Constituent quarks and systematic errors in mid-rapidity charged multiplicity \((dN_{ch}/d\eta)\) distributions\(^1\) MICHAEL TANNENBAUM, Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 — Although it was demonstrated more than 13 years ago that the increase in midrapidity \(dN_{ch}/d\eta\) with increasing centrality of Au+Au collisions at RHIC was linearly proportional to the number of constituent quark participants (or “wounded quarks”, \(Q_W\)) in the collision, it was only in the last few years that generating the spatial positions of the three quarks in a nucleon according to the Fourier transform of the measured electric charge form factor of the proton could be used to connect \(dN_{ch}/d\eta/Q_W\) as a function of centrality in p(d)+A and A+A collisions with the same value of \(dN_{ch}/d\eta/Q_W\) determined in p+p collisions. One calculation, which only compared its calculated \(dN_{ch}/d\eta/Q_W\) in p+p at \(\sqrt{s_{NN}} = 200\) GeV to the least central of 12 centrality bin measurements in Au+Au by PHENIX, claimed that the p+p value was higher by “about 30%” from the band of measurements vs. centrality. However the clearly quoted systematic errors were ignored for which a 1 standard deviation systematic shift would move all the 12 Au+Au data points to within 1.3 standard deviations of the p+p value, or if the statistical and systematic errors are added in quadrature a difference of 35 ± 21\%.

\(^1\)Research supported by U.S. Department of Energy, Contract No. DE-SC0012704