Combinatorics of flag simplicial 3-polytopes

V. D. Volodin

We shall consider convex simplicial 3-polytopes (polyhedra). Their boundaries are simplicial 2-spheres, and the converse also holds by a theorem of Steinitz. Hence it is sufficient to investigate the combinatorics of simplicial 2-spheres, leaving aside their polyhedral realizations.

Theorem (Steinitz, 1922; see [3]). A graph Γ is the graph of a convex 3-polytope if and only if Γ is simple, 3-connected, and planar.

Definition 1. A set of vertices of a complex such that it does not form a face itself but its proper subsets do form faces is called a missing face of the complex. If all missing faces of a complex contain two vertices, then this is called a flag complex. A simplicial polytope is called a flag polytope if its boundary is a flag simplicial complex.

Definition 2. The contraction of an edge $e = \{v_1, v_2\}$ of a complex K is the operation of replacing a union of two stars $\text{st}_K v_1 \cup \text{st}_K v_2$ by the star $\text{st}_K v$ of a new vertex v as follows: the vertices v_1 and v_2 and all the simplexes containing them are removed, after which the vertex v and all the simplexes $v \sqcup \sigma$ such that $v_1 \sqcup \sigma \in K$ or $v_2 \sqcup \sigma \in K$ are added. The resulting complex is denoted by K/e.

Theorem 3. Each flag simplicial 3-polytope can be reduced to an octahedron by a sequence of contractions of edges so that at each step a flag simplicial 3-polytope is produced.

It was proved in [1] that a complex of dimension at most 2 can be obtained from any geometric subdivision of it by a sequence of edge contractions. This generalizes a result due to Steinitz and Rademacher [2] that a tetrahedron is the unique minimal (not admitting edge contractions) triangulation of the 2-sphere. However, it will not suffice to show that the boundary of a flag simplicial polyhedron is a geometric subdivision of an octahedron, because the polyhedra obtained in the process are not necessarily flag polyhedra. Therefore, we give an explicit proof.

Proposition 4. A simplicial 2-sphere K is a flag complex if and only if for each edge e of it the complex K/e is a simplicial 2-sphere.

Proof. Assume that K has a missing face V with $|V| > 2$. If $|V| = 4$, then K is the boundary of a tetrahedron, and the contraction of any edge gives a triangle. If $|V| = 3$, then let $V = \{v_1, v_2, v_3\}$. Contracting the edge $\{v_1, v_2\}$ to a vertex v, we obtain a complex which is not homeomorphic to a 2-sphere, since its 1-skeleton is not 3-connected (the set obtained by removing v and v_3 is disconnected).

Assume that K/e is not a polyhedral complex. By the Steinitz theorem there exist vertices v and w such that $(K/e) \setminus \{v, w\}$ is disconnected. Since the original complex is polyhedral, it cannot become disconnected upon removal of two vertices, so we can assume that v is the image of an edge $e = \{v_1, v_2\}$ under a contraction. Hence $K \setminus \{v_1, v_2, w\}$ is disconnected. Now we look at a polyhedral realization of K with vertices in general position. Drawing a plane H through v_1, v_2, and w, we divide the remaining vertices of K
into the ones lying in the lower and the upper half-spaces. It can easily be shown that any two vertices in the lower (upper) half-space can always be joined by a path lying entirely in the same half-space. Hence \(K \setminus \{v_1, v_2, w\} \) consists of two connected components, formed by the vertices lying in the lower and the upper half-space. The plane \(H \) does not intersect an edge joining vertices in the different half-spaces. All this means that \(v_1, v_2, \) and \(w \) are connected by edges and form a missing face of \(K \).

We introduce a partial ordering in the set of flag 2-spheres by setting \(P \preceq Q \) if \(P \) can be obtained from \(Q \) by a sequence of edge contractions. In this case minimal spheres are ones which fail to be flag complexes after the contraction of any edge.

Definition 5. We say that a set of vertices \(\{v_1, v_2, v_3, v_4\} \) of a simplicial complex forms a **belt** \(\square \) if the simplicial subcomplex generated by this set is simplicially isomorphic to the boundary of a square.

Lemma 6. Let \(K \) be a flag simplicial 2-sphere with edge \(e \). Then the simplicial sphere \(K/e \) is a flag complex if and only if \(e \) lies in no belt in \(K \).

Proof. We shall show that if a belt in \(K \) contains \(e \), then it is the inverse image of a missing face of cardinality 3 in \(K/e \) under the map \(K \to K/e \).

If \(e = \{v_1, v_2\} \) lies in a belt \(\{v_1, v_2, v_3, v_4\} \) in \(K \), then \(K/e \) contains the missing face \(\{v, v_3, v_4\} \), where \(v \) is the image of \(e \) under the contraction.

Assume that the complex \(K/e \) obtained by contracting the edge \(e = \{v_1, v_2\} \) of the flag complex \(K \) into the vertex \(v \) is not a flag complex. Consider a missing face \(V \) of \(K/e \) with \(|V| > 2 \). Since \(K \) is a flag complex, it follows that \(v \in V \). On the other hand, \(K/e \) cannot be the boundary of a tetrahedron, so \(|V| = 3 \). Let \(V = \{v, v_3, v_4\} \). Then \(v_1, v_2 \in \text{lk}_K v_3 \cup \text{lk}_K v_4 \), but since \(V \) is not a simplex in \(K/e \), one of \(v_1 \) and \(v_2 \) is contained in \(\text{lk}_K v_3 \setminus \text{lk}_K v_4 \) while the other lies in \(\text{lk}_K v_4 \setminus \text{lk}_K v_3 \). Hence \(\{v_1, v_2, v_3, v_4\} \) is a belt containing \(e \).

Lemma 7. Let \(K \) be a minimal flag simplicial 2-sphere. Then it has a vertex \(w \in K \) whose link is a belt in \(K \).

Proof. Take an arbitrary vertex \(v \in K \). By Lemma 6 each edge lies in a belt. Let \(W_i^1 \) and \(W_i^2 \) denote the simplicial balls into which a belt \(\square_i \) divides \(K \).

There exists a belt \(\square_0 \) containing \(v \) such that any belt \(\square' \) containing \(v \) and intersecting the interior of \(W_0^1 \) also intersects the interior of \(W_0^2 \). Indeed, consider a belt \(\square_1 \) containing \(v \). If there exists another belt \(\square_2 \) which lies in \(W_1^1 \), then \(W_2^1 \subset W_1^1 \). We go on by selecting \(\square_i \) so that \(W_i^1 \subset W_{i-1}^1 \). At some step it will be impossible to find the next belt, so the last belt selected will satisfy the above requirement.

Let \(v' \in \square_0 \) and assume that \(\{v, v'\} \) is not an edge. Each edge \(\{v, w\} \), where \(w \) is an interior vertex of \(W_0^1 \), lies in a belt \(\square_{v, w} \) intersecting the interior of \(W_0^j \). Then \(\square_0 \cap \square_{v, w} = \{v, v'\} \), since \(\square_{v, w} \) is 2-connected. Hence all the vertices in \(W_0^1 \setminus \text{lk}_K v \) are joined to \(v' \) by an edge. It follows from the choice of \(W_0^1 \) that \(w \) is the only interior vertex in this set. Hence \(\text{lk}_K w = \square_0 \).

Proof of Theorem 3. Let \(K \) be a minimal flag simplicial 2-sphere. We shall show that \(K \) is the boundary of an octahedron. Let \(w \) be the vertex from Lemma 7. We take a belt \(\square_1 \) containing \(w \) and a belt \(\square_2 \) containing \(w \) together with vertices in \(\text{lk}_K w \setminus \square_1 \). Then \(\square_1 \) and \(\square_2 \) have the common vertex \(w \). Since \(K \setminus \square_1 \) is disconnected and \(\square_2 \) is 2-connected, they must have another common vertex \(v \). Then all 4 vertices in the subcomplex \(\text{lk}_K w \) are joined by edges to \(v \) and \(w \). Since \(K \) is a flag sphere, it has no other vertices and thus is the boundary of an octahedron.
Bibliography

[1] S. Melikhov, “Combinatorics of embeddings”, arXiv:1103.5457.

[2] E. Steinitz and H. Rademacher, *Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie*, Springer 1976.

[3] G. M. Ziegler, *Lectures on polytopes*, Grad. Texts in Math., vol. 152, Springer-Verlag, New York 1995, x+370 pp.

Vadim D. Volodin
Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
E-mail: volodinvadim@gmail.com

Presented by V. M. Buchstaber
Accepted 05/DEC/14
Translated by N. KRUZHILIN