Trastuzumab in combination with 5-fluorouracil, leucovorin, oxaliplatin and docetaxel as perioperative treatment for patients with human epidermal growth factor receptor 2-positive locally advanced esophagogastric adenocarcinoma: A phase II trial of the Arbeitsgemeinschaft Internistische Onkologie Gastric Cancer Study Group

Ralf-Dieter Hofheinz1 | Susanne Hegewisch-Becker2 | Volker Kunzmann3 | Peter Thuss-Patience4 | Martin Fuchs5 | Nils Homann6 | Ullrich Graeven7 | Nadine Schulte1 | Kirsten Merx1 | Michael Pohl8 | Swantje Held9 | Ralph Keller10 | Andrea Tannapfel11 | Salah-Eddin Al-Batran12

1Interdisziplinäres Tumorzentrum, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim, Germany
2Hämatologisch-Onkologische Praxis Eppendorf, Hamburg, Germany
3Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
4Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité, Universitätsmedizin Berlin, Berlin, Germany
5Klinikum Bogenhausen, Klinik für Gastroenterologie, Hepatologie, Gastroenterologische Onkologie München, München, Germany
6Medizinische Klinik II Wolfsburg, Wolfsburg, Germany
7Klinik für Hämatologie, Onkologie und Gastroenterologie, Kliniken Mariahilf, Mönchengladbach, Germany
8Medizinische Universitätsklinik Bochum, Knappschaftskrankenhaus, Bochum, Germany
9ClinAssess GmbH, Leverkusen, Germany
10AIO Studien gGmbH, Berlin, Germany
11Institut für Pathologie der Ruhr-Universität Bochum, Bochum, Germany
12Institute of Clinical Cancer Research (IKF) at Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt am Main, Germany

Correspondence
Ralf-Dieter Hofheinz, Interdisziplinäres Tumorzentrum Mannheim, Universitätsmedizin Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
Email: ralf.hofheinz@umm.de

Abstract
Perioperative chemotherapy with 5-fluorouracil, leucovorin, oxaliplatin and docetaxel (FLOT) is a mainstay in the treatment of esophagogastric adenocarcinomas (EGA). Trastuzumab improved survival when added to chemotherapy in patients with HER-2-positive metastatic EGA. We investigated the combination of trastuzumab and...
FLOT as perioperative treatment in patients with locally advanced EGA. A multicenter phase II study evaluated the efficacy and toxicity of perioperative FLOT (24-hours 5-FU 2600 mg/m², leucovorin 200 mg/m², oxaliplatin 85 mg/m², docetaxel 50 mg/m², trastuzumab 6 mg/kg then 4 mg/kg d1, repeated d15 for four cycles preoperatively and postoperatively followed by 9 cycles of trastuzumab monotherapy) in patients with HER-2 positive EGA. Patients had ≥cT2, any N, M0 EGA. The primary endpoint was the rate of centrally assessed pathological complete response (pCR). Secondary endpoints comprised disease-free (DFS) and overall survival (OS), R0 resection rate, toxicity and surgical morbidity. Fifty-six evaluable patients (median age 62 years) were included; n = 40 had tumors originating from the esophagogastric junction; T stage was (cT2/3/4/unknown): 4/42/8/2; n = 50 patients had cN+ disease. Main adverse events grades 3-4: leukopenia (17.9%), neutropenia (46.6%) and diarrhea (17.0%). All patients underwent tumor resections. R0 resection rate was 92.9%. Eight patients had anastomotic leakage. One postoperative death occurred. pCR was found in 12 patients (21.4%) and a further n = 14 patients (25.0%) had near complete response. Median DFS was 42.5 months and the 3-year OS rate was 82.1%. The primary endpoint of achieving a pCR >20% was reached. No unexpected safety issues were observed. Survival data are promising.

KEYWORDS
docetaxel, esophagogastric adenocarcinoma, perioperative treatment, trastuzumab

What’s New?
Perioperative infusion of 5-fluorouracil, leucovorin, docetaxel, and oxaliplatin (FLOT) benefits survival in patients with resectable esophagogastric adenocarcinoma (EGA). Up to one-fifth of EGAs, however, exhibit overexpression or amplification of human epidermal growth factor receptor (HER2), the standard-of-care for which is platinum-based chemotherapy plus trastuzumab. Here, in a phase II trial, safety and efficacy of perioperative FLOT plus trastuzumab were investigated for HER2-positive EGA. Combined trastuzumab and FLOT generally was safe, with expected mild adverse events. The primary endpoint, pathological complete remission, was reached, with about half of patients achieving complete or near-complete remission. Survival data were promising, warranting randomized trials.

1 | **INTRODUCTION**

The prognosis of patients with locally advanced resectable esophagogastric adenocarcinoma (EGA; comprising gastric cancer and adenocarcinoma of the gastroesophageal junction) has been significantly improved during the past years by using multimodality treatment. Compared to surgery alone, preoperative radiochemotherapy consisting of weekly carboplatin and paclitaxel as well as 41.4 Gy applied to the primary tumor region (CROSS regimen) prolonged overall survival of patients with esophageal cancer (adenocarcinoma, n = 275; squamous cell carcinoma, n = 84). More recently, perioperative chemotherapy using biweekly infusional 5-fluorouracil, leucovorin, docetaxel and oxaliplatin (FLOT) led to a significant disease-free and overall survival benefit for patients with EGA (n = 716) compared to the former reference regimen, epirubicin, cisplatin and 5-FU or capecitabine (ECF or ECX). Thus, FLOT is regarded as a new standard for the perioperative treatment of patients with EGA.

Overexpression and amplification of the human epidermal growth factor receptor (HER2) is found in about 15%-20% of all cases with EGA, predominantly in tumors deriving from the gastro-esophageal junction with an intestinal tumor type according to Lauren. Inconsistent data in terms of a potential prognostic impact of HER2 positivity has been reported, while HER2 positivity is unequivocally regarded as a predictive marker for the treatment with trastuzumab. When added to platinum-based chemotherapy, trastuzumab led to a survival benefit for patients with metastatic or advanced, unresectable HER2 positive EGA (ie, immunohistochemistry 3+ and/or fluorescence in situ hybridization positivity [HER2:chromosome 17 ratio ≥2.0]) in the ToGA trial. The current phase II trial sought to assess efficacy and safety of the combination of trastuzumab and FLOT in patients with locally advanced, resectable esophagogastric adenocarcinoma.
PATIENTS AND METHODS

2.1 Study design and patient eligibility criteria

Eligible patients had histologically confirmed HER2-positive adenocarcinoma of the stomach or gastroesophageal junction of a clinical stage ≥cT2 and/or ≥cN+ and no clinical evidence of distant metastases. HER2-positivity was determined by an accredited local pathology (no central review was in place) and was defined as follows: HER2 3+ (IHC) or HER2 2+ (IHC) with amplification proven by FISH, SISH or CISH. Main eligibility criteria comprised: Patients aged ≥18 years; ECOG ≤2; adequate hematological, hepatic and renal function parameters (leukocytes ≥3000/mm³, platelets ≥100 000/mm³; serum creatinine ≤1.5 × upper limit of normal [ULN], or GFR > 40 mL/min; bilirubin ≤1.5 × ULN, AST and ALT ≤3.5 × ULN, alkaline phosphatase ≤6 × ULN); normal cardiac ejection fraction, as assessed by echocardiography. No preceding cytotoxic or targeted therapy. Main exclusion criteria were: clinically significant active coronary heart disease, cardiomyopathy or congestive heart failure (NYHA III-IV); clinically significant valvular defect; history of other malignancies not curatively treated and without evidence of disease for more than 5 years, except for curatively treated basal cell carcinoma of the skin and in situ carcinoma of the cervix; known brain metastases; peripheral polyneuropathy > NCI Grade II.

The clinical stage was determined by esophagogastroduodenoscopy, endoscopic ultrasound, and computed tomography or magnetic resonance imaging. Diagnostic laparoscopy was recommended for all patients with suspected peritoneal involvement. All patients gave written informed consent.
2.2 Treatment plan and trial procedures

FLOT was administered for four preoperative cycles followed by four postoperative cycles. Each 2-week cycle of FLOT consisted of docetaxel 50 mg/m², oxaliplatin 85 mg/m², leucovorin 200 mg/m² and 5-FU 2600 mg/m² as 24-hour infusion on day 1, respectively. Trastuzumab was administered at a dose of 4 mg/kg body weight in combination with FLOT (6 mg loading dose at first administration), iv over 1 hour on day 1 of each cycle, as well. After the forth cycle of postoperative HER-FLOT, trastuzumab was administered three-weekly as monotherapy at a dose of 6 mg/kg body weight, iv over 1 hour for another nine cycles. Patients, who were not eligible for postoperative chemotherapy, were allowed to receive trastuzumab monotherapy.

Surgery was scheduled 4 weeks after the last dose of preoperative chemotherapy. The study protocol required transthoracic esophagectomy (Ivor-Lewis procedure) with resection of the proximal stomach and 2-field (mediastinal and abdominal) lymphadenectomy for type I gastroesophageal junction cancers and gastrectomy with transhiatal distal esophagectomy plus D2 lymphadenectomy for types II and III gastroesophageal junction cancers. For gastric cancer, total or subtotal distal gastrectomy with D2 lymphadenectomy was performed.

Patients were assessed with regard to medical history, physical examination, body weight, ECOG performance status, complete blood count and blood chemical tests at baseline and prior to start of every cycle. Restaging by means of computed tomography or magnetic resonance imaging and endoscopy was performed prior to surgery. Follow-up included computed tomography or magnetic resonance imaging every 3 months until disease progression, relapse or death.

2.3 Study endpoints

Primary objective of the study was to estimate the efficacy of the HER-FLOT regimen regarding the rate of pathological complete responses (pCR) according to the regression grading published by Becker et al (percentage of patients with pCR referring to the total

TABLE 1	Patient and disease characteristics	
Characteristics of ITT population	N	%
Age, years, median (range)	62 (32-86)	
Gender, male	41	73.2
ECOG performance status		
0	41	73.2
1	15	26.8
Localization of primary tumor		
Esophagogastric junction	40	71.4
Siewert 1	17	30.4
Siewert 2 and 3	23	41.0
Stomach	16	28.6
HER2 status		
2+	8	14.3
3+	48	85.7
Clinical tumor stage		
T2	4	7.1
T3	42	75.0
T4	8	14.3
Unknown	2	3.6
Clinical nodal stage		
cN0	6	10.7
cN1	50	89.3
Lauren type		
Diffuse	9	16.1
Intestinal	30	53.6
Mixed	4	7.1
Unknown	13	23.3
Grading		
G1	1	1.7
G2	25	44.6
G3	25	44.6
Unknown	5	8.9
Left-ventricular ejection fraction	Median (range)	65.0 (55.0-79.0)

Abbreviations: ECOG, Eastern Cooperative Oncology Group.

TABLE 2	Treatment-emergent adverse events (graded according to NCI CTC criteria v. 4.0) grades 3-4 during the whole treatment period	
Adverse events in the ITT population	N	%
Serious adverse events	30	53.6
Adverse events grade ≥ 3	52	92.2
Hematological		
Leukopenia	10	17.9
Neutropenia	26	46.6
Anemia	3	7.1
Thrombocytopenia	1	1.8
Gastrointestinal		
Diarrhea	10	17.9
Nausea	4	7.1
Vomiting	4	7.1
Infections and infestations	12	21.4
Fatigue	4	7.1
Hypertension	3	5.4
Thrombosis	3	5.4
Elevated transaminases	2	3.6
Renal failure	2	3.6
Cardiac failure	1	1.8

Note: Indicated is the worst grade of toxicity per patient (N = 56). No grade 5 toxicity occurred.
number of enrolled and eligible patients [Full analysis set, FAS]. The Becker grading refers to the regression of the primary tumor only and does not include the assessment of nodal metastases. Evaluation was done centrally by a reference pathologist [A.T.].

Secondary objectives comprised the evaluation of R0 resection rate, disease-free survival (DFS), overall survival (OS), including survival rates after 1, 2 and 3 years, pCR as a surrogate endpoint, perioperative morbidity and mortality, safety and tolerability of the combination regimen.

2.4 | Statistical considerations

Based on the available experience with FLOT, a pCR rate after neoadjuvant chemotherapy alone was assumed to be about 15%. The statistical calculation was based on the following premises and assumptions: the experimental therapy would be rated as insufficiently active, if the observed pCR rate was 10% or lower. On the other hand, the experimental therapy would be considered as promising for further development, if the true pCR rate amounted to 20% or more.

The probability to accept the experimental therapy as promising (>20% pCR), in spite of a true pCR rate of ≤10% was set at 10% (type I error). The probability to reject the experimental therapy as not sufficiently efficient (≤10%), although the true pCR rate was promising (>20%) was set at 20% (type II error, corresponding to a power of 80%). According to these parameters, and using a standard single-stage Fleming phase II design, \(n = 53 \) patients evaluable for efficacy had to be recruited. OS was defined as time from randomization to death, DFS as time to disease progression, relapse, or death whichever occurred first. DFS and OS were analyzed using the Kaplan-Meier method. Time-to-event comparisons between patients with or without pCR were tested with the log-rank model. All other groups were compared using the chi-square test. \(P \)-values were 2-sided. Adverse events were graded according to National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0. The analysis was conducted using SAS software program version 9.3.

3 | RESULTS

3.1 | Patient populations and characteristics

Fifty-eight patients were enrolled between January, 2012 and July, 2013 (CONSORT; Figure 1). Two patients were excluded due to major
protocol violations (presence of peritoneal carcinomatosis, \(n = 1\); HER2 negative tumor \(n = 1\)). Thus, 56 patients comprise the full analysis set (FAS), which is the basis for all safety and efficacy analysis reported herein.

Patients had a median age of 62 years (range, 32-86). Fourteen patients (25.0%) were ≥70 years. All patients had an ECOG of zero or 1. Forty-one (73.2%) of the patients were males. Almost three quarters of the tumors originated from the esophagogastric junction and
3.2 | Treatment administration

The majority of tumors had a cT3 status with positive lymph nodes (Table 1).

3.2 | Treatment administration

The overall study treatment duration ranged to a maximum of 434 days, with a mean of 285 ± 133 days and a median of 349 days. All patients received the planned four preoperative cycles. Forty-five patients (80.4%) started postoperative treatment, and n = 28 (50.0%) completed all planned chemotherapy cycles. The entire study treatment (8 cycles of chemotherapy plus 9 cycles of additive trastuzumab monotherapy) was administered to 25 patients (44.6%). The overall number of treatment cycles is shown in Figure 1.

The mean relative dose intensity, based on cycles actually administered, amounted to 94% for 5-FU, 97% for leucovorin, 94% for oxaliplatin, 91% for docetaxel and 99% for trastuzumab. The corresponding numbers and proportions of patients with major dose reduction, defined as receiving less than 90% of the planned dose of these drugs, were 14 (25%), 9 (16%), 16 (29%), 17 (30%) and 2 (4%), respectively. Cycle delays—defined as more than 2 days delay of a combination therapy cycle, and more than 3 days in case of trastuzumab monotherapy—occurred more frequently during the combination treatment phase than in the single agent period. Preoperative cycles number 2, 3 and 4 were delayed in a total of 15, 8 and 10 patients (26.8%, 14.3% and 17.9%, respectively).

3.3 | Adverse events

The frequency of events with severity grade ≥ 3 during the whole treatment period (maximum by category and patient) is summarized in Table 2. The most frequently observed adverse events grades 3 and 4 were leukopenia, neutropenia, diarrhea and infections. In terms of trastuzumab associated treatment emergent adverse events three patients exhibited peripheral edema (grades 1/2), and four had infusion related reactions (all grade 1 and 2). One case of severe cardiac disorder caused by trastuzumab was reported.

3.4 | Surgery and surgical morbidity

Surgical results are depicted in Table 3. All patients underwent surgery and had resection of the primary tumor. In 92.9% of the patients, R0 resection was possible. Twenty-five (44.6%) of the patients had trans-esophageal esophagectomy. About half of the patients had postoperative complications, of whom eight required reoperation. One postoperative death occurred.

3.5 | Pathological downstaging (primary endpoint)

The rate of centrally confirmed pathological complete responses was 21.4% (12 out of 56 patients; 95% confidence interval 11.6%-34.4%) (Table 4). Thus, the primary endpoint was reached. No impact of tumor location (ie, esophagogastric junction vs gastric cancer) on the likelihood of achieving a pCR was seen (pCRjunction 22.5% vs pCRgastric 18.8%, P > .99). Interestingly, no patient with a primary tumor with diffuse type histology achieved a pCR (0 out of nine patients), while those with intestinal histology exhibited a 33.3% pCR rate (10 out of 30 patients with information on Laurén grading; P = .07).

Another 14 patients (25.0%) had subtotal response (<10% vital tumor cells). In terms of assessment by local pathologists, 12 patients exhibited ypT0 ypN0 and 1 patient had ypT0, ypN1. A median of 27 lymph nodes were pathologically assessed. Lymph node negativity was reported in 33 patients.

3.6 | Disease-free and overall survival

Disease-free and overall survival are depicted in Figures 2 and 3. After a median follow-up of 36 months, n = 19 patients had a DFS event. Median DFS was 42.5 months (95% CI 36.5—not reached). A total of n = 13 patients had died. Median survival had not yet been reached at the end of observation (95% CI 42.5—not reached). One-year, two-years and 3-year survival rates were 96.4% (95% CI 87.7-99.6), 89.3% (78.1-96.0) and 82.1% (69.6-91.1), respectively. Both, disease-free and overall survival were numerically improved for patients showing a centrally confirmed pCR: HRDFS 0.19, 95% CI 0.03-1.43, P = .07; HROS 0.34, 95% CI 0.04-2.62, P = .27. Neither tumor location (esophagogastric junction vs gastric cancer) nor Laurén classification

TABLE 5	Cross-trial comparison of key results between FLOT4 and HER-FLOT	
FLOT4	HER FLOT	
Age, years (median)	62	62
Gender, male (%)	75	73
Localization esophagogastric junction (%)	55	71
cT3/4 tumor (%)	83	89
Received all four cycles preoperative (%)	90	100
R0 resection (%)	84	93
Rate of pathological complete response (%)	16	21
Toxicity NCI CTC grade 3-5 (%)		
Diarrhea	10	17
Vomiting	7	7
Nausea	2	7
Leukopenia	27	18
Neutropenia	51	46
Median follow-up (months)	43	36
Disease-free survival, median (months); 95% CI		
30; 31-41	42; 36.5-n/r.	
3-year survival (%)	57	82

Note: Patients in FLOT4 are not selected for HER2 status.
Abbreviation: n.r., not reached.
(diffuse vs intestinal histology) had an impact on DFS or overall survival.

4 | DISCUSSION

FLOT is a standard of care for perioperative treatment for patients with locally advanced EGA. In the randomized phase III FLOT4 trial including more than 700 patients, FLOT increased the rates of curative surgery and prolonged disease-free and overall survival as compared to ECF or ECX.² The relative effect from FLOT was consistent across all subgroups and sensitivity analyses. There was no increase in surgical morbidity and mortality, reoperation, or hospitalization times.

In an attempt to improve these results within the subgroup of patients with HER2 positive EGA, the HER-FLOT study was initiated. Patients with HER2 positive EGA were treated with the standard FLOT regimen (ie, 4 cycles preoperative and 4 cycles postoperative) in combination with trastuzumab, a monoclonal antibody against HER2 which is approved for the treatment of patients with metastatic EGA in combination with 5-FU and cisplatin. Trastuzumab treatment was foreseen for a total of 12 months in analogy to the adjuvant treatment of women with resected breast cancer.

HER-FLOT met the primary endpoint of achieving a pCR rate above 20%. Twelve out of fifty-six patients (21.4%) had no viable tumor cells within the primary tumor area as assessed by central pathology. This pCR rate is among the highest reported in a clinical prospective trial using central pathology. Moreover, 46.4% of the patients achieved either a total (pCR) or a subtotal response to treatment thus resulting in excellent tumor remissions in about half of the patients.

The FLOT4 trial had included 356 patients in the FLOT arm in an identical treatment setting using the same inclusion criteria and the same institution for central pathological review. Thus, results of FLOT4 provide an opportunity to put the data of the HER-FLOT trial in context although FLOT4 has not reported results according to HER2 status. Table 5 summarizes data from these studies. This cross trial comparison gives the impression of comparable patient and tumor characteristics and similar adverse event profiles. The centrally assessed pCR rate was 21.4% (95% CI 12-34) in HER-FLOT and 16% (95% CI 10-23) in FLOT4 in 128 patients from the randomized phase II part.⁷ The pCR rate is therefore numerically higher, but the confidence intervals overlap. Finally, this comparison suggests the hypothesis that survival may be improved by using trastuzumab (3-year survival 82% vs 57%). In terms of surgical morbidity, the rate of anastomotic leakage in the HER-FLOT trial was numerically higher (14.3%) than in the FLOT4 trial (8.7% for FLOT and 11.4% for ECF/ECX, data on file). The somewhat higher rate of anastomotic leakage observed within the current trial may be explained by a higher amount of patients with EGA tumors included in the current trial and the fact that all patients were resected in HER-FLOT while more patients in FLOT4 did not undergo surgery. On the other hand, we found identical rates of anastomotic leakage within the PETRARCA trial (FLOT ± trastuzumab/pertuzumab) (10% in both arms; data on file).⁸

Two arguments could be put forward against the claim that the survival results achieved with HER-FLOT are promising. Firstly, it may be argued that HER2 is a good prognostic marker regardless of treatment. In contrast to this assumption, several case series suggest that HER2 overexpression or amplification is associated with worse prognosis,⁹-¹¹ whereas other studies have shown HER2 expression to have no prognostic significance at all.¹² However, an investigation including esophageal adenocarcinoma came to a different conclusion.¹³ A recent study in Western patients with metastatic EGA concluded that HER2 status alone was not an independent prognostic marker.¹⁴ In all, a clear argument that the promising survival in HER-FLOT may be explained by a prognostic effect cannot be made.

Secondly, HER2 positivity may make locally advanced EGA more susceptible and responsive to perioperative chemotherapy. This hypothesis was investigated retrospectively using data from the MAGIC trial which investigated the addition of ECF to surgery.¹⁵ Diagnostic biopsies and/or resection specimens were collected from 415 out of 503 trial patients and HER2 was evaluated by immunohistochemistry (IHC) and in situ hybridization. The prognostic and predictive impact of HER2 status was assessed. The authors found that HER2 status was neither prognostic, nor predicted enhanced benefit from chemotherapy (benefit of HER2 positive tumors from ECF vs surgery alone 0.74; HER2 negative HR 0.58; interaction test negative). The authors concluded that HER2 status was not an independent marker for benefit from perioperative chemotherapy in EGA.

Most of the HER-2 positive esophagealgastric adenocarcinomas originate from the esophagogastric junction, and these tumors are treated with preoperative chemoradiotherapy as an alternative to perioperative chemotherapy in some centers. Trastuzumab and pertuzumab have been investigated in combination with chemoradiotherapy (based on the CROSS regimen). In this feasibility phase II trial, Strees et al reported good tolerability and pathologic complete responses in 13 out of 40 patients.¹⁶ With a median follow-up of 32 months, 3-year OS was 72%, and compared adequately with the results of the HER-FLOT study (3-year OS, 82%).

Meanwhile, the results of two randomized trials have been reported as oral presentations at the ASCO meeting 2020 for both scenarios, that is, addition of HER2 directed drugs to chemotherapy as well as chemoradiotherapy. The AIO PETRARCA trial (FLOT ± trastuzumab/pertuzumab; NCT02581462) albeit stopped prematurely (after the negative results from the JACOB study had been reported)¹⁷ during the randomized phase II part of the study after inclusion of 80 patients reported a significantly higher pCR rate in the investigational arm (35 vs 12%; \(P = .019\)) and a preliminary DFS benefit.¹⁸ Contrarily, the addition of trastuzumab to the CROSS regimen within the RTOG 1010 randomized phase III trial (NCT01196390) did not result in any benefit, neither in terms of pCR nor DFS.¹⁹ Thus, the results of the EORTC INNOVATION trial (platinum-based chemotherapy ± trastuzumab or trastuzumab/pertuzumab; NCT02205047),²⁰ are eagerly awaited and will help to elucidate a potential role of anti-HER-2 compounds in the perioperative treatment of patients with locally advanced, resectable esophagealgastric adenocarcinoma. Until the results from the INNOVATION trial have been reported and
mature survival results from PETRARCA are available we would refrain from using HER2 targeted agents outside of clinical trials in the perioperative setting, neither trastuzumab nor the combination of both, trastuzumab and pertuzumab.

In all, the pathological response rate in HER-FLOT and good safety data both, in terms of treatment emerging adverse events and—with the exception of anastomotic leakage—surgical morbidity as well as promising survival results justify further trials with HER2 targeted agents in the perioperative treatment of HER-positive esophagogastric adenocarcinoma. Albeit negative phase III trials have been reported for T-DM1 and pertuzumab in the metastatic setting,17,21 those drugs and newer HER2 targeting agents22 may be beneficial when used in the perioperative setting.

ACKNOWLEDGMENTS
Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
Ralf-Dieter Hofheinz: Consulting or Advisory Role: Amgen, Roche, Merck, Sanofi, Bayer, Ipsen, BMS, MSD; Honoraria: Amgen, Astra Zeneca, Bayer, BMS, Boehringer, Ipsen, Lilly, medac, Merck, MSD, Roche, Saladox, Sanofi. Research grants: Amgen, medac, Merck, Roche, Saladox, Sanofi. Nils Homann: Consulting or Advisory Role: Amgen, Roche, Servier, Sanofi, MSD, BMS, Boehringer, Ipsen. Honoraria: Sanofi, Astra Zeneca, Roche, Amgen. Ulrich Graeven: Travel, Accommodations, Expenses; Merck KGaA; Amgen; Boehringer Ingelheim. Consulting or Advisory Role: Merck KGaA; Bristol-Myers Squibb; Hexal; Amgen; Celgene; Johnson & Johnson; MSD Oncology. Honoraria: Daichi Sankyo, Boehringer Ingelheim; Amgen; Servier; AstraZeneca; BMS; MSD Oncology. Michael Pohl: Honoraria: Amgen, Merck, Roche, Lilly, Sanofi-Aventis, Celgene, MCI, MSD, BMS, Kite, Abbvie, Gilead, Servier; Consulting or Advisory Role: Amgen, Merck, Roche, Lilly, Sanofi-Aventis, Celgene, MCI, MSD, BMS, Kite, Abbvie, Gilead. Peter Thuss-Patience: Honoraria: Astellas, BMS, Lilly, Merck, MSD, Nordic, Pfizer, Roche, Teva. Research grants: Merck, Novartis. Salah Al-Batran: Consulting or Advisory Role: Lilly, BMS, MacroGenics, Immune, MSD; Honoraria: BMS, Lilly, AIO Studien gGmbH, MCI. Dr Al-BAtran is CEO/founder of Institute of Clinical Cancer Research IKF at Northwest Hospital, Frankfurt.; Research grants: Sanofi, Roche, Celgene, Vifor, medac, Hospira, Lilly, Eurozyto, Immune, Ipsen, BMS, MSD, Astra Zeneca, German Cancer Aid, German Cancer Research Foundation, Federal Ministry of Education and Research, Germany. The other authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ETHICS STATEMENT
The HER-FLOT “Arbeitsgemeinschaft für Internistische Onkologie” (AIO) phase II trial was an investigator-initiated clinical trial (Clinicaltrials.gov: NCT01472029). The study was approved by the institutional review board of all participating centers and conducted according to Good Clinical Practice guidelines, the Declaration of Helsinki and local laws. All participating patients provided written informed consent.

ORCID
Ralf-Dieter Hofheinz https://orcid.org/0000-0001-5972-8504

REFERENCES
1. Shapiro J, van Lanschot JJB, Hulshof MCCM, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16:1090-1098.
2. Al-Batran SE, Homann N, Pauligk C, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capcitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet. 2019;393:1948-1957.
3. Gerson JN, Skariah S, Denlinger CS, Astsaturov I. Perspectives of HER2-targeting in gastric and esophageal cancer. Expert Opin Investig Drugs. 2017;26:531-540.
4. Maresch J, Schoppmann SF, Thallinger CM, et al. Her-2/neu gene amplification and over-expression in stomach and esophageal adenocarcinoma: from pathology to treatment. Crit Rev Oncol Hematol. 2012;82(3):310-322.
5. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687-697.
6. Becker K, Mueller JD, Schumacher C, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer. 2003;98(7):1521-1530.
7. Al-Batran SE, Hofheinz RD, Pauligk C, et al. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capcitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial. Lancet Oncol. 2016;17:1697-1708.
8. Tanner M, Hollmén M, Juntilla TT, et al. Amplification of HER-2 in gastric carcinoma: association with topoisomerase IIα gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16:273-278.
9. Allgayer H, Babic R, Gruetzner K, et al. C-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol. 2000;18:2201-2209.
10. Begnami MD, Fukuda E, Fregnani JH, et al. Prognostic implications of altered human epidermal growth factor receptors (HERs) in gastric carcinomas: HER2 and HER3 are predictors of poor outcome. J Clin Oncol. 2011;29(22):3030-3036.
11. Grabsch H, Sivakumar S, Gray S, et al. HER2 expression in gastric cancer: rare, heterogeneous and of no prognostic value – conclusions from 924 cases of two independent series. Cell Oncol. 2010;32:57-65.
12. Plum PS, Gebauer F, Krämer M, et al. HER2/neu (ERBB2) expression and gene amplification correlates with better survival in esophageal adenocarcinoma. BMC Cancer. 2019;19:38.
13. Yoon HH, Shi Q, Sukov WR, et al. Association of HER2/Erbb2 expression and gene amplification with pathologic features and prognosis in esophageal adenocarcinomas. Clin Cancer Res. 2012;18:546-554.
14. Janjigian YY, Werner D, Pauligk C, et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a.
European and USA international collaborative analysis. Ann Oncol. 2012;23:2656-2662.

15. Okines AF, Thompson LC, Cunningham D, et al. Effect of HER2 on prognosis and benefit from peri-operative chemotherapy in early oesophago-gastric adenocarcinoma in the MAGIC trial. Ann Oncol. 2013;24:1253-1261.

16. Stroes CI, Schokker S, Creemers A, et al. Phase II feasibility and biomarker study of neoadjuvant trastuzumab and pertuzumab with chemoradiotherapy for resectable human epidermal growth factor receptor 2-positive esophageal adenocarcinoma: TRAP study. J Clin Oncol. 2020;38:462-471.

17. Tabernero J, Hoff PM, Shen L, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastroesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018;19(10):1372-1384.

18. Hofheinz RD, Haag GM, Ettrich TJ, et al. Perioperative trastuzumab and pertuzumab in combination with FLOT versus FLOT alone for HER2-positive resectable esophageal adenocarcinoma: Final results of the PETRARCA multicenter randomized phase II trial of the AIO. J Clin Oncol. 2020;38:4502.

19. Safran H, Winter KA, Wigle DA, et al. Trastuzumab with trimodality treatment for esophageal adenocarcinoma with HER2 overexpression: NRG Oncology/RTOG 1010. J Clin Oncol. 2020;38:4500.

20. Wagner AD, Grabisch HI, Mauer M, et al. EORTC-1203-GITCG: the “INNOVATION”-trial: Effect of chemotherapy alone versus chemotherapy plus trastuzumab, versus chemotherapy plus trastuzumab plus pertuzumab, in the perioperative treatment of HER2 positive, gastric and gastroesophageal junction adenocarcinoma on pathologic response rate: a randomized phase II intergroup trial of the EORTC-Gastrointestinal Tract Cancer Group, Korean Cancer Study Group and Dutch Upper GI-Cancer group. BMC Cancer. 2019;19:494.

21. Thuss-Patience PC, Shah MA, Ohtsu A, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-esophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017;18(5):640-653.

22. Gambardella V, Fleitas T, Tarazona N, et al. Towards precision oncology for HER2 blockade in gastroesophageal adenocarcinoma. Ann Oncol. 2019;30:1254-1264.

How to cite this article: Hofheinz R-D, Hegewisch-Becker S, Kunzmann V, et al. Trastuzumab in combination with 5-fluorouracil, leucovorin, oxaliplatin and docetaxel as perioperative treatment for patients with human epidermal growth factor receptor 2-positive locally advanced esophagogastric adenocarcinoma: A phase II trial of the Arbeitsgemeinschaft Internistische Onkologie Gastric Cancer Study Group. Int. J. Cancer. 2021;1–10. https://doi.org/10.1002/ijc.33696