Thermophysical properties of high-temperature system of radioactive graphite-nitrogen in the temperature interval from 2773 to 4273 K

N M Barbin1,2, M R Shavaleev1, D I Terentyev1, M P Dalkov1 and S G Alekseev1,3

1 Ural State Fire Service Institute of Emercom of Russia, St. Mira 22, Yekaterinburg, Russian Federation
2 Ural State Agrarian University, St. Karla Libknekhta 42, Yekaterinburg, Russian Federation
3 Science and Engineering Center "Reliability and Safety of large systems" of Ural Branch of Russian Academy of Sciences, St. Studencheskaya 54a, Yekaterinburg, Russian Federation

*E-mail: NMBarbin@mail.ru

Abstract. Results of thermodynamic modeling of radioactive graphite-nitrogen system heating which can be applied as reference data and can be used in technological processes of high-temperature processing of reactor graphite are given in the article.

1. Introduction
Radioactive graphite as one of solid radioactive waste is a significant problem of reliability and profitability of nuclear power plants. As nuclear power plant uses graphite, this substance accumulates itself a small amount of uranium, transformation elements, and radionuclides (such as tritium and 14C)1. Thus, reactor graphite is radiation source that considerably increases the volume of solid radioactive waste of nuclear power plants.

There are various ways of its processing including high-temperature processing, however its low efficiency requires its improvement on the basis of the new obtained data. The authors have offered a new method of high-temperature processing of radioactive graphite in arc furnaces 2 that limit a possibility of transition 14C in volatile compounds to which about 90\% of radioactivity of graphite elements are fallen, detaining this element in the furnace 3.

The offered method of high-temperature processing of reactor graphite is based on its heating to 2873 K in the inert nitrogen atmosphere that creates necessary conditions of radionuclides transition to gaseous phase without carbon emissions. Along with this process, the vacuum system deletes the formed volatile compounds from the furnace and passes them through the filtering system for catching or condensing in special apparatus.

The present article deals with thermophysical properties of high-temperature processing of radioactive graphite.

2. Experiment
Thermodynamic modeling was carried out by means of the Terra program within the range of temperatures from 2773 to 4273 K under atmospheric pressure. Calculations of phases composition

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
PUBLISHED UNDER LICENCE BY IOP PUBLISHING LTD
and imbalance characteristics were performed with the reference database on properties of personal substances (IVTANTERMO – Russian and HSC).

Thermodynamic balance calculation of any systems is performed by maximizing system entropy accounting to all potentially possible individual substances in balance. Components with concentration not less than 10^{-10} mole were considered in these calculations. Time required for phase changing, gas exchange with the environment and reaction rate were neglected. The initial structure of system is presented in table 1 [4 - 6].

Phase	Phase composition	Contents, % masses
Gas (90.9 %)	N₂	100
C		99
U		$1,16 \cdot 10^{-2}$
Cl		$1,9 \cdot 10^{-3}$
Ca		$2,7 \cdot 10^{-4}$
Pu		$7,3 \cdot 10^{-5}$
Be		$1,2 \cdot 10^{-5}$
Ni		$8,2 \cdot 10^{-6}$
Cs		$3,4 \cdot 10^{-6}$
Am		$9,3 \cdot 10^{-6}$
Sr		$1,1 \cdot 10^{-6}$
Eu		$1 \cdot 10^{-6}$
Condensed (9.1 %)		

3. Results and Discussion
The realized thermodynamic modeling allows defining the formed connections and temperature intervals on the basis of which balances of elements distribution in the analyzed system have been constructed.

The balance of carbon is shown in figure 1. It is evident that carbon completely is in the condensed phase above the temperature of 2773 K. Further increase of temperature from 2773 to 3573 K results in transition of carbon from the condensed phase into gaseous forming the compounds such as CN, C₃, C₂, and C. From 3573 to 4273 K we observed the decrease of concentration of C₃ and increase of content of CN, C, C₂.

![Figure 1. Carbon balance.](image-url)
Table 2. Distribution of elements within the temperature ranges of reactor graphite heating in the nitrogen atmosphere.

Element	Temperature range of phase distribution, K (in the form depending on what compound is there an element)	transitional interval (in system of two phases)	only gaseous phase (vapours)
	only condensed phase		
Carbon	2773 < (C)	2773–3573	3573–4273 (CN, C, C2, C3, C2N)
Uranium	(UC, UCl3, UCl4, U2C3, UC2)	2373–2873	> 2873 (U, U+)
Plutonium	1673 < (PuCl3, PuC2, PuC)	1673–2573	> 2573 (Pu, Pu+)
Americium	1373 < (Am)	1373–2573	> 2573 (Am)
Europium	1473 < (EuCl\textsubscript{2})	1473–1873	> 1873 (Eu, Eu+)
Strontium	973 < (SrCl\textsubscript{2})	973–1373	> 1373 (SrCl\textsubscript{2}, Sr, Sr+, SrCl)
Caesium	673 < (CsCl)	673–973	> 973 (CsCl, Cs+)
Nickel	1273 < (Ni, Ni\textsubscript{3}C)	1273–1473	> 1473 (Ni, NiCl, Ni+)
Chlorine	773 < (UCl\textsubscript{3}, CaCl\textsubscript{2})	773–1273	> 1273 (UCl\textsubscript{4}, UCl\textsubscript{3}, Cl, CaCl\textsubscript{2}, BeCl\textsubscript{2})
Beryllium	873 < (Be\textsubscript{3}N\textsubscript{2})	873–1073	> 1073 (BeCl\textsubscript{2}, BeC\textsubscript{2}, Be)
Calcium	973 < (CaCl\textsubscript{2})	973–1373	> 1373 (CaCl\textsubscript{2}, CaC, Ca, Ca+)

By analogy with balance of carbon data we have obtained data on the formed compounds and phase transitions of the radionuclides available in radioactive graphite. They are represented in the summary table 2.

Changes of thermophysical characteristics of system in the considered temperature intervals have been analyzed. Change of specific entropy of reactor graphite-nitrogen system is presented in figure 2a. The diagram shows that within the range of temperatures from 3273 to 3573 K is followed by spasmodic increase of specific entropy up to 0.284 KJ / K-mole (increase by 27%) that is caused by transition of carbon to a gaseous phase. At temperatures from 3573 to 4273 K specific entropy continues increasing almost linearly.

The temperature dependence of mass fraction of the condensed phase is determined in figure 2b. When heating the system from 2773 to 3573 K we observed the zero interaction of condensed phase because of radioactive graphite combustion in the nitrogen atmosphere that is confirmed by the balance of carbon (figure 1) given above. At temperatures from 3573 to 4273 K a mass fraction of the condensed phase is equal to zero that demonstrates the lack of the condensed substances in system including radionuclides.
Figure 2. Temperature dependence: a) specific entropy of the system; b) mass fraction of the condensed phase.

4. Conclusion

Results obtained approve that at 2773 K the system being in the condensed phase contains only carbon and its isotopes. Information on the formed gaseous compounds allows finding the appropriate filtering systems for catching elements.

Originality of the offered processing method consists in essentially different approach to reactor graphite processing that allows holding isotope 14C in the condensed state, eliminating a set of various radionuclides from it.

References

[1] Barbin N M, Shavaleev M R, Terentyev D I and Alekseev S G 2016 The thermodynamic analysis of physical and chemical processes with U, Pu, Am, Eu heating radioactive graphite in the nitrogen atmosphere Physics and Chemistry of Materials Processing 5 83–9

[2] Application 2016145742 Russian Federation, MPK G 21 F 9/28 Method of Reactor Graphite Processing Barbin N M, Dalkov M P and Shavaleev M R; applicants of FSBEI of higher education URGAU, FSBEI of higher education Ural institute of State fire service of Emercom of Russia – No. 2016145742/07; 22.11.16. p 8

[3] Klyuchnikov A A 2005 Radioactive Waste of the Atomic Stations and Methods of Their Treatment ed Yu M Shigera (Chernobyl) p 496

[4] Barbin N M, Shavaleev M R, Terentyev D I and Alekseev S G 2017 Thermodynamic simulation of the oxidation of radioactive graphite in the Na$_2$CO$_3$–K$_2$CO$_3$–NiO and Na$_2$CO$_3$–K$_2$CO$_3$–CuO Russian Metallurgy (Metally) 2 136–45

[5] Barbin N M, Shavaleev M R, Terentyev D I and Alekseev S G 2015 Computer simulation of thermodynamic processes with involvement of actinoids heating radioactive graphite in the nitrogen atmosphere Applied Physics 6 42–7

[6] Barbin N M, Shavaleev M R, Terentyev D I and Alekseev S G 2014 Thermodynamic modeling of radionuclides behavior heating (burning) of radioactive graphite in the nitrogen atmosphere Fire and Explosion Safety 12 34–44