Potential use of sugar binding proteins in reactors for regeneration of CO\textsubscript{2} fixation acceptor D-Ribulose-1,5-bisphosphate

Sourav Mahato1, Debojyoti De1, Debojyoti Dutta1, Moloy Kundu1, Sumana Bhattacharya2, Marc T Schiavone2 and Sanjoy K Bhattacharya*3

Address: 1Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India, 2Environmental Biotechnology Division, ABRD Company LLC, 1555 Wood Road, Cleveland, Ohio, 44121, USA and 3Department of Ophthalmic Research, Cleveland Clinic Foundation, Area I31, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA

Email: Sourav Mahato - mahatosourav_007@rediffmail.com; Debojyoti De - debajyoti_de@rediffmail.com; Debojyoti Dutta - debajyoti_dutta47@rediffmail.com; Moloy Kundu - moloy_kundu@rediffmail.com; Sumana Bhattacharya - sbc-abrd@usa.net; Marc T Schiavone - schiavone@rediffmail.com; Sanjoy K Bhattacharya* - bhattas@ccf.org

* Corresponding author

Abstract

Sugar binding proteins and binders of intermediate sugar metabolites derived from microbes are increasingly being used as reagents in new and expanding areas of biotechnology. The fixation of carbon dioxide at emission source has recently emerged as a technology with potentially significant implications for environmental biotechnology. Carbon dioxide is fixed onto a five carbon sugar D-ribulose-1,5-bisphosphate. We present a review of enzymatic and non-enzymatic binding proteins, for 3-phosphoglycerate (3PGA), 3-phosphoglyceraldehyde (3PGAL), dihydroxyacetone phosphate (DHAP), xylulose-5-phosphate (X5P) and ribulose-1,5-bisphosphate (RuBP) which could be potentially used in reactors regenerating RuBP from 3PGA. A series of reactors combined in a linear fashion has been previously shown to convert 3-PGA, (the product of fixed CO\textsubscript{2} on RuBP as starting material) into RuBP (Bhattacharya et al., 2004; Bhattacharya, 2001). This was the basis for designing reactors harboring enzyme complexes/mixtures instead of linear combination of single-enzyme reactors for conversion of 3PGA into RuBP. Specific sugars in such enzyme-complex harboring reactors requires removal at key steps and fed to different reactors necessitating reversible sugar binders. In this review we present an account of existing microbial sugar binding proteins and their potential utility in these operations.

Review

Rapid industrialization has led to a dramatically accelerated consumption of fossil fuels with a consequent increase in atmospheric levels of the greenhouse gas carbon dioxide (CO\textsubscript{2}). This sustained increase of atmospheric CO\textsubscript{2} has already initiated a chain of events with negative ecological consequences [1-3]. Failure to reduce these greenhouse gas emissions will have a catastrophic impact upon both the environment and the economy on a global scale [4,5]. The reduction has to be brought about by global concerted effort by all countries in order to be effective and meaningful.

At one end of the spectrum – that of generation and utilization of energy resulting in generation of carbon dioxide – hydrocarbons serve as intermediaries for energy storage. Hydrocarbons are not energy by themselves but store energy in their bonds, which is released during
Combustion. They are thus intermediates for obtaining stored bond energy within them and carbon dioxide is emitted as a consequence of combustion to extract this stored energy. In recent times hydrogen has received renewed attention as the potential replacement for hydrocarbons [6-10]. However, hydrogen too is an intermediary for obtaining stored bond energy. Recent reports suggest that hydrogen as intermediary may not be entirely free from problems. Also, the problems from use of hydrogen as fuel are yet to be fully realized or foreseen [11,12]. In all these endeavors a key question, that whether the hydrocarbons will be still retained as intermediaries in energy utilization and the problem of air pollution caused as a result of their combustion can be technologically ameliorated, has not been looked in as much detail as perhaps it should have been. This can possibly be achieved by contained handling of carbon dioxide. The contained handling and fixation of CO$_2$ can be achieved biotechnologically, chemically or by a combination of both.

Sugar binding proteins derived from microbial and other sources have been used for various applications such as diagnostics and affinity purification [13,14], however they have not been used in environmental biotechnological applications. The possibility of their potential application in environmental biotechnology and review of a few potential candidates is presented here.
The methods in environmental biotechnology that enables efficient capture [15] and fixation of CO₂ at emission source/site into concatenated carbon compounds has been pioneered by our group [16-19]. The first part in the biocatalytic carbon dioxide fixation is the capture of gaseous CO₂. We have pioneered novel reactors employing immobilized carbonic anhydrase for this purpose [15]. Subsequent to capture the carbon dioxide becomes solubilized (as carbonic acid or bicarbonate). After adjustment of pH using controllers and pH-stat the solution is fed to immobilized Rubisco reactors [18] where acceptor D-Ribulose-1,5-bisphosphate (RuBP) after CO₂ fixation is converted into 3-phosphoglycerate [16,17]. However, inasmuch as the recycling of acceptor RuBP is central to continuous CO₂ fixation, we have invented a novel scheme (Figure 1), which proceeds with no loss of CO₂ (unlike cellular biochemical systems) in 11 steps in a series of bioreactors [20]. This scheme is very different from generation of RuBP from D-glucose for start-up process [21] and employing 11 steps in different reactors requiring large volume and weight. The linear combination of reactors with large volume and weight are unsuit-

Figure 2
An alternate arrangement of enzymes in the scheme outlined in Fig. 1. This schemes harbors four reactors with indicated enzyme complexes enabling internal channeling, greatly reduces volume and weight for regenerating reactors with faster overall conversion rate to RuBP starting with 3PGA making the system compatible for application in mobile devices in addition to stationary emitters. The reactors may use the sugar binding entities at indicated positions, the hollow and solid symbols represent binding and release phase of the binding-molecules, the plus, circle, cylinder and box are symbols for 3PGA, DHAP, XSP and RuBP binders respectively.

Reactor 1
- 3-Phosphoglycerate (3-PGA) (3-Carbon)
- Phosphoglycerate kinase
- Glycerate phosphate dehydrogenase
- Triose phosphate isomerase
- 3-Phosphoglyceraldehyde (3-PGAL)
- Dihydroxyacetone phosphate (DHAP)

Reactor 2
- Aldolase
- FBPase
- Transketolase
- Erythrose –4-phosphate (E4P)
- Dihydroxyacetone phosphate (DHAP)
- Erythrose –4-phosphate (E4P)

Reactor 3
- Aldolase
- SBPase
- Transketolase
- Ribulose-5-phosphate (R5P)
- Xylulose-5-phosphate (X5P)

Reactor 4
- Epimerase
- Phosphoribulokinase
- Ribulose-1,5-bisphosphate (RuBP) (5-Carbon)
Table 1: Proteins that bind 3-phosphoglycerate

Source	Mutation	Remarks	References
Enzymatic proteins			
Phosphoglycerate mutase 1 (EC 5.4.2.1)			
E. coli	Glu327	Lower Vmax	26
S. cerevisiae	Gly13Ser	2-fold increase in activity	27
S. cerevisiae	His181	11-fold increase in the Km	28
B. stearothermophilus	S62A	Loss of activity, retention of ligand binding	29
S. pombe	H163Q	Loss of activity, retention of ligand binding	30
E. coli	R257A	11-fold increase in Vmax	26
E. coli	R307A	700-fold decrease in Vmax	26
C-terminal 7 res. Deletion			
S. cerevisiae	S39A	Loss of over 90% activity	32
S. cerevisiae	H157A, H159A	Loss of over 90% activity	33
S. cerevisiae	H159A	Loss of over 98% activity	34
Escherichia coli	N341D	20-fold reduction in activity	35
S. cerevisiae	H388G	Reduced kcat and Km	37
S. cerevisiae	R168K	Increase in Km	38
S. cerevisiae	R168M	Increase in Km	38
S. cerevisiae	H62D	Increase in Km	39
S. cerevisiae	D372N	reduction in Vmax by 10-folds	40
S. cerevisiae	R38A	Complete loss of activity	41
S. cerevisiae	R38Q	Complete loss of activity	41
S. cerevisiae	R65Q	Increase in Kd, decrease in Km	42
S. cerevisiae	R65A	Increase in Kd, decrease in Km	42
S. cerevisiae	R65S	Increase in Kd, decrease in Km	42
S. cerevisiae	F194W (and F194L)	decrease in Km, Vmax	43
S. cerevisiae	R194A	Reduction in kcat	44
Enolase (EC 4.2.1.1)			
S. cerevisiae	E418Q, E418A	98–99% reduction in activity	45
S. cerevisiae	E418A	95–99% reduced activity	45
S. cerevisiae	H103A, H103N and H103F	95–99% reduced activity	46
S. cerevisiae	E162A (G)	Impaired catalytic activity and binding	47
S. cerevisiae	D382N(A)	Impaired catalytic activity and binding	47
S. cerevisiae	H481A/S/G	98.5% reduced specific activity	48
S. cerevisiae	N477A	1000-fold decrease in kcat/Km	49
Bisphosphoglycerate mutase (EC 5.4.2.4)			
S. cerevisiae	H181A	Decrease in kcat	28
Transketolase			
E. coli	E418Q, E418A	98–99% reduction in activity	45
S. cerevisiae	E418A	95–99% reduced activity	45
S. cerevisiae	H103A, H103N and H103F	95–99% reduced activity	46
S. cerevisiae	E162A(G)	Impaired catalytic activity and binding	47
S. cerevisiae	D382N(A)	Impaired catalytic activity and binding	47
S. cerevisiae	H481A/S/G	98.5% reduced specific activity	48
S. cerevisiae	N477A	1000-fold decrease in kcat/Km	49
S. cerevisiae	H263A	Reduced activity	50
Triosephosphate isomerase			
K. lactis	L-Serine	Reduced activity	51
Klp11 mutant			
Plasmodium falciparum	Y74G	Reduced stability	53
Plasmodium falciparum	C13D	7-fold reduction in activity	54
Trypanosoma brucei	W12F	Reduced stability	55
Leishmania mexicana	E65Q	Increased stability	56
DeltaTPI1 mutants			
K. lactis	A238S	Reduced activity	57
Vibrio marinus	C14L	Reduced stability and altered kinetics	58
Trypanosoma brucei	K12R	Vmax reduced by factor of 180	59
Saccharomyces cerevisiae	K12H	No catalytic activity at neutral pH	60
Saccharomyces cerevisiae	E165D	100-fold loss in catalytic activity	61
Salmonella typhimurium	R179L	Reduction in binding affinity	62
Trypanosoma brucei	H47N	Reduced stability	63
Escherichia coli	E165D	100-fold reduction in specific activity	64
Escherichia coli	N78D	Lower kcat	65
Saccharomyces cerevisiae	H95G	400-fold decrease in catalytic activity	66
able for use with mobile CO₂ emitters leaving only the stationary source of emission to be controlled using this technology [17]. To circumvent these problems we have devised a new scheme presented in Figure 2[22]. Based on this scheme, we have designed enzymes as functionally interacting complexes/interactomes or successive conversions in radial flow with layers of uniformly oriented enzymes in concentric circle with axial collection flow system for three enzymes in first reactor for the scheme presented in Figure 2. The four reactors harboring enzymatic complexes/mixtures replace the current 11 reactors. This leads to a faster conversion rate and requires less volume and material weight. However, 4 sugar moieties [3-phosphoglyceraldehyde (3PGAL), Dihydroxyacetone phosphate (DHAP), Xylulose-5-phosphate (X5P) and Ribulose-1, 5-bisphosphate (RuBP)] must be separated at four key steps, as illustrated in Figure 2. In figure 2, using four symbols with solid for bound state and empty for released state, for potential binders: plus for 3PGA, circle for DHAP, cylinder for X5P and box for RuBP, the possible place for utility of these binders have been depicted. In the course of this review, we will consider the availability of enzymatic proteins and non-enzymatic proteins that would be potentially useful as specific binders for these sugar molecules. With a recombinant mutant enzyme we illustrate that such an approach has potential to be used as an in-situ reversible binding matrix for sugar binding and release.

Potential utilizable sugar binding proteins in RuBP regeneration

Three categories of binding proteins can be potentially employed for differential absorption of sugars and for subsequent elution and feeding the reactors downstream in conversion cascade. These are: mutant enzymatic proteins that retain the ability of binding but completely lack any catalytic activity, lectins or proteins of non-immunogenic origin [23] having more than one binding site for the sugar (in nature they cause agglutination due to sugar binding at multiple sites) and mutant or wild type receptors that binds sugars but are incapable of eliciting further biological activities. The desirable proteins in all these categories are those for which binding affinity is high in a condition close to pH of the emanating solution from the reactor and other conditions for reactor effluent, ability to bind reversibly with respect to some simple but easily manipulable physicochemical parameter (such as temperature, pH, salt concentration), and the ability to be easily attached to a matrix using simple chemistry without loss of binding ability and a long shelf life.

Table 1: Proteins that bind 3-phosphoglycerate (Continued)
Non-enzymatic proteins
Phosphoglycerate transporter protein
Salmonella typhimurium
Salmonella typhimurium
Bacillus cereus
Bacillus anthracis
Salmonella typhi
Salmonella typhi
Histone like DNA-binding protein (HU homolog)
Mycobacterium leprae
Mycobacterium leprae
Mycobacterium tuberculosis
Mycobacterium tuberculosis
40S ribosomal protein SA (P40)
Chlorohydra viridissima
Strongylocentrotus purpuratus
Tripneustes gratilla
Urechis caupo
Streptococcus agalactiae
Streptococcus agalactiae
Streptococcus pyogenes
Streptococcus agalactiae
Streptococcus agalactiae
Streptococcus agalactiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Histone like DNA-binding protein (HU homolog)
Mycobacterium leprae
Mycobacterium leprae
Mycobacterium tuberculosis
Mycobacterium tuberculosis
40S ribosomal protein SA (P40)
Chlorohydra viridissima
Strongylocentrotus purpuratus
Tripneustes gratilla
Urechis caupo
Streptococcus agalactiae
Streptococcus agalactiae
Streptococcus pyogenes
Streptococcus agalactiae
Streptococcus agalactiae
Streptococcus agalactiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Laminin-binding protein
Streptococcus agalactiae
Streptococcus agalactiae
Streptococcus pyogenes
Streptococcus agalactiae
Streptococcus agalactiae
Streptococcus agalactiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
We undertook this review because, although the comprehensive information on a large number of enzymes have been accumulated in BRENDA database [24,25], but the systematic information on their mutants is lacking and non-enzymatic binders of sugar ligands are not identified / listed in the database.

Source Organism	Mutation	Remarks	References
Enzymatic proteins			
Glyceraldehyde-3-phosphate dehydrogenase			
S. cerevisiae	ald5 mutant	Higher catalytic activity	86
S. cerevisiae	gpd2 delta mutant	Improved ethanol production	87
Dihydroxyacetone kinase 1 (Glycerone kinase 1)			
Hansenula polymorpha	per8-210 mutant	Lacks enzymatic activity	88
Glycerol-3-phosphate acyltransferase			
Escherichia coli	G1045A	Reduced specific activity, increased Km	89
Escherichia coli	D311E	Reduced catalytic activity	90
S. cerevisiae	tpa1 mutant	2-fold decrease in activity	91
NAD(P)H-dependent dihydroxyacetone-phosphate reductase			
Escherichia coli	Q15R/K, W37R/K	Inactive with NADP+	92
Escherichia coli	Q15K-W37R and Q15R-W37R	30-fold higher Km for NADP+	92
Escherichia coli	gamma-R97Q	10-fold increased Km for NAD	93
Escherichia coli	G252A	Reverse transhydrogenation activity	94
Pseudomonas fluorescens	K295A and K295M	104–106-fold lower turnover	95
M. thermoautotrophicum	R11K and R136K	Decreased Km	96
Alkyl-dihydroxyacetonephosphate synthase			
Hansenula polymorpha	ts6 and ts44 mutant	Peroxisomes absent	97
Dihydroxyacetone phosphate acyltransferase			
Corynebacterium glutamicum	S187C	Reduced enzymatic activity	98
Triose phosphate isomerase			
Kluyveromyces lactis	Kitp1 mutant	Loss of enzymatic activity	52
Plasmodium falciparum	Y74G	Reduced stability	53, 54
Plasmodium falciparum	C13D	7-fold reduction in the enzymatic activity	53, 54
Trypanosoma brucei	W12F	Reduced stability	55
Leishmania mexicana	E65Q	Increased stability	56
DeltaTPPII mutants			
Bacillus stearothermophilus	N12H	Prevent deamidation at high temperature	57
Vibrio marinus	A238S	Catalytic activity reduced	58
Trypanosoma brucei	C14L	Reduced stability and altered kinetics	59
Saccharomyces cerevisiae	K12R	Vmax reduced by a factor of 180. Km elevated	60
Saccharomyces cerevisiae	K12H	No catalytic activity at neutral pH	60
Saccharomyces cerevisiae	E165D	1000-fold reduction in catalytic activity	61
Salmonella typhimurium	R179L	Reduction in binding affinity	62
Trypanosoma brucei	H47N	Reduced stability	63
Escherichia coli	E165D	1000-fold reduction in specific activity	64
Escherichia coli	N78D	Lowered Kcat	65
Saccharomyces cerevisiae	H95G	400-fold decrease in catalytic activity	66
Non-enzymatic protein			
DHAP transporter			
Saccharomyces cerevisiae			100
mycoplasma mycoides			101
E. coli			102
Pseudomonas aeruginosa			103
Escherichia coli			104
Escherichia coli			105
Escherichia coli			106
Escherichia coli			107
Proteins that bind 3-phosphoglycerate/3-phosphoglyceraldehyde

Both enzymatic and non-enzymatic proteins bind these sugar entities. A number of mutants of many enzymes that bind to either 3-phosphoglycerate or 3-phosphoglyceraldehyde are also known, for example, Phosphoglyceromutase (EC 5.4.2.1), Mannosyl-3-phosphoglycerate phosphatase (EC 3.1.3.70), Mannosyl-3-phosphoglycerate synthase (EC 2.4.1.217), Phosphoglycerate kinase, (EC 2.4.1.2), Bisphosphoglycerate-independent phosphoglycerate mutase (EC 5.4.2.4), 2,3-bisphosphoglycerate-independent phosphoglycerate synthase (EC 5.4.2.1), D-3-phosphoglycerate dehydrogenase 2 (EC 1.1.1.95), Cyclic 2,3-diphosphoglycerate-synthetase, Phosphoglycerate dehydrogenase, Transketolase, and Triosephosphate isomerase, BRENDA database shows only three enzymes: Phosphoglycerate dehydrogenase, Mannosyl-3-phosphoglycerate synthase and Phosphoglycerate kinase. A number of mutants of enzymes that binds 3-phosphoglycerate and shows some change in enzymatic activity or kinetic parameters are listed in Table 1. Many of these proteins are reported to retain ligand binding ability with varying degree of loss in catalytic ability (inactive mutants are in bold face), the non-enzymatic protein that also has been reported in literature has been placed towards the bottom part of Table 1. The proteins which retain binding ability but with complete loss in catalytic activity are the ones which warrant further investigation in batch and continuous processes for exploring their suitability as binding proteins in continuous RuBP regenerating reactors (Figure 2). A number of non-enzymatic protein summarized in Table 1 also warrant further exploration. The only binding entity of significance for 3-phosphoglyceraldehyde is 3-phosphoglyceraldehyde dehydrogenase (EC 1.2.1.12) and has not been reviewed.

Proteins that bind dihydroxyacetone phosphate

Several enzymes: dihydroxyacetone phosphate acyltransferase, Glycerol-3-phosphate dehydrogenase, Aldolase A, fructose-bisphosphatase, Aldolase B, fructose-bisphosphatase, L-aspartate oxidase, Quinolinate synthetase A, Dihydroxyacetone kinase 1 (Glycerone kinase 1), Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), acylglycerone-phosphate reductase (EC 1.1.1.101), glycerone-phosphate O-acyltransferase (EC 2.3.1.42) and alkylglycerone-phosphate synthase (2.5.1.26). The mutants of enzymes with no chemical conversion ability but with high affinity for binding dihydroxyacetone phosphate but very low affinity for other proteins and reversible binding with respect to temperature, salt or pH are desirable properties for the binders.

Proteins binding xylulose-5-phosphate

As shown in Table 3 several enzymatic proteins binds to xylulose-5-phosphate. Xylulose-5-phosphate phosphoketolase, Dihydroxyacetone synthase, xylulose kinase, Protein phosphatase 2A B alpha isofrom, Xylulose 5-phosphate-activated protein phosphatase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 1-deoxy-D-xylulose 5-phosphate synthase 1 and 2 are examples of such
enzymes. The non-enzymatic xylulose-5-phosphate bind-
ers are shown in the bottom part of Table 3. BREnda
database shows following five proteins, 1-deoxy-D-xylu-
lose-5-phosphate reductoisomerase (EC 1.1.1.267), for-
maldehyde transketolase (EC 2.2.1.3), 1-deoxy-D-
xylulose 5-phosphate synthase (EC 2.2.1.7), Phosphok-
tolase (EC 4.1.2.9), Ribulose-phosphate 3-epimerase (EC
5.1.3.1).

Proteins binding D-Ribulose-1,5-bisphosphate
A number of Ribulose-1,5-bisphosphate and metaboliz-
ing enzymes such as Ribulose phosphate kinase and their
mutants binds D-ribulose-1,5-bisphosphate. The RuBP
binding entities devoid of any enzymatic activities are very
valuable in reactors necessitating extraction and
separation of RuBP from other sugar compounds (Table
4). Very few non-enzymatic proteins bind RuBP and none
of them are microbial sources, and hence have not been

Figure 3
The recombinant his-tagged wild-type and R38Q mutant 3-phosphoglycerate kinase was subjected to affinity purification on Ni-
NTA column as described previously [20]. A. SDS-PAGE of recombinant wild-type and R38Q mutant S. cerevisiae 3-phos-
phoglycerate kinase. The proteins (1 and 1.8 µg respectively) was separated in 10% polyacrylamide gel and stained with Coom-
massie blue R250. B. TLC analysis of sugars prior to and after in-situ separation with R38Q. The recombinant R38Q mutant
(R38Q-PGK) was coupled with Protein A sepharose beads and incubated overnight with a mixture of sugars, 3-phosphoglycera-
te (3PGA), ribulose-5-phosphate (R5P), Glucose-6-phosphate (G6P) and Fructose-6-phosphate (F1,6-bP). After washing with
180 mM NaCl, the sugars were eluted with 1 M NaCl. Lane 1, mixture of sugar prior to incubation with R38Q-PGK and Lane-
2 after elution with 1 M NaCl.
Table 4: Enzymes that bind D-Ribulose-1,5-bisphosphate

Source organism	Mutation	Rubisco	Remarks	References
Chlamydomonas reinhardtii	C256F, K258R, L265V	85% decrease in Catalytic efficiency (V_{max}/K_m)	114	
Chlamydomonas reinhardtii	G54V	83% decrease in the carboxylation-V_{max}	115	
Anacystis nidulans	L339F, A340L, S341M	Decrease in K_{cat} and (V_{max}/K_m) by 90% and 36.3% respectively	116	
Anacystis nidulans	T342I, K343L	Decrease in K_{cat} and (V_{max}/K_m) by 40.5% and 40.5% respectively	116	
Anacystis nidulans	K343L	Decrease in K_{cat} and (V_{max}/K_m) by 48.1% and 18.5% respectively	116	
Anacystis nidulans	V346Y, D347H, L348T	Inactive		
Anacystis nidulans	L326I	>65% decrease in carboxylase activity but not in oxygenase activity	117	
Anacystis nidulans	S328A	>65% decrease in carboxylase activity but not in oxygenase activity	117	
Anacystis nidulans	L332I, L332M	Decrease in specific factor (CO_2/O_2) by 67% and 36.3% respectively	117	
Anacystis nidulans	L332V	67% decrease in specific factor (CO_2/O_2)	117	
Anacystis nidulans	T342I	Decrease in K_{cat} and (V_{max}/K_m) by 90% and 36.3% respectively	116	
Anacystis nidulans	K343L	Decrease in K_{cat} and (V_{max}/K_m) by 48.1% and 18.5% respectively	116	
Anacystis nidulans	S376I	>65% decrease in specificity and carboxylase activity	117	
Rhodospirillum rubrum	deleation of F327	99.5% decrease in carboxylase activity	118	
Rhodospirillum rubrum	F327L	Increase in Km (RuBP)	118	
Rhodospirillum rubrum	F327V	Increase in Km (RuBP)	118	
Rhodospirillum rubrum	F327A	Increase in Km (RuBP)	118	
Rhodospirillum rubrum	F327G	165-fold increase in Km (RuBP)	118	
Rhodospirillum rubrum	N111G	Km(RuBP), k_{cat} are 320 fold increased and 88-fold decreased	118	
Rhodospirillum rubrum	N111L	Mutant show a very low carboxylase activity	119	
Rhodospirillum rubrum	N111Q	Mutant show a very low carboxylase activity	119	
Synechococcus sp.	I87V	Mutant show a very low carboxylase activity ($k_{\text{cat}} = 35\%$)	120	
Synechococcus sp.	R88K	Mutant show a very low carboxylase activity ($k_{\text{cat}} = 35\%$)	120	
Synechococcus sp.	G91V	Mutant show a very low carboxylase activity ($k_{\text{cat}} = 35\%$)	120	
Synechococcus sp.	C172A	40–60% decline in Rubisco turnover number	121	
Chlamydomonas reinhardtii	N123G	Decrease in specificity factor	122	
Chlamydomonas reinhardtii	S379A	Decrease in specificity factor	122	
Anacystis nidulans	S376C	99% and ~99.9% decrease in carboxylase and oxygenase activity	123	
Anacystis nidulans	S376T	99% and ~99.9% decrease in carboxylase and oxygenase activity	123	
Anacystis nidulans	S376A	99% and ~16% decrease in carboxylase and oxygenase activity	123	
Rhodospirillum rubrum	I164T	6% decrease in carboxylase activity with 40-fold lower K_{cat}/K_m	124	
Rhodospirillum rubrum	I164N	1% decrease in carboxylase activity with 900-fold lower K_{cat}/K_m	124	
Rhodospirillum rubrum	I164B	0.01–1% decrease in carboxylase activity	124	
Rhodospirillum rubrum	H287N	10^{-3}-fold decrease in carboxylation catalysis	125	
Rhodospirillum rubrum	H287Q	10^{-3}-fold decrease in carboxylation catalysis	125	
Rhodospirillum rubrum	M330L	126		

Rubisco

Source organism	Mutation	Remarks	References
Chlamydomonas reinhardtii	R59A	Decrease in V_{max} for carboxylation reaction	127
Chlamydomonas reinhardtii	Y67A	Decrease in V_{max} for carboxylation reaction	127
Chlamydomonas reinhardtii	Y68A	Decrease in V_{max} for carboxylation reaction	127
Chlamydomonas reinhardtii	D69A	Decrease in V_{max} for carboxylation reaction	127
Chlamydomonas reinhardtii	R71A	Decrease in V_{max} (for carboxylation reaction) and thermal stability	127
Chlamydomonas reinhardtii	A222T, V262L, L290F	Improved specificity factor and thermal stability	128

Phosphoribulokinase

Source organism	Mutation	Remarks	References
Rhodobacter sphaeroides	T18A	8-fold decrease in V_{max}	129
Rhodobacter sphaeroides	S14A	40-fold decrease in V_{max}	129
Rhodobacter sphaeroides	S19A	500-fold and >1500-fold decrease in V_{max} and V_{max}/K_m of RuBP	129
Rhodobacter sphaeroides	K165M, K165C	>10^{-3}-fold decrease in catalytic activity	130
Rhodobacter sphaeroides	K165C	>300-fold decrease in catalytic efficiency	131
Rhodobacter sphaeroides	R173Q	15-fold decrease in V_{max} 100-fold increase in Km for RuBP	131
incorporated in this review, Rubisco associated protein from soybean is one of them, that show significant RuBP binding [137].

Illustrating example

In order to illustrate the utility of non-catalytic enzymatic mutants as specific sugar binders for in-situ separation in reactors, recombinant *Saccharomyces cerevisiae* 3-phosphoglycerate kinase mutant R38Q [41] was prepared. Mutagenesis was carried out using wild type protein construct in plasmid pET19b as a template. The R38Q mutant was constructed with the Quickchange/Chameleon site-directed mutagenesis kit from stategene as described elsewhere [41]. DNA sequencing of the plasmid identified the mutant. Recombinant wild-type and mutant (R38Q) 3-phosphoglycerate kinase (PGK) were purified to apparent homogeneity as described previously [20] have been shown in Figure 3A. The wild-type and mutant protein was incubated with 10 mM 3-phosphoglycerate barium salt (3PGA) in 50 mM Tris-Cl buffer, pH 7.5 containing 50 mM NaCl for overnight at room temperature. No modification of 3PGA was observed after incubation with R38Q mutant protein (data not shown). The R38Q was coupled with Protein A sepharose beads using dimethylpimelimidate. The recombinant R38Q mutant protein beads (R38Q-PGK) was incubated overnight at room temperature with a mixture of sugars, 3-phosphoglycerate, barium salt (3PGA), ribulose-5-phosphate (R5P), Glucose-6-phosphate (G6P) and Fructose-6-phosphate (F1,6-bP) each at a concentration of 10 mM in a volume of 200 µl. After incubation they were washed with 1.5 ml of 180 mM NaCl in 50 mM Tris-Cl buffer, pH 7.5. They were subjected to elution with 1 M NaCl. Lane 1, mixture of sugar prior to incubation with R38Q-PGK and Lane-2 after elution with 1 M NaCl.

Conclusion

The enzyme-mutants lacking catalytic activity represent an important group of proteins that could be used for development of sugar-binding proteins reversible with respect to physicochemical parameters such as pH or salt concentration. Nevertheless, the non-enzymatic proteins also represent a suitable repertoire of such potential scaffolds, which could be used for development as sugar-binding proteins to be used in reactors for simultaneous separation of sugars that would be used in subsequent conversion steps. We have developed a RuBP production scheme from 3PGA [16,17] and also a de novo RuBP production scheme from D-glucose [21] for continuous CO₂ fixation and for start-up of the fixation respectively employing series of reactors. Both systems for production of RuBP will benefit from specific sugar binders but besides their use in environmental biotechnology, they will find application in diagnostics, separation technologies and also as research reagents.

Acknowledgements

We thank Dr. Paramita Ray for help with literature search and Dr. Surabhi Choudhuri for her comments on the manuscript.

References

1. Victor DG: Strategies for cutting Carbon. Nature 1998, 395:837-838.
2. Joos F, Plattner G-K, Stocker TF, Marchal O, Schmittner A: Global warming and marine carbon cycle feedbacks on future atmospheric CO₂. Science 1999, 284:464-467.
3. Schimel D: The investment Forecast. Nature 2002, 415:483-484.
4. de Leo GA, Gad Teo, M. Caizzi A, Cellina F: The ecological and economic consequences of global climate change. In Recent Research Developments in Biotechnol. Bioeng Edited by: Bhattacharya SK, Chakrabarti S, Mal TK. Research Signpost, Kerala; 2002:163-183.
5. de Leo GA, Rizza L, Caizzi A, Gatto M: Carbon emissions. The economic benefits of the Kyoto Protocol. Nature 2001, 413:478-479.
6. Corrington RD, Davda RR, Dumesic JA: Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418:964-967.
7. Service RF: Fuel cells. Biofuel cells. Science 2002, 296:1223.
8. Schultz MG, Diehl T, Brasseur GP, Zittel W: Air pollution and climate-forcing impacts of a global hydrogen economy. Science 2003, 302:624-627.
9. Prather MJ: Atmospheric science. An environmental experiment with H2. Science 2003, 302:581-582.
10. Brumfie G: Hydrogen cars fuel debate on basic research. Nature 2003, 422:104.
11. Rahn T, Eiler JH, Boering KA, Wennberg PO, McCarthy MC, Tyler S, Schaufeller S, Donnelly S, Atlas E: Extreme deuterium enrichment
in stratospheric hydrogen and the global atmospheric budget of H2. Nature 2003, 424:918-921.

12. Tromp TK, Shi XS, Allen M, Elter JM, Yung YL: Potential environmental impact of a hydrogen economy on the stratosphere. Science 2003, 300:1740-1742.

13. Raphael SJ: The meanings of markers: ancillary techniques in diagnosis of thyroid neoplasia. Endocr Pathol 2002, 13:301-311.

14. Dayhoff MO, Goodman F: A listing and validation of a lectin-based assay for the quantitation of rat respiratory mucin. Novartis Found Symp 2002, 248:94-105.

15. Bhattacharya S, Nayak A, Schiavinato M, Bhattacharyya SK: Solubilization and Concentration of Carbon dioxide: Novel Spray reactors with immobilized Carbonic anhydrase. Biotechnol Bioeng 2004, 86:37-46.

16. Bhattacharyya SK: Conversion of carbon dioxide from ICE exhausts by fixation. US patent number 6253835 2001:1-18.

17. Bhattacharya S, Chakrabarti S, Bhattacharyya SK: Bioprocess for ribulose-1,5-bisphosphate diol kinase from X-ray crystallography, simulated catalytic mechanism. Eur J Biochem 1999, 265:1059-1066.

18. Bhattacharya S, Chakrabarti S, Bhattacharyya SK: The mechanism of velocity modulation in yeast transketolase. FEBS Lett 1990, 265:87-91.

19. Nomura K, Li L, Correia JJ, Pilkis SJ: Effects of the loss of Asp477 in yeast transketolase. FEBS Lett 2004, 581:257-264.

20. Wilson CA, Hardman N, Forthegill-Gilmore LA, Gambijn SJ, Watson HC: Yeast phosphoglycerate kinase: investigation of catalytic function by site-directed mutagenesis. Biochem J 1987, 241:609-614.

21. Walker PA, Littlechild JA, Hall L, Watson HC: Site-directed mutagenesis of yeast phosphoglycerate kinase. The 'basic-patch' residue arginine 168. Eur J Biochem 1989, 183:49-55.

22. Fairbrother WJ, Hall L, Littlechild JA, Walker PA, Watson HC, Williams R: Site-directed mutagenesis of histidine 62 in the beta prime region of yeast phosphoglycerate kinase. FEBS Lett 1989, 258:247-250.

23. Wallen N, Minard P, Desmadril M, Betton JM, Pershaia D, Mouawad L, Hall L, Yon JM: Introduction of internal cysteines as conformational probes in yeast phosphoglycerate kinase. Protein Eng 1999, 12:199-204.

24. Schomburg D, Sommers RL, Sherlock P, Jasiake I, Schomburg I: A comprehensive collection of eukaryotic gene products for the BRENDA database. J Mol Biol 1999, 282:1005-1017.

25. Pharkya P, Nikolaev EV, Maranas CD: Basic patch region arginine 203 of yeast phosphoglycerate kinase: Role of His159 in yeast enolase catalysis. J Mol Biol 1994, 233:750-755.

26. Pharkya P, Nikolaev EV, Maranas CD: Recent developments in the enolase superfamily: identification of regulatory families in Saccharomyces cerevisiae. Biochim Biophys Acta 2001:1-18.

27. Schomburg D: BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 2004, 32:D431-D433.

28. Rost B, Sander C: Prediction of protein functions from multiple sequence alignments with the neural network PROSPECTOR. J Mol Biol 1993, 232:585-600.

29. Rost B, Sander C: Prediction of protein functions from multiple sequence alignments with the neural network PROSPECTOR. J Mol Biol 1993, 232:585-600.
Microbial Cell Factories 2004, 3
http://www.microbialcellfactories.com/content/3/1/17

54. Maithal K, Ravindra G, Nagaraj G, Singh SK, Balaram H, Balaram P: Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability. Protein Eng 2002, 15:575-584.

55. Chanez-Cardenas ME, Fernandez-Velasco DA, Vazquez-Contreras E, Coria R, Saab-Rincon G, Perez-Montfort R: Unfolding of triosephosphate isomerase from Trypanosoma brucei: identification of intermediates and insight into the denaturation pathway using trypanothione mutants. Arch Biochem Biophys 2002, 399:117-129.

56. Lambeir AM, Backmann J, Ruiz-Sanz J, Filimonov V, Nielsen JE, Kursula I, Norledge BV, Wierenga RK: The ionization of a buried glutamic acid is thermodynamically linked to the stability of Leishmania mexicana triose phosphate isomerase. Eur J Biochem 2000, 267:2516-2524.

57. Compagno C, Bosch F, Daleffe A, Porro D, Ranzi BM: Isolation, nucleotide sequence, and physiological relevance of the gene encoding triose phosphate isomerase from Kluiveromyces lactis. Appl Environ Microbiol 1999, 65:4216-4219.

58. Alvarez M, Zeelen JP, Mainvroid F, Rentier-Delrue F, Martia JA, Wyn L, Wierenga RK, Maes D: Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties. J Biol Chem 1998, 273:2199-2206.

59. Gomez-Puyou A, Saavedra-Lira E, Becker I, Zubillaga RA, Rojo-Dominguez A, Perez-Montfort R: Using evolutionary changes to achieve species-specific inhibition of enzyme action – studies with triosephosphate isomerase. Chem Biol 1993, 2:847-855.

60. Lodi PJ, Chang LC, Knowles JR, Komives EA: Triosephosphate isomerase requires a positively charged active site: the role of lysine-12. Biochemistry 1994, 33:2809-2814.

61. Joseph-McCarty D, Rost LE, Komives EA, Petsko GA: Crystal structure of the mutant yeast triosephosphate isomerase in which the catalytic base glutamic acid 165 is changed to aspartic acid. Biochemistry 1994, 33:2822-2824.

62. Brzovic PS, Hyde CC, Miles EW, Dunn MF: Characterization of the functional role of a flexible loop in the alpha-subunit of tryptophan synthase from Salmonella typhimurium by rapid-scanning, stopped-flow spectroscopy and site-directed mutagenesis. Biochemistry 1993, 32:10404-10413.

63. Borchert TV, Pratt K, Zeelen JP, Callens M, Noble ME, Oppderdoes FR, Michels PA, Wierenga RK: Overexpression of trypanosomal triosephosphate isomerase in Escherichia coli and characterisation of a dimer-interface mutant. Eur J Biochem 1993, 211:703-710.

64. Raines RT, Sutton EL, Straus DR, Gilbert W, Knowles JR: Reaction energetics of a mutant triosephosphate isomerase in which the catalytic base glutamic acid 165 has been changed to aspartate. Biochemistry 1986, 25:7142-7154.

65. Casal JI, Ahern TJ, Davenport RC, Petsko GA, Klabin AM: Subunit interface of triosephosphate isomerase: site-directed mutagenesis and characterization of the altered enzyme. Biochem Biophys Acta 1987, 918:125-126.

66. Nickbarg EB, Davenport RC, Petsko GA, Knowles JR: Triosephosphate isomerase: removal of a putatively electrostatic histidine residue results in a subtle change in catalytic mechanism. Biochemistry 1988, 27:5948-5960.

67. Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvany E: Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413:852-856.

68. Goldrick D, Yu G-Q, Ji G-S, Hong J-S: Nucleotide sequence and transcription start point of the phosphoglycerate translocator gene of Salmonella typhimurium. J Bacteriol 1998, 180:3241-3242.

69. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A: Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 2003, 423:87-91.

70. Reed TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR: The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 2003, 423:81-86.

71. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MTG, Sebasta M: Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 2001, 413:840-852.

72. Deng W, Liu SR, Plunkett G III, Mayhew GF, Rose DJ, Burland V, Kodoyianni V, Schwartz DC, Blattner FR: Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 2003, 185:2330-2337.

73. Shimozai Y, Ng V, Matsumura K, Fischetti VA, Rambakunna A: A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proc Natl Acad Sci USA 1999, 96:9587-9592.

74. Cole ST, Eigeleier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garntier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix M, McLean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmons M, Skelon J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrett BG: Massive gene decay in the leprosy bacillus. Nature 2001, 409:1007-1011.

75. Churcher C, Mungall K, Bentley SD, Holden MTG, Sebaihia M: Characterization of the laminin binding protein/p40 (LBP/p40) gene during sea urchin development. Exp Cell Res 2001, 251:221-230.

76. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher AL, Utterback TM, Weidman J, Khouri H, Gill J, Mikula A, Bashai W, Jacobs WR Jr, Venter JC, Fraser CM: Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 2002, 184:5479-5490.

77. Keppel E, Scheller HC: A 33 kDa protein with sequence homology to the ‘laminin binding protein’ is associated with the cytostate in hydra and in mammalian cells. J Cell Sci 1991, 100:789-797.

78. Hung M, Rosenthal ET, Bobletz B, Benson S: Characterization and localized expression of the laminin binding protein/p40 (LBP/p40) gene during sea urchin development. Exp Cell Res 1999, 251:221-230.

79. Rosenthal ET, Wordeman L: A protein similar to the 67 kDa laminin binding protein and p40 is probably a component of the cytoskeletal interface of Urechis caupo oocytes and embryos. J Cell Sci 1995, 108:245-256.

80. Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, Wessels MR, Paulsen IT, Nelson KE, Margarit T, Reed TD, Madoff LC, Wolf AM, Beanan M, Brinkac LM, Daughtery SC, DeBoy RT, Durkin AS, Kolonay JF, Madupu R, Ruddy R, Utterback TM, Weidman J, Khouri H, Gill J, Mikula A, Bashai W, Jacobs WR Jr, Venter JC, Fraser CM: Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci USA 2002, 99:12391-12396.

81. Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zouine M, Couve E, Lalouli L, Poyart C, Trieu-Cuot P, Kunst F: Genome sequence of Streptococcus salivarius, a pathogen causing invasive neonatal disease. Mol Microbiol 2002, 45:1499-1513.

82. Ferretti JJ, McShan WM, Ajdic D, Savic G, Savic S, Lyon K, Primeaux C, Seoane S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Ple惟t S, Bannister H, Clifton SW, Roe BA, McLaughlin R: Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA 2001, 98:4658-4663.

83. Simund M, Michel F, Norgren M: Mutually exclusive distribution of IS1548 and GBS1, an active group II intron identified in human isolates of group b streptococci. J Bacteriol 2001, 183:2560-2569.

84. Loening C, Ciriacy M: The TYE7 gene of Saccharomyces cerevisiae encodes a putative 65kDa-LZ transcription factor required for Ty1-mediated gene expression. Yeast 1994, 10:1329-1339.

85. Nishi K, Park CS, Pepper AE, Eichinger G, Innis MA, Holland MJ: The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which...
encodes a novel basic-helix-loop-helix protein. Mol Cell Biol 1995, 15:2646-2653.
86. Curran DO, Nishida Y: Involvement of mitochondrial aldehyde dehydrogenase ALDS in maintenance of the mitochondrial electron transport chain in Saccharomyces cerevisiae. FEMS Microbiol Lett 2003, 181:281-287.
87. Valadá H, Larsson C, Gustafsson L: Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccha-
romyces cerevisiae. Appl Microbiol Biotechnol 1998, 50:434-439.
88. van der Klei IJ, van der Heide M, Baerends RJ, Rechinger KB, Nicolay ML: Peroxisomes in the methylotrrophic yeast Hansena-
polymorpha. J Bacteriol 2002, 184:4271-4276.
89. Heath RJ, Rock CO: A missense mutation accounts for the defect in the glycerol-3-phosphate acyltransferase expressed in the plb26 mutant. J Bacteriol 1999, 181:1944-1946.
90. Heath RJ, Rock CO: Import of assembled PTS1 proteins into peroxisomes of the yeast Hansenula polymorpha: yes and no! Biochim Bio-
phys Acta 2002, 1591:157-162.
91. Minskoff SA, Racenis PV, Granger J, Larkins L, Hajra AK, Greenberg ML: Regulation of phosphatidic acid biosynthetic enzymes in Saccharomyces cerevisiae. J Lipid Res 1994, 35:2254-2262.
92. Cho H, Oliveira MA, Tai HH: Critical residues for the coenzyme specificity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Arch Biochem Biophys 2003, 419:139-146.
93. Souniar S, Park JH, Huh TL, Colman RF: Evaluation by mutagenesis of the importance of 3 arginines in alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase. J Biol Chem 2003, 278:52146-52153.
94. Yamaguchi M, Stout CD: Essential glycine in the proton channel of Escherichia coli transhydrogenase. J Biol Chem 2003, 278:45333-45339.
95. Klimack M, Kavanagh KL, Wilson DK, Nidetzky B: A missense mutation accounts for the defect in the glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. J Bacteriol 1997, 179:485-492.
96. Hacking AJ, Lin EC: Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol 1976, 126:116-117.
97. Miki K, Lin EC: Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system. J Bacteriol 1975, 124:1282-1287.
98. Kusumoto T, Takahashi S, Takagi M, Seto H: Characterization of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme involved in isopentenyl diphosphate biosynthesis, and identification of its catalytic amino acid residues. J Biol Chem 2000, 275:19928-19932.
99. Stevens PE, Ho NW: A novel xylB-based positive selection vector. Plasmid 1998, 20:92-95.
100. Faber KN, van Dijk R, Keizer-Gunnink I, Koek A, van der Klei IJ, Veenhuis M: Import of assembled PTS1 proteins into peroxisomes of the yeast Hansenula polymorpha: yes and no! Biochim Bio-
phys Acta 2002, 1591:157-162.
101. Minsky SA, Racenis PV, Granger J, Larkins L, Hajra AK, Greenberg ML: Regulation of phosphatidic acid biosynthetic enzymes in Saccharomyces cerevisiae. J Lipid Res 1994, 35:2254-2262.
102. Cho H, Oliveira MA, Tai HH: Critical residues for the coenzyme specificity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Arch Biochem Biophys 2003, 419:139-146.
103. Souniar S, Park JH, Huh TL, Colman RF: Evaluation by mutagenesis of the importance of 3 arginines in alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase. J Biol Chem 2003, 278:52146-52153.
104. Yamaguchi M, Stout CD: Essential glycine in the proton channel of Escherichia coli transhydrogenase. J Biol Chem 2003, 278:45333-45339.
105. Klimack M, Kavanagh KL, Wilson DK, Nidetzky B: A missense mutation accounts for the defect in the glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. J Bacteriol 1997, 179:485-492.
106. Hacking AJ, Lin EC: Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol 1976, 126:116-117.
107. Miki K, Lin EC: Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system. J Bacteriol 1975, 124:1282-1287.
108. Kusumoto T, Takahashi S, Takagi M, Seto H: Characterization of 1-deoxy-D-xylulose 5-phosphate reductoisomerase, an enzyme involved in isopentenyl diphosphate biosynthesis, and identification of its catalytic amino acid residues. J Biol Chem 2000, 275:19928-19932.
properties of changing methionine-330 to leucine in the Rhodospirillum rubrum enzyme. *Biochem J* 1986, 235:839-846.

127. Spreitzer RJ, Esquivel MG, Du YC, McLaughlin PD: Alanine-scan-
ning mutagenesis of the small-subunit beta A-beta B loop of chlo-
roplast ribulose-1, 5-bisphosphate carboxylase/oxygen-
ase: substitution at Arg-71 affects thermal stability and CO2/
O2 specificity. *Biochemistry* 2001, 40:5615-5621.

128. Du YC, Spreitzer RJ: Suppressor mutations in the chloroplast-
encoded large subunit improve the thermal stability of wild-
type ribulose-1, 5-bisphosphate carboxylase/oxygenase. *J Biol
Chem* 2000, 275:19844-19847.

129. Runquist JA, Rios SE, Vinarov DA, Miziorko HM: Functional eval-
uation of serine/threonine residues in the P-Loop of Rhodo-
bacter sphaeroides phosphoribulokinase. *Biochemistry* 2001,
40:14530-14537.

130. Runquist JA, Harrison DH, Miziorko HM: Rhodobacter sphaer-
oides phosphoribulokinase: identification of lysine-165 as a cata-
lytic residue and evaluation of the contributions of invar-
ant basic amino acids to ribulose 5-phosphate binding. *Bio-
chemistry* 1999, 38:13999-14005.

131. Runquist JA, Harrison DH, Miziorko HM: Functional evaluation of in-
variant arginines situated in the mobile lid domain of
phosphoribulokinase. *Biochemistry* 1998, 37:1221-1226.

132. Avilan L, Gontero B, Lebreton S, Ricard J: Information transfer in
multienzyme complexes – 2. The role of Arg64 of Chlamydomonas reinhardii phosphoribulokinase in the
information transfer between glyceraldehyde-3-phosphate
dehydrogenase and phosphoribulokinase. *Eur J Biochem*
1997, 250:296-302.

133. Su X, Bogorad L: A residue substitution in phosphoribulokin-
ase of Synechocystis PCC 6803 renders the mutant light-
sensitive. *J Biol Chem* 1991, 266:23698-23705.

134. Sandbaken MG, Runquist JA, Barbieri JT, Miziorko HM: Identification of the phosphoribulokinase sugar phosphate binding
domain. *Biochemistry* 1992, 31:3715-3719.

135. Charlier HA Jr, Runquist JA, Miziorko HM: Evidence supporting
catalytic roles for aspartate residues in phosphoribulokinase.
Biochemistry 1994, 33:9343-9350.

136. Kung G, Runquist JA, Miziorko HM, Harrison DH: Identification of
the allosteric regulatory site in bacterial phosphoribulokinase. *Biochemistry* 1999, 38:15157-15165.

137. Staswick PE, Crafts-Brandner SJ, Salvucci ME: cDNA sequence for
the ribulose 1,5 bisphosphate carboxylase/oxygenase com-
plex protein. A protein that accumulates in soybean leaves in
response to fruit removal. *Plant Physiol* 1994, 105:1445-1446.