Immune Thrombocytopenic Purpura and Paradoxical Thrombosis: A Systematic Review of Case Reports

Elrazi A. Ali 1, Maimoonah Rasheed 2, Anas Al-sadi 3, Abdalaziz M. Awadelkarim 3, Eltaib A. Saad 4, Mohamed A. Yassin 5

1. Internal Medicine, Interfaith Medical Center/One Brooklyn Health, Brooklyn, USA 2. Internal Medicine, Hamad Medical Corporation, Doha, QAT 3. Internal Medicine, Wayne State University Detroit Medical Center, Detroit, USA 4. Internal Medicine, Saint Francis Hospital, Evanston, USA 5. Hematology and Oncology, Hamad General Hospital, Doha, QAT

Corresponding author: Elrazi A. Ali, razinho5@gmail.com

Abstract

Background and Aims: Immune thrombocytopenic purpura (ITP) is an acquired bleeding disorder characterized by autoantibodies against platelets. The clinical presentation is variable; the main symptom is bleeding, and many patients are asymptomatic; others have nonspecific symptoms like fatigue. Uncommonly, ITP can present with paradoxical thrombosis. The risk of thrombosis in ITP may be higher than expected, which makes the management of ITP more challenging. This review aims to evaluate patients with ITP who develop thrombosis and identify potential risk factors related to thrombosis in this category of patients.

Materials and Methods: English literature was searched using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for adults above 18 years with primary ITP who had infarctions or thrombotic events. Patients with secondary ITP were excluded. The search included articles published up to 20th October 2021.

Results: A total of 73 articles were included. Seventy-seven patients with ITP had developed infarctions and various thrombotic events. Sixty-three patients had arterial events, and 14 patients developed venous thrombotic events.

Conclusion: Patients with ITP have low platelets, which predispose them to bleed; despite that, serious thrombotic complications can happen in these patients and are difficult to predict. Therefore, it is critical for physicians to understand that ITP is paradoxically a prothrombotic condition and to address preventive thromboembolic measures whenever possible.

Introduction And Background

Immune thrombocytopenic purpura (ITP), previously known as Werlhof’s Disease, is a hematological disorder [1] characterized by immune-mediated destruction of platelets and persistently decreased platelet count (PLT); hence, the bleeding tendency is the hallmark of the disease. ITP can be either primary or secondary to another disease such as autoimmune disease, malignancies like chronic lymphocytic leukemia, or infections like human immunodeficiency virus (HIV) and hepatitis C virus (HCV) or post-vaccine [2]. The underlying mechanism for thrombocytopenia in ITP is not fully understood. The possible mechanism is autoantibodies targeting platelet surface glycoproteins, such as GPIIb/IIIa and GPIb/IX complexes [3]. The diagnosis of ITP is usually made after secondary causes have been ruled out by a thorough history, physical examination, and investigations. ITP usually presents with bleeding, which is seen in up to two-thirds of patients, but a significant number of patients are asymptomatic. Patients with significant bleeding usually have PLTs below 20,000/mL; however, the relation between the plate count and bleeding risk is unclear [3]. Recently, thromboembolic events have been increasingly reported in patients with ITP despite the low PLT [4]. The presence of thrombosis and infarction in patients with ITP is an unexpected finding that can change the concept of ITP and fill the gaps in our understanding of the disease. In this review, we tried to study the reported cases of the thromboembolic phenomenon in patients with ITP with respect to patient characteristics, disease, and hematologic parameters at the time of thrombosis to understand the risk factors and underlying mechanisms.

Review

Methodology
Literature Search Strategy

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards, we conducted a systematic review. A search of the English literature (PubMed, SCOPUS, and Google scholar) was conducted looking for articles describing thrombotic events in patients with ITP. We used the search terms: "immune thrombocytopenic purpura" with "thrombosis" and "infarction". The reference in the included papers was scanned for any additional articles. The primary search process and secondary search process included articles published up to 20th October 2021. Thromboembolic events included were arterial thromboembolic events such as myocardial infarction, unstable angina, and ischemic stroke, and venous thromboembolic events like (pulmonary embolism, deep vein thrombosis, cerebral venous thrombosis, and portal vein thrombosis). A total of 73 articles were included (Figure 1).

![PRISMA flow diagram](image)

Definitions

According to the ITP International Working Group proposed definitions of disease [5]:

- Newly diagnosed ITP is a disease that was diagnosed within the past three months.

- Persistent ITP is a disease diagnosed for 3-12 months duration.

- Chronic ITP is a disease that lasts longer than a year.

Inclusion Criteria

- adult population age 18 years and above with ITP who developed thrombotic events or infarction.

Exclusion Criteria

- Gray literature
- Reviews and cases with insufficient data
- Age less than 18 years
- Hemorrhagic infarctions
- Secondary thrombocytopenia: autoimmune diseases like systemic lupus erythematosus (SLE), HIV, HCV, cirrhosis, lymphoma...
- Patient with a prothrombotic condition like pregnancy, factor V laden, prothrombin mutation, and antiphospholipid syndrome
- Vaccine-related ITP
- Post-infectious or post coronavirus disease 2019 (COVID-19) related ITP
- Evan syndrome

Study Selection

Two independent reviewers examined the titles and abstracts of the records, excluding papers that did not meet our inclusion criteria. Inter-rater conflicts were settled with the help of a third reviewer and a discussion among the reviewers.

Data Extraction

Two reviewers extracted the date of publication, patient characteristics, treatment received, and the outcome.

Results

A total of 73 articles (Figure 1) reported 77 patients with ITP who developed thrombotic events or infarctions identified in Tables 1–2. Some 63 patients were with arterial events and 14 patients were with venous thrombotic events [6-78]. Some 44 patients had chronic ITP, one with persistent ITP, and 18 with a new diagnosis (less than three months), one patient with a recent diagnosis with no duration was specified, and others had ITP with no clear mention of onset or time of diagnosis. Some 38 patients were females, and 40 were males. The youngest patient was 18 years old, and the most senior was 83 years old. The mean age at the time of the event was 55.4 years, The mean age of venous thrombosis patients was 44.5 years, and the mean age of arterial thrombosis patients was 57.8 years. Thrombotic events affected different organs and locations; 14 patients had a stroke (infarction), 48 patients had coronary artery disease (ACS MI 3VD), one patient with cutaneous infarction, and one with mural aortic thrombus (Table 1). Some 14 patients had venous thrombotic events, including venous thrombosis in the central nervous system (venous sinus thrombosis) as well as thrombosis in the portal vein axillary brachial and jugular veins and intracardiac thrombus (Table 2). Treatment modalities used for ITP include patients, not on medication n=8, steroids n=39, danazol n=3, splenectomy n=10, one patient with splenic artery embolization, intravenous immune globulin (IVIG) n=13, platelet transfusion n=3, a thrombopoietin receptor agonist eltrombopag n=9, romiplostim n=3, rituximab n=1, and 17 patients with no mention of previous treatment.
Gender	Age	Follow-up	Medication/Other Treatment	Complications		
F	20	25 years	None			
M	70	10 years	PCI, UFH, aspirin clopidogrel	None		
F	170	10 years	Non on medications	None		
F	16	Chronic	PCI, UFH, aspirin clopidogrel	HA, HTN		
F	58	Stroke	PCI, UFH, aspirin clopidogrel	None		
F	36	Stroke	PCI, UFH, aspirin clopidogrel	None		
M	67	Stroke	PCI, UFH, aspirin clopidogrel	None		
F	31	Stroke	PCI, UFH, aspirin clopidogrel	None		
F	37	Stroke	PCI, UFH, aspirin clopidogrel	None		
M	70	Stroke	PCI, UFH, aspirin clopidogrel	None		
F	170	Stroke	PCI, UFH, aspirin clopidogrel	None		
F	16	Chronic	PCI, UFH, aspirin clopidogrel	None		
F	68	Stroke	PCI, UFH, aspirin clopidogrel	None		
F	22	Stroke	PCI, UFH, aspirin clopidogrel	None		
F	167	Stroke	PCI, UFH, aspirin clopidogrel	None		
M	18	8 years	PCI, UFH, aspirin clopidogrel	None		
M	14	15	PCI, UFH, aspirin clopidogrel	None		
M	24	6	PCI, UFH, aspirin clopidogrel	None		
M	1	New	PCI, UFH, aspirin clopidogrel	None		
F	3	3	PCI, UFH, aspirin clopidogrel	None		
M	47	2	PCI, UFH, aspirin clopidogrel	None		
M	13	N/A	PCI, UFH, aspirin clopidogrel	None		
F	236	15	PCI, UFH, aspirin clopidogrel	None		
F	34	1	PCI, UFH, aspirin clopidogrel	None		
F	10	Long-standing	PCI, UFH, aspirin clopidogrel	None		
M	35	4	PCI, UFH, aspirin clopidogrel	None		
M	50	19	PCI, UFH, aspirin clopidogrel	None		
M	>10	Chronic	PCI, UFH, aspirin clopidogrel	None		
F	32	8	PCI, UFH, aspirin clopidogrel	None		
F	347	6	PCI, UFH, aspirin clopidogrel	None		
F	3	Normal	PCI, UFH, aspirin clopidogrel	None		
Age	Sex	Race	Diagnosis	Treatment	Disposition	
------	------	-------	-----------	------------	----------------	
33 M	84	New	Stroke	Nitric oxide, lens extraction and digestion	Symptoms controlled by nitrate but developed anticoagulant complications due to clinical signs of left ventricular failure	
69 M	2	New	ACS	PCI with stent for DAPT for 28 days, after the second STEMI she was shifted to Ticagrelor for 1 year.	Discharged, no relapse for ITP during one year follow-up	
55 M	42	Chronic	MI	Steroid, splenectomy, PCI with bare metal stent then DAPT	Discharged, no relapse for ITP during one year follow-up	
61 M	322	10 years	MI	Steroid, splenectomy, PCI	Four years later patient was re admitted with a relapse of ITP	
61 M	105	5 years	MI	Steroid, splenectomy, PCI with bare metal stent then DAPT	Discharged, no relapse for ITP during one year follow-up	
76 F	10	New	MI	Nitric oxide to control angina, lens extraction and digestion	Symptoms controlled by nitrate but developed anticoagulant complications due to clinical signs of left ventricular failure	
42 F	35	22 years	MI	PCI with stent for DAPT for 28 days, after the second STEMI she was shifted to Ticagrelor for 1 year.	Discharged, no relapse for ITP during one year follow-up	
32 F	49	Chronic	Leriche's aorta	Not mentioned	Improved, three months later MRA complete resolution of cerebellar infarct	
65 M	80	1 month	MI	PCI with DES to proximal LAD	Discharged on DAPT with no symptoms or bleeding complications	
67 M	12	10 years	MI	Spleenectomy 10 years ago	Discharged with no symptoms or bleeding complications	
49 F	54	20 years	MI	Spleenectomy 7 years ago	Discharged	
22 F	14.66	1.5 years	Stroke	Paradox, splenectomy with AV replacement (scheduled)	Developed surgical site infection at the sternum then discharged	
66 M	110	Recent	2VD	Paradox, IVIG	Discharged	
53 M	50	New	MI	PCI DAPT then anticoagulant and digestion	DM dystelipemia	
60 F	26	6 years	MI	PCI with thrombectomy with bare metal stent DAPT for 1 month then ASA	CMH/HYN/Dystelipemia/family history of CAD	
36 M	6	3 years	Stroke	Chinese patent drug	Discharged home	
46 M	41	New	MI	Newly diagnosed	DM/HYN/Dystelipemia	
44 M	46	Chronic	MI	In remission not on treatment	Smoking	
69 F	320	4 years	Skin	Steroids and clopidogrel	Ischemic toes salvaged by conservative therapy including hyperbaric oxygen therapy	
61 F	68	Chronic	MI	PLT and packed RBC transfusion CABG	A stress test six months postoperatively showed no evidence of ischemia	
37 M	6	New	MI	Steroid then CABG	Discharged, he was free from angina pectoris and the tendency to bleed	
69 M	83	New	MI	Steroid then CABG	Not mentioned	
64 M	50	3 years	3VD	Not on treatment	Steroid then CABG, CABG	Effective splenectomy eight months after his cardiac event

2022 Ali et al. Cureus 14(10): e30279. DOI 10.7759/cureus.30279
surgery, continues to do well.

Patient	Age	Duration	Condition	Treatment	Outcome
72 M	59	1 year	Unstable angina	Prednisone	Discharged
60 F	42	6 years	MI	PCI	Discharge on the fifth postoperative day
49 M	41	2 years	MI	Steroid, IV unfractionated heparin, clopidogrel, aspirin (PTCA) and abciximab	No further chest pain, transferred back to his referring hospital
61 F	4	26 years	MI	PCI	No PMH Follow up CAG showed 95% focal in-stent restenosis in the BMSs site
62 F	3	N/A	MI	PCI	HTN
54 F	7	4 months	Stroke DVT	Splenectomy, steroids	Non On day 6 developed thrombosis of the left mid-distal superficial femoral and popliteal veins.
63 M	2	New	Stroke	N/A	HTN He was released
72 F	22	1 year	Mural thrombus (thoracic, abdominal aorta, and the common iliac)	Eltrombopag	Neurological disturbances remained, transferred to a rehabilitation hospital

TABLE 1: Characteristics of patients with ITP during the time of thrombosis.

N/A, non-applicable; PCI, percutaneous coronary intervention; MI, myocardial infarction; 3VD, three-vessel disease; HTN, hypertension; DM, diabetes mellitus; DAP, dual antiplatelets; ASA, aspirin; CABG, coronary artery bypass grafting; UFH, unfractionated heparin; UC, ulcerative colitis; PE, pulmonary embolism; ITP, immune thrombocytopenic purpura; PLT, platelet count; PCI, percutaneous coronary intervention; PMH, past medical history.
Reference	Age	Gender	PLT count at diagnosis of thrombosis x109/L	Duration of ITP	Site of thrombosis	Treatment before the event	Intervention for thrombus	PMH	Outcome
[65]	18 M	33	New diagnosis	SSS thrombosis	Non	Miconost / Luvaxoctam (no anticoagulation for low PLT)	Non	Discharged , became independent in most of the daily activity	
[66]	48 F	187	3 years	Renal vein thrombosis, PE	Steroid, Danarol, Eltrombopag	Rivusobin thrombolysis	Non	Discharged with resolution of thrombus and embolus	
[67]	19 F	Not mentioned	2 years	Portal vein thrombosis, mesenteric vein thrombosis	Not mentioned but bloody splenectomy, she developed thrombosis in 22 post OP	antiagulation with warfarin for 1 year	Not mentioned	After three procedures she was left with 45 proximal and 10 cm of distal small bowel	
[68]	38 F	950	Chronic (not mentioned duration)	Portal vein thrombosis, bowel infarction	Steroid and IVG, splenectomy 9 days before the event	Started on ASA then on the 4th day started on warfarin	Non	6 months later doppler revealed recanalization so anticoagulation stopped	
[69]	83 M	20-37	1.5	DVT in the right thigh	Tranexamic acid for haemostasis, no mention of which treatment was given for ITP	Urokinase infusion for 8 days	Non (only trauma-induced hemostasis 1.5 years ago)	Thrombosis dissolved, no recurrence of DVT	
[70]	58 F	14	2 months	DVT (left femoral) and PE	Steroid for 2 months then IVG 3 days before the event	LMWH then warfarin	Non	Complete resolution of PE on CT after 3 weeks, complete resolution of LL edema	
[71]	55 F	124	20 years	Cerebral venous sinus thrombosis	Steroid, IVG, Romilast, eltrombopag, prednisolone	Heparin then warfarin	Not mentioned	Resolving of symptoms and PLT 78,000	
[72]	39 F	32	Chronic (not mentioned duration)	Cerebral venous sinus thrombosis	Eltrombopag (not compliant)	Heparin infusion then warfarin	DMI	After 2 weeks of treatment, developed a new right anterior frontal small hemorrhagic infarction	
[73]	54 M	33	Newly diagnosed	Bilateral DVT with PE	Non	Heparin then dabigatran 150 BID	Non	1 week later he developed PE, he was shifted to warfarin but he developed hepatotoxicity, and switched to Rivaroxaban	
[74]	40 F	20	8 years of low PLT but not labeled as ITP	Right brachial and subclavian vein, and distal brachial, radial and ulnar arteries	Non	Above elbow amputation or right upper limb then oral warfarin overlap with enoxaparin	2 episodes of LL DVT	1 month later presented with a right basal ganglia infarct	
[75]	44 F	160	1 year	Right jugular vein, right subclavian vein, sigmoid and transverse cerebral sinus	Steroid + prednisolone, IVG and eltrombopag, remiparinux	N/A	Hypothyroidism smoking	Complicated by epidual hemorrhage and died in ICU	
[76]	26 F	311	4 years	Intracardiac thrombus and thrombus in pulmonary artery	Steroid (resistance) then splenectomy 1.5 years ago, IVG, Eltrombopag, danarol, vincristine	Warfarin	Non	N/A	
[77]	26 M	65	One month	CTV, SSS, and right transverse	Prednisolone IVG	Warfarin + desmopressin	N/A	Discharged after this admission	
[78]	77 M	80	Chronic (not mentioned duration)	Thrombus of left atrial appendage occluder	Splenectomy long time ago, Eltrombopag 1 month before the event	Refer for surgical left atrial appendage closure and AV replacement with a bioprosthesis	AF, DM, HTN, moderate to severe aortic stenosis	N/A	

TABLE 2: Characteristics of patients with ITP during the venous thrombotic events.

LMWH, low molecular weight heparin; AF, atrial fibrillation; HTN, hypertension; DVT, deep vein thrombosis; DM, diabetes mellitus; ICU, intensive care unit; IVG, intravenous immune globulin; PE, pulmonary embolism; ITP, immune thrombocytopenic purpura; PMH, past medical history; SSS, superior sagittal sinus; CVT, cerebral venous thrombosis

Among patients with ITP with known duration (n=47), the mean duration of ITP to thrombotic events was
7.58 years, with the most prolonged duration being 30 years. The mean time for the development of venous thrombosis was 4.9 years, while for arterial thrombosis was 8.12 years. The mean PLT count during the time of thrombosis was 90.2 x 10^9/L in 75 patients, the mean PLT for patients with venous thrombosis was 156.7 x 10^9/L, while those with arterial thrombosis were 77.1 x 10^9/L. The lowest PLT associated with thrombosis was 1 x 10^9/L, and the highest PLT was 658 x 10^9/L. However, most patients (n=66) had thrombosis with a PLT below 100 x 10^9/L, and 50 patients had PLT below 50 x 10^9/L. Seven events happened while being treated with IVIG, five were arterial events, and two were venous thrombotic events.

Regarding comorbidities, 32 patients had no significant past medical history (PMH) or were not reported. The most commonly reported medical condition was hypertension in 23 patients, followed by diabetes mellitus in 16 patients and prediabetes in one patient, and dyslipidemia in eight patients. Cardiac valve defects in four patients and asthma in one patient, smoking in nine patients, and coronary artery disease in seven patients. Among all patients, mortality was reported in five patients from complications related to thrombosis or infarction. Some 12 patients had developed another complication after admission; another thrombotic event or infarction. Among them, seven had cardiac thrombotic events, including ischemia and stent thrombosis, three cerebrovascular events, and one had venous thromboses.

Discussion

Thrombosis is a process characterized by complex pathophysiology. Generally, thrombosis occurs when one or more of Virchow's triads are present; blood stasis, endothelial injury, or hypercoagulable states. In arterial thrombosis, the main culprit is endothelial injury, while in venous thrombosis, the etiology can be explained by the stasis of blood in veins and procoagulant states are the underlying factors favoring thrombosis. ITP commonly presents with bleeding and paradoxically sometimes it presents with thrombosis [3]. To understand the link between the two paradoxical processes, the existing data and evidence suggest an increased incidence of thromboembolism in patients with ITP [79]. However, the role of patient characteristics including age, gender, duration of ITP, and treatments used and the hematological parameters at the time of the event, was not mentioned before in previous systematic reviews [80] and other studies included patients based on diagnosis from the code without elaborating the inclusion and exclusion criteria [81].

Although there is a slightly higher incidence of ITP in young females [82]. Our review found out that among the patients with ITP, both genders are prone to develop paradoxical thromboembolic complications with slightly higher numbers in males. But considering that coronary artery disease is more common in males, it is expected to have males being more affected by cardiac events [83] including patients with ITP (Table 3). This supports that gender has no significant role in the pathogenesis of thrombosis.

	Male	Female
Arterial thrombosis	34	29
Venous thrombosis	5	9

TABLE 3: Gender distribution for ITP patients with thrombosis or infarction.

ITP, immune thrombocytopenic purpura

It is clear that in ITP, a low PLT is not protective against thrombosis and infarction. In this review, the data show that thrombosis can occur in all stages of ITP, including patients with a new diagnosis, persistent, and chronic ITP (with the persistent stage being the least risky phase); this includes both patients on treatment and patients who were managed expectantly. This suggests that the ITP itself has the potential for being a prothrombotic state. Additionally, among ITP patients who developed thrombosis, a large percentage of them had developed a second thrombotic event after admission or discharge. This suggests that ITP is a disease that carries not only a prothrombotic state but with a significant risk of recurrence or complications as 13/78 patients develop a second event. Additionally, many patients had both arterial and venous thrombotic events making ITP a rare cause of arterial and venous thrombosis as in patients number [63, 76]. Although most patients who had events had PLT above 100, there is no clear-cut number of platelets that are safe to prevent thrombosis in patients with ITP; as thrombosis was observed in patients with low PLT as well low as 1 x 10^9/L. However, the presence of other factors predisposing to infarction and thrombosis, including age-advanced atherosclerosis, uncontrolled blood pressure, and diabetes, could have marked effects [84].

Patients with ITP have low platelets and most guidelines recommend avoiding the use of antiplatelet agents or anticoagulation when PLT is less than 50,000 x 10^9/L. The major difficulty is that there is no anticoagulant that can treat thrombosis without also increasing the chance of bleeding. Therefore, patients with ITP with thrombosis are difficult to manage and there is no unified treatment plan in such a situation;
although, many experts recommend platelet transfusion to increase PLT to a safe level and then to give anticoagulation or antiplatelet.

Limitations
This review focuses on studying the impact of patient characteristics, disease course, and treatment modalities on the incidence of thromboembolism in patients with ITP. As such events are rare; mainly case reports have been studied with no control population and a very small sample size of 73 articles.

Theory
There are many theories that can explain unexpected thrombosis and infarction in patients with ITP. First, persistent activation of the immune system leads to accelerated atherosclerosis as in other autoimmune conditions, predisposing the patient to arterial thrombotic events [85]. Interestingly, platelet microparticles (PMPs) have been found to play a significant role in thrombus development in ITP. Platelet microparticles are minute vesicles formed by platelet membranes that are undetectable during routine platelet counting and are usually produced in association with platelet activation [86]. PMP levels were found to be higher in ITP patients compared to a control population without ITP in many studies, and they were also proven to be protective against hemorrhage. They are hypothesized to play a function in clot formation as a result [87]. At the moment there is no specific treatment that can target the platelet microparticles. The treatment used is another probable cause for thrombus development in ITP. First, IVIGs can cause thrombosis by raising blood viscosity [88] and thrombin generation, as well as by directly influencing the vascular endothelium, which results in higher amounts of von Willebrand factor (vWF) antigen. Some studies showed elevated levels of vWF in ITP patients, particularly patients with long-standing diseases. Additionally, thromboelastography showed a relatively higher thrombotic tendency correlating to elevated levels of the vWF antigen levels [89]. Thrombopoietin receptor agonists are newer agents added to ITP treatment almost in the last decade. These are platelet growth factors that act on megakaryocytes and megakaryocyte precursors in the same way that endogenous thyroid peroxidase (TPO) does, boosting their growth, differentiation, and enhancing platelet production [90]. Elevated PLT beyond the target level is an expected side effect that probably plays a pivotal role in raising the risk of thrombotic events in patients treated with thrombopoietin receptor agonists. Despite that, thrombotic events have been reported with PLT that is lower than normal in patients treated with TPO-Ras, favoring the fact that megakaryocyte activation itself leads to an increased risk of thrombosis prior to the rise in PLT [91]. Additionally, manufacturers recommend using the lowest minimal dose to keep PLT above 50 x 10^9/L and not to aim for normal PLT. This supports that platelets in ITP are active, and patients rarely report bleeding compared to patients with the same count in other diseases [92]; this may be related to younger platelets with more hemostatic effect. Observational studies of ITP patients treated with thrombopoietin receptor agonists have revealed a modestly higher rate of thrombosis [90, 93]. The data showed that nine patients had treatment with eltrombopag; all of them had PLT above 100 x 10^9/L at the time of the thrombosis except one patient who had a PLT of 22 x 10^9/L. This emphasizes the need for frequent monitoring of PLT in patients on TPO-Ras to avoid the rise of PLT above the target and subsequent development of thrombosis. However, it is important to note that three of the nine patients who were on TPO-Ras had a splenectomy because splenectomy can result in an increase in the number of active circulating platelets and prolong their lifespan which can contribute to thrombosis.

Conclusions
Although patients with ITP are prone to life-threatening bleeding, it is crucial to know that ITP patients are susceptible to thromboembolic phenomenon. These events can occur at any stage of the disease in both patients on active treatment and those not on medications and with various PLT. All patients with chronic active ITP treated with IVIG or TPO-RA should be observed closely for any thromboembolic events. The question of thromboprophylaxis use despite low PLT, especially if no active bleeding, is yet to be answered and needs further studies and trials. We recommend, ITP patients to be evaluated for the risk of thrombosis and atherosclerotic disease to avoid difficult situation where patient has low PLT and he or she requires anticoagulation.

Additional Information
Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References
1. Blanchette M, Freedman J: The history of idiopathic thrombocytopenic purpura (ITP). Transfus Sci. 1998, 1:231-236. 10.1016/S0955-3886(98)00056-8
infusion: a case report and literature review. Am J Ther. 2016, 23:e283-e287.
10.1097/MTJ.0000000000002124

29. Yildiz A, Coskun U, Batukan OE, Keskin K: Primary percutaneous coronary intervention for acute myocardial infarction in a young female with idiopathic thrombocytopenic purpura: a case report and review. Case Rep Med. 2010, 2010:854682. 10.1155/2010/854682

30. Paolini R, Zamboni S, Ramazzina E, Zampieri P, Celli G: Idiopathic thrombocytopenic purpura treated with steroid therapy does not prevent acute myocardial infarction: a case report. Blood Coagul Fibrinolysis. 1999, 10:439-442. 10.1097/00001721-199910000-00007

31. Agrawal V, Jacob C, Demchuk N, Tikaria R, Viruppanavar S, Khajuria B, Kalavakunta JK: Immune modulatory therapy causing acute coronary syndrome. Am J Ther. 2017, 24:e689-e692. 10.1097/MTJ.0000000000000373

32. Rhee HY, Choi HY, Kim SB, Shin WC: Recurrent ischemic stroke in a patient with idiopathic thrombocytopenic purpura. J Thromb Thrombol. 2010, 30:229-252. 10.1016/j.jthroms.2009.0431-2

33. Mouna A, Rim M, Kimia Z, Imene M, Naries M, Daouass N, Mahbouba FA: Multiple and recurrent cerebral infarctions in a patient with idiopathic thrombocytopenic purpura. J Clin Neurosci. 2017, 42:108-110. 10.1016/j.jocn.2017.05.019

34. Choi WJ, Kim MJ, Kim C, Sohn JH, Choi HC: Acute cerebellar infarction associated with intravenous gammaglobulin treatment in idiopathic thrombocytopenic purpura. J Stroke Cerebrovas Dis. 2012, 21:917.e9-11. 10.1016/j.jstrokecerebrovasdis.2012.05.006

35. Yunoki M, Suzuki K, Ueda A, Okubo S, Hirashita K, Yoshino K: Multiple cerebral infarctions in a patient with idiopathic thrombocytopenic purpura. Iran J Neurol. 2016, 15:177-179.

36. Fruchtner O, Blich M, Jacob G: Fatal acute myocardial infarction during severe thrombocytopenia in a patient with idiopathic thrombocytopenic purpura. Am J Med Sci. 2002, 323:279-280. 10.1097/00001721-200205000-00010

37. Torsey E, Yacouh H, McCord D, Lafferty J: Two cases and review of the literature: primary percutaneous angiography and antiplatelet management in patients with immune thrombocytopenic purpura. ISRN Hematol. 2015, 2015:174659. 10.1155/2015/174659

38. Sert S, Özdil H, Sınıbıl M: Acute myocardial infarction due to eltrombopag therapy in a patient with immune thrombocytopenic purpura. Turk J Haematol. 2017, 34:107-108. 10.4247/th.2016.0169

39. Paolini R, Fabris F, Crila G: Acute myocardial infarction during treatment with intravenous immunoglobulin for idiopathic thrombocytopenic purpura (ITP). Am J Hematol. 2000, 65:177-178. 10.1002/1096-8652(200010)65:2<177::AID-AJH17>3.0.CO;2-K

40. Shah AH, Anderson RA, Khan AR, Kinnaird TD: Management of immune thrombocytopenic purpura and acute coronary syndrome: a double-edged sword. Hellenic J Cardiol. 2016, 57:273-276. 10.1016/j.hjcd.2014.10.001

41. Hindi Z, Osteddu N, Ching CA, Khalef AA: Vertebral artery thrombosis in chronic idiopathic thrombocytopenic purpura. Case Rep Hematol. 2017, 2017:5184346. 10.1155/2017/5184346

42. Lee CH, Kim U: Revascularization for patients with idiopathic thrombocytopenic purpura and coronary artery disease. Kor Circ J. 2014, 44:264-267. 10.1047/koj.2014.44.264

43. Yagmur I, Cansel M, Acikgöz N, Yagmur M, Eyupkoca F, Ernis M, Aktürk E: MultivesSEL coronary thrombosis in a patient with idiopathic thrombocytopenic purpura. Tex Heart Inst J. 2012, 39:881-883.

44. Katiyar S, Ganjisinghani PK, Jain RK: Thrombocytosis following splenectomy and aortic valve replacement for idiopathic thrombocytopenic purpura with bicuspid aortic valve. Indian J Anaesth. 2015, 59:503-506. 10.4103/0019-5049.162990

45. Moretti C, Teresa Luciolla M, Morena L, et al.: Idiopathic thrombocytopenic purpura and percutaneous coronary stenting: a dangerous duo?. Int J Cardiol. 2008, 130:e96-e97. 10.1016/j.ijcard.2007.06.141

46. İakovis N, Xanthopoulos A, Chamaid M, Papamichalis M, Dimos A, Triposkiadis F, Skoularigis J: Recurrent acute coronary syndromes in a patient with idiopathic thrombocytopenic purpura. Case Rep Cardiol. 2020, 2020:6783548. 10.1155/2020/6783548

47. Zaid G, Dawod S, Rosenschein U: Immune thrombocytopenic purpura and myocardial infarction: a dilemma of management. Isr Med Assoc J. 2013, 15:775-776.

48. Zhao H, Lian Y, Zhang H, Xie N, Gao Y, Wang Z, Zhang Y: Ischemic stroke associated with immune thrombocytopenia. J Thromb Thrombol. 2015, 40:156-160. 10.1016/j.jthroms.2014.1146-6

49. Varghese K, Viegas M, Adhyapak SM: Therapy causing acute coronary syndrome: a double-edged sword! Kor Circ J. 2014, 44:264-267. 10.1047/koj.2014.44.264

50. Koklu E, Kus G, Yüksel IO, Kucuksysemen S, Arslan S: Successful thrombolytic therapy for ST-elevation acute myocardial infarction in a patient with immune thrombocytopenic purpura. Am J Emerg Med. 2016, 34:345.e1-5. 10.1016/j.ajem.2015.06.027

51. Iinuma S, Nagasawa S, Sasaki K, et al.: Cutaneous thrombosis associated with eltrombopag treatment for immune thrombocytopenia. J Dermatol. 2020, 47:e57-e58. 10.1111/1346-8138.15171

52. Thompson LD, Cohen AJ, Edwards FH, Barry MJ: Coronary artery bypass in idiopathic thrombocytopenic purpura without splenectomy. Ann Thorac Surg. 19891, 48:721-722. 10.1016/0003-4975(89)90804-7

53. Koike R, Suma H, Oku T, Sawada Y, Takeuchi A, Sato H: Multiple cerebral infarctions in a patient with idiopathic thrombocytopenic purpura. J Thorac Cardiovasc Surg. 1994, 107:516-517. 10.1016/S0022-5223(94)70494-5

54. Hofmeister EP: Coronary artery bypass grafting in chronic immune-mediated thrombocytopenia: preoperative treatment with intravenous immunoglobulin and corticosteroids. Mili Med. 1995, 160:624-625.

55. Gaudino M, Luciani N, Piancone FL, Bruno P: Perioperative management of a patient with Werlhof disease undergoing myocardial revascularization. J Cardiovasc Surg. 1999, 40:227.

56. Körner O, Cetin G, Karaoğlu K, Seren S, Bakay C: Fresh whole blood and immunoglobulin permit coronary artery bypass graft surgery in patients with idiopathic thrombocytopenic purpura. J Cardiothorac Vasc Anesth. 2001, 15:485-484. 10.1053/jvca.2001.2500

57. Inoue Y, Lim RC, Nand P: Coronary artery bypass grafting in an immune thrombocytopenic purpura patient using off-pump techniques. Ann Thorac Surg. 2004, 77:1819-1821. 10.1016/S0003-4975(03)01247-5

58. Segal OR, Baker CS, Banin S: Percutaneous coronary intervention with adjunctive abciximab and
clopideglol in a patient with chronic idiopathic thrombocytopenic purpura. Int J Cardiovasc Intervent. 2001, 4:35-38. 10.1080/1428840131692670

60. Park HJ, Seung KB, Kim PJ, et al.: Intracoronary stent deployment without antplatelet agents in a patient with idiopathic thrombocytopenic purpura. Kor Circ J. 2007, 37:87-90. 10.4070/kcj.2007.37.2.87

61. Caputo RP, Abraham S, Churchill D: Tranradial coronary stent placement in a patient with severe idiopathic autoimmune thrombocytopenic purpura. J Invasive Cardiol. 2000, 12:365-368.

62. Emerson GG, Herndon CN, Srieh AG: Thrombotic complications after intravenous immunoglobulin therapy in two patients. Pharmacotherapy. 2002, 22:1638-1641. 10.1592/phco.22.17.1638.34125

63. Theeler BJ, Noy JP: A patient with idiopathic thrombocytopenic purpura presenting with an acute ischemic stroke. J Stroke Cerebrovasc Dis. 2008, 17:244-245. 10.1016/j.jstrokecerebrovasdis.2008.01.014

64. Osimo K, Ogura M, Hatano K, Saito-Sato N, Nakayama H, Ishida T, Hashida H: Spinal cord infarction in a patient with immune thrombocytopenic purpura. J Stroke Cerebrovasc Dis. 2021, 30:105637. 10.1016/j.jstrokecerebrovasdis.2021.105637

65. Hernandez KD, Mirasol MA, San Jose MC: Cerebral venous sinus thrombosis associated with immune thrombocytopenic purpura: a case report. Acta Medica Philippina. 2015, 49:

66. Wu C, Zhou XM, Liu XD: Eltrombopag-related renal vein thromboembolism in a patient with immune thrombocytopenia: a case report. World J Clin Cases. 2021, 9:2611-2618. 10.1299/wjcc.v9.i11.2611

67. Olsson MM, Ilaa PB, Apelgren KN: Portal vein thrombosis. Surg Endosc. 2005, 17:1522. 10.1007/s00464-002-4546-1

68. Machado NO, Chopra PJ, Sankhla D: Portal vein thrombosis postlaparoscopic splenectomy presenting with infarction of gut: review of risk factors, investigations, postoperative surveillance, and management. Surg Laparosc Endosc Percutan Tech. 2010, 20:273-277. 10.1097/SLE.0b013e3181e64d49

69. Endo Y, Nishihara S, Miura A: Deep-vein thrombosis induced by tranexamic acid in idiopathic thrombocytopenic purpura. JAMA. 1998, 279:569-572. 10.1001/jama.1998.03170200024026

70. Lee YI, Shin JI, Lee J, et al.: A case of deep vein thrombosis and pulmonary thromboembolism after intravenous immunoglobulin therapy. J Kor Med Sci. 2007, 22:758-761. 10.3346/kems.2007.22.4.758

71. Mulla CM, Rashidi A, Levitov AB: Extensive cerebral venous sinus thrombosis follow a dose increase in eltrombopag in a patient with idiopathic thrombocytopenic purpura. Platelets. 2014, 25:144-146. 10.3109/09537104.2013.758359

72. Rasheed MA, Alsaad AE, Razzaq S, Fadul A, Yassin MA: Cerebral venous thrombosis in a patient with immune thrombocytopenia, an apparent paradox. Case Rep Oncol. 2020, 15:589-594. 10.1159/000507389

73. Kang J, Lee JS, Lee JH, Lee KM: Recurrent pulmonary embolism during dabigatran treatment in a patient with autoimmune thrombocytopenia. Thromb Res. 2016, 148:25-24. 10.1016/j.thromres.2016.01.012

74. Jain A, Saluja S, Chadhury S, Gupta DK: Recurrent arterial and venous thrombosis in chronic immune thrombocytopenia: clinical paradox and therapeutic challenges. Indian J Hematol Blood Transfus. 2019, 35:590-592. 10.1007/s12289-019-01136-5

75. Ntantis D, Karantali E, Prevezianou A, Angelopoulos P, Bostantjopoulou S: Spontaneous epidural hematomas due to cerebral venous thrombosis in a patient with immune thrombocytopenic purpura. J Stroke Cerebrovasc Dis. 2020, 29:105244. 10.1016/j.jstrokecerebrovasdis.2020.105244

76. Andic N, Gunduz E, Akay OM, Şahin D, Teke HÜ: Cardiac and pulmonary thrombosis during multidrug treatment in an idiopathic thrombocytopenic purpura patient. Platelets. 2014, 25:69-70. 10.3109/09537104.2012.758360

77. James J, Shiji PV, Radhakrishnan C: Cerebral venous thrombosis after intravenous immunoglobulin therapy in a patient with idiopathic thrombocytopenic purpura. Indian J Crit Care Med. 2017, 21:869-871. 10.4103/jccm.JCCM_308_17

78. Cubero-Gallego H, Romaguna R, Teruel L, Gomez-Lara J, Berdejo J, Gomez-Hospital JA, Cequier A: Thrombosis of a left atrial appendage occluder after treatment with thrombopoietin receptor agonists. JACC Cardiovasc Interv. 2018, 11:e15-e16. 10.1016/j.jcin.2017.11.008

79. Bosharee EU, Nandigam R, Bennett D, Newland A, Prasad S: Thromboembolism in adults with primary immune thrombocytopenia: a systematic literature review and meta-analysis. Eur J Haematol. 2016, 97:321-330. 10.1111/ejh.12777

80. Le Guengo G, Guieze R, Audia S, et al.: Characteristics, risk factors and management of venous thromboembolism in immune thrombocytopenia: a retrospective multicentre study. Intern Med J. 2019, 49:1154-1162. 10.1111/imj.14269

81. Sarpatwari A, Bennett D, Logie JW, et al.: Thromboembolic events among adult patients with primary immune thrombocytopenia in the United Kingdom General Practice Research Database. Haematologica. 2010, 95:1167-1175. 10.3324/haematol.2009.018590

82. Neylon AJ, Saunders PW, Howard MR, Proctor SJ, Taylor PR: Clinically significant new presenting autoimmune thrombocytopenic purpura in adults: a prospective study of a population-based cohort of 245 patients. Br J Haematol. 2003, 122:966-974. 10.1046/j.1365-2141.2003.04547.x

83. Milleri ER, Peters SA, Woodward M: Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ. 2018, 363:k4247. 10.1136/bmj.k4247

84. Wilson PW: Established risk factors and coronary artery disease: the Framingham Study. Am J Hypertens. 1994, 7:75-125. 10.1016/0148-7771(94)90214-3

85. Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation. 2002, 105:1135-1143. 10.1161/01.HTA.102.14.425

86. Iy W, Horstman LL, Arce M, Ahn YS: Clinical significance of platelet microparticles in autoimmune thrombocytopenias. J Lab Clin Med. 1992, 119:334-345.

87. Flausena RA: Formation and fate of platelet microparticles. Blood Cells Mol Dis. 2006, 36:182-187. 10.1016/j.bcmd.2005.12.019

88. Reihart WL, Berchtold PE: Effect of high-dose intravenous immunoglobulin therapy on blood rheology. Lancet. 1992, 14:662-664. 10.1016/0140-6736(92)90806-e

89. Kim WH, Park JH, Jung CW, Kim GS: Rebalanced hemostasis in patients with idiopathic thrombocytopenic purpura. Platelets. 2015, 26:38-42. 10.3109/09537104.2013.869312
90. Wong R, Yavasoglu I, Yassin MA, et al.: PI701 assessment of eltrombopag in patients with chronic immune thrombocytopenia under routine clinical practice in the middle east, Turkey, Asia, and Australia. HemaSphere. 2019, 1:305. 10.1097/01.HS9.0000561088.53025.e9

91. Al-Samkari H, Kuter DJ: Optimal use of thrombopoietin receptor agonists in immune thrombocytopenia. Ther Adv Hematol. 2019, 10:2040620719841735. 10.1177/2040620719841735

92. Gonzalez-Porras JR, Bastida JM: Eltrombopag in immune thrombocytopenia: efficacy review and update on drug safety. Ther Adv Drug Saf. 2018, 9:263-285. 10.1177/2042098618769587

93. Nguyen TT, Palmaro A, Montastruc F, Lapeyre-Mestre M, Moulis G: Signal for thrombosis with eltrombopag and romiplostim: a disproportionality analysis of spontaneous reports within VigiBase®. Drug Saf. 2015, 38:1179-1186. 10.1007/s40264-015-0337-1