Effect of *Nigella sativa* against cisplatin induced nephrotoxicity in rats

Amnah M.A. Alsuhaibani
Department of Nutrition and Food Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

Abstract

In this study, the gross composition and mineral content of *Nigella sativa* seed powder (NSP) and fatty acid composition of *Nigella sativa* oil (NSO) were investigated. The ability of NSP, extract (NSE) and NSO in reducing the effects of cisplatin-induced renal toxicity in Sprague-Dawley rats were examined. The obtained results showed that NSP contains high amounts of carbohydrates, protein, and fiber while NSO has higher amounts of linoleic acid, oleic acid, and myristic acid. Rats treated with NSP, NSO, and NSE exhibited reduced serum levels of urea, creatinine, and potassium, and a significant increase of Na, Na/K, vitamin D, nutritional markers, and antioxidant enzymes compared to the cisplatin-induced renal toxicity group receiving no *Nigella sativa* seed treatment. This study determined that all powder, oil, and extracts of *N. sativa* contain potent bioactive components that may aid in treatment against cisplatin-induced renal toxicity in rats.

Introduction

Cisplatin is clinically proven as a potent treatment for various types of cancers, including sarcomas, testicular cancers, and cancers of soft tissue, lung, bones, muscles, and blood vessels. Unfortunately, clinical use of cisplatin is limited because it accumulates in renal tubules, causing acute kidney injury and, thus, damaging normal tissues (Arany and Safirstein, 2003). Recent studies on the molecular mechanisms of chemotheraphy-induced toxicity have revealed that cisplatin is the most frequent cause of nephrotoxicity when administered in higher doses. However, nephrotoxicity is multifactorial and involves numerous signaling pathways. Cisplatin act as oxidant stress promotes apoptosis of proximal tubule renal cells through mitochondrial dependent and independent pathways *in vitro* and *in vivo*. Cisplatin induces renal damage by generating reactive oxygen species, which cause mitochondrial dysfunction, DNA damage, and necrotic cell death as determined via both *in vitro* and *in vivo* studies (Maimaitiyiming et al., 2013; Sahu et al., 2014).

Nigella sativa (black seed) is an annual flowering plant that is used as a flavorful food additive and has long been used in folk medicine all over the world. *Nigella sativa* seeds may help prevent and treat respiratory diseases, inflammation, high blood pressure, and cell damage (El-Gharieb et al., 2010). *Nigella sativa* seeds are more than 30% fixed oil and 0.40-0.45 w/w volatile oil. The volatile oil of *Nigella sativa* contains 18-24% thymoquinone and 46% monoterpenes. Nigella seed extract (NSE), the primary active ingredient of which is thymoquinone, has been traditionally used to promote respiratory, stomach, and intestinal health (Arslan et al., 2005). *Nigella sativa* oil (NSO) has been traditionally used as a natural remedy for many diseases and ailments. The most potent bioactive components of NSO are arthymoquinone, thymol, dithymoquinone, and thymo hydroquinone, which are used for treating epilepsy and allergies and supporting kidney function, liver function, the circulatory system, and the immune system (Kanter et al., 2006).

The aim of this study was to investigate the gross composition and mineral content of *Nigella sativa* seed powder (NSP) and fatty acid composition of NSO in addition to investigate if *N. sativa* seed powder, extract, and/or oil could reduce cisplatin-induced renal toxicity in Sprague-Dawley rats.

Materials and Methods

Chemicals

All reagents and materials were of analytical grade. Chemicals for biodiagnostic tests were obtained from BioMerieux Kits (Alkan Co.). NSO was purchased from Silver Seas Co. Cisplatin was obtained from Sigma Chemical Company (St. Louis, MO, USA).

Preparation of *Nigella sativa* forms

Nigella sativa seeds were purchased from a local herbal shop in Riyadh, Saudi Arabia. The seeds (250 g) were cleaned, dried in a hot air oven, and mechanically grinded to obtain *Nigella sativa* powder (NSP). One hundred grams of NSP was extracted three times with 300 mL of 96% ethanol. The extracts were filtered, and the solvent was evaporated using a rotary, resulting in a blackish-brown liquid concentrate of NSE as expected (Hadjzadeh et al., 2012). NSE was emulsified in water and administered to rats using a stomach tube.

Chemical composition of Nigella sativa powder

Moisture, protein, lipids, ash, and crude fiber content were determined using analytical methods as recommended by the AOAC (2000). Carbohydrate content was estimated by difference. Ca, Fe, Zn, Mg, K and Na levels were assessed using an Atomic absorption spectrophotometer as recommended by the AOAC (2000).

Animals and experimental design

The experiment was performed with a total of 50 male Sprague-Dawley rats weighing 165±10 g. Rats were provided from an experimental animal center in Prince Sultan Military Medical City, Riyadh. Rats were housed with a 12h dark/light cycle schedule, placed as groups in wire cages under normal laboratory conditions, and fed a standard diet during a one-week adaption period. Rats were given free access to water and standard diet. Ethical guidelines were maintained during animal handling and permission was obtained from the concerned Department. After one week of acclimatization, rats were divided into 5 subgroups (n=10). The negative control (NC) group was given a single I/P injection of saline. The other treatment groups were injected with a single I/P dose (8 mg/kg body weight) of cisplatin (1 mg/mL) dissolved in saline to induce nephrotoxicity. Nephrotoxicity in rats was...
confirmed by observing elevated creatinine, urea nitrogen, and uric acid. The nephrotoxic rats were then divided into four subgroups: a positive control (PC) group that was administered distilled water; the NSP treatment group that was administered 3 g/kg/day of nigella sativa powder; the NSE treatment group that received 2 g/kg/day of nigella sativa oil; and the NCE group which was administered 0.5 g/kg/day of nigella sativa extract. All treatments given to nephrotoxic rats were administered daily via stomach tube for 60 days. Twenty-four hours after the last dose of the experiment, rats were sacrificed to obtain blood and kidney samples.

Biochemical analyses

Commercially available kits were used to estimate blood plasma levels of blood urea nitrogen (BUN), uric acid, creatinine, total protein, albumin, and globulin. Commercially available kits were also used to assess activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), and malondialdehyde (MDA) in the kidneys.

Parameter calculations

Body weight gain (BWG), body weight gain percent (BWG%), food intake (FI), feed efficiency ratio (FER), protein intake (PI), protein efficiency ratio (FER), and albumin/globulin ratio (A/G) were calculated.

Statistical analysis

Collected data were presented as mean±SD and statistically analyzed using one-way analysis of variance (ANOVA) according to Artimage and Berry (1987).

Results and Discussion

Table 1 showed that NSP contain high amount of carbohydrate, protein and fiber and low amount of fiber, fat and ash. Our results were somewhat in agreement with the values reported by Nergiz and Ötleş (1993). The obtained mineral content of NSP indicated major differences in the amounts of calcium, iron, sodium and potassium compared to results by Nergiz and Ötleş (1993) who reported 188±1.5, 23.89±2.57, 10.95±1.82, and 3.90±0.41, respectively. NSO had a higher percentage of unsaturated fatty acids (81.50% ±1.96) than saturated fatty acids (16.11% ±2.35).

Similar fatty acid values were reported by Nickavars et al., (2003) and Atta (2006). The fixed oil of Nigella seeds is rich in linoleic, oleic, and palmitic acids. The dominating fatty acid is linoleic acid, which is an essential fatty acid and accounts for more than 50% of total fatty acids in NSO. Linoleic and oleic acids represented the predominant unsaturated fatty acids and represented more than 80% of the total fatty acids. There was a high linoleic/oleic acid ratio, so Nigella oil should not be used in frying.

In this study, *Nigella sativa* treatment, either in powder, oil, or extract form, induced a significant decrease of nutritional markers (i.e., BWG, BWG%, FER, and PER) compared to the NC and a significant increase of nutritional markers compared to the PC. There were no significant differences between the *Nigella sativa* treatment groups (Table 2).

Table 1. Proximate, mineral and fatty acids composition of *Nigella sativa*.

Parameter	NC	PC	NSP	NSO	NSE
Protein (g/100 g)	201.08±1.83	18.88±0.51	19.99±0.65	19.33±0.12	215.75±10.03
Fat (g/100 g)	0.81±0.03	1.75±0.10	1.75±0.10	1.75±0.10	1.75±0.10
Fiber (g/100 g)	0.65±0.04	2.06±0.15	3.33±0.12	3.33±0.12	3.33±0.12
Moisture (g/100 g)	12.66±1.05	72.90±1.54	72.90±1.54	72.90±1.54	72.90±1.54
Ash (g/100 g)	37.27±2.12	37.27±2.12	37.27±2.12	37.27±2.12	37.27±2.12
Minerals (mg/100 g)					
Ca	11.33±1.05	0.426±0.03	0.426±0.03	0.426±0.03	0.426±0.03
Mg	57.97±5.61	22.65±2.67	39.86±3.66c	42.77±4.31b	40.96±4.13b
Fe	19.59±1.82	10.95±1.82	10.95±1.82	10.95±1.82	10.95±1.82
Zn	0.1±0.01	0.1±0.01	0.1±0.01	0.1±0.01	0.1±0.01
Na	3.90±0.41	3.90±0.41	3.90±0.41	3.90±0.41	3.90±0.41
Calciuim					
Myristic acid (C14:0)					
Palmitic acid (C16:0)					
Palmitoleic acid (C16:1)					
Stearic acid (C18:0)	18.71±1.11b	15.75±1.03b	15.75±1.03b	15.75±1.03b	15.75±1.03b
Oleic acid (C18:1)					
Linoleic acid (C18:2)					
Linolenic acid (C18:3)					
Arachidic acid (C20:0)					
Saturated fatty acids					
Unsaturated fatty acids					
Unsaturated fatty acids					

Table 2. Nutritional markers in experimental rat groups.

Parameter	NC	PC	NSP	NSO	NSE
BWG	95.66±5.11a	38.42±3.77d	68.95±6.41b	74.84±6.96b	71.27±6.89c
BWG%	57.97±5.61b	22.65±2.67d	39.86±3.66c	42.77±4.31b	40.96±4.13b
FER	18.71±1.11b	15.75±1.03b	17.88±1.13c	18.33±1.41b	18.65±1.35c
PE	3.74±0.21b	3.15±0.25c	3.57±0.38b	3.66±0.26c	3.73±0.24c
PER	0.42±0.03a	0.20±0.01c	0.321±0.02b	0.34±0.01b	0.318±0.01b

NC: normal control; PC: positive control; NSP: Nigella sativa powder; NSO: Nigella sativa oil; NSE: Nigella sativa extract. Mean values in each raw having different superscript are significantly different at P<0.05.
Previous studies have shown that cisplatin is highly emetogenic, as it has been widely utilized to induce acute nausea and vomiting in preclinical animal models. The increase of nutritional markers in rat groups administrated *Nigella sativa* likey due to it nutrient content and not due to its antioxidant properties (Takruri and Dameh, 1998). *Nigella sativa* seed powder was a good counteractive agent against the emetogenic effects of cisplatin because it is typically used as a digestive, appetite stimulant, and supplement to support-immune system function. *Nigella sativa* seeds contain many important phenolics, such as kaempferol, p-coumaroyl acid derivative, and thymol-O-soporphoside. *Nigella sativa* seed extract has significant anti-inflammatory potential because of its antioxidant activity (Kadam and Lele, 2017). Also, there was a significant reduction of body weight in obese patients with fatty liver disease after three months treatment with *Nigella sativa* likely due to its ability to scavenge free radicals and inhibit lipid peroxidation (Heshmati et al., 2015 and Hussain et al., 2017). Thymoquinone is the primary active ingredient of *Nigella sativa*. When combined with polyphenols, compounds that facilitate lipid and carbohydrate metabolism, thymoquinone induces weight loss in diabetic rats (Kaur et al., 2017).

Serum urea and creatinine levels are indicators of acute tubular necrosis caused by cisplatin toxicity and nephrotoxicity. The PC group, which was treated with cisplatin alone, exhibited a significant increase in serum levels of urea, uric acid, and creatinine as compared to the NC group (Table 3). Treatment with NSP, NSE and NSO reduced the cisplatin-induced increase of urea, uric acid, and creatinine. *Nigella* oil and extract were especially effective at reducing the increase observed in the PC groups, but were not able to cause full recovery of normal (NC) urea, uric acid, and creatinine levels. In agreement with previous reports, initial cisplatin-induced renal dysfunction was caused by the inhibition of carnitine synthesis and reabsorption. Cisplatin further causes damage by accumulating in renal parenchymal cells and biotransforming into cysteiny1 glycine conjugates and other high thiols via localized biotransforming into cysteinyl glycine conjugates and other high thiols via localized.

As previously mentioned, the predominant bioactive compounds in *Nigella sativa* are thymoquinone (30-48%), thymohydroquinone, dithymoquinone, p-cymene, carvacrol, α-pinene, thymol, quercetin, kaempferol, and quercetin-3. *Nigella sativa* also contains phytochemicals such as fixed and volatile oils, proteins, flavonoids, glycosides, alkaloids (mainly magnoflorine), and saponins that have strong antioxidant properties and palliative effects on inflammation (Ahmad et al., 2013; Farag et al., 2014). The observed decrease of Na, Na/K and vitamin D levels in the cisplatin-induced renal toxicity PC group may be due to suppressed renal tubular reabsorption of water and electrolytes into the blood stream. Black cumin and thymoquinone synergizes the nephroprotective effect against cisplatin-induced acute kidney injury and methotrexate induced nephrotoxicity in rats (Benhelima et al., 2016).

Table 3. Serum analyses for renal function indicators in experimental rat groups.

	NC	PC	NSP	NSO	NSE
Urea nitrogen (mg/dL)	45.4±1.51	129.66±10.11	85.71±8.77	70.79±7.81	65.13±6.13
Uric acid (mg/dL)	1.42±0.37	4.03±0.96a	2.89±0.41	2.54±0.29	1.88±0.33
Creatinine (mg/dL)	0.69±0.03	5.10±0.41	3.21±0.51	2.96±0.46	2.11±0.39
Total protein	6.35±0.57	5.61±0.43	5.99±0.41	5.59±0.42	4.44±0.60
Albumin (A)	3.29±0.22	5.53±0.23	2.89±0.20	2.70±0.21	3.05±0.33
Globulin (G)	3.66±0.32	2.08±0.29	3.10±0.38	3.25±0.27	3.41±0.35
A/G	0.90±0.12	1.70±0.19	0.93±0.10	0.83±0.11	0.89±0.11
Na (mol/L)	135.77±40.61	90.79±11.71	107.77±13.21	96.96±10.13	110.77±15.22
K (mol/L)	3.55±0.61	6.17±1.71	4.75±0.78	4.61±0.77	4.15±0.68
Na/K ratio	38.25±3.78	14.70±1.70	22.70±2.19	21.03±2.31	26.69±2.60
Vitamin D (nmol/L)	50.77±6.19	24.75±3.16	39.66±4.21	40.31±5.10	43.78±3.66

NC: normal control, PC: positive control, NSP: *Nigella sativa* powder, NSO: *Nigella sativa* oil, NSE: *Nigella sativa* extract. a,b,c,dMean values in each raw having different superscript are significantly different at P<0.05.

Table 4. Renal antioxidant parameters in experimental rat groups.

	NC	PC	NSP	NSO	NSE
Catalase (µ/mg)	3.88±0.71	5.55±0.19	2.61±0.32	2.81±0.40	2.94±0.38
SOD (µ/mg)	2.98±0.27	1.05±0.11	2.10±0.18	2.03±0.29	2.39±0.33
GPX (µ/mg)	1.91±0.22	0.64±0.13	0.99±0.19	1.11±0.31	1.39±0.27
MDA (nmol/g)	6.41±1.45	13.77±2.17	10.31±1.96	9.66±1.41	8.41±1.03

NC: normal control, PC: positive control, NSP: *Nigella sativa* powder, NSO: *Nigella sativa* oil, NSE: *Nigella sativa* extract, SOD: superoxide dismutase, GPX: glutathione peroxidase, MDA: malondialdehyde. a,b,c,dMean values in each raw having different superscript are significantly different at P<0.05.
Treatment with NSE increased electrolyte excretion, having and a greater natriuretic effect than a kaluretic effect and a similar uricosuric effect with the control. The Na+/K+ ratio can be used to predict the diuretic mechanism due to an increase of the kaluretic effect, but mostly to a decrease of Na+ excretion (Toma et al., 2015). This may be attributed to the antioxidant activity of the extracts. Polyphenols and flavonoids have been reported to be effective in reducing the oxidative stress from cisplatin, thus restoring kidney function (Kaur et al., 2017).

As shown in Table 4, the PC group exhibited a significant increase in renal tissue levels of MDA and significant decrease of antioxidant enzymes (catalase, SOD, and GPX) when compared to the NC group. Administration of NSP, NSO and NSE caused significant decreases of MDA and increases of enzymes with antioxidant activity compared to the PC group however did not cause full recovery of these enzymes. Cisplatin generates free radicals such as superoxide and hydroxyl which produce oxidative damage and lipid peroxidation (Santos et al., 2012). Cisplatin induced renal toxicity decreases levels of antioxidant enzymes and non-enzymatic molecules as glutathione and significantly increases hepatic MDA levels in rats (Kart et al., 2010). Thymohydroquinone and thymoquinone are the most important constituents of NSO that has antioxidant and cytoprotective effect against kidney damage by inhibiting in vitro non-enzymatic lipid peroxidation measured as MDA and elevate antioxidant enzymes including SOD, CAT, and GPx in kidney tissues. NSO and NSE have anti-inflammatory properties by inhibiting cyclooxygenase and lipoygenase and contains kaempferol and quercetin which have strong antioxidant properties (Mahmoud et al., 2002; Entok et al., 2014). Thus, NSP, NSO, and NSE prevents cisplatin-induced nephrotoxicity via direct antioxidant activity and indirect antioxidant activity from induction of endogenous antioxidant enzymes.

Conclusions
The results presented in our study strongly suggest that Nigella sativa is a rich source of many essential nutrients that have a positive effect on body weight and human health. Nigella seed oil have fatty acids with a long shelf life and is suitable for pharmaceutical and nutraceutical application. NSP, NSO, and NSE act as a potent antioxidant to prevent the toxic effects of cisplatin in biochemical parameters in the serum and kidney so have potential to be utilized as an adjunct therapy for nephrotoxicity. In order to prevent life-threatening complications inpatients with nephrotoxicity, it is recommended to supplement their diets with different forms of Nigella sativa (powder, oil, or extract). There is a need for further researchers on method of extraction and storage of Nigella seed and clinical trials of long duration administration of seed, extract and oil in patients with renal disease in addition to investigate the active principle that can be used in manufacture of drugs.

References
Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, DamanhouriZA, Anwar F, Kishore K, 2013. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3:333-17.
AOAC (Association of Official Analytical Chemists), 2000. Official Methods of Analysis International (17th ed). AOAC, Washington, DC, USA.
Arany I, Safirstein RL, 2003. Cisplatin nephrotoxicity. Semin Nephrol 23:460-4.
Arslan SO, Gelir E, Armutcu F, Coskun O, Gurel A, Sayhan H, 2005. The protective effect of thymoquinone on ethanol-induced acute gastric damage in the rats. Nutrit Res 25:673-7.
Artimage GY, Berry WG, 1987. Statistical Methods 7th ed. Ames, Iowa Stata University Press. pp 39-63.
Atta MB, 2003. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chem 83: 63-5.
Benhelima A, Kaid-Omar Z, Hemida H, Benmahdi T, Addou A, 2016. Nephroprotective and diuretic effect of Nigella sativa L seeds oil on lithiasic wistar rats. AJTCAM 13:204-10.
Bourgu S, Bettaieb I, Saidani M, Marzouk B, 2010. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions. J Agric Food Chem 58:12399-7.
Canayakin D, Bayir Y, Kilic Baygutalp N, Sezen Karaoglan E, Atmaca HT, Kocak Ozgeris FB, Halici Z, 2016. Paracetamol-induced nephrotoxicity and oxidative stress in rats: the protective role of Nigella sativa. Pharmaceutical Biol 54:2082-9.
El-Gharieb MA, El-Masry TA, Emara AM, Hashem MA, 2010. Potential hepatoprotective effects of vitamin E and Nigella sativa oil on hepatotoxicity induced by chronic exposure to malathion in human and male albino rats. Toxicol Environ Chem 92:395-17.
El-Tahir KE, Bakeet DM, 2006. The black seed Nigella sativa Linnaeus-A mine for multi cures: a plea for urgent clinical evaluation of its volatile oil. J Taibah University Medical Sciences 1:1-19.
Entok E, Ustuner M C, Ozbayer C, Tekin N, Akyuz F, Yangi B, Gunes HV, 2014. Anti-inflammatory and anti-oxidative effects of Nigella sativa L.: 18FDG-PET imaging of inflammation. Mol Biol Rep 41:2827-7.
Farag MA, Gad HA, Heiss AG, WessjoHan LA, 2014. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem 151:333-9.
Hadjzadeh MA, Keshavarzi Z, Yazdi SA, Shirazi MG, Rajaei Z, Rad AK, 2012. Effect of alcoholic extract of Nigella sativa on cisplatin induced toxicity in rat. Iran J Kidney Dis 6:99-5.
Heshmati J, Namazi N, Memarzadeh MR, Taghizadeh M, Kolahdooz F, 2015. Nigella sativa oil effects glucose metabolism and lipid concentration in patients with type 2 diabetes: A randomized double blind placebo control trial. Food Res Int 70:87-6.
Hussain M, Tunio A G, Arain L A, Shaikh G S, 2017. Effects of nigella sativa on various parameters in patients of non-alcoholic fatty liver disease. J Ayub Med Coll Abbottabad 29:403-4.
Kadam D, Lele SS, 2017. Extraction, characterization and bioactive properties of Nigella sativa seedcake. J Food Sci Technol 54:3936-11.
Kanter M, Coskun O, Uysal H, 2006. The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone, on ethanol-induced gastric mucosal damage. Arch Toxicol 80:217-7.
Karasawa T, Stegger P S, 2015. An integrated view of cisplatin-induced nephrotoxicity and otoxicity. Toxicol Lett 237:219-8.
Kart A, Cigremis Y, Karaman M, Ozen H, 2010. Caffeic acid phenethyl ester (CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit. Exp Toxicol Pathol 62:45-7.
Kaur G, Invaliy M, Khan MK, Jadhav P, 2017. A potent nutraceutical combination of Cinnamomum cassia & Nigella sativa for Type 1 diabetes mellitus J Ayurveda Integr Med 1-11.
Mainaittyimig H, Li Y, Cui W, Tong X, Norman H, Qi X, 2013. Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney
injury through protection of mitochondria function. Am J Physiol Renal Physiol 305: F881-9.
Nergiz C, Ötleş S, 1993. Chemical composition of Nigella sativa L. seeds. Food chemistry 48:259-2.
Nickavar B, Mojab F, Javidnia K, Amoli MA, 2003. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Zeitschrift Naturforschung C 58: 629-2.
Randhawa MA, Alghamdi MS, 2011. Anticancer activity of Nigella sativa (blackseed) – a review. Am J Chin Med 39:1075-91.
Sahu BD, Kalvala AK, Koneru M, Mahesh KJ, Kuncha M, Rachamalla SS, Sistla R, 2014. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-kB activation and antioxidant defence. PLoS One9:e105070.
Santos NA, Rodrigues MA, Martins NM, Santos AC, 2012. Cisplatin-induced nephrotoxicity and targets of nephro-protection: an update. Arch Toxicol 86:1233-17.
Takruri HM, Domeh MA, 1998. Study of the nutritional value of black cumin seeds (Nigella sativa L.). J Sci of Food Agri 76:404-6.
Toma CC, Olah NK, Vlase L, Mogoșan C, Mocan A, 2015. Comparative studies on polyphenolic composition, antioxidant and diuretic effects of Nigella sativa L. (black cumin) and Nigella damascena L. (lady-in-a-mist) seeds. Molecules 20: 9560-14.
Yao X, Panichpisal K, Kurtzman N, Nugent K, 2007. Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115-9.