Emerin Represses STAT3 Signaling through Nuclear Membrane-Based Spatial Control

Byongsun Lee, Seungjae Lee, Younggwang Lee, Yongjin Park and Jaekyung Shim *

Abstract: Emerin is the inner nuclear membrane protein involved in maintaining the mechanical integrity of the nuclear membrane. Mutations in EMD encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD). There has been accumulating evidence that emerin regulation of specific gene expression is associated with this disease, but the exact function of emerin has still less revealing. Here, we have shown that emerin downregulates signal transducers and activators of transcription 3 (STAT3) signaling, activated exclusively by Janus-kinase (JAK). Deletion mutation experiments showed that the lamin-binding domain of emerin is essential for the inhibition of STAT3 signaling. Emerin interacted directly and co-localized with STAT3 in the nuclear membrane. Emerin knockdown induced STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death in HeLa cells. Specifically, downregulation of BAF or lamin A/C increases STAT3 signaling, suggesting that correct-localized emerin by assembling with BAF and lamin A/C acts as an intrinsic inhibitor against STAT3 signaling. In C2C12 cells, emerin knockdown induced STAT3 target gene, Pax7, and activated abnormal myoblast proliferation associated with muscle wasting in skeletal muscle homeostasis. Our results indicate that emerin downregulates STAT3 signaling by inducing retention of STAT3 and delaying STAT3 signaling in the nuclear membrane. This mechanism provides clues to the etiology of emerin-related muscular dystrophy and could be a new therapeutic target for treatment.

Keywords: JAK; STAT3; emerin; muscular dystrophy

1. Introduction

The nuclear lamina confirms mechanical assistance for the nucleus and provides a protein network that contributes to DNA replication, gene regulation, and genome stability [1,2]. The nuclear lamina proteins scaffold hundreds of proteins, including the LAP2-emerin-MAN1-domain (LEM-D) protein family in the inner nuclear membrane [3,4]. Multiple human diseases are caused by the loss of individual nuclear lamina proteins, highlighting the importance of this network [2,5]. Emerin was initially identified as a 35 kDa, the inner nuclear transmembrane protein that interacts with structural proteins including lamin A/C, nesprin-1α/2β and BAF [6–9]. In addition to its known function in supporting the mechanical integrity of the nuclear membrane, emerin is involved in sensing and responding to mechanical tension at nuclear membrane [10]. Emerin also plays a role in the signaling and transcriptional regulation to interact many proteins, including β-catenin, notch intracellular domain (NICD), germ cell less (GCL), Bcl-2-associated transcription factor (Btf), and LIM Domain Only 7 (LMO7) [11–16]. The mutations in the emerin network cause Emery-Dreifuss muscular dystrophy (EDMD) [2,17,18]. Recently, the nucleotide sequence of the emerin mutant that induces EDMD has been revealed [17]. X-linked EDMD (X-EDMD) is caused by mutations in EMD located on chromosome Xq28, and autosomal dominant EDMD (AD-EDMD) is caused by mutations in LMNA (encoding Lamin A) located on chromosome 1q11–q23 [18–21]. The loss of the emerin protein resulted...
in skeletal muscle wasting and cardiac defects, the character of EDMD [22,23]; however, the role of emerin loss in this disease has not been precisely elucidated.

In the present study, we assessed the emerin effect on gene expression using a transcription factor profiling PCR array covering 84 genes. Based on the positive value of transcription factor profiling, we tried to confirm the possibility of STAT3 signaling as a target pathway regulated by emerin. STAT3, a member of the STAT protein family has first discovered in interferon (IFN) signaling studies [24–26]. STAT3 is expressed at a low, basal level in virtually all the cells. A variety of stimuli can activate STAT3 signaling via phosphorylation of tyrosine 705. In general, cytokines such as interleukin-6 (IL-6) [27], leukemia inhibitory factor (LIF) [28], IL-5 [29], IFN-γ [30] and TNF-α [31] are known to activate STAT3. In addition to cytokines, growth factors such as EGF [32], TGF α [31], and PDGF [33] activate STAT3. In response to cytokines and growth factors, STAT3 is phosphorylated by receptor-associated JAK, form homo- or heterodimers, and translocate to the cell nucleus where they act as transcription activators [34]. Additionally, activation of STAT3 may occur via phosphorylation of serine 727 by Mitogen-activated protein kinases (MAPK) [35] and through c-Src non-receptor tyrosine kinase [36,37].

Among the various roles of STAT3, many downstream genes are expressed in cell survival [38–41], cell proliferation [42–44], inflammation [27,45], and tumorigenesis [46–51]. Especially, STAT3 signaling plays a critical role in muscle wasting induced by the IL6/JAK/STAT3 signaling pathway [52,53]. STAT3 signaling is activated in skeletal muscle and promotes skeletal muscle atrophy in muscle diseases, such as Duchenne muscular dystrophy (DMD) and Merosin-deficient congenital muscular dystrophy (MDC1A) [54–56]; thus, prolonged activation of STAT3 in muscles is responsible for muscle wasting by activating protein degradation pathways. It is important to balance the extent of STAT3 activation and the duration and location (cell types) of the STAT3 signaling when developing therapeutic interventions [57].

In the study, we examined the role of emerin as a transcriptional inhibitor of STAT3 target genes, like cell survival-related genes including Bcl2 and Survivin in HeLa cells. We show that emerin can modulate STAT3 signaling by inducing the retention of the STAT3 at the inner nuclear membrane. Cytotoxicity studies using emerin knockdown HeLa cells confirmed the STAT3 signaling induced STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death. Using mouse myoblast C2C12 cells, we show that emerin can modulate myoblast proliferation by inhibiting STAT3 signaling. These findings imply that normal STAT3 activity under emerin regulation is required for proper muscle maintenance. However, intermittent STAT3 inhibition may have promising implications for increasing muscle regeneration in emerin-related muscular dystrophy. All of our results suggest misregulation of the STAT3 signaling pathway, which is essential for skeletal muscle development, may lead to LEM-D protein-associated human diseases such as EMDM.

2. Results
2.1. Emerin Represses STAT3 Transcriptional Activity

When the STAT3 signal, known to be essential for cancer cell proliferation, is activated, the cytoplasmic STAT3 protein moves to the nucleus through the nuclear inner membrane where emerin is present. In addition, related studies have shown that emerin regulates Notch and Wnt signaling [11,15]. Here we investigated the involvement of emerin in STAT3 signaling in the same manner as a previously reported human transcription factor profiling assay that measures the expression levels of genes using qRT-PCR [15]. We analyzed the expression of 84 genes affected by emerin and presented it in Supplementary data Table S1. Interestingly, we found out that the expression of the STAT family was significantly reduced by emerin, and MyoD and Myf5 related to muscle development were reduced. STAT signal-related genes (red) and muscle development-related genes (blue) are marked differently with 84 gene rankings (Supplementary Table S1).
Since the previously reported emerin-regulated Notch gene was not included in the 84 genes, we conducted a separate experiment to confirm the importance of transcription factor profiling analysis performed. Reduction of STAT3 expression by overexpressed emerin was confirmed in the same pattern as decreasing Notch expression (Figure 1A).

Figure 1. Emerin regulates the expression of STAT3 genes. (A,C) HeLa cells were transfected with vectors encoding Emerin-HA (1 μg) in 6well plates for 24 h in 6 well plates. Total RNA was isolated and subjected to qRT-PCR analysis. Data
were normalized to GAPDH expression. The results represent the mean ± S.D. of three independent experiments performed in triplicate. **, p < 0.01. (B,D) HeLa cells were treated with siRNA (100 nM) against Emerin or Control (si-Cont) at 6 well plates for 48 h in 6 well plates. Total RNA was isolated and subjected to qRT-PCR analysis. Data were normalized to GAPDH expression. The results represent the mean ± S.D. of three independent experiments performed in triplicate. *, p < 0.05; **, p < 0.01. (E) HeLa cells were dual-infected with STAT3 lentiviral lucerase and Renilla lentiviral lucerase. Cells were selected by puromycin. Increasing amounts of IL-6 (0–40 ng/mL) were treated HeLa cells for 6 h before were transfected with vectors encoding Emerin-HA (1 µg) for 24 h in 6 well plates. Cells were lysed subject to a luciferase assay. The lucerase reporter activity in each sample was normalized to a Renilla protein activity. R.L.U., relative lucerase units. The results represent the mean ± S.D. of three independent experiments performed in triplicate. **, p < 0.01. (F) HeLa cells were treated with siRNA (100 nM) against Emerin or Control (si-Cont) at 6 well plates for 48 h in 6 well plates. Treated cells were lysed subject to western blotting with antibody against emerin, NICD, STAT3, Bcl2, and β-actin. The membranes were analyzed using ImageJ software (NIH, Bethesda). (G) 50% Confluent HeLa cells were treated with IL-6 (40 ng/mL) for indicated times in 6 well plates. Treated cells were lysed subject to western blotting with antibody against STAT3, p-STAT3, emerin, HA-epitope, and β-actin. The membranes were analyzed using ImageJ software (NIH, Bethesda). Intensities of STAT3 and pSTAT3 in control vector transfection (left panel) and Emerin-HA transfection (right panel) were analyzed 16 h after transfection, including IL-6 treatment times.

In addition, our results showed that emerin suppresses the expression of cyclinD1, β-catenin target gene in Wnt signaling (Figure 1A). Conversely, the knockdown of emerin by si-RNA led to upregulation of STAT3, Notch, and cyclinD1 (Figure 1B). These results are consistent with previous studies [11,15] and indicate that our experimental method for testing the effect of emerin on STAT3 is appropriate. Furthermore, this experiment showed that STAT3 signaling regulation by emerin is similar to controlling Notch signaling through spatial control of emerin in the nuclear membrane [15].

Besides, we examined whether emerin affects expression of Bcl2 and Survivin, survival-related genes in STAT3 downstream. Emerin inhibits mRNA expression of Bcl2 and Survivin (Figure 1C). Similar to Figure 1B, decreased emerin by si-RNA increased Bcl2 and Survivin of STAT3 target gene (Figure 1D). We performed Western blot experiments to confirm protein expression of representative target genes (Notch and Bcl2) along with STAT3, separately from Emerin RNA interference experiments. Western blot results were consistent with gene expression levels resulting from si-Emerin treatment (Figure 1F).

To determine if STAT3 could be a direct target of emerin, we built a STAT3-luciferase assay system on HeLa cell double-infected STAT3-Luciferase particles and Renilla particles. Treatment with IL-6 as a STAT3 activation signal in HeLa-STAT3-Luc/Ren cells increases STAT3 transcriptional activity as indicated by an increased amount of IL-6 (Figure 1E). In a STAT3 luciferase reporter experiment, we confirmed that IL-6 activates STAT3 transcriptional activity and that activated STAT3 is downregulated by emerin (Figure 1E). Interestingly, the decrease in the transcriptional activity of STAT3 in the nucleus, which is dependent on emerin, resulted in a significant reduction in phosphorylated STAT3, an activated form completed in the cytoplasm (Figure 1G). This means that emerin may negatively affect the expression or activation process of Jak or MAPK, which are involved in STAT3 activation. A study related to our results reported the general activation of the MAPK pathway in EMD null mice, an EMDM model [58].

In particular, a graph showing the relative expression levels of STAT3 indicates that a difference in the level of STAT3 at 15 min after IL-6 treatment and the phosphorylation of STAT3 at 30 min after IL-6 treatment (Figure 1G).

2.2. Emerin Interacts with STAT3 Proteins

Emerin is known to form a network in the nuclear membrane with several proteins including lamin A/C and BAF. Emerin regulates gene expression by interacting with several proteins while maintaining the integrity of the nuclear membrane [9,59]. The regulation of emerin on STAT3 transcriptional activity may have two possibilities: through direct interaction and through other proteins in the network. We performed a Co-immunoprecipitation (Co-IP) experiment to determine whether there is a direct interaction by emerin. Co-IP
experiments showed that emerin and STAT3 could bind directly at the endogenous level. The interaction between the two proteins was not related to the presence or absence of phosphorylation of STAT3 (Figure 2A). Emerin, which is present in the nuclear membrane, is expected to bind to activated STAT3 migrating to the nucleus and regulate the pSTAT3 transcriptional activity. Immunocytochemistry (ICC) experiments showed that activated STAT3 migrates to the nucleus, and some pSTAT3 are located in the nuclear membrane with emerin. The orange color in the merged figure showed that emerin (red) and pSTAT3 (green) could interact in the same location of the nuclear membrane (enlarged merge in Figure 2B).

Figure 2. Emerin interact with the STAT3. (A) Confluent HeLa cells in 100 mm plates with or without IL-6 (40 ng/mL) were lysed and immunoprecipitated with antibodies against Emerin. The precipitates were subjected to western blotting with antibody against STAT3 or p-STAT3. (B) Immunocytochemistry image stained with anti-pSTAT3 and Emerin antibody from confluent HeLa cells in coverslip on 30 mm plates with or without IL-6 (40 ng/mL). DAPI (blue) was used to visualize nucleus. Scale bar = 10 µm. (C) HeLa cells were transiently co-transfected with vectors encoding HA-Emerin deletion mutants (6 µg) and Flag-STAT3 (6 µg) in 100 mm plates for 24 h. Cells were lysed and immunoprecipitated with antibody against HA overnight at 4 °C, and the precipitates were subjected to western blotting with antibody against Flag. (D) Dual infected Hela cells were transiently transfected with vectors encoding Emerin deletion mutants (1 µg) for 24 h and treated for 6 h with IL-6 (40 ng/mL) in 6 well plates. Cells were lysed subjected to a luciferase assay. The luciferase reporter activity in each sample was normalized to Renilla protein activity. RLU, relative luciferase units. The results represent the mean ± S.D. of three independent experiments performed in triplicate. *, p < 0.05.
We also investigated which part of emerin is essential in binding to STAT3 using overexpressed the deletion mutation emerin in Co-IP experiments. Co-IP data showed that most of the mutations could bind differently in the degree to STAT3 and mutant D5 had the weakest binding. Co-IP data show that Trans-Membrane (TM), a moiety required for the anchorage of emerin, and the LEM domain that binds BAF are not essential for binding. Instead, the lamin binding (LB) domain bind to STAT3, as all deletion mutants had LB domains in common.

We tried to determine which emerin deletion mutations affect STAT3 transcriptional inhibition through STAT3 luciferase assay. As shown in Figure 1E, IL-6-induced STAT3 transcriptional activity was inhibited by emerin, and it was demonstrated that the emerin deletion mutants D2 and D3, containing TM domain and LB domain, had a significant inhibitory effect on STAT3 transcriptional activity comparing wild-type emerin (Figure 2D). On the other hand, emerin mutants D1, D4 capable of binding to STAT3 (Figure 2C) do not show inhibition of transcriptional activity (Figure 2D) means that STAT3 transcriptional activity is inhibited through emerin-STAT3 binding only when emerin is anchored to the nuclear membrane. These data suggest that the localization of emerin proteins to the inner nuclear membrane is essential for suppressing STAT3 signaling.

2.3. Emerin-Network Affects Cell Survival through Modulating STAT3 Signal

Emerin localizes predominantly to the inner nuclear membrane by binding to A-type lamins (nuclear intermediate filament proteins) and a chromatin protein, BAF [60]. BAF is essential for the localization of emerin to the nuclear envelope because in the absence of BAF, emerin is sequestered in the cytosol [59,61]. Thus, loss of BAF and lamin A/C may increase STAT3 signaling by inducing mislocalization of emerin to the cytosol. Therefore, we studied changes in the transcriptional activity of STAT3 when the emerin-network was disrupted by si-RNA, including si-Lamin A/C, and si-BAF.

An increase in STAT3 expression confirmed the effect of the disrupted emerin-network through the same qRT-PCR experiment as in Figure 1D, in which si-Emerin was introduced (Figure 3A). In addition, like the emerin knockdown experiment, Bcl2 and Survivin expression increased in Hela cells using si-BAF and si-Lamin A/C (Figure 3A). These results showed that if the protein constituting the emerin-network is impaired, the entire emerin-network is also defective. Defective emerin network reduces the emerin inhibitory effect on STAT3 transcriptional activity, increasing the expression of STAT3, thereby increasing the expression of Bcl2 and Survivin, known as anti-apoptotic genes [62,63].

To investigate the relationship between the expression levels of Bcl2 and Survivin downstream of STAT3 and cell survival, HeLa cells were treated with H2O2 to induce cell death in the condition of reduction of emerin-localization in the nuclear inner membrane using si-Emerin, si-BAF, and si-Lamin A/C. Under these circumstances, IL-6 treatment appears to inhibit H2O2-induced cell death by increasing STAT3 signaling activation significantly (Figure 3C). Furthermore, the emerin-network downregulation using si-RNA increased cell viability even without IL-6 treatment (Figure 3B). The fact that the increased expression of STAT3 increased the expression of the anti-apoptotic genes Bcl2 and Survivin are expected to delay H2O2-induced apoptosis sufficiently.

These results suggest that emerin plays a role in survival through, at least in part, the modulation of STAT3 signaling in HeLa cells. Using a simple schematic, we present a model demonstrating the potential of emerin to modulate JAK-STAT signaling. The schematic model explained as follows. IL-6 activates STAT3 present in the cytoplasm to form the JAK-STAT3 complex. Activated pSTAT3 enters the nucleus and acts as a transcriptional activator for target genes. Thus, the inner nuclear emerin-network included with lamin A/C, BAF, and emerin regulates transcription factors such as STAT3 that enter the inner nuclear membrane.
Figure 3. Emerin-network modulates STAT3 signaling and survival in HeLa cells. (A) HeLa cells were treated with siRNA (100 nM) against BAF, Lamin A/C or Control at 6well plates for 48 h in 6 well plates. Total RNA was isolated and subjected to qRT-PCR analysis. Data were normalized to GAPDH expression. The results represent the mean ± S.D. of three independent experiments performed in triplicate. *, p < 0.05. (B, C) HeLa cells were treated with siRNA (100 nM) against Emerin, BAF or lamin A/C at 6well plates for 36 h. HeLa cells were treated with or without IL-6 (40 ng/mL) for 4 h in 6 well plates. Then, HeLa cells were treated with H2O2(500 µM) for 18 h. Cell viability was measured by CCK-8 assay at 24 well plates. The results represent the mean ± S.D. of three independent experiments performed in triplicate. *, p < 0.05, **, p < 0.01.

2.4. Emerin Regulates Muscle Cell Proliferation through STAT3 Signaling

Emerin and STAT3 are well known to play essential roles in the etiology of muscle disease [17,58]. Therefore, we used C2C12 myoblast cells in our experiments to investigate the regulatory effect of STAT3 by emerin on muscle cells. In C2C12 cells, knockdown
Emerin increased STAT3 mRNA, similar to the results in HeLa cells, and increased PAX7 of the myoblast proliferation gene (Figure 4A). After reduction of emerin using si-Emerin in C2C12 cells, PAX7, MyoD, and Myogenin (MyoG) expression levels were checked for three days in differentiation medium (DM). Emerin knockdown in DM-treated C2C12 cells increased STAT3 mRNA and increased PAX7 of myoblast proliferation gene, similar to the results of the standard medium in Figure 4A. Conversely, MyoD and MyoG, the myocyte differentiation genes, decreased (Figure 4B). In addition, as a result of observation for 2DAYS after si-Emerin treatment, the growth of C2C12 cells was promoted compared to the control, which is probably due to the increased STAT3 target gene, PAX7 (Figure 4C).

As with previous reports [56,64], increasing STAT3 inhibited muscle cell differentiation and promoted muscle cell proliferation by emerin knockdown. Therefore, we investigated the physiological changes owing to the regulation of STAT3 by emerin in C2C12 cell differentiation. In Figure 4B, Myosin Heavy Chain (MYHC) decreased with increasing

Figure 4. Emerin regulates muscle cell proliferation through STAT3 signaling. (A) C2C12 cells were treated with si-RNA (100 nM) against Emerin or control for 48 h in 6 well plates. The total RNA was isolated and subjected to a qRT-PCR analysis. Data were normalized to β-Actin. Treated cells were lysed subjected to western blotting with antibody against Emerin and β-actin (inner panel). The results represent the mean ±S.D. of three independent experiments performed in triplicate. *, p < 0.05. (B) C2C12 cells were treated with si-RNA (100 nM) against Emerin, or control for 48 h in 6 well plates. After 48 h, cells were treated with differentiation media (DM) for 3 days. The total RNA was isolated and subjected to a qRT-PCR analysis. Data were normalized to β-Actin. The results represent the mean ±S.D. of three independent experiments performed in triplicate. *, p < 0.05. (C) C2C12 cells were treated with si-RNA (100 nM) against Emerin or control for 24 or 48 h in 6 well plates. Cells were fixed each time and relative cell number counted each time points. The results represent the mean ±S.D. of three independent experiments performed in triplicate. (D) C2C12 cells were treated with si-RNA (100 nM) against Emerin, or control for 48 h in 6 well plates. After 48 h, cells were treated with differentiation media (DM) for 3 days. Immunocytochemistry image stained with anti- MYHC antibody from emerin-depleted C2C12 cells at day 3 of differentiation. DAPI (blue) was used to visualize nucleus. Scale bar = 50 μm.
STAT3 by si-Emerin at day 3 of DM in the ICC of MYHC (Figure 4D). However, on the 5th day of DM, as the knockdown effect by si-Emerin was reduced, there was no significant increase in PAX7 or decrease in MyoD and MyoG, and there was not much difference in the level of MYHC expression in ICC results (Supplementary Figure S1). These results suggest that emerin plays a role in muscle cell development by engaging in muscle cell proliferation through modulation of STAT3 signaling. Regarding these proposals, we expressed these with a simple schematic model (Figure 5). Cytoplasmic pSTAT3 activated by various signals enters the nucleus and regulates genes’ expression in proliferation and differentiation for muscle maintenance. At this time, the inner nuclear emerin network containing emerin properly regulates the transcriptional activity of pSTAT3 to maintain normal muscle homeostasis. Conversely, activated STATs that are not under the control of the emerin network lead to increased expression of genes associated with muscle cell proliferation, and this imbalance could lead to myofiber regeneration problem such as muscular dystrophy.

Figure 5. A schematic model describing the role of Emerin in the STAT3 signaling pathway. (A,B) Emerin regulates STAT3 transcriptional activity on non-muscle cells or skeletal muscle cells.

3. Discussion

Skeletal muscle development is a complex regulatory process that fine-tunes the balance of catabolic and anabolic processes regulated by muscle genes and transcription factors. Depending on the stringent temporal sequence expression, these transcription factors precisely control the proliferation, differentiation, and fusion of muscle cells [64–66]. However, muscular dystrophy impairs the microscopic homeostasis, which slows down muscle generation and repair leading to an increased catabolic process resulting in loss of skeletal muscle mass by increasing proteolysis through the ubiquitin-proteasome autophagy-lysosome system [57]. Thus, representative muscular dystrophy, X-EMDM, is presumed to cause problems in several biological phenomena due to the lack of emerin.

In the present study, we executed transcription profiling analysis to explore the role of emerin in gene regulation. We found that emerin plays a role in the transcriptional suppression of many genes, including those of the Notch, Wnt, and STAT signaling pathways (Figure 1A,B and Supplementary Table S1). These results are consistent with previously reported results because emerin can negatively regulate gene expression through the recruitment of transcription inhibitors. For example, the direct interaction of emerin and
\(\beta\)-catenin triggers the downregulation of Wnt signaling [11]. Conversely, in the absence of emerin, the level of nuclear \(\beta\)-catenin increases, leading to upregulation of the target gene [11]. In addition, emerin induces nuclear envelope localization of LMO7, a transcriptional activator for muscle differentiation, and inhibits transcriptional function [13]. Our transcription profiling analysis showed significant relevance to previous studies related to myogenesis, such as the temporal balance between Notch and Wnt signaling orchestrates the precise progression of muscle precursor cells along the myogenic lineage pathway [67].

Transcription factor Profiling analysis also shows that the level of expression of STAT families by emerin is generally low (Supplementary Table S1). We were able to confirm once again that it inhibits STAT3 transcriptional activity in HeLa cells (Figure 1C,E). STAT3 signaling has been reported to play a critical role in satellite cell myogenic capacity and self-renewal [68,69]. In addition, activated STAT3 promotes skeletal muscle atrophy in muscle diseases [54] while acting as an oncoprotein in non-muscular cells [70,71]. An exciting aspect of the results of transcription profiling analysis is that in addition to significantly reducing the expression of stat3, overexpression of emerin also decreased the expression of MyoD and MYF5, which are involved in skeletal muscle development. This result was from HeLa cells in a typical medium that induces cell proliferation (Supplementary Table S1). However, even when STAT3 expression was increased in emerin knockdown C2C12 myoblast using DM medium that promotes differentiation, the expression of MyoD and MyoG decreased (Figure 4B). This phenomenon suggests that even muscle differentiation is related to STAT3 released from emerin, causing upregulates Pax7 promoting cell proliferation (Figure 5B). All of this reinforces the suggestion that LEM-D protein-associated human diseases like EMDM are associated with the misregulation of signaling pathways essential for skeletal muscle cell proliferation and differentiation.

Mutations in the genes encoding emerin (EMD) and lamin A/C (LMNA) can cause different forms of EDMD. The functional link between the two proteins and the fact that they are both implicated in very similar diseases suggested that they work through a convergent pathway. Previous reports have shown that the EDMD model, mouse embryonic fibroblasts (MEF) from Lmna\(-/-\) mice, has a fast-growing phenotype similar to emerin null fibroblasts [72]. We have shown that loss of lamin A/C and BAF leads to erroneous localization and loss of function of emerin to the cytoplasm [15], so upregulated STAT3 signaling may contribute to cell survival in HeLa cells. Based on these results, we suggest that the cause of each EDMD in different gene mutations is due to the same expansion that forms a proliferating myoblasts pool by upregulated STAT3 signaling. In this regard, we have shown that emerin can down-regulate myoblast proliferation by inhibiting STAT3 signaling in C2C12 cells (Figure 4). As shown in the emerin-STAT3 model in Figure 5, attenuated STAT3 activity by interacting emerin in nuclear inner membrane is sufficient to fulfill its essential functions in gene expression regulation during myoblast differentiation, thus supporting the importance of emerin in myogenesis.

In conclusion, our results suggest that defects in the regulation of muscle cell proliferation due to incorrect regulation of STAT3 signaling may be one cause of EDMD pathology.

4. Materials and Methods

4.1. Antibodies and Chemicals

For immunoblotting and immunocytochemistry, primary antibodies for emerin (#sc-15378, 1:4500), Lamin A/C (#sc-20681, 1:4500), BAF (#sc-166324, 1:5000), Bcl2 (#sc-7382, 1:4500) and GAPDH (#sc-47724, 1:5500) were purchased from Santa Cruz (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Primary antibodies specific for pSTAT3 (#ab76315, 1:3000) was purchased from Abcam (Cambridge, UK). Primary antibodies specific for HA (1:5000), Flag (1:5000), and \(\beta\)-actin (1:5000) were purchased from MBL (Woburn, MA, USA). Primary antibodies specific for STAT3 (1:3000) were purchased from Cell signaling (Danvers, MA, USA). Primary antibodies for Myosin Heavy Chain (MYHC, #MAB4470, 1:50) was purchased from R&D systems (Minneapolis, MN, USA). For viability assay,
cells were treated H$_2$O$_2$ for cell death, and Thiazoyl blue tetrazolium bromide (MTT) was purchased from Bio Basic (Markham, ON, Canada).

4.2. Cell Culture and Transfection

HeLa Cells (American type culture collection; ATCC) were cultured in DMEM (Biowest, Riverside, MO, USA) supplemented with 10% FBS (Welgene, South Korea) and 1% Antibiotic Antimycotic Solution, 100X (Corning, Manassas, VA, USA). Transfection was executed using the Lipofectamine 2000 reagent (Invitrogen, Grand Island, NY, USA) according to the manufacturer’s instruction. The transfected cells were cultured for 24–48 h, washed with DPBS, and harvested with lysis buffer (Invitrogen, Grand Island, NY, USA). C2C12 cells were a gift from Yong-Gyu Ko at Korea University in South Korea. C2C12 cells were cultured in DMEM supplemented with 10% FBS and 1% Antibiotic Antimycotic Solution, 100X (Biowest, Riverside, MO, USA). For induction of differentiation, fully confluent C2C12 cells were cultured in DMEM supplemented with 2% horse serum (Sigma-Aldrich, MO, USA) for 3 days.

4.3. Plasmid Constructs

The human *emerin* cDNA (NM_000117) was (provided by 21C Frontier Human gene bank, Seoul, South Korea) amplified by PCR and inserted into the restriction enzyme sites (BamHI and XhoI) of pcDNA3-HA for biochemical studies. For construction of *emerin* deletion mutants, the corresponding regions were amplified by PCR and inserted into the restriction enzyme sites (BamHI and XhoI) of pcDNA3-HA and pcDNA3-Flag. The *emerin* deletion mutants cloning primer sequences are shown below. WT (forward 5′-CGGGATCCGGAAATGGACAACTACGCAGAT-3′, reverse 5′-CCGCTCGAGCGGCTAGAAGGGGTTGCCTTC-3′), D1 (forward 5′-CGGATCCGGAAATGGACAACTACGCAGAT-3′, reverse 5′-CCGCTCGAGCGGCTAGAAGGGGTTGCCTTC-3′), D2 (forward 5′-CGGGATCCGGAAATGGACAACTACGCAGAT-3′, reverse 5′-CCGCTCGAGCGGCTAGAAGGGGTTGCCTTC-3′), D3 (forward 5′-CGGGATCCGGAAATGGACAACTACGCAGAT-3′, reverse 5′-CCGCTCGAGCGGCTAGAAGGGGTTGCCTTC-3′), D4 (forward 5′-CGGGATCCGGAAATGGACAACTACGCAGAT-3′, reverse 5′-CCGCTCGAGCGGCTAGAAGGGGTTGCCTTC-3′).

The human *STAT3* (NM_003150) cDNA was (provided by 21C Frontier Human gene bank, South Korea) amplified by PCR and inserted into the restriction enzyme sites (HindIII and SalI) of pcDNA3-Flag. The STAT3 cloning primer sequences are shown below. WT (forward 5′-AAGCTTATGGCCCAATGGAATCAG CTA-3′, reverse 5′-GTCGACTCACATGG GGGAGGTAGCGCA-3′).

4.4. Transcription Factor Profiling Assay

Total RNA was isolated using Trizol reagent (Life Technologies, Carlsbad, CA, USA), and 1 µg of total RNA was used for cDNA synthesis. The human transcription factor profiling PCR array was performed according to the manufacturer’s protocol (#PAHS-075ZC-2; Qiagen, Valencia, CA, USA). Data were obtained using the manufacturer’s instruction.

4.5. Luciferase Reporter Assay

Hela cells were dual-infected with STAT3 lentiviral luciferase and Renilla lentiviral luciferase (#CSS-9028L, Qiagen, Hilden, Germany), selected by puromycin (stable cell line-Hela STAT3 Luc/Ren). Cells were grown to 70–80% cell confluence in 6well plates and transiently transfected with encoding emerin and incubated 24 h at 37 °C CO$_2$ incubator. Then, cells were treated IL-6 6 h, lysed in 5 × Passive Lysis Buffer (Promega, Madison, WI, USA), and analyzed for dual luciferase activity with a GloMax® 96well microplate luminometer system (Promega). The luciferase reporter activity in each sample was normalized to Renilla protein activity (Promega).
4.6. Immunoblotting

For western blot analysis, all proteins were separated by SDS-PAGE (Polyacrylamide gel electrophoresis) and transferred on PVDF (Polyvinylidene difluoride) membranes (Millipore, Billerica, MA, USA). Membranes were blocked for 1 h at R.T with a solution of 4% non-fat milk powder or 4% BSA in TBS contained 0.05% Tween-20 (TBST). The membranes were incubated with the first antibody in blocking solution O.N at 4 °C. The membranes were washed 3 times with TBST and incubated with the second antibody for 2 h at R.T. After washing three times with TBST, the membranes were developed using the ECL (Electrochemiluminescence) detection system (Bio-Rad, Hercules, CA, USA).

4.7. Immunoprecipitation

The cells were scraped off the culture dish with 1000 µL cold RIPA buffer (Sigma-Aldrich, MO) containing protease inhibitor cocktail solution (GenDEPOT, Barker, TX, USA). The cell lysate was centrifuged at 13,000 rpm for 15 min at 4 °C. The supernatant was harvested, and its protein concentration was measured with a BCA protein assay kit (Thermo Scientific). For immunoprecipitation, 300 µg protein in RIPA buffer was incubated with an antibody at 2 µg per 300 µg total protein overnight at 4 °C with constant rotator. Then, a pre-mixture of protein and antibody was incubated with 25 µL of a 50% slurry of protein-G-Agarose beads (Amicogen, South Korea) 2 h at 4 °C with constant rotation. After centrifugation at 1000 rpm for 1 min at 4 °C, the supernatant was discarded, and the agarose-bead pellets were washed with PBS. After a final wash, the agarose-bead pellets were resuspended in a final volume of 20 µL with sample buffer (50 mM TRIS–HCl pH 6.8, 2% SDS, 10% glycerol, 1% β-mercaptoethanol, 12.5 mM EDTA, 0.02% bromophenol blue) and boiled at 90 °C for 5 min. Then, the agarose beads were removed by brief centrifugation, and the supernatant was loaded immediately onto an 8–10% SDS-polyacrylamide reducing gel. As a next step, Western blotting was performed as described above.

4.8. Immunocytochemistry (ICC)

HeLa cells were plated on glass cover slips and then transfected with 1 µg of vector. After incubation for 24–48 h, then cells were fixed with 4% PFA (paraformaldehyde), permeabilized with 0.1% Triton X-100 in PBS and then incubated with blocking Sol. After incubation O.N with the first HA antibody (1:200) in blocking solution, cells were washed and incubated with TRITC or FITC—conjugated 2nd antibodies (1:200) for 1 h at R.T. After staining with DAPI (Life technology, Carlsbad, CA, USA), cells were observed under a microscope.

4.9. Quantitative RT-PCR (qRT-PCR)

Total RNA was separated using the RiboEx (Gene All, South Korea), and one µg of total RNA was used for cDNA synthesis (Intron bio, South Korea). cDNA was amplified using primer pairs for human STAT3 (forward 5'-TTGACAAAGACTCTGGGGAC-3' and reverse 5'-CAGGGAAGCATCACAATTTG-3'), human Notch1 (forward 5'-TACGTGTGACC TGCCGGG-3', reverse 5'-CGTTTCTGCAGGGGCTGGGG-3'), human Survivin (forward 5'-CTTCACATCTGTCAGGTC-3' and reverse 5'-GAAGCTGTAACAATCCACCC-3'), human Bcl2 (forward 5'-GTGGGCTTCAAGATGGAAG-3' and reverse 5'-TGGCGATGATCT GTTGTGC-3'), human Cyclin D1 (forward 5'-GGATTGTGGCCCTTCTTTTACAGA-3' and reverse 5'-AGGTAATGACGATTCACAGACACAG-3'), human GAPDH (forward 5'-AAAAGGCACGGCTGTGACC-3' and reverse 5'-GTCCGAGTCAACGATGTCG-3'), mouse e Emerin (forward 5'-CCACCAAGACATCCGGGAG-3' and reverse 5'-TCTTGGCATAGATGAGGCG-3'), mouse PAX7 (forward 5'-GACTCTGGATCTGTGTCGTC-3' and reverse 5'-GGCCTGTCGCC AAGGGG-3'), mouse MyoD (forward 5'-GGCTAGCAACGCGCTACTAC-3' and reverse 5'-GCTTTGGATGTCTGTGTTCTG-3'), mouse Myogenin (MyoG) (forward 5'-CCTGGAAAGA AAGGAAGCTGGA-3' and reverse 5'-CGCTCAATGTAATGCGG-3'), mouse STAT3 (forward 5'-AGGAGTCTAACAACGCGACCTC-4' and reverse 5'-CTGGTACCTTCCATCG-3') and mouse β-Actin (forward 5'-GGCTGTATTCCCCTCCCATCG-3' and reverse...
5′-CCAGTTGGTAACAATGCCATGT-3′). QRT-PCR was performed using the StepOne Real-Time PCR System. Reactions were amplified using the primers described above and a HiPi Real-Time PCR 2x Master MIX-SYBR green (ELPis, Daejeon, South Korea) according to the manufacturer’s instruction.

4.10. Small Interfering RNA

Negative siRNA was non-targeting siRNA for human, rat and mouse. The human *emerin* (#1047199), mouse *emerin* (#13726-1), human *Lamin A/C* (#1033333), mouse *Lamin A/C* (#SP-4002) and negative control (#SN-1002) siRNA oligo were purchased from Bioneer (South Korea). Transfection was performed with Lipofectamine 2000 in HeLa cells and C2C12 cells according to the manufacturer’s protocol. The sequences for si-RNA targeting were as follows; human *emerin* (sense sequence 5′-AGUCGAAUUC AAGUCAGAG-3′, and antisense sequence, 5′-CUCUGACUUCGAAUC-3′), mouse *emerin* (sense sequence 5′-GAGCAAGGACUAUAAUGA-3′, and antisense sequence 5′-AUCUAUAAUGCUUCUCU-3′), human *BAF* (sense sequence 5′-ACUUCUGCCAGU AGAGC-3′, and antisense sequence, 5′-GCUCUACUUCGAGAAAGU-3′) and human *Lamin A/C* (sense sequence, 5′-CUCUGACUUGAAUC CU-3′ and antisense sequence, 5′-AGUCGAAUCAAGCAGAG-3′).

4.11. Statistical Analysis

All results data were presented, as the mean ± S.D. Statistical significance was determined with the Student T-test with a significance level of *p* 0.05. The data for transcription qRT-PCR array, Dual-Luciferase assay and viability assay were presented as the mean of three independent experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/ijms22136669/s1, Figure S1: Differentiated C2C12 cells by si-Emerin for five days in DM, Table S1: The human transcription factor profiling PCR array after Emerin overexpression.

Author Contributions: Conceptualization, B.L. and J.S.; methodology, B.L., S.L., Y.L., Y.P. and J.S.; investigation, B.L., S.L., Y.L., Y.P. and J.S.; writing—original draft preparation, B.L. and J.S.; writing—review and editing, B.L. and J.S.; supervision B.L. and J.S.; funding acquisition, B.L. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MESP) (NRF-2017R1D1A1B03034519) (to J.K.S.) and the (NRF-2018R1A6A3A01012433 and NRF-2019R1I1A1A01041000) (to B.S.L.).

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Local Ethics Committee, Warsaw, Poland (protocol code 37/2012, date of approval 26 June 2012 and protocol code 1/2016, date of approval 26 January 2016).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments: We would like to thank Yong-Gyu Ko at Korea University for the C2C12 cells.

Conflicts of Interest: The authors declare no conflict of interest.
Abbreviations

STAT3 Signal transducer and activators of transcription3
JAK Janus-kinase
LEM LAP2-emerin-MAN1
TM Transmembrane
PM Plasma membrane
NE Nuclear envelope
EDMD Emery-Dreifuss muscular dystrophy

References

1. Gerace, L.; Huber, M.D. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J. Struct. Biol. 2012, 177, 24–31. [CrossRef] [PubMed]

2. Davidson, P.M.; Lammerding, J. Broken nuclei–laminas, nuclear mechanics, and disease. Trends Cell Biol. 2014, 24, 247–256. [CrossRef] [PubMed]

3. Schirmer, E.C.; Gerace, L. The nuclear membrane proteome: Extending the envelope. Trends Biochem. Sci. 2005, 30, 551–558. [CrossRef]

4. Korfali, N.; Wilkie, G.S.; Swanson, S.K.; Srseen, V.; de Las Heras, J.; Batrakou, D.G.; Malik, P.; Zuleger, N.; Kerr, A.R.; Florens, L.; et al. The nuclear envelope proteome differs notably between tissues. Nucleus 2012, 3, 552–564. [CrossRef]

5. Barton, L.J.; Soshnev, A.A.; Geyer, P.K. Networking in the nucleus: A spotlight on LEM-domain proteins. Curr. Opin. Cell Biol. 2015, 34, 1–8. [CrossRef] [PubMed]

6. Shim, T.; Butin-Israeli, V.; Adam, S.A.; Goldman, R.D. Nuclear lamins in cell regulation and disease. Cold Spring Harb. Symp. Quant. Biol. 2010, 75, 525–531. [CrossRef]

7. Lee, K.K.; Haraguchi, T.; Lee, R.S.; Koujin, T.; Hiraoka, Y.; Wilson, K.L. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci. 2001, 114, 4567–4573. [CrossRef] [PubMed]

8. Mislow, J.M.; Holaska, J.M.; Kim, M.S.; Lee, K.K.; Segura-Totten, M.; Wilson, K.L.; McNally, E.M. Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FERS Lett. 2002, 525, 135–140. [CrossRef]

9. Holaska, J.M.; Wilson, K.L.; Mansharamani, M. The nuclear envelope, lamins and nuclear assembly. Curr. Opin. Cell Biol. 2002, 14, 357–364. [CrossRef]

10. Dahl, K.N.; Ribeiro, A.J.; Lammerding, J. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 2008, 102, 1307–1318. [CrossRef]

11. Markiewicz, E.; Tilgner, K.; Barker, N.; van de Wetering, M.; Clevers, H.; Dorobek, M.; Hausmanowa-Petrusewicz, I.; Ramaekers, F.C.; Broers, J.L.; Blanksteijn, W.M.; et al. The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J. 2006, 25, 3275–3285. [CrossRef]

12. Holaska, J.M.; Lee, K.K.; Kowalski, A.K.; Wilson, K.L. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J. Biol. Chem. 2003, 278, 6969–6975. [CrossRef]

13. Dedeic, Z.; Cetera, M.; Cohen, T.V.; Holaska, J.M. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J. Cell Sci. 2011, 124, 1691–1702. [CrossRef] [PubMed]

14. Nagase, T.; Seki, N.; Ishikawa, K.; Tanaka, A.; Nomura, N. Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 1996, 3, 17–24. [CrossRef]

15. Lee, B.; Lee, T.H.; Shim, J. Emerin suppresses Notch signaling by restricting the Notch intracellular domain to the nuclear membrane. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 303–313. [CrossRef] [PubMed]

16. Haraguchi, T.; Holaska, J.M.; Yamane, M.; Koujin, T.; Hashiguchi, N.; Mori, C.; Wilson, K.L.; Hiraoka, Y. Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy. Eur. J. Biochem. 2004, 271, 1035–1045. [CrossRef]

17. Dai, X.; Zheng, C.; Chen, X.; Tang, Y.; Zhang, H.; Yan, C.; Ma, H.; Li, X. Targeted next-generation sequencing identified a known EMD mutation in a Chinese patient with Emery-Dreifuss muscular dystrophy. Hum. Genome Var. 2019, 6, 42. [CrossRef]

18. Koch, A.J.; Holaska, J.M. Emerin in health and disease. Semin. Cell Dev. Biol. 2014, 29, 95–106. [CrossRef] [PubMed]

19. Raffaele Di Barletta, M.; Ricci, E.; Galluzzo, G.; Tonali, P.; Mora, M.; Morandi, L.; Romorini, A.; Voit, T.; Orstavik, K.H.; Merlini, L.; et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am. J. Hum. Genet. 2000, 66, 1407–1412. [CrossRef] [PubMed]

20. Jimenez-Escrig, A.; Gobernado, I.; Garcia-Villanueva, M.; Sanchez-Herranz, A. Autosomal recessive Emery-Dreifuss muscular dystrophy caused by a novel mutation (R225Q) in the lamin A/C gene identified by exome sequencing. Muscle Nerve 2012, 45, 605–610. [CrossRef] [PubMed]

21. Heilbling-Leclerc, A.; Bonne, G.; Schwartz, K. Emery-Dreifuss muscular dystrophy. Eur J. Hum. Genet. 2002, 10, 157–161. [CrossRef] [PubMed]

22. Bione, S.; Maestriini, E.; Rivella, S.; Mancini, M.; Regis, S.; Romeo, G.; Toniolo, D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 1994, 8, 323–327. [CrossRef]
23. Emery, A.E. Emery-Dreifuss muscular dystrophy - a 40 year retrospective. *Neuromuscul. Disord.* 2000, 10, 228–232. [CrossRef]

24. Aggarwal, B.B.; Vijayalekshmi, R.V.; Sung, B. Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. *Clin. Cancer Res.* 2009, 15, 425–430. [CrossRef]

25. Aggarwal, B.B.; Sethi, G.; Ahn, K.S.; Sandur, S.K.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Ichikawa, H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: Modern target but ancient solution. *Ann. N. Y. Acad. Sci.* 2006, 1091, 151–169. [CrossRef]

26. Darnell, J.E., Jr.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. *Science* 1994, 264, 1451–1452. [CrossRef]

27. Heinrich, P.C.; Behrmann, I.; Muller-Newen, G.; Schaper, F.; Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. *Biochem. J.* 1998, 334 Pt 2, 297–314. [CrossRef]

28. Quagliolo, A.; Schere-Levy, C.; Romorini, L.; Meiss, R.P.; Kordon, E.C. Mouse mammary tumors display Stat3 activation dependent on leukemia inhibitory factor signaling. *Breast Cancer Res.* 2007, 9, R69. [CrossRef] [PubMed]

29. Stout, B.A.; Bates, M.E.; Liu, L.Y.; Farrington, N.N.; Bertsch, P.J. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. *J. Immunol.* 2004, 173, 6409–6417. [CrossRef]

30. Kordula, T.; Bugno, M.; Goldstein, J.; Travis, J. Activation of signal transducer and activator of transcription-3 (Stat3) expression by interferon-gamma and interleukin-6 in hepaticoma cells. *Biochem. Biophys. Res. Commun.* 1995, 216, 999–1005. [CrossRef] [PubMed]

31. Miscia, S.; Marchisio, M.; Grilli, A.; Di Valerio, V.; Centurione, L.; Sabatino, G.; Garaci, F.; Zauli, G.; Bonvini, E.; Di Baldassarre, A. Tumor necrosis factor alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells. *Cell Growth Differ.* 2002, 13, 13–18.

32. Park, O.K.; Schaefer, T.S.; Nathans, D. In vitro activation of Stat3 by epidermal growth factor receptor kinase. *Proc. Natl. Acad. Sci. USA* 1996, 93, 13704–13708. [CrossRef] [PubMed]

33. Vignais, M.L.; Sadowski, H.B.; Watling, D.; Rogers, N.C.; Gilman, M. Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. *Mol. Cell Biol.* 1996, 16, 1759–1769. [CrossRef]

34. Gurzov, E.N.; Stanley, W.J.; Pappas, E.G.; Thomas, H.E.; Gough, D.J. The JAK/STAT pathway in obesity and diabetes. *FEBS J.* 2016, 283, 3002–3015. [CrossRef]

35. Tkach, M.; Rosemblit, C.; Rivas, M.A.; Proietti, C.J.; Diaz Flaque, M.C.; Mercogliano, M.F.; Beguelin, W.; Maronna, E.; Guzman, P.; Gercovich, F.G.; et al. p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progesterin-induced full activation of Stat3 and breast cancer growth. *Endocr. Relat. Cancer* 2013, 20, 197–212. [CrossRef]

36. Silva, C.M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. *Oncogene* 2004, 23, 8017–8023. [CrossRef] [PubMed]

37. Lim, C.P.; Cao, X. Structure, function, and regulation of STAT proteins. *Mol. Biosyst.* 2006, 2, 536–550. [CrossRef]

38. Yu, H.; Jove, R. The STATs of cancer–new molecular targets come of age. *Nat. Rev. Cancer* 2004, 4, 97–105. [CrossRef] [PubMed]

39. Pensà, S.; Regis, G.; Boselli, D.; Novelli, F.; Poli, V. STAT1 and STAT3 in Tumorigenesis: Two Sides of the Same Coin? In *Curie Bioscience Database*. 1998, 93, 13704–13708. [CrossRef] [PubMed]

40. Pensa, S.; Regis, G.; Boselli, D.; Novelli, F.; Poli, V. STAT1 and STAT3 in Tumorigenesis: Two Sides of the Same Coin? In *Curie Bioscience Database*. 1998, 93, 13704–13708. [CrossRef] [PubMed]

41. Xiong, H.; Zhang, Z.G.; Tian, X.Q.; Sun, D.F.; Liang, Q.C.; Zhang, Y.J.; Lu, R.; Chen, Y.X.; Fang, J.Y. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. *Neoplasia* 2008, 10, 287–297. [CrossRef]

42. Li, L.; Shaw, P.E. Autocrine-mediated activation of Stat3 correlates with cell proliferation in breast carcinoma lines. *J. Biol. Chem.* 2002, 277, 17397–17405. [CrossRef]

43. Prendergast, G.C. Mechanisms of apoptosis by c-Myc. *Oncogene* 1999, 18, 2967–2987. [CrossRef]

44. Kanda, N.; Seno, H.; Konda, Y.; Marusawa, H.; Kanai, M.; Nakajima, T.; Kawashima, T.; Nanakin, A.; Sawabu, T.; Uenoyama, Y.; et al. Stat3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. *Oncogene* 2004, 23, 4921–4929. [CrossRef]

45. Debnath, B.; Xu, S.; Neamati, N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. *J. Med. Chem.* 2012, 55, 6645–6668. [CrossRef]

46. Dechow, T.N.; Pedranzini, L.; Leitch, A.; Leslie, K.; Gerald, W.L.; Linkov, I.; Bromberg, J.F. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. *Proc. Natl. Acad. Sci. USA* 2004, 101, 10602–10607. [CrossRef] [PubMed]

47. Tsareva, S.A.; Morigg, R.; Corvinus, F.M.; Wiederanders, B.; Schutz, A.; Kovacic, B.; Friedrich, K. Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metalloproteinase induction. *Neoplasia* 2007, 9, 279–291. [CrossRef]

48. Steinman, R.A.; Wentzel, A.; Lu, Y.; Stehle, C.; Grandis, J.R. Activation of Stat3 by cell confluence reveals negative regulation of Stat3 by cdk2. *Oncogene* 2003, 22, 3608–3615. [CrossRef] [PubMed]
49. Vultur, A.; Cao, J.; Arulandam, R.; Turkson, J.; Jove, R.; Greer, P.; Craig, A.; Elliott, B.; Raptis, L. Cell-to-cell adhesion modulates Stat3 activity in normal and breast carcinoma cells. Oncogene 2004, 23, 2600–2616. [CrossRef] [PubMed]

50. Schaefer, L.K.; Ren, Z.; Fuller, G.N.; Schaefer, T.S. Constitutive activation of Stat5alpha in brain tumors: Localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 2002, 21, 2058–2065. [CrossRef] [PubMed]

51. Niu, G.; Wright, K.L.; Huang, M.; Song, L.; Haura, E.; Turkson, J.; Zhang, S.; Wang, T.; Sinibaldi, D.; Coppola, D.; et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002, 21, 2000–2008. [CrossRef] [PubMed]

52. Miller, J.; McLeod, L.; Alhayyani, S.; Szczepny, A.; Watkins, D.N.; Chen, W.; Enriori, P.; Ferlin, W.; Ruwanpura, S.; Jenkins, B.J. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene 2017, 36, 3059–3066. [CrossRef] [PubMed]

53. Zimmers, T.A.; Fishel, M.L.; Bonetto, A. STAT3 in the systemic inflammation of cancer cachexia. Semin. Cell Dev. Biol. 2016, 54, 28–41. [CrossRef]

54. Nunes, A.M.; Wuebbles, R.D.; Sarathy, A.; Fontelonga, T.M.; Deries, M.; Burkin, D.J.; Thorsteinsdottir, S. Impaired fetal muscle development and JAK-STAT activation mark disease onset and progression in a mouse model for merosin-deficient congenital muscular dystrophy. Hum. Mol. Genet. 2017, 26, 2018–2033. [CrossRef] [PubMed]

55. Guadagnini, E.; Mazala, D.; Chen, Y.W. STAT3 in Skeletal Muscle Function and Disorders. Int. J. Mol. Sci. 2018, 19, 2265. [CrossRef] [PubMed]

56. Muchir, A.; Pavlidis, P.; Bonne, G.; Hayashi, Y.K.; Uchida, N.; Okamoto, N. Activation of MAPK in hearts of EMD null mice: Simplicities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy. Hum. Mol. Genet. 2007, 16, 1884–1895. [CrossRef] [PubMed]

57. Haraguchi, T.; Koujin, T.; Segura-Totten, M.; Lee, K.K.; Matsuoka, Y.; Yoneda, Y.; Wilson, K.L.; Hiraoka, Y. BAF is required for emerin assembly into the reforming nuclear envelope. J. Cell Sci. 2001, 114, 4575–4585. [CrossRef] [PubMed]

58. Saucedo, J.; Fuchs, E.; Trosko, J.E.; Sadowski, J.G.; Ebner, M. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene 2017, 36, 3059–3066. [CrossRef] [PubMed]

59. Vultur, A.; Conboy, I.M.; Conboy, M.J.; Shen, J.; Rando, T.A. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2008, 2, 50–59. [CrossRef] [PubMed]

60. Tierney, M.T.; Aydogdu, T.; Sala, D.; Malecova, B.; Gatto, S.; Puri, P.L.; Latella, L.; Sacco, A. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat. Med. 2014, 20, 1182–1186. [CrossRef] [PubMed]

61. Price, F.D.; von Maltzahn, J.; Bentzinger, C.F.; Dumont, N.A.; Yin, H.; Chang, N.C.; Wilson, D.H.; Frenette, J.; Rudnicki, M.A. Inhibition of JAK-STAT signaling stimulates adult satellite cell activity. Nat. Med. 2014, 20, 1174–1181. [CrossRef] [PubMed]

62. Bromberg, J.F.; Wrzeszczynska, M.H.; Devgan, G.; Zhao, Y.; Petrelli, R.G.; Albanese, C.; Darnell, J.E., Jr. Stat3 as an oncogene. Cell 1998, 98, 295–303. [CrossRef] [PubMed]