Introduction

Rodents are largest group of important animals, because they can survive in the harsh environmental condition and in several locations and live at the expense of humans, invade their dwelling, contaminated food materials, and subsequently transmit diseases to them [1] as they are reservoir hosts for a large number of ecto- and endo-parasites with great zoonotic importance [2]. Trypanosoma lewisi is a specific hemoproteozoa of the rat (Rattus rattus and Rattus norvegicus), it is transmitted via faces of Xenopsylla cheopis, Nosopsyllus fasciatus, Ctenocephalides canis and C. Felis [3-5]. Furthermore, the infection of rat with T. lewisi raise its susceptibility to other micro-organisms such as Salmonella typhimurium [6] and Toxoplasma gondii [7] which represent a great public health and Rattus norvegicus are good transmitters of them [8]. On other hand, several rodent species were found in Egypt Governorates as Rattus norvegicus, R. r. alexandrinus, Mus musculus and Acomys cahirinus. The flea species attacking rodents were Xenopsylla cheopis and Leptopsylla segnis. R. norvegicus was the highest manifested one with fleas because they survive where the favorable conditions for fleas breeding are available [9]. The present study aimed to screen Rattus norvegicus reared around human communities at Giza, Egypt for T. lewisi infection.

Materials and Methods

The present study was conducted in Abu Rawash, Giza, Cairo. 117 Rattus norvegicus were trapped around human population in Abu Rawash, Giza, Egypt. Thin and thick blood films were prepared and examined microscopically. Experimental infections of 8 white rats were done for confirmation of infection and assessment of parasitaemia. 19 (15.8%) out of 117 Rattus norvegicus were found to be infected with T. lewisi. Experimental infection of 8 white rats confirmed the infection with Trypanosoma lewisi and showed boost in parasitaemia till the 9th day then the level of trypanosomes in blood was constant.

Conclusion: Trypanosoma lewisi is prevalent in examined Rattus norvegicus which reverse that the theory of high immunity of Rattus norvegicus will prevent infection with Trypanosoma lewisi.

Keywords: Rodent; Trypanosoma lewisi; Prevalence; Rattus norvegicus; Egypt
which were infected experimentally by intraperitoneal injection of blood samples positive for *T. lewisi* (obtained from positive *Rattus norvegicus* examined in the present study), blood samples were obtained of experimentally infected rats every three days and examined microscopically for the presence of infection and follow up of parasitaemia. Rats were sacrificed four weeks post-infection.

Results

19 (15.8%) out of 117 wild rats (*Rattus norvegicus*) weighing between 175 to 260 g were found positive for *Trypanosoma lewisi* through microscopic examination of Giemsa stained peripheral blood films. Characteristic morphological features of Extracellular hemoflagellate are well marked in Figure 1. Total length of trypomastigotes, including flagellum was 31-44 μm. *Trypanosoma lewisi* parasites were identified based on using an immersion objective as described by [4] and *T. lewisi* as the species has already been documented to cause infection in wild rats and other rodents. Moreover, experimental infection of 8 white rats results in 100% of them. Infection was confirmed by the presence of *T. lewisi* in peripheral blood films as shown in Figure 2 where the multiplying trypanosomes appear in blood smear. Parasitaemia in experimentally infected rats showed steady raise till the 9th day post infection then parasite level in blood was constant till rats scarification.

![Figure 1: T. lewisi in Rattus norvegicus blood smears (100 x) with a very sharp posterior end, a subterminal kinetoplast, oval nucleus toward the anterior end and a well-developed flagellum.](image)

![Figure 2: T. lewisi multiplication in Rattus norvegicus (100x).](image)
Discussion

Many studies have been conducted in various parts of the world to determine the prevalence of parasitic infections in murine population. In the present study, the prevalence of *T. lewisi* observed was 15.8% which is in accordance prevalence recorded by [13] which was 13.2%. On the other hand [9] founded that *Trypanosoma lewisi* prevalence in Rattus rattus spp was very high (51.2%) with no infection in *Rattus norvegicus* in some rural areas in Abu Alnomros Center, Giza. The overall prevalence of rats found to be infected with *T. lewisi* in the present study (15.8%) is higher than that for several studies in different countries which have recorded values of 11.8% in Colombia [14] 4.6% in New Zealand (Laird 1951), 8.9% in Nigeria [15] 11.4% in Hawaii [16] and 13.2% in the USA [17]. But it is lower than that observed in India (82.30%), Venezuela (21.30), Brazil (27.7%), Italy (20%) and in Malaysia (25.2%) by [18-22] respectively.

These variation might be due to differences in geographic location, sample size and presence of vector *Parasitopinae* infection in experimentally infected rats showed steady increase of blood level of the trypanastigotes till the 9th day post infection then parasite level in blood was constant till rats scarification which is well known about *T. lewisi* as after a period of rapid multiplication of trypanosomes (10 days), they stop growing and their numbers stabilize for several weeks, then the parasites disappear from the blood so the solid immunity of rat might develop against *T. lewisi* infection. Furthermore, the infection by *T. lewisi* in rats produces immunosuppression that increases the susceptibility of these animals to infection by *Salmonella typhimurium* and *T. gondii*, the importance of this observation lies in that Rattus spp in a determined area might have a greater probability of the appearance of outbreaks of salmonellosis and toxoplasmosis disease [7] The elimination of rats as one of control measure is much recommended to overcome disease associated with them.

Conclusion

In the present work we described the presence of *T. lewisi* in Rattus norvegicus in Giza, Egypt to determine the prevalence of common zoonotic parasitic infections in rats.

References

1. Hobson KA, Collier S (1984) Terrestrial and marine protein in Australian Aboriginal diets. Curr Anthropol 25(2): 238-240.
2. Yaghoobi EMR, Javadian E (1996) Epidemiological study of reservoir hosts in an endemic area of zoonotic cutaneous leishmaniasis in Iran. Bull World Health Organ 74(6): 587-590.
3. Molyneux DH (1969) Intracellular stages of Trypanosoma lewisi in fleas and attempts to find such stages in other trypanosome species. Parasitology 59(4): 737-744.
4. Hoare CA (1972) The trypanosomes of mammals. A Zoological Monograph. Blackwell Scientific Publications, Oxford, UK, p. 749.
5. Manghi S, Wallbanks KR, Molyneux DH (1995) Oral transmission of trypanosomes of the Subgenus Herpetosoma from small mammals. Parasitol Res 81(8): 693-695.
6. Nielsen K, Sheppard J, Holmes W, Tizard I (1978) Increased susceptibility of Trypanosoma lewisi infected, or decomplemented rats to Salmonella typhimurium. Experientia 34(1): 118-119.
7. Guerrero DM, Chinchilla M, Abnhams E (1997) Increasing of Toxoplasma gondii (Goccidia, Sarcocystidae) infections by Trypanosoma lewisi (Kinetioplastida, Trypanosomatidae) in white rats. Rev Biol Trop 45(2): 877-882.
8. Picco N (2003) Los roedores como transmisores de enfermedades zoonóticas.
9. Daresh SM, Mikhail MW (2016) Surveillance of trypanosoma spp of rodents and studies in their transmission probability by fleas in some rural egyptian areas. J Egypt Soc Parasitol 46(1): 157-166.
10. Harrison JL, Quah (1962) The house and field rats of Malaysia. Bulletin No. 12 Institute for Medical Research. Federation of Malaya pp. 38.
11. Medway L (1983) The Wild Mammals of Malaya (Peninsula Malaysia) and Singapore (2nd Edn); Oxford University Press, pp. 131.
12. Payne J, Francis CM (1998) A Field Guide to the Mammals of Borneo. The Sabah Society, Sabah, Malaysia.
13. Abdel Aal AA, Abou Eisha A (1997) The role of rats as reservoir of some internal parasites with possible public health implications in the Suez Canal area. Assiut Vet Med J 37: 174-185.
14. Punhoom P, Morand S, Tran A, Jittapalapong S & Desquesnes M (2015) Trypanosoma from rodents as potential source of infection in human-shaped landscapes of South-East Asia. PLoS Neglected Tropical Diseases are provided here courtesy of Public Library of Science vetpar 2014.12.027.
15. Ugomoiko US (1997) Factors affecting the prevalence of protozoan parasites of small mammals in southern Nigeria. Parasitica 53: 5-13.
16. Kartman L (1954) Observations on Trypanosoma lewisi and Grahamella sp. in the blood of rats from Hamkua District, Island of Hawaii. J Parasitol 40(5): 571-579.
17. Eyles DE (1952) Incidence de Trypanosoma lewisi and Hepatozoon muris in the norway rat. J Parasitol 38(3): 222-225.
18. Laha R, Hemaprasanth B, Bhatta Charya D (1997) Observations on prevalence of Trypanosoma lewisi infection in wild rats and a trial on its adaptation in unnatural host. J Parasitol Appl Anim Biol 6: 5-8.
19. Herrera L, Urdaneta-Morales S (1997) Synanthropic rodent reservoirs of Trypanosoma (Schiatio trypanum) cruzi in the valley of Caracas, Venezuela Rev Med Trop Sao Paulo 39(5): 279-282.
20. Linardi PM, Botelho JR (2002) Prevalence of Trypanosoma lewisi in Rattus norvegicus from Belo Horizonte, State of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 97(3): 411-414.
21. De Carnieri I, Castellino S (1964) Trypanosoma lewisi in un allevamento lombardo di ratti albinati. Parasitologia: 6: 95.
22. Alias SN, Shamin N, Edah MA, Mohd-Zain SN (2014) Tropical Biomedicine, Epidemiology of blood parasitic infections in the urban rat population in peninsular Malaysia 31(2): 230-240.
