Non-Archimedean meromorphic solutions of functional equations

Pei-Chu Hu & Yong-Zhi Luan∗

Abstract
In this paper, we discuss meromorphic solutions of functional equations over non-Archimedean fields, and prove analogues of the Clunie lemma, Malmquist-type theorem and Mokhon’ko theorem.

1 Introduction

Let κ be an algebraically closed field of characteristic zero, complete for a non-trivial non-Archimedean absolute value $| \cdot |$. Let $\mathcal{A}(\kappa)$ (resp. $\mathcal{M}(\kappa)$) denote the set of entire (resp. meromorphic) functions over κ. As usual, if R is a ring, we use $R[X_0, X_1, ..., X_n]$ to denote the ring of polynomials of variables $X_0, X_1, ..., X_n$ over R. We will use the following assumption:

(A) Fix a positive integer n. Take a_i, b_i in κ such that $|a_i| = 1$ for each $i = 0, 1, ..., n$, and such that
$$L_i(z) = a_i z + b_i \ (i = 0, 1, ..., n)$$
are distinct, where $a_0 = 1, b_0 = 0$. Let f be a non-constant meromorphic function over κ and write
$$f_i = f \circ L_i, \ i = 0, 1, ..., n$$
with $f_0 = f$. Take non-zero elements
$$B \in \mathcal{M}(\kappa)[X]; \ \Omega, \Phi \in \mathcal{M}(\kappa)[X_0, X_1, ..., X_n].$$

Under the assumption (A), there exist $\{b_0, ..., b_q\} \subset \mathcal{M}(\kappa)$ with $b_q \neq 0$ such that
$$B(X) = \sum_{k=0}^{q} b_k X^k. \quad (1)$$

Mathematics Subject Classification 2000 (MSC2000). Primary 11S80, 12H25; Secondary 30D35.

*The work of first author was partially supported by National Natural Science Foundation of China (Grant No. 11271227), and supported partially by PCSIRT (IRT1264).

Key words and phrases: meromorphic solutions, functional equations, Nevanlinna theory
Similarly, write
\[\Omega(X_0, X_1, \ldots, X_n) = \sum_{i \in I} c_i X_0^{i_0} X_1^{i_1} \cdots X_n^{i_n}, \]
(2)
where \(i = (i_0, i_1, \ldots, i_n) \) are non-negative integer indices, \(I \) is a finite set, \(c_i \in \mathcal{M}(\kappa) \), and
\[\Phi(X_0, X_1, \ldots, X_n) = \sum_{j \in J} d_j X_0^{j_0} X_1^{j_1} \cdots X_n^{j_n}, \]
(3)
where \(j = (j_0, j_1, \ldots, j_n) \) are non-negative integer indices, \(J \) is a finite set, \(d_j \in \mathcal{M}(\kappa) \).

In this paper, we will use the symbols from [8] on value distribution of meromorphic functions. For example, let \(\mu(r, f) \) denote the maximum term of power series for \(f \in \mathcal{A}(\kappa) \) and its fractional extension to \(\mathcal{M}(\kappa) \), \(m(r, f) \) the compensation (or proximity) function of \(f \), \(N(r, f) \) the valence function of \(f \) for poles, and the characteristic function of \(f \)
\[T(r, f) = m(r, f) + N(r, f). \]

Now we can state our results as follows:

Theorem 1.1. Assume that the condition (A) holds. If \(f \) is a solution of the following functional equation
\[B(f)\Omega(f, f_1, \ldots, f_n) = \Phi(f, f_1, \ldots, f_n) \]
(4)
with \(\deg B \geq \deg \Phi \), then
\[m(r, \Omega) \leq \sum_{i \in I} m(r, c_i) + \sum_{j \in J} m(r, d_j) + \log \left(r, \frac{1}{b_q} \right) + l \sum_{j=0}^{q} m(r, b_j), \]
(5)
where \(l = \max\{1, \deg \Omega\} \), \(\Omega = \Omega(f, f_1, \ldots, f_n) \). Further, if \(\Phi \) is a polynomial of \(f \), we also have
\[N(r, \Omega) \leq \sum_{i \in I} N(r, c_i) + \sum_{j \in J} N(r, d_j) + O \left(\sum_{j=0}^{q} N \left(r, \frac{1}{b_j} \right) \right). \]
(6)

Theorem 1.1 is a difference analogue of the Clunie lemma over non-Archimedean fields (cf. [8]). R. G. Halburd and R. J. Korhonen [4] obtained a difference analogue of the Clunie lemma over the field of complex numbers (cf. [2]). Theorem 1.1 has numerous applications in the study of non-Archimedean difference equations, and beyond. To state one of its applications, we need the following notation:

Definition 1.2. A solution \(f \) of (4) is said to be admissible if \(f \in \mathcal{M}(\kappa) \) satisfies (4) with
\[\sum_{i \in I} T(r, c_i) + \sum_{j \in J} T(r, d_j) + \sum_{k=0}^{q} T(r, b_k) = o(T(r, f)), \]
(7)
equivalently, the coefficients of \(B, \Phi, \Omega \) are slowly moving targets with respect to \(f \).

If all \(c_i, d_j, b_k \) are rational functions, each transcendental meromorphic function \(f \) over \(\kappa \) must satisfy (7), which means that each transcendental meromorphic solution \(f \) over \(\kappa \) is admissible.
Theorem 1.3. If Φ is of the form

$$\Phi(f, f_1, \ldots, f_n) = \Phi(f) = \sum_{j=0}^{p} d_j f^j,$$

and if (4) has an admissible non-constant meromorphic solution f, then

$$q = 0, \quad p \leq \deg(\Omega).$$

Theorem 1.3 is a difference analogue of a Malmquist-type theorem over non-Archimedean fields (cf. [8]). Malmquist-type theorems were obtained by Malmquist [10], Gackstatter-Laine [3], Laine [9], Toda [12], Yosida [13] (or see He-Xiao [5]) for meromorphic functions on \mathbb{C}, and Hu-Yang [7] or [6] for several complex variables.

Corollary 1.4. Assume that the condition (A) holds such that the coefficients of B, Ω, Φ are rational functions over κ, and such that Φ has the form in Theorem 1.3. If (4) has a transcendental meromorphic solution f over κ, then Φ/B is a polynomial in f of degree $\leq \deg(\Omega)$.

Corollary 1.4 is a difference analogue of the non-Archimedean Malmquist-type theorem due to Boutabaa [1].

Theorem 1.5. Let $f \in \mathcal{M}(\kappa)$ be a non-constant admissible solution of

$$\Omega(f, f', \ldots, f^{(n)}) = 0,$$ \hspace{1cm} (8)

where the solution f is called admissible if

$$\sum_{i \in I} T(r, c_i) = o(T(r, f)).$$

If a slowly moving target $a \in \mathcal{M}(\kappa)$ with respect to f, that is,

$$T(r, a) = o(T(r, f)),$$

does not satisfy the equation (8), then

$$m \left(r, \frac{1}{f - a} \right) = o(T(r, f)).$$

Theorem 1.5 is an analogue of a result due to A. Z. Mokhon’ko and V. D. Mokhon’ko [11] over non-Archimedean fields, which also has a difference analogue as follows:

Theorem 1.6. Assume that the condition (A) holds. Let $f \in \mathcal{M}(\kappa)$ be a non-constant admissible solution of

$$\Omega(f, f_1, \ldots, f_n) = 0,$$ \hspace{1cm} (9)

where the solution f is called admissible if

$$\sum_{i \in I} T(r, c_i) = o(T(r, f)).$$

If a slowly moving target $a \in \mathcal{M}(\kappa)$ with respect to f does not satisfy the equation (9), then

$$m \left(r, \frac{1}{f - a} \right) = o(T(r, f)).$$

A version of Theorem 1.6 over complex number field can be found in [4].
2 Difference analogue of the Lemma on the Logarithmic Derivative

Take $a(\neq 0), b \in \kappa$ and consider the linear transformation

$$L(z) = az + b$$

over κ. For a positive integer m, set

$$\Delta_L f = f \circ L - f, \quad \Delta^m_L f = \Delta_L(\Delta^{m-1}_L f).$$

Lemma 2.1. Take $f \in \mathcal{A}(\kappa)$ and assume $|a| \leq 1$. When $r > |b|/|a|$, we have

$$\mu(r, f \circ L) \leq \mu(r, f).$$

Moreover, we obtain

$$\mu\left(r, \frac{f \circ L}{f}\right) \leq 1, \quad \mu\left(r, \frac{\Delta^m_L f}{f}\right) \leq 1.$$

Proof. We can write

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

since $f \in \mathcal{A}(\kappa)$. Therefore

$$f(L(z)) = \sum_{n=0}^{\infty} a_n (az + b)^n.$$

First of all, we take $r \in |\kappa|$, that is, $r = |z|$ for some $z \in \kappa$. When $r > |b|/|a|$, we find (cf. [5])

$$\mu(r, f \circ L) = |f(L(z))| \leq \max_{n \geq 0} |a_n||az + b|^n = \max_{n \geq 0} |a_n||az|^n \leq \max_{n \geq 0} |a_n||z|^n = \mu(r, f).$$

In particular,

$$\mu\left(r, \frac{f \circ L}{f}\right) = \frac{\mu(r, f \circ L)}{\mu(r, f)} \leq 1,$$

and hence

$$\mu\left(r, \frac{\Delta_L f}{f}\right) = \frac{\mu(r, f \circ L - f)}{\mu(r, f)} \leq \frac{1}{\mu(r, f)} \max\{\mu(r, f \circ L), \mu(r, f)\} \leq 1.$$

By induction, we can prove

$$\mu\left(r, \frac{\Delta^m_L f}{f}\right) \leq 1.$$

Since $|\kappa|$ is dense in $\mathbb{R}_+ = [0, \infty)$, by using continuity we easily see that these inequalities hold for all $r > |b|/|a|$.

\[\square \]
Note that (cf. [8])
\[m(r, f) = \log^+ \mu(r, f) = \max\{0, \log \mu(r, f)\}. \] (10)

Lemma 2.1 implies immediately the following difference analogue of the Lemma on the Logarithmic Derivative:

Corollary 2.2. Take \(f \in \mathcal{A}(\kappa) \) and assume \(|a| \leq 1\). When \(r > |b|/|a| \), we have
\[
m \left(r, \frac{f \circ L}{f} \right) = 0, \quad m \left(r, \frac{\Delta^m f}{f} \right) = 0.
\]

Lemma 2.3. Take \(f \in \mathcal{M}(\kappa) - \{0\} \) and assume \(|a| = 1\). When \(r > |b|/|a| \), we have
\[
\mu(r, f \circ L) = \mu(r, f).
\] (11)

Moreover, we obtain
\[
\mu \left(r, \frac{f \circ L}{f} \right) = 1, \quad \mu \left(r, \frac{\Delta^m f}{f} \right) \leq 1.
\]

Proof. Since \(f \in \mathcal{M}(\kappa) - \{0\} \), there are \(g, h \neq 0 \in \mathcal{A}(\kappa) \) with \(f = \frac{g}{h} \). Thus (cf. [8])
\[
\mu(r, f \circ L) = \frac{\mu(r, g \circ L)}{\mu(r, h \circ L)}.
\] (12)

Take \(r \in |\kappa| \). Since \(|a| = 1\), we have
\[
|L(z)| = |az + b| = |z| = r
\]
when \(r > |b|/|a| \), and so
\[
\mu(r, g \circ L) = \mu(r, g).
\]

Similarly, we have \(\mu(r, h \circ L) = \mu(r, h) \). Thus the formula (11) holds. By using continuity we easily see that the inequality holds for all \(r > |b| \).

Corollary 2.4. Take \(f \in \mathcal{M}(\kappa) - \{0\} \) and assume \(|a| = 1\). When \(r > |b| \), we have
\[
m \left(r, \frac{f \circ L}{f} \right) = 0, \quad m \left(r, \frac{\Delta^m f}{f} \right) = 0.
\]

3 Proof of Theorem 1.1

To prove (5), take \(z \in \kappa \) with
\[
f(z) \neq 0, \infty; \quad b_k(z) \neq 0, \infty \quad (0 \leq k \leq q);
\]
\[
c_i(z) \neq 0, \infty \quad (i \in I); \quad d_j(z) \neq 0, \infty \quad (j \in J).
\]

Write
\[
b(z) = \max_{0 \leq k < q} \left\{ 1, \left(\frac{|b_k(z)|}{|b_{q}(z)|} \right)^{\frac{1-k}{q}} \right\}.
\]
If $|f(z)| > b(z)$, we have

$$|b_k(z)||f(z)|^k \leq |b_q(z)|b(z)^{q-k}|f(z)|^k < |b_q(z)||f(z)|^q,$$

and hence

$$|B(f)(z)| = |b_q(z)||f(z)|^q.$$

Then

$$|\Omega(f, f_1, \ldots, f_n)(z)| = \frac{|\Phi(f, f_1, \ldots, f_n)(z)|}{|B(f)(z)|} \leq \max_{j \in J} \left| d_j(z) \right| \frac{|f_1(z)|^{j_1}}{|f(z)|} \cdots \frac{|f_n(z)|^{j_n}}{|f(z)|}.$$

If $|f(z)| \leq b(z)$,

$$|\Omega(f, f_1, \ldots, f_n)(z)| \leq b(z)^{\text{deg}(\Omega)} \max_{i \in I} \left| c_i(z) \right| \frac{|f_1(z)|^{i_1}}{|f(z)|} \cdots \frac{|f_n(z)|^{i_n}}{|f(z)|}.$$

Therefore, in any case, the inequality

$$\mu(r, \Omega) \leq \max_{j \in J, i \in I} \left\{ \frac{\mu(r, d_j)}{\mu(r, b_q)} \prod_{k=1}^n \mu \left(r, \frac{f_k}{f} \right)^{j_k}, \mu(r, c_i) \prod_{k=1}^n \mu \left(r, \frac{f_k}{f} \right)^{i_k} \right\} \cdot \max_{0 \leq k < q} \left\{ 1, \mu \left(r, \frac{b_k}{b_q} \right)^{\frac{\text{deg}(\Omega)}{q-k}} \right\},$$

holds where $r = |z|$, which also holds for all $r > 0$ by continuity of the functions μ. By using Lemma 2.3, we find

$$\mu(r, \Omega) \leq \max_{j \in J, i \in I} \left\{ \frac{\mu(r, d_j)}{\mu(r, b_q)} \cdot \mu(r, c_i) \cdot \max_{0 \leq k < q} \left\{ 1, \mu \left(r, \frac{b_k}{b_q} \right)^{\frac{\text{deg}(\Omega)}{q-k}} \right\} \right\},$$

and hence (5) follows from this inequality.

According to the proof of (4.9) in [8], we easily obtain the inequality (6).

4 Proof of Theorem 1.3

By using the algorithm of division, we have

$$\Phi(f) = \Phi_1(f)B(f) + \Phi_2(f)$$

with $\text{deg}(\Phi_2) < q$. Thus, the equation (11) can be rewritten as follows:

$$\Omega(f, f_1, \ldots, f_n) - \Phi_1(f) = \frac{\Phi_2(f)}{B(f)}.$$

Applying Theorem 1.1 to this equation, we obtain

$$m(r, \Omega - \Phi_1) = o(T(r, f)),$$
\[N(r, \Omega - \Phi_1) = o(T(r, f)), \]

and hence
\[T(r, \Omega - \Phi_1) = o(T(r, f)). \]

Theorem 2.12 due to Hu-Yang \cite{8} implies
\[T(r, \Omega - \Phi_1) = T \left(r, \frac{\Phi_2}{B} \right) = qT(r, f) + o(T(r, f)). \]

It follows that \(q = 0 \), and (4) assumes the following form
\[\Omega(f, f_1, ..., f_n) = \Phi(f). \]

Thus, Theorem 2.12 in \cite{8} implies
\[T(r, \Omega) = T(r, \Phi) = pT(r, f) + o(T(r, f)). \] (14)

On other hand, it is easy to find the following estimate
\[N(r, \Omega) \leq \deg(\Omega)N(r, f) + \sum_{i \in I} N(r, c_i). \] (15)

Obviously, we also have
\[m(r, \Omega) \leq \deg(\Omega)m(r, f) + \max_{i \in I} \left\{ m(r, c_i) + \sum_{\alpha=1}^n i_\alpha m \left(r, \frac{f_\alpha}{f} \right) \right\}. \] (16)

By Lemma 2.3, we obtain
\[T(r, \Omega) \leq \deg(\Omega)T(r, f) + \sum_{i \in I} T(r, c_i) + O(1). \] (17)

Our result follows from (14) and (17).

5 Proof of Theorem 1.5, 1.6

By substituting \(f = g + a \) into (8), we obtain
\[\Psi + P = 0, \]

where
\[\Psi \left(g, g', ..., g^{(n)} \right) = \sum_i C_i g^{i_0} (g')^{i_1} \cdots (g^{(n)})^{i_n} \]

is a differential polynomial of \(g \) such that all of its terms are at least of degree one, and
\[T(r, P) = o(T(r, f)). \]

Also \(P \neq 0 \), since \(a \) does not satisfy (8).
Take \(z \in \kappa \) with
\[
g(z) \neq 0, \infty; \quad C_i(z) \neq \infty; \quad P(z) \neq 0, \infty.
\]
Set \(r = |z| \). If \(|g(z)| \geq 1 \), then
\[
m\left(r, \frac{1}{g} \right) = \max \left\{ 0, \log \frac{1}{|g(z)|} \right\} = 0.
\]
It is therefore sufficient to consider only the case \(|g(z)| < 1 \). But then,
\[
\left| \frac{\Psi\left(g(z), g'(z), \ldots, g^{(n)}(z)\right)}{g(z)} \right| = \frac{1}{|g(z)|} \left| \sum_i C_i(z) g(z)^{i_0} g'(z)^{i_1} \cdots g^{(n)}(z)^{i_n} \right|
\]
\[
\leq \max_i \left| C_i(z) \right| \left| \frac{g'(z)}{g(z)} \right|^{i_1} \cdots \left| \frac{g^{(n)}(z)}{g(z)} \right|^{i_n}
\]
since \(i_0 + \cdots + i_n \geq 1 \) for all \(i \). Therefore,
\[
m\left(r, \frac{1}{g} \right) = \log \frac{1}{|g(z)|} = \log \frac{|P(z)|}{|g(z)|} + \log \frac{1}{|P(z)|}
\]
\[
= \log \frac{|\Psi\left(g(z), g'(z), \ldots, g^{(n)}(z)\right)|}{|g(z)|} + \log \frac{1}{|P(z)|}
\]
\[
\leq \sum_i \left\{ m(r, C_i) + i_1 m\left(r, \frac{g'}{g} \right) + \cdots + i_n m\left(r, \frac{g^{(n)}}{g} \right) \right\} + m\left(r, \frac{1}{P} \right)
\]
\[
= o(T(r, f)).
\]
Since \(g = f - a \), the assertion follows.

Obviously, according to the method above, we can prove Theorem 1.6 similarly.

6 Final notes

We will use the following assumption:

\(\text{(B)} \) Fix a positive integer \(n \). Take \(a_i, b_i \) in \(\kappa \) such that \(|a_i| = 1 \) for each \(i = 1, \ldots, n \), and such that
\[
L_i(z) = a_i z + b_i \quad (i = 1, \ldots, n)
\]
satisfy \(L_i(z) \neq z \) for each \(i = 1, \ldots, n \). Let \(f \) be a non-constant meromorphic function over \(\kappa \) and let \(\{ f_1, \ldots, f_m \} \) be a finite set consisting of the forms \(\Delta_{L_i} f \). Take
\[
B \in \mathcal{M}(\kappa)[f]; \quad \Omega, \Phi \in \mathcal{M}(\kappa)[f, f_1, \ldots, f_m].
\]

According to the methods in this paper, we can prove easily the following results:

Theorem 6.1. Assume that the condition \(\text{(B)} \) holds. If \(f \) is a solution of the following equation
\[
B(f)\Omega(f_1, \ldots, f_m) = \Phi(f, f_1, \ldots, f_m)
\] (18)
with $\deg B \geq \deg \Phi$, then

$$m(r, \Omega) \leq \sum_{i \in I} m(r, c_i) + \sum_{j \in J} m(r, d_j) + \log \left(r, \frac{1}{b_q} \right) + l \sum_{j=0}^q m(r, b_j), \quad (19)$$

where $l = \max\{1, \deg \Omega\}$, $\Omega = \Omega(f, f_1, \ldots, f_m)$. Further, if Φ is a polynomial of f, we also have

$$N(r, \Omega) \leq \sum_{i \in I} N(r, c_i) + \sum_{j \in J} N(r, d_j) + O \left(\sum_{j=0}^q N \left(r, \frac{1}{b_j} \right) \right). \quad (20)$$

Theorem 6.2. If Φ is of the form

$$\Phi(f, f_1, \ldots, f_m) = \Phi(f) = \sum_{j=0}^p d_j f^j,$$

and if (18) has an admissible non-constant meromorphic solution f, then

$$q = 0, \quad p \leq \deg(\Omega).$$

Theorem 6.3. Assume that the condition (B) holds. Let $f \in M(\kappa)$ be a non-constant admissible solution of

$$\Omega(f, f_1, \ldots, f_m) = 0, \quad (21)$$

where the solution f is called admissible if

$$\sum_{i \in I} T(r, c_i) = o(T(r, f)).$$

If a slowly moving target $a \in M(\kappa)$ with respect to f does not satisfy the equation (21), then

$$m \left(r, \frac{1}{f-a} \right) = o(T(r, f)).$$

References

[1] Boutabaa, A., Applications de la théorie de Nevanlinna p-adic, Collect. Math. 42(1991), 75-93.

[2] Clunie, J., On integral and meromorphic functions, J. London Math. Soc. 37(1962), 17-27.

[3] Gackstatter, F. and Laine, I., Zur Theorie der gewöhnlichen Differentialgleichungen im Komplexen, Ann. Polon. Math. 38(1980), 259-287.

[4] Halburd, R. G. and Korhonen, R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314(2006), 477-487.
[5] He, Y. Z. and Xiao, X. Z., Algebroid functions and ordinary differential equations (Chinese), Science Press, Beijing, 1988.

[6] Hu, P. C. and Yang, C. C., The Second Main Theorem for algebroid functions of several complex variables, Math. Z. 220(1995), 99-126.

[7] Hu, P. C. and Yang, C. C., Further results on factorization of meromorphic solutions of partial differential equations, Results in Mathematics 30(1996), 310-320.

[8] Hu, P. C. and Yang, C. C., Meromorphic functions over non-Archimedean fields, Mathematics and Its Applications 522, Kluwer Academic Publishers, 2000.

[9] Laine, I., Admissible solutions of some generalized algebraic differential equations, Publ. Univ. Joensun. Ser. B 10(1974).

[10] Malmquist, J., Sur les fonctions á un nombre fini de branches satisfaisant á une érentielle du premier order, Acta Math. 42(1920), 433-450.

[11] Mokhon’ko, A. Z. and Mokhon’ko, V. D., Estimates for the Nevanlinna characteristics of some classes of meromorphic functions and their applications to differential equations, Sibirsk. Mat. Zh. 15(6) (1974), 1305-1322 (in Russian); English translation: Sib. Math. J. 15(6) (1974), 921-934.

[12] Toda, N., On the growth of meromorphic solutions of an algebraic differential equations, Proc. Japan Acad. 60 Ser. A (1984), 117-120.

[13] Yosida, K., On algebroid-solutions of ordinary differential equations, Japan J. Math. 10(1934), 119-208.

School of Mathematics
Shandong University
Jinan 250100, Shandong, China
E-mail: pchu@sdu.edu.cn
E-mail: huanyongzhi@gmail.com