Cimandiri Fault Identification Using Earthquake Tomography Double-Difference Method

R G Simanjorang¹, M S Rosid¹, A S Sembiring², Daryono², N Heryandoko²

¹Geophysics, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia
²Meteorological, Climatological, and Geophysical Agency of Indonesia, Jakarta, Indonesia

E-mail: syamsu.rosid@ui.ac.id

Abstract. Cimandiri Fault is one of major faults in West Java, which has a considerable potential hazard to the surrounding populated area. Therefore, it’s important to have a better understanding about the fault in order to improve disaster mitigation effort in Indonesia. This study is done to identify the Cimandiri Fault based on tomography earthquake data. The recorded data of 290 events were acquired from 15 BMKG seismograph stations located in the vicinity of study area. All events have a total of 2,895 phases consisted of 2,072 P-wave phases and 823 S-wave phases. The method used in this study to produce images beneath the surface of Western Java is double-difference travel time seismic tomography. Inversions were performed using the TomoDD algorithm to image seismic velocity models with horizontal variations from Banten Province and West Java. The final results of this study show the existence of Cimandiri Fault located in the southern part of West Java and extends with direction of North East-South West through Pelabuhan Ratu until it reaches the ocean in the south of Banten.

1. Introduction
Western Java is one of the regions in Indonesia that is still experiencing active deformation due to the tectonic plate activity that occur beneath the surface of Indonesia [1]. These tectonic activities produce three active faults, and one of them is Cimandiri, which is located in highly populated areas such as Pelabuhan Ratu, Sukabumi, and Bandung Area, as shown in Figure 1 [2, 3]. Febriani in 2016 [3] have done a study regarding earthquake activities around Cimandiri Fault zone and indicated that the area is dominated by M > 3 earthquakes at shallow depth and might be associated with the activity of Cimandiri Fault zone.
Cimandiri Fault has taken major roles in shaping the current geological condition in West Java region throughout the histories, though its activities may inflict great damage to the population in the area. Therefore, it’s important to have a better understanding about the presence of the fault in order to anticipate the negative effect of the activated fault.

2. Data and Method

The data used in this study are the recording data of Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) seismograph network with a total of 15 stations which are divided into 3 stations located in Banten, 4 stations located in Lampung, and 8 stations located in West Java (Figure 2). This study uses data records for 15 months starting from December 1, 2017 to February 21, 2019.

Data processing in this study uses arrival time picking results catalog of P waves and S waves from waveform data signal recording from BMKG. The total data used is 290 events (Figure 2) data that are located in between 05°57’ S - 07°41’ S and 105°20’ E – 107°20’ E. The phase recorded were a total of 2.895 phases in the form of 2.072 P phases and 823 S phases.

The method used in this study to image the velocity structure beneath West Java and Banten area is seismic double-difference tomography. This method has been used in several studies to image the structure beneath some area such as Hayward Fault in California [4], and the velocity structures in Central Java [5].

Figure 1. The location of Cimandiri Fault zone and regional geology of the study area. (1) quaternary volcanics, (2) alluvial plain, (3) Bogor zone, (4) dome and ridge in Bandung zone, (5) Bandung-Cimandiri zone, (6) southern mountains, and (7) trace of Cimandiri Fault [3].
This study used the TomoDD algorithm by Zhang and Thurber in the inversion process [4]. TomoDD algorithm used absolute data in the form of travel time catalog data for every events. Inversion process in TomoDD algorithm combines absolute data with differential data. The differential data pairs events with certain criteria as a part of double-difference calculation, so the travel time can be more accurately corrected. This method can provide events location and velocity structure with higher accuracy than other tomography method that only uses absolute data [6].

3. Results and Discussion

After the relocation process, there are 270 of 290 events successfully relocated, with 20 events relocated outside the grid area. In TomoDD, the events which are relocated outside the grid after the inversion are not included in further inversion process. These results give a justification that there are improvements in the data quality, that can be seen in the residual value. Before relocation process, the travel time residual value is between -4.4 to 4.3 seconds. After the relocation, the residual value has been reduced to between -1 to 1.3 seconds. Comparison of travel time residual graphs before and after relocation are shown in Figure 3.

The relocation results showed that there are some hypocenter points grouped in the South of Banten (Figure 4), precisely at Pelabuhan Ratu and has South West to North East direction. These relocated hypocenter points might indicates earthquake hypocenter caused by Cimandiri Fault activity which has same location and direction.
Figure 3. Travel time residual graphs (A) before relocation and (B) after relocation.

Figure 4. Map showing earthquake events epicenter (A) before relocation and (B) after relocation. Blue dots indicates shallow earthquake events with $Z < 60$ km and red dots indicates intermediate earthquake with 60 km $< Z < 300$ km.

Horizontal cross-section tomogram shows the V_S value (in percent perturbation) for depths of 0 km, 20 km, and 40 km from mean sea level (Figure 5). At the depth of 20 km, there is a density contrast in V_S tomogram. These result can be associated with the existence of fault in this area, that is suspected to be Cimandiri Fault. The result of earthquake relocation in this area also support this argument by showing the hypocenter position grouped in the Southern region of Banten and heading North East with a trend resembling Cimandiri Fault.

The area with low V_S value in the V_S tomogram for 20 km depth indicates the part that falls on a fault. On the contrary, the area with high V_S value indicates the part that rises on a fault. This condition is in accordance with Haryanto et al. [7] that there are regional normal faults along the Cimandiri Fault line caused by reduced compression tectonics on the Island of Java in the Early Quarter.

At the depth of 0 km and 40 km we cannot see the difference in V_s value that can indicates the existence of Cimandiri Fault. This results matched the condition in Java region where the average crustal thickness only ranges from 37 km to 39 km while more than that are estimated to be Moho [8].
Figure 5. Horizontal cross-section V_S tomogram for three depth variation with relocated earthquake hypocenter (red dots). Black line showing the rough trend of Cimandiri fault according to relocation result and velocity contrast.

This identification result of Cimandiri Fault shows similarities with studies conducted in this study area, for example, the study conducted by Febriani et al. [9] using CSAMT method to obtain the image of the western part of Cimandiri Fault. The study showed the presence of conductive and resistive zone which characterizes the western part of Cimandiri Fault in the same area as the study we have done.

Compared to other studies using TomoDD method in different areas, the detail of cross-section image (Figure 5) needs more improvement. Zhang and Thurber [4] tested the TomoDD method along Hayward...
Fault and gained velocity structure which is sharper compared to standard tomography. Allam et al. [10] also managed to obtain a sharp velocity contrast in the San Jacinto fault zone, California. Those results can be obtained because both studies used a lot of events that are more concentrated. With that being said, deeper understanding about the structure of Cimandiri Fault can be attained with more detailed events data in the study area.

4. Conclusion
The data acquired for seismic tomography study is located in West Java and Banten region and have succeeded to produce velocity maps with depth variations in the study area. The results produced in this study are able to image the velocity anomaly which resembles Cimandiri Fault only in the depth of 20 km from mean sea level. The strike of the fault is North East – South West. For future work, the tomography inversion process shall be conducted in a more detailed depth with interval about ±5 km to ±10 km to produce more precise depiction of Cimandiri fault.

Acknowledgement
We thank the Meteorological, Climatological, and Geophysical Agency of Indonesia for supporting this study by allowing using their data. We also thank DRPM Universitas Indonesia for the financial support given in publishing the study through grant of PITTA 2019.

References
[1] Hamilton W. B. (1979). Tectonics of the Indonesian Region (No. 1078). US Govt. Print. Off.
[2] Rosalia S., Widiyantoro S., Yudistira T., Cummins P., and Nugraha A. D. (2019). Western Java Ambient Noise Tomography: A Preliminary Result. In Journal of Physics: Conference Series, Vol. 1204, No. 1, p. 012099. IOP Publishing, 2019.
[3] Febriani F. (2016). Seismicity around the Cimandiri Fault Zone, West Java, Indonesia. In AIP Conference Proceedings, Vol. 1711, No. 1, p. 070003. AIP Publishing.
[4] Zhang H. and Thurber C. H. (2003). Double-difference tomography: The method and its application to the Hayward Fault, California. Bulletin of the Seismological Society of America, 93 (5), 1875-1889.
[5] Rohadi S., Widiyantoro S., and Masturyono A. D. (2015). Tomographic Imaging of 3-D Seismic Velocity Structure Using Double-Difference Method and Joint Inversion of the MERAMEX and MCGA Earthquake Data of Central Part of Java. In Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7-10 July 2015 (pp. 480-481). Society of Exploration Geophysicists, Australian Society of Exploration Geophysicists, Chinese Geophysical Society, Korean Society of Earth and Exploration Geophysicists, and Society of Exploration Geophysicists of Japan.
[6] Zhang H., and Thurber C. (2006). Development and applications of double-difference seismic tomography. Pure and Applied Geophysics, 163 (2-3), 373-403.
[7] Haryanto I., Hutabarat J., Sudrajat A., Ilmi N. N., and Sunardi E. (2017). Tektonik Sesar Cimandiri, Provinsi Jawa Barat. Bulletin of Scientific Contribution: GEOLOGY, 15 (3), 255-274.
[8] Ario P., Rosid S., Anggono T., and Januarti Y. (2018). Crustal structure in the southern part of Central Java based on analysis of tele-seismic receiver function using a neighbourhood algorithm. In Journal of Physics: Conference Series, Vol. 985, No. 1, p. 012018. IOP Publishing.
[9] Febriani F., Hattori K., Widarto D. S., Han P., Yoshino C., Nurdiyanto B., Efendi N., Maulana I., and Gaffar E. (2013). Audio Frequency Magnetotelluric Imaging of the Cimandiri Fault, West Java, Indonesia. Jurnal Geofisika, 14 (1), 131-143.
[10] Allam A. A., Ben-Zion Y., Kurzon I., and Vernon F. (2014). Seismic velocity structure in the Hot Springs and Trifurcation areas of the San Jacinto Fault zone, California, from double difference tomography. Geophysical Journal International, 198 (2), 978-999