Integral-field spectroscopy of the young high-mass star
IRAS13481-6124

Bringfried Stecklum, 1 Alessio Caratti o Garatti, 2 and Hendrik Linz 3
1Thüringer Landessternwarte, Tautenburg, Germany
2Max-Planck Institut für Radioastronomie, Bonn, Germany
3Max-Planck Institut für Astronomie, Heidelberg, Germany

Abstract. We present results of AO-assisted K-band IFU spectroscopy of the massive young star IRAS13481-6124 performed with ESO’s VLT/SINFONI instrument. Our spectro-astrometric analysis of the Brγ line revealed a photo-center shift with respect to the adjacent continuum of ∼1 AU at a distance of 3.1 kpc. The position angle of this shift matches with that of the outflow which confirms that the massive star is indeed the driving source. Furthermore, a velocity gradient along the major disk axis was found which hints at the rotational sense of the ionized region, and thus of the disk as well. The gradient is not consistent with Keplerian motion but points to rigid rotation of the innermost disk. Notably, emission of H2 is absent from source while both shocked and fluorescent H2 emission are observed in its immediate surroundings.

1. Introduction

IRAS13481-6124 was considered as potential massive young stellar object (MYSO) by Chan ea. (1996). SED modeling confirmed this view by suggesting a stellar mass of ∼20 M⊙ (Grave & Kumar 2009). Recently, radio-interferometric molecular line observations as well as H2 narrow-band imaging showed that it drives a parsec-scale bi-polar outflow, and VLTI measurements in the near- and thermal-infrared revealed the presence of a circumstellar disk (Kraus ea. 2010, Stecklum ea. 2010). At the distance of 3.1 ± 1.1 kpc (Urquhart ea. 2007) milli-arcsecond (mas) resolution is required to obtain information on the spatio-kinematics of the inner disk from emission lines, e.g. Brγ. Attempts to retrieve this with the VLTI failed so far because of sensitivity issues. Therefore, we have applied an alternative approach based on spectro-astrometry (SA).

SA aims at measuring the photo-center shift as a function of wavelength, and goes back to the concept of differential speckle interferometry (Beckers 1982). Since the accuracy is ∝SNR, SA demands bright targets. The first successful attempt (Bailey 1998) utilized long-slit spectroscopy at two position angles offset by 90° to reveal SA shifts in emission lines using the adjacent continuum as reference. Thereby, evidence for companions and outflows was found. Although the complementary use of two slit orientations (original and reversed) helps canceling instrumental effects, systematics still exist (Brannigan ea. 2006). The SA analysis of IFU spectroscopy profits from the true 2D observing nature, and benefits from Strehl improvements when coupled with AO (Davies ea. 2010). This boosts the SA accuracy into the μas range (Goto ea. 2012).
2. Observations and data reduction

K-band (R≈2000) IFU spectroscopy of IRAS13481-6124 was obtained with ESO’s SINFONI instrument in April 2011 using a natural guide star 16′′ NW of the target as wavefront reference. A dither map covering the inner flow region but excluding the bright (Ks=4.9) MYSO to avoid detector remanence was taken at the 0′′25 pixel scale (cf. Fig.1). The MYSO itself was observed with the 0′′025 pixel scale at the total on-source time of 600 s. The results presented below are based on the pipeline-reduced data. The SA analysis follows from Goto ea. (2012). Centroid positions [x,y] for each wavelength slice of the data cube were obtained by fitting a generalized 2D-Gaussian to the PSF for the range from 2.147 µm to 2.185 µm. The instrumentally induced positional bias was removed by a polynomial fit to the x and y dependence on wavelength which excluded the Brγ line. The 2nd order moment, i.e. the PSF width, was normalized to the continuum to account for the wavelength dependence.

3. Results and discussion

The immediate environment of the MYSO is shown in Fig.1 together with contours of Brγ (blue) as well as H2 emission. The long narrow spikes are diffraction artifacts. The mosaic does not reveal any emission from the red-shifted lobe to the north-east but discloses the faint companion at 2′.5 distance (red circle) already detected in the N-band (Stecklum ea. 2010). The blue-shifted lobe to the south-west is associated with scattered continuum as well as H2 emission. The molecular hydrogen is excited by fluorescence (green) and shocks (yellow) as inferred by the 2−1 S(1)/1−0 S(1) line ratio. A blob situated 2″ south of the MYSO is particularly bright in Brγ as well fluorescent H2. It is likely a PDR, caused by the intense UV illumination of the nearby MYSO. Notably, the highly collimated H2 flow cannot be traced down to the driving source. This is confirmed by the lack of H2 lines on the central target in the very high resolution data.

The Brγ line seen in the latter (Fig.2 left) shows a shallow P Cygni profile, and evidence for high-velocity wings from an ionized wind. The optically thick wind was found already in the recombination line study of Beck ea. (1991) but their SNR precluded the detection of the Brγ P Cygni profile. In order to illustrate the absorption trough as well as the wings, the spectrum
longward of the peak was flipped, and plotted in gray. For the SA analysis only the core of the line (enclosed by the vertical lines), unaffected by absorption, was used. Fig. 2 (right) displays the results where the vertical bars denote the 1σ error which has a mean of 45 µas. SA signals are clearly detected across the line in the [x,y] centroids. The SA accuracy is in good agreement with that of Goto et al. (2012) which confirms the well-behaved systematics.

Figure 2. Left: Brγ line and adjacent continuum Right: SA signal vs. wavelength

In order to put these results into relation with the disk and the outflow, they were plotted in the SA map (Fig. 3). Red crosses mark continuum while the line core is color coded, and connected by thin arrows. The ellipticity of the continuum distribution is due to anisoplanatism (the red arrow points along the direction to the wavefront reference star). The long light-green line indicates the PA (32°) of the parsec-scale outflow. The thick green line is the major axis of the SA excursion at the PA of 29°. The interpretation of this map requires awareness of the location of the continuum. To this aim, high-resolution synthetic images were generated for best-fitting SED models (Robitaille et al. 2007) using the radiative transfer code of Whitney et al. (2003), and analyzed in the same way as the real data. This indicates that the continuum centroid is in between the star and the south-western disk rim. Therefore, the Brγ excursion is pointing towards the star, i.e. the ionized gas is more confined. The fact that the position angle of the Brγ excursion matches with that of the large-scale outflow confirms that the MYSO is the driving source of the outflow indeed.

The SA analysis also yielded marginal signals in the PSF width, indicating that the line-emitting region is more compact than the continuum. This corresponds to previous
results for Herbig Ae/Be stars obtained with VLTI/AMBER (Kraus et al. 2008). On the contrary, the self-absorption region appears to be slightly more extended.

From the SA map it can be noticed that the velocities left- and right-ward of the major axis of the SA excursion differ systematically. The spatio-kinematics corresponds to a velocity gradient along the major disk axis (Fig. 4). It is inconsistent with Keplerian motion, and hints at a rigid rotation of the innermost disk, possibly due to a magnetic confinement. According to the gradient, the eastern part of the disk is receding.

The attempt to apply the SA analysis to the continuum as well was spoiled by the lower accuracy of the SA signals of the fainter standard star. However, given the high SA accuracy which can be achieved by IFU spectroscopy of bright YSOs, tracing the wavelength-induced wander of the continuum centroid seems possible using equally bright, nearby comparison stars. Thereby, constraints on inclination and source extent could be achieved in the absence or as a complement of time-demanding interferometric observations.

Acknowledgments. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 087.C-0951(B). Thanks to ESO staff, especially D. Nürnberg, for obtaining the requested data eventually.

References
Bailey, J. 1998, MNRAS, 301, 161
Beck, S. C., Fischer, J., & Smith, H. A. 1991, ApJ, 383, 336
Beckers, J. M. 1982, Optica Acta, 29, 361
Brannigan, E., Takami, M., Chrysostomou, A., & Bailey, J. 2006, MNRAS, 367, 315
Chan, S. J., Henning, T., & Schreyer, K. 1996, A&AS, 115, 285
Davies, B., Lumsden, S. L., Hoare, M. G., Oudmaijer, R. D., & de Wit, W.-J. 2010, MNRAS, 402, 1504
Goto, M., Carmona, A., Linz, H., Stecklum, B., Henning, T., Meeus, G., & Usuda, T. 2012, ApJ, 748, 6
Grave, J. M. C., & Kumar, M. S. N. 2009, A&A, 498, 147
Kraus, S., Hofmann, K.-H., Benisty, M., Berger, J.-P., Chesneau, O., Isella, A., Malbet, F., Meilland, A., Nardetto, N., Natta, A., Preibisch, T., Schertl, D., Smith, M., Stee, P., Tatulli, E., Testi, L., & Weigelt, G. 2008, A&A, 489, 1157
Kraus, S., Hofmann, K.-H., Menten, K. M., Schertl, D., Weigelt, G., Wyrowski, F., Meilland, A., Perraut, K., Petrov, R., Robbe-Dubois, S., Schilke, P., & Testi, L. 2010, Nat, 466, 339
Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007, ApJS, 169, 328
Stecklum, B., Caratti o Garatti, A., Linz, H., Wright, C., Boley, P., & Sterzik, M. 2010, in Great Barriers in High Mass Star Formation, Townsville, Australia, 13-17 September 2010. Online at http://www.jcu.edu.au/hmsf10
Urquhart, J. S., Bushfield, A. L., Hoare, M. G., Lumsden, S. L., Oudmaijer, R. D., Moore, T. J. T., Gibb, A. G., Purcell, C. R., Burton, M. G., & Marechal, L. J. L. 2007, A&A, 474, 891
Whitney, B. A., Wood, K., Bjorkman, J. E., & Wolff, M. J. 2003, ApJ, 591, 1049