Phytoplankton flora of asejire reservoir, Southwest Nigeria

Godwin Asibor and Funso Adeniyi

DOI: https://doi.org/10.22271/23940522.2022.v9.i3a.895

Abstract
An appraisal of the current ecological status of Asejire Reservoir was carried out using the reservoir phytoplankton composition and community structure. Monthly sampling was carried out in nine selected sites for twelve months. Data were analysed using descriptive statistics, analysis of variance, Shannon-Weiner and Evenness indices. One hundred and fifty-four phytoplankton taxa were identified. Taxa dominance was in the following order: Bacillariophyceae > Chlorophyceae > Charophyceae > Euglenophyceae > Ochrophyceae > Dinophyceae. Microcystis sp. were the most abundant species followed by Anabaena sp. and Closterium sp. The riverine zone accounted for 50.8% of the total phytoplankton population. One-way analysis of variance between the zones indicated that there was a significant difference (F=11.41, df=2, p<0.0000146) in the spatial distribution among the stations. Most of the recorded phytoplankton species are cosmopolitan with the presence of the following species: Staurastrum, Closterium, Cosmarium, Anabaena, and Oscillatoria. The presence of some pollution indicator species is a cause of concern and the need to ensure holistic and effective monitoring measure is put in place to safeguard the reservoir.

Keywords: Asejire, reservoir, phytoplankton, community, taxa, cosmopolitan

1. Introduction
The total surface area covered by water in Nigeria is estimated to be 149,919km², constituting about 15.9% of the total area of the country [1]. These water bodies are often used for the disposal of domestic, industrial and other forms of anthropogenic effluents with the wrong assumption that the aquatic ecosystems have self-purifying ability [2, 3]. The primary producers in these waterbodies are the phytoplankton and are usually impacted by these discharges. The phytoplankton are food source for planktonic consumers and other higher organisms in the water and also represent the primary oxygen source in streams, rivers and reservoirs [4]. They number and type of phytoplankton are used as bio-indicators of water quality as they respond very quickly to changes in environmental stress which could result in consequences in their make-up and community structure [5, 6, 7]. Therefore, the composition, population and community structure of plankton are useful in assessing the biological integrity and functioning of aquatic ecosystem [8].

Aside the studies carried out by Egborge between 1972 and 1980 [9] when the reservoir was created; and [10]; most studies on the reservoir has been limited to the ichthyofauna and physico-chemical characteristics of reservoir [11, 12, 13, 14, 15, 16, 10, 17, 18, 19, 20, 21]. Paucity of information on the phytoplankton community especially their biodiversity, population and community structure is a setback to a proper understanding of the life process of the limnology of this vast and important reservoir, hence the need for this study. Therefore, the objectives of this study were to determine the taxonomic composition of the phytoplankton flora of the reservoir with regards to its composition, abundance and community structure. This will aid in updating the status of the phytoplankton community, develop a model for an effective management of the reservoir.

2. Materials and Methods
2.1 Study Area
The study area falls into the equatorial tropical climate [22], characterized by average annual rainfall of 100±40cm and temperature of 28±1.04 °C.

Corresponding Author:
Godwin Asibor
Department of Environmental Management and Toxicology, College of Science, Federal University of Petroleum Resources, P.M.B. 1221, Effurun, Delta State, Nigeria
Relative humidity is usually high ranging from 58% in the dry season to above 80% in the rainy season [23]. The surrounding vegetation is lowland tropical rainforest and dense savannah woodland at the northern fringe, but human interference and persistent annual bush burning for farming have reduced the natural vegetation to one described by [24] as forest regrowth. The Reservoir extend from longitudes 004°00'07"E - 004°08'09"E and from latitudes 07°21'48"N and 07°26'84"N (Figure 1). The reservoir is a manmade lake that was created in 1970 by the impoundment of River Osun to provide potable water for the city Ibadan and environs [11] and officially opened in 1972. Other ancillary benefits such as fishing, transportation, recreation, agriculture, etc. have since emerged after the dam creation [15]. The reservoir receives the bulk of its water input from two rivers, Rivers Osun and its main tributary River Oba. The catchment area of the dam is 7,800 km² and the impounded area is 23.42 km². The surface area of the reservoir is about 24 km². Its gross storage capacity is approximately 7,403.4 million litres per day while its discharge capacity is 136.26 million litres per day with maximum water capacity of about 675 m³. The reservoir supply water to more than two million inhabitants of Oyo and Osun States in the Southwestern part of Nigeria.

2.2 Selection, Description of sampling stations and Sample Collection

After a reconnaissance survey of the Reservoir, nine sampling sites (Stations A, B, C, D, E, F, G, H and I) were established along the course of the Reservoir (three each were along the horizontal axis of the reservoir, covering the upper basin-riverine zone), middle basin - transition zone and lower basin-lacustrine zone) of the lake (Figure 1). A Global positioning system (GPS) handset was used to determine the grid coordinates of the sampling sites. Samples were collected from April 2017 to March 2018. Samples were collected at each station by filtering 100 litres of water through a plankton net of 60 μm mesh size and reducing it to a concentrated volume of approximately 30 ml. The concentrated samples were preserved in 5% formalin solution.

2.3 Laboratory analyses

The 30 ml concentrate volume was further reduced to 5 ml, withdrawn using pipette and observed under the a compound microscope equipped with an ocular micrometer calibrated using a stage micrometer. Phytoplankton organisms were identified using guides by [25, 26, 27, 28, 29, 30, 31, 32, 33]. Species abundance were determined by direct count, aided by a counting chamber whose number of ocular fields had already been determined through calibration. Zooplankton abundance were determined from the count records of the final concentrated volume in relation to the original volume of water strained through the plankton net. Community structure was assessed using the indices of species diversity, Simpson’s dominance index (S). Abundance of each species was estimated based by multiplying the number in the final concentrate volume (30 ml for 30 Litres) by 1000 and expressed as organism/L (Org/L).

2.4 Statistical Analysis

The taxa richness, diversity, and evenness indices were calculated using Berger-Parker, Shannon-Wiener and Simpson and Margalef indices. All the statistical analyses

Fig 1: Asejire reservoir showing locations of sampling stations
were carried out using the Paleontological Statistics [34], Statistical Package for Social Sciences Software package and Statistical Ecology [35].

3. Results

3.1 Phytoplankton composition

A checklist of the phytoplankton species identified in Asejire Reservoir are presented in Table 1. A total of one hundred and fifty four (154) phytoplankton taxa were identified belonging to seven groups were recorded during the twelve months study period. This comprises of fifty-one species of Bacillariophyceae, twenty-five species of Charophyceae, twenty-nine species of Chlorophyceae, twenty-one species of Cyanophyceae, five species of Dinophyceae, seventeen species of Euglenophyceae and six species of Ochrophyceae. Taxa of Bacillariophyceae, Charophyceae, Chlorophyceae and Cyanophyceae were found in all the nine sampled locations, while Euglenophyceae, Dinophyceae and Ochrophyceae were found in eight, six and four stations. The order of dominance in relation to species richness in the reservoir was Bacillariophyceae (32.12%), Chlorophyceae (18.83%), Charophyceae (16.23%), Cyanophyceae (13.64%), Euglenophyceae (11.04%), Ochrophyceae (3.90%) and Dinophyceae (3.25%). In terms of abundance, Cyanophyceae recorded the highest with 32.68%, followed by Bacillariophyceae (25.48%), Chlorophyceae (20.59%), Charophyceae (13.81%), Euglenophyceae (5.12%), Dinophyceae (1.69%) and Ochrophyceae (0.64%). Among individual species, *Microcystis* sp. were the most abundant (20.39%), followed by *Anabaena* sp. (6.28%), *Closterium* sp. (5.94%), *Oedogonium* sp. (3.74%) and *Achnanthes* sp. (2.60%). Other phytoplankton species with relatively high abundance were *Synedra* sp., *Flagellaria* sp., *Eunotia* sp. and *Phacus* sp.

Table 1: Checklists of Phytoplankton recorded from Asejire Reservoir
Division
Bacillaceae
Species
A
Achnanthes sp.
Asterionella formosa
Asterionella gracilina
Bacillaria sp.
Coscinodiscus sp.
Cyclotella comta
Cyclotella kutzingiana
Cymatopleura solea
Cymbella affinis
Cymbella lanceolate
Diatoma hiemale
Diatoma sp.
Diatomella balfouriana
Eunothia sp.
Eunotia naegelii
Eunotia obliquestrata
Eunotia sp.
Fragilaria construens
Fragilaria crotonensis
Gomphomena sp.
Guinardia delicatula
Hantzschia amphioxys
Humidophila contenta
Hyalodiscus radiates
Mastogloia elliptica
Mastogloia sp.
Melosira granulata
Navicula capitatoradiata
Navicula cinta
Navicula cryptocephala
Navicula cuspidata
Navicula expansa
Navicula lanceolate
Navicula mutica
Navicula rhynchocep
Navicula viridula
Nitzchia sp.
Pinnularia borealis
Pinnularia brunii
Pinnularia gibba
Pinnularia nobilis
Pinnularia sp.
Pinnularia viridis
Pinnularia latia
Pleurosigma sp.
Charophyceae	
Chara sp.	250 100 0 100 50 250 100 50 50 50 50 50 50 225
Closterium costatum	250 100 0 100 50 250 100 50 50 50 50 50 50 950
Closterium ehrenbergii	100 250 50 100 50 100 100 0 50 800
Closterium gracile	300 200 0 50 0 0 100 50 50 50 50 50 50 750
Closterium incurvum	100 150 50 0 50 100 50 100 25 575
Closterium leibnizii	0 125 0 0 50 50 100 50 50 425
Closterium lunula	0 0 0 0 50 0 0 50 50 150
Closterium moniliferum	0 100 0 0 50 0 0 50 50 250
Closterium parvulum	0 0 0 0 50 0 0 50 50 300
Closterium rostratum	25 0 0 50 50 0 0 50 50 225
Closterium sp.	250 100 0 100 50 250 100 50 50 950
Cosmarium obtusatum	0 0 0 0 0 0 50 0 50 50
Cosmarium quadratum	0 200 550 75 100 200 75 25 0 1225
Cosmarium speciesm	0 0 0 50 0 250 300 25 0 625
Desmidium coerctatum	0 0 0 0 0 25 0 25 0 25
Gyalecta undulata	0 0 100 50 100 50 25 0 25 0 350
Microsterias foliacea	25 150 100 350 200 100 50 50 0 1025
Microsterias moebii	100 0 250 50 0 0 50 25 0 475
Pleurotium trabeccula	200 100 350 0 50 25 25 0 0 750
Spirogyra borgeana	100 50 0 100 50 0 0 100 50 450
Spirogyra californica	100 150 0 0 50 0 0 0 300
Spirogyra flavivitilis	125 50 0 0 0 0 0 50 225
Spirogyra sp.	200 125 100 0 50 0 0 0 0 475
Staurostrum triangularis	0 100 50 0 0 25 50 0 225
Staurodesmus convergens	100 150 50 0 0 0 50 300
Ankistrodesmus falcatus	100 75 100 75 50 25 75 75 100 675
Asterionella formosa	150 100 50 50 50 100 0 0 50 550
Chlamydomonas sp.	50 150 200 50 0 0 25 0 475
Chlorella sp.	200 0 50 0 0 0 150 0 0 400
Chlorosarcina minor	100 50 50 0 0 0 0 0 200
Coelastrum microsporum	50 100 250 0 0 50 50 50 50 500
Coelastrum sphaericum	100 100 250 0 0 50 50 50 550
Eudorina sp.	150 100 200 0 0 50 25 0 325
Gonatocystis mononoumenium	250 450 200 50 75 125 50 25 0 1225
Hantzschia amphioxys	25 0 0 0 50 0 0 0 100 175
Micrasterias sp.	25 0 0 0 0 0 0 0 25 0 25
Microspora floccosa	125 100 25 75 0 0 25 75 100 585
Oedogonium capillare	25 0 0 0 50 0 0 50 250 300 100 725
Oedogonium sp.	750 500 300 0 50 300 250 100 400 2650
Oocystis crassa	50 100 50 25 0 0 0 200 75 500
Oocystis elliptica	100 100 0 25 0 0 0 50 100 375
Pediastrum duplex	0 0 0 100 0 0 0 50 100 250
Rhizoclonium hieroglyphicum	100 100 0 25 75 100 200 250 300 1150
Scenedesmus bijuga	25 125 175 75 100 25 50 100 50 725
Scenedesmus quadricauda	100 25 100 75 50 125 200 25 0 700
Sphaeroystis scholteri	50 0 100 0 50 0 100 0 0 300
Stauroastrum leptocladium	150 300 200 0 50 75 0 0 0 775
Stauroastrum limneticum	50 200 0 0 50 0 0 0 0 300
Stauroastrum trifidum	200 150 100 50 75 50 25 0 50 700
Tetraedron minimum	0 100 150 0 50 100 0 0 0 400
Trebriaria crassipina	150 250 150 125 50 100 50 25 0 900
Ulothrix sp.	100 250 50 200 150 100 0 0 50 900
Volvox aureus	200 100 50 150 50 100 0 0 25 50 725
Volvox globulus	100 150 50 100 150 100 0 0 50 700
Anabaena circularis	200 100 50 100 50 75 100 25 800
Anabaena constricta	25 75 100 25 125 50 100 50 125 675
Anabaena subcylindrica	750 250 100 100 50 200 250 100 75 1875
Anabena circinalis	200 25 25 150 75 250 150 100 125 1100
Anabena sp.	100 75 150 125 75 150 200 250 100 725
Aphanocapsa delicatissima	125 75 100 125 75 75 200 100 100 975
Chromococcus cohaerens	100 125 150 100 75 150 200 250 100 1250
The highest number of individuals for phytoplankton was recorded in the riverine zone (upper reach) of the reservoir in stations A (19075), B (15025) and C (11775) followed by the transition zone in stations F (8675) and D (7975), while the location with the least number of individuals was stations I (5650) and H (6750) in the lacustrine region of the reservoir. In summary the riverine zone accounted for 50.77% of the total phytoplankton population, while the transition and lacustrine zone accounted for 26.81% and 22.41% respectively (Tables 2, 3 and 4). The highest Margalef (d) value (0.672) was recorded for Station E followed by Station A (0.609) while the lowest Margalef was recorded in Stations G, H and B with the values of 0.446, 0.454 and 0.520. The highest Shannon index values of 1.646, 1.593 and 1.577 were recorded in Stations C, A and B all in the riverine zone of the reservoir, while the lowest Shannon index was recorded Stations H, G and D in the lacustrine and transition zones of the reservoir. The Equitability shows that the highest values of 0.919 and 0.880 was recorded in Stations C and B; all in the riverine zone of the reservoir, while the lowest value of 0.774 was recorded in the transition zone of the reservoir.

Table 5 shows the relationship between the individual phytoplankton species in the reservoir. The highest Shannon index values of 4.39, 4.32 and 4.19 were recorded in Stations B, A and C all in the riverine zone of the reservoir, while the lowest Shannon index was recorded Stations D, E and G in the transition and lacustrine zones of the reservoir. This similar trend was also by the Simpson, Menhinick and Margalef, Fisher alpha and Berger-Parker indices. One-way analysis of variance of between the zones indicated that there was a significant difference (F=11.41, df=2, p=0.0000146) in the spatial distribution of the organisms among the stations. A similar trend was also observed in the one-way analysis of variance between the zones with regards to species occurrence as there was a significant difference (F = 12.53, df = 2, p = 0.00000501) between the stations.

Species	Stations	Total	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Gloeotrichia echinulata			0	0	0	0	0	0	50	25	0	325																
Lyngbya martensiana	100	50	25	0	0	0	0	0	0	0	175																	
Microcystis aeruginosa	750	850	300	750	650	450	400	550	50	4750																		
Microcystis flos aquae	850	950	550	650	750	750	575	750	100	5925																		
Microcystis turrigis	1550	750	850	1050	750	850	650	550	750	7750																		
Oocystis eremo phera	125	50	100	75	75	25	0	0	25	25	425																	
Oocystis solitaria	100	200	0	0	0	50	25	0	25	75	475																	
Oscillatoria aghardii	150	50	75	75	25	0	50	25	75	75	475																	
Oscillatoria limnosa	50	100	0	0	0	0	0	0	0	0	150																	
Oscillatoria tenuis	100	50	0	0	0	50	25	0	0	0	175																	
Rivularia sp.	0	25	0	0	0	0	0	0	0	0	25																	
Spirulina platensis	100	50	150	0	50	0	0	0	0	0	350																	
Dinophyceae	100	150	50	50	0	0	0	0	0	0	350																	
Peridiniopsis thompsoni	100	25	150	0	0	0	0	25	25	325																		
Peridinium sp.	50	50	100	0	0	0	0	25	25	225																		
Peridinium bipes	100	25	75	0	0	0	0	25	25	250																		
Didinium bolbiani	25	75	50	0	25	0	0	0	25	25	225																	
Oodinium limneticum	125	100	75	0	125	0	50	25	50	500																		
Euglena acus	0	0	0	25	50	75	100	0	100	350																		
Euglena cardinal	100	75	150	0	0	0	0	0	50	375																		
Euglena gracilis	50	75	0	0	0	0	0	0	50	175																		
Euglena oxyaris	100	75	150	0	0	0	0	0	50	375																		
Euglena viridis	100	50	0	0	0	0	0	0	0	150																		
Lepocinclis ovum	0	50	0	0	0	0	0	0	0	50																		
Phacus curvicauda	175	0	50	0	0	0	0	0	0	225																		
Phacus longicauda	200	125	175	100	25	50	0	0	0	675																		
Phacus orbicularis	150	175	200	75	50	50	25	0	0	725																		
Phacus suecicus	175	0	50	0	0	0	0	0	0	225																		
Trachelomonas enzera	150	50	25	0	25	0	25	0	275																			
Trachelomonas hispida	125	50	25	0	0	0	0	0	200																			
Trachelomonas hordida	50	75	25	0	0	0	0	0	150																			
Trachelomonas lacustris	100	50	25	0	0	0	0	0	175																			
Trachelomonas oblonga	0	50	0	0	0	0	0	0	50																			
Trachelomonas similis	75	50	25	0	0	0	0	0	150																			
Trachelomonas tambowica	100	50	125	25	0	0	0	0	0	300																		
Encyonema auerswaldii	0	0	0	25	50	50	0	0	0	125																		
Encyonema sp.	0	0	0	0	0	50	50	0	0	50																		
Geissleria sp.	0	0	0	0	50	0	0	0	50																			
Gyrosigma acuminatum	100	0	0	25	50	50	0	0	0	225																		
Gyrosigma sp.	0	0	0	25	50	50	0	0	0	75																		
Luticola sp.	0	0	0	0	50	50	0	0	0	50																		
Table 2: Phytoplankton abundance among the sampled locations

Taxa	Stations	A	B	C	D	E	F	G	H	I	Total
Bacillariophyceae		5800	3925	2600	2050	2075	1675	1925	1550	1425	23025
Charophyceae		2075	2100	1700	1075	1000	1675	1250	1025	575	12475
Chlorophyceae		3475	3675	2850	1250	1225	1725	1600	1175	1625	18600
Cyanophyceae		5575	4050	3150	3325	2850	3125	2925	2875	1650	29525
Dinophyceae		400	275	450	150	0	0	125	125	1525	575
Euglenophyceae		1650	1000	1025	200	175	175	150	0	250	4625
Ochrophyceae		100	0	75	100	300	0	0	0	575	
Total		19075	15025	11775	7975	7575	8675	7850	6750	5630	90350

Table 3: Phytoplankton occurrence among the sampled locations

Taxa	Stations	A	B	C	D	E	F	G	H	I
Bacillariophyceae		34	41	35	30	17	22	18	22	24
Charophyceae		15	17	11	11	15	12	15	19	12
Chlorophyceae		27	23	22	16	18	16	15	16	14
Cyanophyceae		19	20	18	12	14	14	13	13	12
Dinophyceae		05	05	05	0	0	0	0	0	04
Euglenophyceae		14	14	12	03	05	03	03	03	04
Ochrophyceae		01	0	03	02	06	0	0	0	0

Table 4: Diversity between the major divisions in the Stations (abundance)

Taxa	Station	A	B	C	D	E	F	G	H	I
Individuals		19075	15025	11775	7975	7575	8675	7850	6750	5650
Dominance		0.231	0.225	0.209	0.283	0.261	0.246	0.266	0.288	0.244
Shannon index		1.593	1.577	1.646	1.411	1.506	1.519	1.405	1.366	1.320
Simpson index		0.769	0.775	0.791	0.717	0.739	0.755	0.734	0.712	0.756
Menhinick		0.051	0.049	0.055	0.067	0.080	0.064	0.056	0.061	0.080
Margalef		0.609	0.520	0.533	0.357	0.672	0.551	0.446	0.454	0.579
Equitability		0.819	0.880	0.919	0.787	0.774	0.848	0.873	0.849	0.848
Fisher alpha		0.684	0.592	0.608	0.636	0.760	0.630	0.520	0.529	0.663
Berger-Parker		0.304	0.270	0.268	0.417	0.376	0.360	0.373	0.426	0.292

Table 5: Diversity between individuals in the stations (abundance)

Taxa	Station	A	B	C	D	E	F	G	H	I
Individuals		0.013	0.0195	0.0223	0.043	0.0388	0.0334	0.031	0.038	0.037
Shannon index		4.320	4.389	4.189	3.768	3.78	3.829	3.780	3.785	3.849
Simpson index		0.9787	0.981	0.978	0.957	0.961	0.967	0.969	0.962	0.963
Menhinick		0.327	0.979	0.949	0.840	0.838	0.784	0.722	0.901	0.945
Margalef		11.570	12.37	10.88	8.237	8.06	7.94	7.025	8.279	8.102
Equitability		0.9014	0.917	0.904	0.873	0.881	0.892	0.909	0.879	0.903
Fisher alpha		16.27	17.81	15.53	11.46	11.2	10.93	9.531	11.62	11.44
Berger-Parker		0.0813	0.063	0.072	0.132	0.099	0.098	0.083	0.111	0.133

4. Discussion
The different divisions of phytoplankton namely: Bacillariophyceae, Charophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae, Ochrophyceae and Cyanophyceae identified in Asejire Reservoir were to an extent similar to assemblages of some previously identified species from different Nigerian aquatic environment [11, 36, 37, 38, 39, 40, 10, 41, 42, 43].

Phytoplankton of the Cyanophyceae (blue-green algae) group was found to be the most abundant phytoplankton group in the reservoir during the study period. This agrees with the observations of [44, 45] who worked in Aawba Lake (Nigeria) and Lake George (Uganda). *Microcystis* spp. have been reported to dominate the phytoplankton group in Awba Lake in Nigeria according to [44] and an earlier study in Asejire Reservoir by Egborje [12], while *Anabaena* sp., a filamentous form of blue-green algae was reported to dominate phytoplankton in Lake Rudolf (Kenya) and Lake Albert [46]. Contributions to the group were mainly from *Microcystis*, *Anabaena*, *Aphanacapsa*, *Chroomococcus*, *Oscillatoria* and *Spirulina*. A similar observation made by [47] in a freshwater in Uyo. The second dominant group was Bacillariophyta with 23,025 species and 51 taxa. Species numbers of Bacillariophyta were high in all the locations. *Euotia*, *Synedra*, *Achnanthes*, *Asterionella*, *Flagillaria*, *Nitzschia* and *Cyclotella* were the
dominant genus and were widely found in all the locations. [30] remarked that *Fragilaria* and *Nitzschia* species are known indicators of eutrophic lakes, while [48] stated that *Cylotella* species are bioindicators of transient phase from oligotrophic to eutrophic conditions. [30] also observed that *Asterionella* formosa is the characteristic species of mesotrophic lakes. The third dominant group was Chlorophyceae taxa with 18625 individuals, but with the second most occurring species (29). The occurrence maybe due to high oxygen level and mixing as noted by [49, 50] who observed that diatoms green algae dominate the phytoplankton community of many tropical African lakes.

The occurrence of *Microcytis*, *Anabaena* and *Aphanocapsa* is a clear indication anthropogenic pollutants into the reservoir as observed by [30] in Awba Reservoir at the University of Ibadan. The anthropogenic activities could be as result of laundry wastewater, chemicals, agricultural run-off and wastes washed into the reservoir from communities around the upper reach the reservoir. [51] reported that reservoirs where domestic, agricultural and industrial pollution is accelerated, growth of blue-green algae results in noxious bloom of such form as *Microcytis* and *Anabaenata*. A similar observation was made by Egborje [11] that *Anabaena* and *Microcytis* are indication of eutrophication following upwelling in Lake Kainji in Nigeria. The presence of *Oscillatoria* indicates the presence of high concentrations of organic matter and low oxygen content. However, these plant nutrients may be derived from fertilized farm lands at upper sections of the reservoir. This phenomena has also been reported by [32].

The Euglenophyceae taxa identified in the Asejire Reservoir were generally low (5.12%) compared to the Cyanophyceae (32.7%), Bacillariophyceae (25.5%), Chlorophyceae (20.6%) and Charophyceae (13.8%). Euglenoids species can tolerate various levels of organically polluted waters and therefore can be used as indicators of organic pollution [30, 53, 54, 55]. Pollution indicator species like *Euglena*, *Phacus*, *Lepocinclis* and *Trachelomonas*, *Navicula*, *Melosira*, *Pinnularia*, *Synedra*, *Oscillatoria*, *Spirulina*, *Fragilaria* and *Nitzschia* were encountered during the study. The presence of these Euglenoid species encountered in some of locations this may indicate the presence of anthropogenic influence on the reservoir. Egborje [14] pointed out that the euglenoids are good indicators of polluted or meso and eutrophic freshwater bodies. Therefore, there is a possibility of algal bloom formation if there is excessive nutrients enrichment of the water by the presence of human habitations around the reservoir.

In Asejire Reservoir, most of the recorded phytoplankton species are cosmopolitan. One of the most used methods for the codification of trophic state of lake is phytoplankton indexes, though these indexes may not totally reliable due to the short period of water retention time in reservoir systems [56]. It is quite tasking to understand the trophic status of the lake using only species composition results, but [57, 55] stated that *Staurastrum*, *Closterium* and *Cosmarium* (Chlorophyceae), *Anabaena* and *Oscillatoria* (Cyanophyceae) are found; *Peridinium* and *Ceratium* (Dinophyceae), *Cyclorella*, *Stephanodiscus* and *Asterionella* (Bacillariophyceae) are dominant in eutrophic and mesotrophic water. Based on these findings, Asejire Reservoir can be termed a productive eutrophic reservoir.

5. Conclusion

This study on phytoplankton of Asejire Reservoir is considered important and can be utilized as a basis for impact assessment, planning and implementation. Development of policies for monitoring and effective development of the reservoir should incorporate phytoplankton indices. The phytoplankton community structure to an extent have great impact on reservoir survival on the long run. Their presence provide suitable conditions for micro habitats and other grazers within the lake.

6. References

1. Ita EO. Inland Fishery Resources of Nigeria. CIFA Occasional paper No 20. F.A.O, 1993, 120p.
2. Fakayode SO. Impact assessment of Industrial effluent on water quality of the receiving Alaro stream in Ibadan, Nigeria, J Ajem-Ragee. 2005:10-1-13.
3. Adeogun AO, Fafioye OO. Impact of effluents on water quality and benthic macroinvertebrate fauna of Awba Stream and Reservoir. Journal of Applied Science and Environmental Management. 2011;15(1):105-113.
4. Wehr JD, Descy JL. Use of phytoplankton in large river management, J Psychol. 1998;34(5):741-749.
5. Meybeck M, Friedrich A, Thomas R, Chapman D. Rivers in Water quality assessment; A guide to use of biota, sediments and water in environmental monitoring chapman. D.E.D, Chapman and Hall. London, 1992, 239p.
6. Bahura CK. Phytoplanktonic community of the highly eutroficated temple tank Bikaner. J Aquat. Biol. 2001;12(2):47-51.
7. Akindele EO, Adeniyi IF. A study of the physicochemical water quality, hydrology and zooplankton fauna of Opa Reservoir. Afr. J Environ. Sci. Technol. 2013;7(5):192-203.
8. Brettum P, Andersen T. The use of phytoplankton as indicators of water quality. In: NIVA report. Society for Neuro Oncology. 2005;12:4818-2004.
9. Egborje ABM. The seasonal variation and distribution of phytoplankton of the lake Asejire. A new impoundment in Nigeria: Preceeding of International conference on Kainji Lake, 1977, 136-145.
10. Ayode AA, Fagade SO, Adebisi AA. Dynamics of limnological features of two man-made lakes in relation to fish production. African Journal of Virology Research. 2018;12(6):001-009.
11. Egborje ABM. A preliminary checklist of the zooplankton organisms of the River Oshun in the Western State of Nigeria. Nig. J Sci. 1972;6(1):67-71.
12. Egborje ABM. The composition, seasonal variation and distribution of zooplankton in Lake Asejire, Nigeria. La Revue de zoologic Africaine. 1981;95:137-165.
13. Egborje ABM. Cyclomorphosis in *Keratella tropica* (Apstein) of Lake Asejire, Nigeria. Hydrobiologia. 1986;135:179-191.
14. Egborje ABM. The composition, seasonal variation and distribution of zooplankton in Lake Asejire, Nigeria. La Revue de Zooligic Africaine. FASC. 1990;(1-1981)95:137-165.
15. Asibor IG. The Macroinvertebrate fauna and sediment characteristics of Asejire Reservoir, Southwest Nigeria. Ph.D. Thesis, Dept. of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria, 2008, 1-192.

~ 15 ~
16. Asibor G, Adeniyi F. Benthic macro-invertebrates of Asejire reservoir, Southwest Nigeria. International Journal of Fauna and Biological Studies. 2017;4(3):119-124.

17. Ipinmoroti MO. Ichthyofauna diversity of Lake Asejire: Ecological implications. International Journal of Fisheries and Aquaculture. 2013;5(10):248-252.

18. Jenyo-Oni A, Oladele AH. Heavy Metals Assessment in Water, Sediments and Selected Aquatic Organisms in Lake Asejire, Nigeria. European Scientific Journal. 2016;12(24):339-351.

19. Odulate DO. Ichthyofauna diversity in Asejire Lake, Southwest, Nigeria. J Ecosys Ecograph. 2016;6:1-10.

20. Kareem K, Olanrewaju N, Igbaro B. Growth Pattern, Diet and Tropical Niche Breadth of the Nile Silver Catfish, Schilbe mystus (Linne 1758) in Asejire Lake, Southwestern, Nigeria. Egyptian Journal of Aquatic Biology & Fisheries Zoology. 2021;25(2):677-687.

21. Omoike A. The Trend in Fish Species Diversity and Abundance at Asejire Reservoir South Western Nigeria. Journal of Aquatic Fisheries. 2021:5:1-9.

22. Ojo O. The climates of West Africa. Heinemann Educational Books, Ltd, Nigeria, 1911, 198p.

23. Papadaki J. Crop ecology of West Africa. FAO, UN Publication MR/16439/1. 1961:2:188.

24. Agboola SA. An agricultural atlas of Nigeria. Oxford University Press, Oxford, 1979, 248p.

25. Prescott GW. How to Know the Freshwater Algae. WM.C Brown Co., Dubuque, Iowa, 1954, 211p.

26. Edmondson WT. Fresh water Biology. 2nd ed, London. 1951, 421-494.

27. Whitford LA, Schumacher GJ. A Manual of Freshwater Algae. Sparks Press, Raleigh, 1973, 324p.

28. Needham JG, Needham PR. A guide to the study of freshwater Biology. 5th Edn. Holden Day publishing, San Francisco, 1975, 267p.

29. Maosen H. Illustration of Freshwater Plankton. Agricultural Press, London, 1978, 171p.

30. Reynolds CS. The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge, New York, 1984, 384p.

31. Nwankwo DI. A practical guide to the study of algae in Nigeria. JAS publishers, Lagos, 2004, 190p.

32. Suthers IM, Rissik D. Plankton: A guide to their ecology and monitoring for water quality (p. 256). CSIRO Publishing. 2009, 54-177.

33. Opute FL, Kadiri MO, Phytoplankton algae of Nigeria: A practical and theoretical guide, The Desmids, Mindex Publishing Co. Ltd, Nigeria. 2013;1:304.

34. Hammer O, Harper DAT, Ryan PD. Palaeontological Statistics version 1.15. Kluwer Academic Publishers, 2003, 24-98.

35. Ludwig JA, Reynolds JF. Statistical Ecology: A primer on methods and computing. John Wiley & Sons, New York, 1988, 53-121.

36. Yakubu AF, Sikoki FD, Abowei JFN, Hart SA. A Comparative Study of Phytoplankton Communities of Some Rivers, Creeks and Burrow Pits in the Niger Delta Area. Journal of Applied Science and Environmental Management. 2000;4:41-46.

37. Yakubu AS. Assessment of water quality and plankton of effluents receiving Awba stream and reservoir in Ibadan, Nigeria. Afr. J Appl. Zool. Environ. Biol. 2004;6:107-110.

38. Edward JB, Ugwumba AA. Physico-chemical parameters and plankton community of Egbe Reservoir, Ekiti State, Nigeria. Research Journal of Biological Sciences. 2010;5(5):356-367.

39. Anago IJ, Ensenowo IK, Ugwumba AA. The Physico-chemistry and Plankton Diversity of Awba Reservoir University of Ibadan, Ibadan Nigeria. Research Journal of Environmental and Earth Sciences. 2013;5(11):638-644.

40. Hameed IO, Adeniyi IF, Adesakin TA, Aduso AI. Phytoplankton Diversity and Abundance in Relation to Physico-chemical Parameters of Iewara Reservoir, Southwestern Nigeria. World News of Natural Sciences. 2019;24:251-268.

41. Adebayo ET, Ayoade AA. Ecological Assessment of Itapaji Reservoir Status in Itapaji Using Plankton Assemblage. Ethiopian Journal of Environmental Studies and Management. 2019;12(1):13-31.

42. Daoud H, Wakirwa BJ, Yusuf UM. Phytoplankton as Indicators of Water Quality in Gadan Jammel Dam Nangere, Yobe State, Nigeria. International Journal of Innovative Environmental Studies Research. 2020;8(3):10-19.

43. Adebayo AT, Adewole HA, Akindele EO, Olayeye VF. Planktonic fora and fauna of Opa Reservoir wetlands, Obafemi Awolowo University, Ile-Ife, Nigeria. The Journal of Basic and Applied Ecology. 2021;82(40):2-10.

44. Ugwumba AO, Ugwumba AAA. A study of the physico-chemical hydrology and plankton of Awba Lake in Ibadan, Nigeria. Fish Acadibiz. Comm. 1993;1(1-4):20-39.

45. Burgis MJ, Darlington JP, Dunn IG, Graf GG, Gwahaba JJ, McGomwan LM. The biomass and distribution of organisms in Lake George, Uganda. Proc. Royal Soc. London Series B. Biol. Sci. 1973;184:271-298.

46. Fish GR. The food of Tilapia in East Africa. Uganda J. 1955i;19:85-89.

47. Akpan AW. Limnology and net plankton periodicity of a tropical freshwater pond in Uyo (Nigeria). Tropical Fresh Biol. 1995;4:65-81.

48. Round FE, Crawford RM, Mann DG. The Diatoms: Morphology and biology of the genera. Cambridge University Press, Cambridge, 1990, 747p.

49. Aboul-El A, Khalil MT. Ecological studies on the plankton and Benthic of Wadi elrayan, a new lake in Egypt. Tropical Fresh Water Biol. 1989;2:101-111.

50. Ugwumba AAA. Food and feeding ecology of the Oreochromis niloticus (Pisces Osceichthytes) in Awba Reservoir Ibadan, Ph.D. Thesis, University of Ibadan, 1990, 188p.

51. Cole GA. A textbook of limnology. The C. V. Mosby Company, 1978, 245p.

52. Olaniyi RF. Physicochemical characteristics and Phytoplankton flora of Owena Reservoir, Southwest, Nigeria. Afr. J Med. Sci. 2010;3(1):6-10.

53. Nwankwo DI, Akinsoji A. Periphyton algae of a eutrophic creek and their possible use as indicator. Niger. J Bot. 1988;10:23-35.

54. Nkechinyere ON, Domrufus NA. Limnological studies on Nike Lake, Enugu State. The metaphyton and some physico-chemical aspects. Nig. J Bot. 2006;19:396-404.

55. Moss B. Ecology of freshwaters. 3rd edition, Blackwell Science, Oxford, 2001, 256p.
56. Lind OT, Terrell TT, Kimmel BG. Problems in reservoir trophic state classification and implications for reservoir management. In: M. Straskraba, J.G. Tundisi and A. Duncan (Ed.), Comparative Reservoir Limnology and Water Quality Management, Kluwer Ac. Publ., the Netherlands, 1993, 57-67.

57. Hutchinson GE. A treatise on limnology, vol: II, introduction to lake biology and the limnoplankton. John Wiley and Sons. Inc., New York, 1967, 115.