N-Heterocyclic Carbene-Catalyzed 1,6-Addition of Homoenolate Equivalent Intermediates: Asymmetric Synthesis of Nonspirocyclic Quaternary Oxindoles

Xiang-Yu Chen, Kun Zhao, Qiang Liu, Ying Zhi, James Ward, Kari Rissanen & Dieter Enders

1Institute of Organic Chemistry, RWTH Aachen University, Aachen 52074 (Germany), 2Department of Chemistry, University of Jyväskylä, Jyväskylä 40014 (Finland)

*Corresponding author: enders@rwth-aachen.de; †X.-Y.C., Q.L., and K.Z. contributed equally to this work.

Cite this: CCS Chem. 2019, 1, 261–267

Although there is a growing interest in developing asymmetric 1,6-addition reactions of carbon nucleophiles to Michael acceptors, the corresponding 1,6-addition of homoenolates remains an unsolved problem. Currently, the N-heterocyclic carbene (NHC)-catalyzed cycloadditions of homoenolate equivalent intermediates have achieved widespread success. However, considerable limitations still exist for the linear reactions with electron-deficient alkenes, which are limited to 1,4-Michael acceptors. This report presents the first NHC-catalyzed asymmetric homoenolate addition of enals to 1,6-Michael acceptors. The strategy leads to the challenging nonspirocyclic 3,3-disubstituted oxindoles with two adjacent stereocenters, a quaternary and a trisubstituted one, in good yields and high stereoselectivities with a wide variety of substrates.

Keywords: N-heterocyclic carbene, homoenolate, 1,6-addition quaternary oxindole, asymmetric synthesis

Introduction

Since the turn of the millennium, organocatalysis emerged as an efficient tool for various synthetically important asymmetric bond formations for instance, the asymmetric Michael additions. Although numerous strategies exist for asymmetric 1,4-conjugate additions of carbon nucleophiles, the analogous extension of this synthetic logic to the 1,6-addition remains underdeveloped because it is difficult to control the regio- and enantioselectivities. In 2007, Jørgensen and co-workers made a seminal contribution by developing an organocatalytic enantioselective 1,6-addition of enolates under phase-transfer catalysis. Later, a secondary amine catalyst was employed for the enantioselective 1,6-addition of dienolates. Further developments in this field have broadened the scope of carbon nucleophiles participation in these 1,6-addition reactions, with most studies focused on cycloaddition processes. Despite these achievements, asymmetric catalytic noncycloadditive reactions, generated through a homoenolate addition to 1,6-Michael acceptors, remain an unsolved problem (Scheme 1a). In view of the wide applications of homoenolate additions in organic and medicinal
chemistry, it is both important and urgent to expand these studies, as highly regio- and enantioselective 1,6-addition of homoenolates would facilitate the synthesis of related pharmaceutically active compounds and hopefully, open up new synthetic opportunities for asymmetric carbon–carbon bond formations.

One approach to efficiently generate homoenolate equivalent intermediates is using N-heterocyclic carbene (NHC)-catalyzed protocols,27–48, which have proven to be among the most powerful tools. In 2004, Glorius and Bode and their co-workers49,50 pioneered the NHC-catalyzed [3+2] cycloaddition of homoenolate equivalent intermediates and aldehydes. Since then, numerous NHC-catalyzed reactions, via homoenolate equivalent intermediates with activated double bonds have been developed by several groups.28–39 Surprisingly, although there are significant advances in cycloaddition reactions of homoenolate equivalent intermediates with Michael acceptors,51–62 the corresponding linear processes via homoenolate additions are largely unexplored (Scheme 1b). Currently, only two types of 1,4-Michael additions have been reported. In 2009, Nair et al.63 disclosed the first NHC-catalyzed 1,4-Michael addition of enals to nitroalkenes, whereas efficient enantioselective variants of this process were developed in 2013 by Rovis and Liu.64–66 Recently, Rovis and Flanigan67 reported another elegant example by employing alkyl pyridiniums as 1,4-Michael acceptors. To address the challenge of the efficient asymmetric 1,6-Michael addition of homoenolates, we sought to design a new broadly applicable methodological approach that provides access to carbon quaternary stereogenic centers with high regio- and stereoselectivities.

Several key challenges had to be tackled to accomplish the desired reaction (Scheme 1c): First, the more difficult one was suppression of the cycloaddition pathways. This is a severe problem, as it was evident from previous studies that the intermediate III could easily undergo cycloaddition processes, including domino processes,56–59 [3+2] cycloadditions,51,53,60 and [3+4] cycloadditions.54,55,61,62 Second, the 1,6-Michael addition of homoenolate equivalent intermediates had to be realized. Because this process would become more difficult if sterically hindered, β,β-disubstituted enals or δ,δ-disubstituted 1,6-Michael acceptors were employed as reaction partners. Third, the competing a-d umpolung pathway had to be suppressed, which led to undesired Stetter products.68,69 In view of these challenges, a research program to explore the 1,6-addition of homoenolate equivalent intermediates was carried out. Herein,
we report a new homoenolate addition of enals to 1,6-Michael acceptors for the catalytic asymmetric synthesis of nonspirocyclic quaternary 3,3-disubstituted oxindoles (Scheme 1d).

3,3-Disubstituted oxindoles are present in a wide range of natural products, drugs, and other medicinally relevant products. Their synthesis has fascinated many research groups, and quite a number of catalytic asymmetric methods have been developed for their synthesis. Despite substantial advances, enantiomerically enriched nonspirocyclic 3,3-disubstituted oxindoles remain challenging to access.° During our continuous efforts devoted to the development of NHC-catalyzed 1,6-additions,80 a model reaction of the p-quinone methide81–83 1a as 1,6-Michael acceptor and the isatin-derived enal84,85 2a was investigated under NHC catalysis (Scheme 2). We were pleased to find that the reaction catalyzed using precatalyst A, in the presence of N,N-disopropylethylamine (DIPEA) as the base, furnished the desired nonspirocyclic quaternary oxindole 3a in 45% yield with 3:1 diastereomeric ratio (dr) and 67% enantiomeric excess (ee). The screening of the NHC-catalyst precursors (B–E) showed that the L-pyroglutamic-acid-derived precatalyst E was the best choice because the reaction outcome was improved by 65% yield with 4:1 dr and 89% ee.

With the optimized conditions in hand, the scope of the reaction was studied (Figure 1). A series of p-quinone methide 1 bearing electron-donating or electron-withdrawing substituents (Ar = 4-MeC₆H₄, 4-BrC₆H₄, and 3,4-Me₂O₂C₂H₄) reacted smoothly and gave the desired products 3b–d in moderate to good yields with 80–89% ee and 4:1–20:1 dr values. Even the reactions of substrates with sterically hindered ortho/ortho-, para/ortho-, meta-disubstituted aromatic ring proceeded efficiently and led to the corresponding products 3e–i in 45–63% yields with good to excellent diastereoselectivities and high enantioselectivities. This was also true for the heterocyclic substrates (Ar = furyl and thienyl), giving rise to products 3j and k. Notably, the isopropyl and methyl R substituents of the p-quinone methides were also tolerated without apparent change in the enantioselectivities, albeit in somewhat decreased yields (3l and m). The scope of the reaction with respect to the isatin-derived enals was also examined. Substituents at different positions (R² = 5-Me, 6-Cl, and 5,7-Me₂) had limited effect on the yields and stereoselectivities. The isatin-derived enals 2 with varying nitrogen protecting groups were also suitable reaction partners for the 1,6-additions (3q–v).

Alternatively, we decided to investigate the corresponding homoenolate addition of cinnamaldehydes to isatin-derived 1,6-Michael acceptors as the substituent, since the configuration at the C3 position of oxindoles has an important influence on biological activity. After optimizing the reaction conditions (see Supporting Information S17 and Table S1), we have successfully established the NHC-catalyzed 1,6-addition of cinnamaldehydes using 3-methyl-4-nitro-5-isatylidenyl-isoxazoles as 1,6-Michael acceptors and triazolium salt F as the precatalyst (Figure 2). A variety of cinnamaldehydes all reacted smoothly and provided the desired nonspirocyclic quaternary 3,3-disubstituted oxindoles 6a–f in good yields with uniformly high stereoselectivities.

The absolute configuration of the product 6a was determined by the X-ray structure analysis (see

Figure 1 | Asymmetric 1,6-addition of isatin-derived enals. Note: Synthesis of nonspirocyclic quaternary 3,3-disubstituted oxindoles by asymmetric 1,6-addition of isatin-derived enals, using p-quinone methides as 1,6-Michael acceptors. Yields of isolated products 3 after chromatography are presented. The ee was determined by HPLC analysis of the purified product on a chiral stationary phase. The configuration of the compounds was assigned based on the corresponding cycloducts.° DIPEA, N,N-disopropylethylamine.

DOI: 10.31635/ccschem.019.20190023
© 2019 Chinese Chemical Society
CCS Chem. 2019, 1, 261–267
Figure 2 | Asymmetric 1,6-addition of cinnamaldehydes. Note: Synthesis of nonspirocyclic quaternary 3,3-disubstituted oxindoles by asymmetric 1,6-addition of cinnamaldehydes, using 3-methyl-4-nitro-5-isatylidenyl-isoxazoles as 1,6-Michael acceptors. Yields of isolated products after chromatography are presented. The ee was determined by HPLC analysis of the purified product on a chiral stationary phase.

Supporting Information, and the configurations of all other products were assigned accordingly.

Conclusion

In conclusion, we have developed first asymmetric linear reactions of homoenolate equivalent intermediates and 1,6-Michael acceptors using NHC catalysis. This protocol enables the efficient assembly of nonspirocyclic quaternary 3,3-disubstituted oxindoles in good yields with good to high stereoselectivities. In view of the promising properties of quaternary 3,3-disubstituted oxindoles, we anticipate that the presented catalytic stereoselective strategy will facilitate applications in the pharmaceutical and NHC-catalysis arenas.

Supporting Information

Supporting information is available.

Conflicts of Interest

The authors declare no competing interests.

Acknowledgment

Q. Liu thanks the China Scholarship Council for a fellowship.

References

1. List, B. Introduction: Organocatalysis. Chem. Rev. 2007, 107, 5413–5415.
2. Barbas, C. F. Organocatalysis Lost: Modern Chemistry, Ancient Chemistry, and an Unseen Biosynthetic Apparatus. Angew. Chem. Int. Ed. 2008, 47, 42–47.
3. Enders, D.; Narine, A. A. Lessons From Nature: Biomimetic Organocatalytic Carbon–Carbon Bond Formations. J. Org. Chem. 2008, 73, 7857–7870.
4. MacMillan, D. W. C. The Advent and Development of Organocatalysis. Nature 2008, 455, 304–308.
5. Bertelsen, S.; Jørgensen, K. A. Organocatalysis—After the Gold Rush. Chem. Soc. Rev. 2009, 38, 2178–2189.
6. Berkessel, A.; Gröger, H. Asymmetric Organocatalysis—From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim, 2005.
7. Dalko, P. I. Comprehensive Enantioselective Organocatalysis: Catalysts Reactions and Applications, Wiley-VCH, Weinheim, 2013.
8. Enders, D.; Hutti, M. R. M.; Grondal, C.; Raabe, G. Control of Four Stereocentres in a Triple Cascade Organocatalytic Reaction. Nature 2006, 441, 861–863.
9. Berner, O. M.; Tedeschi, L.; Enders, D. Asymmetric Michael Additions to Nitroalkenes. Eur. J. Org. Chem. 2002, 2002, 1877–1894.
10. Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results. Chem. Rev. 2005, 105, 933–972.
11. Enders, D.; Saint-Dizier, A.; Lannou, M.; Lenzen, A. The Phospha-Michael Addition in Organic Synthesis. Eur. J. Org. Chem. 2006, 29–49.
12. Enders, D.; Lüttgen, K.; Narine, A. A. Asymmetric Sulfamidomethyl Michael Additions. Synthesis 2007, 2007, 959–980.
13. Tsogoeva, S. B. Recent Advances in Asymmetric Organocatalytic 1,4-Conjugate Additions. Eur. J. Org. Chem. 2007, 2007, 1701–1716.
14. Enders, D.; Wang, C.; Liebich, J. X. Organocatalytic Asymmetric aza-Michael Additions. Chem. Eur. J. 2009, 15, 11058–11076.
15. Grondal, C.; Jeanty, M.; Enders, D. Organocatalytic Cascade Reactions as a New Tool in Total Synthesis. Nat. Chem. 2010, 2, 167–178.
16. Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.; Tejero, T.; Merino, P. Asymmetric Organocatalytic Synthesis of γ-Nitrocarbonyl Compounds Through Michael and Domino Reactions. Tetrahedron: Asymmetry 2010, 21, 2561–2601.
17. Sánchez-Roselló, M.; Aceña, J. L.; Simón-Fuentes, A.; del Pozo, C. A General Overview of the Organocatalytic Intra-molecular aza-Michael Reaction. Chem. Soc. Rev. 2014, 43, 7430–7453.
18. Vicario, J. L. Organocatalytic Enantioselective Conjugate Addition Reactions: A Powerful Tool for the Stereocontrolled Synthesis of Complex Molecules. Royal Society of Chemistry, Cambridge, 2010.
19. Csáký, A. G.; Herrán, G. D. I.; Murcia, M. C. Conjugate Addition Reactions of Carbon Nucleophiles to Electron-Deficient Dienes. Chem. Soc. Rev. 2010, 39, 4080–4102.
20. Biju, A. T. Organocatalytic Asymmetric 1,6-Addition Reactions. ChemCatChem **2011**, *3*, 1847-1849.

21. Sun, H.-W.; Liao, Y.-H.; Wu, Z.-J.; Wang, H.-Y.; Zhang, X.-M.; Yuan, W.-C. Enantioselective 1,6-Michael Addition of Anthrone to 3-Methyl-4-Nitro-5-Alkenyl-isoxazoles Catalyzed by Bifunctional Thiourea-Tertiary Amines. *Tetrahedron* **2011**, *67*, 3991-3996.

22. Silva, E. M. P.; Silva, A. M. S. 1,6-Conjugate Addition of Nucleophiles to α,β,γ,δ-Diunsaturated Systems. *Synthesis* **2012**, *44*, 3109-3128.

23. Lear, M. J.; Hayashi, Y. Remote 1,6-Stereocontrol by Iminium-Mediated Organocatalytic Events. *ChemCatChem* **2013**, *5*, 3499–3501.

24. Bernardi, L.; López-Cantarero, J.; Niess, B.; Jørgensen, K. A. Organocatalytic Asymmetric 1,6-Additions of β-Ketoesters and Glycine Imine. *J. Am. Chem. Soc.* **2007**, *129*, 5772–5778.

25. Dell’Amico, L.; Albrecht, L.; Naicker, T.; Poulsen, P. H.; Jørgensen, K. A. Beyond Classical Reactivity Patterns: Shifting From 1,4- to 1,6-Additions in Regio- and Enantioselective Organocatalyzed Vinylogous Reactions of Olefinic Lactones with Enals and 2,4-Dienals. *J. Am. Chem. Soc.* **2013**, *135*, 8063–8070.

26. Chauhan, P.; Kaya, U.; Enders, D. Advances in Organocatalytic 1,6-Addition Reactions: Enantioselective Construction of Remote Stereogenic Centers. *Adv. Synth. Catal.* **2017**, *359*, 888–912.

27. Enders, D.; Balensiefer, T. Nucleophilic Carbene in Asymmetric Organocatalysis. *Acc. Chem. Res.* **2004**, *37*, 534–541.

28. Enders, D.; Niemeier, O.; Henseler, A. Organocatalysis by N-Heterocyclic Carbene. *Chem. Rev.* **2007**, *107*, 5606–5655.

29. Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Employing Homoenolates Generated by NHCA Catalysis in Carbon–Carbon Bond-Forming Reactions: State of the Art. *Chem. Soc. Rev.* **2011**, *40*, 5336–5346.

30. Bugaut, X.; Grunier, F. Organocatalytic Umpolung: N-Heterocyclic Carbenes and Beyond. *Chem. Soc. Rev.* **2012**, *41*, 3511–3522.

31. Cohen, D. T.; Scheidt, K. A. Cooperative Lewis Acid/N-Heterocyclic Carbene Catalysis. *Chem. Sci.* **2012**, *3*, 53–57.

32. Grossmann, A.; Enders, D. N-Heterocyclic Carbene-Catalyzed Domino Reactions. *Angew. Chem. Int. Ed.* **2012**, *51*, 314–325.

33. Vora, H. U.; Wheeler, P.; Rovis, T. Exploiting Acyl and Enol Azolium Intermediates via N-Heterocyclic Carbene-Catalyzed Reactions of α-Reducible Aldehydes. *Adv. Synth. Catal.* **2012**, *354*, 1617–1639.

34. Bode, J. W. Carbene Catalysis: An Internal Affair. *Nat. Chem.* **2013**, *5*, 813–815.

35. De Sarkar, S.; Biswas, A.; Samanta, R. C.; Studer, A. Catalysis With N-Heterocyclic Carbene Under Oxidative Conditions. *Chem. Eur. J.* **2013**, *19*, 4664–4678.

36. Ryan, S. J.; Candish, L.; Lupton, D. W. Acyl Anion Free N-Heterocyclic Carbene Organocatalysis. *Chem. Soc. Rev.* **2013**, *42*, 4906–4917.

37. Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. *Nature* **2014**, *510*, 485–496.

38. Mahatthananchai, J.; Bode, J. W. On the Mechanism of N-Heterocyclic Carbene-Catalyzed Reactions Involving Acyl Azoliums. *Acc. Chem. Res.* **2014**, *47*, 696–707.

39. Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. *Chem. Rev.* **2015**, *115*, 9307–9387.

40. Menon, R. S.; Biju, A. T.; Nair, V. Recent Advances in Employing Homoenolates Generated by N-Heterocyclic Carbene (NHC) Catalysis in Carbon–Carbon Bond-Forming Reactions. *Chem. Soc. Rev.* **2015**, *44*, 5040–5052.

41. Wang, M. H.; Scheidt, K. A. Cooperative Catalysis and Activation with N-Heterocyclic Carbenes. *Angew. Chem. Int. Ed.* **2016**, *55*, 14912–14922.

42. Levens, A.; Lupton, D. W. All-Carbon (4+2) Annulations Catalysed by N-Heterocyclic Carbenes. *Synlett* **2017**, *13*, 415–424.

43. Li, Z.; Li, X.; Cheng, J.-P. An Acidity Scale of Triazolium-Based NHC Precursors in DMSO. *J. Org. Chem.* **2017**, *82*, 9675–9681.

44. Reyes, E.; Uria, U.; Carrillo, L.; Vicario, J. L. Enantioselective Cascade Reactions Under N-Heterocyclic Carbene Catalysis. *Synthesis* **2017**, *49*, 451–471.

45. Zhang, C.; Hooper, J. F.; Lupton, D. W. N-Heterocyclic Carbene Catalysis via the α,β-Unsaturated Acyl Azolium. *ACS Catal.* **2017**, *7*, 2583–2596.

46. Chen, X. Y.; Liu, Q.; Chauhan, P.; Enders, D. N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Remote Enantioselective Functionalizations. *Angew. Chem. Int. Ed.* **2018**, *57*, 3862–3873.

47. Chen, X.-Y.; Li, S.; Vetica, F.; Kumar, M.; Enders, D. N-Heterocyclic-Carbene-Catalyzed Domino Reactions via Two or More Activation Modes. *iScience* **2018**, *2*, 1–26.

48. Murauski, K. J. R.; Jaworski, A. A.; Scheidt, K. A. A Continuing Challenge: N-Heterocyclic Carbene-Catalyzed Syntheses of γ-Butyrolactones. *Chem. Soc. Rev.* **2018**, *47*, 1773–1782.

49. Burstein, C.; Glorius, F. Organocatalyzed Conjugate Umpolung of α,β-Unsaturated Aldehydes for the Synthesis of γ-Butyrolactones. *Angew. Chem. Int. Ed.* **2004**, *43*, 6205–6208.

50. Sohn, S. S.; Rosen, E. L.; Bode, J. W. N-Heterocyclic Carbene-Catalyzed Generation of Homoenolates: γ-Butyrolactones by Direct Annulations of Enals and Aldehydes. *J. Am. Chem. Soc.* **2004**, *126*, 14370–14371.

51. Nair, V.; Babu, B. P.; Vellalath, S.; Suresh, E. Stereoselective Synthesis of Spirocyclopentanones via N-Heterocyclic Carbene-Catalyzed Reactions of Enals and Dienes. *Chem. Commun.* **2008**, *747–749.*

52. Chen, X.; Fang, X.; Chi, Y. R. cis-Enals in N-Heterocyclic Carbene-catalyzed Reactions: Distinct Stereospecificity and Reactivity. *Chem. Sci.* **2013**, *4*, 2613–2618.

53. Guo, C.; Schedler, M.; Daniluc, C. G.; Glorius, F. N-Heterocyclic Carbene-Catalyzed Formal [3+2] Annulation Reaction of Enals: An Efficient Enantioselective Access to Spiro-Heterocycles. *Angew. Chem. Int. Ed.* **2014**, *53*, 10232–10236.

54. Izquierdo, J.; Orue, A.; Scheidt, K. A. A Dual Lewis Base Activation Strategy for Enantioselective Carbene-Catalyzed Annulations. *J. Am. Chem. Soc.* **2013**, *135*, 10634–10637.
Enhancement of Catalytic Efficiency Through Bifunctional Additives. J. Am. Chem. Soc. 2011, 133, 10402–10405.
69. Fang, X.; Chen, X.; Lv, H.; Chi, Y. R. Enantioselective Stetter Reactions of Enals and Modified Chalcones Catalyzed by N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2011, 50, 11782–11785.
70. Trost, B. M.; Brennan, M. K. Asymmetric Syntheses of Oxindole and Indole Spiroyclic Alkaloid Natural Products. Synthesis 2009, 2009, 3003–3025.
71. Zhou, F.; Liu, Y.-L.; Zhou, J. Catalytic Asymmetric Synthesis of Oxindoles Bearing a Tetrasubstituted Stereo-center at the C-3 Position. Adv. Synth. Catal. 2010, 352, 1381–1407.
72. Klein, J. E. M. N.; Taylor, R. J. K. Transition-Metal-Mediated Routes to 3,3-Disubstituted Oxindoles Through Anilide Cyclisation. Eur. J. Org. Chem. 2011, 6821–6841.
73. Rios, R. Enantioselective Methodologies for the Synthesis of Spiro Compounds. Chem. Soc. Rev. 2012, 41, 1060–1074.
74. Singh, G. S.; Desta, Z. Y. Isatins as Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks. Chem. Rev. 2012, 112, 6104–6155.
75. Hong, L.; Wang, R. Recent Advances in Asymmetric Organocatalytic Construction of 3,3′-Spirooxindoles. Adv. Synth. Catal. 2013, 355, 1023–1052.
76. Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C. F. Organocatalytic Asymmetric Assembly Reactions: Synthesis of Spirooxindoles via Organocascade Strategies. ACS Catal. 2014, 4, 743–762.
77. Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising Scaffolds for Anticancer Agents. Eur. J. Med. Chem. 2015, 97, 673–698.
78. Pavlovska, T. L.; Redkin, R. G.; Lipson, V. V.; Atamanuk, D. V. Molecular Diversity of Spirooxindoles. Synthesis and Biological Activity. Mol. Divers. 2016, 20, 299–344.
79. Cao, Z.-Y.; Zhou, F.; Zhou, J. Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles. Acc. Chem. Res. 2018, 51, 1443–1454.
80. Chen, X.-Y.; Liu, Q.; Chauhan, P.; Li, S.; Peuronen, A.; Rissanen, K.; Jafari, E.; Enders, D. Cooperative N-Heterocyclic Carbene-Catalyzed Reaction of Chalcones and Enals via Homoenolate: An Ef
ciency and Stereoselectivity Study. Angew. Chem. Int. Ed. 2011, 50, 14930–14932.
108. Chauhan, P.; Li, S.; Peuronen, A.; Rissanen, K.; Jafari, E.; Enders, D. N-Heterocyclic Carbene-Catalyzed [4+2] Annulation of Enals and para-Quinone Methides: Highly Enantioselective Synthesis of Benzo-ε-Lactones. Angew. Chem. Int. Ed. 2013, 52, 8267–8280.
109. White, N. A.; DiRocco, D. A.; Rovis, T. Asymmetric N-Heterocyclic Carbene-Catalyzed Addition of Enals to Nitroalkanes: Controlling Stereochemistry via the Homoenolate Reactivity Pathway to Access 3,3′-Spiroindoles. Angew. Chem. Int. Ed. 2017, 56, 6241–6245.
110. Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Asymmetric Catalytic 1,6-Conjugate Addition/Aromatization of para-Quinone Methides: Enantioselective Introduction of Functionalized Diarylmethylene Stereogenic Centers. Angew. Chem. Int. Ed. 2013, 52, 9229–9233.
111. Caruana, L.; Kniep, F.; Johansen, T. K.; Poulsen, P. H.; Jørgensen, K. A. A New Organocatalytic Concept for Asymmetric α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2014, 136, 15929–15932.
112. Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. Asymmetric Organocatalytic Synthesis of 3-Diarylmine-Substituted Oxindoles Bearing a Quaternary Stereocenter via 1,6-Conjugate Addition to para-Quinone Methides. ACS Catal. 2016, 6, 657–660.

DOI: 10.31635/ccschem.019.20190023
CCS Chem. 2019, 1, 261–267
84. Wang, L.; Li, S.; Blümel, M.; Philipps, A. R.; Wang, A.; Puttreddy, R.; Rissanen, K.; Enders, D. Asymmetric Synthesis of Spirobenzazepinones With Atroposelectivity and Spiro-1,2-Diazepinones by NHC-Catalyzed [3+4] Annulation Reactions. *Angew. Chem. Int. Ed.* **2016**, *55*, 11110–11114.

85. Wang, L.; Li, S.; Blumel, M.; Putreddy, R.; Peuronen, A.; Rissanen, K.; Enders, D. Switchable Access to Different Spirocyclopentane Oxindoles by N-Heterocyclic Carbene-Catalyzed Reactions of Isatin-Derived Enals and N-Sulfonyl Ketimines. *Angew. Chem. Int. Ed.* **2017**, *56*, 8516–8521.

86. C C D C 1907385 (6a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif