Bivalves (Mollusca: Bivalvia) in Malaysian Borneo: status and threats

Abdulla-Al-Asif 1, Hadi Hamli 1, Abu Hena Mustafa Kamal 3, Mohd Hanafi Idris 4, Geoffery James Gerusu 5, Johan Ismail 6, & Muyassar H. Abualreesh 7

1,2 Department of Animal Science and Fishery, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia.
2 Centre for Environment and Sustainability, Presidency Education, 51 Panchaish, Chittagong 4203, Bangladesh.
3 Department of Animal Science and Fishery, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, 97008 Bintulu, Sarawak, Malaysia.
4 Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia.
5 Department of Forestry Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia.
6 Department of Animal Science and Fishery, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, 97008 Bintulu, Sarawak, Malaysia.
7 Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia.

Abstract: Species checklists enlist the species existing within a distinct geographical biome and assist as an indispensable input for evolving conservation and administration strategies. The arenas of conservation ecology and biology face the challenge of exaggerated biodiversity, accredited to the non-recognition of taxonomic inconsistencies. The study’s goals are to organize all scattered taxonomic information regarding bivalve molluscs from Malaysian Borneo, i.e. Sarawak and Sabah, under one umbrella. Available literature regarding Malaysian Borneo was reviewed. The published taxonomic data on bivalve species, conservation status, inconsistencies, habitats (marine, fresh, and brackish), research aspects, threats, and conservation strategies are presented. A critical review of the checklists and distributional records of the class Bivalvia from Malaysian Borneo and subsequent validation of species names with the World Register of Marine Species (WoRMS) database revealed that currently 76 bivalve species from 12 orders and other entities, 18 superfamilies, and 27 families have been recorded from the area. Twenty-six inconsistencies with WoRMS were found, and the corrected names are presented. The study indicates most of the enlisted bivalve species have not been evaluated by the IUCN Red List authority and have ‘Least Concern’ or ‘Data Deficient’ status for Malaysian Borneo. To date, published documents on conservation decision strategies and guidelines for future research are not good enough. Nevertheless, potential threats and their remedies for bivalves in the enriched Malaysian Borneo ecosystems are discussed herein.

Keywords: Biodiversity conservation, checklist, database, double-shelled molluscs, IUCN Red List, taxonomic inconsistency.
INTRODUCTION

The establishment of a database and checklist of regionally present species is crucial in managing and conserving them from alpha to global ecosystem (Amano & Sutherland 2013). The lack of sufficient information at the local level regarding rare and/or endemic species potentially at risk of extinction may lead to strategies taken by different organizations, including the government, that are inadequate to avoid their extinction (Işik 2011). Nowadays, humankind faces some traumatic events, including the so-called “sixth extinction crisis”. The previous five extinctions were caused by massive atmospheric, climatic, and universal phenomena, but the prediction of the next mass extinction is putting the finger on human interference in natural ecosystems (Braje & Erlandson 2013).

At regional and local level, species decline faster than the prediction of ecologists (Collen et al. 2011; Işik 2011), but this can be modified to a sustainable level if the conservation efforts would focus on protecting certain species (Reydon 2019). For example, some aquatic animal recovered their extinction risk by the conservation approach with a proper policy, legislation, and effective conservation measures. Recently, the Bangladesh government and department of fisheries initiated the conservation of red fin mahseer (Tor tor Hamilton, 1822). The proper breeding program and management helped this species regain their confined population (Kabir et al. 2018). Similarly, the reproduction and conservation management of butter catfish Ompok pabda (Hamilton-Bouchanan, 1822) changes their IUCN status from ‘Near Threatened’ to ‘Endangered’ species (Chakraborty et al. 2016; Alam et al. 2020).

Another is to protect specific areas with high biodiversity, including rare and/or endemic species. Now governments and third-party stakeholders recognize the value of biodiversity conservation, and they convey efforts, finances, and human resources to the conservation of nature. The first step in this process is to know the present status of biodiversity (Groves et al. 2002; Martin et al. 2016), where a checklist and relevant information are considered to be essential documents to step forward. Establishing a database of locally and regionally present species allows management of the national and transboundary continental conservation process (National Research Council 1992).

Bivalves (two valves), are abundant in marine, brackish and freshwater ecosystems, both infaunal and epifaunal in nature. Most are filter-feeders, but some are carnivores. They influence food webs and aquatic ecosystems via nutrient cycling and habitat modification and act as a bio-indicator (Vaughn & Hoellein 2018). In many countries, bivalves are consumed by humans for which they are harvested from the wild, including freshwater and marine habitats (Köhler et al. 2012; Wijsman et al. 2019). As molluscs are rich in protein and fat, along with essential nutrients including vitamins and macro-micro nutrients, restaurants around the world serve them as delicious and luxury food (e.g., Venugopal & Gopakumar 2017; Olivier et al. 2020). Bivalve shells, including the waste of such meals, are also used as buffer material for soil fixation; for instance, Korean scientists applied oyster waste to increase soil pH and other macro-micro nutrients (Lee et al. 2008).

In East Malaysia (Sarawak and Sabah, including the federal territory of Labuan), bivalves are considered a delicacy, and highly nutritious consumable commodities (Hamli et al. 2015; Abu Hena et al. 2016), seagrass (Al-Asif et al. 2020), wetlands (Idris et al. 2021), and freshwater (Hamli et al. 2020). Noticeably, the bivalve species from freshwater environments have a more than four to six times higher risk of extinction than those in marine habitats (Agudo-Padrón 2011).

Currently there is no monograph of bivalves (or molluscs in general) covering Malaysian Borneo. Thus far only a small fraction of the bivalve fauna of Malaysian Borneo has been recorded. The first bivalves from modern history of Malaysian Borneo were recorded from the Pantai river, Sarawak (Turner & Santhakumaran 1989) and Sematan mangrove forest, Sarawak (Ashton et al. 2003), although the first record can be tracked back in 1791, from the Federal territory of Labuan (A small island near coast of Sarawak and Sabah in Malaysian Borneo), with the report of native bivalve species Marcia japonica (Gmelin, 1791) (reported as Venus japonica Gmelin, 1791) (Gmelin 1791). With time, the number of published documents (taxonomic and ecological studies) has increased, but the list of bivalve fauna from East Malaysia remains very incomplete. Numerous species are recorded in Huber (2010, 2015), but his records ‘north Borneo’ or just ‘Borneo’ are not specific enough to be included here. Similar taxonomic
and conservation work was published on fish species of Bangladesh in which the implementation of conservation measures on local fish habitats was proposed (Parvez et al. 2019). Similarly, the current investigation intends making a checklist of bivalves in the Malaysian part of Borneo, including their conservation status. This study also discusses the existing research initiatives, future research prospective, and recommended measures toward conserving this vital living resource.

MATERIALS AND METHODS

The current study is based on published records regarding Malaysian Borneo (Sarawak and Sabah; Figure 1), including monographs, reviews, checklists, catalogues, posters, conference papers and posters, websites, and fishery reports from 1791 and 2020, but no additional material was collected. For each reported species the scientific names were confirmed based on the World Register of Marine Species (WoRMS) 2021 and MolluscaBase eds (2021) (validating unaccepted names, emendations, alternate, and representations). The identifications were not checked for correctness. In most cases this was not possible, as most publications contain no photographs of the recorded species. New records should be accompanied by photographs as misidentifications are commonplace.

The species list comprises, orders, superfamilies, family name, accepted name, unaccepted names, and emendations. The contribution (%) of different orders within the class Bivalvia and various superfamilies and families in the class was estimated. The statistical data, total species counts, and graphical presentation were analyzed using Microsoft Excel.

RESULTS

Bivalve diversity

A total of 76 species of bivalves from 12 orders/infraclasses/superorders/subclasses, 18 superfamilies, and 27 families were reported from freshwater and marine habitats (seagrass meadow, intertidal, mangrove, freshwater, wetlands, and coastal region of Sarawak and Sabah) in Malaysian Borneo (Figure 2).

Figure 1. Map of the of the East Malaysian states showing Sarawak and Sabah (The green circles denote the areas covered the study).
A critical review of the published checklists revealed that the current literature included 26 incorrect names for bivalve species from nine orders/infraclasses/superorders subclasses and 14 families. Of these inconsistencies in the bivalve checklist over 53.84% (14 species) was due to names not accepted in WoRMS (2021), spelling mistakes (15.38%; 4 entities), alternative representation and inconsistency in family name (both 11.54%; 3 entities each), and inconsistencies in author and year (both 3.85%; 1 entity each) (Figure 3).

Knowledge gap on bivalve research in Malaysian Borneo

In the current century, macro benthic surveys were first conducted in Malaysian territory in 1981 (Morris & Purchon 1981; Way & Purchon 1981). In East Malaysia, Turner & Santhakumaran (1989) and Ashton et al. (2003) performed the first baseline study of bivalves in the Pantai River and Sematan mangrove forest, Sarawak. After that, extensive taxonomic studies were conducted by Hamli et al. (2012b); whereas Wong & Arshad (2011) published a significant checklist of bivalves. In a publication that reported edible bivalves and gastropods from different markets in Sarawak and that was published very recently which dealt with the morphometric and diversity investigation, we excluded that publication from our checklist due to the time span (1791–2020) in which it was published; however, the paper reported one new record Arcautula arcautula (Hanley, 1843) and rest of the species were already...
Table 1. Bivalve fauna in Malaysian Borneo.

Order/Infra Class/Super Order/Sub Class	Super Family	Family	Species	IUCN	Habitat	Ref	
Adapedonta Solenoidea	Solenidae	Pharidae	Sinonovacula constricta (Lamarck, 1818)	NE	BW; MAR	Ashton et al. (2003)	
		Pharidae	Pharella acutidens (Broderip & Sowerby, 1829)	NE	BW; MAR	Hamli et al. (2012a,b)	
		Solenidae	Solen lamarckii Chenu, 1843	NE	BW; MAR	Hamli et al. (2012a,b)	
			Solen regularis Dunker, 1862	NE	BW; MAR	Hamli et al. (2012a,b)	
Arcida Arcoidea	Arcidae	Anadara antiquata (Linnaeus, 1758)	LC	MAR	Wong & Arshad (2011)		
		Anadara indica (Gmelin, 1791)	NE	MAR	Al-Asif et al. (2020)		
		Anadara kagoshimensis (Tokunaga, 1906)	NE	MAR	Al-Asif et al. (2020)		
		Arco ventricosa Lamarck, 1819	NE	MAR	Wong & Arshad (2011)		
		Barbatia amygdalumtostum	NE	MAR	Hamli et al. (2012a, 2012b); Shabdin et al. (2014)		
		Tegillarca granosa (Linnaeus, 1758)	NE	MAR	Al-Asif et al. (2020)		
Cardiida Cardioidea	Cardiidae	Tridacna crocea Lamarck, 1819	LC	MAR	Wong & Arshad (2011)		
		Tridacna maxima (Röding, 1798)	LC	MAR	Wong & Arshad (2011)		
		Tridacna squamosa Lamarck, 1819	LC	MAR	Wong & Arshad (2011)		
		Donacidae	Donax faba Gmelin, 1791	NE	MAR	Al-Asif et al. (2020)	
		Solecurtidae	Azorinus coarctatus (Gmelin, 1791)	NE	BW; MAR	Al-Asif et al. (2020)	
		Tellinidae	Eurytellina lineata (W. Turton, 1819) (Pink)	NE	MAR	Al-Asif et al. (2020)	
Carditida Carditoidea	Carditidae	Beguina semiorbiculata (Linnaeus, 1758)	NE	MAR	Wong & Arshad (2011)		
		Crassatelloidea	Crassatellidae	Bathytormus radiatus (Sowerby, 1825)	NE	MAR	Al-Asif et al. (2020)
Limida Limoidea	Limidae	Ctenoides philippinarum Masahito & Habe, 1978	NE	MAR	Al-Asif et al. (2020)		
		Ctenoides scaber (Born, 1778)	NE	MAR	Wong & Arshad (2011)		
Lucinida Lucinoidea	Lucinidae	Lepidolucina venusta (Philippi, 1847)	NE	MAR	Al-Asif et al. (2020)		
Ostreida Ostreidea	Ostreidae	Crassostrea virginica (Gmelin, 1791)	NE	MAR	Shabdin et al. (2014)		
		Lopha cristagalli (Linnaeus, 1758)	NE	MAR	Shabdin et al. (2014); Wong & Arshad (2011)		
		Magallana bilineata (Benedict)	NE	BW; MAR	Shabdin (2010); Hamli et al. (2012b)		
		Magallana rivularis (Gould, 1861)	NE	BW; MAR	Raven (2019)		
		Ostrea lurida Carpenter, 1864	NE	MAR	Shabdin et al. (2014)		
		Saccostrea scyphophila (Peron & Lesueur, 1807)	LC	MAR	Matsumoto et al. (2017)		
Pterioida Pteriidae	Isognomonidae	Isognomon olatus (Gmelin, 1791)	NE	MAR	Wong & Arshad (2011)		
		Isognomon ephippium (Linnaeus, 1758)	NE	MAR	Ashton et al. (2003); Hamli et al. (2012b)		
		Isognomon nucleus (Lamarck, 1819)	NE	MAR	Matsumoto et al. (2017)		
		Malleidae	Malavia albus Lamarck, 1819	NE	MAR	Wong & Arshad (2011)	
		Mytilidae	Miyziida	Byssoglossus striatulus (Hanley, 1843)	NE	BW; MAR	Huber (2010); Raven (2019)
Myida Pholadoidea	Pholadidae	Pteria clymene (Röding, 1798)	NE	MAR	Wong & Arshad (2011)		
Order/Infra Class/ Super Order/ Sub Class	Family	Species	IUCN	Habitat	Ref		
---	--------	---------	------	---------	-----		
Pectinida	Anomiidae	Enigmia aenigmatica (Holten, 1802)	NE	BW; MAR	Ashton et al. (2003); Raven (2019)		
Placunida	Placunidae	Placuna placenta (Linnaeus, 1758)	NE	BW; MAR	Hamli et al. (2012b)		
Spondylidae	Spondylidae	Spondylus gussonii O.G. Costa, 1830	NE	MAR	Wong & Arshad (2011)		
		Spondylus squamosus Schreibers, 1793	NE	MAR	Wong & Arshad (2011)		
Pectinidae	Amusium pleuronectes (Linnaeus, 1758)	NE	MAR	Hamli et al. (2012a,b)			
	Mimachlamys varia (Linnaeus, 1758)	NE	MAR	Wong & Arshad (2011)			
	Pedum spondyloideum (Gmelin, 1791)	NE	MAR	Wong & Arshad (2011)			
Unionida	Unionidae	Ctenodesma borneensis (Issel, 1874)	NE	FW	Zieritz & Lopes-Lima (2018); Zieritz et al. (2020)		
		Monodontina walpoleiri (Hanley, 1871)	NE	FW	Zieritz & Lopes-Lima (2018); Zieritz et al. (2020)		
		Pilsbryoconcha exilis (I. Lea, 1838)	LC	FW	Hamli et al. (2012b)		
		Pressidens insularis (Drouët, 1894)	NE	FW	Zieritz & Lopes-Lima (2018); Zieritz et al. (2020)		
		Rectidens sumatrensis (Dunker, 1852)	DD	FW	Zieritz & Lopes-Lima (2018)		
	Schepmania nieuwenhuisi (Schepman, 1898)	NE	FW	Zieritz & Lopes-Lima (2018); Zieritz et al. (2020)			
		Schepmania parresculpta (von Martens, 1903)	NE	FW	Zieritz & Lopes-Lima (2018); Zieritz et al. (2020)		
		Simpsamella gracilis (I. Lea, 1851)	NE	FW	Zieritz & Lopes-Lima (2018)		
		Sinanodonta latuva (von Martens, 1877)	NE	FW	Zieritz et al. (2020)		
		Sinanodonta woodiana (I. Lea, 1834)	LC	FW	Hamli et al. (2012a,b); Hamli et al. (2020); Zieritz & Lopes-Lima (2018)		
Venerida	Veneridae	Callista erycina (Linnaeus, 1758)	NE	MAR	Al-Asif et al. (2020)		
		Circa scripta (Linnaeus, 1758)	NE	MAR	Hamli et al. (2012a,b)		
		Gafrarium pectinatum (Linnaeus, 1758)	NE	BW; MAR	Al-Asif et al. (2020)		
		Lisiconcha castrensis (Linnaeus, 1758)	NE	MAR	Wong & Arshad (2011)		
		Marcia flavina (Lamarck, 1818)	NE	BW; MAR	Shabdin (2010)		
		Meretrix casta (Gmelin, 1791)	NE	BW; MAR	Al-Asif et al. (2020)		
		Meretrix luxoria (Röding, 1798)	NE	BW; MAR	Al-Asif et al. (2020)		
		Meretrix lyrata (G. B. Sowerby II, 1851)	NE	BW; MAR	Al-Asif et al. (2020); Hamli et al. (2012a,b); Hamli et al. (2017)		
		Meretrix meretrix (Linnaeus, 1758)	NE	BW; MAR	Hamli et al. (2012a,b); Abu Hena et al. (2016); Hamli et al. (2016); Matsumoto et al. (2017)		
		Paratapes undulatus (Born, 1778)	NE	MAR	Hamli et al. (2012a,b)		
		Placmen isabellina (Philippi, 1849)	NE	MAR	Hamli et al. (2012a,b)		
		Pappho rotundata (Linnaeus, 1758)	NE	MAR	Wong & Arshad (2011)		
		Pelecypora exilium (G. B. Sowerby III, 1909)	NE	MAR	Sowerby (1909)		
		Marcia japonica (J. F. Gmelin 1791)	NE	MAR	Gmelin (1791)		
Cyrenidae	Cyrenidae	Caricula fluminina (O. F. Müller, 1774)	LC	FW; BW	Shabdin & Alfred (2007)		
		Geloina bengalensis (Lamarck, 1818)	LC	BW	Hamli et al. (2012a,b); Hamli et al. (2015)		
		Geloina expansa (Mousson, 1849)	LC	BW	Hamli et al. (2012a,b); Shabdin & Alfred (2007); Shabdin (2010); Hamli et al. (2015)		
	Glauconomidae	Glauconome vires (Linnaeus, 1767)	NE	MAR	Hamli et al. (2012a,b)		
Arcticoidea	Trapezidae	Neotrapezium sublaevigatum (Lamarck, 1819)	NE	MAR	Raven (2019)		

NE—Not Evaluated | LC—Least Concern | DD—Data Deficient | FW—Freshwater | BW—Brackish water | MAR—Marine.
available in our checklist (Idris et al. 2021). There are now a total of 19 published publications accessible, including a book, on the subject (Zieritz & Lopes-Lima 2018). Among the published papers, 10 were published in Scopus indexed journals, the other nine in local non-indexed journals. Six published documents discuss marine bivalves, another six discuss brackish habitats; whilst the papers cover freshwater and freshwater-marine habitats.

DISCUSSION

A comprehensive checklist on Malaysian marine molluscs by Wong & Arshad (2011) documented 581 species. Before this, Way & Purchon (1981) and Morris & Purchon (1981) reported 398 species (330 gastropods and 68 bivalves) from Malaysia and its adjacent coastal waters. In our study, we found bivalves from order Venerida (19 species) has the highest number of species, followed by Ostreida (12) and the freshwater order Unionida (10 species), while the rest of the orders or other entities have less than ten members. Among superfamilies, the Veneroidea (14 species) has the highest number of species, followed by the freshwater Unionoidea (10 species), and the rest of the superfamilies has less than 10 species (Figure 4). The family Veneridae comprises 14 species which is the highest among all families, following that the freshwater family Unionidae (10 species) has the second-highest number and the remaining 25 families comprise less than ten species each (Table 1).

For several recorded species it is evident the names are erroneous, as those species only occur in other continents. They are marked in the checklist (Table 2). The present findings suggested that some of the species were either misidentified or their introduction to Malaysian habitat might occurred; while observing their original distribution. For example, Anadara kagoshimensis (Tokunaga, 1906) is distributed in the temperate North Pacific (Zenetos et al. 2010), but the current study suggested that these species were found in the water of Malaysian Borneo (Al-Asif et al. 2020). The other distributional conflicts observed in Ctenoides scaber (Born, 1778) (Turgeon et al. 2009), Ostrea lurida Carpenter, 1864 (Polson et al. 2009), Crassostrea virginica (Gmelin, 1791) (Amaral & Simone 2014), Isognomon oculus (Gmelin, 1791) (Temkin 2010), and Pteria colymbus (Röding, 1798) (Temkin 2010) where all known distributions of abovementioned species are either North America or South America. The European Spondylus gussonii (O.G. Costa, 1830) (Gofas et al. 2001) was also reported from Malaysian habitat, and the geographic distribution should not be in Malaysian Borneo. Although Saccostrea scyphophila (Peron & Lesueur, 1807) (reported as Saccostrea moron (1850), the materials were observed from the “Feejee Islands” (Fiji); and the species was originally described from Australia) is considered native in Australia but in 2004 the study of Lam & Morton (2004) reported from Hong Kong coast, which might be disperse from Hong Kong to Malaysia through ocean-going ships or other means.

Additionally, some species may have been misidentified, but this cannot be determined without photographs or voucher material. In the literature we
found many inconsistencies, while the present analysis revealed most inconsistencies were “unaccepted” according to WoRMS (2021) (i.e., the genus or species name is no longer valid); the rest were misspellings, alternative representations, changes in families, changes in author, and changes in year (Table 2). Moreover, there are taxonomic corrections: for instance, in freshwater family Unionidae there is no difference between *Pseudodon crassus* Drouet & Chaper, 1892 and *Pseudodon walpolei* (Hanley, 1871); therefore, WoRMS merges them into one single species *Monodontina walpolei* (Hanley, 1871). Similarly, in the Cyrenidae *Polymesoda erosia* auct. non Lightfoot, 1786 and *Polymesoda expansa* (Mousson, 1849) have recently been synonymized in WoRMS (Huber 2010) to the revised name *Geloina expansa* (Mousson, 1849). The study of Hamli et al. (2015) revealed morphological differences between these two taxa which lead to considered as they were both valid species.

The current study demonstrates that current bivalve research knowledge (ecological, taxonomic, and other aspects) are insufficient to serve as a foundation for academic, conservation, and aquaculture initiatives in Malaysian Borneo. A thorough literature search was conducted using a variety of databases (e.g., SCOPUS, Web of Science, university websites (for thesis), and CNKI), but the number of published papers on Borneo bivalves was determined to be insufficient. Bivalve research in Borneo is strongly encouraged, and areas such as populations, threats, life history, and breeding biology for aquaculture initiatives can all be considered significant research fields. While taxonomy, habitat ecology, conservation actions, area-based management initiatives, and approaches to recovery and reintroduction are all fundamental, harvesting trends and also critical (Lopes-Lima et al. 2018; Zieritz et al. 2020). A comprehensive checklist of bivalves in Malaysian Borneo is necessary to fill this knowledge gap. It is recommended that additional research on bivalves be conducted as a basis for conservation measures, as they contribute to both the ecology and economy of Malaysia.

PRESENT STATUS

IUCN status of bivalves in Borneo and their habitats

According to the IUCN red list status, 66 bivalve species have not been evaluated by the IUCN or any other institution that are present in Malaysian Borneo, and it is quite clear that a plethora of research work can be conducted to evaluate only the IUCN unevaluated species. Whereas nine species were determined to be least concerned and one species was determined to have data deficiency (Figure 5). Thus, these species must be protected wherever they occur in Malaysian Borneo through the imposition of reserve areas, restricted areas, or national/regional conservation sites. It is observed that 76 species of bivalve fauna have been reported from Malaysian Borneo, including 61 marine species (7 species can be found in both marine and estuarine or brackish water), three brackish water, and 12 freshwater species (one species can be found in both fresh and brackish water).

Figure 5. IUCN Red List status of bivalves in Malaysian Borneo.

Threats to the biodiversity of bivalve species

Sarawak and Sabah (the Malaysian portion of Borneo) are rich in biodiversity. Certain areas of Borneo Island remain pristine due to the lack of human intervention. Commercial logging and forest destruction due to palm plantations, on the other hand, have increased rapidly in various parts of these two provinces (Bryan et al. 2013; Shevade & Loboda 2019). As a result of soil runoff into the South China Sea, secondary pollution of marine and coastal ecosystems occurs (Morni et al. 2017). Harvesting edible bivalves from wild sources indiscriminately is also a significant threat to sustainable populations. Most importantly, there is no government or local government initiative to initiate commercial aquaculture of these bivalves in order to conserve their indigenous characteristics. A model of the global declination of bivalve species was proposed by Lopes-Lima et al. (2018), in which they showed that in the Indo-Pacific region, pollution (45%) is the significant reason of decline in bivalve species, whilst freshwater bivalve species decline more rapidly than the marine species (Agudo-Padrón 2011). Other factors contributing to the decline of bivalve fauna include overexploitation (20 %), habitat modification (15 %), and urbanization (10 %) (Figure 6), mining activities, agriculture and aquaculture, transportation infrastructure, climate change and temperature rise, recreational activities, and various geological events, such as tsunamis caused by earthquakes.
Conservation prospects

Conservation is critical to preventing the extinction of vulnerable species. After discussing possible causes of bivalve species decline in the Indo-Pacific region, including Malaysia, we propose some conservation strategies for sustainable use of bivalve natural bioresources based on the global model developed by Lopes-Lima et al. (2018) (Figure 8).

To begin, bivalves are aquatic Mollusca that cannot survive without water (marine, brackish, or freshwater), and thus protection of water and water-adjacent land (40 %) should be prioritized for bivalve species conservation. Additionally, awareness-raising among stakeholders (including government, the general public, universities, non-governmental organizations, and the local populace) and communication with the local populace must be implemented (25 %). Water and adjacent land management (12 %), species management through proper conservation procedures (10 %), and incentives for local stakeholders who will carry out the conservation process (4 %) can all contribute significantly to the conservation of bivalves in Borneo. While the existing policies and regulations are sufficient for a sustainable conservation process, additional research is necessary to determine whether any revisions to those policies and regulations are necessary (3 %). Ex situ conservation (2 %) and proper enforcement of policies, legislation, and regulation (2 %). Any threatened species and those that have been suppressed by stressors, including human intervention, should be recovered through the application of appropriate management guidelines and procedures (1 %). Conservation strategies can be integrated into formal national curricula; consequently, future leaders and stakeholders should be concerned about bivalve biodiversity conservation (0.5 %). Reintroduction of species from another source is sometimes feasible. The general training received by common people, stakeholders, conservationists, and government officials is sufficient in the Indo-Pacific region and Malaysia, as there are ample training facilities and current conservation legislation is adequate, but conservation measures for bivalves should be prioritized.

Another research by Lopes-Lima et al. (2014) suggested that research on different aspects of taxonomy, systematics, anatomy, physiology, ecology, and conservation of freshwater bivalves will be helpful to conserve and reduce the extinction risk. Omics approach will also be helpful to conserve the bivalve fauna (Carducci et al. 2020). In contrast, a recent study from China suggested that awareness among people regarding ecological protections can be a helpful tool for protecting the habitat of bivalves. Reduce or suspend the commercial capture of wild bivalves, establish sanctuaries for habitat protection, extend the fishing or capture ban period which might helpful to conserve the bivalve fauna (Cao et al. 2018).

Prospects and future research

The status of bivalves in Malaysian Borneo as a whole has not yet been determined. Numerous research groups comprised of provincial governments, universities, and the federal government can work in various ecological niches to determine the true number
and species of bivalves in Malaysian Borneo in order to create a comprehensive checklist. Aquaculture of commercially valuable bivalve species may be another area of research that could help prevent indiscriminate harvesting of bivalves from Malaysian Borneo’s diverse habitats. Pollution studies can be conducted to assess the biodiversity and ecological threats posed by various industrial zones, despite the fact that water, air, and soil pollution are increasing as a result of these two provinces’ rapid industrialization. A strong legislative framework could be established and enforced to protect different habitats’ ecological integrity and bivalve diversity. Strict enforcement of laws may aid in the conservation of bivalve species in Malaysian Borneo.

Regrettably, there is far too little information at the moment, but provincial governments could declare some species vulnerable and also establish some protected zones in accordance with the IUCN Red List. Numerous awareness campaigns, including posters, television programmes, telecasts, documentaries, films, and cartoons, can be produced to educate the public about the critical nature of bivalve conservation. For example, state governments can take steps similar to the Chinese Giant Panda conservation approach, which is called ‘Panda Diplomacy’ (Buckingham et al. 2013), where China showed public awareness and scientific efforts are effective in the conservation process. Lopes-Lima et al. (2018) proposed some research aspects that will help

Given Family	Corrected Family	Given name of species	Corrected name of species	Type of inconsistency
Arcidae	Arcidae	Anodara granosa	Tegillara granosa (Linnaeus, 1758)	Unaccepted
Arcidae	Arcidae	Barbatta fusca (Bruguière, 1789)	Barbatta amygdalumostum (Röding, 1798)	Unaccepted
Cardiidae	Cardiidae	Tridacna (Chametrachea) crocea Lamarck, 1819	Tridacna crocea (Lamarck, 1819)	Alternative representation
Cardiidae	Cardiidae	Tridacna (Chametrachea) maxima (Röding, 1798)	Tridacna maxima (Röding, 1798)	Alternative representation
Tridacniidae	Cardiidae	Tridacna squamosa Lamarck, 1819	Tridacna squamosa Lamarck, 1819	Family changed
Cyreniidae	Cyreniidae	Polymesoda bengalensis	Geloina bengalensis (Lamarck, 1818)	Unaccepted
Cyreniidae	Cyreniidae	Polymesoda expansa	Geloina expansa (Mousson, 1849)	Unaccepted
Glaucnomiida	Glaucnomiida	Glauconome virens	Glaucnome virens (Linnaeus, 1767)	Misspelling
Isognomoniida	Isognomoniida	Isognomon nucleus	Isognomon nucleus (Lamarck, 1819)	Misspelling
Isognomoniida	Isognomoniida	Spondylus gussonii OG. Costa, 1829	Spondylus gussonii (O.G. Costa, 1830)	Wrong year
Limidae	Limidae	Ctenoides scabra (Born, 1778)	Ctenoides scaber (Born, 1778)	Unaccepted
Mytiliidae	Mytiliidae	Brachidontes striatulus (Hanley, 1843)	Byssogedius striatulus (Hanley, 1843)	Unaccepted
Pteriidae	Pteriidae	Pinctada margaritifera (Linnaeus, 1758)	Pinctada margaritifera (Linnaeus, 1758)	Family changed
Ostreidae	Ostreidae	Crassostrea virginia	Crassostrea virginica (Gmelin, 1791)	Misspelling
Ostreidae	Ostreidae	Crassostrea iridea	Magallana bilineata (Röding, 1798)	Unaccepted
Ostreidae	Ostreidae	Crassostrea rivularis (Gould, 1861)	Magallana rivularis (Gould, 1861)	Alternative representation
Pectinidae	Pectinidae	Chlamys varia (Linnaeus, 1758)	Mimachlamys varia (Linnaeus, 1758)	Unaccepted (currently placed in genus Mimachlamys)
Myoida	Myoida	Pholas orientalis	Pholas orientalis (Gmelin, 1791)	Family changed
Unioniidae	Unioniidae	Anodonta wooddonia	Sinamamonta woodiana (I. Lea, 1834)	Unaccepted (recombination)
Unioniidae	Unioniidae	Pseudodon walpolei (Hanley, 1871)	Monodonta walpolei (Hanley, 1871)	Unaccepted
Veneridae	Veneridae	Meretrix. lyrata	Meretrix lyrata (G. B. Sowerby II, 1851)	Misspelling
Veneridae	Veneridae	Paphia undulata	Paratases undulatus (Born, 1778)	Unaccepted
Veneridae	Veneridae	Meretrix meretrix Röding,	Meretrix meretrix (Linnaeus, 1758)	Wrong author name
Veneridae	Veneridae	Paphia alpapilla Röding, 1798	Paphia rotundata (Linnaeus, 1758)	Unaccepted
Veneridae	Veneridae	Dosinia exilium (G.B. Sowerby II, 1909)	Pelesyora exilium (G.B. Sowerby II, 1909)	Unaccepted
Veneridae	Veneridae	Venus japonica Gmelin, 1791	Marcia japonica (J. F. Gmelin 1791)	Unaccepted
Bivalves in Malaysian Borneo Abdulla-Al-Asif et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 September 2021 | 13(11): 19553–19565

retain the bivalve diversity’s sustainability. According to them, the primary focus on bivalve research should be on the assessment of populations and their distribution (32%), assessment of threats (28%), and on studying their life history/breeding for future aquaculture purposes (20%) (Figure 7). Whereas the taxonomy of specific bivalve species, the habitats and ecology of each species, the population trends of bivalves in Borneo, the harvest trends of fishers including aquaculture, recovery actions if any species faces imminent extinction, management plans for multi-ground stakeholders, and further action by various organizations can be considered as significant research arenas.

Kumar & Ravinesh (2016) recommended that the importance of taxonomic research be disseminated; thus, taxonomic knowledge can be included in national level curricula, for example, high school and college students can learn this science with joy. This initiative can be incorporated into the provincial and regional curricula of Malaysian Borneo. Additionally, they emphasized the importance of establishing accurate species databases and repositories, which will aid in future research and analysis. Kumar & Ravinesh (2016) also emphasized the resolution of scientifically dubious name categories, such as ‘taxon inquirendum’ and ‘nomen dubium’, which is commendable, and the protocols may be beneficial for the Malaysian Borneo ecosystem as well. They proposed that an integrative taxonomic approach incorporating detailed biogeography and evolutionary genetic materials could be beneficial for bivalve fauna conservation in Malaysian Borneo. Finally, citizen scientists and civil society approaches are very common and widely adopted in many developed countries; for this, a person does not have to be a scientist; rather, a keen interest in nature and biodiversity can also be beneficial for nature conservation. The research on the aforementioned criteria may be adopted and contribute to the conservation of biodiversity in Malaysian Borneo in the coming years and decades.

The current work produced a comprehensive checklist of bivalves recorded from Malaysian Borneo, crosschecked with WoRMS (2021) and MolluscaBase (2021). An accurate checklist of bivalves aids appropriate resource allocation for the conservation process, and at the same time has many other functions. Accurate data on bivalve species under one umbrella will provide insight which species are present in Malaysian Borneo. It will also help revise and update the national list of molluscan fauna and periodic update of bivalve taxonomic information.

CONCLUSIONS

The current work produced a comprehensive checklist of bivalves recorded from Malaysian Borneo, crosschecked with WoRMS (2021) and MolluscaBase (2021). An accurate checklist of bivalves aids appropriate resource allocation for the conservation process, and at the same time has many other functions. Accurate data on bivalve species under one umbrella will provide insight which species are present in Malaysian Borneo. It will also help revise and update the national list of molluscan fauna and periodic update of bivalve taxonomic information.

REFERENCES

Abu Hena, M.K., M.H. Idris, R.M.Y. Khairul, M.K.A. Bhuiyan, N. Hoque & U. Kumar (2016). Diversity of macro-benthos in the mangrove forest of Kuala Sibut, Miri, Sarawak. In: Malaysia International Biology Symposium (i-SIMBIOMAS 2016). Malaysia International Biology Symposium, Putrajaya International Convention Center, Putrajaya, Malaysia. Agudo-Padrón, I.A. (2011). Threatened freshwater and terrestrial
Lam, K. & B. Morton (2004). The oysters of Hong Kong (Bivalvia: Ostreidae and Gryphaeidae). Raffles Bulletin of Zoology 52(1): 11–28.

Lee, C.H., D.K. Lee, M.A. Ali & P.J. Kim (2008). Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Management 28(12): 2702–2708. https://doi.org/10.1016/j.wasman.2007.12.005

Lopes-Lima, M., A. Teixeira, E. Froufe, A. Lopes, S. Varandas & R. Sousa (2014). Biology and conservation of freshwater bivalves: Past, present and future perspectives. Hydrobiologia 735(1): 1–13. https://doi.org/10.1007/s10750-014-1902-9

Lopes-Lima, M., L.E. Burlakova, A.Y. Karatayev, K. Mehler, M. Seddon & R. Sousa (2018). Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia 810(1): 1–14. https://doi.org/10.1007/s10750-017-3486-7

Martin, J.L., V. Maris & D.S. Simberloff (2016). The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences of the United States of America 113(22): 6105–6112. https://doi.org/10.1073/pnas.1525003113

Matsumoto, M.B., E. Saleh, Z. Waheed, S. Muhammad Ali & I. Madin (2017). Marine profiling of Marudu Bay, Sabah, Malaysia: Final Report. Sabah, 88 pp.

MolluscaBase (2021). Bivalvia. http://molluscabase.org/aphia.php?p=taxdetails&id=105 on 2021-08-10

Morris, W.Z.W., S.A.K.A. Rahim, T. Masron, R. Rumpet, J. Musel & R. Hassan (2017). Continental shelf sediments of Sarawak, Malaysian Borneo. Scientific World Journal 2017(4853048): 1–10. https://doi.org/10.1155/2017/4853048

Morris, S. & R.D. Purchon (1981). The marine shell mullusca of West Malaysia and Singapore part 3, Bivalvia. Journal of Molluscan Studies 47(2264): 322–327. https://doi.org/10.1093/oxfordjournals.mollus.a006575

National Research Council (1992). Conserving Biodiversity: A Research Agenda for Development Agencies: The National Academies Press, Washington, DC, 138 pp.

Parvez, I., M.A. Alam, M.M. Hassan, Y. Ara, I. Hoshan & A.S.M. Shabdin, M.L. (2010). Tubeworms of the eastern part of Sarawak. The Sarawak Museum Journal 57: 1069–1078. https://doi.org/10.1016/j. scitotenv.2016.07.098

Zieritz, A. & M. Lopes-Lima (2018). Handbook and National Red-List of the Freshwater Mussels of Malaysia. IUCN, Kuala Lumpur, 1–299p.

Zieritz, A., M. Lopes-Lima, A.E. Bogan, R. Sousa, S. Walton, K.A.A. Rahim, J.J. Wilson, P.Y. Ng, E. Froufe & S. McGowan (2016). Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Science of the Total Environment 571: 1069–1078. https://doi.org/10.1016/j.scitotenv.2016.07.098

Zieritz, A., H.Taha, M. Lopes-Lima, J. Pfeiffer, K.W. Sing, Z. Sulaiman, S. McGowan & K.A.A. Khairil (2020). Towards the conservation of Borneo’s freshwater mussels: rediscovery of the endemic Ctenodemas borneensis and first record of the non-native Sinanodonta laura. Biodiversity and Conservation 29(7): 2235–2253. https://doi.org/10.1007/s10531-020-01971-1

Sowerby, G.B. III. (1909). Descriptions of new species of Terebralia, Pleurotomata, Trochus, Tellina, Dosina, and Modiola. Proceedings of the Malacological Society of London 8(4): 198–201.

Oliver, A.V.D.S., L. Jones, L.L. Vay, M. Christie, J. Wilson & S.K. Malham (2020). A global review of the ecosystem services provided by bivalve aquaculture. Reviews in Aquaculture 12(1): 3–25. https://doi.org/10.1002/raq.12301

Témkin, I. (2010). Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidae). BMC Evolutionary Biology 10(1): 342. https://doi.org/10.1186/1471-2148-10-342

Turgeon, D.D., W.G. Lyons, P. Mikkelsen, G. Rosenberg & F. Moretzsohn (2009). Bivalvia (Mollusca) of the Gulf of Mexico pp. 711–744. In: Felder, D.L. & D.K. Camp (Eds.). Gulf of Mexico–Origins, Waters, and Biot. Biodiversity. Texas A&M Press, College.

Turner, R.D. & L.N. Santhakumaran (1989). The genera Martesia and Lignopholas in the indo-pacific (Mollusca: Bivalvia: Phalidacea). Ophelia 30(3): 155–186. https://doi.org/10.1080/00785326.1989.10430842

Vaughn, C.C. & T.J. Hoellein (2018). Bivalve impacts in freshwater and marine ecosystems. Annual Review of Ecology, Evolution, and Systematics 49: 183–206. https://doi.org/10.1146/annurev- ecology-110617-062703

Venugopal, V. & K. Gopakumar (2017). Shellfish: Nutritive value, health benefits, and consumer safety. Comprehensive Reviews in Food Science and Food Safety 16(6): 1219–1242. https://doi.org/10.1111/1541-4337.12312

Way, K. & R.D. Purchon (1981). The marine shell mullusca of West Malaysia and Singapore part 3, Bivalvia. Journal of Molluscan Studies (47): 313–321. https://doi.org/10.1093/oxfordjournals.mollus.a006575

Wijsman, J.W.M., K. Troost, J. Fang & A. Roncarati (2019). Global production of marine bivalves. Trends and challenges pp. 1–26. In: Smaal, A., J. Ferreira, J. Grant, J. Petersen & P. Strand (Eds.). Goods and Services of Marine Bivalves. Springer, Cham.

Wong, N.L.W.S. & A. Arshad (2011). A brief review on marine shell mullusca (Gastropoda and Bivalvia) record in Malaysia. Journal of Fisheries and Aquatic Science 6(7): 669–699. https://doi.org/10.3923/jfas.2011.669.699

WoRMS (2021). Bivalvia. http://www.marin.especies.org/aphia.php?p=taxdetails&id=105 on 2021-08-10

Zingone, M.C. Gambi & N. Streftaris (2010). Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterranean Marine Science 11(2): 381–493. https://doi.org/10.12681/mms.87

Zieritz, A. & M. Lopes-Lima (2018). Handbook and National Red-List of the Freshwater Mussels of Malaysia. IUCN, Kuala Lumpur, 1–299p.
A preliminary assessment of odonate diversity along the river Tirthan, Great Himalayan National Park Conservation Area, India with reference to the impact of climate change
– Amar Paul Singh, Kritish De, Virendra Prasad Uniyal & Sambandam Sathiyakumar, Pp. 19611–19615

A checklist of orthopteran fauna (Insecta: Orthoptera) with some new records in the cold arid region of Ladakh, India
– M. Ali, M. Kamil Usmani, Hira Naz, Tajamul Hassan Baba & Mohsin Ali, Pp. 19616–19625

New distribution records of two Begoniaceae to the flora of Bhutan
– Phub Gyeltshen & Sherab Jamtho, Pp. 19626–19631

Rediscovery of Aponogeton lakkonensis A. Camus (Aponogetonaceae): a long-lost aquatic plant of India
– Debolina Dey, Shrirang Ramchandra Yadav & Nilakshee Devi, Pp. 19632–19635

Glyptothoca acuminata (Hack.) Clayton var. laevis (Poaceae): a new variety from central Western Ghats of Karnataka, India
– H.U. Abhijit & Y.L. Krishnamurthy, Pp. 19636–19639

A cytomorphological investigation of three species of the genus Sonchus L. (Asteraceae) from Punjab, India
– M.C. Sidhu & Rai Singh, Pp. 19640–19644

Dryopteris lunanensis (Dryopteridaceae) - an addition to thepteridophytic diversity of India
– Chhandam Chanda, Christopher Roy Fraser-Jenkins & Vineet Kumar Rawat, Pp. 19645–19648

Notes

First record of Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) with photographic evidence in Meghalaya, India
– Papiro Khatonier & Adrian Wansaindor Lyngdoh, Pp. 19649–19651

First record of the Eastern Cat Snake Boiga gocool (Gray, 1833) (Squamata: Colubridae) from Tripura, India
– Sumit Nath, Biswajit Singh, Chiranjib Debnath & Joydeb Majumder, Pp. 19652–19656

First record of the genus Tibetania (Lepidoptera: Eupterotidae: Janinae) from India
– Alka Vaidya & H. Sankararaman, Pp. 19657–19659

A review of research on the distribution, ecology, behaviour, and conservation of the Sander Loris Loris lydekkerianus (Mammalia: Primates: Lorisidae) in India
– Mewa Singh, Mrudula Singh, Honnavalli Nagaraj Kumara & Nagaraj Rajeshkumar, Pp. 19500–19508

Birds of Barandabhar Corridor Forest, Chitwan, Nepal
– Saner Lamichhane, BabuRam Lamichhane, Kapil Pokharel, Pramod Raj Regmi, Tulasi Prasad Dahal, Santosh Bhattarai, Chiranjib Prasad Pokheral, Pabitra Gotame, Trishna Rayamajhi, Ram Chandra Kandel & Ashish Malla, Pp. 19509–19526

On some additions to the amphibians of Gunung Inas Forest Reserve, Kedah, Peninsular Malaysia
– Shahriza Shahrudin, Pp. 19527–19539

Reviews

A review of research on the distribution, ecology, behaviour, and conservation of the Sander Loris Loris lydekkerianus (Mammalia: Primates: Lorisidae) in India
– Mewa Singh, Mrudula Singh, Honnavalli Nagaraj Kumara, Shanthala Kumar, Smitha D. Gnanadivarapu & Ramamoorthi Sasi, Pp. 19540–19552

Bivalves (Mollusca: Bivalvia) in Malaysian Borneo: status and threats
– Abdulla-Al-Asif, Hadi Hamli, Abu Hena Mustafa Kamal, Mohd Hanafi Idris, Geoffrey James Gerusu, Johan Ismail & Muyassar H. Abualreesh, Pp. 19540–19552

Disentangling earthworm taxonomic stumbling blocks using molecular markers
– Azhar Rashid Lone, Samrendra Singh Thakur, Nalini Tiwari, Olusola B. Sokefun & Shweta Yadav, Pp. 19556–19579

A reference of identification keys to plant-parasitic nematodes (Nematoda: Tylenchida, Tylenchomorpha)
– Reza Ghaderi, Manouchehr Hosseinian & Ali Eskandari, Pp. 19580–19602

Short Communications

Catalogue of herpetological specimens from Meghalaya, India at the Salim Ali Centre for Ornithology and Natural History
– S.R. Chandramouli, R.S. Naveen, S. Suresshriram, S. Babu, P.V. Karunakaran & Honnavalli N. Kumara, Pp. 19603–19610