Clinical Approaches of HIV-1/HTLV-1 Co-infection Still Keep their Mysteries

Gerges Rizkallah¹, Renaud Mahieux², Hélène Dutartre²

¹Faculty of Public Health, Sagesse University, Beirut, Lebanon
²Équipe oncogenèse rétrovirale, équipe labellisée «FRM», CIRI – Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR, ENS Lyon, Lyon, France

Introduction

Two retroviruses emerged in the 1980s: HTLV-1 and HIV-1. HTLV-1 infects 5-10 million people worldwide and is detected in highly endemic areas, such as Japan, sub-Saharan Africa, the Caribbean region, South America as well as in Australian indigenous. According to the UNAIDS's 2018 fact sheet, HIV-1 is endemic worldwide, infects 37.9 million people and is particularly prevalent in central and South Africa, the Caribbean region, Latin America, South-East Asia and Eastern Europe. HTLV-1 or HIV-1 infected individuals develop chronic infections. Only in 1-10% of infected carriers, HTLV-1 leads either to the development of Adult T-cell Leukemia/Lymphoma (ATLL), or of Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In most chronically infected people, HIV-1 infection leads to an Acquired Immunodeficiency Syndrome (AIDS), and around 22% of the death causes among HIV-infected patients remains AIDS-related. The aim of this mini-review is to highlight some of the points discussed in the review “HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment”. First, it will focus on the similarities regarding transmission mechanisms and cellular tropism between these retroviruses. Then, starting from the therapeutic protocols currently used in the treatment of each of these retroviral infections, this mini-review will summarize the therapeutic protocols used for co-infections management.

HIV-1 and HTLV-1 Share Striking Similarities

Although molecular mechanisms are different, HTLV-1 and HIV-1 share striking similarities in their transmission pathways, in their in vivo tropism and in their cell-to-cell transmission mechanisms.

HIV-1 and HTLV-1 share common entry routes: a vertical transmission from mother-to-child particularly during prolonged breastfeeding for HTLV-1, during delivery for HIV, a horizontal transmission preferentially from male-to-female during non-protected sexual intercourse and contamination with cell containing blood products for HTLV-1 and cell-free material for HIV.

HIV-1 and HTLV-1 share striking similarities in their in vivo tropism, since CD4+ T-cells are the major targets of HIV-1 and HTLV-1 infection. In addition, HTLV-1 proviral DNA is also detected, but to a lesser extent, in other immune cell types, including CD8+ T-cells, B cells, monocytes, or dendritic cells, although mechanisms...
explaining viral presence in each cell type are not the same. In vivo, latent HIV-1 proviruses are found in memory CD4+ T-cells, monocytes and macrophages, thus constituting viral reservoirs17,18. Both viruses are able to enter in dendritic cells in vitro and alter their function. This interaction, which may occur before T-cell infection in vivo, has been suggested as an important step for the subsequent infection of T-cells and further viral spread19.

In vitro, three non-mutually exclusive cell-to-cell transmission mechanisms have been reported so far for HTLV-1 and HIV-1: the viral synapse, the viral biofilm and the tunneling nanotubes16,20.

The viral synapse is a virtual space in which viral particles are budding and where they accumulate, close to an uninfected cell’s plasma membrane21. The viral biofilm refers to HTLV-1 viral particles retained at the infected T-cell surface by extracellular-matrix proteins22. Presence of a viral biofilm has not been shown yet for HIV-1, although the virus accumulates near the surface of infected cells23 in structures that were proposed as budding platforms, and that polarized toward the cell-cell contact24, thus allowing viral transfer at the viral synapse25.

Finally, the tunneling nanotubes (TNTs) are cellular conduits that interconnect HTLV-1 expressing cells. Intercellular transmission of HTLV-1 through TNTs provides a means of escape from recognition by the immune system26 and favors HTLV-1 transmission27. HIV-1 uses also these long membrane extensions that connect distant cells in order to spread28,29.

Impact of HIV-1 and HTLV-1 Co-infections on Disease Progression

In 1984, one of the first studies showed that approximately 7% of Haitian AIDS individuals were HTLV-1 infected30. Nowadays, HTLV-1 and HIV-1 co-infection is mainly investigated in South America and Africa31, with prevalence ranging from 0.5 to 10.9%. In addition, in vitro studies confirmed that co-infection of HTLV-1-infected cells by HIV-1 is also possible in a T-cell line32, suggesting the potential presence of both viruses in the same CD4+ T-cells in co-infected individuals.

The mechanisms of HIV-1/HTLV-1 co-infection in vitro and their effects on disease progression in vivo were evaluated. However, as demonstrated in the table 1, these studies did not allow clear conclusions on a positive or a negative regulatory effect of HTLV-1 on HIV-1 in co-infected individuals.

Current HTLV-1 Associated Diseases Treatments

ATLL Treatment

(See Tables 2 and 3)

TSP/HAM treatment

Management of TSP/HAM mainly consists in treating clinical symptoms. Anti-inflammatory corticosteroids represent a typical treatment due to the inflammation-based manifestations of TSP/HAM. They inhibit inflammatory gene expression and activate anti-inflammatory gene expression38. Research is now focusing on drugs that could modulate anti-HTLV-1 immune response and induce a decrease in HTLV-1 proviral load. Valproate, a histone deacetylase inhibitor, induces HTLV-1 proviral gene expression and can therefore expose virus-infected cells to immune response, notably to HTLV-1-specific cytotoxic lysis. However, analysis of valproate efficiency led to conflicting results regarding its efficiency on proviral load decrease39,40. Multiple combinations of valproate with prednisolone and IFN-I improve the clinical outcome of TSP/HAM patients, and more importantly, efficiently reduce HTLV-1 proviral load41. Another approach

Table 1: Mechanisms of HTLV-1/ HIV-1 co-infections and their effects on disease progression

Mechanisms of HTLV-1 / HIV-1 co-infection of CD4+ T-cell	Mechanisms of co-infections	Mechanisms of HTLV-1 Tax oncoprotein expression enhances HIV-1 replication
	Tax protein is encoded by HTLV-135. It promotes the activation of R-TEFb, releasing CDK9 and Cyclin T1 from inactive forms in latently infected CD4+ T-cells, promoting transcription elongation and reactivation of latent HIV-114.	

Mechanisms of co-infections	Mechanisms of HTLV-1 Tax oncoprotein expression inhibits HIV-1 replication
Addition to recombinant Tax protein to HIV-1-infected Peripheral Blood Mononuclear Cells in vitro leads to inhibition of HIV-1 replication up to 14 days after infection35.	

| Effects of HTLV-1 / HIV-1 co-infection on disease progression | HIV-1/HTLV-1 co-infection promotes worsening of symptoms46. Compared to HIV-1 mono-infected individuals, most HIV-1/HTLV-1 co-infected individuals are more likely to suffer from myelopathy, thrombocytopenia, bronchitis, urinary tract infection or opportunistic infection, independently of age, ethnicity or CD4+ T-cells count47. |

| Compared to HTLV-1 mono-infected individuals, HIV-1/HTLV-1 co-infected individuals compared to HIV-1 or HTLV-1 mono-infected individuals, together with the up-regulated levels of RANTES in HIV-1/HTLV-1 co-infected cells48. This cytokine profile may thus favor a faster onset of myelopathies and neurological disorders in co-infected individuals. |

Journal of Infectiology

Rizkallah G, Mahieux R, Dutartre H. Clinical Approaches of HIV-1/HTLV-1 Co-infection Still Keep their Mysteries. J Infectiology. 2019; 2(4): 25-31

Page 26 of 31
combining valproate and azidothymidine led to dramatic proviral load decrease in asymptomatic carriers55.

Mogamulizumab i.e. anti CCR4 treatment (refer to paragraph 3.1) reduced HTLV-1 proviral load, spontaneous proliferation of CCR4-positive CD4+ and CD8+ T-cells, as well as pro-inflammatory cytokines production56.

Precautions in the Management of Co-infections

Current guidelines recommend a triple combination of antiretroviral therapies as the first line in treatment of naive people with HIV71. According to the Department of Health and Human Services guidelines for the use of antiretroviral therapy (ART) in HIV-1-infected persons, initiation of ART is recommended for all HIV-infected persons regardless of the CD4 count72. Thus, in accordance with this guideline, ART is an obligatory part of the treatment of co-infected persons with HIV-1/HTLV-1. Since HTLV-1 and HIV-1 are two strikingly similar retroviruses on multiple levels, it is

Protocol of treatment	Results
The first generation of chemotherapy: CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or CHOP-like treatments were used for treating aggressive forms (acute and lymphoma types) of ATLL41.	• CHOP and CHOP-like treatments resulted in relatively poor outcomes41.
LSG15 (Lymphoma Study Group) based regimens are a combination of eight drugs consisting of at least VCAP (vincristine, cyclophosphamide, doxorubicin and prednisone), AMP (doxorubicin, ranimustine and prednisone) and VECP (vindesine, etoposide, carboplatin and prednisone). They were used for treating aggressive forms of ATLL42.	• Compared to biweekly CHOP treatment, LSG15-based treatment initially showed better results on the 3-year overall survival (24% vs. 13%) and on complete remission rates (40% vs. 25%)42. However, this was not confirmed in a larger longitudinal study that included 1665 Japanese ATLL patients (with lymphoma or acute ATLL) from 2000 to 200943,44.
Allogeneic hematopoietic stem cell transplantation following chemotherapy for patients with acute or lymphoma ATLL44.	It slightly improved the median survival time (14 vs. 6.7 months and 13.9 vs. 9.7 months, respectively) or the 4-year overall survival rates (27.8 vs. 6.8% and 32.3 vs. 13.7 months, respectively)44.
Antiviral therapies consisting of a combination of zidovudine (ZDV) and IFN-α was investigated in acute, smoldering and ATLL45,46.	This combination achieved a significantly improved long-term survival in patients with smoldering and chronic ATLL as well as a subset of patients with acute ATLL45: on 10 previously untreated patients (8 acute ATLL, 1 smoldering ATLL, and 1 ATLL lymphoma), eight responses were obtained, with two complete remissions, four very good partial remissions with a 95% reduction of the tumor burden, and two partial remissions. Six patients relapsed, with a median event-free survival of 12 months (range, 3-15 months)45. Although these results were encouraging, the overall survival of previously untreated ATLL patients was rather short (4.8 months) when compared to those on the LSG15 regimen46. Furthermore, the complete remission rate with AZT/IFN in previously untreated ATLL patients (25%) was not superior to the complete remission rate in those treated with LSG15. On long-term follow up of 15 ATLL patients treated over a 4-year period, AZT/IFN improved medium survival time (MST) outcome (18 months) possibly due to maintenance treatment with AZT/IFN after achieving a partial remission47. Moreover, another prospective phase II clinical trial reported that the use of AZT/IFN as an initial treatment in 19 ATLL patients (15 acute type and four lymphoma type), resulted in a 92% response rate and a MST of 11 months for all patients48. These studies confirm the efficacy and safety of AZT/IFN in patients with ATLL49. Nowadays, ATLL lymphoma patients still benefit from chemotherapy induction with concurrent or sequential antiretroviral therapy with zidovudine/IFN49.
Immunotherapies based on monoclonal antibodies targeting specific markers of ATLL cells: CD2550, CD2551 or CCR4 chemokine receptor were tested in acute and lymphoma subtypes ATLL52.	Anti-CD2552 and anti-CD2553 showed poor to no effect. In contrast, the CCR4 chemokine receptor seems an interesting target since its expression is high and frequent in ATLL and HTLV-1-immortalized T cells53. Thus, a humanized anti-CCR4 monoclonal antibody (Mogamulizumab) has been generated. Mogamulizumab monotherapy showed clinically meaningful antitumor activity, with an acceptable toxicity profile, in patients with aggressive ATLL, who relapsed after at least one chemotherapy regimen. Overall response rate was of 50%. Median progression-free and overall survival were 5.2 and 13.7 months, respectively53. These encouraging results fostered the use of mogamulizumab in combination with LSG15-based chemotherapy to treat aggressive ATLL patients54.

In the last 5 years, several isolated studies have been focusing on additional promising drugs that inhibit ATLL cell proliferation or induce cell death by several mechanisms. Some of them are summarized in table 3:
legitimate to ask whether HTLV-1 infection treatments can interact with antiretroviral therapies used in HIV-1/HTLV-1 co-infections.

The clinical management of HIV-1/HTLV-1 co-infection is delicate \(^{27}\), and would deserve a specific management, at least in testing combination of available HIV antiviral and HTLV-1 targeted treatments. HIV-1/HTLV-1 co-infected patients usually have significantly higher CD4+ T-cell counts than HIV-1 mono-infected patients. Thus, AIDS diagnosis based on this criteria is impaired, and their survival time is reduced \(^{65}\). Indeed, while HTLV-1 stimulates CD4+ T-cells proliferation without cytopathic effects, HIV-1 induces a severe lymphocytic depletion with intensive cytopathic activity. Thus, co-infection may mask HIV-1 induced immunosuppression, and therefore could worsen AIDS progression and might favor subsequent opportunistic infections. Similarly, HIV-1/HTLV-1 co-infection can worsen the clinical outcome of HTLV-1 infection as the lifetime risk of developing TSP/HAM is higher in HIV-1/HTLV-1 co-infected patients than in HTLV-1 mono-infected patients. Furthermore, the lifetime risk is even higher in co-infected patients under ART, which seems responsible for neurological complications \(^{25,27}\). ART composed of zidovudine, lamivudine and abacavir (or
didanosine), initially prescribed to treat HIV-1 infection in HIV-1/HTLV-1 co-infected patients trigger an increase in HTLV-1 proviral load.

Finally, HTLV-1 serological status should be checked in all HIV-1 patients from HTLV-1 endemic areas. However, as ART seems to worsen HTLV-1 infection, combined therapies should be considered. However, no study has documented the use of the drugs cited in paragraphs 3.1 and 3.2 in the case of HIV-1/HTLV-1 co-infection.

Conclusion

HIV-1 and HTLV-1 share striking similarities in their cellular tropism and their cell-to-cell transmission mechanisms. Co-infection with these two viruses is possible, observed in up to 10% of infected individuals from endemic areas and is associated to a poor prognosis. Nowadays, even if protocols for treating HIV-1 and HTLV-1 mono-infected patients are well established, therapeutic options for co-infected patients are still poorly documented, may not be appropriate and may even worsen disease occurrence and evolution in case of unidentified co-infection. That's why it is necessary to search for both retroviruses at the time of diagnosis of HIV-1 or HTLV-1 infection to formally exclude the risk of HIV-1/HTLV-1 co-infection, and to propose appropriated management. Likewise, treatment protocols specifically designed for those co-infections need to be set, in order to fight the high morbidity associated with the co-infection.

Acknowledgments

Gerges Rizkallah is supported by Sagesse University, Beirut. Hélène Dutartre is supported by INSERM. Renaud Mahieux is supported by Ecole Normale Supérieure de Lyon. The authors acknowledge the financial support from La Fondation pour la Recherche Médicale (équipe Labellisée).

References

1. Poiesz BJ, Ruscetti FW, Reitz MS, et al. Isolation of a new type C retrovirus (HTLV) in primary uncultured cells of a patient with Sézary T-cell leukaemia. Nature. 1981 Nov 19; 294(5838): 268–71.
2. Gallo RC, Sliksi A, Wong-Staal F. Origin of human T-cell leukemia-lymphoma virus. Lancet. 1983 Oct 22; 2(8356): 962–3.
3. Barré-Sinoussi F, Chermann J-C, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) 1983. Rev Invest Clin. 2004 Apr; 56(2): 126–9.
4. Gesain A, Cassar O. Epidemiological Aspects and World Distribution of HTLV-I Infection. Front Microbiol. 2012; 3: 388.
5. Vandamme AM, Salemi M, Desmyter J. The simian origins of the pathogenic human T-cell lymphotropic virus type I. Trends Microbiol. 1998 Dec; 6(12): 477–83.
6. Mahy M, Marsh K, Sabin K, et al. HIV estimates through 2018: data for decision making. AIDS. 2019 Jul 22.
7. Yamano Y, Sato T. Clinical pathophysiology of human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis. Front Microbiol. 2012; 3: 389.
8. Futsch N, Mahieux R, Dutartre H. HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Viruses. 2017; 21: 10(1).
9. Hino S. Establishment of the milk-borne transmission as a key factor for the peculiar endemivity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki. Proc Jpn Acad. Ser B Phys Biol Sci 2011; 87(4): 152–66.
10. Potty RS, Sinha A, Sethumadhavan R, et al. Incidence, prevalence and associated factors of mother-to-child transmission of HIV, among children exposed to maternal HIV, in Belgium district, Karnataka, India. BMC Public Health. 2019 Apr 6; 19(1): 386.
11. Liu JF, Liu G, Li ZG. Factors responsible for mother to child transmission (MTCT) of HIV-1 - a review. Eur Rev Med Pharmacol Sci. 2017 Oct; 21(4 Suppl): 74–8.
12. Kaplan JE, Khazzaz RE, Murphy EL, et al. Male-to-female transmission of human T-cell lymphotropic virus types I and II: association with viral load. The Retrovirus Epidemiology Donor Study Group. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Jun 1; 12(2): 193–201.
13. Gonçalves de Melo M, Sprinz E, Gorbach PM, et al. HIV-1 heterosexual transmission and association with STIs in the era of treatment as prevention. Int J Infect Dis. 2019 Aug 9.
14. Okoshi K, Sato H. Transmission of ATL (HTLV-I) through blood transfusion. Int Symp Princess Takamatsu Cancer Res Fund. 1984; 15: 129–35.
15. Williams-Wietzikoski CA, Campbell MS, Payant R, et al. Comparisons of Human Immunodeficiency Virus Type 1 Envelope Variants in Blood and Genital Fluids near the Time of Male-to-Female Transmission. J Virol. 2019 Jul 1; 93(13).
16. Rizkallah G, Mahieux R, Dutartre H. Intercellular transmission of HTLV-I: not all mechanisms have been revealed. Med Sci (Paris). 2015 Jul; 31(6-7): 629–37.
17. Kandathil AJ, Sugawara S, Balagopal A. Are T cells the only HIV-1 reservoir? Retrovirology. 2016 Dec 20; 13(1): 86.
18. Carvalho Barros LR, Linares-Lacerda I, Moreira-Ramos K, et al. HTLV-I-infected thymic epithelial cells convey the virus to CD4+ T lymphocytes. Immunobiology. 2017; 222(12): 1053–63.
19. Rizkallah G, Alais S, Futsch N, et al. Dendritic cell maturation, but not type I interferon exposure, restricts infection by HTLV-I, and viral transmission to T-cells. PLoS Pathog. 2017 Apr; 13(4): e1006353.
20. Briaq L, Xie M, Benichou S, et al. Mechanisms for Cell-to-Cell Transmission of HIV-1. Front Immunol. 2018; 9: 260.
21. Igakura T, Stinchcombe JC, Goon PK, et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science. 2003 Mar 14; 299(5613): 1713–6.
22. Pais-Correia AM, Sachse M, Guadagnini S, et al. Biofilm-like extracellular viral assemblage mediates HTLV-I cell-to-cell transmission at virological synapses. Nat Med. 2010 Jan; 16(1): 83–9.
23. Rudnicka D, Feldmann J, Porrot F, et al. Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol. 2009 Jun; 83(12): 6234–46.
24. Iwanchenko S, Godinez WJ, Lampe M, et al. Dynamic HIV-I assembly and release. PLoS Pathog. 2009 Nov; 5(11): e1000652.
25. Hübner W, McNerney GP, Chen P, et al. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science. 2009 Mar 27; 323(5922): 1745–7.
26. Omland M, Pise-Masison C, Fujikawa D, et al. Inhibition of Tunneling Nanotube (TNT) Formation and Human T-cell Lymphoma Virus Type 1 (HTLV-1) Transmission by Cytarabine. Sci Rep. 2018 Jul 24; 8(1): 11118.
27. Van Prooyen N, Gold H, Andresen V, et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA. 2010 Nov 30; 107(48): 20738–43.

28. Sovinski S, Jolly C, Berneckinghausen O, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008 Feb; 10(2): 211–9.

29. Hashimoto M, Bhuyan F, Hyoshi M, et al. Potential Role of the Formation of Tunneling Nanotubes in HIV-1 Spread in Macrophages. J Immunol. 2016 Feb 15; 196(4): 1832–41.

30. Robert-Gurnoff M, Blayney DW, Safai B, et al. HTLV-I-specific antibody in AIDS patients and others at risk. Lancet. 1984 Jul 21; 2(8395): 128–31.

31. Silva MTT, Neves ES, Grinstein B, et al. Neurological manifestations of coinfection with HIV and human T-lymphotropic virus type 1. AIDS. 2012 Feb 20; 26(4): 521–3.

32. Spear GT, Jiang HX, Sullivan BL, et al. Direct binding of complement component C1q to human immunodeficiency virus (HIV) and human T lymphotropic virus-I (HTLV-I) infected cells. AIDS Res Hum Retroviruses. 1991 Jul; 7(7): 579–85.

33. Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/ Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses. 2016; 8(6).

34. Geddes VEY, José DP, Leaf FE, et al. HTLV-1 Tax activates HIV-1 transcription in latency models. Virology. 2017; 504: 45–51.

35. Barrios CS, Castillo L, Giam CZ, et al. Inhibition of HIV type 1 replication by human T lymphotropic virus types 1 and 2 Tax proteins in vitro. AIDS Res Hum Retroviruses. 2013 Jul; 29(7): 1061–7.

36. Pedroso C, Netto EM, Weyll N, et al. Coinfection by HIV-1 and human T-lymphotropic virus type 1 in Brazilian children is strongly associated with a shorter survival time. J Acquir Immune Defic Syndr. 2011 Aug; 57 Suppl 3:S208–211.

37. Regis C, Oliveira A, Brites C. Onset of opportunistic infections in patients co-infected by HTLV-1 and HIV-1, with high CD4+ cells count. Braz J Infect Dis. 2009 Aug; 13(4): 311–3.

38. Shibata D, Brynes RK, Rabinowitz A, et al. Human T-cell lymphotropic virus type 1 (HTLV-I)-associated adult T-cell leukemia/lymphoma in a patient infected with human immunodeficiency virus type 1 (HIV-1). Ann Intern Med. 1989 Dec 1; 111(11): 871–5.

39. Casseb J, De Oliveira ACP, Vergara MPP, et al. Presence of tropical spastic myelopathy (TSP/HAM)-like among HIV-1-infected patients. J Med Virol. 2008 Mar; 80(3): 392–8.

40. Oo Z, Barrios CS, Castillo L, et al. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections. J Med Virol. 2015 May; 87(5): 790–7.

41. Katsuya H, Ishitsuka K, Utsunomiya A, et al. Treatment and survival among 1594 patients with ATL. Blood. 2015 Dec 10; 126(24): 2570–7.

42. Ishida T, Ishitsuka K, Utsunomiya A, Katsuya H, et al. How I treat adult T-cell leukemia/lymphoma. Blood. 2012 Feb 20; 119(7): 1345–55.

43. Shibata D, Brynes RK, Rabinowitz A, et al. Human T-cell lymphotropic virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA. 2010 Nov 30; 107(48): 20738–43.

44. Ishida T, Jo T, Takemoto S, et al. Dose-intensive chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukemia-lymphoma: a randomized phase II study. Br J Haematol. 2015 Jan; 169(1): 672–92.

45. Ishitsuka K, Utsunomiya A, Katsuya H, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002 Mar 1; 99(5): 857–61.

46. Tobimai K, Kobayashi Y, Shimoyama M. Interferon alpha and zidovudine in adult T-cell leukemia-lymphoma. Lymphoma Study Group of the Japan Clinical Oncology Group. N Engl J Med. 1995 Nov 9; 333(19): 1285; author reply 1286.

47. Matutes E, Taylor GP, Cavenagh J, et al. Interferon alpha and zidovudine therapy in adult T-cell leukemia lymphoma: response and outcome in 15 patients. Br J Haematol. 2000 Jan; 113(3): 779–84.

48. Hormine O, Allard I, Levy V, et al. A prospective phase II clinical trial with the use of zidovudine and interferon-alpha in the acute and lymphoma forms of adult T-cell leukemia/lymphoma. Hematol J. 2002; 3(6): 276–82.

49. Bazarbachi A, Suarez F, Fields P, et al. How I treat adult T-cell leukemia/lymphoma. Blood. 2011 Aug 18; 118(7): 1736–45.

50. O’Mahony D, Morris JC, Stetler-Stevenson M, et al. Beta2-lampropoiferative disease complicating therapy with the anti-C12 monoclonal antibody, sipiluzumab, in patients with T-cell malignancies. Clin Cancer Res. 2009 Apr 1; 15(7): 2514–22.

51. Ceesay MM, Matutes E, Taylor GP, et al. Phase II study on combination therapy with CHOP-Zenapax for HTLV-I associated adult T-cell leukaemia/lymphoma (ATL). Leuk Res. 2012 Jul; 36(7): 857–61.

52. Ishida T, Jo T, Ueke N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012 Mar 10; 30(6): 837–42.

53. Yoshie O, Fujisawa R, Nakayama T, et al. Frequent expression of CCR5 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002 Mar 1; 99(5): 1505–11.

54. Ishida T, Jo T, Takemoto S, et al. Dose-intensiﬁed chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukemia-lymphoma: a randomized phase II study. Br J Haematol. 2015 Jun; 169(3): 672–92.

55. Ishitsuka K, Utsunomiya A, Katsuya H, et al. Phase II study of bortezomib in patients with relapsed or refractory aggressive adult T-cell leukemia/lymphoma. Cancer Sci. 2015 Sep; 106(9): 1219–23.

56. Nakano D, Ishitsuka K, Ikeda M, et al. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (IV): phenanthroindolizidine alkaloids from Tylophora tanakae leaves. J Nat Med. 2015 Jul; 69(3): 397–401.

57. Ishitsuka K, Kanami N, Katsuya H, et al. Targeting Bcl-2 family proteins in adult T-cell leukemia/lymphoma: in vitro and in vivo effects of the novel Bcl-2 family inhibitor ABT-737. Cancer Lett. 2012 Apr 28; 317(2): 218–25.

58. Narita T, Ishida T, Ito A, et al. Cyclin-dependent kinase 9 is a novel specific molecular target in adult T-cell leukemia/lymphoma. Blood. 2017 31; 130(9): 1114–24.

59. Dassouki Z, Sahin U, El Hajj H, et al. ATL response to arsenic/ interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation. Blood. 2015 Jan 15; 125(3): 474–82.

60. Hormine O, Dombret H, Poupon J, et al. Phase I trial of arsenic trioxide and alpha interferon in patients with relapsed/refractory adult T-cell leukemia/lymphoma. Hematol J. 2004; 5(2): 130–4.

61. Khoury G, Tarhini M, Kooshyar MM, et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood. 2009 Jun 25; 113(6): 6528–32.

62. Boostani R, Valdi R, Hosseiny SS, et al. Triple Therapy with Prednisolone, Pegylated Interferon and Sodium Valproate Improves Clinical Outcome and Reduces Human T-Cell Leukemia Virus Type 1 (HTLV-1) Provi ncial Load, Tax and HBZ mRNA Expression in Patients with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis. Neurotherapeutics. 2015 Oct; 12(4): 887–95.

63. Shimosaki S, Nakahata S, Ichikawa T, et al. Development of a complete
human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma. Biochem Biophys Res Commun. 2017 25; 485(1):144–51.

64. El Hajj H, Khalil B, Ghandour B, et al. Preclinical efficacy of the synthetic retinoid ST1926 for treating adult T-cell leukemia/lymphoma. Blood. 2014 Sep 25; 124(13): 2072–80.

65. Tanaka A, Takeda S, Kariya R, et al. A novel therapeutic molecule against HTLV-1 infection targeting provirus. Leukemia. 2013 Aug; 27(8): 1621–7.

66. Wang TT, Yang J, Zhang Y, et al. IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective γ-chain cytokines, decreases leukemic T-cell viability. Leukemia. 2019; 33(5): 1243–55.

67. Wang TT, Yang J, Zhang Y, et al. Blockade of IL-2 and IL-15 Gamma Chain Receptor Signaling Decreases Leukemic Cell Viability in T-Cell Large Granular Lymphocyte Leukemia and Adult T-Cell Leukemia. Blood. 2017 Dec 7; 130(Suppl 1): 3585.

68. Osame M, Usuku K, Izumo S, et al. HTLV-I associated myelopathy, a new clinical entity. Lancet. 1986 May 3; 1(8488): 1031–2.

69. Lezin A, Gillet N, Olindo S, et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood. 2007 Nov 15; 110(10): 3722–8.

70. Olindo S, Belmore G, Gillet N, et al. Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood. 2011 Dec 8; 118(24): 6306–9.

71. Feng Q, Zhou A, Zou H, et al. Quadruple versus triple combination antiretroviral therapies for treatment naive people with HIV: systematic review and meta-analysis of randomised controlled trials. BMJ. 2019 Jul 8; 366: i4179.

72. Ticona E, Huaman MA, Yanque O, et al. HIV and HTLV-1 co-infection: the need to initiate antiretroviral therapy. J Int Assoc Provid AIDS Care. 2013 Dec; 12(6): 373–4.

73. Costin JM. Cytopathic mechanisms of HIV-1. Virol J. 2007 Oct 18; 4: 100.

74. Beilke MA, Japa S, Moeller-Hadi C, et al. Tropical spastic paraparesis/human T leukemia virus type 1-associated myelopathy in HIV type 1-coinfected patients. Clin Infect Dis. 2005 Sep 15; 41(6): e57–63.

75. Pomier C, Rabaaoui S, Pouliquen JR, et al. Antiretroviral therapy promotes an inflammatory-like pattern of human T-cell lymphotropic virus type 1 (HTLV-1) replication in human immunodeficiency virus type 1/HTLV-1 co-infected individuals. J Gen Virol. 2013 Apr; 94(Pt 4): 753–7.