BIOACTIVITIES AND CHEMOPROFILE COMPARISONS OF CHENOPODIUM AMBROSIODES L. AND CHENOPODIUM BOTRYS L. GROWING IN KASHMIR, INDIA

SHAMEEM A SHAMEEM1,2, KHALIQUZ Z KHAN1, AJAZ A WAZA3, ABDUL HASEEB SHAH4, HAFSA QADRI4, BASHIR A GANAI*

1Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India. 2Department of Chemistry, Islamia College of Science and Commerce, Srinagar, Jammu and Kashmir, India. 3Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India. 4Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India. Email: bbcganai@gmail.com

ABSTRACT

Objectives: The objectives of the study were the gas chromatography-mass spectrometry (GC-MS) identification and comparison of the chemical constituents, evaluation of the antifungal and anticancer activities of two species of genus Chenopodium, for example, Chenopodium ambrosioides (Ca) and Chenopodium botrys (Cb) growing in Kashmir, Himalayan region.

Methods: The hydrodistilled essential oil of Ca and Cb was subjected to GC-MS analysis and antifungal activity for minimum inhibitory concentration (MIC) determination against different human pathogenic fungal strains using broth microdilution assay in 96-well microtiter plates as per the protocol of the clinical and laboratory standards institute (2008 M27-A3). The anti-proliferative activity of the essential oils was also evaluated against the two cell lines MCF-7 (human mammary carcinoma cells) and A549 (Human lung adenocarcinoma epithelial cells).

Results: A total of 34 compounds identified in Ca with α-terpinene (37.17%), isoascaridole (20.48%), and ascaridole (14.83%) as the key compounds. The key compounds of Cb were shoyobunol (18.91%), and hedycaryol (9.51%), germacrene-D-4-ol (8.57%), with 65 identified compounds. Both the species were found to have comparable antifungal activities against human pathogenic fungi with MIC values in the range of 0.031 mg/ml-0.256 mg/ml for Ca and 0.031 mg/ml-0.126 mg/ml in case of Cb. Maximum antiproliferative activity was observed at 125 µg/ml concentration in A549 cell line, while as the oils inhibited the growth of MCF-7 cell line at a lower concentration of 31.25 µg/ml.

Conclusion: The essential oils of Ca and Cb were found to have potent anticancer and antifungal activities and can have potential use as a natural fungicide.

Keywords: Gas chromatography-mass spectrometry, Chenopodium ambrosioides, Chenopodium botrys, Ascaridole, α-Terpenene, Shoyobunol.

INTRODUCTION

The genus Chenopodium belongs to family Chenopodiaceae and includes about 150 species which are annual herbs or bushy plants growing in semiarid to arid regions and have resistance to adverse climate [1]. The chemical investigations have been carried out on the essential oils of Chenopodium species [2] and are reportedly found to contain numbers of compounds such as ecdysteroids [3], flavonoids [4], sesquiterpenes [5], and saponins [6]. In India, the genus is reportedly represented by 21 species, and some are cultivated for vegetables and grains [7]. Chenopodium species have significance due to their broad area of medicinal applications in traditional medicine as anthelmintic, antispasmodic, emmenagogue, stomachic, for pain in amenorrhea, diaphoretic, abortifacient and for catarrh, asthma, and migraine [8,9]. Chenopodium album is reported to possess antileishmanial activity against Leishmania donovani in inbred BALB/c mouse [10].

Chenopodium ambrosioides (Ca) is an aromatic herb widely distributed throughout India and is found growing in Kashmir, Central Punjab, West Bengal, Bihar, Maharashtra, the Deccan, and eastern Ghats [11] in moist undisturbed waste places as a weed [12]. The extract and essential oil of this plant species are used as anthelmintic due to the presence of ascaridole [13]. The essential oil of Ca is known to possess allelopathic activity [14], and its aqueous extract is considered a blood purifier, stimulant, and cures hyperthermia [15].

Chenopodium botrys (Cb) is a strongly aromatic medicinal plant growing in dry sandy areas in the temperate Himalayas from Kashmir to Sikkim [16]. Cb finds use in multiple therapeutic applications such as expectorant, anticonvulsant, antibacterial, and tonic [17]. In Kashmir Himalayas, an ethnomedicinal survey indicates that the seed decoction of the plant is used relieves a headache due to gallbladder troubles, for treating tapeworm infestation in children [18], anthelmintic, diuretic, liver diseases, and laxative [19]. In Tibetan medicine, Cb is used to treat stomach and liver problems [20].

As part of the research program on the phytochemical screening of the medicinal plants from Kashmir, investigations were carried out on the essential oil isolated from the two Chenopodium species, for example, Ca and Cb by gas chromatography-mass spectrometry (GC-MS) analysis and evaluated the antifungal and anti-proliferative activity as no previous studies on the oils of these two plant species growing in Kashmir has been reported. The study will help in finding the phytochemicals from the two plant species growing in temperature Himalayan region and to evaluate their antifungal and anticancer efficacies.

METHODS

Plant material

The fresh aerial parts of Ca and Cb were collected locally in the month of August 2017. The plants were identified by taxonomist at Centre for Biodiversity and Taxonomy, University of Kashmir and Voucher specimens of Ca (KASH-2628) and Cb (KASH-2629) have been deposited in Kashmir University herbarium. The light yellow colored essential oils were isolated by carrying out the hydrodistillation of
the fresh aerial parts of the two plant species for 3 h using Clevenger apparatus [21]. The isolated essential oils were dried by placing over anhydrous sodium sulfate.

GC-MS analysis

GC-MS analysis of the Chenopodium essential oils was carried out using GC-MS ShimadzuQP-2010 system with an Rt-5 column (30 m × 0.25 mm id × 0.25 µm film thickness). The injector temperature was 260°C. Oven temperature program was held at 50°C for 2 min, heating at 3°C and keeping the temperature constant at 210°C for 10 min and from 210°C to 250°C at 6°C/min with a hold time of 31 min. Carrier gas used was helium. Pressure 69 kPa, total flow 137.3 mL/min, column flow 1.21 mL/min, linear velocity 39.9 cm/s, purge flow 3.0 mL/min, split ratio: 110:0; ion source temperature 230°C; and interface temperature 270°C. Injection volume was 0.3 µl. The MS scan parameters include El ionization voltage of 70 eV and spectra were recorded in the mass range of 40–650 µ.

The identification of the compounds in the essential oils was based on mass spectral comparisons with those of NIST 11 (National Institute of Standards and Technology; US and WILEY 8) library [22,23].

Cell culture and in vitro antiproliferative assay

Human cancer cell lines (MCF-7 and A549) were purchased from National Centre for Cell Science (Pune, India). The cells were grown in Dulbecco's modified eagle's medium, supplemented with 10% fetal bovine serum, and 1% penicillin-streptomycin at 37°C in a humidified incubator containing 5% CO₂. The essential oils were prepared in dimethyl sulfoxide (DMSO) and cells were treated with the fresh medium before treatment with oils. Both the oils were prepared in dimethyl sulfoxide (DMSO) and cells were treated with different concentrations (15.6, 31.25, 62.5, 125, 250, and 500 µg/mL) of the oil. After 12 h treatment, cell growth was evaluated using 96-well microtiter plates.

Evaluation of antifungal activity

The antifungal activities of Chenopodium essential oils (in terms of their minimum inhibitory concentration [MIC]) against different human pathogenic fungal strains were evaluated by broth microdilution assay using 96-well microtiter plates. For this purpose, MCF-7 and A549 cells were seeded at 10⁴ cells/well and allowed to grow overnight. Next day, the media were replaced with 200 µl of the fresh medium before treatment with oils. Both the oils were prepared in dimethyl sulfoxide (DMSO) and cells were treated with different concentrations (15.6, 31.25, 62.5, 125, 250, and 500 µg/mL) of the oil. After 12 h treatment, cell growth was evaluated by MTT assay. MTT solution of 50 µl (5 mg/ml of PBS) was added to each well, and the plates were incubated for 3 h at 37°C in the dark. The media were aspirated, and 150 µl of MTT solvent (DMSO) was added to each well to solubilize the formazan crystals. The absorbances of the microtiter plate reader or by naked eye visualization.

RESULTS

The essential oils with light yellow color obtained by hydrodistillation of the aerial parts of Ca and Cb growing in Kashmir were obtained in the yield of 0.35% w/v and 0.23% w/v, respectively, of the fresh weight basis.

The GC-MS analysis of Ca from Kashmir Himalayan region, results in the identification of 34 compounds (Table 1) accounting to the total percentage of 95.78% of the total oil composition with highest percentage of monoterpene hydrocarbons (52.54%) followed by oxygenated monoterpenes (38.95%), esters (1.37%), oxygenated sesquiterpenes (0.41%), and miscellaneous compounds (2.51%). The major compounds of the essential oil of Ca are α-terpinene (37.17%), isosaccaridole (20.48%), ascaridole (18.43%), and p-cymene (11.76%).

The essential of Cb consists of 65 identified compounds (Table 2), comprising (94.32%) of the total oil with the dominance of oxygenated sesquiterpenes (49.82%), followed by sesquiterpenes (25.74%), monoterpene hydrocarbons (11.56%), esters (3.71%), and others (3.49%). The major compounds from this species are shobunol (18.91%), hedyacol (9.51%), germacrene-D-4-ol (8.57%), 8-cadinene (4.90%), cardin-4-en-10-ol (4.42%), geranyl acetate (3.56%), limonene (3.47%), and 1-methyl-5-methylene-1,6-cyclohexadiene (2.85%).

Anticancer activity of the essential oils was determined using MTT assay. Results of the antiproliferative activity showed maximum growth inhibition at 125 µg/ml against A549 cell line (Fig 1) while as the oils inhibited the growth of MCF-7 cell line at a lower concentration of 31.25 µg/ml.

DISCUSSION

GC-MS analysis of the essential oils of the two species reveals a total of 92 identified compounds from both the species with only seven compounds being common to the two species. The results indicate that there are greater qualitative and quantitative differences between the oils of the two species and also between the oils of the same species which are previously investigated. These differences can be due to the difference of chemotypes and variability of the subspecies and difference in climatic and geographical areas of the plant growth.

Seven different chemotypes: Ascaridole, α-terpenene, α-pinene, p-cymene, carvacrol, limonene, and α-terpinyl acetate are reported to occur in Ca [26]. The results of the present investigation of the oil
composition on Ca are different from the previous reports, and the present oil has been found to belong to α-terpenene chemotype. The Ca essential oil analyzed from different parts of India is also reported to belong to α-terpenene chemotype, with oil from Chandigarh (India) containing the major constituents as α-terpinene (47.37%), p-cymene (25.77%), cis-ascaridole (14.75%) [27], the oil from Uttarakhand containing α-terpinene (44.68%), p-cymene (21.28%), ascaridole (17.89 %) [28], and the major constituents of oil from Southern Hills of India were found to be α-terpinene (63.6%), p-cymene (19.5%), and ascaridole (6.2%) [29]. Further, the Ca essential oil from Nigeria is also reported to belong to α-terpenene chemotype with major constituents as α-terpenes (63.6%), p-cymene (26.4%), and ascaridole (3.9%) [30]. However, the oil from for Iran has been found to be rich in α-terpenes (15.90%), camphor (12.40%), and trans-ascaridole (6.38%) [30], and the Mexican chemotype contains limonene (31.50%), and trans-pinocarveol (26.70%) as the major constituents [31]. The Ca oil from Brazil is found richer in Z-ascaridol (61.4 %) and E-ascaridol (18.6%) [32] and the oil from China has also been found to contain Z-ascaridole (27.27%), p-cymene (19.05%), and isascaridole (14.15%) [33]. The chemotype of Ca from Togo (Bangladesh) is also reported to be ascaridole type with ascaridole content of 51.12% [34].

The present results of the oil composition of Cb show much greater differences than the previously analyzed samples from different parts of the world. The Cb from Greece has been found to possess elemol acetate (16.3%), elemol (14.1%), and botrydrol (11.1%) [35]. The Cb from Iran reportedly contains α-eudesmol (15.5%), epi-α-muurolol (11.3%), and cubenol (10.5%) [36]. Another research studies from Iran revealed the presence of γ-terpineol (5.2%), p-cymene (19.0%), and isascaridole (7.0%) as the main components of the oil [30] and further one more investigation from two different localities of Iran is reportedly known to possess; juniper camphor (16.5% and 25.7%), elemol (14.3% and 13.4%), and α-cadinol (8.2% and 11.6%) [37]. Mahboubi et al. [38] have identified 2,3-dehydro-4-oxo-β-lonone (22.4 %), 7-epi-α-muurolol (11.5%), and elemol (7.4%) as the key compounds of Cb from Iran.

Our results show that the Chenopodium essential oils have a potent antiproliferative activity on A549 and MCF-7 human cancer cell lines. The oil treatment showed a concentration-dependent antiproliferative activity of the human cell lines studied. The Ca oil treatment showed a concentration-dependent antiproliferative activity on A549 and MCF-7 human cancer cell lines. The Cb essential oil from Nigeria has an IC50 value of 9.45 µg/ml observed after 24 h.

S. No.	Name	Molecular formulae	Molecular mass	RT	Area (%)
1	Myrcene	C10H16	38.697	0.21	13.96
2	α-Terpine	C10H16	17.197	0.24	37.17
3	p-Cymene	C10H16	17.197	0.24	37.17
4	Limonene	C10H16	17.197	0.24	37.17
5	γ-Terpine	C10H16	17.197	0.24	37.17
6	Terpinolene	C10H16	17.197	0.24	37.17
7	Thujol	C10H16	17.197	0.24	37.17
8	Cyclooctanone	C10H16	17.197	0.24	37.17
9	2,6-dimethyl-2,4-Heptadiene	C10H16	17.197	0.24	37.17
10	1,2,3,1',2',3'-Hexamethyl-bicyclopentyl-2,2'-diene	C10H16	17.197	0.24	37.17
11	Phellandral	C10H16	17.197	0.24	37.17
12	p-Cymen-8-ol	C10H16	17.197	0.24	37.17
13	4-Acetyl-2-Carene,	C10H16	17.197	0.24	37.17
14	2,5,5-Trimethyl-3-hexyn-2-ol	C10H16	17.197	0.24	37.17
15	Ascaridole	C10H16	17.197	0.24	37.17
16	cis-Pipertone oxide	C10H16	17.197	0.24	37.17
17	1,1,4,4-tetramethylcylohexane	C10H16	17.197	0.24	37.17
18	trans-Ascaridol glycol	C10H16	17.197	0.24	37.17
19	γ-Terpineol	C10H16	17.197	0.24	37.17
20	Isoascaridole	C10H16	17.197	0.24	37.17
21	(Z2)-Hexenyltiglate	C10H16	17.197	0.24	37.17
22	Fragranyl acetate	C10H16	17.197	0.24	37.17
23	α-Limonene diepoxide	C10H16	17.197	0.24	37.17
24	Allyl hexanoate	C10H16	17.197	0.24	37.17
25	Hexyltiglate	C10H16	17.197	0.24	37.17
26	Germacrene D	C10H16	17.197	0.24	37.17
27	2,2,3,4-tetramethyl-3-cyclopenten-1-one	C10H16	17.197	0.24	37.17
28	Ocetylglacte	C10H16	17.197	0.24	37.17
29	Genyl tiglate	C10H16	17.197	0.24	37.17
30	1,3-dimethyl-3-vinylcyclohexene-1	C10H16	17.197	0.24	37.17
31	Shoybunol	C10H16	17.197	0.24	37.17
32	1-pentadecanol	C10H16	17.197	0.24	37.17
33	n-Hexadecanol	C10H16	17.197	0.24	37.17
34	Phytol	C10H16	17.197	0.24	37.17

Total identified %: 95.78

Grouped constituents
- Monoterpene hydrocarbons: 52.54
- Oxygenated monoterpenes: 38.95
- Esters: 1.370
- Oxygenated sesquiterpenes: 41.0
- Others: 2.51

Shameem et al. Asian J Pharm Clin Res, Vol 12, Issue 1, 2019, 124-129
S. No	Compound name	Molecular formulae	Molecular mass	RT	Area %
1	5,5-Dimethyl-1-vinylbicyclo[2.1.1]hexane	C_{10}H_{16}	136	7.193	0.06
2	α-Pinenol	C_{10}H_{16}	136	7.671	1.28
3	Sabinele	C_{10}H_{16}	136	9.170	1.78
4	β-Pinenol	C_{10}H_{16}	136	9.345	1.13
5	Myrcene	C_{10}H_{16}	136	9.901	2.79
6	3,7,7-trimethylbicyclo[4.1.0]hept-2-ene,	C_{10}H_{16}	136	10.238	0.20
7	β-Phellandrene	C_{10}H_{16}	136	10.533	0.28
8	3,7,7-trimethylbicyclo[4.1.0]hept-3-ene,	C_{10}H_{16}	136	10.631	0.17
9	α-Terpineol	C_{10}H_{16}	136	10.992	0.27
10	Limonene	C_{10}H_{16}	136	11.560	3.47
11	γ-Terpineol	C_{10}H_{16}	136	12.810	0.07
12	4-Terpineol	C_{10}H_{16}	154	13.391	0.11
13	6-2-Carene	C_{10}H_{16}	136	14.025	0.06
14	Linalool	C_{10}H_{16}	154	14.797	0.34
15	Nonanal	C_{10}H_{16}	142	14.973	0.59
16	Terpenin-4-ol	C_{10}H_{16}	154	18.420	0.10
17	Isocaryophyllene	C_{10}H_{16}	204	19.141	0.23
18	α-Elemene	C_{10}H_{16}	204	25.167	0.15
19	α-Cubebene	C_{10}H_{16}	204	25.323	0.46
20	α-Copaene	C_{10}H_{16}	204	25.833	0.16
21	Geranyl acetate	C_{10}H_{16}	196	27.355	3.56
22	(E)-Camphene	C_{10}H_{16}	204	28.274	0.41
23	(E)-Caryophyllene	C_{10}H_{16}	204	28.920	2.56
24	Germacrene D	C_{10}H_{16}	204	29.323	0.33
25	Cadina-3,5-diene	C_{10}H_{16}	204	30.113	0.18
26	α-Humulene	C_{10}H_{16}	204	30.369	1.01
27	(E,E), α-Farnesene	C_{10}H_{16}	204	31.092	0.26
28	β-Muurolene	C_{10}H_{16}	204	31.254	1.10
29	3,7,7-trimethylbicyclo[4.1.0]hept-3-ene,	C_{10}H_{16}	204	31.488	2.85
30	Dehydro aromadendrene	C_{10}H_{16}	204	31.768	1.16
31	α-Zingiberene	C_{10}H_{16}	204	32.128	0.72
32	3,7,7-trimethylbicyclo[4.1.0]hept-2-ene,	C_{10}H_{16}	204	32.242	0.68
33	3,7,7-trimethylbicyclo[4.1.0]hept-3-ene,	C_{10}H_{16}	204	32.592	0.18
34	γ-Cadinene	C_{10}H_{16}	204	32.834	2.29
35	δ-Cadinene	C_{10}H_{16}	204	33.139	4.90
36	6-epi-shoyubonol	C_{10}H_{16}	222	33.357	2.50
37	Cubebol	C_{10}H_{16}	222	33.531	1.33
38	α-Cadinol	C_{10}H_{16}	222	33.741	0.86
39	Hedycaryol	C_{10}H_{16}	222	34.471	9.51
40	Z-Nerolidol	C_{10}H_{16}	222	34.833	0.46
41	Germacrene D-4-ol	C_{10}H_{16}	222	35.499	8.57
42	β-Eudesmol	C_{10}H_{16}	222	35.805	0.53
43	(E)-Oplopanone	C_{10}H_{16}	220	36.323	0.36
44	β-Caradecadiene	C_{10}H_{16}	220	37.095	0.33
45	Epicubanol	C_{10}H_{16}	222	37.235	0.45
46	γ-Eudesmol	C_{10}H_{16}	222	37.437	0.47
47	Er-3,9-dien-1-ol	C_{10}H_{16}	220	37.858	0.68
48	Er-4-en-10-ol	C_{10}H_{16}	220	37.948	0.27
49	Sabinene	C_{10}H_{16}	222	40.115	18.91
50	Cedrol	C_{10}H_{16}	220	40.990	0.20
51	Cedro-4-en-10-ol	C_{10}H_{16}	220	41.895	0.25
52	Cedro-5-en-10-ol	C_{10}H_{16}	220	43.365	0.22
53	Cedronyde	C_{10}H_{16}	220	43.828	0.74
54	Hexadecanol	C_{10}H_{16}	242	46.323	0.39
55	(E)-β-Farnesene	C_{10}H_{16}	204	47.684	0.19
56	18-Oxolauron-17-yl acetate	C_{10}H_{16}	346	48.428	0.15
57	Cedro-4-en-10-ol	C_{10}H_{16}	220	51.735	0.50
58	Abietadiene	C_{10}H_{16}	272	52.565	0.09
59	Phytol	C_{10}H_{16}	296	53.489	0.26
60	Isocuberyl	C_{10}H_{16}	346	59.150	0.17

Total identified %

Grouped constituents

(Contd...)
using MTT assay [39]. There are no previous reports regarding the antiproliferative activity of Cb essential oils. The work demonstrates that Ca and Cb exert antiproliferative activity against A549 and MCF-7 cell lines, but the constituents responsible for the activity and their mechanism of antiproliferative activity needs to be evaluated.

Ca and Cb possess good antifungal activity against the tested fungal strains and the antifungal activities of the essential oils, of the two species, are comparable. MIC₈₀ results depict that Ca is more active against C. krusei while Cb shows potent antifungal activity against C. krusei and C. parapsilosis strains. It is not possible to compare the antifungal activity of the two Chenopodium essential oils as no previous investigations have been carried out on the antifungal activity of Ca and Cb essential oils. However, the antifungal activity of Ca against different Aspergillus species has been reported, and it has been proposed that ascaridole is the principal fungitoxic compound [32].

The present data along with the absence of ascaridole in Cb having comparable antifungal activity with Ca suggest that the antifungal activity may also involve other major and minor oxygenated sesquiterpene compounds that have a synergistic effect.

CONCLUSION

The chemoprofiling of the two species of the genus Chenopodium by GC-MS reveals that a-terpenene and schubumol are the principal compounds of Ca and Cb, respectively, while Ca is dominated by sesquiterpene hydrocarbons followed by oxygenated monoterpenes, Cb is dominated by oxygenated sesquiterpenes followed by sesquiterpenes hydrocarbons. Both the oils show a moderate antiproliferative activity against the human cancer cell lines of varied origin. Moreover, oil extracts from both the species show potent antifungal activity against the tested human fungal pathogens.

ACKNOWLEDGMENTS

The author (SAS) thanks UGC for grant of teacher’s fellowship under Faculty Development Program to carry out the research. Thanks are also due to the Director Centre of Research for Development, University of Kashmir, for providing the laboratory facility. The Principal ICSC and the Head Department of Chemistry, University of Kashmir, are also acknowledged for constant support and encouragement. AHS acknowledges funding to his laboratory from DST in the form of INSPIRE Faculty Award (DST/INSPIRE/04/2015/001575). AAW acknowledges CSR for providing fellowship under CSR RA scheme (9/251 (0077) 2k17). HQ acknowledges Project Assistant fellowship from INSPIRE Faculty Award.

AUTHORS’ CONTRIBUTIONS

This work was carried out in collaboration between all authors. Authors Bashir Ahmad Ganai and Khaliquz Zaman Khan designed the study. Shameem A. Shameem carried out the literature survey, the isolation and chemical characterization of the oils, wrote the protocol, and the first draft of the manuscript. Authors, Abdul Haseeb Shah, Hafsa Qadri, and Ajaz A. Waza, managed the antifungal and anticancer study and wrote the respective protocols. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare to have no conflict of interest.

REFERENCES

1. Kühn U. Chenopodiaceae. In: Kubitzki K, editors. The Families and Genera of Vascular Plants. II. Hamburg: Springer; 1993. p. 253-81.
2. Teresa J, de P, González MS, Grande M, Bellido IS. Delta-5-hydroxy-1-hydroxycarvomenthols from the essential oil of Chenopodium multifidum. Phytochemistry 1983;22:2749-52.
3. Tosh I, Bathory M, Szendrei K, Minker E, Blazso G. Ecdysteroids in Chenopodiaceae: Phytochemistry 1983;43:248.
4. Ibrahim LF, Kawashy SA, Baioumy OM, Shabana MM, El-Eraky WY, El-Negoumy SI. A comparative study of the flavonoids and some biological activities of two Chenopodium species. Chem Nat Compounds 2007;43:24-8.
5. Bedrossian AG, Beauchamp PS, Bernichi B, Dev V, kitaz KZ, Rechtshaffen H, et al. Analysis of North American Chenopodium botrys essential oil isolation and structure of two new sesquiterpene alcohols. J Essent Oil Res 2001;13:393-400.
6. Ma WW, Heinstein PF, McLaughlin JL. Additional toxic, bitter saponins from the seeds of Chenopodium quinoa. J Nat Prod 1989;52:1132-9.
7. Yadav N, Vasudeva N, Singh, HS, Sharma SK. Medicinal properties of genus Chenopodium Linn. Nat Prod Radiant 2007;6:131-4.
8. Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd ed. London UK: E and S Liningstone Ltd; 1962.
9. Vasishtha PC. Taxonomy of Angiosperms. India: Ram Chand; 1989.
10. Kaur R, Kaur J, Kaur S, Joshi J. Evaluation of the antileishmanial efficacy of medicinal plant Chenopodium album Linn. Against experimental visceral leishmaniasis. Int J Pharm Pharm Sci 2016;8:227-31.
11. Chopra BN, Badiwiar RL, Ghosh S. Poisonous Plants of India. New Delhi: ICAR; 1965.
12. Maheshwari JK. A Contribution to the flora of Kanha National Park, Madhya Pradesh. Bull Bot Surv of India 1963;5:117-40.
13. Potawale SE, Luniya KP, Mantri RA, Mehta UK, Waseem MD, Sadiq MD, et al. Chenopodium ambrosioides: An ethnopharmacological review. Pharmacologyonline 2008;2:272-86.

Table 2: (Continued)

Strains	Chenopodium ambrosioides	Chenopodium botrys
MIC₈₀ (mg/ml)	MIC₈₀ (mg/ml)	
Candida albicans	0.252	0.126
Candida glabrata	0.126	0.126
Candida parapsilosis	0.126	0.031
Candida kefyr	0.063	0.126
Candida tropicalis	0.063	0.063
Candida dubliniens	0.063	0.063
Candida krusei	0.031	0.031

*MIC₈₀ was determined following the standard Clinical Laboratory Standards Institute protocol and was performed in triplicates. MIC: Minimum inhibitory concentration.
14. Jimenez-Osorio FM, Kumamoto J, Wasser C. Allelopathic activity of Chenopodium ambrosioides L. Biochem Syst Ecol 1996;24:195-205.
15. Kaur M, Singhal VK, Singh J. Use Of some ethnomedicinal herbs by the natives Of Solang Valley, Kullu District, Himachal Pradesh. Int J Pharm Pharm Sci 2017;9:222-7.
16. Nadkarnin KM. Indian Materiamedica: With Ayurvedic, Unani-Tibbi, Siddha, Allopathic, Homeopathic, Naturopathic and Home Remedies, Appendices and Indexes. 1. 3rd ed. New delhi: Popular Prakashan; 1996.
17. Zargar A. Medicinal Plants. 6th ed. Vol. 1. Tehran University Publications. Tehran: Tehran university Publications; 1993.
18. Singh V. Herbal remedies for worm infestation in Kashmir Himalaya. Fitoterapia 1994;65:354-6.
19. Koul MK. Medicinal plants of Kashmir and Ladakh. New Delhi: Indus Publishing Company; 1997.
20. Singh V, Kapahi BK, Srivastava TN. Medicinal herbs of Ladakh especially in home remedies. Fitoterapia 1996;67:38-48.
21. Clevenger JF. Apparatus for the determination of volatile oil. J Am Pharm Assoc 1928;17:345-9.
22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.
23. Massada Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry. New York: Wiley; 1976.
24. Mass Spectral Library. NIST/EPA/NIH: USA; 2002. Available from: http://www.nist.gov/srd/nistla.htm.
25. Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 3rd ed. Approved standard. CLSI M27-A3(28). Wayne (Pennsylvania): Clinical and Laboratory Standards Institute; 2008.
26. Owolabi MS, Lajide L, Oladimeji MO, Setzer WN, Palazzo MC, Olowu RA, et al. Volatile constituents and antibacterial screening of the essential oil of Chenopodium ambrosioides L. Growing in Nigeria. Nat Prod Commun 2009;4:989-92.
27. Singh HP, Batish DR, Kohli RK, Mittal S, Yadav S. Chemical composition of essential oil from leaves of Chenopodium ambrosioides from Chandigarh, India. Chem of Nat Comp 2008;44:378-9.
28. Lohani H, Chauhan NK, Kumar K, Haider SZ, Andola HC. Comparative aroma profile of wild and cultivated Chenopodium ambrosioides L. from Uttarakhand. J Essent Oil Bear Plants 2012;15:657-61.
29. Gupta D, Charles R, Mehta VK, Garg SN, Kumar S. Chemical examination of the essential oil of Chenopodium ambrosioides L. From the Southern Hills of India. J Essent Oil Res 2002;14:93-4.
30. Omidbaigi R, Sefidkon F, Nasrabadi FB. Essential oil content and compositions of Chenopodium ambrosioides L. J Essent Oil Bear Plants 2005;8:154-8.
31. Foroughi A, Pourmaghi P, Najafi F, Zangeneh MM, Zangeneh A, Moradi R. Chemical composition and antibacterial properties of Chenopodium botrys L. Essential oil. Int J Pharm Phytochem Res 2016;8:1881-5.
32. Jardim CM, Jham GN, Dhingra OD, Freire MM. Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L. J Chem Ecol 2008;34:1213-8.
33. Bai CQ, Liu ZL, Liu QZ. Nematicidal constituents from the essential oil of Chenopodium ambrosioides aerial parts. E J Chem 2011;8:S143-8.
34. Kobaa K, Catherine G, Raynaud C, Chaumont JP, Senda K, Laurence N. Chemical composition and cytotoxic activity of Chenopodium ambrosioides L. Essential oil from Togo. Bangladesh. J Sci Ind Res 2009;44:435-40.
35. Tzakou O, Pizzimenti A, Pizzimenti FC, Sdrafkakis V, Galati EM. Composition and antimicrobial activity of Chenopodium botrys L. Essential oil from Greece. J Essent oil Res 2006;19:292-4.
36. Morteza-Sennani K, Babanezhad E. Essential oil composition of Chenopodium botrys L. from Iran. J Essent Oil Bear Plants 2007;10:314-7.
37. Feizbakh SH, Sedaghat S, Tehrani MS, Rustaiyan A. Chemical composition of essential oils of Chenopodium botrys L. From two different locations in Iran. J Essent Oil Res 2003;15:193-4.
38. Mahboubi M, Bidgoli FG, Farzin N. Chemical composition and antimicrobial activity of Chenopodium botrys L. Essential oil. J Essent Oil Bear Plants 2011;14:498-503.
39. Jia-Liang W, Dan-Wei M, Ya-Nan W, Hong Z, Bing H, Qun L, et al. Cytotoxicity of essential oil of Chenopodium ambrosioides L against human breast cancer MCF-7 cells. Trop J Pharm Res 2013;12:929-33.