The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/186939

Please be advised that this information was generated on 2020-05-08 and may be subject to change.
Review

The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma

Rick Brouwer, Ger J M Pruijn and Walther J van Venrooij

Department of Biochemistry, University of Nijmegen, Nijmegen, The Netherlands

Correspondence: Dr W J van Venrooij, Department of Biochemistry, University of Nijmegen, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands. Tel: +31 24 3613656; fax: +31 24 3540525; e-mail: w.vanvenrooij@bioch.kun.nl

Received: 1 November 2000
Revisions requested: 17 November 2000
Revisions received: 20 November 2000
Accepted: 22 November 2000
Published: 20 December 2000

Abstract

The anti-PM/Scl autoantibodies are known to characterize a subset of autoimmune patients with myositis, scleroderma (Scl), and the PM/Scl overlap syndrome. The major autoantigens that are recognized by anti-PM/Scl autoantibodies are designated PM/Scl-100 and PM/Scl-75. These autoantigens have been reported to associate into a large complex consisting of 11 to 16 proteins and to play a role in ribosome synthesis. Recently, it was discovered that the PM/Scl complex is the human counterpart of the yeast (Saccharomyces cerevisiae) exosome, which is an RNA-processing complex consisting of 11 3′→5′ exoribonucleases. To date, 10 human exosome components have been identified, although only some of these were studied in more detail. In this review, we discuss some recent advances in the characterization of the PM/Scl complex.

Keywords: autoantibodies, autoantigens, exoribonucleases, exosome, PM/Scl complex

Introduction

Autoantibodies are the hallmark of many autoimmune disorders, such as the connective-tissue diseases scleroderma, systemic lupus erythematosus, Sjögren’s syndrome, idiopathic inflammatory myopathies (IIMs), rheumatoid arthritis, and mixed connective-tissue disease. Although their etiology and pathogenic role remain unclear, many different autoantibody specificities have been characterized. Some of these autoantibodies are very useful as diagnostic markers and may also have a prognostic value, as has been shown for anti-double-stranded-DNA antibodies in systemic lupus erythematosus and anti-cyclic-citrullinated-peptide antibodies in rheumatoid arthritis [1,2]. Other autoantibodies have proved to be valuable tools to study cellular processes in which the autoantigens are involved, such as the splicing of precursor messenger RNAs (pre-mRNAs) mediated by the autoantigenic U small nuclear ribonucleoprotein complexes (U snRNPs) [3]. Similarly, autoantibodies directed to a protein complex, known as the polymyositis–scleroderma (PM/Scl) complex, have contributed to the discovery of a large RNA-processing complex, which is now known as the human exosome.

Here we present an overview of recent studies that have led to the current biochemical and functional understanding of the PM/Scl complex.

Clinical characteristics of patients positive for anti-PM/Scl autoantibodies

The anti-PM/Scl autoantibody, formerly known as anti-PM-1 [4], may be detected in sera of patients with myositis, scleroderma, and PM/Scl overlap syndrome, although some patients positive for anti-PM/Scl autoantibodies may not have either of these conditions [5,6]. The patient group positive for anti-PM/Scl antibodies is characterized

IIM = idiopathic inflammatory myopathy; PM/Scl = polymyositis/scleroderma; pre-mRNA = precursor mRNA; Rrp = ribosomal RNA processing; snRNA = small nuclear RNA; snoRNA = small nucleolar RNA; U snRNP = U small nuclear ribonucleoprotein.
by an elevated incidence of Raynaud’s phenomenon, arthritis, pulmonary disease, and calcinosis [7,8]. In general, patients positive for anti-PM/Scl antibodies respond well to immunosuppressive therapy and have a good prognosis [5,7,8]. In contrast to the findings in large North American and European cohort studies, the PM/Scl autoantibody was not detected in sera of Japanese patients with inflammatory muscle disease, which suggests that specific environmental or genetic factors are involved in the induction of this autoantibody response [9–12]. Indeed, an assessment of the HLA-DR genotypes of anti-PM/Scl-positive patients revealed a 75–100% correlation with HLA-DR3 [7,13,14].

The autoantigenic PM/Scl complex

The complex that is recognized by the anti-PM/Scl autoantibody has a sedimentation coefficient of 20S as determined by sucrose-gradient centrifugation and was reported to consist of 11 to 16 proteins [15–17]. Proteins identified in these studies had molecular masses ranging from 110 to 20 kDa in SDS–PAGE [16,17]. Inconsistent data were reported with respect to the phosphorylation of some components [4,16,17]. Western blot analyses of patient sera positive for the anti-PM/Scl autoantibody revealed that the major autoantigen is the 110-kDa protein (PM/Scl-100), although some sera also recognized the 80-kDa protein (PM/Scl-75) [16,17]. Two cDNA clones encoding possible splicing variants of the PM/Scl-100 autoantigen have been isolated and characterized [18,19]. The PM/Scl-100 autoantigen contains several linear epitopes, but the major epitope is located in the N-terminal region (amino acid residues 232–241) [20]. The other autoantigenic component of the PM/Scl complex, PM/Scl-75, was shown to be a protein with a predicted molecular mass of 39 kDa. Its very acidic C-terminal tail probably accounts for the aberrant migration of this protein in SDS–PAGE [21]. Recognition of the PM/Scl-75 autoantigen by autoantibodies is primarily dependent on this C-terminal region (amino acid residues 196–355) [21].

Immunolocalization studies showed that the PM/Scl autoantigens are present in the nucleoplasm and, at higher concentrations, in the nucleolus [16,17,22]. Like other nuclear substructures, the nucleolus is not separated from the nucleoplasm by a membrane, and its formation is presumably the result of local accumulation of numerous functionally related factors [23,24]. The nucleolus is the site of ribosome synthesis, which involves the transcription and nucleolytic processing of precursor rRNAs, the nucleotide modification of rRNAs, and the assembly of mature rRNAs with approximately 80 ribosomal proteins into small and large ribosomal subunits [23,24]. Electron microscopy reveals that the PM/Scl autoantigens are predominantly localized in the granular compartment of the nucleolus, which is the site of ribosome assembly [17]. Inhibition of rRNA transcription by actinomycin D resulted in the nucleoplasmic rather than nucleolar accumulation of the PM/Scl autoantigens, a finding that also supports the idea that PM/Scl autoantigens play a role in ribosome synthesis [17].

Except for some similarity with members of the serine/threonine protein kinase family [18], very limited functional information could be deduced from the polypeptide sequence of the PM/Scl autoantigens at the time of cloning [18,19,21]. However, more recent sequence analyses revealed that PM/Scl-100 and -75 are homologous to RNA-degrading enzymes of *Escherichia coli*, namely the 3′→5′ exoribonucleases D and PH (RNase D and RNase PH), respectively [25].

A multi-subunit complex of 3′→5′ exoribonucleases has been identified in yeast

In yeast (*Saccharomyces cerevisiae*), 11 proteins, 10 of which are known or predicted to have 3′→5′ exoribonuclease activity, were purified as a single complex that is referred to as ‘the exosome’ [26,27]. Ten components are essential for yeast viability (Rrp4p, Rrp40–46p, Mtr3p, and Csl4p); one component, Rrp6p, is nonessential, although deletion of the *RRP6* gene leads to impaired growth and temperature sensitivity [26,28]. As summarized in Table 1, homologues for most of the components have been identified in *E. coli* and humans. Notably, two yeast exosome components, namely Rrp6p and Rrp45p, are homologous to the PM/Scl-100 and PM/Scl-75 autoantigens, respectively (see also below).

To date, no structural data have been presented, although two speculative models for the organization and activation of the exosome subunits have recently been proposed [29,30]. Several lines of evidence suggest that at least two different exosomes exist [26]. First, the 10 essential components were purified with apparent stoichiometry, while approximately one-fifth as much Rrp6p was recovered. Second, two complexes, only one of them containing the Rrp6 protein, could be recovered from fractionated whole-cell extracts. Third, no cytoplasmic Rrp6p could be detected by immunolocalization, in contrast to the nuclear and cytoplasmic presence of Rrp4p and Rrp43p [26,31]. Finally, functional studies, as described below, suggest the existence of a cytoplasmic and nuclear exosome complex. Together, these data indicate that the yeast exosome is present in the nuclear and cytoplasmic compartments and that these complexes differ by the presence or absence of Rrp6p, the yeast homologue of PM/Scl-100.

Functions of the yeast exosome

The most important experimental approach to determining the functions of the exosome encompassed RNA analyses of yeast strains that were deficient for one or more components of the exosome. Conditional mutants were created
for the essential genes, whereas the nonessential \textit{RRP6} gene was disrupted. In general, the accumulation of a particular RNA in a mutant yeast strain suggests that this molecule is the substrate for the depleted component, whereas a reduction indicates that the RNA is a product generated by the depleted component. Such analyses revealed that the yeast exosome is involved in the processing and degradation of several RNA species.

The first function assigned to the exosome was its role in rRNA processing. In the nucleolus, four RNA molecules (5S, 5.8S, 18S, and 25S rRNA) and many proteins associate into ribosomes [32]. Three rRNAs (5.8S, 18S, and 25S rRNA) are transcribed as a large, 35S precursor rRNA, which is processed via a cascade of endo- and exonucleolytic cleavages into the mature rRNAs. Yeast strains that were mutated in any of the exosome components showed multiple defects in the maturation of this large precursor RNA. One of these defects is indirect inhibition of early endonucleolytic rRNA cleavages [31,33,34]. Another is ineffective final 3’-end processing of the 5.8S rRNA [26–28,33–36]. Third, a noncoding spacer RNA (the 5’ external transcribed spacer) and some aberrant rRNA species that arise from the inhibited early endonucleolytic precursor rRNA cleavages are stabilized [26,33,34,36].

The function of the exosome is not restricted to the maturation of rRNA. The 3’ processing of small nuclear RNAs that play a role in precursor messenger RNA splicing (the U1, U2, U4, and U5 snRNAs) or in the processing and modification of rRNA (small nucleolar RNAs; eg U3, U14, U18, and U24 small nucleolar RNA [snoRNA]) is also hampered in mutant exosome strains [36-38]. Moreover, the exosome has been shown to compete with the splicing apparatus for unspliced nuclear mRNAs in order to degrade these pre-mRNAs [39,40]. The cytoplasmic exosome subfraction is probably involved in the degradation of mature cytoplasmic mRNAs, since mutations in the \textit{RRP4} and \textit{RRP41} genes inhibited 3’→5’ mRNA decay [41].

The PM/Scl complex is the human exosome

Characterization of the yeast exosome has greatly enhanced our current knowledge of the human PM/Scl complex. At present, a number of studies have provided evidence that this complex, as schematically represented in Fig. 1, is the human counterpart of the yeast exosome, thus consisting of multiple 3’→5’ exoribonucleases.

In one study, analysis of the composition of the yeast exosome led to the identification of two components, Rrp6p and Rrp45p, that are homologous to the human PM/Scl-100 and PM/Scl-75 autoantigens, respectively [26]. To date, 10 human homologues have been identified for the yeast exosome components, as listed in Table 1 [18,19,21,26,35,42–45]. No clear homologues were found for Rrp43p and Mtr3p, whereas two human proteins (PM/Scl-75 and OIP2p) were the most homologous with Rrp45p [26]. Since the PM/Scl complex was reported to consist of 11 to 16 proteins, additional human components may remain to be identified [16,17].

The evolutionary relationship between exosome components is listed in Table 1 [26].

Yeast	Escherichia coli	Human	Comments
Rrp4p	S1 RNA-binding domain	hRrp4p	Interaction with PM/Scl autoantigens; hRrp4p is a functional homologue of the yeast component
Rrp40p	S1 RNA-binding domain	hRrp40p	Interaction with PM/Scl autoantigens
Rrp41p/Ski6p	RNase PH	hRrp41p	Interaction with PM/Scl autoantigens; hRrp41p is a functional homologue of the yeast component
Rrp42p	RNase PH	hRrp42p	Partial human cDNA clone (D29958)
Rrp43p	RNase PH	No clear homologue	
Rrp44p/Dis3p	RNase R	hRrp44p/Dis3p	hRrp44p is a functional homologue of the yeast component
Rrp45p	RNase PH	PM/Scl-75	Interaction with hRrp4p
		OIP2p	Partial human cDNA clone
Rrp46p	RNase PH	hRrp46p	Interaction with PM/Scl autoantigens
Rrp6p	RNase D	PM/Scl-100	Interaction with hRrp4p, only present in nucleus
Mtr3p	RNase PH	No clear homologue	
Csl4p/Ski4p	S1 RNA-binding domain	hCsl4p	hCsl4p is a functional homologue of the yeast component

Adapted from [26].
Autoantibodies directed against components of the human exosome

Approximately 5–8% of the sera from myositis patients, 3% of those from scleroderma patients, and 24% of those from patients with PM/Scl overlap syndrome contain the anti-PM/Scl autoantibody [5,9,46,47]. The autoantibodies that characterize this specificity are predominantly directed against the PM/Scl-100 antigen, whereas approximately 50–60% of the sera positive for anti-PM/Scl contain autoantibodies directed against the PM/Scl-75 antigen as well [9,16,17,48]. Novel components of the human exosome (hRrp4p, hRrp40p, hRrp41p, hRrp42p, hRrp46p, and hCsl4p) are also targeted by autoantibodies and some are preferentially recognized [45]. In anti-PM/Scl-positive IIM sera, the prevalences of the anti-hRrp4p autoantibody and the anti-PM/Scl-75 autoantibody are similar (approximately 54%), but are not correlated [45]. These results further support the hypothesis that the autoimmune response may initially be directed against the PM/Scl-100 antigen, whereas intermolecular epitope spreading may be responsible for the autoantibody response directed against the other, associated antigens. To date, the mechanism that triggers the initial autoantibody response is not known, but it could involve defective apoptosis (reviewed in [49]).

Concluding remarks

Taken together, the data reviewed here indicate that the human PM/Scl complex closely resembles the yeast exosome in both composition and function and therefore may be referred to as ‘the human exosome’. However, further studies are needed to support the functional homology between the yeast and human complexes.

As the physiological role and composition of the human exosome become clear, one challenge will be to establish how and why this intracellular complex is targeted by autoantibodies in patients with IIM. All the components of the human exosome analyzed so far are recognized by autoantibodies present in IIM sera, although PM/Scl-100 remains the most important target. The identification and characterization of novel components of the PM/Scl complex offers the possibility of investigating the autoantibody response in more detail.

References

1. von Muhlen CA, Tan EM: Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum 1995, 24:328–358.
2. Schellekens GA, Visser H, de Jong BAW, van den Hoogen FHJ, Hazes JM, Breedveld FC, van Venrooij WJ: The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000, 43:155–164.
3. Klein Gunnewiek JMT, van de Putte LB, van Venrooij WJ: The U1 snRNP complex: an autoantigen in connective tissue diseases. An update. Clin Exp Rheumatol 1997, 15:549–560.
4. Wolfe JF, Adelstein E, Sharp GC: Antinuclear antibody with distinct specificity for polymyositis. J Clin Invest 1977, 59:176–178.
5. Oddis CV, Okano Y, Rudert WA, Trucco M, Duquesnoy RJ, Medsger TAJ: Serum autoantibody to the nucleolar antigen PM-Scl. Clinical and immunogenetic associations. Arthritis Rheum 1992, 35:1211–1217.
A new approach to the classification of idiopathic inflammatory myopathies: myositis-specific autoantibodies defined in homogeneous patient groups. Medicine Baltimor 1991, 70:360–374.

Annett FC, Targoff IN, Mimori T, Goldstein R, Warner NB, Reveille JD: Interrelationship of major histocompatibility complex class II alleles and autoantibodies in four ethnic groups with various forms of polymyositis. Arthritis Rheum 1996, 38:1507–1518.

Boulton E, Mierau R, Genetzky P, von Muhlen CA, Kaufmann S, et al: Autoantibodies against a novel autoantigen using immobilized complementary DNA coding for the 100-kD antigenic protein of the PM/Scl autoantibody system. Arthritis Rheum 1998, 41:E107–E112.

Bouquet-Antonelli C, Presutti C, Tollervey D: Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 2000, 102:765–775.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.

Boulton E, Mierau R, Genetzky P, von Muhlen CA, Kaufmann S, et al: Autoantibodies against a novel autoantigen using immobilized complementary DNA coding for the 100-kD antigenic protein of the PM/Scl autoantibody system. Arthritis Rheum 1998, 41:E107–E112.

Bouquet-Antonelli C, Presutti C, Tollervey D: Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 2000, 102:765–775.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.

Bouchard R, Harris K, Zhang K: Mutation syndetically lethal with cep1 target. S. cerevisiae kinetochore components. Genetics 1998, 149:73–85.