SYNTHESIS AND ANTIMICROBIAL EVALUATION OF QUINAZOLINONE PEPTIDE DERIVATIVES

BHUPINDER KAPOOR1, ARSHID NABI2, REENA GUPTA3, MUKTA GUPTA1*

1Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara – 144 411, Punjab, India. 2Department of Chemistry, University of Malaya, Kuala – 56060, Lumpur, Malaysia. Email: mukt.a.16541@lpu.co.in

ABSTRACT

Objective: The increased microbial resistance against commercially available drugs initiated the development of novel and safe antimicrobial agents in last few decades. In this view, a series of amino acid/peptide derivatives of quinazolin-3(4H)-one was synthesized and was evaluated for their antimicrobial potential.

Method: Synthesis of amino acid/peptide derivatives were carried out by coupling 5-(2-(2-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)-2-hydroxy benzoic acid with amino acid/peptide methyl esters in the presence of dicyclohexylcarbodiimide and N-methylmorpholine. The chemical structures of synthesized compounds were characterized by 'H nuclear magnetic resonance and infrared spectroscopy and were screened for antibacterial activity by disc diffusion method.

Results: All the synthesized derivatives exhibited moderate to significant antibacterial activity against both Gram-positive and Gram-negative bacteria. The potency of compound 5d was comparable to standard drug ciprofloxacin in all the strains of bacteria used. The compound 5a was found to be more active against Streptococcus pyogenes and Staphylococcus aureus while compound 5c against Pseudomonas aeruginosa and Escherichia coli.

Conclusion: Peptide derivatives of quinazolinone are promising antimicrobial agent and can be used for the synthesis of other novel compounds.

Keywords: Quinazolinone, Peptide, Antimicrobial agents.

INTRODUCTION

Infectious diseases have become a major cause of morbidity worldwide, especially in immunocompromised patients such as patients suffering from tuberculosis, acquired immune deficiency syndrome, and cancer [1,2]. Although a number of antibiotics are commercially available for various infections but the development of microbial resistance is another challenge which is due to overuse of antibiotics and poor infection control practices [3-6].

Heterocyclic systems comprising quinazolinones have been explored to a major extent in last few decades due to its chemotherapeutic and antimicrobial potential. Quinazoline (1) is a bicyclic compound containing benzene ring fused with pyrimidine ring. This heterocyclic molecule occupies a distinct place in the field of medicinal chemistry due to its wide spectrum of biological activities such as analgesic [7-11], antioxidant [12,13], antimicrobial [14,15], anticancer [16,17], anti-inflammatory [18,19], antitubercular [20], antihyperlipidemic [21], antithrombine [22], antiviral [23], anticonvulsant [24], and anti-parkinsonian [25].

Peptides are heteropolymers and function as hormones, neurotransmitter, enzymes, substrate, and immunomodulators; hence considered as an important molecule in the field of health science [26-29]. Thus keeping in mind the therapeutic potential of quinazoline as well as biodegradability and bioavailability profile of amino acids/peptide, an attempt has been made to synthesize amino acid/peptide derivatives of quinazoline so as to increase its therapeutic potential and minimize adverse effects [30-33].

METHODS

Chemistry

All the chemicals such as tert-butylcarbonyl protected amino acids (valine, tryptophan), amino acids (L-phenylalanine, L-leucine, L-serine, and L-arginine), dicyclohexylcarbodiimide (DCC), anthranilic acid, benzyl chloride, N-methylmorpholine (NMM), and trifluoroacetic acid (TFA) were purchased from Spectrochem Pvt. Ltd., (Mumbai, India). All the solvents were of commercial grade and distilled before use. Melting point of synthesized derivatives was determined by an open capillary method using digital melting point apparatus (Poplar, India). The progress of reactions was monitored by thin layer chromatography (TLC) on silica gel F254 plates with visualization by ultraviolet or iodine vapors. The molecular structures of all the synthesized derivatives were confirmed by elemental analysis, infrared (IR), and 'H nuclear magnetic resonance (NMR). The IR spectra (in KBr pellet) were recorded on FTIR-8400S (Shimadzu) spectrophotometer. Bruker Avance II (400 MHz) spectrometer was used to record 'H NMR, and 'H nuclear magnetic resonance (NMR). The IR spectra (in KBr pellet) were recorded on FTIR-8400S (Shimadzu) spectrophotometer. Bruker Avance II (400 MHz) spectrometer was used to record 'H NMR, and chemical shifts were given in δ (ppm) scale.

General scheme for synthesis of quinazolinone-amino acid/peptide derivatives

The general scheme for the synthesis of quinazolinone nucleus and its amino acid/peptide derivatives has been provided in Figs. 1 and 2.

Experimental

Synthesis of quinazolinone nucleus: (5-(2-(2-Chlorophenyl)-4-oxoquinazolin-3(4H)-yl)-2-hydroxy benzoic acid (5)

Synthesis of 2-(2-Chlorobenzamido) benzoic acid (3)

To a stirred solution of anthranilic acid (10 mmol) in pyridine (12 ml), 2-chlorobenzyl chloride (10 mmol) was added dropwise. The mixture obtained was further stirred at room temperature for 5 hrs. The resulting reaction mixture was filtered, washed with water and dried; followed by crystallization with ethanol to get pure compound.
Synthesis of 2-(2-Chlorophenyl)-4H-benzo[d][1,3]oxazin-4-one (4)
The solution of compound 3 (20 mmol) in acetic anhydride (34 ml) was refluxed for 6 hrs or till the completion of reaction. The solvent was removed under reduced pressure; the precipitate was washed with petroleum ether and purified by crystallization with ethanol.

Synthesis of 5-(2-(2-Chlorophenyl)-4-oxoquinazolin-3(4H)-yl)-2-hydroxy benzoic acid (5)
Equimolar amount of compound 4 (16.4 mmol) and 5-aminosalicylic acid was heated on a water bath at 200°C for 2 hrs. The separated solid was crystallized with ethanol to get pure compound.
Preparation of L-amino acid methyl ester hydrochloride (7a-d)
Esterification of amino acids 6a-d (10 mmol) was carried out by conversion into an acid chloride using thionyl chloride (10 mmol), followed by addition of methanol at 0°C. The reaction mixture was refluxed on a water bath for 12 hrs at a temperature of 110°C. The progress of the reaction was monitored by TLC. After the completion of the reaction, methanol was removed under reduced pressure and the treated with ether to remove dimethyl sulfoxide. The purification of the product was carried out by recrystallization with methanol [34,35].

Preparation of Boc-dipeptide methyl ester (9a-b)
To the solution of amino acid methyl ester hydrochloride 7c and 7d (20 mmol) in chloroform (40 ml), NMM (42 mmol) was added at 0°C, and the reaction mixture was stirred for 30 minutes. Then, the mixture was washed with chloroform (30 ml) and added to the filtrate. The combined filtrate was further extracted with 25 ml of 5% sodium hydrogen carbonate and then with 25 ml saturated sodium chloride solution. After drying of the organic layer, the solvent was removed under vacuum by rotary evaporator. The crude product obtained was purified by crystallization using a mixture of chloroform and petroleum ether [26,36].

Preparation of L-Leucine methyl ester hydrochloride (7c)
FTIR (KBr, cm⁻¹): 3462 and 3390 (primary N-H str.), 2872 (C-H str. aliphatic), 1739 (C=O, ester), 1240 (C-O str.). 'H NMR (400 MHz, DMSO, 5 ppm): 8.76 (d, NH, 2H), 7.84 (s, terminal NH of guanidine group, 1H), 6.63 (m, terminal NH of guanidine group, 2H), 3.69 (s, OCH₃, 3H), 3.36 (m, CH-NH₂, 1H), 3.28 (m, CH-NH₂, 2H), 1.8-1.6 (m, CH₂, 4H).

L-Leucine methyl ester hydrochloride (7d)
FTIR (KBr, cm⁻¹): 3550 (O-H str.), 2996 (C=H str. aliphatic), 1756 (C=O str. ester), 1249 (C-O str.). 'H NMR (400 MHz, DMSO, 5 ppm): 8.96 (d, NH, 2H), 4.94 (t, CH₂, 2H), 3.66 (s, OCH₃, 3H), 3.46 (m, CH-NH₂, 1H).

tert-Butylxycarbonyl-valine-lemine methyl ester (9a)
FTIR (KBr, cm⁻¹): 3330 (secondary N-H str.), 2978 (C=H str. aliphatic), 1756 (C=O str. ester), 1680 (C=O str. amide), 1210 (C-O str.). 'H NMR (400 MHz, DMSO, 5 ppm): 8.16 (d, NH, 2H), 7.39 (d, NH, 1H), 4.51 (m, CH, 1H), 4.34 (m, CH, 3H), 3.68 (s, OCH₃, 3H), 2.73 (m, CH, 1H), 1.81 (m, CH₂, 2H), 1.42 (m, CH, 10H), 0.96-0.90 (m, CH₂, 12 H).

Valine-lemine methyl ester (10a)
FTIR (KBr, cm⁻¹): 3420 83350 (primary N-H str.), 2954 (C=H str. aliphatic), 1762 (C=O str. ester), 1674 (C=O str. amide), 1219 (C-O str.). 'H NMR (400 MHz, DMSO, 5 ppm): 8.32 (d, NH, 2H), 7.41-7.10 (m, Ar-H tryptophan ring, 5H), 5.82 (d, CH, 1H), 4.94 (m, OH, 1H), 4.26 (m, CH₂, 2H), 4.02 (m, CH, 3H), 3.58 (s, OCH₃, 3H), 1.46 (m, CH₂, 9H).

Tryptophan-lemine methyl ester (10b)
FTIR (KBr, cm⁻¹): 3598 (O-H str.), 3224 (secondary N-H str.), 3082 (C=H str. aromatic), 2973 (C=H str. aliphatic), 1767 (C=O str. ester), 1696 (C=O str. amide), 1296 (C-O str.). 'H NMR (400 MHz, DMSO, 5 ppm): 11.24 (d, NH of tryptophan ring, 1H), 8.32 (d, NH, 1H), 7.46-7.19 (m, Ar-H tryptophan ring, 5H), 6.7 (s, NH₂, 2H), 4.86 (t, CH, 1H), 4.6 (s, CH, 1H), 4.26 (m, CH₂, 2H), 4.02 (m, CH, 1H), 3.63 (s, OCH₃, 3H).

Spectral analysis of synthesized compounds
S-(2-(2-Chlorophenyl)-4-oxoquinazolin-3(4H)-yl)-2-hydroxy benzoic acid (5)
FTIR (KBr, cm⁻¹): 3356-3285 (O-H str.), 3076 (C=H str. aromatic), 1725 (C=O str. acid), 1665 (C=O str. amide), 1750 (C=H str. aromatic), 750 (ortho substitution oop). 'H NMR (400 MHz, DMSO, 5 ppm): 12.1 (s, COOH, 1H), 9.18 (s, Ar-H, 1H), 8.13-7.64 (m, Ar-H, 4H, guanizine), 7.51-7.42 (m, Ar-H, 4H, chlorobenzene), 7.39-7.36 (m, Ar-H, 2H, benzoic acid), 3.8 (s, OH, 1H).

L-Phenylalanine methyl ester hydrochloride (7a)
FTIR (KBr, cm⁻¹): 3432 and 3368 (primary N-H str.), 2926 (C=H str. aromatic), 2852 (C=H str. aliphatic), 1745 (C=O str. ester), 1288 (C-O str.) 762 and 695 (mono substitution oop). 'H NMR (400 MHz, DMSO, 5 ppm): 8.71 (d, NH, 2H), 7.19-7.14 (m, Ar-H, 5H), 3.66 (s, OCH₃, 3H), 3.54 (m, CH₂, 2H), 3.32 (m, CH, 1H).

L-Arginine methyl ester hydrochloride (7b)
FTIR (KBr, cm⁻¹): 3456 and 3370 (primary N-H str.), 2955 (C=H str. aliphatic), 1743 (C=O, ester), 1200 (C-O str.). 'H NMR (400 MHz, DMSO, 5 ppm): 8.76 (d, NH, 2H), 7.84 (s, terminal NH of guanidine group, 1H), 6.63 (m, terminal NH of guanidine group, 2H), 3.69 (s, OCH₃, 3H), 3.36 (m, CH-NH₂, 1H), 3.28 (m, CH-NH₂, 2H), 1.8-1.6 (m, CH₂, 4H).
Table 1: Physicochemical properties of synthesized compounds

Compounds	Molecular formula	Molecular weight	R	Yield (%)	M.p (°C)	R₂ ^{0.05}
5	C₁₁H₁₈N₂O₄	392.79	-	71	127-130	0.81
7a	C₁₂H₂₀N₂O₈	215.67	-	92	161-164	0.79
7b	C₁₂H₂₀N₂O₈	224.68	-	88	155-162	0.64
7c	C₁₂H₂₀N₂O₈	181.66	-	72	155-159	0.62
7d	C₁₂H₂₀N₂O₈	155.58	-			
9a	C₁₈H₂₂N₂O₄	344.44	-	70	143-145	0.86
9b	C₁₈H₂₂N₂O₄	405.44	-	78	160-162	0.91

Table 2: Antimicrobial activity of quinazolinone peptide derivatives

S.No.	Compounds	Zone of inhibition (mm)	S. pyogenes	S. aureus	P. aeruginosa	E. coli
1	8a	18±0.56; 19±0.13; 16±0.7	14±0.45			
2	8b	6±0.87	13±0.3; 10±0.55	11±0.7		
3	11a	15±0.9	16±0.1; 19±0.2	18±0.48		
4	11b	19±0.2	22±0.11; 20±0.32	18±0.5		
5	Ciprofloxacin	23±0.12; 25±0.19	27±0.78	22±0.43		

* TLC mobile phase: n-butanol:acetic acid:water (3:1:1)

7.69 (m, Ar-H, 4H, quinazoline), 7.51-7.42 (m, Ar-H, 4H, chlorobenzene), 7.25-7.09 (m, Ar-H, 2H), 5.82 (d, CH₂, 1H), 4.94 (m, OH, 1H), 4.26 (t, CH₂, 2H), 3.71 (s, CH₃, 3H).

In vitro antimicrobial activity

Newly synthesized amino acid and peptide derivatives of quinazolinone 8a-b and 11a-b were screened for their antimicrobial potential by disc diffusion method against Gram-positive bacteria such as Streptococcus pyogenes, Staphylococcus aureus, and Gram-negative bacteria like Pseudomonas aeruginosa, Escherichia coli at a concentration of 100 µg/ml^{−1}. The test compounds were dissolved in an appropriate solvent and were incubated at 37°C for 24 hrs. After incubation, the zone of inhibition was measured in mm and was compared with standard drug ciprofloxacin (10 µg/ml). The results have been summarized in Table 2.

RESULTS AND DISCUSSION

Chemistry

Four novel amino acid and peptide derivatives of quinazoline-4(3H)-one were synthesized by condensation of S-(2-(2-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)-2-hydroxybenzoyl-valine-leucine methyl ester (11a) FTIR (KBr, cm^{−1}): 3456-3399 (O-H str.), 2947 (C-H str. aliphatic), 1765 (C=O str. ester), 1660 (C=O str. amide), 1635 and 1475 (C=C str. aromatic), 1290 (C-O str. ester), 1260 (C-N str.), 1260 (C-N str.), 742 (C-Cl str.).¹H NMR (400 MHz, DMSO, δ ppm): 8.88 and 8.65 (d, NH, 2H, amide), 8.01 (s, Ar-H, 1H, aromatic), 7.69 (m, Ar-H, 4H, quinazoline), 7.51-7.42 (m, Ar-H, 4H, chlorobenzene), 5.82 (d, CH₂, 1H), 4.94 (m, OH, 1H), 4.26 (t, CH₂, 2H), 3.71 (s, CH₃, 3H).

7.69 (m, Ar-H, 4H, quinazoline), 7.51-7.42 (m, Ar-H, 4H, chlorobenzene), 7.25-7.09 (m, Ar-H, 2H), 5.82 (d, CH₂, 1H), 4.94 (m, OH, 1H), 4.26 (t, CH₂, 2H), 3.71 (s, CH₃, 3H).

The formation of quinazoline-4(3H)-one scaffold was confirmed by appearance of characteristic IR absorption bands at 3356-3285 cm^{−1} (O-H), 1665 cm^{−1} (C=O amide), and 1725 cm^{−1} (C=O ester). In ¹H NMR, peaks at δ 8.12 ppm indicated carboxyl proton, 8.13-7.64 ppm due to aromatic protons of quinazoline ring, 7.38-7.32 ppm corresponding to benzene ring protons, and 3.8 ppm due to hydroxyl proton. The coupling of quinazoline nucleus with amino acids/peptides was 7.69 (m, Ar-H, 4H, quinazoline), 7.51-7.42 (m, Ar-H, 4H, chlorobenzene), 7.25-7.09 (m, Ar-H, 2H), 5.82 (d, CH₂, 1H), 4.94 (m, OH, 1H), 4.26 (t, CH₂, 2H), 3.71 (s, CH₃, 3H).

FTIR (KBr, cm^{−1}): 3468-3412 (O-H str.), 2960 (C-H str. aliphatic), 1772 (C=O str. ester), 1675 (C=O str. amide), 1638 and 1482 (C=C str. aromatic), 1286 (C-O str.), 1254 (C-N str.), 764 (C=H str.).¹H NMR (400 MHz, DMSO, δ ppm): 10.79 (d, NH of tryptophan ring, 1H), 8.78-8.32 (m, NH, 2H, amide), 8.01 (s, Ar-H, 1H, aromatic). 8.11-
confirmed by disappearance of NH, and COOH signals and appearance of CONH signals in both IR and NMR spectra.

Biological activity
All the synthesized compounds 8a-b and 11a-b were evaluated for their in vitro antimicrobial potential against both Gram-positive and Gram-negative bacteria such as S. pyogenes, S. aureus, P. aeruginosa, and E. coli. Both amido acid and peptide derivatives exhibited excellent to moderate antimicrobial activity as compared to the test drug ciprofloxacin. The compound 11b was found to be most potent against all test microorganisms. It is expected due to the presence of indole moiety. The ester functionality present in designed peptide chain might undergo hydrolisis to give carboxylic group which form zwit turnover by proton transfer to basic endo moiety, thereby exhibited broad spectrum antibacterial activity similar to most of quinolones. The moderate biological activity of other synthesized derivatives was expected to be due to the presence of nitrogen containing six membered fused heterocyclic ring of quinazolinone. The introduction of amino acid/peptide chain substitutions at 3-position of quinazolinone ring gives polar character to the molecule which helps in permeation through bacterial cell membrane via densely charged porin channels [40]. The compound 11a has shown maximum activity against P. aeruginosa while 8a against S. pyogenes. All the synthesized compounds were found to be least active against S. pyogenes.

CONCLUSION
In summary, a series of amino acid and peptide derivatives of 5-[(2-(2-chlorophenyl)-4-oxoquinazolin-3(4H))yl]-2-hydroxy benzoic acid were synthesized by coupling reaction and screened for their antimicrobial potential against S. pyogenes, S. aureus, P. aeruginosa, and E. coli. All the derivatives have shown promising antimicrobial activity; compound 11b has shown maximum antimicrobial activity against both Gram-positive and Gram-negative bacteria whereas compound 11a was more active against Gram-negative bacteria and 8a against Gram-positive bacteria.

ACKNOWLEDGMENT
The authors express sincere gratitude to the management of Lovely Professional University, for providing essential requirements for carrying out this research work.

REFERENCES
1. Akineye TA, Igbinoso EO, Akinpelu DA, Okoh AI. In vitro assessment of the synergism between extracts of Cocos nucifera husk and some standard antibiotics. Asian Pac J Trop Biomed 2017;7(4):306-13.
2. Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol 2017;133(1):152-63.
3. Rather IA, Kim BC, Bajpai VK, Park YH. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi J Biol Sci 2017. DOI: 10.1016/j.sjbs.2017.01.004.
4. Dafnale NA, Semwali UP, Rajput RK, Singh GN. Selection of appropriate analytical tools to determine the potency and bioactivity of antibiotics and antibiotic resistance. J Pharm Anal 2016;6:207-13.
5. Fajardo A, Linares J, Martínez JL. Towards an ecological approach to antibiotics and antibiotic resistance genes. Clin Microbiol Infect 2009;15 Suppl 1:14-6.
6. Bengtsson-Palme J, Larsson DG. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int 2016;86:140-9.
7. Abbas SE, Barsoum FF, Georgey HH, Mohammed ER. Synthesis and antimutator activity of certain 2, 3, 6-trisubstituted quinazolin-4 (3H)-one derivatives. Bull Fac Pharm 2013;51:273-82.
8. Banu BH, Bharathi K, Prasad KV. Synthesis, characterization and evaluation of in vitro antioxidant and antitumor properties of 2-(4-oxo-2-phenylquinazolin-3(4H)-yl) substituted acetic acids. IOSR J Pharm 2012;2:97-104.
9. Faraj FL, Zahedifard M, Paydar M, Looi CY, Majid NA, Ali HM, et al. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells. Sci World J 2014;14:1-15.
10. Arora R, Kapoor A, Gill NS, Rana AC. Quinazoline: An overview.
36. Dahiya R, Gautam H. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Mar Drugs 2010;8(8):2384-94.
37. Sribalan R, Padmini V, Lavanya A, Ponnuvel K. Evaluation of antimicrobial activity of glycinate and carbonate derivatives of cholesterol: Synthesis and characterization. Saudi Pharm J 2016;24(6):658-68.
38. Routier S, Saugé L, Ayerbe N, Coudert G, Mérour JY. A mild and selective method for N-Boc deprotection. Tetrahedron Lett 2002;43:589-91.
39. Evans V, Mahon MF, Webster RL. A mild, copper-catalysed amide deprotection strategy: Use of tert-butyl as a protecting group. Tetrahedron 2014;70(41):7593-7.
40. Beale JM. Anti-infective agents. In: Block JH, Beale JM, Troy JB, editors. Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry. 11th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2015. p. 248-50.