ON EQUIVARIANTLY FORMAL 2-TORUS MANIFOLDS

LI YU

Abstract. A 2-torus manifold is a closed connected smooth \(n\)-manifold with a non-free effective smooth \(\mathbb{Z}_2^n\)-action. In this paper, we prove that a 2-torus manifold is equivariantly formal if and only if the \(\mathbb{Z}_2^n\)-action is locally standard and every face of its orbit space (including the whole orbit space) is mod 2 acyclic. Our study is parallel to the study of torus manifolds with vanishing odd-degree cohomology by M. Masuda and T. Panov in [27]. As an application, we determine when such kind of 2-torus manifolds can have regular \(m\)-involutions (i.e. involutions with only isolated fixed points of the maximum possible number).

1. Introduction

Let \(G\) be a compact Lie group and \(BG\) be the classifying space of \(G\). For a \(G\)-space \(X\), the \(G\)-equivariant cohomology of \(X\) with coefficients in a field \(k\) is the singular cohomology of the Borel construction \(X_G\) (see [6])

\[H^*_G(X; k) := H^*(X_G; k). \]

There is a natural fibration \(X \to X_G \to BG\) associated to \(X_G\) called the Borel fibration. If the inclusion of the fiber \(i_X : X \to X_G\) induces a surjection on cohomology \(i_X : H^*_G(X; k) \to H^*(X; k)\), \(X\) is called called (cohomologically) equivariantly formal over \(k\). This term was coined in 1998 by Goresky, Kottwitz, and MacPherson in [18]. But this condition had already been studied by A. Borel in [5, §4] and [6, Ch. XII] where \(X\) is called totally non-homologous to zero in \(X_G\) (also see [7, Ch. VII]).

For some special groups \(G\) shown below, the equivariant formality of a \(G\)-action can be interpreted in some other ways (see [5, §4], [11 Ch. 3] and [2, Sec. 4]).

- When \(BG\) is simply connected (e.g. \(G\) is a torus \(T^r = (S^1)^r\)), \(X\) is equivariantly formal if and only if the Serre spectral sequence of the Borel fibration of \(X\) degenerates at the \(E_2\) stage.
• When G is the p-torus \mathbb{Z}_p^r (p is prime), X being equivariantly formal is equivalent to either one of the following conditions.

 (i) The Serre spectral sequence with \mathbb{Z}_p-coefficients of the Borel fibration of X degenerates at the E_2 stage and the induced action of \mathbb{Z}_p^r on $H^*(X; \mathbb{Z}_p)$ is trivial.

 (ii) $H^*_\mathbb{Z}_p(X; \mathbb{Z}_p) \cong H^*(X; \mathbb{Z}_p) \otimes H^*(B\mathbb{Z}_p^r; \mathbb{Z}_p)$ is a free $H^*(B\mathbb{Z}_p^r; \mathbb{Z}_p)$-module.

Due to the above fact, we call a \mathbb{Z}_p^r-action on X weakly equivariantly formal if we only assume that the Serre spectral sequence (with \mathbb{Z}_p-coefficients) of the Borel fibration of X degenerates at the E_2 stage. So an equivariantly formal \mathbb{Z}_p^r-action is always weakly equivariantly formal.

When $G = T^r$ or \mathbb{Z}_2^r and $k = \mathbb{Q}$ or \mathbb{Z}_2 respectively, there is another equivalent description of equivariantly formal G-actions given by the so called “Atiyah-Bredon sequence” (see Bredon \cite{8} and Franz-Puppe \cite{16} for the T^r case, and Allday-Franz-Puppe \cite{2} for the \mathbb{Z}_2^r case). In addition, there are many sufficient conditions for a T^r-action to be equivariantly formal (for example: vanishing of odd-degree cohomology, all homology classes being representable by T^r-invariant cycles, etc.).

Equivariantly formal G-spaces provide many nice examples in geometry and topology. Some of them are:

• Smooth compact toric varieties.

• Hamiltonian G-actions on symplectic manifolds which have moment maps (see Atiyah-Bott \cite{3} and Jeffrey-Kirwan \cite{22}).

• Quasitoric manifolds and small covers defined in Davis-Januszkiewicz \cite{14}.

• Torus manifolds with vanishing odd degree cohomology (see Masuda-Panov \cite{27}).

In addition, when $G = T^r$ or $(\mathbb{Z}_p)^r$, the following theorem gives us an easy way to recognize equivariantly formal G-actions.

Theorem 1.1 (see Theorem (3.10.4) in Allday-Puppe \cite{1}). Let $G = T^r$ or $(\mathbb{Z}_p)^r$ where p is a prime and $k = \mathbb{Q}$ or \mathbb{Z}_p respectively. Let X be a paracompact G-space with only finitely many orbit types and $\dim_k H^*(X; k) < \infty$. Then the fixed point set X^G always satisfies

$$\dim_k H^*(X^G; k) \leq \dim_k H^*(X; k)$$

where the equality holds if and only if X is equivariantly formal over k. Here $\dim_k H^*(X; k)$ denotes the sum of the rank of the cohomology groups of X in all dimensions over k.
A very special case is when $G = \mathbb{Z}_2$ and $X^{\mathbb{Z}_2}$ consists only of isolated points. By Theorem 1.1, we have

$$|X^{\mathbb{Z}_2}| = \dim_{\mathbb{Z}_2} H^*(X^{\mathbb{Z}_2}; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H^*(X; \mathbb{Z}_2)$$

Such a \mathbb{Z}_2-action on X is equivariantly formal if and only if the number of the fixed points reaches the maximum, i.e. $|X^{\mathbb{Z}_2}| = \dim_{\mathbb{Z}_2} H^*(X; \mathbb{Z}_2)$. In this case, the involution determined by the \mathbb{Z}_2-action is called an m-involution on X (this term was named by Puppe [28]).

There is an interesting relation between m-involutions on closed manifolds and binary codes. It was shown in [28] that one can obtain a self-dual binary code from any m-involution on an odd-dimensional closed manifold. This motivates the study in Chen-Lü-Yu [12] on the m-involutions on a special kind of closed manifolds called small covers (see [14]). In this paper, we want to study a more general type of closed manifolds with 2-torus actions defined below.

Definition 1.2 (see Lü-Masuda [25]). A 2-torus manifold is a closed connected smooth n-manifold W with a non-free effective smooth action of \mathbb{Z}_2^n. For such a manifold W, since $\dim(W) = n = \text{rank}(\mathbb{Z}_2^n)$ and the \mathbb{Z}_2^n-action is effective, the fixed point set $W^{\mathbb{Z}_2^n}$ must be discrete. Then since W is compact, $W^{\mathbb{Z}_2^n}$ is a finite set of isolated points (if not empty). Note that we require all 2-torus manifolds to be connected in this paper.

- For brevity, we call a 2-torus manifold W equivariantly formal or weakly equivariantly formal if the \mathbb{Z}_2^n-action on W is so, respectively.
- We call W locally standard if for every point $x \in W$, there is a \mathbb{Z}_2^n-invariant neighborhood V_x of x such that V_x is equivariantly homeomorphic to an invariant open subset of a real n-dimensional faithful linear representation space of \mathbb{Z}_2^n. An equivalently way to describe such a neighborhood V_x is: V_x is weakly equivariantly homeomorphic to an invariant open subset of \mathbb{R}^n under the standard \mathbb{Z}_2^n-action defined by: for any $(x_1, \cdots, x_n) \in \mathbb{R}^n$ and $(g_1, \cdots, g_n) \in \mathbb{Z}_2^n$,

$$(g_1, \cdots, g_n) \cdot (x_1, \cdots, x_n) \mapsto ((-1)^{g_1} x_1, \cdots, (-1)^{g_n} x_n).$$

- Every non-zero element $g \in \mathbb{Z}_2^n$ determines a nontrivial involution τ_g on W, called a regular involution on W.

We will prove in Theorem 3.3 that if a 2-torus manifold is equivariantly formal, then it must be locally standard.

For an n-dimensional locally standard 2-torus manifold W, the orbit space $Q = W/\mathbb{Z}_2^n$ naturally becomes a connected smooth nice n-manifold with corners and with non-empty boundary (since the \mathbb{Z}_2^n-action is non-free). Moreover,
The \mathbb{Z}_2-action on W determines a characteristic function

$$\lambda_W : \{F_1, \cdots, F_m\} \to \mathbb{Z}_2^n$$

where F_1, \cdots, F_m are all the facets (codimension-one faces) of Q.

The free part of the \mathbb{Z}_2^n-action on W determines a principal \mathbb{Z}_2^n-bundle ξ_W over Q.

It is shown in Lü-Masuda [25, Lemma 3.1] that W can be recovered from the data (Q, λ_W, ξ_W) up to equivariant homeomorphism. In addition, let $\pi : W \to Q$ denote the orbit map. If f is a codimension-k face of Q, then $W_f := \pi^{-1}(f)$ is a codimension-k submanifold of W called a facial submanifold of W. Let G_f denote the isotropy subgroup of W_f. Then W_f is also a 2-torus manifold with respect to the induced action of \mathbb{Z}_2^n / G_f. In the following, when we say W_f is equivariantly formal, we always consider W_f being equipped with the induced \mathbb{Z}_2^n / G_f-action from W.

The main purpose of this paper is to answer the following two questions.

Question-1: What kind of 2-torus manifolds are equivariantly formal?

Question-2: What kind of locally standard 2-torus manifolds have regular m-involutions?

Generally speaking, it is very hard to compute the equivariant cohomology of a locally standard 2-torus manifold W directly from its orbit space Q and the data (λ_W, ξ_W). So it is difficult to judge whether W is equivariantly formal by directly verifying the condition in the definition. Meanwhile, it was proved by Masuda-Panov [27] that a smooth T^n-action on a connected smooth 2n-manifold with non-empty fixed points is equivariantly formal if and only if the T^n-action is locally standard and every face of its orbit space is acyclic (also see Goertsches-Töben [19, Theorem 10.19] for a reformulation of this result). This result is also implied by Franz [15, Theorem 1.3]. The arguments in [27] inspire us to prove the following parallel result for 2-torus manifolds.

Theorem 1.3. Let W be a 2-torus manifold with orbit space Q.

(i) W is equivariantly formal if and only if W is locally standard and Q is mod 2 face-acyclic.

(ii) W is equivariantly formal and $H^*(W; \mathbb{Z}_2)$ is generated by its degree-one part as a ring if and only if W is locally standard and Q is a mod 2 homology polytope.

The definitions of “mod 2 face-acyclic” and “mod 2 homology polytope” are given in Definition 2.1.

The main strategy in our proof of Theorem 1.3 is very similar to the strategy used in [27] for equivariantly formal torus manifolds. Besides, our proof uses the
mod 2 GKM theory introduced in Biss-Guillemin-Holm [4] which allows us to observe the equivariant cohomology of an equivariantly formal 2-torus manifold by restricting to its fixed point set (see Section 2.3).

Remark 1.4. If a 2-torus manifold W is assumed to be locally standard in the first place, Theorem 1.3(i) can also be derived from Chaves [11, Theorem 1.1] whose proof uses the theory of syzygies in the mod 2 equivariant cohomology (see Allday-Franz-Puppe [2, Theorem 10.2]) and the mod 2 “Atiyah-Bredon sequence”. But we will use a completely different approach in our proof here.

Using Theorem 1.3 we can easily derive the following theorem which gives an answer to Question-2.

Theorem 1.5. Let W be an n-dimensional locally standard 2-torus manifold with orbit space Q. Then there exists a regular m-involution on W if and only if Q is mod 2 face-acyclic (or equivalently W is equivariantly formal) and the values of the characteristic function λ_W on all the facets of Q consist exactly of a linear basis of \mathbb{Z}_2^n.

A nice manifold with corners Q is called k-colorable if we can assign k different colors to all the facets of Q so that no two adjacent facets are of the same color. Clearly, there exists a 2-torus manifold over Q whose characteristic function takes value in a linear basis of \mathbb{Z}_2^n if and only if Q is n-colorable.

Remark 1.6. By Theorem 1.5 and the construction in Puppe [28], we can obtain a self-dual binary code C_Q from an n-colorable mod 2 face-acyclic nice smooth n-manifold with corners Q when n is odd. This generalizes the self-dual binary codes from n-colorable simple convex n-polytopes in Chen-Lü-Yu [12]. Moreover, we can write down C_Q explicitly in the same way as the self-dual binary code obtained in [12, Corollary 4.5].

The paper is organized as follows. In Section 2 we review the definitions and some basic facts of locally standard 2-torus manifolds and quote some well known results that are useful for our proof. In Section 3 we study various properties of equivariantly formal 2-torus manifolds. Since the philosophy of our study is very similar to the study of torus manifolds with vanishing odd degree cohomology in Masuda-Panov [27], many lemmas in this paper are parallel to those in [27]. In Section 4 we prove some special properties of equivariantly formal 2-torus manifolds whose mod 2 cohomology rings are generated by their degree-one part. Then finally in Section 5 we prove Theorem 1.3 and Theorem 1.5.

2. Preliminaries

2.1. Manifolds with corners and locally standard 2-torus manifolds.
Recall a (smooth) n-dimensional manifold with corners Q is a Hausdorff space together with a maximal atlas of local charts onto open subsets of $\mathbb{R}^n_{\geq 0}$ such that the transition functions are (diffeomorphisms) homeomorphisms which preserve the codimension of each point. Here the codimension $c(x)$ of a point $x = (x_1, \cdots, x_n)$ in $\mathbb{R}^n_{\geq 0}$ is the number of x_i that is 0. So we have a well defined map $c : Q \to \mathbb{Z}_{\geq 0}$ where $c(q)$ is the codimension of a point $q \in Q$. An open face of Q of codimension k is a connected component of $c^{-1}(k)$. A (closed) face is the closure of an open face. A face of codimension one is called a facet of Q. When Q is connected, we also consider Q itself as a face (of codimension zero).

- For any $k \in \mathbb{Z}_{\geq 0}$, the k-skeleton of Q is the union of all the faces of Q with dimension $\leq k$.
- The face poset of Q, denoted by \mathcal{P}_Q, is the set of faces of Q ordered by reversed inclusion (so Q is the initial element).

A manifold with corners Q is said to be nice if either its boundary ∂Q is empty or ∂Q is non-empty and any codimension-k face of Q is a component of the intersection of k different facets in Q. If Q is nice, \mathcal{P}_Q is a simplicial poset. But in general \mathcal{P}_Q may not be the face poset of a simplicial complex. Indeed, \mathcal{P}_Q is the face poset of a simplicial complex if and only if all non-empty multiple intersections of facets of Q are connected (see [27, Sec. 5.2]).

Definition 2.1. Let Q be a nice manifold with corners.

- We call Q mod 2 face-acyclic if every face of Q (including Q itself) is a mod 2 acyclic space.
- We call Q a mod 2 homology polytope if Q is mod 2 face-acyclic and \mathcal{P}_Q is the face poset of a simplicial complex.

A topological space B is called mod 2 acyclic if $H^*(B; \mathbb{Z}_2) \cong H^*(\text{pt}; \mathbb{Z}_2)$.

It is not difficult to prove the following lemma (see [27, p.743 Remark] for a short argument).

Lemma 2.2. If Q is mod 2 face-acyclic, then every face of Q has a vertex and the 1-skeleton of Q is connected.

In the following, let W be an n-dimensional locally standard 2-torus manifold with orbit space Q. Then Q is a smooth nice manifold with corners with $\partial Q \neq \emptyset$. Let $\pi : W \to Q$ denote the projection and let the set of facets of Q be

$$\mathcal{F}(Q) = \{F_1, \cdots, F_m\}.$$

Then $\pi^{-1}(F_1), \cdots, \pi^{-1}(F_m)$ are embedded codimension-one closed connected submanifolds of W, called the characteristic submanifolds of W. Moreover, the \mathbb{Z}_2^n-action on W determines a characteristic function on Q which is a map

$$\lambda_W : \mathcal{F}(Q) \to \mathbb{Z}_2^n$$

(2)
where $\lambda_W(F_i) \in \mathbb{Z}_2^n$ is the generator of the \mathbb{Z}_2 subgroup that pointwise fixes the submanifold $\pi^{-1}(F_i)$, $1 \leq i \leq m$. Since the \mathbb{Z}_2^n action is locally standard, the function λ_W satisfies the following linear independence condition:

whenever the intersection of k different facets F_{i_1}, \ldots, F_{i_k} is non-empty, the elements $\lambda_W(F_{i_1}), \ldots, \lambda_W(F_{i_k})$ are linearly independent when viewed as vectors of \mathbb{Z}_2^n over the field \mathbb{Z}_2.

For a codimension-k face f of Q, let F_{i_1}, \ldots, F_{i_k} be all the facets containing f. Then the isotropy subgroup of the facial submanifold W_f is

$$G_f = \text{the subgroup generated by } \{\lambda_W(F_{i_1}), \ldots, \lambda_W(F_{i_k})\} \subseteq \mathbb{Z}_2^n.$$

By the linear independence condition of λ_W, $G_f \cong \mathbb{Z}_2^k$. Hence W_f is also a 2-torus manifold with respect to the induced action of $\mathbb{Z}_2^n/G_f \cong \mathbb{Z}_2^{n-k}$.

In addition, W determines a principal \mathbb{Z}_2^n-bundle over Q as follows. We take a small invariant open tubular neighborhood for each characteristic submanifold of W and remove their union from W. Then the \mathbb{Z}_2^n-action on the resulting space is free and its orbit space can naturally be identified with Q, which gives a principal \mathbb{Z}_2^n-bundle over Q, denoted by ξ_W. It is shown in Lü-Masuda [25] that W can be recovered (up to equivariant homeomorphism) from (Q, ξ_W, λ_W). For example, when ξ_W is a trivial \mathbb{Z}_2^n-bundle, W is equivariantly homeomorphic to the following “canonical model” determined by (Q, λ_W).

$$M_Q(\lambda_W) := Q \times \mathbb{Z}_2^n / \sim$$

where $(q, g) \sim (q', g')$ if and only if $q = q'$ and $g - g' \in G_{f(q)}$ where $f(q)$ is the unique face of Q that contains q in its relative interior. This canonical model is a generalization of a result of Davis-Januszkiewicz [14, Prop. 1.8]. We will see that the canonical model plays an important role in our proof of Theorem 1.3 in Section 5.

2.2. Borel construction and equivariant cohomology.

For a topological group G, there exists a contractible free right G-space EG called the universal G-space. The quotient $BG = EG/G$ is called the classifying space for free G-actions. For example when $G = \mathbb{Z}_2^n$, we can choose

$$EZ_2^n = (EZ_2)^n = (S^\infty)^n, \quad BZ_2^n = (B\mathbb{Z}_2)^n = (\mathbb{R}P^\infty)^n.$$

Let X be a topological space with a left G-action (we call X a G-space for brevity). The Borel construction of X is denoted by

$$EG \times_G X = EG \times X / \sim$$

where $(e, x) \sim (eg, g^{-1}x)$ for any $e \in EG$, $x \in X$ and $g \in G$.

The equivariant cohomology of X with coefficients in a field k is defined as
\[H^*_G(X; k) := H^*(EG \times_G X; k). \]

Convention: The term “cohomology” of a space in this paper, always mean singular cohomology if not specified otherwise.

The Borel construction determines a canonical fibration called *Borel fibration*:
\[X \to EG \times_G X \to BG. \]

The map ρ collapsing X to a point induces a homomorphism
\[\rho^*: H^*_G(pt; k) = H^*(BG; k) \to H^*_G(X; k) \]
which defines a canonical $H^*(BG; k)$-module structure on $H^*_G(X; k)$. A useful fact is: when X is a paracompact space with finite cohomology dimension, and $G = T^r$ or $(\mathbb{Z}_p)^r$ where p is a prime and $k = \mathbb{Q}$ or \mathbb{Z}_p respectively, ρ^* is injective if and only if the fixed point set X^G is non-empty (see [21, Ch. IV]).

In general, $H^*_G(X; k)$ may not be a free $H^*(BG; k)$-module. The following *localization theorem* due to A. Borel (see [21, p. 45]) says that we can compute the free $H^*(BG; k)$-module part of $H^*_G(X; k)$ by restricting to the fixed point set.

Theorem 2.3 (Localization Theorem). Let $G = T^r$ or $(\mathbb{Z}_p)^r$ where p is a prime and $k = \mathbb{Q}$ or \mathbb{Z}_p respectively. For a paracompact G-space X with finite cohomology dimension, the following localized restriction homomorphism is an isomorphism:
\[S^{-1}H^*_G(X; k) \to S^{-1}H^*_G(X^G; k) = H^*(X^G; k) \otimes_k (S^{-1}H^*(BG; k)) \]
where $S = R - \{0\}$ and R is the polynomial subring of $H^*(BG; k)$. So the kernel of the restriction $H^*_G(X; k) \to H^*_G(X^G; k)$ lies in the $H^*(BG; k)$-torsion of $H^*_G(X; k)$. In particular if X is equivariantly formal, $H^*_G(X; k) \to H^*_G(X^G; k)$ is injective.

The Borel construction can also be applied to a G-vector bundle $\pi: E \to X$ (i.e. both E and X are G-spaces and the projection π is G-equivariant). In this case, the Borel construction E_G of E is a vector bundle over X_G whose mod 2 Euler class, denoted by $e^G(E)$, lies in $H^*_G(X; \mathbb{Z}_2)$. Note that using \mathbb{Z}_2-coefficients allows us to ignore the orientation of a vector bundle.

2.3. Mod 2 GKM-theory.

Let W be an n-dimensional equivariantly formal 2-torus manifold. Then the fixed point set $W^{\mathbb{Z}_2}$ is a finite non-empty set (by Theorem 1.1), and $H^*_G(W; \mathbb{Z}_2)$ is a free module over $H^*(B\mathbb{Z}_2^n; \mathbb{Z}_2)$. Moreover, $H^*_G(W; \mathbb{Z}_2)$ can be computed by the so called Mod 2 GKM-theory (see Biss-Guillemin-Holm [1]) which is an extension of the GKM-theory in [13] to 2-torus actions. In this section, we briefly review
some results related to our study. The reader is referred to [4] and [24] for more details.

For each \(1 \leq i \leq n\), let \(\rho_i \in \text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)\) be the homomorphism defined by

\[
\rho_i((g_1, \ldots, g_n)) = g_i, \forall (g_1, \ldots, g_n) \in \mathbb{Z}_2^n.
\]

By a canonical isomorphism \(\text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2) \cong H^1(B\mathbb{Z}_2^n; \mathbb{Z}_2)\), we can identify \(H^*(B\mathbb{Z}_2^n; \mathbb{Z}_2)\) with the graded polynomial ring \(\mathbb{Z}_2[\rho_1, \ldots, \rho_n]\) where \(\deg(\rho_i) = 1, 1 \leq i \leq n\).

Let \(Q = W/\mathbb{Z}_2^n\) be the orbit space of \(W\). By our Theorem 3.3 proved later, a 2-torus manifold \(W\) being equivariantly formal implies that it is locally standard. Hence \(Q\) is a nice manifold with corners. Then the 1-skeleton of \(Q\), consisting of vertices (0-faces) and edges (1-faces) of \(Q\), is an \(n\)-valent graph denoted by \(\Gamma(Q)\).

Let \(V(Q)\) and \(E(Q)\) denote the set of vertices and edges of \(Q\), respectively.

Convention: We will not distinguish a vertex of \(Q\) and the corresponding fixed point in \(W/\mathbb{Z}_2^n\) in the rest of the paper.

- Let \(\pi : W \to Q\) be the quotient map.
- For each edge \(e \in E(Q)\), \(\pi^{-1}(e)\) is a circle whose isotropy subgroup \(G_e\) is a rank \(n - 1\) subgroup of \(\mathbb{Z}_2^n\). Then we obtain a map

\[
\alpha : E(Q) \to \text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2) \cong H^1(B\mathbb{Z}_2^n; \mathbb{Z}_2)
\]

where for each edge \(e \in E(Q)\), \(\ker(\alpha(e)) = G_e\).
- For each vertex \(p \in V(Q)\), let \(\alpha_p = \{\alpha(e) \mid p \in e\} \subset \text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)\).

Such a map \(\alpha\) is called an axial function which has the following properties:

(i) For every vertex \(p \in V(Q)\), \(\alpha_p\) is a linear basis of \(\text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)\).
(ii) For every edge \(e \in E(Q)\), \(\alpha_p \equiv \alpha_{p'} \mod \alpha(e)\) where \(p, p'\) are the two vertices of \(e\).

By [4] Theorem C and [4] Remark 5.9, we have the following theorem which is a consequence of the \(\mathbb{Z}_2\)-version Chang–Skjelbred theorem (see [4] Theorem 4.1 and [10]).

Theorem 2.4 (see [4]). Let \(W\) be an \(n\)-dimensional equivariantly formal 2-torus manifold. If we choose an element \(\eta_p \in H^*_\mathbb{Z}_2(W/\mathbb{Z}_2^n; \mathbb{Z}_2)\) for each \(p \in W/\mathbb{Z}_2^n\), then

\[
(\eta_p) \in \bigoplus_{p \in W/\mathbb{Z}_2^n} H^*(B\mathbb{Z}_2^n; \mathbb{Z}_2) \cong H^*_\mathbb{Z}_2(W/\mathbb{Z}_2^n; \mathbb{Z}_2)
\]

is in the image of the restriction homomorphism \(r : H^*_\mathbb{Z}_2(W; \mathbb{Z}_2) \to H^*_\mathbb{Z}_2(W/\mathbb{Z}_2^n; \mathbb{Z}_2)\) if and only if for every edge \(e \in E(Q)\) with vertices \(p\) and \(p'\), \(\eta_p - \eta_{p'}\) is divisible by \(\alpha(e)\).
Moreover, we can understand the above axial function α in the following way. For brevity, we use the following notations for an n-dimensional locally standard 2-torus manifold W in the rest of this section.

- Let $G = \mathbb{Z}_2^n$.
- Let $W_i := W_{F_i} = \pi^{-1}(F_i)$, $1 \leq i \leq m$, be all the characteristic submanifolds of W where F_1, \ldots, F_m are all the facets of Q.
- Let $G_i := \langle \lambda_W(F_i) \rangle \cong \mathbb{Z}_2$ be subgroup of G that fixes W_i pointwise.
- Let ν_i be the (equivariant) normal bundle of W_i in W. So we have the equivariant Euler class of ν_i, denoted by $e^G(\nu_i) \in H^1_G(W_i; \mathbb{Z}_2)$.
- For any fixed point $p \in W_{\mathbb{Z}_2^n}$, let $I(p) := \{ i \mid p \in W_i \}$. We have the decomposition of tangent space $T_p W$ as

$$T_p W = \bigoplus_{i \in I(p)} \nu_i|_p,$$

where $\nu_i|_p$ denotes the restriction of ν_i to p. So $\nu_i|_p$ is a 1-dimensional linear representation of G whose equivariant Euler class

$$e^G(\nu_i|_p) = e^G(\nu_i)|_p \in H^1(B\mathbb{Z}_2^n; \mathbb{Z}_2).$$

The inclusion map $\psi_i : W_i \hookrightarrow W$ defines an equivariant Gysin homomorphism $\psi_i : H^*_G(W_i; \mathbb{Z}_2) \rightarrow H^*_G(W; \mathbb{Z}_2)$ (see [1, §5.3] for example). For brevity, let

$$\tau_i = \tau_{F_i} = \psi_i(1) \in H^*_G(W; \mathbb{Z}_2)$$

be the image of the identity $1 \in H^0_G(W_i; \mathbb{Z}_2)$. The element τ_i can be thought of as the Poncaré dual of the Borel construction of W_i in $H^*_G(W; \mathbb{Z}_2)$ and is called the equivariant Thom class of ν_i. A standard fact is

$$\tau_i|_p$$

agrees with the equivariant Euler class of $\nu_i|_p$.

Note that the elements of $\text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$ are in one-to-one correspondence with all the 1-dimensional linear representations of \mathbb{Z}_2^n. So the canonical isomorphism between $\text{Hom}(\mathbb{Z}_2^n, \mathbb{Z}_2)$ and $H^1(B\mathbb{Z}_2^n; \mathbb{Z}_2)$ is given by the equivariant Euler class of a 1-dimensional representations of \mathbb{Z}_2^n. Then we have the following identification:

$$\alpha_p = \{ \alpha(e) \mid p \in e \} \leftrightarrow \{ e^G(\nu_i)|_p = \tau_i|_p : i \in I(p) \}.$$

where an edge e containing p corresponds to the unique index $i \in I(p)$ so that the facet F_i intersects e transversely (or equivalently $e \not\subseteq F_i$).

- For a codimension-k face f of Q, let ν_f denote the (equivariant) normal bundle of W_f in W. Denote by $\tau_f \in H^*_{\mathbb{Z}_2}(W; \mathbb{Z}_2)$ the equivariant Thom class of ν_f. Then the restriction of τ_f to $H^*_G(W_f; \mathbb{Z}_2)$ is the equivariant Euler class of ν_f, denoted by $e^G(\nu_f)$. In particular, if $f = Q$, $W_f = W$ and so τ_f is the identity element of $H^0_G(W_f; \mathbb{Z}_2)$.
Let \(r_p : H^*_G(W; \mathbb{Z}_2) \to H^*_G(p; \mathbb{Z}_2) \cong H^*(BG; \mathbb{Z}_2) \) denote the restriction map at a fixed point \(p \in W^G \). Then
\[
(8) \quad r = \bigoplus_{p \in W^G} r_p : H^*_G(W; \mathbb{Z}_2) \to H^*_G(W^G; \mathbb{Z}_2) = \bigoplus_{p \in W^G} H^*(BG; \mathbb{Z}_2).
\]
By Theorem 2.3, the kernel of \(r \) is the \(H^*(BG; \mathbb{Z}_2) \)-torsion subgroup of \(H^*_G(W; \mathbb{Z}_2) \).

Clearly, \(r_p(\tau_f) = 0 \) unless \(p \in (W_f)^G \) (i.e. \(p \) is a vertex of \(f \)). It follows from (7) that for any \(p \in W^G \),
\[
(9) \quad r_p(\tau_f) = \begin{cases}
\prod_{p \in e, e \not\in f} \alpha(e), & \text{if } p \in f; \\
0, & \text{otherwise}.
\end{cases}
\]
In addition, define
\[
(10) \quad \hat{H}_G^*(W; \mathbb{Z}_2) := \frac{H^*_G(W; \mathbb{Z}_2)}{H^*(BG; \mathbb{Z}_2) \text{-torsion}}.
\]
By the localization theorem (Theorem 2.3), the restriction homomorphism \(r \) induces a monomorphism \(\hat{H}_G^*(W; \mathbb{Z}_2) \to H^*_G(W^G; \mathbb{Z}_2) \), still denoted by \(r \).

The following proposition is parallel to [27, Proposition 3.3].

Proposition 2.5. Let \(W \) be an \(n \)-dimensional locally standard 2-torus manifold.

(i) For each characteristic submanifold \(W_i \) with \((W_i)^G \not= \emptyset \) where \(G = \mathbb{Z}_2^n \), there is a unique element \(a_i \in H_1(BG; \mathbb{Z}_2) \) such that
\[
(6) \quad \rho^*(t) = \sum_i \langle t, a_i \rangle \tau_i \mod \text{H}^*(BG; \mathbb{Z}_2) \text{-torsion}
\]
for any element \(t \in H^1(BG; \mathbb{Z}_2) \). Here the sum is taken over all the characteristic submanifolds \(W_i \) with \((W_i)^G \not= \emptyset \) and \(\rho^* \) is defined in (6).

(ii) For each \(W_i \) with \((W_i)^G \not= \emptyset \), the subgroup \(G_i \) fixing \(W_i \) coincides with the subgroup determined by \(a_i \in H_1(BG; \mathbb{Z}_2) \) through the identification \(H_1(BG; \mathbb{Z}_2) \cong \text{Hom}(\mathbb{Z}_2, G) \).

(iii) If \(n \) different characteristic submanifolds \(W_i, \ldots, W_i \) have a \(G \)-fixed point in their intersection, then the elements \(a_i, \ldots, a_i \) form a linear basis of \(H_1(BG; \mathbb{Z}_2) \) over \(\mathbb{Z}_2 \).

Proof. The argument is completely parallel to the arguments for torus manifolds in the proof of [26, Lemma 1.3, Lemma 1.5, Lemma 1.7]. Indeed, we can just replace the torus manifold \(M \) in [26] by our 2-torus manifold \(W \) and, replace \(T^n \) by \(\mathbb{Z}_2^n \) and \(H^2(M; \mathbb{Z}) \) by \(H^1(W; \mathbb{Z}_2) \) to obtain our proof here. The details of the proof are left to the reader. \(\square \)

In addition, the following lemma is completely parallel to the torus manifold case [27, Lemma 6.2]. Its proof is also parallel to [27], hence omitted.
Lemma 2.6. Let W be a locally standard 2-torus manifold with orbit space Q. For any $\eta \in H^*_G(W; \mathbb{Z}_2)$ and any edge $e \in E(Q)$, $r_p(\eta) - r_{p'}(\eta)$ is divisible by $\alpha(e)$ where p and p' are the endpoints of e.

2.4. Face ring.

A poset (partially ordered set) P is called simplicial if it has an initial element $\hat{0}$ and for each $x \in P$ the lower segment $[\hat{0}, x]$ is a boolean lattice (the face lattice of a simplex).

Let P be a simplicial poset. For each $x \in P := P - \{\hat{0}\}$, we assign a geometrical simplex whose face poset is $[\hat{0}, x]$ and glue these geometrical simplices together according to the order relation in P. The cell complex we obtained is called the geometrical realization of P, denoted by $|P|$. We may also say that $|P|$ is a simplicial cell complex.

For any two elements $x, x' \in P$, denote by $x \vee x'$ the set of their least common upper bounds, and by $x \wedge x'$ their greatest common lower bounds. Since P is simplicial, $x \wedge x'$ consists of a single element if $x \vee x'$ is non-empty.

Definition 2.7 (see Stanley [29]). The face ring of a simplicial poset P over a field k is the quotient

$$k[P] := k[v_x : x \in P]/I_P$$

where I_P is the ideal generated by all the elements of the form

$$v_x v_{x'} - v_{x \wedge x'} \cdot \sum_{x'' \in x \vee x'} v_{x''}.$$

Let Q be a nice manifold with corners. It is easy to see that the face poset of Q is a simplicial poset, denoted by P_Q. We call $|P_Q|$ the simplicial cell complex dual to Q.

We define the face ring of Q to be the face ring of P_Q. Equivalently, we can write the face ring of Q as

$$k[Q] := k[v_f : f \text{ a face of } Q]/I_Q,$$

where I_Q is the ideal generated by all the elements of the form

$$v_f v_{f'} - v_{f \vee f'} \cdot \sum_{f'' \in f \cap f'} v_{f''}.$$

where $f \vee f'$ denotes the unique minimal face of Q containing both f and f'.

Convention: For any face f of Q, define the degree of v_f to be the codimension of f. Then $k[Q] = k[P_Q]$ becomes a graded ring. Note that in the discussion of torus manifolds in [27], the degree of v_f is defined to be twice the codimension of f to fit the study there.
The \textit{f-vector} of \(Q \) is defined as \(f(Q) = (f_0, \ldots, f_{n-1}) \) where \(n = \dim(Q) \) and \(f_i \) is the number of faces of codimension \(i + 1 \). The equivalent information is contained in the \textit{h-vector} \(h(Q) = (h_0, \ldots, h_n) \) determined by the equation:

\begin{equation}
 h_0 t^n + \cdots + h_{n-1} t + h_n = (t-1)^n + f_0 (t-1)^{n-1} + \cdots + f_{n-1}.
\end{equation}

The \textit{Hilbert series} of \(k[Q] \) is \(F(k[Q]) := \sum_i \dim_k k[Q]_i t^i \) where \(k[Q]_i \) denotes the homogeneous degree \(i \) part of \(k[Q] \). By [29, Proposition 3.8],

\begin{equation}
 F(k[Q]; t) = \frac{h_0 + h_1 t + \cdots + h_n t^n}{(1-t)^n}.
\end{equation}

The following construction is taken from [27, Section 5]. For any vertex \((0\text{-face}) p \in Q \), we define a map

\begin{equation}
 s_p : k[Q] \to k[Q]/(v_f : p \notin f).
\end{equation}

If \(p \) is the intersection of \(n \) different facets \(F_1, \ldots, F_n \), then \(k[Q]/(v_f : p \notin f) \) can be identified with the polynomial ring \(k[v_{F_1}, \ldots, v_{F_n}] \).

\begin{lemma}[Lemma 5.6 in [27]]. If every face of \(Q \) has a vertex, then the direct sum \(s = \bigoplus_p s_p \) over all vertices \(p \in Q \) is a monomorphism from \(k[Q] \) to the sum of polynomial rings \(k[Q]/(v_f : p \notin f) \).
\end{lemma}

A finitely generated graded commutative ring \(R \) over \(k \) is called \textit{Cohen-Macaulay} if there exists an \textit{h.s.o.p} (homogeneous system of parameters) \(\theta_1, \ldots, \theta_n \) such that \(R \) is a free \(k[\theta_1, \ldots, \theta_n] \)-module. Clearly, if \(k[Q] = k[\mathcal{P}_Q] \) is Cohen-Macaulay, then it has a \textit{l.s.o.p} (linear system of parameters).

A simplicial complex \(K \) is called a \textit{Gorenstein* complex} over \(k \) if its face ring \(k[K] \) is Cohen-Macaulay and \(H^*(K; k) \cong H^*(S^d; k) \) where \(d = \dim(K) \). The reader is referred to Bruns-Herzog [9] and Stanley [30] for more information of Cohen-Macaulay rings and Gorenstein* complexes.

The following proposition is parallel to [27, Lemma 8.2 (1)].

\begin{proposition}
If \(Q \) is an \(n \)-dimensional mod 2 homology polytope, then the geometrical realization \(|\mathcal{P}_Q| \) of \(\mathcal{P}_Q \) is a Gorenstein* simplicial complex over \(\mathbb{Z}_2 \). In particular, \(\mathbb{Z}_2[\mathcal{P}_Q] \) is Cohen-Macaulay and \(H^*(|\mathcal{P}_Q|; \mathbb{Z}_2) \cong H^*(S^{n-1}; \mathbb{Z}_2) \).
\end{proposition}

\begin{proof}
The proof is almost identical to the proof in [27, Lemma 8.2] except that we use \(\mathbb{Z}_2 \)-coefficients instead of \(\mathbb{Z} \)-coefficients when applying [30, II 5.1] in the argument.
\end{proof}

3. Equivariantly formal 2-torus manifolds

In this section, we study various properties of equivariantly formal 2-torus manifolds. One may find that many discussions on 2-torus manifolds here are parallel to the discussions in [27] on torus manifolds. The condition “vanishing
of odd degree cohomology” on a torus manifold in [27] is now replaced by the equivariant formality condition on a 2-torus manifold and, the coefficients \(\mathbb{Z} \) is replaced by \(\mathbb{Z}_2 \). Many arguments in [27] are transplanted into our proof here while some of them actually become simpler.

In Section 3.1, we prove some general results of equivariantly formal \(\mathbb{Z}_2 \)-actions on compact manifolds. In particular, we prove that any equivariantly formal 2-torus manifold is locally standard, and the equivariant formality of a 2-torus manifold is inherited by all its facial submanifolds.

In Section 3.2, we explore the relations between the equivariant cohomology of a locally standard 2-torus manifold and the face ring of its orbit space.

In Section 3.3, we prove that the equivariant formality of a 2-torus manifold is preserved under real blow-ups along its facial submanifolds. Our proof uses a result from Gitler [17].

3.1. Equivariantly formal \(\Rightarrow \) locally standard.

Lemma 3.1. Suppose \(M \) is a compact manifold whose connected components are \(M_1, \ldots, M_k \). A \(\mathbb{Z}_2 \)-action on \(M \) is equivariantly formal if and only if each \(M_i \) is \(\mathbb{Z}_2 \)-invariant and the restricted \(\mathbb{Z}_2 \)-action on \(M_i \) is equivariantly formal.

Proof. The “if” part is obvious. For the “only if” part, assume that \(M_1, \ldots, M_s, s \leq k \), are all the components each of which is preserved under the \(\mathbb{Z}_2 \)-action.

Since the \(\mathbb{Z}_2 \)-action on \(M \) is equivariantly formal, by Theorem [14] we have

\[
\dim_{\mathbb{Z}_2} H^*(M; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(M_i; \mathbb{Z}_2).
\]

So in particular, \(M^{\mathbb{Z}_2} \) is not empty. Clearly, \(M^{\mathbb{Z}_2} \) must lie in \(M_1 \cup \cdots \cup M_s \), so \(s > 0 \) and \(M^{\mathbb{Z}_2} \) is the disjoint union of \(M_1^{\mathbb{Z}_2}, \ldots, M_s^{\mathbb{Z}_2} \). Then by Theorem [14]

\[
\sum_{i=1}^{s} \dim_{\mathbb{Z}_2} H^*(M_i^{\mathbb{Z}_2}; \mathbb{Z}_2) \leq \sum_{i=1}^{s} \dim_{\mathbb{Z}_2} H^*(M_i; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H^*(M; \mathbb{Z}_2).
\]

By comparing this inequality with the previous equation, we can deduce that \(s = k \) and on every component \(M_i \), \(\dim_{\mathbb{Z}_2} H^*(M_i^{\mathbb{Z}_2}; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(M_i; \mathbb{Z}_2) \). So by Theorem [14] again, the \(\mathbb{Z}_2 \)-action on \(M_i \) is equivariantly formal. \(\square \)

Lemma 3.2. If a \(\mathbb{Z}_2 \)-action on a compact manifold \(M \) is equivariantly formal, then for every subgroup \(H \) of \(\mathbb{Z}_2 \),

(i) The action of \(H \) on \(M \) is equivariantly formal.

(ii) The induced action of \(\mathbb{Z}_2/H \) on \(M/H \) and \(\mathbb{Z}_2 \) on \(M/H \) are both equivariantly formal.

(iii) The induced action of \(\mathbb{Z}_2 \) (or \(\mathbb{Z}_2/H \)) on every connected component \(N \) of \(M/H \) is equivariantly formal, hence \(N \) has a \(\mathbb{Z}_2 \)-fixed point.

Proof. (i) By Theorem 1.1, it is equivalent to prove

\[(14) \dim_{\mathbb{Z}_2} H^*(M^H; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(M; \mathbb{Z}_2).\]

Otherwise assume \(\dim_{\mathbb{Z}_2} H^*(M^H; \mathbb{Z}_2) < \dim_{\mathbb{Z}_2} H^*(M; \mathbb{Z}_2)\). Observe that the \(\mathbb{Z}_2^r\)-action on \(M\) induces an action of \(\mathbb{Z}_2^r/H\) on \(M^H\) and we have

\[(15) M^{\mathbb{Z}_2^r} = (M^H)^{\mathbb{Z}_2^r/H}.\]

So by Theorem 1.1, \(\dim_{\mathbb{Z}_2} H^*(M^{\mathbb{Z}_2^r}; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H^*(M^H; \mathbb{Z}_2) < \dim_{\mathbb{Z}_2} H^*(M; \mathbb{Z}_2)\), which contradicts the assumption that the \(\mathbb{Z}_2^r\)-action on \(M\) is equivariantly formal.

This proves (i).

(ii) By (15) and the assumption that the \(\mathbb{Z}_2^r\)-action is equivariantly formal,

\[
\dim_{\mathbb{Z}_2} H^*((M^H)^{\mathbb{Z}_2^r/H}; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(M^{\mathbb{Z}_2^r}; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(M; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H^*(M^H; \mathbb{Z}_2).
\]

Then by Theorem 1.1 the action of \(\mathbb{Z}_2^r/H\) on \(M^H\) is equivariantly formal, so is the action of \(\mathbb{Z}_2^r\) on \(M\).

(iii) By the conclusion in (ii) and Lemma 3.2 (iii), the induced action of \(\mathbb{Z}_2^r\) (or \(\mathbb{Z}_2^r/H\)) on every connected component \(N\) of \(M^H\) is equivariantly formal. So by Theorem 1.1, \(N\) must have a \(\mathbb{Z}_2^r\)-fixed point. \(\square\)

Next, we prove a theorem that is parallel to [27, Theorem 4.1].

Theorem 3.3. If a 2-torus manifold \(W\) is equivariantly formal, then \(W\) must be locally standard.

Proof. Suppose \(\dim(W) = n\). For a point \(x \in W\), denote by \(G_x\) the isotropy group of \(x\).

- If \(G_x\) is trivial, then \(x\) is in a free orbit of the \(\mathbb{Z}_2^n\)-action. So \(W\) is locally standard near \(x\).

- Otherwise, let \(N\) be the connected component of \(W^{G_x}\) containing \(x\). By Lemma 3.2 (iii), the induced \(\mathbb{Z}_2^n\)-action on \(N\) has a fixed point, say \(x_0\).

 Since \(W^{\mathbb{Z}_2^n}\) is discrete, the tangential \(\mathbb{Z}_2^n\)-representation \(T_{x_0}W\) is faithful.

 Then since \(x\) and \(x_0\) are in the same connected component fixed pointwise by \(G_x\), the \(G_x\)-representation on \(T_{x_0}W\) agrees with the restriction of the tangential \(\mathbb{Z}_2^n\)-representation \(T_{x_0}W\) to \(G_x\). This implies that \(W\) is locally standard near \(x\).

The theorem is proved. \(\square\)

Proposition 3.4. Let \(W\) be an equivariantly formal 2-torus manifold with orbit space \(Q\). For any face \(f\) of \(Q\), the facial submanifold \(W_f\) is also an equivariantly formal 2-torus manifold.
Suppose \(\dim(W) = n \) and \(f \) is a codimension-\(k \) face of \(Q \). By Theorem \ref{thm:3.3} \(W \) is locally standard. Then \(W_f \) is a connected \((n - k)\)-dimensional embedded submanifold of \(W \) fixed pointwise by \(G_f \cong \mathbb{Z}_2^k \) (see \ref{thm:3.3}). By Lemma \ref{lem:3.2}(iii), the induced action of \(\mathbb{Z}_2^n / G_f \cong \mathbb{Z}_2^{n-k} \) on \(W_f \) is equivariantly formal. \(\square \)

3.2. Equivariant cohomology of locally standard 2-torus manifolds.

Let \(W \) be an \(n \)-dimensional locally standard 2-torus manifold with orbit space \(Q \). We explore the relation between \(H^*_G(W; \mathbb{Z}_2) \) where \(G = \mathbb{Z}_2^n \) and the face ring \(\mathbb{Z}_2[Q] \) under some conditions on \(Q \). In the following, we use the notations from Section \ref{sec:2.3}.

First of all, we have a lemma that is parallel to \cite[Lemma 6.3]{27}.

Lemma 3.5. For any faces \(f \) and \(f' \) of \(Q \), the relation below holds in \(\hat{H}^*_G(W; \mathbb{Z}_2) \):

\[
\tau_f \tau_{f'} = \tau_{f \cap f'} \sum_{f'' \in f \cap f'} \tau_{f''}.
\]

Here we define \(\tau_{\varnothing} = 0 \).

Proof. The proof is parallel to the proof of \cite[Lemma 6.3]{27}. The idea is to use the monomorphism \(r : \hat{H}^*_G(W; \mathbb{Z}_2) \rightarrow H^*_G(W^G; \mathbb{Z}_2) \) to map both sides of the identity to the fixed points and then use the formula \ref{eq:9} to check that they are equal. \(\square \)

By Lemma \ref{lem:3.5} we obtain a well-defined homomorphism

\[
\varphi : \mathbb{Z}_2[Q] \rightarrow \hat{H}^*_G(W; \mathbb{Z}_2).
\]

\[
v_f \mapsto \tau_f
\]

The following lemma and its proof are parallel to \cite[Lemma 6.4]{27}.

Lemma 3.6. The homomorphism \(\varphi \) is injective if every face \(Q \) has a vertex.

Proof. According to the definitions of \(r \) and \(s \) (see \ref{eq:8} and \ref{eq:13}), we have \(s = r \circ \varphi \) by identifying \(H^*_G(p; \mathbb{Z}_2) \) with \(\mathbb{Z}_2[Q]/(v_f : p \notin f) \) for every vertex \(p \) of \(Q \). Then by Lemma \ref{lem:2.8} \(s \) is injective if every face of \(Q \) has a vertex, so is \(\varphi \). \(\square \)

The following lemma is parallel to \cite[Proposition 7.4]{27}.

Lemma 3.7. If the 1-skeleton of every face of \(Q \) (including \(Q \) itself) is connected, then \(\hat{H}^*_G(W; \mathbb{Z}_2) \) is generated by the elements \(\tau_{F_1}, \ldots, \tau_{F_m} \in H^1_G(W; \mathbb{Z}_2) \) as an \(H^*(BG; \mathbb{Z}_2) \)-module, where \(F_1, \ldots, F_m \) are all the facets of \(Q \).

Proof. The argument is a bit technical, but it is completely parallel to the proof of \cite[Proposition 7.4]{27}. The main idea of the proof is to consider the restriction of an element \(\eta \in H^*_G(W; \mathbb{Z}_2) \) to the fixed point set \(W^G \) via \(r : H^*_G(W; \mathbb{Z}_2) \rightarrow H^*_G(W^G; \mathbb{Z}_2) \), and then use \(\tau_{F_1}, \ldots, \tau_{F_m} \) and elements in \(H^*(BG; \mathbb{Z}_2) \) to spell out
The following theorem is parallel to [27, Theorem 7.5].

Theorem 3.8. Let W be a locally standard 2-torus manifold with orbit space Q. If every face f of Q has a vertex and the 1-skeleton of f is connected, then the map $\varphi : \mathbb{Z}_2[Q] \to \check{H}^*_G(W; \mathbb{Z}_2)$ is an isomorphism of graded rings.

Proof. By Lemma 3.6 φ is injective and, by Lemma 3.7 φ is surjective. □

Lemma 3.9. Let W be an equivariantly formal 2-torus manifold with orbit space Q. Then the 1-skeleton of every face of Q (including Q itself) is connected.

Proof. Since W is equivariantly formal, the localization theorem (Theorem 2.3) implies that the restriction homomorphism $r : H^*_G(W; \mathbb{Z}_2) \to H^*_G(W^G; \mathbb{Z}_2)$ is injective. In addition, since W is connected, the image of $H^0(G(W; \mathbb{Z}_2))$ under the restriction homomorphism is isomorphic to \mathbb{Z}_2. So the “if” part of Theorem 2.4 implies that the 1-skeleton of Q must be connected.

For any proper face f of Q, the facial submanifold W_f is also an equivariantly formal 2-torus manifold by Proposition 3.4. Then by applying the above argument to W_f, we obtain that the 1-skeleton of f is also connected. □

Corollary 3.10. If W is an equivariantly formal 2-torus manifold, then the map $\varphi : \mathbb{Z}_2[Q] \to \check{H}^*_G(W; \mathbb{Z}_2)$ is an isomorphism of graded rings.

Proof. Since W is equivariantly formal, its equivariant cohomology $H^*_G(W; \mathbb{Z}_2)$ is a free module over $H^*(BG; \mathbb{Z}_2)$. So by definition, $\check{H}^*_G(W; \mathbb{Z}_2) = H^*_G(W; \mathbb{Z}_2)$. For any face f of Q, the facial submanifold W_f is also an equivariantly formal 2-torus manifold by Proposition 3.4. This implies that f has a vertex. Moreover, the 1-skeleton of f is connected by Lemma 3.9. Then the corollary follows from Theorem 3.8. □

When a 2-torus manifold W is equivariantly formal, Corollary 3.10 tells us that the equivariant cohomology ring of W is completely determined by the face poset of its orbit space (so independent on the characteristic function λ_W or the principal bundle ξ_W). This suggests that the orbit space of W should be rather special.

The following corollary is parallel to [27, Corollary 7.8]. It generalizes the calculation of the mod 2 cohomology ring of a small cover in [14].

Corollary 3.11. If a 2-torus manifold W is equivariantly formal, then

$$H^*(W; \mathbb{Z}_2) \cong \mathbb{Z}_2[v_f : f \text{ a face of } Q]/I$$

where I is the ideal generated by the following two types of elements:
Figure 1. Cutting off a face from a nice manifold with corners

\begin{align*}
(a) \quad v_f v'_f - v_{f \cap f'} \sum_{f'' \in f \cap f'} v_{f''}, \quad (b) \quad \sum_{i=1}^m (t, a_i) v_{F_i}, \quad t \in H^1(BG; \mathbb{Z}_2).
\end{align*}

Here F_1, \ldots, F_m are all the facets of Q and the elements $a_i \in H_1(BG; \mathbb{Z}_2)$ are defined in Proposition \ref{prop:facets}.

Proof. Since W is equivariantly formal, $\iota^*_W : H^*_G(W; \mathbb{Z}_2) \to H^*(W; \mathbb{Z}_2)$ is surjective and its kernel is generated by all $\rho^*(t)$ with $t \in H^1(BG; \mathbb{Z}_2)$ (see (6)). Then the statement follows from Corollary \ref{cor:formalness} and Proposition \ref{prop:kernel}.

3.3. Real blow-up of a locally standard 2-torus manifold along a facial submanifold.

Let W be a locally standard 2-torus manifold with orbit space Q. For a codimension-k face f of Q, the facial submanifold W_f is an embedded connected codimension-k submanifold of W. So the equivariant normal bundle ν_f of W_f in W is a real vector bundle of rank k. If we replace $W_f \subset W$ by the real projective bundle $P(\nu_f)$, we obtain a new 2-torus manifold denoted by \tilde{W}_f called the real blow-up of W along W_f. This is analogous to the blow-up of a torus manifold in [27, Sec. 9] (also see [20, p. 605] and [15, Sec. 4]).

The orbit space of \tilde{W}_f, denoted by Q_f, is the result of “cutting off” the face f from Q (see Figure 1). So \tilde{W}_f is also locally standard. Correspondingly, the simplicial cell complex $|P_{Q_f}|$ is obtained from $|P_Q|$ by a stellar subdivision of the face dual to f.

Proposition 3.12. Let W be a locally standard 2-torus manifold with orbit space Q and f be a proper face of Q with codimension-k. Then \tilde{W}_f is equivariantly formal if and only if so is W.

Proof. (a) Let $\tilde{\nu}_f$ denote the equivariant normal bundle of $P(\nu_f)$ in \tilde{W}_f. Besides, let $\text{Th}(\nu_f)$ and $\text{Th}(\tilde{\nu}_f)$ be the Thom space of ν_f and $\tilde{\nu}_f$, respectively. Then we
have a natural commutative diagram of continuous maps:

$$
\begin{array}{ccc}
P(\nu_f) & \xrightarrow{i} & \tilde{W}^f \\
\downarrow{p_0} & & \downarrow{p} \\
W_f & \xrightarrow{i} & W \\
\end{array}
\xrightarrow{t} \text{Th}(\nu_f)
$$

where i and \tilde{i} are the inclusions, t and \tilde{t} are the Thom-Pontryagin maps; and $p : \tilde{W}^f \to W$ is the blow-down map, p_0 is the restriction of p to $P(\nu_f)$ and q is the induced map by p in the Thom spaces.

According to [17, §5] and [17, Theorem 3.7], there is a short exact sequence:

$$0 \to H^*(\text{Th}(\nu_f); \mathbb{Z}_2) \xrightarrow{\alpha} H^*(W; \mathbb{Z}_2) \oplus H^*(\text{Th}(\nu_f); \mathbb{Z}_2) \xrightarrow{\beta} H^*(\tilde{W}^f; \mathbb{Z}_2) \to 0.
$$

where $\alpha = (t^*, q^*)$ and $\beta = p^* - \tilde{t}^*$. This implies:

$$\dim_{\mathbb{Z}_2} H^*(\tilde{W}^f; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2) + \dim_{\mathbb{Z}_2} H^*(\text{Th}(\nu_f); \mathbb{Z}_2) - \dim_{\mathbb{Z}_2} H^*(\text{Th}(\nu_f); \mathbb{Z}_2).
$$

By the Thom isomorphism, we have

$$\dim_{\mathbb{Z}_2} H^*(\text{Th}(\nu_f); \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(W_f; \mathbb{Z}_2),$$

$$\dim_{\mathbb{Z}_2} H^*(\text{Th}(\nu_f); \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(P(\nu_f); \mathbb{Z}_2).
$$

By Leray-Hirsch theorem, $H^*(P(\nu_f); \mathbb{Z}_2) \cong H^*(W_f; \mathbb{Z}_2) \otimes H^*(\mathbb{R}P^{k-1}; \mathbb{Z}_2)$ (as \mathbb{Z}_2-vector spaces), which implies $\dim_{\mathbb{Z}_2} H^*(P(\nu_f); \mathbb{Z}_2) = k \cdot \dim_{\mathbb{Z}_2} H^*(W_f; \mathbb{Z}_2)$. So

$$\dim_{\mathbb{Z}_2} H^*(\tilde{W}^f; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2) + (k - 1) \cdot \dim_{\mathbb{Z}_2} H^*(W_f; \mathbb{Z}_2).
$$

If W is equivariantly formal, then W is locally standard and so Q is a nice manifold with corners. It is easy to see

$$\#\text{vertices of } Q^f = \#\text{vertices of } Q + (k - 1) \cdot \#\text{vertices of } f.$$

Since the fixed point set W^G ($G = \mathbb{Z}_2^a$) corresponds to the vertex set of Q which is discrete, the number of fixed points of the G-action satisfies

$$\left|\left(\tilde{W}^f\right)^G\right| = \left|W^G\right| + (k - 1) \cdot \left|(W_f)^G\right|.
$$

By Proposition [3.4], W_f is also equivariantly formal. So by Theorem [11]

$$\dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2) = \left|W^G\right|, \quad \dim_{\mathbb{Z}_2} H^*(W_f; \mathbb{Z}_2) = \left|(W_f)^G\right|.
$$

It follows from [17] and [18] that $\left|\left(\tilde{W}^f\right)^G\right| = \dim_{\mathbb{Z}_2} H^*(\tilde{W}^f; \mathbb{Z}_2)$. So we deduce from Theorem [11] that \tilde{W}^f is equivariantly formal.
Conversely, if \tilde{W}^f is equivariantly formal, we have
\[
\dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2) \overset{\text{(17)}}{=} \dim_{\mathbb{Z}_2} H^*(\tilde{W}^f; \mathbb{Z}_2) - (k - 1) \cdot \dim_{\mathbb{Z}_2} H^*(W_f; \mathbb{Z}_2)
\]
(by Theorem 1.1) \leq |(\tilde{W}^f)^G| - (k - 1) \cdot |(W_f)^G| \overset{\text{(18)}}{=} |W^G| = \dim_{\mathbb{Z}_2} H^*(W^G; \mathbb{Z}_2).

But by Theorem 1.1, $\dim_{\mathbb{Z}_2} H^*(W^G; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2)$. So we must have $\dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(W^G; \mathbb{Z}_2)$, which implies that W is equivariantly formal. The proposition is proved. \(\square\)

The following lemma is parallel to [27, Lemma 9.1]. Its proof is almost identical to the proof in [27], hence omitted.

Lemma 3.13. Let Q be a nice manifold with corners and f be a proper face of Q. Then Q^f is mod 2 face-acyclic if and only if so is Q.

\[\begin{align*}
4. \text{Equivariantly formal 2-torus manifolds with mod 2 cohomology generated by degree-one part}
\end{align*}\]

In our study of equivariantly formal 2-torus manifolds, those manifolds whose mod 2 cohomology rings are generated by their degree-one part are of special importance. We will see in Section 5 that the study of general equivariantly formal 2-torus manifolds can be reduced to the study of these special 2-torus manifolds by a sequence of real blow-ups along facial submanifolds.

The following lemma is parallel to [27, Lemma 2.3].

Lemma 4.1. Suppose there is an equivariantly formal \mathbb{Z}_2^r-action on a compact manifold M where the cohomology ring $H^*(M; \mathbb{Z}_2)$ is generated by its degree-one part. Then for any subgroup H of \mathbb{Z}_2^r and every connected component N of M^H, the homomorphism $i^* : H^*(M; \mathbb{Z}_2) \to H^*(N; \mathbb{Z}_2)$ is surjective where $i : N \hookrightarrow M$ is the inclusion. In particular, $H^*(N; \mathbb{Z}_2)$ is also generated by its degree-one part.

Proof. First we assume $H \cong \mathbb{Z}_2$. We have a commutative diagram as follows:
\[
\begin{array}{ccc}
H^*_H(M; \mathbb{Z}_2) & \overset{\tilde{i}_H^*}{\longrightarrow} & H^*_H(N; \mathbb{Z}_2) \\
\varepsilon^*_M & & \varepsilon^*_N \\
H^*(M; \mathbb{Z}_2) & \overset{i^*}{\longrightarrow} & H^*(N; \mathbb{Z}_2)
\end{array}
\]

where $H^*_H(N; \mathbb{Z}_2) \cong H^*(N; \mathbb{Z}_2) \otimes H^*(BH; \mathbb{Z}_2)$ and \tilde{i}_H^* is the homomorphism on equivariant cohomology induced by i. By our assumption, both ε^*_M and ε^*_N are surjective. The following argument is parallel to the proof of [27, Lemma 2.3].
By [7 Theorem VII.1.5], the inclusion \(M^H \hookrightarrow M \) induces an isomorphism
\(H^k_H(M; \mathbb{Z}_2) \rightarrow H^k_H(M^H; \mathbb{Z}_2) \) for sufficiently large \(k \), which implies that
\[
\hat{\imath}^*_H : H^k_H(M; \mathbb{Z}_2) \rightarrow H^k_H(N; \mathbb{Z}_2)
\]
is surjective if \(k \) is sufficiently large.

Let \(v_1, \cdots, v_d \in H^1(M; \mathbb{Z}_2) \) be a set of multiplicative generators of \(H^*(M; \mathbb{Z}_2) \). For each \(1 \leq l \leq d \), let \(\hat{v}_l \) be a lift of \(v_l \) in \(H^*_H(M; \mathbb{Z}_2) \) and \(w_l := \hat{\imath}^*(v_l) \in H^1(N; \mathbb{Z}_2) \). Let \(t \) be a generator of \(H^1(BH; \mathbb{Z}_2) \cong \mathbb{Z}_2 \). By the commutativity of the above diagram (19),
\[
\hat{\imath}^*(\hat{v}_l) = bt + w_l \quad \text{for some} \quad b_t \in \mathbb{Z}_2.
\]

Then for an arbitrary element \(\zeta \in H^*(N; \mathbb{Z}_2) \), there exists a large enough integer \(q \in \mathbb{Z} \) and a polynomial \(P(x_1, \cdots, x_d) \) such that
\[
\hat{\imath}^*(P(\hat{v}_1, \cdots, \hat{v}_d)) = \zeta \otimes t^q.
\]

On the other hand, we have
\[
\hat{\imath}^*(P(\hat{v}_1, \cdots, \hat{v}_d)) = P(b_1 t + w_1, \cdots, b_d t + w_d) = \sum_{k \geq 0} P_k(w_1, \cdots, w_d) \otimes t^k
\]
for some polynomials \(P_k, k \geq 0 \). Hence \(\zeta = P_s(w_1, \cdots, w_d) = \hat{\imath}^*(P(v_1, \cdots, v_d)) \). Therefore, \(\hat{\imath}^* \) is surjective and \(H^*(N; \mathbb{Z}_2) \) is generated by \(w_1, \cdots, w_d \in H^1(N; \mathbb{Z}_2) \).

For the general case, suppose \(H \cong \mathbb{Z}_2^r, 1 \leq s \leq r \). Then we have a sequence:
\[
\{0\} = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_s = H
\]
where \(H_l \cong \mathbb{Z}_2^r \) for each \(0 \leq l \leq s \). Moreover, we have
\[
M^H = ((M^H_{H_1 \cap H_1}) \cdots)^{H_s/H_{s-1}}, \quad H_l/H_{l-1} \cong \mathbb{Z}_2, \quad l = 1, \cdots, s.
\]
Repeating the above argument for each \(H_l/H_{l-1} \) proves the lemma. \(\square \)

The following lemma is parallel to [27 Lemma 3.4].

Lemma 4.2. Let \(W \) be an equivariantly formal 2-torus manifold whose cohomology ring \(H^*(W; \mathbb{Z}_2) \) is generated by its degree-one part. Then all non-empty multiple intersections of the characteristic submanifolds of \(W \) are equivariantly formal 2-torus manifolds whose mod 2 cohomology rings are generated by their degree-one part as well.

Proof. Let \(F_1, \cdots, F_m \) be all the facets of \(Q \) and \(G = \mathbb{Z}_2^n \) where \(n = \dim(W) \). In the following, we use the notations defined in Section 2.3. First of all, since the characteristic submanifold \(W_i \) is a connected component of the fixed point set \(X^{G_i} \), Lemma 4.1 implies that the restriction \(H^*(W; \mathbb{Z}_2) \rightarrow H^*(W_i; \mathbb{Z}_2) \) is
surjective. So the G-action on W_i is equivariantly formal (by Proposition ??). Then we have
\[
H^*_G(W; \mathbb{Z}_2) \cong H^*(W; \mathbb{Z}_2) \otimes H^*(BG; \mathbb{Z}_2), \\
H^*_G(W_i; \mathbb{Z}_2) \cong H^*(W_i; \mathbb{Z}_2) \otimes H^*(BG; \mathbb{Z}_2).
\]
It follows that the restriction $H^*_G(W; \mathbb{Z}_2) \to H^*_G(W_i; \mathbb{Z}_2)$ is also surjective. In addition, by using Proposition 2.5(i) and a completely parallel argument to the proof of [26] Prop. 3.4(2), we can prove the following claim.

Claim: $H^*_G(W; \mathbb{Z}_2)$ is generated as a ring by all the equivariant Thom classes τ_1, \ldots, τ_m of the normal bundles of the characteristic submanifolds W_1, \ldots, W_m. \square

When $W_{j_1} \cap \cdots \cap W_{j_s} = \emptyset$, $\tau_{j_1} \cdots \tau_{j_s}$ clearly vanish. So the above claim implies that for any $k \geq 0$, $H^*_G(W; \mathbb{Z}_2)$ is additively generated by the monomials $\tau_{j_1}^{k_1} \cdots \tau_{j_s}^{k_s}$ such that $W_{j_1} \cap \cdots \cap W_{j_s} \neq \emptyset$ and $k_1 + \cdots + k_s = k$.

Let N be a connected component of $W_{i_1} \cap \cdots \cap W_{i_k}$, $1 \leq k \leq n$. Then N is the facial submanifold W_f over some codimension-k face f of Q. So by Lemma 4.2, N is an equivariantly formal 2-torus manifold whose cohomology ring $H^*(N; \mathbb{Z}_2)$ is generated by its degree-one part. Moreover, by a completely parallel argument to the proof of [27] Lemma 3.4, we can show that N is the only connected component of $W_{i_1} \cap \cdots \cap W_{i_k}$ from the above discussion of $H^*_G(W; \mathbb{Z}_2)$. The lemma is proved.

The following proposition is parallel to [27] Lemma 8.2(2)].

Proposition 4.3. Suppose W is an n-dimensional equivariantly formal 2-torus manifold with orbit space Q and the cohomology ring $H^*(W; \mathbb{Z}_2)$ is generated by its degree-one part. Then the geometrical realization $\vert \mathcal{P}_Q \vert$ of the face poset \mathcal{P}_Q of Q is a Gorenstein* simplicial complex over \mathbb{Z}_2. In particular, $\mathbb{Z}_2[\mathcal{P}_Q] = \mathbb{Z}[Q]$ is Cohen-Macaulay and $H^*(\mathcal{P}_Q; \mathbb{Z}_2) \cong H^*(S^{n-1}; \mathbb{Z}_2)$.

Proof. By Lemma 4.2, all non-empty multiple intersections of the characteristic submanifolds of W are connected. This implies that $\vert \mathcal{P}_Q \vert$ is a simplicial complex. Moreover, by [30] II 5.1(d)], it is enough to verify the following three conditions to prove that $\vert \mathcal{P}_Q \vert$ is Gorenstein* over \mathbb{Z}_2:

(a) $\mathbb{Z}_2[\mathcal{P}_Q]$ is Cohen-Macaulay;
(b) Every $(n-2)$-simplex in \mathcal{P}_Q is contained in exactly two $(n-1)$-simplices;
(c) $\chi(\mathcal{P}_Q) = \chi(S^{n-1}).$

Since W is equivariantly formal, $H^*_G(W; \mathbb{Z}_2)$ is a free $H^*(BG; \mathbb{Z}_2)$-module and $\mathbb{Z}_2[\mathcal{P}_Q] = \mathbb{Z}_2[Q]$ is isomorphic to $H^*_G(W; \mathbb{Z}_2)$ (by Corollary 3.10) where $G = \mathbb{Z}_2^n$. This implies (a).

Note that each $(n-2)$-simplex of \mathcal{P}_Q corresponds to a non-empty intersection of $n-1$ characteristic submanifolds of W. The latter intersection is an equivariantly
formal 1-manifold by Lemma 4.2 so it is a circle with exactly two G-fixed points. This implies (b).

The proof of (c) is completely parallel to [27, Lemma 8.2 (2)], so we leave it to the reader. The proposition is proved. □

Using the above proposition and the lemmas from Section 3, we obtain the following theorem that is parallel to [27, Theorem 7.7].

Theorem 4.4. Let W be a 2-torus manifold whose orbit space is Q. Then W is equivariantly formal and the cohomology ring $H^*(W; \mathbb{Z}_2)$ is generated by its degree-one part if and only if the following three conditions are satisfied:

(a) $H^*_G(W; \mathbb{Z}_2)$ is isomorphic to $\mathbb{Z}_2[Q] = \mathbb{Z}_2[\mathcal{P}_Q]$ as a graded ring.

(b) $\mathbb{Z}_2[Q]$ is Cohen-Macaulay.

(c) $|\mathcal{P}_Q|$ is a simplicial complex.

Proof. The argument is completely parallel to the proof of [27, Theorem 7.7]. We only need to replace T^n by \mathbb{Z}_2^n and \mathbb{Q}-coefficients by \mathbb{Z}_2-coefficients to obtain our proof here. □

5. Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Our proof follows the proof of [27, Theorem 8.3, Theorem 9.3] almost step by step, while some arguments for 2-torus manifolds here are simpler than those for torus manifolds in [27].

5.1. Equivariant cohomology of the canonical model.

Let Q be a connected compact smooth nice n-manifold with corners. We call any function $\lambda : \mathcal{F}(Q) \to \mathbb{Z}_2^n$ that satisfies the linear independence relation in Section 2.1 a characteristic function on Q. By the same gluing rule in (4), we can obtain a space $M_Q(\lambda)$ from any characteristic function λ on Q, called the canonical model determined by (Q, λ). It is easy to see that $M_Q(\lambda)$ is a 2-torus manifold of dimension n.

Let Q^\vee denote the cone of the geometrical realization of the order complex $\text{ord}(\overline{\mathcal{P}}_Q) = \mathcal{P}_Q - \{0\}$. So topologically, Q^\vee is homeomorphic to $\text{Cone}(|\mathcal{P}_Q|)$. Moreover, Q^\vee is a “space with faces” (see Davis [13, Sec. 6]) where each proper face f of Q determines a unique “face” f^\vee of Q^\vee that is the geometrical realization of the order complex of the poset $\{f' \mid f' \subseteq f\}$. More precisely, f^\vee consists of all simplices of the form $f'_k \subseteq \cdots \subseteq f'_1 \subseteq f'_0 = f$ in $\text{ord}(\overline{\mathcal{P}}_Q)$. The “boundary” of Q^\vee, denoted by ∂Q^\vee, is $\text{ord}(\overline{\mathcal{P}}_Q)$ which is homeomorphic to $|\mathcal{P}_Q|$. So we have homeomorphisms:

$$\partial Q^\vee \cong |\mathcal{P}_Q|, \quad Q^\vee \cong \text{Cone}(|\mathcal{P}_Q|).$$
Remark 5.1. When $|\mathcal{P}_Q|$ is a simplicial complex, the space Q^\vee with the face decomposition was called in [14, p. 428] a simple polyhedral complex.

Suppose F_1, \ldots, F_m are all the facets of Q. Let $\mathcal{F}(Q^\vee) = \{F^\vee_1, \ldots, F^\vee_m\}$. Then any characteristic function $\lambda : \mathcal{F}(Q) \to \mathbb{Z}_2^n$ induces a map $\lambda^\vee : \mathcal{F}(Q^\vee) \to \mathbb{Z}_2^n$ where $\lambda^\vee(F^\vee_i) = \lambda(F_i)$, $1 \leq i \leq m$. Then by the same gluing rule in [14], we obtain a space $M_{Q^\vee}(\lambda^\vee)$ with a canonical \mathbb{Z}_2^n-action. By the same argument as in the proof of [27, Proposition 5.14], we can prove the following.

Proposition 5.2. There exists a continuous map $\phi : Q \to Q^\vee$ which preserves the face structure and induces an equivariant continuous map $\Phi : M_Q(\lambda) \to M_{Q^\vee}(\lambda^\vee)$.

Here $\phi : Q \to Q^\vee$ is constructed inductively, starting from an identification of vertices and extending the map on each higher-dimensional face by a degree-one map. Since every face f^\vee of Q^\vee is a cone, there are no obstructions to such extensions.

In addition, by a similar argument to that in [14, Theorem 4.8], we can obtain the following result.

Proposition 5.3. $H^*_G(M_{Q^\vee}(\lambda^\vee); \mathbb{Z}_2)$ is isomorphic to $\mathbb{Z}_2[Q]$ where $G = \mathbb{Z}_2^n$.

On the other hand, $H^*_G(M_Q(\lambda); \mathbb{Z}_2)$ could be much more complicated. Indeed, it is shown in [31, Theorem 1.7] that $H^*_G(M_Q(\lambda); \mathbb{Z}_2)$ isomorphic to the so called topological face ring of Q over \mathbb{Z}_2 which involves the mod 2 cohomology rings of all the faces of Q.

5.2. Proof of Theorem 1.3(ii).

Proof. We first prove the “if” part. Let Q be an n-dimensional mod 2 homology polytope and $G = \mathbb{Z}_2^n$. Since $H^1(Q; \mathbb{Z}_2) = 0$ and W is locally standard, the principal G-bundle ξ_W determined by W is a trivial G-bundle over Q. Then by [25, Lemma 3.1], W is equivariantly homeomorphic to the canonical model $M_Q(\lambda_W)$ (see (1)). So by Proposition 5.3 there exists an equivariant continuous map $\Phi : W = M_Q(\lambda_W) \to M_{Q^\vee}(\lambda^\vee_W) := W^\vee$.

Let $\pi : W \to Q$ and $\pi^\vee : W^\vee \to Q^\vee$ be the projections, respectively. Let F_1, \ldots, F_m be all the facets of Q. Since Q is a mod 2 homology polytope, so are F_1, \ldots, F_m. For brevity, let $W_i = \pi^{-1}(F_i)$, $W^\vee_i = (\pi^\vee)^{-1}(F^\vee_i)$, $1 \leq i \leq m$.

It is easy to see that the \mathbb{Z}_2-actions on $W \setminus \bigcup_i W_i$ and $W^\vee \setminus \bigcup_i W_i^\vee$ are both free. Then we have
$$H_G^*(W, \bigcup W_i; \mathbb{Z}_2) \cong H^*(Q, \partial Q; \mathbb{Z}_2), \quad H_G^*(W^\vee, \bigcup_i W_i^\vee; \mathbb{Z}_2) \cong H^*(Q^\vee, \partial Q^\vee; \mathbb{Z}_2).$$

So $\Phi : W \to W^\vee$ induces a map between the following two exact sequences:
\[
\begin{array}{c}
\xrightarrow{\phi^*} H^*(Q^\vee, \partial Q^\vee; \mathbb{Z}_2) \longrightarrow H_G^*(W^\vee; \mathbb{Z}_2) \longrightarrow H_G^*(\bigcup_i W_i^\vee; \mathbb{Z}_2) \longrightarrow \cdots
\end{array}
\]
\[
\begin{array}{c}
\xrightarrow{\phi^*} H^*(Q, \partial Q; \mathbb{Z}_2) \longrightarrow H_G^*(W; \mathbb{Z}_2) \longrightarrow H_G^*(\bigcup_i W_i; \mathbb{Z}_2) \longrightarrow \cdots
\end{array}
\]

Each W_i is a 2-torus manifold over the homology polytope F_i. So using induction and a Mayer-Vietoris argument, we may assume that in the diagram (21), $\Phi^* : H_G^*(\bigcup_i W_i^\vee; \mathbb{Z}_2) \to H_G^*(\bigcup_i W_i; \mathbb{Z}_2)$ is an isomorphism.

By Proposition 2.9, $H^*(|\mathcal{P}_Q|; \mathbb{Z}_2) \cong H^*(S^{n-1}; \mathbb{Z}_2)$. Then by (20), we obtain
$$H^*(Q^\vee, \partial Q^\vee; \mathbb{Z}_2) \cong H^*(D^n, S^{n-1}; \mathbb{Z}_2).$$

We also have $H^*(Q, \partial Q; \mathbb{Z}_2) \cong H^*(D^n, S^{n-1}; \mathbb{Z}_2)$ since Q is an n-dimensional mod 2 homology polytope. By the construction of ϕ, it is easy to see that the homomorphism $\phi^* : H^*(Q^\vee, \partial Q^\vee; \mathbb{Z}_2) \to H^*(Q, \partial Q; \mathbb{Z}_2)$ is an isomorphism. Then by applying the five-lemma to the diagram (21), we can deduce that $\Phi^* : H_G^*(W^\vee; \mathbb{Z}_2) \to H_G^*(W; \mathbb{Z}_2)$ is also an isomorphism. So by Proposition 5.3, $H_G^*(W; \mathbb{Z}_2) \cong \mathbb{Z}_2[Q]$.

Besides, we also know that $\mathbb{Z}_2[Q]$ is Cohen-Macaulay by Proposition 2.9. Then since $|\mathcal{P}_Q|$ is a simplicial complex, all the three conditions in Theorem 4.4 are satisfied. Hence W is equivariantly formal and $H^*(W; \mathbb{Z}_2)$ is generated by its degree-one part as a ring. The “if” part is proved.

Next, we prove the “only if” part. By the assumption on W and Lemma 4.2, all non-empty multiple intersections of characteristic submanifolds of W are connected and their cohomology rings are generated by their degree-one elements. So we may assume by induction that all the proper faces of Q are mod 2 homology polytopes. In particular, the proper faces of Q are all mod 2 acyclic. From these assumptions, we need to prove that Q itself is mod 2 acyclic.

By Proposition 5.3, $|\mathcal{P}_Q|$ is a simplicial complex. So $|\mathcal{P}_Q|$ is the nerve simplicial complex of the cover of ∂Q by the facets of Q. By a Mayer–Vietoris sequence argument, we can deduce that $H^*(\partial Q; \mathbb{Z}_2) \cong H^*(|\mathcal{P}_Q|; \mathbb{Z}_2)$. This together with Proposition 4.3 shows that
\[
H^*(\partial Q; \mathbb{Z}_2) \cong H^*(S^{n-1}; \mathbb{Z}_2).
\]

Claim: $H^1(Q; \mathbb{Z}_2) = 0$.

Since \(W \) is equivariantly formal, \(H^*_G(W; \mathbb{Z}_2) \) is a free \(H^*(BG; \mathbb{Z}_2) \)-module. On the other hand, \(H^*(Q, \partial Q; \mathbb{Z}_2) \) is finitely generated over \(\mathbb{Z}_2 \) since \(Q \) is compact. So \(H^*(Q, \partial Q; \mathbb{Z}_2) \) is a torsion \(H^*(BG; \mathbb{Z}_2) \)-module. It follows that the whole bottom row in the diagram (21) splits into short exact sequences:

\[
0 \to H^k_G(W; \mathbb{Z}_2) \to H^k_G\left(\bigcup_i W_i; \mathbb{Z}_2 \right) \to H^{k+1}(Q, \partial Q; \mathbb{Z}_2) \to 0, \ k \geq 0.
\]

Take \(k = 0 \) above, we clearly have \(H^0_G(W; \mathbb{Z}_2) \cong H^0_G\left(\bigcup_i W_i; \mathbb{Z}_2 \right) \cong \mathbb{Z}_2 \). This implies \(H^1(Q, \partial Q; \mathbb{Z}_2) = 0 \). So in the following exact sequence,

\[
\cdots \to H^1(Q, \partial Q; \mathbb{Z}_2) \to H^1(Q; \mathbb{Z}_2) \to H^1(\partial Q; \mathbb{Z}_2) \to \cdots,
\]

\(H^1(Q; \mathbb{Z}_2) \) is mapped injectively into \(H^1(\partial Q; \mathbb{Z}_2) \cong H^1(S^{n-1}; \mathbb{Z}_2) \). Note that if \(n = 1 \), the claim is trivial. When \(n = 2 \), we have \(\partial Q = S^1 \) and \(H^1(Q; \mathbb{Z}_2) = 0 \) or \(\mathbb{Z}_2 \). But by the classification of compact surfaces, the latter case is impossible. When \(n \geq 3 \), we have \(H^1(\partial Q; \mathbb{Z}_2) = 0 \), so \(H^1(Q; \mathbb{Z}_2) = 0 \). The claim is proved.

Now since \(H^1(Q; \mathbb{Z}_2) = 0 \), by the above proof of the “if” part, there exists an equivariant homeomorphism \(\Phi \) from \(W \) to the canonical model \(M_Q(\lambda_W) \). In addition, by (20) and Proposition 4.3, we have

\[
H^*(\partial Q^\vee; \mathbb{Z}_2) \cong H^*([\mathcal{P}_Q]; \mathbb{Z}_2) \cong H^*(S^{n-1}; \mathbb{Z}_2).
\]

So we have an isomorphism

\[
H^*(Q^\vee, \partial Q^\vee; \mathbb{Z}_2) \cong H^*(D^n, S^{n-1}; \mathbb{Z}_2).
\]

Then by the construction of \(\phi \), the map \(\phi^*: H^*(Q^\vee, \partial Q^\vee; \mathbb{Z}_2) \to H^*(Q, \partial Q; \mathbb{Z}_2) \) is an isomorphism in degree \(n \) (since \(Q \) is connected) and thus is injective in all degrees. So by an extended version of the 5-lemma, we can deduce that in the diagram (21) the map \(\Phi^*: H^*_G(W^\vee; \mathbb{Z}_2) \to H^*_G(W; \mathbb{Z}_2) \) is injective. Moreover,

\begin{itemize}
 \item \(H^*_G(W^\vee; \mathbb{Z}_2) = H^*_G(M_{Q^\vee}(\lambda_W); \mathbb{Z}_2) \cong \mathbb{Z}_2[Q] \) by Proposition 5.3 and
 \item \(\mathbb{Z}_2[Q] \cong H^*_G(W; \mathbb{Z}_2) \) by Corollary 3.10
\end{itemize}

So \(H^*_G(W^\vee; \mathbb{Z}_2) \) and \(H^*_G(W; \mathbb{Z}_2) \) have the same dimension over \(\mathbb{Z}_2 \) in each degree. Therefore, the monomorphism \(\Phi^*: H^*_G(W^\vee; \mathbb{Z}_2) \to H^*_G(W; \mathbb{Z}_2) \) is actually an isomorphism. Then by the 5-lemma again, we can deduce from the diagram (21) that \(\phi^*: H^*(Q^\vee, \partial Q^\vee; \mathbb{Z}_2) \to H^*(Q, \partial Q; \mathbb{Z}_2) \) is an isomorphism. So by (21),

\[
H^*(Q, \partial Q; \mathbb{Z}_2) \cong H^*(D^n, S^{n-1}; \mathbb{Z}_2)
\]

which implies that \(Q \) is mod 2 acyclic by Poincaré-Lefschetz duality. This finishes the proof. \(\square \)
Figure 2. Cutting a vertex and an edge

5.3. Proof of Theorem 1.3(i).

Proof. We can reduce Theorem 1.3(i) to Theorem 1.3(ii) by real blow-ups of W along sufficient many facial submanifolds, which corresponds to doing some barycentric subdivisions of the face poset \mathcal{P}_Q of Q (see Figure 2). Indeed, after doing enough barycentric subdivisions to \mathcal{P}_Q, we can turn $|\mathcal{P}_Q|$ into a simplicial complex. Let \hat{W} be the 2-torus manifold obtained after these real blow-ups on W and \hat{Q} be its orbit space (with $|\mathcal{P}_\hat{Q}|$ being a simplicial complex).

Fact-1: \hat{W} is equivariantly formal if and only if so is W (by Proposition 3.12).
Fact-2: \hat{Q} is mod 2 face-acyclic if and only if so is Q (by Lemma 3.13).

We first prove the “if” part. Suppose W is locally standard and Q is mod 2 face-acyclic. Then \hat{W} is also locally standard and \hat{Q} is a mod 2 homology polytope by Fact-2. So by Theorem 1.3(ii), \hat{W} is equivariantly formal, then so is W.

Next, we prove the “only if” part. If W is equivariantly formal, then so is \hat{W}, and W is locally standard by Theorem 3.3. So by Corollary 3.10 we have a graded ring isomorphism $H^*_G(\hat{W}; \mathbb{Z}_2) \cong \mathbb{Z}_2[\hat{Q}]$. Moreover, since $|\mathcal{P}_\hat{Q}|$ is a simplicial complex, $\mathbb{Z}_2[\hat{Q}]$ is generated by its degree-one elements, then so is $H^*_G(\hat{W}; \mathbb{Z}_2)$. In addition, since $i^*_\hat{W} : H^*_W(\hat{W}; \mathbb{Z}_2) \to H^*(\hat{W}; \mathbb{Z}_2)$ is surjective, $H^*(\hat{W}; \mathbb{Z}_2)$ is also generated by its degree-one elements. Then by Theorem 1.3(ii), \hat{Q} is a mod 2 homology polytope. So by Fact-2, Q is mod 2 face-acyclic. □

5.4. Proof of Theorem 1.5

Proof. We first prove the “if” part. Assume that there exists a regular m-involution τ on W. By definition the fixed point set W^τ of τ is discrete, then so is $W^{\mathbb{Z}_2} \subseteq W^\tau$. This implies that Q must have vertices. Let p be a vertex of Q
and let F_1, \cdots, F_n be all the facets containing p. By the property of λ_W,
$$e_1 = \lambda_W(F_1), \cdots, e_n = \lambda_W(F_n)$$
form a linear basis of \mathbb{Z}_2^n over \mathbb{Z}_2. Then since the \mathbb{Z}_2^n-action on W is locally standard, it is easy to see that only when $g = e_1 + \cdots + e_n$ could the fixed point set W^g be discrete. So we must have $\tau = \tau_{e_1+\cdots+e_n}$, and in particular
$$W^\tau = W^{\tau_{e_1+\cdots+e_n}} = W^{\mathbb{Z}_2^n}.$$
Hence
$$\dim_{\mathbb{Z}_2} H^*\left(\mathbb{Z}^{\mathbb{Z}_2^n}; \mathbb{Z}_2\right) = \dim_{\mathbb{Z}_2} H^*(W^\tau; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2)$$
where the second “=” is due to the assumption that τ is an m-involution. So by Theorem 1.1, W is equivariantly formal. Then Q is mod 2 face-acyclic by Theorem 1.3. In particular, every face of Q has a vertex and the 1-skeleton of Q is connected (by Lemma 2.2).

It remains to prove that the image of $\lambda_W : \mathcal{F}(Q) \to \mathbb{Z}_2^n$ is exactly $\{e_1, \cdots, e_n\}$. Indeed, take an edge e of Q whose vertices are p and p'. So the n facets of Q that contain p' are $F_1, \cdots, F_{i-1}, F'_i, F_{i+1}, \cdots, F_n$ for some $1 \leq i \leq n$. Then since $\tau_{e_1+\cdots+e_n}$ is an m-involution, we must have
$$\lambda_W(F_1) + \cdots + \lambda_W(F_{i-1}) + \lambda_W(F'_i) + \lambda_W(F_{i+1}) + \cdots + \lambda_W(F_n) = e_1 + \cdots + e_n.$$
This implies $\lambda_W(F'_i) = e_i$. Then since the 1-skeleton of Q is connected and every facet F of Q contains a vertex, we can iterate the above argument to prove that every $\lambda_W(F)$ must take value in $\{e_1, \cdots, e_n\}$.

Next, we prove the “only if” part. Suppose Q is mod 2 face-acyclic and the values of the characteristic function λ_W of Q consist exactly of a linear basis e_1, \cdots, e_n of \mathbb{Z}_2^n. By Theorem 1.3(i), W is equivariantly formal. So we have
$$\dim_{\mathbb{Z}_2} H^*\left(\mathbb{Z}^{\mathbb{Z}_2^n}; \mathbb{Z}_2\right) = \dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2)$$ (by Theorem 1.1).

On the other hand, our assumption on λ_W implies that the regular involution $\tau = \tau_{e_1+\cdots+e_n}$ satisfies $W^\tau = \mathbb{Z}_2^n$ which is a discrete set. Then we have
$$\dim_{\mathbb{Z}_2} H^*(W^\tau; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(\mathbb{Z}^{\mathbb{Z}_2^n}; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H^*(W; \mathbb{Z}_2).$$
So τ is a regular m-involution on W by definition. The theorem is proved.

Remark 5.4. If we do not assume a 2-torus manifold W to be locally standard, even if W admits a regular m-involution, W may not be equivariantly formal or locally standard. For example: let
$$S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}.$$
Define two involutions σ and σ' on S^2 by
$$\sigma(x_1, x_2, x_3) = (-x_1, -x_2, x_3), \quad \sigma'(x_1, x_2, x_3) = (x_1, x_2, -x_3).$$
It is easy to see that σ is an m-involution on S^2 with two isolated fixed points $(0,0,1)$ and $(0,0,-1)$. But since the \mathbb{Z}_2^2-action on S^2 determined by σ and σ' has no global fixed point, it is not equivariantly formal. We can also directly check that this \mathbb{Z}_2^2-action on S^2 is not locally standard.

Finally, we propose some questions on weakly equivariantly formal 2-torus manifolds.

Question-3: Does there exist a weakly equivariantly formal 2-torus manifold which is not equivariantly formal?

Question-4: If a 2-torus manifold is weakly equivariantly formal, are there any restrictions on the topology and combinatorial structure of its orbit space?

Question-5: Whether or not a 2-torus manifold being weakly equivariantly formal is determined only by the topology and combinatorial structure of its orbit space?

Acknowledgment

The author wants to thank Anton Ayzenberg and the anonymous reviewer for some valuable comments and suggestions.

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] C. Allday and V. Puppe, *Cohomological methods in transformation groups*. Cambridge Studies in Advanced Mathematics 32 (Cambridge University Press, Cambridge, 1993).

[2] C. Allday, M. Franz and V. Puppe, *Syzygies in equivariant cohomology in positive characteristic*, Forum Math. 33 (2021), no. 2, 547–567.

[3] M. Atiyah and R. Bott, *The moment map and equivariant cohomology*, Topology 23 (1984), no. 1, 1–28.

[4] D. Biss, V. Guillemin and T. Holm, *The mod 2 cohomology of fixed point sets of anti-symplectic involutions*, Adv. Math. 185 (2004), no. 2, 370–399.

[5] A. Borel, *Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts*, Ann. of Math. (2) 57 (1953), 115–207.

[6] A. Borel, *Seminar on transformation groups*, with contributions by G. Bredon, E. Floyd, D. Montgomery, R. Palais. Annals of Math. Studies 46, Princeton University Press, 1960.

[7] G. E. Bredon, *Introduction to compact transformation groups*, Pure and Applied Mathematics, vol. 46. Academic Press, New York, London (1972).

[8] G. E. Bredon, *The free part of a torus action and related numerical equalities*, Duke Math. J. 41 (1974), 843–854.

[9] W. Bruns and J. Herzog, *Cohen-Macaulay rings, revised edition*, Cambridge Studies in Adv. Math. 39, Cambridge Univ. Press, Cambridge, 1998.

[10] T. Chang and T. Skjelbred, *The topological Schur lemma and related results*, Ann. Math. 100 (1974), 307–321.
[11] S. Chaves, The quotient criterion for syzygies in equivariant cohomology for elementary abelian 2-group actions, [arXiv:2009.08530](https://arxiv.org/abs/2009.08530).

[12] B. Chen, Z. Lü and L. Yu, Self-dual binary codes from small covers and simple polytopes, Algebr. Geom. Topol. 18 (2018), no. 5, 2729–2767.

[13] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. 117 (1983), 293–324.

[14] M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J. 62 (1991), no. 2, 417–451.

[15] M. Franz, A quotient criterion for syzygies in equivariant cohomology, Transformation Groups 22 (2017), 933–965.

[16] M. Franz and V. Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transform. Groups 12 (2007), no. 1, 65–76.

[17] S. Gitler, The cohomology of blow ups, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 167–175.

[18] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998) 25–83.

[19] O. Goertsches and D. Töben, Torus actions whose equivariant cohomology is Cohen-Macaulay. J. Topol. 3 (2010), no. 4, 819–846.

[20] P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics. Wiley-Interscience, New York, 1978.

[21] W. Y. Hsiang, Cohomology theory of topological transformation groups. Ergebnisse der Mathematik und ihrer Grenzgebiete 85 (Springer, New York, 1975).

[22] L. Jeffrey and F. Kirwan, Localization for nonabelian group actions, Topology 34 (1995), no. 2, 291–327.

[23] M. Kreck and V. Puppe, Involutions on 3-manifolds and self-dual, binary codes, Homology, Homotopy Appl. 10 (2008), no. 2, 139–148.

[24] Z. Lü, Graphs of 2-torus actions, Toric topology, 261–272, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008.

[25] Z. Lü and M. Masuda, Equivariant classification of 2-torus manifolds, Colloq. Math. 115 (2009), 171–188.

[26] M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tohoku Math. J. 51 (1999), 237–265.

[27] M. Masuda and T. Panov, On the cohomology of torus manifolds. Osaka J. Math. 43 (2006), 711–746.

[28] V. Puppe, Group actions and codes. Can. J. Math. 53, 212–224 (2001).

[29] R. Stanley, f-vectors and h-vectors of simplicial posets, J. Pure Appl. Algebra 71 (1991), no. 2-3, 319–331.

[30] R. Stanley, Combinatorics and commutative algebra, 2nd edition. Birkhäuser Boston, 2007.

[31] L. Yu, A generalization of moment-angle manifolds with non-contractible orbit spaces, [arXiv:2011.10360](https://arxiv.org/abs/2011.10360) (to appear in Algebraic & Geometric Topology).

Department of Mathematics, Nanjing University, Nanjing, 210093, P.R.China.
Email address: yuli@nju.edu.cn