ON THE SUM OF A PRIME AND A FIBONACCI
NUMBER

K. S. ENOCH LEE

Abstract. We show that the set of the numbers that are the sum
of a prime and a Fibonacci number has positive lower asymptotic
density.

1. Introduction

Suppose S is a set of positive integers. We denote the number of
positive integers in S not exceeding N by $S(N)$. This function is called
the counting function of the set S. The sumset, $S + T$, is the collection
of the numbers of the form $s + t$ where $s \in S$ and $t \in T$.

Suppose $A = \{p + 2^i : p$ a prime, $i \geq 1\}$. In 1934, Romanoff [7]
published the following interesting result. For N sufficiently large, we
have $A(N) \geq cN$ for some $c > 0$. In other words, the set A has a
positive lower asymptotic density. Romanoff showed that a positive
proportion of positive integers can be decomposed into the form $p + 2^i$.

Let $u_1 = 1, u_2 = 1, u_{i+2} = u_{i+1} + u_i$ where i is a positive integer.
Denote by U the collection of Fibonacci numbers, namely $U = \{u_i\}_{i \geq 2}$.
Furthermore, let P denote the set of primes. For convenience, we stip-
ulate that p and p' (with or without subscripts) are primes, and u and
u' (with or without subscripts) are Fibonacci numbers. Throughout
this paper, we use the Vinogradov symbol \ll and the Landau symbol
O with their usual meanings.

In this manuscript, we study the set of integers that are the sum
of a prime and a bounded number of Fibonacci numbers. In view of
Romanoff’s theorem, a key element in the proof is

$$\sum_{\substack{d=1 \\ (2,d)=1}}^{\infty} \frac{\mu^2(d)}{e(d)} \ll 1$$

where $e(d)$ is the exponent of 2 modulo d.

2000 Mathematics Subject Classification. Primary 11P32; Secondary 11B39.
Key words and phrases. Fibonacci number, prime, asymptotic density, sumset.
By using an estimate ([8], [9]) of the number of times the residue t appeared in a full period of $u_i \pmod{p}$, we are able to substitute the period $k(d)$ for $e(d)$ and prove that $\mathcal{P} + \mathcal{U}$ has a positive lower asymptotic density.

Theorem 1. Suppose
\[\mathcal{F} = \mathcal{P} + \mathcal{U} = \{ p + u : p \in \mathcal{P}, u \in \mathcal{U} \}. \]
Then there is a positive constant c such that
\[\mathcal{F}(N) \geq cN \]
for all sufficiently large N.

As a consequence, the set $\mathcal{P} + k\mathcal{U}$ has a positive lower asymptotic density for each $k \geq 1$, since $1 \in \mathcal{U}$.

2. **Proof of the Theorem**

For our convenience, we let $L = \lfloor \log \tau \rfloor$ for a given N and use this throughout this paper. Let $\tau = (1 + \sqrt{5})/2$. It is well-known that
\[\left| u_i - \frac{\tau^i}{\sqrt{5}} \right| < \frac{1}{2} \]
for all $i \geq 1$. Thus $u_i = \frac{\tau^i}{\sqrt{5}} + O(1)$. A routine computation yields that
\[\mathcal{U}(N) = L + O(1). \]

Denote by $r'(N) = \sum_{p+u=N} 1$ the number of solutions of the equation $N = p + u$ for $N \geq 1$. We begin with the following lemma.

Lemma 1. For N a large number, we have
\[\sum_{n \leq N} r'(n) \sim \frac{NL}{\log N}. \]

Proof. Note that
\[\pi(N - \frac{N}{L})\mathcal{U}(\frac{N}{L}) \leq \sum_{n \leq N} r'(n) \leq \pi(N)\mathcal{U}(N). \]

The lemma then follows from the prime number theorem. \qed

Properties of Fibonacci numbers can be found in standard texts such as [4], [11], and [12]. For our discussions, we recall some properties of Fibonacci numbers without providing proofs. Given a positive integer n, there is a unique decomposition of n into the sum of non-consecutive Fibonacci numbers, namely,
\[n = u_{i_1} + u_{i_2} + \cdots + u_{i_r}. \]
where $2 \leq i$, and $2 \leq i_j - i_{j+1}$. This is called Zeckendorf representation \[1\] (or canonical representation). In other words, if $2 \leq i$, and $2 \leq i_j - i_{j+1}$, the set of integers (i_1, i_2, \ldots, i_r) is uniquely determined by n and conversely. It is well-known that $u_i \pmod d$ forms a purely periodic series \[13\]. Let $k(d)$ denote the period of Fibonacci numbers modulo d. That is to say $k(d)$ is the smallest positive integers m such that $u_{i+m} \equiv u_i \pmod d$ for all i. In particular, $d|u_{k(d)}$. Furthermore, the period $k(d)$ is equal to the least common multiple of \{$k(p^{i_1}), k(p^{i_2}), \ldots, k(p^{i_r})$\} where $d = p_1^{i_1} \cdots p_t^{i_t}$. We also have that $k(d)|k(m)$ if $d|m$.

Let us investigate the following example. The table below presents one period of the residues for $u_i \pmod 6$, $u_i \pmod 2$, and $u_i \pmod 3$, respectively, where $i \geq 2$.

$i \pmod{6}$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
$u_i \pmod{2}$	1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
$u_i \pmod{3}$	1 2 0 2 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

From the table, we see that $k(6) = 24, k(2) = 3$, and $k(3) = 8$. We note that $k(6) = LCM[k(2), k(3)]$. For any modulus $d \geq 2$, and residue $y \pmod d$, denote by $\nu(d, y)$ the number of occurrences of y as a residue in one full period of $u_i \pmod d$. Let us explore the case $y \equiv 5 \pmod 6$. From the table, we have $\nu(6, 5) = 6, \nu(2, 5) = \nu(2, 1) = 2, \nu(3, 5) = \nu(3, 2) = 3$. It is clear that $\nu(d, y) \leq \frac{k(d)}{k(p)} \nu(p, y)$ where $p|d$. We now return to our proof.

Lemma 2. Let $-N \leq h \leq N$ and $f(h)$ be the number of solutions of the equation:

$$u - u' = h$$

where $u, u' \leq N$. Then

1. $f(0) \sim L$ and $f(h) \leq 2$ if $h \neq 0$;
2. Suppose $d > 1$ is an integer and $p|d$. Then

$$\sum_{d|h} f(h) \leq 4L \left(1 + \frac{L}{k(p)}\right).$$

Proof. Without loss of generality, we can assume $h \geq 0$. (1) Clearly we have $f(0) = \mathcal{U}(N) \sim L$. Next we claim that $f(h) \leq 2$ when $h > 0$. Assume that $h = u_j - u_i = u_t - u_s$ where $j > i$ and $t > s$. If $j - i = 1$, then $h = u_j - u_{j-1} = u_{j-2} = u_{j-1} - u_{j-3}$. Suppose $t > j$. If $t - s = 1$, we have $u_{t-2} = u_{j-2}$, a contradiction. If $t - s > 1$, we have $u_t - u_s > u_t - u_{t-1} = u_{t-2}$, a contradiction again! Suppose now $t < j - 1$. This forces $u_t - u_s < u_{j-2} = h$. Therefore, there are only
two decompositions of \(h \) into the difference of two Fibonacci numbers, namely \(u_j - u_{j-1} \) and \(u_{j-1} - u_{j-3} \).

Now suppose \(j - i \geq 2 \). From the definition of Fibonacci numbers, we derive that

\[
u_j - u_i = \begin{cases} u_{j-1} + u_{j-3} + \cdots + u_{j-(2v-1)}, & \text{if } i = j - 2v; \\ u_{j-1} + u_{j-3} + \cdots + u_{j-(2v-1)} + u_{j-(2v+2)}, & \text{if } i = j - (2v + 1); \end{cases}
\]

where \(v \geq 1 \). Clearly these are Zeckendorf representations. By the same token, \(u_t - u_s \) has similar decompositions. The uniqueness of Zeckendorf representation implies that \(t = j \) and thus \(s = i \). As a consequence, \(f(h) \leq 2 \).

(2) The sum \(\sum_{d | h} f(h) \) is the number of solutions of the congruence \(u \equiv u' \pmod{d} \). Note that \(u \equiv u' \pmod{p} \) if \(p | d \). However, Schinzel [8] and Somer [9] showed that \(\nu(p, y) \leq 4 \), namely, there are at most 4 choices for \(u \) in any interval of length \(k(p) \) such that \(u \equiv y \pmod{p} \). This implies within an interval of length \(L \) there are at most \(4(1 + \frac{L}{k(p)}) \) solutions to \(u \equiv y \pmod{d} \). Thus \(p | d \) implies

\[
\sum_{d | h} f(h) \leq 4L \left(1 + \frac{L}{k(p)} \right).
\]

□

Lemma 3. For \(k \geq 1 \) and \(N \) sufficiently large, we have

\[
\sum_{n \leq N} (r'(n))^2 \leq c \frac{NL^2}{(\log N)^2}
\]

where \(c > 0 \).

Proof. In the following, we assume that \(p, p', u, u' \leq N \). We first break the sum into three parts.

\[
\sum_{n \leq N} (r'(n))^2 = \sum_{n \leq N} \left(\sum_{p + u = n} 1 \right)^2
\]

\[
= \sum_{n \leq N} \sum_{p + u' = n} 1
\]

\[
= \sum_{-N \leq h \leq N} \left(\sum_{p - p' = h} 1 \right) f(h).
\]
ON THE SUM OF A PRIME AND A FIBONACCI NUMBER

Let

$$\sum (h) = \left(\sum_{p - p' = h \atop p, p' \leq N} 1 \right) f(h),$$

where $h = 0$, $h > 0$, $h < 0$. We investigate these three cases respectively. First, suppose $h = 0$. From Lemma 2, we have

$$\sum (0) = \left(\sum_{p \leq N} 1 \right) f(0) \sim \frac{NL}{\log N}.$$

Next, we suppose $h > 0$ and is odd. This implies $p' = 2$, since $p - p' = h$. Thus

$$\sum_{0 < h \leq N \atop 2 \mid h} (h) = \sum_{0 < h \leq N \atop 2 \mid h} \left(\sum_{p = h + 2 \atop p \leq N} 1 \right) f(h).$$

Therefore, we have

$$\sum_{0 < h \leq N \atop 2 \mid h} (h) \ll \sum_{0 < h \leq N \atop 2 \mid h} \left(\sum_{p = h + 2 \atop p \leq N} 1 \right) \ll \frac{N}{\log N}.$$

We now assume $h > 0$ is even. Recall that the number of primes $p \leq N$ such that $p + h$ is also a prime is given by (cf. [3, p.102], [5, p.97] , and [6, p.190])

$$O\left(\frac{N}{(\log N)^2} \prod_{p \mid h} \left(1 + \frac{1}{p} \right) \right).$$

By using Lemma 2, we obtain that

$$\sum_{0 < h \leq N \atop 2 \mid h} (h) \ll \frac{N}{(\log N)^2} \sum_{0 < h \leq N} f(h) \prod_{p \mid h} \left(1 + \frac{1}{p} \right)$$

$$\ll \frac{N}{(\log N)^2} \sum_{d \leq N} \frac{\mu^2(d)}{d} \sum_{0 < h \leq N \atop d \mid h} f(h)$$

$$\ll \frac{NL^2}{(\log N)^2} + \frac{NL}{(\log N)^2} \sum_{1 < d \leq N} \frac{\mu^2(d)}{d} \left(1 + \frac{L}{k(p)} \right),$$

where p is a prime factor of d. For our investigation, we let the function $LP(d) = \max\{p\mid d : k(p) \geq k(p')\}$ for $p'\mid d\}$. We are to show that

$$\sum_{d \leq N \atop p = LP(d)} \frac{\mu^2(d)}{dk(p)} \ll 1.$$
We define
\[E(x) = \sum_{g \leq x} \sum_{\substack{p = LP(d) \backslash k(p) = g}} \frac{\mu^2(d)}{d}. \] (\ast)

In 1974, Catlin \[2\] showed that if \(k(m) < 2t \) then \(m < L_t \) where \(L_t \) is the \(t \)-th Lucas number. Therefore, for a fixed number \(g \), there are only finitely many solutions \(p \) to the equation \(k(p) = g \). Furthermore, there can only be a finite number of primes having period less than or equal to \(k(p) \), and thus there are only finitely many squarefree \(d \) having \(p = LP(d) \). This means \(E(x) \) is well-defined. Let
\[D(x) = \prod_{i \leq x} u_i. \]

Without loss of generality, we assume that \(d \), appearing in the sum (\ast), is squarefree. Note that \(p'|d \) implies \(p'|u_{k(p')}|D(x) \). We then have \(d|D(x) \) since \(k(p) \leq x \) and \(p = LP(d) \). It is also clear that the number \(d \) appears in (\ast) once. Let \(n = \omega(D(x)) \) be the number of distinct prime factors of \(D(x) \). Then
\[2^n \leq D(x) \ll \prod_{i \leq x} p^i \ll x^2. \]

In other words, we have \(n \ll x^2 \), and thus \(\log p_n \ll \log n \ll x \) (where \(p_i \) is the \(i \)-th prime). Immediately, we have
\[E(x) \ll \sum_{d|D(x)} \frac{\mu^2(d)}{d} = \prod_{p|D(x)} \left(1 + \frac{1}{p} \right) \ll \prod_{i=1}^n \left(1 + \frac{1}{p_i} \right). \]

Apply Merten’s formula to the last term to obtain
\[E(x) \ll \log p_n \ll \log x. \]

By partial summation, we have
\[\sum_{g \leq x} \frac{1}{g} \sum_{\substack{p = LP(d) \backslash k(p) = g}} \frac{\mu^2(d)}{d} = \frac{E(x)}{x} + \int_1^x \frac{E(x)}{t^2} dt \ll 1. \]

This implies
\[\lim_{x \to \infty} \sum_{d \leq x \atop p = LP(d)} \frac{\mu^2(d)}{dk(p)} = \lim_{x \to \infty} \sum_{g \leq x} \frac{1}{g} \sum_{\substack{p = LP(d) \backslash k(p) = g}} \frac{\mu^2(d)}{d} \ll 1. \]
As a consequence, we have

\[
\sum_{0 < h \leq N} \sum (h) \ll \frac{NL^2}{(\log N)^2}.
\]

By symmetry,

\[
\sum_{-N \leq h < 0} \sum (h) \ll \frac{NL^2}{(\log N)^2}.
\]

Combining the above estimations, we obtain

\[
\sum_{n \leq N} (r'(n)) \ll \frac{NL^2}{(\log N)^2}.
\]

Invoking the Cauchy-Schwarz inequality, we have

\[
\left(\sum_{n \leq N} r'(n) \right)^2 \leq F(N) \sum_{n \leq N} (r'(n))^2.
\]

However, Lemma 1 and Lemma 3 imply

\[
F(N) \geq \left(\frac{\sum_{n \leq N} r'(n)}{\sum_{n \leq N} (r'(n))^2} \right)^2 \geq \frac{1}{c} N.
\]

This proves the theorem.

3. Remarks

To conclude our paper, we post the following questions related to our quest.

(1) Is \(r'(n) \ll 1\)? The referee notices that for any fixed \(k \geq 2\), we can choose distinct Fibonacci numbers \(u_{m_1}, u_{m_2}, \ldots, u_{m_k}\) such that for any prime \(p\) there exists \(1 \leq d_p \leq p\) satisfying \(u_{m_i} \neq d_p \pmod{p}\) for each \(1 \leq i \leq k\) (see Schinzel [8, Corollary 1]). Then by the widely believed prime k-tuple conjecture (see [5]), there exist infinitely many \(n\) such that \(n - u_{m_1}, n - u_{m_2}, \ldots, n - u_{m_k}\) are all primes. That is, \(r'(n) \geq k\). Thus the referee suggests that \(\limsup_{n \to \infty} r'(n) = +\infty\) instead.

(2) Find an infinite sequence (or an arithmetic progression) of positive integers that each of the terms cannot be of the form \(p + u\). Note Wu and Sun [14] constructed a class that does not contain integers representable as the sum of a prime and half of a Fibonacci number.
(3) Is there a positive integer k such that n can be decomposed into a sum of a prime and k Fibonacci numbers for n sufficiently large? Note that Sun [10] has recently conjectured that every integer (>4) can be written as the sum of an odd prime and two positive Fibonacci numbers.

References

[1] J.L. Brown, Jr., Zeckendorf’s Theorem and Some applications, Fibonacci Quarterly, 3(1965), 163–168.
[2] P.A. Catlin, A Lower Bound for the Period of the Fibonacci Series Modulo M, Fibonacci Quarterly, 12(1974), 349–350.
[3] A.C. Cojocaru, M. Ram Murty, An Introduction to Sieve Methods and their Applications, Cambridge University Press, New York, 2006.
[4] T. Koshy, Fibonacci And Lucas Numbers With Applications, John Wiley & Sons, New York, 2001.
[5] H.L. Montgomery and R.C. Vaughan, Multiplicative Number Theory: I. Classical Theory, Cambridge University Press, New York, 2007.
[6] M.B. Nathanson, Additive Number Theory: The Classical Bases, Springer, New York, 1996.
[7] N.P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Mathematische Annalen, 109(1934), 668–678.
[8] A. Schinzel, Special Lucas Sequences, Including the Fibonacci Sequence, Modulo a prime, in: A. Baker, B. Bollobás, A. Hajnal (Eds.), A Tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp.349–357.
[9] L. Somer, Distribution of Residues of Certain Second-Order Linear Recurrences Modulo p in: G.E. Berum, A.N. Philippou, and A.F. Horadam (Eds.), Applications of Fibonacci Numbers, Kluwer Academic Publishers, Dordrecht, Holand, Vol. 3, 1990, pp.311–324.
[10] Z.W. Sun, Mixed sums of primes and other terms, arXiv:0901.3075v3 [math.NT].
[11] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications, New York, 1989.
[12] N.N. Vorobiev, Fibonacci Numbers, (Translated by M. Martin) Birkhäuser Verlag, Basel-Boston-Berlin, 2002.
[13] D.D. Wall, Fibonacci Series Modulo m, Fibonacci Quarterly, 67(1960), 525–532.
[14] K.J. Wu and Z.W. Sun, Covers of the integers with odd moduli and their applications to the forms $x^m − 2^n$ and $x^2 − F_{3n}/2$, Math. Comp., 78(2009), 1853–1866.

P O Box 244023, Department of Mathematics, Auburn University Montgomery, Montgomery, AL 36124-4023, USA
E-mail address: elle4@aum.edu