Euclidean Windows

Stefania Cavallar Franz Lemmermeyer

February 28, 2012

Abstract

In this paper we study number fields which are Euclidean with respect to a function different from the absolute value of the norm. We also show that the Euclidean minimum with respect to weighted norms may be irrational and not isolated.

Introduction

Let R be an integral domain. A function $f : R \rightarrow \mathbb{R}_{\geq 0}$ is called a Euclidean function on R if it satisfies the following conditions with $\kappa = 1$:

i) $f(R) \cap [0, c]$ is finite for every $c \geq 0$;

ii) $f(r) = 0$ if and only if $r = 0$;

iii) for all $a, b \in R$ with $b \neq 0$ there exists a $q \in R$ such that $f(a - bq) < \kappa \cdot f(b)$.

If f is a multiplicative function, then we can replace iii) by the equivalent condition that for all $\xi \in K$ (K being the quotient field of R) there is a $q \in R$ such that $f(\xi - q) < \kappa$. The infimum of all $\kappa \in \mathbb{R}$ such that this condition holds for a fixed ξ is denoted by $M(\xi, f)$; clearly $M(R, f)$ is the supremum of the $M(\xi, f)$.

If $R = \mathcal{O}_K$ is the ring of integers in a number field K (K being the quotient field of R) there is a $q \in R$ such that $f(\xi - q) < \kappa$. The infimum of all $\kappa \in \mathbb{R}$ such that this condition holds for a fixed ξ is denoted by $M(\xi, f)$; clearly $M(R, f)$ is the supremum of the $M(\xi, f)$.

Replacing K in these definitions by $\overline{K} = \mathbb{R}^n$ (this is the topological closure of the image of K under the standard embedding $K \rightarrow \mathbb{R}^n$; for totally real fields we have $\overline{K} = K \otimes \mathbb{R}$), the Euclidean minimum becomes the inhomogeneous minimum of the norm form of \mathcal{O}_K (this conjecture is known to hold for number fields with unit rank at most 1). Let C_1 be the set of representatives modulo \mathcal{O}_K of all $\xi \in K$ with $M(\xi) = M(K)$ (here $M(\xi) := M(\xi, |N|)$); then we say that $M(K)$ is isolated if there is a $\kappa_2 < \kappa$ such that $M(\xi) \leq \kappa_2$ for all $\xi \in K$ that are not represented by some point in C_1.

The aim of this paper is to explain how the Euclidean minimum of \mathcal{O}_K with respect to “weighted norms” can be computed in some cases; we will show that the Euclidean minimum for certain weighted norms in $\mathbb{Q}(\sqrt{69})$ is irrational and not isolated, thereby showing that these conjectured properties for minima with respect to the usual norm do not carry over to weighted norms.
1 Weighted norms

Let \(K \) be a number field, \(\mathcal{O}_K \) its ring of integers, and \(p \) a prime ideal in \(\mathcal{O}_K \). Then, for any real number \(c > 0 \),

\[
\phi : q \mapsto \begin{cases}
N_q, & \text{if } q \neq p \\
\frac{1}{c}, & \text{if } q = p
\end{cases}
\]
defines a map from the set of prime ideals \(q \) of \(\mathcal{O}_K \) into the positive real numbers, which can be uniquely extended to a multiplicative map \(\phi : I_K \to \mathbb{R}_{>0} \) on the group \(I_K \) of fractional ideals. Putting \(f(\alpha) = \phi(\alpha \mathcal{O}_K) \) for any \(\alpha \in K^\times \) and \(f(0) = 0 \), we get a function \(f = f_{p,c} : K \to \mathbb{R}_{>0} \) which H. W. Lenstra [12] called a weighted norm.

Our aim is to study examples of number fields which are Euclidean with respect to some weighted norm. Lenstra [12] showed that \(\mathbb{Q}(\zeta_3) \) and \(\mathbb{Q}(\zeta_4) \) are such fields, but the first examples that are not norm-Euclidean were given by D. Clark [7, 8].

A formal condition for \(f_{p,c} \) to be a Euclidean function is the finiteness of the sets \(\{ f_{p,c}(\alpha) < \lambda : \alpha \in \mathcal{O}_K \} \) for all \(\lambda \in \mathbb{R} \). This property is easily seen to be equivalent to \(c > 1 \).

For weighted norms \(f = f_{p,c} \) on \(K \), we define the Euclidean window of \(p \) by

\[
w(p) = \{ c \in \mathbb{R} : f_{p,c} \text{ is a Euclidean function on } \mathcal{O}_K \}.
\]

Proposition 1.1. The Euclidean window is a (possibly empty) interval contained in \((1, \infty)\).

Proof. Assume that \(w(p) \) is not empty, and let \(r, t \in w(p) \) with \(r < t \). Then it is sufficient to show that \(f_{p,s} \) is a Euclidean function on \(\mathcal{O}_K \) for every \(r \leq s \leq t \). Now \(\mathcal{O}_K \) is Euclidean with respect to e.g. \(f_{p,r} \), so \(\mathcal{O}_K \) is a principal ideal domain, hence every \(\xi \in K \) has the form \(\xi = \alpha/\beta \) with \((\alpha, \beta) = 1 \). Moreover, there exist \(\gamma_r, \gamma_t \in \mathcal{O}_K \) such that

\[
f_{p,r}(\alpha - \beta \gamma_r) < f_{p,r}(\beta), \quad f_{p,t}(\alpha - \beta \gamma_t) < f_{p,t}(\beta).
\]

If \(p \nmid \beta \), then \(f_{p,s}(\alpha - \beta \gamma_s) \leq f_{p,t}(\alpha - \beta \gamma_t) < f_{p,t}(\beta) = f_{p,s}(\beta) \); if \(p \mid \beta \), on the other hand, then \(p \mid \alpha \), hence \(p \nmid (\alpha - \beta \gamma_r) \), and \(f_{p,s}(\alpha - \beta \gamma_s) = f_{p,r}(\alpha - \beta \gamma_r) < f_{p,r}(\beta) \leq f_{p,s}(\beta) \). Thus \(f_{p,s} \) is indeed a Euclidean function on \(\mathcal{O}_K \).

In this paper, we investigate Euclidean windows for various algorithms in some quadratic and cubic number fields; we will give examples of empty, finite and infinite Euclidean windows, and we show that the first minima with respect to weighted norms need not be rational.

2 Weighted norms in \(\mathbb{Z} \)

The Euclidean window for primes in \(\mathbb{Z} \) can easily be determined:

Proposition 2.1. The Euclidean minimum \(M(f_{p,c}) \) of a weighted norm in \(\mathbb{Z} \) is given by

\[
M(f_{p,c}) = \begin{cases}
\infty & \text{if } c < p \\
\frac{1}{2} & \text{if } c = p \\
1 & \text{if } c > p
\end{cases}.
\]

Moreover, \(w(p) = [p, \infty) \).

Proof. We first show that \(M(f_{p,c}) = \infty \) if \(c < p \) (this implies that \(w(p) \subseteq [p, \infty) \)). To this end, put \(b = p^n \) and

\[
a = \begin{cases}
\frac{1}{2}(p^n - 1) & \text{if } p \neq 2, \\
2^{n-1} - 1 & \text{if } p = 2.
\end{cases}
\]
Then \(p \mid (a - bq) \), hence \(f_{p,c}(a - bq) = |a - bq| \) for all \(q \in \mathbb{Z} \). If the minimum \(\kappa = M(f_{p,c}) \) were finite, there would exist a \(q \in \mathbb{Z} \) such that \(f_{p,c}(a - bq) < \kappa f_{p,c}(b) = \kappa \alpha^n \). But clearly \(|a| \leq |a - bq| = f_{p,c}(a - bq) \), hence we get \(|a|c^{-n} < \kappa \) for all \(n \in \mathbb{N} \); but since \(c < p \), the expression on the left hand side tends to \(\infty \) with \(n \).

Since it is well known that \(M(f_p) = \frac{1}{2} - \frac{1}{q} \), we next show that \(M(f_{p,c}) \leq 1 \) if \(c > p \). To this end, choose \(\alpha, \beta \in \mathbb{N} \) not divisible by \(p \) such that \(p < \frac{\alpha}{\beta} < c \). If we put \(a = p^n \beta^n \) and \(b = \alpha^n + p^n \beta^n \), then we get

\[
f_{p,c}(\frac{a}{b}) = \frac{c^n \beta^n}{\alpha^n + p^n \beta^n} = \frac{c^n}{(\alpha/\beta)^n + p^n} > \frac{c^n}{c^n + p^n},
\]

and both expressions tend to 1 as \(n \) goes to \(\infty \). Note also that \(f_{p,c}(\frac{\alpha}{\beta} - q) \geq |\frac{\alpha}{\beta} - q| > 1 \) for all \(q \in \mathbb{N} \setminus \{0, 1\} \), since the denominator of \(\frac{\alpha}{\beta} - q \) is prime to \(p \) and since \(c > p \).

Thus \(M(f_{p,c}) \geq 1 \) if \(c > p \); but we can easily show that \(M(f_{p,c}) \leq 1 \) by proving that \(f_{p,c} \) is a Euclidean function for all \(p \geq c \). In fact, suppose that \(a, b \in \mathbb{Z} \setminus \{0\} \) are given, and that they are relatively prime. If \(p \mid b \), then \(p \mid (a - bq) \) for all \(q \in \mathbb{Z} \), hence \(f_{p,c}(a - bq) = |a - bq| \), and we can certainly find \(q \in \mathbb{Z} \) such that \(|a - bq| < |b| \). But \(|b| \leq f_{p,c}(b) \) since \(c \geq p \).

Now consider the case \(p \nmid b \); then we choose \(q \in \mathbb{Z} \) such that \(|a - bq|, |a - b(q + 1)| \leq b \).

But \(r = a - bq \) and \(r' = a - b(q + 1) \) cannot both be divisible by \(p \); if \(p \mid r \), then \(f_{p,c}(r) = |r| < |b| \neq f_{p,c}(b) \), and if \(p \nmid r' \), then \(f_{p,c}(r') < f_{p,c}(b) \).

\[\square\]

3 Weighted norms in \(\mathbb{Q}(\sqrt{14}) \)

Since it is well known that an imaginary quadratic number field is Euclidean if and only if it is norm-Euclidean, only the case of real quadratic fields is interesting. We will deal with only two examples here: one is \(\mathbb{Q}(\sqrt{14}) \), which has been studied often in this respect (cf. Bedocchi [2], Nagata [13, 14] and Cardon [3]), and the other is \(\mathbb{Q}(\sqrt{69}) \), which was shown to be Euclidean with respect to a weighted norm by Clark [7] (see also Niklasch [15] and Hainke [10]).

Consider the quadratic number field \(K = \mathbb{Q}(\sqrt{14}) \). It is well known that \(M_1(K) = \frac{5}{2} \) and \(M_2(K) = \frac{21}{2} \) (cf. [11]); moreover \(M_1 \) is attained exactly at the points \(\xi \equiv \frac{1}{2}(1 + \sqrt{14}) \mod \mathcal{O}_K \). Now we claim

Proposition 3.1. For \(K = \mathbb{Q}(\sqrt{14}) \) and \(p = (2, \sqrt{14}) \) we have \(w(p) \subseteq (\sqrt{5}, \sqrt{7}) \).

Proof. Put \(\alpha = 1 + \sqrt{14} \) and \(\beta = 2 \). Then \(|(\alpha - \beta \gamma)| \) is an integer \(\geq 5 \) for all \(\gamma \in \mathcal{O}_K \). Thus \(f_{p,c}(\alpha - \beta \gamma) = |(\alpha - \beta \gamma)| \geq 5 \), and if \(f_{p,c} \) is a Euclidean function, we must have \(5 < f_{p,c}(\beta) = c^2 \). This shows that \(c < \sqrt{7} \).

In order to show that \(c < \sqrt{7} \) we look at the ideal \(\mathfrak{q} = (7, \sqrt{14}) = (7 + 2\sqrt{14}) \) of norm 7. If \(f_{p,c} \) is Euclidean, then every residue class modulo \(\mathfrak{q} \) must contain an element \(\alpha \) such that \(f_{p,c}(\alpha) < f_{p,c}(\mathfrak{q}) = 7 \). Since the unit group generates the subgroup \(\{ -1, +1 \} \) of \((\mathcal{O}_K/\mathfrak{q})^* \) (and \(f_{p,c}(\pm 1) = 1 \)), and since \(\pm 3 + \sqrt{14} \equiv \pm 3 \mod \mathfrak{q} \) (where \(f_{p,c}(\pm 3 + \sqrt{14}) = |N(\pm 3 + \sqrt{14})| = 5 \)), we must find elements in the residue classes \(\pm 2 \mod \mathfrak{q} \). The only possible candidates are powers of \(4 + \sqrt{14} \), because the only ideals of odd norm \(< 7 \) are \((0), \) (1), and \((3 + \sqrt{14}) \), none of which yields elements \(\equiv \pm 2 \mod \mathfrak{q} \). Moreover, \(\pm 4 + \sqrt{14} \equiv \pm 3 \mod \mathfrak{q} \), and we see that if there exist elements \(\alpha \equiv 2 \mod \mathfrak{q} \) with \(f_{p,c}(\alpha) < 7 \), then \(\alpha = 2 \) is one of them. But \(f_{p,c}(2) = 4 \), and we find \(c < \sqrt{7} \).

We remark that it is not known whether \(w(p) \) is empty or not.

If we look at prime ideals other than \((2, \sqrt{14}) \), the situation is quite different:

Proposition 3.2. Let \(K = \mathbb{Q}(\sqrt{14}) \), and let \(\mathfrak{p} \) be a prime ideal in \(\mathcal{O}_K \) of norm \(N\mathfrak{p} \equiv \pm 1 \mod 8 \). Then \(w(\mathfrak{p}) = \emptyset \).
Proof. Assume that $f_{p, c}$ is a Euclidean function. Then there exists an $\alpha = x + y\sqrt{14} \equiv 1 + \sqrt{14} \mod 2$ such that $f_{p, c}(\alpha) < f_{p, c}(2) = 4$. Since α cannot be a unit, this is only possible if α is divisible by p. If α is divisible by some other prime ideal q, then $f_{p, c}(q) = N_q \geq 5$, and we conclude $f_{p, c}(p) < 1$: contradiction. Thus $(\alpha) = \mathfrak{p}^m$ for some $m \geq 1$. But $p = (a + b\sqrt{14})$ since K has class number 1, and b must be even since $\pm p = a^2 - 14b^2 \equiv \pm 1 \mod 8$: thus $a + b\sqrt{14} \neq 1 + \sqrt{14} \mod 2$, and again we have a contradiction.

4 The Euclidean Algorithm in $\mathbb{Q}(\sqrt{69})$

Next we study the field $\mathbb{Q}(\sqrt{69})$; we will prove the following result that corrects a claim announced without proof in [11]:

Theorem 4.1. In $K = \mathbb{Q}(\sqrt{69})$, we have

$$M_1 = \frac{25}{1}, \quad C_1 = \left\{ \pm \frac{4}{23}\sqrt{69} \right\},$$

$$M_2 = \frac{2}{23} \left(165 - 15\sqrt{69} \right), \quad C_2 = \left\{ (\pm P_r, \pm P_r') \right\}, r \geq 0$$

where

$$P_r = \frac{1}{2} \varepsilon^{-r} + \left(\frac{4}{23} + \frac{1}{2\sqrt{69}} \varepsilon^{-r} \right) \sqrt{69}, \quad P_r' = \frac{1}{2} \varepsilon^{-r} - \left(\frac{4}{23} + \frac{1}{2\sqrt{69}} \varepsilon^{-r} \right) \sqrt{69}.$$

Here M_j denotes the j-th inhomogeneous minimum of the norm form of O_K, C_j is a set of representatives modulo O_K of the points where M_j is attained, and $\varepsilon = \frac{1}{2}(25 + 3\sqrt{69})$ is the fundamental unit of K. The second minimum $M_2(K) = M_2(\overline{K})$ is not isolated.

The proof of Theorem 4.1 is based on methods developed by Barnes and Swinnerton-Dyer [11]. In the following, we will regard K as a subset of \mathbb{R}^2 via the embedding $x + y\sqrt{69} \rightarrow (x, y)$. Conversely, any point $P = (x, y) \in \mathbb{R}^2 = \overline{K}$ corresponds to a pair $\xi_P = x + y\sqrt{69}, \xi_P' = x - y\sqrt{69}$. These elements are not necessarily in K, nevertheless we call $\xi_P' = x - y\sqrt{69}$ the conjugate of ξ_P. Note that e.g. $\xi_P = \sqrt{69}$ alone does not determine P, since both $P = (0, 1)$ and $P = (\sqrt{69}, 0)$ correspond to such a ξ_P. The “\overline{K}-valuations” $| \cdot |_1$ and $| \cdot |_2$ are defined by $| (x, y) |_1 = |x + y\sqrt{69}|$ and $| (x, y) |_2 = |x - y\sqrt{69}|$, with a positive square root of 69.

Using the technique described in [8], it is easy to cover the whole fundamental domain of the lattice O_K with a bound of $k = 0.875$ except for $\pm S_0 \cup \pm S_1 \cup S_2 \cup \pm T$, where

$$S_0 = [-0.00085, 0.00085] \times [0.1739, 0.1742],$$

$$S_1 = [0.01917, 0.02005] \times [0.1763, 0.1765],$$

$$S_2 = [-0.02005, -0.01917] \times [0.1763, 0.1765],$$

$$T = [0.4999, 0.5001] \times [0.2341, 0.2342].$$

Transforming these exceptional sets by multiplication with the units ε and $\tau = \frac{1}{2}(25 - 3\sqrt{69})$ we find e.g.

$\varepsilon S_0 \subset 18 + 2\sqrt{69} + [-0.012, 0.041] \times [0.172, 0.179],$

that is, $\varepsilon S_0 - (18 + 2\sqrt{69})$ is contained in covered regions or $S_0 \cup S_1$, which we will denote by $\varepsilon S_0 - (18 + 2\sqrt{69}) \subset S_0 \cup S_1$. Similar calculations show that

$\varepsilon S_0 - (18 + 2\sqrt{69}) \subset S_0 \cup S_1, \quad \varepsilon S_1 - (18 + 2\sqrt{69}) \subset \varepsilon T + (18 - 2\sqrt{69}) \subset S_0 \cup S_2,$

$\varepsilon S_2 - (18 + 2\sqrt{69}) \subset S_0 \cup S_1, \quad \varepsilon T + (18 + 2\sqrt{69}) \subset S_0 \cup S_2,$

$\varepsilon T - \frac{1}{2}(61 + 7\sqrt{69}) \subset S_2, \quad \varepsilon S_2 + (19 - 2\sqrt{69}) \subset T,$

namely that $M_2(K) < M_2(\overline{K})$, and that $M_2(\overline{K})$ is isolated.
Remark. The inclusions on the right hand side can be computed from those on the left: for example, all exceptional points in S_2 must come from T, so the exceptional points in $\varepsilon^{-1} S_2$ must be congruent modulo O_K to points in T, and since $\frac{1}{2} (61 + 7\sqrt{69}) \varepsilon^{-1} = 19 - 2\sqrt{69}$, we conclude that $\varepsilon S_2 + (19 - 2\sqrt{69}) \subset T$.

We will need the following result (this is Prop. 2 of [6]):

Proposition 4.2. Let K be a number field and ε a non-torsion unit of E_K. Suppose that $S \subset \mathcal{F}$ has the following property:

There exists a unique $\theta \in O_K$ such that, for all $\xi \in S$, the element $\varepsilon \xi - \theta$ lies in a k-covered region of \mathcal{F} or again in S.

Then every k-exceptional point $\xi_0 \in S$ satisfies $|\xi_0 - \frac{\theta}{m}| = 0$ for every \mathcal{R}-valuation $| \cdot |$ such that $|\varepsilon| > 1$.

We also need a method to compute Euclidean minima of given points. Recall that the orbit of $\xi \in \mathcal{R}$ is the set $\text{Orb}(\xi) = \{\varepsilon \xi : \varepsilon \in E_K\}$, where E_K is the unit group of O_K. Note that all the elements in an orbit have the same minimum.

Proposition 4.3. Let $m \in \mathbb{N}$ be squarefree, $K = \mathbb{Q}(\sqrt{m})$ a real quadratic number field, $\varepsilon > 1$ a unit in O_K, and $\xi \in \mathcal{R}$. If $M(K, \xi) < k$ for some real k, then there exists an element $\eta = r + s\sqrt{m} \in K$ with the following properties:

i) $\eta \equiv \xi \mod O_K$ for some $\xi \in \text{Orb}(\xi)$;

ii) $|N\eta| < k$;

iii) $|r| < \mu, |s| < \frac{\mu}{m}$, where $\mu = \frac{\sqrt{\varepsilon}}{\sqrt{m} + \frac{1}{\sqrt{m}}}$.

Proof. Assume that $M(K, \xi) < k$; then there is an $\alpha \in O_K$ such that $|N(\xi - \alpha)| < k$.

Choose $m \in \mathbb{Z}$ such that $\sqrt{k/\varepsilon} \leq |(\xi - \alpha)\varepsilon| < \sqrt{k\varepsilon}$ and put $\eta = (\xi - \alpha)\varepsilon^m$. Then

i) $\eta = (\xi - \alpha)\varepsilon^m \equiv \xi\varepsilon^m \mod O_K$, and clearly $\varepsilon^m \in \text{Orb}(\xi)$;

ii) $|N\eta| = |N(\xi - \alpha)| < k$;

iii) Write $\eta = r + s\sqrt{m}$ and $\eta' = r - s\sqrt{m}$. Then $|\eta| < \sqrt{k\varepsilon}$ and $|\eta'| = |\eta|/|\eta| < k/|\eta| \leq \sqrt{k\varepsilon}$. Thus $2|r| = |\eta + \eta'| \leq |\eta| + |\eta'|$ and $2|s|\sqrt{m} = |\eta - \eta'| \leq |\eta| + |\eta'|$.

Using the lemma below, this yields the desired bounds.

This concludes the proof. \qed

Lemma 4.4. If x, y are positive real numbers such that $x < a$, $y < a$ and $xy < b$, then $x + y < a + \frac{b}{a}$.

Proof. $0 < (a - x)(a - y) = a^2 - a(x + y) + xy < a^2 - a(x + y) + b$. \qed

Now we are ready to determine a certain class of exceptional points inside S_0:

Claim 4.1. If P is an exceptional point in S_0 that stays inside S_0 under repeated applications of the maps

\[
\alpha : \; \xi \mapsto \varepsilon^{-1} \xi + 18 - 2\sqrt{69} \\
\beta : \; \xi \mapsto \varepsilon \xi - (18 + 2\sqrt{69})
\]

then $P = \frac{18 + 2\sqrt{69}}{\varepsilon}$ is an exceptional point in S_0.

This follows directly from Proposition 4.2. The Euclidean minimum $M(P) = \frac{2\sqrt{69}}{\varepsilon}$ is easily computed using Proposition 4.3. Any exceptional point that does not stay inside S_0 must eventually come through T; it is therefore sufficient to consider exceptional points in T from now on.

Let $P_0 \in T$ be such an exceptional point and define the series of points P_0, P_1, P_2, \ldots recursively by $P_{j+1} = \alpha(P_j)$. Then $P_1 \in S_1$, and now there are two possibilities:
Claim 4.2. If $P_0 \in T$ is an exceptional point satisfying conditions (A) and (C), then $P_0 = \left(\frac{3}{4}, \frac{3}{4} + \frac{1}{2\sqrt{69}}\right) \approx (0.5, 0.234105)$.

Note that this point is not contained in K. Of course we knew this before: every point in K has a finite orbit, whereas P_0 does not.

For a proof, we apply Proposition 4.3 to the set $S = \{P_0, P_1, P_2, \ldots\};$ this shows that any $\xi = P_j$ lies on the line $|\xi + \frac{18+2\sqrt{69}}{2}| = 0$ (the K-valuation $|\cdot|$ chosen so that $|\xi_2| > 1$), that is, $\xi' = -\frac{23}{4\sqrt{69}}$. Applying the same proposition to $S = \{P_0 - 1, P_1, P_2, \ldots\}$ gives $|\xi - \frac{18+2\sqrt{69}}{2}| = 0$, with $|\xi| = \frac{4}{23}\sqrt{69}$, hence such $P_0 = (x, y)$ satisfies $x + y\sqrt{69} = 1 + \frac{4}{23}\sqrt{69}$.

Thus any point $\xi = P_0$ giving rise to a doubly infinite sequence $(P_j)_{j \in \mathbb{Z}}$ that stays inside S_0 modulo O_K for all $j \neq 0, \pm 1$ satisfies $\xi = 1 + \frac{4}{23}\sqrt{69}$ and $\xi' = -\frac{23}{4\sqrt{69}}$. If we write $P_0 = (x, y)$, then this gives $x = \frac{1}{2}(\xi + \xi') = \frac{1}{2}$ and $y = \frac{1}{2\sqrt{69}}(\xi - \xi') = \frac{1}{2} + \frac{1}{2\sqrt{69}} \approx 0.234105$ as claimed.

Before we go on exploring the other possibilities, we study the orbit of P_0 and compute its Euclidean minimum.

Claim 4.3. The points $P_r \equiv \varepsilon^{-r}P_0 \mod O_K$ in the orbit of P_0 coincide with the P_r given in Theorem 4.1.

This is done by induction: the case $r = 0$ is clear. For the induction step, notice that $\varepsilon^{-1}(x, y) = (\frac{23}{2}x - \frac{23}{2}y, \frac{23}{2}y - \frac{3}{2}x)$; now

\[\varepsilon^{-1}P_r = \left(\frac{25}{4}\varepsilon^{-r} - 18 - \frac{207}{2\sqrt{69}}\varepsilon^{-r}, \frac{50}{23} + \frac{25}{4\sqrt{69}}\varepsilon^{-r} - \frac{3}{4}\varepsilon^{-r}\right)\]
\[= (-18, 2) + \left(\frac{25}{4} - \frac{3}{4}\sqrt{69}\right)\varepsilon^{-r} + \frac{4}{23} + \frac{25}{4\sqrt{69}}\varepsilon^{-r}\]
\[= (-18, 2) + \frac{1}{2\varepsilon^{r-1}}\left(\frac{4}{23} + \frac{1}{2\sqrt{69}}\varepsilon^{-r-1}\right) \equiv P_{r+1} \mod O_K\]

Next one computes that $\varepsilon P_0 = \left(\frac{61}{2}, \frac{7}{2}\right) - P'_1$ and shows, again by induction, that $\varepsilon^r P_0 \equiv -P'_r \mod O_K$ for all $r \geq 0$. Thus the orbit of P_0 under the action of the unit group E_K of O_K is represented modulo O_K by the points $\{\pm P_r, \pm P'_r : r \geq 0\}$.

Claim 4.4. The points P_r have Euclidean minimum

\[M(K, P_r) = M(K, P_0) = \frac{1}{46}(165 - 15\sqrt{69})\].

First we observe that the points P_r have the same Euclidean minimum since they all belong to the same orbit. Now assume that $\varepsilon = t + u\sqrt{m}$ has positive norm. We want to apply Proposition 4.3 and find $\varepsilon^{-1} = t - u\sqrt{m}$, hence $(\sqrt{\frac{1}{t^2} + \frac{u^2}{m}})^2 = 2t + 2$ and $\mu = \sqrt{k(t+1)/2}$. In the case $m = 69$, we have $t = \frac{23}{2}$, hence $\mu/\sqrt{m} = \sqrt{k}\sqrt{27/276} < \frac{1}{3}\sqrt{k}$.

The orbit of $P_0 = \frac{1}{2} + \frac{1}{2\sqrt{69}}\varepsilon\sqrt{69}$ is $\{\pm P_r, \pm P'_r : r \in \mathbb{N}_0\}$, so it is clearly sufficient to compute $M(K, P_r)$ for $r \geq 0$. We start with P_0 itself. The only $\eta \equiv P_0 \mod O_K$ satisfying the bounds of Proposition 4.3 have the form $P_0 + a$ for some $a \in \mathbb{Z}$ or...
$P_0 = \frac{5+\sqrt{69}}{2}$ for some odd $b \in \mathbb{Z}$. The minimal absolute value of the norm of these elements is $|N(\eta - \frac{5+\sqrt{69}}{2})| = \frac{1}{46}(165 - 15\sqrt{69})$.

Similarly, the minimal norm for the $\eta \equiv P_1 \mod \mathcal{O}_K$ is attained at $P_1 + \frac{5-\sqrt{69}}{2}$ and again equals $\frac{1}{46}(165 - 15\sqrt{69})$.

Finally, consider the $\eta \equiv P_r \mod \mathcal{O}_K$ for some $r \geq 2$. Then $P_r = x_r + y_r\sqrt{69}$ with $|x_r| \leq 0.00081 \approx \delta_0$ and $|y_r - \frac{1}{46}| < 0.0001 \approx \delta_1$. The minimal absolute value of the norm of $P_r + a$ for some $a \in \mathbb{Z}$ is attained for $a = 1$, and equals $|(1+\delta_0)^2 - 69(\frac{1}{46} - \delta_1)^2| \geq 1.07$; similarly, we find that $|N(P_r + \frac{5+\sqrt{69}}{2})| \geq 1.07$.

Thus we have seen that \(\inf \{ |N(P_r - \alpha)| : \alpha \in \mathcal{O}_K, r \in \mathbb{Z} \} \) is attained for $r = 0$ and $\alpha = \frac{5+\sqrt{69}}{2}$, giving $M(K, P_0) = \frac{1}{46}(165 - 15\sqrt{69})$ as claimed.

Before we go on, let us recall what we know by now: $K = \mathbb{Q}(\sqrt{69})$ has first minimum $M_1(K) = \frac{23}{2}$, and M_2 is isolated. Moreover, the orbit of every k-exceptional point for $k = 0.875$ not congruent to $\pm \frac{1}{46}\sqrt{69}$ mod \mathcal{O}_K has a representative in the exceptional set S. Finally, if the orbit of such a point visits T exactly once, then the point is $P_0 = \frac{1}{2} + (\frac{1}{2} + \frac{1}{\sqrt{69}})\sqrt{69}$, and its minimum is $M(K, P_0) = \frac{1}{46}(165 - 15\sqrt{69})$.

Claim 4.5. Any exceptional point $Q \neq P_0$ in T has Euclidean minimum $M(K, Q) < M(K, P_0) = \frac{1}{46}(165 - 15\sqrt{69})$, and $M_2(K) = M(P_0)$ is attained only at points in the orbit of P_0.

In fact, let $Q_0 \neq P_0$ be an exceptional point in T and consider the orbit $\{Q_r : r \in \mathbb{Z}\}$ of Q_0, where the Q_r are defined by $Q_r \equiv \varepsilon^{-r}Q_0 \mod \mathcal{O}_K$. Since $Q_0 \neq P_0$, we know that we are in one of the following situations:

1. (A) and (D) hold;
2. (B) and (C) hold;
3. (B) and (D) hold.

In each case, there exists a point $Q \neq P_0$ in T whose orbit moves into T both to the right and to the left:

$$\ldots T \rightarrow S_2 \rightarrow S_0 \cdots S_0 \rightarrow S_1 \rightarrow Q \rightarrow S_2 \rightarrow S_0 \cdots S_0 \rightarrow S_1 \rightarrow T \ldots \tag{3}$$

Now we prove the following lemma:

Lemma 4.5. Suppose there is a $Q_0 \in T$ such that $Q_1 = \beta(Q_0 - 1) \in S_2$ and $Q_{m+1} = (x, y) = \beta^m(Q_1) \in S_1$ with β as in (2). Then $x - y\sqrt{69} < -\frac{1}{46}\sqrt{69}$.

Proof. Write $Q_n = (x_n, y_n)$ and put $\xi_n = x_n - y_n\sqrt{69}$. Then $\xi_1 \approx -1.48 < -\frac{1}{46}\sqrt{69}$; now we use induction to show that $\xi_n < -\frac{1}{46}\sqrt{69}$ for $1 \leq n \leq m$. In fact, if $Q_{n+1} = \beta(x_n, y_n)$, then $\xi_{n+1} = (\varepsilon\xi_n - (18 + 2\sqrt{69})/2 = \varepsilon\xi_n - 18 + 2\sqrt{69} < -\varepsilon/\frac{23}{2}\sqrt{69} - 18 + 2\sqrt{69} = -\frac{1}{46}\sqrt{69}$. \qed

A similar result holds for the other direction:

Lemma 4.6. Suppose there is a $Q_0 \in T$ such that $Q_{-1} = \alpha(Q_0) \in S_1$ and $Q_{-m-1} = (x, y) = \alpha^m(Q_1) \in S_2$. Then $x + y\sqrt{69} > 1 + \frac{1}{23}\sqrt{69}$.

Proof. Similar. \qed

This shows that, in (3), we have $\xi > \xi_0 = 1 + \frac{1}{23}\sqrt{69}$ and $\xi' < \xi_0 = -\frac{1}{23}\sqrt{69}$ for the point $Q = (x, y)$ and $\xi = x + y\sqrt{69}, \xi' = x - y\sqrt{69}$.

Put $\alpha = \xi_0 - \frac{5+\sqrt{69}}{2}$ and $\alpha' = \xi_0 - \frac{5-\sqrt{69}}{2}$. Then $-\alpha\alpha' = \frac{1}{46}(165 - 15\sqrt{69})$, and, since $\alpha < 0$ and $\alpha' > 0$, $0 < (\xi - \frac{5+\sqrt{69}}{2})(\xi' - \frac{5-\sqrt{69}}{2}) < -\alpha\alpha'$. Thus any such point has Euclidean minimum strictly smaller than $\frac{1}{46}(165 - 15\sqrt{69})$.

Claim 4.6. The second minimum $M_2(K)$ is not isolated.
This is accomplished by constructing a series of rational points \(Q_r \in K \setminus C_2 \) such that
\[
\lim_{r \to \infty} M(Q_r) = M_2(K).
\]
To this end, we look for a point \(Q_r \in T - 1 \) that gets mapped (multiplication by \(\varepsilon \) plus reduction modulo \(\mathcal{O}_K \)) to \(S_2 \), stays in \(S_0 \) exactly \(r \) times, and then goes to \(S_1 \) and back to the point in \(T \) congruent to \(Q_r \mod \mathcal{O}_K \), then \(Q_r \) will satisfy the following equation\(^2\)
\[
\varepsilon^{r+4} Q_r = \varepsilon^{r+3} + (\varepsilon^{r+2} + \varepsilon + 1)(18 + 2\sqrt{69}) + Q_r.
\]
This gives
\[
Q_r = 1 + \frac{4}{23} \sqrt{69} + \frac{1}{\varepsilon^{r+4} - 1}.
\]
Here’s a short table with explicit coordinates for small values of \(r \):

\(r \)	\(Q_r \)	\(M(Q_r) \)
-1	\(\frac{1}{5} + \frac{70}{46} \sqrt{69} \)	\(\frac{441}{172} \approx 0.87175523 \)
0	\(\frac{1}{7} + \frac{70}{46} \sqrt{69} \)	\(\frac{1355}{172} \approx 0.87790738 \)
1	\(\frac{1}{13} + \frac{2423}{1293} \sqrt{69} \)	\(\frac{309379}{30239} \approx 0.87826446 \)
2	\(\frac{1}{13} + \frac{689}{978} \sqrt{69} \)	\(\frac{8500839}{877990738} \approx 0.878274371 \)
3	\(\frac{1}{2} + \frac{30239}{30239} \sqrt{69} \)	\(\frac{212369041}{241802496} \approx 0.878274809 \)
4	\(\frac{1}{2} + \frac{174445}{174445} \sqrt{69} \)	\(\frac{878274826}{878274826} \approx 0.878274826 \)

We claim that \(M(Q_r) \) tends to \(M_2(K) = \frac{1}{46} (165 - 15\sqrt{69}) \approx 0.87827 \) as \(r \to \infty \).

Applying Proposition 4.3 shows that, for given \(r \geq 0 \), the Euclidean minimum of \(Q_r \) is attained at \(Q_r - \frac{5 + \sqrt{69}}{2} \). Writing \(n = r + 4 \) and \(Q_r - \frac{5 + \sqrt{69}}{2} = (\xi, \xi') \) we have
\[
\xi = -\frac{3}{2} \cdot \frac{15 \sqrt{69} + 1}{\varepsilon^n - 1},
\]
\[
\xi' = -\frac{3}{2} \cdot \frac{15 \sqrt{69} + 1}{\varepsilon^{-n} - 1} = -\frac{5}{2} + \frac{15 \sqrt{69} - 1}{\varepsilon^n - 1}.
\]
and now we find
\[
\left| N(Q_r - \frac{5 + \sqrt{69}}{2}) \right| = -\xi' = \frac{165 - 15 \sqrt{69}}{46} - \frac{1}{\varepsilon^{n} - 1} \left(-1 + \frac{15}{23} \sqrt{69} \right).
\]
Since the “error term” \(-\frac{1}{\varepsilon^n} \left(-1 + \frac{15}{23} \sqrt{69} \right) \) is positive and tends to 0 as \(n \to \infty \), Claim 4.6 follows, and Theorem 4.1 is proved.

5 Weighted norms in \(\mathbb{Q}(\sqrt{69}) \)

Now we study the weighted norm \(f_{p,c} \) defined by \(p = (23, \sqrt{69}) \). We claim

Theorem 5.1. Let \(R = \mathcal{O}_K \) be the ring of integers in \(K = \mathbb{Q}(\sqrt{69}) \), and let \(p = (23, \sqrt{69}) \) be the prime ideal above 23. Then the Euclidean window of \(f = f_{p,c} \) is \(w(p) = (25, \infty) \); the Euclidean minimum is
\[
M_1(\mathcal{O}_K, f_{p,c}) = \max \left\{ \frac{25}{c}, \frac{1}{23}(-600 + 75\sqrt{69}) \right\}
\]
for all \(c \in w(p) \), and \(M_1 \) is isolated exactly when \(c \in [23, \frac{25}{12}(8 + \sqrt{69})] \).

\(^2\)For more details, see the analogous construction of the points \(R_r \) in Section 4.
Using the method described in [7], with some modifications described in the next section, we can cover the fundamental domain of O_K with a bound of $k = 0.99$ except for a set surrounding $(0, 0)$ that is, define the minimum at a point P and going back to f \iff f \in K with respect to weighted norms and by continuity to P. If M is an exceptional point that stays inside S_1, then clearly $\exists S_1, S_2, S_2$, P, f \in K, and $\exists S_2$. Thus we cannot extend M plus reduction modulo O_K there are the following possibilities:

(a) $P_j \in -S_1$ and $P_{-j} \in S_1$ for all $j \geq 2$;
(b) there exist $m \neq n$ such that $P_m, P_n \in S_2$.

Claim 5.1. If P is an exceptional point that stays inside S_1 under repeated transformations by ε and ε^{-1}, then $P = (0, \frac{1}{2})$ has Euclidean minimum $M(P, f_{p, c}) = \frac{2\varepsilon}{2\varepsilon}$.

This is easy to see. Again, this enables us to reduce everything to exceptional points $P \in S_2$, and for the orbit (P_j) of such P (here P_{j+1} is the image of P_j under multiplication by ε plus reduction modulo O_K) there are the following possibilities:

(a) $P_j \in -S_1$ and $P_{-j} \in S_1$ for all $j \geq 2$;
(b) there exist $m \neq n$ such that $P_m, P_n \in S_2$.

Claim 5.2. If $P_0 \in S_2$ is an exceptional point with property (a), then

$$P_0 = \left(\frac{-115 + 15\sqrt{69}}{46}, \frac{-\frac{5}{3} + \sqrt{69}}{2\sqrt{69}}\right) \approx (0.20868169, 0.19903536).$$

For a proof, suppose that P_0 is a point in S_2 with property (a). Then $P_1 = -\varepsilon P_0 + (23 + 3\sqrt{69}) \in -S_2'$ and $P_2 = \varepsilon P_1 - (18 + 2\sqrt{69})$ is a point whose transforms by powers of ε stay inside S_1. By Proposition 12, this implies that $|P_2 - \frac{1}{2\varepsilon\sqrt{69}}|_1 = 0$, and going back to P_0 we find that $|P_0 - (5 + \frac{49}{2\varepsilon\sqrt{69}})|_1 = 0$.

Similarly, any exceptional point $\xi \in S_2$ whose transforms by powers of ε stay inside S_1 satisfies $|\xi + \frac{1}{2\varepsilon\sqrt{69}}|_2 = 0$. Thus any point satisfying (a) has x-coordinate $(\xi + \xi')/2 = \frac{-115 + 15\sqrt{69}}{46}$ and y-coordinate $(\xi - \xi')/2\sqrt{69} = \frac{-\frac{5}{3} + \sqrt{69}}{2\sqrt{69}}$ as claimed.

Note that there is no obvious definition of a “Euclidean minimum” of P_0 with respect to weighted norms $f_{p, c}$, since $f_{p, c}$ is a continuous function on K (with respect to the topology inherited from the embedding $K \rightarrow \mathbb{R}^2$) if and only if $c = p$, that is, if and only if $f_{p, c}$ is the absolute value of the usual norm. Thus we cannot extend $f_{p, c}$ by continuity to \mathbb{R}^2. On the other hand, we can put

$$\overline{M}(P, f_{p, c}) = \sup \{M(P_r, f_{p, c}) : P_r \in K, \lim P_r = P\},$$

that is, define the minimum at a point $P \in K$ as the supremum of the minima at $P_r \in K$ over all sequences (P_r) converging to P in the topology mentioned above. If $P \in K$, then clearly $\overline{M}(P, f_{p, c}) \geq M(P, f_{p, c})$, as the constant series $P_r = P$ shows. We don’t know an example where this last inequality is strict.

Claim 5.3. We have $\overline{M}(P_0) \leq k_0 = \frac{1}{2\varepsilon}(-600 + 75\sqrt{69})$ for all $c \geq 23$. Moreover, any K-rational exceptional point with property (b) has minimum strictly smaller than k_0.

In particular, we have $M_1(K) = \frac{23}{2\varepsilon}$ for all $c \in [23, \frac{23}{2\varepsilon}(24 + 3\sqrt{69})]$, and M_1 is isolated for these values of c unless possibly when $c = \frac{23}{2\varepsilon}(24 + 3\sqrt{69})$.

We start by observing that

$$|N(P_0 - 2)| = \frac{24 - 10\sqrt{69}}{24} \approx 0.47538092916, \quad \text{and}$$

$$|N(P_0 - \frac{1}{2}(5 + \sqrt{69}))| = \frac{-600 + 75\sqrt{69}}{24} \approx 0.99986042255.$$
Using the same technique as in Lemma 4.3 and 4.6 we can show that the K-rational points in S_2 that satisfy condition (b) have minimum strictly smaller than κ_0; observe that the difference $\eta_1 - \eta_2$ for $\eta_1 = \frac{1}{3}(5 + \sqrt{69})$ and $\eta_2 = 2$ is not divisible by p, hence we have $f_\varepsilon(P_0 - \eta_j) \leq |N(P_0 - \eta_j)|$ for $j = 1$ or $j = 2$. Since any sequence of K-rational points P_j converging to P_0 eventually stays inside S_2 this also proves that $M_1(O_K, f_\varepsilon) = \frac{25}{23}$ as long as $\frac{25}{23} \geq \kappa_0$; but the last inequality holds for all $c \leq \frac{23}{15}(8 + \sqrt{69}) \approx 25.0034699$. It also shows that the minimum is isolated for these values unless possibly when $c = \frac{25}{23}(8 + \sqrt{69})$.

Claim 5.4. We have $\overline{M}(P_0, f_\varepsilon) = \kappa_0 = \frac{1}{3}(600 + 75\sqrt{69})$ for all $c > 23$, and $\overline{M}(P_0, f_\varepsilon) = M(P) = \frac{94 - 19\sqrt{69}}{23}$ for $c = 23$.

In order to show that κ_0 is a lower bound for $M(P_0)$ for $c > 23$, we construct a series of K-rational points converging to P_0 whose minima converge to κ_0. We do this in the following way: assume that $R_r \in S_2$ gets mapped to S'_2, stays in $-S_1$ exactly $r - 2$ times and then gets mapped to the point $-R_r \in -S_2$. Then $\varepsilon R_r - (23 + 3\sqrt{69}) \in S'_r$, $\varepsilon^2 R_r - \varepsilon (23 + 3\sqrt{69}) + (18 + 2\sqrt{69}) \in -S_1$, ..., $\varepsilon^r R_r - \varepsilon^{r-1}(23 + 3\sqrt{69}) + (18 + 2\sqrt{69})(1 + \varepsilon + \ldots + \varepsilon^{r-2}) \in -S_1$ and finally

$$(\varepsilon^{r+1} + 1)R_r = \varepsilon^r(23 + 3\sqrt{69}) - (18 + 2\sqrt{69}) \frac{\varepsilon^r - 1}{\varepsilon - 1}$$

Now we use $\frac{\varepsilon^r - 1}{\varepsilon - 1} = \frac{\varepsilon^{r+1} - 1}{\varepsilon - 1} - \varepsilon^r$ to find

$$(\varepsilon^{r+1} + 1)R_r = \varepsilon^r(41 + 5\sqrt{69}) - (18 + 2\sqrt{69}) \frac{\varepsilon^{r+1} - 1}{\varepsilon - 1}$$

$$= \varepsilon^{r+1}(-5 + \sqrt{69}) - (18 + 2\sqrt{69}) \frac{\varepsilon^{r+1} - 1}{\varepsilon - 1}.$$

Dividing through by $\varepsilon^{r+1} + 1$ and simplifying we get

$$R_r = -5 + \frac{19}{23}\sqrt{69} + \frac{1}{\varepsilon^{r+1} + 1} \left(5 - \frac{15}{23}\sqrt{69}\right).$$

The explicit coordinates for the first few points are given in the following table:

| r | R_r | $|N(R_r - \frac{1}{3}(5 + \sqrt{69})|)$ | $|N(R_r - 2)|$ |
|-----|-------|--|----------------|
| 1 | $\frac{1}{3} + \frac{1}{3}\sqrt{69}$ | $\frac{23}{23}$ | 0.92 |
| 2 | $\frac{23}{23} + \frac{41}{23}\sqrt{69}$ | 3875 | 0.996656378 |
| 3 | $\frac{130}{23} + \frac{124}{23}\sqrt{69}$ | 388025 | 0.9999732047 |
| 4 | $\frac{125}{23} + \frac{139}{23}\sqrt{69}$ | 9686225 | 0.9999855279 |
| 5 | $\frac{649}{23} + \frac{619}{23}\sqrt{69}$ | 2417087 | 0.9999750216 |
| 6 | $\frac{3120}{23} + \frac{3119}{23}\sqrt{69}$ | 6035343275 | 0.9999860414 |

Claim 5.5. The Euclidean minimum of R_r ($r \geq 2$) with respect to f_ε is attained at $R_r = \frac{1}{3}(5 + \sqrt{69})$.

In fact, applying Proposition 4.3 to R_r one checks that the two smallest values of $|N(R_r - \eta)|$ occur for $\eta_1 = 2$ or $\eta_2 = \frac{1}{3}(5 + \sqrt{69})$; one also verifies that $|N(R_r - 2)| \approx 0.47$ and $|N(R_r - \frac{1}{3}(5 + \sqrt{69}))| \approx 0.99$. Since the denominator of $R_r - \eta$ is not divisible by p for any $\eta \in O_K$ (it divides $\varepsilon^{r+1} + 1 \equiv 2 \mod p$), and since $\eta_1 - \eta_2$ is an integer not divisible by p, our claim follows.

Where the minimum with respect to f_ε is attained depends on whether the numerator of $R_r - 2$ is divisible by p or not: if it isn’t, then the Euclidean minimum is attained there, and we have $M(P, f_\varepsilon) = |N(R_r - 2)| < \frac{1}{3}$. If this numerator, however, is divisible by p, then $f_\varepsilon(R_r - 2)$ can be made as large as we please by adding weight to p, and in this case the minimum is attained at $R_r = \frac{1}{3}(5 + \sqrt{69})$ for large values of c. 10
Claim 5.6. The numerator of $R_r - 2$ is divisible by p if and only if $r \equiv 10 \mod 23$. In this case, it is even divisible by $(23) = p^2$.

Let us compute $R_r \mod p$. Since $\varepsilon \equiv 1 \mod p$, we find $\frac{\varepsilon^{r+1} - 1}{\varepsilon - 1} = 1 + \varepsilon + \ldots + \varepsilon^r \equiv r + 1 \mod p$, hence $2R_r = \varepsilon^r(23 + 3\sqrt{69}) - (18 + 2\sqrt{69})\frac{\varepsilon^{r+1} - 1}{\varepsilon - 1} \equiv 5r \mod p$, and therefore $R_r - 2 \equiv 0 \mod p$ if and only if $5r \equiv 4 \mod 23$, which in turn is equivalent to $r \equiv 10 \mod 23$.

The second part of the claim follows by observing $\varepsilon^s \equiv (1 + 13\sqrt{69}) \equiv 1 + 13\sqrt{69} \mod 23$, in particular $\varepsilon^{23m+10} \equiv 1 + 13\sqrt{69} \mod 23$ and $\frac{\varepsilon^{r+1} - 1}{\varepsilon - 1} = \varepsilon^{r-1} + \ldots + \varepsilon + 1 \equiv r + 1 + 13\sqrt{69} \mod 23$.

With a little more effort we can show much more, namely that there is a subsequence of $R_r - 2$ with numerators divisible by an arbitrarily large power of p. In fact, the numerator of $R_r - 2$ will be divisible by p^k if and only if $T_r = 23(\varepsilon^{r+1} + 1)(R_r - 2) \equiv 0 \mod p^{k+2}$, and here T_r is an algebraic integer. An elementary calculation shows that the last congruence is equivalent to

$$\varepsilon^{r+1} \equiv -\frac{47 + 5\sqrt{69}}{22} =: \alpha \mod p^{k+2}. \quad (4)$$

This will hold for arbitrarily large k if and only if there is a 23-adic integer $s = r + 1$ such that

$$\varepsilon^s = \alpha \quad (5)$$

holds in $K_p = \mathbb{Q}_{23}(\sqrt{69})$. Since both sides are congruent $1 \mod p$, we can take the π-adic logarithm (with $\pi = \frac{23+3\sqrt{69}}{2}$) and get $s = \frac{\log_{\pi} \alpha}{\log_{\pi} \varepsilon}$ as an equation in K_p, and (3) holds if we can show that s is in \mathbb{Z}_{23}. To this end let σ denote the non-trivial automorphism of K_p/\mathbb{Q}_{23}. Since \log_{π} is Galois-equivariant, and since $\varepsilon^{1+\sigma} = \alpha^{1+\sigma} = 1$, we get

$$s^\sigma = \frac{\log_{\pi} \alpha^\sigma}{\log_{\pi} \varepsilon^\sigma} = \frac{-\log_{\pi} \alpha}{-\log_{\pi} \varepsilon} = s.$$}

Thus $s \in \mathbb{Q}_{23}$, and since it is a π-adic unit, $s \in \mathbb{Z}_{23}$ as desired. We remark that $s = 11 + 13 \cdot 23 + 15 \cdot 23^2 + 5 \cdot 23^3 + 3 \cdot 23^4 + \ldots$.

This proves Claim 5.6 and completes the proof of Theorem 5.1.

6 Weighted norms in cubic number fields

Using the idea of Clark (see [7], [8], [10], [15]; it actually first appears in Lenstra [12, p. 35]), we modified the programs described in [6] slightly in order to examine weighted norms in cubic fields. Many of the results in this section have been obtained by the first author in [5]; see Table 1 for the results obtained so far.

The idea is simple. Assume that K is a number field with class number 1 such that $M = M_1(K) \geq 1$ and $M_2(K) < 1$; assume that $\#C_1(K)$ is finite and write the points $\xi \in C_1(K)$ ($1 \leq i \leq t$) in the form $\xi_i = \alpha_i/\beta_i$, where $(\alpha_i, \beta_i) = 1$. Assume moreover that there is a prime ideal p such that $p \mid \beta_i$ for all i.

Now consider the weighted norm $f_{p,c}$; by making c big enough we can certainly arrange that $f_{p,c}(\xi_i) < 1$ for all $i \leq t$: in fact, if $p^m \nmid \gcd(\beta_1, \ldots, \beta_t)$, then $f_{p,c}(\xi_i) \leq M(Np)^m c^{-m}$; thus we only need to choose $c > Np^{\sqrt{M}}$ (actually this shows that $w(p) \subset (Np^{\sqrt{M}}, \infty)$).

In order to guarantee that, for every $\xi \in K$, there exists a $\gamma \in O_K$ such that $f_{p,c}(\xi - \gamma) < 1$, we will look for $\gamma_1, \gamma_2 \in O_K$ such that $|N_{K/Q}(\xi - \gamma_i)| < 1$ for $i = 1, 2$ and $p \nmid (\gamma_1 - \gamma_2)$; then at least one of the $\xi - \gamma_i$, say $\xi - \gamma_1$, has numerator not divisible by p, and this implies that $f_{p,c}(\xi - \gamma_1) \leq |N(\xi - \gamma_1)| < 1$.

\[\text{We thank (in chronological order) Hendrik Lenstra, Gerhard Niklasch and David Kohel for this argument.}\]
By modifying the programs described in [6] slightly we can use them to find new examples of cubic fields that are not norm-Euclidean but Euclidean with respect to some weighted norm. We represented prime ideals of the maximal order \(\mathcal{O}_K = \mathbb{Z} \oplus \alpha \mathbb{Z} \oplus \beta \mathbb{Z} \) in the form \(p = (p, \alpha + a), (p, \beta + a\alpha + b) \) or \((p) \) according as \(p \) has degree 1, 2 or 3. Testing the divisibility of an integer of \(\mathcal{O}_K \) by \(p \) then can be done using only rational arithmetic.

Let us call \(\xi \in K \) covered if there exist \(\gamma_1, \gamma_2 \in \mathcal{O}_K \) such that \(|N_{K/Q}(\xi - \gamma_i)| < 1\) and \(p \not| (\gamma_1 - \gamma_2) \): if \(\xi \) is covered, then so is \(\varepsilon \xi \) for any unit \(\varepsilon \in \mathcal{O}_K^\times \) (this allows us to use the program E–3 of [6]).

We first consider the field \(K \) generated by a root \(\alpha \) of \(x^3 + x^2 - 6x - 1 \); we have

disc \(K \)	\(M_1(K) \)	\(M_2(K) \)	\(Np \)	\(w(p) \)
-367	1	9/13	13	(13,279/8)
-351	1	9/11	11	(11,\infty)
-327	1	< 0.9	11	(101/9, \infty)
-199	1	< 0.47	7	(7, \infty)
985	1	5/11	5	(5, \infty)
1345	7/5	< 0.4	5	(7, \infty)
1825	7/5	< 0.5	5	(7, \infty)
1929	1	3/7	7	(7, \infty)
1937	1	5/9	3	(3, \infty)
2777	5/3	17/19	3	\(\varnothing \)
2836	7/4	7/8	2	(\sqrt{7}, \infty)
2857	8/5	< 0.5	5	(8, \infty)
3305	13/9	37/45	3	(\sqrt{13}, 5)
3889	13/7	1	7	(13, \infty)
4193	7/5	< 0.65	5	(7, \infty)
4345	7/5	11/13	5	(7, \infty)
4360	41/35	7/10	7	(41/5, \infty)
5089	17/11	7/11	11	(17, \infty)
5281	1	< 0.6	5	(5, \infty)
5297	21/11	23/33	11	(21, \infty)
5329	9/8	63/73	2^3	(9, 73)
5369	21/19	17/19	19	(21, \infty)
5521	23/7	8/7	7	(23, \infty)
7273	973/601	729/601	601	(973, \infty)
7465	1	< 0.8	5	(5, \infty)
7481	1	< 0.7	5	(5, \infty)
disc $K = 985$, and the only point with minimum ≥ 1 is $\xi_1 = \frac{3\alpha - \alpha^2}{2\alpha + 3\alpha^2}$. The ideal $\mathfrak{p} = (\alpha - 1)$ occurring in the denominator is a prime ideal of norm 5. Our programs cover a fundamental domain of K except for the possible exceptional points $\xi = 0$ and $\xi = \xi_1$. Thus $f_{p,c}$ is a Euclidean function for every $c > N\mathfrak{p} = 5$, i.e. $w(\mathfrak{p}) = (5, \infty)$.

Now let K be the field with disc $K = 1937$ generated by a root α of $x^3 + x^2 - 8x + 1$. It has Euclidean minimum $M(K) = 1$ attained at $\frac{1}{p}(-23 + 4\alpha^2)$, in fact $|N(\xi_1)| = 1$ for $\xi_1 = \frac{1}{p}(-14 + 9\alpha + 4\alpha^2)$, and the prime ideal factorization of ξ_1 is $(\xi_1) = (3, \alpha^2 + 1)(3, \alpha + 1)^{-2}$. Our programs cover a fundamental domain of K except for the possible exceptional points $\xi_0 = 0$, $\xi = \xi_1$ and $\xi = \frac{1}{p}(1 + \alpha^2)$. This last point has Euclidean minimum $\frac{1}{p} = |N(\frac{1}{p}(1 + \alpha^2))|$ with respect to the usual norm, and since $(1 - 3\alpha + \alpha^2)/3 = p^{-1}$, adding weight to p does not increase its minimum.

Our third example is the cubic field K with discriminant disc $K = 3305$, generated by a root α of $x^3 - x^2 - 10x - 3$. It has minimum $M_1 = \frac{13}{5}$ attained at $\frac{13}{5}(1 - 2\alpha - 4\alpha^2)$, with $|N(\xi_1)| = \frac{13}{5}$ for $\xi_1 = \frac{1}{5}(-71 + 52\alpha + 32\alpha^2)$. Its prime ideal factorization is $(\xi_1) = (13, \alpha - 1)(3, \alpha)^{-2}$; we thus add weight $c > \sqrt{13}$ to $p = (3, \alpha)$, and we can cover a fundamental domain of K except for the possible exceptional points $\xi_0 = 0$, $\xi = \xi_1$ and $\xi = \frac{1}{p}(2 - \alpha + 2\alpha^2)$. Now $M(\xi) = |N(\xi_2)| = \frac{3}{5}$, where $\xi_2 = \frac{3}{5}(-3 + 4\alpha + 2\alpha^2)$ has the prime ideal factorization $(\xi_2) = (5, 5\alpha + 2)^{-1}$. Thus the weighted prime ideal occurs in the numerator of ξ_2, and we have $f_{p,c}(\xi_2) < 1$ if and only if $c < 5$; since $|N(\xi)| \geq 1$ for all $\xi \equiv \xi_2 \pmod{\mathcal{O}_K}$, this implies that $w(\mathfrak{p}) = (\sqrt{13}, 5)$.

Finally, consider the cubic field K with discriminant disc $K = 3889$. Its first minimum is attained at $\xi_1 = \frac{1}{5}(3 - \alpha - 3\alpha^2)$, and its denominator is the prime ideal \mathfrak{p} that divides the denominator of $\xi_2 = \frac{3}{5}(2 - 3\alpha - 2\alpha^2)$, where the second minimum $M_2(K) = 1$ is attained (something similar happens for disc $K = 5521$ and disc $K = 7273$, where $M_2(K) > 1$ in these cases, we have to verify that $M_3(K) < 1$). Here we find the possible exceptional points $\xi = 0$, ξ_1, ξ_2, as well as $\eta_1 = \frac{3}{5}(1 - \alpha - 2\alpha^2)$, $\eta_2 = \frac{3}{5}(2 - 3\alpha + 2\alpha^2)$ and $\eta_3 = \frac{3}{5}(3 - 3\alpha + \alpha^2)$. Since their denominator is the prime ideal $(7, 2 + \alpha)$, their Euclidean minimum is $\frac{3}{5}$ both for the usual as well as for the weighted norm.

Some of our examples of cubic fields that are Euclidean with respect to some weighted norm were found independently by Amin Coja-Oghlan; see his forthcoming thesis [10].

7 Norm-Euclidean cubic fields

We take this opportunity to report on recent computations concerning norm-Euclidean cubic fields. Calculations for the totally real cubic fields up to disc $K \leq 13,000$ have produced the following results:

d	E	N	Σ
0 < d \leq 1000	26	1	27
1000 < d \leq 2000	29	5	34
2000 < d \leq 3000	31	4	35
3000 < d \leq 4000	36	6	42
4000 < d \leq 5000	28	7	35
5000 < d \leq 6000	35	7	42
6000 < d \leq 7000	30	8	38
7000 < d \leq 8000	37	10	47
8000 < d \leq 9000	30	11	41
9000 < d \leq 10000	29	10	39
10000 < d \leq 11000	34	9	43
11000 < d \leq 12000	37	16	53
12000 < d \leq 13000	31	6	37
Σ	413	100	513
The columns E and N display the number of norm-Euclidean and not norm-
Euclidean number fields of fields with discriminants in the indicated intervals.

We also have to correct the entries for the fields with discriminant 3969 in our
tables in [6]: the field K_1 generated by a root of $x^3 − 21x − 8$ has $M_1(K_1) = 4/3$,
$M_2(K_1) = 31/24$ and $M_3(K_1) = 1$, and the field K_2 generated by $x^3 − 21x − 35$ has
$M_1(K_2) = 7/3$ and $M_2(K_2) = 125/63$.

For complex cubic fields, calculations by R. Quème indicated that the fields with
discriminant -999 and -1055 are not norm-Euclidean, and we could meanwhile verify that
$M(K) ≥ 294557/272112$ for disc $K = -999$ and $M(K) ≥ 1483/1370$ for
disc $K = -1055$, and that there are no norm-Euclidean number fields with $−876 >\n\text{disc } K ≥ −1600$, suggesting the following

Conjecture. There are exactly 58 norm-Euclidean complex cubic fields, and their
discriminants are $-23, -31, -44, -59, -76, -83, -87, -104, -107, -108, -116, \n-135, -139, -140, -152, -172, -175, -200, -204, -211, -212, -216, -231, -239, \n-243, -244, -247, -255, -268, -300, -324, -356, -379, -411, -419, -424, -431, \n-440, -451, -460, -472, -484, -492, -499, -503, -515, -516, -519, -543, -628, \n-652, -687, -696, -728, -744, -771, -815, -876$.

Note that, by a result of Cassels [4], there are only finitely many norm-Euclidean
complex cubic number fields K, and in fact their discriminant is bounded by $|\text{disc } K| < \n170\,520$.

| $d = |\text{disc } K|$ | E | N | $Σ$ |
|-----------------|-----|-----|-----|
| $0 < d ≤ 200$ | 18 | 1 | 19 |
| $200 < d ≤ 400$ | 15 | 9 | 24 |
| $400 < d ≤ 600$ | 16 | 10 | 26 |
| $600 < d ≤ 800$ | 7 | 20 | 27 |
| $800 < d ≤ 1000$| 2 | 29 | 31 |
| $1000 < d ≤ 1200$| 0 | 29 | 29 |
| $1200 < d ≤ 1400$| 0 | 35 | 35 |
| $1400 < d ≤ 1600$| 0 | 27 | 27 |
| $Σ$ | 58 | 160 | 218 |

In the real case, the situation is not so clear. The numerical data suggest that
the proportion of norm-Euclidean fields is decreasing with disc K, but they do not yet support the conjecture that the norm-Euclidean real cubic number fields have density 0 among the real cubic fields with class number 1.

8 Some Open Problems

In this last section we would like to mention several open problems concerning the
Euclidean algorithm with respect to weighted norms. One of the most studied questions
is of course whether $\mathbb{Z}[\sqrt{14}]$ is Euclidean with respect to some $f_{p,c}$, where $p = (2, \sqrt{14})$.
Is it true, in particular, that $\nu(p) = (\sqrt{2}, \sqrt{3})$ in this case?

More generally: assume that K is a number field with unit rank $≥ 1$. Is $\nu(p)$ always
an open subset of $(1, \infty) ⊂ \mathbb{R}$ for every prime ideal p in \mathcal{O}_K? If this were the case, then
there would also exist number fields such that $f_{p,c}$ is a Euclidean function for some
$c < Np$ since there do exist number fields with $\nu(p) ≥ [p, \infty)$ for suitable primes (take
norm-Euclidean fields, for example).

A related question is whether $M(f_{p,c})$ is a continuous function of c on $[Np, \infty)$ for
number fields with unit rank $≥ 1$.

The cubic field with discriminant $\text{disc } K = -335$ has $M_1(K) = 1$: the minimum
is attained at points that have different prime ideals above 5 in their denominator.
Calculations have not yet confirmed that \mathcal{O}_K is Euclidean with respect to a norm
that is weighted at two different prime ideals. Similar remarks apply to algorithms with respect to functions that are not multiplicative: instead of giving weight c to a prime ideal p, one could look at functions with $f(p) = Np$ and $f(p^2) = c$ for some $c \geq Np^2$. This idea is applicable whenever the denominators of the exceptional points are divisible by the square of a prime ideal, e.g. for $\mathbb{Z}[\sqrt{14}]$.

References

[1] E.S. Barnes, H.P.F. Swinnerton-Dyer, *The inhomogeneous minima of binary quadratic forms I*, Acta Math. 87 (1952), 259–323; II, ibid. 88 (1952), 279–316

[2] E. Bedocchi, *L’anneau $\mathbb{Z}[^{\sqrt{14}}]$ et l’algorithme Euclidien*, Manuscripta math. 53 (1985), 199–216

[3] D. Cardon, *A Euclidean Ring Containing $\mathbb{Z}[^{\sqrt{14}}]$*, C. R. Math. Acad. Sci., Soc. R. Can. 19 (1997), 28–32

[4] J. W. S. Cassels, *The inhomogeneous minima of binary quadratic, ternary cubic, and quaternary quartic forms*, Proc. Cambridge Phil. Soc. 48 (1952), 72–86; Addendum: ibid., 519–520

[5] S. Cavallar, *Alcuni esempi di campi di numeri cubici non euclidei rispetto alla norma ma euclidei rispetto ad una norma pesata*, Tesi di Laurea, Univ. Trento, 1995

[6] S. Cavallar, F. Lemmermeyer, *The Euclidean Algorithm in Cubic Number Fields*, Proceedings Number Theory Eger 1996, (Györy, Pethő, Sos eds.), Gruyter 1998, 123–146

[7] D. A. Clark, *A quadratic field which is Euclidean but not norm-Euclidean*, Manuscripta math. 83 (1994), 327–330

[8] D. A. Clark, *Non-Galois cubic fields which are Euclidean but not norm-Euclidean*, Math. Comp. 65 (1996), 1675–1679

[9] A. Coja-Oghlan, *Berechnung kubischer euklidischer Zahlkörper*, Diplomarbeit FU Berlin, 1999

[10] B. Hainke, *Euklidische Algorithmen in den Ganzheitsringen von $\mathbb{Q}(\sqrt{14})$ und $\mathbb{Q}(\sqrt{69})$*, Diplomarbeit Univ. Mainz, 1998

[11] F. Lemmermeyer, *The Euclidean Algorithm in Algebraic Number Fields*, Expo. Math. 13 (1995), 385–416

[12] H. W. Lenstra, *Euclidean Rings*, Lecture Notes, Bielefeld 1974

[13] M. Nagata, *A pairwise algorithm and its application to $\mathbb{Z}[\sqrt{T}]$*, Algebraic geometry Seminar, Singapore 1987, 69–74

[14] M. Nagata, *Some questions on $\mathbb{Z}[\sqrt{T}]$*, Algebraic geometry and its applications (Ch. Bajaj, ed.), Conf. Purdue Univ. USA, June 1–4, 1990, Springer Verlag (1994), 327–332

[15] G. Niklasch, *On Clarks example of a Euclidean field which is not norm-euclidean*, Manuscripta math. 83 (1994), 443–446