Studies on Conformation of F-Actin in Muscle Fibers in the Relaxed State, Rigor, and during Contraction Using Fluorescent Phalloidin

EWA PROCHNIEWICZ-NAKAYAMA, TOSHIO YANAGIDA, and FUMIO OOSAWA
Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Osaka, Japan

ABSTRACT F-actin in a glycerinated muscle fiber was specifically labeled with fluorescent phalloidin-(fluorescein isothiocyanate) FITC complex at 1:1 molar ratio. Binding of phalloidin-FITC to F-actin affected neither contraction of the fiber nor its regulation by Ca2+. Comparison of polarized fluorescence from phalloidin-FITC bound to F-actin in the relaxed state, rigor, and during isometric contraction of the fiber revealed that the changes in polarization accompanying activation are quantitatively as well as qualitatively different from those accompanying transition of the fiber from the relaxed state to rigor. The extent of the changes of polarized fluorescence during isometric contraction increased with decreasing ionic strength, in parallel with increase in isometric tension. On the other hand, polarized fluorescence was not affected by addition of ADP or by stretching of the fiber in rigor solution. It is concluded from these observations that conformational changes in F-actin are involved in the process of active tension development.

Early studies on the properties of skeletal muscle actin suggested that some transformations of the polymer structure upon interaction with myosin are involved in the mechanism of contraction (1). Later findings that F-actin is a flexible polymer and that its flexibility increases upon binding of myosin heads in vitro as well as in vivo (2-10) and that immobilization of thin filaments in muscle ghost fibers by cross-linking with glutaraldehyde inhibits development of isometric tension (11) supported such a possibility. In this paper we compare directly the conformation of F-actin in a glycerinated muscle fiber in rigor, the relaxed state, and during isometric contraction. As a probe for monitoring conformational changes in F-actin, a phalloidin-fluorescein complex (phalloidin-FITC), which is a fluorescent derivative of mushroom toxin phalloidin, was used.

FITC-labeled phalloidin has been already successfully used for visualization of F-actin bundles in nonmuscle cells (12). We have found that phalloidin-FITC can be bound to F-actin in a glycerinated muscle fiber without affecting either tension or its regulation by Ca2+. Since, in skeletal muscle, F-actin filaments are aligned parallel to the axis of the muscle fiber, we could measure the polarized fluorescence from the bound fluorophore using light polarized either perpendicular or parallel to the axis of the fiber. The different values of polarization obtained in the rigor, relaxed, and active states of the fiber suggest that specific conformational changes in F-actin take place during development of isometric tension. A preliminary report of a portion of these results has appeared (13).

MATERIALS AND METHODS

Materials: Glycerinated fibers from rabbit psoas muscle with a sarcomere length from 2.0 to 3.8 μm were prepared according to the method described previously (6). A single glycerinated fiber (diameter, 50-60 μm, effective length, 1 mm) was washed with rigor solution (100 mM KCl, 10 mM phosphate buffer pH 7.0, 5 mM MgCl2) and labeled by incubation for 20 min at 6°C in rigor solution containing, in addition, 5 μM phalloidin-FITC. Unbound dye was removed by washing the fiber with rigor solution. The concentration of incorporated phalloidin-FITC was calculated from the fluorescence intensity of the labeled fiber according to the formula

\[B = \frac{a \times (c)}{b \times 2.2} \]

where \(B \) is the concentration of bound dye, \(a \) is the fluorescence intensity from the fiber, \(b \) is the fluorescence intensity from the known concentration of free dye, and 2.2 is a correction factor for the difference between fluorescence intensities of phalloidin-FITC before and after binding to F-actin. The correction factor was calculated from control experiments, which show that fluorescence intensity from 4 or 8 μM dye bound to 8 μM F-actin-tropomyosin-troponin complex (515-545 nm with excitation at 470 nm) is ~2.2 times higher than that from the free dye. The fluorescence intensity from the unbound phalloidin-FITC in rigor solution was negligibly small in comparison with that from the dye bound to the fiber. Ghost fibers were obtained after removal of myosin and regulatory proteins.
from glycerinated muscle fibers by 1-h incubation at 0°C in a Hasselbach-Schneider solution: 0.6 M KCl, 4 mM MgCl2, 4 mM ATP, 2 mM EGTA, and 0.1 M phosphate buffer pH 6.4, containing 1% Triton X-100. To inhibit adenylyl kinase activity in the experiments with ADP, 100 µM P1, 550 mM-deoxyribose pentaphosphate was added. Ca²⁺-EGTA buffer was prepared according to the method described by Ogawa (14), assuming an association constant of 1×10⁴ M⁻¹ for the Ca²⁺-EGTA complex. Actin, tropomyosin, and troponin from rabbit skeletal muscle were isolated and purified as described previously (6). Myosin was prepared according to the method of Perry (15), and heavy meromyosin was obtained by α-chymotrypsin digestion of myosin (16). Protein concentrations were determined by the biuret method (17). ADP and ATP were purchased from Sigma Chemical Co. (St. Louis, MO). Phalloidin-FITC, synthesized according to the method described by Wulf et al. (12), was a gift from Dr. Th. Wieland, Max-Planck-Institute for Medical Research (Heidelberg, Federal Republic of Germany).

Methods: Tryptophan fluorescence from the fiber was measured with a microspectrophotometer with excitation at 297.5 nm, and the emitted light was collected at wavelength >330 nm (6).

Polarized fluorescence from phalloidin-FITC bound to F-actin in a single glycerinated muscle fiber was measured with a microspectrophotometer according to the method previously described (6). Phalloidin-FITC was excited at 470 nm (±0.2 nm) and the emitted light passing through a band pass filter (525–545-nm FITC filter, Nikon Co., Japan) was collected. The cross-section of the beam was 80 x 100 μm². The intensities of the four components of polarized fluorescence: I⊥, I||, I⊥⊥, I||⊥, were measured by this apparatus: subscripts on the left side indicate the direction of the emitted light, subscripts on the right side indicate the direction of the emitted light relative to the fiber axis. The subscripts || and ⊥ denote directions parallel and perpendicular, respectively, to the fiber axis. The degrees of fluorescence polarization, p1 and p11, were defined as:

\[p_1 = (I_{||} - I_{\perp})/(I_{||} + I_{\perp}) \]
\[p_{11} = (I_{||} - I_{\perp\perp})/(I_{||} + I_{\perp\perp}) \]

Since fluorescence intensities from phalloidin-FITC were very strong to prevent photobleaching effects, the slit width of the monochromator was <0.2 mm (300 W-Xenon lamp). The diameter of the fiber was calculated from the birefringence of the fiber, as previously described (18). Tension of muscle fiber was measured with a tension detector made with a semiconductor element (AE 311; Nihon Koden Co., Japan). The other end of the fiber was fixed with a tape. Sarcomere length was determined by a diffraction method, using an Ne-He laser. To examine the effect of stretching of the fiber on polarized fluorescence from phalloidin-FITC bound to F-actin, a single fiber was mounted to a stainless-steel needle connected on one end to an electromagnetic coil of a loud speaker (0.63 W; Onkyo Co., Japan) driven by an electronic stimulator (MSE 3R; Nihon Koden Co., Japan). The other end of the fiber was fixed with a tape and collagen. A stepwise length change of 1% was applied by the electromagnetic coil, and fluorescence polarization and the tension of the fiber were measured. The changes in polarized fluorescence and in tension were recorded with a signal processor (TI’77A; Sanski Sokki Co., Japan).

RESULTS

Binding of Phalloidin-FITC to a Single Glycerinated Muscle Fiber

Fluorescence intensity from phalloidin-FITC incorporated into a single glycerinated muscle fiber was not affected by extraction of myosin and regulatory proteins. On the other hand, fluorescent staining with the dye could not be obtained after removal of F-actin from an unlabeled myosin-free ghost fiber by 0.6 M KI. These results prove specificity of binding of phalloidin-FITC to F-actin in muscle fiber.

Concentration of phalloidin-FITC bound to F-actin was calculated from fluorescence intensity of the bound dye, as described in Materials and Methods. Maximum amount, ~670 µM, was obtained when the fiber was incubated for 20 min at 6°C in rigor solution containing 5 µM phalloidin-FITC. Assuming a concentration of actin in the fiber of ~600 µM (19), this corresponds to ~1 mol of the toxin per 1 mol of actin.

It has been well established that phalloidin stabilizes F-actin against depolymerization by KI (20). The fluorescent derivative, phalloidin-FITC, has the same property: while depolymerization of F-actin in an unlabeled ghost fiber results in a decrease in fluorescence intensity from tryptophan residues in the fiber, no change was found after addition of KI to a phalloidin-FITC-labeled ghost fiber (Fig. 1).

Effect of Binding of Phalloidin to F-Actin on Isometric Tension of a Single Glycerinated Muscle Fiber

The experiments in vitro have shown that stoichiometric binding of phalloidin to F-actin in solution did not affect superprecipitation of actomyosin complex, activation of actomyosin ATPase, and Ca-sensitivity of the ATPase in the presence of regulatory proteins (21). According to the data shown in Fig. 2, interaction of actin with myosin in the muscle fiber is not affected by phalloidin or phalloidin-FITC. The time course of tension development, the effect of ionic strength on isometric tension, and Ca-regulation of the tension were the same before and after treatment of the fiber with the toxin.

Polarized Fluorescence from Phalloidin-FITC Bound to F-Actin in a Single Glycerinated Muscle Fiber

POLARIZED FLUORESCENCE IN RIGOR, RELAXING, AND ACTIVATING SOLUTIONS: The effect of rigor, relaxing, and activating solutions on polarized fluorescence from phalloidin-FITC bound to F-actin is shown in Fig. 3. The sarcomere length of the fibers was 2.2 µm, which assures almost full overlap between thin and thick filaments.

When the fiber was transferred from rigor to relaxing solution, the value of p1 decreased from 0.410 ± 0.0015 to 0.398 ± 0.001 and that of p11 increased from 0.062 ± 0.002 to 0.079 ± 0.003. This change of polarized fluorescence was independent of the KCl concentration in the range from 0 to 100 mM (Fig. 3).

The fiber was activated by transfer from relaxing to activating solutions containing 100 mM, 50 mM, and 0 mM

![Figure 1](https://example.com/figure1.png)

FIGURE 1 Stability of phalloidin-FITC-labeled F-actin in a single glycerinated muscle fiber against depolymerization by KI (20). The fluorescent derivative, phalloidin-FITC, has the same property: while depolymerization of F-actin in an unlabeled ghost fiber results in a decrease in fluorescence intensity from tryptophan residues in the fiber, no change was found after addition of KI to a phalloidin-FITC-labeled ghost fiber (Fig. 1).
KCl. Such a decrease in ionic strength permitted measurement of polarized fluorescence at increasing values of isometric tension (Fig. 2). During activation p_l remained almost constant, but p_\parallel increased and exceeded the value obtained in rigor solution. Furthermore, p_\parallel in activating solution increased with decrease in ionic strength: for example, at KCl concentrations of 100 mM and 0 mM, the values of p_\parallel were 0.411 ± 0.001 and 0.419 ± 0.001, respectively (Fig. 3). Addition of ADP instead of ATP to rigor solution affected neither p_\parallel nor p_l values. When myosin and regulatory proteins were completely removed from the fiber by a Hasselbach-Schneider solution, polarized fluorescence from phalloidin-FITC bound to F-actin in the resultant ghost fiber was independent of the kind of bathing solution (Fig. 4).

Polarized Fluorescence from the Fibers with Various Sarcomere Lengths: The data in Fig. 4 show polarized fluorescence from phalloidin-FITC bound to F-actin in muscle fibers with various sarcomere lengths. In the relaxing solution, increase in the sarcomere length from 2.0 to 3.8 μm, where already no overlap between thin and thick filaments is expected, did not affect polarized fluorescence. On the other hand, when the fiber was transferred to activating solution, polarized fluorescence decreased with an increase in sarcomere length and gradually approached values obtained in relaxing solution. Polarized fluorescence measured during contraction was very stable and changed reversibly with the subsequent cycles of contraction-relaxation (Fig. 5).
beled fiber did not show essential changes. Under these conditions, polarized fluorescence from the labeled fiber. When an unlabeled fiber was transferred to the same conditions-22% change in p_1 from phalloidin-FITC-labeled fiber. The transfer of an unlabeled fiber from relaxing to rigor solution was of the order of 3-5%, when measured under the same conditions. In the case of the latter, were of the order of 3-5%, when measured under the same conditions. The same order as the tension developed by the fiber in activating solution. Therefore, in the present case, no change in polarized fluorescence from phalloidin-FITC bound to F-actin was found.

POLARIZED FLUORESCENCE DURING PASSIVE STRETCHING OF THE FIBER: When a single glycinated fiber was stretched in rigor solution at 6°C, a stepwise length change of 1% resulted in a tension of 1.5 kg/cm², which is of the same order as the tension developed by the fiber in activating solution. However, in the present case, no change in polarized fluorescence from phalloidin-FITC bound to F-actin was found.

ESTIMATION OF THE EFFECTS OF NOISE LEVEL, AND LIGHT SCATTERING AND BIREFRINGENCE ON POLARIZED FLUORESCENCE: Noise level was <0.3% of the amplitude of the signal at a time constant $\tau = 2$ s; therefore its effect on the measured intensities of the four components of polarized fluorescence was considered to be negligibly small.

The extent of light scattering and birefringence was estimated by comparison of the polarization when the incident beam passed through a solution and through an unlabeled fiber. Transfer of such a fiber from relaxing to activating solution changed the value of p_1 by $\sim 0.2\%$, and transfer from relaxing to rigor solution, by $\sim 0.7\%$; this is about one-tenth of the changes from phalloidin-FITC labeled fiber (the latter were of the order of 3-5%), when measured under the same conditions. In the case of p_1, the change accompanying transfer of an unlabeled fiber from relaxing to rigor solution was $\sim 7\%$, which is also considerably less than found under the same conditions $\sim 22\%$ change in p_1 from phalloidin-FITC-labeled fiber. When an unlabeled fiber was transferred from relaxing to activating solution, p_1 changed by $\sim 2\%$ and, under these conditions, polarized fluorescence from the labeled fiber did not show essential changes.

Total Fluorescence Intensity from Phalloidin-FITC Bound to F-Actin in Solution in the Presence of Myosin and Regulatory Proteins

Fluorescence intensity from phalloidin-FITC bound to F-actin was measured in rigor, relaxing, and activating solutions after addition of 8 μM heavy meromyosin to 8 μM F-actin-tropomyosin-troponin complex preincubated with 4 or 8 μM phalloidin-FITC. In all these cases, the same values of fluorescence intensities were obtained.

DISCUSSION

Our results show that binding of phalloidin-FITC to F-actin in a glycinated muscle fiber does not affect isometric tension and Ca-regulation of the tension. On the other hand, in the case of nonmuscle actins, binding of phalloidin has diverse effects: depending on the cell, contractile processes are either not affected (22, 23, 24) or inhibited (25-28). It has been postulated that the inhibitory effect of phalloidin is limited to those cells in which G-F transformation of actin is involved in the mechanism of movement generation. Therefore, permanent organization of muscle actin into ordered array of thin filaments is one explanation of our results. Additionally, the dynamic properties of already polymerized actin, which seem to be very important for contractility (29), are not affected by phalloidin. The shape and bending motion of F-actin in solution, associated with small rotations and/or distortions of the monomers within the filament (30), has the same features in the absence and in the presence of phalloidin (31) or its fluorescent derivatives (32).

The changes in polarization from phalloidin-FITC bound to F-actin, when a fiber is transferred from relaxing to rigor solution, indicate conformational changes in F-actin. Since in the relaxed state myosin is dissociated and in the rigor state almost all myosin heads are associated with actin (33, 34), these conformational changes are possibly induced by formation of rigor bonds. Such a conclusion is consistent with other results (6). Changes in polarization were also observed during activation of the fiber, when only part of myosin (20-40%) interacts with actin (35, 36). However, these changes were quantitatively as well as qualitatively different from those accompanying formation of rigor bonds; p_2 remained almost constant and p_1 increased, surpassing the values obtained in the rigor state. Therefore, conformation of actin during contraction seems to be different than in the relaxed or in rigor state. The extent of changes during activation increased with the extent of isometric tension, indicating that they are induced by specific interactions between actin and myosin, which are involved in the mechanism of tension generation. Such a possibility is further supported by the observations that (a) neither addition of ADP nor passive stretching of the fiber affects polarized fluorescence and (b) at zero overlap between thin and thick filaments and in myosin-free ghost fibers the values of polarized fluorescence were independent of the kind of bathing solution.

Measurement of polarized fluorescence permits determination of conformation of actin in terms of the angles of absorption and emission dipoles of the fluorophores relative to the F-actin axis (6). The values of polarized fluorescence from phalloidin-FITC bound to F-actin were for example in rigor solution: $p_1 = 0.410$, $p_2 = -0.062$. If the fluorophores are fixed with a helical array, the values should be $p_1 = 0.410$.

![Figure 5](image-url)
Received for publication 8 February 1983, and in revised form 5 July 1983.

REFERENCES

1. Osawa, F., S. Asakura, and T. Ooi. 1961. Physical properties of muscle protein "actin". Supplement of the Progress of Theoretical Physics. 17:14-34.

2. Ishiwata, S., and S. Fujime. 1972. Effect of calcium ions on the flexibility of reconstituted thin filaments in muscle studied by quasistatic scattering of laser light. J. Mol. Biol. 65:511-522.

3. Thomas, D. D., J. C. Seidel, and J. Gergely. 1979. Rotational dynamics of spin-labeled F-actin in the sub-millisecond time range. J. Mol. Biol. 132:257-274.

4. Nagashima, H., and S. Asakura. 1980. Dark-field light microscopic study of the flexibility of F-actin complexes. J. Mol. Biol. 136:169-182.

5. Yanagida, T., and F. Osowa. 1978. Effect of myosin on conformational changes of F-actin in thin filament in vivo induced by Ca++. Eur. J. Biochem. 56:547-556.

6. Yanagida, T., and F. Osowa. 1978. Polarized fluorescence from ADP incorporated into F-actin in a myosin-free single fiber: contraction of F-actin and changes induced in the heavy meromyosin. J. Mol. Biol. 126:507-524.

7. Yanagida, T., and F. Osowa. 1980. Conformational changes of F-actin-ADP in thin filaments in myosin-free muscle fibers induced by Ca++. J. Mol. Biol. 140(3):332.

8. Umakage, Y., and S. Fujime. 1973. Electrophoretic property of extremely stretched skinned muscle fibers. Biophys. J. 15:163-180.

9. Yoshida, S., and S. Fujime. 1980. Muscle Contraction: Its Regulatory Mechanisms. S. Ebashi, K. Maruyama, and M. Eda, editors. Japan Scientific Societies Press, Tokyo/Springer Verlag, Berlin. 181-187.

10. Nothnagel, E. A., L. S. Barak, J. W. Sanger, and W. W. Webb. 1981. Fluorescence measurements on cross-bridges in contracting glycerinated muscle fibers. J. Mol. Biol. 151:411-437.

11. Prochniewicz-Nakayama, E., and T. Yanagida. 1982. The effect of croslinking of thin filament with glutaraldehyde on the contractility of muscle fiber. J. Biophys. (Tokyo) 92:1269-1277.

12. Wulf, E., A. Deboer, F. A. Baruzi, H. Faultschi, and T. Wieland. 1979. Fluorescence polarization, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA. 76:4498-4502.

13. Yanagida, T. 1983. Cross-bridge Mechanisms in Muscle Contraction. G. H. Potiack and H. Segi, editors. Plenum Press, New York.

14. Gorgull, A. G., C. J. Bardawill, and M. M. David. 1949. Determination of serum protein by means of the biuret reaction. J. Biol. Chem. 177:119-127.

15. Perry, S. V. 1955. Myosin adenosine triphosphatase. Methods Enzymol. 2:582.

16. Ogawa, Y. 1968. The apparent binding constant of glycolaldiaminetetraacetic acid for calcium at neutral pH. J. Biochem. (Tokyo) 64:255-257.

17. Perrin, S. V. 1955. Myosin adherence to actin. Methods Enzymol. 2:582.

18. Wehland, J., M. Osborn, and K. Weber. 1980. Phalloidin associates with microfilaments after microinjection into tissue culture cells. Eur. J. Cell Biol. 21:188-194.

19. Wehland, J., M. Osborn, and K. Weber. 1978. The influence of microinjected phalloidin on locomotion, cytoplasmic streaming and cytoskeletal organization in Amoeba proteus and Physarum polycephalum. Cytochemistry 18:114-131.

20. Yanagida, T., and F. Osowa. 1978. Isometric force generation in contractile proteins by means of the biuret reaction. J. Biol. Chem. 253:38-44.

21. Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. Mol. Biol. 30:383-434.

22. Wieland, Th., and F. Oosawa. 1978. Polarized fluorescence of eADP incorporated into F-actin as a tool for visualization of cellular actin. Biophys. J. 25:185-200.

23. Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. Mol. Biol. 30:383-434.

24. Wieland, Th., and F. Oosawa. 1978. Polarized fluorescence of eADP incorporated into F-actin as a tool for visualization of cellular actin. Biophys. J. 25:185-200.

25. Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. Mol. Biol. 30:383-434.

26. Wieland, Th., and F. Oosawa. 1978. Polarized fluorescence of eADP incorporated into F-actin as a tool for visualization of cellular actin. Biophys. J. 25:185-200.

27. Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. Mol. Biol. 30:383-434.

28. Wieland, Th., and F. Oosawa. 1978. Polarized fluorescence of eADP incorporated into F-actin as a tool for visualization of cellular actin. Biophys. J. 25:185-200.

29. Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. Mol. Biol. 30:383-434.

30. Wieland, Th., and F. Oosawa. 1978. Polarized fluorescence of eADP incorporated into F-actin as a tool for visualization of cellular actin. Biophys. J. 25:185-200.