A class of mixed integrable models

J F Gomes1, G R de Melo1,2 and A H Zimerman1

1 Instituto de Física Teórica-UNESP, Rua Pamplona 145, 01405-900 São Paulo, Brazil
2 Faculdade Metropolitana de Camaçari-FAMEC, Av. Eixo Urbano Central, Centro, 42800-000 Camaçari, BA, Brazil

Received 10 March 2009
Published 17 June 2009
Online at stacks.iop.org/JPhysA/42/275208

Abstract

The algebraic structure of the integrable mixed mKdV/sinh-Gordon model is discussed and extended to the AKNS/Lund–Regge model and to its corresponding supersymmetric versions. The integrability of the models is guaranteed from the zero curvature representation and some soliton solutions are discussed.

PACS numbers: 02.30.Ik, 11.10.Lm

1. Introduction

The mKdV and sine-Gordon equations are nonlinear differential equations belonging to the same integrable hierarchy representing different time evolutions [1]. The structure of its soliton solutions present the same functional form in terms of

\[\rho = e^{kx + k^2 t} , \quad (1.1) \]

which carries the spacetime dependence. Solutions of different equations within the same hierarchy differ only by the factor \(k^2 t \) in \(\rho \). For instance \(n = 3 \) corresponds to the mKdV equation and \(n = -1 \) to the sinh-Gordon. For \(n > 0 \) a systematic construction of integrable hierarchies can be solved and classified according to a decomposition of an affine Lie algebra, \(\hat{G} \) and a choice of a semi-simple constant element \(E \) (see [2] for review). Such a framework was shown to be derived from the Riemann–Hilbert decomposition which was later shown to incorporate negative grade isospectral flows \(n < 0 \) [3] as well.

The mixed system

\[\phi_{xt} = \frac{\alpha_3}{4} \left(\phi_{xxxx} - 6\phi_{x}^2 \phi_{xx} \right) + 2\eta \sinh(2\phi) \quad (1.2) \]

is a nonlinear differential equation which represents the well-known mKdV equation for \(\eta = 0 \) \((v = -\partial_t \phi) \) and the sinh-Gordon equation for \(\alpha_3 = 0 \). It was introduced in [4] where, employing the inverse scattering method, multi-soliton solutions were constructed by modification of time dependence in \(\rho \). Solutions (multi-soliton) were also considered in [5] by Hirota’s method. Moreover, a two-breather solution was discussed in [6] in connection.
with few-optical-cycle pulses in transparent media. The soliton solutions obtained in [4–6] indicates integrability of the mixed model (1.2).

In this paper, we consider the mixed system mKdV/sinh-Gordon (1.2) within the zero curvature representation. We show that a systematic solution for the mixed model is obtained by the dressing method and a specific choice of vacuum solution. Such formalism is extended to the mixed AKNS/Lund–Regge and to its supersymmetric versions as well.

In the last section, we discuss the coupling of higher positive and negative flows generalizing the examples given previously.

2. The mixed mKdV/sinh-Gordon model

Let us consider a nonlinear system composed of a mixed sinh-Gordon and mKdV equation given by equation (1.2) and the following zero curvature representation,
\[
\left[\partial_t + E^{(1)} + A_0, \partial_x + D^{(3)}_3 + D^{(2)}_3 + D^{(1)}_3 + D^{(0)}_3 + D^{(-1)}_3\right] = 0
\]
(2.1)

where \(E^{(2n+1)} = \lambda^n (E_a + \lambda E_{-a}), A_0 = v/h\) and \(E_{\pm a}\) and \(h\) are \(\mathfrak{sl}(2)\) generators satisfying \([h, E_{\pm a}] = ±2E_{\pm a}, [E_a, E_{-a}] = h\). According to the grading operator \(Q = 2\lambda \frac{\partial}{\partial t} + \frac{1}{2}h, D^{(j)}_3\) is a graded \(j\) Lie algebra valued and equation (2.1) decomposes into six independent equations (decomposing grade by grade):
\[
\begin{align*}
[E, D^{(3)}_3] & = 0, \\
[E, D^{(2)}_3] + [A_0, D^{(3)}_3] + \partial_x D^{(3)}_3 & = 0, \\
[E, D^{(1)}_3] + [A_0, D^{(2)}_3] + \partial_x D^{(2)}_3 & = 0, \\
[E, D^{(0)}_3] + [A_0, D^{(1)}_3] + \partial_x D^{(1)}_3 & = 0, \\
[E, D^{(-1)}_3] + [A_0, D^{(0)}_3] + \partial_x D^{(0)}_3 & = 0, \\
[A_0, D^{(-1)}_3] + \partial_x D^{(-1)}_3 & = 0.
\end{align*}
\]
(2.2)

where \(E \equiv E^{(1)}\). In order to solve (2.2) let us propose
\[
\begin{align*}
D^{(3)}_3 & = \alpha_3 (\lambda E_a + \lambda^2 E_{-a}) + \beta_3 (\lambda E_a - \lambda^2 E_{-a}), \\
D^{(2)}_3 & = \sigma_2 h, \\
D^{(1)}_3 & = \alpha_1 (E_a + \lambda E_{-a}) + \beta_1 (E_a - \lambda E_{-a}), \\
D^{(0)}_3 & = \sigma_0 h.
\end{align*}
\]
(2.3)

Substituting (2.3) into (2.2) we obtain \(\beta_3 = 0\), \(\alpha_3 = \text{const}\) and
\[
\begin{align*}
\beta_1 & = \frac{\alpha_3}{2} v, \\
\alpha_1 & = \frac{\alpha_3}{2} v^2, \\
\sigma_0 & = \frac{\alpha_3}{4} (v_{\text{xx}} - 2v^3), \\
\sigma_2 & = \alpha_3 v.
\end{align*}
\]
(2.4)

In order to solve the last equation in (2.2) we parametrize
\[
A_0 = -\partial_x B B^{-1} = -\partial_x \phi h, \\
B = e^{\phi h}
\]
(2.5)

and
\[
D^{(-1)}_3 = \eta B E^{(-1)} B^{-1} = \eta \lambda^{-1} (e^{2\phi} E_a + \lambda e^{-2\phi} E_{-a}).
\]
(2.6)

The zero grade projection in (2.2) yields the time evolution equation (1.2). Note that in order to solve the last equation (2.3) we have introduced the sinh-Gordon variable \(\phi\) in (2.5) and (2.6) such that \(v = -\partial_x \phi\).

Let us now recall some basic aspects of the dressing method which provides systematic construction of soliton solutions. The zero curvature representation implies in a pure gauge
configuration. In particular, the vacuum is obtained by setting \(\phi_{\text{vac}} = 0 \) or \(v_{\text{vac}} = 0 \) which, when in (2.1) implies

\[
\partial_x T_0 T_0^{-1} = E^{(1)}, \quad \partial_t T_0 T_0^{-1} = \alpha_3 E^{(3)} + \eta E^{(-1)}
\]

(2.7)

and after integration

\[
T_0 = \exp(\imath (\alpha_3 E^{(3)} + \eta E^{(-1)})) \exp(\imath E^{(1)}), \quad E^{(2n+1)} = \lambda^n (E_0 + \lambda E_{-\alpha}).
\]

(2.8)

If we identify \(v = -\partial_x \phi \) equation (1.2) represents a coupling of mKdV and sinh-Gordon equations and becomes a pure mKdV when \(\eta = 0 \) and pure sinh-Gordon when \(\alpha_3 = 0 \). Tracing back those two limits from (2.4) and (2.6) it becomes clear that the sinh-Gordon limit (\(\eta = 0 \)) in (1.2) is responsible for the vanishing of \(D_3^{(1)} \). On the other hand, \(\alpha_3 = 0 \) implies \(D_3^{(j)} = 0, j = 0, \ldots, 3 \). Inspired by the dressing method for constructing soliton solutions of integrable hierarchies (see for instance [7]) and the fact that the \(n \)th member of the hierarchy is associated with the time evolution parameter \(k^n_0 t_n \) \((n = 3 \text{ for mKdV and } n = -1 \text{ for sinh-Gordon})\) it is natural to propose soliton solutions based on the modified spacetime dependence

\[
\rho_i = \exp\left(2k_i x + 2(\alpha_3 k_i^3 + \eta/k_i) t\right).
\]

(2.9)

It therefore follows that the general structure of the 1-, 2- and 3-soliton solutions is respectively given by (after \(\phi \to \imath \phi \))

\[
\phi_{1\text{-sol}} = \imath \ln\left(\frac{1 - a_1 \rho_1}{1 + a_1 \rho_1}\right),
\]

\[
\phi_{2\text{-sol}} = \imath \ln\left(\frac{1 - a_1 \rho_1 - a_2 \rho_2 + a_1 a_2 a_1 \rho_1 \rho_2}{1 + a_1 \rho_1 + a_2 \rho_2 + a_1 a_2 a_1 \rho_1 \rho_2}\right),
\]

(2.10)

\[
\phi_{3\text{-sol}} = \imath \ln\left(\frac{1 - \sum_{i=1}^3 a_i \rho_i + \sum_{i<j}^3 a_i a_j \rho_i \rho_j - a_1 a_2 a_1 \rho_1 \rho_2 + a_1 a_2 a_1 \rho_1 \rho_2 + a_1 a_2 a_1 \rho_1 \rho_2}{1 + \sum_{i=1}^3 a_i \rho_i + \sum_{i<j}^3 a_i a_j \rho_i \rho_j + a_1 a_2 a_1 \rho_1 \rho_2 + a_1 a_2 a_1 \rho_1 \rho_2 + a_1 a_2 a_1 \rho_1 \rho_2}\right)
\]

where \(a_1, a_2 \) are constants and \(a_{ij} = (\frac{k_i - k_j}{k_i + k_j})^2 \).

More general solutions (\(N \)-solitons and breathers) were found in [4–6] with same time dependence as in (2.9).

3. The mixed AKNS/Lund–Regge model

Let us consider another example involving \(\mathcal{G} = \hat{sl}(2) \) and homogeneous gradation \(Q = \lambda \frac{d}{d\psi}, \quad E^{(n)} = \lambda^n h, \quad E = E^{(1)} \) and \(A_0 = q E_a + r E_{-a} \) and the zero curvature representation of the form

\[
[\partial_x + E + A_0, \partial_t + D_2^{(2)} + D_2^{(1)} + D_2^{(0)} + D_2^{(-1)}] = 0.
\]

(3.1)

According to gradation \(Q \) propose

\[
D_2^{(j)} = \lambda^j (\alpha_j E_a + \beta_j E_{-a} + \sigma_j h), \quad j = -1, 0, 1, 2
\]

(3.2)

In order to find solution for (3.1) we introduce variables \(\tilde{\psi} \) and \(\tilde{\chi} \) [8].

\[
A_0 = q E_a + r E_{-a} = -\partial_y B B^{-1}, \quad D_2^{(-1)} = \eta B E^{(-1)} B^{-1}, \quad B = e^\delta E_{-a} e^{\delta h} e^{\tilde{\psi} E_a}
\]

(3.3)

which defines

\[
q = -\partial_y \tilde{\psi} e^{2\phi}, \quad r = \tilde{\chi}^2 \partial_y \tilde{\psi} e^{2\phi} - \partial_y \tilde{\chi}
\]

(3.4)
together with the subsidiary conditions for the non-local auxiliary field ϕ.

$$\text{Tr}(\partial_x B B^{-1} h) = \partial_x \phi - \tilde{\chi} \partial_x \psi e^{2\phi} = 0, \quad \text{Tr}(B^{-1} \partial_x Bh) = \partial_x \phi - \tilde{\psi} \partial_x \chi e^{2\phi} = 0. \quad (3.5)$$

Solution of constraints (3.5) leads to natural variables [9]

$$\psi = \tilde{\psi} e^{\phi}, \quad \chi = \tilde{\chi} e^{\phi}. \quad (3.6)$$

Inserting (3.2) into (3.1) and collecting powers of λ, we find solution in terms of non-local fields ψ and χ.

$$\sigma_2 = \text{const}, \quad \beta_2 = \alpha_2 = 0, \quad \sigma_1 = 0, \quad \sigma_0 = -1/2 \sigma_2 q, \quad \beta_1 = \sigma_2 r, \quad \alpha_1 = \sigma_2 q, \quad \alpha_0 = -1/2 \sigma_2 q, \quad \beta_0 = 1/2 \sigma_2 r, \quad (3.7)$$

leading to the equations of motion

$$q_t + \frac{1}{2} \sigma_2 (q_{xx} - 2q^2 r) - 2\alpha_{-1} = 0, \quad r_t - \frac{1}{2} \sigma_2 (r_{xx} - 2r^2 q) + 2\beta_{-1} = 0, \quad (3.8)$$

where q and r in variables ψ and χ reads

$$q = -\frac{\partial_x \psi}{1 + \psi \chi} e^{\phi}, \quad r = -\partial_x \chi e^{-\phi}. \quad (3.9)$$

Equations (3.8) represent a mixed system of AKNS (for $\eta = 0, \alpha_{-1} = \beta_{-1} = 0$) in variables q, r and the relativistic Lund–Regge (for $\sigma_2 = 0$) in variables ψ, χ.

$$\partial_t \left(\frac{\partial_x \psi}{\Delta} \right) + \psi \partial_x \partial_x \psi \frac{\Delta^2}{4\eta \psi} = 0, \quad \partial_t \left(\frac{\partial_x \chi}{\Delta} \right) + \chi \partial_x \partial_x \psi \frac{\Delta^2}{4\eta \chi} = 0. \quad (3.10)$$

Again the terms proportional to α_{-1} and β_{-1} originate from the contribution of $D_2^{(-1)} = \eta BE^{(-1)} B^{-1}$ in (3.1) and the vacuum configuration is obtained for $\psi_{\text{vac}} = \chi_{\text{vac}} = q_{\text{vac}} = r_{\text{vac}} = 0$. The model is now characterized by $E^{(a)} = \lambda^a h$ and the vacuum solution of (3.1) yield

$$T_0 = \exp(t(\sigma_2 E^{(2)} + \eta E^{(-1)})) \exp(x E^{(1)}). \quad (3.11)$$

and therefore the spacetime dependence in ρ_i comes in the form

$$\rho_i = \exp \left(2k_i x + 2 \left(\sigma_2 k_i^2 + \eta/k_i \right) t \right). \quad (3.12)$$

We have checked the solution for the composite model (3.8) to agree with the functional form of the one proposed in [9] with modified spacetime dependence given by (3.12), i.e.,

$$\psi = \frac{b \rho_2}{1 + \frac{a}{\kappa^2} \Gamma \rho_1^{-1} \rho_2}, \quad \chi = \frac{a \rho_1^{-1}}{1 + \frac{a}{\kappa^2} \Gamma \rho_1^{-1} \rho_2}, \quad e^\phi = \frac{1 + \frac{a}{\kappa^2} \Gamma \rho_1^{-1} \rho_2}{1 + \Gamma \rho_1^{-1} \rho_2}. \quad (3.13)$$

where a and b are constants, $\Gamma = \frac{abk_i^2}{(x_i - k_i)^2}$. In terms of AKNS field variables, from (3.9) we find

$$r = -\frac{2ak_1 \rho_1^{-1}}{1 + \frac{a}{\kappa^2} \Gamma \rho_1^{-1} \rho_2}, \quad q = \frac{2bk_2 \rho_2}{1 + \frac{a}{\kappa^2} \Gamma \rho_1^{-1} \rho_2}. \quad (3.14)$$
4. The supersymmetric mKdV/sinh-Gordon model

Following the same line of reasoning, we now consider algebraic structures with half integer gradation [10]. Let \(\hat{G} = \mathfrak{sl}(2,1) \), \(Q = 2\lambda \frac{d}{dx} + \frac{1}{2}h \) and \(E^{(1)} = \lambda^{1/2}(h_1 + 2h_2) - (E_{a_1} + \lambda E_{-a_1}) \). The graded structure can be decomposed as follows (see the appendix of [11] for instance),

\[
K_{\text{Bose}} = \{ K_1^{(2n+1)} = -(E_{a_1}^{(n)} + E_{-a_1}^{(n)}), K_2^{(2n+1)} = \mu_2 \cdot H^{(n+1/2)} \},
\]

\[
M_{\text{Bose}} = \{ M_1^{(2n+1)} = -E_{a_1}^{(n)} + E_{-a_1}^{(n+1)}, M_2^{(2n+1)} = \alpha_1 \cdot H^{(n)} \},
\]

\[
K_{\text{Fermi}} = \{ F_1^{(2n+1/2)} = (E_{a_1}^{(n+1/2)} - E_{a_2}^{(n+1/2)}), F_2^{(2n+1/2)} = -(E_{a_1}^{(n+1/2)} - E_{a_2}^{(n+1/2)}) \},
\]

\[
M_{\text{Fermi}} = \{ G_1^{(2n+1/2)} = (E_{a_1}^{(n+1/2)} - E_{a_2}^{(n+1/2)}), G_2^{(2n+1/2)} = -(E_{a_1}^{(n+1/2)} - E_{a_2}^{(n+1/2)}) \},
\]

(4.1)

where we have denoted \(E_{a_i}^{(n)} = \lambda^n E_{a_i} \) and \(H^{(n)} = \lambda^n H \) and \(\alpha_i, \mu_j, i = 1, 2 \) are respectively the simple roots and fundamental weights of \(\mathfrak{sl}(2,1) \). In (4.1) we have denoted \(\mathcal{K} = K_{\text{Bose}} \cup K_{\text{Fermi}} \) to be the Kernel of \(E^{(1)} \), i.e., \([E^{(1)}, \mathcal{K}] = 0 \) and \(M \) is its complement. The Lax operator is constructed as

\[
L = \partial_x + E^{(1)} + A_{1/2} + A_0, \quad A_0 = v M_2^{(0)}, \quad A_{1/2} = \psi G_1^{(1/2)},
\]

(4.2)

and the zero curvature representation reads

\[
[\partial_x + E^{(1)} + A_{1/2} + A_0, \partial_t + D_3^{(3)} + D_3^{(5/2)} + \cdots + D_3^{(-1/2)} + D_3^{(-1)}] = 0.
\]

(4.3)

In order to solve for the lowest grades \(-1, -1/2\) of equation (4.3) we introduce the parametrization

\[
D_3^{-1} = \eta B E^{(-1)} B^{-1}, \quad A_0 = -\partial_t BB^{-1}, \quad B = e^{\alpha_t M_2^{0}}
\]

(4.4)

together with the change of variables

\[
D_3^{(-1/2)} = B j^{-1/2} B^{-1}, \quad j^{-1/2} = \psi G_2^{(-1/2)}.
\]

(4.5)

We propose the solution of the form

\[
D_3^{(3)} = \alpha_3 (h_1^{3/2} + 2h_2^{3/2}) - E_{a_1}^{(1)} - E_{-a_1}^{(2)},
\]

\[
D_3^{(0)} = \alpha_1 M_2^{(0)}, \quad D_3^{(1/2)} = \beta_1 G_1^{(1/2)} + \beta_2 F_2^{(1/2)},
\]

\[
D_3^{(1)} = \sigma_1 M_1^{(1)} + \sigma_2 K_1^{(1)} + \sigma_3 K_2^{(1)}, \quad D_3^{(2/2)} = \delta_1 G_2^{(2/2)} + \delta_2 F_1^{(2/2)},
\]

\[
D_3^{(2)} = \mu_1 M_2^{(2)}, \quad D_3^{(5/2)} = \nu_1 G_1^{(5/2)} + \nu_2 F_2^{(5/2)},
\]

\[
D_3^{(-1/2)} = \beta_{-1} G_1^{(-1/2)} + \beta_{-2} F_1^{(-1/2)}, \quad D_3^{(-1)} = \sigma_{-1} M_1^{(-1)} + \sigma_{-2} K_1^{(-1)} + \sigma_{-3} K_2^{(-1)}.
\]

(4.6)
where the coefficients are given by
\[
\begin{align*}
\alpha_1 &= \frac{1}{4} \partial_t^2 \psi + \frac{1}{2} \partial_x \psi \partial_x \psi - \frac{1}{2} \partial^2 \psi, \\
\beta_1 &= \frac{1}{4} \partial_t^2 \psi - \frac{1}{4} \partial_x \psi \partial_x \psi, \\
\alpha_2 &= \frac{1}{2} (\psi \partial_x \psi + v^2), \\
\beta_2 &= \frac{1}{2} (v \partial_x \psi - \psi \partial_x v), \\
\sigma_1 &= \frac{1}{2} \partial_t v, \\
\sigma_2 &= \frac{1}{2} (\psi \partial_x \psi - v^2), \\
\sigma_3 &= -\frac{1}{2} \psi \partial_x \psi, \\
\delta_1 &= -\frac{1}{2} \partial_t \psi, \\
\mu_1 &= v, \\
\nu_1 &= \psi, \\
\nu_2 &= 0, \\
\beta_{-1} &= \psi \cosh \phi, \\
\beta_{-2} &= -\psi \sinh \phi, \\
\gamma_1 &= \eta \sinh 2 \phi, \\
\gamma_2 &= \eta \cosh 2 \phi, \\
\gamma_3 &= \eta, \\
\end{align*}
\] (4.7)

where \(\alpha_3 \) and \(\eta \) are arbitrary constants. The equations of motion are given by grades 0, \(\pm \frac{1}{2} \) projections of (4.3), i.e.,
\[
\begin{align*}
\partial_t \partial_x \phi &= \frac{\alpha_3}{4} \left[\partial_t^2 \phi - 6 (\partial_x \phi)^2 \partial_x^2 \phi + 3 \partial_x \partial_y (\partial_x \phi \partial_y \psi) \right] + 2 \eta [\sinh (2 \phi) + \tilde{\psi} \psi \sinh (\phi)], \\
\partial_t \psi &= \frac{\alpha_3}{4} \left[\partial_t^2 \psi - 3 \partial_x \phi \partial_x (\partial_x \phi \psi) \right] + 2 \eta \cosh (\phi), \\
\partial_x \psi &= 2 \psi \cosh (\phi).
\end{align*}
\] (4.8)

Observe that for \(\eta = 0 \) equations (4.8) corresponds to the \(N = 1 \) super mKdV equation if we identify \(v = -\partial_x \phi \) and for \(\alpha_3 = 0 \) they correspond to the \(N = 1 \) super sinh-Gordon.

The soliton solutions are parametrized in terms of tau functions as
\[
\phi = \ln \left(\frac{t_1}{t_0} \right), \quad \psi = \frac{t_1}{t_0} + \frac{t_2}{t_0},
\] (4.9)

The one-soliton solution for the \(N = 1 \) super sinh-Gordon and mKdV equations is given by
\[
\begin{align*}
t_0 &= 1 - \frac{1}{2} b_1 \rho_1, \\
t_1 &= 1 + \frac{1}{2} b_1 \rho_1, \\
t_2 &= c_1 k_2 \rho_2^{-1} + b_1 c_1 \sigma_{1,2} \rho_1 \rho_2^{-1}, \\
t_3 &= c_1 k_2 \rho_2^{-1} - b_1 c_1 \sigma_{1,2} \rho_1 \rho_2^{-1},
\end{align*}
\] (4.10)

where \(\sigma_{1,2} = \frac{1}{2} (k_1 + k_2) \), \(b_1, c_1 \) are bosonic and Grassmannian constants respectively and \(\rho_i \) carries the spacetime dependence for the sinh-Gordon and mKdV, respectively,
\[
\rho_i^{mKdV} = \exp \left(2 k_i x + \left(\alpha_3 k_3^2 \right) t \right), \quad \rho_i^{-G} = \exp \left(2 k_i x + 2 \left(\frac{\eta}{k_i} \right) t \right).
\] (4.11)

Note however that the introduction of the \(D_{-1}(1/2) \) and \(D_{-1}(-1) \) terms changes the vacuum configuration such that
\[
T_0 = \exp (x E^{(1)}) \exp (\alpha_3 E^{(3)} + \eta E^{(-1)}) t
\] (4.12)

which induces modification in the spacetime dependence of equations (4.8) as
\[
\rho_i = \exp \left(2 k_i x \right) \exp \left(2 \left(\alpha_3 k_3^2 + \frac{\eta}{k_i} \right) t \right).
\] (4.13)

In fact we have verified explicitly that (4.10) with (4.13) satisfies the equations of motion (4.8). The same was verified for the two soliton solution
\[
\begin{align*}
t_0 &= 1 - \frac{1}{2} b_1 \rho_1 - \frac{1}{2} b_2 \rho_2 + b_1 b_2 \rho_1 \rho_2 \alpha_{1,2} + c_1 c_2 \rho_3^{-1} \left(\beta_{3,4} \right) \left(b_3 \rho_3 - b_1 \rho_1 \sigma_{1,3,4} - b_2 \rho_2 \sigma_{2,3,4} + b_1 b_2 \rho_1 \rho_2 \sigma_{1,2,3,4} \right), \\
t_1 &= 1 + \frac{1}{2} b_1 \rho_1 + \frac{1}{2} b_2 \rho_2 + b_1 b_2 \rho_1 \rho_2 \sigma_{1,2} + c_1 c_2 \rho_3^{-1} \left(\beta_{3,4} \right) \left(b_3 \rho_3 - b_1 \rho_1 \sigma_{1,3,4} + b_2 \rho_2 \sigma_{2,3,4} + b_1 b_2 \rho_1 \rho_2 \sigma_{1,2,3,4} \right), \\
t_2 &= c_1 \rho_3^{-1} \left(k_3 + b_1 \rho_1 \sigma_{1,3,4} + b_2 \rho_2 \sigma_{2,3,4} + b_1 b_2 \rho_1 \rho_2 \lambda_{1,2,3,4} \right), \\
t_3 &= c_1 \rho_3^{-1} \left(k_3 + b_1 \rho_1 \sigma_{1,3,4} + b_2 \rho_2 \sigma_{2,3,4} + b_1 b_2 \rho_1 \rho_2 \lambda_{1,2,3,4} \right).
\end{align*}
\] (4.14)
where
\[\alpha_{1,2} = \frac{1}{4} (k_1 - k_2)^2, \quad \beta_{3,4} = k_3k_4 (k_1 - k_4), \]
\[\delta_{j,3,4} = \frac{k_3k_4 (k_3 - k_4) (k_j + k_3)}{(k_3 + k_4)^2 (k_j - k_3) (k_j - k_4)} \quad (j = 1, 2), \]
\[\sigma_{j,k} = \frac{k_k (k_j + k_k)}{2 (k_j - k_k)} \quad (j = 1, 2) \quad (k = 3, 4), \]
\[\lambda_{1,2,j} = \frac{k_1 (k_1 - k_2)^2 (k_1 + k_j)}{4 (k_1 + k_2)^2 (k_1 - k_j) (k_2 - k_j)}, \quad (j = 3, 4), \]
\[\theta_{1,2,3,4} = \frac{k_3k_4 (k_1 - k_2)^2 (k_1 + k_3) (k_2 + k_3)}{4 (k_1 + k_2)^2 (k_1 - k_3) (k_2 - k_3) (k_3 + k_4)^2 (k_1 - k_4) (k_2 - k_4)} \]
\(b_1, b_2\) are bosonic constants and \(c_1, c_2\) are Grassmannian constants with \(\rho_i\) given by (4.13).

5. The supersymmetric Lund–Regge/AKNS model

In this section we consider the Lie superalgebra \(\mathcal{G} = \mathfrak{sl}(2, 1)\) with homogeneous gradation, \(Q = \lambda \frac{d}{dt}\), and (see for instance [12])
\[E^{(n)} = (\alpha_1 + \alpha_2) \cdot H^{(n)}, \quad \alpha_1, \alpha_2 \text{ are simple roots of } \mathfrak{sl}(2,1). \]
The Lax operator is then
\[L = \partial_t + E^{(1)} + A_0, \quad A_0 = b_1 E_{a_1} + b_1 E_{-a_1} + F_1 E_{a_2} + \bar{F}_1 E_{-a_2}. \]
We search for the solution of
\[\left[\partial_t + E^{(1)} + A_0, \partial_t + D^{(2)}_2 + D^{(1)}_2 + D^{(0)}_2 + D^{(-1)}_2 \right] = 0. \]
Decomposing (5.3) grade by grade, we find
\[D^{(2)}_2 = a_2 \lambda^2 a_1 \cdot H, \]
\[D^{(1)}_2 = g_1 \lambda E_{a_1} + m_1 \lambda E_{-a_1} + n_1 \lambda E_{a_2} + o_1 \lambda E_{a_2} \]
\[D^{(0)}_2 = g_0 E_{a_1} + m_0 E_{-a_1} + n_0 E_{a_2} + o_0 E_{a_2}, \]
\[D^{(2)}_2 = a_0 a_1 \cdot H + c_0 a_2 \cdot H + d_0 E_{a_1+a_2} + e_0 E_{-a_1-a_2}, \]
where \(D^{(0)}_2 = D^{(0)}_{2M} + D^{(0)}_{2L}\) and
\[g_1 = a_2 b_1, \quad m_1 = a_2 b_1, \quad o_1 = a_2 F_1, \quad n_1 = a_2 \bar{F}_1, \]
\[g_0 = a_2 \partial_t b_1, \quad m_0 = -a_2 \partial_t b_1, \quad n_0 = a_2 \partial_t \bar{F}_1, \quad o_0 = -a_2 \partial_t F_1, \]
\[d_0 = -a_2 F_1 b_1, \quad e_0 = -a_2 \bar{F}_1 b_1, \quad a_0 = -a_2 b_1 F_1, \quad c_0 = -a_2 (b_1 F_1 + F_1 \bar{F}_1). \]
In order to solve the grade \(-1\) projection of equation (5.3) we introduce the \(sl(2,1)\) variables [12] as
\[A_0 = -\partial_t B B^{-1} = b_1 E_{a_1} + b_1 E_{-a_1} + F_1 E_{a_2} + \bar{F}_1 E_{-a_2}, \]
where
\[B = e^{\xi E_{a_1}} e^{\bar{\xi} E_{-a_1}} e^{\bar{\xi} E_{a_2}} e^{\xi (a_1+a_2)} e^{-\phi_1 \lambda^{-1} E_{a_1}} \]
\[e^{\bar{\phi}_1 \lambda^{-1} E_{a_2}} e^{\bar{\phi}_2 \lambda^{-1} E_{a_1}} \]
and
\[D^{(-1)}_{2M} = \eta \psi B E^{-(-1)} B^{-1} = -\eta \psi e^{\xi (\phi_1 + \phi_2)} \lambda^{-1} E_{a_1} + \eta f_2 (1 + \psi \chi) e^{-\frac{1}{2} \phi_1 \lambda^{-1} E_{a_1}} \]
\[+ \eta (\chi + f_1 f_2 + \psi \chi F_1 f_2) e^{-\frac{1}{2} \phi_1 \lambda^{-1} E_{-a_1}} \]
\[- \eta (g_2 + \psi f_1) e^{\phi_2 \lambda^{-1} E_{-a_2}} \]
(5.7)
written in the natural variables
\[\dot{\psi} = \psi e^{-\frac{\alpha_2}{\psi}}, \quad \tilde{g}_1 = g_1 e^{-\frac{\alpha_1}{\psi}}, \quad \tilde{f}_1 = f_1 e^{-\frac{\alpha_2}{\psi}} \]
\[\dot{\chi} = \chi e^{-\frac{\alpha_1}{\psi}}, \quad \tilde{g}_2 = g_2 e^{-\frac{\alpha_1}{\psi}}, \quad \tilde{f}_2 = f_2 e^{-\frac{\alpha_2}{\psi}}. \]

(5.8)

Here, \(\psi, \chi, \phi_i, i = 1, 2 \) and \(f_i, g_i, i = 1, 2 \) are bosonic and fermionic fields, respectively. The absence of Cartan subalgebra \(h_1, h_2 \) and \(E_{\pm(n_1, n_2)} \) (i.e. in \(\mathcal{K} \)) in the rhs of (5.5) leads to the following subsidiary constraints:

\[
\begin{align*}
\partial_t f_1 & = \frac{1}{2} f_1 \partial_\chi \phi_2 + g_2 \left[\partial_\chi \chi - \frac{1}{2} \chi \partial_\phi_1 + \partial_\chi \phi_2 \right], \\
\partial_t g_1 & = \psi \partial_\chi f_2 + \frac{1}{2} g_1 \partial_\phi_2 - \frac{1}{2} \psi f_2 \partial_\phi_1, \\
\partial_t f_1 & = \chi \partial_\chi g_2 + \frac{1}{2} f_1 \partial_\phi_2 - \frac{1}{2} \chi g_2 \partial_\phi_1, \\
\partial_t g_1 & = \frac{1}{2} g_1 \partial_\phi_2 + f_2 \left[\partial_\phi \psi - \frac{1}{2} \psi \partial_\phi_1 + \partial_\chi \phi_2 \right], \\
\partial_\phi f_1 & = \frac{\psi \left[\partial_\chi \chi (1 + g_2 f_2) + \frac{1}{2} \chi g_2 \partial_\phi_2 \right]}{1 + \psi \chi (1 + \frac{1}{2} g_2 f_2)}, \\
\partial_\phi g_1 & = \frac{\psi \partial_\chi g_2 f_2 - g_2 \partial_\phi_2 - \frac{1}{2} \psi \chi g_2 \partial_\phi_2}{1 + \psi \chi (1 + \frac{1}{2} g_2 f_2)}, \\
\partial_\phi f_2 & = \frac{\chi \partial_\phi (1 + g_2 f_2) + \frac{1}{2} \psi \partial_\phi g_2 f_2}{1 + \psi \chi (1 + \frac{1}{2} g_2 f_2)}, \\
\partial_\phi g_2 & = \frac{\partial_\phi \psi (1 + \frac{1}{2} g_2 f_2) \left(\frac{1}{2} \psi \chi + 1 \right) g_2 \partial_\phi_2}{1 + \psi \chi (1 + \frac{1}{2} g_2 f_2)}.
\end{align*}
\]

(5.9)

Moreover equation (5.5) yields

\[
\begin{align*}
\tilde{b}_1 = J_{-\alpha_1} & = -e^{\frac{i}{2} (\phi_1 + \psi_2)} \left(\partial_\phi \psi - \frac{1}{2} \psi \partial_\phi_1 + \partial_\chi \phi_2 \right), \\
F_1 = J_{-\alpha_2} & = -e^{-\frac{i}{2} \phi_1} \left(\partial_\phi f_2 + \frac{1}{2} f_2 \partial_\phi_1 \right), \\
b_1 & = -e^{-\frac{i}{2} (\phi_1 + \psi_2)} \left(\partial_\phi X + \frac{1}{2} \chi \partial_\phi_1 + \partial_\chi \phi_2 - \frac{1}{2} \chi g_2 \partial_\phi_2 - \frac{1}{2} \chi \partial_\phi_1 g_2 f_2 \right), \\
F_1 & = -e^{\frac{i}{2} \phi_1} \left(\partial_\phi g_2 - \frac{1}{2} g_2 \partial_\phi_1 + e^{-\frac{i}{2} (\phi_1 + \psi_2)} f_1 \partial_\phi \psi \right).
\end{align*}
\]

(5.10)

Solving the zero grade component of (5.3), we find the equations of motion,

\[
\begin{align*}
\partial_\phi b_1 + a_2 (\partial_\phi^2 b_1 - 2 (b_1 \partial_\phi b_1 + F_1 \partial_\phi F_1) b_1) + m_{-1} = 0, \\
\partial_\phi \tilde{b}_1 - a_2 (\partial_\phi^2 \tilde{b}_1 - 2 (b_1 \partial_\phi \tilde{b}_1 + F_1 \partial_\phi \tilde{F}_1) \tilde{b}_1) - g_{-1} = 0, \\
\partial_\phi F_1 - a_2 (\partial_\phi^2 F_1 - 2 b_1 b_1 F_1) - n_{-1} = 0, \\
\partial_\phi F_1 + a_2 (\partial_\phi^2 F_1 - 2 b_1 b_1 F_1) + o_{-3} = 0, \\
g_{-1} = -\eta \psi e^{\frac{i}{2} (\phi_1 + \psi_2)},
\end{align*}
\]

(5.11)
\[m_{-1} = \eta (\chi + f_1 f_2 + \psi \chi f_1 f_2 + \chi f_2 g_2 + \psi \chi^2) e^{-\frac{1}{2}(\phi_1 + \phi_2)}, \]
\[n_{-1} = -\eta (g_2 + \psi f_1) e^{\phi_3}, \]
\[o_{-1} = \eta f_2 (1 + \psi \chi) e^{-\frac{1}{2} \phi_3}. \]

Following the same argument as in the pure bosonic case, the vacuum configuration is obtained from
\[T_0 = \exp (\alpha E^{(1)}) \exp ((\alpha_2 E^{(2)} + \eta E^{(1)}) t) \]
which leads to spacetime dependence
\[\rho_i = \exp (k_i x) \exp \left(-\left(\alpha_2 k_i^2 + \frac{\eta}{k_i^2} \right) t \right). \]

Following the soliton solutions for the Lund–Regge model obtained in [12] we have verified solutions for equations (5.11) to be
\[b_1 = \frac{k_1 \rho_2^{-1}}{\tau_0}, \quad \bar{b}_1 = -\frac{k_2 \rho_2}{\tau_0}, \quad F_1 = -a_2 \frac{k_2 \rho_2}{\tau_0}, \quad \bar{F}_1 = a_1 \frac{k_1 \rho_1^{-1}}{\tau_0}, \]
\[\psi = \frac{\rho_2}{\tau_0} \left(1 - \frac{bk \rho_1^{-1} \rho_2}{2(k_1 - k_2)(1 + \frac{k_1}{k_2} \rho_1^{-1} \rho_2)} \right), \quad \chi = \frac{\rho_2}{\tau_0} \left(1 - \frac{bk \rho_1^{-1} \rho_2}{2(k_1 - k_2)(1 + \frac{k_1}{k_2} \rho_1^{-1} \rho_2)} \right), \]
\[g_1 = a_2 \frac{k_1 \rho_2}{(k_1 - k_2) \tau_0} e^{-\frac{1}{2} \phi_1}, \quad f_1 = a_1 \frac{k_1 \rho_1^{-1} \rho_2}{(k_1 - k_2) \tau_0} e^{-\frac{1}{2} \phi_1}, \quad g_2 = a_1 \frac{\rho_1^{-1} \rho_2}{\tau_0} e^{-\frac{1}{2} \phi_2}, \]
\[f_2 = a_2 \frac{\rho_2}{\tau_0} e^{-\phi_3}, \quad e^{\frac{1}{2}(\phi_1 + \phi_2)} = 1 + \frac{a_3 \rho_1 \rho_2}{\tau_0}, \quad e^{\frac{1}{2}(\phi_1 - \phi_2)} = 1 + \frac{a_3 \rho_1^{-1} \rho_2}{\tau_0}, \]

where \(a_1, a_2 \) and \(b \) are Grassmannian and bosonic constants respectively, \(\rho_i, i = 1, 2 \) are given by (5.15) and
\[a_3 = \frac{k_1}{k_2} \Gamma_0 \left(1 - b \frac{(k_1 + k_2)}{2k_1} \right), \quad \bar{a}_3 = \Gamma_0 \left(1 + b \frac{(k_1 - 3k_2)}{2k_2} \right), \]
\[\Gamma = (1 - a_1 a_2) \Gamma_0, \quad \Gamma_0 = \frac{k_1 k_2}{(k_1 - k_2) \tau_0}, \quad \tau_0 = 1 + \Gamma \rho_1^{-1} \rho_2. \]

6. General case

We now consider a mixed hierarchy associated with a general affine Lie algebra \(\hat{G} = \oplus G_i, [Q_g, \hat{G}] = iQ \), and constant grade one semi-simple element \(E \) such that \(\hat{G} = M \oplus K \), \([E, K] = 0 \) with the symmetric space structure,
\[[K, K] \subset K, \quad [K, M] \subset M, \quad [M, M] \subset K \]
with equations of motion involving time evolution with two indices, \(\partial_{n,m} \) defined from the zero curvature representation
\[[\partial_t + E + A_0, \partial_{n,m} + D^{(n)} + D^{(m)} + \ldots + D^{(m-1)} + D^{(m-1)} + \ldots + D^{(m)}] = 0. \]

Equation (6.2) leads to
\[[E, D^{(m)}] = 0, \]
\[[E, D^{(m-1)}] + [A_0, D^{(m)}] + \partial_t D^{(m)} = 0. \]
\[[E, D^{(n-i)}] + [A_0, D^{(n-i+1)}] + \partial_x D^{(n-i+1)} = 0, \quad (6.5) \]

\[[E, D^{(i-1)}] + [A_0, D^{(0)}] + \partial_x D^{(0)} - \partial_{\alpha A_0} A_0 = 0, \quad (6.6) \]

\[[E, D^{(-i-1)}] + [A_0, D^{(-i)}] + \partial_x D^{(-i)} = 0, \quad (6.7) \]

\[[E, D^{(-j-1)}] + [A_0, D^{(-j)}] + \partial_x D^{(-j)} = 0, \quad (6.8) \]

\[[A_0, D^{(-m)}] + \partial_x D^{(-m)} = 0. \quad (6.9) \]

In order to solve equations (6.3)–(6.9) we have to start from both ends, i.e. from (6.3) towards (6.6), using the symmetric space structure (6.1), we project each equation into \(K\) and \(M\) subspaces to obtain \(D(i)_{K,i} = 1, \ldots, n\) and \(D(i)_{M,i} = 0, \ldots, n\). On the other hand, starting from (6.9) upwards, we find a solution for \(D(i)_{K,i}\) and \(D(i)_{M,j} = 1, \ldots, m\) which is non-local in the fields in \(A_0\). For the particular case when \(m = 1\), we have seen that there is a set of variables within a group element \(B\) that solves (6.9) locally for \(m = 1\).

Inserting \(D^{(i-1)}\) in (6.6) and projecting in \(K\) we find \(D^{(0)}_{K}\) which in turn determines the time evolution as the projection of (6.6) in \(M\). Following the same arguments given before, the spacetime dependence of such generalized mixed model is expected to be of the form

\[\rho_i = \exp(k_ix) \exp ((\alpha_i k^n + \eta k^m) t). \quad (6.10) \]

As a conclusion, we have proposed a zero curvature representation for mixed integrable models associated with \(\hat{sl}(2)\) and \(\hat{sl}(2, 1)\) affine Lie algebras. We have also shown that their soliton solutions follow from the dressing method and with spacetime dependence specified from its vacuum structure. Other more complicated examples deserve to be investigated following the same line of thought.

Acknowledgment

We thank CNPq for support.

References

[1] Chodos A 1980 Phys. Rev. D 21 2818
[2] Aratyn H, Gomes J F, Nissimov E, Pacheva S and Zimerman A H 2000 Symmetry flows, conservation laws and dressing approach to the integrable models Proc. NATO Advanced Research Workshop on Integrable Hierarchies and Modern Physical Theories (NATO ARW-UIC 2000), Chicago (2000) (arXiv:nlin/00012042)
[3] Aratyn H, Gomes J F and Zimerman A H 2003 J. Geom. Phys. 46 21 (arXiv:hep-th/0107056)
[4] Konno K, Kaneyama W and Samuki H 1974 J. Phys. Soc. Japan 37 171
[5] Chen D-Y, Zhang D-J and Deng S-F 2002 J. Phys. Soc. Japan 71 658
[6] Leblond H, Melnikov I V and Mihalache D 2008 Phys. Rev. A 78 043802
[7] Ferreira L A, Miramontes J L and Sanchez-Guillen J 1997 J. Math. Phys. 38 882 (arXiv:hep-th/9606066)
[8] Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 2000 J. Phys. A: Math. Gen. 33 L331 (arXiv:nlin/0007002)
[9] Cabrera-Carnero I, Gomes J F, Guevoghlanian E P, Sotkov G M and Zimerman A H 2001 Proc. 7th Int. Wigner Symp. (Wigner 7), College Park, MA, 2001 (arXiv:hep-th/0109117)
[10] Aratyn H, Gomes J F and Zimerman A H 2004 Nucl. Phys. B 676 537 (arXiv:hep-th/0309099)
[11] Gomes J F, Ymai L H and Zimerman A H 2006 Phys. Lett. A 359 630 (arXiv:hep-th/0607107)
[12] Aratyn H, Gomes J F, de Castro G M, Silka M B and Zimerman A H 2005 J. Phys. A: Math. Gen. 38 9341 (arXiv:hep-th/0508008)