MANY SOLUTIONS TO THE S-UNIT EQUATION $a + 1 = c$

J. HA1,* and K. SOUNDARARAJAN2†

1Department of Mathematics, Incheon National University, Incheon, Republic of Korea
e-mail: junsoo.ha.31@gmail.com

2Department of Mathematics, Stanford University, Stanford, CA 94305, USA
e-mail: ksound@stanford.edu

(Received February 20, 2019; accepted March 4, 2019)

Abstract. We show that there are arbitrarily large sets S of s primes for which the number of solutions to $a + 1 = c$ where all prime factors of ac lie in S has $\gg \exp(s^{1/4}/\log s)$ solutions.

1. Introduction

Given a finite set S of primes, the binary S-unit equation concerns solutions to $u + v = 1$ where u and v are S-units; that is, u and v are rational numbers whose numerator and denominator are composed only of primes in S. This S-unit equation has been extensively investigated, and we refer to [5] for a detailed overview of this equation and its generalizations. In particular, Evertse [3] has shown that the binary S-unit equation has at most $3 \times 7^{2s+1}$ solutions, where s denotes the cardinality of the set S. This refines classical works of Siegel and Mahler which established the finiteness of the number of solutions to the S-unit equation.

While there are many naturally occurring S-unit equations that have very few solutions (see [4] for many examples admitting at most two solutions), it is possible to exhibit arbitrarily large sets S for which the equation $u + v = 1$ has lots of solutions. In this context, Erdős, Stewart and Tijdeman [2] showed that there are arbitrarily large sets S for which the equation has at least $\exp((4 - \varepsilon)(s/\log s)^{1/2})$ solutions. This was subsequently refined by Konyagin and Soundararajan [11] who showed that there are sets S for
which the S-unit equation has at least $\exp\left(s^2 - \sqrt{2} - \varepsilon\right)$ solutions. The sets S used in these constructions are special and comprise of the set of initial primes, together with a small number of primes that appear in the argument, and which are out of our control. But even for the set S comprising of the first s primes, it is expected that the S-unit equation has $\exp\left(s^{2/3} - \varepsilon\right)$ solutions, and that perhaps the general S-unit equation does not have more than $\exp\left(s^{2/3 + \varepsilon}\right)$ solutions (see [2] for a heuristic discussion). In the context of S being the first s primes (which is related to the distribution of smooth numbers), Lagarias and Soundararajan [12] showed that under the Generalized Riemann Hypothesis one has at least $\exp\left(s^{1/8} - \varepsilon\right)$ solutions, and Harper [9] has shown unconditionally that there are at least $\exp(s^6)$ solutions for some $\delta > 0$. Ha [6] has studied the analogous problem over function fields, obtaining unconditionally $\gg \exp\left(s^{1/6} - \varepsilon\right)$ solutions.

Rewrite the S-unit equation $u + v = 1$ as $a + b = c$ where a, b and c are coprime positive integers with all prime factors of abc lying in the set S. In this setting, we may consider the special case when $b = 1$, where we are seeking two consecutive natural numbers a and c with all their prime factors lying in S. Konyagin and Soundararajan [11] showed that this special case too has exponentially many solutions for certain well-chosen sets S. Namely, they showed that there are sets S for which the equation $a + 1 = c$ has at least $\exp(s^{1/16})$ solutions. This was subsequently improved by Harper [7] who showed the existence of sets S for which there are at least $\exp(s^{1/6 - \varepsilon})$ solutions. In this paper we make further progress on this question, by showing that there are sets S with at least $\exp(s^{1/4} / \log s)$ solutions.

Theorem 1. For all s, there exist sets S of s primes such that the equation

$$a + 1 = c$$

has $\gg \exp(s^{1/4} / \log s)$ solutions where all prime factors of ac lie in S.

For the equation $a + 1 = c$, we do not know any upper bound on the number of solutions better than Evertse’s bound for the more general equation $a + b = c$. One may also ask for analogues of the results of Lagarias and Soundararajan, and Harper, where S is taken to be the set of first s primes. This remains unknown, but heuristic considerations (as in [12] and [2]) suggest that when S is the set of first s primes there are $\exp(s^{1/2 - \varepsilon})$ solutions to the equation $a + 1 = c$, and that for general sets S the equation has no more than $\exp(s^{1/2 + \varepsilon})$ solutions.

2. Deducing Theorem 1 from the main proposition

In this section we enunciate the main technical result of the paper, from which we shall deduce Theorem 1. Let y be large, and let $\ell \leq k$ be two
integer parameters. Our goal is to evaluate asymptotically

\(\mathcal{N}(y; k, \ell) = \# \{ p_1 \cdots p_k \equiv 1 \pmod{q_1 \cdots q_\ell} \} \),

where the \(p_i \) run over all primes in the interval \((y/2, y]\) and the \(q_j \) run over all primes in the interval \((y/4, y/2]\). For brevity, we write

\[\lambda = \sum_{y/4 < q \leq y/2} \frac{1}{q} \sim \frac{\log 2}{\log y}. \]

and

\[P = \sum_{y/2 < p \leq y} 1 \sim \frac{y}{2 \log y}. \]

We have in mind ranges where \(k \) and \(\ell \) grow with \(y \), and in the estimates below all implied constants will be absolute.

Proposition 1. Let \(y \geq 10 \) be a real number, and let \(\ell, k \) be integers with \(1 \leq \ell \leq k \leq y^{1/3}/(\log y)^2 \). In the range \(\ell \leq k/2 \) we have

\[\mathcal{N}(y; k, \ell) = \lambda^\ell P^k \left(1 + O\left(\frac{1}{\log y}\right) \right). \]

In the range \(k/4 \leq \ell \leq k/2 \), we have

\[\mathcal{N}(y; k, \ell) = \lambda^\ell P^k \left(1 + O\left(\frac{1}{\log y}\right) \right) + O\left(\ell^{k-\ell}(4\lambda P)^\ell y^{k/2}\right). \]

Roughly speaking, Proposition 1 may be viewed as an average result on the equidistribution of smooth numbers in arithmetic progressions. In this sense, it is related to recent results of Harper [8] and Drappeau [1] which establish strong analogues of the Bombieri–Vinogradov theorem in this context. For our application to Theorem 1, we are essentially interested in the distribution in progressions of integers \(n \leq x \) that are \((\log x)^A\) smooth. The results of Drappeau would permit a larger level of distribution in terms of the moduli of the progressions involved, but they require a smoothness of \((\log x)^A\) for a suitably large unspecified constant \(A \), and therefore are not immediately applicable to our situation.

Proof of Theorem 1. Put \(\ell = \alpha k \) and \(k = y^\beta/(10 \log y) \), with \(0 \leq \alpha \leq 1/2 \) and \(\beta \leq 1/3 - \log \log y / \log y \). With a little calculation using Proposition 1 we see that if \((1 - \alpha)(1 - \beta) \geq 1/2\) then the error term in the second assertion of the proposition is negligible compared to the main term, and we have

\[\mathcal{N}(y; k, \ell) = \lambda^\ell P^k \left(1 + O\left(\frac{1}{\log y}\right) \right) \geq \frac{1}{2} \lambda^\ell P^k. \]
Let Q denote the set of numbers composed of exactly ℓ primes taken from $(y/4, y/2]$ and denote R the set of numbers composed of exactly k primes taken from $(y/2, y]$. We consider solutions to the congruence $r \equiv 1 \pmod{q}$ with $r \in R$ and $q \in Q$. Each solution is counted at most $k! \ell!$ times in $N(y; k, \ell)$, and therefore the number of solutions to this congruence is at least $\frac{1}{2} \lambda^\ell P^k / (k! \ell!)$. For a solution $r \equiv 1 \pmod{q}$, note that $u = (r - 1)/q$ is an integer lying below $y^k/(y/4)^k = 4^\ell y^{k-\ell}$. It follows that there is a “popular” integer u_0 such that the equation $r = 1 + qu_0$ has at least

\[
\frac{1}{2} \frac{\lambda^\ell P^k}{k! \ell!} 4^{\ell} y^{k-\ell} \gg \left(\frac{1}{4\ell \log y} \right)^{\ell} \left(\frac{y}{k \log y} \right)^k y^{\ell-k} \gg 10^k y^{-k\beta + (1 - \beta)\ell}
\]
solutions. If $\alpha(1 - \beta) \geq \beta$, then this number of solutions exceeds 10^k.

The two constraints $(1 - \alpha)(1 - \beta) \geq 1/2$ and $\alpha(1 - \beta) \geq \beta$ are met by taking $\beta = 1/4$, and $\alpha = 1/3$. Take S to be the set of primes in $(y/4, y]$ together with the prime factors of u_0. Since u_0 has at most $\ll (\log u_0)/\log \log u_0 \ll y^\beta$ distinct prime factors, the set S has size at most $y/\log y$. Our argument above has produced

\[
\gg 10^k \gg \exp \left(\frac{y^\beta}{5 \log y} \right) \geq \exp \left(\frac{s^{1/4}}{10(\log s)^{3/4}} \right)
\]
solutions to the equation $a + 1 = c$ with all prime factors of ac lying in S. This establishes the theorem. \hfill \Box

3. Proof of Proposition 1

By the orthogonality relation for Dirichlet characters, we have

\[N(y; k, \ell) = \sum_{\substack{y/4 < q_1 \leq y/2 \\ 1 \leq j \leq \ell}} 1 \varphi(q_1 \cdots q_\ell) \sum_{\chi \pmod{q_1 \cdots q_\ell}} \sum_{\substack{y/2 < p_i \leq y \\ 1 \leq i \leq k}} \chi(p_1 \cdots p_k) \]

\[= \sum_{\substack{y/4 < q_i \leq y/2 \\ 1 \leq j \leq \ell}} 1 \varphi(q_1 \cdots q_\ell) \sum_{\chi \pmod{q_1 \cdots q_\ell}} \left(\sum_{y/2 < p \leq y} \chi(p) \right)^k.
\]

We isolate the contribution of the principal character $\chi = \chi_0$ above. Since $\varphi(q_1 \cdots q_\ell) = q_1 \cdots q_\ell (1 + O(\ell/y))$, this term contributes

\[\left(1 + O\left(\frac{\ell}{y}\right)\right) \sum_{\substack{y/4 < q_i \leq y/2 \\ 1 \leq j \leq \ell}} 1 \varphi(q_1 \cdots q_\ell) \left(\sum_{y/2 < p \leq y} 1 \right)^k = \left(1 + O\left(\frac{\ell}{y}\right)\right) \lambda^\ell P^k.
\]
It remains now to estimate the contribution of the non-principal characters to (4), which is bounded by

\begin{equation}
\leq \sum_{y/4 < q_j \leq y/2} \frac{2}{q_1 \cdots q_\ell} \sum_{\chi \equiv \chi_0 \pmod{q_1 \cdots q_\ell}} \left| \sum_{y/2 < p \leq y} \chi(p) \right|^k.
\end{equation}

To estimate the contribution of the non-principal characters, we shall use the large sieve. Since the large sieve gives a bound for sums over primitive characters, we first transform (6) into a sum over primitive characters. Recall that each non-principal character \(\chi \pmod{q_1 \cdots q_\ell} \) is induced by some primitive character \(\tilde{\chi} \pmod{q_1 \cdots q_\ell} \) where \(q_1 \cdots q_\ell \) is a divisor of \(q \) for integers \(1 \leq t \leq \ell \) define \(Q_t \) to be the set of moduli \(q \) that are composed of exactly \(t \) primes (not necessarily distinct) all taken from the interval \((y/4, y/2] \). Thus the sum in (6) may be recast as

\begin{equation}
\sum_{t=1}^\ell \sum_{q \in Q_t} \sum_\star \left(\sum_{y/4 < q_j \leq y/2} \frac{2}{q_1 \cdots q_\ell} \right) \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^k.
\end{equation}

Here the \(\star \) indicates that the sum is over primitive characters, and we used that \(\chi(p) = \tilde{\chi}(p) \) for \(y/2 < p \leq y \). Given \(q \in Q_t \) note that

\begin{equation}
\sum_{y/4 < q_j \leq y/2} \frac{2}{q_1 \cdots q_\ell} \leq \frac{2}{q} \left(\frac{\ell}{t} \right) t! \left(\sum_{y/4 < p \leq y/2} \frac{1}{p} \right) ^{\ell-t} = \frac{2}{q} \frac{\ell!}{(\ell-t)!} \lambda^{\ell-t},
\end{equation}

since we must pick \(t \) out of \(q_1, \ldots, q_\ell \) to be the \(t \) prime factors of \(q \), and these \(t \) prime factors may be permuted in at most \(t! \) ways. Since \(\ell!/ (\ell-t)! \leq \ell^t \) and \(q \geq (y/4)^t \) for \(q \in Q_t \), we conclude that the quantity in (6) may be bounded by

\begin{equation}
\ll \sum_{t=1}^\ell \left(\frac{4t}{y} \right)^t \lambda^{\ell-t} \sum_{q \in Q_t} \sum_\star \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^k.
\end{equation}

We are now ready to apply the large sieve, which we now recall.

Lemma 1. For any sequence \(a_n \) of complex numbers, we have

\begin{equation}
\sum_{\chi \pmod{q}} \left| \sum_{n \leq N} a_n \chi(n) \right| \leq (N + q) \sum_{n \leq N} |a_n|^2,
\end{equation}

Acta Mathematica Hungarica 160, 2020
and

\begin{equation}
\sum_{q \leq Q} \frac{\varphi(q)}{q} \sum_{\chi \pmod{q}} \left| \sum_{n \leq N} a_n \chi(n) \right|^2 \leq (N + Q^2 - 1) \sum_{n \leq N} |a_n|^2.
\end{equation}

Proof. Estimate (8) follows from the orthogonality of Dirichlet characters, while (9) may be found, for example, in [10, Theorem 7.13].

From the large sieve we extract two bounds related to the quantity (7): namely,

\begin{equation}
\sum_{q \in \mathcal{Q}_t} \sum_{\tilde{\chi} \pmod{q}} \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^{2t} \ll y^t P^{2t},
\end{equation}

and

\begin{equation}
\sum_{q \in \mathcal{Q}_t} \sum_{\tilde{\chi} \pmod{q}} \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^{4t} \ll (tyP)^{2t}.
\end{equation}

Consider first the estimate (10). Write

\[\left(\sum_{y/2 < p \leq y} \tilde{\chi}(p) \right)^t = \sum_{n \leq y^t} a_t(n) \tilde{\chi}(n), \]

where \(a_t(n)\) denotes the number of ways of writing \(n\) as a product of \(t\) primes all from the interval \((y/2, y]\). Clearly \(a_t(n) \leq t!\) and \(\sum_n a_t(n) = P^t\). Therefore, using the large sieve estimate (8) we find

\[\sum_{q \in \mathcal{Q}_t} \sum_{\tilde{\chi} \pmod{q}} \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^{2t} \ll |\mathcal{Q}_t| y^t \sum_{n \leq y^t} a_t(n)^2 \leq |\mathcal{Q}_t| y^t t! P^t. \]

Since \(t \leq \ell \leq y^{1/3}\) it is easy to check that \(|\mathcal{Q}_t| \leq P^t / t!\) for large \(y\), and therefore (10) follows.

The proof of (11) is similar, invoking now the large sieve estimate (9). With \(a_{2t}(n)\) defined similarly as above, (9) yields

\[\sum_{q \in \mathcal{Q}_t} \sum_{\tilde{\chi} \pmod{q}} \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^{4t} \ll y^{2t} \sum_{n \leq y^{2t}} a_{2t}(n)^2 \leq y^{2t} (2t)! P^{2t}, \]

from which (11) follows.
If $k \geq 4t$ then from (11) and the trivial bound $\left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right| \leq P$ we get

$$
\left(\frac{4\ell}{y} \right)^t \lambda^{\ell-t} \sum_{q \in \mathcal{Q}_t} \sum_{(\text{mod } q)}^* \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^k
$$

$$
\ll \left(\frac{4\ell}{y} \right)^t \lambda^{\ell-t} P^{k-4t}(tyP)^{2t} = P^k \lambda^t \left(\frac{4\ell t^2 y}{\lambda P^2} \right)^t.
$$

Since we are assuming that $\ell \leq k \leq y^{1/3}/(\log y)^2$, we may conclude that

$$
\sum_{1 \leq t \leq k/4} \left(\frac{4\ell}{y} \right)^t \lambda^{\ell-t} \sum_{q \in \mathcal{Q}_t} \sum_{(\text{mod } q)}^* \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^k
$$

$$
\ll \sum_{1 \leq t \leq k/4} P^k \lambda^t (\log y)^{-t} \ll \frac{P^k \lambda^t}{\log y}.
$$

Now suppose $k/4 \leq t \leq k/2$. Interpolating between (10) and (11) using Hölder’s inequality we obtain

$$
\sum_{q \in \mathcal{Q}_t} \sum_{(\text{mod } q)}^* \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^k \ll (y^t P^{2t}) \frac{4t}{2t} \left((tyP)^{2t} \right)^{\frac{k-2t}{2t}} = t^{k-2t} P^{2t} y^{k/2}.
$$

Therefore, for $\ell \leq k/2$,

$$
\sum_{k/4 < t \leq \ell} \left(\frac{4\ell}{y} \right)^t \lambda^{\ell-t} \sum_{q \in \mathcal{Q}_t} \sum_{(\text{mod } q)}^* \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^k
$$

$$
\ll \sum_{k/4 < t \leq \ell} \ell^k \lambda^t y^{k/2} \left(\frac{4P^2}{\lambda \ell y} \right)^t \ll \ell^k \lambda^t y^{k/2} \sum_{k/4 < t \leq \ell} \left(\frac{4P}{\ell} \right)^t.
$$

The right side above is dominated by the term $t = \ell$, and so we conclude that

$$
\sum_{k/4 < t \leq \ell} \left(\frac{4\ell}{y} \right)^t \lambda^{\ell-t} \sum_{q \in \mathcal{Q}_t} \sum_{(\text{mod } q)}^* \left| \sum_{y/2 < p \leq y} \tilde{\chi}(p) \right|^k \ll \ell^{k-\ell} (4\lambda P)^{\ell} y^{k/2}.
$$

The estimates (12) and (13) complete the proof of the proposition.

References

[1] S. Drappeau, Théorèmes de type Fouvry–Iwaniec pour les entiers friables, *Compos. Math.*, 151 (2015), 828–862.
[1] H. Iwaniec and E. Kowalski, *Analytic Number Theory*, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society (Providence, RI, 2004).

[2] P. Erdős, C.-L. Stewart, and R. Tijdeman, Some Diophantine equations with many solutions, *Compos. Math.*, 66 (1988), 37–56.

[3] J.-H. Evertse, On equations in S-units and the Thue–Mahler equation, *Invent. Math.*, 75 (1984), 561–584.

[4] J.-H. Evertse, K. Győry, C.-L. Stewart, and R. Tijdeman, On S-unit equations in two unknowns, *Invent. Math.*, 92 (1988), 461–477.

[5] J.-H. Evertse, K. Győry, C.-L. Stewart, R. and Tijdeman, S-unit equations and their applications, in: *New Advances in Transcendence Theory* (Durham, 1986), Cambridge Univ. Press (Cambridge, 1988), pp. 110–174.

[6] J. Ha, Smooth polynomial solutions to a ternary additive equation, *Canad. J. Math.*, 70 (2018), 117–141.

[7] A.-J. Harper, On finding many solutions to S-unit equations by solving linear equations on average, arXiv:1108.3819 (2011).

[8] A.-J. Harper, Bombieri–Vinogradov and Barban–Davenport–Halberstam type theorems for smooth numbers, arXiv:1208.5992 (2012).

[9] A.-J. Harper, Minor arcs, mean values, and restriction theory for exponential sums over smooth numbers, *Compos. Math.*, 152 (2016), 1121–1158.

[10] S. Konyagin and K. Soundararajan, Two S-unit equations with many solutions, *J. Number Theory*, 124 (2007), 193–199.

[11] J.-C. Lagarias and K. Soundararajan, Counting smooth solutions to the equation $A + B = C$, *Proc. Lond. Math. Soc.* (3), 104 (2012), 770–798.