研究成果の概要（和文）：
本研究で開発したガンマ線バースト偏光検出器（通称GAP）は、2010年5月に打ち上げられたIKAROS探査機に搭載され、世界初となる本格的なガンマ線偏光観測を行ってきた。観測データからガンマ線が強く偏光している事を検出し、強磁場環境下におけるシンクロトロン放射である可能性が極めて高いことを明らかにした。さらに相対論的速度を持ったジェットに内構造が存在することを裏付ける証拠も得られ、ガンマ線バーストの放射メカニズムの解明に大きく貢献できた。

研究成果の概要（英文）：
The Gamma-Ray Burst Polarimeter (GAP) was installed aboard the IKAROS solar-sail spacecraft which was launched on May 21st 2010. We realized the first gamma-ray polarimetry in the world. We detected the strong polarization in the prompt emissions of three gamma-ray bursts, and we consider that the emission mechanism is probably synchrotron radiation. Moreover, we detected possible evidence of the existence of inner structures in the relativistic jets. We could contribute to reveal the emission mechanism of gamma-ray bursts.

交付決定額

年度	直接経費	間接経費	合計
2008年	29,100,000	8,730,000	37,830,000
2009年	5,800,000	1,740,000	7,540,000
2010年	6,200,000	1,860,000	8,060,000
2011年	5,000,000	1,500,000	6,500,000
2012年	3,800,000	1,140,000	4,940,000
総計	49,900,000	14,970,000	64,870,000

研究分野：数物科学系
科研費の分科・細目：物理学・素粒子・原子核・宇宙線・宇宙物理
キーワード：ガンマ線バースト、偏光、宇宙物理、人工衛星、検出器開発、相対論的ジェット、量子重力、CPT 対称性
1. 研究開始当初の背景
ガンマ線バースト (GRB) とは、100 億光年以上の初期宇宙から数 10 秒間という短時間にだけ大量のガンマ線が飛来する現象である。ガンマ線の全エネルギーは超新星爆発をはるかに凌ぐような、宇宙最大の爆発現象である。最近、この GRB という現象がとても注目されている。この 10 年間の学術的進歩が著しいだけでなく、GRB は一瞬だけ非常に明るく輝くので、はるか昔の「暗黒時代」に遡るほどの初期宇宙を見渡せる可能性があるからである。

しかし、そのような多大なエネルギーをガンマ線放射として解放する物理過程は、観測的に突き止められていない。理論的には複数の相対論的プラズマ流が衝突することで衝撃波を作り、電子が加速され、数万ガウスに達する強磁場が形成されてシンクロトロン放射を行うと考えられている。これはあくまで理論モデルであって、強磁場が存在するという観測的証拠は皆無と言っても過言ではない。磁場の強度もエネルギー等分配から予想する程度の議論しかない。本当に数秒程度の短時間で強磁場が生成され、本当にシンクロトロン放射で輝くのなら、ガンマ線光子は強く直線偏光しているはずで、偏光の直接検出が GRB の放射メカニズムに迫る重要な手段と考えられている。

2. 研究の目的
2010 年度に打ち上げられるソーラーセイル探査機に『ガンマ線バースト用偏光検出器』を搭載し、研究期間内に観測を行い、観測成果を公表することで、ガンマ線バーストの放射メカニズムを解明することが本研究計画の目的である。また、世界で初めて人工衛星を用いた本格的なガンマ線偏光観測を実現し、「ガンマ線偏光天文学」という新分野を開拓することも大きな目標である。

3. 研究の方法
2010年5月18日打上げられた小型ソーラー電力サイク実証機 IKAROS にガンマ線バースト (GRB) 用のガンマ線偏光観測装置 (GAP) を搭載し、世界初の本格的な GRB 偏光観測を実現した。ガンマ線がコンプトン散乱する際には、偏光方向と垂直に散乱しやすいという性質を利用して、散乱強度分布を測定できる検出器となっている。図1右に示すように、中心には差し渡し 14cm、高さ 6cm の 12 角形のプラスチックシンチレータ配置し、その外周には厚さ 5mm、長さ 6cm の CsI(Tl) シンチレータが取り囲んでいる。各シンチレータの発光は小型の光電子増倍管で検出され、エネルギーと検出時間を測定することができる。ガンマ線がコンプトン散乱するときには、偏光方向と垂直に散乱しやすいという特徴があるため、GAP はプラスチックと CsI の同時イベントを観測して、コンプトン散乱の角度依存性を測定できる仕組みになっている。

検出器内部にはアナログ信号を扱う回路、AD 変換後のデジタル信号を扱う FPGA 部、衛星バスとのコマンドインタフェースや GAP の観測機能をつかさどる CPU 部で構成されている。高圧電源も 2 台内蔵されている。基幹部品である FPGA、CPU（FPGA に焼き込んで構成）、SRAM、LVDS、レレーなどは放射線耐性の高い部品を用いたが、それ以外は民生部品を利用し、独自の放射線試験をおこなって選定した。電源回路の変換効率も含めて、総電力は 5W 以下で動作する。図2にブロック図を示す。
4. 研究成果

IKAROSの打ち上げ後、GAPは各種の観測パラメータの設定を経て、2010年7月7日には最初のGRBを検出した。その後も順調に稼働し、これまでに合計30例のGRBを検出している。

GRB 100826Aからの偏光検出

特にGRB 100826Aは過去のすべての観測でトップ1%に入りうる明るいGRBであった。このGRB 100826Aから、ガンマ線偏光を検出すことに成功した。

図3（左）のようにこのGRBは前半の大きなフレアと、後半の小さなパルス群のような構成となっている。それぞれの時間帯における散乱ガンマ線の角度分布を書いたのが図3（右）である。十字点がデータ点であり、スムーズな曲線は、GRBの発生位置（中心から20度オフセットした位置）に天体を置きGeant4シミュレーションで得られた曲線によりデータ点をフィットさせたもので、約25%の偏光度を示している。また後半部分でも約31%の偏光度が検出され、前後半を同時に解析した結果は27±11%(2.9σ有意性)であった。興味深いことに前半後半では偏光方向が84度異なっていた。このことから、GRBを発する相対論的ジェットには内部構造が存在し、それぞれの地点では独立の偏光情報を持っていると考えられる。

GRB110301AとGRB110721Aからの偏光度検出

さらに観測と解析を進めた結果、新たに2つのGRB110301AとGRB110721Aからも偏光を検出した。これらの光度曲線はどちらもシンクルピークであった（図5）。得られた偏光度はどちらも高く、70±22%(3.7σ有意性)と84(+16, -28%)(3.3σ有意性)であった。途中で偏光方向が回転することはなかった。

図5:GRB110301AとGRB110721Aの光度曲線

図6:GRB110301AとGRB110721Aの散乱強度

図7:GRB110301AとGRB110721Aの偏光度と
偏光角の最適値を示した等高線

世界的に初めて本格的なガンマ線偏光観測を実施できる観測装置が稼働したことについて、宇宙科学研究所からプレスリリースを出した。さらに、ガンマ線偏光を検出したことを日本天文学会で記者発表を行い、非常に多くの新聞やメディアに取り上げられ、国民に広く研究成果を伝えることができた。

図3:GRB100826Aの光度曲線（左）と
散乱強度分布（右）

図4:詳細解析の結果、27±11%の偏光を2.9σの有意性で検出した。

図7:GRB110301AとGRB110721Aの偏光度と
偏光角の最適値を示した等高線

その他のGRBでは、偏光解析が行える程度の質の良いデータが5例あり、このうち4例
から偏光度の90%上限値として50-80%を示している。GRBの偏光を説明できる理論はいくつかあるが、これらの3事象を説明できるような物理状態を理論面からも研究した。その結果、
(1)「ガンマ線の偏光が検出された」ことから、ガンマ線放射領域には数万ガウス程度のよく揃った磁場が存在していると考えられる。
(2)「偏光方向が短時間で変化した」ことから、ジェット内部にはガンマ線を作り出す領域がいくつか点在していて、それぞれの磁場の向きは異なると考えられる。

図8には、以上の状況を踏まえて描いたGRBの想像図を示す。ジェット内部の赤色の線は強い磁場を表現したものである。

今後もX線・ガンマ線偏光観測は重要なテーマとなるだろう。現に、世界的に見てもPoGO Lite, GEMS, POETと呼ばれるX線・ガンマ線偏光観測計画が進んでおり、国内でも小型科学衛星PolariSが計画されている。

我々もIKAROS GAPでの成果を発展させるべく、次世代のガンマ線偏光検出器の開発を進めており、2020年頃を目指して計画を進めている大型ソーラーセイルへの搭載を提案している。本計画の中では、GRBの放射メカニズムがシンクロトロン放射である可能性が高いことを示したが、そこに必要な強磁場の起源については明確な議論ができなかった。この磁場は宇宙ジェットを形成する上で重要な役目を果たしていると考え、次期の偏光観測で解明していきたい。

5．主な発表論文等
[雑誌論文] (計11件)

Strict Limit on CPT Violation from Polarization of Gamma-Ray Burst
Kenji Toma, Shinji Mukohyama, Daisuke Yonetoku, Toshi Muramaki, Shuichi Gunji,
磁気構造を観測するガンマ線バーストのジェット探査

ヤノトク ダイスケ

物理評論誌, 109, 241104 (2012) (査読有り)

Detection of Gamma-Ray Polarization in Prompt Emission of GRB 100826A

ヤノトク ダイスケ

臨天体物理学雑誌, 743, L30 (2011) (査読有り)

Gamma-Ray Burst Polarimeter - GAP - aboard the Small Solar Power Sail Demonstrator IKAROS

ヤノトク ダイスケ

PASJVol.63, No.3, pp.625--638 (2011) (査読有り)

D. Yonetoku (招待講演)

Study of prompt emission mechanism by the gamma-ray polarization with IKAROS-GAP

ガンマ線バーストの早期放射メカニズムの研究

D. Yonetoku (招待講演)

Study of emission mechanism of Gamma-Ray Bursts by the gamma-ray polarization with IKAROS-GAP

ガンマ線バーストの放射メカニズムの研究

〔産業財産権〕

○出願状況 (計 1 件)

名称: ガンマ線カメラ

発明者: 米徳 大輔、若島 雄大、米持元 (金沢大学)、根本 龍男、久保 信、山口 明則、松浦 貢 (クリアパルス株式会社)

権利者: 根本 龍男 (クリアパルス株式会社)

種類: 特許 (国際特許分類: G01T1/24)

番号: 特願 2013-077555

出願年月日: 2013年4月3日

国内外の別: 国内

ホームページ等

http://astro.s.kanazawa-u.ac.jp/~yonetoku/gap/index.htm
http://www.kanazawa-u.ac.jp/university/administration/prstrategy/eacanthus/1212/07.html
http://astro.s.kanazawa-u.ac.jp/~yonetoku/gap/asj-press/

6. 研究組織

(1) 研究代表者

米徳 大輔 (YONETOKU DAISUKE)
金沢大学・数物科学系・准教授
研究者番号: 40345608

(2) 研究分担者

（該当なし）

(3) 連携研究者

（該当なし）