Topological invariants of three-manifolds from $U_q(osp(1|2n))$

Sacha C. Blumen
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

February 12, 2022

Abstract

We create Reshetikhin-Turaev topological invariants of closed orientable three-manifolds from the quantum supergroup $U_q(osp(1|2n))$ at certain even roots of unity. To construct the invariants we develop tensor product theorems for finite dimensional modules of $U_q(osp(1|2n))$ at roots of unity.

1 Introduction

Topological invariants of closed orientable three-manifolds may be constructed from modular or quasimodular Hopf algebras [1, 2]. Reshetikhin and Turaev’s construction using modular Hopf algebras relies upon several theorems relating framed links in S^3 to closed orientable three-manifolds. The Lickorish-Wallace theorem states that each framed link in S^3 determines a closed, orientable 3-manifold and that every such 3-manifold is obtainable by performing surgery upon a framed link in S^3. Kirby-Craggs, and Fenn and Rourke showed that homeomorphism classes of closed orientable three-manifolds may be generated by performing surgery upon elements of equivalence classes of framed links in S^3, where the equivalence relations are generated by the Kirby moves. By taking such combinations of isotopy invariants of links in S^3 as to render them unchanged under the Kirby moves one obtains a topological invariant of 3-manifolds.

RT took invariants of isotopy derived from the quantum group $U_q(sl_2)$ at even roots of unity. Their method was adapted for the quantum algebras related to the A_n, B_n, C_n, D_n Lie algebras at all roots of unity [3, 4], and the exceptional quantum algebras and quantum superalgebras $U_q(osp(1|2))$ and $U_q(gl(2|1))$ at odd roots of unity [5]. Here we create invariants from $U_q(osp(1|2n))$ at $q = \exp(2\pi i/N)$ with $N = 2(2k + 1)$.

*e-mail: sachab@maths.usyd.edu.au
Reshetikhin-Turaev invariants can be constructed from a class of Hopf (super)algebras more general than (quasi)modular Hopf (super)algebras. For a Hopf (super)algebra \(A \), invariants may be constructed if \(A \) has the following properties (where we take the quantum superdimension and quantum supertrace if \(A \) is a quantum superalgebra)

i) there exists a finite collection of mutually non-isomorphic left \(A \)-modules \(\{V_\lambda\} \) where \(\lambda \) ranges over some index set \(I \) such that \(\dim(V_\lambda) < \infty \) and \(\dim_q(V_\lambda) \neq 0 \), \(\forall \lambda \in I \),

ii) for any finite collection of \(A \)-modules \(V_{\lambda_1}, V_{\lambda_2}, \ldots, V_{\lambda_n} \) such that \(\lambda_i \in I \) for all \(i \),

\[
V_{\lambda_1} \otimes V_{\lambda_2} \otimes \cdots \otimes V_{\lambda_n} = \mathcal{V} \oplus \mathcal{Z}
\]

where \(\mathcal{V} = \bigoplus_{\lambda \in I} (V_\lambda)^{\oplus m(\lambda)} \), \(m(\lambda) \geq 0 \) is the multiplicity of \(V_\lambda \) in the direct sum, and \(\mathcal{Z} \) is a possibly empty \(A \)-module with zero quantum dimension,

iii) for each \(V_\lambda \) there is a dual module \((V_\lambda)^! \cong (V_\lambda)^* \) such that \(\lambda^* \in I \) and \(\mathcal{V} \) there exists a distinguished module \(V_0 \) such that \((V_0)^! \cong V_0 \),

iv) the central element \(\delta = v - \sum_{\lambda \in I} d_\lambda \chi_\lambda(v^{-1}) C_\lambda \) vanishes upon acting on any \(V_\mu \) where \(\mu \in \Lambda^+_N \). Here \(\chi_\lambda(v) = q^{-\langle \lambda, S + 2\rho \rangle} \) and \(C_\lambda = \text{tr}_\lambda([\text{id} \otimes \pi](1 \otimes q^{2h_\nu}) R^T R) \). \(R \) is the universal \(R \)-matrix and \(R^T = P.R.P \) where \(P \) is the permutation operator. \(\{d_\lambda\} \) is a collection of complex valued constants such that at least one \(d_\lambda \) is non-zero. This condition ensures that combinations of isotopy invariants of links are unchanged under some of the Kirby moves, and

v) the sum \(z = \sum_{\lambda \in I} d_\lambda q^{-\langle \lambda, \lambda + 2\rho \rangle} \dim_q(V_\lambda) \) is non-zero.

2 \(U_q(osp(1|2n)) \) at roots of unity and its finite dimensional modules

The quantum superalgebra \(U_q(osp(1|2n)) \) at roots of unity is not quasi-triangular. However, the quantum superalgebra now has a class of central elements which do not exist at generic \(q \). These central elements generate an ideal of \(U_q(osp(1|2n)) \), which is also a two-sided co-ideal.

The quotient of \(U_q(osp(1|2n)) \) by this ideal turns out to be a quasi-triangular Hopf superalgebra. Let us denote this algebra by \(U_q^{(N)}(osp(1|2n)) \), the details of which may be found in [1].

Associated with \(osp(1|2n) \) there is a euclidean space \(H^* \) which has a basis of vectors \(\{\epsilon_i | 1 \leq i \leq n\} \) and a bilinear form such that \((\epsilon_i, \epsilon_j) = \delta_{i,j} \). The even (resp. odd) positive roots are \(\Phi^+_\epsilon = \{\epsilon_i \pm \epsilon_j, 2\epsilon_k | 1 \leq i < j \leq n, 1 \leq k \leq n\} \) (resp. \(\Phi^+_\pi = \{\epsilon_i | 1 \leq i \leq n\} \)). Define \(2\rho = \sum_{\alpha \in \Phi^+_\epsilon} \alpha - \sum_{\beta \in \Phi^+_\pi} \beta \), \(\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\} \), \(\mathbb{Z}_+ = \{0, 1, 2, \ldots\} \) and \(\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\} \). Let \(X \subseteq H^* = \sum_{i=1}^n \mathbb{Z}_+ \epsilon_i \) and \(X_N = X/NX \).

2
Define $\phi_0 = \{ \delta \in \Phi^+_0 | \delta/2 \notin \Phi^+_0 \}$ and $\phi_1 = \Phi^+_1$. For a given $U_q^{(N)}(osp(1|2n))$ where $n \geq 2$ and $N \geq 3$ we define Λ^+_N by

$$\Lambda^+_N = \left\{ \lambda \in X \mid 0 \leq \frac{2(\lambda + \rho, \alpha)}{(\alpha, \alpha)} \leq N', \forall \alpha \in \phi \right\}$$

where $\phi = \phi_0 \cup \phi_1$ if $N \equiv 2 \pmod{4}$ and $\phi = \phi_0$ otherwise. Here $N'' = N$ if N is odd and $N'' = N' = N/2$ otherwise. For $U_q^{(N)}(osp(1|2))$ where $N \geq 3$ we define Λ^+_N by

$$\Lambda^+_N = \left\{ \lambda \in X \mid 0 \leq (\lambda + \rho, \alpha) \leq N'' \right\}$$

where α is the single odd root and $N'' = N/4$ if $N \equiv 2 \pmod{4}$ and $N'' = N'$ otherwise. For each Λ^+_N we define Λ^+_N identically except that we replace \leq by $<$. Λ^+_N plays the role of the index set I of the collection of $U_q^{(N)}(osp(1|2n))$ modules.

Let V be the fundamental module of $U_q^{(N)}(osp(1|2n))$ with highest weight ϵ_1. V is irreducible, $2n + 1$ dimensional and has the same structure as the fundamental module of $U_q(osp(1|2n))$. In [3] we prove the following lemmas and theorems.

Lemma 2.1 Set $N \geq 4$ to be even. For each $\mu \in \Lambda^+_N$ there exists a finite dimensional $U_q^{(N)}(osp(1|2n))$ module V_μ with highest weight μ such that $V_\mu \subseteq V^{\otimes t}$ for some $t \geq 1$. The quantum superdimension of V_μ is $sdim_q(V_\mu) = \lim_{q \to 1}(sdim_q(V^{\gen}))$ where V^{\gen} is the finite dimensional irreducible $U_q(osp(1|2n))$ module with highest weight μ. The $sdim_q(V_\mu) = 0$ for all $\mu \in \Lambda^+_N$ and $sdim_q(V_\mu) = 0$ for all $\mu \in \Lambda^+_N \setminus \Lambda^+_N$.

Let W be the Weyl group of $osp(1|2n)$ and τ be the maximal element of W. Then $-\tau(\lambda) \in \Lambda^+_N$, $\forall \lambda \in \Lambda^+_N$, which implies that for each λ there is a dual module $(V_\lambda)^+$ with highest weight in Λ^+_N.

In theorems 2.1 and 2.2 we assume that $n \geq 2$ or that $n = 1$ and $N \neq 4, 8$.

Theorem 2.1 Set $N \geq 4$ to be even, V to be the fundamental module of $U_q^{(N)}(osp(1|2n))$ and $\epsilon_1 \in \Lambda^+_N$. Then for every $t \in \mathbb{Z}_+$,

$$V^{\otimes t} = V \oplus Z$$

where $V = \bigoplus_{\lambda \in \Lambda^+_N} (V_\lambda)^{\otimes m(\lambda)}$, $m(\lambda) \in \mathbb{Z}_+$ and Z is a possibly empty direct sum of indecomposable modules, each with zero quantum superdimension.

Theorem 2.2 Set $N \geq 4$ to be even and let V_λ be finite dimensional $U_q^{(N)}(osp(1|2n))$ modules with $\lambda_i \in \Lambda^+_N$ for all i. Then

$$V_\lambda \otimes V_\lambda \otimes \cdots \otimes V_\lambda = V' \oplus Z'$$

where $s \geq 1$ and V' and Z' have the same form as in theorem 2.1.

Lemma 2.2 Set $N \geq 3$ to be odd, $\epsilon_1 \in \Lambda^+_N$ and $t \in \mathbb{Z}_{N/2+1/2-n}$. Then $V^{\otimes t} = \overline{V}$ where \overline{V} has the same form as V does in theorem 2.1.
3 Finding the set \(\{d_\lambda\} \)

We know that properties i), ii) and iii) hold for \(U_q^{(N)}(osp(1|2n)) \) at even \(N \). We now consider condition iv): there exists at least one collection of \(\{d_\lambda\} \) that solves \(\chi_\mu(v) = \sum_{\lambda \in \Lambda_N^+} d_\lambda \chi_\mu(v^{-1}) \chi_\mu(C_\lambda) \) for all \(\mu \in \Lambda_N^+ \). Now at generic \(g \), the eigenvalue of \(C_\lambda \) in an irreducible representation with highest weight \(\mu \in \Lambda_N^+ \) is given by \(sc\lambda(q^{2(\mu+\rho)}) = S_{\lambda,\mu}/Q_\mu \) where \(S_{\lambda,\mu} = (-1)^{\vert \lambda \vert} \sum_{\sigma \in W} \epsilon(\sigma) q^{2(\lambda+\rho,\sigma(\mu+\rho))} \), \(Q_\mu = \sum_{\sigma \in W} \epsilon'(\sigma) q^{2(\rho,\sigma(\mu+\rho))} \), and where \(\epsilon'(\sigma) = -1 \) if the number of components of \(\sigma \) that are reflections with respect to the elements of \(\Phi_0 \) is odd and \(\epsilon'(\sigma) = 1 \) otherwise. Our proofs for theorems 2.1 and 2.2 tell us that \(sc\lambda(q^{2(\mu+\rho)}) \) is well behaved when \(g \) is taken to the \(N^{th} \) root of unity, and yields the desired \(\chi_\mu(C_\lambda) \). To simplify finding the \(\{d_\lambda\} \) we initially consider \(Q_\mu q^{-(\mu+2\rho,\mu)} = \sum_{\lambda \in \Lambda_N^+} d_\lambda' q^{2(\lambda+\rho,\lambda)} S_{\lambda,\mu}' \) where \(d_\lambda' = (-1)^{\vert \lambda \vert} d_\lambda \) and \(S_{\lambda,\mu}' = (-1)^{\vert \lambda \vert} S_{\lambda,\mu} \). To solve for the \(\{d_\lambda'\} \) we consider

\[
Q_\mu q^{-(\mu+2\rho,\mu)} = \sum_{\lambda \in X_N} x_\lambda q^{2(\lambda+2\rho,\lambda)} S_{\lambda,\mu}',
\]

and set \(x_\lambda = cq^{-(\lambda,2\rho)} \). We then have

\[
Q_\mu q^{-(\mu+2\rho,\mu)} = \sum_{\sigma \in W} \epsilon(\sigma) \sum_{\lambda \in X_N} cq^{2(\lambda,\lambda)} q^{2(\lambda+\rho,\sigma(\mu+\rho))}.
\]

To ensure \(x_\lambda \) is independent of \(\mu \) we undertake the mapping \(\lambda \to \sigma(\lambda + \rho) - \sigma(\mu + \rho) \) in the summation, which may be done as \(\sigma(\lambda + \rho) - \sigma(\mu + \rho) \in X_N \) and the summation remains over \(X_N \). We then obtain

\[
Q_\mu q^{-(\mu+2\rho,\mu)} = \sum_{\lambda \in X_N} cq^{2(\lambda,\lambda+2\rho)} \sum_{\sigma \in W} \epsilon'(\sigma) q^{2(\rho,\sigma(\mu+\rho))}
\]

which results in \(c^{-1} = \sum_{\lambda \in X_N} q^{2(\lambda,\lambda+2\rho)} \) and

\[
x_\lambda = q^{-(\lambda,2\rho)} / \sum_{\lambda \in X_N} q^{2(\lambda,\lambda+2\rho)}.
\]

Now \(q^{2(\lambda',\lambda'+2\rho)} = (-1)^p q^{2(\lambda,\lambda+2\rho)} \) where \(\lambda' = \lambda + N/2\epsilon_i \) for any \(\epsilon_i \) and \(p = 1 \) if \(N = 4k \), \(p = 0 \) if \(N = 2(2k+1) \). Then \(c \) is not well defined if \(N = 4k \) and we set \(N = 2(2k+1) \) for the remainder of this paper. Now \(x_\lambda q^{2(\lambda',\lambda'+2\rho)} S_{\lambda',\mu}' = x_\lambda q^{2(\lambda,\lambda+2\rho)} S_{\lambda,\mu}' \) where \(\lambda' = \lambda + N/2\epsilon_i \) for any \(\epsilon_i \). It then follows that \(\sum_{\lambda \in X_N} x_\lambda q^{2(\lambda,\lambda+2\rho)} S_{\lambda,\mu}' \) and

\[
\sum_{\lambda \in X_N} x_\lambda q^{2(\lambda+2\rho,\lambda)} S_{\lambda,\mu}' = 2^n \sum_{\lambda \in X_N} x_\lambda q^{2(\lambda+2\rho,\lambda)} S_{\lambda,\mu}'.
\]

Let \(\overline{N} = N/2 \) and \(\overline{\Lambda}_N^+ \) be the fundamental domain for \(X_{N/2} \) under the action of the affine Weyl group \(W_{\overline{N}} \) of \(\overline{U}_q^{(N)}(so(2n+1)) \). The affine Weyl groups \(W_{N/2} \) of \(U_q^{(N)}(osp(1|2n)) \) and \(U_q^{(N)}(so(2n+1)) \) are identical and as \(\overline{\Lambda}_N^+ = \overline{\Lambda}_N^+ \) it follows that \(\overline{\Lambda}_N^+ \) is a fundamental domain for \(X_{N/2} \) under the action of \(W_{N/2} \).
Now $S'_{\lambda+\rho-\rho,\mu} = \epsilon'(\sigma)S'_{\lambda,\mu}$ for any $\sigma \in W$. If $\lambda \in \Lambda_N^+ \setminus \Lambda_N^+$ there either exists some $\sigma \in W$ such that $\sigma(\lambda + \rho) - \rho = \lambda$ and $\epsilon'(\sigma) = -1$ or some $w \in W$ such that $\epsilon'(w) = 1$ and $\lambda = w(\lambda + \rho) - \rho + kN/2\epsilon_i$ for some ϵ_i and $k \in \mathbb{Z}$. As $S'_{\lambda,\mu} = -S'_{\lambda,\mu}$ where $\lambda' = \lambda + N/2\epsilon_i$, it follows that $S'_{\lambda,\mu} = 0$ for $\lambda \in \Lambda_N^+ \setminus \Lambda_N^+$. Then

$$2^n \sum_{\nu \in X_{N/2}} x_{\nu} q^{(\nu,\nu+2\rho)} S'_{\nu,\mu} = 2^n \sum_{\lambda \in \Lambda_N^+} \sum_{\sigma \in W} \epsilon'(\sigma) x_{\sigma(\lambda + \rho) - \rho} q^{(\lambda,\lambda+2\rho)} S'_{\lambda,\mu}.$$

As

$$\sum_{\lambda \in \Lambda_N^+} d_\lambda q^{(\lambda+2\rho,\lambda)} S'_{\lambda,\mu} = 2^n \sum_{\lambda \in \Lambda_N^+} \sum_{\sigma \in W} \epsilon'(\sigma) x_{\sigma(\lambda + \rho) - \rho} q^{(\lambda,\lambda+2\rho)} S'_{\lambda,\mu}$$

we obtain

$$d_\lambda = q^{(2\rho,\rho)} \gamma_0 \text{sdim}_q (V_\lambda) \sum_{\mu \in X_{N/2}} q^{(\mu,\mu+2\rho)}$$

where γ is the denominator in the expression of the quantum superdimension.

Note that $d_{\lambda^*} = d_\lambda$ where $\lambda^* = -\tau(\lambda)$. The denominator of the d_λ does not vanish: $\sum_{\mu \in X_{N/2}} q^{(\mu,\mu+2\rho)} = \sum_{\mu \in X_N} q^{(\mu,\mu+2\rho)} / 2^n$ and $\sum_{\mu \in X_N} q^{(\mu,\mu+2\rho)} = \prod_{k=0}^{n-1} G(N, 2k + 1)$ where $G(N, m) = \sum_{i=0}^{N-1} q^{i(i+m)} = (1 + i)\sqrt{N} / x m^2$ and x is a complex primitive $4N$th root of unity.

4 Constructing the invariant

The final matter we need to consider is condition v): that

$$z = \sum_{\lambda \in \Lambda_N^+} d_\lambda q^{-2(\lambda,\lambda)} \text{sdim}_q (V_\lambda) \neq 0.$$

It follows from [2] that $z \neq 0$. Given $\zeta = \sum_{\lambda \in \Lambda_N^+} d_\lambda \text{sdim}_q (\lambda)$, $\zeta \neq 0$ and $z = d_0 \zeta$.

Now it is a relatively simple matter to construct the invariants. Denote a framed link in S^3 by L and the 3-manifold it gives rise to by M_L. Let (L) stand for the Reshetikhin-Turaev functor applied to L (see [2, 3, 5]). Set A_L to be the linking matrix of L defined by: a_{ii} is the framing number of the ith component of L and a_{ij}, $i \neq j$ is the linking number between the ith and jth components of L. Let $\sigma(A_L)$ be the number of nonpositive eigenvalues of A_L.

Then

$$F(M_L) = z^{-\sigma(A_L)} \sum (L)$$

is a topological invariant of M_L.

References

[1] Reshetikhin N Y and Turaev V G 1991 Invent. Math. 103 547-597
[2] Turaev V G and Wenzl H 1993 Int. J. Math. 4 no. 2 323-358

[3] Zhang R B 1996 Comm. Math. Phys. 182 no. 3 619-636

[4] Zhang R B 1994 Mod. Phys. Lett. A 9 no. 16 1453-1465, 1995 Rev. Math. Phys. 7 no. 5 809-831, 1997 Lett. Math. Phys. 41 no. 1 1-11

[5] Khoroshkin S M and Tolstoy V N 1991 Comm. Math. Phys. 141 no. 3 599-617

[6] Zhang R B 1992 J. Math. Phys. 33 no. 11 3918-3930

[7] Blumen S C “Tensor products of finite dimensional $U_q(osp(1|2n))$ modules at roots of unity”, to appear.