Technical note on the multi-GNSS, multi-frequency and near real-time ionospheric TEC monitoring system for South America

Mendoza, L. P. O. and Meza, A. M. and Aragón Paz, J. M.
Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría (MAGGIA), Facultad de Ciencias Astronómicas y Geofísicas (FCAG), Universidad Nacional de La Plata (UNLP), Paseo del Bosque s/n, B1900FWA, La Plata, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
web: www.maggia.unlp.edu.ar
e-mail: lmendoza@fcaglp.unlp.edu.ar (first author)
in: EarthArXiv. See also BibTeX entry below.

BibTeX:

@article{tn,
 author = {Mendoza, L. P. O. and Meza, A. M. and Aragón Paz, J. M.},
 title = {Technical note on the multi-GNSS, multi-frequency and near real-time ionospheric TEC monitoring system for South America},
 journal = {EarthArXiv},
 pages = {1--11},
 year = {2019},
 doi = {10.31223/osf.io/3vts6},
 url = {https://eartharxiv.org/3vts6}
}

© copyright by the author(s)
Abstract

Development of regional services able to provide ionospheric total electron content (TEC) maps with a high spatial resolution, and in near real-time, are of high importance for applications and the research community. We provide here the methodologies, and a preliminary assessment, of such a system. The system relies on the public Global Navigational Satellite Systems (GNSS) infrastructure in South America, it incorporates data from multiple constellations (currently GPS, GLONASS, Galileo and BeiDou), it employs multiple frequencies, and it produces continental wide TEC maps with a latency of just few minutes. A year-round comparison of the produced maps with several products issued by the International GNSS Service (IGS) resulted in mean biases lower than 1 TEC units (TECU), whereas their evaluation against direct and independent GNSS-based slant TEC measurements resulted in accuracies of the same magnitude.

1 System Description

1.1 Real-time Data

Regional GNSS observations are continuously acquired, by means of the BNC software [Weber et al., 2016], from streams broadcasted by several agencies: the Bundesamt für Kartographie und Geodäsie (BKG, Germany) and the National Aeronautics and Space Administration (NASA, USA), both in support to the IGS, by the Instituto Brasileiro de Geografia e Estatística (IBGE, Brazil), by the Instituto Geográfico Nacional (IGN, Argentina), by the Servicio Geográfico Militar (SGM, Uruguay) and by UNAVCO (USA) (see Table 1). In total, observations from more than two hundred ground stations, mostly located in South America but also from Central and North America, Europe, Africa and Antarctica, are employed by the TEC monitoring system. In addition, GPS, GLONASS, Galileo and BeiDou broadcasted orbit and clock messages, disseminated by the IGS Real-Time Service [IGS-RTS, Rülke et al., 2014], are employed. This stream is also provided by BKG. Once locally stored the data set is managed with the help of the gfzrnx software tool [Nischan, 2016], particularly useful for the concatenation of multiple RINEX files [Gurtner and Estey, 2017]. The monitoring system exclusively relies on the availability of these data streams, and no additional products are required.

1.2 Data Preprocessing

Before any computation a per station preprocessing and data cleaning is performed. This includes the application of an appropriate time window, of an elevation cut off angle, of carrier phase wind-up corrections and the determination of phase-continuous intervals (i.e., with constant ambiguity). The data cleaning is non-parametric and consists in three steps. Firstly, pairs of satellite-receiver phase and code links, in two bands, are optimally selected according to the amount of available observations and the tracking modes, or channel attribute, employing the same default priorities as the ones defined by
Table 1: Openly accessible data sources employed by the near real-time ionospheric TEC monitoring system for South America.

Organization	Real-time streams at†
Bundesamt für Kartographie und Geodäsie (Germany)	http://products.igs-ip.net http://www.igs-ip.net http://mgex.igs-ip.net
Instituto Brasileiro de Geografia e Estatística (Brazil)	http://gps-ntrip.ibge.gov.br
Instituto Geográfico Nacional (Argentina)	http://ntrip.ign.gob.ar
National Aeronautics and Space Administration (USA)	https://cddis-caster.gsfc.nasa.gov http://rtk.sgm.gub.uy http://rtgpsout.unavco.org
UNAVCO (USA)	

†Registration may be required in order to access same of the data streams.

Nischan [2016]. The corresponding, undifferenced, Melbourne-Wübbena (MW) linear combinations are screened for outliers and cycle slips (Table 2). Any possible receiver’s clock inconsistency between phase and code observations is handled as a cycle slip. Secondly, a per band, time-differenced, phase screening is performed, for unnoticed outliers and cycle slips. These screenings, performed both for- and backward in time, are repeated until no additional cycle slips, or outliers, are found. Furthermore, no attempt is made to correct any cycle slip. Finally, MW and (quasi) ionosphere-free (IF) linear combinations, within each phase-continuous interval, are formed and modeled with low degree polynomials. Intervals resulting in residuals with root mean squared (RMS) greater than given thresholds are rejected. In total, less than 7% of the original observations are generally left out, including those observations below the elevation cut off angle.

Thereafter, a clean and single set of undifferenced carrier phase $\phi_{ij,k}$ (in cycles), code pseudorange $C_{ij,k}$ (in meters) and signal-to-noise ratio $SN_{ij,k}$ observables, between each pair of satellite i and receiver j, and for each tracked band k, is obtained. This data preprocessing is performed with the Fortran 2008 + OpenMP, in-house developed, software AGEO (library for Geodetic and Orbital Analysis or biblioteca de Análisis GEodésico y Orbital, in Spanish). In addition, it is externally parallelized, on a per station basis, by means of the GNU parallel software tool [Tange, 2011].

Table 2: Pairs of bands employed in the Melbourne-Wübbena (MW) data screening, with their corresponding wide-lane wavelengths λ_{WL} (in meters). Those pairs of bands employed in the computation of geometry-free (GF) linear combinations and inter-frequency biases (IFBs) are also indicated. Observation codes according to RINEX version 3.03 [Gurtner and Estey, 2017].

GNSS	Bands	λ_{WL}	GF & IFB
GPS	L2 L5	5.86	no
	L1 L2	0.86	yes
	L1 L5	0.75	yes
GLONASS	L2 L3	6.82	no
	L1 L2	0.84	yes
	L1 L3	0.75	yes
Galileo	L7 L5	9.77	no
	L7 L6	4.19	no
	L6 L8	3.54	no
	L6 L5	2.93	no
	L1 L6	1.01	yes
	L1 L7	0.81	yes
	L1 L8	0.78	yes
	L1 L5	0.75	yes
BeiDou	L6 L7	4.88	no
	L2 L6	1.04	yes
	L2 L7	0.84	yes
1.3 Hardware Delays Calibration

Once per hour inter-frequency biases (IFBs) are estimated from carrier-to-code leveled geometry-free (GF) linear combinations [see, e.g., Spits, 2012]. These hardware delays are solved simultaneously with spherical harmonic (SH) coefficients of a single-layer VTEC representation [Schaer, 1999], assuming that all free electrons are constrained to an infinitesimally thin layer at a height of 450 km. Here only independent linear combinations are employed, between selected pairs of bands (Table 2). Hence, only independent IFBs are computed. Also, no closing restriction is imposed, resulting in satellite-receiver-, pair-of-bands-specific IFBs. Moreover, different tracking modes or channel attributes, between each pair of satellite-receiver links, are taken into account. The estimation is made by means of a weighted least squares adjustment, performed also with the AEGO software, and executed in one single step, involving the most recent observations available, from all ground stations and all satellites, within the previous 24 hours (i.e., a 24 hours rolling- or moving-window).

In practice, after preprocessing the raw observations corresponding to each pair satellite and receiver , and for each pair of bands and , all possible carrier-to-code leveled GF linear combinations in meters) are computed by

\[L_{GF,ij,kl} = L_{GF,ij,kl} - \langle L_{GF,ij,kl} - C_{GF,ij,kl} \rangle \]

where \(L_{GF,ij,kl} = \lambda_k \phi_{ij,k} - \lambda_i \phi_{ij,l} \) are the non-leveled GF linear combinations in phase (in meters) and \(C_{GF,ij,kl} = C_{ij,j} - C_{ij,k} \) are the corresponding linear combinations in code pseudorange (in meters), being \(\lambda_k \) and \(\lambda_l \) the wavelengths of each band (in meters). Here the average is computed within each phase-continuous interval, under the assumption of stable hardware delays. This commonly used methodology reduces the observations noise, from code to phase levels, and avoids the estimation of phase ambiguities, but it could also introduce some systematic errors [see, e.g., Ciraolo et al., 2007, Spits, 2012]. In addition, each GF observation is weighted according to three factors: the instantaneous satellite elevation, the amount of observations employed during the carrier-to-code leveling (i.e., the length of each phase-continuous interval) and the corresponding navigational system [GPS, GLONASS, Galileo or BeiDou, see Ren et al., 2016]. Then, the full set of GF observations is represented as

\[\tilde{L}_{GF,ij,kl} = \alpha_{kl} \text{MF}(z) \text{VTEC}(\mu, t) + \text{IFB}_{ij,kl} \]

where \(\text{MF}(z) \) is the Modified Single Layer Model (MSLM) mapping function [Schaer, 1999], being \(z \) the zenith distance of satellite as seen by receiver (in radians), IFB are the corresponding specific IFBs (in meters), \(\alpha_{kl} \) is a proportionality constant (in meters per TECU, where 1 TECU is equivalent to \(10^{16} \) free \(e^- \) per squared meter)

\[\alpha_{kl} = 40.3 \times 10^{16} \left(\frac{1}{f_k} - \frac{1}{f_l} \right) \]

being \(f_k \) and \(f_l \) the frequencies of each band (in Hertz), whereas the VTEC is expressed as a SH expansion in a sun-fixed frame

\[\text{VTEC}(\mu, t) = \sum_{n=0}^{n_{\text{max}}} \sum_{m=0}^{n} P_{nm}(\sin \mu) \left(a_{nm} \cos(m \mu) + b_{nm} \sin(m \mu) \right). \]

Here \(a_{nm} \) and \(b_{nm} \) are the coefficients of the SH expansion (in TECU), with maximum degree \(n_{\text{max}} \), whereas \(P_{nm} \) are the corresponding Real Associated Legendre Functions [4π normalized, see for example Wieczorek and Mescedu, 2018], \(t \) is the Local Time (LT, in radians) and \(\mu \) is the modified dip latitude (also in radians). In this case the algorithms issued by the European GNSS (Galileo) Open Service [2016], together with the corresponding global grid, are employed for the computation of \(\mu \).

As only regional observations are employed, the 24 hours time window helps into decoupling the hardware delays, from the ionospheric parameters, by always including in the adjustment observations spanning 24 hours of LT. Furthermore, a single set of constant coefficients \(a_{nm} \) and \(b_{nm} \), loosely constrained to a zero ionosphere, is estimated for the entire time span, resulting in a mean (daily) VTEC representation. For the same reason a SH expansion of low degree is employed, in order to avoid ill conditioned normal equations [Haines, 1985], which in turn could produce mapping artifacts, particularly at the boundaries of the region. On the other hand, the IFB\(ij,kl \) are also parametrized as constants, and estimates with mean observational epoch at the middle of each moving-window are obtained. These hardware delays are also loosely constrained to their most recently estimated values. In fact, the main result of this hourly adjustment are precisely these decoupled IFB\(ij,kl \) estimates. However, they result systematically half a day old.
1.4 Near Real-Time TEC Mapping

Every 15 minutes, and also by means of a weighted least squares adjustment, both the IFBs and the SH coefficients for the regional VTEC representation are updated. In essence, the same software, methodology and parametrization described in the previews section are employed. However, in this case only the most recent observations available, within a one hour moving-window, are used. In addition, here four sets of piece-wise constant SH coefficients are estimated, each one valid for a quarter of an hour. Furthermore, the IFB$_{ij,kl}$ parameters are now actively constrained to their most recent, hourly, and decoupled estimates. In practice, this results in new hardware delays estimates that are simultaneously up-to-date (i.e., less than 30 minutes old) and decoupled from the coefficients of the SH expansion. Thereafter, tracks of instantaneous, VTEC estimates are obtained from the original GF observations by

$$ VTEC_{ij,kl,\varphi,\lambda} = (\alpha_{kl} \text{MF}(z))^{-1} (\tilde{L}_{\text{GF},ij,kl} - \text{IFB}_{ij,kl}) $$

(5)

where φ and λ are the geographic latitude and longitude, respectively, of the ionospheric pierce points (IPPs), that is, the intersection point between the instantaneous satellite-receiver line-of-sight with the single layer of the model. Similarly, traces of slant TEC (STEC) estimates can be computed by

$$ STEC_{ij,kl,\varphi,\lambda} = \alpha^{-1}_{kl} (\tilde{L}_{\text{GF},ij,kl} - \text{IFB}_{ij,kl}). $$

(6)

At this point two representations of the current state of the regional ionospheric TEC are available. In one hand, an analytical representation, given by the coefficients of a low degree SH expansion in μ and t, with mean epoch at the middle of the latest 15 minutes of the observational window. On the other hand, a discreet and huge set of instantaneous VTEC$_{ij,kl,\varphi,\lambda}$ estimates, along the IPP tracks, during the same interval. In fact, the issued TEC product is obtained by mapping these tracks in the space domain.

This postprocessing of the VTEC$_{ij,kl,\varphi,\lambda}$ estimates comprises three steps, all performed with the Generic Mapping Tools software package [GMT, Wessel et al., 2013]. Firstly, all available estimates are averaged within the cells of a uniform 0.5×0.5 degrees grid, previously discarding cells with very few observations, and effectively resulting in N space- and time-averaged $\langle VTEC \rangle_p$ values, for $p = 1, \ldots, N$. Secondly, this regular grid is approximated, using a generalized Green’s function for continuous curvature spherical spline in tension [Wessel and Becker, 2008], by

$$ VTEC(\varphi, \lambda) = c_0 + \sum_{p=1}^{M} c_p g(\varphi, \lambda, \varphi_p, \lambda_p) $$

(7)

where φ and λ are arbitrary coordinates, $M \leq N$ is the number of employed coefficients, φ_p and λ_p are the coordinates of the corresponding cells, c_0 is the mean VTEC over all populated cells (in TECU), g is the generalized Green’s function and c_p are the spline coefficients (also in TECU), solved for by Singular-Value Decomposition (SVD) on the square linear system

$$ \langle VTEC \rangle_p - c_0 = \sum_{q=1}^{N} c_q g(\varphi_p, \lambda_p, \varphi_q, \lambda_q) $$

(8)

and retaining only those M eigenvalues whose ratios, to the largest, are greater than a given threshold. While we empirically determined optimal (fixed) values for both the tension and the threshold, searching over thousand of maps for minimization of the misfits, the number M of contributing eigenvalues is dynamically determined, every time, to accommodate the variance of the current data. That is, the more spatial variability in the regional VTEC the more eigenvalues are retained in the mapping procedure. Finally, the adjusted function is evaluated on a uniform 0.5×0.5 degrees grid and areas far away from IPP tracks are automatically masked out. The resulting grid constitutes the actual, near real-time, regional TEC map produced by the system, as no additional postprocessing (e.g., smoothing) is required nor performed.

2 System Assessment

2.1 Year-round Intercomparison with Global Products

To evaluate the quality of the produced maps, and particularly the possible presence of systematic biases, we compared them with several IGS final TEC products, provided in IONEX format, and computed
by several IGS Ionosphere Associated Analysis Centers (IAACs): Center for Orbit Determination in Europe [CODE, Switzerland; see Schaeer 1999], European Space Agency/European Space Operations Centre [ESA/ESOC, Germany, see Feltens 2007], IGS [see Hernández-Pajares et al. 2009], Jet Propulsion Laboratory/National Aeronautics and Space Administration [JPL/NASA, USA; see Mannucci et al. 1998] and Universitat Politècnica de Catalunya [UPC, Spain; see Hernández-Pajares et al. 1999] Orús et al. 2005]. From UPC we employed both, their standard and their high rate products. We also included in the analysis TEC products from two additional IGS ACs: Natural Resources Canada [NRCAN, Canada; see Ghoddousi-Fard et al. 2011] and Wuhan University [WHU, China; see Wang et al. 2018]. These products are usually available with latencies of a few days or, at best, several hours. In addition, we also included in the intercomparison the (non-IGS) global and high resolution TEC products provided by the Massachusetts Institute of Technology [MIT Haystack Observatory, USA; see Rideout and Coster 2006].

The comparison extends a full year, from June 1, 2017 to May 31, 2018, and it was performed on a map by map basis (i.e., epoch by epoch). In order to assess the expected differences we performed the same one-to-one comparison between pairs of global products. Although these maps have global coverage, the comparison was restricted to the area covered by our regional maps, that is, between 80° S and 40° N in latitude and 110° W and 0° E in longitude [see Figure 1 in Mendoza et al. 2019]. Also, no spatial or temporal interpolation was performed. Rather, only TEC samples at common epochs, and exactly the same reported locations, were differenced. For this reason, and before the comparisons, our high resolution maps were downsampled. Thus, the results were controlled by the standard 5 x 2.5 degrees spatial sampling (in longitude and latitude, respectively) of the IGS products or, alternatively, by the 1 x 1 degrees spatial sampling of the MIT products.

For this analysis, instead of the real-time data streams, we employed daily observational and navigational RINEX files available at the servers of the respective data providers. However, to reproduce exactly the results of the near real-time system, we only used data from those GNSS stations that are actually accessible in real-time, leaving all off-line stations out of the analysis. We also employed the very same broadcasted orbits and satellite clocks, and no other products. In addition, we followed exactly the same two-steps methodology previously described. That is, a first step resulted in IFBs estimates, from a 24 hours observational moving-window, while in a second and final step the TEC maps were produced, from a 15 minutes moving-window. To speed up this year-round analysis, and although some of the selected products are currently provided at a higher rate (e.g., by CODE, NRCAN and particularly UPC and MIT), we computed maps with 2 hours of temporal sampling, following the classical IGS standard practice.

The year-round (and regional) comparison shows the existence of systematic differences between all the analyzed pairs of TEC products (Table 3). In average, our near real-time TEC maps show a very good agreement with the maps produced by ESA/ESOC, CODE, UPC (high rate) and especially NRCAN, resulting for all the cases in a mean bias lower or equivalent to 1 TECU, comparable with the differences found between pairs of global products. Nevertheless, while there seems to be no significantly biases between both, our products and the ones from NRCAN and between them and the ones from CODE, a small systematic bias do exists between the former and our products. The reason for this seemingly discordant results is simple: given their global coverage, the comparisons between pairs of IGS products span the entire area mapped [Figure 1 in Mendoza et al. 2019], whereas those comparisons involving our regional product are mostly restricted to the land, leaving large portions of the oceans out of the analysis, and this is evident in the lower number of common TEC samples found (Table 3). This contributes also to the higher mean standard deviation encountered while comparing our maps with the other products, both in average and individually (Figure 1). Indeed, not only a smaller number of differences are averaged, also the smoothest areas of the IGS maps over the oceans, where no actual GNSS observations were available, are systematically left out of these comparisons. At the same time, all comparisons show, to a greater or lesser extent, smaller variance during the southern winter (i.e., June, July and August). This is probably due to the lower, regional, mean ionospheric TEC in that season.

2.2 Differential STEC Evaluation

In order to independently assess the accuracy of the produced TEC maps we applied a differential STEC (dSTEC) test developed by the IGS Ionosphere Working Group (IIWG) for the evaluation, and relative weighting, of their Global Ionosphere Maps (GIMs) [see, for example, Orús et al. 2005, 2007 Roma-Dollase et al. 2018]. In essence, the test is based on the ability to make highly accurate dSTEC measurements, on the order of 10^{-2} TECU [Coster et al. 2013 Hernández-Pajares et al. 2017], and to compare them with synthetic (i.e., mapped) dSTEC values. In fact, we employed the very same
Table 3: Year-round one-to-one comparison between selected (GNSS based) TEC products, from June 1, 2017 to May 31, 2018: codg (CODE), emrg (NRCAN), esag (ESA/ESOC), igsg (IGS, combination of codg and jplg), jplg (JPL/NASA), mapgps (MIT), upcg (UPC), uqrg (UPC, high rate), whug (WHU) and magn (our near real-time product). The mean difference x_{A-B} and mean standard deviation σ_{A-B}, over all compared maps, are expressed in TECU.

Products	A	B	x_{A-B}	σ_{A-B}	TEC	TEC	Maps	Samples
codg	magn	0.7	1.9	4380	1965432			
emrg	0.1	2.1	8758	9869733				
esag	-0.1	1.6	4368	4922736				
igsg	-1.0	0.6	4380	4936260				
jplg	-2.2	1.3	4380	4936260				
mapgps	2.3	2.3	8568	1232740				
upcg	-0.7	1.5	4284	4828068				
uqrg	-0.7	1.7	8736	9845472				
whug	1.7	4.4	5280	5950560				
emrg	magn	0.1	2.4	4380	1965367			
esag	-0.2	2.6	4368	4922471				
igsg	-1.0	2.1	4380	4935994				
jplg	-2.2	2.4	4380	4935994				
mapgps	2.1	2.2	8566	1232401				
upcg	-0.8	2.0	4284	4827806				
uqrg	-0.7	2.3	8734	9842685				
whug	1.7	4.6	5278	5947974				
esag	magn	0.9	2.2	4368	1960492			
igsg	-0.8	1.7	4368	4922736				
jplg	-2.0	2.0	4368	4922736				
mapgps	2.4	2.8	4272	614605				
upcg	-0.5	1.7	4272	4814544				
uqrg	-0.5	2.3	4356	4909212				
whug	2.4	5.0	4368	4922736				
igsg	magn	1.6	1.9	4380	1965432			
jplg	-1.2	0.7	4380	4936260				
mapgps	3.3	2.3	4284	616229				
upcg	0.3	1.5	4284	4828068				
uqrg	0.3	1.6	4308	4922736				
whug	3.2	5.1	4380	4936260				
jplg	magn	2.9	2.1	4380	1965432			
mapgps	4.6	2.4	4284	616229				
upcg	1.5	1.8	4284	4828068				
uqrg	1.5	1.8	4308	4922736				
whug	4.4	5.3	4380	4936260				
mapgps	magn	-2.0	2.8	4284	10182540			
upcg	-2.7	2.3	4188	603294				
uqrg	-2.7	2.2	33470	4816557				
whug	-0.1	4.2	5160	749695				
upcg	magn	1.1	1.9	4128	1848581			
uqrg	0.0	1.1	4272	4814544				
whug	2.9	4.9	4284	4828068				
uqrg	magn	1.0	1.9	4369	1960667			
whug	2.3	4.7	5268	5937036				
whug	magn	-2.7	5.0	4377	1963993			
Figure 1: Examples of mean differences and standard deviations, per map, resulting from the year-round one-to-one TEC products comparisons: between a final IGS and our near real-time product (codg and magn, respectively), between two final IGS products (codg and the high rate uqrg), between two final IGS products (codg and upcg, noting that no upcg IONEX files were available for October 8–13 and 21, 2017 and for January 28, 2018) and between a final and the combined IGS product (codg and igsg, respectively). The global K_p index, provided by the GeoForschungsZentrum (GFZ, Germany), is also plotted.

The analysis is performed on a per station basis, involving only GNSS stations that were not employed for the computation of the TEC maps being evaluated. Firstly, and after preprocessing the corresponding raw data (e.g., outliers rejection, phase wind-up correction, etc.), observed dSTEC$_o$ (in TECU) are obtained from (non-leveled) carrier phase GF linear combinations (in meters) by

$$d_{\text{STEC}}(t_s) = \alpha^{1}_{kl} (L_{GF,ij,kl}(t_s) - L_{GF,ij,kl}(t_r))$$

with $t_r \neq t_s$, (9)

taking advantage of the total cancellation of the phase ambiguities within each phase-continuous interval. Here t_r (in hours) represents a reference epoch, when the satellite reaches its minimum zenith distance within each phase-continuous interval, whereas t_s (in hours) are all other sample epochs within the same phase interval. Here we employed a sampling rate of 60 seconds and, following the convention stated by Hernández-Pajares et al. [2017], only GF observations no more than 900 seconds apart were differenced. This results in a maximum of 30 dSTEC$_o$ samples per phase-continuous interval, regardless of its total length. In addition, the corresponding zenith distances z_r and z_s (both in radians), with $z_r \neq z_s$, are stored for subsequent use. Secondly, and for each observed dSTEC$_o$ sample, synthetic dSTEC$_m$ values (in TECU) are computed by

$$d_{\text{STEC}}(t_s) = \text{MF}(z_s) \text{VTEC}(\phi_s, \lambda_s, t_s) - \text{MF}(z_r) \text{VTEC}(\phi_r, \lambda_r, t_r)$$

(10)
where φ_r, λ_r and φ_s, λ_s (in degrees) are the coordinates of the corresponding IPPs. Here both $\text{VTEC}(\varphi, \lambda, t)$ are obtained, following [Schaer and Feltens, 1998], by temporal interpolation between consecutive rotated TEC maps

$$\text{VTEC}(\varphi, \lambda, t) = \frac{T_{i+1} - t}{T_{i+1} - T_i} \text{VTEC}_i(\varphi, \lambda'_i) + \frac{t - T_i}{T_{i+1} - T_i} \text{VTEC}_{i+1}(\varphi, \lambda'_{i+1})$$

being T_i and T_{i+1} the epochs of the corresponding maps (in hours), with $T_i < t < T_{i+1}$, whereas the rotated longitudes $\lambda'_i = \lambda + 15 (t - T_i)$ and $\lambda'_{i+1} = \lambda + 15 (t - T_{i+1})$ compensate the strong correlation between the ionospheric TEC and the (longitude of the) subsolar point. Within each map, the VTEC and VTEC_{i+1} are spatially interpolated by a simple 4-point bilinear algorithm [see also Schaer and Feltens, 1998]. Finally, the observed minus computed ΔdSTEC (in TECU) are obtained

$$\Delta \text{dSTEC}(t_s) = \text{dSTEC}_o(t_s) - \text{dSTEC}_m(t_s).$$

In turn, the RMS of ΔdSTEC, per station, can be computed.

In practice, we employed daily RINEX files from ten GNSS stations distributed over the study area (Figure 2). In addition to files from the mentioned data providers we also employed observations from off-line GNSS stations supplied by the Centro Sismológico Nacional (CSN, Chile). The analysis was repeated in four independent days, during the years 2017 and 2018, near the ascending equinox, the descending equinox, the summer solstice and the winter solstice. Also, the TEC maps employed in this analysis are the very same produced for the year-round comparison with the IGS GIMs. However, for these four particular days, additional maps were produced in order to achieve the standard 15 minutes sampling rate of the monitoring system.

In summary, the observed dSTECs are fairly reproduced by the synthetic values, implying that the near real-time maps, in combination with the corresponding mapping function, are capable of representing the regional ionospheric TEC with an average accuracy better than 1 TECU (Table 4). Finally, the three stations leading to a total RMS > 0.7 TECU are located in areas where the IPPs coverage is, systematically, not optimal [especially near BOAV and PUMO, but to a lesser extent also near PISR, see Figure 1 in [Mendoza et al., 2019]], right). This suggests that the monitoring system could benefit from the use of additional data from GNSS stations located in these specific areas.

3 Conclusions and Outlook

A multi-GNSS, operational, high-rate and openly accessible ionospheric TEC monitoring system for South America has been successfully developed, tested and implemented [Mendoza et al., 2019]. Both
Table 4: Per station daily and total RMS (in TECU) resulting from the dSTEC evaluation of the near real-time ionospheric TEC maps.

GNSS Station	2017	2018	Total	ΔdSTEC		
# ID	Jun 21	Sep 22	Dec 21	Mar 20	RMS	Samples
1 BOAV	0.59	1.17	1.01	0.75	0.91	38611
2 BYSP	0.44	0.43	0.32	0.50	0.43	24498
3 CCHR	0.47	0.65	0.84	0.54	0.61	16690
4 ILHA	0.28	0.64	0.89	0.58	0.66	35539
5 JUNT	0.84	0.41	0.42	0.73	0.64	12703
6 MA01	0.26	0.52	0.86	0.46	0.59	23448
7 PISR†	0.43	0.80	1.11	0.86	0.84	20104
8 PRNA†	0.23	0.62	0.42	0.42	0.50	17036
9 PUMO	0.51	0.73	0.51	1.44	0.89	23461
10 TERO	0.30	0.93	0.54	0.65	0.65	39588

†No daily RINEX file, for June 21, 2017, was available.

the comparison of the produced maps against global products, including several final IGS GIMs, and also against independent and highly accurate dSTEC observations, resulted in no significant biases nor in unreasonable variances or RMS. On the other hand, the monitoring system described here could certainly be improved in several ways. For example, the employment of observations at a higher rate could improve the data cleaning stage, resulting in less discarded observations. Data with a higher sampling rate could also open the possibility to reliably repair the cycle-slips, resulting in longer phase-continuous intervals, which in turn could reduce the systematic biases introduced during the carrier-to-code leveling process. Furthermore, the final spatial TEC mapping could be performed in a sun-fixed frame, or it could be parametrized in modified dip latitude instead of geographic latitude, or it could employ a different basis of analytical functions, just to mention some possible improvements. Moreover, while we are actually employing the classical double-frequency approach, to retrieve the ionospheric delay from the GNSS observations, a true triple-frequency methodology [see, e.g., Spits, 2012] could also be considered for those particular stations equipped with modern receivers. Finally, the (rather small) systematic biases found between our TEC maps and the ones produced by several IGS ACs should be addressed, looking at the differences in mathematical representation and parametrization and their impact on the resulting TEC and IFBs estimates. Comparisons with TEC measurements provided by other techniques or satellite missions could certainly help to identify the sources of these differences.

Data Availability Statement

Openly accessible off-line GNSS observations in RINEX format were provided by the Centro Sismológico Nacional (CSN, Chile, repository at http://gps.csn.uchile.cl/data/), IBGE (repository at ftp://geofftp.ibge.gov.br/informacoes_sobre_posicionamento_geodesico/rbmc/dados/), mirror at ftp://triaicle.fcaglp.unlp.edu.ar/GNSS/RINEX/RBMC/, IGN (repository at http://www.ign.gob.ar/NuestrasActividades/Geodesia/Ramsac/Descargahinex), IGS, NASA (repository at ftp://cddis.gsfc.nasa.gov/gps/data/), SGM (repository at ftp://pp.sgm.gub.uy/regna/) and UNAVCO (repository at ftp://data-out.unavco.org/pub/rinex/obs/). Global TEC maps in IONEX format, provided by the IGS and its IAACs and ACs (particularly CODE, ESA/ESOC, JPL/NASA, NRCAN, UPC and WHU), were employed (also retrieved from CDDIS, repository at ftp://cddis.gsfc.nasa.gov/gnss/products/ionex/). In addition, global TEC products provided by MIT were employed (retrieved from http://millstonehill.haystack.mit.edu/). Time series of the global K_p were provided by the GeoForschungsZentrum, Postdam (GFZ, Germany, repository at ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/).

Acknowledgments

We would like to thank the people, organizations and agencies responsible to collect, compute, maintain and openly provide the observations, products and databases that made this work possible. In particular, real-time GNSS orbit and clock messages, along with GNSS observations, are provided by the Bundesamt für Kartographie und Geodäsie (BKG, Germany), in support to the International GNSS Service (IGS),
and we particularly thank Peter Neumaier. Real-time GNSS observations are also provided by: the Instituto Brasileiro de Geografia e Estatística (IBGE, Brazil), and we particularly thank Sonia Maria Alves Costa; by the Instituto Geográfico Nacional (IGN, Argentina), and we particularly thank Diego Piñón; by the National Aeronautics and Space Administration (NASA, USA), in support to the IGS, and we particularly thank Jennifer Ash from the Crustal Dynamics Data Information System (CDDIS) Team; by the Servicio Geográfico Militar (SGM, Uruguay), and we particularly thank José María Pampillón; also, this material is (partially) based on data services provided by the UNAVCO Facility with support from the National Science Foundation (NSF, USA) and NASA under NSF Cooperative Agreement No. EAR-0735156 (UNAVCO, USA).

The near real-time TEC monitoring system described in this article is currently running on equipment acquired with funding by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina), through the program Fondo para la Investigación Científica y Tecnológica (FONCyT), with grant No. PICT-2015-1776.

References

L. Ciraolo, F. Azpilicueta, C. Brunini, A. Meza, and S. M. Radicella. Calibration errors on experimental slant total electron content (TEC) determined with GPS. *J. Geod.*, 81(2):111–120, February 2007. ISSN 1432-1394. doi: 10.1007/s00190-006-0093-1.

A. Coster, J. Williams, A. Weatherwax, W. Rideout, and D. Herne. Accuracy of GPS total electron content: GPS receiver bias temperature dependence. *Radio Sci.*, 48(2):190–196, 2013. doi: 10.1002/2010SW000621.

European GNSS (Galileo) Open Service. Ionospheric Correction Algorithm for Galileo Single Frequency Users. techreport 1.2, European Commission, September 2016. URL https://www.gsc-europa.eu/system/files/galileo_documents/Galileo_Ionospheric_Model.pdf.

J. Feltens. Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. *Space Weather*, 5(12), 2007. doi: 10.1029/2006SW000294.

R. Ghoddousi-Fard, P. Héroux, D. Danskin, and D. Boteler. Developing a GPS TEC mapping service over Canada. *Space Weather*, 9(6), 2011. doi: 10.1029/2010SW000621.

Werner Gurtner and Lou Estey. RINEX The Receiver Independent Exchange Format Version 3.03, Update 1. techreport, International GNSS Service (IGS), January 2017. URL ftp://igs.org/pub/data/format/rinex303.pdf.

G. V. Haines. Spherical Cap Harmonic Analysis. *J. Geophys. Res.*, 90(B3):2583–2591, February 1985. doi: 10.1029/jb090ib03p02583.

M. Hernández-Pajares, J. M. Juan, J. Sanz, R. Orus, A. García-Rigo, J. Feltens, A. Komjathy, S. C. Schaer, and A. Krankowski. The IGS VTEC maps: a reliable source of ionospheric information since 1998. *J. Geod.*, 83(3):263–275, March 2009. ISSN 1432-1394. doi: 10.1007/s00190-008-0266-1.

Manuel Hernández-Pajares, David Roma-Dollase, Andrzej Krankowski, Alberto García-Rigo, and Raúl Orús-Pérez. Methodology and consistency of slant and vertical assessments for ionospheric electron content models. *J. Geod.*, 91(12):1405–1414, December 2017. ISSN 1432-1394. doi: 10.1007/s00190-017-1032-z.

M. Hernández-Pajares, J.M. Juan, and J. Sanz. New approaches in global ionospheric determination using ground GPS data. *J. Atmos. Sol. Terr. Phys.*, 61(16):1237–1247, 1999. ISSN 1364-6826. doi: 10.1016/S1364-6826(99)00054-1.

A. J. Mannucci, B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge. A global mapping technique for GPS-derived ionospheric total electron content measurements. *Radio Sci.*, 33(3):565–582, 1998. doi: 10.1029/97rs02707.

L. P. O. Mendoza, A. M. Meza, and J. M. Aragón Paz. A multi-GNSS, multi-frequency and near real-time ionospheric TEC monitoring system for South America. *Space Weather*, 17, 2019. doi: 10.1029/2019SW002187.
Thomas Nischan. GFZRNX - RINEX GNSS Data Conversion and Manipulation Toolbox (Version 1.05). techreport, GeoForschungsZentrum (GFZ), Potsdam, Potsdam, 2016. URL http://semisys.gfz-potsdam.de/semisys/software/gfzrnx/1.10/gfzrnx.pdf GFZ Data Services.

R. Orús, M. Hernández-Pajares, J.M. Juan, and J. Sanz. Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J. Atmos. Sol. Terr. Phys., 67(16):1598–1609, 2005. ISSN 1364-6826. doi: https://doi.org/10.1016/j.jastp.2005.07.017.

R. Orús, L. R. Cander, and M. Hernández-Pajares. Testing regional vertical total electron content maps over Europe during the 1721 January 2005 sudden space weather event. Radio Sci., 42(3), May 2007. doi: 10.1029/2006RS003515.

Xiaodong Ren, Xiaohong Zhang, Weiliang Xie, Keke Zhang, Yongqiang Yuan, and Xingxing Li. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Sci. Rep., 6:33499, September 2016. doi: http://dx.doi.org/10.1038/srep33499.

W Rideout and A Coster. Automated GPS processing for global total electron content data. GPS Solutions, 10:219–228, January 2006. doi: 10.1007/s10291-006-0029-5.

David Roma-Dollase, Manuel Hernández-Pajares, Andrzej Krankowski, Kacper Kotulak, Reza Ghoddousi-Fard, Yunbin Yuan, Zishen Li, Hongping Zhang, Chuang Shi, Cheng Wang, Joachim Felzens, Panagiotis Vergados, Attila Komjathy, Stefan Schauer, Alberto García-Rigo, and José M. Gómez-Camana. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod., 92(6):691–706, June 2018. ISSN 1432-1394. doi: 10.1007/s00190-017-1088-9.

A. Rülke, L. Agrotis, M. Caissy, H. Habrich, P. Neumaier, W. Söhne, and G. Weber. IGS Real-Time Service - Status And Future Developments. Geophysical Research Abstracts, 16(EGU2014-7429-1), May 2014. URL https://meetingorganizer.copernicus.org/EGU2014/EGU2014-7429-1.pdf EGU General Assembly 2014.

S. Schaer and J. Feltens. IONEX: The IONosphere Map EXchange Format Version 1. techreport, Astronomical Institute, University of Berne, Switzerland and ESA/ESOC, Darmstadt, Germany, February 1998. URL http://ftp.aiub.unibe.ch/ionex/draft/ionex11.pdf September 17, 2015, update to v1.1.

Stefan Schauer. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. phdthesis, Universität Bern, Philosophisch-naturwissenschaftlichen Fakultät, March 1999. URL http://ftp.aiub.unibe.ch/papers/ionodiss.ps.

Justine Spits. Total Electron Content reconstruction using triple frequency GNSS signals. phdthesis, Université de Liège, Faculty of Sciences, Department of Geography, January 2012. URL http://hdl.handle.net/2268/107156.

Ole Tange. GNU Parallel: The Command-Line Power Tool. ;login: The USENIX Magazine, 36(1):42–47, February 2011. URL https://www.usenix.org/system/files/login/articles/105438-Tange.pdf.

C. Wang, C. Shi, L. Fan, and H. Zhang. Improved Modeling of Global Ionospheric Total Electron Content Using Prior Information. Remote Sensing, 10(1), 2018. ISSN 2072-4292. doi: 10:3390/rs10010063.

Georg Weber, Leo Mervart, Andrea Stuerze, Axel Rülke, and Dirk Stöcker. BKG Ntrip Client (BNC) Version 2.12, volume 49 of Mitteilungen des Bundesamtes für Kartographie und Geodäsie. Verlag des Bundesamtes für Kartographie und Geodäsie (BKG), Frankfurt am Main, 04 2016. ISBN 978-3-86482-083-0. URL https://igs.bkg.bund.de/root_ftp/NTRIP/software/bnc-2.12-6-debian8-64bit-static.zip.

P. Wessel and J. M. Becker. Interpolation using a generalized Greens function for a spherical surface spline in tension. Geophys. J. Int., 174(1):21–28, July 2008. doi: 10.1111/j.1365-246x.2008.03829.x.

P Wessel, W. H. F. Smith, R. Scharroo, J. Luís, and F. Wobbe. Generic Mapping Tools: Improved Version Released. Eos Trans. AGU, 94(45):409–410, 2013. doi: 10.1029/2013eo450001.

Mark A. Wieczorek and Matthias Meschede. SHTools: Tools for Working with Spherical Harmonics. Geochem. Geophys. Geosyst., 19, May 2018. doi: 10.1029/2018gc007529.