Observation of the production of three massive gauge bosons at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

The first observation is reported of the combined production of three massive gauge bosons (VVV with $V = W, Z$) in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis is based on a data sample recorded by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 137 fb^{-1}. The searches for individual WWW, WWZ, WZZ, and ZZZ production are performed in final states with three, four, five, and six leptons (electrons or muons), or with two same-sign leptons plus one or two jets. The observed (expected) significance of the combined VVV production signal is 5.7 (5.9) standard deviations and the corresponding measured cross section relative to the standard model prediction is $1.02^{+0.26}_{-0.23}$. The significances of the individual WWW and WWZ production are 3.3 and 3.4 standard deviations, respectively. Measured production cross sections for the individual triboson processes are also reported.

Submitted to Physical Review Letters
The production of three massive gauge bosons \(VV V \) \((V = W, Z)\) in high energy proton-proton \((pp)\) collisions is interesting because the standard model (SM) predictions for these processes involve the nonabelian character of the theory \([1]\). In particular, the presence of quadruple gauge boson interactions can be probed through \(VVV\) production \([2, 3]\). Triple gauge boson interactions and intermediate Higgs bosons \((H)\) also play a role. If physics beyond the SM is present at mass scales not far above 1 TeV, then cross section measurements for triple gauge boson production might deviate from SM predictions \([4–7]\). Up to now, such measurements have remained elusive because the production cross sections are low and backgrounds are insurmountable, except for rare leptonic final states. Next-to-leading order (NLO) SM calculations predict cross sections of 509, 354, 91.6, and 37.1 fb\(^{-1}\) for \(WWW, WWZ, WZZ,\) and \(ZZZ\) production at 13 TeV with uncertainties of approximately 10\% \([8–12]\). These calculations include contributions from the associated production of the Higgs boson with a \(V\) boson, where \(H\) decays to \(W^+W^-\) or \(ZZ\) \([13–16]\). In general, these contributions are not the dominant ones, even though the cross section for \(VH\) production is relatively large, because the event selections described below have lower acceptances for the off-shell vector boson in \(H \rightarrow VV^*\).

This Letter reports the first observation of \(VVV\) production in \(pp\) collisions at 13 TeV, using a data set corresponding to an integrated luminosity of 137 fb\(^{-1}\). Recently, the first evidence of \(VVV\) production in 13\,TeV data was reported by the ATLAS Collaboration \([17]\) following earlier searches for \(WWW\) production in 8\,TeV ATLAS \([18]\) and 13\,TeV CMS data \([19]\). Five final states \((VVV)\) leptons are considered \((where \(\ell = e, \mu\)): W^±W^±W^± \rightarrow \ell^±\ell^±2\nu, W^±W^±W^± \rightarrow \ell^±\ell^±\ell^±3\nu, W^±W^±Z \rightarrow \ell^±\ell^±2\nu \ell^±\ell^±, W^±ZZ \rightarrow \ell^±\ell^±2(\ell^±\ell^±), and ZZZ \rightarrow 3(\ell^±\ell^±). This corresponds to five exclusive channels: two same-sign (SS) leptons with jets, three (3\(\ell\)), four (4\(\ell\)), five (5\(\ell\)), and six (6\(\ell\)) leptons. Searches in the dilepton and trilepton final states target \(WWW\) production; four-lepton events are used to search for \(WWZ\) production; and five- and six-lepton events are used to search for \(WZZ\) and \(ZZZ\) production.

The data were recorded in 2016–2018 with the CMS detector, whose central feature is a superconducting solenoid of 6\,m internal diameter providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity \((\eta)\) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. Events are selected using triggers \([20]\) that require two electrons, two muons, or one electron and one muon passing loose isolation requirements and certain transverse momentum \((p_T)\) thresholds. A detailed description of the detector and definitions of the coordinate system are given in Ref. \([21]\).

The CMS event reconstruction is based on the particle-flow (PF) algorithm \([22]\), which combines information from the tracker, calorimeters, and muon systems to identify charged and neutral hadrons, photons, electrons, and muons, known collectively as PF candidates. Electrons and muons from \(V\) decays, known as prompt leptons, are selected for offline analysis using standard criteria \([23, 24]\). Events containing \(\tau\) leptons decaying into charged hadrons are rejected by requiring the absence of isolated tracks aside from selected electrons and muons. The PF candidates are clustered into jets using the anti-\(k_T\) algorithm with a distance parameter of 0.4 \([25, 27]\). Jets with \(p_T > 20\) GeV and \(|\eta| < 5\) are selected for the analysis. Defining the distance between a jet and a selected lepton by \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}\) where \(\phi\) is the azimuthal angle, jets are rejected if \(\Delta R < 0.4\). Jets containing the decay of a \(b\) quark are identified using the loose working point of the deep combined secondary-vertex \(b\) tagging algorithm \([28]\). To increase the efficiency for identifying \(low-p_T\) \(b\) hadrons not clustered into jets, a soft \(b\) tag object \([29]\) is defined using a track-based secondary vertex reconstruction.
The primary pp interaction vertex is the reconstructed vertex with the largest summed p_T^2 calculated using track-based jets and the associated missing transverse momentum (\vec{p}_T^{miss}), the negative \vec{p}_T sum of those jets. Track-based jets are constructed using only tracks associated with the given vertex. In addition to the primary interaction, other pp interactions (pileup) produce extra charged particles and neutral energy. Tracks originating from pileup are not included. The average neutral energy density from pileup is estimated, and subtracted from the reconstructed jet energies and the energy sum used in calculation of lepton isolation.

The previous search for WWW production \cite{19} is based on sequences of requirements called sequential cuts. In this Letter, that approach is extended to cover all five channels. In addition, motivated by the relatively high yields in the SS, 3ℓ, and 4ℓ channels, multivariate techniques based on boosted decision trees (BDTs) \cite{32,34,35} are applied that outperform the sequential-cut analyses. Both the sequential-cut and BDT-based analyses are presented.

The acceptances, efficiencies, and kinematic properties of the signal and background processes are determined using a combination of data and simulated events. The POWHEG 2.0 \cite{37,40} and the MADGRAPH5_aMC@NLO (2.2.2 and 2.4.2) generators \cite{41} are used to generate VVV signal events (including VH), diboson (VV), and single-t background events. The MADGRAPH5_aMC@NLO generator is used in the leading-order (LO) mode with MLM jet matching \cite{42} to generate SM $t\bar{t}$, $t\bar{t}$+X ($X = W, Z, H$), W+jets, Z+jets, $W\gamma$, and $W^\pm W^\mp$ events. The most precise cross section calculations available are used to normalize the simulated samples, and usually correspond to either NLO or next-to-NLO accuracy \cite{16,41,43,50}. Parton showering, hadronization, and the underlying event are modeled by PYTHIA (8.205 and 8.230) \cite{51}, with parameters set by the CUETP8M1 \cite{52} and CFP tune \cite{53}. The NNPDF 3.0 \cite{54} and 3.1 \cite{55} parton distribution functions (PDF) are used in the generation of all simulated samples. Pileup is simulated and the GEANT4 \cite{56} package is used to mimic the response of the CMS detector.

The SS and 3ℓ channels target WWW production \cite{19}. The SS channel requires exactly two SS leptons with $p_T > 25$ GeV and one or more jets. The dilepton mass $m_{\ell\ell}$ must exceed 20 GeV. This channel is subdivided into nine signal regions according to the flavors of the leptons ($e^+e^-, e^+\mu^-, or \mu^+\mu^-$) and the jet content. Events with exactly one jet are denoted “1J”. Events with two or more jets are categorized as “$m_{\ell\ell}$-in” or “$m_{\ell\ell}$-out” depending on whether the dijet mass for the two jets closest in ΔR is compatible with the W boson mass ($65 < m_{jj} < 95$ GeV). The background processes fall broadly into three categories. The first category contains trilepton processes with one lepton either not selected or not reconstructed (“lost”). Such backgrounds include WZ and $t\bar{t}Z$ production and are reduced by requiring $m_{T}^{\text{max}} > 90$ GeV, where m_{T}^{max} is the largest transverse mass obtained from \vec{p}_T^{miss} and any lepton in the event. The second category consists of processes with SS lepton pairs, mainly from W$^\pm$W$^\mp$+jets and $t\bar{t}W^\pm$ production. This contribution is suppressed by requiring $m_{jj} < 500$ GeV and $|\Delta R_{jj}| < 2.5$ for the two highest-p_T jets. The third category includes W+jets and $t\bar{t}$+jets production where a final-state jet or photon is misidentified as a charged lepton, and is labeled nonprompt. These background contributions are suppressed using strict lepton identification and isolation requirements and by requiring $p_T^{\text{miss}} > 45$ GeV. All backgrounds containing top quarks are further reduced by excluding events with b-tagged jets or soft b tags. The background due to charge mismeasurement in Drell-Yan production is relevant only for dielectron events and is reduced to a negligible level by requiring $|m_{\ell\ell} - m_Z| > 10$ GeV.

The 3ℓ channel is subdivided according to the number of same-flavor opposite-sign (SFOS) lepton pairs: 0SFOS, 1SFOS, and 2SFOS. At least one lepton is required to have $p_T > 25$ GeV, while the others must have $p_T > 20$ GeV, except in 0SFOS where all three leptons are required to have $p_T > 25$ GeV. Events in 1SFOS and 2SFOS must contain no jets, whereas the presence
of one jet is allowed in 0SFOS. The background sources are similar to those in the SS category. Events with b-tagged jets are excluded to suppress nonprompt-lepton background from processes involving top quarks. The contribution from triple prompt lepton backgrounds is suppressed by requiring $|m_{\ell\ell} - m_Z| > 20$ GeV and $m_{\ell\ell} > 20$ GeV for all SFOS pairs. Additional background reduction is achieved with the following requirements: if exactly one SFOS lepton pair is found then $m_{3\ell}^{\text{miss}}$, defined as the transverse mass calculated from p_T^{miss} and the third lepton that is not one of the SFOS pair, must be larger than 90 GeV; and, for events with no SFOS pairs, $m_{3\ell}^{\text{max}} > 90$ GeV is required. Background contributions from nonprompt leptons and converted or misidentified photons are reduced by requiring a large p_T of the three-lepton system $\left|\vec{p}_T^{3\ell}\right| > 50$ GeV, and a large azimuthal separation $\Delta\phi\left(\vec{p}_T^{3\ell}, \vec{p}_T^{\text{miss}}\right) > 2.5$ between p_T^{miss} and $\vec{p}_T^{3\ell}$. Events with a conversion photon emitted in a Z boson decay are suppressed by requiring $|m_{3\ell} - m_Z| > 10$ GeV where $m_{3\ell}$ is the three-lepton invariant mass.

The 4ℓ channel targets WWZ production. The Z boson is identified through its decay to a SFOS lepton pair with $|m_{\ell\ell} - m_Z| < 10$ GeV. These leptons are required to have $p_T > 25$ (10) GeV for the (sub)leading lepton. The (sub)leading lepton of the remaining non-Z leptons must have $p_T > 25$ (10) GeV. The dominant background comes from ZZ production, so the cases of different-flavor (eμ) and same-flavor (ee/\mu\mu) non-Z lepton pairs are handled separately. The non-Z same-flavor invariant mass is required to differ from m_Z by at least 10 GeV. Other background contributions consist of $t\bar{t}Z$, tWZ, $t\bar{t}H$, and WZ events. The rejection of events with b-tagged jets reduces contributions from top quarks and a requirement that $m_{\ell\ell} > 12$ GeV for all opposite-sign lepton pairs suppresses backgrounds from low-mass resonances. The 4ℓ channel is subdivided into seven signal regions: for the eμ category there are four bins in $m_{\ell\ell}$ and m_{T2} \cite{57}, and for the ee/\mu\mu category there are three bins based on $p_T^{4\ell}$ and p_T^{miss}.

The 5ℓ and 6ℓ channels target WZZ and ZZZ production, respectively. Event yields are low because of small cross sections and branching fractions. Since background contributions are low, the selection maximizes the signal efficiency. The two leading leptons are required to have $p_T > 25$ GeV and other leptons must have $p_T > 10$ GeV. Events in the 5ℓ channel are required to contain two SFOS lepton pairs with $|m_{\ell\ell} - m_Z| < 15$ GeV. The background in the 5ℓ channel consists almost entirely of ZZ events with a nonprompt lepton, which is usually an electron. The background is reduced by requiring $m_T > 50$ GeV, where m_T is calculated from p_T^{miss} and that electron. Smaller background contributions arise from $t\bar{t}Z$ and $t\bar{t}H$ production, which are reduced by rejecting events with b-tagged jets. Events in the 6ℓ channel are required to have three SFOS pairs and a six-lepton scalar p_T sum larger than 250 GeV. The small 6ℓ background comes from $t\bar{t}H$ and ZZ production.

Background contributions from sources with a particular number of prompt leptons and no nonprompt leptons in signal regions are estimated using simulations with correction factors, typically near unity, derived from several control regions in data enriched in the main sources of background events. Both the predicted numbers of events and relevant kinematic distributions are compared with observations in control regions to derive the correction factors. The precision of the comparison is used to assess systematic uncertainties in these background contributions. Background contributions from sources with one or more nonprompt leptons cannot be reliably evaluated using simulations, so estimates based on control samples in data are used instead. These estimates rely on the fact that nonprompt leptons tend to be less isolated than prompt ones. For the SS and 3ℓ channels, following Ref. \cite{19}, the contribution of events with a nonprompt lepton is evaluated using a sample of events in which one lepton satisfies loose identification criteria but fails the tight criteria. The number of events in this region de-
terminates the estimate of the nonprompt background in the signal region using a transfer factor computed with a separate event sample rich in nonprompt leptons. This transfer factor is the ratio of the number of events that pass the tight selection criteria to those that pass the loose criteria. For the 5ℓ channel, a sample of events with three prompt leptons and one nonprompt lepton is dominated by WZ production and used to verify the prediction of background contributions with nonprompt leptons. Nonprompt leptons are a minor background for all other channels.

Figure 1: Comparison of the observed numbers of events to the predicted yields after fitting. For the WWW and WWZ channels, the results from the BDT-based selections are used. The VVV signal is shown stacked on top of the total background. The points represent the data and the error bars show the statistical uncertainties. The expected significance L in the middle panel represents the number of standard deviations (sd) with which the null hypothesis (no signal) is rejected; it is calculated for the fit for μ_{comb}. The lower panel shows the pulls for the fit result.

The signal strength μ, defined as the measured production cross section times branching fraction divided by the expected SM value, is determined through simultaneous fits to all twenty-one signal regions. In one version of the fit, four independent signal strengths (μ_{WWW}, μ_{WWZ}, μ_{WZZ}, and μ_{ZZZ}) are used. In the other version, a common signal strength μ_{comb} is used for all four processes.

The most important sources of systematic uncertainty involve the estimation of background contributions: the uncertainties range from 5 to 25% and come mainly from limited statistical precision in the control regions. The uncertainties in the nonprompt background estimates from control samples in data also contribute significantly at 50%. Uncertainties related to trigger efficiencies, lepton identification and energy resolution, jet energy scale, and b-jet tagging efficiency range from 1 to 9%. A 2.3–2.5% uncertainty in the integrated luminosity is assessed [58–60]. Uncertainties due to limitations of the theory include missing higher-order corrections (2–14%), PDF uncertainties (2–7%), and the strong coupling α_s (1%). Theoretical and experimental uncertainties are correlated across different channels. Statistical uncertainties are much larger than systematic ones. The expected significance of the combined VVV production signal based on the sequential-cut selection is 5.4 standard deviations (sd), and the
observed significance is 5.0 sd. The observed (expected) significances for the individual triboson production processes are 2.5 (2.9) sd for WWW, 3.5 (3.6) sd for WWZ, 1.6 (0.7) sd for WZZ, and 0.0 (0.9) sd for ZZZ.

Figure 2: Best fit values of the signal strengths for the BDT-based analyses (blue solid circles) and the sequential-cut analyses (black open circles). The error bars represent the total uncertainty. For ZZZ production, a 95% confidence level upper limit is shown. The stated numerical values correspond to the BDT-based analysis.

The discrimination of signal and background events in the SS, 3ℓ, and 4ℓ channels is enhanced by using BDTs. The training and optimization of the BDTs is carried out for each channel using simulated background and signal events. A minimum value of each BDT output variable substitutes for the categorizations of events and the kinematic requirements applied in the sequential-cut analyses. In the SS and 3ℓ channels, two separate BDTs are trained: the first one to separate signal from nonprompt background and the second one to separate signal from the rest of the background. These two BDTs are applied sequentially. In the 4ℓ channel, a similar strategy is pursued except that the two BDTs are targeted against ZZ and tZ backgrounds specifically. There are two (five) signal regions for events in the ee/μμ (eμ) category. The improvement in sensitivity due to the use of BDTs varies channel by channel and is in the range 5–15%. No BDTs are used for the 5ℓ and 6ℓ channels.

The yields in the individual signal regions obtained using the BDTs are shown in Fig. 1. The significances \(L \) of the expected numbers of events are computed including systematic uncertainties and are evaluated under the asymptotic approximation [61]. Pulls are the differences in the numbers of observed and predicted events normalized to the uncertainties in the numbers of predicted events. Assuming the SM production of VVV events, the expected significance of the fit with a single signal strength \(\mu_{\text{comb}} \) is 5.9 sd and the observed significance is 5.7 sd. The observed (expected) significances for the individual triboson production processes are 3.3 (3.1) sd for WWW, 3.4 (4.1) sd for WWZ, 1.7 (0.7) sd for WZZ, and 0.0 (0.9) sd for ZZZ. In the most sensitive signal regions, approximately one third of the VVV events come from VH production. The measured signal strengths, obtained in the asymptotic approximation of the CL\(_s\) method [61], correspond to the total cross sections listed in Table 1; leptonic branching fractions for W and Z decays come from Ref. [62]. If VH is considered as a background, then the combined observed (expected) significance for \(\mu_{\text{comb}} \) is 2.9 (3.5) sd and the measured cross sections are listed in Table 1. For ZZZ production, upper limits are reported at 95% confidence level. Signal strengths obtained using both sequential-cut and BDT-based approaches and with VH production counted as signal are summarized in Fig. 2.

In summary, proton-proton collision data at \(\sqrt{s} = 13 \text{ TeV} \) recorded with the CMS experiment and amounting to 137 fb\(^{-1}\) were used to observe the production of three massive gauge bosons. The significance of the observation is 5.7 standard deviations (sd) with 5.9 sd expected. For WWW (WWZ) production, the observed significance is 3.3 (3.4) sd compatible with 3.1 (4.1) sd
Table 1: Measured cross sections obtained with the BDT-based analyses. The uncertainties listed are statistical and systematic. For the results listed in the upper (lower) half of the table, Higgs boson contributions are counted as signal (background). The VVV cross section is calculated from the fit for μ_{comb}. For ZZZ production, 95% confidence level upper limits are reported.

Process	Cross section (fb)
VVV	1010^{+210}_{-200}
WWW	590^{+160}_{-150}
WWZ	300^{+120}_{-100}
WZZ	200^{+100}_{-110}
ZZZ	<200

Treated Higgs boson contributions as signal

Process	Cross section (fb)
VVV	370^{+140}_{-130}
WWW	190^{+110}_{-100}
WWZ	100^{+80}_{-70}
WZZ	110^{+100}_{-70}
ZZZ	<80

Expected. Measured cross sections for WWW, WWZ, and WZZ production and an upper limit for ZZZ production are in agreement with the expectations of the standard model. This Letter documents the evidence for WWW and WWZ production and the first observation of the combined production of three massive gauge bosons.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
References

[1] P. Langacker, “Tests of the standard model and searches for new physics”, Adv. Ser. Direct. High Energy Phys. 14 (1995) 883,\[doi:10.1142/9789814503662_0022\] arXiv:hep-ph/9412361.

[2] G. Bélanger and F. Boudjema, “Probing quartic couplings of weak bosons through three vectors production at a 500-GeV NLC”, Phys. Lett. B 288 (1992) 201,\[doi:10.1016/0370-2693(92)91978-I\]

[3] S. Godfrey, “Quartic gauge boson couplings”, AIP Conf. Proc. 350 (1995) 209,\[doi:10.1063/1.49305\] arXiv:hep-ph/9505252.

[4] W. Buchmüller and D. Wyler, “Effective Lagrangian analysis of new interactions and flavor conservation”, Nucl. Phys. B 268 (1986) 621,\[doi:10.1016/0550-3213(86)90262-2\]

[5] O. J. P. Eboli, M. C. Gonzalez-Garcia, and S. M. Lietti, “Bosonic quartic couplings at CERN LHC”, Phys. Rev. D 69 (2004) 095005,\[doi:10.1103/PhysRevD.69.095005\] arXiv:hep-ph/0310141.

[6] C. Degrande et al., “Effective field theory: A modern approach to anomalous couplings”, Annals Phys. 335 (2013) 21,\[doi:10.1016/j.aop.2013.04.016\] arXiv:1205.4231.

[7] C. Degrande, “A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions”, JHEP 02 (2014) 101,\[doi:10.1007/JHEP02(2014)101\] arXiv:1308.6323.

[8] A. Lazopoulos, K. Melnikov, and F. Petriello, “QCD corrections to triboson production”, Phys. Rev. D 76 (2007) 014001,\[doi:10.1103/PhysRevD.76.014001\] arXiv:hep-ph/0703273.

[9] T. Binoth, G. Ossola, C. G. Papadopoulos, and R. Pittau, “NLO QCD corrections to triboson production”, JHEP 06 (2008) 082,\[doi:10.1088/1126-6708/2008/06/082\] arXiv:0804.0350.

[10] V. Hankele and D. Zeppenfeld, “QCD corrections to hadronic WWZ production with leptonic decays”, Phys. Lett. B 661 (2008) 103,\[doi:10.1016/j.physletb.2008.02.014\] arXiv:0712.3544.

[11] F. Campanario et al., “QCD corrections to charged triple vector boson production with leptonic decay”, Phys. Rev. D 78 (2008) 094012,\[doi:10.1103/PhysRevD.78.094012\] arXiv:0809.0790.

[12] S. Dittmaier, A. Huss, and G. Knippen, “Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders”, JHEP 09 (2017) 034,\[doi:10.1007/JHEP09(2017)034\] arXiv:1705.03722.

[13] T. Han and S. Willenbrock, “QCD correction to the pp → WH and ZH total cross-sections”, Phys. Lett. B 273 (1991) 167,\[doi:10.1016/0370-2693(91)90572-8\]

[14] O. Brein, A. Djouadi, and R. Harlander, “NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders”, Phys. Lett. B 579 (2004) 149,\[doi:10.1016/j.physletb.2003.10.112\] arXiv:hep-ph/0307206.
[15] M. L. Ciccolini, S. Dittmaier, and M. Kramer, “Electroweak radiative corrections to associated WH and ZH production at hadron colliders”, Phys. Rev. D 68 (2003) 073003, doi:10.1103/PhysRevD.68.073003, arXiv:hep-ph/0306234.

[16] D. de Florian et al., “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. doi:10.23731/CYRM-2017-002, arXiv:1610.07922.

[17] ATLAS Collaboration, “Evidence for the production of three massive vector bosons with the ATLAS detector”, Phys. Lett. B 798 (2019) 134913, doi:10.1016/j.physletb.2019.134913, arXiv:1903.10415.

[18] ATLAS Collaboration, “Search for triboson $W^{\pm}W^{\pm}W^{\pm}$ production in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector”, Eur. Phys. J. C 77 (2017) 141, doi:10.1140/epjc/s10052-017-4692-1, arXiv:1610.05088.

[19] CMS Collaboration, “Search for the production of $W^{\pm}W^{\pm}W^{\pm}$ events at $\sqrt{s} = 13$ TeV”, Phys. Rev. D 100 (2019) 012004, doi:10.1103/PhysRevD.100.012004, arXiv:1905.04246.

[20] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[21] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[22] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[23] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[24] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.

[25] M. Cacciari and G. P. Salam, “Dispelling the N^3 myth for the k_T jet-finder”, Phys. Lett. B 641 (2006) 57, doi:10.1016/j.physletb.2006.08.037, arXiv:hep-ph/0512210.

[26] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[27] M. Cacciari, G. P. Salam, and G. Soyez, “FASTJET user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[28] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.

[29] CMS Collaboration, “Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 10 (2017) 005, doi:10.1007/JHEP10(2017)005, arXiv:1707.03316.
[30] CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.

[31] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[32] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression trees”. Chapman and Hall/CRC, 1984. ISBN 0412048418, 9780412048418.

[33] I. Narsky, “Optimization of signal significance by bagging decision trees”, in Statistical Problems in Particle Physics, Astrophysics and Cosmology (PHYSTAT 05): Proceedings, Oxford, UK, September 12-15, 2005, p. 143. 2005. arXiv:physics/0507157, doi:10.1142/9781846289985_0030.

[34] B. P. Roe et al., “Boosted decision trees, an alternative to artificial neural networks”, Nucl. Instrum. Meth. A 543 (2005) 577, doi:10.1016/j.nima.2004.12.018, arXiv:physics/0408124.

[35] CMS Collaboration, “Search for s channel single top quark production in pp collisions at $\sqrt{s} = 7$ and 8 TeV”, JHEP 09 (2016) 027, doi:10.1007/JHEP09(2016)027, arXiv:1603.02555.

[36] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system”, in Proceedings of the 22nd SACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 785, ACM. 2016. arXiv:1603.02754, doi:10.1145/2939672.2939785.

[37] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.

[38] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2010) 043, doi:10.1007/JHEP11(2010)043, arXiv:1002.2581.

[39] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[40] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.

[41] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[42] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0708.2569.

[43] Y. Li and F. Petriello, “Combining QCD and electroweak corrections to dilepton production in FEWZ”, Phys. Rev. D 86 (2012) 094034, doi:10.1103/PhysRevD.86.094034, arXiv:1208.5967.
[44] J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”, JHEP 07 (2011) 018, doi:10.1007/JHEP07(2011)018, arXiv:1105.0020

[45] M. Czakon and A. Mitov, “TOP++: a program for the calculation of the top-pair cross-section at hadron colliders”, Comput. Phys. Commun. 185 (2014) 2930, doi:10.1016/j.cpc.2014.06.021, arXiv:1112.5675

[46] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, “W physics at the LHC with FEWZ 2.1”, Comput. Phys. Commun. 184 (2013) 208, doi:10.1016/j.cpc.2012.09.005, arXiv:1201.5896

[47] J. M. Campbell and R. K. Ellis, “t̅tW± production and decay at NLO”, JHEP 07 (2012) 052, doi:10.1007/JHEP07(2012)052, arXiv:1204.5678

[48] M. V. Garzelli, A. Kardos, C. G. Papadopoulos, and Z. Trocsanyi, “t̅tW± and t̅tZ hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects”, JHEP 11 (2012) 056, doi:10.1007/JHEP11(2012)056, arXiv:1208.2665

[49] F. Cascioli et al., “ZZ production at hadron colliders in NNLO QCD”, Phys. Lett. B 735 (2014) 311, doi:10.1016/j.physletb.2014.06.056, arXiv:1405.2219

[50] M. Grazzini, S. Kallweit, D. Rathlev, and M. Wiesemann, “W±Z production at hadron colliders in NNLO QCD”, Phys. Lett. B 761 (2016) 179, doi:10.1016/j.physletb.2016.08.017, arXiv:1604.08576

[51] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012

[52] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815

[53] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179

[54] NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849

[55] NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428

[56] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[57] C. G. Lester and D. J. Summers, “Measuring masses of semi-invisibly decaying particle pairs produced at hadron colliders”, Phys. Lett. B 463 (1999) 99, doi:10.1016/S0370-2693(99)00945-4, arXiv:hep-ph/9906349

[58] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2016.

[59] CMS Collaboration, “CMS luminosity measurements for the 2017 data taking period at √s = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2017.
[60] CMS Collaboration, “CMS luminosity measurements for the 2018 data taking period at \(\sqrt{s} = 13 \text{ TeV} \), CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2018.

[61] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* 71 (2011) 1554,
doi:10.1140/epjc/s10052-011-1554-0 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].

[62] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, *Phys. Rev. D* 98 (2018) 030001, doi:10.1103/PhysRevD.98.030001
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, T. Madlener, I. Mikulec, F.M. Pitters, N. Rad, J. Schieck, R. Schöfbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, I. Makarenko, L. Moureaux, L. Pêtré, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, M. Gruchala, I. Khvastunov, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giannamico, V. Lemaître, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklishyn, P. Vischia, S. Wuyckens, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, E. Belchior Batista Das Chagas, H. BRANDAO MALBOUISSON, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, J. Martins, D. Matos Figueiredo, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, P. Rebell Teles, L.J. Sanchez Rosas, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, D. Leggat, H. Liao, Z. Liu, R. Sharma, A. Spiezia, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, A. Levin, J. Li, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, B. Mesic, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
S. Abu Zeid, S. Khalili, E. Salama

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Bruck, F. Garcia, J. Havukainen, V. Karimaki, M.S. Kim, R. Kinnunen, T. Lampen, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.O. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
S. Ahuja, C. Amendola, F. Beaudette, M. Bonanomi, P. Busson, C. Charlot, O. Davignon, B. Diab, G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Caren, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torrototot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Torishvili, Z. Tsmalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Masciulo, P. Meyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnjakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók, R. Chudasama, M. Csanad, M.M.A. Gadallah, S. Lőkös, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, D.Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, D.K. Sahoo, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, N. Dholingra, R. Gupta, A. Kaur, A. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, S. Nandan, P. Palit, A. Furohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy, N. Sahoo

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani37, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, R. Ahlua,b,38, C. Arutaa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c, M. De Palmaa,b, A. Di Florioa,b, A. Di Pilatoa,b, W. Elmetenaweia,b, L. Fiorea, A. Gelmia,b, M. Ghia, G. Iasellia,c, M. Incea,b, S. Lezkia,b, G. Maggia,c, M. Maggia, I. Margjekaa,b, J.A. Merlina, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, F.M. Simona,b, R. Vendittia, P. Verwilligena

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, C. Cioccaa, M. Cuffiania,b, G.M. Dallavallea, T. Diotallevia,b, F. Fabbrinia, A. Fanfania,b, E. Fontanesia,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, F. Iemmia,b, S. Lo Meoa,39, S. Marcellinia, G. Masettia, F.L. Navarraa,b, A. Perrottaa, F. Primaveraa,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergoa,b,40, S. Costaa,b, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b,40, C. Tuvea,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, A. Cassesea, R. Ceccarellia,b, V. Ciulla,b, C. Civininia, R. D’Alessandroa,b, F. Fioria, E. Focardia,b, G. Latinoa,b, P. Lenzia,b, M. Lizzoa,b, M. Meschinia, S. Paolettia, R. Seiditaa,b, G. Sguazzonia, L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzoa,b, F. Ferroa, R. Mulargiaa,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, A. Bescha,b, F. Brivioa,b, F. Cetorellia,b, V. Ciriolia,b,19, F. De Guioa,b, M.E. Dinardoa,b, P. Dinia, S. Gennaia, A. Ghezzia,b, P. Govonia,b, L. Guzzia,b, M. Malbertia,b, S. Malvezzia, D. Menasea, F. Montia,b, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b, D. Valsecchia,b,19, D. Zuoloa,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, F. Fabozzia,c, F. Fiengaa, A.O.M. Iorioa,b, L. Layera,b, L. Listaa,b, S. Meolaa,d,19, P. Paoluccia,b,19, R. Rossia, C. Sciaccaa,b, E. Voevodinaa,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Bolettia,b, A. Bragagnoloa,b, R. Carlina,b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, F. Gasparinia,b, U. Gasparinia,b, S.Y. Hoha,b, M. Margonia,b, A.T. Meneguzzoa,b, M. Presillaa,b, P. Ronchesea,b, R. Rossina,b, G. Strong, A. Tikoa,b, M. Tosia,b, H. YARAKa,b, M. Zanettia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b
INFIN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, V. Mariania,b, M. Menichellia, F. Moscatellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa, T. Tedeschia,b

INFIN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, M.R. Di Domenicoa,b, S. Donatoa, L. Gianninia,c, A. Giassia, M.T. Grippoa, F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, G. Ramirez-Sancheza,c, A. Rizzia,b, G. Rolandia,c, S. Roy Chowdhurya,c, A. Scribanoa, N. Shafieia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, N. Turinia, A. Venturia, P.G. Verdinia

INFIN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b, R. Tramontanoa,b

INFIN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, S. Comettia, M. Costantinia, R. Covarellia,b, N. Demariaa, B. Kiania,b, F. Leggera, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteia,b, M. Montenoa, M.M. Obertinoa,b, G. Ortonaa, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, M. Ruspaa,c, R. Salvaticoa,b, F. Sivieroa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoa, D. Trocinoa,b

INFIN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttaa, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, B.C. Radburn-Smith, H. Seo, U.K. Yang, I. Yoon
University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, J. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkевичius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, M.I.M. Awan, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenko, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepenov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, S. Sanchez Cruz, A. Trapote

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Priels, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Russo

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, N. Beni, M. Bianco, A. Boci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, G. Cerminara, L. Cristella, D. d’Enterría, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Düsnner, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanello, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Giga, K. Gill, F. Glege, L. Gouskos, M. Guibaud, D. Gulman, M. Haranko, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Männelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petruilli, G. Petracciani, A. Pfeiffer, M. Pierini, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Neubgen, S. Scarfi, C. Schäfer, C. Schwicky, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Koltinsky, U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, A.-M. Lyon,
R.A. Manzoni, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönzenberger, L. Shchutska, V. Stampf, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, C. Botta, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, J.K. Heikkilä, M. Huwiler, A. Jofrehei, B. Kilminster, S. Leontsinis, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, G. Rauco, A. Reimers, P. Robmann, K. Schweiger, Y. Takahashi, S. Wertz

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, E. Eskut, G. Gokbulut, Y. Guler, E. Gurpinar Guler, I. Hos, C. Isik, E.E. Kanga, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozbek, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özcelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams
Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, P. Everaerts, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. McMaster, N. Pastika, S. Sawant, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, D. Hamilton, J. Hauser, M. Ignatenko, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrook, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerick, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, K.F. Di Petrillo, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, M.J. Kortelainen, S. Lammel, J. Lewis, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maehsima, D. Mason, P. McBride, P. Merkel, S. Menendez, O. O'Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofiev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, M. Wang, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USA
Y.R. Joshi

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, H. Wang, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.Á. Vámi

The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabil, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. McGinn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts†, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. Gonzalez Fernandez, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker, J. Pekkanen, S. Rappoccio, B. Rooszabani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, K. Mohrman, Y. Musienko, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala
H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless,
J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma,
W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy
for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of
NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Also at Zewail City of Science and Technology, Zewail, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Also at Ain Shams University, Cairo, Egypt
15: Also at Purdue University, West Lafayette, USA
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Tbilisi State University, Tbilisi, Georgia
18: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
19: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
20: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
21: Also at University of Hamburg, Hamburg, Germany
22: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan,
Iran
23: Also at Brandenburg University of Technology, Cottbus, Germany
24: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
25: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen,
Hungary
26: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
27: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd
University, Budapest, Hungary, Budapest, Hungary
28: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
29: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
30: Also at Institute of Physics, Bhubaneswar, India
31: Also at G.H.G. Khalsa College, Punjab, India
32: Also at Shoolini University, Solan, India
33: Also at University of Hyderabad, Hyderabad, India
34: Also at University of Visva-Bharati, Santiniketan, India
35: Also at Indian Institute of Technology (IIT), Mumbai, India
36: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
37: Also at Department of Physics, University of Science and Technology of Mazandaran,
Behshahr, Iran
38: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
39: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
40: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
41: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
42: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico
43: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
44: Also at Institute for Nuclear Research, Moscow, Russia
45: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
46: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
47: Also at University of Florida, Gainesville, USA
48: Also at Imperial College, London, United Kingdom
49: Also at P.N. Lebedev Physical Institute, Moscow, Russia
50: Also at California Institute of Technology, Pasadena, USA
51: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
52: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
53: Also at Universit`a degli Studi di Siena, Siena, Italy
54: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
55: Also at INFN Sezione di Pavia a, Universit`a di Pavia b, Pavia, Italy, Pavia, Italy
56: Also at National and Kapodistrian University of Athens, Athens, Greece
57: Also at Universit`a di Z"urich, Zurich, Switzerland
58: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
59: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
60: Also at Şırnak University, Şırnak, Turkey
61: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
62: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
63: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
64: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
65: Also at Mersin University, Mersin, Turkey
66: Also at Piri Reis University, Istanbul, Turkey
67: Also at Adiyaman University, Adiyaman, Turkey
68: Also at Ozyegin University, Istanbul, Turkey
69: Also at Izmir Institute of Technology, Izmir, Turkey
70: Also at Necmettin Erbakan University, Konya, Turkey
71: Also at Bozok Universitesi Rektörlüğü, Yozgat, Turkey
72: Also at Marmara University, Istanbul, Turkey
73: Also at Milli Savunma University, Istanbul, Turkey
74: Also at Kafkas University, Kars, Turkey
75: Also at Istanbul Bilgi University, Istanbul, Turkey
76: Also at Hacettepe University, Ankara, Turkey
77: Also at Vrije Universiteit Brussel, Brussel, Belgium
78: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
79: Also at IPPP Durham University, Durham, United Kingdom
80: Also at Monash University, Faculty of Science, Clayton, Australia
81: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
82: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
83: Also at Bingol University, Bingol, Turkey
84: Also at Georgian Technical University, Tbilisi, Georgia
85: Also at Sinop University, Sinop, Turkey
86: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
87: Also at Nanjing Normal University Department of Physics, Nanjing, China
88: Also at Texas A&M University at Qatar, Doha, Qatar
89: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea