9.2% 58.3% 25.8% 0.8% 11.7%

Conclusion. Automated susceptibility system over predicts the true susceptibility of CRE against all 3 aminoglycosides. This could be a major impact on the potential utility of the aminoglycosides especially amikacin for CRE infections.

Disclosures. All authors: No reported disclosures.

2025. Impact of Automation Process on Microbiological Laboratory Efficiency Suhair Erenreine Suady Barake, PhD,a,b Letha Vankeepuram, MS,c; Romney Humphries, PhD; Janet Hindler, MLS (ASCP); Maria Traczewski, BS; Denis Beasley, MT (ASCP); Regina Brookman, BS; Jennifer Chau, PhD and Darcie Carpenter, PhD; Loyola University Medical Center, Maywood, Illinois; UCLA David Geffen School of Medicine, Los Angeles, California, Clinical Microbiology Institute, Wilsonville, OR, Beckman Coulter Microbiology, West Sacramento, California

Method. After approval from the Quality Improvement Review Board, a retrospective analysis of electronically captured microbiological data from a BD research database was used to compare pre-installation (January-December 2013) vs. post-installation period (January-October 2016). Twelve common and clinically imical organisms were assessed. The following reporting times were compared: First gram stain, Organism Identification (ID), First antimicrobial susceptibility (AST), and Final AST. Reporting time was examined in a 24-hour spectrum divided into day (06:00-17:59) and night (18:00-05:59) shifts. Statistical analysis was performed with SAS software version 9.2. Data was analyzed using Chi-squared test. A p value of <0.05 was considered statistically significant.

Results. Overall 14,179 positive results were reported during the study period. Specimens were collected from sites across the hospital, urgent care sites, emergency rooms, critical care units, and outpatient locations (35%, 32%, 23%, and 10%, respectively). The most common sources were urine, wound/skin, blood, and respiratory (40%, 25%, 14%, and 10%, respectively). Compared with pre-installation vs. post-installation period, a significant improvement in impacting time to result which made microbiology data available sooner, enabling them to optimize therapy earlier to improve patient outcomes.

Disclosures. A. J. Blaschke, BioFire Diagnostics LLC; Collaborator, Have intellectual property in BioFire Diagnostics through the University of Utah and Investigator, Licensing agreement or royalty and Research support

2027. Reproducibility of Ceftolozane/Tazobactam MIC Results for Enterobacteriaceae and Pseudomonas aeruginosa Using MicroScan Dried Gram-negative MIC Panels

Methods. MSDGN panels were evaluated for reproducibility at three sites. For replication, a total of 17 on-plate organisms were tested on MSDGN panels at each site (14 Enterobacteriaceae and 3 Pseudomonas aeruginosa). Three replicates of each plate were tested for each day at three time points using the turbidity and PromptTM methods of inoculation. MSDGN panels were incubated at 35 ± 2°C and read on the WalkAway System, the autoscAN-4 instrument, and read visually. Read times for the MSDGN panels were at 16–20 hours. FFN breakpoints (μg/mL) used for interpretation of MIC results were: Enterobacteriaceae ≤ 2/4 S, 8/4 I ≥ 16/4 R, P. aeruginosa ≤ 4/4 S, 8/4 I ≥ 32/4 R.

Results. Reproducibility among the three sites was greater than 95% for all read methods for both the turbidity and Prompt inoculation methods.