A POISSON-POISSON MODEL TO ANALYZE CONGESTION DATA

Farzana Jahan1, Borhan Siddika2, Rafiqul I. Chowdhury2 and M. Ataharul Islam2

1Science and Engineering Faculty
Queensland University of Technology
Australia

2ISRT
University of Dhaka
Bangladesh

Abstract

Congestion in internet network often worsens the performance of the network. An analysis of congestion data plays a significant role in congestion detection and control. To detect and control congestion, analysis of number of packet arrival, packet inter arrival times, throughput, queuing delay, etc. are some important phenomena. Fitting probability distributions to packet arrival, throughput, inter arrival time, etc. are essential in order to control congestion in future, setting appropriate values of parameters beforehand (buffer size, number of packet arrival, inter arrival time, average queuing delay, etc.). Number of packet arrival within a certain time interval is a count random variable that follows a Poisson distribution. Similarly, throughput/number of packet departure within a certain time interval is
also a Poisson random variable but it is correlated with the number of packet arrival. In most of the previous studies, univariate distributions have been used to identify the best fit probability distributions for congestion data. In this study, an attempt is made to use a Poisson-Poisson model for packet arrival and departure (throughput) from the network where correlation between the packet arrival and departure is considered. Using simulation, the performance of models in each situation (small/large sample size, low/heavy congestion) is evaluated. This technique is expected to simplify the analysis of big data stemming from the congestion in TCP/IP network.

1. Introduction

At present, the world cannot survive a single moment without internet. Internet has made the world smaller. The majority of data transfer on the internet relating to the transfer jobs (web pages, audio/video downloads, file transfers, etc.) are being coordinated by TCP/IP (Lassila et al. [10]). TCP is a two-layer program. The higher layer, transmission control protocol, manages the assembling of a message or a file into smaller packets that are transmitted over the internet and received by a TCP layer that reassembles the packets into the original message. The lower layer, internet protocol, handles the address part of each packet so that it gets to the right destination. Each gateway computer on the network checks this address to see where to forward the message. Even though some packets from the same message are routed differently than others, they will be reassembled at the destination.

The performance of internet usage is worsened due to congestion in TCP/IP network. Network congestion occurs when a network node is carrying more data/traffic than it can handle. When the router buffer cannot handle the arriving packets, then the congestion occurs. That is, if rate of arrival and rate of departure of packets to their destination are not the same, then congestion arises. Congestion worsens the network’s performance by increasing packet dropping probability. In addition, it increases the mean waiting time of packets in the queue and the mean queue length. As a result, the amount of packets passing through the buffer of the routers that is throughput will be degraded (Lin and Morris [12]).
A Poisson-Poisson Model to Analyze Congestion Data

An analysis of congestion data plays a significant role in congestion detection and control. To detect and control congestion, some important phenomena are: number of packet arrival, packet inter arrival time, throughput, queuing delay, etc. To control the congestion in network, many detection algorithms are suggested such as: random early detection (RED) (Floyd and Jacobson [4]), adaptive random early detection (ARED) (Floyd et al. [3]), dynamic stochastic early discovery (DGRED) (Balziki et al. [1]), stochastically adaptive RED (SARED) (Suthaharan [14]), etc. These methods have one goal in common, which is to detect the congestion early to reduce the packet dropping, mean queue length, mean waiting time as well as to improve networks’ performance.

Uses of probability distributions are also seen in several literatures of network performance. Deng [2] constructed an empirical model of WWW document arrivals at access link. He used actual traffic data with over 20000 data points to fit distributions. He applied heavy tailed Weibull and Pareto distributions to model on and off periods. He also used another Weibull distribution to model the inter arrival times of requests coming within the on periods. Deng [2] suggested this empirical model to work as a basis for future planning of access network capacity. Padhye et al. [13] modeled TCP’s congestion avoidance behavior in terms of rounds. The size of the congestion window in a round (W_i) is considered as a Markov process where stationarity can be obtained numerically and the number of packets in the last round is assumed to be uniformly distributed between 1 and W_i.

Garsva et al. [6] presented results of statistical analysis of network packet inter arrival time distribution in TCP and UDP, most popular transport protocols in academic computer network. Packet inter arrival time distributions were found by dividing network traffic into sections according to its direction and usage trends. Garsva et al. [6] used Kolmogorov-Smirnov test to evaluate the goodness of fit of packet inter-arrival time distribution. Among the distributions (Weibull, Pareto second kind, gamma, exponential and lognormal), it appears that Pareto second kind is fitted well in both TCP and UDP protocols. Garetto and Towsley [5] described an analytical approach for estimating the queuing delay distribution on an internet link.
carrying realistic TCP traffic, such as that produced by a large number of finite-size connections transferring files whose sizes are taken from a long-tail distribution. Their modelling approach contained two components: the first one was a stochastic model of TCP where amount of data transferred by a TCP connection is assumed to follow a geometric distribution. The second component was concerned in obtaining a queue length distribution in which batch size is assumed to have a beta distribution. The arrival of batches to a connection is assumed to be Poisson arrival in Garetto and Towsley [5]. Karp et al. [9] made an attempt to solve several optimization problems regarding internet congestion control. They derived several algorithms for optimization under static and dynamic cases using different cost functions. In their study, use of uniform distribution is made to model maximum number of packets that can transmit without experiencing any packet loss. Hong et al. [7] proposed a queuing model which describes a packet encapsulation and aggregation process assuming Poisson arrivals phase-type service time distributions for the transmitted packets. The proposed model was useful in packet aggregation which would result in increased throughput and would minimize the average total delay of a packet for various system loads.

So far the probability models applied to network traffic data are all univariate probability distributions or queuing models looking at different aspects of network congestion individually. If one looks at two important variables of TCP/IP network data, packet arrival and packet departure (throughput), they are not independent. Rather packet departure (passing of packets throughput) depends on the number of packets arriving on a gateway where the two variables are correlated. So if this correlation is taken into account while modeling these two important characteristics, the modeling of network congestion data will be more effective. The present study applies the bivariate Poisson model of Islam and Chowdhury [8] to model network data. The estimation and tests using these models are shown in this study applying simulation.

Following this section, the study is organized as follows. The methodology using models, likelihood, and test statistics are described in Section 2, an application of the methods using simulated data of network
congestion is described in Section 3, Section 4 consists of results and discussion followed by conclusion in Section 5.

2. Methods

2.1. Bivariate Poisson model for an analysis of congestion data

Let us assume a network where number of packets arriving per time point (e.g., second) within a given time interval \([t_0, t]\) (e.g., 0 to 10 seconds; 0 to 100 seconds, etc.) in a gateway with a specific rate \(\lambda_1\). We may denote the number of packets arriving in a gateway in a specific time point during a time interval by \(Y_1\). Then \(Y_1\) has a Poisson distribution with mass function

\[
g_1(y_1) = \frac{e^{-\lambda_1} \lambda_1^{y_1}}{y_1!}, \quad y_1 = 0, 1, \ldots
\]

Again let us assume among the packets arriving in a gateway, the number of packets those reach to their destination constitute the amount of throughput of the specific network within the given time interval. Let the rate of packet departure in any time point within the interval be \(\lambda_2\) and it also has a Poisson distribution. Also, it is evident that the number of packets departed successfully within the interval (throughput) may be denoted by \(Y_2\) depending on the number of packets arrived in the gateway within each time point of the given interval \([t_0, t]\). So the joint distribution of the number of packet arrival and the number of packet departure can be shown as follows (Leiter and Hamdan [11]):

\[
g(y_1, y_2) = g(y_2 | y_1) \cdot g(y_1) = \frac{e^{-\lambda_1} \lambda_1^{y_1} e^{-\lambda_2 y_1} (\lambda_2 y_1)^{y_2}}{(y_1! y_2!)} \cdot y_2 = 0, 1, \ldots, \quad (1)
\]

where \(y_2\)'s are assumed to be mutually independent. The number of packets departed, \(Y_2\), out of \(Y_1 = y_1\) arrivals, in any time interval, is Poisson with parameter \(\lambda_2 y_1\). In a time interval, the possible number of packets to be
departed, Y_2, can be shown as the sum of departed packets corresponding to each of $1, 2, ..., y_1$ possible arrivals and the variable Y_2 is defined as $Y_2 = Y_{21} + Y_{22} + \cdots + Y_{2y_1}$. Then the conditional probability of the total number of packets departed as throughput among the y_1 arrivals occurring in a time interval denoted by $P(Y_2 = y_2 | Y_1 = y_1)$ which is shown as Poisson with parameter λ_{2y_1}. Then it can be shown that

$$g(y_2 | y_1) = \frac{e^{-\lambda_{2y_1}}(\lambda_{2y_1})^{y_2}}{y_2!}, \quad y_2 = 0, 1, ..., $$

where Y_{2i} is a random variable with the number of packets departed (becoming throughput) resulting from ith arrival, and suppose it has a Poisson distribution with parameter λ_{2i}; that is,

$$g_2(y_{2k}) = \frac{e^{-\lambda^2_{2i}y_{2k}}}{y_{2k}!}, \quad y_{2k} = 0, 1, ...$$

For the above Poisson-Poisson model (1), it can be shown that

$$E(Y_1) = \mu_1 = \lambda_1 \quad \text{and} \quad E(Y_2) = \mu_2 = \lambda_1\lambda_2.$$

2.2. Test of goodness of fit and overdispersion

The proposed test for goodness of fit and the test of overdispersion for bivariate Poisson-Poisson model (Islam and Chowdhury [8]) can also be applied in the present study to check the goodness of fit of this model applied to network congestion data and to detect overdispersion or underdispersion in the data.

The suggested test for goodness of fit is shown below, where the test statistic is asymptotically distributed as Chi-square distribution (x^2_g), where g is the number of groups of observed values, $y_1, ..., y_g$:
A Poisson-Poisson Model to Analyze Congestion Data

\[T_1 = \sum_{y_1} \left(\frac{y_1 - \hat{\mu}_{y_1}}{\bar{y}_2 | y_1 - \hat{\mu}_{y_2 | y_1}} \right) \left(\sum_{i=1}^{n_{y_1}} \hat{\lambda}_{1i} / n_{y_1} \right) \left(\sum_{i=1}^{n_{y_1}} \hat{\lambda}_{2i} y_1 / n_{y_1} \right)^{-1} \]

\[\cdot \left(\frac{y_1 - \hat{\mu}_{y_1}}{\bar{y}_2 | y_1 - \hat{\mu}_{y_2 | y_1}} \right) \]

where \(\hat{\mu}_{y_1} = \sum_{i=1}^{n_{y_1}} \hat{\lambda}_{1i} / n_{y_1} \) and \(\hat{\mu}_{y_2 | y_1} = \sum_{i=1}^{n_{y_1}} \hat{\lambda}_{2i} y_1 / n_{y_1} \).

Islam and Chowdhury [8] showed simple tests for overdispersion to be carried out individually for variables \(Y_1 \) and \(Y_2 \). So, in the present study, simple tests for detecting overdispersion are carried out for both the number of packet arrival \((Y_1) \) and number of packet departure or throughput \((Y_2) \) within a specific time interval, \([t_0, t]\). For the simple tests, the hypotheses used are:

\[H_0 : \mu_k = \mu_{k0} \text{ and } H_1 : \mu_k \neq \mu_{k0} \]

Under Poisson assumption, we can assume that \(\mu_k = \mu_{k0} \), where \(\mu_{k0} = \hat{V}_{qk} \), where \(\hat{\mu}_k \) and \(\hat{V}_{qk} \) are the estimates for \(\mu_k \) (population mean) and \(V_{qk} \) (population variance), respectively, \(k = 1, 2 \). For large sample, the test statistic is,

\[Z_k = \frac{\hat{\mu}_k - \mu_{k0}}{\sqrt{\frac{\mu_{k0}}{n}}} \]

which is asymptotically distributed as \(N(0, 1) \). Rejection of null hypothesis indicates that mean-variance equality may not hold, that is overdispersion may be present in the data set.

The test for underdispersion or overdispersion has been generalized for the bivariate Poisson-Poisson model by Islam and Chowdhury [8] where marginal distribution of \(Y_1 \) (number of packet arrival) and conditional
distribution of $Y_2 | y_1$ (number of packet departure given the number of packet arrival) follow Poisson distribution with parameters λ_1 and $\lambda_2 y_1$, respectively. Based on the mean-variance equality in both the marginal model for Y_1 and the conditional model for $Y_2 | y_1$ the proposed test for underdispersion or overdispersion is shown below where the test statistic T_2 is distributed asymptotically as x^2_{2g}, where g is the number of groups of observed values, $y_1, ..., y_g$:

$$T_2 = \sum_{y_1} \left(\frac{y_1 - \hat{\mu}_{y_10}}{\hat{\sigma}_{y_1}} \right) \left(\frac{\hat{\phi}_1 \sum_{i=1}^{n_{y_1}} \hat{\lambda}_{1i}/n_{y_1}}{0} \right)^{-1} \left(\frac{\hat{\phi}_2 \sum_{i=1}^{n_{y_1}} \hat{\lambda}_{2i} y_1 / n_{y_1}}{0} \right) \cdot \left(\frac{y_1 - \hat{\mu}_{y_10}}{\hat{\sigma}_{y_1}} \right),$$

(3)

where $\mu_{y_10} = \hat{\phi}_1 \sum_{i=1}^{n_{y_1}} \hat{\lambda}_{1i}/n_{y_1}$ and $\mu_{y_2 | y_1} = \hat{\phi}_2 \sum_{i=1}^{n_{y_1}} \hat{\lambda}_{2i} y_1 / n_{y_1}$, $\hat{\phi}_k = \frac{1}{n - p}$, and $\sum_{i=1}^{n_{y_1}} \left(\frac{y_{ki} - \hat{\mu}_{kl}}{V(\hat{\mu}_{kl})} \right)^2$, $k = 1, 2$. Also, $V(\hat{\mu}_{kl}) = \hat{\mu}_{kl}$.

3. Application

For fitting of bivariate Poisson model and for tests of goodness of fit and overdispersion, data are generated using R programming language. By taking different combinations of λ_1 (rate of packet arrival) and λ_2 (rate of packet departure or throughput), considering different values of correlation coefficient ($r = 0.1, 0.5, 0.7, 0.9$) between Y_1 and Y_2, sample values of Y_1 and Y_2 are generated for small sample size ($n = 10$) and large sample size ($n = 100$) (Yahav and Shmueli [15]). Here sample sizes are the number of discrete time points within a specific interval. The simulations are carried out under two scenarios: heavy congestion and low congestion. Heavy
A Poisson-Poisson Model to Analyze Congestion Data

Congestion refers to the network congestion scenario where the difference between the rate of arrival and rate of packet departure is high, resulting in increased number of packets waiting in the queue to be delivered and eventually many of the packets get dropped (fail to reach destination). On the other hand, low congestion refers to the network congestion scenario where the difference between the rate of arrival and departure is not that high which results in a fewer number of packets waiting in the queue to be delivered and also the packet dropping probability becomes lower.

Using the simulated data sets under each congestion scenario, for large and small sample sizes, the rates (λ_1 and λ_2) are estimated from the fitted model; bias and MSE of the estimated values are computed to see the appropriateness of the estimation techniques suggested by the employed model of Islam and Chowdhury [8]. The goodness of fit of the proposed model is tested using the test proposed in the paper and also the tests for overdispersion or underdispersion are carried out for each of the samples. The whole process of data generation and computation under each scenario and sample size is repeated 1000 times and the mean of the results obtained from the 1000 repetitions are presented and discussed in the present study.

4. Results and Discussion

The results of some simulation are shown in Table 1 to Table 4. In Table 1, the results of simulation are shown where correlation between packet arrival and departure is taken to be 0.1. Under this low correlation, data are generated for heavy congestion and low congestion for both small ($n = 10$) and large ($n = 100$) sample sizes. It is observed that the values of bias for estimated rates of packet arrival and departure are small for small samples and the values are reduced more for large samples (under heavy congestion and low congestion), e.g., under heavy congestion, considering rate of packet arrival as 15 and rate of packet departure as 5, the biases are found to be -0.4 and -1.2, respectively, for small samples, but for large sample, the values are: -0.13 and 0.13. Also, there is substantial decrease in MSE of the estimated rates of packet arrival and departure (λ_1 and λ_2) for the large
samples under both congestion scenarios (for example, the MSE under heavy congestion, considering rate of packet arrival as 10 and rate of packet departure as 4 are 1.060291 and 1.622901 for small sample and 0.10985926 and 0.05150278 for large sample). Similar results for bias and MSE are obtained for other combination of rates (λ_1 and λ_2) for small and large samples under heavy and low congestions. These observations indicate that the estimation technique using the proposed model performs as expected. The p values of goodness of fit test are large for all large and small sample cases under heavy and low congestions (Table 1), which indicates that the proposed model is a good fit to the congestion data. The bivariate test for overdispersion shows in every case, p value is large, that means mean variance equality holds for bivariate Poisson distribution for packet arrival and departure. The individual test of overdispersion is also carried out and p values are also shown for the tests in Table 1. In simple tests also, the number of packet arrival and departure does not contain overdispersion. The result is so because we simulated the data from bivariate Poisson distribution, so it is expected that there will be no overdispersion or underdispersion in this simulated dataset. If real life data is used, then the tests of overdispersion might be significant. In those cases, adjustments should be made to the p values of the coefficients of GLM applied (Islam and Chowdhury [8]).

The results of simulation taking correlation values as 0.5, 0.7 and 0.9 between packet arrival and departure are shown in Tables 2, 3 and 4, respectively. Similar results for bias and MSE are observed in Tables 2, 3 and 4. The p values for goodness of fit test exhibit similar behavior, so as the tests for overdispersion. This means, if the correlation between packet departure and packet arrival is changed to 0.5, 0.7 or 0.9 from 0.1, the proposed model performs similarly for both low and heavy congestion scenarios. This leads to the conclusion that the proposed model can perform well in modelling the packet arrival and departure (throughput) in different networks where there could exist different values for correlation between the two variables. It is also evident from the results (Tables 1, 2, 3 and 4) that the model performs well for both large and small sample sizes under both
A Poisson-Poisson Model to Analyze Congestion Data

heavy and low congestion scenarios as suggested by the small p values in all cases considered in simulations. As in real life, the network congestion data problems are often big data problems. It is worth noting that the model proposed by Islam and Chowdhury [8] can be used satisfactorily for analysis of big data arising from congestion with very large sample sizes. The proposed model is expected to simplify the analysis of network congestion data.

Using real life data of packet arrival and departure in a particular network, one can estimate the rate of arrival and rate of throughput for a given network using the proposed model. The estimation made under the proposed model is quite good in terms of bias and MSE. The bias and MSE decrease with the increase in sample size. So estimations of the rates using the model will help in making congestion control policy more effective for specific networks. In most congestion controlling algorithms, the authors set some threshold or input parameters arbitrarily (Floyd and Jacobson [4] and Suthaharan [14]). But, using this model, the parameters needed can be estimated earlier, then estimated values may be used in the control algorithm, which may provide a more effective control network congestion. Thus, the proposed model is expected to strengthen the development of more effective congestion control algorithm.

To summarize, the findings of fitting the proposed model with simulated data (under low/heavy congestion scenario, for large and small sample sizes) show strong indication that the proposed model is well fitted to the network congestion data. We may conclude that the bivariate Poisson-Poisson regression model proposed by Islam and Chowdhury [8] can be used for analyzing correlated outcomes in network congestion data very well. It has also been shown that the tests for goodness of fit and overdispersion perform very well.

5. Conclusion

The present study is an attempt to apply the newly developed model of Islam and Chowdhury [8] in analysis of count data arising from network
congestion. This is the first ever study where the dependency between number of packet arrival and throughput within a given time interval is taken into account. The application is made using simulated data to validate the use of proposed bivariate Poisson model (Islam and Chowdhury [8]) in analyzing packet arrival and packet departure considering the dependence between the two variables. This application provided new insights of modeling network data TCP/IP network. The proposed model is expected to simplify the analysis of big data arising from network data by modelling two important phenomena as packet arrival and packet departure within a given time interval in a network.

Acknowledgement

This work was supported by the Higher Education Quality Enhancement Project (HEQEP) sub-project (CP-3293) of the Department of Applied Statistics, East West University funded by the World Bank and implemented by University Grants Commission of Bangladesh.

References

[1] M. Baklizi, H. Abdel-Jaber, M. M. Abu-Alhaj, N. Abdullah, S. Ramadass and A. Almomani, Dynamic stochastic early discovery: a new congestion control technique to improve networks performance, International Journal of Innovative Computing, Information and Control 9(3) (2013), 1113-1126. Retrieved from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84873580743&partnerID=40&md5=c005784701b3ecb807414f512f1d6784.

[2] S. Deng, Empirical model of WWW document arrivals at access link, Proceedings of ICC/SUPERCOMM'96 - International Conference on Communications, Vol. 3, 1996, pp. 1797-1802. http://doi.org/10.1109/ICC.1996.535600.

[3] S. Floyd, R. Gummadi and S. Shenker, Adaptive RED: an algorithm for increasing the robustness of RED’s active queue management, ICSI, 2001, pp. 1-12. Retrieved from: http://www.icsi.berkeley.edu/pubs/networking/adaptivered01.pdf.

[4] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM Transactions on Networking, August 1993.
A Poisson-Poisson Model to Analyze Congestion Data

[5] M. Garetto and D. Towsley, Modeling, simulation and measurements of queuing delay under long-tail internet traffic, ACM SIGMETRICS Performance Evaluation Review 31 (2003), 47-57. http://doi.org/10.1145/885651.781034.

[6] E. Garsva, N. Paulauskas, G. Grazulevicius and L. Gulbinovic, Packet inter-arrival time distribution in academic computer network, Elektronika Ir Elektrotechnika 20(3) (2014), 87-90. http://doi.org/10.5755/j01.eee.20.3.6683.

[7] J. H. Hong, O. Gusak, K. Sohraby and N. Oliver, Performance analysis of packet encapsulation and aggregation, Proceedings of the 14th IEEE International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), 2006. http://doi.org/10.1109/MASCOTS.2006.38.

[8] M. Islam and R. Chowdhury, A bivariate Poisson model with covariate dependence, Bulletin of Calcutta Mathematical Society 107(1) (2015), 11-20.

[9] R. Karp, E. Koutsoupias, C. Papadimitriou and S. Shenker, Optimization problems in congestion control, Proceedings 41st Annual Symposium on Foundations of Computer Science, 2010, pp. 66-74. http://doi.org/10.1109/SFCS.2000.892066.

[10] P. Lassila, H. Van Den Berg, M. Mandjes and R. Kooij, An integrated packet/flow model for TCP performance analysis, IEEE, 2008, pp. 1-15.

[11] R. E. Leiter and M. A. Hamdan, Some bivariate probability models applicable to traffic accidents and fatalities, International Statistical Review/Revue Internationale de Statistique 41(1) (1973), 87-100.

[12] D. Lin and R. Morris, Dynamics of random early detection, ACM SIGCOMM, 1997.

[13] J. Padhye, V. Firoiu, D. F. Towsley and J. F. J. Kurose, Modeling TCP throughput: a simple model and its empirical validation, SIGCOMM, 1998, pp. 303-314. http://doi.org/10.1145/285243.285291.

[14] S. Suthaharan, Markov model based congestion control for TCP, 37th Annual Simulation Symposium, Hyatt Regency Crystal City, Arlington, VA, 2004.

[15] I. Yahav and G. Shmueli, On generating multivariate Poisson data in management science applications, Applied Stochastic Models in Business and Industry 28 (2012), 91-102. doi:10.1002/asmb.901.
Table 1. Result of simulation taking correlation \((y_1, y_2) = 0.1\) (number of repetitions = 1000, mean value for each output is taken)

Congestion type	Sample size	λ̂ \(\hat{\lambda}\)	Bias \(\hat{\lambda}\)	MSE \(\hat{\lambda}\)	\(T_1\)	\(p\)-value for \(T_1\)	\(T_2\)	\(p\)-value for \(T_2\)	\(Z_i\)	\(p\)-value for \(Z_i\)
Heavy congestion	\(n = 10\)	14.6	-0.4	1.694641	13.7352	0.561551	12.06788	0.6452543	0.08224568	0.11967
		3.8	-1.2	1.963330					0.03937126	0.18703
		9.8	-0.2	1.060291	13.02152	0.5493953	11.41045	0.6292591	0.09096617	0.13945
		2.9	-0.1	1.622901	12.67163	0.5437807	11.05979	0.6195938	0.04799490	0.21745
		8.7	-0.2	0.8598068	11.97163	0.5437807	11.05979	0.6195938	0.04799490	0.21745
		19.8	-0.2	2.082933	14.14843	0.5657565	12.47163	0.6552187	0.12622739	0.09369
		8.4	-1.6	3.604549	11.97163	0.5437807	11.05979	0.6195938	0.04799490	0.21745
	\(n = 100\)	14.87	0.13	0.16082420	52.6922	0.1146495	51.71866	0.09576928	0.0581393	0.11802
		5.13	0.13	0.06361191					0.0926571	0.18488
		9.88	-0.12	0.10985926	46.81692	0.1025514	45.90287	0.08568702	-0.0240896	0.13477
		4.12	0.12	0.05150279	43.69981	0.0994432	42.84441	0.08292702	-0.0297161	0.28141
		7.96	-0.10	0.08620958	57.71798	0.1204093	56.48851	0.09873427	-0.0650708	0.10149
		2.03	0.03	0.01967761	17.32163	0.1146495	16.41866	0.09576928	-0.0240896	0.13477
		19.84	-0.16	0.2185614	11.97163	0.5437807	11.05979	0.6195938	0.04799490	0.21745
		10.14	0.14	0.1129660	11.97163	0.5437807	11.05979	0.6195938	0.04799490	0.21745
Low congestion	\(n = 10\)	15.1	0.1	1.528726	13.20044	0.5855379	11.71593	0.671688	0.1041118	0.11736
		11.0	0.2	5.356537					0.1602178	0.11081
		10.1	0.1	1.008891	12.34442	0.5852683	10.92347	0.6071209	0.08601472	0.14239
		9.5	0.1	0.8272166	12.01838	0.5809987	10.56243	0.6622211	0.03815898	0.16833
		5.5	-0.1	0.7510737	13.75957	0.5844651	12.1764	0.6784057	0.1307715	0.10691
		20.1	0.1	2.036246	17.51073	0.5844651	12.1764	0.6784057	0.1488281	0.09855
	\(n = 100\)	14.73	0.27	0.2202578	45.00255	0.23863	44.33852	0.2238594	-0.0668608	0.10769
		13.26	0.26	0.1903295					-0.085386	0.11178
		9.9	0.1	0.10769200	12.34442	0.5852683	10.92347	0.6671209	0.08601472	0.14239
		8.15	0.15	0.09798984	12.01838	0.5809987	10.56243	0.6622211	0.03815898	0.16833
		7.18	0.18	0.09744611	13.75957	0.5844651	12.1764	0.6784057	0.1307715	0.10691
		19.76	-0.24	0.2505339	17.32163	0.5844651	12.1764	0.6784057	0.1488281	0.09855
A Poisson-Poisson Model to Analyze Congestion Data

Table 2. Result of simulation taking correlation \((y_1, y_2) = 0.5\) (number of repetitions = 1000, mean value for each output is taken)

Congestion type	Sample size	\(x_i\)	\(\hat{\lambda}_i\)	Bias \((\hat{\lambda}_i)\)	MSE	\(T_1\)	\(p\)-value for \(T_1\)	\(T_2\)	\(p\)-value for \(T_2\)	\(Z_i\)	\(p\)-value for \(Z_i\)	
Heavy congestion	10	15	15.1	0.1	1.525581	13.25127	0.582939	11.73796	0.6705488	0.10871441	0.11633	
		5	3.7	-1.3	2.208217						0.17574	
		10	10.1	0.1	1.009911	12.36883	0.5846338	10.93264	0.6660564	0.08681773	0.14317	
		4	2.8	-1.2	1.855153						0.20948	
		8	8.1	0.1	0.8268759	12.10301	0.5775196	10.60021	0.6595669	0.03394564	0.16813	
		2	1.2	-0.8	0.8425709						0.29802	
		20	20.1	0.1	2.034128	13.7499	0.5852682	12.1611	0.6789957	0.13052893	0.10676	
		10	8.3	-1.7	3.924910						0.12066	
Low congestion	100	15	14.73	0.27	0.2201470	45.0297	0.237625	44.36752	0.2229847	-0.0120588	0.10771	
		5	5.15	0.15	0.06974227						0.18256	
		10	9.9	-0.1	0.10766591	39.35219	0.2203368	38.74644	0.2060576	0.00303438	0.13711	
		4	4.1	0.1	0.04772993						0.21961	
		8	7.85	-0.15	0.10075770	36.82378	0.2071717	36.24271	0.1934943	0.00626616	0.14777	
		2	2.11	0.11	0.03076458						0.29432	
		20	19.76	-0.24	0.2560235	49.44603	0.2533059	48.71052	0.2369956	0.01571761	0.10467	
		10	10.22	0.22	0.1429157						0.13237	
	100	15	14.6	-0.4	1.693527	13.71556	0.5617646	12.07428	0.6456624	0.08783505	0.11996	
		11.1	-1.9	4.971691						0.14922697	0.10995	
		10	9.8	-0.2	1.006013	13.00038	0.5498576	11.42012	0.6278345	0.09712973	0.13908	
		6.4	-1.6	3.395563						0.08357407	0.15391	
		8	7.8	-0.2	0.8586925	12.62826	0.5455028	11.06024	0.6194829	0.06541200	0.15691	
		7	5.7	-1.3	2.4156548					0.09506805	0.15805	
		20	19.8	-0.2	2.078087	14.15732	0.5667893	12.49559	0.654903	0.1191602	0.09477	
		17	15.0	-2.0	5.776794					0.1428620	0.10007	
		15	14.87	0.15	0.1610611	52.51148	0.1145316	51.57759	0.09618123	-0.0508810	0.11806	
		13.26	0.26	0.1903850						-0.1375371	0.11085	
		10	9.88	0.12	0.1097407	46.66952	0.102183	45.77923	0.08542215	-0.0235271	0.13636	
		8	8.19	0.19	0.1110467						0.1466777	0.14784
		7	7.89	0.11	0.08868631	43.40647	0.0988514	42.62078	0.08302902	-0.0047596	0.16712	
		7	7.12	0.12	0.07931130					-0.0922239	0.15605	
		20	19.84	0.16	0.2185305	57.70549	0.1205446	56.62542	0.09896372	-0.0628897	0.10034	
		17	17.25	0.25	0.2213135					-0.1888725	0.10647	
Table 3. Result of simulation taking correlation $(\gamma_1, \gamma_2) = 0.7$ (number of repetitions $= 1000$, mean value for each output is taken)

| Congestion type | Sample size | $|\hat{\lambda}|$ | $|\hat{\lambda}|$ | Bias $(\hat{\lambda}, \hat{\lambda})$ | MSE $(\hat{\lambda}, \hat{\lambda})$ | T_1 | p-value for T_1 | T_2 | p-value for T_2 | Z_1 | p-value for Z_1 | Z_2 | p-value for Z_2 |
|-----------------|-------------|----------------|----------------|--------------------------------|-------------------------------|-------|-------------------|-------|-------------------|-------|-------------------|-------|-------------------|
| **Heavy congestion** | $n = 10$ | 15 | 14.4 | 1.900575 | 14.14459 | 0.5394574 | 12.43193 | 0.617145 | 0.0967587 | 0.0350773 | 0.10098 | 0.19045 | 0.07751 |
| | | 5 | 3.7 | 2.208576 | | | | | | | | | | |
| | 10 | 9.5 | 2.128282 | 13.60333 | 11.86759 | 0.5961326 | 0.0548877 | 0.0357208 | 0.13466 | 0.22648 | 0.14666 | 0.1078 |
| | 4 | 3.0 | 1.416787 | | | | | | | | | | |
| | 8 | 7.5 | 1.0728967 | 13.10979 | 1.41446 | 0.586233 | 0.0812178 | 0.02003 | 0.15148 | 0.30364 | 0.11623 | 0.07894 |
| | 2 | 1.2 | 1.8439117 | | | | | | | | | | |
| | 20 | 19.4 | 2.430595 | 14.5385 | 12.79725 | 0.6273104 | 0.1372136 | 0.08316 | 0.09585 | 0.13512 | 0.11693 | |
| | 10 | 8.4 | 3.621548 | | | | | | | | | | |
| | 100 | 10 | 15.1 | 0.1605797 | 60.84514 | 0.4612071 | 59.58736 | 0.3152246 | -0.06319 | 0.11380 | -0.13281 | 0.18333 | |
| | | 5 | 5.1 | 0.0564940 | | | | | | | | | | |
| | 10 | 9.9 | 0.0985322 | 54.17574 | 0.4414211 | 53.03326 | 0.364389 | -0.03960 | 0.13749 | -0.10986 | 0.18883 | |
| | 4 | 4.15 | 0.0601443 | | | | | | | | | | |
| | 8 | 7.9 | 0.0832962 | 50.51866 | 0.4725635 | 49.3512 | 0.3454972 | -0.08300 | 0.15712 | -0.05262 | 0.28200 | |
| | 2 | 2.02 | 0.0187624 | | | | | | | | | | |
| | 20 | 19.9 | 0.194501 | 65.53943 | 0.516668 | 64.29379 | 0.3484586 | -0.06401 | 0.09402 | -0.14118 | 0.13161 | |
| | 10 | 10.19 | 0.1290662 | | | | | | | | | | |
| | 100 | 17 | 17.2 | 0.1600579 | 60.69537 | 0.4570256 | 59.51341 | 0.3115006 | -0.0697724 | 0.11136 | -0.18485 | 0.11643 | |
| | | 13 | 13.19 | 0.1564848 | | | | | | | | | | |
| | 10 | 9.94 | 0.0984440 | 54.00638 | 0.437062 | 52.93369 | 0.31457 | -0.03840 | 0.13560 | -0.10104 | 0.13438 | |
| | 8 | 8.19 | 0.1106622 | | | | | | | | | | |
| | 8 | 7.9 | 0.0821553 | 50.06664 | 0.4484626 | 48.98163 | 0.3303733 | -0.08936 | 0.16001 | -0.10454 | 0.15529 | |
| | 7 | 7.11 | 0.0783045 | | | | | | | | | | |
| | 20 | 19.9 | 0.1988194 | 30.0875 | 0.354785 | 15.14952 | 0.48574 | 0.97634 | 0.13429 | 0.81225 | 0.17368 | |
Table 4. Result of simulation taking correlation \((y_1, y_2) = 0.9 \) (number of repetitions = 1000, mean value for each output is taken)

Congestion type	Sample size	\(\hat{i} \)	\(\hat{j} \)	Bias \(\hat{i} / \hat{j} \)	MSE	\(T_1 \)	\(T_2 \)	\(Z_1 \)	\(Z_2 \)		
Heavy congestion	\(n = 10 \)	15	14.1	0.9	2.360710	14.90278	0.5072526	13.08821	0.0.1114139	0.10572	0.18792
		13	3.9	-1.1	1.733602						
		10	9.2	-0.8	1.673316	14.32275	0.4906741	12.55386	0.5388246	0.11418728	0.21449
		8	3.2	-0.8	1.067277						
		7	7.3	-0.7	0.847987	13.95227	0.4799417	12.08981	0.534981	0.0336390	0.14197
		20	19.0	-1.0	3.080629	15.19984	0.5208226	13.44499	0.585321	0.15170322	0.08410
		17	8.7	-1.3	2.746668						0.13983
	\(n = 100 \)	15	14.93	-0.07	0.147984	71.55171	0.118850	70.06694	0.0540356	0.10497	0.17880
		13	5.10	0.10	0.056198						
		10	9.93	-0.07	0.099686	63.78984	0.124403	62.4258	0.0665659	0.14386	0.19690
		8	4.05	0.05	0.039843						
		7	7.98	-0.02	0.076374	59.63214	0.130854	58.2463	0.0748594	0.15139	0.29104
		20	19.92	0.08	0.197811	76.48961	0.13777	74.94764	0.0615742	0.09527	0.12670
		17	8.7	-1.3	2.746668						
Low congestion	\(n = 10 \)	15	14.1	-0.9	2.360284	14.80971	0.5082268	13.06527	0.5656887	0.1194439	0.10290
		13	11.7	-1.7	4.246604						0.12547
		10	9.2	-0.8	1.675060	14.36784	0.4882483	12.57262	0.5376373	0.10691934	0.11273
		8	6.7	-1.3	2.522445						0.15032
		7	7.3	-0.7	1.314839	14.03856	0.4752713	12.26102	0.5204875	0.04763608	0.14357
		20	19.0	-1.0	3.078097	15.16489	0.5222415	13.41159	0.5875507	0.1305752	0.08311
		17	5.2	-1.8	5.040128						0.10943
	\(n = 100 \)	15	14.93	-0.07	0.147894	71.31807	0.122159	69.90174	0.0569546	0.10519	0.11137
		13	13.13	0.13	0.137839						
		10	9.93	-0.07	0.098966	63.48867	0.120764	62.18414	0.0656551	0.14021	0.13875
		8	8.09	0.09	0.083443						
		7	8.02	0.02	0.076619	58.99188	0.123111	57.82527	0.0720977	0.0589516	0.15307
		20	19.92	0.08	0.197871	76.43993	0.137528	74.91629	0.0614579	0.1365174	0.09629
		17	17.16	0.16	0.183845						0.09814