Fuzzy Hermite-Hadamard type inequality for \(r \)-preinvex and \((\alpha, m) \)-preinvex function

1 Kavita U. Shinde and 2 Deepak B. Pachpatte

1 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004 (M.S) India.
E-mail: kansurkar14@gmail.com
2 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004 (M.S) India.
E-mail: pachpatte@gmail.com

Abstract

The purpose of this paper is to study the Hermite-Hadamard type inequality for \(r \)-preinvex and \((\alpha, m) \)-preinvex function which is based on Sugeno integral.

Mathematics Subject Classification: 03E72; 28B15; 28E10; 26D10

Keywords: Hermite-Hadamard type inequality, Sugeno integral, \(r \)-preinvex function, \((\alpha, m) \)-preinvex function.

1 Introduction

In 1974 Sugeno stared study of theory of fuzzy integral [13]. It is very useful tool for various application in theoretical and applied statistics which is based on non-additive measures. Hanson [15] introduced a generalization of convex functions in terms of invex function. In [14], [18], [26] authors studied the basic properties and role of preinvex functions in optimization, equilibrium problems and variational inequalities.

The study of inequalities for Sugeno integral was initiated by Roman-Flores et.al., [1] [9]. H. Agahi et. al., [7], [8] proved the general Barnes-Godunova-Levin and new general extensions of Chebyshev type inequalities for Sugeno integrals. J. Caballero and K. Sadarangani [11], [12] studied the Cauchy-Schwarz type inequality and Chebyshev type inequality for Sugeno integrals. N. Okur [23] proved the Hermite-Hadamard type inequality for log-preinvex function using Sugeno integral. In [3] [4], [5], [25] authors proved the fuzzy Hermite-Hadamard type inequality for convex functions.

Motivated by above results in this paper we obtain the Hermite-Hadamard type inequality for \(r \)-preinvex function and \((\alpha, m) \)-preinvex function with respect to Sugeno integral.

2 Preliminaries

In this section we give some basic definitions and properties of Sugeno integral, [13], [30], [33].
Suppose that \(\wp \) is a \(\sigma \)-algebra of subsets of \(X \) and \(\mu : \wp \rightarrow [0, \infty) \) be a non-negative, extended real valued set function. We say that \(\mu \) is a fuzzy measure if it satisfies:

1. \(\mu(\emptyset) = 0 \).
2. \(E, F \in \wp \) and \(E \subset F \) imply \(\mu(E) \leq \mu(F) \).
3. \(\{E_n\} \subseteq \wp, E_1 \subset E_2 \subset \ldots \), imply \(\lim_{n \to \infty} \mu(E_n) = \mu(\bigcup_{n=1}^{\infty} E_n) \).
4. \(\{E_n\} \subseteq \wp, E_1 \supset E_2 \supset \ldots, \mu(E_1) < \infty \), imply \(\lim_{n \to \infty} \mu(E_n) = \mu(\bigcap_{n=1}^{\infty} E_n) \).

If \(f \) is non-negative real-valued function defined on \(X \), we denote the set \(\{x \in X : f(x) \geq \alpha\} = \{x \in X : f \geq \alpha\} \) by \(F_\alpha \) for \(\alpha \geq 0 \). Note that if \(\alpha \leq \beta \) then \(F_\beta \subseteq F_\alpha \).

Let \((X, \wp, \mu)\) be a fuzzy measure space, we denote \(M^+ \) the set of all non-negative measurable functions with respect to \(\wp \).

Definition 2.1 (Sugeno [13]). Let \((X, \wp, \mu)\) be a fuzzy measure space, \(f \in M^+ \) and \(A \in \wp \), the Sugeno integral (or fuzzy integral) of \(f \) on \(A \), with respect to the fuzzy measure \(\mu \), is defined as

\[
(s) \int_A f \, d\mu = \bigvee_{\alpha \geq 0} [\alpha \wedge \mu(A \cap F_\alpha)],
\]

when \(A = X \),

\[
(s) \int_X f \, d\mu = \bigvee_{\alpha \geq 0} [\alpha \wedge \mu(F_\alpha)],
\]

where \(\bigvee \) and \(\wedge \) denote the operations sup and inf on \([0, \infty)\), respectively.

The properties of Sugeno integral are well known and can be found in [34] as follows.

Proposition 2.1 Let \((X, \wp, \mu)\) be fuzzy measure space, \(A, B \in \wp \) and \(f, g \in M^+ \) then:

1. \((s) \int_A f \, d\mu \leq \mu(A) \).
2. \((s) \int_A k \, d\mu = k \wedge \mu(A) \), \(k \) for non-negative constant.
3. \((s) \int_A f \, d\mu \leq (s) \int_A g \, d\mu \), for \(f \leq g \).
4. \(\mu(A \cap \{f \geq \alpha\}) \geq \alpha \implies (s) \int_A f \, d\mu \geq \alpha \).
5. \(\mu(A \cap \{f \geq \alpha\}) \leq \alpha \implies (s) \int_A f \, d\mu \leq \alpha \).
6. \((s) \int_A f \, d\mu > \alpha \iff \) there exists \(\gamma > \alpha \) such that \(\mu(A \cap \{f \geq \gamma\}) > \alpha \).
7. \((s) \int_A f \, d\mu < \alpha \iff \) there exists \(\gamma < \alpha \) such that \(\mu(A \cap \{f \geq \gamma\}) < \alpha \).

Remark 2.1 Consider the distribution function \(F \) associated to \(f \) on \(A \), that is, \(F(\alpha) = \mu(A \cap \{f \geq \alpha\}) \). Then due to (4) and (5) of Proposition 2.1, we have \(F(\alpha) = \alpha \implies (s) \int_A f \, d\mu = \alpha \). Thus, from a numerical point of view, the fuzzy integral can be calculated solving the equation \(F(\alpha) = \alpha \).
Let \(f : K \rightarrow \mathbb{R} \) and \(\eta(.,.) : K \times K \rightarrow \mathbb{R}^n \) be continuous functions, where \(K \subset \mathbb{R}^n \) is a nonempty closed set.

We use the notations, \(\langle .,. \rangle \) and \(||.|| \), for inner product and norm, respectively. Now we give some definitions and condition which will be useful subsequent discussion.

Definition 2.2 ([14, 26]) Let \(u \in K \). Then, the set \(K \) is said to be invex at \(u \in K \) with respect to \(\eta(.,.) \) if
\[
 u + t\eta(v, u) \in K, \quad \forall u, v \in K, t \in [0,1].
\] (2.1)

The invex set \(K \) is also called a \(\eta \) connected set.

Invex set has a clear geometric interpretation which says that there is a path starting from a point \(u \) which is contained in \(K \). It does not require that the point \(v \) should be one of the end points of the path. This observation plays an important role [27].

If \(v \) is an end point of the path for every pair of points, \(u, v \in K \), then \(\eta(v, u) = v - u \) and consequently invexity reduces to convexity. Thus every convex set is also an invex set with respect to \(\eta(v, u) = v - u \), but its converse is not necessarily true [26], [32].

Definition 2.3 (T. Weir [26]). The function \(f \) on the invex set \(K \) is said to be preinvex with respect to \(\eta \) if
\[
 f(u + t\eta(v, u)) \leq (1-t)f(u) + tf(v), \quad \forall u, v \in K, t \in [0,1].
\] (2.2)

In [19], Mohan and Neogy has given the condition for function \(\eta \) known as,

Condition C: Let \(K \subseteq \mathbb{R} \) be an open invex subset to \(\eta : K \times K \rightarrow \mathbb{R} \). For any \(x, y \in K \) and any \(t \in [0,1] \),
\[
 \eta(y, y + t\eta(x, y)) = -t\eta(x, y),
 \eta(x, y + t\eta(x, y)) = (1-t)\eta(x, y).
\]

If for any \(x, y \in K \) and \(t_1, t_2 \in [0,1] \), we have
\[
 \eta(y + t_2\eta(x, y), y + t_1\eta(x, y)) = (t_2 - t_1)\eta(x, y).
\]

The concepts of the invex and preinvex functions have played very important roles in the development of generalized convex programming, see [2, 16, 17, 19, 20, 24].

In [28, 29], Antczak introduced the concept of \(r \)-invex and \(r \)-preinvex functions which as follows.

Definition 2.4 A positive function \(f \) on the invex set \(K \) is said to be \(r \)-preinvex with respect to \(\eta \) if, for each \(u, v \in K \), \(t \in [0,1] \).
\[
 f(u + t\eta(v, u)) \leq \begin{cases}
 ((1-t)f^r(u) + tf^r(v))^{1/r}, & r \neq 0 \\
 (f(u))^{1-t}(f(v))^t, & r = 0.
 \end{cases}
\]

Note that 0-preinvex functions are logarithmic preinvex and 1-preinvex functions are classical preinvex functions. If \(f \) is \(r \)-preinvex function then \(f^r \) is preinvex function \((r > 0) \).
The m-preinvex function is defined as

Definition 2.5 [21] The function f on the invex set $K \subseteq [0, b^*]$, $b^* > 0$ is said to be m-preinvex with respect to η if

$$f(u + t\eta(v, u)) \leq (1 - t)f(u) + mtf\left(\frac{v}{m}\right),$$

holds for all $u, v \in K$, $t \in [0, 1]$ and $m \in (0, 1]$. The function f is said to be m-preconcave if and only if $-f$ is m-preinvex.

Definition 2.6 [21] The function f on the invex set $K \subseteq [0, b^*]$, $b^* > 0$ is said to be (α, m)-preinvex function with respect to η if

$$f(u + t\eta(v, u)) \leq (1 - t^\alpha)f(u) + mt^{\alpha}f\left(\frac{v}{m}\right),$$

holds for all $u, v \in K$, $t \in [0, 1]$ and $(\alpha, m) \in (0, 1] \times (0, 1]$. The function f is said to be (α, m)-preincave if and only if $-f$ is (α, m)-preinvex.

Remark 2.2 [21] If we put $m = 1$ in Definition 2.5, then we get the definition of preinvexity. If we put $\alpha = m = 1$, then Definition 2.6 becomes the definition of preinvex function. Every m-preinvex function and (α, m)-preinvex functions are m-convex and (α, m)-convex with respect to $\eta(v, u) = v - u$ respectively.

3 Fuzzy Hadamard type inequality for r-preinvex function

Now in this section we give results obtained on Hadamard type inequality for r-preinvex function with respect to Sugeno integral.

In [31] W. Ul-Haq and J. Iqbal proved the following Hermite-Hadamard type inequality for r-preinvex function.

Theorem 3.1 Let $f : K = [a, a + \eta(b, a)] \rightarrow (0, \infty)$ be an r-preinvex function on the interval of real numbers K° (interior of K) and $a, b \in K^\circ$ with $a < a + \eta(b, a)$. Then the following inequalities holds

$$\frac{1}{\eta(b, a)} \int_a^{a+\eta(b,a)} f(x)dx \leq \left[\frac{f'(a) + f'(b)}{2}\right]^{1/r}, \quad r \geq 1. \quad (3.1)$$

Now we consider an example.

Example 3.1 Consider $X = [0, \eta(1, 0)]$ and let μ be the Lebesgue measure on X. If we take $f(x) = \frac{x^4}{2}$ be a non-negative and $\frac{1}{2}$-preinvex function on $[0, \eta(1, 0)]$. From Remark [2.7], we have

$$F(\beta) = \mu([0, \eta(1, 0)] \cap \{x|\frac{x^4}{2} \geq \beta\})$$

$$= \mu((2\beta)^{1/4}, \eta(1, 0))$$

$$= \eta(1, 0) - (2\beta)^{1/4}, \quad (3.2)$$
and the solution of (3.2) is

\[\eta(1,0) - (2\beta)^{1/4} = \beta, \]

where \(0 \leq \eta(1,0) \leq 1\) to \(0 \leq \beta \leq 0.2023\), we get

\[0 \leq (s) \int_{0}^{\eta(1,0)} f d\mu = (s) \int_{0}^{\eta(1,0)} \frac{x^4}{2} d\mu \leq 0.2023. \]

\[0.2023 \leq \frac{1}{\eta(1,0)} (s) \int_{0}^{\eta(1,0)} \frac{x^4}{2} d\mu < \infty. \quad (3.3) \]

On the other hand

\[\left\lceil \frac{f^{1/2}(0) + f^{1/2}(\eta(1,0))}{2} \right\rceil^2 = \frac{\eta(1,0)^4}{8} = \frac{1}{8} = 0.125, \quad (3.4) \]

where \(0 \leq \eta(1,0) \leq 1\).

From inequalities (3.3), (3.4) and Boolean operator on real numbers, it is seen that Hermite-Hadamard type inequality (3.1) is not valid in fuzzy context.

Now we give the Hermite-Hadamard type inequality for Sugeno integral with respect to \(r\)-preinvex function.

Theorem 3.2 Let \(r > 0\) and \(\mu\) be the Lebesgue measure on \(\mathbb{R}\), \(f : [0, \eta(1,0)] \rightarrow [0, \infty)\) be \(r\)-preinvex function with \(f(0) \neq f(\eta(1,0))\).

Case 1. If \(f(\eta(1,0)) > f(0)\), then

\[(s) \int_{0}^{\eta(1,0)} f d\mu \leq \min\{\beta, \eta(1,0)\}, \]

where \(\beta\) satisfies the following equation

\[(f^r(\eta(1,0)) - f^r(0))\beta + \eta(1,0)\beta^r - \eta(1,0)f^r(\eta(1,0)) = 0. \quad (3.5) \]

Case 2. If \(f(0) > f(\eta(1,0))\), then

\[(s) \int_{0}^{\eta(1,0)} f d\mu \leq \min\{\beta, \eta(1,0)\}, \]

where \(\beta\) satisfies the following equation

\[(f^r(\eta(1,0)) - f^r(0)) - \beta^r \eta(1,0) + \eta(1,0)f^r(0) = 0. \quad (3.6) \]

Proof. As \(f\) is a \(r\)-preinvex function for \(x \in [0, \eta(1,0)]\) we have

\[f(0 + x\eta(\eta(1,0))) \leq (1 - x)f^r(0) + xf^r(\eta(1,0)))^{1/r}, \]

and from Condition C, we have

\[\eta(\eta(1,0), 0) = \eta(0 + 1.\eta(1,0), 0 + 0.\eta(1,0)) = \eta(1,0). \]
Therefore,

\[
 f(x) = f\left(\frac{x}{\eta(1,0) \cdot \eta(1,0)}\right) \\
 \leq \left[\left(1 - \frac{x}{\eta(1,0)}\right)f^r(0) + \left(\frac{x}{\eta(1,0)}\right)f^r(\eta(1,0))\right]^{1/r} \\
 = g(x).
\]

By Proposition (2.1), we have

\[
 (s) \int_0^{\eta(1,0)} f(x) d\mu = (s) \int_0^{\eta(1,0)} f\left(\frac{x}{\eta(1,0) \cdot \eta(1,0)}\right) d\mu \\
 \leq (s) \int_0^{\eta(1,0)} \left[\left(1 - \frac{x}{\eta(1,0)}\right)f^r(0) + \left(\frac{x}{\eta(1,0)}\right)f^r(\eta(1,0))\right]^{1/r} d\mu \\
 = (s) \int_0^{\eta(1,0)} g(x) d\mu. \tag{3.7}
\]

To calculate the right hand side of (3.7), we consider the distribution function \(F \) given by

\[
 F(\beta) = \mu\left([0, \eta(1,0)] \cap \left\{ x \mid g(x) \geq \beta \right\}\right) \\
 = \mu\left([0, \eta(1,0)] \cap \left\{ x \left[\left(1 - \frac{x}{\eta(1,0)}\right)f^r(0) + \left(\frac{x}{\eta(1,0)}\right)f^r(\eta(1,0))\right]^{1/r} \geq \beta \right\}\right). \tag{3.8}
\]

Case 1. If \(f(\eta(1,0)) > f(0) \), then from (3.8), we have

\[
 F(\beta) = \mu\left([0, \eta(1,0)] \cap \left\{ x \mid x \geq \eta(1,0) \frac{\beta^r - f^r(0)}{f^r(\eta(1,0)) - f^r(0)} \right\}\right) \\
 = \mu\left(\eta(1,0) \frac{\beta^r - f^r(0)}{f^r(\eta(1,0)) - f^r(0)}, \eta(1,0)\right) \\
 = \eta(1,0) - \eta(1,0) \frac{\beta^r - f^r(0)}{f^r(\eta(1,0)) - f^r(0)}. \tag{3.9}
\]

and the solution of (3.9) is \(F(\beta) = \beta \), where \(\beta \) satisfies the following equation

\[
 \beta(f^r(\eta(1,0)) - f^r(0)) + \beta^r \eta(1,0) - \eta(1,0)f^r(\eta(1,0)) = 0.
\]

By Proposition (2.1) and Remark (2.1), we have

\[
 (s) \int_0^{\eta(1,0)} f(x) d\mu \leq \min\{\beta, \eta(1,0)\}.
\]
Case 2. If \(f(0) > f(\eta(1,0)) \), then from (3.8), we have

\[
F(\beta) = \mu \left([0, \eta(1,0)] \cap \left\{ x \mid x \leq \eta(1,0) \frac{\beta^r - f^r(0)}{f^r(\eta(1,0)) - f^r(0)} \right\} \right)
\]

\[
= \mu \left(0, \eta(1,0) \frac{\beta^r - f^r(0)}{f^r(\eta(1,0)) - f^r(0)} \right)
\]

\[
= \eta(1,0) \frac{\beta^r - f^r(0)}{f^r(\eta(1,0)) - f^r(0)},
\]

and the solution (3.10) is \(F(\beta) = \beta \), where \(\beta \) satisfies the following equation

\[
\beta (f^r(\eta(1,0)) - f^r(0)) - \eta(1,0) \beta^r + \eta(1,0) f^r(0) = 0.
\]

By Proposition 2.1 and Remark 2.1, we have

\[
(s) \int_0^{\eta(1,0)} f(x) dx \leq \min \{ \beta, \eta(1,0) \}.
\]

Example 3.2 Consider \(X = [0, \eta(1,0)] \) and let \(\mu \) be the Lebesgue measure on \(X \). If we take \(f(x) = \frac{x^3}{3} \) be the \(\frac{1}{2} \)-preinvex function, where \(0 \leq \eta(1,0) \leq 1 \) from Remark 2.1, we have

\[
(s) \int_0^{\eta(1,0)} \frac{x^3}{3} d\mu = 0.1847.
\]

From Theorem 3.2 we have

\[
0.1847 = (s) \int_0^{\eta(1,0)} \frac{x^3}{3} d\mu \leq \min \{ 0.2087, \eta(1,0) \} = 0.2087.
\]

Remark 3.1 In case if we take \(f(0) = f(\eta(1,0)) \) in Theorem 3.2, then we get

\[
(s) \int_0^{\eta(1,0)} f(x) dx \leq (s) \int_0^{\eta(1,0)} g(x) dx = (s) \int_0^{\eta(1,0)} f(0) d\mu = f(0) \land \eta(1,0).
\]

Now we obtain the results for inequality on \(r \)-preinvex function.

Theorem 3.3 Let \(r > 0 \) and \(\mu \) be the Lebesgue measure on \(\mathbb{R} \), \(f : [a, a + \eta(b,a)] \rightarrow [0, \infty) \) be \(r \)-preinvex function with \(f(a) \neq f(a + \eta(b,a)) \).

Case 1. If \(f(a + \eta(b,a)) > f(a) \), then

\[
(s) \int_a^{a+\eta(b,a)} f(x) dx \leq \min \{ \beta, \eta(b,a) \},
\]

where \(\beta \) satisfies the following equation

\[
\beta (f^r(a + \eta(b,a)) - f^r(a)) + \beta^r \eta(b,a) - \eta(b,a) f^r(a + \eta(b,a)) = 0.
\]
Case 2. If \(f(a + \eta(b, a)) < f(a) \), then

\[
(s) \int_{a}^{a+\eta(b,a)} f(x) d\mu \leq \min\{\beta, \eta(b, a)\},
\]

where \(\beta \) satisfies the following equation

\[
\beta(f^r(a + \eta(b, a)) - f^r(a)) - \beta^r \eta(b, a) + \eta(b, a) f^r(a) = 0.
\]

(3.12)

Remark 3.2 If we take \(f(a) = f(a + \eta(b, a)) \) in Theorem 3.3, we have \(g(x) = f(a) \) and by Proposition 2.1, we have

\[
(s) \int_{a}^{a+\eta(b,a)} f(x) d\mu \leq (s) \int_{a}^{a+\eta(b,a)} g(x) d\mu
\]

\[
= (s) \int_{a}^{a+\eta(b,a)} f(a) d\mu
\]

\[
= f(a) \wedge \mu([a, a + \eta(b, a)]).
\]

Corollary 3.1 Let \(r < 0 \), and \(\mu \) be the Lebesgue measure on \(\mathbb{R} \). Let \(f : [a, a + \eta(b, a)] \rightarrow [0, \infty) \) be the \(r \)-preinvex with \(f(a) \neq f(a + \eta(b, a)) \), then

Case 1. If \(f(a + \eta(b, a)) > f(a) \), then

\[
(s) \int_{a}^{a+\eta(b,a)} f(x) d\mu \leq \min\{\beta, \eta(b, a)\},
\]

where \(\beta \) satisfies the following equation

\[
\beta(f^r(a + \eta(b, a)) - f^r(a)) - \beta^r \eta(b, a) + \eta(b, a) f^r(a) = 0.
\]

(3.13)

Case 2. If \(f(a + \eta(b, a)) < f(a) \), then

\[
(s) \int_{a}^{a+\eta(b,a)} f(x) d\mu \leq \min\{\beta, \eta(b, a)\},
\]

where \(\beta \) satisfies the following equation

\[
\beta(f^r(a + \eta(b, a)) - f^r(a)) + \beta^r \eta(b, a) - \eta(b, a) f^r(a + \eta(b, a)) = 0.
\]

(3.14)

4 **Fuzzy Hermite-Hadamard type inequality for \((\alpha, m)\)-preinvex function**

Now in this section we give the Hermite-Hadamard type inequality for \((\alpha, m)\)-preinvex function. In [22] Noor proved following the Hermite-Hadamard type inequality for preinvex functions.

Theorem 4.1 Let \(f : [a, a + \eta(b, a)] \rightarrow (0, \infty) \) be a preinvex function on the interval of real numbers \(K^\circ \) (the interior of \(K \)) and \(a, b \in K^\circ \) with \(a < a + \eta(b, a) \). Then the following inequality holds,

\[
f\left(\frac{2a + \eta(b, a)}{2}\right) \leq \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b,a)} f(x) dx \leq \frac{f(a) + f(b)}{2}.
\]

(4.1)
Now consider an examples.

Example 4.1 Consider \(X = [0, \eta(1, 0)] \) and let \(\mu \) be the Lebesgue measure on \(X \). If we take the function \(f(x) = \frac{x^2}{2} \) then \(f(x) \) is \((1/2, 1/3)\)-preinvex function. From Remark 2.7 we have

\[
F(\beta) = \mu([0, \eta(1, 0)] \cap \{x | \frac{x^2}{2} \geq \beta\})
= \eta(1, 0) - \sqrt{2\beta}, \tag{4.2}
\]

and the solution of (4.2) is
\[
\eta(1, 0) - \sqrt{2\beta} = \beta,
\]
where \(0 \leq \eta(1, 0) \leq 1 \) to \(0 \leq \beta \leq 0.2679 \), we get
\[
0 \leq (s) \int_0^{\eta(1, 0)} f d\mu = (s) \int_0^{\eta(1, 0)} \frac{x^2}{2} d\mu \leq 0.2679.
\]

\[
0.2679 \leq \frac{1}{\eta(1, 0)} (s) \int_0^{\eta(1, 0)} \frac{x^2}{2} d\mu < \infty.
\]

From right hand side of (4.1) and for \(0 \leq \eta(1, 0) \leq 1 \), we have
\[
\frac{f(0) + f(\eta(1, 0))}{2} = 0.25.
\]

This proves that the right hand side of (4.1) is not satisfied for Sugeno integral.

Example 4.2 Consider \(X = [0, \eta(1, 0)] \) and let \(\mu \) be the Lebesgue measure on \(X \). If we take the function \(f(x) = 3x^2 \) then \(f(x) \) is \((1/2, 1/3)\)-preinvex function. From Remark 2.7 we have

\[
F(\beta) = \mu([0, \eta(1, 0)] \cap \{x | 3x^2 \geq \beta\})
= \eta(1, 0) - \sqrt{\frac{\beta}{3}}, \tag{4.3}
\]

and the solution of (4.3) is
\[
\eta(1, 0) - \sqrt{\frac{\beta}{3}} = \beta,
\]
where \(0 \leq \eta(1, 0) \leq 1 \) and \(0 \leq \beta \leq 0.5657 \), we get
\[
0 \leq (s) \int_0^{\eta(1, 0)} f d\mu = (s) \int_0^{\eta(1, 0)} 3x^2 d\mu \leq 0.5657.
\]

\[
0.5657 \leq \frac{1}{\eta(1, 0)} (s) \int_0^{\eta(1, 0)} 3x^2 d\mu < \infty.
\]

From left hand side of (4.1) and for \(0 \leq \eta(1, 0) \leq 1 \), we have
\[
f \left(\frac{2a + \eta(b, a)}{2} \right) = 0.75.
\]

This proves that the left hand side of (4.1) is not satisfied for Sugeno integral.
Now in next theorem we prove Hermite-Hadamard type inequality for Sugeno integral with respect to \((\alpha, m)\)-preinvex function.

Theorem 4.2 Let \(f : [0, \eta(1,0)] \to [0, \infty) \) be \((\alpha, m)\)-preinvex function, \((\alpha, m) \in (0,1)^2\), \(f(0) \leq f(\eta(1,0)) \) and \(\mu \) be the Lebesgue measure on \(\mathbb{R} \). Then

\[
\left(s \right) \int_0^{\eta(1,0)} f(x) \, d\mu \leq \min \{ \beta, \eta(1,0) \},
\]

where \(\beta \) satisfies the following equation

\[
(\eta(1,0) - \beta)^\alpha mf\left(\frac{\eta(1,0)}{m}\right) - (\eta(1,0) - \beta)^\alpha f(0) - \eta(1,0)^\alpha (\beta - f(0)) = 0. \tag{4.4}
\]

Now we give the Hermite-Hadamard type inequality for decreasing \((\alpha, m)\)-preinvex function.

Theorem 4.3 Let \(f : [0, \eta(1,0)] \to [0, \infty) \) be \((\alpha, m)\)-preinvex function, \((\alpha, m) \in (0,1)^2\), \(f(0) > f(\eta(1,0)) \) and \(\mu \) be the Lebesgue measure on \(\mathbb{R} \). Then

Case 1. If \(m \in (0, \frac{f(\eta(1,0))}{f(0)}) \), then

\[
\left(s \right) \int_0^{\eta(1,0)} f(x) \, d\mu \leq \min \{ \beta, \eta(1,0) \},
\]

where \(\beta \) satisfies the following equation

\[
(\eta(1,0) - \beta)^\alpha mf\left(\frac{\eta(1,0)}{m}\right) - (\eta(1,0) - \beta)^\alpha f(0) - \eta(1,0)^\alpha (\beta - f(0)) = 0. \tag{4.5}
\]

Case 2. If \(m = \frac{f(\eta(1,0))}{f(0)} \), then

\[
\left(s \right) \int_0^{\eta(1,0)} f(x) \, d\mu \leq \min \{ \beta, \eta(1,0) \},
\]

where \(\beta \) satisfies the following equation

\[
(\eta(1,0) - \beta)^\alpha \frac{f(\eta(1,0))}{f(0)} f\left(\frac{f(0)\eta(1,0)}{f(\eta(1,0))}\right) - (\eta(1,0) - \beta)^\alpha f(0) - \eta(1,0)^\alpha (\beta - f(0)) = 0. \tag{4.6}
\]

Case 3. If \(m \in (\frac{f(\eta(1,0))}{f(0)}, \eta(1,0)) \), then

\[
\left(s \right) \int_0^{\eta(1,0)} f(x) \, d\mu \leq \min \{ \beta, \eta(1,0) \},
\]

where \(\beta \) satisfies the following equation

\[
\beta^\alpha \left(mf\left(\frac{\eta(1,0)}{m}\right) - f(0) \right) - \eta(1,0)^\alpha (\beta - f(0)) = 0. \tag{4.7}
\]

Now we give the general case of Theorem 4.2 and 4.3.
Theorem 4.4 Let $f : [a, a + \eta(b, a)] \to [0, \infty)$ be (α, m)-preinvex function, $(\alpha, m) \in (0, 1)^2$, $f(a) \leq f(a + \eta(b, a))$ and μ be the Lebesgue measure on \mathbb{R}. Then
\[
(s) \int_{a}^{a+\eta(b,a)} f(x) \, d\mu \leq \min\{\beta, \eta(b,a)\},
\]
where β satisfies the following equation
\[
(\eta(b,a) - \beta)\alpha f\left(\frac{a + \eta(b,a)}{m}\right) - (\eta(b,a) - \beta)^{\alpha} f(a) - \eta(b,a)^{\alpha}(\beta - f(a)) = 0. \quad (4.8)
\]

Theorem 4.5 Let $f : [a, a + \eta(b, a)] \to [0, \infty)$ be (α, m)-preinvex function, $(\alpha, m) \in (0, 1)^2$, $f(a) > f(a + \eta(b, a))$ and μ be the Lebesgue measure on \mathbb{R}. Then

Case 1. If $m \in (0, \frac{f(a + \eta(b,a))}{f(a)})$, then
\[
(s) \int_{a}^{a+\eta(b,a)} f(x) \, d\mu \leq \min\{\beta, \eta(b,a)\},
\]
where β satisfies the following equation
\[
(\eta(b,a) - \beta)\alpha f\left(\frac{a + \eta(b,a)}{m}\right) - (\eta(b,a) - \beta)^{\alpha} f(a) - \eta(b,a)^{\alpha}(\beta - f(a)) = 0. \quad (4.9)
\]

Case 2. If $m = \frac{f(a + \eta(b,a))}{f(a)}$, then
\[
(s) \int_{a}^{a+\eta(b,a)} f(x) \, d\mu \leq \min\{\beta, \eta(b,a)\},
\]
where β satisfies the following equation
\[
(\eta(b,a) - \beta)\alpha f\left(\frac{a + \eta(b,a)}{f(a)}\right) f\left(\frac{a + \eta(b,a)f(a)}{f(a + \eta(b,a))}\right) - (\eta(b,a) - \beta)^{\alpha} f(a) - \eta(b,a)^{\alpha}(\beta - f(a)) = 0. \quad (4.10)
\]

Case 3. If $m \in (\frac{f(a + \eta(b,a))}{f(a)}, \eta(1,0))$, then
\[
(s) \int_{a}^{a+\eta(b,a)} f(x) \, d\mu \leq \min\{\beta, \eta(b,a)\},
\]
where β satisfies the following equation
\[
\beta^\alpha (mf\left(\frac{a + \eta(b,a)}{m}\right)) - \beta^\alpha f(a) - \eta(b,a)^\alpha(\beta - f(a)) = 0. \quad (4.11)
\]

Similarly we can prove the above results as Theorem 3.2, 3.3.

References

[1] A. Flores-Franulic and H. Roman-Flores, A Chebyshev type inequality for fuzzy integrals, Appl. Math. Comp., 2(2007), 1178-1184.
[2] B. Pachpatte, A note on integral inequalities involving two log-convex functions. Math. Inequal. Appl., 7(2004), 511-515.

[3] D. Pachpatte and K. Shinde, Hermite-Hadamard type inequality for r_1-convex function and r_2-convex function using Sugeno integral, Ann. Fuzzy Math. Inform., 14(2017), 613-620.

[4] D. Pachpatte and K. Shinde, Hermite-Hadamard type inequality for product of convex function via Sugeno integral, International J. Pure Appl. Math., 118(2018), 9-29.

[5] D. Pachpatte and K. Shinde, Hermite-Hadamard type inequality for Sugeno integral using general (α, m, r)-convex functions, Adv. Inequal. Appl., 4(2018), 1-16.

[6] G. Zabandan, A. Bodaghi and A. Kilicman, The Hermite-Hadamard inequality for r-convex functions, J. Inequal. Appl., 2012, 1-8.

[7] H. Agahi, H. Roman-Flores and A. Flores-Franulic, New general extensions of Chebyshev type inequalities for Sugeno integrals, Internat. J. Approx. Reason., 51(2009), 135-140.

[8] H. Agahi, H. Roman-Flores and A. Flores-Franulic, General Barnes-Godunova-Levin type inequalities for Sugeno integral, Inf. Sci., 181(2011), 1072-1079.

[9] H. Roman-Flores, A. Flores-Franulic and Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, Inform. Sci., 177(2007), 3192-3201.

[10] I. Iscan, Hermite-Hadamard’s Inequalities for Preinvex Function via Fractional Integrals and Related Fractional Inequalities, American J. Math. Anal., 3(2013), 33-38.

[11] J. Caballero and K. Sadarangani, A Cauchy-Schwarz type inequality for fuzzy integrals, Nonlinear Anal., 73(2010), 3329-3335.

[12] J. Caballero and K. Sadarangani, Chebyshev type inequality for Sugeno integrals, Fuzzy Sets Syst., 161(2010), 1480-1487.

[13] M. Sugeno, Theory of fuzzy integrals and its applications (Ph.D. Thesis), Tokyo Institute of Technology, 1974.

[14] M. Noor, Variational -like inequalities, Optimizations, 30(1981), 323-330.

[15] M. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80(1981), 545-550.

[16] M. Noor and K. Noor, Some characterizations of stongly preinvex functions, J. Math. Anal. Appl., 316(2006), 697-706.

[17] M. Noor and K. Noor, Hemiequilibrium-like problems, Nonlinear Analysis Theory Methods and Appl., 64(2006), 2631-2642

[18] M. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302(2005), 463-475.
[19] S. Mohan and S. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189(1995), 901-908.

[20] M. Noor, On generalized preinvex functions and monotonicities, J. Inequal. Pure Appl. Math., 5(2004), 1-9.

[21] M. Latif and M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions, J. Egyp. Math. Soc., 23(2015), 236-241.

[22] M. Noor, Hadamard integral inequalities for product of two preinvex function, Nonlinear Anal. Forum., 14(2009), 167-173.

[23] N. Okur, Hermite-Hadamard type inequality for log-preinvex functions via Sugeno integral, J. Contemp., Appl. Math., 8(2018), 41-49.

[24] R. Pini, Invexity and generalized convexity, Optimii., 22(1991), 513-525.

[25] S. Abbaszadeh and M. Eshagi, A Hadamard type inequality for fuzzy integrals based on r-convex functions, Soft Comput., 20(2016), 3117-3214.

[26] T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Maths. Anal. Appl., 136(1988), 29-38.

[27] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. Theory Methods Appl., 60(2005), 1473-1484.

[28] T. Antczak, r-preinvexity and r-invexity in mathematical programming, Comp. Math. Appl., 50(2005), 551-566.

[29] T. Antczak, A new method of solving nonlinear mathematical programming problems involving r-invex functions, J. Math. Anal. Appl., 311(2005), 313-323.

[30] V. Mihesan, A generalization of the convexity, in Seminar on Functional Equation Approximation and Convexity Romania, 1993.

[31] W. Ul-Haq and J. Iqbal, Hermite-Hadamard type inequalities for r-preinvex functions, J. Appl. Math., 2013, 1-5.

[32] X. Yang, X. Yang, and K. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117(2003), 607-625.

[33] Z. Wang and G. Klir, Generalized Measure Theory, Springer, New York, 2008.

[34] Z. Wang and G. Klir, Fuzzy Measures Theory, Plenum press, New York, 1992.