Revamped Bi-Large neutrino mixing with Gatto-Sartori-Tonin like relation

Subhankar Roya,1,*, K. Sashikanta Singhb, Jyotirmoi Borahc

aDepartment of Physics, Gauhati University, Guwahati-781014, India
bDepartment of Physics, Manipur University, Imphal, Manipur-795003, India
cDepartment of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, India

Abstract

The Gatto Sartori Tonin (GST) relation which establishes the Cabibbo angle in terms of the quark mass ratio: $\theta_C = \sqrt{m_d/m_s}$, is instituted as $\theta_{13} = \sqrt{m_1/m_3}$ to a Bi-large motivated lepton mixing framework that relies on the unification of mixing parameters: $\theta_{13} = \theta_C$ and $\theta_{12} = \theta_{23}$. This modification in addition to ruling out the possibility of vanishing θ_{13}, advocates for a nonzero lowest neutrino mass and underlines the normal ordering of the neutrino masses. The framework is further enhanced by the inclusion of a charged lepton diagonalizing matrix U_{1L} with ($\theta_{12} \sim \theta_C$, $\delta = 0$). The model being architected at the Grand unification theory (GUT) scale is further run down upto the Z boson scale to understand the universality of the GST relation and the Cabibbo angle.

Keywords: Neutrino mixing, Quark mixing, Cabibbo angle, Renormalization Group Equations, Bilarge neutrino mixing.

1. Introduction

The neutrinos are the most elusive fundamental particles available in Nature. The Standard model (SM) of particle physics fails to give a vivid picture of the same. The quest to understand the underlying first principle working behind the neutrino masses and mixing mechanism takes us beyond the SM. In this article, we emphasize on the significance of the simple unification schemes in terms of the common parameters and phenomenological relation that both the lepton and quark sectors may share.

The SM witnesses only the left-handed flavor neutrinos and the corresponding flavor eigenstates, ν_{eL}, $\nu_{\mu L}$ and $\nu_{\tau L}$ are not identical to their mass eigenstates (ν_{1L}, ν_{2L} and ν_{3L}). If the charged lepton Yukawa mass matrix, Y_l is diagonal, the neutrino flavor eigenstates are

*corresponding author

Email addresses: subhankar@gauhati.ac.in, meetsubhankar@gmail.com (Subhankar Roy), ksmiskynet@gmail.com (K. Sashikanta Singh), borah176121103@iitg.ac.in (Jyotirmoi Borah)
expressed as a linear superposition of the neutrino mass eigenstates in the following way,

$$\nu_{\alpha L} = \sum_{i=1}^{3} (U_\nu)_{\alpha i} \nu_{i L}, \quad (\alpha = e, \mu, \tau), \quad (1)$$

where, the matrix, U_ν is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix\[1\] and it preserves the information of the Lepton mixing. The matrix U_ν is testable in the oscillation experiments and to parametrize U_ν, we require three angles, and six phases. Out of the six phases, three are absorbed by the redefinition of the left handed charged lepton fields (e_L, μ_L, and τ_L). If the original framework beholds a non-diagonal charged lepton Yukawa matrix, Y_l, then the U_ν suffers a substantial amount of correction and the PMNS matrix is redefined as,

$$U = U_{iL}^\dagger U_\nu, \quad (2)$$

where, the U_{iL} is the left handed unitary matrix that diagonalizes, $Y_l^\dagger Y_l$. The U carries six observable parameters: three neutrino mixing angles: θ_{12}, θ_{23} and θ_{13}, often said as solar, atmospheric and reactor angles respectively, the Dirac-type CP violating phase (δ) and two Majorana phases (ψ_1 and ψ_2). Following the particle data group PDG parametrization, the U appears as shown below \[2\],

$$U = R_{23}(\theta_{23}).W_{13}(\theta_{13}; \delta).R_{12}(\theta_{12}).P, \quad (3)$$

where, $P = diag(e^{-i \frac{\psi_1}{2}}, e^{-i \frac{\psi_2}{2}}, 1)$. This is to be emphasized that the oscillation experiments can not witness the Majorana phases, ψ_1 and ψ_2 and the above parametrization ensures this fact. Moreover, the proper ordering and exact information of the neutrino mass eigenvalues are unavailable as the oscillation experiments can witness only two parameters: $\Delta m_{21}^2 = m_2^2 - m_1^2$ and $|\Delta m_{31}^2| = |m_3^2 - m_1^2|$. In short, the experimental results suggest: $\theta_{12} \approx 34^0$, $\theta_{23} \approx 47^0$, $\theta_{13} \approx 8^0$, $\Delta m_{21}^2 = 7.5 \times 10^{-5} \text{eV}^2$, $|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{eV}^2$ and $\delta_{CP} \sim 281^0$ \[3\].

A specific model predicts a testable U. One of the many popular mixing schemes, the Tri-Bimaximal (TBM) \[4\] mixing scheme is still relevant as a first approximation because what the TBM model predicts: $\theta_{12} = 35.26^0$ and $\theta_{23} = 45^0$, fit well within the 3σ range \[3\]. But the prediction that $\theta_{13} = 0$, is strictly ruled out by the recent experiments \[5, 6\]. One can see that,

$$\theta_{13} \sim O(\theta_C), \quad (4)$$

where, the parameter, θ_C is the Cabibbo angle \[7\] and this is considered as the most important parameter of the quark sector. On the other hand, instead of introducing a correction of the order of θ_C, another promising mixing scheme termed as Bi-large (BL) neutrino mixing \[8\] \[14\] is proposed which shelters θ_C as an inherent parameter of the neutrino sector. The angle, θ_{13} is visualized as: $\sin \theta_{13} \sim \lambda$, where $\lambda = \sin \theta_C$, is called the Wolfenstein parameter \[15\]. Therefore, it hints for new unification possibilities. The BL framework is further strengthened by the fact that in the $SO(10)$ or $SU(5)$ inspired Grand Unified Theories (GUT), a single operator generates the Yukawa matrices for the down type quarks Y_d.

2
and charged leptons, Y_l[16][22]. In that case, a matrix element of Y_l are proportional to that of the Y_d which in turn suggests that,

$$U_{IL} \sim V_{CKM}$$

(5)

where, the V_{CKM} is called the Cabibbo-Kobayashi-Maskawa matrix [15][23]. A non-diagonal textured Y_l is craved in those models where the reactor angle in the neutrino sector is vanishing. But in the present work, the appearance of a nondiagonal Y_l is a natural consequence of the GUT motivation.

Interestingly, the role of the Cabibbo angle is not limited in defining the quark mixing only, but it describes the masses also. The Gatto-Sartori-Tonin (GST) relation establishes θ_C in terms of the mass ratio of up and down quarks [24]:

$$\sin \theta_C \simeq \sqrt{m_d/m_s},$$

(6)

The question appears whether in case of lepton sector, the masses and the mixing angles are somehow related or not. In deed, the quark and the neutrino sector differs a lot than being similar. The V_{CKM} is too close to an Identity matrix, whereas the PMNS matrix U, is far from being an Identity matrix. Although the mixing schemes differ a lot, but believing on the unification framework like GUT, there lies enough reasons to explore similar signatures in both quark and lepton sectors. Following the footprints of GST relation in eq.(6), the viability of a similar GST like relation:

$$\sin \theta_{ij} = \sqrt{m_i/m_j},$$

(7)

is explored in the neutrino sector in Ref. [25], where the analysis is done in a basis where the Y_l is diagonal and the CP violation is absent. One sees that based on the phenomenology only two GST like relations such as,

$$\sin \theta_{13} = \sqrt{m_1/m_3} \quad \text{or} \quad \sin \theta_{23} = \sqrt{m_3/m_2},$$

(8)

are possible in the neutrino sector. Needless to mention that the two relations can not be experienced simultaneously. The first relation can be enhanced in the light that θ_{13} and θ_C are of same order and at certain energy scale these two parameters may unify. If the first relation were true, the model will lean towards the normal ordering of the neutrino masses and this possibility is indicated recently by the experimental results [3]. The vindication of nonzero θ_{13}, its proximity towards the Cabibbo angle and the hint for normal ordering of neutrino masses make the foundation of unification schemes stronger. In the next section we shall try to explore how the GST relation can be invoked in the framework of Bi-large neutrino mixing.
2. Modified bilarge ansatz

This is to be emphasized that even though there are reasons to demarcate the quark and the lepton sectors, yet we can see that both sectors may confront similar relations or parameters motivated in GUT. Several BL schemes are proposed in the Refs. [8–14], out of which we adopt the original one [8, 12] which stresses on the unification of the atmospheric angle and solar angle in addition to that between Cabibbo and reactor. We extend the BL framework with an additional GST like relation at the GUT scale ($\sim 10^{16}$ GeV) and the unification ansatz is presented as in the following,

$$\theta_{13}^\nu = \theta_C = \sqrt{\frac{m_1}{m_3}} = \sqrt{\frac{m_4}{m_5}},$$

$$\theta_{12}^\nu = \theta_{23}^\nu = \sin^{-1}(\psi\lambda), \quad \text{(where, } \psi \sim 3),$$

$$\theta_{12}^l \approx \theta_C, \quad \theta_{23}^l = A\lambda^2, \quad \text{(where, } A \approx 0.813),$$

where, the θ_{ij}^ν and θ_{ij}^l stands for the mixing angles for neutrino and charged lepton sectors. It is worth mentioning that this proposition at the outset favors the normal ordering of the neutrino masses and rules out any possibility concerning $m_1 = 0$.

We identify, U_{ν}, the diagonalizing matrix of the neutrino mass matrix, m_{ν} in the basis where, Y_l is diagonal as shown in the following,

$$U_{\nu} = \left(\begin{array}{ccc} c - \frac{c\lambda^2}{2} & \frac{s - \frac{s\lambda^2}{2}}{s^2 - c^2 e^{i\delta_0} \lambda} & e^{-i\delta_0} \lambda \\ -cs \left(e^{i\delta_0} \lambda + 1\right) & c^2 - e^{i\delta_0} s^2 \lambda & s - \frac{s\lambda^2}{2} \\ s^2 - c^2 e^{i\delta_0} \lambda & -cs \left(e^{i\delta_0} \lambda + 1\right) & c - \frac{c\lambda^2}{2} \end{array} \right) P,$$

where, $s = \psi\lambda$ and $s = \cos(\sin^{-1}(\psi\lambda))$ and following the same, we define the neutrino mass matrix, m_{ν} as,

$$m_{\nu}(m_2, m_3, \psi, \psi_1, \psi_2, \delta_0, \lambda) = U_{\nu}^* \text{diag}\{\lambda^2, m_2', 1\} U_{\nu}^{\dagger} m_3,$$

where, $m_2' = m_2 / m_3$. The m_{ν} contains four free parameters: m_3, m_2, ψ, δ_0 two Majorana phases ψ_1 and ψ_2.

The choice of the Dirac neutrino Yukawa matrix, Y_{ν} is arbitrary and we fix it as per Ref. [26] as shown

$$Y_{\nu} = \frac{1}{2} \begin{pmatrix} \nu_{11}\lambda^3 & 0 & 0 \\ \nu_{12}\lambda^6 & \nu_{22}\lambda & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where, the coefficients ν_{ij}’s are illustrated in Table. (1).
On the other hand, we draw the motivation from the $SU(5)$ GUT to describe the Yukawa matrices of down quarks (Y_d), up quarks (Y_u) and Y_l. One finds that the unification possibilities emphasize that respective matrix elements of (Y_l)$_{ij}$ are linearly dependent on (Y_d)$_{ij}$ such that the proportionality factors are chosen fractions which arise in the $SU(5)$ phenomenology [27–31]. We propose,

$$Y_d = \begin{pmatrix} d_{11}\lambda^8 & d_{12}\lambda^5 & 0 \\ d_{21}\lambda^5 & d_{22}\lambda^4 & -d_{23}\lambda^3 \\ d_{31}\lambda^7 & d_{32}\lambda^6 & d_{33}\lambda \end{pmatrix},$$

and hence,

$$Y_l = \begin{pmatrix} -\frac{3}{2} d_{11}\lambda^8 & 6 d_{12}\lambda^5 & 0 \\ -\frac{1}{2} d_{21}\lambda^5 & 6 d_{22}\lambda^4 & \frac{3}{2} d_{23}\lambda^3 \\ -\frac{1}{2} d_{31}\lambda^7 & 6 d_{32}\lambda^6 & -\frac{3}{2} d_{33}\lambda \end{pmatrix}^T,$$

where, d_{ij}s are $O(1)$ coefficients (See Table. [1]). It is worth mentioning that the RL convention is adopted in the present article which says, $U_{(x)R}^\dagger Y_{(x)} U_{(x)L} = Y_{(x)diag}$, where, $x = d, u$ and l and the above proposition of Y_d and Y_l gives the ratio $(y_{\mu}y_{d})/(y_{\tau}y_{e}) \approx 11.57$ [30] and $|V_{us}| = 0.2254$ [2]. We choose the up-quark yukawa matrix in the following manner,

$$Y_u = \begin{pmatrix} u_{11}\lambda^8 & 0 & 0 \\ 0 & u_{22}\lambda^4 & -u_{23}\lambda^6 \\ 0 & u_{32}\lambda^2 & u_{33} \end{pmatrix},$$

where, u_{ij}s appear as $O(1)$ coefficients. The above preparation proclaims,

$$U_{uL} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -A\lambda^2 \\ 0 & A\lambda^2 & 1 \end{pmatrix},$$

$$U_{dL} \approx \begin{pmatrix} 1 - \lambda^2 & \lambda & 0 \\ -\lambda & 1 - \lambda^2 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

and therefore,

$$V_{CKM} = U_{uL}^\dagger U_{dL} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \frac{\lambda}{2} & 0 \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ 0 & -A\lambda^2 & 1 \end{pmatrix},$$

the left-handed diagonalizing matrix of Y_l, appears as in the following,

$$U_{lL} \approx \begin{pmatrix} 1 - \frac{a^2\lambda^2}{2} & a\lambda & 0 \\ -a\lambda & 1 - \frac{a^2\lambda^2}{2} & -A\lambda^2 \\ 0 & A\lambda^2 & 1 \end{pmatrix},$$
where, $a = 1.03$. That the parameter is not exactly equal to unity, shifts U_{IL} a little from V_{CKM}. The parameter $a = 1$, is true if the correlation between Y_l and Y_d were, $Y_l = Y_d^T$. This is to be noted that the U_{IL} in the present work does not contain any complex CP phase and hence will not contribute towards the CP violation in the lepton sector. Here we wish to mention that in our earlier work\cite{12} and in the Refs. \cite{13,14}, the U_{IL} shelters an arbitrary CP violating phase which is associated with the 1-2 rotation of U_{IL}. But in V_{CKM} matrix, the CP phase is related with the 1-3 rotation. In this work, we insist on the similarity of the mixing angles along with proper placement of the CP phase in the U_{IL} as per V_{CKM}. The CP phase does not appear in U_{IL} as in the latter the $\mathcal{O}(\lambda^3)$ contribution is neglected.

As it is mentioned that the above framework is considered at the GUT scale M_{GUT}, we run the neutrino mass matrix m_ν following a top-down approach\cite{12,11} upto the level of M_z scale. The analysis involves the heavy right-handed neutrino singlets and we see that the Renormalization Group Equations (RGE) for running the m_ν in the interval of different thresholds are different\cite{12,48}. At each threshold, the heavy right handed neutrinos has to be integrated out(These analysis involve rigorous mathematics and for necessary details see Ref.\cite{26}). In order to deal with the RGE evolution of the neutrino mass matrix and other observational parameters related to the neutrinos, we extensively use the a mathematica package \textbf{REAP} (Renormalisation group Evoluion of Angles and Phases)\cite{26} which takes care of running the neutrino mass matrix, the Yukawa matrices and the gauge couplings. This package is capable of integrating out categorically the heavy neutrinos at the appropriate thresholds. But the \textbf{REAP} rather takes the heavy right handed neutrino mass matrix M_R as an input than m_ν. For this, we invert the Seesaw formula\cite{49,50} and get M_R,

$$M_R = -\frac{2}{v^2}(Y^T_\nu)^{-1}m_\nu.Y_\nu. \quad (22)$$

where, v is the Higgs' vev. We shall work in the light of the minimal supersymmetric extension of the standard model(MSSM)\cite{51,53}. The analysis involves a parameter known as supersymmetry breaking scale (m_s) which is still unknown. In fact it can take values from a few Tev to hundred Tev.

In the next section we shall discuss about the numerical results of the neutrino physical parameters.

3. Numerical Analysis

To exemplify, let us take the input set of parameters at the the GUT scale, $M_{GUT} = 4.577 \times 10^{16} GeV$, as shown in the following,

$$\psi = 3, \ m_2 = 0.0131 \ eV, \ m_3 = 0.074 \ eV,$$
$$\delta_0 = 318^\circ, \ \psi_1 = 0^\circ, \ \psi_2 = 180^\circ$$
$$g_1 = 0.7063, \ g_2 = 0.7065, \ g_3 = 0.7069,$$
along with the vacuum expectation value, \(v = 246 \, GeV \), \(\tan \beta = 60 \), and SUSY breaking scale \(m_s \) set at 3 \(TeV \).

The observable neutrino mass and mixing parameters are run down upto the scale of \(M_Z = 91.19 \, GeV \) and we extract the information of the observable parameters as shown below,

\[
\begin{align*}
\theta_{12} &= 33.34^\circ, \quad \theta_{13} = 8.67^\circ, \quad \theta_{23} = 46.95^\circ, \\
\delta &= 268.27^\circ, \quad \Delta m^2_{\text{sol}} = 7.40 \times 10^{-5} \, eV^2, \\
\Delta m^2_{\text{atm}} &= 2.44 \times 10^{-3} \, eV^2, \quad \sum m_{\nu_i} = 0.062 \, eV, \\
\psi_2 &= 0.277^\circ, \quad \psi_1 = 182.76^\circ
\end{align*}
\]

We see that the two angles \(\theta_{13} \) and \(\theta_{23} \) are well fitted within the 1\(\sigma \) bound and \(\theta_{23} > 45^\circ \) \cite{3}. Also, \(\theta_{12} \) lies little below the 1\(\sigma \) bound but within the 2\(\sigma \) \cite{3}. The solar and the atmospheric mass squared difference are consistent within the 1\(\sigma \) and 2\(\sigma \) bounds respectively\cite{3}. According to the recent analysis in Refs. \cite{53, 54}, the observational parameter, \(\sum m_{\nu_i} \) has got an upper bound of 0.154 \(eV \) to 0.270 \(eV \) and the most stringent upper bound is 0.078 \(eV \) as per Ref. \cite{55}. The lower bound is predicted as \(\sum m_{\nu_i} < 0.058 \, eV \) in Refs. \cite{54, 55} or \(\sum m_{\nu_i} < 0.060 \, eV \) according to the Ref. \cite{2}. We see that prediction of \(\sum m_{\nu_i} \) in our analysis lies slightly above the prescribed lower bound.

This is to be noted that in the present analysis, we see that the prediction of \(\theta_{13} \) at \(M_Z \), unlike the other mixing angles, changes appreciably with the variation of the unphysical phase parameter \(\delta_0 \) at the GUT scale. To illustrate, in the above example, keeping all the input parameters fixed, if we change \(\delta_0 \) a little from 318\(^\circ \) to 323\(^\circ \), we see that the \(\theta_{13} \) at the \(M_Z \) scale changes from 8.67\(^\circ \) to 7.80\(^\circ \) (which lies outside the 3\(\sigma \) range).

Similarly, for the all the input parameters fixed, if the SUSY breaking scale \(m_s \) is varied a little, the predictions of the mass parameters at \(M_Z \) are affected. To illustrate, we study in details the variation of all the mixing angles and the mass parameters at the \(M_Z \) scale, with respect to the variation of \(\delta_0 \) and for different values of \(m_s \). We take different values of \(m_s \) ranging from 1 \(TeV \) to 14 \(TeV \). The analysis requires the knowledge of numerical values of the three gauge coupling constants and three Yukawa couplings at the GUT scale \cite{10, 11}. For this, the respective RGE equations are run in the bottom-up approach for different values of \(m_s \) (See Table. (2)). For further discussion, we fix the input parameters at, \(\psi = 3, \, m_2 = 0.0131 \, eV, \, m_3 = 0.074 \, eV, \, \psi_1 = 0^\circ, \, \psi_2 = 180^\circ \).

As the observable \(\theta_{13} \) at \(M_Z \) varies a lot with respect to the unphysical phase \(\delta_0 \), we restrict the numerical input of the latter (See Figure (1a)) with respect to the 3\(\sigma \) bound of the former\cite{3}. We find two bounds of \(\delta_0 \) which are: 37\(^\circ \) \(\leq \) \(\delta_0 \) \(\leq \) 45\(^\circ \) and 315\(^\circ \) \(\leq \) \(\delta_0 \) \(\leq \) 324\(^\circ \) out of which the first bound is rejected in the light of 3\(\sigma \) range of \(\delta \) at \(M_Z \) scale (See Fig. (1b)). The Dirac CP violation Phase \(\delta \) is predicted to lie within a range, 267\(^\circ \) \(\leq \) \(\delta \) \(\leq \) 276\(^\circ \) which is true upto the 2\(\sigma \) range \cite{3}. With respect to the allowed range of \(\delta_0 \), one sees that in Figs. (2a) and (2b), the mixing angles \(\theta_{12} \) and \(\theta_{23} \) are predicted to lie within 2\(\sigma \) and 1\(\sigma \) bounds respectively. It is found that the mixing angles are less sensitive towards the variation of \(m_s \). On the contrary, the mass parameters hence the related observational parameters drifts a lot if \(m_s \) is varied (See Figs. (3a), (3b), (3c), (2e) and (2d)). We see that the numerical values \(\Delta m^2_{\text{sol}} \)
with respect to the allowed bound of δ_0 agrees well within the 3σ range for variation of the m_s from $1\,\text{TeV}$ to $14\,\text{TeV}$. In contrast, the same for Δm^2_{atm} goes outside the 3σ range if $m_s \geq 5\,\text{TeV}$. The $\sum m_{\nu_i}$ (at M_Z), though varies with respect to m_s but stays within the bound (see Fig. 3d).

4. Summary

Through this article, we have tried establish a pathway to realize the theory of neutrinos based on the ansatze inspired by unification. Its found that a simple extension of the bi-large model in terms of two unification strategies: $\theta_{13}^v = \theta_C$ and $\theta_{13}^d = \sqrt{m_1/m_3}$ can lead to a successful prediction of the observables through running the RGEs following a top-down approach. The inclusion of the GST like relation ensures the normal ordering of the neutrino masses. The model shows the variation in the prediction of the Dirac CP violation phase, δ against that of θ_{13}. This in turn results in constraining the predictions of the other observable parameters within a smaller bound. The model predicts the atmospheric mixing angle, θ_{23} to strictly lie within the second octant. While running the neutrino observable parameters, we have taken care of the variation of the SUSY breaking scale. We see that the effect of this variation is more on the mass parameters and least on the mixing angles.

The present article emphasizes on the simplicity of the Bi-large mixing proposition which unifies the solar and the atmospheric angles and underlines its relevance. Based on the GUT motivation, we have formulated an $U_{\ell L}$ which in addition to being CKM like disallows the presence of any arbitrary complex phase. This distinguishes our present work from the earlier works on Bi-large model[11–14]. The present work once again justifies the universality of the Cabibbo angle in terms of featuring the mixing angles and the masses.

Acknowledgment

SR and KSS thank N. Nimai Singh, Manipur University for the useful discussions. JB thanks Gauhati University for providing him a chance to be a part of the work. SR wishes to thank FIST(DST) grant for the necessary support.

References

[1] B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429, [Zh. Eksp. Teor. Fiz.33,549(1957)].
[2] M. Tanabashi, et al., Review of Particle Physics, Phys. Rev. D98 (3) (2018) 030001. doi:10.1103/PhysRevD.98.030001.
[3] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, J. W. F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B782 (2018) 633–640. arXiv:1708.01186, doi:10.1016/j.physletb.2018.06.019.
[4] P. F. Harrison, D. H. Perkins, W. G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B530 (2002) 167. arXiv:hep-ph/0202074 doi:10.1016/S0370-2693(02)01336-9.
[5] F. P. An, et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803. arXiv:1203.1669, doi:10.1103/PhysRevLett.108.171803.
[6] F. P. An, et al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D95 (7) (2017) 072006. arXiv:1610.04802 doi:10.1103/PhysRevD.95.072006

[7] N. Cabibbo, Time Reversal Violation in Neutrino Oscillation, Phys. Lett. 72B (1978) 333–335. doi:10.1016/0370-2693(78)90132-6

[8] S. M. Boucenna, S. Morisi, M. Tortola, J. W. F. Valle, Bi-large neutrino mixing and the Cabibbo angle, Phys. Rev. D86 (2012) 051301. arXiv:1206.2555 doi:10.1103/PhysRevD.86.051301

[9] G.-J. Ding, S. Morisi, J. W. F. Valle, Bi-large neutrino mixing and Abelian flavor symmetry, Phys. Rev. D87 (5) (2013) 053013. arXiv:1211.6506 doi:10.1103/PhysRevD.87.053013

[10] G. C. Branco, M. N. Rebelo, J. I. Silva-Marcos, D. Wegman, Quasidegeneracy of Majorana Neutrinos and the Origin of Large Leptonic Mixing, Phys. Rev. D91 (1) (2015) 013001. arXiv:1405.5120 doi:10.1103/PhysRevD.91.013001

[11] S. Roy, N. N. Singh, Bi-Large neutrino mixing with charged lepton correction, Indian J. Phys. 88 (5) (2014) 513–519. arXiv:1211.7207 doi:10.1007/s12648-014-0446-1

[12] S. Roy, S. Morisi, N. N. Singh, J. W. F. Valle, The Cabibbo angle as a universal seed for quark and lepton mixings, Phys. Lett. B748 (2015) 1–4. arXiv:1410.3658 doi:10.1016/j.physletb.2015.06.052

[13] G.-J. Ding, N. Nath, R. Srivastava, J. W. F. Valle, Status and prospects of bi-large leptonic mixing, Phys. Lett. B796 (2019) 162–167. arXiv:1904.05632 doi:10.1016/j.physletb.2019.07.037

[14] P. Chen, G.-J. Ding, R. Srivastava, J. W. F. Valle, Predicting neutrino oscillations with bi-large lepton mixing matrices, Phys. Lett. B792 (2019) 461–464. arXiv:1902.08962 doi:10.1016/j.physletb.2019.04.022

[15] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 51 (1983) 1945. doi:10.1103/PhysRevLett.51.1945

[16] J. C. Pati, A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275–289, [Erratum: Phys. Rev.D11,703(1975)]. doi:10.1103/PhysRevD.10.275,10.1103/PhysRevD.11.703.2

[17] V. Elias, A. R. Swift, Generalization of the Pati-Salam Model, Phys. Rev. D13 (1976) 2083. doi:10.1103/PhysRevD.13.2083

[18] V. Elias, Gauge Coupling Constant Magnitudes in the Pati-Salam Model, Phys. Rev. D16 (1977) 1586. doi:10.1103/PhysRevD.16.1586

[19] T. Blazek, S. F. King, J. K. Parry, Global analysis of a supersymmetric Pati-Salam model, JHEP 05 (2003) 016. arXiv:hep-ph/0303192 doi:10.1088/1126-6708/2003/05/016

[20] J. B. Dent, T. W. Kephart, Minimal Pati-Salam model from string theory unification, Phys. Rev. D77 (2008) 115008. arXiv:0705.1995 doi:10.1103/PhysRevD.77.115008

[21] C. Kounnas, A. Masiero, D. Nanopoulos, K. Olive, Grand Unification with and without Supersymmetry and Cosmological Implications International School for Advanced Studies Lecture Series, Singapore, 1985. URL https://books.google.co.in/books?id=XAc8DQAAQBAJ

[22] G. Ross, Grand Unified Theories’ Frontiers in Physics, Avalon Publishing, 2003. URL https://books.google.co.in/books?id=ccj_swEACAAJ

[23] M. Kobayashi, T. Maskawa, CP-Violation in the Renormalizable Theory of Weak Interaction Progress of Theoretical Physics 49 (2) (1973) 652–657. arXiv:http://oup.prod.sis.lan/ptp/article-pdf/49/2/652/5257692/49-2-652.pdf doi:10.1143/PTP.49.652

[24] R. Gatto, G. Sartori, M. Tonin, Weak Selfmasses, Cabibbo Angle, and Broken SU(2) x SU(2), Phys. Lett. 28B (1968) 128–130. doi:10.1016/0370-2693(68)90150-0

[25] S. Roy, N. N. Singh, Mixing angle as a function of neutrino mass ratio, Phys. Rev. D91 (9) (2015) 096003. arXiv:1603.07474 doi:10.1103/PhysRevD.91.096003

[26] S. Antusch, J. Kersten, M. Lindner, M. Ratz, M. A. Schmidt, Running neutrino mass parameters in seesaw scenarios, JHEP 03 (2005) 024. arXiv:hep-ph/0501272 doi:10.1088/1126-6708/2005/03/024

[27] S. Antusch, M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D79 (2009) 095004. arXiv:0902.4644 doi:10.1103/PhysRevD.79.095004
D. Marzocca, S. T. Petcov, A. Romanino, M. Spinrath, Sizeable θ_{13} from the Charged Lepton Sector in SU(5), (Tri-)Bimaximal Neutrino Mixing and Dirac CP Violation, JHEP 11 (2011) 009. arXiv:1108.0614 doi:10.1007/JHEP11(2011)009

S. Antusch, Models for Neutrino Masses and Mixings, Nucl. Phys. Proc. Suppl. 235-236, 303 (2013). arXiv:1301.5511 doi:10.1016/j.nuclphysbps.2013.04.026

S. Antusch, S. F. King, M. Spinrath, GUT predictions for quark-lepton Yukawa coupling ratios with messenger masses from non-singlets, Phys. Rev. D89 (5) (2014) 055027. arXiv:1311.0877 doi:10.1103/PhysRevD.89.055027

S. Roy, N. N. Singh, Modulated bimaximal neutrino mixing, Phys. Rev. D92 (3) (2015) 036001. arXiv:1603.07972 doi:10.1103/PhysRevD.92.036001

K. R. S. Balaji, A. S. Dighe, R. N. Mohapatra, M. K. Parida, Radiative magnification of neutrino mixings and a natural explanation of the neutrino anomalies, Phys. Lett. B481 (2000) 33-38. arXiv:hep-ph/0002177 doi:10.1016/S0370-2693(00)00410-X

R. N. Mohapatra, M. K. Parida, G. Rajasekaran, High scale mixing unification and large neutrino mixing angles, Phys. Rev. D69 (2004) 053007. arXiv:hep-ph/0301234 doi:10.1103/PhysRevD.69.053007

S. Antusch, M. Ratz, Radiative generation of the LMA solution from small solar neutrino mixing at the GUT scale, JHEP 11 (2002) 010. arXiv:hep-ph/0208136 doi:10.1088/1126-6708/2002/11/010

A. S. Joshipura, S. D. Rindani, N. N. Singh, Predictive framework with a pair of degenerate neutrinos at a high scale, Nucl. Phys. B660 (2003) 362–372. arXiv:hep-ph/0211378 doi:10.1016/S0550-3213(03)00236-0

S. Antusch, J. Kersten, M. Lindner, M. Ratz, Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences, Nucl. Phys. B674 (2003) 401–433. arXiv:hep-ph/0305273 doi:10.1016/j.nuclphysb.2003.09.050

S. Gupta, S. K. Kang, C. S. Kim, Renormalization Group Evolution of Neutrino Parameters in Presence of Seesaw Threshold Effects and Majorana Phases, Nucl. Phys. B893 (2015) 89–106. arXiv:1406.7476 doi:10.1016/j.nuclphysb.2015.01.022

N. Haba, K. Kaneta, R. Takahashi, Y. Yamaguchi, Accurate renormalization group analyses in neutrino sector, Nucl. Phys. B885 (2014) 180–195. arXiv:1402.4126 doi:10.1016/j.nuclphysb.2014.05.022

M. Tanimoto, Renormalization effect on large neutrino flavor mixing in the minimal supersymmetric standard model, Phys. Lett. B360 (1995) 41–46. arXiv:hep-ph/9508247 doi:10.1016/0370-2693(95)01107-2

T. Ohlsson, M. Pernow, Fits to Non-Supersymmetric SO(10) Models with Type I and II Seesaw Mechanisms Using Renormalization Group Evolution, JHEP 06 (2019) 085. arXiv:1903.08241 doi:10.1007/JHEP06(2019)085

J.-w. Mei, Z.-x. Xing, Radiative generation of theta(13) with the seesaw threshold effect, Phys. Rev. D70 (2004) 053002. arXiv:hep-ph/0404081 doi:10.1103/PhysRevD.70.053002

T. Ohlsson, M. Pernow, Fits to Non-Supersymmetric SO(10) Models with Type I and II Seesaw Mechanisms Using Renormalization Group Evolution, JHEP 06 (2019) 085. arXiv:1903.08241 doi:10.1007/JHEP06(2019)085

R. Coy, M. Frigerio, Effective approach to lepton observables: the seesaw case, Phys. Rev. D99 (9) (2019) 095040. arXiv:1812.03165 doi:10.1103/PhysRevD.99.095040

S. Antusch, C. Hohl, C. K. Khosa, V. Susic, Predicting δ^ν_{23}, θ^ν_{23} and fermion mass ratios from flavour GUTs with CSD2, JHEP 12 (2018) 025. arXiv:1808.09364 doi:10.1007/JHEP12(2018)025

G.-y. Huang, Z.-x. Xing, J.-y. Zhu, Correlation of normal neutrino mass ordering with upper octant of θ_{23} and third quadrant of δ via RGE-induced μ-τ symmetry breaking, Chin. Phys. C42 (12) (2018)
[48] S. Antusch, C. Hohl, Predictions from a flavour GUT model combined with a SUSY breaking sector, JHEP 10 (2017) 155. arXiv:1706.04274 doi:10.1007/JHEP10(2017)155.

[49] P. Minkowski, $\mu \rightarrow e\gamma$ at a Rate of One Out of 10^{9} Muon Decays?, Phys. Lett. 67B (1977) 421–428. doi:10.1016/0370-2693(77)90435-X.

[50] R. N. Mohapatra, G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912, doi:10.1103/PhysRevLett.44.912.

[51] L. Randall, R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B557 (1999) 79–118. arXiv:hep-th/9810155 doi:10.1016/S0550-3213(99)00359-4.

[52] H. E. Haber, R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than $m(Z)$?, Phys. Rev. Lett. 66 (1991) 1815–1818. doi:10.1103/PhysRevLett.66.1815.

[53] M. Dine, A. E. Nelson, Y. Nir, Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D53 (1996) 2658–2669. arXiv:hep-ph/9507378 doi:10.1103/PhysRevD.53.2658.

[54] A. Loureiro, et al., On The Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments, Phys. Rev. Lett. 123 (8) (2019) 081301. arXiv:1811.02578 doi:10.1103/PhysRevLett.123.081301.

[55] S. Roy Choudhury, S. Choubey, Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios, JCAP 1809 (09) (2018) 017. arXiv:1806.10832 doi:10.1088/1475-7516/2018/09/017.
\[O(1) \text{ coefficients appearing in } Y_{\nu,d,u} \]

\[
\begin{align*}
\nu_{11} &= 0.8733, \quad \nu_{21} = 0.7626, \quad \nu_{22} = 0.4437 \\
d_{11} &= 0.676, \quad d_{12} = 0.717, \quad d_{21} = 0.730, \quad d_{22} = 0.676, \\
d_{23} &= 1.037, \quad d_{31} = 0.594, \quad d_{32} = 0.550, \quad d_{33} = 1.274 \\
u_{11} &= 0.898, \quad u_{22} = 0.672, \quad u_{23} = 0.547, \quad u_{32} = 0.603, \quad u_{33} = 0.7411
\end{align*}
\]

Table 1: The coefficients of \(Y_{\nu}, Y_{d} \) and \(Y_{u} \) as shown in eqs. (14), (15) and (17) respectively are described in this table.

\(m_s (TeV) \)	\(M_{GUT} (10^{16} GeV) \)	\(g_1 \)	\(g_2 \)	\(g_3 \)
1	4.090	0.7151	0.7154	0.7158
3	4.577	0.7063	0.7065	0.7069
5	4.790	0.7028	0.7031	0.7034
7	4.848	0.7007	0.7009	0.7010
9	4.912	0.6987	0.6987	0.6987
11	5.112	0.6973	0.6975	0.6977
14	7.211	0.6954	0.6957	0.6916

Table 2: The list of the gauge coupling constants \(g_1, g_2, g_3 \) and the \(M_{GUT} \) for different values of the SUSY breaking scales ranging from 1\(TeV \) to 14\(TeV \) is given.

Figure 1: (1a) and (1b) show how the \(\theta_{13}(M_Z) \) changes with respect to variation of \(\delta_0 \) at the GUT scale respectively for different values of the SUSY breaking scale, \(m_s \) ranging from 1\(TeV \) to 14\(TeV \) (All the graphs are merged almost together). In both of the plots, black horizontal line, purple and orange bands signify the best fit value, 1\(\sigma \) and 3\(\sigma \) ranges of the concerned parameter. In Fig. (1a), with respect to the 3\(\sigma \) range\(^{[3]} \) of \(\theta_{13} \), two possible ranges of input parameter \(\delta_0: 37^\circ \leq \delta_0 \leq 45^\circ \) and \(315^\circ \leq \delta_0 \leq 324^\circ \) (shown by two vertical grey bands) are obtained. In Fig. (1b) we see that only the second range is allowed in the light of the 3\(\sigma \) bound of \(\delta \). This range \(315^\circ \leq \delta_0 \leq 324^\circ \) predicts the Dirac CP phase \((\delta) \) within the 2\(\sigma \) bound\(^{[3]} \).
Figure 2: (2a), (2b), (2c) and (2d) show the variation of θ_{12}, θ_{23}, Δm^2_{sol} and Δm^2_{atm} at the M_Z scale respectively with respect to the variation of δ_0 at the GUT scale for different values of the SUSY breaking scale, m_s, ranging from 1 TeV to 14 TeV. The plots in Figs (2a) and (2b) merge almost together. The Black line, purple and the orange band represent the best-fit, 1σ and 3σ bounds [3] respectively for the concerned observational parameters. The vertical grey band represents the allowed bound of δ_0 at GUT scale which is $315^\circ \leq \delta_0 \leq 324^\circ$. The θ_{12} is predicted around 33.5$^\circ$ (2σ) and that for θ_{23} is around 47$^\circ$ [3].
Figure 3: (3a), (3b), (3c) and (3d) show the variation of m_1, m_2, m_3 and $\sum m_{\nu_i}$ at the M_Z scale respectively with respect to the variation of δ_0 at the GUT scale for different values of the SUSY breaking scale, m_s ranging from 1 TeV to 14 TeV. The vertical grey band represents the allowed bound of δ_0 at GUT scale which is $315^\circ \leq \delta_0 \leq 324^\circ$. In Fig. (3d), the bound on $\sum m_{\nu_i}$ is prescribed with respect to the ref. [55].