New oral hygiene care regimen reduces postoperative oral bacteria count and number of days with elevated fever in ICU patients with esophageal cancer

Hirofumi Mizuno, Shinsuke Mizutani, Daisuke Ekuni, Ayano Tabata-Taniguchi, Takayuki Maruyama, Aya Yokoi, Chie Omori, Kazuyoshi Shimizu, Hiroshi Morimatsu, Yasuhiro Shirakawa, and Manabu Morita

1) Sasaki Dental Clinic, Komaki, Japan
2) Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
3) OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
4) Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
5) Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
6) Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
7) Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
8) Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

(Received October 13, 2017; Accepted December 21, 2017)

Correspondence to Dr. Daisuke Ekuni, Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
Fax: +81-86-235-6714 E-mail: dekuni7@md.okayama-u.ac.jp

Abstract: Using a controlled pre/post study design, we investigated the effects of professional mechanical cleaning of the oral cavity with benzethonium chloride, interdental brushes, and hydrogen peroxide on the number of oral bacteria and postoperative complications among esophageal cancer patients in an intensive care unit. Before surgery, 44 patients with esophageal cancer were recruited at Okayama Hospital from January through August 2015. The control group (n = 23) received routine oral hygiene care in the intensive care unit. The intervention group (n = 21) received intensive interdental cleaning with benzethonium chloride solution and tongue cleaning with hydrogen peroxide. The number of oral bacteria on the tongue surface and plaque index were significantly lower in the intervention group than in the control group on postoperative days 1 and 2 (P < 0.05). Additionally, the number of days with elevated fever during a 1-week period was significantly lower in the intervention group than in the control group (P = 0.037). As compared with routine oral hygiene, a new oral hygiene regimen comprising benzethonium chloride, interdental brushes, and hydrogen peroxide significantly reduced the number of oral bacteria and days with elevated fever in patients with esophageal cancer.

Keywords: Intensive care unit; oral hygiene; oral bacteria; postoperative complications; nurses.
Introduction

Esophageal cancer is a common cause of cancer death, and its incidence is increasing rapidly worldwide (1,2). Surgical treatment of esophageal cancer is usually invasive and thus may result in postoperative complications, the risk of which has not decreased (2). Because patients who develop postoperative complications have a high risk of postoperative death, it is essential to decrease the risk of such complications (3,4).

Pulmonary complications, including pneumonia, frequently develop after esophagectomy and are the most common reason for morbidity and mortality (5-7). Oral bacteria increase the risk of postoperative pneumonia in patients with esophageal cancer (8). Thus, preoperative reduction of oral bacteria is critical for this patient group (9,10). Preoperative dental brushing can reduce the risk of postoperative pneumonia in esophageal cancer patients (4,8). In addition, postoperative care that includes control of oral bacteria may greatly improve outcomes of esophageal surgery (11). In most intensive care units (ICUs) worldwide, postoperative oral hygiene care is performed by nurses. However, studies have not yet identified the optimal procedures and postoperative oral hygiene regimen to reduce oral bacteria in patients with esophageal cancer.

Dentists often use oral antiseptics for oral hygiene care. To reduce oral bacteria, chlorhexidine, povidone iodine, domiphen bromide, benzethonium chloride, benzalkonium chloride, fradiomycin sulfate, and sodium azulene sulfonate are widely used as major components in oral antiseptics (12). A systematic review reported that an oral hygiene regimen that included chlorhexidine antiseptic products reduced oral bacteria and the risk of ventilator-associated pneumonia in ICU patients, although evidence was limited for other antiseptics (13). However, the chlorhexidine concentration allowed for clinical use by Japanese government regulations is lower than that used in other countries (14); therefore, the expected effects have not been achieved. Benzethonium chloride is a widely used cationic surfactant of quaternary ammonium salts, has broad-spectrum antimicrobial activity for oral disinfection (15), and was thus investigated in this study.

Mechanical tooth cleaning is also used to reduce oral bacteria (16), and interproximal plaque removal is particularly important for oral hygiene. Use of interdental brushes with toothbrushes is recommended (17) because interdental brushes are more effective in removing plaque (18,19) and reducing gingival inflammation and periodontal pockets (20) as compared with an ordinary toothbrush alone or combined use of a toothbrush and dental floss or wood sticks (21). However, interdental brush use is not well established as oral hygiene care for inpatients (13).

A previous study showed that the combination of tongue cleaning and mechanical tooth cleaning was effective for improving the oral hygiene status of stroke patients in an ICU (22). In addition, ICU nurses generally use hydrogen peroxide to cleanse the oral mucosa (23). Although tongue cleaning with hydrogen peroxide may improve oral hygiene, the actual effects are unknown.

Here, we hypothesized that more-intensive oral hygiene care using benzethonium chloride, interdental brushes, and hydrogen peroxide would reduce the number of oral bacteria and risk of postoperative complications in patients with esophageal cancer. In this pre/post study of ICU patients with esophageal cancer, we investigated differences in the number of oral bacteria and rates of postoperative complications between patients who received a new intervention comprising professional mechanical cleaning of the oral cavity with benzethonium chloride, interdental brushes, and hydrogen peroxide and those who received routine oral hygiene care.

Materials and Methods

Study population

Fifty patients with a diagnosis of esophageal cancer were referred to the Division of Hospital Dentistry at Okayama Hospital during the period from January through August 2015 to receive professional mechanical tooth cleaning and scaling before surgery; 44 (88.0%) were recruited after excluding patients who transferred to another department or hospital, those who died before surgery, and those who declined surgery (Fig. 1).

Ethical considerations

This study was approved by the Ethics Committee of Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital (No. 2261). Written informed consent was obtained from all patients who agreed to participate.

Design

The study design was a controlled pre/post study. After receiving professional mechanical tooth cleaning and scaling as preoperative care, the 44 patients were divided into two groups. The control group (n = 23) was recruited from January through April 2015, and the intervention group (n = 21) was recruited from May through August 2015. The control group received routine
oral hygiene care in the ICU, administered by nurses during postoperative days 1-3. The intervention group received more-intensive oral hygiene care, administered by dentists during postoperative days 1-3. Both regimens were performed three times a day (at 6:00, 14:00, and 21:00). The schedule is shown in Figure 2.

The trial intervention

Routine oral hygiene care for the control group

After aspirating phlegm and saliva in the oral cavity and around the tracheostomy tube or oropharyngeal tube, the patients underwent toothbrushing with an ordinary toothbrush and tongue cleaning with a sponge brush.

Intensive oral hygiene care for the intervention group

After performing the aspiration procedure described above, the intervention group underwent mechanical tooth cleaning with an ordinary toothbrush (ERAC510, LION Dental Products Company, Tokyo, Japan) and interdental brush (DENT. EX, LION Dental Products Company, Tokyo, Japan), with a 0.2% benzethonium chloride solution (Neostelin Green 0.2% mouthwash solution, Nippon Shika Yakuhin Co., Ltd, Yamaguchi, Japan) as antiseptic (15,24). In addition, patients received tongue cleaning with a sponge brush. A 0.3% hydrogen peroxide solution was used for mechanical cleansing but not for disinfection (25,26). The size of the interdental brush was individualized for the interdental space of each patient. The duration of the procedure was about 10 minutes.

Data collection

Measurement of oral bacteria and oral hygiene status

An oral examination was performed by one of five trained and calibrated dentists (S. M., H. M., A. T-T., A. Y., and T. M.) at 7:00-8:00 on the morning before surgery and on postoperative days 1-3 (Fig. 2).

Oral hygiene status was measured on the buccal side with a dental plaque index (PlI) (27). For the oral bacteria count, a dentist collected the tongue coating from the middle of the dorsum linguae. To obtain the samples, gentle pressure was used to wipe the tongue surface with a cotton swab, as directed by the manufacturer (28). The number of oral bacteria in the samples was immediately measured by a simple, portable bacteria counter (Panasonic Healthcare Co., Ltd., Tokyo, Japan) (28). The numbers of oral bacteria are presented as colony-forming units (log CFU/mL).

After completion of training, two volunteers recorded PlI and oral bacteria count and, to assess intra- and inter-examiner agreement, repeated the procedures within 1
week. The data were analyzed with the nonparametric κ test and intra-class correlation. The κ coefficients for intra- and inter-examiner and intra-class correlation coefficients were >0.8.

Data on systemic and oral health
Data on systemic and oral conditions were collected from medical and dental records. Measurements were performed before cancer therapy. The abstracted data included sex, age, type of cancer, cancer stage (International Classification of Diseases for Oncology ICD-10 version 2015), type of preoperative chemotherapy, surgical duration, amount of bleeding during surgery, type of reconstruction, Acute Physiology and Chronic Health Evaluation (APACHE) II score (29), predicted mortality based on APACHE II scores, Sequential Organ Failure Assessment (SOFA) scores (30), incidences of postoperative complications, intubation period, body temperature, number of days with elevated fever (≥38.0°C), length of stay in the ICU and hospital (31), medications, and oral condition (32).

Sample size estimation
The sample size was estimated with a statistical software package (nQuery Advisor, Statistical Solutions, Saugus, MA) and was based on the previously reported difference in PlI between control and intervention groups (22). A sample size of 19 per group was required for detection of a significant difference (90% power; two-sided significance level of 1.7%).

Data analysis
Data analysis was performed with the Statistical Package for the Social Science (SPSS version 19) (IBM, Tokyo, Japan). The chi-square test, Fisher exact test, or Mann-Whitney U test was used to compare data between the control and intervention groups. Statistical significance was defined as a P value of <0.05 or <0.017. Bonferroni-corrected P values were used to account for multiple comparisons.
roni correction was used for multiple comparisons of sequential changes (operative day vs postoperative day 1, operative day vs postoperative day 2, and operative day vs postoperative day 3).

The primary outcomes were number of oral bacteria during the ICU stay (number of oral bacteria on the tongue and PII). The secondary outcomes were postoperative complications (presence/absence of pneumonia, recurrent laryngeal nerve palsy, atelectasis, pulmonary edema, anastomotic leak, or elevated fever [≥38.0°C]), as determined by patient medical records.

Results

Table 1 shows the characteristics of the control and intervention groups. The overall cohort was predominantly male (>80%). The control group had a significantly higher rate of postoperative infection ($P = 0.044$). There were no other significant differences between the groups.

All patients received antibiotics and steroid therapy perioperatively. There was no significant difference between groups in the type of drug received (e.g., nonsteroidal anti-inflammatory drugs and acetaminophen).

Body temperature was significantly lower on postoperative days 1-3 than on the operative day in both groups ($P < 0.017$). In the intervention group, the number of oral bacteria on the tongue on postoperative days 2 and 3 and PII on postoperative day 2 were significantly lower than on the operative day ($P < 0.017$). During oral hygiene care in the ICU, body temperature did not significantly differ between groups on postoperative days 1-3 (Table 2). The number of oral bacteria on the tongue was significantly lower in the intervention group than in the control group on postoperative day 1 ($P < 0.017$). The PII was significantly lower in the intervention group than in the control group on postoperative days 1 and 2 ($P < 0.017$; Table 2).

Table 3 shows the rates of postoperative complications in the control and intervention groups. The number of days with elevated fever during a 1-week period was significantly lower in the intervention group than in the control group on postoperative days 1 and 2 ($P < 0.017$; Table 2).

Discussion

In this study, the PII score and number of oral bacteria were significantly lower in the intervention group than in the control group during the postoperative period in the

Table 2 Change in body temperature, number of bacteria, and plaque index in the ICU in the control and intervention groups

Variable	Operative day	Postoperative day 1	Postoperative day 2	Postoperative day 3								
	Control group	Intervention group	Control group	Intervention group	Control group	Intervention group						
Body temperature (°C)	n = 21	n = 23	P value	n = 21	n = 23	P value	n = 21	n = 23	P value			
	36.5 (36.4, 37.0)	36.4 (36.2, 36.6)	0.267	38.3 (38.0, 38.5)	38.4 (38.2, 38.7)	0.157	38.3 (38.0, 38.7)	38.1 (37.7, 38.3)	0.157	38.0 (37.8, 38.2)	37.7 (37.4, 37.9)	0.023
Number of oral bacteria on tongue (log CFU/mL)	n = 21	n = 23	P value	n = 21	n = 23	P value	n = 21	n = 23	P value			
	7.2 (6.9, 7.4)	7.3 (7.0, 7.5)	1.000	7.6 (7.2, 7.8)	7.1 (6.7, 7.4)	0.012	7.3 (6.8, 7.4)	6.7 (6.4, 6.9)	0.029	7.2 (6.6, 7.4)	6.8 (6.4, 7.0)	0.084
Plaque index	n = 21	n = 23	P value	n = 21	n = 23	P value	n = 21	n = 23	P value			
	0.2 (0.0, 0.3)	0.1 (0.0, 0.2)	0.275	0.3 (0.2, 1.0)	0.1 (0.0, 0.3)	0.003	0.3 (0.2, 0.7)	0.0 (0.0, 0.1)	<0.001	0.1 (0.0, 0.5)	0.1 (0.0, 0.1)	0.062

* Median (25th percentile, 75th percentile), † Mann-Whitney U test with Bonferroni correction (control group vs. intervention group).

Table 3 Rates of postoperative complications in the control and intervention groups

Variable	Control group	Intervention group	
	n = 21	n = 23	P value‡
Recurrent laryngeal nerve palsy	5 (23.8)*	8 (34.8)	0.426
Pneumonia	4 (19.0)	1 (4.3)	0.176
Atelectasis	14 (66.7)	18 (78.3)	0.300
Pulmonary edema	21 (100.0)	23 (100.0)	–
Anastomotic leak	3 (14.3)	5 (21.7)	0.404
Number of days with elevated fever (≥38.0°C) during a 1-week period	4.0 (2.0, 5.0)*	2.0 (1.0, 2.5)	0.037

* n (%), † median (25th percentile, 75th percentile), ‡ chi-square test, Fisher exact test, or Mann-Whitney U test.
ICU. The oral care regimen for the intervention group included benzethonium chloride for oral disinfection (15,24) and mechanical tooth cleaning with interdental brushes, to remove interproximal plaque (17). This method appears to qualitatively improve postoperative oral hygiene care for patients with esophageal cancer.

The median number of days with elevated fever (≥38.0°C) during a 1-week period was significantly lower in the intervention group than that in the control group. Systemic inflammatory response syndrome is induced by highly invasive surgery, wound infection, and drug-induced hepatic injury and is a major factor in postoperative fever induction in esophageal cancer patients (33-35). Because of the significant difference in the rate of postoperative infection between the intervention and control groups, we reanalyzed the data after excluding cases of postoperative infection (n = 4). The result was unchanged (data not shown). There was no significant difference between the groups in type of surgery or other perioperative conditions. All patients received antibiotics and steroid therapy during the perioperative period, and the type of drug received did not differ between groups. In Okayama University Hospital, the use of antibiotics and steroids is governed by a standardized protocol. The difference in the number of days with elevated fever may be related to a reduction in oral bacteria by the intensive oral hygiene care, which could have reduced the infection rate. Recurrent laryngeal nerve paralysis is a major postoperative complication in esophageal cancer patients (36) and can cause silent aspiration (37), which contributes to elevated fever. However, because the incidence of recurrent laryngeal nerve palsy did not significantly differ between groups, its differential effects on elevated fever in this study were likely small.

Pneumonia incidence was lower in the intervention group (4.3%) than in the control group (19.0%), but the difference was not significant. A previous review noted that postoperative pneumonia was a common complication of general surgical procedures (incidence, 0.5-28%) (7). Because the incidence of pneumonia in the present control group was within the previously reported range and not high, our analysis was unlikely to detect a significant difference between the groups, because of the floor effect.

To reduce the number of oral bacteria, the intervention group received additional mechanical interdental cleaning with benzethonium chloride solution and tongue cleaning with hydrogen peroxide. Previous studies have investigated oral hygiene regimens for ICU patients, including mechanical tooth cleaning with a toothbrush and use of antiseptics; however, oral hygiene care methods are not standardized worldwide (38-40). A previous study found that the combination of tongue cleaning and mechanical tooth cleaning with a toothbrush and use of an interdental brush and chlorhexidine improved the oral hygiene status of stroke patients in ICUs (22). Our findings are consistent with these previous results. Furthermore, we modified the tongue cleaning procedure by using a 0.3% hydrogen peroxide solution for mechanical cleansing but not for disinfection (25,26), which may have reduced the number of bacteria. In this study, we made minor changes to the routine care provided by ICU nurses and demonstrated that the present oral hygiene regimen is feasible and beneficial for esophageal cancer patients.

In this study, dentists performed the new oral hygiene regimen in a research setting. However, nurses can provide the same care in a clinical setting. Because nurses perform postoperative oral hygiene care in most ICUs worldwide, we believe that they should be trained to perform this new oral hygiene regimen.

This study has several limitations. First, it enrolled a small number of participants at a single center. Second, the relationship between elevated fever and the number of oral bacteria remains unclear. Therefore, further large-scale studies are needed in order to confirm our findings. Third, the intervention was performed by dentists and routine oral hygiene care was provided by nurses. The differences in the skills of dentists and nurses in performing oral hygiene care should be considered. However, the new oral hygiene regimen does not require specialized skills and thus the effects of differences in clinical skill are likely to be small.

In conclusion, as compared with routine oral hygiene care, a new postoperative oral hygiene regimen comprising interdental cleaning with benzethonium chloride solution and tongue cleaning with hydrogen peroxide significantly reduced the number of oral bacteria on the tongue and teeth and the median number of days with elevated fever in patients with esophageal cancer.

Acknowledgments

The authors are grateful to Mikiko Iwatani (Department of Nursing, Okayama University Hospital, Okayama, Japan) for technical support. This work was financially supported by a Grant-in-Aid for Scientific Research (No. 25463242) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Conflict of interest

None declared.
References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61, 69-90.
2. Deng J, Wang C, Xiang M, Liu F, Liu Y, Zhao K (2014) Meta-analysis of postoperative efficacy in patients receiving chemoradiotherapy followed by surgery for resectable esophageal carcinoma. Diagn Pathol 9, 151.
3. Dumont P, Wihlm JM, Hentz JG, Roeslin N, Lion R, Morand G (1995) Respiratory complications after surgical treatment of esophageal cancer. A study of 309 patients according to the type of resection. Eur J Cardiothorac Surg 9, 539-543.
4. Akutsu Y, Matsubara H, Shuto K, Shiratori T, Uesato M, Miyazawa Y et al. (2010) Pre-operative dental brushing can reduce the risk of postoperative pneumonia in esophageal cancer patients. Surgery 147, 497-502.
5. Atkins BZ, D’Amico TA (2006) Respiratory complications after esophagectomy. Thorac Surg Clin 16, 35-48.
6. Wang ZQ, Chen LQ, Yuan Y, Wang WP, Niu ZX, Yang YS et al. (2015) Effects of neutrophil elastase inhibitor in patients undergoing esophagectomy: a systematic review and meta-analysis. World J Gastroenterol 21, 3720-3730.
7. Chughtai M, Gwam CU, Mohamed N, Khlopas A, Newman JM, Khan R et al. (2017) The epidemiology and risk factors for postoperative pneumonia. J Clin Med Res 9, 466-475.
8. Akutsu Y, Matsubara H, Okazumi S, Shimada H, Shuto K, Shiratori T et al. (2008) Impact of preoperative dental plaque culture for predicting postoperative pneumonia in esophageal cancer patients. Dig Surg 25, 93-97.
9. Sato M, Yoshihara A, Miyazaki H (2006) Preliminary study on the effect of oral care on recovery from surgery in elderly patients. J Oral Rehabil 33, 820-826.
10. Yoneda S, Imai S, Hanada N, Yamazaki T, Senpuku H, Ota Y et al. (2007) Effects of oral care on development of oral mucositis and microorganisms in patients with esophageal cancer. Jpn J Infect Dis 60, 23-28.
11. Yoshio O, Hinode D, Yamamoto Y, Furukita Y, Arai H, Tani T, Hori M (2013) Alteration of the oral environment in patients undergoing esophagectomy during the perioperative period. J Appl Oral Sci 21, 183-189.
12. Nomura Y, Bhowal UK, Nishikiori R, Sawajiri M, Maeda T, Nomura Y, Bhawal UK, Nishikiori R, Sawajiri M, Maeda T, Okazaki Y et al. (2010) Effects of high-dose major components in oral disinfectants on the cell cycle and apoptosis in primary human gingival fibroblasts in vitro. Dent Mater J 29, 75-83.
13. Shi Z, Xie H, Wang P, Zhang Q, Wu Y, Chen E et al. (2013) Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst Rev 13, CD008367.
14. Krauthem AB, Jermann TH, Bircher AJ (2004) Chlorhexidine anaphylaxis: case report and review of the literature. Contact Dermatitis 50, 113-116.
15. Compton FH, Beagrie GS (1975) Inhibitory effect of benzethonium and zinc chloride mouthrinses on human dental plaque and gingivitis. J Clin Periodontol 2, 33-43.
16. Westfelt E (1996) Rationale of mechanical plaque control. J Clin Periodontol 23, 263-267.
17. Jordan RA, Hong HM, Lucaciu A, Zimmer S (2014) Efficacy of straight versus angled interdental brushes on interproximal tooth cleaning: a randomized controlled trial. Int J Dent Hyg 12, 152-157.
18. Gluch J (2012) As an adjunct to tooth brushing, interdental brushes (IDBs) are more effective in removing plaque as compared with brushing alone or the combination use of tooth brushing and dental floss. J Evid Based Dent Pract 12, 81-83.
19. Slot DE, Wiggelinkhuizen L, Rosema NA, Van der Weijden GA (2012) The efficacy of manual toothbrushes following a brushing exercise: a systematic review. Int J Dent Hyg 10, 187-197.
20. Slot DE, Dörfer CE, Van der Weijden GA (2008) The efficacy of interdental brushes on plaque and parameters of periodontal inflammation: a systematic review. Int J Dent Hyg 6, 253-264.
21. Rasinnes G (2009) The use of interdental brushes along with toothbrushing removes most plaque. Evid Based Dent 10, 74.
22. Kim EK, Jang SH, Choi YH, Lee KS, Kim YJ, Kim SH et al. (2014) Effect of an oral hygiene care program for stroke patients in the intensive care unit. J Oral Rehabil 41, 81-88.
23. Grap MJ, Munro CL, Ashtiani B, Bryant S (2003) Oral care interventions in critical care: frequency and documentation. Am J Crit Care 12, 113-118.
24. Tsubura S, Mizumura H, Ishikawa S, Oyake I, Okabayashi M, Katoh K et al. (2009) The effect of Bacillus subtilis mouth rinsing in patients with periodontitis. Eur J Clin Microbiol Infect Dis 28, 1353-1356.
25. Chandu A, Stulner C, Bridgeman AM, Smith AC (2002) Maintenance of mouth hygiene in patients with oral cancer in the immediate post-operative period. Aust Dent J 47, 170-173.
26. Bonvillain RW, Painter RG, Ledet EM, Wang G (2011) Comparisons of resistance of CF and non-CF pathogens to hydrogen peroxide and hypochlorous acid oxidants in vitro. BMC Microbiol 11, 112.
27. Silness J, Løe H (1964) Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand 22, 121-135.
28. Kikutani T, Tamura F, Tashiro H, Yoshida M, Konishi K, Hamada R (2015) Relationship between oral bacteria count and pneumonia onset in elderly nursing home residents. Geriatr Gerontol Int 15, 417-421.
29. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13, 818-829.
30. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM et al. (1996) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med 24, 702-710.
29, 43-48.
32. Maruyama T, Yamanaka R, Yokoi A, Ekuni D, Tomofuji T, Mizukawa N et al. (2012) Relationship between serum albumin concentration and periodontal condition in patients with head and neck cancer. J Periodontol 83, 1110-1115.
33. Beal AL, Cerra FB (1994) Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA 271, 226-233.
34. Sato Y, Motoyama S, Takano H, Nakata A, Liu J, Harimaya D et al. (2016) Esophageal cancer patients have a high incidence of severe periodontitis and preoperative dental care reduces the likelihood of severe pneumonia after esophagectomy. Dig Surg 33, 495-502.
35. Chintamaneni P, Stevenson HL, Malik SM (2016) Bupivacaine drug-induced liver injury: a case series and brief review of the literature. J Clin Anesth 32, 137-141.
36. Raymond DP, Seder CW, Wright CD, Magee MJ, Kosinski AS, Cassivi SD et al. (2016) Predictors of major morbidity or mortality after resection for esophageal cancer: a society of thoracic surgeons general thoracic surgery database risk adjustment model. Ann Thorac Surg 102, 207-214.
37. Ekberg O, Lindgren S, Schultze T (1986) Pharyngeal swallowing in patients with paresis of the recurrent nerve. Acta Radiol Diagn (Stockh) 27, 697-700.
38. Li L, Ai Z, Li L, Zheng X, Jie L (2015) Can routine oral care with antiseptics prevent ventilator-associated pneumonia in patients receiving mechanical ventilation? An update meta-analysis from 17 randomized controlled trials. Int J Clin Exp Med 8, 1645-1657.
39. Marino PJ, Hannigan A, Haywood S, Cole JM, Palmer N, Emanuel C et al. (2016) Comparison of foam swabs and toothbrushes as oral hygiene interventions in mechanically ventilated patients: a randomised split mouth study. BMJ Open Respir Res 3, e000150.
40. Nasiriani K, Torki F, Jarahzadeh MH, Maybodi RF (2016) The effect of brushing with a soft toothbrush and distilled water on the incidence of ventilator-associated pneumonia in the intensive care unit. Tanaffos 15, 101-107.