Diphtheria toxin time-resolved absorption and resonance FT-IR and Raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-cancer drug

Alireza Heidari 1,2*, Jennifer Esposito 1 and Angela Caissutti 1

1 Faculty of Chemistry, California South University, 14731 Comet St, Irvine, CA 92604, USA
2 American International Standards Institute, Irvine, CA 3800, USA

Abstract
Diphtheria toxin is an exotoxin secreted by Corynebacterium diphtheriae, the pathogenic bacterium that causes diphtheria. Unusually, the toxin gene is encoded by a bacteriophage (a virus that infects bacteria). The toxin causes the disease in humans by gaining entry into the cell cytoplasm and inhibiting protein synthesis. Parameters such as FT-IR and Raman vibrational wavelengths and intensities for single crystal Diphtheria Toxin are calculated using density functional theory and were compared with empirical results. The investigation about vibrational spectrum of cycle dimers in crystal with carboxyl groups from each molecule of acid was shown that it leads to create Hydrogen bonds for adjacent molecules. The current study aimed to investigate the possibility of simulating the empirical values. Analysis of vibrational spectrum of Diphtheria Toxin is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG**. Vibration modes of methylene, carboxyl acid and phenyl cycle are separately investigated. The obtained values confirm high accuracy and validity of results obtained from calculations.

Introduction
Diphtheria toxin is an exotoxin secreted by Corynebacterium diphtheriae, the pathogenic bacterium that causes diphtheria. Unusually, the toxin gene is encoded by a bacteriophage (a virus that infects bacteria). The toxin causes the disease in humans by gaining entry into the cell cytoplasm and inhibiting protein synthesis. Density Functional Theory (DFT) is one of the most powerful calculation methods for electronic structures [5-7]. Numerous results have been previously studied and indicate successful use of these methods [8-10]. The theory is one of the most appropriate methods for simulating the vibrational wavenumbers, molecular structure as well as total energy. It may be useful to initially consider the calculated results by density functional theory using HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG** approach [11-16]. It should be noted that calculations are performed by considering one degree of quantum interference as well as polarization effects of 2d orbitals in interaction [17-364].
structures are adjusted with minimum energy. Harmonic vibrational wavenumbers are calculated using second degree of derivation to adjust convergence on potential surface as good as possible and to evaluate vibrational energies at zero point. In optimized structures considered in the current study, virtual frequency modes are not observed which indicates that the minimum potential energy surface is correctly chosen. The optimized geometry is calculated by minimizing the energy relative to all geometrical quantities without forcing any constraint on molecular symmetry. Calculations were performed by Gaussian 09. The current calculation is aimed to maximize structural optimization using density functional theory. The calculations of density functional theory are performed by HF/6-31G*, HF/6-31+G**, MP2/6-31G, MP2/6-31+G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG** function in which non-focal functions of Becke and correlation functions of Lee-Yang-Parr beyond the Franck-Condon approximation are used. After completion of optimization process, the second order derivation of energy is calculated as a function of core coordinate and is investigated to evaluate whether the structure is accurately minimized. Vibrational frequencies used to simulate spectrums presented in the current study are derived from these second order derivatives. All calculations are performed for room temperature of 373 (K).

Vibration Analysis

Analysis of vibrational spectrum of Diphtheria Toxin is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31+G**, MP2/6-31G, MP2/6-31+G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG**. Vibrational modes of methylene, carboxyl and phenyl cycle are separately investigated.

C-H stretching vibrations in single replacement of benzene cycles are usually seen in band range of 4000-4250 cm⁻¹. Weak Raman bands are at 3989 cm⁻¹ and 4002 cm⁻¹. C-C stretching mode is a strong Raman mode at 1999 cm⁻¹. Raman weak band is seen at 2473 cm⁻¹, too. Bending mode of C-H is emerged as a weak mode at 2198 cm⁻¹ and 2197 cm⁻¹ and a strong band at 2081 cm⁻¹ in Raman spectrum. Raman is considerably active in the range of 2000-2250 cm⁻¹ which 1993 cm⁻¹ indicates this issue.

C-H skew-symmetric stretching mode of methylene group is expected at 3985 cm⁻¹ and its symmetric mode is expected at 3799 cm⁻¹. Skew-symmetric stretching mode of CH₂ in Diphtheria Toxin has a mode in mid-range of Raman spectrum at 3900-4020 cm⁻¹. When this mode is symmetric, it is at 3895 cm⁻¹ and is sharp. The calculated wavenumbers of higher modes are at 3863 cm⁻¹ and 3893 cm⁻¹ for symmetric and skew-symmetric stretching mode of methylene, respectively.

Scissoring vibrations of CH₂ are usually seen at the range of 2327-2381 cm⁻¹ which often includes mid-range bands. Weak bands at 2340 cm⁻¹ are scissoring modes of CH₂ in Raman spectrum. Moving vibrations of methylene are usually seen at 2269 cm⁻¹. For the investigated chemical in the current study, these vibrations are at 2139 cm⁻¹ were calculated using density functional theory. Twisting and rocking vibrations of CH₂ are seen in Raman spectrum at 1715 cm⁻¹ and 1989 cm⁻¹, respectively, which are in good accordance with the results at 1699 cm⁻¹ and 1964 cm⁻¹, respectively.

In a non-ionized carboxyl group (COOH), stretching vibrations of carbonyl [C=O] are mainly observed at the range of 2640-2688 cm⁻¹. If dimer is considered as an intact constituent, two stretching vibrations of carbonyl for symmetric stretching are at 2540-2585 cm⁻¹ in Raman spectrum. In the current paper, stretching vibration of carbonyl mode is at 2597 cm⁻¹ which is a mid-range value.

Stretching and bending bands of hydroxyl can be identified by width and band intensity which in turn is dependent on bond length of Hydrogen. In dimer form of Hydrogen bond, stretching band of O-H is of a strong Raman peak at 2167 cm⁻¹ which is due to in-plane metamorphosis mode. Out-of-plane mode of O-H group is a very strong mode of peak at 1849 cm⁻¹ of Raman spectrum. The stretching mode of C-O (H) emerges as a mid-band of Raman spectrum at 2047 cm⁻¹.

Lattice vibrations are usually seen at the range of 0-1350 cm⁻¹. These modes are induced by rotary and transferring vibrations of molecules and vibrations and are including Hydrogen bond. Bands with low wavenumbers of Hydrogen bond vibrations in FT-IR and Raman spectrum (Figure 2) are frequently weak, width and unsymmetrical. Rotary lattice vibrations are frequently stronger than transferring ones. Intra-molecular vibrations with low wavenumbers involving two-bands O-H...O dimer at 888 cm⁻¹, 993 cm⁻¹ and 1049 cm⁻¹ are attributed to a rotary moving of two molecules involving in-plane rotation of molecules against each other.

Conclusion and Summary

Calculations of density functional theory using HF/6-31G*, HF/6-31+G**, MP2/6-31G, MP2/6-31+G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG** levels were used to obtain vibrational wavenumbers and intensities in single crystal of Diphtheria Toxin. Investigation and consideration of vibrational spectrum confirm the formation of dimer cycles in the investigated crystal with carboxyl groups from each Hydrogen molecule of acid protected from adjacent molecules. The calculated vibrational spectrum which obtains from calculations of density functional theory is in good accordance with recorded empirical values which indicates successful simulation of the
problem. The obtained results indicate that the results obtained from theoretical calculations are valid through comparing with empirical recorded results.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT1201009373502. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figure. We gratefully acknowledge Prof. Dr. Christopher Brown for proofreading the manuscript.

References

1. Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z. M. Design and Fabrication of Silicon Nanowires towards Efficient Solar Cells. Nano Today 2016, 11, 704-737, 10.1016/j.nantod.2016.10.001

2. Sandhu, S.; Fan, S. Current-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell. ACS Photonics 2015, 2, 1689-1704, 10.1021/acsphotonics.5b00236

3. van Dam, D.; Van Hoof, N. J. J.; Cui, Y.; van Veldhoven, P. J.; Bakkers, E. P. A. M.; Gómez Rivas, J.; Haverkort, J. E. M. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatters. ACS Nano 2016, 10, 11414-11419, 10.1021/acsnano.6b06874

4. Luo, S.; Yu, W. B.; He, Y.; Ouyang, G. Size-Dependent Optical Absorption Modulation of Si/Ge and Ge/Si Core/shell Nanowires with Different Cross-Sectional Geometries. Nanotechnology 2015, 26, 085702, 10.1088/0957-4484/26/8/085702

5. Yu, P.; Yao, Y.; Wu, J.; Niu, X.; Rogach, A. L.; Wang, Z. Effects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Sci. Rep. 2017, 7, 7606, 10.1038/s41598-017-08077-9

6. Gouda, A. M.; Allam, N. K.; Swillam, M. A. Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications. RSC Adv. 2017, 7, 26974-26982, 10.1039/C7RA03568C

7. Branz, H. M.; Yost, V. E.; Ward, S.; Jones, K. M.; To, B.; Stradins, P. Nanostructured Black Silicon and the Optical Reflectance of Graded-Density Surfaces. Appl. Phys. Lett. 2009, 94, 231121, 10.1063/1.3152244

8. Fazio, B.; Artoni, P.; Antonia Iati, M.; D’Andrea, C.; Lo Faro, M. J.; Del Sorbo, S.; Pirota, S.; Giuseppe Gucchiardi, P.; Musumeci, P.; Salvatore Vasi, C.; Saija, R.; Galli, M.; Priolo, F.; Iraia, A. Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array. Light: Sci. Appl. 2016, 5, e16062, 10.1038/lsa.2016.62

9. Ko, M.-D.; Rim, T.; Kim, K.; Meyyappan, M.; Baek, C.-K. High-Efficiency Silicon Solar Cells Based on Asymmetric Nanowires. Sci. Rep. 2015, 5, 11646, 10.1038/srep11646

10. Oh, J.; Yuan, H. C.; Branz, H. M. An 18.2%-Efficient Black-Silicon Solar Cell Achieved through Control of Carrier Recombination in Nanostructures. Nat. Nanotechnol. 2012, 7, 743-748, 10.1038/nnano.2012.166

11. Lin, H.; Xiu, F.; Fang, M.; Yin, S.; Cheung, H. Y.; Wang, F.; Han, N.; Chan, K. S.; Wong, C. Y.; Ho, J. C. Rational Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband, and Omnidirectional Light Harvesting. ACS Nano 2014, 8, 3752-3760, 10.1021/nn400418x

12. Garnett, E.; Yang, P. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10, 1082-1087, 10.1021/nl100161z

13. Misra, S.; Yu, L.; Foldyna, M.; Roca 1 Cabarrocas, P. High Efficiency and Stable Hydrogenated Amorphous Silicon Radial Junction Solar Cells Built on VLS-Grown Silicon Nanowires. Sol. Energy Mater. Sol. Cells 2015, 118, 90-95, 10.1016/j.solmat.2013.07.036

14. Kelzenberg, M. D.; Boetcker, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Pattnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications. Nat. Mater. 2010, 9, 239-244, 10.1038/nmat2635

15. Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources. Nature 2007, 449, 885-889, 10.1038/nature06181

16. Razek, S. A.; Swillam, M. A.; Allam, N. K. Vertically Aligned Crystalline Silicon Nanowires with Controlled Diameters for Energy Conversion Applications: Experimental and Theoretical Insights. J. Appl. Phys. 2014, 115, 194305, 10.1063/1.4876477

17. Dhindia, N.; Walia, J.; Saini, S. A. Platform for Colorful Solar Cells with Enhanced Absorption. Nanotechnology 2016, 27, 495203, 10.1088/0957-4484/27/49/495203

18. Dhindia, N.; Walia, J.; Pathirane, M.; Khodadad, I.; Wong, W. S.; Saini, S. Adjustable Optical Response of Amorphous Silicon Nanowires Integrated with Thin Films. Nanotechnology 2016, 27, 145703, 10.1088/0957-4484/27/14/145703

19. Zhu, J.; Yu, Z.; Burkhard, G. F.; Hua, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGhee, M.; Fan, S.; Cui, Y. Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Lett. 2009, 9, 279-282, 10.1021/nl802886y

20. Klingler, D.; Lasukowska, E.; Zymierska, D. Nano-Structure Formed by Nanosecond Laser Annealing on Amorphous Si Surface. Mater. Sci. Semicond. Process. 2006, 9, 323-326, 10.1016/j.mssp.2006.01.027

21. Kumar, P.; Krishna, M. G.; Bhattacharya, A. Excimer Laser Induced Nanostructuring of Silicon Surfaces. J. Nanosci. Nanotechnol. 2009, 9, 3224-3232, 10.1063/jnn.2009.207

22. Kumar, P. Surface Modulation of Silicon Surface by Excimer Laser at Laser Fluence below Ablation Threshold. Appl. Phys. A: Mater. Sci. Process. 2010, 99, 245-250, 10.1007/s00339-009-5510-x

23. Adikaari, A. A. D. T.; Silva, S. R. P. Thickness Dependence of Properties of Excimer Laser Annealed Amorphous Si. J. Nanosci. Nanotechnol. 2010, 10, 1082-1087, 10.1021/nl100286y

24. Adikaari, A. A. D. T.; Silva, S. R. P. Enhanced Absorption of Excimer Laser Crystallized Nano-Polycrystalline Silicon. J. Appl. Phys. 2005, 97, 114305, 10.1063/1.1899444

25. Adikaari, A. A. D. T.; Silva, S. R. P. Excimer Laser Textured Nanocrystalline Silicon-Polymer Bilayer Solar Cells. Appl. Phys. Lett. 2007, 90, 203514, 10.1063/1.2739365
Heidari A (2019) Diphtheria toxin time-resolved absorption and resonance ft-ir and raman biospectroscopy and density functional theory (dft) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-cancer drug

Clin Case Studie Rep, 2019 doi: 10.15761/CCSR.1000129
209. Heidari, “Vibrational Decoherence (dAHz), Hectorhertz (Hz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHZ), Zettahertz (ZHz), Yottahertz (YHHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, M Aberdeen J Anal Sci Instum, 2 (1): 41-46, 2017.

210. Heidari, “Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy and Non-Linear Two-Dimensional Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Int J Nanotechnol Nanomed, Volume 3, Issue 1, Pages 1-6, 2018.

211. Heidari, “Fourier Transform Infrared (FTIR) Spectroscopy, Near-Infrared Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Int J Nanotechnol Nanomed, 3 (1): 101-108, 2018.

212. Heidari, “Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Human Blood Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Ant-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation”, M Madrid J Nano Drug Res, 1 (1): 18-24, 2017.

213. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Open Access J Trans Med Res, 2 (1): 00002-00002, 2018.

214. M. R. R. Gobato, R. Gobato, A. Heidari, “Planting of Jaboricaba Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, Vol. 3, No. 1, 2018, Pages 1-9, 2018.

215. Heidari, “Fluorescence Spectroscopy, Photoluminescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, SM J Clin Med. Imaging, 4 (1): 1018, 2018.

216. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NIISS) and Nuclear Inelastic Absorption Spectroscopy (NIAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Pharm Sci, 2 (1): 1-14, 2018.

217. Heidari, “X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Oncol Res; 2 (1): 1-14, 2018.

218. Heidari, “Correlation Two-Dimensional Nuclear Magnetic Resonance (NMR) (2D-NMRM) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Can Sci, 1-1001, 2018.

219. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microscopy Spectroscopy, Photothermal Microscopy, Thermal Macroscopy Spectroscopy and Photothermal Macroscope Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells under Synchrotron Radiation”, SM J Biometrics Biostat, 3 (1): 0104, 2018.

220. Heidari, “A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Acc J Oncol Med. 1 (1), 2018.

221. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018.

222. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NRS), Nuclear Inelastic Scattering Spectroscopy (NISS), Nuclear Inelastic Absorption Spectroscopy (NIAAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol. 6 (1e): 1-5, 2018.

223. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and VIDEO Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under the Passage of Time under White and Monochromatic Synchrotron Radiation”, Glob J Endocrinol Metab. 1 (3). 9GEM. 000514-000519, 2018.

224. Heidari, “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Pharma J, 1 (1): 002-008, 2018.

225. Heidari, “A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Anal Molecu Tec. 3 (1): 8, 2018.

226. Heidari, “Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, European Modern Studies Journal, Vol. 2, No. 1, 13-29, 2018.

227. Heidari, “Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Imaging J Clinical Med. 5 (1): 001-007, 2018.

228. Heidari, “Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol. 6 (2e): 1-6, 2018.

229. Heidari, “Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, Ther Res Skin Dis 1 (1), 2018.

230. Heidari, “Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Absorbed Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy and Micro-Absorbed Total Reflectance Fourier Transform Infrared (Macro-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, International Journal of Chemistry Papers, 2 (1): 1-12, 2018.

231. Heidari, “Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy and γFe Mössbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Cancer Biology 2.3: 17-20, 2018.

232. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Organic & Medicinal Chem J. 6 (1): 555676, 2018.

233. Heidari, “Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AID-Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Bioanal Biomedi. 2 (1): 001-007, 2018.

234. Heidari, “Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery”, Am J Nanotechnol Nanomed. 1 (1): 001-009, 2018.

235. Heidari, “Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Ann Biomet Biostat. 1 (1): 1001, 2018.

236. Heidari, “Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation”, Ann Cardiovasc Surg. 1 (2): 1006, 2018.

237. Heidari, “Adorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (b-BNNTs) for Eliminating Carcinoma, Sarcoma, Leukemia and Blasmatza Cancer Cells and Tissues”, Clin Med Rev Case Rep 5: 201, 2018.

238. Heidari, “Correlation Spectroscopy (COS), Exclusive Correlation Spectroscopy (ECOS), Total Correlation Spectroscopy (TOCS), Incredible Natural-abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESE) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESE) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Pharmaceutical Sciences 2.5: 30-35, 2018.
Heidari A (2019) Diphtheria toxin time-resolved absorption and resonance ft-ir and raman biospectroscopy and density functional theory (dft) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-cancer drug
Heidari A (2019) Diphtheria toxin time-resolved absorption and resonance FTR-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-cancer drug
Heidari A (2019) Diphtheria toxin time-resolved absorption and resonance ft-ir and raman biospectroscopy and density functional theory (dft) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-cancer drug

363. R. Gobato, M. R. R. Gobato, A. Heidari, “Calculation by UFF Method of Frequencies and Vibrational Temperatures of the Unit Cell of the Rhodochrosite Crystal”, International Journal of Advanced Chemistry, 7 (2) 77-81, 2019.

364. A. Heidari, J. Esposito, A. Caissutti, “Analysis of Vibronic-Mode Coupling Structure in Vibrational Spectra of Fuzeon as a 36 Amino Acid Peptide for HIV Therapy beyond the Multi-Dimensional Franck-Condon Integrals Approximation”, International Journal of Advanced Chemistry, 7 (2) 82-96, 2019.

Copyright: ©2019 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.