Adverse clinical outcomes associated with carbapenem-resistant Acinetobacter (CRA) infections: a systematic review and meta-analysis

Weiping Ling 1, Luis Furuya-Kanamori 1, Yukiko Ezure 1, Patrick N. A. Harris 1,2 and David L. Paterson 1*

1University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Herston, Brisbane, Australia; 2Central Microbiology, Pathology Queensland, Royal Brisbane & Women’s Hospital, Herston, Brisbane, Australia

*Corresponding author. E-mail: d.paterson1@uq.edu.au

Received 27 June 2021; accepted 21 September 2021

Background: Carbapenem-resistant Acinetobacter (CRA) infections have been associated with increased morbidity and mortality in hospitalized patients. This systematic review and meta-analysis aimed to quantify the association between CRA infections and adverse clinical outcomes.

Methods: Three databases (i.e. PubMed, EMBASE and Scopus) were searched for epidemiological studies that compared mortality, severe sepsis or shock, or bacteraemia among adult inpatients with CRA infections and those with carbapenem-susceptible Acinetobacter (CSA) infections. The pooled ORs for the three outcomes were estimated using the inverse variance heterogeneity model.

Results: Thirty-four studies were included. Patients with CRA infections had higher odds of mortality (31 studies, OR = 2.10, 95% CI: 1.58–2.79, I²=60.6%) and severe sepsis or septic shock (7 studies, OR = 1.51, 95% CI: 1.09–2.09, I²=0%) compared with CSA-infected patients. There was no difference in the odds of bacteraemia (four studies, OR = 1.39, 95% CI: 0.79–2.46, I²=38.1%). CRA-infected patients presented with worse comorbidity at admission (e.g. APACHE score) (eight studies, standardized mean difference = 0.25, 95% CI: −0.01 to 0.52) and had lower frequency of appropriate antibiotic therapy. Results were consistent when pooling 16 study-adjusted risk estimates for mortality. There was no difference in risk of mortality from CRA infection when compared across geographical regions, country income, median year of enrolment and day of mortality from infection onset.

Conclusions: CRA-infected patients had worse clinical outcomes. This might be due to delay in appropriate antibiotic therapy, patients being sicker at admission and CRA strains potentially being more virulent than CSA strains. Improving appropriateness of antibiotic therapy in CRA-infected patients could reduce adverse clinical outcomes.

Introduction

With widespread emergence and large scale hospital outbreaks of carbapenem-resistant Acinetobacter (CRA) infections in recent years,1–3 CRA has been listed as urgent threat under the 2019 Antibiotic Resistance Threats Report.4 Managing CRA outbreaks is highly challenging in healthcare facilities due to its ability to survive persistently in the environment and even on dry surfaces.5 This increases the risk of nosocomial infections, more commonly pneumonia and bacteraemia, in hospital patients. Acinetobacter spp. strains circulating in hospitals are often MDR and commonly display resistance to carbapenems, attributed to both constitutive regulatory mechanisms and acquisition of various carbapenemases, such as OXA, NDM and VIM types.5,6 With resistance to last-resort antibiotics such as tigecycline and polymyxins documented, viable treatment options for MDR Acinetobacter infections are limited among these patients.5,7 The rise in CRA outbreaks and the associated treatment complications have resulting led to observations relating CRA infections and poor clinical outcomes.8

As research interest and CRA-related publications have been rising in the last decade, an updated review quantifying the association between CRA infection and clinical outcomes was warranted to supplement previous findings with greater degree of certainty. The last systematic review and meta-analysis by Lemos et al.8 focused only on carbapenem-resistant Acinetobacter baumannii (CRAb), currently the most predominant and studied species,9 and its association with mortality. While the study authors reported an increased risk of mortality in CRAb patients, there was the issue of study power in many small study samples out of the 16 studies included. Besides, investigations were also warranted to understand the risk of developing more invasive or severe infections, such as bacteraemia or septic shock, which are well-established risk factors for mortality. Therefore, this systematic review and meta-analysis aimed to summarize the risk of adverse clinical
outcomes (i.e. bacteraemia, sepsis or septic shock, and all-cause mortality) in adult patients with CRA infections compared with patients with carbapenem-susceptible Acinetobacter (CSA) infections.

Methods

The protocol of this systematic review and meta-analysis is registered in PROSPERO (CRD42020184483). The report here follows the guidelines of preferred reporting items for systematic reviews and meta-analyses (PRISMA)\(^\text{10}\) (Table S1, available as Supplementary data at JAC-AMR Online). The initial objective of the systematic review and meta-analysis was to estimate the risk of adverse clinical outcomes from infection caused by three MDR Gram-negative pathogens, identified as CRA, Enterobacterales producing ESBL (ESBL-E) and carbapenem-resistant Enterobacterales (CRE). The search strategy was constructed based on this objective and the subsequent search results pertaining to these three pathogens. During the screening process, four existing systematic reviews and meta-analyses that estimated the risk of mortality from CRE infections were found,\(^\text{11–16}\) with the latest database search conducted up till August 2016. As a result, a decision was made to remove CRE as our exposure of interest and to perform separate meta-analyses for the distinctly different CRA and ESBL-E pathogens. This systematic review and meta-analysis focused on estimating the risk of adverse clinical outcomes from CRA infections.

Search strategy

The databases searched were PubMed, EMBASE and Scopus and this was conducted on 6 August 2020 with search terms constructed by a librarian. The search terms comprised of three categories: (i) antibiotic resistance profile of interest, namely carbapenem resistance and production of ESBL; (ii) bacteria of interest, namely Enterobacterales and Acinetobacter species; and (iii) outcomes of interest, namely bacteraemia, sepsis or septic shock and mortality. Other relevant and MeSH terms were also included in each category, and all categories were combined with appropriate Boolean functions. There was no restriction on year or language of publication that was imposed on the search. The details of the search strategy can be found in the supplementary material (Table S2). The search strategy was supplemented with backward and forward citation search of all included articles in the current systematic review and meta-analysis and the reference lists of relevant systematic reviews and meta-analyses were hand searched. Citations were imported into EndNote X9 to remove duplicates before exportation to Rayyan for the screening process.\(^\text{15}\)

Selection criteria and screening of studies

For this systematic review and meta-analysis, population was defined as adult hospital patients, exposure as CRA infection, comparator as patients with CSA infection and outcomes as bacteraemia, sepsis or septic shock, and all-cause mortality. Bacteraemia as an outcome could only be assessed in studies where study population was not restricted to bacteraemic patients. Definitions for sepsis, severe sepsis or septic shock were accepted as described in each study. Study selection was restricted to adults due to fundamental differences in antibiotic use, comorbidities and immune response between paediatric and adult patients. As such, the inclusion criteria were defined as (i) studies where patients were enrolled from healthcare facilities; (ii) studies where the risk of outcomes of interest from CRA infection is reported or where data are available to estimate this; and (iii) case-control or cohort study designs. The exclusion criteria were defined as (i) studies that only enrolled CRA-infected patients; (ii) studies where the comparator was not CSA-infected patients; (iii) studies where children aged less than 16 years were enrolled; (iv) case reports or case series; (v) publication without primary data; (vi) grey literature and conference abstracts/proceedings; and (vii) non-human studies.

Based on these criteria, two reviewers (W.L. and Y.E.) independently screened the studies. The reviewers met at two timepoints to discuss and resolve discrepancies in inclusion decisions: after screening based on abstract and title and after screening based on full text. If multiple studies reported on the same study population and there was an overlap in time, only the study reporting the largest sample size was included.

Data extraction and quality assessment

The data items extracted included study authors; year of publication; study population; country where patients were enrolled; year of enrolment; definition of carbapenem resistance in Acinetobacter isolates; carbapenemase type; patient characteristics such as infection site, age, gender, Charlson comorbidity index (CCI) and APACHE II score; and appropriateness of antibiotic therapy and its associated definition. Other data items included effect sizes (both crude and adjusted) for each outcome, confounders accounted for in the multivariable models and period of follow-up for mortality ascertainment. The quality of included studies was assessed using a modified version of the Newcastle-Ottawa Scale\(^\text{10}\) (Table S3) for cohort studies. If multiple outcomes of interest were reported from one study, the quality was assessed using mortality as the outcome. A single study can score a maximum of four stars for selection, two stars for comparability and three stars for outcome.

Data analysis

The pooled estimates (i.e. OR) for the three outcomes were estimated using the inverse variance heterogeneity (IVHet) model.\(^\text{17}\) Heterogeneity of studies was determined as low if I\(^2\) was less than 25.0%, as moderate if between 25.0% and 50.0%, and as high if more than 50.0%.\(^\text{18}\) Subgroup analyses were performed based on (i) median year of study enrolment (1999 to 2009 versus 2010 to 2017) due to differences in characteristics of circulating strains over the years; (ii) geographical regions (Asia versus Europe versus America versus Africa) due to differences in patient characteristics; (iii) income level of country (high versus middle) due to differences in treatment options; and (iv) 14 days versus 28–30 days from onset of infection to ascertain if risk of mortality differed over time. Subgroup analysis was only performed if there were at least three studies in each group.

Sensitivity analyses were performed by restricting study selection to (i) bacteraemic patients; (ii) studies reporting adjusted estimates; and (iii) A. baumannii infections to compare the results with the systematic review and meta-analysis.\(^\text{8}\) Additional sensitivity analysis was also performed using studies where resistance of isolates was defined by CLSI guidelines to ensure standardization of carbapenem resistance level of isolates across the studies. Publication bias was assessed using the LFK index and visualization of Doi plot.\(^\text{19}\)

As the association between CRA infection and adverse clinical outcomes may be confounded by patient’s baseline risk, the differences between CRA- and CSA-infected patients were explored by pooling the standardized mean difference (SMD) of APACHE score, CCI and SOFA score at admission. If more than one index was reported in a study, APACHE score was selected and synthesized. In addition, as the clinical outcome of CRA infection may also be influenced by the appropriateness of antibiotic therapy, this characteristic was explored by (i) estimating mean delay to appropriate therapy in the CRA group and the correlation with effect estimates; and by (ii) examining subgroup effect estimates based on appropriateness of antibiotic therapy.

The statistical analyses were performed using the admetan\(^\text{20}\) and lfk\(^\text{21}\) modules in Stata/SE 16.1 (College Station, TX, USA). Statistical significance was set at 0.05.

Results

A total of 2246 unique references were identified from the database search, of which 241 were screened by full text. The primary
reason for exclusion was that the study did not include CRA-infected patients or that the number of events in the CRA group was not reported. The backward and forward citation search further yielded another three studies for inclusion. The entire screening process and detailed reasons for full-text study exclusion are documented in Figure 1. All in all, a total of 34 studies were included for meta-analysis.22–55 Excluding one study that did not report on number of patients per group, the pooled sample comprised at least 2488 CRA-infected patients and 2587 CSA-infected patients.

The study characteristics of the 34 studies are summarized in Table 1. The period of study enrolment ranged from 1998 to 2017, and the majority of studies (64.7%, n = 22 studies) enrolled patients in Asia. Nineteen studies (55.9%) included only bacteremic patients and six studies (17.6%) enrolled only ICU patients. Among studies that were not restricted to bacteremic patients, respiratory-related infection was the most reported. Most of the studies (64.7%, n = 22 studies) used CLSI guidelines to define resistance of isolates to carbapenems. There were four studies (11.8%) that performed molecular sequencing on the CRA isolates and only blaoxa-51, blaoxa-23 and blaoxa-40 were detected from a subset of A. baumannii strains. Interestingly, in 11 studies with available data, the proportion of appropriate antibiotic therapy was consistently lower in CRA-infected patients as compared with CSA-infected patients.

Using a modified version of the Newcastle-Ottawa Scale, 31 and 3 studies were assessed with mortality and severe sepsis or septic shock as outcome (Table S4), respectively. Most studies scored at least three stars for quality of study selection (70.6%, n = 24 studies) and at least two stars for quality of outcome ascertainment (88.2%, n = 30 studies). However, 22 studies (64.7%) scored zero stars for comparability, mainly due to effect estimates not being adjusted for any confounders.

Baseline characteristics at admission and appropriateness of antibiotic therapy

There were eight studies that reported mean APACHE score, CCI and/or SOFA score of CRA and CSA-infected patients at admission. The severity of underlying disease was higher in patients with CRA infection (eight studies, SMD = 0.25, 95% CI: −0.01 to 0.52) (Figure S1), although this was marginally not statistically significant. There were only two studies that reported effect estimates by appropriateness of antibiotic therapy and only three studies that reported mean or median delay in duration to appropriate therapy in CRA group. The effect of antibiotic therapy on outcome, hence, could not be explored due to the limited number of studies.

Mortality

There were 31 studies reporting all-cause mortality as an outcome. The odds of mortality were 2.1 times higher in CRA-infected patients as compared with CSA-infected patients (OR = 2.10, 95% CI: 1.58–2.79) (Figure 2). Heterogeneity among the studies was high (I² = 60.6%). There was evidence of asymmetry (LFK index = 1.60) suggesting publication bias towards studies that reported higher odds of mortality among CRA-infected patients (Figure S2).

Severe sepsis or septic shock

Seven studies reported data on sepsis or septic shock. All septic cases were observed as at least severe in the individual studies. The odds of severe sepsis or septic shock were 51% higher in

Figure 1. PRISMA diagram for study inclusion and exclusion.
First author and reference	Country	Study period	Study population and organism	Outcomes	Infection site	Resistance definition	n	mean/median age, years	% male	mean/median APACHE*	% ABAT
Kopterides22	Greece	Jan 2002–Aug 2005	Patients with BSI caused by A. baumannii susceptible to colistin	mortality	blood	CLSI 2000	25:14	66.6:64	56.43	16:1.147	–
Wareham23	UK	Apr 1998–Sep 2006	Patients with BSI caused by Acinetobacter spp.	30 day mortality	blood	–	55:263	–	–	23:–	
Metan24	Turkey	Feb 2007–Mar 2008	Patients with BSI caused by Acinetobacter complex	14 day mortality	blood	CLSI 2005	54:46	–	–	–	
Lautenbach45	USA	Jan 2001–Dec 2006	Patients with A. baumannii infection	30 day mortality	respiratory, blood, wound	CLSI 2008	89:297	63:56	–	–	
Routes50	USA	Jan 2001–Dec 2006	Patients with ICU-acquired BSI caused by A. baumannii	14 day mortality	blood	CLSI 2007	30:66	58.7:56.4	70:65	16.3:20	57.76
Esterly51	USA	Jan 2005–Dec 2008	Patients with BSI caused by A. baumannii	30 day mortality	blood	CLSI 2009	37:42	56.3:49.2	70:36	–	76:95
Aydemir24	Turkey	Jan 2005–Dec 2006	Patients with infection caused by A. baumannii	30 day mortality	blood, respiratory, urinary tract	CLSI 2006	110:55	64.5:70.9	51:60	–	58.89
Kim53	South Korea	Jun 2007–Jun 2010	Patients with BSI caused by A. baumannii	14 day mortality	BSI	CLSI 2008	53:42	59.4:57.1	62:43	14.4:104	–
Huang55	Taiwan	2000–08	Patients with BSI caused by A. baumannii	28 day mortality	respiratory	CLSI 2011	97:145	62.2:60.9	54.56	20.3:17.9	–
Lemos31	Colombia	Apr 2006–Apr 2010	Patients with BSI caused by A. baumannii	30 day mortality	blood	CLSI 2008	52:71	–	–	–	
Shorr32	USA	Jan 2002–Dec 2012	Patients with acute organ dysfunction (severe sepsis) and infection by Acinetobacter spp.	30 day mortality	respiratory, blood	CLSI 2002–12	76:55	–	–	–	
Tal-Jasper35	Israel	Jan 2007–Dec 2012	Patients with systemic inflammatory response syndrome and BSI caused by A. baumannii	30 day mortality	blood	any group 2	149:91	–	–	53.68	–
Author	Country	Study Period	Study Population	Primary Outcome	Source	Adjustment Factors					
--------	---------	--------------	------------------	-----------------	-------	-------------------					
Wang	China	Jan 2014–Jun 2015	Patients with haematological malignancy and BSI caused by A. baumannii	shock, 30 day mortality in blood	CLSI 13:27	—					
Baykara	Turkey	Jan 2016	All ICU patients	severe sepsis or shock	CLSI 53:27	—					
Huang	China	Jan 2013–Dec 2017	Inpatients with VAP	60 day mortality in respiratory, blood, renal or urinary tract	CLSI 53:27	—					
Yang	China	Jan 2011–Dec 2015	Inpatients with nosocomial BSI caused by A. baumannii	in-hospital mortality in blood	CLSI 84:34	—					
Balkhair	Oman	Jan 2007–Dec 2016	Inpatients with BSI caused by P. aeruginosa, A. baumannii or K. pneumoniae	30 day mortality in blood	CLSI 117:49	—					
Chusri	Thailand	Jan 2012–Dec 2016	Inpatients with BSI caused by A. baumannii	30 day mortality in blood	CLSI 2018	—					
Nazer	Jordan	Jan 2010–Dec 2013	ICU patients with infection	severe sepsis or shock	CLSI 79:13	—					
Kwon	South Korea	Jan 2000–Jun 2005	Inpatients with nosocomial BSI caused by Acinetobacter spp.	30 day mortality in blood	CLSI 2005	—					
Cofsky	USA	1999	Inpatients with infection caused by S. aureus, K. pneumoniae, A. baumannii and P. aeruginosa	in-hospital mortality in respiratory, blood, urinary tract	—	—					
Jamulitrat	Thailand	Jul 2004–Sep 2007	Inpatients with BSI caused by A. baumannii	shock, in-hospital mortality in blood	imipenem 67:13 56:15 45:60	—					
Chaari	Tunisia	Aug 2010–Nov 2011	ICU patients with VAP caused by A. baumannii	in-hospital mortality in respiratory	imipenem 79:13	—					
Liu	China	2007–13	Patients with BSI caused by A. baumannii	30 day mortality in blood	CLSI 202:84	—					
Cai	USA	2009–13	Patients with BSI caused by A. baumannii, P. aeruginosa, E. coli or K. pneumoniae	in-hospital mortality in blood	doripenem, ertapenem, imipenem, meropenem 60:53 63:65	—					

AIAT, appropriate initial antibiotic therapy; BSI, bloodstream infection; VAP, ventilator-associated pneumonia.

*Measured at admission as stated in study.
1Adjusted for ICU admission.
2Adjusted for diabetes mellitus, septic shock.
3Adjusted for active therapy, renal dysfunction, any transplant, ICU stay at BSI onset, A. baumannii isolated from at least two sites, prior antibiotic use.
4ICU-acquired infection.
5Adjusted for mechanical ventilator, central venous catheter, APACHE II >14, septic shock, pneumonia as source of BSI, inappropriate antibiotic therapy.
6Adjusted for ICU stay, APACHE II >20, pneumonia or urinary tract infection as source of BSI, haematological malignancies, shock, autoimmune disease, prior piperacillin/tazobactam or cefepime use, Foley catheter, mechanical ventilation, central venous catheter, total parenteral nutrition, femoral venous catheter.
7Adjusted for mechanical ventilation, malignancy.
8Adjusted for age ≥65 years, gender, APACHE II score, number of diagnoses, empirical antimicrobial treatment.
9Adjusted for age, APACHE II score, appropriate empirical antimicrobial therapy, infection with non-Acb complex.
10Adjusted for appropriate antimicrobials, age, CCI, Pitt bacteraemia score, overall immunosuppression.
11APACHE score.
12Adjusted for multi-organ dysfunction syndrome, APACHE II score on admission and BSI onset, ICU, mechanical ventilation, central venous catheter, respiratory tract as source of infection, adequate empirical antibiotic therapy.
13Adjusted for community acquisition, APACHE II score, skin and soft tissue infection, appropriate empirical antimicrobial therapy.
14Adjusted for age, Pitt bacteraemia score, acute renal failure, immunosuppressive status, pneumonia, CCI weighted ≥3, discordant therapy.
15Adjusted for medical patient, neutropenia, ASA score ≥3, ICU acquisition, appropriate antibiotic treatment.
16Adjusted for pathogens clearance.
17Adjusted for age, gender, race, ethnicity, various comorbid conditions, mechanical ventilation, renal impairment, geographic regions.
CRA-infected patients as compared with CSA-infected patients (OR = 1.51, 95% CI: 1.09–2.09) (Figure 3). Studies were homogeneous ($I^2 = 0\%$) and there was no evidence of publication bias (LFK index = −0.07, Figure S3).

Bacteraemia

Four studies with data on bacteraemia were available for synthesis. There was no difference in odds of developing bacteraemia between those with CRA infection and those with CSA infection (OR = 1.39, 95% CI: 0.79–2.46) (Figure 4). There was moderate heterogeneity among the four studies ($I^2 = 38.1\%$), and minor evidence of publication bias towards studies that reported lower odds of bacteraemia among CRA-infected patients (LFK index = −1.05, Figure S4).

Subgroup analyses

A summary of subgroup analyses can be found in Table 2. Although the odds of mortality from CRA infection was higher in studies where the median year of enrolment was from 2010 onwards (OR = 2.75, 95% CI: 1.36–5.55, $I^2 = 64.4\%$), this was not significantly different from studies where median year of enrolment was before 2010 (OR = 1.94, 95% CI: 1.44–2.62, $I^2 = 57.9\%$).
There was also no difference in the odds of mortality from CRA infection based on geographical regions and income levels of country where patients were enrolled. Lastly, although the odds of mortality were significantly higher in CRA-infected patients when mortality was ascertained 28 to 30 days from onset of infection (OR = 2.47, 95% CI: 1.58–3.85, I^2=69.1%), this was no different from when mortality was ascertained 14 days from onset of infection (OR = 2.09, 95% CI: 0.67–6.50, I^2=72.2%).

Subgroup analysis for risk of severe sepsis or septic shock was only performed based on median year of enrolment (Table 2). There was no difference in odds of severe sepsis or septic shock from CRA infection where median year of enrolment was prior to 2010 (OR = 1.81, 95% CI: 1.17–2.79, I^2=0%) and after 2010 (OR = 1.19, 95% CI: 0.58–2.47, I^2=36.7%). There was an insufficient number of studies to compare estimates based on geographical region of enrolment and income level of country. Subgroup analyses for bacteraemia as an outcome were also not performed due to unavailability of data.

Sensitivity analyses

Sensitivity analysis was performed by restricting study inclusion to bacteraemic patients. The odds of mortality (18 studies, OR = 2.71, 95% CI: 1.78–4.13, I^2=62.7%) and severe sepsis or shock (4 studies, OR = 1.70, 95% CI: 1.09–2.65, I^2=0%) in CRA-bacteraemic patients remained higher than that of CSA-bacteraemic patients. Similarly, when pooling only patients with *A. baumannii* infection,
the odds of mortality also reflected to be significantly higher in CRAb-infected patients as compared with CSAb-infected patients (24 studies, OR = 2.09, 95% CI: 1.45–3.00, I²=67.0%).

When restricting the selection to studies that reported adjusted risk estimates, the odds of mortality persisted to be significantly higher in the CRA-infected group (16 studies, OR = 2.17, 95% CI: 1.61–2.92, I²=27.1%). Appropriateness of antimicrobial therapy, age and APACHE scores were commonly adjusted for in these studies (Table 1). There was an insufficient number of studies reporting adjusted risk estimates for septic shock (one study) and bacteremia (no studies).

Lastly, sensitivity analysis was performed by synthesizing studies where carbapenem resistance was defined by CLSI guidelines, regardless of year of CLSI publication. The results were consistent with the main analyses, where the odds of mortality (22 studies, OR = 2.28, 95% CI: 1.52–3.43, I²=68.3%) and septic shock (4 studies, OR = 1.78, 95% CI: 1.06–2.99, I²=0%) were significantly higher in CRA-infected patients than CSA-infected patients. There was no difference in odds of bacteremia between the two groups (three studies, OR = 1.16, 95% CI: 0.50–2.72, I²=48.0%).

Discussion

The results from this systematic review and meta-analysis suggest that the odds of mortality and severe sepsis/septic shock were higher in CRA-infected patients compared with CSA-infected patients. However, no difference in odds of bacteremia development between the two groups was observed. As such, while bloodstream is a common site of Acinetobacter infection, acquiring a carbapenem-resistant strain does not increase the likelihood of developing bacteremia. The significantly higher odds of mortality in the CRA-infected group persisted in bacteraemic patients, when pooling together study-adjusted risk estimates and when carbapenem resistance was defined by CLSI guidelines. There was no difference in odds of mortality between CRA- and CSA-infected patients when compared across median year of enrolment, geographical region of study enrolment, income level of country and period of follow-up for mortality ascertained.

In general, Acinetobacter spp. have been reviewed in the literature for their pathogenic characteristics and virulence factors, causing nosocomial invasive infections such as pneumonia, meningitis, skin and soft tissue infection and bacteremia. However, highly virulent strains were not frequently observed with carriage of carbapenemases and remain susceptible to carbapenems. Interestingly, the results from this systematic review and meta-analysis revealed an even higher odds of poor clinical outcomes in patients infected by the carbapenem-resistant strain. The worse prognosis in CRA-infected patients may be explained by several factors, including higher severity of underlying illness in those with CRA, delays in appropriate antibiotic therapy given the carbapenem resistance and virulence potential of CRA strains.

The effect modification by appropriateness of antibiotic therapy is strongly reflected in the consistently lower frequency of appropriate antibiotic therapy in the CRA-infected group as compared with the CSA-infected group. In addition, of the nine studies that adjusted for appropriateness of antibiotic therapy, five had reported no significant association between CRA infection and mortality. A previous systematic review and meta-analysis of 12 studies had reported five times increased odds of mortality in CRAb-infected patients with inappropriate empirical antibiotic therapy, as compared with those with appropriate therapy (pooled OR = 5.04, 95% CI: 2.56–9.94). The turnaround time for antimicrobial susceptibility test results and the

| Table 2. Subgroup analyses of summary effect sizes by median year of enrolment, geographical region of study, day of mortality ascertainment and income classification of country |
|----------------|----------------|----------------|----------------|
| | Sepsis/shock | | Mortality |
| | studies, n | OR (95% CI) | I² (%) | studies, n | OR (95% CI) | I² (%) |
| Overall | 7 (1230) | 1.51 (1.09–2.09) | 0 | 31 (4383) | 2.10 (1.58–2.79) | 60.6 |
| By median year of enrolment | | | |
| 1999–2009 | 4 (802) | 1.81 (1.17–2.79) | 0 | 21 (3228) | 1.94 (1.44–2.62) | 57.9 |
| 2010–17 | 3 (428) | 1.19 (0.58–2.47) | 36.7 | 10 (1155) | 2.75 (1.36–5.55) | 64.4 |
| By geographical region | | | |
| Asia | 6 (1181) | 1.44 (1.03–2.02) | 93.3 | 19 (2872) | 2.68 (1.82–3.93) | 62.2 |
| Europe | 0 | — | — | 4 (532) | 1.25 (0.73–2.13) | 17.5 |
| America | 1 (49) | — | — | 7 (887) | 1.60 (1.08–2.39) | 38.7 |
| Africa | 0 | — | — | 1 (92) | — | — |
| By mortality day from infection onset | | | |
| Day 14 | — | — | — | 3 (421) | 2.09 (0.67–6.50) | 72.2 |
| Day 28 to 30 | — | — | — | 15 (2756) | 2.47 (1.58–3.85) | 69.1 |
| By income classification of country | | | |
| high | 2 (555) | — | — | 18 (2574) | 2.12 (1.38–3.25) | 71.5 |
| middle | 5 (675) | 1.46 (0.92–2.32) | 71.7 | 13 (1809) | 2.07 (1.51–2.84) | 26.9 |

Bolded values indicate statistical significance.
increased likelihood of empirical treatment failure all suggest the potentially bigger role of inappropriate antibiotic therapy in the increased risk of mortality after CRA infection. Additionally, the possibility of confounding by severity of illness was explored using APACHE scores, CCI and SOFA scores at admission. We showed that severity of underlying illness was slightly higher in CRA-infected patients, suggesting that the higher risk of adverse clinical outcomes in CRA-infected patients could be confounded by sicker patients at admission.

Lastly, there is increasing evidence to suggest that A. baumannii strains, in particular, can possess both highly virulent and XDR characteristics. An outbreak investigation of hospital-acquired A. baumannii infections by Jones et al. had revealed XDR strains with substantial carriage of virulence genes. The virulence of these resistant strains was reflected in the high mortality counts observed in both their mouse models and hospital patients with low comorbidity score. In this systematic review and meta-analysis, the significantly higher risk of mortality persisted when pooling together study-adjusted effect estimates, where the majority of these studies accounted for inappropriate antibiotic therapy and comorbidities. While this suggests the possibility of CRA strains being more virulent than CSA strains, the observation should be further validated with future comparative genomic and molecular studies of the bacteria.

The results from this systematic review and meta-analysis are consistent with the results reported by Lemos et al., which were that the odds of mortality were significantly higher in patients with CRAB infection than those with CSAB infection (pooled OR = 2.22, 95% CI: 1.66–2.98). The significance also similarly persisted when pooling together study-adjusted effect estimates only in both Lemos et al.’s meta-analysis (pooled OR = 2.49, 95% CI: 1.61–3.84) and our results (not shown). However, in both instances, the estimates derived from our included studies were more conservative, likely due to the inclusion of additional studies and use of different models.

There are a few limitations to this systematic review and meta-analysis. Firstly, we found only four studies with data on bacteraemia presentation, of which only two clearly indicated subset of patients with bacteraemia as the primary site of Acinetobacter infection. Similarly, the ascertainment of severe sepsis or septic shock after positive Acinetobacter culture was observed in another two studies only. As a result, the directionality of the causal pathway between bacteraemia or septic shock and CRA infection could not be determined. Both directions are plausible, where use of antimicrobials during the course of infection would have increased the likelihood of the infecting pathogen acquiring a carbapenem resistance mechanism. In addition, several of the studies purposefully excluded CRA-colonized patients from the sample, which would have impeded the capability of the study to report the risk of bacteraemia development from CRA acquisition. As such, future well-designed longitudinal studies are still warranted to ascertain the development of bacteraemia and sepsis from CRA infection. Secondly, the heterogeneity of included studies for mortality is high. This is likely due to unadjusted and adjusted effect estimates being pooled in the meta-analysis and compounded by highly variable confounders that were accounted for in the adjusted effect estimates. The variability in confounder adjustment was also reflected in the poor score for comparability in the quality assessment. In general, poor comparability scores among the studies would have reduced the precision of the pooled mortality estimates observed in this systematic review and meta-analysis. However, this should not significantly impair the statistical significance of higher mortality odds observed in CRA-infected patients, as supported by the sensitivity analysis of pooling adjusted effect estimates with moderate heterogeneity. Additionally, of the 16 studies with adjusted mortality risk estimates, at least 6 studies inappropriately adjusted for septic shock and severity of bacteraemia (measured using Pitt bacteraemia or APACHE score during infection) as confounders. The adjustment of these variables, which should be regarded as mediators along the causal pathway, would have underestimated the true association between CRA infection and mortality and should be avoided in future studies. Lastly, there was substantial presence of publication bias towards studies that reported higher effect sizes of mortality in CRA-infected patients. This suggests the possibility of unpublished studies, especially those of small sample sizes, that did not observe significant association between mortality and CRA infections and therefore could have biased the pooled estimates reported in this systematic review and meta-analysis.

Nonetheless, the results reported in this systematic review and meta-analysis are valuable in supplementing previous findings reported by Lemos et al., where an additional 15 studies have been included since the last search in 2013. This meta-analysis employed the BVhet model instead of the random effects model, as the former model allows proportional assignment of weightage based on individual study power. This would have likely improved the precision of the study estimates reported here by assigning higher weightages to studies with better study power. In addition, this systematic review and meta-analysis also attempted to estimate the risk of developing other adverse clinical outcomes, including bacteraemia and septic shock, which are well-established risk factors for mortality. We also attempted to identify attributable factors for the higher risk of mortality observed in CRA-infected patients and observed that this may be attributed to treatment failure from inappropriateness of antibiotic therapy and to a smaller extent due to differences in severity of underlying illnesses. Although there was some evidence to suggest that CRA strains may be more virulent than CSA strains, this cannot be concluded with certainty due to confounding by sicker CRA-infected patients at baseline.

Conclusions

In conclusion, this systematic review and meta-analysis reports higher odds of all-cause mortality and severe sepsis or septic shock in patients with CRA infection as compared with CSA infection. There are several postulations for this observation, including inappropriate antibiotic treatment given carbapenem resistance of the Acinetobacter strain, CRA-infected patients being sicker at baseline and higher virulence potential in CRA strains as compared with CSA strains, although this should be validated with further comparative genomic and molecular studies of the organism. It appears that acquiring CRA strains does not increase the likelihood of developing bacteraemia as compared with CSA strains, however, availability and quality of studies to support this observation.
are very limited. Future well-designed longitudinal studies are still warranted to understand the risk of adverse clinical development from CRA infections. The evidence presented here further highlights the importance and need to rapidly detect CRA outbreaks in healthcare facilities, which have adverse implications on patient morbidity and mortality.

Acknowledgements
We would like to acknowledge and thank librarian Lars Eriksson for his help in building the search strategy.

Funding
W.L. and Y.E. are receiving scholarship support from University of Queensland for Doctor of Philosophy candidature. L.F.-K. was supported by Australian National Health and Medical Research Council Early Career Fellowships (APP1158469). P.N.A.H. is receiving support from NHMRC Early Career Fellowship (GNT1157530).

Transparency declarations
D.L.P. has received research grants from Merck, Pfizer and Shionogi outside of the submitted work. He has also received personal fees from Merck, Pfizer, Shionogi, Lysovant, The Medicines Company, Entasis, VenatoRx, BioMerieux and Accelerate. P.N.A.H. has received research grants from Merck, Sharp and Dohme (MSD), Sandoz and Shionogi Ltd, outside of the submitted work, as well as personal fees from Pfizer and Sandoz. All other authors: none to declare.

Author contributions
D.L.P., P.N.A.H. and W.L. conceived the aim of this systematic review and meta-analysis. W.L. performed the database search. W.L. and Y.E. were responsible for study screening and selection. W.L. did the data extraction and quality assessment. W.L. and L.F.-K. performed and checked the statistical analysis. W.L. drafted the manuscript. All authors reviewed and provided inputs for the manuscript. All authors approved the final version of the manuscript.

Supplementary data
Tables S1 to S4 and Figures S1 to S4 are available as Supplementary data at JAC-AMR Online.

References
1 Fournier PE, Richet H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 2006; 42: 692–9.
2 Corbella X, Montero A, Pujol M et al. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J Clin Microbiol 2000; 38: 4086–95.
3 Lolans K, Rice TW, Munoz-Price LS et al. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother 2006; 50: 2941–5.
4 CDC. Antibiotic Resistance Threats in the United States. 2019. http://dx.doi.org/10.15620/cdc:82532.
5 Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21: 538–82.
6 Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006; 12: 826–36.
7 Isler B, Doy I, Bonomo RA et al. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother 2018; 63: e01110–18.
8 Lemos EV, de la Hoz FP, Einarson TR et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect 2014; 20: 416–23.
9 Higgins PG, Dammhayn C, Hackel M et al. Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 2010; 65: 233–8.
10 Mohr D, Liberati A, Tetzlaff J et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
11 Falagas ME, Tansarli GS, Karageorgopoulos DE et al. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis 2014; 20: 1170–5.
12 Martin A, Fahrbach K, Zhao Q et al. Association between carbapenem resistance and mortality among adults, hospitalized patients with serious infections due to Enterobacteriaceae: results of a systematic literature review and meta-analysis. Open Forum Infect Dis 2018; 5: ofy150.
13 Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2017; 16: 18.
14 Kohler PP, Villing C, Green K et al. Carbapenem resistance, initial antibiotic therapy, and mortality in Klebsiella pneumoniae bacteremia: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 2017; 38: 1319–28.
15 Ouzzani M, Hammady H, Fedorowicz Z et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016; 5: 210.
16 Wells GA, Shea B, O’Connell D et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
17 Doi SAR, Barendregt JJ, Khan S et al. Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials 2015; 45: 130–8.
18 Furuya-Kanamori L, Barendregt JJ, Doi SAR. A new improved graphical and quantitative method for detecting bias in meta-analysis. Int J Evid Based Healthc 2018; 16: 195–203.
19 Higgins JPT, Thompson SG, Deeks JJ et al. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.
20 Fisher D. admetan: A New, Comprehensive Meta-Analysis Command. Statas Users Group, 2018.
21 Furuya-Kanamori L, Doi SAR. LFK: Sta ta Module to Compute LFK Index and Doi Plot for Detection of Publication Bias in Meta-Analysis. Boston College Department of Economics, 2020. https://econpapers.repec.org/RePEc:boc: bocode:s458762.
22 Kaperides P, Koletsi PK, Michalopoulos A et al. Exposure to quinolones is associated with carbapenem resistance among colistin-susceptible Acinetobacter baumannii blood isolates. Int J Antimicrob Agents 2007; 30: 409–14.
23 Wareham DW, Bean DC, Khanna P et al. Bloodstream infection due to Acinetobacter spp: epidemiology, risk factors and impact of multi-drug resistance. Eur J Clin Microbiol Infect Dis 2008; 27: 607–12.
24 Aydemir H, Celebi G, Piskin N et al. Mortality attributable to carbapenem-resistant nosocomial Acinetobacter baumannii infections in a Turkish university hospital. Jpn J Infect Dis 2012; 65: 66–71.
Acinetobacter among septic ICU patients with hospital-acquired infection with Acinetobacter nosocomialis

Vitkauskiene A, Dambrauskiene A, Cerniauskiene K et al. Risk factors and outcomes in patients with carbapenem-resistant Acinetobacter infection. Scand J Infect Dis 2013; 45: 213–8.

Huang L, Chen TL, Lee YT et al. Risk factors for imipenem-nonsusceptible Acinetobacter nosocomialis bloodstream infection. J Microbiol Immunol Infect 2016; 47: 311–7.

Lee H-Y, Chen C-L, Wu S-R et al. Risk factors and outcome analysis of Acinetobacter baumannii complex bacteremia in critical patients. Crit Care Med 2014; 42: 1081–8.

Lemos EV, de la Hoz FP, Alvis N et al. Impact of carbapenem resistance on clinical and economic outcomes among patients with Acinetobacter baumannii infection in Colombia. Clin Microbiol Infect 2014; 20: 174–80.

Shorr AF, Zilberberg MD, Micek ST et al. Predictors of hospital mortality among septic ICU patients with Acinetobacter spp. bacteremia: a cohort study. BMC Infect Dis 2014; 14: 572.

Chusri S, Chongsuvivatwong V, Rivera JI et al. Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob Agents Chemother 2014; 58: 4172–9.

Metan G, Sariguzel F, Sumerkan B. Factors influencing survival in patients with multi-drug-resistant Acinetobacter bacteremia. Eur J Intern Med 2009; 20: 540–4.

Tal-Jasper R, Katz DE, Amrani N et al. Clinical and epidemiological significance of carbapenem resistance in Acinetobacter baumannii infections. Antimicrob Agents Chemother 2016; 60: 3127–31.

Wang X, Zhang L, Sun A et al. Acinetobacter baumannii bacteremia in patients with haematological malignancy: a multicentre retrospective study from the Infection Working Party of Jiangsu Society of Hematology. Eur J Clin Microbiol Infect Dis 2017; 36: 1073–81.

Baykara N, Akalin H, Arslantaz MK et al. Epidemiology of sepsis in intensive care units in Turkey: a multicenter, point-prevalence study. Crit Care 2018; 22: 93.

Huang Y, Zhang J, Xu J et al. Microbial etiology and prognostic factors of ventilator-associated pneumonia: a multicenter retrospective study in Shanghai. Clin Infect Dis 2018; 67 Suppl 2: S146–52.

Yang S, Sun J, Wu X et al. Determinants of mortality in patients with nosocomial Acinetobacter baumannii bacteremia in Southwest China: a five-year case-control study. Can J Infect Dis Med Microbiol 2018; 31: 0965.

Baikhair A, Al-Muharrmi Z, Al’Adawi B et al. Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteremia caused by Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae: description of a decade-long trend. Int J Infect Dis 2019; 85: 10–5.

Chusri S, Chongsuvivatwong V, Silpapojakul K et al. Clinical characteristics and outcomes of community and hospital-acquired Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect 2019; 52: 796–806.

Nazer LH, Kharabsheh A, Rimawi D et al. Characteristics and outcomes of Acinetobacter baumannii infections in critically ill patients with cancer: a matched case–control study. Microb Drug Resist 2015; 21: 556–61.

Kwon KT, Oh WS, Song JH et al. Impact of imipenem resistance on mortality in patients with Acinetobacter bacteraemia. J Antimicrob Chemother 2007; 59: 525–30.

Cofsky R, Vangala K, Haag R et al. The cost of antibiotic resistance: effect of resistance among Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa on length of hospital stay. Infect Control Hosp Epidemiol 2002; 23: 106–8.

Lautenbach E, Synnestvedt M, Weiner MG et al. Epidemiology and impact of imipenem resistance in Acinetobacter baumannii. Infect Control Hosp Epidemiol 2009; 30: 1186–92.

Jamulitrat S, Arunpan P, Phainupphong P. Attributable mortality of imipenem-resistant nosocomial Acinetobacter baumannii bloodstream infection. J Med Assoc Thai 2009; 92: 413–9.

Choari A, Mnhif B, Bahloul M et al. Acinetobacter baumannii ventilator-associated pneumonia: epidemiology, clinical characteristics, and prognosis factors. Int J Infect Dis 2013; 17: e1225–8.

Liu Y, Wang Q, Zhao C et al. Prospective multi-center evaluation on risk factors, clinical characteristics and outcomes due to carbapenem resistance in Acinetobacter baumannii complex bacteremia: experience from the Chinese Antimicrobial Resistance Surveillance of Nosocomial Infections (CARES) Network. J Med Microbiol 2020; 69: 949–59.

Cai B, Echols R, Magee G et al. Prevalence of carbapenem-resistant gram-negative bacteria in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect Dis 2017; 4: ofx176.

Routsi C, Prattikaki M, Platsouka E et al. Carbapenem-resistant versus carbapenem-susceptible Acinetobacter baumannii bacteremia in a Greek intensive care unit: risk factors, clinical features and outcomes. Infection 2010; 38: 173–80.

Esterly JS, Griffith M, Qi C et al. Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrob Agents Chemother 2011; 55: 4844–9.

Chang HC, Chen YC, Lin MC et al. Mortality risk factors in patients with Acinetobacter baumannii ventilator-associated pneumonia. J Formos Med Assoc 2011; 110: 564–71.

de Gouveia EF, Martins IS, Halpern M et al. The influence of carbapenem resistance on mortality in solid organ transplant recipients with Acinetobacter baumannii infection. BMC Infect Dis 2012; 12: 351.

Kim YJ, Kim SJ, Hong KW et al. Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: impact of appropriate antimicrobial therapy. J Korean Med Sci 2012; 27: 471–5.

Huang ST, Chiang MC, Kuo SC et al. Risk factors and clinical outcomes of patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect 2012; 45: 356–62.

Cisneros JM, Rodriguez-Baño J. Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clin Microbiol Infect 2002; 8: 687–93.

Joly-Guillou ML. Clinical impact and pathogenicity of Acinetobacter. Clin Microbiol Infect 2005; 11: 868–73.

Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. New Microb New Infect 2002; 45: 393–51.

Nazer LH, Chusri S, Kwong SO, Moon DC et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One 2011; 6: e17027.
Abbott I, Cerqueira GM, Bhuiyan S et al. Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect Ther 2013; 11: 395–409.

Paterson DL, Harris PNA. Editorial commentary: the new Acinetobacter equation: hypervirulence plus antibiotic resistance equals big trouble. Clin Infect Dis 2015; 61: 155–6.

Du X, Xu X, Yao J et al. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. Am J Infect Control 2019; 47: 1140–5.

Kim MH, Jeong H, Sim YM et al. Using comparative genomics to understand molecular features of carbapenem-resistant Acinetobacter baumannii from South Korea causing invasive infections and their clinical implications. PLoS One 2020; 15: e0229416.

Liu C, Chang Y, Xu Y et al. Distribution of virulence-associated genes and antimicrobial susceptibility in clinical Acinetobacter baumannii isolates. Oncotarget 2018; 9: 21663–73.

Jones CL, Clancy M, Honnold C et al. Fatal outbreak of an emerging clone of extensively drug-resistant Acinetobacter baumannii with enhanced virulence. Clin Infect Dis 2015; 61: 145–54.