Systematic Trends of 0^+_2, 1^-_1, 3^-_1 and 2^+_1 Excited States in Even-Even Nuclei

B. Pritychenkoa, B. Singhb, M. Verpellic

aNational Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
bDepartment of Physics & Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1
cNuclear Data Section, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria

Abstract
The spin and parity (J^π) assignments in even-even nuclei were reviewed across the nuclear chart using the Evaluated Nuclear Structure Data File (ENSDF). The prevalence of 2^+_1 first or lowest excited states is confirmed. The properties of 0^+_2, 1^-_1, and 3^-_1 lowest excited states were reexamined using the ENSDF data evaluation procedures. The J^π systematic trends and correlations between level quantum numbers and nuclear physics phenomena are discussed.

Keywords: Spin and parity assignments, first-excited states, ENSDF

1. Introduction
Comprehensive information on spin and parity assignments is essential for nuclear structure physics and model development. In the early 50s, Gertrude Scharff-Goldhaber at Brookhaven National Laboratory noticed the prevalence of 2^+_1 spin and parity assignments in even-even nuclei [1]. Later, Beliaev and Zelevinsky at Kurchatov Institute explored this problem theoretically and proposed the nature of low-lying nuclear collective modes is just waves of the pair distortion [2]. In well-deformed nuclei, these waves become rotational states with angular momentum 2, but with a significantly
lower moment of inertia than it would be for a macroscopic solid-body rotation as in a normal Fermi system. The proposed formalism described such fluctuations and quantized them as phonons plus anharmonicity that should be more pronounced than in macroscopic systems. Similar phenomena were investigated in macroscopic superconductors, the so-called Bardasis-Schiffer modes [3, 4].

It is well-established that the ground state spin and parity values for even-even nuclei are $0^+ [5]$ while excited states assignments are less certain [6, 7, 8]. Historic compilations of the first excited states J^π show the dominance of angular momentum 2 and positive parity [4, 9, 10], and these systematic trends have not been revisited since the 70s [9, 11]. It is time to bridge the gap in the lowest excited state spin and parity trend assessments, update the compilations and study all presently-available data.

2. ENSDF Survey of Even-Even Nuclei

To evaluate spin and parity assignments across the nuclear chart, ENSDF relational database [6, 7] was surveyed using Structured Query Language (SQL) queries at the Nuclear Data Section (NDS), International Atomic Energy Agency. The survey findings are shown in Table 1.

J^π	#	%
2^+_1	631	96.0
0^+_2	20	3
1^-_1	2	0.3
3^-_1	2	0.3
$(8^-_1)\;?,\;(9^-_1,10^-_1)\;?$	2	0.3

The table data show that the first excited state spins and parities are known for 657 even-even nuclei, where 2^+_1 states are observed in 631 or 96% of even-even nuclei. Other observed J^π values are 0^+_2, 1^-_1 and 3^-_1. Limited data for 254Rf and 270Ds suggest states with tentative spin and parity assignments of (8^-) and $(9^-,10^-)$, respectively. The level schemes in these two nuclei are fragmented and need further clarifications; they have to be reassessed in the future when more data will be available.
The 2^+ first-excited state assignment is natural for non-spherical rotational nuclei where the nuclear symmetry restricts the positive parity band to $0^+, 2^+, 4^+, \ldots$ states

$$J = \begin{cases}
0, 2, 4, \ldots & \text{for } K^\pi = 0^+ \\
1, 3, 5, \ldots & \text{for } K^\pi = 0^-,
\end{cases}$$

where J is the total angular momentum, and K is the projection of J on the 3-axis in the intrinsic frame. In this case, 2^+ is the first excited positive parity band state, and its energy is defined by the minimum perturbation of the ground 0^+ state. The energies of rotational states are described as

$$E_J = \frac{\hbar^2}{2I}J(J + 1) + E_K,$$

where I is moment of inertia, and E_K represents contributions from the intrinsic part of wave function. From formula (2) one can easily deduced a 10/3 ratio between 4^+_1 and 2^+_1 rotational states energies.

Spherical nuclei show a tendency for vibrational states: 2^+_1, 0^+_2, 2^+_3, 4^+_2, \ldots. Other lowest excited state assignments $0^+, 1^-$ and 3^- are found in closed-shell or subshell cases. Despite multiple efforts [1, 2, 9], we do not have a comprehensive nuclear theory that would describe first excited states in even-even nuclei quantitatively [12], and nuclear data re-analysis can help to fill the void.

3. Systematics of 0^+_2, 1^-_1, 3^-_1, and 2^+_1 Excited States

In the present work, all available experimental data for non 2^+ low-lying states were critically reexamined using the standard ENSDF library procedures [13], and 2^+ data were adopted from the ENSDF library [6, 7] and the dedicated horizontal evaluation of B(E2) [14]. Numerical results for 0^+_2 and 1^-_1, 3^-_1 nuclear levels are shown in Tables 2 and 3 while the complete list of 2^+_1 levels is given in Table 4. Analysis of the Tables 2, 3, and 4 data implies that non 2^+ ($0^+, 1^-$ and 3^-) lowest excited states occur near shell or subshell closure or in self-conjugate ($N=Z$) nuclei. Further examination of the non 2^+ $\text{E4}^+_1/\text{E2}^+_1$ ratios produces numerical values from 1.058 to 2.072. These values lie below the vibrational nuclei range of 2-2.2 and are completely inconsistent with the 10/3 ratio in rotational nuclei [15], and the nuclear shell model is needed for the interpretation of J^π assignments in the previously mentioned nuclei. Supplementary discussion on level properties is given in the following subsections.
Table 2: List of 0^+_2 Lowest Excited States in Even-Even Nuclei. Tentative spin and parity assignments are shown in parentheses.

* - total width, † - unconfirmed and *- single measurements.

Nuclide	Z	N	J$^+$	Energy, keV	$T_{1/2}$	Reaction/Decay	Remarks	E4$^+_1$/E2$^+_1$	
4He	2	2	0+	20100 (50)	0.27(5) MeV*	4He(e,e$'$)			
	2	2	0+	20000		4He(e,e$'$)			
12O	8	4	0+	1620 (110)	1.2(7) MeV*	1H(14O, t)			
16O	8	8	0+	6049.4 (10)	67(5) ps	16O(e,e$'$)			
	8	8	0+	6049.4 (10)		19F(p,α)			
44Ar†	18	26	(0+)?	750 (30)		48Ca(3He,7Be)	J$^+$ from shell model	21	2.371
40Ca	20	20	0+	~3350	2.15 (8) ns	40Ca(p,p$'$)		22	1.352
	20	20	0+	~3350	2.14 (10) ns	40Ca(n,n$'$)		23	
	20	20	0+	3352.62 (9)		40Ca(p,p$'$)	L=0,	24	
68Ni	28	40	0+	1604.0(4) keV		68Co($^-$)		25	1.548
	28	40	0+	270 (5) ns		58Ni(70Zn,Xγ)		26	
72Ge	32	40	0+	688 (3)		70Ge(t,p)	L=0,	28	2.072
	32	40	0+			74Ge(p,t)	L=0,	29	30
72Kr*	36	36	0+	671.0 (10)	26.3(21) ns	9Be(78Kr,X)		32	
90Zr	40	50	0+	1761		92Zr(p,t)	L=0,	33	1.407
	40	50	0+	1760	61.3 (25) ns	90Zr(p,p$'$γ)		34	
	40	50	0+	1760.72		90Y($^-$)	Branching	35	36
96Zr	40	56	0+	1581.4		96Y($^-$)	Conv. data	37	1.571
	40	56	0+	1594 (8)		94Zr(t,p)	L=0,	38	
	40	56	0+	1590	38.0 (7) ns	96Zr(p,p$'$γ)		34	
98Zr	40	58	0+	854		98Y($^-$)	Conv. data	39	1.507

Continued on next page ...
Nuclide	Z	N	J$^+$	Energy, keV	$T_{1/2}$	Reaction/Decay	Remarks	$E4_1^+/E2_1^+$
98Mo	40	58	0+	853	63 (7) ns	98Y(β^-)	40	
40	58	0+	65 (10) ns	235U(n,Fγ)	41			
42	56	0+	734	96Mo(t,p)	Conv. data 42	1.919		
42	56	0+	735 (5)	96Mo(t,p)	L=0, 43			
42	56	0+	737	100Mo(p,t)	L=0, 44			
42	56	0+	21.8 (9) ns	98Mo(p,p'γ)	34			
180Hg	80	100	0+	419.6	180Tl(EC)	Conv. data 45	1.627	
80	100	0+	420	147Sm(36Ar,3nγ)	Conv. data 46			
182Hg	82	102	0+	335 (1)	182Tl(EC)	Conv. data 47	1.741	
182Pb	82	102	(0+)	572 (30)	188Po(α)	Low hindr. 48		
82	102	(0+)	577 (40)	188Po(α)	49			
186Pb	82	106	(0+)	532	190Po(α)	Low hindr. 50	1.394	
188Pb	82	106	0+	591 (2)	192Po(α)	Low hindr. 48	1.470	
82	106	0+	591 (2)	156Gd(36Ar,4nγ)	Conv. data 51			
190Pb	82	108	0+	658 (4)	194Po(α)	Low hindr. 52, 53	1.588	
82	108	0+	658	≤0.22 ns	194Po(α)	Conv. data 52		
192Pb	82	110	0+	768.5 (4)	192Bi(EC)	Conv. data 54, 55	1.587	
82	110	0+	768.5 (17)	0.75 (10) ns	196Po(α)	52		
194Pb	82	112	0+	930.6 (4)	194Bi(EC)	Conv. data 54, 55	1.596	
82	112	0+	931	198Po(α)	Low hindr. 52, 53			
82	112	0+	930.6 (9)	1.1 (2) ns	198Po(α)	Conv. data 52		
Table 3: List of 1_1^-, 3_1^- and Others Lowest Excited States in Even-Even Nuclei. Tentative spin and parity assignments are shown in parentheses. † 254Rf and 270Ds tentatively-assigned levels (8-) and (9-,10-), respectively. The listed levels may not be the first excited states as not much is known about the level structures of these nuclei.

Nuclide	Z	N	J^p	Energy, keV	$T_{1/2}$	Reaction/Decay	Remarks	$E4_1^+/E2_1^+$
14C	6	8	1-	6093.8(2)	12B(β^-)			1.531
14O	8	6	1-	5164(2)	14C(α,α')	L(α,α')=1,	58	
14O	8	6	1-	≤ 7 fs	9Be(13C,8Be)			
14Gd	64	82	3-	1579.40 (5)	144Sm($\alpha, 2n$)	GTOL	13	1.325
144Sm	64	82	3-	1579.40 (5)	144Sm($\alpha, 2n$)	J$^\pi$	63, 64	
146Tb	64	82	3-	1.06 (12) ns	146Tb(EC)	Conv. data	65	
208Pb	82	126	3-	2614.511 (10)	208Pb(16O, 16O')	Evaluation	67	1.058
208Pb	82	126	3-	16.7 (3) ps	208Pb(α,α')	B(E3)	68	
208Pb	82	126	3-	208Pb(p,p')	L(p,p')=3,	69		
208Pb	82	126	3-	208Pb(e,e')	L(e,e')=3,	71		
254Rf†	104	150	(8-)	>1350 keV	4.7 (11) μs			72
270Ds†	110	160	(9-,10-)	1.13E+03	3.9$_{-8}^{+15}$ ms			73, 74
3.1. 0^+_2 Excited States

The low-lying 0^+ states in even-even nuclei serve as an indication of shape coexistence \cite{75, 76}. Analysis of the Table \ref{table:excited_states} data demonstrates that 0^+ first excited states materialize near $Z, N=2,8,20, N=40$, and $Z=82$, often in self-conjugate nuclei. The two notable exceptions are 44Ar \cite{21, 77} and 72Kr \cite{32, 78}. Further examination of 44Ar \cite{79} raises serious doubts about the existence of a low-lying 0^+ level at 750 keV due to background spectra interpretations. The situation with the 72Kr 0^+ state is more complex because spin and parity assignments are based on a single measurement \cite{32, 78}. Likely, the 0^+_2 state in 44Ar was erroneously reported in ENSDF while 72Kr needs additional measurements.

Low-lying 0^+ states have been observed in many even-even nuclei. They alter the nuclear structure and decay properties and impact basic and fundamental science applications. 96Zr is a long-lived radioactive isotope that can disintegrate via single and double-beta decay processes. It has many unique properties, including the lowest quadrupole deformation parameter (β_2) of 0.0615(33) \cite{14} and the second-highest $2^+_1 \rightarrow 0^+_1$ transition energy among zirconium nuclei. Fig. \ref{fig:beta2} data reveal β_2 value in the $N = 56$ 96Zr is surprisingly lower than in the $N = 50$ magic 90Zr. On the surface, it looks like a new “magic” nucleus. At the same time, a recent attempt to calculate 96Zr double-beta decay half-life assuming the present value of quadrupole deformation overestimated experimental half-life by a factor of 80 \cite{80}.

To investigate these magic-like properties, we would consider zirconium charge radii \cite{81}, two-neutron separation, and nucleon binding energies \cite{82}. The Fig. \ref{fig:zirconium_radii} data on zirconium radii, 2n-separation, and binding energies indicate that $N = 50$ is a good magic number in zirconium, and we have to consider additional quantities for an understanding of the above-mentioned phenomena. Complementary analysis of the ENSDF library \cite{6, 7} level schemes reveals intruder bands in $^{90, 96, 98}$Zr as shown in Fig. \ref{fig:intruder_bands}. These bands are positioned below the 2^+_1 state energies, and the low-lying 0^+_2 state points to the shape coexistence phenomenon in zirconium nuclei. Further theoretical analysis \cite{83} shows that both spherically symmetrical and deformed states are present in $^{90, 96, 98}$Zr rendering β_2 values immaterial. This finding concurs with the Beliaev-Zelevinsky hypothesis \cite{2} that the formally-calculated β_2 noticeably smaller than 0.1 is too low for actual (not fluctuational) static deformation. The zirconium nuclei demonstrate the limits of applicability for deformation parameters and the urgent need for comprehensive analyses.
Figure 1: Quadrupole deformation (β_2) parameters (a), and the first 2^+ state energies (b) in Zr. Data were taken from Ref. [14].
Figure 2: Nuclear radii (a), 2n-separation energies (b), and nucleon binding energies (c) in Zr. Data were taken from Ref. [81, 82].
3.2. I^-_1 and J^-_3 and Other Excited States

Low-lying 1^- and 3^- states are found in closed-shell carbon, oxygen, gadolinium, and lead nuclei. The nuclear shell model shows that the low-lying excited states in doubly-closed shell nuclei originate from (a) $1p$-$1h$ excitations that can have a range of J^π related to the orbits near the Fermi surface and (b) $0^+ 2p$-$2h$ and $4p$-$4h$ ”intruder” states. For 14O and 14C the lowest pair is $p_{1/2}$-$s_{1/2}$ leading to 0^- and 1^- states. Next to this $p_{1/2}$-$d_{5/2}$ configuration results in 2^- and 3^- states. All of these are low-lying excitations in 14O and 14C, and the lowest state is defined by the Hamiltonian. For 146Gd and 208Pb, most of the lowest $1p$-$1h$ states change parity and there are many ways to assemble a given J. Thus it is natural that the lowest of these configurations should be the octupole collective 3^- state. These octupole states are experimentally observed, and the 3^-_1 excited-state in the doubly magic nucleus 208Pb is tied to a large octupole collectivity of 34 Weisskopf units (W.u.) [84, 85, 86].
Lastly, the low-lying 1^-_1 states are found in 14C and 14O mirror nuclei with Z, N=8 shell closure. The Z, N=82 shell closures provide two cases of the 3^-_1 states in 146Gd and 208Pb. Table 3 data provide the full list and show the rationale for 1^-_1 and 3^-_1 spin and parity in even-even nuclei.

In 254Rf and 270Ds tentatively-assigned levels (8-) and (9-,10-), respectively, were reported [72, 74, 73]. As available experimental data for excited states for superheavy (Z>100) nuclei are generally rare, the listed excited states may or may not be the first excited states.

3.3. 2^+_1 Excited States

Finally, ENSDF library numerical results for the lowest 2^+_1 excited states are shown in Table 4. The ENSDF library for individual nuclei is generally updated every 10 years or so, and it is educational to compare these data with a B(E2↑) horizontal evaluation [14] that was published six years ago. The comparison finds 10 first excited state half-lives that were introduced recently and absent in the horizontal evaluation. Supplemental analysis of the horizontal evaluation reveals 42 levels $T_{1/2}$ values that are missing in ENSDF. These latter values are included into Table 4 for completeness. This combination of ENSDF and horizontal B(E2↑) evaluations produce the comprehensive up-to-date table for the 2^+_1 states.

Table 4: List of 2^+_1 States in Even-Even Nuclei. Tentative spin and parity assignments are shown in parentheses,* or ** symbols for the nuclei where $T_{1/2}$ values are taken or updated, respectively, using Ref. [14]. † symbol was used to mark nuclei where half-lives were recently updated in ENSDF, and missing in Ref. [14].

Nuclide	Z	N	J^π	Energy, keV	$T_{1/2}$
6He	2	4	2+	1797(25)	113(20) keV
8He	2	6	2+	3.10E+03(5)	0.6(2) MeV↑
10Be	2	8	(2+)	3.24E+03(20)	1000(300) keV↑
6Be	4	2	(2+)	1670(50)	1.16(6) MeV↑
8Be	4	4	2+	3030(10)	1513(15) keV↑
10Be	4	6	2+	3368.03(3)	125(12) fs
12Be	4	8	2+	2109(1)	0.957(19) ps
10C	6	4	2+	3353.7(6)	107(17) fs
12C	6	6	2+	4439.82(21)	1.08E-02(6) eV
16C	6	10	2+	1766(10)	9.2±11 ps*

Continued on next page ...
Nuclide	Z	N	J^x	Energy, keV	T_{1/2}
^{18}\text{C}	6	12	2+	1588(8)	15.5(25) ps
^{20}\text{C}	6	14	2+	1618(11)	6.8(20) ps
^{18}\text{O}	8	10	2+	1982.07(9)	1.94(5) ps
^{20}\text{O}	8	12	2+	1673.68(15)	7.3(3) ps
^{22}\text{O}	8	14	2+	3199(8)	0.4(15) ps
^{24}\text{O}	8	16	2+	4.79E+03(11)	0.05(16) MeV
^{26}\text{O}	8	18	(2+)	1277(96)	
^{16}\text{Ne}	10	6	2+	1.77E+03(3)	<50 keV
^{18}\text{Ne}	10	8	2+	1887.3(2)	0.46(4) ps
^{20}\text{Ne}	10	10	2+	1633.674(15)	0.73(4) ps
^{22}\text{Ne}	10	12	2+	1274.537(7)	3.6(5) ps
^{24}\text{Ne}	10	14	2+	1981.6(4)	660(150) fs
^{26}\text{Ne}	10	16	2+	2018(3)	0.6(8) ps
^{30}\text{Ne}	10	20	(2+)	792(4)	20(28) ps
^{32}\text{Ne}	10	22	(2+)	722(9)	
^{20}\text{Mg}	12	8	2+	1598(10)	1.36^{+30}_{-21} ps^*
^{22}\text{Mg}	12	10	2+	1247.02(3)	2.0(8) ps
^{24}\text{Mg}	12	12	2+	1368.672(5)	1.33(6) ps
^{26}\text{Mg}	12	14	2+	1808.74(4)	476(21) fs
^{28}\text{Mg}	12	16	2+	1473.54(10)	1.2(1) ps
^{30}\text{Mg}	12	18	2+	1482.8(3)	1.5(2) ps
^{32}\text{Mg}	12	20	2+	885.3(1)	11.4(20) ps
^{34}\text{Mg}	12	22	2+	660(7)	40(8) ps
^{36}\text{Mg}	12	24	(2+)	660(6)	43.6^{+132}_{-90} ps^*
^{38}\text{Mg}	12	26	(2+)	656(6)	
^{24}\text{Si}	14	10	2+	1879(11)	10(3) fs
^{26}\text{Si}	14	12	2+	1797.3(10)	440(40) fs
^{28}\text{Si}	14	14	2+	1779.03(11)	475(17) fs
^{30}\text{Si}	14	16	2+	2235.322(18)	215(28) fs
^{32}\text{Si}	14	18	2+	1941.4(3)	0.78(22) ps
^{34}\text{Si}	14	20	2+	3327.14(20)	82(32) fs
^{36}\text{Si}	14	22	2+	1408(10)	2.7(4) ps
^{38}\text{Si}	14	24	2+	1074(2)	10(3) ps
^{40}\text{Si}	14	26	(2+)	986(5)	7.1^{+27}_{-15} ps^*
^{42}\text{Si}	14	28	(2+)	742(8)	
^{28}\text{S}	16	12	2+	1507(7)	2.0(3) ps

*Continued on next page ...
Nuclide	Z	N	J*	Energy, keV	$T_{1/2}$
30S	16	14	2+	2210.6(5)	156(9) fs
32S	16	16	2+	2230.57(15)	169(11) fs
34S	16	18	2+	2127.564(13)	318(8) fs
36S	16	20	2+	3290.9(3)	83(7) fs
38S	16	22	2+	1292.02(20)	3.3(1) ps
40S	16	24	2+	903.69(7)	14.1(3) ps
42S	16	26	2+	903(5)	11.9(20) ps
44S	16	28	2+	1329(5)	2.4(7) ps
46S	16	30	(2+)	952(8)	
30Ar	18	12	(2+)	7.00E+02	
32Ar	18	14	2+	1867(8)	0.46(12) ps
34Ar	18	16	2+	2091.1(3)	319(42) fs
36Ar	18	18	2+	1970.38(5)	328(20) fs
38Ar	18	20	2+	2167.472(12)	0.458(21) ps
40Ar	18	22	2+	1460.849(5)	1.15(5) ps
42Ar	18	24	2+	1208.22(13)	2.6(1) ps
44Ar	18	28	2+	1577(1)	1.59(32) ps
46Ar	18	30	(2+)	1038(6)	2.1$^{+4}_{-3}$ ps*
50Ar	18	32	(2+)	1178(18)	
38Ca	20	16	(2+)	3045(24)	
42Ca	20	18	2+	2213.2(10)	0.56(6) ps
44Ca	20	22	2+	1524.71(3)	0.83(3) ps
46Ca	20	24	2+	1157.019(4)	2.71(15) ps
48Ca	20	26	2+	1346(3)	3.6(3) ps
50Ca	20	28	2+	3831.72(6)	38.7(19) fs
52Ca	20	30	2+	1026.72(10)	66.5(21) ps
54Ca	20	32	2+	2563(1)	
56Ca	20	34	(2+)	2043(19)	
42Ti	22	20	2+	1554.6(3)	0.44(11) ps
44Ti	22	22	2+	1083.06(9)	3.1(8) ps
46Ti	22	24	2+	889.286(3)	5.32(15) ps
48Ti	22	26	2+	983.539(24)	4.04(10) ps
50Ti	22	28	2+	1553.794(8)	1.047(35) ps
52Ti	22	30	2+	1050.06(9)	3.6(14) ps
54Ti	22	32	(2+)	1494.8(8)	1.06(19) ps
56Ti	22	34	(2+)	1128.2(4)	2.6$^{+13}_{-6}$ ps*

Continued on next page ...
Nuclide	Z	N	J*	Energy, keV	T_{1/2}
58 Ti	22	36	2+	1047(4)	5.4^{−63} ps[*]
60 Ti	22	38	(2+)	850(5)	
48 Cr	24	22	2+	892.16(10)	5.4(12) ps
48 Cr	24	24	2+	752.19(11)	7.3(8) ps
50 Cr	24	26	2+	783.31(10)	9.08(28) ps
52 Cr	24	28	2+	1434.091(14)	0.783(21) ps
54 Cr	24	30	2+	834.855(3)	8(3) ps
56 Cr	24	32	2+	1006.61(20)	≥1.4 ps
58 Cr	24	34	2+	880.7(2)	5.4(9) ps
60 Cr	24	36	(2+)	643.9(20)	23(3) ps
62 Cr	24	38	(2+)	446(1)	91.5^{−76} ps[*]
64 Cr	24	40	2+	430(2)	123(19) ps
66 Cr	24	42	(2+)	386(10)	
58 Fe	26	24	2+	764.9(3)	7.7(17) ps
58 Fe	26	26	2+	849.45(10)	7.8(10) ps
60 Fe	26	28	2+	1408.19(19)	0.76(2) ps
62 Fe	26	30	2+	846.7778(19)	6.07(23) ps
64 Fe	26	32	2+	810.7662(20)	6.54(19) ps
66 Fe	26	34	2+	823.83(9)	7.9(8) ps
68 Fe	26	36	2+	877.31(10)	5.3(6) ps
64 Fe	26	38	2+	746.4(10)	7.1^{−8} ps[*]
66 Fe	26	40	(2+)	574.4(10)	29.7^{−21} ps[*]
68 Fe	26	42	(2+)	522(10)	43.0^{−60} ps[*]
70 Fe	26	44	(2+)	480(13)	
52 Ni	28	24	2+	1397(6)	
54 Ni	28	26	2+	1392.3(4)	0.89(17) ps
56 Ni	28	28	2+	2700.6(7)	53(17) fs
58 Ni	28	30	2+	1454.21(9)	0.652(21) ps
60 Ni	28	32	2+	1332.514(4)	0.735(21) ps
62 Ni	28	34	2+	1172.98(10)	1.45(4) ps
64 Ni	28	36	2+	1345.75(5)	1.088(35) ps
66 Ni	28	38	2+	1424.8(10)	0.8(2) ps
70 Ni	28	42	2+	1259.55(5)	1.04(17) ps
72 Ni	28	44	(2+)	1096(20)	
74 Ni	28	46	2+	1024(1)	3.9(11) ps
76 Ni	28	48	(2+)	992(2)	

Continued on next page ...
Nuclide	Z	N	J\(^{+}\)	Energy, keV	T\(_{1/2}\)
\(^{68}\)Zn	30	28	(2+)	1356(3)	
\(^{60}\)Zn	30	30	2+	1003.9(20)	
\(^{62}\)Zn	30	32	2+	953.84(9)	2.93(14)ps
\(^{64}\)Zn	30	34	2+	991.56(5)	1.94(5)ps
\(^{66}\)Zn	30	36	2+	1039.2279(21)	1.68(3)ps
\(^{68}\)Zn	30	38	2+	1077.37(4)	1.61(2)ps
\(^{70}\)Zn	30	40	2+	884.92(8)	3.65(21)ps
\(^{72}\)Zn	30	42	2+	652.7(5)	14(3) ps
\(^{74}\)Zn	30	44	2+	605.9(8)	17.7(13)ps
\(^{76}\)Zn	30	46	(2+)	598.68(10)	25.4\(^{+3}\)_{-31} ps*
\(^{78}\)Zn	30	48	2+	730.2(4)	18(4) ps
\(^{80}\)Zn	30	50	2+	1492(1)	0.52(11)ps
\(^{82}\)Zn	30	52	(2+)	618(15)	
\(^{64}\)Ge	32	32	2+	901.7(3)	2.3\(^{+3}\)_{-3} ps*
\(^{66}\)Ge	32	34	2+	956.94(8)	3.7(7) ps
\(^{68}\)Ge	32	36	2+	1015.81(8)	2.08(11)ps
\(^{70}\)Ge	32	38	2+	1039.506(9)	1.31(2)ps
\(^{72}\)Ge	32	40	2+	1060.58(6)	12.4(19)ps
\(^{74}\)Ge	32	42	2+	562.93(3)	18.2(2) ps
\(^{76}\)Ge	32	44	2+	619.36(12)	13.5(24)ps
\(^{78}\)Ge	32	46	2+	659.15(4)	16.4(32)ps
\(^{80}\)Ge	32	50	2+	1348.3(1)	0.5(8) ps
\(^{82}\)Ge	32	52	(2+)	624.3(7)	
\(^{84}\)Ge	32	54	(2+)	527	
\(^{66}\)Se	34	32	(2+)	929(7)	
\(^{68}\)Se	34	34	2+	853.75(21)	2.8(4) ps
\(^{70}\)Se	34	36	2+	944.52(5)	2.23(14)ps
\(^{72}\)Se	34	38	2+	862.07(8)	2.82(20)ps
\(^{74}\)Se	34	40	2+	634.74(6)	7.08(9) ps
\(^{76}\)Se	34	42	2+	559.102(5)	12.3(2) ps
\(^{78}\)Se	34	44	2+	613.727(3)	9.79(21)ps
\(^{80}\)Se	34	46	2+	666.27(7)	8.52(21)ps
\(^{82}\)Se	34	48	2+	654.71(16)	12.8(7) ps
\(^{84}\)Se	34	50	2+	1454.55(8)	0.42(7) ps
\(^{86}\)Se	34	52	2+	704.3(5)	7.5(22) ps
\(^{90}\)Se	34	56	(2+)	547(8)	

Continued on next page ...
Nuclide	Z	N	J^*	Energy, keV	T_{1/2}
74^1Kr	36	38	2+	455.61(10)	23.4(4) ps
76^1Kr	36	40	2+	423.96(7)	24.9(7) ps
78^1Kr	36	42	2+	455.033(23)	21.6(7) ps
80^1Kr	36	44	2+	616.6(10)	8.3(5) ps
82^1Kr	36	46	2+	776.526(8)	4.45(18) ps
84^1Kr	36	48	2+	881.615(3)	4.05(13) ps
86^1Kr	36	50	2+	1564.61(7)	0.286(4) ps
88^1Kr	36	52	2+	775.32(4)	11.1(12) ps
90^1Kr	36	54	2+	707.12(5)	10.7(16) ps
92^1Kr	36	56	2+	769.1(5)	5.1_{16}^{+18} ps**
94^1Kr	36	58	2+	665.5	8.7_{9}^{+11} ps*
96^1Kr	36	60	2+	554.1(5)	12.4(8) ps
98^1Kr	36	62	2+	329(7)	
100^1Kr	36	64	2+	309(10)	
74^1Sr	38	36	2+	471(1)	
76^1Sr	38	38	(2+)	262.3(2)	204.4_{-256}^{+256} ps*
78^1Sr	38	40	2+	277.6(10)	155(19) ps
80^1Sr	38	42	2+	385.88(8)	34.2(12) ps
82^1Sr	38	44	2+	573.54(8)	8.9(4) ps
84^1Sr	38	46	2+	793.22(6)	3.23(35) ps
86^1Sr	38	48	2+	1076.68(4)	1.46(1) ps
88^1Sr	38	50	2+	1836.09(8)	0.154(8) ps
90^1Sr	38	52	2+	831.68(4)	7(2) ps
92^1Sr	38	54	2+	814.98(3)	8(3) ps
94^1Sr	38	56	2+	836.9(1)	6.9(28) ps
96^1Sr	38	58	2+	814.93(7)	4.8(28) ps
98^1Sr	38	60	2+	144.7(5)	2.78(8) ns
100^1Sr	38	62	(2+)	129.18(9)	3.91(16) ns
102^1Sr	38	64	(2+)	126(2)	3.0(12) ns
84^1Zr	40	40	(2+)	288.9(2)	
82^1Zr	40	42	2+	407(10)	22(9) ps
84^1Zr	40	44	2+	539.92(9)	14.1(8) ps
86^1Zr	40	46	2+	751.75(3)	7.5(14) ps
88^1Zr	40	48	2+	1057.03(4)	2.5(28) ps
92^1Zr	40	52	2+	934.51(4)	5.0(4) ps
94^1Zr	40	54	2+	918.75(5)	6.9(15) ps

*Continued on next page ...
Nuclide	Z	N	J*	Energy, keV	$T_{1/2}$
109Zr	40	60	2+	212.61(4)	0.57(15) ns
109Zr	40	62	2+	151.78(11)	1.8(4) ns
109Zr	40	64	2+	139.3(3)	2.0(3) ns
109Zr	40	66	(2+)	152.1(5)	1802$^{+139}_{-104}$ ps*
109Zr	40	68	(2+)	174.3(5)	
84Mo	42	42	(2+)	443.9(2)	
86Mo	42	44	(2+)	566.6(4)	
88Mo	42	46	2+	740.54(4)	7.14(21) ps$^+$
90Mo	42	48	2+	948.02(9)	
92Mo	42	50	2+	1509.51(3)	0.35(2) ps
94Mo	42	52	2+	871.098(16)	2.77(6) ps
98Mo	42	54	2+	778.237(10)	3.67(6) ps
100Mo	42	58	2+	535.59(4)	12.4(3) ps
102Mo	42	60	2+	296.61(4)	125(4) ps
104Mo	42	62	2+	192.19(9)	0.97(8) ns
106Mo	42	64	2+	171.549(8)	1.25(3) ns
108Mo	42	66	2+	192.79(15)	0.5(3) ns
110Mo	42	68	(2+)	213.77(10)	
88Ru	44	44	(2+)	616.2(5)	
90Ru	44	46	2+	738.1(10)	
92Ru	44	48	(2+)	865.7(1)	
94Ru	44	50	2+	1430.71(20)	
96Ru	44	52	2+	832.56(5)	2.94(6) ps
98Ru	44	54	2+	652.46(5)	5.96(20) ps
100Ru	44	56	2+	539.5103(20)	12.54(10) ps
102Ru	44	58	2+	475.0962(10)	18.4(3) ps
104Ru	44	60	2+	358.02(7)	56.4(10) ps
106Ru	44	62	2+	270.07(4)	0.20(3) ns
108Ru	44	64	2+	242.23(4)	0.36(3) ns
110Ru	44	66	2+	240.73(8)	0.32(2) ns
112Ru	44	68	2+	236.69(16)	0.32(3) ns
114Ru	44	70	2+	265.19(17)	
116Ru	44	72	(2+)	292.43(21)	
118Ru	44	74	(2+)	327.6(3)	
92Pd	46	46	(2+)	873.6(2)	
94Pd	46	48	2+	813.8(10)	

Continued on next page...
Nuclide	Z	N	J^x	Energy, keV	T_{1/2}
96Pd	46	50	2+	1415.31(10)	
98Pd	46	52	2+	862.69(11)	<11.3 ps
100Pd	46	54	2+	665.49(10)	6.24(28) ps
102Pd	46	56	2+	556.44(5)	11.5(8) ps
104Pd	46	58	2+	555.81(4)	9.9(5) ps
106Pd	46	60	2+	511.85(23)	12.2(4) ps
108Pd	46	62	2+	433.938(4)	23.9(7) ps
110Pd	46	64	2+	373.8(7)	44(7) ps
112Pd	46	66	2+	348.66(13)	84(14) ps
114Pd	46	68	2+	332.61(10)	82(14) ps
116Pd	46	70	2+	340.26(8)	0.11(3) ns
118Pd	46	72	(2+)	378.6(1)	
120Pd	46	74	(2+)	438(10)	
122Pd	46	76	(2+)	499(9)	
124Pd	46	78	(2+)	590(11)	
126Pd	46	80	(2+)	693.3(5)	
128Pd	46	82	(2+)	1311.4(5)	
98Cd	48	50	(2+)	1395.1(2)	
100Cd	48	52	2+	1004.11(10)	>1.5 ps
102Cd	48	54	2+	776.55(14)	3.5(6) ps
104Cd	48	56	2+	658(20)	6.3(21) ps
106Cd	48	58	2+	632.64(4)	7.27(8) ps
108Cd	48	60	2+	632.988(15)	6.86(7) ps
110Cd	48	62	2+	657.7623(11)	5.42(16) ps
112Cd	48	64	2+	617.518(3)	6.46(4) ps
114Cd	48	66	2+	558.456(2)	10.2(6) ps
116Cd	48	68	2+	513.49(15)	14.1(5) ps
118Cd	48	70	2+	487.77(8)	17.9(15) ps
120Cd	48	72	2+	505.94(17)	18(21) ps
122Cd	48	74	2+	569.45(8)	10(5) ps
124Cd	48	76	(2+)	612.8(4)	9.3⁺^6₋₅ (ps*
126Cd	48	78	(2+)	652(9)	9.1⁺^27₋₁₇ (ps*
128Cd	48	80	(2+)	645.8(20)	
130Cd	48	82	(2+)	1325(1)	
132Cd	48	84	(2+)	618(8)	
104Sn	50	54	2+	1260.1(3)	0.51⁺^10₋₇ (ps*

Continued on next page ...
Nuclide	Z	N	J*	Energy, keV	T$_{1/2}$
106Sn	50	56	2+	1207.7(5)	0.53$^{+8}_{-8}$ ps$^+$
108Sn	50	58	2+	1206.07(10)	0.48(12) ps
110Sn	50	60	2+	1212.02(9)	0.48(4) ps
112Sn	50	62	2+	1256.69(4)	0.376(5) ps
114Sn	50	64	2+	1299.907(7)	0.42(3) ps
116Sn	50	66	2+	1293.56(8)	0.374(10) ps
118Sn	50	68	2+	1229.666(16)	0.485(19) ps
120Sn	50	70	2+	1171.265(15)	0.64(12) ps
122Sn	50	72	2+	1140.51(3)	0.776(16) ps
124Sn	50	74	2+	1131.739(17)	0.92(3) ps
126Sn	50	76	2+	1141.15(4)	1.15$^{+7}_{-7}$ ps*
128Sn	50	78	(2+)	1168.82(4)	1.63(10) ps
130Sn	50	80	(2+)	1221.26(5)	4.50$^{+97}_{-97}$ ps*
132Sn	50	82	2+	4041.2(15)	2.4(4) fs
134Sn	50	84	2+	725.6	48.4$^{+100}_{-71}$ ps*
136Sn	50	86	(2+)	688(1)	
138Sn	50	88	(2+)	715(1)	
106Te	52	54	(2+)	664.8(3)	
108Te	52	56	2+	625.2(20)	7.6$^{+9}_{-9}$ ps*
110Te	52	58	2+	657.2(3)	
112Te	52	60	2+	689(20)	3.95$^{+35}_{-35}$ ps*
114Te	52	62	2+	708.74(15)	2.83(23) ps
116Te	52	64	2+	678.92(3)	
118Te	52	66	2+	605.706(20)	6.1$^{+10}_{-10}$ ps*
120Te	52	68	2+	560.438(20)	9.3(19) ps
122Te	52	70	2+	564.094(16)	7.46(5) ps
124Te	52	72	2+	602.7271(21)	6.2(1) ps
126Te	52	74	2+	666.352(10)	4.52(10) ps
128Te	52	76	2+	743.216(17)	3.3(3) ps
130Te	52	78	2+	839.494(17)	2.3(5) ps
132Te	52	80	2+	974.22(9)	1.83(18) ps
134Te	52	82	2+	1279.11(10)	0.64(20) ps
136Te	52	84	2+	606.64(5)	21.6(41) ps
138Te	52	86	(2+)	460.8(5)	
140Te	52	88	(2+)	422.9(3)	
110Xe	54	56	(2+)	469.7(20)	

*Continued on next page ...
Nuclide	Z	N	J°	Energy, keV	T_{1/2}
¹¹²Xe	54	58	2+	466(20)	
¹¹⁴Xe	54	60	2+	450.08(19)	15.6(8) ps
¹¹⁶Xe	54	62	2+	393.5(2)	24.3(9) ps
¹¹⁸Xe	54	64	2+	337.32(13)	45(2) ps
¹²⁰Xe	54	66	2+	322.61(4)	45.7(20) ps
¹²²Xe	54	68	2+	331.28(7)	49.3(20) ps
¹²⁴Xe	54	70	2+	354.03(4)	46.8(12) ps
¹²⁶Xe	54	72	2+	388.631(9)	40.8(13) ps
¹²⁸Xe	54	74	2+	442.911(9)	18(4) ps
¹³⁰Xe	54	76	2+	536.068(6)	8.6(15) ps
¹³²Xe	54	78	2+	667.715(2)	4.63(30) ps
¹³⁴Xe	54	80	2+	847.041(23)	2.08(14) ps
¹³⁶Xe	54	82	2+	1313.06(7)	0.36(14) ps
¹³⁸Xe	54	84	2+	588.826(18)	10.5(16) ps
¹⁴⁰Xe	54	86	2+	376.658(15)	70.5(20) ps
¹⁴²Xe	54	88	2+	287.2(20)	0.20(3) ns
¹⁴⁴Xe	54	90	2+	252.6	351_{±407} ps[*]
¹¹⁸Ba	56	62	2+	194	
¹²⁰Ba	56	64	2+	186(10)	
¹²²Ba	56	66	2+	195.9(20)	297(27) ps
¹²⁴Ba	56	68	2+	229.91(10)	191(8) ps
¹²⁶Ba	56	70	2+	256.02(6)	137(7) ps
¹²⁸Ba	56	72	2+	284(8)	105(9) ps
¹³⁰Ba	56	74	2+	357.38(8)	41.8(12) ps
¹³²Ba	56	76	2+	464.508(12)	15.1(11) ps
¹³⁴Ba	56	78	2+	604.7223(19)	5.1(9) ps
¹³⁶Ba	56	80	2+	818.522(10)	1.89(3) ps
¹³⁸Ba	56	82	2+	1435.805(10)	0.199(6) ps
¹⁴⁰Ba	56	84	2+	602.37(3)	7.2(9) ps
¹⁴²Ba	56	86	2+	359.596(14)	65(2) ps
¹⁴⁴Ba	56	88	2+	199.326(6)	0.71(2) ns
¹⁴⁶Ba	56	90	2+	181.04(5)	0.859(26) ns
¹⁴⁸Ba	56	92	2+	141.81	
¹²²Ce	58	64	2+	136.4(5)	
¹²⁴Ce	58	66	2+	141.9(20)	0.88(19) ns
¹²⁶Ce	58	68	2+	169.59(3)	0.59(10) ns

[*]Continued on next page ...
Nuclide	Z	N	J*	Energy, keV	$T_{1/2}$
128Ce	58	70	2+	207.09(18)	0.30(3) ns
130Ce	58	72	2+	253.85(16)	143(6) ps
132Ce	58	74	2+	325.34(8)	40(3) ps
134Ce	58	76	2+	409.2(10)	23(2) ps
136Ce	58	78	2+	552.05(13)	6.7(8) ps
138Ce	58	80	2+	788.744(8)	1.98(4) ps
140Ce	58	82	2+	1596.233(23)	0.091(4) ps
142Ce	58	84	2+	641.282(9)	5.56(12) ps
144Ce	58	86	2+	397.441(9)	35.4(20) ps
146Ce	58	88	2+	258.45(4)	0.231(26) ns
148Ce	58	90	2+	158.467(5)	1.01(6) ns
150Ce	58	92	2+	97(10)	3.3(8) ns
152Ce	58	94	2+	81.2(5)	2.5 ns
128Nd	60	68	2+	133.66(7)	
130Nd	60	70	2+	159.05(14)	0.6(25) ns
132Nd	60	72	2+	213.16(12)	133(8) ps
134Nd	60	74	2+	294.17(16)	64.4(18) ps
136Nd	60	76	2+	373.75(16)	22.8$^{+32}_{-32}$ ps*
138Nd	60	78	2+	520.75(17)	
140Nd	60	80	2+	773.65(6)	1.4(11) ps
142Nd	60	82	2+	1575.78(10)	0.11(2) ps
144Nd	60	84	2+	696.561(10)	2.97(5) ps
146Nd	60	86	2+	453.84(3)	20.9(9) ps
148Nd	60	88	2+	301.705(16)	80(3) ps
150Nd	60	90	2+	130.21(7)	1.48(3) ns
152Nd	60	92	2+	72.4(5)	4.18(23) ns
154Nd	60	94	2+	70.8(1)	7.7(20) ns
156Nd	60	96	2+	67.2(2)	
158Nd	60	98	(2+)	65.9(10)	
160Nd	60	100	(2+)	65.2(5)	
130Sm	62	68	(2+)	122(3)	
132Sm	62	70	(2+)	131(1)	
134Sm	62	72	2+	163	0.42(4) ns
136Sm	62	74	2+	254.92(16)	88(9) ps
138Sm	62	76	2+	346.71(16)	40(6) ps
140Sm	62	78	2+	530.68(10)	6.1(32) ps

Continued on next page ...
Nuclide	Z	N	J*	Energy, keV	$T_{1/2}$
142Sm	62	80	2+	768.08(19)	1.50^{+22}_{-17} ps*
144Sm	62	82	2+	1660.027(10)	84.4(25) fs
146Sm	62	84	2+	747.174(11)	≤7.2 ps
148Sm	62	86	2+	550.255(8)	7.72(32) ps
150Sm	62	88	2+	333.955(10)	48.4(11) ps
152Sm	62	90	2+	121.7818(3)	1.403(11) ns
154Sm	62	92	2+	81.981(15)	3.02(4) ns
156Sm	62	94	2+	75.89(5)	>2 ns
158Sm	62	96	(2+)	72.8(10)	
160Sm	62	98	2+	70.9	
162Sm	64	70	2+	115	
138Gd	64	74	2+	220.86(18)	215(12) ps
140Gd	64	76	2+	328.6(3)	
142Gd	64	78	2+	515.2(8)	
144Gd	64	80	2+	743(17)	
148Gd	64	84	2+	784.433(15)	4.2(12) ps
150Gd	64	86	2+	638.045(14)	
152Gd	64	88	2+	344.279(12)	32(27) ps
154Gd	64	90	2+	123.0709(9)	1.184(5) ns
156Gd	64	92	2+	88.97(1)	2.21(2) ns
158Gd	64	94	2+	79.5143(15)	2.56(5) ns
160Gd	64	96	2+	75.26(1)	2.72(1) ns
162Gd	64	98	2+	71.6	2758^{+55}_{-55} ps*
164Gd	64	100	(2+)	73.27(5)	2.77(14) ns
166Gd	64	102	(2+)	70(10)	
140Dy	66	74	(2+)	202.2(20)	
142Dy	66	76	(2+)	315.9(4)	
144Dy	66	78	(2+)	492.5(3)	
146Dy	66	80	2+	682.62(18)	
148Dy	66	82	2+	1677.3	
150Dy	66	84	2+	803.64(9)	
152Dy	66	86	2+	613.83(5)	10(5) ps
154Dy	66	88	2+	334.34(3)	27.5(20) ps
156Dy	66	90	2+	137.77(8)	0.823(7) ns
158Dy	66	92	2+	98.918(10)	1.66(3) ns

Continued on next page ...
Nuclide	Z	N	J$^+$	Energy, keV	$T_{1/2}$
160Dy	66	94	2+	86.7878(3)	2.02(1) ns
162Dy	66	96	2+	80.661(3)	2.19(2) ns
164Dy	66	98	2+	73.393(5)	2.393(29) ns
166Dy	66	100	2+	76.587(1)	
170Dy	66	104	(2+)	71.47(15)	
144Er	68	76	2+	330(10)	
148Er	68	80	2+	645.89(10)	
150Er	68	82	2+	1578.33(23)	
152Er	68	84	2+	808.3(1)	
154Er	68	86	2+	560.8(1)	
156Er	68	88	2+	344.53(6)	34(9) ps
158Er	68	90	2+	192.15(3)	257(18) ps
160Er	68	92	2+	125.8(1)	919(31) ps
162Er	68	94	2+	102.04(3)	1.29(6) ns
164Er	68	96	2+	91.38(22)	1.569(34) ns
166Er	68	98	2+	80.5776(20)	1.815(23) ns
168Er	68	100	2+	79.804(1)	1.853(25) ns
170Er	68	102	2+	78.59(22)	1.896(23) ns
172Er	68	104	(2+)	77(2)	
152Yb	70	82	2+	1531.4(5)	
154Yb	70	84	(2+)	821.3(2)	
156Yb	70	86	2+	536	
158Yb	70	88	(2+)	358.2(1)	25(3) ps
160Yb	70	90	2+	243.1(1)	121(7) ps
162Yb	70	92	2+	166.72(4)	415(9) ps
164Yb	70	94	2+	123.31(23)	932(30) ps
166Yb	70	96	2+	102.37(3)	1.24(6) ns
168Yb	70	98	2+	87.73(1)	1.49(4) ns
170Yb	70	100	2+	84.25468(8)	1.61(2) ns
172Yb	70	102	2+	78.7427(6)	1.65(5) ns
174Yb	70	104	2+	76.471(1)	1.79(4) ns
176Yb	70	106	2+	82.135(15)	1.76(5) ns
178Yb	70	108	2+	84(3)	
154Hf	72	82	(2+)	1513	
156Hf	72	84	2+	857.2	
158Hf	72	86	2+	476.36(11)	

Continued on next page ...
Nuclide	Z	N	J\(^{\pi}\)	Energy, keV	\(T_{1/2}\)
\(^{160}\)Hf	72	88	2+	389.4(10)	
\(^{162}\)Hf	72	90	2+	285	103(8) ps
\(^{164}\)Hf	72	92	2+	210.7(3)	301(29) ps
\(^{166}\)Hf	72	94	2+	158.64(5)	497(23) ps
\(^{168}\)Hf	72	96	2+	124.1(5)	0.89(4) ns
\(^{170}\)Hf	72	98	2+	100.74(4)	1.21(4) ns
\(^{172}\)Hf	72	100	2+	95.22(4)	1.55(10) ns
\(^{174}\)Hf	72	102	2+	90.985(19)	1.66(7) ns
\(^{176}\)Hf	72	104	2+	88.349(24)	1.43(4) ns
\(^{178}\)Hf	72	106	2+	93.1803(10)	1.494(23) ns
\(^{180}\)Hf	72	108	2+	93.324(20)	1.519(10) ns
\(^{182}\)Hf	72	110	2+	97.79(9)	
\(^{184}\)Hf	72	112	(2+)	107.1(1)	
\(^{158}\)W	74	84	(2+)	913	
\(^{160}\)W	74	86	2+	609.9(2)	
\(^{162}\)W	74	88	(2+)	449.5(3)	
\(^{164}\)W	74	90	2+	331.9(5)	18(12) ps\(^{\dagger}\)
\(^{166}\)W	74	92	2+	252(3)	
\(^{168}\)W	74	94	2+	199.3(2)	213(10) ps
\(^{170}\)W	74	96	2+	156.72(13)	497(10) ps
\(^{172}\)W	74	98	2+	123.2(1)	0.74(6) ns
\(^{174}\)W	74	100	2+	113(1)	1.14(7) ns
\(^{176}\)W	74	102	2+	108.3(7)	992\(^{+62}_{-62}\) ps\(^{\star}\)
\(^{178}\)W	74	104	2+	105.9(9)	1138\(^{+15}_{-15}\) ps\(^{\star}\)
\(^{180}\)W	74	106	2+	103.561(16)	1.28(5) ns
\(^{182}\)W	74	108	2+	100.10598(7)	1.381(10) ns
\(^{184}\)W	74	110	2+	111.2174(4)	1.251(12) ns
\(^{186}\)W	74	112	2+	122.63(15)	1.036(10) ns
\(^{188}\)W	74	114	2+	143.16(8)	0.87(12) ns
\(^{190}\)W	74	116	(2+)	206.8(5)	
\(^{192}\)W	74	118	[2+]	219	
\(^{162}\)Os	76	86	(2+)	706.7(3)	
\(^{164}\)Os	76	88	(2+)	548(2)	
\(^{166}\)Os	76	90	2+	432(3)	
\(^{168}\)Os	76	92	2+	341.2(20)	
\(^{170}\)Os	76	94	2+	286.7(14)	

Continued on next page...
Nuclide	Z	N	J^x	Energy, keV	T_{1/2}
^{172}\text{Os}	76	96	2+	227.77(9)	116(7) ps
^{174}\text{Os}	76	98	2+	158.6(10)	0.35(4) ns
^{176}\text{Os}	76	100	2+	135.1(7)	839^{+125}_{-125} \text{ ps}^*
^{178}\text{Os}	76	102	2+	132.2(17)	0.69(5) ns
^{180}\text{Os}	76	104	2+	132.11(10)	0.67(7) ns
^{182}\text{Os}	76	106	2+	126.89(8)	813(11) ps
^{184}\text{Os}	76	108	2+	119.77(9)	1.184(13) ns
^{186}\text{Os}	76	110	2+	137.159(8)	875(15) ps
^{188}\text{Os}	76	112	2+	155.043(4)	0.704(7) ns
^{190}\text{Os}	76	114	2+	186.718(2)	371(8) ps
^{192}\text{Os}	76	116	2+	205.79442(9)	288(4) ps
^{194}\text{Os}	76	118	(2+)	218.509(6)	
^{196}\text{Os}	76	120	(2+)	324.4(10)	
^{198}\text{Os}	76	122	(2+)	465.4(5)	
^{186}\text{Pt}	78	90	(2+)	581.4(10)	
^{170}\text{Pt}	78	92	2+	509.2(20)	
^{172}\text{Pt}	78	94	(2+)	457.6(10)	
^{174}\text{Pt}	78	96	2+	394.2(10)	
^{176}\text{Pt}	78	98	2+	264(3)	76(7) ps
^{178}\text{Pt}	78	100	2+	170.3(10)	286^{+21}_{-21} \text{ ps}^*
^{180}\text{Pt}	78	102	2+	153.24(7)	374(35) ps
^{182}\text{Pt}	78	104	2+	154.97(9)	479(30) ps
^{184}\text{Pt}	78	106	2+	162.98(6)	360(12) ps
^{186}\text{Pt}	78	108	2+	191.53(4)	260(12) ps
^{188}\text{Pt}	78	110	2+	265.61(5)	66(3) ps
^{190}\text{Pt}	78	112	2+	295.78(3)	62.3(31) ps
^{192}\text{Pt}	78	114	2+	316.50645(15)	43.7(9) ps
^{194}\text{Pt}	78	116	2+	328.464(5)	41.9(6) ps
^{196}\text{Pt}	78	118	2+	355.6841(20)	34.15(15) ps
^{198}\text{Pt}	78	120	2+	407.22(5)	22.25(15) ps
^{200}\text{Pt}	78	122	2+	470.1(20)	
^{202}\text{Pt}	78	124	(2+)	534.9(20)	
^{204}\text{Pt}	78	126	(2+)	872(10)	
^{172}\text{Hg}	80	92	(2+)	672.8(4)	
^{176}\text{Hg}	80	96	2+	613.3(10)	
^{178}\text{Hg}	80	98	2+	558(20)	

Continued on next page...
Nuclide	Z	N	J*	Energy, keV	T$_{1/2}$
184Hg	80	104	2+	366.78(9)	21(5) ps
186Hg	80	106	2+	405.33(14)	18(3) ps
188Hg	80	108	2+	412.91(8)	13.(20) ps
190Hg	80	110	2+	416.32(14)	15(1) ps†
192Hg	80	112	2+	422.79(10)	
194Hg	80	114	2+	427.89(9)	
196Hg	80	116	2+	425.98(10)	17.2(6) ps
198Hg	80	118	2+	411.80251(17)	23.15(28) ps
200Hg	80	120	2+	367.943(10)	46.4(4) ps
202Hg	80	122	2+	439.512(8)	27.26(22) ps
204Hg	80	124	2+	436.552(8)	40.3(3) ps
206Hg	80	126	2+	1068.2(20)	<21 ns
208Hg	80	128	(2+)	669(5)	
210Hg	80	130	(2+)	643	
180Pb	82	98	(2+)	1168(1)	
182Pb	82	100	(2+)	888.3(3)	
196Pb	82	114	2+	1049.2(9)	<100 ns†
198Pb	82	116	2+	1063.5(20)	
200Pb	82	118	2+	1026.61(14)	
202Pb	82	120	2+	960.67(5)	<0.1 ns
204Pb	82	122	2+	899.165(25)	2.88(3) ps
206Pb	82	124	2+	803.054(25)	8.3(25) ps
210Pb	82	128	2+	799.7(1)	17(5) ps
212Pb	82	130	(2+)	804.9(2)	
214Pb	82	132	(2+)	835(1)	
216Pb	82	134	(2+)	887(1)	
190Po	84	106	(2+)	234.1(9)	
192Po	84	108	(2+)	262(3)	
194Po	84	110	2+	319.8(3)	25.6$^{+49}_{-49}$ ps*
196Po	84	112	2+	463.12(9)	8.0$^{+10}_{-10}$ ps*
198Po	84	114	2+	604.94(10)	2.60$^{+69}_{-69}$ ps*
200Po	84	116	2+	665.9(10)	2.00$^{+12}_{-12}$ ps*
202Po	84	118	2+	677.2(20)	1.74$^{+52}_{-41}$ ps*
204Po	84	120	2+	684.341(10)	
206Po	84	122	2+	700.66(3)	
208Po	84	124	2+	686.526(20)	

Continued on next page ...
Nuclide	Z	N	J*	Energy, keV	T_{1/2}
210Po	84	126	2+	1181.398(10)	5.9(12) ps
212Po	84	128	2+	727.33(9)	14.2(18) ps^†
214Po	84	130	2+	609.316(4)	<4 ps^*
216Po	84	132	2+	549.76(4)	
218Po	84	134	2+	509.7(10)	
198Rn	86	112	2+	339(2)	
200Rn	86	114	2+	432.6(20)	
202Rn	86	116	2+	504(10)	8.4^{+30}_{-21} ps^*
204Rn	86	118	2+	542.9(10)	3.9^{+17}_{-11} ps^*
206Rn	86	120	2+	575.3(10)	
208Rn	86	122	2+	635.8(2)	
210Rn	86	124	2+	643.9(10)	
212Rn	86	126	2+	1273.7(10)	
214Rn	86	128	2+	694.7	<1.4 ns
216Rn	86	130	2+	461.4(2)	
218Rn	86	132	2+	324.32(18)	<80 ps
220Rn	86	134	2+	240.986(6)	0.146(5) ns
222Rn	86	136	2+	186.211(13)	0.32(2) ns
206Ra	88	118	2+	474.3(5)	
208Ra	88	120	2+	520.2(2)	
210Ra	88	122	2+	603.7(3)	
212Ra	88	124	2+	629.3(10)	
214Ra	88	126	2+	1382.4	
216Ra	88	128	2+	688.2(20)	
218Ra	88	130	2+	388.9(10)	29.8(28) ps
220Ra	88	132	2+	178.47(12)	
222Ra	88	134	2+	111.12(2)	0.52(4) ns
224Ra	88	136	2+	84.372(3)	0.748(19) ns
226Ra	88	138	2+	67.67(1)	0.63(2) ns
228Ra	88	140	2+	63.823(20)	550(20) ps
230Ra	88	142	2+	57.4(1)	
232Ra	88	144	2+	54.5(10)	
214Th	90	124	2+	623(10)	
216Th	90	126	2+	1478.2(1)	
218Th	90	128	2+	689.6(6)	
220Th	90	130	2+	386.5(10)	

Continued on next page ...
Nuclide	Z	N	J^x	Energy, keV	T_{1/2}
222Th	90	132	2+	183.3	240(20) ps
224Th	90	134	2+	98.1(3)	0.59(40) ns
226Th	90	136	2+	72.2(4)	0.395(20) ns
228Th	90	138	2+	57.773(3)	0.406(7) ns
230Th	90	140	2+	53.227(11)	0.354(9) ns
232Th	90	142	2+	49.369(9)	345(15) ps
234Th	90	144	2+	49.55(6)	0.37(3) ns
236Th	90	146	(2+)	48.4(3)	
226U	92	134	(2+)	81.3(6)	
228U	92	136	2+	59(14)	
230U	92	138	2+	51.727(23)	0.26(3) ns
232U	92	140	2+	47.573(8)	245(20) ps
234U	92	142	2+	43.4981(10)	0.252(7) ns
236U	92	144	2+	45.244(20)	234(6) ps
238U	92	146	2+	44.916(13)	206(3) ps
240U	92	148	(2+)	45(1)	
242U	92	150	(2+)	47.8(3)	
236Pu	94	142	2+	44.63(10)	
238Pu	94	144	2+	44.065(15)	175(3) ps
240Pu	94	146	2+	42.824(8)	167(6) ps
242Pu	94	148	2+	44.54(2)	158(3) ps
244Pu	94	150	2+	44.2(4)	158(11) ps
246Pu	94	152	2+	46.7(2)	
236Cm	96	140	2+	45	
238Cm	96	142	2+	35(7)	
240Cm	96	144	(2+)	38(5)	132(9) ps
242Cm	96	146	2+	42.13(5)	
244Cm	96	148	2+	42.957(9)	97(5) ps
246Cm	96	150	2+	42.852(5)	123(2) ps
248Cm	96	152	2+	43.4(3)	122.5(25) ps
250Cm	96	154	2+	43(5)	
244Cf	98	146	2+	37(22)	
246Cf	98	148	(2+)	44	
248Cf	98	150	2+	41.53(6)	
250Cf	98	152	2+	42.721(5)	96(10) ps
252Cf	98	154	2+	45.72(5)	92(6) ps

Continued on next page ...
4. Conclusions

Spin and parity assignments in even-even nuclei have been a fascinated topic in nuclear physics for the last 70 years. Many new measurements have been conducted in recent years [87], and the data update was a long time overdue. We surveyed first-excited state properties across the nuclear chart using the Evaluated Nuclear Structure Data File (ENSDF) and other available data. The prevalence of 2^+_1 states was confirmed, and properties of 0^+_2, 1^-_1, and 3^-_1 states were reevaluated.

In summary, we would reiterate that there is no comprehensive theoretical explanation for the 2^+_1 lowest excited state spin and parity dominance in even-even nuclei, and previous theoretical works [2, 9] imply that both neutron and protons should be considered as contributing factors. We hope the current nuclear properties update of 2^+_1 in conjunction with 0^+_2, 1^-_1, and 3^-_1 states would stimulate future theoretical and experimental studies that would help to clarify this phenomenon.

5. Acknowledgments

The authors are indebted to the International Network of Nuclear Structure and Decay Data (NSDD) Evaluators [8, 7] members for their tireless work on the ENSDF library evaluations, Vladimir Zelevinsky (Michigan State University) for useful discussions, and the referee for good comments and productive suggestions that helped to improve the manuscript. Work at Brookhaven was funded by the Office of Nuclear Physics, Office of Science
References

[1] G. Scharff-Goldhaber, “Excited States of Even-Even Nuclei,” Phys. Rev. 90, 587 (1953).

[2] S.T. Beliaev, V.G. Zelevinsky, “Anharmonic Effects of Quadrupole Oscillations of Spherical Nuclei,” Nucl. Phys. 39, 582 (1962).

[3] A. Bardasis, J. R. Schrieffer, “Excitons and Plasmons in Superconductors,” Phys. Rev. 121, 1050 (1961).

[4] Z. Sun, M.M. Fogler, D.N. Basov, A.J. Millis, “Collective Modes and Terahertz Near-field Response of Superconductors,” Phys. Rev. Research 2, 023413 (2020).

[5] D. Mulhall, A. Volya, V. Zelevinsky, “Geometric Chaoticity Leads to Ordered Spectra for Randomly Interacting Fermions,” Phys. Rev. Lett. 85, 4016 (2000).

[6] T.W. Burrows, “The evaluated nuclear structure data file: Philosophy, content, and uses,” Nucl. Instrum. and Meth. Phys. Res. A 286, 595 (1990). Data extracted by the IAEA Nuclear Data Section from the ENSDF, ⟨http://www.nndc.bnl.gov/ensdf⟩ on August 11, 2021.

[7] P. Dimitriou, S. Basunia, L. Bernstein, J. Chen, Z. Elekes, X. Huang, A. Hurst, H. Iimura, A.K. Jain, J. Kelley, T. Kibedi, F. Kondev, S. Lalkovski, E. McCutchan, I. Mitropolis, G. Mukherjee, A. Negret, C. Nesaraja, N. Nica, S. Pascu, A. Rodionov, B. Singh, S. Singh, M. Smith, A. Sonzogni, J. Timar, J. Tuli, M. Verpelli, D. Yang, V. Zerkin, “International network of nuclear structure and decay data evaluators,” EPJ Web Conf. 239, 15004 (2020).

[8] International Network of Nuclear Structure and Decay Data (NSDD) Evaluators. Downloaded from ⟨https://www-nds.iaea.org/nsdd/⟩ on June 9, 2021.
[9] G. Scharff-Goldhaber, C.B. Dover, A.L. Goodman, “The Variable Moment of Inertia (VMI) Model and Theories of Nuclear Collective Motion,” ANN. REV. NUCL. SCI. 26, 239 (1976).

[10] A. Bohr and B. R. Mottelson, “Nuclear structure,” vol. 1, pp.195-197 (Benjamin, New York, 1969).

[11] A.S. Goldhaber, G. Scharff-Goldhaber, “Electric and dynamic quadrupole moments of even-even nuclei,” PHYS. REV. C 17, 1171 (1978).

[12] V.G. Zelevinsky, Private Communication. September 18, 2021.

[13] J.K. Tuli, “The Evaluated Nuclear Structure Data File. A Manual for Preparation of Data Sets.” Brookhaven National Laboratory Report BNL-NCS-51655-01/02-Rev (2001).

[14] B. Pritychenko, M. Birch, B. Singh, M. Horoi, “Tables of E2 transition probabilities from the first 2+ states in even-even nuclei,” AT. DATA NUCL. DATA TABLES 107, 1 (2016).

[15] B. Pritychenko, M. Birch, B. Singh, “Revisiting Grodzins systematics of B(E2) values,” NUCL. PHYS. A 962, 73 (2017).

[16] T. Walcher, “Unelastische Elektronenstreuung am 4He bei kleinem Impulsübertrag,” Z. PHYS. 237, 368 (1970).

[17] R.F. Frosch, R.E. Rand, H. Crannell, J.S. McCarthy, L.R. Suelzle, M.R. Yearian, “Inelastic Electron Scattering from 4He,” NUCL. PHYS. A 110, 657 (1968).

[18] D. Suzuki, H. Iwasaki, D. Beaumel, M. Assie, H. Baba, Y. Blumenfeld, F. de Oliveira Santos, N. de Sereville, A. Drouart, S. Franchoo, J. Gibelin, A. Gillibert, S. Giron, S. Grery, J. Guillot, M. Hackstein, F. Hammache, N. Keeley, V. Lapoux, F. Marechal, A. Matta, S. Michimasa, L. Nalpas, F. Naqvi, H. Okamura, H. Otsu, J. Pancin, D.Y. Pang, L. Perrot, C.M. Petrache, E. Pollacco, A. Ramus, W. Rother, P. Roussel-Chomaz, H. Sakurai, J.-A. Scarpaci, O. Sórlin, P.C. Srivastava, I. Stefan, C. Stodel, Y. Tanimura, S. Terashima, “Second 0+ state of unbound 12O: Scaling of mirror asymmetry,” PHYS. REV. C 93, 024316 (2016).
[19] H. Miska, H.D. Graf, A. Richter, R. Schneider, D. Schull, E. Spamer, H. Theissen, O. Titze, T. Walcher, “High Resolution Inelastic Electron Scattering and Radiation Widths of Levels in 16O,” Phys. Lett. 58B, 155 (1975).

[20] M. Birk, J.S. Sokolowski, Y. Wolfson, “Direct Lifetime Measurement of the 6.05 MeV 0+ Level in 16O,” Nucl. Phys. A216, 217 (1973).

[21] G.M. Crawley, W.F. Steele, J.N. Bishop, P.A. Smith, S. Maripuu, “Determination of the Mass and Some Energy Levels of the Nuclide 44Ar,” Phys. Lett. 64B, 143 (1976).

[22] S. Gorodetzky, N. Schulz, J. Chevallier, A.C. Knipper, “Periodes de Niveaux Excites du Calcium 40 et de l’Iode 132,” J. Phys. (Paris) 27, 521 (1966).

[23] C.M. Bartle, P.A. Quin, “The Half-Life of 40Ca (3.35),” Nucl. Phys. A216, 90 (1973).

[24] H. Seifert, J.J. Kelly, A.E. Feldman, B.S. Flanders, M.A. Khandaker, Q. Chen, A.D. Bacher, G.P.A. Berg, E.J. Stephenson, P. Karen, B.E. Norum, P. Welch, A. Scott, “Effective Interaction for 16O(p, p’) and 40Ca(p, p’) at E(p) = 200 MeV,” Phys. Rev. C47, 1615 (1993).

[25] F. Flavigny, D. Pauwels, D. Radulov, I.J. Darby, H. De Witte, J. Diriken, D.V. Fedorov, V.N. Fedosseev, L.M. Fraile, M. Huyse, V.S. Ivanov, U. Koster, B.A. Marsh, T. Otsuka, L. Popescu, R. Raabe, M.D. Seliverstov, N. Shimizu, A.M. Sjodin, Y. Tsunoda, P. Van den Bergh, P. Van Duppen, J. Van de Walle, M. Venhart, W.B. Walters, K. Wimmer, “Characterization of the low-lying 0+ and 2+ states in 68Ni via β decay of the low-spin 68Co isomer,” Phys. Rev. C 91, 034310 (2015).

[26] S. Suchyta, S.N. Liddick, Y. Tsunoda, T. Otsuka, M.B. Bennett, A. Chemey, M. Honma, N. Larson, C.J. Prokop, S.J. Quinn, N. Shimizu, A. Simon, A. Spyrou, V. Tripathi, Y. Utsuno, J.M. VonMoss, “Shape coexistence in 68Ni,” Phys. Rev. C 89, 021301 (2014).

[27] O. Sorlin, S. Leenhardt, C. Donzaud, J. Duprat, F. Azaiez, F. Nowacki, H. Grawe, Zs. Dombradi, F. Amorini, A. Astier, D. Baiborodin, M. Bellengiu, C. Borcea, C. Bourgeois, D.M. Cullen, Z. Dlouhy, E. Dragulescu, M. Gorska, S. Grevy, D. Guillemaud-Mueller, G. Hagemann,
B. Herskind, J. Kiener, R. Lemmon, M. Lewitowicz, S.M. Lukyanov, P. Mayet, F. de Oliveira Santos, D. Pantalica, Yu.-E. Penionzhkevich, F. Pougheon, A. Poves, N. Redon, M.G. Saint-Laurent, J.A. Scarpaci, G. Sletten, M. Stanoiu, O. Tarasov, Ch. Thelsen, "68Ni: Magicity versus superfluidity," Phys. Rev. Lett. 88, 092501 (2002).

[28] S. Mordechai, H.T. Fortune, R. Middleton, G. Stephans, "72Ge from the 70Ge(t,p) Reaction," Phys. Rev. C19, 1733 (1979).

[29] A. Becker, E.A. Bakkum, R. Kamermans, "A Microscopic Description of the (p, t) Reaction to Low-Lying 0+ States in the Even Ge Isotopes," Phys. Lett. 110B, 199 (1982).

[30] S.J. Freeman, J.P. Schiffer, A.C.C. Villari, J.A. Clark, C. Deibel, S. Gros, A. Heinz, D. Hirata, C.L. Jiang, B.P. Kay, A. Parikh, P.D. Parker, J. Qian, K.E. Rehm, X.D. Tang, V. Werner, C. Wrede, "Pair correlations in nuclei involved in neutrinoless double β decay: 76Ge and 76Se," Phys. Rev. C 75, 051301 (2007).

[31] G. Braun, A. Bockisch, W. Neuwirth, "Lifetime of the 0$_2^+$ State of 72Ge Determined by Delayed Auto-Coincidence of a Ge(Li) Detector," Nucl. Instrum. Methods 224, 112 (1984).

[32] E. Bouchez, I. Matea, W. Korten, F. Becker, B. Blank, C. Borcea, A. Buta, A. Emsallem, G. de France, J. Genevey, F. Hannachi, K. Hauschild, A. Hurstel, Y. Le Coz, M. Lewitowicz, R. Lucas, F. Negoi, F. de Oliveira Santos, D. Pantelica, J. Pinston, P. Rahkila, M. Rejmund, M. Stanoiu, Ch. Theisen, "New Shape Isomer in the Self-Conjugate Nucleus 72Kr," Phys. Rev. Lett. 90, 082502 (2003).

[33] J.B. Ball, R.L. Auble, P.G. Roos, "Study of the Zirconium Isotopes with the (p,t) Reaction," Phys.Rev. C4, 196 (1971).

[34] D. Burch, P. Russo, H. Swanson, E.G. Adelberger, "Lifetime of the First Excited State in 96Zr," Phys. Lett. 40B, 357 (1972).

[35] L. Pibida, B.E. Zimmerman, L. King, R. Fitzgerald, D.E. Bergeron, E. Napoli, J.T. Cessna, "Determination of the internal pair production branching ratio of 90Y," Appl. Radiat. Isot. 156, 108943 (2020).
[36] P. Dryak, J. Solc, “Measurement of the branching ratio related to the internal pair production of Y-90,” Appl. Radiat. Isot. 156, 108942 (2020).

[37] H. Mach, E.K. Warburton, R.L. Gill, R.F. Casten, J.A. Becker, B.A. Brown, J.A. Winger, “Meson-Exchange Enhancement of the First-Forbidden 96Y(0-) → 96Zr(0+) β Transition: β decay of the low-spin isomer of 96Y,” Phys. Rev. C41, 226 (1990).

[38] E.R. Flynn, J.G. Beery, A.G. Blair, “The (t,p) Reaction to the Low-Lying Levels of the Zirconium Isotopes,” Nucl. Phys. A218, 285 (1974).

[39] G. Lhersonneau, B. Pfeiffer, K.-L. Kratz, T. Enqvist, P.P. Jauho, A. Jokinen, J. Kantele, M. Leino, J.M. Parmonen, H. Penttila, J. Aysto, and the ISOLDE Collaboration, “Evolution of Deformation in the Neutron-Rich Zr Region from Excited Intruder State to the Ground State,” Phys. Rev. C49, 1379 (1994).

[40] K. Sistemich, G. Sadler, T.A. Khan, H. Lawin, W.D. Lauppe, H.A. Selic, F. Schussler, J. Blachot, E. Monnand, J.P. Bocquet, B. Pfeiffer, “The β-Decay of 98Y and the Level Scheme of 98Zr,” Z. Phys. A281, 169 (1977).

[41] L.A. Popeko, G.A. Petrov, Y.P. Rudnev, E.F. Kochubey, “Investigation of Conversion Electrons in Fission of 235U by Thermal Neutrons,” Yad. Fiz. 24, 1081 (1976); Sov. J. Nucl. Phys. 24, 567 (1976).

[42] D.J. Decman, E.A. Henry, J. Kantele, L.G. Mann, W. Stoffl, R.J. Estep, L.E. Ussery, “Electron Spectroscopy in Coincidence with Protons from the (t,p) Reaction,” Nucl. Instrum. Methods 219, 523 (1984).

[43] E.R. Flynn, F. Ajzenberg-Selove, R.E. Brown, J.A. Cizewski, J.W. Sunier, “92,94,97,98Mo(t,p) Reactions at Et = 17 MeV,” Phys. Rev. C24, 2475 (1981); Erratum Phys. Rev. C25, 2850 (1982).

[44] H.L. Sharma, R. Seltz, N.M. Hintz, “Search for an Excited Rotational Band in 98Mo with the (p,t) Reaction,” Phys. Rev. C7, 2567 (1973).
[45] J. Elseviers, A.N. Andreyev, S. Antalic, A. Barzakh, N. Bree, T.E. Coccolios, V.F. Comas, J. Diriken, D. Fedorov, V.N. Fedosseyev, S. Franchoo, J.A. Heredia, M. Huyse, O. Ivanov, U. Koster, B.A. Marsh, R.D. Page, N. Patronis, M. Seliverstov, I. Tsekhanovich, P. Van den Bergh, J. Van De Walle, P. Van Duppen, M. Venhart, S. Vermote, M. Veselsky, C. Wagemans, “Shape coexistence in 180Hg studied through the β decay of 180Tl,” Phys. Rev. C 84, 034307 (2011).

[46] R.D. Page, A.N. Andreyev, D.R. Wiseman, P.A. Butler, T. Grahn, P.T. Greenlees, R.-D. Herzberg, M. Huyse, G.D. Jones, P.M. Jones, D.T. Joss, R. Julin, S. Juutinen, H. Kankaanpaa, A. Keenan, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, P. Nieminen, P. Rahkila, G.I. Rainovski, C. Scholey, J. Uusitalo, K. Van de Vel, P. Van Duppen, “In-beam conversion-electron spectroscopy of 180Hg,” Phys. Rev. C 84, 034308 (2011).

[47] E. Rapisarda, A.N. Andreyev, S. Antalic, A. Barzakh, T.E. Coccolios, I.G. Darby, R. De Groote, H. De Witte, J. Diriken, J. Elseviers, D. Fedorov, V.N. Fedosseyev, R. Ferrer, M. Huyse, Z. Kalaninova, U. Koster, J. Lane, V. Liberati, K.M. Lynch, B.A. Marsh, P.L. Molkano, D. Pauwels, T.J. Procter, D. Radulov, K. Sandhu, M.D. Seliverstov, C. Van Beveren, P. Van den Bergh, P. Van Duppen, M. Venhart, M. Veselsky, K. Wizosek-Lipska, “Shape coexistence studied in 182,184Hg via the β decay of 182,184Tl,” J. Phys. (London) G44, 074001 (2017).

[48] K. Van de Vel, A.N. Andreyev, D. Ackermann, H.J. Boardman, P. Cagarda, J. Gerl, F.P. Hessberger, S. Hofmann, M. Huyse, D. Karlgren, I. Kojouharov, M. Leino, B. Lommel, G. Munzenberg, C. Moore, R.D. Page, S. Saro, P. van Duppen, R. Wyss, “Fine structure in a α decay of 188,192Po,” Phys. Rev. C 68, 054311 (2003).

[49] A.N. Andreyev, D. Ackermann, P. Cagarda, J. Gerl, F. Hessberger, S. Hofmann, M. Huyse, A. Keenan, H. Kettunen, A. Kleinbohl, A. Lavrentiev, M. Leino, B. Lommel, M. Matos, G. Munzenberg, C. Moore, C.D. O’Leary, R.D. Page, S. Reshitko, S. Saro, C. Schlegel, H. Schaffner, M. Taylor, P. Van Duppen, L. Weissman, R. Wyss, “Alpha Decay of the New Isotopes 188,189Po,” Eur. Phys. J. A 6, 381 (1999).

[50] A.N. Andreyev, M. Huyse, P. Van Duppen, L. Weissman, D. Ackermann, J. Gerl, F.P. Hessberger, S. Hofmann, A. Kleinbohl, G. Mun-
zenberg, S. Reshitko, C. Schlegel, H. Schaffner, P. Cagarda, M. Matos, S. Saro, A. Keenan, C. Moore, C.D. O’Leary, R.D. Page, M. Taylor, H. Kettunen, M. Leino, A. Lavrentiev, R. Wyss, K. Heyde, “A Triplet of Differently Shaped Spin-Zero States in the Atomic Nucleus 186Pb,” *Nature (London)* **405**, 430 (2000).

[51] Y. Le Coz, F. Becker, H. Kankaanpaa, W. Korten, E. Mergel, P.A. Butler, J.F.C. Cocks, O. Dorvaux, D. Hawcroft, K. Helariutta, R.D. Herzberg, M. Houry, H. Hubel, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, R. Lucas, M. Muikku, P. Nieminen, P. Rahkila, D. Rossbach, A. Savelius, Ch. Theisen, “Evidence of Multiple Shape-Coexistence in 188Pb,” *EPJ Direct* **1**, A3, 1-6 (1999).

[52] P. Dendooven, P. Decrock, M. Huyse, G. Reusen, P. Van Duppen, J. Wauters, “Life Time Measurements of 0+ Intruder States in 190,192,194Pb,” *Phys. Lett.* **226B**, 27 (1989).

[53] J. Wauters, N. Bijnens, P. Dendooven, M. Huyse, H.Y. Hwang, G. Reusen, J. von Schwarzenberg, P. Van Duppen, R. Kirchner, E. Roeckl, and the ISOLDE Collaboration, “Fine Structure in the Alpha Decay of Even-Even Nuclei as an Experimental Proof for the Stability of the Z = 82 Magic Shell at the Very Neutron-Deficient Side,” *Phys. Rev. Lett.* **72**, 1329 (1994).

[54] P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse, J.L. Wood, “$\beta^+/\text{Electron-Capture Decay of }^{192,194,196,198,200}\text{Bi: Experimental evidence for low lying 0+ states},$” *Phys. Rev.* **C35**, 1861 (1987).

[55] W.H. Trzaska, J. Kantele, R. Julin, J. Kumpulainen, P. Van Duppen, M. Huyse, J. Wauters, “Comparison of Experimental and Calculated K/L Ratios of E0 Transitions in Some Heavy Nuclei,” *Z. Phys.* **A335**, 475 (1990).

[56] P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse, J.L. Wood, “Low-Lying $J(\pi) = 0+$ States in 190,192Pb Populated in the α-Decay of 194,196Po,” *Phys. Lett.* **154B**, 354 (1985).

[57] R.B. Firestone, Zs. Revay, “Thermal neutron radiative cross sections for 6,7Li, 9Be, 10,11B, 12,13C, and 14,15N,” *Phys. Rev.* **C 93**, 054306 (2016).
[58] R.J. Peterson, H.C. Bhang, J.J. Hamill, T.G. Masterson, “The 14C(α, α')14C and 13C(d, p)14C Reactions,” Nucl. Phys. A425, 469 (1984).

[59] H.P. Seiler, R. Kulessa, P.M. Cockburn, P. Marmier, P.H. Barker, “Heavy-Ion One-Neutron Transfer Reactions Involving 13C (II). Electromagnetic Lifetimes,” Nucl. Phys. A241, 159 (1975).

[60] R.J. Charity, K.W. Brown, J. Okolowicz, M. Ploszajczak, J.M. Elson, W. Reviol, L.G. Sobotka, W.W. Buhro, Z. Chajecki, W.G. Lynch, J. Manfredi, R. Shane, R.H. Showalter, M.B. Tsang, D. Weisshaar, J.R. Winkelbauer, S. Bedoor, A.H. Wuosmaa, “Invariant-mass spectroscopy of 14O excited states,” Phys. Rev. C 100, 064305 (2019).

[61] K. Abe, K. Maeda, T. Ishimatsu, T. Kawamura, T. Furukawa, H. Ohnuma, “The Reaction 12C(3He,n)14O at 45.5 MeV,” Nucl. Phys. A466, 109 (1987).

[62] T.E. Chupp, R.T. Kouzes, A.B. McDonald, P.D. Parker, T.F. Wang, A. Howard, “Total Width of the 5.17 MeV 1- State in 14O and the Hot-CNO Cycle,” Phys. Rev. C31, 1023 (1985).

[63] L. Caballero, B. Rubio, P. Kleinheinz, S.W. Yates, A. Algora, A. Dewald, A. Fitzler, A. Gadea, J. Jolie, R. Julin, A. Linnemann, S. Lunardi, R. Menegazzo, O. Moller, E. Nacher, M. Piiparinen, J. Blomqvist, “Two-phonon octupole excitation in 146Gd,” Phys. Rev. C 81, 031301 (2010).

[64] S.W. Yates, R. Julin, P. Kleinheinz, B. Rubio, L.G. Mann, E.A. Henry, W. Stoffl, D.J. Decman, J. Blomqvist, “Particle-Hole Multiplets in 146Gd from In-Beam Studies of Non-Yrast Levels,” Z. Phys. A324, 417 (1986).

[65] V.M. Gorozhankin, K.Ya. Gromov, V.G. Kalinnikov, Sh.R. Malikov, T.M. Muminov, M.B. Yuldashev, “Spin and Parity of 1579 keV and 2165 keV Levels in 64Gd at the β-Decay of 146Tb Isomeric Nuclei,” JINR P6-95-415 (1995).

[66] P. Kleinheinz, M. Ogawa, R. Broda, P.J. Daly, D. Haenni, H. Beuscher, A. Kleinrahm, “Properties of the 3- First Excited State in the Doubly Closed Shell Nucleus 146Gd,” Z. Phys. A286, 27 (1978).
[67] R.G. Helmer, C. van der Leun, “Recommended Standards for γ-Ray Energy Calibration (1999),” Nucl. Instrum. Methods Phys. Res. A450, 35 (2000).

[68] R.H. Spear, W.J. Vermeer, M.T. Esat, J.A. Kuehner, A.M. Baxter, S. Hinds, “An Improved Determination of the Quadrupole Moment of the First Excited State of 208Pb,” Phys. Lett. 128B, 29 (1983).

[69] Y. Fujita, T. Shimoda, H. Miyatake, N. Takahashi, M. Fujiwara, S. Morinobu, T. Yamagata, J. Takamatsu, A. Terakawa, H. Folger, “Observation of the Low-Energy Octupole Resonance in 208Pb by Inelastic α Scattering,” Phys. Rev. C45, 993 (1992).

[70] G.S. Adams, A.D. Bacher, G.T. Emery, W.P. Jones, D.W. Miller, W.G. Love, F. Petrovich, “Inelastic Excitation of Normal Parity Levels in 208Pb by 135 MeV Protons,” Phys. Lett. 91B, 23 (1980).

[71] J.F. Ziegler, G.A. Peterson, “Excitation of Pb206, Pb207, Pb208, and Bi209 by Inelastic Electron Scattering,” Phys. Rev. 165, 1337 (1968).

[72] H.M. David, J. Chen, D. Seweryniak, F.G. Kondev, J.M. Gates, K.E. Gregorich, I. Ahmad, M. Albers, M. Alcorta, B.B. Back, B. Baartman, P.F. Bertone, L.A. Bernstein, C.M. Campbell, M.P. Carpenter, C.J. Chiara, R.M. Clark, M. Cromaz, D.T. Doherty, G.D. Dracoulis, N.E. Esker, P. Fallon, O.R. Gothe, J.P. Greene, P.T. Greenlees, D.J. Hartley, K. Hauschild, C.R. Hoffman, S.S. Hota, R.V.F. Janssens, T.L. Khoo, J. Konki, J.T. Kwarsick, T. Lauritsen, A.O. Macchiavello, P.R. Mudder, C. Nair, Y. Qiu, J. Rissanen, A.M. Rogers, P. Ruotsalainen, G. Savard, S. Stolze, A. Wiens, S. Zhu, “Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in 254Rf,” Phys. Rev. Lett. 115, 132502 (2015).

[73] D. Ackermann, C. Theisen, “Nuclear structure features of very heavy and superheavy nuclei-tracing quantum mechanics towards the ‘island of stability’,” Phys. Scr. 92, 083002 (2017).

[74] D. Ackermann, “Nuclear spectroscopy in nuclei with Z ≥ 110,” Nucl. Phys. A944, 376 (2015).

[75] H. Morinaga, “Interpretation of Some of the Excited States of 4n Self-Conjugate Nuclei,” Phys. Rev. 101, 254 (1956).
[76] K. Heyde, J. Wood, “Shape coexistence in atomic nuclei,” Rev. Mod. Phys. 83, 1467 (2011).

[77] J. Chen, B. Singh, J.A. Cameron, “Nuclear Data Sheets for A = 44,” Nucl. Data Sheets 112, 2357 (2011).

[78] D. Abriola, A.A. Sonzogni, “Nuclear Data Sheets for A = 72,” Nucl. Data Sheets 111, 1 (2010).

[79] H. Scheit, T. Glasmacher, B.A. Brown, J.A. Brown, P.D. Cottle, P.G. Hansen, R. Harkewicz, M. Hellstrom, R.W. Ibbotson, J.K. Jewell, K.W. Kemper, D.J. Morrissey, M. Steiner, P. Thirolf, M. Thoennessen, “New Region of Deformation: The neutron-rich sulfur isotopes,” Phys. Rev. Lett. 77, 3967 (1996).

[80] B. Pritychenko, “Systematics of Double-Beta Decay Half-Lives,” To be published in Nuclear Data Conference Proceedings (2022).

[81] I. Angeli, K.P. Marinova, “Table of experimental nuclear ground state charge radii: An update,” At. Data Nucl. Data Tables 99, 69 (2013).

[82] M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, “The AME 2020 atomic mass evaluation (II). Tables, graphs and references*,” Chinese Physics C 45, 030003 (2021).

[83] J.E. Garcia-Ramos, K. Heyde, “Quest of shape coexistence in Zr isotopes,” Phys. Rev. C 100, 044315 (2019).

[84] H.J. Wollersheim, “Octupole Vibrational States in the Lead Region,” Nuovo Cim. 111A, 691 (1998).

[85] L.M. Robledo, “Enhancement of octupole strength in near spherical nuclei,” Eur. Phys. J. A 52, 300 (2016).

[86] L.P. Gaffney, “Octupole collectivity in 220Rn and 224Ra,” Thesis, University of Liverpool, September 2012.

[87] National Research Council 2013, “Nuclear Physics: Exploring the Heart of Matter,” 2, 32 (2013); Washington, DC: The National Academies Press. Downloaded from ⟨https://doi.org/10.17226/13438⟩ on September 10, 2021.