Abstract: The search for alternative materials with high dye adsorption capacity, such as methylene blue (MB), remains the focus of current studies. This computational study focuses on oxides ZnTiO₃ and TiO₂ (anatase phase) and on their adsorptive properties. Computational calculations based on DFT methods were performed using the Viena Ab initio Simulation Package (VASP) code to study the electronic properties of these oxides. The bandgap energy values calculated by the Hubbard U (GGA + U) method for ZnTiO₃ and TiO₂ were 3.17 and 3.21 eV, respectively, which are consistent with the experimental data. The most favorable orientation of the MB adsorbed on the surface (101) of both oxides is semi-perpendicular. Stronger adsorption was observed on the ZnTiO₃ surface (−282.05 kJ/mol) than on TiO₂ (−10.95 kJ/mol). Anchoring of the MB molecule on both surfaces was carried out by means of two protons in a bidentate chelating (BC) adsorption model. The high adsorption energy of the MB dye on the ZnTiO₃ surface shows the potential value of using this mixed oxide as a dye adsorbent for several technological and environmental applications.

Keywords: DFT; ZnTiO₃; TiO₂; methylene blue; adsorption

1. Introduction

Over the past decade, Ti- and Zn-based oxides have received much attention due to their competitive cost, non-toxicity, excellent stability, availability, and ability to produce highly oxidizing radicals [1–4]. Titanium oxide (TiO₂) and zinc oxide (ZnO) are two well-known semiconductors that have been widely used to construct electron transport channels due to their appropriate bandgaps, efficient electron mobilities, and simple synthesis methods [5–8]. In addition, these oxides are promising semiconductors to eliminate organic pollutants with incomparable efficiency due to their tunable surface and structural functionality [9]. The ZnO–TiO₂ composite system has even more superior properties than the individual oxides due to the high separation rate of photogenerated carriers and the wide optical response range [10]. Several syntheses and characterization studies of the ZnO–TiO₂ system have shown that there are three compounds in this binary system, including ZnTiO₃ (cubic, hexagonal), Zn₂TiO₄ (cubic, tetragonal), and Zn₃Ti₃O₈ (cubic) [11–13].

ZnTiO₃ has many similar physical properties to TiO₂ and ZnO, including high electron mobility [14–16]. This ternary oxide has been widely used because of its outstanding properties and potential scientific and technical applications [17]. ZnTiO₃ has been investigated in a variety of applications as an antibacterial, catalyst, nanofiber, white pigment, microwave dielectric, gas sensor, nonlinear optical, corrosion inhibitor, and luminescent material [18–23], but its application in adsorption has not been sufficiently studied, despite the fact that the literature indicates that due to its great specific area, it could have an important potential as an adsorbent [24,25].
ZnTiO$_3$ is a polar oxide of the LiNbO$_3$-type (LN-type) with both cations coordinated octahedrally in a three-dimensional framework of the octahedron perovskite (Pv) that shares corners [26]. In this structure, both cations move along the trigonal axis c, thus producing a spontaneous polarization reinforced by a second-order Jahn–Teller (SOJT) distortion due to Ti$^{4+}$ (d0) [27]. The paraelectric parent structure of ZnTiO$_3$ is the ilmenite (Il)-type phase (hexagonal space group R-3), which is the stable phase under ambient conditions [28]. The crystalline and phase transformation behaviors of ZnTiO$_3$ have systematically been investigated by various authors regarding several synthesis methods, Ti:Zn precursor molar ratios, and calcination temperatures [29–35]. Furthermore, the literature agrees that obtaining ZnTiO$_3$ as a pure phase at a low processing temperature is a challenge in materials chemistry [36–38].

In a previous experimental paper, we reported the synthesis and characterization of the ZnTiO$_3$/TiO$_2$ nanocomposite. This heterostructure was indexed to a hexagonal phase with space group R-3(148) for ZnTiO$_3$ and a tetragonal phase with space group I4$_1$/amd(141) for TiO$_2$ (anatase) [39,40]. In these studies, we also reported the ability of ZnTiO$_3$/TiO$_2$ to remove the methylene blue (MB) dye in aqueous systems, and it was contrasted with the results obtained for pure TiO$_2$ (anatase). The results showed that the heterostructure has better photocatalytic adsorption and degradation capacity than anatase alone, probably due to a synergistic effect. This synergistic effect between semiconductors has been extensively studied, showing that the presence of a second semiconductor can provide special active sites to enhance the adsorption and photocatalysis of various compounds [41].

Although several properties of ZnTiO$_3$ have been extensively studied experimentally, a proper description of its electronic, optical, and adsorptive properties remains an active research area from a theoretical point of view [42] since, up to date, this ternary oxide has scarcely been studied with quantum methods [43]. Therefore, the computational study of the molecular interaction between ZnTiO$_3$ and methylene blue could contribute to clarifying the adsorption and degradation mechanism of this dye, favoring the development of materials for the treatment of waters contaminated with MB.

The elimination of MB in wastewater is an extremely important task in environmental protection because it has caused serious contamination in many countries of the world [44]. Methylene blue, known as methylthioninium chloride is a basic cationic dye widely used in the printing, plastics, paper, leather, food, pharmaceutical, and textile industries [45–47]. The discharge of wastewater effluents from these industries, with a high content of MB without efficient degradation, results in harmful effects for humans and animals [48].

Various technologies have been used to treat wastewater contaminated with dyes [49]. Among these techniques, adsorption is easy to perform without pretreatment and is highly selective for removing dyes [50]. In addition, adsorption has been found to be superior to other techniques for wastewater treatment in terms of initial cost, simplicity of design, ease of operation, and insensitivity to toxic substances [24]. Although there are several experimental studies of MB adsorption on different surfaces, some uncertainties remain due to lack of understanding at the molecular level of the MB adsorption mechanism on the ZnTiO$_3$ surface.

As is well known, computational calculations of the electronic structure in an isolated molecule can achieve the desired chemical precision as long as a sufficiently large basis set is used, the electronic correlation is sufficiently described, and the relativistic effects in the calculation are adequately included [51]. Therefore, in this study, Density Functional Theory (DFT) computational calculations were used to characterize the electronic structure of ZnTiO$_3$ and TiO$_2$ (anatase) and also to investigate the feasibility of using both oxides as MB adsorbents. The results presented in this paper clarify the previously obtained experimental results and confirm that ZnTiO$_3$ is an excellent adsorbent and that it has high potential for future technological and environmental applications.
2. Results
2.1. Optimization and Electronic Structure of ZnTiO$_3$ and TiO$_2$

The adsorption of the methylene blue molecule on the surface of both ZnTiO$_3$ and TiO$_2$ was modeled using the following parameters: hexagonal ZnTiO$_3$ with a cell = 5.148 Å × 5.148 Å × 13.937 Å <90° × 90° × 120°> and tetragonal TiO$_2$ with a cell = 3.821 Å × 3.821 Å × 9.697 Å <90° × 90° × 90°>, as shown in Figure 1. The coordinates of the optimized ZnTiO$_3$ and TiO$_2$ structures are detailed in Table S1 and the corresponding optimization energy values are included in Figure S2.

![Figure 1. Optimized structures of (a) ZnTiO$_3$ and (b) TiO$_2$.](image)

The selection of the high symmetry points and lines in the first Brillouin zone [52] and the results of the calculation of the electronic band structure of ZnTiO$_3$ and TiO$_2$ are shown in Figure 2a,b, respectively.

Figure 2a,b show that the indirect bandgap energy values of the ZnTiO$_3$ and TiO$_2$ structures calculated by the exchange–correlation functional in the generalized gradient approximation (GGA-PBE) method were 2.20 and 2.31 eV, respectively. However, the indirect bandgap values were also calculated by the GGA + U method, that is, incorporating the Hubbard U approximation term. Indirect bandgap calculations using GGA + U resulted in 3.16 eV ($U = 2.5$) and 3.21 eV ($U = 4.0$) for ZnTO$_3$ and TiO$_2$, respectively. These results are in good agreement with the experimental results reported in the literature: 3.18 eV for ZnTiO$_3$ [15] and 3.20 eV for TiO$_2$ [53].

The total and partial density of states (DOS) of ZnTiO$_3$ and TiO$_2$ are illustrated in Figures 3 and 4, respectively. Figure 3a shows that the total density of state (TDOS) of ZnTiO$_3$ has two main zones: an upper conduction band (CB) zone from 2.5 to 6.2 eV, and a lower valence band (VB) zone, from -6.0 to -0.2 eV. The CB is dominated by the contribution of Ti, while the VB is dominated by the contribution of Zn and O. Figure 3b–d show the partial density of state (PDOS) of ZnTiO$_3$. As can be seen in Figure 3b, the main contribution of Ti in the CB is through the 3d orbital. On the other hand, Figure 3c shows that Zn contributes mainly to the VB through the 3d orbital while O interacts with Zn in this band through the 2p orbital shown in Figure 3d.

Likewise, Figure 4a shows that the total density of state (TDOS) of TiO$_2$ has two main zones: an upper conduction band (CB) zone from -0.1 to 3.8 eV, and a lower valence band (VB) zone, from -7.6 to -2.8 eV. The CB is dominated by the contribution of Ti, while the VB is dominated by the contribution of O. Figure 4b,c show the partial density of state
(PDOS) of TiO$_2$. As can be seen in Figure 4b, the main contribution of Ti in the CB is through the 3d orbital. On the other hand, Figure 4c shows that O contributes mainly to the VB through the 2p orbital.

Figure 2. Band structures of (a) ZnTiO$_3$ and (b) TiO$_2$ along the high symmetry directions in the Brillouin zone.

Figure 3. Cont.
Likewise, Figure 4a shows that the total density of state (TDOS) of TiO$_2$ has two main zones: an upper conduction band (CB) zone from -0.1 to 3.8 eV, and a lower valence band (VB) zone, from -7.6 to -2.8 eV. The CB is dominated by the contribution of Ti, while the VB is dominated by the contribution of O. Figure 4b,c show the partial density of state (PDOS) of TiO$_2$. As can be seen in Figure 4b, the main contribution of Ti in the CB is through the 3d orbital. On the other hand, Figure 4c shows that O contributes mainly to the VB through the 2p orbital.

In both structures, ZnTiO$_3$ and TiO$_2$, the valence band maximum (VBM) is bordered by the oxygen atom, while the Ti atom determines the conduction band maximum (CBM). Consequently, ZnTiO$_3$ has an energy bandgap quite similar to that of TiO$_2$, due to the fact that ZnTiO$_3$ involves both ZnO and TiO$_2$. Our calculated results agree with the literature [5,18,54].

In order to further understand the chemical bonding of hexagonal ZnTiO$_3$ and tetragonal TiO$_2$, the population analyses were estimated by the Bader method. For ZnTiO$_3$, the net charge of Ti (+2.6e) was 1.4e, much smaller than its +4e formal charge, whereas the Zn atom had a positive charge of +1.4e and the O atom had a negative charge of -1.3e, which are less than their +2e and -2e formal charges by 0.6e and 0.7e, respectively. For TiO$_2$, the net charges of the Ti and O atoms were similar to those calculated for the Ti and O atoms of ZnTiO$_3$. These results agree with those reported by other authors [55]. Since the charges on the different bonds can reflect the covalent and ionic properties of the molecule, we concluded that the Ti–O bond is typically covalent for both ZnTiO$_3$ and TiO$_2$ and that the
Zn–O bond for ZnTiO$_3$ is typically ionic; these results coincide with those reported in the literature [42,56].

Figure 4. Density of states (DOSs) of TiO$_2$: (a) total, and partial: (b) Ti and (c) O.

2.2. Adsorption of the MB Dye on the Structures

The orientations of the MB molecule on the ZnTiO$_3$ and TiO$_2$ surfaces are shown in Figure 5. Figure 5a shows the horizontal orientation of the MB molecule on the ZnTiO$_3$ surface, while Figure 5b,c show the semi-perpendicular orientation of the MB molecule on the ZnTiO$_3$ and TiO$_2$ surfaces, respectively. The adsorption of the MB molecule on the ZnTiO$_3$ surface with the molecule placed in semi-perpendicular orientation ($E_{\text{ads}} = -2.916$ eV) was more energetically favored than in the horizontal orientation ($E_{\text{ads}} = -1.310$ eV). Therefore, we studied the adsorption of MB on the TiO$_2$ surface only with the semi-perpendicular orientation. The calculated adsorption energy for the TiO$_2$ surface ($E_{\text{ads}} = -0.113$ eV) was less favorable than the calculated adsorption energy for the ZnTiO$_3$ surface.

The anchoring modes of the MB molecule on the ZnTiO$_3$ and TiO$_2$ surfaces are shown in Figure 6. Adsorption of the dye on the ZnTiO$_3$ and TiO$_2$ surfaces occurs in a bidentate chelating (BC) adsorption model [57] with two protons oriented toward the nearest surface oxygen [58].
The orientations of the MB molecule on the ZnTiO₃ and TiO₂ surfaces are shown in Figure 5. Figure 5a shows the horizontal orientation of the MB molecule on the ZnTiO₃ surface, while Figure 5b,c show the semi-perpendicular orientation of the MB molecule on the TiO₂ surfaces. The average distances from the hydrogen atoms of the molecule to the plane of the ZnTiO₃ surface are O(oxide)-HMB = 2.34 Å and O(oxide)-HMB = 2.69 Å. Moreover, the adsorption energy value of the MB molecule on the TiO₂ surface (Eads = 2.916 eV) was more energetically favored than in the horizontal orientation (Eads = 2.68 eV) was less favorable than the calculated adsorption energy for the ZnTiO₃ surface.

Figure 5. Methylene blue (MB) molecule in (a) horizontal and (b) semi-perpendicular orientation on the ZnTiO₃ surface, and (c) semi-perpendicular orientation on the TiO₂ surfaces.

The calculated adsorption energy value indicates that the MB molecule is strongly adsorbed on the ZnTiO₃ surface. The average distances from the hydrogen atoms of the MB molecule (Hₐ₀) to the surface plane of ZnTiO₃ are O(oxide)-Hₐ₀ = 2.34 Å and O(oxide)-Hₐ₀ = 2.68 Å and 2.69 Å.

Figure 6. Anchoring modes of the MB molecule on the surface of (a) ZnTiO₃ and (b) TiO₂.

The calculated adsorption energy value indicates that the MB molecule is strongly adsorbed on the ZnTiO₃ surface. The average distances from the hydrogen atoms of the MB molecule (Hₐ₀) to the surface plane of ZnTiO₃ are O(oxide)-Hₐ₀ = 2.34 Å and O(oxide)-Hₐ₀ = 2.68 Å and 2.69 Å.
O_{(oxide)}-H_{MB} = 2.52 \text{ Å}. Moreover, the adsorption energy value of the MB molecule on the TiO_{2} surface indicates a weaker interaction than on ZnTiO_{3} (E_{ads} = -0.113 \text{ eV}). The average distances from the hydrogen atoms of the molecule to the plane of the TiO_{2} surface are O_{(oxide)}-H_{MB} = 2.68 \text{ Å} and O_{(oxide)}-H_{MB} = 2.69 \text{ Å}.

3. Discussion

3.1. Optimization and Electronic Structure of ZnTiO_{3} and TiO_{2}

The description of the electronic structure of materials involving transition metals with DFT is often complicated due to correlation effects involving 3d electrons [59]. However, since the transition metals of the oxides studied in this paper are formally in the 3d^{0} or 3d^{10}, neither TiO_{2} nor ZnTiO_{3} are strongly correlated materials; consequently, a simple DFT approach allowed us to accurately calculate the conduction and valence bands of ZnTiO_{3} and TiO_{2}.

The literature shows that ZnTiO_{3} has a relatively wide bandgap (E_g = 2.73–3.70 \text{ eV}), the value of which depends on the synthesis conditions [60,61]. In our study, the ZnTiO_{3} and TiO_{2} structures presented indirect bandgap values of 2.20 and 2.31 \text{ eV}, respectively, which were calculated by the GGA-PBE method. In contrast with the experimental data, 3.18 \text{ eV} for ZnTiO_{3} [15] and 3.20 \text{ eV} for TiO_{2} [53], the theoretical values are lower, and this may be due to the widely known DFT-underestimation of the bandgap in most materials [1,15]. Therefore, a Hubbard U approximation term was adopted to accurately describe the electronic structures [12,62]. The new indirect bandgap values calculated by GGA + U were 3.16 and 3.21 \text{ eV} for ZnTiO_{3} and TiO_{2}, respectively, which are consistent with the aforementioned experimental data. As can be seen, mixed oxide ZnTiO_{3} has lower bandgap energy than TiO_{2}. According to the literature, this occurs due to the replacement of Ti (3d^{0}) atoms with Zn (3d^{10}) that induce O-2p-Zn-3d^{10} repulsion [21,63]. Table 1 shows the comparison of the bandgap energy values of the ZnTiO_{3} and TiO_{2} calculated in this study with other energy values reported in the literature.

Table 1. Calculated bandgap energy of ZnTiO_{3} and TiO_{2} and other values reported in the literature.

Adsorbent	Software Used	Basis Set Used/Functional Used	Bandgap (eV)	Reference
ZnTiO_{3}	CASTEP	GGA/SP-PBE	3.14	[1]
ZnTiO_{3}	CASTEP	GGA+U	3.28	[1]
ZnTiO_{3}	CASTEP	GGA/PBE	3.10	[5]
ZnTiO_{3}	MS-Dmol3	GGA/PBE	3.53	[5]
ZnTiO_{3}	MS-Dmol3	GGA/PPE-grime	3.12	[5]
ZnTiO_{3}	Experimental	GGA/PBE	3.18	[15]
ZnTiO_{3}	VASP	GGA/PBE	2.96	[15]
ZnTiO_{3}	CASTEP	GGA/PW91	3.47	[18]
ZnTiO_{3}	ABINIT	HSeO6	4.25	[56]
ZnTiO_{3}	ABINIT	GGA/NC	3.25	[56]
ZnTiO_{3}	ABINIT	LDA/NC	3.05	[56]
ZnTiO_{3}	ABINIT	GGA/ultrasoft	2.96	[56]
ZnTiO_{3}	ABINIT	LDA/ultrasoft	2.86	[56]
ZnTiO_{3}	VASP	GGA/PBE+U	3.16	This study
ZnTiO_{3}	VASP	GGA/PBE	2.20	This study
TiO_{2}	VASP	HSeO6	3.20	[62]
TiO_{2}	VASP	GGA/PBE	2.55	[58]
TiO_{2}	VASP	GGA/PBE+U	3.11	[58]
TiO_{2}	Experimental	GGA/PBE	3.20	[53]
TiO_{2}	CASTEP	GGA/PBE+U	2.70	[53]
TiO_{2}	CASTEP	GGA/PBE	3.34	[53]
TiO_{2}	ABINIT	GGA/PBE	2.08	[64]
TiO_{2}	ABINIT	GW	3.71	[64]
TiO_{2}	VASP	GGA/PBE	2.31	This study
TiO_{2}	VASP	GGA/PBE+U	3.21	This study

The main character of the electronic structure of ZnTiO_{3} originates mainly from the hybridization between the Ti-3d and O-2p states. The Zn-3d and O-2p hybridization and the Ti-3d and O-2p hybridization as well as nonbonding O-2p states are observed at the upper valence bands (VBs). The localized Zn-3d states indicate weak Zn-3d and O-2p hybridization. The states at the lower conduction bands (CBs) are attributed to antibonding states from Ti-3d and O-2p. These results agree with those reported by other authors [42]. Similarly, the main character of the electronic structure of TiO_{2} originates
from the hybridization between the Ti-3d and O-2p states. This hybridization, as well as nonbonding O-2p states, is observed at the upper valence bands (VBs), while the states at the lower conduction bands (CBs) are attributed to antibonding states from Ti-3d and O-2p. In both structures, the lowest-energy states are due to the isolated Ti-3s, Ti-3p, and O-2s states. These results also agree with those reported by other authors [5,54,65].

3.2. Adsorption of the MB Dye on the Oxide Models

Several experimental studies of MB removal in aqueous systems have shown that this cationic dye can be easily adsorbed on the ZnTiO$_3$ and TiO$_2$ surfaces, due to electrostatic attraction [49]. Therefore, the surface oxygen atoms of both oxides probably generate negatively charged sites that easily attract positive regions of the MB molecule, favoring molecular adsorption.

Our results indicated that the semi-perpendicular orientation of the MB molecule with respect to both oxide surfaces is more favored. In fact, the MB molecule oriented parallel to the surface shows a strong preference for the methyl group of the molecule, while the aromatic ring bends slightly away from the surface due to electrostatic repulsion between the N and S atoms from the aromatic ring and surface oxygen. This is consistent with several studies reporting good adsorption results for dye molecules oriented perpendicular to the adsorbent surface [57,66,67]. Greathouse et al. mentioned that at very high concentrations, this dye forms aggregates that are adsorbed vertically to the surface [68]. Our results suggested that this orientation of the MB molecule on the surface is caused by the balance between electrostatic repulsion between adjacent ions and the strong hydrophobic MB–MB and MB–surface interactions [69].

The MB molecule was adsorbed on the ZnTiO$_3$ surface (101) with higher negative energy ($E_{\text{ads}} = -2.92$ eV) than on the TiO$_2$ surface (101) ($E_{\text{ads}} = -0.12$ eV), and the average adsorption distances (O–H) were 2.43 and 2.68 Å for ZnTiO$_3$ and TiO$_2$, respectively. According to the optimized configurations, in both cases, the approach is from the two H atoms of the methyl group of the MB molecule to an O atom of each surface. In agreement with the literature, hydrogen bonding can increase the stability of the interaction of a dye with the ZnTiO$_3$ and TiO$_2$ surfaces during the adsorption process [70,71]. The Bader charge analysis in Table S1 indicates no significant electronic exchange between the MB molecule and the oxides surface [72]. The results obtained in this theoretical study suggest that MB adsorption is more stable (higher negative adsorption energy) on the ZnTiO$_3$ surface than on the TiO$_2$ surface, which is consistent with previous experimental studies.

Pastore et al. suggested three typical coordination schemes: monodentate, bidentate chelating, and bidentate bridging [57]. In our study, we found that the MB molecule is adsorbed on the ZnTiO$_3$ and TiO$_2$ surfaces (101) in a bidentate chelating mode, which, according to several authors, produces more stable adsorption with more exothermic adsorption energy [70,73]. The shape of the dye molecules anchored to the oxide significantly affects the molecular adsorption energy. Therefore, calculating the adsorption energy value gives insight into the adherence strength and shape of molecule–surface bonding [66]. The higher the adsorption energy, the higher the retention of the dye on the oxide surface, this being a desirable condition to apply to subsequent photosensitive processes.

In the literature, not enough computational studies of MB adsorption on semiconductors were found; consequently, in Table 2, the results obtained in the present study are compared with those results reported in the literature for the adsorption of other dyes on ZnTiO$_3$ (101) and TiO$_2$ (101).

Table 2. Calculated adsorption energy of ZnTiO$_3$ and TiO$_2$ and other values reported in the literature.

Adsorbent	Dye	Software Used	Basis Set/Functional Used	AdsorptionEnergy	References	
ZnTiO$_3$ (101)	TPA-1	CASTEP	GGA/PBE	-1.41	-136.39	[66]
ZnTiO$_3$ (101)	TPA-2	CASTEP	GGA/PBE	-1.63	-157.47	[66]
ZnTiO$_3$ (101)	TPA-3	CASTEP	GGA/PBE	-5.82	-561.33	[66]
Table 2. Cont.

Adsorbent Dye Software Used Basis Set/Functional Used	Adsorption eV	Adsorption kJ/mol	References
ZnTiO$_3$ (101) TPA-4 CASTEP GGA/PBE	−2.37	−228.19	[66]
ZnTiO$_3$ (101) (H) MB VASP GGA/PBE	−1.31	−126.76	This study
ZnTiO$_3$ (101) (SP) MB VASP GGA/PBE	−2.92	−282.05	This study
TiO$_2$ (101) R4-BT VASP GGA/PBE	−1.40	−135.46	[58]
TiO$_2$ (101) R4-F2BT VASP GGA/PBE	−1.39	−134.50	[58]
TiO$_2$ (101) R4-BO VASP GGA/PBE	−1.39	−134.50	[58]
TiO$_2$ (101) R6-Bz VASP GGA/PBE	−1.40	−135.46	[58]
TiO$_2$ (101) R6-BT VASP GGA/PBE	−1.38	−133.53	[58]
TiO$_2$ (101) R6-F2BT VASP GGA/PBE	−1.37	−132.56	[58]
TiO$_2$ (101) R6-B0 VASP GGA/PBE	−1.37	−132.56	[58]
TiO$_2$ (101) R6-Bz VASP GGA/PBE	−1.38	−133.53	[58]
TiO$_2$ (101) (SP) MB VASP GGA/PBE	−0.12	−11.61	This study

Other research studies should analyze and apply these results to implement adsorptive systems for dyes or similar molecules.

4. Materials and Methods

All Density Functional Theory (DFT) calculations were performed using the Vienna Ab initio Simulation Package (VASP), version 5.3.3 [15,74]. The Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional in the generalized gradient approximation (GGA) proposed by Perdew et al. [75] was employed. The augmented plane wave (PAW) method was used to describe the electron–ion interactions [15]. The cutoff energy to the plane waves was set to 500 eV. The Kohn–Sham equations [76,77] were solved self-consistently until the energy variation between cycles was less than 10^{-5} eV. The first Brillouin zone was sampled using Monkhorst–Pack [78] \mathbf{k}-point meshes to calculate the bulk properties of ZnTiO$_3$ and TiO$_2$, in particular, $3 \times 7 \times 5$ and $3 \times 3 \times 1$, respectively. All atomic positions were fully relaxed until the forces on each atom were below 0.01 eV/Å. The computational parameters were selected seeking the best balance between computational cost and precision. The tested values were as follows: energy cutoff points = 450, 475, 500, and 515 eV; force convergence criterion for ionic relaxation = 0.08, 0.04, 0.02, 0.01, and 0.005 eV/Å and number of \mathbf{k}-points corresponding to \mathbf{k}-spacing in each axe = 0.35, 0.30, 0.25, 0.20, and 0.15. The parameters were optimized until the difference between the energy values of the system was lower than 10^{-4} eV.

The Gaussian smearing method with $\sigma = 0.10$ eV was applied to band occupations in order to improve total energy convergence [15]. A Hubbard U approximation term was adopted to describe the strong on-site Coulomb repulsion in order to accurately explain the electronic structures [62], which is not correctly described by the PBE functional [58]. Population analyses were estimated using Bader’s charge analysis code, which provided important information on bonding behaviors from the atomic charge values [79–81]. All calculations were non-spin polarized and all molecular models were created and visualized using BioVia Material Studio, version 5.5.

To study MB adsorption, an optimized molecular structure was used [68]. The bulk of both ZnTiO$_3$ and TiO$_2$ crystals was cleaved on the surface (101), since it is the most stable surface according to the literature [54,57,62,66,82]. The slab model of ZnTiO$_3$ (101) was a supercell $p(2 \times 3)$ with three atomic layers, which includes 36 Zn atoms, 36 Ti atoms, and 108 O atoms. On the other hand, the TiO$_2$ (101) surface model has seven atomic layers with a $p(3 \times 3)$ structure of the original unit cell, which includes 168 Ti atoms and 336 O atoms.
An appropriate vacuum thickness of each structure was chosen by calculating the surface energy. For both ZnTiO$_3$ and TiO$_2$ surface models, a vacuum of 20 Å was added. The surface energies (γ_s) were calculated using the following equation [83]:

$$\gamma_s = \frac{(E_{\text{slab}} - n \times E_{\text{bulk}})}{2A}$$

where E_{slab} is the total energy of the slab material (eV), E_{bulk} is the total energy of the bulk material (eV), n is the number of atoms contained in the slab, and A is the surface area (Å2). The values for the surface energies (γ_s) of the ZnTiO$_3$ and TiO$_2$ structures with a vacuum distance of 20 Å were 0.076 eV/Å2 (7.30 kJ/Å2) and 0.062 eV/Å2 (5.98 kJ/Å2), respectively.

Adsorption calculation was initiated with the MB molecule placed close to the surface of each oxide in at least one of the following orientations, horizontal (H) and semi-perpendicular (SP), with respect to the surface.

The adsorption energy (ΔE_{ads}) of the MB molecule on the surface of both ZnTiO$_3$ and TiO$_2$ oxides was calculated using the following equation [84]:

$$\Delta E_{\text{ads}} = E_{\text{MB/oxide}} - E_{\text{oxide}} - E_{\text{MB}}$$

where $E_{\text{MB/oxide}}$ is the energy of the supersystem formed by the adsorbed molecule on the surface (eV), E_{oxide} is the energy of the clean oxide (eV), and E_{MB} is the energy of the isolated molecule in vacuum (eV).

5. Conclusions

The aim of this comparative study was to use molecular simulation to address unresolved issues related to the adsorption mechanism of methylene blue on both ZnTiO$_3$ and TiO$_2$. DFT calculations of MB adsorption on the surface (101) of both ZnTiO$_3$ and TiO$_2$ indicated that adsorption on ZnTiO$_3$ was stronger than on TiO$_2$. The semi-perpendicular orientation was the most probable molecular approach to the oxide surfaces. Electrostatic repulsion due to the proximity of adjacent S and N atoms when MB was in high concentration was overcome by the much stronger interactions between the methyl groups and the surface oxygen atoms of ZnTiO$_3$ and TiO$_2$.

Finally, we computationally corroborated the feasibility of using ZnTiO$_3$ as an MB adsorbent material, as experimentally found. Theoretically, we forecast the appealing prospect for this material according to the adsorption energy and the large bandgap calculated by DFT, which is in addition to the experimental results that we reported in a previous paper. Our study verifies that ZnTiO$_3$ has better MB adsorption energy than TiO$_2$ in the anatase phase, which is important to enhance a subsequent degradation process. The large bandgap obtained by DFT calculations also shows that ZnTiO$_3$ can potentially be used as a photocatalyst, allowing for complete degradation of the dye after being adsorbed. Therefore, considering only the band structure, ZnTiO$_3$ fully meets the necessary requirements to be a photocatalyst. As already mentioned, however, in addition to the band structure, the adsorption capacity is also very important for photocatalytic materials. In this way, ZnTiO$_3$ constitutes an efficient alternative material for various technological and environmental applications.

Supplementary Materials: The following are available online. Figure S1: Aromatic ring of MB bent slightly on the ZnTiO$_3$ surface (101); Figure S2: Optimization energies of ZnTiO$_3$, TiO$_2$ and MB; Table S1: Coordinates of the optimized structures; Table S2: Bader’s charge analysis of the methylene blue molecule.

Author Contributions: Conceptualization, S.G. and X.J.-F.; methodology, S.G., X.J.-F. and L.F.C.; software, S.G. and X.J.-F.; validation, F.M., S.G. and X.J.-F.; formal analysis, S.G. and X.J.-F.; investigation, S.G., X.J.-F. and L.F.C.; resources, S.G. and F.M.; data curation, S.G. and X.J.-F.; writing—original draft preparation, X.J.-F.; writing—review and editing, S.G., F.M. and X.J.-F.; supervision, S.G. and F.M. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: The authors would like to thank Henry Quezada for the computer support. This paper was financially supported by Universitat Rovira I Virgili (Spain) and Universidad Técnica Particular de Loja (Ecuador).

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References

1. Obodo, K.O.; Noto, L.L.; Mofokeng, S.J.; Ouma, C.N.M.; Braun, M.; Dhlamini, M.S. Influence of Tm, Ho and Er dopants on the properties of Yb activated ZnTiO3 perovskite: A density functional theory insight. Mater. Res. Express 2018, 5. [CrossRef]

2. Li, L.; Zhang, X.; Zhang, W.; Wang, L.; Chen, X.; Gao, Y. Microwave-assisted synthesis of nanocomposite Ag/ZnO-TiO2 and photocatalytic degradation Rhodamine B with different modes. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 134–141. [CrossRef]

3. Ozturk, B.; Soylu, G.S. Promoting role of transition metal oxide on ZnTiO3-TiO2 nanocomposites for the photocatalytic activity under solar light irradiation. Ceram. Int. 2016, 42, 11184–11192. [CrossRef]

4. Grabis, J.; Letlena, A.; Spola, I. Preparation and properties of photocatalysts in ZnO/TiO2 system. Key Eng. Mater. 2019, 800, 170–174. [CrossRef]

5. Cherifi, K.; Cheknane, A.; Benghia, A.; Hilal, H.S.; Rahmoun, K.; Benyoucef, B.; Goumri-Said, S. Exploring N3 ruthenium dye adsorption onto ZnTiO3 (101) and (110) surfaces for dye sensitized solar cell applications: Full computational study. Mater. Today Energy 2019, 13, 109–118. [CrossRef]

6. Lee, C.-G.; Na, K.-H.; Kim, W.-T.; Park, D.-C.; Yang, W.-H.; Choi, W.-Y. TiO2 nanostructures: A density functional theory study and photocatalytic degradation of methylene blue compared with TiO2 nanofibers. Appl. Sci. 2019, 9, 3404. [CrossRef]

7. Irani, M.; Mohammad, T.; Mohabibi, S. Photocatalytic degradation of methylene blue with zno nanoparticles: a joint experimental and theoretical study. J. Mex. Chem. Soc. 2017, 60, 218–225. [CrossRef]

8. Sinha, D.; De, D.; Goswami, D.; Mondal, A.; Ayaz, A. ZnO and TiO2 nanostructured dye sensitized solar photovoltaic cell. Mater. Today Proc. 2019, 11, 782–788. [CrossRef]

9. Ranjith, K.S.; Uyar, T. ZnO-TiO2 composites and ternary ZnTiO3 electrospin nanofibers: The influence of annealing on the photocatalytic response and reusable functionality. CrystEngComm 2018, 20, 5801–5813. [CrossRef]

10. Chen, F.; Yu, C.; Wei, L.; Fan, Q.; Ma, F.; Zeng, J.; Yi, Y.; Yang, K.; Ji, H. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergistic removal of aqueous organic pollutants and Cr(VI) ions. Sci. Total Environ. 2020, 706, 136026. [CrossRef]

11. Zalani, N.M.; Kaleji, B.K.; Mazinani, B. Synthesis and characterisation of the mesoporous ZnO-TiO2 nanocomposite; Taguchi optimisation and photocatalytic degradation of methylene blue under visible light. Mater. Technol. 2019, 35, 281–289. [CrossRef]

12. Dutta, D.P.; Singh, A.; Tyagi, A. Ag doped and Ag dispersed nano ZnTiO2: Improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity. J. Environ. Chem. Eng. 2014, 2, 2177–2187. [CrossRef]

13. Fu, R.; Wang, Q.; Gao, S.; Wang, Z.; Huang, B.; Dai, Y.; Lu, J. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides. J. Power Sources 2015, 285, 449–459. [CrossRef]

14. Li, X.; Xiong, J.; Huang, J.; Feng, Z.; Luo, J. Novel g-C3N4/h‘ZnTiO3-a‘TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J. Alloys Compd. 2019, 774, 678–778. [CrossRef]

15. Yu, J.; Li, N.; Zhu, L.; Xu, X. Application of ZrTiO3 in quantum-dot-sensitized solar cells and numerical simulations using first-principles theory. J. Alloys Compd. 2016, 681, 88–95. [CrossRef]

16. Sarkar, M.; Sarkar, S.; Biswas, A.; De, S.; Kumar, P.R.; Mothi, E.M.; Kathiravan, A. Zinc titanate nanomaterials—Photocatalytic studies and sensitization of hydantoin derivatized porphyrin dye. Nano-Struct. Nano-Objects 2020, 21, 100412. [CrossRef]

17. Baamran, K.S.; Tahir, M. Ni-embedded TiO2-ZrTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming. Energy Convers. Manag. 2019, 200, 112064. [CrossRef]

18. Liu, Q.-J.; Zhang, N.-C.; Liu, F.-S.; Wang, H.-Y.; Liu, Z.-T. Theoretical study of structural, elastic, electronic properties, and dispersion of optical functions of hexagonal ZnTiO3. Phys. Status Solidi Basic Res. 2013, 250, 1810–1815. [CrossRef]

19. Yan, X.; Zhao, C.-L.; Zhou, Y.-L.; Wu, Z.-J.; Yuan, J.-M.; Li, W.-S. Synthesis and characterization of ZrTiO3 with high photocatalytic activity. Trans. Nonferrous Met. Soc. China Eng. Ed. 2015, 25, 2272–2278. [CrossRef]

20. Li, M.; Jiao, B. Synthesis and photoluminescence properties of ZnTiO3:Er3+ red phosphors via sol-gel method. J. Rare Earths 2015, 33, 231–238. [CrossRef]
21. Lv, J.; Tang, M.; Quan, R.; Chai, Z. Synthesis of solar heat-reflective ZnTiO₃ pigments with novel roof cooling effect. Ceram. Int. 2019, 45, 15768–15771. [CrossRef]

22. Sovmyashree, A.; Somya, A.; Kumar, C.P.; Rao, S. Novel nano corrosion inhibitor, integrated zinc titanate nano particles: Synthesis, characterization, thermodynamic and electrochemical studies. Surf. Interfaces 2021, 22, 100812. [CrossRef]

23. Tavakoli-Azar, T.; Mahjoub, A.R.; Sadjadi, M.S.; Farhadiy, N.; Sadri, M.H. Improving the photocatalytic performance of a perovskite ZnTiO₃ through TiO₂@SS nanocomposites for degradation of Crystal violet and Rhodamine B pollutants under sunlight. Inorg. Chem. Commun. 2020, 119, 108091. [CrossRef]

24. Raveendra, R.; Prashanth, P.; Krishna, R.H.; Bhagya, N.; Nagabhushana, B.; Naika, H.R.; Lingaraju, K.; Nagabhushana, H.; Prasad, B.D. Synthesis, structural characterization of nano ZnTiO₃ ceramic: An effective azo dye adsorbent and antibacterial agent. J. Asian Ceram. Soc. 2014, 2, 357–365. [CrossRef]

25. Kurajica, S.; Minga, I.; Blazic, R.; Muzina, K.; Tominc, P. Adsorption and degradation kinetics of methylene blue on as-prepared and calcined titanate nanotubes. Atmos. Environ. 2018, 5, 7–22. [CrossRef]

26. Sahu, A.; Chaurasiya, R.; Hiremath, K.; Dixit, A. Nanostructured zinc titanate wide band gap semiconductor as a photoelectrode material for quantum dot sensitized solar cells. Sol. Energy 2018, 163, 338–346. [CrossRef]

27. Inaguma, Y.; Aimi, A.; Shirako, Y.; Sakurai, D.; Mori, D.; Kojitani, H.; Akaoig, M.; Nakayama, M. High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO₃-type polar titanate ZnTiO₃ and its reinforced polarity by the second-order Jahn–Teller effect. J. Am. Chem. Soc. 2013, 136, 2748–2756. [CrossRef]

28. Ruiz-Fuertes, J.; Winkler, B.; Bernert, T.; Bayarjargal, L.; Morgenroth, W.; Koch-Müller, M.; Refson, K.; Milman, V.; Tamura, N. Ferroelectric soft mode of polar ZnTiO₃ investigated by Raman spectroscopy at high pressure. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 214110. [CrossRef]

29. Pawar, R.C.; Kang, S.; Park, J.H.; Kim, J.-H.; Ahn, S.; Lee, C.S. Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H₂ evolution and elimination of dye/non-dye pollutants. Catal. Sci. Technol. 2017, 7, 2579–2590. [CrossRef]

30. Salavati-Niasari, M.; Soofivand, F.; Sobhani-Nasab, A.; Shakouri-Arani, M.; Faal, A.Y.; Bagheri, S. Synthesis, characterization, and morphological control of ZnTiO₃ nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 2016, 27, 2066–2075. [CrossRef]

31. Ke, S.; Cheng, X.; Wang, Q.; Wang, Y.; Pan, Z. Preparation of a photocatalytic TiO₂/ZnTiO₃ coating on glazed ceramic tiles. Ceram. Int. 2014, 40, 8891–8895. [CrossRef]

32. Acosta-Silva, Y.D.J.; Castanedo-Perez, R.; Torres-Delgado, G.; Méndez-López, A.; Zelaya-Angel, O. Analysis of the photocatalytic activity of CdS+ZnTiO₃ nanocomposite films prepared by sputtering process. Superlattices Microstruct. 2016, 100, 148–157. [CrossRef]

33. Yadav, B.; Yadav, A.; Singh, S.; Singh, K. Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor. Sens. Actuators B Chem. 2013, 177, 605–611. [CrossRef]

34. Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N.; Zamanian, A. Synthesis of cubic and hexagonal ZnTiO₃ as catalyst support in steam reforming of methanol: Study of physical and chemical properties of copper catalysts on the H₂ and CO selectivity and coke formation. Int. J. Hydrog. Energy 2020, 45, 9484–9495. [CrossRef]

35. Edalatfar, M.; Yazdani, F.; Salehi, M.B. Synthesis and identification of ZnTiO₃ nanoparticles as a rheology modifier additive in water-based drilling mud. J. Pet. Sci. Eng. 2021, 201, 108415. [CrossRef]

36. Bhagwat, U.O.; Wu, J.J.; Asiri, A.M.; Anandan, S. Synthesis of ZnTiO₃@TiO₂ heterostructure nanomaterial as a visible light photocatalyst. ChemistrySelect 2019, 4, 6106–6112. [CrossRef]

37. Lei, S.; Fan, H.; Ren, X.; Fang, J.; Ma, L.; Liu, Z. Novel sintering and band gap engineering of ZnTiO₃ ceramics with excellent microwave dielectric properties. J. Mater. Chem. C 2017, 5, 4040–4047. [CrossRef]

38. Pantoja-Espinoza, J.C.; Domínguez-Arvizu, J.L.; Jiménez-Miramontes, J.A.; Hernández-Majalca, B.C.; Meléndez-Zaragoza, M.J.; Salinas-Gutiérrez, J.M.; Herrera-Pérez, G.M.; Collins-Martínez, V.H.; López-Ortiz, A. Comparative study of Zn₂Ti₃O₈ and ZnTiO₃ photocatalytic properties for hydrogen production. Catalysts 2020, 10, 1372. [CrossRef]

39. Jaramillo-Fierro, X.; Pérez, S.G.; Jaramillo, X.; Cabello, F.M. Synthesis of the Zn₂Ti₃O₈/TiO₂ nanocomposite supported in ecuadorian clays for the adsorption and photocatalytic removal of methylene blue dye. Nanomaterials 2020, 10, 1891. [CrossRef]

40. Jaramillo-Fierro, X.; González, S.; Montesdeoca-Mendoza, F.; Medina, F. Structuring of zntio3/tio2 adsorbents for the removal of methylene blue, using zeolite precursor clays as natural additives. Nanomaterials 2021, 11, 898. [CrossRef]

41. Zhang, Z.; Yates, J.J.T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551. [CrossRef] [PubMed]

42. Xiao-Chao, Z.; Cai-Mei, F.; Zhen-Hai, L.; Pei-De, H. Electronic structures and optical properties of ilmenite-type hexagonal ZnTiO₃. WuLi Huaxue Xuebao/Acta Phys. Chim. Sin. 2011, 27, 47–51. [CrossRef]

43. Conesa, J.C. Band structures and nitrogen doping effects in zinc titanate photocatalysts. Catal. Today 2013, 208, 11–18. [CrossRef]

44. Gil, A.; Assis, F.; Albeniz, S.; Korili, S. Removal of dyes from wastewaters by adsorption on pillared clays. Chem. Eng. J. 2011, 168, 1032–1040. [CrossRef]

45. Laysandra, L.; Sari, M.W.M.K.; Soetaredjo, F.E.; Foe, K.; Putro, J.N.; Kurniawan, A.; Ju, Y.-H.; Imsadji, S. Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. Heliyon 2017, 3, e00488. [CrossRef]
70. Orellana, W. D-π-A dye attached on TiO2(101) and TiO2(001) surfaces: Electron transfer properties from ab initio calculations. *Sol. Energy* 2021, 216, 266–273. [CrossRef]

71. Qin, H.-C.; Qin, Q.-Q.; Luo, H.; Wei, W.; Liu, L.-X.; Li, L.-C. Theoretical study on adsorption characteristics and environmental effects of dimetridazole on TiO2 surface. *Comput. Theor. Chem.* 2019, 1150, 10–17. [CrossRef]

72. Kuganathan, N.; Chroneos, A. Hydrogen adsorption on Ru-encapsulated, -doped and -supported surfaces of C60. *Surfaces* 2020, 3, 30. [CrossRef]

73. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Graetzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. *Nat. Chem.* 2014, 6, 242–247. [CrossRef]

74. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B Condens. Matter Mater. Phys.* 1996, 54, 11169–11186. [CrossRef]

75. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 1996, 77, 3865–3868. [CrossRef]

76. Kohn, W.; Sham, L. Quantum density oscillations in an inhomogeneous electron gas. *Phys. Rev. A* 1965, 137, A1697–A1705. [CrossRef]

77. Wang, Y.A.; Xiang, P. From the Hohenberg-Kohn theory to the Kohn-Sham equations. In *Recent Progress in Orbital-free Density Functional Theory*; World Scientific: Singapore, 2013; pp. 3–12.

78. Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. *Phys. Rev. B* 1976, 13, 5188–5192. [CrossRef]

79. Voityuk, A.A.; Stasyuk, A.J.; Vyboishchikov, S.F. A simple model for calculating atomic charges in molecules. *Phys. Chem. Chem. Phys.* 2018, 20, 23328–23337. [CrossRef]

80. Yu, M.; Trinkle, D.R. Accurate and efficient algorithm for Bader charge integration. *J. Chem. Phys.* 2011, 134, 064111. [CrossRef]

81. Kumar, P.S.V.; Raghavendra, V.; Subramanian, V. Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding. *J. Chem. Sci.* 2016, 128, 1527–1536. [CrossRef]

82. Martinez, J.; Sinnott, S.B.; Phillpot, S.R. Adhesion and diffusion at TiN/TiO2 interfaces: A first principles study. *Comput. Mater. Sci.* 2017, 130, 249–256. [CrossRef]

83. German, E.; Faccio, R.; Mombru, A.W. Comparison of standard DFT and Hubbard-DFT methods in structural and electronic properties of TiO2 polymorphs and H-titanate ultrathin sheets for DSSC application. *Appl. Surf. Sci.* 2018, 428, 118–123. [CrossRef]

84. Pillai, R.S.; Khan, I.; Titus, E. C2-Hydrocarbon Adsorption in Nano-porous Faujasite: A DFT Study. *Mater. Today Proc.* 2015, 2, 436–445. [CrossRef]