Electronic Supporting Information

Oxidative amidation of benzaldehyde using a quinone/DMSO system as the oxidizing agent

Itzel Mejía-Farfán,a Manuel Solís-Hernández,a Pedro Navarro-Santos,b Claudia A. Contreras-Celedón,a Carlos Jesus Cortés-Garcíaa and Luis Chacón-Garcíaa

aLaboratorio de Diseño Molecular, Instituto de Investigaciones Químico Biológicas Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico

bCONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico

email: lchacon@umich.mx

Table of contents
General information 2
Experimental Procedures 2
NMR Spectra 5
Theoretical calculations 27
References 30
General information

All employed reagents were purchased from commercial sources and used without further purification. Nuclear magnetic resonance spectra were recorded on a Mercury 400 MHz. Chemical shifts were reported as δ values (PPM). Couplings constants are reported in Hertz (Hz). Internal reference for NMR to TMS at 0.00 ppm for spectra obtained in CDCl₃, multiplicities are reported using the standard abbreviations, as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), broad signal (bs), doublet of triplets (dt), triplet of doublets (td), quartet of doublets (qd), multiplet (m), apparent triplet (at). NMR spectral were analyzed using MestReNova software (version 10.01-14719). HRMS spectral were acquired on a Bruker MicroTOF-II spectrometer. Melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected. Reactions progress was monitored by thin layer chromatography (TLC) using silica gel 60 F254 from Merck and the spots were visualized under UV light at 245 or 365 nm. Column chromatography was performed using silica gel (230-400 mesh). Chemical names and drawings were obtained using ChemDraw Profesional (version 16.0.1.4 (61)).

Experimental Procedures

Synthesis of pyrrolyl quinones

2,5-dimethyl-3-(1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (4)
The synthesis was carried out using a method described previously. Flash Column chromatography (Hex:EtOAc 99:1) giving purple solid; yield 48 mg 20%, mp. 98-100 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.70 (s, 1H), 7.04 (td, J = 2.8, 1.3 Hz, 1H), 6.69 (ddd, J = 4.0, 2.5, 1.3 Hz, 1H), 6.60 (q, J = 1.5 Hz, 1H), 6.36 (dt, J = 3.9, 2.6 Hz, 1H), 2.28 (s, 3H), 2.05 (d, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 190.76, 187.04, 144.68, 134.88, 133.52, 131.71, 125.32, 122.25, 117.25, 109.91, 15.88, 14.75. HRMS (ESI⁺): m/z: Calcd. for C₁₂H₁₁NO₂: calc. 201.0790; Found: 201.0783.

3-(5-chloro-1H-pyrrol-2-yl)-2,5-dimethylcyclohexa-2,5-diene-1,4-dione (4a).
The synthesis was carried out using a method described in the literature with some modifications. To a solution of 2,5-dimethyl-3-(1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione. (100 mg, 0.496 mmol,) dissolved in CH₃CN (2.5 ml) was added CuCl₂ (33.4mg, 0.248 mmol). The mixture was stirred for 5 min. The solvent was removed under vacuum. The reaction crude was purified by flash column chromatography with Hexane:EtOAc 9:1 (v/v) giving purple solid; yield 78 mg, 66.5%, mp 103-105 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.70 (s, 1H), 6.63 (td, J = 4.1, 3.6, 2.2 Hz, 2H), 6.21 (dd, J = 4.0, 2.7 Hz, 1H), 2.27 (s, 3H), 2.07 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 199.76, 186.79, 144.75, 135.12, 133.74, 133.72, 130.85, 130.74, 124.61, 119.87, 118.23, 108.25, 15.91, 14.75. HRMS (ESI⁺): m/z: Calcd. for C₁₂H₁₁NClO₂: calc. 236.0478; Found: 236.0477.

2,5-dimethyl-3-(5-nitro-1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (4b). To a solution of 2,5-dimethyl-3-(1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione. (30 mg, 0.149 mmol,) dissolved in CH₂Cl₂ (2.5 ml) was added Bi(NO₃)₃.5H₂O (36.15 mg, 0.0745 mmol,). The mixture was stirred for 3 h. The solvent was removed under vacuum. The residue was purified by flash column chromatography (Hex:EtoAc 7:3) giving yellow solid; yield 16 mg, mp. 116-118 °C. ¹H NMR (400 MHz, CDCl₃): δ 11.33 (s, 1H), 7.20 – 7.13 (m, 1H), 6.73 (q, J = 1.6 Hz, 1H), 6.64 (dd, J = 4.4, 1.7 Hz, 1H), 2.33 (s, 3H), 2.13 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 188.46, 186.23, 145.63, 141.81, 138.89, 13 3.67, 130.22, 128.49, 116.58, 110.37, 15.96, 14.75. HRMS (ESI⁺): m/z: Calcd. for C₁₂H₁₀N₂NaO₄: calc. 269.0533; Found: 269.0514.
2,5-dimethyl-3-(5-thiocyanato-1\textit{H}-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (4c) To a solution of 2,5-dimethyl-3-(1\textit{H}-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (100 mg, 0.496 mmol) dissolved in CH\textsubscript{3}CN (4 ml) was added KSCN (96.69 mg, 0.995 mmol) and K\textsubscript{2}S\textsubscript{2}O\textsubscript{8} (403 mg, 1.498 mmol). After 24 h was added KSCN (96.69 mg, 0.995 mmol). The solvent was removed under vacuum.3 The residue was purified by flash column chromatography (Hex:EtOAc 4:1) giving red solid; yield 115 mg, 90% mp 123-125 °C.1H NMR (400 MHz, CDCl\textsubscript{3}): δ 10.84 (s, 1H), 6.73 (dd, \textit{J} = 4.0, 2.7 Hz, 1H), 6.68 (q, \textit{J} = 1.6 Hz, 1H), 6.65 (dd, \textit{J} = 4.1, 2.6 Hz, 1H), 2.29 (s, 3H), 2.10 (d, \textit{J} = 1.6 Hz, 3H).13C NMR (101 MHz, CDCl\textsubscript{3}): δ 189.56, 186.64, 145.24, 138.68, 133.61, 130.70, 130.39, 119.69, 117.81, 109.43, 107.81 HRMS (ESI*): m/z: Calcd. for C\textsubscript{13}H\textsubscript{10}N\textsubscript{2}NaO\textsubscript{2}S: calc. 281.0355; Found: 281.0327.

3-(5-(2-(1\textit{H}-pyrrol-2-yl)propan-2-yl)-1\textit{H}-pyrrol-2-yl)-2,5-dimethylcyclohexa-2,5-diene-1,4-dione (4d). The synthesis was carried out using a method described previously.4

2-hydroxy-6-methyl-3-(6-methyl-5-oxoheptan-2-yl)-5-(1\textit{H}-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (5). The synthesis was carried out using a method described previously.1 Flash Column chromatography (Hex:EtOAc 99:1) giving purple solid; yield 79 mg, 63%, mp. 53-55 °C. 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 7.11 (dt, \textit{J} = 4.1, 2.1 Hz, 1H), 6.79 (ddd, \textit{J} = 3.9, 2.3, 1.0 Hz, 1H), 6.42 – 6.33 (m, 1H), 3.06 (dp, \textit{J} = 8.6, 7.0 Hz, 1H), 2.31 (s, 3H), 1.78 – 1.69 (m, 1H), 1.50 (dq, \textit{J} = 13.2, 6.6 Hz, 2H), 1.22 (d, \textit{J} = 7.1 Hz, 4H), 1.16 (ddq, \textit{J} = 8.4, 4.6, 2.2 Hz, 3H), 0.83 (dd, \textit{J} = 6.6, 4.1 Hz, 6H). 13C NMR (101 MHz, CDCl\textsubscript{3}): δ. 190.89, 183.22, 150.99, 133.36, 129.00, 126.40, 123.89, 119.17, 110.49, 29.79, 27.82, 25.93, 18.29, 14.44. HRMS (ESI*): m/z: Calcd. for C\textsubscript{12}H\textsubscript{11}NO\textsubscript{2}: calc. 338.1727; Found: 338.1726.

2-hydroxy-6-methyl-3-(6-methylheptan-2-yl)-5-(1\textit{H}-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (6). The synthesis was carried out using a method described previously.1

General Procedure for Oxidative Amidation.

A mixture of aldehyde (100 mg, 0.66 mmol), secondary amine (1.2 eq 0.79 mmol), quinone (0.02 mmol), in DMSO (2 mL) was stirred at 70 ºC for 19 h. in absence of light. The reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel using hexane/EtOAc as eluent to obtain tertiary amide products.

(4-nitrophenyl)(pyrrolidin-1-yl)methanone (7a)

N-(4-Nitrobenzoyl)pyrrolidine.5 Column chromatography (Hexane:EtOAc 80:20) giving yellow solid. Yield 143 mg, 98%. 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.27 (d, \textit{J} = 8.7 Hz, 2H), 7.68 (d, \textit{J} = 8.7 Hz, 2H), 3.67 (t, \textit{J} = 6.9 Hz, 2H), 3.39 (t, \textit{J} = 6.6 Hz, 2H), 2.04 – 1.97 (m, 2H), 1.96 – 1.89 (m, 2H).

(4-methoxyphenyl)(pyrrolidin-1-yl)methanone (7b)

Column chromatography (Hexane:EtOAc 80:20) giving a colorless oil 129 mg, 86%. 1H NMR: 7.52 (d, \textit{J} = 8.7 Hz, 2H), 6.89 (d, \textit{J} = 8.7 Hz, 2H), 3.82 (s, 3H), 3.63 (t, \textit{J} = 6.7 Hz, 2H), 3.47 (t, \textit{J} = 6.5 Hz, 2H), 1.98-1.83 (m, 4H).

phenyl(pyrrolidin-1-yl)methanone (7c)

Column chromatography (Hexane:EtOAc 80:20) giving a Yellow oil 117 mg, 64%. 1H NMR
(400 MHz, CDCl$_3$): δ 7.48 – 7.35 (m, 5H), 3.65 (t, $J = 7.0$ Hz, 2H), 3.43 (t, $J = 6.6$ Hz, 2H), 2.01 – 1.84 (m, 9H).

N-(4-chlorobenzoyl)pyrrolidine (7d)
Column chromatography (CH$_2$Cl$_2$:EtOAc 25:10) giving colorless oil. Yield 105 mg 71%.
1H NMR: δ 7.47 (d, $J = 8.5$ Hz, 2H), 7.38 (d, $J = 8.5$ Hz, 2H), 3.63 (t, $J = 6.9$ Hz, 2H), 3.41 (t, $J = 6.6$Hz, 2H), 1.99 – 1.93 (m, 2H), 1.91 – 1.86 (m, 2H).

4-bromophenyl)(pyrrolidin-1-yl)methanone (7e)
Column chromatography (CH$_2$Cl$_2$:EtOAc 35:10) giving a white crystals. Yield 72 mg, 57%.
1H NMR: δ 7.53 (d, $J = 8.5$ Hz, 2H), 7.40 (d, $J = 8.5$ Hz, 2H), 3.41 (t, $J = 6.6$ Hz, 2H), 3.62 (t, $J = 6.9$ Hz, 2H), 2-1.85 (m, 4H).

N,N-diethyl-4-nitrobenzamide (8)
Column chromatography (Hexane:EtOAc 80:20) giving a yellow solid. Yield 49 mg, 34%.
1H NMR (400 MHz, CDCl$_3$): δ 8.28 (d, $J = 8.6$ Hz, 2H), 7.54 (d, $J = 8.6$ Hz, 2H), 3.58 (q, $J = 7.2$ Hz, 4H), 3.22 (q, $J = 7.2$ Hz, 4H), 1.13 (td, $J = 7.0$, 2.5 Hz, 6H).

N,N-dibutyl-4-nitrobenzamide (8a)
Column chromatography (Hexane:EtOAc 80:20) giving a yellow oil. Yield 83 mg, 43%.
1H NMR: δ 8.28 (d, $J = 8.8$ Hz, 2H), 7.93 (d, $J = 8.8$ Hz, 2H), 3.50 – 3.47 (m, 2H), 3.17 (dt, $J = 24.6$, 7.4 Hz, 2H), 1.66 – 1.59 (m, 4H), 1.46 – 1.39 (m, 4H), 0.97 (t, $J = 7.3$ Hz, 6H).

N-(4-Nitrobenzoyl)morpholine (8b)
Column chromatography (CH$_2$Cl$_2$:EtOAc 80:10) giving a yellow crystals. 1H NMR: δ 8.30 (d, $J = 8.6$ Hz, 2H), 7.59 (d, $J = 8.6$ Hz, 2H), 3.81 (s, 4H), 3.64 (s, 2H), 3.40 (s, 2H).

Piperazine-1,4-diylbis((4-nitrophenyl)methanone) (8c)
Column chromatography (CH$_2$Cl$_2$:EtOAc 80:10) giving a yellow crystals Yield 40.6 mg, 32%.
1H NMR: δ 8.28 (d, $J = 8.6$ Hz, 2H), 7.58 (d, $J = 8.7$ Hz, 2H), 3.86 – 3.72 (m, 2H), 3.35 (t, $J = 4.9$ Hz, 2H), 2.97 (d, $J = 5.5$ Hz, 2H), 2.83 (t, $J = 4.9$ Hz, 2H).
NMR Spectra

2,5-dimethyl-3-(1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (4)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
Cosy NMR (400 MHz, CDCl$_3$)

Hetcor NMR (400 MHz, CDCl$_3$)
Noesy NMR (400 MHz, CDCl₃)

Dept NMR (400 MHz, CDCl₃)
Mass spectrum

File: QDP_PIRROL_LCG
Sample: QUINONA_PIRROL
Inlet: Direct Probe
Ionization mode: EI+
Scan: 46
Base: m/z 181; 41.7% FS TIC: 1382848
#ions: 100

3-(5-chloro-1H-pyrrol-2-yl)-2,5-dimethylcyclohexa-2,5-diene-1,4-dione (4a)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (101 MHz, CDCl$_3$)

Cosy NMR (400 MHz, CDCl$_3$)
Hetcor NMR (400 MHz, CDCl₃)
Noesy NMR (400 MHz, CDCl₃)

Dept NMR (400 MHz, CDCl₃)

Mass spectrum
2,5-dimethyl-3-(5-nitro-1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (4b)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (101 MHz, CDCl$_3$)

Cosy NMR (400 MHz, CDCl$_3$)
Hetcor NMR (400 MHz, CDCl₃)

Noesy NMR (400 MHz, CDCl₃)
Mass spectrum

2,5-dimethyl-3-(5-thiocyanato-1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (4c).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\))
13C NMR (101 MHz, CDCl$_3$)

Cosy NMR (400 MHz, CDCl$_3$)
Hetcor NMR (400 MHz, CDCl$_3$)

Noesy NMR (400 MHz, CDCl$_3$)
Dept NMR (400 MHz, CDCl₃)

Mass spectrum
2-hydroxy-6-methyl-3-(6-methylheptan-2-yl)-5-(1H-pyrrol-2-yl)cyclohexa-2,5-diene-1,4-dione (5)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (101 MHz, CDCl$_3$)

Cosy NMR (400 MHz, CDCl$_3$)
Hetcor NMR (400 MHz, CDCl₃)

Noesy NMR (400 MHz, CDCl₃)
Dept NMR (400 MHz, CDCl₃)

Mass spectrum

(4-nitrophenyl)(pyrrolidin-1-yl)methanone (7a)

¹H NMR (400 MHz, CDCl₃)
(4-methoxyphenyl)(pyrrolidin-1-yl)methanone (7b)

1H NMR (400 MHz, CDCl$_3$)
phenyl(pyrrolidin-1-yl)methanone (7c)

1H NMR (400 MHz, CDCl$_3$)

(4-chlorophenyl)(pyrrolidin-1-yl)methanone (7d)

1H NMR (400 MHz, CDCl$_3$)

(4-bromophenyl)(pyrrolidin-1-yl)methanone (7e)

1H NMR (400 MHz, CDCl$_3$)
N,N-diethyl-4-nitrobenzamide (8)
1H NMR (400 MHz, CDCl$_3$)

N,N-dibutyl-4-nitrobenzamide (8a)
1H NMR (400 MHz, CDCl$_3$)
N-(4-Nitrobenzoyl)morpholine (8b)

1H NMR (400 MHz, CDCl$_3$)
Theoretical calculations

Three definitions of \(f(r) \) are obtained from the finite difference scheme,\(^6\) which are helpful descriptors to evaluate a chemical specie for nucleophilic attacks \((f(r)^+) \), electrophilic attacks \((f(r)^-) \) and for free radicals attacks \((f(r)^0) \) by using the following equations:

\[
\begin{align*}
 f(r)^+ &= \rho_{N+1}(r) - \rho_N(r) \\
 f(r)^- &= \rho_N(r) - \rho_{N-1}(r) \\
 f(r)^0 &= 0.5(\rho_{N+1}(r) - \rho_{N-1}(r))
\end{align*}
\]

(1) (2) (3)

where \(\rho_{N+1}(r) \), \(\rho_N(r) \) and \(\rho_{N-1}(r) \) are the electronic densities at point \(r \) for the system with \(N+1 \), \(N \) and \(N-1 \) electrons respectively.

The \(f(r)^0 \) form of the Fukui functions was used as a stability descriptor pursuing zones within the pyrrolyl quinones that could stabilize a free radical. The \(f(r)^0 \) descriptor indicated regions in the pyrrolyl quinones in which an unpaired electron could potentially be localized after redistribution of the initial electronic density.

The left panel of Scheme 1 presents the isocontours of \(f(r)^0 \) in the gas phase. The right side of Scheme 1 plots the isovalues of \(f(r)^0 \) in the presence of DMSO as the
solvent. The lowest energy conformers of 4 and its derivatives indicated the formation of a hydrogen bond between O_9 of the quinone and H of the pyrrole ring, with a length of 1.93, 1.92, 1.98, or 1.95 Å for 4, 4a, 4b, and 4c, respectively, in the gas phase. Although the presence of DMSO promoted hydrogen bonding, the hydrogen bond length increases with respect to the gas phase (being 1.98, 1.95, 2.01, and 1.99 Å for 4, 4a, 4b, and 4c, respectively).

The highest values of \(f(r)^0 \) suggested that the oxygen atoms O_8 and O_9 of the quinones were the most favorable sites for stabilizing a free radical, with a subtle preference for O_8 over O_9. O_9 participates in non-bonded interactions, whereas O_8 can accept one electron to form a radical. Radical formation raises an interesting question: Do the pyrrolyl quinones accept or donate the electron? To address this question, we calculated the values of \(f(r)^+ \) and \(f(r)^- \) of the Fukui functions in the open shell scheme (after radical formation). The value \(f(r)^+ \) provides information about sites that stabilize incoming charges on the PQs. The value \(f(r)^- \) gives information about the electron donor sites from which a charge may “exit” to stabilize the PQs in a subsequent step.

Table 1 indicates that the highest values of the Fukui function occurred at O_8, particularly for \(f(r)^+ \). Once the radical formed, O_8 preferably accepted the incoming charge. It is important to note that \(f(r)^+ \) increased in the presence of DMSO by up to 7.2%, in agreement with our proposed mechanism that the quinones promoted radical formation in the presence of DMSO with synergic effects.

Compound	Gas Phase	DMSO		
	\(f(r)^+ \)	\(f(r)^- \)	\(f(r)^+ \)	\(f(r)^- \)
O_8	0.184	0.061	0.114	0.075
O_9	0.194	0.067	0.122	0.084
4	0.181	0.069	0.129	0.078
4a	0.194	0.120	0.120	0.066
4b	0.182	0.057	0.125	0.080
4c	0.184	0.061	0.120	0.078

Compound	Gas Phase	DMSO
4		
4a		

Table 1 Condensed forms of \(f(r)^+ \) and \(f(r)^- \) (in e–), calculated after the radical formed in the PQs.
From the global properties of benzoquinones, we can clearly observe the solvent effect on such properties, e.g., electron affinity (A) increases approximately twice in the presence of the solvent with respect to the gas phase. In specific, the superiority of DMSO over CH$_3$CN can be observed analyzing the chemical hardness (η), which measures the resistance of a chemical specie to change in its electronic configuration. It decreases significantly in the presence of both CH$_3$CN and DMSO, finding in all cases, the lowest values of η in the presence of DMSO. Additionally, we observed that global electrophilicity (ω) of all species, increases considerably in the presence of the solvents, finding in the presence of DMSO the highest values of ω, which are up to 0.15 eV higher than ω calculated in the presence of CH$_3$CN. Other proofs of superiority of DMSO over CH$_3$CN (and other solvent with dissimilar polarity) we found analyzing the local reactivity descriptors, such as the condensed Fukui functions, which are part of a further publication. Tables 2, 3 and 4 list the results of the discussed global properties:

Table 2. Electron affinity (A), chemical potential (μ), hardness (η) and electrophilicity (ω) [in eV] of pyrrolyl benzoquinones calculated in the gas phase.

MOLECULE	A	μ	η	ω
NO$_2$	2.58	-5.04	4.91	2.58
SCN	2.36	-4.82	4.92	2.36
Cl	2.03	-4.46	4.87	2.05
H	1.87	-4.36	4.98	1.91

Table 3. Electron affinity (A), chemical potential (μ), hardness (η) and electrophilicity (ω) [in eV] of pyrrolil benzoquinones calculated in the presence of CH$_3$CN.
MOLECULE	A	μ	η	ω
NO₂	4.17	-4.96	1.58	7.78
SCN	3.93	-4.74	1.61	6.95
Cl	3.81	-4.57	1.51	6.92
H	3.75	-4.51	1.53	6.65

Table 4. Electron affinity (A), chemical potential (μ), hardness (η) and electrophilicity (ω) [in eV] of benzoquinones calculated in the presence of DMSO.

References

1. L. Chacon-García, M. Valle-Sánchez and C. Contreras-Celedon, Lett. Org. Chem., 2013, 10, 632.
2. É.-B. Hergovich and G. Speier, J. Chem. Soc. Perkin Trans., 1986, 1, 2305.
3. (a) H. R. Memarian, I. Mohammadpoor-Baltork and K. Nikoofar, Ultrasonics Sonochemistry, 2008, 15, 456; (b) T. B. Mete, T. M. Khopade and R. G. Bhat, Tetrahedron Lett., 2017, 58, 415.
4. M. Tapia-Juárez, J. B. Gonzalez-Campos, C. Contreras-Celedón, D. Corona, E. Cuevas-Yañez and L. Chacon-García, RSC Adv., 2014, 4, 5660.
5. K.-E. Kovi and C. Wolf, Org. Lett., 2007, 9, 3429-3432.
6. P. W. Ayers, W. Yang, and L. J. Bartolotti, in Chemical Reactivity Theory: Chemical Reactivity Theory: A Density Functional View; Chattaraj, P.K., Ed.; CRC Press: Boca Raton, FL, USA, 2009.
7. G. Macov, J. Phys. Chem. 1995, 99, 9337.