An Analysis of Patients That Underwent Computed Tomography Pulmonary Angiography with the Prediagnosis of Pulmonary Embolism in the Emergency Department

Engin Ozakin, Filiz Baloglu Kaya, Nurdan Acar, and Arif Alper Cevik

1 Department of Emergency Medicine, Eskisehir Osmangazi University Medical Center, Meselik 26480, Eskisehir, Turkey
2 Medical College and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates

Correspondence should be addressed to Engin Ozakin; enginozakin@hotmail.com

Received 25 February 2014; Accepted 30 April 2014; Published 15 May 2014

Academic Editor: Ahmet Menteşe

Copyright © 2014 Engin Ozakin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

PE is a frequently encountered disease that is difficult to diagnose, and the disease may develop a fatal course [1]. The disease mostly occurs when deep vein thrombosis blocks the pulmonary artery completely or partially. The diversity of symptoms and findings may mask the clinical evidence and cause the disease to be unnoticed. In recent years, there have been improvements in the diagnosis and treatment of the disease. Early diagnosis and treatment are lifesaving. That is why, in patients with suspected PE, risk factors as well as clinical, laboratory and imaging results should be examined carefully. In cases with suspicion, the frequency of PE ranges between 8% and 39% [2, 3]. While the mortality rate of PE is approximately 30% in noncured patients, the rate reduces to 2–8% with treatment [4, 5]. The symptoms and findings such as shortness of breath, chest pain, syncope, hyperventilation, and unexplained tachycardia are not specific to PE and may develop as well in case of pneumonia, acute exacerbation of COPD, malignity, pleural effusion, or cardiac diseases [6]. That is why the most significant phase of PE diagnosis is clinically suspected. Because the specificity of clinical and physical examination in the diagnosis is low, diagnostic tests should support the examination. Although some algorithms and clinical risk rules have been defined for the diagnosis of PE, there is no standard approach concerning the tests or imaging methods that should be requested. The tests used for the diagnosis are arterial blood gas, D-dimer test, electrocardiogram, chest radiography, echocardiography, CTA, pulmonary angiography, magnetic resonance imaging, and ventilation perfusion scintigraphy. Although pulmonary angiography is the gold standard in the diagnosis of PE, it has not been preferred very frequently because it is an invasive method. Computerized tomography
pulmonary angiography (CTPA) has been preferred primarily in clinics because it potentially discovers alternative diagnoses [7]. Because the source of emboli is deep veins in the lower extremities, the ability of CTPA to detect PE increases to 90–93% when employed together with CT venography of lower extremities [7, 8]. The aim of this study was to determine the diagnosis of non-PE pathologies in patients admitted to the emergency department and CTPA was studied.

2. Method

This study was conducted in the adult emergency department of a university hospital between July 1, 2010, and July 31, 2013, after the permission required was received from the local board of ethics. The study involves patients aged over 18 who underwent CTPA with the prediagnosis of PE. The relevant imaging results were reported by radiology specialists. The demographic information about patients, their reasons for presenting to the ED, clinical symptoms and findings, D-dimer results, and CTPA reports were examined retrospectively. The patients that underwent CTPA due to trauma, aortic dissection, and tumor were not included in the study. The Wells criteria (Table 1) were used for pretest risk classification.

64-detector CT (Aquilion 64, Toshiba Aquillon, Otawara, Japan) was used for all patients. The records in the radiology department assured that, in the process of scanning, all patients were in supine position, the scanning covered the area from the lower part of the lung to lower cervical vertebrae, image and volume scanning was 5 mm, and all cases were administered nonionic opaque agent (for patients up to 100 kg 100 mL in the form of 3 mL/s and for patients over 100 kg 100–150 mL/kg) by autoinjectors branded Missouri through the vascular access established on the antecubital vein. Furthermore, the scanning started automatically with a delay period of 12 to 20 seconds, depending on the patient, when the density of pulmonary arteries reached 120 Hounsfield units, and, in order to avoid artifact, the patients received firstly bolus serum physiologic solution, then the opaque agent, and then again bolus serum physiologic solution. The researchers firstly examined, through the reports, the filling defects in the pulmonary arterial system in mediastinal screen images. In the cases without PE, the findings of pulmonary parenchyma, mediastinum, and any pathology related to the cardiovascular system, pleural structures, and the upper abdomen were recorded. In the cases without PE, CT findings and the relationship between these findings and D-dimer results were analyzed. Furthermore, the age, gender, complaints, and rate of admission to the hospital were compared for patients diagnosed with PE, patients not diagnosed with PE, and patients that had normal CTPA results. CT findings and Wells score were analyzed by Pearson’s chi-square test. Due to the abnormal distribution, Kruskal-Wallis nonparametric test was used to analyze the relation between Ct findings and D-dimer. P < 0.05 was accepted as significance. In patients with CT findings, pathologies were tested by two-proportion Z test in PE and non-PE groups. All data were recorded and analyzed in SPSS 20.

3. Findings

The study comprises 696 patients, 364 (52.3%) of whom were female and 332 (47.7%) of whom were male. The CTPA results showed that 145 (20.8%) patients had symptoms compatible with PE and 464 (66.7%) patients had symptoms compatible with diseases other than PE. The imaging of 87 (12.5%) patients did not provide any pathological findings. The distribution of demographic and clinical characteristics of cases according to CTPA results is provided in Table 2.

Of 696 patients, 563 underwent D-dimer testing. All patients did not have a D-dimer testing had moderate or high scores according to the Wells criteria. Wells score is compatible with diseases other than PE. According to the risk scoring based on Wells criteria, 239 (34.3%) cases were in the low, 352 (50.6%) cases in the moderate, and 105 (15.1%) cases in the high risk range. The distribution of risk scoring by diagnosis is provided in Table 3, and there is statistically significant difference between groups (P < 0.001).

Table 1: The Wells criteria for assessment of pretest probability of pulmonary embolism.

(a)

Criterion	Points
Suspected DVT	3.0
An alternate diagnosis is less likely than PE	3.0
Heart rate > 100 beats/min	1.5
Immobilitation or surgery in the previous four weeks	1.5
Previous DVT/PE	1.5
Hemoptysis	1
Malignancy (on treatment, treated in past six months)	1

Source: [17].

(b)

Score range	Mean probability of PE	% with score	Interpretation of risk
0–2 points	3.6%	40%	Low
3–6 points	20.5%	53%	Moderate
>6 points	66.7%	7%	High

According to the risk scoring based on Wells criteria, 239 (34.3%) cases were in the low, 352 (50.6%) cases in the moderate, and 105 (15.1%) cases in the high risk range. The distribution of risk scoring by diagnosis is provided in Table 3, and there is statistically significant difference between groups (P < 0.001).
Table 2: Demographic and clinical characteristics according to CT results.

	PE (±17.52, 29–92)	Non-PE pathology (±15.96, 21–93)	Normal (±19.55, 20–88)	Total (±16.82, 20–93)
Age	63.05	66.45	52.44	63.17
Male	61 (18.4%)	241 (72.6%)	30 (9%)	332 (100%)
Female	84 (23.1%)	223 (61.3%)	57 (15.7%)	364 (100%)

Table 3: CT findings—Wells score.

CT findings	Low	Moderate	High
Pulmonary embolism	15	103	27
Massif	0	7	15
Segmental	6	90	6
Subsegmental	9	6	6
Non-PE pathology	176	217	71
Normal	48	32	7
Total	239	352	105

Pearson chi-square test = 123,439, sd = 6, and $P < 0.001$.

Table 4: CT findings—D-dimer.

CT findings	D-dimer test (N)	Median D-dimer 25–75% (range)	P
Normal	77	1038 (614, 1826)	
Non-PE pathology	340	2010 (1030, 4342)	< 0.001
PE	145	4342 (2510, 8471)	
Total	562		

Kruskal-Wallis test is used.

The CTPA results provided three groups of cases: those diagnosed with PE, those diagnosed with a disease other than PE, and those with normal results. The paired comparisons based on the Kruskal-Wallis test showed that the three groups were different from each other with respect to D-dimer results, and the differences are statistically significant ($P < 0.001$) (Table 4, Figure 1).

In the cases diagnosed with PE, the emboli were massive in 22 cases, segmental in 102 cases, and subsegmental in 21 cases. The most common disorders in the cases not diagnosed with PE were atelectasis, ground glass appearance, and pleural effusion. The distribution of CT findings of cases diagnosed and not diagnosed with PE is provided in Table 5.

Following the first examination, tests, and treatment in the emergency department, 128 (93.1%) out of 145 patients diagnosed with PE were transferred to the department of chest diseases, and 219 (47.2%) out of 464 cases diagnosed with another disorder and 14 cases that had normal results in CT were transferred to relevant departments in consideration of the diagnosis. The rates of hospitalization according to CT findings can be seen in Table 6.

4. Discussion

PE is a fatal cardiovascular disease which has been encountered frequently. Clinical evidence is important for the diagnosis of PE. 90% of the patients suffer from one or all of the following complaints: shortness of breath, chest pain, back pain, change in consciousness, and syncope [6]. PE should be considered not only in an acute setting but also in patients with prolonged respiratory symptoms [9]. However, these symptoms are not specific to PE and may be seen in the case of diseases other than PE. In the present study, of 464 patients not diagnosed with PE, 238 had shortness of breath, 74 had chest pain, 52 had change in consciousness, and 25 had back pain.

Algorithms incorporating clinical prediction rules and/or D-dimer testing have been developed to guide the evaluation of patients presenting with suspected PE. Two such algorithms, the Wells score coupled with D-dimer testing (Wells/D-dimer), have demonstrated high negative predictive value (NPV) in large prospective emergency department (ED) studies [10].

The risk stratification by using Wells score in non-PE and normal groups could be considered as moderate or high risk. Due to this result, further radiological assessment is essential especially in non-PE patients with similar clinical situations and risk factors.

Although pulmonary angiography is acknowledged as the gold standard for the diagnosis of PE, it has not been used routinely because it is an invasive method and not available in every health center [11]. V/P scintigraphy is useful to determine PE risk before performing the CTPA and has been used for long years as the most preferred method after chest radiography. The disadvantage of V/P scintigraphy is that it does not directly show the clot but detects secondary
effects. This method cannot be used to detect pathologies in the pulmonary parenchyma and other mediastinal structures. Today, the technological developments in devices have reinforced the value of CTPA in the diagnosis of PE. The devices are available in many health centers. In the images provided by these devices, fine cross sections of vascular structures may be seen in a detailed way. When required, anatomic structures may be examined three-dimensionally. Particularly in thorax imaging, with the use of CT venography, the sensitivity of CTPA to PE increased from 83% to 93% [7, 8]. However, the selection of patients requires specific care because of four significant disadvantages. These are the radiation exposed, the nephrototic effect risk of iodized opaque agents, longer period of stay in already crowded emergency departments, and thus slower functioning of the emergency departments, and high costs. In case of suspected PE, there is a need to discuss the benefits of risk criteria before imaging. Despite risk scoring scales such as Wells, Geneva, and many studies show that clinical diagnosis rules do not affect the rate of CTPA use for the diagnosis or exclusion of PE [12, 13]. In our study, the Wells scoring was used for clinical risk assessment. The simplified Wells score is accurate in predicting the clinical probability of PE in patients for whom pulmonary embolism was suspected and in predicting that in this population the PE prevalence is higher than other cohorts [14]. The D-dimer test is considered to be highly sensitive, but nonspecific [15]. As a result, the role of this test has typically been limited to rule out a PE in case of low suspicion [15]. Normal range for D-dimer is 0–500 ng/mL. According to the literature, D-dimer values greater than 500 ng/mL are considered positive [15]. Although a normal D-dimer value is used to rule out PE, values greater 500 ng/mL always cannot indicate PE. According to Wells score, 30 patients had D-dimer values lower than 500 ng/mL (low in 18 (60%) patients and moderate in 12 (40%) patients). There are many factors that can contribute to the elevation of a D-dimer value. D-dimer can be elevated in pregnancy, trauma, postoperative periods, inflammatory states, renal disease, stroke, myocardial infarction, disseminated intravascular coagulation, and cancer [15]. This situation was the same as in patients without PE with elevation of D-dimer levels. Also it has been found that the D-dimer values are higher in African-Americans [16].

In our study, the rate of PE diagnosis is comparable with the rates provided in the literature (8–39%) [2, 7]. The reasons for this may be listed as the use of Wells criteria for risk scoring to detect CTPA indication, the use of D-dimer and arterial blood gas testing, and careful assessment of vital findings and clinical parameters.

In imaging, the radiological findings of patients not diagnosed with PE showed infiltrative lesions such as consolidation and ground glass appearance which may indicate pneumonia and atelectasis, bronchiectasis, and chronic lesions of obstructive pulmonary diseases that show emphysematous changes and pleural effusion.

In some patients already diagnosed with malignity, new lesions were found and new mass formation was seen in the lung. In addition to pulmonary pathologies, fatal situations that change the patient management such as aortic dissection, aortic aneurism, and pericardial effusion were found.

5. Limitations

This study was done retrospectively; therefore, required information could not be found in the folder or computer record of some study patients.

The study was conducted at one ED, so the results may not be generalizable to other EDs in other settings. While we examined the use of two common clinical decision rules, Wells score and PERC, there are other commonly used scores

Table 5: CT findings and frequencies in PE and non-PE patients.

BT findings	PE (%)	Non-PE (%)	Total
Consolidation	6 (4.1)	83 (17.9)	89
Ground glass	18 (12.4)	165 (35.3)	183
opacification			
Bronchiectasis	6 (4.1)	48 (10.3)	54
Atelectasis	34 (23.4)	244 (52.5)	278
Fibrosis	2 (1.3)	52 (11.2)	54
Emphysema	5 (3.4)	96 (20.6)	101
Lymphadenopathy	3 (2)	39 (8.4)	42
Pleural effusion	22 (15.1)	161 (34.6)	183
Mass	2 (1.3)	29 (6.2)	30
New			
Old			
Metastatic lesion	1 (0.6)	11 (2.3)	12
New	1 (0.1)	3 (0.4)	4
Old		8 (1.1)	
Other			
Pulmonary HT	4 (2.7)	19 (4.0)	23
Cardiomegaly		8 (1.7)	8
Pericardial effusion	6 (4.1)	10 (2.1)	16
Aortic aneurism		22 (3.2)	22
Aortic dissection		9 (1.3)	9
Pneumothorax	7 (1)	7 (1.5)	
Herniation	1 (0.1)	1 (0.2)	2
Bullae		1 (0.2)	1
Hepatic cyst	1 (0.1)	1 (0.2)	2

Two-proportion Z test is used.

BT findings	PE (%)	Non-PE (%)	Total
Total	145	464	87

Table 6: Final decision—CT findings.

PE (%)	Non-PE pathology (%)	Normal (%)	
Service	78 (53.8)	103 (22.2)	5 (5.7)
Intensive care unit	60 (41.4)	116 (25)	9 (10.3)
Refuse treatment	2 (1.4)	1 (0.2)	0
Discharge	5 (3.4)	244 (52.6)	73 (83.9)
such as the Geneva score and Pisa model, which were not evaluated.

6. Conclusion

Emergency medicine physicians frequently use clinical diagnosis rules to diagnose PE. They commonly perform CTPA. CTPA, a quick and accurate procedure that is accessible on a 24 h basis in most EDs, is a valuable tool for the diagnosis of PE. CTPA not only ensures that PE is noticed but also provides distinctive results for the diagnosis of other pathologies. Our study also shows that CTPA scanning, performed on the basis of assessment scoring, helps in discovering other fatal pathologies in addition to PE. That is why prediction rules such as Wells and Geneva may be revised to cover criteria for the diagnosis of PE and alternative thorax pathologies through CTA.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] M. D. Silverstein, J. A. Heit, D. N. Mohr, T. M. Petterson, W. M. O’Fallon, and L. J. Melton III, “Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study,” Archives of Internal Medicine, vol. 158, no. 6, pp. 585–593, 1998.

[2] PIOPED Investigators, “Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED),” The Journal of the American Medical Association, vol. 263, no. 20, pp. 2753–2759, 1990.

[3] G. M. Khan and L. B. Palmer, “Pulmonary embolism,” in Pulmonary Diseases Diagnosis and Therapy, G. M. Khan and J. P. Lynch, Eds., pp. 585–601, Williams & Wilkins, Baltimore, Md, USA, 1997.

[4] P. Pruszczyk, M. Kostrubiec, A. Bochowicz et al., “N-terminal pro-brain natriuretic peptide in patients with acute pulmonary embolism,” European Respiratory Journal, vol. 22, no. 4, pp. 649–653, 2003.

[5] N. Kucher, G. Printzen, and S. Z. Goldhaber, “Prognostic role of brain natriuretic peptide in acute pulmonary embolism,” Circulation, vol. 107, no. 20, pp. 2545–2547, 2003.

[6] P. D. Stein, S. E. Fowler, L. R. Goodman et al., “Multi-detector computed tomography for acute pulmonary embolism,” The New England Journal of Medicine, vol. 354, no. 22, pp. 2317–2327, 2006.

[7] S. Tresoldi, Y. H. Kim, S. P. Baker, and K. Khandarpa, “MDCT of 220 consecutive patients with suspected acute pulmonary embolism: incidence of pulmonary embolism and of other acute or non-acute thoracic findings,” Radiologia Medica, vol. 113, no. 3, pp. 373–384, 2008.

[8] L. R. Goodman, P. D. Stein, F. Matta et al., “CT venography and compression sonography are diagnostically equivalent: data from PIOPED II,” American Journal of Roentgenology, vol. 189, no. 5, pp. 1071–1076, 2007.

[9] Y. Bulbul, S. Oszu, P. Kosucu, F. Oztuna, T. ozlu, and M. Topba¸, “Time delay between onset of symptoms and diagnosis in pulmonary thromboembolism,” Respiration, vol. 78, no. 1, pp. 36–41, 2009.

[10] J. A. Kline, D. M. Courtney, C. Kabrhel et al., “Prospective multicenter evaluation of the pulmonary embolism rule-out criteria,” Journal of Thrombosis and Haemostasis, vol. 6, no. 5, pp. 772–780, 2008.

[11] P. S. Wells, J. S. Ginsberg, D. R. Anderson et al., “Use of a clinical model for safe management of patients with suspected pulmonary embolism,” Annals of Internal Medicine, vol. 129, no. 12, pp. 997–1005, 1998.

[12] L. R. Goodman and R. J. Lipchik, “Diagnosis of acute pulmonary embolism: time for a new approach,” Radiology, vol. 199, no. 1, pp. 25–27, 1996.

[13] K. K. Calder, M. Herbert, and S. O. Henderson, “The mortality of untreated pulmonary embolism in emergency department patients,” Annals of Emergency Medicine, vol. 45, no. 3, pp. 302–310, 2005.

[14] R. A. Douma, I. C. M. Mos, P. M. Erkens et al., “Performance of 4 clinical decision rules in the diagnostic management of acute pulmonary embolism: a prospective cohort study,” Annals of Internal Medicine, vol. 154, no. 11, pp. 709–718, 2011.

[15] P. F. Fedullo and V. F. Tapson, “Clinical Practice. The evaluation of suspected pulmonary embolism,” The New England Journal of Medicine, vol. 349, no. 13, pp. 1247–1256, 2003.

[16] C. F. Pieper, K. M. K. Rao, M. S. Currie, T. B. Harris, and H. J. Cohen, “Age, functional status, and racial differences in plasma D-dimer levels in community-dwelling elderly persons,” The Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 55, no. 11, pp. M649–M657, 2000.

[17] American College of Emergency Physicians Clinical Policies Committee, “Clinical policy: critical issues in the evaluation and management of adult patients presenting with suspected pulmonary embolism,” Annals of Emergency Medicine, vol. 41, no. 2, pp. 257–270, 2003.