Evaluation and comparison of the efficacy of low fluoridated and calcium phosphate-based dentifrice formulations when used with powered and manual toothbrush in children with autism

Prateek Awasthi, Bharti Peshwani, Shilpi Tiwari, Ruchi Thakur, N. D. Shashikiran, Shilpy Singla

Abstract

Background: Autism is a neurobiological disorder characterized by impaired social interaction, communication difficulties, and lacking manual dexterity. These limitations make the oral hygiene maintenance very difficult. Aim: The aim of this present study is to evaluate and compare the efficacy of low fluoridated and calcium phosphate-based dentifrice formulations when used with powered and manual toothbrush in children with autism. Setting and Design: Sample comprised 22 children with autism who daily visited a day care and education center named ARUSHI - a center for children with special health care needs in Bhopal. Methods: Children were divided into two groups (Group A and B) according to toothbrush used and further divided into subgroups (A1 and B1 [low fluoridated – Pediflor toothpaste] and A2 and B2 [calcium sucrose phosphate – Enafix toothpaste]). Oral hygiene instructions and brushing technique demonstration were given every day for a period of 1-month. Oral health status was evaluated before and after the study using simplified oral hygiene index (OHI-S) and its Miglani’s modification for primary dentition, plaque index (PI), gingival index (GI), and decayed, missing, and filled teeth (DMFT)/deft index. The perception of parents regarding oral hygiene practices for their kids was also evaluated by an awareness and attitude questionnaire. Statistical Analysis: OHI-S, GI, PI, and DMFT/deft were statistically evaluated using Mann–Whitney U-test. Results and Conclusion: Mean value of OHI-S decreased significantly with powered toothbrush (0.035 [P < 0.05]) in both groups. However, PI decreased significantly for Enafix when used with powered toothbrush (0.042 [P < 0.05]). Perception of parents was seen to improve significantly after 1-month study (0.000 [P < 0.05]).

Keywords: Autism, calcium sucrose phosphate, low-fluoridated toothpaste, powered toothbrush

Introduction

Autism is a developmental and neuropsychiatric disorder characterized by impairments in communication and social interaction accompanied with repetitive or restricted behavior. These impairments have the potential to make oral health care difficult by creating obstacles for dental practitioner by limiting the use of many basic behavioral management techniques.[1] These children have unmet oral health care needs due to poor motor coordination, less learning abilities, and sensory problems (sensitivity to the bristle of brush and taste of toothpaste). They also exhibit damaging oral habits such as bruxism or pica. Poor oral care coupled with usually strong affinity for sweets increases the risk of developing caries and periodontal disease.[2,3] The present study aims to evaluate and compare efficacy of low fluoridated and calcium phosphate-based dentifrice formulations when used with powered and manual toothbrush in children with autism.

Methods

The study comprised 22 children with autism who were availing day boarding facility at ARUSHI - a center for education and training for children with special health care needs in Bhopal, Madhya Pradesh, India. Written informed consent was obtained from the parents, and an ethical approval was obtained from the Institutional Ethical Committee, People’s College of Dental Science and Research Centre, People’s University, Bhopal.
Oral hygiene screening was carried out for all 22 children who were divided into two groups: Group A (n = 11) - who used powered toothbrush and Group B (n = 11) - who used manual toothbrush. These two groups were further subdivided into A1 and B1 (low fluoridated — Pediflor toothpaste) and A2 and B2 (calcium sucrose phosphate — Enafix toothpaste).

Children were clinically examined at their institution while seated on comfortable chair under natural light. The indices evaluated were simplified oral hygiene index (OHI-S), its Miglani’s modification for deciduous dentition, decayed, missing, and filled teeth (DMFT)/deft, and gingival and plaque indices. During examination, if participants were uncooperative, additional approach was used to encourage the cooperation by songs being sung by school staff along with the use of basic behavior management techniques (tell-show-do technique, short, clear verbal commands, differential verbal reinforcement, live modeling, humor, and use of physical restraint) where appropriate.

Following oral examination, demonstration of brushing technique to children, parents, and teachers using audiovisual aids was done along with the distribution of oral hygiene information manuals in the form of pamphlets, CD/DVDs, etc. Diet chart of these children was obtained and diet counseling was done on subsequent visits. Parents were asked to fill the awareness and attitude questionnaire about oral hygiene practices, oral habits, medical and dental history of their child, etc. To keep a track of regular brushing as instructed, parents were asked to mark on a pocket-sized form as and when brushing was performed.

Motivation and reinforcement sessions were carried out twice a week for the entire 1-month period with contemporary approaches such as visual pedagogy including videos, pamphlets, live demonstrations, modeling and tell-show-do technique.

Oral health status was reassessed on 15th and 30th day similarly as done on the 1st day. Parents were asked to refill the same questionnaire again on the 30th day.

Results

The study population comprised children with autism of age group of 6–18 years (mean age 11 ± 4.51) with a male female ratio of 2.1:1. Mean values of OHI-S (0.035) and plaque index (0.005) decreased significantly when powered toothbrush was used with calcium sucrose phosphate-based formulation — Enafix [Figure 2]. From the data obtained in our study, it was noticed that children on high cariogenic diet had higher DMFT/deft scores. However, after a period of 1-month where continuous monitoring of the diet as well as oral hygiene measures was done, caries score remained the same as before (constant DMFT/deft [3.55]). Parent’s perception element required for maintaining good oral hygiene (tooth brushing frequency, tooth brushing method, duration of brushing, etc.) was seen to improve significantly as shown in Figure 3.
Discussion

There is sparse literature on oral health status of children with autism in developing countries. Providing oral care to children with autism requires patience and a thorough understanding of the patient’s degree of mental disability. Studies indicated higher incidence of caries and periodontal diseases because of reduced access to care and difficulty in daily oral care maintenance. Powered toothbrushes, which are easy to handle, require lesser manual efficiency, and facilitate effective tooth cleaning either used by the child or assisted by the parents/caretaker, are very helpful. Powered toothbrushes when compared to manual toothbrush have the potential to improve oral hygiene by achieving plaque reduction as evident in our study after 30 days.

Parent questionnaire records showed that these children required very obvious physical assistance while performing their daily activities including tooth brushing. Repeated oral hygiene instructions not only improved oral health status of these children but also had marked impact in creating awareness among parents toward oral health of their kids and instilled positive dental attitude in these parents. Due to poor swallowing, reflex toothpaste might be swallowed which can in turn result in fluoride toxicity. Low fluoridated toothpaste with increased frequency has therefore been recommended in the present study to maximize its topical effect and reduce the chances of toxicity in accordance with American Academy of Pediatric Dentistry Guideline on Fluoride Therapy.

Poor masticatory abilities coupled with pouching of food lead to higher incidence of demineralization. This demineralization process can be reduced or reversed by effective mechanical cleansing via a toothbrush and dentifrice. The “anticay” mechanism of calcium sucrose phosphate as used in this study quickly breaks down to release calcium and phosphate ions into the saliva. It has the common ion effect wherein the rate of remineralization increases as it not only remineralizes the surface enamel but also at depth. Anticay is a mixture of calcium salts of sucrose phosphate esters, complexed with inorganic calcium orthophosphate. It is composed of 10–12% calcium and 8–10% phosphorous by weight. Calcium and phosphate in aqueous medium tend to form insoluble precipitates, where from these ions rapidly adsorb on enamel surface, and thereby inhibit demineralization. The widespread influence of calcium and phosphate in biological systems means that this simple property of solubility makes Anticay extremely useful in a large number of therapeutic settings.

Conclusion

This study can be considered as the pioneer study to compare the efficacy of calcium sucrose phosphate-based dentifrice and low fluoride dentifrice to maintain a low DMFT as literature does not cite the comparative effects of cariostatic activity of both. Calcium sucrose phosphate dentifrice with powered toothbrush in children lacking manual dexterity can be used as a better alternative to low fluoridated dentifrice formulations.

However, the conclusion drawn in the present study needs to be further assessed by in vitro and in vivo studies on an elaborate sample to evaluate the effect on inhibition of demineralization, enhancement of remineralization potential, microhardness, and various other parameters when coupled with a manual or powered toothbrush.

Acknowledgment

We would like to thank special schools participated in the study (ARUSHI - a center for education and training for children with special health care needs in Bhopal, Madhya Pradesh, India). Also, we would like to thank the children and families who participated in this research.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Stein LI, Polido JC, Najera SO, Cermak SA. Oral care experiences and challenges in children with autism spectrum disorders. Pediatr Dent 2012;34:387-91.
2. Richa, Yashoda R, Puranik MP. Oral health status and parental perception of child oral health related quality-of-life of children with autism in Bangalore, India. J Indian Soc Pedod Prev Dent 2014;32:135-9.
3. Murshid EZ. Diet, oral hygiene practices and dental health in autistic children in Riyadh, Saudi Arabia. Oral Health Dent Manag 2014;13:91-6.
4. Greene JC, Vermillion JR. The simplified oral hygiene index. J Am Dent Assoc 1964;68:7-13.
5. Migliani DC, Beal JF, James PM, Behari SA. The assessment of dental cleanliness status of the primary dentition using a modification of the simplified oral hygiene index (OHIS-M). J Indian Dent Assoc 1973;45:385-8.
6. Klein H, Palmer CE, Knutson JW. Dental status and dental needs of elementary school children. Public Health Rep 1938;53:751-65.
7. Grubbel AO. A measurement of dental caries prevalence and treatment service for deciduous teeth. J Dent Res 1944;23:163-6.
8. Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L. A modified gingival index for use in clinical trials. Clin Prev Dent 1986;8:3-6.
9. Vishnu Rekha C, Arangannal P, Shahed H. Oral health status of children with autistic disorder in Chennai. Eur Arch Paediatr Dent 2012;13:126-31.
10. Loo CY, Graham RM, Hughes CV. Behaviour guidance in dental treatment of patients with autism spectrum disorder. Int J Paediatr Dent 2009;19:390-8.
11. Pilebro C, Bäckman B. Teaching oral hygiene to children with autism. Int J Paediatr Dent 2005;15:1-8.
12. Mohinderpal Chandha G, Kakodkar P, Chaugule V, Nimbalkar V.
Dental survey of institutionalized children with autistic disorder. Int J Clin Pediatr Dent 2012;5:29-32.

13. Capozza LE, Bimstein E. Preferences of parents of children with autism spectrum disorders concerning oral health and dental treatment. Pediatr Dent 2012;34:480-4.

14. Lowe O, Lindemann R. Assessment of the autistic patient’s dental needs and ability to undergo dental examination. ASDC J Dent Child 1985;52:29-35.

15. Shapiro J, Mann J, Tamari I, Mester R, Knobler H, Yoeli Y, et al. Oral health status and dental needs of an autistic population of children and young adults. Spec Care Dentist 1989;9:38-41.

16. Jain Y. A comparison of the efficacy of powered and manual toothbrushes in controlling plaque and gingivitis: A clinical study. Clin Cosmet Investig Dent 2013;5:3-9.

17. American Academy of Pediatric Dentistry. Guideline on fluoride therapy (reference manual). Pediatr Dent 2014;36:171-4.

18. Reynolds EC. Calcium phosphate-based remineralization systems: Scientific evidence? Aust Dent J 2008;53:268-73.

19. Sargod SS, Bhat SS, Hegde S, Karunakaran R. Remineralization potential using calcium sucrose phosphate (Enafix) on artificial carious lesion: A polaroid microscopic study. Indian J Appl Res 2015;5:421-3.