Prostaglandin E₂ Regulates Renal Cell Carcinoma Invasion through the EP4 Receptor-Rap GTPase Signal Transduction Pathway*

Received for publication, September 21, 2010, and in revised form, August 2, 2011. Published, JBC Papers in Press, August 10, 2011, DOI 10.1074/jbc.M110.187344

Juanjuan Wu¹, Yushan Zhang¹, Nicole Frilot¹, Jae I. Kim¹, Wan-Ju Kim¹, and Yehia Daaka¹§‡

From the ¹Department of Pathology, Georgia Health Sciences University, Augusta, Georgia 30912 and the Departments of ²Urology and Prostate Disease Center and ³Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610

Kidney cancer is increasingly common, and the number of patients dying of this disease has also increased over the past several years (1). Kidney cancer accounts for roughly 4% of all cancer cases, and it occurs more often in males than in females. Common causes of kidney cancer have largely been attributed to genetic (e.g. inactivation of the von Hippel-Lindau gene product), environmental, and behavioral (e.g. smoking and diet) factors. Renal cell carcinoma (RCC)² accounts for the majority (90%) of kidney cancer cases (2) and mostly originates in proximal renal tubules. RCC comprises several distinct histological subtypes that are traditionally classified by light microscopy, including clear cell (80% of all RCC cases), papillary, chromophobe, and oncocytoma (3). Although RCC presents as a localized disease in the majority of cases, more than one-third of patients exhibit metastatic lesions (4) that produce the highest mortality of any adult urological cancer (5).

Prostaglandin E₂ (PGE₂) is the predominant prostaglandin in the kidney, and a large body of evidence demonstrates that its levels are increased in patients diagnosed with cancer (13–16). PGE₂ exerts its effects on target cells through activation of cognate receptors named EP1, EP2, EP3, and EP4 (6, 17) that belong to the superfamily of G protein-coupled receptors. Stimulation with PGE₂ activates at least three distinct subfamilies of heterotrimeric G proteins, namely G_s, G_i, and G_α. In most cells, PGE₂-bound EP1 couples to G_s and induces the activation of protein kinase C through the release of Ca²⁺ ions from intracellular stores (18). EP3 couples predominantly to G_i and inhibits the accumulation of second messenger cAMP (19, 20). Stimulated EP2 and EP4 couple to G_i leading to synthesis of cAMP and activation of the cAMP-dependent protein kinase (PKA) (21, 22). Hence, PGE₂ transduces the multiple receptor-specific signaling events in target cells.

Emerging evidence implicates prostaglandins in cancer cell migration (23, 24). In this study, we explored the possible involvement of EPs and their downstream effectors in kidney cancer cell invasion. The results show that PGE₂ promotes kidney cancer cell invasion through activation of EP4 and small GTPase Rap proteins. Interference of EP4-to-Rap signaling with complementary pharmacologic and biologic reagents reduces invasion of the kidney cancer cells. EP4 protein expression is increased in malignant compared with benign human kidney cells and inversely correlates with Rap1GAP protein expression. These studies identify EP4 and Rap1GAP proteins as positive and negative regulators, respectively, of kidney cancer cell invasion, and suggest their utility as prognostic markers and therapeutic targets to limit patient morbidity and mortality.
 MATERIALS AND METHODS

Reagents—The mammalian expression plasmids were obtained as follows: FLAG epitope-tagged Rap1GAP from L. Quilliam (Indiana University) and YFP-Epac1-CFP from V. Nikolaev (University of Wuerzburg). Bacterial GST-RalGDS plasmid was obtained from J. Bos (University Medical Center Utrecht). HA epitope-tagged GAP domains of Rap1GAP were cloned by PCR amplification using the FLAG-Rap1GAP cDNA as a template, and all cDNA clones were verified by sequencing. Antibodies were obtained as follows: anti-EP1, anti-EP2, anti-EP3, and anti-EP4 from Cayman Chemical; anti-VASP from Millipore; anti-HA from Sigma; anti-Rap and anti-Rap1GAP from Santa Cruz; anti-GAPDH from Chemicon; and secondary antibodies from Jackson ImmunoResearch Laboratories. Reagents were obtained as follows: PGE2, AH23848, GW627368, H89, and anti-EP4 antibody (C terminus) blocking peptide from Cayman Chemical. Human embryonic kidney (HEK)-293 cells stably overexpressing EP4 were kind gift of J. Regan (University of Arizona).

Cell Culture—Human RCC7 and Caki-1 cells were maintained in RPMI1640, and HEK-293 cells in DMEM supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 10 mM HEPES buffer. The HK-2 cells were maintained in keratinocyte/SM medium with EGF, bovine pituitary extract, and 1% penicillin/streptomycin. Cells were transfected with the appropriate cDNA and Lipofectamine 2000 (Invitrogen), and experiments were performed 1–2 days after transfection. For stable overexpression of individual HA-tagged wild-type (GAP-WT) or mutated (GAP-K194A, GAP-K285A, and GAP-N290A) GAP domain of Rap1GAP, transfected RCC7 cells were generated and cultured in the presence of G418 (500 μg/ml). Control RCC7 cells (EV) were similarly generated using pcDNA3.1 empty vector. EP4 overexpressing EP4 were kind gift of J. Regan (University of Arizona). ERAT Activation Assay—Cells were transfected with a cDNA encoding CFP-Epac1-YFP fusion protein and seeded onto glass coverslips. After 48 h, cells were inspected with a SP2 scanning confocal microscope (Leica) and imaged using a 63×1.4 NA oil immersion objective. Cells were excited at 425 nm, and emission of CFP and YFP was detected simultaneously through 470 ± 20- and 530 ± 25-nm bandpass filters. Cells were continuously perfused with a solution (150 mM NaCl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 1.5 mM CaCl2, and 2.5 mM MgCl2) containing PGE2 in the absence or presence of AH23848 (5 μM). Solution changes were made by using a multiport attachment and perfusion capillary positioned directly in front of the cell under study. Exposure time was 200–500 s and images were taken every 10–30 s. Fluorescent images were background corrected by subtracting autofluorescence intensities of background with no cells. Data were digitized and the ratio of YFP/CFP emissions were calculated at different time points and normalized by dividing all ratios by the emission ratio just before stimulation.

Western Blot Analysis—Appropriately treated cells were lysed in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, pH 8, 1 mM EDTA, 0.25% (w/v) sodium deoxycholate, 0.1% (v/v) Nonidet P-40, 1 mM NaF, 1 mM sodium pyrophosphate, 100 μM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml of leupeptin, 10 μg/ml of aprotinin, and 0.7 μg/ml of pepstatin) and analyzed by SDS-PAGE and Western blotting. All primary antibodies were used at a dilution of 1:10,000 except Rap1GAP, which was used at a dilution of 1:500. For anti-EP4 antibody neutralization, blocking peptides (that target the C terminus of EP4) were pre-mixed with the anti-EP4 antibodies in blocking solution for 1 h prior to incubation with filter. Peroxidase-conjugated secondary antibodies were used at a dilution of 1:10,000, and membranes were developed using an ECL plus Western blotting Detection System (GE Healthcare).

RAP1GAP Suppresses RCC Invasion

PTGER4 (antisense), 5′-AGA CTG CAA AGA GCG TGA GG-3′. GAPDH primers were (sense) 5′-GGT CAT GAG TCC TTC CAC GAT-3′ and (antisense) 5′-CAT GGG TGT GAA CCA TGA GAA-3′. Calculation of relative mRNA of the probed genes were carried out by taking the normalized threshold cycle value (DCt) for each sample (DCt = Ct of Queried gene – Ct, GAPDH) – the DCt of the control samples (ΔDCt), and converting the difference to fold-expression using the following equation: fold = 2∧(−ΔΔCt). Experiments were repeated at least three times, each in triplicate.

FRET Assay—Cells were transfected with a cDNA encoding CFP-Epac1-YFP fusion protein and seeded onto glass coverslips. After 48 h, cells were inspected with a SP2 scanning confocal microscope (Leica) and imaged using a 63×1.4 NA oil immersion objective. Cells were excited at 425 nm, and emission of CFP and YFP was detected simultaneously through 470 ± 20- and 530 ± 25-nm bandpass filters. Cells were continuously perfused with a solution (150 mM NaCl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 1.5 mM CaCl2, and 2.5 mM MgCl2) containing PGE2 in the absence or presence of AH23848 (5 μM). Solution changes were made by using a multiport attachment and perfusion capillary positioned directly in front of the cell under study. Exposure time was 200–500 s and images were taken every 10–30 s. Fluorescent images were background corrected by subtracting autofluorescence intensities of background with no cells. Data were digitized and the ratio of YFP/CFP emissions were calculated at different time points and normalized by dividing all ratios by the emission ratio just before stimulation.

Western Blot Analysis—Appropriately treated cells were lysed in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, pH 8, 1 mM EDTA, 0.25% (w/v) sodium deoxycholate, 0.1% (v/v) Nonidet P-40, 1 mM NaF, 1 mM sodium pyrophosphate, 100 μM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml of leupeptin, 10 μg/ml of aprotinin, and 0.7 μg/ml of pepstatin) and analyzed by SDS-PAGE and Western blotting. All primary antibodies were used at a dilution of 1:10,000 except Rap1GAP, which was used at a dilution of 1:500. For anti-EP4 antibody neutralization, blocking peptides (that target the C terminus of EP4) were pre-mixed with the anti-EP4 antibodies in blocking solution for 1 h prior to incubation with filter. Peroxidase-conjugated secondary antibodies were used at a dilution of 1:10,000, and membranes were developed using an ECL plus Western blotting Detection System (GE Healthcare).

RAP1GAP Activation Assay—Rap activation was determined using an established pulldown method based on the specific binding of a GST fusion protein containing the Ras-binding domain of RalGDS (GST-RalGDS-RBD) to the active GTP-bound form of Rap (25, 26). Briefly, whole cell lysates were centrifuged at 14,000 × g for 10 min at 4 °C, and the supernatant was removed and assayed for protein concentration. The GST-tagged RalGDS-RBD protein was expressed in BL21 cells and purified using glutathione-Sepharose 4B beads and an equal amount was added to 500 μg of cell extract. Mixtures were incubated for 1 h at 4 °C, washed with PBS, and boiled in Laemmli sample buffer. The precipitated proteins were resolved by SDS-PAGE and analyzed by Western blotting to detect Rap1.
Rap1GAP Suppresses RCC Invasion

Cell Adhesion Assay—Cells were seeded in fibronectin-coated 96-well plates at 2×10^4 cells/well and treated, or not, with PGE$_2$ or FBS for 1 h at 37 °C. Wells were washed three times with PBS to remove non-adherent cells, followed by addition of ice-cold methanol for 10 min. Fixed cells were incubated with crystal violet (0.5%) solution for additional 10 min at ambient temperature, followed by repeated washing with water. Wells were allowed to dry and adherent stained cells were solubilized with SDS (1%) solution. Absorbance was determined at a wavelength of 570 nm.

Cell Invasion Assay—Cells were starved overnight in RPMI1640 containing 0.1% FBS, washed with PBS, and detached. A total of 2×10^5 cells in 100 μl were placed into a transwell chamber containing collagen-coated filters, placed on the feeder tray that contained RPMI1640 supplemented, or not, with PGE$_2$ at 37 °C in a humidified atmosphere. For experiments using EP4 antagonist AH23848 (1 and 5 μM), reagent was added to cells 10 and 30 min, respectively, prior to stimulation with PGE$_2$. Cells in the upper well were removed with cotton swabs. The membranes were then fixed with ethanol and stained with crystal violet. Invading cells were counted using a phase-contrast microscope and for each membrane, five randomly selected fields were counted.

Statistical Analysis—The significance of agonist-induced cellular response was analyzed by one-way analysis of variance with Tukey post-test or two-way analysis of variance with Bonferroni post-test and implied at $p < 0.05$. For quantitative PCR experiments, mean ± S.E. for final gene pool analysis was calculated by propagation of error (addition). All statistical analyses were done, and all graphs were generated, using GraphPad Prism 5.0 software (GraphPad). The x and y labels of all presented data were prepared using Adobe Illustrator CS5 suite (Adobe).

RESULTS

EP4 Is Expressed in Renal Cancer Cells—G protein-coupled receptor signaling arrays were used to compare the gene expression profile in renal cancer RCC7 cells to that in benign human kidney HK-2 cells. The results evidenced a distinct gene expression pattern between the malignant RCC7 and normal HK-2 cells. The RCC7 cells expressed elevated gene levels for prostaglandin E and D receptors, in comparison to the HK-2 cells. Four distinct genes encode for the prostaglandin E receptors (PTGER) and reverse transcription followed by real time quantitative PCR analysis confirmed expression of all four PTGER subtypes in both the RCC7 and HK-2 cells (Fig. 1A). The expression results also revealed a significant increase only in the PTGER4 gene level in the RCC7, compared with the HK-2 cells (Fig. 1A). The PTGER3 gene levels appeared to be more in the RCC7 compared with HK-2 cells, but the increase did not reach statistical significance. In comparison to GAPDH gene expression, PTGER2 gene levels were expressed most in HK-2 and RCC7 cells (Fig. 1B). Western blot analysis evidenced the expression of bands corresponding to the reported EP1 (44 kDa), EP2 (53 kDa), EP3 (52 and 62 kDa), and EP4 (52 kDa) protein masses (Fig. 1C). The results also confirmed the conclusion that EP4 protein expression is elevated in cancer RCC7, compared with benign HK-2 cells (Fig. 1C). To ascertain specificity of the anti-EP4 antibodies, EP4 antibody blocking peptides were pre-mixed with the antibodies followed by Western blot analysis. Results show that neutralization of anti-EP4 antibodies yielded a specific decrease in the intensity of the expected EP4 (52 kDa) protein band (Fig. 1D, compare arrow pointing band in upper and lower panels). Increased intensity of protein bands that migrated with apparent molecular masses predicted for EP4 in HEK-EP4 cells that stably overexpressing the EP4 gene or in HEK + HA-EP4 cells that were transiently transfected with HA-EP4 cDNA. Arrows on left indicate EP4 protein. For C and E, contemporaneous short and long exposures of the same filter are shown to provide visual evidence for the relative expression of the EP4 protein.
EP4 Mediates the PGE2-induced RCC7 Cell Invasion—Stimulation of non-kidney cancer cells with PGE2 promotes cell growth and survival (15, 31), and we tested whether activation of endogenous EPs with PGE2 could also impact the RCC7 cell proliferation. Results shown in Fig. 2A demonstrate that, whereas treatment with serum caused a significant increase in the RCC7 cell number, exposure to various concentrations of PGE2 had no such effect.

Additional human kidney cancer cell lines (obtained from the NCI) and found it to be expressed at high levels in aggressive SN12C and lower in less aggressive 786-O, TK10, and Caki-1 (27–30) cells (Fig. 1E). These findings support the idea that EP4 expression is increased in human renal cancer compared with benign cells.

FIGURE 2. EP4 mediates the PGE2-induced RCC7 cell invasion. A, effect of PGE2 on RCC7 cell proliferation. Cells were stimulated with PGE2 (or 10% FBS used as a control) for 2 days at 37 °C, harvested, and incubated with 0.1% trypan blue stain. Cells excluding the dye were counted under light microscopy with a hemocytometer. Each point represents the mean ± S.E. of values obtained from four experiments. *, p < 0.05 versus non-stimulated (NS) samples. B, PGE2 promotes RCC7 cell invasion. Equal number of RCC7 or HK-2 cells were starved overnight and allowed to invade collagen-coated transwell filters in the presence or absence of PGE2 (10 μM). Cells that migrated to the bottom of the filter were stained with crystal violet and five fields were randomly selected and counted using a phase-contrast microscope. Each point represents the mean ± S.E. of values obtained from five experiments. *, p < 0.05 versus non-stimulated (NS) samples.

C, effect of EP4 antagonists AH23848 and GW627368 on RCC7 cell invasion. Invasion assays were done using cells pre-treated for 10 min, or not, with AH23848 (5 μM) or GW627368 (1 μM) and stimulated with PGE2 (5 nM). Data represent the fold-increase relative to nonstimulated values and *, p < 0.05. D, knockdown of endogenous EP4 expression attenuates the PGE2-induced RCC7 invasion. Cells stably expressing shGFP (control) or shEP4 were treated as in B. Five fields were randomly selected and counted and each point represents the mean ± S.E. of values obtained from three experiments. *, p < 0.05 versus corresponding nonstimulated samples. E, effect of PGE2 (5 nM) on the invasion of Caki-1 cells. Cells were treated and analyzed exactly as in B. *, p < 0.05 versus corresponding NS samples.
PGE\textsubscript{2} Promotes Rap Activation—In most cell types, activated EP4 couples to heterotrimeric G\textsubscript{i} proteins leading to the synthesis of second messenger cAMP through activation of adenyl cyclases (19, 22). Stimulation of the RCC7 cells with PGE\textsubscript{2} induced the dose-dependent accumulation of cAMP that was inhibited by the ligand antagonist AH23848 (data not shown), demonstrating a principally EP4-mediated signal. The treatment with AH23848 had no measurable effect on the PGE\textsubscript{2} and G\textsubscript{i}-coupled EP1-mediated Ca2+ mobilization. The cAMP acts as a master regulator of several effectors, including PKA, ion channels, and Epac, a guanine nucleotide exchange factor for small GTPase Rap proteins (33, 34). To begin to elucidate the signaling pathway(s) connecting the PGE\textsubscript{2}-EP4 module to RCC7 cell invasion, we first established the PGE\textsubscript{2}-mediated PKA activation. Stimulation of RCC7 cells with PGE\textsubscript{2} induced a dose-dependent and EP4-mediated (i.e. signal is sensitive to AH23848) VASP phosphorylation (Fig. 3A). VASP is a phosphoprotein, and both PKA andPKG have been implicated as responsible kinases. Treatment with cAMP mimetic dibutyryl-cAMP increased VASP phosphorylation, whereas treatment with the cAMP antagonist (R3cAMP) blocked the PGE\textsubscript{2}- and PGE\textsubscript{1}-OH-induced VASP phosphorylation (data not shown). Moreover, treatment with H89, a selective PKA inhibitor (35), decreased VASP phosphorylation in a dose-dependent manner (Fig. 3B), demonstrating the PGE\textsubscript{2}-dependent PKA activation. Remarkably, similar treatment with H89 concentrations capable of obliterating the PGE\textsubscript{2}-induced VASP phosphorylation (Fig. 3B) had no significant effects on the PGE\textsubscript{2}-mediated cell invasion (Fig. 3C), suggesting PKA exerts little impact on the PGE\textsubscript{2}-mediated RCC7 cell invasion.

In addition to PKA, cAMP binds to and activates the Rap guanine nucleotide exchange factor Epac (33, 36). Using Forster resonance energy transfer (FRET) to measure activation-dependent conformational changes in response to cAMP binding (37), we are able to show that PGE\textsubscript{2} induces Epac activation (Fig. 4A) in RCC7 cells ectopically expressing Epac1 (fused to CFP at the amino terminus and to YFP at the carboxyl terminus). The PGE\textsubscript{2}-induced FRET signal was mediated by EP4; antagonism with AH23848 inhibited the FRET response, and a second challenge with PGE\textsubscript{2} (after washing cells) elicited a robust FRET signal, excluding the possibility of Ep4 desensitization throughout the duration of the experiment (Fig. 4A). PGE\textsubscript{2} also induced a significant increase in the levels of GTP-bound Rap1 (Fig. 4, B and C), as determined with a GST pulldown assay using the Ras-binding domain (RBD) of Ral GDP-dissociation stimulator (Ral-GDS). Remarkably, the PGE\textsubscript{2}-mediated Rap1-GTP accumulation was inhibited when cells were pretreated with the EP4 antagonist AH23848 (Fig. 4, B and C), evidencing an EP4-dependent signal. To directly implicate Epac in PGE\textsubscript{2}-induced Rap1-GTP accumulation, we knocked down expression of endogenous Epac1 and -2 and examined Rap-GTP levels. Results show that treatment with Epac siRNA abrogated the Rap1-GTP accumulation following stimulation with PGE\textsubscript{2} (Fig. 4D), providing support to the conclusion that PGE\textsubscript{2} activates Rap, at least in part, through Epac.

Rap1-GTP accumulation reached maximal levels at PGE\textsubscript{2} concentrations (0.5–5 nM) that parallel doses required to induce the RCC7 cell invasion (Fig. 2B). To directly link the PGE\textsubscript{2}-EP4-mediated RCC7 cell invasion to Rap activation, we created a series of polyclonal cell lines that express either the wild-type or enzymatically inactive GTPase activating protein (GAP) domain only (34, 38, 39) of the Rap inactivator Rap1GAP (Fig. 5A). Rap1GAP acts as a Rap inactivator by stimulating the low intrinsic GTPase activity of the Rap and promoting the GTP hydrolysis. Highly invariant lysine 194 and 285 and asparagine-290 residues are essential for the GAP activity of Rap1GAP; mutation of Lys-194 and Lys-285 reduces Rap1GAP activity by 25- and 100-fold, respectively, and mutation of Asn-290 eliminates any measurable activity (38, 39). Consistent with these results, we find that expression of the wild-type GAP domain only of Rap1GAP obliterates the Rap1 activation (Fig. 5B), whereas expression of the GAP-impaired domains of Rap1GAP showed little effect on the Rap1 activation (Fig. 5B).

Signaling by activated EP4 and Rap is interdicted by the Rap inactivator Rap1GAP. Protein expression analysis revealed that the invasive (Fig. 2) and metastatic RCC7 (data not shown), like
aggressive prostate cancer PC3 cells (40), express less Rap1GAP protein (Fig. 5C). In contrast, the weakly tumorigenic and not metastatic prostate cancer LNCaP cells (40) expressed higher levels of the Rap1GAP protein (Fig. 5C), in agreement with a recent report (41), and supporting the proposition that Rap1GAP expression is lost/decreased in the aggressive cancer cells. To provide evidence for this possibility, we screened the human kidney cancer cell lines (obtained from NCI) for expression of the Rap1GAP and found 60% of the cell lines (3 of 5) do not express detectable Rap1GAP protein (Fig. 5C). Hence,
Rap1GAP Suppresses RCC Invasion

FIGURE 6. Rap mediates the PGE2-induced RCC7 cell invasion. A, role of Rap signaling in RCC7 cell proliferation. Cells stably expressing wild-type or mutated GAP domains of Rap1GAP were grown in starvation medium, or in medium containing 10% fetal bovine serum. The cells were cultured for 3 days, harvested, and stained with trypan blue. The cells excluding the dye were counted under light microscopy with a hemocytometer. Each point represents the mean ± S.E. of values obtained from three experiments. * p < 0.05 versus same cell type in starvation medium. NS, non-stimulated; WT, control wild-type RCC7 cells; EV, RCC7 cells transduced by empty vector.

B, PGE2 induces the Rap-mediated RCC7 cell invasion. RCC7 cells stably expressing the GAP domain (wild-type, K194A, K285A, or N290A) of Rap1GAP were allowed to invade collagen-coated transwell filters in response to stimulation with PGE2 (5 nM). Cells that migrated to the bottom side of the filter were stained and inspected using a phase-contrast microscope. Cells in randomly selected five fields were counted and each experiment was repeated three times. * p < 0.05 versus not stimulated (NS) samples. WT, wild-type RCC7 cells; EV, RCC7 cells stably expressing empty vector.

Rap1GAP expression (in both prostate and kidney cancer cell lines) coincides with weak metastatic character, and absence of Rap1GAP expression correlates with the metastatic potential.

Rap Mediates the PGE2-induced RCC7 Cell Invasion—Taking advantage of the reagents that we generated (i.e. the RCC7 cell lines that stably express wild-type or mutated GAP domains of Rap1GAP), we sought to implicate Rap signaling in the PGE2-mediated RCC7 cell invasion. First, we determined the effect of expressing the various GAP domains of Rap1GAP on the RCC7 cell proliferation in serum. The RCC7 cell clones exhibited similar fold-increases in their growth rates, suggesting Rap signaling does not impact proliferation of the RCC7 cells (Fig. 6A). However, PGE2-induced cell invasion was dramatically impaired in the RCC7 cells that express wild-type GAP domain of Rap1GAP (GAP-WT), but not in the cells that express the inactive forms of the GAP domain of Rap1GAP (Fig. 6B). Together, these results demonstrate that PGE2-mediated RCC7 cell invasion is controlled, at least in part, by a EP4 → Rap signal.

DISCUSSION

Majority of kidney cancer-related deaths result from cancer metastasis to distal organs and the prognosis of patients with metastatic disease is poor with a median survival of 10 months (4, 42, 43). Although surgery is highly effective for the treatment of localized low-grade RCC (43), current management options of patients diagnosed with locally advanced or metastatic kidney cancer are not curative, reinforcing the need to identify mechanisms involved in kidney cancer initiation, survival, and metastasis as a prerequisite for discovering effective therapeutic agents. The major finding of this study is that PGE2 promotes clear cell RCC cell invasion by activating cognate receptor EP4, thereby leading to the activation of small GTPase Rap. As depicted schematically in Fig. 7A, the signaling cascade connecting stimulated EP4 to Rap may include heterotrimeric Gαs protein, cAMP, and the Rap activator Epac. Under physiologic conditions, this proinvasive signal is counterbalanced by the Rap inactivator Rap1GAP, whose expression is lost in the clear cell RCC.

PGE2 is a product of the COX-2 enzyme that is overexpressed under pathophysiologic conditions, including kidney cancer (8–10), and is associated with poor prognosis and reduced survival time. Specific COX-2 inhibitors have been tried as therapeutics to treat cancer patients but unwanted cardiovascular and renal (11, 12) side effects limited their application and emphasized a need to identify COX-2 effectors for therapeutic intervention. Expression of the PGE2 receptor EP4 is elevated in RCC cells, and it mediates RCC7 cell invasion. Hence, the targeting of EP4 with specific ligand antagonists or neutralizing antibodies may harness the benefits to interfere with the RCC cell invasion, whereas circumventing the health safety concerns associated with specific COX-2 inhibitors.

Activated EP4 initiates multiple signaling pathways that are transduced by activated Gαs (Fig. 7A), and our gene array results demonstrated the increased expression of Gαs in malignant RCC7 compared with benign HK-2 kidney epithelial cells (data not shown). Activating mutations of GNAS (referred to as gsp oncogene) have been detected in a number of endocrine malignancies, including pituitary and thyroid adenomas (44, 45) and Leydig cell tumors (46). More recent work has revealed activating Gαs mutations in kidney (47) and colorectal and breast (48–50) cancers, and increased Gαs expression in breast cancer associates with poor prognosis (49). Somatic (tumor specific) activating mutations of the GNAS were found in a significant portion of clear cell RCC cases, and it was reported that 16% of the patients (5 of 30) diagnosed with clear cell RCC expressed mutations of the GNAS (47), rendering the enzyme constitutively active. These results link Gαs signaling to kidney carcinogenesis and are consistent with the conclusion that activated EP4 (that signals through Gαs) associates with kidney cancer.

Activated Gαs transduces signals mainly through adenylyl cyclases that produce cAMP (Fig. 7A). The best studied effector of cAMP is PKA, which has been demonstrated to exert cell type- and context-dependent responses ranging from induction of cell proliferation to inhibition of cell survival. Our results show that PKA does not significantly impact the PGE2-
regulated RCC7 cell invasion. Rather, we find that Rap mediates the effects of EP4-induced RCC7 cell invasion. Data from several in vitro and in vivo cell-based and mouse models provide evidence that aberrant Rap1 activation, either through activating mutations in its exchange factors or by inactivating mutations in its GAPs, contribute to several types of malignancies (51). Of note, Rap may be activated by several guanine exchange factors, including Epac, C3G, PDZ-GEF, RasGRP, phospho-(51). Of note, Rap may be activated by several guanine exchange factors, including Epac, C3G, PDZ-GEF, RasGRP, phospho-

FIGURE 7. Rap mediates the cell adhesion. A, schematic presentation of the signal relay from activated EP4 to Rap and cell invasion. AA, arachidonic acid; AC, adenyl cyclase. B, effect of Rap activity on cell adhesion. RCC7 cells stably expressing empty vector (EV) or the GAP domain (GAP-WT) of Rap1GAP were suspended in starvation medium supplemented, or not, with PGE2 or FBS. Adherent cells were stained with crystal violet and dye absorbance was measured at a wavelength of 570 nm. Data are presented as fold-increase above basal, where the basal absorbance in untreated cells is assigned a value of 1.0. Data shown represent the mean ± S.E. from three separate experiments. *, p < 0.05 versus nonstimulated (NS) control values. EV and GAP-WT denote, respectively, RCC7 cells stably expressing empty vector and GAP domain of Rap1GAP. C, effect of PGE2 on E-cadherin expression. RCC7 cells were treated, or not, with PGE2 for 24 h and lysates were analyzed by Western blotting for expression of E-cadherin (upper panel) and GAPDH (lower panel) proteins.

In summary, we have uncovered a PGE2-controlled signaling pathway that regulates the clear cell RCC cell invasion. The responsible signal pathway contains drug targetable intermediates, including EP4, Epac, and Rap1GAP that may be used to benefit patients with progressive disease. The absence of Rap1GAP together with increased EP4 protein expression in localized tumor cells may also serve as early markers for the development of a more aggressive, invasive phenotype. EP4 signaling may be interdicted with specific ligand antagonists as G protein-coupled receptors have proven to be viable drug targets, accounting for 40–60% of all therapeutic drugs. Hence, the combined targeted inhibition of EP4 activation and rescued expression of Rap1GAP may improve prognosis of patients diagnosed with advanced kidney cancer.

Acknowledgments—We thank our colleagues for providing valuable reagents and the NCI for providing the NCI-60 cancer cell lysate. We also thank Drs. N. Lambert, Z. Nie, P. Arora, and T. Polascik for technical assistance and advice.

REFERENCES
1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M. J. (2009) CA Cancer J. Clin. 59, 225–249
2. Biswas, S., and Eisen, T. (2009) Nat. Rev. Clin. Oncol. 6, 478–487
3. Young, A. N., Dale, J., Yin-Goen, Q., Harris, W. B., Petros, J. A., Datta, M. W., Wang, M. D., Marshall, F. F., and Amin, M. B. (2006) Urology 67, 873–880
4. Schlesinger-Raab, A., Treiber, U., Zaak, D., Höldel, D., and Engel, J. (2008) Eur. J. Cancer 44, 2485–2495
5. Murai, M., and Oya, M. (2004) Curr. Opin. Urol. 14, 229–233
Rap1GAP Suppresses RCC Invasion

6. Hao, C. M., and Breyer, M. D. (2008) *Annu. Rev. Physiol.* 70, 357–377
7. Zeldin, D. C. (2001) *J. Biol. Chem.* 276, 36059–36062
8. Chen, Q., Shinohara, N., Abe, T., Harabayashi, T., and Nonomura, K. (2004) *J. Urol.* 172, 2153–2157
9. Mungan, M. U., Gurel, D., Canda, A. E., Tuna, B., Yorukoglu, K., and Kirkali, Z. (2006) *Eur. Urol.* 50, 92–97
10. Tawfik, O. W., Kramer, B., Shideler, B., Danley, M., Kimler, B. F., and Holzbeierlein, J. (2007) *Arch. Pathol. Lab. Med.* 131, 261–267
11. Cheng, H. F., and Harris, R. C. (2005) *Curr. Pharm. Des.* 11, 1795–1804
12. Panosio, B., Zhao, J., Riedl, J., Zwartkruis, F., and van der Krogt, G. (2004) *J. Biol. Chem.* 279, 31525–31531