Thematic Review Series: ApoE and Lipid Homeostasis in Alzheimer’s Disease

EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer’s disease

Leon M. Tai,* Deebika Balu,† Evangelina Avila-Munoz,* Laila Abdullah,* Riya Thomas,* Nicole Collins,* Ana Carolina Valencia-Olvera,* and Mary Jo LaDu†,

Department of Anatomy and Cell Biology,* University of Illinois at Chicago, Chicago, IL 60612; and Roskamp Institute,† Sarasota, FL 34234

Abstract Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer’s disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.

INTRODUCTION

Alzheimer’s disease: humans to transgenic mice

In humans, Alzheimer’s disease (AD) progresses over decades, resulting in synaptic dysfunction eventually leading to neuronal loss. Despite the large number of longitudinal aging studies in humans, the lack of cognitive measures coordinated with symptoms of AD pathology results in a poorly understood disease trajectory (1). Transgenic (Tg)-mice are a powerful tool to track AD pathology, address mechanistic hypothesis, and assess the activity of potential therapeutics. An overall limitation of all Tg-mouse models is that none reproduce the full spectrum of human AD symptoms and pathology. However, a number of reviews provide specific guidelines for preclinical AD studies with a consistent theme that a useful Tg-mouse model will incorporate major human AD risk factors and demonstrate dysfunction in the AD-relevant symptom of interest (2). Thus, critical to this modeling is the inclusion of the major human AD risk factors. The APOE4 genotype is the greatest genetic risk factor increasing AD risk up to 15-fold compared with the common APOE3 genotype, while APOE2 is protective (3, 4), but less frequent [estimated: ε2/2 at 0.4%, ε2/3 at 8.8%, and ε2/4 at 1.5% (5, 6)]. Although this risk was identified in 1993 and a number of hypotheses propose APOE genotype-specific functions, the mechanistic pathways that cause APOE4-induced AD risk remain unclear. Even less understood is the critical link between female (♀) sex and the APOE4-induced AD risk (6–13).

Supplementary key words animal models • lipoproteins • apolipoproteins • brain • behavior • histopathology • neuronal viability • apolipoprotein E lipidation • cerebrovascular dysfunction • apolipoprotein E • EFAD

Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

Journal of Lipid Research Volume 58, 2017 1733

This is an Open Access article under the CC BY license.

Abstract

Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer’s disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.

INTRODUCTION

Alzheimer’s disease: humans to transgenic mice

In humans, Alzheimer’s disease (AD) progresses over decades, resulting in synaptic dysfunction eventually leading to neuronal loss. Despite the large number of longitudinal aging studies in humans, the lack of cognitive measures coordinated with symptoms of AD pathology results in a poorly understood disease trajectory (1). Transgenic (Tg)-mice are a powerful tool to track AD pathology, address mechanistic hypothesis, and assess the activity of potential therapeutics. An overall limitation of all Tg-mouse models is that none reproduce the full spectrum of human AD symptoms and pathology. However, a number of reviews provide specific guidelines for preclinical AD studies with a consistent theme that a useful Tg-mouse model will incorporate major human AD risk factors and demonstrate dysfunction in the AD-relevant symptom of interest (2). Thus, critical to this modeling is the inclusion of the major human AD risk factors. The APOE4 genotype is the greatest genetic risk factor increasing AD risk up to 15-fold compared with the common APOE3 genotype, while APOE2 is protective (3, 4), but less frequent [estimated: ε2/2 at 0.4%, ε2/3 at 8.8%, and ε2/4 at 1.5% (5, 6)]. Although this risk was identified in 1993 and a number of hypotheses propose APOE genotype-specific functions, the mechanistic pathways that cause APOE4-induced AD risk remain unclear. Even less understood is the critical link between female (♀) sex and the APOE4-induced AD risk (6–13). As

Supplementary key words

animal models • lipoproteins • apolipoproteins • brain • behavior • histopathology • neuronal viability • apolipoprotein E lipidation • cerebrovascular dysfunction • apolipoprotein E • EFAD

Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

Journal of Lipid Research Volume 58, 2017 1733

This is an Open Access article under the CC BY license.

Abstract

Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer’s disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.

INTRODUCTION

Alzheimer’s disease: humans to transgenic mice

In humans, Alzheimer’s disease (AD) progresses over decades, resulting in synaptic dysfunction eventually leading to neuronal loss. Despite the large number of longitudinal aging studies in humans, the lack of cognitive measures coordinated with symptoms of AD pathology results in a poorly understood disease trajectory (1). Transgenic (Tg)-mice are a powerful tool to track AD pathology, address mechanistic hypothesis, and assess the activity of potential therapeutics. An overall limitation of all Tg-mouse models is that none reproduce the full spectrum of human AD symptoms and pathology. However, a number of reviews provide specific guidelines for preclinical AD studies with a consistent theme that a useful Tg-mouse model will incorporate major human AD risk factors and demonstrate dysfunction in the AD-relevant symptom of interest (2). Thus, critical to this modeling is the inclusion of the major human AD risk factors. The APOE4 genotype is the greatest genetic risk factor increasing AD risk up to 15-fold compared with the common APOE3 genotype, while APOE2 is protective (3, 4), but less frequent [estimated: ε2/2 at 0.4%, ε2/3 at 8.8%, and ε2/4 at 1.5% (5, 6)]. Although this risk was identified in 1993 and a number of hypotheses propose APOE genotype-specific functions, the mechanistic pathways that cause APOE4-induced AD risk remain unclear. Even less understood is the critical link between female (♀) sex and the APOE4-induced AD risk (6–13). As

Supplementary key words

animal models • lipoproteins • apolipoproteins • brain • behavior • histopathology • neuronal viability • apolipoprotein E lipidation • cerebrovascular dysfunction • apolipoprotein E • EFAD

Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

Journal of Lipid Research Volume 58, 2017 1733

This is an Open Access article under the CC BY license.
described, the sequence of pathology in human AD patients is unclear, however there are key AD-relevant outcomes that are modulated by APOE and sex in humans. AD is diagnosed by extracellular amyloid plaques and neurofibrillary tangles (NFTs) of tau. In addition, soluble oligomeric conformations of amyloid-β (Aβ) correlate with cognitive decline and disease severity (14–19). Importantly, Aβ levels in cerebrospinal fluid (CSF) are increased in AD patients versus controls; and are greater with APOE4/4 versus APOE3/3 in AD patients (20). Further pathology includes neuronal dysfunction, neuroinflammation, and cerebrovascular dysfunction (CerVD). Hence, it is essential to study the interactive role of AD risk factors: age, sex and APOE genotype in the development of human AD pathology using mouse models.

Mouse APOE versus human APOE in AD-Tg mouse models

In vivo progress to determine the effects of the human (h)-APOE genotypes on AD pathology has been limited by the lack of a tractable familial AD-Tg (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE [for complete review on the introduction of h-APOE into FAD-Tg mouse models see (21)]. Why is this a critical issue? The m-apoE is structurally and functionally distinct from h-apoE. While the three human isoforms of apoE differ by a single amino acid change at residues 112 and 158 (apoE^{E2} (apoE^{E2} = apoE^{E3}/apoE^{E3}), m-apoE is expressed as a single isoform and differs from h-apoE by ~100–300 amino acids. The disparity between m- and h-apoE is relevant for virtually all AD-relevant pathology, including Aβ deposition and clearance, neuroinflammation, tau pathology, neural plasticity, and CerVD (22–29). Further, many APOE/FAD-Tg models express h-apoE under heterologous promoters that may be activated by stressors [glial fibrillary acidic protein (GFAP) (27, 30)], or by cell types that are not the primary producers of apoE [neuron-specific enolase (31)], rather than the endogenous m-apoE promoter. Currently, the best option is the APOE-knock-in or targeted-replacement (TR) mice, developed to replace the coding domain for m-APOE with the coding domain of each of the h-APOE genotypes (32). In APOE-TR mice, glial cells express h-APOE in a native conformation at physiologically regulated levels, and in the same temporal and spatial pattern as endogenous m-APOE. Thus, it is critical to conduct mechanistic and preclinical therapeutic studies in mice that incorporate h-APOE in a relevant context.

Building an AD-Tg mouse model with h-APOE

Operationally, relative to m-APOE, the h-APOE genotypes delay AD pathology in FAD-Tg mouse models, as illustrated in Table 1. This table is designed to be a representation, using a composite of several FAD-Tg mouse models (27, 33–46) and Aβ pathology as an example of AD phenotype. First, Aβ pathology is significantly delayed when FAD-Tg mice are crossed with APOE-KO mice, eliminating m-APOE (Table 1: compare A to B) (27, 30, 39, 40, 46). Second, Aβ pathology is further delayed when h-APOE-Tg mice are crossed with FAD-Tg/APOE-KO mice (Table 1: compare B to C) (28, 30, 47, 48). Thus, incorporation of h-APOE into FAD-Tg mice that normally begin to develop pathology at 8–10 months delays the development of pathology to 12–16 months (27, 28, 30, 47, 48), extending progression of the full array of AD-related symptoms beyond the lifespan of the mouse. One approach to address this h-APOE-induced temporal delay in AD pathology is using an FAD-Tg mouse that has rapid-onset AD pathology. The 5xFAD mice exhibit accelerated development of pathology, including amyloid deposition by 2 months (Table 1: compare A to D) (49–69). The 5xFAD mice were crossed with APOE-TR mice to produce the EFAD mice², which exhibit the anticipated delay in AD pathology, particularly with plaque development delayed to ~6 months (Table 1: compare D to E) (20, 66, 70–75), but still >6 months before the average FAD-Tg/APOE-Tg mice (compare Table 1: C and E).

Development of the EFAD mouse model

The 5xFAD mice coexpress five FAD mutations [amyloid precursor protein (APP) K670N/M671L + 1716V + V7171 and PS1 M146L + L286V] under the control of the neuron-specific mouse thymocyte differentiation antigen 1 theta (Thy-1) promoter (50). The specificity of this Thy-1 promoter for neuronal expression in the brain has been established (76, 77). The 5xFAD^{−/−} line, Tg6799, produces the highest amount of Aβ42 (provided by R. Vassar, Northwestern University) (50). To establish colonies of EFAD mouse lines (E2FAD, E3FAD, and E4FAD), 5xFAD mice were bred to homozygous APOE2, APOE3, and APOE4-TR mice (32, 78) via a contract with Taconic Biosciences. Briefly, male (♂) APOE-TR^{+/+} mice on a C57/B6 background were bred with ♀ 5xFAD^{−/−} mice on a C57BL6/B6-SJL background. The resulting ♀ mice, APOE-TR^{+/−}/5xFAD^{−/−} were backcrossed to ♂ APOE-TR mice to generate APOE-TR^{+/−}/5xFAD^{−/−} (EFAD) mice. The EFAD mice allow for the monitoring of multiple AD-related symptoms through the mouse lifespan (Tables 2, 3). Importantly, based on the design of the breeding strategy, the EFAD mice littermates (50%) are noncarriers (EFAD-NCs) for the 5xFAD transgenes and homozygous for APOE (5xFAD^{+/−}/APOE^{+/+}). Thus, EFAD-NCs provide both a comparison to the EFAD mice and a complementary approach to address functional questions about APOE in the absence of FAD-induced pathology.

Amyloid plaque deposition is not the same as soluble Aβ peptide

Amyloid plaques (together with NFTs) are a major pathological hallmark of AD; however, there is strong debate on their significance. Understanding this issue is relevant for interpreting data obtained in EFAD mice. Recently, patience has grown thin in both the public and academic communities for the continued failure of both Aβ vaccine trials (https://endpts.com/merck’s-leading-phiii-bace-drug-implodes-in-latest-alzheimers-disaster/) and amyloid imaging studies (79–81). This has led to an apparent bias against

²The EFAD mice were made by contract to Taconic Biosciences via an Administrative Supplement (2005–2008) to M. J. LaDu, the Principal Investigator of Project 3 (Project Director: L. J. Van Eldik).
The 5xFAD mice versus EFAD mice

The EFAD mice are a tractable mouse model to study the development of a number of components of AD pathology (Tables 2, 3). Although 5xFAD mice express m-apoE, which we argue is distinct from h-apoE in the proximal mechanistic pathways that lead to AD pathology, we have included a comparison of AD pathology in 5xFAD versus EFAD mice to demonstrate, in part, the rapid onset and accelerated development of AD symptoms in the 5xFAD mice (Tables 2, 3). In addition, pathology in 5xFAD mice can be used to predict pathology in the EFAD mice. A particularly useful example is neuronal loss, which is significant by 12 months in the 5xFAD mice, predicting that in the EFAD mice neuronal loss will likely occur at >16 months. However, APOE genotype will significantly influence most components of AD pathology and analysis of these differences will illuminate APOE-modulation of AD pathology. In general, there is an APOE genotype (E4FAD > E3FAD ≥ E2FAD), as well as an emerging sex effect (♀ > ♂) on behavioral deficits, histopathology, and neuronal viability (Table 2), as well as Aβ42 and apoE solubility, neurotrophic factors, and neuroinflammatory cytokines, but not with APP processing (Table 3). Thus, the EFAD mice allow for the monitoring of multiple AD-related symptoms through the mouse lifespan (Tables 2, 3). An important note is that the sex and APOE4 genotype interactions are recent findings, and ♀ EFAD mice are more extensively characterized than ♂ mice. Here our goal is to detail APOE-modulated AD pathology in EFAD mice and, where applicable, ♀ versus ♂ comparisons.

APOE modulated AD symptoms exhibited in EFAD mice

Behavioral deficits in ♀ and ♂ EFAD mice. In humans, AD is characterized by progressive behavioral changes, including memory loss, a decrease in executive function, and impairments in social interaction (88–98) (Figs. 2–5). Cognitive decline in human AD patients (99) and the normal population follows ε4 > ε3 > ε2 (100), greatest in ♀ ε4 carriers (5, 101, 102). Similarly, in ♀ EFAD mice, cognitive impairment is E4FAD > E3FAD ≥ E2FAD, as measured by Morris water maze (MWM), with the deficits increasing from 2 to 6 months (Fig. 2A) (70). In 8-month-old E3FAD and E4FAD mice, cognitive impairment is E4FAD > E3FAD and ♀ > ♂, as measured by novel object recognition (NOR) and Y-maze (YM) (Fig. 2B) (71). Although cognitive testing...
TABLE 2. AD-related behavioral deficits, histopathology and loss of neuronal viability in 5xFAD and EFAD mice

Model	Phenotype					
	<4 Months	4–8 Months	8–12 Months	12–16 Months	≥16 Months	
5xFAD	Behavioral deficits	—	↑	↑	—	—
	Learning, exploration and memory	(MWM)	(YM, MWM, FC, NOR)	(YM, MWM, FC, CTA)	(YM, MWM, FC, CM)	(YM)
Histopathology	Aβ deposition	↑	↑	—	—	—
	Plaque deposition	↑	↑	—	—	—
	CAA	↑	↑	—	—	—
	Neuroinflammation	↑	↑	—	—	—
	pTau	↑	↑	—	—	—
Neuronal viability	Synaptic protein loss	↑	↑	—	—	—
	Neuroplasticity	↑	↑	—	—	—
	Neuronal loss	—	—	—	—	—
EFAD	Behavioral deficits	—	↑	↑	↑	—
	Learning, exploration and memory	(MWM: e4 > e3 ≥ e2)	(YM: e4 > e3; e4 > e2)			
Histopathology	Aβ deposition	—	↑	—	—	—
	Plaque deposition	(e4 > e3 ≥ e2; e4 > e2)	—	—	—	
	CAA	(e4 > e3 ≥ e2; e4 > e2)	—	—	—	
	Neuroinflammation	(e4 > e3 ≥ e2; e4 > e2)	—	—	—	
	pTau	(e4 > e3)	—	—	—	
Neuronal viability	Synaptic protein loss	(e4 > e3 ≥ e2; e4 > e2)	—	—	—	
	Neuroplasticity	(e4 > e3 ≥ e2; e4 > e2)	—	—	—	
	Neuronal loss	(e4 > e3)	—	—	—	

5xFAD mice: Behavioral deficits: MWM (49, 50, 59–61, 340), YM (49, 51, 54, 55, 58), fear conditioning (FC) (52, 56, 57), NOR (329, 330), conditioned fear acquisition (CTA) (52), cross-maze (CM) (62). AD-related histopathology: Aβ deposition: immunohistochemistry (IHC)-mAb to Aβ (50, 52, 55, 58, 62–65, 68, 329–337); plaque deposition: Thio-S (50, 64, 69, 332, 334); CAA: Thio-S, methoxy-XO4 (334, 341); neuroinflammation: astrogliosis or microgliosis: IHC-mAb to GFAP or ionized calcium binding adaptor molecule 1 (Iba1)/F4-80 (50, 55, 58, 61, 65, 329, 333–335); pTau: Western blot for p-sites (59, 342). Behavioral deficits: IHC-mAb to Aβ42-specific (MOAB-2) (66, 71) or IHC-mAb to Aβ (4G8) (73); plaque deposition: Thio-S (66, 71, 257); CAA: Thio-S (73); neuroinflammation: IHC-mAb to GFAP or Iba1 (72); pTau: Western blot for p-sites (75). Neuronal viability: synaptic proteins: PSD95, synaptophysin, syntaxin by Western blot or IHC (50, 68, 69); neuroplasticity: basal synaptic transmission, long-term potentiation or paired-pulse facilitation (56, 57, 61, 329–331, 335, 336, 343–345); neuronal loss: cresyl violet, IHC-mAb to RNA binding protein, fox-1 homolog 3 (NeuN); quantified by area (50, 185), or using unbiased stereology (61–63, 68, 65, 257); neuronal loss: cresyl violet, IHC-mAb to RNA binding protein, fox-1 homolog 3 (NeuN); quantified by area (50, 185), or using unbiased stereology (61–63, 68, 65, 257); neuronal loss: cresyl violet, IHC-mAb to RNA binding protein, fox-1 homolog 3 (NeuN); quantified by area (50, 185), or using unbiased stereology (61–63, 68, 65, 257); neuronal loss: cresyl violet, IHC-mAb to RNA binding protein, fox-1 homolog 3 (NeuN); quantified by area (50, 185), or using unbiased stereology (61–63, 68, 65, 257); neuronal loss: cresyl violet, IHC-mAb to RNA binding protein, fox-1 homolog 3 (NeuN); quantified by area (50, 185), or using unbiased stereology (61–63, 68, 65, 257);

in mice is not without drawbacks, it is striking that EFAD mice demonstrate APOE genotype- and sex-induced loss of cognitive function similar to humans.

Extracellular amyloid and Aβ in ♀ EFAD mice. Human data demonstrate higher levels of extracellular amyloid/Aβ with APOE4 compared with APOE3 (20, 103, 104). For our initial characterization of the pathology in the EFAD mice, we used ♀ mice aged 2–6 months (Fig. 3) (66). Both Aβ accumulation and thioflavine-S (Thio-S)-positive plaque deposition begin in the subiculum (SB), followed by the deep layers of the frontal cortex (CX) (Fig. 3A, B) then spreading to the outer layers of the CX and the thalamus (50, 66). As described above, introduction of h-APOE delayed extracellular Aβ accumulation from ~2 to 6 months compared with the 5xFAD mice expressing m-APOE: 5xFAD > E4FAD > E3FAD > E2FAD (Fig. 3A). Plaque morphology is also affected by APOE genotype, with diffuse plaques: E2FAD = E3FAD > E4FAD and compact plaques: E2FAD = E3FAD < E4FAD (66).

Neuroinflammation in ♀ EFAD mice. Neuroinflammation is an important component of AD pathology and is modulated by APOE (105, 106). For example, with APOE4 there is evidence of greater glial activation (107), higher levels of pro-inflammatory cytokines, and lower levels of anti-inflammatory cytokines in humans (108–110) and in APOE-TR mice, both at basal levels (108, 111) and in response to an inflammatory insult (25, 106, 112–114). In 5xFAD mice, there is greater astrogliosis and microgliosis compared with EFAD and E2FAD, particularly in the SB and deep layers of the frontal CX, brain regions with high levels of extracellular Aβ deposition and a higher density of microglia associated with amyloid plaques (Fig. 3C) (72). Further, there are higher levels of the pro-inflammatory cytokine, interleukin (IL)-1β, in E4FAD mice compared with E3FAD
mice. Neuroinflammation is a complex response, involving multiple receptors and mediators, which have been assessed in EFAD mice via mRNA (106), including the complement receptor 1 (115), triggering receptor expressed on myeloid cells 2 (TREM2) (116, 117), and CD33 (118–120), all AD-relevant receptors. Further, at 6 months, E4FAD mice have lower levels of interleukin-4 receptor (IL-4R)-related cytokines and higher levels of toll-like receptor 4 (TLR4)-related cytokines compared with EFAD mice (106), consistent with studies suggesting an association of IL-4R with an anti-inflammatory/repair response (121) and TLR4 with neuronal loss (122–124). Thus, E4FAD mice exhibit a neuroinflammatory phenotype, which may be directly relevant to the human condition.

Tau pathology in EFAD mice. In AD brains, there are higher levels of phosphorylated tau (pTau) and NFTs, the latter correlated with the severity of cognitive impairment (4, 29, 125–134). Although a general limitation is that FAD mice do not develop overt tau pathology, they do enable the assessment of subtler changes in phosphorylation. There are higher pTau levels in the SB and CA2/3 regions of the hippocampus (HP) in E4FAD mice at 7 months (Fig. 3D), not detectable at 3 months (73). Thus, data from EFAD mice demonstrate that ApoE4 and Aβ interact to induce tau phosphorylation.

Neuronal viability (synaptic proteins) in EFAD mice. Decreases in presynaptic and postsynaptic proteins in HP and CA2/3 correlate with decrease in neuronal viability, suggesting

TABLE 3. Differences in AD-related biochemical measures in 5xFAD and EFAD mice

Model	Biochemical Measures					
	<4 Months	4–8 Months	8–12 Months	12–16 Months	>16 Months	
5xFAD	Aβ and apoE solubility	↑	↑↓	↑↓↑	↑↑↑	↑↑↑↑
	Total Aβ	(♀ > ♂)	(♀ > ♂)	(♀ > ♂)	n.m.	n.m.
	Soluble Aβ42	↑	↑↓	↑↓↑	↑↑↑	↑↑↑↑
	Total apoE	↑	↑	↑	↑	↑
	TBSX-apoE	—	—	—	—	—
APP processing	APP levels	↑	↑	↑	↑	↑
Neurotrophic factors	BDNF	↓	↓↓	n.m.	↓↓↓	↓↓
	pCREB	—	—	—	—	—
EFAD	Aβ and apoE solubility	—	—	(♀ > ♂ ≥ ♂)	n.m.	n.m.
	Total Aβ	—	—	(♀ ≥ ♂ ≥ ♂)	n.m.	n.m.
	Soluble Aβ42	—	—	(♀ > ♂ ≥ ♂)	n.m.	n.m.
	Total apoE	n.c.	n.c.	(♀ ≥ ♂ > ♂)	n.m.	n.m.
	TBSX-apoE	(♀ ≥ ♂ ≥ ♂)	n.c.	(♀ > ♂ ≥ ♂)	n.m.	n.m.
APP processing	APP levels	—	—	(♀ ≤ ♂ ≤ ♂)	n.m.	n.m.
	BACE levels	—	—	(♀ ≤ ♂ ≤ ♂)	n.m.	n.m.
	C-terminal fragments	—	—	(♀ ≤ ♂ ≤ ♂)	n.m.	n.m.
Neurotrophic factors	BDNF	(♀ ≤ ♂ ≤ ♂)	n.m.	n.m.	n.m.	
	pCREB	(♀ ≤ ♂ ≤ ♂)	n.m.	n.m.	n.m.	
Neuroinflammatory cytokines	TNF-α	↑	↑	↑	↑	↑
	IL-1β	n.m.	—	—	—	—

5xFAD mice: ApoE and Aβ solubility: total Aβ: ELISA (49, 50, 52, 53, 57, 66, 222, 348), soluble apoE42: in TBS or PBS extraction fraction by ELISA (67, 334, 338, 349), total apoE: ELISA or Western blot (67, 348, 349); TBSX-apoE: in TBSX extraction fraction by ELISA (67). APP processing: APP, BACE, C-terminal fragments by Western blot (49, 52, 53, 58, 67, 222, 329, 336, 337, 339, 348–352). Neurotrophic factors: brain-derived neurotrophic factor (BDNF) and pCREB proteins by Western blot or mRNA by qPCR (55, 61, 336, 350, 352, 353). Neuroinflammatory cytokines: TNF-α, IL-1β by qPCR (185, 329, 342, 351, 354). EFAD mice: ApoE and Aβ solubility: total Aβ: ELISA (66, 172), soluble apoE42: in TBS extraction fraction by ELISA (66, 172), total apoE: ELISA (66, 70), TBSX-apoE: in TBSX extraction fraction by ELISA (66, 172). APP processing: APP by Western blot (66). Neurotrophic factors: BDNF and pCREB proteins by Western blot (70, 193). Neuroinflammatory cytokines: TNF-α, IL-1β mRNA by qPCR (72, 106). Change Direction: increase ↑, decrease ↓. Extent: the number of arrows (lower-higher) relative to an earlier age. If known and significant, differences between sex or ApoE genotypes are specifically indicated within each cell relative to an earlier age. n.c., no change; n.m., not measured; —, not detectable.

EFAD transgenic mouse model Alzheimer’s disease 1737
that synaptic deficits may precede frank neuronal loss in humans (135–139), eventually resulting in the cognitive impairments characteristic of AD. Postsynaptic density protein 95 (PSD95) and drebrin are postsynaptic intracellular scaffold proteins commonly used to assess the structural integrity of synapses. In particular, AD patients exhibit decreased levels PSD95 and drebrin (140–144). PSD95 regulates synaptic strength and plasticity (145–149) via molecular organization of the postsynaptic region (149–151). Drebrin, a spine-resident side-binding protein of filamentous actin, regulates spine morphology, size, density, and maturation (152–157) via regulation of actin cytoskeleton dynamics (158–165). In a recent publication using only ♀ EFAD mice, postsynaptic proteins (PSD95 and drebrin) were reduced in the E4FAD-HP from 2 to 6 months compared with E3FAD and E2FAD mice (Fig. 4) (70). These deficits in synaptic proteins are consistent with the behavioral deficits.

Solubility of apoE and Aβ42 in ♀ EFAD mice. In brain homogenates, total Aβ42 levels are 5xFAD >> E4FAD > E3FAD = E2FAD (Fig. 5A) (66). To measure the solubility of both Aβ and apoE, particularly the apoE-lipoproteins in brain tissue, we adapted a three-step sequential protein extraction protocol using TBS, TBS + Triton X-100 (TBSX), and formic acid, producing extraction profiles for Aβ and apoE (Fig. 5B, D) (66, 67). In the Aβ extraction profile, the 5xFAD >> E4FAD > E3FAD = E2FAD pattern was observed in the TBS and formic acid extraction fractions, while the TBSX fraction contained low levels of Aβ42 that were comparable across the Tg-mouse strains [Fig. 5B, adapted from (66, 67)]. These biochemical results are consistent with the delay in Aβ deposition induced by the replacement of m-APOE with h-APOE (Fig. 3A), as are the genotype effects in levels of total and soluble Aβ42 with E4FAD > E3FAD = E2FAD (Fig. 5A, B).

The apoE extraction profile detects apoE-lipoproteins in the TBSX fraction, a nonionic detergent that releases apoE from lipoproteins without inducing the formation of new micelles, as can occur with SDS and other ionic detergents (66, 67). Thus, although total levels of apoE4 < apoE3 = apoE2 in the brains of humans (103, 166, 167), APOE-TR mice (5, 47, 166–170), and EFAD mice (Fig. 5C), this isoform-specific difference is only in the TBSX-apoE4 (Fig. 5D) (66). C57BL/6 WT mice do not express Aβ42, but do express m-apoE and, so, are included for comparison with the 5xFAD mice. For total apoE, the order is the
reverse of the total β levels: $\text{WT} < 5\times \text{FAD} \leq E\text{4FAD} < E\text{3FAD} = E\text{2FAD}$ [Fig. 5D, adapted from (66, 67)]. However, in the extraction fractions, m-apoE from the WT is detected in the TBSX fraction, while the m-apoE from the 5xFAD mice is not detectable, though low levels of m-apoE from both WT and 5xFAD are detected in the TBS and formic acid fractions. Thus, the presence of β42 affects m-apoE solubility, specifically eliminating TBSX-m-apoE.

In the soluble fraction, the levels of the apoE isoforms are not significantly different, while soluble β42 and oAβ are significantly higher with apoE4, and apoE4/β complex levels are significantly lower (Fig. 5E) (20, 66). Indeed, APOE4 is characterized by increased levels of soluble β (Aβ42 and oAβ) (20, 66). Soluble β correlates with cognitive decline and disease severity in humans, and memory decline in FAD-Tg mice [for review see (14)]. To address the pathways that may underlie this correlation between apoE4 and increased soluble β required the development of novel reagents, including a new monoclonal antibody (mAb) specific to β (MOAB-2) (171) that enabled development of the critical oAβ (66) and apoE/β ELISAs (20). Importantly, lower levels of apoE lipidation and apoE/β complex in APOE4 versus APOE3 negatively correlate with soluble β levels (Fig. 5E) (20, 66, 172).

Lipidomic analysis in δ EFAD mice. Recent improvements in lipidomic technology have advanced the field to a point where it is now possible to accurately identify and quantify thousands of phospholipids (PLs) in complex biological samples with relative ease. Recently, a lipidomics study revealed that the ratios of arachidonic acid (AA) and DHA increased in several major PL classes in the blood from cognitively normal δ carriers who converted to mild cognitive impairment/AD within 3 years (173). Longitudinal profiling of E3FAD and E4FAD mice showed that blood...
AA- and DHA-containing PL species were altered as early as 2.5 months of age. At 6 months, AA- and DHA-containing lysophosphatidylcholine species increased in blood, but decreased in the brains of E4FAD compared with E3FAD mice (173). Previous studies have shown that lysophosphatidylcholine-DHA is a preferred DHA carrier to the brain (174), and that the major facilitator superfamily domain-containing protein 2 (mfsd2a) transports this lipid across the blood-brain barrier (BBB) (175, 176). Hence, an increase in this lipid in the blood and a decrease in the brain suggests reduced transport of DHA to the brain in E4FAD mice compared to E3FAD and E2FAD mice. In addition, brain DHA transport is reduced in APOE4-TR mice compared with APOE2-TR mice, evidence for DHA transport deficiencies (177). Collectively, these studies suggest that an imbalance in AA and DHA may be due to transport deficiencies among the e4 carriers, which further contribute to the neuroinflammation associated with AD pathogenesis.

EFAD mice as a model for cerebrovascular dysfunction: a detailed example

CerVD is reemerging as a key component of AD, with unresolved questions as to the extent of CerVD and its significance to cognitive decline. Additional issues include the apparent differences between CerVD outcomes in humans and mouse models caused by APOE4, Aβ, and sex.
EFAD mice provide critical insight on the interactive role of APOE, sex, and Aβ in CerVD.

Cerebrovascular leakiness and vessel coverage in ♂ and ♀ EFAD mice. Plasma protein extravasation into the brain is a key outcome of CerVD, particularly BBB capillary leakage. Here, we demonstrate that fibrinogen levels in the CX and SB in 8-month-old EFAD mice follow the order: ♀ E4FAD > ♀ E3FAD = ♂ E4FAD > ♂ E3FAD (Fig. 6A). Total vessel coverage is a complementary outcome measure of BBB damage, and in the SB and deep CX layers follow the order: ♂ E3FAD > ♀ E4FAD ≥ ♂ E3FAD > ♀ E4FAD [Fig. 6B, C reproduced from (71)]. Thus, the combination of ♀ sex, APOE4, and Aβ induce pronounced BBB deficits that likely contribute to cognitive deficits. Indeed, high fibrinogen levels have been demonstrated in AD patients that are e4 carriers (178) and induce glial activation and neuronal dysfunction. Angiogenic growth factors are important for maintaining BBB function. Recent data demonstrate that plasma levels of one angiogenic growth factor, the epidermal growth factor (EGF), follow the order: ♂ E3FAD > ♂ E4FAD ≥ ♀ E3FAD > ♀ E4FAD (71). Importantly, peripheral EGF administration to mice prevented cognitive decline, cerebrovascular leakiness, and vessel coverage deficits in ♀ E4FAD (71). Therefore, disruption of plasma angiogenic growth factor levels is a potential downstream pathway that contributes to BBB dysfunction in EFAD mice.

Cerebral amyloid angiopathy and microbleeds in ♂ and ♀ EFAD mice. Cerebral amyloid angiopathy (CAA) and microbleeds are often described as linked pathology. Here, we present data that CAA in the CX is higher in E4FAD mice regardless of sex (upper layers > deep layers), but not the SB (Fig. 7A), consistent with other investigators (73). The CAA is present primarily in larger vessels, although some capillary CAA is observed. When assessed using triple staining confocal analysis of the larger vessels, Aβ is found attached to the outside of laminin, in the perivascular space between brain endothelial cells and laminin, and penetrating the vessel (Fig. 7B). These data raise the important general question of how Aβ in the brain interstitial fluid deposits as CAA. Identified interstitial fluid drainage pathways include: 1) perivascular flow along the capillaries to the arteriole/artery basement membrane and; 2) the lymphatic pathway, in which CSF enters the brain along paravascular channels surrounding small arteries, exchanges with interstitial fluid, which is then cleared along paravascular spaces of large veins. We propose that our data are consistent with apoE4-induced impaired perivascular Aβ drainage in arterioles (179, 180), which also results in capillary CAA. In human AD patients, CAA is higher with APOE4 (181). However, in APOE genotype-matched AD patients, CAA is higher in ♂ compared with ♀. While one suggestion for this apparent difference between the EFAD mice and humans is that CerVD in humans is unique (73), there are several alternative explanations. First, the ♂/♀ differences in CAA may become more apparent in aged EFAD mice. Second, apoE3 may be more protective in ♀ versus ♂ e3/4 carriers. Third, and our hypothesis, is that peripheral AD-risk factors are greater in ♀, inducing cerebrovascular and BBB dysfunction, leading to CAA.

In EFAD mice, microbleeds partially mimic fibrinogen extravasation, rather than CAA (71, 73, 182): ♀ E4FAD > ♀ E3FAD > ♀ E4FAD = ♂ E3FAD (Fig. 7C) (71). In AD, microbleeds are associated with ♂, higher blood pressure, lower CSF Aβ42, and APOE4 (183). The same considerations for CAA may underlie the microbleed differences between EFAD mice and humans. In addition, microbleeds are not severe, even in ♀ E4FAD mice, and in our experience, are localized to the deeper layers of the CX. Therefore, at 8 months, microbleeds could be driven by capillary or post-capillary venule breakdown, rather than CAA-induced arterial damage. Alternatively, APOE4-modulated damage to different parts of the vascular tree may be APOE genotype- and sex-specific, eventually leading to microbleeds.

EFAD mice and therapeutic treatment

EFAD mice are a vital tool for testing therapeutics. EFAD mice exhibit temporally-defined, APOE-modulated changes in outcomes for efficacy (behavior, neuronal protein levels), pharmacodynamic activity (Aβ levels, neuroinflammation, and CerVD), and indirect targeted engagement. Thus, the activity of therapies/drug-like molecules can be assessed in prevention, treatment, and reversal paradigms. Therapies can target proximal (e.g., apoE lipidation) or downstream processes (e.g., neuroinflammation) that are disrupted by APOE4 and the detrimental interaction of ♀, APOE4, and Aβ (e.g., sex hormone based). Further, whether a therapy is specific for APOE4, Aβ, or is applicable for all groups (APOE genotype, sex, ±Aβ) can be determined by incorporating E2FAD, E3FAD mice, E3FAD mutations (EFAD, EFAD-NC). Thus far, pharmacological and nonpharmacological therapies targeting apoE-lipidation, general neuroprotection, CerVD, and sex hormone pathways have been tested in EFAD mice.

Targeting apoE4 lipidation

Lower lipidation/lipoprotein-associated levels in apoE4 was targeted in ♂ E4FAD mice using retinoid X receptor (RXR) agonists. The history of RXR agonists in the context of AD has been extensively reviewed elsewhere (184–192). Briefly, key issues center on whether RXR agonists increase apoE levels or lipidation (via increasing ABCA1 levels), the effect of human apoE4 and the duration of treatment. In ♂ E4FAD mice, short-term RXR agonist treatment (5.75–6 months) increased ABCA1 levels, apoE4 lipoprotein-association/lipidation, and apoE4/Aβ complex, decreased soluble Aβ, and increased PSD95 in the HP (172). However, RXR agonists induced no beneficial effects in ♂ E4FAD using a prevention protocol (5–6 months) and actually increased soluble Aβ levels in ♂ E3FAD and ♂ E4FAD CX with the short-term protocol, possibly the result of systemic hepatomegaly. These data support RXR agonists to address
Fig. 6. Cerebrovascular leakiness and vessel coverage in 8-month-old EFAD mice. Fibrinogen (red) levels in the CX (A) and SB (B) follow the order: ♀ E4FAD > ♂ E3FAD = ♂ E4FAD > ♂ E3FAD. Green = CD31; n = 8. Data expressed as mean ± SEM. *P < 0.05 by two-way ANOVA and Tukey’s post hoc comparisons. #P < 0.05 by two-way AVOVA followed Fisher’s LSD test (new data). C. Laminin (green) staining as a marker of total vessel coverage follows the order: ♂ E3FAD > ♂ E4FAD ≥ ♀ E3FAD > ♀ E4FAD in the deep CX and SB [adapted from (71)].
Neuroprotectants

The experimental drug, 4-methyl-5-(2-(nitrooxy) ethyl) thiazol-3-ium chloride, was designed based on the anticonvulsant drug, Zendra, to activate the NO/cyclic guanosine monophosphate/phosphorylated cAMP-response element binding protein (pCREB) pathway as a multifunctional protective drug. 4-methyl-5-(2-(nitrooxy) ethyl) thiazol-3-ium...
chlordiazepoxide treatment of 3 E4FAD mice (3.5–6 months) lowered Aβ levels (soluble and insoluble) and increased both pCREB and PSD95 (193).

Nonpharmacological treatments

Additional nonpharmacological treatments tested in EFAD mice include EGF targeting cerebrovascular dysfunction (71) and 17-β estradiol (E2) treatment of ovariectomized (OVX) ♀ EFAD mice. E2 decreased soluble Aβ42 levels in ♀ E3FAD and ♀ E4FAD mice. However, insoluble Aβ levels increased in ♀ E4FAD mice (194). Therefore, the activity of E2 may be dependent on the relative impact of extracellular and soluble Aβ on AD-induced neurodegeneration, with the results consistent with the hypothesis that soluble αAβ is toxic, while amyloid plaques are relatively benign (Fig. 1).

POTENTIAL DISADVANTAGES OF THE EFAD MOUSE MODEL

EFAD mice share weaknesses common to all FAD-Tg mice, including questions regarding the relevance of FAD transgene-induced pathology to sporadic AD, particularly during aging. The comparison of rodent to human aging is also a construct with inherent limitations based on differences in species, and strain differences among mice. Thus, it is useful to evaluate whether FAD-Tg mice can mimic aspects of aging and AD pathology. A major issue with h-APP-Tg mice is that their 2 year life-span may not be sufficient to observe the development of AD pathology (195). As with most FAD-Tg models, AD-related pathology, particularly Aβ deposition, develops prior to middle age, which does not model the human condition. These concerns are mitigated to some extent in the EFAD by two factors. First, based on the genetic background of EFAD mice [(B6SJLF1xC57BL/6) from 5xFAD (50) x (C57BL/6) from APOE-TR (32)], we estimate that 10–14 months will represent middle age and 18 months will represent old age (https://www.nia.nih.gov/research/dab/aged-rodent-colonies-handbook/strain-survival-information) (196). Specifically, with the known survival rates for the background strains of the EFAD mice: 1) 5xFAD have a ~75% survival rate at 16 months (197); and 2) C57BL/6 and APOE-TR have 75% survival rate at 24 months for ♀ and 22 months for ♀ (196). Thus, the EFAD mice have ~75% survival at 20 months for ♀ and 19 months for ♀, making our target “old age” 18 months. Although specific measures of AD pathology in the EFAD are significant by 6 months, pathology continues to develop until at least 18 months, the oldest EFAD mice we have examined thus far (data not shown). Second, the EFAD-NC littermates provide both a comparison to the EFAD mice and a complementary approach to the address functional questions about APOE in the absence of FAD-induced pathology.

Despite these limitations, EFAD mice are the only well-characterized FAD/h-APOE-Tg mouse model with an extensive and growing provenance. Consistent with human AD patients, E4FAD mice develop pathology in a number of APOE genotype-, sex-, and age-dependent pathways. EFAD mice are a tractable mouse model to study a number of AD-related outcomes, including changes in behavior, Aβ deposition, tau pathology, neuroinflammation, and neuronal viability (Table 2), as well as apoE lipination and Aβ solubility (Table 3). These mice also allow for study of the interactions among AD risk factors, including age, APOE genotype, and sex.

FUTURE DIRECTIONS

Using EFAD mice as a model of aging and development of AD pathology

Understanding the interaction and dominance of APOE genotype versus sex with aging. Identification of the interactions between APOE genotype and sex are critical to understanding both aging and the development of AD pathology. Making predictions requires identification of the dominant risk factor in a given comparison, APOE genotype or sex: 1) The levels of Aβ and amyloid deposition, as well as soluble Aβ levels are higher in ♀ versus ☉ in several FAD-Tg mice (Tg2576, APP/PS1, 3xTg-AD) (64, 198–203), as well as the EFAD mice (Table 3) (75). 2) In APOE-Tg mice, cognitive deficits are greater in ♀ APOE4 versus APOE3 (for review (21, 204–209)). In EFAD mice, behavioral deficits are E4FAD > E3FAD and ♀ > ☉ in 6- and 8-month-old mice (Fig. 2, Table 2). 3) In humans, lifetime AD risk, cognitive decline and accumulation of Aβ is ♀ > ☉ in e4 carriers. These data suggest that the greatest risk for AD is with ♀ APOE4 carriers (6–13, 102, 210–213). These observations introduce a recurring theme in this field of research: which risk factor is dominant in its effects on AD pathology: APOE genotype or sex, and does this change with age? Based on cognition and AD-related histopathology, our general predicted order for AD pathology, with the addition of heterozygous E3/4FAD, is: ♀ E3FAD < ☉ E3FAD < ☉ E3/4FAD < ☉ E3/4FAD < ☉ E4FAD < ♀ E4FAD (the effect of the APOE2 genotypes are discussed separately). However, the dominant risk factor in a given comparison, APOE genotype or sex, is unclear. In general, the key comparisons for establishing the dominant effects of APOE versus sex will be determined by heterozygous E3/4FAD mice versus homozygous E3FAD and E4FAD mice, as established by age and AD pathology. For example, Aβ deposition, neuroinflammation, and tau pathology in ♀ E4FAD versus ♀ E3/4FAD will predict a dominant risk factor: APOE4 if ♀ E4FAD shows the greatest pathology, or ♀ sex if ♀ E3/4FAD has the greater pathology. How this relative risk changes with age is critical. As well, using the EFAD-NC we can determine the effect of APOE versus sex interactions on normal aging.

Understanding trajectories, cliffs, and therapeutic windows. Multiple measures of AD pathology during aging will inform two critical components that indicate the relative contribution of risk factors, APOE or sex, and how their contributions are altered along the trajectory of the disease: 1) “Cliffs” or tipping points suggest a clear dominant risk factor: ♀ sex or APOE. For example, while ♀ E4FAD
mice exhibit the greatest behavioral deficits and Aβ pathology at both 6 and 8 months,♀ E3FAD = ♂ E4FAD at 8 months (71), suggesting a cliff or tipping point where ♀ sex is dominant compared with APOE genotype. However, unlike humans, as the ♀ EFAD mice age, they maintain 45–80% E4 levels and normal uterine weight (214–218), which may produce an interesting phenotype at older ages with the scale tipping toward the dominance of APOE genotype. This change can be compared with OVX ± E2 replacement. 2) Therapeutic windows are periods during which specific components of AD pathology are differentially affected by APOE or ♀ sex, allowing us to design and test specific therapeutic targets in preclinical studies using prevention or reversal paradigms.

Understanding the function of APOE2. The majority of the published data on the EFAD mice have used ♀ mice ≤ 8 months. As ♀ and ♀ mice are aged from 10 to 14 to 18 months, sex and APOE genotype interact to induce significant differences in various components of AD pathology (data not shown). As well, all of our work thus far has been with APOE2+/−/5xFAD−/− mice. As the APOE heterozygous genotypes are investigated (e2/3, e2/4, e3/4), the influence of APOE genotype and sex interactions can be fully defined. In studying the APOE2 genotypes, it is important to keep in mind that if there are functional differences among e2/2, e2/3, and e2/4, it will likely go unidentified in all but the largest human cohort studies. This is because most studies will be underpowered for significance because of the low frequency of the e2 alleles [estimated: e2/2 at 0.4%, e2/3 at 8.8%, and e2/4 at 1.5% (5, 6)]. This effect is exacerbated if the APOE2 genotypes are further stratified by age, AD status, and sex, resulting in the apparently contradictory literature for this field. However, heterozygous genotypes of APOE2 mice can be bred to reach significance via power analysis for any variable in comparison to heterozygous genotypes of APOE3 and APOE4. Indeed, the study of e2/2, e2/3, and e2/4 is perhaps a more subtle model to study the protective effects in both a normal (EFAD-NC) and AD (EFAD) cohort of mice. These results are key for identifying how the genotypes of APOE2 may cause differential effects in the context of being protective factors, for example, does e2/4 behave more like the risk e4 or the protective e2. These studies will provide new insights into how APOE2 imparts healthy brain aging and reduces AD risk, leading to diagnostic biomarkers and identification of therapeutic targets.

Using EFAD to identify environmental risk factors in AD pathology

About 98% of the human AD cases are sporadic with only half the cases linked to APOE4 and other genetic loci identified by genome-wide association study, suggesting the presence of other genetic or environmental risk factors and, thus, the potential interaction between genetic and environmental risk factors (88, 219–227). Thus, while APOE4 is the major genetic risk factor for AD, a number of environmental or lifestyle risk factors, have also been identified (228–233). Two examples are given below.

Effect of high fat diets on AD. Epidemiological studies in humans consistently show an interaction between obesity and dementia/increased AD risk (228, 234–239), though the interaction with sex remains controversial (240–243). High fat diet-induced obesity accelerates AD pathology in FAD-Tg mice (244–248) and impairs cognition in APOE4 TR mice (249). However, the interaction among obesity, APOE genotype, and sex in modulating development of AD pathology is poorly understood (250, 251). EFAD mice are a relevant model to address this question and the importance of lifestyle risk factors and their association with APOE in a genotype- and sex-dependent manner.

Effect of particulate air pollutants. The role of particulate air pollutants in accelerating cognitive impairment has been established in human (252–255) and WT mouse studies (256). Exposure to particulate air pollutants increased Aβ deposition, amyloid plaques and soluble oAβ in ♀ E4FAD compared with ♀ E3FAD mice (257). This increased susceptibility of ♀ e4 carriers to the neurotoxicity of particulate air pollutants provides evidence for interactive effects among genetic and environmental risk factors.

Using EFAD as a therapeutic model

Repurposing cardiovascular disease drugs. As discussed above, we previously demonstrated that in EFAD mice, induction of ABCA1/ABCG1 with RXR agonists increased apoE4 lipoprotein-association/lipidation, decreased soluble Aβ, and increased PSD95 in the HP (172). However, treatment induced severe hepatomegaly, limiting RXR agonism for AD treatment. Approaches for targeting apoE lipoprotein-association/lipidation in the brain without the use of RXR agonists emerged as a promising alternative as the major enzymatic and lipid transport activities involved in the peripheral system are also expressed in the brain (258–279). The lipoprotein-association/lipidation of apoE in the brain parenchyma is the result of intercellular lipoprotein maturation and remodeling (263, 274, 280–291). Current strategies include directly targeting ABCA1 activity with an apoE mimetic peptide in the EFAD to evaluate its effect on apoE levels or apoE4 lipoprotein-association/lipidation and reduction of AD pathology.

Cerebrovascular dysfunction (CerVD). Many of the planned treatment strategies that target either the proximal or downstream processes modulated by APOE and sex will likely also target CerVD. Proximally, directly targeting the structural and functional deficits of apoE4 may ameliorate detrimental changes that cause CerVD (190, 292–294). Targeting downstream signaling pathways or the soluble mediators produced by APOE-modulated activated glia (astrocytes and microglia) and pericytes may ameliorate CerVD, or prevent the risk with a subsequent additional hit, such as peripheral inflammation and high fat diets (292). Further, brain endothelial cells are often overlooked as a direct therapeutic target. The advantages of this target include: 1) Brain penetration is not required; 2) Peripheral risk factors will likely initially target brain endothelial cells rather than cells in the brain and; 3) As highlighted by
the EGF treatment study, as brain endothelial cells play a central role in the homeostasis of the CNS, targeting brain endothelial cells may induce a pronounced beneficial effect on cognition. Currently, the ability of EGF to reverse cognitive and cerebrovascular deficits is under evaluation.

Neuroinflammation. Epidemiological studies targeting peripheral inflammation for AD indicate APOE-dependent lowering of AD risk due to nonsteroidal anti-inflammatory drugs (NSAIDs), with a beneficial effect for ε4 resulting in initiation of AD Anti-Inflammatory Prevention Trial (ADAPT) (295–304). However, ADAPT failed and led to more criticism for evaluating the role of neuroinflammation in AD. It remains unclear whether targeting AD-relevant neuroinflammation receptor pathways is beneficial, detrimental, or not effective. For example, data from FAD-Tg mice provide evidence for beneficial (25, 305–307) and detrimental effects from TLR4 inhibition (308–311). Inflammatory receptors may function differently depending on stage of AD pathology and APOE genotype, necessitating prevention and treatment protocols. EFAD mice are an ideal model to investigate this interplay between neuroinflammation and neurodegeneration that result in cognitive behavioral impairments, and for identifying the appropriate timing and targets involved in AD-associated neuroinflammation. Currently, EFAD are being evaluated with a prevention and reversal paradigm trial with a small TLR4 antagonist to evaluate its effect on AD pathology.

Selective estrogen mimics and selective estrogen receptor modulators. ε2 is key for vulnerability to APOE4-induced AD risk and pathology: OVX-induced loss of circulating ε2 in premenopausal women (312–316) and FAD-Tg mice (201, 317, 318) causes cognitive deficits that can be reversed by ε2 and estrogen therapy (ET), and in FAD-Tg mice, the OVX-induced increase in amyloid deposition is also reversed with ET (319, 320). However, the timing of ET in relation to the risk of AD in naturally menopausal women is a critical factor due to the apparent opposing outcomes based on early versus late menopause treatment (321). The controversial outcomes associated with timing could be addressed with the development of safe ET alternatives for the prevention and treatment of AD, potentially specific for the APOE genotype of patient. Based on the need for ET alternatives, we plan to study selective estrogen receptor modulators (322–325), or selective estrogen mimics (326) in ±OVX♀ EFAD mice.

SUMMARY

Given the prevalence of AD and the repeated failure of clinical trials, it is critical to develop Tg-mouse models to understand the mechanisms driving the trajectory of AD, identify early-stage biomarkers, and test preclinical therapeutic targets. EFAD mice mimic a range of AD-related pathologies, including cognitive decline, region-specific Aβ and plaque deposition, progressive neuroinflammation, reduced synaptic viability, and cerebrovascular dysfunction. EFAD mice provide insight into the specific pathways and mechanisms that underlie APOE- and sex-dependent modulation of AD pathology. A complete characterization of the EFAD mice with age will enable an understanding of how the interaction among the greatest AD risk factors modulates AD-related pathology, specifically age, APOE genotype, and sex. Consistent with the underlying principles of personalized medicine, only when we understand these interactions can we begin to design therapeutic approaches for the prevention and treatment of AD.

The authors acknowledge the histology/imaging services that were provided by the Research Resources Center, Research Histology and Tissue Imaging Core at the University of Illinois at Chicago established with the support of the Vice Chancellor of Research.

REFERENCES

1. Erten-Lyons, D., L. O. Sherbakov, A. M. Piccinin, S. M. Hofer, H. H. Dodge, J. F. Quinn, R. L. Woldjer, P. L. Kramer, and J. A. Kaye. 2012. Review of selected databases of longitudinal aging studies. *Alzheimers Dement.* 8: 584–589.

2. Shineman, D. W., G. S. Basi, J. L. Bizon, C. A. Colton, B. D. Greenberg, B. A. Hollister, J. Lincecum, G. G. Leblanc, L. B. Lee, F. Luo, et al. 2011. Accelerating drug discovery for Alzheimer’s disease: best practices for preclinical animal studies. *Alzheimers Res. Ther.* 3: 28.

3. Reitz, C., and R. Mayeux. 2010. Use of genetic variation as biomarkers for mild cognitive impairment and progression of mild cognitive impairment to dementia. *J. Alzheimers Dis.* 19: 229–251.

4. Leoni, V. 2011. The effect of apolipoprotein E (ApoE) genotype on biomarkers of amyloidogenesis, tau pathology and neurodegeneration in Alzheimer’s disease. *Clin. Chem. Lab. Med.* 49: 375–383.

5. Shinozara, M., T. Kanekiyo, L. Yang, D. Lithicum, M. Shiohara, Y. Fu, L. Price, J. L. Frisch-Daiello, X. Han, J. D. Fryer, et al. APOE2 eases cognitive decline during aging: clinical and preclinical evaluations. *Ann. Neurol.* Epub ahead of print. March 2, 2016; doi:10.1002/ana.24628.

6. Farrer, L. A., L. A. Cupples, J. L. Haines, B. Hyman, W. A. Kukull, R. Mayeux, R. H. Myers, M. A. Pericak-Vance, N. Risch, and C. M. van Duijn. 1997. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. *APOE and Alzheimer Disease Meta Analysis Collaboration.* *J. Am. Med. Assoc.* 278: 1349–1356.

7. Breitner, J. C., B. W. Wyse, J. C. Anthony, K. A. Welsh-Bohmer, D. C. Steffens, M. C. Norton, J. T. Tschanz, B. L. Plassman, M. R. Meyer, I. Skoog, et al. 1999. APOE-epsilon4 count predicts age when prevalence of AD increases, then declines: the Cache County Study. *Neurology.* 53: 321–331.

8. Martínez, M., D. Campion, A. Brice, D. Hannequin, B. Dubois, O. Didierjean, A. Michon, C. Thomas-Anterion, M. Puel, T. Frebourg, et al. 1998. Apolipoprotein E epsilon4 allele and familial aggregation of Alzheimer disease. *Arch. Neurol.* 55: 810–816.

9. Andersen, K., L. J. Launer, M. E. Dewey, L. Letermeur, A. Ott, J. R. Copeland, J. F. Dartigues, P. Kragh-Sorensen, M. Baldereschi, C. Brayne, et al. 1999. Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. *EURODEM Incidence Research Group.* *Neurology.* 53: 1992–1997.

10. Bretsy, P. M., J. G. Buckwalter, T. E. Seeman, C. A. Miller, J. Poirier, G. D. Schellenberg, C. E. Finch, and V. W. Henderson. 1999. Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. *Alzheimer Dis. Assoc. Disord.* 13: 216–221.

11. Molero, A. E., G. Pino-Ramirez, and G. E. Maestre. 2001. Modulation by age and gender of risk for Alzheimer’s disease and vascular dementia associated with the apolipoprotein E epsilon4 allele in Latin Americans: findings from the Maracaibo Aging Study. *Neurosci. Lett.* 307: 5–8.

12. Corder, E. H., E. Ghebremedhin, M. G. Taylor, D. R. Thal, T. G. Ohm, and B. Braak. 2004. The bipolar relationship between regional brain senile plaque and neurofibrillary tangle distributions.
modification by age, sex, and APOE polymorphism. Ann. N. Y. Acad. Sci. 1019: 24–28.

13. Altmann, A., L. Tian, V. W. Henderson, and M. D. Greicius; Alzheimer’s Disease Neuroimaging Initiative Investigators. 2014. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann. Neurol. 75: 565–573.

14. Larson, M. E., and S. E. Lesne. 2012. Soluble Abeta oligomer production and toxicity. J. Neurochem. 120 (Suppl. 1): 125–139.

15. Selkoe, D. J. 2008. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192: 106–113.

16. Tu, S., S. Okamoto, S. A. Lipton, and H. Xu. 2014. Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 9: 48.

17. Klyubin, I., W. K. Cullen, N. W. Hu, and M. J. Rowan. 2012. Alzheimer’s disease Abeta assemblies mediating rapid disruption of synaptic plasticity and memory. Mol. Brain. 5: 25.

18. McLean, C.A., R. A. Cherry, F. W. Fraser, S. J. Fuller, M. J. Smith, K. Beyreuther, A. I. Bush, and C. L. Masters. 1999. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46: 860–866.

19. Tomic, J. L., A. Pensalfini, E. Head, and C. G. Glabe. 2009. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol. Dis. 35: 352–358.

20. Tai, L. M., K. L. Youmans, L. Jungbauer, C. Yu, and M. J. Ladu. 2013. Introducing human APOE ε4 into mouse brain and human samples. J. Biol. Chem. 288: 5914–5926.

21. Tai, L. M., K. L. Youmans, L. Jungbauer, C. Yu, and M. J. Ladu. 2013. Introducing human APOE ε4 into zebrafish transgenic mouse models. Int. J. Alzheimer’s Dis. 2011: 810981.

22. Trommer, B. L., C. Shah, S. H. Yun, G. Gamkrelidze, E. S. Pasternak, G. L. Ye, M. Sotak, P. M. Sullivan, J. F. Pasternak, and M. J. LaDu. 2004. APOE isoform affects LTP in human targeted replacement mice. Neuroreport. 15: 2655–2658.

23. Trommer, B. L., C. Shah, S. H. Yun, G. Gamkrelidze, E. S. Pasternak, W. B. Stine, A. Manelli, P. Sullivan, J. F. Pasternak, and M. J. LaDu. 2005. APOE isoform-specific effects on LTP: blockade by oligomeric amyloid-beta1–42. Neuropsychopharmacology. 18: 75–82.

24. Bien-Ly, N., Y. Andrews-Zwilling, Q. Xu, A. Bernardo, C. Wang, and Y. Huang. 2011. C-terminal-truncated apolipoprotein apoE4 inefficiently clears amyloid-β (Aβ) and acts in concert with Aβ to elicit neuronal and behavioral deficits in mice. Proc. Natl. Acad. Sci. USA. 108: 4236–4241.

25. Zhu, Y., E. Nwabuisi-Heath, S. B. Dumanis, L. M. Tai, C. Yu, G. W. Rebeck, and M. J. LaDu. 2012. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia. 60: 559–569.

26. Liao, F., T. J. Zhang, H. Jiang, K. L. Lefon, G. H. Schleicher, R. Vasquez, P. M. Sullivan, and D. M. Holtzman. 2015. Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathol. Commun. 3: 70.

27. Fagan, A. M., M. Watson, M. Parasandian, K. R. Bales, S. M. Paul, and D. M. Holtzman. 2002. Human and murine APOE markedly alters a beta metabolism before and after plaque formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 9: 305–318.

28. Fryer, J. D., K. Simmons, M. Parasandian, K. R. Bales, S. M. Paul, P. M. Sullivan, and D. M. Holtzman. 2005. Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J. Neurosci. 25: 2903–2910.

29. Oddo, S., A. Caccamo, D. Cheng, and F. M. LaFerla. 2009. Genetically altering Abeta distribution from the brain to the vasculature ameliorates tau pathology. Brain Pathol. 19: 421–430.

30. Holtzman, D. M., K. R. Bales, T. Tenkova, A. M. Fagan, M. Parasandian, L. J. Sartorius, B. Mackey, J. Olney, D. McKeel, D. Wozniak, et al. 2000. Apolipoprotein E isoform-disease interaction: 1. Potential role of APOE isoform on cerebral amyloid deposition and neuritogenesis in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 97: 2892–2897.

31. Buttini, M., G. Q. Yu, K. Shockett, Y. Huang, B. Jones, E. Maslia, M. Mallory, T. Yeo, F. M. Longo, and L. Mucke. 2002. Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation. J. Neurosci. 22: 10539–10548.

32. Sullivan, P. M., H. Mezdour, Y. Aratani, C. Knouff, J. Najib, R. L. Reddick, S. H. Quarrandt, and N. Maeda. 1997. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE4 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 272: 17972–17980.

33. Ohno, M., L. Chang, W. Tseng, H. Oakley, M. Citron, W. L. Klein, R. Vassar, and J. F. Disterhoft. 2006. Temporal memory deficits in Alzheimer’s mouse model rescue by genetic deletion of BACE1. Eur. J. Neurosci. 25: 251–260.
phorylation of Tau at Ser396 occurs in the much earlier stage than neuron...

Disterhoft. 2011. Mechanisms underlying basal and learning-rate...

Urano, T., and C. Tohda. 2010. Icariin improves memory im...

Bhattacharya, V., A. Trawicka, C. Jenneckens, T. A. Bayer, and O. Wirths. 2017. be...

Kanekiyo, J. Youmans, K. L., L. M. Tai, E. Nwabuisi-Heath, L. Jungbauer, T.

Alzheimer’s new transgenic mouse model of Alzheimer disease.

Vassar, C. Yu, and M. J. Ladu. 2011. Amyloid-beta42 alters apolipo...

Pant., J. Neurosci. 13: 1295–1274.

Vidal, M., R. Morris, F. Grosveld, and E. Spanopoulou. 1990. Tissue-specific control elements of the Thy-1 gene. EMBO J. 9: 833–840.

Sullivan, P. M., H. Mezdour, S. H. Quartford, and N. Maeda. 1998. Type III hyperlipoproteinaemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apeo with human Apeo*

J. Clin. Invest. 102: 130–135.

Vandenbergh, R., J. O. Rinne, M. Boada, S. Kataya, P. Scheltens, B. Vellas, M. Tuchman, A. Gass, J. B. Fiebach, D. Hill, et al. 2016. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther. 8: 18.

Wolz, C., E. Siemen, R. Kettle, M. Case, R. Hayduk, J. Suhy, J. Oh, and J. Barakos. 2016. Amyloid-related imaging abnormalities from trials of solanezumab for Alzheimer’s disease. Alzheimers Dement (Amst). 2: 75–85.

Doody, R. S., R. G. Thomas, M. Farlow, T. Iwatsubo, B. Vellas, S. Joffe, K. Kieburtz, R. Raman, X. Sun, P. S. Aisen, et al. 2014. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370: 311–321.

The Lancet Neurology. 2017. Solanezumab: too late in mild Alzheimer’s disease? Lancet Neurol. 16: 97.

Le Couteur, D. G., S. Hunter, and C. Brayne. 2016. Solanezumab and the amyloid hypothesis for Alzheimer’s disease. BMJ. 355: 6771.

Piazza, F., and B. Winblad. 2016. Amyloid-related imaging abnormalities (ARIA) in immunotherapy trials for Alzheimer’s disease: need for prognostic biomarkers? J. Alzheimers Dis. 52: 417–420.

Abbott, A., and E. Dolgin. 2016. Failed Alzheimer’s trial does not kill leading theory of disease. Nature. 540: 15–16.

Pimplikar, S. W. 2009. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int. J. Biochem. Cell Biol. 41: 1261–1268.

Tomiyama, T., S. Matsuyama, H. Iso, T. Umeda, H. Takuma, K. Ohnishi, K. Ishitash, R. Teraoka, N. Sakama, T. Yamashita, et al. 2010. A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci. 30: 4845–4856.

Lazarov, O., and R. A. Marr. 2013. Of mice and men: neurogenesis, cognition and Alzheimer’s disease. Front. Aging Neurosci. 5: 43.
89. Reid, A. T., and A. C. Evans. 2013. Structural networks in Alzheimer’s disease. *Eur. Neuropsychopharmacol.* 23:65–77.
90. Risacher, S. L., L. Shen, J. D. West, S. Kim, B. C. McDonald, L. A. Beckett, D. J. Harvey, C. R. Jack, Jr., M. W. Weiner, and A. J. Saykin. 2010. Longitudinal MRI atrophy biomarkers: relationship to cognitive status in the ADNI cohort. *Neurobiol. Aging.* 31:1401–1418.
91. Høing, G. Y., A. D. Sadovnick, and H. Feldman. 2004. Apolipoprotein E epsilon4 genotype as a risk factor for cognitive decline and dementia: data from the Canadian Study of Health and Aging. *CMAJ.* 171:863–867.
92. Grossberg, G. T. 2003. Diagnosis and treatment of Alzheimer’s disease. *J. Clin. Psychiatry.* 64(Suppl. 9):3–6.
93. Reiman, E. M., R. J. Caselli, K. Chen, G. E. Alexander, D. Bandy, and J. Frost. 2001. Declining brain activity in cognitively normal apolipoprotein E epsilon4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. *Proc. Natl. Acad. Sci. USA.* 98:3354–3359.
94. Budrow, A. E., R. Desikan, K. R. Daffner, and D. L. Schacter. 2001. Perceptual false recognition in Alzheimer’s disease. *Neuropsychology.* 15:230–243.
95. Devanand, D. P., M. Sano, M. X. Tang, S. Taylor, B. J. Gurland, D. Wilder, Y. Stern, and R. Mayeux. 1996. Depressed mood and the incidence of Alzheimer’s disease in the elderly living in the community. *Arch. Neurol.* 53:1573–1577.
96. Braak, H., and E. Braak. 1994. Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. *Neurobiol. Aging.* 15:355–356; discussion 379–380.
97. Mirra, S. S., A. Heyman, D. McKeel, S. M. Sumi, B. J. Crain, L. M. Brownlee, F. S. Vogel, J. P. Hughes, G. van Belle, and L. Berg. 1991. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. *Neurology.* 41:479–486.
98. Evans, D. A., H. H. Funkenstein, M. S. Albert, P. A. Scherr, N. R. Cook, M. J. Chown, L. E. Hebert, C. H. Hennekens, and J. O. Taylor. 1989. Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. *J. Am. Med. Assoc.* 262:2551–2556.
99. Berlau, D. J., M. M. Corrada, E. Head, and C. H. Kawas. 2009. APOE epsilon2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. *Neurology.* 72:829–834.
100. Wilson, R. S., J. L. Bienias, E. Berry-Kravis, D. A. Evans, and D. A. Bennett. 2002. The apolipoprotein E epsilon2 allele and decline in episodic memory. *J. Neurol. Neurosurg. Psychiatry.* 73:672–677.
101. Corrada, M. M., A. Paganini-Hill, D. J. Berlau, and C. H. Kawas. 2013. Apolipoprotein E genotype, dementia, and mortality in the oldest old: the 90+ Study. *Alzheimers Dement.* 9:12–18.
102. Hyman, B. T., T. Gomez-Isla, M. Briggs, H. Chung, S. Nichols, F. Kohout, and R. Wallace. 1996. Apolipoprotein E and cognitive decline in an elderly population. *Ann. Neurol.* 40:55–66.
103. Beffert, U., J. S. Cohn, C. Petit-Turcotte, M. Tremblay, A. Nault, C. Ramassamy, J. Davignon, and J. Poirier. 1999. Apolipoprotein E and beta-amyloid levels in the hippocampus and frontal cortex of Alzheimer’s disease subjects are disease-related and apolipoprotein E genotype dependent. *Brain Res.* 843:67–94.
104. Nagy, Z., M. M. Esiri, K. A. Jobst, C. Johnston, S. Litchfield, E. Sim, and A. D. Smith. 1995. Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. *Neuroscience.* 69:757–761.
105. Keene, C. D., E. Cudahy, X. Li, K. S. Montine, and T. J. Montine. 2011. Apolipoprotein E isoforms and regulation of the innate immune response in brain of patients with Alzheimer’s disease. *Curr. Opin. Neurolobiol.* 21:990–928.
106. Tai, L. M., S. Ghura, K. P. Koster, V. Liakata, M. Mainschein-Cline, P. Kanabar, N. Collins, M. Ben-Aissa, A. Z. Lei, N. Bahroos, et al. 2015. APOE-modulated Abeta-induced neuroinflammation in Alzheimer’s disease: current landscape, novel data, and future perspective. *Neurobiol. Aging.* 36:1575–1582.
107. Egner-Sperger, R., S. Koel, U. von Eiten, and M. B. Graeber. 1998. Microglial activation in Alzheimer disease: association with APOE genotype. *Brain Pathol.* 8:439–447.
108. Gale, S. C., L. Gao, C. Mikacenic, S. M. Coyle, N. Rafals, T. Murray Dudenkov, J. H. Madenspacher, D. W. Draper, W. Ge, J. J. Aloor, et al. 2014. APOEpsilon4 is associated with enhanced in vivo innate immune responses in human subjects. *J. Allergy Clin. Immunol.* 134:127–134.
109. Tziakas, D. N., G. K. Chalkias, C. O. Antonoglou, S. Veletza, I. K. Tentes, A. X. Kortsariss, D. I. Hatseras, and J. C. Kaski. 2006. Apolipoprotein E genotype and circulating interleukin-10 levels in patients with stable and unstable coronary artery disease. *J. Am. Coll. Cardiol.* 48:2471–2481.
110. Licastro, F., E. Porcellini, C. Caruso, D. Lio, and E. H. Corder. 2007. Genetic risk profiles for Alzheimer’s disease: integration of APOE genotype and variants that up-regulate inflammation. *Neurobiol. Aging.* 28:1637–1643.
111. Lynch, J. R., W. Tang, H. Wang, M. P. Vivek, E. R. Bennett, P. M. Sullivan, D. S. Warner, and D. T. Laskowitz. 2003. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. *J. Biol. Chem.* 278:48529–48533.
112. Ophir, G., N. Amariglio, J. Jacob-Hirsch, R. Elkon, G. Chelli, and D. M. Michaelson. 2005. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. *Neurobiol. Dis.* 20:709–718.
113. Maezawa, I., M. Nishio, R. S. Montine, N. Maeda, and T. J. Montine. 2006. Neurotoxicity from innate immune response is greatest with targeted replacement of E4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. *FASEB J.* 20:797–799.
114. Ghura, S., L. Tai, M. Zhao, N. Collins, C. T. Che, K. M. Warpeha, and J. X. J. LaDu. 2014. Common variants at ABCA7, MS4A6A/MS4A6E, CD2AP, CD33 and APOE-E4 modulate in vivo innate immune responses in human subjects. *Neurobiol. Dis.* 63–77.
115. Fortea, J., E. Vilaplana, D. Alcolea, M. Carmona-Iragui, M. B. Sánchez-Saúndos, I. Sala, S. Antón-Aguirre, S. González, S. Medrano, J. Pegueroles, et al. 2014. Cerebrospinal fluid beta-amyloid and phospho-tau biomarker interactions affecting brain structure in preclinical Alzheimer disease. *Ann. Neurol.* 76:225–230.

EFAF transgenic mouse model Alzheimer’s disease 1749
126. Hampel, H., K. Blennow, L. M. Shaw, Y. C. Hoessler, H. Zetterberg, and J. Q. Trojanowski. 2010. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol. 45: 30–40.

127. Ibach, B., M. Wittmann, F. Pfannenschmidt, S. Poljansky, E. Haen, and G. Hajak. 2004. Genetic tau-variants in patients with frontotemporal dementia [article in German]. Psychiatr. Pract. 31 (Suppl. 1): S55–S57.

128. Jagust, W. J., S. M. Landau, L. M. Shaw, J. Q. Trojanowski, R. A. Koepp, E. M. Reiman, N. L. Foster, R. C. Petersen, M. W. Weiner, J. C. Price, et al. 2009. Relationships between biomarkers in aging and dementia. Neurology. 73: 1193–1199.

129. King, M. E., E. V. Ahuja, L. I. Binder, and J. Kuret. 1999. Ligand-dependent tau filament formation: implications for Alzheimer’s disease progression. Biochemistry. 38: 14851–14859.

130. López-González, I., A. Schlüter, E. Aso, P. García-Esparcia, B. Ansoleaga, F. Llorens, M. Carmona, J. Moreno, A. Fuso, M. Portero-Otin, et al. 2015. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J. Neuropathol. Exp. Neurol. 74: 319–344.

131. Morris, J. C., and D. J. Selkoe. 2011. Recommendations for the incorporation of biomarkers into Alzheimer clinical trials: an overview. Neurobiol. Aging. 32 (Suppl. 1): S1–S3.

132. Portero-Otin, C., and R. C. Petersen. 1999. Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab. Invest. 69: 123–137.

133. Patrick, G. N., L. Zukerberg, M. Nikolic, S. de la Monte, P. Dikkes, and L. H. Tsai. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402: 613–622.

134. Peskind, E. R. 1996. Neurobiology of Alzheimer’s disease. J. Clin. Psychiatry. 57 (Suppl. 14): 5–8.

135. Davies, C. A., D. M. Mann, P. Q. Sumpter, and P. O. Yates. 1987. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78: 151–164.

136. Masliah, E., M. Mallory, M. Alford, R. DeTeresa, L. A. Hansen, E. Masliah, S. M. Mallory, M. Alford, R. DeTeresa, L. A. Hansen, M. J. Davies, E. M. Mallory, M. Alford, R. DeTeresa, L. A. Hansen, J. R. DeKosky, E. Masliah, S. M. Mallory, M. Alford, R. DeTeresa, L. A. Hansen, and M. J. Davies. 2000. Synaptic dysfunction and disruption of the neuronal and synapse scaffolding of neurons in layer II of the entorhinal cortex during aging and Alzheimer’s disease. Ann. N. Y. Acad. Sci. 917: 121–124.

137. Davies, C. A., D. M. Mann, P. Q. Sumpter, and P. O. Yates. 1987. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78: 151–164.

138. Portero-Otin, C., and R. C. Petersen. 1999. Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab. Invest. 69: 123–137.

139. Patrick, G. N., L. Zukerberg, M. Nikolic, S. de la Monte, P. Dikkes, and L. H. Tsai. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402: 613–622.

140. Peskind, E. R. 1996. Neurobiology of Alzheimer’s disease. J. Clin. Psychiatry. 57 (Suppl. 14): 5–8.

141. Davies, C. A., D. M. Mann, P. Q. Sumpter, and P. O. Yates. 1987. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78: 151–164.

142. Portero-Otin, C., and R. C. Petersen. 1999. Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab. Invest. 69: 123–137.

143. Patrick, G. N., L. Zukerberg, M. Nikolic, S. de la Monte, P. Dikkes, and L. H. Tsai. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402: 613–622.

144. Peskind, E. R. 1996. Neurobiology of Alzheimer’s disease. J. Clin. Psychiatry. 57 (Suppl. 14): 5–8.

145. Davies, C. A., D. M. Mann, P. Q. Sumpter, and P. O. Yates. 1987. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78: 151–164.

146. Portero-Otin, C., and R. C. Petersen. 1999. Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab. Invest. 69: 123–137.

147. Davies, C. A., D. M. Mann, P. Q. Sumpter, and P. O. Yates. 1987. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78: 151–164.

148. Portero-Otin, C., and R. C. Petersen. 1999. Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab. Invest. 69: 123–137.

149. Patrick, G. N., L. Zukerberg, M. Nikolic, S. de la Monte, P. Dikkes, and L. H. Tsai. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402: 613–622.

150. Peskind, E. R. 1996. Neurobiology of Alzheimer’s disease. J. Clin. Psychiatry. 57 (Suppl. 14): 5–8.

151. Davies, C. A., D. M. Mann, P. Q. Sumpter, and P. O. Yates. 1987. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 78: 151–164.

152. Portero-Otin, C., and R. C. Petersen. 1999. Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab. Invest. 69: 123–137.

153. Patrick, G. N., L. Zukerberg, M. Nikolic, S. de la Monte, P. Dikkes, and L. H. Tsai. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402: 613–622.

154. Peskind, E. R. 1996. Neurobiology of Alzheimer’s disease. J. Clin. Psychiatry. 57 (Suppl. 14): 5–8.
171. Youmans, K. L., L. M. Tai, T. Kanekivo, W. B. Stine, Jr., S. C. Michon, E. Nwabuusi-Heath, A. Manelli, Y. Fu, S. Riordan, W. A. Eimer, et al. 2012. Intraneuronal Abeta detection in 3xTgAD mice by a new Abeta-specific antibody. Mol. Neurodegener. 7:8.

172. Tai, L. M., K. P. Koster, J. Luo, S. H. Lee, Y. T. Wang, N. C. Collins, M. Ben Assia, R. Thatcher, and M. J. LaDu. 2014. Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J. Biol. Chem. 289:30538–30555.

173. Abdullah, L., J. E. Evans, T. Emmerich, G. Crynen, B. Shackleton, A. P. Keegan, C. Luis, L. Tai, M. J. LaDu, M. Mullan, et al. 2017. APOE epsilon4 specific imbalance of arachidonic acid and docosahexaenoic acid in serum phospholipids identifies individuals with preclinical mild cognitive impairment/Alzheimer’s disease. Alzheimers Aging (Albany NY). 9:964–985.

174. Picq, M., P. Chen, M. Perez, M. Michaud, E. Vericel, M. Guichardant, and M. Lagarde. 2010. DHA metabolism: targeting the brain and lipoxigenation. Mol. Neurobiol. 42:48–51.

175. Nguyen, L. N., D. Ma, G. Shui, P. Wong, A. Cazeneve-Gassiot, X. Zhang, M. R. Wenk, E. L. Goh, and D. L. Silver. 2014. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 509:503–506.

176. Guemez-Gamboa, A., L. N. Nguyen, H. Yang, M. S. Zaki, M. Kara, T. Ben-Omran, N. Akizu, R. O. Rosti, B. Rosti, E. Scott, et al. 2015. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 47:809–813.

177. Vandal, M., W. Alata, C. Tremblay, C. Rionx-Perreault, N. Salem, Jr., F. Calon, and M. Plourde. 2014. Reduction in DHA transport to the brain of mice expressing human APOE4 compared to APOE2. J. Neurochem. 129:516–520.

178. Holtman, K., S. Strickland, and E. H. Norris. 2013. The APOE val4/val4 genotype predicts vascular fibrinogen deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J. Cereb. Blood Flow Metab. 33:1251–1258.

179. Zekonyte, J., K. Sakai, J. A. Nicoll, R. O. Weller, and R. O. Carare. 2016. Quantification of molecular interactions between ApoE, amyloid-beta (Abeta) and laminin: relevance to accumulation of Abeta in Alzheimer’s disease. Biochim. Biophys. Acta. 1862:1047–1053.

180. Bakker, E. N., B. J. Bacsaki, M. Arbél-Ornath, R. Aldea, B. Bedussi, A. W. Morris, R. O. Weller, and R. O. Carare. 2016. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell. Mol. Neurobiol. 36:181–194.

181. Shinohara, M., M. E. Murray, R. D. Frank, M. Shinohara, M. DeTure, Y. Yamazaki, M. Tachibana, Y. Atagi, M. D. Davis, C. C. Liu, et al. 2016. Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer’s disease. Acta Neuropathol. 132:225–234.

182. Chang, C. E., and S. Shams. 2016. Apolipoprotein E and sex bias in cerebrovascular aging of men and mice. Trends Neurosci. 39:625–637.

183. Benedictus, M. R., J. D. Goos, M. A. Binnewijzend, M. Muller, F. Barkhoff, P. Scheltens, N. D. Prins, and W. M. van der Flier. 2013. Specific risk factors for microbleeds and white matter hyperintensities in Alzheimer’s disease. Neurobiol. Aging. 34:2488–2494.

184. Koster, K. P., C. Smith, A. C. Valencia-Olvera, G. R. Thacher, L. M. Tai, and M. J. LaDu. 2017. Rexinoids as therapeutics for Alzheimer’s disease: role of APOE. Curr. Top. Mol. Med. 17:708–720.

185. Mariani, M. M., T. Malm, R. Lamb, T. R. Jay, L. Neilson, B. Casali, L. Medarameta, and G. E. Ladrench. 2017. Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease. Sci. Rep. 7:42270.

186. Moutinho, M., and G. E. Ladrench. Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. J. Lipid Res. Epub ahead of print. March 6, 2017; doi:10.1194/jlr.R075556.

187. Skerrett, R., M. T. Malm, and G. Landreth. 2014. Nuclear receptors in neurodegenerative diseases. Neurobiol. Dis. 72:104–116.

188. Sodhi, R. K., and N. Singh. 2014. Retinoids as potential targets for Alzheimer’s disease. Pharmacol. Biochem. Behav. 120:117–123.

189. Lee, J. H., Y. Jiang, D. H. Han, S. K. Shin, W. H. Choi, and M. J. Lee. 2014. Targeting estrogen receptors for the treatment of Alzheimer’s disease. Mol. Neurobiol. 49:39–49.

190. Zolezzi, J. M., and N. C. Introna. 2013. Peroxisome proliferator-activated receptors and Alzheimer’s disease: hitting the blood-brain barrier. Mol. Neurobiol. 48:438–451.
Ferrari, C., B. Nacmias, S. Bagnoli, I. Piaceri, G. Lombardi, S. Pradella, A. Tedde, and S. Sorbi. 2014. Imaging and cognitive reserve studies predict dementia in presymptomatic Alzheimer’s disease subjects. Neurodegener. Dis. 13: 157–159.

Breunig, J. J., M. V. Guillot-Sestier, and T. Town. 2013. Brain injury, neuroinflammation and Alzheimer’s disease. Front. Aging Neurosci. 5: 26.

Calderón-Garcidueñas, L., M. Kavanaugh, M. Block, A. D’Angiulli, R. Delgado-Chávez, R. Torres-Jardón, A. González-Maciel, R. Reynoso-Rohles, N. Osnaya, R. Villarreal-Calderon, et al. 2012. Neuroinflammation, beta-amyloid phosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J. Alzheimer’s Dis. 28: 93–107.

Brown, B. M., J. J. Peiffer, and R. N. Martins. 2013. Multiple effects of physical activity on molecular and cognitive signs of brain aging can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol. Psychiatry. 18: 864–874.

Tolppanen, A. M., A. Solomon, J. Kulmala, I. Kareholt, T. Ngandu, M. Rusanen, T. Laatikainen, H. Soininen, and M. Kivipelto. 2015. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers Dement. 11: 434–443, e3.

Fitzpatrick, A. L., L. H. Kuller, O. L. Lopez, P. Diehr, E. S. O’Meara, W. T. Longstreth, Jr., and J. A. Luchsinger. 2009. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch. Neurol. 66: 336–342.

Gustafson, D., E. Rothenberg, K. Blennow, B. Steen, and I. Skoog. 2003. An 18-year follow-up of overweight and risk of Alzheimer Disease. Arch. Intern. Med. 163: 1524–1528.

Gustafson, D. R., K. K. Backman, M. Waern, S. Ostling, X. Guo, P. Zandi, M. M. Mielke, C. Bengtsson, and I. Skoog. 2009. Adiposity indicators and dementia over 32 years in Sweden. Neurology. 73: 1559–1566.

Luchsinger, J. A., D. Cheng, M. X. Tang, S. Schupf, and R. Mayeux. 2012. Central obesity in the elderly is related to late- life Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26: 101–105.

Meng, X. F., J. T. Yu, H. F. Wang, M. S. Tan, C. Wang, C. C. Tan, and L. Tan. 2014. Midlife vascular risk factors and the risk of Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 42: 1295–1310.

Provenza, L. A., A. P. Porsteinsson, and S. V. Faraone. 2010. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol. Psychiatry. 67: 505–512.

Hayden, K. M., P. P. Zandi, C. G. Lyketsos, A. S. Khachaturian, L. A. Bastian, G. Charoornrruk, J. T. Tschanz, M. C. Norton, C. F. Pieter, R. G. Munger, et al. 2006. Vascular risk factors for incident Alzheimer disease and vascular dementia: the Cache County study. Alzheimer Dis. Assoc. Disord. 20: 93–100.

Whitmer, R. A., E. P. Gunderson, C. P. Quesenberry, Jr., J. Zhou, and K. Yaffe. 2007. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr. Alzheimer Res. 4: 103–109.

Exalto, L. G., C. P. Quesenberry, D. Barnes, M. Kivipelto, G. J. Biessels, and R. A. Whitmer. 2014. Midlife risk score for the prediction of dementia four decades later. Alzheimers Dement. 10: 562–570.

Isaac, V., S. Sim, H. Zheng, V. Zagorodnov, E. S. Tai, and M. Chee. 2011. Adverse associations between visceral adiposity, brain structure, and cognitive performance in healthy elderly. Front. Aging Neurosci. 3: 12.

Jayaraman, A., and C. J. Pike. 2014. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr. Diab. Rep. 14: 476.

Barron, A. M., E. R. Rosario, R. Elferici, and C. J. Pike. 2013. Sex-specific effects of high fat diet on indices of metabolic syndrome in 3xTg-AD mice: implications for Alzheimer’s disease. PLoS One. 8: e78554.

Ho, L., W. Qin, P. N. Pompl, Z. Xiang, J. Wang, Z. Zhao, Y. Peng, G.Cambarelli, A. Rocher, C. V. Mobbs, et al. 2004. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 18: 902–904.

Julien, C., C. Tremblay, A. Phivilay, L. Berthiaume, V. Emond, P. Julien, and F. Calon. 2011. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol. Aging. 31: 1516–1531.

Kohjima, M., Y. Sun, and L. Chan. 2010. Increased food intake leads to obesity and insulin resistance in the tg2576 Alzheimer’s disease mouse model. Endocrinology. 151: 1532–1540.

Johnson, L. A., E. R. Torres, S. Impy, J. F. Stevens, and J. Raber. 2017. Apolipoprotein E4 and insulin resistance interact to impair.
gene sequence and sites of expression.

Human lecithin-cholesterol acyltransferase gene: complete developmental regulation, and chromosomal mapping of the lecithin:cholesterol acyltransferase mRNA in rhesus monkey tissues by in situ hybridization. \textit{J. Lipid Res.} 31: 995–1004.

Rigotti, A., H. E. Miettinen, and M. Krieger. 2003. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. \textit{Endocr. Rev.} 24: 357–387.

Husemann, J., J. D. Loike, R. Anankov, M. Febbraio, S. C. Silverstein, J. Husemann, J. D. Loike, R. Anankov, M. Febbraio, and S. C. Silverstein. 2002. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. \textit{Glia.} 40: 195–205.

Husemann, J., and S. C. Silverstein. 2001. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain. \textit{Am. J. Pathol.} 158: 825–832.

Holtzman, D. M., R. E. Pitas, J. Kilbridge, B. Nathan, R. W. Mahley, G. B., and A. L. Schwartz. 1995. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. \textit{Proc. Natl. Acad. Sci. USA.} 92: 9480–9484.

Clatworthy, A. E., W. Stockinger, R. H. Christie, W. J. Schneider, J. Nimpf, B. T. Hyman, and G. W. Rebeck. 1999. Expression and alternate splicing of apolipoprotein E receptor 2 in brain. \textit{Neuroscience.} 90: 903–911.

Rebeck, G. W., J. S. Reiter, D. K. Strickland, and B. T. Hyman. 1993. Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor function. \textit{Neurology.} 43: 723–732.

Pitas, R. E., J. K. Boyles, S. H. Lee, D. Hui, and K. H. Weisgraber. 1987. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B (LDL) receptors in the brain. \textit{J. Biol. Chem.} 262: 14352–14360.

Rebeck, G. W., S. D. Harr, D. K. Strickland, and B. T. Hyman. 1995. Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. \textit{Ann. Neurol.} 37: 206–211.

Bu, G., E. A. Maksymovich, J. M. Nerbonne, and A. L. Schwartz. 1994. Expression and function of the low density lipoprotein receptor-related protein (LRP) in mammalian central neurons. \textit{J. Biol. Chem.} 269: 18521–18528.

Christie, R. H., H. Chung, G. W. Rebeck, D. Strickland, and B. T. Hyman. 1996. Expression of the very low-density lipoprotein receptor (VLDLr-t), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer’s disease. \textit{J. Neuropathol. Exp. Neurol.} 55: 491–499.

Kim, D. H., H. Iijima, K. Goto, J. Sakai, H. Ishii, H. J. Kim, H. Suzuki, H. Kondo, S. Saecki, and T. Yamamoto. 1996. Human apolipoprotein E receptor 2. A novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. \textit{J. Biol. Chem.} 271: 8373–8380.

Marzollo, M. P., R. von Bernhardi, G. Bu, and N. C. Inestrosa. 2000. Expression of alpha(2)-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP) in rat microglial cells. \textit{J. Neurosci. Res.} 60: 401–411.

LaDu, M. J., C. Reardon, L. Van Eldik, A. M. Fagan, G. B., D. Holtzman, and G. S. Getz. 2000. Lipoproteins in the central nervous system system. \textit{Annu. Rev. Neurosci.} 23: 575–580.

LaDu, M. J., S. M. Gilligan, J. R. Lukens, V. G. Cabana, C. A. Reardon, L. J. Van Eldik, and D. M. Holtzman. 1998. Nascent astrocyte particles differ from lipoproteins in CSF. \textit{J. Neurochem.} 70: 2070–2081.

Weisgraber, K. H., and R. W. Mahley. 1996. Human apolipoprotein E: the Alzheimer’s disease connection. \textit{FASEB J.} 10: 1485–1494.

Weisgraber, K. H. 1994. Apolipoprotein E: structure-function relationships. \textit{Adv. Protein Chem.} 45: 249–302.

Roheim, P. S., M. Carey, T. Forte, and G. L. Vega. 1979. Apolipoproteins in human cerebrospinal fluid. \textit{Proc. Natl. Acad. Sci. USA.} 76: 4646–4649.

Koudinov, A. R., N. V. Koudinova, A. Kumar, R. C. Beavis, and J. Ghiso. 1996. Biochemical characterization of Alzheimer’s soluble amyloid beta protein in human cerebrospinal fluid: association
with high density lipoproteins. *Biochem. Biophys. Res. Commun.* **223**: 592–597.

286. Borghini, L., F. Barja, D. Pometta, and R. W. James. 1995. Characterization of subpopulations of lipoprotein particles isolated from human cerebrospinal fluid. *Biochem. Biophys. Acts.* **1255**: 192–200.

287. Koch, S., K. N. Drüger, G. Neefke, H. J. Freier, C. Buhmann, C. Buchheim, and U. Beisiegel. 2001. Characterization of four lipoprotein classes in human cerebrospinal fluid. *J. Lipid Res.* **42**: 1143–1145.

288. Francis, G. A., R. H. Knopp, and J. F. Oram. 1995. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier disease. *J. Clin. Invest.* **96**: 78–87.

289. Remaley, A. T., S. A. Storik, S. J. L. Eriksen, P. Das, B. Neufeld, A. V. Bocharov, T. G. Vishnyakova, T. L. Eggerman, A. P. Patterson, N. J. Duverger, S. Santamarina-fojo, et al. 2001. Apolipoprotein specificity for lipid efflux by the human ABCA1 transporter. *Biochem. Biophys. Res. Commun.* **280**: 818–823.

290. Jonas, A. 1998. Regulation of lecithin cholesterol acyltransferase activity. *Prog. Lipid Res.* **37**: 209–234.

291. Wolf, A., B. Bauer, and A. M. Hartz. 2012. ABC transporters and the Alzheimer’s disease enigma. *Front. Psychiatry* **3**: 54.

292. Tai, L. M., R. Thomas, F. M. Marottoli, K. P. Koster, T. Kanekiyi, A. W. Morris, and G. Bu. 2016. The role of APOE in cerebrovascular dysfunction. *Acta Neuropathol.* **131**: 709–723.

293. B., C., F., C., F., H., X., and G. B. 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. *Nat. Rev. Neurol.* **9**: 106–118. [Erratum, 2013. Nat. Rev. Neurol.]

294. Hu, J., C. C. Liu, X. F. Chen, Y. W. Zhang, H. Xu, and G. Bu. 2015. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apolipoprotein and Abeta metabolism in apoE4-targeted replacement mice. *Mol. Neurodegener.* **10**: 6.

295. Gorlick, R. 2011. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. *Ann. N. Y. Acad. Sci.* **1207**: 155–162.

296. Imbimbo, B. P., V. Solfrizzi, and F. Panza. 2010. Are NSAIIDs useful to treat Alzheimer’s disease or mild cognitive impairment? *Front. Aging Neurosci.* **2**: 2.

297. McGee, P. L., and E. G. McGeer. 2007. NSAIIDs and Alzheimer disease: epidemiological, animal model and clinical studies. *Neurobiol. Aging.* **28**: 639–647.

298. Meraz-Ríos, M. A., D. Toral-Ríos, D. Franco-Bocanegra, J. Villeda-Hernández, and V. Campos-Peina. 2013. Inflammatory process in Alzheimer’s disease. *Front. Integr. Neurosci.* **7**: 59.

299. Rich, J. B., D. X. Rasmussen, M. F. Foltstein, K. A. Carson, C. Kawa, and J. Brandt. 1995. Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. *Neurology.* **45**: 51–55.

300. Rubio-Perez, J. M., and J. M. Morillas-Ruiz. 2012. A review: in Neurobiol. Aging. C. Buhmann, and U. Beisiegel. 2001. Characterization of four lip.
associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons. J. Neurosci. 34: 9096–9106.

329. Colie, S., S. Sarroca, R. Palenzuela, I. Garcia, A. Matheu, R. Corpas, C. G. Dotti, J. A. Esteban, C. Sanfelu, and A. R. Nebreda. 2017. Neuronal p38alpha mediates synaptic and cognitive dysfunction in an Alzheimer’s mouse model by controlling beta-amyloid production. Sci. Rep. 7: 45306.

330. Tohda, C., T. Urao, M. Umezaki, I. Nemere, and T. Kuboyama. 2012. Diosgenin is an exogenous activator of 1,25D(3)-MARRS/ Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci. Rep. 2: 535.

331. Crouzin, N., K. Baronager, M. Cavalier, Y. Marchalant, C. Cohen-Solal, F. S. Roman, M. Khrestchatisky, S. Rivera, F. Feron, and M. Vignes. 2013. Area-specific alterations of synaptic plasticity in the 5XFAD mouse model of Alzheimer’s disease: dissociation between somatosensory cortex and hippocampus. PLoS One. 8: e74667.

332. Fragkouli, A., E. C. Tsilibari, and A. K. Tzimia. 2014. Neuroprotective role of MMP-9 overexpression in the brain of Alzheimer’s mice. Neurobiol. Dis. 70: 179–189.

333. Moon, M., I. Jeong, C. H. Kim, J. Kim, P. K. Lee, I. Mook-Jung, P. Leblanc, and K. S. Kim. 2015. Correlation between orphan nuclear receptor Nur1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer’s disease. J. Neurochem. 132: 254–262.

334. Xu, F., A. E. Kotarba, M. H. Ou-Yang, Z. Fu, J. Davis, S. O. Smith, and W. E. Van Nostrand. 2014. Early-onset formation of parenchymal plaque amyloid abrogates cerebral microvascular amyloid accumulation in transgenic mice. J. Biol. Chem. 289: 17895–17908.

335. Wu, Z., Z. Guo, M. Gearing, and G. Chen. 2014. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat. Commun. 5: 4159.

336. Kimura, R., L. Devi, and M. Ohno. 2010. Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J. Neurochem. 113: 248–261.

337. Zhao, J., Y. Fu, M. Yasvoina, P. Shao, B. Hitt, T. O’Connor, S. Logan, E. Maus, M. Citron, R. Berry, et al. 2007. Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J. Neurosci. 27: 3639–3649.

338. Zhang, Z., X. Liu, J. P. Schroeder, C. B. Chan, M. Song, S. P. Yu, D. Weinshenker, and K. Ye. 2014. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuroreport. 25: 1–10.

339. DeVl, L., M. Ohno. 2012. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 37: 434–444.

340. Py, N. A., A. E. Bonnet, A. Bernard, Y. Marchalant, E. Charrat, F. Checker, M. Khrestchatisky, K. Baronager, and S. Rivera. 2014. Differential spatio-temporal regulation of MMPs in the 5XFAD mouse model of Alzheimer’s disease: evidence for a pro-amyloidogenic role of MT1-MMP. Front. Aging Neurosci. 6: 247.

341. DeVl, L., M. Ohno. 2014. PERK mediates eIF2alpha phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 35: 2272–2281.

342. DeVl, L., M. Ohno. 2015. TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting beta-amyloidosis in 5XFAD mice. Transl. Psychiatry. 5: e626.

343. Himmann, A., S. Hahn, S. Schilling, T. Hoffmann, H. U. Demuth, B. Bulic, T. Schneider-Axmann, T. A. Bayer, S. Weggen, and O. Wriths. 2012. No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging. 33: 833.e39–833.e50.

EFAD transgenic mouse model Alzheimer’s disease 1755