Effects of Exercise-Based Cardiac Rehabilitation in Patients with Acute Coronary Syndrome: A Meta-Analysis

Haigang Ji*
Liang Fang*
Ling Yuan
Qi Zhang

* Haigang Ji and Liang Fang contributed equally to this article

Background: Acute coronary syndrome (ACS) has become an important cause of death from cardiovascular disease. Cardiac rehabilitation (CR) plays an essential role in ACS patients after treatment. Therefore, in order to detect the impact of CR on mortality and major adverse cardiac events in patients with ACS, we conducted this meta-analysis.

Material/Methods: We searched PubMed, Web of science, and EMBASE databases to obtain published research results from 2010 to August 2018 to determine the relevant research. Random-effects model or fixed-effects model were used to calculate relative risk (RR) and 95% confidence interval (CI).

Results: Overall, a total of 25 studies with 55,035 participants were summarized in our meta-analysis. The results indicated that the hazard ratio (HR) of mortality significantly lower in the CR group than in the non-CR group (HR = 0.47; 95% CI = (0.56 to 0.39; P < 0.05). Fourteen studies on mortality rate showed exercise was associated with reduced cardiac death rates (RR = 0.40; 95% CI = 0.30 to 0.53; P < 0.05). We found the risk of major adverse cardiac events (MACE) was lower in the rehabilitation group (RR = 0.49; 95% CI = 0.44 to 0.55; P < 0.05). In 11 articles on CR including 8,098 participants, the benefit in the CR group was greater than in the control group concerning revascularization (RR = 0.69, 95% CI: 0.53 to 0.88; P = 0.003). The recurrence rate of MI was reported in 13 studies, and the risk was lower in the CR group (RR = 0.63, 95% CI: 0.57–0.70; P < 0.05).

Conclusions: Our meta-analysis results suggest that CR is clearly associated with reductions in cardiac mortality, recurrence of MI, repeated PCI, CABG, and restenosis.

MeSH Keywords: Acute Coronary Syndrome • Meta-Analysis • Rehabilitation

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/917362
Cardiovascular disease (CVD) is one of the world’s most well-known health problems. Over the course of the decades, the overall incidence of CVD, particularly in acute coronary syndrome (ACS), has risen rapidly [1]. ACS has become an important cause of death from cardiovascular disease, especially in elderly ACS patients [2]. The mortality rate of patients with ACS has declined due to advances in medical technology [3]. However, improper treatment of ACS patients not only seriously endangers national health, but also imposes a heavy public health and economic burden.

ACS is a group of clinical syndromes based on the rupture or invasion of coronary atherosclerotic plaque, followed by complete or incomplete occlusive thrombosis, including acute ST-segment elevation myocardial infarction (STEMI), acute non-ST-segment elevation myocardial infarction (NSTEMI), and unstable angina (UA). For the treatment of ACS, cardiologists have a very important sentence: “time is the heart muscle and time is life” [4]. ACS, especially acute ST-segment elevation myocardial infarction, treatment emphasizes the opening of blocked blood vessels as soon as possible, restores blood perfusion of the heart, and protects the viable myocardium to maximize the protection of cardiac function and improve long-term prognosis. The treatment of ACS mainly includes: (1) conservative treatment of drugs, (2) interventional therapy, and (3) surgical treatment [5]. ACS treatment is not a single treatment, but rather requires a comprehensive treatment strategy, including short-term anticoagulant therapy, long-term antiplatelet therapy, combined use of lipids and other drugs, and appropriate application of interventional or surgical treatment. Overall, 30-day mortality rates for ACS patients have decreased significantly over the past 10 years due to improved antithrombotic therapy and early revascularization. Therefore, the epidemiology of ACS has also undergone profound changes: more patients with ACS survive from the initial ischemic event, and then recurrent ischemic events, heart failure, atrial fibrillation or non-cardiac disease (such as cancer), and longer survival time [1]. Therefore, long-term care for ACS patients will receive more and more attention, and cardiac rehabilitation will be an important component.

Cardiac rehabilitation (CR) is a comprehensive method that includes exercise training, risk factor education, psychological support, lifestyle and behavior changes, and reducing common risk factors [6-8]. Exercise is the best medicine [9]. In the past few decades, many epidemiological studies have shown that exercise is good for human health by reducing the risk of dementia, providing protection against metabolic disorders, and improving quality of life. CR after PCI has become very popular, especially during the rehabilitation of PCI, which helps to alleviate the symptoms of the patient; exercise often was used in combination with conventional treatment. The American Heart Association (AHA) guidelines [10] recommend training as a core element of exercise-based cardiac rehabilitation [11]. Cardiac rehabilitation aims to improve health and outcomes after ACS. There are several meta-analyses that have been published before, such as Anderson et al’s study [12] and Yang et al’s study [13]. Anderson et al’s study included 63 studies, and the results showed that CR reduced heart mortality in patients with coronary heart disease, but had no significant effect on myocardial infarction and revascularization. Yang et al’s study showed that exercise was not obviously associated with cardiac death reductions, MI recurrence, repetitive PCI, CABG, or restenosis. No meta-analysis focused on the relationship between ACS and CR based on exercise. Therefore, in order to detect the influence of CR on mortality and major adverse cardiac events (MACE, which were defined as a composite of all-cause death, non-fatal acute myocardial infarction, or target vessel revascularization) in ACS patients, we conducted this meta-analysis.

Material and Methods

Information source and search strategy

We conducted a systematic search in PubMed, Cochrane Central Register of Controlled Trials, and EMBASE from 2010 to August 2018 to assess the relevant research. The following terms were used to search related research in the database without language restrictions: “Acute myocardial infarction” or “Unstable angina” and “Coronary heart disease” and “Cardiac rehabilitation”. The list of references for searched articles were filtered to determine other eligible references.

Inclusion and exclusion criteria

Two researchers independently reviewed the title and abstract of the results. Disagreements were resolved by discussion with another author and the included articles needed to meet the following inclusion criteria: (1) Research population includes ACS patients of all ages; (2) If the study is a randomized controlled with follow-up for more than 6 months or retrospective study, we considered it to be compliant; and (3) Patients needed to participate in any form of exercise program or included comprehensive cardiac rehabilitation combined with education of improved lifestyle; and comprised a control group that did not accept any form of structural exercise training but included medical treatment. The following studies were excluded: (1) The patients had severe cardiac complications such as heart failure, or mitral valve prolapse; (2) The patients who has a malignant tumor. (3) Cardiovascular mortality or hazard ratio (HR) or incidence of MACE (non-fatal myocardial infarction, revascularization) have not been reported or cannot
be calculated based on available data; and (4) Full texts were not published in English.

Data extraction

The required data were extracted from all eligible studies, including the first author’s last name, publication time, number of patients in all studies, method of rehabilitation, and follow-up time. We obtained 4 tables of mortality and MACE incidence directly from the article to calculate RR and 95% CI. In addition, we directly obtained the HR and 95% CI of mortality.

Statistical analysis

Statistical analysis was conducted using STATA 14.0 software. χ² and I-squared (I²) tests were used to evaluate the heterogeneity. If p<0.10 and I²≥50%, which means there is heterogeneity between the studies, a random-effects model was used; otherwise, a fixed-effects model was used. Bilateral p<0.05 was regarded as statistically significant. We use forest plots to present the results of the meta-analysis.

Results

Selected studies and characteristics

We initially retrieved 2071 original studies, with and 1820 remaining after removing 251 duplicate articles. By screening the title and abstract in these 1820 articles, we found that 1784 did not match the topic. We reviewed 34 selected studies to determine their compliance with inclusion criteria. After screening full texts, 7 articles did not contain specific data for death or MACE, 1 was a review article, and 1 was not published in English, so these articles were excluded. Thus, a total of 25 studies with 55035 participants were summarized in our systematic review. The search and selection processes are shown in Figure 1. The characteristics and data of all 25 studies [15–39] are described in Table 1.

Meta-analysis

Cardiac rehabilitation and cardiovascular mortality

Ten articles were included that analyzed the relationship between cardiac rehabilitation and hazard ratio (HR) of cardiovascular mortality. We summarized the results of HR by fixed-effects models, and the analysis indicated cardiovascular mortality was significantly lower in the cardiac rehabilitation group than in the non-cardiac rehabilitation group (HR=0.47; 95% CI=–0.56, –0.39; P<0.05) (Figure 2). Fourteen studies reported the relationship between cardiovascular mortality rate and cardiac rehabilitation. Significant heterogeneity in the cardiovascular mortality rate of the pooled estimates was observed (I²–squared=87.3%). Thus, we used a random-effects model. The results showed exercise was associated with significantly reduced cardiac death rates (RR=0.40; 95% CI=0.30–0.53; P<0.05) (Figure 3).

Because of the greater heterogeneity of the included articles, we conducted a subgroup analysis. Meta-analysis with a follow-up of less than 2 years showed that cardiac rehabilitation exercise was not associated with cardiac death. However, meta-analysis with a follow-up of 2–4 years, 4.1–6 years, 6.1–10 years showed a positive correlation between exercise and decreased cardiac death (Figure 4).

Cardiac rehabilitation and major adverse cardiovascular events

We included 15 articles about cardiac rehabilitation and MACE, and fixed-effects models showed that the risk of MACE was lower in the rehabilitation group (RR=0.49; 95% CI=0.44–0.55; P<0.05) (Figure 5).

Cardiac rehabilitation and revascularization (re-PCI or CABG)

In the 11 articles on CR, which included 8098 participants, we found that the benefit in the CR group was greater than in the control group (RR=0.69, 95% CI: 0.53–0.88; P=0.003) by random-effects model (p=0.000, I-squared=69.9%) (Figure 6). We performed a subgroup analysis based on whether PCI/CABG was performed before the rehabilitation exercise, and the results showed that CR was not associated with revascularization in the AMI group. We could not confirm whether
Table 1. Characteristics of the studies included in the meta-analysis.

Year	Author	Country	Type of Study	Participants	Rehabilitation method and duration	Follow-up time (mouth)
2018	Sara Doimo	United States	Retrospective	ACS patients (PCI or CABG)	Stationary bicycle training for 45 min, 2 time per week for 5 weeks, and gym training for 45 min, 3 times per week for 6 weeks; counseling about lifestyle; 5M	60
2018	Yong Zhang	China	Randomized controlled study	AMI patients (PCI)	Exercise for 3 phases; 6M	6
2018	Madoka Sunamura	Netherlands	Retrospective	Patients with PCI	Exercise for 1.5h, twice per week; 12 W	120
2017	Manuel F. Jimenez-Navarro	United States	Retrospective	Patients with PCI	Multidisciplinary rehabilitation for 3 h per week; 12 W	120
2017	A. J. Hautala	Netherlands	Cohort design	ACS patients	Exercise for once per week; 6M	12
2016	Marion Pouche	French	Cohort design	AMI patients	N/A	60
2016	Jong-Young Lee	Korea	Retrospective	Patients with PCI	Multidisciplinary rehabilitation for 3 times per week; 3M	85
2015	Han de Vries	Netherlands	Retrospective	ACS patients (PCI or CABG)	Exercise for 30min, 2-3 times per week; relaxation therapy consists of 4–6 sessions lasting 60–90 min; 6-12W	48
2015	Hui-Ming Chen	Taiwan	Retrospective	AMI patients (PCI)	Range of motion, muscle strengthening, breathing, and chest expansion exercises	60
2014	Roser Coll-Fernandez	Spanish	Cohort design	AMI <3 months	N/A	18
2014	Hee Eun Choi	Korea	Retrospective	Patients with PCI	Main exercise for 30 min, 3 times per week; 8W	9
2014	Shannon M. Dunlay	United States	Retrospective	AMI patients	N/A	91
2014	Bernhard Rauch	Germany	Randomized controlled study	AMI patients (PCI)	Physiotherapy (3h per week), motivation, information, and education (7.2 and 7.0 h per week), social support service (0.9 and 1.1 hours per week), psychological support and supervision (2.3 and 3.4 h per week), and nursing (3.5 and 2.5 hours per week); —4W	12
2013	Quinn R. Pack	United States	Retrospective	Patients with CABG	Exercise for 30-45 min, 3 times per week;	120
2010	Tomo Onishi	Japan	Cohort design	AMI patients (PCI)	Exercise for 1h, twice per week; dietary and education program; 6M	30
2009	Dominique Hansen	Belgium	Cohort design	AMI patients (PCI or CABG)	Exercise for 1 h, 3 times per week; psychological and dietary counseling; 3M	24
2008	Paul Dendale	Belgium	Cohort design	Patients with PCI	Exercise for 1 h, 3 times per week; psychological and dietary counseling consisted of 8 education sessions; 3M	54
the intervention was PCI/CABG (RR=0.94, 95% CI: 0.70–1.26; P>0.05). Moreover, CR significantly reduced the incidence of vascular remodeling in the PCI/CABG group (RR=0.69, 95% CI: 0.53–0.88; P<0.05) (Figure 7).

Cardiac rehabilitation and non-fatal myocardial infarction

Based on heterogeneity studies, we use fixed-effects models to analyze CR and non-fatal myocardial infarction. The recurrence rate of myocardial infarction was reported in 13 studies that included 9626 participants. In terms of the comparison between the CR groups and control groups, there was a significant difference in risk (RR=0.63, 95% CI: 0.57–0.70; P<0.05) (Figure 8).

Publication bias

Funnel plots were used to assess possible publication bias. Priorities for positive findings were found in articles about CR and more patients or longer follow-up time needed to reduce publication bias (Figure 9).

Sensitivity analysis

Because of the high degree of heterogeneity between the meta-analysis of CR and cardiac death and the meta-analysis of CR and revascularization, we performed a sensitivity analysis to assess the reliability of the results. The results indicate that the reliability of the results may have been affected by the short follow-up time [26,32,35] and large [22] or small [39] sample numbers (Figure 10).

Discussion

To the best of our knowledge, this is the first a meta-analysis on the effects of cardiac rehabilitation in ACS patients. Our review contained 25 studies and 55 035 participants who presented with ACS. The purpose of our meta-analysis was to determine if endpoint events could be reduced or survival could be improved by exercise in patients with ACS. In this analysis of studies, we found that CR was obviously related to decrease in cardiac death, recurrence of MI, repeated PCI, CABG, and restenosis.
Year	Author	Mortality (HR)	95% CI
2016	Marion Pouche	0.76	0.60–0.96
2018	Madoka Sunamura	0.61	0.46–0.81
2016	Jong-Young Lee	0.69	0.48–0.97
2013	Quinn R. Pack	0.54	0.40–0.74
2014	Roser Coll-Fernandez	0.08	0.01–0.63
2015	Han de Vries	0.65	0.56–0.77
2010	Tomo Onishi	0.65	0.19–2.27
2014	Shanon M. Dunlay	0.58	0.49–0.68
2008	David A. Alter	0.28	0.13–0.60
2017	Manuel F. Jimenez-Navarro	0.67	0.47–0.95

Overall (I-squared=31.1%, p=0.160)

Year	Author	Mortality (HR)	95% CI
2015	Han de Vries	−0.49 (−0.78, −0.21)	9.15
2005	Paul Dendale	−0.37 (−0.73, −0.03)	5.92
2010	Tomo Onishi	−0.43 (−0.58, −0.26)	28.87
2001	Romualdo Belardinelli	−0.62 (−0.92, −0.30)	7.74
2018	Maria Doimo	−0.43 (−1.66, 0.82)	0.48
2018	Roser Coll-Fernandez	−0.27 (−0.51, −0.04)	13.25
2014	Shanon M. Dunlay	−2.53 (−4.61, −0.46)	0.17
2008	David A. Alter	−0.54 (−0.71, −0.39)	27.27
2017	Manuel F. Jimenez-Navarro	−1.27 (−2.04, −0.51)	1.25

Overall (I-squared=87.3%, p=0.000)

Year	Author	Mortality (RR)	95% CI
2015	Han de Vries	0.29 (0.25, 0.34)	13.46
2005	Paul Dendale	0.58 (0.39, 0.85)	11.12
2010	Tomo Onishi	0.48 (0.20, 1.16)	5.95
2001	Romualdo Belardinelli	0.29 (0.14, 0.60)	7.16
2018	Maria Doimo	0.39 (0.48, 0.72)	12.98
2018	Roser Coll-Fernandez	0.60 (0.54, 0.67)	13.63
2014	Shanon M. Dunlay	0.45 (0.37, 0.56)	12.95
2008	David A. Alter	0.30 (0.03, 2.75)	1.49
2013	Quinn R. Pack	0.47 (0.19, 1.15)	5.94
2007	Jan Lisspers	0.13 (0.04, 0.38)	4.65
2000	Maria Teresa La Rovere	0.27 (0.08, 0.92)	3.94
2001	Johan Denollet	0.53 (0.19, 1.52)	4.88
2001	Bo Hedback	0.02 (0.00, 0.15)	1.84
2014	Roser Coll-Fernandez	0.50 (0.19, 1.52)	4.88
2001	Romualdo Belardinelli	0.02 (0.00, 0.15)	1.84
2013	Tomo Onishi	0.27 (0.08, 0.92)	3.94
2007	Manuel F. Jimenez-Navarro	0.40 (0.30, 0.53)	100.00

Overall (I-squared=87.3%, p=0.000)

Weights are from random effects analysis

Figure 2. Meta-analysis for the association between CR and HR of cardiovascular mortality.

Figure 3. Meta-analysis for the association between CR and cardiac death rates.
Figure 4. Subgroup meta-analysis based on follow-up time between CR and cardiac death rates.

Figure 5. Meta-analysis for the association between CR and MACE.
In the past few years, CR has evolved from a simple plan to monitor patients’ safe physical activity into a comprehensive discipline program that includes post-operative patient care, drug therapy optimization, nutritional counseling, smoking cessation, risk stratification, stress management, and lifestyle improvement [40], and different projects have different rehabilitation plans.

CR has several beneficial effects, including improvement of exercise capacity, muscle strength, cardiac risk factors, and health-related quality of life, as well as reducing mortality in ACS patients. Our analysis and others have shown that these benefits of CR even affect elderly patients with ACS [41–45].

The exact mechanism by which CR improves the prognosis of patients with ACS has not been fully elucidated [46].
clinical practice and experiments, CR has been shown to have many direct benefits for the cardiovascular system, such as enhancing myocardial oxygen supply, endothelial function, autonomic nervous tone, coagulation factors, inflammatory markers, and development of coronary collateral vessels [47,48]. However, this may also be regulated by the indirect effects of exercise by improving the risk factors for atherosclerotic disease [49]. In Onishi's study, the BMI of the CR group was significantly lower, and the levels of TG and fasting blood glucose were shown to be significantly lower in older patients [29]. Indeed, a randomized study showed that CR reduced fat weight without a reduction in lean body weight, and also reduced the levels of TC in older patients [41]. These direct and indirect effects may have led to the reduction in cardiovascular events, and these effects can predict MACE in ACS patients, such as neurogenic mechanism and CRP [50,51].

We found that randomized controlled trials and observational studies [28,49,52–55] showed that, after participating in CR, the mortality rate after MI was reduced in the patients. The difference observed in the randomized controlled trial was less than the crude difference in mortality in the observational study [52,56]. To some extent, this can be ascribed to the non-random nature of the intervention, i.e., older patients with more severe conditions are less likely to participate in CR, but are more likely to have poor outcomes. Older patients with comorbidities that are common in clinical practice will generally be excluded from trial registration and their response to interventions such as CR may vary. In addition, the mortality rates of various trends involved in CR continue to decrease, indicating that even the highest-risk events involved in CR have a lower mortality rate for MI survivors than those who do not participate in CR.

We conducted an updated meta-analysis of exercise-based CR in people with existing ACS. Due to inconsistent follow-up time, the meta-analysis was heterogeneous; therefore, we conducted a subgroup analysis and we still came to the conclusion that CR can reduce the cardiac death rate. In addition, Dendale et al's studies found that non-fatal myocardial infarction in the rehabilitation group increased [33], which may be because exercise increased the instability of pre-existing coronary plaque. However, our meta-analysis combined all the literature to conclude that exercise reduces non-fatal myocardial infarction. Our meta-analysis was based on a large sample size with long follow-up times, and we performed sensitivity analysis and subgroup analysis, so our results showing that CR can reduce cardiac death and MACE reliability in patients with ACS are reliable.

Year	Author	a	b	c	d
2014	Roser Coll-Fernandez	10	511	33	489
2005	Paul Dendale	4	136	2	81
2010	Tomo Onishi	5	32	16	58
2015	Hui-Ming Chen	4	39	45	344
2008	Paul Dendale	10	123	2	78
2009	Dominique Hansen	44	299	68	266
2014	Bernard Rauch	43	2319	27	919
2001	Romualdo Belardinelli	1	58	3	56
2018	Yong Zhang	0	65	1	64
2016	Jong-Young Lee	220	376	1386	1058
2005	Jan Lisspers	0	46	9	32
2002	Maria Teresa La Rovere	0	49	2	46
2001	Bo Hedbuck	5	44	18	80

Study ID	RR (95%CI)	% Weight
Roser Coll-Fernandez (2014)	0.30 (0.15, 0.81)	4.47
Paul Dendale (2005)	1.19 (0.22, 6.33)	0.34
Tomo Onishi (2010)	0.62 (0.25, 1.57)	1.45
Hui-Ming Chen (2015)	0.80 (0.30, 2.13)	1.21
Paul Dendale (2008)	3.01 (0.68, 13.38)	0.34
Dominique Hansen (2009)	0.63 (0.44, 0.89)	9.34
Bernard Rauch (2014)	0.64 (4.40, 1.03)	5.23
Romualdo Belardinelli (2001)	0.33 (0.04, 3.11)	0.41
Yong Zhang (2018)	0.33 (0.01, 8.03)	0.20
Jong-Young Lee (2016)	0.65 (0.58, 0.73)	73.68
Jan Lisspers (2005)	0.05 (0.01, 3.98)	1.36
Maria Teresa La Rovere (2002)	0.20 (0.01, 3.98)	0.34
Bo Hedbuck (2001)	0.56 (0.22, 1.41)	1.63
Overall (I-squared=13.8%, p=0.306)	0.63 (0.57, 0.70)	100.00
Although it has long been recognized that CR can improve prognosis, the participation rate of CR has not been high. In Pouche’s study [20], the 22.1% participation rate for CR is comparatively low, and the 1998 PREVENIR study had similar conclusions (23.3%) [57]. Another study reported similar results, with 13.9% of patients who had ACS and 31% who had a coronary artery bypass grafting [58]. In Europe, less than half the patients eligible for CR actually attend the programs [59].

The factors that determine the restrictions on participation or compliance with CR [60] may include: personal barriers (thinking that CR is not useful, patients have low control of cardiovascular risk factors, negative perceptions of those involved in rehabilitation, language barriers); barriers related to medical staff (they may provide information that is contradictory or provided at inappropriate times, inadequate understanding of CR objectives, and exclusion criteria); environmental and socio-professional barriers (inconvenient planning, incompatible timing); economic barriers; family barriers (lack of family

Figure 9. Funnel plot for the meta-analysis ((A) HR of cardiovascular mortality; (B) cardiac death rates; (C) MACE; (D) revascularization; (E) non-fatal myocardial infarction).
involvement in rehabilitation); and physical barriers, including lack of transport or transport difficulties. Gaining a better understanding of these barriers will be very important in improving CR compliance [61].

Conclusions

This meta-analysis showed that CR was clearly associated with reductions in cardiac death, recurrence of MI, repeated PCI, CABG, and restenosis. Expanding the sample size and improving the quality of studies will be very important in future research.

Conflict of interest

None.
1. Benjamin EJ, Blaha MJ, Chiuve SE et al: Heart disease and stroke statistics – 2017 update: A report from the American Heart Association. Circulation, 2017; 135(10): e146–e603

2. Mansencal N, Pillerie R, N’Guetta R et al: Characteristics and prognosis of coronary revascularization procedure in patients age 80 and older presenting with acute myocardial infarction. Med Sci Monit, 2010; 16(1): CR15–20

3. Widimsky P, Crea F, Binder RK, Luscher TF: The year in cardiology 2018: Acute coronary syndromes. Eur Heart J, 2019; 40(3): 271–82

4. Antman EM: Time is muscle: Translation into practice. J Am Coll Cardiol, 2011; 58(23): 2432–46

5. Yamamoto S, Hotta K, Ota E et al: Effects of resistance training on muscle hypertrophy and strength in patients with coronary artery disease: A meta-analysis. J Cardiol, 2016; 68(2): 125–34

6. Balady GJ, Ades PA, Bittner VA et al: Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond: A presidential advisory from the American Heart Association. Circulation, 2011; 124(25): 2951–60

7. Smith SC Jr, Benjamin EJ, Bonow RO et al: AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary artery disease and cardiovascular risk factors: 2011 update: A guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. J Am Coll Cardiol, 2011; 58(23): 2432–46

8. Piepoli MF, Hoes AW, Agewall S et al: 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol, 2016; 23(11): NP1–96

9. Deweerdt S: Prevention: Activity is the best medicine. Nature, 2011; 475(7355): 516–17

10. Fletcher GF, Ades PA, Kligfield P et al: Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation, 2012; 138(8): 873–934

11. Yamanoto S, Hotta K, Ota E et al: Effects of resistance training on muscle strength, exercise capacity, and mobility in middle-aged and elderly patients with coronary artery disease: A meta-analysis. J Cardiol, 2016; 68(2): 125–34

12. Anderson L, Oldridge N, Pillieere R et al: Characteristics and prognosis of coronary revascularization procedure in patients age 80 and older presenting with acute myocardial infarction. Med Sci Monit, 2010; 16(1): CR15–20

13. Yang X, Li Y, Ren X et al: Effects of exercise-based cardiac rehabilitation in patients after percutaneous coronary intervention. A meta-analysis of randomized controlled trials. Sci Rep, 2017; 7: 44789

14. Kip KE, Hollbaugh K, Marroquin OC, Williams DO: The problem with compositive end points in cardiovascular studies: the story of major adverse cardiac events and percutaneous coronary intervention. J Am Coll Cardiol, 2016; 67(1): 1–12

15. Doimo S, Fabris E, Pibiri M et al: Impact of ambulatory cardiac rehabilitation on cardiovascular outcomes: A long-term follow-up study. Eur Heart J, 2019; 40(8): 678–85

16. Zhang Y, Cao H, Jiang P, Tang H: Cardiac rehabilitation in acute myocardial infarction patients after percutaneous coronary intervention: A community-based study. Medicine (Baltimore), 2018; 97(8): e9785

17. Sunamurara M, Ter Hoeve N, van den Berg-Emons RIG et al: Cardiac rehabilitation in patients with acute coronary intervention is associated with improved 1-year survival. Eur Heart J Qual Care Clin Outcomes, 2018; 4(3): 168–72

18. Jimenez-Navarro MF, Lopez-Jimenez F, Perez-Belmonte LM et al: Benefits of cardiac rehabilitation on cardiovascular outcomes in patients with diabetes mellitus after percutaneous coronary intervention. J Am Heart Assoc, 2017; 6(10): pii: e006404

19. Hautala AI, Kiviniemi AM, Makikallio T et al: Economic evaluation of exercise-based cardiac rehabilitation in patients with a recent acute coronary syndrome. Scand J Med Sci Sports, 2017; 27(11): 1395–403

20. Pouche M, Ruidavets JB, Ferrières J et al: Cardiac rehabilitation and 5-year mortality after acute coronary syndromes: The 2005 French FAST-MI study. Arch Cardiovasc Dis, 2016; 109(3): 176–87

21. Lee JY, Ahn JM, Park DW et al: Impact of exercise-based cardiac rehabilitation on long-term clinical outcomes in patients with left main coronary artery stenosis. Eur J Prev Cardiol, 2016; 23(17): 1804–13

22. de Vries H, Kemps HM, van Engen-Verheul MM et al: Cardiac rehabilitation and survival in a large representative community cohort of Dutch patients. Eur Heart J, 2015; 36(24): 1519–28

23. Chen HM, Liu CK, Chen HW et al: Efficiency of rehabilitation after acute myocardial infarction. Kaohsuing J Med Sci, 2015; 31(7): 351–57

24. Rauch B, Riemer T, Schwaab B et al: Short-term comprehensive cardiac rehabilitation after AMI is associated with reduced 1-year mortality: results from the OMEGA study. Eur J Prev Cardiol, 2014; 21(9): 1060–69

25. Dunlay SM, Pack QR, Thomas RJ et al: Participation in cardiac rehabilitation, readmissions, and death after acute myocardial infarction. Am J Med, 2014; 127(6): 538–46

26. Coll-Fernandez R, Coll R, Pascual T et al: Cardiac rehabilitation and outcome in stable outpatients with recent myocardial infarction. Arch Phys Med Rehabil, 2014; 95(2): 322–29

27. Choi HE, Lee BJ, Kim C: Impact of exercise-based cardiac rehabilitation on de novo coronary lesion in patients with drug eluting stent. Ann Rehabil Med, 2014; 38(2): 256–62

28. Pack QR, Goel K, Lahr BD et al: Participation in cardiac rehabilitation and survival after coronary artery bypass graft surgery: A community-based study. Circulation, 2013; 128(6): 590–97

29. Onishi I, Shimada K, Sato H et al: Effects of phase III cardiac rehabilitation on mortality and cardiovascular events in elderly patients with stable coronary artery disease. Circ J, 2010; 74(4): 709–14

30. Hansen D, Dendale P, Leenders M et al: Reduction of cardiovascular event rate: Different effects of cardiac rehabilitation in CABG and PCI patients. Acta Cardiol, 2009; 64(5): 639–44

31. Alter DA, Oh PI, Chong A: Relationship between cardiac rehabilitation and survival after acute cardiac hospitalization within a universal health care system. Eur J Cardiovasc Prev Rehabil, 2009; 16(1): 102–13

32. Nielsen KM, Faergeman O, Foldsang A, Larsen ML: Cardiac rehabilitation: health characteristics and socio-economic status among those who do not attend. Eur J Public Health, 2008; 18(5): 479–83

33. Dendale P, Hansen D, Berger I, Lamotte M: Long-term cost-benefit ratio of cardiac rehabilitation after percutaneous coronary intervention. Acta Cardiol, 2008; 63(4): 451–56

34. Lisspers J, Sundin O, Ohman A et al: Long-term effects of lifestyle behavior change in coronary artery disease: Effects on recurrent coronary events after percutaneous coronary intervention. Health Psychol, 2005; 24(3): 41–48

35. Dendale P, Hansen D et al: Cardiac rehabilitation reduces the rate of major adverse cardiac events after percutaneous coronary intervention. Eur J Cardiovasc Nurs, 2005; 4(2): 113–16

36. La Rovere MT, Bersano C, Gennemi M et al: Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation, 2002; 106(8): 945–49

37. Hedbäck B, Perk J, Homblad M, Ohlsson U: Cardiac rehabilitation after coronary artery bypass surgery: 10-year results on mortality, morbidity and readmissions to hospital. J Cardiovasc Risk, 2001; 8(3): 153–58

38. Denollet J, Brutsaert DL: Reducing emotional distress improves prognosis in coronary artery disease: Effects on recurrent coronary events after percutaneous coronary intervention. J Am Coll Cardiol, 2008; 55(4): 256–62

39. Bonnefoy M, Ruidavets JB, Ferrières J et al: Cardiac rehabilitation and 5-year mortality after acute coronary syndromes: The 2005 French FAST-MI study. J Am Coll Cardiol, 2011; 58(10): 146–53

40. Piepoli MF, Corra U, Benzer W et al: Secondary prevention through cardiac rehabilitation: From knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol, 2016; 23(11): NP1–96

41. Seki E, Watanabe Y, Shimada K et al: Effects of a phase III cardiac rehabilitation program on physical status and lipid profiles in elderly patients with coronary artery disease: Juntendo Cardiac Rehabilitation Program (J-CARP). Circ J, 2008; 72(8): 1230–34
This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)