Laser Self-Trapping in Optical Tweezers for Nonlinear Particles

Quy Ho Quang¹², Thanh Thai Doan¹, Kien Bui Xuan³, Thang Nguyen Manh²∗

¹Ho Chi Minh City University ofFood Industry, 140 Le Trong Tan, Tan Phu, HCM City, Vietnam
²Academy of Military Science and Technology, 17 Hoang Sam, Cau Giay, Ha Noi, Vietnam
³Electric Power University, 235 Hoang Quoc Viet, Ha Noi, Vietnam.
∗Corresponding authors: thangnm@jist.info

Abstract: The optical tweezers are used to trap the particles embedded in a suitable fluid. The optical trap efficiency is significantly enhanced for nonlinear particles which response to the Kerr effect. The optical transverse gradient force makes these particles’ mass density in trapping region increasing, and the Kerr medium can be created. When the laser Gaussian beam propagates through it, the self-focusing, and consequently self-trapping can appear. In this paper, a model describing the laser self-trapping in nonlinear particle solution of optical tweezers is proposed. The expressions for the Kerr effect, effective refractive index of nonlinear particle solution and the intensity distribution of reshaped Gaussian laser beam are derived, and the self-trapping of laser beam is numerically investigated. Finally, the guide properties of nonlinear particles-filled trapping region and guiding condition are analysed and discussed.

Keywords: Nonlinear optical tweezers, Kerr effect, self-focusing, self-trapping, organic dye.

1. Introduction

A. Ashkin has shown that a dielectric particle having refractive index larger than that of its embedding fluid will be trapped in the focus of laser Gaussian beam [1]. The particle’s optical trap efficiency Qi is higher when the refractive index of embedding fluid is lower [2,3,4], or the refractive index of trapped particle is higher. Consequently, the optical tweezers are efficient to trap the Kerr particle [5,6,7,8]. This is easily resolved for a single particle in the thin fluid where having no influence of nonlinear particle solution on the laser beam. However, if the nonlinear particle solution is thick enough, the density of the trapped nonlinear particle will become more and more increasing in the trapping region along laser axis due to action of transverse optical forces, so called the trapping cylinder [9]. Therefore, not only does nonlinear particle solution’s mass refractive index increase in the trapping cylinder [10] but also it’s nonlinearity. Consequently, the nonlinear particle solution will become the graded index (GRIN) medium. The Gaussian laser beam propagating through GRIN medium will be self-focused [11], and then self-trapped in the small trapping cylinder [12]. This phenomenon is similar to that the laser beam propagating through a self-written optical waveguide in a solid polymer material volume [13], alkaline-earth atoms [14], and thermophoresis [15]. Specially, the self-trapping has been experimentally observed in the human red blood cell suspension by the propagation of laser beam, seen as nonlinear medium [16]. Lamhot and his co-workers also investigated the optical soliton beam in nanoparticle suspension by virtue of thermophoresis [15]. In this paper, we propose the model of optical tweezers by using the thick nonlinear particle solution. The expressions of the reshaped laser beam and effective refractive index of nonlinear particle solution are also derived. The self-focusing and self-trapping of laser beam in the trapping region are numerically calculated by using the iteration method. Finally, the guide properties of trapping region in optical tweezers, guiding condition are analyzed and discussed.

2. Principle model for simulation

Assuming that the optical tweezers for our investigation model is illustrated in Fig.1. An incoming laser Gaussian beam (ILGB) with peak intensity I₀ and radius of beam waist of W₀ propagates thorough the thick chamber of nonlinear particle solution. The nonlinear particle has radius a, linear index n_p, nonlinear refractive coefficient n_2 embedded in the fluid of lower refractive index n_f. Under the action of optical transverse gradient force F_ρ, nonlinear particles...
are pulled to the laser axis and hold in the trapping region with radius $W_0/2$ [9]. This makes the mass density m_p of nonlinear particles in the trapping region and the effective refractive index of nonlinear particle solution n_{eff} increase [10]. The refractive index of nonlinear particle is directly proportional to ILGB’s intensity. The effective refractive index of nonlinear particle solution in the trapping region is graded and reduced from laser axis, i.e., the trapping region becomes a GRIN one.

Every differential GRIN cylinder with the thickness of $d = 2a$ (Fig.1) will operate as the nonlinear thin lens (NTL) and on the contrary, NTL also reshape the ILGB. The self-focusing appears continuously through NTL. Consequently, the beam waist of the reshaped laser Gaussian beam (RLGB) decreases, the mass density of nonlinear particles in the differential trapping cylinder increases, and the effective refractive index of nonlinear particle solution increases. The self-focusing and increasing of divergence angle $\theta_0 = \lambda / \pi W_0$ of RLGB are simultaneously occurred by the beam waist’s decrease. If both processes are in balance, the spatial optical soliton will appear[13, 15, 17], means that the RLGB will be self-trapped in the center of the trapped region.

3. Theoretical background
3.1. Effective refractive index in nonlinear particle solution

Consider a solution of nonlinear particles embedded in the fluid with certain mass density. Under the optical tweezers, a numberof the nonlinear particle m is trapped in the differential trapping cylinder with thickness $d = 2na$, the mass densities of particles m_p and fluid m_f in the differential trapping cylinder (DTC) can be derived as:

$$m_p = \frac{V_p}{V_{DTC}} \text{ and } m_f = \frac{V_f}{V_{DTC}} = \frac{V_{DTC} - V_p}{V_{DTC}}$$

$$V_p = \frac{m4\pi a^3}{3}, V_f = V_{DTC} - V_p \text{ and } V_{DTC} = \frac{na\pi W_0^2}{2}$$

are total volumes of particles, fluid and the differential trapping cylinder, respectively. Using approximation of mass refractive index for themulti-component mixtures [10], the effective refractive index n_{eff} of nonlinear particle solution in the differential trapping cylinder can be derived as:

$$n_{eff} = \sum_i m_i n_i = \frac{V_p}{V_{DTC}} n_p + \frac{V_{DTC} - V_p}{V_{DTC}} n_f = \frac{8ma^2n_p}{3nW_0^2} + \frac{\left(3nW_0^2 - 8ma^2\right)n_f}{3nW_0^2}$$

Consider the intensity distribution of ILGB is [18]:

![Fig. 1 The sketch of optical tweezers to trap nonlinear particles embedded in fluid for self-trapping simulation.](image)
\[I(\rho, z) = \frac{I_0}{\sqrt{1 + \frac{z^2}{z_0^2}}} \exp \left(-\frac{2\rho^2}{W_0^2 \left(1 + \frac{z^2}{z_0^2}\right)} \right). \] (4)

When nonlinear particle solution is irradiated by ILGB, its effective refractive index contribution will be radial-graded and Eq. (3) will be modified as:

\[n_{\text{eff}} = \frac{8ma^2}{3nW_0^2} \left[n_p + \frac{n_z I_0}{\sqrt{1 + \frac{z^2}{z_0^2}}} \exp \left(-\frac{2\rho^2}{W_0^2 \left(1 + \frac{z^2}{z_0^2}\right)} \right) + \frac{(3nW_0^2 - 8ma^2)}{3nW_0^2} n_f \right] \] (5)

where \(n_z \) is the nonlinear coefficient of nonlinear particle. We consider the laser wavelength to be shorter than the radius of beam waist.

The mass density of particles in the trapping region will increase if all of particles are trapped and directly pulled to laser beam’s axis, which is called the trapping condition of optical tweezers. This condition will be always satisfied if these particles on the edge of beam’s waist \(W_0 \) (see Fig.1) (where the laser intensity and its gradient are the smallest) are trapped. That means that the optical force acting these particles must be larger than \(1pN \) [1]. Using Eq. (4) and Eq. (5) and Eq. 5 in Ref. 3 we obtained the trapped condition as following:

\[F_{gr,0}(W_0, 0) = -\rho \frac{8\pi n_f I_0 a^3}{W_0 \exp(2)} \left(\frac{n_{\text{eff},p}}{n_f} \right)^2 - \frac{2}{n_{\text{eff},p}^2 + 2} > 1pN. \] (6)

where

\[n_{\text{eff},p} = n_p + \frac{n_z I_0}{\exp(2)}. \] (7)

Considering the trapped particles are pulled in the region near laser beam’s axis. This means that their positions are approximately \(\rho \ll W_0 \). Assuming that the differential trapping cylinder is placed at the waist of ILGB and \(d \ll z_0 \) (see Fig.1), the function of intensity radial distribution in the input surface of differential trapping cylinder can be simplified as follows:

\[I(\rho) = I_0 \exp \left(-\frac{2\rho^2}{W_0^2} \right) \approx I_0 \left(1 - \frac{2\rho^2}{W_0^2}\right). \] (8)

Substituting Eq. (8) into Eq. (5) and we have:

\[n_{\text{eff}}(\rho) = \frac{(3nW_0^2 - 8ma^2)n_f + 8ma^2(n_p + n_z I_0)}{3nW_0^2} - \frac{16ma^2n_z I_0}{3nW_0^2} \rho^2 \] (9)

where \(n_{\text{eff}} \) describes the radial distribution of the effective refractive index in differential trapping cylinder and to be a function of radial radius \(\rho \), beam waist \(W_0 \), i.e. particle’s mass density \(m_p \). Therefore, it is similar to the index change of thermophoresis irradiated by laser beam in work [15] as the function of temperature and particle concentration. Consequently, we can substitute \(n_{\text{eff}} \) into nonlinear paraxial wave equation in work [15] to calculate the optical spatial soliton.
In this paper, we consider the trapping region of optical tweezers as a consecutive series of NTLs and use iteration method to calculate the change of each NTL’s focal length of and laser beam’s waist. The intensity distribution and self-trapping of RLGB is also shown and discussed.

3.2. The focal of NTL and intensity distribution of RLGB

The effective refractive index in Eq. (9) can be simplified as follows:

\[n_{\text{eff}}(\rho) = N_0 \left(1 - \frac{\alpha^2}{2} \rho^2 \right) \] \hspace{1cm} (10)

where

\[N_0 = \frac{3nW_0^2n_f + 8ma^2(n_p - n_f + n_zI_0)}{3nW_0^2} \] \hspace{1cm} (11)

\[\alpha^2 = \frac{32ma^2n_zI_0}{\left(3nW_0^2n_f + 8ma^2(n_p - n_f + n_zI_0)\right)nW_0^2} \] \hspace{1cm} (12)

With refractive index given in Eq. (10), the differential trapping cylinder will become NTL with focal length given as follows [18]:

\[f_{\text{nt}} = \frac{1}{2N_0\alpha^2a} = \frac{3W_0^4}{64ma^2n_zI_0} \] \hspace{1cm} (13)
which is inversely proportional to the peak laser intensity \(I_0 \), nonlinear coefficient of refractive index \(n_2 \), and radius \(a \) and number \(m \) of nonlinear particles, and directly proportional to beam waist of \(W_0 \). The ILGB will be reshaped to RLGB when it propagates through the NTL [18]. Its intensity distribution is given by:

\[
I_{RLGB}(\rho, z) = I_0 \frac{W_0}{W_{RLGB}(z)} \exp \left(-\frac{2\rho^2}{W_{RLGB}(z)} \right)
\]

where

\[
W_{RLGB}(z) = W_{0RLGB} \sqrt{1 + \left(\frac{z}{z_{0RLGB}} \right)^2}
\]

is the radius of laser beam at \(z \);

\[
W_{0RLGB} = \frac{W_0}{\sqrt{1 + \left(\frac{z_{0RLGB}}{f_{nl}} \right)^2}}
\]

is the radius of reshaped beam waist placed at the output surface of differential trapping cylinder given by:

\[
z_{RLGB} = \frac{f_{nl}}{1 + \left(\frac{f_{nl}}{z_{0}} \right)^2}
\]

and

\[
z_0 = \frac{\pi W_0^2}{\lambda}
\]

is the Rayleigh range.

3.3. Simulation procedure

Firstly, we check the trapping condition using Eqs. (6), (7) with an collection of parameters. The self-trapping process will be numerically observed if this trapping condition satisfied. To observe the self-trapping process in optical tweezers, we use the solution of nonlinear particles embedded in fluid, the simulation scheme given in Fig.2 above. The self-trapping is related to the change of beam waist \(W_0 \), focal length of NTL \(f_{nl} \) in \(z \). We simulated in a self-consistent manner: we use an initial prediction to find \(f_{nl} \) in Eq. (13), from which we have the beam waist of \(W_{0RLGB} \) in Eq.(16) after the distance \(z = in2a \), where \(I \) is the order of simulation step. Using \(f_{nl} \) and \(W_{0RLGB} \) obtained, we find the divergence angle \(\theta_0 = \lambda / \pi W_0 \) and the focusing angle \(\theta_{f} = \tan^{-1}(W_{0RLGB} / f_{nl}) \), then substituting again to Eqs. (13) and (16) to find the next ones. The calculating process is iterated until the divergence and focusing angles are close one to each other. The simulation procedure is given in Fig.2.

4. Results and discussion

We consider an optical tweezers using ILGB with \(\lambda = 0.532\mu m \) (second harmonic of Nd\(^{3+}\) YAG laser) \(I_0 = 1 \times 10^5 W / cm^2 \), \(W_0 = 10^{-4} cm \) to trap nanoparticle of polyacrylamide gel doped Orange G with \(a = 5 \times 10^{-7} cm \), \(n_p = 1.456 \), \(n_z = 1 \times 10^{-6} cm^2 / W \) [19, 20] embedded in
water with $n_f = 1.333$ [21]. The thickness of the differential trapping cylinder is optimally chosen $d = 20 \alpha = 1 \times 10^{-5} \text{cm}$.

Firstly, substituting given parameters into Eqs. (6) and (7), we found:

$$|F_{x,y}(W_0,0)| \approx 2.4 \times 10^{-11} N = 24 \text{ pN} \gg 1 \text{ pN},$$

that means the trapping condition of optical tweezers to be satisfied and all particles locating inside the beam waist W_0 are also trapped and pulled in beam’s axis. These make the mass density of particles inside beam waist increase and the self-focusing appears. Trapping and self-focusing makes the mass density of particles increase and the self-focusing more powerfully. Consequently, the laser beam will be trapped inside the cylinder of solution with nonlinear particles.

Secondly, we numerically calculate the laser self-trapping process. Simulation process was done until $i=16$ at which $\theta_f \approx 22.56^\circ \approx \theta_0 = 22.31^\circ$ (Fig.4) by using the Maple software. The obtained results are presented in Tab.1.

i	1	2	3	4	5	6	7	8
z ($\times 10^2 \text{cm}$)	0	1	2	3	4	5	6	7
W_0 ($\times 10^4 \text{cm}$)	100	98	96.2	94.2	92	89.7	87.2	84.5
f_nl ($\times 10^4 \text{cm}$)	30.4	28.3	26.1	24	21.8	19.7	17.6	15.5
i	9	10	11	12	13	14	15	16
z ($\times 10^2 \text{cm}$)	8	9	10	11	12	13	14	15
W_0 ($\times 10^4 \text{cm}$)	81.6	78.3	74.7	70.6	65.8	60.1	53	43.7
f_nl ($\times 10^4 \text{cm}$)	13.5	11.5	9.5	7.5	5.7	3.9	2.4	1.1

The self-trapping simulation in nonlinear particle solution are shown in Fig.3. We see that the ILGB (Fig.3a) is self-trapped (Fig.3b) in trapping region at $z = 1.5 \mu\text{m}$ where its divergence and focusing (angles) effects are in balance (see Fig.4). When the balance of divergence and focusing effects occurs, the longitudinal gradient of laser intensity reduces, and then the distribution of the longitudinal gradient force also reduces, that has been shown in works [3, 8, 12, 23]. Moreover, the spatial optical soliton appears and propagates continuously. Our result in Fig.3 is similar to that obtained by Li [13] for the self-trapping of optical beam in the self-written optical waveguide in a solid photopolymer material.

![Fig.3](image-url) The laser intensity distribution in plane (ρ,z). a: ILGB; b: RLGB.
Fig. 5 shows RLGB’s beam waist shortening along the trapping region. Since the particle mass density increases, the effective refractive index in nonlinear particle solution also increases (Fig. 6).

Due to trapping and focusing effects, the trapping region is seem as the optical fiber with increasing of its refractive index change $\Delta = \left(n_{\text{eff}} - n_f\right) / n_{\text{eff}}$ (Fig. 7). The $\Delta \left(\rho = 0\right)$ and $\Delta \left(\rho = W_{0RLGB}/2\right)$ increases from 0.002 to 0.0095 and from 0.00095 to 0.0068, respectively, and larger than a predicted low limit $\Delta_{\text{min}} = 0.001$ [18] or measurement limit $\Delta_{\text{min}} = 0.000475$ [22] for conventional optical fiber. This means that the deeper the laser beam propagates into trapping region, the more effectively it guides. This consideration can be explained and proved by increasing of the critical angle $\theta_c = \cos^{-1}\left(n_f / n_{\text{eff}}(W_{0RLGB}/2)\right)$ at boundary between trapping region and fluid, and acceptance angle $\theta_a = \sin^{-1}\left(n_{\text{eff}}(0)\sqrt{2\Delta(0)}\right)$ at boundary among differential trapping cylinders shown in Fig. 8 and Fig. 9, respectively.

Fig. 4 Divergence θ_d (solid-red) and focusing θ_f (dots-blue) angles along z.

Fig. 6 Particle mass density m_p along z.

Fig. 7 Refractive index change Δ along z for $n_{\text{eff}}(\rho = 0)$ (red) and $n_{\text{eff}}(\rho = W_{0RLGB}/2)$ (blue).
5. Conclusion
We have theoretically shown that the Gaussian laser beam used for optical tweezers can be self-trapped in trapping region by Kerr effect in nonlinear particle solution. The self-trapping of Gaussian beam in nonlinear particle solution has been numerically calculated, the guide properties of the trapping region in optical tweezers is also analyzed and discussed. These results show that the Gaussian beam for optical tweezers not only traps nonlinear particles, but also be reshaped and self-trapped. Finally, our results may hint new study for increasing and stabilizing the density of nonlinear biomedical cells in experimental observation[16].

Acknowledgment
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2018.342.

Distributions
The idea was proposed by Quy Ho Quang, and Thang Nguyen Manh, the results were done and analysed by Thang Nguyen Manh, Quy Ho Quang, Thanh Thai Doan. The paper was written by all authors.

References
1. A. Ashkin, Forces of A Single-beam Gradient Laser Trap On A Dielectric Sphere in The Ray Optics Regime, Biophysical Journal, 61(2) (2002) 569-582.
2. Kim, H. K., Joo, I-J., Song, S_H., Kim, P-S., Im, K-B. and Oh, C-H., Dependence of the Optical Trapping Efficiency on the Ratio of the Beam Radius-to-the Aperture Radius, Journal of the Korean Physical Society 43(3) (2003) 348-351.
3. Quy Ho Quang, Thanh Thai Doan, Tuan Doan Quoc, Thang Nguyen Manh, Enhance of optical trapping efficiency by nonlinear optical tweezers, Opt. Commun., 427 (2018) 341-347.
4. MacDonald, M.P., Peterson, I., Sibbett, W., Dholakia, K., Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap, Opt. Lett. 26, 863-865 (2002).
5. Couris, S., Renard, M., Faucher, O., Lavorel, B., Chaux, R., Koudoumas, E. and Michault, X., An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques, Chemical Physics Letters 369, 318-324 (2003).
6. Wilkes, Z.W., Varma, S., Chen, Y.-H., Milchberg, H.M., Jones T.G. and Ting, A., Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using-shot supercontinuum spectral interferometry, Applied Physics letters 94, 211102 (2009).
7. Quy H. Q. and Nam H. V., Influence of the Kerr effect on the optical force acting on the dielectric particle, Journal of Physical Science and Application, ISSN 2159 – 5348,2(10) (2012) 414-419.
8. H. Q. Quy, Nonlinear optical tweezers as an optical method for control particles with high trap efficiency, Communications in Physics, 29 (2019) 197-214.
9. Quy H.Q., Hai H.D., Luu M.V., The Influence of Parameters on Stable-time “Pillar” in Optical Tweezer using Counter-propagating Pulsed Laser Beams, Computational methods for Science and Technology, Special Issue 2 (Poland) (2010) 61-66.
10. Yangang Liu; Peter H. Daum, Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols, Aerosol Science 39 (2008) 974 – 986.

11. Nam H. V., Le C. T., Quy H. Q., The influence of the self-focusing effect on the optical force acting on dielectric particle embedded in Kerr medium, Communication in Physics, ISSN 0868-3166, 23(2013) 155-161.

12. Anita Devi and Arijit K. De, Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation, Optics Express, 24, Issue 19 (2016) 21485-21496.

13. H. Li, Y. Qi, R. Malallah, J. P. Ryle, and J. T. Sheridan, Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material, Proc. of SPIE Vol. 9508 95080F(2015).

14. A. Cooper et al, Alkaline-Earth Atoms in Optical Tweezers, Phys. Rev. X 8(2018) 041055.

15. Y. Lamhot, A. Barak, O. Peleg, and M. Segev, Self-trapping of optical beam through thermophoresis, Phys. Rev. Lett. 105 (2010) 163906.

16. R. Gautam et al, Optical force-induced nonlinearity and self-guiding of light in human red blood cell suspensions, Light: Science and Applications 8 (2019) 31.

17. H. Q. Quy, N. M. Thang, and V. N. Sau, Creating free spatial soliton from Gaussian beam by Kerr Medium, Commun. in Phys. Supplement (2004) pag.91-95.

18. B.E.Saleh, M.C. Teich, Fundamentals of photonics: Ray Optics, John Wiley & Sons, INC., New York (1998) 1-40.

19. H.A. Badran, Q.M.A. Hassan, A.Y. Al-Ahmad, C.A. Emshary, Laser-induced optical nonlinearities in Orange G dye: polyacrylamide gel, Canadian Journal of Physics, 89(12) (2011) 1219-1224.

20. L. T. Nguyen et al, The numerical methods for analyzing the Z-scan data, Journal of Nonlinear Optic. Phys. Mat. 23, (2014) 1450020.

21. Volpe, G., Volpe, G., Simulation of Brownian particle in an optical trap, Am. J. Phys. 81(2013)224-230.

22. F. Ahmed, V. Ahsani, S. Jo, C. Bredley, E. Toyserkani, and M. B. G. Jun, Measurement of In-Fiber Refractive Index Change Using a Mach–Zehnder Interferometer, IEEE Photonics Technology Letters 31 (2019) pag.74-77.

23. Jiang, Y., Narushima, T. and Okamoto, H., Nonlinear optical effects in trapping nanoparticles with femtosecond pulses, Nature Physics 6 (2010) 1005-1009.