Common and rare variants associated with kidney stones and biochemical traits

Asmundur Oddsson1,*, Patrick Sulem1,*, Hannes Helgason1,2, Vidar O. Edvardsson3,4,5, Gudmar Thorleifsson1, Gardar Sveinbjörnsson1, Eik Haralbsdottir1, Gudmundur I. Eyjolfsson6, Olof Sigurdardottir7, Isleifur Olafsson8, Gisli Masson1, Hilma Holm1, Daniel F. Gudbjartsson1,2, Unnur Thorsteinsdottir1,4, Olafur S. Indridason9, Runolfur Palsson4,5,9 & Kari Stefansson1,4

Kidney stone disease is a complex disorder with a strong genetic component. We conducted a genome-wide association study of 28.3 million sequence variants detected through whole-genome sequencing of 2,636 Icelanders that were imputed into 5,419 kidney stone cases, including 2,172 cases with a history of recurrent kidney stones, and 279,870 controls. We identify sequence variants associating with kidney stones at ALPL (rs1256328[T], odds ratio (OR) = 1.21, P = 5.8 × 10^{-10}) and a suggestive association at CASR (rs7627468[A], OR = 1.16, P = 2.0 × 10^{-8}). Focusing our analysis on coding sequence variants in 63 genes with preferential kidney expression we identify two rare missense variants SLC34A1 p.Tyr489Cys (OR = 2.38, P = 2.8 × 10^{-5}) and TRPV5 p.Leu530Arg (OR = 3.62, P = 4.1 × 10^{-5}) associating with recurrent kidney stones. We also observe associations of the identified kidney stone variants with biochemical traits in a large population set, indicating potential biological mechanism.
The lifetime risk of kidney stones is 8.8% in the United States\(^1\) with an estimated recurrence rate of 14% after 1 year and 35% after 5 years\(^2\), placing a significant burden on the health care system\(^3\). In Iceland, the prevalence in individuals older than 70 years is 10.1% for men and 4.2% for women\(^4\). Kidney stones form when urine becomes supersaturated with salts such as calcium oxalate or calcium phosphate and when urine concentrations of natural inhibitors of stone formation such as citrate, magnesium, pyrophosphate, uromodulin and osteopontin are low\(^5\). Calcium oxalate and calcium phosphate are the most common (~80%) constituents of kidney stones\(^6\). The mechanism of stone formation involves both environmental factors such as diet\(^7\) and genetic traits. Individuals with a family history of kidney stones are at a greater risk than others of developing the condition. Recent studies estimate that up to 65% of kidney stone formers have a family history of kidney stones\(^8,9\) and both twin\(^10\) and genealogy\(^11\) studies have reported strong heritability of kidney stone disease. Candidate gene association studies have attempted to assess the role of several genes involved in calcium homeostasis on kidney stone formation\(^12\). These studies have been limited by sample size, the results are conflicting and they do not consider a broad spectrum of sequence variants.

We previously published a genome-wide association study (GWAS) of kidney stone disease, testing a total of 303,120 variants in 1,507 cases and 34,033 controls from Iceland\(^13\). Following replication in additional cases and controls from Iceland and the Netherlands, we reported a genome-wide significant association of the CLDN14 locus, encoding the tight junction protein Claudin-14, on 21q22.13 with kidney stones (rs219780[C], allele frequency = 79.20%, odds ratio (OR) = 1.25, \(P = 4.0 \times 10^{-12}\)). A GWAS in the Japanese population involving 904 cases and 7,471 controls reported three loci associated with kidney stones following replication in additional cases and controls, RGS14-SLC34A1, encoding regulator of G-protein signalling 14 and the Na/Pi co-transporter solute carrier family 34 member 1, on 5q35.3 (rs11746443[A], OR = 1.19, \(P = 8.5 \times 10^{-2}\)), INMT-FAM188B-AQP1, a locus including the gene encoding aquaporin 1, on 7p14.3 (rs1000597[C], OR = 1.22, \(P = 2.2 \times 10^{-14}\)), and DGKH, encoding diacylglycerol kinase eta, on 13q14.1 (rs4142110[C], OR = 1.14, \(P = 4.6 \times 10^{-9}\)).

In the current study, we have substantially increased the sample size from our previous study\(^13\) (N cases = 5,419; N controls = 279,870). We were also able to increase the number of sequence variants tested by performing GWAS on imputed genotypes of sequence variants identified through whole-genome sequencing of 2,636 Icelanders, yielding a more extensive coverage of the genome. In addition to discovering associations with kidney stones, we assessed the association of these variants to 13 biochemical traits involved in calcium–phosphate metabolism, purine metabolism, kidney function, acid–base and ion homeostasis in a large population set.

Results

Main findings

In our previous work, we sequenced the whole genomes of 2,636 Icelanders\(^5,16\) (median sequencing depth of 23 ×) yielding 28.3 million sequence variants. Subsequently, we imputed these variants assisted by long-range haplotype phasing into 98,721 Icelanders genotyped with Illumina SNP chips\(^7,18\). Using Icelandic genealogy data, we also calculated genotype probabilities of untyped close relatives of chip-typed individuals\(^19\). We examined the association between sequence variants and kidney stones in 5,419 Icelandic kidney stone formers\(^9\) (2,979 chip-typed and 2,440 chip-typed first- or second-degree relatives) including 2,172 recurrent kidney stone formers (see Methods for definition) and 279,870 controls (88,266 chip-typed and 191,604 chip-typed first- or second-degree relatives). We assessed the association of kidney stone associated sequence variants with biochemical parameters involved in calcium–phosphate metabolism (serum calcium, \(N = 114,489\); serum ionized calcium, \(N = 18,516\); serum phosphate, \(N = 51,056\); parathyroid hormone (PTH), \(N = 15,541\); 25-hydroxy vitamin D, \(N = 7,544\); alkaline phosphatase (ALP), \(N = 126,060\), purine metabolism (serum uric acid, \(N = 56,025\), acid–base homeostasis (serum bicarbonate (\(N = 44,511\)), kidney function (serum creatinine, \(N = 195,933\) and ion homeostasis (serum chloride, \(N = 92,938\); serum magnesium, \(N = 37,188\); serum potassium, \(N = 201,728\); serum sodium, \(N = 198,119\)).

In this study, we found variants at three loci associated with kidney stones at a genome-wide significance level (0.05/28.3 million = 1.8 × 10^{-9}) and one additional locus with suggestive association (Fig. 1; Table 1). At these loci, we also observed genome-wide significant associations with serum calcium, phosphate, PTH and ALP that do not in all cases correlate with the corresponding kidney stone association signal. Focusing on coding variants in genes with preferential renal expression, we also found two rare coding variants associating with kidney stones and recurrent stone formation.

Variants at ALPL

We observe a genome-wide significant signal with two fully correlated markers associating with kidney stones in ALPL at 1p36.12, represented by rs1256328 [T] (minor allele frequency (MAF) = 17.79%, OR = 1.21, \(P = 5.8 \times 10^{-10}\)) (Fig. 2; Table 1; Supplementary Table 1). A missense variant in ALPL (rs34605986 [A], MAF = 15.21%, NP_000469.3:p.Val522Ala) that correlates with rs1256328 (\(r^2 = 0.73\)) also associates with kidney stones (OR = 1.19, \(P = 8.9 \times 10^{-8}\)) (Supplementary Table 1). When considering the 3,119 variants located within the linkage disequilibrium (LD) block containing rs1256328 no variants remained significant after adjusting for it (\(P > 0.05/1,625 = 3.1 \times 10^{-5}\)) (Fig. 2; Supplementary Table 1). ALPL encodes a tissue nonspecific ALP. The sequence variant rs1256328 [T] and the correlated missense variant ALPL p.Val522Ala have a significant association with increased serum ALP levels in the general population (effect > 7.8 s.d.%; \(P < 2.2 \times 10^{-32}\)) (Table 2). To attempt replication, we directly genotyped the missense variant ALPL p.Val522Ala in a Danish population set (N = 5,822, MAF_Denmark = 17.53%). We replicated the association (\(P = 3.0 \times 10^{-9}\)) with an effect = 10.73 s.d.%.

Combined analysis of discovery and replication sets yielded a \(P = 3.5 \times 10^{-35}\) and an effect = 8.00 s.d.% with no heterogeneity between the populations (\(P = 0.38\)). This is consistent with a previous functional study where a mutated version of ALPL carrying p.Val522Ala showed increased enzyme activity in a cell-based assay\(^20\). Within ALPL, we also detect a low-frequency missense variant (rs149344982[A], MAF = 1.42%, NP_000469:3:p.Arg152His), which associates strongly with reduced serum ALP (effect = −45.9 s.d.%; \(P = 9.84 \times 10^{-10}\)) and suggestively with reduced risk of kidney stones (OR = 0.742, \(P = 8.1 \times 10^{-5}\)) (Supplementary Table 2). ALPL p.Arg152His has little correlation with the more common ALPL variants rs1256328 and p.Val522Ala (\(r^2 < 0.0040\)) (Supplementary Table 3). This finding is in line with the effect of several rare loss-of-function variants in ALPL that have been reported in patients with hypophosphatasia (OMIM:146300), a syndrome characterized by decreased levels of ALP and elevated urine pyrophosphate\(^21\), a known inhibitor of kidney stone formation\(^4\). ALPL is expressed in the proximal tubules of the kidney\(^22\) and hydrolyses pyrophosphate to free phosphate, where it may promote the
formulation of kidney stones. Our results, for variants in ALPL that either increase or decrease ALP levels, suggest that the effect of ALPL on extracellular pyrophosphate metabolism can influence kidney stone formation.

The most significant association with serum phosphate levels in the Icelandic population is observed at the ALPL locus, represented by rs12132412[G] (MAF = 34.85%, effect = 5.0 s.d.%, P = 1.8 × 10^{-19}) (Supplementary Table 2). This variant remains significant (adjusted \(P = 1.7 \times 10^{-6} \), adjusted effect = 3.9 s.d.%) after adjusting for the correlated rs1697421 (\(r^2 = 0.54 \)), which has been reported to associate with serum phosphate levels. Notably, rs12132412[G] also associates with ALP levels (effect = -6.5 s.d.%, \(P = 1.1 \times 10^{-34} \)) and is correlated (\(r^2 = 0.41 \)) with rs1976403, which has been associated with ALP levels (Supplementary Table 3). In the Icelandic population, the reported sequence variant rs1976403[C] associates significantly with both ALP (effect = 10.4 s.d.%, \(P = 4.3 \times 10^{-93} \)) and serum phosphate levels (effect = -3.7 s.d.%, \(P = 5.2 \times 10^{-12} \)) (Supplementary Table 2). Interestingly, rs12132412 and rs1976403 have little correlation with rs1256328 and ALPL p.Arg152His that show association with kidney stones and demonstrate significant association with ALP at the ALPL locus (\(r^2 < 0.0062 \)) (Supplementary Table 2; Supplementary Table 4). Similarly, rs1256328 and ALPL p.Arg152His do not associate with serum phosphate levels (effect = -0.3 s.d.%, \(P = 0.71 \) and effect = 3.7 s.d.%, \(P = 0.1 \), respectively) (Supplementary Table 2).

In summary, we report three uncorrelated (\(r^2 < 0.0062 \) for all pairs) genome-wide significant signals at the ALPL locus associating with ALP and kidney stones (rs1256328), ALP and serum phosphate (rs12132412 and rs1976403) and ALP (rs149344982).

Table 1 | Summary information for the lead regional sequence variants associating with kidney stone.

SNP ID	Position (Hg18)	A	MAF (%)	Locus	Kidney stones	Recurrent kidney stones	Mechanism
rs199565725	chr21:36757108	A/AAC	23.68/23.20	CLDN14	\(4.7 \times 10^{-13} \)	0.81	Cell-cell adhesion
rs12654812	chr5:176726797	A/G	41.84/34.78	SLC34A1	\(5.7 \times 10^{-10} \)	1.18	Na/Pi co-transporter
rs1256328	chr1:27169354	T/C	17.79/17.32	ALPL	\(5.8 \times 10^{-10} \)	1.21	Alkaline phosphatase
rs7627468	chr3:123428789	A/G	26.80/24.02	CASR	0.0062	0.77	Ca-sensing G-protein-coupled receptor

A, allele (minor/major); MAF, minor allele frequency (ice; Iceland; 1Keu, 1000 genomes European Americans); OR, odds ratio. Reported are the three genome-wide significant (\(P < 1.8 \times 10^{-7} \)) sequence variants (rs199565725, rs12654812 and rs1256328) and in addition one suggestive sequence variant (rs7627468) associating with kidney stone in Iceland.
Variant at CLDN14. We previously reported a genome-wide significant association at the CLDN14 locus on 21q22.13 with kidney stones represented by rs219780 (ref. 13). In the current
The strongest signal associating with kidney stones is a two-

kidney stones (Fig. 1; Fig. 2; Supplementary Table 8).

of individuals with genotype information with quantitative traits measurements

ion homeostasis.

underlined are

37) (Table 1) correlating with the previously reported sequence variant rs219780[T] (r² = 0.82, OR = 0.81, P = 2.6 × 10⁻¹¹). We do not observe a significant residual signal when adjusting the association of rs199565725 with kidney stones for rs219780 (adjusted P = 0.086). When considering the number of variants in the LD block containing rs199565725 no variants remained significant after adjusting for this variant (P > 0.05/ 1,993 = 2.5 × 10⁻⁵).

CLDN14 is a member of the claudin superfamily of proteins

that regulate paracellular transport of ions and small solutes at epitHELIAL TIGHT JUNCTIONS. We demonstrate that the sequence variant rs199565725[delAC] also associates with increased serum magnesium (effect = 4.5 s.d.%; P = 2.0 × 10⁻⁴) and decreased serum potassium (effect = 1.2 s.d.%; P = 8.2 × 10⁻⁴) and decreased PTH (effect = −4.5 s.d.%; P = 1.1 × 10⁻⁴) (Table 2). Interestingly, CLDN14 knockout mice have significantly higher serum magnesium levels than wild-type animals when kept on a high-calcium diet. This might indicate that rs199565725[delAC] mediates a decrease of CLDN14 gene function. Consistent with our previous study, rs199565725[delAC] shows a nominal association with bone mineral density (Supplementary Table 9).

Table 2 | Kidney stone associated biochemical traits.

Trait*	N (KS cases)	CLDN14 rs199565725[T]	SLC34A1 rs12654812[A]	ALPL rs1256328[T]	CASR rs7627468[A]				
Calcium-phosphate metabolism									
ALP	126,060 (3,869)	0.30	−0.6	0.037	1.1	2.2 × 10⁻³²	7.8	0.92	0.1
PTH	15,541 (1,003)	1.1 × 10⁻⁴	−4.5	2.3 × 10⁻⁹	−5.9	0.62	−0.6	0.13	1.7
25-OH VD	7,544 (377)	0.72	0.7	0.87	0.3	0.38	−1.7	7.5 × 10⁻³	−4.6
Purine metabolism									
Uric Acid	56,025 (2,667)	0.20	−1.0	0.090	1.1	0.56	−0.5	0.59	0.4
Acid-base homeostasis									
Bicarbonate	44,511 (1,576)	0.60	0.4	0.15	0.1	0.50	0.6	0.61	0.4
Kidney function									
Creatinine	195,933 (4,911)	0.17	−0.6	5.4 × 10⁻⁸	0.2	0.95	0.1	0.45	0.3
Ion homeostasis									
Calcium	114,489 (3,842)	0.34	0.5	0.012	1.1	0.79	−0.1	1.1 × 10⁻³	1.6
Calcium	18,516 (1,129)	0.57	−0.5	0.026	1.8	0.63	0.5	6.0 × 10⁻³	2.5
Chloride	92,938 (3,228)	0.61	0.3	0.81	−0.1	0.09	−0.1	0.26	0.6
Magnesium	37,188 (1,472)	2.0 × 10⁻⁷	4.0	0.27	0.7	0.53	0.5	0.36	−0.7
Phosphate	51,056 (3,228)	0.11	1.0	1.1 × 10⁻¹⁴	−4.2	0.71	−0.3	0.01	−1.5
Potassium	201,720 (4,980)	8.2 × 10⁻⁴	−1.2	0.65	−0.1	0.80	0.1	0.05	0.7
Sodium	198,119 (4,951)	0.39	−0.3	0.019	0.8	0.41	0.3	0.11	−0.6

Table 3 | Summary information for coding sequence variants in genes with specific or enriched expression in the kidney associating with kidney stones.

Position (Hg18)	A	MAF (%)	Gene	HGVS	Kidney stones	Recurrent kidney stones	Mechanism	
chr5:176575439	G/A	0.46	SLC34A1	NP_003043.3:p.Tyr489Cys	8.5 × 10⁻⁵	1.82	2.8 × 10⁻⁵	Na/Pi co-transporter
chr7:142319969	C/A	0.13	TRPV5	NP_062815.2:p.Leu530Arg	2.3 × 10⁻³	2.17	4.1 × 10⁻⁵	Ca channel

variants, strongly correlated with rs7627468 (r² > 0.95) and located within intron 1 of CASR, associate with kidney stones (Fig. 2; Supplementary Table 10). A non-significant
trend was observed for rs7627468[A] with increased serum calcium (effect = 1.6 s.d.%; \(P = 1.1 \times 10^{-3}\)), increased ionized calcium (effect = 2.5 s.d.%; \(P = 6.0 \times 10^{-4}\)) and with decreased 25-hydroxy vitamin D levels (effect = −4.6 s.d.%; \(P = 7.5 \times 10^{-3}\)) (Table 2). We note that rs7627468 is not correlated with rs73186030, located 8-kb downstream of the CASR gene, \((r^2 = 0.0073)\) that is the most significant marker for serum calcium in the Icelandic population (effect = 12.3 s.d.%; \(P = 2.0 \times 10^{-6}\)) and is strongly correlated with rs18017255 (NP_000379.2:p.Ala986Ser) \((r^2 = 0.97)\), which has been associated with serum calcium40,41. The sequence variant rs73186030 does not associate with kidney stones (OR = 0.96, \(P = 0.33\)) and this association remains unaffected after adjusted for the kidney stone variant rs7627468 (Supplementary Table 11). Conversely, when adjusted for the serum calcium variant rs73186030, the association of the kidney stone variant rs7627468[A] with serum calcium (adjusted effect = 2.2 s.d.%; adjusted \(P = 3.9 \times 10^{-6}\)) and ionized serum calcium strengthens (adjusted effect = 3.1 s.d.%; adjusted \(P = 7.0 \times 10^{-6}\)) (Supplementary Table 11).

In summary, we observe two uncorrelated signals \((r^2 = 0.0073)\) at the CASR locus, one for serum calcium only (rs73186030) and one mainly for kidney stones (rs7627468). Taken together, this suggests that the effect of CASR on kidney stones is complex. The sequence variant rs73186030, which has a strong effect on serum calcium, does not associate with kidney stones. The kidney stone variant rs7627468 and other linked calcium variants are located within intron 1 of CASR that entails a regulatory region42.

Rare coding variant in TRPV5. We used a recent source of data on tissue-enriched gene expression in an attempt to analyse coding variants in genes with preferential kidney expression31. We tested a total of 220 coding variants in 63 genes, showing tissue-specific or enriched expression in the kidney, for association with kidney stones and recurrent kidney stones. In addition to SLC34A1 p.Tyr489Cys, we found a rare missense variant in TRPV5 (NP_062815.2:p.Leu530Arg (MAF = 0.13 %)) associating significantly with recurrent kidney stones (OR = 3.62, \(P = 4.1 \times 10^{-5} < 0.05/220 = 2.3 \times 10^{-4}\)) (Table 3). The TRPV5 p.Leu530Arg variant was observed only once in the ExAC database (samples \(N = 61,486\))26. The variant is at a highly conserved position \((\text{GERP}^{28} = 5.8)\) and is predicted to be damaging by two different algorithms (PolyPhen29 = probably damaging and SIFT30 = deleterious). TRPV5 is a highly selective epithelial calcium channel and the mutation lies within the pore-forming region of the protein (amino acids 527–538)43 (Fig. 3; Supplementary Fig. 1). The change in coding sequence results in substitution of the hydrophilic amino acid leucine with a positively charged arginine at position 530 (Fig. 3). The introduction of a positive charge into the hydrophilic pore-forming region of TRPV5 is expected to interfere with the diffusion of positively charged calcium ions across the channel. TRPV5 is expressed at the apical membrane of distal renal tubule epithelial cells that mediates calcium transport in the kidney and constitutes the rate-limiting step of active calcium reabsorption44. TRPV5 knockout mice and mice carrying a point mutation in TRPV5 exhibit renal calcium wasting resulting in severe hypercalcuria45,46. TRPV5 has been suggested to play a role in hypercalciuric disorders but candidate gene studies have so far failed to demonstrate an association44,47,48.

Figure 3 | Schematic illustration of the topology of the TRPV5 protein.

The TRPV5 p.Leu530Arg mutation occurs within the pore-forming region (amino acids 527–538) of the ion transport domain (amino acids 389–578) of TRPV5 replacing a hydrophobic with a basic amino acid. Acidic and basic amino acids as red and blue, respectively.

Variant in APTR and recessive mode of inheritance. We note that we observe a strong association of a missense variant in the APTR gene encoding adenine phosphoribosyltransferase (rs104894506[A], NP_000476.1:p.Asp65Val, MAF = 1.26%) with kidney stones under the recessive model (OR = 31.97, \(P = 6.83 \times 10^{-10}\)). This mutation has previously been reported to cause adenine phosphoribosyltransferase deficiency under a recessive mode of inheritance (OMIM:614723) with kidney stones as a hallmark clinical manifestation in Iceland49,50. Consistent with this observation, we do not observe a significant association of rs104894506[A] with kidney stones under the additive model (OR = 1.01, \(P = 0.93\)). No other variant showed a genome-wide significant association with kidney stones under the recessive model.

Replication of Asian variants. A GWAS in Asians reported three loci associating with kidney stones14. In addition to the variants at the SLC34A1 locus mentioned above, we were able to replicate variants at the INMT-FAM188-B-AQP1 locus \((P < 3.3 \times 10^{-3}\), OR = 1.16–1.21) (Supplementary Table 6).

Discussion

We performed a GWAS of 28.3 million variants discovered through sequencing and observed four common sequence variants associating with the risk of kidney stones at ALPL, SLC34A1, CLDN14 and CASR. We replicate the association of the variant at SLC34A1 reported in Asians14 and we previously reported13 the signal corresponding to the association of the variant at CLDN14. In addition to the classic GWAS approach, we used a recent resource31 on tissue-specific expression together with the ability to detect and impute rare variants to analyse coding changes in genes with enriched expression in the kidney. Among those, we found rare missense variants at highly conserved sites in SLC34A1 and TRPV5 associating strongly with risk of kidney stones and recurrent kidney stones. The identification of a rare missense variant in SLC34A1, independent of common variants in the region, points to SLC34A1 as the causative gene for both signals. Interestingly, the calcium channel TRPV5 has been the focus of several studies suggesting a role in kidney stone formation12. Sequecing a large number of individuals \((N = 2,636)\) in a founder population allowed us to detect the TRPV5 p.Leu539Arg variant \((\text{MAF} = 0.13\%\)). This variant is essentially absent from other sequenced populations and is located at an extremely conserved site in the pore-forming region of the protein, making it likely to be the causal variant explaining the association with recurrent kidney stones. The total
proportion of sibling recurrence risk for kidney stones explained by the identified sequence variants is 4.81% (Supplementary Table 12).

Two of the identified genes are involved in phosphate homeostasis (ALPL⁴ and SLC34A1 (refs 12)) and the other three genes play a key role in renal handling of calcium (CLDN14 and CASR, TRPV5)¹². We screened the kidney stones associated variants for their association to serum level of biochemical traits and detected association of variants at ALPL with ALP, SLC34A1 with PTH, and creatinine, phosphate and CLDN14 with PTH, magnesium and potassium. We also observed uncorrelated genome-wide significant association of variants at these loci that influence serum levels of biochemical traits but do not associate with the disease in all cases. This implies that the risk is not mediated solely through the serum levels of the biochemical traits.

The observation of three uncorrelated signals at ALPL associating with ALP levels which do not predict their association with serum phosphate and kidney stones is noteworthy. This is an example of allelic heterogeneity that is particularly interesting in the context of the relationship between metabolic bone disease and kidney stones.

A similar pattern is observed at CASR where we observe two uncorrelated signals, one located in intron 1 of the CASR gene associating with kidney stones and the other at the 3’-end of the gene associating strongly with serum calcium but not with kidney stones. This observed allelic heterogeneity might reflect differences in the function of CASR in the kidney on one hand and the parathyroid gland on the other. Variations in intron 1 might specifically influence gene expression in the kidney influencing the ability of CASR to respond to extracellular calcium and in this way increase the risk of kidney stone formation⁵¹.

In summary, the genetic associations presented emphasize the role of sequence variants in genes involved in calcium–phosphate homeostasis in kidney stone disease. The pathophysiology underlying these associations requires further study.

Methods

The Icelandic study population. This study is based on whole-genome sequence data from the whole blood of 2,636 Icelanders participating in various disease projects at deCODE genetics¹⁵,¹⁶ (Supplementary Tables 13 and 14) (EuropeanVariant Archive: PVEB8636). In addition, a total of 104,220 Icelanders have been genotyped using Illumina SNP chips¹⁵,¹⁶ (Supplementary Table 15) and genotype probabilities for untyped relatives has been calculated based on Icelandic genealogy⁵,¹⁶. All participating individuals, or their guardians, gave their informed consent before blood samples were drawn. The family history of participants donating blood was incorporated into the study by including the phenotypes of first- and second-degree relatives and integrating over their possible genotypes.

All sample identifiers were encrypted in accordance with the regulations of the Icelandic Data Protection Authority. Approval for these studies was provided by the National Bioethics Committee and the Icelandic Data Protection Authority.

Kidney stone study population. To identify kidney stone cases, we searched for patients with International Classification of Diseases (ICD) codes, radiology diagnosis codes and surgical procedure codes indicative of kidney stones at Landspitali—The National University Hospital of Iceland in Reykjavik (LUH), a community hospital for half of Iceland’s population and a tertiary care centre for the whole nation; Akureyri Hospital in North Iceland, the largest hospital outside the Reykjavik area; and Domus Radiology in Reykjavik, the largest privately operated medical imaging clinic in the country. A thorough medical record review was conducted for all patients identified to confirm the diagnosis of kidney stones. Patients with calcifications other than kidney stones and asymptomatic kidney stones were excluded from the study. A total of 5,419 kidney stone cases were included in the association analysis; 2,979 of these were genotyped using various Illumina chips and imputed using long-range phased haplotypes, and genotype probabilities for 2,440 were imputed on the basis of information from genotyped close relatives¹⁵,¹⁶. Among the kidney stone cases were 2,172 recurrent kidney stone formers. A recurrent episode was defined as the development of a new stone occurring at least 6 months following the first stone event. Controls comprised individuals recruited through different genetic research projects at deCODE. Individuals in the kidney stone cohort were excluded from the control group. Of the controls, 88,266 were genotyped by chip, and 191,604 were imputed on the basis of the genotypes of close relatives¹⁵,¹⁶. The total number of controls was 279,870.

Quantitative trait measurements. We studied a sample of Icelanders with biological markers measured at three different laboratories: the laboratory of the LUH, the Icelandic Medical Center (Laeknatrietidur) Laboratory in Mjodd (RAM) and Akureyri Hospital (FSA). Here we use measurements of serum calcium (N = 114,489, geometric mean (GM) = 2.3), ionized serum calcium (N = 18,516, GM = 1.8), PTH (N = 15,541, GM = 2.0), 25-hydroxy vitamin D (N = 7,544, GM = 1.35), serum phosphate (N = 51,056, GM = 1.8), ALP (N = 126,060, GM = 2.6), bicarbonate (N = 44,911, GM = 1.7), chloride (N = 92,938, GM = 2.2), potassium (N = 201,720, GM = 4.2), sodium (N = 198,119, GM = 4.1) and uric acid (N = 56,025, GM = 1.9). The arithmetic mean of the quantile–quantile standardized trait values, adjusted for sex and age at the time of measurement for each individual, was used in the analysis.

A Danish sample set was included in the study involving measurement of ALP of healthy individuals from the Inter99 study²⁵. The study was approved by the Regional Scientific Ethical Committees for Southern Denmark and the Capital Region of Denmark. Informed consent was obtained from all study participants.

Gene and variant annotation. Variants were annotated with information from Ensembl release 70 using Variant Effect Predictor (VEP) version 2.8 (refs 52,53).

Association testing. To test for association between sequence variants and disease, we applied logistic regression using disease status as the response and genotype counts as covariates as we described previously¹⁶. The following individual characteristics that correlate with disease status were also included in the model as nuisance variables: sex, county of birth, current age or age at death (first- and second-order terms included), blood sample availability for the individual and an indicator function for the overlap of the lifetime of the individual with the timespan of phenotype collection.

As described previously¹⁶, given genotype counts for n individuals, g₁, g₂, . . . , gₙ ∈ {0, 1, 2}, their phenotypes y₁, y₂, . . . , yₙ ∈ {0, 1} and a list of vectors of nuisance parameters s₁, s₂, . . . , sₙ, the logistic regression model states that

\[L(\xi, \beta, \gamma) = P(y_i = 1 | g_i, s_i) \]

\[\logit(P(y_i = 1 | g_i, s_i)) = \alpha + \beta g_i + \gamma s_i \]

for all i ∈ {1, 2, . . . , n},

where \(\alpha, \beta, \gamma \) are the regression coefficients and \(L_i \) is the contribution of the ith individual to the likelihood function:

\[L(\xi, \beta, \gamma) = \prod_{i=1}^{n} L(\xi, \beta, \gamma) \] is then possible to test association based on the asymptotic assumption that the likelihood ratio statistic follows a \(\chi^2 \) distribution with one degree of freedom:

\[2 \log \left(\frac{\max L(\xi, \beta, \gamma)}{\max L(\xi, 0, 0)} \right) \sim \chi^2_1. \]

Given the computation cost of maximizing over the nuisance parameters for every marker in the genome, the likelihood was maximized under the null hypothesis of \(\beta = 0 \), which is the same for all markers, and use the maximizer of \(\beta, \gamma \), under the alternative. This methods leads to a smaller likelihood ratio than maximizing over \(\gamma \) for every marker because

\[\max_{\beta, \gamma} L(\xi, \beta, \gamma) \geq \max_{\beta} L(\xi, \beta, \gamma = 0). \]

Our analysis is based on imputed genotype values where the values of \(g \) are not known. Instead, we use \(P(\gamma = j | I) \) for \(j \in \{0,1,2\} \), where \(I \) stands for the information about \(g \). Given the logistic regression model above, this allows us to calculate

\[P(\gamma_i = 1 | I) = \sum_{j=0}^{2} P(\gamma_i = j | I) P(\gamma_i = 1 | g_j) \]

for all \(i \in \{1, 2, . . . , n\} \).

Testing quantitative traits. To test for association between quantitative traits and sequence variants a generalized form of linear regression was used as described previously¹⁶. Let \(y \) be a vector of quantitative measurements, and let \(g \) be a vector of expected allele counts for the tested variant. Assuming the quantitative measurements follow a normal distribution with a mean that depends linearly on the expected allele at the variant and a variance covariance matrix proportional to the kinship matrix:

\[\phi_{ij} = \frac{1}{2} \delta_{ij}, i, j = 1, \ldots, k, \ i \neq j \]

is the kinship matrix as estimated from the Icelandic genealogical database. We split individuals with trait values into smaller clusters for the calculation as it is not
computationally feasible to use the full model. The maximum likelihood estimates for the parameters x, β and σ (ref. 2) involve inverting the kinship matrix. If there are n individuals in the cluster, then this inversion requires $O(n^3)$ calculations. However, because these calculations only need to be performed once, the computational cost of doing a genome-wide association scan will only be $O(n^3)$ calculations per variant, which is the cost of calculating the maximum likelihood estimates if the kinship matrix has already been inverted. The ALE measurements from the Danish Inter99 (ref. 54) study were tested using a generalized log-linear regression, assuming an additive genetic model, for association with allele count of rs34605986 using the R software package.

Adjusting for relatedness. Relatedness and stratification within the sample sets were accounted for as we previously described18 using the genomic control method15. P values were adjusted by dividing the corresponding χ^2 value with an inflation factor λ, estimated based on a set of about 300,000 common variants distributed across the genome.

Inheritance models in association testing. The sum of the two imputed haplotype probabilities was used as a covariate for both the logistic regression and the generalized linear regression when testing for association under the additive model16. Where an individual was imputed to have the minor allele of a sequence variant the analysis was carried out using the same software.

Gene expression specificity classification. Genes were defined to have tissue-specific or tissue-enriched gene expression as described by Fagerberg et al.31 (ArrayExpress: E-MTABB-1773). Briefly, tissue-specific expression is defined as at least 50-fold higher FPKM (fragments per kilobase of exon per million fragments mapped) than all other tissues ($N = 27$) and tissue-enriched expression is defined as at least fivefold higher FPKM than all other tissues.

References
1. Scales, Jr. C. D., Smith, A. C., Hanley, J. M. & Saigal, C. S. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).
2. Urbari, J., Oh, M. S. & Carroll, H. J. The first kidney stone. Ann. Intern. Med. 111, 1006–1009 (1989).
3. Edwardsson, V. O., Indridason, O. S., Haraldsson, G., Kjartansson, O. & Palsson, R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 83, 146–152 (2013).
4. Mocholcha, S. H., Sayer, J. A., Carr, G. & Simmons, N. L. Renal calcium stones: insights from the control of bone mineralization. Exp. Physiol. 93, 43–49 (2008).
5. Coe, F. L., Evan, A. & Worcester, E. Kidney stone disease. J. Clin. Invest. 115, 2598–2608 (2005).
6. Taylor, E. N., Stumper, M. J. & Curhan, G. C. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J. Am. Soc. Nephrol. 15, 3225–3232 (2004).
7. Curhan, G. C., Wurzel, W. C., Rimn, E. B. & Stumper, M. J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 18, 1568–1573 (1997).
8. McGeown, M. G. Heredity in renal stone disease. Clin. Sci. 19, 465–471 (1960).
9. Stechman, M. J., Loh, N. Y. & Thakker, R. V. Genetics of hypercalciuric nephrolithiasis: renal stone disease. J. Am. Soc. Nephrol. 15, 151–162 (2004).
10. Goldfarb, D. S., Fischer, M. E., Keich, Y. & Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int. 67, 1053–1061 (2000).
11. Edwardsson, V. O., Palsson, R., Indridason, O. S., Thorvaldsson, S. & Stefansson, K. Familiality of kidney stone disease in Iceland. Scand. J. Urol. Nephrol. 43, 420–421 (2009).
12. Meganico, C. G. & Milliner, D. S. Genetic determinants of uricoliths. Nat. Rev. Nephrol. 8, 151–162 (2012).
13. Thörleifsson, G. et al. Sequence variants in the CLDN14 gene associate with renal stone disease. Hum. Mol. Genet. 16, 461–484 (2007).
14. Goldfarb, D. S., Fischer, M. E., Keich, Y. & Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int. 67, 1053–1061 (2000).
15. Edwardsson, V. O., Palsson, R., Indridason, O. S., Thorvaldsson, S. & Stefansson, K. Familiality of kidney stone disease in Iceland. Scand. J. Urol. Nephrol. 43, 420–421 (2009).
16. Meganico, C. G. & Milliner, D. S. Genetic determinants of uricoliths. Nat. Rev. Nephrol. 8, 151–162 (2012).
17. Thörleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).
18. Urabe, Y. et al. A genome-wide association study of nephrolithiasis in the Japanese population identifies novel susceptible Loci at 3q35.3, 7p14.3, and Xq14.1, rs10005241 (2013).
19. Guðbjartsson, D. F. et al. Sequence variants from whole genome sequencing a large group of Icelanders. Sci. Data 2, 150011 (2015).
20. Guðbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).
21. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).
22. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).
51. Vezzoli, G. et al. Decreased transcriptional activity of calcium-sensing receptor gene promoter 1 is associated with calcium nephrolithiasis. *J. Clin. Endocrinol. Metab.* **98**, 3839–3847 (2013).

52. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. *Bioinformatics* **26**, 2069–2070 (2010).

53. Flicek, P. et al. Ensembl 2012. *Nucleic Acids Res.* **40**, D84–D90 (2012).

54. Jorgensen, T. et al. A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. *Eur. J. Cardiovasc. Prev. Rehabil.* **10**, 377–386 (2003).

55. Devlin, B. & Roeder, K. Genomic control for association studies. *Biometrics* **55**, 997–1004 (1999).

Acknowledgements

We thank the individuals who participated in the study and whose contributions made this work possible. We thank our valued colleagues who contributed to data collection, sample handling and genotyping. V. Edvardsson and R. Palsson are supported by the Rare Kidney Stone Consortium (SU54DK083908-07), a part of the National Center for Advancing Translational Sciences (NCATS) Rare Diseases Clinical Research Network (RDCRN). RDCRN is an initiative of the Office of Rare Diseases Research (ORDR). The Rare Kidney Stone Consortium is funded through a collaboration between NCATS and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

Author contributions

A.O., H.He., H.Ho., G.S., G.T., D.F.G. and G.M. performed the statistical and bioinformatics analyses. A.O., P.S., H.He., E.H., U.T. and K.S. drafted the manuscript. All authors contributed to the final version of the paper.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: A.O., P.S., H.He., G.T., G.S., E.H., G.M., H.Ho., D.F.G., U.T. and K.S. who are affiliated with deCODE genetics/Amgen declare competing financial interests as employees. The remaining authors declare no competing financial interests.

How to cite this article: Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. *Nat. Commun.* **6**:7975 doi: 10.1038/ncomms8975 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/