Study	HO prevalence (%)	Mean age	Male (%)	Single-level CTDR (%)	C5C6 (%)	C6C7 (%)	Mean operation time (minute)	Mean hospitalization (day)			
Coric et al., 2018¹	62.4	43.7	37.5	100	61.0	27.2	80.2	2.1			
Gao et al., 2018²	16.7	45.4	62.5	0	50.0	15.4	/	/			
Pointillart et al., 2018³	54.5	46.2	55.6	77.8	50.0	40.9	/	/			
Zhou et al., 2018⁴	50.0	43.0	49.2	77.0	67.1	12.9	/	/			
Zeng et al., 2018⁵	46.7	43.8	42.2	100	51.1	40.0	/	/			
Miao et al., 2018⁶	65.6	41.3	48.1	70.9	47.1	16.7	/	/			
Zarkadis et al., 2017⁷	0	40.0	83.3	0	50.0	41.7	/	/			
Mehren et al., 2017⁸	90.0	44.8	51.1	57.4	40.0	41.4	/	/			
Wu a et al., 2017⁹	4.0	44.8	48.0	0	36.0	12.0	106.4	/			
Ozbek et al., 2017¹⁰	21.8	43.6	40.0	77.0	36.1	34.7	/	/			
Chang et al., 2017¹¹	87.5	45.6	42.0	100	72.0	4.0	/	/			
Wu b et al., 2017¹²	7.4	48.1	59.3	0	/	/	132.2	/			
Study	Indicator 1	Indicator 2	Indicator 3	Indicator 4	Indicator 5	Indicator 6	Indicator 7				
-------------------------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------				
Heo et al., 2017	29.2	50.7	37.5	100	68.8	16.7	/				
Lanman et al., 2017	/	47.1	44.0	0	/	/	/				
Tian et al., 2017	2.7	45.0	67.9	71.4	59.5	13.5	/				
Hisey et al., 2016	/	43.2	47.6	100	/	/	90.0	2.1			
Meisel et al., 2016	/	43.0	41.0	100	54.0	38.0	78.0	/			
Sirikci et al., 2016	4.6	39.5	52.5	64.4	48.8	26.7	/	/			
Kim et al., 2016	69.6	45.0	87.0	100	65.2	8.7	/	/			
Sundseth et al., 2016	100	44.2	45.9	100	59.5	40.5	/	/			
Wagner et al., 2016	13.8	41.7	76.1	62.8	/	/	/	/			
Lei et al., 2016	51.4	42.6	48.4	87.1	32.3	35.5	/	/			
Gornet et al., 2016	15.7	44.5	46.1	100	52.5	38.6	89.4	1.0			
Chang et al., 2016	62.5	45.6	53.4	100	69.3	4.5	/	/			
Shichang et al., 2016	28.2	46.3	43.5	100	44.7	7.1	58.1	8.4			
Hou et al., 2016	0	46.3	58.8	100	54.9	27.5	95.0	9.3			
Author et al., (Year)	Variable 1	Variable 2	Variable 3	Variable 4	Variable 5						
----------------------	------------	------------	------------	------------	------------						
Zhao et al., 2016	69.0	44.8	57.6	75.8	61.9						
Qizhi et al., 2016	0	46.8	64.3	0	28.6						
Thomas et al., 2016	2.5	45.5	18.2	66.7	/						
Fransen et al., 2016	53.2	/	/	60.6	43.1						
Shi et al., 2016	13.3	46.5	40.0	100	41.7						
Radeliff et al., 2016	41.7	45.3	50.2	0	/						
Kim et al., 2015	18.9	45.4	64.9	100	64.9						
Lee et al., 2015	78.6	47.1	85.7	100	35.7						
Zhang et al., 2015	34.0	42.7	50.9	100	/						
Skeppholm et al., 2015	/	46.6	42.9	64.3	35.7						
Janssen et al., 2015	/	42.1	46.6	100	/						
Hur et al., 2015	16.7	/	/	0	/						
Phillips et al., 2015	/	45.3	51.8	100	50.0						
Zhang_a et al., 2014	18.8	/	/	89.7	51.6						
Authors	Year	Value1	Value2	Value3	Value4	Value5	Value6	Value7	Value8		
------------------------	------	--------	--------	--------	--------	--------	--------	--------	--------		
Fay et al., 2014		41.9	50.6	60.8	62.4	54.1	12.2	213.2			
Suchomel et al., 2014		/	42.9	40.0	100	53.7	37.1	/	/		
Zhang et al., 2014		32.7	44.8	45.5	100	29.1	21.8	84.5	/		
Ding et al., 2014		7.7	50.6	61.5	0	/	/	153.1	10.3		
Qi et al., 2014		27.9	43.1	54.4	76.8	33.6	7.2	/	/		
Malham et al., 2014		36.4	40.3	54.2	79.2	48.3	41.4	/	/		
Zhao et al., 2013		65.4	44.0	61.5	100	61.5	11.5	/	/		
Li et al., 2013		18.2	46.4	49.1	100	61.8	10.9	/	/		
Zhang et al., 2013		26.1	46.5	65.0	85.0	52.2	0	134.5	/		
Park et al., 2013		94.1	45.0	49.3	78.7	44.7	36.5	/	/		
Chen et al., 2013		16.1	45.0	58.1	100	90.3	0	/	/		
Pimenta et al., 2013		7.7	46.2	32.3	44.9	69.6	50.6	/	/		
Jin et al., 2013		64.2	46.0	72.8	74.7	50.5	24.2	/	/		
Cho et al., 2013		/	41.7	78.1	84.4	64.7	17.6	/	/		
Choi et al., 2012		38.8	48.8	54.7	50.9	46.3	32.5	/	/		
Tu et al., 2012		56.1	46.7	68.0	57.3	56.1	11.2	/	/		
Authors et al., 2012	Accuracy	Precision	Recall	F1	Specificity	Sensitivity	Precision	Recall	F1	Specificity	Sensitivity
---------------------	----------	-----------	--------	----	-------------	-------------	-----------	--------	----	-------------	-------------
Sun et al., 2012	42.3	44.0	53.8	100	76.9	3.8	/	/			
Chung et al., 2012	68.4	50.1	63.2	100	47.4	47.4	/	/			
GUeRIN et al., 2012	27.7	41.2	45.1	77.5	/	/	75.0	/			
Wu et al., 2012	37.5	45.5	60.0	100	67.5	5.0	/	/			
Lee et al., 2012	64.3	44.4	75.0	67.9	50.0	10.7	/	/			
Zhang et al., 2012	12.5	44.8	58.3	100	43.3	13.3	92.4	3.3			
Barrey et al., 2012	18.8	42.3	43.8	100	75.0	21.9	65.6	5.1			
Cho et al., 2012	46.5	46.3	55.0	86.0	51.2	25.6	/	/			
US FDA IDE trial (P100003) 2012	74.2	42.7	53.3	100	51.3	39.2	91.7	1.1			
Wang et al., 2011	0	46.5	65.0	85.0	52.2	0	134.5	/			
Peng et al., 2011	/	43.9	47.5	62.5	55.9	15.3	/	/			
Huppert et al., 2011	62.0	44.9	39.8	75.8	44.7	39.9	97.9	3.5			
Ren et al., 2011	/	46.0	57.8	86.7	53.3	11.1	/	/			
Tu et al., 2011	48.1	46.6	58.3	55.6	61.5	9.6	/	/			
Author et al., Year	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7				
--------------------	---------	---------	---------	---------	---------	---------	---------				
Du et al., 2011	0	47.9	56.0	96.0	/	/	132.6				
Cardoso et al., 2011	0	50.0	58.1	0	60.0	6.7	/				
Kowalczyk et al., 2011	3.3	44.4	50.0	100	55.0	33.3	/				
Zhao et al., 2010	33.3	43.8	50.0	90.9	75.0	4.2	/				
Walraevens et al., 2010	38.5	42.8	42.7	100	/	/	/				
Lee et al., 2010	27.1	44.0	56.3	100	56.3	29.2	/				
Reyes-Sanchez et al., 2010	0	44.5	8.0	48.0	47.4	23.7	/				
Suchomel et al., 2010	88.3	45.3	50.0	81.5	58.5	29.2	82.0				
Ryu et al., 2010	52.8	46.6	58.3	100	47.2	30.6	/				
Cardoso et al., 2010	0	45.0	100	0	36.4	31.8	/				
Barbagallo et al., 2010	42.2	40.9	60.0	63.3	51.1	28.9	/				
Cheng et al., 2009	0	45.0	51.6	0	/	/	/				
Yang et al., 2009	0	45.4	66.7	100	37.5	12.5	140.0				
Bhadra et al., 2009	13.3	34.0	60.0	100	60.0	33.3	105.0				
							2.0				
Study	HO (%)	CTDR (%)	CTDR (%)	HO (%)	CTDR (%)	CTDR (%)	CTDR (%)	CTDR (%)			
-------------------------------	--------	----------	----------	--------	----------	----------	----------	----------			
US FDA IDE trial (P060023) 2009	/	44.4	45.5	100	57.9	36.0	132.0	1.1			
Heidecke et al., 2008⁸⁴	28.8	46.7	40.7	90.7	55.9	13.6	/	/			
Kim et al., 2008⁸⁵	0	/	63.8	83.0	47.3	36.4	/	/			
Park et al., 2008⁸⁶	0	45.0	52.4	100	61.9	28.6	167.0	5.6			
Amit et al., 2007⁸⁷	0	51.0	59.1	100	/	/	120.0	/			
Pimenta et al., 2007⁸⁸	0.4	46.0	40.0	50.7	44.2	28.6	113.5	1.1			
Mehren et al., 2006⁸⁹	66.2	/	/	63.0	46.8	37.7	/	/			
Pickett et al., 2006⁹⁰	2.7	/	16.2	/	43.8	32.3	/	/			
Leung et al., 2006⁹¹	17.8	45.0	43.3	/	/	/	/	/			
Pimenta et al., 2004⁹²	/	45.0	39.6	52.8	33.7	21.8	/	/			

HO, heterotopic ossification; CTDR, cervical total disc replacement.
Reference

1. Coric D, Guyer RD, Nunley PD, et al. Prospective, randomized multicenter study of cervical arthroplasty versus anterior cervical discectomy and fusion: 5-year results with a metal-on-metal artificial disc. *Journal of Neurosurgery: Spine.* 2018;1-10.
2. Gao X, Yang Y, Liu H, et al. Cervical disc arthroplasty with Prestige-LP for the treatment of contiguous 2-level cervical degenerative disc disease: 5-year follow-up results. *Medicine.* 2018;97(4).
3. Pointillart V, Castelain J-E, Coudert P, Cawley DT, Gille O, Vital J-M. Outcomes of the Bryan cervical disc replacement: fifteen year follow-up. *International orthopaedics.* 2018;42(4):851-857.
4. Zhou F, Ju KL, Zhao Y, et al. Progressive Bone Formation After Cervical Disc Replacement. *Spine.* 2018;43(3):E163-E170.
5. Zeng J, Liu H, Wang B, et al. Clinical and radiographic comparison of cervical disc arthroplasty with Prestige-LP Disc and anterior cervical fusion: A minimum 6-year follow-up study. *Clinical neurology and neurosurgery.* 2018;164:97-102.
6. Miao J, Shen Y, Li C, et al. Cervical Artificial Disc Replacement With Discover Prosthesis Does Not Reduce the Midterm Risk of Heterotopic Ossification: Results of a Cohort Study. *Clinical spine surgery.* 2018;31(3):E204-E208.
7. Zarkadis NJ, Cleveland AW, Kusnezov NA, Dunn JC, Caram PM, Herzog JP. Outcomes Following Multilevel Cervical Disc Arthroplasty in the Young Active Population. *Military medicine.* 2017;182(3-4):e1790-e1794.
8. Mehren C, Heider F, Siepe CJ, et al. Clinical and radiological outcome at 10 years of follow-up after total cervical disc replacement. *European Spine Journal.* 2017;26(9):2441-2449.
9. Wu T, Wang B, Ding C, et al. Artificial cervical disc replacement with the Prestige-LP prosthesis for the treatment of non-contiguous 2-level cervical degenerative disc disease: a minimum 24-month follow-up. *Clinical neurology and neurosurgery.* 2017;152:57-62.
10. Ozek Z, Ozkara E, Arslantas A. Implant Migration in Cervical Disk Arthroplasty. *World neurosurgery.* 2017;97:390-397.
11. Chang H-K, Chang C-C, Tu T-H, et al. Can segmental mobility be increased by cervical arthroplasty? *Neurosurgical focus.* 2017;42(2):E3.
12. Wu T-k, Wang B-y, Cheng D, et al. Clinical and radiographic features of hybrid surgery for the treatment of skip-level cervical degenerative disc disease: A minimum 24-month follow-up. *Journal of Clinical Neuroscience.* 2017;40:102-108.
13. Heo DH, Lee DC, Oh JY, Park CK. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication? *Neurosurgical focus.* 2017;42(2):E7.
14. Lanman TH, Burkus JK, Dryer RG, Gornet MF, McConnell J, Hodges SD. Long-term clinical and radiographic outcomes of the Prestige LP artificial cervical disc replacement at 2 levels: results from a prospective randomized controlled clinical trial. *Journal of Neurosurgery: Spine.* 2017;27(1):7-19.
15. Tian W, Yan K, Han X, Yu J, Jin P, Han X. Comparison of the Clinical and Radiographic Results Between Cervical Artificial Disk Replacement and Anterior Cervical Fusion: A 6-Year Prospective Nonrandomized Comparative Study. *Clinical spine surgery*. 2017;30(5):E578-E586.

16. Hisey MS, Zigler JE, Jackson R, et al. Prospective, randomized comparison of one-level Mobi-C cervical total disc replacement vs. anterior cervical discectomy and fusion: results at 5-year follow-up. *International journal of spine surgery*. 2016;10.

17. Meisel H-J, Jurák L, Antinheimo J, et al. Four-year results of a prospective single-arm study on 200 semi-constrained total cervical disc prostheses: clinical and radiographic outcome. *Journal of Neurosurgery: Spine*. 2016;25(5):556-565.

18. Sirikei M, Karaca S, Enercan M, et al. Radiologic and Clinical Outcome of the Operated and Adjacent Segments Following Prodisc-C Cervical Arthroplasty After a Minimum 24-month Follow-up: A Single Surgeon-center Experience. *Neurosurgery Quarterly*. 2016;26(3):234-239.

19. Kim KS, Heo DH. Do postoperative biomechanical changes induce heterotopic ossification after cervical arthroplasty?: A 5-year follow-up study. *Clinical spine surgery*. 2016;29(6):E309-E313.

20. Sundseth J, Jacobsen EA, Kolstad F, et al. Heterotopic ossification and clinical outcome in nonconstrained cervical arthroplasty 2 years after surgery: the Norwegian Cervical Arthroplasty Trial (NORCAT). *European Spine Journal*. 2016;25(7):2271-2278.

21. Wagner SC, Formby PM, Kang DG, et al. Persistent axial neck pain after cervical disc arthroplasty: a radiographic analysis. *The Spine Journal*. 2016;16(7):851-856.

22. Lei T, Liu Y, Wang H, et al. Clinical and radiological analysis of Bryan cervical disc arthroplasty: eight-year follow-up results compared with anterior cervical discectomy and fusion. *International orthopaedics*. 2016;40(6):1197-1203.

23. Gornet MF, Burkus JK, Shaffrey ME, Nian H, Harrell Jr FE. Cervical disc arthroplasty with prestige LP disc versus anterior cervical disectomy and fusion: seven-year outcomes. *International journal of spine surgery*. 2016;10.

24. Chang P-Y, Chang H-K, Wu J-C, et al. Differences between C3–4 and other subaxial levels of cervical disc arthroplasty: more heterotopic ossification at the 5-year follow-up. *Journal of Neurosurgery: Spine*. 2016;24(5):752-759.

25. Shichang L, Yueming S, Limin L, et al. Clinical and radiologic comparison of dynamic cervical implant arthroplasty and cervical total disc replacement for single-level cervical degenerative disc disease. *Journal of Clinical Neuroscience*. 2016;27:102-109.

26. Hou Y, Nie L, Pan X, et al. Effectiveness and safety of Mobi-C for treatment of single-level cervical disc spondylosis: a randomised control trial with a minimum of five years of follow-up. *Bone Joint J*. 2016;98(6):829-833.

27. Zhao Y, Zhang Y, Sun Y, Pan S, Zhou F, Liu Z. Application of cervical arthroplasty with Bryan cervical disc: 10-year follow-up results in China. *Spine*. 2016;41(2):111-115.

28. Qizhi S, Lei S, Peijia L, et al. A comparison of zero-profile devices and artificial cervical disks in patients with 2 noncontiguous levels of cervical spondylosis. *Clinical spine surgery*. 2016;29(2):E61-E66.
29. Thomas S, Willems K, Van den Daelen L, Linden P, Ciocci M-C, Bocher P. The M6-C cervical disk prosthesis: first clinical experience in 33 patients. *Clinical spine surgery.* 2016;29(4):E182-E187.

30. Fransen P, Hansen-Algenstaedt N, Chatzisotiriou A, et al. Radiographic outcome and adjacent segment evaluation two years after cervical disc replacement with the Baguera® C prosthesis as treatment of degenerative cervical disc disease. *J Spine.* 2016;5(2):1-7.

31. Shi S, Zheng S, Li X-F, Yang L-L, Liu Z-D, Yuan W. Comparison of 2 Zero-Profile implants in the treatment of single-level cervical spondylotic myelopathy: a preliminary clinical study of cervical disc arthroplasty versus fusion. *PloS one.* 2016;11(7):e0159761.

32. Radcliff K, Coric D, Albert T. Five-year clinical results of cervical total disc replacement compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled, multicenter investigational device exemption clinical trial. *Journal of Neurosurgery: Spine.* 2016;25(2):213-224.

33. Kim SH, Chung YS, Ropper AE, et al. Bone loss of the superior adjacent vertebral body immediately posterior to the anterior flange of Bryan cervical disc. *European Spine Journal.* 2015;24(12):2872-2879.

34. Lee SE, Jahng T-A, Kim HJ. Correlation between cervical lordosis and adjacent segment pathology after anterior cervical spinal surgery. *European Spine Journal.* 2015;24(12):2899-2909.

35. Zhang Z, Jiao L, Zhu W, Du Y, Zhang W. Comparison of Bryan versus ProDisc-C total disk replacement as treatment for single-level cervical symptomatic degenerative disk disease. *Archives of orthopaedic and trauma surgery.* 2015;135(3):305-311.

36. Skeppholm M, Svedmark P, Noz ME, Maguire Jr GQ, Olivecrona H, Olerud C. Evaluation of mobility and stability in the Discover artificial disc: an in vivo motion study using high-accuracy 3D CT data. *Journal of Neurosurgery: Spine.* 2015;23(3):383-389.

37. Janssen ME, Zigler JE, Spivak JM, Delamarter RB, Darden BV, Kopjar B. ProDisc-C total disc replacement versus anterior cervical discectomy and fusion for single-level symptomatic cervical disc disease: seven-year follow-up of the prospective randomized US Food and Drug Administration Investigational Device Exemption Study. *JBJS.* 2015;97(21):1738-1747.

38. Hur J-W, Ryu K-S, Kim J-S, Seong J-h. Multilevel Fusion versus Hybrid Surgery in Three-Level Cervical Disc Disease: Retrospective Matched Analysis of Clinical and Radiologic Results in Minimum Two-Year Follow-Up. *The Spine Journal.* 2015;15(10):S236-S237.

39. Phillips FM, Geisler FH, Gilder KM, Reah C, Howell KM, McAfee PC. Long-term outcomes of the US FDA IDE prospective, randomized controlled clinical trial comparing PCM cervical disc arthroplasty with anterior cervical discectomy and fusion. *Spine.* 2015;40(10):674-683.

40. Zhang Z, Zhu W, Zhu L, Du Y. Midterm outcomes of total cervical total disc replacement with Bryan prosthesis. *European Journal of Orthopaedic Surgery & Traumatology.* 2014;24(1):275-281.

41. Fay L-Y, Huang W-C, Wu J-C, et al. Arthroplasty for cervical spondylotic myelopathy: similar results to patients with only radiculopathy at 3 years' follow-up. *Journal of Neurosurgery: Spine.* 2014;21(3):400-410.
42. Suchomel P, Jurák L, Antinheimo J, et al. Does sagittal position of the CTDR-related centre of rotation influence functional outcome? Prospective 2-year follow-up analysis. European Spine Journal. 2014;23(5):1124-1134.
43. Zhang H-X, Shao Y-D, Chen Y, et al. A prospective, randomised, controlled multicentre study comparing cervical disc replacement with anterior cervical decompression and fusion. International orthopaedics. 2014;38(12):2533-2541.
44. Ding F, Jia Z, Wu Y, Li C, He Q, Ruan D. Fusion-nonfusion hybrid construct versus anterior cervical hybrid decompression and fusion: a comparative study for 3-level cervical degenerative disc diseases. Spine. 2014;39(23):1934-1942.
45. Qi M, Chen H, Cao P, Tian Y, Yuan W. Incidence and risk factors analysis of heterotopic ossification after cervical disc replacement. Chinese medical journal. 2014;127(22):3871-3875.
46. Malham GM, Parker RM, Ellis NJ, Chan PG, Varma D. Cervical artificial disc replacement with ProDisc-C: clinical and radiographic outcomes with long-term follow-up. Journal of Clinical Neuroscience. 2014;21(6):949-953.
47. Zhao Y, Sun Y, Zhou F, Liu Z. Cervical disc arthroplasty with ProDisc-C artificial disc: 5-year radiographic follow-up results. Chin Med J (Engl). 2013;126(20):3809-3811.
48. Li J, Liang L, Ye X-f, Qi M, Chen H-j, Yuan W. Cervical arthroplasty with Discover prosthesis: clinical outcomes and analysis of factors that may influence postoperative range of motion. European Spine Journal. 2013;22(10):2303-2309.
49. Zhang Z, Gu B, Zhu W, Wang Q, Zhang W. Clinical and radiographic results of Bryan cervical total disc replacement: 4-year outcomes in a prospective study. Archives of orthopaedic and trauma surgery. 2013;133(8):1061-1066.
50. Park JH, Rhim SC, Roh SW. Mid-term follow-up of clinical and radiologic outcomes in cervical total disk replacement (Mobi-C): incidence of heterotopic ossification and risk factors. Clinical Spine Surgery. 2013;26(3):141-145.
51. Chen F, Yang J, Ni B, Guo Q, Lu X, Xie N. Clinical and radiological follow-up of single-level Prestige LP cervical disc replacement. Archives of orthopaedic and trauma surgery. 2013;133(4):473-480.
52. Pimenta L, Oliveira L, Coutinho E, Marchi L. Bone formation in cervical total disk replacement (CTDR) up to the 6-year follow-up: Experience from 272 levels. Neurosurgery Quarterly. 2013;23(1):1-6.
53. Jin YJ, Park SB, Kim MJ, Kim K-J, Kim H-J. An analysis of heterotopic ossification in cervical disc arthroplasty: a novel morphologic classification of an ossified mass. The Spine Journal. 2013;13(4):408-420.
54. Cho Y-H, Kim K-S, Kwon Y-M. Heterotopic ossification after cervical arthroplasty with ProDisc-C: time course radiographic follow-up over 3 years. Korean Journal of Spine. 2013;10(1):19.
55. Choi D, Petrik V, Fox S, Parkinson J, Timothy J, Gullan R. Motion preservation and clinical outcome of porous coated motion cervical disk arthroplasty. Neurosurgery. 2012;71(1):30-37.
56. Tu T-H, Wu J-C, Huang W-C, Wu C-L, Ko C-C, Cheng H. The effects of carpentry on heterotopic ossification and mobility in cervical arthroplasty: determination by computed tomography with a minimum 2-year follow-up. *Journal of Neurosurgery: Spine*. 2012;16(6):601-609.

57. Sun Y, Zhao Y, Pan S, Zhou F, Chen Z, Liu Z. Comparison of adjacent segment degeneration five years after single level cervical fusion and cervical arthroplasty: a retrospective controlled study. *Chinese medical journal*. 2012;125(22):3939-3941.

58. Chung S-B, Muradov JM, Lee S-H, Eoh W, Kim E-S. Uncovertebral hypertrophy is a significant risk factor for the occurrence of heterotopic ossification after cervical disc replacement: survivorship analysis of Bryan disc for single-level cervical arthroplasty. *Acta neurochirurgica*. 2012;154(6):1017-1022.

59. GUéRIN P, Obeid I, Bourghli A, et al. Heterotopic ossification after cervical disc replacement: clinical significance and radiographic analysis. A prospective study. *Acta Orthopædica Belgica*. 2012;78(1):80.

60. Wu J-C, Huang W-C, Tu T-H, et al. Differences between soft-disc herniation and spondylosis in cervical arthroplasty: CT-documented heterotopic ossification with minimum 2 years of follow-up. *Journal of Neurosurgery: Spine*. 2012;16(2):163-171.

61. Lee SE, Chung CK, Jahng TA. Early development and progression of heterotopic ossification in cervical total disc replacement. *Journal of Neurosurgery: Spine*. 2012;16(1):31-36.

62. Zhang X, Zhang X, Chen C, et al. Randomized, controlled, multicenter, clinical trial comparing BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion in China. *Spine*. 2012;37(6):433-438.

63. Barrey C, Champain S, Campana S, Ramadan A, Perrin G, Skalli W. Sagittal alignment and kinematics at instrumented and adjacent levels after total disc replacement in the cervical spine. *European Spine Journal*. 2012;21(8):1648-1659.

64. Cho H-J, Shin M-H, Huh J-W, Ryu K-S, Park C-K. Heterotopic ossification following cervical total disc replacement: iatrogenic or constitutional? *Korean Journal of Spine*. 2012;9(3):209.

65. Wang Q, Cheng H, Mao Z, Qi X, Zhang M, Chen Y. Clinical and radiographic results after treatment of cervical degenerative disc disease with the bryan disc prosthesis: a prospective study with 2-year follow-up. *Acta Orthopædica Belgica*. 2011;77(6):809.

66. Peng CWB, Yue WM, Basit A, et al. Intermediate results of the prestige LP cervical disc replacement: clinical and radiological analysis with minimum two-year follow-up. *Spine*. 2011;36(2):E105-E111.

67. Huppert J, Beaurain J, Steib J, et al. Comparison between single-and multi-level patients: clinical and radiological outcomes 2 years after cervical disc replacement. *European Spine Journal*. 2011;20(9):1417-1426.

68. Ren X, Wang W, Chu T, Wang J, Li C, Jiang T. The intermediate clinical outcome and its limitations of Bryan cervical arthroplasty for treatment of cervical disc herniation. *Clinical Spine Surgery*. 2011;24(4):221-229.

69. Tu T-H, Wu J-C, Huang W-C, et al. Heterotopic ossification after cervical total disc replacement: determination by CT and effects on clinical outcomes. *Journal of Neurosurgery: Spine*. 2011;14(4):457-465.
70. Du J, Li M, Liu H, Meng H, He Q, Luo Z. Early follow-up outcomes after treatment of degenerative disc disease with the discover cervical disc prosthesis. *The Spine Journal*. 2011;11(4):281-289.
71. Cardoso MJ, Mendelsohn A, Rosner MK. Cervical hybrid arthroplasty with 2 unique fusion techniques. *Journal of Neurosurgery: Spine*. 2011;15(1):48-54.
72. Kowalczyk I, Lazaro BC, Fink M, Rabin D, Duggal N. Analysis of in vivo kinematics of 3 different cervical devices: Bryan disc, ProDisc-C, and Prestige LP disc. *Journal of Neurosurgery: Spine*. 2011;15(6):630-635.
73. Zhao Y-b, Sun Y, Chen Z-q, Liu Z-j. Application of cervical arthroplasty with Bryan cervical disc: long-term X-ray and magnetic resonance imaging follow-up results. *Chinese Medical Journal (English Edition)*. 2010;123(21):2999.
74. Walraevens J, Demaerel P, Suetens P, et al. Longitudinal prospective long-term radiographic follow-up after treatment of single-level cervical disk disease with the Bryan Cervical Disc. *Neurosurgery*. 2010;67(3):679-687.
75. Lee J-H, Jung T-G, Kim H-S, Jang J-S, Lee S-H. Analysis of the incidence and clinical effect of the heterotopic ossification in a single-level cervical artificial disc replacement. *The Spine Journal*. 2010;10(8):676-682.
76. Reyes-Sanchez A, Miramontes V, Olivarez LMR, Aquirre AA, Quiroz AO, Zarate-Kalfopulos B. Initial clinical experience with a next-generation artificial disc for the treatment of symptomatic degenerative cervical radiculopathy. *SAS journal*. 2010;28(5):E19.
77. Suchomel P, Jurák L, Beneš V, Brabec R, Bradač O, Elgawhary S. Clinical results and development of heterotopic ossification in total cervical disc replacement during a 4-year follow-up. *European Spine Journal*. 2010;19(2):307-315.
78. Ryu K-S, Park C-K, Jun S-C, Huh H-Y. Radiological changes of the operated and adjacent segments following cervical arthroplasty after a minimum 24-month follow-up: comparison between the Bryan and Prodisc-C devices. *Journal of Neurosurgery: Spine*. 2010;13(3):299-307.
79. Cardoso MJ, Rosner MK. Multilevel cervical arthroplasty with artificial disc replacement. *Neurosurgical focus*. 2010;28(5):E19.
80. Barbagallo GM, Corbino LA, Olindo G, Albanese V. Heterotopic ossification in cervical disc arthroplasty: is it clinically relevant? *Evidence-based spine-care journal*. 2010;1(1):15.
81. Cheng L, Nie L, Zhang L, Hou Y. Fusion versus Bryan Cervical Disc in two-level cervical disc disease: a prospective, randomised study. *International orthopaedics*. 2009;33(5):1347.
82. Yang YC, Nie L, Cheng L, Hou Y. Clinical and radiographic reports following cervical arthroplasty: a 24-month follow-up. *International orthopaedics*. 2009;33(4):1037-1042.
83. Bhadra AK, Raman A, Casey AT, Crawford R. Single-level cervical radiculopathy: clinical outcome and cost-effectiveness of four techniques of anterior cervical discectomy and fusion and disc arthroplasty. *European Spine Journal*. 2009;18(2):232-237.
84. Heidecke V, Burkert W, Brucke M, Rainov N. Intervertebral disc replacement for cervical degenerative disease—clinical results and functional outcome in two years in patients implanted with the Bryan® cervical disc prosthesis. *Acta neurochirurgica*. 2008;150(5):453.
85. Kim SW, Shin JH, Arbatin JJ, Park MS, Chung YK, McAfee PC. Effects of a cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine. *European Spine Journal*. 2008;17(1):20-29.
86. Park JH, Roh KH, Cho JY, Ra YS, Rhim SC, Noh SW. Comparative analysis of cervical arthroplasty using Mobi-C® and anterior cervical discectomy and fusion using the solis®-cage. *Journal of Korean Neurosurgical Society*. 2008;44(4):217.
87. Amit A, Dorward N. Bryan cervical disc prosthesis: 12-month clinical outcome. *British journal of neurosurgery*. 2007;21(5):478-484.
88. Pimenta L, McAfee PC, Cappuccino A, Cunningham BW, Diaz R, Coutinho E. Superiority of multilevel cervical arthroplasty outcomes versus single-level outcomes: 229 consecutive PCM prostheses. *Spine*. 2007;32(12):1337-1344.
89. Mehren C, Suchomel P, Grochulla F, et al. Heterotopic ossification in total cervical artificial disc replacement. *Spine*. 2006;31(24):2802-2806.
90. Pickett GE, Sekhon LH, Sears WR, Duggal N. Complications with cervical arthroplasty. *Journal of Neurosurgery: Spine*. 2006;4(2):98-105.
91. Leung C, Casey AT, Goffin J, et al. Clinical significance of heterotopic ossification in cervical disc replacement: a prospective multicenter clinical trial. *Neurosurgery*. 2005;57(4):759-763.
92. Pimenta L, McAfee PC, Cappuccino A, Bellera FP, Link HD. Clinical experience with the new artificial cervical PCM (Cervitech) disc. *The Spine Journal*. 2004;4(6):S315-S321.