10mM DTNB (made in 0.1M phosphate buffer, pH 7.4) were added forming 2-nitro-5-thiobenzoic acid (TNB). Then, 2 ml of 0.4M Tris-Base pH 8.9 with 20mM EDTA were added to chelate any transition metals. Light absorption was measured at 412 nm, thus permitting us to quantify TNB, which has a molar absorptivity of 14150 M⁻¹cm⁻¹. Linear regression was used between the measurement time points and the DTT loss in order to estimate the rate of DTT consumption. The results were expressed in terms of pmol DTT/min per PM mass (μg) and volume (m³) of
air. As for quality control samples both method blanks and positive control were prepared and analysed at the same time as the unknown samples. Positive control samples contained all the reagents with 16.1 μl of PQN (9,10-phenanthrenequinone). Blank and positive control were run in triplicate.

PM extraction

The toxicity of ambient PM was determined according to the following procedure. PM$_{2.5}$ samples on filters were kept at -20°C in the dark prior to use. For sample measurement half of each PM-fraction filter (including the filter blank) was used for cellular toxicity and the other half for elemental analysis. The water-soluble components of the PM were extracted from each filter half by ultrasonic agitation in 900 μl distilled water at room temperature in the dark. The extraction was carried out over the night. Extracts were centrifuged at 3409 g for 1 min. After that the supernatant was filtered through a 0.22 μm polypropylene filter into 1.5 mL polypropylene micro centrifuge tubes. Method blanks were prepared by using distilled water. Filter blanks, were treated identically to the actual samples. The samples from different days when then pooled in a single sample of 1.65 µg/µl.

Preparation of extracts from coffee beans

A total of 9 different coffee extracts were prepared. Seven came from the variety of *Coffea arabica* (Brazil and Decaf) and two from *Coffea canephora* (Robusta). For the first variety (Brazil) we had extracts of green beans and from four different roasting time points (R1:7 min; R2:6 min; R3:5 min; R4:4 C so as to examine the effects of varying roasting times on the activity.

For each sample, 10% w/v of ground (using mortar and pestle) coffee in double distilled water were prepared. Consequently, a 20 min sonication step (70% amplitude, 0.7 sec cycle) and a 20 min stirring C) were carried out C).

Finally, each extract was aliquoted and kept at - C for future use.

XTT cytotoxicity assay

The XTT assay kit (Trevigen, Gaithersburg, USA) was used to assess cell viability. Briefly, EA.hy926 cells (kindly provided by Profesor Koukoulis, University of Thessaly, Larissa, Greece) were cultured in a 96-well plate in a 1x104 cells/well density in Dulbesco’s Modified Eagle Medium (DMEM) with 10% Fetal Bovine Serum (FBS). After 24 h, various
concentrations of PM2.5 extract in serum-free DMEM were administered for 48 h. Subsequently, in each well 50 μl of XTT test solution were added. The test solution was prepared by mixing 50 μl XTT labelling reagent with 1 μl electron coupling reagent. Finally, after 4 h of incubation, absorbance of each well was measured at 450 nm and 630 nm with the latter being a reference wavelength, in a BioTek ELx800 microplate reader (BioTek Instruments, Inc., Winooski, VT, USA). Serum-free DMEM was used as a negative control. Additionally, PM2.5 extract concentration alone in serum-free DMEM was tested at 450 nm. The percentage of viability was calculated using the following formula:

\[
\text{Viability (\%)} = \left(\frac{\text{OD}_{\text{control}} - \text{OD}_{\text{sample}}}{\text{OD}_{\text{control}}} \right) \times 100
\]

where \(\text{OD}_{\text{control}}\) and \(\text{OD}_{\text{sample}}\) indicate the optical density of the negative control and the tested compounds, respectively.

Assessment of DNA strand cleavage

The plasmid (pBluescript-SK+, Fermentas, USA) DNA has a supercoiled conformation but when a single strand break occurs, it loses that conformation and adapts an open circular conformation. Based on this, the percentage of DNA strand cleavage as well as the protective activity of food extracts was assessed. Firstly, 2 μl (4μg/ml) of DNA was mixed with different volumes of sterilized PBS and PM2.5 sample. That way, a gradient of different concentrations of the PM2.5 samples was created. The final volume of the reaction was 10 μl. The samples were incubated for 45 min at 37 °C. Then 3 μl of loading buffer (Bromophenol Blue 0.25% + 30% Glycerol) was mixed to terminate the reaction and the samples were loaded on an 0.8% agarose gel. The samples were ran at 70 V for 55 min. Ethidium bromide was used to stain the gel by suspending it in 12.5 μl of Ethidium bromide (10 mg/ml) and 250 ml of distilled water for 30 min. Consequently, the gel was washed with 250 ml distilled water for 20 min. Results were obtained by exposing the gels to UV and capturing a photo using MultiImage Light Cabinet (Alpha Innotech). Finally, we used the Alpha View suite to analyse the photos. When coffee extracts were introduced, the final reaction volume was increased to 13 μl.

Reducing Power assay

The extracts’ Reducing power was determined according to the protocol of Yen and Duh (1994) with some modifications (35). Briefly, each extract was dissolved in phosphate buffer (0.2 M, pH 6.6) at various concentrations. Two hundred and fifty (250) μl of the sample solution were added to 250 μl of potassium ferricyanide (1%) and incubated at 50 °C
for 20 min, followed by cooling on ice for an additional 5 min. Consequently, 500 μl TCA (10%) were added and the samples were centrifuged at 3000 rpm for 10 min at 25 °C. Two hundred and fifty (250) μl from the supernatant were mixed with 250 μl deionized water as well as 50 μl of ferric chloride (0.1%). The samples were incubated at room temperature for 10 min and finally the absorbance was measured at 700 nm. All experiments were carried out in triplicate and at least on two separate occasions.

Enzyme activity experiments

Polyphenolic compounds may absorb at the tested wavelengths, possibly increasing the optical density of the samples (even though, this was not the case for the currently tested extracts). Therefore, control samples were prepared identically to the test samples, without the extract. All initial reaction rates were in the linear scale and were measured during the first 2 to 4 min of the reaction depending on the enzyme. Each assay was performed in triplicate, and the optical density was measured using a Hitachi U-1900 Spectrophotometer (Hitachi, Tokyo, Japan).

Assessment of XO activity

In order to determine XO activity and its inhibition, the production of uric acid from xanthine was used. The reaction mixture (with a final volume of 500 μl) comprised sodium phosphate buffer (33 mM, pH 7.5), xanthine (4.8 μM), EDTA (0.1 mM) and the coffee extract in various concentrations. Each reaction was initiated by adding XO (43 mU) and the absorbance was measured at 295 nm for 4 min. The specific activity of each extract was measured by dividing the IC50 value (in μg of polyphenols) to the amount of polyphenols per mg of coffee. The IC50 value was determined as the extract’s amount (in μg of polyphenols) that inhibited XO activity by 50%, as monitored by the decrease in uric acid production.

Assessment of CAT activity

The activity of Catalase was determined using the method described by Aebi (36). In this assay, changes in the absorbance of H2O2 as it gets decomposed by CAT are measured, allowing the identification of potential inhibitors. Briefly, various coffee extract concentrations were added in 4 μl of RBCL (diluted 1:40) in sodium potassium phosphate (67 mM, pH 7.4), followed by incubation at 37°C for 10 min. Consequently, H2O2 (0.6%) was added and the absorbance was measured at 240 nm for 2 min. Specific activity was determined as in the case of XO.
Assessment of total SOD activity

SOD activity was determined using the method of Dieterich et al. (37). In this method, pyrogallol autoxidation caused by superoxide anions present in the air can be inhibited by SOD. Therefore, a potential inhibitor will decrease SOD’s ability to protect pyrogallol. Briefly, the reaction mixture (final volume of 1 ml) included Tris–HCl (0.04 mM, pH 8.2), diethylenetriaminepentaacetic acid (DTPA,0.08 mM), 30 μl of RBCL (diluted 1:10) and various concentrations of the coffee extract. The mixture was incubated for 5 min at RT, followed by initiation of the reaction by adding pyrogallol (0.08 mM). The absorbance was measured at 420 nm for 3 min. Control samples were prepared identically to the test samples without the extracts. Due to the fact that polyphenolic compounds are potential scavengers of superoxide anion, the possible inhibitory effect of coffee on pyrogallol autoxidation in the absence of SOD was examined (38).

Statistical analysis

Statistical analyses were carried out using the SPSS software, version 20.0 (SPSS Inc., Chicago, IL). One-way ANOVA was applied, along with Dunnett’s test for multiple pairwise comparisons. Differences were considered to be statistically significant at \(p<0.05 \).

Results and discussion

For the XTT cytotoxicity assay a number of different PM2.5 extract concentrations (10 μg, 30 μg, 60 μg and 80 μg per 100 μl well) were tested. Based on our results PM2.5 ambient air concentrations ranged from 39 to 168 μg/m³, with an average of 105 (± 46 S.D.) μg/m³. At the same time, the observed DTT activity levels fall within the range of typical levels identified in other similar studies (20 − 180 pmol/min./μg) (39). PM2.5 is highly chemically reactive because it can adsorb higher amounts of compounds, due to their higher active surface (21). This results in enhanced oxidative capacity, as well as higher inflammatory potential and pulmonary deposition. It has also to be noted that oxidative capacity, has been associated to the metals content such as Fe and Cu (40).

As can be seen in figure 1, the PM extract causes a statistically significant decrease in cell viability from the 30 μg concentration. Consequently, toxicity levels rise dose-dependently up to the maximum concentration used (80 μg). However, this assay required a relatively large amount of the extract and therefore further analysis using cell cultures was not possible. Instead, in order to investigate the possible DNA-damaging potential of the PM extract, a plasmid relaxation assay was developed, based on the assay of Chang et al. (41)
with modifications including the replacement of AAPH (a peroxyl radical-forming compound) with the PM extract.

The effects on the plasmid DNA can be seen on figure 2 (fig. 2A). The gradient of PM2.5 concentrations caused a greater percentage of DNA to migrate to the upper zone of the gel that corresponds to the open conformation. Unfortunately, PM particles have a quite complex composition and it difficult to assign the observations strictly to only one of the components (13). It is also well-known that transition metals adsorbed onto particulate matter can generate ROS through the Fenton reactions (42). In fact we do observe a good concentration of Fe in the composition analysis of our samples. Ferrous ions can generate HO• which can subsequently cause DNA breaks by attacking the backbone and the bases. DNA is targeted by metal ions since it has an electron-rich structure, resulting thus in the formation of stable adducts (43).

Additionally, the presence of polycyclic aromatic hydrocarbons (PAHs) may also be responsible for the DNA damage. Studies suggest that they can be metabolized from CYP450 enzymes and the products of this process can cause DNA damage as it is know from the literature (44,45). Furthermore, the existence of Environmental Persistent Free Radicals (EPFRs), such as semiquinones, on the surface of the PM particles is seemingly of high importance for initiating the production of free radicals, particularly in cell-free conditions such as our assay especially without the addition of H2O2 (46,47). EPFRs were initially found to be occurring upon chemisorption of an organic precursor to a redox metal site. This way the radical is stabilized and bound onto the surface of the particle (46). In the literature it has been suggested that EPFRs are deprotonated in water and produce a superoxide anion which consequently is dismutated to H2O2 which can be used for the Fenton reactions with metals to produce the very reactive hydroxyl radical (46,48–52).

However, despite the fact that the amount of at least 30 μg of PM extract that the XTT methods requires is relatively low, this corresponds to only 100 μl of medium per well. The other cell-based methods would require 75 cm² flasks, increasing the PM extract amount to at least 3000 μg per 75 cm² flask in order to assess its genotoxicity.

The amount of 11 μg PM extract (in 13 μl of the total volume) was chosen as it causes significant DNA cleavage (~70% cleavage, whilst remaining a small amount compared to the ones that the cell-based assays would require). When coffee extracts were introduced to the mixture of the reaction, a protective action on DNA was documented (figure 2B). In most occasions coffee seems to protect the DNA from breaking, quite efficiently. Of course
different extracts seem to achieve different degrees of protection as it can be seen in figure 2B. Two out of three green bean coffee extracts (Brazil and Robusta) actually showed no DNA protecting activity. This could be due to the fact that green beans are rich in small molecule antioxidants which may act in a pro-oxidative manner when in excess (53), while during roasting novel antioxidant complexes are formed (e.g., melanoidins) which behave in a different manner. As shown in other studies, during the roasting process, polyphenols can be incorporated into melanoidins (54). Only the decaffeinated green coffee extract showed the ability to protect DNA, while its roasted form was actually less powerful with the current assay. This could be due to the fact that the decaffeination process (Swiss Water process) might interact in some way with the antioxidants present in the beans. Interestingly enough, all of the green bean extracts actually failed to protect the DNA even in the absence of the PM2.5 extract. This is an intriguing result which could be further investigated as to why some of these extracts cause DNA damage and why during the presence of a pollutant they may not. The extracts from Brazil as stated before were obtained from beans with different roasting times. The results show that the less the beans are roasted their protective effect becomes greater. The R4, R3 and R2 extracts actually were the most active ones among the tested extracts. While the R1 which was roasted more than the rest ranked second to last. The last one was the roasted Decaf extract which as can be observed has an at least 2 times lower activity than the other ones.

Briefly, the ability of PM extract to induce DNA-damage was exhibited using the aforementioned assay, as well as the potential protective effect following the addition of coffee extracts in the reaction mixture.

In addition, the antioxidant activity of these coffee extracts was assessed using the Reducing Power assay as well as their potential inhibitory effect on Xanthine Oxidase. Furthermore, the extracts were tested for potential inhibitory activities against two antioxidant enzymes, namely Catalase and Superoxide Dismutase.

In the Reducing Power assay, the most potent extract was the Robusta green sample as it displayed the highest Specific activity (figure 3A). Specific activity is a unit that was previously developed in order to compare the activity of extracts, taking into consideration both the amount of polyphenols and their respective activity by dividing the amount of polyphenols required to reach the IC50 value to the amount of polyphenols contained per mg of ground coffee (34). The Total Polyphenolic Content (TPC) for these coffee extracts has been previously determined and was also used in the current analysis. The TPC results are shown in table I. A higher value of specific activity corresponds to a more potent extract.
Therefore, the Robusta green extract displayed 22.52 units of specific activity, 35.2% higher than that of its roasted counterpart (16.66). In the decaffeinated variety, the green extract was more potent than the roasted one by 54.1% (11.56-7.5 Units). In the third variety, Brazil, in which four different roasting degrees were examined, the green extract was the least active, having 84.7%, 76.9%, 41% and 18.8% (8.5-15.7/15.04/11.99/10.1 Units) lower specific activity values compared with the roasted samples, with the most active being the less roasted one. It is noteworthy that the activity of the roasted extracts diminishes over roasting time, an observation that is frequent in the bibliography (34,55,56). The Reducing Power assay allows the determination of a certain extract’s potency to reduce potassium ferricyanide (Fe$^{3+}$) to potassium ferrocyanide (Fe$^{2+}$) by offering an electron. Electron transfer is a major mechanism that mediates free radical neutralisation and therefore, results from the Reducing Power assay may provide information concerning the antioxidant activity of a tested extract.

Following the determination of their antioxidant capacity, the coffee extracts were examined as potential inhibitors of Xanthine Oxidase (XO) as shown in figure 3 (fig. 3B). XO is a flavoprotein comprising two identical 145 kDa subunits. It possesses four redox centres that are aligned in an almost linear fashion at the C-terminal 85-kDa molybdopterin-binding domain. XO’s active form is a 290 kDa homodimer with each monomer being able to catalyse independently (57). XO is a cytosolic enzyme present in several mammalian tissues with the highest activity found in the liver and the intestine (58). However, XO can also be found extracellularly as it has an extremely high affinity for the endothelium (at the nanomolar scale) by binding to specific proteoglycans of the plasma membrane, potentially leading to further oxidative damage (59).

XO derives from Xanthine Dehydrogenase (XDH) and participates in purine degradation by metabolizing hypoxanthine to xanthine and further to urate. As a part of its mechanism of action, XO utilizes molecular oxygen as the electron acceptor, thereby leading to superoxide radical and hydrogen peroxide production (60). However, it also leads to the production of uric acid, a strong antioxidant that accounts for more than 50% of plasma’s antioxidant capacity (61). Consequently, this enzyme has an equivocal role in the redox status since it produces both free radicals and uric acid. XO is a major contributor in free radical production during exercise due to the ischemia-reperfusion mechanism but it has also been implicated in several diseases including myocardial infarction, hypertension, atherosclerosis, diabetes and cancer (57,62). In addition, excessive uric acid production may lead to its crystallisation and deposition in the joints, connective tissue and the kidneys, a condition known as gout and thus, XO inhibition may have therapeutic interest (63).
According to the results, all coffee extracts displayed inhibitory activity against XO, with the most potent inhibitor being the roasted Robusta sample, exhibiting 3.32 Units of specific activity (corresponding to an IC50 value of 300 µg/ml) and the least potent being the Brazil green extract with 0.84 Units of specific activity, corresponding to an IC50 value of 1193 µg/ml. In the Brazil variety, the roasting process increased coffee’s inhibitory activity as all four roasted samples had higher specific activity values. In more detail, the less roasted sample (R4) was the most potent inhibitor, exhibiting 2.15 Units of specific activity (IC50 at 465 µg/ml), R3 had 2.03 Units, R2 1.73 Units and the more roasted sample (R1) displayed 2.07 Units of specific activity. In the Robusta variety, the green extract was less potent than the roasted one, as it had 1.95 Units of specific activity (IC50 at 512.6 µg/ml). As for the decaffeinated variety, again roasting boosted its inhibitory effect by increasing the specific activity from 1.14 (IC50 at 877.9 µg/ml) to 1.84 (IC50 at 544.2 µg/ml). Therefore, all coffee extracts resulted in XO inhibition and interestingly, roasting had an activating effect, increasing the inhibitory effect for each of the three tested coffee varieties.

The coffee extracts were also tested for their ability to inhibit Superoxide Dismutase (SOD) which is an antioxidant enzyme. There are many SOD isoforms that all catalyse the reduction of superoxide anion to hydrogen peroxide. According to the results, no effect of either coffee sample was observed on SOD activity (data not shown). In vivo studies of coffee consumption in rats found either no effect or an increase on SOD activity (64,65). Therefore, coffee may not affect the activity of this particular enzyme but could possibly alter its expression levels.

Finally, coffee extracts were tested for their ability to inhibit the activity of Catalase (figure 3B). This enzyme catalyses the neutralization of hydrogen peroxide to oxygen and water. It is one of the fastest enzymes known to day and is considered one of the most important intracellular antioxidant mechanisms (66). All coffee extracts displayed an inhibition of Catalase activity with the most potent being the R4 sample from the Brazil variety that had 2.45 Units of specific activity (IC50 at 408.1 µg/ml). In all nine tested samples the specific activity values ranged from 1.62-2.15 Units (with the former having an IC50 value at 615.5 µg/ml). In contrast to the XO activity assay, roasting did not affect coffee’s ability to interfere with Catalase’s activity, apart from the R4 sample which displayed a significantly higher inhibitory effect compared to its green counterpart. In addition, caffeine depletion did not affect this assay. Furthermore, no differences were observed between the C. arabica and C. canephora varieties. Inhibition of Catalase has been observed before by plant polyphenols as in the case of tea catechins (67). Despite the
currently shown inhibitory effect, in *in vivo* studies coffee supplementation has been shown to improve the Catalase system in rat liver (68). Therefore, further examination on the role of coffee on this enzyme is required.

The concomitant inhibition of both XO (a ROS-producing enzyme) and CAT (a ROS detoxifying enzyme) by coffee is an important finding, shedding light on its potential mechanism of action. It has been reported that chlorogenic acid lactones, present in roasted coffee may inhibit XO (69). However the effects of bioavailability and metabolism need to be taken into consideration, as coffee constituents (>1000 different compounds) need to be absorbed and pass through the liver before entering the bloodstream. Chlorogenic acids, the main polyphenolic compound found in coffee exhibit high levels of bioavailability (~30%) compared to other phenolics (70).

To conclude, particulate matter displayed genotoxic activity as shown in the currently used plasmid relaxation assay. The advantage of this assay is the tiny amount of particulate matter extract required to obtain reliable results. This activity can be attributed to the transition metals and quinones that are present in the extract. The genotoxic activity of particulate matter however, can be prevented through antioxidant mechanisms. In the current study, coffee extracts from three varieties (One *C. canephora* and two *C. arabica* of which one was decaffeinated) were examined. The roasted samples exhibited an inhibitory effect on the particulate matter-induced plasmid relaxation as they had shown before in a AAPH-induced plasmid relaxation assay (34). The antioxidant activity of these coffee extracts was determined using the Reducing Power assay as well as examining their effect on XO, SOD and Catalase activity.

The current study deals with the evaluation of an assay based on plasmid relaxation for assessing the toxicity of ambient air particulate matter and the antioxidant potential of a typical beverage such as coffee. Given the widespread exposure of the human population to ambient air particles of varying composition, aerodynamic characteristics and, consequently, toxicity it is important for the scientific community to have at bay integrated tools that can capture not only the toxic potency of the particles but also the protective potential of potential interventions such as the uptake of food additives. The joint evaluation of the antioxidant capacity of typically consumed food items like coffee against the oxidative potential of ubiquitous environmental stressors such as ambient air particulates could be an example in case of the new assay efficiency. This is particularly important when dealing with population exposure in socioeconomically deprived areas, where environmental degradation is more evident, because of unsustainable environmental management or energy poverty. The results
of the study showed that the plasmid relaxation assay developed herein manages to provide robust results on both oxidative stress and genotoxicity induced by exposure to typical ambient air fine particles found in cities. In addition, the assay allowed us to evaluate efficiently the antioxidant and thus protective potential of different coffee bean extracts. These results could be used as the basis for development of guidance regarding the type of coffee bean (both before and after toasting) that would provide the highest protection to population susceptible individuals exposed to particulate matter with high genotoxic potency.

Based on our results, the plasmid relaxation assay developed and tested herein could be a cost-effective manner for assessing the oxidative potential of environmental stressors, as well as for quantifying the antioxidant capacity and the protective action against DNA damage of food additives and other protective xenobiotics. The results obtained with it can be used to set the ground for the provision of guidelines promoting consumer behaviour that aims towards public health protection.

Conflicts of interest
All authors declare that there are no conflicts of interest

References
1. Schieber M and Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol 24: R453–R462, 2014.
2. Ray PD, Huang BW and Tsuji Y: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24: 981–990, 2012.
3. Elias RJ, Kellerby SS and Decker E a: Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48: 430–41, 2008.
4. Birben E, Sahiner UM, Sackesen C, Erzurum S and Kalayci O: Oxidative stress and antioxidant defense. World Allergy Organ J 5: 9–19, 2012.
5. Halliwell B: Free Radicals and Other Reactive Species in Disease. In: eLS . John Wiley & Sons, Ltd, 2001.
6. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H and LLeonart ME: Oxidative stress and cancer: An overview. Ageing Res Rev 12: 376–390, 2013.
7. Rochette L, Zeller M, Cottin Y and Vergely C: Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840: 2709–29, 2014.
8. Wang X, Wang W, Li L, Perry G, Lee H and Zhu X: Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842: 1240–
7, 2014.

9. WHO: Media centre Ambient (outdoor) air quality and health. 1–7, 2014.

10. Brook RD, Rajagopalan S, Pope CA, et al.: Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American heart association. Circulation 121: 2331–2378, 2010.

11. Franklin BA, Brook R and Arden Pope C: Air pollution and cardiovascular disease. Curr Probl Cardiol 40: 207–238, 2015.

12. Arbex MA, Santos U de P, Martins LC, Saldiva PHN, Pereira LAA and Braga ALF: Air pollution and the respiratory system. J Bras Pneumol publicacao Of da Soc Bras Pneumol e Tisilogia 38: 643–655, 2012.

13. Borgie M, Ledoux F, Verdin A, et al.: Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. Environ Res 136: 352–362, 2015.

14. Billet S, Abbas I, Goff J Le, et al.: Genotoxic potential of Polycyclic Aromatic Hydrocarbons-coated onto airborne Particulate Matter (PM2.5) in human lung epithelial A549 cells. Cancer Lett 270: 144–155, 2008.

15. Golokhvast KS, Chernyshev V V, Chaika V V, et al.: Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure. Environ Res 142: 479–485, 2015.

16. Chen LC and Lippmann M: Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol 21: 1–31, 2009.

17. Tanaka M, Takano H, Fujitani Y, Hirano S, Ichinose T, Shimada A and Inoue K-I: Effects of exposure to nanoparticle-rich diesel exhaust on 8-OHdG synthesis in the mouse asthmatic lung. Exp Ther Med 6: 703–706, 2013.

18. Sarigiannis DA, Karakitsios SP and Kermenidou M V: Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Sci Total Environ 524–525: 319–330, 2015.

19. Sarigiannis DA, Karakitsios SP, Kermenidou M, et al.: Total exposure to airborne particulate matter in cities: the effect of biomass combustion. Sci Total Environ 493: 795–805, 2014.

20. Kyriakou S, Kermenidou M and Spyros P: The reactive oxidative potential from biomass emitted particulate matter (PM 10, PM 2.5 & PM 1) and its impact on human health., 2013.

21. Sarigiannis DA, Karakitsios SP, Zikopoulos D, Nikolaki S and Kermenidou M: Lung
cancer risk from PAHs emitted from biomass combustion. Environ Res 137: 147–156, 2015.

22. Albuquerque-Silva I, Vecellio L, Durand M, et al.: Particle deposition in a child respiratory tract model: in vivo regional deposition of fine and ultrafine aerosols in baboons. PLoS One 9: e95456, 2014.

23. Kocbach Bolling A, Pagels J, Yttri KE, Barregard L, Sallsten G, Schwarze PE and Boman C: Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 6: 29, 2009.

24. Cachon BF, Firmin S, Verdin A, et al.: Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM $>$ 2.5) collected from Cotonou, Benin. Environ Pollut 185: 340–351, 2014.

25. Lodovici M and Bigagli E: Oxidative stress and air pollution exposure. J Toxicol 2011, 2011.

26. Zakharenko AM, Engin AB, Chernyshev V V, et al.: Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure. Environ Res 152: 308–314, 2017.

27. Golokhvast K, Vitkina T, Gvozdenko T, et al.: Impact of Atmospheric Microparticles on the Development of Oxidative Stress in Healthy City/Industrial Seaport Residents. Oxid Med Cell Longev 2015: 412173, 2015.

28. Boisa N, Entwistle J and Dean JR: A new simple, low-cost approach for generation of the PM10 fraction from soil and related materials: Application to human health risk assessment. Anal Chim Acta 852: 97–104, 2014.

29. Higdon J V and Frei B: Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46: 101–123, 2006.

30. Murthy PS and Naidu MM: Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food Bioprocess Technol 5: 897–903, 2010.

31. Sato Y, Itagaki S, Kurokawa T, et al.: In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403: 136–8, 2011.

32. Xu JG, Hu QP and Liu Y: Antioxidant and DNA-protective activities of chlorogenic acid isomers. J Agric Food Chem 60: 11625–11630, 2012.

33. Henry-Vitrac C, Ibarra A, Roller M, Mérellon J-M, Vitrac X, Merillon J-M and Vitrac X: Contribution of chlorogenic acids to the inhibition of human hepatic glucose-6-
phosphatase activity in vitro by Svetol, a standardized decaffeinated green coffee extract. J Agric Food Chem 58: 4141–4144, 2010.

34. Priftis A, Stagos D, Konstantinopoulos K, et al.: Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Mol Med Rep 12: 7293–7302, 2015.

35. Yen GC and Duh P Der: Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species. J Agric Food Chem 42: 629–632, 1994.

36. Aebi H: [13] Catalase in vitro. Methods Enzymol 105: 121–126, 1984.

37. Dieterich S, Bieligk U, Beulich K, Hasenfuss G and Prestle J: Gene Expression of Antioxidative Enzymes in the Human Heart: Increased Expression of Catalase in the End-Stage Failing Heart. Circulation 101: 33–39, 2000.

38. Cos P, Ying L, Calomme M, et al.: Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61: 71–76, 1998.

39. Velali E, Papachristou E, Pantazaki A, et al.: Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition. Environ Pollut 208: 774–786, 2016.

40. Terzano C, Di Stefano F, Conti V, Graziani E and Petroianni A: Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 14: 809–821, 2010.

41. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS and Shyur LF: Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49: 3420–3424, 2001.

42. Valavanidis A, Vlahoyianni T and Fiotakis K: Comparative study of the formation of oxidative damage marker 8-hydroxy-2’-deoxyguanosine (8-OHdG) adduct from the nucleoside 2’-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity. Free Radic Res 39: 1071–81, 2005.

43. Imlay JA, Chin SM and Linn S: Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640–642, 1988.

44. Longhin E, Pezzolato E, Mantecca P, Holme JA, Franzetti A, Camatini M and Gualtieri M: Season linked responses to fine and quasi-ultrafine Milan PM in cultured cells. Toxicol Vitr 27: 551–559, 2013.

45. Delfino RJ, Staimer N, Tjoa T, et al.: Association of biomarkers of systemic inflammation with organic components and source tracers in quasi-ultrafine particles.
46. William G, Lavrent K and Dellinger B: Hydroxyl Radical Generation from Environmentally Persistent Free Radicals (EPFRs) in PM2.5. Environ Health Perspect 118: 756–762, 2010.

47. Farias MS, Pich CT, Kviecinski MR, et al.: Substituted 3acyl2phenylaminol,4naphthoquinones intercalate into DNA and cause genotoxicity through the increased generation of reactive oxygen species culminating in cell death. Mol Med Rep 10: 405–410, 2014.

48. Dellinger B, Pryor WA, Cueto R, Squadrito GL, Hegde V and Deutsch WA: Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol 14: 1371–1377, 2001.

49. Squadrito GL, Cueto R, Dellinger B and Pryor WA: Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med 31: 1132–1138, 2001.

50. Alaghmand M and Blough N V: Source-dependent variation in hydroxyl radical production by airborne particulate matter. Environ Sci Technol 41: 2364–2370, 2007.

51. Valavanidis a, Fiotakis K, Bakeas E and Vlahogianni T: Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep 10: 37–51, 2005.

52. Khachatryan L, Vejerano E, Lomnicki S and Dellinger B: Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. Environ Sci Technol 45: 8559–8566, 2011.

53. Bouayed J and Bohn T: Exogenous antioxidants - Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses: Oxid Med Cell Longev 3: 228–237, 2010.

54. Perrone D, Farah A and Donangelo CM: Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J Agric Food Chem 60: 4265–4275, 2012.

55. Smrke S, Opitz SEW, Vovk I and Yeretzian C: How does roasting affect the antioxidants of a coffee brew? Exploring the antioxidant capacity of coffee via on-line antioxidant assays coupled with size exclusion chromatography. Food Funct 4: 1082–1092, 2013.

56. Bakuradze T, Lang R, Hofmann T, et al.: Antioxidant effectiveness of coffee extracts and selected constituents in cell-free systems and human colon cell lines. Mol Nutr
57. Borges F, Fernandes E and Roleira F: Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem 9: 195–217, 2002.
58. Krenitsky TA, Spector T and Hall WW: Xanthine oxidase from human liver: purification and characterization. Arch Biochem Biophys 247: 108–19, 1986.
59. Houston M, Estevez A, Chumley P, Aslan M, Marklund S, Parks DA and Freeman BA: Binding of xanthine oxidase to vascular endothelium: Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 274: 4985–4994, 1999.
60. Choi E-Y, Stockert AL, Leimkühler S, Hille R, Choi E-Y, Stockert AL and Leimk S: Studies on the mechanism of action of xanthine oxidase. J Inorg Biochem 98: 841–848, 2004.
61. Prado De Oliveira E and Burini RC: High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr 4: 12, 2012.
62. Gomez-Cabrera MC, Borras C, Pallardo F V, Sastre J, Ji LL and Vina J: Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567: 113–120, 2005.
63. Day RO, Kamel B, Kannagara DRW, Williams KM and Graham GG: Xanthine oxidoreductase and its inhibitors: relevance for gout. Clin Sci (Lond) 130: 2167–2180, 2016.
64. Viana ALM, Fonseca M das DM, Meireles ELJ, Duarte SM da S, Rodrigues MR and Paula FB de A: Effects of the Consumption of Caffeinated and Decaffeinated Instant Coffee Beverages on Oxidative Stress Induced by Strenuous Exercise in Rats. Plant Foods Hum Nutr 67: 82–87, 2012.
65. Abreu RV, Silva-Oliveira EM, Moraes MFD, Pereira GS and Moraes-Santos T: Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 99: 659–664, 2011.
66. Pisoschi AM and Pop A: The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 97: 55–74, 2015.
67. Pal S, Dey SK and Saha C: Inhibition of catalase by tea catechins in free and cellular state: A biophysical approach. PLoS One 9, 2014.
68. Magalhães CS De, Takarada JE, Carvalho NC, et al.: The Coffee Protective Effect on Catalase System in the Preneoplastic Induced Rat Liver. J Chem 2016, 2016.
69. Honda S, Miura Y, Masuda A and Masuda T: Identification of crypto- and
neochlorogenic lactones as potent xanthine oxidase inhibitors in roasted coffee beans. Biosci Biotechnol Biochem 78: 2110–2116, 2014.

70. Farah A, Monteiro M, Donangelo CM LS: 5-O-caffeoylquinic acid (5-CQA) from Green Coffee Extract are Highly Bioavailable in Humans. J Nutr: 2309–2315, 2008.
Figure 1: Cytotoxicity of particulate matter extract. Assessment of the particulate matter extract on the viability of EA.hy926 cells after 48 h treatment. Cytotoxicity was estimated via the XTT assay with the y-axis showing the % viability compared to the control and the x-axis displaying the amount of particulate matter in μg per 100 μl well. Results are shown as mean ± SEM. Statistically significant differences compared to the control are at the \(p < 0.01 \) level.

Figure 2: DNA cleavage from particulate matter extract and inhibition by coffee. A: This part displays the effect of particulate matter extract on DNA conformation. The diagram depicts the percentage of DNA cleaved per μg of the PM extract. All results are shown as mean + SEM. The electrophoresis displays the two conformations of the plasmid DNA, the supercoiled (SC) one and the open circular (OC) one, with the latter occurring after DNA cleavage. The control sample (C) is intact (SC conformation), while increasing amounts of PM extract (μg per 10 μl reaction) lead to DNA cleavage, increasing the intensity of the OC band. B: The specific activity of each extract is shown, measured in Units of activity per mg of coffee. A Unit represents the amount of polyphenols required to prevent plasmid relaxation by 50%. In the Brazil Green and Robusta Green samples, no inhibition was displayed. All results are shown as mean ± SEM. The (*) symbol indicates statistically significant difference between a roasted extract and its green counterpart.

Figure 3: Antioxidant activity of coffee extracts by the Reducing Power assay and inhibition of Xanthine Oxidase and Catalase. A: The specific activity of each extract is shown, measured in Units of activity per mg of coffee. A Unit represents the amount of polyphenols required to yield an absorbance of 0.5. All results are shown as mean ± SEM. Statistically significant differences between roasted samples and their green counterparts at (*) \(p < 0.05 \) level. B: The Specific activity is shown but in this case, a Unit represents the amount of polyphenols required to inhibit the enzymatic activity by 50%. The black bars
represent the CAT assay while the grey ones the XO assay. All results are shown as mean ± SEM. Statistically significant differences between roasted and their respective green extracts at $p < 0.05$ level, with (*) used for the XO assay and (#) for the CAT assay.