Influence of steep Trendelenburg position on postoperative complications: a systematic review and meta-analysis

Satoshi Katayama1,2, Keiichiro Mori1,3, Benjamin Pradere1, Takafumi Yanagisawa1,3, Hadi Mostafaei1,4, Fahad Quhal1,5, Reza Sari Motlagh1,6, Ekaterina Laukhkina1,7, Nico C. Grossmann1,8, Pawel Rajwa1,9, Abdulmajeed Aydh1,10, Frederik König1,11, Pierre I. Karakiewicz12, Motoo Araki2, Yasutomo Nasu2, Shahrokh F. Shariat1,7,13,14,15,16,17

Received: 12 October 2021 / Accepted: 21 December 2021 / Published online: 31 December 2021
© The Author(s) 2021

Abstract
Intraoperative physiologic changes related to the steep Trendelenburg position have been investigated with the widespread adoption of robot-assisted pelvic surgery (RAPS). However, the impact of the steep Trendelenburg position on postoperative complications remains unclear. We conducted a meta-analysis to compare RAPS to laparoscopic/open pelvic surgery with regards to the rates of venous thromboembolism (VTE), cardiac, and cerebrovascular complications. Meta-regression was performed to evaluate the influence of confounding risk factors. Ten randomized controlled trials (RCTs) and 47 non-randomized controlled studies (NRSs), with a total of 380,125 patients, were included. Although RAPS was associated with a decreased risk of VTE and cardiac complications compared to laparoscopic/open pelvic surgery in NRSs [risk ratio (RR), 0.59; 95% CI 0.51–0.72, \(p < 0.001\) and RR 0.93; 95% CI 0.58–1.50, \(p = 0.78\), respectively], these differences were not confirmed in RCTs (RR 0.92; 95% CI 0.52–1.62, \(p = 0.77\) and RR 0.93; 95% CI 0.58–1.50, \(p = 0.78\), respectively). In subgroup analyses of laparoscopic surgery, there was no significant difference in the risk of VTE and cardiac complications in both RCTs and NRSs. In the meta-regression, none of the risk factors were found to be associated with heterogeneity. Furthermore, no significant difference was observed in cerebrovascular complications between RAPS and laparoscopic/open pelvic surgery. Our meta-analysis suggests that the steep Trendelenburg position does not seem to affect postoperative complications and, therefore, can be considered safe with regard to the risk of VTE, cardiac, and cerebrovascular complications. However, proper individualized preventive measures should still be implemented during all surgeries including RAPS to warrant patient safety.

Keywords Trendelenburg position · Complication · Thrombosis · Cardiac · Meta-analysis

Introduction
During the past few decades, laparoscopic surgery has become the standard procedure in many surgical fields. The quest for improvement for both patients and surgeons using technological innovation has led to widespread use of Intuitive Surgical da Vinci surgical system for pelvic surgery [1]. This technology enables better magnified 3D visualization, tremor filtration, and comfortable remote console [2]. With a marked increase in the use of robotic platforms, a multitude of trials have investigated patients’ benefits regarding oncologic and perioperative outcomes [1]; despite the efforts of researchers, little to no evidence suggests that robot-assisted pelvic surgery (RAPS) improves complication rates and oncologic outcomes over other procedures [3–6]. In addition to these limited benefits, various potential risk and disadvantages to RAPS are likely to result from the steep Trendelenburg position alone or in combination with pneumoperitoneum. This head-down tilt position has been shown to result in decreased lung volume, lung compliance, functional residual capacity and increased peak airway pressure, leading to postoperative pulmonary complications (PPCs). The prevalence of PPCs is approximately 30%, and is associated with increased mortality and morbidity rates [7, 8]. Although its clinical significance remains debatable, this non-physiological positioning typically increase the risk
for several intraoperative hemodynamic and intracranial changes, such as increased cardiac contractility, increased cardiac oxygen consumption, and increased intracranial pressure [9, 10]. Compared to research on PPCs, whether these intraoperative changes translate into postoperative detrimental effects remains uncertain. Venous thromboembolism (VTE), which consists of deep vein thrombosis (DVT) and pulmonary embolism, and cardiac and cerebrovascular complications are relatively rare but potentially life-threatening. A comprehensive assessment of postoperative complications related to the steep Trendelenburg position is needed to establish preventable measures. Thus, we conducted a systematic review and meta-analysis to clarify the effects of steep Trendelenburg position related to RAPS on postoperative complications.

Evidence acquisition

This study protocol was registered in the International Prospective Register of Systematic Reviews database (PROSPERO CRD: 42021252198).

Literature search

This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systemic Reviews and Met-Analyses (PRISMA) Protocol 2009 checklist, as shown in Supplementary Table 1 [11]. PubMed, Web of Science, and Cochrane Library databases were searched in January 2021 to identify relevant studies examining the role of RAPS compared to laparoscopic and/or open pelvic surgery for patients with common pelvic malignancies, including prostate, bladder, colorectal, endometrial, and cervical cancers. The following terms were used: (prostate OR bladder OR urothelial OR rectal OR colorectal OR colon OR endometrial OR cervical) AND (cancer OR carcinoma) AND (robotic surgery OR robot-assisted surgery OR Da Vinci) AND (complication OR morbidity). We also checked the reference lists to detect relevant publications.

Inclusion and exclusion criteria

The population, intervention, comparator, outcome, and study design (PICOS) approach in this study was as follows: patients with pelvic malignancies (P) who underwent RAPS with curative intent in the steep Trendelenburg position (I) were compared with those who underwent open or laparoscopic pelvic surgery (C) in terms of any grade of VTE, cardiac, and cerebrovascular complications (O) in randomized controlled trials (RCTs) and non-randomized controlled studies (NRSs) (S). Only articles written in English were included in the study. To reduce heterogeneity due to the rarity of objective outcomes, comparative studies that enrolled a minimum of 100 patients in each arm were included. Only studies that performed surgery with a curative intent were included. Studies were excluded if they compared with arms using transanal or transvaginal approach, performed surgery for a benign disease or extraperitoneal RAPS was performed as an intervention group. In case of patient positioning was precisely described, studies comparing extraperitoneal vs transperitoneal RAPS were included. The primary endpoint of interest was VTE, and the secondary endpoints were cardiac and cerebrovascular complications, regardless of the complication grade. Initial screening was performed independently by two investigators based on the titles and abstracts of the articles to identify eligible reports. After the first screening, potentially relevant studies were assessed and reasons for exclusion were noted through a full-text review. Any discrepancies were resolved via consensus with co-authors.

Data extraction

We extracted the following data from the eligible studies: first author’s name, publication year, period of patient recruitment, recruitment region, study design, surgical procedure, number of patients, age, sex, body mass index (BMI), American Society of Anesthesiology (ASA) score ≥ 3, number of advanced malignancy patients, operative time, number of patients who underwent lymph node (LN) dissection, number of LNs removed, estimated blood loss (EBL), blood transfusion rates, length of stay (LOS), and postoperative complications including VTE, cardiac, and cerebrovascular events. Advanced malignancy was defined as pT ≥ 3 or pathologic stage ≥ 3 (in cases where pT stage is not available). All discrepancies regarding data extraction were resolved via consensus with co-authors.

Risk of bias assessment

Two investigators independently assessed the risk of bias in each study according to the second edition of the Cochrane Handbook for Systematic Reviews of Interventions. We used the RoB for RCTs and the Risk of Bias In Non-randomized Studies of Interventions (ROBINS-I) for NRSs. (Supplementary Tables 2 and 3, respectively).

Statistical analyses

A meta-analysis was conducted separately for each dichotomous outcome using the risk ratio (RR) and 95% confidence intervals (CIs). The RCTs were separately analyzed from the NRSs. Continuous variables reported as median and interquartile range were altered to mean and standard deviation (SD) [12]. A random-effects model was applied to represent...
forest plots in meta-analysis of both RCTs and NRSs and 0.5 continuity corrections for 0 cells were applied. Significant heterogeneity was indicated by a p value of <0.05 in the Cochran’s Q test and a ratio of >50% in the I² statistic. Additionally, considering that the development of VTE is multifactorial with clinically considerable heterogeneity, we performed a meta-regression analysis to explore the potential causes of heterogeneity and estimate the effects of age, BMI, comorbidity (ASA score ≥ 3), advanced malignancy, patients who underwent LN dissection, LN yields, operative time, EBL, and LOS on VTE event rates. Comorbidity, advanced malignancy, and patients who underwent LN dissection were transformed to categorical variables using a cut-off according to the respective median value of 20.2%, 34.0% and 72.7%, respectively. In addition, we performed subgroup analyses of patients according to type of surgical procedures (laparoscopic or open pelvic surgery) in VTE and cardiac complications to reduce and evaluate the effects of pneumoperitoneum and other risk factors. Publication bias was evaluated using Egger’s test, funnel plots were applied for analyses involving more than ten studies. All statistical analyses were performed using Stata®/MP 14.0 (Stata Corp., College Station, TX, USA); statistical significance was set at p < 0.05.

Results

Our initial search identified 2991 publications; and 4 additional studies were added after the latest search. After removing duplicate publications, 409 articles were selected for further assessment. After a full-text review, 57 articles with 380,125 patients were deemed eligible for inclusion and exclusion criteria [4–6, 13–66]. A detailed study selection process is shown in Supplementary Fig. 1. The main characteristics of the included studies are summarized in Table 1 and Supplementary Table 4. A total of 10 RCTs and 47 NRSs were identified, with 31 from North America, 12 from Asia, 10 from Europe, 2 from other region, and 2 from international collaborations. Of them, 115,572 (30%), 51,978 (14%), and 212,575 (56%) patients underwent robot-assisted, laparoscopic, and open procedures, respectively. A total of 16 (28%) studies including patients with prostate cancer, 11 (19%) bladder cancer, 11 (19%) colorectal cancer, 10 (18%) endometrial cancer, 4 (7%) uterine cancer, 3 (5%) cervical cancer, and 2 (4%) gynecologic cancers.

There was no publication bias for NRSs in VTE, cardiac, and cerebrovascular complications according to the funnel plot and Egger’s test (p = 0.79, p = 0.76, and p = 0.79, respectively) (Supplementary Fig. 1).

VTEs and steep Trendelenburg position

Seven RCTs comprising 772 patients and 37 NRSs with 168,040 patients provided data on the incidence of VTE. Forest plots (Fig. 1A) revealed that there was no significant difference in RCTs (RR 0.92; 95% CI 0.52–1.62; p = 0.77), while patients who underwent RAPS had a significantly decreased risk of VTE in NRSs (RR 0.59; 95% CI 0.51–0.72; p < 0.001) compared to those who underwent laparoscopic or open surgeries. Based on the Cochran’s Q and I² tests, no significant heterogeneity was observed in either RCTs (p = 0.69, I² 0%, respectively) and NRSs (p = 0.11, I² 23%, respectively). Subgroup analyses based on surgical procedure found that there was no significant difference in laparoscopic pelvic surgery in both RCTs (RR, 0.84; 95%CI, 0.43–1.62; p = 0.60) and NRSs (RR 0.94; 95% CI 0.66–1.33; p = 0.71) (Fig. 1B); however, there was a statistically significant difference in NRSs (RR 0.53; 95% CI 0.45–0.63; p < 0.001), but no significant difference in RCTs (RR 0.83; 95% CI 0.46–1.52; p = 0.55) in open pelvic surgery (Fig. 1C).

Cardiac complications and steep Trendelenburg position

A total of 5 RCTs comprising 1080 patients and 30 NRSs with 1,361,576 patients provided data on cardiac complications. Forest plots (Fig. 2A) revealed that there was no significant difference in RCTs (RR 0.93; 95% CI 0.58–1.50; p = 0.78), while patients who underwent RAPS had a statistically lower risk of cardiac complications (RR 0.77; 95% CI 0.64–0.92; p = 0.004) in NRSs compared to those who underwent laparoscopic or open surgeries. Based on the Cochran’s Q and I² tests, no significant heterogeneity was found in RCTs (p = 0.56, I² 0%), while there was significant heterogeneity in NRSs (p < 0.001, I² 63%). Subgroup analysis based on type of surgical procedure (Fig. 2B) revealed no significant difference between RAPS and laparoscopic surgery in both RCTs (RR 0.79, 95% CI 0.31–2.03; p = 0.63) and NRSs (RR 0.82, 95%CI 0.57–1.17, p = 0.28); meanwhile, there was a statistically significant difference in NRSs (RR 0.74, 95% CI 0.61–0.91, p = 0.003), but not in RCTs (RR 1.17, 95% CI 0.50–2.74, p = 0.72) in open pelvic surgery (Fig. 2C). Heterogeneities in NRSs were observed in the subgroup analyses of both laparoscopic and open surgery according to the Cochran’s Q test (p < 0.001 and p < 0.001, respectively) and I² test (70% and 70%, respectively).
Year	Recruitment	Country	Type of surgery	Study design	Total number	Age	Sex (male)	BMI	ASA score ≥ 3, n (%)	pT3 ≥ , n (%)			
2010	2008–2009	USA	Bladder cancer	RCT	21	67.4 (12.7)	14 (67)	27.5	3 (14)	8 (42)			
2011	2007–2008	Inter-	Prostate cancer	RCT	64	59.6 (5.4)	18 (90)	25.8	28.5 (2.6)	26.3 (2.2)			
2013	2009–2011	USA	Bladder cancer	RCT	20	68.6 (9.3)	51 (85)	27.2	3 (14)	18 (35)			
2015	2010–2013	USA	Bladder cancer	RCT	60	65.7 (8.1)	51 (85)	27.9	43 (72)	46 (79)			
2016	2009–2012	UK	Bladder cancer	RCT	20	68.6 (6.8)	17 (85)	27.5	17 (28.3)	19 (32.9)			
2017	2011–2014	Interna-	Rectal cancer	RCT	237	64.4 (11.0)	161 (67.9)	NR	122 (51)	122 (52)			
2018	2015–2017	Egypt	Rectal cancer	RCT	21	53.4 (50.3)	11 (52)	NR	NR	NR			
2018	2011–2014	USA	Bladder cancer	RCT	150	70 (87)	126 (84)	27.9	46 (31)	49 (32)			
2018	2010–2011	Italy	Prostate cancer	RCT	60	63.9 (6.7)	64.7 (5.9)	26.2	22 (37)	22 (37)			
2018	2015–2017	Brazil	Endometrial cancer	RCT	42	60.5 (11.9)	60 (4.8)	34.8	NR	NR			
2019	2011–2014	USA	Prostate cancer	P	200	59 (6.6)	83.3 (6.3)	27.7	13 (7)	7 (7)			
2019	2005–2007	USA	Endometrial cancer	R	103	61.9 (10.6)	126 (84)	32.9	10 (20)	7.6			
2019	2002–2005	Sweden	Prostate cancer	R	294	59 (6.6)	80.5 (5.9)	NR	29 (10)	59 (10)			
2010	2002–2007	USA	Prostate cancer	P	1253	59.3 (6.5)	82.5 (5.0)	NR	NR	NR			
2010	2006–2008	Aus-	Prostate cancer	R	212	61.3 (9.3)	80.1 (6.3)	NR	66 (31)	177 (35)			
2010	1998–2006	USA	Endometrial cancer	R	122	62.1 (8.4)	61.6 (11.8)	31 (8.8)	NR	NR			
2012	2007–2010	USA	Uterine cancer	R	347	58.3 (10.1)	59.3 (11.0)	35.5	NR	NR			
2012	2007–2010	USA	Endometrial cancer	R	129	59.8 (10.6)	58.5 (9.9)	39.8	NR	39 (7)			
2012	2009	USA	Bladder cancer	R	1144	69 (1.5)	69 (1.5)	6055 (85)	NR	NR			
2013	2006–2012	Ger-	Prostate cancer	P	317	62.6 (9.4)	64.9 (7.5)	24 (8)	76 (24)	841 (34)			
Year	Recruit-ment	Country	Type of surgery	Study design	Total number	Age	Sex (male)	BMI	ASA sore ≥ 3, n(%)	pT3 ≥ , n(%)	BMI	ASA sore ≥ 3, n(%)	pT3 ≥ , n(%)
--------------	--------------	---------	-----------------------	--------------	--------------	-----	------------	-----	------------------	-------------	-----	------------------	-------------
Cardenas-Goi-	2013	USA	Endometrial cancer	Robot	187	62	(9.4)	61	(10.5)	None	31	(8.0)	None
Goicoechea	2013–2010	USA	Colon cancer	Robot	101	72	(10.8)	75	(9.2)	69 (43)	45	(43)	25.5 (3.8)
Helvind et	2013–2012	USA	Prostate cancer	Robot	4374	61.7	(7.2)	6.3	(7.4)	All	28.6	(4.3)	26.5 (4.3)
Pilecki et	2014	USA	Prostate cancer	Robot	1009	62	(27)	62	(27)	All	25.5	(27.5)	None
Ploussard et	2014–2011	France	Prostate cancer	Robot	2126	66	(6.7)	67	(5.2)	58 (5.2)	23.8	(2.6)	23.8 (2.6)
Sugihara et	2014–2013	Japan	Prostate cancer	Robot	353	69	(5.4)	60	(6.0)	All	29.0	(4.9)	None
Pilecki et	2014–2013	Canada	Prostate cancer	Robot	872	64	(12)	62	(13)	All	25.5	(4.3)	26.6 (4.3)
Moghadamy-	2015	USA	Rectal cancer	Robot	4737	60	(6.0)	60	(6.0)	All	25.5	(4.3)	25.5 (4.3)
Moghadamy-	2015–2011	Australia	Prostate cancer	Robot	100	60	(5.4)	60	(5.4)	All	25.5	(4.3)	25.5 (4.3)
Papachristos et al.	2015–2011	Australia	Endometrial cancer	Robot	350	58	(10.4)	59	(10.6)	None	25.5	(4.3)	25.5 (4.3)
Park et al.	2015–2013	USA	Rectal cancer	Robot	1847	62	(5.9)	62	(5.9)	All	25.5	(4.3)	25.5 (4.3)
Wallerstedt et al.	2015	Sweden	Prostate cancer	Robot	6313	64	(12)	64	(12)	All	25.5	(4.3)	25.5 (4.3)
Zakhari et al.	2015–2012	Canada	Uterine cancer	Robot	872	64	(12)	62	(13)	All	25.5	(4.3)	25.5 (4.3)
Goy et al.	2016–2010	USA	Endometrial cancer	Robot	1228	64	(11.6)	64	(11.8)	None	25.5	(4.3)	25.5 (4.3)
Ulm et al.	2016–2011	USA	Endometrial cancer	Robot	165	64	(11.6)	64	(11.8)	None	25.5	(4.3)	25.5 (4.3)
Borgfeldt et al.	2016–2014	Sweden	Uterine cancer	Robot	430	67	(11.0)	68	(10.5)	None	25.5	(4.3)	25.5 (4.3)
Law et al.	2017–2015	USA	Rectal cancer	Robot	220	63	(10.1)	63	(10.6)	148 (67)	97	(57)	24.9 (4.9)
Horowicz et al.	2017–2014	USA	Prostate cancer	Robot	280	62	(6.6)	61	(6.8)	All	25.5	(4.3)	25.5 (4.3)
Shah et al.	2017–2012	USA	Cervical cancer	Robot	109	49	(11.7)	49	(12.6)	None	25.5	(4.3)	25.5 (4.3)
Chen et al.	2017	Taiwan	Rectal cancer	Robot	4744	5578	(10.2)	5578(10.2)	None	25.5 (4.3)	25.5 (4.3)		
Year Recruitment	Country	Type of surgery	Study design	Total number	Age	Sex (male)	BMI	ASA score ≥ 3, n (%)	pT3 ≥ , n (%)				
------------------	---------	-----------------	--------------	--------------	-----	-----------	-----	----------------------	--------------				
2018 2016 Canada	Rectal cancer	R	154	213/211	61.9 (14)	63.8 (13.3)/63.4 (12.2)	106 (69)	127 (60)/127 (60)	28 (6.1)	27.3 (5.8)/28.7 (6.4)			
2018 2008–2013 Canada	Bladder cancer	R	1259	−8768	NR	972 (77)	16804 (78)	NR	NR				
2018 2014–2018 China	Cervical cancer	R	1259	−8768	NR	972 (77)	16804 (78)	NR	NR				
2019 2012–2016 USA	Bladder cancer	R	640	−4921	68.2 (9.3)	−88.8 (9.7)	NR	28.4 (4.9)					
2019 2008–2015 USA	Cervical cancer	R	749	−2584	NR	None	NR	NR					
2019 2009–2015 USA	Bladder cancer	R	100	−149	NR	All	27.8 (5.2)	−28.2 (5.7)					
2019 2010–2015 USA	Prostate cancer	R	52,151	−16,858	NR	All	NR	NR					
2019 2010–2016 China	Rectal cancer	R	556	1029 (9.6)	NR	125	NR	NR					
2019 2012–2016 USA	Bladder cancer	P	143	−345	70.3 (9.6)	−89.7 (9.6)	125	−273					
2020 2013–2018 Japan	Endometrial cancer	R	121	102	NR	None	25.2 (5.9)	NR					
2020 2007–2019 France	Bladder cancer	R	188	112	NR	None	26.3 (4.9)	37 (20)					
2020 2008–2015 USA	Uterine cancer/ Hysterectomy	R	2536	−2536	NR	None	NR	NR					
2020 2012–2016 USA	Colon cancer	R	26,096	28,058/27649	NR	13,204	NR	NR					
2020 2015–2019 China	Colorectal cancer/proctectomy	R	293	293	NR	None	NR	NR					
2020 2012–2018 Australia	Rectal cancer	R	177	1269/1980	61 (10.4)	61.8 (12.0)/65 (10.8)	74 (63.2)	735 (57.9)/1313 (66.3)					
2020 2012–2016 Spain	Endometrial cancer	P	133	101	NR	None	28.3 (5.9)	26 (4.4)					
2020 2016–2018 France	Gynecologic cancer	P	175	187	NR	None	NR	NR					
2020 2014–2017 China	Gynecologic cancer	R	153	123	NR	None	NR	NR					
2021 2017–2018 USA	Prostate cancer	P	376	−124	62 (8.1)	−82.7 (6.7)	All	27.7 (3.7)					

RCT Randomized controlled trial, **P** Prospective study, **R** Retrospective study
A

Design and Study Name	Study Year	Treatment	Control	Risk Ratio (95% CI)	Weight
Randomized control trial	Tewari et al (2010)	2010	12/1	2.96 (0.12, 66.44)	4.20
	Carlsson et al (2011)	2011	152	3.60 (0.14, 92.84)	3.80
	Froehner et al (2012)	2012	24/1280	2.35 (0.12, 50.60)	13.17
	Ploussard et al (2013)	2013	56	0.71 (0.24, 234.20)	0.20
	Tang et al (2014)	2014	2/1253	0.94 (0.03, 25.40)	4.04
	Sugihara et al (2015)	2015	4/100	0.40 (0.03, 13.68)	4.24
	Park et al (2016)	2016	14/124	1.52 (0.07, 50.54)	0.26
	Subgroup, DL (n = 20)	2017/20	32/1975	0.82 (0.02, 16.82)	7.44

B

Design and Study Name	Study Year	Treatment	Control	Risk Ratio (95% CI)	Weight
Non-randomized control study	Tewari et al (2010)	2010	12/1	2.96 (0.12, 66.44)	4.20
	Carlsson et al (2011)	2011	152	3.60 (0.14, 92.84)	3.80
	Froehner et al (2012)	2012	24/1280	2.35 (0.12, 50.60)	13.17
	Ploussard et al (2013)	2013	56	0.71 (0.24, 234.20)	0.20
	Tang et al (2014)	2014	2/1253	0.94 (0.03, 25.40)	4.04
	Sugihara et al (2015)	2015	4/100	0.40 (0.03, 13.68)	4.24
	Park et al (2016)	2016	14/124	1.52 (0.07, 50.54)	0.26
	Subgroup, DL (n = 20)	2017/20	32/1975	0.82 (0.02, 16.82)	7.44

C

Design and Study Name	Study Year	Treatment	Control	Risk Ratio (95% CI)	Weight
Randomized control trial	Tewari et al (2010)	2010	12/1	2.96 (0.12, 66.44)	4.20
	Carlsson et al (2011)	2011	152	3.60 (0.14, 92.84)	3.80
	Froehner et al (2012)	2012	24/1280	2.35 (0.12, 50.60)	13.17
	Ploussard et al (2013)	2013	56	0.71 (0.24, 234.20)	0.20
	Tang et al (2014)	2014	2/1253	0.94 (0.03, 25.40)	4.04
	Sugihara et al (2015)	2015	4/100	0.40 (0.03, 13.68)	4.24
	Park et al (2016)	2016	14/124	1.52 (0.07, 50.54)	0.26

Fig. 1

Forest plots for the incidence of venous thromboembolism showing the overall association of robotic surgery (with steep Trendelenburg position) with laparoscopic and open pelvic surgery (A), subgroup analyses based on laparoscopic pelvic surgery (B), and subgroup analyses based on open pelvic surgery (C) in both randomized controlled studies and non-randomized controlled studies.
Fig. 2 Forest plots for the incidence of cardiac complications showing the overall association of robotic surgery (with steep Trendelenburg position) with laparoscopic and open pelvic surgery (A), subgroup analyses based on laparoscopic pelvic surgery (B), and subgroup analyses based on open pelvic surgery (C) in both randomized controlled studies and non-randomized controlled studies

Table A: Studies included in the meta-analysis and their characteristics

Study Name	Year	Treatment	Control	Risk Ratio	Weight
Khan et al	2016	100	910	2.66 (0.15, 42.11)	1.96
Jia et al	2017	6297	8452	0.98 (0.95, 1.01)	0.95
Parizot et al	2019	300	200	0.88 (0.88, 0.89)	2.99
Subgroup 1L	9377	8277	0.78 (0.78, 0.79)	9.92	

Table B: Randomized controlled trials

Study Name	Year	Treatment	Control	Risk Ratio	Weight
Khan et al	2016	100	910	2.66 (0.15, 42.11)	1.96
Jia et al	2017	6297	8452	0.98 (0.95, 1.01)	0.95
Parizot et al	2019	300	200	0.88 (0.88, 0.89)	2.99
Subgroup 1L	9377	8277	0.78 (0.78, 0.79)	9.92	

Table C: Non-randomized controlled studies

Study Name	Year	Treatment	Control	Risk Ratio	Weight
Leitao et al	2018	1473	1317	0.00 (0.00, 1.00)	3.65
Parizot et al	2019	300	200	1.00 (0.00, 1.00)	9.92
Subgroup 1L	53536	2546	0.00 (0.00, 1.00)	8.11	

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model; continuity correction applied to studies with zero cells.
Cerebrovascular complications and steep Trendelenburg position

A total of 2 RCTs comprising 511 patients and 11 NRSs with 96,585 patients provided data on cardiac complications. Forest plots (Fig. 3) revealed no significant difference in either RCTs (RR 1.10; 95% CI 0.73–1.66; p = 0.73) or NRSs (RR 0.97; 95% CI 0.74–1.28; p = 0.83). Based on the Cochran’s Q and I² tests, there was no significant heterogeneity in RCTs (p = 0.33, I² 0%), while significant heterogeneity was observed in NRSs (p = 0.89, I² 0%).

Heterogeneity exploration

To explore clinically considerable heterogeneity due to the multifactorial etiology of VTE, we performed a meta-regression analysis (Table 2). Among the previously identified potential variables, none of the risk factors exhibited heterogeneity.

Discussion

In this systematic review and meta-analysis, we investigated the postoperative adverse effects of steep Trendelenburg position of RAPS compared to laparoscopic and open pelvic surgeries. Although the steep Trendelenburg position was associated with a significant risk reduction in the rate of VTE and cardiac complications in NRSs, no difference was found in RCTs between the types of surgical procedures. Additionally, there was no relationship between the steep Trendelenburg position and the risk of cerebrovascular complications.

VTE is a multifactorial disease responsible for significant morbidity and mortality in the postoperative period; patients who experienced VTE after surgery have a 5.3-fold increase in the risk of mortality relative to those who did not [67]. Of the possible mechanisms, venous stasis is one of the key drivers in the development of VTE. The steep Trendelenburg position, described as head tilting of 25–45 degrees downward with leg elevated, facilitates venous return from the lower limbs and decreases blood stasis, which may result in a lower risk of developing intravascular thrombosis [68]. However, there was no significant difference in RCTs despite the presence of statistical significance in NRSs, suggesting that the presence of a steep Trendelenburg position has little to no detrimental effects on postoperative prevalence of VTE; if there is an effect then it is likely to be negligible compared to other risk factors. This is supported by the

Table 2 Results of meta-regression analyses for the incidence of VTE

Variable	No. of studies	Regression coefficient	95% CI	p value
Cancer type	44	-0.07303	-0.1515–0.005459	0.07
Age	35	0.2977	-0.2790–0.8745	0.30
BMI	25	-0.3630	-0.1382–0.6557	0.47
ASA	12	0.7075	-0.3673–1.7822	0.17
Operative time	28	0.001992	-0.009763–0.004961	0.18
Estimate blood loss	23	-0.0000864	-0.001571–0.001399	0.91
Advanced malignancy	27	0.5684	-0.02252–1.1391	0.051
LN dissection	22	0.3981	-0.1590–0.9551	0.15
LN yields	16	0.01573	-0.02128–0.05274	0.38
LOS	25	0.01064	-0.007443–0.002872	0.24

BMI body mass index, ASA the American Society of Anesthesiology, LN lymph node, LOS length of stay, CI confidence interval
Our selection criteria (only comparative studies with ≥ 100 factors were associated with the presence of heterogeneities. meta-regression, however, confirmed that none of the risk heterogeneity in VTE driven by various risk factors. The explore the potential explanations of clinically considerable confounders, we performed a meta-regression analysis to analyses, thereby confounding estimates of the VTE risk. We assume that these semi-established risk factors affected our analyses, thereby confounding estimates of the VTE risk.

To overcome these inherent heterogeneities caused by confounders, we performed a meta-regression analysis to explore the potential explanations of clinically considerable heterogeneity in VTE driven by various risk factors. The meta-regression, however, confirmed that none of the risk factors were associated with the presence of heterogeneities. Our selection criteria (only comparative studies with ≥ 100 patients per arm were included) may have led to the low heterogeneity in the VTE rate in both RCTs and NRSs.

The steep Trendelenburg position also induces several hemodynamic changes affecting the cardiovascular system. The head-down tilt plus leg raising leads to an increase in central venous pressure ranging from 80 to 305% [71], which increases cardiac preload. Cardiac afterload measured by the systemic vascular resistant index increases at the time of CO₂ insufflation, followed by a decrease during the steep Trendelenburg position [9]. The intraoperative values of the cardiac output and contractility resulting from these changes remain controversial, varying from no change to a significant increase [72, 73]. Rosendal et al. suggested that they are likely to pose a potential risk for higher cardiac oxygen consumption resulting in adverse cardiac events [71]. Despite these concerns, there was no difference between two types of surgical procedures in RCTs and subgroup analyses based on laparoscopic surgery, suggesting that the steep Trendelenburg position provides little to no impact on postoperative cardiac complications. Although a considerable relative risk reduction was observed in NRSs of cardiac complications as well as VTE (23% and 39% risk reduction, respectively), interpretations should be done with caution due to the influences of other uncontrolled confounding factors.

We also evaluated the association between the steep Trendelenburg position and cerebrovascular complications. This positioning, combined with pneumoperitoneum, has been shown to increase intracranial pressure, thereby reducing cerebral perfusion pressure (CPP) resulting in cerebral ischemia [74]. Our findings, however, showed that the steep Trendelenburg position has only negligible impact on the likelihood of postoperative cerebrovascular complications. One potential reason for this could be a compensation through a concomitant increase in mean arterial pressure for any increase of intracranial pressure, thereby maintaining CPP and cerebral oxygen saturation [10, 75, 76].

Our meta-analysis has several limitations. First, this study includes considerable heterogeneity primarily due to the included different types of surgeries. We attempted to explain the clinically considerable heterogeneity in VTE risk by assessing the association between VTE risk and other risk factors. Although we performed meta-regression and subgroup analyses, we could not explore within-study heterogeneity, which is a limitation inherent to meta-regression analysis. The unaccounted variable use of VTE prophylaxis may affect the prevalence of thromboembolism. However, included studies made little mention of measures for VTE prevention, which could not be analyzed using meta-regression. Additionally, the duration, inclination angle and practical techniques of steep Trendelenburg varied across studies, centers, surgeons. Indeed, Souki et al. described that only 2.1% of assessed institutions had a policy on the safe limits of positioning during the steep Trendelenburg position [77]. In general, the Trendelenburg angle in laparoscopic pelvic surgery may not be steep, but the variable angles of this positioning are required depending on the type of surgery, which could affect the findings of our study. Furthermore, due to the lack of standardized follow-up management, the introduction of early ambulation as well as perioperative treatment strategies including radiotherapy and chemotherapy could not be accounted for.

We found no detrimental effects related to steep Trendelenburg on postoperative complications. In addition, RAPS was associated with a significantly lower risk of VTE and cardiac complications compared to open pelvic surgery. There are concerns regarding the generalizability of these data and a need for well-designed prospective studies with long follow-up. Hypotheses such as the one suggesting that prolonged Trendelenburg position may cause postoperative cognitive decline need to be adequately assessed [78]. The European Association of Urology Robotic Urology Section Scientific Working Group recommends, indeed, prolonged postoperative use (four weeks) of low molecular weight heparin with 100% of agreement for patients performing robot-assisted radical cystectomy [79]. Rigorous methodology, scientific and critical verification of effectiveness of the robotic platform should be continued.
Conclusion

We found that the steep Trendelenburg position has negligible impacts on postoperative thromboembolic, cardiac, and cerebrovascular complications. However, appropriate preventative measures against these complications should be implemented. The individual risk for each patient according to his general health, tumor characteristics, and peri- and intraoperative history should guide preventative measures, especially when RAPS is performed.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11701-021-01361-x.

Acknowledgements Ekaterina Laukhina is supported by the EUSP Scholarship of the European Association of Urology (EAU). Nico C. Grossmann is supported by the Zurich Cancer League.

Author contribution Conceptualization: SK, KM; methodology: KM, BP; formal analysis and investigation: MA, TY, HM, FQ, RSM, EL, NCG, PR; data management: AA, FK; writing—original draft preparation: SK; writing—review and editing: YN, SFS; supervision: PIK, SFS.

Funding Open access funding provided by Medical University of Vienna. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of interest All authors state that they have no conflicts of interest that might bias this work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655. https://doi.org/10.1007/s00464-018-6079-2
2. Wright JD (2017) Robotic-assisted surgery: balancing evidence and implementation. JAMA 318(16):1545–1547. https://doi.org/10.1001/jama.2017.13696
3. Sheetz KH, Cliﬀin J, Dimick JB (2020) Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw Open 3(1):e1918911. https://doi.org/10.1001/jamanetworkopen.2019.18911
4. Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgren M, Bianchi PP, Edlin R, Hulme C, Brown J (2017) Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. JAMA 318(16):1569–1580. https://doi.org/10.1001/jama.2017.7219
5. Wallerstedt A, Tyritzis SI, Thorsteinsdottir T, Carlsson S, Stranne J, Gustafsson O, Hugosson J, Bjarrell A, Wildering U, Wiklund NP, Steineck G, Haglind E (2015) Short-term results after robot-assisted laparoscopic radical cystectomy compared to open radical cystectomy. Eur Urol 67(4):660–670. https://doi.org/10.1016/j.eururo.2014.09.036
6. Parekh DJ, Reis IM, Castle EP, Gonzalgo ML, Woods ME, Svatek RS, Weizer AZ, Konety BR, Tollesfon M, Krupski TL, Smith ND, Shabsigh A, Barocas DA, Quek ML, Dash A, Kibel AS, Shenmani L, Pruthi RS, Montgomery JS, Weight CJ, Sharp DS, Chang SS, Cookson MS, Gupta GN, Gorboson A, Uchio EM, Skinner E, Venkatramani V, Soodana-Prakash N, Kendrick K, Smith JA Jr, Thompson IM (2018) Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): an open-label, randomised, phase 3, non-inferiority trial. Lancet 391(10139):2525–2536. https://doi.org/10.1016/s0140-6736(18)30996-6
7. Yu J, Park JY, Lee Y, Whang JH, Kim YK (2021) Sugammadex versus neostigmine on postoperative pulmonary complications after robot-assisted laparoscopic prostatectomy: a propensity score-matched analysis. J Anesth 35(2):262–269. https://doi.org/10.1007/s00540-021-02910-2
8. Kilic OF, Borgers A, Köhne W, Musch M, Kröpfl D, Groeben H (2015) Effects of steep Trendelenburg position for robotic-assisted prostatectomies on intra- and extrathoracic airways in patients with or without chronic obstructive pulmonary disease. Br J Anaesth 114(1):70–76. https://doi.org/10.1093/bja/aua332
9. Pawlik MT, Prasser C, Zeman F, Harth M, Burger M, Denzinger S, Blecha S (2020) Pronounced haemodynamic changes during and after robotic-assisted laparoscopic prostatectomy: a prospective observational study. BMJ Open 10(10):e038045. https://doi.org/10.1136/bmjopen-2020-038045
10. Whiteley JR, Taylor J, Henry M, Epperson TI, Hand WR (2015) Detection of elevated intracranial pressure in robot-assisted laparoscopic radical prostatectomy using ultrasonography of optic nerve sheath diameter. J Neurosurg Anesthesiol 27(2):155–159. https://doi.org/10.1097/ana.0000000000000106
11. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron I, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162(11):777–784. https://doi.org/10.7326/m14-2385
12. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135
13. Nix J, Smith A, Kurpad R, Nielsen ME, Wallen EM, Pruthi RS (2010) Prospective randomized controlled trial of robotic versus open radical cystectomy for bladder cancer: perioperative and pathologic results. Eur Urol 57(2):196–201. https://doi.org/10.1016/j.eururo.2009.10.024
14. Asimakopoulos AD, Fraga CTP, Annino F, Pasqualetti P, Calado AA, Mugnier C (2011) Randomized comparison between laparoscopic and robot-assisted nerve-sparing radical prostatectomy.
patients with endometrial cancer undergoing robotic versus open surgery. J Minim Invasive Gynecol 22(6):961–967. https://doi.org/10.1016/j.jmig.2015.04.018

40 Zakhari A, Czuzoj-Shulman N, Spence AR, Gotlieb WH, Abenhaim HA (2015) Laparoscopic and robot-assisted hysterectomy for uterine cancer: a comparison of costs and complications. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2015.07.004

41 Guy MS, Sheeder J, Behbakht K, Wright JD, Guntupalli SR (2016) Comparative outcomes in older and younger women undergoing laparotomy or robotic surgical staging for endometrial cancer. Am J Obstet Gynecol 214(3):350.e310–350.e310. https://doi.org/10.1016/j.ajog.2015.09.085

42 Ulm MA, Ginn DN, ElNaggar AC, Tillmanns TD, Reed KM, Wan JY, Watson CH, Dedania SJ, Reed ME (2016) A comparison of outcomes following robotic-assisted staging and laparotomy in patients with early stage endometrioid adenocarcinoma of the uterus with uterine weight under 480 g. Gynecol Minim Invasive Ther-Gmit 5(1):25–29. https://doi.org/10.1016/j.gmit.2015.09.002

43 Borgfeldt C, Kalapotharakos G, Asciutto KC, Lofgren M, Hogberg T (2016) A population-based registry study evaluating surgery in newly diagnosed uterine cancer. Acta Obstet Gynecol Scand 95(8):901–911. https://doi.org/10.1111/aogs.12918

44 Law WL, Foo DCC (2017) Comparison of short-term and oncologic outcomes of robotic and laparoscopic resection for mid- and distal rectal cancer. Surg Endosc 31(7):2798–2807. https://doi.org/10.1007/s00464-016-5289-8

45 Horovitz D, Feng CY, Messing EM, Joseph JV (2017) Extraperitoneal vs transperitoneal robot-assisted radical prostatectomy in the setting of prior abdominal or pelvic surgery. J Endourol 31(4):366–373. https://doi.org/10.1089/end.2016.0706

46 Shah CA, Beck T, Liao JB, Giannakopoulos NV, Veljovic D, Paley P (2017) Surgical and oncologic outcomes after robotic radical hysterectomy as compared to open radical hysterectomy in the treatment of early cervical cancer. J Gynecol Oncol 28(6):e82. https://doi.org/10.3802/jgo.2017.28.e82

47 Chen ST, Wu MC, Hsu TC, Yen DW, Chang CN, Hsu WT, Wang CC, Lee M, Liu SH, Lee CC (2018) Comparison of outcome and cost among open, laparoscopic, and robotic surgical treatments for rectal cancer: a propensity score matched analysis of nationwide inpatient sample data. J Surg Oncol 117(3):497–505. https://doi.org/10.1002/jso.24867

48 Garfinkle R, Abou-Khalil M, Bhatnagar S, Wong-Chong N, Azoulay L, Morin N, Vasilevsky CA, Boutros M (2019) A comparison of pathologic outcomes of open, laparoscopic, and robotic resections for rectal cancer using the ACS-NSQIP proctectomy-targeted database: a propensity score analysis. J Gastrointest Surg 23(2):348–356. https://doi.org/10.1007/s11605-018-3974-8

49 Nazzani S, Mazzone E, Preissler F, Bandini M, Tian Z, Marchioni E, Ratti D, Motta G, Zorn KC, Briganti A, Ota Y, Andou M (2020) Short-term outcomes of robot-assisted versus conventional laparoscopic surgery for early-stage endometrial cancer: a retrospective, single-center study. J Obstet Gynecol Res 46(7):1157–1164. https://doi.org/10.1111/jogr.14293

50 Aiko K, Kanno K, Yanai S, Masuda M, Ichikawa F, Teishikata Y, Shirane T, Yoshino Y, Sakate S, Sawada M, Shirane A, Ota Y, Andou M (2020) Short-term outcomes of robot-assisted versus conventional laparoscopic surgery for early-stage endometrial cancer: a retrospective approach. J Obstet Gynecol Res 46(7):1157–1164. https://doi.org/10.1111/jogr.14293

51 Faraj K, Chang YHH, Neville MR, Blodgett G, Etzioni DA, Habermann EB, Andrews PE, Castle EP, Humphreys MR, Tyson PH, Gao GM, Tang HC, Shi J, Li TY (2020) Comparative perioperative complications at between laparoscopic and robotic radical cystectomy for bladder cancer. J Endourol 34(10):1033–1040. https://doi.org/10.1089/end.2020.11.012

52 Casarin J, Song C, Multinu F, Cappuccio S, Liu E, Butler KA, Glaser GE, Cliby WA, Langstraat CL, Ghezzi F, Fu AZ, Mariani A (2020) Implementing robotic surgery for uterine cancer in the United States: Better outcomes without increased costs. Gynecol Oncol 156(2):451–458. https://doi.org/10.1016/j.ygyno.2019.11.016

53 Flamiotis JF, Chen YY, Lambert WE, Acededo AM, Becker TM, Bash JC, Amling CL (2019) Open versus robot-assisted radical cystectomy: 30-day perioperative comparison and predictors for cost-to-patient, complication, and readmission. J Robot Surg 13(1):129–140. https://doi.org/10.1007/s11701-018-0832-3

54 Mukherjee K, Kamal KM (2019) Variation in prostate surgery costs and outcomes in the USA: robot-assisted versus open radical prostatectomy. J Comp Eff Res 8(3):143–155. https://doi.org/10.2217/ce-2018-0109

55 Tang B, Li C, Liu HC, Zhang C, Luo HX, Yu PW (2019) Robotic versus laparoscopic rectal resection surgery: Short-term outcomes and complications: a retrospective comparative study. Surg Oncol-Oxford 29:71–77. https://doi.org/10.1016/j.suronc.2019.02.004

56 Chen J, Djuladat H, Schuckman AK, Aron M, Desai M, Gill IS, Clifford TG, Ghodoussipour S, Miranda G, Cai J, Daneshmand S (2019) Surgical approach as a determinant factor of clinical outcome following radical cystectomy: Does Enhanced Recovery After Surgery (ERAS) level the playing field? Urol Oncol-Semin Orig Invest 37(10):765–773. https://doi.org/10.1016/j.uroonc.2019.06.001

57 Aiko K, Kanno K, Yanai S, Masuda M, Ichikawa F, Teishikata Y, Shirane T, Yoshino Y, Sakate S, Sawada M, Shirane A, Ota Y, Andou M (2020) Short-term outcomes of robot-assisted versus conventional laparoscopic surgery for early-stage endometrial cancer: a retrospective, single-center study. J Obstet Gynecol Res 46(7):1157–1164. https://doi.org/10.1111/jogr.14293

58 Arora A, Pugliesi F, Zugail AS, Moschini M, Paezeto C, Macek P, Stabile A, Lanz C, Mombet A, Bennamoun M, Sanchez-Salas R, Cathelineau X (2020) Comparing perioperative complications between laparoscopic and robotic radical cystectomy for bladder cancer. J Endourol 34(10):1033–1040. https://doi.org/10.1089/end.2020.11.012

59 Casarin J, Song C, Multinu F, Cappuccio S, Liu E, Butler KA, Glaser GE, Cliby WA, Langstraat CL, Ghezzi F, Fu AZ, Mariani A (2020) Implementing robotic surgery for uterine cancer in the United States: Better outcomes without increased costs. Gynecol Oncol 156(2):451–458. https://doi.org/10.1016/j.ygyno.2019.11.016

60 Lo BD, Leeds IL, Sundel MH, Geahart S, Nisly GRC, Safar B, Atallah C, Fang SH (2020) Frailer patients undergoing robotic colorectal resection for colorectal cancer experience increased complication rates compared with open or laparoscopic approaches. Dis Colon Rectum 63(5):588–597. https://doi.org/10.1007/dcr.00000000000001598

61 Ye SP, Zhu WQ, Liu DN, Lei X, Jiang QG, Hu HM, Tang B, He PH, Gao GM, Tang HC, Shi J, Li TY (2020) Robotic- vs laparoscopic- assisted proctectomy for locally advanced rectal cancer based on propensity score matching: short-term outcomes at a colorectal center in China. World J Gastrointest Oncol. https://doi.org/10.4251/wjgo.v12.i4.424

62 Bedrikovetski S, Dudi-Venkata NN, Kroon HM, Moore JW, Hunter RA, Sammour T (2020) Outcomes of minimally invasive versus open proctectomy for rectal cancer: a propensity-matched analysis of bi-national colorectal cancer audit data. Dis Colon Rectum 63(6):778–787. https://doi.org/10.1097/DCR.0000000000001598

63 Gracia M, Garcia-Santos J, Ramirez M, Bellon M, Herraiz MA, Coronado PJ (2020) Value of robotic surgery in endometrial cancer by body mass index. Int J Gynaecol Obstet 156(2):451–458. https://doi.org/10.1016/j.ygyno.2019.11.016

64 Netter A, Jauffret C, Brun C, Sabiani L, Blache G, Houvenaeghel G, Lambaudie E (2020) Choosing the most appropriate minimally invasive approach to treat gynecologic cancers in the context of an enhanced recovery program: insights from a comprehensive
cancer center. Plos One. https://doi.org/10.1371/journal.pone.0231793
65. Wang LL, Yan PJ, Yao L, Liu R, Hou F, Chen KH, Han LL, Xu LY, Xu H, Li J, Guo TK, Yang KH, Wang HL (2020) Evaluation of intra- and post-operative outcomes to compare robot-assisted surgery and conventional laparoscopy for gynecologic oncology. Asian J Surg 43(1):347–353. https://doi.org/10.1016/j.asjsur.2019.05.003
66. Huang MTM, Su ZT, Becker REN, Pavlovich CP, Partin AW, Wang LL, Yan PJ, Yao L, Liu R, Hou F, Chen XH, Han LL, Xu H, Li J, Guo TK, Yang KH, Wang HL (2020) Evaluation of intra- and post-operative outcomes to compare robot-assisted surgery and conventional laparoscopy for gynecologic oncology. Asian J Surg 43(1):347–353. https://doi.org/10.1016/j.asjsur.2019.05.003
67. Trinh VQ, Karakiewicz PI, Sammon J, Sun M, Sukumar S, Gervais MK, Shariat SF, Tian Z, Kim SP, Kowalczyk KJ, Hu JC, Menon M, Trinh QD (2014) Venous thromboembolism after major cancer surgery: temporal trends and patterns of care. JAMA Surg 149(1):43–49. https://doi.org/10.1001/jamasurg.2013.3172
68. SooHoo GW (2013) Overview and assessment of risk factors for pulmonary embolism during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position: a prospective observational study using near-infrared time-resolved spectroscopy. J Endourol 33(12):995–1001. https://doi.org/10.1089/end.2019.0217
69. Abel EJ, Wong K, Sado M, Leverson GE, Patel SR, Downs TM, SooHoo GW (2013) Overview and assessment of risk factors for pulmonary embolism during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position: a prospective observational study using near-infrared time-resolved spectroscopy. J Endourol 33(12):995–1001. https://doi.org/10.1089/end.2019.0217
70. Van Hemelrijck M, Garmo H, Holmberg L, Bill-Axelson A, Carlsson S, Akre O, Stattin P, Adolphsson F (2013) Thromboembolic events following surgery for prostate cancer. Eur Urol 63(2):354–363. https://doi.org/10.1016/j.euro.2012.09.041
71. Rosendal C, Markin S, Hien MD, Motsch J, Roggenbach J (2014) Cardiac and hemodynamic consequences during capnoperitoneum and steep Trendelenburg positioning: lessons learned from robot-assisted laparoscopic prostatectomy. J Clin Anesth 26(5):383–389. https://doi.org/10.1016/j.jca.2014.01.014
72. Haas S, Haese A, Goetz AE, Kubitz JC (2011) Haemodynamic and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position. Int J Med Robot 7(4):408–413. https://doi.org/10.1002/rcs.410
73. Ono N, Nakahira J, Nakano S, Sawai T, Minami T, Tsurumaki T (2017) Changes in cardiac function and hemodynamics during robot-assisted laparoscopic prostatectomy with steep head-down tilt: a prospective observational study. BMC Res Notes 10(1):341. https://doi.org/10.1186/s13104-017-2672-z
74. Sujata N, Tobin R, Tamhankar A, Gautam G, Yatoo AH (2019) A randomised trial to compare the increase in intracranial pressure as correlated with the optic nerve sheath diameter during propofol versus sevoflurane-maintained anesthesia in robot-assisted laparoscopic pelvic surgery. J Robot Surg 13(2):267–273. https://doi.org/10.1007/s11701-018-0849-7
75. Wiesinger C, Schoeb DS, Stockhammer M, Mirtezani E, Matterschiffthaler L, Wagner H, Knotzer J, Pauer W (2020) Cerebral oxygenation in 45-degree trendelenburg position for robot-assisted radical prostatectomy: a single-center, open, controlled pilot study. BMC Urol 20(1):198. https://doi.org/10.1186/s12894-020-00774-4
76. Tanaka N, Yamamoto M, Abe T, Osawa T, Matsumoto R, Shinohara N, Saito H, Uchida Y, Morimoto Y (2019) Changes of cerebral blood volume during robot-assisted laparoscopic radical prostatectomy: observational prospective study using near-infrared time-resolved spectroscopy. J Endourol 33(12):995–1001. https://doi.org/10.1089/end.2019.0217
77. Souki FG, Rodriguez-Blanco YF, Polu SR, Eber S, Candiotti KA (2018) Survey of anesthesiologists’ practices related to steep Trendelenburg positioning in the USA. BMC Anesthesiol 18(1):117. https://doi.org/10.1186/s12871-018-0578-5
78. Vitish-Sharma P, Maxwell-Armstrong C, Guo B, Yick C, Acheson AG (2019) The trendelenburg position and cognitive decline: a case-control interventional study involving healthy volunteers. JMIR Perioper Med 2(1):e11219. https://doi.org/10.2196/11219
79. Collins JW, Patel H, Adding C, Annerstedt M, Dasgupta P, Khan SM, Artibani W, Gaston R, Piechaud T, Catto JW, Koppappar A, Rowe E, Perry M, Issa R, McGrath J, Kelly J, Schumacher M, Wijburg C, Cana AE, Balbay MD, Deacon Ecker C, Schwentner C, Stenzl A, Edeling S, Pokupic S, Stockle M, Siemer S, Sanchez-Salas R, Cathelineau X, Weston R, Johnson M, D’Hondt F, Mottrie A, Hosseini A, Wiklund PN (2016) Enhanced recovery after robot-assisted radical cystectomy: EAU robotic urology section scientific working group consensus view. Eur Urol 70(4):649–660. https://doi.org/10.1016/j.euro.2016.05.020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Satoshi Katayama1,2, Keiichiro Mori1,3, Benjamin Pradere1, Takafumi Yanagisawa1,3, Hadi Mostafei1,4, Fahad Quhali5, Reza Sari Motlagh1,6, Ekaterina Laukhtina1,7, Nico C. Grossmann1,8, Pavel Rajwa1,9, Abdulmajeed Aydh1,10, Frederik König1,11, Pierre I. Karakiewicz12, Motoo Araki12, Yasutomo Nasu2

Shahrokh F. Shariat1,7,13,14,15,16,17

1 Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
2 Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
3 Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
4 Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
5 Department of Urology, King Fahad Specialist Hospital, Damman, Saudi Arabia
6 Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7 Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
8 Department of Urology, University Hospital Zurich, Zurich, Switzerland
9 Department of Urology, Medical University of Silesia, 41-800 Zabrze, Poland
10 Department of Urology, King Faisal Medical City, Abha, Saudi Arabia
11 Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
12 Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montreal Health Center, Montreal, Canada
13 Department of Urology, Weill Cornell Medical College, New York, NY, USA
14 Department of Urology, University of Texas Southwestern, Dallas, TX, USA
15 Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
16 Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
17 Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan