A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling

Zena Hadjivasiliou1,2,†, Ginger L. Hunter3,4 and Buzz Baum3,4

1Centre for Mathematics, Physics, and Engineering in the Life Sciences and Experimental Biology, 2Department of Genetics, Evolution and Environment, 3MRC-Laboratory for Molecular Cell Biology, and 4Institute of Physics of Living Systems, University College London, London WC1E 6BT, UK

Tissue organization and patterning are critical during development when genetically identical cells take on different fates. Lateral signalling plays an important role in this process by helping to generate self-organized spatial patterns in an otherwise uniform collection of cells. Recent data suggest that lateral signalling can be mediated both by junctional contacts between neighbouring cells and via cellular protrusions that allow non-neighbouring cells to interact with one another at a distance. However, it remains unclear precisely how signalling mediated by these distinct types of cell–cell contact can physically contribute to the generation of complex patterns without the assistance of diffusible morphogens or pre-patterns. To explore this question, in this work we develop a model of lateral signalling based on a single receptor/ligand pair as exemplified by Notch and Delta. We show that allowing the signalling kinetics to differ at junctional versus protrusion-mediated contacts, an assumption inspired by recent data which show that the cleavage of Notch in several systems requires both Delta binding and the application of mechanical force, permits individual cells to act to promote both lateral activation and lateral inhibition. Strikingly, under this model, in which Delta can sequester Notch, a variety of patterns resembling those typical of reaction–diffusion systems is observed, together with more unusual patterns that arise when we consider changes in signalling kinetics, and in the length and distribution of protrusions. Importantly, these patterns are self-organizing—so that local interactions drive tissue-scale patterning. Together, these data show that protrusions can, in principle, generate different types of patterns in addition to contributing to long-range signalling and to pattern refinement.

1. Introduction

Patterning is key to the development of complex multicellular organisms. Indeed, the organization of initially uniform cells into regular motifs such as stripes or spots has been widely documented across species and scales. Some examples include the salt-and-pepper patterns of bristle precursor cells in the Drosophila fly [1], the pigmentation stripes of zebrafish [2] and branching during organ development [3]. These beautifully organized patterns emerge through the spatial differentiation of genetically identical cells that take up distinct developmental fates according to their position in the developing organism [4]. How initial symmetry is broken to give rise to these patterns remains an open question.

Several theories have been proposed to explain cellular pattern formation, most notably Turing’s reaction–diffusion model [5]. Turing showed that a slowly diffusing activator and a fast diffusing inhibitor can generate a range of periodic patterns whose properties (e.g. density and regularity) will
Figure 1. (a) Patterning of the Drosophila notum. Drosophila pupal head-notum expressing shotgun-GFP (shGFP, labels all apical cell boundaries) and neuralized-GMCA (GFP-tagged F-actin reporter expressed in SOPs). At the onset of patterning (12 h after pupariation (AP), few cells are neuralized-GMCA positive. By 24 h AP, the tissue is patterned with a sparse, ordered distribution of SOPs. Scale bar, 50 μm. Anterior is to the right in all images. (b) Visualization of basal protrusions in SOPs. Basal z-projections (less than or equal to 10 μm) of SOPs expressing a GFP-tagged F-actin reporter under the neuralized-GAL4 driver. Scale bar, 10 μm. (c) Schematic of Delta (purple) Notch (green) and Notch reporter (R) interactions. When Delta (D) binds to Notch (N) in trans, it activates the intracellular part of the Notch receptor (R) to inhibit Delta production in the receiving cell. Notch–Delta interactions within the same cell (cis interactions) lead to inactivation of both the ligand and the receptor. (d) Notch–Delta interactions engaged in trans-inhibition instead of trans-activation of the Notch receptor. (e) Notch–Delta-mediated lateral inhibition gives rise to salt-and-pepper spatial patterns. Protrusion signalling results in sparser patterns. (f) Schematic of protrusions in our model. (g) Modelling protrusion polarization and interactions. (i) A scenario where the protrusions of two cells are within range of one another, but do not overlap due to polarization. (ii) Successful protrusion-mediated interactions between two cells. The area of potential contact is shaded. More details are provided in the Methods section.

2. Model outline

The patterning of cell fates across a tissue is a key aspect of animal development [13]. One of the best understood examples of patterned cell fate determination is lateral inhibition mediated by the Notch–Delta signalling pathway [1,2,12,14]. This occurs when Delta ligands on the surface of one cell bind to Notch receptors expressed by its direct neighbours. Under certain conditions, this can trigger Notch cleavage, enabling the Notch intracellular domain to enter the nucleus to trigger downstream changes in gene expression. Importantly, this includes the inhibition of Delta expression, a feature of the system that can drive symmetry breaking (figure 1c). In this work, we explore the capacity of contact-mediated lateral inhibition systems to generate diverse patterns. Although we use Notch–Delta signalling as a basis for this model, our conclusions will apply to other systems that use a similar logic.

We model a tissue comprising $M \times M$ cells, packed in a hexagonal lattice. Signalling interactions can occur only between cells that are in physical contact, either directly at junctional contacts or through cellular protrusions extended away from a cell’s centre. We assume that the tissue is initially homogeneous with all cells expressing low levels of cell junctional contacts, and at long range, via protrusions. In addition, building on a previous theoretical framework of lateral inhibition [1,12], we allow the kinetics of signalling at short range junctional contacts and signalling via protrusions contacts to differ. As our results show, this has surprising consequences. This type of juxtacrine signalling leads to a variety of self-organizing patterns, ranging from sparsely or densely spaced stripes, labyrinths and radii, to clusters and regular salt-and-pepper patterns of different density. This we suggest represents a new mechanism of pattern formation. Finally, we explore the role of the signalling dynamics, protrusion length and directionality in the patterning process and consider its broader implications for our understanding of developmental patterning.
both the Delta ligand \((D)\) and its receptor Notch \((N)\), which we initiate using Gaussian noise (see Methods). The expression levels of the intracellular Notch reporter \((R)\) are initially set to 0. We model the expression dynamics of Delta and Notch by building on a previously published mathematical framework [12,15]:

\[
\begin{align*}
\frac{dN_i}{dt} &= \beta_N - \frac{(D_{\text{in}})N_i}{k_t} - \frac{D_iN_i}{k_c} - \gamma_N N_i, \\
\frac{dD_i}{dt} &= \beta_D \frac{1}{1 + R_i} - \frac{(D_{\text{in}})N_i}{k_t} - \frac{D_iN_i}{k_c} - \gamma_D D_i,
\end{align*}
\]

(2.1)

and

\[
\frac{dR_i}{dt} = \beta_R \left(\frac{(D_{\text{out}})N_i}{k_{RS}} + \frac{(D_{\text{out}})N_i}{k_{T}}\right) - \gamma_R R_i.
\]

(2.3)

Although several models of Notch–Delta signalling and lateral inhibition have been developed [1,12,14,16], we choose this particular formulation because it allows us to track the free Notch receptors on the cell membrane as well as the amount of active Notch signal within each cell. This ability to disentangle Notch receptor binding from the induction of Notch signalling is central to our model analysis and findings. The parameters \(\beta_N, \beta_D, \beta_R\) and \(\gamma_N, \gamma_D, \gamma_R\) are the production and degradation rates of Notch, Delta and the intracellular Report of Notch signalling, respectively. The constants \(k_t\) and \(k_c\) determine the strength of Delta–Notch binding in \(\text{cis}\) (between cells) and in \(\text{trans}\) (within a single cell), respectively, and \(k_{RS}\) is the dissociation constant of the intracellular signal. The total amount of incoming Delta and Notch is given by

\[
(D_{\text{in}}) = w_a(D_{\text{in}}^l) + w_b(D_{\text{in}}^b),
\]

(2.4)

and

\[
(N_{\text{in}}) = w_a(N_{\text{in}}^l) + w_b(N_{\text{in}}^b),
\]

(2.5)

where \(w_a\) and \(w_b\) are used to implement differential weighting for the incoming signal at junctional contacts and protrusion-mediated contacts. \((D_{\text{in}}^l)\) is equal to the total incoming Delta summed over all cells that make \(\text{junctional}\) contacts with the cell of interest. Similarly, \((D_{\text{in}}^b)\) is the total incoming Delta summed over all cells that contact the cell of interest via \(\text{protrusions}\). Note that there is a third type of contact, in which the protrusion of one cell contacts the cell body of another. In these cases, we assume that the signalling contact made is equivalent to a protrusion-mediated contact, if Delta is present on protrusions, and that this can sample the full set of Notch receptors on the receiving cell. Otherwise, if Delta is present on the cell body but not protrusions, the contact made is junctional. The distinction in signal strength captured by differences in \(w_a\) and \(w_b\) is used to represent both different concentrations of the signal at the cell membrane and protrusions [11,17], and/or differences in the efficiency of Delta–Notch binding at these different types of contact. As an additional assumption, not all bound Delta–Notch molecules lead to an intracellular signal under the model. Instead, Delta can bind to Notch in another cell without leading to activation (figure 1d). This amounts to inhibition in \(\text{trans}\) (figures 1c and 2)—a process that has not to our knowledge been previously considered in this context—but which nicely captures the requirement for mechanical force for Notch cleavage and signalling in many experimental systems [18,19]. We further discuss the potential role of mechanical force in our model at the end of this article. Here, we do not directly model mechanical force, but we simply allow the efficiency of Notch signalling to vary by defining the proportion of incoming Delta leading to activation of the Notch receptor in the receiving cell (figures 1d and 2),

\[
(D_{\text{out}}) = q_a(D_{\text{in}}^a) + q_b(D_{\text{in}}^b),
\]

(2.6)

where \((D_{\text{in}}^a)\) and \((D_{\text{in}}^b)\) are as defined above and \((D_{\text{out}})\) is equal to the total amount of bound Delta that leads to activation of the intracellular part of the Notch receptor. It follows from this formulation that the proportion of Delta molecules bound in \(\text{trans}\) that leads to a Notch signal in the receiving cell is equal to \(q_a/w_a\) for a junctional contact, \(q_b/w_b\) for protrusion-based interactions. Thus, \(q_a\) and \(q_b\) are bounded by \(w_a/w_b\) respectively.

We model protrusions by defining the protrusion length for each cell, \(l\), and the directionality of the protrusions by defining an angle of polarization coupled to an arc opening \((\theta, d\theta)\) as shown in figure 1f. To model cells exerting protrusions in all directions, we simply let \(\theta\) take any value and set \(d\theta = \pi\). Protrusion signalling is allowed for cells whose protrusions are within reach of one another (see Methods for details).

When we set \(w_a = q_a = 1\), \(w_b = q_b = 0.3\) and \(l = 2.3\times\) (cell diameter)—close to the measured parameters for Notch–Delta-mediated lateral inhibition in the fly notum [1,17]—we obtain a pattern resembling the wild-type in vivo bristle spacing (figure 1a; [1]). Naturally, this pattern is sparser than ones obtained without protrusions, because protrusions increase the range of signalling (figure 1e; [1,16]).

3. Differential signalling efficiency at short-range and protrusion-mediated contacts expands pattern space

Although the spacing, density and regularity of the salt-and-pepper patterns such as those seen in the *Drosophila* notum can be modulated by changing protrusion length and/or dynamics (figures 1e and 3a; [1]), it is not clear how more diverse patterns (e.g. pigment stripes in zebrafish, *Drosophila* wing veins) can be obtained through lateral signalling alone without the inclusion of complex interactions between cells of several different types [2,7]. Nevertheless, by increasing the relative amount of Delta signalling at direct, compared with protrusion-mediated contacts \((w_a > w_b)\), while decreasing the binding-to-activation efficiency for direct contacts
(\(w_u > q_u\); figure 2), we were able to obtain patterns more complex than regularly spaced dots (figure 3). These range from regularly spaced clusters of cells to labyrinthine patterns (figure 3a–d). This shows that it is possible to induce a much broader set of patterns than expected using lateral inhibition-type signalling.

As the model is based upon lateral inhibition, how do clusters of cells high in Delta emerge under these conditions? This behaviour arises from the assumption that, at short-range contacts, a large complement of the set of Notch receptors expressed by a cell neighbouring a Delta-expressing cell are likely to be occupied by Delta without Notch being cleaved. As a consequence of this low-efficiency signalling (\(w_u > q_u\); figure 2), which we call \textit{trans} inhibition, these ‘first cell neighbours’ are rendered non-responsive to incoming Delta signals, enabling them to express Delta ligand (figure 1d). As, under the first set of test assumptions used, Delta is assumed to have a high binding-to-signalling efficiency when acting on protrusions (\(w_u \approx q_u\); figure 2), these cells with sequestered Notch are then able to signal to more distant secondary and tertiary neighbours that express the Notch receptor (figure 2; equations (2.1)–(2.5)). This leads to a complex interplay between signalling at junctional cell–cell contacts (which can sequester Notch receptors without inducing Notch cleavage to generate regions of tissue that are crowded with adjacent Delta-expressing cells) and protrusion-mediated signalling (which may induce the binding and cleavage of Notch receptors to inhibit Delta production over a longer range), which we investigate in more detail in a latter section. This behaviour is strikingly different from that induced by the process of \textit{cis}-inhibition, whereby Delta and Notch within the same cell bind one another in an inhibitory manner. In our model, as in published models [12,14,15], \textit{cis}-inhibition functions primarily to sharpen and speed up the process of lateral inhibition-mediated tissue patterning.

The way our model is formulated also allows protrusions to be polarized in a given direction in space (figure 1f). As animal cells frequently generate directional protrusions in response to local cues, this would appear to be an assumption worthy of testing [20]. This protrusion polarization further expands the pattern space—leading to the formation of stripes of differentiated cells perpendicular to the direction of protrusion polarization (figure 3c–f). In addition, radii are generated when protrusions are polarized perpendicular to the lattice centre (figure 3g). When the polarity cue governing protrusion directionality is made cell autonomous, so that the direction is allowed to vary between cells (as is often seen to be the case for structures in PCP (planar cell polarity) mutants [21]), we obtain less organized patterns resembling labyrinths (figure 3h). Taken together, these results show that a wide variety of patterns from dots and clusters to stripes, labyrinth and radii can all be generated simply by varying the efficiency of signalling interactions at junctional and protrusion-mediated contacts and protrusion directionality.

As protrusion signalling is key to patterning in our model, we next tested the impact of changing protrusion length and polarization in the system. When we varied the average protrusion length, \(l\), we noted that the pattern density changed (figure 4e). Long protrusions can span larger distances and so lead to sparser patterns, whereas shorter protrusions result in more dense patterns (figure 4a). Hence, the pattern wavelength depends on the protrusion range.

Protrusion directionality is also characterized by the arc opening, \(d\theta\) (figure 1f). A larger \(d\theta\) means that protrusions are less well polarized. So, for example, setting \(d\theta = \pi\) is equivalent to setting up a system in which the distribution of protrusions is randomized, whereas by setting \(d\theta = 0\) protrusions can be made to project along a fixed line that is
4. The role of binding-to-activation rates

The relative efficiency of signalling at junctional contacts and protrusion-mediated contacts is critical for patterning in this model. On the one hand, the ability of Delta ligands at a junctional contact (low-efficiency signalling) to sequester inactive Notch receptors on the surface of its neighbours (determined by w_b/q_b) regulates Delta expression; the larger the ratio w_b/q_b, the faster the generation of large patches of Delta-expressing cells. On the other hand, the size of these patches will be limited by the action of high-efficiency protrusion-mediated Delta signalling. The amount of incoming Delta signal received by a protrusion expressing Notch, defined by w_p and the efficiency of protrusion signalling, defined by w_p/q_b, therefore, determine the rate at which the Notch signal inhibits Delta production. So far we assumed w_b ≈ q_b (figure 2). Hence, w_b defines the strength of Notch receptor activation and the inhibition of Delta production, and the relative values of w_b/q_b and w_p/q_b determine whether it is possible to establish a pattern at all. This is illustrated in figure 6, where w_b is set equal to 1 and q_b and w_p are varied: the pattern becomes increasingly dense as w_b and q_b decrease. When $w_p = q_{pp}$, i.e. when signalling at junctional contacts always leads to receptor activation (figure 1c), we
Figure 6. Varying w_b and q_a. (a) The resulting pattern for different (w_b, q_a) pairs and assuming that $w_a = 1$ and $q_b = w_b$. (b) The log of the tissue average Delta expression against q_a for $w_b = 0.1$ and $w_b = 0.01$. The pattern becomes more dense for smaller q_a and w_b in agreement with the qualitative picture in (a). Additional parameter values and baseline parameters common across simulations are detailed in table 1 and in the Methods section. Colour scheme: white, $D < 0.005$; orange, $0.005 < D < 0.05$; light brown, $0.05 < D < 0.5$; dark brown: $D > 0.5$. The values of Delta (w_b) used for the colour scheme were normalized by dividing across by the maximum Delta value for any given expression matrix.

5. Discussion

How can initially uniform tissues self-organize into complex spatial patterns without a chemical pre-pattern or the ability of cells to migrate? In this work, we propose that a lateral inhibition mechanism comprised a single ligand–receptor pair based on Notch–Delta signalling can generate a wide set of patterns. These vary from regularly spaced dots and clusters to stripes, radii, labyrinths and more—extending the set previous described for typical Notch–Delta models of lateral inhibition. Furthermore, our model shows that complex tissue-wide patterns can be generated by direct cell–cell contacts alone. Importantly, although this work is based on Notch–Delta signalling, our approach is general and is therefore applicable to other systems that combine contact-mediated signalling with feedback.

Key to our model is the assumption that the kinetics of Notch–Delta signalling differ at junctional contacts at the cell interface and protrusion-mediated contacts. In particular, Delta can bind to Notch at junctional contacts without this leading to high probability of receptor activation. This assumption is central because it allows patches of neighbouring cells to express high levels of Delta. This process, which we term trans inhibition, has not to our knowledge between described previously. At the same time, protrusion-mediated signalling in the model activates the Notch receptor with a high probability to enforce lateral inhibition. The balance between these two processes is equivalent to a balance between local self-enhancement and long-range inhibition, conditions shown to be necessary and sufficient for periodic pattern formation [22,23]. Interestingly, more unusual types of pattern are generated when these assumptions are reversed, so that junctional contacts between cells activate lateral inhibition signalling, whereas protrusion-mediated contacts sequester the Notch receptor. Thus, complex patterns could be generated in tissues via contact-mediated signalling, if (i) the amount of Delta differs at junctional contacts versus protrusions [1] and (ii) the efficacy of signalling can be modified [24,25]. Importantly, this may help to explain how it is that Notch–Delta signalling functions to establish patterned lines as well as spots in some developing tissues, e.g. the fly wing [26].

A question that naturally follows is how can a single cell enforce signalling in a distinctive manner at different locations. Endocytosis is likely to play a role, as it generates a force necessary for Delta-dependent Notch receptor activation [19,27,28]. Without this, the Notch receptor may bind to Delta without becoming activated [27]. Similarly, endocytosis has been proposed to activate or inactivate many other receptor-based signals [29]. Whether or not...
endocytosis is also key for signalling at the protrusions is
debatable. Instead, other factors could be more important
here, such as the force generated when actin-based protru-
sions extend and retract. In this way, the efficacy of
signalling could be locally modified by polarization of the
contractile machinery, a common feature of most animal
cells. Further in vivo studies should elucidate whether such
mechanisms exist and, if so, whether they function to aid
biological patterning.

Although diverse patterns can be stable under Notch–
Delta signalling with strong cis-inhibition [14], the de novo
generation of patterns more complex than regularly spaced
dots through Notch–Delta signalling alone is, to our knowl-
edge, novel to this work. A recent study showed that the
ability of signalling cells to control the spatial distribution
of the ligand along their protrusions could give rise to
more complex patterns such as stripes and clusters of cells
[30]. This is an interesting possibility, although it can be con-
strained by the requirement for precise control of the ligand
distribution along individual protrusions. Our model
suggests that the effectiveness of protrusion signalling can be
variable as one moves away from the signalling cell due
to signalling dynamics at different types of cell–cell contact.
Other models of lateral inhibition, for example those based
on spatial and temporal noise inhibitory thresholds, can
also give rise to more diverse patterns [31]. Interestingly, in
these cases, the inhibitory thresholds function in a similar
way to the model described here, because they enable cells
to sum signals from different types of cell–cell contact. Simi-
larly, some of the more unusual pattern motifs identified here
(figure 7), resemble those seen in a recent study of probabil-
istic patterning through lateral inhibition [32]. In this way,
this model, which is inspired by the observation that cells
exhibit different types of Notch–Delta contacts, provides a
plausible mechanism by which the conditions identified in
more complex models of lateral inhibition/activation can be
met and used in living organisms.

6. Methods
6.1. Computational methods
6.1.1. Protein dynamics
We used a mathematical model to simulate lateral inhibition
by Delta–Notch signalling. The model is defined by a set of
coupled differential equations (equations (2.1)–(2.3)), which
describe the dynamics of Notch (N), Delta (D) and a Repor-
ter of Notch signalling (R) for individual cells (i being the
index for each cell).

The parameters $\beta_{N}, \beta_{D}, \beta_{R}$ and $\gamma_{N}, \gamma_{D}, \gamma_{R}$ are the pro-
duction and degradation rates of Notch, Delta and the Report-
er of Notch signalling, respectively. The constants k_{t}
and k_{c} determine the strength of Delta–Notch interactions.
in *trans* and in *cis*, respectively, and \(k_{\text{BC}} \) is the dissociation constant for the intracellular signal. \((D_{\text{in}})\) and \((N_{\text{in}})\) indicate the incoming Delta and Notch signal and are determined by summing the signal from all cells in contact with a given cell, scaled by a factor \(w_a \) and \(w_b \), for junctional and protrusion contacts, respectively (equations (2.4)–(2.5)). \((D_{\text{out}})\) indicates the amount of Delta signal from neighbouring cells that contributes to Notch cleavage and thereby intracellular signal, and is determined by scaling incoming signal by a factor \(q_a \) and \(q_b \) for junctional and protrusion contacts respectively (equations (2.6)). A Gaussian noise term was applied to initiate protein consecrations (for \(D \) and \(N \)); \(R \) initially set to 0) and to the concentrations at each time step.

6.1.2. Protrusion modelling

Basal protrusions were implemented as two-dimensional circular areas, extending from the centre of each cell (figure 1f). Radii were drawn from a normal distribution with mean = \(l \) and s.e. = 0.5. Protrusion polarization is implemented by assigning a value \(\theta \) for the protrusion polarization coupled with an arc opening \(d\theta \) as shown in figure 1f. This formulation does not explicitly consider individual protrusions but instead defines an arc opening within which protrusions are assumed to be projected. This is a valid approximation if several protrusions are exerted by individual cells. For any two cells (cell 1 and cell 2), spaced a distance apart \(d \) such that the sum of the length of their protrusions is below \(d \), a signal occurs if the contact point is made within the arc determined by \(\theta \) and \(d\theta \) for both cells (figure 1f, g).

6.1.3. Simulation parameters

The same baseline parameters used for all simulations: \(\beta_N = 100, \beta_D = 500, \beta_R = 300000, \gamma_N = \gamma_D = \gamma_R = 1, k_i = 2, k_0 = 0.5, k_{\text{BC}} = 10^7, m = 2, s = 2 \). Initial expression values were sampled from a Normal distribution \(\mathcal{N}(10^{-3}\beta_N, 10^{-4}\beta_D) \) and \(\mathcal{N}(10^{-3}\beta_D, 10^{-4}\beta_D) \) for Notch and Delta, respectively. All \(R \)-values were initially set to 0. The cell radius \(l \) was set equal to 2 arb. units. The model was applied to a uniform hexagonally packed two-dimensional array of 60 \(\times \) 60 cells. Simulations were performed by numerically solving equations (2.1)–(2.3) using the Euler method. Parameters that were varied between figures shown in table 1.

6.1.4. Colour scheme in patterning figures

To use the same colour scheme across figures, we normalized the Delta expression matrix for each individual simulation so that no value exceeds 1. We did this by dividing by the maximum Delta expression within the expression matrix of each individual pattern. We then used the following colour scheme: white, \(0.00 \leq D < 0.05 \); light brown, \(0.05 \leq D < 0.5 \); dark brown, \(D \geq 0.5 \).

6.2. Experimental methods

6.2.1. Fly strains

Fly stocks were maintained at 18°C. Shotgun-GFP, neuralized-GMCA (GFP-actin binding domain of moesin); neuralized-GAL4; UAS-GMCA. Flies obtained from Bloomington Drosophila Stock Centre (Bloomington, IN, USA) and the Baum Laboratory.
6.2.2. Imaging

White pre-pupae (0 h AP) were picked and aged at 25°C (for 12 h) or 18°C (for 24 h), then dissected for imaging at 12 h AP, as previously published [33]. Live pupae were imaged on a Leica SPE or SP8 confocal microscope. Imaging datasets were analysed and processed using Fiji/ImageJ (NIH).

References

1. Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B. 2010 Dynamic filopodia transmit intermittent Delta-Notch signalling to drive pattern refinement during lateral inhibition. Dev. Cell 19, 78 – 89. (doi:10.1016/j.devcel.2010.06.006)

2. Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T, Parichy DM, Kondo S. 2014 Involvement of Delta/Notch signalling in zebrafish adult pigment stripe patterning. Development 141, 318 – 324. (doi:10.1242/dev.099804)

3. Iber D, Menshykau D. 2013 The control of branching morphogenesis. Open Biol. 3, 130088. (doi:10.1098/rsob.130088)

4. Wolpert L. 1969 Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1 – 47. (doi:10.1016/S0022-5193(69)80016-0)

5. Turing AM. 1952 The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37 – 72. (doi:10.1098/rstb.1952.0012)

6. Kornberg TB. 2016 A path to pattern. In Current topics in developmental biology (ed. PM Wassarman), pp. 551 – 567. New York, NY: Academic Press Inc.

7. Hiscock TW, Megason SG. 2015 Mathematically guided approaches to distinguish models of periodic patterning. Development 142, 409 – 419. (doi:10.1242/dev.107441)

8. Seifert JRK, Mlodzik M. 2007 Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat. Rev. Genet. 8, 126 – 138. (doi:10.1038/nrg2042)

9. Komberg TB, Roy S. 2014 Cytonemes as specialized signalling filopodia. Development 141, 729 – 736. (doi:10.1242/dev.086223)

10. Nakamasu A, Takahashi G, Kanbe A, Kondo S. 2009 Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc. Natl Acad. Sci. USA 106, 8429 – 8434. (doi:10.1073/pnas.0800621106)

11. Hunter GL, Hadjivasiliou Z, Bonin H, He L, Perrimon N, Charnas G, Baum B. 2016 Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning. Development 143, 2305 – 2310. (doi:10.1242/dev.134213)

12. Sprinzak D, Lakanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB. 2011 Mutual inactivation of notch receptors and ligands facilitates developmental patterning. PLoS Comput. Biol. 7, e1002069. (doi:10.1371/journal.pcbi.1002069)

13. Perrimon N, Pitsouli C, Shilo B-Z. 2012 Signalling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb. Perspect. Biol. 4, a005975. (doi:10.1101/cshperspect.a005975)

14. Formosa-Jordan P, Ibanes M. 2014 Competition in notch signalling with cis enriches cell fate decisions. PLoS ONE 9, e95744. (doi:10.1371/journal.pone.0095744)

15. Sprinzak D, Lakanpal A, LeBon L, Santat LA, Fontes ME, Anderson GA, Garcia-Ojalvo J, Elowitz MB. 2010 Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86 – 90. (doi:10.1038/nature08959)

16. Collier JR, Monk NA, Maini PK, Lewis JH. 1996 Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J. Theor. Biol. 183, 429 – 446. (doi:10.1006/jtbi.1996.0233)

17. Sasaki N, Sasamura T, Ishikawa HO, Kanai M, Ueda R, Saijo K, Matsumo K. 2007 Polarized exocytosis and transcytosis of Notch during its apical localization in Drosophila epithelial cells. Genes to Cells 12, 89 – 103. (doi:10.1111/j.1365-2443.2007.01037.x)

18. Gordon WR et al. 2015 Evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729 – 736. (doi:10.1016/j.devcel.2015.05.004)

19. Meloto-Kapella L, Shergill B, Koon J, Botvinick E, Weinmaster G. 2012 Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsin, and actin. Dev. Cell 22, 1299 – 1312. (doi:10.1016/j.devcel.2012.04.005)

20. Peng Y, Han C, Axelrod JD. 2012 Planar polarized protrusions break the symmetry of EGFR Signaling during Drosophila bract cell fate induction. Dev. Cell 23, 507 – 518. (doi:10.1016/j.devcel.2012.07.016)

21. Klein TJ, Mlodzik M. 2005 Planar cell polarization: an emerging model points in the right direction. Annu. Rev. Cell Dev. Biol. 21, 155 – 176. (doi:10.1146/annurev.cellbio.21.012704.132806)

22. Gierer A, Meinhardt H. 1972 A theory of biological pattern formation. Kybernetik 12, 30 – 39. (doi:10.1007/BF02892234)

23. Meinhardt H, Gierer A. 2000 Pattern formation by local self-activation and lateral inhibition. BioEssays 22, 753 – 760. (doi:10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z)

24. Sun X, Artavanis-tsakonas S. 1996 The intracellular deletions of DELTA and SERRATE define dominant negative forms of the Drosophila Notch ligands. Development 122, 2465 – 2474.

25. Fiuza UM, Klein T, Arias AM, Hayward P. 2010 Mechanisms of ligand-mediated inhibition in notch signalling activity in Drosophila. Dev. Dyn. 239, 789 – 805. (doi:10.1002/dvdy.22207)

26. De Celis JF. 2003 Pattern formation in the Drosophila wing: the development of the veins. BioEssays 25, 443 – 451. (doi:10.1002/bies.10258)

27. Wang X, Ha T. 2013 Defining single molecular forces required to activate integrin and notch signalling. Science 340, 991 – 994. (doi:10.1126/science.1231041)

28. Wang W, Struhl G. 2004 Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 131, 5367 – 5380. (doi:10.1242/dev.01413)

29. Sorkin A, von Zastrow M. 2009 Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 699 – 622. (doi:10.1038/nrm2748)

30. Vasiologoulos G, Painter KJ. 2016 Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact. Math. Biosci. 273, 1 – 15. (doi:10.1016/j.mbs.2015.12.008)

31. Cohen M, Baum B, Miodownik M. 2011 The importance of structured noise in the generation of self-organizing tissue patterns through contact-mediated cell – cell signalling. J. R. Soc. Interface 8, 787 – 798. (doi:10.1098/rsif.2010.0488)

32. Willis L, Kabla A. 2016 Emergent patterns from probabilistic generalizations of lateral activation and inhibition. J. R. Soc. Interface 13, 20150177. (doi:10.1098/rsif.2015.0177)

33. Zitsman D, Roegers F. 2011 Live-cell imaging of sensory organ precursor cells in intact Drosophila pupae. J. Vis. Exp. 51, e2706. (doi:10.3791/2706)