Gonadal mosaicism in GNAO1 causing neurodevelopmental disorder with involuntary movements; two additional variants

Zainab Al Masseri a, Moeenaldeen AlSayed a,b,*

a Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
b College of Medicine, Alfaisal University, , Riyadh, Saudi Arabia

ARTICLE INFO

Keywords:
Gonadal Mosaicism
Neurodevelopmental Involuntary Movements
Dystonia
Chorea
NEDIM
EEIE17

ABSTRACT

Background: GNAO1 encodes an alpha subunit of the heterotrimeric guanine nucleotide-binding proteins (G proteins). Mutations in GNAO1 result in two clinical phenotypes: Early infantile epileptic encephalopathy 17 (EEIE17-OMIM #615473) and Neurodevelopmental disorder with involuntary movements (NEDIM-OMIM #617493). Both are inherited as autosomal dominant disorders and originate mainly as de novo. Only a few are reported as gonadal mosaicism.

Materials and methods: We recruited and retrospectively reviewed five patients from two families seen at King Faisal Specialist Hospital and Research Centre in Riyadh (KFSHRC).

Results: All patients presented with severe neurodevelopmental disorder, followed by progressive dystonia and hyperkinetic movements. In addition, none of the patients had seizures which was consistent with NEDIM phenotype. The specific diagnosis was not clinically entertained and was only found on whole exome sequencing (WES), which identified two variants (c.724-8G > A & c.709G > A). Both variants were previously reported as pathogenic de novo in patients with NEDIM, and one was reported as parental gonadal mosaicism.

Conclusion: We report these variants as additional variants in GNAO1 gene that may be inherited as parental gonadal mosaicism. Both variants resulted in NEDIM with no observed clinical differences in the severity than the reported cases. This noticeable reported association between GNAO1 gene associated disorders and gonadal mosaicism should be considered in reproductive genetic counselling of affected families. Furthermore, in view of these reports, more studies with prospective data collection to explore the association between GNAO1 and gonadal mosaicism and the underlying mechanisms will be necessary.

1. Introduction

GNAO1 gene encodes Gαo, the α subunit of Go, a member of the Gi/o family of heterotrimeric G protein signal transducers. Go is the most abundant membrane protein in the mammalian central nervous system and plays a major role in synaptic neurotransmission and neurodevelopment (1). Gαo localizes ubiquitously throughout the brain with relatively high expression in hippocampus, striatum, and cerebellum (2). Mutation in GNAO1 gene results in two clinical phenotypes; (EEIE17-OMIM #615473), and (NEDIM-OMIM #617493) (3). Both are inherited as autosomal dominant disorders and are caused mainly by de novo mutations.

The most common manifestations of NEDIM are hypotonia, developmental delay, spasticity, dystonia, and hyperkinetic movements with choreoathetosis. Before the first exacerbation of chorea, the motor syndrome typically appears nonspecific, and patients may be misdiagnosed with hypotonic or dyskinetic cerebral palsy (10–12). To date, four variants in GNAO1 have been reported with parental gonadal mosaicism. Three variants are linked to NEDIM, and one variant caused EEIE17 (4,6,18,22). Here we report two additional variants (Table 2) in GNAO1 associated with parental gonadal mosaicism among five patients with NEDIM. Both variants have been reported previously as pathogenic de novo mutations.

Abbreviations: NEDIM, Neurodevelopmental disorder with involuntary movements; EEIE17, Early infantile epileptic encephalopathy 17.

* Corresponding author at: Department of Medical Genetics, MBC: 75, King Faisal Specialist Hospital and Research Centre, PO Box No: 3354, Riyadh 11211, Saudi Arabia.

E-mail address: moeen@kfshrc.edu.sa (M. AlSayed).

https://doi.org/10.1016/j.ymgmr.2022.100864
Received 7 January 2022; Received in revised form 19 March 2022; Accepted 20 March 2022
Available online 18 April 2022
2214-4269/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Materials and methods

2.1. Institutional approval

This publication was approved by the Office of Research Affairs (ORA) at King Faisal Specialist Hospital and Research Centre-Riyadh (KFSH&RC).

2.2. Patient data

We retrospectively reviewed all available clinical data and molecular findings on patients diagnosed with GNAOI mutation at King Faisal Specialist Hospital and Research Center (KFSH&RC) Riyadh.

Table 1

Phenotypic characteristic of five patients with disease-associated variants in GNAO1 gene.

Feature No.	Demographics	Gender	Current age	Age of onset	Initial presentation	Dysxia	Choreoathetosis	Dyskinesia	Stereotypic hand movements	Spasticity	Seizure	Speech	Thoracolumbar scoliosis	Medications	Functional status	Clinical examination	Laboratory workup and radiological imaging
Family I	E1	E2	I:1	I:2	DD	Yes	Yes	Yes	Yes	Quadrplegia	No	Anarthria	No	Artane & Baclofen	Wheelchair	Weight (kg) (6.1 SD)	CK (24–192 U/L)
	I:3		I:1	I:2	DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	28 (6.1 SD)	Normal
Family II	II:1	II:2	II:1	II:2	DD	Yes	Yes	Yes	Yes	Quadrplegia	No	Anarthria	No	NA	NA	150 (1.9 SD)	Normal
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	12.7	Normal
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	33 (4 SD)	Normal
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	111 (1.6 SD)	Normal
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	14.2	Normal
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	11.5	Normal
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	16 (5 SD)	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	119 (2.4 SD)	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	11.5	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	14.2	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	11.5	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	16 (5 SD)	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	119 (2.4 SD)	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	11.5	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	14.2	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	11.5	NA
					DD	Yes	Yes	No	Yes	Quadrplegia	No	Anarthria	No	NA	NA	16 (5 SD)	NA

NA, Not Available; ID, intellectual disability; DD, developmental delay; * Values from initial to most recent; SD, standard deviation.

Table 2

Molecular description of the variants in GNAO1 gene.

Feature No.	Variant	Test	Transcript	Type	ClinVar (Date of report/ Number of submissions)	Allele origin	Cytogenetic Location	Parent status	Specialisation	
Family I	E1	c.724-8G > A	WES	NM_020988	Intron Splice Site Acceptor Mutation	Germline	16q12.2	Negative	Intron Splice Site Acceptor Mutation	Germline
	E2	c.724-8G > A	Targeted	NM_020988	Pathogenic (Sep 2021/3)	16q12.2	Negative	Negative	Intron Splice Site Acceptor Mutation	Germline
	I:1	c.724-8G > A	Targeted	NM_020988	Pathogenic (Nov 2021/3)	16q12.2	Negative	Negative	Intron Splice Site Acceptor Mutation	Germline
	I:2	c.724-8G > A	Targeted	NM_020988	Pathogenic (Nov 2021/3)	16q12.2	Negative	Negative	Intron Splice Site Acceptor Mutation	Germline
Family II	II:1	c.709G > A (p.Glu237Lys)	WES	NM_020988	Missense Pathogenic	Germline	16q12.2	Negative	Intron Splice Site Acceptor Mutation	Germline
	II:2	c.709G > A (p.Glu237Lys)	Targeted	NM_020988	Pathogenic (Nov 2021/3)	16q12.2	Negative	Negative	Intron Splice Site Acceptor Mutation	Germline

WES, whole exome sequencing.
Table 3

Previously reported variants in GNAO1 with their related phenotype.

No	Reference	Variant	Origin	Phenotype
1	Law	Gly40Arg*	De novo	EIEE17
2	Gawliński	Gly45Glu*	De novo	EIEE17
3	Nakamura	Asp174Gly*	De novo	Syndrome
4	Nakamura	191_197*	De novo	Syndrome
5	Nakamura	Gly203Arg*	De novo	EIEE17
6	Nakamura	Ile279Asn*	De novo	NEDIM
7	Marc-Grau	Leu199Pro*	De novo	EIEE17
8	Saito	Gly203Arg*	De novo	EIEE17
9	Saito	Arg209Cys*	De novo	NEDIM
10	Saito	Ala227Val*	De novo	EIEE17
11	Saito	Glu246Lys*	De novo	EIEE17
12	Kulkarni	Arg209Cys	Gonadal	NEDIM
13	Kulkarni	Arg209Cys	Gonadal	Mosaicism
14	Menke	Arg209His	De novo	NEDIM
15	Menke	Arg209Leu	De novo	NEDIM
16	Dhamija	Arg209His	De novo	NEDIM
17	Ananth	Arg209His	De novo	NEDIM
18	Ananth	Arg209Gly	De novo	NEDIM
19	Ananth	Glu246Lys*	Gonadal	NEDIM
20	Ananth	Glu246Lys	Gonadal	Mosaicism
21	Ananth	Glu246Lys	De novo	NEDIM
22	Ananth	Glu246Lys	De novo	NEDIM
23	Talvik	Tyr231Cys*	De novo	Syndrome
24	Yilmaz	Glu233Pro	De novo	NEDIM
25	Euroepiomics	Cys270His	De novo	EIEE17
26	Euroepiomics	Phe275Ser*	De novo	EIEE17
27	Arya R	Gly203Arg*	De novo	EIEE17
28	Brunu	Gly40Arg*	De novo	EIEE17
29	Danti	Ser47Gly*	De novo	EIEE17
30	Danti	Arg209Cys*	De novo	EIEE17
31	Danti	Arg209Cys*	De novo	EIEE17
32	Danti	c.723 + 1G > A	De novo	NEDIM
33	Danti	Ile56Thr*	De novo	EIEE17
34	Danti	Gly40Arg*	De novo	EIEE17
35	Danti	Gly246Gly	De novo	NEDIM
36	Mckenna	Gly40Arg	De novo	NEDIM
37	Mckenna	Gly40Trp	De novo	NEDIM
38	Mckenna	Gly40Glu	Gonadal	NEDIM
39	Mckenna	Gly40Glu	Gonadal	Mosaicism
40	Mckenna	Ser207Tyr	De novo	NEDIM
41	Mckenna	Arg209His	De novo	NEDIM
42	Mckenna	Arg209Cys*	De novo	NEDIM
43	Mckenna	Ala221Asp	De novo	NEDIM
44	Mckenna	Tyr231Cys	De novo	NEDIM
45	Mckenna	Asp237Val	De novo	NEDIM
46	Mckenna	Ile279Asn	De novo	NEDIM
47	Mckenna	Tyr291Asn	De novo	NEDIM
48	Mckenna	Ile344del	De novo	NEDIM
49	Mckenna	Arg349G352delinsGCA	De novo	NEDIM
50	Feng H	Arg209His	De novo	NEDIM
51	Feng H	Arg209His	De novo	NEDIM

Table 3 (continued)

No	Reference	Variant	Origin	Phenotype
52	Feng H	Arg209His	De novo	NEDIM
53	Feng H	Arg209His	De novo	NEDIM
54	Feng H	Gly203Arg*	De novo	EIEE17
55	Feng H	Gly203Arg*	De novo	EIEE17
56	Feng H	Gly203Arg*	De novo	EIEE17
57	Feng H	Gly246Lys	De novo	NEDIM
58	Feng H	Glu246Lys	De novo	NEDIM
59	Feng H	Glu246Lys	De novo	NEDIM
60	Feng H	Glu246Lys	De novo	NEDIM
61	Feng H	Glu246Lys	De novo	NEDIM
62	Feng H	Gly42Arg	De novo	NEDIM
63	Feng H	Arg209Cys*	De novo	EIEE17
64	Feng H	Ile279Asp*	De novo	EIEE17
65	Feng H	Ile279Asp*	De novo	EIEE17
66	Feng H	Thr191_Phe197del*	De novo	EIEE17
67	Feng H	Arg209Gly	De novo	NEDIM
68	Feng H	Ala227Val*	De novo	EIEE17
69	Feng H	Tyr321Cys*	De novo	EIEE17
70	Feng H	Phe275Ser*	De novo	EIEE17
71	Feng H	Leu199Pro*	De novo	EIEE17
72	Feng H	Asp270His*	De novo	EIEE17
73	Feng H	Gly40Arg*	De novo	EIEE17
74	Feng H	Asp174Gly*	De novo	EIEE17
75	Epi & Epi	Ile279Asp*	De novo	EIEE17
76	Gerald	His371_372del*	De novo	EIEE17
77	Sakamoto S	Arg209Cys	Ar* (8)	NEDIM
78	Schorling	Glu246Lys	De novo	NEDIM
79	Schorling	Glu246Lys	De novo	NEDIM
80	Schorling	Gly203Arg*	De novo	EIEE17
81	Schorling	Gly203Arg*	De novo	EIEE17
82	Ueda	Gly45Arg*	De novo	EIEE17
83	Xiong	Gly203Arg*	De novo	EIEE17
84	Yang X	c.724-8G > A	Gonadal	DD & MD
85	Yang X	c.724-8G > A	Gonadal	Mosaicism
86	Yang X	c.136A > G(p.K46E)	De novo	West
87	Yang X	c.687C > G(p.S229R)	De novo	West & MD
88	Yang X	c.470 T > C(p.L157R)	De novo	West & MD
89	Yang X	c.810C > A(p.N270K)	De novo	NEDIM & MD
90	Yang X	c.817G > T(p.D273Y)*	De novo	EIEE and MD
91	Yang X	c.118G > C(p.G40R)*	De novo	West
92	Yang X	c.692A > G(p.P231C)*	De novo	EIEE and MD
93	Yang X	c.607G > A(p.G203R)*	De novo	EIEE and MD
94	Yang X	c.736G > A(p.E246R)*	De novo	DD
95	Miyamoto S	c.724-8G > A	Gonadal	NEDIM
96	Retterer K	c.724-8G > A	De novo	NEDIM
97	Retterer K	c.724-8G > A	p.G203R	NEDIM
NEDIM Neurodevelopmental Disorder with Involuntary Movements, *EIEE17 Epileptic Encephalopathy, Early Infantile, 17.

five. This was followed by choreoathetosis and cervical dystonia resulting in left-sided intermittent torticollis with dystonic involuntary movements. Both twins had significant speech delay. On examination at eight years, their weight was below the 3rd percentile, height was on the 3rd percentile, and head circumference was appropriate for age. Extracocular movements were normal. They had spastic quadriplegia with hypotonia, more pronounced in the lower limbs as compared to upper limbs. Deep tendon reflexes were brisk, and planters were up going bilaterally. Initially, they were diagnosed with spastic diplegic cerebral palsy, but as dystonia became more evident, other diagnostic possibilities were entertained, including genetic causes. Twin B (II:2) was able to walk until the age of eight years, then she lost ambulation, whereas twin A (II:1) lost the ability to walk by 12 years. The dystonic involuntary movements partially responded to Artane, Baclofen, Clonazepam, and intermittent Botox injections. The third sibling was a baby boy (II:3), a product of full-term normal vaginal delivery without complications during pregnancy with a birth weight of 2.5 kg. He was discharged home as a normal newborn. By one year of age, the family noticed global developmental delay as he could not sit alone, had poor handgrip and linguistically, he could not babble. Socially, he interacted with his surroundings, and there were no concerns regarding hearing and vision. He sat at the age of 15 months, started to walk at 20 months of age, and started babbling at the age of 24 months. Currently, he is six years old and dependent on his mother for all daily activities. On examination, his growth parameters are appropriate for his age. He has some functional eye contact, responds to social smiles and is not communicating verbally. Linguistically, he could not babble. Socially, he interacted with his surroundings, and there were no concerns regarding hearing and vision. He sat at the age of 15 months, started to walk at 20 months of age, and started babbling at the age of 24 months. Currently, he is six years old and dependent on his mother for all daily activities. On examination, his growth parameters are appropriate for his age. He has some functional eye contact, responds to social smiles and is not communicating verbally. He has dystonic spastic posture with no hyperkinetic movements and his extraocular muscle movements are normal. Excessive saliva drooling is noted. Deep tendon reflexes were brisk, and planters were up going bilaterally. He has hypotonia in upper and lower extremities with the latter more severely affected and can walk with an ataxic spastic gait.

2.3.2. Family 2

Two siblings (II:1, II:2) delivered by normal vaginal delivery with an uneventful antenatal and postnatal course. They were found to be floppy from birth. They started to reach objects by two years. They began to stand up and walk with support for a short distance by three years. They developed involuntary movement and dystonia associated with abnormal posturing by the age of four years. Speech delay was prominent and by five years, they only spoke a few words. On examination, they had generalized hypotonia, predominantly axial with normal reflexes till the age of three years. Then at the age of five years, they started to have spasticity and hyperreflexia more prominent in the lower limbs than in the upper limbs. The muscle bulk was decreased, and the power was 3/5 with dystonic hyperkinetic movements. Currently, both siblings have severe growth retardation and spastic dystonic posture with normal head circumference.

2.4. Molecular testing

In family 1, Microarray-based comparative genomic hybridization, Array CGH + SNP was negative, and WES showed a heterozygous variant in GNAO1 c.724-8G > A in all affected individuals. Whereas, in family 2, WES was performed for II:1 and revealed a heterozygous missense variant in GNAO1, c.709G > A (Glu237Lys). Further targeted mutation analysis confirmed the presence of the same variant in his sibling II:2. Both variants were not detected in the parental blood samples in both families, indicating gonadal mosaicism.

3. Discussion

To date, over 95 patients with GNAO1 gene mutations have been reported in the literature (3-7,18,19,22); at least 39 patients with 21 unique variants are linked to EEIE17, 45 patients with 25 unique variants are linked to NEDIM, while four variants are linked to Ohtahara syndrome. The majority of variants are; missense in nature, few deletions, and one deep intronic splicing defect. Of these, four variants (Table 3) in nine cases have been reported with parental gonadal mosaicism. Three variants (p.E246K) in dizygotic twins and two variants (p.R209H and c.724-8G > A) in two sets of siblings were reported as a cause of NEDIM. In these six patients with NEDIM, all had motor and linguistic developmental delay. They also have developed progressive chorea and athetosis at the age of five years. One patient had a daily exacerbation of chorea that required intensive care admission and management. Two patients had improvement in the chorea with deep brain stimulation (4,6,24). One variant p.G40E was reported to cause EEIE17 in two adult brothers. Both had seizures that started in infancy, with significant findings in EEG and MRI imaging (22). In our view, instead of viewing GNAO1 mutations as distinct phenotypes, we believe that they rather represent a clinical spectrum from a severe early-onset epileptic encephalopathy to a protracted neurodevelopmental delay with a movement disorder.

We describe here five patients from two families (See Fig. 1) with global developmental delay, hypotonia, spastic quadriplegia, and severe hyperkinetic movement disorder attributed to gonadal mosaicism, expanding the list of the mutations in GNAO1 gene associated with this type of inheritance. Their phenotype was consistent with NEDIM. The oldest patient is 16, and the youngest patient is 6. None of our patients...
had clinical seizures, but they showed abnormal EEGs. Three patients presented in early infancy with hypotonia, whereas the other two had a normal initial neonatal period followed by global developmental delay at four and five months, respectively. The dystonia started in lower extremities and later extended gradually to the upper extremities and facial muscles. They all exhibited hyperkinetic movement with dystonia between four and seven years with partial response to pharmacotherapy. Eventually, they all lost the ability to ambulate as they grew older without triggering factors and became wheelchair-bound. They all demonstrated severe linguistic delay, but none had evidence of dysphagia. To date, they are all alive, and none of them have deep brain stimulation yet.

Using whole exome sequencing, two heterozygous variants have been detected in GNAO1 gene. The variants were not detected in parental blood samples from either family and all siblings are healthy. The presence of the same heterozygous variant in multiple children and its absence in both parents supports parental gonadal mosaicism. E237K variant was reported before in two patients with NEDIM (14, 23). Also, this variant was reported in ClinVar database in an individual with microcephaly, seizures, and muscle weakness. The other variant c.724-8G > A has been reported by GeneDx in ClinVar as de novo in two presumably unrelated individuals with similar clinical features. In three recent reports, four additional patients with c.724-8G > A variant has been described in three families; two patients with germline mosaicism, one patient who inherited the variant from her mother with low-pen variance mosaicism and one as de novo (24, 25, 28). This variant caused abnormal splicing of in-frame 6-bp intronic retention, leading to 2 amino acid insertion (p.Thr241_Asn242insProGln). Immunoblotting and immunostaining using wild type and mutant GNAO1 vectors showed no significant differences in protein expression level, but the cellular localization pattern of this mutant was partially shifted to the cytoplasm whereas WT was exclusively localized in the cellular membrane. Investigators suggested that this mutant might have a loss of function effect alongside with dominant negative effect predisposing to movement disorders without seizures (24). In some reports (22), parental somatic mosaicism has been observed in 6.6%–8.3% of parents who had a child with a diagnosis of an apparently de novo monogenic developmental and epileptic encephalopathy caused by different genes (23, 24, 26, 27). The level of mosaicism in their parents is widely correlated with the severity of disease and symptoms tend to appear in case with a mosaic rate of >10% (27). There is not enough evidence that GNAO1 gene is associated with parental gonadal mosaicism more than the other genes; however, the association is significantly noticeable and should be considered when families are counselled about the recurrence risk and prenatal testing.

To conclude, we report two variants in GNAO1 gene inherited as parental gonadal mosaicism. Both variants resulted in NEDIM with no observed clinical differences in the severity away from the reported cases. This noticeable reported association between GNAO1 gene associated disorders and gonadal mosaicism should be considered in reproductive genetic counselling of affected families. Furthermore, in view of these reports, more studies with prospective data collection to explore the association between GNAO1 and gonadal mosaicism and the underlying mechanisms will be necessary.

Funding sources

No funding.

Authors contributions

ZAM reviewed and summarized the literature and wrote the manuscript. MDS edited the manuscript and contributed to the clinical diagnosis and management of the patients.

Declaration of Competing Interest

The authors declare that they have no competing financial interests.

References

[1] L. Blumkin, T. Lerman-Sagie, A. Westenberger, et al., Multiple causes of pediatric early onset chorea-clinical and genetic approach, Neuropediatrics 49 (2018) 246–255, https://doi.org/10.1056/nejmc1714579.
[2] P.F. Worley, J.M. Baraban, C. Van Dop, E.J. Neer, S.H. Snyder, Go, a guanine nucleotide-binding protein: immunohistochemical localization in rat brain resembles distribution of second messenger systems, Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 4561–4565, https://doi.org/10.1073/pnas.83.12.4561.
[3] K. Nakamura, H. Koderia, T. Akita, et al., De novo mutations in GNAO1, encoding a G protein subunit of heterotrimeric G proteins, cause epileptic encephalopathy, Am. J. Hum. Genet. 93 (2013) 496–505, 10.1016%2Fj.ajhg.2013.07.014.
[4] N. Kulkarni, S. Tang, R. Bhardwaj, S. Bernes, T.A. Grebe, Progressive movement disorder in brothers carrying a GNAO1 mutation responsive to deep brain stimulation, J. Child Neurol. 31 (2016) 211–214, https://doi.org/10.1007/1083073815587945.
[5] L.A. Menke, M. Engelen, M. Alders, V.J.J. Odekerken, F. Baas, J.M. Cobben, Recurrent GNAO1 mutations associated with developmental delay and a movement disorder, J. Child Neurol. 31 (2016) 1598–1601, https://doi.org/10.1089/jb.2015.2016.02.018.
[6] H. Saitai, et al., Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to inpatient movements with severe developmental delay, Eur. J. Hum. Genet. 24 (2016) 129–134, https://doi.org/10.1038/ejhg.2015.92.
[7] S. Sakamoto, Y. Monden, R. Fukai, et al., A case of severe movement disorder with GNAO1 mutation responsive to topiramate, Brain Dev. 39 (2017) 439–443, https://doi.org/10.1007/s00213-016-0458-4.
[8] L. Blumkin, T. Lerman-Sagie, A. Westenberger, et al., Multiple causes of pediatric early onset chorea-clinical and genetic approach, Neuropediatrics 49 (2018) 246–255, https://doi.org/10.1056/nejmc1714579.
[9] T.S. Pearson, R. Pons, R. Ghaoui, C.M. Sue, Genetic mimics of cerebral palsy, Mov. Disord. 34 (2019) 625–636, https://doi.org/10.1002/mds.27655.
[10] M.J. Malauqui, I. Finea, L. Loureiro, L. Cardoso, I. Alonso, M. Magalhães, GNAO1 mutation presenting as dyssynkinetic cerebral palsy, Neurosci. Lett. 40 (2009) 2213–2216, https://doi.org/10.1016/j.neulet.2009.09.047.
[11] H. Feng, B. Sjögren, B. Karaj, V. Shaw, A. Gezer, R.R. Neubig, Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations, Neurology 90 (2017) 762–770, 10.1212/01WNL.0000000000004262.
[12] H. Feng, S. Khalil, R.R. Neubig, C. Sidirooulos, A mechanistic review on GNAO1-associated movement disorder, Neurobiol. Dis. 116 (2018) 131–141, https://doi.org/10.1016/j.nbd.2018.05.005.
[13] S. Danti, S. Galoli, N. Eilam, et al., GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome, Neurol. Genet. 3 (2017), e143, https://doi.org/10.1212/nxg.0000000000000143.
[14] S. Yilmaz, T. Turhan, S. Ceylaner, S. Gökköhen, H. Tegkul, G. Serdaroglu, Excellent response to deep brain stimulation in a young girl with GNAO1-related progressive choreoathetosis, Childs Nerv. Syst. 32 (2016) 1567–1568, https://doi.org/10.1007/s00381-016-3139-6.
[15] R. Dhamija, J.W. Mink, B.B. Shah, H.P. Goodkin, GNAO1-associated movement disorder, Mov. Disord. Clin. Pract. 3 (2016) 615–617, https://doi.org/10.1002/mdc3.12344.
[16] M. Kelly, M. Park, I. Mihalek, et al., Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region, Epilepsia 00 (2019) 1–13, https://doi.org/10.1111/epi.14051.
[17] H.C. Hopp, G.L.A. Carvill, View on the genetics of developmental and epileptic encephalopathies, Epilepsy Curr. 20 (2020) 90–96, https://doi.org/10.1177/152870520986118.
[18] S. Miyamoto, M. Nakashima, S. Fukumura, S. Kumada, H. Saitai, An intrinsic GNAO1 variant leading to in-frame insertion cause movement disorder controlled by deep brain stimulation, Neurogenetics (2022), https://doi.org/10.1007/s10048-022-00686-5.
[19] X. Yang, X. Niu, Y. Yang, M. Cheng, J. Zhang, J. Chen, Z. Yang, Y. Zhang, Phenotypes of GNAO1 variants in a chinese cohort, Front. Neurol. 12 (2021), 662162, https://doi.org/10.3389/fneur.2021.662162.
[20] R.S. Myers, N. Liebmann, Larsen LHG, Parental mosaicism in epilepsies due to alleged de novo variants, Epilepsia 60 (6) (2019) e63–e66, https://doi.org/10.1111/epi.15187.
[21] C.T. Myers, G. Hollingsworth, A.M. Muir, et al., Parental mosaicism in “de novo” epileptic encephalopathies, N. Engl. J. Med. 357 (17) (2018) 1646–1648, https://doi.org/10.1056/nejm1714579.
[22] K. Retterer, J. Juusola, M.T. Cho, et al., Clinical application of whole-exome sequencing across clinical indications, Genet. Med. 18 (7) (2016) 696–704, https://doi.org/10.1038/gim.2015.148.
Further readings

[9] X. Zhu, S. Petrovski, P. Xie, et al., Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios, Genet Med. 17 (2015) 774–781, https://doi.org/10.1038/gim.2014.191.

[16] M. Waak, S.S. Mohammad, D. Coman, et al., GNAO1-related movement disorder with life-threatening exacerbations: movement phenomenology and response to DBS, J. Neurol. Neurosurg. Psychiatry 89 (2018) 221–222, https://doi.org/10.1136/jnnp-2017-315651.

[17] C.M. Honey, A.K. Malhotra, M. Tarailo-Graovac, C.D.M. van Karnebeek, G. Horvath, A. Sulistyanto, GNAO1 mutation-induced pediatric dystonic storm rescue with pallidal deep brain stimulation, J. Child Neurol. 33 (2018) 413–416, https://doi.org/10.1177/0883073817756134.

[20] K. Ueda, F. Serajee, A.M. Hug, Exome sequencing identifying dual mutations in calcium signaling genes GNAO1 and ATP2B3 in a patient with early infantile epileptic encephalopathy, J. Pediatr. Neurol. 15 (2017) 183–186, https://doi.org/10.1055/s-0036-1597627.

[21] A. Benato, M. Carecchio, A. Burlina, et al., Long-term effect of subthalamic and pallidal deep brain stimulation for status dystonicus in children with methylmalonic acidemia and GNAO1 mutation, J. Neural Transm. (Vienna) 126 (2019) 739–757, https://doi.org/10.1007/s00702-019-02010-2.