Twin Boundaries in \(d \)-wave Superconductors

D.L. Feder, A. Beardsall, A.J. Berlinsky, and C. Kallin

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(October 9, 2018)

Twin boundaries in orthorhombic \(d \)-wave superconductors are investigated numerically using the Bogoliubov-deGennes formalism within the context of an extended Hubbard model. The twin boundaries are represented by tetragonal regions of variable width, with a reduced chemical potential. For sufficiently large twin boundary width and change in chemical potential, an induced \(s \)-wave component may break time-reversal symmetry at a low temperature \(T^* \). The temperature \(T^* \), and the magnitude of the complex component, are found to depend strongly on electron density. The results are compared with recent tunneling measurements.

61.72.Mm, 74.20.-z, 74.50.+r, 74.72.Bk

In spite of mounting experimental evidence that the high-temperature superconductors have an order parameter with \(d_{x^2−y^2} \) (\(d \)-wave) symmetry,\[1\] a number of experiments on both twinned and untwinned YBa\(_2\)Cu\(_3\)O\(_{7−\delta}\) (YBCO) suggest the presence of an additional \(s \)-wave order parameter.\[2\] By symmetry, a small \(s \)-wave component always coexists with a predominantly \(d \)-wave order parameter in an orthorhombic superconductor such as YBCO, and changes its sign (relative to the \(d \)-wave component) across a twin boundary.\[3\] The experimental results can be understood either if the \(s \)-wave component of the order parameter breaks time-reversal (\(T \)) symmetry near the twin boundary at low temperatures, as it can near surfaces,\[4\] or if there is far more of one kind of twin domain (i.e. twin boundaries form in groups).\[5\] Recent SQUID measurements on vortices trapped by twin boundaries in YBCO did not detect the fractional flux that would accompany local \(T \)-violation.\[6\] In the present work, however, we present strong evidence that such a symmetry breaking could indeed occur in the vicinity of twin boundaries at low temperatures under certain conditions.

Sigrist et al.\[7\] have addressed the possibility of \(T \)-violation near boundaries by considering the Ginzburg-Landau (GL) free energy for a homogeneous orthorhombic \(d \)-wave superconductor:

\[
F_s = F_n + \alpha_d |d|^2 + \alpha_s |s|^2 + \beta_1 |d|^4 + \beta_2 |s|^4 + \beta_3 |s|^2 |d|^2 + \beta_4 (s^2 d^2 + s^2 d^2) + \beta_5 (s^2 d + s d^2),
\]

where \(s \) and \(d \) are the \(s \)-wave and \(d \)-wave components of a superconducting order parameter of the form \(d + e^{i\theta} s \), with \(\theta \) the relative phase between \(s \) and \(d \). Only the lowest-order orthorhombic term is kept in the GL free energy since \(s \ll d \) for small \(\beta_5 \). Assuming all the coefficients are positive (except \(\alpha_d \)), the \(\beta_5 \) term favors \(\theta = n\pi \) (\(n \) integer), while the \(\beta_4 \) term favors \(\theta = \pi/2 \). Thus, in a tetragonal superconductor there can be a continuous transition to a bulk \(T \)-violating phase at a temperature \(T^* \) given by \(\alpha_d (T^*) = [2\beta_2 (T^*) + \beta_3 (T^*)] |d|^2 (T^*) \). The coefficients of the GL free energy can be chosen such that \(T^* \leq 0 \) for a uniform system; the orthorhombic term further discourages a positive \(T^* \). Yet the suppression of \(d \) near an inhomogeneity, or the presence of a tetragonal region within an orthorhombic system, could induce local \(T \)-violation for a finite temperature \(0 \leq T \leq T^* \).

Furthermore, the associated complex \(s \)-wave component could be large relative to \(|d| \), and would vary on a new length scale.\[8\] In contrast, an \(s \)-wave component nucleated solely through spatial variations of \(d \), such as is found in magnetic vortices,\[9\] or near impurities, is usually small relative to \(|d| \) (unless \(\alpha_d \rightarrow 0 \), which only occurs for densities just above a crossover to bulk \(s \)-wave superconductivity\[10\] and varies on a length scale of the \(d \)-wave coherence length.

It is not clear, however, whether GL theory (which is strictly valid only near the bulk superconducting transition temperature) can reliably describe the low-temperature regime associated with \(T \)-violation. In the present work, twin boundaries in \(d \)-wave superconductors are investigated numerically using Bogoliubov-deGennes theory. We employ an extended Hubbard model which gives rise to \(d \)-wave superconductivity in a restricted parameter regime.\[11\] Despite its simplicity, results obtained previously using this model\[12\] are consistent with those obtained within the context of a model better representing the high-\(T_c \) oxides,\[13\] and with experimental results.\[14\] Twin boundaries are modeled as tetragonal regions of varying widths and reduced chemical potential, in order to approximate the experimental observations that twin boundaries are oxygen-deficient (i.e. locally antiferromagnetically insulating) regions, generally 7-40\(\AA \).\[15\]

The Hamiltonian for the extended Hubbard model is:

\[
H = - \sum_{(ij)\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} - \mu \sum_{i\sigma} n_{i\sigma} - \sum_{i\sigma} \mu_i n_{i\sigma} - V_0 \sum_i n_{i\uparrow} n_{i\downarrow} - \frac{V_1}{2} \sum_{(ij)\sigma\sigma'} n_{i\sigma} n_{j\sigma'},
\]

where the sums are over spin and nearest-neighbors on the square lattice, \(t_{ij} \) is a direction-dependent hopping parameter used to model orthorhombicity, \(\mu \) is the chemical potential, \(\mu_i \) is a site-dependent impurity potential representing the depletion of the carrier density at the
twin boundary, and V_0 and V_1 are on-site and nearest-neighbor interactions, respectively ($V > 0$ denotes attraction). Choosing the unit cell as shown in Fig. 1, we can exploit the translational invariance of the Hamiltonian in the (110) direction. With $\hat{R} \equiv \hat{x} + \hat{y}$ parallel and $\hat{r} \equiv -\hat{x} + \hat{y}$ perpendicular to the twin direction, we obtain the Bogoliubov-deGennes (BdG) equations:

$$\begin{pmatrix} \hat{\xi} & \hat{\Delta} \\ -\hat{\xi} & -\hat{\Delta} \end{pmatrix} \begin{pmatrix} u_{n,k}(r_\alpha) \\ v_{n,-k}(r_\alpha) \end{pmatrix} = \varepsilon_{n,k} \begin{pmatrix} u_{n,k}(r_\alpha) \\ v_{n,-k}(r_\alpha) \end{pmatrix},$$

such that

$$\hat{\xi} u_{n,k}(r_\alpha) = -\sum_\delta t_\delta u_{n,k}(r_\alpha + \hat{\delta}) - \left[\mu + \mu^I(r_\alpha) \right] u_{n,k}(r_\alpha),$$

$$\hat{\Delta} u_{n,k}(r_\alpha) = \Delta_0(r_\alpha) u_{n,k}(r_\alpha) + \sum_\delta \Delta_\delta(r_\alpha) u_{n,k}(r_\alpha + \hat{\delta}),$$

where the gap functions are defined by

$$\Delta_0(r_\alpha) \equiv V_0 \langle c_\uparrow(r_\alpha) c_\downarrow(r_\alpha) \rangle;$$

$$\Delta_\delta(r_\alpha) \equiv V_1 \langle c_\uparrow(r_\alpha + \hat{\delta}) c_\downarrow(r_\alpha) \rangle.$$

We have introduced the index α labeling the two basis points in the unit cell, the label k which is the Fourier inverse of R, and $\hat{\delta} = 0, \hat{r}, \hat{r} - \hat{R}, -\hat{R}$ connecting nearest neighbors with different basis indices. The equations (3) are subject to the self-consistency requirements

$$\Delta_0(r_\alpha) = V_0 \sum_{nk} u_{n,k}(r_\alpha) v_{n,-k}^*(r_\alpha) \tanh \left(\frac{\beta \varepsilon_{n,k}}{2} \right),$$

$$\Delta_\delta(r_\alpha) = \frac{V_1}{2} \sum_{nk\delta} \left[u_{n,k}(r_\alpha + \hat{\delta}) v_{n,-k}^*(r_\alpha) + u_{n,k}(r_\alpha) v_{n,-k}(r_\alpha + \hat{\delta}) \right] \tanh \left(\frac{\beta \varepsilon_{n,k}}{2} \right),$$

where the sum is over positive energy eigenvalues $\varepsilon_{n,k}$ only.

The orthorhombicity of YBCO is modeled by an anisotropy in the hopping parameters, reflecting the increased electronic mobility associated with the chains; anisotropy in the hopping parameters, reflecting the in-

At a twin boundary of zero width and $\mu^I = 0$, we find within the BdG theory that for all temperatures the dominant d-wave component of the order parameter is virtually unaffected. The extended and on-site s-wave components, whose bulk values are approximately 10% of Δ_d, go from their near-bulk values to zero, over a single lattice spacing r, reversing their sign relative to Δ_d on either side of the boundary. As the impurity strength is increased at low temperatures, however, the d-wave and s-wave components become increasingly perturbed from their bulk values over the coherence length $\xi_{d+s}(T)$, where $\xi_{d+s}(0) \approx |\hat{r}|$ in the present work. When the magnitude of the d-wave component in the twin boundary is suppressed to approximately half its bulk value, an additional complex s-wave component may be nucleated near the twin edge, breaking time-reversal symmetry. We have found no evidence for a phase transition to a bulk T-violating state in a uniform system.

The real and imaginary parts of the various components of the order parameter are shown in Fig. 2 for a twin boundary with $\mu^I = -10t_x$, $\mu = -t_x$, $T = 0$, and boundary width $W_T = 4|\hat{r}|$. While all the components go to zero rapidly within the twin boundary, both the real and imaginary parts of the s-wave gap functions are enhanced near the twin edge. In the immediate vicinity of the twin boundary, the real s-wave components are perturbed from their bulk values over a short distance comparable to $\xi_{d+s}(0)$, reflecting the local nucleation of additional s-wave components through spatial variations of the dominant d-wave component. The presence of finite complex gap functions in the bulk, however, implies that the imaginary components vary over a different characteristic distance $\xi_s(0) \gg \xi_{d+s}(0)$. This longer length scale, as well as the comparable sizes of $\text{Im}(\Delta_0)$ near the twin edge and the bulk Δ_d, is consistent with the GL prediction discussed above.

![FIG. 1. The unit cell of the finite-size system for the BdG calculations is shown as a solid line superimposed on a square lattice. Long and short dashed lines represent twin boundaries of width 0 and $|\hat{r}|$, respectively. Basis points are labeled by circles and squares.](image-url)
As shown in Fig. 3, the size of the complex s-wave component nucleated near the twin boundary is extremely sensitive to the temperature, impurity strength, and the width of the twin boundary. At zero temperature, Fig. 3(a), a T-violating state first appears for $\mu^{\dagger} \approx -2.7t_x$ at all electron densities for an impurity line (i.e. $W_T = 0$). As the impurity strength continues to increase, the perturbation of the d-wave component, and the maximum values of the imaginary s-wave components, begin to saturate. For $W_T > 0$, however, a lower impurity strength can give rise to T-violation at zero temperature, since the d-wave component is already suppressed by approximately 20% in a locally tetragonal region (with $t_x = t_y$) even for $\mu^{\dagger} = 0$. Increasing W_T beyond approximately $3|\hat{r}|$ has no further effect. This result, valid for all electron densities, is also consistent with the GL prediction that local tetragonal symmetry could favor a time-reversal breaking state at low temperature.

The growth of all the s-wave components with decreasing chemical potential reflects the impending instability of the system against bulk dominant s-wave superconductivity at slightly lower electron densities. As the temperature is increased at finite μ^{\dagger}, the complex component decreases to zero as $\sqrt{1 - T/T_c}$; the transition temperature T^* is strongly density-dependent, scaling roughly with Δ_d. The same T^* is obtained for wider twin boundaries at a given density, though the magnitudes of the complex s-wave components increases with increasing W_T.

The spatial variation of the s-wave component’s phase relative to Δ_d implied by Fig. 2 leads to currents which flow parallel to the twin surface and in opposite directions on either side of the twin boundary. The strong impurity potential therefore mimics a line of temperature-dependent magnetic flux passing through the twin boundary and oriented parallel to the c-axis. As shown by the differential conductance in Fig. 4,

$$\frac{\partial I(r)}{\partial V} \propto - \sum_{n,k} [u_{n,k}(r)]^2 f'(V - \varepsilon_{n,k}) + [v_{n,k}(r)]^2 f'(V + \varepsilon_{n,k}),$$

where f' is the voltage-derivative of a Fermi function, this effective field splits the low-energy band of virtual-bound states associated with Andreev reflections at the twin surface. Alternatively, the presence of two low-energy quasiparticle peaks in the tunneling conductance at low temperatures reflects the existence of a physical gap in the excitation spectrum, proportional to the magnitude of the total complex s-wave component. The zero-temperature maximum peak-to-peak separation, found in Fig. 2, to be approximately $0.2t_x \sim 2\text{meV}$ (where t_x is estimated from $T_c = 0.51t_x \approx 60\text{K}$ at this carrier concentration $<n> \approx 0.75$), grows with increasing $|V_0|$ and $|\mu^{\dagger}|$ but diminishes with increasing temperature and distance from the twin boundary. While the tunneling conductance exhibits low-temperature features that are no doubt finite-size effects, it is evident that the low energy band splits at a temperature $0.17T_c \approx 6\text{K}$ which is considerably lower than the $T^* \sim 0.5T_c$ estimated from Fig. 3. A comparable splitting of the zero-energy peak has been
recently observed in tunneling spectra of YBCO surfaces, and has been interpreted as a clear signature of T-violation.

![Graph](image)

FIG. 4. A low-energy portion of the tunneling conductance near a twin boundary is shown as a function of energy, distance r from the twin edge where (a) through (c) correspond to $|r|$ through $3|r|$ while (d) illustrates the bulk, and temperatures $T = 0$ (lower), $T = 0.05T_c$ (offset 0.1), $T = 0.1T_c$ (offset 0.2) and $T = 0.15T_c$ (offset 0.3). Parameters are as in Fig. 2.

In summary, we have found evidence for time-reversal symmetry breaking near twin boundaries in a d-wave orthorhombic superconductor at low temperatures $T < T^* < T_c$, where T^*/T_c scales approximately with the size of the bulk d-wave gap. The magnitudes of the complex s-wave components associated with the T-violation depend strongly on the chemical potential and depletion of the carrier density in the twin boundary. These s-wave gap functions could be responsible for the finite Josephson currents observed in c-axis tunnel junctions to heavily-twinned YBCO. As a consequence of the time-reversal breaking, the low energy quasiparticle peak in the tunneling conductance (related to the zero-bias anomaly in STS) is predicted to split in the vicinity of the twin edge.

ACKNOWLEDGMENTS

The authors are grateful to D. Branch, L.-W. Chen, M. Franz, L.H. Greene, K.A. Moler, and M.I. Salkola for their insightful comments. This work has been partially supported by the Natural Sciences and Engineering Research Council of Canada and the Ontario Centre for Materials Research.

1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994); D.J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).
2. P. Chaudhari and S.Y. Lin, Phys. Rev. Lett. 72, 1048 (1994).
3. A.G. Sun, D.A. Gajewski, M.B. Maple and R.C. Dynes, Phys. Rev. Lett. 72, 2267 (1994); A.S. Katz, A.G. Sun, R.C. Dynes, and K. Char, Appl. Phys. Lett. 66, 105 (1995); R. Kleinert et al., Phys. Rev. Lett. 76, 2161 (1996).
4. M.B. Walker, Phys. Rev. B 53, 5835 (1996); M.B. Walker and J. Luettmer-Strathmann, Phys. Rev. B 54, 588 (1996).
5. J.R. Kirtley, et al., Phys. Rev. B 51, 12057 (1995).
6. M. Covington, M.M. Aprili, L.H. Greene, F. Xu, and C.A. Mirkin, unpublished.
7. M. Sigrist, K. Kuboki, P.A. Lee, A.J. Millis, and T.M. Rice, Phys. Rev. B 53, 2835 (1996).
8. M. Sigrist, D.B. Bailey, and R.B. Laughlin, Phys. Rev. Lett. 74, 3249 (1995).
9. M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn. 65, 2194 (1996).
10. M. Fögelstrom, D. Rainer, and J.A. Sauls, unpublished.
11. A. Rosová, C. Boulesteix, and I. Vávra, Physica C 214, 247 (1993).
12. C. O’Donovan, M.D. Lumsden, B.D. Gaulin, and J.P. Carbotte, Phys. Rev. B 55, 9088 (1997).
13. K.A. Moler, J.R. Kirtley, R. Liang, D. Bonn, and W.N. Hardy, unpublished.
14. M. Franz, C. Kallin, P.I. Soininen, A.J. Berlinsky, and A.L. Fetter, Phys. Rev. B 53, 5795 (1996).
15. J.-H. Xu, Y. Ren, and C.-S. Ting, Phys. Rev. B 53, R2991 (1996).
16. M. Franz, C. Kallin, and A.J. Berlinsky Phys. Rev. B 54, R6897 (1996).
17. D.L. Feder and C. Kallin, Phys. Rev. B 55, 559 (1997).
18. R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).
19. P.I. Soininen, C. Kallin, and A.J. Berlinsky, Phys. Rev. B 50, 13883 (1994).
20. Y. Wang and A.H. MacDonald, Phys. Rev. B 52, R3876 (1995).
21. E. Dagotto, A. Nazarenko and A. Moreo, Phys. Rev. Lett. 74, 310 (1995).
22. B. Keimer et al. J. Appl. Phys. 76, 1 (1994).
23. I. Maggio-Aprile et al. Phys. Rev. Lett. 75, 2754 (1995).
24. Y. Zhu and M. Suenaga, in “Interfaces in High-Tc Superconducting Systems,” S.L. Shindé and D.A. Rudman, eds. Springer-Verlag, New York (1994).
25. W.A. Atkinson and J.P. Carbotte, Phys. Rev. B 52, 10 601 (1995).
26. D.N. Basov et al. Phys. Rev. Lett. 74, 598 (1995).
27. C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).