ORIENTATIONS OF THE GIANT’S CHURCHES IN OSTROBOTHNIA, FINLAND

MARIANNA RIDDERSTAD, University of Helsinki, Finland, and
JARI OKKONEN, University of Oulu, Finland

Introduction
The so-called Giant’s Churches are Neolithic stone structures, unique to the coastal area between Yli-Ii and Närpiö in Ostrobothnia in the western Finland.¹ They date from 2500-2000 BCE, and are concentrated on the ancient seashore.² Most of them were built on islands or drumlins on the coast, but are now situated as far as 30 kilometers inland because of the post-glacial rebound. There are 40 to 50 of them, depending on the definition, which is not clear, as their function is not yet known.

The Giant’s Churches are large, the length of the long axis differing from about 60 meters to 12 meters, and most often rectangular. On the other hand, the height of their walls is rather low, from about half a meter to about 2 meters in some cases. Most of them have “gates”, which are lowerings in the walls, suitable for entering the structure. Some of them also have so-called “sacristies”, which are stone cairns either constructed as parts of the walls or situated immediately outside of them.

The function of the Giant’s Churches has been a matter of debate for over a hundred years. They have been seen as dwellings, burial sites, temples, fortresses, natural formations, giant cold stores for seal meat and hunting enclosures.³ Some of the smallest constructions may have been dwellings, but the largest ones would have been impractical for that purpose. No usual signs of permanent inhabitation have been found inside the structures.

The present paper is the first one in the series of studies, where the possible deliberate orientations of the Giant’s Churches to celestial events are examined. The results may help to clarify the functions of the structures. In this paper, the orientations of 23 Giant’s Churches are presented.

Measurements
The orientations of the structures were measured as follows. (1) In rectangular structures (denoted with Q in Table 1), the directions of the walls were measured to determine the orientation of the long axis of each structure. In one case (Linnakangas in Ruukki), which is egg-shaped, the direction of the greatest length of the structure was used. (2) The directions of the gates and, in three cases, the sacristies, were measured as seen from the centre of the structure. The centre of the structure was determined from the measurements of the surrounding walls. In the structures with double walls (Q2), the centre of the structure was determined using the inner walls, if they were clearly detectable. In two cases, Hangaskangas and Kiviojankangas, where the structures are so-called ‘open rectangular’ (Open R), i.e., lacking one or two walls to create a full rectangle, the directions of the walls and the directions towards the ends of the walls were measured. In Hangaskangas, the directions towards the ends of the walls were measured as seen from the sacristy in the ‘bottom’ end of the open structure, whereas in Kiviojankangas, the directions towards the ends of the open walls were measured from the single gate in the long wall.

¹ Europaeus 1913, p. 90-91.
² See: Okkonen 2003.
³ See: Okkonen 2003, p. 57, 60, 124, 131-133.
Orientations and discussion

The results of the measurements of the orientations of the long axes, gates and sacristies of 23 Giant’s Churches are presented in Table 1.

As the Giant’s Churches were originally built on the seashore or on islands, the original horizon towards the west was flat in almost all cases. Because they were most often built on the highest points of the natural formations protruding out of the former sea floor also in the east, also the eastern horizon height was, in most cases, zero. Only in some cases the orientations were observed to be towards a nearby elevated point, another rocky island or drumlin. In these cases, the height of the horizon is given in Table 1. The existence of trees on the islands would, of course, have affected the horizon height, but, at this point of research, this effect is impossible to estimate, as it is not yet known whether many of the structures were built when the locations were still bare outer islands, or already parts of the forest-covered coastal region.

The greatest source of error in the study comes from the level of preservation of the structures, which affects the estimated locations of the centres and gates of the structures. Some of the Giant’s Churches, like Kastelli, are rather well-preserved and have been cleared from the surrounding forest. In three cases (marked with * in Table 1), the digging of a sand pit had or forest ploughing had destroyed parts of the structures. In one case (Storbacken), the structure was so thickly covered in moss and lichen that no gates could be reliably observed. In four cases (marked with ? in Table 1), the existence or original direction of a gate or a sacristy, towards which the orientation was measured, is unclear due to level of preservation.

The solar events considered in this study are the solstices, the equinoxes and the so-called Mid-Quarter Days. As the two Mid-Quarter Days surrounding each solstice have the same solar positions, only two of them need to be considered. In Finland, the most important festivals coinciding with these four parts of the year have traditionally been Vappu (St. Valborg’s Day) in May and Kekri, which was the ancient festival of the dead predating historical times, celebrated in November.

These eight main solar dates of the year correspond to ten different rising and setting points of the sun on the sky. At the latitude of Raahe, the rising and setting points of the sun at these dates correspond to total of 11% of the width of the horizon. With the +−5 deg error limits, the rising and setting points correspond to 36% of the horizon.

As Table 1 shows, within the error limits of +−5 degrees, twelve of the Giant’s Churches, i.e., about half of them, have their long axes oriented to solar events.

Of the 58 orientations towards gates, sacristies and the ends of walls in open structures, 29 are oriented to solar events within the +−5 deg error limits. Within the error limits of +−1 deg, 19 of the orientations measured are to solar events.

Of the 29 solar orientations, 6 are to the sunrise or sunset at the winter solstice, 4 at the summer solstice, 3 at the equinoxes and 16 at Vappu and Kekri.

The orientations of the sacristies must be, at this point, considered secondary in importance to the gate orientations. However, our results indicate that their orientations may be significant and should be further studied in the future.

The northernmost of the sites is Rajakangas in Haukipudas (65.2 deg N, 25.8 deg E), and the southernmost is Storbacken in Evijärvi (63.5 deg N, 23.3 deg E). These latitudes are unique in the Northern Hemisphere, because, between them, the daily path of the sun is very close to the horizon at the winter solstice, and at the summer solstice, the sun barely sets. Between these latitudes, the azimuth of the rising point of the upper limb of the sun changes from 160 to 152 deg at the winter solstice.

Therefore, increasingly towards the north, the azimuthal positions of the sunrise are so close to the true north or south at the summer and winter solstices, respectively, that it is often hard to distinguish deliberate Cardinal orientations from solar ones. In some cases they are, in effect, the same with the precision with which the orientations can be measured due to the
preservation of the structures. This is especially true for the winter solstice orientations, if the horizon is elevated.

An interesting point can be raised based on this movement of the sun close to the horizon line. It is known from the Greek historian Diodorus Siculus that the movement of the moon close to the horizon was considered significant by the builders of at least one Megalithic temple, identified by A. Burl as the ring of Callanish on Lewis, Outer Hebrides. Finland is too far north for the extreme points of the moon to be used for orientating buildings, but a similar effect to the one described by Diodorus Siculus is produced by the movements of the sun, which can be used for orientation purposes. One reason for building these monuments in Ostrobothnia could be related to this kind of movement of the sun at these latitudes.

The society that built the Giant’s Churches was Neolithic, but agriculture had already arrived in the region. The first signs of grain cultivation in the Northern Finland are from Puolanka in 2200 BCE. This place is about 70 km from the Giant’s Churches in Tyniavä and Muhos. The Northern Mesolithic society probably cooperated with the first Neolithic farmers by trade, which lead to the adaptation of new ideas, which eventually altered the social structure and cultural practices, including the concept of time. At the time, social complexity increased. The building of monumental structures may reflect this change. The possible cultural transformation of the hunter-gatherer society by obtaining, amongst other influences, calendrical information from the Neolithic farming society could explain the building of large structures with solar orientations. Thus, the Giant’s Churches of Ostrobothnia could ultimately be seen as part of the early Neolithic enclosure-building, which first manifested itself in the rondels of Northern Germany in 5000-4500, and continued in the later enclosures in the region and in the constructions of the Megalithic culture in Western Europe. However, it is too early to say whether the Giant’s Churches were used primarily as cult places. They may have had other functions, and orientating the structures towards important solar dates may have been a “mode of fashion” rather than the manifestation of new religious beliefs. Further research on the sites is required to understand the meaning of the solar orientations of the Giant’s Churches observed in this study.

References
Baldia, M.: A spatial analysis of megalithic tombs; Ph.D. Dissertation, Southern Methodist University, Dallas (1995).

Bertemes, F., Biehl, P. F., Northe, A., and Schröder, O.: Die neolithische Kreisgrabenanlage von Goseck, Landkreis Weißenfels; Archäologie in Sachsen-Anhalt 2/2004 (2004), 137-145.

Bertemes, F., and Spatzier, A.: Pömmelte – ein mitteldeutsches Henge-Monument aus Holz; Archäologie in Deutschland 6/2008 (2008), 6-11.

Burl, A.: A guide to the stone circles of Britain, Ireland and Brittany; Yale University Press, London (1995).

Europaeus, A.: Paavolan pitäjän "jättilläiskirkot"; Suomen Museo XX (1913).

4 Burl 1995, p. 150.
5 Vuorela 2002, p. 84-87.
6 Okkonen 2003, p. 219-226.
7 Okkonen 2003, p. 223.
8 See, e.g.: Baldia 1995; Burl 1995; Hoskin 2001; Bertemes et al. 2004; Ruggles 2005; Bertemes & Spatzier 2008; Pasztor & Barna 2008.
Hoskin, M.: Tombs, temples and their orientations; Ocarina Books, London (2001).

Okkonen, J.: Jättiläisen hautoja ja hirveitä kiviröykköitä – Pohjanmaan muinaisten kivirakennelmien arkeologiaa; väitös; Oulu (2003).

Pásztor, E., and Barna, J. P.: Orientation of the circular enclosures of the late Neolith Lengyel culture in the Carpathian Basin; Antiquity 82 (2008), 910-924.

Ruggles, C. L. N.: Ancient Astronomy: An Encyclopedia of Cosmologies and Myth; ABC-CLIO, London (2005).

Vuorela, I: Luonnon kerrostumat säilövät menneisyyttä. Ennen, muinoin. Miten menneisyyttämme tutkitaan. Ed. R. Grünthal, Helsinki (2002).
Table 1. Orientations of the Giant’s Churches. The azimuths of the orientations are given in full degrees. Abbreviations: WS = winter solstice; SS = summer solstice; srise = sunrise; sset = sunset. The azimuth of the closest solar event is given as $x+n = m$, where x is the event given in ‘Name of Event’, and n is the difference between this event and the measured orientation m. ‘o’ denotes an orientation towards an open wall, and ‘s’ denotes an orientation towards a “sacristy”.

Name	Location	Shape	Size (m)	Long axis (deg)	Horizon	Solar event	Ori. of axis	Other ori. (deg)	Horizon	Solar event	Name of event
Rajakangas	Haukipudas	Q2	32x26	50	x+1	Vappu srise	50	269	1	Vappu srise	Vappu srise
Kastelli	Pattipäi, Raasäe	Q	62x36	13	x	SS srise	3	42	x+6	SS srise	Vappu srise
Kiviöjankangas	Pattipäi, Raasäe	Open R	40x21	153	x-4	WS srise	169	193	1	WS sset	WS sset
Pesuankangas	Ruukli, Sikajoki	Q	33x24	138	x-5	Kekri srise	133	313	1	Kekri srise	Vappu sset
Linnakangas*	Ruukli, Sikajoki	Egg-shaped	27x18	32	x+16	SS srise	85	3007	-3	Eqx sset	Eqx sset
Keittukangas*	Raasäe	Q	30x20	45	x-3	Vappu srise	s201	190	3	Vappu srise	Vappu srise
Pikku Jakenaro	Raasäe	Q2	33x16	175	x-12	WS srise	175	350	2	SS sset	SS sset
Linnamaa*	Temmes, Liminka	Q2	40x28	127	x-3	Kekri srise	307	127	3	Kekri srise	Kekri srise
Mustosenkangas	Liminka	Q2	37x23	138	x+5	Kekri srise	50	230	3	Kekri srise	Vappu srise
Metelininkangas	Tymälä	Q	40x22	72	x-16	Eqx srise	238	145	2	Kekri srise	Kekri srise
Hangaskangas	Kannus	Open R	35x30	125	x-7	Kekri srise	112	122	1	Kekri sset	SS sset
Hiidenlinna	Himanka	Q	45x30	78	x-11	Eqx srise	89	245	x	Eqx sset	Kekri sset
Honkobackaharju	Kuuruupyy	Q	17x10	166	x+8	WS srise	166	346	3	SS sset	SS sset
Brantbacken 1	Kuuruupyy	Q	13x10	171	x+11	WS srise	168	353	12	WS sset	SS sset
Brantbacken 2	Kuuruupyy	Q	12x10	54	x+1	Vappu srise	54	49	x+1	Vappu srise	Kekri srise
Olilbacken 1	Kuuruupyy	Q	30x20	49	x	Vappu srise	49	229	x	Kekri srise	Kekri srise
Olilbacken 2	Kuuruupyy	Q	30x20	54	x+1	Vappu srise	54	238	7	Vappu sset	Kekri srise
Olilbacken 3	Kuuruupyy	Q	30x20	53	x	Vappu srise	53	281	9	Eqx sset	Eqx sset
Snårbacken	Kuuruupyy	Q	17x10	116	1	Kekri srise	281	174	14	Vappu srise	Vappu srise
Högryggen	Kuuruupyy	Q2	36x20	172	x+12	WS srise	174	354	13	SS sset	SS sset
Svedjebaken	Pedersöre	Q2	58x34	111	x-12	Kekri srise	111	291	17	Vappu sset	Vappu sset
Jäkmabacken	Pedersöre	Q	65x35	148	x-4	WS srise	148	148	4	SS sset	SS sset
Storbacken 1	Evlänvi	Q	30x20	64	x+11	Vappu srise	64	163	11	Vappu srise	Vappu srise
Figure 1. Area of Finland where Giant’s Churches are found.
Figure 2. Stone walls of the Giant’s Church of Kastelli in Raahe. The greatest length of the structure is 62 m.
Figure 3. Sun setting behind the western gate (az 268 deg) of the Giant’s Church of Rajakangas in Haukipudas at the spring equinox in 2009. The arrow points to a rod placed in the snow to mark the position of the gate.

Figure 4. Sun rising behind the eastern gate of Kastelli in Raahe at the spring equinox. The orientation of the gate (az 103 deg), marked with an arrow in the figure, is towards the sunrise 11 days before the spring equinox as measured from the centre of the structure. The orientation may be related to the calculation of the solar year using lunar months.