Quasar UV luminosity function evolution up to $z = 8$

S. Manti$^1$, S. Gallerani$^1$, A. Ferrara$^1$, B. Greig$^1$, C. Feruglio$^1$

$^1$Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy

ABSTRACT
We study the redshift evolution of the quasar UV Luminosity Function (LF) for $0.5 < z < 6.5$, by collecting the most up to date observational data and, in particular, the recently discovered population of faint AGNs. We fit the QSO LF using either a double power-law or a Schechter function, finding that both forms provide good fits to the data. We derive empirical relations for the LF parameters as a function of redshift and, based on these results, predict the quasar UV LF at $z = 8$. From the inferred LF evolution, we compute the redshift evolution of the QSO/AGN comoving ionizing emissivity and hydrogen photoionization rate. If faint AGNs are included, the contribution of quasars to reionization increases substantially. However, their level of contribution critically depends on the detailed shape of the QSO LF, which can be constrained by efficient searches of high-z quasars. To this aim, we predict the expected (i) number of $z > 6$ quasars detectable by ongoing and future NIR surveys (as EUCLID and WFIRST), and (ii) number counts for a single radio-recombination line observation with SKA-MID (FoV = 0.49 deg$^2$) as a function of the H$\alpha$ flux density, at $0 < z < 8$. These surveys (even at $z < 6$) will be fundamental to better constrain the role of quasars as reionization sources.

Key words: cosmology: theory – dark ages, reionization, first stars – observations – galaxies: formation – luminosity function, mass function – quasars: emission lines

1 INTRODUCTION

The study of the quasar Luminosity Function (QSO LF) is of great relevance due to several reasons. First, it represents one of the most important observational probes of the growth of supermassive black holes (SMBHs) over cosmic time (e.g. Yu & Tremaine 2002; Li et al. 2007; Tanaka & Haiman 2009). Indeed, many observations (Fan et al. 2006; Venemans et al. 2007, 2013; Jiang et al. 2008, 2009; Willott et al. 2010a; Morganson et al. 2012; Bañados et al. 2014) have shown that $z \sim 6$ quasars harbor SMBHs with masses $M_\bullet \sim (0.02 - 1.1) \times 10^{10} M_\odot$ (Barth et al. 2003; Priddey et al. 2003; Willott et al. 2003, 2005; Jiang et al. 2007; Wang et al. 2010; Mortlock 2011; Wu et al. 2011), which have grown rapidly from their initial smaller “seed” black holes. The details of this growth are largely uncertain (Tanaka & Haiman 2009; Volonteri 2010; Treister 2013; Ferrara et al. 2014; Lupi et al. 2014; Tanaka 2014; Volonteri & Silk 2014), so the LF can provide vital additional inputs to theoretical models.

Second, the evidence of a strong redshift evolution in the quasar/AGN population (Schmidt 1968, 1972; Braccesi et al. 1980; Schmidt & Green 1983; Boyle et al. 1988, 2000; Goldschmidt & Miller 1998; Hewett et al. 1993; Croom et al. 2004; Richards et al. 2006), showing an increase in the number density of these sources with time up to $z \sim 2.5$ followed by a decline (Osmer 1982; Warren et al. 1994; Schmidt et al. 1995; Fan et al. 2001), has challenged our physical understanding so far.

Following “Pure Luminosity Evolution” (PLE) models, the QSO LF is canonically described by four parameters: the normalization $\Phi^*$, the break magnitude $M^*$, the faint-end, $\alpha$, and bright-end, $\beta$, slopes. In such representation, the overall normalization and the power-law slopes are independent of redshift (Boyle et al. 1988, 2000; Pei 1995). Nevertheless, many studies have shown that while PLE works well at $z < 2.3$ (Boyle et al. 1988, 2000), it fails at higher redshifts, indicating an evolution of the QSO LF in large quasar samples (Schmidt et al. 1995; Fan et al. 2001; Richards et al. 2006; Hopkins et al. 2007; Croom et al. 2009). However, the current picture is still rather sketchy. Croom et al. (2009) found a PLE form for the LF at $0.4 < z < 2.6$, with a decline in $\Phi^*$ and a steepening of $\beta$ from $z \sim 0.5$ ($\beta \sim -3.0$) to $z \sim 2.5$ ($\beta \sim -3.5$). Hunt et al. (2004) performed the first measurement of the faint-end at $z \sim 3$, finding a relatively shallow slope value $\alpha \sim -1.24$. Using SDSS data in $z = 0 - 5$, Richards et al. (2006) derived a redshift-independent slope $\alpha \sim -0.42$, consistent with $\alpha \sim -1.24$ found by Hunt et al. (2004) in $z = 0 - 2$. While this is an improvement, the current situation is still rather uncertain.

1 Due to the peak in AGN activity, $z \sim 2 - 3$ has been often designated as the “quasar epoch”, i.e. the period where QSOs were most active.
β = −3.1 at z < 2.4 and a flattening of β above z ∼ 2.4. Additional studies have attempted to obtain the LF at z ∼ 6. Among these, Willott et al. (2010a) found a lower value of \( \Phi^* \sim 10^{-8} \text{ Mpc}^{-3} \text{ mag}^{-1} \), and a flatter bright-end slope (−3.8 < β < −2.3 for −26 < M∗ < −24) than derived in previous analyses (Fan et al. 2003; 2004; Richards et al. 2004; Jiang et al. 2008, 2009). Finally, Kashikawa et al. (2015) found a steeper faint-end slope than what is reported at lower redshifts.

In addition, observations with X-ray surveys (e.g. Hasinger et al. 2001; Giacconi et al. 2002; Alexander et al. 2003; Worsley et al. 2004) have shown that the space density of brighter sources peaks at higher redshifts than those of less luminous objects, a phenomenon known as “cosmic downsizing” of the quasar activity (Cowie et al. 2003; Ueda et al. 2003; Heckman et al. 2004; Merloni 2004; Barger et al. 2005; Hasinger et al. 2005; Croom et al. 2009). Solidly assessing the redshift evolution of the LF shape is then crucially important to clarify the physical mechanisms of black hole accretion/growth and AGN activity. For example, the bright end of the QSO LF provides information on quasar properties during Eddington-limited accretion phases (Hopkins et al. 2005; Willott et al. 2010b; June et al. 2015); the faint end is instead related to the duration of low accretion rate phases (Hopkins et al. 2007).

In addition to QSO internal processes, an accurate determination of high-z QSO LFs might enable us to set more stringent limits on the ionizing photon production by these sources during the Epoch of Reionization (EoR). This would be a major result as at present the relative contribution from stars in galaxies and accreting sources such as quasars/AGNs is far cry from being known.

The usual argument against QSOs being important is based on their sharply decreasing number density at z > 3, which prevents AGNs from producing enough ionizing emissivity at z > 4 (Masters et al. 2012). Therefore, the high-z population of star-forming galaxies is thought to be the most natural candidate for cosmic reionization (e.g. Madau 1991; Haardt & Madau 1996, 2012; Giallongo et al. 1997; Willott et al. 2010a; Bouwens et al. 2012), provided that at least > 20% of the ionizing photons escape into the IGM, a non-trivial requirement.

However, such persuasion has been shaken by the recent results from Giallongo et al. (2015), who found evidence for a new population of faint quasars (−22.5 ≲ M∗ [AB] ≤ −18.5) at 4 < z < 6.5. Based on these observations, Madau & Haardt (2015) (hereafter MH15) obtained an upward revision of the comoving AGN emissivity (\( \epsilon_0 = 2.5 \times 10^{44} \text{ erg s}^{-1} \text{ Mpc}^{-3} \text{ Hz}^{-1} \)), of ∼ 10 times with respect to Hopkins et al. (2007) (H07; see also Haardt & Madau 2012 (HM12)), and potentially sufficient to keep the IGM ionized at z = 6. If these claims are confirmed, the contribution of quasars to cosmic reionization could be more relevant than previously estimated (e.g. Glikman et al. 2011). However, it is worth noting that the impact of AGN radiation to the cosmic reionization is still controversial (e.g. Georgakakis et al. 2015; Kim et al. 2015) and requires further searches for faint quasars.

In fact, given the lack of deep AGN surveys at various wavelengths (Shankar & Mathur 2007), only a very small number of low-luminosity quasars (M∗ [AB] > −24) at z > 6 has been spectroscopically identified (Willott et al. 2009). Kashikawa et al. (2015; Kim et al. 2015). This implies that both the faint end of the z ∼ 6 LF and the AGN role in reionization remain highly uncertain. Optical/NIR surveys are limited by the fact that high-z quasars are likely to be heavily obscured during their growth phase. In this case one can exploit obscuration-insensitive experiments, such as radio recombination line emission (see e.g. Manti et al. 2016, hereafter M16). This technique will become possible thanks to the extraordinary capabilities of the SKA (Square Kilometre Array) telescope in terms of frequency coverage (0.35 − 13.8 GHz), angular resolution and sensitivity (Morganti et al. 2014), and might even allow the detection of Compton-thick sources.

Motivated by the above issues, based on a compilation of the most updated observational data at different redshifts (z = 0.5 to z = 6.5; Jiang et al. 2009; Fiore et al. 2012; Giallongo et al. 2012, 2015; Kashikawa et al. 2015), we provide a comprehensive overview of the evolution of the quasar UV LF at 0 < z < 6.5 in terms of its parameters. These results are then used to predict the expected number densities and number counts of AGNs up to z = 8.

## 2 QSO LF EVOLUTION

In order to study the evolution of the quasar UV LF, we first collect the most up to date measurements from z = 0.5 to z = 6.5:

- 0.5 < z < 6 by Giallongo et al. (2012), and references therein (Croom et al. 2009; Richards et al. 2009 at z ≤ 2.5, Bongiorno et al. 2007; Fontanot et al. 2007; Siana et al. 2008; Brusa et al. 2010; Civano et al. 2011; Glikman et al. 2011; Fiore et al. 2012 at z > 3). For details on the number of quasars in each sample, the instrument used for the detection, the magnitude limit of the survey, and the minimum and maximum M∗ [AB] magnitude of each QSO sample see the corresponding reference.

- 4 < z < 6.5 by Giallongo et al. (2015). The 22 AGN candidates of this sample have been selected in the CANDELS GOODS-South field, and are characterized by −22.5 < M∗ [AB] ≤ −18.5. The selection has been done in the NIR H band down to very faint levels (H ≤ 27) using reliable photometric redshifts.

- 5.78 < z < 6.00 by Jiang et al. (2009). The sample is composed of 4 new quasars among six which have been selected from the Sloan Digital Sky Survey (SDSS) southern survey. It constitutes a flux-limited sample with 21 < zAB < 21.8 over an effective area of 195 deg², and is combined with 17 QSOs at z > 5.7 selected in the SDSS main survey using similar criteria (these form a flux-limited sample with zAB < 20 over ∼ 8000 deg²) and a flux-limited sample of 6 quasars with zAB < 21 (Jiang et al. 2008).

- z > 5.8 by Fiore et al. (2012). 30 new AGN candidates have been identified at z > 3 in the Chandra deep field south (CDFS) using the 4 Ms Chandra observation. Among them, the z > 5.8 candidates are characterized by 43.5 < log L(2 − 10 keV) < 44.5 (the luminosity limit at z = 7.5 is log L(2 − 10 keV) ∼ 43.3).

2 Throughout this paper we assume a flat cosmological model with \( H_0 = 67.3 \text{ km s}^{-1} \text{ Mpc}^{-1} \), \( \Omega_m = 0.315 \) and \( \Omega_A = 0.685 \).
The standard functional form: a Schechter function. We adopt for the double power-law minimisation function models: a double power-law function and a Schechter function. In each panel, the green vertical lines indicate the 5σ detection thresholds with SKA-MID at ν = 13.8 GHz, in 10, 100 and 1000 hours of observing time.

Figure 1. Evolution of the UV luminosity function log Φ (Mpc$^{-3}$ mag$^{-1}$) as a function of the absolute magnitude $M_{AB}^{1450}$, from $z = 0.5$ to $z = 6$. In each panel, symbols represent observational data with the corresponding error bars (Jiang et al. 2009: magenta triangles; Fiore et al. 2012: purple diamond; Giallongo et al. 2012– and references therein –, Giallongo et al. 2015: red circles, filled and empty respectively; Kashikawa et al. 2015: dark red square), while the solid curves represent our best-fit parameterization of the QSO LF using a double power-law function (black) and a Schechter function (blue). In each panel, the green vertical lines indicate the 5σ detection thresholds with SKA-MID at ν = 13.8 GHz, in 10, 100 and 1000 hours of observing time.

- $6.041 < z < 6.156$ by Kashikawa et al. (2015). The sample includes 2 AGN candidates discovered with the Subaru/Suprime-Cam, and identified through follow-up spectroscopy (one apparent quasar with $M_{AB}^{1450} = -23.10$ at $z = 6.156$ and one possible quasar with $M_{AB}^{1450} = -22.58$ at $z = 6.041$).

We then fit these observations with two parametric luminosity function models: a double power-law function and a Schechter function. We adopt for the double-power-law (hereafter referred to as DPL) the standard functional form:

$$
\Phi(M_{AB}, z) (\text{Mpc}^{-3} \text{mag}^{-1}) = \frac{\Phi^* (z)}{10^{0.4 (\alpha (z) + 1)(M_{AB} - M^* (z))} + 10^{0.4 (\beta (z) + 1)(M_{AB} - M^* (z))}} \exp \left(- 10^{0.4 (M^* (z) - M_{AB})}\right),
$$

containing four redshift-dependent parameters: the normalization, $\Phi^*$, the break magnitude, $M^*$, the faint-end slope, $\alpha$, and the bright-end slope, $\beta$. The Schechter luminosity function is

$$
\Phi(M_{AB}, z) (\text{Mpc}^{-3} \text{mag}^{-1}) = (0.4 \ln 10) \Phi^* (z) \times 10^{0.4 (\gamma (z) + 1)(M^* (z) - M_{AB})} \exp \left(- 10^{0.4 (M^* (z) - M_{AB})}\right),
$$

where the parameters to be determined are $\Phi^*$, $M^*$ and $\gamma$.

We determine the LF parameters via $\chi^2$ minimisation. The resulting best-fit values and corresponding errors (together with the $\chi^2$ value) for each redshift are listed in Table 1. In Figure 1 we show our best-fit LF curves for different redshift bins in $0.5 \lesssim z \lesssim 6$, along with the observational data and corresponding error bars (Jiang et al. 2009: magenta triangles; Fiore et al. 2012: purple diamond; Giallongo et al. 2012, 2015: red circles, filled and empty respectively; Kashikawa et al. 2015: dark red square, with the arrow indicating a lower limit). Vertical green lines denote the AB magnitude of quasars that would be detectable via radio recombination lines (RRLs) (taken from M16) with the SKA-MID telescope, in 10, 100 and 1000 hours of observing time. We find that the MID instrument could detect sources with $M_{AB} \lesssim -26$ at $z < 4$ and sources with $M_{AB} \lesssim -27$ at $z \gtrsim 4$ in $t_{obs} < 100$ hrs.

In order to predict the QSO LF beyond $z = 6$, we derive empirical relations for $\Phi^* (z)$, $M^* (z)$, $\alpha (z)$, $\beta (z)$ and $\gamma (z)$ based on the best fit values found at lower redshifts. In Fig. 2 we plot these values with the relative error bars versus redshift both in the DPL case (dark red circles in the upper panels) and in the Schechter case (blue triangles in the bottom panels). From Fig. 2 we outline a few interesting features:

(a) $\log \Phi^*$ increases almost linearly with redshift in the DPL case, while it shows a slow increase towards $z \sim 2$ and then a significant reduction towards high redshift in the Schechter case;
(b) $M^*$ increases until $z \sim 3$ (DPL case) or $z \sim 6$ (Schechter), and then decreases (in absolute value);
(c) scatter in $\alpha$ and $\beta$ is large and consistent with no evolution;
(d) the evolution of $\gamma$ shows a peak at $z \sim 2.5$, followed by a gentle drop.

The redshift evolution of $\log (\Phi^*)$, $M^*$ and $\gamma$ can be well fit by quadratic functions, namely:

$$
\log (\Phi^*) \approx -6.0991^{+0.1606}_{-0.1543} + 0.0209^{+0.1179}_{-0.1221} z + 0.0171^{+0.0196}_{-0.0190} z^2,
$$

$$
M^* \approx -22.5216^{+0.2565}_{-0.2002} - 1.6510^{+0.1821}_{-0.1848} z + 0.2869^{+0.0280}_{-0.0280} z^2,
$$

(3)

for the DPL case, and

$$
\log (\Phi^*) \approx -6.9474^{+0.1695}_{-0.1504} + 0.5885^{+0.1369}_{-0.1262} z - 0.1618^{+0.0281}_{-0.0186} z^2,
$$

$$
M^* \approx -24.0149^{+0.0240}_{-0.0222} - 0.992^{+0.1638}_{-0.1774} z + 0.0773^{+0.0271}_{-0.0251} z^2,
$$

$$
\gamma \approx -2.004^{+0.2244}_{-0.2169} + 0.2330^{+0.1566}_{-0.1563} - 0.0560^{+0.0238}_{-0.0239} z^2,
$$

(4)

for the Schechter case. These fitting functions are estimated by performing a $\chi^2$ minimisation using Monte-Carlo sampling. The errors on the individual fitting coefficients correspond to the 1σ uncertainties from the marginalised one dimensional probability distribution functions (PDFs).

We overplot in Fig. 2 the corresponding best-fitting curves (black solid for the DPL case, black dashed for the Schechter case) with the shaded regions indicating the relative 1σ errors (pink for the DPL case, cyan for the Schechter case).

We adopt these fitting functions to predict the quasar LF at $z > 6$. In particular, Figure 3 presents our predictions at $z \sim 8$ both in the DPL case (namely by combining eq. 1 and eq. 2 black curve) and in the Schechter case (eq. 2 and eq. 3 blue curve). In the DPL case, we adopt the slope mean values ($\alpha = -1.35 \pm 0.91, \beta = -3.23 \pm 0.68$) since the large uncertainties in these parameters hamper a conceivable fit to our results.

In order to estimate the errors on the extrapolated quasar LFs beyond $z > 6$, we Monte-Carlo sample each of the fitting functions outlined in Eqs. (3) and (4), folding in the associated uncertainties on each of the individual quadratic fitting coefficients. By performing this step we are able to obtain a posterior PDF at any redshift for each of $\log (\Phi^*)$, $M^*$ and $\gamma$ for the Schechter case, and $\log (\Phi^*)$, $M^*$ for the DPL case. Finally, we perform a $\chi^2$ minimisation of the quasar LF by Monte-Carlo sampling the functional form (either DPL –Eq. 1– or Schechter –Eq. 2–), assuming a joint likelihood defined by multiplying the individual posterior PDFs for the individual PDFs found above (including the errors on $\alpha$ and $\beta$ in the DPL case). Reported 1σ errors on the extrapolated quasar LFs are then estimated from this joint likelihood distribution.

In Fig. 3 the red and green hatched regions show the outcomes of our calculations for the DPL and Schechter case, respectively. As in Fig. 1 the green vertical lines indicate the thresholds of observability at $z \sim 8$ for a 5σ detection with SKA-MID at $\nu = 13.8$ GHz, in 100 and 1000 hrs of observing time. Quasars with $M_{AB} \lesssim -26$ and $-27$ can be detected with SKA-MID in $t_{\text{obs}} < 1000$ hrs and $< 100$ hrs, respectively.

We observe that the difference between the LF computed in the DPL case and the one computed in the Schechter
Schechter function is the correct functional form to describe termination. We actually do not know whether the DPL or a larger the uncertainty becomes on the functional form de-
facto that with fewer available data points for the LF, the case increases with increasing redshift. This is due to the fitted LF parameters (pink for the DPL case, cyan for the Schechter case) recovered from our Monte-Carlo sampling.

Figure 2. Evolution of the QSO LF parameters versus redshift, at $0 < z < 7$. The points are their best-fit values and the relative error bars obtained through a fit by a double power-law (first row, dark red circles) and a Schechter function (second row, blue triangles). First row: the panels represent: (a) the logarithm of the normalization, log $\Phi^*$, (b) the break magnitude, $M^*$, (c) the faint-end slope, $\alpha$, (d) the bright-end slope, $\beta$. Second row: (a) log $\Phi^*$, (b) $M^*$, (c) the slope $\gamma$. In panels (a) and (b), the black curves indicate the quadratic fitting functions for the evolution of log $\Phi^*$ and $M^*$ as a function of redshift, from $z = 0$ to $z = 7$, for the DPL case (solid) and the Schechter case (dashed). In panels (c) and (d) of first row, the black solid lines correspond to the mean values of $\alpha$ and $\beta$. In panel (c) of second row, the black dashed curve represents the quadratic fit for the evolution of $\gamma$. The shaded areas represent the 1σ uncertainties on the fitted LF parameters (pink for the DPL case, cyan for the Schechter case) recovered from our Monte-Carlo sampling.

3 IMPLICATIONS

3.1 Quasar contribution to cosmic reionization

The evolution of the quasar UV luminosity function up to high redshifts provides us important information about the AGN contribution to the ionizing UV background responsible for cosmic reionization. As already pointed out in the Introduction, the recent discovery of a considerable number of faint quasars by new deep multiwavelength AGN surveys at $z > 3$ (Civano et al. 2011; Glikman et al. 2011; Fiore et al. 2012; Giuliano et al. 2015), indicates that the population of less luminous sources at high-$z$ is larger than previously estimated. This finding forces an upward revision of the ionizing power of QSOs.

With the aim of constraining the quasar contribution to reionization, we compute the redshift evolution of the AGN comoving emissivity and hydrogen photoionization rate, based on our predicted LF. First, we derive the specific ionizing emissivity following Lusso et al. (2015), which for the quasar population at redshift $z$ and frequency $\nu$ is given by

$$e_\nu(\nu, z) = \int_{M_{\text{AB}}^\text{min}}^{M_{\text{AB}}^\text{max}} \Phi(M_{\text{AB}}, z)L_\nu(M_{\text{AB}}, \nu)dM_{\text{AB}},$$

where $L_\nu(M_{\text{AB}}, \nu)$ is the specific luminosity as a function of $M_{\text{AB}}(\nu)$, $L_\nu = 4.346 \times 10^{20} \times 10^{-0.4M_{\text{AB}}(\nu)}$ erg s$^{-1}$ Hz$^{-1}$, and $M_{\text{AB}}^\text{min}$ is the minimum magnitude considered in the integral. We vary $M_{\text{AB}}^\text{min}$ from $-25$ to $-19$. Then, we convert the integrated emissivity at 1450 Å inferred from our UV luminosity functions into a 1 Ryd emissivity, $\epsilon_{912}$, using a power-law parametrization of the quasar SED, $f_\nu \propto \nu^{\alpha_{\text{EUV}}}$, with $\alpha_{\text{EUV}} = -1.7$ at $\lambda > 912$ Å (Lusso et al. 2015),

$$e_\nu(\nu, z) = \epsilon_{\nu, 912}(z) \left(\frac{\nu}{\nu_{912}}\right)^{\alpha_{\text{EUV}}}.$$

Finally, from the Lyman limit emissivity, we can estimate the quasar contribution to the UV background photoionization rate, by using the following relation

$$\Gamma_{\text{HI}}(z) = \int_{\nu_{\text{LL}}}^{\nu_{\text{HI}}} \frac{4\pi J_\nu(\nu, z)}{h\nu} \sigma_{\text{HI}}(\nu) d\nu.$$

Here $\nu_{\text{LL}}$ is the Lyman limit frequency, $J_\nu(\nu, z)$ is the mean specific intensity of the ionizing background at $z$, and $\sigma_{\text{HI}}(\nu)$ is the HI photoionization cross section. Using the ‘local-source approximation’ (see Lusso et al. 2015 for details), we

\[ \]
comoving emissivity at 1 Ryd from HM12 (dotted), which closely fits the results of H07, and from MH15 (dashed). In the right panels, the black circles are the empirical measurements of the HI photoionization rate from Calverley et al. (2011) and Becker & Bolton (2013), while the green squares represent the predicted contribution by faint AGNs from the GOODS-S sample of Giallongo et al. (2015).

Based on our results, assuming $M_{\text{HI}}^{\text{min}} = -19$, we can provide handy parameterizations for the quasar emissivity (in units of erg s$^{-1}$ Mpc$^{-3}$ Hz$^{-1}$) and photoionization rate (in units of s$^{-1}$) evolution:

\[
\begin{align*}
\log \sigma_{\text{HI}}(z) &\approx 23.59 + 0.55z - 0.062z^2 + 0.0047z^3 - 0.0012z^4 \\
\log \Gamma_{\text{HI}}(z) &\approx -11.66 - 0.081z - 0.00014z^2 + 0.0033z^3 - 0.0013z^4,
\end{align*}
\]

in the DPL case, and

\[
\begin{align*}
\log \sigma_{\text{HI}}(z) &\approx 23.55 + 0.99z - 0.28z^2 + 0.0313 - 0.0013z^4 \\
\log \Gamma_{\text{HI}}(z) &\approx -11.64 + 0.17z - 0.13z^2 + 0.014z^3 - 0.00059z^4,
\end{align*}
\]

in the Schechter case.

In the DPL case, the inferred emissivity peaks at a higher redshift ($z \sim 3.5$) with respect to the curve from HM12; beyond that point, it remains about 10 times larger for $M_{\text{HI}}^{\text{min}} = -19$ until $z \sim 8$, and then decreases more rapidly than the HM12 curve. In the Schechter case instead, for a minimum magnitude $M_{\text{HI}}^{\text{min}} = -19$, our LyC emissivity does not drop at high redshift (while showing a peak at $z \sim 3$ for $M_{\text{HI}}^{\text{min}} < -19$), and presents a very similar trend to the one found by MH15. For the same minimum quasar magnitude, by varying the LF parameters in the allowed intervals, we find that the emissivity (in units of erg s$^{-1}$ Mpc$^{-3}$ Hz$^{-1}$) at $z \sim 6$ varies in the range $[4.4 \times 10^{23}, 3.2 \times 10^{24}]$ for a double power-law LF, and $[1.5 \times 10^{23}, 1.5 \times 10^{23}]$ for a Schechter LF. This implies that in both models, our emissivity at $z \sim 6$ is higher than the one derived by H07 ($\sigma_{\text{HI}} \approx 2 \times 10^{23}$ erg s$^{-1}$ Mpc$^{-3}$ Hz$^{-1}$), being compatible with the value found by MH15 (see Introduction).

As for the photoionization rate, for $M_{\text{HI}}^{\text{min}} = -19$ at $z \sim 6$ we find $\Gamma_{\text{HI}}$ in (units of $10^{-12}$ s$^{-1}$) in the range $[0.028, 0.20]$ in the DPL case, and $[0.0095, 0.94]$ in the Schechter model. These results are in agreement with the estimates from Calverley et al. (2011), $\Gamma_{\text{HI}} \approx 0.14 \times 10^{-12}$ s$^{-1}$, and Giallongo et al. (2015), $\Gamma_{\text{HI}} \approx 0.12 \times 10^{-12}$ s$^{-1}$, which are in turn consistent with the value required to keep the IGM highly ionized at $z \sim 6$. Finally, there is a strong dependence on the minimum magnitude: varying $M_{\text{HI}}^{\text{min}}$ from $-19$ to $-25$ reduces the emissivity and photoionization rate by a factor up to $\sim 1 - 4$ orders of magnitude.

These results suggest that, by including the recently discovered population of faint quasars, the contribution of AGNs to the UV radiation responsible for the cosmic reionization is higher than previously found. However, we warn that such a conclusion critically depends on the adopted shape (i.e. double power-law or Schechter) for the QSO LF.

### 3.2 Near-infrared number counts

Our study on the evolution of the QSO LF allows us to examine the possible detectability of AGNs in the NIR. In order to compute the expected quasar number counts at
different redshifts, we use the following equation:

\[
N(< M_{AB}^{1450}, z) = \int_{-\infty}^{M_{AB}^{1450}} \Phi(M_{AB}, z) dM_{AB} V_c(z),
\]  

(11)

where \( \Phi(M_{AB}, z) \) is our parametric best-fit luminosity function (given by eq. (11) or eq. (2), in the DPL and Schechter case respectively), and \( V_c(z) \) is the comoving volume:

\[
V_c(z) = \frac{c}{H_0} \int_{z}^{z+\Delta z} \frac{dL(z')^2dz'}{(1+z')^2\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}},
\]  

(12)

where \( c \) is the speed of light, \( H_0 \) is the Hubble parameter, \( d\Omega \) is the solid angle corresponding to the field of view of a given telescope, \( dL \) is the luminosity distance, and \( \Omega_m \) and \( \Omega_\Lambda \) are the total matter density and the dark energy density.
in the units of critical density, respectively. Furthermore, $\Delta z$ is the redshift interval covered by the total bandwidth $\Delta \nu$ of the instrument under consideration:

$$\Delta z = \nu_{RF} \left( \frac{\Delta \nu}{\nu_{obs} - 0.25 \Delta \nu} \right),$$

where $\nu_{obs} = \nu_{RF} / (1 + z)$ is the observed frequency ($\nu_{RF}$ is the rest-frame frequency).

Figure 5 shows our predicted sky surface density of high-$z$ quasars brighter than the $H$ magnitude limit, in the three redshift bins $6 < z < 7$, $7 < z < 8$, and $z > 8$, obtained either with a double-power-law (black curve) or a Schechter luminosity function (blue curve). The red and green hatched regions correspond to the uncertainties resulting from the Monte-Carlo sampling (see Sec. 2), in the DPL and Schechter case respectively. As in Fig. 4 we must consider as a conservative uncertainty on the expected number counts the region between the lower limit in the DPL and the upper limit in the Schechter case (grey shaded areas in Fig. 5).

In the first panel of Fig. 5 the black diamond represents the result from Venemans et al. (2013) with the corresponding 2$\sigma$ error bar, while the light grey shaded area indicates the 2$\sigma$ uncertainty on the sky surface density (considering both the DPL and Schechter functions).

As in Sec. 2, we note that the difference between our predictions with the DPL and the Schechter function increases with increasing redshift. The conversion between the absolute magnitude $M_{1500}^{AB}$ and the observed IR magnitude $H$ is done using a template quasar spectrum. In the figure, the symbols show the $H$-band depth of different ongoing and future near-IR surveys and the sky density necessary for them to detect one quasar in the redshift slice. The surveys we consider here are those which could potentially discover high-$z$ quasars, i.e. cover sufficient depth and area at $H$ band to detect such kind of sources (Willott et al. 2010). These are:

- UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007): the Large Area Survey (LAS: 4028 deg$^2$ to $H = 19.2$; Dye et al. 2006) and the Ultra Deep Survey (UDS: 0.77 deg$^2$ to $H = 24.4$; Dye et al. 2006);
- ESO VISTA Telescope surveys (Sutherland 2009): the VISTA Hemisphere Survey (VHS: 5000 deg$^2$ to $H = 19.9$), the VISTA Kilo-Degree Infrared Galaxy Survey (VISTA Kilo-Degree Survey: 1350 deg$^2$ to $H = 20.8$), the VISTA Deep Extragalactic Observations Survey (VIDEO: 15 deg$^2$ to $H = 23.7$) and the UltraVISTA (U-Vista: 0.73 deg$^2$ to $H = 25.4$);
- EUCLID-wide imaging survey (20000 deg$^2$ to $H = 23.3$, for weak lensing) and deep imaging survey (30 deg$^2$ to $H = 25.3$, for supernovae);
- WFIRST High Latitude Survey (WFIRST-HLS: 2000 deg$^2$ to $H = 27$; Spergel et al. 2013, 2014).

The results show that in $6 < z < 7$, the UDS is expected to detect $\sim 1$ quasar, while the LAS may contain $\lesssim 1$ quasars (this can be considered as a lower limit; see Mortlock et al. 2012). Furthermore, due to the steepening of the bright end of the luminosity function at higher redshifts, the chances of detection with both UKIDSS surveys are very poor at $z > 7$. Regarding the VISTA surveys, we expect to find $\sim 1$ quasar with each of them at $6 < z < 7$, while it is very unlikely for the four surveys to find any higher redshift sources.

Moreover, from the first panel of Fig. 5 we note that, although our predictions are below the V13 results, we are still consistent at $\sim 2\sigma$ with their observations.

---

4 We approximate quasars with a pure power-law spectrum with frequency index $\alpha_{\nu} = -0.5$.

5 All the $H$-band limiting magnitudes correspond to a depth of 10$\sigma$. 
The chances of detection increase significantly with EU-CLID, whose wide survey should allow the discovery of \(~200\) quasars at \(z \sim 6.5\) (in both the DPL and Schechter model), and \(~2\) in the DPL case (\(~20\) in the Schechter case) at \(z \sim 7.5\). Also, EUCLID-wide is much better suited to observe distant quasars with respect to the deep survey. The capabilities of WFIRST-HLS are even more promising, since with this survey we expect to reveal \(~2 \times 10^4\) quasars in the DPL case (up to \(~2 \times 10^5\) in the Schechter case) at \(z \sim 6.5\), \(~6 \times 10^2\) (\(~6 \times 10^3\)) at \(z \sim 7.5\), and \(~1\) (\(~200\)) at \(z \sim 8.5\).

We finally note, that surveys of high-\(z\) QSOs are always plagued by the possible presence of contaminants (e.g. brown dwarfs). Thus, objects detected down to the survey magnitude limit may not always be unequivocally identified as actual QSOs.

### 3.3 Radio number counts

By combining eqs. (11), (12) and (13), we can also predict the expected quasar number counts for a single observation with SKA-MID (\(F_{\text{OV}} = 0.49\ \text{deg}^2\)). Here, based on M16, we analyse the detectability of obscured AGNs in the radio band through their RRL emission\(^6\). Specifically, we consider the \(\text{H}\alpha\) lines, which are the strongest RRLs, i.e. due to \(n + 1 \rightarrow n\) transitions, whose rest frequencies are:

\[
\nu_{\text{RF}}(z, n) = c R_H \left[ \frac{1}{n^2} - \frac{1}{(n+1)^2} \right],
\]

where \(R_H = 1.9098 \times 10^5\ \text{cm}^{-1}\) is the Rydberg number for hydrogen, and \(n\) is the principal quantum number. We compute the RRL fluxes by adopting our "fiducial" case for the AGN spectral indices\(^7\) with the inclusion of secondary ionizations from X-ray photons (assuming a fully neutral medium surrounding the HII region; for details see M16):

\[
f_{\text{H}\alpha} \approx 4.78 \times 10^{-7} n^{-2.72} \frac{10^{-0.4 M_{1450}^\text{AB}} (1 + z)}{1 - f_{\text{esc}}^{\text{12}}} \left( \frac{d_L}{10^5 \ \text{Mpc}} \right)^2 \left( \frac{\delta v}{100 \ \text{km} \ \text{s}^{-1}} \right)^{-1} \mu\text{Jy}.
\]

(15)

Here \(d_L\) is the luminosity distance of the emitting source at redshift \(z\), \(\delta v\) is the width of the line in velocity units, and \(f_{\text{esc}}^{\text{12}}\) is the escape fraction of ionizing photons.

In Fig. 6 we plot our prediction for the number counts \(\log N(> f_{\text{H}\alpha})\) of quasars contained in the volume \(V_e\) spanned by SKA-MID in one pointing, at \(\nu_{\text{obs}} = 13.5\ \text{GHz}\), as a function of the flux density at the center of \(\text{H}\alpha\) lines (in \(\mu\text{Jy}\)), at \(0 < z < 8\). In our calculations we assume an instantaneous bandwidth of SKA-MID \(\Delta \nu = 0.5\ \text{GHz}\). The computation is done by splitting the redshift interval into eight \(\Delta z = 1\) slices in which a certain number of radio recombination lines fall in the SKA-MID bandwidth (with \(n_{\text{min}} < n < n_{\text{max}}\)).

Given that \(f_{\text{H}\alpha} = f(M_{1450}^\text{AB}, z, n)\), for every \(z\)-bin and for every quasar magnitude \(M_{1450}^\text{AB}\), a value of the \(\text{H}\alpha\) flux density corresponds to each observable quantum number \(n\), and the total RRL intensity is given by the sum of the peak fluxes of all the lines,

\[
f_{\text{H}\alpha}^\text{tot}(M_{1450}^\text{AB}, z) = \sum_{n = n_{\text{min}}}^{n_{\text{max}}} f_{\text{H}\alpha}(M_{1450}^\text{AB}, z, n).
\]

Hence, in each \(\Delta z\), a given magnitude interval spans a range of \(f_{\text{H}\alpha}^\text{tot}\) values, and the corresponding number counts are \(N_{\Delta z}(> f_{\text{H}\alpha}^\text{tot})\). Thus, after the rebinning of the \(f_{\text{H}\alpha}^\text{tot}\) range, the total expected number of quasars at \(0 < z < 8\) is given by the sum of the number counts in each redshift interval, 

\[
N(> f_{\text{H}\alpha}^\text{tot}) = \sum_{\Delta z} N_{\Delta z}(> f_{\text{H}\alpha}^\text{tot}).
\]

The results are shown in Fig. 6 for our predicted luminosity functions, using both a double power-law (red circles) and a Schechter function (blue stars). The pink circles (cyan stars) refer to curves corresponding to the cumulative contribution of each redshift slice to the quasar number counts, in such a way that the red circles (blue stars), connected with a solid line, give the total expected number of sources at \(0 < z < 8\). The green vertical lines indicate the thresholds of observability for a 5\(\sigma\) detection with SKA-MID at \(\nu = 13.5\ \text{GHz}\), in 10, 100 and 1000 hours of integration time.

---

\(^6\) Radio recombination lines represent a special class of spectral lines arising in HII regions from transitions between highly excited hydrogen levels (quantum numbers \(n > 27\)) and appearing in the radio regime (rest frame frequencies \(\nu_c < 300\ \text{GHz}\)). For a comprehensive review on RRLs, see Gordon & Sorochenko (2002).

\(^7\) We parametrize the emitted quasar flux in wavelength as \(f_{\lambda} \propto \lambda^{-\alpha}\). The "fiducial" model is based on the following combination of spectral slopes: \(\alpha_{\text{X, hard}} = -1.11\), \(\alpha_{\text{X, soft}} = -0.7\), \(\alpha_{\text{UV}} = -0.7\), \(\alpha_{\text{UV}} = -1.7\).

\(^8\) We assume \(f_{\text{esc}}^{\text{12}} = 0\), i.e. all the ionizing photons remain trapped within the interstellar medium of the quasar host galaxy, and \(\delta v = 100\ \text{km} \ \text{s}^{-1}\).
number counts, in such a way that the red circles (blue stars), connected with a solid line, give the total expected number of sources in $0 < z < 8$. The green vertical lines indicate the threshold of observability for a 5σ detection with SKA-MID at $\nu = 13.5$ GHz, in 10, 100 and 1000 hrs of integration time. Intriguingly, the MID telescope could detect RRLs with $f_{\text{H}\alpha} \gtrsim (75, 25, 7)$ μJy in $t_{\text{obs}} < (10, 100, 1000)$ hrs, respectively.

4 SUMMARY

We have studied the redshift evolution of the quasar UV LF at $0.5 < z < 6.5$, taking into account the most updated observational data and, in particular, the new population of faint quasars recently discovered (Giallongo et al. 2015).

We have fitted the quasar LF at different redshifts both with a double power-law (DPL) and a Schechter function, finding that both forms provide good fits to the data. Handy and accurate analytical fitting formulae for the redshift evolution of the normalization parameter ($\Phi^*$), the break magnitude ($M^*$) and the faint-end/bright-end slopes ($\alpha$ and $\beta$) in the double power-law case and the Schechter slope ($\gamma$) are provided.

We first examined the implications of our results to quantify the ionizing contribution of QSOs during the EoR. We have found that, by including the new faint population of quasars, the QSO/AGN contribution is higher than previously determined, consistently with Madau & Haardt (2015), but the level of contribution depends sensitively on the LF shape (i.e. DPL or Schechter). Notably, the LyC emissivity in the Schechter case does not drop at $z \gtrsim 3.5$ like in the DPL case, resulting in an upper limit for $\epsilon_{912}$ at $z \sim 6$ about 4 times larger than in the DPL case. Both models shake the traditional view of an evolution of the ionizing QSO background peaking at $z = 2 - 3$ and then quickly decreasing. We have also derived an estimate for the hydrogen photoionization rate which, in both cases, is consistent with the most up to date estimates at $z \sim 6$. Given the strong dependence of these results on the shape of the UV LF, further observations of quasars at high redshift are required.

To this aim, we have made predictions for the number of $z > 6$ quasars that may be discovered by current and future NIR surveys. While UKIDSS and VISTA may find a few sources at $6 < z < 7$, the chances of observation increase dramatically for EUCLID, which will be able to reveal hundreds of quasars at $6 < z < 7$ and tens of quasars at $7 < z < 8$. Finally, detections of up to 200 sources at $z = 8.5$ are expected with the WFIRST-HLS survey.

As a complementary strategy, we have computed the expected QSO number counts for a single radio-recombination line observation with SKA-MID as a function of the H$\alpha$ flux density, at $0 < z < 8$. Intriguingly, the MID telescope could detect RRLs with $f_{\text{H}\alpha} \gtrsim (75, 25, 7)$ μJy in $t_{\text{obs}} < (10, 100, 1000)$ hrs, respectively.

REFERENCES

Alexander D. M. et al., 2003, AJ, 126, 539
Bañados E. et al., 2014, AJ, 148, 14
Barger A. J., Cowie L. L., Mushotzky R. F., Yang Y., Wang W.-H., Steffen A. T., Capak P., 2005, AJ, 129, 578
Barth A. J., Martini P., Nelson C. H., Ho L. C., 2003, AJ, 594, 95
Becker G. D., Bolton J. S., 2013, MNRAS, 436, 1023
Bongiorno A., Zamorani G., Gavignaud I. et al., 2007, A&A, 472, 443
Boutsia K., Grazian A., Giallongo E. et al., 2011, ApJ, 736, 41
Bouwens R. J., Illingworth G. D., Oesch P. A. et al. 2011, ApJ, 737, 90
Bouwens R. J., Illingworth G. D., Oesch P. A. et al., 2012, ApJL, 752, L5
Boyle B. J., Shanks T., Peterson B. A., 1988, MNRAS, 235, 935
Boyle B. J., Shanks T., Croom S. M., Smith R. J., Miller L., Loaring N., Heymans C., 2000, MNRAS, 317, 1014
Braccesi A., Zitelli V., Bonoli F., Formigini L., 1980, A&A, 85, 80
Brusa M., Civano F., Comastri A. et al., 2010, ApJ, 716, 348
Calverley A. P., Becker G. D., Haehnelt M. G., Bolton J. S., 2011, MNRAS, 412, 2543
Civano F., Brusa M., Comastri A. et al., 2011, ApJ, 741, 91
Cowie L. L., Barger A. J., Bautz M. W., Brandt W. N., Garmire G. P., 2003, ApJ, 584, L57
Croom S. M. et al., 2004, MNRAS, 349, 1397
Croom S. M. et al., 2009, MNRAS, 399, 1755
Dye S., Warren S. J., Hambly N. C. et al., 2006, MNRAS, 372, 1227
Fan X. et al., 2001, AJ, 121, 54
Fan X. et al., 2003, AJ, 125, 1649
Fan X. et al., 2004, AJ, 128, 515
Fan X., Strauss M. A., Becker R. H. et al., 2006, AJ, 132, 117
Fernandez-Soto A., Lanzetta K. M., Chen H.-W., 2003, ApJS, 139, 369
Ferrara A., Salvadori S., Yue B., Schleicher D., 2014, MNRAS, 443, 2410
Fiore F., Puccetti S., Grazian A. et al., 2012, A&A, 537, 16
Fontanot F. et al., 2007, A&A, 461, 39
Georgakakis A. et al., 2015, MNRAS, 453, 1946
Giacconi R. et al., 2002, ApJS, 139, 369
Giallongo E., Cristiani S., D’Odorico S., Fontana A., 2002, ApJ, 584, L57
Giallongo E. et al., 2012, ApJ, 736, 41
Giallongo E., Fontana A., Madau P., 1997, MNRAS, 289, 629
Giallongo E. et al., 2015, ApJ, 737, 90
Giallongo E., Illingworth G. D., Oesch P. A. et al. 2011, ApJ, 737, 90
Giallongo E., Grazian A., Gavignaud I. et al., 2015, A&A 578, A83
Glikman E., Djorgovski S. G., Stern D. et al., 2011, ApJ, 728, 1215
Goldschmidt P., Miller L., 1998, MNRAS, 293, 107
Gonzalez-Polo R. A., Madau P., 2000, MNRAS, 317, 1014
Greiner J., Hasinger G. et al., 2001, A&A, 365, L45

© 2015 RAS, MNRAS 000, 77–77
QSO UV LF evolution up to \( z = 8 \)

Stevans M. L., Shull J. M., Danforth C. W., Tilton E. M., 2014, ApJ, 794, 75

Sutherland W., 2009, Science with the VLT in the ELT Era, ed. A. Moorwood (Astrophys. and Space Sci. Proc.; Berlin: Springer), 171

Tanaka T., Haiman Z., 2009, ApJ, 696, 1798

Tanaka T. L., 2014, Class. Quantum Grav., 31, 244005

Treister E., Schawinski K., Volonteri M., Natarajan P., 2013, ApJ, 778, 130

Ueda Y., Akiyama M., Ohta K., Miyaji T., 2003, AJ, 598, 886

Vanzella E., Siana B., Cristiani S., Nonino M., 2010a, MNRAS, 404, 1672

Vanzella E., Giavalisco M., Inoue A. K. et al., 2010b, ApJ, 725, 1011

Vanzella E., Guo Y., Giavalisco M. et al., 2012, ApJ, 751, 70

Venemans B. P., McMahon R. G., Warren S. J. et al., 2007, MNRAS, 376, L76

Venemans B. P. et al., 2013, ApJ, 779, 24

Volonteri M., 2010, A&ARv, 18, 279

Wang R. et al., 2010, ApJ, 714, 699

Warren S. J., Hewett P. C., Osmer P. S., 1994, ApJ, 421, 412

Willott C. J., McLure R. J., Jarvis M. J., 2003, ApJ, 587, 15

Willott C. J. et al., 2005, ApJ, 626, 657

Willott C. J., Delorme P., Reylé C., 2009, AJ, 137, 3541

Willott C. J., Delorme P., Reylé C., 2010a, AJ, 139, 906

Willott C. J., Albert L., Arzoumanian D. et al. 2010b, AJ, 140, 546

Worsley M. A., Fabian A. C., Barcons X., Mateos S., Hasinger G., Brunner H., 2004, MNRAS, 352, L28

Wu X. B. et al., 2015, Nature, 518, 512

Yu Q., Tremaine S., 2002, MNRAS, 335, 965

© 2015 RAS, MNRAS 000, ?–??

--

Hasinger G., Miyaji T., Schmidt M. 2005, A&A, 441, 417

Heckman T. M., Kauffmann G., Brinchmann J., Charlot S., Tremonti C., White S. D. M., 2004, ApJ, 613, 109

Hewett P. C., Foltz C. B., Chaffee F. H., 1993, ApJ, 406, L43

Hopkins P. F., Hernquist L., Cox T. J., Di Matteo T., Robertson B., Springel V., 2005, ApJ, 630, 716

Hopkins P. F., Richards G. T., Hernquist L., 2007, ApJ, 654, 731

Hunt M. P., Steidel C. S., Adelberger K. L., Shapley A. E., 2004, ApJ, 605, 625

Jiang L. et al., 2007, AJ, 134, 1150

Jiang L., Fan X., Annis J. et al. 2008, AJ, 135, 1057

Jiang L. et al., 2009, AJ, 138, 305

Jun H. D., Lee H. M. et al., 2015, ApJ, 806, 109

Kashikawa N. et al., 2015, ApJ, 798, 28

Kim Y. et al., 2015, ApJ, 813, 35

Lawrence A. et al., 2007, MNRAS, 379, 1599

Li Y. et al., 2007, ApJ, 665, 187

Lupi A., Colpi M., Devecchi B., Galanti G., Volonteri M., 2014, MNRAS, 442, 3616

Lusso E. et al., 2015, MNRAS 449, 4204

Madau P., 1991, ApJ, 376, L33

Madau P., Dickinson M., 2014, ARA&A, 52, 415

Madau P., Haardt F., 2015, ApJ, 813, L8

Manti S., Gallerani S., Ferrara A., Feruglio C., Graziani L., Bernardi G., 2016, MNRAS, 456, 98

Masters D., Capak P., Salvato M. et al., 2012, 755, 169

McGreer I. D. et al., 2013, ApJ, 768, 105

Merloni A., 2004, MNRAS, 353, 1035

Mészáros A., Répá J., 2013, A&A, 556, A13

Morganson E., De Rosa G., Decarli R. et al., 2012, AJ, 143, 142

Morganti R., Sadler E. M., Curran S. J., 2015, “Cool outflows and HI absorbers with SKA”, Proc. Sci., Advancing Astrophysics with the Square Kilometre Array (AASKA14): SISSA, Trieste, p. 134

Mortlock D. J., 2011, Nature, 474, 616

Mortlock D. J. et al., 2012, MNRAS, 419, 390

Mostardi R. E., Shapley A. E., Nestor D. B., Steidel C. C., Reddy N. A., Trainor R. F., 2013, ApJ, 779, 65

Nestor D. B., Shapley A. E., Steidel C. C., Siana B., 2011, ApJ, 736, 18

Osmer P. S., 1982, ApJ, 253, 28

Palanque-Delavouëlle N., Magneville Ch., Yèche Ch. et al., 2013, A&A, 551, A29

Pei Y. C., 1995, ApJ, 438, 623

Priddey R. S., Isaak K. G., McMahon R. G., Robson E. I., Pearson C. P., 2003, MNRAS, 344, 74

Richards G. T. et al., 2004, AJ, 127, 1305

Richards G. T. et al., 2006, AJ, 131, 2766

Richards G. T. et al., 2009, ApJ, 180, 67

Schulze A., Wisotzki L., Husemann B., 2009, A&A 507, 781

Shankar F., Mathur S., 2007, ApJ, 660, 1051

Shapley A., Steidel C. C., Pettini M., Adelberger K. L., Erb D. K., 2006, ApJ, 651, 688

Schmidt M., 1968, AJ, 151, 393

Schmidt M., 1972, ApJ, 176, 273

Schmidt M., Green R. F., 1983, ApJ, 269, 352

Schmidt M., Schneider D. P., Gunn J. E., 1995, AJ, 110, 68

Scott J. E., Kriss G. A., Brotherton M. et al., 2004, ApJ, 615, 135

Siana B., Polletta M., Smith H. E. et al., 2008, ApJ, 675, 49

Spergel D. et al., 2013, Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) Science Definition Team (SDT) Final Report, preprint (arXiv:1305.5422)

Spergel D. et al., 2014, WFIRST-AFTA Science Definition Team Interim Report (http://wfirst.gsfc.nasa.gov/)