Complete genome sequences of 38 Gordonia sp. bacteriophages

Welkin H. Pope
University of Pittsburgh

Matthew T. Montgomery
University of Pittsburgh

Randall J. DeJong
Calvin University

Follow this and additional works at: https://digitalcommons.calvin.edu/calvin_facultypubs

Part of the Genomics Commons

Recommended Citation

Pope, Welkin H.; Montgomery, Matthew T.; and DeJong, Randall J., "Complete genome sequences of 38 Gordonia sp. bacteriophages" (2017). *University Faculty Publications*. 250.
https://digitalcommons.calvin.edu/calvin_facultypubs/250

This Article is brought to you for free and open access by the University Faculty Scholarship at Calvin Digital Commons. It has been accepted for inclusion in University Faculty Publications by an authorized administrator of Calvin Digital Commons. For more information, please contact dbm9@calvin.edu.
Complete Genome Sequences of 38 *Gordonia* sp. Bacteriophages

Welkin H. Pope, Matthew T. Montgomery, J. Alfred Bonilla, Randall Dejong, Rebecca A. Garlena, Carlos Guerrero Bustamante, Karen K. Klyczek, Daniel A. Russell, John T. Wertz, Deborah Jacobs-Sera, Graham F. Hatfull

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biology, University of Wisconsin – River Falls, River Falls, Wisconsin, USA; Department of Biology, Calvin College, Grand Rapids, Michigan, USA

ABSTRACT We report here the genome sequences of 38 newly isolated bacteriophages using *Gordonia terrae* 3612 (ATCC 25594) and *Gordonia neofelifaecis* NRRL 59395 as bacterial hosts. All of the phages are double-stranded DNA (dsDNA) tail phages with siphoviral morphologies, with genome sizes ranging from 17,118 bp to 93,843 bp and spanning considerable nucleotide sequence diversity.

The bacteriophage population is vast, dynamic, and old, with an estimated population of 10^{31} virions and 10^{23} productive infections/s on a global scale (1). The genomic diversity of the population is poorly understood, with fewer than 3,000 complete genome sequences in GenBank. In general, phages isolated on phylogenetically unrelated hosts share little or no sequence similarity, but considerable insights can be gleaned by comparative genomics of phages isolated on a common host, as illustrated for enterobacteriophages and mycobacteriophages (2, 3). The Howard Hughes Medical Institute (HHMI) Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program provides an undergraduate course-based research experience that contributes to our understanding of phage diversity and evolution through bacteriophage discovery and genomics, using *Actinobacteria*, including mycobacteria and *Gordonia* sp. strains, as isolation hosts.

Gordonia phages were isolated by enrichment or direct plating of filtered soil samples using *Gordonia terrae* 3612 or *Gordonia neofelifaecis* NRRL 59395 as a host (Table 1). Thirty-eight individual phages were isolated, and electron microscopy shows that all have siphoviral morphotypes. Plaque-purified phages were amplified, and their double-stranded DNA (dsDNA) was extracted and sequenced using an Illumina MiSeq, as described previously (4). The 140-base reads were assembled using Newbler and Consed, with average coverages between 447- and 3,241-fold. Sequence ambiguities and genome termini were resolved either by sequencing directly from genomic templates or from PCR products. Genomes were annotated using DNA Master (http://cobamide2.bio.pitt.edu), coding sequences were predicted using GeneMark (5) and Glimmer (6), and tRNAs were predicted using Aragorn (7) and tRNAscan-SE (8). Functional assignments were made using BLASTP (9) and HHpred (10, 11) against the publically available databases GenBank, the Protein Data Bank, and Pfam.

The 38 newly isolated *Gordonia* phages exhibit considerable diversity (Table 1). The smallest genomes, Jeanie and McGonagall, at ~17,000 bp, have the highest G+C content (68%) and are each predicted to contain only 25 genes, including those encoding structural proteins, integrase and immunity repressor, endolysin, and a DnaQ-like subunit of DNA polymerase III. Three phages (PatrickStar, Kampe, and Orchid) have G+C contents (47%) that are strikingly lower than that of their host (67.77%), and lower than the G+C% of any mycobacteriophage; these phages may be relatively...
recent arrivals to the *Gordonia* neighborhood (12) (Table 1). These phages, together with Kvothe, Jumbo, and Demothenes, have genomes with direct terminal repeats, a feature not observed in any mycobacteriophages. Many of the *Gordonia* phage genomes have defined ends with 3′ single-stranded extensions (Table 1), and only three (Terapin, Twister6, and Wizard) are circularly permuted.

Most of the *Gordonia* phages form turbid plaques, and 27 of the 38 encode either tyrosine or serine integrases; another six phages encode putative ParAB partitioning systems. Temperate lifestyles thus appear to be common for these phages. Some of the phages have all or part of a second integrase gene, and although these are mostly predicted to be nonfunctional, they perhaps reflect relatively recent genomic rearrangements. Finally, we note that six phages, KatherineG, Rosalind, Strosahl, Remus, Soups, and JSwag, are sufficiently similar to some mycobacteriophages to warrant grouping within Cluster A (13).

Accession number(s). Nucleotide sequence accession numbers are shown in Table 1.

Table 1 *Gordonia* phage genomics

Phage name	GenBank accession no.	Genome size (bp)	G+C content (%)	No. of tRNAs	No. of CDSs	End typea	Host strain
Bachita	KU998247	93,843	61.9	8	182	CGCGACGCTC	G. terrae 3612
Bantam	KX557272	92,580	64.7	2	168	CGCAGACCTC	G. terrae 3612
BatStar	KX557273	53,432	66.6	0	83	CGGCTGGGGA	G. terrae 3612
Blueberry	KU998236	54,990	67	0	86	TGGCCGTTGA	G. terrae 3612
BritBrat	KU998233	55,524	65	0	98	CGTATGGCAT	G. terrae 3612
CaptainKirk2	KX557274	47,898	67.4	0	79	TCGCGCCGTA	G. terrae 3612
CarolAnn	KX557275	54,167	66.9	0	80	TGGCCGTTGA	G. terrae 3612
ClubL	KU998246	92,618	61.9	9	179	CGCGACGCTC	G. terrae 3612
Cozz	KU998239	46,600	60	0	68	CGTATGGCTT	G. terrae 3612
Cucurbita	KX557276	93,686	62	9	178	CGCGACGCTC	G. terrae 3612
Demothenes	KU998242	74,073	59.3	0	95	Dir. Term. Repeat	G. terrae 3612
Eyre	KX557277	44,929	67.5	0	74	CCCCCTGCGTG	G. terrae 3612
Ghobes	KX557278	45,285	65.2	0	59	TGGCCGAGGT	G. terrae 3612
Hedwig	KX557279	44,536	67.2	0	70	TCCGGCGGTA	G. terrae 3612
Howe	KU252585	53,182	65	0	79	TGGCCGTTGA	G. terrae 3612
JSwag	KX557280	52,726	61.9	3	101	CGGCGGTGA	G. terrae 3612
Jumbo	KX557281	78,302	54.5	0	102	Dir. Term. Repeat	G. terrae 3612
Kampe	KU998254	80,649	47	2	115	Dir. Term. Repeat	G. terrae 3612
KatherineG	KU998251	52,689	61.9	3	99	CGGCGGTGA	G. terrae 3612
Kvothe	KU998243	75,462	59.5	0	99	Dir. Term. Repeat	G. terrae 3612
Nyceirae	KX557282	41,857	67.5	0	61	CGGCGGGGA	G. terrae 3612
OneUp	KU998245	93,577	61.5	9	163	CGCGACGCTC	G. terrae 3612
Orchid	KU998253	80,650	47	2	114	Dir. Term. Repeat	G. terrae 3612
PatrickStar	KU998252	80,729	47	2	115	Dir. Term. Repeat	G. terrae 3612
Remus	KX557283	52,738	62	3	98	CGGCTGGTTA	G. terrae 3612
Rosalind	KU998250	52,684	61.9	3	99	CGGCTGGTTA	G. terrae 3612
Smoothie	KU998244	93,139	61.9	8	179	CGGCGGCTC	G. terrae 3612
Soups	KU998249	52,924	61.9	3	98	CGGCTGGTTA	G. terrae 3612
Splinter	KU998238	45,858	66.1	0	80	TCGGCGGCGGTA	G. terrae 3612
Strosahl	KX557284	52,738	62	3	98	CGGCTGGTTA	G. terrae 3612
Terrapin	KX557285	66,611	59.6	0	97	Circ. Permuted	G. terrae 3612
Twister6	KX557286	57,804	67.7	0	93	Circ. Permuted	G. terrae 3612
Utz	KU998248	49,768	67.7	0	71	TCGCCGTTGA	G. terrae 3612
Vendetta	KU998237	45,858	66.1	0	81	TCGGCCGCGTA	G. terrae 3612
Wizard	KU998234	58,308	67.9	0	89	Circ. Permuted	G. terrae 3612
Zirinka	KX557278	52,077	66.7	0	79	CGGCTGGGGA	G. terrae 3612
Jeanie	KU998256	17,118	68.6	0	25	AGCCGCCGCTG	G. neofelisaecis
McGonagall	KU998255	17,119	68.6	0	25	AGCCGCCGCTG	G. neofelisaecis

aCDSs, coding sequences.

bEnd types are 3′-single-stranded overhangs, unless otherwise noted as Dir. Term. Repeat (direct terminal repeat) or Circ. Permuted (circularly permuted).

cPhage Hunters Integrating Research and Education (PHIRE) program, University of Pittsburgh.

dScience Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES), University of Wisconsin-River Falls.

eSEA-PHAGES, University of Pittsburgh.

fSEA-PHAGES, Calvin College.

gThis total includes one transfer-messenger RNA (tmRNA).
ACKNOWLEDGMENTS

We thank Marcie Warner, Becky Bortz, Sarah Grubb, Emily Furbee, and the students of the SEA-PHAGES programs at the University of Pittsburgh, Calvin College, and the University of Wisconsin–River Falls for their invaluable contributions in phage discovery and phage genomics.

REFERENCES

1. Hendrix RW. 2002. Bacteriophages: evolution of the majority. Theor Popul Biol 61:471–480. https://doi.org/10.1006/tpbi.2002.1590.

2. Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cesaawrn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF. Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science, Phage Hunters Integrating Research and Education, Mycobacterial Genetics Course. 2015. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife 4:e06416.

3. Grose JH, Casjens SR. 2014. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470:421–443. https://doi.org/10.1016/j.virol.2014.08.024.

4. Hatfull GF, Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) Program, KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH) Mycobacterial Genetics Course, University of California-Los Angeles Research Immersion Laboratory in Virology, Phage Hunters Integrating Research and Education (PHIRE) Program. 2016. Complete genome sequences of 61 mycobacteriophages. Genome Announc 4:e00389-16. https://doi.org/10.1128/genomeA.00389-16.

5. Besemer J, Borodovsky M. 2005. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454. https://doi.org/10.1093/nar/gki408.

6. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23:673–679. https://doi.org/10.1093/bioinformatics/btm009.

7. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152.

8. Lowe TM, Eddy SR. 1997. TRINscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. https://doi.org/10.1093/nar/25.5.955.

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.

10. Remmert M, Biegert A, Hauser A, Söding J. 2011. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175. https://doi.org/10.1038/nmeth.1818.

11. Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. https://doi.org/10.1093/nar/gkj408.

12. Pope WH, Jacobs-Sera D, Russell DA, Rubin DH, Kajee A, Msibi ZN, Larsen MH, Jacobs WR, Jr, Lawrence JG, Hendrix RW, Hatfull GF. 2014. Genomics and proteomics of mycobacteriophage patience, an accidental tourist in the mycobacterium neighborhood. mBio 5:e02145. https://doi.org/10.1128/mBio.02145-14.

13. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germaine KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O’Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cesaawrn SG, Hendrix RW. 2010. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 397:119–143. https://doi.org/10.1016/j.jmb.2010.01.011.