Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition

Fabrice Lalubin1,2, Aline Delédevant1, Olivier Glaizot2* and Philippe Christe1

Abstract

Background: Knowledge on the temporal dynamics of host/vector/parasite interactions is a pre-requisite to further address relevant questions in the fields of epidemiology and evolutionary ecology of infectious diseases. In studies of avian malaria, the natural history of Plasmodium parasites with their natural mosquito vectors, however, is mostly unknown.

Methods: Using artificial water containers placed in the field, we monitored the relative abundance of parous females of Culex pipiens mosquitoes during two years (2010–2011), in a population in western Switzerland. Additionally, we used molecular tools to examine changes in avian malaria prevalence and Plasmodium lineage composition in female C. pipiens caught throughout one field season (April-August) in 2011.

Results: C. pipiens relative abundance varied both between years and months, and was associated with temperature fluctuations. Total Plasmodium prevalence was high and increased from spring to summer months (13.1-20.3%). The Plasmodium community was composed of seven different lineages including P. relictum (SGS1, GRW11 and PADOM02 lineages), P. vaughani (lineage SYAT05) and other Plasmodium spp. (AFTRU5, PADOM1, COLL1). The most prevalent lineages, P. vaughani (lineage SYAT05) and P. relictum (lineage SGS1), were consistently found between years, although they had antagonistic dominance patterns during the season survey.

Conclusions: Our results suggest that the time window of analysis is critical in evaluating changes in the community of avian malaria lineages infecting mosquitoes. The potential determinants of the observed changes as well as their implications for future prospects on avian malaria are discussed.

Keywords: Culex pipiens, Plasmodium relictum, Plasmodium vaughani, Temporal parasite community, Seasonality, Vector-borne disease

Background

Seasonal variations in ecological and climatic parameters such as day length, rainfall, temperature or available resources are particularly marked at mid-latitudes with temperate climates. Seasonality is highly important for the population dynamics of infectious diseases and often results in cyclic prevalence patterns of the parasites within susceptible host populations (reviewed in [1]). Cyclic dynamics may arise from seasonal modifications in the biology and the behaviour of animal hosts and their parasites favoring contact rates between them [2]. For instance, seasonal migration of animals may offer different hitchhiking trajectories for parasites and may shape the parasite community structure at a local scale [3].

Malaria parasites (Plasmodium spp., Haemosporidae: Apicomplexa) are extremely diversified protozoan blood parasites [4,5] that are transmitted to vertebrate hosts by blood-sucking dipteran insect vectors [6]. The general life cycle of Plasmodium parasites seems to be well conserved across vertebrate hosts [6,7], although their dynamics of infection within the vertebrate hosts can substantially vary depending on the combinations between host and parasite lineages e.g. [8-10]. Malaria-infected hosts classically suffer a first peak of parasitaemia (acute infection phase), which occurs about 15 days after the parasite inoculation.
The parasite then gradually retreats from the blood to the host’s internal organs where it is no longer transmissible to the vectors (latent infection phase). The infection may remain latent for several months until a secondary blood relapse of the parasite arises. Cycles of latent infection and relapse can then reoccur at fixed time intervals. Many studies have investigated the seasonal incidence of malaria parasites in susceptible host populations to further predict the risk of becoming infected [11]. Most of these longitudinal studies agree that malaria outbreaks generally arise synchronously in late spring or, in tropical zones, near the monsoon season [12-14]. This “spring relapse” has been particularly emphasized in avian malaria studies [15-22] and although it is believed to coincide with the seasonal peak abundance of the blood-sucking vectors [23], thus facilitating parasite transmission [24], the seasonal dynamics of major disease vectors remains understudied in temperate Europe [25]. The development of new PCR-based methods [26,27] has allowed the documentation of dynamic changes in the communities of avian Plasmodium lineages within wild bird species populations [28-32] or individual hosts [33-36]. Whilst seasonal changes in host immunocompetence could explain the observed patterns of abundance and persistence of avian Plasmodium lineages in these studies, we do not know much about the role of natural vectors in the epidemiology of avian malaria [37-39]. Recent epidemiological models have however demonstrated that they play a central role in Plasmodium temporal dynamics [40].

There is growing evidence that the northern house mosquito, Culex pipiens (Diptera: Culicidae), is a major vector of avian malaria in the northern hemisphere [41-47]. This mosquito, which can act as a vector of several other infectious diseases such as arboviruses [48], is sensitive to seasonal changes [49]. For instance, autumnal decreases in day length and temperature have been shown to trigger a genetic cascade [50] that inhibits host-seeking and blood-feeding behaviour in overwintering C. pipiens populations [51]. To get a better understanding of the complex malarial interactions, it is thus of crucial interest to account for the infection dynamics of the vectors, as well as their seasonal patterns of abundance.

Here, we monitored the relative abundance of one population of C. pipiens mosquitoes during two years (2010–2011) in western Switzerland. In 2011, we also surveyed this mosquito population for avian malaria infection from April to September. Our aims were (i) to investigate the relationship between climatic variables (rainfall and temperature) and mosquito population densities, (ii) to determine the Plasmodium infection dynamics of the vectors through the season and (iii) to document changes in the parasite community structure on a larger temporal scale, through data comparison with a previous long-term survey conducted at our study site on both mosquitoes and bird hosts. The present study is therefore part of a continuous effort to provide a better understanding of avian malaria interactions in a natural model system.

Methods
Study site and mosquito survey
Mosquito surveys were conducted from April to September 2010 and 2011, at the edge of the urban forest of Dorigny (46°31’ N; 6°34’ E; alt. 400 m), on the campus of the University of Lausanne (Switzerland). Temperature and precipitation data were obtained from the closest meteorological station (Swiss Federal Office of Meteorology and Climatology) located in Pully, about 7 km southeast of our study site. Rainfall collecting containers (50×30×25 cm) intended to provide gravid female mosquitoes with oviposition sites were set up at our spot survey in the early spring and removed in autumn. 160 to 179 containers were initially filled up with water from Lake Léman, located at the South of the study site, and baited with baker’s yeast so as to favour container visitation by gravid Culex pipiens females [52]. The containers were positioned one next to another, at a density of about 4 containers/m². All containers were inspected twice a week for egg rafts. Because the number of collected egg rafts was strongly heterogeneous between the different containers, we measured n, the density of egg rafts, as the mean number of egg rafts collected per container per inspection date. Egg raft densities provided us with reliable estimates of the C. pipiens relative abundance throughout the year [53,54] and the measurements were congruent with the data gained from the survey of gravid C. pipiens with mosquito traps (see Additional file 1: Figure S1).

Field-collection of adult gravid female mosquitoes
Collection of adult female C. pipiens was carried out two to three times per week from April to September 2011 (26 weeks), by using gravid mosquito traps (Bioquip, California). Each trapping day, gravid traps were set up at sunset on the containers that totaled the highest number of egg rafts during the preceding week. The traps were removed the next morning, after sunrise. Collected mosquitoes were transferred to individual plastic vials (SARTSDET, 30 ml) and were maintained unfed for 23 days on average, until they died. Freshly dead mosquitoes were transferred within the day to −80°C to further determine their malaria infection status by using PCR-based methods.

Molecular analyses
DNA from the mosquito thorax samples was extracted by using the DNeasy tissue extraction kit combined with the Biosprint96 workstation (QIAGEN), according to the manufacturer’s instructions. A nested-PCR protocol was used to amplify a portion (478-bp long) of the mitochondrial
cytochrome b gene (mtDNA cyt b) of the parasite (see [26,27] for further detailed explanations of the method). PCR-products were purified and sequenced as described by van Rooyen et al. [33,34]. We then used MEGA (version 5) for sequence editing and alignment [55]. The MalAvi database allowed us to link genetic polymorphism of the mtDNA cyt b gene with previously identified Plasmodium lineages [4].

Statistical analysis

We used multiple linear regression models with the ordinary least squares (OLS) method to investigate whether C. pipiens density differed between years (2010 and 2011) and between months (April-September). C. pipiens density (mean egg rafts per container per inspection date, dependent variable) was log (n+1) transformed and modeled as a function of year and month of capture nested within year. Mean daily temperature, precipitation and the interaction between temperature and precipitation were considered as continuous covariates in the models. Contrasts between months were then conducted with a Tukey's HSD test. We used the Pearson's correlation to investigate covariance pattern between cumulated densities of C. pipiens and degree-day accumulation.

To assess changes in avian malaria prevalence throughout 2011, we model avian malaria prevalence (proportion of mosquitoes found infected per date) with a quasibinomial error structure as a function of months (April-September). The significance of month was determined using a F-test [56]. Pairwise comparisons between mean monthly prevalence were then conducted with t-tests, using April as the reference month. Sampling dates with less than five collected mosquitoes were discarded from the analysis of prevalence.

We used a Chi-square test to determine whether prevalence of species-specific infection varied during 2011. Adult female mosquitoes caught in September 2011 were dismissed from this analysis as only one mosquito was found infected (over 68 captured). Statistical analyses were conducted using JMP 9.0 (SAS Institute Inc., Cary, NC) and R 2.15.2 [57].

Results

C. pipiens relative abundance

Egg raft density significantly differed between years ($F_{1,110} = 26.80; P < 0.001$) and between months ($F_{10,110} = 8.53; P < 0.001$; Figure 1). Egg raft density significantly peaked in July 2010, when environmental conditions were the warmest of the season. No such peak was observed in July 2011, which was exceptionally cold (Figure 1). This pattern resulted in a significant effect of temperature on egg raft density ($F_{1,110} = 56.58; P < 0.001$). Indeed, cumulative egg raft density was highly predicted by degree-days accumulation in both years (Pearson's correlation: 2010: n = 46, $r = 0.98$, $P < 0.001$; 2011: n = 78, $r = 0.98$, $P < 0.0001$; overall: n = 124, $r = 0.97$, $P < 0.001$; Figure 2). Egg raft density was however not significantly influenced by precipitation ($F_{1,110} = 0.21; P = 0.645$), neither by the interaction between precipitation and temperature ($F_{1,109} = 0.98; P = 0.325$).

Avian malaria prevalence and lineage diversity

Over 1155 mosquitoes collected across the survey (April-September 2011, 178 (15.4%) were found positive for avian Plasmodium infection (Table 1). Analysis of the mtDNA cyt b sequences (430–478 bp) retrieved from mosquitoes’ thorax samples allowed us to identify seven different Plasmodium lineages. We found: SYAT05 (50.6% of the infections, n = 90), SGS1 (34.3%, n = 61), AFTRU05

Figure 1 Seasonal changes in the density of Culex pipiens egg rafts and in the rainfall, at Dorigny (Switzerland). Egg raft density was determined as the mean of monthly collected egg rafts per container and per trap date. Error bars are the standard errors of the means. Values between parentheses indicate mean monthly temperature. Egg raft density was significantly different between months not connected by the same letters (Tukey's HSD test, $P < 0.05$).
GRW11 (4.5%, n = 8), PADOM01 (1.7%, n = 3), COLL1 (1.1%, n = 2), PADOM02 (0.6%, n = 1) and one positive sample with undetermined lineage. SYAT05 lineage is associated with the morphospecies *Plasmodium* (*Novyella*) *vaughani* and SGS1, GRW11 and PADOM02 to *Plasmodium* (*Haemamoeba*) *relictum* [58-61]. The remaining lineages AFTRU5, COLL1 and PADOM01, for which morphospecies identities are not yet available in the literature, were grouped as *Plasmodium* spp. lineages.

Temporal changes in Plasmodium prevalence and lineage community

Avian malaria prevalence significantly varied between months ($F = 5.79$, $P < 0.001$, Table 1). The proportion of infected mosquitoes was relatively stable from April to June (estimate ± SE: May-April: 0.36 ± 0.31, $t = 1.16$, $P = 0.254$; June-April: 0.29 ± 0.33, $t = 0.86$, $P = 0.393$), increased in July (April-July: 0.70 ± 0.32, $t = 2.161$, $P = 0.037$) peaked in August (August-April: 0.71 ± 0.32, $t = 2.20$, $P = 0.034$) before declining drastically in September (September-April: -1.79 ± 0.85, $t = -2.11$, $P = 0.041$) well below the value observed in early spring.

Prevalence of species-specific infection (*P. relictum*, *P. vaughani* or *Plasmodium* spp.) significantly differed between months (Chi-square test: $n = 177$, $df = 8$, $\chi^2 = 35.93$, $P < 0.001$). *Plasmodium vaughani* (lineage SYAT05) appeared to be gradually replaced along the season by *P. relictum* (lineage SGS1, GRW11 and PADOM02) and later by other *Plasmodium* spp. (COLL1, PADOM1, AFTRU5 lineages) (Figure 3).

Table 1 Number of captured female *Culex pipiens* and prevalence of avian malaria in the study site

Month	Number of trap-dates	Mean number of traps	Mean number of gravid females (trap/date)	N (+)	(%)
April	9	4	2.6	92 (13)	14.1
May	10	4	9.3	370 (53)	14.3
June	8	3	8.9	214 (28)	13.1
July	8	4	6.2	199 (40)	20.1
August	9	4	5.9	212 (43)	20.3
September	8	2	4.3	68 (1)	1.5
Total	1155 (178)			15.4	

Total number of field-caught female *C. pipiens* from April to August 2011 (N). The number of PCR-positive mosquito thorax samples (+) and the mean monthly prevalence (%).

Discussion

C. pipiens relative abundance

Year of sampling has a strong effect on *C. pipiens* relative abundance. In 2010, the general picture was similar to previous seasonal records conducted in other countries [62-67]. *C. pipiens* appear around May and the density slowly increases until a seasonal maximum in July-August [68] or sometimes later in September [54]. In 2011, unusual cold temperatures during summer months may explain the relative low abundance of *C. pipiens* over the season survey [65]. The tight relationship between mosquito abundance and field temperatures reported in the present study is well documented.
in the literature [69-72] and may serve as baseline to model the entomological risk for avian malaria.

Avian malaria prevalence

The high rate of *C. p. pipiens* infection reported in the present study (16.3%), together with previous surveys conducted at our study site [45], reinforces the view that *C. p. pipiens* is a natural vector of avian malaria in western Switzerland, as observed as well elsewhere in the northern hemisphere [41-45,73]. However, we used highly selective gravid mosquito-traps to target parous *C. p. pipiens* females and our infection rate refers to this group only and was thus not comparable with similar studies using different trapping methods, such as sentinel or light traps.

We found that female *C. p. pipiens* caught in summer (July-August) 2011 were more likely to be infected than those trapped in spring (April-June), a prevalence pattern that is further corroborated by previous field investigations on natural malaria vectors [24,38,39,44]. This result is consistent with the idea that the spring relapse in the bird reservoir hosts results in a seasonal increase of mosquitoes exposed to malaria parasites. Alternatively, evidence that *C. p. pipiens* can adjust their feeding preference for host species as a response to seasonal changes in bird-species abundance is increasing [44,62,74-76]. This process may in turn affect vector prevalence, if the different host species encountered throughout the season are differentially susceptible to avian malaria. Other environmental (abiotic) factors changing seasonally may also have influenced the overall infection rates of *C. p. pipiens* [40].

Plasmodium lineage diversity

Plasmodium vaughani (SYAT05 lineage) and *Plasmodium relictum* (SGS1 lineage) were the two most prevalent parasites (50.6% and 34.3%), a result similar to previous surveys conducted across Europe [41,42,45]. Both lineages are probably the most documented parasites in avian-malaria studies, as they have been found nearly worldwide, in hundreds of different bird species [77]. Lineage SGS1 however exploits a wider diversity of bird orders than SYAT05, which is restricted to passerines (Passeriformes). AFTRU5 (*Plasmodium spp.*) was found at a lower prevalence (about 7% of the infections). This lineage has only been found in Blue throats (*Luscinia svecica*) and African thrushes (*Turdus pelios*), in Middle East and West Africa respectively [5,78]. Our study is the first to report its occurrence in Europe. It is possible that lineage AFTRU5 has indeed been imported in Europe by migratory birds. Finally, rare lineages (< 4.5% of the infections) included PADOM02 and GRW11 (both attributed to *P. relictum*) and COLL1 and PADOM01 of unknown species. These last four lineages are frequently found in native passerines species in Europe [79-83]. It is not yet clear whether these *Plasmodium* lineages were scarce due to rare transmission opportunities at our study site or because they result in high vector mortalities [45].

Temporal changes in the parasite community structure

A previous study conducted at our study site [45] allowed us to compare the structure of the *Plasmodium* community on a four year interval. *P. vaughani* (SYAT05 lineage) and *P. relictum* (SGS1, GRW11 and PADOM02 lineages) were found in both studies but other species, such as *P. circumflexum* (TURDUS1 lineage) and *P. polare* (SW2 lineage) were found only in 2006–2007. On the other hand, lineages AFTRU5 and COLL1 (*Plasmodium spp.*) were new in 2011–2012. To our knowledge, only one study conducted in Japan [37] has previously documented between-year variation in the composition of the avian *Plasmodium* community in vectors: these authors found that the most prevalent *Plasmodium* lineages persist over several years whilst less frequent ones were not consistently encountered at the same period of each year.

In the present study, we also report for the first time that the dominance of *Plasmodium* species within the studied population of mosquitoes varied through the season. Whilst the total prevalence of *Plasmodium* infection, irrespective of strain, increased, infection by *P. vaughani* (lineage SYAT05) decreased from spring to summer in favour of *P. relictum* (lineage SGS1, GRW11 and PADOM02). This result may be due to seasonal changes in the host feeding preferences of the vectors. Previous studies indeed support the idea that different bird species can host different *Plasmodium* lineages [47,84].
Future studies are needed to investigate temporal changes in (i) the blood-feeding preferences of C. pipiens and (ii) the communities of Plasmodium that infect different bird species in our study system.

An alternative explanation to the seasonal changes in Plasmodium lineage composition is that concomitant infection of C. pipiens by P. relictum and P. vaughnii may have increased throughout the season, resulting in lower transmissibility of P. vaughnii if vectors had evolved cross-immunity. Blocked transmission of one parasite species by another has for instance been documented in Aedes aegypti mosquitoes experimentally co-infected with P. gallinaceum and P. justuscalveare [85]. This process may result in negative periodicity of species-specific infections [86]. Competitive interactions within vectors may also provide an explanation for why we did not find mosquitoes carrying mixed infections.

Finally, different avian Plasmodium species may optimally develop within vectors under different environmental conditions. For instance, the minimum temperature requirement for human malaria parasites is 16.5°C, 17.5°C and 18°C for P. malariae, P. vivax and P. falciparum respectively [87] whilst the rodent malaria parasite P. berghei may be transmitted at lower temperatures [88]. Avian malaria P. relictum optimally develop within vectors at 27°C [89] and temperatures below 20°C inhibited or strongly delayed sporozoite development [89,90]. However, the sporogonic cycle of P. vaughnii has been incompletely investigated [77] and further comparative studies at different temperatures are needed.

Conclusions
We showed that despite an apparent persistence of major avian malaria parasites over several years, the structure of the Plasmodium community infecting C. pipiens does dynamically change, when looking at a finer temporal scale. These changes are most likely due to the interplay of ecological and climatic factors influencing demographic, behavioural and life history parameters of both host and vector populations. Future investigations will determine whether the same changes in the Plasmodium lineage composition can repeat over several years and should account for the spatial dimension of parasite, vector and host distributions.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FL, OG and PC conceived and designed the study. FL and AD collected the data. FL analysed the data. All authors participated to the writing of the paper. All authors read and approved the final manuscript.

Authors’ information
OG and PC authors share the senior authorship of the study.

Acknowledgements
This study was founded by the Swiss national Science foundation, grants 31003A-120479 and 31003A-138187. We are very grateful to Alexandre Chausson, Danilo Foresti, Léo Gaillard, Laura Galbiati and Aude Roguiev for help to collect mosquito egg rafts, as well as Jessica Delhaye, Tania Jenkins and two anonymous reviewers for valuable comments on the manuscript.

Author details
1Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland. 2Museum of Zoology of Lausanne, Lausanne CH-1014, Switzerland.

Received: 11 July 2013 Accepted: 16 October 2013
Published: 25 October 2013

References
1. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P: Seasonality and the dynamics of infectious diseases. Ecol Lett 2006, 9(9):467–484.
2. Christe F, Arlettaz R, Vogel P: Variation in intensity of a parasitic mite (Spinturnix mycol) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 2000, 3(3):207–212.
3. Altizer S, Bartel R, Han BA: Animal migration and infectious disease risk. Science 2011, 331(6015):296–302.
4. Bensch S, Hellgren O, Pérez-Tris J, Malaví: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 2009, 9(5):1353–1358.
5. Martinson ES, Perkins SL, Schall JJ: A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 2008, 47(1):261–273.
6. Gamham PCC: Malaria parasites and other Haemosporidia. Oxford: Blackwell Scientific Publications; 1966.
7. Reece SE, Ramiro RS, Nussey DH: SYNTHESIS: Plastic parasites: sophisticated strategies for survival and reproduction? Ecol Appl 2009, 21(1):11–23.
8. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S: Plasmodium relictum (lineage P-SGS1): Effects on experimentally infected passerine birds. Exp Parasitol 2008, 120(4):372–380.
9. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S: Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): The effects of the co-infection on experimentally infected passerine birds. Exp Parasitol 2011, 127(2):527–533.
10. Zehntendiep P, Ilieva M, Westerdahl H, Hansson B, Valkiūnas G, Bensch S: Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Exp Parasitol 2008, 119(1):199–110.
11. Thomson MC, Connor SJ, Milligan PJM, Flasse SP: The ecology of malaria - As seen from Earth-observation satellites. Ann Trop Med Parasitol 2006, 100(5):243–264.
12. Hoshen MB, Morse AP: A weather-driven model of malaria transmission. Malar J 2004, 3(1):32.
13. Bigoga JD, Nanfack FM, Awono-Ambene PH, Patchoké S, Atangana J, Ota VS, Fondjo E, Moyou RS, Leke RG: Seasonal prevalence of malaria vectors and entomological inoculation rates in the rubber cultivated area of Niete. South Region of Cameroon. Parasit Vectors 2012, 5:197.
14. Eisen RJ: Variation in life-history traits of Plasmodium mexicanum, a malaria parasite infecting western fence lizards: a longitudinal study. Can J Zool 2000, 78(7):1230–1237.
15. Allander K, Bennett GF: Prevalence and intensity of haematozoan infection in a population of great tits Parus major from Gotland. Sweden. J Avian Biol 1994, 25(1):69–74.
16. Christe P, Maller AP, González G, De Lope F: Intraspecific variation in immune defence, body mass and hematocrit in adult house martins Delichon urbica. J Avian Biol 2002, 33(3):321–325.
17. Cosgrove DL, Wood MJ, Day KP, Sheldon BC: Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 2008, 77(3):540–548.
18. Weatherhead PJ, Bennett GF: Ecology of red-winged blackbird parasitism by haematobia. Can J Zool 1991, 69(9):2552–2559.
19. Van Oers K, Richardson DS, Saether SA, Komdeur J: Reduced blood parasite prevalence with age in the Seychelles Warbler: selective mortality or suppression of infection? J Ornithol 2010, 151(1):69–77.
20. Schrader MS, Walters EL, James FC, Greiner EC, Grubb T: Detection and molecular characterization of avian Plasmodium from mosquitoes in central Turkey. Vet Parasitol 2012, 188(1):179–184.
21. Castro I, Howe L, Tompkins DM, Barraclough RK, Slaney D: Temporal and spatial variation of Plasmodium spp. in rare endemic New Zealand passerine (Tieke or Saddleback, Philesturnus carunculatus). J Wild Dis 2011, 47(3):660–667.
22. Bennett GF, Cameron M: Seasonal prevalence of avian Hematozoa in Passeriform birds of Atlantic-Canada. Can J Zool 1974, 52(10):1259–1264.
23. Beaudoin RL, Applegate JE, Davis DE, McLean RG: Host specificity in avian malaria. J Wild Dis 1971, 75:13–13.
24. Applegate JE, Beaudoin RL, Seeley DC: The effect of spring relapse in english sparrows on infectivity of malaria to mosquitoes. J Wild Dis 1971, 791–92.
25. Sebesta O, Golbik J, Pesko J: Daily and seasonal variation in the activity of potential vector mosquitoes. Czech J Vet Res 2011, 6(3):422–430.
26. Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansell B, Westerdahl H, Pinheiro RT: Specificity in host avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B Biol Sci 2000, 267(1452):1583–1589.
27. Waldenström J, Bensch S, Hasselquist D, Otman O: A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasit 2004, 90(1):191–194.
28. Hellgren O, Wood MJ, Waldenström J, Hasselquist D, Otman O, Stenvander M, Bensch S: Circannual variation in blood parasitism in a sub-Saharan migrant passerine bird, the garden warbler. J Evol Biol 2013, 26(5):1047–1059.
29. Fallon S, Ricklefs R, Latta S:linghamming E: Temporal stability of insular avian malaria parasite communities. Proc R Soc Lond B Biol Sci 2004, 271(1538):493–500.
30. Bensch S, Åkesson S: Temporal and spatial variation of Hematozoa in Scandinavian Willow Warblers. J Parasit 2003, 89(2):388–391.
31. Bensch S, Waldenström J, Jonznén N, Westerdahl H, Hansson B, Sejpberg D, Hasselquist D: Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol 2007, 76(1):112–122.
32. Knowles SCL, Wood MJ, Alves R, Wilkin TA, Bensch S, Sheldon BC: Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird community. Mol Ecol 2011, 20(5):1062–1076.
33. Van Royen J, Lalubin F, Glazot O, Christe P: Avian haemosporidian persistence and co-infection in great tits at the individual level. Mol J 2013, 12(1):40.
34. Van Royen J, Lalubin F, Glazot O, Christe P: Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasit Vectors 2013, 6:139.
35. Latta SC, Ricklefs RE: Prevalence patterns of avian haemosporida on Hispaniola. J Avian Biol 2010, 41(1):25–33.
36. Piersma T, van der Velde M: Do dominant polymerase chain reaction protocols for amplification of the cytochrome b gene. J Parasit 2012, 98(1):1375–1374.
37. Ferraguti M, Martínez-de la Ia, Puente J, Muñoz J, Roiz D, Ruiz S, Soriguer P, Figuerola J: Parasitism in Culex and Ochlerotatus mosquitoes from southern Spain: effects of season and host-feeding source on parasite dynamics. PLoS One 2013, 8(6):e66237.
38. Ricklefs RE: The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2004, 2(11):e368.
39. Ventim R, Ramos JA, Ostrić H, Lopes RJP, Pérez-Tris J, Mendes L: Avian malaria infections in western European mosquitoes. Parasitol Res 2012, 111:657–645.
40. Inci A, Yildiz A, Nabo K, Duzo O, Birkin Z, Ciloglu A: Detection and molecular characterization of avian Plasmodium from mosquitoes in central Turkey, Vet Parasitol 2012, 188(1):179–184.
41. Kimura M, Darbo JM, Harrington LC: Avian malaria parasites share congeneric mosquito vectors. J Parasitol 2010, 96(1):144–151.
42. Eijn H, Sato Y, Kim KS, Tsuda Y, Murata K, Saito K, Watanabe Y, Shimura Y, Yukawa M: Blood meal identification and prevalence of avian malaria parasite in mosquitoes collected at Kushiro Wetland, a subarctic zone of Japan. J Med Entomol 2011, 48(4):904–908.
43. Medeiros MCJ, Hamer GL, Ricklefs RE: Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc R Soc Lond B Biol Sci 2013, 280(1760):20122947.
44. Faragollahi A, Fonseca DMA, Kramer LD, Marm Klapatch A: “Bird biting” mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 2011, 11(7):1577–1585.
45. Tauber MJ, Tauber CA: Insect seasonality - diapause maintenance, termination, and postdiapause development. Annu Rev Entomol 1976, 21:81–107.
46. Robich RM, Ricehart JP, Kitchen LJ, Denlinger DL: Diapause-specific gene expression in the northern house mosquito, Culex pipiens L, identified by suppressive subtractive hybridization. J Insect Physiol 2007, 53(3):235–245.
47. Robich RM, Denlinger DL: Diapause in the mosquito Culex pipiens evokes a metabolic switch from blood feeding to sugar gluttony. Proc Natl Acad Sci U S A 2005, 102(44):15912–15917.
48. Guerenstein PG, Lorenzo MG, Núñez JA, Lazzari CR: Baker’s yeast, an attractant for baiting traps for Chagas’ disease vectors. Experimental 1995, 51(8):834–837.
49. Madder DJ, MacDonald RS, Surgeoner GA, Helson BV: The use of oviposition activity to monitor populations of Culex pipiens and Culex restuans (Diptera: Culicidae). Can Entomol 2000, 132(1):103–107.
50. Jackson BT, Paulson SL: Seasonal abundance of Culex restuans and Culex pipage host species in southwestern Virginia through ovitrapping. J Am Mosq Control Assoc 2006, 22(2):206–212.
51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731–2739.
52. Crawley MJ: The R book. New York: John Wiley; 2007.
53. R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. http://www.r-project.org.
54. Zehntjidev P, Krizanaukene A, Bensch S, Palinauskas V, Aiglar H, Dimitrov D, Scibba S, Valkiūnas G: A new morphologically distinct avian malaria parasite that falls detection by established polymerase chain reaction-based protocols for amplification of the cytochrome b gene. J Parasitol 2012, 98(1):657–665.
55. Damon VL, Baker AJ: A rare case of Plasmodium (Haemamoeba) relictum infection in a free-living Red Knot (Calidris canutus rufa, Scolopacidae). J Med Entomol 2010, 151(4):951–954.
56. Palinauskas V, Kovacs V, Shpavolov A, Bensch S, Valkiūnas G: Comparison of mitochondrial cytochrome b lineages and morphospecies of two avian malaria parasites of the subgenere Haemamoeba and Giovanniella (Haemosporida : Plasmodiidae). Zootaxa 2007, 1626:39–50.
57. Valkiūnas G, Zehntjidev P, Dimitrov D, Križanauskienė A, Isehova TA, Bensch S: Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in GenBank. Parasitol Res 2008, 102(6):1185–1193.
62. Roiz D, Vazquez A, Rosá R, Muhoz J, Arnoldi D, Rosso F, Figuerola J, Tencorio A, Rizzoli A: Blood meal analysis, flavivirus screening, and influence of meteorological variables on the dynamics of potential mosquito vectors of West Nile virus in northern Italy. J Vector Ecol 2013, 37(1):20–28.

63. Balenghien T, Fouque F, Sabatier P, Bicout DJ: Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of southern France. J Med Entomol 2006, 43(5):936–946.

64. Bogojević MS, Mérécid E, Turić N, Jelićić Z, Zahrivčić Z, Vrućina I, Mérécid S: Seasonal dynamics of mosquitoes (Diptera: Culicidae) in Osijek (Croatia) for the period 1995–2004. Biologija (Bratisl) 2009, 64(4):760–767.

65. Madder DJ, Surgeoner GA, Helson BV: Number of generations, egg production, and developmental time of Culex pipiens and Culex restuans (Diptera: Culicidae) in Southern Ontario. J Med Entomol 1980, 17(2):275–287.

66. Darbro JM, Harrington LC: Bird-baited traps for surveillance of West Nile mosquito vectors: Effect of bird species, trap height, and mosquito escape rates. J Med Entomol 2006, 43(1):83–92.

67. Anderson JF, Andreidis TG, Main AJ, Kline DL: Prevalence of West Nile virus in tree canopy-inhabiting Culex pipiens and associated mosquitoes. Am J Trop Med Hyg 2004, 71(1):112–119.

68. Vinogradova EB: Mosquitoes Culex pipiens: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Sofia: PenSoft; 2000.

69. Deichmeister JM, Telang A: Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables. J Vector Ecol 2011, 36(1):75–85.

70. Gillespie B, Belton P: Avian malaria parasites and other haemosporidia. Boca Raton: CRC Press; 2005.

71. Kent R, Julliasson L, Weissmann M, Evans S, Komar N: Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 2009, 46(2):380–390.

72. Hamer GL, Kitron UD, Goldberg EL, Brawn JD, Loss SR, Ruiz MO, Hayes DB, Walker ED: Host selection by Culex pipiens mosquitoes and West Nile Virus amplification. Am J Trop Med Hyg 2009, 80(2):269–278.

73. Valkiūnas G: Avian malaria parasites and other haemosporidia. Boca Raton: CRC Press; 2005.

74. Beadell JS, Covas R, Gebhard C, Ishaq F, Melo M, Schmidt BK, Perkins SL, Graves GR, Flescher RC: Host associations and evolutionary relationships of avian blood parasites from west Africa. Int J Parasitol 2009, 39(2):257–266.

75. Dimitrov O, Zehendijska P, Bensch S: Genetic diversity of avian blood parasites in SE Europe: Cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporidia) from Bulgaria. Acta Parasitol 2010, 55(3):201–209.

76. Ventim R, Morais J, Pardal S, Mendes L, Ramos JA, Pérez-tris J: Host-parasite associations and host-specificity in haemoparasites of reed bed passerines. Parasitology 2012, 139(8):310–316.

77. Szollosi E, Cichon M, Ems M, Hasselquist D, Kempenaers B, Merino S, Nilsson JA, Rosvall B, Rytkonen S, Toerin J, et al: Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe: separating host and parasite effects. J Evol Biol 2011, 24(9):2014–2024.

78. Perez-Tris J, Bensch S: Dispersal increases local transmission of avian malarial parasites. Ecol Lett 2005, 8(8):838–845.

79. Ní Meirín E, Garcia-Nava V, Sarac J, Omiño J: Molecular characterization of avian malaria parasites in three Mediterranean blue tit populations (Cyanistes caeruleus) populations. Parasitol Res 2012, 111(5):2137–2142.

80. Lacorte GA, Felix GM, Pinheiro RR, Chaves AV, Almeida-Neto G, Neves FS, Leite LO, Santos FR, Braga EM: Exploring the diversity and distribution of neotropical avian malaria parasites – a molecular survey from Southeast Brazil. PLoS One 2013, 8(3):e57770.