Covariant Model for Relativistic Three-Body Systems

Philippe Droz-Vincent
LUTH, Observatoire de Paris-Meudon
Place Jules Janssen, F-92195 Meudon, France

Abstract

The system is described by three mass-shell constraints. When at least two masses are equal, this picture has a reasonable nonrelativistic limit. At first post-Galilean order and provided the interaction is not too much energy-dependent, the relativistic correction is tractable like a conventional perturbation problem. A covariant version of harmonic oscillator is given as a toy model.

A system of three particles can be covariantly described by three mass-shell constraints, involving an interaction term referred to as potential. These constraints must reduce to three independent Klein-Gordon (or Dirac) equations in the absence of potential. In any case, they determine the evolution of a wave function which depends on three four-dimensional arguments, say p_a with $a, b = 1, 2, 3$, if we chose the momentum representation of quantum mechanics.

Naturally, the potential depends on both configuration and momentum variables, q_a, p_b, and must allow for mutual compatibility of the constraints. Moreover it happens that, just like in the Bethe-Salpeter approach, manifest covariance is paid by the presence of redundant degrees of freedom.

*Talk given at Quark Confinement and the Hadron Spectrum VI, Villasimius, Cagliari, Sardinia, Italy. 21-25 September 2004
which the elimination is by no means straightforward (in contrast to the two-body case). These two important issues have been considered earlier by H. Sazdjian [1] who aimed at solving the general \(n\)-body case and proposed an approximate solution.

Specially dealing with the three-boson case, we have recently exhibited in closed analytic form a new set of variables \(q'_a, p'_b\). In terms of these new variables, admissible expressions for the potential are explicitly available, and two superfluous degrees of freedom can be eliminated [2]. Setting \(P = \sum p\) we linearly introduce relative variables

\[
z_A = q_1 - q_A, \quad y_A = \frac{P}{3} - p_A, \quad A = 2, 3
\]

and similar formulas for \(z'_A, y'_B\) in terms of \(q'_a, p'_b\).

The mass-shell constraints can be equivalently replaced by their sum and differences; it is convenient to set

\[
\nu_A = \frac{1}{2}(m_1^2 - m_A^2).
\]

The difference equations, in their original form, yield no simplification. But we perform a quadratic change among the momenta, say \(p_a \rightarrow p'_a\), or equivalently \(P, y_A \rightarrow P', y'_A\). in order to ensure the elimination of two redundant degrees of freedom; this change is characterized by

\[
(p_1 - p_A)(p_1 + p_A) = (p'_1 - p'_A) \cdot P
\]

whereas \(P' = P\) and the transverse parts of the momenta remain unaffected, say \(\tilde{y}' = \tilde{y}\), where the tilde on any four-vector refers to its transverse part with respect to \(P\).

Of course, this procedure generates a change of canonical variables [2], in particular we obtain new configuration variables, \(z'_A\).

Three-dimensional Reduction
We impose a sharp value of the total linear momentum, it is a timelike vector \(k\), and we define \(k \cdot k = M^2\).

Notations: The hat on any vector refers to its transverse part with respect to \(k\).

Underlining any dynamical variable indicates that, in its expression, we substitute \(k\) for \(P\) and take into account equation the difference equations

\[
3y'_A \cdot k \Psi = (4\nu_A - 2\nu_B)c^2 \Psi
\]

(1)
We factorize out the relative energies; as a result the sum equation becomes

\[
(3 \sum m^2 - M^2)c^2 \psi = 6(\hat{y}_2^2 + \hat{y}_3^2 + \hat{y}_2 \cdot \hat{y}_3)\psi + (6M^2c^2\Xi + 18V)\psi
\]

(2)

for a reduced wave function \(\psi\) which depends only on the transverse relative momenta \(\hat{y}_A = \hat{y}_A\).

The meaning of \(\Xi\) is purely kinematic; this term depends only on the momenta and can be expressed in terms of their transverse part and \(P\). Here \(V\) denotes the relativistic potential; it may be phenomenological or motivated by considerations of field theory. In particular it may be formally constructed as a sum of two-body terms, like in equation (5) below; so doing one uses the shape of two-body potentials but (for the sake of compatibility) with the new three-body variables as arguments. Not only the total momentum \(P\) but also the new configuration variables \(z'_A\) mix the two-body clusters, which amounts to automatically incorporate three-body forces. Admissible potentials entail that \(V\) is a function of the new variables \(z'_2, z'_3\) and \(M^2c^2\).

The reduced equation (2) is actually a nonconventional eigenvalue problem, where the operator to be diagonalized explicitly depends on its eigenvalue. This situation is by no means a special drawback of our model, in fact it is common in relativistic quantum mechanics [3], but it would make a general treatment rather involved.

On the other hand, it is natural to expand the formulas in powers of \(1/c^2\) and to look for the nonrelativistic limit. For arbitrary masses, the term \(M^2c^2\Xi\) generally blows up, which leads to consider, instead of (2) an alternative combination of the mass-shell constraints.

Two equal masses.

Drastic simplifications arise when two masses are equal, say \(m_2 = m_3 = m\), equivalently \(\nu_2 = \nu_3 = \nu\). We find that the Galilean limit of our eigenvalue problem is a Schroedinger equation with effective (or Galilean) masses that are generally distinct from the constituent masses \(m_a\). However they still coincide with the constituent masses, at first order in the ”mass-dispersion index” \(\nu/m^2\).

Three Equal Masses.

When \(m_a = m\) for all particles, equation (2) can be written as follows, using the rest frame

\[
\lambda\psi = (y_2^2 + y_3^2 + y_2 \cdot y_3)\psi - 3V\psi - M^2c^2\Xi\psi
\]

(3)
with $6\lambda = (M^2 - 9m^2)c^2$. Now the last term in (3) remains finite in the nonrelativistic limit. Indeed we can write $Mc^2\Xi = \frac{1}{M^2c^2}\Gamma(0) + O(1/c^4)$ where

$$\Gamma(0) = \frac{3}{4} \left\{ (\hat{y}_2')^2 + (\hat{y}_3')^2 + 4(\hat{y}_2 \cdot \hat{y}_3) + 2(\hat{y}_2^2 + \hat{y}_3^2)(\hat{y}_2 \cdot \hat{y}_3) - \hat{y}_2^2\hat{y}_3^2 \right\}$$ (4)

At first order in $1/c^2$ we can, in Ξ, replace M^2 by $9m^2$, which is independent from λ. Thus we replace $Mc^2\Xi$ by $\Gamma(0)/9m^2c^2$. If the relativistic ”potential” V does not depend on P^2, or if this dependence is of higher order, equation (3) becomes a conventional eigenvalue problem, tractable by perturbation theory. The last term in (3) brings a negative correction to the value λ_{NR} furnished by the nonrelativistic approximation, say

$$\lambda = \lambda_{NR} - <\Gamma(0)>/9m^2c^2$$

if λ_{NR} corresponds to a nondegenerate level. One has to calculate $<\Gamma(0)>$ in the eigenstate solution of the nonrelativistic problem.

Harmonic Oscillator

A covariant version of the harmonic potential is given by

$$V = 2\kappa \left\{ (\hat{z}_2')^2 + (\hat{z}_3')^2 - \hat{z}_2' \cdot \hat{z}_3' \right\}$$ (5)

hence \hat{V} in terms of $\hat{z}_A' \cdot \hat{z}_B' = -z_A'^2 \cdot z_B'^2$. In the nonrelativistic limit we recover the naive SU_6 invariant Schrödinger equation. At the first post-Galilean approximation, M^2 can be replaced by $9m^2$, neglecting the dependence on total energy in the reduced equation. At this stage, the eigenvalue problem amounts to diagonalize a nonrelativistic harmonic oscillator, with potential $V_{NR} = -3\hat{V}/m$, submitted to a momentum-dependent perturbation. Expressed in terms of Jacobi-like coordinates, namely $R_2 = -z_2' + z_3'$, $R_3 = (z_2' + z_3')/\sqrt{3}$ and their conjugate momenta, the unperturbed ground state is a Gaussian. If the unit of length is chosen such that $\kappa = \frac{2}{9}$, one finds $<\Gamma(0) >= 11 + 1/4$.

This approach is intended for applications to confining interactions; future work should implement spin and investigate a possible contact with recent developments [4] of the BS approach.
References

[1] H. Sazdjian, *Physics Lett. B* 208, 470(1988); *Annals of Phys.* 191, 52(1989).

[2] Ph. Droz-Vincent, *Int. Jour. of Theor. Phys.* 42, 1809 (2003).

[3] V.A. Rizov, H. Sazdjian, I.T.Todorov *Ann. of Phys.* 165, 59, (1985)

[4] J. Bijtebier, *Jour. of Phys. G: Nucl. Part. Phys.* 26, 871(2000)