Planar algebra of the subgroup-subfactor

VED PRAKASH GUPTA

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India
E-mail: vpgupta@imsc.res.in

MS received 5 September 2007

Abstract. We give an identification between the planar algebra of the subgroup-subfactor $R \rtimes H \subset R \rtimes G$ and the G-invariant planar subalgebra of the planar algebra of the bipartite graph \star_n, where $n = [G : H]$. The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of $R \rtimes H \subset R \rtimes G$ in terms of operator matrices.

We also obtain an identification between the planar algebra of the fixed algebra subfactor $RG \subset RH$ and the G-invariant planar subalgebra of the planar algebra of the ‘flip’ of \star_n.

Keywords. Planar algebras; subfactors; standard invariant.

1. Introduction

For every pair $H \subset G$ of finite groups, and an outer action α of G on the hyperfinite II_1-factor R, we have a dual pair of subfactors $R \rtimes_{\alpha_1/H} H \subset R \rtimes_{\alpha} G$ (the subgroup-subfactor) and fixed algebra subfactor $RG \subset RH$.

On the other hand, Jones [5] associates a planar algebra $P(\Gamma)$ to a finite bipartite graph Γ with a spin function μ.

We show that the planar algebras of the subgroup and fixed algebra subfactors are isomorphic to the invariants with respect to an action by G as planar algebra automorphisms of $P(\Gamma)$ and $P(\bar{\Gamma})$, respectively (see Theorem 5.12 and Corollary 5.16), where Γ is the bipartite graph \star_n ($n = [G : H]$), and $\bar{\Gamma}$ is its ‘flip’ (with ‘even’ and ‘odd’ vertices interchanged).

We begin §2 with a discussion of matrix algebras, matrix maps and our notational conventions for them, and go on with certain facts related to the matrix functor in the context of subfactors. Section 3 is mainly devoted to the exhibition of an explicit model for the basic construction tower of $R \rtimes H \subset R \rtimes G$ and then its relative commutants in terms of that model. In §4, we briefly recall some basic aspects of planar algebras and discuss the notion of group action on planar algebras and a related result. We then recall the notion of planar algebra of a bipartite graph as given by Jones [5], and discuss how it and its dual behave under the action of a finite group on the graph. Finally, in §5, we define the bipartite graph \star_n, where $n = [G : H]$, and analyse the planar algebra $P(\star_n)^G$. We then complete the proof of the main theorem via several lemmas; and end the paper with some corollaries.

There are references in literature giving different models for the basic construction tower and the standard invariant of the subgroup-subfactor – see, for instance, [10] and [1]. Apart

\footnote{Our subfactors are all of type \text{II}_1.}
from that, Bhattacharyya and Landau [1] have given descriptions of planar algebras of an intermediate subfactor and a subgroup-subfactor is a particular case of it. However, the description of the planar algebra of a subgroup-subfactor that we present here is different from theirs, and is more concrete. One immediate consequence of this description is that, given any pair of finite groups \(H \subset G \) with index \(n \), the planar algebra of the subgroup-subfactor \(R \rtimes H \subset R \rtimes G \) is sandwiched in between the planar algebras \(P(\ast_n)^{\lt} \) and \(P(\ast_n) \) – see Corollary 5.15.

2. Matrix functor

Given an algebra \(P \) – all our algebras will be over the field \(\mathbb{C} \) – and a (finite) index set \(/\Lambda_1 \), we write \(M/\Lambda_1(P) \) for the set of matrices with rows and columns indexed by \(/\Lambda_1 \), and entries in \(P \); this ‘matrix algebra’ is a *-algebra (resp., a \(\text{II}_1 \) factor) if \(P \) is.

An algebra map \(\theta: P \rightarrow Q \) gives rise naturally to the matrix map \(M/\Lambda_1(\theta): M/\Lambda_1(P) \rightarrow M/\Lambda_1(Q) \) defined by

\[
[M/\Lambda_1(\theta)(A)]_{\lambda_1,\lambda_2} = \theta(A_{\lambda_1,\lambda_2}), \quad \lambda_1, \lambda_2 \in \Lambda, \; A \in M_\Lambda(P).
\]

(1)

For any two index sets \(\Lambda \) and \(\Gamma \), and an algebra \(P \), we view \(M/\Lambda_1(M/\Gamma_1(P)) \) as the set of block matrices, whose blocks are determined by the index set \(\Lambda \) and the matrices in each block are members of \(M_\Gamma(P) \). Thus we identify it with the algebra \(M/\Gamma_1 \times \Lambda_1(P) \) via the correspondence

\[
M_\Lambda(M/\Gamma_1(P)) \ni A \mapsto \tilde{A} \in M/\Gamma_1 \times \Lambda_1(P),
\]

\[
\tilde{A}_{(\gamma_1,\lambda_1),(\gamma_2,\lambda_2)} := (A_{\lambda_1,\lambda_2})_{\gamma_1,\gamma_2}.
\]

(2)

With this convention, we shall interchangeably use \(A \) and \(\tilde{A} \) during calculations.

Thus, given algebras \(P \) and \(Q \), finite index sets \(\Lambda \) and \(\Gamma \), and an algebra map \(\theta: P \rightarrow M/\Gamma(Q) \), the matrix map

\[
M_\Lambda(\theta): M_\Lambda(P) \rightarrow M/\Gamma \times \Lambda(Q)
\]

is given by

\[
[M_\Lambda(\theta)(A)]_{(\gamma_1,\lambda_1),(\gamma_2,\lambda_2)} = \theta(A_{\lambda_1,\lambda_2})_{\gamma_1,\gamma_2} =: \theta_{\gamma_1,\Gamma_1}(A_{\lambda_1,\lambda_2}),
\]

\[
\forall (\gamma_i, \lambda_i) \in \Gamma \times \Lambda, \; i = 1, 2, \; \forall A \in M/\Lambda(P).
\]

(3)

For later reference, we record a few facts – which are mostly modifications of certain results proved in [6], and whose proofs we therefore omit.

PROPOSITION 2.1

Suppose \(N \subset M \subset c^1 \) \(M_1 \) is the basic construction for a pair of \(\text{II}_1 \)-factors \(N \subset M \) (also called a subfactor) with \(r^{-1} = [M : N] < \infty \). Then for any finite index set \(\Lambda \),

\[
M_\Lambda(N) \subset M_\Lambda(M) \subset M_\Lambda(M_1)
\]

(4)

is the basic construction for the subfactor \(M_\Lambda(N) \subset M_\Lambda(M) \), where

(i) the trace preserving conditional expectation \(E_{M_\Lambda(N)}: M_\Lambda(M) \rightarrow M_\Lambda(N) \) is given by the matrix map \(M_\Lambda(E_N) \); and
(ii) the Jones projection which implements the above conditional expectation $E_{M_\Lambda(N)}$ is given by the diagonal matrix $\tilde{e}_1 \in M_N(M_1)$, with diagonal entries given by
\[(\tilde{e}_1)_{\lambda,\lambda} = e_1, \ \forall \lambda \in \Lambda.\]

Lemma 2.2. Let $N \subset M$ be a subfactor with integer index $n = [M : N]$. Let $\{\lambda_i : i \in I\}$ be an orthonormal basis for M/N, where $I := \{1, \ldots, n\}$. Define $\theta : M \to M_1(N)$ by $\theta_{i,j}(x) = E_N(\lambda_i x \lambda_j^*)$, $\forall \lambda \in M, i, j \in I$. Then θ is a unital inclusion and we have an isomorphism of towers

$$(N \subset M \overset{\theta}{\to} M_1(N) \subset M_1(M)) \cong (N \subset M \subset M_1 \subset M_2). \quad (5)$$

In particular, the Jones projections $\tilde{e}_1 \in M_1(N)$ and $\tilde{e}_2 \in M_1(M)$, corresponding to e_1 and e_2 under the above tower isomorphism, are given by
\[
(\tilde{e}_1)_{i,j} = E_N(\lambda_i)E_N(\lambda_j^*), \quad \text{and} \quad (\tilde{e}_2)_{i,j} = n^{-1}\lambda_i \lambda_j^*,
\]
respectively, $\forall i, j \in I$. And the trace preserving conditional expectation $E_M : M_1(N) \to M$ is given by
\[
E_M((a_{i,j})) = \sum_{i,j \in I} n^{-1}\lambda_i \lambda_j^* a_{i,j} \lambda_i \lambda_j^*, \quad \forall (a_{i,j}) \in M_1(N). \quad (8)
\]

Lemma 2.3. With $N \subset M$, $\{\lambda_i : i \in I\}$ and θ as in Lemma 2.2, for each $k \geq 1$, define $\theta^{(k)} : M \to M_{\Lambda^k}(N)$ by
\[
\theta^{(k)}_{i_1, j_1}(x) = \theta_{i_1, j_1}(\theta_{i_2, j_2}(\cdots \theta_{i_k, j_k}(x) \cdots))
= E_N(\lambda_{i_1}E_N(\lambda_{i_2}E_N(\cdots E_N(\lambda_{i_k} x \lambda_{j_1}^*) \cdots)\lambda_{j_k}^*),
\]
for all $x \in M$, $i = (i_1, \ldots, i_k), j = (j_1, \ldots, j_k) \in I^k$. Then $\theta^{(k)}$ is a unital *-homomorphism for each $k \geq 1$.

3. The subgroup-subfactor

In this section, we set up the notation and the model for the subgroup-subfactor which we shall find convenient to use.

Thus, let R be the hyperfinite II$_1$-factor viewed as sitting in $L(L^2(R))$ as left multiplication operators. Let G be a finite group and $\alpha : G \to \text{Aut}(R)$ be an outer action of G on R, i.e., α_g is not inner for all $e \neq g \in G$.

We think of $R \rtimes_a G$ as the II$_1$-factor $(R \cup \{u_g : g \in G\})'' \subset L(L^2(R))$, where $u_g(\hat{x}) := \alpha_g(x), x \in R, g \in G$ – see §A.4 of [6].

Let H be a subgroup of the group G. Once and for all, we fix a set of representatives $\{g_1, \ldots, g_n\}$ for the right H-coset decomposition of G with $g_1 = e$, i.e., $G = \cup_{i=1}^n H g_i$, where $n = [G : H]$. Then $\{u_{g_i} : i \in I\}$ is a (n orthonormal) basis for $R \rtimes G/R \rtimes H$, where $I := \{1, \ldots, n\}$.

The following result is probably folklore.

\[\forall i, j \in I.\]
PROPOSITION 3.1

(1) $R^G \subset R^H$ is an irreducible subfactor with index $[G:H]$ and has finite depth.
(2) $(R^G \subset R^H) \cong (M \subset M_1)$, where M_1 is the II$_1$-factor obtained by the basic construction of the subgroup-subfactor $N := R \rtimes H \subset R \rtimes G := M$.

Taking $N = R \rtimes H \subset R \rtimes G = M$, by Lemma 2.2, with respect to the orthonormal basis $\{u_i : i \in I\}$ for M/N, we have

$$(N \subset M \subset M_1) \cong (N \subset M \overset{\theta_1}{\hookrightarrow} M_1(N) \subset M_1(M)).$$

Then, by repeated applications of Proposition 2.1, we see that

$$M_{2k-1} \subset M_{2k} \subset M_{2k+1} \subset M_{2k+2}$$

$$(\Theta_k)_{k \geq 0}$$

where, as in §2, for each $k \geq 1$, we have inductively identified $M_{\ell_{k-1}}(X)$ with $M_{\ell_{k}}(M_{\ell_{k-1}}(X))$ for $X \in \{N, M\}$, and $\Theta_{k+1} := M_{\ell_{k}}(\Theta_k)$ with $\Theta_1 := \theta$. Thus, we find the following.

THEOREM 3.2. With notations as in the preceding paragraph, the tower

$$N \subset M \overset{\Theta_1}{\hookrightarrow} M_{\ell_{1}}(M) \overset{\Theta_2}{\hookrightarrow} \cdots \subset M_{\ell_{k}}(M) \overset{\Theta_{k+1}}{\hookrightarrow} M_{\ell_{k+1}}(N) \subset \cdots$$

is a model for the basic construction tower of the subgroup-subfactor $R \rtimes H \subset R \rtimes G$.

Given a k-tuple $i \in I^k$, we write $i_{[r,s]}$ for the $(s - r + 1)$-tuple $(i_r, i_{r+1}, \ldots, i_s)$ for all $1 \leq r < s \leq k$. In fact, if $r = 1$ (resp., $s = k$), we simply write $i_{[1, r]}$ (resp., $i_{[r, k]}$) for $i_{[r, r]}$. And, for any $j \in I$, we write $(j, i_{[r,s]})$ (resp., $(i_{[r,s]}, j)$) for the tuple (j, i_r, \ldots, i_s) (resp., (i_r, \ldots, i_s, j)).

COROLLARY 3.3

For each $k \geq 1$, let the Jones projections e_{2k-1} and e_{2k} be mapped to the operator matrices $\tilde{e}_{2k-1} \in M_{\ell_{k-1}}(N)$ and $\tilde{e}_{2k} \in M_{\ell_{k}}(M)$, respectively, under the identifications (9).

Then

$$(\tilde{e}_{2k-1})_{i,j} = \frac{\delta_{i,j}^2}{\ell_{k-1}}, \forall i, j \in I^k; \text{ and }$$

$$(\tilde{e}_{2k})_{i,j} = n^{-\frac{1}{2}} \frac{\delta_{i,j}^2}{\ell_{k-1}} g_{i} g_{j}^{-1}, \forall i, j \in I^k.$$ \hspace{1cm} (10)

And, for each $k \geq 0$, the trace preserving conditional expectations $E_{M_{2k}} : M_{\ell_{k+1}}(N) \to M_{\ell_{k}}(M)$ and $E_{M_{2k+1}} : M_{\ell_{k}}(M) \to M_{\ell_{k}}(N)$ are given by the matrix maps

$$E_{M_{2k}} = M_{\ell_{k}}(E_{M}) \text{ and } E_{M_{2k+1}} = M_{\ell_{k}}(E_{N}),$$ \hspace{1cm} (12)

respectively, where E_{M} is given as in Lemma 2.2, and as usual $M_{\ell_{k+1}}(T) := M_{\ell_{k}}(M_{\ell_{k}}(T))$ for $T \in \{E_{M}, E_{N}\}$.

The proof of Corollary 3.3 relies on Proposition 2.1 and Lemma 2.2, while easy induction arguments yield the following results.
Lemma 3.4. For each $k \geq 1$, we have
\[\Theta_k((a_{i,j})_{u,v}) = \theta_{1^1}((a_{i,j})_{u,v}) = (a_{i,j})_{u,v} \in M_{k+1}. \]

PROPOSITION 3.5
For each $k \geq 1$, we have
\[\Theta_k \circ \cdots \circ \Theta_1 = \theta^{(k)}. \]

We now recall some notations and facts from [6].
Given a k-tuple $\underline{i} = (i_1, \ldots, i_k) \in I^k$, $k \geq 1$, we write \ominus_i for the product $g_{i_1}g_{i_2} \cdots g_{i_k}$.

For each $k \geq 1$, we have an action β^k of G on the set I^k: For $i, j \in I^k$,
\[\beta^k_{H g_{i,j}} = i \iff H g_{i,j} = H g_{i,j}, \forall i, j \in I^k. \]

For each $k \geq 1$, the relative commutants of R are given by
\[R' \cap M^{k-1} \cong \theta^{(k)}(R)' \cap M_{k}(N) \]
\[\exists (C_{i,j})_{u,v} \in M_{k}(C), \text{ such that } \]
\[x_{i,j} = C_{i,j} H g_{i,j}^{-1} \]
\[\text{and } C_{i,j} = 0 \text{ unless } H g_{i,j} = H g_{i,j}, \forall i, j \in I^k; \quad \text{and} \]
\[R' \cap M^{k} \cong \theta^{(k)}(R)' \cap M_{k}(M) \]
\[\exists (C_{i,j})_{u,v} \in M_{k}(C), \exists x_{i,j} = C_{i,j} H g_{i,j}^{-1}, \forall i, j \in I^k. \]

From these descriptions, it immediately follows that the relative commutants in the grid of the standard invariant of $N \subset M$ are given by
\[N' \cap M^{k-1} \cong \theta^{(k)}(N)' \cap M_{k}(N) \]
\[C_{i,j} = C_{\rho^k_{H_{i,j}}}, \forall H_{i,j} \in I^k; \]
\[N' \cap M^{k} \cong \theta^{(k)}(N)' \cap M_{k}(M) \]
\[C_{i,j} = C_{\rho^k_{H_{i,j}}}, \forall H_{i,j} \in I^k; \]
\[M' \cap M^{k-1} \cong \theta^{(k)}(M)' \cap M_{k}(N) \]
\[C_{i,j} = C_{\rho^k_{H_{i,j}}}, \forall g \in G, \forall i, j \in I^k; \quad \text{and} \]
\[M' \cap M^{k} \cong \theta^{(k)}(M)' \cap M_{k}(M) \]
\[C_{i,j} = C_{\rho^k_{H_{i,j}}}, \forall g \in G, \forall i, j \in I^k. \]

for all $k \geq 1$, where in each of the above equations the scalar matrix $(C_{i,j})$ corresponds to the operator matrix $(x_{i,j})$ as in (15) and (16).
For each \(k \geq 1 \), and given \(k \)-tuples \(i, j \in I^k \), we define operator matrices \(\delta^i_j \) and \(\eta^i_j \) by

\[
\delta^i_j = \delta^i_j \delta^j_i u(\tau(g)_1)u(\tau(g)_2)^{-1} \quad \text{and} \quad \eta^i_j = \delta^i_j \delta^j_i 1_H((\tau(g)_1)u(\tau(g)_2))^{-1},
\]

respectively, \(\forall \, u, v \in I^k \), where \(1_H(x) := 1 \) if \(x \in H \) and 0 otherwise. The superscripts \(ev \) and \(od \) refer to the ambient spaces \(M_{2k} \) and \(M_{2k-1} \), respectively.

Further, for each \(k \geq 1 \), we set \(Y_k = \{(i, j) \in I^k \times I^k : H \cap g_i = H \cap g_j \} \). With these simplified notations, it is not hard to show that, for each \(k \geq 1 \),

1. \(\delta \) acts diagonally by \(\beta^k \) on \(I^k \times I^k \) and \(Y_k \) is invariant under this action, i.e.,
 \[
 (\beta^k_g(i), \beta^k_g(j)) \in Y_k, \quad \forall \, g \in G, (i, j) \in Y_k;
 \]
2. \(\{(i, j)^{ev} : (i, j) \in Y_k\} \) forms a basis for \(R' \cap M_{2k-1} \); and
3. \(\{(i, j)^{ev} : (i, j) \in I^k \times I^k\} \) forms a basis for \(R' \cap M_{2k} \).

Thus, it makes sense to write \(g[i, j]^v \) for \([\beta^k_g(i), \beta^k_g(j)]^v \), \(\forall \, g \in G, (i, j) \in I^k \times I^k, k \geq 1, x \in \{ev, od\} \).

Given a \(G \)-action \(\nu \) on a set \(X \), we write \(G \setminus X(\nu) \) for a set of representatives of \(G \)-orbits of \(X \) under the action \(\nu \), and when the group action is clear from the context we simply denote it by \(G \setminus X \). For instance, we write \(G \setminus Y_k \) for a set of orbit representatives for the diagonal \(G \)-action on \(Y_k \) by \(\beta^k \).

The descriptions (17)–(20) give the following list of bases for the relative commutants:

Lemma 3.6. For each \(k \geq 1 \), for every choice of orbit representatives \(H \setminus X \) and \(G \setminus X \) (\(X = Y_k \), \(I^k \times I^k \)),

1. \(\{(\sum_{g \in G} g[i, j]^v) : (i, j) \in G \setminus Y_k\} \) (resp., \(\{(\sum_{g \in H} h[i, j]^v) : (i, j) \in H \setminus Y_k\} \)) forms a basis for \(M' \cap M_{2k-1} \) (resp., \(N' \cap M_{2k-1} \)).
2. \(\{(\sum_{g \in G} g[i, j]^{ev}) : (i, j) \in G \setminus (I^k \times I^k)\} \) (resp., \(\{(\sum_{g \in H} h[i, j]^{ev}) : (i, j) \in H \setminus (I^k \times I^k)\} \)) forms a basis for \(M' \cap M_{2k} \) (resp., \(N' \cap M_{2k} \)).

Since the above bases do not vary with the choice of orbit representatives, we shall no more trouble ourselves by repeating the phrase ‘given a set of representatives of \(K \)-orbits of \(X \)’ and simply write \(K \setminus X \) for such a choice.

4. Planar algebras

4.1 Introduction

We refer to [7, 8] for the basic aspects of planar algebras and thus follow the notations and terminologies therein. The goal of this section is to analyse the planar algebra associated to a bipartite graph and its dual, and to see how it responds to an appropriate action of a finite group on the bipartite graph.

Basically, a planar algebra \(P \) is a collection of vector spaces \(\{P_k : k \in \mathbb{N}\} \) admitting an ‘action’ of the operad of coloured tangles, where \(\mathbb{N} := \{0, 1, 2, \ldots\} \).

For the sake of completeness, we list some important coloured tangles in figures 1–5. With respect to composition of tangles, [8] contains the following generating sets:
Theorem 4.1 [8]. Let \mathcal{T} be a collection of coloured tangles containing

- $\mathcal{G}_0 := \{1_{0^+} \} \cup \{ E_{k+1}^1, M_k, I_k^{k+1}; k \in \text{Col} \} \cup \{ E^k_{k+1}; k \geq 1 \}$, or
- $\mathcal{G}_1 := \{1_{0^+} \} \cup \{ E_{k+1}^1, M_k, I_k^{k+1}; k \in \text{Col} \} \cup \{ R_k; k \geq 2 \}$.

Figure 1. The unit tangles.

Figure 2. The inclusion tangles.

Figure 3. The multiplication tangles.

Figure 4. The conditional expectation tangles.
and suppose \(T \) is closed under composition of coloured tangles, whenever it makes sense. Then \(T \) contains all coloured tangles.

DEFINITION 4.2

Let \(P \) and \(Q \) be two planar algebras. A planar algebra morphism from \(P \) to \(Q \) is a collection \(\varphi = \{ \varphi_k : k \in \text{Col} \} \) of linear maps \(\varphi_k : P_k \to Q_k \) which commutes with all the tangle maps, i.e., if \(T \) is a \(k_0 \)-tangle with \(b \) internal boxes of colours \(k_1, \ldots, k_b \), respectively, then

\[
\varphi_k_0 \circ Z_T^P = \begin{cases}
 Z_T^Q \circ (\otimes_{i=1}^b \varphi_{k_i}), & \text{if } b > 0; \\
 Z_T^Q, & \text{if } b = 0.
\end{cases}
\]

\(\varphi \) is said to be a planar algebra isomorphism if the maps \(\varphi_k \) are all linear isomorphisms.

As in the above definition, we shall follow the convention that the empty tensor product of vector spaces is taken to be the scalars \(\mathbb{C} \).

Repeated applications of the compatibility condition for tangle maps with respect to composition of tangles give the following useful result.

Lemma 4.3. Let \(P \) and \(Q \) be planar algebras, and \(\varphi_k : P_k \to Q_k, k \in \text{Col} \) be linear maps. If \(T \) is the collection of those tangles \(T \) for which the equation in Definition 4.2 holds, then \(T \) is closed under composition of tangles.

We shall primarily deal with subfactor planar algebras. Basically, these planar algebras are connected (i.e., \(\dim P_0 = 1 \)), have positive modulus (i.e., loops come out as constants), are spherical (i.e., tangle maps for 0-\(k \)-tangles are isotopy invariant on the 2-sphere), their constituent vector spaces are finite dimensional \(\mathbb{C}^* \)-algebras, and the tangle maps satisfy the \(*\)-compatibility condition

\[
Z_T(x_1 \otimes \cdots \otimes x_b)^* = Z_T^*(x_1^* \otimes \cdots \otimes x_b^*),
\]

where \(T \) is a coloured tangle as in Definition 4.2 and \(x_i \in P_{k_i}, 1 \leq i \leq b \), and \(T^* \) is the adjoint of \(T \) (see [8]). Along with these, if the modulus is \(\delta \), then for each \(k \geq 0 \), the pictorial trace \(\text{tr}_{k+1} : P_{k+1} \to \mathbb{C} \) defined by

\[
\text{tr}_{k+1}(x) |_{0_k} = \delta^{-k-1} Z_{E_{0_{k+1}}}^P (x), \ \forall x \in P_{k+1}.
\]

where \(E_{0_{k+1}} := E_1^{0+} \circ E_2^{1+} \circ \cdots \circ E_{k+1}^k \), is a faithful positive trace on \(P_{k+1} \).

\[\begin{array}{c}
\includegraphics{D_4} \\
R_4 \\
\includegraphics{E^{1+1}} \\
E^{1+1} \\
\includegraphics{E^{k+1}} \\
E^{k+1}
\end{array}\]

Figure 5. The rotation and Jones’ projections tangles.
Lemma 4.4 [9]. If P is a connected and irreducible\(^3\) planar algebra with modulus $\delta > 0$, then P is spherical.

Remark 4.5. For a connected and spherical planar algebra P with modulus $\delta > 0$, and each P_k being a finite-dimensional C^*-algebra,

1. the pictorial traces $\text{tr}_m: m \in Col$ are consistent with respect to inclusions and thus define a global trace on P, where for 0_\pm the trace for $P_{0_\pm} \cong \mathbb{C}$ is the obvious identity map; and
2. if tr_m is faithful for all $m \geq 1$, then for each $k \in \text{Col}$, $\frac{1}{\delta} Z^P_E_{k+1}$ (resp., $\frac{1}{\delta} Z^P_{(E')_{k+1}}$) is the unique tr_{k+1} preserving conditional expectation from P_{k+1} onto P_k (resp., $P_{1,k+1}$), where $P_{1,k+1} := \text{Image}(Z^P_{(E')_{k+1}})$.

The importance of planar algebras in subfactor theory lies in the following theorem of Jones:

Theorem 4.6 [3]. For every extremal Π_1-subfactor $N \subset M$ of finite index δ^2, taking $P_{0_\pm} = \mathbb{C}$ and $P_k = N' \cap M_{k-1}, k \geq 1$, there exists a unique subfactor planar algebra structure on the collection $P_{N^\subset M} := \{P_k: k \in \text{Col}\} =: P$ satisfying:

1. $Z^P_{E_{k+1}}(1) = \delta E_k$, $\forall k \geq 1$;
2. $Z^P_{(E')_{k+1}}(x) = \delta E'_k \cap M_{k-1}(x), \forall x \in N' \cap M_{k-1}, \forall k \geq 1$;
3. $Z^P_{E_k}(x) = \delta E'_k \cap M_k(x), \forall x \in N' \cap M_k, \forall k \in \text{Col}$, where for $k = 0_\pm$, the equation is read as

$$Z^P_{E_k}(x) = \delta \text{tr}_M(x), \forall x \in N' \cap M.$$

We now discuss group actions on planar algebras.

Definition 4.7

Let G be a finite group and $P = \{P_k: k \in \text{Col}\}$ be a planar algebra. We say that G acts on P if for each $k \in \text{Col}$, we have group homomorphisms $\alpha_k: G \rightarrow GL(P_k)$ such that, for each $g \in G$, $\alpha_k(g) := \{\alpha_k(g): k \in \text{Col}\}$ is a planar algebra automorphism of P.

For convenience, we write gx for the element $\alpha_k(g)(x)$, for $g \in G$, $x \in P_k$ and $k \in \text{Col}$.

Under such an action, taking

$$P_k^G = \{x \in P_k: gx = x, \forall g \in G\}, k \in \text{Col},$$

we note that the collection $P^G := \{P_k^G, k \in \text{Col}\}$ is a planar sub-algebra of P. Furthermore, the above action induces a G-action on the dual planar algebra P^*—see [8] as well. Indeed, for each $k > 0$, since $P_k^* = P_k$, G acts on P_k^* as it does on P_k; and as $P^*_{0_\pm} = P^*_{0_\pm}$, again G acts on these as it did on P_{0_\pm}. The constituent vector spaces of P^G and P^G being the same, the following is a tautology:

Proposition 4.8

If a finite group G acts on a planar algebra P, then with the induced G-action on P, the planar algebras P^G and $(P^G)^G$ are isomorphic.

\(^3\)A planar algebra P is said to be irreducible if $P_1 = 1$.

Planar algebra of the subgroup-subfactor

591
4.2 Planar algebra of the bipartite graph

Jones [5] associated a planar algebra to a given finite (possibly with multiple edges), connected bipartite graph with a 'spin function'. However, in [5], there is a slight conflict between the notion of 'state' and its 'compatibility' with 'loops'. Thus the planar algebra that we associate here to a data as above is an appropriate modification of the one given there; and the results obtained there hold verbatim.

Let $\Gamma = (\mathcal{U}^+, \mathcal{U}^-, \mathcal{E})$ be a finite, connected bipartite graph with even and odd vertices \mathcal{U}^+ and \mathcal{U}^-, respectively, edge set \mathcal{E} and a spin function $\mu: \mathcal{U} := \mathcal{U}^+ \sqcup \mathcal{U}^- \to (0, \infty)$.

For each $k > 0$, we denote a loop on Γ of length $2k$, based at a vertex $\pi_0 \in \mathcal{U}^+$ by a pair (π, ϵ) of maps $\pi: \{0, 1, \ldots, 2k - 1\} \to \mathcal{U}$ and $\epsilon: \{0, 1, \ldots, 2k - 1\} \to \mathcal{E}$ such that $\pi_{2i} \in \mathcal{U}^+$ and $\pi_{2i+1} \in \mathcal{U}^-$ for all $0 \leq i \leq k - 1$; and for $0 \leq i \leq 2k - 1$, $\epsilon(i)$ is the edge joining the vertices π_i and π_{i+1}, where we follow, here and elsewhere, the convention of labelling the vertices of $2k$-loops modulo $2k$, thus $\pi_{2k} = \pi_0$. The following pictorial form of the loop (π, ϵ) is quite useful:

$$
\pi_0 \xrightarrow{\epsilon_0} \pi_1 \xrightarrow{\epsilon_1} \cdots \xrightarrow{\epsilon_{k-1}} \pi_{k-1} \xrightarrow{\epsilon_k} \pi_k \xrightarrow{\epsilon_{k+1}} \pi_1 \xrightarrow{\epsilon_2} \pi_{k+1} \xrightarrow{\epsilon_3} \cdots \xrightarrow{\epsilon_i} \pi_{k-1} \xrightarrow{\epsilon_{k-1}} \pi_{k-1} \xrightarrow{\epsilon_{k-2}} \pi_{k-2} \xrightarrow{\epsilon_{k-3}} \cdots \xrightarrow{\epsilon_{2}} \pi_{k} \xrightarrow{\epsilon_1} \pi_{k+1} \xrightarrow{\epsilon_0} \pi_0.
$$

For each $k > 0$ and a $2k$-loop (π, ϵ), for every $1 \leq i < j \leq 2k$, we define

$$
\pi_{[i, j]} = \pi_i \xrightarrow{\epsilon_i} \pi_{i+1} \xrightarrow{\epsilon_{i+1}} \cdots \xrightarrow{\epsilon_{j-1}} \pi_j,
$$

and its reverse $\pi_{[i, j]}^\frown$ to be the path

$$
\pi_{[i, j]}^\frown = \pi_j \xrightarrow{\epsilon_{j-1}} \pi_{j-1} \xrightarrow{\epsilon_{j-2}} \cdots \xrightarrow{\epsilon_i} \pi_i;
$$

and if $0 \leq r < s \leq 2l$ is such that $\lambda_r = \pi_j$ for some $2l$-loop (λ, η), then we define the concatenation $\pi_{[i, j]} \circ \lambda_{[r, s]}$ to be the path

$$
\pi_{[i, j]} \circ \lambda_{[r, s]} = \pi_i \xrightarrow{\epsilon_i} \pi_{i+1} \xrightarrow{\epsilon_{i+1}} \cdots \xrightarrow{\epsilon_{j-1}} \pi_j = \lambda_r \xrightarrow{\eta_r} \cdots \xrightarrow{\eta_{s-1}} \lambda_s.
$$

Further, for any two vertices $u^+ \in \mathcal{U}^+$ and $u^- \in \mathcal{U}^-$, we set

$$
\mathcal{E}(u^+, u^-) = \{ \epsilon \in \mathcal{E}: \epsilon \text{ joins } u^+ \text{ and } u^- \}.
$$

For each $k > 0$, let $P_k(\Gamma)$ be the \mathbb{C}-vector space whose basis consists of loops on Γ of length $2k$, based at vertices in \mathcal{U}^+; and as for $k = 0$, a loop of length 0 is just a vertex on Γ, we set $P_0(\Gamma)$ to be the \mathbb{C}-vector space with \mathcal{U}^* as basis. We wish to give a planar algebra structure on the collection

$$
P(\Gamma) := \{ P_k(\Gamma): k \in \text{Col} \}.
$$

DEFINITION 4.9

A state σ of a coloured tangle T is a function

$$
\sigma: \{\text{regions of } T\} \cup \{\text{strings of } T\} \to \mathcal{U} \cup \mathcal{E},
$$
such that

(1) \(\sigma([\text{unshaded regions}]) \subset U^+, \sigma([\text{shaded regions}]) \subset U^-; \)

(2) \(\sigma([\text{strings}]) \subset E; \)

and

(3) if a string \(s \) lies in the closure of two regions \(r_1 \) and \(r_2 \), then \(\sigma(s) \) is the edge joining the vertices \(\sigma(r_1) \) and \(\sigma(r_2) \).

Note that a state \(\sigma \) of a \(k_0 \)-tangle \(T \) with \(b \) internal boxes of colours \(k_1, \ldots, k_b \), respectively, induces unique loops at the internal as well as the external boxes of \(T \).

Suppose around the \(j \)-th internal box \(D_j \) of \(T \), say of colour \(k_j = 4 \), the state \(\sigma \) looks like

\[
\begin{array}{c}
\varepsilon_0 \
\varepsilon_1 \
\varepsilon_2 \
\varepsilon_3 \\
| u_1 \ | u_2 \ | u_3 \
\end{array}
\]

\(D_j \)

\[
\begin{array}{c}
\varepsilon_7 \
\varepsilon_6 \
\varepsilon_5 \
\varepsilon_4 \\
| u_7 \ | u_6 \ | u_5 \
\end{array}
\]

then, by condition (3) of Definition 4.9, we get a loop

\[
\begin{array}{c}
\varepsilon_0 \
\varepsilon_1 \
\varepsilon_2 \
\varepsilon_3 \\
| u_1 \ | u_2 \ | u_3 \
\end{array}
\]

\(u_0 \rightarrow u_1 \rightarrow u_2 \rightarrow u_3 \rightarrow u_4 \)

\[
\begin{array}{c}
\varepsilon_7 \
\varepsilon_6 \
\varepsilon_5 \
\varepsilon_4 \\
| u_7 \ | u_6 \ | u_5 \
\end{array}
\]

And if \(kj \in \{0\pm\} \), then the state \(\sigma \) simply induces a vertex in \(U^+ \) or \(U^- \) according as \(D_j \) is a \(0_+ \)- or \(0_- \)-box. We take this vertex as the \(2\)\(k_j \)-loop induced by \(\sigma \) at \(D_j \). Similarly, \(\sigma \) also induces a \(2\)\(k_0 \)-loop at the external box \(D_0 \). We denote this unique \(2\)\(k_j \)-loop by the pair \((\pi^j, \epsilon^j)\) for each \(0 \leq j \leq b \). For each \(0 \leq j \leq b \), we say that the state \(\sigma \) is compatible with a \(2\)\(k_j \)-loop \((\pi, \epsilon)\) at its \(j \)-th box \(D_j \) if \((\pi^j, \epsilon^j) = (\pi, \epsilon)\). We can now define the tangle maps.

Given a \(k_0 \)-tangle \(T \) as above, we first isotope it to a ‘standard form’, i.e.,

- first rotate all the internal boxes of \(T \) so that their \(\sigma \)-vertices are on top left-corner; and
- then isotope all the strings, if necessary, so that any singularity of the \(y \)-coordinate function for strings is either a local maximum or a local minimum.

Given \(2\)\(k_j \)-loops \(\{(\pi^j, \epsilon^j)\}; \) \(0 \leq j \leq b \) (with the convention that \(2k_j = 0_\pm \) if \(k_j = 0_\pm \), and the \(\gamma \)-coordinate for strings is either a local maximum or a local minimum.

Given \(2\)\(k_j \)-loops \(\{(\pi^j, \epsilon^j)\}; \) \(0 \leq j \leq b \) (with the convention that \(2k_j = 0_\pm \) if \(k_j = 0_\pm \), and the \(\gamma \)-coordinate for strings is either a local maximum or a local minimum.

Given \(2\)\(k_j \)-loops \(\{(\pi^j, \epsilon^j)\}; \) \(0 \leq j \leq b \) (with the convention that \(2k_j = 0_\pm \) if \(k_j = 0_\pm \), and the \(\gamma \)-coordinate for strings is either a local maximum or a local minimum.

\[
Z_T^P(\pi^0, \epsilon^0) = \sum_{\sigma \in \{\text{states of } T \} \text{ compatible with } (\pi^j, \epsilon^j) \text{ at } D_j, \forall 0 \leq j \leq b} \prod_{\mu} \mu_{\alpha},
\]

\((26) \)

\(^{4}\text{We follow the convention that empty tensor product denotes the scalars.} \)
where \(\mu_\alpha := \mu_x / \mu_y \) taking \(x = \sigma \) (inner region at \(\alpha \)), \(y = \sigma \) (outer region at \(\alpha \)).

\[
\begin{array}{ccc}
\alpha & \alpha \\
\frac{x}{y} & \frac{y}{x}
\end{array}
\]

This gives the required tangle map \(Z^{P(\Gamma)}_T \colon \otimes_{i=1}^b P_{t_i}(\Gamma) \to P_{t_0}(\Gamma) \). The fact that this definition does not depend upon the way we isotope the tangle \(T \) to a standard form and that these tangle maps satisfy the compatibility conditions for composition of tangles is precisely the crux of Theorem 3.1 in [5].

\(*\)-structure on \(P(\Gamma) \)

There is a natural \(*\)-algebra structure on each \(P_k(\Gamma) \), such that the \(*\)-compatibility condition (24) holds:

On \(P_{0\pm}(\Gamma) \), we define \((u^\pm)^* = u^\pm \). And for each \(k > 0 \), given a 2\(k \)-loop \((\pi, \epsilon)\), we define

\[
(\pi, \epsilon)^* = \pi_0 \pi_1 \pi_2 \pi_{k-1} \pi_k.
\]

This gives an involution on \(P_k(\Gamma) \), with respect to the multiplication induced by \(Z^{P(\Gamma)}_M \), and the \(*\)-compatibility condition (24) holds.

4.3 Some calculations

For a coloured tangle \(T \), it is quite illustrative to write the coefficient \(Z^{P(\Gamma)}_T ((\pi^{(1)}, \epsilon^{(1)}) \otimes \cdots \otimes (\pi^{(b)}, \epsilon^{(b)}))_{(\theta^{(0)}, \nu^{(0)})} \) as a picture, as shown by the self-explanatory example in eq. (27), where \(T \) is the coloured tangle obtained by removing the labels from the picture.

\[
Z^{P(\Gamma)}_T ((\pi, \epsilon) \otimes (\lambda, \eta))_{(\theta, \nu)} =
\]

\[
\begin{array}{ccc}
\theta & \nu & \theta \\
\eta_0 & \eta_1 & \eta_2 \\
\pi_0 & \pi_1 & \pi_2 & \pi_3 \\
\phi_0 & \phi_1 & \phi_2 & \phi_3
\end{array}
\]

\[
= \delta^{\pi_{[0,2]}}_{\pi^{[0,2]}} \delta^{\pi_{[4,6]}}_{\pi^{[4,6]}} \delta^{\pi_{[2,4]}}_{\pi^{[2,4]}} \delta^{\pi_{[3,4]} \lambda_{[0,1]}}_{\pi^{[3,4]} \lambda^{[0,1]}}.
\]

With the help of this diagrammatic approach, we list the expressions of some tangle maps, which we shall need in the sequel.
Planar algebra of the subgroup-subfactor

$$Z_{P_1}^{\pi}(\pi, \epsilon) = \sum \left\{ \text{possible } v \in U, \epsilon \in E(\pi_k, v) \right\} \pi_0 \xrightarrow{\epsilon_0} \pi_1 \xrightarrow{\epsilon_1} \cdots \pi_{k-1} \xrightarrow{\epsilon_{k-1}} \pi_k \xrightarrow{\epsilon_k} v, \forall 2k\text{-loops } (\pi, \epsilon).$$

(28)

$$Z_{M_k}^{\pi}(\pi, \epsilon) = \delta_{[0,k]}^\pi \pi_0 \xrightarrow{\epsilon_0} \pi_1 \xrightarrow{\epsilon_1} \cdots \pi_{k-1} \xrightarrow{\epsilon_{k-1}} \pi_k \xrightarrow{\epsilon_k} \lambda_k \xrightarrow{\lambda_{2k-1}} \cdots \xrightarrow{\lambda_{k+1}} \eta_k, \forall 2k\text{-loops } (\pi, \epsilon), (\lambda, \eta).$$

(29)

$$Z_{(E_1)}^{\pi}(\pi, \epsilon) = \frac{\mu_1^2}{\mu_2} \sum \left\{ \text{possible } u \in U^+, \epsilon \in E(u, \pi_1) \right\} \mu_{\pi_1} \mu_{\pi_k} \xrightarrow{\epsilon_1} \cdots \xrightarrow{\epsilon_{k-1}} \pi_{2k-1} \xrightarrow{\epsilon_{2k-1}} \pi_k \xrightarrow{\epsilon_k} u, \forall 2k\text{-loops } (\pi, \epsilon).$$

(30)

$$Z_{E_{k+1}}^{\pi}(1) = \frac{\mu_{\pi_k} \mu_{\pi_{k+2}}}{\mu_2^{\pi_k-1}}(\pi, \epsilon).$$

(31)

4.4 Flip and dual

Given a bipartite graph $\Gamma = (U^+, U^-, E)$, we define another bipartite graph $\Gamma = (U^-, U^+, E)$ such that if ϵ is an edge in Γ joining an even vertex u_+ with an odd vertex u_-, then in Γ, ϵ is an edge joining the even vertex u_- with the odd vertex u_+. We call the bipartite graph Γ to be the flip of the graph Γ.

Given a finite, connected bipartite graph $\Gamma = (U^+, U^-, E, \mu)$, we note that its flip $\overline{\Gamma}$ is also finite and connected, and μ is a spin function for $\overline{\Gamma}$ as well.

Theorem 4.10. The dual of the planar algebra of a finite, connected bipartite graph $\Gamma = (U^+, U^-, E, \mu)$ is isomorphic to the planar algebra of its flip $\overline{\Gamma} = (U^-, U^+, E, \mu)$, i.e.,

$$-P(\Gamma) \cong P(\overline{\Gamma}).$$
Proof. We have \(-P(\Gamma)_{0k} = P_{\pm 0}(\Gamma) = \mathbb{C}[\mathcal{U}^\mp] = P_{\pm 0}(\Gamma)\); and for each \(k > 0\),
\[-P(\Gamma)_k = P_k(\Gamma) = \mathbb{C}[2k\text{-loops on } \Gamma \text{ based at vertices in } \mathcal{U}^+], \text{ and}
P(\Gamma)_k = \mathbb{C}[2k\text{-loops on } \Gamma \text{ based at vertices in } \mathcal{U}^-].\]

Let \(\varphi_0 : -P(\Gamma)_{0k} \to P_{0k}(\Gamma)\) be the identity morphism of the underlying vector space; and for each \(k > 0\), define \(\varphi_k : -P(\Gamma)_k \to P_k(\Gamma)\) to be the map whose action on basis vectors is given by
\[
\varphi_k((\pi, \epsilon)) = \begin{cases}
\mu_{\pi_0} \mu_{\pi_k} \pi_1 \\ \mu_{\pi_1} \mu_{\pi_{k+1}} \pi_{k+1}
\end{cases}
\]
for all \(2k\text{-loops } (\pi, \epsilon)\) on \(\Gamma\) based at vertices in \(\mathcal{U}^+\). Clearly, \(\varphi_k((\pi, \epsilon))\) is a \(2k\text{-loop on } \Gamma\) based at a vertex in \(\mathcal{U}^+\).

And, as the above correspondence is a bijection between \(2k\text{-loops on } \Gamma\) and those on its flip, each \(\varphi_k\) is a linear isomorphism. We claim that \(\varphi : \{\varphi_k ; k \in \text{Col}\}\) is a planar algebra morphism from \(-P(\Gamma)\) onto \(P(\Gamma)\).

Let \(T\) be the collection of tangles \(T\) for which the equation in Definition 4.2 holds. By Lemma 4.3, \(T\) is closed under composition of tangles. Thus, in order to show that \(T\) contains all the coloured tangles, it is enough to show, by Theorem 4.1, that it contains the collection
\[
G_1 = \{1^0\pm\} \cup \{I_k^\pm, M_k, E_k^\pm; k \in \text{Col}\} \cup \{R_k; k \geq 2\}.
\]
The verification of this assertion is a routine, if laborious, exercise using the pictorial approach to tangle maps as described above.

4.5 Group action on a bipartite graph with spin function

DEFINITION 4.11

Let \(\Gamma = (\mathcal{U}^+, \mathcal{U}^-, \mathcal{E})\) be a bipartite graph with a spin function \(\mu\). We say that a finite group \(G\) acts on \(\Gamma\) if

- \(G\) acts on each of the sets \(\mathcal{U}^+, \mathcal{U}^-\) and \(\mathcal{E}\); such that
- if \(e\) is an edge joining the vertices \(u_+\) and \(u_-\), then \(ge\) is an edge between the vertices \(gu_+\) and \(gu_-\).

Further, we say that \(G\) acts on \((\Gamma, \mu)\) if \(G\) acts on \(\Gamma\) and the spin function \(\mu\) is constant on \(G\text{-orbits of } \mathcal{U}^\pm\).

THEOREM 4.12. Let \(\Gamma = (\mathcal{U}^+, \mathcal{U}^-, \mathcal{E})\) be a finite, connected bipartite graph with a spin function \(\mu\), and suppose that a finite group \(G\) acts on \((\Gamma, \mu)\). Then there is a canonical \(G\text{-action on the planar algebra } P(\Gamma),\) and its \(G\text{-invariant planar sub-algebra } P(\Gamma)^G\) is isomorphic to the dual planar algebra \(-P(\Gamma)^G),\) i.e.,
\[
P(\Gamma)^G \cong -P(\Gamma)^G.
\]
Proof. For each \(k > 0 \), the action of \(G \) on \((\Gamma, \mu)\) induces an action on the set \(\{2k\text{-loops on } \Gamma \text{ based at vertices in } U^+\} \) given by

\[
g(\pi, \epsilon) = g\pi_0 \xrightarrow{g\epsilon_1} g\pi_1 \xrightarrow{g\epsilon_2} \cdots \xrightarrow{g\epsilon_k} g\pi_k,
\]

for all \(2k \)-loops \((\pi, \epsilon)\) and \(g \in G \).

Already, \(G \) acts on \(U^\pm \), thus we get a group action on \(P_k(\Gamma) \), for all \(k \in \text{Col} \). Thanks to the invariance of the spin function on the \(G \)-orbits of \(U^\pm \), Lemma 4.3 and Theorem 4.1, a bit of straightforward checking readily shows that it is in fact a \(G \)-action on the planar algebra \(P(\Gamma) \).

And the second assertion that \(P(\Gamma)^G \cong (P(\Gamma))^G \) is a mere consequence of Proposition 4.8 and the fact that the morphism \(\varphi = \{\varphi_k; k \in \text{Col}\} \) giving the planar isomorphism \(P(\Gamma) \cong P(\Gamma) \) in Theorem 4.10 is in fact a \(G \)-map, i.e., \(\varphi_k(gx) = g\varphi_k(x), \forall g \in G, x \in P_k, k \in \text{Col} \).

We list some easily verifiable facts; which are also suggested in [5].

Lemma 4.13. Let \(\Gamma \) and \(G \) be as in Theorem 4.12. Then \(P(\Gamma)^G \)

1. is connected iff \(G \) acts transitively on \(U^\pm \),
2. has modulus \(\|\Gamma\| \) if in addition to (1), \((\mu^2)_{u \in U^\pm}\) is the Perron–Frobenius eigenvector of the adjacency matrix \(A\Gamma \) of \(\Gamma \), where \(\|\Gamma\| \) is the norm of \(A\Gamma \),
3. is irreducible iff \(G \) acts transitively on the set \(\{2\text{-loops on } \Gamma \text{ based at vertices in } U^+\} \).

5. Planar algebra of the subgroup-subfactor

5.1 The bipartite graph \(\star_n \)

Consider the bipartite graph \(\star_n = (U^+, U^-, E) \), as in figure 6, where \(U^+ := \{H_{g_1}, \ldots, H_{g_n}\}, U^- := \{\ast\} \) and the edge set \(E := \{\epsilon_1, \ldots, \epsilon_n\} \), where \(\epsilon_i \) is the edge

![Figure 6. The bipartite graph \(\star_n \).](image-url)
joining the vertices Hg_i and \ast, $1 \leq i \leq n$. Let $\mu : \mathcal{U} \to (0, \infty)$ be the spin function given by $\mu(\ast) = n^{1/4}$ and $\mu(Hg_i) = 1$ for all $i \in I$.

Note that $(\mu^2_{u})_{u \in \mathcal{U} \cup \mathcal{U}^\ast}$ is the Perron–Frobenius eigenvector of the adjacency matrix of the bipartite graph \ast_n, and the norm of this adjacency matrix is $\| \ast_n \| = \sqrt{n}$. Further, with this set up, there is a natural action of G on (\ast_n, μ).

G acts trivially on \mathcal{U}^\ast; on \mathcal{U}^+ it acts by the natural left action, i.e., $g \cdot Hg_i = Hg_j \iff Hg_ig^{-1} = Hg_j$, for $g \in G, i, j \in I$.

Remark 5.1. By Lemma 4.13, the planar algebra $P(\ast_n)^G$ is connected and has positive modulus \sqrt{n}.

There being only one odd vertex and no multiple edges in \ast_n, we can ignore the \ast-vertex and the edge joining it to an even vertex in the notation of a loop on \ast_n. Thus if k is even, say $k = 2r$, we simply write

\[
\begin{pmatrix}
Hg_{i_1}, \ldots, Hg_{i_{r-1}} \\
Hg_{i_0}
\end{pmatrix}
\]

for the $2k$-loop

\[
\begin{array}{c}
\ast \\
Hg_{i_0} \\
\ast \quad \ast \\
Hg_{i_r} \\
\ast \\
\ast
\end{array}
\]

and if k is odd, say $k = 2s + 1$, we denote by

\[
\begin{pmatrix}
Hg_{i_1}, \ldots, Hg_{i_s} \\
Hg_{i_0}
\end{pmatrix}
\]

the $2k$-loop

\[
\begin{array}{c}
\ast \\
Hg_{i_0} \\
\ast \quad \ast \\
Hg_{i_s} \\
\ast \\
\ast
\end{array}
\]

for all $i = (i_0, i_1, \ldots, i_{k-1}) \in I^k$.

We shall also view these new descriptions of $2k$-loops as elements of $(H \setminus G)^k$. Also note that the action β^1 of G on I is basically the natural left action of G on the set $H \setminus G = \{Hg_1, \ldots, Hg_n\}$.

With these simplified notations we have the following set of bases.

\footnote{Our running notation for orbit representatives is not be confused with $H \setminus G$.}
Lemma 5.2. \(\{ \sum_{i \in I} H_{gi} \} \) and \(\{ * \} \) form bases for \(P_{0_+}(\bullet_+^n) \) and \(P_{0_-}(\bullet_-^n) \), respectively. For every choice of orbit representatives \(G \setminus (H \setminus G)^k \) under diagonal \(\beta^1 \)-action,
\[
\left\{ \sum_{g \in G} \begin{pmatrix} H_{g_0}, \ldots, H_{g_{n-1}} & \ldots & H_{g_r} \\ H_{g_{2r-1}}, \ldots, H_{g_{r+1}} \end{pmatrix} : \begin{pmatrix} H_{g_0}, \ldots, H_{g_{n-1}} & \ldots & H_{g_r} \\ H_{g_{2r-1}}, \ldots, H_{g_{r+1}} \end{pmatrix} \in G \setminus (H \setminus G)^{2r} \right\}
\]
forms a basis for \(P_{2r}(\bullet_+^n) \) for all \(r \geq 1 \); and
\[
\left\{ \sum_{g \in G} \begin{pmatrix} H_{g_0}, \ldots, H_{g_{n-1}} & \ldots & H_{g_r} \\ H_{g_{2r-1}}, \ldots, H_{g_{r+1}} \end{pmatrix} : \begin{pmatrix} H_{g_0}, \ldots, H_{g_{n-1}} & \ldots & H_{g_r} \\ H_{g_{2r-1}}, \ldots, H_{g_{r+1}} \end{pmatrix} \in G \setminus (H \setminus G)^{2r+1} \right\}
\]
forms a basis for \(P_{2r+1}(\bullet_+^n) \) for all \(r \geq 0 \).

Remark 5.1, Lemma 5.2, Lemma 4.4, and Remark 4.5 give the following:

Lemma 5.3. With notations as in §5.1, the planar algebra \(P(\bullet_+^n) \) is irreducible, spherical, and admits a global trace.

Moving towards the desired identification, we define \(\varphi_{0_+^k} : P^{R \times H \subset R \times G}_{0_+^k} \to P_{0_+^k}(\bullet_+^n) \) by
\[
P^{R \times H \subset R \times G}_{0_+^k} := \mathbb{C} \ni \lambda \xmapsto{\varphi_{0_+^k}} \lambda 1_{0_+^k} \in P_{0_+^k}(\bullet_+^n), \quad (33)
\]
where \(1_{0_+^k} = \sum_{i \in I} H_{gi} \) and \(1_{0_-^k} = * \) are the respective multiplicative units of \(P_{0_+^k}(\bullet_+^n) \); and \(\varphi_1 : P^{R \times H \subset R \times G}_{1} = \mathbb{C} \to P_{1}(\bullet_+^n) \) by
\[
P^{R \times H \subset R \times G}_{1} = \mathbb{C} \ni \lambda \xmapsto{\varphi_1} \lambda 1_1 \in P_{1}(\bullet_+^n), \quad (34)
\]
where \(1_1 \) is the multiplicative unit \(\sum_{i \in I}(H_{gi}) \) of \(P_{1}(\bullet_+^n) \).

For \(k \geq 2 \), we define \(\varphi_{k} : P^{R \times H \subset R \times G}_{2k \setminus 1} \to P_{2k}(\bullet_+^n) \) on the basis vectors described in Lemma 3.6 by
\[
P^{R \times H \subset R \times G}_{2k \setminus 1} = N' \cap M_{2k} \ni \sum_{h \in H} H^{L_{i,j}} \quad \mapsto \quad \sum_{g \in G} g \begin{pmatrix} H_{g_0}, \ldots, H_{g_{n-1}} & \ldots & H \cap g_z \\ H_{g_{2r-1}}, \ldots, H_{g_{r+1}} \end{pmatrix} \in P_{2k+1}(\bullet_+^n), \quad (35)
\]
for all \((i, j) \in H \setminus (I^{k} \times I^{k}) \), \(k \geq 1 \); and
\[
P^{R \times H \subset R \times G}_{2k} = N' \cap M_{2k-1} \ni \sum_{h \in H} H^{L_{i,j}} \quad \mapsto \quad \sum_{g \in G} g \begin{pmatrix} H_{g_0}, \ldots, H_{g_{n-1}} & \ldots & H \cap g_z \\ H_{g_{2r-1}}, \ldots, H_{g_{r+1}} \end{pmatrix} \in P_{2k}(\bullet_+^n), \quad (36)
\]
for all \((i, j) \in H \setminus Y_k \), \(k \geq 1 \).
We want to show that
\[\{ \varphi_k : k \in \mathrm{Col} \} = \varphi : P^{R \rtimes H \subset R \rtimes G} \to P(\ast n)^G \]
is a planar algebra isomorphism.

5.2 Ingredients of the proof

Lemma 5.4. With running notations, we have
\[\dim P_k^{R \rtimes H \subset R \rtimes G} = \dim P_k(\ast n)^G, \quad \forall k \in \mathrm{Col}. \]

Proof. We have already seen that \(P_0(\ast n)^G, P_1(\ast n)^G, P_0^{R \rtimes H \subset R \rtimes G} \) and \(P_1^{R \rtimes H \subset R \rtimes G} \) are all one dimensional.

For each \(k \geq 1 \), by Lemma 3.6, \(\dim N_k' \cap M_{2k} \) (resp., \(\dim N_k' \cap M_{2k-1} \)) is equal to the number of \(H \)-orbits of \(I_k \times I_k \) (resp., \(Y_k \)) under the diagonal \(\beta_k \)-action. On the other hand, by Lemma 5.2, \(\dim P_2 k(\ast n)^G \) (resp., \(\dim P_{2k+1}(\ast n)^G \)) is equal to the number of \(G \)-orbits of \((H \setminus G)^{2k+1} \) (resp., \((H \setminus G)^{2k} \)) under the diagonal \(\beta_1 \)-action.

The corresponding dimensions are same because the number of \(H \)-orbits of \(I_k \times I_k \) (resp., \(Y_k \)) under the diagonal \(\beta_k \)-action is equal to the number of \(G \)-orbits of \((H \setminus G)^{2k} \) (resp., \((H \setminus G)^{2k} \)) under the diagonal \(\beta_1 \)-actions. We include a proof of the assertion in parentheses, and the other follows similarly.

Note that the number of \(G \)-orbits of \((H \setminus G)^{2k} \) is same as the number of \(H \)-orbits of \((H \setminus G)^{2k-1} \) under the diagonal actions mentioned in the previous paragraph. This is true because any element of \((H \setminus G)^{2k} \) lies in the \(G \)-orbit of an element of the type \((H, g_{i_1}, \ldots, g_{i_{2k-1}}) \); and
\[g(H, g_{i_1}, \ldots, g_{i_{2k-1}}) = (H, g_{j_1}, \ldots, g_{j_{2k-1}}) \]
if and only if \(g \in H \) and \(g(H_{g_{i_1}, \ldots, g_{i_{2k-1}}}) = (H_{g_{j_1}, \ldots, g_{j_{2k-1}}}) \). And thus the assertion in the parentheses follows from the facts that the correspondence
\[Y_k \ni (i, j) \mapsto \left(\begin{array}{c}
H_{g_{i_1}, H_{g_{i_1-1}}, \ldots, H_{g_{i_2}}, \ldots, g_{i_k}},
H \cap g_1
\end{array} \right) \in (H \setminus G)^{2k-1}, \]
by the definition of the action \(\beta_k \), is an \(H \)-injection, and that \(|Y_k| = |X^{2k-1}| \).

In particular, this gives:

Lemma 5.5. With notations as in eqs (33)–(36), for each \(k \in \mathrm{Col} \), the map \(\varphi_k : P_k^{R \rtimes H \subset R \rtimes G} \to P_k(\ast n)^G \) is a linear isomorphism.

We conclude this subsection with two lemmas that we shall need for verifying that the \(\varphi_k \)'s are equivariant with respect to the inclusion and conditional expectation tangle maps.

In order to understand how the inclusion tangles act on the subgroup-subfactor planar algebra, and the way we defined the maps \(\varphi_k \), we need to analyse the inclusions in terms of the bases that we obtained in Lemma 3.6. For \(k \) odd, say \(k = 2r-1 \), it is the usual matrix algebra inclusion \(\theta(\ast r)(N) \cap M_{2r}(N) \subset \theta(\ast r)(N) \cap M_{2r}(M) \), whereas for \(k \) even, the inclusion is given by an appropriate \(\Theta_r \).
Lemma 5.6. For each \(k \geq 1 \), the inclusion \(N' \cap M_{2k} \subset N' \cap M_{2k+1} \) is given as under:

\[
\theta^{(k)}(N) \cap M_{2k}(M) \equiv \sum_{h \in H} \theta_2[(\frac{i}{2})^k] \in \theta^{(k+1)}(N) \cap M_{2k+1}(N),
\]

\[
\sum_{h \in H, r, s \in I: \{((r, i), (s, j)) \in Y_{k+1}\}} \theta_k[(\frac{i}{2})^k] \equiv \sum_{h \in H, r, s \in I: \{((r, i), (s, j)) \in Y_{k+1}\}} \theta_2[(\frac{i}{2})^k] \in \theta^{(k+1)}(N) \cap M_{2k+1}(N),
\]

for all \((i, j) \in H \setminus (I^k \times I^k) \).

Proof. First we note that, for each \(k \geq 1 \) and \((i, j) \in I^k \times I^k \),

\[
\Theta_{k+1}(\frac{i}{2})^k \equiv \sum_{r, s \in I: \{((r, i), (s, j)) \in Y_{k+1}\}} \theta_2[(\frac{i}{2})^k] \in \theta^{(k+1)}(N) \cap M_{2k+1}(N),
\]

Indeed, by the description of \(\Theta_{k+1} \) as in Lemma 3.4, we have

\[
\Theta_{k+1}(\frac{i}{2})^k = \sum_{r, s \in I: \{((r, i), (s, j)) \in Y_{k+1}\}} \theta_2[(\frac{i}{2})^k] \in \theta^{(k+1)}(N) \cap M_{2k+1}(N),
\]

\(\forall \theta \in H \).

\(\Theta_{k+1}(\frac{i}{2})^k = \sum_{r, s \in I: \{((r, i), (s, j)) \in Y_{k+1}\}} \theta_2[(\frac{i}{2})^k] \in \theta^{(k+1)}(N) \cap M_{2k+1}(N),\)

i.e.,

\[
\sum_{x, y \in I: ((x, \beta^{(k)}_h(i)), (y, \beta^{(k)}_h(j))) \in Y_{k+1}} [(x, \beta^{(k)}_h(i)), (y, \beta^{(k)}_h(j))]^{od} = \sum_{r, s \in I: \{((r, i), (s, j)) \in Y_{k+1}\}} [\beta^{(k+1)}_h((r, i)), \beta^{(k+1)}_h((s, j))]^{od}, \forall \theta \in H.
\]

For each \(h \in H \) and \((u, v) \in Y_{k+1} \), the coefficient of \([u, v]^{od} \) on l.h.s. (resp., r.h.s.) of eq. (38) is the number of elements in the set

\[
L_{u, v} := \{(x, y) \in I \times I: ((x, \beta^{(k)}_h(i)), (y, \beta^{(k)}_h(j))) \in Y_{k+1}, [\beta^{(k+1)}_h((x, i)), \beta^{(k+1)}_h((y, j))]^{od} = [u, v]^{od}\}
\]

(38)
Viewing the two sides of eq. (38) as elements of $R' \cap M_{2k+1}$, we shall be done once we show that these coefficients are same.

Note that if $(\beta_h^{k+1}(r, i), \beta_h^{k+1}(s, j)) = (u, v)$, for some $h \in H$ and $((r, i), (s, j)) \in Y_{k+1}$, then $u_{ij} = \beta_h^k(L)$, $v_{ij} = \beta_h^{k}(j)$ and

$$(u_1, \beta_h^k(j)), (v_1, \beta_h^{k}(j))) \in Y_{k+1}.$$

Consider the maps $L_{2\mathbb{Z}} \xrightarrow{\phi} R_{2\mathbb{Z}}$ given as under:

For each $(x, y) \in L_{2\mathbb{Z}}$ (resp., $(r, s) \in R_{2\mathbb{Z}}$), $\phi((x, y)) = (p, q) \in R_{2\mathbb{Z}}$ (resp., $\psi((r, s)) = (w, z)$), where (r, s) (resp., (w, z)) is given by the equations

$$H_{g_p} = H_{g_t} (\cap g_{\beta_p(Q)} h(\cap g_L)^{-1} \text{ and}$$

$$H_{g_q} = H_{g_t} (\cap g_{\beta_p(Q)} h(\cap g_L)^{-1} \text{ and}$$

$$(\text{resp., } \beta_h^{k+1}(r, i)) = (w, \beta_h^{k}(j)) \text{ and } \beta_h^{k+1}(s, j)) = (z, \beta_h^{k}(j)).$$

It can be seen that the maps ϕ and ψ are inverses of each other. Thus the coefficient of $[u, v]^{od}$ is same on both sides of eq. (38), and we are done. □

The following lemma is a consequence of the uniqueness of trace preserving conditional expectation.

Lemma 5.7. Let $A_0 \subset A_1$ and $B_0 \subset B_1$ be inclusions of finite dimensional C^*-algebras. Suppose tr_{A_1} and tr_{B_1} are faithful traces on A_1 and B_1, respectively. Let $\phi_i : A_i \rightarrow B_i$, $i = 0, 1$ be C^*-isomorphisms preserving the traces such that $\phi_i/A_0 = \phi_0$. Then $E_{B_1} \circ \phi_1 = \phi_0 \circ E_{A_0}$, where $E_{X_1}^{X_0} : X_1 \rightarrow X_0$ is the unique tr_{X_1}-trace preserving conditional expectation for $X_1 \in \{A_1, B_1\}, i = 0, 1$.

5.3 The identification

We need to show that φ, as defined in eqs (33)–(36), commutes with all the tangle maps.

For notational convenience, in what follows, we shall simply write P (resp., Q) for the subgroup-subfactor planar algebra $P^{R \rtimes H \subset R \rtimes G}$ (resp., the invariant planar subalgebra $P(\ast_n)^{G}$).

Lemma 5.8. $\varphi_{k+1} \circ Z_{k+1}^P = Z_{k+1}^Q \circ \varphi_k$, $\forall k \in \text{Col}$.

Proof. We clearly have $\varphi_1 \circ Z_{1}^P = Z_{1}^Q \circ \varphi_0$, by (33) and (34).

Now for $k \geq 1$, we give a proof for odd k, the even case is similar. Suppose $k = 2r + 1$ for some $r \geq 0$. Then, by Lemma 5.6, $Z_{2r+1}^P : N' \cap M_{2r} \hookrightarrow N' \cap M_{2r+1}$ is given by the inclusion map Θ_{r+1}. On the other hand, by (28) for the bipartite graph \ast_n, we have

$$Q_{2r+1} \ni \sum_{g \in G} g \left(H_{g_{i_1}}, \ldots, H_{g_{i_r}}, H_{g_{i_{r+1}}} \right) \in Q_{2r+2}.$$
If $r = 0$, then for each $\lambda \in \mathbb{C} = \mathcal{P}_1$, by (34) and (36), we have
\[
(Z_{I_1^P}^Q \circ \varphi_1)(\lambda) = Z_{I_1^P}^Q \left(\lambda \sum_{i \in I} (H_{gi}) \right) = Z_{I_1^P}^Q \left(\frac{\lambda}{|\text{Iso}_H(H)|} \sum_{g \in G} g(H) \right) = \frac{\lambda}{|H|} \sum_{i \in I, g \in G} g(H, H_{gi})
\]
and
\[
(\varphi_2 \circ Z_{I_1^P}^P)(\lambda) = \varphi_2 \left(\frac{\lambda}{|\text{Iso}_H((1, 1))|} \sum_{g \in G} g[1, 1]^{od} \right) = \frac{\lambda}{|H|} \varphi_2 \left(\sum_{i \in I, h \in H} h[1, 1]^{od} \right) = \frac{\lambda}{|H|} \sum_{i \in I, g \in G} g(H, H_{gi}).
\]
showing that $\varphi_2 \circ Z_{I_1^P}^Q = Z_{I_1^P}^Q \circ \varphi_1$, where for an H-set X and $x \in X$, $\text{Iso}_H(x) := \{ h \in H : hx = x \}$.

And for $r \geq 1$, for each $(i, j) \in H \setminus (I' \times I')$, by Lemma 5.6, we have
\[
(\varphi_{2r+2} \circ Z_{I_{2r+1}^P}^Q) \left(\sum_{h \in H} h[i, j]^{vu} \right) = \varphi_{2r+2} \left(\sum_{h \in H, x, y \in I : ((x, i), (y, j)) \in Y_{r+1}} h[(x, i), (y, j)]^{od} \right) = \sum_{g \in G, x \in I} g \left(H_{g_{v_0}}, \ldots, H_{g_{v_{r+n}}} \right)_{H \cap g_{v_{r+2}}}
\]
and
\[
(Z_{I_{2r+1}^P}^Q \circ \varphi_{2r+1}) \left(\sum_{h \in H} h[i, j]^{vu} \right) = Z_{I_{2r+1}^P}^Q \left(\sum_{g \in G} g \left(H_{g_{v_0}}, \ldots, H \cap g_{v_{r+1}} \right) \right)
\]
\[= \sum_{x \in I, g \in G} g \left(\begin{array}{c}
H_{g_{i_1}}, \ldots, H_{g_{i_l}} \\
H_{g_{j_1}}, \ldots, H_{g_{j_l}}
\end{array} \right) \]
\[= \sum_{j \in I, g \in G} g \left(\begin{array}{c}
H_{g_{i_1}}, \ldots, H_{g_{i_l}} \\
H_{g_{j_1}}, \ldots, H_{g_{j_l}}
\end{array} \right). \]

Thus \(\varphi_{k+1} \circ Z_{P_{k+1}}^P = Z_{Q_{k+1}}^Q \circ \varphi_k. \)

Lemma 5.9. \(\varphi_k \circ Z_{M_k}^P = Z_{M_k}^Q \circ (\varphi_k \otimes \varphi_k), \forall k \in \text{Col}. \)

Proof. There is nothing to prove for \(k = 0 \). Both \(P \) and \(Q \) being irreducible, there is nothing to be proved for \(k = 1 \) either. For \(k \geq 2 \), we give a proof for the case when \(k \) is odd, say \(k = 2r + 1 \), for some \(r \geq 1 \), and the other case can be proved on exactly similar lines. Let

\[X_{2r+1} = \left\{ \left(\begin{array}{c}
H_{g_{i_1}}, \ldots, H_{g_{i_l}} \\
H_{g_{j_1}}, \ldots, H_{g_{j_l}}
\end{array} \right) \in (H/G)^{2r+1} : \{i, j\} \in I' \right\}. \]

Then \(X_{2r+1} \) is invariant under the diagonal \(\beta^1 \)-action of \(H \) on \((H/G)^{2r+1}\) and it can also be identified with \((H/G)^{2r}\) as \(H \)-sets. Thus, as in the proof of Lemma 5.14, the correspondence

\[I' \times I' \ni (i, j) \mapsto \left(\begin{array}{c}
H_{g_{i_1}}, H_{g_{i_1}}^{-1} g_{i_1}, \ldots, H \cap g_{i_1} \\
H_{g_{j_1}}, H_{g_{j_1}}^{-1} g_{j_1}, \ldots, H \cap g_{j_1}
\end{array} \right) \in X_{2r+1} \]

is an \(H \)-bijection; and a set of representatives of \(H \)-orbits of \(X_{2r+1} \) is also a set of representatives of \(G \)-orbits of \((H/G)^{2r+1}\). This shows that

\[\left\{ \left(\begin{array}{c}
H_{g_{i_1}}, H_{g_{i_1}}^{-1} g_{i_1}, \ldots, H \cap g_{i_1} \\
H_{g_{j_1}}, H_{g_{j_1}}^{-1} g_{j_1}, \ldots, H \cap g_{j_1}
\end{array} \right) : (i, j) \in H \setminus (I' \times I') \right\} \]

is a set of representatives of \(G \)-orbits of \((H/G)^{2r+1}\). In particular, by Lemma 5.2,

\[\left\{ \sum_{g \in G} \left(\begin{array}{c}
H_{g_{i_1}}, H_{g_{i_1}}^{-1} g_{i_1}, \ldots, H \cap g_{i_1} \\
H_{g_{j_1}}, H_{g_{j_1}}^{-1} g_{j_1}, \ldots, H \cap g_{j_1}
\end{array} \right) : (i, j) \in H \setminus (I' \times I') \right\} \]

forms a basis for \(Q_{2r+1} \).
Planar algebra of the subgroup-subfactor

The number of elements in the set $\sum_{\hat{h} \in H \setminus (I' \times I')}$, we have

$$
\left(\sum_{\hat{h} \in H} \hat{h} \right)^{\nu} \left(\sum_{\hat{h} \in H} \hat{h} \right)^{\nu} = \sum_{\hat{h}, \hat{i} \in H, \hat{j} \in H \setminus (I' \times I')} C_{\hat{i}, \hat{j}}^{\nu} \hat{h} \left(\begin{array}{c} \hat{h} \hat{g}_1, \hat{h} \hat{g}_2, \ldots, \hat{h} \hat{g}_r, \ldots, H \cap g_1 \\ H \hat{g}_1, H \hat{g}_2, \ldots, H \cap g_2 \end{array} \right),
$$

where $C_{\hat{i}, \hat{j}}^{\nu}$ is the number of elements in the set

$$
\tilde{C}_{\hat{i}, \hat{j}}^{\nu} := \{(h, \hat{h}) \in H \times H : \beta_h^{\nu}(j) = \beta_h^{\nu}(\hat{j}), \beta_h^{\nu}(i) = \hat{i} \text{ and } \beta_h^{\nu}(\hat{j}) = \hat{j} \}.
$$

We have used the fact that since the above product is in $N' \cap M_{2r}$, the coefficient of $\hat{h} \left(\begin{array}{c} \hat{h} \hat{g}_1, \hat{h} \hat{g}_2, \ldots, \hat{h} \hat{g}_r, \ldots, H \cap g_1 \\ H \hat{g}_1, H \hat{g}_2, \ldots, H \cap g_2 \end{array} \right)$ in it is the same as that of $\left(\begin{array}{c} \hat{h} \hat{g}_1, \hat{h} \hat{g}_2, \ldots, \hat{h} \hat{g}_r, \ldots, H \cap g_1 \\ H \hat{g}_1, H \hat{g}_2, \ldots, H \cap g_2 \end{array} \right)$ for all $\hat{h} \in H$.

On the other hand, by (29) for the bipartite graph $*_{\nu}$, we have

$$
\varphi_{2r+1} \left(\sum_{h \in H} h \right)^{\nu} \varphi_{2r+1} \left(\sum_{\hat{h} \in H} \hat{h} \right)^{\nu} = \sum_{g \in G} \left(\begin{array}{c} H \hat{g}_1, \ldots, H \cap g_1 \\ H \hat{g}_2, \ldots, H \cap g_2 \end{array} \right) \sum_{g \in G} \left(\begin{array}{c} H \hat{g}_1, \ldots, H \cap g_1 \\ H \hat{g}_2, \ldots, H \cap g_2 \end{array} \right),
$$

where $D_{\hat{i}, \hat{j}}^{\nu}$ is the number of elements in the set

$$
\tilde{D}_{\hat{i}, \hat{j}}^{\nu} := \{ (g, \hat{g}) \in G \times G : \begin{array}{l} g(H, H \hat{g}_1, \ldots, H \cap g_1) = \hat{g}(H, H \hat{g}_1, \ldots, H \cap g_1), \\ g(H, H \hat{g}_2, \ldots, H \cap g_1) = (H, H \hat{g}_1, \ldots, H \cap g_1) \text{ and } \\ \hat{g}(H, H \hat{g}_1, \ldots, H \cap g_1) = (H, H \hat{g}_1, \ldots, H \cap g_1) \end{array} \},
$$

and the coefficients are constant on each orbit as in the former case.
It can be seen that, for each \((\hat{i}, \hat{j}) \in H \setminus (I' \times I')\), the sets \(\tilde{C}_{\hat{i}, \hat{j}}\) and \(\tilde{D}_{\hat{i}, \hat{j}}\) are same. Thus we conclude that \(\varphi_{2r+1} \circ Z_{P_{2r+1}}^L = Z_{P_{2r+1}}^R \circ (\varphi_{2r+1} \otimes \varphi_{2r+1})\).

Note that \(Q_{1,k} = [P(\star_n)^G]_{1,k} = P_{1,k}(\star_n)^G, \ \forall k \geq 1\).

Lemma 5.10. With running notations, we have

\[\varphi_k \circ Z_{E_{k+1}}^P = Z_{E_{k+1}}^Q \circ \psi_{k+1}, \text{ and} \]
\[\varphi_{k+1} \circ Z_{(E')_{k+1}}^P = Z_{(E')_{k+1}}^Q \circ \psi_{k+1}, \forall k \in \text{Col}. \]

Proof. First note that the maps \(\psi_k, k \in \text{Col}\) are all \(*\)-preserving, where the \(*\)-structure on \(Q\) is given as in the last paragraph of §4.1; and, by Lemma 5.9, they are algebra homomorphisms as well.

We next show that these maps preserve the traces as well, where \(Q\) is equipped with the global pictorial trace as given in Lemma 5.3. Then by the fact that they are \(*\)-preserving algebra isomorphisms, it follows that the global pictorial trace on \(Q\) is in fact faithful.

Thus (39) holds by Lemma 5.7, and also by the same result, (40) will hold once we show that \(\psi_k(P_{1,k}) = Q_{1,k} := \text{Image}\left(Z_{(E')_{k+1}}^Q\right), \forall k \geq 1\).

We calculate the trace on \(Q_k\) for odd \(k\), say \(k = 2r + 1\) for some \(r \geq 1\). In the planar algebra \(P(\star_n)\), given \(\hat{i}, \hat{j} \in I'\) and \(x, y \in I\), we have

Thus the pictorial trace on \(P_{2r+1}(\star_n)^G\) is given by

\[\text{tr}_{2r+1}\left(\sum_{g \in G} \left(\begin{array}{c} H_{g_1}, \ldots, H_{g_r} \\ H_{g_{j_1}}, \ldots, H_{g_{j_r}} \end{array}\right)\right) = \frac{1}{(\sqrt{n})^{2r+1} \mu_2^2 \delta_x \delta_y} |\text{Iso}_G(H_{g_x})| \]
\[\quad = \frac{|H| \delta_x}{n^{r+1}}, \]

for all \(x \in I\) and \(\hat{i}, \hat{j} \in I'\), where we have used the fact that, \(G\) acting transitively on \(H \setminus G, \text{Iso}_G(H_{g_x}) \cong \text{Iso}_G(H) = H\), for all \(x \in I\).
On the other hand, for each \((i, j) \in H \setminus (I^r \times I^r)\), we have \(\text{tr}_{M_{2r}^r} (M)(L_{i, j}^{ev}) = \frac{\delta_{ij}}{2^{2r}}\); so that

\[
\text{tr}_{M_{2r}^r} (M) \left(\sum_{h \in H} h[L_{i, j}^{ev}] \right) = \sum_{h \in H} \delta_{\psi_n(h)}(\frac{1}{n^r}) \frac{|H|}{n^r} \delta_{ij}.
\]

and thus

\[
\text{tr}_{2r+1} (\varphi_{2r+1} \left(\sum_{h \in H} h[L_{i, j}^{ev}] \right)) = \text{tr}_{2r+1} \left(\sum_{g \in G} \left(\begin{array}{c} H_{g_{i}}, \ldots, H_{g_{n}} \\ H_{g_{i}}^{-1}, \ldots, H_{g_{n}}^{-1} \end{array} \right) \right)
\]

\[
= \frac{|H|}{n^r} \delta_{ij}.
\]

This shows that \(\varphi_{2r+1}\) preserves trace. With exactly similar calculations we can show that \(\varphi_k\) preserves trace for even \(k\) as well.

It only remains to show that \(\varphi_k (P_{1, k}) = Q_{1, k}\) for all \(k \geq 1\). Again, there is nothing to prove for \(k = 1\). We prove the assertion for odd \(k\), say \(k = 2r + 1\), for some \(r \geq 1\). Note that

\[
\left\{ \sum_{g \in G} \left(\begin{array}{c} H_{g_{i}}, \ldots, H_{g_{n}} \\ H_{g_{i}}^{-1}, \ldots, H_{g_{n}}^{-1} \end{array} \right) : (i, j) \in H \setminus (I^r \times I^r) \right\}
\]

forms a basis for \(Q_{2r+1}\).

By (30) for the bipartite graph \(\star_n\), for each \((i, j) \in H \setminus (I^r \times I^r)\), we have

\[
Z_{(E)^{Q}}^{Q} \left(\sum_{g \in G} g \left(\begin{array}{c} H_{g_{i}}, \ldots, H_{g_{n}} \\ H_{g_{i}}^{-1}, \ldots, H_{g_{n}}^{-1} \end{array} \right) \right)
\]

\[
= \frac{1}{\sqrt{n}} \sum_{z \in I, g \in G} \left(\begin{array}{c} g \cdot H_{g_{i}} \cdot H_{g_{i}^{-1}} \cdot \ldots \cdot H^\cap \ldots \cdot H_{g_{i}}^{-1} \\ g \cdot g_{i} \cdot g_{i}^{-1} \cdot \ldots \cdot H^\cap \ldots \cdot H_{g_{i}}^{-1} \end{array} \right)
\]

\[
= \frac{1}{\sqrt{n}} \sum_{x \in I, g \in G} g \left(\begin{array}{c} H_{g_{i}}, \ldots, H_{g_{n}} \\ H_{g_{i}}^{-1}, \ldots, H_{g_{n}}^{-1} \end{array} \right) ;
\]

and these elements generate \(Q_{1, 2r+1}\) as a vector space.

Further, for each \((i, j) \in H \setminus (I^r \times I^r)\), \(\sum_{g \in G} g[L_{i, j}^{ev}] \in M' \cap M_{2r}\) and

\[
\sum_{g \in G} g[L_{i, j}^{ev}] = \sum_{x \in I, h \in H} h g_{s}[L_{i, j}^{ev}]
\]

\[
\overset{\varphi_{2r+1}}{\rightarrow} \sum_{x \in I, g \in G} g \left(\begin{array}{c} H_{g_{i}} g_{s}, \ldots, H_{g_{n}} g_{s}^{-1} \\ H_{g_{i}} g_{s}^{-1}, \ldots, H_{g_{n}} g_{s}^{-1} \end{array} \right) ;
\]

\[
\overset{\varphi_{2r+1}}{\rightarrow} \sum_{x \in I, g \in G} g \left(\begin{array}{c} H_{g_{i}} g_{s}, \ldots, H_{g_{n}} g_{s}^{-1} \\ H_{g_{i}} g_{s}^{-1}, \ldots, H_{g_{n}} g_{s}^{-1} \end{array} \right) .
\]
\[
\sum_{x \in I, g \in G} \sum_{x \in I, \tilde{g} \in G} \left(\begin{array}{cccc}
H_{g_{i_{1}}} & \ldots & H_{g_{i_{k}}} \\
H_{g_{i_{1}-1}g_{i_{1}-2}} & \ldots & H \cap g_{i_{k}}
\end{array} \right)
\]

Thus the elements of the above generating set for \(Q_{1,2r+1}\) are in the space \(\varphi_{2r+1}(M' \cap M_{2r})\), and we know that \(P_{1,2r+1} = E_{M' \cap M_{2r}}(N' \cap M_{2r}) = M' \cap M_{2r}\). This proves our second claim.

Lemma 5.11. \((\varphi_{k+1} \circ Z_{q_{k+1}}) = Z_{\chi_{k+1}}^{P}, \forall k \geq 1.\)

Proof. We first prove the assertion for even \(k\).

We need to consider some \(H\) and \(G\) invariant subsets of \(I_{k} \times I_{k}\) and \((H \setminus G)^{2k+1}\) for all \(k \geq 1.\) For each \(k \geq 1\), we set \(W_{k} = \{(i, j) \in I_{k} \times I_{k}: i_{2} = i_{2}, j_{2} = j_{2}\},\)

\[F_{2k+1} = \left\{ \left(\begin{array}{cccc}
H_{g_{i_{1}}} & \ldots & H_{g_{i_{k}}} \\
H_{g_{i_{1}-1}g_{i_{1}-2}} & \ldots & H \cap g_{i_{k}}
\end{array} \right) : x \in I, i, j \in I_{k} \text{ with } i_{k} = j_{k} \right\}\]

and

\[G_{2k+1} = \left\{ \left(\begin{array}{cccc}
H_{g_{i_{1}}} & \ldots & H_{g_{i_{k}}} \\
H_{g_{i_{1}-1}g_{i_{1}-2}} & \ldots & H \cap g_{i_{k}}
\end{array} \right) : i, j \in I_{k} \text{ with } i_{k} = j_{k} \right\}\]

Then \(W_{k}\) (resp., \(F_{2k+1}\)) is \(G\) invariant under the diagonal \(\beta^{k}\) (resp., \(\beta^{1}\))-action, and \(G_{2k+1} \subset F_{2k+1}\) is \(H\) invariant under the restricted action.

Further, the correspondence

\(W_{k} \ni (i, j) \mapsto \left(\begin{array}{cccc}
H_{g_{i_{1}}} & \ldots & H_{g_{i_{k}}} \\
H_{g_{i_{1}-1}g_{i_{1}-2}} & \ldots & H \cap g_{i_{k}}
\end{array} \right) \in G_{2k+1}\)

is an \(H\)-bijection. So

\[\left\{ \left(\begin{array}{cccc}
H_{g_{i_{1}}} & \ldots & H_{g_{i_{k}}} \\
H_{g_{i_{1}-1}g_{i_{1}-2}} & \ldots & H \cap g_{i_{k}}
\end{array} \right) : (i, j) \in H \setminus W_{k} \right\}\]

is a set of representatives of \(H\) orbits of \(G_{2k+1}\). Clearly this is also a set of representatives of \(G\) orbits of \(F_{2k+1}\).

Now we note that, by (31) for the graph \(\star_{n}\), we have

\[Z_{\chi_{k+1}}^{Q}(1) = \frac{1}{\sqrt{n}} \sum_{x, y, z \in I_{1} \times I_{1} \times I_{1}} \left(\begin{array}{cccc}
H_{g_{i_{1}}} & \ldots & H_{g_{i_{k}-1}} & H_{g_{i_{k}}} \\
H_{g_{i_{1}-1}g_{i_{1}-2}} & \ldots & H_{g_{i_{k}-1}} & H_{g_{i_{k}}}
\end{array} \right) .\]

Recall, from Theorem 4.6, that \(Z_{\chi_{k+1}}^{P}(1) = \sqrt{n}\tilde{e}_{2k}\), where the Jones projection \(\tilde{e}_{2k} \in M_{\mu}(M)\) is given, as in Corollary 3.3, by

\[\left(\tilde{e}_{2k} \right)_{L} = n^{-1}g_{l_{1}}^{2}g_{j_{1}}^{-1}, \forall i, j \in I_{k}.\]
Thus

\[\tilde{e}_{2k} = \frac{1}{n} \sum_{(i, j) \in W_k} [i, j]^{ev} \]

\[= \frac{1}{n} \sum_{h \in H} \frac{1}{|\text{Iso}_H([i, j])|} h[i, j]^{ev} \]

\[\varphi^{2k+1} = \frac{1}{n} \sum_{(i, j) \in H \setminus W_k} \frac{1}{|\text{Iso}_H([i, j])|} g \left(\frac{H g_k, \ldots, H \cap g_L}{H g_i, \ldots, H \cap g_j} \right) \]

\[= \frac{1}{n} \sum_{g \in G} \frac{1}{|\text{Isog} \left(\left(\frac{H g_k, \ldots, H \cap g_L}{H g_i, \ldots, H \cap g_j} \right) \right)|} \]

\[\times g \left(\frac{H g_k, \ldots, H \cap g_L}{H g_i, \ldots, H \cap g_j} \right) \]

\[= \frac{1}{n} \sum_{x, y, z \in I, i \in I^{k-1}} \left(\frac{H g_i, \ldots, H g_i \cap H g_j, H g_k}{H g_i, \ldots, H g_i \cap H g_j, H g_k} \right), \]

where we have used the fact that

\[\text{Iso}_H([i, j]) = \text{Isog} \left(\left(\frac{H g_k, \ldots, H \cap g_L}{H g_i, \ldots, H \cap g_j} \right) \right). \]

This shows that \(Z_{2k+1}^{Q} = \varphi^{2k+1} \circ Z_{2k+1}^{P}. \)

The case for odd \(k \) follows on similar lines by taking analogues of \(W_k, F_{2k+1} \) and \(G_{2k+1} \) to be the sets \(Z_k, F_{2k}, G_{2k}, \) respectively, which are given by

\[Z_k = \{ (i, j) \in I^k \times I^k : i = j, i_1 = 1 \}, \]

\[F_{2k} = \left\{ \left(\frac{H g_i, \ldots, H g_i \cap H g_j, H g_k}{H g_i, \ldots, H g_i \cap H g_j, H g_k} \right) : x, y \in I, i \in I^{k-1} \text{ with } y = i_{k-1} \right\} \]

and

\[G_{2k} = \left\{ \left(\frac{H g_i, \ldots, H g_i \cap H g_j, H g_k}{H g_i, \ldots, H g_i \cap H g_j, H g_k} \right) : y \in I, i \in I^{k-1} \text{ with } y = i_{k-1} \right\}. \]

Finally, all the calculative work being done, we collect some of the lemmas proved above to give a complete proof of the main theorem.
Theorem 5.12. Given a finite group G, a subgroup H of index, say n, and an outer action α of G on the hyperfinite II_1-factor R, the planar algebra of the subgroup-subfactor $R \rtimes H \subset R \rtimes G$ is isomorphic to the G-invariant planar subalgebra of $P(\star_n)$, i.e.,

$$p_{R \rtimes H \subset R \rtimes G} \cong P(\star_n)^G.$$

Proof. Let $\varphi_k, k \in \mathrm{Col}$ be the maps defined as in eqs (33)–(36). We claim that

$$\{\varphi_k : k \in \mathrm{Col}\} =: \varphi : P_{R \rtimes H \subset R \rtimes G} \to P(\star_n)^G$$

is a planar algebra isomorphism.

We already know, by Lemma 5.5, that the maps $\varphi_k, k \in \mathrm{Col}$ are all linear isomorphisms. Thus what remains to be shown is that φ is a planar algebra morphism.

Let T be the collection of coloured tangles T which commute with φ. Then, by Theorem 4.1, it is enough to show that T is closed under composition of tangles, whenever it makes sense, and that it contains the generating set of tangles $G_0 = \{10\pm \} \cup \{E^{k+1}_k, M_k, I_k^{k+1} : k \in \mathrm{Col}\} \cup \{E^{k+1}_k, (E')^{k+1}_k : k \geq 1\}$.

The first assertion follows from Lemma 4.3. Then, it readily follows from definitions that $\varphi_{0\pm} \circ Z_{10\pm}^{P_{\star_n}^G} = Z_{10\pm}^{P_{\star_n}^G}$. Thus $\{10\pm \} \subset T$. Finally, Lemmas 5.8–5.11 show that the collection $\{I^{k+1}_k, M_k : k \in \mathrm{Col}\} \cup \{E^{k+1}_k, (E')^{k+1}_k : k \in \mathrm{Col}\} \cup \{E^{k+1}_k : k \geq 1\}$ is also contained in T. Thus $G_0 \subset T$.

This completes the proof. \hfill \square

What follows immediately is the following fact, which, however, already exists in literature.

COROLLARY 5.13

Given a finite group G and a subgroup H, the subgroup-subfactor $R \rtimes H \subset R \rtimes G$ does not depend upon the outer action α of G on the hyperfinite II_1-factor R.

Proof. It follows from Theorem 5.12 that the planar algebra of the subgroup-subfactor $R \rtimes H \subset R \rtimes G$ is independent of the outer action α. In particular, it follows that the standard invariant of the subfactor is independent of α. $R \rtimes G$ being hyperfinite, the standard invariant of $R \rtimes H \subset R \rtimes G$ is a complete invariant (c.f. [11]). Thus the subgroup-subfactor $R \rtimes H \subset R \rtimes G$ is independent of the outer action α. \hfill \square

By repeated applications of the ‘Not Burnside’s lemma’, the coefficients in the Poincaré series of the subgroup-subfactor are given by:

COROLLARY 5.14

For each $k \geq 1$,

$$\dim p_{R \rtimes H \subset R \rtimes G}^k = \frac{1}{|G|} \sum_{C \in \mathcal{C}_G} |C| \left(\frac{|C \cap H||G|}{|C||H|} \right)^k,$$

where \mathcal{C}_G is the set of conjugacy classes of G.

As promised above, we note that since the automorphism group of the bipartite graph \star_n is S_n, we have the following:
COROLLARY 5.15

Given any pair of finite groups $H \subset G$ with index n, the planar algebra $PR \rtimes H \subset R \rtimes G$ is a planar subalgebra of the planar algebra of the bipartite graph $\star n$ and contains the planar algebra $P(\star n)^{S_n} \cong PR \rtimes S_n \subset R \rtimes S_n$.

We can also identify the planar algebra of the fixed subalgebra with the G-invariant planar subalgebra of the planar algebra of the flip of $\star n$.

COROLLARY 5.16

Given a finite group G, a subgroup H of index, say n, and an outer action α of G on the hyperfinite II$_1$-factor R, the planar algebra $p^{R^G} \subset R^H$ is isomorphic to the G-invariant planar subalgebra of $P(\overline{\star_n})$, i.e.,

$$p^{R^G} \subset R^H \cong P(\overline{\star_n})^G,$$

where $\overline{\star_n}$ is the flip of the bipartite graph \star_n. In particular, the subfactor $R^G \subset R^H$ is independent of the outer action α.

Proof. Recall, from Proposition 3.1, that if $N := R \rtimes_{\alpha/H} H$ and $M := R \rtimes_{\alpha} G$, then $p^{R^G} \subset R^H \cong p^{M \subset M_1}$, where M_1 is the II$_1$-factor obtained by the basic construction of the subfactor $N \subset M$. Further, by Proposition 4.17 of [8], $p^{M \subset M_1}$ is isomorphic to the dual planar algebra $-P^{N \subset M}$. Thus, by Theorems 4.12 and 5.12, we conclude that

$$p^{R^G} \subset R^H \cong P(\overline{\star_n})^G.$$

This shows that the planar algebra $p^{R^G} \subset R^H$ is independent of the outer action α. Further, R^H, being a II$_1$-factor sitting in R, is itself hyperfinite – see [2]. Thus, as in the preceding Corollary, the subfactor $R^G \subset R^H$ is independent of the action α.

Acknowledgements

The author would like to thank his advisor Prof. V S Sunder and Prof. Vijay Kodiyalam for their invaluable guidance and support throughout his stay at IMSc as a graduate student. This paper is a result of many long discussions that the author had with them, and it would not have come into existence without their input and guidance.

References

[1] Bhattacharyya Bina and Landau Zeph, Intermediate standard invariants and intermediate planar algebras, preprint
[2] Connes Alain, Classification of injective factors, Ann. Math. 104 (1976) 73–115
[3] Jones V F R, Planar Algebras I, arXiv:math/9909027v1[math.QA]
[4] Jones V F R, Index for subfactors, Invent. Math. 71 (1983) 1–25
[5] Jones V F R, The planar algebra of a bipartite graph, Knots in Hellas ’98 (Delphi) (2000) pages 94–117
[6] Jones V F R and Sunder V S, Introduction to Subfactors, Number 234 in LMS Lecture Note Series (Cambridge University Press) (1997)
[7] Kodiyalam Vijay, Landau Zeph and Sunder V S, The planar algebra associated to a Kac algebra, Proc. Indian. Acad. Sci. (Math. Sci.) 113(1) (2003) 15–51
[8] Kodiyalam Vijay and Sunder V S, On Jones’ planar algebras, J. Knot Theory and its Ramifications 13(2) (2004) 219–247
[9] Kodiyalam Vijay and Sunder V S, The planar algebra of a semisimple and cosemisimple Hopf algebra, Proc. Indian Acad. Sci. (Math. Sci.) 116(4) (2006) 443–458
[10] Kosaki H and Yamagami S, Irreducible bimodules associated with crossed product algebras, Int. J. Math. 3(5) (1992) 661–676
[11] Popa Sorin, Classification of amenable subfactors of type II, Acta Math. 172 (1994) 163–225