An orthogonal polynomial coefficient formula for the Hankel transform

Paul Barry
School of Science
Waterford Institute of Technology
Ireland
pbarry@wit.ie

Abstract

We give an explicit formula for the Hankel transform of a regular sequence in terms of the coefficients of the associated orthogonal polynomials and the sequence itself. We apply this formula to some sequences of combinatorial interest, deriving interesting combinatorial identities by this means. Further insight is also gained into the structure of the Hankel transform of a sequence.

Let \(\mu_n \) denote a sequence of numbers, with \(\mu_0 = 1 \). The Hankel transform \([16]\) of this sequence is the sequence \(h_n \) of determinants

\[
h_n = |\mu_{i+j}|_{0 \leq i,j \leq n}.
\]

We shall assume that the sequence \(\mu_n \) is regular (or “Catalan-like”), that is, \(h_n \neq 0 \) for any \(n \). Much research \([4, 6, 9, 10, 13, 19, 20, 21, 22]\) has focused on finding closed form expressions for the Hankel transforms of important sequences. Some well-known sequences have Hankel transforms with simple formulas (such as our examples below), but in general Hankel transforms can have quite complex forms \([9]\), or be totally resistant to current techniques of elucidation. The sequences we shall use in this note are susceptible to the following classical approach. If \([14, 15]\) \(\mu_n \) has a generating function \(g(x) \) expressible in the form

\[
g(x) = \mu_0 \frac{\lambda_1 x^2}{1 - \alpha_0 x - \frac{\lambda_2 x^2}{1 - \alpha_1 x - \frac{\lambda_3 x^2}{1 - \alpha_2 x - \cdots}}}.
\]

then we have \([14]\)

\[
h_n = \mu_0^{n+1} \lambda_1 \lambda_2^{n-1} \cdots \lambda_{n-1} \lambda_n = \mu_0^{n+1} \prod_{k=1}^{n} \lambda_k^{n+1-k}.
\]

We can associate a sequence of monic orthogonal polynomials \([5, 11, 25]\) \(P_n(x) \) with the sequence \(\mu_n \). The \(\mu_n \) then correspond to the moments of this family, for the linear functional \(\mathcal{L} \) defined by

\[
\mathcal{L}(x^n) = \mu_n.
\]
The family \(\{P_n(x)\} \) satisfies a three term recurrence relation

\[
P_{n+1}(x) = (x - \alpha_n)P_n(x) - \lambda_n P_{n-1}(x), \quad n \geq 0,
\]

where \(\lambda_0 P_0(x) = 0 \) and \(P_1(x) = 1 \). We can construct the \(P_n(x) \) explicitly as follows [12]. Let

\[
\Delta_{i,n} = \begin{vmatrix}
\mu_0 & \mu_1 & \cdots & \mu_i \\
\mu_1 & \mu_2 & \cdots & \mu_{i+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{i-1} & \mu_i & \cdots & \mu_{2i-1} \\
\mu_n & \mu_{n+1} & \cdots & \mu_{n+1}
\end{vmatrix}, \quad D_n(x) = \begin{vmatrix}
\mu_0 & \mu_1 & \cdots & \mu_i \\
\mu_1 & \mu_2 & \cdots & \mu_{i+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{i-1} & \mu_i & \cdots & \mu_{2i-1} \\
1 & x & \cdots & x^n
\end{vmatrix},
\]

and let

\[
D_n = \Delta_{n,n}.
\]

Then

\[
P_n(x) = \frac{D_n(x)}{D_{n-1}}
\]

is the monic orthogonal sequence for \(\mathcal{L} \). The orthogonality of the polynomials is equivalent to

\[
\mathcal{L}(P_m P_n) = \lambda_1 \lambda_2 \cdots \lambda_n \delta_{m,n}.
\]

In particular,

\[
\mathcal{L}(P_n^2) = \lambda_1 \lambda_2 \cdots \lambda_n.
\]

However, we know that [20]

\[
h_n = \prod_{k=0}^{n} \lambda_1 \lambda_2 \cdots \lambda_k.
\]

Thus we have that

\[
h_n = \prod_{k=0}^{n} \mathcal{L}(P_k^2).
\]

We wish now to evaluate \(\mathcal{L}(P_k^2) \). To do this, we let \((a_{n,k}) \) be the matrix of coefficients of the polynomials \(\{P_n(x)\} \). Since the degree of \(P_n(x) \) is \(n \), this is a lower triangular matrix, with 1’s on the diagonal since the polynomials are monic. It is thus invertible (and if its elements are integers, so are those of the inverse), and we know that [1] the first column of its inverse is composed of the \(\mu_n \). Using the Cauchy formula for the coefficients of the product of two polynomials, along with the fact that \(\mathcal{L} \) operates on polynomials as follows:

\[
\mathcal{L}\left(\sum_{j=0}^{m} a_j x^j\right) = \sum_{j=0}^{m} a_j \mu_j,
\]

we obtain the following formula:

\[
\mathcal{L}(P_k^2) = \sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j} a_{k,i-j} \right) \mu_i.
\]
Thus we obtain the following formula for the Hankel transform \(h_n \) in terms of the elements of the coefficient array for the associated orthogonal polynomials:

\[
h_n = \prod_{k=0}^{n-2k} \sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j}a_{k,i-j} \right) \mu_i. \tag{3}
\]

We state this as a proposition.

Proposition 1. Let \(\mu_n \) be a regular sequence, whose associated family of orthogonal polynomials \(\{P_n(x)\}_{n \geq 0} \) has coefficient array \((a_{n,k})_{n,k \geq 0} \). Then the Hankel transform \(h_n \) of \(\mu_n \) is given by

\[
h_n = \prod_{k=0}^{n-2k} \sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j}a_{k,i-j} \right) \mu_i.
\]

Note also that the elements of this product, namely \(\lambda_1\lambda_2\cdots\lambda_k \), are precisely the elements of \(D \) where \([17, 18, 26]\) the Hankel matrix \(H \) of \(\mu_n \) has the LDU decomposition

\[
H_\mu = (\mu_{i+j}) = LDL^T,
\]

where \(L \) is the inverse of \((a_{i,j}) \). Thus the elements of \(D \) are given by

\[
\sum_{i=0}^{2n} \left(\sum_{j=0}^{i} a_{n,j}a_{n,i-j} \right) \mu_i, \quad n = 0, 1, 2, \ldots.
\]

We state this as a corollary to the proposition.

Corollary 2. Let \(\mu_n \) be a regular sequence, with Hankel matrix \(H = (\mu_{i+j})_{i,j \geq 0} \). Then

\[
H = LDL^T,
\]

where the elements \(d_n \) of the diagonal matrix \(D \) are expressible as

\[
d_k = \sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j}a_{k,i-j} \right) \mu_i.
\]

1 Examples

In this section, we give some examples, concentrating on “simple” sequences of combinatorial significance whose Hankel transforms are well known. In each case the coefficient array of the associated family of monic orthogonal polynomials is a Riordan array \([7, 23, 24]\). These examples further explore links \([1, 2, 3]\) between Riordan arrays, orthogonal polynomials and Hankel transforms. For those not familiar with Riordan arrays, we recall that the **Riordan group** \([23, 24]\), is a set of infinite lower-triangular integer matrices, where each matrix is defined by a pair of generating functions \(g(x) = 1 + g_1x + g_2x^2 + \cdots \) and \(f(x) = f_1 + f_2x^2 + \cdots \) where \(f_1 \neq 0 \) \([24]\). We assume in addition that \(f_1 = 1 \) in what follows. The associated matrix
is the matrix whose \(i\)-th column is generated by \(g(x)f(x)^i\) (the first column being indexed by 0). The matrix corresponding to the pair \(g, f\) is denoted by \((g, f)\) or \(R(g, f)\). The group law is then given by
\[(g, f) \cdot (h, l) = (g, f)(h, l) = (g(h \circ f), l \circ f).\]
The identity for this law is \(I = (1, x)\) and the inverse of \((g, f)\) is \((g, f)^{-1} = (1/(g \circ f), \bar{f})\) where \(\bar{f}\) is the compositional inverse of \(f\) (defined by \(f(\bar{f}(x)) = \bar{f}(f(x)) = x\)).

Example 3. The binomial matrix (Pascal’s triangle) which is the matrix with general term \(\binom{n}{k}\) is the Riordan array
\[B = \left(\frac{1}{1-x}, \frac{x}{1-x}\right).\]
It has inverse \(B^{-1} = (-1)^{n-k} \binom{n}{k}\) given by
\[B^{-1} = \left(\frac{1}{1-x}, \frac{x}{1-x}\right).\]
The exponential Riordan group \([7, 8]\), is a set of infinite lower-triangular integer matrices, where each matrix is defined by a pair of generating functions \(g(x) = g_0 + g_1 x + g_2 x^2 + \cdots\) and \(f(x) = f_1 + f_2 x^2 + \cdots\) where \(g_0 \neq 0\) and \(f_1 \neq 0\). In what follows, we shall assume \(g_0 = f_1 = 1\).

The associated matrix is the matrix whose \(i\)-th column has exponential generating function \(g(x)f(x)^i/i!\) (the first column being indexed by 0). The matrix corresponding to the pair \(f, g\) is denoted by \([g, f]\). The group law is given by
\[[g, f] \cdot [h, l] = [g(h \circ f), l \circ f].\]
The identity for this law is \(I = [1, x]\) and the inverse of \([g, f]\) is \([g, f]^{-1} = [1/(g \circ \bar{f}), \bar{f}]\) where \(\bar{f}\) is the compositional inverse of \(f\).

Example 4. The binomial matrix \(B = \left(\binom{n}{k}\right)\) is also an element of the exponential Riordan group. We have
\[B = [e^x, x] \quad \text{and} \quad B^{-1} = [e^{-x}, x].\]

We are now in a position to apply our proposition to some sequences of combinatorial interest.

Example 5. The Catalan numbers A000108. It is well known that for the Catalan numbers \(C_n = \frac{1}{n+1} \binom{2n}{n}\) we have \(h_n = 1\) for all \(n\). This can be seen since the generating function \(g(x) = \frac{1 - \sqrt{1 - 4x}}{2x}\) of the Catalan numbers can be expressed as
\[g(x) = \frac{1}{1 - x - \frac{x^2}{1 - 2x - \frac{x^2}{1 - 2x - \frac{x^2}{1 - \cdots}}}}.\]
The corresponding monic orthogonal polynomials
\[P_n(x) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n+k}{2k} x^k \]
have coefficient array \(\left(\frac{1}{1+x}, \frac{x}{(1+x)^2} \right) \). We have
\[P_{n+1}(x) = (x - 2)P_n(x) - P_{n-1}(x), \quad P_0(x) = 1, \quad P_1(x) = x - 1. \]
Equation (3) takes the form
\[\prod_{k=0}^{n} 2k \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} (-1)^i \binom{k+j}{2j} \binom{k+i-j}{2(i-j)} C_i = 1. \]
In fact in this case, since \(\lambda_i = 1 \), we obtain the identity
\[\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} (-1)^i \binom{k+j}{2j} \binom{k+i-j}{2(i-j)} C_i = 1. \]

Example 6. The central binomial numbers \(A000984 \). The Hankel transform of the central binomial numbers \(\binom{2n}{n} \) is given by \(h_n = 2^n \). This can be seen since the generating function \(g(x) = \frac{1}{\sqrt{1-4x}} \) of the central binomial numbers can be expressed as
\[g(x) = \frac{1}{1 - 2x - \frac{2x^2}{1 - 2x - \frac{x^2}{1 - 2x - \frac{x^2}{1 - \cdots}}}}. \]
The corresponding orthogonal polynomials \(P_n(x) \) have coefficient array \(\left(\frac{1-x}{1+x}, \frac{x}{(1+x)^2} \right) \). In this case, we have
\[P_{n+1}(x) = (x - 2)P_n(x) - P_{n-1}(x), \quad P_0(x) = 1, \quad P_1(x) = x - 2. \]
The general term \(a_{n,k} \) of the Riordan array \(\left(\frac{1-x}{1+x}, \frac{x}{(1+x)^2} \right) \) is given by
\[a_{n,k} = \left(\frac{n+k}{n-k} + \frac{n+k-1}{n-k-1} \right) (-1)^{n-k} = \binom{n+k}{2k} \frac{2n + 0^{n+k}}{n+k + 0^{n+k}} (-1)^{n-k}. \]
Here we have used the notation \(0^n \) to denote the sequence with term 1, 0, 0, 0, \ldots and generating function 1. Thus \(0^n = \delta_{0,n} = [n = 0] \). With this value for \(a_{n,k} \), we then obtain
\[\prod_{k=0}^{n} 2k \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{k,j} a_{k,i-j} \binom{2i}{i} = 2^n. \]
Now $\lambda_1 = 2$, $\lambda_i = 1$ for $i > 1$, and so we also have
\[
\sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j} a_{k,i-j} \right) \binom{2i}{i} = 2 - 0^k.
\]
Thus we have, for instance,
\[
\sum_{i=0}^{2k} \sum_{j=0}^{i} (-1)^i \binom{k+j}{2j} \binom{k+i-j}{2(i-j)} \frac{2k+0^k+j}{k+j+0^k+i-j} \frac{2k+0^{k+i-j}}{k+j+0^k+i-j} \binom{2i}{i} = 2 - 0^k.
\]

Example 7. The large Schröder numbers \textbf{A006318}. The large Schröder numbers $S_n = \sum_{k=0}^{n} \binom{n+k}{2k} C_k$ have Hankel transform $h_n = 2 \binom{n+1}{2}$. This can be seen since the generating function $g(x)$ of the large Schröder numbers can be expressed as
\[
g(x) = \frac{1}{1 - 2x - x^2 - \frac{2x^2}{1 - 3x - \frac{2x^2}{1 - 3x - \frac{2x^2}{1 - \cdots}}}}.
\]
The corresponding monic orthogonal polynomials $P_n(x)$ satisfy
\[
P_{n+1}(x) = (x - 3)P_n(x) - 2P_{n-1}(x), \quad P_0(x) = 1, \quad P_1(x) = x - 2,
\]
with coefficient array equal to the Riordan array
\[
\left(\frac{1}{1 + 2x}, \frac{x}{1 + 3x + 2x^2} \right).
\]
For this array, we have
\[
a_{n,k} = (-1)^{n-k} \sum_{j=0}^{n} \binom{n-j}{k} \binom{n+k}{j}.
\]
With this value for $a_{n,k}$, we then have
\[
h_n = 2^{\binom{n+1}{2}} = \prod_{k=0}^{n} \sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j} a_{k,i-j} \right) S_i,
\]
and
\[
\sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j} a_{k,i-j} \right) S_i = 2^k.
\]
Explicitly, this last equation gives us
\[
\sum_{i=0}^{2k} \sum_{j=0}^{k} \sum_{l=0}^{k} \binom{k-l}{j} \binom{k+j}{l} \sum_{m=0}^{k} \binom{k-m}{i-j} \binom{k+i-j}{m} S_i = 2^k.
\]
Example 8. The factorial numbers A000142. The factorial numbers \(n! \) have Hankel transform \(h_n = \prod_{i=0}^{n} i!^2 \). This can be seen since the generating function \(g(x) \) of the factorial numbers can be expressed as

\[
g(x) = \frac{1}{1 - x - \frac{x^2}{1 - 3x - \frac{4x^2}{1 - 5x - \frac{9x^2}{1 - \ldots}}}}.
\]

The corresponding monic orthogonal polynomials \(P_n(x) \) satisfy

\[
P_{n+1}(x) = (x - (2n + 1))P_n(x) - n^2P_{n-1}(x), \quad P_0(x) = 1, \quad P_1(x) = x - 1,
\]

with coefficient array equal to the exponential Riordan array

\[
\left[\frac{1}{1+x}, \frac{x}{1+x} \right]
\]

with general term \(a_{n,k} \) given by

\[
a_{n,k} = \binom{n}{k} \frac{n!}{k!} (-1)^{n-k}.
\]

With this value for \(a_{n,k} \), we then obtain

\[
\prod_{k=0}^{n} \sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j} a_{k,i-j} \right) i! = \prod_{i=0}^{n} i!^2,
\]

and

\[
\sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j} a_{k,i-j} \right) i! = k!^2.
\]

Writing these expressions explicitly, we get

\[
\prod_{k=0}^{n} \sum_{i=0}^{2k} \sum_{j=0}^{i} (-1)^i \binom{k}{j} \binom{k}{i-j} \frac{k!^2}{j!(i-j)!} i! = \prod_{i=0}^{n} i!^2,
\]

and

\[
\sum_{i=0}^{2k} \left(\sum_{j=0}^{i} (-1)^i \binom{k}{j} \binom{k}{i-j} \frac{k!^2}{j!(i-j)!} \right) i! = k!^2.
\]

We deduce that

\[
\sum_{i=0}^{2k} \left(\sum_{j=0}^{i} (-1)^i \binom{k}{j} \binom{k}{i-j} \frac{1}{j!(i-j)!} \right) i! = 1,
\]
or
\[
\sum_{i=0}^{2k} \left(\sum_{j=0}^{i} (-1)^i \binom{k}{j} \binom{k}{i-j} \binom{i}{j} \right) = 1.
\]

Expanding the inner term in \(i \) and \(k \) as an array, we see that this expression represents the row sums of the array that begins

\[
\begin{array}{ccccccc}
1 & -2 & 2 & & & & \\
1 & -4 & 10 & -12 & 6 & & \\
1 & -6 & 24 & -56 & 78 & -60 & 20 \\
1 & -8 & 44 & -152 & 346 & -520 & 500 & -280 & 70 \\
1 & -10 & 70 & -320 & 1010 & -2252 & 3560 & -3920 & 2870 & -1260 & 252
\end{array}
\]

Example 9. The derangement (or rencontres) numbers \(\text{A000166} \). It is well-known [16] that a sequence and its binomial transform, or its inverse binomial transform, have the same Hankel transform. Thus the derangement numbers [22]

\[
d_n = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k!,
\]

which are the inverse binomial transform of the factorial numbers \(n! \), have Hankel transform \(h_n = \prod_{i=0}^{n} i!^2 \). This may be seen from the continued fraction expansion of their generating function, given by

\[
\frac{1}{1 - \frac{x^2}{1 - 2x - \frac{4x^2}{1 - 4x - \frac{9x^2}{1 - \ldots}}}}.
\]

In this case, the coefficient array of the associated orthogonal polynomials is equal to that of the factorial numbers, multiplied on the left by the binomial matrix. We then obtain

\[
[e^x, x] \cdot \left[\frac{1}{1 + x}, \frac{x}{1 + x} \right] = \left[\frac{e^x}{1 + x}, \frac{x}{1 + x} \right],
\]

as the Riordan array expression for the coefficient array of the associated orthogonal polynomials, with general term \(a_{n,k} \) given by

\[
a_{n,k} = \sum_{j=0}^{n} \binom{n}{j} \binom{j}{k} j! (-1)^{j-k}.
\]

With this value for \(a_{n,k} \), we then deduce, for instance, that

\[
\sum_{i=0}^{2k} \left(\sum_{j=0}^{i} a_{k,j} a_{k,i-j} \right) \sum_{l=0}^{i} \binom{i}{l} (-1)^{i-l} l! = k!^2.
\]
References

[1] P. Barry, Riordan arrays, orthogonal polynomials as moments, and Hankel transforms, Preprint, Waterford Institute of Technology, 2011.

[2] P. Barry, A. Hennessy, Meixner-type results for Riordan arrays and associated integer sequences, *J. Integer Seq.*, 13 (2010), Article 10.9.4.

[3] P. Barry, The restricted Toda chain, exponential Riordan arrays, and Hankel transforms, *J. Integer Seq.*, 13 (2010), Article 10.8.4.

[4] P. Barry, P. Rajković, and M. Petković, An application of Sobolev orthogonal polynomials to the computation of a special Hankel determinant, in W. Gautschi, G. Rassias, M. Themistocles (Eds), *Approximation and Computation*, Springer, 2010.

[5] T. S. Chihara, *An introduction to orthogonal polynomials*, Gordon and Breach, New York, 1978.

[6] A. Cvetković, P. Rajković, and M. Ivković, Catalan numbers, the Hankel transform and Fibonacci numbers, *J. Integer Seq.*, 5 (2002), Article 02.1.3.

[7] E. Deutsch, L. Shapiro, Exponential Riordan arrays, Lecture Notes, Nankai University, 2004, available electronically at http://www.combinatorics.net/ppt2004/Louis%20W.%20Shapiro/shapiro.htm

[8] E. Deutsch, L. Ferrari, and S. Rinaldi, Production matrices and Riordan arrays, *Ann. Comb.*, 13 (2009), 65–85.

[9] Ö. Egecioglu, T. Redmond, C. Ryavec, Almost Product Evaluation of Hankel Determinants, *The Electronic Journal of Combinatorics*, 15, (2008), #R6.

[10] R. Ehrenborg, The Hankel Determinant of Exponential Polynomials, *Am. Math. Monthly*, 107 (2000), pp. 557–560.

[11] W. Gautschi, *Orthogonal Polynomials: Computation and Approximation*, Clarendon Press - Oxford, 2003.

[12] M.E.H. Ismail, J. Zeng, Addition theorems via continued fractions, *Trans. Amer. Math. Soc.*, 362 (2010), 957–983.

[13] A. Junod, Hankel Determinants and Orthogonal Polynomials, *Expositiones Mathematicae* 21 (2003), 63–74.

[14] C. Krattenthaler, Advanced determinant calculus, *Séminaire Lotharingien Combin.* 42 (1999), Article B42q., available electronically at http://arxiv.org/PS_cache/math/pdf/9902/9902004.pdf, 2010.
[15] C. Krattenthaler, Advanced determinant calculus: A complement, *Linear Algebra Appl.* **411** (2005), 68-166.

[16] J. W. Layman, *The Hankel transform and some of its properties*, *J. Integer Seq.*, **4** (2001) Article 01.1.5.

[17] P. Peart, L. Woodson, Triple factorisation of some Riordan matrices, *Fibonacci Quart.*, **31** (1993), 121–128.

[18] P. Peart, W.-J. Woan, *Generating functions via Hankel and Stieltjes matrices*, *J. Integer Seq.*, **3** (2000), Article 00.2.1.

[19] M. Petković, P. Rajković, & P. Barry, The Hankel transform of generalized central trinomial coefficients and related sequences, *Integral Transforms Spec. Funct.*, **22** (2011), 29–44.

[20] Ch. Radoux, Calcul effectif de certains déterminants de Hankel, *Bull. Soc. Math. Belg.*, XXXI, Fascicule 1, serie B (1979), 49–55.

[21] Ch. Radoux, Déterminant de Hankel construit sur les polynômes de Hermite, *Annales de la Societe Scientifiques de Bruxelles*, **104** (1991), 59–61.

[22] Ch. Radoux, Déterminant de Hankel construit sur des polynômes liés aux nombres de dérangements, *Europ. J. Combinatorics*, **12** (1991) 327–329.

[23] L. W. Shapiro, S. Getu, W.-J. Woan, and L.C. Woodson, The Riordan Group, *Discr. Appl. Math.* **34** (1991), 229–239.

[24] R. Sprugnoli, Riordan arrays and combinatorial sums, *Discrete Math.* **132** (1994), 267–290.

[25] G. Szegö, *Orthogonal Polynomials*, 4th ed. Providence, RI, Amer. Math. Soc., (1975).

[26] W-J Woan, Hankel matrices and lattice paths, *J. Integer Seq.*, **4** (2001), Article 01.1.2

2010 Mathematics Subject Classification: Primary 42C05; Secondary 11B83, 11C20, 15B05, 15B36, 33C45.

Keywords: Integer sequence, orthogonal polynomials, moments, Riordan array, Hankel determinant, Hankel transform.

Concerns sequences [A000108, A000142, A000166, A000984, A006318].