Limits of small functors *

Brian J. Day
Mathematics Department
Macquarie University

Stephen Lack
School of Computing and Mathematics
University of Western Sydney
s.lack@uws.edu.au

Abstract

For a small category \(\mathcal{K} \) enriched over a suitable monoidal category \(\mathcal{V} \), the free completion of \(\mathcal{K} \) under colimits is the presheaf category \([\mathcal{K}^{\text{op}}, \mathcal{V}] \). If \(\mathcal{K} \) is large, its free completion under colimits is the \(\mathcal{V} \)-category \(\mathcal{P}\mathcal{K} \) of small presheaves on \(\mathcal{K} \), where a presheaf is small if it is a left Kan extension of some presheaf with small domain. We study the existence of limits and of monoidal closed structures on \(\mathcal{P}\mathcal{K} \).

A fundamental construction in category theory is the category of presheaves \([\mathcal{K}^{\text{op}}, \text{Set}] \) on a small category \(\mathcal{K} \). Among many other important properties, it is the free completion of \(\mathcal{K} \) under colimits. If the category \(\mathcal{K} \) is large, then the full presheaf category \([\mathcal{K}^{\text{op}}, \text{Set}] \) is not the free completion of \(\mathcal{K} \) under colimits; indeed it is not even a legitimate category, insofar as its hom-sets are not in general small.

In some contexts it is more appropriate to consider not all the presheaves on \(\mathcal{K} \), but only the small ones: a presheaf \(F : \mathcal{K}^{\text{op}} \to \text{Set} \) is said to be small if it is the left Kan extension of some presheaf whose domain is small. This is equivalent to \(F \) being the left Kan extension of its restriction to some small full subcategory of its domain, or equally to its being a small colimit of representables. The natural transformations between two small presheaves on \(\mathcal{K} \) do form a small set, and so the totality of small presheaves on \(\mathcal{K} \) forms a genuine category \(\mathcal{P}\mathcal{K} \) with small hom-sets. Furthermore, \(\mathcal{P}\mathcal{K} \) is in fact the free completion of \(\mathcal{K} \) under colimits. Of course if \(\mathcal{K} \) is small, then every presheaf on \(\mathcal{K} \) is small, and so \(\mathcal{P}\mathcal{K} \) is just \([\mathcal{K}^{\text{op}}, \text{Set}] \), but in general this is not the case.

Although \(\mathcal{P}\mathcal{K} \) is the free completion of \(\mathcal{K} \) under colimits, it does not have all the good properties of \([\mathcal{K}^{\text{op}}, \text{Set}] \) for small \(\mathcal{K} \). For example it is not necessarily complete or cartesian closed. In this paper we study, among other things, when \(\mathcal{P}\mathcal{K} \) does have such good properties.

In fact we work not just with ordinary categories, but with categories enriched over a suitable monoidal category \(\mathcal{V} \). Once again, if \(\mathcal{K} \) is small then \([\mathcal{K}^{\text{op}}, \mathcal{V}] \) is the free completion of \(\mathcal{K} \) under colimits, but for large \(\mathcal{K} \) this is no longer the case; the illegitimacy of \([\mathcal{K}^{\text{op}}, \mathcal{V}] \) in that case is more drastic: it is not even a \(\mathcal{V} \)-category. The free completion of \(\mathcal{K} \) under colimits is the \(\mathcal{V} \)-category \(\mathcal{P}\mathcal{K} \) of small presheaves on \(\mathcal{K} \), where once again a presheaf is small if it is the left Kan extension of some presheaf with small domain; and once again the two reformulations of this notion can be made.

∗Both authors gratefully acknowledge the support of the Australian Research Council.
The case $\mathcal{V} = \textbf{Set}$ is closely related to work by various authors. Freyd [7] introduced two smallness notions for presheaves on large categories. He called a functor $F : \mathcal{K}^{\text{op}} \to \textbf{Set}$ petty if there is a small family $(C_\lambda \in \mathcal{K})_{\lambda \in \Lambda}$ with an epimorphism

$$\sum_\lambda \mathcal{K}(-, C_\lambda) \to F;$$

and lucid if it is petty and for any representable $\mathcal{K}(-, A)$ and any pair of maps $u, v : \mathcal{K}(-, A) \to F$, their equalizer is petty. Freyd studied when the category of petty presheaves on \mathcal{K} is complete, and when the category of lucid presheaves on \mathcal{K} is complete, obtaining results similar to our Theorem 3.8 below. Rosický [15] showed that if \mathcal{K} is complete, then a presheaf F on \mathcal{K} is lucid if and only if it is small; one can then deduce our Corollary 3.9 from the results of Freyd. Rosický also characterized, in the case $\mathcal{V} = \textbf{Set}$, when $\mathcal{P}\mathcal{K}$ is cartesian closed; see Example 7.4 below. In a slightly different direction, the existence of limits in free completions under some class of colimits was studied in [9].

In the enriched case, the fact, mentioned above, that $\mathcal{P}\mathcal{K}$ is the free completion of \mathcal{K} under colimits, is due to Lindner [14]. The existence of limits or monoidal closed structures on $\mathcal{P}\mathcal{K}$ seems not to have been considered in the enriched setting.

Some of our results have been used in abstract homotopy theory; for example Corollary 3.9 was used in [5]. The idea is that one wants to have a complete and cocomplete category of diagrams of some particular type, where the indexing category is large. In this context one is particularly interested in the case $\mathcal{V} = \textbf{SSet}$, the category of simplicial sets.

In Section 1 we review the required background from enriched category theory, and in Section 2 the notion of small functor. Then in Section 3 we prove the fundamental result that $\mathcal{P}\mathcal{K}$ is complete if and only if it has limits of representables; thus in particular $\mathcal{P}\mathcal{K}$ is complete if \mathcal{K} is so. In Section 4 we refine the results of the previous section to deal not with arbitrary (small) limits, but with limits of some particular type, such as finite limits or finite products. In Section 5 we deduce from the earlier results various known results about the case $\mathcal{V}_0 = \textbf{Set}$ of ordinary categories, before extending them to the case where \mathcal{V}_0 is a presheaf category. Section 6 concerns not the existence of limits in $\mathcal{P}\mathcal{K}$ but the preservation of limits by functors $\mathcal{P}\mathcal{F} : \mathcal{P}\mathcal{K} \to \mathcal{P}\mathcal{L}$ given by left Kan extension along $F^{\text{op}} : \mathcal{K}^{\text{op}} \to \mathcal{L}^{\text{op}}$. In Section 7 we study monoidal closed structures on $\mathcal{P}\mathcal{K}$ using the notion of promonoidal category. In Section 8 we consider limits of small functors with codomain a locally presentable category \mathcal{M}, generalizing the earlier case of $\mathcal{M} = \mathcal{V}$. Finally in Section 9 we briefly discuss Isbell conjugacy for large categories.

The second-named author is very grateful to Francis Borceux and his colleagues at the Université Catholique de Louvain-la-Neuve for their hospitality during a one-month visit in 1998, during which some of the early work on this paper was completed; and to Ross Street and the Mathematics Department at Macquarie University, for their hospitality during a sabbatical visit in 2006, during which the paper was finally completed.

1 Review of relevant enriched category theory

We shall work over a symmetric monoidal closed category \mathcal{V}. The tensor product is denoted \otimes, the unit object I, and the internal hom $[\cdot, \cdot]$. Where necessary the underlying ordinary category is denoted \mathcal{V}_0.
We suppose that this underlying ordinary category is locally presentable \([3,2]\): thus for some regular cardinal \(\alpha\) and some small category \(\mathcal{C}\) with \(\alpha\)-small limits \(\mathcal{V}_0\) is equivalent to the category of \(\alpha\)-continuous functors from \(\mathcal{C}\) to \(\text{Set}\). It follows that \(\mathcal{V}_0\) is complete and cocomplete, and it turns out that \(\mathcal{C}\) is equivalent to the opposite of the full subcategory \((\mathcal{V}_0)_\alpha\) of \(\mathcal{V}_0\) consisting of the \(\alpha\)-presentable objects: these are the \(X \in \mathcal{V}_0\) for which \(\mathcal{V}_0(X,-) : \mathcal{V}_0 \to \text{Set}\) preserves \(\alpha\)-filtered colimits. By \([13]\), after possibly changing \(\alpha\), we may suppose that \((\mathcal{V}_0)_\alpha\) is closed in \(\mathcal{V}_0\) under the monoidal structure, so that \(\mathcal{V}\) is \textit{locally \(\alpha\)-presentable as a closed category}, in the sense of \([10]\).

We shall work throughout the paper over such a locally presentable closed category. This includes many important examples, such as the categories \(\text{Set}, \text{Ab}, \text{R-Mod}, \text{Cat}, \text{Gpd}\), and \(\text{SSet}\), of sets, abelian groups, \(R\)-modules (over a commutative ring \(R\)), categories, groupoids, and simplicial sets, as well as the two-element lattice \(\mathfrak{2}\). All these examples are locally \textit{finitely} presentable (that is, locally \(\aleph_0\)-presentable) but there are further examples which require a higher cardinal than \(\aleph_0\): for example any Grothendieck topos, the category \(\text{Ban}\) of Banach spaces and linear contractions, Lawvere’s category \([0, \infty]\) of extended non-negative real numbers, or the first-named author’s \(*\)-autonomous category \([−\infty, \infty]\) of extended real numbers. All categorical notions are understood to be enriched over \(\mathcal{V}\), even if this is not explicitly stated. (Thus category means \(\mathcal{V}\)-category, functor means \(\mathcal{V}\)-functor, and so on.) We fix a regular cardinal \(\alpha_0\) for which \(\mathcal{V}_0\) is locally \(\alpha_0\)-presentable and \((\mathcal{V}_0)_{\alpha_0}\) is closed under the monoidal structure. Henceforth “\(\alpha\) is a regular cardinal” will mean “\(\alpha\) is a regular cardinal and \(\alpha \geq \alpha_0\)”.

For such a \(\mathcal{V}\), it was shown in \([10]\) that there is a good notion of locally \(\alpha\)-presentable \(\mathcal{V}\)-category, for any regular cardinal \(\alpha \geq \alpha_0\). A locally \(\alpha\)-presentable \(\mathcal{V}\)-category \(\mathcal{K}\) is complete and cocomplete, and is equivalent to the \(\mathcal{V}\)-category of \(\alpha\)-continuous \(\mathcal{V}\)-functors from \(\mathcal{C}\) to \(\mathcal{V}\) for some small \(\mathcal{V}\)-category \(\mathcal{C}\) with \(\alpha\)-small limits. This \(\mathcal{C}\) can be identified with the opposite of the category of \(\alpha\)-presentable objects in \(\mathcal{K}\).

A \textit{weight} is a presheaf \(F : \mathcal{C}^{\text{op}} \to \mathcal{V}\), usually, although not always with small domain. The \textit{colimit} of a functor \(S : \mathcal{C} \to \mathcal{K}\) is denoted by \(F * S\), while the \textit{limit} of a functor \(S : \mathcal{C}^{\text{op}} \to \mathcal{K}\) is denoted by \(\{F,S\}\). When \(\mathcal{C}^{\text{op}}\) is the unit \(\mathcal{V}\)-category \(\mathcal{J}\), we may identify \(F\) with an object of \(\mathcal{V}\) and \(S\) with an object of \(\mathcal{C}\); we sometimes write \(F \cdot S\) for \(F * S\) and call it a tensor, and we sometimes write \(F \bowtie S\) for \(\{F,S\}\) and call it a cotensor.

2 Small functors

A functor \(F : \mathcal{K} \to \mathcal{V}\) is said to be \textit{small} if it is the left Kan extension of its restriction to some small full subcategory of \(\mathcal{K}\). This will clearly be the case if \(F\) is a small colimit of representables, for then we may take as the subcategory precisely those objects corresponding to the representables in the colimit. On the other hand, if \(F : \mathcal{K} \to \mathcal{V}\) is the left Kan extension of \(FJ\) along the inclusion \(J : \mathcal{C} \to \mathcal{K}\) of some small full subcategory, then \(F = (FJ) * \mathcal{K}(J,1)\), and so \(F\) is a small colimit of representables. Thus the small functors are precisely the small colimits of representables.

Of course if \(\mathcal{K}\) is itself small, then every functor from \(\mathcal{K}\) to \(\mathcal{V}\) is small. If on the other hand \(\mathcal{K}\) is locally presentable, then a functor \(F : \mathcal{K} \to \mathcal{V}\) is small if and only if it is accessible: that is, if and only if it preserves \(\alpha\)-filtered colimits for some regular cardinal \(\alpha\). For if \(F\) is accessible, then we may choose \(\alpha\) so that \(\mathcal{K}\) is locally \(\alpha\)-presentable and \(F\) preserves \(\alpha\)-filtered colimits; then \(F\) is the left Kan extension of its restriction to the full subcategory of \(\mathcal{K}\) consisting of the \(\alpha\)-presentable objects. Conversely, if \(F\) is the left Kan extension of its restriction to a small full subcategory \(\mathcal{C}\) of \(\mathcal{K}\), then we may choose a regular cardinal \(\alpha\) in such a way that \(\mathcal{K}\) is locally \(\alpha\)-presentable and
every object in \mathcal{C} is α-presentable in \mathcal{K}, and then F preserves α-filtered colimits.

Remark 2.1 There is a corresponding result for the case where \mathcal{K} is accessible, but we have not taken the trouble to formulate it here, since as usual there is a greater sensitivity to the choice of regular cardinal in the accessible case than in the locally presentable one.

The totality of small functors from \mathcal{K}^{op} to \mathcal{V} forms a \mathcal{V}-category $\mathcal{P}\mathcal{K}$ which is cocomplete and is in fact the free cocompletion of \mathcal{K} via the Yoneda embedding $Y : \mathcal{K} \to \mathcal{P}\mathcal{K}$. In the case where \mathcal{K} is small, $\mathcal{P}\mathcal{K}$ is simply the presheaf category $[\mathcal{K}^{\text{op}}, \mathcal{V}]$, but in general not every presheaf is small.

Example 2.2 Let \mathcal{V} be Set, and let \mathcal{K} be any large set X, seen as a discrete category. Then a presheaf on \mathcal{K} can be seen as an X-indexed set $A \to X$, and it is small if and only if A is so.

The construction $\mathcal{P}\mathcal{K}$ is pseudofunctorial in \mathcal{K}, and forms part of a pseudomonad \mathcal{P} on \mathcal{V}-Cat. We shall also consider free completions under certain types of colimit. Let Φ be a class of weights with small domain. For a \mathcal{V}-category \mathcal{K} write $\Phi(\mathcal{K})$ for the closure of \mathcal{K} in $\mathcal{P}\mathcal{K}$ under Φ-colimits. The Yoneda embedding $Y : \mathcal{K} \to \Phi(\mathcal{K})$ exhibits $\Phi(\mathcal{K})$ as the free completion of \mathcal{K} under Φ-colimits. The class Φ is said to be saturated if, whenever \mathcal{K} is small, $\Phi(\mathcal{K})$ consists exactly of the presheaves on \mathcal{K} lying in Φ. (This idea goes back to [3], where the word “closed” was used rather than “saturated”.') Once again the construction $\Phi(\mathcal{K})$ is pseudofunctorial in \mathcal{K} and forms part of a pseudomonad Φ^* on \mathcal{V}-Cat. The union Φ^* of all the $\Phi(\mathcal{C})$ with \mathcal{C} small is a new class of weights called the saturation of Φ.

Thus far we have spoken only of smallness of presheaves, but we shall also have cause to consider smallness of more general functors. Once again, we say that a \mathcal{V}-functor $S : \mathcal{K} \to \mathcal{M}$ is small if it is the left Kan extension of some \mathcal{V}-functor $\mathcal{C} \to \mathcal{M}$ with small domain, or equivalently, if it is the left Kan extension of its restriction to some small full subcategory of \mathcal{K}. This definition works best when \mathcal{M} is cocomplete, so that one can form the relevant left Kan extensions, and we shall only use it in this context. An important case is where $\mathcal{M} = [\mathcal{C}, \mathcal{V}]$ for some small \mathcal{C}. We say that $S : \mathcal{K} \to [\mathcal{C}, \mathcal{V}]$ is pointwise small if the composite of S with each evaluation functor $\text{ev}_C : [\mathcal{C}, \mathcal{V}] \to \mathcal{V}$ is small.

Lemma 2.3 A functor $S : \mathcal{K} \to [\mathcal{C}, \mathcal{V}]$ is small if and only if it is pointwise small.

Proof: Since the evaluation functors preserve Kan extensions the “only if” part is immediate. Conversely, if S is pointwise small, then for each C there is a small full subcategory \mathcal{B}_C of \mathcal{K} with the property that $\text{ev}_C S$ is the left Kan extension of its restriction to \mathcal{B}_C. Since \mathcal{C} is small, the union \mathcal{B} of the \mathcal{B}_C is small, and now each $\text{ev}_C S$ is the left Kan extension of its restriction to \mathcal{B}, hence the same is true of S. □

In Section 3 we shall also consider the case where \mathcal{M} is locally presentable.

3 Limits of small functors

As observed above, if \mathcal{K} is small then $\mathcal{P}\mathcal{K}$ is the full presheaf category $[\mathcal{K}^{\text{op}}, \text{Set}]$ which is of course not just cocomplete but also complete. In general, however, a category of the form $\mathcal{P}\mathcal{K}$ need not be complete, as the following example, based on Example 2.2 shows:
Example 3.1 If \(\mathcal{V} \) is \(\text{Set} \) and \(\mathcal{K} \) is a large discrete category then \(\mathcal{PK} \) has no terminal object.

We investigate which categories \(\mathcal{K} \) have the property that \(\mathcal{PK} \) is complete. First observe that since \(\mathcal{PK} \) contains the representables, any limit in \(\mathcal{PK} \) must be formed pointwise. Thus the question "is \(\mathcal{PK} \) complete?" may be rephrased as "are limits of small presheaves on \(\mathcal{K} \) small?" This may appear to involve consideration of the illegitimate \([\mathcal{K}^{\text{op}}, \mathcal{V}] \), but in fact this is unnecessary. Given a weight \(\varphi: \mathcal{C} \to \mathcal{V} \), where \(\mathcal{C} \) is small, and a diagram \(S: \mathcal{C} \to \mathcal{PK} \), we may regard \(S \) as a functor \(\tilde{S}: \mathcal{K}^{\text{op}} \to [\mathcal{C}, \mathcal{V}] \), and compose \(\tilde{S} \) with \(\{\varphi, -\}: [\mathcal{C}, \mathcal{V}] \to \mathcal{V} \), and ask whether the composite \(\{\varphi, S-\}: \mathcal{K}^{\text{op}} \to \mathcal{V} \) is small.

An arbitrary \(\tilde{S}: \mathcal{K}^{\text{op}} \to [\mathcal{C}, \mathcal{V}] \) arises in this way from some \(S: \mathcal{C} \to \mathcal{PK} \) if and only if \(\tilde{S} \) is pointwise small; recall from the previous section that this means that each \(\text{ev}_C\tilde{S}: \mathcal{K}^{\text{op}} \to \mathcal{V} \) is small, but that it is equivalent to \(\tilde{S} \) itself being small.

Proposition 3.2 The limit of \(S: \mathcal{C} \to \mathcal{PK} \) weighted by \(\varphi: \mathcal{C} \to \mathcal{V} \) exists if and only if \(\{\varphi, S-\} \) is small; \(\mathcal{PK} \) has all \(\varphi \)-limits if and only if \(\{\varphi, R-\} \) is small for every small \(R: \mathcal{K}^{\text{op}} \to [\mathcal{C}, \mathcal{V}] \).

Related to the existence of limits in \(\mathcal{K} \) is the existence of a right adjoint to \(\mathcal{PF}: \mathcal{PK} \to \mathcal{PL} \) for a functor \(F: \mathcal{K} \to \mathcal{L} \). Here \(\mathcal{PF} \) is given by left Kan extensions along \(F \), so if \(\mathcal{K} \) were small then \(\mathcal{PF} \) would have a right adjoint given by restriction along \(F \). In general, however, the restriction \(GF \) of a small \(G: \mathcal{L}^{\text{op}} \to \mathcal{V} \) need not be small; indeed the restriction \(\mathcal{L}(F, L): \mathcal{K}^{\text{op}} \to \mathcal{V} \) of a representable \(\mathcal{L}(-, L) \) need not be small. But if each \(\mathcal{L}(F, L) \) is small, we have the right adjoint:

Proposition 3.3 For an arbitrary functor \(F: \mathcal{K} \to \mathcal{L} \), there is a right adjoint to \(\mathcal{PF}: \mathcal{PK} \to \mathcal{PL} \) if and only if \(\mathcal{L}(F, L) : \mathcal{K}^{\text{op}} \to \mathcal{V} \) is small for every object \(L \) of \(\mathcal{L} \), and then the right adjont is given by restriction along \(F \).

Proof: If \(\mathcal{PF} \) has a right adjoint \(R \), then

\[
RGA \cong \mathcal{PK}(YA, RG) \cong \mathcal{PL}(\mathcal{PF}YA,G) \cong \mathcal{PL}(YFA,G) \cong GFA
\]

for any \(G \) in \(\mathcal{PL} \), and so \(R \) must be given by restriction along \(F \). Thus \(RYL = \mathcal{L}(F, L) \), which must therefore be small.

Suppose conversely that each \(\mathcal{L}(F, L) \) is small. Each \(G \) in \(\mathcal{PL} \) is a small colimit of representables. Since restricting along \(F \) preserves colimits, \(GF \) is a small colimit of functors of the form \(\mathcal{L}(F, L) \), but these are small by assumption, so \(GF \) is small. \(\square \)

Our first example of a large category \(\mathcal{K} \) with \(\mathcal{PK} \) complete is the opposite of a locally presentable category.

Proposition 3.4 \(\mathcal{PK} \) is complete if \(\mathcal{K}^{\text{op}} \) is locally presentable.

Proof: If \(\mathcal{K}^{\text{op}} \) is locally presentable and \(R: \mathcal{K}^{\text{op}} \to [\mathcal{C}, \mathcal{V}] \) is small, then for each object \(C \) of \(\mathcal{C} \) there is a regular cardinal \(\alpha_C \) for which \(\text{ev}_C R \) is \(\alpha_C \)-accessible. Since \(\mathcal{C} \) is small, we may choose a regular cardinal \(\alpha \) for which \(\mathcal{K}^{\text{op}} \) is an \(\alpha \)-accessible category, \(R \) is an \(\alpha \)-accessible functor, and \(\varphi \) is \(\alpha \)-presentable in \([\mathcal{C}, \mathcal{V}] \). Then \(R \) and \(\{\varphi, -\} \) preserve \(\alpha \)-filtered colimits, hence so does \(\{\varphi, R-\} \). \(\square \)
Remark 3.5 The proposition remains true if \mathcal{K}^{op} is accessible; the comments made in Remark 2.1 still apply.

Corollary 3.6 $\mathcal{P}\mathcal{K}$ is complete if \mathcal{K} is $[\mathcal{A}, \mathcal{V}]^{\text{op}}$ for a small category \mathcal{A}.

In other words, $\mathcal{P}\mathcal{K}$ is complete if $\mathcal{K} = \mathcal{P}(\mathcal{A}^{\text{op}})^{\text{op}}$ for a small \mathcal{A}. We shall now show how to remove the hypothesis that \mathcal{A} is small. First observe $\mathcal{P}\mathcal{J} : \mathcal{P}\mathcal{K} \to \mathcal{P}\mathcal{L}$ is given by left Kan extension along J, so is fully faithful if J is so.

Proposition 3.7 $\mathcal{P}\mathcal{K}$ is complete if $\mathcal{K} = \mathcal{P}(\mathcal{L}^{\text{op}})^{\text{op}}$.

Proof: Let \mathcal{C} be a small category and let $R : \mathcal{K}^{\text{op}} \to [\mathcal{C}, \mathcal{V}]$ be small; we must show that $\{\varphi, R-\}$ is small. Now R is the left Kan extension of its restriction to a small full subcategory \mathcal{D} of $\mathcal{P}(\mathcal{L}^{\text{op}})$. Each $D \in \mathcal{D}$ is a small functor $\mathcal{L} \to \mathcal{V}$, so is the left Kan extension of its restriction to some small B_D. The union \mathcal{B} of the B_D is small, and now the full inclusion $J : \mathcal{B}^{\text{op}} \to \mathcal{L}^{\text{op}}$ induces a full inclusion $\mathcal{P}J : \mathcal{P}(\mathcal{B}^{\text{op}}) \to \mathcal{P}(\mathcal{L}^{\text{op}})$ containing \mathcal{D}.

Now \mathcal{B} is small, so $\mathcal{P}J$ has a right adjoint J^* given by restriction along J, and thus $\text{Lan}_{\mathcal{P}J}$ is itself given by restriction along J^*. Since R is the left Kan extension of its restriction S along $\mathcal{P}J$, we have

$$\{\varphi, R-\} = \{\varphi, -\}R \cong \{\varphi, -\}\text{Lan}_{\mathcal{P}J}S \cong \{\varphi, -\}SJ^* \cong \text{Lan}_{\mathcal{P}J}\{\varphi, -\}S = \text{Lan}_{\mathcal{P}J}\{\varphi, S-\}$$

and so $\{\varphi, R-\}$ will be small if $\{\varphi, S-\}$ is so. Now $S : \mathcal{P}(\mathcal{B}^{\text{op}}) \to \mathcal{V}$ is the left Kan extension of its restriction to \mathcal{D}, hence small, and \mathcal{B} is small, so by Corollary 3.6 we conclude that $\{\varphi, S-\}$ is small.

We are now ready to prove the main result of this section:

Theorem 3.8 $\mathcal{P}\mathcal{K}$ is complete if and only if it has limits of representables.

Proof: The “only if” part is trivial, so suppose that $\mathcal{P}\mathcal{K}$ has limits of representables. Let $\mathcal{L} = \mathcal{P}(\mathcal{K}^{\text{op}})^{\text{op}}$, and let $Z : \mathcal{K} \to \mathcal{L}$ be the Yoneda embedding. By Proposition 3.3 the fully faithful $\mathcal{P}Z : \mathcal{P}\mathcal{K} \to \mathcal{P}\mathcal{L}$ has a right adjoint if $\mathcal{L}(Z, L)$ is small for each L. But $\mathcal{L}(Z, L) = \mathcal{P}(\mathcal{K}^{\text{op}})(L, Y)$, where $L : \mathcal{K} \to \mathcal{V}$ is a small functor. Then L is the left Kan extension of its restriction to some small full subcategory $J : \mathcal{B} \to \mathcal{K}$, and now $\mathcal{P}(\mathcal{K}^{\text{op}})(\text{Lan}_{J}(LJ), Y) = \mathcal{P}(\mathcal{B}^{\text{op}})(LJ, YJ)$ which is the LJ-weighted limit of a diagram of representables, thus small by assumption. This proves that $\mathcal{P}\mathcal{K}$ is a full coreflective subcategory of $\mathcal{P}\mathcal{L}$; since $\mathcal{P}\mathcal{L}$ is complete by Proposition 3.7 it follows that $\mathcal{P}\mathcal{K}$ is so.

Corollary 3.9 $\mathcal{P}\mathcal{K}$ is complete if \mathcal{K} is so.

4 Particular types of limit

This section gives a more refined result, dealing with particular classes of limits. It also provides an alternative proof for the main results of the previous section. It is based on the ideas of [1].

Let Φ be a class of weights. For a \mathcal{V}-category \mathcal{C}, we write $\Phi\mathcal{C}$ for the closure of the representables in $\mathcal{P}\mathcal{C}$ under Φ-weighted colimits. We suppose that the class Φ satisfies the following conditions:
(a) (smallness) If C is small then so is ΦC;
(b) (soundness) If D is small and Φ-complete, and $\psi : D \to V$ is Φ-continuous, then $\psi \ast - : [D^{\text{op}}, V] \to V$ is Φ-continuous.

Example 4.1

1. If V is Set, then any sound doctrine in the sense of [1] provides an example. Thus one could take Φ to be the (class of weights corresponding to the) finite limits, or the α-small limits for some regular cardinal α, or the finite products, or the finite connected limits.

2. For any locally α-presentable V, by the results of [10, (6.11),(7.4)] one can take Φ to be the class P_{α} of α-small limits.

3. If V is cartesian closed, then by the results of [4] (see also [12]) one can take Φ to be the class of finite products. In fact by the results of [4] this is still the case if V is the algebras of any commutative finitary theory over a cartesian closed category.

Lemma 4.2 If K is Φ-cocomplete and $J : C \to K$ is a small full subcategory, then the closure \bar{C} of C in K under Φ-colimits is small.

Proof: By the smallness assumption on Φ, the free Φ-cocompletion ΦC of C is small. Then \bar{C} is given, up to equivalence, by the full image of the Φ-continuous extension $\bar{J} : \Phi C \to K$ of J; thus \bar{C} is small since ΦC is so. □

Proposition 4.3 If K is Φ-complete then so is $\mathcal{P}K$.

Proof: Let $\varphi : C \to V$ be in Φ, with C small, and let $S : \mathcal{K}^{\text{op}} \to [C, V]$ be small. Then S is the left Kan extension of its restriction to some small full subcategory $J^{\text{op}} : B^{\text{op}} \to \mathcal{K}^{\text{op}}$. By the lemma, $S = \text{Lan}_{J^{\text{op}}} R$, where B is small and Φ-complete, $J : B \to \mathcal{K}$ is Φ-continuous, and $R : B^{\text{op}} \to [C, V]$. Now $\mathcal{K}(K, J \ast -) : B \to V$ is Φ-continuous for all $K \in \mathcal{K}$, so $\mathcal{K}(K, J \ast -) : B^{\text{op}} \to V$ is Φ-continuous, so $\{\varphi, -\} : [C, V] \to V$ preserves the left Kan extension $S = \text{Lan}_{J^{\text{op}}} R$. In other words

$$\{\varphi, S\} = \{\varphi, \text{Lan}_{J^{\text{op}}} R\} = \text{Lan}_{J^{\text{op}}} \{\varphi, R\}$$

and so $\{\varphi, S\}$ is small. □

Proposition 4.4 $\mathcal{P}K$ has all Φ-limits if and only if it has Φ^*-limits of representables.

Proof: Recall from Section 2 that Φ^* is the “saturation” of Φ, so that a V-category has Φ-limits if and only if it has Φ^*-limits, and in particular if $\mathcal{P}K$ has Φ-limits then it certainly has Φ^*-limits of representables.

Let $Z : \mathcal{K} \to \mathcal{L}$ be the free Φ-completion of \mathcal{K} under Φ-limits; explicitly, $\mathcal{L} = \Phi^*(\mathcal{K}^{\text{op}})^{\text{op}}$, and Z is the restricted Yoneda embedding. Then $\mathcal{P}L$ is Φ-complete by the previous proposition. Since $\mathcal{P}Z : \mathcal{P}K \to \mathcal{P}L$ is fully faithful, $\mathcal{P}K$ will be Φ-complete provided that $\mathcal{P}Z$ has a right adjoint. But this will happen if and only if $\mathcal{L}(Z-, F) : \mathcal{K}^{\text{op}} \to V$ is small for all $F \in \mathcal{L}$. Now

$$\mathcal{L}(Z-, F) = \mathcal{P}(\mathcal{K}^{\text{op}})(F, Y-)$$

and the latter is an F-weighted limit of representables, with $F \in \Phi^*$. □
Corollary 4.5 \(\mathcal{P}\mathcal{K} \) is complete if \(\mathcal{K} \) is.

Proof: If \(\mathcal{K} \) is complete, then it is \(\mathcal{P}\alpha \) complete for any regular cardinal \(\alpha \). Thus \(\mathcal{P}\mathcal{K} \) is \(\mathcal{P}\alpha \) complete for any regular cardinal \(\alpha \), and so is complete. \(\square \)

5 The case where \(\mathcal{V}_0 \) is a presheaf category

For the first part of this section we suppose that \(\mathcal{V} = \text{Set} \), leading to Theorem 5.1. The latter should be attributed to Freyd, although it may not have been written down by him in exactly this form; it is a special case of [9, Theorem 4.8]. We include it as a warm-up for the more general case where the underlying category \(\mathcal{V}_0 \) of \(\mathcal{V} \) is a presheaf category. This includes the case of the cartesian closed categories of directed graphs, or of simplicial sets, as well as such non-cartesian cases as the category of \(G \)-graded sets, for a group \(G \), or the category of \(M \)-sets, for a commutative monoid \(M \).

Suppose then that \(\mathcal{V} = \text{Set} \). First observe that the statement \(\mathcal{P}\mathcal{K} \) has limits if and only if it has limits of representables remains true if by limit we mean conical limit. To say that \(\mathcal{P}\mathcal{K} \) has conical limits of representables is to say that for any \(S : \mathcal{C} \to \mathcal{K} \) with \(\mathcal{C} \) small, the limit of \(YS \) is small.

For the first part of this section we suppose that \(\mathcal{V} = \text{Set} \) with \(\mathcal{V}_0 \) as in Corollary 4.5. With \(\mathcal{V} = \text{Set} \), it is a special case of [9, Theorem 4.8]. We include it as a warm-up for the more general case where the underlying category \(\mathcal{V}_0 \) of \(\mathcal{V} \) is a presheaf category. This includes the case of the cartesian closed categories of directed graphs, or of simplicial sets, as well as such non-cartesian cases as the category of \(G \)-graded sets, for a group \(G \), or the category of \(M \)-sets, for a commutative monoid \(M \).

The existence of a small full subcategory \(\mathcal{B} \) satisfying (i) is clearly equivalent to the existence of a small set of cones through which every cone factorizes: this is the solution set condition. In fact, however, if this solution set condition holds for any \(S : \mathcal{D} \to \mathcal{K} \) with \(\mathcal{D} \) small then \(\mathcal{P}\mathcal{K} \) is complete, for we shall show below that if \(\mathcal{B} \) satisfies (i), then we may enlarge \(\mathcal{B} \) to a new small full subcategory \(\overline{\mathcal{B}} \) which satisfies (i) and (ii). This is done as follows. Let \(\mathcal{B}_0 = \mathcal{B} \). We construct inductively small full subcategories \(\mathcal{B}_n \) for each natural number \(n \), and then define \(\overline{\mathcal{B}} \) to be the union of the \(\mathcal{B}_n \).

Let \(\mathcal{D} \) be the category obtained from \(\mathcal{D} \) by freely adjoining two cones, with vertices 0 and 1, say. Let \(\mathcal{B}_n \) be a small full subcategory, and consider all functors \(S' : \mathcal{D}' \to \mathcal{K} \) extending \(\mathcal{D} \), and sending the vertices 0 and 1 to objects of \(\mathcal{B}_n \). For each such \(S' \), we may by hypothesis choose a small full subcategory \(\mathcal{B}_{S'} \) of \(\mathcal{K} \) which is a “solution set” for \(S' \). Take \(\mathcal{B}_{n+1} \) to be the union of \(\mathcal{B}_n \) and all the \(\mathcal{B}_{S'} \). This is a small union of small full subcategories, so is itself a small full subcategory. Once again, \(\overline{\mathcal{B}} \) is a small union of the small full subcategories \(\mathcal{B}_n \), and so is small. Clearly it satisfies (i); we check that it satisfies (ii) as well. Suppose then that \(\beta : \Delta B \to S \) and \(\beta' : \Delta B' \to S \) are cones over \(S \) with \(B, B' \in \overline{\mathcal{B}} \), and that \(f : A \to B \) and \(f' : A \to B' \) are arrows with \(\beta \Delta f = \beta' \Delta f' \). Then \(B, B', \beta \), and \(\beta' \) together define a functor \(S' : \mathcal{D}' \to \mathcal{K} \) extending \(S \); while to give \(A, f \), and \(f' \) is precisely to give a cone under \(S' \). Since \(B, B' \in \overline{\mathcal{B}} \), there is some \(n \in \mathbb{N} \) for which \(B, B' \in \mathcal{B}_n \), so there is a cone \(S' \) with vertex \(C \in \mathcal{B}_{S'} \) through which the cone \((A, f, f') \) factorizes. But this \(C \) is in \(\mathcal{B}_{n+1} \), and so in \(\overline{\mathcal{B}} \). This proves:

Theorem 5.1 \(\mathcal{P}\mathcal{K} \) is complete if and only if for every diagram \(S : \mathcal{D} \to \mathcal{K} \) with \(\mathcal{D} \) small, there is a small set of cones under \(S \) through which every cone factorizes.
We now extend this argument to the case where \(\mathcal{V}_0 \) is a presheaf category \([\mathcal{G}^{\text{op}}, \text{Set}] \). To extend the argument, we need to assume that the \(\mathcal{V} \)-category \(\mathcal{K} \) admits tensors and cotensors by the representables; this means that for all \(A, B \in \mathcal{K} \) and \(G \in \mathcal{G} \), there are natural isomorphisms

\[
\mathcal{K}(A, G \sqcup B) \cong [\mathcal{G}^{\text{op}}, \text{Set}](\mathcal{G}(_, G), \mathcal{K}(A, B)) \cong \mathcal{K}(G \cdot A, B)
\]

for objects \(G \cdot A \) and \(G \sqcup B \) of \(\mathcal{K} \); the first operation is called a tensor by \(G \) and the second a cotensor by \(G \). When these exist, we say that \(\mathcal{K} \) is \(\mathcal{G} \)-tensored and \(\mathcal{G} \)-cotensored. (Of course in the case \(\mathcal{V} = \text{Set} \) we have \(\mathcal{G} = \{ I \} \) and so this is automatic.)

Proposition 5.2 If \(\mathcal{K} \) is \(\mathcal{G} \)-cotensored, then \(\mathcal{PK} \) is complete if and only if its underlying ordinary category \((\mathcal{PK})_0 \) has conical limits of representables.

Proof: Recall [11] 3.10 that every weighted limit has a canonical expression as a conical limit of cotensors. On the other hand, since every object of \(\mathcal{V}_0 = [\mathcal{G}^{\text{op}}, \text{Set}] \) is (canonically) a conical colimit of representables, and we have \((\colim_i G_i) \sqcup A \cong \lim_i (G_i \sqcup A) \), it follows that every cotensor is canonically a conical limit of \(\mathcal{G} \)-cotensors, and so finally that every weighted limit is canonically a conical limit of \(\mathcal{G} \)-cotensors. Suppose now that we have a diagram of representables \(YS : \mathcal{D} \to \mathcal{PK} \) and a weight \(\varphi \). We can therefore express this as a conical limit of \(\mathcal{G} \)-cotensors of representables. But \(\mathcal{K} \) was assumed to be \(\mathcal{G} \)-cotensored, so a \(\mathcal{G} \)-cotensor of representables in \(\mathcal{PK} \) exists, and is representable. Thus \(\mathcal{PK} \) will have weighted limits of representables provided that it has conical limits of representables. Finally, \(\mathcal{PK} \) is cocomplete, so is certainly tensored, thus conical limits in \(\mathcal{PK} \) exist provided that they exist in the underlying ordinary category \((\mathcal{PK})_0 \) of \(\mathcal{PK} \), consisting of small \(\mathcal{V} \)-functors \(\mathcal{K}^{\text{op}} \to \mathcal{V} \) and \(\mathcal{V} \)-natural transformations between them. \(\square \)

We now adapt the argument from the \(\mathcal{V} = \text{Set} \) case to the \(V = [\mathcal{G}^{\text{op}}, \text{Set}] \) case to prove:

Proposition 5.3 If \(\mathcal{K} \) is \(\mathcal{G} \)-tensored, then \((\mathcal{PK})_0 \) has conical limits of representables if and only if, for every diagram \(S : \mathcal{C} \to \mathcal{K}_0 \), there is a small set of cones through which every cone factorizes.

Proof: Suppose that \((\mathcal{PK})_0 \) has conical limits of representables, and let \(S : \mathcal{C} \to \mathcal{K}_0 \) be given. Then \(YS : \mathcal{C} \to (\mathcal{PK})_0 \) has a limit \(L \) with cone \(\eta_C : L \to \mathcal{K}(_, SC) \). Also \(L \) is a small colimit of representables \(\colim_i \mathcal{K}(_, B_i) \). For each \(i \), there is an induced cone \(\mathcal{K}(_, B_i) \to \mathcal{K}(_, SC) \), or equivalently \(\beta_i C : B_i \to SC \) under \(S \). We claim that any cone \(\alpha C : A \to SC \) factorizes through one of these. Now \(\mathcal{K}(_, \alpha C) : \mathcal{K}(_, A) \to \mathcal{K}(_, SC) \) must factorize through \(L \), but \(\mathcal{K}(_, A) \) is representable, so homming out of it preserves colimits, and so we get a factorization \(\mathcal{K}(_, A) \to \mathcal{K}(_, B_i) \) for some \(i \), and so the desired \(A \to B_i \).

For the harder part, suppose that for each \(S : \mathcal{C} \to \mathcal{K}_0 \), there is a small set of cones \(\beta_i C : B_i \to SC \) through which each cone factorizes. Then there is a small full subcategory \(\mathcal{B}_S \) of \(\mathcal{K} \) such that each cone under \(S \) factorizes through one whose vertex is in \(\mathcal{B}_S \). Exactly as before, we construct the (possibly larger but still) small full subcategory \(J : \mathcal{B} \to \mathcal{K} \) with the property that if two cones with vertices in \(\mathcal{B} \) are connected, then they are connected using cones with vertices in \(\mathcal{B} \). This implies that for all \(A \in \mathcal{K} \), we have \(\lim_{B \in \mathcal{B}} \mathcal{K}_0(A, SC) \cong \colim_{B \in \mathcal{B}} \mathcal{K}_0(A, B) \). For any \(G \in \mathcal{G} \),
we have

\[V_0(G, \lim \mathcal{K}(A, SC)) \cong \lim_C V_0(G, \mathcal{K}(A, SC)) \]

\[\cong \lim_C K_0(G \cdot A, SC) \]

\[\cong \colim_{B \in \mathcal{B}} K_0(G \cdot A, B) \]

\[\cong \colim_{B \in \mathcal{B}} V_0(G, \mathcal{K}(A, B)) \]

\[\cong V_0(G, \colim_{B \in \mathcal{B}} \mathcal{K}(A, B)) \]

where the last step uses the fact that \(G \) is representable, so \(V_0(G, -) \) preserves colimits. Now \(\mathcal{G} \) is dense in \(V_0 \), so we have

\[\lim_C \mathcal{K}(A, SC) \cong \colim_{B \in \mathcal{B}} \mathcal{K}(A, B) \]

\[\lim_C \mathcal{K}(-, SC) \cong \colim_{B \in \mathcal{B}} \mathcal{K}(-, B) \]

but the left hand side is the presheaf \(\mathcal{K}^{\text{op}} \to \mathcal{V} \) which is the pointwise limit of \(YS \), and which we are to prove small, while the right hand side is a small colimit of representables, since \(\mathcal{B} \) is small. □

Combining the last two results, we have:

Theorem 5.4 Suppose the underlying category \(V_0 \) of \(V \) is a presheaf category \([\mathcal{G}^{\text{op}}, \text{Set}]\) and that \(\mathcal{K} \) is a \(\mathcal{G} \)-tensored and \(\mathcal{G} \)-cotensored \(\mathcal{V} \)-category. Then \(\mathcal{P} \mathcal{K} \) is complete if and only if the following condition is satisfied. For every small ordinary category \(C \) and every functor \(S : C \to \mathcal{K} \), there is a small set of cones \(\lambda C : B \to SC \) through which every such cone factorizes.

6 Preservation of limits

Having studied the categories \(\mathcal{K} \) for which \(\mathcal{P} \mathcal{K} \) is complete, we now turn to the functors \(F : \mathcal{K} \to \mathcal{L} \) for which \(\mathcal{P} F \) is continuous.

We saw \(\mathcal{P} \mathcal{K} \) is always complete if \(\mathcal{K} \) is small; the situation for functors is totally different:

Example 6.1 Let \(\mathcal{V} = \text{Set} \), let \(\mathcal{K} \) be the terminal category 1, let \(\mathcal{L} \) be the discrete category 2, and let \(F : \mathcal{K} \to \mathcal{L} \) be the first injection. Then \(\mathcal{P} \mathcal{K} = \text{Set} \) and \(\mathcal{P} \mathcal{L} = \text{Set}^2 \), which are of course complete; but \(\mathcal{P} F : \text{Set} \to \text{Set}^2 \) is the functor sending a set \(X \) to \((X, 0)\), which clearly fails to preserve the terminal object.

Consider a functor \(F : \mathcal{K} \to \mathcal{L} \), where \(\mathcal{P} \mathcal{K} \) and \(\mathcal{P} \mathcal{L} \) are complete, a weight \(\phi : \mathcal{C} \to \mathcal{V} \) and a diagram \(S : \mathcal{C} \to \mathcal{P} \mathcal{K} \). Let \(R : \mathcal{K}^{\text{op}} \to [\mathcal{C}, \mathcal{V}] \) be the corresponding pointwise small functor. To say that \(\mathcal{P} F \) preserves the limit \(\{\phi, S\} \) is to say that \(\{\phi, -\} : [\mathcal{C}, \mathcal{V}] \to \mathcal{V} \) preserves the left Kan extension \(\text{Lan}_F R \); that is, the colimit \(\mathcal{L}(L, F-)*R \) for each object \(L \) of \(\mathcal{L} \).

Proposition 6.2 If \(F : \mathcal{K} \to \mathcal{L} \) is a right adjoint then \(\mathcal{P} F \) is continuous.

Proof: If \(F \) has a left adjoint \(G \), then

\[\{\phi, \mathcal{L}(L, F-) * R\} \cong \{\phi, \mathcal{K}(GL, -) * R\} \cong \{\phi, RGL\} \]
while
\[\mathcal{L}(L, F^{-}) \star \{ \varphi, R \} \cong \mathcal{L}(GL, -) \star \{ \varphi, R \} \cong \{ \varphi, RGL \}. \]

Along the same lines, observe that \(\mathcal{P}F.Y \cong YF \), so that if \(\mathcal{P}F \) is continuous then \(F \) must preserve any limits which exist.

Suppose that \(F : \mathcal{K} \to \mathcal{L} \) is given, with \(\mathcal{P}\mathcal{K} \) and \(\mathcal{P}\mathcal{L} \) complete. Then \(\mathcal{P}F \) is continuous if and only if each \(ev_L.\mathcal{P}F \) is so; but \(ev_L.\mathcal{P}F \) is just \(\mathcal{L}(L, F) \star - \). If \(\mathcal{K} \) is small, then \(\mathcal{L}(L, F) \star - \) is continuous if and only if it is \(\alpha \)-continuous for every regular cardinal \(\alpha \); in other words, if \(\mathcal{L}(L, F) \) is \(\alpha \)-flat for every \(\alpha \).

More generally, if \(\mathcal{P}\mathcal{K} \) is \(\alpha \)-complete, we say that a functor \(G : \mathcal{K} \to \mathcal{V} \) is \(\alpha \)-flat if \(G \star - : \mathcal{P}\mathcal{K} \to \mathcal{V} \) is \(\alpha \)-continuous, and \(\alpha \)-flat if \(G \star - \) is continuous; that is, if \(G \) is \(\alpha \)-flat for every \(\alpha \). Thus \(\mathcal{P}F \) will be continuous if and only if each \(\mathcal{L}(L, F) \) is \(\alpha \)-flat. Similarly, if \(\Phi \) is a class of weights satisfying the conditions in Section 4 and \(\mathcal{P}\mathcal{K} \) is \(\Phi \)-complete, we say that \(G : \mathcal{K} \to \mathcal{V} \) is \(\Phi \)-flat if \(G \star - \) is \(\Phi \)-continuous.

Lemma 6.3 If \(\mathcal{K} \) is complete and \(G : \mathcal{K} \to \mathcal{V} \) continuous then \(\text{Lan}_Y G : \mathcal{P}\mathcal{K} \to \mathcal{V} \) is continuous.

Proof: First observe that if \(\mathcal{K} \) is complete then \(\mathcal{P}\mathcal{K} \) is so. Let \(\varphi : \mathcal{D} \to \mathcal{V} \) be a weight, and let \(S : \mathcal{D} \to \mathcal{P}\mathcal{K} \) correspond to the pointwise small functor \(R : \mathcal{K}^{\text{op}} \to [\mathcal{D}, \mathcal{V}] \). For \(X \in \mathcal{P}\mathcal{K} \), we have the formula \((\text{Lan}_Y G)X = X \star G \), thus to say that \(\text{Lan}_Y G \) preserves the limit \(\{ \varphi, S \} \) is to say that \(\{ \varphi, - \} \) preserves the colimit \(G \star R \). Since \(R \) is pointwise small, it is the left Kan extension of its restriction to some full subcategory \(\mathcal{K}^{\text{op}} \) of \(\mathcal{K}^{\text{op}} \). Let \(\alpha \) be a regular cardinal for which \(\varphi \) is \(\alpha \)-small. We may choose \(\mathcal{B} \) to be closed in \(\mathcal{K} \) under \(\alpha \)-limits, then the inclusion \(J : \mathcal{B} \to \mathcal{K} \) preserves \(\alpha \)-limits. Then \(G \star R \cong G \star (\text{Lan}_J(RJ)) \cong GJ \star RJ \) by \([11\ 4.1]\), and \(GJ : \mathcal{B} \to \mathcal{V} \) preserves \(\alpha \)-limits, hence so does \(GJ \star - \) by \([11\ 6.11, 7.4]\), and now
\[\{ \varphi, G \star R \} \cong \{ \varphi, GJ \star RJ \} \cong GJ \star \{ \varphi, RJ \} \cong G \star \text{Lan}_J \{ \varphi, RJ \}. \]

On the other hand \(\text{Lan}_J \) preserves \(\alpha \)-limits since \(J \) does so, thus
\[G \star \text{Lan}_J \{ \varphi, RJ \} \cong G \star \{ \varphi, \text{Lan}_J(RJ) \} \cong G \star \{ \varphi, R \}. \]
This proves that \(G \star - \) preserves the limit \(\{ \varphi, R \} \), and so that \(\text{Lan}_Y G \) preserves \(\{ \varphi, S \} \).

Theorem 6.4 Let \(\mathcal{K} \) and \(\mathcal{L} \) be complete. Then \(F : \mathcal{K} \to \mathcal{L} \) is continuous if and only if \(\mathcal{P}F : \mathcal{P}\mathcal{K} \to \mathcal{P}\mathcal{L} \) is so.

Proof: The “if part” was observed above. Suppose then that \(F \) is continuous. Then each \(\mathcal{L}(L, F) \) is continuous, so \(\text{Lan}_Y \mathcal{L}(L, F) \) is continuous, but \(\text{Lan}_Y \mathcal{L}(L, F) \cong ev_L.\mathcal{P}F \), and so \(\mathcal{P}F \) is continuous, since limits in \(\mathcal{P}\mathcal{L} \) are constructed pointwise.

Remark 6.5 The Yoneda embedding \(Y : \mathcal{K} \to \mathcal{P}\mathcal{K} \) preserves any existing limits, and is continuous if \(\mathcal{K} \) is complete. The pseudomonad \(\mathcal{P} \) is of the Kock-Zöberlein type, and so the multiplication \(\mathcal{P}\mathcal{K} \to \mathcal{P}\mathcal{K} \) has both adjoints so also preserves any existing limits (or colimits). Thus the pseudomonad \(\mathcal{P} \) lifts from \(\mathcal{V}\text{-Cat} \) to the 2-category of complete \(\mathcal{V} \)-categories, continuous \(\mathcal{V} \)-functors, and \(\mathcal{V} \)-natural transformations.
Remark 6.6 Suppose once again that Φ is a class of weights satisfying the conditions of Section 4. Suppose that K and L are Φ-complete and $F : K \to L$ is Φ-continuous. Then each $\mathcal{L}(L, F)$ is Φ-continuous, so each $ev_L \mathcal{P}(F)$ is Φ-continuous, and so finally $\mathcal{P}F : \mathcal{P}K \to \mathcal{P}L$ is Φ-continuous. Thus the pseudomonad Φ^* lifts from \mathcal{V}-\mathcal{C}at to the 2-category of Φ-complete \mathcal{V}-categories, Φ-continuous \mathcal{V}-functors, and \mathcal{V}-natural transformations.

7 Monoidal structure on $\mathcal{P}K$

In this section we suppose that \mathcal{K} is a \mathcal{V}-category for which $\mathcal{P}K$ is complete. If K is small, so that $\mathcal{P}K$ is $[K^{op}, \mathcal{V}]$, monoidal closed structures on $\mathcal{P}K$ correspond to promonoidal structures on \mathcal{K}^{op} [6]. These consist of \mathcal{V}-functors $P : \mathcal{K}^{op} \otimes \mathcal{K} \otimes \mathcal{K} \to \mathcal{V}$ and $J : \mathcal{K}^{op} \to \mathcal{V}$ equipped with coherent associativity and unit isomorphisms.

If K is large, we shall insist that $P(-; A, B) : \mathcal{K}^{op} \to \mathcal{V}$ and $J : \mathcal{K}^{op} \to \mathcal{V}$ be small, and we write $P : \mathcal{K} \otimes \mathcal{K} \to \mathcal{P}K : (A, B) \mapsto P(-; A, B)$ and $J \in \mathcal{P}K$. If $F, G \in \mathcal{P}K$ are given, we define $F \otimes G$ using the usual convolution formula:

$$F \otimes G = \int^{A, B} P(-; A, B) \otimes FA \otimes GB.$$

This is small, since each $P(-; A, B)$ is small by assumption, so $\int^A P(-; A, B) \otimes FA$ is a small (F-weighted) colimit of small presheaves for each B, and so $\int^{A, B} P(-; A, B) \otimes FA \otimes GB$ is itself a small colimit of small presheaves, hence small.

In the usual case, where \mathcal{K} is small, this monoidal structure is closed, with (right) internal hom given by

$$[G, H] \simeq \int_{B, C} [P(C; -, B) \otimes GB, HC]$$

$$\simeq \int_{B, C} [GB, [P(C; -, B), HC]]$$

If \mathcal{K} is large, this need not lie in $\mathcal{P}K$, but if it does so, then it will still provide the internal hom. Now G is small, and the expression above for $[G, H]$ is precisely the G-weighted limit of the functor sending B to $\int_C [P(C; -, B), HC]$. Since $\mathcal{P}K$ is complete this limit will exist provided that this functor actually lands in $\mathcal{P}K$; that is, provided that

$$\int_C [P(C; -, B), HC] : \mathcal{K}^{op} \to \mathcal{V}$$

is small for all $B \in \mathcal{K}$.

The case of the other internal hom is similar, and we have:

Proposition 7.1 The convolution monoidal category $\mathcal{P}K$ is closed if and only if the presheaves $\int_C [P(C; -, B), HC]$ and $\int_C [P(C; B, -), HC]$ are small for all $B \in \mathcal{K}$.

An important special case is where the promonoidal structure P is a filtered colimit $P = \text{colim}_i P_i$ of promonoidal structures P_i which are in fact monoidal, as in

$$P_i(C; A, B) = \mathcal{K}(C, A \otimes_i B).$$
We call such a promonoidal structure P \textit{approximately monoidal}; of course every monoidal structure is approximately monoidal. (We are using the fact that the colimit is filtered to obtain the associativity and unit isomorphisms; a general colimit of promonoidal structures need not be promonoidal.)

In the approximately monoidal case a simplification is possible, since

$$\int_C [P(C; -, B), HC] \cong \int_C [\colim_i P_i(C; -, B), HC]$$

$$\cong \lim_i \int_C [P_i(C; -, B), HC]$$

$$\cong \int C [\mathcal{K}(C, - \otimes_i B), HC]$$

$$\cong \lim_i H(- \otimes_i B)$$

which is small provided each $H(- \otimes_i B)$ is so. But H is small, so has the form $\text{Lan}_J(HJ)$ for some $J : \mathcal{D} \to \mathcal{K}^{\text{op}}$ with \mathcal{D} small. Then

$$H(- \otimes_i B) \cong \int^D \mathcal{K}^{\text{op}}(D, - \otimes_i B) \cdot HJD$$

$$\cong \int^D \mathcal{K}(- \otimes_i B, D) \cdot HJD$$

which is a small (HJ-weighted) colimit of presheaves $\mathcal{K}(- \otimes_i B, D)$ with $D \in \mathcal{D}$, so will be small provided that the $\mathcal{K}(- \otimes_i B, D)$ are so. Once again the case of the other internal hom is similar, and we have:

\textbf{Proposition 7.2} The convolution monoidal category $\mathcal{P}\mathcal{K}$ arising from an approximately monoidal structure on \mathcal{K} is closed if and only if the presheaves $\mathcal{K}(- \otimes_i B, D)$ and $\mathcal{K}(B \otimes_i -, D)$ are small for all B and D in \mathcal{K}, and for each monoidal structure \otimes_i.

In particular we have:

\textbf{Proposition 7.3} The convolution monoidal category $\mathcal{P}\mathcal{K}$ arising from a monoidal structure on \mathcal{K} is closed if and only if the presheaves $\mathcal{K}(- \otimes B, D)$ and $\mathcal{K}(B \otimes -, D)$ are small for all B and D in \mathcal{K}.

\textbf{Example 7.4}

1. The special case where $\mathcal{V} = \text{Set}$ and the monoidal structure is cartesian was proved in \textbf{[15]}.

2. If \mathcal{K} is not just monoidal but closed then the $\mathcal{K}(- \otimes B, D)$ and $\mathcal{K}(B \otimes -, D)$ are not just small but representable, and so $\mathcal{P}\mathcal{K}$ is monoidal closed.

3. If \mathcal{V} is cartesian monoidal (so that $\otimes = \times$), and $\mathcal{K} = \mathcal{E}^{\text{op}}$ where \mathcal{E} is also cartesian monoidal, then $\mathcal{K}(- \otimes B, D) = \mathcal{E}(D, \times B) = \mathcal{E}(D, B) \times \mathcal{E}(D, -)$ which is given by tensoring the representable $\mathcal{E}(D, -)$ by the \mathcal{V}-object $\mathcal{E}(D, B)$, and so is small. Thus once again $\mathcal{P}\mathcal{K}$ is monoidal closed.
8 Functors with codomain other than V

In this section we consider small functors $K^{op} \to M$ where M is cocomplete, building on our earlier work on the case $M = V$ and $M = [C, V]$.

In that earlier work, we considered when, for a small functor $S : K^{op} \to [C, V]$, each $\{\varphi, S\}$ was small. But $\{\varphi, -\}$ is just the representable functor $[C, V](\varphi, -)$, which motivates the following definition: a functor $S : K \to M$ is representably small if each $M(M, S) : K \to V$ is small. Thus Corollary 3.9 asserts that if K is complete then every small functor $K^{op} \to [C, V]$ is representably small.

In this section we investigate the relationship between smallness and representable smallness for more general M. We have already seen that smallness does not in general imply representable smallness. For an explicit counterexample in the case $M = V$ we have:

Example 8.1 As in Example 3.1 let V be Set, and let K be any large set X, seen as a discrete category. Then a presheaf on K is an X-indexed set $A \to X$, and it is small if and only if A is so. Certainly $x : 1 \to X$ is small, for any $x \in X$; this corresponds to the representable presheaf $X(-, x) : X \to Set$ sending x to 1, and all other elements to 0. Now $Set(0, X(-, x))$ is the terminal presheaf, which as we have seen is not small. Thus $X(-, x)$ is small but not representably small.

To see that a representably small functor need not be small, we have:

Example 8.2 If K is a large V-category for which $P K$ is complete (for example if K is complete), then the Yoneda embedding $Y_K^{op} : K^{op} \to P(K^{op})$ is representably small. For if $F \in P(K^{op})$, the composite $P(K^{op})(F, Y) : K^{op} \to V$ is the F-weighted limit of $Y : K \to P K$, so is small since F is small and $P K$ is complete. But $Y_K^{op} : K^{op} \to P(K^{op})$ is not small unless K is so. For if Y_K^{op} were small, K^{op} would have a small full subcategory $J : C^{op} \to K^{op}$ for which $Y = \text{Lan}_J(Y J)$, so

$$K(-, A) = \int_{C \in C} K(J C, A) \cdot K(-, J C)$$

for all A, and in particular

$$K(A, A) = \int_{C} K(J C, A) \cdot K(A, J C)$$

and so the identity $1 : A \to A$ must factorize through some $J C$; in other words, each $A \in K$ is a retract of some object in C. But this clearly implies that K is small.

As a first positive result we have:

Proposition 8.3 If K is a V-category for which $P K$ admits cotensors, a presheaf $F : K^{op} \to V$ is small if and only if it is representably small. In particular this will be the case if $P K$ is complete.

Proof: Representably small presheaves are always small, since $V(I, F)$ is just F, for any presheaf F. It remains to show that any small presheaf $F : K^{op} \to V$ is representably small. Suppose then that $X \in V$. Then $V(X, F)$ is the cotensor $X \otimes F$ of F by X, which is small by assumption. \[\square\]
For the remainder of the section we suppose that \mathcal{K} is a \mathcal{V}-category for which $\mathcal{P}\mathcal{K}$ is complete, and that \mathcal{M} is a locally presentable \mathcal{V}-category. If β is a regular cardinal for which \mathcal{M} is locally β-presentable, write \mathcal{M}_{β} for the full subcategory of \mathcal{M} consisting of the β-presentable objects, and $W : \mathcal{M} \to [\mathcal{M}_{\beta}^{\mathcal{V}^{\text{op}}}, \mathcal{V}]$ for the canonical (fully faithful) inclusion.

Lemma 8.4 For a \mathcal{V}-functor $S : \mathcal{K}^{\mathcal{V}^{\text{op}}} \to \mathcal{M}$, the following are equivalent:

(a) S is representably small;

(b) WS is small;

(c) S is small.

Proof: (a) \Rightarrow (b). To say that S is representably small is to say that $\mathcal{M}(M,S)$ is small for all $M \in \mathcal{M}$; to say that WS is small is to say that this is so for all $M \in \mathcal{M}_{\beta}$, so this is immediate.

(b) \Rightarrow (c). For each $M \in \mathcal{M}_{\beta}$ we have $\mathcal{M}(M,S)$ small, so it is the left Kan extension of its restriction to some full subcategory \mathcal{D}_M of $\mathcal{M}^{\mathcal{V}^{\text{op}}}$. Since \mathcal{M}_{β} is small, the union \mathcal{D} of the \mathcal{D}_M is small, and each $\mathcal{M}(M,S)$ is the left Kan extension of its restriction to \mathcal{D}. Thus WS is the left Kan extension of its restriction to \mathcal{D}. But W is fully faithful, and so reflects Kan extensions; thus also S is the left Kan extension of its restriction to \mathcal{D}.

(c) \Rightarrow (a). This is by far the hardest implication; we prove it in several steps, analogous to the main steps used in preparation for the proof of Theorem 3.8. Suppose then that S is small and $M \in \mathcal{M}$; we must show that $\mathcal{M}(M,S)$ is small.

Case 1: $\mathcal{K}^{\mathcal{V}^{\text{op}}}$ is locally presentable. Since S is small, it is the left Kan extension $\text{Lan}_{\mathcal{K}^{\mathcal{V}^{\text{op}}}}R$ along $J^{\mathcal{V}^{\text{op}}} : \mathcal{K}^{\mathcal{V}^{\text{op}}} \to \mathcal{K}^{\mathcal{V}^{\text{op}}}$ of some $R : \mathcal{C}^{\mathcal{V}^{\text{op}}} \to \mathcal{M}$ with \mathcal{C} small. Since \mathcal{C} is small and $\mathcal{K}^{\mathcal{V}^{\text{op}}}$ and \mathcal{M} are locally presentable, there exists a regular cardinal $\gamma \geq \beta$ for which each JC is γ-presentable in $\mathcal{K}^{\mathcal{V}^{\text{op}}}$ and M is γ-presentable in \mathcal{M}. Now (a) $\mathcal{K}^{\mathcal{V}^{\text{op}}}$ is the free completion under γ-filtered colimits of the full subcategory $(\mathcal{K}^{\mathcal{V}^{\text{op}}})_{\gamma}$ of $\mathcal{K}^{\mathcal{V}^{\text{op}}}$ consisting of the γ-presentable objects, (b) S preserves γ-filtered colimits, and (c) $\mathcal{M}(M,-)$ preserves γ-filtered colimits. Thus $\mathcal{M}(M,S)$ preserves γ-filtered colimits, so is the left Kan extension of its restriction to $(\mathcal{K}^{\mathcal{V}^{\text{op}}})_{\gamma}$. This proves that $\mathcal{M}(M,S)$ is small, and so that S is representably small.

Case 2: $\mathcal{K}^{\mathcal{V}^{\text{op}}} = \mathcal{P}(\mathcal{L}^{\mathcal{V}^{\text{op}}})$. Then S is the left Kan extension of its restriction to some small full subcategory \mathcal{D} of $\mathcal{P}(\mathcal{L}^{\mathcal{V}^{\text{op}}})$. Each $D \in \mathcal{D}$ is a small functor $\mathcal{L} \to \mathcal{V}$, so is the left Kan extension of its restriction to some small \mathcal{B}_D. The union \mathcal{B} of the \mathcal{B}_D is small, and now the full inclusion $J : \mathcal{B}^{\mathcal{V}^{\text{op}}} \to \mathcal{L}^{\mathcal{V}^{\text{op}}}$ induces a full inclusion $\mathcal{P}J : \mathcal{P}(\mathcal{B}^{\mathcal{V}^{\text{op}}}) \to \mathcal{P}(\mathcal{L}^{\mathcal{V}^{\text{op}}})$ whose image contains \mathcal{D}.

Now \mathcal{B} is small, so $\mathcal{P}J$ has a right adjoint J^\ast given by restriction along J, and thus $\text{Lan}_{\mathcal{P}J}$ is itself given by restriction along J^\ast. Since S is the left Kan extension of its restriction Q along $\mathcal{P}J$, we have

$$\mathcal{M}(M,S) = \mathcal{M}(M,\text{Lan}_{\mathcal{P}J}Q) = \mathcal{M}(M,QJ^\ast) = \mathcal{M}(M,Q)J^\ast = \text{Lan}_{\mathcal{P}J}\mathcal{M}(M,Q)$$

and so $\mathcal{M}(M,S)$ will be small if $\mathcal{M}(M,Q)$ is so. Now Q is the left Kan extension of its restriction to \mathcal{D}, hence small, so $\mathcal{M}(M,Q)$ is small by Case 1. This proves that $\mathcal{M}(M,S)$ is small, and so that S is representably small.

Case 3: $\mathcal{P}\mathcal{K}$ is complete. The left Kan extension $\text{Lan}_Y(S) : \mathcal{P}(\mathcal{K}^{\mathcal{V}^{\text{op}}}) \to \mathcal{M}$ of S along the Yoneda embedding is small, so by Case 2 is representably small. Thus each $\mathcal{M}(M,\text{Lan}_Y(S)) : \mathcal{P}(\mathcal{K}^{\mathcal{V}^{\text{op}}})^{\mathcal{V}^{\text{op}}} \to \mathcal{V}$ is small; that is, a small colimit of representables. Now restriction along the
Yoneda embedding preserves colimits, so it will send small presheaves to small presheaves provided that it sends representables to small presheaves; but the latter is equivalent to completeness of \(\mathcal{KH} \). Thus each \(\mathcal{M}(M,S) \) is small, and \(S \) is representably small. \(\square \)

Write \([\mathcal{K}^{\text{op}}, \mathcal{M}]_s\) for the \(\mathcal{V} \)-category of all small \(\mathcal{V} \)-functors from \(\mathcal{K}^{\text{op}} \) to \(\mathcal{M} \).

Theorem 8.5 Let \(\mathcal{M} \) be a locally presentable \(\mathcal{V} \)-category, and \(\mathcal{K} \) a \(\mathcal{V} \)-category for which \(\mathcal{K} \) is complete. Then \([\mathcal{K}^{\text{op}}, \mathcal{M}]_s\) is complete.

Proof: Let \(\varphi : \mathcal{D} \to \mathcal{V} \) and \(S : \mathcal{D} \to [\mathcal{K}^{\text{op}}, \mathcal{M}]_s \) be given, where \(\mathcal{D} \) is small. Since \(\mathcal{D} \) is small, the functor \(S : \mathcal{K}^{\text{op}} \to [\mathcal{D}, \mathcal{M}] \) corresponding to \(S \) is small. The “pointwise limit” is the composite

\[
\begin{array}{ccc}
\mathcal{K}^{\text{op}} & \xrightarrow{S} & [\mathcal{D}, \mathcal{M}] \xrightarrow{\{\varphi,-\}} \mathcal{M}
\end{array}
\]

and provided that this is small, and so lies in \([\mathcal{K}^{\text{op}}, \mathcal{M}]_s\), it will be the limit. Since \(\mathcal{M} \) is locally presentable, by the lemma it will suffice to show that each composite with \(\mathcal{M}(M,-) \) is small. But for any \(X : \mathcal{D} \to \mathcal{M} \) we have

\[
\mathcal{M}(M,\{\varphi,X\}) \cong \{\varphi,\mathcal{M}(M,X)\} \\
\cong \int_D [\varphi D, \mathcal{M}(M,XD)] \\
\cong \int_D \mathcal{M}(\varphi D \cdot M, XD) \\
\cong [\mathcal{D}, \mathcal{M}](\varphi_M, X)
\]

where \(\varphi_M : \mathcal{D} \to \mathcal{M} \) is the functor sending \(D \) to \(\varphi D \cdot M \), so now \(\mathcal{M}(M,\{\varphi,-\}) \) is representable as \([\mathcal{D}, \mathcal{M}](\varphi_M, -) : [\mathcal{D}, \mathcal{M}] \to \mathcal{V} \).

Now \([\mathcal{D}, \mathcal{M}] \) is locally presentable, so by the lemma once again the small \(\tilde{S} \) is representably small, and so \([\mathcal{D}, \mathcal{M}](\varphi_M, \tilde{S}) : \mathcal{K}^{\text{op}} \to \mathcal{V} \) is small; but we have just seen that this is the composite of \(\tilde{S} \) with \(\mathcal{M}(M,\{\varphi,-\}) \). This now proves that \(\{\varphi,-\} \circ \tilde{S} \) is representably small, and so small, and it therefore provides the desired limit \(\{\varphi, S\} \). \(\square \)

9 \textbf{Isbell conjugacy}

If \(\mathcal{C} \) is a small category then as well as the Yoneda embedding \(Y : \mathcal{C} \to [\mathcal{C}^{\text{op}}, \mathcal{V}] \) there is also the “dual” Yoneda embedding \(Z : \mathcal{C} \to [\mathcal{C}, \mathcal{V}]^{\text{op}} \), and this induces an adjunction between \([\mathcal{C}^{\text{op}}, \mathcal{V}]\) and \([\mathcal{C}, \mathcal{V}]^{\text{op}} \) called “Isbell conjugacy”. The left adjoint \(L : [\mathcal{C}^{\text{op}}, \mathcal{V}] \to [\mathcal{C}, \mathcal{V}]^{\text{op}} \) is given by \(\text{Lan}_Y Z \).

What happens if we replace \(\mathcal{C} \) be an arbitrary category \(\mathcal{K} \)? Then we have \(Y : \mathcal{K} \to \mathcal{P} \mathcal{K} \) and \(Z : \mathcal{K} \to (\mathcal{P} \mathcal{K})^{\text{op}} \), but do we still have the adjunction between them? A sufficient condition for the left adjoint \(L : \mathcal{P} \mathcal{K} \to (\mathcal{P} \mathcal{K})^{\text{op}} \) to exist is that \(\mathcal{P} \mathcal{K}^{\text{op}} \) be cocomplete, or equivalently \(\mathcal{P} \mathcal{K}^{\text{op}} \) complete, but in fact this is also necessary. For if \(\text{Lan}_Y Z \) does exist, then for each small \(F : \mathcal{C}^{\text{op}} \to \mathcal{V} \) the colimit \(F \ast Z \) in \(\mathcal{P} \mathcal{K}^{\text{op}} \) exists. But then for any \(\varphi : \mathcal{C}^{\text{op}} \to \mathcal{V} \) and \(S : \mathcal{C} \to \mathcal{K} \), we have \(\text{Lan}_S \varphi \) small, and \((\text{Lan}_S \varphi) \ast Z = \varphi Z S \), and so \(\mathcal{P} \mathcal{K}^{\text{op}} \) has arbitrary colimits of representables, \(\mathcal{P} \mathcal{K}^{\text{op}} \) has arbitrary limits of representables, and so \(\mathcal{P} \mathcal{K}^{\text{op}} \) is in fact complete.
Thus \(\mathcal{KH} \to \mathcal{P}(\mathcal{X}^{\text{op}})^{\text{op}} \) exists if and only if \(\mathcal{P}(\mathcal{X}^{\text{op}}) \) is complete, and dually the putative right adjoint \(\mathcal{P}(\mathcal{X}^{\text{op}})^{\text{op}} \to \mathcal{KH} \) exists if and only if \(\mathcal{KH} \) is complete.

In particular, both will exist if \(\mathcal{X} \) is complete and cocomplete.

References

[1] Jiří Adámek, Francis Borceux, Stephen Lack, and Jiří Rosický. A classification of accessible categories. *J. Pure Appl. Algebra*, 175(1-3):7–30, 2002.

[2] Jiří Adámek and Jiří Rosický. *Locally presentable and accessible categories*, volume 189 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1994.

[3] M. H. Albert and G. M. Kelly. The closure of a class of colimits. *J. Pure Appl. Algebra*, 51(1-2):1–17, 1988.

[4] Francis Borceux and B. J. Day. On product-preserving Kan extensions. *Bull. Austral. Math. Soc.*, 17(2):247–255, 1977.

[5] B. Chorny and W.G. Dwyer. *Homotopy theory of small diagrams over large categories* Preprint.

[6] Brian Day. On closed categories of functors. In *Reports of the Midwest Category Seminar, IV*, Lecture Notes in Mathematics, Vol. 137, pages 1–38. Springer, Berlin, 1970.

[7] Peter Freyd. Several new concepts: Lucid and concordant functors, pre-limits, pre-completeness, the continuous and concordant completions of categories. In *Category Theory, Homology Theory and their Applications, III* (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), pages 196–241. Springer, Berlin, 1969.

[8] Peter Gabriel and Friedrich Ulmer. *Lokal präsentierbare Kategorien*. Springer-Verlag, Berlin, 1971.

[9] Panagis Karazeris, Jiří Rosický, and Jiří Velebil. Completeness of cocompletions. *J. Pure Appl. Algebra*, 196(2-3):229–250, 2005.

[10] G. M. Kelly. Structures defined by finite limits in the enriched context. I. *Cahiers Topologie Géom. Différentielle*, 23(1):3–42, 1982.

[11] G. M. Kelly. Basic concepts of enriched category theory. *Repr. Theory Appl. Categ.*, (10):vi+137 pp. (electronic), 2005. Originally published as LMS Lecture Notes 64, 1982.

[12] G. M. Kelly and Stephen Lack. Finite-product-preserving functors, Kan extensions and strongly-finitary 2-monads. *Appl. Categ. Structures*, 1(1):85–94, 1993.

[13] G. M. Kelly and Stephen Lack. \(\mathcal{V} \)-Cat is locally presentable or locally bounded if \(\mathcal{V} \) is so. *Theory Appl. Categ.*, 8:555–575, 2001.

[14] Harald Lindner. Enriched categories and enriched modules. *Cahiers Topologie Géom. Différentielle*, 22(2):161–174, 1981.

[15] J. Rosický. Cartesian closed exact completions. *J. Pure Appl. Algebra*, 142(3):261–270, 1999.