Blood Profile and Reproductive Performance of Pregnant West African Dwarf Ewes Fed Rumen Epithelial Scrapings-Based Diets

Akinfemi, A.
Chief Lecturer, Department of Agricultural Science, Yaba College of Technology, Nigeria

Ogunwole, A. O.
Senior Lecturer, Department of Animal Science, University of Ibadan, Nigeria

Osineye, O. M.
Principal Lecturer, Department of Fisheries Technology, Federal College of Fisheries and Marine Technology, Nigeria

Abstract:

Twelve WAd ewes weighing 18.50±4.00kg were blocked by weight into three groups of four animals each in a randomized complete block design. They were kept in individual pens and fed formulated diets as supplement to a basal grass (Panicum maximum), together with fresh water ad-libitum daily. All experimental ewes were given prostaglandin F2α for synchronization of oestrus and served with herd ram as soon as signs of heat were detected. Parameters measured and recorded were: Dry matter intake, Serum metabolites and Haematological indices. Before mating, after mating, as pregnancy advanced, and with increasing inclusion of RES, grass consumption (g/kgBW0.75/day) increased; 34.08, 40.90 and 52.57 for diets A, B and C respectively in the early pregnancy, to 37.96, 40.30 and 55.06 in mid-pregnancy. There was a noticeable decline in these values to 29.35, 29.98 and 40.83 in late pregnancy with animals on diets A, B and C respectively. Treatment effect on PCV(%) values declined significantly (p<0.05), from pre-mating period to early pregnancy, and with only animals on different levels of dietary RES inclusion, there was a significant (p<0.05) but corresponding rise in PCV. RBC (10^3/mm^3) and Hb (g/100ml) followed the same trend as PCV. Macrocytic anaemia was observed in the animals during early pregnancy, (MCV (μm^3): A(85.10), B(80.80) and C(99.50)) and this was corrected by late pregnancy (42.70, 35.80 and 33.70) for all treatments, displaying normal values, although, treatment effect was significant (p<0.05). The values of WBC (×10^3/mm^3) were not consistent with increasing inclusion of RES. Serum minerals varied inconsistently with increasing inclusion of RES in the diet. Sera levels of both minerals varied similarly for other periods of pregnancy (mMol/l): (246.50, 290.50 & 211.50 of Na+ and 116.50, 119.50 & 117.50 of Cl- for animals fed diets A, B and C respectively) in early pregnancy, and decreased to (148.80, 141.00 & 140.83) in late pregnancy. Variations in the sera levels of urea and creatinine were inconsistent with increasing inclusion of RES in the diet. Animals on diet C recorded the highest urea level (70.50mg/100ml) in early pregnancy and late pregnancy (39.50mg/100ml) but lowest level of urea in period prior to mating (30.00mg/100ml). Animals on diet C recorded a relatively stable protein profile and relatively higher sera protein in pre- pregnancy (6.53g/100ml), early pregnancy (7.90/100ml) and late pregnancy (6.50g/100ml), despite relatively low intake of dietary protein (10.84, 10.94 and 10.95g/kgBW0.75/day for diets C, B and A respectively). The mean serum cholesterol, triglycerides and glucose values for sheep on diets A, B and C showed that trends obtained were inconsistent with the inclusion of RES in the diet. Serum transaminases were statistically similar at all stages of pregnancy and lack of dietary effect in values obtained for these transaminases is an indication of safety in feeding of RES to sheep. At the three stages of pregnancy, there were significant (p<0.05) improvements in most of the measured parameters, while few were inconsistent, with increasing dietary level of RES.

Keywords: Rumen epithelial scrapings, graded gnc replacement, reproductive performance

1. Introduction

Shortage of feed especially during the dry season is considered as one of the major problems of livestock farmers in developing countries. In Nigeria, the Northern farmers are predominantly cattle rearers who need regular supplies of forages; it is the practice of the cattle herdsmen to move towards the Southern part of the country where there is longer period of raining season with available pastures for their livestock. In the course of such movement of livestock, there are clashes between the herdsmen and crop farmers. Such clashes has aggravated division in the country, so much that open grazing was banned in certain parts of Nigeria and Ghana. Restraint of such livestock in their natural environment with long period of drought with poor quality forages will further deplete their productivity. Tarawali et al (1983) reported that many animals died of starvation during the dry season due to limited availability of all year round feed resources and high cost of conventional feeds. Though grass and forage form greater proportions of ruminate feed
resources Bankole et al (2003), their use is limited due to seasonal availability and content of anti-nutritional factors (Bawala et al, 2006).

Feed scarcity, therefore, has made it necessary to search for substitutes for the conventional feed resource by harnessing available agro-industrial wastes (crop and animal residues) testing them both in the laboratory for chemical constituents and feed for efficiency of their utilization by the ruminants (Bawala et al, 2007). Previous reports (Akinfemi and Ogunwole, 2012; Akinfemi, 2012) exploited fungal treatment of agricultural wastes and also urea-molasses treatment of crop residues. In an attempt to further enlarge the availability of cheap feed resources to ruminants, the use of rumen epithelial scraping was considered. Rumen epithelial scrapings (RES) in an abattoir waste and environmental pollutant, being scrapped-off from the rumen linings, suggesting a high protein source (Alikwe et al, 2013). Information on RES is scanty and yet to be exploited for livestocks feed (Bawala et al 2006). Recent challenges in ruminant feedstuffs availability has propelled further research into the use of RES. Reports has shown that RES has similar constituents to that of meal (Isah, 2001; Bawala et al 2003; Fajemisi et al 2003). Research into the means of utilizing this erstwhile waste will perform triple roles of alleviating the rigour involved in its disposal, eliminate stench emanating from its putrescence and provide avenue for generating income for teaming poor women involved in the processing. In view of this, this experiment has considered the dry matter intake and reproductive performance of pregnant West African Dwarf ewes fed rumen epithelial scrapings based diets.

2. Materials and Methods

The study was conducted at the Department of Animal Science, University of Ibadan and the International Livestock Research Institute (ILRI), IITA, Ibadan, Nigeria. Ibadan is located within 6° and 9° North of the equator and 4°-6° East of Greenwich meridian, within the South-Western region of Nigeria. The climate is characterized by fairly high temperature of 36.00±4.00°C, Relative humidity ranging from an average of 60% in January, to 94% in August, with a yearly average of about 82%, as a result of moderately heavy average rainfall of about 2,000mm, being a typical tropical rainforest zone (BATC, 2005).

2.1. Source and Description of RES

Samples of RES were collected at the main abattoir in Bodija market, Ibadan. The normal processing here involved initial elimination of the rumen content. This was then followed by washing and boiling of the empty rumen in hot water for about 5minutes. The inner epithelial layer was then scraped off with a knife and this scraped layer formed the wet RES.

The collected fresh RES was immediately spread on a nylon sac, on a clean concrete platform and properly sundried until crisp. Groundnut cake was purchased from feed millers at Monatan, Ibadan. All samples were ground in a Wiley mill to pass through a 0.5mm sieve and little portions were then stored until required for chemical analyses.

Concentrate supplements were formulated such that 0%(A), 50%(B) and 100%(C) of the groundnut cake (GNC) were replaced weight by weight with RES in a concentrate diet containing 20% GNC. The formulated diets were then used for the experiment. The compositions and nutrient contents of test diets are shown in Tables 1 and 2 respectively.

Ingredients (%)	A	B	C
Groundnut Cake	20.00	10.00	0.00
RES	0.00	10.00	20.00
Cassava Peel	30.00	30.00	30.00
Wheat offal	34.00	34.00	34.00
Palm kernel cake	10.00	10.00	10.00
Oyster shell	2.00	2.00	2.00
Bone meal	3.25	3.25	3.25
Vitamin/Mineral Premix	0.25	0.25	0.25
Common salt	0.50	0.50	0.50
Total	100	100	100

Table 1: Formulation of Rumen Epithelial Scrapings-Based (Experimental) Diets Composition of the Vitamin/Mineral premix

0.2% Vitamin/Mineral Premix for Sheep and Goat (Vitadiz SG), each 2.5kg bag contains; Vitamin A 10,000,000 i.u.; Vitamin D 1,000,000 i.u.; Vitamin E 15,000 i.u.; Calcium 600mg; Phosphorus 400mg; Anti-Oxidant 15g; Manganese 50g; Zinc 100g; Iodine 1g; Iron 100 g; Selenium 0.2g; Cobalt 0.5g

2.2. Animals and their Management

Twelve (12) pregnant ewes, aged 2-4 years, weighing 18.50±4.00kg were blocked by weight into three groups of four animals each. They were kept in individual pens where each had a free access to food and fresh water daily. They were certified free of ectoparasites. Concentrate supplements were offered ad libitum at 09h and 16h. Voluntary feed intake was estimated as the difference between feed offered and feed refused.
2.3. Sample Collection and Preparation

Collection of rumen epithelial scrapings as earlier enumerated and the air-dried samples were milled at the feed depot of the Teaching and Research Farm, University of Ibadan. The dried ground sample was then packed into sacks, weighed and stored in a silo pending its incorporation into diets or used in chemical analyses.

2.4. Oestrus Synchronization

All experimental ewes were given prostaglandins F2α intramuscularly in two doses of 1ml to synchronize their oestrus artificially. They were served with herd ram once signs of heat were detected. All ewes were weighed at mating.

2.5. Digestibility Trail

Estimation of digestibility was done in the last two weeks of the feeding trial with the first 7 days for acclimatization and adjustment of the experiment to the metabolic cages fitted in such a way that there is separate collection of the urine and faecal droppings, in the last 5 days, the faeces voided were collected and weighed daily and a 10% kept for analyses. To prevent nitrogen loss from the urine through volatilization, 10ml of 10% H2SO4 was added to each collected sample of urine (Chen and Gomez, 1992). Urine samples were collected in PVC containers with a lid and subsequently stored at 20°C in deep freezer until required for analysis. Faecal samples were dried at 65°C to constant weight, milled and stored in air tight bottle until analysed.

2.6. Collection of Blood

Blood samples were collected before morning feeding through jugular vein puncture with a minimum excitation (Anosa et al., 1978), before and at the end of feeding experiment and just before the commencement of metabolic procedure. An average of 10ml of blood was collected from each animal, about 2ml of each sample was contaminated with ethylene diamine tetraacetic acid (EDTA) for haematological studies, while the remaining 8ml was left in glass universal bottle from which serum was harvested.

2.7. Analytical Procedure

Samples of feed and faeces were analyzed for crude protein (CP), ether extracts (EE), crude fibre (CF) and ash, as described by AOAC (1990). Gross Energy content was determined, using adiabatic bomb calorimeter, as described by Harris (1970).

2.8. Statistical Analysis

All data obtained were subjected to analysis of variance (Gomaz and Gomez, 1986) while means were separated using Duncan Multiple Range Test (Duncan, 1955).

3. Result and Discussion

Parameters	A	B	C	Grass
Dry Matter (%)	91.90	92.53	91.69	93.76
Chemical Composition (g/100gDM)				
Crude Protein	20.25	19.87	19.65	6.23
Crude Fibre	16.73	16.50	16.27	41.12
Ether Extract	4.38	4.27	3.51	2.34
Ash	17.67	11.85	16.34	11.13
Nitrogen-Free Extract (NFE)	40.97	47.51	44.23	39.28
Calcium (%)	1.00	1.06	1.05	0.32
Phosphorus (%)	0.76	0.87	0.80	0.42
Gross Energy (Kcal/g)	2.77	2.74	2.75	3.56

Table 2: Chemical Composition (g/100g DM) of RES-Based Diets and Grass (Panicum maximum)

Dry Matter	80.95±8.45
Chemical Composition (g/100gdm)	
Crude Protein	44.19
Crude fibre	1.52
Ether Extract	2.06
Ash	3.04
Nitrogen-Free Extract (NFE)	49.19
Organic Matter	96.96
Calcium (%)	3.29
Phosphorus (%)	0.82
Magnesium (%)	0.57
Potassium (%)	0.61
Sodium (%)	0.46
The ether extract value (g/100gDM), obtained was 2.06±0.15. This is lower than the value of 7.23 (Isah, 2001) and 6.20 (Bawala et al., 2007) for the same ingredient. However, this (2.06) value is much higher than 1.50 and 1.20 reported for fish meal and animal blood respectively (Fetuga and Tewe, 1985).

The average crude protein value (g/100gDM) of air-dried sample was 44.19±1.68. Isah (2001) and Fajemisin (2002) and Bawala et al., (2007) obtained higher values and wider range of 41.38, 69.48, 62.0 for the same ingredient. The most probable reason for such a wide range of variability in crude protein value of RES could be attributed to varied dietary components of the diet fed to the animals, being responsible for varied types and population densities of rumen microflora and fauna, as well as their metabolites (Osineye, 2009). Varied level of contamination of the sample during scraping and drying could also be a contributory factor to this wide range of variability in crude protein value. Hair, one of the notable contaminants of RES contains very high level of nitrogen. Hairs and sand from the platform during drying of the sample are also notable contaminants. RES is an attractant to flies and microorganisms, thus the level of various contaminants could influence the crude protein value. Fanimo (1998) obtained similar crude protein value (g/100gDM) of 43.71 for shrimpwaste. Skrede and Nes (1988) reported crude protein values of 43.40, 34.00 and 32.10 for raw cattle tripe, raw mixed cattle waste and raw mixed hog waste respectively. These values were however lower when compared with values obtained for different samples of meat meal (Gonzalez et al., 1998), which were (g/100gDM) 56.90, 58.80, 66.70, 57.90 and 52.30. There is therefore high variability in crude protein values in literature for animal products.

The major mineral profile of RES is shown in Table 4. Result showed that RES could be a good source of minerals in the ration of livestock. It is particularly rich in sodium and iron. The values here compare favourably with what was obtained for different samples of meat meal (Gonzalez et al., 1998) for the same ingredient. However, this (2.06) value is much higher than 1.50 and 1.20 reported for fish meal and animal blood respectively (Fetuga and Tewe, 1985).

Table 3: Chemical Composition of Rumen Epithelial Scrapings (RES)

Constituent	GNC	Wheat Offal	Cassava Peel	PKC
Dry Matter (%)	96.80	90.00	91.30	92.50
Chemical Composition (g/100gDM)				
Ash	4.89	6.30	13.88	4.80
Crude Fibre	3.81	12.17	35.60	11.50
Ether Extract	9.20	5.56	5.30	7.00
Nitrogen-Free Extract	37.35	58.84	38.10	57.90
Crude Protein	44.75	17.13	7.20	18.80

Table 4: Chemical Composition of Other Ingredients Used in the Formulation of Experimental Diets

Constituent	GNC= Groundnut Cake, PKC= Palm Kernel Cake	
Dry Matter (%)	96.80	
Chemical Composition (g/100gDM)		
Ash	4.89	
Crude Fibre	3.81	
Ether Extract	9.20	
Nitrogen-Free Extract	37.35	
Crude Protein	44.75	

The values obtained for chemical compositions in Tables 2 and 4 are similar to those obtained by Osineye (2015); Fajemisin et al. (2015); Isah et al. (2015).

Table 5 summarizes the feed intake of ewes during pregnancy. Dry Matter Intake is an indication of their capacity to utilize feed voluntarily. Grass DM consumptions (g/kg BW0.75/day) were 37.28, 42.95 and 49.63 in pregnant ewes on diets A, B and C respectively. Grass consumption increased with advancing pregnancy from 34.08, 40.90 and 52.57 for diets A, B and C respectively in early pregnancy to 37.96, 40.30 and 55.06 in mid pregnancy. These values declined in late pregnancy to 29.35, 29.98 and 40.83 for animals on diets A, B and C respectively.
Grass consumption increased with (p<0.05) the inclusion of RES at all stages of pregnancy. Ewes on diet C recorded a consistently higher intake of grass (p<0.05) than those on diets A and B. This might probably be due to better quality of diet C. Studies (Isis et al; Mitimura et al., 2018; Rusdy, 2018; Nyambati et al, 2003) have shown that voluntary intake of low quality forage was greatly improved by the quality of supplementary concentrate given. Variations in concentrate supplement consumed were not significant. These observations suggest that the diets were equally acceptable to the animals. Generally total dry matter intake of animals fed various diets improved significantly (p<0.05) with increasing inclusion of RES except in late pregnancy where observed variation was not significant. Total dry matter intake as a percentage of body weight increased up to mid pregnancy in all treatments and decreased in late pregnancy. The observed values in the pre pregnant period were 3.95, 4.22 and 4.61 for animals on diets A, B and C respectively and treatment effects were not significant. In early pregnancy, there were marked decline in Hb values for all diets an

4. Haematological Indices of Pregnant WAD Ewes Fed RES-Based Diets

Variations observed in values of haematological indices for pregnant WAd ewes are displayed in Table 6. Haemoglobin (Hb)(g/100ml) values obtained for experimental animals were not consistent with the inclusion of RES in the diet. Hb is indicative of oxygen-carrying capacity of the blood. Animals with high oxygen-carrying capacity do not succumb easily to respiratory diseases (Mmerede, 1996). Prior to mating, values obtained for Hb were 10.50, 10.20 and 10.30, for animals on diets A, B and C respectively and treatment effects were not significant. In early pregnancy, there were marked decline in Hb values for all diets and these values (6.90, 6.80 and 4.50, for diets A, B and C respectively), were lower than normal range recommended for ovine species (Radostits et al; 2000). Animals on diet C recorded a significantly (p<0.05) lower Hb value, compared with values for A and B. However, in late pregnancy, animals on all diet their Hb values to levels normal for ewes. Animals on diet a recorded a significantly (p<0.05) lower mean Hb value (7.70) compared with the values of B (11.08) and C (10.60).

Treatment effect on PCV (%) values at pre-mating period (30.50, 30.50 and 31.00 for treatments A, B and C respectively) was not significant. There was sharp decline in PCV (%) values in early pregnancy (21.00, 20.00 and 13.50 for treatments A, B and C respectively). The values improved tremendously for all diets in late pregnancy. Animals on diet a recorded a significantly (p<0.05) lower PCV (24.50) in late pregnancy compared with B(31.80) and C(32.00), this observation is suggestive of a relatively lower ability of diet A to restore PCV in late pregnancy compared with diets B and C. RBC (106/mm-3) values for animals on diets A, B and C followed the same trend as PCV and Hb. Observed values for animals on diets A, B and C were 8.00, 7.80 and 8.00 in early pregnancy. RBC values declined in mid-pregnancy (2.50, 2.60 and 1.40), while the values also improved significantly (p<0.05) in late pregnancy (5.70, 8.90 and 9.48).

In early pregnancy, MCV (μ3) values obtained for A(85.10), B(80.80) and C(99.50) were beyond normal range. This shows that at this stage, the erythrocytes of ewes on all treatments were macrocytic, i.e. erythrocytes were larger than normal. MCV is in classifying anaemia morphologically. This classification has little reference to the cause of the anaemia. The estimation is for only normal erythrocyte size and haemoglobin concentration. Macrocytic anaemia is usually transitory – a common feature in convalescence or in recuperating animals (Zawn, 2018). Expectedly, the erythrocyte size in late pregnancy improved (42.70, 35.80 and 33.70 for animals on diets A, B and C respectively), but treatment effect was not significant.

Table 5: Dry Matter Intake of Pregnant Ewes Fed RES-based Diets

Trtmt Concentration (g)	Daily DMI Grass (g)	Daily Total DMI (g)	TotalD MI%BW	Av. Grass	Intake g/Day Conc.	BW^0.75 Total DMI	CI(%) TDMI	
Pre-Preg.								
C	552.40	527.60	1080.0	5.00	52.57	55.14	107.71	51.19
SE	95.37	38.33	6.40	0.18	2.73	1.75	3.57	1.32
Mild-Preg.								
A	546.00	368.30	932.30	4.52	37.96	58.46	96.42	60.60
B	664.00	443.50	1107.5	4.53	40.30	60.31	100.60	60.05
C	618.80	614.70	233.70	4.97	55.06	55.67	110.73	50.31
SE	33.88	38.70	66.08	0.13	2.02	1.61	2.40	1.42
Late-Preg.								
A	458.50	301.00	759.30	3.44	29.35	45.01	74.36	60.51
B	546.30	357.50	903.80	3.32	29.98	45.69	75.67	60.51
C	508.70	493.30	1002.2	3.63	40.83	42.22	83.05	50.90
SE	27.52	31.02	53.63	0.92	1.89	1.79	3.97	1.36

Means along the Same Column with Identical Superscripts are not Significant.

BW= Body Weight; TDMI= Total Dry Matter Intake; CI= Concentrate Intake; Int= Intake
WBC (×103 mm⁻³) obtained for all treatments in late pregnancy (i.e. 13.03, 12.73 and 17.80 for animals on diets A, B and C respectively), was highest for diet C – this is suggestive of reactions by animals, making them to produce antibodies, or WBC, to fight against infections as a result of feeding on RES-based concentrate. The WBC reported in this study indicates high immunity status of the animals to fight against infection (William, 1995) and this implies the animals were in sound health. The transmission of pathogenic bacteria and parasites is one of the major drawbacks of waste recycling for feeding animals (FAO, 1982). Nevertheless, neither health nor behavioural traits were affected by the experimental diets.

Haematological values for ewes must be interpreted with caution. The spleen of sheep has been reported to have the capability of storing 500 – 800 ml of concentrated blood cells (Dooley et al., 1971) that could be released into circulation under stressful conditions, thus causing a variation in haematological values. Once feed is adequate, variations observed could therefore be due to external changes rather than direct response to feeding regime. The main constraint hindering the productivity of the livestock sector in most sub-Saharan countries are diseases, poor nutrition, poor breeding policies and poor management. (Kusiluka and Kambarage, 1996). For example, WAD sheep are trypanotolerant (Chukwuka et al, 2010). Thus, sheep have innate ability to contain to a great extent, the effects of trypanosomiasis subs-clinical infections (Ristic and McLynnte, 1981) and constant parasitic burden (Nf, 1991). They grow and reproduce without therapy, but this challenge will reflect in the blood picture, as may be the case here.

Treatment	PCV	Hb	RBC	MCV	MCHC	MCH	WBC	
Early Preg.								
A	12.7±0.08	10.2±0.16	8.0±0.08	38.1±0.45	33.3±0.21	30.5±0.65	9700±310.91	9.70
B	30.5±2.25	39.6±1.46	33.3±0.41	13.2±0.65	7500±402.08	7.50		
C	31.0±1.83	38.7±0.07	32.8±0.46	12.7±0.16	8850±375.30	8.85		
Mild Preg.								
A	21.0±0.91	6.9±0.28	2.5±0.23	85.10±4.60	33.10±1.13	28.30±2.23	10150±232.74	10.15
B	20.5±1.76	8.0±0.49	33.4±2.28	26.5±1.28	10550±229.3	10.55		
C	13.5±0.74	4.5±0.29	1.4±0.18	99.5±8.13	33.5±2.54	33.4±4.32	12350±961.34	12.30
Late Preg.	1.22	0.37	0.30	7.29	2.07	2.90	595.47	

Table 6: Effects of Inclusion of RES on Haematology of Ewes during Pregnancy

Treatment	WBC		
A	13.80±1.32	13.025±875.60	13.02
B	12.50±0.5	12.725±306.80	12.72
C	11.20±0.03	17800±195.1	17.80

5. Reproductive Performance of WAD Ewes Fed RES-Based Diets

5.1 Live-Weight Changes during Pregnancy

Pattern of live-weight changes of pregnant ewes fed Res-based diets in the last six weeks of gestation is shown in Table 7. All animals on diets A, B and C gained weight during pregnancy indicating that dry matter intakes were sufficient both for maintenance and production. Weight changes during pregnancy were 6.08, 7.48 and 8.30 kg for animals on diets A, B and C respectively, (highest for animals on diet C). This numerical increment in observed weight gain increasing with the inclusion of RES in the diets were however not statistically significant. Weight loss during parturition was highest for animals on diet A (4.75 kg) and decreased numerically with the inclusion of RES in the diet (i.e. 4.43 kg and 4.13 kg for diets B and C respectively). The observed variation was however, not statistically significant. Ewes on diet B were heaviest at mating (20.90 kg) while those on diet A had the least mean weight (18.43 kg), although treatment effect was not significant. At parturition and weaning, mean weight of animals on diet C was highest (28.80 kg and 23.90 kg respectively). There was no significant correlation between live-weight at mating and lambs birth weight, and this agrees with the observation of Orji (1976) and Uwechue (2000) on Wad ewes.

5.2 Gestation Length

Estimation of gestation length commences from the day of mating till the day of lambing or parturition (Terril and Hazel, 1974). Values obtained for gestation length were 149.25, 148.50 and 154.30 days for ewes on diets A, B and C respectively. However, the observed variations were only numerical but statistically insignificant. The average gestation length in sheep varies from 142 to 152 days (Sheep 201). The average is 147 days. Individual pregnancies may vary from...
138 to 159 days (201) Hill (1960) observed a range of 140 -169 for WAD sheep. Mean gestation length obtained for multiple births were higher than the corresponding gestation periods for single births. This observation is at variance with that reported by Uwechue (2000) that sheep with multiple births have shorter gestation periods.

5.3. Parturition
All births took place unassisted and most lambing were in the night. All foetal membranes were recovered with none consumed by the ewes. No mortality was recorded at birth.

5.4. Type of Birth and Sex Indication
Of the four ewes per treatment, all ewes on diet A had single births while animals on diets B and C had one ewe each with twin birth. Twinning rate vary greatly and ranges from 20% (Hill, 1960) to 87% (Ngere, 1975). Taiwo (1979) obtained 51.9% and Ademosun (1973) got 27% as twinning rates. Treatment effect was significant (p<0.05) for sex of lambs from animals fed diets A, B and C. All lambs from animals fed diet A were male, while 80% and 50% of lambs obtained from diets B and C respectively were male. The proportion of male lambs thus decreased with inclusion of RES in the diet, but considering the fact that male animals determine the sex of the offspring, it is not certain that RES inclusion in the diet has anything to do with the sex ratios of the lambs, so further studies and observations are necessary on a larger number of ewes for certainty.

5.5. Lamb Birth Weight
The birth weight of lambs is significantly affected by nutritional status of ewes during pregnancy (Adu and Olaloku, 1979). The mean birth weights were 2.10kg, 2.93kg and 3.48kg for animals on diets A, B and C respectively. The numerical increase in these values with the increasing inclusion of RES was however not significant. 1.70 to 1.85kg reported for WAD (Djallonke) Baffour-Awuah et al., 2007, Odom, 2012) 2.34kg reported by Awuah (2009). Bosso et al, 2007 and Yapi-Gnaore et al 1997 obtained 1.90 and 2.01kg for the same breed in Coted' Ivore respectively. Ampong et al, 2019 noted that the variation in birth weight may be linked to nutritional status of the dam during pregnancy, age and parity of dam during pregnancy and different management practices in production. For example, the limited availability and poor quality of forages for grazing dams especially during the dry season adversely influence their nutritional status, subsequently affecting the availability of nutrients for foetal development. This is because birth weight is a consequence of the net supply of nutrients reaching the foetus (Obese et al 2013). The correlation between the ewes live-weight closest to lambing and the lamb’s birth weight was not significant.

Parameter	A	B	C	D
Weight at Mating (kg)	18.43	20.90	20.43	1.74
Weight before Parturition (kg)	24.50	28.38	28.80	1.94
Weight Loss During Parturition (kg)	4.75	4.43	4.13	0.91
Weight Gain During Pregnancy (kg)	6.08	7.48	8.30	1.04
Gestation Length (Days)	149.30	148.50	154.30	2.73
Lamb Birth Weight (kg)	2.10	2.33	2.57	0.20
Litter Weight (kg)	2.10	2.93	3.48	0.64
% Lamb Mortality at Birth	0	0	0	0
% Lamb Mortality till Weaning	0	0	0	0
Sex Indication % Male	100.0	80.0	50	0

Table 7: Data on Reproductive Performance of WAD Ewes Fed RES-Based Diets
Means along the same row with identical superscripts are not significant.

6. Conclusion
RES incorporation into the diets of sheep improved nutrients intake and digestibility. This is because the intake of more basal diet (grass) was stimulated. The net effect is the improved nutrient balance as shown by nitrogen and energy balance (Ogunwole, 2004), which improved with the increasing inclusion of RES. Haematological studies on the pregnant ewes fed RES-based diets showed that in early pregnancy, all ewes exhibited gross decline in their blood parameters which could necessary not be due to nutritional inadequacy but probably physiological adjustment in early pregnancy or disease of low morbidity – the blood picture could thus be subclinical manifestation of such. In late pregnancy, all animals tended to recover from their erstwhile declined blood condition showing that all diets were capable of restoring blood condition with animals on diet C followed by animals on diets A and B respectively in the order of their improvement in blood conditions.

There were improved overall performances of animals with increasing inclusion of RES. However, the improvement observed was only numerical but not statistically significant. All dietary treatments sustained pregnancy with no reported case of pregnancy toxaemia, a common occurrence as a result of nutritional inadequacy during pregnancy. Therefore, RES could suitably replace GNC in the diets of pregnant ewes.
7. References

i. Ampong E, Obese FY and Ayizange RA 2019. Growth and reproductive performance of WAD sheep (Djallonke) at the livestock and Poultry Research Centre, University of Ghana. Livestock Research for Rural Development. Volume 31, Article #8. Retrieved May 17, 2019, from http://www.irrd.org/irrd31/1/fyobe31008

ii. Awuah T.E 2009 The effect of breed type of birth, parity of dam and sex on the performance of lambs. Bsc Dissertation. University of Ghana, Legon.

iii. Abdullahi, R. O.O. Akerejola and K.A.N. Esiewo 1986. Effects of dietary protein 11: On some blood Constituents in Yankasa Ewes. Bull. Anim. Hth Prod. Afric. 34: 119 – 121.

iv. Adegbola, A.A. 1971. Research on forage crops in Anglophone West Africa. Paper presented at food Journal IRAT/IITA seminar, forage crops RES. In West Africa, University of Ibadan, Ibadan, Nigeria.

v. Adesina, M.A. 1997. Major minerals in serum of cattle slaughtered in Ibadan and those reared on the Teaching and Research Farm, Univ. of Ibadan. M.Sc Thesis. Dept. of Anim. Sci. Univ. of Ibadan, Ibadan, Nigeria.

vi. Aletor, V.A. and O. Ogumuyi. 1988. Effect of varying level of fish meal substitution with soybean meal on certain serum metabolites and haematological indices in chickens. Nig. J. Anim. Prod. 15: 213 – 218.

vii. Amand, W.B. 1986. Avian Clinical Haematology and Blood Chemistry in Fowler. M.E. (ed): Zoo and Wild Animal Medicine. Philadelphia (W.B. Saunders Company).

viii. Adu, I.F. and F.A. Ololoku 1979. A note on nutrition during late pregnancy in WAd sheep. Anim. Prod. 28: 123 – 126.

ix. Ademosun, A.A. 1973. The development of livestock industry In: Nig. Ruminants. Proc. Agric. Soc. Farming, May/June PP. 16 – 18.

x. Adu, I.F. 1975. The effect of ‘steaming up’ on the birth weight, lactation and growth of West African dwarf Sheep. Ph.D Thesis, University of Ibadan, Ibadan, Nigeria.

xi. AFRC, 1992. Agricultural and Food Research Council. Technical Committee on response to nutrients. REP. No. 9 Nutritive requirements of ruminal animals; protein. Nutri. Abstr. Rev. Ser. B. Livest. Feeds Feeding 62: 787 - 835.

xii. AFRC, 1993. Agricultural and Food Research Council. In: the energy and protein nutrition of grazing sheep. Sheep health and production. Veterinary education and information network (VEIN). Vet Education foundation, Univ. of Sydney, Australia.

xiii. Akinbamijo, O.O. 1994. The effect of parasitism on nutrient metabolism and productivity in small ruminant. Ph.D. Thesis, Wageningen Agricultural University, the Netherlands.

xiv. Alokan, J.A. 1989. Performance of West African Dwarf Sheep fed corn supplemented to different protein levels. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria.

xv. Aregheore E.M. 2000. Chemical composition and nutritive value of some tropical bi-product feed stuffs for small ruminants – in vivo and in vitro digestibility. Anim. Feed Sci. Technol. 85: 99-109.

xvi. Bauman, D.E. and W.B. Currie 1980. Partitioning of nutrients during pregnancy and lactation. A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63: 1514.

xvii. Baffour-Awuah O, Adu MO, Gabada C and Fynn K 2007. Reproductive performance and pre-weaning growth of Djallonke sheep. Ghanaian Journal of Animal Science 2 and 3 (1): 97-102.

xviii. Bosso NA, Gisso MF, Vander WWaaaj EH, Fall A, Van Avendonk JAM 2007. Genetic and Phenotypic Research. 67: 271-278.

xix. Chukwuka OK, Okoli IC, Oleudo NJ and Opara M (2010) Reproductive potential of West African dwarf sheep. Research Journal of Veterinary Sciences 3(2): 86-100.

xx. Coop, I.E. 1962. The energy requirements of sheep for maintenance and gain 1. Pen-fed sheep. J. Agric. Sci. Camb.58: 179.

xxi. Dann HM, Morin DE, Bollero GA, Murphy MR and Drackley JK (2005) Prepartum intake, postpartum indication of ketosis and peripartument disorders affects the metabolic status of dairy cows.

xxii. Drackley JK and Cardoso FC (2014) Prepaartum and postpartum nutritional management to optimize fertility in high yielding dairy cows in confirmed TMR systems. Animal Suppl. 1: 5-14

xxiii. Esugbohungbe, O.O. 1990. Studies on the metabolic changes in sheep following starvation and realimentation. Ph.D Thesis, University of Ibadan, Ibadan, Nigeria.

xxiv. FAO, 1989. The state of food and agric. World regional reviews: sustainable development and national resources management. FAO of the UN PP 65.

xxv. FAO, 1980. Production year book FAO, Rome.

xxvi. Fajemisin, N.A. 2003. Mineral utilization by West African Dwarf Goat fed epithelium-based diets. Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria.

xxvii. Fajemisin, N.A., Chinene, C.M., Fadiyimu, A.A. and Fajemisin, A.J. 2015. Response of West African Dwarf sheep to differently processed corncob meal based diets. Nigerian Journal of Animal Production. 42 91): 162-170.

xxviii. Faichney, G.J. and G.A. White 1988. Rates of passage of solutes, microbes and particulate matter through the gastro-intestinal tract of ewes fed at a constant rate throughout gestation. J. agric. Sci. (Camb), 110: 435.

xxix. Fanimo, A.O. 1998. The use of different protein sources in growing pig ration. In; Proc. 3rd Animal Conf. ASAN (the Nigerian Livestock Industry in the 21st Century), Ikeja, Lagos, Nigeria.

xxx. Gunter, S.A., Judkins, M.B., Krysl, L.J., Broesder, J.T., Barton, R.K., Rueder, B.R., Halford, D.M. and D.W.

xxxi. Halcombe 1990. Digesta Kinetics, Ruminal Fermentation characteristics and lactating ewes fed chopped alfalfa hay. J. Anim. Sci. 68: 3821 – 3831.
Giri, S.S., Sahon, A and N.N. Pathak. 2000. Feed intake, digestibility, plane of nutrition and live-weight gain by crossbred growing bulls fed on grainless diets containing different Nitrogen sources. Anim. Feed Technol. 83: 195 – 203.

Gracey, J.R. 1986. Meat hygene, ELBS/Bailiere, Tindall, London.

Hafez, E.S.E. 1968. The behaviour of domestic animals 2nd Edition, London, Bailiere, Tindal and Cassell.

Ha J.K. and J.J. Kenelly, 1984. In situ dry matter and protein degradation of various protein sources in dairy cattle. Canadian J. Anim. Sc. 64: 443.

Hill, D.H. 1960. West African dwarf sheep. Proc. 3rd Animal Conf. Science Ass. Of Nigeria, Ibadan.

Falaye, A.E. 1988. Utilization of cocoa husk in the nutrition of Tilapia (oreochromis niloticus). Trewavas Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria.

ILCA, 1979. Livestock production in the sub humid zone of West Africa. A regional review, ILCA study 2 pp. 31 – 52. Fodder Resources & Management. A model of livestock production in the sub humid zone. Pp. 71.

Isah O.A. 2001. Evaluation of rumen waste-based diets in goat production, Ph.D. Thesis, University of Ibadan, Ibadan, Nigeria.

Isah, O.A., Ijijemi, A.V., Ajayi, O.A., Afolabi, B.E., Talabi, J.O.K., Omolabi, O.A. and Akinbode, R.M. 2015. Morphological identification of rumen microbial isolate and rumen metabolites of West African dwarf sheep supplemented with forage-based multi-nutrient blocks. Nigerian Journal of Animal Production. 42 (1): 143-156.

Janovick NA and Drackley JK (2010). Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparum and multiparum Holstein cows. J. Dairy Sci. 93(7): 3086-3102

Janovick NA, Boisclair YR and Drackley JK 2011. Prepartum dietary energy intake affects metabolism and health during the peripartum period in primiparous and multiparous Holstein cows. J. Dairy Sci 94(3): 1385-1400

Kaneko, J.J. 1989. Clinical Biochemistry of Domestic Animals. 4th Edition (ed. J.J. Kaneko Academic Press Inc. New York (1989).

Kamali, T.N., Shetty, S.N. and S.G.Nair 1988. Biochemistry of the blood of West African dwarf goats. Trop. Vet. 6: 2 – 5.

Kusiluka L, and Kambarage D (1996). Diseases of small ruminants: A handbook. VETAID 116 pp Sheep 201: Reproduction in the ewe. Retrieved on 12/05/2019. www.Sheep101.info/201/ewerupro.html

Litherland NB, Dann HM and Drackley JK (2011) Prepartum nutrient intake alters palmitate metabolism by liver slices from peripartal dairy cows. J Dairy Sci. 1928-1940

Manhadevan, P. 1981. Pastures and animal production in nutritional limits to animal prod. From pastures (Ed. J.B. Hacker) CAB, 1 – 17.

McDowell, L.R. 1992. Mineral in animal and human nutrition. Acad. Press Inc. narcourt Brace Jovanoilids Publ. San Diego New York P. 1 – 25.

Ngere, L.O. 1975. The improvement of livestock production in Nigeria through breeding. Nig. J. Anim. Prod. 2: 36 – 43.

Ngere, L.O., Adu, I.F. and I. Mani 1979. Report of small animal breeding subcommittee. NAPRI Bulletin 1. National Animal Production Res. Institute.

Ngere, L.O. and G. Aboagye 1981. Reproductive performance of the WAd and Nungua blackhead sheep of Ghana. Anim. Prod. 33: 249 – 252. Shika, Zaria, Nigeria.

Obese FY, Achemepong DA and Darfour Oduro KA 2013. Growth and Reproductive traits of Fresian and Sango crossbreed cattle in the Accra plains of Ghana. African Journal of Food, Agriculture, Nutrition and Development. 13:7357-7371

Odubote, I.K. 1980. An analysis of lambing records of West African dwarf sheep kept at Ile-Ife Nigeria Res. Network ILRAD, Nairobi Kenya 10 -14 Dec. 1990. Eds B. Rey. SHB Lebbie and L. In Proc. Of the first Biennial Conf. of the African Small Rum. Reynolds PP. 185 – 191.

Opasina, B.A. and K.B. David-West1989. Position paper on sheep and goat production in Nigeria. In: sheep and goat meat production in the humid tropics of West Africa. FAO of the UN, Rome, 1989 pp. 228 – 230.

Orji, B.I. 1976. Studies on the biology of reproduction of the Nigerian dwarf sheep. Ph.D Thesis, University of Ibadan, Ibadan, Nigeria.

Oni AO, Aribide MO, Sowande OS, Anele UY, Oni 00, Onwuka CFI, Aderinboye RK (2012). Haematological and serum biochemical parameters of West African Dwarf goats fed dried cassava leaves based concentrates diets. Tropical Animal Health Production 44: 483-49.

Ogunwole, O.A. 1995. Manganese, Zinc and Chloride content of milk of West African dwarf goat as influenced by stage of lactation. M. Sc. Thesis, department of Animal Science, University of Ibadan, Ibadan, Nigeria.

Osineye, O.M. 2015. Effects of varying dietary zinc levels on energy and nitrogen utilization in West African dwarf kids. Nigerian Journal of Animal Production. 42 (1): 171-177.

Preston T.R. 1995. Tropical animal feeding. A manual for Res. Workers. FAO animal production and health paper 126 Rome.

Ratray, P.V., W.N. Garret, N.E. East and N. Himan 1974. Growth development and composition of the ovine conceptus and mammary gland during pregnancy. J. Anim. Sci. 38: 613.

Radosits OM, Gay CC, Blood DG, and Hinchcliff KW 2000 Veterinary Medicine, 9th edition, W.B. Saunders, London pp 1819-1822
lxii. Taiwo, B.B.A. 1979. Reproductive performance, growth and carcass merit of Nigerian dwarf sheep and their crosses. Ph.D Thesis, University of Ibadan, Ibadan, Nigeria.

lxiii. Tewe, O.O. and J.H. Maner. 1980. Cyanide, protein and iodine interaction in the physiology and metabolism of rats. Food chem., 9: 95 – 204.

lxiv. Terril, C.E. and L.N. Hazel 1974. Length of gestation in range sheep. American Journal of Vet.Res.8:66-72

lxv. Terril, C.E. 1968. Reproduction of sheep. In: Reproduction in farm animals. 2nd Edition by ESE Hafez. Rea and Febizer, Philadelphia.

lxvi. Tizikara, C. and O. Chiboka 1990. Effect of ram breed and size on reproductive performance of West African dwarf ewes. Trop. Anim. Prod. Invest. 1: 57 – 65.

lxvii. Underwood, E.J. 1981. The mineral nutrition of livestock. FAO and LAB Publication, Central Press Ltd. Great Britain.

lxviii. Uwechue, N.F. 2000. Performance and carcass quality of WAd sheep fed Siam weed (Chromolaena). Ph.D Thesis, University of Ibadan, Nigeria.

lxix. Wallace, E.R. 1948. The growth of lamb, before and after birth in relation to the level of nutrition. J. Agric. Sci. Camb. 53: 374 – 380.

lxx. Weston, R.H. 1988. Factors limiting the intake of feed by sheep. XI. The effect of pregnancy and early lactation on the digestion of medium quality forage. Aust. J. Agric. Res. 39: 659.

lxxi. Wilson, G.D.A., D.G. Harvey and C.R. Snook 1972. A Review of Factors Affecting Blood Biochemistry in the Pig. Brit. Vet. J. 128: 596 – 609.

lxxii. Yapi-Gnaore CV, Oya A, Rege JEO and Dagnogo B 1997. Analyses of an open nucleus breeding programme for Djallonke sheep in the Ivory Coast. Examination of non-genetic factors. Animal Science 64: 29-30

lxxiii. Zawn V (2018). Macrocytic Anaemia: symptoms and treatment. Medical news-today. http: medicalnewstoday.com