Genome-wide characterization of the auxin response factor (ARF) gene family of litchi (*Litchi chinensis* Sonn.): phylogenetic analysis, miRNA regulation and expression changes during fruit abscission

Yan Q Zhang¹, ², ³, Zao H Zeng¹, ², ³, Cheng J Chen¹, ², ³, Cai Q Li¹, ², ³, Rui Xia Corresp., ¹, ², ³, Jian G Li Corresp. ¹, ², ³

¹ State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
² China Litchi Research Center, Guangzhou, China
³ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China

Corresponding Authors: Rui Xia, Jian G Li
Email address: rxia@scau.edu.cn, jianli@scau.edu.cn

Auxin response factors (ARFs) play fundamental roles in modulating various biological processes including fruit development and abscission via regulating the expression of auxin response genes. Currently, little is known about roles of ARFs in litchi (*Litchi chinensis* Sonn.), an economical important subtropical fruit tree whose production is suffering from fruit abscission. In this study, a genome-wide analysis of ARFs was conducted for litchi, thirty-nine ARF genes (LcARFs) were identified. Conserved domain analysis showed that all the LcARFs identified have the signature B3 DNA-binding (B3) and ARF (Aux_rep) domains, with only 23 members having the dimerization domain (Aux_IAA). Number of exons in LcARF genes ranges from 2 to 16, suggesting a large variation for the gene structure of LcARFs. Phylogenetic analysis showed that the 39 LcARFs could be divided into three main groups: class I, II, III. Totally, twenty-three LcARFs were found to be potential targets of small RNAs, with three conserved and one novel miRNA-ARF (miRN43-ARF9) regulatory pathways discovered in litchi. Expression patterns were used to evaluate candidate LcARFs involved in various developmental processes, especially in flower formation and organ abscission. The results revealed that most ARF genes likely acted as repressors in litchi fruit abscission, i.e. ARF2D/2E, 7A/7B, 9A/9B, 16A/16B, while a few LcARFs, such as LcARF5A/B, might positively involve in this process. These findings provide useful information and resources for further studies on the roles of ARF genes in litchi growth and development, especially in the process of fruit abscission.
Genome-wide characterization of the auxin response factor (ARF) gene family of litchi (*Litchi chinensis* Sonn.): phylogenetic analysis, miRNA regulation and expression changes during fruit abscission

Yanqing Zhang¹,²,³, Zaohai Zeng¹,²,³, Chengjie Chen¹,²,³, Caiqin Li¹,²,³, Rui Xia¹,²,³*, Jianguo Li¹,²,³*

¹ State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
² China Litchi Research Center, Guangzhou, China
³ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China

Corresponding Author:
Rui Xia¹,²,³
Yuehan Road 483, Wushan, Tianhe, Guangzhou, Guangdong Province, 510642, China
Email address: rxia@scau.edu.cn

Jianguo Li¹,²,³
Yuehan Road 483, Wushan, Tianhe Guangzhou, Guangdong Province, 510642, China
Email address: jianli@scau.edu.cn
Abstract

Auxin response factors (ARFs) play fundamental roles in modulating various biological processes including fruit development and abscission via regulating the expression of auxin response genes. Currently, little is known about roles of ARFs in litchi (*Litchi chinensis* Sonn.), an economical important subtropical fruit tree whose production is suffering from fruit abscission. In this study, a genome-wide analysis of ARFs was conducted for litchi, thirty-nine ARF genes (*LcARFs*) were identified. Conserved domain analysis showed that all the LcARFs identified have the signature B3 DNA-binding (B3) and ARF (Aux_rep) domains, with only 23 members having the dimerization domain (Aux_IAA). Number of exons in LcARF genes ranges from 2 to 16, suggesting a large variation for the gene structure of *LcARFs*. Phylogenetic analysis showed that the 39 LcARFs could be divided into three main groups: class I, II, III. Totally, twenty-three *LcARFs* were found to be potential targets of small RNAs, with three conserved and one novel miRNA-ARF (miRN43-ARF9) regulatory pathways discovered in litchi. Expression patterns were used to evaluate candidate *LcARFs* involved in various developmental processes, especially in flower formation and organ abscission. The results revealed that most ARF genes likely acted as repressors in litchi fruit abscission, i.e. *ARF2D/2E, 7A/7B, 9A/9B, 16A/16B*, while a few *LcARFs*, such as *LcARF5A/B*, might positively involve in this process. These findings provide useful information and resources for further studies on the roles of ARF genes in litchi growth and development, especially in the process of fruit abscission.
Introduction

Auxin plays a central role in numerous aspects of plant developmental and physiological processes, including embryogenesis, apical dominance, vascular elongation, flowering, fruit development, and lateral root initiation (Woodward & Bartel, 2005; Fleming, 2006). Auxin response factors (ARFs) are a group of important transcription factors in the auxin signaling pathway, which can activate or repress the expression of early/primary auxin response genes by binding to the auxin response element (AuxRE) site in their promoter regions (Liscum & Reed, 2002; Guilfoyle & Hagen, 2007). A typical ARF is characterized by a highly conserved N-terminal B3-type DNA binding domain (DBD) that recognized the AuxRE motif, an activation domain (AD) or repression domain (RD), and a carboxy-terminal dimerization domain (CTD: domain III/IV), which is involved in protein-protein interactions by dimerizing with auxin/indole-3-acetic acid (Aux/IAA) family genes (Kim, Harter & Theologis, 1997; Guilfoyle & Hagen, 2007; Piya et al., 2014).

ARFs exert pivotal function in the regulation of plant growth and development through the auxin signaling pathway (Kepinski and Leyser, 2005; Li et al., 2016). Due to the significance of ARFs, genome-wide characterization of ARFs have been completed in many species such as model plants Arabidopsis (Hagen & Guilfoyle, 2002) and Solanum lycopersicum (Zouine et al., 2014), important crops such as soybean (Ha et al., 2013; Le et al., 2016) and maize (Xing et al., 2011; Wang et al., 2012), fruit trees like citrus (Citrus sinensis) (Xie et al., 2015) and apple (Malus domestica) (LUO et al., 2014), and so on. From embryogenesis to flowering, mutants in members of ARFs exhibit diverse phenotypes, which show their unique and redundant functions for plant development. For instance, in Arabidopsis thaliana, arf1 and arf2 mutations affect leaf senescence and floral organ abscission (Ellis et al., 2005) and the loss of AtARF3 causes defectives in gynoecium patterning (Nemhauser, Feldman & Zambryski, 2000; Liu et al., 2014a). AtARF5 influences embryo, root and shoot development (Krogan et al., 2012; Crawford et al., 2015). AtARF9 acts in suspensor cells to mediate hypophysis specification (Rademacher et al., 2012), and AtARF10/16/17 play vital roles in negatively regulating seed germination and post-germination activities (Liu et al., 2007).

Recently, small RNAs, especially miRNAs, have been emerging as critical regulators in almost all aspects of plant growth and development. Many members of the ARF family have been reported to be targets of miRNAs. In Arabidopsis, AtARF6 and AtARF8 are targets of miR167 (Wu, Tian & Reed, 2006), AtARF10/16/17 are targets of miR160 (Liu et al., 2007, 2010), and
ARF2/3/4 are targets of trans-acting siRNAs (tasiRNAs) generated from miR390-targeted TAS3 gene (trans-acting siRNA gene 3) (Allen et al., 2005; Axtell et al., 2006). These targeting relationships of miRNA on ARF genes are widely conserved in land plants (Xia, Xu & Meyers, 2017) and also in horticultural plants (Chen et al., 2018b). It has been reported that down-regulation of ARF6 and ARF8 by miR167 leads to floral development defects and female sterility in tomatoes (Liu et al., 2014b). Down-regulation of sly-miR160, increasing the expression of its targets SlARF10/16/17, regulates auxin-mediated ovary patterning as well as floral organ abscission and lateral organ lamina outgrowth (Damodharan, Zhao & Arazi, 2016). In Arabidopsis and tomato, the tasiRNA-mediated regulation of ARF2 involved in controlling the onset of leaf senescence and floral organ abscission (Ellis et al., 2005; Lim et al., 2010; Guan et al., 2014; Ren et al., 2017).

Litchi (Litchi chinensis sonn.), an important economic fruit trees in southern China, usually undergo serious fruit abscission before harvest, leading to a low yield. Many studies demonstrate ARFs play critical roles in regulating plant organ abscission (Ellis et al., 2005; Kuang et al., 2012; Guan et al., 2014; Xie et al., 2015; Xu et al., 2015), while which ARFs are involved or more important than the other in the fruit abscission in litchi remains elusive. Here, we identified 39 ARF genes in litchi. Gene structure, phylogeny and targeting relationship with miRNAs were characterized. The expression of LcARFs was examined in diverse tissues and in the process of fruit abscission which was induced by three different treatments. Among them, ARF2D/2E, 7A/7B, 9A/9B, 16A/16B and LcARF5A/B, were found to be associated with litchi fruit abscission. Our results offer new knowledge and resources to study the function of plant ARF genes and their roles in the fruit abscission in litchi.
Materials & Methods

Plant materials and treatments

The young fruitlet used for RNA-seq in our study were collected from 9-year-old litchi trees (*Litchi chinensis* Sonn. cv. ‘Feizixiao’) in an orchard located at South China Agricultural University (Guangzhou, China). Three treatments have been performed 25 day after anthesis. The three treatments included ethephon (ETH), girdling plus defoliation (GPD) and dipping in 20mg/L 2, 4-D for one minute after girdling plus defoliation (GPDD). Details can refer to Li et al (Li et al., 2015) and Peng et al (Peng et al., 2013). Samples of ‘Feizixiao’ (FZX) for qRT-PCR were obtained from the orchard of Guangzhou Fruit Research Institute (Guangdong, China). Tissues including fruit-bearing shoots (FBS), young leaves (YL), mature leaves (ML), female flower (FF), male flower (MF), sex undetermined flower (USF) and young fruit (YF) of 25 days after fertilization were collected from different directions of each tree. After separation, all tissues were quickly frozen in liquid nitrogen and stored at -80°C before usage.

Identification and phylogenetic analyses of LcARFs

Amino acid sequences of 25 and 23 ARFs from rice (Wang et al., 2007) and *Arabidopsis* (Okushima et al., 2005; Wang et al., 2007) were downloaded from UniProt (http://www.uniprot.org/) and 22 ARFs from tomato (Zouine et al., 2014) were downloaded from Sol Genomics Network (https://solgenomics.net/). These ARFs were used as bait to identify potential ARFs in litchi genome and obtained by Blast analysis in TBtools (Chen et al., 2018a), with the E-value 1e-10. All sequences were then further validated by conserved domain search against the CDD (http://www.ncbi.nlm.nih.gov/cdd/) and PFAM (http://pfam.xfam.org/) databases. Based on the optimized alignment of amino acid sequences of LcARFs proteins, achieved by TrimAL 1.3 (http://phylemon2.bioinfo.cipf.es/index.html) after the initial sequence alignment in ClustalX 2.1, a maximum likelihood (ML) tree was constructed in MEGA 7.0 software with a bootstrap of 1000 replicates. Intron and exon distribution patterns and genome structure were analyzed and visualized in TBtools (Chen et al., 2018a). The detail of predicted protein sequences of LcARFs were shown in Data S1 and S2.

LcARF targets of miRNAs and RNA-seq analysis

Most of the *ARF*-targeting miRNA/tasiRNAs were identified in our previous study (Ma et al., 2018). To further validate the targeting relationship, target sites were verified by psRNATarget (http://plantgrn.noble.org/psRNATarget) (Dai & Zhao, 2011) and miRBase (http://www.mirbase.org/).
RNA-seq analysis was carried on as described previously (Li et al., 2013). These RNA-seq data was normalized using TPM method (Wagner, Kin & Lynch, 2012). Based on the sequences of the identified LcARFs, a BLASTN search was conducted to find their gene counterparts in previous data (Li et al., 2013). Finally, a global gene expression profiles were visualized by heatmap via TBtools software (Chen et al., 2018a).

Quantitative RT-PCR

Total RNA of above seven tissue samples was extracted by column plant RNAout kit (TIANDZ, China) according to the manufacturer’s instructions. About 2 µg total RNA was applied to synthesized first strand cDNA using reverse transcriptase AT311-03 (TRANSGEN BIOTECH, China). PCR primers (Table S1) of LcARFs and reference genes GAPDH and EF (Zhong et al., 2011) were designed by Primer Premier 5.0. qRT-PCR was performed according to the manufacturer’s specifications of THUNDERBIRD qPCR MIX QPS-201 (TOYOBO, China) on a LightCycler 480 (Roche, Switzerland). Each expression profile was independently verified in three biological replicates. Relative expression level of each gene was calculated by the $2^{-\Delta\Delta Ct}$ method (Livak & Schmittgen, 2001). Significance analysis was conducted in SPSS vision 22.0 and visualized by SigmaPlot 12.5.
Results

Identification and phylogenetic analysis of LcARF genes

To identify all ARF members in litchi, protein sequences of ARFs in rice, *Arabidopsis* and tomato were used as queries in BLASTP to search against litchi annotated gene database. Sixty-eight potential ARF genes were identified. After redundant result elimination and further conserved domain validation, 39 LcARFs were obtained ultimately. Among them, 23 protein sequences contained B3, ARF and the Aux/IAA domains. Length of these litchi ARF proteins ranged from 260 (LcARF1B) to 1200 (LcARF4A) and the relative molecular mass of them varied from 29522.5 (LcARF1B) to 144936.9 Da (LcARF16C), with PIs in the range of 5.28 (LcARF16C) to 8.64 (LcARF19A) (Table S2). According to the subcellular localization predictor ([CELLO v.2.5](http://cello.life.nctu.edu.tw)) prediction, most LcARFs were predicted to be located in the nucleus.

A phylogenetic tree was generated using the maximum likelihood method based on alignment of litchi ARFs with their orthologs from rice, *Arabidopsis* and tomato (Fig. 1). All 109 ARFs fell into three broad groups: class I, II and III, which contained 53, 34 and 22 members, respectively. Obviously, most ARFs of the four species were clustered together in the first two classes. Litchi ARFs were named according to their positions with orthologs from the other three species in the tree. Thus, the 39 LcARFs could also be assigned to three separate clusters as well. Class I contained LcARF1/2/3/4/9/18 (1A/B/C/D, 2A/B/C/D/E/F, 3A/B, 4A/B/C, 9A/B, 18A/B); Class II included LcARF5/6/7/8/19 (5A/B, 6A/B/C/D, 7A/B, 8A/B, 19A/B); Class III included LcARF10/16/17 (10A/B, 16A/B/C/D, 17A/B).

Gene structure and conserved domains of litchi ARFs

To better understand the structure evolution of LcARF genes, their gene structure (intron/exon number and positions) and functional domains were analyzed. As shown in Fig. 2, 23 LcARFs harbored the typical ARF protein structure which composed of a highly conserved DNA-binding domain (DBD) in the N-terminal region with a plant specific B3-type subdomain, an Auxin-resp subdomain, and an AUX_IAA dimerization subdomains. The remaining 16 LcARFs contained only B3 and Auxin_resp subdomains. Gene structure analysis revealed that the exon number of class III (2-4 exons) was significantly less than the other two groups (8-17 exons for class II and 10-16 exons for class I). These results provided additional evidence confirming the phylogenic relationships among LcARFs.
Analyses of miRNA targeting LcARFs

Twenty-two out of the 39 LcARF genes were found to be the targets of miRNA (Fig. 3). All group members of class III (LcARF10A/B, 16A/B/C/D and 17A/B) were found to be targeted by Lc-miR160. LcARF6A/B/C/D and 8A/B were members of class II and all of them were collectively targeted by Lc-miR167. Two kinds of miRNA targeting patterns were observed in the class I. One group comprising LcARF2E/2F/4B/4C/3A/3B were targeted by tasiARFs. In litchi, LcTAS3 are divided into two subgroups, long TAS3 genes (LcTAS3_1 and LcTAS3_2) and short TAS3 genes (LcTAS3_3 and LcTAS3_4), which trigger to produce two or one tasiARFs when cleaved by miR390 (Ma et al., 2018). Additionally, LcARF2E/2F incorporated one target site of tasiARF, while LcARF3A/3B/4B/4C contained two, which is in accordance with our previous study (Xia, Xu & Meyers, 2017). Interestingly, in the other group, a novel miRNA-ARF pathway was discovered, in which LcARF9A/B was targeted by the Lc-miRN43.

Expression of LcARF Genes in different organs and tissues

A large body of evidence support the importance of ARF genes in plant growth and development (Ellis et al., 2005; Guilfoyle & Hagen, 2007; Lim et al., 2010; Li et al., 2016). To explore how LcARF genes function in the development of litchi, we examined their expression levels in various litchi organs/tissues by qRT-PCR. Seven organs/tissues samples, composing fruit-bearing shoots (FBS), male flower (MF), female flower (FF), sex undetermined flower (USF), mature leaves (ML), young leaves (YL) and young fruits (YF) in ‘FZX’, were collected and tested. As shown in Fig. 4A, expression of all ARFs was detected at least in several tissues. Generally, most LcARFs show low expression in YL and YF but high in USF. LcARFs from different clades showed various expression patterns. LcARFs from class I and III were detected to be higher expressed in ML while those from class II were lowly accumulated, suggesting that these LcARFs in different classes may perform different functions in mature leaves development (Fig. 4A). Additionally, as is shown in Fig. 4B, ten LcARFs (LcARF2B, 3A, 4A/B, 5A/B, 6D, 9A/B, 18B) were significantly higher expressed in FF than MF, implying their potential function in ovule and ovary derived from female flowers. Remarkably, three LcARFs (LcARF8A, LcARF10A/B) were of significantly higher expression in MF than FF, indicated that they might play roles in male flower formation. Additionally, a table for LcARFs and their potential function was concluded in Data S3 according to early study which may be useful for further functional validation.

Expression profiles of LcARF genes in response to ETH, GPD, and GPDD treatment
Auxin is a critical signal in the abscission of fruits in plants (Blanusa et al., 2005; Meir et al., 2010; Xie et al., 2013). To explore the role of LcARFs in fruitlet abscission in litchi, RNA-seq was carried on and transcription levels of LcARF genes in the abscission zone were investigated under three treatments (ETH, GPD, GPDD). Both the ETH and GPD treatments promote fruitlet abscission while GPDD delays the process (Peng et al., 2013; Li et al., 2015). As the results in Fig. 5, the transcript expression of most LcARFs were decreased after treated by ETH and GPD, but upsurge after GPDD treatment, which was corresponding to the process of promoting or inhibiting of fruitlet shedding, respectively. It seemed that there was a negative correlation between LcARFs and the fruit abscission and among these LcARFs, those from two groups (group 2 and group 3) were particularly representative. Moreover, LcARFs from group 3 were more sensitive to GPDD treatment along with stronger expression than those from group 2. Thus, we could deduce that LcARFs from group 3, including ARF2D/2E, 7A/7B, 9A/9B, 16A/16B, played major roles on the litchi fruitlet abscission. In contrast, a few LcARFs, such as group 1 including LcARF5A/5B, showed opposite expression pattern, suggesting that they might function to accelerate the process of abscission. There were as well some LcARFs with no significant expression change and seemed to be unrelated to fruitlet abscission.
Discussions

Litchi is an important tropic fruit trees and massive fruit abscission before harvest usually leads to low and even no production. Auxin is proposed to be one of the endogenous hormones playing significant roles in the regulation of fruit abscission in litchi (Yuan, 1988; Stern & Gazit, 2000). In this study, 39 LcARF genes were identified, which was more than the other model plants, such as Arabidopsis (23) (Okushima et al., 2005; Wang et al., 2007), rice (25) (Wang et al., 2007) and tomato (22) (Zouine et al., 2014), implying extensive duplication and diversification of the ARF gene family in litchi. Analysis of conserved motifs revealed that all LcARFs had a typical DBD domain required for efficient binding to AuxRE and a Auxin_respond (Fig. 2) (Hagen & Guilfoyle, 2002; Ha et al., 2013). However, only 23 of 39 LcARFs contain AUX_IAA domain, which can mediate the dimerization of ARFs or ARF and Aux/IAA protein (Guilfoyle & Hagen, 2007). Lack of the AUX_IAA domain for dimerization makes it interesting to address questions like how these ARFs function and whether they need dimerization with other proteins. In plants, ARFs can function as transcription activators (ADs) or repressors (RDs), according to the amino acid composition of Auxin_respond domain (Guilfoyle & Hagen, 2007). In Arabidopsis thaliana, ARF ADs and RDs were proposed to contain biased amino acid sequences, which ARF ADs were enriched in glutamine (Q), while RDs were enriched in serine (S), serine and proline (SP), serine glycine (SG) (Guilfoyle & Hagen, 2001; Tiwari, Hagen & Guilfoyle, 2003). Intriguingly, no ARFs in litchi were enriched in Q, but with SPL and SP/SG enrichment; then none of LcARF proteins seems to be an activator (reviewed in (Guilfoyle & Hagen, 2007)). Further experiments are needed to verify this observation.

Much evidence demonstrates that miRNAs play essential roles in post-transcriptional gene regulation in plants (Jones-Rhoades, Bartel & Bartel, 2006; Li & Zhang, 2016). It has been found that several ARF genes are regulated by a few miRNAs. In our work, 22 out of 39 LcARF genes were found to be targets of miRNAs (Fig. 3) and LcARFs from different classes were displayed different miRNA targeting pattern. Members of class III (LcARF10A/B, 16A/B/C/D and 17A/B) were found to be targeted by Lc-miR160, which might affect flower development of litchi, as down-regulation of ARF10/16/17 by miRNA160 is reported to regulate floral organ abscission in tomato (Damodharan, Zhao & Arazi, 2016). Consistent with Arabidopsis, LcARF6/8 were collectively targeted by Lc-miR167. Interestingly, even though there has been reported LcARF8B to be targeted by Lc-miR167 (Ma et al., 2018), LcARF8A was a novel target by Lc-miR167. Notably, in another group, a novel miRNA-ARF pathway was discovered in litchi, in which LcARF9A/B was targeted by Lc-miRN43. In fact, miRN43 is an innovative miRNA as well, for
is unable to find any ortholog in the database of miRase, which may provide a new idea for us to study the specific functions of litchi.

The expression profiles can help us screen for candidate \textit{LcARF} genes with potentially distinct functions. Most \textit{LcARFs} were higher accumulated in mature leaves than young leaves including \textit{LcARF2}, and its Arabidopsis homolog AtARF2 has been reported to regulate leaf senescence with high expression in mature leaves (Ellis et al., 2005). Thus we can deduce that LcARF2 is likely to involve in leaf senescence in litchi. It has been reported that Arabidopsis ARF genes regulate flower formation, especially gametophyte development, which are critical for sexual reproduction. AtARF2–AtARF4 and AtARF5 play significant roles in regulating both female and male gametophyte development in Arabidopsis (Liu et al., 2017) and ARF6 and ARF8 regulate both stamen and gynoecium maturation (Nagpal, 2005; Ru et al., 2006; Wu, Tian & Reed, 2006; Liu et al., 2014b). Thus their litchi homologs LcARF2B, 3A, 4A/B, 5A/B, 6D and 8A may be important for female and male gametophyte development in litchi, along with significantly higher accumulation in female or male flower. Moreover, \textit{LcARF4}, 5 and 9 were prominent higher expressed in female flower than male flower, implying their potential function in ovule and ovary development.

\textit{ARF} genes have been reported to be involved in plant organ abscission. Overexpression of \textit{SlARF2} in tomato results in flower organ senescence (Ren et al., 2017) and \textit{SIARF1}, 2, 7, 11 and 19 showed overlapping functions in tomato abscission (Guan et al., 2014). Similar roles of ARFs in abscission were observed in \textit{Arabidopsis} (Ellis et al., 2005). Our previous studies show that the treatment of girdling plus defoliation (GPD) in litchi could reduce the transcript level of auxin response factor (\textit{LcARF1}) mRNA, along with the increase of fruitlet abscission (Kuang et al., 2012). Here in our RNA-seq survey of ARF genes expression, we found that most of the ARF genes show opposite correlation with the fruit abscission, i.e., ARF genes were down-regulated by abscission induced treatments (ETH and GPD), but up-regulated by GPDD, in which the abscission of GPD was inhibited by the addition of 2, 4-D, suggesting that the majority of \textit{LcARF} genes are negatively involved in litchi fruit abscission, especially \textit{LcARFs} from group 3 (\textit{ARF2D/2E}, 7A/7B, 9A/9B, 16A/16B), with more prominent expression after GPDD treatment. By contrast, a few \textit{LcARFs}, such \textit{LcARF5A/5B}, show positive correlation with fruit abscission, indicating that they might serve as contributing factors to fruit shedding.

\textbf{Conclusions}
In this study, a total of 39 ARF genes were identified from the litchi genome. Comprehensive analyses, including phylogenetic relationship, exon-intron structure, conserved domain, and potential targets for small RNAs, revealed that the ARF gene family was expanded in litchi with species-specific features. A novel miRNA-ARF (miRN43-ARF9) regulatory pathway was discovered, which is likely specific in litchi. Expression profiles in various organs and under different abscission-related treatments (ETH, GPD and GPDD) uncovered the expression diversity of these ARF genes in litchi. Some ARF genes, including ARF2D/2E, 7A/7B, 9A/9B, 16A/16B and 5A/5B, likely play predominant roles in the process of litchi fruit abscission. These findings provide new knowledge and resources for further functional characterization of ARF genes in litchi.
References:

Addicott FT, Lynch RS. 1955. Physiology of abscission. Annual Review of Plant Physiology and Plant Molecular Biology 6:211–238. DOI: 10.1146/annurev.pp.06.060155.001235.

Allen E, Xie Z, Gustafson AM, Carrington JC. 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221. DOI: 10.1016/j.cell.2005.04.004.

Axtell MJ, Jan C, Rajagopalan R, Bartel DP. 2006. A Two-Hit Trigger for siRNA Biogenesis in Plants. Cell 127:565–577. DOI: 10.1016/j.cell.2006.09.032.

Blanusa T, Else MA, Atkinson CJ, Davies WJ. 2005. The regulation of sweet cherry fruit abscission by polar auxin transport. Plant Growth Regulation 45:189–198. DOI: 10.1007/s10725-005-3568-9.

Chen C, Xia R, Chen H, He Y. 2018a. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv:289660. DOI: 10.1101/289660.

Chen C, Zeng Z, Liu Z, Xia R. 2018b. Small RNAs, emerging regulators critical for the development of horticultural traits. Horticulture Research 5:6–8. DOI: 10.1038/s41438-018-0072-8.

Crawford BCW, Sewell J, Golembeski G, Roshan C, Long JA, Yanofsky MF. 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347:655–660.

Dai X, Zhao PX. 2011. PsRNATarget: A plant small RNA target analysis server. Nucleic Acids Research 39:155–159. DOI: 10.1093/nar/gkr319.

Damodharan S, Zhao D, Arazi T. 2016. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant Journal 86:458–471. DOI: 10.1111/tpj.13127.

Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574. DOI: 10.1242/dev.02012.

Fleming AJ. 2006. Plant signalling: the inexorable rise of auxin. Trends in Cell Biology 16:397–402. DOI: 10.1016/j.tcb.2006.06.005.

Guan X, Xu T, Gao S, Qi M, Wang Y, Liu X, Li T. 2014. Temporal and Spatial Distribution of Auxin Response Factor Genes During Tomato Flower Abscission. Journal of Plant Growth Regulation 33:317–327. DOI: 10.1007/s00344-013-9377-x.

Guilfoyle TJ, Hagen G. 2001. Auxin response factors. Journal of Plant Growth Regulation 20:281–291. DOI: 10.1007/s003440010026.

Guilfoyle TJ, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology 10:453–460. DOI: 10.1016/j.pbi.2007.08.014.
Guilfoyle TJ, Key JL. 1986. Auxin-regulated gene expression in higher plants. *Critical Reviews in Plant Sciences* 4:247–276. DOI: 10.1080/07352688609382226.

Ha C Van, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Dong N Van, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP. 2013. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. *DNA research : an international journal for rapid publication of reports on genes and genomes* 20:511–24. DOI: 10.1093/dnares/dst027.

Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: Genes, promoters and regulatory factors. *Plant Molecular Biology* 49:373–385. DOI: 10.1023/A:1015207114117.

Jones-Rhoades MW, Bartel DP, Bartel B. 2006. MicroRNAs AND THEIR REGULATORY ROLES IN PLANTS. *Annual Review of Plant Biology* 57:19–53. DOI: 10.1146/annurev.arplant.57.032905.105218.

Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. *Nature* 435:446–451. DOI: 10.1038/nature03542.

Kim J, Harter K, Theologis A. 1997. Protein-protein interactions among the Aux/IAA proteins. *Proceedings of the National Academy of Sciences of the United States of America* 94:11786–91. DOI: 10.1073/pnas.94.22.11786.

Krogan NT, Chkurshumova W, Marcos D, Caragea AE, Berleth T. 2012. Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning. *New Phytologist* 194:391–401. DOI: 10.1111/j.1469-8137.2012.04064.x.

Kuang JF, Wu JY, Zhong HY, Li CQ, Chen JY, Lu WJ, Li JG. 2012. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi. *International Journal of Molecular Sciences* 13:16084–16103. DOI: 10.3390/ijms131216084.

Le B, Nawaz MA, Rehman HM, Le T, Yang SH, Golokhvast KS, Son E, Chung G. 2016. Genome-wide characterization and expression pattern of auxin response factor (ARF) gene family in soybean and common bean. *Genes and Genomics* 38:1165–1178. DOI: 10.1007/s13258-016-0462-y.

Li C, Wang Y, Huang X, Li J, Wang H, Li J. 2013. De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. *BMC Genomics* 14:1. DOI: 10.1186/1471-2164-14-552.

Li C, Wang Y, Ying P, Ma W, Li J. 2015. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi. *Frontiers in Plant Science* 6:1–16. DOI: 10.3389/fpls.2015.00502.
Li S-B, Xie Z-Z, Hu C-G, Zhang J-Z. 2016. A Review of Auxin Response Factors (ARFs) in Plants. *Frontiers in plant science* 7:47. DOI: 10.3389/fpls.2016.00047.

Li C, Zhang B. 2016. MicroRNAs in Control of Plant Development. *Journal of Cellular Physiology* 231:303–313. DOI: 10.1002/jcp.25125.

Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG. 2010. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. *Journal of Experimental Botany* 61:1419–1430. DOI: 10.1093/jxb/erq010.

Liscum E, Reed JW. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. *Plant Molecular Biology* 49:387–400. DOI: 10.1023/A:1015255030047.

Liu X, Dinh TT, Li D, Shi B, Li Y, Cao X, Guo L, Pan Y, Jiao Y, Chen X. 2014a. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. *Plant Journal* 80:629–641. DOI: 10.1111/tpj.12658.

Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D. 2010. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. *Plant Journal* 62:416–428. DOI: 10.1111/j.1365-313X.2010.04164.x.

Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V, Yu X. 2017. ARF2–ARF4 and ARF5 are Essential for Female and Male Gametophyte Development in Arabidopsis. *Plant and Cell Physiology* 59:179–189. DOI: 10.1093/pcp/pcx174.

Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. *Plant Journal* 52:133–146. DOI: 10.1111/j.1365-313X.2007.03218.x.

Liu N, Wu S, Houten J Van, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, Van Der Knaap E. 2014b. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. *Journal of Experimental Botany* 65:2507–2520. DOI: 10.1093/jxb/eru141.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2^\(-\Delta\Delta CT\) method. *Methods* 25:402–408. DOI: 10.1006/meth.2001.1262.

Louie DS, Addicott FT. 1970. Applied auxin gradients and abscission in explants. *Plant physiology* 45:654–657.

LUO X-C, SUN M-H, XU R-R, SHU H-R, WANG J-W, ZHANG S-Z. 2014. Genomewide identification and expression analysis of the ARF gene family in apple. *Journal of Genetics* 93:785–797. DOI: 10.1007/s12041-014-0462-0.
Ma W, Chen C, Liu Y, Zeng M, Meyers BC, Li J, Xia R. 2018. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. *New Phytologist* 217:1535–1550. DOI: 10.1111/nph.14934.

Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KS V., Burd S, Ophir R, Kochanek B, Reid MS, Jiang C-Z, Lers A. 2010. Microarray Analysis of the Abscission-Related Transcriptome in the Tomato Flower Abscission Zone in Response to Auxin Depletion. *Plant Physiology* 154:1929–1956. DOI: 10.1104/pp.110.160697.

Nagpal P. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. *Development* 132:4107–4118. DOI: 10.1242/dev.01955.

Nemhauser JL, Feldman LJ, Zambryski PC. 2000. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. *Development* 127:3877–3888.

Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A. 2005. Functional Genomic Analysis of the AUXIN RESPONSE FACTOR Gene Family Members in Arabidopsis thaliana. *The Plant Cell* 17:444–463. DOI: 10.1105/tpc.104.028316.2.

Pattison RJ, Csukasi F, Catalá C. 2014. Mechanisms regulating auxin action during fruit development. *Physiologia Plantarum* 151:62–72. DOI: 10.1111/ppl.12142.

Peng G, Wu J, Lu W, Li J. 2013. A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission. *Scientia Horticulturae* 150:244–250. DOI: 10.1016/j.scienta.2012.10.029.

Peng M, Ying P, Liu X, Li C, Xia R, Li J, Zhao M. 2017. Genome-Wide Identification of Histone Modifiers and Their Expression Patterns during Fruit Abscission in Litchi. *Frontiers in Plant Science* 8:1–16. DOI: 10.3389/fpls.2017.00639.

Piya S, Shrestha SK, Binder B, Stewart CN, Hewezi T. 2014. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. *Frontiers in Plant Science* 5:1–9. DOI: 10.3389/fpls.2014.00744.

Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, Kientz M, FreireRios A, Borst JW, Lukowitz W, Jürgens G, Weijers D. 2012. Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo. *Developmental Cell* 22:211–222. DOI: 10.1016/j.devcel.2011.10.026.

Ren Z, Liu R, Gu W, Dong X. 2017. The Solanum lycopersicum auxin response factor SIARF2 participates in regulating lateral root formation and flower organ senescence. *Plant Science* 256:103–111. DOI: 10.1016/j.plantsci.2016.12.008.
Ru P, Xu L, Ma H, Huang H. 2006. Plant fertility defects induced by the enhanced expression of microRNA167. *Cell Research* 16:457–465. DOI: 10.1038/sj.cr.7310057.

Stern RA, Gazit S. 2000. Application of the polyamine putrescine increased yield, of “Mauritius” litchi (Litchi chinensis Sonn.). *Journal of Horticultural Science and Biotechnology* 75:612–614. DOI: 10.1080/14620316.2000.11511295.

Sundberg E, Østergaard L. 2009. Distinct and dynamic auxin activities during reproductive development. *Cold Spring Harbor perspectives in biology* 1:1–15. DOI: 10.1101/cshperspect.a001628.

Tiwari SB, Hagen G, Guilfoyle T. 2003. The Roles of Auxin Response Factor Domains in Auxin-Responsive Transcription. *Plant Cell* 15:533–543. DOI: 10.1105/tpc.008417.All.

Wagner GP, Kin K, Lynch VJ. 2012. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. *Theory in Biosciences* 131:281–285. DOI: 10.1007/s12064-012-0162-3.

Wang Y, Deng D, Shi Y, Miao N, Bian Y, Yin Z. 2012. Diversification, phylogeny and evolution of auxin response factor (ARF) family: Insights gained from analyzing maize ARF genes. *Molecular Biology Reports* 39:2401–2415. DOI: 10.1007/s11033-011-0991-z.

Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y. 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). *Gene* 394:13–24. DOI: S0378-1119(07)00032-7 [pii] r10.1016/j.gene.2007.01.006.

Woodward AW, Bartel B. 2005. Auxin: Regulation, action, and interaction. *Annals of Botany* 95:707–735. DOI: 10.1093/aob/mci083.

Wu M-F, Tian Q, Reed JW. 2006. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. *Development* 133:4211–4218. DOI: 10.1242/dev.02602.

Xia R, Xu J, Meyers BC. 2017. The Emergence, Evolution, and Diversification of the miR390-TAS3-ARF Pathway in Land Plants. *The Plant Cell* 29:tpc.00185.2017. DOI: 10.1105/tpc.17.00185.

Xie RJ, Deng L, Jing L, He SL, Ma YT, Yi SL, Zheng YQ, Zheng L. 2013. Recent advances in molecular events of fruit abscission. 57:201–209. DOI: 10.1007//s10535-012-0282-0.

Xie R, Pang S, Ma Y, Deng L, He S, Yi S, Lv Q, Zheng Y. 2015. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A. *Molecular Genetics and Genomics* 290:2089–2105. DOI: 10.1007/s00438-015-1063-1.

Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z. 2011. Genome-wide
identification and expression profiling of auxin response factor (ARF) gene family in maize.

Xu T, Wang Y, Liu X, Lv S, Feng C, Qi M, Li T. 2015. Small RNA and degradome sequencing reveals microRNAs and their targets involved in tomato pedicel abscission. *Planta* 242:963–984. DOI: 10.1007/s00425-015-2318-0.

Yuan R. 1988. Litchi Fruit Abscission: its Patterns, Effect of Shading and Relation to Endogenous Abscisic Acid 1. 36:281–292.

Zhong H-Y, Chen J-W, Li C-Q, Chen L, Wu J-Y, Chen J-Y, Lu W-J, Li J-G. 2011. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. *Plant cell reports* 30:641–53. DOI: 10.1007/s00299-010-0992-8.

Zouine M, Fu Y, Chateigner-Boutin AL, Mila I, Frasse P, Wang H, Audran C, Roustan JP, Bouzayen M. 2014. Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. *PLoS ONE* 9:1–12. DOI: 10.1371/journal.pone.0084203.
Figure 1

Phylogenetic analysis of ARFs from litchi, rice, Arabidopsis and tomato.

The phylogenetic tree was generated using the Maximum Likelihood method with the JTT matrix-based model (Kumar, Stecher & Tamura, 2016) and the bootstrap test was carried out with 1000 bootstrap replicates. Numbers on the nodes indicate the credibility values of each class. Three subgroups were shown as Class I, II, and III.
Figure 2

Phylogenetic relationship, exon-intron structure, conserved domains analyses of LcARFs.

(A) Phylogenetic relationship among the litchi ARF proteins. The unrooted tree was generated using the maximum likelihood method by JTT matrix-based model. The reliability was assessed using 1000 bootstrap replicates. Three clusters are labeled as Class I, Class II and Class III. (B) Exon- intron structure and conserved domains of LcARFs. Information of exon, intron, and functional domain was obtained from model gene annotation and results of NCBI CDD search and visualized by TBtools. B3: B3 DNA-binding domain; Auxin-resp: ARF domain; AUX_IAA: C-terminal dimerization domain. Lengths of exons and introns and domains of each LcARF protein were exhibited proportionally.
Manuscript to be reviewed
Figure 3

LcARFs targeted by some LcmiRNAs.

miR160 targets *LcARF10/16/17*, miR167 targets *LcARF6/8* and miRN43 targets *LcARF9*. Additionally, the *LcTAS3* was targeted by miR390 and then triggered the production of tasiARF which target *LcARF2E/2F/4B/4C/3A/3B*.
Figure 4

Expression Profiles of LcARF Genes in various tissues of ‘FZX’ by qRT-PCR.

A) Expression of all LcARFs in different tissues. The heatmap was generated based on the relative expression values of 39 LcARFs obtained by qRT-PCR in seven different tissues and organs. Red and blue were represented relatively high and lower expression (log₂ ratio), respectively. Every sample has three biological replicates. YF: young fruit (25 days after fertilization), FF: female flower, MF: male flower, USF: undetermined sex flowers, ML: mature leaves, YL: young leaves, FBS: fruit-bearing shoots. **B) Relative abundance of LcARFs significantly expressed in FF.** Data from three independent biological replicates are shown with standard deviation (SD). Asterisks on the top of bars indicate significant differences as determined by Student’s t-test (*P, 0.05).
Figure 5

Expression Profiles of LcARF Genes in Response to ETH, GPD, and GPDD treatments.

Fruit-bearing shoots of ‘FZX’ litchi were obtained at 25 days after anthesis and then carried on ETH, GPD, and GPDD treatment from 0, 1, 2 and 3 days, respectively. CK: control; ETH: treated by ethylene; GPD: girdling plus defoliation; GPDD: dipping in 2, 4-D after GPD treatment. The heatmap was created based on the TPM values of LcARFs from the transcriptome data. In the heatmap, red and blue were represented higher and lower expression (log₂ ratio), respectively. Heatmap and hierarchical clustering were performed by average linage (default) method.
