Follicle Monitoring and Endometrial Correlation
Jaideep Malhotra¹, Neharika Malhotra², Narendra Malhotra³, Sonam R Pandya⁴

ABSTRACT
Thirty-percent of female infertility is due to ovulatory dysfunctions. Today ultrasound (transvaginal ultrasound scan + color + 3D) enables us to understand the follicular dynamics during normal and stimulated cycles. In this review paper, we have analyzed folliculogenesis, follicular monitoring, and measuring and have correlated clinically and presented simply the importance of 2D, 3D, color, volume, vocal, and endometrial perfusion.

Keywords: Endometrial scoring, Follicle, Follicle monitoring, Ovulation induction.
Donald School Journal of Ultrasound in Obstetrics and Gynecology (2020): 10.5005/jp-journals-10009-1674

INTRODUCTION
Folliculometry is the gold standard investigation to monitor follicular development and growth, check for signs of ovulation corpus luteum (CL) integrity, and endometrial growth and character. Ultrasound monitoring of follicular growth was first introduced in 1978 by Hackelöer and Robinson.¹ Transvaginal ultrasound scan (TVS) is now the norm for routine monitoring of follicular growth whether it may be a natural cycle, ovulation induction program, or controlled ovarian hyperstimulation (COH) in assisted reproduction technology (ART) cycles. Recently, color Doppler and 3D power Doppler (PD) parameters have been found to have added value in follicular monitoring. Color Doppler and PD provide qualitative and quantitative information of perfusion to the ovaries.²⁻⁴

Monitoring a Natural Cycle (Figs 1 to 4)
• Baseline scan is done on day 2 or 3 (Fig. 1).
• First follow-up scan can be done either on day 9 or 10 of the menstrual cycle (MC).
• The scans are repeated every 48 hours till the follicles reach 14 mm and then repeated every day.
• Follicle can rupture at any time once the follicle becomes more than 16 mm (Fig. 4).

Features of Ovulation on Ultrasonography (USG) (Fig. 5)
• Diminution in the follicle size or sudden collapse of the follicle
• Blurring of the follicle borders, which become crenated
• Appearance of intrafollicular echoes, which are more isoechoogenic with respect to surrounding ovary
• Presence of a small amount of free fluid in the pouch of Douglas (POD)
• Thereafter, an irregular, slightly cystic structure representing the corpus luteum forms and slowly shrinks throughout the luteal phase of the cycle until luteolysis occurs before menses.

Follicular Growth in a Natural Cycle
• Small antral follicles (2–5 mm in diameter) appear in the ovary early in cohorts in the proliferative phase. (Wave theory of follicular recruitment.)
• The physiological decline in follicle stimulating hormone (FSH) level in the late follicular phase allows the selection of the single most sensitive follicle to continue to grow.

• Further growth of the follicles occurs in relation to rising levels of FSH.
• The follicle, which has developed maximum receptors for FSH and luteinizing hormone (LH) will continue to grow, while the other follicles will undergo apoptosis and atresia (Fig. 3). Concept of FSH threshold and FSH window. An optimum threshold level of FSH is needed to stimulate follicular growth.
• Once the leading follicle reaches a diameter of approximately 14 mm, the daily growth rate is between 1.5 mm and 2.0 mm until a diameter of 22–25 mm is reached when ovulation occurs (Fig. 6).

Monitoring of an Ovulation Induction Cycle with Oral Agent
• A baseline scan is done always on day 2 or 3. Should be done before the start of any ovulation induction therapy.
• Ovulation induction drugs are initiated within 3 days of the MC if the follicular size is <10 mm, there are no ovarian cysts, the endometrial thickness is <5 mm, estradiol levels are <50 pg/mL, and the progesterone level is <1.5 ng/mL.
• Transvaginal ultrasound scan is usually performed 4–5 days after the last dose of the oral ovulation agent and then, every other day till the follicle is 14 mm, and then daily until a follicle of approximately 18–20 mm in diameter is seen.
• The ovulation trigger is given at follicle size ≥18.
Monitoring for Ovulation Induction with Gonadotropins

- The gonadotropins are started on day 2 or 3.
- The first scan after the start of treatment of gonadotropins is done on the 4th day of the drug (day 7 of MC).
- Further adjustment of the gonadotropin dose and/or administration of gonadotropin-releasing hormone (GnRH) antagonist depends on serial USG findings and E2 levels on day 7 of MC or 3–4 days of gonadotrophin treatment.

A Rough Guide is as Follows

- At each scan, the size of all follicles documented, daily scans are done and response is charted on the ovulation (follicle) monitoring chart (Fig. 7) once follicular diameter 12 mm or more.

Figures:

- Figs. 1A and B: Antral follicle count
- Fig. 2: Day 6–7 follicle stimulated ovary
- Fig. 3: Dominant follicle
Administration of Trigger

The general principle of human chorionic gonadotropin (hCG)/antagonist trigger administration is as follows:

- In natural cycles and clomiphene citrate stimulated cycles—when the dominant follicle is 20–24 mm.
- In gonadotropin-stimulated cycles and intrauterine insemination (IUI)—when the dominant follicle is larger than 18–20 mm.
- In in vitro fertilization (IVF) cycles—when three follicles above 16–18 mm are present with good color flow. The follicle monitoring chart (Fig. 8) is plotted.

Color Doppler Studies of Ovarian Circulation

The perifollicular microvascular network is an essential element for the initiation and maintenance of follicular growth.5,6
Grading of perifollicular blood flow (PFBF): Based on the percentage of blood flow (BF) of the circumference of the follicle:

Grade I: BF <25% (Fig. 9).
Grade II: BF ≥25% but <50% (Fig. 10).
Grade III: BF ≥50% but <75%.
Grade IV: BF ≥75% (Fig. 11).

Clinical Application of Color and Pulse Doppler Parameters of Ovarian Follicles

- Studies have shown that Doppler parameters of follicles that have >75% (Fig. 11) of their surface perfused, ovarian stromal peak systolic velocity (PSV) of >10 cm/second, and resistance index (RI) of <0.4 to 0.48 contain mature oocytes of satisfactory quality and result in a better grade of embryos. 7,8
- Follicles having a PFBF of >50% (Fig. 10) have increased oocyte retrieval rate with more number of mature oocytes with a high fertilization rate and lower triploidy rates (Fig. 12).
- Rising PSV with steady low RI suggests that the follicle is close to rupturing (follicular PSV goes as high as 45 cm/second an hour before ovulation).
- On the contrary, steady or decreasing PSV with rising RI suggests the possibility of a luteinized unruptured follicle (LUF).
- It was also observed that the fertilization of a follicle with PSV of <10 cm/second has high chances of the embryo being chromosomally abnormal5,10 (Fig. 13).
- Doppler in the secretory phase gives an idea about the function of CL. Usually, the RI of the CL is between 0.35 and 0.50. In luteal phase deficiency (LPD), RI is 0.58 ± 0.04, pulsatility index (PI) is 0.70 to 0.80, and PSV is between 10 and 15.

3D Volume and Doppler Parameters

- The follicular volume of 3–7 cm³ is optimum.11,12
- Follicles without visualization of cumulus in all three planes are not likely to contain mature oocytes. The appearance of the intrafollicular cumulus structures by 3D USG has a good correlation with the recovery rate of the mature oocytes (Fig. 11).13
- The follicular volume between 3 and 7 cm³, presence of cumulus, the perifollicular vascular index (VI) between 6 and 20, and perifollicular flow index (FI) > 35 are associated with a better pregnancy rate (Fig. 14).11,12
- The best predictors of IVF outcome are the ovarian FI using 3D ultrasound and power Doppler angiography (PDA) on the hCG day and the transfer of grade I embryos.6
- The assessment of multiple follicles is better done by sonography-based automated volume count (sonoAVC) (Figs 13 and 14).

Endometrium

Endometrial receptivity is pivotal for successful implantation and hence for conception. Therefore, in addition to ovarian follicles, endometrium also should be assessed for its morphological and functional characteristics (Figs 14 to 20).
Endometrial Thickness

Endometrial thickness is measured as the sum thickness of the two opposing endometrial layers in the mid-sagittal plane. Few pregnancies have been noted in gonadotropin-induced IUI cycles when the endometrium measured <7 mm on the day of hCG-induced ovulation. However, in several studies, optimum endometrial thickness has been found out to be 8–14 mm.
Fig. 13: Follicular volume

Figs 14A and B: 3D follicle volume

Fig. 15: Sonography-based automated volume count (sonoAVC)
Morphology
Morphologically, the endometrium has been graded as follows.
Grade I (best)—when it is a triple-line endometrium with the intervening area is as hypoechoic as the anterior myometrium.
Grade II (intermediate)—when it is multilayered or triple line with the hypoechoic intervening area. Grade III (most unfavorable)—when it is a homogeneous isoechoic endometrium.
Breach or irregularity of endomyometrial junction is an indication of unhealthy endometrium and therefore poor receptivity.

Uterine Artery Doppler
Several authors have shown that the optimum uterine receptivity was obtained when the average pulsatility index of the uterine artery was between 2 and 3 and RI should be <0.9 on the day of transfer or the day of hCG.21–23

Endometrial and Subendometrial Vascularity
There are three zones of vascularity according to Applebaum:
Zone 1: when the vascularity on PD is seen only at endometriomyometrium junction; Zone 2: when vessels penetrate through the hyperechogenic endometrial edge; Zone 3: when it reaches the intervening hypoechoic zone; and Zone 4 when they reach the endometrial cavity.
Vascularity in zones 3 and 4 represents a mature endometrium and is correlated to have better implantation rates.

Endometrial Volume
The endometrial volume by 3D USG having an optimum pregnancy rate has been described as 2–13 mL. The calculation of endometrial volume is particularly useful in cases of synechiae, adenomyosis, and uterine anomalies to predict the outcome of treatment. Endometrial and subendometrial volume increase rapidly during the follicular phase and then remain almost unchanged during the luteal phase.

Endometrial Vascularization Using 3D Power Doppler
Endometrial vascularization is calculated by measuring the VI, FI, vascular flow index (VFI), and flow vessel quotient. Higher subendometrial Doppler indices, i.e., VI (>1), FI (>31), and VFI (>0.25) on the day of hCG have been found to have a higher conception rate.24–26

Conclusion
Folliculometry is the cornerstone of an infertility management program. Ultrasound can alone be used to accurately monitor ovulation index (OI) therapy for both in vivo and IVF by successfully measuring endometrial thickness and size of ovarian follicles and correlates strongly with serum estradiol concentrations. Color
Doppler and 3D PD parameters can have an adjunctive role to usual folliculometry. The follicular and endometrial physiological status can be better understood with these newer parameters.

Acknowledgments

We acknowledge the help of Prof Sonal Panchal and Dr Ashok Khurana for providing images and Dr Rahul Gupta and Dr Nitin Agarwal for doing all the scanning. Dr Shally Gupta and Dr Neerja Sachdev for monitoring the stimulation protocols and Dr Keshav for correlating the oocyte quality. This paper has been prepared by META (Malhotra Embryology Training Academy) with a financial grant from NGO SMRITI and ART-Rainbow IVF Centre.

References

1. Hackelöer BJ, Robinson HP. Ultrasound examination of the growing ovarian follicle and of the corpus luteum during the normal physiological menstrual cycle. Geburtshilfe Frauenheilkd 1978;38:163–168.

2. Jun SH, Ginsburg ES, Racowsky C, et al. Uterine leiomyomas and their effect on in vitro fertilization outcome: a retrospective study. J Assist Reprod Genet 2001;18(3):139–143. DOI: 10.1023/A:1009403819377.

3. Fleischer AC. New developments in the sonographic assessment of ovarian, uterine and breast vascularity. Semin Ultrasound CT MR 2001;22(1):42–49. DOI: 10.1016/S0887-2171(01)90017-4.

4. Raine-Fenning NJ, Campbell BK, Clewes JS, et al. The reliability of virtual organ computer-aided analysis (VOCAL) for the semiquantification of ovarian, endometrial and subendometrial perfusion.
1. Wittmack FM, Kreger DO, Blasco L, et al. Effect of follicular size on oocyte retrieval, fertilization, cleavage and embryo quality in in vitro fertilization cycles: a 6 years data collection. Fertil Steril 1994;62(6):1205–1210. DOI: 10.1016/S0015-0282(16)57186-6.

2. Panchal SY, Nagori CB. Can 3D PD be a better tool for assessing the number and volume of follicles and ovarian vascularity by three-dimensional ultrasonography and power Doppler angiography on the hCG day to predict the outcome in IVF/ICSI cycles. Hum Reprod 2006;21(5):1218–1226. DOI: 10.1093/humrep/dei471.

3. Chui O, Pugh N, Walker S, et al. Follicular vascularity—the predictive value of transvaginal power Doppler ultrasonography in an in vitro fertilization program: a preliminary study. Hum Reprod 1997;12(1):191–196. DOI: 10.1093/humrep/12.1.191.

4. Kupesic S, Kurjak A. Uterine and ovarian perfusion during the periovulatory period assessed by transvaginal color Doppler. Fertil Steril 1993;60(3):439–443. DOI: 10.1016/S0015-0282(16)56157-3.

5. Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod 1997;12(5):1047–1055. DOI: 10.1093/humrep/12.5.1047.

6. Mercé LT, Bau S, Barco MJ, et al. Assessment of the ovarian volume, number and volume of follicles and ovarian vascularity by three-dimensional ultrasonography and power Doppler angiography on the hCG day to predict the outcome. Ultrasound Obstet Gynecol 2003;22(6):633–639. DOI: 10.1002/uog.923.

7. Chui O, Pugh N, Walker S, et al. Follicular vascularity—the predictive value of transvaginal power Doppler ultrasonography in an in vitro fertilization program: a preliminary study. Hum Reprod 1997;12(1):191–196. DOI: 10.1093/humrep/12.1.191.

8. Kupesic S, Kurjak A. Uterine and ovarian perfusion during the periovulatory period assessed by transvaginal color Doppler. Fertil Steril 1993;3(3):439–443. DOI: 10.1016/S0015-0282(16)56157-3.

9. Nargund G, Doyle PE, Bourne TH, et al. Ultrasound-devised indices of follicular blood flow before hCG administration and prediction of oocyte recovery and preimplantation embryo quality. Hum Reprod 1996;11(11):2512–2517. DOI: 10.1093/oxfordjournals.humrep.a019150.

10. Nargund G, Bourne T, Doyle P, et al. Association between ultrasound indices of follicular blood flow, oocyte recovery and preimplantation embryo quality. Hum Reprod 1996;11(1):109–113. DOI: 10.1093/oxfordjournals.humrep.a019000.

11. Wittmack FM, Kreger DO, Blasco L, et al. Effect of follicular size on oocyte retrieval, fertilization, cleavage and embryo quality in in vitro fertilization cycles: a 6 years data collection. Fertil Steril 1994;62(6):1205–1210. DOI: 10.1016/S0015-0282(16)57186-6.

12. Panchal SY, Nagori CB. Can 3D PD be a better tool for assessing the pre-hCG follicle and endometrium? A randomized study of 500 cases. Presented at 16th world congress on ultrasound in obstetrics and gynecology, 2006, London. J Ultrasound Obstet Gynecol cases. Presented at 16th world congress on ultrasound in obstetrics and gynecology, 2006, London. J Ultrasound Obstet Gynecol.

13. Poehl M, Hohlagschwandtner M, Doerner V, et al. Cumulus assessment by three-dimensional ultrasound for in vitro fertilization. Ultrasound Obstet Gynecol 2000;16(3):251–253. DOI: 10.1046/j.1469-0705.2000.00270.x.

14. Jeon YE, Jung JA, Kim HY, et al. Predictive factors for pregnancy during the first intrauterine insemination cycles using gonadotropin. Gynecol Endocrinol 2013;29(9):834–838. DOI: 10.1093/ojge/ost059.

15. Check JH. The importance of sonographic endometrial parameters in influencing success following embryo transfer in the modern era and therapeutic options—part 1: the importance of late proliferative phase endometrial thickness. Clin Exp Obstet Gynecol 2011;38(3):197–200.

16. Yoeli R, Ashkenazi J, Orvieto R, et al. Significance of increased endometrial thickness in assisted reproduction technology treatments. J Assist Reprod Genet 2004;21(8):285–289. DOI: 10.1023/B:JARG.0000043701.22835.56.

17. Coulam CB, Bustillo M, Sorenson DM, et al. Ultrasonographic predictors of implantation after assisted reproduction. Fertil Steril 1994;62(5):1004–1010. DOI: 10.1016/S0015-0282(16)57065-4.

18. Check JH, Nowroozi K, Choe J, et al. The effect of endometrial thickness and echo pattern on in vitro fertilization outcome in donor oocyte embryo transfer cycle. Fertil Steril 1995;59(1):72–75. DOI: 10.1016/S0015-0282(16)55617-9.

19. Rabionowitz R, Lafer N, Levin A, et al. The value of ultrasonographic endometrial measurement in the prediction of pregnancy following in vitro fertilization. Fertil Steril 1986;45(6):824–828. DOI: 10.1016/S0015-0282(16)54940-0.

20. El-Toukhy T, Coomarasamy A, Khairi M, et al. The relationship between endometrial thickness and outcome of medicated frozen embryo replacement cycles. Fertil Steril 2008;89(4):832–839. DOI: 10.1016/j.fertnstert.2007.04.031.

21. Steer CV, Campbell S, Tan SL, et al. The use of transvaginal color flow imaging after in vitro fertilization to identify optimum uterine conditions before embryo transfer. Fertil Steril 1992;57(2):372–376. DOI: 10.1016/S0015-0282(16)54848-1.

22. Zaidi J, Pittrof R, Shaker A, et al. Assessment of uterine artery blood flow on the day of human chorionic gonadotrophin administration by transvaginal color Doppler ultrasound in an in vitro fertilization program. Fertil Steril 1996;65(2):377–381. DOI: 10.1016/S0015-0282(16)58103-5.

23. Cacciatore B, Simberg N, Fusaro P, et al. Transvaginal Doppler study of uterine artery blood flow in in vitro fertilization embryo transfer cycles. Fertil Steril 1996;66(1):130–134. DOI: 10.1016/S0015-0282(16)58400-3.

24. Ng EH, Yeung WS, Ho PC. Endometrial and sub endometrial vascularity are significantly lower in patients with endometrial volume 2.5 ml or less. Reprod Biomed Online 2009;18(2):262–268. DOI: 10.1016/j.rbmo.2007.12.015.

25. Ng EH, Chan CCW, Tang OS, et al. Comparison of endometrial and subendometrial blood flow measured by three-dimensional power Doppler ultrasound between stimulated and natural cycles in the same patients. Hum Reprod 2004;19(10):2385–2390. DOI: 10.1093/humrep/dei384.

26. Ng EH, Chan CCW, Tang OS, et al. The role of endometrial and subendometrial blood flows measured by three-dimensional power Doppler ultrasound in the prediction of pregnancy during IVF treatment. Hum Reprod 2006;21(1):164–170. DOI: 10.1093/humrep/dei277.