ABSTRACT: Multidrug resistance (MDR) is the main cause of chemotherapy failure, and the mechanism of MDR is largely associated with drug efflux mediated by the adenosine triphosphate (ATP)-binding cassette transporters. Herein, an NIR-light-triggered CO release system based on mesoporous Prussian blue nanoparticles (PB NPs) was developed to reverse MDR via CO-induced metabolic exhaustion. Penta-carbonyl iron (Fe(CO),) as the CO producer was coupled to PB NPs via coordination interaction, and doxorubicin (Dox) was encapsulated into the pores of PB NPs. After layer-by-layer (LBL) coating, the NPs showed desired serum stability to enhance tumor accumulation. Upon tumor-site-specific NIR light (808 nm) irradiation, the nonlethal temperature elevation cleaved the Fe−CO bond to release CO. CO then expedited mitochondrial metabolic exhaustion to block ATP synthesis and inhibit ATP-dependent drug efflux, thus reversing MDR of the Dox-resistant MCF-7/ADR tumors to potentiate the anticancer efficacy of Dox. In the meantime, CO-mediated mitochondrial exhaustion could upregulate the proapoptotic protein, caspase 3, thus inducing cellular apoptosis and enabling a synergistic anticancer effect with chemotherapy. To the best of our knowledge, this is the first time MDR has been overcome using a CO delivery system. This study provides a promising strategy to realize an effective and safe treatment against MDR tumors and reveals new insights in the use of CO for cancer treatment.

INTRODUCTION

Cancer is the most malignant disease and the first leading cause of mortality in the world.1−3 While numerous therapeutic modalities have been applied in the clinical setting, chemotherapy still remains as a major anticancer approach.4−10 However, the occurrence of multidrug resistance (MDR) during the invasion and metastasis of cancer poses a notorious challenge against the success of chemotherapy.10−13 The mechanism of MDR is often related to the drug efflux mediated by the adenosine triphosphate (ATP)-binding cassette transporters, such as P-glycoprotein (P-gp), which is located on the cell membranes functioning to pump chemodrugs out.14−18 Thus, various strategies have been designed to overcome MDR, such as utilizing P-gp inhibitors, reducing the nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and adenosine triphosphate (ATP) to downregulate P-gp expression,19 targeting anticancer drugs to the mitochondria,20 and silencing the expression of P-gp proteins using RNA interference.21,22 While these approaches could overcome the MDR to some extent, they displayed intrinsic shortcomings, such as the poor specificity and the high toxicity of P-gp-inhibiting molecules, the complicated chemical synthesis of mitochondria-targeting molecules, and the low transfection efficiency accompanied by siRNA delivery.23−25 Thus, an effective and safe chemodrug delivery system that can surmount the MDR is still of urgent demand.

Carbon monoxide (CO), an endogenous gas molecule, has recently attracted great attention as a therapeutic reagent.26 Controlled CO release in the pathological tissues holds great promise in the improvement of cytoprotection and cytoantioxidants.27−30 More importantly, CO is found to be an important biological gasotransmitter associated with mitochondria, the key cellular energy factory that produces ATP through oxidative phosphorylation and regulates cellular metabolism.31−34 The mitochondria are also involved in many cellular signaling pathways, and they can produce reactive oxygen species (ROS) as well as program cell death pathways upon permeabilization.35−37 Treatment of cancer cells with CO accelerates the mitochondrial respiration, thus leading to metabolic exhaustion and mitochondrial collapse.38 On the basis of these understandings, we hypothesize that the controlled CO delivery in cancer cells could destroy the mitochondria and induce metabolic exhaustion, thus drastically blocking ATP synthesis in the tumor cells and inhibiting the ATP-related drug efflux to overcome MDR.
In support of such a hypothesis, we herein developed doxorubicin (Dox)-encapsulated Prussian blue (PB) nanoparticles (NPs), a NIR-light-controlled CO delivery system, to realize tumor mitochondria exhaustion and MDR reversal. These NPs possessed a well-defined core–corona structure, wherein the mesoporous PB core could provoke a photothermal effect and encapsulate Dox in its pores. Pentacarbonyl iron (Fe(CO)5) as a CO producer was coupled to PB via coordination bonding that could be cleaved at a nonlethally high temperature (42 °C) to release CO. The inorganic PB NPs were unstable in the aqueous solution, and thus, they were surface-decorated with hydrophilic polymers to enhance the aqueous stability. Particularly, the negatively charged PB−CO−Dox NPs were sequentially coated with positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly(acrylic acid) (PAA) using the layer-by-layer (LBL) technique and were further conjugated with poly(ethylene glycol) amine (PEG−NH2) via amide bond formation between PAA and PEG−NH2, yielding the final PPPPB−CO−Dox NPs. Such a surface coating could also avoid the preleakage of Dox during circulation, and the PEG corona would greatly enhance the serum stability of NPs to prolong blood circulation and promote tumor accumulation via the enhanced permeability and retention (EPR) effect. In the acidic endolysosomes of cancer cells, the surface coating was removed due to damaged electrostatic interactions, thus allowing Dox release. The tumor-site-specific NIR light irradiation led to nonlethal temperature elevation, which induced CO release to expedite mitochondrial exhaustion and cause mitochondrial collapse. The APT-dependent drug efflux would be inhibited, and the drug accumulation in the cancer cells could be greatly enhanced to overcome MDR. In addition, the exhausted mitochondria could generate ROS and upregulate the proapoptotic protein, caspase 3, to induce cellular apoptosis and thus mediate the synergistic anticancer effect with Dox-mediated chemotherapy.

RESULTS AND DISCUSSION

Preparation and Characterization of PPPPB−CO NPs. PB NPs were successfully synthesized from kaliumhexacyano ferrat (III) and polyvinylpyrrolidone (PVP) in HCl (0.01 M). The transmission electron microscopy (TEM) image of PB NPs revealed diameters of 110.9 ± 17.2 nm along with a cubic morphology (Figure 1a, Figure S1 and Table S1). PB−CO NPs were then synthesized by coupling pentacarbonyl iron (Fe(CO)5) as a CO producer to PB via coordination bonding that could be cleaved at a nonlethally high temperature (42 °C) to release CO. The inorganic PB NPs were unstable in the aqueous solution, and thus, they were surface-decorated with hydrophilic polymers to enhance the aqueous stability. Particularly, the negatively charged PB−CO−Dox NPs were sequentially coated with positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly(acrylic acid) (PAA) using the layer-by-layer (LBL) technique and were further conjugated with poly(ethylene glycol) amine (PEG−NH2) via amide bond formation between PAA and PEG−NH2, yielding the final PPPPB−CO−Dox NPs. Such a surface coating could also avoid the preleakage of Dox during circulation, and the PEG corona would greatly enhance the serum stability of NPs to prolong blood circulation and promote tumor accumulation via the enhanced permeability and retention (EPR) effect. In the acidic endolysosomes of cancer cells, the surface coating was removed due to damaged electrostatic interactions, thus allowing Dox release. The tumor-site-specific NIR light irradiation led to nonlethal temperature elevation, which induced CO release to expedite mitochondrial exhaustion and cause mitochondrial collapse. The APT-dependent drug efflux would be inhibited, and the drug accumulation in the cancer cells could be greatly enhanced to overcome MDR. In addition, the exhausted mitochondria could generate ROS and upregulate the proapoptotic protein, caspase 3, to induce cellular apoptosis and thus mediate the synergistic anticancer effect with Dox-mediated chemotherapy.

Scheme 1. Schematic Illustration of NIR-Light-Controlled CO Delivery That Expedites Metabolic Exhaustion To Surmount MDR and Enable Synergistic Proapoptotic Anticancer Therapy

In the acidic endolysosomes of cancer cells, the surface coating was removed due to damaged electrostatic interactions, thus allowing Dox release. The tumor-site-specific NIR light irradiation led to nonlethal temperature elevation, which induced CO release to expedite mitochondrial exhaustion and cause mitochondrial collapse. The APT-dependent drug efflux would be inhibited, and the drug accumulation in the cancer cells could be greatly enhanced to overcome MDR. In addition, the exhausted mitochondria could generate ROS and upregulate the proapoptotic protein, caspase 3, to induce cellular apoptosis and thus mediate the synergistic anticancer effect with Dox-mediated chemotherapy.

RESULTS AND DISCUSSION

Preparation and Characterization of PPPPB−CO NPs. PB NPs were successfully synthesized from kaliumhexacyano ferrat (III) and polyvinylpyrrolidone (PVP) in HCl (0.01 M). The transmission electron microscopy (TEM) image of PB NPs revealed diameters of 110.9 ± 17.2 nm along with a cubic morphology (Figure 1a, Figure S1 and Table S1). PB−CO NPs were then synthesized by coupling pentacarbonyl iron (Fe(CO)5) as a CO producer to PB via the coordination interaction between iron groups (Fe) on PB NPs and cyano (CN) groups (Fe−CN) on Fe(CO)5. Fourier transform infrared (FT-IR) spectroscopy showed a small peak of C=O vibration at 1646 cm−1 for PB NPs, which was due to the PVP residues. In comparison, an enhanced C=O vibration intensity (1646 cm−1) was noted for PB−CO NPs when the Fe3+−NC−Fe2+ vibration intensity (2086 cm−1) was equal for PB NPs and PB−CO NPs (Figure 1b), demonstrating successful synthesis of PB−CO NPs with coordinated iron carbonyl. The amount of Fe(CO)5 incorporated into the PB NPs was calculated by
determining the Fe content in PB NPs and PB−CO NPs using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The amount of Fe in PB NPs and PB−CO NPs was determined to be 0.453 and 0.403 mg/mg, respectively, and thus, the amount of Fe(CO)5 in PB NPs was calculated to be 0.298 mg/mg, correlating to the maximum CO release amount of 0.213 mg from 1 mg of PB−CO NPs. PB−CO NPs also showed a cubic morphology and diameters of ∼120 nm (Figure 1a and Table S1). To enhance the colloidal stability, the surface of PB−CO NPs was decorated with PEG via the LBL strategy. The negatively charged PB−CO NPs were sequentially coated with poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) and ultimately conjugated with PEG5k−NH2 via the coupling reaction, yielding the PPPPB−CO NPs. The ζ potentials of PB−CO NPs increased from −15 to +12 mV after the PAH coating (PPPB−CO NPs) and again decreased to −18 mV after the PAA coating (PPPPB−CO NPs), indicating the successful LBL coating (Figure 1c). After conjugation with PEG5k−NH2, the negative ζ potential changed to −10 mV (PPPPB−CO NPs), which was due to the partial shielding of surface charges by the hydrophilic PEG corona. The PPPPB−CO NPs also revealed a cubic morphology, and they possessed a slightly increased diameter (∼128 nm) compared to PB NPs and PB−CO NPs (Figure 1a and Table S1). Moreover, the PPPPB−CO NPs exhibited the desired colloidal stability in various solutions including H2O, PBS, 1640 medium, and 10% fetal bovine serum (FBS), after preservation at room temperature (RT) for up to 4 days (Figure 1d).

Light-Mediated Photothermal Effect and Heat-Induced CO Release In Vitro. To investigate the photothermal properties of PPPPB−CO NPs, aqueous solutions of PPPPB−CO NPs (10, 20, 50, and 100 μg/mL PB) were irradiated with NIR light (808 nm) at different optical densities (0.3, 0.5, 0.8, and 1 W/cm²). A concentration- and optical-density-dependent temperature elevation was found for PPPPB−CO NPs under irradiation, while PBS as a control showed negligible photothermal change (Figure 2a−d).

The myoglobin (Mb) assay was then used to determine the thermal-induced CO release from PPPPB−CO NPs. After incubation of NPs with deoxy-Mb at 42 °C, the absorption of deoxy-Mb at 557 nm decreased, and the typical peaks of MbCO at 540 and 577 nm appeared (Figure 2e), confirming CO release that converted deoxy-Mb into MbCO. In comparison, when the NPs were incubated with deoxy-Mb at 37 °C, the UV−vis absorption curve did not change. Consistent with the temperature elevation curves described above, notable CO release from the PPPPB−CO NPs was detected after light irradiation (808 nm, 0.5 W/cm²) for 15 min, as evidenced by the strong absorption peaks of MbCO at 540 and 577 nm (Figure 2f). When the irradiation time was further prolonged to 20 min, the absorption curve remained almost unchanged, indicating that no more CO was released. On the basis of these results, we selected the optical intensity of 0.5 W/cm² and irradiation time of 15 min for further evaluations.

The light-induced CO release was also explored by ultrasound (US) imaging using the B mode (Figure 2g and Figure S3). PBS (control) and PPPPB−CO NPs were exposed...
to light irradiation (808 nm, 0.5 W/cm²) for different times (3, 5, 10, and 15 min). No acoustic reflectivity contrast was noted for PBS, while, in contrast, an enhanced echo signal of CO was noted after 3-min irradiation, and it dramatically augmented when the irradiation time was prolonged to 15 min, again substantiating the photothermal-induced CO release.

Then, the CyA probe was used to detect CO release in living cells by confocal laser scanning microscopy (CLSM). MCF-7/ADR cells treated with heme acted as the positive control, because heme can react with endogenous heme oxygenase-1 to produce CO. As shown in Figure 2h, no red fluorescence was detected in cells treated with PBS, PPPPB NPs (irradiated at 0.5 W/cm² and 15 min), or PPPPB−CO NPs (irradiated at 0.3 W/cm² and 15 min). In contrast, cells incubated with PPPPB−CO NPs followed by irradiation (0.5 W/cm², 15 min) showed obvious red intracellular fluorescence, similar to heme-treated cells, which confirmed the effective intracellular CO release upon irradiation at the appropriate optical density and time.

Figure 2. Light-mediated photothermal effect and thermal-induced CO release in vitro. Thermal infrared images (a, c) and temperature elevation curves (b, d) of PPPPB−CO NPs following light irradiation (808 nm) at different optical intensities (a, c; 50 μg/mL PB) and different PB concentrations (b, d; 0.5 W/cm²). (e) UV−vis spectra of deoxy-Mb after incubation with PPPPB−CO NPs at 37 or 42 °C for different times. (f) UV−vis spectra of deoxy-Mb mixed with PPPPB−CO NPs followed by light irradiation (808 nm, 0.5 W/cm²) for different time. (g) US images of PPPPB NPs and PPPPB−CO NPs after light irradiation (808 nm, 0.5 W/cm²) for different time. The enhanced echo signal of CO (bright contrast) is indicated by a red arrow. (h) CLSM images of MCF-7/ADR cells stained with the CyA probe for CO detection. Cells were treated with PBS, heme, PPPPB NPs, or PPPPB−CO NPs for 4 h and irradiated (808 nm, 0.5 W/cm²) for 15 min before the addition of CyA. Scale bar = 20 μm.
Dox Encapsulation and In Vitro Release. Prior to drug loading, the pore size of PB NPs was first determined using the Brunauer, Emmett, and Teller (BET) analysis. Figure S2 confirmed the mesoporous structure of the PB NPs, and the pore size was determined to be 5.38 nm, which was large enough to encapsulate Dox (∼1 nm). The loading capacity of Dox was then determined to be 14.5%. The Dox release behavior from PPPPB−CO−Dox NPs was pH-dependent, wherein Dox release was sustained at pH 7.4 but greatly accelerated at pH 5.5, leading to the cumulative release of ∼38% and 85% within 24 h, respectively (Figure S4). Such a pH-dependent drug release profile could be attributed to the LBL coating of the NPs that prevented preleakage of Dox from the inner pores. Under acidic conditions (tumoral endolysosomes), the electrostatic interactions between PAA and PAH were weakened, which led to dissociation of the surface coating and accordingly facilitated Dox release. Such a property could ideally prevent the premature Dox leakage during blood circulation while enable fast drug release in the acidic endolysosomes of tumor cells to impart anticancer efficacy. In addition, Dox shows higher solubility at acidic pH, which also contributed to the accelerated release profile at pH 5.5.

Figure 3. Cellular uptake and CO-enhanced intracellular retention of Dox in resistant cancer cells. (a) CLSM images of MCF-7/ADR and MCF-7 cells following incubation with free Dox or PPPPB−CO−Dox NPs for 2, 4, 8, 12, 16, and 24 h. Cells were irradiated (808 nm, 0.5 W/cm²) for 15 min after 8-h incubation and were further incubated for 16 h. Scale bar = 15 μm. Flow cytometric analysis of MCF-7/ADR (b, c) and MCF-7 (d, e) cells following 16-h incubation with free Dox or PPPPB−CO−Dox NPs. Cells were irradiated (808 nm, 0.5 W/cm²) for 15 min after 8-h incubation and were further incubated for 8 h (n = 3). "ns" denotes no significant difference.

Cellular Uptake and Accumulation of PPPPB−CO−Dox NPs. The cellular uptake of PPPPB−CO−Dox NPs and free Dox in MCF-7 and MCF-7/ADR cells was first observed by CLSM. As shown in Figure 3a, both free Dox and PPPPB−CO−Dox NPs showed strong nuclear fluorescence in MCF-7 cells after incubation for up to 24 h. In obvious contrast, free Dox was hardly visible in MCF-7/ADR cells even after 12-h incubation, indicating chemoresistance of the cells that pumped the free drug out. The PPPPB−CO−Dox NPs also showed a weaker nuclear fluorescence in MCF-7/ADR cells than in MCF-7 cells after incubation for up to 8 h. However, when the MCF-7/ADR cells treated with PPPPB−CO−Dox NPs were irradiated (808 nm, 0.5 W/cm², 15 min) at 8 h post incubation, significantly enhanced nuclear fluorescence was observed when the cells were further incubated for up to 8 h (Figure 3a). Such an observation was further supported by the quantitative flow cytometric analyses (Figure 3b−e and Figure S5). In MCF-7 cells, Dox showed a higher accumulation level than PPPPB−CO−Dox NPs, and light irradiation provoked an unappreciable effect on the intracellular level of PPPPB−CO−Dox NPs. In MCF-7/ADR cells, PPPPB−CO−Dox showed a significantly higher cellular level than Dox, and light irradiation of NP-treated cells led to a further increment of the
accumulation level. Taken together, these results indicated the
reversal of MDR by the light-released CO molecules that
prohibited drug efflux and enhanced intracellular drug
accumulation.

In Vitro Anticancer Efficacy of PPPPB−CO−Dox NPs.

To determine whether the efficient intracellular accumulation
could contribute to MDR reversal, the in vitro anticancer
efficacies of free Dox and PPPPB−CO−Dox NPs were first
assessed in both MCF-7 and MCF-7/ADR cells. As shown in
Figure 4a, the cytotoxicity of PPPPB−Dox NPs in MCF-7/
ADR cells was notably stronger than free Dox, with IC50 values
of 32.7 and 45.3 μg/mL, respectively. Such a discrepancy
therefore indicated that the NPs could partially inhibit drug
resistance, mainly due to the endocytosis pathway of the NPs
that prevented direct drug efflux by the P-gp. However, both
free Dox and PPPPB−Dox NPs displayed dramatically lower
IC50 in MCF-7 cells (0.5 and 1.23 μg/mL, respectively),
indicating the necessity to enhance the capability of NPs in
surmounting MDR. As shown in Figure 4b, after light
irradiation at 0.3 W/cm2, PPPPB−CO NPs showed negligible
cytotoxicity, and PPPPB−CO−Dox NPs afforded a toxicity comparable to PPPPB−Dox NPs, which was attributed to the
insufficient temperature elevation to release CO. Comparatively, after light irradiation at 0.5 W/cm2, PPPPB−CO−Dox
NPs imparted a greatly enhanced anticancer efficacy with cell viability of only ~15%, significantly outperforming PPPPB−
CO NPs and PPPPB−Dox NPs. It therefore suggested that the
chemodrug-resistant cells were resensitized by the NIR-light-
generated CO molecules to strengthen the anticancer efficacy.

The CO-assisted anticancer efficacy of Dox against resistant
cells was further supported by the calcein-AM and propidium
iodide (PI) double-staining assay (Figure 4c). Live cells were
stained with calcein-AM to emit green fluorescence, while dead
cells were stained with PI to emit red fluorescence. Compared
with PPPPB−Dox NPs and PPPPB−CO NPs, cells treated
with PPPPB−CO−Dox NPs showed the highest red
fluorescence density, indicating extensive cell death. In
accordance, MCF-7/ADR cells treated with PPPPB−CO−
Dox NPs displayed the highest apoptotic ratio (73.04%) as
determined using the Annexin V-FITC/PI assay (Figure 4d),
remarkably higher than cells treated with free Dox, PPPPB−
CO NPs, or PPPPB−Dox NPs (9.31%, 39.98%, and 39.62%,
respectively). These results thus collectively demonstrated the
enhanced anticancer efficacy of light-activated PPPPB−CO−
Dox NPs against Dox-resistant cancer cells.

CO-Mediated MDR Reversal and Proapoptotic Effect
In Vitro.

The capability of PPPPB−CO−Dox NPs to overcome MDR was then mechanistically probed. Because

Figure 4. Anticancer efficacy of PPPPB−CO−Dox NPs in vitro. (a) IC50 values of Dox in MCF-7 and MCF-7/ADR cells. (b) Viability of MCF-7/
ADR cells treated with different NPs and irradiated at different optical densities (808 nm, 15 min) (n = 3). (c) CLSM images of MCF-7/ADR cells
treated with different NPs and double-stained with calcein-AM (green, live cells) and PI (red, dead cells). Scale bar = 100 μm. (d) Flow cytometric
analysis of MCF-7/ADR cells treated with different NPs and stained with Annexin V-FITC/PI. Cells were incubated with different NPs for 8 h at
37 °C, irradiated (808 nm, 0.5 W/cm2) for 15 min, and further incubated for 48 h before the above assessments.
the MDR mechanism is often closely related to ATP-dependent drug efflux, blocking the energy supply could serve as an effective approach to overcome MDR. A mitochondrial dye, JC-1, was first used to evaluate the mitochondrial membrane depolarization. When the mitochondrial membrane potential (Ψ_m) is high, JC-1 aggregates into the matrix of mitochondria, forming a polymer (J-aggregate) that emits red fluorescence. When the mitochondrial membrane potential is low, JC-1 fails to aggregate in the mitochondria, and it becomes the JC-1 monomer with green fluorescence. The ratio of red to green fluorescence represents the extent of mitochondrial depolarization. Herein, MCF-7/ADR cells treated with PPPPB−CO−Dox NPs showed greatly enhanced green fluorescence intensity yet reduced red fluorescence intensity, indicating a disturbance of the mitochondrial membrane permeability (Figure 5a). As a consequence of the mitochondrial collapse, cytochrome c (Cyto C) release into the cytoplasm was significantly enhanced (Figure 5b,c), and the intracellular ATP level was dramatically diminished (Figure 5e). The ATP concentration was maintained at low levels of 25−35% over 36 h post-light-irradiation, indicating that CO-mediated metabolic exhaustion could last for a long period of time (Figure S6). The mitochondrial collapse would simultaneously lead to the generation of reactive oxygen species (ROS) and afterward cause cell apoptosis. To this end, DCFH-DA, a fluorescent probe for ROS, was used to detect CO-mediated ROS generation. Figure 5d showed that light irradiation of cells treated with PPPPB−CO−Dox NPs notably elevated the cellular ROS level, as evidenced by the cytoplasmic green fluorescence. As a consequence, the cellular level of caspase 3, a proapoptotic enzyme, was enhanced by ~17-fold (Figure 5b,c), which substantiated the capability of NIR-light-released CO in provoking anticancer apoptosis.

Pharmacokinetics and Biodistribution of NPs. The pharmacokinetics of free Dox and PPPPB−CO−Dox NPs were evaluated in nude mice after iv injection. Compared to free Dox that was rapidly cleared from the circulation, the PPPPB−CO−Dox NPs showed notably prolonged blood circulation, conferring a half-life time ($t_{1/2}$) of 3.04 h (Figure S7). The distribution of NPs was then explored in mice bearing MCF-7/ADR tumors after iv injection. As shown in Figure 6a,b, the accumulation level of PPPPB−CO−Dox NPs in the tumor peaked at 8 h post injection, notably outperforming free Dox due to their prolonged circulation and EPR effect. Thus, the tumors were irradiated (808 nm, 0.5 W/cm2, 15 min) at this time point. At 8 h post irradiation, the tumoral distribution level of PPPPB−CO−Dox NPs was significantly higher than that without light irradiation (Figure 6a,c), which suggested the enhanced drug enrichment in the tumor tissues that could be attributed to the CO-mediated reduction of drug efflux to prevent tumor clearance.

Light-Mediated Photothermal Effect and Heat-Induced CO Release In Vivo. According to the biodistribution results, the photothermal effect of PPPPB−CO−Dox NPs in vivo was recorded by an infrared (IR) thermal camera at 8 h post iv injection (5 mg Dox/kg). The temperature of the tumor tissues injected with PPPPB−CO−Dox NPs rapidly increased to 42.2 °C, while a much less significant temperature elevation was noted in PBS-treated tumors (up to 37.1 °C), which demonstrated the photothermal effect of PPPPB−CO NPs in vivo that could lead to a nonlethally higher temperature in the tumors to release CO upon NIR light irradiation (Figure 6e). Consistent with the temperature elevation profile, minimal CO generation was noted after light irradiation for 3 min using
US imaging, while further prolonging the irradiation time up to 15 min led to dramatic CO release (Figure 6f and Figure S8).

In Vivo Anticancer Efficacy against MCF-7/ADR Xenograft Tumors. The in vivo anticancer efficacy of PPPPB−CO−Dox NPs was evaluated against MCF-7/ADR xenograft tumors. As illustrated in Figure 7a−c, the tumor volumes following iv injection of PBS and PPPPB NPs (with light irradiation) showed the most rapid growth, reaching ~1000 mm³ within 21 days. Such a result again demonstrated the nonlethal photothermal effect of PPPPB NPs. PPPPB−Dox NPs showed a slightly higher tumor inhibition level compared to free Dox, consistent with the longer blood circulation time and higher cellular accumulation level of the NPs. Importantly, tumors treated with PPPPB−CO−Dox NPs (with light irradiation) completely stopped growing and even slightly regressed within the 21-day observation period, conferring a tumor growth inhibition rate of 92.7%, remarkably higher than PPPPB−CO NPs (50.3%, with light irradiation) and PPPPB−Dox NPs (64.4%). These results thus evidenced the CO-strengthened anticancer effect of Dox and the cooperative anticancer effect between CO and the chemodrug. Consistent with these findings, tumors treated with PPPPB−CO−Dox NPs showed the most pronounced nuclear condensation and fragmentation in the hematoxylin and eosin (H&E)-staining images that pointed to tumor remission (Figure 7e), and the highest tumor cell apoptotic level was also noted for tumors treated with PPPPB−CO−Dox NPs after TUNEL staining (Figure 7f).

Figure 6. Biodistribution of NPs, NIR-light-mediated photothermal effect, and heat-induced CO release in vivo. (a) Fluorescence imaging of MCF-7/ADR tumor-bearing mice at different time intervals post iv injection of PPPPB−CO−Dox NPs and free Dox (5 mg Dox/kg). (b) Ex vivo fluorescence imaging of excised tumors and major organs at 8 h post-iv injection (H, heart; L, liver; SP, spleen; LU, lung; K, kidney; T, tumor). Biodistribution levels of Dox in tumors and major organs at 8 h (c) and 16 h (d) post iv injection. The tumor site was irradiated (808 nm, 0.5 W/cm²) for 15 min at 8 h post iv injection in panels a–d. Time-dependent thermal infrared images (e) and US images (f) of tumors after light irradiation (808 nm, 0.5 W/cm²) for different time. PPPPB−CO−Dox NPs (5 mg Dox/kg) or PBS were iv injected, and tumor tissues were irradiated at 8 h post injection. The enhanced echo signal of CO (bright contrast) is indicated by a red arrow.
CO-Mediated MDR Reversal In Vivo. To evaluate the capability of PPPPB−CO−Dox NPs in reversing MDR in vivo, nude mice bearing the MCF-7/ADR tumor were iv injected with the NPs or free ICG [instead of the free Dox because of the limited detection wavelength (750−960 nm) of the PA imaging system and the strong absorbance of ICG at 808 nm]. As revealed by PA imaging, the PA signals (808 nm) from ICG were low and almost constant throughout the entire observation period (Figure 8a). Comparatively, slightly higher PA signals were noted for PPPPB−CO−Dox NPs, possibly due to adequate accumulation of NPs in the tumor tissues. Importantly, a dramatic enhancement of PA signals was noted at 8 h post light irradiation of PPPPB−CO−Dox NP-treated tumors. In accordance with the PA imaging results, CLSM images of tumor sections showed obviously increased intracellular Dox fluorescence intensity after light irradiation of tumors treated with PPPPB−CO−Dox NP-treated tumors. In accordance with the PA imaging results, CLSM images of tumor sections showed obviously increased intracellular Dox fluorescence intensity after light irradiation of tumors treated with PPPPB−CO−Dox NPs (Figure 8b, Figures S9 and S10). While the majority of Dox was localized in the cytoplasm for PPPPB−CO−Dox NPs at 8 h post irradiation, it was noted that a large amount of Dox was distributed in the nuclei at 16 h post irradiation, indicating translocation of Dox into the nuclei to impart the anticancer efficacy (Figure S10). Such an observation was further supported by the quantitative flow cytometry analyses, wherein light-irradiated, PPPPB−CO−Dox NP-treated tumor cells showed the highest uptake percentage and cellular fluorescence intensity (Figure 8c,d and Figure S11). In addition, both immunostaining and Western blot analyses revealed that MCF-7/ADR tumors treated with PPPPB−CO−Dox NPs followed by light irradiation exhibited notably reduced P-gp levels as compared to those treated with PBS or PPPPB−Dox NPs without light irradiation (no CO release) (Figure S12). It thus indicated that CO could also downregulate the P-gp expression to contribute to the MDR reversal, which may be attributed to the depletion of energy supply for P-gp expression as a result of CO-mediated mitochondrial exhaustion. These results thus collectively evidenced the capability of NIR-light-generated CO to reverse MDR and enhance tumor cell accumulation of chemodrug in vivo.

Biocompatibility Analyses. In addition to the therapeutic potency, biosafety is another important requirement for drug delivery systems. Thus, the systemic toxicity of PPPPB−CO−Dox NPs was explored in 4T1 tumor-bearing BALB/c mice following iv injection and tumor-site-specific light irradiation. The blood oxygen saturation (SPO2) and pulse rate (PR) of mice remained almost constant throughout the entire observation period (Figure 8a). Comparatively, slightly higher PA signals were noted for PPPPB−CO−Dox NPs, possibly due to adequate accumulation of NPs in the tumor tissues. Importantly, a dramatic enhancement of PA signals was noted at 8 h post light irradiation of PPPPB−CO−Dox NP-treated tumors. In accordance with the PA imaging results, CLSM images of tumor sections showed obviously increased intracellular Dox fluorescence intensity after light irradiation of tumors treated with PPPPB−CO−Dox NPs (Figure 8b, Figures S9 and S10). While the majority of Dox was localized in the cytoplasm for PPPPB−CO−Dox NPs at 8 h post irradiation, it was noted that a large amount of Dox was distributed in the nuclei at 16 h post irradiation, indicating translocation of Dox into the nuclei to impart the anticancer efficacy (Figure S10). Such an observation was further supported by the quantitative flow cytometry analyses, wherein light-irradiated, PPPPB−CO−Dox NP-treated tumor cells showed the highest uptake percentage and cellular fluorescence intensity (Figure 8c,d and Figure S11). In addition, both immunostaining and Western blot analyses revealed that MCF-7/ADR tumors treated with PPPPB−CO−Dox NPs followed by light irradiation exhibited notably reduced P-gp levels as compared to those treated with PBS or PPPPB−Dox NPs without light irradiation (no CO release) (Figure S12). It thus indicated that CO could also downregulate the P-gp expression to contribute to the MDR reversal, which may be attributed to the depletion of energy supply for P-gp expression as a result of CO-mediated mitochondrial exhaustion. These results thus collectively evidenced the capability of NIR-light-generated CO to reverse MDR and enhance tumor cell accumulation of chemodrug in vivo.
only observed for free Dox (Figure 7d), and a histological assessment revealed apparent cardiac damages including myocardial fibril loss and neutrophil infiltration only in free-Dox-treated mice (Figure S16), indicating the serious side effect of free Dox along with the desired biosafety of the NPs. Taken together, these results demonstrated that the PPPPB−CO−Dox NPs not only can overcome MDR to provoke potent anticancer efficacy, but also displayed the desired biosafety which would conform their promising applications toward anticancer therapy.

![Figure 8. CO-mediated reversal of MDR in vivo.](image)

(a) PA imaging of MCF-7/ADR tumors at different time intervals post iv injection of free ICG or PPPPB−CO−Dox NPs. Free ICG instead of Dox was used due to the limited detection wavelength (750−960 nm) of the PA imaging system and the strong absorbance of ICG at 808 nm. (b) CLSM images of MCF-7/ADR tumor sections harvested at 16 h post iv injection of free Dox or PPPPB−CO−Dox NPs. Cell nuclei were stained with DAPI. Scale bar = 100 μm. (c, d) Flow cytometric analysis of the accumulation levels of Dox and PPPPB−CO−Dox NPs in tumor cells at 16 h post iv injection (n = 3). In all the assessments, MCF-7/ADR tumor-bearing mice were iv injected with free ICG (or free Dox, 5 mg/kg) or PPPPB−CO−Dox NPs (5 mg Dox/kg), and the tumor sites were irradiated (808 nm, 0.5 W/cm², 15 min) at 8 h post injection.

CONCLUSION

In summary, a CO and Dox codelivery nanosystem was developed to surmount MDR resistance via regulation of mitochondrial metabolism. The PPPPB−CO−Dox NPs can release CO upon NIR light irradiation, and the released CO can expedite mitochondrial exhaustion to inhibit adenosine triphosphate (ATP) synthesis, thus increasing Dox accumulation in resistant cancer cells to potentiate the anticancer efficacy. In addition, the exhausted mitochondria can upregulate proapoptotic protein, caspase 3, and generate
ROS to induce cellular apoptosis, thereby provoking synergistic anticancer potency with the chemodrug. To the best of our knowledge, this is the first time that the MDR has been overcome via NIR-light-controlled CO delivery, and this study provides an important addition to the existing approaches in combating chemodrug-resistant tumors.

■ MATERIALS AND METHODS

Materials. Red prussiate (K₃[Fe(CN)₆]), palladium chloride (PdCl₂), polyvinylpyrrolidone (PVP), and 1-(3-dimethylamino) propyl)-3-ethylcarbodiimide hydrochloride (EDC) were purchased from Energy Chemical (Shanghai, China). PEG—NH₂ (Mₕ = 5 kDa) was obtained from Biomatrik Inc. (Beijing, China). Polyacrylic acid (PAA, Mₕ = 1.8 kDa), poly(allylamine hydrochloride) (PAH, Mₕ = 15 kDa), and pentacarbonyl iron (Fe(CO)₅) were obtained from Xin Ding Pengfei Technology Development Co., Ltd. (Beijing, China). Doxorubicin (Dox) was purchased from J&K Chemicals (Shanghai, China). Doxorubicin (Dox) was purchased from Shanghai Xin Ding Pengfei Technology Development Co., Ltd. (Beijing, China). PEG-dimethylamino) propyl)-3-ethylcarbodiimide hydrochloride was also obtained from Xin Ding Pengfei Technology Development Co., Ltd. (Beijing, China). PEG (dimethylamino) propyl)-3-ethylcarbodiimide hydrochloride was also obtained from Xin Ding Pengfei Technology Development Co., Ltd. (Beijing, China). Doxorubicin (Dox) was purchased from Shanghai Xin Ding Pengfei Technology Development Co., Ltd. (Beijing, China).

Synthesis and Characterization of Mesoporous Prussian Blue Nanoparticles (PB NPs). PB NPs were prepared as described before. Briefly, solutions of K₃[Fe(CN)₆] (200 mg in 0.01 M HCl, 60 mL) and PVP (6 g in 0.01 M HCl, 60 mL) were mixed and heated at 80 °C. After 24 h, the solution turned blue and was further stirred for another 0.5 h at RT. Acetone (120 mL) was added into the solution, and PB NPs were obtained by centrifugation (14,000 rpm, 5 min) and washing with ethanol (3 × 40 mL). The structure of PB NPs was characterized by DLS, TEM, and FT-IR.

Synthesis and Characterization of Iron Carbonyl-Modified PB NPs (PB—CO NPs). Briefly, PB NPs (5 mg/mL in ethanol, 1 mL) and Fe(CO)₅ (50 mg/mL in ethanol, 10 mL) were mixed and mildly stirred at 25 °C for 24 h. PB—CO NPs were then obtained by centrifugation (14,000 rpm, 5 min) and washing with ethanol (3 × 40 mL). The structure of PB—CO NPs was characterized by DLS, TEM, and FT-IR.

Synthesis of PAH/PAA/PEG-Conjugated PB—CO NPs (PPPPB—CO NPs). First, PB—CO NPs (1 mg/mL PB in water, 2 mL) was added dropwise into a PAH solution (4 mg/mL in water, 4 mL) under stirring. After the mixture was stirred at 25 °C for 4 h, PAH-coated PB—CO NPs (PB—CO NPs) were obtained by centrifugation (14,000 rpm, 5 min) and washing with water (3 × 40 mL). Secondly, the obtained PB—CO NPs (dispersed in water, 4 mL) were added dropwise into a PAA solution (4 mg/mL in water, 1 mL) under stirring. After the mixture was stirred at 25 °C for 4 h, PAA-coated PB—CO NPs (PPPB—CO NPs) were obtained by centrifugation (14,000 rpm, 5 min) and washing with water (3 × 40 mL). Lastly, the mixture of PEG—NH₂ (30 mg) and EDC (15 mg) was added into the obtained PPPB—CO NPs (dispersed in water, 5 mL), and the mixture was stirred overnight. PPPPB—CO NPs were then obtained by centrifugation (14,000 rpm, 5 min) and washing with water (3 × 40 mL). The structure of PPPPB—CO NPs was characterized by DLS and TEM. The size of the NPs after incubation with various solutions including H₂O, PBS, 1640 medium, and 10% FBS for different times at RT was monitored by TEM to evaluate the colloidal stability.

Preparation and Characterization of Dox-Loaded PPPPB—CO NPs (PPPPP—CO—Dox NPs). Dox (10 mg in water, 1 mL) and PB—CO NPs (3 mg in water, 9 mL) were mixed together and stirred at room temperature for 24 h in the dark. PB—CO—Dox NPs were then sequentially coated with PAH, PAA, and PEG—NH₂ using the LBL technique as described above. The structure of PPPPB—CO—Dox NPs was characterized by DLS and TEM.

All supernatants during the formation of PPPPB—CO—Dox NPs were collected. The amount of Dox in the supernatant was monitored by spectrofluorimetry (λₑₓ = 480 nm, λₑₘ = 585 nm). The drug loading contents (DLC) of Dox in the
PPPBP−CO−Dox NPs were calculated according to the following formula:

$$\text{DLC (wt %)} = \frac{\text{weight of total drug} - \text{weight of drug in the supernatant}}{\text{weight of NPs} + \text{weight of total drug} - \text{weight of drug in the supernatant}} \times 100\%$$

In Vitro Dox Release. The PPPBP−CO−Dox NPs (containing 2.5 mg of Dox) were suspended in PBS (pH 7.4 or 5.5, 25 mL) and kept in a shaking incubator at 37 °C. At predetermined time points, aliquots (1 mL) were taken out and centrifuged at 14 000 rpm for 5 min. An equal volume of PBS was added into the release medium which was further incubated at 37 °C. The Dox concentration in the supernatant was determined by spectrophotometry as described above, and the cumulative drug release was calculated.

In Vitro Photothermal Effect. PPPBP−CO NPs solutions at various concentrations (10, 20, 50, and 100 μg/mL PB) were exposed to an 808 nm NIR laser at an optical density of 0.5 W/cm² for different time, and the temperature change was measured by a digital thermometer and recorded by an infrared thermal camera. Alternatively, PPPBP−CO NPs (50 μg/mL PB) were irradiated (808 nm) at different optical densities (0.3, 0.5, 0.8, and 1 W/cm²) for different time before monitoring of the temperature change.

Detection of CO Release by the Myoglobin (Mb) Assay. The Mb assay was used to determine the thermal-induced CO release from PPPBP−CO NPs based on the difference of deoxy-myoglobin (deoxy-Mb) and carbon monoxide-myoglobin (Mb-OhCO) in the UV−vis spectra.40,41 First, a fresh solution of deoxy-Mb was prepared by mixing sodium dithionite (0.1% in PBS, 1 mL) and Mb (66 μM in PBS, 5 mL) under nitrogen atmosphere and stirring at RT for 0.5 h. PPPBP−CO NPs bubbled with nitrogen for 0.5 h were added to the deoxy-Mb solution at the final concentration of 50 μg/mL PB. After incubation at 37 or 42 °C for different time, the UV−vis spectra were recorded.

Light-induced CO release from PPPBP−CO NPs was monitored similarly, wherein the mixture of deoxy-Mb and PPPBP−CO NPs was irradiated (808 nm, 0.5 W/cm²) for different time before recording of the UV−vis spectra.

Detection of CO Release by US Imaging. PPPBP−CO NPs (2 mg/mL PB) were filled into a PE tube, positioned in a 3% agar specimen, and irradiated (808 nm, 0.5 W/cm²) for different times. US imaging was performed before and directly after irradiation.

Detection of Intracellular CO Release by the CyA Probe. An NIR fluorescence turn-on probe (CyA) was synthesized and used to detect CO release according to a reported method.42 MCF-7/ADR cells were seeded on a culture dish (d = 1.5 cm) at 2 × 10⁵ cells and cultured for 24 h. The medium was replaced by fresh medium, into which heme (100 μM), PPPBP NPs (50 μg/mL PB), or PPPBP−CO NPs (50 μg/mL PB, 15.16 μg/mL CO donor) were added. After 8 h, cells were irradiated (808 nm, 0.3 or 0.5 W/cm²) for 15 min, and then, the probe solution (CyA and PdCl₂, 20 μM) was added. After incubation for another 0.5 h, cells were washed with PBS, stained with Hoechst 33258, and observed by CLSM.

Cellular Uptake and Intracellular Distribution of NPs. MCF-7 or MCF-7/ADR cells were seeded on 24-well plates (2 × 10⁵ cells/well) and cultured for 24 h. The medium was replaced with fresh medium, into which free Dox or PPPBP−CO−Dox NPs were added at the final Dox concentration of 5 μg/mL (50 μg/mL PB, 15.16 μg/mL CO donor). After incubation for different time, cells were fixed with 4% paraformaldehyde, stained with DAPI (5 μg/mL), and observed by CLSM. The cells treated with PPPBP−CO−Dox NPs were irradiated (808 nm, 0.5 W/cm²) for 15 min after 8-h incubation with cells.

To quantify the cellular uptake level, cells incubated with Dox or PPPBP−CO−Dox NPs for 8 and 16 h as described above were collected, resuspended in PBS, and subjected to flow cytometry analysis.

Detection of Mitochondrial Hyperpolarization and ROS Production Induced by CO. MCF-7/ADR cells were seeded on 24-well plates (2 × 10⁵ cells/well) and cultured for 24 h. The medium was replaced by fresh medium containing PPPBP NPs or PPPBP−CO NPs (50 μg/mL PB, 15.16 μg/mL CO donor), and after incubation for 8 h, cells were irradiated (808 nm, 0.5 W/cm²) for 15 min. After 8 h, the mitochondrial membrane potential and intracellular ROS level were explored by CLSM observation using the mitochondrial membrane potential assay kit and reactive oxygen species assay kit, respectively. Cells treated with PBS served as the control.

Determination of Cytoplasmic Cyto C, Intracellular Caspase 3, and ATP Levels. MCF-7/ADR cells were seeded on 6-well plates (2 × 10⁶ cells/well) and cultured for 24 h. The medium was replaced by fresh medium containing PPPBP NPs or PPPBP−CO NPs (50 μg/mL PB, 15.16 μg/mL CO donor), and after incubation for 8 h, cells were irradiated (808 nm, 0.5 W/cm²) for 15 min. After being cultured for another 8 h, the cytosol was collected using a cytoplasm/mitochondria fractionation kit, and the intracellular Cyto C and caspase 3 levels were determined using the Western blot analysis.46 The intracellular ATP level was determined using the ATP assay kit. Cells treated with PBS served as the control.

In Vitro Anticancer Efficacy. The half-maximal inhibitory concentrations (IC₅₀) of Dox in MCF-7/ADR and MCF-7 cells were determined using the MTT assay. Cells were seeded on 96-well plates (10⁴ cells/well) and cultured for 24 h. The culture medium was replaced by fresh medium containing PPPBP−Dox NPs or free Dox at various Dox concentrations. After incubation for 48 h, the cell viability was determined by the MTT assay, and the IC₅₀ of Dox was calculated according to reported method.47 Then, the anticancer efficacies of NPs (PPPBP, PPPBP−Dox, PPPBP−CO, and PPPBP−CO−Dox) were further investigated. MCF-7/ADR cells in 96-well plates were incubated with free Dox or various NPs at 5 μg Dox equiv/mL for 8 h, irradiated (808 nm, 0.3 or 0.5 W/cm²) for 15 min, and further incubated for 48 h before the MTT assay. A live/dead double-staining assay was adopted to assess the cytotoxicity. MCF-7/ADR cells were seeded on 24-well plates (2 × 10⁵ cells/well), cultured for 24 h, treated with free Dox or various NPs at 5 μg Dox equiv/mL (50 μg/mL PB, 15.16 μg/mL CO donor) for 8 h, irradiated (808 nm, 0.5 W/cm²) for 15 min, and further incubated for 48 h. Cells were then stained with calcein-AM (2 μM, for live cells) and PI (4.5 μM, for dead cells) for 15 min before observation by CLSM.

The cell apoptosis induced by NPs was further evaluated. MCF-7/ADR cells were seeded on 6-well plates (3 × 10⁶ cells/well) and treated with Dox or various NPs as described above. Cells were collected, stained using the Annexin V-FITC/PI kit, and subjected to flow cytometry analysis.48

Pharmacokinetics and Biodistribution of NPs. For the pharmacokinetics study, BALB/c mice were iv injected with
PPPBP–CO–Dox NPs or free Dox at 5 mg Dox/kg. At predetermined time intervals, blood (50 μL) was collected from the orbit and mixed with Triton X-100 (1%, 600 μL) and HCl (1% in isopropyl alcohol, 900 μL). After incubation in the dark overnight, the mixture was centrifuged at 1000g for 30 min. The concentration of Dox in the supernatant was quantified by spectrophotometry (λ_ex = 480 nm, λ_em = 585 nm). The half-life time (t1/2) of free Dox and PPPBP–CO–Dox NPs was calculated according to the reported method.49

For the biodistribution study, MCF-7/ADR cells (2 × 10^6) in PBS (50 μL) were subcutaneously injected into the right flank of female nude mice. When the tumor volume reached ~100 mm³, free Dox or PPPBP–CO–Dox NPs were iv injected at 5 mg Dox/kg, and the tumor site was irradiated (808 nm, 0.5 W/cm²) for 15 min at 8 h post injection. Whole animal fluorescence imaging was performed at predetermined time intervals, and tumor tissue or major organs (heart, liver, spleen, lung, kidney) were harvested at 8 or 16 h post injection. Ex vivo imaging was performed, and the fluorescence intensity of Dox in each tissue was quantified using a Maestro in vivo optical imaging system (Cambridge Research and Instrumentation, Inc.)

Photothermal Effect of NPs In Vivo. Nude mice bearing MCF-7/ADR tumors (~100 mm³) were iv injected with PPPBP–CO–Dox NPs (5 mg Dox/kg, 25 mg PB/kg), and the tumor site was irradiated (808 nm, 0.5 W/cm²) for different time at 8 h post injection. PBS was injected as a control. The time-dependent temperature change in tumors was recorded by an infrared thermal camera.

Detection of CO Production in Tumors by US Imaging. Nude mice bearing MCF-7/ADR tumors (~100 mm³) were iv injected with PPPBP–CO–Dox NPs (5 mg Dox/kg, 25 mg PB/kg, 7.58 mg CO donor/kg) or PBS. At 8 h post injection, tumor sites were irradiated (808 nm, 0.5 W/cm²) for different time. US imaging of the tumor sites was performed on a PA imaging system with the B mode.

In Vivo Anticancer Efficacy. Nude mice bearing MCF-7/ADR tumors (~100 mm³) were randomly divided into 6 groups (5 mice/group), and they were iv injected with PBS, free Dox, PPPBP NPs, PPPBP–CO NPs, PPPBP–Dox NPs, or PPPBP–CO–Dox NPs at 5 mg Dox equiv/kg (200 μL/injection, 25 mg PB/kg, 7.58 mg CO donor/kg) or PBS. At 8 h post injection, tumor sites were irradiated (808 nm, 0.5 W/cm², 15 min). The tumor size and body weight were measured every other day, and the tumor volume (V) was calculated according to the formula V = tumor length × width²/2. Mice with tumors larger than 1000 mm³ were euthanized according to the standard animal protocol. On day 21, mice were sacrificed, and major organs as well as tumors were excised, weighed, imaged, and subjected to hematoxylin and eosin (H&E) staining and TUNEL staining.

In Vivo Tumor Cell Internalization of NPs. Nude mice bearing MCF-7/ADR tumors (~100 mm³) were iv injected with PPPBP–CO–Dox NPs (5 mg/kg Dox, 25 mg PB/kg, 7.58 mg CO donor/kg) or free ICG (5 mg/kg). Free ICG instead of free Dox was used due to the limited detection wavelength (750–960 nm) of the PA imaging system and the strong absorbance of ICG at 808 nm.50,51 At 8 h post injection, the tumor site was irradiated (808 nm, 0.5 W/cm²) for 15 min. PA imaging was performed at different time (2, 4, 6, 8, 9, 12, 16, and 24 h) post injection.

In a parallel study, nude mice bearing MCF-7/ADR tumors (~100 mm³) were iv injected with PPPBP–CO–Dox NPs or free Dox (5 mg Dox/kg, 25 mg PB/kg, 7.58 mg CO donor/kg). At 8 h post injection, the tumor site was irradiated (808 nm, 0.5 W/cm²) for 15 min. Mice were sacrificed at 8, 16, and 24 h post injection, and tumors were harvested, embedded in OCT, cryosectioned, and stained with DAPI (5 μg/mL) before observation by CLSM.22

To quantify the internalization level of NPs by tumor cells in vivo, PPPBP–CO–Dox NPs or free Dox was iv injected, and the tumor site was irradiated as described above. The tumor tissues were collected at 8 and 16 h post injection, washed by PBS, cut into pieces, and incubated with hyaluronidase and collagenase (1.5 mg/mL) at 37 °C for 1 h. The mixture was filtered with nylon mesh, and the cells were centrifuged at 1500 rpm for 3 min, resuspended in PBS containing 1% FBS (0.2 mL), and analyzed by flow cytometry.

In a parallel study, the tumors were embedded in OCT, cryosectioned, and subjected to immunofluorescence staining of P-gp. The concentrations of primary antibodies and Cy3-conjugated IgG antibody were 1:200. The P-gp levels in MCF-7/ADR tumors were also determined by Western blot, and the concentrations of primary and secondary antibodies were both 1:1000. GAPDH was used as a protein loading control.

Biosafety Evaluation. BALB/c mice bearing 4T1 xenograft tumors (~100 mm³) were iv injected with PPPBP–CO–Dox NPs (5 mg Dox/kg, 25 mg PB/kg, 7.58 mg CO donor/kg). The tumor site was irradiated (808 nm, 0.5 W/cm²) for 15 min at 8 h post injection. Mice injected with PBS served as the control. At different time post light irradiation, the blood oxygen saturation (SpO₂) and pulse rate (PR) of mice were determined using a pulse oximeter. The sensor was placed on the foot to record the signal. At 24 h post irradiation, blood was collected, and the hematological assessment was performed on a BC-5380 automatic hematology analyzer (Mindray), including red blood cell count (RBC), white blood cell count (WBC), granulocyte count (GR), lymphocyte count (LY), mononuclear cell count (MO), granulocyte % (GR%), lymphocyte % (LY%), mononuclear % (MO%), red blood cell count (RBC), hemoglobin (HGB), mean corpuscular volume (MCV), platelet count (PLT), plateletcrit (PCT), and mean platelet volume (MPV). The blood was centrifuged at 12 000 rpm for 10 min, and the supernatant was subjected to a biochemical parameter assessment on a Cobas5801 automatic chemistry analyzer (Roche), including uric acid (UA), alanine transaminase (ALT), total protein (TP), total bilirubin (T-Bil), aspartate transaminase (AST), alkaline phosphatase (ALP), aspartate transaminase (ALT), creatinine (CREA), blood urea nitrogen (BUN), glucose (Glu), total cholesterol (TC), and creatine kinase (CK).

Statistical Analysis. All data were presented as mean ± SD, and the statistical analysis was performed using the Student’s t-test. Differences between two groups were judged to be significant at *p < 0.05 and very significant at **p < 0.01 and ***p < 0.001.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.9b00216.

Additional results for nanoparticle characterization, in vitro and in vivo studies, accumulated release profiles,
pharmacokinetics analyses, cell uptake behavior, CLSM images, flow cytometry, and hematology analysis (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: lcyin@suda.edu.cn. Phone: 86-512-65882039.

ORCID
Lichen Yin: 0000-0002-4573-0555

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and Technology of China (2016YFA0201200), the National Natural Science Foundation of China (51722305, 51573123, and 51873142), 111 project, and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

REFERENCES

(1) Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margulit, R.; Langer, R. Nanocarriers as An Emerging Platform for Cancer Therapy. Nat. Nanotechnol. 2007, 2 (12), 751–760.
(2) Li, C. X.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qiang, X. L.; Hou, L. Y.; Xiong, L. L. Light-Responsive Biodegradable Nanorattles for Cancer Theranostics. Adv. Mater. 2018, 30 (8), 1870049.
(3) Carlisle, J. W.; Ramalingam, S. S. A Banner Year for Immunotherapy and Targeted Therapy. Nat. Rev. Clin. Oncol. 2019, 16 (2), 79–80.
(4) Allen, T. M.; Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303 (5665), 1818–1822.
(5) Petros, R. A.; DeSimone, J. M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug Discovery 2010, 9 (8), 615–627.
(6) Lin, J.; Wang, M.; Hu, H.; Yang, X. Y.; Wen, B.; Wang, Z. T.; Jacobsen, O.; Song, J. B.; Zhang, G. F.; Niu, G. Multimodal-Imaging-Guided Cancer Phototherapy by Versatile Biomimetic Theranostics with UV and γ-Irradiation Protection. Adv. Mater. 2016, 28 (17), 3273–3279.
(7) Guo, X.; Li, D.; Yang, G.; Shi, C.; Tang, Z.; Wang, J.; Zhou, S. Thermo-Triggered Drug Release from Actively Targeting Polymer Micelles. ACS Appl. Mater. Interfaces 2014, 6 (11), 5849–5859.
(8) Kuang, J.; Wen, S.; Yin, J.; Xuan, Z.; Song, H.; Zhao, Y. P.; Tao, J.; Liu, C. J.; He, X. H.; Zhang, X. Z. iRGD-Modified Chemo-Immunotherapeutic Nanoparticles for Enhanced Immunotherapy against Glioblastoma. Adv. Funct. Mater. 2018, 28 (17), 1800025.
(9) Wang, Q.; Cheng, H.; Peng, H.; Zhou, H.; Li, P. Y.; Langer, R. Non-Genetic Engineering of Cells for Drug Delivery and Cell-Based Therapy. Adv Drug Delivery Rev. 2015, 91, 125–140.
(10) Robey, R. W.; Pluchino, K. M.; Hall, M. D.; Fojo, A. T.; Bates, S. E.; Gottesman, M. M. Revisiting the Role of ABC Transporters in Multidrug-Resistant Cancer. Nat. Rev. Cancer 2018, 18 (7), 452–466.
(11) Blanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33 (9), 941–951.
(12) Xue, X.; Hall, M. D.; Zhang, Q.; Wang, P. C.; Gottesman, M. M.; Liang, X. J. Nanoscale Drug Delivery Platforms Overcome Platinum-Based Resistance in Cancer Cells Due to Abnormal Membrane Protein Trafficking. ACS Nano 2013, 7 (12), 10452–10464.
(13) Zhang, C.; Liu, L. H.; Qiu, W. X.; Zhang, Y. H.; Song, W.; Zhang, L.; Wang, S. B.; Zhang, X. Z. A Transformable Chimeric Peptide for Cell Encapsulation to Overcome Multidrug Resistance. Small 2018, 14 (11), 1703321.
(14) Wang, T.; Wang, D.; Yu, H.; Wang, M.; Liu, J.; Feng, B.; Zhou, F.; Yin, Q.; Zhang, Z.; Huang, Y. Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug Resistant Tumor. ACS Nano 2016, 10 (3), 3496–3508.
(15) He, Q. J.; Shi, J. L. MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Adv. Mater. 2014, 26 (3), 391–411.
(16) Liu, J.; Li, Q.; Zhang, J.; Huang, L.; Qi, C.; Xu, L.; Liu, X.; Wang, G.; Wang, L.; Wang, Z. Safe and Effective Reversal of Cancer Multidrug Resistance Using Sericin-Coated Mesoporous Silica Nanoparticles for Lysosome-Targeting Delivery in Mice. Small 2017, 13 (9), 1602567.
(17) Ni, Q.; Zhang, F.; Zhang, Y.; Zhu, G.; Wang, Z.; Teng, Z.; Wang, C.; Yung, B. C.; Niu, G.; Lu, G. In Situ shRNA Synthesis on DNA-Poly(lactide Nanoparticles to Treat Multidrug Resistant Breast Cancer. Adv. Mater. 2018, 30 (10), 1705737.
(18) Cho, S. K.; Pedram, A.; Levin, E. R.; Kwon, Y. J. Acid-Degradable Core–Shell Nanoparticles for Reversed TumorXenofection Resistance in Breast Cancer by Silencing Manganese Superoxide Dismutase (MnSOD). Biomaterials 2013, 34 (38), 10228–10237.
(19) Wang, B.; Yuan, H. X.; Liu, Z.; Nie, C. Y.; Liu, L. B.; Lv, F. T.; Wang, Y. L.; Wang, S. Cationic Oligo(p-Phenylene Vinylene) Materials for Combating Drug Resistance of Cancer Cells by Light Manipulation. Adv. Mater. 2014, 26 (34), 5986–5990.
(20) Mansoori, B.; Mohammad, A.; Davudian, S.; Shirjlang, S.; Baradar, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7 (3), 339–348.
(21) Wu, M.; Meng, Q.; Chen, Y.; Zhang, L.; Li, M.; Cai, X.; Li, Y.; Yu, P.; Shi, J. Nanoparticles: Large Pore-Sized Hollow Mesoporous Organosilica for Redox-Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Adv. Mater. 2016, 28 (10), 1963–1969.
(22) Meng, H.; Mai, W. X.; Zhang, H. Y.; Xue, M.; Xia, T.; Lin, S.; Jiang, X.; Wang, Z.; Zhao, Y.; Ji, Z. X.; Zink, J. I. Codelivery of An Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles to Overcome Drug Resistance in Breast Cancer In Vitro and In Vivo. ACS Nano 2013, 7 (2), 994–1005.
(23) Wang, T.; Wang, D.; Liu, J.; Feng, B.; Zhou, F.; Zhang, H.; Zhou, L.; Yin, Q.; Zhang, C.; Cao, Z. Acidity-Triggered Ligand-Presenting Nanoparticles to Overcome Sequential Drug Delivery Barriers to Tumors. Nano Lett. 2017, 17 (9), 5429–5436.
(24) Zhou, Y.; Huang, F.; Yang, Y.; Wang, P.; Zhang, Z.; Tang, Y.; Shen, Y.; Wang, K. Paraptosis-Inducing Nanomedicine Overcomes Cancer Drug Resistance for a Potent Cancer Therapy. Small 2018, 14 (7), 170244J.
(25) Yao, C.; Wang, P.; Li, X.; Hu, H.; Hou, J.; Wang, L.; Zhang, F. Near-Infrared-Triggered Azobenzene-Liposome/Upconversion Nanoparticle Hybrid Vesicles for Remotely Controlled Drug Delivery to Overcome Cancer Multidrug Resistance. Adv. Mater. 2016, 28 (42), 9341–9348.
(26) Romao, C. C.; Blattler, W. A.; Seixas, J. D.; Bernardes, G. J. L. Developing Drug Molecules for Therapy with Carbon Monoxide. Chem. Soc. Rev. 2012, 41 (9), 3571–3583.
(27) Yao, X. X.; Yang, P.; Jin, Z. K.; Jiang, Q.; Guo, R. R.; Xie, R. H.; He, Q. J.; Wang, Y. L. Multifunctional Nanoplatform for Photo-acoustic Imaging-Guided Combined Therapy Enhanced by CO Induced Ferroptosis. Biomaterials 2019, 179, 268–283.
(28) Gullotta, F.; Di, M. A.; Ascensi, P. Carbon Monoxide: An Unusual Drug. JUBMB Life 2012, 64 (5), 378–386.
(29) Chaves-Ferreira, M.; Alburquerque, I. S.; Dijana, M. V.; Coelho, A. C.; Carvalho, S. M.; Saraiva, L. M.; Romao, C. C.; Bernardes, G. J. L. Spontaneous CO Release from RU(II)(CO)3-Protein Complexes in Aquoeous Solution, Cells, and Mice. Angew. Chem. 2015, 127 (4), 1188–1191.
(30) He, Q.; Kiesewetter, D. O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y.; Zhu, G.; Qian, Z. NIR-Responsive On-Demand Release of...
CO from Metal Carbonyl-Caged Graphene Oxide Nanomedicine. *Adv. Mater.* 2015, **27**(42), 6537–6537.

(31) Lo Iacono, L.; Boczowski, J.; Zini, R.; Salouage, I.; Berdeaux, A.; Motterlini, R.; Morin, D. A Carbon Monoxide-Releasing Molecule (CORM-3) Uncouples Mitochondrial Respiration and Modulates the Production of Reactive Oxygen Species. *Free Radical Biol. Med.* 2011, **50**(11), 1556–1564.

(32) Almeida, A. S.; Figueiredo-Pereira, C.; Vieira, H. L. Carbon Monoxide and Mitochondria-Modulation of Cell Metabolism, Redox Response and Cell Death. *Front. Physiol.* 2015, **6**, 33–39.

(33) Almeida, A. S.; Sonnewald, U.; Alves, P. M.; Vieira, H. L. Carbon Monoxide Improves Neuronal Differentiation and Yield by Increasing the Functioning and Number of Mitochondria. *J. Neurochem.* 2016, **138**(3), 423–435.

(34) Jang, D. H.; Kelly, M.; Hardy, K.; Lambert, D. S.; Shofer, F. S.; Eckmann, D. M. A Preliminary Study in the Alterations of Mitochondrial Respiration in Patients with Carbon Monoxide Poisoning Measured in Blood Cells. *Clin. Toxicol.* 2017, **55**(6), 579–584.

(35) Peng, T. J.; Chang, C. J.; Guo, M. J.; Wang, Y. H.; Yu, J. S.; Wu, H. Y.; Jou, M. J. Mitochondrion-Targeted Photosensitizer Enhances the Photodynamic Effect-Induced Mitochondrial Dysfunction and Apoptosis. *Ann. N. Y. Acad. Sci.* 2010, **1204**(1), 419–428.

(36) Li, M. X.; Shan, J. L.; Wang, D.; He, Y.; Zhou, Q.; Xia, L.; Zeng, L. L.; Li, Z. P.; Wang, G.; Yang, Z. Z. Human Apurinic/Apyrimidinic Endonuclease 1 Translocalizes to Mitochondria after Photodynamic Therapy and Protects Cells from Apoptosis. *Cancer Sci.* 2012, **103**(5), 882–888.

(37) Guo, R.; Peng, H.; Tian, Y.; Shen, S.; Yang, W. Mitochondria-Targeting Magnetic Composite Nanoparticles for Enhanced Phototherapy of Cancer. *Small* 2016, **12**(33), 4541–4552.

(38) Wegiel, B.; Gallo, D.; Cszmadia, E.; Harris, C.; Belcher, J.; Vercellotti, G. M.; Penacho, N.; Seth, P.; Sukhatme, V.; Ahmed, A.; et al. Carbon Monoxide Expedites Metabolic Exhaustion to Inhibit Tumor Growth. *Cancer Res.* 2013, **73**(23), 7009–7021.

(39) Li, W. P.; Su, C. H.; Tao, L. C.; Chang, C. T.; Hsu, Y. P.; Yeh, C. S. Controllable CO Release Following Near-Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment. *ACS Nano* 2016, **10**(12), 11027–11036.

(40) G, U. R.; Axthelm, J.; Hoffmann, P.; Tave, N.; Glaeser, S.; Görs, H.; Hopkins, S. L.; Flasw; W.; Neugebauer, U.; Bonnet, S. Co-Registered Molecular Logic Gate with a CO-Releasing Molecule Triggered by Light and Peroxide. *J. Am. Chem. Soc.* 2017, **139**(14), 4991–4994.

(41) Fujita, K.; Tanaka, Y.; Abe, S.; Ueno, T. A Phototoxic Carbonyl-Monoxygen-Releasing Protein Cage for Dose-Regulated Delivery in Living Cells. *Angew. Chem., Int. Ed.* 2016, **55**(3), 1056–1060.

(42) Feng, W.; Feng, G. A Readily Available Colorimetric and Near-Infrared Fluorescent Turn-On Probe for Detection of Carbon Monoxide in Living Cells and Animals. *Sens. Actuators, B* 2018, **255**, 2314–2320.

(43) Zheng, D. W.; Li, B.; Li, C. X.; Xu, L.; Fan, J. X.; Lei, Q.; Zhang, X. Z. Photocatalyzing CO$_2$ to CO for Enhanced Cancer Therapy. *Adv. Mater.* 2017, **29**(44), 1703822.

(44) Cheng, L.; Gong, H.; Zhu, W.; Liu, J.; Wang, X.; Liu, G.; Liu, Z. PEGylated Prussian Blue Nanocubes as a Theranostic Agent for Simultaneous Cancer Imaging and Photothermal Therapy. *Biomaterials* 2014, **35**(37), 9844–9852.

(45) Cai, X. J.; Ma, M.; Wu, M. Y.; Zhang, L. L.; Chen, H. R.; Shi, J. L. A Prussian Blue-Based Core—Shell Hollow-Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH-Responsive Longitudinal Relaxivity. *Adv. Mater.* 2015, **27**(41), 6536–6536.

(46) Wei, H.; Li, Z. W.; Hu, S. S.; Chen, X.; Cong, X. F. Apoptosis of Mesenchymal Stem Cells Induced by Hydrogen Peroxide Concerns both Endoplasmic Reticulum Stress and Mitochondrial Death Pathway Through Regulation of Caspases, p38 and JNK. *J. Cell. Biochem.* 2010, **111**(4), 967–978.