NEW INSIGHTS FOR HIGH-PRECISION ASTEROSEISMOLOGY: ACOUSTIC RADIUS OF KIC 6225718

TAO WU1,2 AND YAN LI1,2

1 Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, China; wutao@ynao.ac.cn, ly@ynao.ac.cn
2 Key Laboratory for Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, China

Received 2015 November 27; accepted 2016 January 20; published 2016 February 5

ABSTRACT

Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In previous works, the χ^2-minimization method is usually used to find the best-matching model to characterize observations. In this Letter, we adopt the χ^2-minimization method but only use the observed high-precision oscillation to constrain theoretical models for solar-like oscillating star KIC 6225718, which is observed by the Kepler satellite. We also take into account the influence of model precision. Finally, we find that the time resolution of stellar evolution cannot be ignored in high-precision asteroseismic analysis. Based on this, we find the acoustic radius τ_0 is the only global parameter that can be accurately measured by the χ^2-matching method between observed frequencies and theoretical model calculations. We obtain $\tau_0 = 4601.5^{+4.4}_{-8.3}$ s. In addition, we analyze the distribution of χ^2-minimization models (CMMs) and find that the distribution range of CMMs is slightly enlarged by some extreme cases, which possess both a larger mass and a higher (or lower) heavy element abundance, at the lower acoustic radius end.

Key words: asteroseismology – stars: evolution – stars: fundamental parameters – stars: individual: (KIC 6225718) – stars: oscillations – stars: solar-type

1. INTRODUCTION

Asteroseismology is a very effective tool for determining stellar fundamental parameters, such as stellar mass, radius, and surface gravity. It is also a direct way to explore the internal structure and evolutionary status of stars when combined with the stellar theoretical model. It has already been used to determine cluster fundamental parameters (such as by Basu et al. 2011; Miglio et al. 2012; Balona et al. 2013; Wu et al. 2014a, 2014b). Thanks to the space-based observation space projects, such as CoRoT (Baglin et al. 2006), Kepler (Borucki et al. 2010), and the following K2 mission (Howell et al. 2014), more and more ultraprecise and long-term photometric time series have been obtained. They have revolutionized asteroseismology in many aspects, such as investigating the internal differential rotation of stars (e.g., Beck et al. 2012; Deheuvels et al. 2012, 2014; Mosser et al. 2012; Goupil et al. 2013) and probing the properties of the convective zone and overshooting (e.g., Soriano & Vauclair 2008; Deheuvels & Michel 2011; Lebreton & Goupil 2012; Guenther et al. 2014; Tian et al. 2014; Moravveji et al. 2015).

The ultimate goal of asteroseismology is to reveal the internal structure and evolutionary status of stars. To probe the internal structure or a specific physical process in a star, however, we need to compare stellar theoretical models with observations of the star (e.g., Guenther & Brown 2004; Deheuvels et al. 2012, 2014; Lebreton 2012; Lebreton & Goupil 2014; Tian et al. 2014). Usually, the goodness of matching between theoretical models and observations is evaluated through a χ^2 method, which is defined as

$$\chi^2_x = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\chi_i^{\text{obs}} - \chi_i^{\text{mod}}}{\sigma_{\chi_i^{\text{obs}}}} \right)^2$$

(Eggenberger et al. 2004), where the superscripts obs and mod represent the observations and theoretical model calculations of a quantity χ_i, respectively. Correspondingly, $\sigma_{\chi_i^{\text{obs}}}$ denotes the uncertainty of observed quantity χ_i^{obs}, and N is the total number of available observations of χ_i^{obs}. Obviously, a model with the minimum χ^2_x is the best-matching model.

To obtain the best-matching model, asteroseismic parameters (mainly frequencies) and non-asteroseismic parameters (i.e., parameters of stellar atmosphere) are usually combined together to get a total residual error (χ^2_x; e.g., Lebreton 2012; Lebreton & Goupil 2014). Sometimes these two kinds of parameters are used separately (e.g., Deheuvels et al. 2012, 2014; Tian et al. 2014). The non-seismic parameters are used as a first constraint to narrow the model parameter range, and then the seismic parameters are used to find the best-matching model (i.e., the χ^2-minimization model).

Owing to space-based observations (such as CoRoT, Kepler, and K2), dozens of oscillation frequencies can be obtained for a pulsating star (such as solar-like stars) with extraordinarily high precision. The errors of those observed frequencies are usually much smaller than those of non-asteroseismic parameters (e.g., effective temperature T_{eff}, luminosity L, and metal abundance [Fe/H]). However, such high precision of asteroseismic data will be deteriorated by low precision of non-asteroseismic parameters, when they are used together. Therefore, the precision of the final result will be reduced.

In practice, theoretical models also possess considerable errors. The definition of χ^2_x (Equation (1)) should therefore be modified as

$$\chi^2_x = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\chi_i^{\text{obs}} - \chi_i^{\text{mod}}}{\sigma_{\chi_i^{\text{obs}}}^2 + \sigma_{\chi_i^{\text{mod}}}^2} \right)^2.$$ \hspace{1cm} (2)

However, what does such a matching process tell us about the observed star? Or, in other words, what physical parameters of the observed star can be determined best with such a method? In this Letter, we try to answer this question, using
only asteroseismic parameters of the solar-like star KIC 6225718.

2. THE PRECISION OF STELLAR MODELS

The theory of stellar structure and evolution tells us that the precision of theoretical models of a star is affected by the space resolution of stellar structure and the time resolution of stellar evolution when the input physics and initial parameters are fixed. In this section, we will discuss how influential both are.

2.1. Model Input Physics

We use the Modules of Experiments in Stellar Astrophysics (MESA) evolutionary code, which was developed by Paxton et al. (2011), to calculate theoretical models. It can be used to calculate stellar evolutionary models and their corresponding oscillation information (Paxton et al. 2013). We use the package “pulse” of version “v6208” to make our calculations for both stellar evolution and oscillations (Christensen-Dalsgaard 2008; Paxton et al. 2011, 2013).

Based on the default parameters, we adopt the OPAL opacity table GS98 (Grevesse & Sauval 1998) series. We choose the Eddington gray-atmosphere $T−\tau$ relation as the stellar atmosphere model and treat the convection zone by the standard mixing-length theory (MLT) of Cox & Giuli (1968) with $\alpha_{\text{MLT}} = 2.0$. We treat the element diffusion in our model calculations according to Thoul et al. (1994). For convective core overshooting, Tian et al. (2014) suggested that it is between 0 and $0.2H_p$, and its effect can be ignored. We hence do not consider it in our model calculations. In addition, the semi-convection, thermohaline mixing, and mass loss are not included in this work.

2.2. The Influence of Space and Time Resolution on Stellar Models

For a low-mass main-sequence star (such as KIC 6225718), the radial nodes n of observable oscillation modes are around 20. Moreover, such radial nodes distribute over nearly the whole stellar interior. In order to discuss the influence of space resolution on the stellar structure and on its oscillations, we compare two models that consist of 1800 and 3500 shells, respectively. Finally, we find that the discrepancies between them are on the order of 0.04 μHz for oscillation frequencies and 0.027 for χ^2 when we match our theoretical models with the observations of KIC 6225718. Therefore, a spatial resolution of about 2000 shells is sufficient to identify accurate stellar models for such a star.

Based on the above input physics, we calculate stellar evolution models and their oscillation frequencies for four initial combinations of mass M and initial heavy element mass fraction Z_{init}. They are (1.08 M_{\odot}, 0.012), (1.10 M_{\odot}, 0.012), (1.08 M_{\odot}, 0.010), and (1.10 M_{\odot}, 0.014), respectively. In order to check the effect of the time resolution, we assign three different values to the time step of the evolution. They are 10^8, 10^9, and 10^6 years, respectively. Finally, we calculate the χ^2-value for each model on those tracks with respect to the 33 observed frequencies of KIC 6225718 (Tian et al. 2014) via Equation (1) and show them in Figure 1, where each line corresponds to one evolutionary track. In addition, the χ^2-minimization model of every evolutionary track is also determined.

It can be seen in Figure 1 that the time resolution of stellar evolution significantly affects the position of the best-matching models in the χ^2-diagram. The χ^2-profile with a time step of 10^6 years shows some irregular variations. For shorter time steps, the χ^2-profile becomes more and more regular and tends to converge.

Panels (a)–(d) of Figure 1 also show that different time resolutions lead to distributions of χ^2 with great diversity. It should be noted that the χ^2-value indicates how well a model represents the observations. Large diversity and irregular variations of χ^2 thus indicate that the time resolution affects the precision of stellar models. It can be noticed that a too low time resolution in stellar evolution calculations may lead to the wrong selection of the best-matching model. When the time resolution increases to 10^6 years, the χ^2-profile begins to converge to a regular “V” shape, which defines a unique minimum of χ^2. This characteristic removes any ambiguity of how to select the best-matching model and ensures that only one model can be selected as the best-matching one for a specific evolutionary track. By comparing two models that have time resolutions of 10^6 and 2×10^6 years, respectively, we find that there is 0.035 μHz for the frequencies, which translates into 0.024 for χ^2. At this moment, the precision of theoretical models is higher than that of observations.

According to the stellar oscillation theory, p-mode oscillations are basically acoustic waves. Their properties can be roughly characterized by the acoustic radius r_0, which is defined as

$$r_0 = \int_0^R \frac{dr}{c_s(r)}$$

(e.g., Aerts et al. 2010), where c_s is the adiabatic sound speed and R is the stellar radius. The acoustic radius r_0 is an important parameter in asteroseismology. For instance, Ballot et al. (2004) and Miglio et al. (2010) used it as a reference to show the position of the base of convective envelope and the position of helium ionization zone. Equation (3) shows that r_0 is determined by stellar radius R and the profile of adiabatic sound speed $c_s(r)$. Therefore, such “V” shapes in $\chi^2(t_{\text{age}})$ may also appear in $\chi^2_r(R)$ and $\chi^2_r(t_0)$ (see Figures 1(e)–(h)).

It can be found from Figures 1(e) and (f) that the stellar radius R dominantly determines χ^2_r to vary with the “V” shape, while the profile of sound speed c_s fine tunes the minimum of χ^2 to be located at almost the same value of the acoustic radius r_0. In addition, Figures 1(f)–(h) show that such a regular “V” shape gradually disappears when the time step of stellar evolution increases. For low-mass main-sequence stars, a time resolution is available to obtain sufficiently accurate stellar evolutionary models on the order of 10^6 years.

3. OBSERVATIONS OF KIC 6225718

3.1. KIC 6225718

KIC 6225718 is also named HIP (HIC) 97527 and HD 187637. It is a low-mass main-sequence star (Boyajian et al. 2013) and has been included in various studies. We summarize the attempts to determine its mass and metal abundance in Table 1.

Since it had been observed by Kepler, Bruntt et al. (2012), Silva Aguirre et al. (2012), Huber et al. (2012), Chaplin et al. (2014), and Tian et al. (2014) investigated it with different
methods. They analyzed the oscillation power spectrum and extracted $\nu_{\text{max}} = 2300 - 2350$ μHz and $\Delta \nu \approx 105.8$ μHz. Bruntt et al. (2012), Silva Aguirre et al. (2012), Huber et al. (2012), and Chaplin et al. (2014) determined its fundamental parameters by combining these asteroseismic parameters with other non-asteroseismic parameters. Tian et al. (2014) extracted 33 individual frequencies from its oscillation spectrum. The radial order n of the identified oscillation modes ranges from 13 to 24 and the spherical harmonic degree $l = 0, 1, 2$. They used the ratio $r_0 = \frac{\nu_{\text{fit}}(0)}{\Delta \nu_{\text{fit}}(0)}$ to analyze the overshooting of the convective core and found that it is about 0–0.2H_p.

3.2. Observations

KIC 6225718 was observed with *Kepler* in two different observing modes: short-cadence (about 1 minute exposure time) and long-cadence (about 30 minute exposure times). There are 18 quarters of long-cadence (Q0–Q17) and 13 quarters of short-cadence (Q1 and Q6–Q17) photometric data available. In this Letter, we use the 33 individual frequencies and their uncertainties (see Table 2 of Tian et al. 2014). For more details on the data processing, we refer to Section 2 in Tian et al. (2014).

4. CALCULATIONS AND RESULTS

4.1. Modeling and χ^2 Matching

According to Table 1 and preliminary calculations, we set the initial stellar mass M ranging from 1.0 M_\odot to 1.26 M_\odot with steps of 0.02 M_\odot and the initial heavy element mass fraction Z_{init} from 0.010 to 0.036 with steps of 0.002, respectively. Based on the above input physics (see Section 2.1), we calculate a total of 196 evolutionary tracks. For each model on these tracks, we compute the p-mode spectrum and compare it to the observed frequencies. The resulting χ^2-values are shown in Figure 2 as a function of various model parameters.

As already shown in Section 2.2, each evolutionary track has one and only one χ^2-minimization model. Hence, we call such models χ^2-minimization models for the considered evolutionary tracks (hereafter CMM). They are indicated as filled symbols in Figure 1(a). The CMMs of all evolutionary tracks are shown in Figure 3.

![Figure 1. χ^2 as a function of stellar age (panels (a)–(d)), stellar radius (panel (e)), and acoustic radius (panels (f)–(h)). For panels (a)–(d), each panel represents a different initial combination of stellar mass M and metal mass fraction Z_{init}. They are (1.08 M_\odot, 0.012)—(panel (a)), (1.10 M_\odot, 0.012)—(panel (b)), (1.08 M_\odot, 0.010)—(panel (c)), and (1.10 M_\odot, 0.014)—(panel (d), respectively. In panels (a)–(d), each symbol corresponds to a different time resolution in stellar evolution. They are 10^6 years—open circles, 10^7 years—open squares, and 10^8 years—open triangles, respectively. In panel (a), the filled points present the χ^2-minimization models (CMMs) of corresponding time resolution. In addition, the inset of panel (a) is zoomed in. Panels (e) and (f) show the evolutionary track with the time resolution of 10^7 years. The time resolution of panels (g) and (h) are 10^7 and 10^8 years, respectively. The oscillation frequencies ν_i come from Tian et al. (2014).](image)
4.2. Precise Determination of Acoustic Radius τ_0

Figure 2(a) indicates that the χ^2-profiles of all calculated evolutionary tracks almost overlap with each other when they are plotted against the acoustic radius $\chi^2(\tau_0)$. The individual CMMs all have an acoustic radius of $\tau_0 \approx 4600$ s. On the other hand, the χ^2-profiles do not overlap when plotted as function of other model parameters (see Figures 2(b)–(d)) but cover a rather large range of the given parameters. From this, we conclude that the acoustic radius is the global model parameter that can be determined best from matching observed frequencies with theoretical ones.

![Figure 2](image-url)
Figure 2. χ^2 as a function of acoustic radius τ_0 (panel (a)), mean density ρ (panel (b)), surface gravity $\log g$ (panel (c)), and radius R (panel (d)), respectively, for all of the 196 calculated evolution tracks.

![Figure 3](image-url)
Figure 3. χ^2_{CMM} as a function of acoustic radius τ_0 (panels (a)–(c)), initial metal mass fraction Z_{init} (panel (d)), mass M (panel (e)), and effective temperature T_{eff} (panel (f)), respectively. Panel (a) shows all of calculated CMMs. Panel (b) is the same as panel (a), but it is divided into two parts by a dashed line ($\chi^2_{CMM} = 25$). Panel (c) presents CMMs $M \in [1.08, 1.22] M_\odot$ and $Z_{\text{init}} \in [0.016, 0.032]$. In panels (d) and (e), the filled points correspond to panel (c), and the dashed line corresponds to panel (b). Panel (f) is similar to panel (b), but varies with effective temperature T_{eff}.

The Astrophysical Journal Letters, 818:L13 (6pp), 2016 February 10
Wu & Li
Figure 3(a) shows that the distribution of CMMs ($\chi^2_{\nu,\text{CMM}}(\tau_0)$) looks like a ladle. Most of the models are located in the bowl-shaped part and the rest form the handle. In Figure 3(b), those CMMs are divided into two parts by a dashed line of $\chi^2_{\nu,\text{CMM}} = 25$. One part is the bowl-shaped part ($\chi^2_{\nu,\text{CMM}} < 25$), which is shown with open circles and referred to as the normal part. The other part is the handle part ($\chi^2_{\nu,\text{CMM}} > 25$), which is denoted with filled circles and referred to as the outlying part. It is evident that CMMs in the outlying part have bigger χ^2_{ν} than those of the normal part. Those CMMs in the outlying part in the determination of the acoustic radius of KIC 6225718 should be excluded. Figure 3(c) shows those CMMs with $1.08 < M/M_\odot < 1.22$ and $0.016 < Z_{\text{init}} < 0.032$. They are all located in the central part of Figures 3(d) and (e), as well shown with filled circles in Figures 3(d) and (e). Compared to Figures 3(a) and (b), they almost form the bottom edge of the bowl-shaped part. Then the acoustic radius of KIC 6225718 can be evaluated as 4601.5 ± 2.3 ± 0.8, where 4601.5 is the position of $\chi^2_{\nu,\text{CMM}}$-minimization, and +2.3 and −0.8 are respectively the upper and the lower limits of the profile (see the annotation of Figure 3(c)).

Here, our results (Figures 2(a), and 3(a)–(c)) show that the acoustic radius τ_0 (of KIC 6225718) can be directly and precisely determined from $\chi^2_{\nu}(\tau_0)$ without any other extra constraints.

Figures 3(d) and (e) show distributions of χ^2_{ν} with respect to the initial metal abundance and stellar mass, respectively. The minimum of $\chi^2_{\nu,\text{CMM}}$ is realized by stellar models with $Z_{\text{init}} = 0.024$, and $M = 1.14 M_\odot$ and 1.16 M_\odot. It can be seen in Figure 3(d) that CMMs of the normal part occupy the central part, while CMMs of the outlying part are located at both the high and low side of the initial metal abundance. Meanwhile, CMMs of the outlying part occupy the higher-mass end in Figure 3(e). These facts indicate that parameters such as the stellar mass M and metal abundance Z_{init} may significantly affect the determination of the acoustic radius τ_0, and their purpose is mainly to enlarge uncertainty on the lower acoustic radius τ_0 end.

Figure 3(f) shows that CMMs on the outlying part have higher effective temperature T_{eff} than those of normal part. Their radii R are somewhat larger than those of normal CMMs, but the increase in R can not fully offset the increase in the profile of sound speed $c_s(r)$, i.e., of temperature $T(r)$. Hence, those CMMs have a smaller acoustic radius τ_0 (see Equation (3)).

Figure 4 (Échelle diagram) exhibits the goodness of matching between model calculations and observations for three CMMs. Figure 4(c) shows the results of our best-matching model; its parameters are $Z_{\text{init}} = 0.024$ and $M = 1.16 M_\odot$. Its $\chi^2_{\nu,\text{CMM}} = 4.58$. For Figures 4(a) and (b), their $\chi^2_{\nu,\text{CMM}}$ are close to 21 and 13, respectively. In Figure 4(c), the calculated frequencies are in good agreement with the observations of KIC 6225718. In Figures 4(a) and (b), however, our CMMs seem to result in small frequency separations ($\delta \nu_{02}$) that are significantly smaller than that from the observations.

For the surface effect of oscillations (e.g., Kjeldsen et al. 2008; Gruberbauer et al. 2013), we compare some CMMs that are corrected with those uncorrected and find that the parameters of CMMs are slightly affected by the surface effect. For example, the discrepancy between them is just about 0.4 s in stellar acoustic radius τ_0 and about $(1–3) \times 10^6$ years in stellar age. This is because the surface effect correctness mainly changes the high-frequency end (e.g., Gruberbauer et al. 2013), while the value of residual errors between the observations and the CMMs is larger at the high-frequency part (see Figure 4). Hence, the surface effect correctness mainly reduces the value of $\chi^2_{\nu,\text{CMM}}$ but only slightly changes the fundamental parameters of CMMs. Comparing to the profile of CMMs in τ_0 (see Figures 3(a)–(c)), we ignore the influence of the surface effect in theoretical models.

5. SUMMARY AND CONCLUSIONS

The goal of asteroseismology is to probe stellar interiors and to determine stellar fundamental parameters. In this Letter, we only use the high-precision asteroseismic observations (i.e., oscillation frequencies) to constrain theoretical models that analyze the solar-like oscillation star KIC 6225718. On the other hand, we consider the influence of the model uncertainties for an asteroseismic analysis. For this investigation, we conclude the following:

i. The time resolution of stellar evolution seriously affects stellar evolution and structure, as well as the
corresponding oscillations. Hence, it cannot be ignored in high-precision asteroseismology.

ii. The stellar acoustic radius is an important parameter in characterizing the properties of acoustic oscillations. The calculations suggest that it is the global parameter that can be measured best by the \(\chi^2 \)-matching method between observed frequencies and theoretical model calculations. The calculations also suggest that the distribution range of CMMs is slightly enlarged for some extreme cases at the end of the lower acoustic radius. They have both higher stellar mass and smaller (or larger) heavy element abundance.

iii. Finally, we obtain the acoustic radius \(\tau_0 = 4601.5^{+4.1}_{-3.8} \) s without any other extra constraints. Its relative precision is about \(1.8 \times 10^{-3} \).

This work is cosponsored by the NSFC of China (grant Nos. 11333006, 11503076, and 11521303), and by the Chinese Academy of Sciences (grant No. XDB09010202). The authors express their sincere thanks to NASA and the *Kepler* team for allowing them to work with and analyze the *Kepler* data making this work possible and also gratefully acknowledge the computing time granted by the Yunnan Observatories and provided on the facilities at the Yunnan Observatories Supercomputing Platform. The *Kepler Mission* is funded by NASA’s Science Mission Directorate. In addition, the authors are cordially grateful to an anonymous referee for instructive advice and productive suggestions.

REFERENCES

Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W. 2010, in Asteroseismology (Astronomy and Astrophysics Library; Dordrecht: Springer Science+Business Media B.V.), 207

Baglin, A., Auvergne, M., Boisnard, L., et al. 2006, 36th COSPAR Scientific Assembly (Beijing, China), Abstract 3749

Ballot, J., Turck-Chièze, S., & García, R. A. 2004, A&A, 423, 1051

Balona, L. A., Medupe, T., Abedigamba, O. P., et al. 2013, MNRAS, 430, 3472

Basu, S., Grundahl, F., Stello, D., et al. 2011, ApJL, 729, L10

Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Natur, 481, 55

Borucki, W. J., Koch, D., Basri, G., et al. 2010, Sci, 327, 977

Boyajian, T. S., von Braun, K., vanbellee, G., et al. 2013, ApJ, 771, 40

Bruntt, H., Basu, S., Smalley, B., et al. 2012, MNRAS, 423, 122

Casagrande, L., Schönrich, R., Asplund, M., et al. 2011, A&A, 530, A138

Chaplin, W. J., Basu, S., Huber, D., et al. 2014, ApJS, 210, 1

Christensen-Dalsgaard, J. 2008, Ap&SS, 316, 113

Clementini, G., Gratton, R. G., Carretta, E., & Sneden, C. 1999, MNRAS, 302, 22

Cox, J. P., & Giuli, R. T. 1968, Principles of Stellar Structure (New York: Gordon and Breach)

Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A&A, 564, A27

Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19

Deheuvels, S., & Michel, E. 2011, A&A, 535, A91

Eggenberger, P., Charbonnel, C., Talon, S., et al. 2004, A&A, 417, 235

Goupil, M. J., Mosser, B., Marques, J. P., et al. 2013, A&A, 549, A75

Grevesse, N., & Sauval, A. J. 1998, SSRv, 85, 161

Gruberbauer, M., Guenther, D. B., MacLeod, K., & Kallinger, T. 2013, MNRAS, 435, 242

Guenther, D. B., & Brown, K. I. T. 2004, ApJ, 600, 419

Guenther, D. B., Demarque, P., & Gruberbauer, M. 2014, ApJ, 787, 164

Holmberg, J., Nordström, B., & Andersen, J. 2007, A&A, 475, 519

Howell, S. B., Sobeck, C., Haas, M., et al. 2014, PASP, 126, 398

Huber, D., Ireland, M. J., Bedding, T. R., et al. 2012, ApJ, 760, 32

Kjeldsen, H., Bedding, T. R., & Christensen-Dalsgaard, J. 2008, ApJL, 683, L175

Lebreton, Y., 2012, in ASP Conf. Ser. 462, Progress in Solar/Stellar Physics with Helio- and Asteroseismology, ed. H. Shibahashi, M. Takata, & A. E. Lynas-Gray (San Francisco, CA: ASP), 469

Lebreton, Y., & Goupil, M. J. 2012, A&A, 544, L13

Lebreton, Y., & Goupil, M. J. 2014, A&A, 569, A21

Miglio, A., Brogaard, K., Stello, D., et al. 2012, MNRAS, 419, 2077

Miglio, A., Montalbán, J., Carrier, F., et al. 2010, A&A, 520, L6

Molenda-Zakowicz, J., Sousa, S. G., Frasca, A., et al. 2013, MNRAS, 434, 1432

Moravveji, E., Aerts, C., Pápics, P. I., et al. 2015, A&A, 580, A27

Mosser, B., Goupil, M. J., Beltacem, K., et al. 2012, A&A, 548, A10

Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3

Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3

Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4

Soriano, M., & Vauclair, S. 2008, CoAst, 157, 367

Thoul, A. A., Bahcall, J. N., & Loeb, A. 1994, ApJ, 421, 828

Tian, Z., Bi, S. L., Yang, W. M., et al. 2014, MNRAS, 445, 2999

Wu, T., Li, Y., & Hekker, S. 2014a, ApJ, 786, 10

Wu, T., Li, Y., & Hekker, S. 2014b, ApJ, 781, 44