Multi-strange baryon elliptic flow in Au + Au collisions at $\sqrt{s}_{NN} = 200$ GeV

J. Adams,3 M.M. Aggarwal,29 Z. Ahammed,43 J. Amoront,20 B.D. Anderson,20 D. Arkipkin,13 G.S. Averichev,12 S.K. Badaly,19 Y. Bai,27 J. Balewski,17 O. Barannikova,32 L.S. Barnby,3 J. Baudot,18 S. Bekele,28 V.V. Belaga,12 A. Bellingeri-Laurikainen,38 R. Bellwied,46 J. Berger,14 B.I. Bevzerkhny,48 S. Bharadwaj,33 A. Bhasin,19 A.K. Bhati,29 V.S. Bhatia,20 H. Bichsel,45 J. Bielcik,48 J. Bielcikova,48 A. Billmeier,46 L.C. Bland,4 C.O. Blyth,3 B.E. Bonner,34 M. Botje,27 A. Boucham,38 J. Bouchet,38 A.V. Brandin,25 A. Bravar,9 M. Bystecky,11 R.V. Cadman,1 X.Z. Cai,37 H. Caines,48 M. Calderón de la Barca Sánchez,17 J. Castillo,21 O. Cutai,48 D. Cebra,7 Z. Chajecki,28 P. Chaloupka,11 S. Chattopadhyay,43 H.F. Chen,36 Y. Chen,8 J. Cheng,41 M. Cherney,10 A. Chikanian,38 W. Christie,3 J.P. Coffin,18 T.M. Cormier,46 J.G. Cramer,45 H.J. Crawford,6 D. Das,32 S. Das,34 M. Daugherity,40 M.M. de Moura,35 T.G. Dedovich,12 A.A. Derevschikov,31 L. Didenko,4 T. Dietel,14 S.M. Dogra,19 W.J. Dong,8 X. Dong,36 J.E. Draper,7 F. Du,48 A.K. Dubey,15 V.B. Dunin,12 J.C. Dunlop,4 M.R. Dutta Mazumdar,43 V. Eckardt,23 W.R. Edwards,21 L.G. Efimov,12 V. Emeljanov,25 J. Engelage,6 G. Eppley,34 B. Erazmus,38 M. Estienne,38 P. Fachini,4 J. Faivre,8 R. Fatemi,17 J. Fedorisin,12 K. Filimonov,21 P. Filip,11 E. Finch,48 V. Fine,4 Y. Fisyak,4 J. Fu,4 C.A. Gagliardi,39 L. Gaillard,3 J. Gans,48 M.S. Ganti,43 F. Geurts,34 V. Ghazikhanian,8 P. Ghosh,43 J.E. Gonzalez,8 H. Gos,44 O. Grachov,46 O. Grebenuk,27 D. Gronwick,42 S.M. Guertin,8 Y. Guo,46 A. Gupta,19 T.D. Gutierrez,7 T.J. Hallman,4 A. Hamed,46 D. Hardtke,21 J.W. Harris,48 M. Heinz,2 W.T. Henry,39 S. Heppleman,30 B. Hippolyte,18 A. Hirsch,3 E. Hjort,21 G.W. Hoffman,40 H.Z. Huang,8 S.L. Huang,36 E.W. Hughes,5 T.J. Humback,28 G. Igo,8 A. Ishihara,40 P. Jacobs,21 W.W. Jacobs,17 M. Jedynak,44 H. Jiang,8 P.G. Jones,3 E.G. Judd,6 S. Kabana,2 K. Kang,41 M. Kaplan,38 D. Keane,20 A. Kechechyan,12 V.Yu. Khodyrev,31 J. Kiryluk,22 A. Kisiel,44 E.M. Kislov,12 J. Kläy,21 S.R. Klein,21 D.D. Koetke,42 T. Kollegger,14 M. Kopytine,20 L. Kotchenba,25 K.L. Kowalik,21 M. Kramer,26 P. Kravtsov,25 V.I. Kravtsov,31 K. Krueger,1 C. Kuhn,18 A.I. Kulikov,12 A. Kumar,29 R.Kh. Kutuiev,13 A.A. Kuznetsov,12 M.A.C. Lamont,48 J.M. Landgraf,4 S. Lange,14 F. Laue,4 J. Lauret,4 A. Lebedev,4 R. Lednicky,12 S. Lehocka,12 M.J. LeVine,4 C. Li,36 Q. Li,46 Y. Li,41 G. Lin,38 S.J. Lindenbaum,26 A.A. Lisa,28 F. Liu,37 H. Liu,36 L. Liu,37 Q.I. Liu,45 Z. Liu,37 T. Ljubicic,11 W.J. Llope,34 H. Long,5 R.S. Longacre,4 M. Lopez-Noriega,28 W.A. Love,4 Y. Lu,47 T. Ludlam,4 D. Lynn,4 G.L. Ma,37 J.G. Ma,3 Y.G. Ma,37 D. Magestro,28 S. Mahajan,19 D.P. Mahapatra,15 R. Majka,38 L.K. Mangotra,19 R. Manweiler,42 S. Margetis,20 C. Markert,20 L. Martin,38 J.N. Marx,21 H.S. Matsis,21 Yu.A. Matulenko,31 C.J. McClain,1 T.S. McShane,10 F. Meissner,21 Yu. Melnick,31 A. Meschini,31 M.L. Miller,22 N.G. Minaev,31 C. Mironov,20 A. Mischke,27 D.K. Mishra,15 J. Mitchell,34 B. Mohanty,43 L. Molnar,32 C.F. Moore,40 D.A. Morozov,31 M.G. Munhoz,35 B.K. Nandi,43 S.K. Nakay,19 T.K. Nakay,43 J.M. Nelson,3 P.K. Netrakanti,43 V.A. Nikitin,13 L.V. Nogach,31 S.B. Nurushov,31 G. Odyucin,21 A. Ogawa,4 V. Okorokov,25 M. Oldenburg,21 D. Olson,21 S.K. Pat,43 Y. Panebratsev,12 S.Y. Panitikin,4 A.I. Pavlinov,46 T. Pawlak,44 T. Peitzmann,27 P. Pietrzyk,4 V. Pivovarchik,4 C. Perkins,6 W. Peryt,44 V.A. Petrov,36 S.C. Phatak,15 R. Picha,7 M. Planinic,49 J. Pluta,44 N. Porile,32 J. Porter,45 A.M. Poskanzer,21 M. Potekhin,4 E. Potrebenikova,12 B.K.S. Potukuchi,19 D. Prindle,45 C. Pruneau,46 J. Putschke,21 G. Rakness,30 R. Raniwala,33 S. Ravel,38 R.L. Ray,46 S.V. Razin,12 D. Reichhold,45 J.G. Reid,45 J. Reinhardt,38 G. Renault,38 F. Retiere,21 A. Ridger,25 H.G. Ritter,4 J.B. Roberts,34 O.V. Rogachevskiy,4 J.L. Romero,7 A. Rose,21 C. Roy,38 L. Ruan,46 M. Russcher,27 R. Sahoo,15 I. Sakrejda,21 S. Salur,48 J. Sandweiss,48 M. Sarsour,17 I. Savin,13 P.S. Sahzhi,12 J. Schambach,40 R.P. Scharenberg,32 N. Schmitz,23 K. Schweda,21 J. Seger,10 P. Seyboth,23 E. Shahaliev,12 M. Shao,36 W. Shao,5 M. Sharma,29 W.Q. Shen,37 K.E. Shesternovou,31 S.S. Shimanskiy,12 E. Sichtermann,21 F. Simon,23 R.N. Singaraju,43 N. Smirnov,48 R. Snellings,27 G. Sood,42 P. Sorensen,21 J. Sowinski,17 J. Speltz,18 H.M. Spinka,1 B. Srivastava,32 A. Stadnik,12 T.D.S. Stanislaus,42 R. Stock,14 S. Stolpovskiy,46 M. Strokov,25 B. Stringfield,32 A.A.P. Suade,35 E. Sugabaker,28 C. Suire,8 M. Sumbera,11 B. Surrow,22 M. Swanger,10 T.J.M. Symons,21 A. Szanto de Toledo,35 A. Tai,8 J. Takahashi,35 A.H. Tang,27 T. Tarnowsky,32 D. Thein,4 J.H. Thomas,21 S. Timoshenko,25 M. Tokarev,21 T.A. Trainor,45 S. Trentalange,8 R.E. Trickle,39 O.D. Tsal,8 J. Ulery,32 T. Ullrich,4 D.G. Underwood,1 G. Van Buren,4 M. van Leeuwen,21 A.M. Vander Molen,24 R. Varma,16 I.M. Vasilyevski,13 A.N. Vasiliev,31 R. Vernet,19 S.E. Vidgor,17 Y.P. Vyyogi,43 S. Vokal,12 S.A. Voloshin,46 W.T. Waggoner,10 F. Wang,32 G. Wang,20 G. Wang,37 X.L. Wang,36 Y. Wang,40 W. Yang,41 Z.M. Wang,36 H. Ward,34 J.O. Watson,20 J.C. Webb,17 G.D. Westfall,24 A. Wetzler,21 C. Whitten Jr.,8 H. Wieman,21 S.W. Wissink,17 R. Witt,2 J. Wood,8 J. Wu,36 N. Xu,21 Z. Xu,4 Z.Z. Xu,36 E. Yamamoto,21 P. Yeps,34 V.I. Yurevich,12 I. Zborovsky,11 H. Zhang,4 W.M. Zhang,20 Y. Zhang,36 Z.P. Zhang,36 R. Zoukarneev,13 Y. Zoukarneeva,13 and A.N. Zubarev12

(START Collaboration)

1Argonne National Laboratory, Argonne, Illinois 60439
2University of Bern, 3012 Bern, Switzerland
3University of Birmingham, Birmingham, United Kingdom
4Brookhaven National Laboratory, Upton, New York 11973
We report on the first measurement of elliptic flow $v_2(p_T)$ of multi-strange baryons $\Xi^+ + \Xi^-$ and $\Omega^+ + \Omega^-$ in heavy-ion collisions. In minimum bias Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV, a significant amount of elliptic flow, comparable to other non-strange baryons, is observed for multi-strange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The p_T dependence of v_2 of the multi-strange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultra-relativistic nuclear collisions at RHIC.

PACS numbers: 25.75.Ld

Lattice QCD calculations, at vanishing or finite net-baryon density, predict a transition from the deconfined thermalized partonic matter Quark Gluon Plasma (QGP) to ordinary hadronic matter at a critical temperature $T_c \approx 150$ 180 MeV \cite{1, 2}. Measurements of hadron yields in the intermediate $(2 < p_T < 6 \text{ GeV/c})$ and high $(p_T > 6 \text{ GeV/c})$ transverse momentum p_T region indicate that dense matter has been produced in Au + Au collisions at RHIC \cite{3, 4, 5, 6, 7, 8, 9, 10}. Furthermore, previous measurements of elliptic flow of hadrons indicate that the matter created at RHIC is also strongly interacting \cite{11, 12}. Thus, in the early stage of the collision, dense and strongly interacting matter will lead to
collective effects among constituents such as transverse collective motion. If these interactions occur frequently enough, the system will finally reach thermalization. Due to the initial spatial anisotropy of the system in non-central collisions, an elliptic component of the collective transverse motion should also be present. Collectivity is cumulative throughout the whole collision and should survive the hadronization process \[13, 14\]; therefore, the amount of transverse flow observed in the final state will have a contribution from the prehadronic, i.e. partonic, stage.

Early dynamic information might be masked by later hadronic rescatterings. Multi-strange baryons with large mass and presumably small hadronic cross sections \[15, 16, 17, 18, 19\], should be less sensitive to hadronic rescattering in the the later stages of the collision and therefore a good probe of the early stage of the collision \[20\]. Indeed, a systematic study of hadron \(p_T\) spectra from high-energy heavy ion collisions, using a hydrodynamically inspired model, shows that multi-strange baryons thermally freeze-out close to the point where chemical freeze-out occurs with \(T_{ch} \approx 160\) MeV \[22, 21\] which at these collision energies coincides with the critical temperature \(T_c\) \[12\]. This may mean that multi-strange baryons are not, or much less, affected by hadronic rescatterings during the later stage of heavy ion collisions \[13, 16\]. Their observed transverse flow would then primarily reflect the partonic flow. Moreover, elliptic flow is in itself considered to be a good tool for understanding the properties of the early stage of the collisions \[22, 25\], primarily due to its self–quenching nature. Elliptic flow is generated from the initial spatial anisotropy of the system created in non-central collisions by rescatterings among the constituents of the system. The generated elliptic flow will reduce the spatial anisotropy of the system and quench its own origin. Thus multi–strange baryon elliptic flow could be a valuable probe of the initial partonic system.

In this Letter we present the first results on elliptic flow of multi-strange baryons \(\Xi^+ + \Xi^−\) and \(\Omega^+ + \Omega^−\) from Au + Au collisions at \(\sqrt{s_{NN}} = 200\) GeV, as measured with the STAR detector \[24\]. About 2 million events from Au + Au collisions collected with a minimum bias trigger are used in this analysis. Multi-strange baryons are reconstructed via their decay topology: \(\Xi^+ \rightarrow \Lambda + \pi^+\) and \(\Omega^+ \rightarrow \Lambda + K^+\) with the subsequent decay of \(\Lambda \rightarrow p + \pi\) as described in \[20\]. Charged tracks were reconstructed in the STAR Time Projection Chamber (TPC) \[25\]. Simple cuts on geometry, kinematics and particle identification via specific ionization are applied to reduce the combinatorial background. A detailed description of the analysis procedure can be found in \[20, 26\].

Figure 1 shows the invariant mass distribution for (a) \(\Xi^+ + \Xi^−\) and (b) \(\Omega^+ + \Omega^−\) candidates from minimum bias collisions (0–80% of the total hadronic cross-section). The \(\Xi^+ + \Xi^−\) and \(\Omega^+ + \Omega^−\) signals appear as clear peaks around the rest masses (indicated by the vertical arrows) in the invariant mass distribution, above a combinatorial background. The combinatorial background of uncorrelated decay candidates under the peak can be determined by sampling the regions on both sides of the peak. It can also be reproduced by rotating the \(\Lambda\) candidates by \(180^\circ\) in the transverse plane and then reconstructing the \(\Xi\) and \(\Omega\) candidates. The rotation of the \(\Lambda\) breaks the correlation in the invariant mass and therefore mimics the background of uncorrelated decay pairs. Both background determination methods provide consistent results. In Fig. 1(a) and (b), the combinatorial background as estimated from a same event rotating method (see text for details). Azimuthal distributions with respect to the event plane of the (c) \(\Xi^+ + \Xi^−\) and (d) \(\Omega^+ + \Omega^−\) raw yields. Dashed lines represent the fit results. All plots shown include \(\Xi^+ + \Xi^−\) and \(\Omega^+ + \Omega^−\) in the transverse momentum range \(1 < p_T < 4\) GeV/c.
extracted from the invariant mass distributions as described above. The event plane angle Ψ is used as an estimate of the reaction plane angle $[27, 28]$. Here, the event plane is determined from the azimuthal distribution of charged primary tracks with $0 < p_T < 2 \Omega$ GeV/c and pseudo-rapidity $|\eta|< 1 \Omega$. To avoid autocorrelations, tracks associated with a Ξ or Ω candidate are explicitly excluded from the event plane calculation. Figure 1 shows the azimuthal distributions of raw yields for (c) $\Xi + \Xi^-$ and (d) $\Omega + \Omega^+$ with respect to the event plane from the minimum bias collisions in the $1 < p_T < 4$ GeV/c range. To reduce the statistical uncertainties in the Ξ and Ω signal extraction and because of the cos 2 ϕ Ψ dependence of v_2, we have folded around $\pi=2$ the candidates in the $\pi=2 < \phi$ $\Psi < \pi$ range into the $\pi=2 > \phi$ $\Psi > 0$ range. The distributions exhibit a clear oscillation with azimuthal angle ϕ Ψ for both Ξ and Ω particles indicating the presence of significant elliptic flow. Dashed lines are results from fitting a function $\frac{dN}{d\phi} = A [1 + 2v_2 \cos 2 \phi \Psi]$ to the data, where A is the normalization constant. Furthermore, we note that the amplitude of the oscillation for the Ξ and Ω is of similar magnitude indicating that their v_2 is similar, as will be discussed later. The finite resolution in the event plane determination smears out the azimuthal distributions and leads to a lower signal in the apparent anisotropy $[28]$. We determine the event plane resolution by dividing each event into random sub-events and determine the correction factor to be 1.072 for minimum-bias collisions. In the following, all numbers reported on v_2 are corrected for this resolution. Systematic uncertainties in v_2 were studied by comparing the determination methods described above and by changing the cuts used in the Ξ and Ω reconstruction. For the Ξ, the estimated absolute systematic uncertainties are 0.02 for the lowest p_T bin and smaller than 0.01 for all other p_T bins. For the Ω, the absolute systematic uncertainty is 0.04 for both measured transverse momentum bins. Correlations unrelated to the reaction plane (non-flow effects) can modify the apparent v_2 $[11]$. Non-flow contributions for multi-strange baryons were not studied yet, but are expected to be similar to those calculated for Λ $[0.01]$ at $p_T=1$ GeV/c and 0.04 at $p_T=2.5$ and 4.0 GeV/c $[11]$.

Figure 2 shows the results of the elliptic flow parameter $v_2(p_T)$ for multi-strange baryons (a) $\Xi + \Xi^-$ and (b) $\Omega + \Omega^+$ from minimum bias (0-80%) $\text{Au} + \text{Au}$ collisions. As a reference, the open symbols represent the published $[11]$ K_S^0 and Λ $v_2 (p_T)$ from the same event class. As guideline, results of the fit $[29]$ to $v_2 (p_T)$ of K_S^0 and Λ are shown as dot-dashed-lines. Hydrodynamic model calculations with an Equation Of State (EOS) with a phase transition at $T_c = 165$ MeV and a thermal freeze-out at $T_{\text{fo}} = 130$ MeV $[34]$ are shown as dotted lines, from top to bottom, for π, K, p, Λ, Ξ, and Ω, respectively. The expected mass ordering in hydrodynamics of $v_2 (p_T)$ is observed with lighter particles having larger $v_2 (p_T)$ than heavier particles.

First, we observe in Fig. 2(a) that for Ξ, the v_2 increases with p_T reaching a saturation value of 18% at $p_T > 3 \Omega$ GeV/c. This is similar to the result for Λ baryons $[11]$. In the lower p_T range ($p_T < 2.5$ GeV/c), the Ξ results are in agreement with the hydrodynamic model prediction $[30]$. Second, we observe in Fig. 2(b) that the values of v_2 for the Ω, are clearly non-vanishing although they have larger statistical uncertainties due to their smaller abundance. Over the measured p_T range and considering the statistical uncertainties, the v_2 of the Ω is non-zero with 99.73% confidence level (3σ effect). The Ω v_2 values are, within uncertainties, consistent with those measured for the Ξ, indicating that even the triple-strange baryon Ω has developed significant elliptic flow in $\text{Au} + \text{Au}$ collisions at RHIC. In the scenario where multi-strange baryons are less affected by the hadronic stage $[20]$ and where v_2 develops primarily at the early stage of the collision $[22, 23]$, the large v_2 of multi-strange baryons reported in this paper shows that partonic collectivity is generated at RHIC.

Previously, a particle type (baryon versus meson) difference in $v_2 (p_T)$ was observed for π and p $[31]$ as well as for K_S^0 and Λ $[11]$ at the intermediate p_T region. The present results
on the Ξ v_2 (p_T) follow closely the ones for Λ confirming that this observed particle type difference is a meson-baryon effect rather than a mass effect. This particle type dependence of the v_2 (p_T) is naturally accounted for by quark coalescence models. In these hadronization models, hadrons are formed dominantly by coalescing massive quarks from a partonic system with the underlying assumption of collectivity among these quarks. Should there be no difference in collectivity among u, d, and s-quarks near hadronization, these models predict a universal scaling of v_2 and the hadron transverse momentum p_T with the number of constituent quarks (n_q). This scaling has previously been observed to hold within experimental uncertainties for the K^0_S and the Λ when $p_T = 0.25$ GeV/c.

The n_q-scaled v_2 versus the n_q-scaled p_T are shown in Fig. 3 for π^+, $p + \bar{p}$ (open circles) Ξ + Ξ^- (filled circles) and $\Lambda + \bar{\Lambda}$ (open squares). Except for pions, all hadrons including Ξ and Ω scale well within statistics. The discrepancy in the pion v_2 may in part be attributed to its Goldstone boson nature (its mass is smaller than the sum of its constituent quark masses) or to the effects of resonance decays (a large fraction of the measured pions will come from the decays of resonances at higher p_T). This further success of the coalescence models in describing the multi-strange baryon v_2 (p_T) also lends strong support to the finding that collectivity developed in the partonic stage at RHIC. In addition, the good agreement of v_2 ($p_T = n_q$) for $p + uud$, $\Lambda + dss$, $\Xi + sss$ and $\Omega + sss$ further supports the idea that the partonic flow of s quarks is similar to that of u,d quarks. Future measurements with higher statistics, specially for the Ω, will allow for a more quantitative comparison.

In summary, we reported the STAR results on multi-strange baryon, $\Xi + \Xi^-$ and $\Omega + \Omega^-$, elliptic flow v_2 from minimum bias Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The observations of sizable elliptic flow and the constituent quark scaling behavior for the multi-strange baryons suggest that substantial collective motion has been developed prior to hadronization in the high-energy nuclear collisions at RHIC.

We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL for their support. This work was supported in part by the HENP Divisions of the Office of Science of the U.S. DOE; the U.S. NSF; the BMBF of Germany; IN2P3, RA, RPL, and EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Science and Technology; the Ministry of Education and the NNSFC of China; IRP and GA of the Czech Republic; FOM of the Netherlands, DAE, DST, and CSIR of the Government of India; Swiss NSF; the Polish State Committee for Scientific Research; and the STAA of Slovakia.

[1] F. Karsch, Nucl. Phys. A698, 199c (2002).
[2] Z. Fodor, Nucl. Phys. A715, 319c (2003) and references therein; Z. Fodor and S.D. Katz, Phys. Lett. B534, 87 (2002).
[3] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 202301 (2002).
[4] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91, 172302 (2003).
[5] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91, 072304 (2003).
[6] K. Adcox et al. (PHENIX Collaboration), Phys. Rev. Lett. 88, 022301 (2002).
[7] S.S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 072301 (2003).
[8] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 072303 (2003).
[9] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 91, 072302 (2003).
[10] I. Arsene et al. (BRAHMS Collaboration), Phys. Rev. Lett. 91, 072305 (2003).
[11] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 052302 (2004).
[12] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 182301 (2001).
[13] P. F. Kolb and U. Heinz, arXiv:nucl-th/0305084.
[14] D. Teaney, J. Lauret and E. V. Shuryak, arXiv:nucl-th/0110037.
[15] H. van Hecke, H. Sorge and N. Xu, Phys. Rev. Lett. 81, 5764 (1998).
[16] S.A. Bass et al., Phys. Rev. C 60, 021902 (1999); A. Dumitru, S.A. Bass, M. Bleicher, H. Stöcker, W. Greiner, Phys. Lett. B460, 411 (1999); S.A. Bass and A. Dumitru, Phys. Rev. C 60, 064909 (2000).
[17] Y. Cheng et al., Phys. Rev. C 68, 034910 (2003).
[18] S. F. Biagi et al., Nucl. Phys. B186, 1 (1981).
[19] R. A. Muller, Phys. Lett. B 38, 123 (1972).
[20] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 182301 (2004).
[21] C. Alt et al. (NA49 Collaboration), submitted to Phys. Rev. Lett. nucl-ex/0409004.
[22] H. Sorge, Phys. Rev. Lett. 82, 2048 (1999).
[23] J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[24] K. H. Ackermann et al. (STAR Collaboration), Nucl. Instrum. Meth. A 499, 624 (2003).
[25] M. Anderson et al., Nucl. Instrum. Meth. A 499, 659 (2003).
[26] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 092301 (2002).
[27] K. H. Ackermann et al. (STAR Collaboration), Phys. Rev. Lett. 86, 402 (2001).
[28] A. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).
[29] X. Dong, S. Esumi, P. Sorensen, N. Xu, Z. Xu, Phys. Lett. B597, 328 (2004).
[30] P. Huovinen, P.F. Kolb, U. Heinz, P.V. Ruuskanen, and S. Voloshin, Phys. Lett. B503, 58 (2001).
[31] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 91, 182301 (2003).
[32] S. Voloshin, Nucl. Phys. A715, 379c (2003); D. Molnar and S. Voloshin, Phys. Rev. Lett. 91, 092301 (2003).
[33] R.J. Fries, B. Müller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003).
[34] Z. Lin and C. Ko, Phys. Rev. Lett. 89, 202302 (2002).
[35] V. Greco and C. Ko, Phys. Rev. C 70, 024901 (2004).