Are Podoplanin Gene Polymorphisms Associated with Atopic Dermatitis in Koreans?

Jung-Hyun Namkung1,2, Eugene Kim1, Yong-Doo Park1,3, Geontae Park4, Jun-Mo Yang1

1Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, 2Case Western Reserve University School of Medicine, Cleveland, OH, USA, 3Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China, 4Laboratory of Cellular Neurobiology, Department of Oral Anatomy, School of Dentistry, Seoul National University, Seoul, Korea

Background: The histologic characteristics of atopic dermatitis (AD) include perivascular edema and dilated tortuous vessels in the papillary dermis. A single nucleotide polymorphism (SNP) of the fms-related tyrosine kinase 4 (FLT4) gene is associated with AD. Objective: To investigate the associations between podoplanin (PDPN) gene SNPs and AD. Methods: We genotyped 9 SNPs from 5 genes of 1,119 subjects (646 AD patients and 473 controls). We determined the promoter activity of 1 SNP (rs355022) by luciferase assay; this SNP was further investigated using 1,133 independent samples (441 AD patients and 692 controls). Results: The rs355022 and rs425187 SNPs and the C-A haplotype in the PDPN gene were significantly associated with intrinsic AD in the initial experiment. The rs355022 SNP significantly affected promoter activity in the luciferase assay. However, these results were not replicated in the replication study. Conclusion: Two SNPs and the C-A haplotype in the PDPN gene are significantly associated with intrinsic AD; although, the results were confirmed by luciferase assay, they could not be replicated with independent samples. Nevertheless, further replication experiments should be performed in future studies. (Ann Dermatol 27(3) 275-282, 2015)

Keywords
Atopic dermatitis, Luciferases, Podoplanin protein, Genetic polymorphisms

INTRODUCTION
Atopic dermatitis (AD) is a genetically complex disease involving gene-gene and gene-environment interactions1. Genetic linkage analysis and association studies have identified several candidate genes associated with either epidermal barrier function or the immune system. Stress, bacterial, or viral infections, exposure to airborne or food allergens, and hygienic factors are thought to aggravate AD symptoms1. The K14-IL-4 transgenic mouse model of AD demonstrates that progressive dermal lymphatic growth is a prominent feature of AD; this is characterized by increased vessel number, vessel diameter, and the percent vascularized area2. This transgenic mouse model exhibits significantly increased dermal expression of podoplanin (PDPN), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and fms-related tyrosine kinase 4 (FLT4, vascular endothelial growth factor receptor 3 [VEGFR 3]). The histological findings of human AD include dilated tortuous vessels within the papillary dermis, perivascular edema, mononuclear cell accumulation, and rare neutrophils and eosinophils3. However, the role of the dermal vasculature in AD pathogenesis remains poorly understood.

PDPN/T1a/aggrus/PA2.26 antigen, a transmembrane glycoprotein, is a well-known lymphatic endothelial marker. PDPN expression surrounding malignant tumors is a prognostic factor associated with lymphangiogenesis and distant metastasis4. Immunostaining with D2-40 mouse monoclonal antibody shows that PDPN is highly expressed in
lymphatic endothelial cells and the basal cell layer of sebaceous glands but not in normal human interfollicular epidermis. Marked PDPN expression is detected in the outer root sheath of hair follicles from the mid portion to the hair bulb excluding the bulge area. Gröger et al. report that PDPN and LYVE-1 are not only lineage markers for lymphatic endothelial cells, but also activation markers of blood endothelial cells. In normal skin, they found 2 types of vessels: vessels expressing high levels of PDPN (i.e., lymphatic vessels), and vessels negative for PDPN (i.e., blood vessels). However, within the papillary dermis in cases of eczema and psoriasis, they found a third type of vessel expressing low amounts of PDPN. Henno et al. report that lymphatic vessels are expressed after blood vascular development in psoriasis.

We previously reported that single nucleotide polymorphisms (SNPs) and haplotypes of the FLT4 and VEGFA genes are associated with psoriasis and that the rs10085109 SNP in the FLT4 gene is associated with AD susceptibility. These results suggest FLT4 may increase dermal vasculature in Korean patients with AD. Therefore, in the current study, we performed a similar experiment comparing patients with AD with normal controls to determine the association between PDPN SNPs and AD in Korean.

MATERIALS AND METHODS

Subjects

This study included 1,119 samples from 646 patients with AD and 473 normal control (NR) subjects at the initial stage. The AD samples were collected from non-asthmatic patients with AD examined at Samsung Medical Center, Seoul, Korea. AD was diagnosed according to the criteria of Hanifin and Rajka, and classified as extrinsic or intrinsic (ADe and ADi, respectively) according to serum immunoglobulin E (IgE) level and/or the presence or absence of allergy following the CAP test and/or skin prick test. Details regarding AD diagnosis, the criteria for classifying ADe and ADi, and the blood and prick tests for allergens are described in our previous report. All patients with AD (357 men and 289 women, mean age: 13.58 ± 9.62 years) met our previously reported inclusion/exclusion criteria. Among patients with AD, 433 (257 men and 176 women, mean age: 15.7 ± 9.47 years) had ADe, and 213 (100 men and 113 women, mean: 9.26 ± 9.74 years) had ADi. The 473 NR subjects included medical students and volunteers (253 men and 220 women, mean age: 23.23 ± 2.24 years) with no history of AD skin lesions. For the replication study, 1,133 samples (227 ADe, 214 ADi, and 692 NR) independent of the initial study were included; the samples were obtained from a cohort from Jeju Island, Korea. The demographic characteristics of the study participants are summarized in Table 1.

This study was conducted in accordance with the principles of the Declaration of Helsinki, and written informed consent was obtained from all participants. The Samsung Medical Center Ethics Committee approved this study (IRB: 2008-09-044-003).

Marker selection

The SNP information was retrieved from the dbSNP (build 141, http://www.ncbi.nlm.nih.gov/SNP; accessed 12 Sep 2014). We selected 37 SNPs from 5 kbp upstream to 5 kbp downstream of the PDPN gene. The selected SNPs were genotyped from 48 independent samples from the general Korean population (data not shown). On the basis of these genotype results, we selected SNPs by using the linkage disequilibrium bin approach in the Tagger program (http://www.broad.mit.edu/mpg/tagger). This approach

Table 1. Demographic characteristics of the initial and replication study samples

Variable	Initial group	Replication group				
	ADe	ADi	NR	ADe	ADi	NR
No. of subjects (F/M)	433 (176/257)	213 (113/100)	473 (220/253)	227 (92/153)	214 (105/109)	692 (366/326)
Age (yr)	15.7 ± 9.47	9.26 ± 9.74	23.23 ± 2.24	15.08 ± 10.03	9.4 ± 9.58	14.58 ± 1.43
Immunoglobulin E (U/ml)	1,933.43 ± 3,315.06	52.08 ± 46.22	240.53 ± 416.01	1,638.64 ± 1,821.32	89.26 ± 478.86	-
Eosinophil count	583.84 ± 641.08	380.54 ± 364.41	-	680.89 ± 702.01	352.19 ± 289.60	-
Eosinophilic cationic protein (ng/ml)	72.70 ± 256.3	36.6 ± 47.44	-	58.40 ± 71.34	31.33 ± 33.48	-
Scoring of atopic dermatitis	33.35 ± 20.06	22.3 ± 16.38	-	-	-	-

Values are presented as number only or mean ± standard deviation. ADe: extrinsic type of atopic dermatitis, ADi: intrinsic type of atopic dermatitis, NR: normal control, F: female, M: male.
defines bins of SNPs that are in very strong linkage disequilibrium with a specified r^2 threshold; one SNP is then selected to represent the remaining SNPs in a bin. We used an r^2 threshold of 0.8 and a minimum allele frequency of 0.1. Thus, a total of 9 SNPs from PDPN were selected as markers for the association study (Fig. 1).

Genotyping with fluorescence polarization detection

We extracted genomic DNA from 5-ml whole blood samples by using a commercially available DNA isolation kit (Gentra Genomic DNA Purification Kit; Qiagen, Minneapolis, Minn, USA) in accordance with the manufacturer’s protocol. Genotypes were identified with the ultra-high throughput GenomeLab SNPstream system, which uses multiplex polymerase chain reaction (PCR) in conjunction with tag array single-base extension genotyping technology (Beckman Coulter, Fullerton, CA, USA) and the SNPstream software suite. PCR amplifications were performed in a PTC-225 Peltier Thermal Cycler (MJ Research, Waltham, MA, USA) with Taq Gold DNA polymerase (Applied Biosystems, Foster City, CA, USA). The sequences of the PCR primers and extension primers are available upon request. Multiplex PCR and genotyping were performed in homogeneous reactions, and the assay results were read by direct two-color fluorescence on the SNPstream Ultra-High Throughput Array Imager. Individual genotypes were generated on the basis of the relative fluorescent intensities for each SNP and processed for graphical review. All genotyping results were reviewed and confirmed manually by experienced researchers.

Luciferase assay

Double-stranded oligonucleotides were synthesized with three concatenated copies of the T or C allele for a 21-bp region centered on the polymorphism with KpnI and BglII at the 5′ and 3′ ends, respectively. The oligonucleotides were subsequently cloned into the pGL3-promoter vector (Promega, Madison, WI, USA), which has a simian virus 40 (SV40) promoter.

HEK293 cells were transfected with 1 μg reporter constructs and 0.1 μg pRL-TK Renilla luciferase vector (Promega) with Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. The transfection efficiency was normalized to that of Renilla luciferase activity. The medium was changed to growth medium 18 hours after transfection. Cells were harvested 24 hours after the medium was changed, and the luciferase activity was measured with the Dual-Luciferase Reporter Assay System (Promega).

Statistical analysis

The χ^2 test was used to determine if individual variants were in Hardy-Weinberg equilibrium at each locus for normal samples. The allelic (i.e., additive) and genotypic effects of individual SNPs were tested using a logistic regression model adjusted for sex and age. The level of significance was set at $p < 0.05$. Odds ratios (ORs) and 95% confidence intervals (CIs) were also estimated from the logistic regression model.

To detect the most significantly associated haplotype, the significance of overall haplotype effects was scanned for haplotypes of 2 to 4 SNPs by using a sliding-window approach. For the haplotype scan, the haplo.score function in the R package (http://www.r-project.org) was used; this function is a haplotype association test method that enables the simultaneous modeling of haplotype effects including various controlling covariates, and statistical significance is determined according to score test statistics. Haplo.score provides global test statistics for a given haplotype locus in addition to results for individual haplotypes. For loci that had a significant effect in individual SNP tests, we obtained the combined effect by using the hap-
Nine SNPs of the PDPN gene were genotyped in the 1,119 subjects at the initial stage. Information on the SNPs, including genomic function, chromosomal position, dbSNP ID, and minor allele frequency, is shown in Table 2. All SNPs were in Hardy-Weinberg equilibrium at a significance level of 0.01. The average genotyping success rate was 99.3%. We compared the distributions of the allelic and genotypic frequencies for the 9 SNPs between the AD and NR groups. Statistical significance was obtained in logistic regression analysis adjusted for age and sex. For further analysis, haplotype association tests were conducted using a sliding window approach.

Associations of polymorphism gene single nucleotide polymorphisms with atopic dermatitis

Regarding the associations of the SNPs with AD, two SNPs (rs355022 and rs425187) had significantly different allelic or genotypic distributions between the ADi and NR groups (Table 3); rs355022 exhibited a greater difference between groups (p = 0.016, OR = 0.587, 95% CI: 0.38 ~ 0.907). The genotypic effect test showed a significant difference in the rs425187 SNP (p = 0.043) with ORs of 0.616 (95% CI: 0.316 ~ 1.204) for A-A vs. A-G and 6.444 (95% CI: 1.021 ~ 40.678) for A-A vs. G-G (Table 3).

To calculate the combined effect size of the two loci, we used the haplo.glm function to estimate haplotypes simultaneously in a generalized linear model. The haplotype C-A of the two loci was significantly associated with ADi (p = 0.03), and the OR vs. T-A was 0.603 (95% CI: 0.382 ~ 0.952). Although no other haplotypes showed significant associations, the C-G group, which has two risk alleles, tended to have an increased effect for ADi compared to individual SNPs (Table 4).

rs355022 single nucleotide polymorphism luciferase assay

Because rs355022 is located in the promoter (−1611 C/T) region of the PDPN gene, its effect rs355022 on transcriptional activity was examined by luciferase reporter assay (Fig. 2). Luciferase gene constructs containing three concatenated copies of a 21-bp region of either the T or C allele centered on the SNP (i.e., p3X1562T and p3X1562C) were prepared. Transfecting p3X1562C into HEK293 cells decreased luciferase activity to a greater extent than p3X1562T (0.44 ± 0.25 fold induction) (Fig. 2). This result suggests rs355022 affects the transcriptional activity of the PDPN gene.

Replication of the single nucleotide polymorphism experiments

To confirm the effects of rs355022 and rs425187, we genotyped 1,133 independent samples from 441 patients with
Table 3. Allelic and genotypic frequencies of the 9 PDPN gene SNPs among the AD, AD subtype, and the normal control groups

rs number (allele A/allele B)	Group	Haplotype	Allele test	Genotype test			
			p-value	OR (95% CI)	p-value*	OR (95% CI) T	OR (95% CI) T
rs355022	T/C	NR	239 (0.51)	0.994	0.904	0.291	
		AD	334 (0.525)	0.405	0.627	0.291	
		ADe	220 (0.514)	0.291	0.367	0.291	
		ADi	114 (0.548)	0.291	0.367	0.291	
rs1148454	C/T	NR	119 (0.253)	0.291	0.367	0.291	
		AD	161 (0.249)	0.291	0.367	0.291	
		ADe	102 (0.236)	0.291	0.367	0.291	
		ADi	59 (0.277)	0.291	0.367	0.291	
rs1148455	C/T	NR	196 (0.42)	0.291	0.367	0.291	
		AD	282 (0.441)	0.291	0.367	0.291	
		ADe	185 (0.434)	0.291	0.367	0.291	
		ADi	119 (0.253)	0.291	0.367	0.291	
rs425187	A/G	NR	366 (0.772)	0.291	0.367	0.291	
		AD	519 (0.805)	0.291	0.367	0.291	
		ADe	347 (0.803)	0.291	0.367	0.291	
		ADi	172 (0.808)	0.291	0.367	0.291	
rs1261024	A/G	NR	282 (0.597)	0.291	0.367	0.291	
		AD	399 (0.621)	0.291	0.367	0.291	
		ADe	273 (0.636)	0.291	0.367	0.291	
		ADi	126 (0.392)	0.291	0.367	0.291	
rs1261009	A/G	NR	193 (0.409)	0.291	0.367	0.291	
		AD	277 (0.429)	0.291	0.367	0.291	
		ADe	190 (0.439)	0.291	0.367	0.291	
		ADi	87 (0.408)	0.291	0.367	0.291	
rs3820304	A/G	NR	272 (0.576)	0.291	0.367	0.291	
		AD	346 (0.541)	0.291	0.367	0.291	
		ADe	228 (0.534)	0.291	0.367	0.291	
		ADi	118 (0.557)	0.291	0.367	0.291	
rs7518611	A/G	NR	331 (0.703)	0.291	0.367	0.291	
		AD	439 (0.689)	0.291	0.367	0.291	
		ADe	289 (0.678)	0.291	0.367	0.291	
		ADi	150 (0.711)	0.291	0.367	0.291	
rs2273385	A/G	NR	187 (0.398)	0.291	0.367	0.291	
		AD	268 (0.419)	0.291	0.367	0.291	
		ADe	167 (0.391)	0.291	0.367	0.291	
		ADi	101 (0.474)	0.291	0.367	0.291	

ORs and p-values were obtained from a logistic regression model adjusted for age and sex. PDPN: podoplanin; SNP: single nucleotide polymorphism; AD: atopic dermatitis; AA: homozygous genotype of A allele; AB: heterozygous genotype; BB: homozygous genotype of B allele; MAF: minor allele frequency; OR: odds ratio; CI: confidence interval; NR: normal control; ADe: extrinsic type of atopic dermatitis; ADi: intrinsic type of atopic dermatitis. *p-value of the type III effect of the genotype; T OR between individuals with AA and BB; T OR between individuals with AA and BB. p < 0.05.

Table 4. Analysis of haplotypes of the rs355022 and rs425187 loci to test for associations with AD and AD subtypes

Haplotype	Frequency	AD vs. NR	p-value	AD vs. NR	p-value	ADi vs. NR	p-value
		OR (95% CI)		OR (95% CI)		OR (95% CI) T	
T-G	0.084	0.792	1.054	0.792	0.917	0.797	
C-A	0.25	0.197	0.85	0.197	0.603	0.03	
C-G	0.026	0.098	0.512	0.098	0.44	0.185	
T-A	0.64	Reference	Reference	Reference			

ORs and p-values were calculated by the haplo.glm function using age and sex as adjusting covariates. The most frequent haplotypes were used as the reference haplotype group. Bold type indicates p < 0.05. AD: atopic dermatitis; NR: normal control; ADi: extrinsic type of atopic dermatitis; ADi: intrinsic type of atopic dermatitis; OR: odds ratio; CI: confidence interval.
AD and 692 controls (Table 1). However, rs425187 did not exhibit any association, while rs355022 exhibited a significant association in the replicate samples (data not shown). Thus, the direction of the effect was opposite to that of the initial study. Therefore, the association became non-significant for the merged dataset (Table 5).

DISCUSSION

PDPN is a sensitive marker for identifying lymphatic vessels. Transgenic mice exhibit significantly elevated dermal expression of PDPN, LYVE-1, and VEGFR-3 (FLT4)\(^5\), suggesting lymphatic vessels may be involved in AD pathogenesis in the animal model. VEGF and effector cells of skin inflammation (i.e., mast cells, basophils, eosinophils, macrophages lymphocytes, etc.) are major sources of the vast array of angiogenesis and lymphangiogenesis in AD. However, the role of lymphangiogenesis in AD is largely unknown\(^5\).

We previously reported that a SNP in the FLT4 gene is associated with AD susceptibility in Koreans\(^9\). On the basis of these reports, we hypothesized PDPN is associated with AD and therefore evaluated the association between the SNPs of PDPN and AD susceptibility. We initially identified two SNPs, rs355022 and rs425187, in the PDPN gene that were significantly associated with intrinsic AD in Koreans. As the rs355022 SNP is located in the promoter region of PDPN (−1611 C/T), we performed a luciferase assay; the results show that rs355022 can affect PDPN transcription, which indicates PDPN SNP T→C is associated with lower transcriptional activity of PDPN. To confirm these findings, we replicated the experiment with a different set of patients and controls. However, the replication study did not confirm the results of the initial experiment. The reason for the contrasting results of our two experiments is unknown. It is possible that the SNPs in PDPN gene weakly influence the whole-protein effect of this gene in vivo. This discrepancy highlights the importance of replication studies for SNPs.

The role of dermal vasculature in AD pathogenesis is controversial\(^3\). Our previous results suggest there might be differences between the K14-IL-4 transgenic mouse model and humans\(^5\). In the K14-IL-4 transgenic mouse model, interleukin (IL)-4-triggering macrophage recruitment has been suggested to be closely associated with lymphangiogenesis in AD. However, in comparison to K14-IL-4 transgenic mice, the active action time of IL-4 is not long enough in humans to sustain macrophage recruitment.

Table 5. Logistic regression analysis of the rs355022 SNP in the PDPN gene using combined data from the initial and replicate samples

rs number (allele A/ allele B)	Group	Genotype frequency	MAF	Allele test	Genotype test			
		AA	AB	BB	p-value OR (95% CI)	p-value* OR (95% CI) †	OR (95% CI) †	
rs355022 T/C	NR	628 (0.544)	443 (0.384)	84 (0.073)	0.265	0.832	0.949	0.634,1.378
	AD	551 (0.52)	439 (0.415)	69 (0.065)	0.272	0.911	1.008	0.871,1.169
	ADe	334 (0.513)	269 (0.414)	46 (0.071)	0.278	0.721	1.031	0.873,1.217
	ADi	217 (0.529)	170 (0.413)	23 (0.056)	0.263	0.492	0.920	0.726,1.166

The model was adjusted for age, sex and sample source (i.e., initial or replicate). SNP: single nucleotide polymorphism, PDPN: podoplanin, AA: homozygous genotype of A allele, AB: heterozygous genotype, BB: homozygous genotype of B allele, MAF: minor allele frequency, OR: odds ratio, CI: confidence interval, NR: normal control, AD: atopic dermatitis, ADe: extrinsic type of atopic dermatitis, ADi: intrinsic type of atopic dermatitis. *p-value for the type III effect of the genotype. †OR of G-G vs. C-C. ††OR of G-G vs. C-C.
A substantial amount of research is performed worldwide to search for genetic factors in the etiology of AD; three main approaches are being used: candidate gene association, selecting genes for study based on a hypothesis of a known biological function, and genome-wide linkage screening. Efforts to identify candidate genes for AD through genome-wide linkage screening and DNA microarrays have identified at least 20 genes significantly associated with AD. However, only six of these genetic associations—IL-4, IL-4R, IL-13, mast cell chymase, serine protease inhibitor Kazal-type 5 (SPINK5), and filaggrin (FLG) genes—have been replicated in at least two independent studies. At least four genome-wide association studies have been performed since 2009. In each study, the authors identified 1 to 8 different candidate genes including FLG; however, most of the reported genes’ functions have not yet been verified in AD. Regarding SNP studies in AD, there are many reports of different SNPs in several genes in different ethnicities. We previously reported associations between AD and SNPs in sphingomyelinase 2 (SMX1), IL-18, IL-5 & IL-5R, defensin 1, IL-12 & IL-12R, IL-9 & IL-9R, IL-4, IL-13 & IL-13R, and FLT4 in the Korean population. Other groups in Korea report associations of AD with SNPs in the FLG gene, FCεRI gene, and the haplotype of the IL-10 gene. Among those reports, the FLT4 gene is the only gene that was studied in replication experiments with different samples.

In summary, we genotyped 9 SNPs from the PDPN gene in 1,119 samples and found two SNPs associated with ADi. In addition, the rs355022 SNP affects PDPN transcription. However, we could not replicate these results. Despite these conflicting results, replication experiments are critical for SNP studies.

ACKNOWLEDGMENT

This study was supported by “The Environmental Health Action Program” of the Korean Ministry of the Environment and by a grant from the Samsung Biomedical Research Institute (SMX1131301).

REFERENCES

1. Bieber T. Atopic dermatitis. Ann Dermatol 2010;22:125-137.
2. Shi VY, Bao L, Chan LS. Inflammation-driven dermal lymphangiogenesis in atopic dermatitis is associated with CD11b+ macrophage recruitment and VEGF-C up-regulation in the IL-4-transgenic mouse model. Microcirculation 2012;19:567-579.
3. Genovese A, Detoraki A, Granata F, Galdiero MR, Spadaro G, Marone G. Angiogenesis, lymphangiogenesis and atopic dermatitis. Chem Immunol Allergy 2012;96:50-60.
4. Durchdewald M, Guinea-Viniegra J, Haag D, Riehl A, Lichter P, Hahn M, et al. Podoplanin is a novel fos target gene in skin carcinogenesis. Cancer Res 2008;68:6877-6883.
5. Honma M, Minami-Hori M, Takahashi H, Iizuka H. Podoplanin expression in wound and hyperproliferative psoriatic epidermis: regulation by TGF-β and STAT-3 activating cytokines, IFN-γ, IL-6, and IL-22. J Dermatol Sci 2012;65:134-140.
6. Gröger M, Niedereithner H, Kerjaschki D, Petzelbauer P. A previously unknown dermal blood vessel phenotype in skin inflammation. J Invest Dermatol 2007;127:2893-2900.
7. Henno A, Blacher S, Lambert CA, Deroanne C, Noël A, Lapière C, et al. Histological and transcriptional study of angiogenesis and lymphangiogenesis in uninvolved skin, acute pinpoint lesions and established psoriasis plaques: an approach of vascular development chronology in psoriasis. J Dermatol Sci 2010;57:162-169.
8. Lee JH, Cho EY, Namkung JH, Kim E, Kim S, Shin ES, et al. Single-nucleotide polymorphisms and haplotypes in the VEGF receptor 3 gene and the haplotype GC in the VEGFA gene are associated with psoriasis in Koreans. J Invest Dermatol 2008;128:1599-1603.
9. Namkung JH, Lee JE, Kim E, Huh IS, Park T, Shin ES, et al. Single nucleotide polymorphism in the FLT4 gene is associated with atopic dermatitis in Koreans. Cytokine 2013;62:110-114.
10. Jeong CW, Ahn KS, Rho NK, Park YD, Lee DY, Lee JH, et al. Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy 2003;33:1717-1724.
11. Rho NK, Kim WS, Lee DY, Lee JH, Lee ES, Yang JM. Immunophenotyping of inflammatory cells in lesional skin of the extrinsic and intrinsic types of atopic dermatitis. Br J Dermatol 2004;151:119-125.
12. Kim HK, Jang TW, Jung MH, Park HW, Lee JE, Shin ES, et al. Association between genetic variations of the transforming growth factor β receptor type III and asthma in a Korean population. Exp Mol Med 2010;42:420-427.
13. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2002;70:106-120.
14. Bell PA, Chaturvedi S, Huang CY, Kochersperger M, Kopla R, et al. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 2002;Suppl:70-72, 74, 76-77.
15. Denomme GA, Van Oene M. High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. Transfusion 2005;45:660-666.
16. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425-434.
17. Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM, et al. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum Hered 2003;55:56-65.

18. Brown SJ, McLean WH. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol 2009;129:543-552.

19. Esparza-Gordillo J, Weidinger S, Fölster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 2009;41:596-601.

20. Sun LD, Xiao FL, Li Y, Zhou WM, Tang HY, Tang XF, et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet 2011;43:690-694.

21. Paternoster L, Standl M, Chen CM, Ramasamy A, Bennelykke K, Duijts L, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 2011;44:187-192.

22. Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Sakashita M, et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet 2012;44:1222-1226.

23. Kim HT, Lee JY, Han BG, Kimm K, Oh B, Shin HD, et al. Association analysis of sphingomyelinase 2 polymorphisms for the extrinsic type of atopic dermatitis in Koreans. J Dermatol Sci 2007;46:143-146.

24. Kim E, Lee JE, Namkung JH, Park JH, Kim S, Shin ES, et al. Association of the single-nucleotide polymorphism and haplotype of the interleukin 18 gene with atopic dermatitis in Koreans. Clin Exp Allergy 2007;37:865-871.

25. Namkung JH, Lee JE, Kim E, Cho HJ, Kim S, Shin ES, et al. IL-5 and IL-5 receptor alpha polymorphisms are associated with atopic dermatitis in Koreans. Allergy 2007;62:934-942.

26. Kim E, Lee JE, Namkung JH, Kim PS, Kim S, Shin ES, et al. Single nucleotide polymorphisms and the haplotype in the DEFB1 gene are associated with atopic dermatitis in a Korean population. J Dermatol Sci 2009;54:25-30.

27. Namkung JH, Lee JE, Kim E, Kim S, Shin ES, et al. Association of single nucleotide polymorphisms in the IL-12 (IL-12A and B) and IL-12 receptor (IL-12Rbeta1 and beta2) genes and gene-gene interactions with atopic dermatitis in Koreans. J Dermatol Sci 2010;57:199-206.

28. Namkung JH, Lee JE, Kim E, Byun JY, Kim S, Shin ES, et al. Hint for association of single nucleotide polymorphisms and haplotype in SPINK5 gene with atopic dermatitis in Koreans. Exp Dermatol 2010;19:1048-1053.

29. Namkung JH, Lee JE, Kim E, Park GT, Yang HS, Jang HY, et al. An association between IL-9 and IL-9 receptor gene polymorphisms and atopic dermatitis in a Korean population. J Dermatol Sci 2011;62:16-21.

30. Park MK, Kim HK, Lee JW, Yoo KH, Park KY, Seo SJ, et al. Association of polymorphisms in genes encoding IL-4, IL-13 and their receptors with atopic dermatitis in a Korean population. Exp Dermatol 2011;20:915-919.

31. Park MK, Kim HK, Lee JW, Yoo KH, Park KY, Seo SJ, et al. Identification of filaggrin gene polymorphisms in Korean atopic dermatitis patients. Korean J Dermatol 2010;48:461-467.

32. Park KY, Park MK, Kim EJ, Lee MK, Seo SJ. FCεRI gene promoter polymorphisms and total IgE levels in susceptibility to atopic dermatitis in Korea. J Korean Med Sci 2011;26:870-874.

33. Shin HD, Park BI, Kim LH, Kim JS, Kim JW. Interleukin-10 haplotype associated with total serum IgE in atopic dermatitis patients. Allergy 2005;60:1146-1151.