Influence of Long-term Fertilization on AM Fungi Community Structures in a Brown Soil

Jing Guo1,2, Peiyu Luo1,2,*, Xiaori Han1,2, Jinfeng Yang1,2 and Dongdong Li1,2

1College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
2National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China

*Corresponding author e-mail: ibtyoufe@163.com

Abstract. This study aims to explore changes of community structures of AM (Arbuscular mycorrhizal) fungi after a long-term fertilization for 38 years in a brown soil. Soil samples (0-20 cm) were taken from six treatments in May 2016: (1) no fertilization (CK); (2) chemical N input (N); (3) chemical N and P input (NP); (4) chemical N, P and K input (NPK); (5) pig manure input (M); (6)pig manure, chemical N and P input (MNP). Community structures of AM (Arbuscular mycorrhizal) fungi were analyzed using PCR-DGGE, cloning and sequencing techniques. In seedling stage, the diversity of AM Fungi was the highest in non-fertilization treatment and the community structures of AM fungi was mainly divided into two groups.

1. Introduction

Arbuscular mycorrhizal (AM) fungi are ubiquitous soil inhabitants belonging to the phylum Glomeromycota which establish mutualistic symbiotic (mycorrhizal) associations with most land plants [1]. The ecological and physiological benefits of the AM fungi for their host plants have been well documented. Basically, AM fungi enhance plant uptake of minerals and water from beyond the rhizosphere, thereby ameliorating environmental stresses on the plant [2]. A diverse community of AM fungi is important for the development and maintenance of plant diversity of terrestrial ecosystems contributing to plant community productivity [3]. Arbuscular mycorrhizal fungi play an important role in the maintenance of agroecosystem stability and sustainable agricultural development [4]. High diversity of AM fungi may favor higher agricultural productivity since different species of AM fungi can adapt to various stress conditions [3] and they exhibit functional diversity [5]. Fertilization is an important abiotic factor influencing growth, colonization, sporulation, community structure, and distribution of AM fungi [6, 7]. Chemical fertilization, especially of phosphorus, depressed both colonization of roots and sporulation by the majority of AM fungi [8]. However, in most of these experiments, treatments were only maintained for a short time. It is more interesting and valuable to investigate effects of long-term fertilization treatments on the diversity of AMF. Long-term fertilization, especially amendments with manure and straw, has beneficial effects on accumulation of soil organic carbon, spore density,GrSP content, and AMF diversity [9]. The influence of contrasting forms of P fertilizers was not significant over 3 years of crop rotation [10]. Inputing of organic matter source can change positively the AMF community composition, and these
results highlight the importance of considering the long-term effect of mineral and organic fertilizers on the AMF community diversity [11]. Joner’s study showed that the application of organic fertilizer could have a negative effect on AM fungi [12].

Long-term fertilization test artificially created different soil fertility conditions, in this experiment, the community structures of AM fungi was investigated to explore the effects of long-term fertilization on it.

2. Materials and methods

2.1. Sampling

The study was conducted in Shenyang agricultural university in the semi-humid region of Shenhe district, Shenyang (40°48’N and 123°33’E) of Liaoning Province, China. All fertilizers were applied as base fertilizer before seeding. In this study, a randomized block design was adopted in the experimental field and six treatments with four replicates each were chosen as follows: no fertilizer (CK), N1 (mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M), MNP (pig manure, mineral nitrogen and phosphate fertilizer). The mineral fertilizers were applied in the form of urea, calcium superphosphate and potassium sulphate. Basic chemical properties of experimental soil in 1979 and the application rates of fertilizer are described by Luo et al [13].

Soil samples were collected at the maize seeding stage in 2016 by 4 points for each treatment with S-type. The sampling depth is 0-20cm, fully mixed, removed the gravel, plant roots and other sundries.

2.2. DNA extraction and PCR amplification

Total genomic DNA was extracted from soil using Powersoil® DNA isolation kit (MO BIO, Laboratories Inc., German) following manufacturer’s instructions, then deposited it in a refrigerator at -20°C. A nested PCR approach was used to amplify the AM fungal 18SrRNA gene. Amplification reactions and conditions of PCR were described in Table 1. The second round of amplification was performed with two different primer sets, NS8-ARCH1311 was for Paraglomeraceae and Archaeosporaceae families and NS31-AM1 was for the rest of AM fungal families. The concentration of polyacrylamide gel in this experiment was 6%. The range of transsexual agents from 30% to 50%. Electrophoretic buffer solution: 1×TAE, electrophoresis time: 60V, 16h.

| Primer | Primer sequence(5’-3’) | Reaction system | Conditions |
|--------|------------------------|-----------------|------------|
| NS1   | GTAGTCATATGCTTGCTTCTC  | 10×PCR Buffer 5μl, dNTP | An initial denaturation of 94°C for 3min; 94°C 1min, 50°C 1min, 72°C 1min, 30cycles; 72°C 7min(The first round) |
| NS41  | CCCGTGTGAGTCACAATTAT  | 4μL (2.5mmol/L), MgCl2 3μL(2.5mmol/L), NS1(10mmol/L),1.5μL, NS41(10mmol/L),1.5μL, Taq(2U/μL),DNA template 1μL, adding ddH2O to 50μL |
| GC-NS31 | TTGGAGGGCAAGTGCTGTCG | 10×PCR Buffer 5μl, dNTP | An initial denaturation of 94°C for 3min; 94°C 1min, 50°C 1min, 72°C 1min, 30cycles; 72°C 7min(The first round) |
| AM1   | GTTCCCCCCAGAGGCGCGCA | 4μL (2.5mmol/L), MgCl2 3μL(2.5mmol/L), NS1(10mmol/L),1.5μL, NS41(10mmol/L),1.5μL, Taq(2U/μL),DNA template 1μL, adding ddH2O to 50μL |
| GC-ARCH1311 | TGCTAATAGCCAGGGCTG | 10×PCR Buffer 5μl, dNTP | An initial denaturation of 94°C for 3min; 94°C 1min, 50°C 1min, 72°C 1min, 30cycles; 72°C 7min(The first round) |
| NS8   | TCCGCAGGCCCTACCTACGGA | 4μL (2.5mmol/L), MgCl2 3μL(2.5mmol/L), NS1(10mmol/L),1.5μL, NS41(10mmol/L),1.5μL, Taq(2U/μL),DNA template 1μL, adding ddH2O to 50μL |

Table 1. PCR conditions of AM fungi.
2.3. Recovery of DNA from DGGE gel
DNA was recovered from DGGE gel using the method of Sheng et al. [14]. The sequencing reactions were performed with a DNA sequencing kit, BigDye™ Terminator v3.1 (Applied Biosystems, Foster City, CA, USA), and the reaction products were analyzed with an ABI 3730xl DNA Analyzer (Applied Biosystems, USA). Partial 16S rRNA and 18S rRNA sequences were identified based on similarity using the National Centre for Biotechnology Information (NCBI) online standard BLAST (Basic Local Alignment Search Tool) program (http://www.ncbi.nlm.nih.gov/).

2.4. Statistical analysis
The Shannon-Weaver diversity index (Shannon 1948) was calculated from the number of bacterial and fungal bands detected on DGGE to compare the ribotype diversity between different fertilization treatments using Quantity One. Cluster analysis was performed using Quantity One by UPGMA. The data were subjected to analysis of variance, using IBM SPSS Statistics 19.0 for Windows (IBM, Inc., Armonk, NY, USA). A probability level of 5 % was adopted for accepting or rejecting null hypotheses. Tukey’s honestly significant difference test for all-pairwise comparisons was calculated after ANOVA to compare treatment means.

3. Results and discussion
DGGE profiles of AM fungal communities in different fertilization treatments were shown in Figure 1. The quantity, brightness and position of different fertilizer treatments are different. It was shown that the community structures of AM fungi in brown soil are affected by the type of fertilizer applied. Eighteen bands were isolated from the samples, after sequencing, band16 was not belong to AM fungi. The number of bands in the CK treatment and the M treatment were the most, and band7 appeared in all treatments that indicated fertilization do not affect this AM fungi. Band12 only appeared in the CK treatment, fertilization obviously exerted an influence on this type of AM fungi. Band13 and band14 diminutively appeared in organic fertilizer treatment, while the treatments of organic fertilizer with chemical fertilizer did not include it. These kinds of AM fungi may have been brought into the soil by organic fertilizers, but the use of chemical fertilizers inhibited them.

Figure 1. DGGE banding patterns of AM fungi in different treatments.

The Shannon-Wiener index (H), also known as the diversity index, is used to predict species diversity. The diversity index of AM fungi in different fertilization treatments were shown in Figure 2. The H index of non-fertilizer treatment was significantly higher than that of any other fertilizer
treatments, indicated that fertilization can inhibit the growth of AM fungi in the brown soil. In the seedling stage, NPK and MNP had the lowest index, and possibly application of potash fertilizer inhibits AM fungal growth and reduces the number of AM fungi.

Figure 2. The diversity index of AM fungi in different fertilization treatments.

UPGMA dendrogram of AM fungi in different fertilization treatments was shown in Figure 3. In the seedling stage, Cluster analysis showed that community structures of AM fungi were divided into two groups, namely, organic fertilizer group and inorganic fertilizer group, and their similarity was only 13% under a long-term fertilization in a brown soil. Inorganic fertilizer group also was divided into two groups, chemical fertilizer group and non-fertilizer group, and the similarity of them was 38%, indicating that the different fertilization treatments have significantly affected the community structures of the AM fungi. The highest similarity between NPK and NP had reached 71%, indicating that potash fertilizer has no significant influence on the community structures of AM fungi in brown soil.

Figure 3. UPGMA dendrogram of AM fungi in different fertilization treatments.

4. Conclusion
This study demonstrated that community structures of AM fungi were significantly changed by long-term fertilization in a brown soil. In the future study, our researches will emphasis on the factors which change community structures of AM fungi. In seedling stage, the diversity of AM Fungi was the highest in non-fertilization treatment and the community structures of AM fungi was mainly divided into two groups.
Acknowledgments
This work is supported by The National Key Research and Development Program of China (Grant Number: 2017YFD0200707) and National Natural Science Foundation of China (Grant Number: 41501305).

References
[1] S.E. Smith, D.J. Read. Mycorrhizal Symbiosis, third ed. Elsevier, Academic Press, New york, USA, 2008.
[2] J.M. Barea, M.J. Pozo, R. Azcón, C. Azcón-Aguilar. Microbial co-operation in the rhizosphere. Journal of Experimental Botany 2005, 56, 1761-1778.
[3] M.G.A. van der Heijden, J.N. Klironomos, M. Ursic, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69-72.
[4] E. Sieverding. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. GTZ Press, Eschborn. 1991.
[5] M.Y. Wang, Z.K. Diao, M.X. Liang, et al. Diversity of arbuscular mycorrhizal fungi in agroecosystems. Acta Ecol Sin (in Chinese). 2005, 25(10):2744–2749.
[6] T.B.M. Dekkers, P.A. van der Werff. Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization. Mycorrhiza. 2001, 10:195–201.
[7] L. Corkidi, D.L. Rowland, N.C. Johnson, et al. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant Soil. 2002, 240:299–310.
[8] F. Tang, J.A. White, I. Charvat. The effect of phosphorus availability on arbuscular mycorrhizal colonization on Typha angustifolia. Mycologia. 2001, 93(6):1042–1047.
[9] F. Wu, M. Dong, Y. Liu, et al. Effects of long-term fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China. Plant & Soil, 2011, 342(1-2):233-247.
[10] M.S. Beauregard, M.P. Gauthier, C. Hamel, et al. Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize-soybean rotation system. Mycorrhiza, 2013, 23(2):143.
[11] T.A.F.D. Souza, A.F. Rodrigues, L.F. Marques. Long-term effects of alternative and conventional fertilization I: Effects on arbuscular mycorrhizal fungi community composition. Russian Agricultural Sciences, 2015, 41(6):454-461.
[12] E.J. Joner. The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biology & Fertility of Soils, 2000, 32(5):435-440.
[13] P. Luo, X. Han, W. Yan, et al. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, bacterial and fungal community structure in a brown soil of northeast China. Ann Microbiol, 2015, 65:533-542.
[14] M. Sheng, R. Lanlande, C. Hamel, N. Ziadi. Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of Eastern Canada. Plant Soil, 2013, 369:599–613.