NOTES ON THE TIGHTNESS OF G_δ-MODIFICATIONS

TOSHIMICHI USUBA

Abstract. We construct a countably tight normal T_1 space X with $t(X_\delta) > 2^\omega$. This is an answer to the question posed by Dow-Juhász-Soukup-Szentmiklóssy-Weiss [5]. We also show that if the continuum is not so large, then the tightness of G_δ-modifications of countably tight spaces can be arbitrary large up to the least ω_1-strongly compact cardinal.

1. Introduction

For a topological space X, let X_δ be the G_δ-midification of X, that is, X_δ is the space X equipped with topology generated by all G_δ-subsets of X.

Bella and Spadaro [1] studied the connection between the values of various cardinal functions taken on X and X_δ, respectively. In the paper they posed the following question: Is $t(X_\delta) \leq 2^{t(X)}$ true for every (compact) T_2 space X? Recall that $t(X)$, the tightness number of X, is the least infinite cardinal κ such that for every $A \subseteq X$ and $p \in \overline{A}$, there is $B \in [A]^{\leq \kappa}$ with $p \in \overline{B}$. If $t(X) = \omega$, X is said to be countably tight.

For this question, Dow-Juhász-Soukup-Szentmiklóssy-Weiss [5] answered as follows:

Fact 1.1 ([5]). (1) If X is a regular T_1 Lindelöf space, then $t(X_\delta) \leq 2^{t(X)}$.

(2) Under $V = L$, for every cardinal κ there is a Fréchet-Urysohn space X with $t(X_\delta) \geq \kappa$.

The clause (1) of Fact 1.1 is a theorem of ZFC. However (2) is a consistency result, and they asked the following natural question:

Question 1.2. Is there a ZFC example of a countably tight Hausdorff (or regular, or Tychonoff) space X for which $t(X_\delta) > 2^{t(X)}$?

In this paper we give a positive answer to their question.

Theorem 1.3. There is a countably tight normal T_1 space X such that $t(X_\delta) > 2^\omega$.

2010 Mathematics Subject Classification. Primary 03E55, 54A25, 54C35.

Key words and phrases. countably tight, G_δ-modification, ω_1-strongly compact cardinal, saturated filter.
We will also observe some connection between \(\omega_1 \)-strongly compact cardinal and the tightness of \(G_\delta \)-modifications. Usuba [11] studied the Lindelöf number of \(G_\delta \)-modifications of compact spaces, and proved the following equality:

the least \(\omega_1 \)-strongly compact = sup\(\{ L(X_\delta) \mid X \text{ is compact } T_2 \} \).

Under some assumption, we will prove similar results for the tightness of \(G_\delta \)-modifications.

Theorem 1.4.
(1) Suppose \(\kappa \) is the least \(\omega_1 \)-strongly compact cardinal. Then for every countably tight space \(X \) we have \(t(X_\delta) \leq \kappa \).

(2) Suppose there is no weakly Mahlo cardinal < \(2^{\omega} \) (e.g., CH holds).

(a) If there is no \(\omega_1 \)-strongly compact cardinal, then for every cardinal \(\nu \), there is a countably tight normal \(T_1 \) space \(X \) such that \(t(X_\delta) \geq \nu \).

(b) If \(\kappa \) is the least \(\omega_1 \)-strongly compact cardinal, then for every cardinal \(\nu < \kappa \), there is a countably tight normal \(T_1 \) space \(X \) such that \(t(X_\delta) \geq \nu \).

Thus, assuming that \(2^{\omega} \) is not so large, we have the following equality:

the least \(\omega_1 \)-strongly compact = sup\(\{ t(X_\delta) \mid X \text{ is countably tight normal } T_1 \} \).

Here we present some notations, definitions, and facts.

For a topological space \(X \) and \(A \subseteq X \), let \(A_\delta \) be the closure of \(A \) in \(X_\delta \).

For a filter \(F \) over the set \(S \) and a cardinal \(\kappa \), let us say that \(F \) is \(\kappa \)-complete if for every family \(A \subseteq F \) of size < \(\kappa \), we have \(\bigcap A \in F \). A filter \(F \) is \(\kappa \)-incomplete if \(F \) is not \(\kappa \)-complete.

The concept of \(\omega_1 \)-strongly compact cardinal is introduced by Bagaria and Magidor.

Definition 1.5 (Bagaria-Magidor [3, 4]). An uncountable cardinal \(\kappa \) is \(\omega_1 \)-strongly compact if for every set \(S \) and every \(\kappa \)-complete filter \(F \) over \(S \), the filter \(F \) can be extended to an \(\omega_1 \)-complete ultrafilter over \(S \).

Note that if \(\kappa \) is \(\omega_1 \)-strongly compact, then every cardinal greater than \(\kappa \) is \(\omega_1 \)-strongly compact.

Definition 1.6.
(1) For an uncountable cardinal \(\kappa \) and a set \(A \), let \(\mathcal{P}_\kappa A = \{ x \subseteq A \mid |x| < \kappa \} \).

(2) A filter \(F \) over \(\mathcal{P}_\kappa A \) is fine if for every \(a \in A \), we have \(\{ x \in \mathcal{P}_\kappa A \mid a \in x \} \in F \).

Fact 1.7 (Bagaria-Magidor [3, 4]).
(1) An uncountable cardinal \(\kappa \) is \(\omega_1 \)-strongly compact if and only if for every cardinal \(\lambda \geq \kappa \), there exists an \(\omega_1 \)-complete fine ultrafilter over \(\mathcal{P}_\kappa \lambda \).

(2) If \(\kappa \) is the least \(\omega_1 \)-strongly compact, then \(\kappa \) is a limit cardinal and there exists a measurable cardinal \(\leq \kappa \).
(3) It is possible that the least ω_1-strongly compact is a singular cardinal.

Now we give the proof of (1) in Theorem 1.4. The proof is essentially the same to in Dow-Juhász-Soukup-Szentmiklóssy-Weiss [5], but we give it for the completeness.

Proposition 1.8. Let κ be the least ω_1-strongly compact. Then for every countably tight topological space X, $A \subseteq X$, and $p \in \overline{A}$, there is $B \subseteq A$ with $|B| < \kappa$ and $p \in \overline{B}$. Hence $t(X_\delta) \leq \kappa$.

Proof. We may assume that $A = \lambda$ for some cardinal $\lambda \geq \kappa$. By Fact 1.7, there is an ω_1-complete fine ultrafilter U over $\mathcal{P}_\kappa \lambda$.

Suppose to the contrary that $p \notin \overline{B}$ for every $B \subseteq \lambda$ with $|B| < \kappa$. For $B \subseteq \lambda$ with $|B| < \kappa$, there are open neighborhoods $O_B^n (n < \omega)$ of p with $B \cap \bigcap_{n<\omega} O_B^n = \emptyset$. Since U is ω_1-complete, for each $\alpha < \lambda$, there is $n < \omega$ with $
 \{ B \in \mathcal{P}_\kappa \lambda \mid \alpha \in B \setminus \bigcap_{i<n} O_B^i \} \in U$. For $n < \omega$, let A_n be the set of all $\alpha < \lambda$ with $\{ B \in \mathcal{P}_\kappa \lambda \mid \alpha \in B \setminus \bigcap_{i<n} O_B^i \} \in U$. We have $\lambda = \bigcup_{n<\omega} A_n$. On the other hand, we have $p \notin \bigcup_{n<\omega} A_n$; If $p \in \bigcup_{n<\omega} A_n$, there is a countable $C \subseteq A_n$ with $p \in \overline{C}$. Since U is ω_1-complete, we can find $B \in \mathcal{P}_\kappa \lambda$ with $\alpha \in B \setminus \bigcap_{i<n} O_B^i$ for every $\alpha \in C$, this means that $p \in \bigcap_{i<n} O_B^i$, but $C \cap \bigcap_{i<n} O_B^i = \emptyset$, this is impossible. Thus $p \notin \bigcup_{n<\omega} A_n$, and this immediately implies that $p \notin \overline{A}$. □

2. Construction of the spaces

For the sake of constructing our spaces, we use the function spaces. Let us recall some definitions and basic facts. For a Tychonoff space X, let $C(X)$ be the set of all continuous functions from X into the real line \mathbb{R}. $C_p(X)$ is the space $C(X)$ endowed with the point-wise convergence, that is, the topology of $C_p(X)$ is generated by the family $\{ V(x_0, \ldots, x_n, O_0, \ldots, O_n) \mid x_0, \ldots, x_n \in X, O_0, \ldots, O_n \subseteq \mathbb{R} \}$ where $V(x_0, \ldots, x_n, O_0, \ldots, O_n)$ is the set of all $f \in C(X)$ with $f(x_i) \in O_i$ for every $i \leq n$.

Fact 2.1 (Arhangel'skii-Pytkheev [2, 9]). Let X be a Tychonoff space, and ν a cardinal. Then $L(X^\nu) \leq \nu$ for every $n < \omega$ if and only if $t(C_p(X)) \leq \nu$. In particular, each finite product of X is Lindelöf if and only if $C_p(X)$ is countably tight.

Proposition 2.2. Let κ be an uncountable cardinal and $\lambda \geq \kappa$ a cardinal. Suppose there is no ω_1-complete fine ultrafilter over $\mathcal{P}_\kappa \lambda$. In addition we suppose that, for every countable family $\{ U_n \mid n < \omega \}$ of fine ultrafilters over $\mathcal{P}_\kappa \lambda$, there is a countable partition \mathcal{A} of $\mathcal{P}_\kappa \lambda$ such that $A \notin U_n$ for every $A \in \mathcal{A}$ and $n < \omega$. Then there is a countably tight Tychonoff space X with $t(X_\delta) \geq \kappa$.

Proof. Identifying $\mathcal{P}_\kappa \lambda$ as a discrete space, let $\text{Fine}(\mathcal{P}_\kappa \lambda)$ be the closed subspace of the Stone-Čech compactification $\beta(\mathcal{P}_\kappa \lambda)$ consisting of all fine ultrafilters over
$\mathcal{P}_\kappa \lambda$. Let $X = C_\mu(\Fine(\mathcal{P}_\kappa \lambda))$. Since $\Fine(\mathcal{P}_\kappa \lambda)$ is compact Hausdorff, each finite product of $\Fine(\mathcal{P}_\kappa \lambda)$ is compact. Hence X is countably tight by Fact 2.1. We shall show that $t(X_\delta) \geq \kappa$.

Let $\{A^\alpha \mid \alpha < \nu\}$ be an enumeration of all countable partitions of $\mathcal{P}_\kappa \lambda$. For $\alpha < \nu$, let $S^{A^\alpha} = \{U \subseteq \Fine(\mathcal{P}_\kappa \lambda) \mid A \notin U \text{ for every } A \in A^\alpha\}$. S^{A^α} is a closed G_δ-subset of $\Fine(\mathcal{P}_\kappa \lambda)$. Since there is no ω_1-complete fine ultrafilter over $\mathcal{P}_\kappa \lambda$, the family $\{S^{A^\alpha} \mid \alpha < \nu\}$ is a cover of $\Fine(\mathcal{P}_\kappa \lambda)$. Furthermore, by our assumption, for every $U_n \subseteq \Fine(\mathcal{P}_\kappa \lambda) \ (n < \omega)$ there is $\alpha < \nu$ such that $U_n \subseteq S^{A^\alpha}$ for every $n < \omega$.

We use the following fact:

Fact 2.3 (Usuba [11]). If $\{S^{A^\alpha} \mid \alpha \in E\}$ is a cover of $\Fine(\mathcal{P}_\kappa \lambda)$ for some $E \subseteq \nu$, then $|E| \geq \kappa$.

Sketch of the proof. Take $E \subseteq \nu$ with size $< \kappa$. Take a sufficiently large regular θ, and take $M \prec H_\theta$ containing all relevant objects such that $|M| < \kappa$ and $E \subseteq M$. For each $\alpha \in E$, there is a unique $A_\alpha \in A^\alpha$ with $M \cap \kappa \subseteq A_\alpha$. By the elementarity, we have that for every $\alpha_0, \ldots, \alpha_n \in E$ and $\beta_0, \ldots, \beta_m \in \lambda$, the family $\{x \in \mathcal{P}_\kappa \lambda \mid x \in A_\alpha \text{ for every } i < n \text{ and } \beta_i \in x \text{ for every } i < m\}$ is non-empty. Thus we can take a fine ultrafilter U over $\mathcal{P}_\kappa \lambda$ such that $U \notin S^{A^\alpha}$ for every $\alpha \in E$. Hence $\{S^{A^\alpha} \mid \alpha \in E\}$ is not a cover. \(\square\)

For $\alpha < \nu$, since S^{A^α} is a closed G_δ-subset of the compact Hausdorff space $\Fine(\mathcal{P}_\kappa \lambda)$, there is a continuous map $f_\alpha : \Fine(\mathcal{P}_\kappa \lambda) \to [0, 1]$ such that $S^{A^\alpha} = f_\alpha^{-1}[0]$. Let $D = \{f_\alpha \mid \alpha < \nu\}$. Let $g : \Fine(\mathcal{P}_\kappa \lambda) \to \{0\}$ be the constant function. We shall show that g and D witness $t(X_\delta) \geq \kappa$.

First we check that $g \in \overline{D^\delta}$. Take an open neighborhood O of g in X_δ. By the definition of the topology of X_δ, there are $U_n \in \Fine(\mathcal{P}_\kappa \lambda) \ (n < \omega)$ such that $\{h \in X \mid h(U_n) = 0 \text{ for } n < \omega\} \subseteq O$. By the assumption, there is $\alpha < \nu$ such that $U_n \subseteq S^{A^\alpha}$ for every $n < \omega$. Then $f_\alpha(U_n) = 0$ for $n < \omega$, hence $f_\alpha \in D \cap O$.

Finally we show that if a set $E \subseteq \nu$ has cardinality $< \kappa$, then $g \notin \overline{\{f_\alpha \mid \alpha \in E\}}$ which means that $t(X_\delta) \geq \kappa$. Suppose to the contrary that $g \in \overline{\{f_\alpha \mid \alpha \in E\}}$. For each $U \subseteq \Fine(\mathcal{P}_\kappa \lambda)$, the set $\{h \in C_\mu(X) \mid h(U) = 0\}$ is an open neighborhood of g in X_δ. So we can pick $\alpha \in E$ with $f_\alpha(U) = 0$. Since $S^{A^\alpha} = f_\alpha^{-1}[0]$, we have $U \subseteq S^{A^\alpha}$. This shows that $\{S^{A^\alpha} \mid \alpha \in E\}$ is a cover of $\Fine(\mathcal{P}_\kappa \lambda)$, contradicting to Fact 2.3. \(\square\)

3. On the assumptions of Proposition 2.2

Now let us discuss when the assumptions of Proposition 2.2 hold.

For a filter F over the set S, let $F^+ = \{X \in \mathcal{P}(S) \mid S \setminus X \notin F\}$. F^+ is the complement of the dual ideal of F. An element of F^+ is called an F-positive set. For $X \in F^+$, let $F \upharmon X = \{Y \subseteq S \mid Y \cup (S \setminus X) \in F\}$. $F \upharmon X$ is the filter over S generated by $F \cup \{X\}$.
Lemma 3.1. Let S be an uncountable set, and $\{U_n \mid n < \omega\}$ a family of ultrafilters over S. Let $F = \bigcap_{n<\omega} U_n$. Then the following are equivalent:

1. There is a countable partition A of S such that $A \notin U_n$ for every $A \in A$ and $n < \omega$.
2. For every $X \in F^+$, the filter $F \upharpoonright X$ is ω_1-incomplete.

Proof. (1) \Rightarrow (2) is clear. For (2) \Rightarrow (1), we define $C_\alpha \subseteq S$ ($\alpha < \omega_1$) as follows:

First, let $C_0 = S \in F$. Suppose C_γ is defined for every $\gamma < \alpha$ so that:

1. $\langle C_\gamma \mid \gamma < \alpha \rangle$ is a \subseteq-decreasing sequence of F-positive sets.
2. $C_\gamma = \bigcap_{\delta < \gamma} C_\delta$ if γ is limit.
3. If $\gamma + 1 < \alpha$, then there are $C_{\gamma,i} \in F \upharpoonright C_\gamma$ for $i < \omega$ such that $C_\gamma = \bigcap_{i < \omega} C_{\gamma,1} \supseteq \cdots$ and $C_{\gamma+1} = \bigcap_{i < \omega} C_{\gamma+1,i}$.

Suppose $\alpha = \beta + 1$. Since $C_\beta \in F^+$ and $F \upharpoonright C_\beta$ is ω_1-incomplete, we can find $C_{\beta,i} \subseteq C_\beta$ for $i < \omega$ such that $C_\beta = C_{\beta,0} \supseteq C_{\beta,1} \supseteq \cdots$, $C_{\beta,i} \in F \upharpoonright C_\beta$ for every $i < \omega$, and $\bigcap_{i < \omega} C_{\beta,i} \notin F \upharpoonright C_\beta$. If $\bigcap_{i < \omega} C_{\beta,i} \notin F^+$, then we finish this construction.

If $\bigcap_{i < \omega} C_{\beta,i} \in F^+$, then let $C_\alpha = \bigcap_{i < \omega} C_{\beta,i}$.

If α is limit and $\bigcap_{\gamma < \alpha} C_\gamma \notin F^+$, then we finish the construction, otherwise let $C_\alpha = \bigcap_{\gamma < \alpha} C_\gamma$.

We claim that this construction have to be finished at some $\gamma < \omega_1$. If not, then let $D_\alpha = C_\alpha \setminus C_{\alpha+1}$ for $\alpha < \omega_1$. Since $C_{\alpha+1} \notin F \upharpoonright C_\alpha$, we have $D_\alpha \in F^+$. For $\alpha < \omega_1$, there is some $n_\alpha < \omega$ with $D_\alpha \in U_{n_\alpha}$. Hence there is some $n < \omega$ such that the set $\{\alpha < \omega_1 \mid n_\alpha = n\}$ is uncountable. Pick $\alpha < \beta < \omega_1$ with $n = n_\alpha = n_\beta$. We have $D_\alpha, D_\beta \in U_n$, hence $D_\alpha \cap D_\beta \notin \emptyset$. This is impossible.

Now suppose $\{C_\alpha \mid \alpha < \gamma\}$ is defined as above but C_γ cannot be defined. If γ is limit, we have $\bigcap_{\alpha < \gamma} C_\alpha \notin F^+$. By shrinking each C_α, we may assume that $\bigcap_{\alpha < \gamma} C_\alpha = \emptyset$. By the construction, for $\alpha < \gamma$, there is a sequence $\langle C_{\alpha,i} \mid i < \omega \rangle$ as before. Let $A_{\alpha,i} = C_{\alpha,i} \setminus C_{\alpha,i+1}$. We check that $A_{\alpha,i} \notin F^+$; since $C_{\alpha,i}, C_{\alpha,i+1} \in F \upharpoonright C_\alpha$, we have that $A_{\alpha,i} = C_{\alpha,i} \setminus C_{\alpha,i+1} \notin (F \upharpoonright C_\alpha)^+$.

Furthermore, since $A_{\alpha,i} \subseteq C_{\alpha,i} \subseteq C_\alpha$, we have $A_{\alpha,i} \notin F^+$. Now the family $\{A_{\alpha,i} \mid \alpha < \gamma, i < \omega\}$ is a countable partition of S such that $A_{\alpha,i} \notin F^+$, so $A_{\alpha,i} \notin U_n$ for every $n < \omega$. Thus (1) holds.

If β is successor, say $\gamma = \beta + 1$, then there are $C_{\beta,i} \in (F \upharpoonright C_\beta)^*$ ($i < \omega$) such that $C_\beta \supseteq C_{\beta,0} \supseteq C_{\beta,1} \supseteq \cdots$ and $\bigcap_{i < \omega} C_{\beta,i} \notin F^+$. As in the limit case, we may assume that $\bigcap_{i < \omega} C_{\beta,i} = \emptyset$. For each $\alpha < \beta$, let $A_{\alpha,i} = C_{\alpha,i} \setminus C_{\alpha,i+1}$. Then $\{A_{\alpha,i} \mid i < \omega, \alpha \leq \beta\}$ is a required partition.

We will use the generic ultrapower argument. See Foreman [6] for the generic ultrapower. We present some basic definitions and facts.

Let F be a filter over the set S. For a cardinal κ, we say that F is κ-saturated if for every family $\{X_\alpha \mid \alpha < \kappa\}$ of F-positive sets, there are $\alpha < \beta < \kappa$ with $X_\alpha \cap X_\beta \in F^+$. For F-positive sets X and Y, define $X \leq_F Y$ if $X \setminus Y \notin F^+$. Let
\mathbb{P}_F be the poset F^+ with the order \leq_F. Note that for $X, Y \in \mathbb{P}_F$, X is compatible with Y in \mathbb{P}_F if and only if $X \cap Y \in F^+$, and \mathbb{P}_F has the κ-c.c. if and only if F is κ-saturated.

If G is a (V, \mathbb{P}_F)-generic filter, then G is a V-ultrafilter over S, that is the following hold:

- $S \in G$, $\emptyset \notin G$.
- $X \cap Y \in G$ for every $X, Y \in G$.
- For $X, Y \in V$, if $X \in G$ and $X \subseteq Y \subseteq S$ then $Y \in G$.
- For every $X \subseteq S$ with $X \in V$, either $X \in G$ or $S \setminus X \in G$.

Hence we can take the generic ultrapower of V by G. For a (V, \mathbb{P}_F)-generic filter G, let $\text{Ult}(V, G)$ be the generic ultrapower of V by G, and $j : V \to \text{Ult}(V, G)$ be the elementary embedding induced by G. If $\text{Ult}(V, G)$ is well-founded, we identify $\text{Ult}(V, G)$ with its transitive collapse. We say that F is precipitous if for every (V, \mathbb{P}_F)-generic G, $\text{Ult}(V, G)$ is well-founded.

Fact 3.2. Let κ be an uncountable cardinal, and F a κ-complete filter over S. If F is κ^+-saturated, then F is precipitous.

Proposition 3.3. Let κ be an uncountable cardinal, and $\lambda > 2^\kappa$. Let $\{U_n \mid n < \omega\}$ be a family of ω_1-incomplete fine ultrafilters over $\mathcal{P}_\kappa \lambda$. If the filter $F = \bigcap_{n<\omega} U_n$ is ω_1-complete, then there is a weakly Mahlo cardinal $< 2^\omega$, and $\kappa > (2^\omega)^+$.

Proof. First note that for $X \subseteq \mathcal{P}_\kappa \lambda$, $X \in \mathbb{P}_F$ if and only if $X \in U_n$ for some $n < \omega$. For each $X \in \mathbb{P}_F$, let $I_X = \{n < \omega \mid X \subseteq U_n\} \neq \emptyset$.

We shall prove a series of claims.

Claim 3.4. For $X, Y \in \mathbb{P}_F$, $X \leq_F Y \iff I_X \subseteq I_Y$, and X is compatible with $Y \iff I_X \cap I_Y \neq \emptyset$.

Proof. If $I_X \nsubseteq I_Y$, pick $n \in I_X \setminus I_Y$. We know $X \subseteq U_n$ but $Y \nsubseteq U_n$, hence $X \setminus Y \subseteq U_n$, and $X \not\leq_F Y$. For the converse, suppose $X \not\leq_F Y$. Then $X \setminus Y \in F^+$, and there is $n < \omega$ with $X \setminus Y \subseteq U_n$. We have $X \subseteq U_n$ but $Y \nsubseteq U_n$, so $n \in I_X \setminus I_Y$ and $I_X \nsubseteq I_Y$.

If X is compatible with Y, then there is $Z \leq_F X, Y$. We may assume $Z \subseteq X \cap Y$, then $I_Z \subseteq I_X \cap I_Y$, so $I_X \cap I_Y \neq \emptyset$. For the converse, if $I_X \cap I_Y \neq \emptyset$, take $n \in I_X \cap I_Y$. Then $X, Y \subseteq U_n$, so $X \cap Y \subseteq U_n$. Hence $X \cap Y \in F^+$, and we have $X \cap Y \leq_F X, Y$. □

Claim 3.5. \mathbb{P}_F has the c.c.c., and has a dense subset of size $\leq 2^\omega$.

Proof. Take an uncountable family $\{X_\alpha \mid \alpha < \omega_1\} \subseteq \mathbb{P}_F$. Since $I_{X_\alpha} \subseteq \omega$, there must be $\alpha < \beta < \omega_1$ with $I_{X_\alpha} \cap I_{X_\beta} \neq \emptyset$. Hence X_α is compatible with X_β by Claim 3.4.
For $X, Y \in \mathbb{P}_F$, define $X \approx Y$ if $X \leq_F Y$ and $Y \leq_F X$. By Claim 3.4, $X \approx Y$ if and only if $I_X = I_Y$. Hence there are at most 2^ω many equivalence classes, and we can take a dense subset in \mathbb{P}_F of size $\leq 2^\omega$.

From now on, we identify \mathbb{P}_F with its dense subset of size $\leq 2^\omega$.

Now, we know that F is ω_1-complete and ω_1-saturated. Hence F is precipitous by Fact 3.2. Take a (V, \mathbb{P}_F)-generic G, and let $j : V \rightarrow \text{Ult}(V, G)$ be the generic elementary embedding induced by G. Since F is precipitous, we can identify $\text{Ult}(V, G)$ with its transitive collapse M. For a map $f : \mathcal{P}_\kappa \lambda \rightarrow V$ with $f \in V$, let $[f]$ be the equivalence class of f by G. If $id : \mathcal{P}_\kappa \lambda \rightarrow \mathcal{P}_\kappa \lambda$ is the identity map, then we have $j[id] \subseteq j[\mathcal{P}_\kappa \lambda]$ because F is a fine filter. Moreover $\lambda \leq ||id||^M < j(\kappa)$.

Let μ be the critical point of j. μ is regular uncountable in V. Since \mathbb{P}_F has the c.c.c., μ remains regular in $V[G]$, and so does in M.

Claim 3.6. μ is weakly Mahlo in V.

Proof. Let $C \subseteq \mu$ be a club in μ with $C \in V$. Then $\mu \in j(C)$, hence it holds that the statement “$j(C)$ contains a regular cardinal” in M. By the elementarity of j, C contains a regular cardinal in V.

Note that μ is in fact weakly μ-Mahlo.

Claim 3.7. For every cardinal ν, we have $(2^\nu)^V = (2^\nu)^{V[G]}$.

Proof. Since \mathbb{P}_F has a dense subset of size $(2^\omega)^F$ and has the c.c.c., there are at most $(2^\omega)^\omega$-many antichains in \mathbb{P}_F, and at most $(2^\omega)^\nu = (2^\nu)^V$ many canonical names for subsets of ν. Hence we have $(2^\nu)^V = (2^\nu)^{V[G]}$.

Thus for each cardinal ν, we can let 2^ν denote $(2^\nu)^V$ and $(2^\nu)^{V[G]}$. In addition, since \mathbb{P}_F has the c.c.c., we have $(\nu^+)^V = (\nu^+)^{V[G]}$ for every cardinal ν, and we can let ν^+ denote $(\nu^+)^V$ and $(\nu^+)^{V[G]}$. Note that $(\nu^+)^M \leq \nu^+$ for every cardinal ν.

Claim 3.8. $j(2^\omega) < (2^\omega)^+ = j((2^\omega)^+) < \kappa$.

Proof. If $j(2^\omega) \geq (2^\omega)^+$, then M has at least $(2^\omega)^+$ many subsets of ω, so we have $(2^\omega)^{V[G]} \geq (2^\omega)^+$, this contradicts to the previous claim, and we have $j(2^\omega) < (2^\omega)^+$. Thus $(2^\omega)^+ \leq j((2^\omega)^+) = j(j(2^\omega)^+) = j(2^\omega)^+ \leq (2^\omega)^+$, so we have $j((2^\omega)^+) = (2^\omega)^+$.

Finally, since $(2^\omega)^+ \leq (2^\omega)^+ \leq \lambda$, we have $j((2^\omega)^+) = (2^\omega)^+ \leq \lambda < j(\kappa)$. Then $(2^\omega)^+ < \kappa$ by the elementarity of j.

We completes the proof by showing the following:

Claim 3.9. $\mu < 2^\omega$.

Proof. Note that $j(\mu) > \mu^+$ since $\mathcal{P}(\mu)^V \subseteq \mathcal{P}(\mu)^M$ and $j(\mu)$ is a limit cardinal in M.

7
Since \(j(2^\omega) < (2^\omega)^+ \), we have \(\mu \neq 2^\omega \). Next we show \(2^\omega > \mu \). If not, then \(2^\omega < \mu \). Take \(X \in G \) such that \(X \models \text{“the critical point of } j \text{ is } \mu \” \). Then the filter \(F \upharpoonright X \) is in fact \(\mu \)-complete. We use the following well-known fact by Tarski:

Fact 3.10 (Tarski, e.g. see Kanamori [8]). Let \(S \) be an uncountable set, and \(F \) a filter over \(S \). If \(F \) is \((2^\omega)^+\)-complete and \(\omega_1\)-saturated, then there is \(Y \in F^+ \) such that \(F \upharpoonright Y \) is a unltrafilter.

Since \(2^\omega < \mu \), by Tarski’s theorem there is \(Y \in (F \upharpoonright X)^+ \) such that \(F \upharpoonright Y \) is a unltrafilter. Hence \(F \upharpoonright Y = U_n \) for some \(n \), and \(U_n \) is \(\mu \)-complete. This is a contradiction. \(\square \)

Lemma 3.11. Let \(X \) be a countably tight \(T_1 \) space. Then there is a countably tight normal \(T_1 \) space \(Y \) with \(t(Y_\delta) = t(X_\delta) \).

Proof. Fix a point \(p^* \in X \) such that there is \(A \subseteq X \) with \(p^* \in \overline{A}^\delta \), but no \(B \subseteq A \) with \(|B| < t(X_\delta) \) and \(p \in \overline{B}^\delta \). Let \(Y \) be the space \(X \) equipped with the following topology:

1. Every \(q \in X \setminus \{p^*\} \) is isolated in \(Y \).
2. A local base for \(p^* \) in \(Y \) is the same to in \(X \).

It is easy to check that \(Y \) is a countably tight normal \(T_1 \) space with \(t(Y_\delta) = t(X_\delta) \). \(\square \)

Now we have the theorems.

Corollary 3.12. There is a countably tight normal \(T_1 \) space \(X \) such that \(t(X_\delta) > 2^\omega \).

Proof. Let \(\kappa = (2^\omega)^+ \). \(\kappa \) is not \(\omega_1 \)-strongly compact, and there is \(\lambda \geq \kappa \) such that \(\mathcal{P}_{\kappa \lambda} \) has no \(\omega_1 \)-complete fine ultrafilter. \(\lambda \) can be arbitrary large, so we may assume \(\lambda > 2^\kappa \). By Proposition 2.2 and Lemmas 3.1, 3.11, it is easy to show that for every countable family \(\{U_n \mid n < \omega\} \) of fine ultrafilters over \(\mathcal{P}_{\kappa \lambda} \) and \(X \in F^+ = (\bigcap_{n<\omega} U_n)^+ \), the filter \(F \upharpoonright X \) is \(\omega_1 \)-incomplete. Let \(I = \{n < \omega \mid X \in U_n\} \). Then it is easy to check that \(F \upharpoonright X = \bigcap_{n \in I} U_n \). Because \(\kappa = (2^\omega)^+ \), we know that \(\bigcap_{n \in I} U_n \) is \(\omega_1 \)-incomplete by Proposition 3.3. \(\square \)

Corollary 3.13. Suppose there is no weakly Mahlo cardinal \(< 2^\omega \).

1. If there is no \(\omega_1 \)-strongly compact cardinal, then for every cardinal \(\nu \), there is a countably tight normal \(T_1 \) space \(X \) such that \(t(X_\delta) \geq \nu \).
2. If \(\kappa \) is the least \(\omega_1 \)-strongly compact cardinal, then for every cardinal \(\nu < \kappa \), there is a countably tight normal \(T_1 \) space \(X \) such that \(t(X_\delta) \geq \nu \).
Proof. If κ is not ω_1-strongly compact, there is a large $\lambda > \kappa$ such that $\mathcal{P}_\kappa \lambda$ cannot carry an ω_1-complete fine ultrafilter. By the assumption and Proposition 3.3, there is no countable family of fine ultrafilters $\{U_n \mid n < \omega\}$ over $\mathcal{P}_\kappa \lambda$ with $\bigcap_{n < \omega} U_n$ ω_1-complete. Again, by Proposition 2.2 and Lemmas 3.1, 3.11 we can take a countably tight normal T_1 space X with $t(X_\delta) \geq \kappa$. □

Question 3.14. Is the equality that “the least ω_1-strongly compact $= \sup\{t(X_\delta) \mid X$ is countably tight normal (regular) $T_1\}$” provable from ZFC without any assumptions?

Question 3.15. In the theorems, can we replace “countably tight” by “Fréchet-Urysohn”? For instance, is there a ZFC-example of a Fréchet-Urysohn space X with $t(X_\delta) > 2^\omega$?

Note that our space $C_p(\text{Fine}(\mathcal{P}_\kappa \lambda))$ is not Fréchet-Urysohn; It is known that for a compact Hausdorff space Y, $C_p(Y)$ is Fréchet-Urysohn if and only if Y is scattered (Pytkeev [10], Gerlits [7]). However the space $\text{Fine}(\mathcal{P}_\kappa \lambda)$ is not scattered.

Acknowledgements. This research was supported by JSPS KAKENHI Grant Nos. 18K03403 and 18K03404.

References

[1] A. Bella, S. Spadaro, Cardinal invariants for the G_δ-topology. To appear in Colloquium Mathematicum.
[2] A. V. Arhangel’skii, On some topological spaces that arise in functional analysis, Russian Math. Surveys Vol. 31, No. 5 (1976), 14–30.
[3] J. Bagaria, M. Magidor, Group radicals and strongly compact cardinals. Trans. Am. Math. Soc. Vol. 366, No. 4 (2014), 1857–1877
[4] J. Bagaria, M. Magidor, On ω_1-strongly compact cardinals. J. Symb. Logic Vol. 79, No. 1 (2014), 268–278.
[5] A. Dow, I. Juhász, L. Soukup, Z. Szentmiklóssy, W. Weiss, On the tightness of G_δ-modifications. To appear in Acta Mathematica Hungarica.
[6] M. Foreman, Ideals and generic elementary embeddings. Handbook of set theory. Vols. 1, 2, 3, 885–1147, Springer, 2010.
[7] J. Gerlits, Some properties of $C(X)$. II. Topology Appl. 15 (1983), no. 3, 255–262.
[8] A. Kanamori, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings. Springer-Verlag, 1994.
[9] E. G. Pytkeev, The tightness of spaces of continuous functions, Russian Math. Survey Vol. 37, No.1 (1982), 176–177.
[10] E. G. Pytkeev, Sequentiality of spaces of continuous functions, Russian Math. Survey Vol. 37, No.5 (1982), 190–191.
[11] T. Usuba, G_δ-topology and compact cardinals. To appear in Fundamenta Mathematicae.

(T. Usuba) Faculty of Fundamental Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku, Tokyo, 169-8555 Japan
E-mail address: usuba@waseda.jp