Pediatric Burn Outcome; Diagnostic Value of R-Baux and P-Baux Scores

Kavous Shahsavari Nia
Tabriz University of Medical Sciences

Alireza Razzaghi
Tabriz University of Medical Sciences

Farzad Rahmani
Tabriz University of Medical Sciences

Hassan Soleimanpour
Tabriz University of Medical Sciences

Ayda Khalili
Tabriz University of Medical Sciences

Mohammad Saadati (✉ hcm.2020@gmail.com)
https://orcid.org/0000-0003-3047-5624

Research note

Keywords: Burn, Children, R-Baux, P-Baux

DOI: https://doi.org/10.21203/rs.3.rs-45955/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: The purpose of this study was to determine the value of R-Baux and P-Baux indexes in predicting the pediatric burn outcome. Using prospective cross-sectional method, 213 children under 12 years old admitted with burn in burn referral hospital in Northwest of Iran were included in the study. Data were collected using goal-driven questionnaire including patients’ demographics and burn clinical data and outcome.

Results: About 59.6% of participants were male. The most common causes of burns was burning with boiling water (127; 69%). For outcome of death, the AUC for the scores of P.Baux and R.Baux were same with 0.959. The AUC for death were 982% and 992% for P.Baux and R.Baux respectively. Also, for the outcome of admission to ICU the AUC were same with 959%. A significant relation between R-Baux and P-Baux scores with patients need for intubation was determined based on logistic regression (p=0.01).

Conclusions: The R-Baux and P-Baux scores were related to the probability of intubation, ICU admission and mortality. Using these scores not only predicts mortality risk, but also provide the opportunity for health providers to prioritize patients and provide proper facilities and services to prevent child mortality due to burn.

Introduction:

Burns with nearly 180000 deaths every year, mostly in low and middle income countries (LMICs), are the most important and preventable public health problem that threaten human health by inflicting physical, psychological, socioeconomic damage to patients, families and society [1, 2]. Burn mortality rate is high (10-20%) even in high-income countries with high-tech burn centers [3]. Burn injuries, in general population, were 13th most frequent cause of the burden of disease and 7th in age group of 5-14, in Iran (2003) [4]. Moreover, burn injuries accounted for 18% of child mortality as second cause of child death in Iran [5]. However, as declared by World Health Organization (WHO) burns and its injuries are preventable [2]. During the past decade, due to the considerable prevention and treatment strategies, survival after burn has increased [6, 7]. Moreover, predictive models were developed to manage the inflicted patients based on mortality risk prediction [8-11]. Baux score has showed an acceptable credibility and efficacy in prediction of burned patients’ outcome [11]. Total burned surface area (TBSA) and age relation with death probability is focused in this score. To consider the inhalation injuries in this score, revised Baux score (R-Baux) was developed. Using this score helps service providers to effectively manage the treatment process [12].

Among age groups, children are a vulnerable group for burn injuries as child death due to burns, in LMICs, was reported 7 times more than high income countries [2, 6, 13]. Children health is in focus of global movements such as Sustainable Development Goals (SDGs) and Social Determinates of Health (SDH) [14, 15]. Regarding, it is important to provide timely and effective services for burned child to prevent their death. To achieve this, previous literature had introduced R-Baux score to be used to predict burn
mortality [16, 17]. R-Baux includes TBSA, age and inhalation injury in predicting the outcome. R-Baux usage in pediatric patients is not well-documented while child are more at risk of burn injuries. Karimi et al (2013) calculated mean R-Baux and P-Baux scores in a same ample of burned patients, as 73 and 55 for 95% probability of death. They reported a positive prognostic value for age and negative prognostic value for TBSA and inhalation in relation to under 15-year patients’ mortality [7]. Despite the commonality of R-Baux usage, P-Baux usage and sensitivity in predicting pediatric burn outcome, is not well documented. The aim of this was to determine and compare the prognostic value of R-Baux and P-Baux scores in predicting the pediatric burn outcome including need to intubation, Intensive care and death.

Methods:

Study design and setting:

This is a cross-sectional study was done in Sina Hospital in Tabriz in 2017. Sina Hospital is burn referral hospital in northwest of Iran with 280 active beds. It has 45 beds for hospitalized burn cases of which 17 are for child and 12 burn Intensive Care Unite (ICU) beds.

Sampling and data collection:

All the children admitted to the hospital during the study period (2017 March 20 to 2017 September 21) were included in the study. Inclusion criteria included patients less than 12 years of age admitted to the pediatric burn ward and parents willingness to participate in the study. Patients with incomplete records were excluded.

Before the beginning of the study, informed consent consisted of three aspects of information, full comprehension and voluntariness of the research was taken from parents. All information of patients was confidential and the relevant information was extracted in coding form and all ethical principles were observed.

Demographic information and burn clinical data including percentage and extent of burn, complications of patients during hospitalization, length of hospital stay (LOHS), burn cause, burn and other disease history, burned anatomic site and patients’ outcome including requiring intubation, admission to ICU and death were recorded in a researcher-made goal-driven form and the Baux score was calculated for all patients. The scores of R-Baux and P-Baux are used for adult and children patients, respectively. The calculation formula of these scores were defined as follow:

\[
\text{R-Baux score} = \text{TBSA} + \text{age} + (17 \times \text{R})
\]

\[
\text{P-Baux score} = \text{TBSA} + \text{age} + (18 \times \text{R}) \text{ If patient has inhalation injury } \text{R} = 1 \text{ If patient has not inhalation injury } \text{R} = 0
\]

Where; TBSA = Total Body Surface Area; R = Respiratory burn
Data analysis:

Data were analyzed through descriptive statistics (including Mean, Frequency) and inferential statistics including chi square test, Sensitivity and specificity, positive and negative predictive values and positive and negative Likelihood Ratio were calculated. The ROC curve was used to determine the diagnostic value of the Baux score and the Area under Curve (AUC) for diagnostic scores. Moreover, to investigate the effect of R-Baux and P-Baux scores on each of outcomes, Multivariate Logistic Regression was used. Initially uni-variable logistic regression was run and variables with p-value ≤ 0.2 were selected to be include in multivariable regression analysis through ENTER model [18].

Results:

Totally 213 children with burns were included of which 127 (59.60%) were male and 178 (% 83.60) were in pre-school age. Most of the admitted children with burns (69.50%) were urban residents and nearly 90% of the burns were occurred at home. The most common causes of burns were boiling water (Scold) (127; 69%), fire (23; 10.8%) and hot tea (20; 9.4%), respectively. In case of burn degree, (137; 64.3%) of children were in classified degree 2 and 3. The lower limbs were reported in 148 children (69.5%) with the highest incidence of burns. Only 24 (11.3%) child had previous history of the disease, and only 8 child (3.08%) used the medicine. There was only one child with burn history. Six children (2.80%) had respiratory burns.

The percentage of burns in 161 patients (75.60%) was less than 16.5%. Majority of the burned children (88.70%) were hospitalized in burn ward, and 24 children (11.30%) were transferred to the ICU, of which 13 died. The intubation rate was 10% and unfortunately all intubated patients were died.

The information about Area Under Curve (AUC), best cut point, sensitivity and specificity of two scores of R-Baux and P-Baux in related to outcomes of study are shown in table 1.
Table 1: Area Under Curve Information Related to the outcomes of the Study

Outcome	Reference score	Area under curve	Best Cut Point	Sensitivity	Specialty
Admission to ICU	TBSA	966	17.50%	92%	90%
	R.Baux	959	20.50%	87%	82%
	P.Baux	959	19.04%	87%	86%
Need for intubation	TBSA	967	23.50%	90%	90%
	R.Baux	987	36.37%	90%	96%
	P.Baux	982%	36.37%	90%	96%
Death	TBSA	992%	37.25%	85%	70%
	R.Baux	992%	37.75%	85%	70%
	P.Baux	982%	22%	92%	91%

A significant relation between R-Baux and P-Baux scores with patients need for intubation was determined based on logistic regression (p=0.01). As reported in Table 2, one unit increase in R-Baux and P-Baux scores will increase the intubation chance by 22 and 21%, respectively.
Table 2-
The relationship between R-Baux and P-Baux scores and patients’ intubation need

Score	Variables	B	SE	Sig.	Exp (B)	95% C.I. for EXP(B)	
						Lower	Upper
R-Baux	Age	-.038	.027	.162	.963	.913	1.015
	Burn cause	-.049	.256	.848	.952	.577	1.573
	TBSA	-.064	.090	.475	.938	.786	1.119
	LOHS*	-.069	.065	.288	.933	.821	1.060
	R-Baux	.204	.083	.014	1.226	1.042	1.443
P-Baux	Age	-.040	.028	.160	.961	.909	1.016
	Burn cause	-.046	.253	.856	.955	.582	1.568
	TBSA	-.052	.085	.538	.949	.803	1.121
	LOHS	-.065	.066	.322	.937	.823	1.066
	P-Baux	.190	.078	.014	1.209	1.039	1.408

*Length of Hospital Stay

Logistic regression did not revealed a significant relation between patients admission to ICU and death with R-Baux and P-Baux scores (p>0.05) (Table 3, 4).
Table 3-
The relationship between R-Baux and P-Baux scores and patients' admission to ICU

Score	Variables	B	SE	Sig.	Exp (B)	95% C.I. for EXP(B)	
						Lower	Upper
R-Baux	Age	-0.063	0.029	0.026	0.939	0.887	0.993
	Burn cause	0.152	0.174	0.380	1.165	0.829	1.637
	TBSA	0.105	0.125	0.399	1.111	0.870	1.418
	LOHS	0.052	0.060	0.386	1.053	0.937	1.185
	R-Baux	0.095	0.106	0.369	1.100	0.894	1.352
P-Baux	Age	-0.063	0.029	0.027	0.938	0.887	0.993
	Burn cause	0.151	0.174	0.384	1.163	0.827	1.636
	TBSA	0.103	0.120	0.390	1.109	0.876	1.403
	LOHS	0.054	0.060	0.374	1.055	0.938	1.187
	P-Baux	0.095	0.101	0.344	1.100	0.903	1.341

Table 4-
The relationship between R-Baux and P-Baux scores and patients' death

Score	Variables	B	SE	Sig.	Exp (B)	95% C.I. for EXP(B)	
						Lower	Upper
R-Baux	Age	-0.128	0.107	0.232	0.880	0.714	1.085
	Burn cause	-0.448	0.591	0.449	0.639	0.201	2.036
	TBSA	0.162	0.341	0.635	1.176	0.602	2.296
	LOHS	-0.594	0.415	0.153	0.552	0.245	1.247
	R-Baux	0.507	0.415	0.221	1.661	0.737	3.744
P-Baux	Age	-0.125	0.107	0.239	0.882	0.716	1.087
	Burn cause	-0.432	0.591	0.464	0.649	0.204	2.066
	TBSA	0.177	0.346	0.610	1.193	0.605	2.352
	LOHS	-0.583	0.413	0.158	0.558	0.249	1.253
	P-Baux	0.482	0.407	0.236	1.620	0.729	3.600
R-Baux and P-Baux scores more than 60 was associated with 0.90 mean of probability for patients need for intubation and increase in the score resulted in a higher probability of the outcomes (Table 5).

R-Baux	Mean of Probability	P-Baux	Mean of Probability
0-10	0.001	0-10	0.001
011-20	0.005	011-20	0.006
21-30	0.014	21-30	0.022
31-40	0.089	31-40	0.097
41-50	0.33	41-50	0.32
51-60	0.62	51-60	0.63
61-70	0.93	61-70	0.9
71-80	0.9	71-80	0.97
81-90	0.92	81-90	0.99
91-100	-	91-100	-
101-110	-	101-110	-
111-120	-	111-120	-

Mean of probability for admission to ICU ward and death were calculated more than 0.90 with an R-Baux and P-Baux score higher than 50 (Table 6, 7).
Table 6.
Mean of Probability of admission to ICU calculated by R-Baux and P-Baux

R-Baux	Mean of Probability	P-Baux	Mean of Probability
0-10	0.004	0-10	0.005
011-20	0.024	011-20	0.027
21-30	0.13	21-30	0.13
31-40	0.49	31-40	0.499
41-50	0.498	41-50	0.865
51-60	0.97	51-60	0.97
61-70	0.995	61-70	0.996
71-80	0.999	71-80	0.999
81-90	0.999	81-90	0.999
91-100	-	91-100	-
101-110	-	101-110	-
111-120	-	111-120	-
Table 7. Mean of Probability of death calculated by R-Baux and P-Baux

R-Baux	Mean of Probability	P-Baux	Mean of Probability
0-10	0.001	0-10	0.0001
011-20	0.001	011-20	0.001
21-30	0.01	21-30	0.01
31-40	0.13	31-40	0.13
41-50	0.62	41-50	0.62
51-60	0.94	51-60	0.93
61-70	0.995	61-70	0.99
71-80	0.999	71-80	0.994
81-90	0.999	81-90	0.999
91-100	-	91-100	-
101-110	-	101-110	-
111-120	-	111-120	-

Discussion:

The aim of this study was to investigate the prognostic value of R-Baux and P-Baux scores in predicting the pediatric burn outcome including need to intubation, Intensive Care Unit and death.

Most of the admitted children in our study were boys and under 5 years age. In a study on 11 year patients' records in Zurich, it was revealed that children under 5 years were the age-group with highest risk. Moreover, boys were at more risk of burn than girls [19]. These findings were in line with previous studies results [7, 13, 20-22]. Boys were four times more at risk of burn injuries than girls[23]. This might be due to boys more risk taking behaviors during their daily activities and play. Moreover, Skogli et al (2013) have declared that attention deficit hyperactivity disorder (ADHD) affect boys more than girls and this increases the risk of accidents in boys [24]. Meanwhile, ADHD was introduced as a risk predictor for pediatric burn injuries in Iran [25].

Mortality rate was 10% in our study which was consistent with Karimis et al (2013) study results [7]. However, there was a vast diversity in literature in mortality rate which was reported 7.1 % in East Africa [26] to 31.3% in India [27]. It should be noticed that mortality rate is related with burn severity, patients' age and gender distribution, access to care facilities, care quality and also psychological services. In addition, cultural environment were introduced as an affecting factor on mortality [22].
Previous studies had reported age, burn size and inhalation injury as the main predictors of mortality due to burn injuries. To simply predict the burn outcome, revised Baux score was introduced by Osler et al. (2010)[16]. Its efficacy in predicting burn outcome in pediatric was studied in limited studies. We investigated R-Baux and P-Baux prediction value on pediatric patients. Results showed that R-Baux and P-Baux scores were related to predicting burned pediatric outcome. P-Baux was reported, in previous studies to be correlated with death probability in pediatric burn patients which was consistency with our results [7, 28, 29]. Osler in study of 39888 burn patients concluded that R-Baux could be used by surgeons and nurses to precisely predict mortality[16].

R-Baux and P-Baux scores were used for predicting the death probability in previous literature [7, 16, 17, 28] but our study results revealed that they could be also used to predict patients need to intubation and admission to ICU. R-Baux and P-Baux have shown almost equal AUC in predicting patients need to intubation, ICU admission and death. It may be due to low number of patients with respiratory injuries. However, based on logistic regression a significant relation was revealed between these scores and patient need to intubation ad one unit increase in R-Baux and P-Baux scores increase the intubation chance by 22 and 21%, respectively. This not only help physicians and nurses to provide more timely health services to avoid death but also facilitates patients triage in burn wards. In emergent situations, P-Baux score provides simple way for decision making about patients. However, this must be taken into account that this score usage is in early stages of burn injuries and in late stages health services quality, wound infection, disease history and other factors impact on patients' outcome.

Limitations:

The study was done based on patients' records in Sina Hospital as the burn referral hospital in Northwest of Iran and this might be considered in interpretations.

Conclusions:

The R.Baux and PBaux scores were related to the probability of intubation, ICU admission and mortality. Our results showed that these scores could be used to predict patients' needs in early stages of burn. Using these scores not only predicts mortality risk, but also provide the opportunity for health providers to prioritize patients and provide proper facilities and services to prevent child mortality due to burn.

Abbreviation:

WHO: World Health Organization

TBSA: Total burned surface area

LMICs: Low and Middle income countries

SDGs: Sustainable Development Goals
Declarations:

Ethics approval and consent to participate:

This study was approved by ethical committee of Tabriz University of Medical Sciences (ethical code: 94/1-3/12).

Consent for publication:

Not applicable.

Availability of data and materials:

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests:

None.

Funding:

None.

Authors' contributions:

KSH, FR and HS has contributed in study conceptualization, design and supervision. KSH and AKH and FR contributed in data gathering. KSH and AR and MS contributed in data analysis and interpretation. AR and MS developed the manuscript draft. All the authors reviewed and approved the final manuscript.

Acknowledgements:

We are thankful of all child's family and also Sina Hospital authorities and staff for their contribution in the study.

References:
1. Smolle C, Cambiaso-Daniel J, Forbes AA, Wurzer P, Hundeshagen G, Branski LK, et al. Recent trends in burn epidemiology worldwide: A systematic review. Burns. 2017;43(2).
2. World Health Organization. Burns 2020 [Available from: https://www.who.int/news-room/factsheets/detail/burns.
3. Seo DK, Kym D, Yim H, Yang HT, Cho YS, Kim JH, et al. Epidemiological trends and risk factors in major burns patients in South Korea: a 10-year experience. Burns. 2015;41(1).
4. Boerma J, Colin Mathers D, Organization WH. The Global Burden of Disease: 2004 update. WHO; 2004.
5. Sadeghi Bazargani H, Arshi S, Ekman R, Mohammadi R. Prevention-oriented epidemiology of burns in Ardabil provincial burn centre, Iran. Burns. 2011;37(3).
6. Ramakrishnan KM, Sankar J, Venkatraman J. Profile of pediatric burns: Indian experience in a tertiary care burn unit. Burns. 2005;31(3).
7. Karimi H, Motevalian S-A, Rabbani A, Motabar A-R, Vasigh M, Sabzeparvar M, et al. Prediction of mortality in pediatric burn injuries: R-baux score to be applied in children (pediatrics-baux score). Iranian journal of pediatrics. 2013;23(2).
8. Halgas B, Bay C, Foster K. A comparison of injury scoring systems in predicting burn mortality. Annals of burns and fire disasters. 2018;31(2).
9. Gomez M, Wong DT, Stewart TE, Redelmeier DA, Fish JS. The FLAMES score accurately predicts mortality risk in burn patients. Journal of Trauma and Acute Care Surgery. 2008;65(3).
10. Galeiras R, Lorente JA, Pértega S, Vallejo A, Tomicic V, Miguel A, et al. A model for predicting mortality among critically ill burn victims. Burns. 2009;35(2).
11. Gravante G, Delogu D, Esposito G, Montone A. Analysis of prognostic indexes and other parameters to predict the length of hospitalization in thermally burned patients. Burns. 2007;33(3).
12. Karlie J, Wardhana A. External Validation of Belgian Outcome of Burn Injury Score on Burned Patient In Burn Unit dr. Cipto Mangunkusumo General Hospital. The New Ropanasuri Journal of Surgery. 2017;2(1).
13. Svee A, Jonsson A, Sjöberg F, Huss F. Burns in Sweden: temporal trends from 1987 to 2010. Annals of burns and fire disasters. 2016;29(2).
14. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, et al. Policy: Sustainable development goals for people and planet. Nature. 2013;495(7441).
15. Benach J, Vives A, Amable M, Vanroelen C, Tarafa G, Muntaner C. Precarious employment: understanding an emerging social determinant of health. Annual review of public health. 2014;35.
16. Osler T, Glance LG, Hosmer DW. Simplified estimates of the probability of death after burn injuries: extending and updating the baux score. Journal of Trauma and Acute Care Surgery. 2010;68(3).
17. Dokter J, Meijs J, Oen IM, van Baar ME, van der Vlies CH, Boxma H. External validation of the revised Baux score for the prediction of mortality in patients with acute burn injury. Journal of trauma and acute care surgery. 2014;76(3).
18. Hongyue W, Jing P, Bokai W, Xiang L, Julia ZZ, Kejia W, et al. Inconsistency between univariate and multiple logistic regressions. Shanghai archives of psychiatry. 2017;29(2).
19. Moehrlen T, Szucs T, Landolt MA, Meuli M, Schiestl C, Moehrlen U. Trauma mechanisms and injury patterns in pediatric burn patients. Burns. 2018;44(2).
20. Čelko AM, Grivna M, Dáňová J, Barss P. Severe childhood burns in the Czech Republic: risk factors and prevention. Bulletin of the World Health Organization. 2009;87.
21. Trop M, Herzog SA, Pfurtscheller K, Hoebenreich AM, Schintler MV, Stockenhuber A, et al. The past 25 years of pediatric burn treatment in Graz and important lessons been learned. An overview. Burns. 2015;41(4).
22. Bennie N, Belacic H, Bruckman D, MondoZZ MA, Crow J. 700 A Comparison of Pediatric Burn Injuries Based on Cultural Environment. Journal of Burn Care & Research. 2020;41(Supplement_1).
23. Åkerlund E, Huss FR, Sjöberg F. Burns in Sweden: an analysis of 24 538 cases during the period 1987–2004. Burns. 2007;33(1).
24. Skogli EW, Teicher MH, Andersen PN, Hovik KT, Øie M. ADHD in girls and boys – gender differences in co-existing symptoms and executive function measures. BMC Psychiatry. 2013;13(1).
25. Sadeghi-Bazargani H, Mohammadi R, Amiri S, Syedi N, Tabrizi A, Irandoost P, et al. Individual-level predictors of inpatient childhood burn injuries: a case–control study. BMC public health. 2016;16(1).
26. Chelidze KL, Lim CC, Peck RN, Giiti G, Leahy N, Rabbitts A, et al. Predictors of mortality among pediatric burn patients in East Africa. Journal of Burn Care & Research. 2016;37(2).
27. Dhopte A, Bamal R, Tiwari VK. A prospective analysis of risk factors for pediatric burn mortality at a tertiary burn center in North India. Burns & trauma. 2017;5(1).
28. Roberts G, Lloyd M, Parker M, Martin R, Philp B, Shelley O, et al. The Baux score is dead. Long live the Baux score: a 27-year retrospective cohort study of mortality at a regional burns service. Journal of Trauma and Acute Care Surgery. 2012;72(1).
29. Chen C-C, Chen L-C, Wen B-S, Liu S-H, Ma H. Objective estimates of the probability of death in acute burn injury: A proposed Taiwan burn score. Journal of trauma and acute care surgery. 2012;73(6).