Traditional Persian topical medications for gastrointestinal diseases

Laleh Dehghani Tafti 1, Seyyed Mahyar Shariatpanahi 1, Mahmoud Mahdavi Damghani 1, Behjat Javadi 2,*

1 Department of History and Civilization of Islamic Nations, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

ABSTRACT

Drug delivery across the skin is used for several millennia to ease gastrointestinal (GI) ailments in Traditional Persian Medicine (TPM). TPM topical remedies are generally being applied on the stomach, lower abdomen, lower back and liver to alleviate GI illnesses such as dyspepsia, gastritis, GI ulcers, inflammatory bowel disease, intestinal worms and infections. The aim of the present study is to survey the topical GI remedies and plant species used as ingredients for these remedies in TPM. In addition, pharmacological activities of the mentioned plants have been discussed. For this, we searched major TPM textbooks to find plants used to cure GI problems in topical use. Additionally, scientific databases were searched to obtain pharmacological data supporting the use of TPM plants in GI diseases. Rosa × damascena, Pistacia lentiscus, Malus domestica, Olea europaea and Artemisia absinthium are among the most frequently mentioned ingredients of TPM remedies. β-arsonic, amygdalin, boswellic acids, guggulsterone, crocin, crocetin, isomasticadienolic acid, and cyclotides are the most important phytochemicals present in TPM plants with GI-protective activities. Pharmacological studies demonstrated GI activities for TPM plants supporting their extensive traditional use. These plants play pivotal role in alleviating GI disorders through exhibiting numerous activities including antispasmodic, anti-ulcer, anti-secretory, anti-colitis, anti-diarrheal, antibacterial and anthelminthic properties. Several mechanisms underlie these activities including the alleviation of oxidative stress, exhibiting cytoprotective activity, down-regulation of the inflammatory cytokines, suppression of the cellular signaling pathways of inflammatory responses, improving re-epithelialization and angiogenesis, down-regulation of anti-angiogenic factors, blocking activity of acetylcholine, etc.

Introduction

The evidence of herbal medicines dates back over 5,000 years. The application of medications to the skin to cure illnesses is a practice that has been utilized by humankind for thousands of years and has included the application of poultices, oils, gels, ointments, pastes, and lotions (1). Skin which is known as the largest organ of the human body plays important role in drug delivery. Three important modes including topical, regional and transdermal are used for delivery of various dosage forms. Topical delivery is used mainly to directly affect cutaneous disorders while regional delivery requires deeper penetration than topical delivery and is used to alleviate disease symptoms in deep tissues such as muscles and vasculature joints, beneath or near the site of application (2). Regional delivery is also applied to reduce drug toxicity, as it is established that systemic delivery, can produce inadequate doses of the drug in target tissue, as well as toxicity in healthy tissue. Transdermal delivery is applied to the skin to achieve systemically active levels of the drug to cure systemic disease (2-4). Transdermal delivery has also several advantages over other routes of administration. It is used to bypass hepatic first-pass effect and other variables associated with the gastrointestinal (GI) tract such as pH and gastric emptying time that can prematurely metabolize or degrade drugs. Moreover, transdermal systems also are non-invasive and can be self-administered. They also improve patient compliance and would cause fewer systemic adverse effects (5-7). Particularly, transdermal administration of medicines has been shown to reduce GI tract related side effects (8).

Drug delivery across the skin is used for several millennia to ease GI ailments in various traditional medicine systems. In Traditional Persian Medicine (TPM), which is based on quadratic elements (9), a majority of GI remedies are being applied to skin and mostly aimed at regional and/or transdermal delivery (10). These remedies are especially administered for the treatment of gastric weakness and dyspepsia, gastritis,
loss of appetite, belching, GI ulcers, colitis, intestinal worms and infections (11, 12). Several medicinal plants, animal products and minerals generally in compound formulations have been recommended to cure these conditions. The recommended formulations are in the forms of poultices, lotions, ointments, rubbing oils, baths, etc. A number of papers have already well studied the medicinal plants used for the treatment of some GI diseases especially peptic ulcer in view of TPM (13, 14). However, there is not any scientific study to specifically survey topical remedies used to alleviate GI problems. Therefore, here we present an overview of the topical GI remedies in TPM and the plant species used as ingredients for these remedies. In addition, relevant pharmacological activities of the mentioned plants in GI tract have been discussed.

Materials and Methods

Firstly, we searched major TPM textbooks to find medicinal plants used for the treatment of GI problems in topical use. These books included Al-Hawi fi’t-Tebb (Comprehensive Book of Medicine) by Razi (865-925), Canon of Medicine by Ibn Sina (980-1037), Ferdows al-Hekmah fi’t-Tebb (Paradise of Wisdom on Medicine) by Tabari (9th century), Konnash fi’t-Tebb by Kashkari (9th, 10th century), Hedayat al-Mota’allemin fi’t-Tebb (An Educational Guide for Medical Students) by Akhawayni (10th century), and Qarabdin-e-Kabir by Aqili-Khorasani (16th-17th century). The search was performed using a software namely Jameel al-Tibb containing a majority of TPM books. Afterwards, the scientific names of the retrieved plant names were authenticated using botanical textbooks, including the Dictionary of Medicinal Plants (15), Qamus al-qanun fi’t-tibb (16), Illustrated polyglottic dictionary of plant names in Latin, Arabic, Armenian, English, French, German, Italian, and Turkish languages (17), Encyclopedia of Medicinal Plants: Arabic-English-French-German-Latin (18) and Tafsir kitāb Diyasquiridis (Explanations of Dioscorides’ Book) (19).

The scientific names were then entered as key terms for the second search. ScienceDirect, PubMed, Scopus, and Google Scholar databases were searched to obtain pharmacological data supporting the use of TPM plants in GI diseases using the following keywords: Gastrointestinal diseases, peptic ulcer, anti-secretory, gastro-protective effects, anti-inflammatory effects, antibacterial, Helicobacter pylori, anti-diarrhea, colitis, etc. Different steps of the present research are illustrated schematically in Figure 1.

Figure 1. Different steps of the present research

The use of topical remedies is probably coeval with the appearance of medical knowledge. In TPM, topical medications are almost as applicable as internal formulations (20). In GI problems, topical remedies mostly in the forms of poultices or zemad, ointments or marham, baths or notul, lotions or tali and compresses or kemad, are being applied on the stomach area, lower abdomen, lower back and liver.

Poultices are topical preparations usually containing whole fresh medicinal plants or herbal powders occasionally in mixture with herbal distillates, infusions or oils. These dosage forms are directly applied to the skin near the affected area (12).

Herbal oils are common ingredients of topical remedies. In TPM, herbal oils are mostly extracted by maceration method through which the flowers and other herbal tissues are soaked in a base oil (commonly olive, almond or sesame oils), then filtered (12). This process is repeated several times to obtain rich herbal oils containing essential oils and other lipophilic phytchemicals. Traditional ointments are defined as mixtures of herbal or animal oil and bees wax as a base for bioactive herbal extracts and powders (21). The hydrophobic nature of ointment bases offers an improved percutaneous absorption of herbal extracts. Ointment bases influence drug bioavailability due to their occlusive properties of the stratum corneum, which increases the flux of drug across the skin.
Moreover, they affect drug dissolution and drug partitioning within or from the ointment to the skin (2). Oleo-gum-resins such as mastic, olibanum, guggul, opobalsam, etc. which are rich sources of essential oils are important ingredients of TPM cutaneous GI formulations (12). A number of essential oils have been reported to exert GI protective activities (22, 23). Terpenes, the primary constituents of the essential oils obtained from many types of plants and flowers have been shown to have percutaneous permeation through the intact skin (24). Moreover, some terpene-containing essential oils such as fennel oil, peppermint oil, cardamom oil and sweet basil oil are capable of accelerating the percutaneous absorption of co-administered drugs probably due to the increased skin vehicle partitioning by the oils (25). Various sesquiterpenes have also been found to enhance percutaneous penetration of the drugs possibly by disrupting the intercellular lipid bilayers in the stratum corneum, thus improving co-administered drugs diffusivity, and/or increasing drug partitioning. Some other phytochemicals present in TPM formulations such as fixed oils and fatty acids, aloe juice and α-tocopherol also have percutaneous penetration enhancing effects (26). Thus, these phytochemicals exert multidimensional activities in TPM topical remedies. For instance, the presence of aloe juice in a multi-herbal preparation not only offers multiple GI activities such as anti-ulcerogenic, anti-H. pylori, anti-diarrheal, anthelmintic and anti-ulcerative colitis (UC) effects (27-31), but also act as a base or carrier and penetration enhancing agent for other ingredient of the preparation (26).

TPM cutaneous GI formulations aimed at developing percutaneous absorption and deposition of bioactive phytochemicals as well as offering higher regional concentrations than systemic administration at the same total body exposure to the drug. Cutaneous application of these formulations along with oral preparations offers a multifaceted therapeutic strategy for the treatment of GI diseases.

TPM recommended medicinal plants for topical use in gastrointestinal diseases

Around 60 plant species from 34 families have been frequently noted in TPM textbooks to be topically active in the treatment of GI diseases. Most of these species belong to the Apiaceae (eight species) and Rosaceae (four species) families. *Rosa × damascena* Mill. flowers, *Pistacia lentiscus* L. oleo-gum-resin, *Malus domestica* Baumg. fruits, *Olea europaea* L. fruit oil and aerial parts of *Artemisia absinthium* L. are among the most frequently mentioned herbal ingredients of TPM-recommended remedies. A wide spectrum of GI diseases including GI ulcers, gastric inflammations and swellings, diarrheal illnesses caused by gastric dysfunction, bacterial infections and intestinal problems such as inflammatory bowel disease (IBD) and colitis has been traditionally treated by a combination of internal and topical medications (16, 20, 32). Medicinal plants used to alleviate or cure GI diseases and their TPM information are listed in Table 1.

Scientific names	Family	Traditional names	Plant part	Medicinal uses	References
Acorus calamus L.	Acoraceae	Vaj	Rhizome	Gastritis, vomiting caused by yellow bile	(10, 21, 32)
Aloe spp.	Asphodelaceae	Sabr	Dried sap	Stomach weakness, loss of appetite, cholera	(10, 21, 32)
Althaea officinalis L.	Malvaceae	Khatmi	Flowers, seeds	Gastritis, stomach swelling, gastric abscess	(10, 11)
Amygdalus communis L. var. *dulcis*	Rosaceae	Badam talkh	Seeds	Stomach swelling and inflammation	(32)
Anethum graveolens L.	Apiaceae	shebet	Seeds, leaves	Gastritis, stomach swelling, Nausea and vomiting, IBD	(10, 11, 20)
Apium graveolens L.	Apiaceae	Karafs	Seeds	Stomach swelling	(20)
Aquilaria agallocha Roxb.	Thymelaeaceae	Ood	Stem wood	Loss of appetite, diarrheaa, digestive aid, stomach tonic, cholera	(10, 20, 21, 32)
Artemisia absinthium L.	Asteraceae	Afsantin	Aerial parts	Stomach weakness, stomach swelling and pain, gastric abscess, vomiting, diarrheaa, intestinal worms	(10-12, 20, 21, 32)
Boswellia spp.	Burseraceae	Kondor	Oleo-gum-resin	Stomach weakness, gastritis, Stomach swelling, loss of appetite, diarrheaa, intestinal worms	(10-12, 20, 21, 32)
Brassica oleracea L.	Brassicaceae	Kalam	Leaves, seeds	Gastrointestinal swellings, colic, hemorrhoids	(10, 21, 32)
Carum carvi L.	Apiaceae	Zireh	Fruits	Stomach weakness, gastric swellings, flatulence	(10, 20, 21)
Carum copticum Benth. & Hook.f.	Apiaceae	Zenyan	Fruits	Gastric swellings	(20)
Cissus quadrangularis L.	Vitaceae	Hamama	Berries	Stomach weakness, gastric swelling caused by phlegm	(10-12, 21)
Latin Name	Family	Common Name	Part Used	Uses	
------------	--------	-------------	-----------	------	
Cistus ladaniferus Curtis	Cistaceae	Ladan	Sap	Stomach weakness, gastric swelling, gastric trauma, bulimia, diarrhea, diarrhea caused by stomach coldness and weakness	(10-12, 20, 21, 32)
Commiphora mukul Engl.	Burseraceae	Moql'araq	Oleo-gum-resin	Stomach weakness, distention and swelling, belching, intestinal ulcers, IBD, hemorrhoids	(10-12, 20, 21)
Commiphora opobalsamum Engl.	Burseraceae	Balsan	Oleo-gum-resin	Stomach weakness, distention and coldness, gastritis	(10, 11, 21)
Costus speciosus (J.Koenig) Sm.	Costaceae	Qost	Rhizome	Stomach coldness, diarrhea, colic	(11, 12, 32)
Crocus sativus L.	Iridaceae	Zaafaran	Stigma	Cold stomach, gastric distension and swelling, gastritis, nausea, vomiting, diarrhea	(10-12, 20, 21, 32)
Cucurbita pepo L.	Cucurbits	Kudu	Fruits, seeds, peel	Gastric weakness in pregnancy, hot and dry stomach, gastritis, heart burn, peptic ulcer, nausea, thirst, diarrhea	(10, 20, 21, 32)
Cupressus sempervirens L.	Cupressaceae	Sarv	Berries, leaves	Gastric weakness, swelling and distension, cholera, intestinal ulcers, rectal prolapse	(10, 11, 21, 32)
Cydonia oblonga Mill.	Rosaceae	Beh	Fruits, leaves, oil	Poor digestion, nausea, vomiting, gastritis, heartburn, diarrhea, flatulence, cholera	(10, 20, 21)
Cymbopogon schoenanthus (L.) Spreng.	Poaceae	Ekarher	Roots, flowers	Gastric weakness, swelling and distension, diarrhea	(20, 21, 32)
Cyperus rotundus L.	Cyperaceae	Soad	Rhizome	Stomach weakness, coldness and swelling, dyspepsia, gastritis, nausea, vomiting, diarrhea	(10-12, 20, 21, 32)
Dorema ammoniacum D. Don	Apiceae	Oshq	Oleo-gum-resin	Stomach weakness, coldness, swelling and hardness, gastritis, belching, gastric abscess	(10, 11, 21, 32)
Eugenia caryophyllata Thunb.	Myrtaceae	Milkhak	Flowers	Dyspepsia, stomach weakness, severe nausea, diarrhoea, cholera	(11, 20, 21, 32)
Foeniculum vulgare L.	Poaceae	Razianeh	Fruits	Hard swelling of stomach	(20)
Glossostemon bruguieri Desf.	Poaceae	Razianeh	Roots	Hard swelling of stomach	(10, 11)
Hordeum vulgare L.	Poaceae	Zo	Roots, fruits	Stomach swelling, gastritis, peptic ulcer, nausea, thirst, chronic diarrhea, grippe, flatulence, rectal prolapse, anal fissure	(10-12, 20, 21, 32)
Hyoscyamus niger L.	Solanaceae	Bangdanek	Seeds, leaves, flowers	Diarrhea, intestinal ulcers, hemorrhoids pain and inflammation, anal fissure, colic	(10, 12, 21, 32)
Iris florentina L.	Iridaceae	Irka	Rhizome	Chronic vomiting, belching, hemorrhoids	(21, 32)
Lawsonia inermis L.	Lythraceae	Hana	Leaves, flowers, oil	Coldness of stomach, belching, gastritis, IBD, anal fissure, colic	(10, 21)
Linum usitatissimum L.	Linaceae	Katan	Seeds	Gastritis, gastric hard swelling, vomiting, chronic diarrhea, flatulence, IBD, colic, ileus, hemorrhoids	(10-12, 20, 21, 32)
Malus domestica Baumg.	Rosaceae	Seeb	Fruits, fruits oil	Gastric hard swellings, gastric trauma, stomach weakness, pain and inflammation, loss of appetite, intestinal worms, nausea, cholera, chronic diarrhea	(10, 11, 20, 21, 32)
Matricaria Chamomilla L.	Asteraceae	Babuneh	Flowers	Gastric hard swelling, burning and inflammation, flatulence, belching	(10, 11, 20, 21, 32)
Plant Name	Family	Part Used	Mode of Use	Conditions	
------------	--------	-----------	-------------	------------	
Viola odorata	Violaceae	Aerial parts	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(11, 20, 21, 32)	
Myristica fragrans	Myristicaceae	Aerial parts	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(10, 32)	
Nardostachys jatamansi	Fabaceae	Aerial parts	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(21)	
Valeriana celtica	Caprifoliaceae	Aerial parts	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(10-12, 21)	
Trigonella foenum-graecum	Fabaceae	Seeds	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(11, 20, 21)	
Tragopogon pratensis	Asteraceae	Aerial parts	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(21)	
Tragopogon graminifolius	Asteraceae	Aerial parts	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(10, 11, 20, 21, 32)	
Valeriana celtica	Caprifoliaceae	Rhizome	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(10, 12, 20, 21, 32)	
Viola odorata	Violaceae	Seeds	Gastrointestinal weakness, vomiting, diarrhea, swelling, pain, flatulence	(10, 11, 20, 21)	
Pharmacological activities of TPM recommended GI plants

Pharmacological GI activities of TPM recommended medicinal plants have been shown by a large number of in vitro and animal investigations as well as some clinical trials.

Mastic gum (oleo-gum-resin from *Pistacia lentiscus* L.) as one of the most emphatic TPM recommended GI plants has been found to exert anti-*Helicobacter pylori* activities *in vivo* (33). In a randomized clinical trial (RCT) in 148 patients with functional dyspepsia, administration of 350 mg mastic gum three times daily for 3 weeks significantly improved symptoms of functional dyspepsia when compared to placebo (34). Mastic gum decreased histological damage in trinitrobenzene sulfonic acid (TNBS)-induced colitis, regulated oxidant/antioxidant balance and modulated inflammation (35). It improved the clinical features of Chron’s disease (CD)(36). Additionally, mastic gum exhibited antibacterial activity against *Escherichia coli*, *Staphylococcus aureus*, and *Bacillus subtilis* (37).

Artemisia absinthium L. another important GI active TPM plant could induce a significant decrease in volume of gastric juice, acid output and peptic activity in rats. It also decreased the ulcer index significantly (38). In a 6 weeks controlled clinical trial in patients with CD, administration of *A. absinthium* improved symptoms of CD by increased production of pro-inflammatory cytokines such as TNF-α (39). *A. absinthium* also exhibited anti-inflammatory, antinociceptive, anhelminic activities properties and antibacterial activities against GI pathogens (40-42).

Olive oil has traditionally been applied to relieve gastric pain and inflammation, dyspepsia, abdominal pain caused by flatulence, bulimia, hiccups, nausea and vomiting, cholera, IBD and hemorrhoids (11, 20, 32). Odabasoglu et al demonstrated that olive oil could prevent the indomethacin-induced gastric damages in rats, enhanced the efficacy of indomethacin for reducing carrageenan-induced paw edema and exerted anti-inflammatory activity against paw edema (43). In a human study, a 30-day olive oil containing diet resulted in attenuating gastric secretory function, suppression of serum gastrin and higher levels of peptide YY in patients with gallstones (44). Olive oil also exhibited strong anti-*H. pylori* activity, decreased acid secretion in the GI tract and reduced the size of peptic ulcers (45).

Additionally, olive oil phenols inhibited the NF-κB driven transcription in a concentration-dependent manner supporting its use in gastric inflammation (46).

Guggul gum (oleo-gum-resin from *Commiphora mukul*) has been widely applied in TPM to alleviate stomach distention and swelling, belching, intestinal ulcers, IBD and hemorrhoids (10, 21). In a randomized controlled trial in 99 patients with hemorrhoids, administration of 3 g/day guggul gum for 4 weeks decreased flatulence, dyspepsia, gastro-esophageal reflux, and colonoscopic grading scores significantly compared to control. The rate of constipation, and proctorrhagia were also significantly improved after 4-week follow-up (47). Guggulsterone, a steroid found in guggul gum, exhibited anti-inflammatory activities in mouse models of colitis by targeting lamina propria T cells (48). In addition, guggulsterone significantly increased apoptosis in HT-29 cells through activating caspases-3 and -8. It decreased cIAP-1 and 2, and Bcl-2 levels and increased the levels of truncated Bid, Fas, p-c-Jun, and p-JNK. The size of HT-29 xenograft tumors in guggulsterone-treated mice was significantly smaller than control group (49).

Pharmacological activities of other TPM GI recommended plants are shown in Table 2. Most of the mentioned plants exhibited various GI activities which support their extended application in TPM. Nonetheless, the majority of studies have investigated the effects of internal administration of the plants and there is scarcity in studies dealing with their topical application as it is recommended in TPM. Therefore, future studies are needed to elucidate GI effects of TPM plants in topical use. Interestingly, some of the mentioned plants like saffron are traditionally used in depression, tension, anxiety and insomnia even in topical use (21, 50, 51). These effects can exert additional relieving effects on stress-related GI diseases such as peptic ulcers, IBD, etc.

Essential oils from aromatic plants have components with antibacterial activities. Cinnamaldehyde, thymol analogues, geraniol, menthol and carvacrol are examples of these components which mostly derive from terpenes and terpenoids (52, 53). Topical use of plants containing antibacterial essential oils may reduce bacterial pathogens in GI track especially in the intestines. Interestingly, phenolic monoterpenes and phenylpropanoids (typically showing strong antimicrobial activities) in combination with other components were found to increase the bioactivities of these mixtures which support the application of the combination of herbal oils in TPM (12, 54). It is well-established that the combination of phenolics such as thymol and carvacrol, with monoterpenes alcohols like eugenol produced synergistic effects on several microorganisms. There are some generally accepted mechanisms of antimicrobial interaction that produce synergistic effects. These mechanisms include the sequential inhibition of a common biochemical pathway, inhibition of protective enzymes of microorganisms; and the use of cell wall active agents to enhance the uptake of other antimicrobials (54). Polyphenols have been found to exhibit numerous beneficial activities in the gastrointestinal tract, including antiinflammatory, anti-ulcer, anti-secretory, anti-colitis, anti-diarrheal, and anti-oxidative stress properties (55). For instance, flavonoids and other phenolic compounds such as flavone, quercetin and naringenin which are present in many TPM plants have
been found to be effective in inhibiting the growth of the microorganisms (56). In addition, a number of polyphenolic compounds including oleuropein, cinnamic acid, baicalein, rutin, quercetin, and tephrosin have been reported to exhibit anti-ulcerogenic activity with a good level of gastric protection (57). Generally, polyphenols possess anti-ulcer activities through improving cytoprotection, re-epithelialization, angiogenesis, and neovascularization which are mediated by the up-regulation of tissue growth factors, PGs, and vWF/ factor VIII complex, together with the down-regulation of anti-angiogenic factors. Moreover, polyphenols have been shown to suppress vascular permeability and leukocyte-endothelium interaction mediated by the down-regulation of cellular and intercellular adhesion agents. Polyphenols can pailate inflammatory responses and down-regulate pro-inflammatory cytokines within mucosal ulcers by inhibiting intracellular signaling pathways of the inflammatory process (ERK, JNK, and MAPK), as well as modulating intracellular transcriptional factors (55). Besides their action as gastroprotectives, flavonoids also can be alternative agents for alleviating peptic ulcers associated with *H. pylori* (58).

Alkaloids have been also isolated from a number of TPM recommended plants. Isocorydine alkaloid found in some *Aquilaria spp.* which are used in TPM GI remedies exhibited spasmolytic effects and weak gastric H/H+-K+-ATPase activity (59). Tropane alkaloids such as atropine and scopolamine which are found in Solanaceae family are used to block the muscarinic activity of acetylcholine showing anti-secretory and antispasmodic effects in the treatment of peptic ulcer, gastroenteritis, and spastic colitis (60). Anthocyanins also possess beneficial activities in the management of many GI disorders such as IBD by alleviating oxidative stress, exhibiting cytoprotective activity, down-regulating the inflammatory cytokines and suppressing cellular signaling pathways of inflammatory responses (61). Gastrointestinal activities of a number of phytochemicals present in TPM plants have been shown in Table 2. As seen in Table 2, several phytochemicals from TPM plants have been found to be effective in GI ailments. β-asarone from *Acorus calamus* L. (potent anthelmintic, anti-amoeobic and antibacterial activities), amygdalin from *Amygdalus communis* L. var. *dulcis* (anti-gastric ulcer activity), boswellic acids from *Boswellia serrata* (gastric ulcer protective effect, protecting the colonic mucosa against tissue injury, and reducing colitis activity), guggulsterone from *C. mukul* (anti-inflammatory, apoptogenic properties in colon cancer cells), crocin from *Crocus sativus* L. (inhibiting the growth of colorectal cancer cells), crocetin (ameliorating UC and anti-*H. pylori* effects), isomasticadienolic acid from *P. lentiscus* (Reducing *H. pylori* colonization), and cyclotides from *Viola odorata* L. (anti-gastrointestinal nematodes) are among the most GI bioactive phytochemicals. Accordingly, above-mentioned compounds are potential active principles with GI tract actions as well as good candidates for future pharmacological and clinical studies and developing new GI protective medicines.

The most emphatic TPM topical GI formulations

Numerous multi-herbal topical formulations are used in TPM for the treatment of GI diseases. Some of these formulations have been frequently mentioned in many TPM textbooks indicating their extensive effectiveness and safety in traditional medicine observations. The following formulations are examples of the most frequently applied topical TPM formulations for the treatment of GI ailments.

A topical preparation containing *Valeriana celtica* L., mastic oil, aloe sap and verjuice is recommended to apply on stomach area to relieve gastritis and gastric burning and discomfort. As seen in Table 2, some of the ingredients of this remedy have been found to be strongly GI-protective supporting their use in TPM. A poultice consist of barley flour in combination with diverse gastroprotective anti-ulcer plants such as pureed quince, squash, purslane, mastic, sandalwood powder, *etc.* has also been frequently used to alleviate gastric inflammation, pain and burning (10, 21). An ointment containing *Commiphora opobalsamum* Engl. oleo-gum-resin, aloe and bees wax is used to relieve symptoms of gastritis (10). Another well-experienced topical prescription for gastric discomfort, nausea and vomiting is a mixture of crushed squash, purslane, barley flour and vinegar (10).

Rubbing a mixture of rose oil and mastic oil on stomach has been frequently recommended for terminating prolonged episodes of hiccups (21). A poultice containing olibanum, mastic gum, agarwood, sweet flag, pomegranate flowers, quince juice and wine is noted in many TPM books for the treatment of poor appetite (10, 21).

An ointment containing guggul gum in mixture with dill and fenugreek seeds, henna leaves, olive oil and rose oil has been used as a potent remedy to alleviate IBD symptoms (10).

The above-mentioned prescriptions along with many other TPM remedies as invaluable sources of experienced traditional knowledge offer new horizons for future studies to find bioactive phytochemicals and develop new phytopharmaceuticals and therapeutic strategies for the treatment of GI diseases.

Conclusion

With around 60 different plant species from 34 families frequently used in hundreds of recipes of TPM for topical application to cure a wide variety of GI ailments, we can conclude that these plants (in simple use or in combination recipes) can be
potential alternatives are generally applied in forms of poultices, ointments, baths and lotions on the stomach area, lower abdomen, lower back and liver to achieve regional and/or systemic delivery of the plant’s biologically active compounds. β-asarone from *A. calamus*, amygdalin from *A. communis* L. var. *dulcis*, boswellic acids from *B. serrate*, guggulsterone from *C. mukul*, crocin and crocetin from *C. sativus*, isomasticadienolic acid from *P. lentiscus*, and cyclotides from *V. odorata* are among the most important phytochemicals present in TPM plants with GI protective activities. These phytochemicals along with many other bioactive compounds play pivotal role in alleviating GI disorders through exhibiting numerous activities including anti-spasmodic, anti-ulcer, anti-secretory, anti-colitis, anti-diarrheal, antibacterial, anthelmintic, anti-inflammatory and anti-oxidative stress properties. Several mechanisms underlie these activities including the alleviation of oxidative stress, exhibiting cytoprotective activity, down-regulation of the inflammatory cytokines, suppression of the cellular signaling pathways of inflammatory responses, improving re-epithelialization, angiogenesis, and neovascularization mediated by the up-regulation of tissue growth factors, PGs, and vWF/factor VIII complex, together with the down-regulation of anti-angiogenic factors, blocking muscarinic activity of acetylcholine (resulting in antispasmodic effects), etc. TPM topical GI remedies commonly contain a combination of herbal powders, oils, oleo-gum-resins and extracts which may have synergistic effects with different mechanisms. Mastic gum, aloe, absinthe and olive oil are the most frequent herbal ingredients of TPM GI recipes. Although pharmacological investigations well support the use of TPM plants, data on topical application of these plants are scarce. Accordingly, there is a need to investigate pharmacological activities, clinical efficacy, pharmacokinetic aspects as well as possible skin reactions and other adverse effects of recommended plants in topical use. In conclusion, TPM topical GI remedies, the mentioned medicinal plants and their active compounds are useful pharmacological tools to discover new active principles with GI tract actions.

Table 2. Gastrointestinal activities of TPM-recommended plants for topical use and their main phytochemicals

Scientific name	Common name	Extract/phytochemical/plant part	Pharmacological activities	Model	Reference
Acacia arabica (Lam.) Muhl. ex Wild.	Gum arabic tree	Gum arabic-supplemented oral rehydration solution	Anti-diarrhea	*in vivo*	62
Acorus calamus L.	Sweet flag	Crude extract/n-hexane fraction	Spasmolytic activity by inhibition of spontaneous and high K+-induced contractions through Ca²⁺-channel blockade in the isolated rabbit jejunum preparation	*ex vivo*	63
Aloe vera	Aloe	Aqueous extract of leaves of *A. ferox* Mill	Improving intestinal motility, increasing fecal volume in loperamide-induced constipation, Inhibitory effects on colorectal prostaglandin E2 and interleukin-8 production	*in vitro*	27
Althea officinalis L.	Marshmallow	Hydro-ethanolic extract of aerial parts	Antibacterial against *Escherichia coli*	*in vitro*	30
Amygdalus communis L. var. *dulcis*	Bitter almond	Amygdalin	Protection against gastric ulcer	*in vivo*	71
Anethum	Dill	Seed ethanolic extract	Inhibiting acid secretion and the	*in vivo*	72
botanical	extract	activity	mode of study	reference	
-----------	---------	----------	--------------	-----------	
Apium graveolens L.	Seeds powder, Aqueous and ethanolic extracts of seeds	Protection against gastric ulcer, attenuation in the changes in gastric juice volume, pH, acid-output and ulcer index, acid buffering activities, peptic binding activity	*in vitro*	(74)	
	Hydroalcoholic extract	Potent spasmylocytic activity in ileum	*ex vivo*	(75)	
	Hot water and acetone extracts of seeds, Methanolic and aqueous extracts of leaves	Inhibition of gastric ulcers	*in vivo*	(76)	
	Ethanol and aqueous extracts of leaves	Antimicrobial activity against enteric pathogens, Inhibition of spontaneous rat ileum contractions	*ex vivo*	(77)	
Aquilaria agallocha Roxb.	Ethanol extract	Analgesic, anti-inflammatory	*in vivo*	(80)	
Artemisia absinthium L.	Essential oil containing trans-sabinyl acetate, myrcene, β-thujone	Anti-fungal, antibacterial activity	*in vitro*	(81)	
	Ethanol extract of aerial parts	Anti-gastric ulcer effects, decrease in volume of gastric juice and acid output	*in vivo*	(38)	
	Powder, Methanol extract, Methanol extracts, Essential oil, aqueous extract, Aqueous extracts ethanolic extract, A multiherbal preparation containing ethanolic-aqueous extracts	TNF-α suppression, remission of symptoms of CD, Anti-inflammatory, Antibacterial (GI pathogens), Anti-inflammatory, anti-nociceptive, Antihelmintic	RCT	(39)	
	Boswellia spp.	Cure upper abdominal complaints	RCT	(83)	
	B. serrata oleo-gum-resin	Complete resolution of ulcers in chronic colitis, loss of friability of mucosa, and granulation, loss of hypercellularity of lamina propria without distorted crypt architecture in rectal mucosa, healing of ulcers and loss of fibrous tissue and chronic inflammatory cells	clinical trial	(84)	
	B. serrata gum-resin hydroalcoholic extract	Antidiarrheal activity, inhibition of acetylcholine- and electrical field stimulation-induced contractions in the isolated guinea-pig ileum, Gastric ulcer protective effect	*in vivo, ex vivo*	(85)	
	Boswellic acids, *B. serrata* gum-resin extract, acetyl-11-keto-β-boswellic acid	Attenuating leukocyte-endothelial cell adhesive interactions, ameliorating inflammation-associated tissue injury in a rat model of experimental IBD, Gastric ulcer protective effect	*in vivo*	(86)	
	Boswellic acids	Attenuating the recruitment of both leukocytes and platelets, blunting P-selectin expression, protecting the colonic mucosa against tissue injury, and reducing colitis activity	*in vivo*	(88)	
	β-boswellic acid derivatives	*H. pylori* urease inhibitory activities	*in vitro*	(89)	
Brassica oleracea	Hydroalcoholic extract of leaves	Protection against gastric ulcer	*in vivo*	(90)	
Plant Name	Part Used	Extract Type	Activity	In Vitro	Reference
-------------------------------	----------------------------	----------------------------	--	----------	-----------
L. Carum carvi	Essential oil	Methanol extract of seeds	Anti-H. pylori, in vitro	in vitro	(91)
		Ethanol extract of seeds	Treatment of intestinal dysbiosis	in vitro	(92)
		Powdered seeds	Inhibiting the response of intestinal smooth muscle cells to acetylcholine	ex vivo	(93)
		Alcoholic extract	Modulatory role on tissue lipid peroxidation, antioxidant profile and preventing 1,2-dimethyhydrazine-induced histopathological lesions in colon cancer rats	in vivo	(94)
			Anti-ulcerogenic activity; reducing acid output, increasing mucin secretion, increasing prostaglandin E2 release, decrease in leukotrienes, protection against gastric ulceration	in vivo	(95)
L. Carum copticum	Ethanol and aqueous extract of fruits	Ethanol and aqueous extract of fruits	Antidiarrhoeal activity	in vivo	(96)
Benth. & Hook.f.	Aqueous extract of fruits		Inhibitory effect on ACh-induced contraction in rat’s ileum	ex vivo	(97)
	Aqueous extract	An equal mixture of methanol, diethyl ether and petroleum benzene extract	Treatment of peptic ulcer, Anti-H. pylori	in vivo	(98)
					(99)
Cissus quadrangularis	Methanol extract of stem	Methanol extract of stem	Attenuation in levels of TNF-α, IL-1β, microvascular permeability, activity of nitric oxide synthase-2, mitochondrial antioxidants, lipid peroxidation, DNA damage, Decrease in tissue damage glutathione, superoxide dismutase and catalase, reducing size of NSAID induced ulcer crater, restoration of mucosal epithelium	in vivo	(100, 101)
Labdanum	Stem extract		Attenuation in aspirin-induced gastric lesions, an increase in uric acid, antioxidant enzymes, SH groups, decrease in lipid peroxidase, TNF-α, xanthine oxidase, myeloperoxidase activities	in vivo	(102)
	Methanol extract		Increase in the mucosal defensive factors like mucin secretion, mucosal cell proliferation, glycoproteins, and life span of cells in experimentally induced gastric ulcer	in vivo	(103)
Cistus ladaniferus	Chloroform extract	Chloroform extract	Potent anti-H.Pylori, in vitro	in vitro	(104)
Curtis Labdanum	Aqueous extract of aerial parts	Aqueous extract of aerial parts	Effective against reserpine- and serotonin-induced mucosal congestion and haemorrhagic ulcers	in vivo	(105)
	Aqueous extract of leaves and stems	Aqueous extract of leaves and stems	Antispasmodic action in the rabbit jejunum through calcium channel blockade	ex vivo	(106)
	Aerial parts aqueous extract	Aerial parts aqueous extract	Anti-diarrhoeal activity in castor oil-induced diarrhoea	in vivo	(107)
Commiphora mukul Engl.	Guggulsterone	Guggulsterone	Anti-inflammatory activities in mouse models of colitis by targeting lamina propria T cells	in vivo	(48)
			Activation of the mitochondria-dependent pathway and the extrinsic pathway of apoptosis in colon cancer cells, inhibition of the growth of HT-29 xenografts	in vitro	(49)
			Inducing apoptosis, inhibition of angiogenesis and metastasis in colon cancer cells through	in vitro	(108)
Plant Name	Part Used	Activity	Study Type	References	
----------------------------------	------------------------------------	--	------------	------------	
Commiphora opobalsamum Engl.	Arabian balsam tree	Protecting against gastric ulcers, analgesic and anti-inflammatory activity	*in vivo*	(109)	
Costus speciosus (L.Koenig) Sm.	Crêpe ginger	Inhibiting the growth of colorectal cancer cells	*in vitro*	(112)	
Crocus sativus L.	Saffron	Anti-H. pylori effects	*in vitro*	(113)	
Cupressus sempervirens L.	Mediterranean cypress	Inhibition of the growth of *H. pylori*	*in vitro*	(118)	
Cydonia oblonga Mill.	Quince	Diminishing inflammation and ulcer indices in TNBS-induced ulcerative colitis	*in vitro*	(120)	
Cymbopogon schoenanthus (L.) Spreng.		Anti- *E. coli*, anti-*Enterobacter aerogenes*	*in vitro, in vivo*	(122)	
Cyperus rotundus L.	Java grass	Gastric ulcer inhibitory effect	*in vivo*	(125)	
Dorema ammoniacum D. Don	Gum ammoniac tree	Anti-*H. pylori*	*in vitro*	(127)	
Eugenia Caryophyllata Thunb.	Clove	Protection against gastric ulcer	*in vivo*	(128)	
Foeniculum vulgare L.	Fennel	Suppressing ROS generation in *H. pylori*-infected gastric epithelial cells	*in vitro*	(116)	
Glossostemon bruguieri Desf.	Dombeya arabica	Anti-ulcerogenic and antioxidant effects	*in vivo*	(77)	
Hordeum vulgare L.	Barley	Anti-inflammatory	*in vitro*, *in vivo*	(130, 131)	
Hyoscyamus niger L.	Henbane	GI antispasmodic effect through a combination of anticholinergic and Ca²⁺-antagonist mechanisms.	*in vivo*	(132)	
Iris florentina L.	Iris	Decrease in the volume of gastric	*in vivo*	(133)	
Lawsonia inermis	Henna				

Oleo-gum-resin powder blocking STAT3 and VEGF expression. *Reduction in symptoms of uncomplicated hemorrhoids grade 1 and 2.* *Hyoscyamus niger* L. *Hordeum vulgare* L. *Hyoscyamus niger* L. *Iris florentina* L. *Lawsonia inermis* *Cupressus sempervirens* L. *Cupressus sempervirens* L. *Cyperus rotundus* L. *Crocus sativus* L. *Commiphora opobalsamum* Engl. *Costus speciosus* (L.Koenig) Sm. *Dorema ammoniacum* D. Don *Eugenia Caryophyllata* Thunb. *Foeniculum vulgare* L. *Glossostemon bruguieri* Desf. *Hordeum vulgare* L. *Hyoscyamus niger* L. *Iris florentina* L. *Lawsonia inermis*
Plant Name	Extract/Component	Activity	Study Type	Reference
Linum usitatissimum L.	Aqueous extract of leaves	Antibacterial activity	in vitro	(134)
	Crude extract of lignans of seeds	Protection and recovery against gastric ulcers	in vivo	(135)
	Seeds oil and mucilage	Protection against gastric ulcers	in vivo	(136)
	Aqueous-methanol extract of seeds	Antidiarrheal and antispasmodic activities through inhibition of Ca²⁺ channels	in vivo, Ex vivo	(137)
Malus domestica Baug.	Methanol extract of fruit flesh containing polyphenols	Preventing aspirin-induced gastric injury, countering aspirin-induced up-regulation of HB-EGF and COX-2 expression	in vivo	(138)
	Fruit juice	Antiulcerative activity	in vivo	(139)
	Fruit sauce	Anti-diarrheal activity	in vivo	(140)
	Hydroalcoholic extract of aerial parts	Protective effect against ethanol-induced gastric mucosal lesions by reducing gastric lesions and malondialdehyde and increasing glutathione levels in gastric tissue or whole blood	in vivo	(141)
	aqueous-methanolic extract of aerial parts	Antidiarrheal, antisecretory and antispasmodic activities through K⁺-channels activation and weak Ca²⁺ antagonist effect	in vivo	(142)
	aqueous extract of aerial parts	Spasmolytic activity by cAMP-cGMP-phosphodiesterases inhibition	in vitro	(143)
	decoction of aerial parts	Potent anti-diarrheal and antioxidant: protection against castor oil-induced diarrhea and intestinal fluid accumulation	in vivo	(144)
Matricaria chamomilla L.	Chamomile gel and aqueous extract containing catechin and cinnaamic acid	Attenuating acetic acid induced UC antioxidant and anti-inflammatory effects	in vivo	(145)
Myristica fragrans Houtt.	Nutmeg crude suspension and petroleum ether extract of seeds	Anti-diarrheal effect	in vivo	(146)
Nardostachys jatamansi DC.	Spikenard hydro-ethanolic extract	Anti-H. pylori activity	in vitro	(147)
Nymphaea lotus L.	White lotus Aqueous extract	Protection against gastric ulcer	in vivo	(148)
Nymphaea alba L.	White water rose Ethanol extract of rhizome	Antioxidant and analgesic	in vivo, in vitro	(149)
Olea europaea L.	Olive Olive oil	Preventing the indomethacin-induced gastric damages in rats, enhancing efficacy of indomethacin for reducing carrageenan-induced paw edema, anti-inflammatory effect against paw edema	in vivo	(43)
	A 30-day period of diets containing olive oil	Attenuating gastric secretory function, suppression of serum gastrin and higher levels of peptide YY.	Patients with gallstones	(44)
	Polar fraction of extra-virgin olive oil	Inhibition of NF-κB driven transcription and nuclear translation in AGS cells (a model for gastric inflammation)	in vitro	(46)
	Virgin olive oil extracts rich in phenolic compounds especially dialdehydic form of decarboxymethyl ligstroside (Ty-EDA)	Strong anti-H. pylori activity, decrease acid secretion in the GI tract, reduction in the size of peptic ulcers	in vitro	(45)
	Leaves extract	Attenuation of the ethanol-induced gastric lesions, prevention of an increase in gastric lipid peroxidation, prevention of a decrease in antioxidative enzyme activity	in vivo	(150)
Opopanax chironium W.D.J.Koch	Sweet myrrh		-	-

Note: The table above provides a summary of the activities of different extracts from various plants. The activities include antibacterial, anti-diarrheal, anti-inflammatory, antioxidative, analgesic, anti-ulcerative, and anti-secretory effects, among others. The study types vary from in vitro to in vivo and in vivo, Ex vivo. The references are cited in parentheses next to the corresponding activities.
Phoenix dactylifera L.	Date	Aqueous and ethanolic extracts of fruits	Ameliorative effect on ethanol-induced gastric ulcer	in vivo (151)
		Ethanol and water extracts of the flesh and pits	Enhancing the GI transit	in vivo (152)
Pimpinella anisum L.	Anise	Aqueous suspension of fruits	Cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions	in vivo (153)
Pistacia atlantica Desf.	Persian turpentine tree	Aqueous and ethanolic extracts of fruits	Antioxidant and antimicrobial activities	in vitro (154)
Pistacia atlantica subsp. kurdica	Baneh tree	Essential oil of oleo-gum-resin	Antimicrobial activity	in vitro (155)
Pistacia lentiscus var. Chia	Mastic	Oleo-gum-resin, essential oil	Anti-colitis activity	in vivo (156)
Portulaca oleracea L.	Purslane	Aqueous and ethanolic extracts	Gastric anti-ulcerogenic effects	in vivo (158)
Punica granatum L.	Pomegranate	Methanol extract of peel	Potent anti-\(H.\) \(pylori\)	in vitro (159)
		Aqueous-methanolic extract of flowers	Gastric anti-ulcerogenic effects	in vivo (160)
		Ethanolic extract of pericarp ethyl acetate and n-butanol fractions	Anti-enterohemorrhagic \(E.\) \(coli\)	in vitro (161)
		Aqueous extract of peels	Antidiarrheal effects	in vivo (162)
		Methanol-water extract of flowers and its ellagic acid rich fraction	Attenuation of colonic inflammation in UC, attenuation of histamine, myeloperoxidase and oxidative stress	in vivo (163)
Rosa × damascena Mill.	Damask rose	Hydroalcoholic extract of flowers	Inhibition of ileum contraction at mg concentrations, stimulatory effect on ileum at µg concentrations	ex vivo (164)
		Flowers essential oil containing geraniol and citronellol	Inhibitory effect on ileum contraction	ex vivo (165)
		Hydroalcoholic extract of flowers	Improving macroscopic and histopathological parameters of acetic acid-induced colitis	in vivo (166)
Rhus coriaria L.	Sumac	Crude methanolic extract	Anti-secretory, antidiarrheal and antispasmodic properties through \(Ca^{2+}\) blockade	in vivo, in vitro (167)
Santalum album L.	Indian sandalwood	Ethanol extract	Anti-\(H.\) \(pylori\) activity	in vitro (168)
		Hydroalcoholic extract of leaves	Analgesic effect	in vivo (169)
		Methanol extract of wood	Anti-diarrheal activity	in vivo (170)
		Hydro-alcoholic extract	Protection against gastric ulcer	in vivo (171)
		Methanolic extract of wood	Analgesic and anti-inflammatory activities	in vivo (172)
Tanacetum balsamita L. subsp. Balsamitades (Schultz Bip.) Grierson	Meadow salsify	Ethanol extract of aerial part	Antibacterial properties	in vitro (174)
Tragopogon pratensis L.	Goatsbeard	Ethanol extract of aerial part	Alleviating colitis via anti-inflammatory effects	in vivo (175)
Tragopogon graminifolius		Hydroalcoholic extract of aerial part	Protection against gastric ulcer	in vivo (176)
Trigonella foenum-graecum L.
Fenugreek Aqueous extract and a gel fraction of seeds Gastric ulcer protective effects in vivo (177)

Valeriana celtica L.
Alpine valerian - - -

Viola odorata L.
Sweet violet Aqueous extract of aerial parts Cyclotides Hydro-ethanol extract Antibacterial effects in vitro (178) Anti-gastrointestinal nematodes in vitro (179) Strong inhibitor of IL-8 secretion from H. pylori-infected epithelial cells in vitro (116)

Ziziphus spina-christi (L.) Wild.
Christ’s Thorn jujube Methanol extract of stem bark Anti-diarrhoeal effects in vivo (180)

References

1. Margetts L, Sawyer R. Transdermal drug delivery: principles and opioid therapy. BJAn: CEACCP 2007; 7:171-176.
2. Garg T, Rath G, Goyal AK. Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv 2015; 22:969-987.
3. Touitou E. Drug delivery across the skin. Expert Opin Biol Ther 2014; 19:664-673.
4. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008; 26:1:261-1268.
5. Emami SA, Sahebkar A, Javadi B. Paresthesia: A review of its definition, etiology and treatments in view of the Traditional Medicine. Curr Pharm Des 2016; 22:321-327.
6. Brown MB, Martin GP, Jones SA, Akomeah FK. Essential oil from Ziziphus spina-christi: barriers and models. Nat Biotechnol 2008; 26:1261-1267.
7. Touitou E. Drug delivery across the skin. Expert Opin Biol Ther 2002; 2:723-733.
8. Chauhan AS, Sridivi S, Chalasani KB, Jain AK, Jain SK, Jain NK, et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release 2003; 90:335-343.
9. Emami SA, Sahebkar A, Javadi B. Paresthesia: A review of its definition, etiology and treatments in view of the Traditional Medicine. Curr Pharm Des 2016; 22:321-327.
10. Ihsina S. A. Al-Qanun fi1-tibb (Canon of medicine). New Delhi: L.H.M.M.R. Printing Press; 1987.
11. Al-Kashkari Y. Konnash fi al-Tebb. Tehran: Research Institute for Islamic and Complementary Medicine (RICM); 2007.
12. Aqili Khorasani MH. Qarabdin-e-Kabir. Tehran: Research Institute for Islamic and Complementary Medicine (RICM); 2007.
13. Farzaee MH, Rahimi R, Abbasabadi Z, Abdollahi M. An evidence-based review on medicinal plants used for the treatment of peptic ulcer in traditional Iranian medicine. Int J Pharm 2013; 9:108-124.
14. Farzaee MH, Shams-Ardekani MR, Abbasabadi Z, Rahimi R. Scientific evaluation of edible fruits and spices used for the treatment of peptic ulcer in traditional Iranian medicine. ISRN gastroenterol 2013; 2013.
15. Pasani A. Dictionary of medicinal plants. Tehran: Arjmand Press 2004.
16. Abdol-hamid. Qamus al-qanun fi 1-tibb. New Delhi: Jamia Hamdard; 1997.
17. Bedevian AK. Illustrated polyglottic dictionary of plant names in Latin, Arabic, Armenian, English, French, German, Italian, and Turkish languages. Cairo: Argus & Papazian Presses; 1936.
18. Hayek M. Encyclopedia of medicinal plants: Arabic-English-French-German-Latin. Bairü Librairie du Liban Publishers; 1992.
19. Ibn-Beythar. Tafsir itiab Dysisquiridis (Explanation of Dioscorides' book). Beirut: Dar al-gharb al-islamii; 1989.
20. Tabari A. Ferdows al-helma h fi al-tibb (Paradise of wisdom on medicine). Berlin: Aftab Press; 1928.
21. Razi MZ. Al-Hawi fi1-tibb (Comprehensive book of medicine). Hyderabad: Osmania Oriental Publications Bureau; 1968.
22. Moraes TM, Kushima H, Moleiro FC, Santos RC, Rocha LR, Marques MO, et al. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: role of prostaglandins and gastric mucus secretion. Chem Biol Interact 2009; 180:499-505.
23. Esteves L, Souza IR, Rodrigues M, Cardoso LG, Santos LS, Settie JA, et al. Gastric antilucri and anti-inflammatory activities of the essential oil from Casearia sylvestris. J Ethnopharmacol 2005; 101:191-196.
24. Cal K. Skin penetration of terpenes from essential oils and topical vehicles. Planta Med 2006; 72:311-316.
25. Monti D, Chetoni P, Burgalassi S, Najarro M, Saettone MF, Boldrini E. Effect of different terpene compounds of natural origin. Molecules 2011; 16:10507-10540.
26. Wintola OA, Sunmonu TO, Afolayan AJ. The effect of Aloe vera fH. on the treatment of loperamide-induced constipation in Wistar rats. BMC Gastroenterol 2010; 10:95.
27. Langmead L, Makins RJ, Rampton DS. Anti-inflammatory effects of aloe vera gel in human colorectal mucosa in vitro. Aliment Pharmacol Ther 2004; 19:521-527.
28. Kishimoto K, Sumonu TO, Afolayan AJ. The effect of Aloe vera Mill. in the treatment of loperamide-induced constipation in Wistar rats. BMC Gastroenterol 2010; 10:95.
29. Langmead L, Makins RJ, Rampton DS. Anti-inflammatory effects of aloe vera gel in human colorectal mucosa in vitro. Aliment Pharmacol Ther 2004; 19:521-527.
30. Kishimoto K, Sumonu TO, Afolayan AJ. The effect of Aloe vera Mill. in the treatment of loperamide-induced constipation in Wistar rats. BMC Gastroenterol 2010; 10:95.
31. Kishimoto K, Sumonu TO, Afolayan AJ. The effect of Aloe vera Mill. in the treatment of loperamide-induced constipation in Wistar rats. BMC Gastroenterol 2010; 10:95.
31. Akaheri M, Sobhani Z, Javadie B, Sahebkar A, Emami SA. Therapeutic effects of Aloe spp. in traditional and modern medicine: A review. Biomed Pharmacother 2016; 84:759-772.
32. Akhawayni A, Hedayat al-mota’allemin f al-tibb (An educational guide for medical students). Mashhad: Ferdowsi University of Mashhad Publication; 1992.
33. Paraschos S, Magiatis P, Mitakou S, Petralaki K, Kallaropoulos A, Maragoudakis P, et al. In vitro and in vivo activities of Chios mastic gum extracts and constituents against Helicobacter pylori. Antimicrob Agents Chemother 2007; 51:551-559.
34. Dabos R, Silia E, Vlatta L, Frantzi D, Amygdalos GI, Giannikopoulos G. Is Chios mastic gum effective in the treatment of functional dyspepsia? A prospective randomised double-blind placebo controlled trial. J Ethnopharmacol 2010; 127:205-209.
35. Gioxari A, Kaliora AC, Papalois A, Agrogiannis G, Triantafyllidis JK, Andrikopoulos NK. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis. J Med Food 2011; 14:1403-1411.
36. Kaliora AC, Statopoulos MG, Triantafyllidis JK, Dedoussis GV, Andrikopoulos NK. Chios mastic treatment of patients with active Crohn’s disease. World J Gastroenterol 2007; 13:48-753.
37. Koutsoudaki C, Krske M, Rodger A. Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia. J Agric Food Chem 2005; 53:7681-7685.
38. Shafi N, Khan GA, Ghauri EG. Antiulcer effect of Artemisia absinthium L. in rats. Pak J Sci Ind Res 2004; 47:130-134.
39. Krebs S, Omer TN, Omer B. Wormwood (Artemisia absinthium) suppresses tumour necrosis factor alpha and accelerates healing in patients with Crohn’s disease - A controlled clinical trial. Phytomedicine 2010; 17:305-309.
40. Alain AD, Calzada F, Cervantes JA, Torres J, Ceballos GM. Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol 2005; 100:153-157.
41. Hadi A, Hosseini N, Shirin P, Najmeh N, Abolfazl M. Anti-inflammatory and analgesic activities of Artemisia absinthium and chemical composition of its essential oil. Int J Pharm Sci Res 2014; 38:237-244.
42. Tariq KA, Chishti MZ, Ahmad F, Shawl AS. Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 2009; 160:83-88.
43. Odabasoglu F, Halici Z, Calik A, Halici M, Aygun H, Suleyman H, et al. Beneficial effects of vegetable oils (corn, olive and sunflower oils) and alpha-tocopherol on anti-inflammatory and gastrointestinal profiles of indomethacin in rats. Eur J Pharmacol 2008; 591:300-306.
44. Serrano P, Yago MD, Manas M, Calpena R, Mataix J, Martinez-Victoria E. Influence of type of dietary fat (olive and sunflower oil) upon gastric acid secretion and release of gastrin, somatostatin, and peptide YY in man. Dig Dis Sci 1997; 42:626-633.
45. Romero C, Medina E, Vargas J, Brenes M, de Castro A. In vitro activity of olive oil polyphenols against Helicobacter pylori. J Agric Food Chem 2007; 55:680-686.
46. Sangiovanni E, Colombo E, Fumagalli M, Abbiati F, Caruso D, Dell’Agli M. Inhibition of NF-kappaB activity by minor polar components of extra-virgin olive oil at gastric level. Phytother Res 2012; 26:1569-1571.
47. Yousefi M, Mahdavi MR, Hosseini SM, Bahrami A, Davati A, Kamalinejad M, et al. Clinical evaluation of Commiphora Mukul, a botanical resin, in the management of hemorrhoids: A randomized controlled trial. Pharmacogn Mag 2013; 9:350-356.
48. Mencarelli A, Renga B, Palladino G, Distrutti E, Fiorucci S. The plant sterol guggulsterone attenuates inflammation and immune dysfunction in murine models of inflammatory bowel disease. Biochem Pharmacol 2009; 78:1214-1223.
49. An MJ, Cheon JH, Kim SW, Kim ES, Kim TI, Kim WH. Guggulsterone induces apoptosis in colon cancer cells and inhibits tumor growth in murine colorectal cancer xenografts. Cancer Lett 2009; 279:93-100.
50. Javadi B, Emami SA. Aviceena’s contribution to mechanisms of cardiovascular drugs. Iran J Basic Med Sci 2015; 18:721-722.
51. Javadi B, Sahebkar A, Emami SA. A survey on saffron in major Islamic Traditional Medicine books. Iran J Basic Med Sci 2013; 16:1-11.
52. Solorzano-Santos F, Miranda-Novales MG. Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol 2012; 23:136-141.
53. Shakheri A, Sahebkar A, Javadie B. Melissa officinalis L. - A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2016; 188:204-228.
54. Bassole IH, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules 2012; 17:3989-4006.
55. Farzaei MH, Abdollahi M, Rahimi R. Role of dietary polyphenols in the management of peptic ulcer. World J Gastroenterol 2015; 21:6499-6517.
56. Rahaf J, Remes S, Heiden M, Hopia A, Kakkonen M, Kujala T, et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 2000; 56:3-12.
57. Sumbul S, Ahmad MA, Mohd A, Mohd A. Role of phenolic compounds in peptic ulcer: An overview. J Pharm Bioallied Sci 2011; 3:361-367.
58. Mata KS, Dias GE, Pinto ME, Luiz-Ferreira A, Souza-Brito AR, Hiruma-Lima CA, et al. Flavonoids with gastroprotective activity. Molecules 2009; 14:979-1012.
59. Do Nascimento RF, de Sales IR, de Oliveira Formiga R, Barbosa-Filho JM, Sobral MV, Tavares JF, et al. Activity of alkaloids on peptic ulcer: what’s new? Molecules 2015; 20:929-950.
60. De Sousa Falcão H, Leite JA, Barbosa-Filho JM, de Athayde-Filho PF, de Oliveira Chaves MC, Moura MD, et al. Gastric and duodenal antiulcer activity of alkaloids: a review. Molecules 2008; 13:3193-3223.
61. Sodagari HR, Farzaei MH, Bahrami Soltani R, Abdolghaffari AH, Mahmoudi M, Rezaei N. Dietary
anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2015; 9:807-820.

62. Teichberg S, Wingertzahn MA, Moyse J, Wapnir RA. Effect of gum arabic in an oral rehydration solution on recovery from diarrhea in rats. J Pediatr Gastroenterol Nutr 1999; 29:411-417.

63. Gilani AU, Shah AJ, Ahmad M, Shaheen F. Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. Phytother Res 2006; 20:1080-1084.

64. Shoba FG, Thomas M. Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhea. J Ethnopharmacol 2001; 76:73-76.

65. McGaw LJ, Jager AK, van Staden J. Antibacterial, anthelminthic and anti-amoebic activity in South African medicinal plants. J Ethnopharmacol 2000; 72:247-263.

66. Rafatullah S, Tariq M, Mossa J, Al-Yahya M, Al-Said M, Ageel A. Anti-secretagogue, anti-ulcer and cytoprotective properties of Acorus calamus in rats. Fitoterapia 1994; 65:19-19.

67. Maphosa V, Masika PJ, Bizimyenera ES, Elkh JN. In vitro anthelmintic activity of crude aqueous extracts of Aloe ferox, Leonotis leonurus and Elephantorrhiza elephantina against Haemonchus contortus. Trop Anim Health Prod 2010; 42:301-307.

68. Pandey R, Mishra A. Antibacterial activities of crude extract of Aloe barbadensis to clinically isolated bacterial pathogens. Appl Biochem Biotechnol 2010; 160:1356-1361.

69. Watt K, Christofi N, Young R. The detection of antibacterial actions of whole herb tinctures using luminescent Escherichia coli. Phytother Res 2007; 21:193-1199.

70. Zaghloul SS, Shehata BA, Abo-Seif AA, El-Latif HAA. Assessment of protective effects of extracts of Zingiber officinalis and Althea officinalis on pyloric ligation-induced gastric ulcer in experimental animals. UK J Pharm Biosci 2015; 3.

71. Ndreje F, Alzadeh A, Sadroslami Z, Adeli S. Gastroprotective effects of angmydal in on experimental gastric ulcer: Role of NO and TNF. J Med Plants Res 2011; 5:3122-3127.

72. Kazrani HR, Jalali S. Laxative effect of bitter almond (Amygdalus communis var. amara). Iran J Vet Sci Technol 2014; 6:37-47.

73. Hasseinzadeh H, Karimi GR, Ameri M. Effects of Anethum graveolens L. seed extracts on experimental gastric irritation models in mice. BMC Pharmacol 2002; 2:21.

74. Riffat-Uz-Zaman M, Akhter M, Khan M. Preliminary evaluation of Anethum graveolens fruit in indomethacin-ulcer induced rats. J Biol Sci 2004; 4:151-155.

75. Naseri MG, Heidari A. Antispasmodic effect of Anethum graveolens fruit extract on rat ileum. Int J Pharmaceut 2007; 3:260-264.

76. Kaur GJ, Arora DS. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med 2009; 9:30.

77. Birdane FM, Cemek M, Birdane YO, Gulcin I, Buyukokuarglu ME. Beneficial effects of Foeniculum vulgare on ethanol-induced acute gastric mucosal injury in rats. World J Gastroenterol 2007; 13:607-611.

78. Rani P, Khullar N. Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phytother Res 2004; 18:670-673.

79. Brankovic S, Gozmanac-Ignjatovic M, Kostic M, Veljkovic M, Miladinovic B, Milutinovic M, et al. Spasmylocytic activity of the aqueous and ethanol celery leaves (Apium graveolens L.) extracts on the contraction of isolated rat ileum. Acta medica Medianae 2015; 54:11-16.

80. Chitre T, Bhutada P, Nandakumar K, Somani R, Miniyar P, Mundhada Y, et al. Analgesic and anti-inflammatory activity of heartwood of Aguilaria agallocha in laboratory animals. Pharmaco Online 2007; 1:288-298.

81. Abad MJ, Bedoya LM, Apaza L, Bermejo P. The artemisia L. Genus: a review of bioactive essential oils. Molecules 2012; 17:2542-2566.

82. Ahmad F, Khan RA, Rasheed S. Study of analgesic and anti-inflammatory activity from plant extracts of Lactuca scariola and Artemisia absinthium. J Islamic Acad Sci 1992; 5:111-114.

83. Westphal J, Horning M, Leonardt K. Phytotherapy in functional upper abdominal complaints Results of a clinical study with a preparation of several plants. Phytotherapy 1996; 2:285-291.

84. Gupta I, Parihar A, Malhotra P, Gupta S, Ludkte R, Safayhi H, et al. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med 2001; 67:391-395.

85. Borrelli F, Capasso F, Capasso R, Ascione V, Aviello G, Longo R, et al. Effect of Boswellia serrata on intestinal motility in rodents: inhibition of diarrhoea without constipation. Br J Pharmacol 2006; 148:553-560.

86. Singh S, Khajuria A, Tanoea SC, Khajuria RK, Singh J, Johri RK, et al. The gastric ulcer protective effect of boswellic acids, a leukotriene inhibitor from Boswellia serrata, in rats. Phytotherapy 2008; 15:408-415.

87. Kriegstein CF, Anthoni C, Rijcken EJ, Laukotter M, Spiegel HU, Boden SE, et al. Acetyl-11-keto-beta-boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis. Int J Colorectal Dis 2001; 16:88-95.

88. Anthoni C, Laukotter MG, Rijcken E, Vowinkel T, Mennigen R, Muller S, et al. Mechanisms underlying the anti-inflammatory actions of boswellic acid derivatives in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1131-1137.

89. Golbabaie S, Baz R, Goksteinian S, Nabati F, Omrany ZB, Youssef B, et al. Urease inhibitory activities of beta-boswellic acid derivatives. Daru 2013; 21:2.

90. Lemos M, Santin JR, Junior LC, Niero R, Andrade SF. Gastroprotective activity of hydroalcoholic extract obtained from the leaves of Brassica oleracea var.
acephala DC in different animal models. J Ethnopharmacol 2011; 138:503-507.
91. Mahady GB, Pendland SL, Stoia A, Hamill FA, Fabricant D, Dietz BM, et al. In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytother Res 2010; 19:988-991.
92. Hawrelak JA, Cattley T, Myers SP. Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern Med Rev 2009; 14:380-384.
93. Al-Essa MK, Shafagji YA, Mohammed FI, Alfi FU. Relaxant effect of ethanol extract of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig. Pharm Biol 2010; 48:76-90.
94. Kamaleeswari M, Nalini N. Dose-response efficacy of caraway (Carum carvi L.) on tissue lipid peroxidation and antioxidant profile in rat colon carcinogenesis. J Pharm Pharmacol 2006; 58:1121-1130.
95. Khayyal MT, el-Ghazaly MA, Kenawy SA, Seif-els-Nasr M, Mahran LG, Kafafi YA, et al. Anticytotoxicogenic effect of some gastrointestinal acting plant extracts and their combination. Arzneimittelforschung 2001; 51:45-55.
96. Balaji G, Chalamaiah M, Ramesh B, Reddy YA. Antidiarrhoeal activity of Carum carvi seeds in experimental gastric ulcer in rats. H Pierd Med Sci 2012; 18:12-16.
97. Nariman F, Eftekhari F, Habibi Z, Massarrat S, Malekzadeh R. Antibacterial activity of twenty Iranian plant extracts against clinical isolates of Helicobacter pylori. Iran J Basic Med Sci 2009; 12:105-111.
98. Jainu M, Devi CS. Gastroprotective action of Cissus quadrangularis extract against NSAID induced gastric ulcer: role of proinflammatory cytokines and oxidative damage. Chem Biol Interact 2006; 161:262-270.
99. Jainu M, Vijai Mohan K, Shymala Devi CS. Gastroprotective effect of Cissus quadrangularis extract in rats with experimentally induced ulcer. Indian J Med Res 2006; 123:799-806.
100. Jainu M, Shymala Devi CS. Attenuation of neutrophil infiltration and proinflammatory cytokines by Cissus quadrangularis: a possible prevention against gastric ulcerogenesis. J Herb Pharmacother 2005; 5:33-42.
101. Jainu M, Devi CS. Effect of Cissus quadrangularis on gastric mucosal defensive factors in experimentally induced gastric ulcer-a comparative study with sucralfate. J Med Food 2004; 7:372-376.
102. Austin A, Jegadeesan M, Gowrishankar R. In vitro screening of cissus quadrangularis L. Variant ii against Helicobacter pylori. Anc Sci Life 2003; 23:55-60.
103. Attaguile G, Caruso A, Pennisi G, Savoca F. Gastroprotective effect of aqueous extract of Cistus incanus L in rats. Pharmacol Res 1995; 31:29-32.
104. Aziz M, Tab N, Karim A, Mekhli H, Bnouhamed M, Ziyyat A, et al. Relaxant effect of aqueous extract of Cistus ladaniferus on rodent intestinal contractions. Fitoterapia 2006; 77:425-428.
105. Aziz M, Karim A, Tab N, Mekhli H, Bnouhamed M, Ziyyat A, et al. Antidiarrhoeal activity of Cistus ladaniferus aqueous extract. Spatula DD 2011; 1:175-179.
106. Kim ES, Hong SY, Lee HK, Kim SW, An MJ, Kim TI, et al. Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncol Rep 2008; 20:1321-1327.
107. Al-Howiriny T, Al-Sohaibani M, Al-Said M, Al-Yahya M, El-Tahir K, Rafatullah S. Effect of Commiphora opobalsamum (L.) Engl. (Balessan) on experimental gastric ulcers and secretion in rats. J Ethnopharmacol 2005; 98:287-294.
108. Al-Salmi AA, Sattar MA, Khan LM, Al-Harthi SE. Comparative study of analgesic and anti-inflammatory effects of Commiphora opobalsamum with diclofenac in rodents. Afr J Pharm Pharmacol 2015; 9:806-817.
109. Al-Massarany SM, Abbas FA, Demirci B, Basr KH, Khan SI, Al-Rehaily AJ, et al. Chemical composition and biological evaluation of the essential oil of Commiphora opobalsamum L. J Herbs Spices Med Plants 2008; 13:111-121.
110. Aung HH, Wang CZ, Ni M, Fishbein A, Mehandel SR, Xie JT, et al. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp Oncol 2007; 29:175-180.
111. Nakhaei M, Khaje-Karamoldin M, Ramezani M. Inhibition of Helicobacter pylori growth in vitro by saffron (Crocus sativus L). Iran J Basic Med Sci 2008; 11:91-96.
112. Kazi HA, Qian Z. Crocetin reduces TNBS-induced experimental colitis in mice by downregulation of NFkB. Saudi J Gastroenterol 2003; 8:207-217.
113. Bathiae SZ, Miri H, Mohagheghi MA, Mokhbar-Dizaji M, Shahbazzar AA, Hasanzadeh H. Saffron aqueous extract inhibits the chemically-induced gastric cancer progression in the Wistar Albino rat. Iran J Basic Med Sci 2013; 16:27-38.
114. Zaidi SF, Muhammad JS, Shahryar S, Usmanghani K, Gilani AH, Jafri W, et al. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J Ethnopharmacol 2012; 141:403-410.
115. Sarkar S, Buha D. Effect of ripe fruit pulp extract of Cucurbita pepo Linn. in aspirin induced gastric and duodenal ulcer in rats. Indian J Exp Biol 2008; 46:639-645.
116. Ohno T, Kita M, Yamaoka Y, Imamura S, Yamamoto T, Mitsuji S, et al. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter 2003; 8:207-215.
117. Koriem KM, Gad IB, Nasiry ZK. Protective effect of Cappressus sempervirens extract against indomethacin-induced gastric ulcer in rats. Interdiscip Toxicol 2015; 8:25-34.
ailments, against *Helicobacter pylori*. J Ethnopharmacol 2009; 121:286-291.
148. John-Africa L, Idris-Usmn MS, Adzu B, Gamanii KS. Protective effects of the aqueous extract of *Nymphaea lotus* L. (Nymphaeaceae) against ethanol-induced gastric ulcers. Int J Biol Chem Sci 2013; 6:1917-1925.
149. Bose A, Ray SD, Sahoo M. Evaluation of analgesic and antioxidant potential of ethanolic extract of *Nymphaea alba* rhizome. Oxid Antioxid Med Sci 2012; 1:217-223.
150. Dekanski D, Ristić S, Mitrović D. Antioxidant effect of dry olive (*Olea europaea* L.) leaf extract on ethanol-induced gastric lesions in rats. Med J Nutrition Health 2009; 2:205-211.
151. Al-Qarawi AA, Abdel-Rahman H, Ali BH, Mousa HM, El-Mougy SM. The ameliorative effect of dates (*Phoenix dactylifera* L.) on ethanol induced gastric ulcer in rats. J Ethnopharmacol 2005; 98:313-317.
152. Al-Qarawi A, Ali B, Al-Mougy S, Mousa H. Gastrointestinal transit in mice treated with various extracts of date (*Phoenix dactylifera* L.). Food Chem Toxicol 2003; 41:37-39.
153. Al Mofleh IA, Alhaider AA, Mossa JS, Al-Soohaibani MO, Rafatullah S. Aqueous suspension of *Pistacia atlantica* kurdica leaves in mice. Phytother Res 2004; 18:487.
154. Mohammadi S, Zarei M, Zarei MM, Salehi I. Effect of hydroalcoholic leaves extract of *Rhus coriaria* on pain in male rats. Anesth Pain Med 2016; 6:e32128.
155. Guo H, Zhang J, Gao W, Wu Z, Liu C. Anti-diarrhoeal activity of methanol extract of *Santalum album* L. in mice and gastrointestinal effect on the contraction of isolated jejunum in rats. J Ethnopharmacol 2014; 154:704-710.
156. Ahmad N, Khan M, Jais AM, Moharuddin N, Ranjbar M, Amjad MS, et al. Antulcer activity of sandalwood (*Santalum album* L.) stem hydroalcoholic extract in three gastric-ulceration models of wistar rats. Biol Latinoam Caribe Plant Med 2013; 12:81-91.
157. Soohaibani MO, Rafatullah S. Aqueous suspension of *Punica granatum*.(Pomegranate) peels. Pharm Biol 2007; 45:715-720.
158. Singh K, Jaggi AS, Singh N. Exploring the ameliorative potential of *Punica granatum* in dextran sulfate sodium induced ulcerative colitis in mice. Phytother Res 2009; 23:1565-1574.
159. Sadraei H, Asghari G, Emami S. Effect of *Rosa damascena* Mill. flower extract on rat ileum. Res Pharm Sci 2013; 8:277-284.
160. Sadraei H, Asghari G, Emami S. Inhibitory effect of Rosa damascena Mill flower essential oil, geraniol and citronellol on rat ileum contraction. Res Pharm Sci 2013; 8:17-23.
161. Latifi G, Ghannadi A, Minaiyan M. Anti-inflammatory effect of volatile oil from hydroalcoholic extract of *Rosa damascena* Mill. on acetic acid-induced colitis in rats. Res Pharm Sci 2015; 10:514-522.
162. Janbaz KH, Shabbir A, Mehmood MH, Gilani AH. Pharmacological basis for the medicinal use of *Rhus coriaria* in hyperactive gut disorders. Bangladesh J Pharmacol 2014; 9:636-644.
163. Motaharinia Y, Hazhir MS, Rezaee MA, Vahedi S, Rashidi A, Hosseini W, et al. Comparison of in vitro antimicrobial effect of ethanol extracts of *Satureja khuzestanica*, *Rhus coriaria*, and *Ocimum basilicum* L. on *Helicobacter pylori*. J Med Plants Res 2012; 6:3749-3753.
164. Mohammadi S, Zarei M, Zarei MM, Salehi I. Effect of hydroalcoholic leaves extract of *Rhus Coriaria* on pain in male rats. Anesth Pain Med 2016; 6:e32128.
165. Hajimahmoodi M, Shams-Ardakani M, Sanee P, Siavoshi F, Mehrabani M, Hosseinzadeh H, et al. In vitro antibacterial activity of some Iranian medicinal plant extracts against *Helicobacter pylori*. Nat Prod Res 2011; 25:1059-1066.
166. Alam MS, Alam MA, Ahmad S, Najmi AK, Asif M, Jahangir T. Protective effects of *Punica granatum* in experimentally-induced gastric ulcers. Toxicol Mech Methods 2010; 20:572-578.
167. Doravathikunachai SP, Sririrak T, Limsuwan S, Supawita T, Ida T, Honda T. Inhibitory effects of active compounds from *Punica granatum* pericarp on veroctotoxin production by enterohemorrhagic Escherichia coli O157:H7. J Health Sci 2005; 51:590-596.
168. Quais E, Eldoka A, Abu Ghalyun Y, Abdulla F. Antidiarrheal Activity of the Aqueous extract of *Punica granatum* (Pomegranate) peels. Pharm Biol 2007; 45:715-720.
177. Pandian RS, Anuradha CV, Viswanathan P. Gastroprotective effect of fenugreek seeds (*Trigonella foenum graecum*) on experimental gastric ulcer in rats. J Ethnopharmacol 2002; 81:393-397.

178. Arora DS, Kaur G. Antibacterial activity of some Indian medicinal plants. J Nat Med 2007; 61:313-317.

179. Colgrave ML, Kotze AC, Kopp S, McCarthy JS, Coleman GT, Craik DJ. Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Acta Trop 2009; 109:163-166.

180. Adzu B, Amos S, Amizan MB, Gamaniel K. Evaluation of the antidiarrhoeal effects of *Zizyphus spina-christi* stem bark in rats. Acta Trop 2003; 87:245-250.

181. Adzu B, Amos S, Wambebe C, Gamaniel K. Antinociceptive activity of *Zizyphus spina-christi* root bark extract. Fitoterapia 2001; 72:344-350.