Title
NWRC Chemical Effects Database – What’s Old is New Again

Permalink
https://escholarship.org/uc/item/70z6t9x2

Journal
Proceedings of the Vertebrate Pest Conference, 25(25)

ISSN
0507-6773

Authors
O’Hare, Jeanette R.
Eisemann, John D.
Bowles, Walter A., Jr.
et al.

Publication Date
2012

DOI
10.5070/V425110429
NWRC Chemical Effects Database – What’s Old is New Again

Jeanette R. O’Hare and John D. Eisemann
USDA APHIS WS National Wildlife Research Center, Fort Collins, CO

Walter A. Bowles, Jr. and Edward W. Schafer, Jr.
USDA APHIS WS National Wildlife Research Center, Fort Collins, CO, Retired

Kathleen A. Fagerstone
USDA APHIS WS National Wildlife Research Center, Fort Collins, CO

ABSTRACT: The United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services (USDA APHIS WS), National Wildlife Research Center (NWRC) “Chemical Effects Database” is an internet-accessible and searchable database that contains bioassay data records for chemicals evaluated for repellency, toxicity, reproductive inhibition, and immobilization of higher vertebrates, and phytotoxicity. These data are of value for environmental risk assessment, conduct of toxicology studies, and the development of safe, effective, and responsible tools to manage vertebrate pest species that cause damage. Chemical screening studies were conducted from 1943 to 1987 by predecessors of the NWRC, and by the U.S. Geological Survey Patuxent Wildlife Research Center (PWRC), formerly the Patuxent Research Refuge (PRR) and part of the U.S. Fish and Wildlife Service. The screening activities were broadly divided into 2 phases. Data collected primarily at the PRR prior to 1960 are published in DeWitt et al. (1953) and Bowles et al. (1974). Research after 1960 was conducted at the Denver Wildlife Research Center (DWRC). Much of these data are also published and now accessible by searching the online “Chemical Effects Database” located on the NWRC website (http://www.aphis.usda.gov/wildlife_damage/nwrc/information_services/chemical_effects.shtml). The database search capabilities provide easy access to approximately 11,000 bioassay data records for nearly 2,000 chemicals.

KEY WORDS: chemical, Chemical Effects Database, National Wildlife Research Center, pesticide, repellent, toxicant, risk assessment, USDA, wildlife

INTRODUCTION
Two federal laboratories conducted an intense chemical screening program from 1942 to 1987. The program goals were to discover new chemicals for eventual development as toxicants, repellents, immobilizing agents, and reproductive inhibitors for use in management and control of vertebrate species; and to evaluate the potential hazards of many of these chemicals on non-target species. To that end, these laboratories conducted bioassays on several mammal, bird, amphibian (specifically bullfrogs), and plant species to screen over 10,000 chemicals in all (Schafer and Bowles 2004). Research was conducted at two principal facilities, 1) the U.S. Fish and Wildlife Service Patuxent Research Refuge, Laurel, MD (PRR), renamed the Patuxent Wildlife Research Center (PWRC) around 1956, and currently a U.S. Geological Survey facility; and 2) the U.S. Fish and Wildlife Service Wildlife Research Laboratory (WRL), renamed the Denver Wildlife Research Center (DWRC) in 1959, transferred to the U.S. Department of Agriculture in 1985, and currently the National Wildlife Research Center, Fort Collins, CO (NWRC).

Although the initial screening assays were conducted nearly 70 years ago, these data may represent the only available toxicity, repellency, reproductive inhibition, immobilization, and phytotoxicity data available for many of these chemicals, and represent millions of dollars of research that would likely never be repeated today. Consequently, these data are a potentially rich source of information useful for environmental and human health risk assessments, conduct of toxicity studies, and even as a potential source for new products.

We describe the new internet-accessible and searchable NWRC Chemical Effects Database containing nearly 11,000 bioassay records and data for more than 2,000 chemicals. The online database comprises published information from 21 sources (Table 1). Additional unpublished data are also available in the NWRC Toxicity Database, which is accessible to NWRC staff and available to the public upon request. Copies of the raw data paper records may also be obtained by contacting NWRC.

DATA DEVELOPMENT
In 1942, according to the Boston City Health Department, it was estimated that rats were responsible for $200 million of damage annually in the U.S. (Society for Science and the Public 1942, Keiner 2005). The impetus for the chemical screening program grew out of a shortage of pesticide products, primarily for rodent control, that were a direct result of World War II. Prior to the war, arsenic compounds, barium carbonate, cyanides, red squill, strychnine, thallium sulfate, and zinc phosphide were all available to control rodents (Ward 1946). An example of wartime disruption was the unavailability of red squill. This product, plant-derived from the Mediterranean area, became unavailable due to global shipping disruptions, including the forced...
A timeline of significant research activities is shown in Table 2. While we could not determine the duration of the funding for this program, the OSRD was disbanded on December 31, 1947. Some contracts were transferred to the U.S. Army Quartermaster Corps, Natick Laboratories (Stewart 1948).

Chemicals for testing were solicited or accepted by the PRR from chemical, pesticide, and drug companies, or contributed by other government entities or individuals for testing (Keiner 2005). Between 1946 and 1954, 4,585 chemicals were screened at PRR (Kverno 1954). The most promising chemicals were sent to the WRL for further testing. By 1955, the WRL had received 335 chemicals from the PRR and also had accepted some chemicals for screening from other cooperators (Spencer and Kverno 1955). This work continued through 1959. Data from this period are reported in 2 primary publications.
DeWitt, a researcher at the PRR, developed a catalog of approximately 7,000 chemicals tested at the PWRC and the WRL from 1942 through 1959, using “DR” numbers, which refers to “DeWitt Research”. The data developed at the DWRC was compiled under the “DRC (Denver Wildlife Research Center) Chemical Tracking System.” Approximately 6,800 DRC numbers were assigned. Schafer and Bowles (2004) estimated that over 10,000 unique chemicals were screened during the entire 45-year chemical screening period by both laboratories, although the exact number may never be known.

DATA RETRIEVAL

There are 3 options for retrieving the chemical screening bioassay data cataloged in the “DRC Chemical Tracking System”. First, the original records residing in the NWRC Archives and the National Archives may be accessed by NWRC personnel upon request. Second, in 1981, the U.S. Environmental Protection Agency (EPA) provided funding to begin a process of archiving and compiling these data, with the goal of facilitating EPA activities related to hazard evaluation (Schafer, June 6, 1983, United States Government Memorandum to Director, Wildlife Research Center, Denver). As a result, a subset of these data has been compiled into the “Toxicity Database,” also accessible by NWRC personnel upon request. This subset of data consists of approximately 14,000 bioassay results that have been verified for chemicals cataloged using the DRC identification system, which includes data from research conducted at the DWRC from 1959 to 1987. Third, a subset of the 14,000 bioassay results have been published in 21 publications, reporting on nearly 11,000 bioassay results for over 2,000 chemicals. These published data have been compiled into the newly publicly accessible on-line NWRC Chemical Effects Database.

It is important to note that data prior to 1959 from the PRR and the WRL are cataloged using the “DR Chemical Tracking System” and are not included in the internet-accessible database. However, the 2 primary publications from this period (DeWitt et al. 1953 and Bowles et al. 1974) contain a significant number of bioassay results. These 2 works are somewhat obscure but are available as PDF documents on the NWRC website.

NWRC Chemical Effects Database

The “NWRC Chemical Effects Database” is accessible on the NWRC website at http://www.aphis.usda.gov/wildlife_damage/nwrc/information_services/chemical_effects.shtml. The site provides a browse option including several chemical and species parameters, and a search option that allows the user to create a query with bioassay test, chemical, and species parameters. When searching for chemical data, it is recommended to search using the Chemical Abstract System (CAS) number. The results output may be a table that can be copied into a spreadsheet, or as a Comma Separated Values (CSV) file.

Three other pages on the site contain important metadata and other information for users of these data:

1) The “About the Date” page contains back-

2) The “About the Date” page contains back-

3) The “About the Date” page contains back-

4) The “About the Date” page contains back-

5) The “About the Date” page contains back-

6) The “About the Date” page contains back-

7) The “About the Date” page contains back-

8) The “About the Date” page contains back-

9) The “About the Date” page contains back-

10) The “About the Date” page contains back-

11) The “About the Date” page contains back-

12) The “About the Date” page contains back-

13) The “About the Date” page contains back-

14) The “About the Date” page contains back-

15) The “About the Date” page contains back-

16) The “About the Date” page contains back-

17) The “About the Date” page contains back-

18) The “About the Date” page contains back-

19) The “About the Date” page contains back-

20) The “About the Date” page contains back-

21) The “About the Date” page contains back-

22) The “About the Date” page contains back-

23) The “About the Date” page contains back-

24) The “About the Date” page contains back-

25) The “About the Date” page contains back-

26) The “About the Date” page contains back-

27) The “About the Date” page contains back-

28) The “About the Date” page contains back-

29) The “About the Date” page contains back-

30) The “About the Date” page contains back-

31) The “About the Date” page contains back-

32) The “About the Date” page contains back-

33) The “About the Date” page contains back-

34) The “About the Date” page contains back-

35) The “About the Date” page contains back-

36) The “About the Date” page contains back-

37) The “About the Date” page contains back-

38) The “About the Date” page contains back-

39) The “About the Date” page contains back-

40) The “About the Date” page contains back-

41) The “About the Date” page contains back-

42) The “About the Date” page contains back-

43) The “About the Date” page contains back-

44) The “About the Date” page contains back-

45) The “About the Date” page contains back-

46) The “About the Date” page contains back-

47) The “About the Date” page contains back-

48) The “About the Date” page contains back-

49) The “About the Date” page contains back-

50) The “About the Date” page contains back-

51) The “About the Date” page contains back-

52) The “About the Date” page contains back-

53) The “About the Date” page contains back-

54) The “About the Date” page contains back-

55) The “About the Date” page contains back-

56) The “About the Date” page contains back-

57) The “About the Date” page contains back-

58) The “About the Date” page contains back-

59) The “About the Date” page contains back-

60) The “About the Date” page contains back-

61) The “About the Date” page contains back-

62) The “About the Date” page contains back-

63) The “About the Date” page contains back-

64) The “About the Date” page contains back-

65) The “About the Date” page contains back-

66) The “About the Date” page contains back-

67) The “About the Date” page contains back-

68) The “About the Date” page contains back-

69) The “About the Date” page contains back-

70) The “About the Date” page contains back-

71) The “About the Date” page contains back-

72) The “About the Date” page contains back-

73) The “About the Date” page contains back-

74) The “About the Date” page contains back-

75) The “About the Date” page contains back-

76) The “About the Date” page contains back-

77) The “About the Date” page contains back-

78) The “About the Date” page contains back-

79) The “About the Date” page contains back-

80) The “About the Date” page contains back-

81) The “About the Date” page contains back-

82) The “About the Date” page contains back-

83) The “About the Date” page contains back-

84) The “About the Date” page contains back-

85) The “About the Date” page contains back-

86) The “About the Date” page contains back-

87) The “About the Date” page contains back-

88) The “About the Date” page contains back-

89) The “About the Date” page contains back-

90) The “About the Date” page contains back-

91) The “About the Date” page contains back-

92) The “About the Date” page contains back-

93) The “About the Date” page contains back-

94) The “About the Date” page contains back-

95) The “About the Date” page contains back-

96) The “About the Date” page contains back-

97) The “About the Date” page contains back-

98) The “About the Date” page contains back-

99) The “About the Date” page contains back-

100) The “About the Date” page contains back-

101) The “About the Date” page contains back-

102) The “About the Date” page contains back-

103) The “About the Date” page contains back-

104) The “About the Date” page contains back-

105) The “About the Date” page contains back-

106) The “About the Date” page contains back-

107) The “About the Date” page contains back-

108) The “About the Date” page contains back-

109) The “About the Date” page contains back-

110) The “About the Date” page contains back-

111) The “About the Date” page contains back-

112) The “About the Date” page contains back-

113) The “About the Date” page contains back-

114) The “About the Date” page contains back-

115) The “About the Date” page contains back-

116) The “About the Date” page contains back-

117) The “About the Date” page contains back-

118) The “About the Date” page contains back-

119) The “About the Date” page contains back-

120) The “About the Date” page contains back-

121) The “About the Date” page contains back-

122) The “About the Date” page contains back-

123) The “About the Date” page contains back-

124) The “About the Date” page contains back-

125) The “About the Date” page contains back-

126) The “About the Date” page contains back-

127) The “About the Date” page contains back-

128) The “About the Date” page contains back-

129) The “About the Date” page contains back-

130) The “About the Date” page contains back-

131) The “About the Date” page contains back-

132) The “About the Date” page contains back-

133) The “About the Date” page contains back-

134) The “About the Date” page contains back-

135) The “About the Date” page contains back-

136) The “About the Date” page contains back-
ground information about the chemical screening program, hotlinks to pertinent citations, and NWRC contact information for anyone wanting to request a search of the NWRC Toxicity Database or access the NWRC Archives.

2) The “Published Bioassay Data Citations” page contains all 21 citations of the published data, also shown in Table 1, with hotlinks to PDFs of each publication.

3) The “Testing Methodology and Glossary of Terms” page provides definitions of the various test methods that were used in the studies, and where possible, hotlinks to references describing the methodologies. This information is especially important, as test methodologies have changed over time.

DATA APPLICATIONS

These data include a large and unique archive of chemical bioassay data in danger of becoming largely forgotten outside of limited circles within the Federal agencies and others who were involved with the projects. Such a loss could result in needless repetition of animal studies, or hinder risk assessment efforts because of belief that no data exists to inform the process. There may also be potential vertebrate control products for development that were dismissed at the time, but may have value today due to advances in technology and application techniques. While testing methodologies have evolved over time and sample sizes may have been small, especially during initial screening assays, the data may provide a starting point for risk assessors and research scientists designing studies or investigating new pesticide products. In fact, NWRC encourages users of these data to contact the NWRC Archives for access to the original data sheets to evaluate the appropriateness for any given application. The availability of the internet-accessible NWCR Chemical Effects Database is intended to provide easy access to the published data from the 45 years of chemical screening research, and to also remind potential users of the additional data available by contacting the NWRC.
ACKNOWLEDGEMENTS

The authors wish to acknowledge the USFWS and USDA researchers who participated in the development of the data beginning in the early 1940s through the late 1980s, and to those devoted to organizing and archiving the data records. Special thanks go to Paige Groninger for database development and Mike Moxcey for development of the web interface. We sincerely thank Barnett Ratner of the USGS Patuxent Wildlife Research Center for his helpful suggestions and careful review of this manuscript.

LITERATURE CITED

BOWLES, W. A., V. A. ADOMAITIS, J. B. DEWITT, and J. J. PRATT Jr. 1974. Relationship between chemical structure and rat repellency. II. Compounds screened between 1950 and 1960. U.S. Army, Natick Labs Technical Report 75-11-FEL. Natick, MA. 375 pp.

DEWITT, J. B., E. BELLACK, C. W. KLINGENSMITH, J. C. WARD, and R. TREICHLER. 1953. Relationship between chemical structure and toxic action on rats. Chemical-Biological Coordination Center Review No. 5, National Research Council, Washington, D.C. 156 pp.

HUDSON, R. H., R. K. TUCKER, and M. A. HAEGELE. 1984. Handbook of toxicity of pesticides to wildlife. Resource Publication No. 153, U.S. Fish and Wildlife Service. 90 pp.

KEINER, C. 2005. Wartime rat control, rodent ecology, and the rise and fall of chemical rodenticides. Endeavour 29(3):119-125.

KVerno, N. B. 1954. Development of better seed protectants. J. Forestry 52:826-827.

KVerno, N. B., and G. A. HODD. 1963. Evaluation procedures and standards; chemical screening and development for forest wildlife damage. U.S. Fish and Wildlife Service, Wildlife Research Center Report. 59 pp.

KVerno, N. B., G. A. HODD and W. E. DODGE. 1967. Development of chemicals to control forest wildlife damage. Pp. 222-226 in: Proc. Soc. Am. Foresters (Sept. 12-15, 1966, Seattle, WA).

PERRY, M. C. 2004. The evolution of Patuxent as a research refuge and a wildlife research center. USGS Patuxent Wildlife Research Center, Laurel, MD. 20 pp.

SCHAFFER, E. W., JR. 1972. The acute oral toxicity of 369 pesticidal, pharmaceutical and other chemicals to wild birds. Toxicol. Appl. Pharmacol. 21:315-330.

SCHAFFER, E. W., JR., and W. A. BOWLES JR. 2004. Toxicity, repellency of phytotoxicity of 979 chemicals to birds, mammals and plants. Research Report No. 04-01. National Wildlife Research Center, Fort Collins, CO. 118 pp.

SCHAFFER, E. W., JR., W. A. BOWLES JR., and J. HURLBUT. 1983. The acute oral toxicity and repellency and hazard potential of 998 chemicals to one or more species of wild and domestic birds. Arch. Environ. Contam. Toxicol. 12:355-382.

SCHAFFER, E. W., JR., and R. B. BRUNTON. 1971. Chemicals as bird repellents: Two promising agents. J. Wildl. Manage. 23:569-572.

SCHAFFER, E. W., JR., R. B. BRUNTON and N. F. LOCKYER. 1976. Evaluation of 45 chemical as chemosterilants in adult male quail. J. Reprod. Fertility 48:371-375.

SCHAFFER, E. W., JR., R. B. BRUNTON, E. C. SCHAFFER, and G. CHAVEZ. 1982. Effects of 77 chemicals on reproduction in male and female coturnix quail. Ecotoxicol. Environ. Safety 6:149-156.

SCHAFFER, E. W., JR., and D. J. CUNNINGHAM. 1972. An evaluation of 148 compounds as avian immobilizing agents. Special Scientific Report-Wildlife No. 150, U.S. Fish and Wildlife Service. 30 pp.

SCHAFFER, E. W., JR., and M. JACOBSON. 1983. Repellency and toxicity of 55 insect repellents to red-winged blackbirds (Agelaius phoeniceus). J. Environ. Sci. Health A18:493-502.

SOCIETY FOR SCIENCE & THE PUBLIC. 1942. Rats are costly pests and a danger to society. The Science News-Letter (Jun. 13, 1942), 41(24):374.

SPENCER, D. A., and N. B. KVerno. 1955. Research in rodent control to promote reforestation by direct seeding. Progress Report No. 5, U.S. Department of the Interior. 3 pp.

STARR, R. I., J. F. BESSE, and R. B. BURTON. 1964. A laboratory method for evaluating chemicals as bird repellents. Toxicol. Appl. Pharmacol. 12:342-344.

STEWART, I. 1948. Organizing Scientific Research for War: The Administrative History of the Office of Scientific Research and Development. Little, Brown and Co., Boston, MA. 358 pp.

TIGNER, J. R. 1966. Chemically treated multiwall traps and bags tested for rat repellency. J. Wildl. Manage. 30:180-184.

TUCKER, R. K., and D. G. CRABTREE. 1970. Handbook of toxicity of pesticides to wildlife. Resource Publ. No. 84, U.S. Fish and Wildlife Service. 131 pp.

WARD, J. C. 1945. Soap and sanitary chemicals. Rodenticides–present and future. Soap and Sanitary Chemicals 21:17-127.

WARD, J. C. 1946. Rodent control with 1080, ANTU, and other war-developed toxic agents. Am. J. Pub. Heath 36:1427-1431.