Two-phonon structure of the neutron-rich nuclei

A. P. Severyukhin1,2, N. N. Arsenyev1, D. Testov3

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
2Dubna State University, Universitetskaya street 19, 141982 Dubna, Moscow Region, Russia
3Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

Abstract. Starting from the Skyrme energy-density functional, the microscopic model of the spin-isospin excitations is developed for the β-delayed γ-spectroscopy. We take into account the coupling between one- and two-phonon terms in the wave functions of 1^+ states of daughter nuclei. An extension of the two-phonon space allowing for the additional charge-exchange phonons substantially enriches the 1^+ spectrum. As an example, the β-decay rates of neutron-rich nuclei 126,128Cd are discussed.

A study of the β-decay properties is an interesting problem not only from the nuclear structure point of view but it is very important for the nuclear astrophysics applications [1]. The β-decay properties of r-process “waiting-point nuclei” 129Ag, 130Cd, and 131In have attracted a lot of experimental efforts recently [2, 3, 4, 5, 6]. It is desirable to have theoretical models which can describe the data and predict the properties related to spin-isospin modes in the nuclei with extreme high N/Z ratio to allow for experimental studies. One of the successful tools for nuclear structure studies is the quasiparticle random phase approximation (QRPA) with the self-consistent mean-field derived from the energy density functional (EDF) [7]. The framework allows to relate the properties of the ground states and excited states through the same EDF. The theoretical analysis has been done within the microscopic-macroscopic finite-range droplet model [8, 9], the continuum QRPA approach with the Fayans EDF [10, 11, 12]. Recently, the proton-neutron relativistic QRPA [13] and the finite-amplitude method [14] calculations with the Skyrme EDF have appeared. Importantly, all the cited papers have used the one-phonon approximation. On the other hand, it would be desirable to overcome the discrepancies between the theoretical predictions low-energy 1^+ spectrum using the one-phonon QRPA wave functions of the daughter nucleus and the measurements, see e.g., [15].

Our tool is the QRPA with Skyrme EDF with tensor components included. By means of the standard procedure [16] the familiar equations of the QRPA in the one-phonon configuration space are obtained. We find the eigenvalues of the QRPA equations as the roots of a relatively simple secular equation within the finite rank separable approximation [17, 18, 19] which allows one to perform the calculations in large configurational spaces. We have generalized the approach to the coupling between one- and two-phonon terms in the 1^+ wave functions and the tensor force effects on the β-decay rates of neutron-rich nuclei [20]. We applied the influence of the phonon-phonon coupling (PPC) on the multi-neutron emission probabilities [22]. The new calculation [23] is extended by enlarging the variational space for the 1^+ states with the inclusion of the two-phonon configurations. The 1^+ spectrum of 130In populated in the β-decay of 130Cd was studied. The dominant contribution to the additional 1^+ states comes from the...
Figure 1. β-decay windows Q_β of the parent nuclei (squares), one-neutron separation energies (circles) for the daughter nuclei. The panels: (a), (b), (c) and (d) correspond to the isotopes: Sn, In, Cd, Ag, respectively. Results of the HF-BCS calculations with the EDF T43 are denoted by the open symbols. Experimental data (filled symbols) are taken from Ref. [21].

$[3^+ \otimes 2^+]_{QRPA}$ two-phonon configurations constructed from the charge-exchange 3^+ phonons. The coupling with the charge-exchange 3^+ phonons enriches the low-energy 1^+ spectrum of the daughter nucleus [23]. In the present report we illustrate this effect by comparing with the 126,128Cd decay rates and $E2$ transition probabilities of 126,128In.

The Skyrme EDF T43 is used for all calculations in connection with the surface-peaked zero-range pairing force. The T43 set [24] is one of 36 parametrizations, covering a wide range of the parameter space of the isoscalar and isovector tensor term added with refitting the parameters of the central interaction, where a fit protocol is very similar to that of the successful SLy parametrizations. This choice of the Skyrme EDF has been selected to reproduce the experimental the Q_β values for the parent nuclei and the neutron separation energies (S_n) for the daughter nuclei in the vicinity of “waiting-point nuclei” 129Ag, 130Cd and 131In (see Fig. 1). Also, the set T43 predicts enough positive value of the spin-isospin Landau parameter $G_0' = 0.14$ at saturation density and it gives a reasonable description of properties of the Gamow-Teller (GT) and charge-exchange spin-dipole resonances [25]. It is worth mentioning that the correct description of the Q_β values for the parent nuclei and the S_n values for the daughter nuclei is the important ingredient for the reliable prediction of the outset of the β-delayed neutron emission of the isotope chain, see e.g., the case of Cd isotopes [22].

To take into account the PPC effects we follow the basic ideas of the quasiparticle phonon model (QPM) [26, 27]. The Hamiltonian can be diagonalized in a space spanned by states composed of one and two QRPA phonons [20],

$$\Psi_\nu(JM) = \left(\sum_i R_i(J\nu)Q_{JMi}^+ \right)$$
weighted with the integrated Fermi function f in the GT transitions, described by the operator \hat{O} \([23]\). The wave functions (1) allow us to determine the ground state, and it corresponds to the ground-state energy of the daughter nuclei $^{126,128}\text{In}$. This means that the two-phonon configurational space consists of the phonon compositions $[\lambda^\pi \otimes \lambda'^\pi]_{\text{QRPA}}$, i.e., $[1^+ \otimes 2^+]_{\text{QRPA}}$, $[3^+ \otimes 2^+]_{\text{QRPA}}$, $[3^+ \otimes 4^+]_{\text{QRPA}}$, $[2^- \otimes 3^-]_{\text{QRPA}}$, $[2^- \otimes 1^-]_{\text{QRPA}}$ and $[1^- \otimes 1^-]_{\text{QRPA}}$. The diagonalization of the Hamiltonian in the space of the one- and two-phonon configurations produces eigenvalues of 1^+_k states (E_k) \([20]\). The excitation energies are obtained by the following ansatz:

$$E_k(1^+_k) \approx E_i - \Omega.$$

The QRPA analysis within the one-phonon approximation results in the spin-parity of the ground state, $J^\pi = 3^+$. The Ω value is the $[3^+_k]_{\text{QRPA}}$ eigenvalue of the QRPA equations, and it corresponds to the ground-state energy of the daughter nuclei $^{126,128}\text{In}$. In the present work, the calculation details are identical to Ref. [23]. The wave functions (1) allow us to determine the GT transitions, described by the operator $\hat{O} = \sum_{i,m} t_- (i) \sigma_{m(i)}$, as

$$B(\text{GT})_k = \left| \langle N - 1, Z + 1; 1^+_k | \hat{O}^- | N, Z; 0^+_D \rangle \right|^2.$$

Since the correlation effects, produced by the tensor interaction, are taken into account within the $1p-1h$ and $2p-2h$ configurational spaces, any quenching factors are redundant \([28]\).

The β-decay rates of the parent (even-even) nucleus (N,Z) are expressed by summing up the probabilities (in units of $G_A^2/4\pi$) of the energetically allowed GT transitions ($E_x(1^+_k) < Q_\beta$) weighted with the integrated Fermi function f_0,

$$T_{1/2}^{-1} = \sum_k \lambda^k_{1f} = D^{-1} \left(\frac{G_A}{G_V} \right)^2 \times \sum_k f_0(Z + 1, A, Q_\beta - E_x(1^+_k)) B(\text{GT})_k,$$

where λ^k_{1f} is the partial β-decay rate, $G_A/G_V = 1.25$ is the ratio of the weak axial-vector and vector coupling constants and $D=6147$ s \([29]\). The results of the half-life calculation, 0.14 s of ^{126}Cd and 0.12 s of ^{128}Cd, are in a satisfactory description of the experimental data \([30]\). The partial β-decay rate has a strong energy dependence which approximately scales like $(Q_\beta - E_x)^5$. As expected, the largest contribution in the calculated half-life comes from the $[1^+_k]_{\text{QRPA}}$ state. The two-phonon space results in the substantial GT strength
Figure 2. β-transition rates in 126Cd (the upper panels) and 128Cd (the lower panels). Panels (a) and (c): the β-transition rates are calculated within the QRPA. Panels (b) and (d): the calculation is taken into account the two-phonon configurations.

fragmentation [20, 22]. To illustrate it, the β-decay rates of 126,128Cd are shown in Fig. 2. The β-decay rates within the QRPA have a rather simple two-peak structure. The main contribution of the GT transition to the $[1^+_1]_{QRPA}$ state is built on the $\{1g_9=2, 1g_7=2\}$ matrix element. Inclusion of the PPC effects leads to the appearance of the weak fragmented satellites.

For both In isotopes, the 1^+_1 states calculated with PPC effects have a prevailing two-phonon configuration of the 2^+_1 vibrational phonon and the 3^+_1 charge-exchange phonon. We find a smaller fragmentation effect, and the wave function normalizations of the 1^+_1 states particularly mix 3% of the $[1^+_2]_{QRPA}$ configuration and about 97% of the $[3^+_1 \otimes 2^+_1]_{QRPA}$ configuration. This small change in structure has large effect on the partial β-decay rate, i.e. the small one-phonon contribution in the 1^+_1 state. The calculated values: $E_x = 0.7$ MeV, $\log f t = 4.1$ of 126In and $E_x = 1.0$ MeV, $\log f t = 4.3$ of 128In are in a nice agreement for the 1^+_1 states experimentally identified at 688 keV of 126In and at 1173 keV of 128In [30]. Also the two-phonon structure of the 1^+_1 states is reflected in the $B(E2;1^+_1 \rightarrow 3^+_2)$ values, as is shown in Table I.

The dominant contribution in the wave function of the 1^+_2 states of both In isotopes come from the $[1^+_1]_{QRPA}$ configuration, but the two-phonon contributions are appreciable. This means that these states has predominantly two-quasiparticle nature $\{1g_9/2, \nu 1g_7/2\}$. As a result, we find the largest β-decay rate in the case of the 1^+_2 states, see Fig. 2. The main two-phonon components of the 1^+_2 wave function are the $[3^+_1 \otimes 4^+_1]_{QRPA}$, $[1^+_1 \otimes 2^+_1]_{QRPA}$ and $[3^+_2 \otimes 2^+_1]_{QRPA}$ configurations such contributions leads to the small values of the $B(E2;1^+_2 \rightarrow 3^+_2)$, see Table I.
Table 1. The calculated energies and log ft values of the low-lying 1^+ states, $E2$ $1^+_k \rightarrow 3^+_g$ transition probabilities of 126,128In. $B(E2)$ values are given in Weisskopf units ($1 \text{ W.u.} = 5.94 \times 10^{-2} A^{4/3} e^2 \text{fm}^4$).

1^+_k	Energy (MeV)	$log ft$	$B(E2)$ (MeV)	$log ft$	$B(E2)$ (W.u.)
1^+_1	0.7	4.1	17.7	1.0	4.3
1^+_2	0.9	3.2	0.1	1.4	3.3
1^+_3	1.5	4.9	0.1	1.5	3.5
1^+_4	2.7	3.5	0.5	2.8	3.8
1^+_5	2.8	4.7	0.1	3.0	4.8

For both In isotopes, the 1^+_1 state is mainly characterized by the two-phonon component the \([3^+_1 \otimes 2^+_1]_{QRPA}\) and the \([1^+_2]_{QRPA}\) configuration. They play a key role in explaining the noticeable size of the partial β-decay rates and the $B(E2; 1^+_i \rightarrow 3^+_g)$ values.

We predict the two-phonon structures of the 1^+ states experimentally identified at 688 keV of 126In and at 1173 keV of 128In. Also a correlation is found between the low-lying $E2$ transition strengths of the parent and daughter isobaric companions [23]. It is shown that two phonon structures have strong influence on electric transition probabilities. For even-even heavy vibrational nuclei, the lowest known 1^- state comes from the two-phonon structure composed of the quadrupole and octupole vibrational phonons. At the same time first one-phonon 1^- state in the calculations within the QRPA appears above 5 MeV [31, 32]. As shown in Ref. [33], there is an empirical correlation between $B(E1; 1^-_1 \rightarrow 0^+_g)$ and $B(E1; 3^-_1 \rightarrow 2^+_g)$ values. This low-energy $E1$ transition forbidden in the ideal boson picture has been calculated in the QPM [26] taken into account the internal fermion structure of phonons [34].

In summary, by starting from the Skyrme mean-field calculations, we have studied the effects of the phonon-phonon coupling on the β-decay rates and the electric transitions from the low-energy 1^+ states to the ground state. As an example, we considered the 126,128Cd decays. It is shown that an extension of the configurational space allowing for the two-phonon excitations substantially enriches the 1^+ spectra of 126,128In. Also the dominant two-phonon configuration $[3^+_1 \otimes 2^+_1]_{QRPA}$ of the 1^+_1 wave functions leads to the noticeable $B(E2; 1^+_1 \rightarrow 3^+_g)$ values of 126,128In.

The existence of two-phonon 1^+ states should be a generic feature of odd-odd nuclei in the vicinity of doubly magic nucleus 132Sn and further experimental investigation in this region to check this prediction are probably necessary.

Acknowledgments
We are grateful to Prof. I. N. Borzov and Prof. D. Verney for many fruitful and stimulating discussions concerning various aspects of this work. The authors are also very grateful to Dr. E. O. Sushenok for help with calculations.

References
[1] Langanke K and Martinez-Pinedo G 2003 Rev. Mod. Phys. 75 819
[2] Hannawald M et al 2001 Nucl. Phys. A 688 578c
[3] Dillemann I et al 2003 Phys. Rev. Lett. 91 162503
[4] Lorusso G et al 2015 Phys. Rev. Lett. 114 192501
[5] Dunlop R et al 2016 Phys. Rev. C 93 062801(R)
[6] Jungclaus A et al 2016 Phys. Rev. C 94 024303
[7] Ring P and Schuck P 1980 *The Nuclear Many Body Problem* (Springer, Berlin)
[8] Möller P, Nix J R and Kratz K-L 1997 *At. Data Nucl. Data Tables* **66** 131
[9] Möller P, Pfeiffer B and Kratz K-L 2003 *Phys. Rev. C* **67** 055802
[10] Borzov I N 2003 *Phys. Rev. C* **67** 025802
[11] Borzov I N 2005 *Phys. Rev. C* **71** 065801
[12] Borzov I N, Cuenca-García J J, Langanke K, Martínez-Pinedo G and Montes F, 2008 *Nucl. Phys. A* **814** 159
[13] Marketin T, Huther L and Martínez-Pinedo G 2016 *Phys. Rev. C* **93** 025805
[14] Mustonen M T and Engel J 2016 *Phys. Rev. C* **93** 014304
[15] Etilé A *et al* 2015 *Phys. Rev. C* **91** 064317
[16] Terasaki J, Engel J, Bender M, Dobaczewski J, Nazarewicz W and Stoitsov M 2005 *Phys. Rev. C* **71** 034310
[17] Nguyen Van Giai, Stoyanov Ch and Voronov V V 1998 *Phys. Rev. Phys. Rev. C* **57** 1204
[18] Severyukhin A P, Voronov V V and Nguyen Van Giai 2012 *Prog. Theor. Phys.** 128** 489
[19] Severyukhin A P and Sagawa H 2013 *Prog. Theor. Exp. Phys.* **2013** 103D03
[20] Severyukhin A P, Voronov V V, Borzov I N, Arsenyev N N and Nguyen Van Giai 2014 *Phys. Rev. C* **90** 044320
[21] Wang M, Audi G, Kondev F G, Huang W J, Naimi S and Xu X 2017 *Chin. Phys. C* **41** 030003
[22] Severyukhin A P, Arsenyev N N, Borzov I N and Sushenok E O 2017 *Phys. Rev. C* **95** 034314
[23] Severyukhin A P, Arsenyev N N, Borzov I N, Sushenok E O, Testov D and Verney D 2020 *Phys. Rev. C* (to be published)
[24] Lesinski T, Bender M, Bennaceur K, Duguet T and Meyer J 2007 *Phys. Rev. C* **76** 014312
[25] Bai C L, Zhang H Q, Sagawa H, Zhang X Z, Colò G and Xu F R 2011 *Phys. Rev. C* **83** 054316
[26] Soloviev V G 1992 *Theory of Atomic Nuclei: Quasiparticles and Phonons* (Institute of Physics, Bristol and Philadelphia).
[27] Kuzmin V A and Soloviev V G 1984 *J. Phys.* **G10** 1507
[28] Bertsch G F and Hamamoto I 1982 *Phys. Rev. C* **26** 1323
[29] Suhonen J 2007 *From Nucleons to Nucleus* (Berlin: Springer-Verlag)
[30] National Nuclear Data Center, http://www.nndc.bnl.gov
[31] Voronov V V, Khoa D T and Ponomarev V Yu 1984 *Bull. Acad. Sci. USSR Phys. Ser.* **48** 190
[32] Kneissl U, Pitz H H and Zilges A 1996 *Prog. Part. Nucl. Phys.* **37** 349
[33] Pietralla N 1999 *Phys. Rev. C* **59** 2941
[34] Ponomarev V Yu, Stoyanov Ch, Tsoneva N and Grinberg M 1998 *Nucl. Phys. A* **635** 470