Arginine deimimase expressed in vivo activates the mitochondrial apoptosis pathway through inhibiting cytosolic ferritin and inducing chromotin autophagy

CURRENT STATUS: UNDER REVISION

BMC Cancer

Qingyuan Feng
Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Guangxi Medical University

Xuzhao Bian
State Key Laboratory of Virology, College of Life Sciences, Wuhan University

Xuan Liu
State Key Laboratory of Virology, College of Life Sciences, Wuhan University

Ying Wang
State Key Laboratory of Virology, College of Life Sciences

Huiting Zhou
State Key Laboratory of Virology, College of Life Sciences

Xiaojing Ma
State Key Laboratory of Virology, College of Life Sciences

Chunju Quan
State Key Laboratory of Virology, College of Life Sciences

Yi Yao
Department of Oncology, Renmin Hospital of Wuhan University

Zhongliang Zheng
College of Life Sciences in Wuhan University

✉ biochem@whu.edu.cn
Corresponding Author

ORCiD: 0000-0003-2861-5720

DOI:
10.21203/rs.2.22978/v1
SUBJECT AREAS

Oncology Cancer Biology

KEYWORDS

Arginine deprivation, arginine deiminase, apoptosis, mitochondria damage, chromotin autophagy
Abstract

Background

Based on its low toxicity, arginine starvation therapy has the potential to treat those malignant tumors that can’t be treated by surgery. Arginine deiminase (ADI) gene is indicated to be an idea cancer-suppressor gene. ADI expressed in vivo displays higher oncolytic efficiency than ADI-PEG20 (Pegylated Arginine Deiminase by PEG 20,000)[1]. However, it is still unknown whether cytosolic ADI has the same function mechanism as ADI-PEG20 or other underlying mechanisms in cells.

Methods

The interaction of ADI and other protein factors was screened by yeast hybrid, and verified by co-immunoprecipitation and immunofluorescent staining. The effect of ADI inhibiting ferritin light-chain domain (FTL) on mitochondria damage was evaluated by site-directed mutation and flow cytometry. The apoptosis pathway of mitochondria control was analyzed by Western Blot and real-time PCR. The effect of p53 expression on cancer cell death was assessed by siTP53 transfection. The chromatin autophagy was explored by immunofluorescent staining and Western Blot.

Results

ADI expressed in vivo inhibited the activity of cytosolic ferritin through interacting with FTL. The inactive mutant of ADI still aroused the apoptosis of some cells through mitochondria damage. Arginine starvation also induced the expression increase of p53 and p53AIP1, which aggravate cellular mitochondria damage. Chromatin autophagy appeared at the later stage of arginine starvation. DNA damage came along with the whole process of arginine starvation. Histone 3 (H3) was found in autophagosomes, which implied that cancer cells try to utilize the arginine in histones to survive during arginine starvation.

Conclusions: Mitochondria damage is the major mechanism for ADI expressed in vivo to
induce cancer cell death. Chromatophagy accumulations not only drive cancer cell to utilize histone arginine but also speed up cancer cell death at the later time point of arginine starvation.

Background

Tumor starvation therapy has become a mainstream target strategy for cancer therapy in clinic. Except starvation therapy resulting from angiogenesis inhibition[2], the deprivation of specific amino acid is also a potential treatment for cancer therapy. As a potential anti-cancer drug, ADI-PEG20 already obtained some good results in Phase I and II clinic studies[3, 4]. ADI-PEG20 exhausts the arginine in blood to starve some specific tumors. Those tumors can’t synthesis arginine due to the deficiency of argininosuccinate synthetase (ASS)[5]. David K. Ann and Hsing-Jien Kung[6, 7] et al. described how ADI-PEG20 produces arginine deprivation in vitro to specifically kill tumor cells by a novel mechanism involving mitochondria dysfunction, reactive oxygen species generation, nuclear DNA leakage and chromatin autophagy. DNA damage caused by chromatin autophagy triggered the death of cancer cells. However, ADI-PEG20 displayed lower efficiency of oncolysis. Arginine deprivation in blood only continued for two weeks in an ASS1-methylated malignant pleural mesothelioma[8]. Then, plasma arginine levels recovered due to the development of anti-ADI neutralizing antibodies at the fourth week[8]. ADI-PEG20 monotherapy did not demonstrate an overall survival benefit for hepatocellular carcinoma (HCC) in Phase III clinic studies [9]. Therefore, new strategies are needed to synergize the effect of ADI-PEG20 in or transform the using way of ADI gene.

ADI gene should be a potential cancer suppressor gene[1]. ADI expressed in vivo displayed higher apoptosis-inducing efficiency than ADI-PEG20. Cytosolic ADI quickly exhausted the arginine in cytoplasm[1] to lead fast cancer cell death. ADI adenovirus also presented
excellent oncolytic efficiency[1]. Moreover, the promoter of human telomerase reverse transcriptase (hTERT) was utilized to control ADI expression in adenovirus, which ensured higher safety for normal cells.[1] However, it is still unknown about the underlying interaction mechanisms of ADI expressed in vivo, and the cellular response to rapid endogenous arginine deprivation. It will help to prevent side-effects when ADI gene is used for cancer gene therapy in future.

We found that cytosolic ADI can interact with FTL in cytoplasm. Cytosolic ferritin functions as storage and transport of iron ions in cells. We explored whether the interaction of ADI and FTL impairs mitochondria function through mutating the catalytic residue of ADI into alanine. Then, we detected the apoptosis pathway of mitochondria control. The increasing expression of p53 and p53AIP1 led to mitochondria damage at the early stage of arginine deprivation in vivo. At the later time of arginine deprivation in vivo, chromatin autophagy became worse and aggravated the mitochondria damage.

The molecular mechanism of cell death induced by ADI expressed in vivo is proved here to be associated with some cellular dysfunctions including ferritin inhibition, p53 expression upregulation, DNA damage and chromatin autophagy. The interaction between ADI and FTL is not the dominant reason of leading mitochondria damage. Arginine deprivation remains the key mechanism of ADI anticancer in the cytoplasm. In addition, cytoplasmic ADI will not interfere with other cellular function through interaction.

Methods

Plasmid construction

To construct pcDNA4-ADI, an ADI-overexpressing plasmid, ADI coding sequence was synthesized by Nanjing Genscript LTD and sub-cloned into the EcoRI/XhoI sites of pcDNA™4/TO/myc-His vector. C-myc tag was fused at the c-terminal of ADI protein. Two
primers were used (5′- GATATGAATTCCACCATGTCCGTCTTCGAT AGCAAGT -3′ and 5′- GATATCTCGAG TCACCATTG GACATCTTTCTGGACA -3′). pcDNA4-ADIΔ(cysteine398alanine) plasmid was constructed through overlapping extension method. Two mutant primers were used (5′ GTATGGGTAACG CTCGTGCCATGTCAATGCCTTTATC 3′ and 5′ GATAAAGGCATTGACATGG CACGAGCGTTACCATA C 3′).

To build pGBK7-ADI plasmid as screening bait in yeast hybrid experiment, ADI coding sequence was inserted into the Nde I/BamH I sites of pGBK7 vector which expresses proteins fused to amino acid 1-147 of the GAL4 DNA binding domain. Two primers were used (5′- GATATCATATGTCCGTCTTCGATAGCAAGTTT -3′ and 5′- GATATCTCGAGTCACCATTTGACATCTTTTCTGGACA -3′).

Other plasmids were donated by Dr. Youjun Li in Life Science College of Wuhan University.

Cell culture and cell lines

Human liver cancer cell lines (HpG2), Prostate cancer cell line (PC3) and human embryo lung cell line (MRC5) were cultured with DMEM supplemented with 10% fetal bovine serum (FBS), penicillin (100IU/ml) and streptomycin (100 μg/ml). Cells were grown in a 5% CO2 cell culture incubator at 37°C. All culture reagents were purchased from Life Technologies LTD.

Yeast Two-Hybrid Assay

Yeast two-hybrid analysis was performed in yeast strain AH109 according to the manufacturer’s instructions (http://www.clontech.com/). pGBK7-ADI plasmid as bait plasmid was co-transformed into AH109 yeast with the yeast two-hybrid cDNA library of human liver (Cat. #630468) from Clontech Laboratories Inc. Quadruple dropout medium (without tryptophan, leucine, histidine and adenine) containing 4mg/ml x-a-gal was used to test the activation of reported genes MEL1 (MDS1/EVI1-like gene 1).

RNA Isolation and Quantitative RT-PCR
Total RNA was extracted from cells using Trizol (Invitrogen) following the manufacturer’s instructions. The RNA concentration and purity were determined by spectrophotometry (NanoDrop Technologies Inc., LLC). One microgram of total RNA was used as the template for synthesizing complementary DNA (cDNA) by using the cDNA Synthesis Kit (Thermo Scientific). Quantitative RT-PCR (qRT-PCR) was performed by using SYBR Green PCR Master Mix with the StepOne Real-Time PCR System (Bio-Rad). \(2^{-\Delta\Delta C_t}\) in relative quantification analysis method was used to calculate the change fold of mRNA among the different cells. GAPDH was utilized as an internal control for the normalization. The primers used for RT-PCR were listed in supplementary tab S1.

Western Blot Analysis

Five micrograms of protein were electrophoresed in 10% SDS-PAGE gels and blotted to polyvinylidine difluoride membranes. Specific primary antibodies were detected with peroxidase-labeled secondary antibodies (ProteinTech Group Inc.) by using SuperSignal West Dura Extended Duration Substrate (Pierce Chemical) per manufacturer’s instructions. The used antibodies from ProteinTech Group Inc. included myc-tag antibody (Cat. #66036-1-Ig), ASS antibody (Cat. #66036-1-Ig), GAPDH antibody (Cat. #60004-1-Ig), FTL antibody (Cat. #10727-1-AP), Flag-tag antibody (Cat. # 66008-3-Ig), p53 antibody (Cat. #60283-2-Ig), Bcl-2 antibody (Cat. #60178-1-Ig), PUMA antibody (Cat. # 55120-1-AP), Bax antibody (Cat. #60267-1-Ig), caspase 9 antibody (Cat. # 66169-1-Ig), caspase 3 antibody (Cat. # 66470-2-Ig), Histone H3 antibody (Cat. # 17168-1-AP), HRP-conjugated goat anti-mouse IgG (Cat. #SA00001-1) and HRP-conjugated goat anti-rabbit IgG (Cat. #SA00001-2). p53AIP1 antibody (Cat. # ABP56144) was from Abbkine Inc., Noxa antibody (Cat. # ab13654) was from Abcam Inc.. Bak antibody (Cat. # ab69404) was from Abcam Inc.. TRITC conjugated goat anti-rabbit antibody (Cat. # AS10-1018) was from Agrisera Inc..

Fluorescence assay for mitochondrial permeability transition pore (MPTP)
MPTP activation assay followed the manuscript of LIVE Mitochondrial Transition Pore Assay Kit (GMS10095.1 v.A) from GENMED SCIENTIFICS INC. U.S.A. Cells were inoculated in 96-well plates at a density of 5×10^4 cells per well, and transfected with pcDNA4-ADI plasmid. After incubation for 48h, cells were stained with 50µg calcein-AM (Calcein acetoxyethyl ester), washed with 0.1M phosphate buffer solution (PBS), and neutralize with 0.1M cobalt (II) chloride hexahydrate. Then detected fluorescence intensity of cells in Thermo Multiskan™ FC Microplate Reader.

GFP-LC3 reporter fluorescence assay for autophagy in live cells

Expression of the GFP-LC3 fusion gene allows to visualize autophagosome formation in real time in live cells. Firstly, cells were inoculated in twelve-well plates with cover slips at a density of 1×10^5 cells per well, and co-transfected with pcDNA4-ADI and pEGFP-LC3 plasmids. Secondly, cells were starved with serum-free medium for 72 hours. Thirdly, cells were fixed with 4% paraformaldehyde, permeabilized with 0.2% Triton X-100. Cellular nucleuses were stained by DAPI for 10 minutes. Finally, the plates were sealed and stored at 4°C. GFP fluorescent signals were detected by using a confocal microscope (LeicaMicrosystems, Mannheim, Germany).

Chromatin autophagy assay by fluorescence co-localization.

Cells were inoculated in twelve-well plates with cover slips at a density of 1×10^5 cells per well, and co-transfected with pcDNA4-ADI and pEGFP-LC3 plasmids. Then, 2% FBS was added into DMEM medium to prevent cells from dying too quickly. After 96 hours of culture time, cells were fixed with 4% paraformaldehyde, permeated with 0.2% Triton X-100. Then, cells were incubated with TRITC-labeled anti-H3 antibody for 4 hours at 4°C. After wash, cellular nucleuses were stained by DAPI for 10 minutes. Finally, the plates were sealed and stored at 4°C. Fluorescent signals were detected by using a confocal
Results

Cancer cells apoptosis induced by ADI expressed in vivo.

ADI expressed in vivo will efficiently deplete intracellular arginine and lead to cell death. Thus, we transfected pcDNA4-ADI plasmid into cancer cells to express ADI and assess apoptosis rate. Based on cancer tissue specificity of ASS expression[5], MRC5 cell line (ASS+) were used as the negative control, PC3 (ASS-) and HepG2 (ASS-) cell lines were used as research targets. As the immunoblotting dots shown in fig 1c and supplementary fig S1, ASS gene was silent in HepG2 and PC3 cells, but was highly expressed in MRC5 cells. After plasmid transfection for 2 days, ADI expressed in vivo efficiently induced the death of PC3 and HepG2 cells. Mortality was calculated by summing the rates of early apoptosis cells, late apoptosis cells and dead cells. PC3 cell line displayed nearly 17% of cell death rate. HepG2 cell line also obtained almost 15% of death rate. However, ADI almost had no toxicity on normal cells, because MRC5 cell line showed about 4% of death rate. 200mg/L of arginine was used to counteract arginine deprivation in vivo aroused by cytosolic ADI. The DMEM medium containing 200mg/L of arginine was replaced every 24 hours after the transfection of pcDNA4-ADI plasmid. High concentration of arginine obviously reduced the death rates caused by ADI expressed in vivo. For example, HepG2 cells decreased its death rate to about 7.7% and PC3 cells decreased to about 8.0%.

The interaction of ADI and FTL promoted the mitochondria damage.

To understand whether ADI has the unique anti-tumor mechanism in vivo, we screened protein factors possibly interacting with ADI by yeast hybrid method. A cDNA library of human liver from Clontech Laboratories Inc, was used as screening target in yeast hybrid experiment. As shown in fig 2a, FTL was screened out and made yeasts display obvious green color on the selecting plate (SD/Gal/Raf/-Ura, -His, -Trp, -Leu) through interacting
with ADI. Then, immunofluorescence staining was applied to detect intracellular co-localization of ADI and FTL on a confocal microscope. As shown in fig 2c, FTL located in cytoplasm which was labeled with FITC-green fluorescence. ADI positioned in the whole cell that was labeled with TRITC-red fluorescence. Obviously, the cytoplasm was their interaction place as shown from merged pictures. Co-immunoprecipitation (co-IP) was done to further verify intracellular interaction of ADI and FTL in ADI-transfected cells. As shown in fig 2b and supplementary fig S2, FTL was check out by Western Blot experiment when ADI was used as IP bait. ADI was also detected by Western Blot experiment when FTL was IP bait.

The enzymatic activity of ADI was removed to explore whether ADI could inhibit cytoplasmic FTL through interaction. The amino acid residue of cysteine398 is the catalytic residue of ADI[10]. We mutated cysteine398 into alanine398 to remove the enzymatic activity of ADI. pcDNA4-ADI\[^\Delta\](C398A) plasmid was transfected into PC3 and HepG2 cells to detect cell apoptosis. pCMV-FTL plasmid was co-transfected to neutralize the action of cytosolic ADI\[^\Delta\]. As shown in fig 3a, 3b, 3d and supplementary fig S3, the cytosolic ADI\[^\Delta\] still led to 13% of PC3 cell death, and 10% of HepG2 cell death after the transfection for 3 days. However, the over-expressed FTL obviously neutralized the death-induced effects on these two cells. The co-transfection of pcDNA4-ADI\[^\Delta\](C398A398) and pCMV-FTL plasmids decreased the death rate of PC3 cells to about 7% and HepG2 cells to about 3%. MPTP experiments was further performed to verify the mitochondria damage caused by the cytosolic ADI\[^\Delta\]. As shown in fig 3c, the cytosolic ADI\[^\Delta\] decreased half of fluorescence intensity of living cells stained by calcein-AM. The co-transfected cells almost kept the same fluorescence intensity as the control cells. Thus, FTL overexpression in vivo prevented the mitochondria damage aroused by the cytosolic ADI.

Mitochondria apoptosis pathway induced by arginine deprivation in vivo
Apoptosis pathways of mitochondria control were explored by fluorescent quantitation RT-PCR and Western Blot experiment. As shown in fig 4a, the mRNA levels of some important factors increased after ADI was expressed in cells for 2 days, such as FTL (about 1.5 fold), p53 (about 1.5 fold), p53AIP1 (about 4.5 fold), Noxa (about 6.0 fold), PUMA (about 1.5 fold), CASP9 (about 3.0 fold) and CASP3 (about 7.0 fold). As show in fig 4b, 4e, 4f and supplementary fig S4, the protein levels of these factors also increased after 2 days of arginine deprivation in vivo. However, Bax and Bak increased their protein levels at the fourth day of ADI expression. As shown in fig 4c, mitochondria damage was verified by MPTP experiments. Fluorescence intensity of living cells stained by calcein-AM decreased hardly after 2 days or 4 days of arginine deprivation in vivo. As shown in fig 4d and 4e, the activities of CASP3 and CASP9 were also increased for about 1.5 to 2.0 fold at same time.

The increased p53AIP1 will activate the p53-dependent apoptosis[11]. Thus, we respectively knocked down p53 mRNA and p53AIP1 mRNA to verify their function in mitochondria damage during arginine deprivation in vivo. As shown in fig 5d and 5e, the protein levels of p53 and p53AIP1 decreased in PC3 and HepG2 cells after 2 days of arginine deprivation in vivo and siRNA transfection. The knock-down of p53 mRNA level effectively decreased cell death rates, as flow cytometry results displayed in fig 5a and 5b, siTP53AIP1 also reduced cell death rates in PC3 and HepG2 cells. MPTP experiments displayed the same results as shown in fig 5c. Fluorescence intensity of living cells stained by calcein-AM were much higher in siRNA-treated cells than in scrRNA-treated cells.

Cellular autophagy induced by ADI expressed in vivo.

Cellular autophagy was detected because nutrient starvation is the major reason to trigger excessive autophagy[12]. Assay for microtubule-associated protein 1A/1B-light chain 3
(LC3) is the basic protocol for the detection of autophagosome. A cytosolic form of LC3 (LC3-I) is conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate (LC3-II) during autophagy, which is recruited to autophagosomal membranes. Thus, assay for the formation of GFP-LC3-II can reflect starvation-induced autophagic activity.[13].

pCDNA4-ADI plasmid and pEGFP-LC3 plasmid were co-transfected into MRC5, PC3 and HepG2 cell lines. After 96h, GFP fluorescence was detected by a confocal microscope. The protein levels of LC3 were verified by Western Blot experiment at the same time. As shown in fig 6b, 6c and supplementary fig S6A, LC3-II proteins were only checked out in HepG2 and PC3 cells that expressed ADI proteins. The autophagosomes also appeared in the cytoplasm of the same starved cells as shown in fig 6a. However, MRC5 cells did not show any autophagosomes during starvation. At the same time, the protein expression of histone 3 (H3) was check out by Western Blot experiment. H3 protein level decreased hardly after 96 hours of arginine deprivation in vivo as shown in fig 6d, 6e and supplementary fig S6B.

Chromatin autophagy was further detected through fluorescence co-localization technology. As shown in fig 6f, cell nucleus presented budding phenomenon in HepG2 and PC3 cells. There were some autophagosomes appearing in the cytoplasm. The merged pictures displayed that DNA fragments, GFP-LC3-II and histone H3 located in the same autophagosomes.

Discussion

Tumors are very smart, which will actively adapt to the changes of microenvironments when they are threatened by death. In clinic, some tumors always stay in quiescent condition because of the hypoplasia of their blood vessels. Some tumor tissues remain in hunger since they can not obtain enough nutrient substances through hypoplastic blood
vessels. What’s more, selectively starving cancer cells can also make tumors keep in
hunger, which is the metabolic-based therapy for cancers with tiny side effects. Cancer-
starving therapies, such as dietary modification, tumor angiogenesis inhibition and
aspartic acid deficiency, can effectively decrease the incidence of spontaneous tumors
and slow the growth of primary tumors[14].

ADI was a good gene with the potential for cancer gene therapy. As the description of our
preliminary work[1], ADI expressed in vivo was proved to possess higher apoptosis-
inducing efficiency, tumor-targeting specificity, and oncolytic activity[1]. In order to
exclude the actions of adenovirus on cells, we just used pcDNATM4/TO/myc-His vector as
ADI expression vector without replacing pCMV promoter with phTERT promoter. Rapid
growth of tumors requires a lot of nutrition including arginine. Tumor cells with ASS gene
deficiency are more sensitive to arginine deprivation than normal cells, for example
endometrial cancer[15]. Based on cancer tissue specificity of ASS expression[5], we used
MRC5 (ASS+), PC3 (ASS-) and HepG2 (ASS-) cell lines to explore whether ADI had the same
effect on different cancer cell lines. As shown in fig 1, ADI expressed in vivo eventually
induced cellular apoptosis of PC3 and HepG2 cells.

ADI-PEG20 had been proved to induce cellular autophagy and caspase-independent
apoptosis through exhausting the arginine in peripheral microenvironment of tumor [16].
However, it is unknown whether ADI expressed in vivo has the same anti-tumor
mechanism. We expect to understand whether ADI has the unique anti-tumor mechanism
in vivo. Therefore, we screened the protein factors that might interact with ADI by yeast
hybrid method. FTL was screened out as shown in fig 2. Co-IP results proved the
interaction of ADI and FTL in vivo. Fluorescence co-localization displayed that the
interaction happened in the cytoplasm.

Ferritin is considered the major iron storage protein, which participates the regulation of
cellular iron homeostasis[17]. Mitochondrial function also requires iron replenishment from cytoplasmic ferritin. The inhibition of ferritin directly results in the dysfunction of mitochondrial electron transport[18]. Then, can ADI decrease the activity of ferritin by interacting with FTL? In order to exclude the effect of ADI enzyme activity on cell function, the catalytic residues of ADI were mutated to alanine residues. Cysteine398, the catalytic residue of ADI[10], was mutated into alanine398. As shown in fig 3, ADI△(C398△A398) still caused a small number of cell death in PC3 and HepG2 cells. The overexpression of FTL neutralized the death-induced effects on these two cells. The Overexpressed of FTL restores the original concentration of cytoplasmic FTL and supplements the part of FTL that has lost its function due to interaction with ADI. However, ADI△(C398△A398) need 2 days to induce cancer cell death, but ADI only need 2 days as shown in fig 2. Obviously, cytosolic ADI just accelerates mitochondria damage through interacting with cytosolic FTL. The interaction of ADI and FTL is not the main reason of mitochondria damage. In addition, as shown in Fig. 1, the high concentration of arginine in the culture medium counteracted the cell death caused by ADI expressed in vivo, which further demonstrates that arginine deprivation in vivo is the main mechanism by which ADI kills cancer cells in vivo. Accumulating evidences in research papers have illustrated that arginine deprivation in vitro exerts its anticancer effects in various tumors by inducing mitochondrial damage and autophagy[6, 7, 19, 20]. Arginine deprivation inhibits nitric oxide synthesis in cells[21, 22]. Thus, arginine deprivation can’t damage mitochondria by increasing nitric oxide biosynthesis in cells. David K. Ann and Hsing-Jien Kung[23] also reported that mitochondria damage is the major reason of cancer cell apoptosis aroused by ADI-PEG20. Our MPTP experiments also proved that ADI expressed in vivo led to serious mitochondria damage as shown in fig 4c. However, it is still unknown for the apoptosis pathway induced by mitochondrial damage during arginine deprivation in vivo.
Then we checked the expression of some protein factors relating with mitochondria apoptosis pathway. As shown in fig 4a and 4b, 2 days of arginine deprivation *in vivo* increased the expression of p53 and p53AIP1 proteins in PC3 and HepG2 cells. The ectopic expression of p53AIP1 protein will induce the down-regulation of mitochondrial $\Delta \psi_m$ (transmembrane potential) and the release of cytochrome c from mitochondrial by interacting and inhibiting Bcl-2 at mitochondrial[24]. Obviously, after two days starvation, the up-regulated p53AIP1 protein activated the p53-dependent apoptosis by interacting with the up-regulated p53 protein[11, 25]. Then cytochrome C was released from mitochondrial. Casp9 and Casp3 were activated as shown in fig 4d and 4e. At the later stage of arginine deprivation *in vivo* (for 4 days), PC3 and HepG2 cells seemed to enter the initiative apoptosis process, because the increasing expression of Noxa, PUMA, Bax and Bak proteins would further aggravate mitochondria damage[26, 27] as shown in fig 4a and 4b.

We further knocked down the mRNA levels of p53 and p53AIP1 to verify their action during arginine deprivation *in vivo*. As shown in fig 5a, 5b, 5d and supplementary fig S5, the knock-down effectively decreased the apoptosis rates in PC3 and HepG2 cells. p53 knock-down displayed the better effects on apoptosis inhibition than p53AIP1 knock-down. Mitochondria damage was also prevented by p53 knock-down, due to the higher fluorescence intensity of living cells exhibiting in fig 5c. Therefore, p53-dependent apoptosis pathway was the major pathway induced by ADI expressed *in vivo*.

Mitochondria damage is not the only way to result in cancer cell death during arginine deprivation *in vivo*. Cell autophagy was reported to be induced by ADI-PEG20[16]. Autophagy, the process of cellular self-eating, is usually caused by starvation or stress, which is capable to degrade long-lived proteins and organelles such as endoplasmic reticulum, mitochondria, peroxisomes, ribosomes and nucleus[28, 29]. We also verified
that autophagy was aroused by ADI expressed in vivo as shown in fig 6a and 6b. The more protein transformation from LC3-I to LC3-II indicated the formation of autophagy[30] in the two cells. The autophagosomes appeared in the cytoplasm of HepG2 and PC3 cells. Hsing-Jien Kung reported that arginine deprivation in vitro will lead to cancer cell chromatin autophagy[31]. He indicated that prolonged arginine deprivation causes mitochondria dysfunction and ROS generation, eventually resulting in nuclear DNA damage and membrane remodeling. Excessive autophagy leads to giant aggregate of autophagosomes/autolysosomes fusion at the later time point of arginine deprivation in vitro. Stephen Gregory[32] disclosed that chromatophagy is necessary for the survival of chromosomal instability (CIN) cells. Chromatophagy is activated to remove the defective mitochondria in response to DNA damage. However, we had an additional view about the chromatophagy. We think that arginine deficiency will mobilize cells to utility endogenous arginine storage. Nucleosome, especially histone 3 (H3), contains abundant arginine residues. Therefore, cells will have to obtain arginine from chromatophagy to maintain basic physiology during arginine deprivation. As shown in fig 6f, nucleus budding presented in HepG2 and PC3 cells after the co-transfection of pcDNA4-ADI and pEGFP-LC3 for 96 hours. Chromatin fragment (blue fluorescence) and H3 proteins (red fluorescence) were displayed to co-localize in autophagosomes (GFP green fluorescence). This showed that ADI expressed in vivo also aroused chromatin autophagy. H3 proteins presenting in autophagosomes implied the utility of histones arginine.

Conclusion

Based on the above discussion, we can see that the death of cancer cells is primarily induced by rapid arginine deprivation in vivo when ADI gene is expressed in vivo. Mitochondria damage is the main death pathway aroused by cytosolic ADI. Cytosolic ADI can interrupt the activity of mitochondrial electron transport chain through interacting
cytosolic FTL. The interaction of ADI and FTL can only accelerate mitochondria damage. DNA damage should be the main reason of leading mitochondria damage. Cytosolic ADI leads the rapid deprivation of cytosolic arginine, which promote cancer cells to utilize the endogenous arginine. Cancer cells start chromatin autophagy to use the arginine richly existing in nucleosomes. At the early stage of arginine deprivation in vivo, chromatin autophagy is tiny, but DNA damage activate the expression increase of p53 and p53AIP1 proteins. The interaction of p53 and p53AIP1 further aggravates mitochondria damage. At the later stage of arginine deprivation in vivo, the accumulation of chromatin autophagy makes DNA damage worse, which arouses the expression increase of Noxa, PUMA, Bax and Bak proteins. Mitochondria damage is irretrievable this time. Cancer cells get into irreversible death, too. Though there are still many questions in our conclusion, we will describe the detail of molecular mechanism how arginine deprivation activates chromatin autophagy in future.

Abbreviations
ADI: Arginine deiminase; ADI-PEG20: Pegylated Arginine Deiminase by PEG 20,000; FTL: ferritin light-chain domain; H3: Histone 3; ASS: argininosuccinate synthetase; HCC: hepatocellular carcinoma; hTERT: human telomerase reverse transcriptase; cDNA: complementary DNA; qRT-PCR: quantitative reverse transcription-polymerase chain reaction; co-IP: Co-immunoprecipitation; LC3: microtubule-associated protein 1A/1B-light chain 3; LC3-II: LC3-phosphatidylethanolamine conjugate; CIN cells: chromosomal instability cells

Declarations

Ethics approval and consent to participate

Not applicable
Consent for publication
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Funding
This work was supported by Grants from National Natural Science Foundation of China (Nos. 30800190, 81372441), and State Key Laboratory of Virology of China. The funder played the role in designing the study, in supervising the experiments, and in writing the manuscript.

Author information

Author notes
Qingyuan Feng, Xuzhao Bian and Xuan Liu contributed equally to this work.

Affiliations
Qingyuan Feng2*, Xuzhao Bian1*, Xuan Liu1*, Ying Wang1, Huiting Zhou1, Xiaojing Ma1, Chunju Quan1, Yi Yao3, Zhongliang Zheng1#.
1. State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
2. Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
3. Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Authors Contributions
XB, QF and XL did most experiments, wrote the manuscript; YW and HZ participated in
plasmid construction and cell culture; XM participated in autophagy assay and flow
cytometer assay; CQ helped to prepare real-time PCR and Western Blot; YY performed the
statistical analyses and revised the manuscript; XB, QF, XL and ZZ conceived and
designed the overall study, supervised the experiments, and wrote the paper. All authors
read and approved the final manuscript.

Corresponding authors
Correspondence to Zhongliang Zheng

Acknowledgments
The authors thanks Youjun Li and Min Wu for plasmid supply.

References

1. Jiang H, Guo S, Xiao D, Bian X, Wang J, Zheng Z: *Arginine deiminase expressed in vivo displayed higher hepatoma targeting and oncolytic efficiency, which was driven by human telomerase reverse transcriptase promoter*. *Oncotarget* 2017, **8**(23):37694-37704.

2. Yadav L, Puri N, Rastogi V, Satpute P, Sharma V: *Tumour Angiogenesis and Angiogenic Inhibitors: A Review*. *J Clin Diagn Res* 2015, **9**(6):XE01–XE05.

3. Izzo F, Marra P, Beneduce G, Castello G, Vallone P, Rosa VD, Cremona F, Ensor CM, Holtsberg FW, Bomalaski JS *et al*: *Pegylated Arginine Deiminase Treatment of Patients With Metastatic Melanoma: Results From Phase I and II Studies*. *Journal of Clinical Oncology* 2005, **23**(30):7660-7668.

4. Glazer ES, Piccirillo M, Albino V, Giacomo RD, Palaia R, Mastro AA, Beneduce G, Castello G, Rosa VD, Petrillo A *et al*: *Phase II Study of Pegylated Arginine Deiminase for Nonresectable and Metastatic Hepatocellular Carcinoma*. *Journal of Clinical Oncology* 2010, **28**(13):2220-2226.

5. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA:
Incidence and distribution of argininosuccinate synthetase deficiency in human cancers, A method for identifying cancers sensitive to arginine deprivation. *Cancer* 2004, **100**(4):826-833.

6. Changou CA, Chen Y-R, Xing L, Yen Y, Chuang FYS, Cheng H, Bold RJ, Ann DK, Kung H-J: Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. *PNAS* 2014, **111**(39):14147-14152.

7. Qiu F, Chen Y-R, Liu X, Chu C-Y, Shen L-J, Xu J, Gaur S, Forman HJ, Zhang H, Zheng S et al: Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Breast Cancer Cells. *Sci Signal* 2014, **7**(319):1-10.

8. Szlosarek PW, Luong P, Phillips MM, Baccarini M, Ellis S, Szyszko TA, Sheaff M, Avril N: Metabolic Response to Pegylated Arginine Deiminase in Mesothelioma With Promoter Methylation of Argininosuccinate Synthetase. *J Clin Oncol* 2013, **31**(7):111-113.

9. Abou-Alfa GK, Qin S, Ryoo BY, Lu SN, Yen CJ, Feng YH, Lim HY, Izzo F, Colombo M, Sarker D et al: Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. *Ann Oncol* 2018, **29**(6):1402-1408.

10. Das K, Butler GH, Kwiatkowski V, Arthur D. Clark J, Yadav P, Arnold E: Crystal Structures of Arginine Deiminase with Covalent Reaction Intermediates: Implications for Catalytic Mechanism. *Struture* 2004, **12**:657-667.

11. Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y et al: **p53AIP1**, a Potential Mediator of p53-Dependent Apoptosis, and Its Regulation by Ser-46-Phosphorylated p53. *Cell* 2000, **102**:849-862.
12. Rabinowitz JD, White E: **Autophagy and Metabolism.** *Science* 2010, **330**(6009):1344-1348.

13. Tanida I, Waguri S: **Measurement of Autophagy in Cells and Tissues.** *Methods Mol Biol* 2010, **648**:193-214.

14. Simone BA, Champ CE, Rosenberg AL, Berger A, Monti DA, Dicker AP, Simone NL: Selectively starving cancer cells through dietary manipulation: methods and clinical implications. *Future Oncol* 2013, **9**(7):959-976.

15. Ohshima K, Nojima S, Tahara S, Kurashige M, Hori Y, Hagiwara K, Okuzaki D, Oki S, Wada N, Ikeda J-i et al: Argininosuccinate Synthase 1-Deficiency Enhances the Cell Sensitivity to Arginine through Decreased DEPTOR Expression in Endometrial Cancer. *Scientific Reports* 2017, **30**(7):45504-45518.

16. Randie HK, Jodi MC, Tawnya LB, Gregory PM, Julie S, Kung HJ et al: Arginine Deiminase as a Novel Therapy for Prostate Cancer Induces Autophagy and Caspase-Independent Apoptosis. *Cancer Research* 2009, **69**(2):700-708.

17. Arosio P, Elia L, Poli M: Ferritin, cellular iron storage and regulation. *IUBMB Life* 2017, **69**(6):414-422.

18. Richardson DR, Lane DJR, Becker EM, Huang ML-H, Whitnall M, Rahmanto YS, Sheftel AD, Ponkac P: Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. *PNAS* 2010, **107**(24):10775-10782.

19. Szlosarek PW: Arginine deprivation and autophagic cell death in cancer. *PNAS* 2014, **111**(39):14015-14016.

20. Savaraj N, You M, Wu C, Wangpaichitr M, Kuo MT, Feun LG: Arginine Deprivation, Autophagy, Apoptosis (AAA) for the Treatment of Melanoma. *Current Molecular Medicine* 2010, **10**(4):405-412.
21. Sezgin N, Torun T, Yalcin F: Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. *Med Sci Monit* 2002, 8(10):LE44-40.

22. Zou S, Wang X, Liu P, Ke C, Xu S: Arginine metabolism and deprivation in cancer therapy. *Biomedicine & Pharmacotherapy* 2019, 118:1-11.

23. Cheng C-T, Qi Y, Wang Y-C, Chi KK, Chung Y, Ouyang C, Chen Y-R, Oh ME, Sheng X, Tang Y et al: Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. *Communication Biology* 2018, 1(178):1-19.

24. Matsuda K, Yoshida K, Taya Y, Nakamura K, Nakamura Y, Arakawa H: p53AIP1 Regulates the Mitochondrial Apoptotic Pathway. *Cancer Research* 2002, 62(10):2883-2889.

25. O’Prey J, Crighton D, Martin AG, Vousden KH, O.Fearnhead H, Ryan KM: p53-mediated induction of Noxa and p53AIP1 requires NFκB. *Cell Cycle* 2010, 9(5):947-952.

26. Vaseva AV, Moll UM: The mitochondrial p53 pathway. *Biochimica et Biophysica Acta* 2009, 1787:414-420.

27. Brenner C, Galluzzi L, Kepp O, Kroemer G: Decoding cell death signals in liver inflammation. *Journal of Hepatology* 2013, 59(3):583-594.

28. Stolz A, Ernst A, Dikic I: Cargo recognition and trafficking in selective autophagy. *Nature Cell Biology* 2014, 16:495-501.

29. Kaur J, Debnath J: Autophagy at the crossroads of catabolism and anabolism. *Molecular Cell Biology* 2015, 16:461-472.

30. Zhang Z, Singh R, Aschener M: Methods for the Detection of Autophagy in Mammalian Cells. *Curr Protoc Toxicol* 2016, 69(1):20.12.21-20.12.26.
31. Kung H-J, Changou CA, Li C-F, Ann DK: **Chromatophagy: Autophagy goes nuclear and captures broken chromatin during arginine-starvation.** *Autophagy* 2015, 11(2):419-421.

32. Liu D, Shaukat Z, Xu T, Denton D, Robert Saint3, Gregory S: **Autophagy regulates the survival of cells with chromosomal instability.** *Oncotarget* 2016, 7(39):63913-63923.

Figures
Apoptosis efficiency induced by ADI expressed in MRC5, HepG2 and PC3 cells.

Cells were separately transfected by pcDNA4, pcDNA4-ADI plasmids. Cell apoptosis rates were detected by flow cytometry after the static cell culture for 48h. a: Representative images of FACS analysis of annexin V and PI staining of MRC5, HepG2 and PC3 cells. b: Death ratio summary of FACS analysis from fig 1a. c: Immunoblots of ADI and ASS expression in MRC5, HepG2 and PC3 cells. C-myc-tag antibody was used to detect c-myc-tag-fused ADI. The blot of GAPDH was from the same gel as the blot of ADI. The original blot results were from supplementary fig S1.
The interaction of ADI and FTL in vivo. a: Yeast were co-transformed with pBD-ADI and pAD-T-FTL plasmid, and grew on an SD agar plate with high-stringency nutrient selection (SD/-Leu/-Trp/-His/-Ade). pBD-LamC/pAD-T-antigen plasmids were used as negative control. pBD-p53/pAD-T-antigen plasmids were used as positive control. b: Co-IP of ADI or FTL was applied by antibodies specific for ADI or FTL. Images represent the immuneprecipitates separated by SDS-PAGE and incubated with the indicated antibodies. The blots of each line were from the same gel. The original blot results were from supplementary fig S2. c: Immunofluorescence staining of HepG2 and PC3 cells with antibody against ADI (red) and antibody against FTL (green). Cells were transfected with pcDNA4-ADI plasmid. The fluorescence was detected on an inverted fluorescence microscope.
Apoptosis efficiency induced by ADI\textsubscript{Δ}(C398A) expressed in MRC5, HepG2 and PC3 cells. Cells were separately transfected by pcDNA4, pcDNA4-ADI\textsubscript{Δ} and pCMV-FTL plasmids. Cell apoptosis rates were detected by flow cytometry after the static cell culture for 72h. a: Representative images of FACS analysis of annexin V and PI staining of MRC5, HepG2 and PC3 cells. b: Death ratio summary of FACS analysis from fig 3a. c: Fluorescence assay for mitochondrial permeability transition pore (MPTP) from fig 3a. d: Immunoblots of ADI\textsubscript{Δ} and ASS expression in MRC5, HepG2 and PC3 cells. C-myc-tag antibody was used to detect c-myc-tag-fused ADI\textsubscript{Δ}. FLAG tag was used to detect overexpressed FTL. The blot of GAPDH was from the same gel as the blot of FTL. The original blot results were from supplementary fig S3
Molecular mechanism of cell apoptosis induced by arginine deprivation. a: mRNA level detection of some factors related with mitochondria apoptosis pathway by Quantitative RT-PCR in PC3 and HepG2 cells. b: Immunoblot of the factors related with apoptosis pathway in PC3 and HepG2 cells. The blots of Bax were from the different parts of the same gel. The blots of FTL were from the different parts of the same gel. The blots of Noxa were from the different parts of the same gel. The blots of PUMA were from the different parts of the same gel. The blots of p53AIP1 were from the different parts of the same gel. The blots of TP53 were from the different parts of the same gel. Other blots were from the different gels.
The original blot results were from supplementary fig S4. c: Fluorescence assay for mitochondrial permeability transition pore (MPTP). d: Activity assay of Caspase 3 through caspase 3 assay kit (Colorimetric) (abcam. ab39401). e: Activity assay of Caspase 9 through caspase 9 assay kit (Colorimetric) (abcam. Ab65608). f/g: the relative quantification for protein expressions in PC3 and HepG2 cell lines. Grey scales of protein bands from fig 4b were detected by ImageJ 1.52. P values were calculated by comparing ADI-treated cells with non-treated cells in the respective cell lines. **P < 0.01; ***P < 0.001.

Figure 5

The effect of knock-down of p53 and p53AIP1 genes on apoptosis efficiency induced by ADI. Cells were separately co-transfected by pcDNA4-ADI plasmids with siTP53 or siTP53AIP1. Cell apoptosis rates were detected by flow cytometry after the static cell culture for 48h. a: Representative images of FACS analysis of
annexin V and PI staining of HepG2 and PC3 cells. b: Death ratio summary of FACS analysis from fig 5a. c: Fluorescence assay for mitochondrial permeability transition pore (MPTP) from fig 3a. d: Immunoblots of ADI, p53 and p53AIP1 protein expression in HepG2 and PC3 cells. C-myc-tag antibody was used to detect c-myc-tag-fused ADI. The blots of TP53 were from the same gel as the blots of GAPDH. Other blots were from the different gels. The original blot results were from supplementary fig S5. e: the relative quantification for protein expressions in PC3 and HepG2 cell lines. Grey scales of protein bands from fig 5d were detected by ImageJ 1.52. P values were calculated by comparing siRNA-treated cells with scrRNA-treated cells in the respective cell lines. **P < 0.01; ***P < 0.001.
Figure 6

Chromatin autophagy assay at the later time point of arginine deprivation. a:

GFP-LC3 reporter fluorescence assay for autophagy in MRC5, HepG2 and PC3 cells. Cells were co-transfected with pcDNA4-ADI plasmid and pEGFP-LC3 plasmid.
The fluorescence of EGFP protein was detected by OLIMPUS inverted fluorescence microscope SteREO Discovery V12. b: Immunoblot of LC3-I and LC3-II in MRC5, HepG2 and PC3 cells. Cells were treated as the description of fig 6a. LC3 antibody was used to detect LC3-I and LC3-II proteins. C-myc-tag antibody was used to detect c-myc-tag-fused ADI. The blots were from different gels. The original blot results were from supplementary fig S6A. c: the relative quantification for protein expressions in MRC5, PC3 and HepG2 cell lines. Grey scales of protein bands from fig 6b were detected by ImageJ 1.52. P values were calculated by comparing ADI-treated cells with non-treated cells in the respective cell lines. **P < 0.01; ***P < 0.001.
d: Immunoblots of H3 protein expression in HepG2 and PC3 cells. Cells were transfected with pcDNA4-ADI plasmid. Histone H3 antibody (Cat. # 17168-1-AP) were used to detect H3 protein. The blots were from different gels. The original blot results were from supplementary fig S6B. e: the relative quantification for protein expressions in MRC5, PC3 and HepG2 cell lines. Grey scales of protein bands from fig 6d were detected by ImageJ 1.52. P values were calculated by comparing other cells with 24h-treated cells in the respective cell lines. **P < 0.01; ***P < 0.001.
f: Immunofluorescence assay for chromatin autophagy. Cells were cultured in DMEM medium with 2% FBS. Histone H3 antibody (Cat. # 17168-1-AP) were used to detect H3 protein in cells. TRITC conjugated goat anti-rabbit antibody (Cat. # AS10-1018) was used to detect H3 antibody and display the immunofluorescence.

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.
