GAP listing of the finite subgroups of $U(3)$ of order smaller than 2000

Darius Jurčiukonis$^{(1)}$‡ and Luís Lavoura$^{(2)}$§

$^{(1)}$Vilnius University, Institute of Theoretical Physics and Astronomy, Saulėtekio ave. 3, LT-10222 Vilnius, Lithuania

$^{(2)}$Universidade de Lisboa, Instituto Superior Técnico, CFTP, 1049-001 Lisboa, Portugal

February 2, 2017

Abstract

We have sorted the \texttt{SmallGroups} library of all the finite groups of order smaller than 2000 to identify the groups that possess a faithful three-dimensional irreducible representation (‘irrep’) and cannot be written as the direct product of a smaller group times a cyclic group. Using the computer algebra system GAP, we have scanned all the three-dimensional irreps of each of those groups to identify those that are subgroups of $SU(3)$; we have labelled each of those subgroups of $SU(3)$ by using the extant complete classification of the finite subgroups of $SU(3)$. Turning to the subgroups of $U(3)$ that are not subgroups of $SU(3)$, we have found the generators of all of them and classified most of them in series according to their generators and structure.

‡E-mail: darius.jurciukonis@tfai.vu.lt

§E-mail: balio@cftp.tecnico.ulisboa.pt
1 Introduction

Many high-energy physicists are thrilled by the prospect that the numerical entries of the leptonic mixing matrix (PMNS matrix) might be related to some small (or maybe not so small) finite group. Many specific finite groups have been considered, like for instance A_4 [1], S_4 [2], S_3 [3], T_7 [4], A_5 [5], $\Delta(27)$ [6], the group series $\Delta(6n^2)$ [7], the groups $\Sigma(n\varphi)$ [8], and so on. Most of the finite groups considered are subgroups of $SU(3)$; those subgroups are especially inviting because a complete classification of them, and their generators, have been known for over a century [9]. On the contrary, there is no complete classification of the finite subgroups of $U(3)$ though a few series of those subgroups have been derived in ref. [10]. At least one finite subgroup of $U(3)$ has already been utilized in particle physics [11].

Although a full theoretical study of each individual group can always be undertaken, for large groups such a study becomes impractical and it is convenient to have recourse to the computer algebra system GAP, which is tailored to deal with finite groups and can readily furnish the structure, irreducible representations (‘irreps’), character table, and so on, of each of them. GAP is supplemented by the SmallGroups library, which contains, in particular, all the finite groups of order smaller than 2000. In that library each finite group has an identifier $[o,j]$, where $o \geq 1$ is the order, i.e. the number of elements, of the group and $j \geq 1$ is an integer which distinguishes among the non-isomorphic groups of identical order. For instance, the group with SmallGroups identifier $[4,1]$ is the cyclic group $\mathbb{Z}_4 \cong \{1, i, -1, -i\}$ while the group with SmallGroups identifier $[4,2]$ is the direct product of cyclic groups $\mathbb{Z}_2 \times \mathbb{Z}_2 \cong \{(1,1), (1,-1), (-1,1), (-1,-1)\}$; SmallGroups informs us that there are, in fact, only these two non-isomorphic groups with four elements. A SmallGroups listing of all the finite groups of order up to 100, together with their structure was published in ref. [13]. A SmallGroups listing of the finite groups of order up to 512 that have a faithful three-

1In this paper, whenever we use the expression “finite subgroups of $U(3)$” we usually mean only the subgroups of $U(3)$ that are not subgroups of $SU(3)$.

2SmallGroups uses C_n to denote the cyclic group of order n, instead of the more usual notation \mathbb{Z}_n. SmallGroups uses the notation $E(n)$ for the n’th root of unity.

3SmallGroups informs us about the structure of each group. This is given in terms of direct products (denoted ‘×’), semi-direct products (denoted ‘×’), or group extensions (denoted ‘.’). A pedagogical explanation of these concepts may be found, for instance, in ref. [12].
dimensional irrep and are not the direct product of a cyclic group and some other group was published in ref. [10].

However, SmallGroups lists the groups of the same order in a way that does not allow one to extract much information on them. For instance,

the group $[12, 3] \cong A_4$ is a subgroup of $SU(3)$ and has a three-dimensional faithful irrep;

the groups $[12, 1]$ and $[12, 4] \cong D_6$ are subgroups of $SU(3)$ but do not possess three-dimensional irreps;

the group $[12, 2] \cong Z_{12}$ is a subgroup of $U(1) \subset U(3)$;

the group $[12, 5] \cong Z_6 \times Z_2$ is a subgroup of $U(1) \times U(1)$ but not of $U(3)$.

The first step in this work was to survey the whole SmallGroups list of groups of order smaller than 2000 in order to identify the ones that have at least one faithful three-dimensional irreducible representation;

cannot be written as the direct product of a smaller group and a cyclic group.

The second step in this work was to pick each of the groups above and ask GAP to compute the determinant of each of the matrices in each of its three-dimensional representations. If there is a three-dimensional representation in which all the matrices have unit determinant, then the group is a subgroup of $SU(3)$; otherwise the group is not a subgroup of $SU(3)$ but it is a subgroup of $U(3)$—because every representation of a finite group is equivalent to a representation through unitary matrices. In this way, we have separated the subgroups of $SU(3)$ from the subgroups of $U(3)$.

A complete classification of all the finite subgroups of $SU(3)$ has long existed [9]. There are groups (so-called type A) of diagonal matrices, i.e. Abelian groups; they may be written as direct products of cyclic factors and do not concern us here. Then there are the subgroups of $U(2)$, which are called type B; their three-dimensional representations are (just as the ones of type A subgroups) reducible and therefore they also do not concern us. Of interest to us are the type C and type D groups, which were best characterized in ref. [14], and also the ‘exceptional’ groups. In this work we give the SmallGroups identifiers of all the $SU(3)$ subgroups of types
C and D, together with their classification according to ref. [14], and also the SmallGroups identifiers of the exceptional subgroups. This is done in section 3.

There is no theoretical classification of all the finite subgroups of $U(3)$. We feel that having a complete listing of all those subgroups of order less than 2000, together with their generators, may be a useful step towards achieving such a classification; at the very least, it allows one to get a feeling for what it might look like. Therefore, in this work we give the SmallGroups identifiers of all the finite $U(3)$ subgroups, together with their generators. We also partially unite those subgroups in series, viz. in sets of groups that have related generators depending on one, two, or sometimes three integers. This is done in section 4.

We also give, for every finite subgroup of $U(3)$, the dimensions of all its inequivalent irreps, as determined by GAP.

In section 2 we explain our procedure. In an appendix we provide tables of all the finite subgroups of $U(3)$ that have a faithful three-dimensional irrep and are not isomorphic to the direct product of a smaller group and a cyclic group. We give separate tables for the groups that are subgroups of $SU(3)$ and for the groups that are not subgroups of $SU(3)$. In those tables, we order the groups according to their SmallGroups classification, viz. in increasing order first of o and then of j in their $[o, j]$ identifiers.

2 GAP procedures

GAP [15] is a computer algebra system that provides a programming language, including many functions that implement algebraic algorithms. It is supplemented by many libraries containing a large amount of data on algebraic objects. Using GAP it is possible to study groups and their representations, display the character tables, find the subgroups of larger groups, identify groups given through their generating matrices, and so on.

GAP allows access to the SmallGroups library through the SmallGroups package [16]. That library contains all the finite groups of ‘small’ orders viz. less than a certain upper bound and also orders whose prime factorization is small in some sense. The groups are ordered by their orders; for each of the available orders, a complete list of non-isomorphic groups is given. SmallGroups contains all the groups of order less than 2000 except order

\[4\] The order of a finite group is the number of its elements.
1024, because there are many thousands of millions of groups of order 1024. SmallGroups also contains other groups with some specific orders larger than 2000.

The SmallGroups library has an identification function which returns the SmallGroups identifier of any given group. For each generic group in the library there are effective recognition algorithms available. To identify encoded and insoluble groups, two approaches are used: one is a general algorithm to solve the isomorphism problem for \(p \)-groups\(^5\), the second one uses the invariants\(^6\) of stored groups [17]. Using these methods, it is possible to identify all the groups in the library, except for orders 512, 1536, and some orders above 2000. For the identification of groups we use GAP command

\[
\text{IdGroup}() . \tag{1}
\]

In our work, firstly we have scanned the SmallGroups library and extracted therefrom all the groups with three-dimensional irreps. Using the GAP command

\[
G := \text{SmallGroup}([o, j]), \tag{2}
\]

one lets \(G \) denote the group with identifier \([o, j]\) in the SmallGroups library. The command

\[
\text{NumberSmallGroups}(o) \tag{3}
\]

allows one to find out how many groups there are for a chosen order \(o \) and thus automates the scanning of library. For a given group \(G \), GAP offers the possibility to calculate the irreps by using the command

\[
\text{repG} := \text{IrreducibleRepresentations}(G). \tag{4}
\]

It is possible to display all the irreps by using the GAP command

\[
\text{Display}((\text{CharacterTable}(G))) \tag{5}
\]

\(^5\)A \(p \)-group, where \(p \) is a prime number, is a group in which each element has a power of \(p \) as its order. That is, for each element \(g \) of a \(p \)-group, there is a non-negative integer \(n \) such that the product of \(p^n \) copies of \(g \), and not less, is equal to the identity element \(e \). (But, the integer \(n \) is in general different for different elements \(g \) of the group.)

\(^6\)In the SmallGroups library there is a list of distinguishing invariants for all encoded groups except those of orders 512 and 1536. This list of invariants is compressed. It provides an efficient approach to identify any encoded group in the library.
too; however, the labeling of the irreps may differ from the labeling received through the command

\[
\text{IrreducibleRepresentations}(G). \tag{6}
\]

It is convenient to select all the three-dimensional irreps by using the command

\[
\text{repG3} := \text{Filtered}(\text{repG}, x \rightarrow \text{Length}(\text{Identity}(G)^x) = 3). \tag{7}
\]

One may select all the elements of a given group \(G \) through the command

\[
\text{elG} := \text{Elements}(G). \tag{8}
\]

Then, the command

\[
\text{elGlist} := \text{List}(\text{elG}, x \rightarrow x^{\text{repG3}[i]}), \tag{9}
\]

where the integer \(i \) parameterizes the loop, allows one to list all the elements of the chosen irrep. We have selected the groups from the \texttt{SmallGroups} library that have at least one faithful\footnote{In order to identify the faithful irreps, we have compared all the matrices in each irrep. If different elements of the group are represented by different matrices in the irrep, then the irrep is faithful.} three-dimensional irrep. Then, by using the \texttt{GAP} command that gives the structure of a group, \textit{viz.}

\[
\text{StructureDescription}(G), \tag{10}
\]

we have discarded the groups that are direct products with a cyclic group.

There are 10,494,213 groups of order 512 and 408,641,062 groups of order 1536. However, the groups of order 512 do not possess three-dimensional irreps because 512 cannot be divided by three, therefore we did not need to consider them. On the other hand, the number of groups of order 1536 is too large for all of them to be scanned in the way described above. Therefore, we have used the conjecture in ref.\footnote{These two concepts of group theory have been explained in ref.\cite{19}.} that both nilpotent groups and groups with a normal Sylow 3-subgroup\footnote{These two concepts of group theory have been explained in ref.\cite{19}.} do not have three-dimensional faithful irreps. Utilizing the command

\[
\text{SmallGroupsInformation}(o) \tag{11}
\]
one gets the information about the arrangement of the groups of a given
order. Using this information, we have determined the scanning range of
groups of order 1536. To check whether the group is nilpotent, the command

\begin{equation}
\text{IsNilpotentGroup}(G)
\end{equation}

may be used, while

\begin{equation}
\text{NilpotencyClassOfGroup}(G)
\end{equation}

gives the nilpotency class of the group G. The Sylow 3-subgroups of a group
G may be found by typing the command

\begin{equation}
\text{SylowSubgroup}(G,3).
\end{equation}

We have found that only four groups of order 1536 have faithful three-
dimensional irreps and cannot be written as the direct product of a smaller
group and a cyclic group.

For groups that have faithful three-dimensional irreps, we have asked \texttt{GAP}
to compute the determinant of each of the matrices in each of its three-
dimensional representations. This was done through the command

\begin{equation}
\text{DeterminantMat}(\text{elGlist}[i]).
\end{equation}

If there is a three-dimensional representation in which all the matrices have
unit determinant, then the group is a subgroup of $SU(3)$; if there is no
such representation, then the group is not a subgroup of $SU(3)$, but it is a
subgroup of $U(3)$ because it has a three-dimensional representation and be-
cause all the representations of finite groups are equivalent to representations
through unitary matrices.

We have used different methods in order to classify the groups in the lists
of the subgroups of $U(3)$ and $SU(3)$. One of the methods is the analysis
of the generators of the three-dimensional irreps. The command

\begin{equation}
genG := \text{GeneratorsOfGroup}(G)
\end{equation}

returns a list of generators of the group G. The generators of the three-
dimensional irreps may be listed through the command

\begin{equation}
\text{List}(\text{genG}, x -> x^\text{repG3}[i]).
\end{equation}
By looking at these lists we have tried to find regularities in the generators. Another strategy was looking at the structures of the groups and sorting groups with analogous structures.

When one has some generators, say three matrices \(M_1, M_2, \) and \(M_3, \) a group \(G \) may be generated through the command

\[
G := \text{Group}([M_1, M_2, M_3]).
\]

Afterwards this group may be identified by finding its order, using the command

\[
\text{Order}(G)
\]

or by counting the elements of the group through

\[
\text{Size}(\text{elG}).
\]

Afterwards one may discover the SmallGroups identifier of \(G \) by using the command

\[
\text{IdGroup}(G).
\]

The identification of some groups with large order may require a long computational time, therefore some hints about the group classification may be acquired by analyzing the group structure—using the command (10)—or by comparing the traces of the group matrices, determined through the command

\[
\text{List}(\text{elG}, x \rightarrow \text{Trace}(x)).
\]

3 Finite subgroups of \(SU(3) \)

In this section we give the generators and the SmallGroups identifiers of all the finite subgroups of \(SU(3) \) that

- have a faithful three-dimensional irrep,
- cannot be written as the direct product of a smaller group and a cyclic group,
- have less than 2000 elements.
3.1 Generators

We firstly define a few 3×3 matrices that act as generators of the various $SU(3)$ subgroups. All those matrices have, of course, unit determinant.

The matrices

$$E \equiv \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad (23a)$$

$$I \equiv \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \quad (23b)$$

are especially useful. Let $n \geq 1$ be an integer. Then,

$$L_n \equiv \text{diag} \left(1, \nu, \nu^{-1} \right), \quad \text{where } \nu = \exp \left(2i\pi/n \right). \quad (24)$$

Let $n \geq 1$ and $k \geq 1$ be integers. We define

$$B_{n,k} \equiv \text{diag} \left(\nu, \nu^k, \nu^{-1-k} \right), \quad \text{where } \nu = \exp \left(2i\pi/n \right). \quad (25)$$

Let $n \geq 1$ and $r \geq 1$ be integers. We define

$$G_{n,r} \equiv \text{diag} \left(1, \nu^{-r}, \nu^r \right), \quad \text{where } \nu = \exp \left(2i\pi/n \right), \quad (26)$$

i.e. $G_{n,r} = (L_n)^{-r}$.

3.2 The groups $\Delta \left(3n^2 \right)$ and $\Delta \left(6n^2 \right)$

For $n \geq 1$, the groups $\Delta \left(3n^2 \right)$ have structure $(\mathbb{Z}_n \times \mathbb{Z}_n) \ltimes \mathbb{Z}_3$ and order $3n^2$; the groups $\Delta \left(6n^2 \right)$ have structure $[(\mathbb{Z}_n \times \mathbb{Z}_n) \ltimes \mathbb{Z}_3] \ltimes \mathbb{Z}_2$ and order $6n^2$. The group $\Delta \left(3n^2 \right)$ is generated by the matrices E and L_n; the group $\Delta \left(6n^2 \right)$ is generated by the matrices E, I, and L_n. The SmallGroups identifiers of the groups $\Delta \left(3n^2 \right)$ of order smaller than 2000 are given in table 1; the SmallGroups identifiers of the groups $\Delta \left(6n^2 \right)$ of order smaller than 2000 are given in table 2.

9We adopt the convention that \mathbb{Z}_1 is the trivial group, i.e. the group that has only one element, viz. the identity element e.

10The group $\Delta \left(3 \times 1^2 \right) \cong \mathbb{Z}_3 \cong [3,1]$ is not included in table 1 because it is a cyclic group.

11The group $\Delta \left(6 \times 1^2 \right) \cong S_3 \cong [6,1]$ is not included in table 2 because its three-dimensional representations are reducible.
n	identifier	n	identifier	n	identifier	n	identifier
2	[12, 3]	3	[27, 3]	4	[48, 3]	5	[75, 2]
6	[108, 22]	7	[147, 5]	8	[192, 3]	9	[243, 26]
10	[300, 43]	11	[363, 2]	12	[432, 103]	13	
14	[588, 60]	15	[675, 12]	16	[768, 1083477]	17	[867, 2]
18	[972, 122]	19	[1083, 5]	20	[1200, 384]	21	[1323, 43]
22	[1452, 34]	23	[1587, 2]	24	[1728, 1291]	25	[1875, 16]

Table 1: The SmallGroups identifiers of the groups $\Delta (3n^2)$ with order smaller than 2000.

n	identifier	n	identifier	n	identifier	n	identifier
2	[24, 12]	3	[54, 8]	4	[96, 64]	5	[150, 5]
6	[216, 95]	7	[294, 7]	8	[384, 568]	9	[486, 61]
10	[600, 179]	11	[726, 5]	12	[864, 701]	13	[1014, 7]
14	[1176, 243]	15	[1350, 46]	16	[1536, 40854632]	17	[1734, 5]
18	[1944, 849]						

Table 2: The SmallGroups identifiers of the groups $\Delta (6n^2)$ with order smaller than 2000.
The group $\Delta (3 \times 2^2)$ is isomorphic to A_4, the group of the even permutations of four objects, and also to the symmetry group of the regular tetrahedron. The group $\Delta (6 \times 2^2)$ is isomorphic to S_4, the group of all the permutations of four objects, and also to the symmetry group of the cube and of the regular octahedron.

When n cannot be divided by three, the group $\Delta (3n^2)$ has three singlet irreps and $(n^2 - 1)/3$ triplet irreps; when n is a multiple of three, $\Delta (3n^2)$ has nine inequivalent singlet irreps and $n^2/3 - 1$ inequivalent triplet irreps. The group $\Delta (6n^2)$ has $[7, 9, 20]$, for any $n \geq 2$, two inequivalent singlet irreps and $2(n-1)$ inequivalent triplet irreps. When n is not a multiple of three, $\Delta (6n^2)$ has one doublet irrep and $(n-1)(n-2)/6$ six-dimensional irreps; when n is a multiple of three, $\Delta (6n^2)$ has four inequivalent doublet irreps and $n(n-3)/6$ six-dimensional irreps.

3.3 The groups $C^{(k)}_{n,l}$

We use the notation of ref. [14]. The groups $C^{(k)}_{n,l}$ have structure $(\mathbb{Z}_n \times \mathbb{Z}_l)\rtimes \mathbb{Z}_3$ and order $3nl$. The integer l is positive. The integer n may be written $n = rl$, where r is another positive integer. The integer r may be either

1. a product of prime numbers p_1, p_2, \ldots which are of the form $p_j = 6i_j + 1$, where the numbers i_j are integers, or

2. three times a product of prime numbers as in 1.

In case 1, l may be any positive integer; in case 2, l must be a multiple of three. The integer k is a function of r defined by $1 + k + k^2 = 0 \mod r$ and $k \leq (r - 1)/2$. For most values of r there is only one possible k, but for some r more than one (usually two) k are possible. The values of r, k, and l that produce groups $C^{(k)}_{n,l}$ with order smaller than 2000 are given in tables 3 and 4. There is a very large number of groups $C^{(k)}_{n,l}$ of order smaller than 2000, therefore we opt for giving their SmallGroups identifiers only in the appendix.

The generators of $C^{(k)}_{n,l}$ are the matrices E in equation (23a), $B_{n,k}$ in equation (25), and $G_{n,r}$ in equation (26), where $r = n/l$ \footnote{For almost all the groups $C^{(k)}_{n,l}$ of order smaller than 2000, the third generator $G_{n,r}$ is not really needed, i.e. one may generate the group by using solely E and $B_{n,k}$.}
The lowest values of \(r \), and the corresponding values of \(k \) and \(l \), that produce groups \(C_{r,l}^{(k)} \) with order \(3rl^2 < 2000 \).

The groups \(C_{r,l}^{(k)} \) only have singlet and triplet irreps. The number of inequivalent singlet irreps is three when \(l \) cannot be divided by three and nine when \(l \) is a multiple of three.

3.4 The groups \(D_{3l,l}^{(1)} \)

We continue to use the notation of ref. [14]. For an integer \(l \) that is a multiple of three, the groups \(D_{3l,l}^{(1)} \) have structure \([(\mathbb{Z}_{3l} \times \mathbb{Z}_3) \times \mathbb{Z}_2] \) and order \(18l^2 \). They are generated by the matrices \(E \), \(I \), and \(B_{3l,l} = \text{diag}(\nu, \nu, \nu^{-2}) \) for \(\nu = \exp[2i\pi/(3l)] \). There are only three groups \(D_{3l,l}^{(1)} \) of order smaller than 2000:

\[
\begin{align*}
D_{9,3}^{(1)} &\cong [162, 14], \\
D_{18,6}^{(1)} &\cong [648, 259], \\
D_{27,9}^{(1)} &\cong [1458, 659].
\end{align*}
\]

The groups \(D_{3l,l}^{(1)} \) have six inequivalent singlets and three inequivalent doublets for any value of \(l \). Besides, they have \(6(l - 1) \) inequivalent triplet irreps and \(l(l - 3)/2 + 1 \) inequivalent six-plets.
Table 4: Continuation of table 3: other values of r and k that produce groups $C_{r,1}^{(k)}$ with order $3r < 2000$. (For the values of r in this table, only $l = 1$ produces group orders smaller than 2000.)

r	k	193	199	211	217	223	229	23	67	39	94
15	68, 87	241	247	259	271	277	283				
79, 135	301	307	313	331	337	343					
122	68	349	361	367	373	379	397				
87, 191	403	409	421	427	433	439					
133	21	457	463	469	481	487	499				
81, 137	511	523	541	547	553	559					
109	213	571	577	589	601	607	613				
252	43	619	631	637	643	661	65				

r	k	193	199	211	217	223	229	23	67	39	94
		241	247	259	271	277	283				
		301	307	313	331	337	343				
		349	361	367	373	379	397				
		403	409	421	427	433	439				
		457	463	469	481	487	499				
		511	523	541	547	553	559				
		571	577	589	601	607	613				
		619	631	637	643	661	65	232	102	165, 178	
87, 191	247	109	213	87, 273	24	210	65				
81, 137	631	165, 263	177	296							
Table 5: The SmallGroups identifiers of the exceptional subgroups of $SU(3)$.

3.5 The exceptional subgroups of $SU(3)$

The groups $\Delta (3n^2)$ and $C_{n,l}^{(k)}$ form the class C of finite subgroups of $SU(3)$. The groups $\Delta (6n^2)$ and $D_{3l,l}^{(1)}$ form the class D of finite subgroups of $SU(3)$. Both classes C and D contain infinite numbers of subgroups. Besides these infinite classes of subgroups, $SU(3)$ has six ‘exceptional’ subgroups\[^{13}\]\[^{14}\] their SmallGroups identifiers are given in table 5. The generators of the exceptional subgroups are given, for instance, in ref. [10], together with the references to the original papers.

The group $\Sigma (60)$ is isomorphic to A_5, the group of the even permutations of five objects, and to the symmetry group of the regular icosahedron and regular dodecahedron. The group $\Sigma (168)$ is isomorphic to the projective special linear group $PSL (2, 7)$ and also to the general linear group $GL (3, 2)$.

The number of inequivalent p-dimensional irreps of the exceptional finite subgroups of $SU(3)$ is given in table 6 [21].

4 Finite subgroups of $U(3)$

In this section we give the generators and the SmallGroups identifiers of all the finite subgroups of $U(3)$ that

- are not subgroups of $SU(3)$,
- have a faithful three-dimensional irrep,
- cannot be written as the direct product of a smaller group and a cyclic group,

\[^{13}\text{The groups } \Sigma (36 \times 1), \Sigma (72 \times 1), \Sigma (216 \times 1), \text{ and } \Sigma (360 \times 1) \text{ are subgroups of } PSU(3), \text{ i.e. of } SU(3) \text{ divided by its } \mathbb{Z}_3 \text{ center. They are not subgroups of } SU(3).\]

\[^{14}\text{The group } \Sigma (60) \text{ is in fact a subgroup of } SO(3), \text{ i.e. it may be represented through real } 3 \times 3 \text{ matrices.}\]
group	$p = 1$	$p = 2$	$p = 3$	$p = 4$	$p = 5$	$p = 6$
$\Sigma (60)$	1	0	2	1	1	0
$\Sigma (36 \times 3)$	4	0	8	2	0	0
$\Sigma (168)$	1	0	2	0	0	1
$\Sigma (72 \times 3)$	4	1	8	0	0	2
$\Sigma (216 \times 3)$	3	3	7	0	0	6
$\Sigma (360 \times 3)$	1	0	4	0	2	2

group	$p = 7$	$p = 8$	$p = 9$	$p = 10$	$p = 15$
$\Sigma (60)$	0	0	0	0	0
$\Sigma (36 \times 3)$	0	0	0	0	0
$\Sigma (168)$	1	1	0	0	0
$\Sigma (72 \times 3)$	0	1	0	0	0
$\Sigma (216 \times 3)$	0	3	2	0	0
$\Sigma (360 \times 3)$	0	2	3	1	2

Table 6: The number of inequivalent p-dimensional irreducible representations of the exceptional subgroups of $SU(3)$.
• have less than 2000 elements.

For most groups, we also give the numbers of inequivalent irreps of each dimension.

There is at present no mathematical classification of the finite subgroups of $U(3)$. Therefore, we will just classify the various subgroups that we have found using the SmallGroups library and GAP, by constructing ‘series’ of subgroups that have generators, structures, and numbers of irreps related among themselves. Unfortunately, there is some degree of ambiguity in this task, since any group may always be generated by different sets of generators. It is moreover often found that groups with related generators end up having quite different structures. Still, we hope to be able to shed some light on the possible types of subgroups of $U(3)$.

4.1 The generators

We firstly define some 3×3 matrices that often appear as generators of the $U(3)$ subgroups.

Let

- r be a product of prime numbers p_1, p_2, \ldots which are of the form $p_j = 6i_j + 1$, where the numbers i_j are integers;
- k be an integer which is a function of r defined by $1 + k + k^2 = 0 \mod r$ and $k \leq (r - 1)/2$. For most values of r there is only one possible k, but for some r more than one k are possible.

The lowest r and the corresponding k are given in table 7. In this section, whenever we let r and k denote a pair of integers, we will be referring to one of the pairs in table 7. The matrix

$$B_{r,k} = \text{diag} \left(\rho, \rho^k, \rho^{-1-k} \right), \quad \text{where} \quad \rho = \exp(2i\pi/r), \quad (28)$$

appears as generator of many $U(3)$ subgroups. Notice that $B_{r,k} \in SU(3)$.

We use the definition of L_n in equation (24). Notice that $L_n \in SU(3)$. The matrix

$$L_2 = \text{diag} \left(1, -1, -1 \right) \quad (29)$$

is especially useful. We will also encounter

$$L_3 = \text{diag} \left(1, \omega, \omega^2 \right), \quad \text{where} \quad \omega = \exp(2i\pi/3). \quad (30)$$
Table 7: The lowest possible values of r and the corresponding values of k.

r	7	13	19	31	37	43	49	61	67
k	2	3	7	5	10	6	18	13	29

r	73	79	91	97	103	109	127	133	139
k	8	23	9, 16	35	46	45	19	11, 30	42

r	151	157	163	169	181	193	199	211	217
k	32	12	58	22	48	84	92	14	25, 67

Let m be an integer. We define

$$E_m \equiv \begin{pmatrix} 0 & \mu & 0 \\ 0 & 0 & \mu \\ \mu & 0 & 0 \end{pmatrix}, \quad (31a)$$

$$Z_m \equiv \begin{pmatrix} 0 & 0 & \mu \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad (31b)$$

$$T_1(m) \equiv \text{diag} \left(1, \mu, \mu^2 \right), \quad (31c)$$

$$T_2(m) \equiv \text{diag} \left(1, \mu^2, \mu \right), \quad \text{where } \mu = \exp \left[2i\pi / (3^m) \right]. \quad (31d)$$

The matrix $E \equiv E_0$ in equation (23a) is especially useful. Both E_0 and E_1 have unit determinant, but $E_m \notin SU(3)$ for $m > 1$.

Let m and j be integers. We define

$$F_{m,j} \equiv \begin{pmatrix} 0 & 0 & -\xi \\ 0 & -\xi & 0 \\ -\xi & 0 & 0 \end{pmatrix}, \quad \text{where } \xi = \exp \left[2i\pi / (3^m 2^j) \right]. \quad (32)$$

Notice that $F_{m,j} \notin SU(3)$ for $m \geq 2$ or $j \geq 1$. The matrix $I \equiv F_{0,0}$ in equation (23b) has already been useful; also useful is

$$I' \equiv F_{0,1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = -I. \quad (33)$$

Let $\omega = \exp (2i\pi/3)$ and $\mu = \exp [2i\pi / (3^m)]$. We define

$$X_1(m) \equiv \text{diag} \left(\mu \omega, \mu \omega, \mu \omega^2 \right), \quad (34a)$$
Let $\omega = \exp(2i\pi/3)$. We define

$$K \equiv -\frac{i}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}. \quad (35)$$

Notice that $K \in SU(3)$. Let furthermore $\xi = \exp[2i\pi/(3m^2)]$. We define

$$Q_{m,j} \equiv -\frac{i\xi}{\sqrt{3}} \begin{pmatrix} 1 & \omega^2 & \omega^2 \\ 1 & \omega^2 & 1 \\ 1 & \omega & 1 \end{pmatrix}. \quad (36)$$

Notice that $\det Q_{m,j} = \xi^3 \neq 1$ in general.

4.2 The series of groups that Ludl has discovered

Ludl [10] has proved the existence of the following series of finite subgroups of $U(3)$.

Groups $T^{(k)}_r(m)$: The group $T^{(k)}_r(m)$, where m is an integer larger than 1, has structure $\mathbb{Z}_r \rtimes \mathbb{Z}_{3m}$ and order $3^m r$. The groups $T^{(k)}_r(m)$ of order smaller than 2000 are given in table 8. Each of these groups has two generators, which may be chosen to be $B_{r,k}$ in equation (28) and E_m in equation (31a). The groups $T^{(k)}_r(m)$ have 3^m inequivalent singlet irreps; all the remaining irreps of those groups are triplets.

Groups $\Delta(3n^2,m)$: The group $\Delta(3n^2,m)$, where the integer n cannot be divided by 3 and $m > 1$, has structure $(\mathbb{Z}_n \times \mathbb{Z}_n) \rtimes \mathbb{Z}_{3m}$ and order $3^m n^2$. The groups $\Delta(3n^2,m)$ of order less than 2000 are listed in table 9. The group $\Delta(3n^2,m)$ is generated by the matrices L_n in equation (24) and E_m in equation (31a).

15If $m = 1$, then $T^{(k)}_r(1) \cong C_{r,1}^{(k)}$ is a subgroup of $SU(3)$.
16If $m = 1$, then $\Delta(3n^2,1) \cong \Delta(3n^2)$ is a subgroup of $SU(3)$.

18
$T_r^{(k)}(m)$	$T_7^{(2)}(2)$	$T_7^{(2)}(3)$	$T_7^{(2)}(4)$	$T_7^{(2)}(5)$	$T_7^{(3)}(2)$
identifier	[63, 1]	[189, 1]	[567, 1]	[1701, 68]	[117, 1]
$T_r^{(k)}(m)$	$T_{13}^{(3)}(3)$	$T_{13}^{(3)}(4)$	$T_{19}^{(2)}(2)$	$T_{19}^{(7)}(3)$	$T_{19}^{(7)}(4)$
identifier	[351, 1]	[1053, 1]	[1701, 68]	[117, 1]	[1539, 16]
$T_r^{(k)}(m)$	$T_{31}^{(5)}(2)$	$T_{31}^{(5)}(3)$	$T_{37}^{(10)}(2)$	$T_{37}^{(10)}(3)$	$T_{37}^{(6)}(2)$
identifier	[279, 1]	[837, 1]	[1701, 68]	[117, 1]	[387, 1]
$T_r^{(k)}(m)$	$T_{43}^{(6)}(3)$	$T_{49}^{(18)}(2)$	$T_{61}^{(13)}(2)$	$T_{61}^{(13)}(3)$	$T_{61}^{(13)}(3)$
identifier	[1161, 6]	[441, 1]	[1701, 68]	[117, 1]	[1647, 6]
$T_r^{(k)}(m)$	$T_{67}^{(29)}(2)$	$T_{67}^{(29)}(3)$	$T_{73}^{(8)}(2)$	$T_{73}^{(8)}(3)$	$T_{79}^{(23)}(2)$
identifier	[603, 1]	[1809, 6]	[1701, 68]	[117, 1]	[711, 1]
$T_r^{(k)}(m)$	$T_{91}^{(9)}(2)$	$T_{91}^{(16)}(2)$	$T_{103}^{(46)}(2)$	$T_{109}^{(109)}(2)$	$T_{109}^{(145)}(2)$
identifier	[819, 4]	[819, 3]	[1701, 68]	[117, 1]	[981, 1]
$T_r^{(k)}(m)$	$T_{127}^{(19)}(2)$	$T_{133}^{(11)}(2)$	$T_{139}^{(42)}(2)$	$T_{151}^{(32)}(2)$	$T_{151}^{(159)}(2)$
identifier	[1143, 1]	[1197, 3]	[1701, 68]	[117, 1]	[1359, 1]
$T_r^{(k)}(m)$	$T_{157}^{(12)}(2)$	$T_{163}^{(58)}(2)$	$T_{169}^{(22)}(2)$	$T_{181}^{(48)}(2)$	$T_{181}^{(84)}(2)$
identifier	[1413, 1]	[1467, 1]	[1701, 68]	[117, 1]	[1737, 1]
$T_r^{(k)}(m)$	$T_{211}^{(92)}(2)$	$T_{211}^{(14)}(2)$	$T_{217}^{(25)}(2)$	$T_{217}^{(67)}(2)$	$T_{217}^{(67)}(2)$
identifier	[1791, 1]	[1899, 1]	[1701, 68]	[117, 1]	[1953, 4]

Table 8: The SmallGroups identifiers of the groups $T_r^{(k)}(m)$ with order smaller than 2000.
The groups $\Delta (3n^2, m)$ have 3^m inequivalent singlet irreps; all the remaining irreps of these groups are triplets.

Groups $S_4(j)$: The group $S_4(j)$, where $j > 1$17 has structure $A_4 \rtimes \mathbb{Z}_{2^j}$ and order $3 \times 2^{j+2}$18. There are six groups $S_4(j)$ of order smaller than 2 000; they are given in table 10. The group $S_4(j)$ is generated by the matrices E in equation (23a), L_2 in equation (29), and $-F_{0,j}$, where $F_{m,j}$ is given in equation (32).

The group $S_4(j)$ has 2^j inequivalent singlet irreps, 2^{j-1} inequivalent doublet irreps, 2^j inequivalent triplet irreps, and no other irreps.

17The group $S_4(1) \cong \Delta (6 \times 2^2)$ is a subgroup of $SU(3)$.

18The group A_4 has structure $(\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3$.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
n,m & $2,2$ & $2,3$ & $2,4$ & $2,5$ \\
\hline
identifier & $[36,3]$ & $[108,3]$ & $[324,3]$ & $[972,3]$ \\
\hline
n,m & $4,2$ & $4,3$ & $4,4$ & $5,2$ \\
\hline
identifier & $[144,3]$ & $[432,3]$ & $[1296,3]$ & $[225,3]$ \\
\hline
n,m & $7,2$ & $7,3$ & $8,2$ & $8,3$ \\
\hline
identifier & $[441,7]$ & $[1323,14]$ & $[576,3]$ & $[1728,3]$ \\
\hline
n,m & $11,2$ & $13,2$ & $14,2$ & \\
\hline
identifier & $[1089,3]$ & $[1521,7]$ & $[1764,91]$ & \\
\hline
\end{tabular}
\caption{The SmallGroups identifiers of the groups $\Delta (3n^2, m)$ with order smaller than 2 000.}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
j & 2 & 3 & 4 \\
\hline
identifier & $[48,30]$ & $[96,65]$ & $[192,186]$ \\
\hline
j & 5 & 6 & 7 \\
\hline
identifier & $[384,581]$ & $[768,1085351]$ & $[1536,408544687]$ \\
\hline
\end{tabular}
\caption{The SmallGroups identifiers of the groups $S_4(j)$ with order smaller than 2 000.}
\end{table}
Table 11: The SmallGroups identifiers of the groups $\Delta (6n^2, j)$ with order smaller than 2000.

n, j	identifier	n, j	identifier	n, j	identifier
3, 2	[108, 11]	3, 3	[216, 17]	3, 4	[432, 33]
3, 5	[864, 69]	3, 6	[1728, 185]	4, 2	
4, 3	[384, 571]	4, 4	[768, 1085333]	4, 5	
5, 2	[300, 13]	5, 3	[600, 45]	5, 4	
6, 2	[432, 260]	6, 3	[864, 703]	6, 4	
7, 2	[588, 16]	7, 3	[1176, 57]	8, 2	
8, 3	[1536, 408544641]	9, 2	[972, 64]	9, 3	
10, 2	[1200, 682]	11, 2	[1452, 11]	12, 2	

Groups $\Delta (6n^2, j)$: The group $\Delta (6n^2, j)$, where $n > 1$ and $j > 1$, has structure $([\mathbb{Z}_n \times \mathbb{Z}_n] \times \mathbb{Z}_3) \rtimes \mathbb{Z}_{2j}$ and order $3 \times 2^j n^2$. But, for $n = 2$, $\Delta (6n^2, j) = S_4(j)$, therefore we only need to take into account $n \geq 3$; there are then the 24 groups $\Delta (6n^2, j)$ with order less than 2000 given in table 11. The generators of $\Delta (6n^2, j)$ are the matrices E in equation (23a), L_n in equation (24), and $-F_{0,j}$. It is clear that $\Delta (6n^2, j)$ is just a generalization of $S_4(j)$ for $n > 2$.

The groups $\Delta (6n^2, j)$ have 2^j inequivalent singlet irreps and $2^j (n - 1)$ inequivalent triplet irreps for any value of n. When n cannot be divided by three, those groups have, besides, 2^{j-1} doublet irreps; when n is a multiple of three, the number of inequivalent doublet irreps is 2^{j+1}. All the remaining

19In Ludl's paper the existence of $\Delta (6n^2, j)$ has been proved for integers n not divisible by 3. We have verified, though, that $\Delta (6n^2, j)$ exists for every $n > 1$, at least when $3 \times 2^n < 2000$.

20The groups $\Delta (6n^2, 1) \cong \Delta (6n^2)$ are subgroups of $SU(3)$.

21
irreps of those groups are six-plets.

Groups $\Delta'(6n^2, m, j)$: These groups, where n can be divided by 3, $m \geq 2$, and $j \geq 1$, have structure $\left(\mathbb{Z}_{3^{m-1}n} \times \mathbb{Z}_n\right) \rtimes \mathbb{Z}_2$, and order $3^m 2^j n^2$. There are the 12 groups with order less than 2 000 in table 12. The generators of $\Delta'(6n^2, m, j)$ are the matrices E in equation (23a), L_n in equation (24), and $-F_{m,j}$ in equation (32).

The groups $\Delta'(6n^2, m, j)$ have $3^{m-1} 2^j$ inequivalent singlet irreps and $3^{m-1} 2^{j+1}$ inequivalent doublet irreps. There are also $(n - 1) 3^{m-1} 2^j$ inequivalent triplets; the remaining irreps are six-plets.

4.3 New series of groups that we have discovered

Ludl [10] has derived the existence of the series of groups in the previous subsection by applying mathematical theorems that he demonstrated. We have discovered some further series of groups through a careful inspection of the list of all the finite subgroups of $U(3)$ of order smaller than 2 000 that we have produced, together with some guesswork. Clearly, since there are no theorems supporting our method, we cannot be sure that our series of groups extend to groups of order larger than 2 000. Still, the series of groups in this subsection seem to us to be on firm standing, since they are quite large and display no exceptions up to group order 2 000.

21The groups $\Delta'(6n^2, 1, j)$ are the same as the groups $\Delta(6n^2, j)$.

22The exception is $\Delta'(6 \times 9^2, 2, 1)$, which has structure $\left([\mathbb{Z}_9 \times \mathbb{Z}_9 \times \mathbb{Z}_3] \rtimes \mathbb{Z}_2\right)$ instead of $\left([\mathbb{Z}_{27} \times \mathbb{Z}_9] \rtimes \mathbb{Z}_3\right) \rtimes \mathbb{Z}_2$.
Groups $L_r^{(k)}(n, m)$: For an integer n that cannot be divided by 3 and for $m > 1$, these are groups with structure $(\mathbb{Z}_n \times \mathbb{Z}_n) \rtimes \mathbb{Z}_{3^m}$ and order $3^m r n^2$. While the groups $T_r^{(k)}(m)$ are generated by the matrices $B_{r,k}$ and E_m, and the groups $\Delta (3n^2, m)$ are generated by the matrices L_n and E_m, the groups $L_r^{(k)}(n, m)$ are generated by all three matrices $B_{r,k}$, L_n, and E_m. Thus, the groups $L_r^{(k)}(n, m)$ simultaneously generalize $T_r^{(k)}(m) = L_r^{(k)}(1, m)$ and $\Delta (3n^2, m) = L_1^{(0)}(n, m)$. The groups $L_r^{(k)}(n, m)$ of order smaller than 2000 are listed in table 13.

The groups $L_r^{(k)}(n, m)$ have 3^m inequivalent singlets; the remaining irreps are triplets.

Groups $P_r^{(k)}(m)$, $Q_r^{(k)}(m)$, and $Q_r^{(k)'}(m)$: These groups exist for integer $m > 1$ and have order $3^{m+1} r$. The groups $P_r^{(k)}(m)$ have structure $(\mathbb{Z}_r \times \mathbb{Z}_{3^m}) \rtimes \mathbb{Z}_3$; the groups $Q_r^{(k)}(m)$ and $Q_r^{(k)'}(m)$ have structure $\mathbb{Z}_{3^m r} \rtimes \mathbb{Z}_3$. The groups of order smaller than 2000 are listed in table 14. The group $P_r^{(k)}(m)$ is generated by $B_{r,k}$ together with L_3 and Z_{m-1}. The groups $Q_r^{(k)}(m)$ and $Q_r^{(k)'}(m)$ are generated by the matrices $B_{r,k}$ and E together with $Y_1(m)$ for $Q_r^{(k)}(m)$ or $Y_2(m)$ for $Q_r^{(k)'}(m)$.

The groups $P_r^{(k)}(m)$, $Q_r^{(k)}(m)$, and $Q_r^{(k)'}(m)$ have 3^m inequivalent singlets; all their remaining irreps are triplets.

$L_r^{(k)}(n, m)$	$L_7^{(2)}(2, 2)$	$L_7^{(2)}(2, 3)$	$L_7^{(2)}(4, 2)$	$L_7^{(2)}(5, 2)$
identifier	[252, 11]	[756, 11]	[1008, 57]	[1575, 7]
$L_r^{(k)}(n, m)$	$L_3^{(3)}(2, 2)$	$L_3^{(3)}(2, 3)$	$L_3^{(3)}(4, 2)$	$L_3^{(7)}(2, 2)$
identifier	[468, 14]	[1404, 14]	[1872, 60]	[684, 11]
$L_r^{(k)}(n, m)$	$L_{31}^{(5)}(2, 2)$	$L_{37}^{(10)}(2, 2)$	$L_{43}^{(6)}(2, 2)$	$L_{49}^{(18)}(2, 2)$
identifier	[1116, 11]	[1332, 14]	[1548, 11]	[1764, 11]

Table 13: SmallGroups identifiers of the groups $L_r^{(k)}(n, m)$ with order smaller than 2000.
Table 14: The SmallGroups identifiers of the groups $P_r(k)(m)$, $Q_r(k)(m)$, $Q_r(k)'(m)$ with order smaller than 2000.
n	3	6	9	12
identifier	[27, 4]	[108, 21]	[243, 27]	[432, 102]
n	15	18	21	24
identifier	[675, 11]	[972, 123]	[1323, 42]	[1728, 1290]

Table 15: The SmallGroups identifiers of the groups $X(n)$ with order smaller than 2000.

Groups $X(n)$: There are several groups that have a three-dimensional irrep where all the matrices are of one of the following types [10]:

$$R(n, a, b, c) \equiv \begin{pmatrix} 0 & 0 & \nu^a \\ \nu^b & 0 & 0 \\ 0 & \nu^c & 0 \end{pmatrix}, \quad (37a)$$

$$V(n, a, b, c) \equiv \begin{pmatrix} 0 & \nu^a & 0 \\ 0 & 0 & \nu^b \\ \nu^c & 0 & 0 \end{pmatrix}, \quad (37b)$$

$$W(n, a, b, c) \equiv \begin{pmatrix} \nu^a & 0 & 0 \\ 0 & \nu^b & 0 \\ 0 & 0 & \nu^c \end{pmatrix}, \quad (37c)$$

where $\nu = \exp(2i\pi/n)$. We call them ‘groups RVW’. The groups $X(n)$ are groups RVW where

- n is a multiple of 3,
- the matrices $R(n, a, b, c)$ have $a + b + c = (n/3) \mod n$,
- the matrices $V(n, a, b, c)$ have $a + b + c = (2n/3) \mod n$,
- the matrices $W(n, a, b, c)$ have $a + b + c = 0 \mod n$.

The groups $X(n)$ have order $3n^2$; the identifiers of the groups of order less than 2000 are in table [15]. The structure of $X(n)$ is $[(\mathbb{Z}_n \times \mathbb{Z}_n) \times \mathbb{Z}_9] \times \mathbb{Z}_3$ provided n is not a multiple of 9; otherwise it is more complicated. The groups $X(n)$ are generated by the matrices L_n in equation (24) and Z_1 in equation (31b).

The groups $X(n)$ have nine inequivalent singlets; their remaining irreps are all triplets.
4.4 Tentative series of groups

We have found a few more series of groups through inspection of the list of the finite subgroups of $U(3)$ of order less than 2000. However, these series have few groups each and we can hardly ascertain whether and how they extend to groups of order larger than 2000.

Groups $S_r^{(k)}(m)$, $S_r^{(k)\prime}(m)$, $Y_r^{(k)}(m)$, and $V_r^{(k)}(m)$: These groups exist for $m \geq 2$. The groups $S_r^{(k)}(m)$ and $S_r^{(k)\prime}(m)$ have structure $(\mathbb{Z}_{3^m} \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3$; the groups $Y_r^{(k)}(m)$ have structure $(\mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_3$; the groups $V_r^{(k)}(m)$ have structure $\mathbb{Z}_r \rtimes [(\mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_3) \times \mathbb{Z}_3]$; they all have order $3^{m+2}r$.

The generators are the matrices $B_{r,k}$ in equation (28), together with

- E in equation (23a), L_3 in equation (30), and $X_3(m)$ in equation (34a) for $S_r^{(k)}(m)$;

- E, L_3, and $X_1(m)$ in equation (34a) for $S_r^{(k)\prime}(m)$;

- E, $X_1(m-1)$, and $X_3(m-1)$ for $Y_r^{(k)}(m)$;

- $X_2(2)$ in equation (34b), Z_1 in equation (31b), and $L_{3^{m-1}}$ for $V_r^{(k)}(m)$.

The groups $S_r^{(k)}(m)$, $S_r^{(k)\prime}(m)$, $Y_r^{(k)}(m)$, and $V_r^{(k)}(m)$ of order less than 2000 are in table 16.

The groups $S_r^{(k)}(m)$ have 3^{m+1} inequivalent singlets. The groups $S_r^{(k)\prime}(m)$ and $Y_r^{(k)}(m)$ have 3^m inequivalent singlets. The groups $V_r^{(k)}(m)$ have nine inequivalent singlets. All the remaining irreps of all those groups are triplets.

Groups $M_r^{(k)}$, $M_r^{(k)\prime}$, and $J_r^{(k)}$: These groups have order $108r$. The groups $M_r^{(k)}$ and $M_r^{(k)\prime}$ have structure $(\mathbb{Z}_{18r} \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3$; the groups $J_r^{(k)}$ have structure $[(\mathbb{Z}_{2r} \times \mathbb{Z}_2) \times \mathbb{Z}_9] \rtimes \mathbb{Z}_3$. The generators are the matrices $B_{r,k}$ in equation (28) and L_2 in equation (29) together with

- E in equation (23a) and $Y_1(2)$ in equation (34c) for $M_r^{(k)}$,

- E and $Y_2(2)$ in equation (34d) for $M_r^{(k)\prime}$,

- L_3 in equation (31d) and Z_1 in equation (31b) for $J_r^{(k)}$.

The groups $M_r^{(k)}$, $M_r^{(k)\prime}$, and $J_r^{(k)}$ of order less than 2000 are in table 17.

Each of the groups $M_r^{(k)}$, $M_r^{(k)\prime}$, and $J_r^{(k)}$ has nine inequivalent singlets. All the remaining irreps of those groups are triplets.
Table 16: The SmallGroups identifiers of the groups $S_r^{(k)}(m)$, $S_r^{(k)'}(m)$, $Y_r^{(k)}(m)$, and $V_r^{(k)}(m)$ with order smaller than 2000.

$S_r^{(2)}(2)$	$S_{13}^{(3)}(2)$	$S_{19}^{(7)}(2)$	$S_r^{(2)}(3)$
[567, 36]	[1053, 47]	[1539, 47]	[1701, 240]
$S_r^{(2)'}(2)$	$S_{13}^{(3)'}(2)$	$S_{19}^{(7)'}(2)$	$S_r^{(2)'}(3)$
[567, 12]	[1053, 32]	[1539, 32]	[1701, 115]
$Y_r^{(2)}(2)$	$Y_{13}^{(3)}(2)$	$Y_{19}^{(7)}(2)$	$Y_r^{(2)}(3)$
[567, 23]	[1053, 29]	[1539, 29]	[1701, 261]
$V_r^{(2)}(2)$	$V_{13}^{(3)}(2)$	$V_{19}^{(7)}(2)$	$V_r^{(2)}(3)$
[567, 14]	[1053, 37]	[1539, 37]	[1701, 138]

Table 17: The SmallGroups identifiers of the groups $M_r^{(k)}(m)$, $M_r^{(k)'}(m)$, and $J_r^{(k)}(m)$ with order smaller than 2000.

$M_r^{(2)}$	$M_r^{(2)'}$	$J_r^{(2)}$	$M_{13}^{(3)}$	$M_{13}^{(3)'}$	$J_{13}^{(3)}$
[756, 113]	[756, 114]	[756, 116]	[1404, 137]	[1404, 138]	[1404, 140]
Table 18: SmallGroups identifiers of the groups $W(n, m)$ with order smaller than 2000.

n, m	identifier
1, 2	[27, 4]
1, 3	[81, 6]
1, 4	[243, 24]
1, 5	[729, 94]
2, 2	[108, 19]
2, 3	[324, 43]
2, 4	[972, 117]
2, 5	[432, 91]
3, 2	[1196, 220]
3, 3	[675, 9]
3, 4	[1323, 40]
3, 5	[1728, 1286]
Table 19: SmallGroups identifiers of the groups $Z(n, m)$, $Z'(n, m)$, and $Z''(n, m)$ with order smaller than 2 000.

n, m	$Z(n, m)$	$Z'(n, m)$	$Z''(n, m)$
$3, 2$	$[81, 14]$	$[81, 8]$	$C_{9,3}^{(1)}$
$6, 2$	$[324, 128]$	$[324, 49]$	$C_{18,6}^{(1)}$
$9, 2$	$[729, 397]$	$[729, 397]$	$\Delta (3 \times 9^2)$
$12, 2$	$[1296, 1499]$	$[1296, 227]$	$C_{36,12}^{(1)}$

- n is a multiple of 3,
- $m > 1$,
- j is an integer,

have order $3^m 2^j n^2$. The groups $Z(n, m, j)$ and $Z'(n, m, j)$ with order smaller than 2 000 are in table 20. The groups $Z(n, m, j)$ and $Z'(n, m, j)$ are generated by the same matrices as the groups $Z'(n, m)$ and $Z''(n, m)$, respectively, with the addition of the further generator $-F_{1,j}$, where $F_{m,j}$ is given in equation (32). Notice that there are no groups $Z'(n, 2, 1)$ in table 20 because all the matrices generating $Z'(n, 2, 1)$, viz. E, L_n, $X_2(2)$, and $-F_{1,1}$ have unit determinant and therefore $Z'(n, 2, 1)$ is a subgroup of $SU(3)$.

The groups $Z(n, m, j)$ and $Z'(n, m, j)$ have the same numbers of irreps of each dimension: $3^{m-1} 2^j$ inequivalent singlet irreps, $3^{m-1} 2^{j-1}$ inequivalent doublet irreps, $(n - 1) 3^{m-1} 2^j$ triplet irreps, and $(n - 1) (n - 2) 3^{m-2} 2^{j-2}$ six-plet irreps.

Groups $H(n, m, j)$: When we use generators E, L_n, $X_1(2)$, and $-F_{m,j}$ with $m > 1$, we obtain groups that we call $H(n, m, j)$ and list in table 21. The groups $H(n, m, 1)$ have structure $[(\mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_n) \times \mathbb{Z}_3] \rtimes \mathbb{Z}_2$ and

\[24\] The group $Z(9, 2, 1)$ is isomorphic to the group $\Delta'(6 \times 9^2, 2, 1)$ and we omit it from table 20, since it has numbers of irreps quite inconsistent with the ones of the other groups $Z(n, m, j)$.

29
n, m, j	$Z(n, m, j)$	$Z'(n, m, j)$		
n, m, j	$3, 2, 1$	$3, 2, 2$	$3, 2, 3$	$3, 2, 4$
$Z(n, m, j)$	$[162, 12]$	$[324, 15]$	$[648, 21]$	$[1296, 37]$
$Z'(n, m, j)$	$D_{9, 3}^{(1)}$	$[324, 17]$	$[648, 23]$	$[1296, 39]$
n, m, j	$3, 3, 1$	$3, 3, 2$	$3, 3, 3$	$3, 4, 1$
$Z(n, m, j)$	$[486, 28]$	$[972, 31]$	$[1944, 37]$	$[1458, 618]$
$Z'(n, m, j)$	$[486, 26]$	$[972, 29]$	$[1944, 35]$	$[1458, 615]$
n, m, j	$6, 2, 1$	$6, 2, 2$	$6, 3, 1$	
$Z(n, m, j)$	$[648, 260]$	$[1296, 689]$	$[1296, 688]$	$[1944, 833]$
$Z'(n, m, j)$	$D_{18, 6}^{(1)}$	$[1296, 689]$	$[1296, 688]$	$[1944, 832]$

Table 20: The SmallGroups identifiers of the groups $Z(n, m, j)$ and $Z'(n, m, j)$ with order smaller than 2000.

n, m, j	$3, 2, 1$	$3, 2, 2$	$3, 2, 3$	$3, 3, 1$	$6, 2, 1$
identifier	$[486, 125]$	$[972, 309]$	$[1944, 707]$	$[1458, 1095]$	$[1944, 2363]$

Table 21: The SmallGroups identifiers of the groups $H(n, m, j)$ of order smaller than 2000.
m, j	identifier
1, 2	[324, 13]
2, 2	[972, 309]
1, 3	[648, 19]
2, 3	[1944, 707]
1, 4	[1296, 35]

Table 22: The SmallGroups identifiers of the groups $G(m, j)$ with order smaller than 2000.

The groups $H(n, m, j)$ with $j > 1$ are described in the paragraph of groups $G(m, j)$ below.

The groups $H(n, m, j)$ have exactly the same number of inequivalent irreps of each dimension as the groups $Z(n, m + 1, j)$ and $Z'(n, m + 1, j)$.

Groups $Y(m, j)$: The groups $Y(m, j)$, where $m \geq 2$ and $j \geq 1$, have structure $\{([\mathbb{Z}_3] \times \mathbb{Z}_2)^{m+1} \times \mathbb{Z}_3\}$ and order $3^{m+1} \times 2^j$. There are only three groups $Y(m, j)$ of order smaller than 2000:

\[
Y(2, 1) \cong [324, 45], \quad \text{(38a)}
\]
\[
Y(3, 1) \cong [972, 147], \quad \text{(38b)}
\]
\[
Y(2, 2) \cong [1296, 222]. \quad \text{(38c)}
\]

The groups $Y(m, j)$ are generated by L_3 in equation (30), L_2 in equation (24), and Z_m in equation (31b). The groups $Y(m, j)$ only have singlet and triplet irreps: 3^{m+1} inequivalent singlets and $3^m 4^j - 3^{m-1}$ inequivalent triplets.

Groups $G(m, j)$ and $[1296, 699]$: The groups $G(m, j)$, where $m \geq 1$ and $j \geq 2$, have structure $\{([\mathbb{Z}_3] \times \mathbb{Z}_2)^{m+1} \times \mathbb{Z}_3\}$ and order $3^{m+1} \times 2^j$. The groups $G(m, j)$ of order smaller than 2000 are in table 22. (Notice that the groups [972, 309] and [1944, 707] appear in table 21 too.) The groups $G(m, j)$ are generated by the matrices $E, -F_{m,j}$, where $F_{m,j}$ is given in equation (32), and $\text{diag}(1, 1, \omega)$. For $m = 1$ and $j = 2$ one may add a fourth generator L_2, given in equation (29), to obtain the group $[1296, 699]$, which has structure $\{([\mathbb{Z}_6] \times \mathbb{Z}_2) \times \mathbb{Z}_3\}$ and Z_3.

The groups $G(m, j)$ have exactly the same number of inequivalent irreps of each dimension as the groups $Z(3, m + 1, j)$ and $Z'(3, m + 1, j)$.

Groups $Y(j)$ and $\tilde{Y}(j)$: The groups $Y(j)$ have order 81×4^j and structure $(\mathbb{Z}_3 \times \mathbb{Z}_3) \times \mathbb{Z}_3$. There are three groups $Y(j)$ with order smaller
than 2000:

\[[81, 7] \text{ with } j = 0, \] \hspace{1cm} (39a)
\[[324, 60] \text{ with } j = 1, \] \hspace{1cm} (39b)
\[[1296, 237] \text{ with } j = 2. \] \hspace{1cm} (39c)

The group \(Y(0) \) coincides with the group \(\Sigma(81) \) or \(\Sigma(3 \times 3^3) \) of ref. [11]. The generators of \(Y(j) \) are the matrix \(E \) of equation (23a) together with the matrix

\[
\text{diag} \left(\xi, \xi, \xi^2 \right) \quad \text{where } \xi = \exp \left[2i\pi / (3 \times 2^j) \right].
\] \hspace{1cm} (40)

The groups \(\tilde{Y}(j) \) have structure \([(\mathbb{Z}_{3 \times 2^j} \times \mathbb{Z}_{3 \times 2^j} \times \mathbb{Z}_3) \times \mathbb{Z}_3] \times \mathbb{Z}_2 \) and order \(162 \times 4^j \). There are two groups \(\tilde{Y}(j) \) with order smaller than 2000:

\[[162, 10] \text{ with } j = 0, \] \hspace{1cm} (41a)
\[[648, 266] \text{ with } j = 1. \] \hspace{1cm} (41b)

The generators of \(\tilde{Y}(j) \) are those of \(Y(j) \) together with the additional matrix \(I' \) in equation (33).

The groups \(Y(j) \) have nine inequivalent singlet irreps; all their remaining irreps are triplets. The groups \(\tilde{Y}(j) \) have six singlet and three doublet irreps; their remaining irreps are 12 triplets and one six-plet for \(\tilde{Y}(0) \), 30 triplets and ten six-plets for \(\tilde{Y}(1) \).

Groups \(U(n, m, j) \): The groups \(U(n, m, j) \), where \(n \) is a multiple of 3, \(m > 1 \), and \(1 < j \leq m \), have structure \((\mathbb{Z}_{3^{m-1}n} \times \mathbb{Z}_n \times \mathbb{Z}_3) \times \mathbb{Z}_3 \) and order \(3^{m+1}n^2 \). We have found the following groups \(U(n, m, j) \) with order smaller than 2000:

\[[243, 55] \text{ with } n = 3, \ m = 2, \ j = 2, \] \hspace{1cm} (42a)
\[[729, 86] \text{ with } n = 3, \ m = 3, \ j = 2, \] \hspace{1cm} (42b)
\[[729, 284] \text{ with } n = 3, \ m = 3, \ j = 3, \] \hspace{1cm} (42c)
\[[972, 550] \text{ with } n = 6, \ m = 2, \ j = 2. \] \hspace{1cm} (42d)

The generators of \(U(n, m, j) \) are the matrix \(E \) together with

\[
\text{diag} \left(\nu, \nu, \nu^2 \right), \quad \text{where } \nu = \exp \left(2i\pi / n \right),
\] \hspace{1cm} (43)

and

\[
\mu \ T_1(m - j + 1), \quad \text{where } \mu = \exp \left[2i\pi / (3^m) \right].
\] \hspace{1cm} (44)
Notice that, when \(j = m \)—this happens in three out of the four groups \(U(n, m, j) \) in (42)—the matrix (44) reduces to the matrix \(Y_1(m) \) in equation (34c).

The groups \(U(n, m, j) \) possess \(3^j+1 \) inequivalent singlet irreps; all their remaining irreps are triplets.

Groups \(L(m) \) and \([1701, 102] \): The groups \(L(m) \) have order \(3^{m+3} \) and structure \(\left(\mathbb{Z}_{3^{m+1}} \times \mathbb{Z}_3 \right) \rtimes \mathbb{Z}_3 \). They are generated by the matrices \(X_1(2), Z_m, \) and \(L_3 \). There are the following groups \(L(m) \) of order smaller than 2000:

\[
L(2) \cong [243, 16], \\
L(3) \cong [729, 62].
\]

Adding the matrix \(B_{7,2} \) to the matrices \(Z_2, X_1(2), \) and \(L_3 \) one generates a group with structure \(\left(\mathbb{Z}_7 \times \mathbb{Z}_{27} \right) \rtimes \mathbb{Z}_3 \) and SmallGroups identifier \([1701, 102] \).

The groups \(L(m) \) have \(3^{m+1} \) singlet irreps; their other irreps are triplets.

Groups \(V(j) \): The groups \(V(j) \) have order \(81 \times 4^j \) and structure

\[
\left(\mathbb{Z}_{2^j} \times \mathbb{Z}_{2^j} \right) \rtimes \{ \mathbb{Z}_3, ([\mathbb{Z}_3 \times \mathbb{Z}_3] \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_3 \}. \tag{46}
\]

There are three groups \(V(j) \) with order smaller than 2000:

\[
V(0) \cong [81, 10], \\
V(1) \cong [324, 51], \\
V(2) \cong [1296, 226].
\]

The generators of \(V(j) \) are the matrices \(Z_1, X_2(2), \) and \(L_{2^j} \).

The groups \(V(j) \) have nine singlet irreps. All their other irreps are triplets.

Groups \(D(j) \): The groups \(D(j) \) have structure \((\mathbb{Z}_{9 \times 2^j} \times \mathbb{Z}_{9 \times 2^j}) \rtimes \mathbb{Z}_3 \) and order \(243 \times 4^j \). They are generated by the matrices \(E_2, L_{2^j}, \) and \(T_1(2) \). There are two groups of order smaller than 2000:

\[
D(0) \cong [243, 25], \\
D(1) \cong [972, 121].
\]

Both these groups have nine inequivalent singlets; their other irreps are triplets.
Groups $J(m)$: The groups $J(m)$ have structure $\mathbb{Z}_{3^m} \cdot ([\mathbb{Z}_9 \times \mathbb{Z}_3] \rtimes \mathbb{Z}_9)$ and order 81×3^m. They are generated by the matrices Z_m and L_9. There are two groups of order smaller than 2000:

\[
J(1) \cong [243, 27], \quad (49a)
\]
\[
J(2) \cong [729, 80]. \quad (49b)
\]

Notice that $J(1)$ coincides with $X(9)$ in table 15. The groups $J(m)$ have 3^{m+1} singlets; their other irreps are triplets.

4.5 The generators of a few more groups

In this subsection we collect a few more groups together with their generators.

Three groups of order 729: Both groups $[729, 97]$ and $[729, 98]$ have structure $(\mathbb{Z}_3 \times \mathbb{Z}_9) \rtimes \mathbb{Z}_3$. Group $[729, 96]$ has the more complicated structure $\mathbb{Z}_3 \cdot ([\mathbb{Z}_9 \times \mathbb{Z}_9] \rtimes \mathbb{Z}_3)$. They are generated by the matrix Z_1 together with

\[
\tilde{\mu} \text{ diag } (\tilde{\mu}^2, \omega, \omega) \quad \text{for } [729, 96], \quad (50a)
\]
\[
\tilde{\mu} \text{ diag } (\omega, \omega\tilde{\mu}, \omega\tilde{\mu}) \quad \text{for } [729, 97], \quad (50b)
\]
\[
\tilde{\mu} \text{ diag } (\omega^2, \omega\tilde{\mu}, \omega\tilde{\mu}) \quad \text{for } [729, 98], \quad (50c)
\]

where $\omega = \exp(2i\pi/3)$, $\tilde{\mu} = \exp(2i\pi/9)$, and $\tilde{\mu} = \exp(2i\pi/27)$.

Each of these three groups of order 729 possesses nine singlet and 80 triplet irreps.

A group of order 972: The group $[972, 170]$ is generated by the matrices L_2, Z_2, and diag $(1, 1, \omega)$. It has structure $\{(\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2 \rtimes \mathbb{Z}_3 \} \rtimes \mathbb{Z}_3$.

Two groups of order 1458: The groups $[1458, 663]$ and $[1458, 666]$ have structure $([\mathbb{Z}_{27} \times \mathbb{Z}_9] \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2$. They are generated by the matrices E, L_3, I, and $(50b)$ for group $[1458, 663]$; $(50c)$ for group $[1458, 666]$.

Each of these groups has six singlets, three doublets, 48 triplets, and 28 six-plets.

\footnote{Using $(50a)$ leads to the group $[1458, 659] \cong D_{27,9}^{(1)}$, which is subgroup of $SU(3)$.}
Three groups of order 1701: The groups with SmallGroups identifiers [1701, 112], [1701, 130], and [1701, 131] have structure \((\mathbb{Z}_7 \times 3^m \rtimes \mathbb{Z}_3^3) \rtimes \mathbb{Z}_3\), where \(m = 3\) and \(n = 1\) for [1701, 112] and \(m = n = 2\) for [1701, 130] and [1701, 131]. They are generated by the matrices \(B_7, E, X_2(m)\), and

\[
T_1(n) \text{ for } [1701, 112] \text{ and } [1701, 130], \quad (51a)
\]

\[
T_2(n) \text{ for } [1701, 131]. \quad (51b)
\]

4.6 Other finite subroups of \(U(3)\)

It is clear from the forms of the generators of the groups of matrices in subsections 4.2–4.5 that those groups are formed by matrices that are all of one of the forms \(R(n, a, b, c), V(n, a, b, c), W(n, a, b, c)\) in equations (37), or, possibly, also of the forms (52)

\[
S(n, a, b, c) \equiv \begin{pmatrix}
\nu^a & 0 & 0 \\
0 & \nu^b & 0 \\
0 & 0 & \nu^c
\end{pmatrix}, \quad (52a)
\]

\[
T(n, a, b, c) \equiv \begin{pmatrix}
0 & 0 & \nu^a \\
0 & \nu^b & 0 \\
\nu^c & 0 & 0
\end{pmatrix}, \quad (52b)
\]

\[
U(n, a, b, c) \equiv \begin{pmatrix}
0 & \nu^a & 0 \\
\nu^b & 0 & 0 \\
0 & 0 & \nu^c
\end{pmatrix}, \quad (52c)
\]

where \(\nu = \exp(2i\pi/n)\), for some value of \(n\). It can also be seen that groups RVW only have singlet and triplet irreps, while groups that include matrices of types (52) also have doublet and six-plet irreps; no group in subsections 4.2–4.5 has irreps of any other dimension. There are, however, finite subgroups of \(U(3)\) that possess no three-dimensional faithful irrep consisting solely of matrices of the forms (37) and (52). Those groups have irreps of other dimensions than just one, two, three, and six; they are analogous to the exceptional subgroups of \(SU(3)\). We present in this section the \(U(3)\) subgroups of that type that have order smaller that 2000.

Groups \(\Xi(m, j)\) and \(\hat{\Xi}(m, j)\): The groups \(\Xi(m, j)\), where \(m \geq 1\) and \(j \geq 2\), have structure \([\mathbb{Z}_{3^m} \times \mathbb{Z}_3] \rtimes \mathbb{Z}_3 \rtimes \mathbb{Z}_{2^j}\) and order \(3^{m+2}2^j\). They are
The SmallGroups identifiers of the groups $\Xi(m,j)$ with order smaller than 2000 are in Table 23. Notice that, since $\det(iQ_{m,j}) = -i \exp \left[2i\pi / (3^{m-1}2^j) \right]$, the group $\Xi(1,2) \cong [108,15] \cong \Sigma(36 \times 3)$ is a subgroup of $SU(3)$.

The generators of $\hat{\Xi}(m,j)$ are the same as the generators of $\Xi(m,j)$ together with the additional matrix I' in equation (33). The groups $\hat{\Xi}(m,j)$ of order smaller than 2000 are in Table 24. Notice that the groups $\hat{\Xi}(m,2)$ have structure $\{(\mathbb{Z}_3^m \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2^j) \times \mathbb{Z}_2$; these groups may be written as direct products of \mathbb{Z}_2 and smaller groups, hence they are not included in Table 24.

The groups $\Xi(m,j)$ possess $3^{m-1}2^j$ inequivalent singlet irreps, $3^{m-1}2^j+1$ inequivalent triplet irreps, and $3^{m-1}2^j-1$ inequivalent quadruplet irreps. The groups $\hat{\Xi}(m,j)$ have twice as many irreps of each dimension as the groups $\Xi(m,j)$.

Groups $\Pi(m,j)$: The groups $\Pi(m,j)$, where $m \geq 1$ and $j \geq 2$, have structure $\{(\mathbb{Z}_3^m \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4^j) \times \mathbb{Z}_2^j$ and order $3^{m+2}2^j+2$. They are generated by the matrices E, K, and $Q_{m,j}$. The groups $\Pi(m,j)$ of order smaller than 2000 are in Table 25.

The groups $\Pi(m,j)$ have $3^{m-1}2^j+1$ singlet irreps, $3^{m-1}2^j-1$ doublet irreps, $3^{m-1}2^j$ triplet irreps, and $3^{m-1}2^j-2$ quadruplet irreps.

m,j identifier	$1, 2$	$1, 3$	$1, 4$	$1, 5$	$1, 6$
m,j identifier	2, 2	2, 3	2, 4	3, 2	3, 3
$[324, 111]$	$[648, 352]$	$[1296, 1239]$	$[972, 411]$	$[1944, 1123]$	

Table 23: The SmallGroups identifiers of the groups $\Xi(m,j)$ with order smaller than 2000.

m,j identifier	$1, 3$	$1, 4$	$1, 5$	$2, 3$
$[432, 273]$	$[864, 737]$	$[1728, 2929]$	$[1296, 2203]$	

Table 24: The SmallGroups identifiers of the groups $\hat{\Xi}(m,j)$ with order smaller than 2000.
Table 25: The **SmallGroups** identifiers of the groups $\Pi(m,j)$ with order smaller than 2000.

m, j identifier	1, 2	1, 3	1, 4	2, 2
	[432, 239]	[864, 675]	[1728, 2785]	[1296, 1995]

$3^{m-1}2^j$ triplet irreps, $3^{m-1}2^j$ six-plet irreps, and $3^{m-1}2^j$ eight-plet irreps.

Groups $\Theta(m)$: These groups have structure $[(\mathbb{Z}_3 \times \mathbb{Z}_3) \times \mathbb{Z}_3] \times Q_8$, where Q_8 is the quaternion group. Since Q_8 has eight elements, the order of $\Theta(m)$ is 72×3^m. The generators of $\Theta(m)$ are E, K, and either $Q_{m,1}$ or $Q_{m,0}$. Since $\det Q_{m,0} = \exp [2i\pi / (3^{m-1})]$, the group $\Theta(1)$ is a subgroup of $SU(3)$. Notice that the groups $\Theta(m)$ have the same generators as hypothetical groups $\Pi(m,1)$ would have had; but they have a slightly different structure. There are three groups $\Theta(m)$ of order smaller than 2000:

- $\Theta(1) \cong \Sigma (72 \times 3)$, (53a)
- $\Theta(2) \cong \{648, 551\}$, (53b)
- $\Theta(3) \cong \{1944, 2333\}$. (53c)

The groups $\Theta(m)$ have as many inequivalent irreps of each dimension as groups $\Pi(m,1)$.

Groups $\Upsilon(m)$ and $\Upsilon'(m)$: These groups have structure

$$\{(\mathbb{Z}_3 \times \mathbb{Z}_3) \times \mathbb{Z}_3\} \times Q_8 \cong \mathbb{Z}_{3^{m-1}} \times \{[(\mathbb{Z}_3 \times \mathbb{Z}_3) \times Q_8] \times \mathbb{Z}_3\}$$ (54)

and order 72×3^m. The generators are E, $Q_{0,0}$, and $X_1(m)$ for $\Upsilon(m)$ or $X_2(m)$ for $\Upsilon'(m)$. There are the following groups of order smaller than 2000:

- $\Upsilon(2) \cong \{648, 531\}$, (55a)
- $\Upsilon(3) \cong \{1944, 2293\}$, (55b)
- $\Upsilon'(2) \cong \Sigma (216 \times 3)$, (55c)
- $\Upsilon'(3) \cong \{1944, 2294\}$. (55d)

Notice that all three generators of $\Upsilon'(2)$ have unit determinant and therefore $\Upsilon'(2)$ is a subgroup of $SU(3)$.

The groups $\Upsilon(m)$ and $\Upsilon'(m)$ have 3^{m-1} singlets, 3^{m-1} doublets, $7 \times 3^{m-2}$ triplets, $2 \times 3^{m-1}$ six-plets, 3^{m-1} eight-plets, and $3^{m-2} \times 2$ nine-plets.
Groups $\Omega(m)$: These groups have structure $\{([Z_{3^m} \times Z_3] \times Z_3) \rtimes Q_8 \} \rtimes Z_3$ and order $72 \times 3^{m+1}$. They are generated by the matrices $Q_{m,0}$ and Z_1. There are the following groups of order smaller than 2000:

$$\Omega(1) \cong [648,533],$$
$$\Omega(2) \cong [1944,3448].$$

The groups $\Omega(m)$ have exactly as many inequivalent irreps of each dimension as the groups $\Upsilon(m + 1)$ and $\Upsilon'(m + 1)$.

5 Conclusion

In this paper we have used the SmallGroups library to search for all the finite subgroups of $U(3)$ of order less than 2000 that have a faithful three-dimensional irreducible representation and that cannot be written as the direct product of some smaller group and a cyclic group. We have found that there are three types of finite subgroups of $U(3)$:

- Groups that have a three-dimensional representation consisting solely of matrices of the forms (37) for some value of n. Those groups only have singlet and triplet irreducible representations.

- Groups that have a three-dimensional representation consisting solely of matrices of the forms (37) and (52) for some value of n. Those groups only have singlet, doublet, triplet, and six-plet irreducible representations.

- Groups that do not have a three-dimensional representation consisting solely of matrices of the forms (37) and (52). Those groups have irreducible representations of other dimensions, like for instance 4-plets, 8-plets, or 9-plets. Their generators include matrices $Q_{m,j}$ and possibly K in equations (35), (36). These groups include as special cases the exceptional $SU(3)$ subgroups $\Sigma(36 \times 3), \Sigma(72 \times 3)$, and $\Sigma(216 \times 3)$

We were able to group most finite subgroups of $U(3)$ in many series depending on one, two, or sometimes three integers; the groups in each series have

\[\text{It seems likely to us that the } SU(3) \text{ subgroup } \Sigma(360 \times 3) \text{ is also a special case of a series of } U(3) \text{ subgroups; the other groups of that series, though, surely have order larger than 2000.}\]
related generators and related numbers of irreps of each dimension. Unfortunately, many of these series have very few groups and we do not know whether and how they extend to groups of order higher than 2000. It is possible (and it would be desirable) that some of these series may be further unified among themselves.

Acknowledgements: D.J. thanks the Lithuanian Academy of Sciences for support through the project DaFi2016. The work of L.L. is supported by the Portuguese Fundação para a Ciência e a Tecnologia through the projects CERN/FIS-NUC/0010/2015 and UID/FIS/00777/2013, which are partially funded by POCTI (FEDER), COMPETE, QREN, and the European Union.

References

[1] There are many papers using A_4 as a flavour symmetry. We choose to refer only to some more recent ones. Y. Ben Tov, X.-G. He, and A. Zee, An $A_4 \times \mathbb{Z}_4$ model for neutrino mixing, JHEP 1212 (2012) 093 [arXiv:1208.1062 [hep-ph]]; M.-C. Chen, J. Huang, J.-M. O’Bryan, A. M. Wijangco, and F. Yu, Compatibility of θ_{13} and the Type I seesaw model with A_4 symmetry, JHEP 1302 (2013) 021 [arXiv:1210.6982 [hep-ph]]; M. Holthausen, M. Lindner, and M. A. Schmidt, Lepton flavor at the electroweak scale: A complete A_4 model, Phys. Rev. D 87 (2013) 033006 [arXiv:1211.5143 [hep-ph]]; S. F. King, S. Morisi, E. Peinado, and J. W. F. Valle, Quark–lepton mass relation in a realistic A_4 extension of the Standard Model, Phys. Lett. B 724 (2013) 68 [arXiv:1301.7065 [hep-ph]]; R. González Felipe, H. Serôdio, and J. P. Silva, Models with three Higgs doublets in the triplet representations of A_4 or S_4, Phys. Rev. D 87 (2013) 055010 [arXiv:1302.0861 [hep-ph]]; S. Morisi, M. Nebot, K. M. Patel, E. Peinado, and J. W. F. Valle, Quark–lepton mass relation and CKM mixing in an A_4 extension of the minimal supersymmetric standard model, Phys. Rev. D 88 (2013) 036001 [arXiv:1303.4394 [hep-ph]]; S. Morisi, D. V. Forero, J. C. Romão, and J. W. F. Valle, Neutrino mixing with revamped A_4 flavor symmetry, Phys. Rev. D 88 (2013) 016003 [arXiv:1305.6774 [hep-ph]].
P. M. Ferreira, L. Lavoura, and P. O. Ludl, *A new A_4 model for lepton mixing*, Phys. Lett. B 726 (2013) 767 [arXiv:1306.1500 [hep-ph]];
S. Pramanick and A. Raychaudhuri, *A_4-based seesaw model for realistic neutrino masses and mixing*, Phys. Rev. D 93 (2016) 033007 [arXiv:1508.02330 [hep-ph]].

[2] There are many papers using S_4 as a flavour symmetry. We choose to refer only to some more recent ones.
F. Bazzocchi and L. Merlo, *Neutrino mixings and the S_4 discrete flavour symmetry*, Fortsch. Phys. 61 (2013) 571 [arXiv:1205.5135 [hep-ph]];
R. Krishnan, P. F. Harrison, and W. G. Scott, *Simplest neutrino mixing from S_4 symmetry*, JHEP 1304 (2013) 087 [arXiv:1211.2000 [hep-ph]];
F. Feruglio, C. Hagedorn, and R. Ziegler, *A realistic pattern of lepton mixing and masses from S_4 and CP*, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178 [hep-ph]];
C. Luhn, *Trimaximal TM$_1$ neutrino mixing in S_4 with spontaneous CP violation*, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358 [hep-ph]];
M. Dimou, S. F. King, and C. Luhn, *Phenomenological implications of an SU(5) × S_4 × U(1) SUSY GUT of flavor*, Phys. Rev. D 93 (2016) 075026 [arXiv:1512.09063 [hep-ph]];
S. F. King and C. Luhn, *Littlest Seesaw model from S_4 × U(1)*, JHEP 1609 (2016) 023 [arXiv:1607.05276 [hep-ph]].

[3] There are many papers using S_3 as a flavour symmetry. We choose to refer only to some more recent ones.
H. B. Benaoum, *Broken S_3 neutrinos*, Phys. Rev. D 87 (2013) 073010 [arXiv:1302.0950 [hep-ph]];
E. Ma and B. Melić, *Updated S_3 model of quarks*, Phys. Lett. B 725 (2013) 402 [arXiv:1303.6928 [hep-ph]];
F. González Canales, A. Mondragón, M. Mondragón, U. J. Saldaña Salazar, and L. Velasco-Sevilla, *Quark sector of S_3 models: Classification and comparison with experimental data*, Phys. Rev. D 88 (2013) 096004 [arXiv:1304.6644 [hep-ph]];
A. E. Cárcamo Hernández, R. Martinez, and F. Ochoa, *Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S_3 flavor symmetry*, Eur. Phys. J. C 76 (2016) 634 [arXiv:1309.6567 [hep-ph]].
S. Pramanick and A. Raychaudhuri, *Neutrino mass model with S_3 symmetry and seesaw interplay*, Phys. Rev. D 94 (2016) 115028 [arXiv:1609.06103 [hep-ph]].

[4] C. Hagedorn, M. A. Schmidt, and A. Yu. Smirnov, *Lepton mixing and cancellation of the Dirac mass hierarchy in SO(10) GUTs with flavor symmetries T_7 and $\Sigma(81)$*, Phys. Rev. D 79 (2009) 036002 [arXiv:0811.2955 [hep-ph]]; V. V. Vien and H. N. Long, *The T_7 flavor symmetry in 3–3–1 model with neutral leptons*, JHEP 1404 (2014) 133 [arXiv:1402.1256 [hep-ph]]; C. Bonilla, S. Morisi, E. Peinado, and J. W. F. Valle, *Relating quarks and leptons with the T_7 flavour group*, Phys. Lett. B 742 (2015) 99 [arXiv:1411.4883 [hep-ph]]; A. E. Cárcamo Hernández and R. Martinez, *Fermion mass and mixing pattern in a minimal T_7 flavor 331 model*, J. Phys. G 43 (2016) 045003 [arXiv:1501.07261 [hep-ph]]; V. V. Vien and H. N. Long, *Lepton mass and mixing in a simple extension of the Standard Model based on T_7 flavor symmetry*, arXiv:1609.03895 [hep-ph].

[5] L. L. Everett and A. J. Stuart, *Icosahedral (A_5) family symmetry and the golden ratio prediction for solar neutrino mixing*, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057 [hep-ph]]; F. Feruglio and A. Paris, *The golden ratio prediction for the solar angle from a natural model with A_5 flavour symmetry*, JHEP 1103 (2011) 101 [arXiv:1101.0393 [hep-ph]]; I. de Medeiros Varzielas and L. Lavoura, *Golden ratio lepton mixing and nonzero reactor angle with A_5*, J. Phys. G 41 (2014) 055005 [arXiv:1312.0215 [hep-ph]]; J. Gehrlein, J. P. Oppermann, D. Schäfer, and M. Spinrath, *An SU(5) $\times A_5$ golden ratio flavour model*, Nucl. Phys. B 890 (2014) 539 [arXiv:1410.2057 [hep-ph]]; A. Di Iura, C. Hagedorn, and D. Meloni, *Lepton mixing from the interplay of the alternating group A_5 and CP*, JHEP 1508 (2015) 037 [arXiv:1503.04140 [hep-ph]]; P. Ballett, S. Pascoli, and J. Turner, *Mixing angle and phase correlations from A_5 with generalized CP and their prospects for discovery*, Phys. Rev. D 92 (2015) 093008 [arXiv:1503.07543 [hep-ph]].
[6] E. Ma, *Neutrino mass matrix from $\Delta(27)$ symmetry*, Mod. Phys. Lett. A **21** (2006) 1917 [hep-ph/0607056];
P. M. Ferreira, W. Grimus, L. Lavoura, and P. O. Ludl, *Maximal CP violation in lepton mixing from a model with $\Delta(27)$ flavour symmetry*, JHEP **1209** (2012) 128 [arXiv:1206.7072 [hep-ph]];
E. Ma, *Neutrino mixing and geometric CP violation with $\Delta(27)$ symmetry*, Phys. Lett. B **723** (2013) 161 [arXiv:1304.1603 [hep-ph]];
C. C. Nishi, *Generalized CP symmetries in $\Delta(27)$ flavor models*, Phys. Rev. D **88** (2013) 033010 [arXiv:1306.0877 [hep-ph]].

[7] J. A. Escobar and C. Luhn, *The flavor group $\Delta(6n^2)$*, J. Math. Phys. **50** (2009) 013524 [arXiv:0809.0639 [hep-th]];
B. Carballo-Pérez, E. Peinado, and S. Ramos-Sánchez, *$\Delta(54)$ flavor phenomenology and strings*, JHEP **1612** (2016) 131 [arXiv:1607.06812 [hep-ph]].

[8] C. Hagedorn, A. Meroni, and L. Vitale, *Mixing patterns from the groups $\Sigma(n\varphi)$*, J. Phys. A **47** (2014) 055201 [arXiv:1307.5308 [hep-ph]].

[9] G. A. Miller, L. E. Blichfeldt, and H. F. Dickson, *Theory and applications of finite groups* (Wiley, New York, 1916);
W. M. Fairbairn, T. Fulton, and W. H. Klink, *Finite and disconnected subgroups of SU$_3$ and their application to the elementary-particle spectrum*, J. Math. Phys. **5** (1964) 1038;
A. Bovier, M. Lüling, and D. Wyler, *Finite subgroups of SU(3)*, J. Math. Phys. **22** (1981) 1543;
W. M. Fairbairn and T. Fulton, *Some comments on finite subgroups of SU(3)*, J. Math. Phys. **23** (1982) 1747.

[10] P. O. Ludl, *On the finite subgroups of U(3) of order smaller than 512*, J. Phys. A **43** (2010) 395204 [Erratum: J. Phys. A **44** (2011) 139501] [arXiv:1006.1479 [math-ph]].

[11] E. Ma, *Lepton family symmetry and possible application to the Koide mass formula*, Phys. Lett. B **649** (2007) 287 [hep-ph/0612022];
H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, *Non-Abelian discrete symmetries in particle physics*, Prog. Theor. Phys. Suppl. **183** (2010) 1 [arXiv:1003.3552 [hep-th]].
In this appendix we present tables of all the groups of order smaller than 2000 that have a faithful three-dimensional irrep and cannot be written as the direct product of some smaller group and a cyclic group. The groups are ordered according to increasing values of firstly o and then j in their
SmallGroups identifier \([o, j]\). Tables 26–32 include the groups that are subgroups of \(SU(3)\); tables 33–43 include the groups that are not subgroups of \(SU(3)\).
Identifier	Classification
[12, 3]	$\Delta (3 \times 2^2)$
[21, 1]	$C^{(2)}_{7,1}$
[24, 12]	$\Delta (6 \times 2^2)$
[27, 3]	$\Delta (3 \times 3^2)$
[39, 1]	$C^{(3)}_{13,1}$
[48, 3]	$\Delta (3 \times 4^2)$
[54, 8]	$\Delta (6 \times 3^2)$
[57, 1]	$C^{(7)}_{19,1}$
[60, 5]	$\Sigma (60)$
[75, 2]	$\Delta (3 \times 5^2)$
[81, 9]	$C^{(1)}_{9,3}$
[84, 11]	$C^{(2)}_{14,2}$
[93, 1]	$C^{(5)}_{31,1}$
[96, 64]	$\Delta (6 \times 4^2)$
[108, 15]	$\Sigma (36 \times 3)$
[108, 22]	$\Delta (3 \times 6^2)$
[111, 1]	$C^{(10)}_{37,1}$
[129, 1]	$C^{(6)}_{43,1}$
[147, 1]	$C^{(18)}_{49,1}$
[147, 5]	$\Delta (3 \times 7^2)$
[150, 5]	$\Delta (6 \times 5^2)$
[156, 14]	$C^{(3)}_{26,2}$
[162, 14]	$D^{(1)}_{9,3}$
[168, 42]	$\Sigma (168)$
[183, 1]	$C^{(13)}_{61,1}$
[189, 8]	$C^{(2)}_{21,3}$
[192, 3]	$\Delta (3 \times 8^2)$
[201, 1]	$C^{(29)}_{67,1}$

Table 26: The finite subgroups of $SU(3)$. Part 1: groups with order through 201.

Identifier	Classification
[216, 88]	$\Sigma (72 \times 3)$
[216, 95]	$\Delta (6 \times 6^2)$
[219, 1]	$C^{(8)}_{73,1}$
[228, 11]	$C^{(7)}_{38,2}$
[237, 1]	$C^{(23)}_{79,1}$
[243, 26]	$\Delta (3 \times 9^2)$
[273, 3]	$C^{(16)}_{91,1}$
[273, 4]	$C^{(9)}_{91,1}$
[291, 1]	$C^{(35)}_{91,1}$
[294, 7]	$\Delta (6 \times 7^2)$
[300, 43]	$\Delta (3 \times 10^2)$
[309, 1]	$C^{(46)}_{103,1}$
[324, 50]	$C^{(1)}_{103,1}$
[327, 1]	$C^{(45)}_{109,1}$
[336, 57]	$C^{(2)}_{109,1}$
[351, 8]	$C^{(3)}_{28,4}$
[363, 2]	$\Delta (3 \times 11^2)$
[372, 11]	$C^{(5)}_{62,2}$
[381, 1]	$C^{(19)}_{127,1}$
[384, 568]	$\Delta (6 \times 8^2)$
[399, 3]	$C^{(11)}_{133,1}$
[399, 4]	$C^{(30)}_{133,1}$
[417, 1]	$C^{(42)}_{133,1}$
[432, 103]	$\Delta (3 \times 12^2)$
[444, 14]	$C^{(10)}_{74,2}$
[453, 1]	$C^{(32)}_{151,1}$
[471, 1]	$C^{(12)}_{151,1}$
[486, 61]	$\Delta (6 \times 9^2)$

Table 27: The finite subgroups of $SU(3)$. Part 2: groups with 216 ≤ order ≤ 486.
Identifier	Classification
[489, 1]	$C_{163,1}^{(88)}$
[507, 1]	$C_{169,1}^{(22)}$
[507, 5]	$C_{169,1}^{(2)}$
[513, 9]	$C_{57,3}^{(7)}$
[516, 11]	$C_{57,3}^{(6)}$
[525, 5]	$C_{35,5}^{(6)}$
[543, 1]	$C_{181,1}^{(48)}$
[567, 13]	$C_{63,3}^{(4)}$
[579, 1]	$C_{193,1}^{(84)}$
[588, 11]	$C_{188,2}^{(18)}$
[588, 60]	$C_{199,1}^{(92)}$
[600, 179]	$C_{52,4}^{(3)}$
[624, 60]	$C_{211,1}^{(14)}$
[633, 1]	$D_{18,6}^{(1)}$
[648, 259]	$C_{217,1}^{(25)}$
[648, 532]	$C_{217,1}^{(67)}$
[651, 3]	$C_{223,1}^{(39)}$
[651, 4]	$C_{223,1}^{(94)}$
[669, 1]	$C_{229,1}^{(94)}$
[675, 12]	$C_{241,1}^{(15)}$
[687, 1]	$C_{241,1}^{(1)}$
[723, 1]	$C_{27,9}^{(1)}$
[726, 5]	$C_{122,2}^{(13)}$
[729, 95]	$C_{247,1}^{(122)}$
[732, 14]	$C_{247,1}^{(68)}$
[741, 3]	$C_{122,2}^{(42)}$
[741, 4]	$C_{122,2}^{(2)}$
[756, 117]	$C_{122,2}^{(2)}$

Table 28: The finite subgroups of $SU(3)$. Part 3: groups with $489 \leq \text{order} \leq 756$.

Identifier	Classification
[768, 1083477]	$\Delta (3 \times 16^2)$
[777, 3]	$C_{121,1}^{(229)}$
[777, 4]	$C_{121,1}^{(100)}$
[804, 11]	$C_{259,1}^{(29)}$
[813, 1]	$C_{271,1}^{(28)}$
[831, 1]	$C_{277,1}^{(116)}$
[837, 8]	$C_{293,3}^{(5)}$
[849, 1]	$C_{293,3}^{(44)}$
[864, 701]	$\Delta (6 \times 12^2)$
[867, 2]	$\Delta (3 \times 17^2)$
[876, 14]	$C_{346,2}^{(8)}$
[903, 5]	$C_{346,2}^{(315)}$
[903, 6]	$C_{301,1}^{(79)}$
[912, 57]	$C_{301,1}^{(307)}$
[921, 1]	$C_{301,1}^{(98)}$
[939, 1]	$C_{301,1}^{(313)}$
[948, 11]	$C_{301,1}^{(313)}$
[972, 122]	$\Delta (3 \times 18^2)$
[975, 5]	$C_{365,5}^{(3)}$
[993, 1]	$C_{331,1}^{(31)}$
[999, 9]	$C_{331,1}^{(10)}$
[1011, 1]	$C_{331,1}^{(128)}$
[1014, 7]	$\Delta (6 \times 13^2)$
[1029, 6]	$C_{343,1}^{(18)}$
[1029, 9]	$C_{343,1}^{(18)}$
[1047, 1]	$C_{343,1}^{(122)}$
[1053, 35]	$C_{117,3}^{(16)}$
[1080, 260]	$\Sigma (360 \times 3)$

Table 29: The finite subgroups of $SU(3)$. Part 4: groups with $768 \leq \text{order} \leq 1080$.

46
Identifier	Classification
[1083, 1]	$C_{361,1}$
[1083, 5]	$\Delta (3 \times 19^2)$
[1092, 68]	$C_{182,2}$
[1092, 69]	$C_{182,2}$
[1101, 1]	$C_{367,1}$
[1119, 1]	$C_{373,1}$
[1137, 1]	$C_{379,1}$
[1161, 9]	$C_{129,3}$
[1164, 14]	$C_{194,2}$
[1176, 243]	$\Delta (6 \times 14^2)$
[1191, 1]	$C_{397,1}$
[1200, 384]	$\Delta (3 \times 20^2)$
[1209, 3]	$C_{463,1}$
[1209, 4]	$C_{463,1}$
[1227, 1]	$C_{409,1}$
[1236, 11]	$C_{262,2}$
[1263, 1]	$C_{262,2}$
[1281, 3]	$C_{427,1}$
[1281, 4]	$C_{427,1}$
[1296, 228]	$C_{186,12}$
[1299, 1]	$C_{433,1}$
[1308, 14]	$C_{231,2}$
[1317, 1]	$C_{439,1}$
[1323, 8]	$C_{147,3}$
[1323, 43]	$\Delta (3 \times 21^2)$
[1344, 393]	$C_{56,8}$
[1350, 46]	$\Delta (6 \times 15^2)$
[1371, 1]	$C_{457,1}$
[1389, 1]	$C_{463,1}$

Table 30: The finite subgroups of $SU(3)$. Part 5: groups with $1083 \leq$ order ≤ 1389.

Identifier	Classification
[1404, 141]	$C_{78,6}$
[1407, 3]	$C_{469,1}$
[1407, 4]	$C_{469,1}$
[1425, 5]	$C_{95,5}$
[1443, 4]	$C_{481,1}$
[1452, 34]	$\Delta (3 \times 22^2)$
[1458, 659]	$D_{27,9}$
[1461, 1]	$C_{487,1}$
[1488, 57]	$C_{124,4}$
[1497, 1]	$C_{499,1}$
[1524, 11]	$C_{254,2}$
[1533, 3]	$C_{511,1}$
[1533, 4]	$C_{511,1}$
[1536, 408544632]	$\Delta (6 \times 16^2)$
[1539, 35]	$C_{171,3}$
[1569, 1]	$C_{523,1}$
[1587, 2]	$\Delta (3 \times 23^2)$
[1596, 55]	$C_{206,2}$
[1596, 56]	$C_{266,2}$
[1623, 1]	$C_{541,1}$
[1641, 1]	$C_{547,1}$
[1647, 9]	$C_{183,3}$
[1659, 3]	$C_{533,1}$
[1659, 4]	$C_{102,2}$
[1668, 11]	$C_{553,1}$
[1677, 3]	$C_{278,2}$
[1677, 4]	$C_{165,1}$
[1701, 135]	$C_{559,1}$
[1701, 135]	$C_{178,1}$
[1701, 135]	$C_{559,1}$
[1701, 135]	$C_{63,9}$

Table 31: The finite subgroups of $SU(3)$. Part 6: groups with $1404 \leq$ order ≤ 1701.

47
Identifier	Classification
[1713, 1]	$C_{571,1}^{(109)}$
[1728, 1291]	$\Delta (3 \times 24^2)$
[1731, 1]	$C_{577,1}^{(213)}$
[1734, 5]	$\Delta (6 \times 17^2)$
[1767, 3]	$C_{589,1}^{(87)}$
[1767, 4]	$C_{589,1}^{(273)}$
[1776, 60]	$C_{148,4}^{(10)}$
[1803, 1]	$C_{201,1}^{(24)}$
[1809, 9]	$C_{302,1}^{(29)}$
[1812, 11]	$C_{302,1}^{(32)}$
[1821, 1]	$C_{607,1}^{(210)}$
[1839, 1]	$C_{613,1}^{(65)}$
[1857, 1]	$C_{619,1}^{(252)}$
[1875, 16]	$\Delta (3 \times 25^2)$
[1884, 14]	$C_{314,2}^{(12)}$
[1893, 1]	$C_{631,1}^{(43)}$
[1911, 3]	$C_{637,1}^{(165)}$
[1911, 14]	$C_{637,1}^{(263)}$
[1911, 4]	$C_{91,7}^{(3)}$
[1929, 1]	$C_{643,1}^{(177)}$
[1944, 489]	$\Delta (6 \times 18^2)$
[1956, 11]	$C_{326,2}^{(58)}$
[1971, 9]	$C_{219,3}^{(8)}$
[1983, 1]	$C_{296,1}^{(9)}$

Table 32: The finite subgroups of $SU(3)$. Part 7: groups with $1713 \leq \text{order} < 2000.$
Identifier	Classification
[27, 4]	$X(3), W(1, 2)$
[36, 3]	$\Delta (3 \times 2^2, 2)$
[48, 30]	$S_4(2)$
[63, 1]	$T_7^{(2)}(2)$
[81, 6]	$W(1, 3)$
[81, 7]	$Y(0), \Sigma (3 \times 3^3)$
[81, 8]	$Z'(3, 2)$
[81, 10]	$V(0)$
[81, 14]	$Z(3, 2)$
[96, 65]	$S_4(3)$
[108, 3]	$\Delta (3 \times 2^2, 3)$
[108, 11]	$\Delta (6 \times 3^2, 2)$
[108, 19]	$W(2, 2)$
[108, 21]	$X(6)$
[117, 1]	$T_{13}^{(3)}(2)$
[144, 3]	$\Delta (3 \times 4^2, 2)$
[162, 10]	$\tilde{Y}(0)$
[162, 12]	$Z(3, 2, 1)$
[162, 44]	$\Delta'(6 \times 3^2, 2, 1)$
[171, 1]	$T_{19}^{(7)}(2)$
[189, 1]	$T_7^{(2)}(3)$
[189, 4]	$Q_7^{(2)}(2)$
[189, 5]	$Q_7^{(2)}(2)$
[189, 7]	$P_7^{(2)}(2)$
[192, 182]	$\Delta (6 \times 4^2, 2)$
[192, 186]	$S_4(4)$
[216, 17]	$\Delta (6 \times 3^2, 3)$
[216, 25]	$\Xi (1, 3)$
[225, 3]	$\Delta (3 \times 5^2, 2)$

Table 33: The finite subgroups of $U(3)$. Part 1: groups with order ≤ 225.

Identifier	Classification
[243, 16]	$L(2)$
[243, 19]	$Z''(3, 3)$
[243, 20]	$Z'(3, 3)$
[243, 24]	$W(1, 4)$
[243, 25]	$D(0)$
[243, 27]	$X(9), J(1)$
[243, 50]	$Z(3, 3)$
[243, 55]	$U(3, 2, 2)$
[252, 11]	$L_7^{(2)}(2, 2)$
[279, 1]	$T_{31}^{(5)}(2)$
[300, 13]	$\Delta (6 \times 5^2, 2)$
[324, 3]	$\Delta (3 \times 2^2, 4)$
[324, 13]	$G(1, 2)$
[324, 15]	$Z(3, 2, 2)$
[324, 17]	$Z'(3, 2, 2)$
[324, 43]	$W(2, 3)$
[324, 45]	$Y(2, 1)$
[324, 49]	$Z'(6, 2)$
[324, 51]	$V(1)$
[324, 60]	$Y(1)$
[324, 102]	$\Delta'(6 \times 3^2, 2, 2)$
[324, 111]	$\Xi (2, 2)$
[324, 128]	$Z(6, 2)$
[333, 1]	$T_{27}^{(10)}(2)$
[351, 1]	$T_{13}^{(3)}(3)$
[351, 4]	$Q_{13}^{(3)}(2)$
[351, 5]	$Q_{13}^{(3)}(2)$
[351, 7]	$P_{13}^{(3)}(2)$
[384, 571]	$\Delta (6 \times 4^2, 3)$
[384, 581]	$S_4(5)$

Table 34: The finite subgroups of $U(3)$. Part 2: groups with $243 \leq$ order ≤ 384.

49
Table 35: The finite subgroups of $U(3)$. Part 3: groups with $387 \leq \text{order} \leq 576$.

Identifier	Classification
[387, 1]	$T_{43}^{(6)}(2)$
[432, 3]	$\Delta (3 \times 4^2, 3)$
[432, 33]	$\Delta (6 \times 3^2, 4)$
[432, 57]	$\Xi (1, 4)$
[432, 100]	$W (4, 2)$
[432, 102]	$X(12)$
[432, 239]	$\Pi (1, 2)$
[432, 260]	$\Delta (6 \times 6^2, 2)$
[432, 273]	$\hat{\Xi} (1, 3)$
[441, 1]	$T_{49}^{(18)}(2)$
[441, 7]	$\Delta (3 \times 7^2, 2)$
[468, 14]	$L_{13}^{(3)}(2, 2)$
[486, 26]	$Z' (3, 3, 1)$
[486, 28]	$Z (3, 3, 1)$
[486, 125]	$H (3, 2, 1)$
[486, 164]	$\Delta' (6 \times 3^2, 3, 1)$
[513, 1]	$T_{19}^{(7)} (3)$
[513, 5]	$Q_{19}^{(7)} (2)$
[513, 6]	$Q_{19}^{(7)}' (2)$
[513, 8]	$P_{19}^{(7)} (2)$
[549, 1]	$T_{61}^{(13)} (2)$
[567, 1]	$T_{7}^{(2)} (4)$
[567, 4]	$Q_{7}^{(2)} (3)$
[567, 5]	$Q_{7}^{(2)}' (3)$
[567, 7]	$P_{7}^{(2)} (3)$
[567, 12]	$S_{2}^{(3)} (2)$
[567, 14]	$V_{2}^{(2)} (2)$
[567, 23]	$Y_{2}^{(2)} (2)$
[567, 36]	$S_{2}^{(2)} (2)$
[576, 3]	$\Delta (3 \times 8^2, 2)$

Table 36: The finite subgroups of $U(3)$. Part 4: groups with $588 \leq \text{order} \leq 729$.

Identifier	Classification
[588, 16]	$\Delta (6 \times 7^2, 2)$
[600, 45]	$\Delta (6 \times 5^2, 3)$
[603, 1]	$T_{67}^{(20)} (2)$
[648, 19]	$G (1, 3)$
[648, 21]	$Z (3, 2, 3)$
[648, 23]	$Z' (3, 2, 3)$
[648, 244]	$\Delta' (6 \times 3^2, 2, 3)$
[648, 260]	$Z (6, 2, 1)$
[648, 266]	$\hat{Y} (1)$
[648, 352]	$\Xi (2, 3)$
[648, 531]	$\Upsilon (2)$
[648, 533]	$\Omega (1)$
[648, 551]	$\Theta (2)$
[648, 563]	$\Delta' (6 \times 6^2, 2, 1)$
[657, 1]	$T_{73}^{(8)} (2)$
[675, 5]	$\Delta (3 \times 5^2, 3)$
[675, 9]	$W (5, 2)$
[675, 11]	$X (15)$
[684, 11]	$L_{19}^{(7)} (2, 2)$
[711, 1]	$T_{76}^{(23)} (2)$
[729, 62]	$L(3)$
[729, 63]	$Z'' (3, 4)$
[729, 64]	$Z' (3, 4)$
[729, 80]	$J(2)$
[729, 86]	$U (3, 3, 2)$
[729, 94]	$W (1, 5)$
[729, 96]	see section 4.5
[729, 97]	see section 4.5
[729, 98]	see section 4.5
[729, 284]	$U (3, 3, 3)$
Identifier	Classification
---------------------	----------------
[729, 393]	$Z(3, 4)$
[729, 397]	$Z(9, 2)$
[756, 11]	$L_7^2(2, 3)$
[756, 113]	$M_7^2(2)$
[756, 114]	$M_7^2(2)'$
[756, 116]	$J_7^2(2)$
[768, 1085333]	$\Delta (6 \times 4^2, 4)$
[768, 1085335]	$\Delta (6 \times 8^2, 2)$
[768, 1085351]	$S_4(6)$
[819, 3]	$T_{91}^{(16)}(2)$
[819, 4]	$T_{91}^{(9)}(2)$
[837, 1]	$T_{31}^{(5)}(3)$
[837, 4]	$Q_5^{(5)}(2)$
[837, 5]	$Q_3^{(5)}(2)$
[837, 7]	$P_{31}^{(5)}(2)$
[864, 69]	$\Delta (6 \times 3^2, 5)$
[864, 194]	$\Xi (1, 5)$
[864, 675]	$\Pi (1, 3)$
[864, 703]	$\Delta (6 \times 6^2, 3)$
[864, 737]	$\hat{\Xi}(1, 4)$
[873, 1]	$T_{97}^{(35)}(2)$
[900, 66]	$\Delta (3 \times 10^2, 2)$
[927, 1]	$T_{103}^{(40)}(2)$
[927, 3]	$\Delta (3 \times 2^2, 5)$
[927, 29]	$Z'(3, 3, 2)$
[927, 31]	$Z(3, 3, 2)$
[927, 64]	$\Delta (6 \times 9^2, 2)$
[927, 117]	$W(2, 4)$
[972, 121]	$D(1)$

Table 37: The finite subgroups of $U(3)$. Part 5: groups with $729 \leq \text{order} \leq 972$.

Identifier	Classification
[972, 123]	$X(18)$
[972, 147]	$Y(3, 1)$
[972, 152]	$Z'(6, 3)$
[972, 153]	$Z''(6, 3)$
[972, 170]	see subsection 4.5
[972, 309]	$H(3, 2, 2), G(2, 2)$
[972, 348]	$\Delta'(6 \times 3^2, 3, 2)$
[972, 411]	$\Xi(3, 2)$
[972, 520]	$Z(6, 3)$
[972, 550]	$U(6, 2, 2)$
[981, 1]	$T_{109}^{(45)}(2)$
[999, 1]	$T_{37}^{(10)}(3)$
[999, 5]	$Q_{37}^{(10)'r}(2)$
[999, 6]	$Q_{37}^{(10)}(2)$
[999, 8]	$P_{37}^{(10)}(2)$
[1008, 57]	$L_7^{(2)}(4, 2)$
[1053, 16]	$T_{13}^{(3)}(4)$
[1053, 25]	$Q_{13}^{(3)}(3)$
[1053, 26]	$Q_{13}^{(3)}(3)$
[1053, 27]	$P_{13}^{(3)}(3)$
[1053, 29]	$Y_{13}^{(3)}(2)$
[1053, 32]	$S_{13}^{(3)}(2)$
[1053, 37]	$V_{13}^{(3)}(2)$
[1053, 47]	$S_{13}^{(3)}(2)$
[1089, 3]	$\Delta (3 \times 11^2, 2)$
[1116, 11]	$L_{31}^{(5)}(2, 2)$
[1143, 1]	$T_{127}^{(19)}(2)$

Table 38: The finite subgroups of $U(3)$. Part 6: groups with $972 \leq \text{order} \leq 1143$.

51
Identifier	Classification
[1161, 6]	$T_{43}^{(6)} (3)$
[1161, 10]	$Q_{43}^{(6)} (2)$
[1161, 11]	$Q_{43}^{(6)} (2)$
[1161, 12]	$P_{43}^{(6)} (2)$
[1176, 57]	$\Delta (6 \times 7^2, 3)$
[1197, 3]	$T_{133}^{(11)} (2)$
[1197, 4]	$T_{133}^{(30)} (2)$
[1200, 183]	$\Delta (6 \times 5^2, 4)$
[1200, 682]	$\Delta (6 \times 10^2, 2)$
[1251, 1]	$T_{139}^{(42)} (2)$
[1296, 3]	$\Delta (3 \times 4^2, 4)$
[1296, 35]	$G (1, 4)$
[1296, 37]	$Z (3, 2, 4)$
[1296, 39]	$Z' (3, 2, 4)$
[1296, 220]	$W (4, 3)$
[1296, 222]	$Y (2, 2)$
[1296, 226]	$V (2)$
[1296, 227]	$Z' (12, 2)$
[1296, 237]	$Y (2)$
[1296, 647]	$\Delta' (6 \times 3^2, 2, 4)$
[1296, 688]	$Z' (6, 2, 2)$
[1296, 689]	$Z (6, 2, 2)$
[1296, 699]	see subsection 4.3
[1296, 1239]	$\Xi (2, 4)$
[1296, 1499]	$Z (12, 2)$
[1296, 1995]	$\Pi (2, 2)$
[1296, 2113]	$\Delta' (6 \times 6^2, 2, 2)$
[1296, 2203]	$\hat{\Xi} (2, 3)$

Table 39: The finite subgroups of $U(3)$. Part 7: groups with $1161 \leq \text{order} \leq 1296$.

Identifier	Classification
[1323, 1]	$T_{49}^{(18)} (3)$
[1323, 4]	$Q_{49}^{(18)} (2)$
[1323, 5]	$Q_{49}^{(18)/} (2)$
[1323, 7]	$P_{49}^{(18)} (2)$
[1323, 14]	$\Delta (3 \times 7^2, 3)$
[1323, 40]	$W (7, 2)$
[1323, 42]	$X (21)$
[1332, 14]	$L_{13}^{(10)} (2, 2)$
[1359, 1]	$T_{151}^{(32)} (2)$
[1404, 14]	$L_{13}^{(3)} (2, 3)$
[1404, 137]	$M_{13}^{(3)}$
[1404, 138]	$M_{13}^{(3)/}$
[1404, 140]	$J_{13}^{(3)}$
[1404, 149]	$T_{157}^{(12)} (2)$
[1452, 11]	$\Delta (6 \times 11^2, 2)$
[1458, 615]	$Z' (3, 4, 1)$
[1458, 618]	$Z (3, 4, 1)$
[1458, 663]	see section 4.5
[1458, 666]	see section 4.5
[1458, 1095]	$H (3, 3, 1)$
[1458, 1354]	$\Delta' (6 \times 3^2, 4, 1)$
[1458, 1371]	$\Delta' (6 \times 9^2, 2, 1)$
[1467, 1]	$T_{163}^{(58)} (2)$
[1521, 1]	$T_{169}^{(22)} (2)$
[1521, 7]	$\Delta (3 \times 13^2, 2)$
[1536, 408544641]	$\Delta (6 \times 8^2, 3)$
[1536, 408544678]	$\Delta (6 \times 4^2, 5)$
[1536, 408544687]	$S_4 (7)$

Table 40: The finite subgroups of $U(3)$. Part 8: groups with $1323 \leq \text{order} \leq 1536$.

52
Identifier	Classification
[1539, 16]	$T_{19}^{(7)}(4)$
[1539, 25]	$Q_{19}^{(7)}(3)$
[1539, 26]	$Q_{19}^{(7)}(3)$
[1539, 27]	$P_{19}^{(7)}(3)$
[1539, 29]	$Y_{19}^{(7)}(2)$
[1539, 32]	$S_{19}^{(7)}(2)$
[1539, 37]	$V_{19}^{(7)}(2)$
[1539, 47]	$S_{19}^{(7)}(2)$
[1548, 11]	$L_{43}^{(6)}(2, 2)$
[1575, 7]	$L_{7}^{(2)}(5, 2)$
[1629, 1]	$T_{181}^{(48)}(2)$
[1647, 6]	$T_{61}^{(13)}(3)$
[1647, 10]	$Q_{61}^{(13)}(2)$
[1647, 11]	$Q_{61}^{(13)}(2)$
[1647, 12]	$P_{61}^{(13)}(2)$
[1701, 68]	$T_{7}^{(2)}(5)$
[1701, 102]	see section 4.4
[1701, 112]	see section 4.5
[1701, 115]	$S_{7}^{(2)}(3)$
[1701, 126]	$Q_{7}^{(2)}(4)$
[1701, 127]	$Q_{7}^{(2)}(4)$
[1701, 128]	$P_{7}^{(2)}(4)$
[1701, 130]	see section 4.5
[1701, 131]	see section 4.5
[1701, 138]	$V_{7}^{(2)}(3)$
[1701, 240]	$S_{7}^{(2)}(3)$
[1701, 261]	$Y_{7}^{(2)}(3)$

Table 41: The finite subgroups of $U(3)$. Part 9: groups with $1539 \leq$ order ≤ 1701.

Identifier	Classification
[1728, 3]	$\Delta (3 \times 8^2, 3)$
[1728, 185]	$\Delta (6 \times 3^2, 6)$
[1728, 953]	$\Xi (1, 6)$
[1728, 1286]	$W (8, 2)$
[1728, 1290]	$X (24)$
[1728, 2785]	$\Pi (1, 4)$
[1728, 2847]	$\Delta (6 \times 12^2, 2)$
[1728, 2855]	$\Delta (6 \times 6^2, 4)$
[1728, 2929]	$\hat{\Xi} (1, 5)$
[1737, 1]	$T_{193}^{(84)}(2)$
[1764, 11]	$L_{49}^{(18)}(2, 2)$
[1764, 91]	$\Delta (3 \times 14^2, 2)$
[1791, 1]	$T_{199}^{(29)}(2)$
[1809, 6]	$T_{67}^{(29)}(3)$
[1809, 10]	$Q_{67}^{(29)}(2)$
[1809, 11]	$Q_{67}^{(29)}(2)$
[1809, 12]	$P_{67}^{(29)}(2)$
[1872, 60]	$L_{13}^{(3)}(4, 2)$
[1899, 1]	$T_{211}^{(14)}(2)$
[1944, 35]	$Z' (3, 3, 3)$
[1944, 37]	$Z (3, 3, 3)$
[1944, 70]	$\Delta (6 \times 9^2, 3)$
[1944, 707]	$H (3, 2, 3), G (2, 3)$
[1944, 746]	$\Delta' (6 \times 3^2, 3, 3)$
[1944, 832]	$Z' (6, 3, 1)$
[1944, 833]	$Z (6, 3, 1)$
[1944, 1123]	$\Xi (3, 3)$

Table 42: The finite subgroups of $U(3)$. Part 10: groups with $1728 \leq$ order ≤ 1944. 53
Identifier	Classification
[1944, 2293]	Υ(3)
[1944, 2294]	Υ′(3)
[1944, 2333]	Θ(3)
[1944, 2363]	H (6, 2, 1)
[1944, 2415]	Δ'(6 × 6^2, 3, 1)
[1944, 3448]	Ω(2)
[1953, 3]	T_{217}^{(25)}(2)
[1953, 4]	T_{217}^{(67)}(2)
[1971, 6]	T_{73}^{(8)}(3)
[1971, 10]	Q_{73}^{(8)}(2)
[1971, 11]	Q_{73}^{(8)}(2)
[1971, 12]	P_{73}^{(8)}(2)

Table 43: The finite subgroups of \(U(3) \). Part 11: groups with 1944 ≤ order < 2000.