Unitarity Constraints in the standard model with a singlet scalar field

Sin Kyu Kang and Jubin Park

School of Liberal Arts, Seoul-Tech., Seoul 139-743, Korea

Abstract

Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z_2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

PACS numbers: 11.55.-m, 12.60.-i

KEYWORDS: perturbative unitarity bound, singlet scalar, Higgs inflation, dark matter
I. INTRODUCTION

The discovery of a new scalar particle has been announced by both the ATLAS and CMS collaborations at the large hadron collider (LHC) [1, 2]. At present, the physical properties of the observed new scalar particle seem to be consistent with the long-sought Higgs boson in the standard model (SM), and its mass has been observed at 126 GeV with a few GeV uncertainty [3, 4]. Interestingly, such a mass range of the SM-like Higgs can imply that the Higgs potential of the SM develops unstable electroweak vacuum at large field values, depending on the top mass and strong coupling constant with some uncertainties [5]. From the theoretical point of view, the measurements of the Higgs mass can provide us with an useful hint about the structure of the theory at the very short distance through the sizable renormalization group (RG) running of the Higgs quartic coupling.

Recently a very simple and economical way to stabilize the electroweak vacuum at the high energy has been proposed by introducing one singlet scalar particle and its relevant couplings [6]. The existence of a heavy singlet scalar can generate threshold corrections to the quartic Higgs coupling which can help to evade the instability of the vacuum at large field values. On the other hand, embedding the singlet scalar particle in the SM Lagrangian can not only modify the production and/or decay rates of the Higgs field [7, 8] but also supply solutions for dark matter [9, 10], baryogenesis via the first order electroweak phase transition [11] and the unitarity problem of the Higgs inflation [12].

Motivated by the discovery of a new scalar field and the amelioration of the electroweak vacuum stability ascribed to the singlet scalar field embedded in the SM, in this paper, we examine the implication of the perturbative unitarity in the SM extended to contain the singlet scalar particle [13]. On top of the SM contributions to the scattering amplitudes, we estimate new contributions generated due to the existence of the singlet scalar, and then derive some conditions that guarantee the perturbative unitarity of the scattering matrix (S-matrix), which can be translated into some bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we can get the upper bound on the singlet scalar mass. Thanks to the mixing between the singlet and Higgs scalars, the unitarity bound on the singlet scalar mass depends on the mixing angle between two scalar fields. As will be shown, the unitarity bound gets stronger as the mixing angle goes up to maximal. On the other hand, the mass of the Higgs scalar can
be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. The upper bound on the Higgs mass derived from the unitarity of the S-matrix in the SM is well known as the so-called Lee-Quigg-Thacker (LQT) bound. The LQT bound is modified and can appear to be severer in the presence of the singlet scalar field. Although the upper bound on the Higgs mass we derive is not useful to study low energy phenomenology due to the measurement of the Higgs mass at the LHC, it can be applied to the scenario of the unitarized Higgs inflation. We will discuss how the unitarity condition can constrain the Higgs inflation. In the model with Z_2 symmetry, the mass of the singlet scalar is not constrained by the unitarity itself because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we can derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity.\footnote{In \cite{13}, the authors have studied the unitarity conditions in the similar model, but considered only limited cases. The unitarity bound in the models with two Higgs doublets and a triplet scalar have been studied in \cite{14} and \cite{15}, respectively.}

This paper is organized as follows. In Sec. II, we briefly present the extension of the SM containing a singlet scalar model and show how three scalar couplings ($\lambda_H, \lambda_S, \lambda_{HS}$) in the model are related to two physical scalar masses, two mixing angles and VEV. In Sec. III, we derive the unitarity condition on the scattering amplitudes by analyzing the eigenvalues of the S-matrix presented in terms of those scalar couplings. From the numerical analysis, we show how severe the unitarity conditions can constrain the masses of the scalar fields. In Sec. IV, we discuss about the applications of the unitarity conditions to the unitarized Higgs inflation and the singlet scalar dark matter model, and show how they are useful to get some constraints on the model parameters. Some useful formulae for the amplitudes of the scattering processes will be given in the Appendix.

II. MINIMAL MODEL WITH THE SINGLET SCALAR

The full Lagrangian considered in this paper simply consists of the SM Lagrangian \mathcal{L}_{SM} and extra terms associated with the singlet scalar S,

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_\mu S \partial^\mu S - \frac{1}{2} \mu_S^2 S^2 + \frac{1}{4} \lambda_S S^4 + \frac{1}{2} \lambda_{HS} (H^\dagger H) S^2, \quad (1)$$
where H is the SM Higgs doublet and \mathcal{L}_{SM} contains the Higgs potential given as $-\mu^2 H^\dagger H + \lambda_H (H^\dagger H)^2$. Note that the singlet scalar S only couples to the SM Higgs H among the SM particles and our results are irrespective of whether S is a complex or real singlet scalar. Here, we consider two cases depending on whether the singlet scalar S develops VEV or not. As will be shown later, the implications on the unitarity condition depend on whether the VEV of S is developed or not.

1. Case for $\langle S \rangle \neq 0$

Let VEVs of the neutral components of H and S to be $\langle H \rangle = \frac{1}{\sqrt{2}} v$ and $\langle S \rangle = \eta$, where $v = (\sqrt{2} G_F)^{-1/2}$ and the value of η is not determined from low energy experiments. After two scalar fields H and S get VEVs, they are written by

$$H = \begin{pmatrix} w^+ \\ \frac{1}{\sqrt{2}} (h + i z + v) \end{pmatrix}, \quad S = (s + \eta),$$

where the Goldstones w^+, z are eaten by charged and neutral weak gauge bosons, W and Z, in the SM, respectively. Substituting these into the Lagrangian, we obtain mixing terms between two neutral fields h and s which are superpositions of two physical states (h_1, h_2) given as follows:

$$\begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix},$$

where the mixing angle $\alpha (-\pi/2 \leq \alpha \leq \pi/2)$ is given by

$$\tan \alpha = \frac{-2(\lambda_H c_\beta^2 - \lambda_S s_\beta^2) \pm \sqrt{4(\lambda_H c_\beta^2 - \lambda_S s_\beta^2)^2 - \lambda_H^2 c_\beta^2 s_\beta^2}}{\lambda_{HS} c_\beta s_\beta},$$

with $c_\beta \equiv \cos \beta = v/\sqrt{v^2 + \eta^2}$, $s_\beta \equiv \sin \beta = \eta/\sqrt{v^2 + \eta^2}$, and $\tan \beta = \eta/v$. For our convenience, we express three scalar quartic couplings λ_i in terms of the physical scalar masses, m_{h_1} and m_{h_2}, and two mixing angles, α and β,

$$\lambda_H = \frac{1}{4 c_\beta^2 \xi^2} \left(m_{h_1}^2 c_\alpha^2 + m_{h_2}^2 s_\alpha^2 \right),$$

$$\lambda_S = \frac{1}{4 s_\beta^2 \xi^2} \left(m_{h_1}^2 s_\alpha^2 + m_{h_2}^2 c_\alpha^2 \right),$$

$$\lambda_{HS} = \frac{s_\alpha}{s_\beta} \xi^2 \left(m_{h_1}^2 - m_{h_2}^2 \right).$$
where $\xi^2 = v^2 + \eta^2$. We will assume that h_1 is always lighter than h_2, and denote their masses as m_h and m_s, respectively. Finally, the conditions derived from the fact that the potential should be bounded from below and all masses squared be positive are given by

$$\lambda_H > 0, \quad \lambda_S > 0, \quad 4\lambda_H \lambda_S \geq \lambda_{HS}^2, \quad 2\lambda_H c_\beta^2 + 2\lambda_S s_\beta^2 > 0.$$ \hspace{1cm} (8)

2. Case for $< S > = 0$

Imposing Z_2 symmetry where only singlet s is Z_2-odd charged while other all fields are Z_2-even charged, the singlet s can not get a nontrivial VEV and can be regarded as a good candidate for dark matter. As will be shown later, the size of the S-matrix is reduced in this case because some scattering channels are forbidden by the Z_2 symmetry.

It is important to notice that there are no bi-linear mixing terms ($\sim hs$) between h and s because the singlet s does not develop the VEV. In this case, the mass of singlet scalar s is given by

$$m_s^2 = \mu_s^2 + \lambda_{HS} v^2.$$ \hspace{1cm} (9)

Contrary to the previous case ($< S > \neq 0$), m_s has nothing to do with λ_H.

The vacuum stability gives rise to the same conditions as in the previous case except for the third one in the Eq. (8). Requiring that the vacuum is located at the global minimum of the potential, we get the inequality given by

$$0 < \mu_s^2 < \sqrt{\lambda_S \lambda_{HS}} v^2.$$ \hspace{1cm} (10)

III. UNITARITY OF S-MATRIX AND NUMERICAL ANALYSIS

Now let us consider various two-body scattering processes to derive the perturbative unitarity bound. Before calculating the two-body scattering amplitudes, recall that the eigenvalues of the S-matrix does not depend on the choice of basis of the states. So, for our convenience, we take weak eigenstates instead of mass eigenstates in the calculation simply because only scalar field h couples to the gauge bosons. Besides, since three external longitudinal gauge bosons can be replaced by corresponding Goldstone modes thanks to Goldstone-boson equivalence theorem, the amplitudes for two-body scattering processes we
consider are equivalent to those with longitudinal gauge bosons up to terms of \(O(M_W^2/s) \) which are negligible when \(s \gg M_W^2 \).

With the help of the partial wave decomposition, the scattering amplitude \(\mathcal{M} \) is written by

\[
\mathcal{M}(s, t, u) = 16\pi \sum_{J=0}^{\infty} (2J + 1) P_J(\cos\theta) a_J(s),
\]

where \(s, t, u \) are Mandelstam variables, \(a_J(s) \) is the spin \(J \) partial wave and \(P_J \) are Legendre Polynomials. The differential cross section is given by

\[
\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2,
\]

and by using the orthogonality of Legendre polynomial the cross section becomes

\[
\sigma = \frac{16\pi}{s} \sum_{J=0}^{\infty} (2J + 1)|a_J|^2.
\]

Applying the optical theorem that the cross section is proportional to the imaginary part of the amplitude in the forward direction, \(\mathcal{M}(\theta = 0) \), given by

\[
\sigma = \frac{1}{s} \Im[\mathcal{M}(\theta = 0)],
\]

we obtain the following unitarity constraint,

\[
|a_J|^2 = \Im(a_J), \quad \text{for all } J. \tag{15}
\]

It leads to the famous unitarity constraint of the partial wave amplitude \(a_J \) with the identity

\[
\Re(a_J)^2 + \Im(a_J)^2 = |a_J|^2; \quad |a_J|^2 \leq \frac{1}{2}. \tag{16}
\]

The \(J \)th partial wave amplitude can be obtained by inverting Eq. (11),

\[
a_J(s) = \frac{1}{32\pi} \int_{-1}^{1} dz P_J(z) \mathcal{M}(s, t, u),
\]

where the \(z \) is the cosine of scattering angle. To derive unitary bound, it is enough to focus on only \(J = 0 \) s-wave amplitude \(a_0(s) \) with vanishing external particle masses whose general form can be written by

\[
a_0(s) = \frac{1}{16\pi} \left[A - B_h^2 \left(\frac{1}{s - m_h^2} - \frac{\theta_t + \theta_s}{s} \ln(1 + \frac{s}{m_h^2}) \right) - B_s^2 \left(\frac{1}{s - m_s^2} - \frac{\theta_t + \theta_s}{s} \ln(1 + \frac{s}{m_s^2}) \right) \right],
\]

(18)
where A comes from the four point vertex, and the $B_h(B_s)$ is related with three point vertex with external $h(s)$ fields, and $\theta_t, \theta_s = 0$ or 1 depending on the contributions of t and u channels in the process. So, the upper bounds on the scalar masses can be derived from

$$|a_0| \leq \frac{1}{2}. \quad (19)$$

A. Case for $< S > \neq 0$

1. Limit of $s \gg m_h^2, m_s^2$

The neutral states contributing to the scattering amplitudes are $|W^+W^-\rangle$, $|\sqrt{2}ZZ\rangle$, $|\sqrt{2}hh\rangle$, $|\sqrt{2}ss\rangle$, $|\sqrt{2}hs\rangle$, $|hZ\rangle$ with suitable normalization factor 1 or $\frac{\sqrt{2}}{2}$.

Their contributions to the scattering amplitude can be presented by 6×6 matrix form, and we denote it as T_0. We note that the existence of the states such as $|\sqrt{2}ss\rangle$ and $|\sqrt{2}hs\rangle$ can make the eigenvalues of T_0 different from those in the SM.

For the $s \gg m_h^2, m_s^2$, the matrix T_0 in the basis $(|W^+W^-\rangle, |\sqrt{2}ZZ\rangle, |\sqrt{2}hh\rangle, |\sqrt{2}ss\rangle, |\sqrt{2}hs\rangle, |hZ\rangle)$ takes the following form,

$$T_0 \rightarrow \left(-\frac{\lambda_H}{4\pi} \right) \cdot \begin{pmatrix}
1 & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{8}} & \frac{3}{4} & \frac{1}{4} & 0 & 0 & 0 \\
\frac{1}{\sqrt{8}} & \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{3}{4}B & \frac{3}{4}A & 0 \\
0 & 0 & 0 & 0 & \frac{3}{4}B & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}, \quad (20)$$

where the A and B correspond to the scattering processes $ss \rightarrow ss$ and $hh \rightarrow ss$, respectively. It is easy to check that Feynmann diagrams involving four vertex couplings can only survive in that limit at the tree level because other scattering channels are suppressed by the factor $1/s$ in the propagators. The parameters A and B are given in terms of the couplings by

$$A \equiv \frac{\lambda_S}{\lambda_H}, \quad B \equiv \frac{\lambda_{HS}}{6\lambda_H}. \quad (21)$$

2 In fact, there also exist charged states whose contributions are simply presented by block diagonal elements of T_0 leading to an eigenvalue $1/2$ which can not affect our results and discussion. So we do not consider those contributions here.
FIG. 1: Allowed regions by both vacuum stability and perturbative unitarity in the plain (λ_H and λ_S) for $\lambda_{HS} = 0$ (red), 1 (orange), 5 (yellow) and 9.8 (greens). The perturbative unitarity is imposed by taking the largest eigenvalues of T_0. No allowed region exists for $\lambda_{HS} > 9.8$.

Note that they are the ratios of the singlet relevant quartic couplings λ_H and λ_{HS} to the SM quartic coupling λ_H. Taking A and B to be zero, the matrix form becomes equivalent to the 4×4 matrix form of the SM, and we get the well-known perturbative unitarity bound called Lee-Quigg-Thacker bound \cite{16, 17} on the Higgs mass in the SM,

$$M_H \leq \left(\frac{8\sqrt{2}\pi}{3G_F} \right)^{\frac{1}{2}} \equiv M_{LQT} \approx 1\text{TeV},$$

where $|a_0| \leq 1$ has been applied and the highest eigenvalue $3/2$ has been taken from the original 4×4 matrix. The eigenvalues of the matrix T_0 are composed of 4 eigenvalues derived from the 4×4 sub-matrix located at the left upper part of T_0 and two diagonal components of T_0, $\frac{3}{4}B$ and $\frac{1}{2}$. From the 4×4 sub-matrix, we can get the characteristic polynomial given by

$$\begin{align*}
\left[\Lambda - \frac{1}{2}\right] & \left[\Lambda^3 - (A + 2)\Lambda^2 + \left(2A - B^2 + \frac{3}{4}\right)\Lambda - \left(\frac{3}{4}A - \frac{5}{4}B^2\right)\right] = 0.
\end{align*}$$

It is obvious that one solution of Eq. (23) is $1/2$, and the others are obtained by solving the cubic equation with respect to Λ. Since the cubic equation contains three unknown
parameters, we first fix the value of λ_{HS} and then numerically get the solutions by varying the values of λ_H and λ_S. Once we obtain the eigenvalues of the matrix T_0 (denoted as c_i), we can derive the perturbative unitarity bound generally given by

$$\left| \frac{\lambda_H}{4\pi} \cdot c_i \right| < \frac{1}{2}. \quad (24)$$

Note that the above inequality with $c_i = 1/2$ can naively be regarded as a perturbative condition on the coupling λ_H, $\lambda_H \leq 4\pi$. Thus, one can get stronger bound than the naive perturbative one as long as any eigenvalue of T_0 is larger than $1/2$. With the help of Eqs. (5,6,7), the bound on the coupling is translated into the bound on the mass given by

$$m^2_h c^2_\alpha + m^2_s s^2_\alpha < \frac{8\pi}{|c_i|} \xi^2 c_i^2 = \frac{8\pi v^2}{G_F|c_i|} = \frac{3}{2}|c_i| M^2_{LQ} \cdot \quad (25)$$

In the left panel of Fig.1, we display how the regions of the parameter space in the plain (λ_S, λ_H) for a fixed value of $\lambda_{HS}(=9.8)$ can be allowed by the vacuum stability and perturbative unitarity. The purple and blue regions are allowed by the vacuum stability and unitarity, respectively. Thus, the overlapped region is consistent with both conditions. The right panel of Fig.1 shows how the allowed region by both conditions varies with different choice of λ_{HS}. The red, orange, yellow and green regions correspond to $\lambda_{HS} = 0, 1, 5$ and 9.8, respectively. As λ_{HS} increases, the allowed region gets narrower. In our numerical analysis, we found that there is no allowed region in the plain (λ_S, λ_H) for $\lambda_{HS} > 9.8$.

Fig.2 shows how the eigenvalues of Eq. (23) are determined by varying both λ_H and λ_S for given value of λ_{HS}. Notice that the contour plots displayed in Fig.2 correspond to the largest eigenvalues among three for fixed λ_{HS}, whose numbers are presented in the rectangular boxes on each panels. The other two eigenvalues are not presented because they do not lead to stronger bounds. The left (right) panels correspond to $\lambda_{HS} = 0 (9.8)$. We also show the allowed regions obtained by imposing the vacuum stability Eq. (8) and perturbative unitarity condition Eq. (24). The red and black curves represent the boundaries of the allowed regions. As shown in Fig.2, constraint by the vacuum stability is more severe than that by the perturbative unitarity in the case of $\lambda_{HS} \sim 0$, whereas vice verse in the case of $\lambda_{HS} = 9.8$. As mentioned before, the largest eigenvalues of the matrix T_0 can lead to the strongest perturbative unitarity bound. As can be seen from the panels in Fig.2, the allowed largest eigenvalue is reached to 3 (2) for $\lambda_{HS} \sim 0 (9.8)$, which in the end leads to much stronger unitarity bound, compared with that in the SM where the largest eigenvalue
FIG. 2: Contour plots of the possible largest eigenvalues for Eq. (23) as a function of quartic couplings λ_H and λ_S. Left (right) panel corresponds to $\lambda_{HS} \sim 0$ ($\lambda_{HS} = 9.8$), and red and black lines denote the boundaries of allowed regions derived from the vacuum stability and perturbative unitarity bound, respectively.

is $3/2$. 3

As can be seen from the inequality (25), the perturbative unitarity bound is translated as the mass bound for the singlet scalar. Substituting the Higgs mass m_h for the measured values of the boson mass at the LHC we can get upper bound on the mass of the singlet scalar. Fig. 3 shows the allowed region of m_s by the perturbative unitarity along with the mixing angle α for the largest eigenvalues $c_{\text{max}} = 2$ (upper panel) and $c_{\text{max}} = 3$ (lower panel). The grey (orange) region corresponds to $|a_0| < 1$ ($|a_0| < \frac{1}{2}$). In each panel the grey region is introduced as a reference. It is obvious that the allowed region of m_s for $|a_0| \leq 1/2$ is narrower than that for $|a_0| \leq 1$. As can be seen from the insets of Fig. 3, for example, the bound on m_s is around 5 TeV for $c_{\text{max}} = 2$, and 4 TeV for $c_{\text{max}} = 3$ in the case of $\alpha \sim 0.1$. In the large mixing case ($\alpha \sim \pi/2$), we get very strong unitarity bounds on m_s. Numerically, they correspond to 1 TeV ($c_{\text{max}} = 1$), 500 GeV ($c_{\text{max}} = 2$), and 400 GeV ($c_{\text{max}} = 3$), respectively. Since the upper bound on m_s diverges in the limit of mixing angle

3 Since T_0 has at least an eigenvalue $1/2$, it is automatically satisfied with the perturbative condition of the quartic coupling given as $\lambda_H \leq 4\pi$.

10
FIG. 3: Allowed regions of m_s by the perturbative unitarity for $c_{\text{max}} = 2$ (upper) and 3 (lower). In each panel the regions in grey and orange correspond to $|a_0| < 1$ and $|a_0| < 1/2$, respectively. The insets in each panel show that the upper bounds on m_s diverge when $\alpha \to 0$.
$\alpha \rightarrow 0$ as can be seen from two insets of Fig. 3, there is no bound on m_s in the case that the light scalar field is perfectly the SM-like Higgs scalar. Note that the unitarity bound on m_s for $\alpha = \pi/2$ is 10 times larger than that for $\alpha = 0.1$ because m_s is multiplied by s_α^2 in the (25).

2. Limit of $s \gg m_h^2$ and $s \sim 4m_s^2 \sim (1 \text{ TeV})^2$

The matrix T_0 in this limit takes the form

$$T_0 \rightarrow \left(-\frac{\lambda_H}{4\pi} \right) \cdot \begin{pmatrix}
1 & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{2}} & C & \frac{1}{\sqrt{2}} & G & 0 \\
\frac{1}{\sqrt{8}} & \frac{3}{4} & \frac{1}{4} & \frac{1}{4} & C & \frac{1}{\sqrt{2}} & G & 0 \\
\frac{1}{\sqrt{8}} & \frac{1}{4} & \frac{3}{4} & \frac{1}{4} & C & \frac{1}{\sqrt{2}} & G & 0 \\
\frac{1}{\sqrt{8}} & \frac{1}{2} & \frac{3}{4} & \frac{1}{4} & C & \frac{1}{\sqrt{2}} & G & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{3}{4} & \frac{1}{4} & C & \frac{1}{\sqrt{2}} & G & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}$$

(26)

where C, D, E, F and G denote the factors of the amplitudes corresponding to the channels given by,

$$C : a_0(W^+W^- \rightarrow ss) = a_0(ZZ \rightarrow ss) , \quad (27)$$
$$D : a_0(hs \rightarrow hs) , \quad (28)$$
$$E : a_0(ss \rightarrow hs) , \quad (29)$$
$$F : a_0(hh \rightarrow hs) , \quad (30)$$
$$G : a_0(W^+W^- \rightarrow hs) = a_0(ZZ \rightarrow hs) , \quad (31)$$

Their explicit amplitudes are presented in the appendix. We note that the Feynman diagrams for the amplitudes associated with C, E, F and G contain propagators of the singlet scalar. In the limit of large s, those amplitudes become negligible, so the matrix T_0 becomes the same form as in the case of $s \gg m_h^2, m_s^2$.

On top of an eigenvalue, 1/2, directly taken from the diagonal component of T_0, we can obtain 5 eigenvalues by solving characteristic equation for the non-diagonal 5×5 sub-matrix located at the upper left side of T_0. Similar to the previous case, we display in Fig. 4 contour plots corresponding to the largest eigenvalues among five for both fixed λ_{HS}. Here we choose $s \sim 1 \text{ TeV}$, and take $m_s(m_h)$ to be 450(126) GeV. Note that Left(right) panel corresponds to
FIG. 4: The same as in Fig. 2, but left (right) panel corresponds to $\lambda_{HS} \sim 0.1(\lambda_{HS} = 8.87)$ in the limit of $s \gg m_h^2$ and $s \sim 4m_s^2 \sim (1 \text{ TeV})^2$.

$\lambda_{HS} = 0.1(8.87)$, where 8.87 is derived in the same way described in the previous subsection. While most eigenvalues satisfying vacuum stability and perturbative unitarity are not larger than $3/2$ corresponding to the usual SM maximal eigenvalue, there exist several eigenvalues larger than $3/2$. But, as can be seen from the right panel in Fig. 4, the largest eigenvalue for $\lambda_{HS} = 8.87$ is at best $2/5$. Thus, the perturbative unitarity bound in this case appears to be weaker than that in the case $s \gg m_h^2, m_s^2$.

B. Case for $< S >= 0$

In this case, the matrix T_0 can be reduced to a simpler form because of the \mathbb{Z}_2-odd charge of singlet s. It is worthwhile to notice that there is no s-h-h coupling because the singlet scalar s can not develop the VEV, $\langle s \rangle = 0$, and the odd parity of s forbids the processes $W^+W^- \rightarrow hs$, $ZZ \rightarrow hs$, $hh \rightarrow hs$ and $hs \rightarrow ss$. Thus, turning off the parameters E, F
and \(G \) in the matrix form given by Eq. (26), we get the matrix \(T_0 \) for this case as follows:

\[
T_0 \rightarrow \left(\frac{-\lambda_H}{4\pi} \right) \cdot \begin{pmatrix}
1 & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{2}} C & 0 & 0 \\
\frac{1}{\sqrt{8}} & \frac{3}{2} & 0 & \frac{1}{2} C & 0 \\
\frac{1}{\sqrt{8}} & \frac{1}{2} & \frac{3}{2} & \frac{3}{4} B & 0 \\
\frac{1}{\sqrt{2}} C & \frac{1}{2} C & \frac{3}{4} B & \frac{3}{4} A & 0 \\
0 & 0 & 0 & 0 & \frac{3}{4} D \\
0 & 0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}.
\] (32)

1. \textbf{Limit of} \(s \gg m_h^2, m_s^2 \)

In this limit, the elements of matrix \(T_0 \) proportional to \(C \) vanish and only the tree-level four-point vertex contributions can remain. The parameter \(D \) becomes the same as \(B \). Consequently, the form of the matrix \(T_0 \) becomes the same as that given in the previous subsec. III A 1, so the largest eigenvalue of \(T_0 \) is 3. However it just gives the upper bound on the Higgs mass because of no mixing between the Higgs and the singlet scalar. Taking \(\alpha = 0 \) and \(c_{\text{max}} = 3 \), we get the upper bound on the Higgs mass given as,

\[
m_h \leq \frac{1}{\sqrt{2}} M_{LQT}.
\] (33)

Note that although there is no bound on the mass of the singlet \(s \) in this case, there is still constraint on the coupling \(\lambda_{HS} \) arisen from the same structure of \(T_0 \).

2. \textbf{Limit of} \(s \gg m_h^2 \) \textbf{and} \(s \sim 4m_s^2 \)

The non-trivial characteristic polynomial for the upper \(4 \times 4 \) block of the matrix \(T_0 \) which has a trivial eigenvalue \(1/2 \) is given by

\[
(64\Lambda^3 + (-128 - 48A)\Lambda^2 + (48 + 96A - 36B^2 - 48C^2)\Lambda - 36A + 45B^2 - 36BC + 36C^2) = 0.
\] (34)

In Fig. 5, we display contour plots representing the largest eigenvalues obtained by numerically solving Eq. (34). Because of no mixing between the Higgs and singlet scalars, the coupling \(\lambda_{HS} \) does not affect the determination of the eigenvalues at all, contrary to the previous cases. Here we take \(s \sim 1 \text{ TeV}^2, m_h = 126 \text{ GeV} \) and \(m_s = 450 \text{ GeV} \) as in the
FIG. 5: Contour plots of the possible largest eigenvalues for Eq. (34) as a function of quartic couplings λ_H and λ_S.

previous subsection. We see from Fig. 5 that the largest eigenvalue is determined to be around $3/2$ irrespective of the value of λ_{HS}. Note that non-negligible matrix elements can lower the largest eigenvalue compared with the one in the limit of $s \gg m_h^2, m_s^2$. The upper bound on m_h corresponding to the largest eigenvalue $3/2$ is given by

$$m_h \leq \sqrt{2} M_{LQT}.$$ \hspace{1cm} (35)

IV. IMPLICATIONS AND CONCLUSION

Requiring perturbative unitarity of the S-matrix in the SM extended to contain a singlet scalar, we could get some bounds on the scalar masses. In particular, we derived the upper bound on the singlet scalar mass by taking the Higgs mass to be 126 GeV measured by the LHC. In Table II we summarize the upper bounds on the scalar masses along with the limits of the center-of-mass energy s (first column), the largest eigenvalues of T_0 (second), the discrete symmetry of model (third), mixing angle (α) (fifth) and the coupling λ_{HS} (sixth).

Based on the upper bounds on the scalar masses we derived, let us discuss the implications of those bounds on two interesting scenarios in which scalar fields play a crucial role in solving problems of inflation and dark matter.
TABLE I: Upper bounds on the scalar masses along with the limits of the center-of-mass energy s (first column), the largest eigenvalues of T_0 (second), the discrete symmetry of model (third), mixing angle (α) (fifth) and the coupling λ_{HS} (sixth).

Condition	c_{max}	Sym.	Mass bound	Mixing angle (α)	λ_{HS}
$s \gg m_h^2$, m_s^2	3	\times	$m_s \leq 4.5$ TeV (400 GeV)	$\alpha \sim 0.1 (1.5)$	0 \sim 9.8
$s \gg m_h^2$, $s \sim 4m_s^2 \sim 1$ TeV	$5/2$	\times	$m_s \leq 6$ TeV (550 GeV)	$\alpha \sim 0.1 (1.5)$	0 \sim 8.87
$s \gg m_h^2$, m_s^2	3	\mathbb{Z}_2	$m_h \leq (1/\sqrt{2}) M_{\text{LQT}} \approx 707$ GeV	\times	0 \sim 9.8
$s \gg m_h^2$, $s \sim 4m_s^2 \sim 1$ TeV	$3/2$	\mathbb{Z}_2	$m_h \leq \sqrt{2} M_{\text{LQT}} \approx 1404$ GeV	\times	0 \sim 8.87

A. Unitarized Higgs inflation

Recently, it has been proposed that cosmic inflation can be driven by the SM Higgs with a large non-minimal coupling to Ricci scalar $[18]$, namely $\xi H^1 HR$ and $\xi \sim 10^4$. But soon it was pointed out that the original Higgs inflation model can be afflicted with the unitarity problem due to non-minimal Higgs couplings $[19]$. To resolve the unitarity problem while maintaining perturbativity up to the cut-off (Λ) scale of the model, an additional gauge-singlet scalar is introduced $[12]$ or appropriate counter terms are taken into account $[6]$.

Here we mainly concentrate on the unitarized (explicitly, the linear σ model type) Higgs inflation model that has an additional singlet scalar s. In this scenario, a state composed of both the Higgs and the singlet scalar plays the role of inflaton $[20]$. Therefore, this scenario requires nontrivial VEV of the singlet scalar so as to generate a mixing between the singlet and Higgs scalars. The relevant Lagrangian of the model in the Jordan frame is given by

$$\mathcal{L}_{\text{Jordan}}/\sqrt{-g} = -\frac{1}{2} M_{\text{Pl}}^2 R - \frac{1}{2} \xi_h h^2 R - \frac{1}{2} \xi_s s^2 R + \frac{1}{2} (\partial_\mu h)^2 + \frac{1}{2} (\partial_\mu s)^2 - V(h, s)$$ (36)

where $\xi_{h,s} > 0$ are dimensionless parameters that can control the inflation in the early universe at the large field value. The scalar potential $V(h, s)$ in this scenario has the following form,

$$V = \frac{1}{4} \lambda_h h^4 + \frac{1}{4} \lambda_s s^4 + \frac{1}{4} \lambda_{hs} h^2 s^2 + \frac{1}{2} m_h^2 h^2 + \frac{1}{2} m_s^2 s^2.$$ (37)
Note that the potential is exactly the same as the one given by Eq. (1)\(^4\).

Using Eq. (25) in this scenario, we can easily obtain an inequality for the mixing angle α given as

$$
\alpha < \sin^{-1} \left[\left(\frac{3M^2_{LQT}}{2c_i} - m_h^2 \right) / \left(m_s^2 - m_h^2 \right) \right],
$$

(38)

In Fig. 6 we plot the upper bound on the mixing angle α as a function of the mass of the singlet scalar S in the limit of $m_s \gg m_h$ after taking the Higgs mass to be 126 GeV. Interestingly, in Fig. 6 we can easily see that the mixing angle α should be very small,

$$
\alpha \leq [10^{-9}, 10^{-13}] \text{ on } M_s \in [10^{12}, 10^{16}].
$$

(39)

Imposing the COBE result for normalization of the power spectrum \(^2\) on the parameters, we can get the relation,

$$
\sqrt{\frac{\lambda_s}{\xi_s}} = 2 \times 10^{-5} \sqrt{\frac{\lambda_h}{\lambda_h - \lambda_{hs}^2 / \lambda_s}};
$$

(40)

which is translated into the mass relation for the singlet scalar S given by \(^6\)

$$
M_s^2 \simeq \frac{\lambda_s M_{Pl}^2}{3 \xi_s^2},
$$

(41)

where M_{Pl} is the Planck Mass in the given model. From the above COBE constraint, we get $M_s \approx 10^{13}$ GeV and it is represented in Fig. 6 by a dashed red line. We see from Fig. 6 that the COBE constraint leads to the upper bound on the mixing angle, $\alpha \leq 10^{-10}$. From our numerical analysis, we found that the change of eigenvalue from $\frac{5}{2}$ to 3 does not affect the allowed range of α. In fact, it is obvious that such a tiny value of α comes from a big mass hierarchy between the Higgs and the singlet scalars in this scenario.

B. TeV scale singlet dark matter

Regarding the singlet scalar as a TeV scale dark matter candidate (DM) \(^10\), let us discuss how the perturbative unitarity condition can constrain the model parameter by combining it with the relic density of DM. The annihilation cross section of the singlet scalar DM into two Higgs bosons in the limit of $m_s \gg m_h$ is simply given by

$$
\langle \sigma_{ss \rightarrow hh} \rangle \approx \frac{\lambda_{hs}^2}{16\pi m_s^2},
$$

(42)

\(^4\) For a review on the unitarized Higgs inflation model, see the Ref. \(^20\).
where the v is the relative velocity of the annihilation particles, and the bracket denotes the thermal average. Note that the above annihilation channel is dominant over the other annihilation channels such as $ss \to ww/zz$ in the case of $m_s \sim 1$ TeV. We see that the relic density of the singlet scalar DM depends on the coupling λ_{HS} and its mass m_s. Combining the unitarity constraint on the coupling λ_{HS} with the measurement of the relic density, we can derive some bound on the mass of the singlet scalar. From the 9-year WMAP result for the cold dark matter density given by $\Omega_{DM} h^2 = 0.1138 \pm 0.0045 \ [22]$, we obtain the following relation

$$\Omega_{DM} h^2 \approx \frac{1.04 \times 10^5 \text{GeV}^{-1}}{M_P} \frac{x_F}{g_* \langle \sigma_{ss \to hh} v \rangle},$$

(43)

where M_P is the Planck mass ($\approx 1.22 \times 10^{19}$ GeV), $x_F = m_S/T_F$ with the freeze-out temperature T_F, and the g_* the effective number of relativistic degrees of freedom at freeze-out. The suitable values of x_F and g_* are about 25 and 90, respectively.\(^5\) Fig. 7 shows how the upper bound on the singlet scalar mass as a DM candidate can be determined by imposing the perturbative unitarity constraint on λ_{HS} to the prediction of the relic density

\(^5\) see Ref. [10] for the details on the singlet scalar dark matter model and the constants required in the calculation of the DM relic density.
FIG. 7: Allowed region of the parameter space in the plain \((m_s, \lambda_H)\) from the observed DM abundance at 1\(\sigma\) C.L. The blue region is disallowed by the unitarity condition, and the black dashed line represents the upper bound on \(m_s \leq 30.490\) TeV.

In conclusion, we have studied the implication of the perturbative unitarity in the SM extended to include the singlet scalar particle. Taking into account full contributions to the scattering amplitudes, we have derived unitarity conditions on the S-matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we could get the upper bound on the singlet mass

\[
m_s \leq 30.490\ \text{TeV}.^6
\]

In Ref.\[10\], the authors have studied TeV scale singlet scalar dark matter by restricting the cutoff scale of the model to be a few TeV. But, our analysis shows that there exists a valid perturbative regime up to 30 TeV.

\[6\] In Ref.\[10\], the authors have studied TeV scale singlet scalar dark matter by restricting the cutoff scale of the model to be a few TeV. But, our analysis shows that there exists a valid perturbative regime up to 30 TeV.
scalar mass varying with the mixing angle between the singlet and Higgs scalars. While the bound becomes divergent in the decoupling limit ($\alpha \to 0$), the bound becomes very strong, $m_s \lesssim 400$ GeV, as the mixing angle α reaches maximal. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. We found that the unitarity bound on the Higgs mass is modified and can appear to be severer in the presence of the singlet scalar field. We have shown how the unitarity condition can constrain the unitarised Higgs inflation, and found that a tiny mixing angle $\alpha \sim 10^{-10}$ is required for the singlet scalar with around 10^{13} GeV in the model. The singlet scalar mass is not constrained by the unitarity itself when we impose Z_2 symmetry in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we have derived upper bound on the singlet scalar mass, $m_s \lesssim 30$ TeV, by combining the observed relic abundance with the unitarity.
\textbf{(Appendix: amplitudes of scattering processes)}

We here present the explicit S-wave partial amplitudes to calculate the perturbative unitarity bound in the convention of ref. [13]. First the Z_2-charge conserving transitions are:

\begin{align}
\bullet \ a_0(hh \rightarrow hh) &= -\frac{\lambda_H}{4\pi} \kappa_{hh-hh} \left(\frac{3}{2} \right) \left[1 + \frac{3m_h^2}{s-m_h^2} - \frac{6m_h^2}{s-4m_h^2} \ln \left(\frac{s}{m_h^2} - 3 \right) \right] \\
+ \delta^2 \tan^2 \beta \left(\frac{3m_h^2}{s-m_h^2} - \frac{6m_h^2}{s-4m_h^2} \ln \left(\frac{s-4m_h^2}{m_h^2} + 1 \right) \right), \\
\bullet \ a_0(ss \rightarrow ss) &= -\frac{\lambda_H}{4\pi} \kappa_{ss-ss} \left(\frac{3}{2} \right) \left[\delta + \delta^2 \left(\frac{3m_h^2}{s-m_h^2} - \frac{6m_h^2}{s-4m_h^2} \ln \left(\frac{s-4m_h^2}{m_h^2} + 1 \right) \right) \right] \\
+ \delta^2 \tan^2 \beta \left(\frac{3m_h^2}{s-m_h^2} - \frac{6m_h^2}{s-4m_h^2} \ln \left(\frac{s^2}{m_h^2} - 3 \right) \right), \\
\bullet \ a_0(ss \rightarrow hh) &= \frac{\lambda_H}{4\pi} \kappa_{ss-hh} \left(\frac{3}{2} \right) \left[\delta + \delta^2 \left(\frac{3m_h^2}{s-m_h^2} - \frac{6m_h^2}{s-4m_h^2} \ln \left(\frac{s-4m_h^2}{m_h^2} + 1 \right) \right) \right] \\
\times \ln \left(1 + \frac{2 \sqrt{s-4m_h^2} \sqrt{s-4m_h^2}}{s-4m_h^2} \right) + \delta \tan \beta \left(\frac{3m_h^2}{s-m_h^2} \right), \\
\bullet \ a_0(hs \rightarrow hs) &= -\frac{\lambda_H}{4\pi} \kappa_{hs-hs} \left(\frac{3}{2} \right) \left[\delta + \delta^2 \left(\frac{3m_h^2}{s-m_h^2} - \frac{6m_h^2}{s-4m_h^2} \ln \left(\frac{s-4m_h^2}{m_h^2} + 1 \right) \right) \right] \\
- \delta^2 \left(\frac{3m_h^2}{s-m_h^2} \right) \ln \left(\frac{s^2 - (2m_h^2 + m_s^2)}{s - m_h^2} \right) + \delta \tan \beta \left(\frac{3m_h^2}{s-m_h^2} \right) \\
- \delta \tan \beta \left(\frac{3m_h^2}{s-m_h^2} \right) \ln \left(\frac{s^2 - (2m_h^2 + m_s^2)}{s - m_h^2} \right) \\
- \delta \tan \beta \left(\frac{3m_h^2}{s-m_h^2} \right) \ln \left(\frac{s^2 - (2m_h^2 + m_s^2)}{s - m_h^2} \right) \\
- \delta \tan \beta \left(\frac{3m_h^2}{s-m_h^2} \right) \ln \left(\frac{s^2 - (2m_h^2 + m_s^2)}{s - m_h^2} \right) \\
- \delta \tan \beta \left(\frac{3m_h^2}{s-m_h^2} \right) \ln \left(\frac{s^2 - (2m_h^2 + m_s^2)}{s - m_h^2} \right), \\
\bullet \ a_0(hh \rightarrow W_L^+ W_L^-) &= a_0(hh \rightarrow Z_L Z_L) = -\frac{\lambda_H}{4\pi} \kappa_{hh-ww/zz} \left(\frac{1}{2} \right) \left[1 + \frac{3m_h^2}{s-m_h^2} \right] \\
&- \frac{4m_h^2}{\sqrt{s-4m_h^2}} \ln \left(s - 2m_h^2 \right), \\
\bullet \ a_0(ss \rightarrow W_L^+ W_L^-) &= a_0(ss \rightarrow Z_L Z_L) = -\frac{\lambda_H}{4\pi} \kappa_{ss-ww/zz} \left(\frac{1}{2} \right) \left(\delta \frac{3m_h^2}{s-m_h^2} \right), \\
\bullet \ a_0(hL \rightarrow hZ_L) &= -\frac{\lambda_H}{4\pi} \kappa_{hz-hz} \left(\frac{1}{2} \right) \left[1 + \frac{m_h^2}{s} - \frac{3m_h^2}{s - m_h^2} \ln \left(1 + \frac{(s-m_h^2)^2}{sm_h^2} \right) \right] \\
- \frac{s m_h^2}{(s-m_h^2)^2} \ln \left(\frac{s(2m_h^2 - s)}{m_h^2} \right), \\
\bullet \ a_0(hZ_L \rightarrow hh) &= 0, \quad a_0(hZ_L \rightarrow Z_L Z_L) = 0, \quad a_0(hZ_L \rightarrow W_L^+ W_L^-) = 0.
\end{align}
where \(A = s^2 - 2s(m_h^2 + m_s^2) + (m_h^2 - m_s^2)^2 \) and the kinematic factor \(\kappa_{AB \rightarrow CD} \) is defined by

\[
\kappa_{AB \rightarrow CD} \equiv \left(1 - \frac{(m_A - m_B)^2}{s} \right)^{\frac{1}{4}} \left(1 - \frac{(m_A + m_B)^2}{s} \right)^{\frac{1}{4}} \left(1 - \frac{(m_C - m_D)^2}{s} \right)^{\frac{1}{4}} \left(1 - \frac{(m_C + m_D)^2}{s} \right)^{\frac{1}{4}}.
\]

Secondly, the \(\mathbb{Z}_2 \)-charge violating processes:

\[
\begin{align*}
\bullet a_0(hs \rightarrow W^+_L W^-_L) &= a_0(hs \rightarrow ZZ) = -\frac{\lambda_H}{4\pi} \kappa_{hs \rightarrow wLw} \left(\frac{3}{2} \right) \left[\delta \tan \beta \frac{3m_h^2}{s - m_h^2} + \delta^2 \tan \beta \frac{3m_s^2}{s - m_s^2} \right] \\
+ \frac{\delta \tan \beta}{\sqrt{1 - \frac{4m_s^2}{s} \sqrt{A}}} &\ln \left(\frac{m_h^2 - \frac{1}{2} \sqrt{A} + 4s(m_h^2 - m_s^2)}{m_h^2 - \frac{1}{2} \sqrt{A} + 4s(m_h^2 - m_s^2) - \frac{1}{2} \sqrt{1 - \frac{4m_s^2}{s} \sqrt{A}}} \right) \\
+ \frac{\delta^2 \tan \beta}{\sqrt{1 - \frac{4m_s^2}{s} \sqrt{A}}} &\ln \left(\frac{2m_h^2 - m_s^2 - \frac{1}{2} \sqrt{A} + 4s(m_h^2 - m_s^2) + \frac{1}{2} \sqrt{1 - \frac{4m_s^2}{s} \sqrt{A}}}{2m_h^2 - m_s^2 - \frac{1}{2} \sqrt{A} + 4s(m_h^2 - m_s^2) - \frac{1}{2} \sqrt{1 - \frac{4m_s^2}{s} \sqrt{A}}} \right) \tag{53}
\end{align*}
\]

\[
\begin{align*}
\bullet a_0(hh \rightarrow hs) &= -\frac{\lambda_H}{4\pi} \kappa_{hh \rightarrow hs} \left(\frac{3}{2} \right) \left[\delta^2 \tan \beta \frac{3m_h^2}{s - m_h^2} + \delta \delta \tan \beta \frac{3m_s^2}{s - m_s^2} \right] \\
+ \frac{\delta^2 \tan \beta}{\sqrt{1 - \frac{4m_s^2}{s} \sqrt{B}}} &\ln \left(\frac{m_h^2 - \frac{1}{2} \sqrt{B} + 4s(m_h^2 - m_s^2)}{m_h^2 - \frac{1}{2} \sqrt{B} + 4s(m_h^2 - m_s^2) - \frac{1}{2} \sqrt{1 - \frac{4m_s^2}{s} \sqrt{B}}} \right) \\
+ \frac{\delta \delta \tan \beta}{\sqrt{1 - \frac{4m_s^2}{s} \sqrt{B}}} &\ln \left(\frac{2m_h^2 - m_s^2 - \frac{1}{2} \sqrt{B} + 4s(m_h^2 - m_s^2) + \frac{1}{2} \sqrt{1 - \frac{4m_s^2}{s} \sqrt{B}}}{2m_h^2 - m_s^2 - \frac{1}{2} \sqrt{B} + 4s(m_h^2 - m_s^2) - \frac{1}{2} \sqrt{1 - \frac{4m_s^2}{s} \sqrt{B}}} \right) \tag{54}
\end{align*}
\]

Note that two new variables, \(\delta \) and \(\delta \), for later works and the simplicity are introduced here and in our main body,

\[
\delta \equiv \frac{\lambda_{HS}}{\lambda_H}, \quad \delta \equiv \frac{1}{6} \frac{\lambda_{HS}}{\lambda_H}.
\]
Acknowledgments

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government of the Ministry of Education, Science and Technology (MEST) (No. 2011-0029758).

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) arXiv:1207.7214 [hep-ex].
[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) arXiv:1207.7235 [hep-ex].
[3] ATLAS Collaboration, ATLAS-CONF-2013-012, ATLAS-CONF-2013-013, ATLAS-CONF-2013-030.
[4] CMS Collaboration, CMS-PAS-HIG-13-001, CMS-PAS-HIG-13-002, CMS-PAS-HIG-13-003, CMS-PAS-HIG-13-004
[5] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, Phys. Lett. B 709, 222 (2012) arXiv:1112.3022 [hep-ph]. M. Holthausen, K. S. Lim and M. Lindner, hep-ph/1112.2415.
[6] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, H. M. Lee and A. Strumia, JHEP 1206, 031 (2012) arXiv:1203.0237 [hep-ph].
[7] B. Batell, D. McKeen and M. Pospelov, JHEP 1210, 104 (2012) arXiv:1207.6252 [hep-ph].
[8] S. Baek, P. Ko, W.-I. Park and E. Senaha, arXiv:1209.4163 [hep-ph].
[9] C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001) hep-ph/0011335.
[10] E. Ponton and L. Randall, JHEP 0904, 080 (2009) arXiv:0811.1029 [hep-ph].
[11] S. Profumo, M. J. Ramsey-Musolf and G. Shaughnessy, JHEP 0708, 010 (2007) arXiv:0705.2425 [hep-ph].
[12] G. F. Giudice and H. M. Lee, Phys. Lett. B 694, 294 (2011) arXiv:1010.1417 [hep-ph].
[13] G. Cynolter, E. Lendvai and G. Poesik, Acta Phys. Polon. B 36, 827 (2005) hep-ph/0410102.
[14] J. Maalampi, J. Sirkka and I. Vilja, Phys. Lett. B 265, 371 (1991). S. Kanemura, T. Kubota and E. Takasugi, Phys. Lett. B 313, 155 (1993) hep-ph/9303263; A. Arhrib, hep-ph/0012353.
[15] M. Aoki and S. Kanemura, Phys. Rev. D 77, 095009 (2008) arXiv:0712.4053 [hep-ph].
[16] B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. Lett. 38, 883 (1977).
[17] B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D 16, 1519 (1977).
[18] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008) [arXiv:0710.3755 [hep-th]].
[19] C. P. Burgess, H. M. Lee and M. Trott, JHEP 1007, 007 (2010) [arXiv:1002.2730 [hep-ph]].
[20] O. Lebedev and H. M. Lee, Eur. Phys. J. C 71, 1821 (2011) [arXiv:1105.2284 [hep-ph]].
[21] D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999) [hep-ph/9807278].
[22] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K. M. Smith and R. S. Hill et al., [arXiv:1212.5225 [astro-ph.CO]].