Ballistic transport of interacting Bose particles in the tight-binding chain

P. S. Muraev1,2, D. N. Maksimov1,3, and A. R. Kolovsky1,2
1Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia
2School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041, Krasnoyarsk, Russia
3IRC SQC, Siberian Federal University, 660041, Krasnoyarsk, Russia
(Dated: June 20, 2022)

It is known that quantum transport of non-interacting Bose particles across the tight-binding chain is ballistic in the sense that the current does not depend on the chain length. We address the question whether the transport of strongly interacting bosons can be ballistic as well. We find such a regime and show that, classically, it corresponds to the synchronized motion of local non-linear oscillators. It is also argued that, unlike the case of non-interacting bosons, the transporting state responsible for the ballistic transport of interacting bosons is metastable, i.e., the current decays in course of time. An estimate for the decay time is obtained.

I. INTRODUCTION

In the past decade much efforts were invested in understanding quantum transport of Bose particles across the one-dimension lattice connecting two particle reservoirs \[\text{[1–5]}\]. Several theoretical approaches have been used to analyze this problem, including the straightforward numerical simulations of the master equation for bosons in the lattice, quantum jumps methods, and the semiclassical (mean field) and pseudoclassical approaches. The last two approaches are especially important for developing an intuitive physical picture because they map the quantum transport problem to the classical problem of excitation transfer in a chain of coupled nonlinear oscillators with the edge oscillators driven by external forces, where the type of the driving force is determined by the ergodic properties of the particle reservoirs. Namely, if reservoirs justify the Born-Markov approximation, the edge oscillators are driven by the complex white noise whose intensity is proportional to the particle density in reservoir \[\text{[1–3]}\]. For non-Markovian reservoirs the white noise has to be superseded by the narrow-band noise with the spectral density spanning a finite frequency interval \[\text{[4]}\]. Typically, this is the case where Bose particles in reservoirs are close to condensation. At last, one may consider the situation where the spectral density of the colored noise is given by the \(\delta\)-function, i.e., we have a periodic driving. Experimentally, this case is realized, for example, in the chain of the capacitively coupled transmons where the first transmon is excited by a microwave generator \[\text{[6–8]}\], or in the array of optical cavities with the Kerr nonlinearity where the first cavity is excited by a laser. We mentioned that the minimal size chains consisting of two cavities is currently used to study a number of other fundamental problems \[\text{[9–15]}\]. In the present work, however, we focus exclusively on the transport problem where the main question is the current of Bose particles across the chain. As the main result, we show that the edge-driven systems can exhibit the exotic transport regime where the current of strongly interacting bosons is independent of the chain length and is insensitive to a weak disorder. This relates the reported results to the problem of super-fluidity of Bose gases \[\text{[16, 17]}\].

II. THE MODEL

In the rotating wave approximation the quantum Hamiltonian of the system under scrutiny has the form

\[
\hat{H} = \sum_{\ell=1}^{L} \hbar (\omega_{\ell} - \nu) \hat{n}_{\ell} - \frac{\hbar J}{2} \left(\sum_{\ell=1}^{L-1} \hat{a}_{\ell}^\dagger \hat{a}_{\ell+1} + \text{h.c.} \right) + \frac{\hbar^2 U}{2} \sum_{\ell=1}^{L} \hat{n}_{\ell}(\hat{n}_{\ell} - 1) + \frac{\sqrt{\hbar \Omega}}{2} (\hat{a}_{1}^\dagger + \hat{a}_{1}), \tag{1}
\]

where the index \(\ell\) labels the chain site, \(\hat{a}_{\ell}\) and \(\hat{a}_{\ell}^\dagger\) are the creation and annihilation bosonic operators commuting to unity, \(\hat{n}_{\ell} = \hat{a}_{\ell}^\dagger \hat{a}_{\ell}\) is the number operators, \(\omega_{\ell}\) are the linear frequencies (on-site energies), \(J\) is the hopping matrix element, \(U\) the interaction constant (nonlinearity), and the Rabi frequency \(\Omega\) characterizes the strength of the external monochromatic driving with the frequency \(\nu\). We shall denote the detuning \(\nu - \omega_{\ell}\) by \(\Delta_{\ell}\) where the absence of the subindex \(\ell\) will imply identical on-site energies.

Assuming only the last oscillator is subject to decay, the governing master equation reads

\[
\frac{\partial \hat{R}}{\partial t} = -\frac{i}{\hbar} [\hat{H}, \hat{R}] - \frac{\gamma}{2} \left(\hat{a}_{L}^\dagger \hat{R} \hat{a}_{L} - 2 \hat{a}_{L} \hat{R} \hat{a}_{L}^\dagger + \hat{R} \hat{a}_{L}^\dagger \hat{a}_{L} \right), \tag{2}
\]

where \(\gamma\) is the relaxation constant. We mention in passing that the results reported below also hold true in the case where the other oscillators are also subject to decay but their decay rates \(\gamma_{\ell} \ll \gamma\). To address the quantum-to-classical correspondence, we incorporate in the Hamiltonian \[\text{[1]}\] and the master equation \[\text{[2]}\] the effective Planck constant \(\hbar\), the physical meaning of which will be explained in the beginning of Sec. \[\text{V}\].

Our main object of interest is the single-particle density matrix (SPDM)

\[
\hat{\rho}(t) = \text{Tr}[\hat{a}_{m}^\dagger \hat{a}_{m} \mathcal{R}(t)]. \tag{3}
\]
The diagonal elements of this matrix give the occupation numbers of the chain sites while the sub-diagonal determines the current across the chain

\[j(t) = \frac{1}{L-1} \text{Tr}[\hat{j}\hat{\rho}(t)], \quad (4) \]

where \(\hat{j} \) is the single-particle current operator with the elements \(j_{\ell,\ell'} = J(\delta_{\ell,\ell+1} - \text{h.c.})/2i. \) At the same time, as it follows from the continuity equation, the stationary current \(j = j(t \to \infty) \) is given by the population of the last site multiplied by \(\gamma \), i.e., \(j = \gamma |a_L|^2 \).

III. SEMICLASSICAL ANALYSIS

The semiclassical approximation associates the mean values of the creation and annihilation operators times \(\sqrt{\hbar} \) with the complex conjugated canonical variables \(a_\ell \) and \(a_\ell^\dagger \). Then the governing equations take the form

\[i\dot{a}_\ell = (-\Delta + U|a_\ell|^2)a_\ell - \frac{J}{2}(a_{\ell+1} + a_{\ell-1}), \]
\[i\dot{a}_L = (-\Delta + U|a_L|^2)a_L - \frac{J}{2}a_{L-1} - \frac{\gamma}{2}a_L. \quad (5) \]

Due to contraction of the phase volume for \(\gamma \neq 0 \), an arbitrary trajectories \(a(t) \) evolves to some attractor in the multidimensional phase space of the system. In what follows we focus on attractors which ensure the ballistic transport of excitations from the first to the last oscillator. We begin with the case of vanishing inter-particle interaction where the system has a single attractor – a simple focus.

A. Vanishing inter-particle interaction

For \(U = 0 \) the system of coupled differential equations can be decoupled by introducing the new canonical variables given by the eigenmodes \(X^{(n)}_\ell \) of the undriven \((\Omega = 0) \) chain. Since we excite the first oscillator and the stationary current is proportional to the squared amplitude of the last oscillator, we have

\[j \sim \left| \sum_{n=1}^{L} X^{(n)}_1 X^{(n)}_L \right|^2, \quad (6) \]

where \(\epsilon_n \) are the chain complex eigenfrequencies with \(\text{Re}[\epsilon_n] \approx -J\cos(\pi n/L) \) and \(\text{Im}[\epsilon_n] \approx \gamma \). It follows from Eq. (6) that the stationary current as a function of the detuning shows \(L \) peaks in the interval \(|\Delta| < J/2 \) — the phenomenon known as the resonant transmission. The resonant transmission is illustrated in Fig. 1(a) for \(L = 2 \). If \(|U| \ll J \), the transmission peaks slightly bend to the left or right, depending on the sign of \(U \). However, with a further increase of the interaction constant, the discussed simple attractor show a cascade of bifurcations, leading to a number of qualitatively different transport regimes. We also would like to mention that the resonant transmission Eq. (6) is sensitive to the on-site disorder \(\omega_\ell \) due to the presence of the product \(X^{(n)}_1 X^{(n)}_L \) in Eq. (4), which tends to zero in the regime of Anderson’s localization.

B. Strong inter-particle interaction

Next, we address the case \(|U| > J \) and, to be specific, we shall consider positive \(U \) from now on. In this case the attractor, which ensures the ballistic transport, corresponds to the synchronized motion of the oscillators,

\[a_{\ell+1} = a_\ell e^{i\phi}, \quad \phi \approx \arcsin(\gamma/J). \quad (7) \]

Equation (7) is illustrated in Fig. 2 for \(L = 8 \). The crucial feature of the transporting state (7) is the existence of the critical detuning \(\Delta_{cr} \) above which the basin of the discussed attractor shrinks to zero.

Let us discuss the results shown in Fig. 1(b) in more detail. First, we notice that in the interval \(0 < \Delta < \Delta_{cr} \) the squared amplitudes \(|a_\ell|^2 \) grow approximately linear with the detuning, i.e., \(|a_\ell|^2 \approx \Delta/U \). For \(\gamma = 0 \) this linear dependence exhibits the phenomenon of capturing in the nonlinear resonance [19]. In the presence of dissipation, however, the nonlinear resonance degenerates into the limit cycle. This transformation of the nonlinear resonance into the limit cycle can be studied in full details for \(L = 1 \), i.e, for the dissipative driven nonlinear oscillator. In that system the stationary amplitude of the oscillator is given by the relation [20],

\[a = \frac{\Omega/2}{U|a|^2 - \Delta - i\gamma/2}. \quad (8) \]
FIG. 2. The stationary complex amplitude of the local oscillators in the chain of the length $L=8$ for $-4<\Delta<2.5$. The dashed line is Eq. (8). The other system parameters are as in Fig. 1.

where $|a|^2$ obeys the algebraic equation

$$|a|^2 = \frac{(\Omega/2)^2}{(U|a|^2 - \Delta)^2 + (\gamma/2)^2}. \quad (9)$$

We found that Eq. (8) and Eq. (9) provide a good approximation for the amplitude of the first oscillator in the chain if $L > 1$, see dashed line in Fig. 2. Thus, we can use Eq. (9) to obtain an estimate for Δ_{cr},

$$\Delta_{cr} \approx U(\Omega/\gamma)^2. \quad (10)$$

It is seen in Fig. 1(b) that, when we exceed this critical value, the amplitude of the last oscillator in the chain drops almost to zero, which results in the abrupt decrease of the current.

C. Basin size

For future purposes we need to know the basin of the discussed attractor. Although the visualizing the attractor basin in the multi-dimensional phase space is difficult, one can easily estimate its size [21]. To do this we randomly perturbed the stationary amplitude of the last oscillator as $a_L \to a_L + \xi$, where ξ samples the Gaussian distribution with the width σ, and checked whether the perturbed trajectory attracts back to the solution [22].

Approximating the attractor basin by the circle (more precisely, the basin projection on the a_L-plane) we expect that the number of not-attracted trajectories grows with the increase of σ as

$$S \sim \sigma^2 \exp \left(\frac{-r^2}{2\sigma^2} \right), \quad (11)$$

where r is the circle radius. Next, interpolating the numerical data by the function (11) we find $r = r(\Delta)$, see Fig. 3. It is seen in Fig. 3 that the basin size decreases approximately linearly with Δ.

D. Adiabatic passage

We conclude this section by a remark that the results presented in Fig. 1 and Fig. 2 can be fairly reproduced by using the adiabatic passage where the detuning Δ is slowly changed in time. For the figures parameters we found no difference between the stationary and quasi-stationary solutions if the sweeping β, $\beta = d\Delta/dt$, is smaller than 100 tunneling periods $T = 2\pi/J$ per unit interval of Δ. It should be also stressed that, since we chose $U > 0$, we consider positive β. If the sweeping direction was inverted, we would observe very different dynamical regimes, including the limit cycle in the frequency interval $0.37 < \Delta < 0.78$ ($L=2$) where the oscillator amplitudes periodically change in time.

IV. QUANTUM DYNAMICS

In this section we compare the results of the semi-classical analysis with the solution of the master equation [2]. We solve the master equation in the Hilbert space given by the direct sum of the subspaces associated with the fixed number of particles in the chain, $N = 0, 1, \ldots, N_{\text{max}}$ where N_{max} is the truncation parameter. We control the accuracy by checking the convergence of the results as N_{max} is increased.

First, we study the transporting state of the system for $U = 0$. We find this state by sweeping the detuning Δ with a fixed rate β in the interval $|\Delta| \gg J$. We take precaution that the rate β is small enough to insure the adiabatic regime. The upper panel in Fig. 4 shows eigenvalues $\lambda_n = \lambda_n(\Delta)$ of the stationary SPDM of the system with $L = 2$ sites. Notice that the matrix has only one
The pseudoclassical approach is an approximation to the exact quantum dynamics through series expansion in the parameter $\hbar = 1/\bar{n}$. It substitutes the master equation for the system density matrix by the Fokker-Planck equation for the classical distribution function $f = f(a, a^*, t)$ and, in this sense, is equivalent to the truncated Wigner function approximation in the single-particle quantum mechanics. Explicitly, we have

$$\frac{\partial f}{\partial t} = \{\mathcal{H}, f\} + \frac{\gamma}{2} \left(\frac{\partial^2 f}{\partial a\partial a^*} - \frac{\partial f}{\partial a} \frac{\partial f}{\partial a^*} \right) + \frac{\hbar \gamma}{2} \frac{\partial^2 f}{\partial a\partial a^*},$$

where

$$\mathcal{H} = \sum_{\ell=1}^{L} \left[-(\Delta + \hbar U)|a_\ell|^2 + \frac{U}{2}|a_\ell|^4 \right]$$

and $\{\ldots, \ldots\}$ denote the Poisson brackets.

Let us discuss the meaning of different terms in the displayed equation. The first term in the right-hand-side of this equation is the Liouville equation for the conservative chain. The second term describes the contraction of the phase volume in the dissipative chain and, thus, can be referred to as friction. Finally, the last term describes the diffusion. Using Eq. (13) the SPDM is found as the phase-space average,

$$\rho_{\ell,m}(t) = \int a_\ell^* a_m f(a, a^*, t) dada^*.$$

Usually, one evaluates the multi-dimensional integral in Eq. (14) by putting into correspondence to the Fokker-Planck equation the following Langevin equation,

$$i\dot{a}_\ell = \frac{\partial H}{\partial a_\ell^*} - i\frac{\gamma}{2} \delta_{\ell,L} a_\ell + \sqrt{\frac{\hbar \gamma}{2}} \delta_{\ell,L} \xi(t)$$

where $\xi(t)$ is the δ-correlated white noise. Then the elements of SPDM are calculated as

$$\rho_{\ell,m}(t) = a_\ell^*(t) a_m(t) - \frac{1}{2} \delta_{\ell,m},$$

where the bar denotes the average over different realizations of the stochastic force $\xi(t)$.

A. Comparison with the exact results

The primary advantage of the pseudoclassical approach as compared to the straightforward solution of the master equation is simplicity of numerical simulations which allows us to go deep in the semiclassical region. Of course, on the quantitative level, the pseudoclassical approach gives some systematic error. However, on the
The mean number of bosons in the dimer times the effective Planck constant as a function of time for \(\Delta = 1 \), blue line, \(\Delta = 1.24 \), green line, and \(\Delta = 1.30 \), brown line. The value of the effective Planck constant \(\bar{\hbar} = 1/8 \). The inset shows the lifetime of the transporting state as the function of \(\Delta \) for \(L = 2 \) (open circles) and \(L = 8 \) (asterisks).

To determine the lifetime \(\tau = \tau(\Delta, \bar{\hbar}) \) of the transporting state we evolve the system to \(\Delta < \Delta_{eq} \) and then fix this detuning for the rest of time, see Fig. 6. Then, by approximating the decay dynamics by the exponential function, we extract \(\tau \). The dependence of the lifetime \(\tau \) on \(\Delta \) is depicted in the inset in Fig. 6. This result suggests the following estimate for the lifetime,

\[
\tau \sim \exp \left(\frac{r}{\bar{\hbar}} \right),
\]

where \(r = r(\Delta) \) is the basin size of the classical attractor. Roughly, Eq. (17) compares the minimal-size wave-packet with the basin size and, to insure the exponentially long lifetime of the considered transporting state, one should satisfy the condition \(r(\Delta) \gg \hbar \).

C. Long chain

We repeated the above numerical simulations for the chain of the length \(L = 8 \) and obtained essentially the same results, see inset in Fig. 6. The only new aspect is that for a long chain we can address the Anderson problem. It was found that the discussed transporting state is insensitive to a weak on-site disorder \(|\omega_\ell - \omega| \leq \epsilon \ll \Delta \). One finds a qualitative expiation for this result in terms of the synchronization theory. In fact, the considered system of coupled nonlinear oscillators can be viewed as one of physical realization of the Kuramoto model [25]. The important property of the Kuramoto model is that synchronization may occur for oscillators with different eigenfrequencies. In our case this means that the nonlinear oscillators will be synchronized also in the presence of the on-site disorder, i.e., different linear frequencies \(\omega_\ell \).

B. Lifetime of the transporting state

Quantum dynamics of the system calculated by using the pseudoclassical approach is exemplified in Fig. 5. Shown are the mean number of bosons in the chain \(\bar{n} \), \(\bar{n} = \text{Tr}[\hat{\rho}] = \sum_{n} \lambda_n \), times the effective Planck constant. It is seen that for \(\bar{\hbar} \to 0 \) the quantum dynamics converges to the classical result, where the destruction of the ballistic transport takes place at \(\Delta_{cr} \approx 3.0 \). The depicted in Fig. 5 results suggest the other critical detuning,

\[
\Delta_{qu} = \Delta_{qu}(\bar{\hbar}, \beta) \leq \Delta_{cr} ,
\]

at which the numbers of bosons in the chain is maximal. The fundamental reason for the inequality \(\Delta_{qu} \leq \Delta_{cr} \) is the metastable character of the quantum attractor associated with the discussed transporting state.

FIG. 5. The mean number of bosons in the dimer times the effective Planck constant according to the pseudoclassical approach (solid lines, average over 3600 realizations) for different values of the effective Planck constant. The other system parameters are \(J = 0.5, U = 0.5, \Omega = 0.5, \gamma = 0.2, \) and the inverse sweeping rate \(2\pi \cdot 800/6 \). The dashed line shows the classical result.

FIG. 6. Main panel: The mean number of bosons in the dimer times the effective Planck constant as a function of time for \(\Delta = 1 \), blue line, \(\Delta = 1.24 \), green line, and \(\Delta = 1.30 \), brown line. The value of the effective Planck constant \(\bar{\hbar} = 1/8 \). The inset shows the lifetime of the transporting state as the function of \(\Delta \) for \(L = 2 \) (open circles) and \(L = 8 \) (asterisks).
VI. CONCLUSION

We study the transport of interacting Bose particles in the open Bose-Hubbard chain where the particles are injected in the first site of the chain and withdrawn from the last site. The analysis is done by using the pseudoclassical approximation which puts in correspondence to the open Bose-Hubbard model the chain of coupled nonlinear oscillators and where the transport of particles corresponds to the transport of excitations from the first to the last oscillator. It is shown that one can ensure very efficient transport of excitations by capturing the system into the classical attractor which describes the synchronized oscillators. The quantum counterpart of this attractor corresponds to the quantum transporting state which, however, has a finite lifetime. We obtain an estimate for the lifetime of this state and argue that it becomes exponentially long in the semiclassical limit.

VII. ACKNOWLEDGEMENT

This work has been supported by Russian Science Foundation through grant N19-12-00167.

[1] A. Ivanov, G. Kordas, A. Komnik, and S. Wimberger, “Bosonic transport through a chain of quantum dots,” The European Physical Journal B 86, 1–7 (2013).

[2] G. Kordas, D. Witthaut, P. Buonsante, A. Vezzani, R. Burioni, A.I. Karianikas, and S. Wimberger, “The dissipative Bose-Hubbard model,” The European Physical Journal Special Topics 224, 2127–2171 (2015).

[3] A.R. Kolovsky, Z. Denis, and S. Wimberger, “Landauer-Büttiker equation for bosonic carriers,” Physical Review A 98, 043623 (2018).

[4] A. A. Bychek, P. S. Muravev, D. N. Maksimov, and A. R. Kolovsky, “Open Bose-Hubbard chain: Pseudoclassical approach,” Physical Review E 101, 012208 (2020).

[5] P. S. Muravev, D. N. Maksimov, and A. R. Kolovsky, “Resonant transport of bosonic carriers through a quantum device,” Physical Review A 105, 013307 (2022).

[6] J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, and A. A. Houck, “Observation of a dissipation-induced classical to quantum transition,” Physical Review X 4, 031043 (2014).

[7] M. Fitzpatrick, N.M. Sundaresan, A.C.Y. Li, J. Koch, and A.A. Houck, “Observation of a dissipative phase transition in a one-dimensional circuit QED lattice,” Physical Review X 7, 011016 (2017).

[8] G.P. Fedorov, S.V. Remizov, D.S. Shapiro, W.V. Pogosov, E. Ergovera, I. Tsitsilin, M. Andronik, A.A. Dobronosova, I.A. Rodionov, O.V. Astafiev, and A.V. Ustinov, “Photon transport in a Bose-Hubbard chain of superconducting artificial atoms,” Physical Review Letters 126, 180503 (2021).

[9] K.G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B. Deveaud-Plédran, “Coherent oscillations in an exciton-polariton Josephson junction,” Physical review letters 105, 120403 (2010).

[10] M. Abbarchi, A. Amo, V.G. Sala, D.D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaître, G. Malpuech, and J. Bloch, “Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons,” Nature Physics 9, 275–279 (2013).

[11] Bin Cao, K.W. Mahmud, and M. Hafezi, “Two coupled nonlinear cavities in a driven-dissipative environment,” Physical Review A 94, 063805 (2016).

[12] W. Casteels and C. Ciuti, “Quantum entanglement in the spatial-symmetry-breaking phase transition of a driven-dissipative Bose-Hubbard dimer,” Physical Review A 95, 013812 (2017).

[13] S.R.K. Rodriguez, W. Casteels, F. Storme, N.C. Zambon, I. Sagnes, L. Le Gratiet, E. Galopin, A. Lemaître, A. Amo, C. Ciuti, and J. Bloch, “Probing a dissipative phase transition via dynamical optical hysteresis,” Physical review letters 118, 247402 (2017).

[14] C. Lledó and M.H. Szymańska, “A dissipative time crystal with or without Z_2 symmetry breaking,” New Journal of Physics 22, 075002 (2020).

[15] N.C. Zambon, S.R.K. Rodriguez, A. Lemaître, A. Harouri, L. Le Gratiet, I. Sagnes, P. St-Jean, S. Ravets, A. Amo, and J. Bloch, “Parametric instability in coupled nonlinear microcavities,” Physical Review A 102, 023526 (2020).

[16] G.E. Astrakharchik and L.P. Pitaevskii, “Motion of a heavy impurity through a Bose-Einstein condensate,” Physical Review A 70, 013608 (2004).

[17] A. Yu. Cherny, J.-S. Caux, and J. Brand, “Theory of superfluidity and drag force in the one-dimensional Bose gas,” Frontiers of Physics 7, 54–71 (2012).

[18] A. Giraldo, S.J. Masson, N.G.R. Broderick, and B. Krauskopf, “Semiclassical bifurcations and quantum trajectories: a case study of the open Bose-Hubbard dimer,” The European Physical Journal Special Topics 18, 1–17 (2022).

[19] A.J. Lichtenberg and M.A. Lieberman, Regular and stochastic motion (Springer Science & Business Media, 2013).

[20] L.D. Landau and E.M. Lifshitz, “Mechanics,” New York, 93 (1976).

[21] M.D. Shrimali, A. Prasad, R. Ramaswamy, and U. Feudel, “The nature of attractor basins in multistable systems,” International Journal of Bifurcation and Chaos 18, 1675–1688 (2008).

[22] K. Vogel and H. Risken, “Quasiprobability distributions in dispersive optical bistability,” Physical Review A 39, 4675–4683 (1989).

[23] Ianco C. and Cristiano C., “Quantum fluids of light,” Reviews of Modern Physics 85, 299–366 (2013).

[24] R.A. Kidd, M.K. Olsen, and J.F. Corney, “Quantum chaos in a Bose-Hubbard dimer with modulated tunneling,” Physical Review A 100, 10.1103/physreva.100.013625 (2019).

[25] S.H. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled
oscillators,” Physica D: Nonlinear Phenomena 143, 1–20 (2000).