Rapid disappearance of a warm, dusty circumstellar disk

Carl Melis1, B. Zuckerman2, Joseph H. Rhee3, Inseok Song4, Simon J. Murphy5 & Michael S. Bessell5

Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored1–3, although recent work has considered the fate of such material4. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

TYC 8241 2652 1 (stellar parameters are reported in Table 1), was found as part of a survey to identify main-sequence stars with excess emission at mid- and far-infrared wavelengths. To accomplish this goal, we cross-correlated the Tycho-2 catalogue5 with those of the Infrared Astronomical Satellite, AKARI6 and the Wide-field Infrared Survey Explorer7 (WISE) and performed our own observations using the Thermal-Region Camera Spectrograph8 (T-ReCS) at the Gemini South telescope. Figure 1 and Table 2 show how the 11-µm excess emission of this source evolved from being a factor of ~30 times the stellar photosphere flux before 2009 to being ~13 times the photospheric flux in mid 2009 and being barely detectable in 2010 (details regarding each measurement can be found in Table 2). The pre-2009 measurements indicate significant mid-infrared excess emission and, hence, that warm dust material orbited in the star’s inner planetary system (Fig. 1 and Table 2). Remarkably, two epochs of WISE measurements show that the excess mid-infrared emission has all but disappeared, leaving only a weak (~3 times the stellar photosphere) excess at a wavelength of 22 µm (Fig. 1 and Table 2). We note that the two WISE epochs have a time separation of roughly six months and yet still report identical flux levels. Measurements made after the WISE epochs using the SpeX spectrograph at the NASA Infrared Telescope Facility9–11, the Photodetector Array Camera and Spectrograph (PACS) for the Herschel Space Observatory12 and again with T-ReCS are consistent with the WISE data (Fig. 1; note especially the 2012 T-ReCS data), thus indicating that the mid-infrared emission from the dust orbiting this star has been consistently depleted to barely detectable levels since at least early 2010.

To determine the age of TYC 8241 2652 1, we obtained high-resolution optical spectra over four epochs from February 2008 to January 2009 with an echelle spectrograph mounted on the Siding Spring Observatory 2.3-m telescope. From these optical spectra, we estimate the age of the system from the lithium content in the stellar photosphere, Galactic space motion and rotational broadening of absorption lines; details can be found in Supplementary Information. We adopt an age of ~10 Myr for TYC 8241 2652 1.

An important ingredient in understanding the vanishing mid-infrared emission from the dust orbiting TYC 8241 2652 1 is the initial state of the disk system. Given an age of ~10 Myr, the star could have been host either to an accreting protoplanetary disk rich in gas and dust or to a second-generation debris disk formed from the collisions of rocky objects orbiting the star13. The absence of strong Balmer Hα emission from our optical spectroscopic measurements indicates that the star was not undergoing accretion of hydrogen-rich material at any significant level14 (see also Supplementary Information), and thus it is unlikely that such material was being transported inwards to the star as would be expected in a system with an active protoplanetary accretion disk. Another argument against TYC 8241 2652 1 having a protoplanetary accretion disk in the two decades before 2009 lies with the Herschel/PACS measurements. The sensitive upper limits in the far-infrared robustly rule out the presence of a substantial reservoir of cold disk material typical of those seen in protoplanetary disks. We thus conclude that the dusty material orbiting TYC 8241 2652 1 is the result of the collisions of rocky objects.

Table 1 | Parameters of TYC 8241 2652 1

Parameter	Value
Right ascension	12 h 9 min 2.25 s
Declination	51.2° 41.0°
Galactic longitude	296.2104°
Galactic latitude	+10.9728°
Visual magnitude	11.5 mag
Spectral type	K2.1
Effective temperature	4950 ± 150 K
Proper motion in right ascension	−34.1 ± 2.1 mas yr⁻¹
Proper motion in declination	−3.9 ± 2.0 mas yr⁻¹
Heliocentric radial velocity	15 ± 1 km s⁻¹
Lithium 6,708-A˚ EW	0.0 ± 0.1 A
Ca i & K emission core EW	4.5 ± 0.5 A
v sin(i)	10 ± 1 km s⁻¹
Distance from Earth	140 ± 20 pc (456 light yr)
Galactic space motions	−12 km s⁻¹ (U), −24 km s⁻¹ (V), −7 km s⁻¹ (W)
Age	~10 Myr

1J2000 equinox right ascension and declination are from the Two Micron All Sky Survey (2MASS) catalogue. Galactic longitudes and latitude are derived from the 2MASS right ascension and declination. The spectral type and effective temperature are determined from line ratios28 in the 2MASS spectrum with a standard star spectrum of known radial velocity. Four epochs of radial velocity measurements (14 February 2008, 14 June 2008, 13 July 2008 and 12 January 2009) show no evidence for radial velocity variability within the measured errors (−1.2−1.8 km s⁻¹), ruling out any short-period stellar companions to TYC 8241 2652 1. The radial velocity quoted in the table is the average of the four separate measurements. The listed Balmer Hα, Ca i & K core reversal emission and lithium 6,708-A˚ equivalent widths (EWs) are averages over the four Siding Spring echelle epochs, and the uncertainty quoted is the standard deviation of those measurements. The stellar rotational velocity (v sin(i), where i is the angle of inclination of the stellar spin axis with respect to the line of sight towards Earth) was measured from the full-width at half-maximum (FWHM) depth of single absorption lines in the Siding Spring echelle spectra (which have an intrinsic resolution element FWHM of ~13 km s⁻¹, a value that we subtract in quadrature from the FWHM measured in the spectra). Velocities of the TYC 8241 2652 1 system (relative to the Sun) towards the centre of the Galaxy, around the Galactic Centre and perpendicular to the Galactic plane (U, V, W) are calculated from Tycho-2 proper motions, our estimated photometric distance and the optical-echelle-measured radial velocity. Uncertainties in these values are roughly 2 km s⁻¹. See Supplementary Information for a discussion of the age.

1Center for Astrophysics and Space Sciences, University of California, San Diego, California 92093-0424, USA. 2Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547, USA. 3Department of Physics and Astronomy, California State Polytechnic University, Pomona, Pomona, California 91768, USA. 4Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA. 5Research School of Astronomy and Astrophysics, College of Mathematical and Physical Sciences, The Australian National University, Cotter Road, Weston Creek, Australian Capital Territory 2611, Australia.

©2012 Macmillan Publishers Limited. All rights reserved
The solid brown curve is a synthetic stellar photosphere for a star with an effective temperature of 4,950 K that is fitted to the optical and near-infrared data. The dotted line is a black-body fit to the 12- and 25-μm IRAS excess data points. The temperature of this black body is 450 K and it suggests that roughly 11% of the optical and near-infrared starlight was being reprocessed into the mid-infrared by orbiting dust. The black solid line is the sum of the photosphere and the black body at 450 K. Fitting a black body to the WISE and Herschel measurements suggests a dust temperature of roughly 200 K and a fractional infrared luminosity of 0.1%. Plotted flux density errors are 1 s.d. Some, for example those of the two earlier epochs of T-ReCS measurements, are smaller than the point sizes on the plot; for these measurements, the uncertainty is comparable to or less than 10% of the corresponding measurement. Horizontal lines through each data point represent the filter FWHM.

To estimate the dust temperature and the fractional infrared luminosity (L_{IR}/L_*, where L_* is the total stellar luminosity) of the dusty debris disk, we fit optical and near-infrared measurements out to the K band (2.1 μm) with a synthetic stellar atmosphere spectrum along with a black body at 450 K (Fig. 1) that models the pre-2009-epoch dust excess. Grains with a temperature of 450 K that are sufficiently large to radiate like black bodies at 10 μm and are situated in a disk optically thin to the stellar radiation field would orbit TYC 8241 2652 1 with a semi-major axis of ~0.4 au. From the black-body fit, we find that $L_{\text{IR}}/L_* \approx 11%$ (Fig. 1); such a value is significantly greater than those found previously for stars with warm debris disks, but is less than that of the recently discovered, ~60-Myr-old V488 Per system. A geometrically thin, flat dust disk (such as Saturn’s rings or some circumstellar debris disks) cannot absorb 11% of the luminosity of TYC 8241 2652 1 (ref. 18). To intercept such a large fraction of the incoming stellar light, the disk must be geometrically thick or otherwise deformed into a non-flat shape. Such a morphology could be suggestive of a substellar body that dynamically excites the dust particles, warps the disk, or both. Fits to WISE and Herschel/PACS data allow a dust temperature only in the range 120 K < $T_{\text{dust}} < 250$ K, indicating cool grains that orbit TYC 8241 2652 1 at a distance of ~2 au, and a fractional infrared luminosity of ~0.1%.

The excess emission detected by WISE requires roughly 4–5 times less mass in cool, small (~0.3-μm) dust grains than that estimated for the pre-2009-epoch infrared excess from TYC 8241 2652 1 (ref. 22). For a debris disk, the copious amounts of dust that were present suggest a system undergoing an active stage of terrestrial planet formation. The excess emission detected by WISE requires roughly 4–5 times less mass in cool, small (~0.3-μm) dust grains than that estimated for the pre-2009-epoch infrared excess from TYC 8241 2652 1 (ref. 22). For a debris disk, the copious amounts of dust that were present suggest a system undergoing an active stage of terrestrial planet formation. The excess emission detected by WISE requires roughly 4–5 times less mass in cool, small (~0.3-μm) dust grains than that estimated for the pre-2009-epoch infrared excess from TYC 8241 2652 1 (ref. 22). For a debris disk, the copious amounts of dust that were present suggest a system undergoing an active stage of terrestrial planet formation.
It is desirable to develop a physical model that can explain the observed disappearance of the disk of dust grains at 450 K. In Supplementary Information, we consider and reject models that rely on the disk material somehow being hidden from view, thus resulting in the diminished flux. In lieu of these models, we explore others in which the disk material is physically removed from its pre-2009-epoch location. If the number of grains with radius a that orbit the star follows a conventional $a^{-3.5}$ size distribution—and, hence, the fractional infrared luminosity scales like $a^{-6.5}$ (ref. 22)—we expect that removal of grains with radii up to ~ 1 mm would be required to eliminate the observational signature of dusty material orbiting at a separation of ~ 0.4 AU. For an $a^{-3.5}$ size distribution, the diminished mid-infrared flux requires that the total mass of dust particles with a less than ~ 1 mm located near 0.4 AU be smaller by a factor of ~ 100. A steeper grain size distribution, with an exponent of -3.7 to -3.8, would require removal of grains with radii up to $\sim 100 \mu m$ and would result in a reduction in the total grain mass by a factor of ~ 10.

Of the models explored in Supplementary Information, only the collisional avalanche and runaway accretion models are potentially viable, although each has its problems (details regarding these models and their shortcomings can be found in Supplementary Information). It is worth noting that both models benefit if the steeper grain size distribution is assumed and that modelling of other stars with warm debris disks indicates that such a steep power-law slope may be present in such systems. Clear identification of a physical model that can reproduce the observations will require modelling specific to the case of TYC 8241 2652 1 and its continued observation. Although the exact circumstances are not yet clear, this system has clearly undergone a drastic event that promises to provide unique insight into the process by which rocky planets form.

Received 15 December 2011; accepted 4 May 2012.

1. Wetherill, G. W. Formation of the Earth. Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990).
2. Asphaug, E., Agnor, C. B. & Williams, Q. Hit-and-run planetary collisions. Nature 439, 155–160 (2006).
3. Kenyon, S. J. & Bromley, B. C. Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astron. J. 131, 1837–1850 (2006).
4. Stewart, L. & Leinhardt, Z. Collisions between gravity-dominated bodies: II. The transition from oligarchic growth to chaotic growth. Astron. J. 131, 1837–1850 (2006).
5. Høg, E. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).
6. Telesco, C. M. et al. GatirCam: the Gemini mid-infrared imager. Proc. SPIE 3354, 534 (1998).
7. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).
8. Rayner, J. T. et al. Spex: a medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pacif. 115, 362–382 (2003).
9. Vacca, W. D. Cushing, M. C. & Rayner, J. T. A method of correcting near-infrared spectra for telluric absorption. Publ. Astron. Soc. Pacif. 115, 389–409 (2003).
10. Cushing, M. C., Vacca, W. D. & Rayner, J. T. SpeXtool: a spectral extraction package for SpeX, a 0.8–5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pacif. 116, 362–376 (2004).
11. Poglitsch, A. et al. The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 518, L2 (2010).
12. Zuckerman, B. Dusty circumstellar disks. Annu. Rev. Astron. Astrophys. 39, 549–580 (2001).
13. White, R. & Basri, G. Very Low mass stars and brown dwarfs in Taurus-Auriga. Astrophys. J. 582, 1109–1122 (2003).
14. Hauschildt, P. H., Allard, F. & Baron, E. The NextGen model atmosphere grid for 3000 $< T_{\text{eff}} < 10$000 K. Astrophys. J. 512, 377–385 (1999).
15. Metzger, B., Rafikov, R. & Bochkarev, K. Global models of runaway accretion in debris disks. Astron. J. 137, L57–L61 (2010).
16. Melis, C., Zuckerman, B., Rhee, J. H. & Song, I. The age of the HD 15407 system and the epoch of final catastrophic mass accretion onto terrestrial planets around Sun-like stars. Astrophys. J. 717, L57–L61 (2010).
17. Zuckerman, B. et al. Stellar membership and dusty debris disks in the alpha Persei Cluster. Astrophys. J. 752, 58 (2012).
18. Jura, M. A tidally disrupted asteroid around the white dwarf G29–38. Astrophys. J. 584, L91–L94 (2003).
19. Mouillet, D., Larwood, J. D., Papaloizou, J. C. B. & Lagrange, A. M. A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc. Mon. Not. R. Astron. Soc. 292, 896–904 (1997).
20. Akeson, R. et al. The circumbinary disk of HD 98800B: evidence for disk warping. Astrophys. J. 670, 1240–1246 (2007).
21. Bouley, A. et al. Constraining the planetary system of Fomalhaut using high-resolution ALMA observations. Astrophys. J. 750, L21 (2012).
22. Rhee, J. H., Song, I. & Zuckerman, B. Warm dust in the terrestrial planet zone of a Sun-like Pleiades star: collisions between planetary embryos? Astrophys. J. 675, 773–783 (2008).
23. Kenyon, S. J. & Bromley, B. C. Prospects for detection of catastrophic collisions in debris disks. Astron. J. 130, 269–279 (2005).
24. Grigorieva, A., Artymowicz, P. & Thébault, Ph Collisional dust avalanches in debris discs. Astron. Astrophys. 461, 537–549 (2007).
25. Metzger, B., Rafikov, R. & Bochkarev, K. Global models of runaway accretion in white dwarf debris disks. Mon. Not. R. Astron. Soc. 423, 505–526 (2012).
26. Lisse, C. M. et al. Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the ~12 Myr HD172555 system. Astrophys. J. 701, 2019–2032 (2009).
27. Currie, T. et al. Spitzer Infrared Spectrograph spectroscopy of the 10 Myr old EF Cha debris disk: evidence for phyllosilicate-rich dust in the terrestrial zone. Astrophys. J. 734, 115 (2011).
28. Padgett, D. L. Atmospheric parameters and iron abundances of low-mass pre-main-sequence stars in nearby star formation regions. Astrophys. J. 471, 847–866 (1996).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank J. Kastner for advice regarding X-ray data and M. Jura for suggesting the runaway accretion model. This work was based on observations obtained at the Gemini Observatory and makes use of data products from the Two Micron All Sky Survey and information from the SIMBAD and VizieR databases. C.M. acknowledges support from a LLNL Minigrant to UCLA and from the US National Science Foundation. This work was supported in part by NASA grants to UCLA and the University of Georgia.

Author Contributions The authors contributed equally to this work.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to C.M. (cmelis@ucsd.edu).