Estrogen – serotonin interaction and its implication on insulin resistance

Zulvikar Syambani Ulhaq

Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, Indonesia

ABSTRACT

Introduction: Metabolic disease, including diabetes mellitus (DM), is a major burden worldwide. Obesity and insulin resistance (IR) are closely associated with DM. The action of estrogen and serotonergic neurons are known to improve insulin sensitivity and glucose homeostasis. Therefore, this report provides a comprehensive review focuses on the interaction between estradiol (E2) produced in the brain and serotonergic neurons in the development of IR.

Methods: A literature review. Relevant studies were thoroughly reviewed and summarized to review a possible association between neuroestrogen and serotonin signaling in the development of IR.

Results: DM is a common endocrine disease characterized by hyperglycemia. Evidence indicates that DM is strongly associated with IR. Previously, it has been reported that brain E2 modulates serotonergic neurons. Interestingly, both E2 and serotonergic neurons are known to regulate insulin secretion and sensitivity through the central mechanism. This review highlights the importance of understanding the possible mechanisms of neuroestrogen – serotonergic neurons in modulating insulin sensitivity.

Conclusion: Taken together, brain E2 possibly acts independently through estrogen receptor (ER) expressed in the hypothalamus or by stimulating serotonergic neurons to improve insulin sensitivity.

1. Introduction

The prevalence of type 2 diabetes mellitus (T2DM) has been rising rapidly, particularly in low and middle-income countries [1]. A recent report from WHO indicates the number of patients with T2DM is almost double in the last three decades [1]. Indeed, the incidence of T2DM linearly increases with obesity and aging [2,3], reflecting an increase of associated factors responsible for developing T2DM. T2DM is a chronic metabolic disease characterized by insulin insufficiency [4,5]. However, it is well documented that T2DM is closely related to severe IR [6]. IR is known as a poor predictive factor [7] and correlated with cognitive impairment in patients with T2DM [8,9]. Therefore, understanding IR mechanisms are the key feature in treating T2DM.

E2 is a sex steroid hormone with diverse actions, it is not only limited to the reproductive system but also responsible for regulating brain development and functions [10,11]. Besides, E2 is involved in glucose homeostasis, regulating insulin sensitivity and resistance [12,13]. A cohort study confirmed that prolonged E2 treatment in menopausal women may reduce the incidence of T2DM [14]. Consistently, menopausal women treated with E2 prevent the incidence of T2DM [15,16]. E2 mediates its effects through genomic and non-genomic pathways. Distribution of ERα in glucoregulatory tissues is more abundant than ERβ [17], suggesting that ERα plays a primary role in regulating insulin and glucose metabolism. Indeed, ERα knockout (KO) mouse displayed the imbalance of energy metabolism and IR [17,18]. On the other hand, membranes ER and G protein-coupled estrogen receptor (GPER) that activate downstream signaling pathways of E2 via protein kinases mediate rapid action in modulating glucose homeostasis [13,19]. However, by which mechanism E2 regulates insulin and glucose metabolisms are complex and remain elusive.

Serotonin (5-HT) is a neurotransmitter synthesized from tryptophan by the action of tryptophan hydroxylase (TPH) enzyme [11]. The role of brain serotonin is widely known in several physiological functions, including insulin and glucose metabolism [20,21]. Ablation of the brain 5-HT (Pet-1+) neurons in the mouse exhibited low insulin level and hyperglycemia [20], providing the information that defective central 5-HT functions may associate with the impairment of insulin signaling leading on the development of diabetes. Recently, it is reported that neuroestrogen regulates 5-HT neurons in zebrafish brain [11], suggesting a possibility that modulation of E2 on glucose metabolism is 5-HT-dependent or independent. Therefore, this short review will comprehensively discuss the interaction between E2 – 5-HT in...
regulating glucose metabolism, particularly focusing on the possible mechanisms E₂ – 5-HT influence on insulin sensitivity.

2. Relationship of estrogen and serotonin on insulin and glucose homeostasis

Estrogen is a female sex steroid hormone that plays important roles in both reproductive and non-reproductive functions [22]. E₂, as a predominant form of estrogen, is synthesized by P450 aromatase (Aro) enzyme from testosterone (T) [11,22]. Early ontogeny of Aro is detected as early as embryonic day 9 (E9) with the optimal peak at E13–14 in mouse brain [23]. Similarly, high expression of brain aromatase (AroB) is detected at 48 hours post-fertilization (hpf) in zebrafish, indicating that locally produced E₂ in the brain is necessary for brain development and functions [24]. Expression of Aro in the brain is mainly localized in the amygdala, preoptic area, and hypothalamus [25,26]. While Aro is detected in the neuron and glial cells in mammals [27], fish Aro (brain type, AroB) only detected in glial cells, which later able to differentiate into neurons [28].

Previously, it is reported that healthy male treated with anastrozole (aromatase inhibitor, AI) for 6 weeks with 2 weeks washout periods exhibited a reduction of peripheral insulin sensitivity [29]. Indeed, homeostasis model assessment-insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) confirmed that the administration of E₂ improved insulin sensitivity in male patients with aromatase deficiency [30]. However, it seems that the low level of E₂ is not the only factor in developing IR, rather than the ratio between E₂ and T [30]. Similarly, mice lacking Aro (ArKO) displayed glucose intolerance and IR [31] and E₂ enhanced insulin sensitivity by stimulating phosphorylation levels of protein kinase B (Akt), downstream signaling pathways of insulin [32].

E₂ signaling effects are mediated by ERs, which are broadly distributed throughout the brain [33]. Both ERs (ERα and ERβ) are detectable in the mouse brain from E10.5–16.5 [34]. Hypothalamus as central of energy metabolism mainly expressed ERα, especially in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) [35]. A genetic study utilizing ERαKO and ERβKO shows that IR is observed only in mouse losing ERα but not ERβ [36–38], although administration of WAY200070 (ERβ agonist) improved glucose and insulin sensitivity by stimulating endogenous insulin secretion and pancreatic β-cell mass [39]. Further, several studies provide an important finding that non-nuclear ERs (GPER and membrane ERα) also determine the development of IR [40,41]. Collectively, these results suggest that there is a complex mechanism of E₂ regarding IR, which remained to be elucidated.

5-HT is synthesized in serotonergic producing cells from tryptophan by tryptophan hydroxylase (TPH) in both peripheral tissue and brain [42]. There are two isoforms of TPH, TPH1 and TPH2, which are exclusively expressed in the enterochromaffin cells and raphe, respectively [43,44]. The physiological actions of 5-HT are mediated by numerous 5-HT receptors (5-HTRs) and its transporter (5-HT transporter, SERT) [45]. Such various types of 5-HTR, only 5-HT₂A-R and 5-HT₂C-R are mainly expressed in the central nervous system (CNS) [45]. Raphé serotonergic neurons are generated during E11–E15 in rodents [46]. Because 5-HT does not cross the blood-brain barrier [42,47], locally produced 5-HT seems to have a specific function in those tissues. Although both peripheral and central 5-HT contributed in modulating metabolic homeostasis [42]. However, several lines of evidence indicate that central 5-HT system predominantly controls glucose homeostasis [21,48,49].

Fat pad and food intake reduction are observed in Tph2−/− [50], although high-calories food intake is reported by other investigators [51]. On another hand, obese mice are documented in Tph2−/− [50], suggesting that the effects of 5-HT deficiency on body weight and food intake vary. Nonetheless, these changes implicating dysregulation glucose turnover. Mutant mice slc6a4−/−, which exhibited a low level of brain 5-HT content displayed obesity, hyperglycemia, decreased glucose tolerance and insulin sensitivity [52–54]. Interestingly, such effects are caused by the suppression of cyp19a1 (aromatase gene) and insulin-induced-AKT activity [53,54]. Involvement of 5-HTR in regulating energy metabolism is well documented. Heisler et al reported that stimulation of 5-HT₁B-R promotes satiety [47], while treatment with 5-HT₂C-R agonist improves glucose homeostasis by upregulating pro-opiomelanocortin (POMC) neuron [55]. In agreement, deletion of the gene encoding 5-HT₂C-R induced the development of IR and T2DM [55].

How brain E₂ and 5-HT influence insulin and glucose homeostasis? As Aro is expressed in the brain, particularly in hypothalamus, E₂ produced in the brain likely controls glucose homeostasis through central mechanism (Figure 1). A subset of neurons in the hypothalamic arcuate nucleus (ARC), POMC and neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons are a target of E₂ signaling, as these neurons expressed ERs [18,56]. Although a study by Olofsson et al showed there is no co-localization of ERα within NPY/AgRP neurons [57]. α-melanocyte stimulating hormone (α-MSH) and NPY/AgRP secreted by POMC neurons and NPY/AgRP neurons, respectively [18]. Administration of E₂ has been shown to upregulate POMC expression [58], and at the same time, E₂ increases α-MSH and decreases NPY immunoreactivity in ARC [59]. Also, activation of ER in POMC neurons enhanced the release of glutamate.
to facilitate inhibitory action on NPY/AgRP neurons [60]. The anorexic effect is observed when melano-
cortin receptor type 4 (MC4R) in paraventricular hypothalamus (PVH) is stimulated by α-MSH, while
the orexigenic effect is mediated by NPY/AgRP [18,61]. Thus, E2 appears to modulate POMC and
NPY/AgRP neurons to control satiety.

It seems direct actions of E2 on MC4R expressing
neurons are observed in PVH, as single-minded-1
(SIM-1) neurons expressed the abundant level of ERα
[62]. In fact, deletion of ERα from SIM-1 neurons
induced obesity [63]. However, another study con-
firmed that disruptions of MC4R did not influence the
effects of E2 on food intake and energy expenditure [62].
Activation of PVH area by E2 mediates peripheral symp-
pathetic activity, probably directly through MC4R
expressing neurons or indirectly through POMC and
NPY/AgRP neurons [64–66]. As POMC neurons pro-
jected its axons to sympathetic and parasympathetic
preganglionic neurons in intermediolateral nucleus
(IML) and dorsal motor vagal nucleus (DMV), respec-
tively, E2 possibly at the same time increases peripheral
insulin sensitivity through sympathetic pathways and
decreases insulin secretion through parasympathetic
pathways [67].

Similar to E2, the serotonergic neurons are also con-
sidered as one of the factors regulating glucose metabo-
lism [20,21]. 5-HT axons are projected from raphe to
hypothalamus [48], and it has been reported that 5-HT1B
R is detected in NPY/AgRP and mouse hypothalamic-2/
30 (mHypoA-2/30), expressing a PVN-speci-
car marker [47,68], while 5-HT2C-R expressed in POMC neurons
[47]. 5-HT agonist, D-fenfluramine (d-FEN), is known
to stimulate the release of 5-HT and activate 5-HT2C
R located on POMC neurons, which in turn could med-
iate anorectic effects through MC4R [69]. In parallel, the
administration of selective 5-HT1B agonists CP94253
showed that 5-HT mediates the inhibition of AgRP
release, but also at the same time decreases inhibitory input onto POMC neurons, as consequence 5-HT facilitates the release of α-MSH [47]. Furthermore, through 5-HT₂C-R, 5-HT stimulates sympathetic preganglionic neurons via MC4R resulting in the improvement of glucose tolerance and insulin action [55]. Thus, the central action of 5-HT is an important factor in modulating insulin and glucose metabolism. Recently, it has been documented that E₂ produced in the brain modulates serotonergic neurons in developing zebrafish [11], which is possibly mediated by ERβ as previously reported in mammals (Figure 1) [70,71]. On another hand, upregulation of cyp19a1 by 5-HT₃,R is observed in BeWo and JEG-3 choriocarcinoma cells [72], indicating that there is a close relationship between Aro and serotonergic neuron, although the effect of 5-HT on the brain Aro is yet to be reported. Therefore, the action of central 5-HT in modulating insulin and glucose metabolism might be dependent on E₂. Taken together, E₂ in the brain contributes to the regulation of glucose homeostasis independently through ERs or dependent on central 5-HT. Combination of E₂ and 5-HT treatment might be useful to provide a novel treatment for T2DM, though more detailed examination needs to be verified.

Disclosure statement
No potential conflict of interest was reported by the author.

Notes on contributor
Zulvikar Syambani Ulhaq is a lecturer at the Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Indonesia. His current interests are neuroestro- gen and neuro-ophthalmology.

ORCID
Zulvikar Syambani Ulhaq http://orcid.org/0000-0002-2659-1940

References
[1] WHO. Global report on diabetes; 2016. Accessed 16 July 2019. Available from: https://www.who.int/diabetes/global-report/en/
[2] Chen Y, Zhang XP, Yuan J, et al. Association of body mass index and age with incident diabetes in Chinese adults: a population-based cohort study. BMJ Open. 2018;8(9):e021768.
[3] Selvin E, Farrinello CM. Age-related differences in glycaemic control in diabetes. Diabetologia. 2013;56(12):2549–2551.
[4] Lebovitz HE. Type 2 diabetes: an overview. Clin Chem. 1999;45(8 Pt 2):1339–1345.
[5] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81–90.
[6] Church TJ, Haines ST. Treatment approach to patients with severe insulin resistance. Clin Diabetes. 2016;34(2):97–104.
[7] Goldfine AB, Bouché C, Parker RA, et al. Insulin resistance is a poor predictor of type 2 diabetes in individuals with no family history of disease. Proc Natl Acad Sci USA. 2003;100(5):2724–2729.
[8] Ma L, Wang J, Li Y. Insulin resistance and cognitive dysfunction. Clin Chim Acta. 2015;444:18–23.
[9] Hamer JA, Testani D, Mansur RB, et al. Brain insulin resistance: a treatment target for cognitive impairment and anhedonia in depression. Exp Neurol. 2019;315:1–8.
[10] McCarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88(1):91–124.
[11] Ulhaq ZS, Kishida M. Brain aromatase modulates serotonergic neuron by regulating serotonin levels in zebrafish embryos and larvae. Front Endocrinol. 2018;9:230.
[12] Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34(3):309–338.
[13] Gupte AA, Pownall HJ, Hamilton DJ. Estrogen: an emerging regulator of insulin action and mitochondrial function. J Diabetes Res. 2015;2015:916585.
[14] Mauvais-Jarvis F. Is estradiol a biomarker of type 2 diabetes risk in postmenopausal women? Diabetes. 2017;66(3):568–570.
[15] Khoo CL, Perera M. Diabetes and the menopause. J Br Menopause Soc. 2005;11(1):6–11.
[16] Mauvais-Jarvis F, Manson JE, Stevenson JC, et al. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms, and clinical implications. Endocr Rev. 2017;38(3):173–188.
[17] Hevener AL, Clegg DJ, Mauvais-Jarvis F. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome. Mol Cell Endocrinol. 2015;418(PT 3):306–321.
[18] Xu Y, López C. Central regulation of energy metabolism by estrogens. Mol Metab. 2018;15:104–115.
[19] Sharma G, Mauvais-Jarvis F, Prossnitz ER. Roles of G protein-coupled estrogen receptor GPER in metabolic regulation. J Steroid Biochem Mol Biol. 2018;176:31–37.
[20] McGlashon JM, Gorecki MC, Kozlowski AE, et al. Central serotonergic neurons activate and recruit thermoergic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metab. 2015;21(5):692–705.
[21] Pissios P, Maratos-Flier E. More than satiety: central serotonin signaling and glucose homeostasis. Cell Metab. 2007;6(5):345–347.
[22] Li R, Cui J, Shen Y. Brain sex matters: estrogen in cognition and Alzheimer’s disease. Mol Cell Endocrinol. 2014;389(1–2):13–21.
[23] Yilmaz MB, Zhao H, Brooks DC, et al. Estrogen receptor alpha (Esr1) regulates aromatase (Cyp19a1) expression in the mouse brain. Neuro Endocrinol Lett. 2015;36(2):178–182.
[24] Kishida M, Callard GV. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology. 2001;142(2):740–750.
[25] Lauber ME, Lichtensteiger W. Pre- and postnatal ontogeny of aromatase cytochrome P450 messenger ribonucleic acid expression in the male rat brain studied by in situ hybridization. Endocrinology. 1994;135(4):1661–1668.
[26] Balhazart J, Foidart A, Harada N. Immunocytochemical localization of aromatase in the brain. Brain Res. 1990;514(2):327–333.

[27] Roselli CE, Liu M, Hurn PD. Brain aromatization: classic roles and new perspectives. Semin Reprod Med. 2009;27(3):207–217.

[28] Mouriec K, Pellegrini E, Anglade I, et al. Synthesis of estrogens in progenitor cells of adult fish brain: evolutive novelty or exaggeration of a more general mechanism implicating estrogens in neurogenesis? Brain Res Bull. 2008;75(2–4):274–280.

[29] Gibb FW, Homer NZ, Faeqhi AM, et al. Aromatase inhibition reduces insulin sensitivity in healthy men. J Clin Endocrinol Metab. 2016;101(5):2040–2046.

[30] Rochira V, Madeo B, Zirilli L, et al. Oestradiol replacement treatment and glucose homeostasis in two men with congenital aromatase deficiency: evidence for a role of oestradiol and sex steroids imbalance on insulin sensitivity in men. Diabet Med. 2007;24(12):1491–1495.

[31] Takeda K, Toda K, Saibara T, et al. Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. J Endocrinol. 2003;176(2):237–246.

[32] Toda K, Toda A, Ono M, et al. Lack of 17β-estradiol reduces sensitivity to insulin in the liver and muscle of male mice. Helicon. 2018;4(9):e00772.

[33] Sugiyama N, Andersson S, Lathé R, et al. Spatiotemporal dynamics of the expression of estrogen receptors in the postnatal mouse brain. Mol Psychiatry. 2009;14(2):223–232, 117.

[34] Lemmen JG, Broekhof JL, Kuiper GG, et al. Expression of estrogen receptor alpha and beta during mouse embryogenesis. Mech Dev. 1999;81(1–2):163–167.

[35] Liu X, Shi H. Regulation of estrogen receptor α expression in the hypothalamus by sex steroids: implication in the regulation of energy homeostasis. Int J Endocrinol. 2015;2015:949085.

[36] Manrique C, Lastra G, Habibi J, et al. Loss of estrogen receptor α signaling leads to insulin resistance and obesity in young and adult female mice. Cardiorenal Med. 2012;2(3):200–210. 00303956.

[37] Hevener AL, Zhou Z, Moore TM, et al. The impact of ERα action on muscle metabolism and insulin sensitivity - Strong enough for a man, made for a woman. Mol Metab. 2018;15:20–34.

[38] Ohlsson C, Hellberg N, Parini P, et al. Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem Biophys Res Commun. 2000;278(3):640–645.

[39] Alonso-Magdalena P, Ropero AB, Garcia-Arévalo M, et al. Antidiabetic actions of an estrogen receptor β selective agonist. Diabetes. 2013;62(6):2013–2025.

[40] Sharma G, Hu C, Brigman JL, et al. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology. 2013;154(11):4136–4145.

[41] Allard C, Morford JI, Xu B, et al. Loss of nuclear and membrane estrogen receptor-α differentially impairs insulin secretion and action in male and female mice. Diabetologia. 2019;62(3):490–501.

[42] El-Merabbi R, Löfler M, Mayer A, et al. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015;589(15):1728–1734.

[43] Shi H, Cui Y, Qin Y. Discovery and characterization of a novel tryptophan hydroxylase 1 inhibitor as a prodrug. Chem Biol Drug Des. 2018;91(1):202–212.

[44] Patel PD, Pontrello C, Burke S. Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland. Biol Psychiatry. 2004;55(4):428–433.

[45] Oh CM, Park S, Kim H. Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab J. 2016;40(2):89–98.

[46] Donovan SL, Mamounas LA, Andrews AM, et al. GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci. 2002;22(9):3543–3552.

[47] Heisler LK, Jobst EE, Sutton GM, et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron. 2006;51(2):239–249.

[48] Oury F, Karseenty G. Towards a serotonin-dependent leptin roadmap in the brain. Trends Endocrinol Metab. 2011;22(9):382–387.

[49] Yadav VK, Oury F, Suda N, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–989.

[50] Gutknecht L, Araragi N, Merker S, et al. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification. PLoS One. 2012;7(8):e43157.

[51] van Lingen M, Sidorova M, Alenina N, et al. Lack of brain serotonin affects feeding and differentiation of newborn cells in the adult hypothalamus. Front Cell Dev Biol. 2019;7:65.

[52] Murphy DL, Lesch KP. Targeting the murine seroton transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9(2):85–96.

[53] Zha W, Ho HTB, Hu T, et al. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci Rep. 2017;7(1):1137.

[54] Chen X, Margolis KJ, Gershon MD, et al. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake. PLoS One. 2012;7(3):e32511.

[55] Zhou L, Sutton GM, Rochford JJ, et al. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab. 2007;6(5):398–405.

[56] Titolo D, Cai F, Belsham DD. Coordinate regulation of neuropeptide Y and agouti-related peptide gene expression by estrogen depends on the ratio of estrogen receptor (ER) alpha to EBrbeta in clonal hypothalamic neurons. Mol Endocrinol. 2006;20(9):2080–2092.

[57] Olofsson LE, Pierce AA, Xu AW. Functional requirement of AgRP and NPY neurons in ovarian cycle-dependent regulation of food intake. Proc Natl Acad Sci USA. 2009 Sep 15;106(37):15932–15937.

[58] Sanathara NM, Moreas J, Mahavongtrakul M, et al. Estradiol upregulates progestosterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat. Neuroendocrinology. 2014;100(2–3):103–118.

[59] Rebouças EC, Leal S, Sá SL. Regulation of NPY and α-MSH expression by estradiol in the arcuate nucleus of Wistar female rats: a stereological study. Neurol Res. 2016;38(8):740–747.
[60] Stincic TL, Grachev P, Bosch MA, et al. Estradiol drives the anorexigenic activity of proopiomelanocortin neurons in female mice. eNeuro. 2018 Oct 10;5(4):pii: ENEURO.0103–18.2018.

[61] Morton GJ, Schwartz MW. The NPY/AgRP neuron and energy homeostasis. Int J Obes Relat Metab Disord. 2001;25(Suppl 5):S56–S62.

[62] Xu P, Zhu L, Saito K, et al. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction. Metabolism. 2017;70:152–159.

[63] Xu P, Cao X, He Y, et al. Estrogen receptor-α in medial amygdala neurons regulates body weight. J Clin Invest. 2015;125(7):2861–2876.

[64] Liu J, Bisschop PH, Eggels L, et al. Intrahypothalamic estradiol regulates glucose metabolism via the sympathetic nervous system in female rats. Diabetes. 2013;62(2):435–443.

[65] Morgan DA, McDaniel LN, Yin T, et al. Regulation of glucose tolerance and sympathetic activity by MC4R signaling in the lateral hypothalamus. Diabetes. 2015 Jun;64(6):1976–1987.

[66] Xu Y, Nedungadi TP, Zhu L, et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 2011;14 (4):453–465.

[67] Mountjoy KG. Functions for pro-opiomelanocortin-derived peptides in obesity and diabetes. Biochem J. 2010;428(3):305–324.

[68] Tung S, Hardy AB, Wheeler MB, et al. Serotonin (5-HT) activation of immortalized hypothalamic neuronal cells through the 5-HT1B serotonin receptor. Endocrinology. 2012 Oct;153(10):4862–4873.

[69] Heisler LK, Cowley MA, Tecott LH, et al. Activation of central melanocortin pathways by fenfluramine. Science. 2002 Jul 26;297 (5581):609–611.

[70] Donner N, Handa RJ. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. Neuroscience. 2009;163(2):705–718.

[71] Hiroi R, Handa RJ. Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element in the 5′ untranslated region. J Neurochem. 2013;127(4):487–495.

[72] Klempan T, Hudon-Thibeault AA, Oufkir T, et al. Stimulation of serotoninergic 5-HT2A receptor signaling increases placental aromatase (CYP19) activity and expression in BeWo and JEG-3 human choriocarcinoma cells. Placenta. 2011;32(9):651–656.