Recent development and perspectives of machines for lattice QCD

Th. Lipperta

aDepartment of Physics, University of Wuppertal, 42097 Wuppertal, Germany

I am going to highlight recent progress in cluster computer technology and to assess status and prospects of cluster computers for lattice QCD with respect to the development of QCDOC and apeNEXT. Taking the LatFor test case, I specify a 512-processor QCD-cluster better than 1$/$Mflops.

1. INTRODUCTION

Driven by the ever increasing demand of lattice QCD for compute power, Computer Science has become a serious activity of its own for many research groups, with a proven record of success. A variety of “home made” QCD engines is described in a long-standing series of “machine talks” from early Lattice Conferences on.

In US, lattice physicists always were close to computer companies, e.g. IBM, where the first-generation GF11 project started in 1983 \cite{123}, or TMC \cite{45}. In Japan, cooperation of physics and computer science began in 1978 \cite{6} continuing with the QCDPAX series \cite{2}. In 1996, CPPACS, a long term leader of the TOP500 list, was built by CCP scientists together with computer industries \cite{89}. Certainly, this symbiosis to a good deal has pushed Japan to the top position in HPC \cite{10}.

Soon fourth generation “home-made” systems will become operational: In the US, computer science activities at Columbia go back to 1982 \cite{11213}. The group has devised QCDSP in 1999, a third generation QCD-computer \cite{14}, and is about to finish the prototype of QCDOC, a highly scalable multi-Tflops system \cite{1516} in collaboration with UKQCD and IBM. In Europe, INFN/Rome started with the first generation APE in 1984 \cite{17}. In 1993, the INFN/Pisa-Rome group has presented the second generation APE100 \cite{1819}, followed by the third generation APEmille in 2001 \cite{20}. First CPUs for apeNEXT, designed by the Berlin-Pisa-Rome group (DESY-INFN) for a speed of several Tllops, are expected for autumn 2003 \cite{21}.

A new HPC variety has entered the stage more recently \cite{2223}. Built from standard PC components, cluster computers can be readily adapted to lattice QCD \cite{24}. They strive to win the QCD-computer contest for lowest price/performance ratios, claimed by both QCDOC and apeNEXT with a sustained performance of 1$/$Mflops (Mflop/s) for double precision Wilson fermion computations in 2004.

I have been asked to highlight recent progress in cluster computer technology and to assess the opportunities of QCD-clusters and home-made systems to win the contest. To this end I choose the LatFor test case \cite{25} and consider two cost functions, the price/performance ratio R for investment costs and the waste heat H for cost of operation. Based on performance results given in section 5 I will specify a 512-processor QCD-cluster with $R = 1$/$Mflops and $H \approx 0.12$W/Mflops.

In sections 2 and 3 I discuss general and QCD-optimized clusters. Recent PC hardware developments are presented in section 4. The status of QCDOC and apeNEXT is given in section 6.

2. RISE OF CLUSTER COMPUTING

Table 1 illustrates the increasing presence of cluster computers in the TOP500 list, which is sorted according to Linpack benchmark results of the most powerful computing systems worldwide \cite{9}. The TOP500 group defines a cluster as parallel computer where the number of nodes is larger than number of processors per node. If the number of nodes is less than the number of processors per node the system is termed constellation. The
main fraction in the TOP500 list consists of single node MPPs while non-clustered SMPs have nearly vanished (2%), cf. figure 1. Among the first 100 entries, 33 clusters are found in US, 3 in France, 2 in Sweden, and 1 in Australia, Canada, China, Germany, Russia, and UK, respectively.

Cluster computing started with Beowulf systems in 1994 [26]. But it was not before the advent of networks with gigabit point-to-point performance like Myrinet that clusters could become competitive. While CPU clock rates grow more or less continuously, doubling every 21 months according to Moore’s “Law”, performances of commodity networks tend to increase in a step-wise fashion. As a rule of thumb, many HPC applications ask for a network speed of 1 Gbit/s per 1 GHz clock speed of a node. Fig. 2 demonstrates that this matching point was reached around 1999 [27]. The breakthrough of clusters occurred when PC prices went down and low latency switches, high level message passing standards like MPI and reliable communication software became available.

Clusters bear several advantages: they are built from cost-effective components, their modularity allows flexible hardware upgrades, they benefit from (OpenSource) software standards and they can be optimized for many specific applications.

3. QCD-OPTIMIZED HPC-CLUSTERS

QCD-Cluster computing was pioneered by Gottlieb in 1998. He built the “Candycane” Beowulf from 32 350 MHz PentiumII PCs. Other early systems followed soon, see table 2. Since 2002, quite a few QCD-clusters have been installed. Still, the number of systems and their individual sizes are small compared to the general purpose clusters of the TOP500 list:

- Bielefeld [35] (2003)
 - 16 dual XEON, 2.4 GHz
 - with switched GigE
 - 16 dual Athlon MP 1800
 - with Myrinet2000
- Bern [36] (2003)
 - 32 dual XEON, 2.4 GHz
 - Intel E7500 chipset
 - DDR RAM
 - Myrinet2000, 2 × 190 MB/s bi-dir bw

Table 1

Percentage of cluster computers in the TOP500 list.

	total	academic/research	industry
Jun. 2003	29.7	20.8	8.9
Nov. 2002	18.6	13.4	4.0
Nov. 2001	8.6	6.2	1.2
Nov. 2000	5.6	3.6	1.2
Nov. 1999	1.4	1.0	0.0

Figure 1. Computer class distribution in the TOP500 list.

Figure 2. Co-evolution of CPU clock rate and network speed.
Table 2
“Early” QCD-clusters.

site	name	year	# of procs	CPU type	clock [MHz]	net
Indiana State	Candycane	1998	32	PII	350	fast ethernet
Eötvös/Budapest	PMS	1998/1999	32/64	K6-2	450	ISA 2D
Wuppertal	ALiCE	1999	128	Alpha 21264	616	Myrinet
Jlab	Calico	2000	16 + 18	Alpha 21264	667	Ethernet
Adelaide	ORION	2000	40 × 4	SUN E420R		Myrinet2000
FNAL	QCD80	2000	80	PI11 dual	700	Myrinet2000
Zhongshan/Guangzhou		2000	10	PI11 dual	500	fast ethernet

• DESY (2002)
 - 16+16 dual XEON, 1.7/2.0 GHz (Hamburg)
 - 16 dual XEON, 1.7 GHz (Zeuthen)
 - Supermicro P4DC6
 - 1 GB RDRAM per node
 - Myrinet2000

• FNAL (2002)
 - 128 dual XEON, 2.4 GHz
 - 48 dual XEON, 2.4 GHz
 - Supermicro P4DPR-6GM+
 - Intel E7500 chipset
 - 128 + 48 GB DDR RAM
 - Myrinet2000, 2 × 135 MB/s bi-dir bw
 - GigE mesh on 16 nodes

• Jlab (2002)
 - 128 single XEON, 2.0 GHz
 - Intel E7500 chipset
 - 65 GB DDR RAM
 - Myrinet2000

• Seoul (2003)
 - 30 P4, 2.4 GHz
 - 16 GB DDR RAM
 - Fast ethernet

• Taipei (2003)
 - 30 P4, 1.6/2.0 GHz, Farm
 - RDRAM tuned for overlap simulations

• Tsukuba (CCP) (2003)
 - 16 dual XEON, 2.8 GHz
 - 64 GB DDR RAM
 - Myrinet2000

In early 2002, the Budapest group has carried out first runs with the Poor Man’s Supercomputer v.3 (PMS v.3). The Budapest Architecture was the first large cluster system to use a Gigabit ethernet mesh as connectivity:

- Budapest (1/2002)
 - PMSv.3
 - 128 P4, 1.7 GHz
 - Intel GBD MB
 - 512 MB/node RDRAM
 - 4 × SMC 9452 Gbit-NIC
 - PCI 32bit/33 MHz

The Budapest Architecture can be reconfigured to smaller partitions by re-wiring of the GigE-mesh, see figure. PMSv.3 achieves a price performance ratio of less than $1/Mflops sustained for single precision Wilson fermion matrix inversions. This ratio has been assessed in 1/2002 by pricing data quoted at www.pricewatch.com adding 10 %. Fig. shows node performances for an optimal number of nodes constrained by the available memory on PMSv.3. The MILC HMC code was optimized by SSE constructs for time-
critical code blocks\(^1\).

PMSv.3 has demonstrated that sophisticated networks can be avoided on streamlined QCD-clusters, which otherwise eat up a substantial part of the available budget.

The Budapest Architecture is a model for QCD-clusters \((i)\) providing high single node performances, \((ii)\) delivering sufficient network performance at low costs, \((iii)\) and being scalable.

4. CLUSTER HARDWARE TRENDS

The efficiency of parallel computers is determined both through the local efficiency of the compute nodes and the performance of the communication network. In particular, the speed of the network interface, \(i.e.,\) the speed of the PCI sub-system, is a key parameter to benchmark present commodity hardware.

\(^1\)The use of the multi media extension (MMX) for AMD K6-2 has been suggested in 1999 \(^2\) for PMSv.1 and was subsequently used in finite density QCD computations \(^3\). At the same time, M. Lüscher has presented fast SSE coding on Intel platforms \(^4\).

4.1. CPUs

Let’s concentrate on PC processors that are currently relevant for cluster computing: in Q2 2003, clock frequencies of Intel P4 and XEON CPUs have reached more than 3 GHz; AMD Athlon and Opteron CPUs have touched the 2 GHz threshold\(^2\). The Athlon64 CPU appeared in Q3 2003. While it’s safe to say that the development of CPU clock speeds will follow Moore’s “Law”, it is of course difficult to predict the detailed evolution of CPUs and chipsets, even for the near future. In Fig. 4, I have tried to collect the information made public by Intel and AMD. According to these numbers, Intel P4 and XEON processors will approach 3.4 GHz near the end of 2003 while CPU speeds of more than 3.6 GHz cannot be envisaged before Q2 2004. The 1.5 GHz Itanium2 chip appears to be with us for quite a while. A successor to the Pentium 4, called “next generation” processor, might be expected in the second half of 2004. Further details on Intel and Opteron processors cannot be given here.

4.2. Memory and front side bus

QCD computations are largely determined by the memory-to-cache data rate available on the given chipset. A key figure is the frequency of the so-called front side bus (FSB). The FSB connects the processor to the north-bridge, the memory controller hub (MCH). The memory frequency itself must match the FSB frequency for maximal bandwidths. To give an example, the 800 MHz FSB requires 400 MHz dual channel DDR RAM (PC3200) to be fully saturated.

Let’s clarify the nomenclature: The acronym DDR stands for “double data rate” exploiting both the rising and falling flanks of the signal unlike standard SDRAM. Such memory type in principle delivers a data rate \(D = 8 \times 2 \times f\) B/s. As a next step, the dual channel memory controlling technology has been introduced which allows to double \(D\) once more by means of logical words of length 144 bits \((2 \times 64 + 8)\) that are split over two memory banks. In other words, a dual channel twin module mimicks an effective frequency of \(2f\) MHz. With respect to the above example,

\(^2\)The number tags of AMD Athlons mimick the performance-equivalent clock rate of Intel chips.
$f = 400 \text{ MHz}$ is the effective frequency of a twin module with $D = 6.4 \text{ GB/s}$.

A further increase in DDR memory frequency is expected for Q1 2004 with the appearance of 667 MHz DDRII dual channel SDRAM. Recently, RAMBUS announced XDR DRAM running at a speed from 3.2 to 6.4 GHz with $D = 6.4$ and 12.8 GB/s per channel [44]. But keep in mind that RAMBUS memory tends to be nearly twice as expensive as equivalent DDR memory.

The STREAM benchmark is a reliable estimate for the actual data rate that can be achieved on a given system. Fig. 6 shows results of STREAM for a variety of platforms [45]. In terms of the maximal bandwidth, STREAM gives about 87% on a 2.66 GHz P4 platform equipped with 200 MHz DDR RAM on a 533 MHz FSB, for example. The STREAM benchmark is clearly dominated by the NEC SX-5 vector system.

At this stage let me note that the so-called “machine balance” $^3 B$, i.e. the ratio of Mflops vs. the memory accesses in Mwords/s, has increased for PC hardware in recent years. While Intel 486 boards had B close to 1—a value today maintained on vector systems like the SX-5 only—Pentium P4 boards show $B = 10 \ldots 20$. Consequently, a 1.7 GHz P4 CPU saturates 2 channel RAMBUS 400 MHz RAM with a maximal data rate of 1.6 GB/s for SSE-boosted Wilson fermion codes. It currently appears to be less cost efficient to choose CPUs with highest frequency.

B is even more unfavorable for XEON dual processor systems as the FSB capacity is shared

$^3 B$ should better be called machine imbalance.
among the processors. Given a maximal FSB frequency of 533 MHz (Q3 2003) B is nearly 3 times larger than for fastest Pentium P4 boards with 800 MHz FSB, which were available already in Q2 2003. 800 MHz boards for the XEON processor will not become available before Q2 2004, still the difference to P4 will be a factor of two4.

AMD currently supports a FSB frequency of 400 MHz for the Athlon processor while the memory connection to the AMD Opteron processor is enabled through an internal memory controller with direct memory access. The advantage is that B is constant for single, dual or quad Opteron systems. In other words, Opteron is scalable.

4.3. PCI

PCI is a hardware standard to connect PCs with external devices. The speed of PCI is the bottleneck dominating the performance of the interconnectivity of cluster computers. We have witnessed several improvement steps since 1993 through which PCI evolved from a 32bit/33MHz bus to 64bit/133MHz PCI-X in 1999. However, one should be aware that 64bit PCI bus widths are not supported on standard PC boards. Clearly, the theoretical bi-directional Gigabit-Ethernet performance of 2 Gbit/s cannot be served adequately by a 32bit/33MHz PCI bus. Thus, already for Gigabit-Ethernet we encounter a 2:1 PCI-bus over-booking on standard PC boards. Myrinet2000 with a bi-directional bandwidth of 4 Gbit requires at least a 64bit/66MHz PCI bus5.

A new standard, PCI-Express, is about to enter the market early in 2004. PCI-Express is a fundamental re-design as compared to PCI-X. Instead of a parallel 64bit bus, PCI-Express is based on a serial bus with several channels (lanes). The performance per lane will be 2.5 Gbit/s, up to 32 lanes are possible. With PCI-Express cluster nets will enter the $O(100)$ Gbit/s era4.

It is well known that early P4 and XEON board chipsets were delivering much less PCI-bandwidth than promised by specifications. On today’s Intel E750x and Serverworks GC chipsets such performance degradations have been overcome49.

4.4. Network technology

Cluster pioneer Myricom presented “Myrinet” with 2 Gbit/s bi-directional bandwidth already in 1997 and has evolved the product to Myrinet2000 with bi-directional bandwidth of 4 Gbit/s. Fig. 7 shows the aggregate MPI-bandwidth as a function of the message length, using the genuine Myrinet communication driver GM 1.5.3 on the FNAL systems, cf. section38 As just announced, the maximal bi-directional bandwidth can reach 950 MB/s (two channels). The latency for the PALLAS MPI-benchmark, \textit{i.e.} the half of the zero-message length round-trip time, is 5 μs 50. Switches are available for up to 128 ports in a single cabinet. They can be combined to multi-stage crossbars with thousands of ports. The switch latency lies in the range of $O(100)$ ns per stage.

Another major advance in cluster network performance has been achieved with the novel Infiniband standard. Infiniband is designed for a bandwidth of 10 Gbit/s. First performance measurements can be found in Ref. 51 (Fig. 8). The latency for zero-message length is supposed to be

4The catch is the weak PCI bus of PC boards.

5To my knowledge there are is only one genuine P4 board with a FSB above 500 MHz supporting PCI-X, while many boards for dual XEON, Athlon and Opteron processors meanwhile are equipped with PCI-X. The Tyan 2726 XEON board even supports 4 on-board GigE slots on 2 PCI-X channels17.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{myrinet.png}
\caption{Myrinet aggregate bi-directional bandwidth on a XEON system for the PALLAS MPI-benchmark (taken from 38).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{infiniband.png}
\caption{Infiniband latency for zero-message length (taken from 51).}
\end{figure}
Figure 8. Comparison of aggregate bi-directional bandwidths (PALLAS MPI-benchmark) for Infiniband, Myrinet2000 and QsNET (Quadrics) (taken from [51]).

Figure 9. Infiniband/PCI-Express road-map for given “distances” (adapted from [51]).

about 7 μs. The Infiniband road-map is shown in Fig. 9. With PCI-Express expected for early 2004, Infiniband networks will deliver up to 20 Gbit/s bi-directional bandwidth. Currently 96-port switches are available that can be combined to a larger multi-stage crossbar. The additional latency per switch stage is reported to be about 200 ns.

While the performances of Myrinet, QsNET and Infiniband are impressive, the costs are substantial. A Myrinet2000 interface card costs $1000 and a switch port about $400 on average. Mellanox Infiniband lies in the same price range (Q3 2003). With about $1400 per node, networking costs surpass the costs for the compute nodes. At this stage, these sophisticated networks appear to be reserved for high-end general purpose cluster systems.

In order to provide cheaper and faster communication the FNAL group has constructed own Gigabit-Ethernet network cards based on FPGAs [52]. As these cards support up to 8 ports one can arrange the processing elements in form of a hypercube. Currently, the card is designed for 32bit/33MHz PCI, a PCI-X version is planned. Still, the costs exceed $500 per card.

On the other hand, standard GigE PCI cards cost about $40, while dual and quad cards amount to $150 and $400, respectively. I already mentioned a system supporting up to four GigE ports on board, hence PCI cards aren’t required at all in case of a Budapest Architecture.

How large a bandwidth can we squeeze out of a point-to-point GigE connection? The answer is largely dependent on the TCP/IP driver used. Standard drivers allow for somewhat more than 100 MB/s bi-directional bandwidth. Communication optimized drivers like ParaStation [53] can provide a much larger bandwidth. On a XEON system (64bit/66MHz PCI), ParaStation TCP/IP reaches up to 200 MB/s bi-directional bandwidth, see Fig. 10. Of course, one would
wish to achieve an aggregate bandwidth of 800 MB/s on a GigE mesh. This requires, first of all, systems with PCI-X, and in order to achieve maximal bandwidth, the communication software has to drive four network cards simultaneously.

While meshes or grids are scalable with respect to nearest-neighbor computations, more complicated QCD applications require a switched network. Quite recently, level 3 enabled routed GigE switches appeared with \(O(500) \) ports like the Myrinet GigE switch [50], the CISCO Catalyst 6500 [54] or the FORCE10 E series [55]. The costs per port came down within the last half year (about $300 per port in Q3 2003). Certainly, the bi-directional bandwidth will not exceed 200 MB/s for switched GigE connections. In fact, most switches are overbooked. The additional latency of the Myrinet switch is 3.5 \(\mu s \), CISCO Catalyst 6500 adds between 12 and 16 \(\mu s \) while the FORCE10 switch is reported to give 23 \(\mu s \).

Table 3 presents throughputs and latencies of the various PCI-based cluster connectivities.

Network	bw bi-dir	latency per stage	
Infiniband	20 Gbit/s	7 \(\mu s \)	200 ns [51]
QsNET	5.44 Gbit/s	2 \(\mu s \)	500 ns [56]
Myrinet	4 Gbit/s	5 \(\mu s \)	200 ns [50]
GigE (2003)	8 Gbit/s	27 \(\mu s \)	12-23 \(\mu s \)
(ParaStation)	2 Gbit/s	12 \(\mu s \)	[54]
(JLAB)	12 \(\mu s \)	[51]	

5. PERFORMANCE AND SCALING OF QCD CODES

5.1. Single node performance

The acceleration of QCD codes on single CPUs is of primary concern in order to achieve a high parallel performance. We can benefit from Moore’s “Law”: Fig. 11 demonstrates the performance improvements gained through increases of processor frequencies for the matrix-vector multiplication on a \(16^3 \times 16 \) lattice with the Wilson-Dirac operator using 1 processor per node (code by M. Hasenbusch) [25,59,60]. Performance crit-

Figure 11. Performance of the Wilson-Dirac multiplication as function of the CPU clock at fixed lattice size \(16^3 \times 16 \) (adapted from [59] and [60]).
Figure 12. Performance of staggered fermion multiplication as function of the CPU clock (taken from [61]).

Fig. 12 shows the dependency of the MILC staggered fermion code (32 bit) performance on the CPU clock frequency. Successive performance improvements are illustrated in Fig. 13 [62].

5.2. Parallel efficiency

The performance per processor will decrease for parallel operation. On the PMSv.3 with GigE connectivity, the degradation is about a factor of 2 for both staggered and Wilson fermions, cf. Fig. 4. The parallel efficiency, determined keeping the local lattice size constant for single and parallel mode, is listed in Table 4 [59]. On Myrinet clusters, typically more than 65% efficiency are achieved for both SSE and non-SSE coding. On the Wuppertal XEON cluster PAN (2.6 GHz, Myrinet) non-blocking communication is enabled under MPI by virtue of ParaStation. Hence, the communication can be hidden behind computation leading to an efficiency of 0.91.

The i860 chipset shows a smaller parallel efficiency due to the defective PCI implementation, mentioned earlier (section 4.3).

Table 4: Parallel performances and scaled efficiency [59].

System	Single Proc	Parallel Efficiency
Myrinet	579 Mflops	307 Mflops/Proc
Myrinet GM E7500	631 Mflops	432 Mflops/Proc
Myrinet Parastation E7500	675 Mflops	446 Mflops/Proc
Myrinet Parastation E7500, non-SSE	406 Mflops	368 Mflops/Proc
Gigabit Ethernet	390 Mflops	228 Mflops/Proc
Infiniband	370 Mflops	297 Mflops/Proc
Fig. 14. Single processor performance records (I thank S. Gottlieb, M. Hasenbusch, D. Holmgren, M. Lüscher, and P. Wegner for their contributions.).

Fig. 15 shows parallel single/dual speeds on the DESY XEON system, using M. Lüscher’s latest version of the e/o preconditioned Wilson-Dirac matrix-vector multiplication. The parallelization is 1-dimensional. With four processors on 2 nodes, a double precision performance of more than 1 Gflops per node could be achieved.

Fig. 16 gives an impression of the efficiency of the MILC staggered fermion code with fixed local lattice sizes on the 128 node dual XEON system at FNAL.

5.3. Scaling to massive parallelism

One would like to exert as much CPU power as possible on a given lattice, as needed, e.g., for realistic turnaround times of dynamical overlap fermion simulations. While QCDOC and apeNEXT, as shown below, are designed with respect to fine granularity, clusters favor coarse grained parallelism.

Nevertheless, Fig. 17 demonstrates that Wilson fermions with ll-SSOR preconditioning and non-blocking MPI can scale quite far on clusters. We have benchmarked a test lattice of size 12^4. On 64 ALiCE processors we still achieve a speedup of about 32 using a 3-d processor geometry. By extrapolation we would expect the code to run on 512 processors with a speedup of 256 for a $16^3 \times 32$ lattice.
6. PROSPECTS

Let me try to assess the current prospects of clusters as compared to “home made” QCD computers. This task is difficult enough as, on one hand, the development process of home made systems often is delayed—about two years for APEmille and presumably nearly two years again both for apeNEXT and QCDOC—, on the other hand, there are continuous changes in PC processor market. As evaluation criteria the cost functions price/performance ratio R for investment and waste heat H for operation are used.

6.1. QCDOC

The development of QCDOC (“QCD on a chip”) is documented in three proceedings of previous lattice conferences. In fact there is very good news: first successful floating point operations have been carried out on a prototype ASIC in Q2 2003.

The QCDOC CPU is based on a 500 MHz, 32 bit PPC 440 core, with a 64-bit floating point unit of 1 Gflops peak, and 4 MB on-chip memory. The nearest-neighbor topology is a 6-d hypercube with an aggregate bandwidth of 12 Gbit/s (for 12 directions) per processor. With 550 ns, the latency will be extremely small. A simulation of the processor gave a sustained performance of 50% of peak or 465 Mflops for the Wilson-Dirac operator on a 12^4 lattice (T. Wettig in [25]).

Due to low latency and high local efficiency, QCDOC will be perfectly scalable and hence deliver full compute power on small lattices. High performances require the use of assembler coding. Peter Boyle’s assembler generator will be an important asset of the machine. Large QCDOC systems are likely to be partitioned into smaller parts. Main physics targets are dynamical (chiral) fermion simulations with small quark masses.

At the time of this conference first daughter-boards have been tested, a 128-node system is planned for autumn 2003, a 5k-node system should be finished end of 2003. In late spring 2004, 5 Tflops sustained are planned for both UKQCD/Edinburgh and Riken and 2.5 Tflops sustained for Columbia University. Funding is aimed at a 10 Tflops sustained QCDOC system for the US-community (SCIDAC) [70].

6.2. apeNEXT

Detailed information on the development of apeNEXT can be found in the proceedings of earlier lattice conferences [71,72,74].

The apeNEXT processor design has been finished end of June 2003 [73]. The 200 MHz 64
bit CPU hosts a 64-bit floating point unit capable of 1.6 Gflops peak. The memory bandwidth is 3.2 GB/s. The topology is 3-dimensional with an aggregate nearest-neighbor performance of 1.2 GB/s. The latency will be O(100) ns and thus favor high scalability. The processor simulator achieves a sustained performance of 944 Mflops for the Wilson-Dirac operator (D. Pleiter in [25]). Therefore, 512 processors in a rack can deliver about 0.5 Tflops sustained. In addition to TAO a C compiler will be available. Note that the partitions are quantized in units of \(4^n \times 8 \times 8\) processors, \(n \in \mathbb{N}\).

A first processor prototype is expected for late 2003. In early 2004, 256 nodes should be assembled. INFN plans for the funding of several sustained Tflops, while DESY and GSI (Germany) intend to install 15 and 10 Tflops peak, respectively [74,75,76].

6.3. A low-cost QCD-cluster

Let’s build our own cost-optimized QCD-cluster! We adopt the LatFor setting [24] where dynamical Wilson fermions are simulated by HMC on a \(32^4 \times 64\) lattice at a quark mass characterized through \(0.3 < m_\pi/m_\rho < 0.6\). To achieve reasonable turnaround times, we aim for 0.25 Tflops sustained.

Recall that Lüscher and Wittig got between 380 and 490 Mflops/proc sustained performance on a dual XEON 2.0 GHz node under Myrinet2000 for local lattice sizes between 1k and 16k sites (section 5.2). On a 512-processor system, the local lattice for the LatFor test case is 4k sites. Hence it is reasonable to take the average of both numbers, i.e. 430 Mflops/proc, adding up to a total sustained performance of 0.22 Tflops. As connectivity we can choose a 2-dimensional GigE mesh of \(32^2 \times 64/2 = 512\) processors since Fodor et al. have demonstrated that GigE meshes come close to Myrinet performances on the DESY machine [42].

Let us specify the following Gedanken-cluster (prices by www.pricewatch.com, Q2 2003):

Item	Specification	Price
Mobo	GA-8EGXR-PEC, 533FSB	$210
DDR-266	6 PCI	
CPU	2 XEON 2.0GHz, 512K CACHE	$258
Mem	1 GB dual DDR 266 MHz	$119
Case	incl. Power 500 W	$55
Disk	EIDE 80 GB	$66
GigE	4 x PCI cards 4 x $29	$126
Sum per dual node		$834

The waste heat, \(H\), amounts to about 30 kW.

6.4. Comparison

Table 5 confronts cost functions and maximal processor numbers of QCDOC, apeNEXT and mesh cluster with respect to the LatFor test case.

System	Year	Proc	\(P\)	\(R\)	\(H\)	\(C\)
QCDOC	2004	512	0.238	\(\approx 1\)	0.01	\(> 16k\)
apeNEXT	2004/5	256	0.241	\(\approx 1\)	0.02	2048
Cluster	2003	512	0.220	\(\approx 1\)	0.12	512

First we extrapolate \(R\) to equal points in time, say 01/2005. \(R\) is likely to drop to 0.5 $/Mflops for the cluster system by then (Moore’s “Law”). Hence, investment costs will favor a cluster in 01/2005.

The cost of operation of the cluster as determined through \(H\) will lie below $20,000 per year, assuming German electricity costs for major customers. Operating QCDOC and apeNEXT will be considerably cheaper by a factor of 10 and 5, respectively. Thus, costs of operation favor QCDOC or apeNEXT.

With respect to the LatFor test case, the maximal number of processors, \(C = 512\), that can be realized for a 2-d mesh geometry has been chosen. In contrast, apeNEXT is limited to \(C = 2048\) processors while QCDOC can deploy tens of thousands of processors.

In order to improve on this situation for clusters, one can resort to a 3-dimensional geometry, which in principle allows for \(C = 8k\). Of course,
the scalability S might limit the performance for yet smaller numbers of processors. It is possible that cache-resident coding will help here.

As far as dynamical Overlap fermions are concerned, first simulations are likely to use lattices of size $16^3 \times 32$. Aiming at maximal throughput, one should be aware that the numbers of processors are limited to $C = 128$ for a 2-d cluster, $C = 1k$ for a 3-d cluster, $C = 1k$ for apeNEXT, or $C = 8k$ for QCDOC. In other words, the 8k QCDOC can simulate this specific Overlap fermion problem 4 times as fast as the 2-crate apeNEXT, 8 times as fast as the 3-d cluster with 1k processors (assuming scalability) or 64 times as fast as the 2-d cluster with 128 processors.

7. SUMMARY AND OUTLOOK

The price/performance ratio of QCD-clusters has just crossed the $R = 18/\text{Mflops}$ threshold, QCDOC and apeNEXT are supposed to deliver this ratio mid/end of 2004. The waste heat per Mflops, H, is about 10 times larger for clusters. Hence, the TCO for 5 years of operation turns out to be similar for QCDOC, apeNEXT and clusters.

As far as simulations on small lattices are concerned, the attainable throughput depends on the compute power applicable which is determined by the dimensionality of the parallelization. This is an advantage of 3-d and 4-d network geometries.

Clusters can be used for complicated actions if a switched network complements mesh or grid. They will further improve with respect to home made systems due to PCI-Express,7 networks and improved communication software.

Jefferson Lab has installed a GigE-mesh QCD-cluster these days with 256 dual XEON nodes arranged as a $4 \times 8 \times 8$ grid, expected to deliver 1 Gflops per node sustained for the Wilson-Dirac operator. Wuppertal University is about to install a 1024 processor system combining a GigE mesh architecture with a switched network.

At last, we should gauge all our efforts with respect to commercial supercomputers scheduled for 2$/\text{Mflops}$ sustained end of 2005.

Acknowledgments

I thank the organizers of Lattice 2003 for their kind invitation. I am indebted to Norbert Eicker and Klaus Schilling for important discussions and careful reading of the manuscript.

REFERENCES

1. J. Beetem, M. Denneau and D. Weingarten, the GF11 parallel computer. (abstract only), in Brookhaven 1986, proceedings, lattice gauge theory ’86 419.
2. D. Weingarten, Nucl. Phys. Proc. Suppl. 17 (1990) 272.
3. D. Weingarten, Nucl. Phys. Proc. Suppl. 26 (1992) 126.
4. R.G. Brickner, Nucl. Phys. Proc. Suppl. 17 (1990) 255.
5. S. Aoki et al., Int. J. Mod. Phys. C2 (1991) 829.
6. Y. Iwasaki, Nucl. Phys. Proc. Suppl. 34 (1994) 78, hep-lat/9401030.
7. Y. Iwasaki et al., Nucl. Phys. Proc. Suppl. 17 (1990) 259.
8. CP-PACS, Y. Iwasaki, Nucl. Phys. Proc. Suppl. 60A (1998) 246, hep-lat/9709055.
9. H. Meuer et al., Top500 List, http://www.top500.org, Nov. 1997.
10. S. Aoki et al., (2003), hep-lat/0310015.
11. N.H. Christ and A.E. Terrano, Nucl. Instr. Meth. A222 (1984) 534.
12. N.H. Christ, Nucl. Phys. Proc. Suppl. 9 (1989) 549.
13. N.H. Christ, Nucl. Phys. Proc. Suppl. 17 (1990) 267.
14. R.D. Mawhinney, Parallel Comput. 25 (1999) 1281, hep-lat/0001033.
15. P.A. Boyle et al., Nucl. Phys. Proc. Suppl. 119 (2003) 1041, hep-lat/0210034.
16. P.A. Boyle et al., (2003), hep-lat/0309096.
17. E. Marinari, Lattice Gauge Theory., edited by B. Bunk, K.H. Mütter and K. Schilling, Nato ASI Series. Series B, Physics Vol. 140, Plenum Press, New York, USA, 1986, Lattice 85, Wuppertal, November 5-7, 1985.
18. E. Marinari, Nucl. Phys. Proc. Suppl. 30 (1993) 122.
19. J.C. Sexton, Nucl. Phys. Proc. Suppl. 47
20. APE-Collaboration, A. Bartoloni et al., Nucl. Phys. Proc. Suppl. 106 (2002) 1043.
21. R. Ammendola et al., Nucl. Phys. Proc. Suppl. 119 (2003) 1038, [hep-lat/0211031].
22. S. Gottlieb, Nucl. Phys. Proc. Suppl. 94 (2001) 833, [hep-lat/0011071].
23. G. Bhanot et al., Nucl. Phys. Proc. Suppl. 94 (2001) 854.
24. M. Luscher, Nucl. Phys. Proc. Suppl. 106 (2002) 21, [hep-lat/0110007].
25. M. Hasenbusch et al., Benchmarking computer platforms for lattice QCD applications, 2003, [hep-lat/0309149].
26. D. Ridge et al., Beowulf: Harnessing the power of parallelism in a pile-of-PCs, 1997, [http://citeseer.nj.nec.com/ridge97.html].
27. S. Negrassus, [http://www.macinfo.de], 2003.
28. S. Gottlieb, [http://www.physics.indiana.edu/~sg/pccnets/candycanehistory.html], 1998.
29. F. Csikor et al., Comput. Phys. Commun. 134 (2001) 139, [hep-lat/9912059].
30. H. Arndt et al., Praxis der Informationsverarbeitung und Kommunikation, 25. Jg., 1/2002, Saur Publishing, München, Germany (2002).
31. C. Watson, [http://www.jlab.org/hpc/clusters/calico/index.html], 2000.
32. [http://www.physics.adelaide.edu.au], 2000.
33. [http://qcduino.fnal.gov/qcd80.html], 2000.
34. X.Q. Luo et al., Nucl. Phys. Proc. Suppl. 106 (2002) 1046, [hep-lat/0202007].
35. O. Kaczmarek, priv. comm., 2003.
36. [http://www-tp.unibe.ch/], 2003.
37. [http://www.desy.de/], 2002.
38. D. Holmgren, [qcd.fnal.gov], 2002.
39. C. Watson, [http://www.jlab.org/hp], 2000.
40. T.W. Chiu et al., (2002), [hep-lat/0208039].
41. [http://www.rccp.tsukuba.ac.jp], 2002.
42. Z. Fodor, S.D. Katz and G. Papp, Comput. Phys. Commun. 152 (2003) 121.
43. Z. Fodor and S.D. Katz, JHEP 03 (2002) 014, [hep-lat/0106002].
44. [http://www.rambus.com/products/xdr/256_prod.cfm], 7/2003.
45. [http://www.cs.virginia.edu/stream/].
46. [http://www.d1.ac.uk/TCSC/disco/Benchmarks], 7/2003.
47. [http://www.ipspt.com.au/board/intel/2726/S2726.htm], 10/2003.
48. [http://www.pcisig.com/specifications/pcixpress/specifications], 10/2003.
49. G. Lindahl, [http://www.conservativecomputer.com/myrinet/], 10/2003.
50. [http://www.myri.com], 10/2003.
51. [http://www.mellanox.com/technology/shared/HPC_Clustering_130.pdf], 10/2003.
52. D. Holmgren, priv. comm., 7/2003.
53. [http://www.par-tec.com], 5/2003.
54. [http://www.eantc.com], 10/2003.
55. [http://www.force10networks.com], 10/2003.
56. [http://www.quadrics.com], 10/2003.
57. C. Watson, priv. comm., 7/2003.
58. [http://cluster.mcs.st-and.ac.uk/score/en].
59. A. Gellrich et al., ECONF C0303241 (2003) TUIT003, [physics/0306090].
60. P. Wegner, priv. comm., 7/2003.
61. A. Singh et al., ECONF C0303241 (2003) TUIT005, [cs.dc/0307021].
62. S. Gottlieb, priv. comm., 7/2003.
63. H. Wittig, priv. comm., 5/2003.
64. Z. Sroczynski, Nucl. Phys. Proc. Suppl. 119 (2003) 1047, [hep-lat/0208079].
65. Z. Sroczynski et al., (2003), [hep-lat/0307015].
66. S. Fischer et al., Comp. Phys. Commun. 98 (1996) 20.
67. F. Aglietti et al., Proposal for a multi-tflops lgt computing project, DESY-99-105 [http://www-zeuthen.desy.de/ape/html/apeNEXT/Publications/loi.ps].
68. D. Chen et al., Nucl. Phys. Proc. Suppl. 94 (2001) 825, [hep-lat/0011004].
69. P.A. Boyle et al., Nucl. Phys. Proc. Suppl. 106 (2002) 177, [hep-lat/0110124].
70. N. Christ, priv. comm., 7/2003.
71. APE, R. Alfieri et al., [hep-lat/0102011].
72. F. Bodin et al., Nucl. Phys. Proc. Suppl. 106 (2002) 173, [hep-lat/0110197].
73. F. Bodin et al., ECONF C0303241 (2003) TUIT005, [hep-lat/0306018].
74. D. Pleiter, priv. comm., 7/2003.
75. R. Tripiccione, priv. comm., 7/2003.
76. F. Rapuano, priv. comm., 7/2003.
77. [http://www.clearspeed.com].