MODEL COMPLETENESS FOR HENSELIAN FIELDS WITH FINALTE RAMIFICATION VALUED IN A Z-GROUP

JAMSHID DERAKHSHAN, ANGUS MACINTYRE

Abstract. We prove that the theory of a Henselian valued field of characteristic zero, with finite ramification, and whose value group is a Z-group, is model-complete in the language of rings if the theory of its residue field is model-complete in the language of rings. We apply this to prove that every infinite algebraic extension of the field of p-adic numbers \(\mathbb{Q}_p \) with finite ramification is model-complete in the language of rings. For this, we give a necessary and sufficient condition for model-completeness of the theory of a perfect pseudo-algebraically closed field with pro-cyclic absolute Galois group.

1. Introduction

Model completeness for the theory of p-adic numbers \(\mathbb{Q}_p \) in the language of rings follows from the theorem of Macintyre [9] on quantifier elimination for \(\mathbb{Q}_p \) in the Macintyre language. For a finite extension of \(\mathbb{Q}_p \), model-completeness in the ring language can be deduced from a theorem of Prestel and Roquette [10, Theorem 5.1, pp. 86] on model-completeness in the Prestel-Roquette language combined with an existential definition of the valuation ring in the ring language due to Béral [2]. The language of Prestel-Roquette involves certain constant symbols and a symbol for the valuation. However, the proof of the theorem of Prestel-Roquette gives model completeness in the language of rings. Model-completeness for a finite extension of \(\mathbb{Q}_p \) in the language of rings has also been deduced in [3] from model-completeness for the groups of multiplicative residue classes of the field which follows from model-completeness for certain pre-ordered abelian groups which we call finite-by-Preburger groups. (Curiously, the model-completeness in the ring language for a finite extension of \(\mathbb{Q}_p \) was not observed till [5]). In this paper, we shall prove a general model-completeness result for Henselian fields, and apply it to certain infinite extensions of \(\mathbb{Q}_p \).

Let us recall that an ordered abelian group is called a Z-group if it is elementarily equivalent to \(\mathbb{Z} \) as an ordered abelian group. Let \(K \) be a valued field with valuation \(v \) and residue field \(k \). The (absolute) ramification index \(e \) of \(K \) is defined to be the cardinality of the set if elements \(\gamma \) such that \(0 < \gamma \leq v(p) \) if \(k \) has characteristic \(p > 0 \), and defined to be 0 if \(k \) has characteristic 0. If \(e < \infty \), we say that \(K \) is finitely ramified or has finite ramification \(e \). If \(e = 0 \) or \(e = 1 \), we say that \(K \) is unramified. For example, the extension of \(\mathbb{Q}_p \) got by adjoining an \(e \)th root of \(p \), has

Key words and phrases. model theory, model completeness, Henselian valued fields.

\(^1\)Supported by a Leverhulme Emeritus Fellowship.
ramification index \(e \), whereas an extension of \(\mathbb{Q}_p \) got by adjoining roots of unity of order prime to \(p \) is unramified.

Our main result is the following.

1. **Theorem.** Let \(K \) be a Henselian valued field of characteristic zero with finite ramification. Suppose the value group of \(K \) is a \(\mathbb{Z} \)-group. If the theory of the residue field of \(K \) is model-complete in the language of rings, then the theory of \(K \) is model-complete in the language of rings.

In the case when the residue field of \(K \) has characteristic zero, the result is a well-known consequence of the Ax-Kochen-Ershov theory and was worked out in detail by Ziegler in [7]. Thus we shall assume that the residue field \(k \) has characteristic \(p > 0 \).

2. **Theorem.** Let \(K \) be an infinite algebraic extension of \(\mathbb{Q}_p \) with finite ramification. Then the theory of \(K \) in the language of rings is model-complete.

(The case of finite extensions of \(\mathbb{Q}_p \) is discussed earlier). Let us recall that a field \(K \) is called pseudo-algebraically closed if every absolutely irreducible variety defined over \(K \) has a \(K \)-rational point. To deduce Theorem 2 from Theorem 1 we prove the following result which gives a necessary and sufficient condition for model-completeness in the ring language of the theory of perfect pseudo-algebraically closed fields with pro-cyclic absolute Galois group. Given a field \(K \), we denote the absolute Galois group of \(K \) by \(\text{Gal}(K) \).

3. **Theorem.** Let \(K \) be a perfect pseudo-algebraically closed field such that \(\text{Gal}(K) \) is pro-cyclic. Let \(k \) denote the prime subfield of \(K \). Then the theory of \(K \) in the language of rings is model-complete if and only if

\[
K^{\text{alg}} = K \otimes_{\text{Abs}(K)} k^{\text{alg}},
\]

that is, every finite algebraic extension of \(K \) is generated by elements that are algebraic over \(k \).

To prove Theorem 3 we use the elementary invariants given by Cherlin-van den Dries-Macintyre [4] for the theory of pseudo-algebraically closed fields (using a model theory for \(G(K) \) dual to that of \(K \)) generalizing Ax’s work for the pseudo-finite case [1].

By the Lang-Weil estimates or the theorem of André Weil on the Riemann hypothesis for curves over finite fields, any infinite algebraic extension \(K \) of \(\mathbb{F}_p \) is pseudo-algebraically closed (see [6, Corollary 11.2.4] for details). For such a \(K \), \(\text{Gal}(K) \) is pro-cyclic (see [6, chapter 1]). Thus Theorem 2 follows from Theorem 3 and Theorem 1.

2. **Proof of Theorem 1**

Let \(K \) be a valued field. We shall denote the valuation on \(K \) by \(v_K \) or \(v \), the ring of integers of \(K \) by \(\mathcal{O}_K \), the valuation ideal by \(\mathcal{M}_K \), and the value group by \(\Gamma_K \) or \(\Gamma \). We denote the residue field by \(k \).
Assume throughout that K has characteristic zero and residue characteristic $p > 0$. We take the smallest convex subgroup Δ of Γ_K containing $v(p)$ and consider the quotient Γ_K/Δ with the ordering coming from convexity of Δ (see [11]). K carries a valuation which is the composition of v_K with the canonical surjection $\Gamma_K \rightarrow \Gamma_K/\Delta$. This valuation will be denoted by $\hat{v} : K \rightarrow \Gamma_K/\Delta \cup \{\infty\}$ and is called the coarse valuation corresponding to v. We denote the valued field (K, \hat{v}) by \hat{K}. The valuation ring of \mathcal{O}_K of \hat{v} is the set $\{x \in K : \exists \delta \in \Delta (v(x) \geq \delta)\}$. It is also the smallest overring of \mathcal{O}_K in which p becomes a unit, or the localization of \mathcal{O}_K with respect to the multiplicatively closed set $\{p^m : m \in \mathbb{N}\}$. The maximal ideal \mathcal{M}_K of \hat{v} is the set $\{x \in K : \forall \delta (v(x) > \delta)\}$. Clearly $\mathcal{M}_K \subseteq \mathcal{M}_K$. The residue field of K with respect to the coarse valuation \hat{v} has characteristic zero, and is called the core field of K corresponding to v. It is denoted by K°. The core field carries a valuation v_0 defined by $v_0(x + \mathcal{M}_K) = v(x)$. The valuation v_0 has value group Δ, valuation ring $\mathcal{O}_K/\mathcal{M}_K$, maximal ideal $\mathcal{M}_K/\mathcal{M}_K$, and residue field k. The residue degree of K is defined to be the dimension over \mathbb{F}_p of the residue field k.

1. **Lemma.** The ramification index and residue degree of K and the core field K° are the same.

Proof. For a proof see [10] pp. 27].

We recall that a sequence $\{a_n\}_{n \in \omega}$ of elements of a valued field is called ω-pseudo-convergent if for some integer n_0, we have $v(a_m - a_n) > v(a_n - a_k)$ for all $m > n > k > n_0$. An element $a \in K$ is called a pseudo-limit of the sequence $\{a_n\}$ if for some integer n_0 we have $v(a - a_n) > v(a - a_k)$ for all $n > k > n_0$. The field K is called ω-pseudo-complete if every ω-pseudo-convergent sequence of length ω has a pseudo-limit in the field. We shall use the following lemma.

2. **Lemma.** An \aleph_1-saturated valued field is ω-pseudo-complete.

Proof. Obvious.

We shall need the following result on existential definability of valuation rings.

3. **Lemma.** Let K be a Henselian valued field of characteristic zero, residue characteristic $p > 0$, and ramification index $e > 0$. Let $n > e$ be an integer that is not divisible by p. Then the valuation ring \mathcal{O}_K is existentially definable by the formula $\exists y (1 + px^n = y^n)$.

Proof. This is proved in [2, Lemma 1.5, pp. 4] under the assumption of a finite residue field but the same proof goes through in the more general case as follows. Let $x \in \mathcal{O}_K$. Let $f(y) := y^n - px^n - 1$. Then $v(f(1)) > 2v(f'(1))$, so f has a root in K by Hensel’s Lemma. Conversely, suppose $1 + px^n$ is an nth power. If $v(x) < 0$, then $v(px^n) < 0$, and so $v(y) < 0$, hence $nv(y) = e + nv(x)$, thus n divides e, contradiction to the choice of n. □
Note The existential definition above is uniform once one fixes p and a finite bound on the ramification index e. In particular, for any extension K of \mathbb{Q}_p with ramification index e, the valuation ring of K is defined by an existential formula of the language of rings that depends only on p and e, and not K.

4. Corollary. Suppose that $K_1 \subseteq K_2$ is an extension of Henselian valued fields of characteristic 0 and residue characteristic $p > 0$, and whose value groups are \mathbb{Z}-groups. Suppose that the index of ramification of K_1 and K_2 is e where $0 < e < \infty$. Then

$$\mathcal{O}_{K_2} \cap K_1 = \mathcal{O}_{K_1}.$$

Proof. First note that given a valued field K of residue characteristic $p > 0$ whose value group is a \mathbb{Z}-group and which has ramification index e, we have that

$$\mathcal{M}_K = \{x \in K : x^e p^{-1} \in \mathcal{O}_K\}.$$

Indeed, suppose that $x \in \mathcal{M}_K$. Then $ev(x) - e \geq 0$, thus since $v(p) = e$, we deduce that $x^e p^{-1} \in \mathcal{O}_K$. Conversely, suppose that $x \in K$ satisfies the condition $x^e p^{-1} \in \mathcal{O}_K$. Then $ev(x) - e \geq 0$, hence $ev(x) \geq e$, so $v(x) \geq 1$.

From this observation and the existential definability of \mathcal{O}_{K_1} and \mathcal{O}_{K_2} by the same formula given by Lemma 3, we deduce that the maximal ideals \mathcal{M}_{K_1} and \mathcal{M}_{K_2} are definable by the same existential formula (of the language of rings).

Now we can complete the proof of the Corollary. From the existential definability of \mathcal{O}_{K_1} and \mathcal{O}_{K_2} by the same formula we deduce that $\mathcal{O}_{K_1} \subseteq \mathcal{O}_{K_2} \cap K_1$. For the other direction, suppose that there is an element $\beta \in K_1 \cap \mathcal{O}_{K_2}$ but $\beta \notin \mathcal{O}_{K_1}$. Then $\beta^{-1} \in \mathcal{O}_{K_1}$, hence $\beta^{-1} \in \mathcal{O}_{K_2}$. Thus β is a unit in \mathcal{O}_{K_2}. From $\beta \notin \mathcal{O}_{K_1}$ we deduce that $\beta^{-1} \in \mathcal{M}_{K_1}$, so $\beta^{-1} \in \mathcal{M}_{K_2}$, contradiction. This proves the corollary. □

We can now give the proof of Theorem 4. Let $K_1 \subseteq K_2$ be an embedding of models of $Th(K)$. By Corollary 4, this is an embedding of valued fields. Thus there is a natural inclusion of the residue field (resp. value group) of K_1 into the residue field (resp. value group) of K_2. We make a series of reductions.

Step 1
We may assume that K_1 and K_2 are \aleph_1-saturated. Indeed, we can form ultrapowers K_1^U and K_2^U of K_1 and K_2, for a non-principal ultrafilter U. If we know that K_1^U is an elementary substructure of K_2^U, then since K_1 is an elementary substructure of K_i^U for $i = 1, 2$, we deduce that K_1 is an elementary substructure of K_2.

Step 2
It suffices to prove that the core field K_1^o is an elementary substructure of the core field K_2^o. To see this, note that since the coarse valued fields K_1 and K_2 have characteristic zero residue fields K_1^o and K_2^o respectively, and divisible torsion-free abelian value groups, and the theory of divisible torsion-free abelian groups is model-complete, by the work of Ax-Kochen-Ershov as spelled out by Ziegler [?], we deduce that the embedding of K_1 in K_2 is elementary providing the embedding of K_1^o into K_2^o is elementary.
Step 3
We prove the embedding of K_1° into K_2° is elementary. Since the fields K_1 and K_2 are \aleph_1-saturated, by Lemma 2 they are ω-pseudo-complete. Thus the valued fields K_1° and K_2° are also ω-pseudo-complete (since the map $\Gamma \to \Gamma/\Delta$ is order-preserving). However, these fields are valued in Δ which is canonically isomorphic to \mathbb{Z}. Thus K_1° and K_2° are Cauchy complete. By Lemma 1 the ramification index of K_1° and K_2° is the same as the ramification index of K_1 and K_2 which equals the ramification index of K which is e.

By the structure theorem for complete fields with ramification index e (see [12, Theorem 4, pp.37]), K_1° and K_2° are respectively finite extensions of degree e, obtained by adjoining a uniformizing element, of the fields $W(k_1)$ and $W(k_2)$ which are fraction fields of the rings of Witt vectors of k_1 and k_2 respectively, where k_1 and k_2 are the residue fields of K_1° and K_2° (which coincide with the residue fields of (K_1, v_{K_1}) and (K_2, v_{K_2}) respectively).

Thus $K_1^\circ = W(k_1)(\pi)$ for some uniformizing element $\pi \in K_1^\circ$. π is the root of a polynomial

$$E(x) := x^e + c_{e-1}^e x^{e-1} + \cdots + c_e$$

that is Eisenstein over $W(k_1)$. So

$$c_j \in M_{W(k_1)}$$

for all j and

$$c_e \in M_{W(k_1)} - M^2_{W(k_1)}.$$

1. Claim. $E(x)$ is Eisenstein over $W(k_2)$ and $K_2^\circ = W(k_2)(\pi)$.

Proof. The condition that c_j is in the maximal ideal $M_{W(k_1)}$ is equivalent to the condition that

$$c_j^e p^{-1} \in \mathcal{O}_{W(k_1)}$$

since this condition means that $ev(c_j) - e \geq 0$, that is $ev(c_j) \geq e$, which is $v(c_j) \geq 1$; and the condition that c_e is a uniformizer, i.e. that it lies in $M_{W(k_1)}$ and does not lie in $M^2_{W(k_1)}$, is equivalent to the conjunction of the statements $c_e^e p^{-1} \in \mathcal{O}_{W(k_1)}$ and $c_e^{-1} p \in \mathcal{O}_{W(k_1)}$. Indeed, the latter condition is equivalent to $-ev(c_e) + e \geq 0$, i.e. $-ev(c_e) \geq -e$, i.e., $v(c_e) \leq 1$.

By Lemma 3 the valuations on $W(k_1)$ and $W(k_2)$ are existentially definable by the same formula since these fields are absolutely unramified and p is a uniformizer in both. We deduce from the preceding argument that

$$c_j \in \mathcal{O}_{W(k_2)}$$

for all j and

$$c_e \in M_{W(k_2)} - M^2_{W(k_2)}.$$

Therefore $E(x)$ is an Eisenstein polynomial over $W(k_2)$, and π remains a uniformizer in K_2°.

Now K_1° is an extension of degree e of $W(k_1)$ generated by π. As π remains a uniformizer in K_2° and $E(x)$ is Eisenstein over $W(k_2)$, the extension $W(k_2)(\pi)$ has degree e over in $W(k_2)$. But $\pi \in K_2^\circ$ and K_2° has degree e over $W(k_2)$ as well, so we deduce that

$$K_2^\circ = W(k_2)(\pi).$$

\[\square\]

2. Claim. The embedding of $W(k_1)$ in $W(k_2)$ is elementary.

Proof. Since k_1 and k_2 are residue fields of K_1 and K_2 for the valuation v_K, the embedding of k_1 in k_2 is elementary. Since K_1 and K_2 are \aleph_1-saturated, the fields k_1 and k_2 are also \aleph_1-saturated. Given any finitely many elements a_1, \ldots, a_m from $W(k_1)$, there is an isomorphism from $W(k_1)$ to $W(k_2)$ fixing a_1, \ldots, a_m since elements of $W(k_1)$ and $W(k_2)$ can be represented in the form $\sum_i c_i p^i$, where c_i are from the residue field. The countable subfields of k_1 and k_2 form a back-and-forth system. This induces a back-and-forth system between $W(k_1)$ and $W(k_2)$, and it follows that the embedding of $W(k_1)$ into $W(k_2)$ is elementary. □

It remains to prove that the embedding of K_1° into K_2° is elementary. We interpret $W(k_i)(\pi)$ inside $W(k_i)$ (for $i = 1, 2$) in the usual way as follows. We identify $W(k_i)(\pi)$ with $W(k_i)[\pi]$. On the e-tuples we define addition as the usual addition on vector spaces and multiplication by

$$(x_1, \ldots, x_e) \times (y_1, \ldots, y_e) = (x_1 I_e + x_2 M_\pi + \cdots + x_e M_\pi^{e-1}),$$

where I_e is the identity $e \times e$-matrix and M_π is the $e \times e$-matrix of multiplication by π. Note that M_π depends uniformly only on the coefficients c_0, \ldots, c_{e-1} of $E(x)$. Using Claim 2, we deduce that the embedding $W(k_1)(\pi) \to W(k_2)(\pi)$ is elementary. Thus $K_1^\circ \to K_2^\circ$ is elementary. The proof of Theorem 1 is complete.

3. Model completeness for pseudo algebraically closed fields and proof of Theorem 2

Given a field K, the field of absolute numbers of K is defined by $\text{Abs}(K) := k^{alg} \cap K$, where k is the prime subfield of K. By a result of Ax [1], two perfect pseudo-algebraically closed fields K_1 and K_2 whose absolute Galois groups are isomorphic to $\hat{\mathbb{Z}}$ are elementarily equivalent if and only if $\text{Abs}(K_1) = \text{Abs}(K_2)$. In other words, the theory of a such a field is determined by its absolute numbers $\text{Abs}(K)$ (equivalently by the polynomials $f \in k[x]$ that are solvable in K).

Elementary invariants for pseudo-algebraically closed fields were given by Cherlin-van den Dries-Macintyre in [2,3] in terms of the language for profinite groups. In this case one has to preserve the degree of imperfection and the co-elementary theory defined as follows. The language CSIS for complete stratified inverse systems is a language with infinitely many sorts indexed by \mathbb{N}, each sort is equipped with the
group operation. The nth sort describes properties for the set of groups in the
inverse system which have cardinality n. The language has in addition symbols for
the connecting canonical maps between the groups in different sorts. Given any
profinite group G, the set of finite quotients of G with the canonical maps between
them is a stratified inverse system. A coformula is a formula of the language CSIS.
A profinite group cosatisfies a cosentence if the associated stratified inverse system
satisfies the cosentence. A cosentence or coformula has a translation to the language
of fields. For details see [4].

For any field K, the Galois diagram of K is defined to be the theory
$$
\{ \exists \bar{x}, \bar{y}, \bar{z}, \bar{t} \ (\varphi(\bar{x}, \bar{y}, \bar{z}, \bar{t}) \land \delta(\bar{x}, \bar{y}, \bar{z}, \bar{t})) : \\
\exists a, b, c, d \in \text{Abs}(K) \ (K \models \varphi'(a, b, c) \land \delta(a, b, c, d)) \}
$$
where $\delta(\bar{x}, \bar{y}, \bar{z}, \bar{t})$ describes the isomorphism type of the field generated by
$\bar{x}, \bar{y}, \bar{z}, \bar{t}$, and φ is a coformula and φ' its "translation" into the language of rings (cf. [4]).

We then have the following result.

5. **Theorem.** [4] Two pseudo-algebraically closed fields K and L are elementarily
equivalent if and only if K and L have the same characteristic and same degree of
imperfection, and $\Delta(K) = \Delta(L)$.

We also need the following results.

6. **Theorem.** [6] Infinite finitely generated fields are Hilbertian.

Proof. See [6], Theorem 13.4.2, pp. 242.

7. **Theorem.** (Jarden) If L is a countable Hilbertian field, then the set
$$
\{ \sigma \in \text{Gal}(L) : \text{Fix}(\sigma) \text{ is pseudofinite} \}
$$
has measure 1.

*Proof. See [7], pp.76] or [6] Theorem 18.6.1,pp. 380|.

Now we can give the proof of Theorem 8. The condition [1.0.1] implies that every
finite algebraic extension $K(\alpha)$ of K is generated by elements algebraic over k, and
thus by the primitive element theorem, by a single algebraic element α.

Now all this is part of the theory $Th(K)$. For example, the unique extension of
K of dimension n is generated by a root α of some polynomial f over k. Fix the
minimum polynomial f of α. Then we just say that some root of f generates the
unique extension of K of dimension n. This will be true for any L with $L \equiv K$.
It follows that any embedding $L \to K_1$ of models of $Th(K)$ is regular, and thus
elementary (cf. Cherlin-van den Dries-Macintyre [4] or Jarden-Kiehne [8]).

Conversely, Suppose that [1.0.1] does not hold. We shall prove that $Th(K)$ is not
model-complete. Since $K^{alg} \neq K \otimes_{\text{Abs}(K)} k^{alg}$, there is some finite algebraic extension
$K(\alpha)$ that is not included in any $K(\beta)$, where β is algebraic over k. Now consider
such a field $K(\alpha)$ of minimal dimension d over K. $K(\alpha)$ is normal cyclic over K, so
d is a prime p, otherwise, $d = p_1^{k_1} \ldots p_r^{k_r}$, where $n > 1$, and each of the degree $p_j^{k_j}$
extensions is included in some $K(\beta)$ that is algebraic over k, and so $K(\alpha)$ is too, contradiction. Thus $K(\alpha)$ is a dimension p extension of K.

Now let f be the minimum polynomial of α over k. Put

$$\Lambda := \text{Diag}(K) \cup \Sigma_{PAC} \cup \{\exists x \ (f(x) = 0)\} \cup \{\forall x \ (g(x) \neq 0), \ g \in \Theta\} \cup \Delta(K)$$

were Σ_{PAC} denotes the set of sentences expressing the condition of being pseudo-algebraically closed, Θ is the set of polynomials in one variable over k which are unsolvable in K, and $\Delta(K)$ is the Galois diagram of K.

3. **Claim.** Λ is consistent.

We do a compactness argument. Consider a finite subset Λ_0 of Λ. It involves a finite set c_0, \ldots, c_m from K including coefficients of f and a finite part of $\text{Diag}(K)$, finitely many g_1, \ldots, g_l from Θ, a t with $f(t) = 0$, and a finite part of the Galois diagram $\Delta(K)$. Given a finite part S of the Galois diagram $\Delta(K)$, S contains finitely many statements describing the isomorphism types of fields generated by finitely many finite subsets S_1, \ldots, S_k of K, and translations to the language of rings of finitely many coformulas. The translations of the coformulas involve Galois groups of finitely many finite extensions of K. The compositum of these is a finite Galois extension $K(T)$ of K, for a finite set T.

Note that $\text{tr.deg.}(k(\alpha, c_0, \ldots, c_m, S_0, \ldots, S_k, T)) \geq 1$, so by Theorem 6, $k' := k(\alpha, c_0, \ldots, c_m, S_0, \ldots, S_k, T)$ is Hilbertian. Note that f is irreducible of dimension p over k'. Now if we adjoin to k' a root α of f, then none of g_1, \ldots, g_l get a root. For if one does, that root is either in k' which is impossible, or has dimension congruent to zero modulo p over k', and then $\alpha \in K(\beta)$, for some β which is algebraic over k.

So now apply Theorem 7 to k' and deduce that the set of all $\sigma \in G(k')$ such that $\text{Fix}(\sigma)$ is pseudofinite has measure 1. Note that given a polynomial $g(x)$ over k, the set

$$G_g := \{\sigma \in G(k') : \text{Fix}(\sigma) \text{ does not contain a root of } g\}$$

is open in $G(k')$ since $U := \text{Gal}(k'_{\text{alg}}/F)$ is a basic open set containing the identity in $G(k')$ where F is the splitting field of $g(x)$, and $\sigma U \in G_g$ for any $\sigma \in G_g$. Thus the set

$$\{\sigma \in G(k') : g_1, \ldots, g_l \text{ do not have a root in } \text{Fix}(\sigma) \text{ and } \text{Fix}(\sigma) \text{ is pseudofinite}\}$$

has non-zero measure. Note that for any such σ, the fixed field $\text{Fix}(\sigma)$ contains the given finite part of $\text{Diag}(K)$, contains a root of f (namely α), and contains T. Thus $\text{Fix}(\sigma)$ must satisfy the finitely many given statements from the Galois diagram $\Delta(K)$ and the diagram $\text{Diag}(K)$ as these can be witnessed by finitely many elements from $S_1 \cup \cdots \cup S_k \cup T$ (by adding constants symbols). We deduce that $\text{Fix}(\sigma)$ is a model of Λ_0. Thus Λ has a model L.

We need to show that $\Delta(K) = \Delta(L)$. It is obvious that $\Delta(K) \subseteq \Delta(L)$. We show that $\Delta(L) \subseteq \Delta(K)$. Suppose that $\psi \in \Delta(L)$ and $\psi \notin \Delta(K)$. Then ψ involves statements on isomorphism type and translations of coformulas corresponding to a finite subset of $\text{Abs}(L)$ that does not hold for K. But $\text{Abs}(K) = \text{Abs}(L)$, so $\neg \psi$ holds.
for the finitely many elements of $\text{Abs}(K)$, hence $\neg \psi \in \Delta(L)$ by adding constants for the distinguished elements of $\text{Abs}(K) = \text{Abs}(L)$, which is a contradiction.

Applying Theorem 5, we deduce that K and L are elementarily equivalent. Clearly K is not an elementary submodel of L. This completes the proof.

References

1. James Ax, *The elementary theory of finite fields*, Ann. of Math. (2) **88** (1968), 239–271. MR 0229613 (37 #5187)
2. Luc Bélair, *Substructures and uniform elimination for p-adic fields*, Ann. Pure Appl. Logic **39** (1988), no. 1, 1–17. MR 949753 (89j:03026)
3. Gregory Cherlin, Lou van den Dries, and Angus Macintyre, *Decidability and undecidability theorems for PAC-fields*, Bull. Amer. Math. Soc. (N.S.) **4** (1981), no. 1, 101–104. MR 590820 (82g:03057)
4. ________, *The elementary theory of regularly closed fields*, Preprint (1981).
5. Jamshid Derakhshan and Angus Macintyre, *Model completeness for finite-by-Presburger groups and connections to valued fields*, Preprint (2015).
6. Michael D. Fried and Moshe Jarden, *Field arithmetic*, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2008, Revised by Jarden. MR 2445111 (2009j:12007)
7. Moshe Jarden, *Elementary statements over large algebraic fields*, Trans. Amer. Math. Soc. **164** (1972), 67–91. MR 0302651 (46 #1795)
8. Moshe Jarden and Ursel Kiehne, *The elementary theory of algebraic fields of finite corank*, Invent. Math. **30** (1975), no. 3, 275–294. MR 0435050 (55 #8012)
9. Angus Macintyre, *On definable subsets of p-adic fields*, J. Symbolic Logic **41** (1976), no. 3, 605–610. MR 0485335 (58 #5182)
10. A. Prestel and P. Roquette, *Formally p-adic fields*, Lecture Notes in Mathematics, vol. 1050, Springer-Verlag, 1984.
11. O. F. G. Schilling, *The Theory of Valuations*, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776 (13,315b)
12. Jean-Pierre Serre, *Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979, Translated from the French by Marvin Jay Greenberg. MR 554237 (82c:12016)

St. Hilda’s College, Cowley Place, Oxford OX4 1DY and Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK

E-mail address: derakhsh@maths.ox.ac.uk

Queen Mary, University of London, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

E-mail address: angus@eecs.qmul.ac.uk