Systemic inflammation is negatively associated with early post discharge growth following acute illness among severely malnourished children - a pilot study [version 1; peer review: awaiting peer review]

James M. Njunge¹,², Gerard Bryan Gonzales³, Moses M. Ngari¹,², Johnstone Thitiri¹,², Robert H.J. Bandsma¹,⁴, James A. Berkley¹,²,⁵

¹The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
²KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
³Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
⁴Centre for Global Child Health, The Hospital for Sick Children, Toronto, Ontario, Canada
⁵Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK

Abstract

Background: Rapid growth should occur among children with severe malnutrition (SM) when medically and nutritionally treated. Systemic inflammation (SI) is associated with death among children with SM and is negatively associated with linear growth. However, the relationship between SI and weight gain during therapeutic feeding following acute illness is unknown. We hypothesised that growth in the first 60 days post-hospital discharge is associated with SI among children with SM.

Methods: We conducted secondary analysis of data from HIV-uninfected children with SM (n=98) who survived and were not readmitted to hospital during one year of follow up. We examined the relationship between changes in absolute deficits in weight and mid-upper-arm circumference (MUAC) from enrolment at stabilisation to 60 days later and untargeted plasma proteome, targeted cytokines/chemokines, leptin, and soluble CD14 (sCD14) using multivariate regularized linear regression.

Results: The mean change in absolute deficit in weight and MUAC was -0.50kg (standard deviation; SD±0.69) and -1.20cm (SD±0.89), respectively, from enrolment to 60 days later. During the same period, mean weight and MUAC gain was 3.3g/kg/day (SD±2.4) and 0.22mm/day (SD±0.2), respectively. Enrolment inflammatory cytokines interleukin 17 alpha (IL17α), interleukin 2 (IL2), and serum amyloid P (SAP) were negatively associated with weight and MUAC gain. Lipopolysaccharide binding protein (LBP) and complement component 2 were negatively associated with weight gain only. Leptin was...
positively associated with weight gain. sCD14, beta-2 microglobulin (β2M), and macrophage inflammatory protein 1 beta (MIP1β) were negatively associated with MUAC gain only.

Conclusions: Early post-hospital discharge weight and MUAC gain were rapid and comparable to children with uncomplicated SM treated with similar diet in the community. Higher concentrations of SI markers were associated with less weight and MUAC gain, suggesting inflammation negatively impacts recovery from wasting. This finding warrants further research on the role of inflammation on growth among children with SM.

Keywords
severe malnutrition, child growth, weight, mid-upper arm circumference, anthropometric deficit, inflammation, cytokines, proteome

Corresponding author: James M. Njunge (njunge@kemri-wellcome.org)

Author roles: Njunge JM: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Gonzales GB: Formal Analysis, Investigation, Methodology, Writing – Review & Editing; Ngari MM: Data Curation, Investigation, Methodology, Resources, Writing – Review & Editing; Thitiri J: Resources, Writing – Review & Editing; Bandsma RHJ: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Resources, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the Wellcome Trust through an MRC/DfID/Wellcome Trust Global Health Trials Scheme grant to J.A.B. [MR/M007367/1]. J.M.N., M.M.N., E.N., J.T., R.H.J.B. and J.A.B. and laboratory costs were supported by the Bill and Melinda Gates Foundation [OPP1131320].

Copyright: © 2020 Njunge JM et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Njunge JM, Gonzales GB, Ngari MM et al. Systemic inflammation is negatively associated with early post discharge growth following acute illness among severely malnourished children - a pilot study [version 1; peer review: awaiting peer review] Wellcome Open Research 2020, 5:248 https://doi.org/10.12688/wellcomeopenres.16330.1

First published: 22 Oct 2020, 5:248 https://doi.org/10.12688/wellcomeopenres.16330.1
Introduction

In 2018, approximately 50.5 million children under five years old globally were wasted, of which 16 million were severely wasted\(^1\). Wasting is associated with elevated mortality, mainly due to susceptibility to infectious diseases\(^2\)-\(^4\). Current guidelines recommend that children with severe wasting or oedematous malnutrition who are acutely ill (complicated severe malnutrition; CSM) are initially medically treated and nutritionally stabilised as inpatients. Once stabilised, they are treated with high protein and energy feeds in the form of ready-to-use therapeutic foods (RUTF) to achieve catch-up weight gain as outpatients\(^5\)-\(^7\).

Severely malnourished children admitted to hospital with acute illness may suffer relapse, readmission, or death after discharge from hospital\(^8\)-\(^10\) and are at risk of impaired neurocognitive development\(^11\)-\(^13\). Children may return to household settings of poverty, social disadvantage, environmental contamination, and inadequate access to healthcare\(^14\)-\(^16\). Enhanced prevention of recurrent illnesses over longer periods following hospitalisation and improved dietary quality have been suggested as opportunities to improve growth\(^17\)-\(^19\).

RUTF was designed to fulfil 100% of the nutritional needs of children recovering from SM and may theoretically enable weight gain of up to 20 g/kg/day\(^2\). The weight gain velocity is usually high at the start of the therapeutic feeding, then decreases and plateaus\(^26\)-\(^28\). Weight gain may be affected by comorbidities such as HIV or other chronic infections but may also be related to intestinal or systemic inflammation (SI), leading to reduced appetite, nutrient malabsorption, and metabolic changes\(^20\)-\(^23\).

SI is demonstrable at the time of hospital discharge in children with SM\(^26\). However, it is not known how long inflammation persists or what its effects are on weight gain. SI is known to suppress linear growth indirectly through the growth hormone/insulin growth factor 1 (GH/IGF1) axis, and directly through effects on long bone growth plate chondrocytes\(^24\)-\(^26\). Besides linear growth, SI may affect gain in adipose and muscle through promoting a persistent catabolic state and dysregulation of the usual hormonal and metabolic processes of these tissues\(^27\)-\(^29\).

Both nutrient scarcity and acute illness are associated with a catabolic state\(^30\) with negative effects on the body’s storage organs, mainly adipose and muscle. During refeeding of children with SM, significant systemic metabolic shifts are observed that relate to the muscle, liver, and the adipose tissue among others\(^31\)-\(^33\). We therefore hypothesised that among children with SM treated in hospital for an acute illness, weight gain is associated with SI. The objective of this study was to investigate the relationship between plasma proteomic and cytokine profiles and weight gain among HIV negative children with SM in the first 60 days of post-hospital discharge following medical stabilisation.

Methods

Ethics approval and consent to participate

The trial was approved by the Kenya National Ethical Review Committee (SSC 1562) and the Oxford Tropical Research Ethics Committee (OXTREC reference 18-09). Secondary analyses were approved by the Scientific and Ethical Review Unit (SERU 2782). The trial was registered at clinicaltrials.gov (NCT00934492, 8th July 2009). Informed consent for data and sample collection, storage, and future research had been obtained from mothers or guardians of study participants during recruitment to the trial.

Study design and patient recruitment

This was a secondary analysis of data from a nested case control study\(^34\) within a clinical trial (NCT00934492) that tested the efficacy of daily co-trimoxazole prophylaxis in reducing post-discharge mortality among HIV-uninfected children aged 2–59 months hospitalised with CSM in two urban (Mombasa and Nairobi) and two rural (Kilifi and Malindi) hospitals in Kenya\(^35\). Children were included in the trial if they had mid-upper-arm circumference (MUAC) <11.5cm if aged ≥6 months and <11.0cm if aged 2–5 months or had oedematous malnutrition; and had a negative HIV rapid-antibody test; and had completed the stabilisation phase of treatment as defined in WHO guidelines. Children were enrolled just prior to discharge from hospital. Discharge was according to WHO guidelines, based on clinical recovery rather than achieving an anthropometric threshold. At hospital discharge, nutritional counselling was given to caregivers, along with RUTF dosed as per WHO and Kenyan guidelines, and families were actively referred to community-based management of acute malnutrition (CMAM) centres located either at the hospital or in community facilities to continue therapeutic feeding. Children were actively followed up for 12 months, monthly in the first six months, and at months eight, 10 and 12. Study participants were traced at home if they defaulted and loss to follow-up was minimal (≤5%). The trial intervention had no overall effect on reducing mortality or hospital readmission.

Participants selected for this study had served as controls in a previous case control study\(^36\). Briefly, the case to control ratio in the case control study was 1:1 and there were 121 cases (deaths) that were analysed that had sufficient samples from among 147 deaths that had occurred within the first 60 days of enrolment into the trial. Control children (n=120) had been randomly selected without replacement amongst 1119 children who survived and were not readmitted to hospital during 12 months of trial follow up using the ‘sample’ command in STATA (version 15.1, TX, USA). For this study, 12 children who were oedematous at enrolment and another 10 children that lacked anthropometry data at month 2 to month 6 were excluded from the analysis. We therefore analysed data for 98 children in which plasma proteomic and cytokine measurements had been done on enrolment samples.
Data sources and measurements

During enrolment and at follow-up, child and caregiver demographic characteristics, immunisation status, clinical examination, admission diagnoses, chronic conditions, and anthropometry (weight, height or length, MUAC) were collected. Weight was measured with the use of an electronic scale (Seca 825), length or height with the use of an infantometer (Seca 416) or stadiometer (Seca 215), and MUAC with the use of insertion tape (TALC). The WHO (2006) growth references were used to calculate Z scores.

Proteomics and cytokines measurement in plasma

Untargeted plasma proteomics were measured by liquid chromatography tandem mass spectrometry and targeted cytokines, chemokines, leptin and soluble CD14 by Luminex and ELISA as previously described.

Bioinformatics and statistical analysis

The primary and secondary outcomes were the change in absolute deficits in weight (DWAD) and MUAC (DMAD), respectively, from enrolment to 60 days. Absolute deficit was defined as the median value for age according to WHO growth charts minus the child’s measured value. Absolute deficit was used rather than Z scores for weight-for-age (WAZ) or weight-for-height (WHZ) because changes in standard deviation across age or length makes them less appropriate for measuring changes over time among children of different ages.

Exposure variables were the plasma proteome, leptin, sCD14 and a panel of targeted cytokines that are markers of inflammation and immune activation. Regression models were adjusted for age, sex, randomisation and site, whilst regression to the mean was addressed by including enrolment anthropometric values in the regression models. We hypothesised that proteins measured at baseline would have their strongest effect on early growth (within 60 days) than at later time points. We conducted the analysis in the R statistical software version 3.6.2 and performed a multivariate regularized linear regression analysis using an elastic net (EN) model implemented using the ‘glmnet’ package. This package fits a generalized linear model via penalized maximum likelihood. EN is a penalized regression approach and integrates two regularized approaches, ridge regression and LASSO (Least Absolute Shrinkage and Selection Operator), wherein the contribution of each of these models to the final EN model is controlled by the α parameter. The EN penalty is controlled by α and bridges the gap between LASSO (α=1, the default) and ridge (α=0). The tuning parameter lambda (λ) that controls the overall strength of the penalty was determined using five-fold cross validation. The strong penalization imposed by LASSO draws non-predictive coefficients to zero, thereby eliminating proteins from the models, whereas ridge regression addresses potential multi-collinearity problems in high-dimensional data. Possible α and lambda values. The best α and lambda values are those values that minimize the cross-validation error. EN model generation was performed separately for each growth outcome: change in Weight Absolute Deficit (DWAD) (primary outcome) and change in MUAC Absolute Deficit (DMAD) (secondary outcome), with protein profiles, cytokines, and enrolment anthropometric variables as predictors. The subset of variables assigned non-zero coefficients were considered optimal and were retained in each of the final multi-variable models. Finally, bootstrapping was used to evaluate the robustness of selected proteins at 1000 iterations using the ‘BootValidation’ package in R on the elastic net model with the optimized regularization value (α=0.5) and analytes selected by the model for more than 60% of times were considered as important protein features.

Results

Characteristics of study participants

Study participants’ characteristics are shown in Table 1. At enrolment, 89% of the children were over six months of age. Children were also severely stunted at enrolment and this was unchanged after 60 days despite large MUAC and weight gains with nutritional rehabilitation (all P<0.01). Haemoglobin, total white blood cell count, and lymphocyte count increased, while neutrophil and platelet counts decreased between enrolment and 60 days (P<0.01) (Table 1).

Children have higher growth rates during the first two months post-discharge

Overall, mean weight gain for 60 days was 3.3g (SD: ±2.4) per kilogram per day. The mean MUAC and length/height gains for 60 days were 0.22mm (SD: ±0.2) per day and 0.34mm (SD: ±0.25) per day, respectively (Table 2). Changes in weight and MUAC during enrolment to 60 days were larger than during days 61–120 and days 121–180 (p<0.01) (Table 2). Differences in height between enrolment to 60 days were not significantly different from days 61–120 or days 121–180 (both p>0.1) (Table 2).

The mean change in absolute deficits in weight (DWAD) and MUAC (DMAD) were -0.5kg (SD: ±0.69) and -1.20cm (SD: ±0.89), respectively, and these were higher in the first 60 days when compared to the periods between 61–120 days or 121–180 days (P<0.001). There was a significant difference in the change in height deficit (DHAD) between the first 60 days and 61–120 days (P=0.03) but not at 121–180 days (P=0.08).

Inflammatory cytokines and proteins are negatively associated with change in growth deficit at two months

Change in weight absolute deficit (DWAD). In the multivariate elastic net (EN) regularized regression model adjusted for confounders, inflammatory cytokines interleukin 17 alpha (IL17a) and interleukin 2 (IL2), complement component 2 (C2), lipopolysaccharide binding protein (LBP), amyloid P component, serum (APCS or SAP), among others were negatively associated with DWAD in the first 60 days (Figure 1a). Further, our analysis showed that the adipokine leptin was positively associated with DWAD (Figure 1a).
Inflammatory cytokines IL17a, IL2, and MIP1B were negatively associated with DMAD in the first 60 days (Figure 1b). Angiotensinogen (AGT), the precursor of all angiotensin peptides; soluble CD14 (sCD14), a co-receptor for the detection of bacterial lipopolysaccharide (LPS); beta-2 microglobulin (β2M), a component of MHC class I molecules which are present on all nucleated cells; and SAP, were negatively associated with DMAD (Figure 1b).

Only IL17a, IL2, and SAP were associated with both DWAD and DMAD (Figure 1c) even though these two anthropometric measurements were significantly correlated as shown in Figure 1d. Both models were significantly associated to

Table 1. Characteristics of study participants.
Characteristic

Demographics
Median age (mo.) at enrolment [IQR]
Girls (n) %
Born prematurely (%)
Born underweight n (%)
Recruitment hospital
Kilifi County Hospital n (%)
Coast General Hospital n (%)
Malindi Subcounty Hospital n (%)
Mbagathi County Hospital n (%)
Randomized to co-trimoxazole n (%)
Anthropometry
Weight (kg), mean ±SD
MUAC (cm), mean ±SD
Height (cm), mean ±SD
Weight absolute deficit (kg), mean ±SD
MUAC absolute deficit (cm), mean ±SD
Height absolute deficit (cm) mean ±SD
WAZ, mean ±SD
WHZ, mean ±SD
HAZ, mean ±SD
Full blood count
Haemoglobin g/dl mean ±SD
WBC count (x10³/L) – median (IQR)
Lymphocyte count (x10³/L) – median (IQR)
Neutrophil count (x10³/L) – median (IQR)
Platelet count (x10³/L) – median (IQR)

mo. = months, n = number of study participants, SD = standard deviation, IQR = interquartile range, \(P_{\text{adj}}\) = P value adjusted for age, sex, randomisation arm, and the site of enrolment, MUAC = mid-upper-arm circumference, WAZ = weight for age z score, WHZ = weight for height z score, HAZ = height for age z score, WBC = white blood cell.
their respective growth outcome, accounting for just over half of the variability in growth (DWAD $r^2=0.51$ and DMAD $r^2=0.57$, Table 3).

Bootstrap analysis. After 1000 bootstrap iterations, only IL17a was identified in >60% of the DWAD model repetitions (Figure 1e) indicating that this was the most robust feature associated with weight gain. Using similar iterations during bootstrap validation for the DMAD model, no features were extracted at the 60% threshold and the most frequently selected features were IL17a (55%), B2M (55%), AGT (49%), SAP (48%), and sCD14 (48%) as shown (Figure 1f).

Discussion

We investigated the relationship between inflammatory cytokines and plasma proteomic profiles and change in anthropometric deficits during the early post-hospital discharge period as this is the period most likely to be related to biological factors measured at discharge and when catch up in weight deficit is at its greatest. The mean weight gain rate of 3.3 g/kg/day observed was comparable to that reported for uncomplicated SM treated with a similar diet in the community. However, there were significant reductions in absolute deficits of weight and MUAC. Although markers of SI were negatively associated with growth in the early post-hospital discharge period, substantial growth did occur in the presence of markers of inflammation. It is likely that the large metabolic shifts observed during refeeding with energy dense therapeutic feeds favours tissue accretion even in the presence of SI. It is notable that despite absolute increases in height, there was no significant reduction in absolute deficit of height, indicating that catch-up growth mainly occurs in the adipose and muscle and not long bones. No comparable data on inflammatory markers are published from children with uncomplicated SM. However, lack of an acute illness means it is plausible that there is less systemic inflammation. Overall, our results indicate that growth is influenced by inflammation status.

Inflammatory cytokines IL17a, IL2, and MIP1B and inflammatory proteins sCD14, LBP, SAP, and β2M were negatively associated with weight gain and MUAC. IL17a is produced by T-helper 17 (Th17) cells that play a role in host defence against extracellular pathogens through recruitment of neutrophils and macrophages to infected tissues. IL17a is involved in tissue inflammation by release of other pro-inflammatory cytokines and inducing neutrophil chemotaxis and is implicated in obesity and adipogenesis. In humans, increased expression of IL17a has been reported in inflammatory bowel disease. sCD14 is secreted by monocytes and macrophages commonly in response to LPS translocation, while LBP is plasma protein that binds to the lipid A moiety of bacterial LPS. β2M is released by activated T and B lymphocytes and plasma β2M has been described as a predictive biomarker for many vascular inflammatory diseases. SAP is an acute phase protein and belongs to the pentraxins family of proteins that also includes C-reactive protein, which exhibit calcium-dependent binding to several different molecules and pathogens. Children included in this study were judged by trained clinicians as clinically stabilised following an acute illness and induction of these inflammatory cytokines and proteins likely results from induction by microbial molecules. Several of these cytokines are elevated in patients with inflammatory bowel disease and may reflect the presence of environmental enteric dysfunction, which is common in low- and middle-income countries, that is associated with linear growth failure.

Our results show that leptin was positively associated with growth. Leptin levels increase with accretion of adipose tissue mass and therefore leptin levels are related to body weight. Leptin was first recognized for its prominent action on the hypothalamus to control food intake, energy expenditure and, hence, body weight. It is also involved in immune homeostasis by differentially regulating T cells, enhancing Th1 and suppressing Th2 cytokine production, and reversing starvation-induced immunosuppression. Among Ugandan children hospitalised with SM, nutritional stabilisation and weight gain was associated with significant increases in leptin levels. However, it is worth noting that leptin levels which were

Table 2. Bimonthly anthropometric growth indices of children during the first 180 days post-hospital discharge.

Characteristic	Enrolment-60 days	61days-120days	p value 121days-180days	p value	
Δ Height (cm), mean ±SD	2.07±1.55	2.23±1.30	0.33	1.97±1.19	0.55
Δ Weight (kg), mean ±SD	1.08±0.70	0.58±0.50	<0.001	0.40±0.44	<0.001
Δ MUAC (cm), mean ±SD	1.33±0.89	0.51±0.65	<0.001	0.27±0.58	<0.001
ΔDMAD (kg), mean ±SD	-0.50±0.69	-0.10±0.48	<0.001	-0.05±0.43	<0.001
DMAD (cm), mean ±SD	-1.20±0.89	-0.39±0.66	<0.001	-0.18±0.58	<0.001
DHAD (cm), mean ±SD	-0.53±1.40	-0.08±1.23	0.03	-0.18±1.12	0.08

Δ = change, mo. = month, MUAC = mid-upper-arm circumference, DWAD = change in absolute deficits in weight, DMAD = change in absolute deficits in MUAC, DHAD = change in absolute deficits in height.

p value was derived from a paired t test between 0–60days and 61–120days or 121–180days values.
measured at hospital discharge may still be low among children with SM.

Proinflammatory signalling in the adipocyte is required for proper adipose tissue remodelling and expansion\(^8\) and recent studies suggest that low grade inflammation may play a positive role in weight gain in both children\(^8\) and adults\(^8\). In a population-based longitudinal study in the Brazilian Amazon among children ≤10 years, low-grade inflammation (c-reactive protein <1 mg/L at baseline) was predictive of annual gain in BMI-for-age during follow-up\(^8\). During refeeding, severely malnourished children may adopt an obesogenic metabolic phenotype, where tissue accretion occurs in the presence of inflammation and reflecting restoration of adipose tissue lost due to malnutrition\(^8\). However, inflammation increases energy expenditure and in animal studies focusing on increasing production, SI is attributed to inefficient nutrient utilization efficiency which translated to low gain in weight, implying that in that context, persistent inflammation negatively affects growth\(^8\)–\(^10\).
Table 3. Optimal alpha parameter and correlation coefficients for the EN model enumerating the correlation between anthropometric variables DWAD and DMAD and exposure protein variables (plasma proteome, leptin, sCD14 and cytokine data) extracted by the multivariate regularized models.

EN Variable	Optimal alpha	R²	[95% CI]	P value
DWAD	0.5	0.51	0.34 – 0.64	<0.0001
DMAD	0.5	0.57	0.41 – 0.69	<0.0001

EN = elastic net, DWAD = change in absolute deficits in weight, DMAD = change in absolute deficits in mid-upper-arm circumference, CI = confidence interval.

The limitations of this study include the relatively small sample size, the lack of serial measurements of inflammatory markers and body composition, and that children with oedema were excluded from the analysis. This study was carried out at four sites in Kenya only. Every child was tested for HIV, enabling us to exclude its effect. Important nutritional factors, hormones and growth factors, and metabolites which would have contributed further to the understanding of the relationship between SI and growth were not determined. Molecules such as LPS that would explain elevated SI were not determined and were beyond the scope of this study. The untargeted proteomics and targeted Luminex and ELISA approaches used in this study provided a broad array of protein molecules from which to identify molecules associated with early post-hospital discharge growth.

Conclusions

Among children with SM, early post-hospital discharge catch-up growth in weight and MUAC is rapid. Higher concentrations of markers of SI were associated with less weight and MUAC gain, suggesting inflammation negatively impacts recovery from wasting. Our results indicate that growth is influenced by inflammation status and warrants further research on the role of inflammation on growth among children with SM.

Data availability

Underlying data

Specific variables such as personal identifiers and the longitude and latitude co-ordinates of study participants were removed to enhance participant anonymisation and can be accessed following application to our Data Governance Committee at dgc@kemri-wellcome.org. The replication data and analysis scripts for this manuscript are available from the Harvard Dataverse.

Harvard Dataverse: Replication data for: Systemic Inflammation is Negatively Associated with Early Post Discharge Growth following Acute Illness among Severely Malnourished Children- a Pilot Study. https://doi.org/10.7910/DVN/5DKLVI9.

This project contains the following underlying data:

- (a) Njunge_CTX_15092020.dta
- (b) Njunge_CTX_15092020.csv

Both (a) and (b) files contain similar information. The files contain anthropometric measurements at the time of hospital discharge and during follow up months 1, 2, 3, 4, 5, 6, 8, 10, and 12. A full blood count at enrolment, 2, 6, and 12 months. The two files were generated using STATA/IC (version 15.1; StataCorp, College Station, TX, USA)

- Njunge_Inflammation_Codebook.pdf: It contains a list of all the variables in the two datasets and their description.

Extended data

Harvard Dataverse: Replication data for: Systemic Inflammation is Negatively Associated with Early Post Discharge Growth following Acute Illness among Severely Malnourished Children- a Pilot Study. https://doi.org/10.7910/DVN/5DKLVI9.

This project contains the following extended data:

- Njunge_EN_Glmnet_bootValidation.R: This analysis script uses Njunge_CTX_15092020.csv to perform multivariate regularized linear regression analysis using an elastic net (EN) model implemented using the “glmnet” package and fits a generalized linear model via penalized maximum likelihood. It generates an EN model separately for each growth outcome (change in Weight Absolute Deficit(DWAD) (primary outcome) and change in MUAC Absolute Deficit (DMAD) (secondary outcome), with protein profiles, cytokines, and enrolment anthropometric variables as predictors. The subset of variables assigned non-zero coefficients are retained in each of the final multi-variable models. It then performs Bootstrapping to evaluate the robustness of selected proteins at 1000 iterations using the ‘BootValidation’ package. The analysis was performed using R Studio (R version 3.6.2 (2019-12-12))

- Njunge_Stata_Do.do: This analysis script uses Njunge_CTX_15092020.dta to generate the summary participants characteristics at enrolment and at 2 months and calculate the changes in anthropometry

- NjungeJM_Inflammation_Readme.txt: It contains description of the related study, file contents, data license and usage instructions.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements

We thank the study participants, their families, the four study hospitals, and the clinical staff at the KEMRI-Wellcome Trust Programme.

This paper is published with the permission of the Director of the Kenya Medical Research Institute.
References

1. UNICEF/WHO/World Bank: Levels and trends in child malnutrition. 2017.
2. Report, GN: The Global Nutrition Report. 2018.
3. Black RE, Victora CG, Walker SP, et al.: Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013; 382(9880): 427–451.

Publisher Abstract | Publisher Full Text

4. Jeon P, Mohammed S, Mwangi J, et al.: Fraction of all hospital admissions and deaths attributable to malnutrition among children in rural Kenya. Am J Clin Nutr 2008; 88(6): 1626–1631.

Publisher Abstract | Publisher Full Text | Free Full Text

5. Li L, et al.: Global, regional, and national causes of under-5 mortality in 2005–15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016; 388(10063): 3027–3035.

Publisher Abstract | Publisher Full Text | Free Full Text

6. WHO: WHO Guidelines Approved by the Guidelines Review Committee. (World Health Organization, Geneva, 2013.

Reference Source

7. WHO: Pocket Guide of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses. Guidelines for the management of common illnesses, 2013: 412.

Reference Source

8. Berkley JA, Ngari M, Thitriri J, et al.: Daily co-trimoxazole prophylaxis to prevent mortality in children with complicated acute malnutrition: a multicentre, double-blind, randomised placebo-controlled trial. Lancet Glob Health. 2015; 4(7): e464–e473.

Publisher Abstract | Publisher Full Text | Free Full Text

9. Moisi JC, Gataaka H, Berkley JA, et al.: Excess child mortality after discharge from hospital in Kilifi, Kenya: a retrospective cohort analysis. Bull World Health Organ. 2011; 89(10): 725-732, 732A.

Publisher Abstract | Publisher Full Text | Free Full Text

10. Ngari MM, Ivensen PO, Thitriri J, et al.: Linear growth following complicated severe malnutrition: 1-year follow-up cohort of Kenyan children. Arch Dis Child 2019; 104(3): 229–235.

Publisher Abstract | Publisher Full Text | Free Full Text

11. Ngari MM, Maweleka L, Timbiwa M, et al.: Changes in susceptibility to life-threatening infections after treatment for complicated severe malnutrition in Kenya. Am J Clin Nutr 2018; 107(4): 626–634.

Publisher Abstract | Publisher Full Text | Free Full Text

12. Stobbaugh HC, Mayberry A, McGrath M, et al.: Relapse after severe acute malnutrition: A systematic literature review and secondary data analysis. Matern Child Nutr 2019; 15(2): e12702.

Publisher Abstract | Publisher Full Text | Free Full Text

13. Nemetchek B, English L, Kissoon N, et al.: Paediatric postdischarge mortality in developing countries: a systematic review. BMJ Open 2018; 8(12): e023445.

Publisher Abstract | Publisher Full Text | Free Full Text

14. Kar BR, Rao SL, Chandramouli BA: Cognitive development in children with chronic protein energy malnutrition. Behav Brain Funct. 2008: 4; 31–31.

Publisher Abstract | Publisher Full Text | Free Full Text

15. Prado EL, Dewey KG: Nutrition and brain development in early life. Nutr Rev. 2014; 72(10): 627-284.

Publisher Abstract | Publisher Full Text | Free Full Text

16. Gladstone M, Malleva M, Jailho J, et al.: Assessment of Neurodisability and Malnutrition in Children in Africa. Semin Pediatr Neurol. 2014; 21(1): 50-57.

Publisher Abstract | Publisher Full Text | Free Full Text

17. Millward D: Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Rev 2017; 75(10): 50–72.

Publisher Abstract | Publisher Full Text | Free Full Text

18. Jones AD, Rukoboo S, Chawessa B, et al.: Acute illness is associated with suppression of the growth hormone axis in Zimbabwean infants. Am J Trop Med Hyg. 2015; 92(2): 463-470.

Publisher Abstract | Publisher Full Text | Free Full Text

19. Mata LJ, Krommal RA, Garcia B, et al.: Breast-feeding, weaning and the diarrhoea syndrome in a Guatemalan Indian village. Ciba Found Symp. 1976; (42): 311–338.

Publisher Abstract | Publisher Full Text | Free Full Text

20. Tanner JM: Growth as a measure of the nutritional and hygienic status of a population. H popul. Res. 1992; 38(Suppl 1): 106–115.

Publisher Abstract | Publisher Full Text | Free Full Text

21. Millward D: Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Rev 2017; 75(10): 50–72.

Publisher Abstract | Publisher Full Text | Free Full Text

22. Prendergast AJ, Humphrey JH: The stunting syndrome in developing countries. Paediatr Int Child Health 2014; 34(4): 250–265.

Publisher Abstract | Publisher Full Text | Free Full Text | Free Full Text

23. Guerrant RL, Crià RB, Moore SR, et al.: Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev 2008; 66(9): 487-505.

Publisher Abstract | Publisher Full Text | Free Full Text

24. Cheekley W, Barkley Gillan, Gilman Robert H, et al.: Multi-country analysis of the effects of diarrhoea on childhood stunting. Int J Epidemiol. 2008; 37(4): 816–830.

Publisher Abstract | Publisher Full Text | Free Full Text

25. Cheekley W, Eastin LD, Gilman RH, et al.: Effects of Cryptosporidium parvum Infection in Peruvian Children: Growth Faltering and Subsequent Catch-up Growth. Am J Epidemiol. 1998; 148(5): 497–506.

Publisher Abstract | Publisher Full Text | Free Full Text

26. DeBoer MD, Scharf RJ, Leite AM, et al.: Systemic inflammation, growth factors, and linear growth in the setting of infection and malnutrition. Nutrition. 2017; 33: 248–253.

Publisher Abstract | Publisher Full Text | Free Full Text

27. Sandige H, Ndenka MJ, Briend A, et al.: Daily Treatment of Malnourished Malawian Children with Locally Produced or Imported Ready-to-Use Food. J Pediatr Gastroenterol Nutr. 2004; 39(2): 141–146.

Publisher Abstract | Publisher Full Text

28. Yebyo HG, Kendall C, Nigusse D, et al.: Outpatient therapeutic feeding program outcomes and determinants in treatment of severe acute malnutrition in tigray, northern ethiopia: a retrospective cohort study. PLoS One. 2012; 7(6): e55810.

Publisher Abstract | Publisher Full Text | Free Full Text

29. Kangas ST, Salpter C, Nikiema V, et al.: Impact of reduced dose of ready-to-use therapeutic foods in children with uncomplicated severe acute malnutrition: A randomised non-inferiority trial in Burkina Faso. PLoS Med. 2019; 16(8): e1002887.

Publisher Abstract | Publisher Full Text | Free Full Text

30. Linnenman Z, Matliksky D, Ndenka M, et al.: A large-scale operational study of home-based therapy with ready-to-use therapeutic food in childhood malnutrition in Malawi. Matern Child Nutr. 2007; 3(3): 206–215.

Publisher Abstract | Publisher Full Text | Free Full Text

31. Agayo VM, Bardpaiyani N, Qadir SS, et al.: Community management of acute malnutrition (CMAM) programme in Pakistan effectively treats children with uncomplicated severe wasting, Matern Child Nutr. 2018; 14 Suppl 4: Suppl 4: e12623.

Publisher Abstract | Publisher Full Text | Free Full Text

32. James PT, Van den Briel N, Rozet A, et al.: Low-dose RUTF protocol and improved service delivery lead to good programme outcomes in the treatment of uncomplicated SAM: a programme report from Myanmar. Matern Child Nutr. 2015; 11(4): 859-869.

Publisher Abstract | Publisher Full Text | Free Full Text

33. Burza S, Mahajan R, Marino E, et al.: Community-based management of severe acute malnutrition in India: new evidence from Bihar. Am J Clin Nutr. 2015; 101(4): 847–859.

Publisher Abstract | Publisher Full Text | Free Full Text

34. D’Souza J, Salam RA, Saeed M, et al.: Effectiveness of Interventions for Managing Acute Malnutrition in Children under Five Years of Age in Low-Income and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients. 2020; 12(4): 116.

Publisher Abstract | Publisher Full Text | Free Full Text

35. Jones KD, Thitriri J, Ngari M, et al.: Childhood malnutrition: toward an understanding of infections, inflammation, and antimicrobials. Food Nutr Bull. 2014; 35(2 Suppl): S64-70.

Publisher Abstract | Publisher Full Text | Free Full Text

36. Atta B, Versloot CJ, Voskuijl W, et al.: Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators Inflamm. 2015; 2015: 805172.

Publisher Abstract | Publisher Full Text | Free Full Text
41. Sharma K, Mogensen KM, Robinson MK: Pathophysiology of Critical Illness and Role of Nutrition. Nutrition in Critical Practice. 2019; 34(1): 12-22. Published Abstract | Publisher Full Text

42. Argiles JM, Lopez-Soriano FJ, Busquets S: Counteracting inflammation: a promising therapy in cachexia. Crit Rev Oncog. 2012; 17(3): 253-262. Published Abstract | Publisher Full Text

43. Bartz S, Mody A, Hornik C, et al.: Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab. 2014; 99(1): 2128-2137. Published Abstract | Publisher Full Text | Free Full Text

44. Di Giovanni V, Bourdon C, Wang DX, et al.: Metabolic Changes in Serum of Children with Different Clinical Diagnoses of Malnutrition. J Nutr. 2016; 146(12): 2436-2444. Published Abstract | Publisher Full Text | Free Full Text

45. Leroy JL, Ruel M, Habicht JP, et al.: Using height-for-age differences (HAD) instead of height-for-age z-scores (HAZ) for the meaningful measurement of population-level catch-up in linear growth in children less than 5 years of age. BMJ Pediatr. 2015; 15: 145–145. Published Abstract | Publisher Full Text | Free Full Text

46. Team RC: A language and environment for statistical computing. R Foundation for Statistical Computing. 2017. Reference Source

47. Friedman J, Hastie T, Tibshirani R: Regularization Paths for Generalized Linear Models. JStatSoftware. 2010; 33(1): 1-22. Published Abstract | Publisher Full Text

48. Zou H, Hastie T: Regularization and Variable Selection via the Elastic Net. J R Stat Soc Series B Stat Methodol. 2005; 67(2): 301-320. Publisher Full Text

49. Abram SV, Helwig NE, Mcdade OA, et al.: Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data. Front Neurosci. 2016; 10: 244–344. Published Abstract | Publisher Full Text | Free Full Text

50. Njunge JM, Gonzales GB, Ngi MM, et al.: Replication Data for: Systemic Inflammation is Negatively Associated with Early Post Discharge Growth following Acute Illness among Severely Malnourished Children- a Pilot Study. Harvard Dataverse, V1, UNF-6Q-JLq5jTU5TQX/8yD5/fileUNF4020. http://www.doi.org/10.7910/DVN/5DLKV

51. Isanaka S, et al.: Routine Amyloidosis for Uncomplicated Severe Acute Malnutrition in Children. N Engl J Med. 2016; 374(5): 444-453. Published Abstract | Publisher Full Text

52. Halaas JL, Boozer C, Blair-West J, et al.: Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. J Pediatr. 2009; 154(4): 455–460. Publisher Full Text

53. Kitchens RL, Thompson PA: Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J Endotoxin Res. 2005; 11(4): 225–229. Published Abstract | Publisher Full Text

54. Schumann R, Leong SR, Flagg GW, et al.: Structure and function of lipopolysaccharide binding protein. Science. 1990; 248(5975): 1420–1431. Published Abstract | Publisher Full Text

55. Huy Fu, Wu J, Tang Q, et al.: Serum h2-Microglobulin is Closely Associated with The Recurrence Risk and 3-Month Outcome of Acute Ischemic Stroke. Front Neurol. 2020; 10: 1334. Published Abstract | Publisher Full Text | Free Full Text

56. Koll L, Velayutham TS, Casola A: Host-Viral Interactions: Role of Pattern Recognition Receptors (PRRs) in Human Pneumovirus Infections. Pathogens. 2016; 5(2): 233-262. Published Abstract | Publisher Full Text | Free Full Text

57. Kader KA, Tharmey SV, Santaraj E, et al.: Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn's disease and ulcerative colitis patients in remission versus active disease. Am J Gastroenterol. 2015; 100(2): 414-423. Published Abstract | Publisher Full Text | Free Full Text

58. Kornberg R: The Development of Serum Amyloid P as a Possible Therapeutic. Front Immunol. 2018; 9: 2328-2328. Published Abstract | Publisher Full Text | Free Full Text

59. Campbell DI, Elia M, Lunn PG: Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J Nutr. 2003; 133(5): 1332-1338. Published Abstract | Publisher Full Text

60. Sharp AR, Arnold BF, Afreen S, et al.: Abnormal gut integrity is associated with enteropathy and impaired growth in rural Bangladesh. Am J Trop Med Hyg. 2013; 89(1): 130–137. Published Abstract | Publisher Full Text | Free Full Text

61. Weiss AJ, Marany MJ, Stephenson K, et al.: Abnormal gut integrity is associated with reduced linear growth in rural Malawian children. J Pediatr Gastroenterol Nutr. 2012; 55(6): 747-750. Published Abstract | Publisher Full Text

62. Maftei M, Halaas J, Ravussin E, et al.: Leptin levels in human and rodents: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995; 1(1): 1155-1161. Published Abstract | Publisher Full Text

63. Friedman JM, Halaas J: Leptin and the regulation of body weight in mammals. Nature. 1998; 395(6704): 763-770. Published Abstract | Publisher Full Text

64. Halaas JL, Boony J, Blair-West J, et al.: Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A. 1997; 94(16): 8878-8883. Published Abstract | Publisher Full Text | Free Full Text

65. Halaas JL, Gajiwala KS, Maftei M, et al.: Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995; 268(5223): 543-546. Published Abstract | Publisher Full Text

66. Lord GM, Matarrese G, Howard GK, et al.: Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998; 394(6690): 897-901. Published Abstract | Publisher Full Text

67. Santos-Alvarez J, Gobina R, Sánchez-Margalet V: Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol. 1999; 194(1): 6-11. Published Abstract | Publisher Full Text

68. Wernstedt Astrolinm T, Toc C, Morley TS, et al.: Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab.
85. Lourenço BH, Cardoso MA; ACTION Study Team: C-reactive protein concentration predicts change in body mass index during childhood. PLoS One. 2014; 9(3): e90357. PubMed Abstract | Publisher Full Text | Free Full Text

86. Holz T, Thorand B, Döring A, et al.: Markers of inflammation and weight change in middle-aged adults: results from the prospective MONICA/KORA S3/F3 study. Obesity (Silver Spring). 2010; 18(12): 2347-2353. PubMed Abstract | Publisher Full Text

87. Fabiansen C, Phelan KPQ, Cichon B, et al.: Short Malnourished Children and Fat Accumulation With Food Supplementation. Pediatrics. 2018; 142(3): e20180679. PubMed Abstract | Publisher Full Text

88. Koch RM, Swiger LA, Chambers D, et al.: Efficiency of Feed Use in Beef Cattle. J Anim Sci. 1963; 22(2): 486-494. Publisher Full Text

89. Fonseca LD, Eler JP, Pereira MA, et al.: Liver proteomics unravel the metabolic pathways related to feed efficiency in beef cattle. Sci Rep. 2019; 9: 5364-5364. PubMed Abstract | Publisher Full Text | Free Full Text

90. Alexandre PA, Kogelman LJA, Santana MHA, et al.: Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics. 2015; 16: 1073. PubMed Abstract | Publisher Full Text | Free Full Text

91. Jégou M, Gondret F, Vincent A, et al.: Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig. PLoS One. 2016; 11(1): e0146550. PubMed Abstract | Publisher Full Text | Free Full Text