Explicit Orbit Classification of Reducible Jordan Algebras and Freudenthal Triple Systems

L. Borsten1, M. J. Duff2, S. Ferrara3,4,5, A. Marrani3 and W. Rubens2

1 INFN Sezione di Torino \& Dipartimento di Fisica Teorica, Università di Torino
Via Pietro Giuria 1, 10125 Torino, Italy
borsten@to.infn.it

2 Theoretical Physics, Blackett Laboratory, Imperial College London,
London SW7 2AZ, United Kingdom
m.duff@imperial.ac.uk
w.rubens@imperial.ac.uk

3 Physics Department, Theory Unit, CERN,
CH -1211, Geneva 23, Switzerland
sergio.ferrara@cern.ch
alessio.marrani@cern.ch

4 INFN - Laboratori Nazionali di Frascati,
Via Enrico Fermi 40, I-00044 Frascati, Italy

5 Department of Physics and Astronomy,
University of California, Los Angeles, CA 90095-1547, USA

\textbf{ABSTRACT}

We determine explicit orbit representatives of reducible Jordan algebras and of their corresponding Freudenthal triple systems. This work has direct application to the classification of extremal black hole solutions of $\mathcal{N} = 2, 4$ locally supersymmetric theories of gravity coupled to an arbitrary number of Abelian vector multiplets in $D = 4, 5$ space-time dimensions.
Contents

1 Introduction

2 Orbits of Cubic Jordan Algebras
 2.1 Construction
 2.2 Symmetries
 2.3 Explicit Orbit Representatives
 2.3.1 Magic Jordan Algebras
 2.3.2 Lorentzian Spin Factors
 2.3.3 Special Cases: \mathfrak{J}_3^R, \mathfrak{J}_2^R and \mathfrak{J}_R

3 Orbits of Freudenthal Triple Systems
 3.1 Axiomatic Definition of The FTS
 3.2 Definition Over a Cubic Jordan Algebra
 3.3 The Automorphism Group
 3.3.1 Rank Conditions and Aut(\mathfrak{F})-Equivalence
 3.4 Explicit Orbit Representatives
 3.4.1 Magic FTS \mathfrak{F}^A
 3.4.2 Reducible Spin Factor FTS $\mathfrak{F}^{2,n}$
 3.4.3 Special Cases: \mathfrak{F}_3^R, \mathfrak{F}_2^R and \mathfrak{F}_R

1 Introduction

The present investigation is devoted to the study of the explicit representatives of the orbits of reducible cubic Jordan algebras, and of their corresponding Freudenthal triple systems (FTS). This is in the spirit of previous analyses by Shukuzawa [1], which in turn was inspired e.g. by Jacobson [2] and Krutelevich [3–5]. By reducible we mean here that the cubic norm of the underlying Jordan algebra is a factorisable homogeneous polynomial of degree 3, as opposed to the irreducible, i.e. non-factorisable, cases treated in the previous works [1, 5]. In a companion paper [6], the results of the present analysis have been used to classify extremal black hole solutions in locally supersymmetric theories of gravity with $\mathcal{N} = 2$ or 4 supercharges in $D = 4$ and 5 space-time dimensions, coupled to an arbitrary number of (Abelian) vector multiplets. This paper aims at completing and refining previous investigations [7–15], and it also provides an alternative approach with respect to the analysis based on nilpotent orbits of symmetry groups characterising the $D = 3$ time-like reduced gravity theories [16–19].

The paper is organised as follows.

Sec. 2 deals with cubic Jordan algebras. After some introductory background in Secs. 2.1 and 2.2, the explicit representatives of the orbits of magic Jordan algebras [1–3] are recalled in Sec. 2.3.1. Original results for reducible Lorentzian spin factors (then generalised to an arbitrary pseudo-Euclidean signature) are derived in Sec. 2.3.2 considering both “large” (rank 4) and “small” orbits (these latter further split into three sub-classes, ranging from rank 3 to 1). The peculiar cases of the so-called $\mathcal{N} = 2$ STU, ST^2 and T^3 supergravity models in $D = 5$ are considered in Sec. 2.3.3.

Then, Sec. 3 studies the Freudenthal triple systems. These are defined both axiomatically and in relation to possibly underlying cubic Jordan algebras, respectively in Secs. 3.1 and 3.2, and their automorphism group is recalled in Sec. 3.3. The explicit orbit representatives for magic Freudenthal triple systems [1,4] are considered in Sec. 3.4.1 and then original results on the orbit representatives of Freudenthal systems associated to reducible spin factors are derived in Sec. 3.4.2. As for the Jordan algebra analysis worked out in Sec. 2 the STU, ST^2 and T^3 models deserve a separate treatment, which is given in the concluding Sec. 3.4.3.
2 Orbits of Cubic Jordan Algebras

2.1 Construction

A Jordan algebra \mathfrak{J} is vector space defined over a ground field F (not of characteristic 2) equipped with a bilinear product satisfying

$$A \circ B = B \circ A, \quad A^2 \circ (A \circ B) = A \circ (A^2 \circ B), \quad \forall \ A, B \in \mathfrak{J}. \quad (2.1)$$

However, the 5-dimensional supergravities [23–25] are characterised specifically by the class of cubic Jordan algebras, developed in [26, 27]. We sketch their construction here, following the presentation of [28].

Definition 1 (Cubic norm). A cubic norm is a homogeneous map of degree three

$$N : V \to F, \quad s.t. \quad N(\alpha A) = \alpha^3 N(A), \quad \forall \alpha \in F, A \in V \quad (2.2)$$

such that its linearization,

$$N(A, B, C) := \frac{1}{6} (N(A + B + C) - N(A + B) - N(A + C) - N(B + C) + N(A) + N(B) + N(C)) \quad (2.3)$$

is trilinear.

Let V be a vector space equipped with a cubic norm. If V further contains a base point $N(c) = 1, c \in V$ one may define the following four maps:

1. The trace,

$$\text{Tr}(A) = 3N(c, c, A), \quad (2.4a)$$

2. A quadratic map,

$$S(A) = 3N(A, A, c), \quad (2.4b)$$

3. A bilinear map,

$$S(A, B) = 6N(A, B, c), \quad (2.4c)$$

4. A trace bilinear form,

$$\text{Tr}(A, B) = \text{Tr}(A) \text{Tr}(B) - S(A, B). \quad (2.4d)$$

A cubic Jordan algebra \mathfrak{J} with multiplicative identity $1 = c$ may be derived from any such vector space if N is Jordan cubic.

Definition 2 (Jordan cubic norm). A cubic norm is Jordan if

1. The trace bilinear form (2.4d) is non-degenerate.

2. The quadratic adjoint map, $\sharp : \mathfrak{J} \to \mathfrak{J}$, uniquely defined by

$$\text{Tr}(A^\sharp, B) = 3N(A, A, B), \quad \forall A \in \mathfrak{J}. \quad (2.5)$$

The Jordan product is given by

$$A \circ B := \frac{1}{2} (A \times B + \text{Tr}(A)B + \text{Tr}(B)A - S(A, B)1), \quad (2.6)$$

where,

$$A \times B := (A + B)^\sharp - A^\sharp - B^\sharp. \quad (2.7)$$

Finally, the Jordan triple product is defined as

$$\{A, B, C\} := (A \circ B) \circ C + A \circ (B \circ C) - (A \circ C) \circ B. \quad (2.8)$$

Definition 3 (Irreducible idempotent). An element $E \in \mathfrak{J}$ is an irreducible idempotent if

$$E \circ E = E, \quad \text{Tr}(E) = 1. \quad (2.9)$$
2.2 Symmetries

There are many good references on the symmetries associated with Jordan algebras and, in particular, on the exceptional Lie groups. Here we have used [29,32] and in particular [1,5,33]. In the following we restrict our attention to the case \(F = \mathbb{R} \).

Definition 4 (Automorphism group \(\text{Aut}(\mathfrak{J}) \)). *Invertible \(R \)-linear transformations \(\tau \) preserving the Jordan product:*

\[
\text{Aut}(\mathfrak{J}) := \{ \tau \in \text{Iso}_R(\mathfrak{J}) | \tau(A \circ B) = \tau A \circ \tau B \} = \{ \tau \in \text{Iso}_R(\mathfrak{J}) | \tau(A \times B) = \tau A \times \tau B \} = \{ \tau \in \text{Iso}_R(\mathfrak{J}) | N(\tau A) = N(A), \tau 1 = 1 \}.
\]

The equivalence of these various definitions may be found *e.g.* in [33]. The corresponding Lie algebra is given by the set of derivations,

\[
\mathfrak{Aut}(\mathfrak{J}) \sim \mathfrak{der}(\mathfrak{J}) = \{ \delta \in \text{Hom}_R(\mathfrak{J}) | \delta(A \circ B) = \delta A \circ B + A \circ \delta B \} = \{ \delta \in \text{Hom}_R(\mathfrak{J}) | \delta A \times B + A \times \delta B = 0 \} = \{ \delta \in \text{Hom}_R(\mathfrak{J}) | N(\delta A, A, A) = 0, \delta 1 = 0 \}.
\]

Definition 5 (Reduced structure group \(\text{Str}_0(\mathfrak{J}) \)). *Invertible \(R \)-linear transformations \(\tau \) preserving the cubic norm:*

\[
\text{Str}_0(\mathfrak{J}) := \{ \tau \in \text{Iso}_R(\mathfrak{J}) | N(\tau A) = N(A) \} = \{ \tau \in \text{Iso}_R(\mathfrak{J}) | \tau^{-1}(A \times B) = \tau A \times \tau B \}.
\]

The proof of the equivalence of such two definitions may be found *e.g.* in [33]. The corresponding Lie algebra \(\mathfrak{Str}_0(\mathfrak{J}) \) is given by

\[
\mathfrak{Str}_0(\mathfrak{J}) = \{ \phi \in \text{Hom}_R(\mathfrak{J}) | N(\phi A, A, A) = 0 \} = \{ \phi \in \text{Hom}_R(\mathfrak{J}) | \phi(A \times B) = \phi A \times B + A \times \phi B \}.
\]

The reduced structure algebra may be decomposed with respect to the automorphism algebra, as follows:

\[
\mathfrak{Str}_0(\mathfrak{J}) = L'(\mathfrak{J}) \oplus \mathfrak{der}(\mathfrak{J}),
\]

where \(L'(\mathfrak{J}) \) denotes the set of left Jordan products by traceless elements, \(L_A(B) = A \circ B \) where \(\text{Tr}(A) = 0 \).

Definition 6 (Structure group \(\text{Str}(\mathfrak{J}) \)). *Invertible \(R \)-linear transformations \(\tau \) preserving the cubic norm up to a fixed scalar factor,*

\[
\text{Str}(\mathfrak{J}) := \{ \tau \in \text{Iso}_R(\mathfrak{J}) | N(\tau A) = \lambda N(A), \lambda \in \mathbb{R} \}.
\]

The corresponding Lie algebra \(\mathfrak{Str}(\mathfrak{J}) \) is given by

\[
\mathfrak{Str}(\mathfrak{J}) = L(\mathfrak{J}) \oplus \mathfrak{der}(\mathfrak{J}),
\]

where \(L(\mathfrak{J}) \) denotes the set of left Jordan products \(L_A(B) = A \circ B \).

A cubic Jordan algebra element may be assigned a \(\text{Str}(\mathfrak{J}) \) invariant rank [2].

Definition 7 (Cubic Jordan algebra rank). *A non-zero element \(A \in \mathfrak{J} \) has a rank given by:

\[
\text{Rank} A = 1 \Leftrightarrow A^2 = 0;
\]

\[
\text{Rank} A = 2 \Leftrightarrow N(A) = 0, \ A^2 \neq 0;
\]

\[
\text{Rank} A = 3 \Leftrightarrow N(A) \neq 0.
\]
2.3 Explicit Orbit Representatives

2.3.1 Magic Jordan Algebras

We denote by 3^A_3 the cubic Jordan algebra of 3×3 Hermitian matrices with entries in a composition algebra A [22]. An arbitrary element may be written as

$$A = \begin{pmatrix} \alpha & c & \overline{b} \\ \overline{b} & \beta & \overline{a} \\ \overline{a} & \overline{\alpha} & \gamma \end{pmatrix}, \quad \text{where } \alpha, \beta, \gamma \in \mathbb{R} \text{ and } a, b, c \in A. \quad (2.18)$$

The cubic norm (2.19) is defined as,

$$N(A) := \alpha\beta\gamma - \alpha a\overline{a} - \beta b\overline{b} - \gamma c\overline{c} + (ab)c + \overline{c}(b\overline{a}), \quad (2.19)$$

which for associative A coincides with the matrix determinant.

The Jordan product (2.20) is given by

$$A \circ B := \frac{1}{2}(AB + BA), \quad A, B \in 3^A_3, \quad (2.20)$$

where juxtaposition denotes the conventional matrix product. Evidently, $c = \text{diag}(1, 1, 1)$ is a base point and the corresponding Jordan algebra maps are given by

$$\text{Tr}(A) = \text{tr}(A), \quad \text{Tr}(A, B) = \text{tr}(A \circ B), \quad (2.21a)$$

where tr is the conventional matrix trace. The quadratic adjoint (2.5) is given by

$$A^\sharp = \begin{pmatrix} \beta\gamma - |a|^2 & \overline{b}\alpha - \gamma c & ca - \beta \overline{b} \\ ab - \gamma c & \alpha\gamma - |b|^2 & \overline{c}\alpha - \overline{a} \\ \overline{a} - \beta b & bz - \alpha\overline{a} & \beta\alpha - |c|^2 \end{pmatrix}. \quad (2.22)$$

The irreducible idempotents are given by

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \quad E_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \quad E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \quad (2.23)$$

The reduced structure group $\text{Str}_0(3^A_3)$ is given by $\text{SL}(3, \mathbb{R}), \text{SL}(3, \mathbb{C}), \text{SU}^*(6)$ and $E_6(-26)$ for $A = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}, respectively. These are nothing but the U-duality groups of the so-called magic Maxwell-Einstein $\mathcal{N} = 2$ supergravity theories in $D = 5$ space-time dimensions [24][25].

Theorem 8 (Shukuzawa, 2006 [1]). Every element $A \in 3^O_3$ of a given rank is $\text{Str}_0(3^O_3)$ related to one of the following canonical forms:

1. Rank 1

 (a) $A_{1a} = (1, 0, 0) = E_1$

 (b) $A_{1b} = (-1, 0, 0) = -E_1$

2. Rank 2

 (a) $A_{2a} = (1, 1, 0) = E_1 + E_2$

 (b) $A_{2b} = (-1, 1, 0) = -E_1 + E_2$
(c) \(A_{2c} = (-1, -1, 0) = -E_1 - E_2 \)

3. Rank 3

(a) \(A_{3a} = (1, 1, k) = E_1 + E_2 + kE_3 \)
(b) \(A_{3b} = (-1, -1, k) = -E_1 - E_2 + kE_3 \)

The result clearly also holds for \(J_{3\mathbb{R}}, J_{3\mathbb{C}}, J_{3\mathbb{H}} \). It is worth remarking here that the analogue of this Theorem for \(J_{3\mathbb{O}} \) has been proved in \([2]\) (see also \([3]\); this Theorem also holds for \(J_{3\mathbb{H}^*} \) and \(J_{3\mathbb{C}^*} \)).

2.3.2 Lorentzian Spin Factors

Given a vector space \(V \) over a field \(F \) with a non-degenerate quadratic form \(Q(v), v \in V \), containing a base point \(Q(c_0) = 1 \), we may construct a cubic Jordan algebra \(J_V = F \oplus V \) with base point \(c = (1; c_0) \in J_V \) and cubic norm,

\[
N(A) = aQ(v), \quad (a; v) \in J_V. \tag{2.24}
\]

See, for example, \([5, 28]\). In particular, the Lorentzian spin factors\(^1\) \(J_{1,n-1} := \mathbb{R} \oplus \Gamma_{1,n-1} \) are defined by the cubic norm,

\[
N(A) = aa_\mu a^\mu = a(a_0^2 - a_i a_i), \quad \text{where} \quad a \in \mathbb{R} \quad \text{and} \quad a_\mu \in \mathbb{R}^{1,n-1} \tag{2.25}
\]

for elements \(A \in J_{1,n-1} \),

\[
A = (a; a_\mu) = (a_0, a_i). \tag{2.26}
\]

For notational convenience, we will often only write the first three components \((a; a_0, a_1)\) if \(a_i = 0 \) for \(i > 1 \). The linearisation of the cubic norm is given by

\[
N(A, B, C) = \frac{1}{3}(ab_\mu c^\mu + ca_\mu b^\mu + bc_\mu a^\mu). \tag{2.27}
\]

Evidently, \(E = (1; 1, 0) \) is a base point and the corresponding Jordan algebra maps are given by

\[
\begin{align*}
\text{Tr}(A) & = a + 2a_0, \\
S(A) & = 2aa_0 + a_\mu a^\mu, \\
S(A, B) & = 2(ab_0 + ba_0 + a_\mu b^\mu), \\
\text{Tr}(A, B) & = ab + 2(a_0b_0 + a_ib_i).
\end{align*} \tag{2.28}
\]

Using \(\text{Tr}(A^#, B) = 3N(A, A, B) \) one obtains the quadratic adjoint

\[
A^# = (a_\mu a^\mu; aa^\mu), \tag{2.29}
\]

where the index has been raised using the “most minus” Lorentzian metric \(\eta^{\mu\nu} = \text{diag}(1, -1, -1, \ldots, -1) \).

Its linearisation \(A \times B = (A + B)^# - A^# - B^# \) yields

\[
A \times B = (2a_\mu b^\mu; ba^\mu + ab^\mu). \tag{2.30}
\]

It is not difficult to verify that

\[
A^{##} = N(A)A, \tag{2.31}
\]

\(^1\)In general, \(\Gamma_{m,n} \) is a Jordan algebra with a quadratic form of pseudo-Euclidean signature \((m, n)\), i.e. the Clifford algebra of \(O(m, n) \) \([22]\).
so that the quadratic adjoint is indeed Jordan cubic. Hence, we obtain a well defined Jordan algebra with Jordan product defined by Eq. (2.6), yielding

\[A \circ B = (ab; a_0b_0 + \sum_j a_jb_j, a_0b_i + b_0a_i) . \]

(2.32)

Three irreducible idempotents are given by

\[E_1 = (1; 0), \quad E_2 = (0; \frac{1}{2}, \frac{1}{2}), \quad E_3 = (0; \frac{1}{2}, -\frac{1}{2}) . \]

(2.33)

The reduced structure group \(\text{Str}_0(3_{1,n-1}) \) is given by \(\text{SO}(1,1) \times \text{SO}(1,n-1) \), where we have chosen to restrict to determinant 1 matrices. Explicitly, \(A \) transforms as

\[(a; a_\mu) \mapsto (e^{2\lambda}a; e^{-\lambda}A_\mu^\nu a_\nu), \quad \text{where} \quad \lambda \in \mathbb{R}, \Lambda \in \text{SO}(1,n-1) . \]

(2.34)

Theorem 9. For \(n \geq 2 \) every element \(A = (a; a_\mu) \in 3_{1,n-1} \) of a given rank is \(\text{SO}(1,1) \times \text{SO}(1,n-1) \) related to one of the following canonical forms:

1. **Rank 1**

 (a) \(A_{1a} = (1; 0) = E_1 \)

 (b) \(A_{1b} = (-1; 0) = -E_1 \)

 (c) \(A_{1c} = (0; \frac{1}{2}, \frac{1}{2}) = E_2 \)

2. **Rank 2**

 (a) \(A_{2a} = (0; 1, 0) = E_1 + E_2 \)

 (b) \(A_{2b} = (0; 0, 1) = E_1 - E_2 \)

 (c) \(A_{2c} = (1; \frac{1}{2}, \frac{1}{2}) = E_1 + E_2 \)

 (d) \(A_{2d} = (-1; \frac{1}{2}, \frac{1}{2}) = -E_1 + E_2 \)

3. **Rank 3**

 (a) \(A_{3a} = (1; \frac{1}{2}(1+k), \frac{1}{2}(1-k)) = E_1 + E_2 + kE_3 \)

 (b) \(A_{3b} = (-1; \frac{1}{2}(1+k), \frac{1}{2}(1-k)) = -E_1 + E_2 + kE_3 \)

Note, if one restricts to the identity-connected component of \(\text{SO}(1,n-1) \), each of the orbits \(A_{1a}, A_{2c} \) and \(A_{2d} \) splits into two cases, \(A_{1c}^\pm, A_{2c}^\pm \) and \(A_{3d}^\pm \), corresponding to the future and past light cones. Similarly, \(A_{2a} \) splits into two disconnected components, \(A_{2a}^\pm \), corresponding to the future and past hyperboloids. For \(k > 0 \) the orbits \(A_{3a} \) and \(A_{3b} \) also split into disconnected future and past hyperboloids, \(A_{3a}^\pm \) and \(A_{3b}^\pm \).

Proof. \(\text{Rank} A = 1 \Rightarrow \)

\[A^2 = (a_\mu a_\mu, aa_\mu) = 0, \quad (a; a_\mu) \neq 0 . \]

(2.35)

This corresponds to two cases: (i) \(a_\mu = 0, a \neq 0 \) or (ii) \(a = 0, a_\mu a_\mu = 0, a_\mu \neq 0 \). In case (i) we have

\[A = (a; 0) \mapsto (e^{2\lambda}a; 0) = (\pm 1; 0) . \]

(2.36)

In case (ii) we have

\[A = (0; a_\mu) \mapsto (0; \Lambda_\mu^\nu a_\nu) = (0; \frac{1}{2}, \frac{1}{2}) . \]

(2.37)

\(\text{Rank} A = 2 \Rightarrow \)

\[N(A) = aa_\mu a_\mu = 0, \quad A^2 = (a_\mu a_\mu; aa_\mu) \neq 0 . \]

(2.38)
This corresponds to two cases: (i) $a = 0, a_\mu a^\mu \neq 0$ or (ii) $a_\mu a^\mu = 0, a \neq 0, a_\mu \neq 0$. In case (i) we have
$$A = (0; a_\mu) \mapsto (0; e^{-\Lambda_\mu a_\nu}) = (0; 1, 0) \quad \text{or} \quad (0; 0, 1).$$
(2.39)

In case (ii) we have
$$A = (a; a_\mu) \mapsto (e^{2\Lambda a}; e^{-\Lambda_\mu a_\nu}) = (\pm 1; \frac{1}{2}, \frac{1}{2}).$$
(2.40)

$$\text{Rank} A = 3 \Rightarrow N(A) = aa_\mu a^\mu \neq 0.$$
(2.41)

Hence,
$$A = (a; a_\mu) \mapsto (e^{2\Lambda a}; e^{-\Lambda_\mu a_\nu}) = (\pm 1; \frac{1}{2}(1 + k), \frac{1}{2}(1 - k)).$$
(2.42)

where $N(A) = \pm k$.

Note, the Lorentzian spin-factor construction may be generalised to an arbitrary pseudo-Euclidean signature Jordan algebra $\mathfrak{J}_{p-1,q-1} = \mathbb{R} \oplus \Gamma_{p-1,q-1}$ by defining the cubic norm,
$$N(A) = aa_\mu a^\mu, \quad (a; a_\mu) \in \mathfrak{J}_{p-1,q-1},$$
(2.43)

where the index has been raised with a $\{+, p-1, -, q-1\}$ signature pseudo-Euclidean metric. The same base point $c = (1; 1, 0)$ may be used. A more “democratic” choice valid for any $p \geq 2$ is given by
$$c = \frac{1}{\sqrt{p-1}}(\sqrt{p-1}; 1, \ldots, 1, 0, \ldots, 0),$$

although it obscures some of the symmetries by unnecessarily complicating the basic identities. In this case the reduced structure group is given by,
$$\text{Str}_0(\mathfrak{J}_{p-1,q-1}) = \text{SO}(1, 1) \times \text{SO}(p - 1, q - 1).$$
(2.44)

The analysis goes through analogously to the Lorentzian case so we will not treat it in detail here. See, for example, [6,31] for further details.

2.3.3 Special Cases: $\mathfrak{J}_{3R}, \mathfrak{J}_{2R}$ and \mathfrak{J}_R

Case 1: \mathfrak{J}_{3R} The $n = 2$ case $\mathfrak{J}_{1,1} = \mathbb{R} \oplus \Gamma_{1,1}$ may be written as $\mathfrak{J}_{3R} = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$. For $(a_1, a_2, a_3) \in \mathfrak{J}_{3R}$ and $(a; a_\nu) \in \mathfrak{J}_{1,1}$ we have,
$$a_1 = a, \quad a_2 = a_0 + a_1, \quad a_3 = a_0 - a_1,$$
(2.45)

so that the cubic norm takes the more democratic form
$$N(A) = a_1 a_2 a_3.$$
(2.46)

While the analysis follows that of the generic $n > 2$ case, presented in [Theorem 9] we highlight this form as it makes apparent the triality symmetry of the $n = 2$ cubic norm, which we will return to in section 3.4.3. There are just three irreducible idempotents:
$$E_1 = (1, 0, 0), \quad E_2 = (0, 1, 0), \quad E_2 = (0, 0, 1).$$
(2.47)

Case 2: \mathfrak{J}_{2R} For $n = 1$ the quadratic form on $\Gamma_{1,n-1}$ becomes Euclidean and [Theorem 9] no longer holds. $\mathfrak{J}_{1,0}$ may be written as $\mathfrak{J}_{2R} = \mathbb{R} \oplus \mathbb{R}$. For $A = (a, a_0) \in \mathfrak{J}_{2R}$
$$N(A) = a(a_0)^2.$$
(2.48)

The symmetry of the cubic norm is reduced to $\text{SO}(1, 1)$ with a discrete factor, \mathbb{Z}_2. Note, all rank 1 and 2 elements are respectively of the form $(a; 0)$ and $(0; a_0)$, where $a, a_0 \neq 0$. Consequently, unlike for $n > 1$, \mathfrak{J}_{2R} is not spanned by its rank 1 elements. There are just two irreducible idempotents:
$$E_1 = (1; 0), \quad E_2 = (-1; 1).$$
(2.49)
Case 3: \mathfrak{J}_R The sequence may be completed by defining $\mathfrak{J}_R = \mathbb{R}$ with cubic norm,

$$N(A) = A^3, \quad A \in \mathbb{R}. \quad (2.50)$$

This cubic norm has no non-trivial symmetries. The unique choice of base point $c = 1$ yields $\text{Tr}(A) = 3A, \text{Tr}(A,B) = 3AB, A^2 = A^2$, from which it is clear that the cubic norm is Jordan. Note, all non-zero elements are rank 3 and there are no irreducible idempotents.

3 Orbits of Freudenthal Triple Systems

The Freudenthal triple system provides a natural representation of the dyonic black hole charge vectors for a broad class of 4-dimensional supergravity theories. In the following treatment, we present the axiomatic definition of the FTS which is manifestly covariant with respect to the 4-dimensional U-duality group G_4. Subsequently, we present a particular realization in terms of Jordan algebras. This is equivalent to decomposing G_4 with respect to 5-dimensional U-duality group G_5, which is modeled by the corresponding Jordan algebra. Consequently, this particular realization is manifestly covariant with respect to G_5.

3.1 Axiomatic Definition of The FTS

An FTS is axiomatically defined [35] as a finite dimensional vector space \mathfrak{F} over a field \mathbb{F} (not of characteristic 2 or 3), such that:

1. \mathfrak{F} possesses a non-degenerate antisymmetric bilinear form $\{x, y\}$.
2. \mathfrak{F} possesses a symmetric four-linear form $q(x, y, z, w)$ which is not identically zero.
3. If the ternary product $T(x, y, z)$ is defined on \mathfrak{F} by $\{T(x, y, z), w\} = q(x, y, z, w)$, then

$$3\{T(x, x, y), T(y, y, y)\} = \{x, y\} q(x, y, y).$$

3.2 Definition Over a Cubic Jordan Algebra

Given a cubic Jordan algebra \mathfrak{J} defined over a field \mathbb{R}, there exists a corresponding FTS

$$\mathfrak{F}(\mathfrak{J}) = \mathbb{R} \oplus \mathbb{R} \oplus \mathfrak{J} \oplus \mathfrak{J}. \quad (3.1)$$

An arbitrary element $x \in \mathfrak{F}(\mathfrak{J})$ may be written as a “2×2 matrix”

$$x = \begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix}, \quad \text{where } \alpha, \beta \in \mathbb{R} \quad \text{and} \quad A, B \in \mathfrak{J}. \quad (3.2)$$

The FTS comes equipped with a non-degenerate bilinear antisymmetric quadratic form, a quartic form and a trilinear triple product:

1. Quadratic form $\{\bullet, \bullet\} : \mathfrak{F}(\mathfrak{J}) \times \mathfrak{F}(\mathfrak{J}) \to \mathbb{R}$

$$\{x, y\} := \alpha \delta - \beta \gamma + \text{Tr}(A,D) - \text{Tr}(B,C), \quad \text{where} \quad x = \begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix}, \quad y = \begin{pmatrix} \gamma & C' \\ D & \delta \end{pmatrix}. \quad (3.3a)$$

2. Quartic form $\Delta : \mathfrak{F}(\mathfrak{J}) \to \mathbb{R}$

$$\Delta(x) := -(\alpha \beta - \text{Tr}(A, B))^2 - 4[\alpha N(A) + \beta N(B) - \text{Tr}(A^2, B^2)] =: \frac{1}{2} q(x). \quad (3.3b)$$
3. Triple product $T : \mathfrak{F}(\mathfrak{J}) \times \mathfrak{F}(\mathfrak{J}) \times \mathfrak{F}(\mathfrak{J}) \to \mathfrak{F}(\mathfrak{J})$ which is uniquely defined by

$$\{T(x, y, w), z\} = 2\Delta(x, y, w, z), \quad (3.3c)$$

where $\Delta(x, y, w, z)$ is the full linearization of $\Delta(x)$ normalized such that $\Delta(x, x, x, x) = \Delta(x)$. Explicitly, the triple product is given by

$$T(x) = \begin{pmatrix} -\alpha^2 \beta + \text{Tr}(A, B) - N(B) & -(\beta^2 - B \times A^2) + (\alpha \beta - \text{Tr}(A, B))A \\ (\alpha A^2 - A \times B^2) - (\alpha \beta - \text{Tr}(A, B))B & \alpha \beta^2 - \text{Tr}(A, B) + N(A) \end{pmatrix}. \quad (3.4)$$

Note that all the necessary definitions, such as the cubic and trace bilinear forms, are inherited from the underlying Jordan algebra \mathfrak{J}.

Remark 10. For the Jordan algebras introduced in section 2, we will use the short hand notation:

$$\mathfrak{F}^A := \mathfrak{F}(\mathfrak{J}^A), \; \mathfrak{F}^{2,n} := \mathfrak{F}(\mathfrak{J}_{1,n-1}), \; \mathfrak{F}^{6,n} := \mathfrak{F}(\mathfrak{J}_{5,n-1}), \; \mathfrak{F}_{3R} := \mathfrak{F}(\mathfrak{J}_{3R}), \; \mathfrak{F}_{2R} := \mathfrak{F}(\mathfrak{J}_{2R}), \; \mathfrak{F}_R := \mathfrak{F}(\mathfrak{J}_R).$$

3.3 The Automorphism Group

Definition 11 (The automorphism group $\text{Aut}(\mathfrak{J})$). The automorphism group of an FTS is defined as the set of invertible \mathbb{R}-linear transformations preserving the quartic and quadratic forms:

$$\text{Aut}(\mathfrak{J}) := \{\sigma \in \text{Iso}_\mathbb{R}(\mathfrak{J}) | \{\sigma x, \sigma y\} = \{x, y\}, \; \Delta(\sigma x) = \Delta(x)\}. \quad (3.5)$$

Note, the conditions $\{\sigma x, \sigma y\} = \{x, y\}$ and $\Delta(\sigma x) = \Delta(x)$ immediately imply

$$T(\sigma x) = \sigma T(x). \quad (3.6)$$

For $\mathfrak{F}^{A(s)}$ the automorphism group has a two element centre and its quotient yields the simple groups listed in Table 1 while for $\mathfrak{F}^{2,n}$ one obtains the semi-simple groups $\text{SL}(2, \mathbb{R}) \times \text{SO}(2, n)$ [5, 34, 35]. In all cases \mathfrak{J} forms a symplectic representation of $\text{Aut}(\mathfrak{J})$, the dimensions of which are listed in the final column of Table 1. This table covers a number 4-dimensional supergravities: $\mathfrak{F}^{2,n}, \mathfrak{F}^{6,n} \to N = 2, 4$ Maxwell-Einstein supergravity, $\mathfrak{F}^{A} \to N = 2$ “magic” Maxwell-Einstein supergravity and $\mathfrak{F}^{O^*} \to N = 8$ maximally supersymmetric supergravity (see, for example, [6, 15, 24, 25, 36, 37]). Moreover, the special case of \mathfrak{F}_{3R} (and its generalisations) has found applications in the theory of entanglement [38, 40].

Lemma 12. The Lie algebra $\mathfrak{aut}(\mathfrak{J})$ of $\text{Aut}(\mathfrak{J})$ is given by

$$\mathfrak{aut}(\mathfrak{J}) = \{\phi \in \text{Hom}_\mathbb{R}(\mathfrak{J}) | \Delta(\phi x, x, x, x) = 0, \{\phi x, y\} + \{x, \phi y\} = 0, \forall x, y \in \mathfrak{J}\}. \quad (3.7)$$

Proof. If $\phi \in \text{Hom}_\mathbb{R}(\mathfrak{J})$ satisfies $\Delta(e^{\phi x}, e^{\phi x}, e^{\phi x}, e^{\phi x}) = \Delta(x, x, x, x)$, where $t \in \mathbb{R}$, differentiating with respect to t and then setting $t = 0$ one obtains $\Delta(\phi x, x, x) = 0$. Similarly, if $\{e^{\phi x}, x, y\} = \{x, y\}$, then $\{\phi x, y\} + \{x, \phi y\} = 0$. Conversely, assuming $\{\phi x, y\} + \{x, \phi y\} = 0$ for all $x, y \in \mathfrak{J}$ let $\sigma = e^{\phi x}$. Then,

$$\{e^{\phi x}, e^{\phi y}\} = \{(1 + t\phi + \frac{1}{2}t^2 \phi^2 + \ldots) x, (1 + t\phi + \frac{1}{2}t^2 \phi^2 + \ldots) y\}$$

$$= \{x, y\} + t\{\phi x, y\} + \{x, \phi y\} + t^2\{\phi^2 x, y\} + \{x, \phi^2 y\} + \ldots$$

$$= \{x, y\}. \quad (3.8)$$

Similarly, assuming $\Delta(\phi x, x, x, x) = 0$ and letting $\sigma = e^{\phi x}$, then $\Delta(\sigma x) = \Delta(x)$.

The automorphism group may also be defined in terms of the Freudenthal product [133]. The Freudenthal product is useful in that it can be used to form elements of the Lie algebra and, further, we will need it to distinguish the orbits.
We begin with the right implication \Rightarrow.

Proof. We proceed by establishing the equivalence

(3.10)

The automorphism group is given by the set of invertible R-linear transformations preserving the Freudenthal product:

$\Phi : \mathfrak{F} \to \mathfrak{F}$

by,

$x \land y := \Phi(\phi, X, Y, \nu)$, where

(3.9)

and $A \land B \in \mathfrak{S}_0(\mathfrak{J})$ is defined by $(A \land B)C = \frac{1}{2} \text{Tr}(B, C)A + \frac{1}{6} \text{Tr}(A, B)C - \frac{1}{2} B \times (A \times C)$. The action of $\Phi : \mathfrak{F} \to \mathfrak{F}$ is given by

$\Phi(\phi, X, Y, \nu)\left(\frac{A}{B}\right) = \left(\begin{array}{cc}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)

(3.11)$

Lemma 14. The automorphism group is given by the set of invertible R-linear transformations preserving the Freudenthal product:

$\text{Aut} \mathfrak{F} = \{\sigma \in \text{Iso}_R(\mathfrak{F})|\sigma(x \land y)\sigma^{-1} = \sigma x \land \sigma y\}.$

Proof. We proceed by establishing the equivalence

(3.12)

We begin with the right implication \Rightarrow. First, following [33], we show that $\sigma(x \land y)\sigma^{-1} = \sigma x \land \sigma y \Rightarrow \{\sigma x, \sigma y\} = \{x, y\}$. Using the identity [33],

(3.13)

it follows that $(\sigma x \land \sigma y)\sigma x - (\sigma x \land \sigma y)\sigma y + \frac{3}{8}\{\sigma x, \sigma y\}\sigma x = 0$, which, from our assumption $\sigma(x \land y)\sigma^{-1} = \sigma x \land \sigma y \Rightarrow \{\sigma x, \sigma y\} = \{x, y\}$.
\[\sigma x \land \sigma y \implies \]
\[\sigma(x \land y)x - \sigma(x \land x)y + \frac{3}{8}\{\sigma x, \sigma y\}\sigma x = 0 \]
\[\Rightarrow \sigma(-\frac{3}{8}\{x, y\}x) + \frac{3}{8}\{\sigma x, \sigma y\}\sigma x = 0 \]
\[\Rightarrow \frac{3}{8}(\{\sigma x, \sigma y\} - \{x, y\})\sigma x = 0 \]
\[\Rightarrow \{\sigma x, \sigma y\} = \{x, y\}. \]

Since \(\frac{2}{3}(x \land x)x = T(x) \), \(\sigma(x \land y)\sigma^{-1} = \sigma x \land \sigma y \) implies \(T(\sigma x) = \sigma T(x) \) and therefore \(\{\sigma x, \sigma y\} = \{x, y\} \Rightarrow \Delta(\sigma x) = \Delta(x) \).

To establish the left implication \(\Leftarrow \), we begin by noting that \(T(x, y, z) = \frac{2}{3}(x \land y)z + (y \land z)x + (z \land x)y \).

Then from the identity, \(2(x \land y)z - (x \land z)y - (y \land z)x + \frac{3}{8}\{z, y\}x - \frac{3}{8}\{x, z\}y = 0 \), (3.15) which is easily obtained from (3.13), see Lemma 4.1.1 of [33], we have, \(-\frac{9}{2}T(x, y, z) + 3(x \land y)z + \frac{3}{8}\{z, y\}x - \frac{3}{8}\{x, z\}y = 0 \). (3.16)

Since \(\sigma T(x, y, z) = T(\sigma x, \sigma y, \sigma z) \), our assumption \(\{\sigma x, \sigma y\} = \{x, y\} \) together with (3.16) implies
\[\sigma(-\frac{9}{2}T(x, y, z) + 3(x \land y)z + \frac{3}{8}\{z, y\}x - \frac{3}{8}\{x, z\}y) + 3(\sigma x \land \sigma y)\sigma z = 0 \] (3.17)
and so, substituting \(-3(x \land y)\sigma^{-1}\sigma z\) in the square parentheses of (3.17),
\[3((\sigma x \land \sigma y) - \sigma(x \land y)\sigma^{-1})\sigma z = 0 \] (3.18)
implying \((\sigma x \land \sigma y) = (\sigma x \land y)\sigma^{-1} \), as required. \(\square \)

Finally, we recall the explicit elements of \(\text{Aut}(\mathfrak{F}) \):

Lemma 15 (Seligman, 1962; Brown, 1969 [35][11]). The following transformations generate elements of \(\text{Aut}(\mathfrak{F}) \):

\[
\varphi(C) : \begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha + (B, C) + (A, C^\sharp) + \beta N(C) & A + \beta C^\sharp \\ B + A \times C + \beta C^\sharp & \beta \end{pmatrix};
\]
\[
\psi(D) : \begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & A + B \times D + \alpha D^\sharp \\ B + \alpha D \beta + (A, D) + (B, D^\sharp) + \alpha N(D) \end{pmatrix};
\]
\[
\hat{\tau} : \begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix} \mapsto \begin{pmatrix} \lambda^{-1} \alpha & \tau A \\ t^{-1} B \lambda \beta \end{pmatrix};
\]

where \(C, D \in \mathfrak{F} \) and \(\tau \in \text{Str}(\mathfrak{F}) \) s.t. \(N(\tau A) = \lambda N(A) \).

For convenience we further define \(Z := \phi(-1)\psi(1)\phi(-1) \),
\[Z : \begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix} \mapsto \begin{pmatrix} -\beta & -B \\ A & \alpha \end{pmatrix}. \] (3.20)
3.3.1 Rank Conditions and $\text{Aut}(\mathfrak{f})$-Equivalence

Lemma 16 (Krutelevich 2004). Every non-zero element of $\mathfrak{f}(\mathfrak{J})$, where \mathfrak{J} is one of \mathfrak{J}_3^A, $\mathfrak{J}_3^{A^s}$, $\mathfrak{J}_{1,n-1}$ or \mathfrak{J}_3^R, \mathfrak{J}_2^R, \mathfrak{J}_R, can be brought into the form

$$x_{\text{red}} = \begin{pmatrix} 1 & A \\ 0 & \beta \end{pmatrix}$$

(3.21)

by $\text{Aut}(\mathfrak{f})$.

Proof. The proof presented by Krutelevich [5] for $\mathfrak{J}_3^{A^s}$ also holds for \mathfrak{J}_3^A, $\mathfrak{J}_{1,n-1}$, \mathfrak{J}_3^R, since it only requires that \mathfrak{J} is spanned by its rank 1 elements, and that the bilinear trace form is non-degenerate. However, \mathfrak{J}_2^R and \mathfrak{J}_R are not spanned by their rank 1 elements so a gentle modification of the proof is required.

It is sufficient to show that the theorem holds for \mathfrak{J}_R, so we focus on this case. Starting from an arbitrary element

$$\begin{pmatrix} \alpha & A \\ B & \beta \end{pmatrix},$$

we first show that one may always assume $\beta \neq 0$. Assume $\beta = 0$. If $\alpha \neq 0$ we simply apply $\phi(-1)\psi(1)\phi(-1)$. Now, assume $\alpha, \beta = 0$. This implies we may assume at least one of A or B are non-zero. Applying $\psi(D)$ we find

$$\beta = 0 \mapsto \beta' = 3D(BD + A)$$

so that we can always pick a D such that $\beta' \neq 0$. Hence, we may now assume from the outset that $\beta \neq 0$.

We now proceed by illustrating that we may always assume $\alpha = 1$. Assume $\beta \neq 0$ and apply $\phi(C) : \alpha \mapsto \beta C^3 + 3AC^2 + 3BC + \alpha$.

Since

$$\beta C^3 + 3AC^2 + 3BC + \alpha - 1 = 0$$

has at least one real root for $\beta \neq 0$ we have established that we may assume $\alpha = 1$. To finish the proof we assume $\alpha = 1$, and apply $\psi(-B)$. \hfill \Box

Lemma 17. (i) An element of $\mathfrak{f}(\mathfrak{J})$, where \mathfrak{J} is one of \mathfrak{J}_3^A, $\mathfrak{J}_3^{A^s}$, $\mathfrak{J}_{1,n-1}$, of the form

$$\begin{pmatrix} \alpha & a_i E_i \\ 0 & \beta \end{pmatrix}, \ i = 1, 2, 3,$$

(3.22)

is $\text{Aut}(\mathfrak{f})$ related to:

1. $$\begin{pmatrix} \alpha & (a_1 + \beta c - \frac{a_3 a c^2}{\alpha})E_1 + a_2 E_2 + a_3 E_3 \\ 0 & \beta - \frac{a_1 a_2 c}{\alpha} \end{pmatrix}.$$

(3.23)

2. $$\begin{pmatrix} \alpha & a_1 E_1 + (a_2 + \beta c - \frac{a_3 a_2 c^2}{\alpha})E_2 + a_3 E_3 \\ 0 & \beta - \frac{2a_1 a_3 c}{\alpha} \end{pmatrix}.$$

(3.24)

3. $$\begin{pmatrix} \alpha & a_1 E_1 + a_2 E_2 + (a_3 + \beta c - \frac{a_1 a_2 c^2}{\alpha})E_3 \\ 0 & \beta - \frac{2a_1 a_3 c}{\alpha} \end{pmatrix}.$$

(3.25)

\footnote{2Indeed, \mathfrak{J}_R has no rank 1 elements.}
(ii) An element of \mathfrak{S}_{2R}, of the form

$$\begin{pmatrix} \alpha & a_i E_i \\ 0 & \beta \end{pmatrix} \quad i = 1, 2,$$

(3.26)

is $\text{Aut}(\mathfrak{S})$ related to:

$$\begin{pmatrix} \alpha & (a_1 + \beta c) E_1 + a_2 E_2 \\ 0 & \beta - \frac{2c(a_2)^2}{\alpha} \end{pmatrix}. \quad (3.27)$$

Proof. (i) The proof presented by Krutelevich [5] for \mathfrak{S}_{A^3}, \mathfrak{S}_{A^s} may be seen to hold for $\mathfrak{S}_{1,n-1}$ by direct calculation. (ii) Follows by acting on (3.26) with

$$\psi(D) \circ \phi(C), \quad (3.28)$$

where $C = (c; 0)$ and $D = -\frac{1}{\alpha}(0; ca_2)$.

Following [5] one may generalise the conventional matrix rank to the FTS.

Definition 18 (FTS ranks). An FTS element may be assigned an $\text{Aut}(\mathfrak{S})$ invariant rank:

$$\begin{align*}
\text{Rank} x = 1 & \iff \Upsilon(x, x, y) = 0 \forall y, x \neq 0; \\
\text{Rank} x = 2 & \iff T(x) = 0, \exists y \text{ s.t. } \Upsilon(x, x, y) \neq 0; \\
\text{Rank} x = 3 & \iff \Delta(x) = 0, T(x) \neq 0; \\
\text{Rank} x = 4 & \iff \Delta(x) \neq 0,
\end{align*} \quad (3.29)$$

where we have defined $\Upsilon(x, x, y) := 3T(x, x, y) + \{x, y\}x$.

Remark 19 (Reduced rank conditions). For an element in the reduced form (3.21) the rank conditions simplify:

$$\begin{align*}
\text{Rank} x = 1 & \iff A = 0, \beta = 0; \\
\text{Rank} x = 2 & \iff A^2 = 0, \beta = 0, A \neq 0; \\
\text{Rank} x = 3 & \iff 4N(A) = -\beta^2, A^2 \neq 0; \\
\text{Rank} x = 4 & \iff 4N(A) \neq -\beta^2.
\end{align*} \quad (3.30)$$

In order to distinguish orbits of the same rank we will use the following quadratic form introduced in [1].

Definition 20 (FTS quadratic form). Define, for a non-zero constant element $y \in \mathfrak{S}$, the real quadratic form B_y,

$$B_y(x) := \{(x \wedge x)y, y\}, \quad x \in \mathfrak{S}. \quad (3.31)$$

Lemma 21 (Shukuzawa, 2006 [1]). If $y' = \sigma y$ for $y \neq 0$ and $\sigma \in \text{Aut}(\mathfrak{S})$, then

$$B_y(x) = B_{y'}(x'), \quad \text{where } x' = \sigma x \in \mathfrak{S}.$$

3.4 Explicit Orbit Representatives

3.4.1 Magic FTS \mathfrak{S}^A

Theorem 22 (Shukuzawa, 2006 [1]). Every element $x \in \mathfrak{S}^A$ of a given rank is $\text{Aut}(\mathfrak{S}^A)$ related to one of the following canonical forms:

1. Rank 1
2. Rank 2

(a) \(x_{2a} = \begin{pmatrix} 1 & (1,0,0) \\ 0 & 0 \end{pmatrix} \)

(b) \(x_{2b} = \begin{pmatrix} 1 & (-1,0,0) \\ 0 & 0 \end{pmatrix} \)

3. Rank 3

(a) \(x_{3a} = \begin{pmatrix} 1 & (1,1,0) \\ 0 & 0 \end{pmatrix} \)

(b) \(x_{3b} = \begin{pmatrix} 1 & (−1,−1,0) \\ 0 & 0 \end{pmatrix} \)

4. Rank 4

(a) \(x_{4a} = k \begin{pmatrix} 1 & (−1,−1,−1) \\ 0 & 0 \end{pmatrix} \)

(b) \(x_{4b} = k \begin{pmatrix} 1 & (1,1,−1) \\ 0 & 0 \end{pmatrix} \)

(c) \(x_{4c} = k \begin{pmatrix} 1 & (1,1,1) \\ 0 & 0 \end{pmatrix} \),

where \(k > 0 \).

It is worth remarking here that the analogue of this Theorem for \(\mathfrak{J}_3^{\mathbb{O}^*} \) has been proved in [4] (see also [5]), and it holds for \(\mathfrak{J}_3^{\mathbb{H}^*} \) and \(\mathfrak{J}_3^{\mathbb{C}^*} \), as well.

3.4.2 Reducible Spin Factor FTS \(\mathfrak{J}^{2,n} \)

Theorem 23. Every element \(x \in \mathfrak{J}^{2,n} \) with \(n \geq 2 \) of a given rank is \(\text{SL}(2, \mathbb{R}) \times \text{SO}(2, n) \) related to one of the following canonical forms:

1. Rank 1

(a) \(x_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \)

2. Rank 2

(a) \(x_{2a} = \begin{pmatrix} 1 & (1;0,0) \\ 0 & 0 \end{pmatrix} \)

(b) \(x_{2b} = \begin{pmatrix} 1 & (−1;0,0) \\ 0 & 0 \end{pmatrix} \)

(c) \(x_{2c} = \begin{pmatrix} 1 & (0;\frac{1}{2},\frac{1}{2}) \\ 0 & 0 \end{pmatrix} \)

3. Rank 3

(a) \(x_{3a} = \begin{pmatrix} 1 & (0;1,0) \\ 0 & 0 \end{pmatrix} \)
(b) \(x_{3b} = \begin{pmatrix} 1 & (0; 0, 1) \\ 0 & 0 \end{pmatrix} \)

4. Rank 4

(a) \(x_{4a} = k \begin{pmatrix} 1 & (-1; 1, 0) \\ 0 & 0 \end{pmatrix} \)

(b) \(x_{4b} = k \begin{pmatrix} 1 & (1; 0, 1) \\ 0 & 0 \end{pmatrix} \)

(c) \(x_{4c} = k \begin{pmatrix} 1 & (-1; 0, 1) \\ 0 & 0 \end{pmatrix} \),

where \(k > 0 \).

Proof. We begin by transforming to the generic canonical from

\[\begin{pmatrix} 1 & A \\ 0 & \beta \end{pmatrix}, \]

and then we proceed case by case, according to the rank.

Rank 1: \(\text{Rank } x = 1 \Rightarrow A = 0, \beta = 0 \), so that every rank 1 element is \(\text{Aut}(\mathfrak{h}^2, n) \) related to

\[x_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad (3.32) \]

Rank 2: \(\text{Rank } x = 2 \Rightarrow A^* = 0, \beta = 0, A \neq 0 \), so that every rank 2 element is \(\text{Aut}(\mathfrak{h}^2, n) \) related to

\[x = \begin{pmatrix} 1 & A \\ 0 & 0 \end{pmatrix}, \quad (3.33) \]

where \(A \) is a rank 1 Jordan algebra element. \(A \) may be brought into canonical form via \(\hat{\tau} \), where \(\tau \in \text{Str}_0(3_{1,n-1}) \),

\[\hat{\tau} : \begin{pmatrix} 1 & A \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & \tau A \\ 0 & 0 \end{pmatrix}. \]

Hence, \(x \) may be brought into one of three forms corresponding to the three rank 1 representatives for \(A \), namely:

\[x_{2a} = \begin{pmatrix} 1 & A_{1a} \\ 0 & 0 \end{pmatrix}; \quad x_{2b} = \begin{pmatrix} 1 & A_{1b} \\ 0 & 0 \end{pmatrix}; \quad x_{2c} = \begin{pmatrix} 1 & A_{1c} \\ 0 & 0 \end{pmatrix}. \quad (3.34) \]

These are in fact unrelated, as it can be seen by computing the quadratic forms

\[B_{x_{2a}}(y) = -c_\mu c^\mu + \gamma d; \]
\[B_{x_{2b}}(y) = c_\mu c^\mu - \gamma d; \]
\[B_{x_{2c}}(y) = -cc_0 - cc_1 + \gamma d_0 + \gamma d_1, \quad (3.35) \]

where

\[y = \begin{pmatrix} \delta & C \\ D & \gamma \end{pmatrix}. \quad (3.36) \]

By diagonalising (3.35), one can verify that the three forms have distinct signatures; hence, by Sylvester’s Law of Inertia, \(x_{2a}, x_{2b} \) and \(x_{2c} \) lie in distinct orbits.
Rank 3: \(\text{Rank } x = 3 \Rightarrow N(A) = -\frac{\beta^2}{4}, A^\sharp \neq 0 \). If $\beta \neq 0$ then A is $\text{Str}_0(\mathfrak{h}_{1, n-1})$ related to
\[
(\pm 1; \frac{1}{2}(1 \mp \frac{\beta^2}{4}), \frac{1}{2}(1 \pm \frac{\beta^2}{4}), 0, \ldots) = \pm E_1 + E_2 \mp \frac{\beta^2}{4}E_3,
\]
so that, by an application of $\hat{\tau}$, one obtains
\[
x = \begin{pmatrix}
1 & \pm E_1 + E_2 \mp \frac{\beta^2}{4}E_3 \\
0 & \beta
\end{pmatrix}.
\]
Then, by Lemma [17] with $c = \mp \frac{\beta^2}{4}$, x may be brought into the form,
\[
\begin{pmatrix}
1 + \pm E_1 + E_2 \\
0
\end{pmatrix}.
\]
Hence, we may assume from the outset that
\[
x = \begin{pmatrix}
1 & A \\
0 & 0
\end{pmatrix}
\]
where A is a rank 2 Jordan algebra element. Via an application of $\hat{\tau}$, where $\tau \in \text{Str}_0(\mathfrak{h}_{1, n-1})$, x may be brought into one of four forms corresponding to the four rank 2 canonical forms for ϕ from which, after three applications of $\hat{\tau}$, one obtains
\[
\begin{pmatrix}
1 & A_{2a} \\
0 & 0
\end{pmatrix} = \begin{pmatrix}
1 + (A_{2a} \times C + D, \tilde{C}) & A_{2a} + (A_{2a} \times C) \times D + (A_{2a}, D) \tilde{C} \\
A_{2a} \times C + D + (A_{2a} + (A_{2a} \times C) \times D) \times \tilde{C} & (A_{2a}, D)
\end{pmatrix}.
\]
Assuming $(A_{2a}, D) = 1$ and $\tilde{C} = -(A_{2a} + (A_{2a} \times C) \times D)$, one obtains
\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]
This is achieved by the choice $C = (0; -\frac{1}{2}, -\frac{1}{2}, 0, \ldots)$ and $D = (0; \frac{1}{2}, \frac{1}{2}, 0, \ldots)$. One finds $\tilde{C} = (0; -\frac{1}{2}, -\frac{1}{2}, 0, \ldots)$ and $(A_{2a} \times C + D, \tilde{C}) = -1$, yielding
\[
\begin{pmatrix}
0 \\
(-1; \frac{1}{2}, \frac{1}{2}, 0, \ldots)
\end{pmatrix},
\]
from which, after three applications of $\varphi(-1)\psi(1)\varphi(-1)$, the desired form
\[
\begin{pmatrix}
1 & A_{2d} \\
0 & 0
\end{pmatrix},
\]
follows. Similarly, it can be proved that x_{2b} is $\text{Aut}(\mathfrak{h}_{2, n})$ related to x_{2c}.

The remaining two possibilities are unrelated, as it can be seen by computing the quadratic forms
\[
B_{x_{3a}}(y) = -\delta c_0 - \delta c_1 - cc_0 - cc_1 - c\mu d^2 + \gamma d + \gamma d_0 + \gamma d_1 + dd_0 + dd_1;
\]
\[
B_{x_{3d}}(y) = \delta c_0 + \delta c_1 - cc_0 - cc_1 + c\mu d^2 - \gamma d + \gamma d_0 + \gamma d_1 - dd_0 - dd_1.
\]
By diagonalising (3.44), one can verify that the two forms have distinct signatures; hence, by Sylvester’s Law of Inertia, x_{2a} and x_{2b} lie in distinct orbits.
Rank 4: \(\text{Rank} x = 4 \Rightarrow \Delta(x) = -N(A) - \frac{\beta^2}{\tau} \neq 0 \). By Lemma \[17\], we may assume from the outset that
\[
 x = \begin{pmatrix} 1 & A \\ 0 & 0 \end{pmatrix}
\]
(3.45)
where \(A \) is a rank 3 Jordan algebra element. Via an application of \(\hat{\tau} \), where \(\tau \in \text{Str}_0(\mathfrak{J}_{1,n-1}) \), \(x \) may be brought into one of two forms corresponding to the two rank 3 canonical forms for \(A \), namely:
\[
x_{4a} = \begin{pmatrix} 1 & (1; \frac{1}{2}(1-m), \frac{1}{2}(1+m), 0, \ldots) \\ 0 & 0 \end{pmatrix}, \quad x_{4b} = \begin{pmatrix} 1 & (1; \frac{1}{2}(1-m), \frac{1}{2}(1+m), 0, \ldots) \\ 0 & 0 \end{pmatrix},
\]
where conventions have been chosen such that \(\Delta(x_{4a}) = \Delta(x_{4b}) = m \).

In order to determine under what conditions \(x_{4a} \) and \(x_{4b} \) are related, use the quadratic forms
\[
 B_{x_{4a}}(y) = \delta mc - \delta c_0 + \delta m c_0 - cc_0 + m cc_0 - c^1 - \delta mc_1 - cc_1 - m cc_1 - c \mu c^\mu + \gamma d + \gamma d_0 - \gamma md_0 + d d_0 - m d d_0 - m d d_\mu d^\mu + \gamma d_1 + \gamma m d_1 + d d_1 + m d d_1;
\]
\[
 B_{x_{4b}}(y) = -\delta mc + \delta c_0 + \delta m c_0 - cc_0 + m cc_0 + c^1 - \delta mc_1 - cc_1 + m cc_1 - c \mu c^\mu - \gamma d + \gamma d_0 + \gamma m d_0 - d d_0 - m d d_0 - m d d_\mu d^\mu + \gamma d_1 - \gamma m d_1 - d d_1 + m d d_1.
\]
is made once again.

The diagonalisation of Eq. \[3.47\] leads to quite complicated expressions for the two metrics. However, one can show that they only differ in three components, namely \((1; \frac{1}{2}(1-m), \frac{1}{2}(1+m), 0, \ldots) \). On the other hand, for \(m < 0 \), the signatures match and, by using a similar argument to the one used in the rank 3 case, that is applying \(\varphi(C) \) \(\psi(D) \) \(\varphi(C) \) such that \(C^\tau = D^\tau = C^\tau = 0 \), one can indeed verify they are both indeed related to the canonical form \(x_{4c} \) of the theorem.

Note, the \(\mathfrak{g}^{2,n} \) case considered here may be generalised to an arbitrary pseudo-Euclidean signature \(\mathfrak{g}^{p,q} := \mathfrak{g}^{(3p-1,q-1)} \), where \(\mathfrak{g}^{3p-1,q-1} = R \bigoplus \Gamma_{p-1,q-1} \) was introduced in \[2.43\]. The automorphism group is given by,
\[
 \text{Aut}(\mathfrak{g}^{p,q}) = \text{SL}(2, R) \times \text{SO}(p, q).
\]
(3.48)
In particular, \(\mathcal{N} = 4 \) Maxwell-Einstein supergravity has an \(\text{SL}(2, R) \times \text{SO}(6, q) \) U-duality and is related to \(\mathfrak{g}^{6,q} := \mathfrak{g}^{(3,5,q-1)} \). The analysis goes through analogously so we will not treat it in detail here. See, for example, \[6\], \[34\] for further details.

3.4.3 Special Cases: \(\mathfrak{g}_{3R}, \mathfrak{g}_{2R} \) and \(\mathfrak{g}_{R} \)

Case 1: \(\mathfrak{g}(3R) \) This is the \(n = 2 \) point of the generic sequence \(\mathfrak{g}^{2,n} \), as presented in Theorem 23. However, as mentioned in section 2.3.3, the underlying Jordan algebra \(\mathfrak{g}_{3,1} = R \bigoplus \mathfrak{g}_{1,1} \) may be reformulated in a particularly symmetric manner as \(\mathfrak{g}_{3R} = R \bigoplus R \bigoplus R \), where \(\mathcal{N}(A) = a_1 a_2 a_3 \) for \((a_1, a_2, a_3) \in \mathfrak{g}_{3R} \). The permutation symmetry of the cubic norm is further manifested in the corresponding FTS, \(\mathfrak{g}^{2,2} \cong \mathfrak{g}_{3R} \). The elements of \(R \bigoplus R \bigoplus \mathfrak{g}_{3R} \) may be written as a \(2 \times 2 \times 2 \) hypermatrix, denoted \(a_{ABC} \):
\[
 x = \begin{pmatrix} a_{000} \\ a_{100} \\ a_{010} \\ a_{001} \\ a_{111} \end{pmatrix} A = (a_{011}, a_{101}, a_{110}) \Rightarrow a_{ABC}, \quad \text{where} \quad A, B, C = 0, 1.
\]
(3.49)
The permutation symmetry of the cubic norm corresponds to its invariance under \(A \leftrightarrow B \leftrightarrow C \). The hypermatrix lies in the fundamental representation \(V_A \otimes V_B \otimes V_C \), where \(V_i \) is a 2-dimensional real vector space, of the automorphism group \(\text{SL}(2, R) \times \text{SO}(2, 2) \cong \text{SL}_A(2, R) \times \text{SL}_B(2, R) \times \text{SL}_C(2, R) \). Explicitly,
\[
a_{ABC} \mapsto \bar{a}_{ABC} = M_A A' N_B B' P_C C' a_{A'B'C'},
\]
(3.50)
where M, N, P are 2×2 matrices with determinant 1. The quartic norm is given by Cayley’s hyperdeterminant $\text{Det} a_{ABC}$,

$$
\Delta(x) = -\text{Det} a = \frac{1}{2} \epsilon^A \epsilon^B \epsilon^C \epsilon^D a_{ABCD} a_{EFGH},
$$

where ϵ is the antisymmetric 2×2 invariant tensor of $\text{SL}(2)$. This form of the quartic norm makes the $A \leftrightarrow B \leftrightarrow C$ triality invariance manifest.

Case 2: $\mathfrak{F}(\mathfrak{J}_{2\mathbb{R}})$ This is the $n = 1$ point of the generic sequence \mathfrak{F}^2. However, since the underlying Jordan algebra $\mathfrak{J}_{1,0} = \mathbb{R} \oplus \Gamma_{1,0}$ is Euclidean the orbits of Theorem 23 containing light-like $a_\mu \in \Gamma_{1,n-1}$ cannot be present. Indeed, we have the following result:

Theorem 24. Every element $x \in \mathfrak{F}_{2\mathbb{R}}$ of a given rank is $\text{SL}(2, \mathbb{R}) \times \text{SO}(2, 1)$ related to one of the following canonical forms:

1. Rank 1

 \[(a) \quad x_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \]

2. Rank 2

 \[(a) \quad x_2a = \begin{pmatrix} 1 & (1; 0) \\ 0 & 0 \end{pmatrix} \]

 \[(b) \quad x_2b = \begin{pmatrix} 1 & (-1; 0) \\ 0 & 0 \end{pmatrix} \]

3. Rank 3

 \[(a) \quad x_3a = \begin{pmatrix} 1 & (0; 1) \\ 0 & 0 \end{pmatrix} \]

4. Rank 4

 \[(a) \quad x_4a = k \begin{pmatrix} 1 & (-1; 1) \\ 0 & 0 \end{pmatrix} \]

 \[(b) \quad x_4b = k \begin{pmatrix} 1 & (1; 1) \\ 0 & 0 \end{pmatrix}, \]

where $k > 0$.

Proof. Since this is essentially a simplification of Theorem 23 we will not present the details here. The key observation is that, since every rank 1, 2 and 3 element of $\mathfrak{J}_{1,0}$ is respectively of the form $(a; 0), (0; a_0)$ and $(a; a_0)$, where $a, a_0 \neq 0$, the x_{2c}, x_{3b} and x_{4c} orbits of Theorem 23 are absent.

The underlying Jordan algebra $\mathfrak{J}_{1,0} = \mathbb{R} \oplus \Gamma_{1,0}$ may be written as a degeneration $\mathfrak{J}_{3\mathbb{R}} \to \mathfrak{J}_{2\mathbb{R}} = \mathbb{R} \oplus \mathbb{R}$. At the level of the FTS $\mathfrak{F}_{3\mathbb{R}} \to \mathfrak{F}_{2\mathbb{R}}$, this corresponds to symmetrizing the $2 \times 2 \times 2$ hypermatrix of $\mathfrak{F}_{3\mathbb{R}}$ over two indices: $a_{ABC} \to a_{A(B_1B_2)}$. The partially symmetrized hypermatrix lies in the $V_A \otimes \text{Sym}^2(V_B)$ representation of the automorphism group $\text{SL}(2, \mathbb{R}) \times \text{SO}(2, 1) \cong \text{SL}_A(2, \mathbb{R}) \times \text{SL}_B(2, \mathbb{R})$. Explicitly,

$$
a_{A(B_1B_2)} \mapsto a'_{A(B_1B_2)} = M_A^{A'} N_{B_1}^{B_1'} N_{B_2}^{B_2'} a_{A'(B_1'B_2')}, \tag{3.52}
$$

where M, N are 2×2 matrices with determinant 1. The quartic norm is again given by the hyperdeterminant through applying the appropriate symmetrization to $\text{Det} a_{ABC}$. For more details see, for example, [5, 43, 44].
Case 3: $\mathcal{F}(J_R)$ May be regarded as the end point of this sequence, in the sense that $\mathcal{F}_R = R \oplus R \oplus J_R \oplus \mathcal{J}_R$ can be mapped to the space of totally symmetrized hypermatrices: $a_{(A_1A_2A_3)} \in \text{Sym}^3(V_A)$. The totally symmetrized hypermatrix transforms as

$$a_{(A_1A_2A_3)} \mapsto \tilde{a}_{(A_1A_2A_3)} = M_{A_1} A_1' M_{A_2} A_2' M_{A_3} A_3' a_{(A_1'A_2'A_3')},$$

(3.53)

where M is a 2×2 determinant 1 matrix, under the automorphism group $\text{SL}_A(2, \mathbb{R})$. Once again the quartic norm is given by the hyperdeterminant by totally “symmetrizing” $\text{Det} a_{ABC}$. For more details see, for example, [5, 43, 44].

As already noted in section 2.3.3, because $N(A) = A^3, A^2 = A^2$, all non-zero elements $A \in J_R$ are rank 3. Consequently the number of independent ranks in \mathcal{F}_R is reduced to three:

Lemma 25. If $x \in \mathcal{F}_R$ is rank 2, then it is rank 1.

Proof. Consider the independent rank 2 conditions evaluated on the reduced form of (3.21):

$$\text{Rank} \ x_{\text{red}} \leq 2 \Leftrightarrow A^2 = 0, \ \beta = 0.$$

(3.54)

Since $A^2 = 0 \Rightarrow A = 0$ for all $A \in J_R$, one obtains

$$\text{Rank} \ x_{\text{red}} \leq 2 \Rightarrow A = 0, \ \beta = 0 \Rightarrow \text{Rank} \ x_{\text{red}} = 1.$$

(3.55)

Hence, the rank 2 orbits of Theorem 23 do not exist for \mathcal{F}_R. There are only elements of rank 1, 3 or 4, and we have the following

Theorem 26. Every element $x \in \mathcal{F}_R$ of a given rank is $\text{SL}(2, \mathbb{R})$ related to one of the following canonical forms:

1. **Rank 1**

 (a) $x_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

2. **Rank 3**

 (a) $x_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

3. **Rank 4**

 (a) $x_{4a} = k \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$

 (b) $x_{4b} = k \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

 where $k > 0$.

Proof. We begin by transforming to the generic canonical from

$$\begin{pmatrix} 1 & A \\ 0 & \beta \end{pmatrix},$$

(3.56)

and proceed, case by case, according to the rank.
Rank 1: Rank $x = 1 \Rightarrow A = 0, \beta = 0$, so that every rank 1 element is $\text{Aut}(\mathfrak{F}_R)$ related to

$$x_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

(3.57)

Rank 3: Rank $x = 3 \Rightarrow 4N(A) = 4A^3 = -\beta^2$ and $A \neq 0$, so that every rank 3 element is $\text{Aut}(\mathfrak{F}_R)$ related to a reduced form

$$\begin{pmatrix} 1 & A \\ 0 & \sqrt{-A^3} \end{pmatrix},$$

(3.58)

with $A < 0$. In order to determine the $\text{Aut}(\mathfrak{F}_R)$ transformation bringing (3.58) into the desired form, it is convenient to use the totally symmetric hypermatrix representation of the charges:

$$x = a_{(A_1A_2A_3)}, \quad A_1, A_2, A_3 = 0, 1$$

(3.59)

where, explicitly,

$$a_{(000)} = \alpha, \quad a_{(110)} = a_{(101)} = a_{(011)} = A;$$

$$a_{(000)} = \beta, \quad a_{(001)} = a_{(010)} = a_{(100)} = B.$$

(3.60)

A generic $\text{Aut}(\mathfrak{F}_R)$ transformation is then given by an $\text{SL}(2, \mathbb{R})$ matrix

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad ad - bc = 1$$

(3.61)

under which,

$$a_{(ABC)} \mapsto M a_{(ABC)} M^{-1} = \tilde{a}_{(ABC)}.$$

(3.62)

Applying M to the reduced form (3.58), we see that in order to obtain x_3 we are required to solve the follow system of polynomial equations

$$\tilde{a}_{(000)} = a^3 - 3|A|b^2a + 2|A|^2 b^3 = 0;$$

(3.63)

$$\tilde{a}_{(110)} = c^2a - |A|(ad^2 + 2bcd) + 2|A|^2 d^2 b = \tilde{A};$$

(3.64)

$$\tilde{a}_{(001)} = a^2 c - |A|(cb^2 + 2dab) + 2|A|^2 b^2 d = 0;$$

(3.65)

$$\tilde{a}_{(111)} = c^3 - 3|A|d^2 c + 2|A|^2 d^3 = 0,$$

(3.66)

where we leave $\tilde{A} \neq 0$ arbitrary as it may be subsequently scaled away using

$$M = \begin{pmatrix} \tilde{A} & 0 \\ 0 & \tilde{A}^{-1} \end{pmatrix}.$$

(3.67)

Setting $d = 1$, one immediately sees that (3.66) has two distinct real roots:

$$(c + 2|A|^{\frac{1}{2}})(c - |A|^{\frac{1}{2}})^2 = 0.$$

(3.68)

The double root $c = |A|^{\frac{1}{2}}$ contradicts $\tilde{A} \neq 0$ so we choose $c = -2|A|^{\frac{1}{2}}$, which implies $a + 2|A|^{\frac{1}{2}}b = 1$ and, from (3.64):

$$\tilde{A} = 3|A|.$$

(3.69)

Substituting $d = 1, c = -2|A|^{\frac{1}{2}}$ into (3.65) and solving for a we find,

$$a_+ = \frac{|A|^{\frac{1}{2}}b}{2}(-1 \pm 3).$$

(3.70)

Letting $a = a_+$ we determine that

$$M = \begin{pmatrix} \frac{1}{3} & \frac{1}{3|A|^2} \\ -2|A|^\frac{1}{2} & 1 \end{pmatrix}$$

(3.71)

sends (3.58) to $\begin{pmatrix} 0 & 3|A| \\ 0 & 0 \end{pmatrix}$, which is related by $M = \begin{pmatrix} 3|A| & 0 \\ 0 & (3|A|)^{-1} \end{pmatrix}$ to $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, as required.
There is at least one real root \(\gamma \) which, since \(d \neq 0 \), implies \(\gamma > 0 \). It is clear that \(0 < \gamma < \gamma^* \) and one obtains the SL(2, \(\mathbb{R} \)) matrix

\[
\begin{pmatrix}
\tilde{a} & \tilde{A} \\
0 & 0
\end{pmatrix}.
\] (3.72)

This amounts to solving

\[
\tilde{a}_{(001)} = a^2c + A(cb^2 + 2dab) + \beta b^2d = 0;
\] (3.73)

\[
\tilde{a}_{(111)} = c^3 + 3Ad^2c + \beta d^3 = 0,
\] (3.74)

where \(ad - bc = 1 \). There are three subcases: (i) \(A \neq 0, \beta = 0 \), (ii) \(A = 0, \beta \neq 0 \), (iii) \(A \neq 0, \beta \neq 0 \). (i) is trivial. For (ii), our system simplifies down to

\[
\tilde{a}_{(001)} = a^2c + \beta b^2d = 0;
\] (3.75)

\[
\tilde{a}_{(111)} = c^3 + \beta d^3 = 0,
\] (3.76)

Setting \(d = 1 \) and \(c = -\beta^2 \) solves (3.76). By substituting this choice into (3.75) and solving for \(a \), one finds \(a_{\pm} = \pm \beta^2 b \). But only \(a_{+} \) is consistent with \(ad - bc = 1 \). Making this choice implies \(b = (8\beta)^{-\frac{1}{4}} \), and one obtains the SL(2, \(\mathbb{R} \)) matrix

\[
M = \begin{pmatrix}
\frac{1}{2} & -\beta^2 \\
(8\beta)^{-\frac{1}{4}} & 1
\end{pmatrix}.
\] (3.77)

Finally, let us consider the case (iii) \(A \neq 0, \beta \neq 0 \). Let \(c = \gamma d \), where \(\gamma = \gamma(\beta, A) \). Then, from (3.74), we have

\[
d^3(\gamma^3 + 3A\gamma + \beta) = 0,
\] (3.78)

which, since \(d \) is necessarily non-zero, implies

\[
f(\gamma) = \gamma^3 + 3A\gamma + \beta = 0.
\] (3.79)

There is at least one real root \(\gamma_* \) that is non-zero for \(\beta \neq 0 \). Substituting into (3.73) yields,

\[
\gamma_* d \left[a^2 + \frac{2Ab}{\gamma_*} a + (A + \frac{\beta}{\gamma_*}) b^2 \right] = 0.
\] (3.80)

Solving for \(a \) we find

\[
a_{\pm} = \frac{Ab}{\gamma_*} \left(-1 \pm \sqrt{1 - \frac{\gamma^2}{A^2} (A + \frac{\beta}{\gamma_*})} \right) = \xi_{\pm}(\beta, A)b.
\] (3.81)

Hence, we require

\[
A^2 - \gamma_*^2 A - \gamma_* \beta = A^2 - y(\gamma_*) \geq 0,
\] (3.82)

where \(y(\gamma_*) = \gamma_*^2 A + \gamma_* \beta \). We may always choose the root \(\gamma_* \) such that this condition holds. In order to see this, let us consider the two subcases: (a) \(A < 0 \) and (b) \(A > 0 \). (a) For \(A < 0 \), \(f(\gamma) \) in (3.79) has two turning points at \(\pm \sqrt{|A|} \). Consequently, for \(\beta > 0 \) there is always a real root \(\gamma_* < -\sqrt{|A|} < 0 \), which implies (3.82). Similarly, for \(\beta < 0 \) there is always a real root \(\gamma_* > \sqrt{|A|} > 0 \), which again implies (3.82). (b) For \(A > 0 \) the cubic \(f(\gamma) \) only has an inflection point at \(\gamma = 0 \), \(f(0) = \beta \) and so \(f(\gamma) = 0 \) has a single real root \(\gamma_* \). If \(\beta < 0 \), then \(0 < \gamma_* < \frac{|\beta|}{2A} \). Since \(y(\gamma_*) \) has a minimum at \(\frac{-\beta}{2A} \), \(\frac{|\beta|}{2A} \), it is clear that \(0 < \gamma_* < \frac{|\beta|}{2A} \) implies \(y(\gamma_*) < 0 \) and so condition (3.82) is satisfied. Similarly, if \(\beta > 0 \), then \(-\frac{\beta}{2A} < \gamma_* < 0 \), and once again \(y(\gamma_*) < 0 \), implying condition (3.82) as required. Hence, we conclude condition (3.82) may always be satisfied.
In summary:

\[a = \xi_\pm(\beta, A)b, \quad c = \gamma_\ast(\beta, A)d \]

(3.83)

which yields

\[(\xi_\pm - \gamma_\ast)b = 1, \]

(3.84)

where \(\xi_+ \) or \(\xi_- \) is chosen such that \(\xi_\pm - \gamma_\ast \) is non-zero. Without loss of generality we can set \(d = 1 \), so that

\[\frac{1}{(\xi_\pm - \gamma_\ast)} \]

transforms our hypermatrix into the desired form \((3.72) \).

Finally, the reduced form \((3.72) \) may be brought into the form \(x_{4a/b} \) of the theorem by the diagonal \(\text{SL}(2, \mathbb{R}) \) transformation

\[M = \begin{pmatrix} \xi_\pm/(\xi_\pm - \gamma_\ast) & 1/(\xi_\pm - \gamma_\ast) \\ \gamma_\ast & 1 \end{pmatrix}, \]

(3.85)

transforms our hypermatrix into the desired form \((3.72) \).

Acknowledgments

We would like to thank Duminda Dahanayake for useful discussions. The work of LB and SF is supported by the ERC Advanced Grant no. 226455 SUPERFIELDS. Furthermore, the work of SF is also supported in part by DOE Grant DE-FG03-91ER40662. The work of MJD is supported by the STFC under rolling grant ST/G000743/1. LB is grateful for hospitality at the Theoretical Physics group at Imperial College London and the CERN theory division (where he was supported by the above ERC Advanced Grant).

References

[1] O. Shukuzawa, “Explicit classifications of orbits in Jordan algebra and Freudenthal vector space over the exceptional Lie groups,” Commun. Algebra 34 (2006) no. 1, 197–217.

[2] N. Jacobson, “Some groups of transformations defined by Jordan algebras,” J. Reine Angew. Math. 207 (1961) 61–85.

[3] S. Krutelevich, “On a canonical form of a 3 \times 3 Hermitian matrix over the ring of integral split octonions,” J. Algebra 253 (2002) no. 2, 276–295.

[4] S. Krutelevich, “Orbits of Exceptional Groups and Jordan Systems,”. Ph.D. Thesis, Yale Univ. (2003).

[5] S. Krutelevich, “Jordan algebras, exceptional groups, and Bhargava composition,” J. Algebra 314 (2007) no. 2, 924–977, arXiv:math/0411104

[6] L. Borsten, M. J. Duff, S. Ferrara, A. Marrani, and W. Rubens, “Small Orbits,” (2011) arXiv:1108.0424 [hep-th]

[7] S. Ferrara and M. Günaydin, “Orbits of exceptional groups, duality and BPS states in string theory,” Int. J. Mod. Phys. A13 (1998) 2075–2088 arXiv:hep-th/9708025

\(^3\)Note that \(\xi_\pm = \gamma_\ast \) for both choices implies \(\gamma_\ast = \pm \sqrt{-A} \) which, from \((3.79) \), implies \(4A^3 + \beta^2 = 0 \), in turn contradicting our rank 4 assumption.
[8] S. Ferrara and M. Günaydin, “Orbits and attractors for $N=2$ Maxwell-Einstein supergravity theories in five dimensions,” [Nucl. Phys. B759 (2006) 1–19] arXiv:hep-th/0606108

[9] S. Bellucci, S. Ferrara, M. Günaydin, and A. Marrani, “Charge orbits of symmetric special geometries and attractors,” [Int. J. Mod. Phys. A21 (2006) 5043–5098] arXiv:hep-th/0606209.

[10] S. Ferrara and A. Marrani, “On the Moduli Space of non-BPS Attractors for N=2 Symmetric Manifolds,” [Phys. Lett. B652 (2007) 111–117] arXiv:0706.1667 [hep-th].

[11] B. L. Cerchiai, S. Ferrara, A. Marrani, and B. Zumino, “Duality, Entropy and ADM Mass in Supergravity,” [Phys. Rev. D79 (2009) 125010] arXiv:0902.3973 [hep-th].

[12] A. Ceresole, S. Ferrara, and A. Marrani, “Small $N=2$ Extremal Black Holes in Special Geometry,” [Phys. Lett. B693 (2010) 366–372] arXiv:1006.2007 [hep-th].

[13] B. L. Cerchiai, S. Ferrara, A. Marrani, and B. Zumino, “Charge Orbits of Extremal Black Holes in Five Dimensional Supergravity,” [Phys. Rev. D82 (2010) 085010] arXiv:1006.3101 [hep-th].

[14] L. Andrianopoli, R. D’Auria, S. Ferrara, and M. Trigiante, “Fake Superpotential for Large and Small Extremal Black Holes,” [JHEP 08 (2010) 126] arXiv:1002.4340 [hep-th].

[15] L. Borsten, D. Dahanayake, M. Duff, S. Ferrara, A. Marrani, et al., “Observations on Integral and Continuous U-duality Orbits in N=8 Supergravity,” [Class. Quant. Grav. 27 (2010) 185003] arXiv:1002.4223 [hep-th].

[16] P. Breitenlohner, D. Maison, and G. W. Gibbons, “Four-Dimensional Black Holes from Kaluza-Klein Theories,” [Commun. Math. Phys. 120 (1988) 295]

[17] G. Bossard, H. Nicolai, and K. Stelle, “Universal BPS structure of stationary supergravity solutions,” [JHEP 0907 (2009) 003] arXiv:0902.4438 [hep-th].

[18] G. Bossard, “The extremal black holes of $N=4$ supergravity from so(8,2+n) nilpotent orbits,” [Gen. Rel. Grav. 42 (2010) 539–565] arXiv:0906.1988 [hep-th].

[19] P. Fre, A. S. Sorin, and M. Trigiante, “Black Hole Nilpotent Orbits and Tits Satake Universality Classes,” arXiv:1107.5986 [hep-th].

[20] P. Jordan, “Über die multiplikation quanten-mechanischer grossen,” Zschr. f. Phys. 80 (1933) 285.

[21] P. Jordan, “Über verallgemeinerungsmöglichkeiten des formalismus der quantenmechanik,” Nachr. Ges. Wiss. Göttingen II 39 (1933) 209–214.

[22] P. Jordan, J. von Neumann, and E. P. Wigner, “On an algebraic generalization of the quantum mechanical formalism.” [Ann. Math. 35 (1934) no. 1, 29–64]

[23] M. Günaydin, G. Sierra, and P. K. Townsend, “Gauging the $d = 5$ Maxwell-Einstein supergravity theories: More on Jordan algebras,” [Nucl. Phys. B253 (1985) 573]

[24] M. Günaydin, G. Sierra, and P. K. Townsend, “The geometry of $N = 2$ Maxwell-Einstein supergravity and Jordan algebras,” [Nucl. Phys. B242 (1984) 244]

[25] M. Günaydin, G. Sierra, and P. K. Townsend, “Exceptional supergravity theories and the magic square,” [Phys. Lett. B133 (1983) 72]

[26] T. A. Springer, “Characterization of a class of cubic forms,” [Nederl. Akad. Wetensch. Proc. Ser. A 24 (1962) 259–265.]
[27] K. McCrimmon, “The Freudenthal-Springer-Tits construction of exceptional Jordan algebras.” Trans. Amer. Math. Soc. 139 (1969) 495–510.

[28] K. McCrimmon, A Taste of Jordan Algebras. Springer-Verlag New York Inc., New York, 2004.

[29] R. Schafer, Introduction to Nonassociative Algebras. Academic Press Inc., New York, 1966.

[30] N. Jacobson, Exceptional Lie algebras. Marcel Dekker, Inc., New York, 1971.

[31] P. Ramond, “Introduction to Exceptional Lie Groups and Algebras.” CALT-68-577, 1977.

[32] T. A. Springer and F. D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups. Springer-Verlag, Berlin, Heidelberg, New York, 2000.

[33] K. Yokota, “Exceptional Lie groups,” arXiv:0902.0431 [math.DG].

[34] M. Gunaydin and O. Pavlyk, “Quasiconformal Realizations of $E_{6(6)}, E_{7(7)}, E_{8(8)}$ and SO(n+3,m+3), $N \geq 4$ Supergravity and Spherical Vectors,” arXiv:0904.0784 [hep-th].

[35] R. B. Brown, “Groups of type E_7,” J. Reine Angew. Math. 236 (1969) 79–102.

[36] L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim, and W. Rubens, “Black Holes, Qubits and Octonions,” Phys. Rep. 471 (2009) no. 3–4, 113–219, arXiv:0809.4685 [hep-th].

[37] L. Borsten, D. Dahanayake, M. J. Duff, and W. Rubens, “Black holes admitting a Freudenthal dual,” Phys. Rev. D80 (2009) no. 2, 026003 arXiv:0903.5517 [hep-th].

[38] L. Borsten, “$E_{7(7)}$ invariant measures of entanglement,” Fortschr. Phys. 56 (2008) no. 7–9, 842–848.

[39] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, and H. Ebrahim, “Freudenthal triple classification of three-qubit entanglement,” Phys. Rev. A80 (2009) 032326 arXiv:0812.3322 [quant-ph].

[40] L. Borsten, “Aspects of M-Theory and Quantum Information.”, Ph.D. thesis, Imperial College (2010).

[41] G. B. Seligman, “On the split exceptional Lie algebra E_7,” Yale University, dittoed notes (1962).

[42] A. Cayley, “On the theory of linear transformations.” Camb. Math. J. 4 (1845) 193–209.

[43] M. Bhargava, “Higher composition laws I: A new view on Gauss composition, and quadratic generalizations.” Ann. Math. 159 (2004) no. 1, 217-250.

[44] S. Bellucci, A. Marrani, E. Orazi, and A. Shcherbakov, “Attractors with vanishing central charge,” Phys. Lett. B655 (2007) 185–195 arXiv:0707.2730 [hep-th].