Mercury, selenium and fish oils in marine food webs and implications for human health

MATTHEW O. GRIBBLE¹, ROXANNE KARIMI², BETH J. FEINGOLD³, JENNIFER F. NYLAND⁴, TODD M. O’HARA⁵, MICHAEL I. GLADYSHEV⁶,⁷ AND CELIA Y. CHEN⁸

¹Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA, ²School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA, ³Department of Environmental Health Sciences, University at Albany School of Public Health, State University of New York, Rensselaer, NY, USA, ⁴Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA, ⁵Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK, USA, ⁶Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russia, ⁷Siberian Federal University, Krasnoyarsk, Russia, ⁸Department of Biological Sciences – Dartmouth College, Hanover, NH, USA

Humans who eat fish are exposed to mixtures of healthful nutrients and harmful contaminants that are influenced by environmental and ecological factors. Marine fisheries are composed of a multitude of species with varying life histories, and harvested in oceans, coastal waters and estuaries where environmental and ecological conditions determine fish exposure to both nutrients and contaminants. Many of these nutrients and contaminants are thought to influence similar health outcomes (i.e., neurological, cardiovascular, immunological systems). Therefore, our understanding of the risks and benefits of consuming seafood require balanced assessments of contaminants and nutrients found in fish and shellfish. In this paper, we review some of the reported benefits of fish consumption with a focus on the potential hazards of mercury exposure, and compare the environmental variability of fish oils, selenium and mercury in fish. A major scientific gap identified is that fish tissue concentrations are rarely measured for both contaminants and nutrients across a range of species and geographic regions. Interpreting the implications of seafood for human health will require a better understanding of these multiple exposures, particularly as environmental conditions in the oceans change.

Keywords: Oceans and human health, OHH, mercury, selenium, fish oils, n-3 fatty acids, eicosapentaenoic acid, docosahexaenoic acid, ecotoxicology, public health

Submitted 27 April 2015; accepted 23 July 2015; first published online 8 September 2015

The world’s oceans support marine fisheries for commercial, recreational and subsistence uses, and thus are directly linked to human health through fish consumption (i.e. Bergé & Barnathan, 2005; Kite-Powell et al., 2008; Halpern et al., 2012; Moore et al., 2013; Tacon & Metian, 2013). Fish comprise an important source of animal protein for much of the world’s human population, and in the next decade, total production from wild fisheries and aquaculture is expected to exceed production of beef, pork or poultry (FAO/WHO, 2011). In 2010, fish accounted for 16.7% of the world’s intake of animal protein, and the world fish food supply grew 3.2% per year from 1961–2012, nearly doubling from an average of 9.9 kg per capita to 19.2 kg per capita (FAO, 2014, pp. 3–4).

The ability of the global population to obtain healthful marine-derived food is dependent on well-managed ecosystems. A broad interdisciplinary approach is needed to understand the connections between the marine environment and human health (Kite-Powell et al., 2008; Moore et al., 2013), particularly for evaluating the risks and benefits of consuming seafood. This necessarily requires expertise from marine science as well as public health and biomedical science. This paper is authored by an interdisciplinary group comprising marine and human health scientists who have shared their expertise to synthesize current knowledge on the benefits and risks of consuming marine organisms as routes of human exposure to combinations of fish oils, selenium and the global contaminant mercury, particularly its highly bioavailable and toxic form, methylmercury. Other potential compounds of interest in marine organisms, including organohalogens, natural toxins, arsenicals, trace essential elements and vitamins are beyond the scope of this review; however, introductions to such topics are available elsewhere (Jeandel & Minster, 1987; Edmonds & Francesconi, 1993; Neff, 1997; Garthwaite, 2000; Lail et al., 2007; Guglielmo et al., 2009; Shaw & Kannan, 2009; Yogui & Sericano, 2009; Dickey & Plakas, 2010; Buck et al., 2011; Cusick & Sayer, 2013; Prego-Faraldo et al., 2013; Skjænes et al., 2013; Ahrens & Bundschat, 2014; Alonso et al., 2014; Sáuudo-Wilhelmy et al., 2014). This review provides a limited overview of...
select dimensions of marine seafood chemical content, and demonstrates the multidisciplinary issues at the interface of Oceans and Human Health (OHH). It does not set out to provide a comprehensive review of seafood content or the overall health implications of seafood consumption. The collaboration of the co-authors of this paper, hailing from diverse disciplinary backgrounds including veterinary medicine, toxicology, immunology, epidemiology, ecology, toxicology and geography, also exemplifies the goals of the OHH initiative which includes the sharing of insights and priorities across research communities (European Marine Board, 2013).

HEALTH BENEFITS OF FISH CONSUMPTION

Fish and shellfish contain protein, long-chain omega-3 fatty acids, vitamins, minerals and trace elements such as calcium and magnesium (Tacon & Metian, 2013). Seafood has the highest concentration of long-chain omega-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), of any foods (Tacon & Metian, 2013). EPA and DHA show beneficial associations with cardiovascular phenotypes including blood pressure (Campbell et al., 2013), vascular endothelial function (Xin et al., 2012), arterial stiffness (Pase et al., 2011) and heart rate variability (Xin et al., 2013). Fish or fish oil intake is also associated with decreased weight and waist circumference (Bender et al., 2014). Possible impacts of EPA and DHA on cholesterol in humans are unclear. Among persons with diabetes, fish oil supplementation may be associated with lower triglycerides and lower levels of very low density lipoprotein (VLDL) cholesterol, but with higher levels of low density lipoprotein (LDL) cholesterol (Hartweg et al., 2008). In dialysis patients, there are also associations of fish oil supplements with lower triglycerides, but also higher high density lipoprotein (HDL) cholesterol, and no association with LDL cholesterol (Zhu et al., 2014). However, the relationship of EPA and DHA to hard cardiovascular endpoints is less clear. A pooled meta-analysis of 68,680 fish oil supplement clinical trial participants, many of whom (more than half of the trials) had pre-existing cardiovascular disease and were being followed for a second event, did not show evidence for lower risk of mortality (from any cause), cardiac death, myocardial infarction or stroke (Rizos et al., 2012). In contrast, many observational studies report a decrease in cardiovascular disease and all-cause mortality with higher fish oil intake (Wang et al., 2006). The discrepancy between the clinical trial and the observational study results may reflect differences in study populations, or may suggest that another nutrient in fish (or an interacting cofactor in fish) is responsible for some of the cardiovascular benefits attributed to fish oils.

In addition to their possible relevance for cardiometabolic diseases, EPA and DHA fatty acids also may be associated with many other health outcomes. For example, observational studies suggest a lower risk of breast cancer with higher exposure (Zheng et al., 2013). DHA is essential for ophthalmological and neurological development (Uauy et al., 2001; Janssen & Kiliaan, 2014) and fish oil supplements may be associated with cognitive development among infants (Jiao et al., 2014). Among women who previously had delivered a pre-term baby, fish oil supplements appeared to be associated with longer latency and greater weight at birth of the child but did not appear to be associated with differences in risk of another pre-term birth (Saccone & Berghella, 2015).

Selenium, present in marine biota including fish and mussels (Outzen et al., 2015), has biological effects that are dose-dependent: at low doses, selenium is an essential nutrient used in selenoproteins such as glutathione peroxidase (Barceloux, 1999), but at higher doses, selenium might be toxic to a range of animals including humans (Barceloux, 1999; Hoffman, 2002; Lemly, 2002; Adams et al., 2003; Ackerman & Eagles-Smith, 2009; Rigby et al., 2010; Hladun et al., 2013; Thomas & Janz, 2014), although the dose-response of selenium toxicity differs across animal species (Ackerman & Eagles-Smith, 2009). In humans, the health effects of selenium (total selenium and selenium species) are controversial, with ongoing research into possible elevations or decreases in risk of various health outcomes according to selenium intake (Sabino et al., 2013). A recent Cochrane review (a comprehensive review in medical sciences that aims to summarize published and unpublished data on a topic) of selenium and cancer prevention found heterogeneous studies furnishing no overall evidence that selenium reduces cancer risk (Vinceti et al., 2014).

HAZARDS OF MERCURY

Although seafood provides important nutritional benefits, there may also be hazards from contaminants such as mercury. Neurological impacts of high methylmercury exposure were described in mass poisoning events in Minamata Bay, Japan (Harada, 1995) from consumption of seafood contaminated by effluent from a chlor-alkali facility. 'Minamata disease' was characterized by deficits in sensation, vision, hearing, coordination (ataxia) and other problems associated with neurological function (Eto et al., 1999; Uchino et al., 2005). Children who had high in utero exposures suffered many neurotoxic effects including cerebral palsy, mental retardation, sensorimotor dysfunction and low birth weight (Chapman & Chan, 2000; Karagas et al., 2012). At lower doses, the neurological effects of methylmercury are less clear (Axelrad et al., 2007; Karagas et al., 2012).

Neurodevelopmental toxicity of mercury

Methylmercury neurotoxicity from consumption of seafood has been the focus of birth cohorts in the Faroe Islands, Seychelles and elsewhere (Table 1). In the Faroe Islands, where much of the mercury was acquired from consumption of marine mammals contaminated by organochlorines, there was an inverse association between mercury in cord blood and children’s performance on developmental tests (Grandjean et al., 2001, 2014). However, in the Seychelles, where much of the mercury was from fish, overall associations between foetal exposure to mercury and neurodevelopmental impairments were generally not observed (Carocci et al., 2014). However, at 9 years of age there appeared to be possible differences in fine motor function at higher levels of mercury exposure (Davidson et al., 2006; van Wijngaarden et al., 2006; Mergler et al., 2007), and evidence for interactions between fatty acids and mercury for cognitive processes (Strain et al., 2015). Emerging research suggests that genetic polymorphisms and epigenetic processes may account for some of the inter-individual variations of health effects given exposures (reviewed in Basu et al., 2014). A recent systematic review
Population	Study sample	Measure of exposure	Average exposure (ppm)	Neurological associations
Faroe Islands (Grandjean et al., 1997; Grandjean et al., 2014)	1022 singleton births, 917 children at age 7	Hg concentrations in maternal hair at delivery, cord blood, child blood and hair at age 7 years	Geometric mean and IQR at 7 years: Hg 3.03 (1.68 – 6.33), maternal hair Hg in pregnancy: 4.35 (3.63 – 42.2)	Median maternal hair Hg (total): 1.38 Neurodevelopmental deficits (i.e. visuospatial memory) at birth and early school years when comparing high and low exposure groups
Italy (Deroma et al., 2013)	149 children	Total Hg and MeHg in maternal hair and breast milk and child's hair at 7–9 years		Children with high prenatal Hg exposure had lower verbal, scale and performance IQ than children with low prenatal Hg exposure, but this difference was not significant. In contrast, children’s fresh fish consumption was positively associated with scale and performance IQ
Italy (Valent et al., 2013)	606 children at 18 months of age	Maternal and child fish intake; total Hg in maternal hair and blood during pregnancy, umbilical cord blood, and breast milk	Mean maternal hair Hg: 1.06	No evidence of prenatal Hg exposure linked to children’s neurodevelopment. Children’s fish intake, but not maternal PUFAs (EPA, DHA and other fatty acids), were positively associated with neurodevelopmental test scores
United States – Massachusetts (Oken et al., 2005)	135 infant-mother pairs	Self reported Fish consumption during 2nd trimester of pregnancy, maternal total Hg in hair at delivery	Mean maternal hair Hg: 0.55 (range 0.02 – 2.38)	Increased maternal fish intake during pregnancy associated with increased infant cognition at 6 months of age. This association was stronger after adjusting for maternal hair Hg at delivery. Higher Hg levels were associated with lower infant cognition at 6 months of age
Seychelles (Davidson et al., 1998; Myers et al., 2003; Myers et al., 2009)	Seychelles Child Development Study Main Cohort: 770 mother-child pairs (children through 107 months)	MeHg exposure (measured as total Hg in hair) from maternal hair, and children’s hair at 66 and 107 months	Mean maternal hair Hg: 6.8 Mean child Hg-Hg at 66 months: 6.5 (sd: 3.3); at 107 month: 6.1 (sd: 3.6)	Hg not consistently associated with neurodevelopmental outcomes
Seychelles (Strain et al., 2015)	Seychelles Child Development Study Nutrition Cohort 2: 1265 mother-child pairs (children at age 20 months)	Total Hg in maternal hair at delivery and maternal weekly fish consumption	Maternal estimate of weekly fish meals: 8.52 (4.56)	No overall association of Hg with neurodevelopment, but evidence for possible interaction of Hg with fish oils for neurodevelopment: higher levels of Hg were negatively associated with psychomotor scores for children of mothers with higher ratio of n-6 to n-3 fatty acids; whereas higher Hg was positively associated with psychomotor development among children born to mothers with higher n-3 fatty acids
Seychelles (Davidson et al., 2008)	300 mothers and 229 children at ages 5, 9, 25 and 30 months	Number of fish meals per week of mother during pregnancy Cord blood total Hg levels	Mean maternal hair MeHg: 5.9 Median cord blood Hg: 0.01	Neurodevelopmental performance at 30 months decreased with increased MeHg, adjusted for nutritional factors No significant correlations between neurodevelopmental score and total mercury
Tohoku, Japan (Tatsuta et al., 2014)	587 42-month old children			
New Zealand, North Island (Crump et al., 1998 re-analysis of Kjellström et al., 1986; Kjellström et al., 1989)	237 children ages 6–7 (paired with their mothers)	Average maternal hair Hg concentration during pregnancy		Negative association of maternal hair Hg with academic attainment, language development, fine and gross motor coordination, and intelligence – after omitting one highly influential point from the analysis

IQR, inter-quartile range (25th and 75th percentiles of distribution).
examined the associations between exposure to methylmercury from seafood consumption and developmental neurotoxicity from 164 studies in 43 countries and found that mercury might be impacting the health of Arctic and riverine populations near gold mining sites, and might also be relevant for public health in highly populated coastal regions (Sheehan et al., 2014).

Immune toxicity of mercury

Data are limited regarding whether mercury from fish affects the immune system, although studies have been conducted in human populations and in toxicological experiments. In cross-sectional studies in Amazonian Brazil, elevated mercury exposures were associated with increased levels of auto-antibodies in gold miners highly exposed to elemental mercury but also possibly exposed to some methylmercury (Silva et al., 2004; Gardner et al., 2010a). A cross-sectional, nationally representative survey of adults in the USA, showed that hair and blood mercury (thought to largely reflect methylmercury exposures) but not urine mercury (thought to largely reflect inorganic exposures) were associated with having anti-nuclear auto-antibodies (Somers et al., 2015). In in vitro toxicological experiments with sufficiently high doses of mercury (3.6 to 36 μM) to induce cell death within 24 h, exposure of human immune cells in vitro to methylmercury prevented B cell proliferation, and these suppressive effects were more severe if mercury exposure occurred prior to immune cell activation (Shenker et al., 1993). In T cells, proliferation was suppressed and apoptosis induced following mercury exposure in vitro, although these effects were examined in mixed culture systems (Shenker et al., 1992; Shenker et al., 1998). In mixed cultures of peripheral blood mononuclear cells stimulated with lipopolysaccharide, which stimulates macrophages, subcytotoxic concentrations of methylmercury increased production of pro-inflammatory cytokines TNF-α and IL-1β (Gardner et al., 2009, 2010b). Thus, stimulatory effects of methylmercury were observed at doses closer to the typical in vivo human exposure range, generally less than 200 nM (Mahaffey, 2004; Mahaffey et al., 2009), while higher doses were inhibitory. In the more environmentally relevant administered dose studies, effects were primarily observed when cells were stimulated, suggesting that immune activation state at least partially determines the sensitivity to toxic effects on the immune system. If mercury does affect inflammation, then inflammatory mechanisms could impact other organ systems including the cardiovascular system.

Cardiovascular toxicity of mercury

Mercury’s potential impacts on the cardiovascular system are a growing area of research (Roman et al., 2011). Mercury’s relationship to fatal heart attacks was recently cited as the potentially most expensive and therefore the most important uncertainty in the cost-benefit analysis for economic benefit of mercury pollution reductions to the USA (Rice et al., 2010). Myocardial infarction and mortality risks from mercury have been evaluated in several recent studies. A cross-sectional survey in a nationally representative sample of South Koreans found a higher odds of previous myocardial infarction with higher levels of blood mercury (Kim et al., 2014). A case-control study of 1408 men found that toenail mercury was associated with higher odds of myocardial infarction after accounting for levels of the heart-protective fatty acid DHA (Gualar et al., 2002). In contrast, a pooled convenience sample drawn from the Health Professionals Follow-up Study and Nurses’ Health Study in the USA (6045 adults) found non-significant, but potentially protective associations between toenail mercury and risk of myocardial infarction, stroke and coronary heart disease (Mozaffarian et al., 2011). This result is acknowledged by the authors to likely reflect the cardio-protective benefits of fish oils, rather than being an accurate portrait of mercury’s cardiovascular impact per se. A Swedish cohort also found lower risk of first myocardial infarction with higher erythrocyte mercury, even after controlling for a plasma biomarker of fish oils (Hallgren et al., 2001). In contrast, a large cohort study of 1871 elderly men in Finland found strong positive associations of hair mercury levels with acute coronary events, death, and with cause-specific mortality related to congestive heart failure and cardiovascular disease (Virtanen et al., 2005). Additional research is needed to clarify whether mercury is causally associated with fatal cardiovascular disease, and to tease apart the reasons for the apparently discrepant findings in the existing literature. It is likely that there are differing distributions of interacting and confounding variables (i.e. other dietary nutrients, or genetics) across these study populations. Data on geographic variation in joint distributions of nutrients and contaminants in seafood would provide important context for interpreting the human health literature.

CONCENTRATIONS OF EPA + DHA

Variability up to 128-fold has been documented in EPA and DHA levels across fish species (Gladyshev et al., 2013). EPA and DHA contents in aquatic animals depend on both taxonomic and ecological factors (Makhutova et al., 2011; Gladyshev et al., 2012b; Lau et al., 2012); other factors such as an anthropogenic pollution (Gladyshev et al., 2012a) may also be important. Research on the possible impacts of fish health status on fish fatty acid content is limited, but suggests the relationships may be complex and organism-specific. In a recent experiment with cultured puffer fish (Fugu rubripes) with or without Trichodina infection, flat fish (Paralichthys olivaceus) with or without streptococcus infection, yellowtail (Seriola quinquemaculata) with or without jaundice, and amberjack (Seriola purpurascens) with or without Photobacterium damselae sp. piscicida, there was not a significant difference by fish disease status in the overall fish fatty acid composition in fish livers; however, liver DHA was significantly higher in the diseased fish than healthy fish for flat fish, yellowtail and amberjack (Tanaka et al., 2014). There is also growing interest in how oxidative stress in fish may affect fish lipids (Tanaka & Nakamura, 2012; Tanaka et al., 2014).

One objective for our review is to summarize data on EPA and DHA across fish populations. To identify EPA and DHA content of diverse marine fish species, including anadromous fish, we queried Web of Science, Core Collection on 2 October 2014 for 'fatty acid AND content AND fish AND marine' (Table 2). Unfortunately, most studies report EPA and DHA as per cent of total fatty acids, and do not provide quantitative information on contents of these PUFA in mass units per fish portion (Gladyshev et al., 2007, 2012b; Huynh & Kitts, 2009).
Taxon	EPA	DHA	EPA + DHA	H1	H2	Size	Reference
Order Clupeiformes							
Sardine (Sardina pilchardus)	20.42	1.69	22.11	p	w	35	Abd Aziz et al. (2013)
Sardine (Sardina pilchardus)	8.50	8.37	16.87	p	t	25	Garcia-Moreno et al. (2013)
Round herring (Eremurus teres)	12.34	4.33	16.67	p	t	25	Castro-Gonzalez et al. (2013)
Herring (Clupea harengus)	8.50	8.30	16.80	p	c	25	Huynh & Kitts (2009)
Rainbow sardine (Dissomia acuta)	3.43	10.16	13.59	p	w	20	Sahari et al. (2014)
Fringescule sardine (Clupea finnibriti)	2.11	2.25	4.36	p	t	25	Abd Aziz et al. (2013)
Dorab wolf-herring (Chirocentrus dorab)	0.24	0.54	0.78	p	w	100	Abd Aziz et al. (2013)
Order Gadiformes							
Shad (Alosa alosa)	0.12	0.43	0.55	p	t	45	Chuang et al. (2012)
Order Salmoniformes							
Atlantic salmon (Salmo salar)	6.20	5.80	12.00	bp	c	70	Kitson et al. (2009)
Pink salmon (Onchorynchus gorbuscha)	1.70	3.30	5.00	d	c	50	Gladyshev et al. (2006)
Sockeye salmon (Oncorhynchus nerka)	0.70	1.90	2.60	p	c	50	Gladyshev et al., (2012b)
Order Perciformes							
Horse mackerel (Trachurus mediterraneus)	4.40	5.49	9.89	bp	t	25	Garcia-Moreno et al. (2013)
Spanish mackerel (Scomberomorus commerson)	1.60	7.72	9.32	p	w	90	Sahari et al. (2014)
Yellowstripe scad (Selaroides leptolepis)	0.97	0.82	0.89	d	w	15	Abd Aziz et al. (2013)
Horse mackerel (Trachurus trachurus)	1.64	5.86	7.50	bp	t	30	Chang et al. (2012)
King mackerel (Scomberomorus gattatus)	0.45	3.02	3.47	p	w	45	Sahari et al. (2013)
Longtail tuna (Thunnus tonggol)	0.53	2.92	3.45	p	w	65	Sahari et al. (2014)
Parrot sand bass (Paralabrax aurouguttatus)	0.98	2.21	3.19	d	w	50	Castro-Gonzalez et al. (2013)
Moonfish (Trachinotus blochii)	1.77	1.23	3.00	d	w	80	Abd Aziz et al. (2013)
Sixbar groupers (Epinephelus fasciatus)	1.01	1.98	2.99	d	w	25	Abd Aziz et al. (2013)
Silver pomfret (Pampus argenteus)	1.16	1.48	2.64	p	w	30	Abd Aziz et al. (2012a)
Malabar red snapper (Lutjanus argentimaculatus)	0.24	2.10	2.34	d	w	35	Abd Aziz et al. (2013)
Giant sea perch (Lates calcarifer)	1.29	0.95	2.14	d	w	80	Abd Aziz et al. (2013)
Sea bass (Dicentrarchus labrax)	0.52	1.75	2.27	d	t	50	Chang et al. (2012)
Hardtail scad (Megalops cordyla)	0.19	1.96	2.15	p	w	35	Abd Aziz et al. (2013)
Bogue (Boops boops)	0.63	0.94	1.57	bp	t	20	Garcia-Moreno et al. (2013)
Fourfinger threadfin (Eleutheronema tetradactylum)	0.96	0.53	1.49	p	w	50	Abd Aziz et al. (2013)
Gray snapper (Lutjanus griseus)	0.45	1.03	1.48	d	w	40	Castro-Gonzalez et al. (2013)
Yellowfin tuna (Thunnus albacares)	0.13	1.30	1.43	p	t	150	Castro-Gonzalez et al. (2013)
Red mullet (Mullus barbatus)	0.48	0.94	1.42	d	t	15	Chang et al. (2012)
Atlantic blue marlin (Makaira nigricans)	0.15	1.04	1.19	p	w	250	Castro-Gonzalez et al. (2013)
Indian threadfin (Polynemus indicus)	0.24	0.82	1.06	d	w	70	Abd Aziz et al. (2013)
Spanish mackerel (Scomberomorus gattatus)	0.28	0.7	0.98	p	w	45	Abd Aziz et al. (2013)
Indian mackerel (Rastrelliger kanagurta)	0.54	0.23	0.77	p	w	25	Abd Aziz et al. (2013)
American harvest fish (Pepirulus paru)	0.08	0.57	0.65	p	w	18	Castro-Gonzalez et al. (2013)
Golden snapper (Lutjanus johnii)	0.07	0.19	0.26	d	w	Abd Aziz et al. (2013)	
Brown meager (Sciaena umbra)	0.05	0.19	0.24	d	t	35	Chang et al. (2012)
Bonito (Sarda sarda)	0.03	0.15	0.18	p	t	50	Chang et al. (2012)
Spotted weakfish (Cynoscion nebulosus)	0.02	0.02	0.04	d	w	35	Castro-Gonzalez et al. (2013)
Order Omeriformes							
Surf smelt (Hyphessodes pretiosus)	3.60	5.70	9.30	p	t	15	Huynh & Kitts (2009)
Capelin (Mallotus villosus)	3.60	4.60	8.20	p	c	10	Huynh & Kitts (2009)
Order Scorpaeniformes							
Canary rock fish (Sebastes pinniger)	3.50	5.40	8.90	d	t	40	Huynh & Kitts (2009)
Spotted scorpionfish (Scorpaena plumieri)	0.22	2.28	2.50	d	w	25	Castro-Gonzalez et al. (2013)
Scorpionfish (Scorpaena scrofa)	0.29	1.40	1.69	d	t	30	Chang et al. (2012)
Order Gadiformes							
Alaska pollock (Theragra chalcogramma)	1.00	2.40	3.40	d	c	60	Huynh & Kitts (2009)
Pacific hake (Merluccius productus)	0.90	1.50	2.40	d	t	60	Huynh & Kitts (2009)
Cod (Gadus morhua)	0.60	1.50	2.10	d	t	60	Gladyshev et al. (2007)
In this manuscript, we review data from 10 studies reporting direct measurements of EPA and DHA contents in wild fish biomass obtained using internal standards in chromatography (using capillary columns) over two recent decades. These had slightly different methodologies. For small fish, less than 35 cm (e.g. sardine or capelin), the fish were analysed whole (Huynh & Kitts, 2009). Larger fish species (e.g. salmon) were sampled by dissecting muscle tissue (filets without skin), usually under dorsal fin (e.g. Gladyshev et al., 2006, 2007, 2012b; Huynh & Kitts, 2009; Kitson et al., 2009; Abd Aziz et al., 2013; Sahari et al., 2014). In some studies (Chuang et al., 2012) ventral muscles were sampled. In other studies both small and large fish were taken whole, e.g. ground and homogenized (Castro-Gonzalez et al., 2013). Some authors did not report the sampling in detail (Garcia-Moreno et al., 2013).

The resulting data set includes 63 fish species across 11 orders (Table 2). Since PUFA contents in aquatic animals are known to depend on both phylogenetic and ecological factors (Makhutova et al., 2011; Gladyshev et al., 2012b; Lau et al., 2012), fish species were organized by their EPA and DHA values within taxonomic orders. Putative effects of ecological (habitat) factors were taken into account by dividing the fish species into pelagic, benthopelagic and demersal, as well as by category of water temperature of their habitat, i.e. cold-water, temperate and warm-water (tropical) species. Common size of the fish species was used as a proxy of their trophic level, although this is an imperfect surrogate.

Values of EPA + DHA concentration in the 63 fish species varied from 25.60 mg g⁻¹ (sardine Sardinops sagax, order Clupeiformes) to 0.04 mg g⁻¹ (spotted weakfish Cynoscion nebulosus, order Perciformes) (Table 2). Clupeiformes had the highest median and maximum values of EPA + DHA contents, followed by Salmoniformes, while Perciformes, Scorpaeniformes and Gadiformes and miscellaneous had nearly similar median values (Figure 1). Nevertheless, ranges of values for EPA + DHA content of all orders overlapped in minimum values (Figure 1, Table 2). Thus, all orders, including Clupeiformes, have species with comparatively low content of EPA and DHA.

Interpretation of these results may be complicated by measurement error introduced by differing methods used for fish sampling and analysis, but some broad patterns in the data are interesting. Analysis of published EPA + DHA values found no statistically significant effect of type of habitat (pelagic, benthopelagic and demersal), or temperature of habitat, or their interaction on the PUFA content in fish. To visualize the results of ANOVA, a two-dimensional graph of the PUFA content in the groups of species was created (Figure 2). Since EPA + DHA contents in benthopelagic species overlapped completely with those of pelagic and demersal species, they were not included in the depicted groups. In addition, there were only six cold water species amongst pelagic, benthopelagic and demersal, which were joined in one group. The graph illustrates that EPA and DHA values of all the groups, pelagic temperate water, pelagic warm water, demersal temperate water, demersal warm water and cold water species, overlapped nearly completely.

This analysis of available data did not identify a strong predictor for EPA and DHA contents in fish. Temperature, for example, had limited impact: the contents of EPA + DHA in three pelagic planktivorous Clupeiformes with nearly identical sizes: sardine Sardinops sagax from temperate waters, shad Hilsa macrura from warm waters and herring Clupea

Taxon	EPA	DHA	EPA + DHA	H₁	H₃	Size	Reference
Whiting (Gadus merlangus)	0.08	0.48	0.56	d	t	35	Chuang et al. (2012)
Order Pleuronectiformes							
Rock sole (Leptodipsetta bilineata)	1.80	1.10	2.90	d	t	30	Gladyshev et al. (2007)
Largescale tonguesole (Cynoglossus arel)	0.08	1.13	1.21	d	w	30	Abd Aziz et al. (2013)
Order Siluriformes							
Gray eel-catfish (Plotosus spp.)	1.46	0.89	2.35	d	w		
Order Mugiliformes							
Mullet (Mugil cephalus)	0.46	0.08	0.54	p	t	50	Chuang et al. (2012)
Order Beloniformes							
Garfish (Belone belone)	0.01	0.15	0.16	p	t	70	Chuang et al. (2012)
Order Myliobatiformes							
Long-tailed butterfly ray (Gymnura spp.)	0.03	0.09	0.12	d	w		

![Fig. 1. Contents of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in fish orders: minimum, maximum and median values and quartiles. Number of species, N; order Clupeiformes, N = 9; order Salmoniformes, N = 3; order Perciformes, N = 36; order Scorpaeniformes, N = 3; order Gadiformes, N = 4; miscellaneous (orders Osmeriformes, Pleuronectiformes, Siluriformes, Mugiliformes, Beloniformes and Myliobatiformes), N = 8.](image-url)
Harengus from cold waters were all similar (Table 2). Moths et al. (2013) analysed freshwater fish from the Great Lakes as well as 99 other species from freshwater and marine systems documented in seven other studies. As in this study, Moths et al. (2013) found that for marine systems, there was no relationship between latitude and omega-3 fatty acid composition of fish. However, in temperate climates, marine fish had higher omega-3/6 ratios than freshwater fish and for freshwater fish alone, there were higher omega-3 fatty acids in temperate fish as compared with tropical fish. While this study was based on relatively few datasets and many different species, it suggests some interesting patterns. For marine zooplankton, Kattner & Hagen (2009) did not find significant differences in latitudinal distribution of EPA and DHA levels. Since zooplankton are the main food of these three planktivorous fish species from different latitudes, Kattner & Hagen’s (2009) findings for zooplankton are consistent with those for the planktivorous fish. Thus, more specific characteristics of diverse aquatic ecosystems, such as levels of primary production of PUFA and the efficiency of their transfer through trophic chains (Gladyshiev et al., 2011), are likely to be contributing factors for EPA and DHA content of given fish species. In these large meta-analyses, many environmental and fish specific variables may obscure the potential effects of individual environmental factors such as temperature or trophic level, or pharmacokinetic compartment differences of lipids across fish tissues. More research directed to effects of individual fatty acids and sterols in cell membranes (Sinensky, 1974; Snyder et al., 2012). Several experimental studies show differences in fatty acid concentrations in fish exposed to different temperatures. Experiments with juvenile Atlantic salmon at two temperatures (14 and 19°C) found that n-3, n-5 and total fatty acids were higher in fish raised in colder water (Arts et al., 2012). Another study on cultured Atlantic salmon found that the temperature effect was dependent on the type of oil in their food; temperature effects were more pronounced in fish fed copepod oil diets than fish oil diets (Bogevik et al., 2011). Another study found the digestibility of the lipids in Atlantic salmon to increase with increasing rearing temperatures suggesting that while colder temperatures may favour higher fatty acid concentrations, they may be less digestible than at warmer temperatures (Huguet et al., 2015). Laurel et al. (2012) found that lower temperatures also favoured increases in unsaturated fatty acids in newly hatched Pacific cod larvae but relative amounts of essential fatty acids did not change with temperature. Similarly, n-3 and n-6 fatty acids decreased with increased temperatures in eggs and larvae of the marine fish, Inimicus japonicas (Wen et al., 2013). Thus, there are a range of experimental studies supporting the role of temperature and potentially diet determining fatty acid composition in aquatic plankton and fish. They suggest that colder temperatures result in higher amounts and differing quality of fatty acids. However, the disparity between patterns observed in experimental and field-based studies should be further investigated.

Variability in Fish Mercury Concentrations

One of the major challenges in managing human exposure to mercury from fish consumption is that fish mercury concentrations are highly variable. Numerous studies have measured broad differences in mercury content across different fish species. Numerous studies have shown that body size, age, trophic level and food source of fish are related to concentrations of methylmercury and the per cent of total mercury that is methylmercury (Chen et al., 2009; Piraino & Taylor, 2009). Across species, body size can be more strongly correlated with mercury concentration than trophic level (Karimi et al., 2013). In general, larger fish across and within species have
higher concentrations of methylmercury because larger fish eat higher trophic level prey and are older and have had a longer time to accumulate mercury (Cossa et al., 2012; Storelli and Barone, 2013). However, some studies have found that mercury concentration is more strongly correlated with age than length or weight (Braune, 1987; Burger & Gochfeld, 2011). For example, the size of Bluefin tuna is not related to mercury concentration (Burger & Gochfeld, 2011) and Atlantic herring in the Arctic show relationships at 3–5 years of age but a decrease at 1–2 years of age due to growth dilution (Braune, 1987). While there are clear positive relationships between total mercury and fish size and fish age, there is still variability in total mercury concentrations that is not explained by these two variables as well as the presence of interspecific and intraspecific variability (Tremain & Adams, 2012). Some of this unexplained variability likely comes from the food source and geographic range of the fish. Fish that have more pelagic than benthic food sources appear to bioaccumulate higher concentrations of mercury (Power et al., 2002; Chen et al., 2009; Karimi et al., 2013). Not surprisingly, fish that are exposed to higher water and sediment concentrations also have higher tissue concentrations of mercury (Lowery & Garrett, 2005; Chen et al., 2009; Gehrecke et al., 2011; Taylor et al., 2012; Chen et al., 2014). However, levels of mercury may vary between similar species in a small geographic area and by tissue within a fish (Bank et al., 2007). A recent study also suggests increases in methylmercury bioaccumulation in fish experiencing warmer temperatures (Dijkstra et al., 2013). Overall, these studies show that fish size, age, trophic level, food source and geographic region each influence fish mercury content, with no strict rules for which of these factors explains the largest portion of mercury variability. While agencies such as the Food and Drug Administration (FDA) in the USA monitor mercury in marine fish consumed by humans, they do not report fish sizes or geographic location, both of which are extremely important when looking at mercury bioaccumulation.

SELENIUM AND MERCURY CONCENTRATIONS IN FISH

There is a long-running interest in nutrient-toxicant interactions between mercury and selenium (Ganther et al., 1972). Although recent evidence suggests possible synergistic interactions between mercury and selenium for fish development (Penglas et al., 2014), the weight of evidence suggests antagonistic interactions in which selenium mediates mercury toxicokinetics (reviewed in Peterson et al., 2009). Selenomethionine increases mercury elimination in zebrafish (Danio rerio) (Yamashita et al., 2013; Amlund et al., 2015), shrimp (Bjerregaard & Christensen, 2012) and goldfish (Carassius auratus) (Bjerregaard et al., 2012); selenite, and seleno-cysteine also increased mercury elimination in goldfish and shrimp. In humans, dietary organic selenium can increase mercury elimination (Li et al., 2012). Ralston and colleagues report that selenium not only ameliorates the toxic effects of methylmercury by sequestering methylmercury and reducing its bioavailability to organisms, but mercury and selenium may also have physiologically important interactions mediated by other mechanisms (Ralston et al., 2007; Ralston & Raymond, 2010). Based on rat data, Ralston (2008) suggests that where the selenium to mercury molar ratio exceeds 1:1, there is adequate selenium to counter mercury toxicity. However, this has not been clearly demonstrated in humans. In recent trout (Salmo trutta) studies in a Norwegian lake, the selenium to mercury molar ratio was a better predictor of trout metallothionein levels than was either selenium or mercury (Sørmo et al., 2011). However, human studies and clinical trials for selenium demonstrate mixed and inconclusive results for cardiovascular effects of methylmercury and selenium (Mozaffarian, 2009). It has been suggested that mercury cardiovascular toxicity may be modified by selenium intake (Cooper et al., 2007; Khan & Wang, 2009; Mozaffarian, 2009). This might arise through selenium impacts on mercury kinetics (Huang et al., 2013) or through impacts on oxidative stress mediators of mercury toxicity (Kaneko & Ralston, 2007; Ralston et al., 2007; Farina et al., 2011; Alkazemi et al., 2013; Drescher et al., 2014), although evidence for the oxidative stress mediation hypotheses is ambiguous (Belanger et al., 2008). Selenium-mercury interactions may also be relevant for neurodevelopmental outcomes (Choi et al., 2007).

In recent years due to the interest in selenium to mercury molar ratios, a number of studies have assessed mercury and selenium concentrations and the selenium to mercury molar ratios for a variety of fish species from field samples as well as fish purchased from supermarkets (Burger et al., 2005, 2013; Burger & Gochfeld, 2011, 2012; Gochfeld et al., 2012; Karimi et al., 2013, 2014). The relationship between body size and selenium to mercury molar ratios vary with species, tissues and geographic location. Selenium to mercury molar ratios decreased with size of fish for yellowfin tuna and windowpane flounder in Delaware Bay and a wide variety of species in the Aleutians (Burger & Gochfeld, 2011, 2012). Some individuals of most of the 15 species studied in the Aleutians had ratios less than 1.0, where older, larger, higher trophic level fish had the lowest ratios. This was the result of mercury concentrations increasing with fish size but selenium concentrations not increasing with size. While selenium to mercury molar ratios were negatively correlated with fish length for bluefish, the ratios were lower for white muscle tissue, the portion of the fish that humans consume. In a study of 19 species off the coast of New Jersey (USA), (Burger & Gochfeld, 2011) mercury and selenium were positively related for five species and negatively related for two species, and across all species, selenium had no consistent relationship with length. However, for most species tested across all of these studies, the ratios were greater than 1.0, although 20% of the striped bass caught by trawling off the New Jersey coast had molar ratios of less than 1.0 (Gochfeld et al., 2012).

In general, studies of selenium to mercury molar ratios have found that mercury concentrations were positively related to fish length and trophic level but selenium concentrations were not, and selenium to mercury molar ratios are more strongly related to mercury content than selenium content (Karimi et al., 2013). This reflects the fact that mercury more strongly accumulates in the body, and biomagnifies through the food chain compared with selenium (Karimi et al., 2013). These findings are consistent with lower efflux (loss) rates of methylmercury than selenium, because lower efflux rates lead to greater bioaccumulation over time as body size increases (Karimi et al., 2010). However, bivalves (e.g. clams, mussels and oysters) are known to be relatively efficient selenium accumulators (Stewart et al., 2004; Presser & Luoma, 2010), and have higher selenium concentrations than finfish (Karimi et al., 2013).
It also appears that the mean selenium to mercury molar ratio declines with mean size of fish species and with individual fish size within a species. Both suggest that larger, predatory fish as well as the largest individuals of many species have lower selenium to mercury molar ratios and may not provide selenium protection against mercury toxicity for human seafood consumers (although selenium may be available in their diet from other sources). Moreover, smaller fish of a given species may provide greater protective benefits suggesting that those age classes that reside in more estuarine and coastal environments may present lower human health hazards (Burger et al., 2013). However, the variability of selenium to mercury molar ratios found within and across species makes it difficult to use this ratio in risk assessment, risk management and risk communication at the present time. Most governmental organizations that develop fish consumption advisories do not have the data on both mercury and selenium levels in individual fish which are necessary to determine the selenium to mercury molar ratio variation within and across species. It is difficult for risk assessors to develop advisories that are protective without an estimate of this variability.

FISH THAT OPTIMIZE POTENTIAL BENEFITS VS RISKS

Recent research is beginning to address the need to quantify the overall nutritional and toxicological value of different types of fish and shellfish based on concentrations of multiple nutrients and contaminants in edible tissues. A recent study found unique, relative concentrations of mercury, omega-3 fatty acids, and selenium, or mercury-nutrient signatures, across seafood taxa (Figure 3, Karimi et al., 2014). Specifically, salmon and forage fish (herring, anchovies and sardines) are high in EPA and DHA compared with other seafood (Figure 3). In contrast, predatory fish have higher mercury concentrations than lower trophic level fish but nutrient concentrations do not appear to differ as strongly by trophic level. Karimi et al. (2014) found that these distinct mercury–nutrient signatures were reflected in the blood of seafood consumers based on their consumption habits. Most notably, consumers with a salmon-dominated diet had a high percentage of omega-3 fatty acids in their blood compared with other seafood consumers. Consumers who tended to eat top-predator fish had higher mercury, but similar nutrient concentrations in blood compared with consumers of lower trophic level seafood. These results suggest that consuming lower trophic level seafood can minimize the risk of mercury exposure without reducing the benefits of nutrient intake, and more broadly, demonstrate the value of examining nutrient and mercury exposure patterns simultaneously. Such research efforts are valuable in summarizing the largest signals among otherwise complex patterns of multiple nutrients and contaminants, but there is a need for a deeper understanding of these multivariate patterns at higher levels of taxonomic resolution. In some cases, the seafood categories used in this study include multiple types of fish and shellfish based on concentrations of multiple nutrients and contaminants in edible tissues.
species that share market names in order to compare mercury–nutrient signatures between edible seafood and seafood consumers. For example, salmon includes Atlantic salmon and multiple species of Pacific salmon, and tuna steak includes bigeye and yellowfin tuna (Karimi et al., 2014). Future studies that examine the composition of individual fish of the same species would complement these broader analyses by examining nutrient-contaminant patterns at greater taxonomic resolution, and in relation to ecological and environmental factors. In addition, better information on the taxonomic identity of market fish and shellfish would improve estimates of co-exposure to nutrients and contaminants in seafood consumers.

Advice describing both the types and amounts of seafood consumption, while complex, is necessary to better manage risks and benefits of seafood consumption (Oken et al., 2005; Gerber et al., 2012). Seafood risk communication also requires risks and benefits to be considered together for appropriate context (Kuntz et al., 2010; Turyk et al., 2012; Laird et al., 2013). Many fish advisors consider multiple chemical contaminants but provide minimal discussion of fish nutrients, focused on omega-3 fatty acids (Scherer et al., 2008). Compared with mercury concentrations, there are fewer studies quantifying fatty acids and selenium in seafood (Karimi et al., 2014). Therefore, to inform risk assessment more research is needed quantifying the risks and benefits associated with specific seafood consumption habits, such as considering the recommended daily consumption of seafood nutrients relative to reference doses (i.e. hazard quotients) of seafood contaminants (i.e. Gladyshev et al., 2009).

To conduct appropriate human health risk assessment for contaminants such as mercury requires an understanding of how mercury, fish oils and selenium co-exposures affect the human body. This work can be informed by studies from marine biology and fisheries science, coupled with epidemiological biomonitoring, anthropological and food science investigations into the role of culinary preparation and gut processing on mercury and nutrient bioavailability (Laird et al., 2009; Moses et al., 2009a, b; Costa et al., 2013). Acknowledging the concerns about contaminant exposure from seafood and its health benefits, the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption (2010) recommended that government entities ‘Develop, maintain and improve existing databases on specific nutrients and contaminants, particularly methylmercury and dioxins, in fish consumed in their region’ and ‘Develop and evaluate risk management and communication strategies that both minimize risks and maximize benefits from eating fish’ (FAO/WHO, 2010, p. 33). Nevertheless, their general conclusions acknowledge fish as an important food source with clear benefits for reducing heart disease mortality and supporting optimal neurodevelopment in children.

CONCLUSIONS

Our current ability to properly estimate the risks and benefits to humans of seafood consumption are hampered by the common approaches of separately studying either contaminants or nutrients in fish. To date there are few studies in which fish tissue concentrations have been measured for both contaminants and nutrients across a range of species and geographic regions, even for the restricted set of chemicals considered in this review. There is tremendous variability between and within fish species in their mercury, EPA and DHA concentrations, leading to different versions of the ‘fish intake’ exposure across participants in epidemiological studies (Greenland & Robins, 2009), complicating the interpretation of studies on seafood health implications. Better characterizing the extent of interspecies and intraspecies variation of chemicals in fish may help inform future human exposure studies by allowing more explicit accounting of measurement error (Spiegelman et al., 1997; Murad & Freedman, 2007; Guo et al., 2012; Pollack et al., 2013). Furthermore, statistical methods are improving for epidemiological studies to incorporate source (i.e. seafood) contaminant levels, intake frequencies, toxicokinetic processes and biomarkers for an integrated exposure assessment (Conti et al., 2003; Bartell & Johnson, 2013; Ian et al., 2012; Shin et al., 2014); or to consider complex interactions between multiple seafood contaminants (Lynch et al., 2011) Thus, additional research on the joint distribution of multiple chemicals in marine foods has potential to contribute directly to future epidemiological investigations. Bringing multiple stakeholders (i.e. fish consumers and marine scientists) together in a trans-disciplinary conversation with health scientists can also help target the science to relevant questions and improve on knowledge translation (Boote et al., 2002; Burger et al., 2013). Future assessments of the risks and benefits of fish consumption will require more detailed understanding of exposures to both fish contaminants and nutrients as well as the environmental and ecological drivers that control their chemical transformations, and flow through marine food webs. The processes affecting composition of marine fish may be altered by climate change impacts including but not limited to ocean warming and ocean acidification (Edwards & Richardson, 2004; Halpern et al., 2008; Kroeker et al., 2012); fishing (Micheli et al., 2014); emerging joint exposures such as pharmaceuticals and personal care products potentially changing xenobiotic kinetics for some other compounds (Smital et al., 2004; Epel et al., 2008; Bosnjak et al., 2009); and future changes in contaminant sources and inputs (UNEP, 2013). Together, these changes indicate a need for continued research on fish nutrients and contaminants in marine and medical science, as well as ongoing communication between these disciplines.

FINANCIAL SUPPORT

MOG was supported on a training grant from the National Institute for Environmental Health Sciences (T32ES013678-07). RK’s contribution was supported by the Gelfond Fund for Mercury Research and Outreach. MIG was supported by project No. 6.1089.214/K of the Siberian Federal University, carried out according to Federal Tasks of Ministry of Education and Science of Russian Federation, and by Russian Federal Tasks of Fundamental Research (project No. 51.1.1.1). CYC’s contribution was supported by NIH grant numbers P42 ES007373 and r101Eso21950 from the National Institute of Environmental Health Sciences.

REFERENCES

Abd Aziz N., Azlan A., Ismail A., Alinafiah S.M. and Razman M.R. (2013) Quantitative determination of fatty acids in marine fish and
shellfish from warm water of straits of Malacca for nutraceutical purposes. BioMed Research International. Article 284329.

Ackerman J.T. and Eagles-Smith C.A. (2009) Selenium bioaccumulation and body condition in shorebirds and terns breeding in San Francisco Bay, California, USA. Environmental Toxicology and Chemistry 28, 2134–2141.

Adams W.J., Brix K.V., Edwards M., Tear L.M., DeForest D.K. and Fairbrother A. (2003) Analysis of field and laboratory data to derive selenium toxicity thresholds for birds. Environmental Toxicology and Chemistry 22, 2020–2029.

Ahrens L. and Bundschuh M. (2014) Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environmental Toxicology and Chemistry 33, 1921–1929.

Alkazemi D., Egeland G.M., Roberts L.I.J., Chan H.M. and Kubow S. (2013) New insights regarding tissue Se and Mercury interactions on oxidative stress from plasma IsoP and IsoF measures in the Canadian Inuit population. Journal of Lipid Research 54, 1972–1979.

Alonso M.B., Azevedo A., Torres J.P., Dorneles P.R., Ejlaratt E., Barceló D., Lailson-Brito J. and Malm O. (2014) Anthropogenic (PBDE) and naturally-produced (MeO-PBDE) brominated compounds in cetaceans – a review. Science of the Total Environment 481, 619–634.

Amlund H., Lundebye A.K., Boyle D. and Ellingsen S. (2015) Dietary selenomethionine influences the accumulation and depuration of dietary methymercury in zebrafish (Danio rerio). Aquatic Toxicology 158, 211–217.

Arts M.T., Palmer M.E., Skrifvars M.B., Jokinen I.E. and Browman A.H., Lundebye A.K., Boyle D. and Ellingsen S. (2015) Dietary selenomethionine influences the accumulation and depuration of dietary methymercury in zebrafish (Danio rerio). Aquatic Toxicology 158, 211–217.

Bartell S.M. and Johnson W.O. (2007) Temperature reduces n-3 fatty acids in juvenile Atlantic salmon (Salmo salar). Lipids 47, 1181–1192.

Axelrad D.A., Bellinger D.C., Ryan L.M. and Woodruff T.J. (2007) Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environmental Health Perspectives 115, 699–615.

Bank M.S., Chesney E., Shine J.P., Maage A. and Senn D.B. (2007) Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico. Ecological Applications 17, 2100–2110.

Barceloux D.G. (1999) Selenium. Journal of Toxicology – Clinical Toxicology 37, 145–172.

Bartell S.M. and Johnson W.O. (2011) Estimating equations for bio-marker based exposure estimation under non-steady state conditions. Environmental Health 10, 57.

Basu N., Goodrich J.M. and Head J. (2014) Ecogenetics of mercury: from genetic polymorphisms and epigenetics to risk assessment and decision-making. Environmental Toxicology and Chemistry 33, 1248–1258.

Belanger M.C., Mirault M.E., Dewaille E., Berthiaume L. and Julien P. (2008) Environmental contaminants and redox status of coenzyme Q10 and vitamin E in Inuit from Nunavik. Metabolism: Clinical and Experimental 57, 927–933.

Bender N., Portmann M., Heg Z., Hofmann K., Zwahlen M. and Egger M. (2014) Fish or n-3 PUFA intake and body composition: a systematic review and meta-analysis. Obesity Reviews 15, 657–665.

Bergé J.P. and Barnathan G. (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Advances in Biochemical Engineering and Biotechnology 96, 49–125.

Bjerregaard P. and Christensen A. (2012) Selenium reduces the retention of Methyl mercury in the brown shrimp Crangon crangon. Environmental Science and Technology 46, 6324–6329.

Bjerregaard P., Fjordside S., Hansen M.G. and Petrova M.B. (2012) Dietary selenium reduces retention of methyl mercury in freshwater fish. Environmental Science and Technology 45, 9793–9798.

Bogevik A.S., Henderson R.J., Mundheim H., Olsen R.E. and Tocher D.R. (2011) The effect of temperature and dietary fat level on tissue lipid composition in Atlantic salmon (Salmo salar) fed wax ester-rich oil from Calanus finmarchicus. Aquaculture Nutrition 17, e781–e788.

Boote J., Telford R. and Cooper C. (2002) Consumer involvement in health research: a review and research agenda. Health Policy 61, 213–236.

Bosnjak I., Uhlinger K.R., Heim W., Smital T., Franek-Colic J., Coale K., Eipel D. and Hamdoum A. (2009) Multidrug efflux transporters limit accumulation of inorganic, but not organic, mercury in sea Urchin embryos. Environmental Science and Technology 43, 8374–8380.

Braune B.M. (1987) Mercury accumulation in relation to size and age of Atlantic herring (Clupea harengus harengus) from the southwestern Bay of Fundy, Canada. Archives of Environmental Contamination and Toxicology 16, 311–320.

Buck R.C., Franklin J., Berger U., Conder J.M., Cousins I.T., De Voogt P., Jensen A.A., Kannan K., Mabury S.A. and van Leeuwen S.P.J. (2001) Perfluoralkyl and polyfluoroalkyl substances in the environment: terminology, classification and origins. Integrated Environmental Assessment and Management 7, 513–541.

Burger J. and Göchfeld M. (2011) Mercury and selenium in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Science of the Total Environment 409, 1418–1429.

Burger J. and Göchfeld M. (2012) Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories. Environmental Research 114, 12–23.

Burger J., Göchfeld M. and Fote T. (2013) Stakeholder participation in research design and decisions: scientists, fishers, and mercury in saltwater fish. Ecosphere 10, 21–30.

Burger J., Stern A.H. and Göchfeld M. (2005) Mercury in commercial fish: optimizing individual choice to reduce risk. Environmental Health Perspectives 113, 266–271.

Campbell F., Dickinson H.O., Critchley J.A., Ford G.A. and Bradburn M. (2013) A systematic review of fish-oil supplements for the prevention and treatment of hypertension. European Journal of Preventive Cardiology 20, 107–120.

Caroci A., Rovito N., Sinicropi M.S. and Genci G. (2014) Mercury toxicity and neurodegenerative effects. Reviews of Environmental Contamination and Toxicology 229, 1–18.

Castro-Gonzalez I., Maafs-Rodriguez A.G., Silencio-Barrita J.L., Carocci A., Rovito N., Sinicropi M.S. and Genchi G. (2013) Evaluation of the possible inclusion of certain fish species in chronic kidney disease diets based on dietary methylmercury. Marine Pollution Bulletin 75, 1–18.

Chen C.Y., Lai C.C., Chen K.S., Hsu C.C., Hung C.C. and Chen M.H. (2014) Detailed inclusion of certain fish species in chronic kidney disease diets based on dietary methylmercury. Marine Pollution Bulletin 75, 1–18.

Chen C.Y., Dionne M., Mayes B.M., Ward D.M., Sturup S. and Jackson B. P. (2009) Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environmental Science and Technology 43, 1804–1810.

Chen C.Y., Lai C.C., Chen K.S., Hsu C.C., Hung C.C. and Chen M.H. (2014) Total and organic mercury concentrations in the muscles of Pacific Albacore (Thunnus alalunga) and Bigeye Tuna (Thunnus obesus). Marine Pollution Bulletin 85, 606–612.
Choi A.L., Budtz-Jorgensen E., Jorgensen P.J., Steuerwald U., Debes F., Weihe P. and Grandjean P. (2007) Selenium as a potential protective factor against mercury developmental neurotoxicity. Environmental Research 107, 45–52.

Chuang L.-T., Bulbul U., Wen P.-C., Glew R.H. and Ayaz F.A. (2012) Fatty acid composition of 12 fish species from the Black Sea. Journal of Food Science 77, C312–C318.

Conti D.V., Cortessis V., Molitor J. and Thomas D.C. (2003) Bayesian modeling of complex metabolic pathways. Human Heredity 56, 83–93.

Cooper L.T., Rader V. and Ralston N.V. (2007) The roles of selenium and mercury in the pathogenesis of viral cardiomyopathy. Congestive Heart Failure 13, 193–199.

Cossa D., Harmelin-Vivien M., Mellon-Duval C., Loizeau V., Averty B., Crochet S., Chou L. and Cadiou J.F. (2012) Influences of bioavailability, trophic position, and growth on methylmercury in hakes (Merluccius merluccius) from Northwestern Mediterranean and Northeastern Atlantic. Environmental Science and Technology 46, 4885–4893.

Costa S., Afonso C., Bandarra N.M., Gueifão S., Castanheira I., Carvalho M.L., Cardoso C. and Nunes M.L. (2013) The emerging farmed fish species meagre (Argyrosomus regius): how culinary treatment affects nutrients and contaminants concentration and associated benefit-risk balance. Food and Chemical Toxicology 60, 277–286.

Crump K.S., Kjellstrom T., Shipp A.M., Silvers A. and Stewart A. (2006) Development Study. Journal of the American Medical Association 296, 1106–1109.

Davidson P.W., Myers G.J., Cox C., Axtell C., Shamlaye C., Sloane-Reeves J., Cernichiari E., Needham L., Choi A., Wang Y., Berlin M. and Clarkson T.W. (1998) Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. Journal of the American Medical Association 280, 701–707.

Davidson P.W., Myers G.J., Weiss B., Shamlaye C.F. and Cox C. (2006) Prenatal methyl mercury exposure from fish consumption and child development: a review of evidence and perspectives from the Seychelles Child Development Study. Neurotoxicology 27, 1106–1109.

Davidson P.W., Strain J.J., Myers G.J., Thurston S.W., Bonham M.P., Shamlaye C.F., Stokes-Riner A., Wallace J.M., Robson P.J., Duffy E.M., Georger L.A., Sloane-Reeves J., Cernichiari E., Canfield E.M., Cox C., Huang L.S., Janicuras J. and Clarkson T.W. (2008) Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from eating fish during pregnancy. Neurotoxicology 29, 767–775.

Dewailly E., Diorio C., Ouennet N., Sidi E.A., Abdous B., Valera B. and Ayotte P. (2014) Methylmercury exposure, PON1 gene variants and serum paraoxonase activity in Eastern James Bay Cree adults. Journal of Exposure Science and Environmental Epidemiology 24, 608–614.

Edmonds J.S. and Francesconi K.A. (1993) Arsenic in seafoods: human health aspects and regulations. Marine Pollution Bulletin 26, 665–674.

Edwards M. and Richardson A.J. (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884.

Eple D., Stevenson C.N., MacManus-Spencer L.A., Luckenbach T., Hamdoun A. and Smital T. (2008) Efflux transporters: newly appreciated roles in protection against pollutants. Environmental Science and Technology 42, 3914–3920.

Eto K., Takizawa Y., Akagi H., Haraguchi K., Asano S., Takahata N. and Tokunaga H. (1999) Differential diagnosis between organic and inorganic mercury poisoning in human cases – the pathologic point of view. Toxicologic Pathology 27, 664–671.

European Marine Board (2013) Linking oceans & human health: a strategic research priority for Europe. Position Paper 19 of the European Marine Board, Ostend, Belgium.

FAO (2014) The State of World Fisheries and Aquaculture 2014: Opportunities and Challenges. Rome: Food and Agriculture Organization of the United Nations. E-ISBN 978-92-5-108276-8.

FAO/WHO (2011) FAO Fisheries and Aquaculture Report No. 978. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. Rome: Food and Agriculture Organization of the United Nations; Geneva: World Health Organization. 50 pp.

Farina M., Aschner M. and Rocha J.B. (2011) Oxidative stress in methylmercury-induced neurotoxicity. Toxicology and Applied Pharmacology 256, 405–417.

Fuscmho J.R., Guschina I.A., Dobson G., Yan N.D., Harwood J.L. and Arts M.T. (2011) Rising water temperatures alter lipid dynamics and reduce N-3 essential fatty acid concentration in Scenedesmus obliquus (Chlorophyta). Journal of Physiology 47, 765–774.

Ganther H.E., Goudie C., Sunde M.L., Kopicky M.J., Wagner P., Oh S.H. and Hockstra W.G. (1972) Selenium relation to decreased toxicity of methylmercury added to diets containing tuna. Science 175, 1122–1124.

Garcia-Moreno P.J., Perez-Galvez R., Morales-Medina R., Guadix A. and Guadix E.M. (2013) Discarded species in the west Mediterranean sea as sources of omega-3 PUFA. European Journal of Lipid Science and Technology 115, 982–989.

Gardner R.M., Nyland J.F., Evans S.L., Wang S.B., Doyle K.M., Crainiceanu C.M. and Silbergeld E.K. (2009) Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro. Environmental Health Perspectives 117, 1932–1938.

Gardner R.M., Nyland J.F., Silva L.A., Ventura A.M., deSouza J.M., and Silbergeld E.K. (2010) Mercury exposure, serum antioxidant/antinflammatory biomarkers, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environmental Research 104, 345–354.

Gardner R.M., Nyland J.F. and Silbergeld E.K. (2010b) Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicology Letters 198, 182–190.

Garthwaite I. (2000) Keeping shellfish safe to eat: a brief review of shellfish toxins, and methods for their detection. Toxicon 38, 175–180.

Gehrke G. E., Blum J. D. and Marvin-DiPasquale M. (2011) Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geoichimica et Cosmochimica Acta 75, 691–705.
Kaneko J.J. and Ralston N.Y.C. (2007) Selenium and mercury in pelagic fish in the central north Pacific near Hawaii. Biological Trace Element Research 119, 242–254.

Karagas M.R., Choi A.L., Oken E., Horvat M., Schoeny R., Kamai E., Cowell W., Grandjean P. and Korrick S. (2012) Evidence on the human health effects of low-level methylmercury exposure. Environmental Health Perspectives 120, 799–806.

Karimi R., Fisher N.S. and Folt C.L. (2010) Multielement stoichiometry in aquatic invertebrates: when growth dilution matters. American Naturalist 176, 699–709.

Karimi R., Fitzgerald T.P. and Fisher N.S. (2012) A quantitative synthesis of mercury in commercial seafood and implications for exposure in the United States. Environmental Health Perspectives 120, 1512–1519.

Karimi R., Frisk M. and Fisher N.S. (2013) Contrasting food web factor and body size relationships with Mercury and Se concentrations in marine biota. Plos ONE 9, e74695.

Kattner G. and Hagen W. (2009) Lipids in marine copepods: latitudinal characteristics and perspectives to global warming. In Arts M.T., Kainz M. and Brett M.T. (eds) Lipids in aquatic ecosystems. New York, NY: Springer, pp. 147–178.

Kjellström T., Kennedy P., Wallis S. and Mantell C. (1986) Physical and mental development of children with prenatal exposure to mercury from fish. Stage 1: Preliminary tests at age 4. Report 3030. Solna: National Swedish Environmental Board.

Kjellström T., Kennedy P., Wallis S., Stewart A., Friberg L., Lind B., Wutherspoon T. and Mantell C. (1989) Physical and mental development of children with prenatal exposure to mercury from fish. Stage 2: Interviews and psychological tests at age 6. Report 3642. Solna: National Swedish Environmental Board.

Kim Y.N., Kim Y.A., Yang A.R. and Lee B.H. (2012) Evidence on the human health effects of low-level methylmercury exposure. Environmental Health Perspectives 120, 1512–1519.

Kuntz S.W., Rico J.A., Hill W.G. and Anderko L. (2010) Communicating methylmercury risks and fish consumption benefits to vulnerable childbearing populations. Journal of Obstetric, Gynecologic and Neonatal Nursing 39, 118–126.

Laird B.D., Goncharov A.B., Egeland G.M. and Chan H.M. (2013) Dietary advice on Inuit traditional food use needs to balance benefits and risks of mercury, selenium, and n3 fatty acids. Journal of Nutrition 143, 923–930.

Laird B.D., Shade C., Gantner N., Chan H.M. and Siciliano S.D. (2009) Bioaccumisiveness of mercury from traditional northern country foods measured using an in vitro gastrointestinal model is independent of mercury concentration. Science of the Total Environment 407, 6003–6008.

Lau D.C.P., Vrede T., Pickova J. and Goedkoop W. (2012) Fatty acid composition of consumers in boreal lakes – variation across species, space and time. Freshwater Biology 57, 24–38.

Laurel B.J., Copeman J.A. and Parrish C.C. (2012) Role of temperature on lipid/fatty acid composition on Pacific cod (Gadus macrocephalus) eggs and unfed larvae. Marine Biology 159, 2025–2034.

Lemly A.D. (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquatic Toxicology 57, 39–49.

Li Y.F., Dong Z., Chen C., Li B., Gao Y., Qu L., Wang T., Fu X., Zhao Y. and Chai Z. (2012) Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China. Environmental Science and Technology 46, 11313–11318.

Lowery T. and Garrett E.S. (2005) Synoptic survey of total mercury in recreational fish from the Gulf of Mexico. NOAA Fisheries, Office of Sustainable Fisheries, National Seafood Inspection Laboratory.

Lynch M.L., Huang L.S., Cox C., Strain J.J., Myers G.J., Bonham M.P., Shamlaye C.F., Stokes-Riner A., Wallace J.M., Duffley E.M., Clarkson T.W. and Davidson P.W. (2011) Varying coefficient function models to explore interactions between maternal nutritional status and prenatal methylmercury toxicity in the Seychelles Child Development Nutrition Study. Environmental Research 111, 75–80.

Mahaffey K.R. (2004) Fish and shellfish as dietary sources of methylmercury and the omega-3 fatty acids, eicosahexaenoic acid and docosahexaenoic acid: risks and benefits. Environmental Research 95, 414–428.

Mahaffey K.R., Clickner R.P. and Jeffries R.A. (2009) Adult women’s blood mercury concentrations vary regionally in the United States: association with patterns of fish consumption (NHANES 1999–2004). Environmental Health Perspectives 117, 47–53.

Makhutova O.N., Sushchik N.N., Gladyshev M.I., Ageev A.V., Pryanichnikova E.G. and Kalachova G.S. (2011) Is the fatty acid composition of freshwater zoobenthic invertebrates controlled by phylogenetic or trophic factors? Lipids 46, 709–721.

Mergler D., Anderson H.A., Chan L.H., Mahaffey K.R., Murray M., Sakamoto M., Stern A.H. and the Panel on Health Risks and Toxicological Effects of Methylmercury (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36, 3–11.

Micheli F., De Leo G., Butner C., Martone R.G. and Shester M. (2014) A risk-based framework for assessing the cumulative impact of multiple fisheries. Biological Conservation 176, 224–235.

Moore M.N., Depledge M.H., Fleming L., Hess P., Lees D., Leonard P., Madsen L., Owen R., Pirlet H., Seys J., Vanconcelos V., Viarengo A. and the Marine Board-ESF Working Group on Oceans and Human Health (2013) Oceans and Human Health (OHHT): a European perspective from the Marine Board of the European Science Foundation (Marine Board-ESF). Microbial Ecology 65, 889–900.

Moses S.K., Whiting A.V., Bratton G.R., Taylor R.J. and O’Hara T.M. (2009a) Inorganic nutrients and contaminants in subsistence species of Alaska: linking wildlife and human health. International Journal of Circumpolar Health 68, 53–74.
Moses S.K., Whiting A.V., Muir D.C., Wang X. and O’Hara T.M. (2009b) Organic nutrients and contaminants in subsistence species of Alaska: concentrations and relationship to food preparation method. International Journal of Circumpolar Health 68, 354–371.

Motts M.D., Dellingler J.A., Holub B., Ripley M.P., McGraw J.E. and Kinnunnen R.E. (2013) Omega-3 fatty acids in fish from the Laurentian Great Lakes tributary fisheries. Human and Ecological Risk Assessment 19, 1628–1643.

Mozaffarian D. (2009) Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. International Journal of Environmental Research and Public Health 6, 1894–1916.

Mozaffarian D., Shi P., Morris J.S., Grandjean P., Siscovick D.S., Willett W.C. and Rimin E.B. (2011) Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. New England Journal of Medicine 364, 1116–1125.

Murad H. and Freedman L.S. (2007) Estimating and testing interactions in linear regression models when explanatory variables are subject to classical measurement error. Statistics in Medicine 26, 4293–4310.

Myers G.L., Davidson P.W., Cox C., Shymale C.F., Palumbo D., Cernichiari E., Sloane-Reeves J., Wilding G.E., Kost J., Huang L.S. and Clarkson T.W. (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 361, 1866–1892.

Myers G.L., Thurston S.W., Pearson A.T., Davidson P.W., Cox C., Shymale C.F., Cernichiari E. and Clarkson T.W. (2009) Postnatal exposure to methyl mercury from fish consumption: a review and new data from the Seychelles Child Development Study. Neurotoxicology 30, 338–349.

Neff J.M. (1997) Ecotoxicology of arsenic in the marine environment. Environmental Toxicology and Chemistry 16, 917–927.

Oken E., Wright R.O., Kleinman K.P., Bellinger D., Amarasiriwardena C.J., Hu H., Rich-Edwards J.W. and Gillman M.W. (2005) Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environmental Health Perspectives 113, 1376–1380.

Outzen M., Tjønneland A., Larsen E.H., Andersen K.K., Christensen J., Myer G.J., Davidson P.W., Cox C., Shamlaye C.F., Palumbo D., Cernichiari E. and Clarkson T.W. (2009) Postnatal exposure to methyl mercury from fish consumption: a review and new data from the Seychelles Child Development Study. Neurotoxicology 30, 338–349.

Pase M.P., Grima N.A. and Sarris J. (2011) Do long-chain n-3 fatty acids have a synergistic negative effect on fish reproduction. Aquatic Toxicology 149, 16–24.

Peterson S.A., Ralston N.V.C., Whanger P.D., Oldfield J.E. and Mosher W.D. (2009) Selenium and mercury interactions with emphasis on fish tissue. Environmental Bioindicators 4, 318–334.

Piraino M.P. and Taylor D.L. (2009) Biosaccumulation and trophic transfer of mercury in striped bass (Morone saxatilis) and tufted (Tautoga onitis) in the Narragansett Bay (Rhode Island, USA). Marine Environmental Research 67, 117–128.

Pollack A.Z., Perkins N.J., Mumford S.L., Ye A. and Schisterman E.F. (2013) Correlated biomarker measurement error: an important threat to inference in environmental epidemiology. American Journal of Epidemiology 177, 84–92.

Power M., Klein G.M., Guiguer K. and Kwan M.K.H. (2002) Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology 39, 819–830.

Prego-Faraldo M.V., Valdiglesias V., Méndez J. and Eirín-López J. (2013) Okadaic acid meet and greet: an insight into detection methods, response strategies and genotoxic effects in marine invertebrates. Marine Drugs 11, 2839–2845.

Presser T.S. and Luoma S.N. (2010) A methodology for ecosystem-scale modeling of selenium. Integrated Environmental Assessment and Management 6, 685–710.

Ralston N.V.C. (2008) Selenium health benefit values as seafood safety criteria. Ecohealth 5, 442–455.

Ralston N.V.C., Blackwell J.I. and Raymond L.J. (2007) Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biological Trace Element Research 119, 255–268.

Ralston N.V.C. and Raymond L.J. (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278, 112–123.

Rice G.E., Hammitt J.K. and Evans J.S. (2010) A probabilistic characterization of the health benefits of reducing methyl mercury intake in the United States. Environmental Science and Technology 44, 5216–5224.

Rigby M.C., Deng X., Grieb T.M., Teh S.J. and Hung S.S. (2010) Effect thresholds for selenium toxicity in juvenile spottail, Pogonichthys macrolepidotus. A. Bulletin of Environmental Contamination and Toxicology 84, 76–79.

Rizos E.C., Ntzani E.E., Bika E. Kostapanos M.S. and Efstratios M.S. (2012) Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. Journal of the American Medical Association 308, 1024–1033.

Roman H.A., Walsh T.L., Coull B.A., Dewaillly É., Guillar E., Hattt M., Mariën K., Schwartz J., Stern A.H., Virtanen J.K. and Rice G. (2011) Evaluation of the cardiovascular effects of methylmercury exposures: current evidence supports development of a dose-response function for regulatory benefits analysis. Environmental Health Perspectives 119, 607–614.

Sabino P., Stranges S. and Strazzullo P. (2013) Does selenium matter in cardiometabolic disorders? A short review of the evidence. Journal of Endocrinological Investigation 36(10 Suppl.), 21–27.

Saccone G. and Berghella V. (2015) Omega-3 supplementation to prevent recurrent preterm birth: a systematic review and meta-analysis of randomized controlled trials. American Journal of Obstetrics and Gynecology 213, 135–140.

Sahari M.A., Farahani F., Soleimaniyan S. and Javadi A. (2014) Effect of frozen storage on fatty acid composition of the different tissues of four scombrid and one dussumierid species. Journal of Applied Ichthyology 30, 381–391.

Sañudo-Wilhelmy S.A., Gómez-Consarnau L., Suffridge C. and Webb E.A. (2014) The role of B vitamins in marine biogeochemistry. Annual Review of Marine Science 6, 339–367.

Scherer A.C., Tsuchiya A., Younglove L.R., Burbacher T.M. and Schierer A.C. (2008) Comparative analysis of state fish consumption advisories targeting sensitive populations. Environmental Health Perspectives 116, 1598–1606.

Shaw S.D. and Kannan K. (2009) Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge. Reviews on Environmental Health 24, 157–229.

Sheehan M.C., Burke T.A., Navas-Acien A., Breysse P.N., McGready J. and Fox M.A. (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bulletin of the World Health Organization 92, 254–260E.

Shenker B.J., Berthold P., Decker S., Mayro J., Rooney C., Vitale L. and Shapiro I.M. (1992) Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. II. Alterations in cell viability. Immunopharmacology and Immunotoxicology 14, 555–577.
Shenker B.J., Berthold P., Rooney C., Vitale L., DeBolt K. and Shapiro I.M. (1993) Immuno-toxic effects of mercuric compounds on human lymphocytes and monocytes. III. Alterations in B-cell function and viability. *Immunopharmacology and Immunotoxicology* 15, 87–112.

Shenker B.J., Guo T.L. and Shapiro I.M. (1998) Low-level methylmercury exposure causes human T-cells to undergo apoptosis: evidence of mitochondrial dysfunction. *Environmental Research* 77, 149–159.

Shin H.M., Steenland K., Ryan P.B., Vieira V.M. and Bartell S.M. (2014) Biomarker-based calibration of retrospective exposure prediction of perfluoroctanoic acid. *Environmental Science and Technology* 48, 5636–5642.

Sierra L.A., Nyland J.F., Gorman A., Perisse A., Ventura A.M., Santos E.C.O., de Souza J.M., Burek C.L., Rose N.R. and Silbergeld E.K. (2004) Mercury exposure, malaria, and serum antinuclear/antinucleolar antibodies in Amazon populations in Brazil: a cross-sectional study. *Environmental Health* 3, 11–22.

Sinesky M. (1974) Homoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in *Escherichia coli*. Proceedings of the National Academy of Sciences USA 71, 522–525.

Skjanes K., Rebours C. and Lindblad P. (2013) Potential for green micro-algae to produce hydrogen, pharmaceuticals and other high-value products in a combined process. *Critical Reviews in Biotechnology* 33, 172–215.

Smial T., Luckenbach T., Sauerborn R., Hamdoun A.M., Vega R.L., Silva I.A., Nyland J.F., Gorman A., Perisse A., Ventura A.M., Santos E.C.O., de Souza J.M., Burek C.L., Rose N.R. and Silbergeld E.K. (2004) Mercury exposure, malaria, and serum antinuclear/antinucleolar antibodies in Amazon populations in Brazil: a cross-sectional study. *Environmental Health* 3, 11–22.

Somers E.C., Ganser M.A., Warren J.S., Basu N., Wang L., Zick S.M. and Park S.K. (2015) Mercury exposure and antinuclear antibodies among females of reproductive age in the United States: NHANES. *Environmental Health Perspectives*. http://dx.doi.org/10.1289/ehp.1408751.

Snyder R.J., Schregel W.D. and Wei Y. (2012) Effects of thermal acclimation on tissue fatty acid composition of freshwater alewives (*Alosa pseudoharengus*). *Fish Physiology and Biochemistry* 38, 363–373.

Sermo E.G., Ciesielski T.M., Øverjordet I.B., Lierhagen S., Eggen G.S., Storelli M.M. and Barone G. (2012) Effects of exhaustive exercise on lipid peroxide and hydroxy lipids in yellowtail *Seriola quinqueradiata*. *North American Journal of Aquaculture* 74, 164–168.

Tanaka R., nakamura T. (2012) Effects of exhaustive exercise on lipid peroxide and hydroxy lipids in yellowtail *Seriola quinqueradiata*. *North American Journal of Aquaculture* 74, 164–168.

Tanaka R., Shigeta K., Sugiuira Y., Hatate H. and Matsushita T. (2014) Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases. *Lipids* 49, 385–396.

Tatsuta N., Nakai K., Murata K., Suzuki K., Iwai-Shimada M., Kurokawa N., Hosokawa T. and Satoh H. (2014) Impacts of prenatal exposure to polychlorinated biphenyls, methylmercury, and lead on intellectual ability of 42-month-old children in Japan. *Environmental Research* 133, 311–326.

Taylor D.L., Linehan J.C., Murray D.W. and Prell W.L. (2012) Indicators of sediment and biotic mercury contamination in a southern New England estuary. *Marine Pollution Bulletin* 64, 807–819.

Teoh M.L., Phang S.M. and Chu W.L. (2013) Response of Antarctic, temperate, and tropical microalgal to temperature stress. *Journal of Applied Physiology* 125, 285–297.

Thomas J.K. and Janz D.M. (2014) *In ovo* exposure to selenomethionine via maternal transfer increases developmental toxicities and impair swim performance in F1 generation zebrafish (*Danio rerio*). *Aquatic Toxicology* 152, 20–29.

Thompson P.A., Guo M., Harrison P.J. and Whyte J.C. (1992) Effect of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. *Journal of Phyology* 28, 488–497.

Tremain D.M. and Adams D.H. (2012) Mercury in groupers and sea basses from the Gulf of Mexico: relationships with size, age, and feeding ecology. *Transactions of the American Fisheries Society* 141, 1274–1286.

Turkoglu M.E., Bhavsar S.P., Bowerman W., Boysen E., Clark M., Diamond M., Mergler D., Pantazopoulos P., Schantz S. and Carpenter D.O. (2012) Risks and benefits of consumption of Great Lakes fish. *Environmental Health Perspectives* 120, 11–18.

Uauy R., Hoffman D.R., Peirano P., Birch D.G. and Birch E.E. (2001) Essential fatty acids in visual and brain development. *Lipids* 36, 885–895.

Ulchino M., Hirano T., Satoh H., Arimura K., Nakagawa M. and Wakamiya J. (2005) The severity of Minamata disease declined in 25 years: temporal profile of the neurological findings analyzed by multiple logistic regression model. *Tohoku Journal of Experimental Medicine* 205, 53–63.

UNEP (2013) Technical background report for the global mercury assessment 2013. Odder: Narayana Press.

Valent F., Mariuz M., Bin M., Little D., Mazeg D., Togvin V., Tratnik J., McAftee A.J., Mulhern M.S., Parpinsi M., Carrozz M., Horvat M., Tumburlini G. and Barbone F. (2013) Associations of prenatal mercury exposure from maternal fish consumption and polynsatursted fatty acids with child neurodevelopment: a prospective cohort study in Italy. *Journal of Epidemiology* 23, 360–370.

van Wijngaarden E., Beck C., Shamsley C.F., Cernichiari E., Davidson P.W., Myers G.J. and Clarkson T.W. (2006) Benchmark
concentrations for methyl mercury obtained from the 9-year follow-up of the Seychelles Child Development Study. Neurotoxicology 27, 702–709.

Vinceti M., Dennert G., Crespi C.M., Zwahlen M., Brinkman M., Zeegers M.P., Horneber M., D’Amico R. and Del Giovane C. (2014) Selenium for preventing cancer. Cochrane Database of Systematic Reviews 3, CD005195.

Virtanen J.K., Voutilainen S., Rissanen T.H., Mursu J., Tuomainen T.P., Korhonen M.J., Valkonen V.P., Seppänen K., Laukkanen J.A. and Salonen J.T. (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in Eastern Finland. Arteriosclerosis, Thrombosis, and Vascular Biology 25, 228–233.

Xin W., Wei W. and Li X. (2012) Effect of fish oil supplementation on fasting vascular endothelial function in humans: a meta-analysis of randomized controlled trials. PLoS ONE 7, e46028.

Xin W., Wei W. and Li X.Y. (2013) Short-term effects of fish-oil supplementation on heart rate variability in humans: a meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition 97, 928–935.

Wang C., Harris W.S., Chung M., Lichtenstein A.H., Balk E.M., Kupelnick B., Jordan H.S. and Lau J. (2006) n-3 fatty acids from fish or fish oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. American Journal of Clinical Nutrition 84, 5–17.

Wen W., Huang X., Chen Q. and Feng L. (2013) Temperature effects on early development and biochemical dynamics of the marine fish, Inimicus japonicus. Journal of Experimental Marine Biology 442, 22–29.

Yamashita M., Yamashita Y., Suzuki T., Kani Y., Mizusawa N., Imamura S., Takemoto K., Hara T., Hossain M.A., Yabu T. and Touhata K. (2013) Selenoneine, a novel selenium-containing compound, mediates detoxification mechanisms against methylmercury accumulation and toxicity in zebrafish embryo. Marine Biotechnology 15, 559–570.

Yogui G.T. and Sericano J.L. (2009) Polybrominated diphenyl ether flame retardants in the U.S. marine environment – a review. Environment International 35, 655–666.

Zheng J.S., Hu X.J., Zhao Y.M., Yang J. and Li D. (2013) Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. British Medical Journal 346, f3706.

and Zhu W., Dong C., Du H., Zhang H., Chen J., Hu X. and Hu F. (2014) Effect of fish oil on serum lipid profile in dialysis patients: a systematic review and meta-analysis of randomized controlled trials. Lipids in Health and Disease 13, 127.

Correspondence should be addressed to:
M.O. Gribble
Department of Preventive Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90032, USA.
email: mgribble@usc.edu