Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution

Francisco H. C. de Alencar¹ · Christian E. Galarza² · Larissa A. Matos¹ · Victor H. Lachos³

Received: 22 October 2019 / Revised: 13 May 2021 / Accepted: 5 June 2021 / Published online: 17 June 2021
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Abstract
Finite mixture models have been widely used to model and analyze data from a heterogeneous populations. Moreover, data of this kind can be missing or subject to some upper and/or lower detection limits because of the constraints of experimental apparatuses. Another complication arises when measures of each population depart significantly from normality, such as asymmetric behavior. For such data structures, we propose a robust model for censored and/or missing data based on finite mixtures of multivariate skew-normal distributions. This approach allows us to model data with great flexibility, accommodating multimodality and skewness, simultaneously, depending on the structure of the mixture components. We develop an analytically simple, yet efficient, EM-type algorithm for conducting maximum likelihood estimation of the parameters. The algorithm has closed-form expressions at the E-step that rely on formulas for the mean and variance of the truncated multivariate skew-normal distributions. Furthermore, a general information-based method for approximating the asymptotic covariance matrix of the estimators is also presented. Results obtained from the analysis of both simulated and real datasets are reported to demonstrate

1 Departamento de Estatística, Universidade Estadual de Campinas, Campinas, SP, Brazil
2 Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
3 Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
the effectiveness of the proposed method. The proposed algorithm and method are implemented in the new \texttt{R} package \texttt{CensMFM}.

Keywords Censored data · Detection limit · EM-type algorithms · Finite mixture models · Multivariate skew-normal distribution · Truncated distributions

Mathematics Subject Classification 62H30

1 Introduction

Modeling based on finite mixture distributions is a rapidly developing area with a wide range of applications. Finite mixture models are now applied in such diverse areas as biology, biometrics, genetics, medicine and marketing, among others. There are various features of finite mixture distributions that make them useful in statistical modeling. For instance, statistical models which are based on finite mixture distributions capture many specific properties of real data such as multimodality, skewness, kurtosis, and unobserved heterogeneity. The importance of mixture distributions can be noted from the large number of books on mixtures, including Peel and McLachlan (2000a), Frühwirth-Schnatter (2006), McNicholas (2016), Lachos et al. (2018) and Bouveyron et al. (2019).

In many research areas, such as environmental pollution and infectious diseases measurements often exhibit complex features such as censored responses and missing values (Lin et al. 2018; Lin and Wang 2020). Moreover, the proportion of censoring in these studies can be substantial, so the use of crude/ad hoc methods, such as substituting a threshold value or some arbitrary point like a midpoint between zero and cutoff for detection, can lead to biased estimates of the model parameters. Furthermore, multivariate data are commonly seen with simultaneous occurrence of multimodality and skewness, causing inferential procedures to become complicated. The mixture distribution can be used quite effectively to analyze this kind of data. Lin (2009) proposed a flexible mixture modeling framework using the multivariate skew-normal distribution, where a feasible EM algorithm was developed for finding the maximum likelihood (ML) estimates. In the context of finite mixtures for correlated censored data, He (2013) proposed a Gaussian mixture model to flexibly approximate the underlying distribution of the observed data, where an EM algorithm in a multivariate setting was developed to cope with the censored data. More recently, Lachos et al. (2017) proposed a robust model for censored data based on finite mixtures of multivariate Student-t distributions (FM-MtC model), including the implementation of an exact EM algorithm for ML estimation. This approach allows modeling data with great flexibility, accommodating multimodality, and kurtosis depending on the structure of the mixture components. These methods are undoubtedly very flexible, but the problems related to the simultaneous occurrence of skewness, abnormal observations and multimodality remain. Even when modeling using Student-t mixtures, overestimation of the number of components necessary to capture the asymmetric nature of each subpopulation can occur (Cabral et al. 2012). So far, to the best of our knowledge there are no stud-
ies simultaneously accounting for multivariate censored responses, missing values, heterogeneity and skewness.

In this article, we propose a robust mixture model for censored data based on the multivariate skew-normal distribution so that the FM-MSNC model is defined and a fully likelihood-based approach is carried out, including the implementation of an exact EM-type algorithm for the ML estimation. The interval censoring mechanism of the proposed model allows us to handle missing and censored values simultaneously. We show that the E-step reduces to computing the first two moments of a truncated multivariate skew-normal distribution. The general formulas for these moments were derived efficiently by Galarza et al. (2020a), for which we use theMomTrunc package in R. The likelihood function is easily computed as a byproduct of the E-step and is used for monitoring convergence and for model selection. Furthermore, we consider a general information-based method for obtaining the asymptotic covariance matrix of the ML estimate. The method proposed in this paper is implemented in the R package CensMFM, which is available for download from the CRAN repository.

The remainder of the paper is organized as follows. In Sect. 2, we briefly discuss some preliminary results related to the multivariate extended skew-normal (ESN) and related truncated extended skew-normal (TESN) distributions, in addition to presenting some of their key properties. In Sect. 3, we present the multivariate skew-normal censored (MSNC) model. In Sect. 4, we introduce the robust FM-MSNC model, including the EM algorithm for ML estimation, and derive the empirical information matrix analytically to obtain the standard errors. In Sects. 5 and 6, numerical examples using both simulated and real data, respectively, are given to illustrate the performance of the proposed method. Finally, some concluding remarks are presented in Sect. 7.

2 Background

2.1 The multivariate skew-normal distribution

In this subsection we present the skew-normal distribution and some of its properties. We say that a $p \times 1$ random vector Y follows a multivariate SN distribution with $p \times 1$ location vector μ, $p \times p$ positive definite dispersion matrix Σ and $p \times 1$ skewness parameter vector $\lambda \in \mathbb{R}^p$, and we write $Y \sim SN_p(\mu, \Sigma, \lambda)$, if its pdf is given by

$$
SN_p(y; \mu, \Sigma, \lambda) = 2\phi_p(y; \mu, \Sigma)\Phi_1(\lambda^T\Sigma^{-1/2}(y - \mu)),
$$

(1)

where $\Phi_1(\cdot)$ represents the cumulative distribution function (cdf) of the standard univariate normal distribution. If $\lambda = 0$ then (1) reduces to the symmetric $N_p(\mu, \Sigma)$ pdf which is denoted by $\phi_p(y; \mu, \Sigma)$. The equation (1) corresponds to the model introduced by Azzalini and Dalla-Valle (1996), whose properties were extensively studied in Azzalini and Capitanio (1999) (see also, Arellano-Valle and Genton 2005).

Proposition 1 If $Y \sim SN_p(\mu, \Sigma, \lambda)$, then for any $y \in \mathbb{R}^p$

$$
F_Y(y) = P(Y \leq y) = 2\Phi_{p+1}((y^T, 0)^T; 0, \Omega),
$$

(2)
where \(z = y - \mu \) and \(\Omega = \begin{pmatrix} \Sigma & -\Delta \\ -\Delta^\top & 1 \end{pmatrix} \), with \(\Delta = \Sigma^{1/2}\lambda/(1 + \lambda^\top \lambda)^{1/2} \).

Since the multivariate skew-normal distribution is not closed under conditioning, next we present its extended version which holds these properties, called, the multivariate ESN distribution.

2.2 The extended multivariate skew-normal distribution (ESN)

We say that a \(p \times 1 \) random vector \(Y \) follows an ESN distribution with \(p \times 1 \) location vector \(\mu \), \(p \times p \) positive definite dispersion matrix \(\Sigma \), \(p \times p \) skewness parameter vector \(\lambda \in \mathbb{R}^p \), and shift parameter \(\tau \in \mathbb{R} \), denoted by \(Y \sim ESN_p(\mu, \Sigma, \lambda, \tau) \), if its pdf is given by

\[
ESN_p(y; \mu, \Sigma, \lambda, \tau) = \xi^{-1} \phi_p(y; \mu, \Sigma) \Phi_1(\tau + \lambda^\top \Sigma^{-1/2}(y - \mu)), \tag{3}
\]

with \(\xi = \Phi_1(\tau/(1 + \lambda^\top \lambda)^{1/2}) \). Note that when \(\tau = 0 \), we obtain the skew-normal distribution defined in (1), that is, \(ESN_p(y; \mu, \Sigma, \lambda, 0) \equiv SN_p(y; \mu, \Sigma, \lambda) \). It is also interesting to note that

\[
ESN_p(y; \mu, \Sigma, \lambda, \tau) \rightarrow \phi_p(y; \mu, \Sigma), \quad \text{as} \quad \tau \rightarrow +\infty.
\]

The following propositions are crucial to develop our methods. The proofs are given in Arellano-Valle and Genton (2010).

Proposition 2 Let \(Y \sim ESN_p(\mu, \Sigma, \lambda, \tau) \) and \(Y \) be partitioned as \(Y = (Y_1^\top, Y_2^\top)^\top \) of dimensions \(p_1 \) and \(p_2 \) \((p_1 + p_2 = p)\), respectively. Let

\[
\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}, \quad \mu = (\mu_1^\top, \mu_2^\top)^\top, \quad \lambda = (\lambda_1^\top, \lambda_2^\top)^\top \quad \text{and} \quad \varphi = (\varphi_1^\top, \varphi_2^\top)^\top
\]

be the corresponding partitions of \(\Sigma, \mu, \lambda \) and \(\varphi = \Sigma^{-1/2}\lambda \). Then,

\[
Y_1 \sim ESN_{p_1}(\mu_1, \Sigma_{11}, c_{12} \Sigma_{11}^{1/2} \varphi_1, c_{12} \tau), \quad Y_2 | Y_1 = y_1 \sim ESN_{p_2}(\mu_{2,1}, \Sigma_{22,1}, \Sigma_{22,1}^{1/2} \varphi_2, \tau_{2,1})
\]

where \(c_{12} = (1 + \varphi_2^\top \Sigma_{22,1} \varphi_2)^{-1/2} \), \(\varphi_1 = \varphi_1 + \Sigma_{11}^{-1} \Sigma_{12} \varphi_2, \Sigma_{22,1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}, \mu_{2,1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (y_1 - \mu_1) \) and \(\tau_{2,1} = \tau + \tilde{\varphi}_1^\top (y_1 - \mu_1) \).

Proposition 3 If \(Y \sim ESN_p(\mu, \Sigma, \lambda, \tau) \), then for any \(y \in \mathbb{R}^p \)

\[
F_Y(y) = P(Y \leq y) = \frac{\Phi_{p+1}(z^\top, \tilde{\tau}; 0, \Omega)}{\Phi_1(\tilde{\tau})}, \tag{4}
\]

with \(z \) and \(\Omega \) as defined in Proposition 1, and \(\tilde{\tau} = \tau/(1 + \lambda^\top \lambda)^{1/2} \).
Hereafter, for \(Y \sim ESN_p(\mu, \Sigma, \lambda, \tau) \), we will denote its \(cdf \) as \(F_Y(y) = \tilde{\Phi}_p(y; \mu, \Sigma, \lambda, \tau) \) for simplicity.

Let \(\mathbb{A} \) be a Borel set in \(\mathbb{R}^p \). We say that the random vector \(Y \) has a truncated extended skew-normal distribution on \(\mathbb{A} \) when \(Y \) has the same distribution as \(Y|\{Y \in \mathbb{A}\} \). In this case, the pdf of \(Y \) is given by

\[
f(y | \mu, \Sigma, \nu; \mathbb{A}) = \frac{ESN_p(y; \mu, \Sigma, \lambda, \tau)}{P(Y \in \mathbb{A})} I_\mathbb{A}(y),
\]

where \(I_\mathbb{A} \) is the indicator function of \(\mathbb{A} \). We use the notation \(Y \sim TESN_p(\mu, \Sigma, \lambda, \tau; \mathbb{A}) \). If \(\mathbb{A} \) has the form

\[
\mathbb{A} = \{(x_1, \ldots, x_p) \in \mathbb{R}^p : a_1 \leq x_1 \leq b_1, \ldots, a_p \leq x_p \leq b_p \}
\]

then we use the notation \(\{Y \in \mathbb{A}\} = \{a \leq Y \leq b\} \), where \(a = (a_1, \ldots, a_p)^\top \) and \(b = (b_1, \ldots, b_p)^\top \). Here, we say that the distribution of \(Y \) is doubly truncated. Analogously we define \(\{Y \geq a\} \) and \(\{Y \leq b\} \). Thus, we say that the distribution of \(Y \) is truncated from below and truncated from above, respectively. For convenience, we also use the notation \(Y \sim TESN_p(\mu, \Sigma, \lambda, \tau; [a, b]) \). In particular, we denote \(W \) as following a truncated \(p \)-variate normal distribution on \([a, b] \) as \(W \sim TN_p(\mu, \Sigma; [a, b]) \).

For the general doubly truncated case, we define the normalizing constant \(L_p(a, b; \mu, \Sigma, \lambda, \tau) = P(a \leq Y \leq b) \) as

\[
L_p(a, b; \mu, \Sigma, \lambda, \tau) = \int_a^b ESN_p(y; \mu, \Sigma, \lambda, \tau)dy.
\]

When all \(\lambda \) and \(\tau \) are equal to zero, we have a normal integral \(L_p(a, b; \mu, \Sigma, 0, 0) = L_p(a, b; \mu, \Sigma) = \int_a^b \phi_p(y; \mu, \Sigma)dy \). Note that we use calligraphic style \(L_p \) when we work with the skewed extended version and Roman style \(L_p \) for the symmetric case.

The following properties of the truncated multivariate extended skew-normal distributions are useful for implementation of the EM-algorithm. The proofs are given in Galarza et al. (2020b) (see Eq. (37)).

Proposition 4 Let \(Y \sim TESN_p(\mu, \Sigma, \lambda, \tau; [a, b]) \). For any measurable function \(g(\cdot) \), we have that

\[
\mathbb{E} \left[g(Y) \frac{\phi_1(\tau + \lambda^\top \Sigma^{-1/2}(Y - \mu))}{\Phi_1(\tau + \lambda^\top \Sigma^{-1/2}(Y - \mu))} \right] = \frac{\eta L_p(a, b; \mu - \mu_b, \Gamma)}{L_p(a, b; \mu, \Sigma, \lambda, \tau)} \mathbb{E}[g(W)],
\]

with \(\eta = \phi_1(\tau; 0, 1 + \lambda^\top \lambda)/\xi \), \(\mu_b = \tilde{\tau} \Delta \), \(\Gamma = \Sigma - \Delta \Delta^\top \) and \(W \sim TN_p(\mu - \mu_b, \Gamma; [a, b]) \).

Proposition 5 Let \(Y \sim ESN_p(\mu, \Sigma, \lambda, \tau; [a, b]) \), where \(Y \) is partitioned as \(Y = (Y_1^\top, Y_2^\top)^\top \) of dimensions \(p_1 \) and \(p_2 \) (\(p_1 + p_2 = p \)), with corresponding partitions.
of \(a, b, \mu, \Sigma, \lambda\) and \(\varphi\). Then, for any measurable function \(g(\cdot)\), we have that

\[
\mathbb{E}_Y \left[g(Y_2) \frac{\phi_1(\tau + \lambda^\top \Sigma^{-1/2}(Y - \mu))}{\phi_1(\tau + \lambda^\top \Sigma^{-1/2}(Y - \mu))} \right] = \frac{\eta_{2,1} L_{2,1}}{\lambda_{2,1}} \mathbb{E}[g(W_2)], \tag{7}
\]

where \(L_{2,1} = \mathcal{L}_{p_2}(a_2, b_2; \mu_{2,1} - \mu_{b2,1}, \Gamma_{22,1})\), \(\lambda_{2,1} = \mathcal{L}_{p_2}(a_2, b_2; \mu_{2,1}, \Sigma_{22,1}, \lambda_{2,1}, \tau_{2,1})\) and \(W_2 \sim T_{SN}(\mu_{2,1} - \mu_{b2,1}, \Gamma_{22,1}, [a_2, b_2])\) with \(\lambda_{2,1} = \Sigma_{22,1}^{1/2} \varphi_2, \mu_{2,1}, \Sigma_{22,1}\), and \(\tau_{2,1}\) as in proposition 2, and \(\eta_{2,1}, \mu_{b2,1}\) and \(\Gamma_{22,1}\) can be computed as expressions \(\eta, \mu, \varphi\) and \(\Gamma\) in proposition 4 but using the new set of parameters \(\mu_{2,1}, \Sigma_{22,1}, \lambda_{2,1}\) and \(\tau_{2,1}\) (instead of \(\mu, \Sigma, \lambda\) and \(\tau\)).

Observe that Propositions 4 and 5 depend on formulas for \(g(Y)\), where \(Y \sim T_{ESN}(\mu, \Sigma, \lambda, \tau; [a, b])\). Closed form expressions for these expectations were obtained recently by Galarza et al. (2020a), for which the \texttt{meanvarTMD()} function of the \texttt{R MomTrunc} library can be used.

3 Multivariate skew-normal model for censored and missing responses

Now we present the robust multivariate skew-normal model for censored data. So, we write

\[
Y_1, \ldots, Y_n \sim SN_p(\mu, \Sigma, \lambda), \tag{8}
\]

where for each \(i \in \{1, \ldots, n\}\), \(Y_i = (Y_{i1}, \ldots, Y_{ip})^\top\) is a \(p \times 1\) vector of responses for sample unit \(i\), \(\mu = (\mu_1, \ldots, \mu_p)^\top\) is the location vector and the dispersion matrix \(\Sigma = \Sigma(\alpha)\) depends on an unknown and reduced parameter vector \(\alpha\) and skewness parameter \(\lambda\). We assume that \(Y_1, \ldots, Y_n\) are independent and identically distributed. We consider a similar approach to that proposed by Lachos et al. (2017) to model censored responses. Thus, the observed data for the \(i\)th subject are given by \((V_i, C_i)\), where each element of \(V_i = (V_{i1}, \ldots, V_{ip})^\top\) represents either the vector of uncensored observations \((V_{ik} = V_{0i})\) or the interval censoring level \((V_{ik} \in [V_{1ik}, V_{2ik}])\), and \(C_i = (C_{i1}, \ldots, C_{ip})^\top\) is the vector of censoring indicators, satisfying

\[
C_{ik} = \begin{cases} 1 & \text{if } V_{1ik} \leq Y_{ik} \leq V_{2ik}; \\ 0 & \text{if } Y_{ik} = V_{0i}. \end{cases} \tag{9}
\]

for all \(i \in \{1, \ldots, n\}\) and \(k \in \{1, \ldots, p\}\), i.e., \(C_{ik} = 1\) if \(Y_{ik}\) is located within a specific interval. In this case, (8) and (9) define the multivariate skew-normal interval censored model (hereafter, the MSNC model). Missing observations can be handled by considering \(V_{1ik} = -\infty\) and \(V_{2ik} = +\infty\).
3.1 The likelihood function

Let \(y = (y_1^T, \ldots, y_n^T)^T \), where \(y_i = (y_{i1}, \ldots, y_{ip})^T \) is a realization of \(Y_i \sim SN_p(\mu, \Sigma, \lambda) \). To obtain the likelihood function of the MSNC model, we first treat the observed and censored components of \(y_i \), separately, i.e., \(\tilde{y}_i = (y_i^o, y_i^c)^T \), where \(C_{ik} = 0 \) for all elements in the \(p_i^o \)-dimensional vector \(y_i^o \), and \(C_{ik} = 1 \) for all elements in the \(p_i^c \)-dimensional vector \(y_i^c \). Accordingly, we write \(V_i = \text{vec}(V_i^o, V_i^c) \), where \(V_i^c = (V_{i1}^c, V_{i2}^c) \) with

\[
\mu_i = (\mu_i^o^T, \mu_i^c^T)^T, \quad \Sigma = \begin{pmatrix} \Sigma_{ii}^o & \Sigma_{ic}^o \\ \Sigma_{ci}^o & \Sigma_{cc}^o \end{pmatrix}, \quad \lambda_i = (\lambda_i^o^T, \lambda_i^c^T)^T, \quad \phi_i = (\phi_i^o^T, \phi_i^c^T)^T.
\]

(10)

Then, using Proposition 2, we have that \(Y_i^o \sim SN_{p_i^o}(\mu_i^o, \Sigma_i^o, \Sigma_i^{co} \phi_i^o) \) and \(Y_i^c \mid Y_i^o = y_i^o \sim ESA_{p_i^o}(\mu_i^o, \Sigma_i^{cc}, \Sigma_i^{cco} \phi_i^o) \), where

\[
\mu_i^o = \mu_i^o + \Sigma_i^{co} \phi_i^o (y_i^o - \mu_i^o), \quad \Sigma_i^{cc} = \Sigma_i^{cc} - \Sigma_i^{co} \phi_i^o \Sigma_i^{cco} \phi_i^o, \quad \phi_i^o = \phi_i^o + \Sigma_i^{cco} \phi_i, \quad \phi_i^o = (1 + \phi_i^o \Sigma_i^{cco} \phi_i)^{-1/2} \quad \text{and} \quad \tau_i^{co} = \phi_i^o (y_i^o - \mu_i^o).
\]

(11) (12)

Let \(V = \text{vec}(V_1, \ldots, V_n) \) and \(C = \text{vec}(C_1, \ldots, C_n) \) denote the observed data. Therefore, the log-likelihood function of \(\theta = (\mu^T, \alpha^T, \lambda^T)^T \), given the observed data \((V, C) \) is

\[
\ell(\theta \mid V, C) = \sum_{i=1}^{n} \ln L_i,
\]

(13)

where \(L_i \) represents the likelihood function of \(\theta \) for the \(i \)th sample, given by

\[
L_i \equiv L_i(\theta \mid V_i, C_i) = f(V_i \mid C_i, \theta) = f(V_{i1}^c \leq y_{i1}^c \leq V_{i2}^c \mid y_i^o, \theta) f(y_i^o \mid \theta)
\]

\[
= \mathcal{L}_{p_i^c}(V_{i1}^c, V_{i2}^c; \mu_i^o, \Sigma_i^{cc}, \Sigma_i^{cco} \phi_i, \tau_i^{co}) \times SN_{p_i^o}(y_i^o; \mu_i^o, \Sigma_i^{oo} \phi_i^o).
\]

3.2 Parameter estimation via the EM algorithm

We now describe how to carry out ML estimation for the MSNC model. The EM algorithm, originally proposed by Dempster et al. (1977), is a very popular iterative optimization strategy and is commonly used to obtain ML estimates for incomplete-data problems. This algorithm has many attractive features, such as numerical stability, simplicity of implementation and quite reasonable memory requirement (McLachlan and Krishnan 2008).
By the essential property of a multivariate SN distribution, we can write

\[Y_i | (T_i = t_i) \sim N_p(\mu + \Delta t_i, \Gamma) \text{ and } T_i \sim \text{HN}(0, 1), \]

(14)

with HN referring to a half normal distribution and with \(\Delta \) and \(\Gamma \) as defined in the previous section. The complete-data log-likelihood function of an equivalent set of parameters \(\theta = (\mu^T, \Delta^T, \alpha_F^T) \), where \(\alpha_F = \text{vech}(\Gamma) \), is given by \(\ell_c(\theta) = \sum_{i=1}^n \ell_{ic}(\theta) \), where the individual complete-data log-likelihood is

\[
\ell_{ic}(\theta) = -\frac{1}{2} \left\{ \ln |\Gamma| + (y_i - \mu - \Delta t_i)^\top \Gamma^{-1} (y_i - \mu - \Delta t_i) \right\} + c,
\]

with \(c \) being a constant that does not depend on \(\theta \). Subsequently, the EM algorithm for the MSNC model can be summarized as follows:

E-step: Given the current estimate \(\hat{\theta}^{(k)} = (\hat{\mu}^{(k)}, \hat{\Delta}^{(k)}, \hat{\alpha}_F^{(k)}) \) at the \(k \)th step of the algorithm, the E-step provides the conditional expectation of the complete data log-likelihood function

\[
Q(\theta | \hat{\theta}^{(k)}) = \mathbb{E}\left[\ell_c(\theta) | V, C, \hat{\theta}^{(k)} \right] = \sum_{i=1}^n Q_i(\theta | \hat{\theta}^{(k)}),
\]

where

\[
Q_i(\theta | \hat{\theta}^{(k)}) \propto \exp\left\{ -\frac{1}{2} \ln |\hat{\Gamma}^{(k)}| - \frac{1}{2} \text{tr}\left\{ \begin{pmatrix} \hat{y}_i^{(k)} + \hat{\mu}^{(k)} \hat{\mu}^{(k)\top} + \hat{\Delta}^{(k)} \hat{\Delta}^{(k)\top} - \hat{\Delta}^{(k)} \hat{\mu}^{(k)\top} - \hat{\mu}^{(k)} \hat{\Delta}^{(k)\top} \end{pmatrix} \right\} \right\},
\]

with \(\hat{y}_i^{(k)} = \mathbb{E}_{T_i Y_i} [Y_i^r | V_i, C_i, \hat{\theta}^{(k)}] \), \(\hat{\mu}^{(k)} = \mathbb{E}_{T_i Y_i} [T_i | V_i, C_i, \hat{\theta}^{(k)}] \) (for \(r = 0, 1, 2 \), with \(Y_i^0 = 1 \)), \(Y_i^1 = Y_i \) and \(Y_i^2 = Y_i Y_i^\top \) and \(\hat{\gamma}_i^{(k)} = \mathbb{E}_{T_i Y_i} [T_i Y_i | V_i, C_i, \hat{\theta}^{(k)}] \).

Then, we can use Propositions 4 and 5 to obtain closed form expressions for these conditional expectations as follows:

1. If the \(i \)th subject has only non-censored components, then

\[
\begin{align*}
\hat{y}_i^{(k)} &= \mathbb{E}_{T_i Y_i} [Y_i^r | V_i, C_i, \hat{\theta}^{(k)}] = y_i^r, \\
\hat{\mu}^{(k)} &= \mathbb{E}_{T_i Y_i} [T_i | V_i, C_i, \hat{\theta}^{(k)}] = \mathbb{E}_{T_i} [T_i^r | Y_i, \hat{\theta}^{(k)}], \\
\hat{\gamma}_i^{(k)} &= \mathbb{E}_{T_i Y_i} [T_i Y_i | V_i, C_i, \hat{\theta}^{(k)}] = y_i \mathbb{E}_{T_i} [T_i | Y_i, \hat{\theta}^{(k)}].
\end{align*}
\]

with \(y_i^0 = 1 \), \(y_i^1 = y_i \) and \(y_i^2 = y_i y_i^\top \) and \(\mathbb{E}_{T_i} [T_i^r | Y_i, \hat{\theta}^{(k)}] = \mathbb{E}_{T_i} [T_i^r | Y_i] \) for \(r = \{1, 2\} \). These last conditional expectations can be obtained directly from the results given in Cabral et al. (2012).
2. If the ith subject has only censored components, from Proposition 4 we have

\begin{align*}
\hat{y}_i^{(k)} &= \mathbb{E}[Y_i | Y_i^c, V_i, C_i, \hat{\theta}^{(k)}] = \hat{w}_i^{(k)}, \\
\hat{t}_i^{(k)} &= M^2(\theta^{(k)}) \Lambda^{(k)\top} \hat{\Gamma}^{-(1)(k)} (\hat{w}_i^{(k)} - \hat{\mu}^{(k)}) + \hat{r}_i^{(k)} M(\hat{\theta}^{(k)}), \\
\hat{t}_i^{2(k)} &= M^4(\theta^{(k)}) \Lambda^{(k)\top} \hat{\Gamma}^{-(1)(k)} (\hat{w}_i^{(k)} - 2\hat{w}_i^{(k)} \hat{\mu}^{(k)\top} + \hat{\mu}^{(k)\top}(\hat{\mu}^{(k)})^{(k)}) \hat{\Gamma}^{-(1)(k)} \Lambda^{(k)}, \\
&\quad + M^2(\theta^{(k)}) + \hat{r}_i^{(k)} M^3(\theta^{(k)}) \Lambda^{(k)\top} \hat{\Gamma}^{-(1)(k)} (\hat{w}_0^{(k)} - \hat{\mu}^{(k)}), \\
\hat{r}_i^{(k)} &= M^2(\theta^{(k)}) (\hat{w}_i^{(k)} - 2\hat{w}_i^{(k)} \hat{\mu}^{(k)}^{(k)}) \hat{\Gamma}^{-(1)(k)} \Lambda^{(k)} + \hat{r}_i^{(k)} M(\hat{\theta}^{(k)}) \hat{w}_0^{(k)}.
\end{align*}

where

\begin{align*}
M^2(\theta) &= (1 + \Delta^{\top} \hat{\Gamma}^{-1} \Delta)^{-1}, \\
\hat{w}_i^{(2(k))} &= \mathbb{E}[W_i W_i^{\top} | \hat{\theta}^{(k)}] \quad \text{and} \quad \hat{w}_0^{(2(k))} = \mathbb{E}[W_0i | \hat{\theta}^{(k)}],
\end{align*}

with $W_i \sim TSN_p(\hat{\mu}^{(k)}, \hat{\Sigma}^{(k)}, \hat{\lambda}^{(k)}, [v_{1i}, v_{2i}]), W_0i \sim TSN_p(\hat{\mu}^{(k)}, \hat{\Gamma}^{(k)}, [v_{1i}, v_{2i}])$ and

\begin{align*}
\hat{\gamma}_i^{(k)} &= \frac{1}{\sqrt{\frac{n}{2} (1 + \hat{\lambda}^{(k)\top} \hat{\lambda}^{(k)})}} \frac{L_p(v_{1i}, v_{2i}, \hat{\mu}^{(k)}, \hat{\Gamma}^{(k)})}{L_p(v_{1i}, v_{2i}, \hat{\mu}^{(k)}, \hat{\Sigma}^{(k)}, \hat{\lambda}^{(k)}, 0)}.
\end{align*}

3. If the ith subject has both censored and uncensored components and given that $(Y_i | V_i, C_i), (Y_i | V_i, C_i, Y_i^o)$, and $(Y_i^c | V_i, C_i, Y_i^o)$ are equivalent processes, we have from Proposition 5 that

\begin{align*}
\hat{\gamma}_i^{(k)} &= \mathbb{E}(Y_i | Y_i^{c}, V_i, C_i, \hat{\theta}^{(k)}) = \text{vec}(Y_i^{c}, \hat{w}_i^{c(k)}), \\
\hat{\gamma}_i^{(k)} &= \mathbb{E}(Y_i Y_i^{\top} | Y_i^{c}, V_i, C_i, \hat{\theta}^{(k)}) = \left(\begin{array}{c}
y_i^{c} Y_i^{T} \\ \hat{w}_i^{c(k)} \hat{w}_i^{c(k)\top}
\end{array}\right), \\
\hat{\gamma}_i^{(k)} &= \text{vec}(Y_i^{c}, \hat{w}_i^{c(k)}), \\
\hat{t}_i^{(k)} &= M^2(\theta^{(k)}) \Lambda^{(k)\top} \hat{\Gamma}^{-(1)(k)} (\hat{y}_i^{(k)} - \hat{\mu}^{(k)}) + \hat{r}_i^{(k)} M(\hat{\theta}^{(k)}), \\
\hat{t}_i^{2(k)} &= M^4(\theta^{(k)}) \Lambda^{(k)\top} \hat{\Gamma}^{-(1)(k)} (\hat{y}_i^{(k)} - 2\hat{y}_i^{(k)} \hat{\mu}^{(k)\top} + \hat{\mu}^{(k)\top}(\hat{\mu}^{(k)})^{(k)}) \hat{\Gamma}^{-(1)(k)} \Lambda^{(k)}, \\
&\quad + M^2(\theta^{(k)}) + \hat{r}_i^{(k)} M^3(\theta^{(k)}) \Lambda^{(k)\top} \hat{\Gamma}^{-(1)(k)} (\hat{y}_0^{(k)} - \hat{\mu}^{(k)}), \\
\hat{r}_i^{(k)} &= M^2(\theta^{(k)}) (\hat{y}_i^{(k)} - \hat{y}_i^{(k)} \hat{\mu}^{(k)}) \hat{\Gamma}^{-(1)(k)} \Lambda^{(k)} + \hat{r}_i^{(k)} M(\hat{\theta}^{(k)}) \hat{y}_0^{(k)}.
\end{align*}

where

\begin{align*}
\hat{w}_i^{c(k)} &= \mathbb{E}[W_i^{c} | \hat{\theta}^{(k)}], \quad \hat{w}_i^{2c(k)} = \mathbb{E}[W_i^{c} W_i^{c\top} | \hat{\theta}^{(k)}] \quad \text{and} \quad \hat{w}_0^{c(k)} = \mathbb{E}[W_0i^{c} | \hat{\theta}^{(k)}],
\end{align*}
with \(W_i^c \sim \text{TESN}_p \left(\hat{\mu}_i^{co(k)}, \hat{\Sigma}_i^{cc.o(k)}, \hat{\lambda}_i^{co(k)}, \hat{\tau}_i^{co(k)}, [v_{1i}^c, v_{2i}^c] \right) \), \(W_0^c \sim \text{TN}_p \left(\hat{\boldsymbol{m}}_i^{co(k)}, \hat{\Gamma}_i^{cc.o(k)} \right) \), \([v_{1i}^c, v_{2i}^c] \), and

\[
\hat{\gamma}_i^{(k)} = \frac{\eta_i^{co} L_p(v_{1i}^c, v_{2i}^c; \hat{\mu}_i^{co(k)}, \hat{\Sigma}_i^{cc.o(k)}, \hat{\lambda}_i^{co(k)}, \hat{\tau}_i^{co(k)})}{L_p(v_{1i}^c, v_{2i}^c; \hat{\mu}_i^{co(k)}, \hat{\Sigma}_i^{cc.o(k)}, \hat{\lambda}_i^{co(k)}, \hat{\tau}_i^{co(k)})},
\]

where \(\lambda_i^{co} = \Sigma_i^{cc.o(k)/2} \phi_i^c \), \(m_i^{co} = \mu_i^{co} - \mu_{bi}^{co} \), and \(\eta_i^{co}, \mu_{bi}^{co} \) and \(\Gamma_i^{cc.o} \) can be computed as expressions \(\mu, \Sigma, \lambda, \) and \(\tau \.

To compute \(E[W_0^c], E[W_i] \) and \(E[W_i W_i^\top] \) in items 2 and 3, we use the R library \(\text{MomTrunc} \).

M-step: Conditionally maximizing \(Q(\theta | \hat{\theta}^{(k)}) = \sum_i^n Q_i(\theta | \hat{\theta}^{(k)}) \) with respect to each entry of \(\theta \), we update the estimate \(\hat{\theta}^{(k)} = (\hat{\mu}^{(k)}, \hat{\Delta}^{(k)}, \hat{\alpha}^{(k)}) \) by

\[
\hat{\mu}^{(k+1)} = \frac{1}{n} \sum_{i=1}^n \left\{ \hat{y}_i^{(k)} - \hat{\gamma}_i^{(k)} \hat{\Delta}^{(k)} \right\}, \quad (15)
\]

\[
\hat{\Delta}^{(k+1)} = \left\{ \sum_{i=1}^n \hat{\gamma}_i^{(k)} \right\}^{-1} \sum_{i=1}^n \left[\hat{y}_i^{(k)} - \hat{\gamma}_i^{(k)} \hat{\Delta}^{(k)} \hat{\mu}^{(k+1)} \right], \quad (16)
\]

\[
\hat{\Gamma}^{(k+1)} = \frac{1}{n} \sum_{i=1}^n \left\{ \begin{array}{c}
\hat{y}_i^{(k)} + \hat{\mu}^{(k)} \hat{\Delta}^{(k)} + \hat{\gamma}_i^{(k)} \\
- \hat{\mu}^{(k)} \hat{\Delta}^{(k)} \end{array} \right\} - \hat{\mu}^{(k)} \hat{\Delta}^{(k)} \hat{\mu}^{(k)} = \hat{\alpha}^{(k)} \hat{\Delta}^{(k)} \hat{\mu}^{(k)} + \hat{\alpha}^{(k)} \hat{\Delta}^{(k)} \hat{\mu}^{(k)}
\]

The algorithm is iterated until a suitable convergence rule is satisfied. In the later analysis, the algorithm is terminated when the relative distance between two successive evaluations of the log-likelihood defined in (13) is less than a tolerance, i.e., \(|\ell(\hat{\theta}^{(k+1)} | V, C) - \ell(\hat{\theta}^{(k)} | V, C)| < \epsilon \), for example, \(\epsilon = 10^{-6} \). Once converged, we can recover \(\hat{\lambda} \) and \(\hat{\Sigma} \) using the expressions

\[
\hat{\Sigma} = \hat{\Gamma} + \hat{\Delta} \hat{\Delta}^\top \quad \text{and} \quad \hat{\lambda} = \frac{\hat{\Sigma}^{-1/2} \hat{\Delta}}{(1 - \hat{\Delta}^\top \hat{\Sigma}^{-1} \hat{\Delta})^{1/2}}.
\]

It is important to stress that, from Eqs. (15–17), the E-step reduces to the computation of \(\hat{y}_i^{(k)}, \hat{\gamma}_i^{(k)}, \hat{\Delta}^{(k)} \) and \(\hat{\mu}^{(k)} \), for which we have implementable expressions. As pointed out by an anonymous referee, since missing values are treated as interval censored data, the computation burden relies heavily on the dimension of the censored vector used to evaluate the expectations of TESN and TN random vectors. In the next subsection, we briefly discuss how to circumvent this problem, such that missing values do not pose either a mathematical or computational burden.
3.3 Efficient computation of expectations

In the event that there are missing values, we can partition the censored vector as $Y_{cens} = (Y_c^T, Y_m^T)^T$, that is, as missing and (truly) censored, in order to avoid unnecessary calculation of integrals to obtain its expectation. Considering the partition above such that $\text{dim}(Y_c) = p_c^c, \text{dim}(Y_m) = p_m^c$, where $p_c^c + p_m^c = p^c$, it follows that

$$
E[Y_{cens}|Y_{obs}] = E \left[\frac{E[Y_m|Y_c, Y_{obs}]}{Y_c|Y_{obs}} \right]
$$

and $\text{var}[Y_{cens}|Y_{obs}]$ is given by

$$
\begin{bmatrix}
E[\text{var}[Y_m|Y_c, Y_{obs}]] + \text{var}[E[Y_m|Y_c, Y_{obs}]] & \text{cov}[E[Y_m|Y_c, Y_{obs}], Y_c|Y_{obs}]
\end{bmatrix}
\begin{bmatrix}
\text{cov}[Y_c|Y_{obs}, E[Y_m|Y_c, Y_{obs}]] & \text{var}[Y_c|Y_{obs}]
\end{bmatrix}^{-1}.
$$

By noting that $Y_m = (V = (-\infty, \infty), C = 1)$, we have that $Y_m|Y_c, Y_{obs}$ is a non-truncated partition following an ESN distribution whose moments have closed forms. Then, the computation of the first two moments of $Y_{cens}|Y_{obs}$ can be calculated using Eqs. (18) and (19), these last only depending on the computation of the truncated moments of $Y_c|Y_{obs}$, which are $E[Y_c|Y_{obs}]$ and $\text{var}[Y_c|Y_{obs}]$. As can be seen, we can use the latter equations to treat missing data as censored in a neat manner, where the truncated moments are computed only over the p_c^c-variate partition, avoiding some unnecessary integrals and significantly reducing the computational effort.

Remark 1 In general, TESN distributions are not closed under marginalization but are under conditioning. For instance, $Y_m|Y_{obs}$ does not follow a TESN distribution but its conditional distribution $Y_m|Y_c, Y_{obs}$ does. Furthermore, since $V = (-\infty, \infty)$ for missing observations, we have that $Y_m|Y_c, Y_{obs}$ is a (conditionally) non-truncated partition, following an ESN distribution. For this particular case, $Y_c|Y_{obs}$ follows a TESN distribution due to the aforementioned condition.

4 The FM-MSNC model

Ignoring censoring for the moment, we consider a more general and robust framework for the multivariate response variable Y_i of the model defined in (8), which is assumed to follow a mixture of multivariate skew normal distributions:

$$
Y_i \sim \sum_{j=1}^{G} \pi_j SN_p(\mu_j, \Sigma_j, \lambda_j),
$$

where π_j are weights adding to 1 and G is the number of groups, also called components in mixture models. The mixture model considered in (20) can also be by letting
Let Z_{ij} be a latent class variable, such that

$$Z_{ij} = \begin{cases}
1 & \text{if the } i \text{th observation is from the } j \text{th component,} \\
0 & \text{otherwise.}
\end{cases}$$

Thus, given $Z_{ij} = 1$, the response Y_i follows a multivariate skew-normal distribution

$$Y_i \sim SN_p(\mu_j, \Sigma_j, \lambda_j), \quad i \in \{1, \ldots, n\}, \quad j \in \{1, \ldots, G\}. \quad (21)$$

Now, suppose $\Pr(Z_{ij} = 1) = \pi_j$. Then the density of Y_i, without observing Z_{ij}, is given by

$$f(y_i \mid \theta) = \sum_{j=1}^{G} \pi_j SN_p(y_i; \mu_j, \Sigma_j, \lambda_j), \quad (22)$$

where $\theta = (\theta_1^T, \ldots, \theta_G^T)^T$, with $\theta_j = (\pi_j, \mu_j^T, \Sigma_j, \lambda_j)^T$.

We treat the observed and censored components of Y_i, separately, i.e. $y_i = (y_{i1}^o, y_{i2}^c)^T$, with respective partitioned parameters as in (10). Following Lachos et al. (2017), we define the mixture model for censored data as a mixture of the MSNC models given in (13), viz.

$$f(V_i \mid C_i, \theta) = \sum_{j=1}^{G} \pi_j f_{ij}(V_i \mid C_i, \theta), \quad (23)$$

with

$$f_{ij}(V_i \mid C_i, \theta) = L_{P_i}^{C_i}(\Sigma_i^{C_i}, \mu_i^{C_i}, \Sigma_i^{CC}, \phi_i^{C_i}, \tau_i^{C_i}) \times SN_{P_i}^{o_o}(y_i^o; \mu_i^o, \Sigma_i^{oo}, \phi_i^{o_o}),$$

where, for each component j, the arguments are defined as (11) and (12), respectively. The model defined in (23) will be called the FM-MSNC model. Thus, the log-likelihood function given the observed data (V, C) is given by

$$\ell(\theta \mid V, C) = \sum_{i=1}^{n} \ln\{f(V_i \mid C_i, \theta)\}.$$

4.1 Maximum likelihood estimation via the EM algorithm

In this section, we present an EM algorithm for the ML estimation of the FM-MSNC model. To do so, we present the FM-MSNC model in an incomplete-data framework, using the results presented in Sect. 3. We recall that the likelihood associated with finite
mixtures of skew-normal distributions may be unbounded, as shown by Cabral et al. (2012). Using a straightforward extension of their argument, it can be shown that the likelihood may be unbounded in the FM-MSNC case as well. Despite this, following Peel and McLachlan (2000b) (p. 41), we shall henceforth refer to the solution provided by the EM algorithm as the ML estimate even in situations where it may not globally maximize the likelihood.

Using the stochastic representation of the skew-normal distribution given in (14), it follows that the complete data log-likelihood function is $\ell_c(\theta) = \sum_{i=1}^{n} \ell_{ic}(\theta)$, where, for each $i \in \{1, \ldots, n\}$,

$$
\ell_{ic}(\theta) = c + \sum_{j=1}^{G} z_{ij} \ln \pi_j - \frac{1}{2} \sum_{j=1}^{G} z_{ij} \ln (|\Gamma_j|)
- \frac{1}{2} \sum_{j=1}^{G} z_{ij}(y_i - \mu_j - \Delta_j t_i)\top \Gamma_j^{-1}(y_i - \mu_j - \Delta_j t_i),
$$

with c being a constant which is independent of the parameter vector θ.

For each $j \in \{1, \ldots, G\}$, let $\hat{\theta}_j^{(k)} = (\hat{\ell}_j^{(k)}, \hat{\mu}_j^{(k)}, \hat{\Sigma}_j^{(k)}, \hat{\lambda}_j^{(k)})\top$, and let $\hat{\theta}^{(k)} = (\hat{\theta}_1^{(k)}\top, \ldots, \hat{\theta}_G^{(k)}\top)\top$ be the estimate of θ at the kth iteration. It follows, after some simple algebra, that the conditional expectation of the complete log-likelihood function has the form

$$
Q(\theta \mid \hat{\theta}^{(k)}) \propto \sum_{i=1}^{n} \sum_{j=1}^{G} Z_{ij}(\hat{\theta}^{(k)}) \ln \pi_j - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{G} Z_{ij}(\hat{\theta}^{(k)}) \ln (|\hat{\Gamma}_j^{(k)}|)
- \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{G} \text{tr} \left[\hat{\Gamma}_j^{(k)}^{-1} \left[\mathcal{E}_{2ij}(\hat{\theta}^{(k)}) - \hat{\mu}_j^{(k)} \hat{\Sigma}_j^{(k)} \hat{\Gamma}_j^{(k)} \hat{\mu}_j^{(k)}\top \right]
- \mathcal{E}_{3ij}(\hat{\theta}^{(k)})\Delta_j^{(k)}\top - \Delta_j^{(k)} \mathcal{E}_{3ij}(\hat{\theta}^{(k)}\top) + Z_{ij}(\hat{\theta}^{(k)})\hat{\mu}_j^{(k)}\hat{\mu}_j^{(k)}\top
+ \mathcal{E}_{4ij}(\hat{\theta}^{(k)})\hat{\Delta}_j^{(k)}\top\hat{\Delta}_j^{(k)}\top + \mathcal{E}_{5ij}(\hat{\theta}^{(k)}\top)\hat{\Delta}_j^{(k)}\top\hat{\mu}_j^{(k)}\top + \mathcal{E}_{5ij}(\hat{\theta}^{(k)}\top)\hat{\mu}_j^{(k)}\hat{\Delta}_j^{(k)}\top \right],
$$

where

$$
\mathcal{E}_{1ij}(\hat{\theta}^{(k)}) = \text{E}(Z_{ij} Y_i \mid V_i, C_i, \hat{\theta}^{(k)}), \quad \mathcal{E}_{2ij}(\hat{\theta}^{(k)}) = \text{E}(Z_{ij} Y_i Y_i\top \mid V_i, C_i, \hat{\theta}^{(k)}),
$$
$$
\mathcal{E}_{3ij}(\hat{\theta}^{(k)}) = \text{E}(Z_{ij} T_i Y_i \mid V_i, C_i, \hat{\theta}^{(k)}), \quad \mathcal{E}_{4ij}(\hat{\theta}^{(k)}) = \text{E}(Z_{ij} T_i^2 \mid V_i, C_i, \hat{\theta}^{(k)}),
$$
$$
\mathcal{E}_{5ij}(\hat{\theta}^{(k)}) = \text{E}(Z_{ij} T_i \mid V_i, C_i, \hat{\theta}^{(k)}) \quad \text{and} \quad Z_{ij}(\hat{\theta}^{(k)}) = \text{E}(Z_{ij} \mid V_i, C_i, \hat{\theta}^{(k)}).$$
By using known properties of conditional expectation, we obtain

\[Z_{ij}(\hat{\theta}^{(k)}) = \frac{\hat{\pi}_j^{(k)} f_{ij}(V_i \mid C_i, \hat{\theta}_j^{(k)})}{\sum_{j=1}^{G} \hat{\pi}_j^{(k)} f_{ij}(V_i \mid C_i, \hat{\theta}_j^{(k)})}, \]

(25)

\[E_{1ij}(\hat{\theta}^{(k)}) = Z_{ij}(\hat{\theta}^{(k)}) E(Y_i \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1) \]

\[E_{2ij}(\hat{\theta}^{(k)}) = Z_{ij}(\hat{\theta}^{(k)}) E(Y_i Y_i^T \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1), \]

\[E_{3ij}(\hat{\theta}^{(k)}) = Z_{ij}(\hat{\theta}^{(k)}) E(T_i \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1), \]

\[E_{4ij}(\hat{\theta}^{(k)}) = Z_{ij}(\hat{\theta}^{(k)}) E(T_i^2 \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1) \]

(26)

and

\[E_{5ij}(\hat{\theta}^{(k)}) = Z_{ij}(\hat{\theta}^{(k)}) E(T_i \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1). \]

The conditional expectations \(E(Y_i \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1)\), \(E(Y_i Y_i^T \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1)\), \(E(T_i \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1)\), \(E(T_i^2 \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1)\) and \(E(T_i \mid V_i, C_i, \hat{\theta}^{(k)}, Z_{ij} = 1)\) can be directly obtained from expressions \(\bar{Y}_i, \bar{Y}_i^2, \bar{Y}_i, \bar{Y}_i^2 i, \bar{Y}_i^2\) and \(\bar{Y}_i\), respectively, given in Sect. 3.2. Thus, we have closed form expressions for all the quantities involved in the E-step of the algorithm. Next, we describe the EM algorithm for maximum likelihood estimation of the parameters in the FM-MSN model.

E-step: Given \(\theta = \hat{\theta}^{(k)}\), compute \(E_{sij}(\hat{\theta}^{(k)})\) for all \(s \in \{1, 2, 3, 4, 5\}\) and \(Z_{ij}(\hat{\theta}^{(k)})\) for all \(i \in \{1, \ldots, n\}, j \in \{1, \ldots, G\}\).

M-step: Update \(\hat{\theta}^{(k+1)}\) by maximizing \(Q(\theta \mid \hat{\theta}^{(k)})\) over \(\theta\), which leads to the following closed form expressions:

\[\hat{\pi}_j^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} Z_{ij}(\hat{\theta}^{(k)}), \]

\[\hat{\mu}_j^{(k+1)} = \left\{ \sum_{i=1}^{n} Z_{ij}(\hat{\theta}^{(k)}) \right\}^{-1} \sum_{i=1}^{n} \left\{ E_{1ij}(\hat{\theta}^{(k)}) - E_{5ij}(\hat{\theta}^{(k)}) \Delta_j^{(k)} \right\}, \]

\[\hat{\Delta}_j^{(k+1)} = \left\{ \sum_{i=1}^{n} E_{4ij}(\hat{\theta}^{(k)}) \right\}^{-1} \sum_{i=1}^{n} \left\{ E_{3ij}(\hat{\theta}^{(k)}) - E_{5ij}(\hat{\theta}^{(k)}) \mu_j^{(k+1)} \right\}, \]

\[\hat{\Gamma}_j^{(k+1)} = \left\{ \sum_{i=1}^{n} Z_{ij}(\hat{\theta}^{(k)}) \right\}^{-1} \sum_{i=1}^{n} \left\{ E_{2ij}(\hat{\theta}^{(k)}) - \hat{\mu}_j^{(k)} E_{1ij}(\hat{\theta}^{(k)}) - E_{1ij}(\hat{\theta}^{(k)}) \mu_j^{(k)} - \hat{\mu}_j^{(k)} \pi^{(k)} \right\} \]

\[- E_{3ij}(\hat{\theta}^{(k)}) \Delta_j^{(k+1)} - \Delta_j^{(k)} E_{5ij}(\hat{\theta}^{(k)} \mu_j^{(k)} + Z_{ij}(\hat{\theta}^{(k)}) \mu_j^{(k)} \mu_j^{(k+1)} \pi^{(k+1)}}. \]
Finite mixture modeling of censored and missing data using...

\[
\mathcal{E}_{ij}(\hat{\theta}^{(k)}) \Delta_j^{(k)} \Delta_j^{(k)\top} + \mathcal{E}_{Sij}(\hat{\theta}^{(k)}) \hat{\mu}_j^{(k)} \hat{\mu}_j^{(k)\top} + \mathcal{E}_{Sij}(\hat{\theta}^{(k)}) \hat{\mu}_j^{(k)} \hat{\Delta}_j^{(k)\top} \biggr\} ,
\]

for all \(j \in \{1, \ldots, G\} \).

It is well known that mixture models can yield a multimodal log-likelihood function. In this sense, the method of maximum likelihood estimation through the EM algorithm may not give global solutions if the starting values are far from the real parameter values. Thus, the choice of starting values for the EM algorithm in the mixture context plays a big role in parameter estimation. In our examples and simulation studies, we consider the following procedure for the FM-MSNC model:

(i) Partition the data (censoring levels replacing the censored observations) into \(G \) groups using the K-means clustering algorithm (Cabral et al. 2012).

(ii) Compute the proportion of data points belonging to the same cluster \(j \), say \(\pi_j^{(0)} \), \(j \in \{1, \ldots, G\} \). This gives the initial value of \(\pi_j \).

(iii) For each group \(j \), compute the initial values \(\mu_j^{(0)} \), \(\Sigma_j^{(0)} \), \(\lambda_j^{(0)} \) using the \texttt{R} package \texttt{mixsmsn} (Prates et al. 2013).

4.2 Model selection

Because there is no universal criterion for mixture model selection, we chose three criteria to compare the models considered in this work, namely, the Akaike information criterion (AIC) (Akaike 1974), Bayesian information criterion (BIC) (Schwarz 1978) and efficient determination criterion (EDC) (Bai et al. 1989). Like the AIC and BIC, the EDC has the form \(-2\ell(\hat{\theta}) + \rho c_n \), where \(\ell(\theta) \) is the actual log-likelihood, \(\rho \) is the number of free parameters that have to be estimated in the model and the penalty term \(c_n \) is a convenient sequence of positive numbers. Here, we use \(c_n = 0.2\sqrt{n} \), a proposal that was considered in Basso et al. (2010) and Cabral et al. (2012). Note that the \(c_n \) constant \(c_n = 2 \) for AIC and \(c_n = \log n \) for BIC, with \(n \) being the sample size.

4.3 Provision of standard errors

In this section, we describe how to obtain the standard errors of the ML estimates for the FM-MSNC model. We follow the information-based method exploited by Basford et al. (1997) to compute the asymptotic covariance of the ML estimates. The empirical information matrix, according to Meilijson (1989)’s formula, is defined as

\[
I_\varepsilon(\theta|y) = \sum_{i=1}^{n} s(y_i|\theta)s^\top(y_i|\theta) - \frac{1}{n} S(y_i|\theta)S^\top(y_i|\theta),
\]

where \(S(y_i|\theta) = \sum_{i=1}^{N} s(y_i|\theta) \) and \(s(y_i|\theta) \) is the empirical score function for the \(i \)th subject. We note from the result of Louis (1982) that the individual score can be determined as

\[
s(y_i|\theta) = \mathbb{E} \left(\frac{\partial\ell_i(\theta|y_c)}{\partial \theta} \biggr| \mathbf{v}_i, \mathbf{c}_i, \theta \right).
\]
Using the ML estimates $\hat{\theta}$ in $s(y_i|\theta)$, leads to $S(y_i|\hat{\theta}) = 0$, so from (27) we have that

$$
\mathbf{I}_e(\hat{\theta}|y) = \sum_{i=1}^{n} \hat{s}_i \hat{s}_i^\top, \quad (29)
$$

where \hat{s}_i is an individual score vector given by $\hat{s}_i = (\hat{s}_{i,.1}, \ldots, \hat{s}_{i,.p}, \hat{s}_{i,.12}, \ldots, \hat{s}_{i,.12^G}, \hat{s}_{i,.1}, \ldots, \hat{s}_{i,.12^G}, \hat{s}_{i,.1^G}, \ldots, \hat{s}_{i,.12^G})^\top$, where σ_j^2 is a vector with $p(p+1)/2$ distinct elements of Σ_j.

First we reparameterize $\Sigma_j = \mathbf{F}_j^2$ for ease of computation and theoretical derivation, where \mathbf{F}_j is the square root of Σ_j containing $p(p+1)/2$ distinct elements.

Now we have that $\hat{s}_i = (\hat{s}_{i,.1}, \ldots, \hat{s}_{i,.p}, \hat{s}_{i,.12}, \ldots, \hat{s}_{i,.12^G}, \hat{s}_{i,.1}, \ldots, \hat{s}_{i,.12^G})^\top$. So, the expressions for the elements of \hat{s}_i are given by:

$$
\hat{s}_{i,.j} = \frac{Z_{ij}(\hat{\theta})}{\hat{\pi}_j} - \frac{Z_{ij}(\hat{\theta})}{\hat{\pi}_G}, \\
\hat{s}_{i,.1} = (\hat{s}_{i,.1,1}, \ldots, \hat{s}_{i,.1,p}) = \hat{F}_j^{-1} (E_{1ij}(\hat{\theta}) - Z_{ij}(\hat{\theta})\hat{\mu}_j - E_{3ij}(\hat{\theta})\hat{\Delta}_j), \\
\hat{s}_{i,.j} = (\hat{s}_{i,.j,11}, \ldots, \hat{s}_{i,.j,pp}) = -\frac{Z_{ij}(\hat{\theta})}{2} \text{tr} (\hat{F}_j^{-1} A_j(\hat{\theta})\hat{\pi}_j) - \frac{1}{2} \left\{ \mathbf{E}_{1ij}(\hat{\theta})^\top \hat{F}_j^{-1} A_j(\hat{\theta})\hat{F}_j^{-1} \hat{\mu}_j + \hat{\mu}_j^\top \hat{F}_j^{-1} A_j(\hat{\theta})\hat{F}_j^{-1} \hat{\mu}_j - E_{3ij}(\hat{\theta})\hat{\Delta}_j\right\} , \\
\hat{s}_{i,.12} = (\hat{s}_{i,.12,1}, \ldots, \hat{s}_{i,.12,p}) = \frac{Z_{ij}(\hat{\theta})}{2} \text{tr} (\hat{F}_j^{-1} B_j(\hat{\theta})\hat{\pi}_j) - \frac{1}{2} \left\{ \mathbf{E}_{2ij}(\hat{\theta})^\top \hat{F}_j^{-1} B_j(\hat{\theta})\hat{F}_j^{-1} \hat{\theta}_j + \hat{\theta}_j^\top \hat{F}_j^{-1} B_j(\hat{\theta})\hat{F}_j^{-1} \hat{\theta}_j\right\} , \\
\hat{s}_{i,.12^G} = (\hat{s}_{i,.12^G,1}, \ldots, \hat{s}_{i,.12^G,p}) = -\frac{Z_{ij}(\hat{\theta})}{2} \text{tr} (\hat{F}_j^{-1} B_j(\hat{\theta})\hat{\pi}_j) - \frac{1}{2} \left\{ \mathbf{E}_{3ij}(\hat{\theta})\hat{\Delta}_j\right\} , \\
\hat{s}_{i,.1^G} = (\hat{s}_{i,.1^G,1}, \ldots, \hat{s}_{i,.1^G,p}) = \hat{F}_j^{-1} B_j(\hat{\theta})\hat{\pi}_j - E_{3ij}(\hat{\theta})\hat{\Delta}_j\hat{\mu}_j.
$$

where

$$
A_j(\hat{\theta}) = \left(\hat{F}_j(r)(I - \hat{\delta}_j\hat{\delta}_j^\top)\hat{F}_j + \hat{F}_j(I - \hat{\delta}_j\hat{\delta}_j^\top)\hat{F}_j(r) \right).
$$
Finite mixture modeling of censored and missing data using...

\[B_j(\hat{\theta}) = \hat{F}_j \left(\frac{\hat{R}_j(r)(1 + \hat{\lambda}_j^T \hat{\lambda}_j) - 2\hat{\lambda}_j r \hat{\lambda}_j^T}{(1 + \hat{\lambda}_j^T \hat{\lambda}_j)^2} \right) \hat{F}_j, \]

\[b_j(\hat{\theta}) = \hat{F}_j \left(\frac{\hat{\lambda}_j(r)(1 + \hat{\lambda}_j^T \hat{\lambda}_j) - \lambda_j r \hat{\lambda}_j^T}{(1 + \hat{\lambda}_j^T \hat{\lambda}_j)^3/2} \right). \]

\[\hat{F}_j(r) = \frac{\partial F_j}{\partial \sigma^2} \bigg|_{\sigma^2 = \hat{\sigma}^2}, \quad \hat{R}_j(r) = \frac{\partial \lambda_j^T}{\partial \lambda_j} \bigg|_{\lambda = \hat{\lambda}}, \quad \text{and} \quad \hat{\lambda}_j(r) = \frac{\partial \lambda_j}{\partial \lambda_j} \bigg|_{\hat{\lambda}} \] with \(r = 1, 2, \ldots, p. \)

\section{Simulation studies}

In order to study the performance of our proposed method, we present five simulation studies. The first and second study investigate whether we can estimate the true parameter values and their respective standard errors accurately by using the proposed EM algorithm and approximated empirical information matrix, respectively involving censoring and missing data. The third one investigates the number of mixture components by comparing the FM-MSNC with two groups and FM-MNC with several groups. The fourth study investigates the ability of the FM-MSNC model to cluster observations. Finally, the last one shows the asymptotic behavior of the EM estimates for the proposed model. The computations were done using the R package CensMFM.

\subsection{Performance of the ML estimates with censored data}

This simulation study is designed to verify if we can estimate the true parameter values of the FM-MSNC model accurately when we have censored data by using the proposed EM algorithm. We simulated several datasets considering mixtures with two components from model (23) with two left-censoring proportion settings (5% and 30%), taken in each mixture component, and different sample sizes \(n \in (500, 1000, 2000) \). For each combination, we generated 500 Monte Carlo (MC) samples. Summary statistics of the estimates across the 500 MC samples were computed, such as the mean estimate (MC mean), the empirical standard error (MC Sd), and the mean of the approximate standard errors of the estimates, obtained through the method described in Sect. 4.3 (IM SE).

We consider small and different variances with the following parameter setup:

\[0.65 \ SN_2 \left(\begin{bmatrix} -3 \\ -4 \\ 3 \\ 1 \\ 1.5 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \right) + 0.35 \ SN_2 \left(\begin{bmatrix} 2 \\ 2.5 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right). \]

Figure 1 shows the simulated data from the FM-MSNC model with their respective density contours for the skew-normal (top panel) and normal (bottom panel) distributions and the allocations in each group for sample size 1000 with left-censoring proportions of 5%, 15% and 25%. The black points represent the first component and
the red triangles represent the second component of the mixture. Disregarding the censored data, one can note that the contour lines of the skew-normal distribution are more appropriate than the normal ones to represent the shape assumed by the generated data.

The results are presented in Table 1. This table shows that, regardless of the sample size, the Monte Carlo mean of the parameter estimates deviates further from the true values as the censoring level increases, i.e., the parameter estimates are affected by the censoring level.

In particular, the estimates of μ_1 and μ_2 appear to be less affected by increasing the censoring level than the other parameters. Furthermore, the estimates of the standard errors, i.e., MC Sd and IM SE, provide relatively close results, which may indicate that the asymptotic approach proposed for the standard errors of the ML estimates is reliable.

5.2 Performance of the ML estimates with missing data

This simulation study evaluates the performance of the FM-MSNC model in dealing with partially incomplete data. Various ways of using models for imputation are described in Little and Rubin (2002), among which one of the most relevant is the missing completely at random (MCAR). We simulated several datasets considering mixtures with two components from model (23) with two missing data proportion settings (5% and 20%), taken in each mixture component, and different sample sizes $n \in (500, 700, 900)$. For each combination, we generated 500 Monte Carlo (MC)
samples. Summary statistics of the estimates across the 500 MC samples were computed, such as the mean estimate (MC mean), the empirical standard error (MC Sd), and the mean of the approximate standard errors of the estimates, obtained through the method described in Sect. 4.3 (IM SE). We considered small and different variances with the following parameter as in the simulation about asymptotic properties in 5.5.

Table 2 shows the results of this simulation. The results obtained are similar to those of simulation 5.1 and the same conclusions can be drawn. Additionally, we note that \(\lambda \) estimates appear to be more strongly affected with increasing proportion of missing data in the sample.

To exemplify the predictive accuracies on the imputation of missing values, we compare the FM-MSNC, FM-MNC and the traditional randomization-based mean imputation (MI) predictor of Little and Rubin (2002), known as a common heuristic by filling in a single value for each missing value with the observed sample mean of the associated attribute. As a measure of precision, we use the mean absolute error (MAE) and the mean absolute relative error (MARE). They are defined as

\[
MAE = \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{g} |y_{ij} - \hat{y}_{ij}| \quad \text{and} \quad MARE = \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{g} \left| \frac{y_{ij} - \hat{y}_{ij}}{y_{ij}} \right|, \quad (30)
\]

where \(m \) is the number of missing entries, \(y_{ij} \) is the actual value and \(\hat{y}_{ij} \) is the respective predictive value. The MAE and MARE measures, for methods FM-MSCN, FM-MCN and MI, are listed in Table 3. It can be seen that the FM-MSCN predictor exhibits very promising accuracy in the prediction of missing values in comparison with those of FM-MCN and MI imputations for all cases.

5.3 Number of mixture components

In this section, we compare the ability of some classic model selection criteria discussed in Sect. 4.2 to select the appropriate model. One may argue that an arbitrary multivariate density can always be approximated by a finite mixture of normal multivariate distributions, see (Peel and McLachlan 2000a), Chapter 1, for example. Thus, an interesting comparison can be made if we consider a sample from a two-component FM-MSNC(2) and use some model choice criteria to compare this model with the FM-MNC and several components under different censoring levels. Here we consider 100 samples of size 500 from a two-component FM-MSNC(2) model with left censoring levels at 5%, 10% or 20%, and parameter values set at

\[
0.65 \cdot SN_2 \left(\begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}, \begin{bmatrix} -5 \\ 10 \end{bmatrix} \right) + 0.35 \cdot SN_2 \left(\begin{bmatrix} -2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}, \begin{bmatrix} -5 \\ 10 \end{bmatrix} \right).
\]

The results are presented in Table 4, under different censoring levels, where it can be seen that all criteria favor the true model, that is, the FM-MSNC(2) model instead the FM-MNC model with two, three and four components, as expected. This is evidence that these measures are capable of detecting departures from normality. It is important
Censoring		Measure	Parameter	\(\mu_{j1} \)	\(\mu_{j2} \)	\(\alpha_{j,11} \)	\(\alpha_{j,12} \)	\(\alpha_{j,22} \)	\(\lambda_{j1} \)	\(\lambda_{j2} \)	\(\pi \)
5%	1	True	\((-3)\)	\((-4)\)	\((1.7121)\)	\((0.2620)\)	\((2.1051)\)	\((-2)\)	\((2)\)	\((0.65)\)	
		MC mean	\(-3.1797\)	\(-4.1235\)	\(1.6262\)	\(0.2923\)	\(2.2499\)	\(-1.7236\)	\(2.1533\)	\(0.6607\)	
		MC Sd	\(0.3101\)	\(0.3705\)	\(0.1510\)	\(0.1138\)	\(0.1906\)	\(0.5262\)	\(0.5739\)	\(0.0274\)	
		IM SE	\(0.2844\)	\(0.3406\)	\(0.1361\)	\(0.0924\)	\(0.1944\)	\(0.5397\)	\(0.6202\)	\(0.0236\)	
2	2	True	\((2)\)	\((2)\)	\((1.3798)\)	\((0.3101)\)	\((1.8449)\)	\((-3)\)	\((4)\)		
		MC mean	\(2.0196\)	\(2.0954\)	\(1.3152\)	\(0.3177\)	\(1.7883\)	\(-2.7361\)	\(3.7058\)		
		MC Sd	\(0.2381\)	\(0.2808\)	\(0.1431\)	\(0.0928\)	\(0.1595\)	\(1.0896\)	\(1.3303\)		
		IM SE	\(0.2677\)	\(0.2922\)	\(0.1391\)	\(0.0981\)	\(0.1816\)	\(1.2411\)	\(1.5434\)		
30%	1	True	\((-3)\)	\((-4)\)	\((1.7121)\)	\((0.2620)\)	\((2.1051)\)	\((-2)\)	\((2)\)	\((0.65)\)	
		MC mean	\(-3.3139\)	\(-4.1708\)	\(1.5445\)	\(0.3483\)	\(2.2909\)	\(-1.3744\)	\(2.0529\)	\(0.7030\)	
		MC Sd	\(0.3360\)	\(0.4545\)	\(0.1580\)	\(0.1413\)	\(0.2700\)	\(0.5082\)	\(0.7388\)	\(0.0238\)	
		IM SE	\(0.4719\)	\(0.5176\)	\(0.2080\)	\(0.1396\)	\(0.2762\)	\(0.7304\)	\(0.8737\)	\(0.0238\)	
2	2	True	\((2)\)	\((2)\)	\((1.3798)\)	\((0.3101)\)	\((1.8449)\)	\((-3)\)	\((4)\)		
		MC mean	\(2.2651\)	\(2.5165\)	\(1.3373\)	\(0.2533\)	\(1.6079\)	\(-2.3831\)	\(3.1945\)		
		MC Sd	\(0.5131\)	\(0.5107\)	\(0.2661\)	\(0.1682\)	\(0.2207\)	\(1.5120\)	\(1.4642\)		
		IM SE	\(0.3213\)	\(0.3134\)	\(0.1929\)	\(0.1202\)	\(0.1726\)	\(1.4296\)	\(1.4575\)		
Table 1 continued

Censoring j	Measure	Parameter μ_j	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_j	π				
$n = 1000$											
5%	1	True	(-3)	(-4)	(1.7121)	(0.2620)	(2.1051)	(-2)	(2)	(0.65)	
MC mean	1	-3.1812	-4.1450	1.6219	0.2804	2.2407	-1.6988	2.1169	0.6594		
IM SE	1	0.1876	0.2248	0.0911	0.0615	0.1354	0.3611	0.4228	0.0165		
	2	True	(2)	(2)	(1.3798)	(0.3101)	(1.8449)	(-3)	(4)		
MC mean	2	2.0488	2.1190	1.3265	0.3071	1.7823	-2.6601	3.5305			
IM SE	2	0.1938	0.2113	0.0994	0.0676	0.1266	0.7723	0.9274			
30%	1	True	(-3)	(-4)	(1.7121)	(0.2620)	(2.1051)	(-2)	(2)	(0.65)	
MC mean	1	-3.3168	-4.2133	1.5402	0.3276	2.2758	-1.3758	2.0334	0.7021		
IM SE	1	0.2029	0.2736	0.0978	0.0776	0.1758	0.3513	0.5272	0.0162		
	2	True	(2)	(2)	(1.3798)	(0.3101)	(1.8449)	(-3)	(4)		
MC mean	2	2.3043	2.5243	1.3347	0.2208	1.5994	-2.3618	3.0762			
IM SE	2	0.3216	0.2956	0.1899	0.1000	0.1513	1.0722	0.8913			
Censoring	j	Measure	Parameter	μ_j	μ_j	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_j	λ_j	π
----------	---	---------	----------	--------	--------	----------------	----------------	----------------	----------	----------	-----
				μ_j	μ_j	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_j	λ_j	π
				μ_j	μ_j	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_j	λ_j	π
				μ_j	μ_j	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_j	λ_j	π
				μ_j	μ_j	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_j	λ_j	π
				μ_j	μ_j	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_j	λ_j	π

Parameter estimates based on 500 simulated samples. Monte Carlo (MC) mean, MC Sd are the respective mean estimates and standard deviations. IM SE is the average value of the approximate standard error obtained through the information-based method.
Table 2 Simulated data: performance of the ML estimates over missing data

Missing	j	Measure	Parameter	μ_{j1}	μ_{j2}	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_{j1}	λ_{j2}	π
5%	1	True		(−5)	(−4)	(1.7121)	(0.2620)	(2.1051)	(−2)	(3)	(0.65)
		MC mean		−5.2150	−3.3411	1.6844	0.4594	1.9442	−1.0396	1.4896	0.6495
		MC Sd		0.5773	0.8843	0.1075	0.2005	0.2071	1.0020	1.5677	0.0219
		IM SE		0.8618	0.9443	0.2666	0.1876	0.2603	0.9352	1.0664	0.0220
	2	True		(2)	(3)	(1.3798)	(0.3101)	(1.8449)	(−2)	(3)	
		MC mean		1.7699	3.4694	1.3709	0.4857	1.7308	−0.9892	1.5876	
		MC Sd		0.5614	0.7703	0.1231	0.1904	0.1922	1.1875	1.6737	
		IM SE		0.8408	0.9545	0.2759	0.2176	0.3247	1.2244	1.3864	
20%	1	True		(−5)	(−4)	(1.7121)	(0.2620)	(2.1051)	(−2)	(3)	(0.65)
		MC mean		−5.2797	−3.2378	1.6751	0.4903	1.9116	−0.8182	1.1958	0.6495
		MC Sd		0.6079	0.9007	0.1120	0.1908	0.2215	0.9494	1.5060	0.0228
		IM SE		1.0618	1.1557	0.3267	0.2297	0.3216	1.1955	1.2620	0.0227
	2	True		(2)	(3)	(1.3798)	(0.3101)	(1.8449)	(−2)	(3)	
		MC mean		1.6992	3.5252	1.3680	0.5125	1.7031	−0.7323	1.3092	
		MC Sd		0.5987	0.7648	0.1359	0.1924	0.2047	1.1693	1.5322	
		IM SE		1.2860	1.4228	0.3530	0.2721	0.4106	1.6672	1.7740	
Table 2 continued

Missing	j	Measure	Parameter	\(\mu_j \)	\(\mu_{j2} \)	\(\alpha_{j,11} \)	\(\alpha_{j,12} \)	\(\alpha_{j,22} \)	\(\lambda_{j1} \)	\(\lambda_{j2} \)	\(\pi \)		
5%	1	True	\((-5)\)	\((-4)\)	(1.7121)	(0.2620)	(2.1051)	\((-2)\)	(3)	(0.65)			
		MC mean	\(-5.1275\)	\(-3.2608\)	1.6902	0.4589	1.9299	\(-1.0984\)	1.4147	0.6493			
		MC Sd	0.5118	0.9054	0.0931	0.2000	0.1867	0.9515	1.5788	0.0188			
		IM SE	0.6699	0.7212	0.2189	0.1539	0.2158	0.7571	0.8440	0.0186			
2	True	\((2)\)	\((3)\)	(1.3798)	(0.3101)	(1.8449)	\((-2)\)	(3)	\((-2)\)	(3)	\((-2)\)	(3)	
		MC mean	1.8256	3.4568	1.3733	0.4711	1.7356	\(-1.1133\)	1.6816	\((-2)\)	(3)	\((-2)\)	(3)
		MC Sd	0.4959	0.7484	0.1053	0.1725	0.1741	1.0682	1.5869	\((-2)\)	(3)	\((-2)\)	(3)
		IM SE	0.6973	0.8268	0.2228	0.1766	0.2621	1.0000	1.1773	\((-2)\)	(3)	\((-2)\)	(3)
20%	1	True	\((-5)\)	\((-4)\)	(1.7121)	(0.2620)	(2.1051)	\((-2)\)	(3)	(0.65)			
		MC mean	\(-5.1948\)	\(-3.2079\)	1.6799	0.4817	1.8994	\(-0.9175\)	1.1938	0.6488			
		MC Sd	0.5467	0.8905	0.0937	0.1907	0.1882	0.9160	1.4792	0.0192			
		IM SE	0.8447	0.8977	0.2686	0.1866	0.2680	0.9194	1.0006	0.0192			
2	True	\((2)\)	\((3)\)	(1.3798)	(0.3101)	(1.8449)	\((-2)\)	(3)	\((-2)\)	(3)			
		MC mean	1.7787	3.5349	1.3666	0.4987	1.7052	\(-0.8822\)	1.3254	\((-2)\)	(3)	\((-2)\)	(3)
		MC Sd	0.5295	0.7466	0.1172	0.1741	0.1832	1.0146	1.4570	\((-2)\)	(3)	\((-2)\)	(3)
		IM SE	0.9450	1.0692	0.2765	0.2118	0.3275	1.2557	1.3766	\((-2)\)	(3)	\((-2)\)	(3)
Table 2 continued

Missing	j	Measure	Parameter	μ_j	μ_{j2}	$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_{j1}	λ_{j2}	π
			μ_j		$\alpha_{j,11}$	$\alpha_{j,12}$	$\alpha_{j,22}$	λ_{j1}	λ_{j2}	π	
5%	1	True	(-5)	(-4)	(1.7121)	(0.2620)	(2.1051)	(-2)	(3)	(0.65)	
		MC mean	-5.1377	-3.4011	1.6847	0.4243	1.9552	-1.1829	1.6348	0.6488	
		IM SE	0.4678	0.8574	0.0794	0.1869	0.1790	0.8858	1.4904	0.0169	
2	2	True	(2)	(3)	(1.3798)	(0.3101)	(1.8449)	(-2)	(3)		
		MC mean	1.8644	3.3518	1.3744	0.4342	1.7513	-1.2648	1.9203		
		IM SE	0.5043	0.5860	0.1656	0.1297	0.1999	0.7796	0.9222		
20%	1	True	(-5)	(-4)	(1.7121)	(0.2620)	(2.1051)	(-2)	(3)	(0.65)	
		MC mean	-5.2002	-3.3434	1.6760	0.4495	1.9244	-0.9997	1.4014	0.6485	
		IM SE	0.5123	0.8387	0.0839	0.1816	0.1866	0.8815	1.4234	0.0175	
2	2	True	(2)	(3)	(1.3798)	(0.3101)	(1.8449)	(-2)	(3)		
		MC mean	1.7946	3.4393	1.3699	0.4709	1.7147	-0.9902	1.5475		
		IM SE	0.5079	0.6797	0.0986	0.1640	0.1650	1.0069	1.3840		
			0.7262	0.7971	0.2178	0.1622	0.2598	1.0105	1.0992		

Parameter estimates based on 500 simulated samples. Monte Carlo (MC) mean, MC Sd are the respective mean estimates and standard deviations. IM SE is the average value of the approximate standard error obtained through the information-based method.
Table 3 Simulated data: performance of the ML estimates over missing data

Imputation method	Missing rate(%)	MAE			MARE		
		500	700	900	500	700	900
FM-MSNC	5	1.9009	1.8556	1.8444	0.8642	0.8747	0.8252
	10	2.0681	2.0243	2.0025	0.9883	1.0274	0.9678
	20	2.4074	2.3693	2.3605	1.2264	1.2386	1.2345
FM-MNC	5	2.0263	1.9994	2.0152	0.8869	0.8940	0.8464
	10	2.1841	2.1486	2.1605	0.9973	1.0347	0.9923
	20	2.4894	2.4754	2.4775	1.2264	1.2503	1.2559
MI	5	3.2550	3.0297	2.7708	1.6897	1.8542	1.5337
	10	3.2594	3.0498	2.7717	1.7402	1.8841	1.5501
	20	3.2567	3.0563	2.7733	1.9881	1.8875	1.6624

Average prediction accuracies for the imputation methods FM-MSNC, FM-MNC and mean imputation (MI) with varying sample size, \(n \in (500, 700, 900) \), and proportions of missing values 5\%, 10\% and 20\%.
Table 4 Simulated data: Number of mixture components

Censoring Group	5%	10%	20%
	2	3	4
Criteria	AIC	BIC	EDC
Censoring 5%	100	100	100
Censoring 10%	95	100	100
Censoring 20%	93	100	100

Percentage when the FM-MSNC model with two components is preferred over the other adjusted FM-MNC models to emphasize that the FM-MNC models with three and four components have 17 and 23 parameters respectively, while the FM-MSNC(2) model has 11 parameters.

As pointed out for an anonymous referee, Table 4 shows that the case with 10% censoring and two components is the only case where the correct model was not preferred by the model selection criteria for a small number of instances. According to Fig. 2, the preferred model in these (atypical) cases was the FM-MNC(2). However, the differences in the criteria values related to the FM-MSNC(2) are close to zero. We believe that the number of datasets generated in the simulation (100 datasets) may not be sufficient, so a more intensive simulation study would be required. However, due to the computational burden of the simulation, it would be too time consuming to conduct more complex simulations, say with 1000 datasets.

5.4 Clustering

Mixture models in general can be used for two main purposes: 1. estimation, and 2. model-based clustering (McLachlan and Peel 2000). In this section, we investigate the ability of the FM-MSNC model to cluster observations, that is, to allocate them into groups of observations that are similar in some sense. We know that each data point belongs to g heterogeneous populations, but we do not know how to discriminate between them. Fitting the data with mixture models allows clustering the data in terms of the estimated posterior probability that a single point belongs to a given group. For this purpose, we follow the method proposed by Zeller et al. (2016), to assess the quality of the clustering of each mixture model using an index measure called correct classification rate (CCR), which is based on the posterior value assigned to each subject. For the investigation of the clustering ability of the FM-MSNC model, we simulated 500 MC samples considering mixtures with two components from model (22), with sample size $n \in (100, 200, 300)$, without censoring, and left-censoring proportion settings ($5\%, 10\%, 20\%$) taken in each mixture component, and parameter values set at

$$0.7 \, SN_2 \left(\begin{bmatrix} 2 \\ 3 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right) + 0.3 \, SN_2 \left(\begin{bmatrix} 5 \\ 7 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \end{bmatrix} \right).$$

To fit the data we used the models FM-MSNC and FM-MNC, and for each model we obtained the estimate of the posterior probability that an observation y_i belongs
to the jth component of the mixture, \hat{Z}_{ij}. So, if $\max_j \hat{Z}_{ij}$ occurs in component j, then y_i is classified into group j. For the mth sample of the MC, we computed the correct classification rate, denoted by CCRm, then obtained the average of the correct classification rate (ACCR) of CCRm. Table 5 shows the ACCR values. From this table it is possible to observe that the model produced a high correct classification rate in both fitted models. We see that the rate decreases when the censoring proportion increases, this decrease is stronger for $n = 100$. Looking at the n samples, keeping the censoring proportion fixed, the rate increased when the sample size increased.

Figure 3 shows the allocations in each group for sample size $n = 200$ and left-censoring proportions of 0%, 5%, 10% and 20%, where the groups are represented by black points and red triangles. The first line of the graphs (a - d) contains the scatter plot of the generated real data. The second line of graphs (e - h) contains the scatter plot of the generated real data.
plot of the fitted FM-MSNC model, where the black circles represent an observation erroneously classified as belonging to the black group. The last line of graphs (i - l) contains the scatter plot of the fitted FM-MNC model, where the red circles represent an observation erroneously classified as belonging to the red group.

Table 5 Simulated data: clustering. ACCR for fitted models FM-MSNC and FM-MNC for the simulated data

n	FM-MSNC				FM-MNC			
	0%	5%	10%	20%	0%	5%	10%	20%
100	0.9685	0.9619	0.9558	0.945	0.8801	0.8809	0.8772	0.8735
200	0.9729	0.9661	0.9599	0.9508	0.9206	0.9191	0.916	0.9016
300	0.9733	0.9661	0.9608	0.9545	0.9248	0.9229	0.9233	0.9155
Fig. 4 Simulated data: Asymptotic properties. bias and mse of μ_1 and μ_2 estimate in the FM-MSNC model with different censoring levels: 5% (solid line), 10% (dashed line), 15% (dot-dashed line)

5.5 Asymptotic properties

In this simulation study, we analyze the absolute bias and the mean square error (mse) of the estimates obtained from the FM-MSNC model through the proposed EM algorithm. The idea of this simulation is to provide empirical evidence about the consistency of the ML estimates. These measures are defined by

\[
\text{bias}(\theta_i) = \frac{1}{M} \sum_{m=1}^{M} |\hat{\theta}^{(m)}_i - \theta_i| \quad \text{and} \quad \text{mse}(\theta_i) = \frac{1}{M} \sum_{m=1}^{M} (\hat{\theta}^{(m)}_i - \theta_i)^2, \tag{31}
\]

where M is the number of MC samples, and $\hat{\theta}^{(m)}_i$ is the estimated ML of the parameter θ_i for the mth sample. Four different sample sizes ($n = 300, 600, 900, 1200$) are considered. For each sample size, we generated 500 Monte Carlo samples with 5%, 10%, 15% censoring proportions. Using the EM algorithm, the absolute bias and mean squared error for each parameter over the 500 datasets were computed. The parameter setup is as follows

\[
0.65 \ SN_2 \left(\begin{bmatrix} -5 \\ -4 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 1 & 4.5 \end{bmatrix}, \begin{bmatrix} -2 \\ 3 \end{bmatrix} \right) + 0.35 \ SN_2 \left(\begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3.5 \end{bmatrix}, \begin{bmatrix} -2 \\ 3 \end{bmatrix} \right).
\]

The results of the estimates of μ_1, F_1, λ_1, μ_2, F_2, λ_2 and π are shown in Figs. 4, 5, and 6. As a general rule, we can say that the bias and mse tend to approach zero when the sample size increases, indicating that the estimates based on the proposed EM algorithm, in the FM-MSNC model, have good asymptotic properties.
Finite mixture modeling of censored and missing data using...

300 600 900 1200
Samples sizes

Fig. 5 Simulated data: Asymptotic properties, bias and mse of λ_1, λ_2 and π estimates in the FM-MSNC model with different censoring levels: 5% (solid line), 10% (dashed line), 15% (dot-dashed line)

Fig. 6 Simulated data: asymptotic properties, bias and mse of $F_1 = \Sigma_1^{1/2}$, $F_2 = \Sigma_2^{1/2}$ in the FM-MSNC model with different censoring levels: 5% (solid line), 10% (dashed line), 15% (dot-dashed line)

6 Application

To illustrate the performance of our proposed model and algorithm, we consider a dataset of trace metal concentrations collected by the Virginia Department of Environmental Quality (VDEQ) that was previously analyzed by He (2013) and Lachos et al. (2017) using the normal and Student-t distributions, respectively.

This dataset consists of $p = 5$ concentration levels of dissolved trace metals in independently selected $n = 184$ freshwater streams in the state of Virginia. The five attributes are levels of the trace metals: copper (Cu), lead (Pb), zinc (Zn), calcium (Ca) and magnesium (Mg). The Cu, Pb, and Zn concentrations are reported in $\mu g/L$ of water, while the Ca and Mg concentrations are reported in mg/L of water. Since the measurements were taken at different times, the presence of multiple limits of detection values is possible for each trace metal. The limits of detection for Cu and Pb are both 0.1 $\mu g/L$, while they are 1.0 $\mu g/L$ for Zn, 0.5 mg/L for Ca and 1.0 mg/L for Mg.
The percentage of left-censored values of 2.7% for (Ca), 4.9% for (Cu), 9.8% for (Mg) are small in comparison to 78.3% for (Pb) and 38.6% for (Zn). Also note that 17.9% of the streams had 0 non-detected trace metals, 39.1% had 1, 37.0% had 2, 3.8% had 3, 1.1% had 4 and 1.1% had 5. Since the concentration levels are strictly positive measures, to guarantee this, we consider an interval-censoring analysis by setting all lower limits of detection equal to 0 for all trace metals. Finally, due to the different scales for each trace metal, we standardize the dataset to have zero mean and variance equal to one as in Wang et al. (2019). The work mentioned before considered this dataset to be left censored without taking into account the possibility of predicting negative concentration levels for the trace metals. For instance, note that Pb censored concentrations take values in the small interval $[0, 0.1]$. Thus, after transforming the data, the new limits of detection are -0.8776 (Cu), -0.3124 (Pb), -0.4719 (Zn), -0.7894 (Ca), -0.6289 (Mg). Figure 7 shows the histogram for each original trace metal with the detection limits and all of them together. It can be seen that most of the distributions associated with the variables have two or more modes and are right skewed. For this reason, we propose to fit the FM-MSNC model.

We fit the data with 1, 2 and 3 components considering the FM-MSNC, FM-MtC and FM-MNC models, for the FM-MtC model we consider fixed degrees of freedom, as described in Lachos et al. (2017). The number of groups of the model is chosen according to the model information criteria as shown in Table 6. It can be seen that according to all model selection criteria the FM-MSNC model with three components fits the data best. We considered the variance-covariance (Γ) to be equal in order to reduce the number of parameters to be estimated (parsimonious model).

The ML estimates of the parameters were obtained using the EM algorithm described in Sect. 4.1. The results are shown in Table 7. As can be seen, 46.99%
Table 6 VDEQ data. Model selection criteria for various FM-MSNC, FM-MNC and FM-MtC models

Criteria	FM-MSNC	FM-MNC	FM-MtC			
	$G = 1$	$G = 2$	$G = 3$	$G = 1$	$G = 2$	$G = 3$
Log-likelihood	-1269.432	-907.469	**697.463**	-1351.596	-1290.603	-1258.65
AIC	2588.864	1886.938	**1488.927**	2743.192	2633.205	2581.301
BIC	2669.237	2002.676	**1640.029**	2807.491	2716.793	2684.179
EDC	2606.687	1912.604	**1522.434**	2757.451	2651.741	2604.115
Time	7.123 min.	18.369 min.	24.181 min.	1.338 sec.	9.667 sec.	59.6946 sec.

Criteria	FM-MtC					
	$v = 3$	$G = 1$	$G = 2$	$G = 3$		
Log-likelihood	-1040.276	-1061.001	-1074.849	-1061.701	-1031.324	-1025.963
AIC	2120.553	2174.002	2213.698	2163.403	2114.648	2115.926
BIC	2184.852	2257.591	2316.576	2227.702	2198.236	2218.804
EDC	2134.811	2192.539	2236.512	2177.662	2133.184	2138.74
Time	18.5342 sec.	2.4096 min.	5.9107 min.	14.1025 sec.	1.4635 min.	1.9149 min.

Values in bold correspond to the best model according to the criteria
Table 7 VDEQ data. ML estimates of parameters from fitting the FM-MSNC model with 3 components to the Virginia trace metal concentration data

Parameter	Estimate
\((\pi_1, \pi_2, \pi_3)\)	\((0.4699, 0.3440, 0.1861)\)
\(\mu_1\)	\((-0.3789, -0.5344, -0.722, -0.5744, -0.4833)\)
\(\mu_2\)	\((-0.8189, -0.6838, -0.4485, 0.805, 0.7948)\)
\(\mu_3\)	\((1.2681, -0.463, -0.503, -0.3272, -0.305)\)
\(\lambda_1\)	\((0.4867, -1.4692, 13.2902, -0.4112, -0.0062)\)
\(\lambda_2\)	\((28.3006, -1.012, 6.0129, 4.4658, -1.6659)\)
\(\lambda_3\)	\((-0.5228, 11.9182, 12.3316, -1.3583, 1.2298)\)

\[
F_1 = \Sigma_1^{1/2} = \begin{bmatrix}
0.3328 & 0.1229 & 0.0419 & 0.0338 & 0.0573 \\
0.3733 & 0.0060 & -0.0105 & 0.0038 & \\
0.5540 & -0.0174 & -0.0061 & \\
0.0952 & 0.0554 & \\
0.1208 & \\
\end{bmatrix}
\]

\[
F_2 = \Sigma_2^{1/2} = \begin{bmatrix}
1.0582 & -0.035 & 0.1628 & 0.1981 & 0.0710 \\
0.102 & -0.0074 & 0.0025 & 0.0111 & \\
0.4745 & 0.0157 & 0.1260 & \\
1.0244 & 0.3920 & \\
1.2392 & \\
\end{bmatrix}
\]

\[
F_3 = \Sigma_3^{1/2} = \begin{bmatrix}
1.4992 & -0.1232 & -0.2405 & 0.1341 & 0.0950 \\
2.2952 & 0.8411 & -0.0459 & -0.0915 & \\
2.1716 & -0.1003 & -0.0633 & \\
0.2824 & 0.1472 & \\
0.2640 & \\
\end{bmatrix}
\]

of the freshwater streams belong to Cluster 1, Cluster 2 contains around 34.40% of them and the remaining 18.61% belong to Cluster 3. Table 6 shows that the best FM-MNC model has three components, and in this 84.09% of freshwater streams belong to Cluster 1, Cluster 2 contains around 15.03% of them and the remaining 0.88% are in Cluster 3. For the FM-MtC model, the best model has two components and four degrees of freedom. In this case, 84.56% of freshwater streams belong to Cluster 1 and the remaining 15.44% belong to Cluster 2.

In Fig. 8, we report the fitted data using the FM-MSNC with three components. The scatter plots of the observations \(y_i (i = 1, \ldots, 184)\) for each pair of trace metals reveal that it is difficult to classify freshwater streams by visualization because these observations almost blend together.
7 Conclusions

In this paper, a novel approach to analyze multiply censored and missing data is presented based on the use of finite mixtures of multivariate skew-normal distributions. This approach generalizes several previously proposed solutions for censored data, such as, the finite mixture of Gaussian components (Karlsson and Laitila 2014; Caudill 2012; He 2013) and the finite mixture of Student-t components (Lachos et al. 2017), which are also restricted to a left or right censored problem. A simple and efficient EM-type algorithm was developed, which has closed-form expressions at the E-step and relies on formulas for the mean vector and covariance matrix of the multivariate truncated skew-normal distribution, for which the R MomTrunc library is used (Galarza et al. 2020a). The proposed EM algorithm was implemented as part of the R package CensMFM and is available for download at the CRAN repository. The experimental results and the analysis of a real dataset provide support for the usefulness and effectiveness of our proposal.

The method proposed in this paper can be extended to other types of mixture distributions, such as the multivariate scale mixtures of skew-normal distributions.
(Cabral et al. 2012) or generalized hyperbolic mixtures (Browne and McNicholas 2015). It is also of interest to develop an effective Markov chain Monte Carlo algorithm for the FM-MSNC models in a fully Bayesian treatment. Finally, the proposed method can also be easily applied to other areas in which the data being analyzed have censored and/or missing observations, for instance, factor analysis models (Wang et al. 2017) and linear mixed models (Lin et al. 2009; Lachos et al. 2011).

Acknowledgements The authors are grateful to the Editor, Associate Editor and the referees for their helpful comments on an earlier version of this paper.

References

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Cont 19:716–723
Arellano-Valle RB, Genton MG (2005) On fundamental skew distributions. J Multivar Anal 96:93–116
Arellano-Valle RB, Genton MG (2010) Multivariate extended skew-t distributions and related families. Metron LXVIII:201–234
Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew-normal distribution. J R Stat Soc B 61:579–602
Azzalini A, Dalla-Valle A (1996) The multivariate skew-normal distribution. Biometrika 83(4):715–726
Bai Z, Krishnaiah P, Zhao L (1989) On rates of convergence of efficient detection criteria in signal processing with white noise. Inform Theory IEEE Trans 35:380–388
Basford K, Greenway D, McLachlan G, Peel D (1997) Standard errors of fitted component means of normal mixtures. Comput Stat 12:1–18
Basso RM, Lachos VH, Cabral CRB, Ghosh P (2010) Robust mixture modeling based on scale mixtures of skew-normal distributions. Comput Stat Data Anal 54(12):2926–2941
Bouveyron C, Celeux G, Murphy T, Raftery A (2019) Model-based clustering and classification for data science; with applications in R. Cambridge University Press, Cambridge
Browne RP, McNicholas PD (2015) A mixture of generalized hyperbolic distributions. Can J Stat 43(2):176–198
Cabral CRB, Lachos VH, Prates MO (2012) Multivariate mixture modeling using skew-normal independent distributions. Comput Stat Data Anal 56:126–142
Caudill SB (2012) A partially adaptive estimator for the censored regression model based on a mixture of normal distributions. Stat Methods Appl 21:121–137
Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38
Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, Berlin
Galarza CE, Kan R, Lachos VH (2020a) MomTrunc: moments of folded and doubly truncated multivariate distributions. R Package Vers 5:87
Galarza CE, Matos L, Lachos VH (2020b) Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. arXiv preprint arXiv:2007.14980
He J (2013) Mixture model based multivariate statistical analysis of multiply censored environmental data. Adv Water Resour 59:15–24
Karlsson M, Laitila T (2014) Finite mixture modeling of censored regression models. Stat Pap 55(3):627–642
Lachos VH, Bandyopadhyay D, Dey DK (2011) Linear and nonlinear mixed-effects models for censored HIV viral loads using normal/independent distributions. Biometrics 67:1594–1604
Lachos VH, Moreno EJL, Chen K, Cabral CRB (2017) Finite mixture modeling of censored data using the multivariate Student-t distribution. J Multivar Anal 159:151–167
Lachos VH, Cabral CRB, Zeller CB (2018) Finite mixture of Skewed distributions. Springer, Berlin
Lin TI (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100(2):257–265
Lin TI, Ho HJ, Chen CL (2009) Analysis of multivariate skew normal models with incomplete data. J Multivar Anal 100(19):2337–2351
Lin TI, Lachos VH, Wang WL (2018) Multivariate longitudinal data analysis with censored and intermittent missing responses. Stat Med 37(19):2822–2835
Lin TI, Wang WL (2020) Multivariate-t linear mixed models with censored responses, intermittent missing values and heavy tails. Stat Methods Med 29(5):288–1304
Little RJ, Rubin DB (2002) Statistical analysis with missing data, vol 793. Wiley, Hoboken
Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc B 44:226–233
McLachlan GJ, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, Hoboken
McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York
McNicholas PD (2016) Mixture model-based classification. Chapman and Hall/CRC, Boca Raton
Meilijson I (1989) A fast improvement to the em algorithm on its own terms. J R Stat Soc Ser B (Methodological) 51(1):127–138
Peel D, McLachlan GJ (2000a) Finite mixture models. Wiley, Hoboken
Peel D, McLachlan GJ (2000b) Robust mixture modelling using the t distribution. Stat Comput 10(4):339–348
Prates MO, Lachos VH, Cabral C (2013) mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions. J Stat Softw 54(12):1–20
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464
Wang WL, Castro LM, Lachos VH, Lin TI (2019) Model-based clustering of censored data via mixtures of factor analyzers. Comput Stat Data Anal 140:104–121
Wang WL, Liu M, Lin TI (2017) Robust skew-t factor analysis models for handling missing data. Stat Methods Appl 26(4):649–672
Zeller CB, Cabral CR, Lachos VH (2016) Robust mixture regression modeling based on scale mixtures of skew-normal distributions. Test 25(2):375–396

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.