Development of a multiplex PCR assay for simultaneous detection of *Theileria annulata*, *Babesia bovis* and *Anaplasma marginale* in cattle

Huseyin B. Bilgiç a,⇑, Tülin Karagenç a, Martin Simuunza c, Brian Shiels b, Andy Tait b, Hasan Eren a, William Weir b,✉

a Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Izmir Mevki, 09016, Aydın, Turkey
b Institute of Infection, Immunity and Inflammation, Henry Wellcome Building, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH, UK
c Department of Disease Control, School of Veterinary Medicine, University of Zambia, 32379 Lusaka, Zambia

HIGHLIGHTS

► Novel multiplex PCR for *Theileria annulata*, *Babesia bovis* and *Anaplasma marginale*.
► Specific and sensitive tool which can be applied to epidemiological studies.
► Simple and efficient assay which has been validated using field samples.

Abstract

Tropical theileriosis, bovine babesiosis and anaplasmosis are tick-borne protozoan diseases that impose serious constraints on the health and productivity of domestic cattle in tropical and sub-tropical regions of the world. A common feature of these diseases is that, following recovery from primary infection, animals become persistent carriers of the pathogen and continue to play a critical role in disease epidemiology, acting as reservoirs of infection. This study describes development and evaluation of multiplex and single PCR assays for simultaneous detection of *Theileria annulata*, *Babesia bovis* and *Anaplasma marginale* in cattle. Following in silico screening for candidate target genes representing each of the pathogens, an optimised multiplex PCR assay was established using three primer sets, cytob1, MAR1bB2 and bovar2A, for amplification of genomic DNA of *T. annulata*, *A. marginale* and *B. bovis* respectively. The designed primer sets were found to be species-specific, generating amplicons of 312, 265 and 166 base pairs, respectively and were deemed suitable for the development of a multiplex assay. The sensitivity of each primer pair was evaluated using serial dilutions of parasite DNA, while specificity was confirmed by testing for amplification from DNA of different stocks of each pathogen and other *Theileria*, *Babesia* and *Anaplasma* species. Additionally, DNA preparations derived from field samples were used to evaluate the utility of the single and multiplex PCRs for determination of infection status. The multiplex PCR was found to detect each pathogen species with the same level of sensitivity, irrespective of whether its DNA was amplified in isolation or together with DNA representing the other pathogens. Moreover, single and multiplex PCRs were able to detect each species with equal sensitivity in serially diluted DNA representing mixtures of *T. annulata*, *B. bovis* and *A. marginale*, and no evidence of non-specific amplification from...
1. Introduction

Tick-borne diseases (TBD) pose major problems for the health and management of domestic cattle in tropical and subtropical regions of the world (Jongejan and Uilenberg, 1994). Among these diseases, tropical theileriosis, bovine babesiosis and anaplasmosis are among the most economically important (Callow 1984; Georges et al., 2001; Gubbels et al., 1999). Losses directly attributed to TBD include mortality, production losses together with the costs of veterinary diagnosis/treatment and tick control (Jonsson et al., 2008). Tropical theileriosis, caused by the protozoan parasite Theileria annulata, is widespread in North Africa, Southern Europe, India, the Middle East and Asia (Purnell, 1978). The disease is transmitted by several species of ixodid ticks within the genus Hyalomma (Robinson, 1982). Bovine babesiosis, caused by the protozoan species Babesia bigemina and B. bovis, is mainly transmitted by Boophilus (Rhipicephalus) ticks, although other tick species, such as Rhipicephalus (Boophilus) evertsi, R. bursa, Ixodes rictinus and Ixodes persulcatus can also transmit infection (Estrada-Peña et al., 2004; Friedhoff, 1988). Bovine babesiosis caused by B. bovis has been reported to be more severe than that caused by B. bigemina (Callow, 1984).

Bovine anaplasmosis is a tick-borne disease of cattle and wild ruminants caused by the rickettsial haemoparasite, Anaplasma marginale. The disease occurs in many parts of the world including North and South America, Africa, the Caribbean, Russia, European countries bordering the Mediterranean and the Middle and Far East. The disease is transmitted biologically by ixodid ticks and, in contrast to the other protozoan pathogens, may also be transmitted mechanically by biting flies or blood-contaminated fomites (Kocan et al., 2000). The distributions of T. annulata, B. bovis and A. marginale overlap in some geographical regions and all three pathogens are reported in a number of countries including Israel, Sudan, Egypt and China. This situation is known to occur in western Turkey where, in particular, tropical theileriosis has been shown to be prevalent (Aysul et al., 2008; Ilhan, 1999).

The pathogens that cause TBDs are often found together within a single host (Georges et al., 2001; Gubbels et al., 1999; Simuunza et al., 2011). Clinical signs, such as fever, anorexia, weight loss, reduced milk production, anaemia and icterus are commonly associated with these diseases and clinical examination of affected animals alone may not reveal the underlying pathogen species. Laboratory diagnosis in cattle is largely based on the microscopic examination of peripheral blood smears for the presence of intra-erythrocytic bodies. Parasites may be distinguished on the basis of morphological properties and this may be augmented by examining lymph node biopsy smears, particularly for the detection of T. annulata macroschizonts (Anon, 1997; Callow, 1984). However, a common feature of these diseases is that, following recovery from primary infection, animals become persistent carriers of the disease for an extended period of time (Callow, 1984; Neitz, 1957) and, in the case of A. marginale, this may be life-long (Kocan et al., 2000). It is difficult to detect infection using stained blood smears of carrier animals as the level of the pathogen is normally too low in the bloodstream (Figueroa et al., 1993). However, detection is important, as carrier animals play a critical role in epidemiology of TBD since they serve as reservoirs of infection for naive ticks and introduction of disease to new regions.

Current serological assays such as the immunofluorescent antibody test (IFAT), used for the diagnosis of Theileria, Babesia and Anaplasma, suffer from the drawback that cross-reactivity of antibodies between species can obscure test specificity and pathogen identification (Burridge et al., 1974; Kiltz et al., 1986; Kocan et al., 2000; Molad et al., 2006). Moreover, serological tests, such as the enzyme-linked immunosorbent assay (ELISA), may lack sufficient sensitivity to detect evidence of infection in samples from cattle harbouring low parasite burdens. This has important implications for disease control, since outbreaks may occur when carrier cattle, which have been incorrectly diagnosed as being clear of infection, are transported to non-endemic areas.

Although individual PCR assays designed to detect single species one at a time are effective, they can be time consuming and expensive when applied to a large number of samples that may be co-infected with a number of pathogen species. The reverse line blot (RLB) has overcome this problem to a large extent by allowing simultaneous detection of multiple species of pathogen in a sample (Georges et al., 2001; Gubbels et al., 1999). However, RLB requires expertise and specialised equipment and the protocol is very labour-intensive. Therefore, there is a need for a single, lower-cost and technically less demanding method that could differentially detect pathogens for diagnostic and epidemiological assessment of TBD in endemic regions. Multiplex polymerase chain reaction (mPCR) is a variant of PCR in which two or more target loci for one or more organisms are amplified using a mixture of locus-specific primer pairs in a single reaction (Edwards and Gibbs, 1994; Henegarriu et al., 1997; Markoulatos et al., 2002). Thus, multiplex PCR offers a significant advantage over single-species detection systems for assessment of co-infection in a large number of samples. Indeed, mPCR assays have been shown to be valuable in field studies for the detection of viruses (Heredia et al., 1996; Markoulatos et al., 2000), bacteria (Courtney et al., 2004; Hendolit et al., 1997) and parasites, including haemoparasites and nematodes (Figueroa et al., 1993, 1996, 1998; Harris et al., 1998; Zarlenaga et al., 2001). The present study describes the development of a mPCR assay for simultaneous detection of T. annulata, B. bovis and A. marginale in cattle-derived blood samples and evaluates its use compared to the respective single component PCR assays.

2. Materials and methods

2.1. Parasite material

A number of Theileria, Babesia and Anaplasma species were used for initial specificity screening of designed primers (see Supplementary data Table 1). These included a T. parva isolate from Kenya, an isolate of T. orientalis (formerly T. sergenti) from Japan, an isolate of T. lestoquardi from Iran and twelve T. annulata isolates: T. annulata (Ankara/D7) clonal cell line derived from T. annulata Ankara (Shiels et al., 1992) and eleven other isolates of T. annulata from Turkey, Tunisia, Iran, Sudan, Morocco, Israel and India. Nine B. bovis isolates were from countries as diverse as Mexico, South Africa, Australia, Israel and Turkey together with one isolate of B.
bigemina from Kenya and one of Theileria equi. Anaplasma was represented by three isolates of A. marginale (including the St. Maries genome strain), one of A. centrale (Turkey) and one of A. phagocytophila. The material used in the study was chosen to represent a combination of isolates from a limited area and also from distant geographical areas so as to maximise the power for detecting and then excluding PCR primer pairs that showed a lack of specificity or an inability to amplify multiple isolates during the development of the mPCR assay.

A total of 73 blood samples were collected from a mixture of healthy cattle and clinical cases in the Aydın area of western Turkey where T. annulata, B. bovis and A. marginale are known to be endemic.

This material was used to evaluate the utility of the single and multiplex PCR protocols to amplify parasite DNA derived from bovine field samples. DNA was extracted from 100 µl blood samples using the Promega Wizard genomic DNA extraction kit (Madison, WI, USA) following the manufacturer’s instructions. Extracted DNA was re-suspended in 35 µl rehydration buffer and stored at −20 °C.

2.2. GenBank accession numbers and sequence resources

The GenBank accession numbers for the cytochrome b gene of different parasite species are as follows: XM949625.1 (T. annulata), Z23263.1 (Theileria parva), EU073182.1 (Babesia bovis) and AI039354.1 (Babesia bigemina). The A. marginale major surface protein (msp) 1α accession numbers are AY84153 and M59845. Multiple sequences were available for the B. bovis variant erythrocyte surface antigen–1 α subunit encoding gene and these were obtained from the Tick-borne Pathogen Genome Resources CD-ROM v1 (ICTTD–3) and the online pathogen genomic resource http://www.genedb.org.

2.3. Primer sequences

Putative multi-copy gene families were bioinformatically identified from available genomic databases to select suitable targets for PCR amplification of B. bovis and A. marginale DNA. In the case of T. annulata, the cytochrome b gene was selected and cytob1 primer set (Forward: 5′-ACT TGCC GTA ATG TTA AAC–3′/Reverse: 5′-CTCTGGACCACCCTGTTGG–3′) was used to amplify a 312 bp variable region as previously described (Biligic et al., 2010). For the detection of A. marginale, the MAR1bB2 primer set (Forward: 5′-GGCTCTGATGGTACACCATCT–3′/Reverse: 5′-CTGTCTGGAGAGATGCCACC–3′) was designed to specifically amplify a 265 bp region of the major surface protein–1α encoding gene. For B. bovis, the bovar2A primer set (Forward: 5′-CAA CACCACAGCTGGTGGCTG–3′/Reverse: 5′-ACC CAGACACCTAGCTG–3′) was designed to amplify a 166 bp region of the multi-copy VESA–1α gene. Each set of primer pairs was checked for specificity using the BLASTN algorithm in conjunction with the NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Primer melting temperatures (Tm) were predicted and the potential for self-annealing, i.e. hair-pin loop and primer-dimer formation, were bioinformatically tested using oligonucleotide analyser software 1.0.2 (http://www.uku.fi/kuulasma/OligoSoftware).

2.4. Single and multiplex PCR

The PCR primer sets Cytob1, MAR1bB2 and bovar2A were validated individually in order to determine their specificity. Each single PCR reaction was performed in a final volume of 50 µl containing 10 mM Tris–HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 0.001% gelatin, 250 µM of each deoxynucleotide triphosphate (dNTP), 1 U of AmpliTaq DNA polymerase (Applied Biosystems, Tokyo, Japan), 10 µM of each primer and 2 µl of template DNA. The reactions were performed using an automatic thermal cycler (Techne). Reaction conditions comprised an initial denaturation step of 94 °C for 3 min followed by 30 cycles of denaturation (95 °C for 50 s), primer annealing (50 °C for 50 s) and extension (65 °C for 1 min). A final extension at 65 °C for 10 min was performed. For each reaction, 10 µl of PCR product was electrophoresed on a 1.5% agarose gel containing 10 µl/ml ethidium bromide in Tris–acetate-EDTA (TAE) buffer at 100 V and visualised under UV light.

A multiplex PCR protocol was developed based on the study by Henegar et al. (1997). The optimised multiplex PCR was performed in a final volume of 50 µl containing 13 mM Tris–HCl (pH 8.3), 65 mM KCl, 2 mM MgCl₂, 0.0013% gelatin, 300 µM of each dNTP, 1 U of AmpliTaq DNA polymerase, 0.5 µM of each cytob1 primer, 0.2 µM of each MAR1bB2 primer and 0.4 µM of each bovar2A primer and 2 µl of template DNA. Reaction conditions comprised an initial denaturation step of 94 °C for 5 min followed by 30 cycles of denaturation (95 °C for 50 s), primer annealing (56 °C for 50 s) and extension (65 °C for 50 s). A final extension at 65 °C for 5 min was performed. For each reaction, 10 µl of PCR product was analysed by gel electrophoresis on a 2% agarose gel, as described above.

2.5. Sensitivity of single and multiplex PCR

To determine the detection limit of the single and multiplex PCRs, equal amounts (200 ng) of DNA from B. bovis vaccine strain T. A. marginale (St. Maries) and T. annulata (Ankara/D7) were used to create three individual series of 10-fold dilutions using distilled water. In addition, equal quantities of DNA representing these three species were mixed and 10-fold serially diluted in distilled water to evaluate the sensitivities of the single and multiplex PCR assays to amplify from samples containing mixed DNA templates. Single and multiplex PCR was performed using the optimised conditions described above.

2.6. Cloning and sequencing

Products of multiplex PCR amplification were separated on a 2% agarose gel and visualised with 10 µg of ethidium bromide under UV illumination. Fragments corresponding to the predicted amplions of 312 bp, 265 bp and 166 bp for T. annulata, A. marginale and B. bovis, respectively, were cut from the gel individually and purified using the QIAquick gel extraction kit (Qiagen, Germany). Purified products were then ligated into the pCR4–TOPO plasmid vector (Invitrogen) and cloned by transformation into TOP10 Escherichia coli cells, according to the manufacturer’s instructions. Single picked colonies were grown overnight and plasmids purified using the QIAGEN plasmid purification kit (Qiagen, Germany). To confirm plasmids contained the correct insert, 1 µg of purified plasmid DNA was digested with EcoRI and electrophoresed on a 1.5% agarose gel. Between 1 and 2 µg DNA was purified from positive colonies and sequenced by a commercial sequencing service (MWB Biotech, Germany).

3. Results

3.1. Target identification and primer design

The genome of A. marginale (1.2 Mb) is considerably smaller than those of T. annulata (8.35 Mb) and B. bovis (8.2 Mb) and contains fewer multi-copy genes (Brayton et al., 2005). The major surface protein 1 of A. marginale (MSP1) is a dimer consisting of two polypeptides, MSP1a encoded by msp1α and MSP1b encoded by
msplβ. msp1α is a single-copy gene which exhibits length polymorphism among different strains of the pathogen while msp1β corresponds to a multi-gene family, comprising two full-length and three partial open reading frames (Brayton et al., 2005). Both msp1α and msp1β contain domains of tandemly repeated sequence, although this is less pronounced in msp1β (Barbet and Allred, 1991). Two of the three partial msp1β genes were found to share 100% identity at the nucleotide level and consequently the MAR1bB2 primer set was designed to specifically amplify a 265 bp fragment of this sequence (see Supplementary data, Fig. 1B).

The B. bovis genome contains several multi-copy gene families including VESA1-encoding genes, SmORFs, variable merozoite surface antigen encoding genes, 40S ribosomal genes and ABC transporter family-encoding genes. Full-length and truncated forms of these sequences were represented in the available genomic databases. The ves1 genes comprise the largest family in the B. bovis genome (Brayton et al., 2007) and encode the VESA1β and VESA1ß subunits (Al Khedery and Allred, 2006). Genomic analysis identified 119 putative ves1 genes in B. bovis, namely 72 VESA1α-encoding genes, 43 VESA1ß-encoding genes and four unclassified genes (Brayton et al., 2007). Sequences of the genes encoding the 72 VESA1α were aligned to find a conserved region for PCR amplification. A 166 bp region, without any length polymorphism, was identified in 47 of the 72 VESA1α-encoding genes. The extremities of this region were reasonably well conserved and when sequences containing single nucleotide polymorphisms (SNPs) in these regions were removed, 24 sequences remained and these were used for designing the bovar2A primer set (see Supplementary data, Table 2). None of primer sets had a hairpin structure at the 3' end and the potential for primer-dimer formation between bovar2A forward and MAR1bB2 reverse primer was calculated to be 7.39 kcal/mol (data not shown). The bovar2A primers were not predicted to form loop structures and for the MAR1bB2 forward primer and cytob1 reverse primer the risk was low. The cytob1 forward primer and MAR1bB2 reverse primer were calculated to have the highest potential for self-annealing at −6.07 kcal/mol, respectively (see Supplementary data, Table 2).

3.2. Specificity of primer sets with single PCR

The specificity of cytob1, MAR1bB2 and bovar2A primer sets were investigated initially by single primer set PCR reactions (Fig. 1) using DNA from a total of twelve Theileria, Babesia and Anaplasma species and uninfected bovine DNA as a control. Fragments of expected size were generated from template DNA representing T. annulata (Aydın) (Fig. 1A, lane 12), A. marginale (Aydın) (Fig. 1B, lane 2) and B. bovis (Aydın) (Fig. 1C, lane 9) isolates using each of the species-specific primer sets, while non-target species

Fig. 1. Agarose gel electrophoresis of amplified DNA from different Theileria, Babesia and Anaplasma species using (A) cytob1, (B) MAR1bB2 (B) and (C) bovar2A primer sets. M, 100 bp molecular size marker (Invitrogen); lane 1, negative PCR control (water); 2, A. marginale; 3, A. centrale; 4, A. phagocytophila; 5, T. parva; 6, T. lestoquardi; 7, T. sergenti; 8, B. bigemina; 9, B. bovis; 10, T. equi; 11, uninfected bovine DNA; 12, T. annulata. Arrows indicate the 312, 265 and 166 base pair amplicons specifically generated using cytob1, MAR1bB2 and bovar2A primer sets, respectively.
DNA displayed no evidence of fragment amplification. This indicated that each primer set is capable of specifically amplifying the target locus in a single PCR reaction. Additionally, each primer set was tested against a number of isolates (supplementary data Table 1) of its target species and was shown to be able to generate fragments of the expected size from all isolates tested, with no evidence of length polymorphism (data not shown).

3.3. Sensitivity of single and multiplex PCR

The sensitivities of the single and multiplex PCR assays were evaluated using serially diluted DNA preparations. Starting with equal amounts of DNA from *B. bovis* vaccine strain *T. annulata* (St. Maries) and *T. annulata* (Ankara/D7), 10-fold serial dilutions were generated for DNA of each species individually and for a mixture representing all three species. As summarised in Table 1, the multiplex PCR was able to detect *T. annulata*, *A. marginale* and *B. bovis* at dilutions of 10\(^{-8}\), 10\(^{-7}\) and 10\(^{-5}\), with identical sensitivity for both single DNA and mixed DNA template dilutions. Agarose gel electrophoresis of mPCR assay of serial dilutions of a mixture of DNA from Fig. 2. since identical detection limits were observed when single PCR was used to assay mixed DNA serial dilutions (Table 1) there was no loss of sensitivity using the multiplex PCR method compared to the single PCR protocol. When the single PCR was used to amplify DNA dilutions representing each parasite species individually, the sensitivity of the assay increased to 10\(^{-10}\), 10\(^{-9}\) and 10\(^{-6}\) for *T. annulata*, *A. marginale* and *B. bovis*, respectively (Table 1).

3.4. Detection of mixed infections in field samples

Seventy–three blood samples from Aydın, Turkey were examined for infection with *T. annulata*, *A. marginale* and *B. bovis*, using both the single and multiplex PCR methods. A summary of the results is shown in Table 2. Out of the 73 samples, 51, 16 and 25 samples were found to be positive for *T. annulata*, *A. marginale* and *B. bovis*, respectively, using the single PCR assay. When the samples were assayed using the multiplex PCR, 39, 1 and 17 animals were found to have single infections with *T. annulata*, *A. marginale* and *B. bovis*, respectively. A further 4, 8 and 4 animals had multiple infections with *T. annulata*/*A. marginale*/*B. bovis*, *T. annulata*/*A. marginale*/*B. bovis*, and *A. marginale*/*B. bovis*, respectively. An example of the results obtained using multiplex PCR on field samples is illustrated in Fig. 3. Only minor differences were observed between the results of the single and multiplex assays with respect to co-infections. For example, two samples which were positive for both *T. annulata* and *A. marginale* by the single PCR (data not shown) showed different results for the multiplex PCR; one was positive for *T. annulata*, but negative for *A. marginale* while the other was found to be positive for *A. marginale*, but negative for *T. annulata*. In addition, multiplex PCR was able to detect a product for *A. marginale* in a sample that was negative when tested using the single PCR assay. Overall, the data from the field samples support the results of the serial DNA dilution experiment, indicating that the multiplex PCR method is capable of sensitively and specifically detecting single infections, although the multiplex method it is slightly less sensitive than the single PCR when applied to field samples.

3.5. Sequence analysis

The specificity of the multiplex PCR was confirmed by sequencing PCR amplicons of *T. annulata* (Turkey/D7), *A. marginale* (Turkey/Aydın) and *B. bovis* (Turkey/Aydın) strains generated using cytob1, MAR1bB2 and bovar2A primer sets, respectively. When the sequence of each amplified fragment was compared with reference sequences, the 312 bp cytob1 product showed 99% identity to cytochrome b of *T. annulata* and the 265 bp MAR1bB2 product was 100% identical to msp1b of *A. marginale* (see Supplementary data, Fig. 2A and B). Sequence derived from a single plasmid clone representing the 166 bp ampiclon generated using the bovar2A primer pair showed identities ranging between 81% and 93% with the published vesal1x sequences of *B. bovis* (alignment shown in Supplementary data, Fig. 2C).

4. Discussion

A number of tick-borne diseases including tropical theileriosis, bovine babesiosis and anaplasmosis cause important health and management problems, resulting in reduced productivity and economic losses in domestic cattle production systems worldwide (Callow, 1984; Georges et al., 2001; Gharbi et al., 2006; Gubbels et al., 1999; Jongejan and Uilenberg, 1994). Cattle that survive acute infection with *B. bovis* and/or *A. marginale* remain persistently infected and resistant to clinical disease (Brown et al., 2006; Kocan et al., 2000). These carrier animals serve as an important reservoir of infection for ticks that go onto transmit the infection to susceptible animals (Jonsson et al., 2008; Kocan et al., 2000). A long-lasting carrier stage with low numbers of piroplasm-infected erythrocytes also occurs following recovery from acute tropical theileriosis (Neitz, 1957). Importantly, outbreaks of these diseases occur when carrier cattle are transported to...
non-endemic areas. Therefore, a laboratory test capable of detecting carrier-state cattle would be a useful tool to help control these diseases. Multiplex PCR, in which target sequences of different organisms can be amplified simultaneously (Edwards and Gibbs, 1994; Henegariu et al., 1997; Markoulatos et al., 2002), has been shown to be a valuable tool for the identification of various pathogen species (Figueroa et al., 1993, 1996, 1998; Harris et al., 1998; Zarlenga et al., 2001). Identification of suitable target sequences, and optimisation of reaction conditions and the specificity of each primer set are among the issues to be resolved during development of an efficient multiplex PCR assay.

It is well established that PCR performance is, to an extent, proportional to the copy number of the target sequence in the genome. Accordingly, targeting of multi-copy loci is a suitable approach in the development of sensitive PCR assays (Biglic et al., 2010; Criadó et al., 2006). In the present study, we have targeted putative multi-copy gene families in the genomes of *B. bovis* and *A. marginale* (Brayton et al., 2005, 2007; Pain et al., 2005). In the case of *T. annulata*, the cytochrome b locus was selected. Although this gene is single copy in the mitochondrial genome, multiple copies of the mitochondrial genome are estimated to be present in each mitochondrion (Wiesner et al., 1992). We have recently demonstrated that cytochrome b of *T. annulata* provides a very sensitive and specific target gene for the detection of carrier animals in the field (Biglic et al., 2010). Previous studies on large multi-copy gene families in *T. annulata* (Sfi, Tar and SVSP genes) revealed that none of these gene families could provide a suitable target for amplification due to extensive nucleotide polymorphism among paralogous genes that display a high level of diversity within and between isolates (Biglic et al., 2010; Weir et al., 2010). Analysis of the mPCR-amplified 312 bp fragment from *T. annulata* revealed that it shared 99% identity with published genomic sequences of the cytochrome b gene (see Supplementary data, Fig. 2A), while in comparison, 74% identity was shared with the orthologous sequence in *Theileria parva* (data not shown). This demonstrates that the correct target gene has been amplified and indicates a high level of conservation across cytochrome b sequences within the species, as anticipated (Wilson and Williamson, 1997).

Previous studies indicate that *msp1* in the *A. marginale* genome is a sensitive and specific target for detection of infection both in ticks (Goff et al., 1988) and in cattle (Carelli et al., 2007; Goff et al., 1988; Molad et al., 2006). In the present study, the MAR1bB2 primer set was designed to specifically amplify a 265 bp conserved region within two *msp1* genes. The primer set successfully amplified all available stocks and the sequence of PCR amplified fragments was shown to be identical at the nucleotide level to two published *msp1* sequences (AY84153 and M59845) (see Supplementary data, Fig. 2B). These results suggest that the MAR1bB2 primers may be suitable to detect *A. marginale* isolates from various parts of the world. However, the sensitivity and specificity of these primers would require to be tested using a larger panel of isolates.

The *ves1* genes comprise the largest multi-copy gene family in the *B. bovis* genome and mining genomic databases revealed 119 *ves1* genes; 72a, 43b, and four unclassified (Brayton et al., 2007). Variant erythrocyte surface antigen 1 is a heterodimeric protein composed of alpha and beta subunits (Al Khedery and Allred, 1994) and may be under selective pressure (Allred et al., 2000) and may be under selective pressure
to diversify. The results of the present study suggest that the bo-
var2A primer set may be used to detect *B. bovis* in different geo-
graphic regions where the disease is endemic. Moreover, specif-
icity of each primer set was confirmed with single PCR using a series of DNA samples including *Theileria, Babesia* and *Anaplasma* species (see Section 2). No evidence of amplification from non-target species was observed (data not shown). Based on the species-specific nature of the amplified products and the ability to reproducibly generate ampli-
cons in mixed DNA samples, it was concluded that the primer sets in the present study were suitable for development of a multiplex
PCR assay to detect the pathogens causing tropical theileriosis, bo-
vine babesiosis and anaplasmosis. Further evidence of the assay’s
specificity was revealed in the field study, when only amplicons
of the expected size were generated.

The optimised multiplex PCR was able to specifically detect *T. annulata, B. bovis* and *A. marginale* from both single and mixed par-
asite DNA preparations. There was no difference in the detection
limit of the multiplex PCR when using parasite DNA of either a sin-
gle species or a mixture of DNA from all three species. Moreover,
single and multiplex PCRs were able to detect DNA of each species
with equal sensitivity in serially diluted DNA mixtures of *T. annu-
lata, B. bovis* and *A. marginale* (summarised in Table 1). However,
sensitivity of the single PCR when using DNA template of each spe-
cies in isolation was greater than that obtained for the multiplex
PCR (Table 1). It has been hypothesised that the amount of tem-
plate DNA used in the reaction mixture as well as competition
for a finite amount of reagents between primers affect the amount
of each product generated during the reaction (Edwards and Gibbs,
1994; Henegarui et al., 1997). Thus, in the case of single PCR assays
with single species DNA preparations, a high proportion of tem-
plate DNA together with the lack of competition between the prim-
ers would predict that these reactions would yield the greatest
amount of amplicon and that the sensitivity of the single PCR
would be greater than that of the multiplex assay. Nevertheless,
the multiplex PCR assay was able to amplify target genes in mixed
DNA templates with the same sensitivity as the single PCR. There-
fore, in terms of epidemiological studies, the multiplex PCR is, in
general, as capable of detecting multiple infections as the single
PCR but with the advantage of simultaneous identification of all
three pathogens species in a single assay. It would be possible to
enhance the sensitivity of the multiplex PCR described in the pres-
ent study by incorporating a secondary detection method of the
amplified products (Figueroa et al., 1993). This, however, would
complicate a relatively straightforward approach and may increase
the risk of contamination and subsequent generation of false posi-
tive results.

The results obtained using the field samples clearly indicate the
prevalence of mixed infections in the field and verify the require-
ment for an assay that can simultaneously detect multiple patho-
gen species. Application of the multiplex PCR will facilitate the
assessment of risk factors associated with TBDs, and this is import-
ant for improved design and implementation of cost-effective
control strategies in endemic and non-endemic regions (Simunza
et al., 2011). Risk factors include animal movement between re-

gions, distribution and activity of vector ticks, existence of carrier
animals and the presence of multiple pathogens in individuals.
To assess the latter two risk factors, the ability to detect multiple
infections is essential and when integrated with data relating to
the two former factors, the establishment of more effective and
targeted control strategies becomes a realistic possibility.

Multiplex PCR results obtained from field samples showed that
22% of animals were co-infected with two or three parasites, while
78% were infected with only one species. Only one animal in this
study was found to be negative. Only a minor discrepancy was
noted in the results of the multiplex PCR compared to the single
species PCR. For two samples, a single species of pathogen was de-
tected using the mPCR while two species were detected using the
single PCR. This difference was attributed to both samples having a
low parasitaemia and could be due the frequency of detection
decreasing with a decrease in parasitaemia (Calder et al., 1996;
Martins et al., 2008).

Of the three tick-borne diseases investigated in the present
study, tropical theileriosis was found to be most prevalent with
51 out of 72 parasite-infected cattle carrying *T. annulata*. Of these
animals, 39 (76%) were infected only with *T. annulata* while the
other 12 were co-infected with *A. marginale* and/or *B. bovis*. These
results support the view that tropical theileriosis is the most pre-
valent tick-borne disease in Aydın region of Turkey (Aysul et al.,
2008; Ilhan, 1999). While the low infection rate for *A. marginale*
(17/73 = 23%) may reflect a low prevalence of the disease in the
study area, seasonal fluctuations in parasitaemia (Kocan et al.,
2000) may have resulted in a low level of rickettsaemia at the time
of sampling. *Babesia bovis* infections in cattle are characterised by
low parasitaemia during the acute phase of the disease (Schetters
et al., 1998) and cattle that survive initial infection and disease-
resistant calves, remain persistently infected (Brown et al., 2006;
Goff et al., 2001) with very low parasite levels that are sufficient
for transmitting infection to ticks. Such cattle are potentially an
important factor in the maintenance of *B. bovis* in endemic areas
as well as a suspect source for introduction and spread of the dis-
ease to non-endemic areas where competent vectors are present
(Howell et al., 2007). These results highlight the situation in Turkey
where, although infection with *T. annulata* appears to be the main
risk, there is also a clear risk of co-infection with *B. bovis* and Ana-
plasma. Therefore, testing for the major pathogen species in iso-
lation may be underestimating the overall risk, and development of
assays that provide a more complete picture will be beneficial for
a more complete assessment of TBD within a particular region. The
multiplex assay developed in this study provides a simple test
for detecting multiple tick-borne parasites in carrier animals in
Turkey and should be useful for studies assessing the impact of
productivity losses associated with co-infection by these pathogens.

Acknowledgments

Financial support for this study was provided by a Grant from
the Wellcome Trust (Ref. 075820/A/04/Z) and a fund from the Uni-
versity of Adnan Menderes, Scientific Research Programs (Project
no. VFT–06006).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.exppara.2012.
11.005.

References

Al Khedery, B., Allred, D.R., 2006. Antigenic variation in *Babesia bovis* occurs through
segmental gene conversion of the ves multigene family, within a bidirectional
locus of active transcription. Mol. Microbiol. 59, 402–414.
Allred, D.R., Cinque, R.M., Lane, T.J., Ahrens, K.P., 1994. Antigenic variation of
parasite-derived antigens on the surface of *Babesia bovis*-infected erythrocytes.
Infect. Immun. 62, 91–98.
Allred, D.R., Carlton, J.M., Satcher, R.L., Long, J.A., Brown, W.C., Patterson, P.E.,
O’Connor, R.M., Stroup, S.E., 2000. The ves multigene family of *B. bovis* encodes
components of rapid antigenic variation at the infected erythrocyte surface.
Mol. Cell 5, 153–162.
Anon, Theileriosis. OIE Manual of Standards for Diagnostic Tests and Vaccines, 1997.
Office International des Epizooties, 321–330.
Aysul, N., Karagenc, T., Eren, H., Aypak, S., Bakirci, S., 2008. Prevalence of tropical
theileriosis in cattle in the Aydin Region and determination of efficacy of
attenuated *Theileria annulata* vaccine. Turkj. Parasitol. Derg. 32, 322–327.
Barbet, A.F., Allred, D.R., 1991. The msp1 beta multigene family of Anaplasma marginale: nucleotide sequence analysis of an expressed copy. Infect. Immun. 59, 971–976.

Bilige, H.B., Karagenc, T., Shiels, B., Tait, A., Eren, H., Weir, W., 2010. Evaluation of cytochrome b as a sensitive target for PCR based detection of T. annulata carrier animals. Vet. Parasitol. 174, 341–347.

Brayton, K.A., Rappmeyer, L.S., Herrndon, D.R., Dark, M.J., Tibbals, D.L., Palmer, G.H., McGuire, T.C., Knowles Jr., D.P., 2005. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc. Natl. Acad. Sci. USA 102, 844–849.

Brayton, K.A., Lau, A.O., Herrndon, D.R., Hannick, L., Kappmeyer, L.S., Berens, S.J., Bidwell, S.L., Brown, W.C., Crabtree, J., Fadrosh, D., Feldblum, T., Forberger, H.A., Haas, B.J., Howell, J.M., Khouri, H., Koo, H., Mann, D.J., Norimine, J., Paulsen, I.T., Radune, D., Ren, Q., Smith Jr., R.K., Suarez, C.E., White, O., Wortman, J.R., Knowles Jr., D.P., McElwain, T.F., Nene, V.M., 2007. Genome sequence of Babesia bovis and comparative analysis of apicoplast hemoprotozoa. PloS. Pathog. 3, 1401–1413.

Brown, W.C., Norimine, J., Knowles, D.P., Goff, W.L., 2006. Immune control of Babesia species infection. Vet. Parasitol. 136, 75–84.

Burridge, M.J., Brown, C.G., Kimber, C.D., 1974. Protozoan and rickettsial diseases. In: Australian Bureau of Animal Health, Australia in Health in Australia, Vol. 5. Australian Government Publishing Service, Canberra. pp. 121–216.

Carelli, G., Carelli, G., Carelli, G., Decaro, N., Lorusso, A., Elia, G., Lorusso, E., Mari, V., Ceci, L., Buonavoglia, C.A., Buening, G.M., 1998. Bovine babesiosis and anaplasmosis follow-up on the northern Mediterranean littoral. Veterinary Sciences Communications 2, 309, 131–133.

Castro, B., Barbet, A.F., Allred, D.R., 1991. Theileria annulata: cross-reactions between a cell culture schizont antigen and antigens of East African species in the indirect fluorescent antibody test. Exp. Parasitol. 35, 374–380.

Calder, J.A., Reddy, G.R., Chieves, L., Courtney, C.H., Littell, R., Livengood, J.R., Norval, R.A., Smith, D.A., 1996. Monitoring Babesia bovis infections in cattle by using PCR-based tests. J. Clin. Microbiol. 34, 2748–2755.

Callow, L.L., 1984. Protozoan and rickettsial diseases. In: Australian Bureau of Animal Health, Australia in Health in Australia, Vol. 5. Australian Government Publishing Service, Canberra. pp. 121–216.

Carelli, G., Carelli, G., Carelli, G., Decaro, N., Lorusso, A., Elia, G., Lorusso, E., Mari, V., Ceci, L., Buonavoglia, C.A., Buening, G.M., 1998. Bovine babesiosis and anaplasmosis follow-up on the northern Mediterranean littoral. Veterinary Sciences Communications 2, 309, 131–133.

Carelli, G., Carelli, G., Carelli, G., Decaro, N., Lorusso, A., Elia, G., Lorusso, E., Mari, V., Ceci, L., Buonavoglia, C.A., Buening, G.M., 1998. Bovine babesiosis and anaplasmosis follow-up on the northern Mediterranean littoral. Veterinary Sciences Communications 2, 309, 131–133.

Carelli, G., Carelli, G., Carelli, G., Decaro, N., Lorusso, A., Elia, G., Lorusso, E., Mari, V., Ceci, L., Buonavoglia, C.A., Buening, G.M., 1998. Bovine babesiosis and anaplasmosis follow-up on the northern Mediterranean littoral. Veterinary Sciences Communications 2, 309, 131–133.

Carelli, G., Carelli, G., Carelli, G., Decaro, N., Lorusso, A., Elia, G., Lorusso, E., Mari, V., Ceci, L., Buonavoglia, C.A., Buening, G.M., 1998. Bovine babesiosis and anaplasmosis follow-up on the northern Mediterranean littoral. Veterinary Sciences Communications 2, 309, 131–133.