Study of Bio-fertilizer Produced from Agro-waste (Sesame Straw) and Cow Dung Using *Eisenia fetida* and *Perionyx sansibaricus* in Arid Environment

K. R. Panwar*” G. Tripathi

1. Department of Zoology, J. N. V. University, Jodhpur, India
2. Department of Zoology, Govt. PG College Osian, Jodhpur, India

ARTICLE INFO

Article history
Received: 4 July 2021
Accepted: 26 July 2021
Published Online: 20 August 2021

Keywords:
Organic fertilizer
Sesame straw
Earthworm
Physicochemical properties

ABSTRACT

In this study, an analysis of organic fertilizer of an agro-waste (Sesame straw) plus cow dung was carried out using an epigeic earthworm species *Eisenia fetida* and *Perionyx sansibaricus*. Sesame straw is abundantly produced after each harvesting of the crop in Kharif season in arid region of tropical India. The compost produced in presence and absence of earthworm exhibit significant (\(P<0.001\)) and non-significant (\(P>0.05\)) changes in physicochemical properties respectively. In control bedding, the values of water holding capacity enhanced significantly (\(P<0.05\)) by 1.28 fold, while organic carbon and C/N ratio decreased significantly (\(P<0.05\)) by 19.93% and 31.25% respectively after 60 days of composting. Working of *E. fetida* in the bedding material showed significant (\(P<0.001\)) difference in the level of pH, electrical conductivity, water holding capacity, organic carbon, total nitrogen, C/N ratio, available phosphorous and available potassium. After 60 days of working of *P. sansibaricus*, these physicochemical properties of the bedding substrate also changed significantly (\(P<0.001\)). Analysis of vermebed showed a gradual increase in electrical conductivity, water holding capacity, total nitrogen, available phosphorus and available potassium by 1.51, 1.86, 1.95, 1.78 and 1.75 fold respectively. While the values of pH, organic carbon and C/N ratio declined by 9.30%, 41.80% and 71.48% respectively within 60 days of decomposition. Thus, *E. fetida* and *P. sansibaricus* can be applied for production of organic fertilizer of sesame chaff plus cow dung to fulfill the requirement of bio-fertilizers for organic farming and agro-waste management in arid environment.

1. Introduction

Agricultural sector contributes huge potential resources of plant nutrients in the form of wastes. Due to lack of appropriate disposal techniques, these wastes are either dumped or burnt in the agriculture fields after each harvesting. Which caused serious environmental pollution and diseases in subsequent crops. When the agro-waste burnt after each harvesting in agricultural fields, it produces toxic gases caused air pollution, while dumping agro-waste releases greenhouse gases such as methane, H\(_2\)S etc. Pesticide treated decomposing organic wastes leached toxic elements to underground water and pollute the underground water resources as well as drained
Distributed under creative commons license 4.0
DOI: https://doi.org/10.30564/re.v3i3.3429

2. Materials and Methods

2.1 Collection of Materials

Sesame is an oil crop grown on a large scale particularly in western region of Rajasthan of India. Its straw was collected from agricultural farm of village-Chhila, tehsil-Phalodi of Jodhpur district. Sesame straw is dumped in huge quantity after each harvesting (27.0141 N; 72.2850 E) in Kharif season. Partially decomposed straw was collected from one season old heap. Air dried cow dung was also collected from the same site. The materials were filled in jute bags and brought to the vermiculture laboratory. Earthworm species *Eisenia fetida* was used from previously prepared stock culture in cow dung bedding material, originally collected from a sewage site of Nehru Park of Jodhpur city (26.27544 N, 73.01378 E).

2.2 Processing of Organic Waste Materials

The collected sesame straw and cow dung were left for one week at room temperature. Dried cow dung was powdered on hard surface, whereas sesame straw was grinded in mixer-grinder after thorough chopping. The powdery materials were sieved by 1mm (palatable size for earthworm) pore sized sieve separately and stocked in plastic bags for use in vermicomposting experiments.

2.3 Experimental Planning of Vermiculture

Triplicate sets of vermibeds (500 g dry weight each) were prepared using powdered sesame straw and cow dung in 1:1 ratio in plastic tub having 5 litre capacity. The material was moistened to stabilize within 2 days. In the experimental set, 25 clitellates worms of each species (*E. fetida* and *Perionyx sansibaricus*) were inoculated separately. One set of control bedding material (without earthworm) was also maintained parallel. The culturing plastic containers were perforated 2-3 places to drain excess water. However, leached water was collected in other containers and reused for watering the vermibed so as to prevent the washout of nutrients. The vermiculture experiments were conducted for 60 days. During composting period, moisture was maintained between 60 to 70 percent by sprinkling water on the bedding regularly. The temperature of vermibed was maintained 30± 3 °C and wet Jute cloth was used to maintain the temperature of vermibed.

2.4 Analysis of Bedding Materials

During decomposition, changes in pH, electrical conductivity, water holding capacity, organic carbon, total nitrogen, carbon/nitrogen ratio, available phosphorus and potassium were observed after an interval of 15 days of worm working viz., 0, 15, 30, 45 and 60 day. For this purpose, 10 g dry weight basis samples were collected...
from each experimental as well as control bedding in plastic pouches. The pH and electrical conductivity of bedding materials were measured with the help of a digital pH and EC meter respectively. Walkley-Black method was used for determination of organic carbon \([37]\). Total nitrogen was measured by Kjeldahl method as described by Jackson employing Kel plus system (Kes-20 and Distyl-EM) \([31]\). Available phosphorus was estimated as described by Anderson and Ingram \([1]\) and exchangeable potassium was determined by Simard method \([38]\). The temperature of vermbed was recorded with the help of thermometer (MEXTECH multi-thermometer). Moisture of bedding substrates was estimated by oven drying method.

2.5 Statistical Analysis of Data

Triplicate set of data were collected by analyzing each set of beddings. Standard error of mean (SEM) was calculated for the triplicate data. A one way analysis of variance (ANOVA) was performed to test the level of significance in physicochemical properties of control and experimental bedding substrates.

3. Results

Sesame straw plus cow dung bedding material with and without earthworm exhibited significant changes \((P<0.001)\) in physicochemical properties with respect to decomposition period. In control bedding the values of pH, electrical conductivity, total nitrogen, phosphorous and potassium did not vary significantly \((P>0.05)\). While water holding capacity enhanced significantly \((P<0.05)\) by 1.28 fold. Organic carbon and C/N ratio varied significantly \((P<0.05)\) by 19.93% and 31.25% respectively after 60 days.

Working of \textit{E. fetida} in the bedding material showed significant \((P<0.001)\) difference in the level of pH, electrical conductivity, water holding capacity, organic carbon, total nitrogen, C/N ratio, phosphorous and potassium. The pH value decreased by 10.95%. Similarly, organic carbon reduced by 44.09% and C/N ratio by 78.10%. On the other hand, vermicompost showed 1.83, 1.92, 2.65, 2.10 and 2.14 fold increases in electrical conductivity, water holding capacity, total nitrogen, phosphorus and potassium respectively after 60 days of the earthworm working as compared to initial values.

After 60 days of working of \textit{P. sansibaricus}, physicochemical parameters of the bedding material changed significantly \((P<0.001)\). The vermbed showed a gradual increase in electrical conductivity, water holding capacity, total nitrogen, phosphorus and potassium.

However, values of pH, organic carbon and C/N ratio decreased by 9.30%, 41.80% and 71.48% respectively within 60 days of decomposition. Unlike these, the compost showed 1.51, 1.86, 1.95, 1.78 and 1.75 fold increase in electrical conductivity, water holding capacity, total nitrogen, phosphorus and potassium respectively after 60 days working of \textit{P. sansibaricus} as compared to 0 day level (Figure 1).

4. Discussion

Physicochemical properties of sesame straw plus cow dung bedding material showed different trends in control (without earthworm) and experimental (with earthworm) groups (Figure 1). The results obtained indicated reduction in pH, organic carbon and C/N ratio of vermicompost as well as control compost at the end of composting. Control, \textit{E. fetida} and \textit{P. sansibaricus} processed composts showed 3.80%, 10.95% and 9.30% decreases in pH respectively. Higher reductions were observed in \textit{E. fetida} followed by \textit{P. sansibaricus} and control. However, pH of control bedding material did not vary significantly \((P>0.05)\) with respect to initial level. During the composting process the pH level declined from alkaline to acidic close to neutral medium in vermicompost. This may be because of enhanced decomposition and mineralization by earthworm and production of acids during the decomposition. It can be supported by the observations of Ndegwa et al who described pH shift toward acidic condition due to mineralization of nitrogen and phosphorus into nitrates/nitrites and ortho-phosphate and bioconversion of organic materials into intermediate species of organic acids \([20]\). Similarly, other workers \([8,5,6,19]\) also concluded that production of CO\(_2\) and organic acid by microbial decomposition lowered the pH of substrate.

Organic carbon in \textit{E. fetida} and \textit{P. sansibaricus} induced compost decreased sharply as compared to their starting levels by 44.09% and 41.80% respectively. The control bed also showed a decline in organic carbon but degree of decrease was significantly \((P<0.05)\) lesser than vermicompost after 60 days period of decomposition. Present results are in agreement to the report of Elvira et al who showed that large proportion of organic matter in the initial substrate was as loss as CO\(_2\) between 20 to 43 percent as organic carbon by the end of vermicomposting \([5]\). Nath et al observed that total organic carbon declined (45 to 50%) drastically as compared to their initial levels \([19]\). Likewise, other workers also reported 20 to 45 percent loss of total nitrogen in the form of CO\(_2\) from agriculture wastes and industrial sludge during vermicomposting occurred \([5,15,39]\).

Value of electrical conductivity of the bedding material
Figure 1. Showing the changes in pH, Electrical conductivity, Water holding capacity, Organic carbon, Total nitrogen, Carbon/Nitrogen ratio, Phosphorus and Potassium during the decomposition of sesame straw plus cow dung using earthworms (*Eisenia fetida* and *Perionyx sansibaricus*). DOI: https://doi.org/10.30564/re.v3i3.3429
increased as compared to initial level. The values of EC in control, *E. fetida* and *P. sansibaricus* increased by 1.07, 1.83 and 1.51 fold respectively as compared to 0 day of decomposition. Possibly it was due to decomposition of organic matter and release of salts during mineralization process. Increase in electrical conductivity might have been due to the loss of organic carbon and release of different salts in available forms [38,16]. In contrast to this, Nath et al. reported a decrease in EC during vermicomposting [19].

Total nitrogen level was increased after 60 days of composting of sesame straw plus cow dung bedding material. The level of nitrogen content in control bedding substrate enhanced by 1.16 fold after completion of composting duration. However, *E. fetida* and *P. sansibaricus* worked compost indicated by 2.65 and 1.95 fold increase in nitrogen content respectively. Present study revealed that organic waste conversion efficiency of *E. fetida* is better than *P. sansibaricus*. Nitrogen enhancing capacity of both species of earthworm was significantly higher than control (microbial decomposition) after 60 days of composting period. It indicates that *E. fetida* feed voraciously on organic waste rich materials. Other workers reported that earthworm increases the nitrogen content due to nitrogen mineralization from organic matter in the soil because nitrification is enhanced in worm casts [29]. Some workers also suggested that *E. fetida* in organic waste increased nitrogen level significantly [9]. Increasing trend of nitrogen in vermicompost was also reported by many other workers [36,19,12].

C/N ratio, available phosphorus and potassium are other widely used indicators for maturity of organic wastes. C/N ratio was drastically declined in vermicompost as compared to control substrate. Senesi reported that decline in C/N ratio to less than 20 which indicates an advance degree of organic matter stabilization and reflects a satisfactory degree of organic waste [13]. The C/N ratio decreases sharply during vermicomposting process [14,36,19,23]. Available phosphorus and potassium increased significantly (P<0.001) in vermicompost as compared to their starting levels. Phosphorus content increased by 2.10 and 1.78 fold in the bedding material with *E. fetida* and *P. sansibaricus* respectively in relation to 0 day composting. Similarly, potassium showed 2.14 and 1.75 fold increase in the bedding sets. The possible cause of increase in nutrients may be crumbling in alimentary canal of earthworm which breakdown the large particles into small molecules and microbial action. Similar results have been obtained by other workers [18,30,4]. Passage of organic residue through the gut of earthworm releases nutrients including phosphorus. Release of phosphorus in available form is performed partly by earthworm gut phosphatases and further release of phosphorus may be attributing to phosphorus stabilizing microorganism present in worm cast [17].

5. Conclusions

An agro-waste (sesame straw) and cow dung have been converted into a valuable bio-fertilizer using two epigeic earthworm species *Eisenia fetida* and *Perionyx sansibaricus* in arid area of India. Changes in physicochemical properties viz., pH, electrical conductivity, water holding capacity, organic carbon, total nitrogen, carbon-nitrogen ratio, available phosphorus and available potassium of bedding substrates were estimated at 15, 30, 45 and 60 days of time interval. It was observed that *E. fetida* was insignificantly more potent in decomposition of this agro-wastes as compared to *P. sansibaricus*. The both earthworm species may be applied for conversion of huge amount of agro-waste into organic fertilizer for sustainable agriculture and soil ecosystem.

Acknowledgement

K. R. Panwar thankful to University Grants Commission, New Delhi for providing financial support in the form of TRF.

References

[1] Anderson, J. M. and Ingram, J. S. I. (1993) Soil organic matter and organic carbon. In: Tropical soil Biology and Fertility, A hand book of Methods (J. M. Anderson and J. S. I. Ingram, Eds)., P. 221, CAB International, Wallingford, UK.

[2] Applholf, M. (1980) Household scale vermicomposting. In: Research needs Workshop on the role of earthworm in the stabilization of organic residues, April 9-12, Hickory Corners, Michigan, USA.

[3] Balamurugam, V. and Vijayalakshmi, G. S. (2004) Response of Eisenia fetida, Savigny in Cassia auriculata leaves supplemented with different animal wastes. J. Environ. Ecoplan., 8: 245-248.

[4] Delgado, M., Bigeriego, M., Walter, I. and Calvo, R. (1995) Use of the California red worm in sewage sludge transformation. Turrialba, 45: 33-41.

[5] Elvira, C., Sampedro, L., Benitez, E. and Nogales, R. (1998) Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot scale study. Bioreasor. Technol., 63: 205-211.

[6] Garg, P., Sharma, S. and Satya, S. (2006) Culturing of exotic (Eisenia fetida) and local (Allolobophora parva) earthworm species in different substrates for
rural wastemanagement. 2nd Jn.Int.Conf. (Sust. Ener. Environ.), 21-23 Nov., 2006.

[7] Goswami, B. and Kalita, M. C. (2000) Efficiency of some indigenous earthworm species of Assam and characterization through vermitotechnology. Indian J. Environ. Ecodecpl., 3: 341-344.

[8] Haimi, G. and Huhta, V. (1986) Capacity of various organic residues to support adequate earthworm biomass for vermicomposting. Biol. Fert. Soils, 2: 23-27.

[9] Hand, P., Haynes, W. A., Satchell, J. E. and Frankland, J. C. (1988) The vermicomposting of cow slurry by earthworms. In: Waste and environmental management (ed.) C. A. Edwards and E. F. Neuhauser. SPB Acad. Publ., Hague.

[10] Hartenstein, R., Neuhauser, E. F. and Kaplan, D. L. (1979) A progress report on the potential use of earthworm in sludge management. In: Proc. 8th Nat. Sludge Conf. Silver Spring, Md., pp. 238-241.

[11] Jackson, M. L. (1967) Soil chemical analysis. Prentice Hall of India Pvt. Ltd. New Delhi, pp. 183-192.

[12] Joshi, N. and Sharma, S. (2010) Physicochemical characterization of sulphidation pressmud composted and vermicomposted pressmud. Rep. Opin., 2: 79-82.

[13] Julka, J. M. (1993) Distribution pattern in Indian earthworms. In: Earthworm Resources and Vermiculture: Zoological Survey of India. Calcutta. pp. 27-31.

[14] Kale, R. D. (1998) Natural gift for utilization of organic wastes. In: Earthworm ecology. (Edwards, C. A., ed.). New York: St. Kucie Press.

[15] Kaushik, P. and Garg, V. K. (2003) Vermicomposting of mixed soil textile mill sludge and cow dung with the epigeic earthworm Eisenia fetida. Bioresour. Technol., 90: 311-316.

[16] Kaviraj and Sharma, S. (2003) Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour. Technol., 90: 169-173.

[17] Lee K. E. (1992) Some trends and opportunities in earthworm research or Darwin’s children. The future of our discipline. Soil Biol. Biochem., 24: 1765-1771.

[18] Mansell, G. P., Syers and Gregg, P. E. H. (1981) Plant availability of phosphorus in dead herbage ingested by surface casting earthworm. Soil Biol. Biochem., 13: 163-167.

[19] Nath, G., Singh, K. and Singh, D. K. (2009) Chemical analysis of vermicomposts/vermiwash of different combinations of animal, agro and kitchen wastes. Aus. J. Bas. Appl. Sci., 3: 3672-3676.

[20] Ndegwa, P.M., S.A. Thompson, and K.C. Das (2000). Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technology, 71, 5-12.

[21] Panwar, K. R. (2017), Role of Earthworm (Eisenia fetida) on Organic Waste Management and Pollution Control in Indian Thar Desert. Int. J. Scient. Res. Sci. Technol. 2017, 3(8), 1058-1062.

[22] Panwar, K. R. and Tripathi, G. (2021) “Qualitative Study of Organic Fertilizer of Agrowaste (Cumin Straw) Plus Cow dung Using Earthworm Species Eisenia fetida and Perionyx sansibaricus.” Applied Ecology and Environmental Sciences, vol. 9, no. 2: 167-171. DOI: 10.12691/aees-9-2-7.

[23] Panwar, K. R. and Tripathi G. (2017), Studies on agrowaste conversion efficiency of the earthworm species Eisenia fetida and Perionyx sansibaricus. J. Exp. Zool., India, Vol. 20, Supplement 1, 2017, pp. 1453-1457.

[24] Parthasarathi, K. (2007) Influence of moisture on the activity of Perionyx excavatus (Perrier) and micro-bial-nutrient dynamics of pressmud vermicompost. Iran. J. Environ. Heal. Sci. Eng., 4: 147-156.

[25] Pattnaik, S. and Reddy, M. V. (2010) Nutrient status of vermicompost of urban green waste produced by three earthworm species-Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus. Appl. Environ. Soil Sci., 10: 1-13.

[26] Ponnuraj, M., Murugesan, A. G. and Sukumaran, N. (1998) Effect of different organic wastes on fecundity of two earthworms Lampitoma mauritii (Kinberg) and Perionyx excavatus (Perrier). J. Environ. Biol., 19: 57-61.

[27] Rampal, R. and Sharma, D. (2007) Vermicompost potential of various local earthworm species of Jammu on Parthenium weed. Ind. J. Environ. Ecodecpl., 14: 611-614.

[28] Ruz Jerez, E., Ball, P. R. and Tillman (1988) The role of earthworm in nitrogen release from herbage residues. In: Nitrogen Efficiency in agriculture Soils (Jackson, D. S. and smith, K. A., eds.), pp. 355-37.

[29] Satchell, J. E. and Martin, K. (1984) Phosphatase activity in earthworm faeces. J. Soil Sci., 57-61.

[30] Scheilds, E. B. (1971) Raising earthworms for profit. 9th Shield Publication, Elgin.

[31] Selladuria, G., Anbusaravanan, N., Shyam, K. P., Palanivel, K. and Kadalmani, B. (2010) Recycling of distillery sludge from sugarcane industry using bioresource technology. J. Appl. Sci. Res., 6: 218-233.

[32] Senapati, B. K. and Dash, M. C. (1982) Earthworms
as waste conditioner. J. Int. Engin., 11: 53-57.

[33] Senesi, N. (1989) Composted materials as organic fertilizers. The Sci. Total Environ., 81/82: 521-524.

[34] Simard, R. R. (1993) Ammonium acetate extractable elements. In: Soil sampling and methods of analysis. (Martin, R. and Carter, S., eds.) Lewis Publisher, Florida, USA, 39-43.

[35] Suthar, S. and Singh, S., (2008). Vermicomposting of domestic waste using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Technol., 5, 99-106.

[36] Tripathi, G. and Bhardwaj, P., (2004). Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampitolamuritii (Kinberg). Bioresour. Technol., 92, 275-283.

[37] Walkley A. (1947) A critical examination a rapid method for determining organic carbon in soils: Effect of variation in digest conditions and/or inorganic soil constituents. Soil Sci: 251-263.

[38] Wong, J. M. C., Li, G. X. and Wong, M. H. (1997) Feasibility of using coal ash residue as co-composting materials for sewage sludge. Environ. Technol., 18: 563-568.