Vanishing of one dimensional $L^2$-cohomologies of loop groups

Shigeki Aida
Osaka University

$D$ を $\mathbb{R}^n$ の連結かつ単連結な開集合とする。$\beta$ を $D$ 上の滑らかな 1-form で $d\beta = 0$ を仮定する。このとき $D$ 上の滑らかな関数 $F$ が定数差を除いて一意に定まり $dF = \beta$ となる。これは例えば次のように証明される。

(i) $D = \bigcup_{i=1}^{\infty} U_i$ と $D$ を連結な開集合 $U_i$ の和で表す。ただし、$D_k = \bigcup_{i=1}^{k} U_i$ とおくと $D_k \cap U_{k+1} \neq \emptyset$ となるように取る。

(ii) 各 $U_i$ 上で $df_i = \beta$ となる滑らかな関数の存在を示す。$f_i$ は定数差を除いて一意に決まることに注意する。

(iii) $f_i (1 \leq i \leq k)$ を適当に選んで (すなわち定数を適当に決めた) $D_k$ 上の滑らかな関数 $F_k$ が存在して $F_k = f_i$ が $U_i (1 \leq i \leq k)$ となると仮定する。このとき、$D_k \cap U_{k+1} \neq \emptyset$ なので一つの連結成分 $C_0$ を取りその上で $f_{k+1}$ と $F_k$ が一致するように $f_{k+1}$ を選ぶ。

(iv) $D_{k+1}$ 上の滑らかな関数 $F_{k+1}$ が存在して $F_{k+1} = F_k$ が $D_k$ で $F_{k+1} = f_{k+1}$ となることを示す。

以上が示されたときこの定義を繰り返して $D$ 上の滑らかな関数 $F$ で $dF = \beta$ なるもののが存在することが証明される。さて(i), (ii) に関しては $U_i$ として凸な開集合 (例えば開球) を取れば成立することが示せる。 (iv) のステップが自明ではない。つまり、$D_k \cap U_{k+1}$ の連結成分が二つ以上あるとき、$C_0$ 以外の連結成分の一つ $C_1$ を取る。$x_0 \in C_0$ と $x_1 \in C_1$ とおいたとき $f_{k+1}(x_0) = F_k(x_0)$ であるが $f_{k+1}(x_1) = F_k(x_1)$ なるものが自明ではないのである。しかし、これは $D$ の単連結性から従う。$D_k$ の中の滑らかなパス $c_0(t)$ ($0 \leq t \leq 1$) と $U_{k+1}$ の中の滑らかなパス $c_1(t)$ ($0 \leq t \leq 1$) で $c_0(0) = c_0(0) = x_0$, $c_1(1) = c_1(1) = x_1$ なるものを取る。このとき連結性から $c_0, c_1$ を補間する滑らかなホモトピー $s \mapsto F_k(x_1) - F_k(x_0) = f_{k+1}(x_1) - f_{k+1}(x_0)$ で $d\beta = 0$ を用いると

$$\int_0^1 \beta(c_1(t)) (c_1'(t)) \, dt - \int_0^1 \beta(c_0(t)) (c_0'(t)) \, dt = \int_{(s,t) \in [0,1]^2} \frac{d\beta(c_s(t)) (\partial_s c_s(t), \partial_t c_s(t)) \, dsdt}{})$$

で $d\beta = 0$ を用いると $F_k(x_1) - F_k(x_0) = f_{k+1}(x_1) - f_{k+1}(x_0)$ になる。従って $f_{k+1}(x_0) = F_k(x_0)$ ならば $f_{k+1}(x_1) = F_k(x_1)$ で (iv) が示される。

以上の標準的な構想は無限次元であっても Fréchet の意味で滑らかなカテゴリーで考えれば実行できる。また、特に $U_i$ が凸である必要は無い。ここでは、Malliavin 解析のカテゴリーでの消滅定理を考える。具体的には $G$ を単連結なコンパクトリー群とする。このとき $\pi_2(G) = 0$。したがって $L_2(G) = C([0,1] \rightarrow G \mid \gamma(0) = \gamma(1) = e)$ は連結かつ単連結である。$L_2(G)$ 上の条件付きブラウン運動の測度 $\nu_\rho$ に基づいた Malliavin 解析の意味で定義されたソボレフ空間の微分形式の空間上的外微分 $d$ を考えると $L_2(G)$ 上で

\footnote{$H^1(D, \mathbb{R}) = 0$ で以下の議論は可能である。}
Theorem 1 (1) 1-form $\alpha$ が $d\alpha = 0$ を満たすとき，適当な $f$ が存在して $df = \alpha$ となる.
(2) 1-form に作用する Hodge-Kodaira 型作用素 $\square = dd^* + d^*d$ について Ker$\square = 0$. ただし $d^*$ は $L^2(\nu_0)$ での随伴作用素を表す。

示す。この種の定理としては楠岡による一般的な結果がある [2]. それについても講演で説明する。
我々の証明は楠岡のものとは異なる。Theorem 1 (1) の証明のあらすじは以下の通りである。
(2) は (1) を用いて示される。

(I) $G$ 上の確率微分方程式を用いて Wiener 空間 $W_0^d (d = \dim G)$ 上の rough path の意味での閉集合 $D$ 上の問題に変える。すなわち $D$ 上に Malliavin 解析の意味で滑らかかつ closed な 1-form $\beta$ が与えられたとき完全であることを前記の (i)～(iv) の論法で示す。

(II) $U_i$ にあたる集合として rough path 解析の意味での開球を取る。この $U_i$ 上で 1-form に対するポアンカレ型の消滅定理を示す。

(III) 有限次元の単連結性にあたる性質 $D$-単連結性を示す。これは $L_w(G)$ の単連結性から従う。

(IV) Malliavin 解析での Stokes の定理を用意する。

$$d = 2$$ のときは 0 を中心とする閉球は

$$U_r = \{ w = (w^1, w^2) \in W_0^2 \mid \max_{i=1,2} \| w^i \|_{m,\theta}/2 < r, \| C(w^1, w^2) \|_{m,\theta} < r \}$$

である。$2/3 < \theta < \theta' < 1, m$ は $m(1-\theta') > 2$ となる偶数とする。また $C(w^1, w^2)_{s,t} = \int_s^t (w^1(u) - w^1(s))dw^2(u)$. $\| \|_{m,\theta}$ はノルム空間 $V$ 値連続写像 $\phi: \Delta \to V, (\Delta = \{(s, t) \mid 0 \leq s \leq t \leq 1\})$ に対し

$$\| \phi \|_{m,\theta} = \left\{ \int_0^1 \int_0^1 \frac{|\phi(s, t)|^{m}}{(t-s)^{2+m\theta}} dsdt \right\}^{1/m}.$$ 

また $w^i$ 自身は $w^i_{s,t} = w^i_t - w^i_s$ と同一視している。確率微分方程式の解がブラウン運動とその 2 次の逐次積分二つの汎関数としては連続になるため。上記の集合で $D$ が被覆できることがわから。$U_i$ は凸集合では無いことを注意しておく。

References

[1] S. Aida, Vanishing of one dimensional $L^2$-cohomologies of loop groups, preprint, 2009.

[2] S. Kusuoka, de Rham cohomology of Wiener-Riemannian manifolds, Proceedings of the International Congress of Mathematicians, Vol. I,II (Kyoto, 1990), 1075–1082, Math. Soc. Japan, Tokyo, 1991.

[3] S. Kusuoka, Analysis on Wiener spaces, I, Nonlinear Maps, J. Funct. Anal. 98,(1991), 122–168.

[4] S. Kusuoka, Analysis on Wiener Spaces, II, Differential Forms, J. Funct. Anal. 103 (1992), 229–274.