Anticoagulant activity of a natural protein purified from *Hypomesus olidus*

Mengxing Goua1, Liyan Wanga2 & Xuejun Liua*

aDepartment of Food Science and Engineering, Jilin Agricultural University, Changchun, China

A novel anticoagulant protein (E-II-1) was separated and purified from *Hypomesus olidus*, a unique freshwater fish in northern China. E-II-1 had a molecular mass of approximately 40 kDa with no subunits. The high contents of hydrophobic amino acids and negatively charged amino acids in E-II-1 demonstrated that the amino acid compositions might contribute to the anticoagulant activity. E-II-1 contained \(\alpha \)-helices 16.75\%, \(\beta \)-sheets 42.67\%, \(\beta \)-turn 25.58\% and random coil 15.00\%. \textit{In vitro} blood coagulation time assay, E-II-1 significantly prolonged the activated partial thrombin time in a dose-dependent manner. Results indicated that E-II-1 acted as anticoagulants through the endogenous pathway with an inhibition of FXa. The specific activity of E-II-1 was 103.50 U/mg at a concentration of 1.00 mg/ml. Therefore, E-II-1 might be one of the promising anticoagulants originated from natural food sources with more safety and less side effects.

Keywords: *Hypomesus olidus*; anticoagulant protein; chromatographic column; purification; activated partial thrombin time
1. Experimental Section

Materials

H.olidus was obtained from aquatic market in Changchun, China. Electrophoresis Kit, diethylaminoethyl (DEAE)-cellulose-52, Sephadex G-75 and Sepharose CL-6B were purchased from Ding Guo Co., Ltd (China). The activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT) reagents were obtained from Taiyang Biologics Co., Ltd (China). The other chemicals were analytical grade.

Preparation of protein extract

All experiments were done at 4 °C in a chromatography chamber unless stated otherwise. *H.olidus* were homogenized in a tissue homogenizer with 20 mM Tris-HCl buffer (pH 7.60) at a ratio of 1:3 (w/w), and then stood overnight. The homogenate was centrifuged at 10,000 × g for 15 min, and then the supernatant was defatted according to the method (Wang et al. 2013). After evaporating in a rotary evaporator and lyophilised in a freeze dryer, the crude extract proteins were designated as HCP.

Preparation of 40%-60% fraction

The protein extracts of *H.olidus* were precipitated using a two-step salting-out method (Burgess & Deutscher 2011) with 0-40% and 40%-60% ammonium sulphate saturation. The precipitates obtained from the fraction of 40%-60% were dialysed against 10 mM Tris-HCl buffer (pH 7.60). The dialysate was lyophilised and named as F_{40-60}. F_{40-60} was stored at -20 °C as working material for further investigation. All experiments were done at 4 °C in a chromatography chamber unless stated otherwise.

Isolation and purification of anticoagulant protein

F_{40-60} (250.00 mg) was dissolved in 20 mM Tris-HCl buffer (pH 7.60) 5.00 mL and centrifuged at 10,000 × g for 10 min. Then the supernatant was loaded on to a DEAE-cellulose-52 column (2.6 × 30 cm²), equilibrated with the same buffer. The column was eluted with a linear gradient of 0-1 M NaCl in the same buffer at a flow
rate of 0.50 mL/min. The fraction exhibiting the highest anticoagulant activity was collected, desalted and lyophilised. Subsequently, the dissolved powder was applied to a Sepharose CL-6B gel filtration column (1.5 × 75 cm²) previously equilibrated with 20 mM Tris-HCl buffer, at pH 7.60. Elution was performed at a flow rate of 1.00 mL/min and monitored at 280 nm by an automatic UV detector (HUXI®, CBS-B). Fractions with high anticoagulant activities were collected and concentrated. The fraction was further submitted to a Sephadex G-75 (1.0 × 60 cm²) column equilibrated with the same buffer. The flow rate was adjusted to 0.50 mL/min and the anticoagulant activity of per fraction was evaluated.

Determination of anticoagulant activity

The platelet poor plasma (PPP) was obtained as follows. Firstly, fresh blood was collected from healthy volunteers in the infirmary of Jilin Agricultural University in Jilin, China. Then the blood was mixed with 0.109 M sodium citrate immediately at a ratio of 9:1 (v/v). Finally, the mixture was centrifuged at 3000 × g for 15 min to prepare the PPP.

Specifically, 100 μL of the mixture G (PPP and sample with a ratio of 4:1, v/v) was added with 100 μL of APTT reagent, and then incubated at 37 °C for 5 min, APTT was immediately recorded after the addition of 100 μL of 25 mM CaCl₂. In the PT assay, 100 μL of the mixture G was incubated at 37 °C for 3 min, after that, 200 μL of PT reagent was added to the mixture G and PT was determined. TT was recorded after adding 200 μL TT reagent to the equal amount of mixture G 20 mM Tris-HCl buffer (pH 7.60) was used as the negative control.

APTT, PT and TT were determined by a semi-automated coagulometer (PUN-2048B, PERLONG®, Beijing) following the instructions of the manufacturers. APTT is a screening test of the coagulation system for endogenous pathway or the common pathway, prothrombin time (PT) is a screening test of exogenous coagulation system, and thrombin time (TT) is used to evaluate the ability to transform fibrinogen into fibrin. One unit of anticoagulant activity was defined as the 1.00 s increase in clotting time compared to the measured clotting time of negative control under the
identical assay conditions.

The inhibition effect of E-II-1 on factor Xa and thrombin (IIa) were determined by a microplate reader (Multiskan FC, Thermo Scientific®, China) according to the method (Li et al. 2011).

Reversed Phase High Performance Liquid Chromatography (RP-HPLC)

The active fraction selected by APTT was injected into a C18 HPLC column (Agilent™-ZORBAX 300 SB, USA) to confirm the homogeneity of the purified anticoagulant protein. The column was equilibrated with 0.10% trifluoroacetic acid (TFA) in ultra pure water, and then eluted with a linear gradient of acetonitrile (5-100%) in 0.10% TFA. The elution peak was monitored at 288 nm for 45 min at a flow rate of 0.70 mL/min.

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

The purity and approximate molecular weight of anticoagulant protein were estimated by SDS-PAGE in reducing conditions, according to the method (Laemmli 1970).

Amino acid composition analysis

The amino acid composition of samples were determined by ACQUITY UPLC (AccQ-Tag, Waters™, USA), and the operation details were performed by reference to the guidelines.

Secondary structure analysis

Fourier transform infrared (FTIR) was used to analyse the secondary structure of protein. And the fitting bands in this paper were ascribed according to the ascriptions (Susi & Byler 1983; Ulrichs et al. 2015).

Chemical component analysis

Protein content was determined according to the method (Bradford 1976). Total carbohydrate was quantified by the phenol-sulfuric acid method (Dubois et al. 1956).
Statistics analysis

Data were expressed as mean ± standard deviation, with at least three individual replicates. Student’s *t*-test was used to analyse the statistical differences. The value of *p* < 0.05 was considered to indicate significance, *p* < 0.05 (*) and *p* < 0.01 (**).

2. Results and Discussion

Preparation of the crude protein (HCP)

HCP showed no anticoagulant activity because APTT, PT and TT were not prolonged (data not shown). While the 40%-50% fraction and 50%-60% fraction turned out to have anticoagulant activity considering the APTT (Figure S2). One of the explanations was that the components of HCP were too complicated (Figure S1 (a)), resulting in low content of active fraction. The two active fractions were pooled and named (F_{40-60}).

Isolation and purification of anticoagulant protein

Seven fractions (A–G) were separated using the ion exchange chromatograph (Figure S4), and the major peak E exhibited the highest anticoagulant activity (activated partial thrombin time (APTT) was 92.03±3.12 s (Figure S5)). The fraction E was further purified by Sepharose CL-6B column (Figure S6), four major peaks (E-I, E-II, E-III and E-IV) were observed. E-II (APTT was 153.86±7.84 s) (p < 0.01) had the highest activity when compared to others (Figure S7). Then the fraction E-II was fractionated using Sephadex G-75 (Figure S8), the anticoagulant activity of the first peak (E-II-1) had significant difference compared with the control.

SDS-PAGE

According to the purification steps described before, the anticoagulant protein E-II-1 showed a single band of approximately 40 kDa (Figure S1 (b)). However, it was amazing to find out that the polysaccharide content of E-II-1 was up to 6.40%. Based on this conclusion, we speculated that E-II-1 was a glycoprotein, yet new problems emerged. Most of the glycoproteins with anticoagulant activity were lectins (Sharon
Lectins (Sharon & Lis 2002) were specific proteins binding with carbohydrates or glycoprotein, and they were widely distributed in natural products (Arcoverde et al. 2014). In addition, a large majority of lectins consisted of subunits. But E-II-1 exhibited no subunits. While we found few anticoagulant proteins (Gao et al. 2011; Silva et al. 2012) had no subunits, which was consistent with the results in this paper. Therefore, the relationship between E-II-1 and lectin and the structure characteristics of E-II-1 would need further researches.
Figure S1: SDS-PAGE of anticoagulant protein purified from *H. olidus* under denaturing conditions.

Figure S2: Anticoagulant activities of different protein fractions precipitated by ammonium sulphate.

Figure S3: The flow diagram for the isolation and purification steps of the anticoagulant protein from *H. olidus*.

Figure S4: The elution profile of F\textsubscript{40-60} on DEAE-cellulose-52 ion exchange column.

Figure S5: Anticoagulant activities of fractions A to G measured by coagulometer with a concentration of 15 mg/ml.

Figure S6: Elution profile of fraction E on Sepharose CL-6B gel chromatography.

Figure S7: Anticoagulant activities of fractions E-I to E-IV with a concentration of 5 mg/ml.

Figure S8: Elution profile of fraction E-II on Sephadex G-75 column.

Figure S9: RP-HPLC analysis of the E-II-1.

Figure S10: The fitting curve of Amide I band.

Figure S11: The fitting results of Amide I band.

Figure S12: Effect of the samples on FXa (a) and FIIa (b) in the presence of anti-thrombin.

Table S1: Purification of anticoagulant protein from *H. olidus*.

Table S2: Amino acid compositions of some anticoagulant fractions from *H. olidus*.

Table S3: The fitting results of amide I band.
Figure S1: SDS-PAGE of anticoagulant protein purified from *H. olidus* under denaturing conditions.

Figure S2: Anticoagulant activities of different protein fractions precipitated by ammonium sulphate.
Figure S3: The flow diagram for the isolation and purification steps of the anticoagulant protein from *H. solidus*.

Figure S4: The elution profile of F₄₀₋₆₀ on DEAE-cellulose-52 ion exchange column.
Figure S5: Anticoagulant activities of fractions A to G measured by coagulometer with a concentration of 15 mg/ml.

Figure S6: Elution profile of fraction E on Sepharose CL-6B gel chromatography.
Figure S7: Anticoagulant activities of fractions E-I to E-IV with a concentration of 5 mg/ml.

Figure S8: Elution profile of fraction E-II on Sephadex G-75 column.
Figure S9: RP-HPLC analysis of the E-II-1.

Figure S10: The fitting curve of Amide I band.
Figure S11: The fitting results of Amide I band.

Parameter	Value	Error
y0	0.92746	±0.0352
xc1	1626.0586	±13.48757
w1	20.10328	±11.47673
A1	16.08973	±16.9735
xc2	1638.43144	±5.23227
w2	13.95522	±12.43316
A2	10.16059	±27.85901
xc3	1650.18157	±2.6912
w3	11.78733	±7.21483
A3	11.34789	±20.01569
xc4	1004.73285	±55.3352
w4	18.18298	±27.97493
A4	17.33498	±15.77478
xc5	1682.06466	±11.33519
w5	15.44513	±22.44318
A5	12.14797	±35.55904
xc6	1055.78924	±3.54527
w6	10.45768	±4.23366
A6	4.10557	±7.40253

The fitting results of Amide I band are shown in the figure. The data fit the Gauss model with the following equation:

\[y = y_0 + A/(w \sqrt{\pi/2}) \exp(-2((x-xc)/w)^2) \]

The R^2 value is 0.99925, indicating a good fit. The table above lists the fitting parameters with their respective errors.
Figure S12: Effect of the samples on FXa (a) and FIIa (b) in the presence of anti-thrombin.

Table S1. Purification of anticoagulant protein from *H. olidus*.

Step	Total protein (mg)	Total anticoagulant activity (U)	Specific activity (U/mg)	Yield (%)	Purification fold
F₄₀₋₆₀	6061.00	6242.83	1.03	100.00	1.00
DEAE-52	508.00	2275.84	4.48	36.46	4.35
Sepharose CL-6B	52.40	1355.06	25.86	21.71	25.11
Sephadex G-75	4.30	445.05	103.50	7.13	100.44
Table S2. Amino acid compositions of some anticoagulant fractions from *H. olidus*.

Amino acids	F_{40-60} (%)	E-II (%)	E-II-1 (%)
His^+	2.26±0.00	2.14±0.16	2.62±0.00
Ser^0	5.44±0.06	7.02±0.11	4.82±0.06
Arg^+	6.31±0.30	5.76±0.10	7.21±0.10
Gly^0	5.34±0.20	3.44±0.04	4.85±0.04
Asp^	10.89±0.08	10.19±0.92	9.10±0.08
Glu^-	13.03±0.00	13.61±0.08	14.60±0.08
Thr^0	5.18±0.07	4.57±0.07	5.05±0.07
Ala^#	5.72±0.05	5.58±0.05	5.65±0.00
Pro^#	4.00±0.00	3.81±0.07	3.55±0.07
Cys^0	2.39±0.00	4.55±0.24	2.12±0.14
Lys^+	5.68±0.08	6.91±0.15	9.34±0.17
Tyr^#	4.87±0.69	4.04±0.21	4.36±0.00
Met^#	3.63±0.17	3.78±0.15	3.85±0.00
Val^#	5.58±0.78	5.92±0.18	5.00±0.07
Ile^#	4.89±0.00	4.59±0.00	4.34±0.08
Leu^#	9.00±0.00	8.18±0.08	8.84±0.08
Phe^#	5.79±0.10	5.90±0.00	4.70±0.10
Hydrophobic amino acid	43.48±1.79a	41.80±0.74a	40.29±0.40a

Negatively charged amino acid: 23.92±0.08b 23.80±1.00b 23.70±0.16b

Positively charged amino acid: 14.25±0.38c 14.81±0.41c 19.17±0.27bc

^+, positively charged amino acid; ^-, negatively charged amino acid; ^0, neutral amino acid; ^#, hydrophobic amino acid. Different letters indicate that the averages are different at a 0.05 level of significance.

Table S3. The fitting results of Amide I band.

Fitting wavelength (cm\(^{-1}\))	Area	Ascription
1626	12.6	β-sheets
1638	10.16	Random coils
1650	11.35	α-helices
1664	17.33	β-turns
1682	12.15	β-sheets
1695	4.17	β-sheets
References

Arcoverde JH, Carvalho AS, Neves FP, Dionízio BP, Pontual EV, Paiva PM, Napoleão TH, Correia MT, Silva MV, Carneiro-da-Cunha MG. 2014. Screening of Caatinga plants as sources of lectins and trypsin inhibitors. Nat Prod Res. 28:1297–1301.

Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.

Burgess RR, Deutscher MP. 2011. Guide to Protein Purification (second edition): Protein Precipitation Techniques. Beijing: Science Press.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method of determination of sugars and related substances. Anal. Chem. 28:350–356.

Gao X, Shi L, Zhou Y, Cao J, Zhang H, Zhou J. 2011. Characterization of the anticoagulant protein Rhipilin-1 from the Rhipicephalus haemaphysaloides tick. J Insect Physiol. 57:339–343.

Laemmli UK. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature. 227:680–685.

Li G, Chen SG, Wang YM. 2011. A novel glycosaminoglycan-like polysaccharide from abalone Haliotis discus hannai Ino: Purification, structure identification and anticoagulant activity. Int J Biol Macromol. 49: 1160–1166.

Sharon N, Lis H. 1972. Lectins: cell-agglutinating and sugarspecific proteins. Science 177:949–959.

Sharon N, Lis H. 2002. How proteins bind carbohydrates: lessons from legume lectins. J Agric Food Chem. 50:6586–6591.

Silva MCC, Santana LA, Mentele R, Ferreira RS, de Miranda A, Silva-Lucca RA, Sampaio MU, Correia MTS, Oliva MLV. 2012. Purification, primary structure and potential functions of a novel lectin from Bauhinia forficata seeds. Process Biochem. 47:1049–1059.

Sudhakar GRL, Vincent SGP. 2014. Purification and characterization of a novel
C-type hemolytic lectin for clot lysis from the fresh water clam *Villorita cyprinoides*: A possible natural thrombolytic agent against myocardial infarction. Fish Shellfish Immun. 36:367–373.

Sun J, Wang L, Wang B, Guo Z, Liu M, Jiang K, Luo Z. 2007. Purification and characterization of a natural lectin from the serum of the shrimp *Litopenaeus vannamei*. Fish Shellfish Immun. 23:292–299.

Susi H, Byler DM. 1983. Protein structure by Fourier transform infrared spectroscopy: Second derivative spectra. Biochem Bioph Res Co. 115: 391-397.

Ulrichs T, Drotleff AM, Ternes W. 2015. Determination of heat-induced changes in the protein secondary structure of reconstituted livetins (water-soluble proteins from hen’s egg yolk) by FTIR. Food Chem. 172: 909-920.

Wang B, Li L, Chi CF, Ma JH, Luo HY, Xu YF. 2013. Purification and characterization of a novel antioxidant peptide derived from blue mussel (*Mytilus edulis*) protein hydrolysate. Food Chem. 138:1713–1719.
	A[Y]	B[Y]	C[Y]	D[Y]	E[Y]	F[Y]
1	0	24.56	3.37	12.2	10.53	0.9
2	0.125	33.07	5.66	12.2	12.67	1.4
3	0.25	54.5	1.64	12.2	14.93	0.803
4	0.5	74.5	2.78	12.2	17.13	1.31
5	1	103.5	3.28	12.2	19.9	1.8
6	2	105.7	3.35	12.2	19.9	0.9

Figure 1------Original Data

Figure S1------Original Graph (a)
	4ψγ	5ψγ	CψEr?
1	Control	24.56	3.37
2	20-30%	23.72	1.52
3	30-40%	32.91	2.89
4	40-50%	49.37	1.15
5	50-60%	52.93	3.06
6	60-70%	33.13	2.4

Figure S1-----Original Graph (b)

Figure S2-----Original Data
	A(x)	B(y)	C(z)	A(x)	B(y)	C(z)	
1	0	0.004	0	53	104	0.3	
2	2	0.005	0	54	106	0.28	
3	4	0.005	0	55	108	0.15	
4	6	0	0	56	110	0.006	
5	8	0	0	57	112	0.002	
6	10	0.006	0	58	114	1E-3	
7	12	0	0	59	116	0.002	
8	14	0.533	0	60	118	0.003	
9	16	0.801	0	61	120	1E-3	
10	18	1.293	0	62	120	0.003	
11	20	0.933	0	63	124	0.004	
12	22	0.266	0	64	126	1E-3	
13	24	0.112	0	65	128	0.003	
14	26	0.1	0	66	130	0.005	
15	28	0.06	0	67	132	0.07	
16	30	0.053	0	68	134	0.065	
17	32	0.04	0	69	136	0.225	
18	34	0.024	0	70	138	0.325	
19	36	0.055	0	71	140	0.065	
20	38	0.038	0	72	142	0.765	
21	40	0.032	0	73	144	0.7	
22	42	0.036	0	74	146	0.56	
23	44	0.024	0	75	148	0.45	
24	46	0.013	0	76	150	0.18	
25	48	0.013	0	77	152	0.009	
26	50	0.01	0	78	154	0.004	
27	52	0.009	0	79	156	0.003	
28	54	0.004	0	80	158	1E-3	
29	56	0.003	0	81	160	0.002	
30	58	0	0	82	162	0.005	
31	60	1E-3	0	83	164	0.003	
32	60	0.004	0.2	84	166	0.004	
33	64	0.066	0.2	85	168	0.003	
34	66	0.15	0.2	86	170	0.002	
35	68	0.33	0.2	87	172	1E-3	
36	70	0.756	0.2	88	174	0.002	
37	72	0.72	0.2	89	176	0.004	
38	74	0.67	0.2	90	178	1E-3	
39	76	0.59	0.2	91	180	0.003	
40	78	0.41	0.2	92	180	0.005	
41	80	0.285	0.2	93	184	0.004	
42	82	0.1	0.2	94	186	0.005	
43	84	0.006	0.2	95	188	0.008	
44	86	0.005	0.2	96	190	0.144	
45	88	0.003	0.2	97	192	0.34	
46	90	1E-3	0.2	98	194	0.41	
47	92	0.1	0.2	99	196	0.49	
48	94	0.31	0.2	100	198	0.392	
49	96	0.45	0.2	101	200	0.329	
50	98	0.43	0.2	102	202	0.178	
51	100	0.37	0.2	103	204	0.1	
52	102	0.33	0.2	104	206	0.08	
	A[\text{]}	B[\text{]}	C[\text{]}		A[\text{]}	B[\text{]}	C[\text{]}
---	---	---	---	---	---	---	---
105	208	0.004	0.5	105	312	0.077	1
106	210	0.006	0.5	106	157	0.077	1
107	212	0.003	0.5	107	158	0.077	1
108	214	1e-3	0.5	108	159	0.077	1
109	216	0.005	0.5	109	160	0.077	1
110	218	0.004	0.5	110	161	0.077	1
111	220	0.006	0.5	111	162	0.077	1
112	222	0.002	0.5	112	163	0.077	1
113	224	0.004	0.5	113	164	0.077	1
114	226	0.003	0.5	114	165	0.077	1
115	228	1e-3	0.5	115	166	0.077	1
116	230	0.002	0.5	116	167	0.077	1
117	232	0.005	0.5	117	168	0.077	1
118	234	1e-3	0.5	118	169	0.077	1
119	236	0.002	0.5	119	170	0.077	1
120	238	0.003	0.5	120	171	0.077	1
121	240	1e-3	0.5	121	172	0.077	1
122	242	0.006	0.5	122	173	0.077	1
123	244	0.004	0.5	123	174	0.077	1
124	246	0.01	0.5	124	175	0.077	1
125	248	0.04	0.5	125	176	0.077	1
126	250	0.08	0.5	126	177	0.077	1
127	252	0.1	0.5	127	178	0.077	1
128	254	0.268	0.5	128	179	0.077	1
129	256	0.272	0.5	129	180	0.077	1
130	258	0.276	0.5	130	181	0.077	1

Figure S4: Original Data
A[Y]	B[Y]	C[Y]	
1	Control	24.56	3.37
2	A	20.49	1.01
3	B	30.9	1.26
4	C	41.8	3.39
5	D	50.57	1.72
6	E	92.03	3.12
7	F	43.42	2.37
8	G	20.71	1.73

Figure S5------Original Data

A[Y]	B[Y]	C[Y]	
1	0	0	0
2	2	0	1E-3
3	3	0	0.003
4	4	0	0
5	5	0	1E-3
6	6	0	0.002
7	7	1E-3	0
8	8	0.002	1E-3
9	9	0.005	0.002
10	10	0.009	0
11	11	0.01	1E-3
12	12	0.03	0
13	13	0.05	0.002
14	14	0.08	0.002
15	15	0.064	0.003
16	16	0.033	0.008
17	17	0.009	0.014
18	18	0.006	0.019
19	19	0.003	0.026
20	20	0	0.03
21	21	1E-3	0.042
22	22	0.002	0.047
23	23	0	0.05
24	24	0	0.055
25	25	1E-3	0.058
26	26	1E-3	0.056

A[Y]	B[Y]	C[Y]	
27	27	0	0.051
28	28	0	0.045
29	29	1E-3	0.034
30	30	0.003	0.02
31	31	0.01	0.015
32	32	0.035	0.01
33	33	0.05	0.015
34	34	0.008	0.007
35	35	0.11	0.003
36	36	0.15	0
37	37	0.12	0
38	38	0.085	0.002
39	39	0.067	1E-3
40	40	0.029	0.003
41	41	0.008	0.005
42	42	0	0
43	43	0	0.0017
44	44	0.002	0.002
45	45	0	0.0051
46	46	0	0.0024
47	47	1E-3	0.0015
48	48	1E-3	1E-3
49	49	0.002	0.002
50	50	0	0
51	51	0	0
52	52	1E-3	0

A[Y]	B[Y]	C[Y]	
53	53	0	1E-3
54	54	0.002	0
55	55	0.003	0
56	56	0	0
57	57	1E-3	0
58	58	0	1E-3
59	59	0	1E-3
60	60	0	0.002
61	61	0.002	0
62	62	0.006	0
63	63	0.013	0.002
64	64	0.02	0.003
65	65	0.025	1E-3
66	66	0.028	0
67	67	0.03	0
68	68	0.026	0
69	69	0.024	0.002
70	70	0.02	0.034
71	71	0.01	0.02
72	72	0.007	0.01
73	73	0.004	0.007
74	74	1E-3	0.004
75	75	0	1E-3
76	76	0	0
	A[γ]	B[γ]	C[γ]
-----	------	-------	-------
77	77	0	0
70	70	0.003	0
79	79	1E-3	0.003
80	80	0.004	1E-3
81	81	0.01	0
82	82	0.019	0.003
83	83	0.03	0.004
84	84	0.035	0.002
85	85	0.041	0.003
86	86	0.047	0
87	87	0.052	0
88	88	0.055	1E-3
89	89	0.06	0.003
90	90	0.058	0.002
91	91	0.054	0
92	92	0.05	0
93	93	0.042	0
94	94	0.037	0.002
95	95	0.03	0
96	96	0.02	0
97	97	0.016	0
98	98	0.01	0
99	99	0.006	0
100	100	0.004	0
101	101	0	0
102	102	0	0
103	103	0	0
104	104	0	0
105	105	1E-3	0
106	106	0.002	0
107	107	1E-3	0
108	108	0.003	0
109	109	1E-3	0
110	110	0	0
111	111	0	0
112	112	0	0
113	113	0	0
114	114	0	0

Figure S6------Original Data (B Column)
Figure S8------Original Data (C Column)

Note: Figure S6 and Figure S8 have the same A(X).
	A(%)	B(%)	C(yEr?)
1	Control	24.56	3.37
2	E-I	25.4	3.04
3	E-II	153.86	7.84
4	E-III	40.21	3.69
5	E-IV	36.37	1.5

Figure S7------Original Data

Figure S9------Original Graph
Figure S10----- Original FTIR spectrum of the E-II-1.
名称	保留时间	面积	峰高	含量	单位
Thr	4.959	174842	77368	0.519	μM
Ala	5.374	271847	118308	0.778	μM
Pro	5.986	28860	14200	0.377	μM
Met	6.273	2668	1766	0.377	μM
Cys2	6.717	4266	2803	0.573	μM
Lyt	7.046	476446	329864	0.782	μM
Tyr	7.194	115635	72247	0.295	μM
Val	7.286	2848	1685	0.523	μM
Met	7.331	114277	69933	0.316	μM
Ile	7.449	190748	123299	0.523	μM
Ala	7.586	4024	3129	0.573	μM
Val	7.616	11718	6272	0.316	μM
Val	7.616	11718	6272	0.316	μM
Thr	7.683	3272	1059	0.573	μM
Thr	7.856	4746	3306	0.573	μM
Thr	7.903	4704	3527	0.573	μM
Thr	8.096	2313	1672	0.573	μM
Val	8.087	154065	96207	0.405	μM
Val	8.161	308227	183396	0.826	μM
Thr	8.282	131314	76547	0.348	μM
Val	8.382	1469	1194	0.573	μM
Thr	8.426	12741	7441	0.573	μM
Thr	8.491	3547	2502	0.573	μM

Table S2----The first original results of amino acid compositions of E-II-1.
样品信息

样品名称: 1
样品类型: 未知
编号: 1.2
检测次数: 2
检测样品: 1.00 ul
运行时间: 10.2 Minutes
样品组名称: 乌药片AA测试

采集者: XCPFZ
采集时间: 2016/3/29 12:07:27 CST
处理人: XCPFZ
处理日期: 2016/4/1 18:37:31 CST
处理方法: GMX_AAA
通道名称: PDA Ch1 266 nm@4.8 nm
通道备注: PDA Ch1 266 nm@4.8 nm

色谱峰结果

名称	保留时间	面积	峰高	含量	单位
AMQ	1.429	1055640	303871	0.102	μM
NH3	1.917	134306	50273	0.436	μM
His	2.137	5941	2198		μM
His	2.329	69576	24847	0.207	μM
Arg	2.559	53937	18242		μM
Ser	2.776	3970	1537		μM
Gly	3.030	12994	5050		μM
Arg	3.277	18128	64135	0.563	μM
Arg	3.450	164337	55358	0.508	μM
Gly	3.617	255984	88050	0.792	μM
Asp	4.016	271482	102623	0.839	μM
Glu	4.553	399332	164071	1.217	μM
名称	保留时间	面积	峰高	含量	单位
-----	----------	--------	--------	------	------
13	4.765	4068	1919		
14	4.959	175043	77310	0.520	µM
15	5.374	271901	117737	0.778	µM
16	5.899	2865	1362		
17	5.968	128349	63884	0.378	µM
18	6.274	2865	1800		
19	6.719	4426	2636		
20	6.858	151309	74309	0.578	µM
21	7.017	33675	17717	0.108	µM
22	7.091	477461	329001	0.784	µM
23	7.195	115608	72398	0.295	µM
24	7.286	2985	1695		
25	7.332	114288	69006	0.316	µM
26	7.448	190826	123297	0.523	µM
27	7.587	4124	3108		
28	7.617	11570	6243		
29	7.684	3211	1073		
30	7.866	4924	3333		
31	7.903	4720	3536		
32	8.006	2340	1660		
33	8.088	154022	95807	0.405	µM
34	8.167	303875	183380	0.827	µM
35	8.282	131416	76437	0.349	µM
36	8.383	1463	1160		
37	8.426	12746	7446		
38	8.492	3515	2922		

Table S2-----The second original results of amino acid compositions of E-II-1.
样品信息

样品名称	1	采集者	XCPYFZX
样品类别	未知	采集时间	2016/3/29 12:18:11 CST
频号	1.A,2	采集方法	动物肉AA
进样次数	3	处理日期	2016/4/1 18:37:54 CST
进样体积	1.00 ul	处理方法	GMK_AAA
运行时间	10.2 Minutes	通道名称	PDA On1 268 nm@4.8 nm
样品组名称	动物肉AA测试	处理通道注释	PDA On1 268 nm@4.8 nm

色谱峰结果

名称	保留时间	面积	峰高	含量	单位	
1	AMQ	1.424	1055904	306118	0.102	µM
2	NH3	1.908	134304	50563	0.436	µM
3		2.128	6577	2187		µM
4	His	2.322	66936	24422	0.207	µM
5		2.555	53993	18222		µM
6		2.770	3972	1535		µM
7		3.025	12842	5039		µM
8	Ser	3.277	186388	64213	0.563	µM
9	Arg	3.445	164350	55627	0.508	µM
10	Gly	3.611	255455	88133	0.792	µM
11	Asp	4.012	271265	102470	0.838	µM
12	Glu	4.550	399039	163902	1.216	µM

报告方法：缺省单个报告
打印时间：18:47:48 PRC
页码：1 (共计2)
Table S2----The third original results of amino acid compositions of E-II-1.

名称	保留时间	面积	峰高	含量	单位	
13	4.757	4069	1026			
14	4.957	715074	71196	0.520	μM	
15	5.373	271927	117755	0.778	μM	
16	5.586	26866	1352			
17	5.980	128123	63733	0.378	μM	
18	6.274	2908	1803			
19	6.721	4362	2607			
20	Deriv	6.859	152102	75197	0.581	μM
21	Cysx2	7.018	330865	17541	0.109	μM
22	LyP	7.092	477544	330494	0.784	μM
23	Tyr	7.195	115818	72679	0.295	μM
24	7.286	2949	1732			
25	Met	7.331	114521	69088	0.316	μM
26	Val	7.449	197015	123208	0.524	μM
27	7.587	4016	3134			
28	7.616	11773	6304			
29	7.883	3262	1079			
30	7.886	4754	3303			
31	7.903	4722	3522			
32	8.006	2314	1673			
33	Ile	8.087	154875	98126	0.406	μM
34	Leu	8.167	308367	183596	0.827	μM
35	Phe	8.282	131475	78463	0.349	μM
36	8.382	1404	1184			
37	8.426	12722	7426			
38	8.491	3534	2916			
样品信息

样品名称	2	采集者	XCPYFZX
样品类型	未知	采集时间	2016/3/29 12:39:22 CST
编号	1, A, 3	采集方法	姜梦辉
采样次数	1	处理方法	GMX, AAA
采样体积	1.00 µl	处理日期	2016/4/18 13:39:10 CST
运行时间	10.2 Minutes	通道名称	PDA, 265 nm @4.8 nm
样品组名称	姜梦辉A, B测试	处理温度	PDA, 265 nm @4.8 nm

色谱峰结果

名称	保留时间	面积	峰高	含量	单位
1 AMQ	1.370	3431298	695193	0.331	µM
2 NH3	1.697	106819	40409	0.347	µM
3 His	2.303	183156	6855	0.557	µM
4	3.001	2850	1187		
5 Ser	3.257	67518	22830	0.202	µM
6 Arg	3.437	45620	16458	0.141	µM
7 Gly	3.604	89506	31690	0.277	µM
8 Asp	4.003	103980	39862	0.320	µM
9 Glu	4.548	113709	49123	0.347	µM
10 Thr	4.952	57320	25844	0.170	µM
11	5.172	2038	1036		
12	5.272	2441	1171		

报告方法：缺省个报告
打印 18:48:17 PRC 2016/4/1
页码：1（共计2）
Table S2-----The first results of amino acid compositions of crude protein F$_{40-60}$.
样品信息

样品名称: A
样品类型: 未知
货架: 1 A, 3
进样次数: 2
进样体积: 1.00 µl
运行时间: 10.2 Minutes
样品组名称: 与CreaA2001测试

采集者: XCPYFZX
采集时间: 2016/3/29 18:00:09 CST
处理日期: 2016/4/1 18:39:34 CST
处理方法: GMX AAA
通道名称: PDA C11 265 nm@4.8 nm
通道通道注释: PDA C11 265 nm@4.8 nm

色谱峰结果

名称	保留时间	面积	峰高	含量	单位
1	AMQ	3442291	692448	0.332	µM
2	NH3	107435	40542	0.349	µM
3	His	182705	6839	0.057	µM
4	3.016	2837	1157	0.005	µM
5	Ser	67723	22931	0.203	µM
6	Arg	45789	16604	0.141	µM
7	Gly	89004	31945	0.278	µM
8	Asp	103907	40043	0.321	µM
9	Glu	11358G	49234	0.347	µM
10	Thr	57455	25849	0.171	µM
11	5.171	2016	1034	0.005	µM
12	5.272	2442	1171	0.005	µM

报告方法: 原始数据报告
打印: 18:48:46 FRC 2016/4/1
页码: 1 (共计 2)
Table S2----The second results of amino acid compositions of crude protein F40-60.
样品信息

样品名称: 2
样品类型: 未知
配号: 1-A,3
进样次数: 3
进样体积: 1.00 µl
运行时间: 10.2 Minutes
样品组名称: 品药AA测试

采集者: XCPYFZX
采集时间: 2016/3/29 13:00:56 CST
处理方法: GMK_AAA
处理日期: 2016/4/1 18:40:00 CST
通道名称: PDA Ch1 266 nm@4.8 nm
处理通道注释: PDA Ch1 266 nm@4.8 nm

色谱峰结果

名称	保留时间	面积	峰高	含量	单位
1 AMQ	1.372	3438996	697589	0.332	µM
2 NH3	1.659	1072356	40539	0.348	µM
3 His	2.306	18465	6795	0.057	µM
4	3.007	2720	1141		
5 Ser	3.259	67962	22989	0.203	µM
6 Arg	3.439	46551	16613	0.144	µM
7 Gly	3.604	91153	31958	0.282	µM
8 Asp	4.001	103906	39835	0.321	µM
9 Glu	4.544	113061	49028	0.347	µM
10 Thr	4.949	57209	25865	0.170	µM
11	5.169	2015	1031		
12	5.270	2435	1168		
Table S2-----The third results of amino acid compositions of crude protein F\textsubscript{40-60}.

名称	保留时间	面积	峰高	含量	单位
13	5.369	87997	30761	0.252	μM
14	5.994	45186	23376	0.136	μM
15	6.072	2801	1218		
16	6.856	187136	83470	0.638	μM
17	7.015	12181	5720	0.039	μM
18	7.053	1266	2020		
19	7.092	92753	84362	0.152	μM
20	7.192	41770	24242	0.107	μM
21	7.285	1760	1111		
22	7.329	34041	21166	0.094	μM
23	7.447	57460	44851	0.179	μM
24	7.863	2701	1875		
25	8.065	55703	34872	0.146	μM
26	8.185	100224	60531	0.269	μM
27	8.279	51574	30314	0.137	μM
28	8.421	4177	2481		
样品信息

样品名称	6
样品类别	未知
浓度	1A.7
浓度成分	1.00 μl
运行时间	10.2 Minutes
运行时间	2016/04/1 18:44:10 CST
采样者	XCPYFZX
采样日期	2016/03/29 15:29:54 CST
处理方法	GMK_AAA
处理时间	PDA @ 126 nm @ 4.8 nm
处理温度	PDA @ 126 nm @ 4.8 nm

色谱峰结果

名称	保留时间	面积	峰高	含量	单位
1	1.286	3195	1774	51003	uM
2	1.427	2287212	51003	0.221	uM
3	1.967	162536	59022	0.527	uM
4	2.410	42727	15529	0.132	uM
5	3.356	215375	73080	0.644	uM
6	3.534	103384	37528	0.319	uM
7	3.693	142623	51140	0.442	uM
8	4.084	242904	91472	0.748	uM
9	4.611	292993	123777	0.893	uM
10	5.059	124575	55874	0.370	uM
11	5.419	211335	93501	0.605	uM
12	6.030	108301	52448	0.319	uM
Table S2-----The first results of amino acid compositions of anticoagulant protein E-II.

名称	保留时间	面积	高峰	含量	单位
13	Deriv	6.87	125389	82435	μM
14	Cys2	7.029	57014	32966	μM
15		7.067	4237	8457	μM
16	Lyr	7.102	277834	193221	μM
17	Tyr	7.207	845264	53058	μM
18		7.295	2461	1473	μM
19	Met	7.342	88469	54512	μM
20	Val	7.458	183389	115352	μM
21		7.622	8515	2967	μM
22		7.690	3046	1444	μM
23		7.731	2280	1861	μM
24		7.773	1665	1010	μM
25		7.870	8552	5408	μM
26		7.966	3840	2830	μM
27		8.009	2141	1551	μM
28	Ile	8.093	129975	80256	μM
29	Leu	8.172	224400	134181	μM
30	Phe	8.287	129981	75450	μM
31		8.426	3531	2117	μM
32		8.492	4246	3573	μM
色谱峰结果

名称	峰面积	峰高	含量	单位		
1	1.291	3221	1784			
2	1.441	228843	510112	0.221	uM	
3	1.974	162907	56532	0.528	uM	
4	2.426	42857	15379	0.133	uM	
5	3.386	21567	73343	0.640	uM	
6	3.547	103638	37917	0.320	uM	
7	3.703	142969	51322	0.443	uM	
8	4.094	233837	91483	0.736	uM	
9	4.618	293378	124483	0.894	uM	
10	5.014	124815	56202	0.371	uM	
11	5.327	2106	1011			
12	5.422	211436	93782	0.605	uM	
名称	保留时间	面积	峰高	含量	单位	
-----	----------	-------	-------	-------	------	
13	Pro	6.033	108569	52584	0.320	μM
14	Deriv	6.877	126578	82885	0.483	μM
15	Cys2	7.036	56736	33150	0.182	μM
16		7.687	5033	8051		
17	Lyr	7.103	271586	193787	0.457	μM
18	Tyr	7.208	84442	52974	0.215	μM
19		7.296	2611	1400		
20	Met	7.344	88597	54587	0.245	μM
21	Val	7.458	183567	115748	0.468	μM
22		7.622	6562	2989		
23		7.891	3073	1457		
24		7.731	2250	1672		
25		7.773	1659	1006		
26		7.870	8531	5506		
27		7.965	3763	2823		
28		8.009	2178	1543		
29	Ile	8.093	129063	80291	0.338	μM
30	Leu	8.173	224710	134240	0.603	μM
31	Phe	8.287	130090	75429	0.345	μM
32		8.427	3529	2122		
33		8.492	4208	3569		

Table S2-----The second results of amino acid compositions of anticoagulant protein E-II.
Table S2-----The third results of amino acid compositions of anticoagulant protein E-II.

名称	保留时间	面积	峰高	含量	单位
13 Pro	6.031	109508	52588	0.320	μM
14 Deriv	6.878	127014	63077	0.485	μM
15 Cys2	7.029	57376	33204	0.184	μM
16	7.067	4240	8447		
17 Lyr	7.102	278863	194121	0.458	μM
18 Tyr	7.207	84031	53169	0.217	μM
19	7.295	2618	1532		
20 Met	7.342	89056	54641	0.246	μM
21 Val	7.458	184538	115990	0.490	μM
22	7.621	7073	3097		
23	7.898	3411	1569		
24	7.730	2569	1795		
25	7.772	2273	1131		
26	7.389	8954	5587		
27	7.964	3794	2827		
28	8.007	2191	1556		
29 Ile	8.091	129237	80342	0.338	μM
30 Leu	8.171	22492	134138	0.603	μM
31 Phe	8.285	130217	75662	0.345	μM
32	8.426	3522	2103		
33	8.491	4322	3622		
![Figure S12 (a) --- Original data](image1)

A[X]	B[Y]	C[Y]	D[γEr?]	E[Y]	F[γEr?]	
1	0.005	0.6	0.6	0.02	0.55	0.033
2	0.05	0.6	0.54	0.04	0.46	0.03
3	0.25	0.6	0.44	0.04	0.4	0.029
4	0.5	0.6	0.36	0.028	0.32	0.022
5	2.5	0.6	0.23	0.017	0.18	0.01
6	5	0.6	0.11	0.009	0.07	0.003
7	50	0.6	0.06	0.004	0.03	1E-3

![Figure S12 (b) --- Original data](image2)

A[X]	B[Y]	C[Y]	D[Y]	E[γEr?]	
1	0.05	1.3	1.25	1	0.05
2	0.5	1.3	1.25	0.7	0.06
3	2.5	1.3	1.25	0.48	0.03
4	5	1.3	1.25	0.36	0.02
5	50	1.3	1.25	0.11	0.01
The font information and the source file of the application.

Name	Font	Size	Source
Figure 1	Arial	20	Origin 7.5/Mac
Figure S1	Arial	1.67 point	Adobe Photoshop CS5
Figure S2	Arial	20	Origin 7.5/Mac
Figure S3	Arial	16	Origin 7.5/Mac
Figure S4	Arial	20	Origin 7.5/Mac
Figure S5	Arial	20	Origin 7.5/Mac
Figure S6	Arial	20	Origin 7.5/Mac
Figure S7	Arial	20	Origin 7.5/Mac
Figure S8	Arial	20	Origin 7.5/Mac
Figure S9	Arial	20	Origin 7.5/Mac
Figure S10	Arial	20	Origin 7.5/Mac
Figure S12	Arial	20	Origin 7.5/Mac