Clinical and laboratory associations with methotrexate metabolism gene polymorphisms in rheumatoid arthritis

Leon G D’Cruz¹,², Kevin G. McEleny¹, Kyle B.C. Tan¹, Priyank Shukla¹, Philip V. Gardiner³, Patricia Connolly⁴, Caroline Conway⁵, Diego Cobice⁵, David S. Gibson¹*

1. Northern Ireland Centre for Stratified Medicine (NCSM), Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Londonderry, UK.
2. Respiratory Medicine Department and Clinical Trials Unit, Queen Alexandra Hospital, Portsmouth, UK.
3. Rheumatology Department, Western Health and Social Care Trust, Londonderry, UK.
4. Cardiac Assessment Unit, Western Health and Social Care Trust, Omagh, UK.
5. School of Biomedical Sciences, Ulster University, Coleraine, UK.

*Correspondence: d.gibson@ulster.ac.uk

Abstract: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease which causes loss of joint function and significantly reduces quality of life. Plasma metabolite concentrations of disease-modifying anti-rheumatic drugs (DMARDs) can influence treatment efficacy and toxicity. This study explored the relationship between DMARD metabolising gene variants and plasma metabolite levels in RA patients.

DMARD metabolite concentrations were determined by tandem mass-spectrometry in plasma samples from 100 RA patients with actively flaring disease, collected at two intervals. Taqman-probes were used to discriminate single nucleotide polymorphism (SNP) genotypes in cohort genomic DNA: rs246240 (ABCC1), rs1476413 (MTHFR), rs2231142 (ABCG2), rs3740065 (ABCC2), rs4149081 (SLCO1B1), rs4846051 (MTHFR), rs10280623 (ABCB1), rs16853826 (ATIC), rs17421511 (MTHFR) and rs717620 (ABCC2).

Mean plasma concentrations of methotrexate (MTX) and MTX-7-OH metabolites were higher (p<0.05, C.I. 95%) at baseline in rs4149081 GA genotype patients. Patients with rs1476413 SNP TT or CT alleles in the have significantly higher (p<0.001, 95% C.I) plasma poly-glutamate metabolites at both study time points and correspondingly elevated disease activity scores. Patients with the rs17421511 SNP AA allele reported significantly lower pain scores (p<0.05, 95% C.I.) at both study intervals.

Genotyping strategies could help prioritise treatments to RA patients most likely to gain clinical benefit, whilst minimizing toxicity.

Keywords: Rheumatoid Arthritis; SNP; DMARD; methotrexate; pharmacogenomics

1. Introduction

Rheumatoid arthritis (RA) is the most common chronic autoimmune inflammatory arthritis, affecting approximately 0.3-1% of the world’s population [1, 2]. The disease primarily affects the articular joints, causing swelling, stiffness, joint destruction [3], loss-of-function in joints [4], disability and significantly lower quality of life. To prevent irreversible joint damage resulting in substantial disability, it is important to introduce disease-modifying anti-rheumatic drugs (DMARDs) early after onset and failure of non-steroidal anti-inflammatory treatment.

Conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs) such as methotrexate (MTX), hydroxychloroquine (HCQ), cyclosporin, sulfasalazine (SSZ) and leflunomide
are commonly used mainstays of the disease however it is widely known that a significant proportion of patients with RA often show poor or inadequate therapeutic response to csDMARDs [5]. The anti-folate MTX is the cheapest drug in treatment of RA and is often the first-line treatment [6], however only 55% of patients remain on this drug for more than 2 years due to a build-up of non-response or the accumulation of various adverse side effects [6, 7]. MTX is subject to significant metabolic activity in the body, the polyglutamated derivatives of MTX are selectively retained in cells, therefore lengthening the activity of the drug which complicates treatment management, since patients would continue taking their daily drug dosage oblivious to the fact that their circulating drug levels are still high, potentially contributing to undesirable cytotoxic effects [8, 9]. MTX is converted in hepatic parenchymal cells resulting in the 2 through 4-glutamate residues derivatives or the drug is catabolised to the 7-hydroxy-methotrexate (MTX-7-OH) form [10]. More than 10% of a dose of methotrexate is oxidised to MTX-7-OH, irrespective of the route of administration [11]. The MTX-7-OH metabolite is extensively (91 to 93%) bound to plasma proteins, in contrast to the parent drug (only 35 to 50% bound) and contributes to inactivity of the drug or poor response to treatment [11].

When non-response has been confirmed, NICE clinical guidelines recommend switching to the more costly biological disease-modifying anti-rheumatic drugs (bDMARDs) [5, 12, 13]. Various studies indicate that treat-to-target strategies which aim to reduce disease activity shortly after diagnosis result in better long term outcomes and can minimise permanent joint damage, thus there is a genuine need for earlier identification of patients who do not respond well to csDMARDs treatments [6].

It is estimated that 15-30% of variation in drug responses are attributable to genetic or single-nucleotide-polymorphisms or SNPs [14]. Not all SNPs are functional, some SNPs are in non-coding areas (introns) and there are a variety of ways that a SNP can affect or inhibit downstream transcription factor, gene or protein function [15]. The promise of pharmacogenomics is that identification of SNPs and associated risk-alleles could identify patients who may be susceptible to accumulating cytotoxic levels of a drug during therapy (as in the polyglutamate derivatives of MTX) or when certain metabolite levels accumulate rendering a drug as inactive (as in MTX-7-OH).

In this study, we sought to determine the metabolite levels in RA patients taking DMARDs. We then carried out genotyping of ten SNPs known to influence the metabolic pathways of DMARDs in arthritis. Our aim was to determine if genetic variations or polymorphisms associate with metabolite levels. This could help design studies to improve clinical management, which risk stratify patients at greater predisposition of forming ineffective or potentially harmful metabolite levels, by adequately planning ahead the appropriate drug and dosage.

2. Materials and Methods

2.1 Participant recruitment

The research team at Ulster University collaborated with rheumatologists from the Western Health and Social Care Trust (WHSC) to design, conduct and recruit patients to the study. Informed consent to participate was obtained from all RA patients enrolled to the study. One hundred patients identified using following inclusion/exclusion criteria were recruited into the prospective observational cohort study: Remote Arthritis Disease Activity MonitoR (RADAR); ClinicalTrials.gov Identifier: NCT02809547. Inclusion criteria: aged between 18-90 years, diagnosed with RA (according to American College of Rheumatology criteria [5, 16]), diagnosed with RA for a minimum of 1 year and maximum 10 year duration, active disease flares on a regular basis, and receiving a disease modifying anti-rheumatic drug (DMARD). Exclusion criteria: any other inflammatory conditions, any infections or trauma during study period, and have restricted hand function (determined by clinical team). Office for Research Ethics Committees Northern Ireland (ORECNI) (16/NI/0039), Ulster University Research Ethics Committee (UREC) (REC/16/0019) and WHSC (WT/14/27) approvals were obtained for the study. Informed consent was obtained from all RA patients enrolled to the study.
2.2 Whole blood and DBS sample collection

Venepuncture whole blood samples as part of the normal routine care-pathway were forwarded to the hospital laboratories for multiple tests including CRP, ESR, Bilirubin, Liver enzymes and full blood count. An additional 5 ml EDTA tube of blood was collected from each of the 100 participants for DNA genotype and drug metabolite analyses within the RADAR study. Samples were collected at both study baseline and at a 6 week follow up appointment at an outpatient rheumatology clinic for all participants. Additionally a sub-cohort of 30 of the above participants were supplied with a kit containing sufficient dried blood spot (DBS) cards [17], finger lancets and pre-paid and addressed postal envelopes with desiccant and biohazard sealable pouch to send a weekly samples (approximately 3-5 droplets of blood ~ 20 µL each) from home to the NICSM laboratory for drug metabolite analysis. Finger lancet blood droplets were deposited onto dried blood spot (DBS) Protein Saver 903TM cards (Whatman, GE Healthcare Life Sciences, Buckinghamshire, UK), pre-treated with a protein stabiliser coating.

2.3 DNA isolation from peripheral blood

Total DNA was isolated from peripheral blood samples using TRIzol reagent (TRIzol LS Reagent, Thermo Fisher Scientific cat. No 10296-010) according to manufacturer’s directions. Total DNA concentration was estimated by spectrophotometry (NanoVue Plus—GE Health Care, Buckinghamshire, UK).

2.4 Mass-spectrophotometric analysis

Determination of methotrexate (MTX) metabolites was performed using a liquid extraction surface analysis (LESA) coupled with nanoESI-triple quadruple mass spectrometer (QQQ) using Triversa nanomate (Advion, NY, USA) and API 4000 QQQ Mass Spectrometer (AB Sciex, Cheshire, UK). Control MTX metabolites and internal standards were from Schircks Laboratories (Jona, Switzerland).

Quantitation for MTX and MTX metabolites was performed by the matrix-matched standards approach using an intensity ratio (ISTD/MTXs) calibration (10-2000nM). Signal for each metabolite was the average of n=2 (duplicate injection). 5nM was selected as LLOD (S/N ~3) for MTX, 7-OH MTX and MTX-PG2 and 8nM was selected for MTX-PG3 to PG5. 10nM was selected as LLOQ for MTX and all metabolites (S/N ~10). Intra and inter-day precision was assessed at both 50 and 500 nM and coefficient of variation (CV) for MTX metabolites ranged from 2.0-7.2%. Linear regression coefficient (R2) of the back-calculated concentration against the nominal concentration for MTX and its metabolites was above 0.995.

Separation of targeted analytes was carried out by reverse phase chromatography using a C18 column in gradient mode. Quantitation of all analytes were performed in positive ion mode multiple reaction monitoring (MRM) using matrix-matched standards and stable isotope ratios. All spectroscopic methods were validated according to ICH Guidance for selectivity/specificity, limit of detection/quantitation (LLOD/LLOQ), linearity and precision [18].
2.5 Endpoint-genotyping using Taqman assay

Endpoint genotyping analysis was carried out using the LightCycler 480 real-time PCR system (ROCHE). The assay is based on the competition during annealing between probes detecting the wild type and the mutant allele. The 5′-exonuclease activity of DNA polymerase cleaves the doubly labelled Taqman probe hybridised to the SNP-containing sequence, once cleaved, the 5′-fluorophore is separated from a 3′-quencher. Two allele-specific probes carrying different fluorophores (VIC®, emission: 554nm and FAM®, emission: 518nm) permits SNP determination in a single well without any post-PCR processing. Genotype is determined from the ratio of intensities of the two fluorescent probes at the end of amplification (endpoint instead of the entire cycle in conventional PCR).

2.6 Taqman probes used for SNP genotyping

The concentration and integrity of the genomic DNA were assessed by microvolume spectrophotometer (NanoDrop 2000; Thermo Fisher Scientific). DNA samples were genotyped by the following TaqMan SNP genotyping assays [MTHFR -rs1476413, Assay Identification (ID) C_8861304_10; RS1- rs2231142, Assay Identification (ID) C_354526997_10; ABCC2 - rs3740065, C_22271640_10; SLCO1B1-rs4149081, Assay Identification (ID) C_1901759_20; MTHFR- rs4846051, Assay Identification (ID) C_25763411_10; ABCB1- rs10280623, Assay Identification (ID) C_30537012_10; ATIC- rs16853826, C_33295728_10; MTHFR- rs17421511, Assay Identification (ID) C_32800189_20; ABC2- rs717620, C_2814642_10; ABCC1- rs246240, Assay Identification (ID) C_1003698_10; Life Technologies Ltd).

2.7 Validation of SNPs by pyrosequencing

Validation of SNP genotyping results from the Taqman assays was performed on a subset of samples using pyrosequencing. Due to the high number of SNPs to cover, a method using a universal biotinylated primer was employed [19]. Briefly, this method involves the use of standard target specific primer pairs with a universal M13 sequence at the 5′ end of one of the primers. A third, biotinylated M13-targeting primer is included in the PCR amplification reaction, leading to incorporation of biotin into the PCR product without the need for individual biotin labelling of each individual primer pair and thus lowering the cost of pyrosequencing considerably. A list of primers used for pyrosequencing are shown in Supplementary Table 3.

PyroMark Assay Design Software 2.0 (Qiagen) was used for primer design in the SNP calling assay design format. PCR amplification was carried out using the Pyromark PCR kit (Qiagen) in 25ul total volumes with 10-20ng DNA and final concentrations of 0.2mM for each primer. Standard PCR cycling conditions were used as per manufacturer’s instructions and were consistent for all samples and targets. PCR products were checked by agarose gel electrophoresis and those with a positive single band of the expected size were taken forward into pyrosequencing on the Pyromark Q48 (Qiagen) using standard manufacturer protocols and the instrument run setting for SNP calling.

2.8 Statistics and sample size calculations

Statistical analysis was carried out with SPSS ver.25 (IBM Corp), SciPy module (ver 1.3) for Python (version 3.7.2) and R (version 3.60) with P<0.05 considered as statistically significant, all within 95% confidence intervals. Descriptive statistics were used to characterise the variability in mean MTX, MTX-7-OH and MTX2PG–5PG and MTXtotal concentrations between different genotype groups of patients. Normality of data was determined using the Shapiro-Wilks test in SPSS (ver.25) prior to employing the Kruskal-Wallis non-parametric (distribution free) one-way ANOVA, with Dunn-Bonferroni post hoc test to assess differences between genotype group means using GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San Diego, California USA, www.graphpad.com).

3. Results
Table 1. RADAR Study Cohort Demographics. Clinical and laboratory feature summary across n=100 participants. yr: years; Anti-CCP: anti-cyclic citrullinated peptide; ESR: erythrocyte sedimentation rate; DAS28: disease activity score across 28 joints; RBC, red blood cell (count); Hb: haemoglobin; WBC: white blood cells; ALT: alanine aminotransferase; AST: aspartate aminotransferase; ALP: alkaline phosphatase; SD: Standard deviation.

Feature	Mean	SD
Gender, male/female	32/68	-
Age, yr	59.5	12.6
Disease duration, yr	6.0	3.9
C-reactive protein, mg/L	7.9	11
Rheumatoid factor, n positive	63	-
Anti-CCP, n positive	53	-
ESR (mm/h)	15	15
DAS-28 ESR	3.6	1.5
RBC (cells/mL)	4.5	1.2
Hb (g/100mL)	134	13
WBC (cells/mL)	6.8	2.3
Neutrophils (cells/mL)	4.4	1.9
Lymphocytes (cells/mL)	1.7	1.4
Platelets (cells/mL)	254	68
ALT (u/L)	23	11
AST (u/L)	24	9.4
ALP (u/L)	80	22
Bilirubin mg/L	8.2	5.6

3.1 Study population

A total of 100 participants, n=68 female and n=32 male, with active rheumatoid arthritis were enrolled to this study (Table 1). The mean age of study participants was 59.5 years (standard deviation: ± 12.6) with a mean disease duration of 6 years (± 3.9) and mean baseline disease activity score (DAS28ESR) of 3.6 (± 1.5).

In a subgroup of n=66 participants were treated with weekly methotrexate at baseline (median 20 mg dose, 7.5-25 mg range), n=26 received hydroxychloroquine (median 200 mg daily dose, 200-400 mg range) and n=11 sulfasalazine co-medications (median 2000 mg daily dose, 1000-2000 mg range). In another subgroup of n=27 participants being treated with daily sulfasalazine at baseline (median 2000 mg daily dose, 1000-2000 mg range), n=11 took methotrexate (median 20 mg weekly dose, 15-25 mg range), n=5 took 200 mg daily hydroxychloroquine and n=2 took 200 mg daily leflunomide.

3.2 SNPs analysed in this study

Ten SNPs were analysed in this study, previous studies have linked these SNPs to various clinical consequences observed in RA patients being treated with DMARDs, documented in the PharmGKB database [20, 21]. SNP genotypes were determined by endpoint PCR assay and allele specific probes (Figure 1). The SNP’s characteristics and frequencies in the study cohort are summarised in Table 2.
Figure 1. Endpoint polymorphism genotype assay. Genotype were determined for the listed polymorphisms in the RADAR study cohort (n=100) from the ratio of fluorescent intensities (nm) of the two-allele specific Taqman probes (VIC and FAM) at the end of PCR amplification. Clusters in upper and lower quadrants represent groups of individuals with a homozygous genotype for either allele; the middle quadrant represents individuals with heterozygous genotype. (A) rs246240, (B) rs717620, (C) rs1476413, (D) rs17421511, (E) rs2231142, (F) rs3740065, (G) rs4149081, (H) rs4846051, (I) rs10280623, (J) rs16853826. Genotypes were also confirmed by pyrosequencing in selected individuals. Genotype frequency is summarized in Table 1.

Table 2. Characteristics of the single nucleotide polymorphisms analysed in the RADAR study cohort. Ref: reference; Alt: alternative; dbGAP: database of Genotypes and Phenotypes; Allele frequency for n=100 participants, -/- or +/-: homozygote; +/-: heterozygote.

3.3 Methotrexate and sulfasalazine metabolite SNP associations
The data strongly suggest plasma concentrations of methotrexate and sulfasalazine metabolites are associated with the allelic genotype for 2 particular polymorphisms, rs4149081 and rs1476413 (see Figure 2). Table 3 indicates that within the n=66 methotrexate treated subgroup, n=17 participants with the minor homozygote genotype AA in rs4149081 have a significantly lower mean plasma MTX-7-OH concentration compared to the GA genotype group (p=0.002) at baseline. Albeit a similar trend is observed at the 6 week followup, this was not statistically significant. The GA genotype group mean concentrations of MTX and MTX-7-OH are significantly higher than those observed in the GG genotype group (p=0.01 and p=0.038, respectively; Figure 2A and B). Baseline mean blood bilirubin concentration was the only feature observed at significantly higher levels in the rs4149081 AA genotype, relative to the GG genotype group (p=0.020; Figure 2C).
A total of n=8 participants with the rs1476413 homozygous major allele genotype CC have significantly lower (p = 0.012) group mean plasma MTX-7-OH concentration, compared to the CT genotype group (Table 3) at the 6-week follow up sessions. No significant difference was observed at baseline. The mean plasma concentration of tetraglutamate MTX metabolites are also significantly lower in the rs1476413 CC genotype group at both baseline (p=0.02) and 6-week follow up appointments (p=0.008;Figure 2F and G and Table 3).

A total of n=6 participants with the minor allele genotype AA in the SNP rs17421511 (Supplementary Figure 1A and B) show significantly higher mean plasma concentration (p=0.013) of sulfapyridine at the 6 week follow-up appointment period only, relative to GG and GA genotype groups.

Figure 2. rs4149081 and rs1476413 genotype associations. Statistically significant associations between two polymorphisms, plasma drug metabolite concentration, other laboratory and clinical outcome measures are shown for individual genotypes in methotrexate treated participants (n=66). Each symbol represents an individual participant of the genotype indicated on the x axes. Data grouped by rs4149081 genotypes: (A) baseline plasma concentration of unmetabolised methotrexate, (B) baseline plasma concentration of 7-hydroxy-methotrexate, (C) baseline bilirubin blood concentration, (D) weekly plasma concentrations (log scale) of listed methotrexate metabolites (PGs: polyglutamate subtypes) of a rs4149081 GA genotype participant. Data grouped by rs1476413 genotypes: (E) 6 week follow up plasma concentration of 7-hydroxy-methotrexate, (F) baseline and (G) 6 week follow up plasma concentrations of long-chain methotrexate 4-glutamate, (H) baseline and (I) 6 week follow up disease activity (DAS28ESR) scores. Statistically significant differences between genotype group means are indicated by horizontal bars and an asterisk used to summarise p values adjusted by Bonferroni’s multiple comparison test: (*) p<0.05; (**) p<0.005 (descriptive statistics data shown in Table 3). Red horizontal bar represents genotype group mean; error bars represent standard deviation. MTX: methotrexate; BL: baseline; 6w: 6 week follow up.
Table 3. Methotrexate Treated Cohort SNP associations. Features including plasma drug metabolite, blood cell counts and clinical outcome measures which had statistically significant associations for the four polymorphisms rs149081, rs1476413, rs2231142 and rs17421511 in n=66 methotrexate treated participants. Mean data for each genotype group with number of individuals per group (n=) indicated. Statistically significant differences between genotype group means were initially assessed by ANOVA and then an adjusted by Bonferroni’s multiple comparison test performed for specified genotype group mean comparisons; a asterix used to summarise p values: (*) p<0.05; (**) p<0.005. Features with significant differences between genotype means are graphed in Figures 2 and 3. Unlisted features had no statistically significant association with any SNP (see Supplementary Table 1). BL: baseline; 6wk: six week follow up; SD: standard deviation; ns: not significant.

3.4 Clinical and laboratory feature SNP associations

While the average red blood cell counts (RBC) remain within reference ranges in both men and women in this study (Table 1), there is a modest but statistically significant decrease in mean RBC levels in the n=15 participants with the rs2231142 heterozygous genotype GT compared to the TT genotype group at both study time points (p=0.044; Table 3, Figure 3A and B). Mean alkaline phosphatase concentration is also significantly lower at baseline in the rs17421511 AA genotype group, relative to the TT genotype participants (p=0.019; Figure 3C). In the smaller group of n=6 rs2231142 GG genotype participants, mean lymphocyte counts are significantly higher than the TT genotype group, again at both time points (p=0.043, p=0.019; Figure 3D and E).

Mean patient-reported general pain (PgPain) scores are significantly lower in n=9 participants carrying the rs17421511 AA genotype at baseline (p=0.033) and at the 6-weeks follow-up appointment (p=0.013) compared to those with the GA genotype (Figure 3F and G). This trend is also reflected in significantly lower mean baseline DAS28ESR scores in participants carrying the rs17421511 AA genotype, relative to the GA and GG genotype groups (p=0.002 and p=0.005 respectively; Table 3, Figure 3H), though scores even-out at the 6-week follow up period among all three genotypes. Baseline mean alanine aminotransferase was recorded at significantly higher blood concentrations in the rs17421511 AA genotype group, relative to the GG genotype participants (p=0.048; Figure 3I).
9 of 14

Figure 3. **rs2231142 and rs17421511 genotype associations.** Statistically significant associations between two polymorphisms and other laboratory and clinical outcome measures are shown for individual genotypes in methotrexate treated participants (n=66). Each symbol represents an individual participant of the genotype indicated on the x-axes. Data grouped by rs2231142 genotypes: (A) baseline and (B) 6 week follow up red blood cell (RBC) count, (C) baseline blood alkaline phosphatase (ALP) concentration, (D) baseline blood alkaline phosphatase (ALP) concentration, (D) baseline and (E) 6 week follow up lymphocyte count. Data grouped by rs17421511 genotypes: (F) baseline and (G) 6-week follow-up patient assessed pain (PgPain) levels, (H) baseline disease activity (DAS28ESR) scores, (I) baseline blood alanine aminotransferase (ALT) concentration. Statistically significant differences between genotype group means are indicated by horizontal bars and an asterix used to summarise p values adjusted by Bonferroni’s multiple comparison test: (*) p<0.05; (**) p<0.005 (descriptive statistics data shown in Table 3). Red horizontal bar represents genotype group mean; error bars represent standard deviation. BL: baseline; 6w: 6 weeks follow up.

4. Discussion

This study investigates the influence of ten well-characterised SNPs in RA and we have tried to correlate this with the appearance and accumulation of metabolites measured in the plasma of patients taking DMARDs such as methotrexate and/or sulfasalazine. The in vivo pharmacotherapy of DMARDS and potential response biomarkers in RA have been previously described [6, 22-24], however there are studies of potential associations between circulating csDMARD levels and specific genetic variants remain limited in RA patients.

Typically, methotrexate treatment may cause elevations in serum AST and ALT, long term therapy has also been linked to development of fatty liver disease, fibrosis, cirrhosis, nephrotoxicity, and renal failure [25]. However, under active consultant-led clinical management, these effects are largely minimised. This explains the trend in Table 1 where the average of all clinical biomarkers, liver enzyme and blood component cell-counts of all participants in this study are within recommended normal reference ranges.

Although the average RBC count when taken from all participants appear to be within normal ranges (Table 1), participants with the GT allele in the rs2231142 SNP have significantly decreased erythrocyte counts in their circulation compared to those with the homozygous alleles. Methotrexate affects folic acid metabolism, thus patients taking MTX may show variations in their mean corpuscular volume (MCV) of red blood cells (RBC), therefore resulting in megaloblastic anaemia.
RBCs retain MTX as the polyglutamate derivatives throughout their life-span [26, 27]. While normal RBC levels are between 4.7 to 6.1 million cells per microlitre (mill.c/l) for men and between 4.2 to 5.4 (mill.c/l) in women, the slight decrease shown in heterozygous rs2231142 SNP patients is statistically significant. However, the lower mean haemoglobin levels observed in the rs2231142GT genotype is not statistically significant and there is no correlation with disease activity score as may have been anticipated in anaemia of chronic disease.

Apart from the impact of sex-linked genes in RA, the diversity in our genomes are partially accountable for the heterogeneity in the clinical presentation of synovitis among patients [28]. The genetic influence in RA is particularly strong, the heritability in RA is estimated to be around 60% [28] and with the high diversity of clinical presentations observed in RA, the goal in treatment would be to stratify patients according to their genetic profile and clinical outcome, eventually formulating a genetic-risk based personalised treatment management protocol.

MTX is an antifolate drug, with antiproliferative and anti-inflammatory effects, by inhibition of folate and adenosine pathways and inhibition of purines and pyrimidines synthesis [29-31]. Approximately 80-90% of methotrexate is primarily excreted by the kidneys [32]. MTX is converted in hepatic parenchymal cells of some patients resulting in the 2 through 4-glutamate residues or the drug is catabolised to the MTX-7-OH form.

Though not observed consistently on both study timepoints, participants with the AA allele in rs4149081 and CC allele in rs1476413 can have significantly lower mean plasma levels of MTX-7-OH in their plasma circulation. Since some genotype groups are modest in size, the potential for differences in the mean MTX dose between genotype groups was analysed, though no significant difference was observed (Supplementary Table 2). Furthermore only a weak correlation exists between MTX dose and circulating MTX-7-OH ($r^2=0.08213$). Increasing levels of MTX-7-OH is known to inhibit the clinical responsiveness of RA patients to the MTX drug and therefore, reduced levels of this metabolite could signify a better clinical response to MTX [33]. Thus, with genetic profiling of expanded csDMARD naïve RA cohorts, it would be interesting to further investigate clinical responsiveness to MTX in these genotypes.

The 2 through 4-glutamate MTX metabolite-derivatives are selectively retained in cells and participants with the TT or CT alleles in the rs1476413 SNP tend to show significantly higher mean plasma levels of the tetraglutamate metabolite. A significantly higher mean DAS28 is observed only at study baseline in the rs1476413 CT genotype group relative to CC genotype, though due to modest numbers in the latter group this would require independent verification. It is likely that folic acid supplementation in the study cohort to mitigate toxicity of MTX has reduced the frequency of observable side effects.

Sulfasalazine is metabolized by intestinal bacteria, resulting in the release of sulfapyridine (SPY) and 5-aminosalicylate or 5-ASA (SPY and 5ASA are linked by an azo bond) [34]. Sulfapyridine is almost completely absorbed by the colon, metabolized by the liver, and renally excreted [1]. Commonly reported side-effects of sulfapyridine are minor gastrointestinal (GI) and central nervous system (CNS) abnormalities, and uncommon serious haematological and hepatic side-effects [35, 36]. Although study participants with the AA and GA alleles of the rs17421511 SNP indicate higher mean plasma levels of sulfapyridine compared to those with the GG allele (Supplementary Figure 1), no significant adverse phenotypic effects were observed in these subgroups.

The modest number of patients with the AA genotype of the rs17421511 SNP in our study report significantly lower levels of pain and disease activity, relative to the remaining methotrexate treated cohort. In future research with expanded patient cohorts, it would be pertinent to see if this phenomenon is observed in other patient groups carrying this particular genotype.

While it is challenging to find a clear-cut relationship between genotype and circulating drug levels which consequently translates through to a clear prediction of phenotypic consequence, useful leads are presented in the current study. The rs1476413 and rs17421511 MTHFR variants and the rs2231142 ABCG2 variant display significant changes which are consistent at both study time points.
With further carefully powered studies of variability in both csDMARD response and predisposition to side effects, there is considerable potential to personalise effective treatments whilst avoiding any toxicity.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1

Supplementary Table 1. Methotrexate treated cohort SNP association with laboratory and clinical features. Descriptive statistics summary across n=66 methotrexate treated participants, showing specified polymorphism genotype group means and ANOVA analyses. Statistically significant (p<0.05) associations highlighted in grey subsequently had p values adjusted for multiple testing (Table 3). ESR: erythrocyte sedimentation rate; DAS28: disease activity score across 28 joints; RBC: red blood cell (count); Hb: haemoglobin; WBC: white blood cells; ALT: alanine aminotransferase; AST: aspartate aminotransferase; ALP: alkaline phosphatase; SD: Standard deviation.

Supplementary Figure 1. Sulfasalazine treated cohort SNP associations. Plasma sulfapyridine (SPY) metabolite concentration which had statistically significant associations with the rs17421511 polymorphism in n=27 sulfasalazine treated participants. (A) Mean data for each genotype group with number of individuals per group (n=) indicated. Statistically significant differences between genotype group means and ANOVA analyses. Statistically significant differences between genotype group means were initially assessed by ANOVA and then adjusted by Bonferroni’s multiple comparison test performed for specified genotype group mean comparisons; asterix used to summarise p values; (*) p<0.05. (B) 6 weeks follow up plasma concentration of sulfapyridine metabolite. Statistically significant differences between genotype group means are indicated by horizontal bars. Unlisted features had no statistically significant association with any SNP. Red horizontal bar represents genotype group mean; error bars represent standard deviation. BL: baseline; 6wk: six weeks follow up; SD: standard deviation; ns: not significant.
Supplementary Table 2. Methotrexate treated cohort prescription data. Mean methotrexate (mg/week) prescribing data per genotype group for the four polymorphisms rs4149081, rs1476413, rs2231142 and rs17421511, in n=66 methotrexate treated participants at baseline and 6 weeks follow up. SD: standard deviation.

Time point	SNP	GG (n=36) Mean	SD ±	GA (n=13) Mean	SD ±	AA (n=17) Mean	SD ±	ANOVA p value
Baseline	rs4149081	18.19	4.914	17.69	4.944	16.91	4.963	0.6772
6 week	rs4149081	18.02	5.877	16.25	3.773	18.08	3.252	0.5996
Baseline	rs1476413	18.44	4.19	18.91	4.18	17.2	4.18	0.6772
6 week	rs1476413	15	9.354	17.17	4.597	15	4.378	0.2932
Baseline	rs2231142	20.83	4.916	18.33	3.427	21	3.252	0.1993
6 week	rs2231142	21	5.477	18.33	3.427	17	5.209	0.2127
Baseline	rs17421511	17.21	4.708	18.39	4.897	17.22	5.652	0.6297
6 week	rs17421511	17.5	5.276	18.3	4.253	16.43	6.268	0.6727

Target SNP Primer name Primer sequence 5’-3’

rs246240_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	rs246240_REV	TGCCACACGCTGTATCTTCT	AGTCCACACGCTGTATCTTCT	
rs246240_SEQ	TGCCACACGCTGTATCTTCT	AAAGCAACAGGGCAAACAAA	rs71620_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs1476413_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs71620_SEQ	TGCCACACGCTGTATCTTCT	AAAGCAACAGGGCAAACAAA	rs3740065_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs3740065_SEQ	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	rs16853826_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_SEQ	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs16853826_SEQ	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	rs4846051_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_REV	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs4846051_SEQ	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	rs17421511_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	N/A_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA

Supplementary Table 3. Pyrosequencing SNP primers. Primers used in pyrosequencing validation of SNP genotyping (M13 universal sequence shown in red/italics).

Target SNP	Primer name	Primer sequence 5’-3’	
rs246240_FW	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	
rs246240_REV	TGCCACACGCTGTATCTTCT	AGTCCACACGCTGTATCTTCT	
rs246240_SEQ	TGCCACACGCTGTATCTTCT	AAAGCAACAGGGCAAACAAA	
rs71620_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs1476413_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs71620_SEQ	TGCCACACGCTGTATCTTCT	AAAGCAACAGGGCAAACAAA	
rs3740065_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs3740065_SEQ	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	
rs16853826_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_SEQ	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs16853826_SEQ	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	
rs4846051_FWD_M1	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_REV	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs4846051_SEQ	CGCAAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	
rs17421511_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_SEQ	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs17421511_SEQ	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	
rs17421511_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	rs17421511_SEQ	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA
rs17421511_SEQ	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	AAAGCAACAGGGCAAACAAA	
rs17421511_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA	N/A_FWD_M1	CGCCAGGGTTTTCCACGACAGCAAGCAACAGGGAACAA

Author Contributions: Conceptualization, DSG; methodology, LGD, KM, CC, DC, KBCT; patient recruitment and data collection, PVG, PC; formal analysis, LGD; data curation, KM; writing—original draft preparation, DSG, LGD; writing—review and editing, PS, PVG, DC, CC; visualization, DSG; supervision, DSG; project administration, DSG; funding acquisition, DSG. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research and Development Office, Health and Social Care NI (RADAR study), The Northern Ireland Rheumatism Trust, and Invest Northern Ireland (PoC 631/731) in support of this work.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 August 2020
doi:10.20944/preprints202008.0506.v1
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR, Kelley WN. Kelley’s Textbook of Rheumatology. 11th ed ed. Koretzky G, editor. Philadelphia, Pa: Elsevier/Saunders; 2020. (Last Accessed 17/08/2020)
2. World Health Organisation. Chronic diseases and health promotion: Chronic rheumatic conditions. Available online: https://www.who.int/chp/topics/rheumatic/en/. (Last Accessed 17/08/2020)
3. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross O A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol. (2018) 9:586.
4. Noack M, Miossec P. Selected cytokine pathways in rheumatoid arthritis. Semin Immunopathol. (2017) 39(4):365-83.
5. Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA (2018) 320(13):1360-72.
6. Gibbon DS, Bustard MJ, McGeough CM, Murray HA, Crookard MA, McDowell A, et al. Current and future trends in biomarker discovery and development of companion diagnostics for arthritis. Expert Rev Mol Diagn. (2015) 15(2):219-34.
7. Barrera P, van der Maas A, van Ede AE, Kiemeney BA, Laan RF, van de Putte LB, et al. Drug survival, efficacy and toxicity of monotherapy with a fully human anti-tumour necrosis factor-alpha antibody compared with methotrexate in long-standing rheumatoid arthritis. Rheumatology (2002) 41(4):430-9.
8. Eektemmerman F, Sven JJ, Madhar MB, Allaart CF, Guchelaar HJ. Predictive genetic biomarkers for the efficacy of methotrexate in rheumatoid arthritis: a systematic review. Pharmacogenomics J (2019) 20(2):159-68.
9. Eleff M, Franks PE, Wampler GL, Collins JM, Goldman ID. Analysis of “early” thymidine/inosine protection as an adjunct to methotrexate therapy. Cancer Treat Rep (1985) 69(7-8):867-74.
10. Inoue K, Yuasa H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet (2013) 29(1):12-9.
11. Banwarth B, Labat L, Moride Y, Schaeverbeke T. Methotrexate in rheumatoid arthritis. An update. Drugs (1994) 47(1):25-50.
12. Cairns A, Patton J, Gardiner PV, Liggett N, McKane R, Rooney M, et al. The use of biological agents for severe inflammatory arthritis in Northern Ireland. Rheumatology (2002) 41:92
13. Lai JH, Ling XC, Ho LJ. Full use in multiple choosing optimal biological agents for patients with autoimmune arthritis. Biochem Pharmacol (2019) 165:99-111.
14. Eichelbaum M, IngeLman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu Rev Med (2006) 57:119-37.
15. Pang GS, Wang J, Wang Z, Lee CG. Predicting potentially functional SNPs in drug-response genes in rheumatoid arthritis. Pharmacogenomics (2009) 10(4):639-53.
16. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. (2010) 62(9):2569-81.
17. Edelbroek PM, van der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit. (2009) 31(3):327-36.
18. International Council for Harmonisation (ICH) of Technical Requirements for Pharmaceuticals for Human use, guideline M10 on bioanalytical method validation (2019). Available online: https://www.ema.europa.eu/en/documents/scientific-guide/draft-ich-guide-line-m10-bioanalytical-method-validation-step-2b_en.pdf. (accessed on 18/08/2020)
19. Royo JL, Hidalgo M, Ruiz A. Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nat Protoc. (2007) 2(7):1734-9.
20. Mikkelsen TS, Thorn CF, Yang JJ, Ulrich CM, French D, Zaza G, et al. PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics (2011) 21(10):679-86.
21. Thorn CF, Klein TE, Altman RB. PharmGKB: The Pharmacogenomics Knowledge Base. Methods Mol Biol (2014) 1015:311-20.
22. Eektimmerman F, Allaart CF, Hazes JM, Madhar MB, den Broeder AA, Fransen J, et al. Validation of a clinical pharmacogenetic model to predict methotrexate nonresponse in rheumatoid arthritis patients. Pharmacogenomics (2019) 20(2):85-93.
23. Salazar J, Moya P, Altés A, Díaz-Torné C, Casademont J, Cerdá-Gabarot D, et al. Polymorphisms in genes involved in the mechanism of action of methotrexate: are they associated with outcome in rheumatoid arthritis patients? Pharmacogenomics (2014) 15(8):1079-90.
24. Kumar P, Banik S. Pharmacotherapy options in rheumatoid arthritis. Clin Med Insights Arthritis Musculoskelet Disord (2013) 6:35-43.
25. Conway R, Carey JJ. Risk of liver disease in methotrexate treated patients. World J Hepatol (2017) 9(26):1092-100.
26. Kremer JM. Toward a better understanding of methotrexate. Arthritis Rheum (2004) 50(5):1370-82.
27. Jolivet J, Schilsky RL, Bailey BD, Drake JC, Chabner BA. Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J Clin Invest (1982) 70(2):351-60.
28. Kurkó J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z. Genetics of rheumatoid arthritis - a comprehensive review. Clin Rev Allergy Immunol (2013) 45(2):170-9.
29. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum (2004) 50(9):2766-74.
30. Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Joint Dis (2007) 65(3):168-73.
31. Chan ESL, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis research (2002) 4(4):266-73.
32. Winograd B, Lippens RJ, Oosterbaan MJ, Dirks MJ, Vree TB, van der Kleijn E. Renal excretion and pharmacokinetics of methotrexate and 7-hydroxy-methotrexate following a 24-h high dose infusion of methotrexate in children. Eur J Clin Pharmacol (1986) 30(2):231-8.
33. Baggott JE, Morgan SL. Methotrexate catabolism to 7-hydroxy-methotrexate in rheumatoid arthritis alters drug efficacy and retention and is reduced by folic acid supplementation. Arthritis Rheum (2009) 60(8):2257-61.
34. Bird HA. Sulphasalazine, sulphapyridine or 5-aminosalicylic acid--which is the active moiety in rheumatoid arthritis? Br J Rheumatol (1995) 34 Suppl 2:16-9.
35. Box SA, Pullar T. Sulphasalazine in the treatment of rheumatoid arthritis. Br J Rheumatol (1997) 36(3):382-6.
36. Kumar PJ, Clark ML. Kumar & Clark clinical medicine. (6th Edition) Edinburgh: Saunders; (2002).