Escherichia coli causing bloodstream and other extraintestinal infections: tracking the next pandemic

In The Lancet Infectious Diseases, Michaela J Day and colleagues present the results of a large genomic epidemiology study that asks whether a food source exists for extended-spectrum β-lactamase-producing Escherichia coli isolates (ESBL-E coli) that cause bloodstream infections in the UK. This question is controversial, with evidence both for and against the food-source hypothesis.1,2 Disagreements tend to revolve around the discriminatory power of genotyping approaches used to characterise E coli and on the scope and appropriateness of E coli sampling from human and non-human sources in past molecular epidemiology studies. Implementation of highly discriminatory genome sequencing, as in the present study, will begin to provide high quality evidence to either refute or support the hypothesis.

The study compared the number and type of multilocus sequence types (STs) and β-lactamase genes in ESBL-E coli isolates collected in 2011–14 from human and non-human sources. Human sources of ESBL-producing E coli (n=718) included sewage samples, human faecal samples, and bloodstream infections. Non-human sources (n=218) included veterinary diagnostic specimens, dairy cattle faeces, and food products (beef, pork, chicken, berries, vegetables, and herbs). ST131 and ST10 isolates were identified in bloodstream and non-human samples, but were found to be genetically unrelated. ST69, ST117, and ST23 were also found in bloodstream and food samples, and ST602 in faeces and chicken meat, but genome similarity and evolutionary relationships across sources were not assessed. Three of the most common meat, slurry, and animal-source E coli STs in the study (ST10, ST117, and ST23) have been reported in other studies of human extraintestinal infections and were among the top 20 STs in a systematic review of human extraintestinal pathogenic E coli lineages.3 CTX-M-1 β-lactamase was present in both human and non-human sources, including a single bloodstream ST117 isolate containing the CTX-M-1 enzyme. Because the STs that were common across sources were relatively rare, Day and colleagues conclude that the ESBL-E coli causing bacteremia do not arise from food animal sources. Two practical public health questions emerge from these results.

First, timing. The authors rightly focus on bacteremia, a severe infection with the biggest impact on medical services and costs. E coli ST131 has increased explosively over the past 20 years as a cause of all extraintestinal infections, including bacteremia,4 yet its original source remains unknown. E coli strains that are currently causing bloodstream infections, especially E coli ST131, might be highly host-adapted and human host-restricted, and could be more closely linked to healthcare system exposure than to environmental exposures. Contemporaneous sampling of food and environmental isolates is a strength of the paper, but might have missed the period in the past when a link with food sources was measurable. The difference in ST131 clades (B, C1, and C2) by source also suggests past divergence. Similarly, the predominant ESBL genes associated with human-adapted STs probably emerged in parallel with these E coli lineages.

References

1 GBD 2017 Non-Typhoidal Salmonella Invasive Disease Collaborators. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 2019; published online Sept 24. https://doi.org/10.1016/S1473-3099(19)30418-9
2 Belay ED, Monroe SS. Low-incidence, high-consequence pathogens. Emerg Infect Dis 2014; 20: 319–21.
3 Crump JA, Heyderman RS. A perspective on invasive salmonella disease in Africa. Clin Infect Dis 2015; 61 (suppl 4): S225–40.
4 Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive nontyphoidal salmonella disease, 2010. Emerg Infect Dis 2015; 21: 941–49.
5 Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol 2019; 4: 35–45.
6 Zhang Y, Brady A, Jones C, et al. Compositional and functional differences in the human gut microbiome correlate with clinical outcome following infection with wild-type Salmonella enterica serovar Typhi. mBio 2018; 9: e00686-18.
7 WHO. Salmonella (non-typhoidal). https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal) Feb 20, 2018 (accessed Aug 13, 2019).
8 Hay SI, Battle KE, Pigott DM, et al. Global mapping of infectious disease. Philos Trans R Soc B Biol Sci 2012; 367: 20120250.
9 Frings M, Lakes T, Moller D, et al. Modeling and mapping the burden of disease in Kenya. Sci Rep 2018; 8: 1–9.
10 Chatham-Stephens K, Medalla F, Hughes M, et al. Emergence of extensively drug-resistant Salmonella Typhi infections among travelers to or from Pakistan—United States, 2016–2018. MMWR Morb Mortal Wkly Rep 2019; 68: 11–13.
with changing antibiotic use patterns and selective pressures over time.

Second, sampling. Day and colleagues sampled diverse reservoirs to investigate the source of bacteremia-causing E coli; another strength of the study. Sampling is always challenging. Studies must balance logistical feasibility with selection bias avoidance. Large numbers of E coli were screened to identify the predominant ESBL-producing members within each source population. Still, this finding represents a tiny fraction of the total diversity of circulating E coli, and ignores E coli isolates that are highly genetically similar across sources but have lost (or never had) ESBL-encoding mobile genetic elements. Selection for resistant-only isolates would miss any such link. Finding any genomic match between human and non-human source isolates, even between a pair of singleton STs, could be important to public health, especially in the face of extensive E coli diversity and finite study sample sizes. A single introduction of a highly successful resistant clone might suffice to trigger the next (non-ST131) pandemic.

The repeated emergence in E coli and other uropathogens of novel resistance genes, encoding not just ESBLs but also colistin and carbapenem resistance, has been linked genetically to food animal sources. Several new lineages are emerging, some of which (eg, ST1193) might ultimately supplant ST131. To detect newly emerging multidrug-resistant E coli lineages, stand-alone research studies might not be enough. Distributed surveillance systems that involve better integrated human and animal health systems and food inspection agencies, with sharing of carefully curated local and regional epidemiological and E coli genome sequencing data, will be required to counter the public health and medical threats posed by resistant and non-resistant, E coli causing bloodstream and other extraintestinal infections.

Amee R Manges
University of British Columbia, Faculty of Medicine, School of Population and Public Health, Vancouver, BC V6T 1Z3, Canada; and BC Centre for Disease Control, Vancouver, BC, Canada amee.manges@ubc.ca
I declare no competing interests.

Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

1 Day MJ, Hopkins KL, Wareham DW, et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis 2019; published online Oct 22. https://doi.org/10.1016/S1473-3099(19)30273-7.
2 Lazarus B, Paterson DL, Mollinger JL, Rogers BA. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis 2015; 60: 439–52.
3 Manges AR, Johnson JR. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 2012; 55: 712–19.
4 Manges AR, Geum HM, Guo A, Edens TJ, Fibbe CD, Pitout JDD. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 2019; 32: 1–36.
5 Price LB, Johnson JR, Aziz M. The epidemic of extended-spectrum β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. Millo 2013; 4: e00373–13.
6 Stoesser N, Sheppard AE, Parkhurt L, et al. Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131. Millo 2016; 7: e02162–15.
7 Lin YC, Kuroda M, Suzuki S, Mu JJ. Emergence of an Escherichia coli strain co-harbouring mcr-1 and blaNDM-9 from a urinary tract infection in Taiwan. J Glob Antimicrob Resist 2019; 16: 286–90.
8 Tchenakova VA, Rechikina E, Larsson L, et al. Rapid and extensive expansion in the United States of a new multidrug-resistant Escherichia coli donal group, sequence type 1193. Clin Infect Dis 2019; 68: 334–37.