3-uniform hypergraphs: modular decomposition and realization by tournaments

Abderrahim Boussaïri∗§ Brahim Chergui *‡ Pierre Ille†¶ Mohamed Zaidi∗‖

May 15, 2018

Abstract

Let H be a 3-uniform hypergraph. A tournament T defined on $V(T) = V(H)$ is a realization of H if the edges of H are exactly the 3-element subsets of $V(T)$ that induce 3-cycles. We characterize the 3-uniform hypergraphs that admit realizations by using a suitable modular decomposition.

Mathematics Subject Classifications (2010): 05C65, 05C20.

Key words: hypergraph, 3-uniform, module, tournament, realization.

1 Introduction

Let H be a 3-uniform hypergraph. A tournament T, with the same vertex set as H, is a realization of H if the edges of H are exactly the 3-element subsets of the vertex set of T that induce 3-cycles. The aim of the paper is to characterize the 3-uniform hypergraphs that admit realizations (see [2, Problem 1]). This characterization is comparable to that of the comparability graphs, that is, the graphs admitting a transitive orientation (see [10]).

In Section 2, we recall some of the classic results on modular decomposition of tournaments.

In the section below, we introduce a new notion of module for hypergraphs. We introduce also the notion of a modular covering, which generalizes the notion of a partitive family. In Subsection 3.1, we show that the set of the modules of a hypergraph induces a modular covering. In Subsection 3.2, we consider the

∗Faculté des Sciences Ain Chock, Département de Mathématiques et Informatique, Km 8 route d’El Jadida, BP 5366 Maarif, Casablanca, Maroc
†Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
§aboussairi@hotmail.com
‡cherguibrahim@yahoo.fr
¶pierre.ille@univ-amu.fr
‖zaidi.fsac@gmail.com
notion of a strong module, which is the usual strengthening of the notion of a module (for instance, see Subsection 2.1 for tournaments). We establish the analogue of Gallai’s modular decomposition theorem for hypergraphs.

Let H be a realizable 3-uniform hypergraph. Clearly, the modules of the realizations of H are modules of H as well, but the converse is false. Consider a realization T of H. In Section 4, we characterize the modules of H that are not modules of T. We deduce that a realizable 3-uniform hypergraph and its realizations share the same strong modules. Using Gallai’s modular decomposition theorem, we prove that a realizable 3-uniform hypergraph is prime (i.e. all its modules are trivial) if and only if each of its realizations is prime too. We have similar results when we consider a comparability graph and its transitive orientations (for instance, see [11, Theorem 3] and [11, Corollary 1]).

In Section 5, by using the modular decomposition tree, we demonstrate that a 3-uniform hypergraph is realizable if and only if all its prime, 3-uniform and induced subhypergraphs are realizable. We pursue by characterizing the prime and 3-uniform hypergraphs that are realizable. Hence [2, Problem 1] is solved.

At present, we formalize our presentation. We consider only finite structures. A hypergraph H is defined by a vertex set $V(H)$ and an edge set $E(H)$, where $E(H) \subseteq 2^{V(H)} \setminus \{\emptyset\}$. In the sequel, we consider only hypergraphs H such that $E(H) \subseteq 2^{V(H)} \setminus (\emptyset \cup \{\{v\} : v \in V(H)\})$.

Given $k \geq 2$, a hypergraph H is k-uniform if

$$E(H) \subseteq \binom{V(H)}{k}.$$

A hypergraph H is empty if $E(H) = \emptyset$. Let H be a hypergraph. With each $W \subseteq V(H)$, we associate the subhypergraph $H[W]$ of H induced by W, which is defined by $V(H[W]) = W$ and $E(H[W]) = \{e \in E(H) : e \subseteq W\}$.

Definition 1. Let H be a hypergraph. A subset M of $V(H)$ is a module of H if for each $e \in E(H)$ such that $e \cap M \neq \emptyset$ and $e \setminus M \neq \emptyset$, there exists $m \in M$ such that $e \cap M = \{m\}$ and for every $n \in M$, we have $(e \setminus \{m\}) \cup \{n\} \in E(H)$.

Notation 2. Given a hypergraph H, the set of the modules of H is denoted by $\mathcal{M}(H)$. For instance, if H is an empty hypergraph, then $\mathcal{M}(H) = 2^{V(H)}$.

We study the set of the modules of a hypergraph. Let S be a set. A family \mathcal{F} of subsets of S is a partitive family [3, Definition 6] on S if it satisfies the following assertions.
• $\emptyset \in \mathcal{F}$, $S \in \mathcal{F}$, and for every $x \in S$, $\{x\} \in \mathcal{F}$.

• For any $M, N \in \mathcal{F}$, $M \cap N \in \mathcal{F}$.

• For any $M, N \in \mathcal{F}$, if $M \cap N \neq \emptyset$, $M \setminus N \neq \emptyset$ and $N \setminus M \neq \emptyset$, then $M \cup N \in \mathcal{F}$ and $(M \setminus N) \cup (N \setminus M) \in \mathcal{F}$.

We generalize the notion of a partitive family as follows.

Definition 3. Let S be a set. A modular covering of S is a function \mathfrak{M} which associates with each $W \subseteq S$ a set $\mathfrak{M}(W)$ of subsets of W, and which satisfies the following assertions.

(A1) For each $W \subseteq S$, $\mathfrak{M}(W)$ is a partitive family on W.

(A2) For any $W, W' \subseteq S$, if $W \subseteq W'$, then

$$\{ M' \cap W : M' \in \mathfrak{M}(W') \} \subseteq \mathfrak{M}(W).$$

(A3) For any $W, W' \subseteq S$, if $W \subseteq W'$ and $W \in \mathfrak{M}(W')$, then

$$\{ M' \in \mathfrak{M}(W') : M' \subseteq W \} = \mathfrak{M}(W).$$

(A4) Let $W, W' \subseteq S$ such that $W \subseteq W'$. For any $M \in \mathfrak{M}(W)$ and $M' \in \mathfrak{M}(W')$, if $M \cap M' = \emptyset$ and $M' \cap W \neq \emptyset$, then $M \in \mathfrak{M}(W \cup M')$.

(A5) Let $W, W' \subseteq S$ such that $W \subseteq W'$. For any $M \in \mathfrak{M}(W)$ and $M' \in \mathfrak{M}(W')$, if $M \cap M' \neq \emptyset$, then $M \cup M' \in \mathfrak{M}(W \cup M')$.

We obtain the following result.

Proposition 4. *Given a hypergraph H, the function defined on $2^{V(H)}$, which maps each $W \subseteq V(H)$ to $\mathfrak{M}(H[W])$, is a modular covering of $V(H)$.*

Let H be a hypergraph. By Proposition 4, $\emptyset, V(H)$ and $\{v\}$, where $v \in V(H)$, are modules of H, called trivial. A hypergraph H is indecomposable if all its modules are trivial, otherwise it is decomposable. A hypergraph H is prime if it is indecomposable with $v(H) \geq 3$.

To state Gallai’s modular decomposition theorem, we need to define the quotient of a hypergraph by a modular partition (see Section 2).

Definition 5. Let H be a hypergraph. A partition P of $V(H)$ is a modular partition of H if $P \subseteq \mathcal{M}(H)$. Given a modular partition P of H, the quotient H/P of H by P is defined on $V(H)/P = P$ as follows. For $E \subseteq P$, $E \in E(H/P)$ if $|E| \geq 2$, and there exists $e \in E(H)$ such that $E = \{ X \in P : X \cap e \neq \emptyset \}$.

As for tournaments, we introduce the following strengthening of the notion of a module. Let H be a hypergraph. A module M of H is strong if for every module N of H, we have

if $M \cap N \neq \emptyset$, then $M \subseteq N$ or $N \subseteq M$.

3
Notation 6. We denote by $\Pi(H)$ the set of proper strong modules of H that are maximal under inclusion. Clearly, $\Pi(H)$ is a modular partition of H when $v(H) \geq 2$.

Gallai’s modular decomposition theorem for hypergraphs follows. It is the analogue of Theorem 16.

Theorem 7. Given a hypergraph H with $v(H) \geq 2$, $H/\Pi(H)$ is an empty hypergraph, a prime hypergraph or a complete graph (i.e. $E(H/\Pi(H)) = \binom{\Pi(H)}{2}$).

A realization of a 3-uniform hypergraph is defined as follows. To begin, we associate with each tournament a 3-uniform hypergraph in the following way.

Definition 8. The 3-cycle is the tournament $C_3 = (\{0, 1, 2\}, \{01, 12, 20\})$. Given a tournament T, the C_3-structure of T is the 3-uniform hypergraph $C_3(T)$ defined on $V(C_3(T)) = V(T)$ by

$$E(C_3(T)) = \{X \subseteq V(T) : T[X] is isomorphic to C_3\}$$

(see [2]).

Definition 9. Given a 3-uniform hypergraph H, a tournament T, with $V(T) = V(H)$, realizes H if $H = C_3(T)$. We say also that T is a realization of H.

Whereas a realizable 3-uniform hypergraph and its realizations do not have the same modules, they share the same strong modules.

Theorem 10. Consider a realizable 3-uniform hypergraph H. Given a realization T of H, H and T share the same strong modules.

The next result follows from Theorems 7 and 10.

Theorem 11. Consider a realizable 3-uniform hypergraph H. For a realization T of H, we have H is prime if and only if T is prime.

Lastly, we characterize the realizable 3-uniform hypergraphs. To begin, we establish the following theorem by using the modular decomposition tree.

Theorem 12. Given a 3-uniform hypergraph H, H is realizable if and only if for every $W \subseteq V(H)$ such that $H[W]$ is prime, $H[W]$ is realizable.

We conclude by characterizing the prime and 3-uniform hypergraphs that are realizable (see Theorems 53 and 55).

2 Background on tournaments

A tournament is a linear order if it does not contain C_3 as a subtournament. Given $n \geq 2$, the usual linear order on $\{0, \ldots, n - 1\}$ is the tournament $L_n = (\{0, \ldots, n - 1\}, \{pq : 0 \leq p < q \leq n - 1\})$. With each tournament T, associate its dual T^* defined on $V(T^*) = V(T)$ by $A(T^*) = \{vw : vw \in A(T)\}$.
2.1 Modular decomposition of tournaments

Let T be a tournament. A subset M of $V(T)$ is a module \cite{14} of T provided that for any $x, y \in M$ and $v \in V(T)$, if $xv, vy \in A(T)$, then $v \in M$. Note that the notions of a module and of an interval coincide for linear orders.

Notation 13. Given a tournament T, the set of the modules of T is denoted by $\mathcal{M}(T)$.

We study the set of the modules of a tournament. We need the following weakening of the notion of a partitive family. Given a set S, a family \mathcal{F} of subsets of S is a weakly partitive family on S if it satisfies the following assertions.

- $\emptyset \in \mathcal{F}$, $S \in \mathcal{F}$, and for every $x \in S$, $\{x\} \in \mathcal{F}$.
- For any $M, N \in \mathcal{F}$, $M \cap N \in \mathcal{F}$.
- For any $M, N \in \mathcal{F}$, if $M \cap N \neq \emptyset$, then $M \cup N \in \mathcal{F}$.
- For any $M, N \in \mathcal{F}$, if $M \setminus N \neq \emptyset$, then $N \setminus M \in \mathcal{F}$.

The set of the modules of a tournament is a weakly partitive family (for instance, see \cite{5}). We generalize the notion of a weakly partitive family as follows.

Definition 14. Let S be a set. A weak modular covering of S is a function \mathfrak{M} which associates with each $W \subseteq S$ a set $\mathfrak{M}(W)$ of subsets of W, and which satisfies Assertions (A2),..., (A5) (see Definition 3), and the following assertion. For each $W \subseteq S$, $\mathfrak{M}(W)$ is a weakly partitive family on W.

Since the proof of the next proposition is easy and long, we omit it.

Proposition 15. Given a tournament T, the function defined on $2^{V(H)}$, which maps each $W \subseteq V(H)$ to $\mathfrak{M}(T[W])$, is a weak modular covering of $V(T)$.

Let T be a tournament. By Proposition 15, $\emptyset, V(T)$ and $\{v\}$, where $v \in V(T)$, are modules of T, called trivial. A tournament is indecomposable if all its modules are trivial, otherwise it is decomposable. A tournament T is prime if it is indecomposable with $v(T) \geq 3$.

We define the quotient of a tournament by considering a partition of its vertex set in modules. Precisely, let T be a tournament. A partition P of $V(T)$ is a modular partition of T if $P \in \mathcal{M}(T)$. With each modular partition P of T, associate the quotient T/P of T by P defined on $V(T/P) = P$ as follows. Given $X, Y \in P$ such that $X \neq Y$, $XY \in A(T/P)$ if $xy \in A(T)$, where $x \in X$ and $y \in Y$.

We need the following strengthening of the notion of module to obtain an uniform decomposition theorem. Given a tournament T, a subset X of $V(T)$ is a strong module \cite{9,12} of T provided that X is a module of T and for every module M of T, if $X \cap M \neq \emptyset$, then $X \subseteq M$ or $M \subseteq X$. With each tournament T, with $v(T) \geq 2$, associate the set $\Pi(T)$ of the maximal strong module of T under the inclusion amongst all the proper and strong modules of T. Gallai’s modular decomposition theorem follows.
Theorem 16 (Gallai [9, 12]). Given a tournament T such that $v(T) \geq 2$, $\Pi(T)$ is a modular partition of T, and $T/\Pi(T)$ is a linear order or a prime tournament.

Theorem 16 is deduced from the following two results. We use the following notation.

Notation 17. Let P be a partition of a set S. For $W \subseteq S$, W/P denotes the subset $\{X \in P : X \cap W \neq \emptyset\}$ of P. For $Q \subseteq P$, set

$$\cup Q = \bigcup_{X \in Q} X.$$

Proposition 18. Given a modular partition P of a tournament T, the following two assertions hold.

1. If M is a strong module of T, then M/P is a strong module of T/P.

2. Suppose that all the elements of P are strong modules of T. If M is a strong module of T/P, then $\cup M$ is a strong module of T.

Theorem 19. Given a tournament T, all the strong modules of T are trivial if and only if T is a linear order or a prime tournament.

Definition 20. Given a tournament T, the set of the nonempty strong modules of T is denoted by $\mathcal{D}(T)$. Clearly, $\mathcal{D}(T)$ endowed with inclusion is a tree called the modular decomposition tree of T.

Let T be a tournament. The next proposition allows us to obtain all the elements of $\mathcal{D}(T)$ by using successively Theorem 16 from $V(T)$ to the singletons.

Proposition 21 (Ehrenfeucht et al. [5]). Given a tournament T, consider a strong module M of T. For every $N \subseteq M$, the following two assertions are equivalent

1. N is a strong module of T;

2. N is a strong module of $T[M]$.

We use the analogue of Proposition 21 for hypergraphs (see Proposition 44) to prove Proposition 46.

2.2 Critical tournaments

Definition 22. Given a prime tournament T, a vertex v of T is critical if $T - v$ is decomposable. A prime tournament is critical if all its vertices are critical.

Schmerl and Trotter [13] characterized the critical tournaments. They obtained the tournaments T_{2n+1}, U_{2n+1} and W_{2n+1} defined on $\{0, \ldots, 2n\}$, where $n \geq 1$, as follows.
• The tournament T_{2n+1} is obtained from L_{2n+1} by reversing all the arcs between even and odd vertices (see Figure 1).

• The tournament U_{2n+1} is obtained from L_{2n+1} by reversing all the arcs between even vertices (see Figure 2).

• The tournament W_{2n+1} is obtained from L_{2n+1} by reversing all the arcs between $2n$ and the even elements of $\{0, \ldots, 2n-1\}$ (see Figure 3).

Theorem 23 (Schmerl and Trotter [13]). Given a tournament τ, with $v(\tau) \geq 5$, τ is critical if and only if $v(\tau)$ is odd, and τ is isomorphic to $T_{v(\tau)}$, $U_{v(\tau)}$ or $W_{v(\tau)}$.

2.3 The C_3-structure of a tournament

The C_3-structure of a tournament (see Definition 8) is clearly a 3-uniform hypergraph. The main theorem of [2] follows. It plays an important role in Section 5.

Theorem 24 (Boussaïri et al. [2]). Let T be a prime tournament. For every tournament T', if $C_3(T') = C_3(T)$, then $T' = T$ or T^*.
3 Modular decomposition of hypergraphs

Definition 1 is not the usual definition of a module of a hypergraph. The usual definition follows.

Definition 25. Let H be a hypergraph. A subset M of $V(H)$ is a module of H if for any $e, f \subseteq V(H)$ such that $|e| = |f|$, $e \setminus M = f \setminus M$, and $e \setminus M \neq \emptyset$, we have $e \in E(H)$ if and only if $f \in E(H)$.

Remark 26. Given a hypergraph H, a module of H in the sense of Definition 1 is a module in the sense of Definition 25. The converse is not true. Given $n \geq 3$, consider the 3-uniform hypergraph H defined by $V(H) = \{0, \ldots, n-1\}$ and $E(H) = \{0p: 2 \leq p \leq n-1\}$. In the sense of Definition 25, $\{0, 1\}$ is a module of H whereas it is not a module of H in the sense of Definition 1.

Let H be a realizable 3-uniform hypergraph. Consider a realization T of H. Given $e \in E(H)$, all the modules of $T[e]$ are trivial. To handle close modular decompositions for H and T, we try to find a definition of a module of H for which all the modules of $H[e]$ are trivial as well. This is the case with Definition 1 and not with Definition 25. Moreover, note that, with Definition 25, H and T do not share the same strong modules, but but they do with Definition 1 (see Theorem 10). Indeed, consider the 3-uniform hypergraph H defined on $\{0, \ldots, n-1\}$ in Remark 26. In the sense of Definition 25, $\{0, 1\}$ is a strong module of H. Now, consider the tournament T obtained from L_n by reversing all the arcs between 0 and $p \in \{2, \ldots, n-1\}$. Clearly, T realizes H. Since $T[\{0, 1, 2\}]$ is a 3-cycle, $\{0, 1\}$ is not a module of T, so it is not a strong module.

3.1 Modular covering

The purpose of the subsection is to establish Proposition 4. To begin, we show that the set of the modules of a hypergraph is a partitive family (see Proposition 30). We need the next three lemmas.

Lemma 27. Let H be a hypergraph. For any $M, N \in \mathcal{M}(H)$, we have $M \cap N \in \mathcal{M}(H)$.
Proof. Consider \(M, N \in \mathcal{M}(H) \). To show that \(M \cap N \in \mathcal{M}(H) \), consider \(e \in E(H) \) such that \(e \cap (M \cap N) \neq \emptyset \) and \(e \setminus (M \cap N) \neq \emptyset \). Since \(e \cap (M \cap N) \neq \emptyset \), assume for instance that \(e \setminus M \neq \emptyset \). Since \(M \) is a module of \(H \) and \(e \cap M \neq \emptyset \), there exists \(m \in M \) such that \(e \cap M = \{m\} \). Since \(e \cap (M \cap N) \neq \emptyset \), we obtain \(e \cap (M \cap N) = \{m\} \).

Let \(n \in M \cap N \). Since \(M \) is a module of \(H \), \((e \setminus \{m\}) \cup \{n\} \in E(H) \).

Lemma 28. Let \(H \) be a hypergraph. For any \(M, N \in \mathcal{M}(H) \), if \(M \cap N \neq \emptyset \), then \(M \cup N \in \mathcal{M}(H) \).

Proof. Consider \(M, N \in \mathcal{M}(H) \) such that \(M \cap N \neq \emptyset \). To show that \(M \cup N \in \mathcal{M}(H) \), consider \(e \in E(H) \) such that \(e \cap (M \cup N) \neq \emptyset \) and \(e \setminus (M \cup N) \neq \emptyset \). Since \(e \cap (M \cup N) \neq \emptyset \), assume for instance that \(e \cap M \neq \emptyset \). Clearly \(e \setminus M \neq \emptyset \) because \(e \setminus (M \cup N) \neq \emptyset \). Since \(M \) is a module of \(H \), there exists \(m \in M \) such that \(e \cap M = \{m\} \), and

\[
(e \setminus \{m\}) \cup \{n\} \in E(H) \text{ for every } n \in M. \tag{1}
\]

Consider \(n \in M \cap N \). By (1), \((e \setminus \{m\}) \cup \{n\} \in E(H) \). Set

\[
f = (e \setminus \{m\}) \cup \{n\}.
\]

Clearly \(n \in f \cap N \). Furthermore, consider \(p \in e \setminus (M \cup N) \). Since \(m \in M \), we have \(p \neq m \), and hence \(p \in f \setminus N \). Since \(N \) is a module of \(H \), we obtain \(f \cap N = \{n\} \) and

\[
(f \setminus \{n\}) \cup \{n'\} \in E(H) \text{ for every } n' \in N. \tag{2}
\]

Since \((f \setminus \{n\}) \cup \{n'\} = (e \setminus \{m\}) \cup \{n'\} \) for every \(n' \in N \), it follows from (2) that

\[
(e \setminus \{m\}) \cup \{n'\} \in E(H) \text{ for every } n' \in N. \tag{3}
\]

Therefore, it follows from (1) and (3) that

\[
(e \setminus \{m\}) \cup \{n\} \in E(H) \text{ for every } n \in M \cup N.
\]

Moreover, since \(f \cap N = \{n\} \), we have

\[
e \cap N = (\{m\} \cup (e \setminus \{m\})) \cap N
= (\{m\} \cup (f \setminus \{n\})) \cap N
= \{m\} \cap N,
\]

and hence \(e \cap N \subseteq \{m\} \). Since \(e \cap M = \{m\} \), we obtain \(e \cap (M \cup N) = \{m\} \). Consequently, \(M \cup N \) is a module of \(H \).

Lemma 29. Let \(H \) be a hypergraph. For any \(M, N \in \mathcal{M}(H) \), if \(M \setminus N \neq \emptyset \), then \(N \setminus M \in \mathcal{M}(H) \).
Proposition 30. Given a hypergraph H, $\mathcal{M}(H)$ is a partitive family on $V(H)$.
Proof. It is easy to verify that $\emptyset \in \mathcal{M}(H)$, $V(H) \in \mathcal{M}(H)$, and for every $v \in V(H)$, $\{v\} \in \mathcal{M}(H)$. Therefore, it follows from Lemmas 21, 28 and 29 that \(\mathcal{M}(H) \) is a weakly partitive family on $V(H)$. To prove that \(\mathcal{M}(H) \) is a partitive family on $V(H)$, consider any $M,N \in \mathcal{M}(H)$ such that $M \cap N \neq \emptyset$, $N \setminus M \neq \emptyset$ and $M \cap N \neq \emptyset$. We have to show that $(M \setminus N) \cup (N \setminus M) \in \mathcal{M}(H)$. Hence consider $e \in E(H)$ such that $e \cap ((M \setminus N) \cup (N \setminus M)) \neq \emptyset$ and $e \setminus ((M \setminus N) \cup (N \setminus M)) \neq \emptyset$. Since $e \cap ((M \setminus N) \cup (N \setminus M)) \neq \emptyset$, assume for instance that $e \cap (M \setminus N) \neq \emptyset$. Clearly $e \setminus (M \setminus N) \neq \emptyset$ because $e \setminus ((M \setminus N) \cup (N \setminus M)) \neq \emptyset$. Since $N \setminus M \neq \emptyset$, it follows from Lemma 29 that $M \setminus N$ is a module of H. Thus, there exists $m \in M \setminus N$ such that $e \cap (M \setminus N) = \{m\}$. We distinguish the following two cases.

1. Suppose that $e \subseteq M$. Since $e \setminus ((M \setminus N) \cup (N \setminus M)) \neq \emptyset$, $e \cap (M \cap N) \neq \emptyset$. Therefore $e \cap N \neq \emptyset$. Furthermore, since $e \cap (M \setminus N) \neq \emptyset$, we have $e \setminus N \neq \emptyset$. Since N is a module of H, there exists $n \in N$ such that $e \cap N = \{n\}$. Since $e \cap (M \cap N) \neq \emptyset$, we get $e \cap (M \cap N) = \{n\}$. Since $e \subseteq M$ and $e \cap (M \setminus N) = \{m\}$, we obtain $e = mn$. It follows that

$$e \cap ((M \setminus N) \cup (N \setminus M)) = \{m\}. \tag{7}$$

Let $p \in (M \setminus N) \cup (N \setminus M)$. We have to show that

$$(e \setminus \{m\}) \cup \{p\} = np \in E(H). \tag{8}$$

Recall that $M \setminus N$ is a module of H. Consequently (5) holds whenever $p \in M \setminus N$. Suppose that $p \in N \setminus M$. Since N is a module of H and $mn \in E(H)$, we get $mp \in E(H)$. Now, since M is a module of H and $mp \in E(H)$, we obtain $np \in E(H)$. It follows that (5) holds for each $p \in (M \setminus N) \cup (N \setminus M)$. Lastly, it follows from (7) that there exists $m \in M \setminus N$ such that

$$\left\{ \begin{array}{l}
e \cap ((M \setminus N) \cup (N \setminus M)) = \{m\} \\
and \\
for each \ p \in (M \setminus N) \cup (N \setminus M), \ (e \setminus \{m\}) \cup \{p\} \in E(H). \end{array} \right.$$

2. Suppose that $e \setminus M \neq \emptyset$. Since $e \setminus (M \setminus N) = \{m\}$, $m \in e \cap M$. Since M is a module of H, there exists $m' \in M$ such that $e \cap M = \{m'\}$. Since $e \setminus (M \setminus N) = \{m\}$, we have $m = m'$, and hence

$$e \cap (M \setminus N) = e \cap M = \{m\}. \tag{9}$$

It follows that $e \cap (M \cap N) = \emptyset$. Since $e \setminus ((M \setminus N) \cup (N \setminus M)) \neq \emptyset$, we obtain

$$e \setminus (M \cup N) \neq \emptyset.$$

Since $M \cap N \neq \emptyset$, it follows from Lemma 28 that $M \cup N$ is a module of H. Therefore, there exists $p \in M \cup N$ such that $e \cap (M \cup N) = \{p\}$, and
for every \(q \in M \cup N \), \((e \setminus \{p\}) \cup \{q\} \in E(H)\). Since \(e \cap M = \{m\} \), we get \(p = m \). Thus, \(e \cap (M \cup N) = \{m\} \), and hence
\[
e \cap ((M \setminus N) \cup (N \setminus M)) = \{m\}.
\]
(9)
Since \(p = m \), we have \((e \setminus \{m\}) \cup \{q\} \in E(H)\) for every \(q \in M \cup N \). It follows that
\[
(e \setminus \{m\}) \cup \{q\} \in E(H)
\]
for every \(q \in (M \setminus N) \cup (N \setminus M) \), where \(\{m\} = e \cap ((M \setminus N) \cup (N \setminus M)) \) by (9).
\[\square\]

To prove Proposition 4, we need the next four lemmas.

Lemma 31. Given a hypergraph \(H \), consider subsets \(W \) and \(W' \) of \(V(H) \). If \(W \subseteq W' \), then \(\{M' \cap W : M' \in \mathcal{M}(H[W'])\} \subseteq \mathcal{M}(H[W]) \) (see Definition 8, Assertion (A2)).

Proof. Let \(M' \) be a module of \(H[W'] \). To show that \(M' \cap W \) is a module of \(H[W] \), consider \(e \in E(H[W]) \) such that \(e \cap (M' \cap W) \neq \emptyset \) and \(e \setminus (M' \cap W) \neq \emptyset \). We obtain \(e \in E(H[W']) \) and \(e \cap M' \neq \emptyset \). Since \(e \setminus (M' \cap W) \neq \emptyset \) and \(e \subseteq W \), we get \(e \setminus M' \neq \emptyset \). Since \(M' \) is a module of \(H[W'] \), there exists \(m' \in M' \) such that \(e \cap M' = \{m'\} \), and \((e \setminus \{m'\}) \cup \{n'\} \in E(H[W']) \) for each \(n' \in M' \). Let \(n' \in M' \cap W \). Since \(e \subseteq W \), \((e \setminus \{m'\}) \cup \{n'\} \subseteq W \). Hence \((e \setminus \{m'\}) \cup \{n'\} \in E(H[W])\) because \((e \setminus \{m'\}) \cup \{n'\} \in E(H[W'])\). Moreover, since \(e \cap (M' \cap W) \neq \emptyset \) and \(e \cap M' = \{m'\} \), we obtain \(e \cap (M' \cap W) = \{m'\} \).
\[\square\]

Lemma 32. Given a hypergraph \(H \), consider subsets \(W \) and \(W' \) of \(V(H) \) such that \(W \subseteq W' \). If \(W \in \mathcal{M}(H[W']) \), then \(\{M' \in \mathcal{M}(H[W']) : M' \subseteq W\} = \mathcal{M}(H[W]) \) (see Definition 8, Assertion (A3)).

Proof. By Lemma 31, \(\{M' \in \mathcal{M}(H[W']) : M' \subseteq W\} \subseteq \mathcal{M}(H[W]) \). Conversely, consider a module \(M \) of \(H[W] \). To prove that \(M \) is a module of \(H[W'] \), consider \(e \in E(H[W']) \) such that \(e \cap M \neq \emptyset \) and \(e \setminus M \neq \emptyset \). We distinguish the following two cases.

1. Suppose that \(e \subseteq W \). We obtain \(e \in E(H[W]) \). Since \(M \) is a module of \(H[W] \), there exists \(m \in M \) such that \(e \cap M = \{m\} \), and for each \(n \in M \), we have \((e \setminus \{m\}) \cup \{n\} \subseteq E(H[W]) \). Hence \((e \setminus \{m\}) \cup \{n\} \in E(H[W])\).

2. Suppose that \(e \setminus W \neq \emptyset \). Clearly, \(e \cap W \neq \emptyset \) because \(e \cap M \neq \emptyset \). Since \(W \) is a module of \(H[W'] \), there exists \(w \in W \) such that \(e \cap W = \{w\} \). Furthermore,
\[
\text{for each } w' \in W, (e \setminus \{w\}) \cup \{w'\} \in E(H[W']).
\]
(10)
Since \(e \cap M \neq \emptyset \), we get \(e \cap M = \{w\} \). Clearly, it follows from (10) that \((e \setminus \{w\}) \cup \{w'\} \in E(H[W'])\) for each \(w' \in M \).
\[\square\]
Lemma 33. Given a hypergraph H, consider subsets W and W' of $V(H)$ such that $W \subseteq W'$. For any $M \in \mathcal{M}(H[W])$ and $M' \in \mathcal{M}(H[W'])$, if $M \cap M' = \emptyset$ and $M' \cap W \neq \emptyset$, then $M \in \mathcal{M}(H[W \cup M'])$ (see Definition 3 Assertion A4).

Proof. Consider a module M of $H[W]$ and a module M' of $H[W']$ such that $M \cap M' = \emptyset$ and $M' \cap W \neq \emptyset$. We have to show that M is a module of $H[W \cup M']$. Hence consider $e \in E(H[W \cup M'])$ such that $e \cap M \neq \emptyset$ and $e \setminus M \neq \emptyset$. We distinguish the following two cases.

1. Suppose that $e \subseteq W$. We obtain $e \in E(H[W])$. Since M is a module of $H[W]$, there exists $m \in M$ such that $e \cap M = \{m\}$, and for each $n \in M$, we have $(e \setminus \{m\}) \cup \{n\} \in E(H[W])$. Hence $(e \setminus \{m\}) \cup \{n\} \in E(H[W \cup M'])$.

2. Suppose that $e \setminus W \neq \emptyset$. We obtain $e \cap (M' \setminus W) = \emptyset$. Since $e \cap M \neq \emptyset$, we have $e \setminus M' = \emptyset$. Since M' is a module of $H[W']$, there exists $m' \in M'$ such that $e \cap M' = \{m'\}$, and for each $m' \in M'$, $(e \setminus \{m'\}) \cup \{m'\} \in E(H[W'])$. (11)

Since $e \cap (M' \setminus W) = \emptyset$ and $e \cap M' = \{m'\}$, we get $e \cap (M' \setminus W) = \{m'\}$. Let $w' \in W \cap M'$. Set

$$f = (e \setminus \{m'\}) \cup \{w'\}.$$

By (11), $f \in E(H[W'])$. Furthermore, since $e \cap (M' \setminus W) = \{m'\}$, we obtain $f \subseteq W$, and hence $f \in E(H[W])$. Since $e \cap M \neq \emptyset$, we have $f \cap M \neq \emptyset$. Moreover, $w' \in f \setminus M$ because $w' \in W \cap M'$ and $M \cap M' = \emptyset$. Since M is a module of $H[W]$, there exists $m \in M$ such that $f \cap M = \{m\}$. Since $f = (e \setminus \{m'\}) \cup \{w'\}$, with $m', w' \notin M$, we get $e \cap M = f \cap M$, so $e \cap M = \{m\}$.

Lastly, consider $n \in M$. We have to verify that

$$(e \setminus \{m\}) \cup \{n\} \in E(H[W'])$$. (12)

Set

$$g_n = (f \setminus \{m\}) \cup \{n\}.$$

Since M is a module of $H[W]$ such that $f \cap M = \{m\}$ and $w' \notin f \setminus \{m\}$, $g_n \in E(H[W])$. Hence $g_n \in E(H[W'])$. Since $n \in g_n \cap M$ and $M \cap M' = \emptyset$, $n \in g_n \setminus M'$. Clearly, $w' \notin M'$ because $w' \notin W \cap M'$. Furthermore, $w' \notin f$ because $f = (e \setminus \{m'\}) \cup \{w'\}$. Since $g_n = (f \setminus \{m\}) \cup \{n\}$, $m \in M$ and $M \cap M' = \emptyset$, we have $w' \notin g_n$. It follows that $w' \notin g_n \cap M'$. Since M' is a module of $H[W']$, we have $g_n \cap M' = \{w'\}$ and $(g_n \setminus \{w'\}) \cup \{m'\} \in E(H[W'])$. We have

$$(g_n \setminus \{w'\}) \cup \{m'\} = (((f \setminus \{m\}) \cup \{n\}) \setminus \{w'\}) \cup \{m'\}$$

$$= (f \setminus \{m, w'\}) \cup \{m', n\}$$

$$= (((e \setminus \{m'\}) \cup \{w'\}) \setminus \{m, w'\}) \cup \{m', n\}$$

$$= (e \setminus \{m, m', w'\}) \cup \{m', n, w'\}$$

$$= (e \setminus \{m\}) \cup \{n\}.$$
Consider a module M. Let e be such that $e \not\subseteq M$. Suppose that $e \cap M' \neq \emptyset$, then $M \cup M' \in \mathcal{M}(H[W \cup M'])$ (see Definition 3, Assertion (A5)).

Lemma 34. Given a hypergraph H, consider subsets W and W' of $V(H)$ such that $W \subseteq W'$. For any $M \in \mathcal{M}(H[W])$ and $M' \in \mathcal{M}(H[W'])$, if $M \cap M' \neq \emptyset$, then $M \cup M' \in \mathcal{M}(H[W \cup M'])$.

Proof. Consider a module M of $H[W]$ and a module M' of $H[W']$ such that $M \cap M' \neq \emptyset$. We have to prove that $M \cup M'$ is a module of $H[W \cup M']$. Hence consider $e \in E(H[W \cup M'])$ such that $e \cap (M \cup M') \neq \emptyset$ and $e \not\subseteq (M \cup M') \neq \emptyset$. Let $m \in M \cap M'$. We distinguish the following two cases.

1. Suppose that $e \cap M' \neq \emptyset$. Clearly $e \in E(H[W'])$. Moreover, $e \not\subseteq M'$ because $e \not\subseteq (M \cup M') \neq \emptyset$. Since M' is a module of $H[W']$, there exists $m' \in M'$ such that $e \cap M' = \{m', n\}$, and $(e \setminus \{m'\}) \cup \{n\} \subseteq E(H[W'])$ for every $n' \in M'$. Hence, for every $n' \in M'$, we have

$$e \setminus \{m'\} \cup \{n\} \subseteq E(H[W \cup M']).$$

In particular, $(e \setminus \{m'\}) \cup \{m\} \subseteq E(H[W \cup M'])$. Set

$$f = (e \setminus \{m'\}) \cup \{m\}.$$

Since $e \cap M' = \{m'\}$, we obtain $f \cap M' = \{m\}$. Hence $m \not\in f \cap M$. It follows that $f \subseteq E(H[W])$ because $e \subseteq E(H[W \cup M'])$. Clearly $e \not\subseteq M$ because $e \not\subseteq (M \cup M') \neq \emptyset$. Since M is a module of $H[W]$, there exists $n \in M$ such that $f \cap M = \{n\}$, and $(f \setminus \{n\}) \cup \{p\} \subseteq E(H[W])$ for every $p \in M$. Since $m \not\in f \cap M$, we get $m = n$. Therefore, $f \cap M = f \cap M' = \{m\}$. It follows that $f \cap (M \cup M') = \{m\}$, so

$$e \cap (M \cup M') = \{m'\}.$$

By (15), it remains to show that $(e \setminus \{m'\}) \cup \{n\} \subseteq E(H[W \cup M'])$ for each $n \in M$. Let $n \in M$. Recall that $f \cap (M \cup M') = \{m\}$ and $e \cap (M \cup M') = \{m'\}$. Thus $e \setminus (M \cup M') = f \setminus (M \cup M')$. Hence $f \setminus (M \cup M') \neq \emptyset$ because $e \not\subseteq (M \cup M') \neq \emptyset$. It follows that $f \setminus M \neq \emptyset$. Recall that $f \subseteq E(H[W])$. Since M is a module of $H[W]$, we obtain $(f \setminus \{m\}) \cup \{n\} \subseteq E(H[W])$. We have

$$(f \setminus \{m\}) \cup \{n\} = ((e \setminus \{m'\}) \cup \{m\}) \cup \{n\} = (e \setminus \{m'\}) \cup \{n\}.$$

Therefore $(e \setminus \{m'\}) \cup \{n\} \subseteq E(H[W])$, so $(e \setminus \{m'\}) \cup \{n\} \subseteq E(H[W \cup M'])$.

2. Suppose that $e \cap M' = \emptyset$. We get $e \subseteq E(H[W])$. Clearly $e \not\subseteq M$ because $e \not\subseteq (M \cup M') \neq \emptyset$. Furthermore, since $e \cap (M \cup M') \neq \emptyset$ and $e \cap M' = \emptyset$, we obtain $e \cap (M \cup M') \neq \emptyset$. Since M is a module of $H[W]$, there exists $q \in M$ such that

$$e \cap M = \{q\}$$.
and
\[\text{for every } r \in M, \ (e \setminus \{q\}) \cup \{r\} \in E(H[W]). \]
(15)

Since \(e \cap M' = \emptyset \), it follows from (14) that \(q \in M \setminus M' \) and
\[e \cap (M \cup M') = \{q\}. \]
(16)

By (15), \((e \setminus \{q\}) \cup \{m\} \in E(H[W]) \). Set \(e' = (e \setminus \{q\}) \cup \{m\} \).

Clearly, \(m \in e' \cap M' \). Moreover, since \(e \cap (M \cup M') = \{q\} \), we obtain
\[
\begin{align*}
\{e' \cap (M \cup M') = \{m\} \\
\text{and} \ \\
(e \setminus (M \cup M') = e' \setminus (M \cup M').
\end{align*}
\]

Therefore \(e' \cap (M \cup M') \neq \emptyset \), and \(e' \setminus (M \cup M') \neq \emptyset \) because \(e \setminus (M \cup M') \neq \emptyset \).

It follows from the first case above applied with \(e' \) that
\[\text{for every } s \in M \cup M', \ (e' \setminus \{m\}) \cup \{s\} \in E(H[W \cup M']). \]
(17)

Recall that \(e \cap (M \cup M') = \{q\} \) by (16). Consequently, we have to show that \((e \setminus \{q\}) \cup \{s\} \in E(H[W \cup M']) \) for every \(s \in M \cup M' \). Let \(s \in M \cup M' \). We have
\[
(e' \setminus \{m\}) \cup \{s\} = ((e \setminus \{q\}) \cup \{m\}) \setminus \{m\} \cup \{s\} = (e \setminus \{q\}) \cup \{s\}.
\]

It follows from (17) that \((e \setminus \{q\}) \cup \{s\} \in E(H[W \cup M']). \)

Now, we can prove Proposition 4.

Proof of Proposition 4. For Assertion (A1) (see Definition 3), consider \(W \subseteq V(H) \). By Proposition 30, \(\mathcal{M}(H[W]) \) is a partitive family on \(W \). Furthermore, it follows from Lemmas 31, 32, 33, and 34 that Assertions (A2), (A3), (A4), and (A5) hold.

3.2 Gallai’s decomposition

The purpose of the subsection is to demonstrate Theorem 7. We use the following definition.

Definition 35. Let \(P \) be a partition of a set \(S \). Consider \(Q \subseteq P \). A subset \(W \) of \(S \) is a transverse of \(Q \) if \(W \subseteq \cup Q \) and \(|W \cap X| = 1 \) for each \(X \in Q \).

The next remark makes clearer Definition 5.
Remark 36. Consider a modular partition P of a hypergraph H. Let $e \in E(H)$ such that $|e|/P \geq 2$ (see Notation 17). Given $X \in e/P$, we have $e \cap X \neq \emptyset$, and $e \setminus X \neq \emptyset$ because $|e|/P \geq 2$. Since X is a module of H, we obtain $|e \cap X| = 1$. Therefore, e is a transverse of e/P. Moreover, since each element of e/P is a module of H, we obtain that each transverse of e/P is an edge of H.

Given $E \subseteq P$ such that $|E| \geq 2$, it follows that $E \in E(H/P)$ if and only if every transverse of E is an edge of H.

Lastly, consider a transverse t of P. The function θ_t from t to P, which maps each $x \in t$ to the unique element of P containing x, is an isomorphism from $H[t]$ onto H/P.

In the next proposition, we study the links between the modules of a hypergraph with those of its quotients.

Proposition 37. Given a modular partition P of a hypergraph H, the following two assertions hold

1. if M is a module of H, then M/P is a module of H/P (see Notation 17);
2. if M is a module of H/P, then $\cup M$ is a module of H.

Proof. For the first assertion, consider a module M of H. Consider a transverse t of P such that

$$\text{for each } X \in M/P, \ t \cap X \in M. \tag{18}$$

By Lemma 31, $M \cap t$ is a module of $H[t]$. Since θ_t is an isomorphism from $H[t]$ onto H/P (see Remark 36),

$$\theta_t(M \cap t), \text{ that is, } M/P$$

is a module of H/P.

For the second assertion, consider a module M of H/P. Let t be any transverse of P. Since θ_t is an isomorphism from $H[t]$ onto H/P, $(\theta_t)^{-1}(M)$ is a module of $H[t]$. Set

$$\mu = (\theta_t)^{-1}(M).$$

Denote the elements of M by X_0, \ldots, X_m. We verify by induction on $i \in \{0, \ldots, m\}$ that $\mu \cup (X_0 \cup \ldots \cup X_i)$ is a module of $H[t \cup (X_0 \cup \ldots \cup X_i)]$. It follows from Lemma 31 that $\mu \cup X_0$ is a module of $H[t \cup X_0]$. Given $0 \leq i < m$, suppose that $\mu \cup (X_0 \cup \ldots \cup X_i)$ is a module of $H[t \cup (X_0 \cup \ldots \cup X_i)]$. Similarly, it follows from Lemma 31 that $\mu \cup (X_0 \cup \ldots \cup X_i \cup X_{i+1})$ is a module of $H[t \cup (X_0 \cup \ldots \cup X_{i+1})]$. By induction, we obtain that $\mu \cup (X_0 \cup \ldots \cup X_m)$ is a module of $H[t \cup (X_0 \cup \ldots \cup X_m)]$.

Observe that

$$\mu \cup (X_0 \cup \ldots \cup X_m) = \cup M.$$

Lastly, denote the elements of $P \setminus M$ by Y_0, \ldots, Y_n. Using Lemma 31, we show by induction on $0 \leq j \leq n$ that $(\cup M)$ is a module of $H[t \cup (X_0 \cup \ldots \cup X_m) \cup (Y_0 \cup \ldots \cup Y_j)]$. Consequently, we obtain that $(\cup M)$ is a module of $H[t \cup (X_0 \cup \ldots \cup X_m) \cup (Y_0 \cup \ldots \cup Y_n)]$, that is, H.

\[\square \]
The next proposition is similar to Proposition 37 but it is devoted to strong modules. It is the analogue of Proposition 18 for hypergraphs.

Proposition 38. Given a modular partition P of a hypergraph H, the following two assertions hold:

1. If M is a strong module of H, then M/P is a strong module of H/P (see Notation 17).
2. Suppose that all the elements of P are strong modules of H. If M is a strong module of H/P, then $\cup M$ is a strong module of H.

Proof. For the first assertion, consider a strong module M of H. By the first assertion of Proposition 37, M/P is a module of H/P. To show that M/P is strong, consider a module \mathcal{M} of H/P such that $(M/P) \cap \mathcal{M} \neq \emptyset$. By the second assertion of Proposition 37, $\cup \mathcal{M}$ is a module of H. Furthermore, since $(M/P) \cap \mathcal{M} \neq \emptyset$, there exists $X \in (M/P) \cap \mathcal{M}$. We get $X \cap M \neq \emptyset$ and $X \subseteq \cup \mathcal{M}$. Therefore, $M \cap (\cup \mathcal{M}) \neq \emptyset$. Since M is a strong module of H, we obtain $\cup M \subseteq M$ or $M \subseteq \cup \mathcal{M}$. In the first instance, we get $\mathcal{M} \subseteq M/P$, and, in the second one, we get $M/P \subseteq \mathcal{M}$.

For the second assertion, suppose that all the elements of P are strong modules of H. Consider a strong module \mathcal{M} of H/P. To begin, we make two observations. First, if $\mathcal{M} = \emptyset$, then $\cup \mathcal{M} = \emptyset$, and hence $\cup \mathcal{M}$ is a strong module of H. Second, if $|\mathcal{M}| = 1$, then $\cup \mathcal{M} \in P$, and hence $\cup \mathcal{M}$ is a strong module of H because all the elements of P are. Now, suppose that

$$|\mathcal{M}| \geq 2. \quad (19)$$

By the second assertion of Proposition 37, $\cup \mathcal{M}$ is a module of H. To show that $\cup \mathcal{M}$ is strong, consider a module M of H such that $M \cap (\cup \mathcal{M}) \neq \emptyset$. Let $x \in M \cap (\cup \mathcal{M})$. Denote by X the unique element of P containing x. We get $X \in (M/P) \cap \mathcal{M}$. Since \mathcal{M} is a strong module of H/P, we obtain $M/P \subseteq \mathcal{M}$ or $\mathcal{M} \subseteq M/P$. In the first instance, we obtain $\cup(M/P) \subseteq \cup \mathcal{M}$, so we have $M \subseteq \cup(M/P) \subseteq \cup \mathcal{M}$. Lastly, suppose $\mathcal{M} \subseteq M/P$. It follows from (19) that

$$|M/P| \geq 2.$$

Let $Y \subseteq M/P$. We have $Y \cap M \neq \emptyset$. Since $|M/P| \geq 2$, we have $M \setminus Y \neq \emptyset$. Since Y is a strong module of P, we obtain $Y \subseteq M$. It follows that $M = \cup(M/P)$. Since $\mathcal{M} \subseteq M/P$, we obtain $\cup \mathcal{M} \subseteq \cup(M/P)$, and hence $\cup \mathcal{M} \subseteq M$. \[\square\]

Remark 39. We use the characterization of disconnected hypergraphs in terms of a quotient (see Lemma 41 below) to prove the analogue of Theorem 19 (see Theorem 42 below). Recall that a hypergraph H is connected if for distinct $v, w \in V(H)$, there exist a sequence (e_0, \ldots, e_n) of edges of H, where $n \geq 0$, satisfying $v \in e_0$, $w \in e_n$, and (when $n \geq 1$) $e_i \cap e_{i+1} \neq \emptyset$ for every $0 \leq i \leq n - 1$. Given a hypergraph H, a maximal connected subhypergraph of H is called a component of H.
Notation 40. Given a hypergraph H, the set of the components of H is denoted by $\mathcal{C}(H)$.

Let H be a hypergraph. For each component C of H, $V(C)$ is a module of H. Thus, $\{V(C) : C \in \mathcal{C}(H)\}$ is a modular partition of H. Furthermore, for each component C of H, $V(C)$ is a strong module of H. We conclude the remark with the following result.

Lemma 41. Given a hypergraph H with $v(H) \geq 2$, the following assertions are equivalent

1. H is disconnected;
2. H admits a modular bipartition P such that $|P| \geq 2$ and H/P is empty;
3. $\Pi(H) = \{V(C) : C \in \mathcal{C}(H)\}$, $|\Pi(H)| \geq 2$, and $H/\Pi(H)$ is empty.

Let H be a hypergraph such that $v(H) \geq 2$. Because of the maximality of the elements of $\Pi(H)$ (see Notation 40), it follows from the second assertion of Proposition 38 that all the strong modules of $H/\Pi(H)$ are trivial. To prove Theorem 42 we establish the following result, which is the analogue of Theorem 19.

Theorem 42. Given a hypergraph H, all the strong modules of H are trivial if and only if H is an empty hypergraph, a prime hypergraph or a complete graph.

Proof. Clearly, if H is an empty hypergraph, a prime hypergraph or a complete graph, then all the strong modules of H are trivial.

To demonstrate the converse, we prove the following. Given a hypergraph H, if all the strong modules of H are trivial, and H is decomposable, then H is an empty hypergraph or a complete graph.

To begin, we show that H admits a modular bipartition. Since H is decomposable, we can consider a maximal nontrivial module M of H under inclusion. Since M is a nontrivial module of H, M is not strong. Consequently, there exists a module N of H such that $M \cap N \neq \emptyset$, $M \setminus N \neq \emptyset$ and $N \setminus M \neq \emptyset$. Since $M \cap N \neq \emptyset$, $M \cup N$ is a module of H by Lemma 28. Clearly, $M \subseteq M \cup N$ because $N \setminus M \neq \emptyset$. Since M is a maximal nontrivial module of H, $M \cup N$ is a trivial module of H, so $M \cup N = V(H)$. Since $M \cap N \neq \emptyset$, $N \setminus M$ is a module of H by Lemma 29. But, $N \setminus M = V(H) \setminus M$ because $M \cup N = V(H)$. It follows that $\{M, V(H) \setminus M\}$ is a modular bipartition of H.

We have $H/\{M, V(H) \setminus M\}$ is an empty hypergraph or a complete graph. We distinguish the following two cases.

1. Suppose that $H/\{M, V(H) \setminus M\}$ is an empty hypergraph. We prove that H is an empty hypergraph. By Lemma 41 H is disconnected. Let $C \in \mathcal{C}(H)$. As recalled in Remark 39, $V(C)$ is a strong module of H. By hypothesis, $V(C)$ is trivial. Since H is disconnected, $V(C) \nsubseteq V(H)$. It follows that $v(C) = 1$. Therefore, H is isomorphic to $H/\{V(C) : C \in \mathcal{C}(H)\}$. It follows from Lemma 41 that H is empty.
2. Suppose that $H/\{M, V(H) \setminus M\}$ is a complete graph. We prove that H is a complete graph. Consider the graph H^c defined on $V(H)$ by

$$E(H^c) = (E(H) \setminus \binom{V(H)}{2}) \cup \binom{V(H)}{2} \setminus E(H). \quad (20)$$

It is easy to verify that H and H^c share the same modules. Therefore, they share the same strong modules. Consequently, all the strong modules of H^c are trivial, H^c is decomposable, and $\{M, V(H) \setminus M\}$ is a modular bipartition of H. Since $H/\{M, V(H) \setminus M\}$ is a complete graph, $H^c/\{M, V(H) \setminus M\}$ is empty. It follows from the first case that H^c is empty. Hence $E(H^c) = \emptyset$, and it follows from (20) that $E(H) = \binom{V(H)}{2}$.

Proof of Theorem 7. For a contradiction, suppose that $H/\Pi(H)$ admits a non-trivial strong module \mathcal{S}. By the second assertion of Proposition 38, $\cup \mathcal{S}$ is a strong module of H. Given $X \in \mathcal{S}$, we obtain $X \subseteq \cup \mathcal{S} \subseteq V(H)$, which contradicts the maximality of X. Consequently, all the strong modules of $H/\Pi(H)$ are trivial. To conclude, it suffices to apply Theorem 12 to $H/\Pi(H)$.

Definition 43. Let H be a hypergraph. As for tournaments (see Definition 20), the set of the nonempty strong modules of H is denoted by $\mathcal{D}(H)$. Clearly, $\mathcal{D}(H)$ endowed with inclusion is a tree called the *modular decomposition tree* of H. For convenience, set

$$\mathcal{D}_{\geq 2}(H) = \{X \in \mathcal{D}(H) : |X| \geq 2\}.$$

Moreover, we associate with each $X \in \mathcal{D}_{\geq 2}(H)$, the label $\varepsilon_H(X)$ defined as follows

$$\varepsilon_H(X) = \begin{cases} \triangle & \text{if } H[X]/\Pi(H[X]) \text{ is prime,} \\ \bigcirc & \text{if } H[X]/\Pi(H[X]) \text{ is empty} \\ \bullet & \text{if } H[X]/\Pi(H[X]) \text{ is a complete graph.} \end{cases}$$

To conclude, we prove the analogue of Proposition 21 for hypergraphs.

Proposition 44. Given a hypergraph H, consider a strong module M of H. For every $N \subseteq M$, the following two assertions are equivalent

1. N is a strong module of H;
2. N is a strong module of $H[M]$.

Proof. Let N be a subset of M. To begin, suppose that N is a strong module of H. Since N is a module of H, N is a module of $H[M]$ by Lemma 31. To show that N is a strong module of $H[M]$, consider a module X of $H[M]$ such that $N \cap X \neq \emptyset$. Since M is a module of H, X is a module of H by Lemma 32. Since N is a strong module of H, we obtain $N \subseteq X$ or $X \subseteq N$.

19
Conversely, suppose that \(N \) is a strong module of \(H[M] \). Since \(M \) is a module of \(H \), \(N \) is a module of \(H \) by Lemma 32. To show that \(N \) is a strong module of \(H \), consider a module \(X \) of \(H \) such that \(N \cap X \neq \emptyset \). We have \(M \cap X \neq \emptyset \) because \(N \subseteq M \). Since \(M \) is a strong module of \(H \), we obtain \(M \subseteq X \) or \(X \subseteq M \).

In the first instance, we get \(N \subseteq M \subseteq X \). Hence, suppose that \(X \subseteq M \). By Lemma 31, \(X \) is a module of \(H[M] \). Since \(N \) is a strong module of \(H[M] \) and \(N \cap X \neq \emptyset \), we obtain \(N \subseteq X \) or \(X \subseteq N \).

\[\square \]

4 Realization and decomposability

Consider a realizable 3-uniform hypergraph. Let \(T \) be a realization of \(H \). A module of \(T \) is clearly a module of \(H \), but the converse is false. Nevertheless, we have the following result (see Proposition 46). We need the following notation.

Notation 45. Let \(H \) be a 3-uniform hypergraph. For \(W \subseteq V(H) \) such that \(W \neq \emptyset \), \(\widetilde{W}^H \) denotes the intersection of the strong modules of \(H \) containing \(W \). Note that \(\widetilde{W}^H \) is the smallest strong module of \(H \) containing \(W \).

Proposition 46. Let \(H \) be a realizable 3-uniform hypergraph. Consider a realization \(T \) of \(H \). Let \(M \) be a module of \(H \). Suppose that \(M \) is not a module of \(T \), and set

\[\neg \tau M = \{ v \in V(H) \setminus M : M \text{ is not a module of } T[M \cup \{v\}] \}. \]

The following four assertions hold

1. \(M \cup (\neg \tau M) \) is a module of \(T \);
2. \(M \) is not a strong module of \(H \);
3. \(M \cup (\neg \tau M) \subseteq \widetilde{M}^H \);
4. \(\varepsilon_H(\widetilde{M}^H) = \emptyset \) and \(|\Pi(H[\widetilde{M}^H])| \geq 3 \).

Proof. Since \(M \) is not a module of \(T \), we have \(\neg \tau M \neq \emptyset \). Let \(v \in \neg \tau M \). Since \(M \) is not a module of \(T[M \cup \{v\}] \), we obtain

\[\begin{cases} N_T^{-}(v) \cap M \neq \emptyset \\ N_T^{+}(v) \cap M \neq \emptyset \end{cases} \]

(21)

Furthermore, consider \(v^- \in N_T^{-}(v) \cap M \) and \(v^+ \in N_T^{+}(v) \cap M \). Since \(M \) is a module of \(H \), \(v^- v^+ \notin E(H) \). Hence \(v^- vv^+ \notin E(C_3(T)) \). Since \(v^- v, vv^+ \in A(T) \), we get \(v^- v^+ \in A(T) \). Therefore, for each \(v \in \neg \tau M \), we have

\[\text{for } v^- \in N_T^{-}(v) \cap M \text{ and } v^+ \in N_T^{+}(v) \cap M, v^- v^+ \in A(T). \]

(22)

Now, consider \(v, w \in \neg \tau M \) such that \(vw \in A(T) \). Let \(v^- \in N_T^{-}(v) \cap M \). Suppose for a contradiction that \(v^- \in N_T^{+}(w) \cap M \). We get \(v^- vw \in E(C_3(T)), \)
and hence $v^-vw \in E(H)$. Since M is a module of H, we obtain $\mu vw \in E(H)$ for every $\mu \in M$. Thus, since $vw \in A(T)$, $\mu v \in A(T)$ for every $\mu \in M$. Therefore, $M \subseteq N_T(v)$, so $N_T(v) \cap M = \emptyset$, which contradicts (21). It follows that for $v, w \in \gamma_T M$, we have

$$\text{if } vw \in A(T), \text{ then } N_T(v) \cap M \subseteq N_T(w) \cap M. \quad (23)$$

For the first assertion, set

$$M^- = \{v \in V(H) \setminus M : vm \in A(T) \text{ for every } m \in M\}$$

and

$$M^+ = \{v \in V(H) \setminus M : mv \in A(T) \text{ for every } m \in M\}.$$

Note that $\{M^-, M, \gamma_T M, M^+\}$ is a partition of $V(H)$. Let $m^- \in M^-$ and $v \in \gamma_T M$. By (21), there exist $v^- \in N_T(v) \cap M$ and $v^+ \in N_T(v) \cap M$. Suppose for a contradiction that $vm^-v^- \in A(T)$. We get $vm^-v^- \in E(C_3(T))$. Hence $vm^-v^- \in E(H)$. Since $m^-v^+, v^-v^+ \in A(T)$, we have $vm^-v^- \notin E(C_3(T))$. Thus $vm^-v^- \notin E(H)$, which contradicts the fact that M is a module of H. It follows that $m^-v \in A(T)$ for any $m^- \in M^-$ and $v \in \gamma_T M$. Similarly, $vm^+ \in A(T)$ for any $m^+ \in M^+$ and $v \in \gamma_T M$. It follows that $M \cup (\gamma_T M)$ is a module of T.

For the second assertion, consider $v \in (\gamma_T M)$. Set

$$N_v = (N_T(v) \cap M) \cup \{w \in (\gamma_T M) : N_T(w) \cap M \subseteq N_T(v) \cap M\}. \quad (24)$$

We show that N_v is a module of T. If $m^- \in M^-$, then $m^-n \in A(T)$ for every $n \in N_v$ because $M \cup (\gamma_T M)$ is a module of T. Similarly, if $m^+ \in M^+$, then $nm^+ \in A(T)$ for every $n \in N_v$. Now, consider $m \in M \setminus N_T(v)$. We get $m \in M \setminus N_T(v)$. Therefore, we have $m \in M \setminus N_T(v) \cap M$ for every $w' \in \{w \in (\gamma_T M) : N_T(w) \cap M \subseteq N_T(v) \cap M\}$. Thus, $m \in N_T(v) \cap M$ for every $w' \in \{w \in (\gamma_T M) : N_T(w) \cap M \subseteq N_T(v) \cap M\}$. Since $m \in N_T(v) \cap M$, it follows from (22) that $v^-m \in A(T)$ for every $v^- \in N_T(v) \cap M$. Furthermore, since $m \in N_T(v) \cap M$ for every $w' \in \{w \in (\gamma_T M) : N_T(w) \cap M \subseteq N_T(v) \cap M\}$, we have $w'm \in A(T)$ for every $w' \in \{w \in (\gamma_T M) : N_T(w) \cap M \subseteq N_T(v) \cap M\}$. Therefore, we obtain $nm \in A(T)$ for every $n \in N_v$. Lastly, consider $u \in (\gamma_T M) \setminus N_v$. We get $u \in (\gamma_T M)$ and $N_T(u) \cap M \not\subseteq N_T(v) \cap M$. It follows from (23) that $vu \in A(T)$. By (24), again, we have $N_T(v) \cap M \not\subseteq N_T(u) \cap M$. Thus $v^-u \in A(T)$ for each $v^- \in N_T(v) \cap M$. Let $w' \in \{w \in (\gamma_T M) : N_T(w) \cap M \subseteq N_T(v) \cap M\}$. We get $N_T(w') \cap M \not\subseteq N_T(v) \cap M$. It follows from (23) that $w'u \in A(T)$. Consequently, N_v is a module of T for each $v \in (\gamma_T M)$. Hence,

$$N_v \text{ is a module of } H \text{ for each } v \in (\gamma_T M). \quad (25)$$

(We use (24) to prove the third assertion below.) Let $v \in (\gamma_T M)$. Clearly, $v \in N_v \setminus M$. Moreover, it follows from (21) that there exist $v^- \in N_T(v) \cap M$ and $v^+ \in N_T(v) \cap M$. We get $v^- \in M \cap N_T(v)$ and $v^+ \in M \setminus N_T(v)$. Since N_v is a module of H, M is not a strong module of H.

For the third assertion, consider $v \in (\gamma_T M)$. As previously proved, N_v is a module of H. Furthermore, by considering $v^- \in N_T(v) \cap M$ and $v^+ \in N_T(v) \cap M$,
we obtain $M \cap N_v \neq \emptyset$ and $M \setminus N_v \neq \emptyset$. Hence $\overline{M} \cap N_v \neq \emptyset$ and $\overline{M} \setminus N_v \neq \emptyset$. Since \overline{M} is a strong module of H, we get $N_v \subseteq \overline{M}$. Thus $v \in \overline{M}$ for every $v \in (\gamma_T M)$. Therefore $M \cup (\gamma_T M) \subseteq \overline{M}$.

For the fourth assertion, we prove that for each $v \in (\gamma_T M)$,

$$P_v = \{N_T(v) \cap M, N_T^+(v) \cap M, \gamma_T M\}$$

is a modular partition of $H[M \cup (\gamma_T M)]$. Let $v \in (\gamma_T M)$. By (22), $N_T(v) \cap M$ and $N_T^+(v) \cap M$ are modules of $T[M]$. Thus, $N_T(v) \cap M$ and $N_T^+(v) \cap M$ are modules of $H[M]$. Since M is a module of H, it follows from Lemma 32 that $N_T(v) \cap M$ and $N_T^+(v) \cap M$ are modules of H. By Lemma 31, $N_T(v) \cap M$ and $N_T^+(v) \cap M$ are modules of $H[M \cup (\gamma_T M)]$. Now, we prove that $\gamma_T M$ is a module of $H[M \cup (\gamma_T M)]$. It suffices to prove that there exists no $e \in E[H[M \cup (\gamma_T M)]]$ such that $e \cap (\gamma_T M) \neq \emptyset$ and $e \cap M \neq \emptyset$. Indeed, suppose to the contrary that there exists $e \in E[H[M \cup (\gamma_T M)]]$ such that $e \cap (\gamma_T M) \neq \emptyset$ and $e \cap M \neq \emptyset$. Since M is a module of H, we get $|e \cap M| = 1$ and $|e \cap (\gamma_T M)| = 2$. Therefore, there exist $v, w \in e \cap (\gamma_T M)$ and $m \in e \cap M$ such that $vw, wn \in E(H)$. By replacing v by w if necessary, we can assume that $vw \in A(T)$. Since $H = C_3(T)$, we obtain $vw, wm, mw \in A(T)$, which contradicts (23). Therefore, $\gamma_T M$ is a module of $H[M \cup (\gamma_T M)]$. Consequently, $P_v = \{N_T(v) \cap M, N_T^+(v) \cap M, \gamma_T M\}$ is a modular partition of $H[M \cup (\gamma_T M)]$. Furthermore, given $v \in (\gamma_T M)$, consider $v^{-} = N_T(v) \cap M$ and $v^{+} = N_T^+(v) \cap M$. It follows from (22) that $v^{-} v^{+} v \notin E(C_3(T))$, and hence $v^{-} v^{+} v \notin E(H)$. Consequently,

$$H[M \cup (\gamma_T M)]/P_v \text{ is empty.} \quad (26)$$

Since $M \cup (\gamma_T M)$ is a module of T by the first assertion above, $M \cup (\gamma_T M)$ is a module of H. By Lemma 31, $M \cup (\gamma_T M)$ is a module of $H[\overline{M}]$. Given $v \in (\gamma_T M)$, it follows from Lemma 32 that each element of P_v is a module of $H[\overline{M}]$.

Let $v \in (\gamma_T M)$. For a contradiction, suppose that there exist $Y \in P_v$ and $X \in \Pi(H[\overline{M}])$ such that $Y \not\subseteq X$. We get $X \cap (M \cup (\gamma_T M)) \neq \emptyset$. Since $M \cup (\gamma_T M)$ is a module of $H[\overline{M}]$ and X is a strong module of $H[\overline{M}]$, we have $M \cup (\gamma_T M) \subseteq X$ or $X \not\subseteq M \cup (\gamma_T M)$. Furthermore, since X is a strong module of $H[\overline{M}]$ and \overline{M} is a strong module of H, it follows from Proposition 44 that X is a strong module of H. Since $X \not\subseteq \overline{M}$, it follows from the minimality of \overline{M} that we do not have $M \cup (\gamma_T M) \subseteq X$. Therefore, $X \not\subseteq M \cup (\gamma_T M)$. Let $x \in X \setminus Y$. We have $x \in (M \cup (\gamma_T M)) \setminus Y$. Denote by Y' the unique element of $P_v \setminus \{Y\}$ such that $x \in Y'$. Also, denote by Z the unique element of $P_v \setminus \{Y, Y'\}$. We get $X \cap Y' \neq \emptyset$ and $Y \not\subseteq X \setminus Y'$. Since X is a strong module of $H[\overline{M}]$, we get $Y' \subseteq X$. Since $X \not\subseteq M \cup (\gamma_T M)$, we obtain $X \cap Z = \emptyset$. Thus $X = Y \cup Y'$. Since $H[M \cup (\gamma_T M)]/P_v$ is empty by (26), $\{Y, Z\}$ is a module of $H[M \cup (\gamma_T M)]/P_v$. By the second assertion of Proposition 37, $Y \cup Z$ is a module of $H[M \cup (\gamma_T M)]$. As previously seen, $M \cup (\gamma_T M)$ is a module of $H[\overline{M}]$. By Lemma 32, $Y \cup Z$ is a module of $H[\overline{M}]$, which contradicts the fact that X is a strong module of $H[\overline{M}]$. Consequently,

for any $Y \in P_v$ and $X \in \Pi(H[\overline{M}])$, we do not have $Y \not\subseteq X$. \quad (27)
Let $Y \in P_v$. Set

$$Q_Y = \{X \in \Pi(H[\tilde{M}^H]) : X \cap Y \neq \emptyset\}.$$

For every $X \in Q_Y$, we have $Y \not\subseteq X$ or $X \not\subseteq Y$ because X is a strong module of $H[\tilde{M}^H]$. By (27), we have $X \subseteq Y$. It follows that

$$\text{for each } Y \in P_v, \text{ we have } Y = \cup Q_Y.$$

Therefore, $|\Pi(H[\tilde{M}^H])| \geq |P_v|$, that is,

$$|\Pi(H[\tilde{M}^H])| \geq 3.$$

Finally, we prove that $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$ is empty. Suppose that $M \cup \langle \gamma_T M \rangle \not\subseteq \tilde{M}^H$, and set

$$Q_{M \cup \langle \gamma_T M \rangle} = \{X \in \Pi(H[\tilde{M}^H]) : X \cap (M \cup \langle \gamma_T M \rangle) \neq \emptyset\}.$$

Since $M \cup \langle \gamma_T M \rangle$ is a module of $H[\tilde{M}^H]$, it follows from the first assertion of Proposition 37 that $Q_{M \cup \langle \gamma_T M \rangle}$ is a module of $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$. Moreover, it follows from (28) that $|Q_{M \cup \langle \gamma_T M \rangle}| \geq 3$. Since each element of $\Pi(H[\tilde{M}^H])$ is a strong element of \tilde{M}^H, we get $M \cup \langle \gamma_T M \rangle = \cup Q_{M \cup \langle \gamma_T M \rangle}$. Since $M \cup \langle \gamma_T M \rangle \not\subseteq \tilde{M}^H$, we obtain that $Q_{M \cup \langle \gamma_T M \rangle}$ is a nontrivial module of $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$. Hence $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$ is decomposable. It follows from Theorem 4 that $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$ is empty. Lastly, suppose that $M \cup \langle \gamma_T M \rangle = \tilde{M}^H$. Suppose also that there exists $Y \in P_v$ such that $|Q_Y| \geq 2$. As previously, we obtain that Q_Y is a nontrivial module of $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$, and hence $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$ is empty. Therefore, suppose that $|Q_Y| = 1$ for every $Y \in P_v$. By (28), $\Pi(H[\tilde{M}^H]) = P_v$. Hence $H[\tilde{M}^H]/\Pi(H[\tilde{M}^H])$ is empty by (20).

The next result is an easy consequence of Proposition 47.

Corollary 47. Consider a realizable 3-uniform hypergraph H, and a realization T of H. The following two assertions are equivalent

- H and T share the same modules;
- for each strong module X of H such that $|X| \geq 2$, we have

$$\text{if } \varepsilon_H(X) = \emptyset, \text{ then } |\Pi(H[X])| = 2.$$

Proof. To begin, suppose that H and T do not share the same modules. There exists a module M of H, which is not a module of T. By the last assertion of Proposition 47, we obtain $\varepsilon_H(\tilde{M}^H) = \emptyset$ and $|\Pi(H[\tilde{M}^H])| \geq 3$.

Conversely, suppose that there exists a strong module X of H, with $|X| \geq 2$, such that $\varepsilon_H(X) = \emptyset$ and $|\Pi(H[X])| \geq 3$. It follows from the second assertion of Proposition 47 that X is a module of T. Observe that $T[X]$ realizes $H[X]$. Let $Y \in \Pi(H[X])$. Since Y is a strong module of $H[X]$, it follows from the second assertion of Proposition 47 applied to $H[X]$
$T[X]$ that Y is a module of $T[X]$. Thus, $\Pi(H[X])$ is a modular partition of $T[X]$. Since $H[X]/\Pi(H[X])$ is empty, $T[X]/\Pi(H[X])$ is a linear order. Denote by Y_{min} the smallest element of $T[X]/\Pi(H[X])$. Similarly, denote by Y_{max} the largest element of $T[X]/\Pi(H[X])$. Since $H[X]/\Pi(H[X])$ is empty, $(Y_{\text{min}}, Y_{\text{max}})$ is a module of $H[X]/\Pi(H[X])$. By the second assertion of Proposition 57, $Y_{\text{min}} \cup Y_{\text{max}}$ is a module of $H[X]$. Since X is a module of H, it follows from Lemma 32 that $Y_{\text{min}} \cup Y_{\text{max}}$ is a module of H. Lastly, since $|\Pi(H[X])| \geq 3$, there exists $Y \in \Pi(H[X]) \setminus \{Y_{\text{min}}, Y_{\text{max}}\}$. Since Y_{min} is the smallest element of $T[X]/\Pi(H[X])$ and Y_{max} is the largest one, we obtain $\max Y_{\text{min}} Y, Y_{\text{max}} \in A(T[X]/\Pi(H[X]))$. Therefore, for $y_{\text{min}} \in Y_{\text{min}}$, $y \in Y$ and $y_{\text{max}} \in Y_{\text{max}}$, we have $y_{\text{min}} y, y_{\text{max}} \in A(T[X])$, and hence $y_{\text{min}} y, y_{\text{max}} \in A(T)$. Consequently, $Y_{\text{min}} \cup Y_{\text{max}}$ is not a module of T. \hfill \Box

Now, we prove Theorem 10 by using Proposition 46 and the following lemma.

Lemma 48. Consider a realizable 3-uniform hypergraph H. Given a realization T of H, all the strong modules of H are strong modules of T.

Proof. Consider a strong module M of H. By the second assertion of Proposition 46, M is a module of T. Let N be a module of T such that $M \cap N \neq \emptyset$. Since N is a module of T, N is a module of H. Furthermore, since M is a strong module of H, we obtain $M \subseteq N$ or $N \subseteq M$. Therefore, M is a strong module of T. \hfill \Box

Proof of Theorem 10. By Lemma 48, all the strong modules of H are strong modules of T.

Conversely, consider a strong module M of T. Since M is a module of T, M is a module of H. Let N be a module of H such that $M \cap N \neq \emptyset$. If N is a module of T, then $M \subseteq N$ or $N \subseteq M$ because M is a strong module of T. Hence suppose that N is not a module of T. By the last assertion of Proposition 46

$$
\begin{align*}
&\left\{ H[\tilde{N}^H] / \Pi(H[\tilde{N}^H]) \right\} \text{ is empty} \\
&\text{and} \\
&|\Pi(H[\tilde{N}^H])| \geq 3.
\end{align*}
$$

(29)

Since $M \cap N \neq \emptyset$, $M \cap \tilde{N}^H \neq \emptyset$. Since \tilde{N}^H is a strong module of H, we get $\tilde{N}^H \subseteq M$ or $M \nsubseteq \tilde{N}^H$. Clearly, if $\tilde{N}^H \subseteq M$, then $N \subseteq M$. Thus, suppose that

$M \nsubseteq \tilde{N}^H$.

We prove that $M \subseteq N$. By Lemma 48, \tilde{N}^H is a strong module of T. Since M is a strong module of T, it follows from Proposition 44 that M is a strong module of $T[\tilde{N}^H]$. For each $X \in \Pi(H[\tilde{N}^H])$, X is a strong module of $T[\tilde{N}^H]$ by Lemma 48. Therefore, $\Pi(H[\tilde{N}^H])$ is a modular partition of $T[\tilde{N}^H]$. Clearly, $T[\tilde{N}^H] / \Pi(H[\tilde{N}^H])$ is a realization of $H[\tilde{N}^H] / \Pi(H[\tilde{N}^H])$. Set

$$Q_M = \{ X \in \Pi(H[\tilde{N}^H]) : M \cap X \neq \emptyset \}.$$

24
By the first assertion of Proposition 18, \(Q_M \) is a strong module of \(T[\tilde{N}^H]/\Pi(H[\tilde{N}^H]) \). Since \(H[\tilde{N}^H]/\Pi(H[\tilde{N}^H]) \) is empty by (20), \(T[\tilde{N}^H]/\Pi(H[\tilde{N}^H]) \) is a linear order. By Theorem 19, \(Q_M \) is a trivial module of \(T[\tilde{N}^H]/\Pi(H[\tilde{N}^H]) \).

For a contradiction, suppose that \(Q_M = \Pi(H[\tilde{N}^H]) \). Since \(\tilde{N}^H \) is a strong module of \(H \), we get \(\tilde{N}^H \subseteq \tilde{N}^H \), which contradicts \(\tilde{N}^H \subset \tilde{N}^H \). It follows that \(|Q_M| = 1\). Hence there exists \(X_M \in \Pi(H[\tilde{N}^H]) \) such that

\[
M \subseteq X_M.
\]

Since \(N \) is not a module of \(T \), it follows from the second assertion of Proposition 46 that \(N \) is not a strong module of \(H \). Thus \(N \subseteq \tilde{N}^H \). We obtain

\[
Q_N = \{ X \in \Pi(H[\tilde{N}^H]) : N \cap X \neq \emptyset \}.
\]

Since \(\tilde{N}^H \) is a strong module of \(H \), it follows from Proposition 44 that each element of \(\Pi(H[\tilde{N}^H]) \) is a strong module of \(H \). It follows from the minimality of \(\tilde{N}^H \) that \(|Q_N| \geq 2\). Since each element of \(\Pi(H[\tilde{N}^H]) \) is a strong module of \(H \), we obtain

\[
N = \cup Q_N.
\]

Since \(M \cap N \neq \emptyset \), we get \(X_M \in Q_N \). We obtain \(M \subseteq X_M \subseteq N \).

Lastly, we establish Theorem 11 by using Theorems 7 and 10.

Proof of Theorem 11. Suppose that \(H \) is prime. Since all the modules of \(T \) are modules of \(H \), \(T \) is prime.

Conversely, suppose that \(T \) is prime. Hence, all the strong modules of \(T \) are trivial. By Theorem 11, all the strong modules of \(H \) are trivial. We obtain

\[
\Pi(H) = \{ \{v\} : v \in V(H) \}.
\]

Thus, \(H \) is isomorphic to \(H/\Pi(H) \). It follows from Theorem 7 that \(H \) is an empty hypergraph, a prime hypergraph or a complete graph. Since \(T \) is prime, we have \(E(C_3(T)) \neq \emptyset \). Since \(E(C_3(T)) = E(H) \), there exists \(e \in E(H) \) such that \(|e| = 3\). Therefore, \(H \) is not an empty hypergraph, and \(H \) is not a graph. It follows that \(H \) is prime.

\[
\square
\]

5 Realizability of 3-uniform hypergraphs

The next proposition is useful to construct realizations from the modular decomposition tree of a realizable 3-uniform hypergraph. We need the following notation and remark.

Notation 49. Let \(H \) be a 3-uniform hypergraph. We denote by \(\mathcal{R}(H) \) the set of the realizations of \(H \).
Remark 50. Let H be a realizable 3-uniform hypergraph. Consider $T \in \mathcal{R}(H)$. It follows from Theorem 10 that

$$\mathcal{D}(H) = \mathcal{D}(T).$$

By the same, for each $X \in \mathcal{D}_2(H)$, we have

$$\Pi(H[X]) = \Pi(T[X]).$$

Therefore, for each $X \in \mathcal{D}_2(H)$, $T[X]/\Pi(T[X])$ realizes $H[X]/\Pi(H[X])$, that is,

$$T[X]/\Pi(T[X]) \in \mathcal{R}(H[X]/\Pi(H[X])).$$

Set

$$\mathcal{R}_2(H) = \bigcup_{X \in \mathcal{D}_2(H)} \mathcal{R}(H[X]/\Pi(H[X])).$$

We denote by $\delta_H(T)$ the function

$$\begin{align*}
\mathcal{D}_2(H) & \rightarrow \mathcal{R}_2(H) \\
Y & \mapsto T[Y]/\Pi(T[Y]).
\end{align*}$$

Lastly, we denote by $\mathcal{D}(H)$ the set of the functions f from $\mathcal{D}_2(H)$ to $\mathcal{R}_2(H)$ satisfying $f(Y) \in \mathcal{R}(H[Y]/\Pi(H[Y]))$ for each $Y \in \mathcal{D}_2(H)$. Under this notation, we obtain the function

$$\delta_H : \mathcal{R}(H) \rightarrow \mathcal{D}(H)$$

$$T \mapsto \delta_H(T).$$

Proposition 51. For a 3-uniform hypergraph, δ_H is a bijection.

Proof. To begin, we show that δ_H is injective. Let T and T' be distinct realizations of H. There exist distinct $v, w \in V(H)$ such that $vw \in A(T)$ and $vw \in A(T')$. Consider $Z_v, Z_w \in \Pi(H[\{v, w\}^H])$ (see Notation 13) such that $v \in Z_v$ and $w \in Z_w$. Since $\{v, w\}^H$ is the smallest strong module of H containing $\{v, w\}$, we obtain $Z_v \neq Z_w$. It follows from Theorem 10 that $\Pi(H[\{v, w\}^H]) = \Pi(T[\{v, w\}^H])$ and $\Pi(H[\{v, w\}^H]) = \Pi(T'[\{v, w\}^H])$. Since $vw \in A(T)$ and $vw \in A(T')$, we obtain

$$
\begin{align*}
Z_v Z_w & \in A(T[\{v, w\}^H]/\Pi(T[\{v, w\}^H])) \\
Z_w Z_v & \in A(T'[\{v, w\}^H]/\Pi(T'[\{v, w\}^H])).
\end{align*}
$$

Consequently, $\delta_H(T)(\{v, w\}^H) \neq \delta_H(T')(\{v, w\}^H)$. Thus, $\delta_H(T) \neq \delta_H(T')$.

Now, we prove that δ_H is surjective. Consider $f \in \mathcal{D}(H)$, that is, f is a function from $\mathcal{D}_2(H)$ to $\mathcal{R}_2(H)$ satisfying $f(Y) \in \mathcal{R}(H[Y]/\Pi(H[Y]))$ for each $Y \in \mathcal{D}_2(H)$. We construct $T \in \mathcal{R}(H)$ such that $\delta_H(T) = f$ in the following
manner. Consider distinct vertices v and w of H. Clearly, $\{v, w\}^H$ is a strong module of H such that $|\{v, w\}^H| \geq 2$. There exist $Z_v, Z_w \in \Pi(H[\{v, w\}^H])$ such that $v \in Z_v$ and $w \in Z_w$. Since $\{v, w\}^H$ is the smallest strong module of H containing v and w, we obtain $Z_v \neq Z_w$. Set

$$
\begin{aligned}
&\text{if } Z_v Z_w \in A(f(\{v, w\}^H)) , \\
&\text{and } \\
&\text{if } Z_w Z_v \in A(f(\{v, w\}^H)).
\end{aligned}
$$

(30)

We obtain a tournament T defined on $V(H)$.

Lastly, we verify that T realizes H. First, consider distinct vertices u, v, w of H such that $uvw \in E(H)$. There exist $Z_u, Z_v, Z_w \in \Pi(H[\{u, v, w\}^H])$ such that $u \in Z_u$, $v \in Z_v$, and $w \in Z_w$. For a contradiction, suppose that $Z_u = Z_v$. Since Z_u is a module of H and $uvw \in E(H)$, we get $w \in Z_u$. Thus, $Z_u = Z_v = Z_w$, which contradicts the fact that $\{u, v, w\}^H$ is the smallest strong module of H containing u, v, and w. It follows that $Z_u \neq Z_v$. Similarly, we have $Z_u \neq Z_w$ and $Z_v \neq Z_w$. It follows that $Z_u Z_v, Z_u Z_w \in E(H[\{u, v, w\}^H]/\Pi(H[\{u, v, w\}^H]))$. Since $f(\{u, v, w\}^H)$ realizes $H[\{u, v, w\}^H]/\Pi(H[\{u, v, w\}^H])$, we obtain $Z_u Z_v, Z_u Z_w, Z_w Z_u \in A(\{u, v, w\}^H)$. By exchanging u and v if necessary, assume that

$$Z_u Z_v, Z_v Z_w, Z_w Z_u \in A(f(\{u, v, w\}^H)).$$

Since $Z_u \neq Z_v$, we obtain $\{u, v\}^H = \{u, v, w\}^H$. Similarly, we have $\{u, w\}^H = \{u, v, w\}^H$ and $\{v, w\}^H = \{u, v, w\}^H$. It follows from (30) that $uv, uv, wu \in A(T)$. Hence, $T[\{u, v, w\}]$ is a 3-cycle.

Conversely, consider distinct vertices u, v, w of T such that $T[\{u, v, w\}]$ is a 3-cycle. There exist $Z_u, Z_v, Z_w \in \Pi(H[\{u, v, w\}^H])$ such that $u \in Z_u$, $v \in Z_v$, and $w \in Z_w$. For a contradiction, suppose that $Z_u = Z_v$. Since $\{u, v, w\}^H$ is the smallest strong module of H containing u, v, and w, we obtain $Z_u \neq Z_w$. Therefore, we have $\{u, w\}^H = \{u, v, w\}^H$ and $\{v, w\}^H = \{u, v, w\}^H$. For instance, assume that $Z_u Z_w \in A(f(\{u, v, w\}^H))$. It follows from (30) that $uw, vw \in A(T)$, which contradicts the fact that $T[\{u, v, w\}]$ is a 3-cycle. Consequently, $Z_u \neq Z_v$. It follows that $\{u, v\}^H = \{u, v, w\}^H$. Similarly, we have $\{u, w\}^H = \{u, v, w\}^H$ and $\{v, w\}^H = \{u, v, w\}^H$. For instance, assume that $uw, vw, wu \in A(T)$. It follows from (30) that $Z_u Z_v, Z_u Z_w, Z_w Z_u \in A(f(\{u, v, w\}^H))$. Since $f(\{u, v, w\}^H)$ realizes $H[\{u, v, w\}^H]/\Pi(H[\{u, v, w\}^H])$, we obtain $Z_u Z_v, Z_u Z_w \in E(H[\{u, v, w\}^H]/\Pi(H[\{u, v, w\}^H]))$. It follows that $uw \in E(H[\{u, v, w\}^H])$, and hence $uww \in E(H)$.

27
Consequently, $T \in \mathcal{R}(H)$. Let $X \in \mathcal{D}_2(H)$. As seen at the beginning of Remark 50, we have $\Pi(H[X]) = \Pi(T[X])$, and

$$T[X] / \Pi(T[X]) \in \mathcal{R}(H[X] / \Pi(H[X])).$$

Consider distinct elements Y and Z of $\Pi(H[X])$. For instance, assume that $YZ \in A(T[X] / \Pi(T[X]))$. Let $v \in Y$ and $w \in Z$. We obtain $vw \in A(T)$. Moreover, we have $\{v, w\}^H = X$ because $Y, Z \in \Pi(H[X])$ and $Y \neq Z$. It follows from (30) that $YZ \in A(f(X))$. Therefore,

$$T[X] / \Pi(T[X]) = f(X).$$

(31)

Since (31) holds for every $X \in \mathcal{D}_2(H)$, we have $\delta_H(T) = f$. \hfill \square

Theorem 12 is an easy consequence of Proposition 51.

Proof of Theorem 12. Clearly, if H is realizable, then $H[W]$ is also for every $W \in V(H)$. Conversely, suppose that $H[W]$ is realizable for every $W \in V(H)$ such that $H[W]$ is prime. We define an element f of $\mathcal{R}(H)$ as follows. Consider $Y \in \mathcal{D}_2(H)$. By Theorem 7, $H[Y] / \Pi(H[Y])$ is empty or prime. First, suppose that $H[Y] / \Pi(H[Y])$ is empty. We choose for $f(Y)$ any linear order defined on $\Pi(H[Y])$. Clearly, $f(Y) \in \mathcal{R}(H[Y] / \Pi(H[Y]))$. Second, suppose that $H[Y] / \Pi(H[Y])$ is prime. Consider a transverse W of $\Pi(H[Y])$ (see Definition 55). The function

$$\theta_W : W \rightarrow \Pi(H[Y]),$$

$$\theta_W : w \rightarrow \Pi(H[Y]),$$

is an isomorphism from $H[W]$ onto $H[Y] / \Pi(H[Y])$. Thus, $H[W]$ is prime. By hypothesis, $H[W]$ admits a realization T_W. We choose for $f(Y)$ the unique tournament defined on $\Pi(H[Y])$ such that θ_W is an isomorphism from T_W onto $f(Y)$. Clearly, $f(Y) \in \mathcal{R}(H[Y] / \Pi(H[Y]))$.

By Proposition 51, $(\delta_H)^{-1}(f)$ is a realization of H. \hfill \square

Theorem 12 leads us to study the realization of prime and 3-uniform hypergraphs. We need to introduce the analogue of Definition 22 for 3-uniform hypergraphs.

Definition 52. Given a prime and 3-uniform hypergraph H, a vertex v of H is critical if $H - v$ is decomposable. A prime and 3-uniform hypergraph is critical if all its vertices are critical.

For critical and 3-uniform hypergraphs, we obtain the following characterization, which is an immediate consequence of Theorems 11 and 28.

Theorem 53. Given a critical and 3-uniform hypergraph H, H is realizable if and only if $v(H)$ is odd, and H is isomorphic to $C_3(T_{v(H)})$, $C_3(U_{v(H)})$ or $C_3(W_{v(H)})$.

28
We pursue with the characterization of non critical, prime and 3-uniform hypergraphs that are realizable. We need the following notation.

Notation 54. Let H be a 3-uniform hypergraph. Consider a vertex x of H. Set
$$V_x = V(H) \setminus \{x\}.$$
We denote by G_x the graph defined on V_x as follows. Given distinct elements v and w of V_x,
$$vw \in E(G_x) \text{ if } xvw \in E(H) \text{ (note that the graph } G_x \text{ is used in [8]).}$$

Also, we denote by I_x the set of the isolated vertices of G_x. Lastly, suppose that $H - x$ admits a realization T_x. Consider a bipartition P of $V_x \setminus I_x$. Denote one element of P by $X^-\{x\}$, and the other one by $X^+\{x\}$. Now, denote by Y^- the set of $v \in I_x$ such that there exists a sequence v_0, \ldots, v_n satisfying
- $v_0 \in X^-$;
- $v_n = v$;
- $v_1, \ldots, v_n \in I_x$;
- for $i = 0, \ldots, n - 1$, $v_i v_{i+1} \in A(T_x)$.

Dually, denote by Y^+ the set of $v \in I_x$ such that there exists a sequence v_0, \ldots, v_n satisfying
- $v_0 \in X^+$;
- $v_n = v$;
- $v_1, \ldots, v_n \in I_x$;
- for $i = 0, \ldots, n - 1$, $v_i v_{i+1} \in A(T_x)$.

Theorem 55. Let H be a non critical, prime, and 3-uniform hypergraph. Consider a vertex x of H such that $H - x$ is prime. Suppose that $H - x$ admits a realization T_x. Then, H is realizable if and only if the following two assertions hold.

(M1) There exists a bipartition $\{X^-, X^+\}$ of $V_x \setminus I_x$ satisfying
- for each component C of G_x, with $v(C) \geq 2$, C is bipartite with bipartition $\{X^- \cap V(C), X^+ \cap V(C)\}$;
- for $v^- \in X^-$ and $v^+ \in X^+$, we have
 $$v^- v^+ \in E(G_x) \text{ if and only if } v^- v^+ \in A(T_x). \quad (32)$$

(M2) We have $Y^- \cap Y^+ = \emptyset$ and $Y^- \cup Y^+ = I_x$. Furthermore, for $x^- \in X^-$, $x^+ \in X^+$, $y^- \in Y^-$ and $y^+ \in Y^+$, we have $y^+ x^-, x^+ y^-, y^+ y^- \in A(T_x)$.

29
Moreover, if H is realizable, then there exists a unique realization T of H such that $T - x = T_x$. Precisely, suppose that there exists a realization T of H such that $T - x = T_x$. For $x^- \in X^-$, $x^+ \in X^+$, $y^- \in Y^-$ and $y^+ \in Y^+$, we have $xx^-, x^+x, xy^-, y^+x \in A(T)$.

Proof. To begin, suppose that H admits a realization T. Clearly, $T - x$ is a realization of $H - x$. Since T_x is a realization of $H - x$, we have $C_3(T_x) = C_3(T - x)$. Since $H - x$ is prime, it follows from Theorem 11 that $T - x$ is prime as well. Since $C_3(T_x) = C_3(T - x)$, it follows from Theorem 24 that $T_x = T - x$ or $(T - x)^*$. By exchanging T and T^* if necessary, we can assume that

$$T_x = T - x.$$

We show that G_x is bipartite. Consider a sequence (v_0, \ldots, v_{2n}) of distinct elements of V_x, where $n \geq 2$, such that $v_i v_{i+1} \in E(G_x)$ for every $0 \leq i \leq 2n - 1$. For instance, assume that $v_0 v_1 \in A(T_x)$. Hence $v_0 v_1 \in A(T)$. Since $v_0 v_1 \in E(G_x)$, we have $xv_0 v_1 \in E(H)$. Since T is a realization of H, with $v_0 v_1 \in A(T)$, we obtain $xv_0, v_1 x \in A(T)$. Since $v_1 v_2 \in E(G_x)$, we have $xv_1 v_2 \in E(H)$. Since T is a realization of H, with $v_1 x \in A(T)$, we obtain $xv_2, v_1 v_2 \in A(T)$. By continuing this process, we obtain

$$\begin{align*}
xv_0, xv_2, \ldots, xv_{2n} &\in A(T) \\
\text{and} & \\
v_1, \ldots, v_{2n-1} &\in A(T).
\end{align*}$$

Thus $xv_0, xv_{2n} \in A(T)$, and hence $T\{x, v_0, v_{2n}\}$ is not a 3-cycle. It follows that $xv_0 v_{2n} \notin E(H)$, so $xv_0 v_{2n} \notin E(G_x)$. Therefore, G_x does not contain odd cycles.

For Assertion (M1), consider a component C of G_x such that $v(C) \geq 2$. Consider distinct vertices c_0, c_1, c_2 of C such that $c_0 c_1, c_1 c_2 \in E(G_x)$. We show that

$$\begin{align*}
c_0 c_1, c_2 c_1 &\in A(T_x) \\
or & \\
c_1 c_0, c_1 c_2 &\in A(T_x),
\end{align*}$$

(33)

Otherwise, suppose that $c_0 c_1, c_1 c_2 \in A(T_x)$. Since $c_0 c_1, c_1 c_2 \in E(G_x)$, $T\{x, c_0, c_1\}$ is a 3-cycle. Hence, $x c_0, c_1 x \in A(T_x)$ because $c_0 c_1, c_1 c_2 \in A(T_x)$. We obtain $c_1 c_2, c_1 x \in A(T_x)$. Thus, $T\{x, c_1, c_2\}$ is not a 3-cycle, which contradicts $c_1 c_2 \in E(G_x)$. It follows that (33) holds. Now, denote by $V(C)^-$ the set of the vertices c^- of C such that there exists $c^+ \in V(C)$ satisfying $c^- c^+ \in E(G_x)$ and $c^- c^+ \in A(T_x)$. Dually, denote by $V(C)^+$ the set of the vertices c^+ of C such that there exists $c^- \in V(C)$ satisfying $c^+ c^- \in E(G_x)$ and $c^+ c^- \in A(T_x)$. Since C is a component of G_x, we have $V(C) = V(C)^- \cup V(C)^+$. Moreover, it follows from (33) that

$$V(C)^- \cap V(C)^+ = \emptyset.$$

Also, it follows from the definition of $V(C)^-$ and $V(C)^+$ that $V(C)^-$ and $V(C)^+$ are stable subsets of C. Therefore, C is bipartite with bipartition

30
\{V(C)^{-}, V(C)^{+}\}. Set \\
\[X^{-} = \bigcup_{C \in \varepsilon(G_x)} V(C)^{-} \quad \text{and} \quad X^{+} = \bigcup_{C \in \varepsilon(G_x)} V(C)^{+} \] (see Notation [40]).

Clearly, \(\{X^{-}, X^{+}\}\) is a bipartition of \(V_x \setminus I_x\). Consider again a component \(C\) of \(G_x\) such that \(v(C) \geq 2\). Since \(V(C)^{-} = X^{-} \cap V(C)\) and \(V(C)^{+} = X^{+} \cap V(C)\), \(C\) is bipartite with bipartition \(\{X^{-} \cap V(C), X^{+} \cap V(C)\}\). To prove that [32] holds, consider \(v^{-} \in X^{-}\) and \(v^{+} \in X^{+}\). First, suppose that \(v^{-}v^{+} \in E(G_x)\). Hence, \(v^{-}\) and \(v^{+}\) belong to the same component of \(G_x\). Denote it by \(C\). We obtain \(v^{-} \in V(C)^{-}\) and \(v^{+} \in V(C)^{+}\). By definition of \(V(C)^{-}\), there exists \(c^{-} \in V(C)\) such that \(v^{-}c^{-} \in E(G_x)\) and \(v^{-}c^{+} \in A(T_x)\). Since \(v^{-}v^{+} \in E(G_x)\), it follows from [33] that \(v^{-}v^{+} \in A(T_x)\). Second, suppose that \(v^{-}v^{+} \in A(T_x)\). Since \(v^{-} \in V(C)^{-}\), there exists \(c^{-} \in V(C)\) such that \(v^{-}c^{-} \in E(G_x)\) and \(v^{-}c^{+} \in A(T_x)\). It follows that \(xv^{-}, c^{-}x \in A(T)\). Similarly, since \(v^{+} \in V(C)^{+}\), there exists \(c^{+} \in V(C)\) such that \(xv^{-}, v^{+}x \in A(T)\). We obtain \(xv^{-}, v^{+}v^{-}, v^{+}x \in A(T)\). Thus, \(T[\{x, v^{-}, v^{+}\}]\) is a 3-cycle, so \(v^{-}v^{+} \in E(G_x)\).

For Assertion (M2), consider \(x^{-} \in X^{-}\). Denote by \(C\) the component of \(G_x\) such that \(x^{-} \in V(C)\). We have \(x^{-} \in V(C)^{-}\). Therefore, there exists \(c^{-} \in V(C)\) satisfying \(x^{-}c^{-} \in E(G_x)\) and \(x^{-}c^{+} \in A(T_x)\). Since \(T[\{x, x^{-}, c^{+}\}]\) is a 3-cycle and \(x^{-}c^{+} \in A(T)\), we get \(xx^{-} \in A(T)\). Hence,

\[
xx^{-} \in A(T) \quad \text{for every} \quad x^{-} \in X^{-}. \tag{34}
\]

Dually, we have

\[
x^{+}x \in A(T) \quad \text{for every} \quad x^{+} \in X^{+}. \tag{35}
\]

Now, consider \(y^{-} \in Y^{-}\). There exists a sequence \(v_0, \ldots, v_n\) satisfying \(v_0 \in X^{-}\), \(v_n = y^{-}\), \(v_1, \ldots, v_n \in I_x\), and \(v_i, v_{i+1} \in A(T_x)\) for \(i = 0, \ldots, n - 1\). We show that \(xx_i \in A(T_x)\) by induction on \(i = 0, \ldots, n\). By [34], this is the case when \(i = 0\). Consider \(i \in \{0, \ldots, n - 1\}\) and suppose that \(xx_i \in A(T_x)\). Since \(v_{i+1} \in I_x\), \(v_i, v_{i+1} \notin E(G_x)\). Thus \(T[\{x, v_i, v_{i+1}\}]\) is a linear order. Since \(xv_i, v_i, v_{i+1} \in A(T_x)\), we obtain \(xv_{i+1} \in A(T_x)\). It follows that

\[
xy^{-} \in A(T) \tag{36}
\]

for every \(y^{-} \in Y^{-}\). Dually, we have

\[
y^{+}x \in A(T) \tag{37}
\]

for every \(y^{+} \in Y^{+}\). It follows from [36] and [37] that \(Y^{-} \cap Y^{+} = \emptyset\). By definition of \(Y^{-}\) and \(Y^{+}\), \(Y^{-} \subseteq I_x\) and \(Y^{+} \subseteq I_x\). Set

\[
W = I_x \setminus (Y^{-} \cup Y^{+}).
\]

Let \(w \in W\). Since \(w \notin Y^{-}\), we have \(wz^{-} \in A(T_x)\) for every \(z^{-} \in X^{-} \cup Y^{-}\). Therefore,

\[
wz^{-} \in A(T_x) \tag{38}
\]
for \(w \in W \) and \(z^- \in X^- \cup Y^- \). Dually,
\[
z^+ w \in A(T_x)
\] (39)
for \(w \in W \) and \(z^+ \in X^+ \cup Y^+ \). It follows from (34), (35), (36), (37), (38) and (39) that \(\{x\} \cup W \) is a module of \(T \). Since \(H \) is prime, it follows from Theorem 11 that \(T \) is prime as well. Therefore, \(W = \emptyset \), so
\[
Y^- \cup Y^+ = I_x.
\]

It follows also from (34), (35), (36) and (37) that \(T \) is the unique realization of \(H \) such that \(T - x = T_x \). To conclude, consider \(x^- \in X^- \), \(x^+ \in X^+ \), \(y^- \in Y^- \) and \(y^+ \in Y^+ \). Since \(y^- \notin Y^+ \), \(x^+ y^- \notin A(T_x) \). Dually, we have \(y^+ x^- \notin A(T_x) \). It follows from (36) and (37) that \(y^+ x, xy^- \notin A(T_x) \). Since \(y^-, y^+ \notin I_x \), \(y^-y^+ \notin E(G_x) \). Thus, \(T[\{x, y^-, y^+\}] \) is a linear order. Consequently, we have \(y^-y^+ \notin A(T_x) \).

Conversely, suppose that Assertions (M1) and (M2) hold. Let \(T \) be the tournament defined on \(V(H) \) by
\[
\begin{align*}
T - x &= T_x, \\
&\text{for every } z^- \in X^- \cup Y^-, \ xz^- \in A(T), \\
&\text{and} \\
&\text{for every } z^+ \in X^+ \cup Y^+, \ z^+x \in A(T).
\end{align*}
\] (40)

We verify that \(T \) is a realization of \(H \). Since \(T_x \) realizes \(H) - x \), it suffices to verify that for distinct \(v, w \in V_x \), \(vw \in E(G_x) \) if and only if \(T[\{x, v, w\}] \) is a 3-cycle. Hence, consider distinct \(v, w \in V_x \). First, suppose that \(vw \in E(G_x) \). Denote by \(C \) the component of \(G_x \) containing \(v \) and \(w \). Since Assertion (M1) holds, \(C \) is bipartite with bipartition \(\{X^- \cap V(C), X^+ \cap V(C)\} \). By exchanging \(v \) and \(w \) if necessary, we can assume that \(v \in X^- \cap V(C) \) and \(w \in X^+ \cap V(C) \). It follows from (32) that \(vw \in A(T_x) \). Furthermore, it follows from (10) that \(xv \in A(T) \) and \(wx \in A(T) \). Therefore, \(T[\{x, v, w\}] \) is a 3-cycle. Second, suppose that \(T[\{x, v, w\}] \) is a 3-cycle. By exchanging \(v \) and \(w \) if necessary, we can assume that \(vw, wx, xv \in A(T) \). It follows from (10) that \(v \in X^- \cup Y^- \) and \(w \in X^+ \cup Y^+ \).

Moreover, since Assertion (M2) holds and \(vw \in A(T_x) \), we obtain \(v \in X^- \) and \(w \in X^+ \). It follows from (32) that \(vw \in E(G_x) \). \(\square \)

We conclude by counting the number of realizations of a realizable 3-uniform hypergraph. This counting is an immediate consequence of Proposition 51. We need the following notation.

Notation 56. Let \(H \) be a 3-uniform hypergraph. Set
\[
\begin{align*}
\mathcal{D}_\triangle(H) &= \{X \in \mathcal{D}_2(H) : \varepsilon_H(X) = \triangle\} \text{ (see Definition 13)} \\
\text{and} \\
\mathcal{D}_\circ(H) &= \{X \in \mathcal{D}_2(H) : \varepsilon_H(X) = \circ\}.
\end{align*}
\]

Corollary 57. For a realizable 3-uniform hypergraph, we have
\[
|\mathcal{D}(H)| = 2^{\left|\mathcal{D}_\triangle(H)\right|} \times \prod_{X \in \mathcal{D}_\circ(H)} |\Pi(H[X])|!.
\]

32
References

[1] P. Bonizzoni, G. Della Vedova, An algorithm for the modular decomposition of hypergraphs, J. Algorithms 32 (1999) 65–86.

[2] A. Boussaïri, P. Ille, G. Lopez, S. Thomassé, The C_3-structure of the tournaments, Discrete Math. 277 (2004) 29–43.

[3] M. Chein, M. Habib, M.C. Maurer, Partitive hypergraphs, Discrete Math. 37 (1981) 35–50.

[4] A. Courrier, M. Habib, A new linear algorithm for modular decomposition, in: S. Tison (Ed.), Trees in algebra and programming, in: Lecture Notes in Comput. Sci., vol. 787, Springer, Berlin, 1994, pp. 68–84.

[5] A. Ehrenfeucht, T. Harju, G. Rozenberg, The Theory of 2-Structures, A Framework for Decomposition and Transformation of Graphs, World Scientific, Singapore, 1999.

[6] A. Ehrenfeucht, G. Rozenberg, Theory of 2-structures, Part II: representations through tree labelled families, Theoret. Comput. Sci. 70 (1990) 305–342.

[7] N.D. Filippov, L.N. Shevrin, Partially ordered sets and their comparability graphs, Siberian Math. J. 11 (1970) 497–509.

[8] P. Frankl, Z. Füredi, An exact result for 3-graphs, Discrete Math. 50 (1984) 323–328.

[9] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25–66.

[10] A. Ghoulia-Hari, Caractérisation des graphes non orientés dont on peut orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre, C. R. Acad. Sci. Paris Série I 254 (1962) 1370–1371.

[11] P. Ille, J.-X. Rampon, A Counting of the minimal realizations of the posets of dimension two, Ars Combin. 78 (2006) 157–165.

[12] F. Maffray, M. Preissmann, A translation of Tibor Gallai’s paper: Transitiv orientierbare Graphen, in: J.L. Ramirez-Alfonsin and B.A. Reed (Eds.), Perfect Graphs, Wiley, New York, 2001, pp. 25–66.

[13] J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993), 191–205.

[14] J. Spinrad, P4-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263–291.