Migrating Endothelial Cells Are Distinctly Hyperglycosylated and Express Specific Migration-associated Cell Surface Glycoproteins

Hellmut G. Augustin-Voss and Bendicht U. Pauli
Cancer Biology Laboratories, Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853

Abstract. Migration of endothelial cells is one of the first cellular responses in the cascade of events that leads to reendothelialization of an injured vessel and neovascularization of growing tissues and tumors. To examine the hypothesis that endothelial cells express a specific migration-associated phenotype, we analyzed the cell surface glycoprotein expression of migrating bovine aortic endothelial cell (BAECs). Light microscopic analysis revealed an upregulation of binding sites for the lectins Concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin after neuraminidase treatment (N-PNA) on migrating endothelial cells relative to contact-inhibited cells. These findings were confirmed and quantitated with an enzyme-linked lectin assay (ELLA) of circularly scraped BAEC monolayers. The expression of migration-associated cell surface glycoproteins was also analyzed by SDS-PAGE. The overall expression of cell surface glycoproteins was upregulated on migrating BAECs. Migrating BAECs expressed Con A- and WGA-binding glycoproteins with apparent molecular masses of 25 and 48 kD that were not expressed by contact-inhibited BAEC monolayers and, accordingly, disappeared as circularly scraped monolayers reached confluence. Subconfluent BAEC monolayers expressed the same cell surface glycoconjugate pattern as migrating endothelial cells. FACS analysis of circularly scraped BAEC monolayers showed that the phenotypic changes of cell surface glycoprotein expression after release from growth arrest occurred before the recruitment of the cells into the cell cycle (3 vs. 12 h). Suramin, which inhibits endothelial cell migration, abrogated the expression of the migration-associated phenotype and induced the expression of a prominent 28-kD Con A- and WGA-binding cell surface glycoprotein. These results indicate that endothelial cells express a specific migration-associated phenotype, which is characterized by the upregulation of distinct cellular glycoconjugates and the expression of specific migration-associated cell surface glycoproteins.

R EENDOTHELIALIZATION of injured blood vessels and neovascularization of tissues in embryonic development, wound healing, and neoplasia proceed in highly ordered cascades of events that both begin with endothelial cell migration (Madri et al., 1991; Noden, 1991; Lindner et al., 1989; Folkman, 1985). Endothelial cells migrate out of preexisting, contact-inhibited endothelial cell monolayers, either in a sheet-like fashion to cover a denuded area of endothelium (Madri et al., 1991; Lindner et al., 1989) or in sprouts of new capillaries to provide vascular perfusion to a growing tissue (Auspriunk and Folkman, 1977). Although endothelial cell migration in reendothelialization and neovascularization is distinct with respect to initiators (injury vs angiogenic factor), affected vessel caliber (large vessels vs capillaries), and functional purpose (repair vs new blood vessel formation), the molecular events that regulate migration may be similar. Accordingly, in vitro studies on endothelial cell migration have most often been conducted with endothelial cells derived from large vessel origin (e.g., bovine aorta), using either mechanically injured monolayers or sprouting "capillary" bovine aortic endothelial cell (BAEC) tubes as models (Sholley et al., 1977). Within the last two decades, both the influence of growth factors and the role of distinct components of the extracellular matrix have emerged as potential regulators of endothelial cell migration. For example, the release of endogenous basic fibroblast growth factor (bFGF) or coatings with collagens of types I and IV have been identified as requirements for endothelial cell migration in vitro (Tsuboi et al., 1990; Rosen and Goldberg, 1989; Sato and Rifkin, 1988; Madri et al., 1988; Madri and Stenn, 1982). These studies have given little attention to exploring quantitative or qualitative alterations in distinct cell surface receptors of growth factor and molecular masses of 25 and 48 kD that were not expressed by contact-inhibited BAEC monolayers and, accordingly, disappeared as circularly scraped monolayers reached confluence. Subconfluent BAEC monolayers expressed the same cell surface glycoconjugate pattern as migrating endothelial cells. FACS analysis of circularly scraped BAEC monolayers showed that the phenotypic changes of cell surface glycoprotein expression after release from growth arrest occurred before the recruitment of the cells into the cell cycle (3 vs. 12 h). Suramin, which inhibits endothelial cell migration, abrogated the expression of the migration-associated phenotype and induced the expression of a prominent 28-kD Con A- and WGA-binding cell surface glycoprotein. These results indicate that endothelial cells express a specific migration-associated phenotype, which is characterized by the upregulation of distinct cellular glycoconjugates and the expression of specific migration-associated cell surface glycoproteins.

1. Abbreviations used in this paper: BAEC, bovine aortic endothelial cell; Con A, Concanavalin A; ELLA, enzyme-linked lectin assay; N, after neuraminidase treatment; PNA, peanut agglutinin; RCA-I, Ricinus communis agglutinin I; SBA, soybean agglutinin; WGA, wheat germ agglutinin.
matrix mediators of endothelial cell migration. Recent reports, however, indicate that modulation of endothelial cell surface protein expression and organization (e.g., low affinity integrin receptors) often occurs in response to changes in adhesive substratum, soluble factors, migration, and proliferation rate (Lampugnani et al., 1991; Basson et al., 1990; Ingber, 1990).

The present study intends to characterize the migration-associated endothelial cell surface phenotype, focusing on glycoconjugate expression in migrating versus contact-inhibited endothelial cells. This task is accomplished by lectin cytochemistry to analyze individual, migrating endothelial cells and by an enzyme-linked lectin assay (ELLA) to quantify differences in glycoconjugate expression in populations of migrating versus growth-arrested, contact-inhibited endothelial cells. Our data show a consistent upregulation of Concanavalin A (Con A)-, wheat-germ agglutinin (WGA)-, and peanut agglutinin (PNA) after neuraminidase treatment (N-PNA)-binding sites on migrating endothelial cells. Two migration-associated, Con A- and WGA-binding endothelial cell surface glycoproteins of 25 and 48 kD are identified.

Materials and Methods

Cells and Materials

Endothelial cells (BAECs) were isolated from thoracic aortas of 18-mo-old bovines as described by Booyse et al. (1975). Cells were cultured at 37°C in 75-cm² flasks in DME containing 10% heat-inactivated FBS and frozen in liquid nitrogen at passage 2 or 3. Endothelial cells were used within 10 passages for subsequent experiments.

Migration Assays

Two different assays were used to study migration-associated endothelial cell surface glycoconjugate expression. The first assay served to probe individual, migrating BAECs by lectin cytochemistry. BAECs were grown within the confines of rectangular silicon templates (Heraeus, Hanau, Germany) inserted into 6-well cell culture dishes (Falcon, Becton Dickinson, Oxnard, CA) (Augustin-Voss and Pauli, 1992). Upon reaching confluence, BAECs were released from growth arrest by removing the silicon templates. Cells were allowed to migrate for 24 h, after which time they were analyzed by lectin staining. The second assay was a circular scraping technique that was designed to study glycoconjugate expression of migrating cell populations using the ELLA technique. BAECs were grown to confluence in 24-well plates and then circularly scraped with a soft rubber comb. This technique yielded alternate rings of confluent BAECs and bare plastic (Fig. 1). BAEC glycoconjugate expression was analyzed by this method at various time points after scraping. This method was also used for the analysis of surface iodinated proteins by PAGE but, for this purpose, cells were grown in 100-mm dishes.

Lectin Cytochemistry and Enzyme-linked Lectin Assay (ELLA)

BAECs used for lectin cytochemistry and ELLA analyses were washed three times with PBS containing 1.0 mM CaCl₂ and 1.0 mM MgCl₂ at room temperature, and processed as described (Augustin-Voss et al., 1991). In brief, cells were fixed with 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, for 15 min. Fixed cells were washed three times with PBS containing 0.2% gelatin (PBS-G). Then, incubated with 1 μg/ml of biotinylated lectin (Vector Laboratories, Inc., Burlingame, CA) for 30 min. After thorough washing with PBS-G, BAECs were incubated with 1 μg/ml of streptavidin-HRP (Zymed Laboratories, Inc., South San Francisco, CA) (5 min), and washed again with PBS-G. For ELLA experiments, bound lectin-enzyme complexes were visualized after light protected incubation with 0.4 mg/ml of o-phenylenediamine (Sigma Chemical Co., St. Louis, MO) and 12 μl/ml of 1% hydrogen peroxide in 0.05 M Tris-buffered 0.15 M saline at pH 7.6 for 4 min. BAECs were counterstained with Gill's hematoxylin. These procedures yielded selective staining of cell surface glycoconjugates, since fixed BAECs were impermeable to large molecules such as antibodies and lectins, as evidenced by the absence of immunostaining of cytoplasmic factor VIII-related antigen. To account for total cellular glycoconjugate expression, BAECs were also studied under membrane-permeating conditions. Membrane permeation was achieved by incubating fixed BAECs with graded ethanol solutions, followed by a 15-min treatment with 0.3% H₂O₂ in methanol to inactive endogenous peroxidase. Processing for lectin staining was as described above. The lectins (and their corresponding sugar specificities) used in this study were Con A (α-Man>α-Glc), *Ricinus communis* agglutinin I (RCA-I[Gal>GalNAc]), WGA (β-GlcNAc>NeuNAc), PNA (β-Gal-[1-3]-GalNAc>, Soybean agglutinin (SBA) (GalNAc>B-Gal), and *Helix pomatia* agglutinin (HPA) (GalNAc>B-Gal). The lectin Ulex europaeus agglutinin-I (UEA-I) frequently used as a marker for human endothelial cells does not bind BAECs and was therefore not included in this study. For identification of cryptic PNA- and SBA-binding sites, cells were incubated with neuraminidase (type VII, Sigma Chemical Co.) (0.5 U/ml, pH 6.6, 15 min, 37°C) before incubation with the lectin. To evaluate the specificity of the lectin binding, BAECs were stained with lectins that were preincubated with the specific monosaccharide (0.2 M). In all experimental groups, preincubation of lectins with their corresponding monosaccharide resulted in complete inhibition of lectin binding.

Cell Surface Iodination

Endothelial cell surface proteins were labeled by lactoperoxidase-catalyzed iodination, essentially as described by Soule et al. (1982). Briefly, BAECs grown in 100-mm tissue culture dishes (Falcon, Becton Dickinson) were washed extensively in PBS and incubated with 2 ml of 200 mM phosphate buffer, pH 7.3, containing 0.2 mCi Na¹²⁵I (New England Nuclear, DuPont, Winooski, VT). For light microscopic lectin cytochemistry, lectin-enzyme complexes were visualized by incubation with 0.5 mg/ml 3,3'-DAB tetrahydrochloride (Sigma Chemical Co.) and 12 μl/ml 1% hydrogen peroxide in 0.05 M Tris-buffered 0.15 M saline at pH 7.6 (4 min). BAECs were counterstained with Gill's hematoxylin. These procedures yielded selective staining of cell surface glycoconjugates, since fixed BAECs were impermeable to large molecules such as antibodies and lectins, as evidenced by the absence of immunostaining of cytoplasmic factor VIII-related antigen. To account for total cellular glycoconjugate expression, BAECs were also studied under membrane-permeating conditions. Membrane permeation was achieved by incubating fixed BAECs with graded ethanol solutions, followed by a 15-min treatment with 0.3% H₂O₂ in methanol to inactive endogenous peroxidase. Processing for lectin staining was as described above. The lectins (and their corresponding sugar specificities) used in this study were Con A (α-Man>α-Glc), *Ricinus communis* agglutinin I (RCA-I[Gal>GalNAc]), WGA (β-GlcNAc>NeuNAc), PNA (β-Gal-[1-3]-GalNAc>, Soybean agglutinin (SBA) (GalNAc>B-Gal), and *Helix pomatia* agglutinin (HPA) (GalNAc>B-Gal). The lectin Ulex europaeus agglutinin-I (UEA-I) frequently used as a marker for human endothelial cells does not bind BAECs and was therefore not included in this study. For identification of cryptic PNA- and SBA-binding sites, cells were incubated with neuraminidase (type VII, Sigma Chemical Co.) (0.5 U/ml, pH 6.6, 15 min, 37°C) before incubation with the lectin. To evaluate the specificity of the lectin binding, BAECs were stained with lectins that were preincubated with the specific monosaccharide (0.2 M). In all experimental groups, preincubation of lectins with their corresponding monosaccharide resulted in complete inhibition of lectin binding.

Figure 1. Circular scraping of cultured cell monolayers to study populations of migrating cells. Endothelial cells (BAECs) were grown to confluence (a) upon which time they were circularly scraped with a comb-like instrument (b, immediately after scraping). Circularly scraped monolayers were cultured for different time periods (c, 3; d, 6; e, 12; f, 24; g, 48; and h, 96 h) after which time they were used for the ELLA experiments or radioiodination. (i) Inhibition of endothelial cell migration by 0.5 M suramin added to the culture medium after scraping for 24 h (compare with f).
Results

particularly intense and was characterized by prominent perinuclear-permeating conditions. Con A staining was permissive to growth-arrested cells. This difference in lectin binding between migrating and growth-arrested endothelial cells was completely inhibiting Con A with methyl-α-D-mannopyranoside completely inhibits Con A-binding.

Figure 2. Con A-binding of migrating and growth-arrested endothelial cells. (a) The cells at the migrating rim stain more intensely than the contact-inhibited cells, demonstrating an upregulation of Con A-binding sites on migrating endothelial cells. (b) Preincubation of Con A with methyl-α-D-mannopyranoside completely inhibits Con A-binding.

the perinuclear localization of organelles involved in glycoconjugate synthesis and processing (i.e., Golgi apparatus and ER) and, thus, was indicative of a high rate of synthesis of glycoconjugates with intermediate metabolites that are rich in mannose residues. RCA-I and N-SBA stained both growth-arrested and migrating endothelial cells with similar intensities, whereas PNA and SBA stained neither growth-arrested nor migrating BAECs.

The silicon ring compartmentalization technique was useful in the simultaneous, cytochemical characterization of contact-inhibited and migrating endothelial cells, but was at best semiquantitative and did not allow the analysis of populations of migrating cells. Therefore, populations of migrating endothelial cells were studied in the "circular scraping" assay. After scraping the BAEC monolayers, large numbers of cells simultaneously started to migrate reaching a maximum between 12 and 24 h after which time they gradually became confluent again (Fig. 1). Migrating endothelial cell populations were probed with a panel of lectins and binding intensities were quantitated spectrophotometrically in an ELLA. Confirming the light microscopic lectin cytochemistry data, BAECs strongly bound the lectins Con A, RCA-I, WGA, N-SBA, and N-PNA (Fig. 3). WGA- and N-PNA-binding intensities were significantly upregulated at several time points after circular scraping. Absorbance values of migrating BAECs clearly exceeded the binding intensity of both confluent BAEC monolayers as well as the subendothelial extracellular matrix left on the plastic surface after completely scraping off the BAECs. As monolayers reached confluence, absorbance values decreased again to levels of the original confluent monolayer. It is worth noting that absorbance values were not corrected for total cell number, since confluent and migrating cells covered very different surface...
Cell Surface Glycoprotein Expression of Migrating BAECs

BAECs expressed a number of major \(^{125}\text{I}-\)labeled NP-40–soluble cell surface proteins (Fig. 5 A). Most proteins were between 90 and 150 kD, in which autoradiograms showed least resolution. Loading the same amounts of activity, several lower molecular weight bands appeared to be upregulated after circular scraping, but overall cell surface protein expression appeared to be very similar. In contrast, SDS-PAGE of BAEC surface glycoproteins isolated by lectin affinity chromatography revealed distinct differences between growth-arrested and migrating endothelial cells (Fig. 5, B and C). Autoradiograms from migrating endothelial cells consistently showed upregulation of cell surface glycoproteins. As early as 3 h after circular scraping, BAECs expressed new Con A- and WGA-binding glycoproteins with apparent molecular masses of 25 and 48 kD. Expression of these molecules was strongest at 12–24 h after circular scraping after which time the bands disappeared again as monolayers reached confluence. Overexposure of autoradio-

40 h), binding intensities decrease to levels of the original confluent monolayer. The changes of binding intensities of RCA-I and SBA (after neuraminidase treatment) reflect the increases in cell number after circular scraping. Binding of the completely scraped monolayer (second bar) demonstrates lectin-binding of the underlying extracellular matrix, which in the case of Con A quantitatively overshadows the upregulation of lectin receptors on migrating endothelial cells. Results shown here were obtained under permeating conditions. Similar results were obtained under nonpermeating conditions. Absorbance values represent the means ± SD of three experiments performed in triplicate (*, binding intensity upregulated compared with confluent monolayer, \(p < 0.01\); **, binding intensity upregulated compared to confluent monolayer, completely scraped monolayer, and monolayer immediately after scraping, \(p < 0.01\)).
Figure 4. ELLA of confluent and subconfluent endothelial cells. BAECs were seeded at different densities and cultured for 48 h. The figure legend at the right shows cell densities and cell numbers at the end of the culture period. After fixation, cells were probed with N-SBA, N-PNA, Con A, RCA-I, and WGA. Binding sites of WGA and N-PNA are upregulated on subconfluent monolayers. Results are not corrected for cell number, because individual cells in confluent and subconfluent monolayers are very different in size. Thus, the upregulation of lectin-binding sites on subconfluent endothelial cell monolayers can be appreciated, considering that for both, WGA and N-PNA, cells seeded at 1/16 the seeding density of confluent cells still reach the same binding intensities as confluent monolayers. The binding intensities of RCA-I and N-SBA reflect the different cell numbers in the culture dish. Con A binding does not appear upregulated. However, it appears that the decrease of Con A absorbance values is not strictly correlated to the number of cells. Results shown here were obtained under permeating conditions. Similar results were obtained under nonpermeating conditions. Absorbance values represent the means ± SD of three experiments performed in triplicate (**, p < 0.01; *, p < 0.05; binding intensity upregulated compared to confluent monolayer).

grams showed background level expression of the 25- and 48-kD glycoproteins in confluent monolayers before circular scraping but they were not detectable in superconfluent monolayers at 96 h after circular scraping (Fig. 5, B and C). The 48-kD cell surface glycoprotein also bound the lectin RCA-I (data not shown).

Analogously to the ELLA experiments, expression of 125I-labeled, NP-40-soluble cell surface proteins from confluent BAEC monolayers was compared with that of subconfluent monolayers (Fig. 6 A–C). Using the same amounts of radioactivity for lectin affinity chromatography (Fig. 6 A), total cell surface expression of Con A- and WGA-binding glycoproteins was strongly upregulated on subconfluent monolayers (Fig. 6, B and C). Subconfluent BAEC monolayers also expressed the Con A- and WGA-binding 25- and 48-kD cell surface glycoproteins.

Flow Cytometry of Migrating and Subconfluent BAECs

To verify whether the observed phenotypic changes of migrating and subconfluent BAEC monolayers were attributed exclusively to migration or whether they might in fact reflect proliferation-associated changes, cell cycle distribution analyses of confluent BAECs, BAECs at different time points after circular scraping, and subconfluent BAECs were performed by flow cytometry (Table I). The major recruitment into the cell cycle did not occur before 12 h after circular scraping. In contrast, lectin-binding patterns significantly changed as early as 3–6 h after circular scraping, indicating that the expression of the migration-associated phenotype preceded proliferation. Interestingly, even the superconfluent monolayers at 96 h after circular scraping were only 90.6% G1 arrested which we believe reflected the autocrine activity of early passage BAECs (all experiments were performed with BAECs up to passage 10).

Effect of Suramin on BAEC Surface Glycoprotein Expression

The polyanionic growth factor receptor antagonist suramin is known to inhibit autocrinely regulated endothelial cell migration (Tsuboi et al., 1990) as well as tumor cell-induced endothelial cell migration (Augustin-Voss and Pauli, 1992). Adding 0.5 mM suramin to circularly scraped BAEC monolayers inhibited endothelial cell migration (Fig. 1) and, thus, abrogated expression of the described migration-associated endothelial cell surface phenotype (Fig. 7). Instead, suramin-treated BAECs expressed a prominent 28-kD Con A- and WGA-binding cell surface glycoprotein (Fig. 7).

Discussion

Endothelial cells in vivo form a confluent, growth-arrested monolayer with a very low turnover rate (Fajardo, 1989). Denudation injury (Lindner et al., 1989) or angiogenic stimulation (Folkman and Klagsbrun, 1987), however, rapidly

Augustin-Voss and Pauli Phenotype of Migrating Cells

487
Figure 5. Autoradiogram of cell surface glycoproteins from migrating endothelial cells separated by SDS-PAGE. Confluent BAECs were circularly scraped and allowed to migrate for the time periods indicated (0, 3, 6, 12, 24, 48, and 96 h). Cell surface proteins were iodinated and separated by SDS-PAGE (A). Alternatively, ¹²⁵I-labeled lectin-binding glycoproteins were isolated by lectin affinity chromatography and separated by SDS-PAGE (B, Con A-binding glycoproteins; C, WGA-binding glycoproteins). ECM, Completely scraped monolayer (i.e., labeling of empty dish) at 0 h (control to differentiate cell surface labeling from extracellular matrix labeling in scraped dishes); 0, confluent monolayer at 0 h; 0, confluent monolayer immediately after circular scraping (0 h); 96A, overexposure of lane 96 h to demonstrate that the expression of specific migration-associated glycoproteins is not a result of the apparent upregulation of lectin-binding glycoproteins expressed by migrating BAECs. The positions of specific migration-associated glycoproteins are marked with arrowheads.

The Journal of Cell Biology, Volume 119, 1992 488

induces endothelial cell migration as one of the first steps in a cascade of events that leads to either reendothelialization of an injured vessel or growth of new capillary blood vessels (angiogenesis). Despite enormous efforts to elucidate the regulatory mechanisms of endothelial cell migration, studies that have attempted to characterize the phenotype of migratory endothelial cells are rather limited. They have yielded a migration-associated upregulation in the synthesis of chondroitin sulfate and dermatan sulfate proteoglycans (Kinsella and Wight, 1986) and, more recently, a transient expression of syndecan cell surface proteoglycan in endothelial cells from granulation tissue (Elenius et al., 1991). In an attempt to further characterize the glycoconjugate phenotype of migratory endothelial cells, we report here that endothelial cell migration is associated with distinct surface hyperglycosylation and expression of specific cell surface glycoproteins.

Upregulation of Lectin-binding Sites on Migrating Endothelial Cells

Lectins have been used in the phenotypic characterization of various cell types including endothelial cells (Porter et al., 1991; Schnitzer et al., 1990; Simionescu et al., 1982). Their endothelial cell binding sites are often species- (Holthöfer, 1983), age- (Mills and Haworth, 1986), organ- (Ponder and Wilkinson, 1983), and vascular bed-specific (Soda and Ravassol, 1983; Mills and Haworth, 1986). In the present study, a select battery of lectins was used to characterize the surface phenotype of migrating versus growth-arrested, confluent BAEC monolayers. Semiquantitative light microscopic lectin cytochemistry revealed an upregulation of Con A-, WGA-, and N-PNA-binding sites on migrating endothelial cells. Upregulation of these lectin binding sites lasted throughout the reendothelialization phase of circularly scraped BAEC monolayers and ceased when endothelial cell monolayers became confluent. This distinct pattern of upregulated lectin binding sites on migrating endothelial cells is indicative of an overall increase in the expression of cell surface glycoconjugates containing mannose, N-acetylgalactosamine, and/or sialic acid, as well as subterminal galactose. Functionally, the upregulation of lectin binding sites on migrating endothelial cells may have a significant influence on the way endothelial cells interact with their immediate environment including other endothelial cells, "blood cells," most notably leukocytes and platelets (Butcher, 1991; Nguyen, M., J. Folkman, and J. Bischoff, 1991. J. Cell Biol. 115:69a), growth factors (Sato and Rifkin, 1988; Tsuboi et al., 1990), etc. For example, binding sites for the lectins Con A, LCA, and PSA expressed most strongly on lamellipodia of migrating endothelial cells have been associated with the preferred adherence of monocytes to these sites (De Bono and Green, 1984; Di Corleto and de la Motte, 1985; Ball et al., 1989). Specific endothelial cell surface lectin staining profiles have also been implicated with the binding of tumor
Figure 6. Autoradiogram of cell surface glycoproteins from confluent and subconfluent BAEC monolayers separated by SDS-PAGE. Cell surface proteins were iodinated and separated by SDS-PAGE (A). Alternatively, 125I-labeled lectin-binding glycoproteins were isolated by lectin affinity chromatography and separated by SDS-PAGE (B, Con A-binding glycoproteins; C, WGA-binding glycoproteins). 1:1, 1:2, 1:4, 1:8, and 1:16, different dilutions of endothelial cells (corresponding to the cell densities and cell numbers shown in Fig. 4). I:1A, Overexposure of lane 1:1 to demonstrate that the expression of specific glycoproteins is not a result of the apparent upregulation of lectin-binding glycoprotein expression of subconfluent BAECs. The positions of specific migration-associated glycoproteins are marked with arrowheads.

Migration of Endothelial Cells Versus Proliferation

Migration of endothelial cells during reendothelialization and angiogenesis typically precedes proliferation (Ausprian and Folkman, 1977; Sholley et al., 1984). Autoradiography of in vitro migrating endothelial cells showed the same phenomenon: Migration is observed as early as 4 h after scraping of a confluent endothelial cell monolayer, yet significant incorporation of [H]thyminide does not occur until 12–20 h after scraping (Ball et al., 1989; Sholley et al., 1977). In the present study we determined the cell cycle distribution of BAEC after circular scraping to see whether the observed phenotypic changes were migration-associated or whether they reflected cell cycle-dependent, proliferation-associated changes. There was no significant recruitment into the cell cycle for the first 12 h after circular scraping, while the described cell surface phenotypic changes on migrating BAECs were observed as early as 3–6 h after circular scraping. Furthermore, light microscopic lectin cytochemistry revealed that the phenotypic changes were confined to the cells outgrowing from growth arrest-released monolayers, and were not observed in the zone of proliferation which is located typically behind the migrating front of endothelial cells.

Subconfluent BAECs expressed the same phenotype as migrating endothelial cells. Since these cells are fully recruited into the cell cycle and since migration of endothelial cells precedes proliferation during reendothelialization and angiogenesis, the intriguing question arises whether the migratory phenotype might be essential for the initiation of cell proliferation. A further characterization of proliferation- and tumor-induced endothelial cell proteins recently identified by two-dimensional PAGE (Clarke and West, 1991), might shed new light on possible molecular links between migration and proliferation of cells. Moreover, the demonstrated phenotypic differences between confluent and subconfluent BAEC monolayers illustrate the necessity to carefully monitor the confluence of monolayers used for

Table 1. Flow Cytometric Analysis of Cell Cycle Distribution of Confluent Migrating, and Subconfluent BAEC Monolayers

BAEC population	Percent of cells in G0	Percent of cells in G1, S, and M
0h	84.5 ± 6.8	15.5 ± 6.8
0h	84.1 ± 6.3	15.9 ± 6.3
3 h	82.6 ± 6.5	17.4 ± 6.5
6 h	81.4 ± 5.5	18.6 ± 5.5
12 h	74.6 ± 14.1	25.4 ± 14.1
24 h	73.3 ± 8.3	26.7 ± 8.3
48 h	86.6 ± 2.5	13.2 ± 8.3
96 h	90.6 ± 3.1	9.4 ± 3.1
1:1	81.2 ± 4.8	18.8 ± 4.8
1:2	81.0 ± 3.5	19.0 ± 3.5
1:4	69.3 ± 3.6	30.7 ± 3.6
1:8	61.6 ± 5.8	38.4 ± 5.4
1:16	58.9 ± 1.8	41.1 ± 1.8

Results represent means ± SD of three experiments. 0h, Confluent monolayer at 0 h; 0h, confluent monolayer immediately after circular scraping (0 h); 3, 6, 12, 24, 48, and 96 h time periods after release from growth arrest by circular scraping; and 1:1, 1:2, 1:4, 1:8, and 1:16, different dilutions of endothelial cells (corresponding to the cell densities and cell numbers shown in Fig. 4).
functional assays involving cell surface molecules, e.g., adhesion assays.

Expression of Specific Migration-associated Glycoproteins

Earlier studies by Vlodavsky et al. (1979) revealed a 60-kD surface protein (CSP-60) that was expressed in subconfluent BAEC monolayers. Although the overall pattern of BAEC surface protein expression observed in that study was similar to the one reported here, we were unable to identify CSP-60 in migrating BAECs, possibly due to the use of a nonionic detergent rather than SDS in the lysis buffer. Instead, we observed two Con A- and WGA-binding glycoproteins of 25 and 48 kD, that were both expressed on migrating and subconfluent BAECs. These glycoproteins were lost when injured BAEC monolayers were fully repaired and assumed a confluent, contact-inhibited monolayer. A potentially interesting link to our detection of specific migration-associated glycoproteins comes from the characterization of hypoxia-induced stress proteins in cultured endothelial cells (Zimmerman et al., 1991; Ogawa et al., 1991). These stress proteins have molecular masses of 34, 36, 47, and 56 kD (Zimmerman et al., 1991) and are thus in a similar molecular weight range as the migration-associated glycoproteins on BAECs reported here. Since hypoxia has been shown to be a triggering mechanism for angiogenesis, it is intriguing to speculate whether these stress proteins are in fact autocrine-regulated activation-associated molecules of endothelial cells. Another potentially interesting endothelial cell-derived molecule is SPARC. This glycoprotein is in the same molecular weight range (43 kD) and is secreted by subconfluent and tube forming endothelial cells but not by confluent endothelial cell monolayers (Iruela-Arispe et al., 1991). However, SPARC known to bind to the leading edges of membranous cell surface extensions if added exogenously (Sage et al., 1989) is a secreted protein that induces a rounded cell morphology and cell proliferation.

Conclusions

Migrating bovine aortic endothelial cells are characterized by a distinct pattern of hyperglycosylation and the expression of specific migration-associated cell surface glycoproteins. The importance of altered glycosylation patterns in cell migration is underscored by the association of distinct carbohydrate moieties with the development of blood vessels in the chorioallantoic membrane (Flynn, E., and D. Ausprunk, 1991. *J. Cell Biol.* 115:402a), and by blocking of capillary tube formation in vitro with an inhibitor of N-linked oligosaccharide processing (deoxymannojirimycin) (Nuyen, M., J. Folkman, and J. Bischoff, 1991. *J. Cell Biol.* 115:69a). The involvement of cell surface glycoconjugates in endothelial cell migration intriguingly parallels the expression of carbohydrate antigens in malignant tumor cells (Miyake and Hakomori, 1991). Neoplastic transformation, tumor cell invasion, and tumor progression have been associated with a variety of structural changes of cell surface carbohydrates, most notably sialylation and β-1-6 linked branching of complex oligosaccharides (Hakomori, 1991; Dennis et al., 1986, 1989). Preliminary studies in our laboratory also show an up-regulation of select lectin binding sites on migratory bovine fibroblasts, albeit the profile of such lectin binding sites was different between migrating BAECs and fibroblasts (Augustin-Voss, manuscript in preparation). Candidate molecules for the migrating phenotype of endothelial cells (and possibly other cell types) are glycosylated cell–cell and cell–substratum adhesion molecules. Further studies on the identification of these molecules will therefore not only lead to a better molecular understanding of endothelial cell migration during reendothelialization and angiogenesis but might also lead to a new strategy to therapeutically target migratory endothelial cells in situ in pathologic angiogenesis such as tumor neovascularization and diabetic retinopathy (Clarke and West, 1991; McCarthy et al., 1991; Hagemeier et al., 1986).

The authors wish to thank Dr. Andrew Yen for his advice and assistance in the flow cytometric analysis and Mrs. Beth Albrect and Mrs. Ursula Nassa for their expert technical assistance.

This work was supported by Public Health Service Grant CA-47668 from the National Cancer Institute (B. U. Pauli), a grant from the Cornell Biotechnology Program (B. U. Pauli), and a fellowship from the Deutsche Forschungsgemeinschaft (H. G. Augustin-Voss).

Received for publication 13 March 1992 and in revised form 6 July 1992.

References

Augustin-Voss, H. G., and B. U. Pauli. 1992. Quantitative analysis of autocrine-regulated, matrix-induced, and tumor cell-stimulated endothelial cell migration using a silicon template compartmentalization technique. *Exp. Cell Res.* 198:221–227.

Augustin-Voss, H. G., R. C. Johnson, and B. U. Pauli. 1991. Modulation of endothelial cell surface glycoconjugate expression by organ-derived biomaterials. *Exp. Cell Res.* 192:346–351.

Ausprunk, D. H., and J. Folkman. 1977. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. *Microvasc. Res.* 14:53–65.

Ball, R. Y., R. W. Stoddard, C. J. P. Jones, and M. J. Mitchinson. 1989. Saccaride expression on wounded endothelial cell monolayer in vitro. *J. Cell Sci.* 93:163–172.

Basson, C. T., W. J. Knowles, L. Bell, S. M. Albelda, V. Castronovo, L. A. Liotta, and J. A. Madri. 1988. Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events. *J. Cell Biol.* 110:789–801.

Booysen, F. M., B. J. Sediak, and M. E. Rafelson, Jr. 1975. Culture of arteriolar endothelial cells: characterization and growth of bovine aortic cells. *Thromb. Diath. Haemorrh.* 34:825–839.

Butcher, E. C. 1991. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. *Cell.* 67:1033–1036.

Clarke, M. S. F., and D. C. West. 1991. The identification of proliferation and tumor-induced proteins in human endothelial cells: a possible target for tumor therapy. *Electrophoresis.* 12:500–508.

De Bono, D. P., and C. Green. 1984. The adhesion of different cell types to cultured vascular endothelium: effects of culture density and age. *Br. J. Exp. Path.* 65:145–154.

Dennis, J. W., S. Laferte, C. Waghorne, M. L. Breitman, and R. S. Kerbel. 1987. β-1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. *Science (Wash. DC).* 236:582–585.

Dennis, J. W., S. Laferte, S. Yagel, and M. L. Breitman. 1989. Asparagine-linked oligosaccharides associated with metastatic cancer. *Cancer Cells.* 1:87–92.

Di Corleto, P. E., and C. A. de la Motte. 1985. Characterization of the adhesion of the human monocyte cell line U937 to cultured endothelial cells. *J. Clin. Invest.* 75:1153–1161.

Elenius, K., S. Vainio, M. Laato, M. Salmivirta, I. Theleff, and M. Jalkanen. 1991. Induced expression of syndecan in healing wounds. *J. Cell Biol.* 114:585–595.

Fajardo, L. F. 1989. The complexity of endothelial cells. *Am. J. Clin. Pathol.* 92:241–250.

Folkman, J. 1985. Tumor angiogenesis. *Adv. Cancer Res.* 43:174–203.

Folkman, J., and M. Klagsbrun. 1987. Angiogenic factors. *Science (Wash. DC).* 235:424–447.

Hagemeier, H. H., H. Holthöfer, S. Goerdler, K. Schulze-Osthoff, and C. Sorg. 1991. A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and non-reactive with normal adult tissues. *Int. J. Cancer.* 75:1153–1161.

Hakomori, S.-I. 1991. Possible functions of tumor-associated carbohydrate antigens. *Curr. Opin. Immunol.* 3:646–653.

Holthöfer, H. 1983. Ulex europaeus I lectin as a marker for tumors derived from the mouse mammary tumor cell line (B1). *Am. J. Clin. Pathol.* 79:354–360.
from endothelial cells. *J. Histochem. Cytochem.* 31:531–537.

Inger, D. E. 1990. Fibronectin controls capillary endothelial cell growth by modulating cell shape. *Proc. Natl. Acad. Sci. USA.* 87:3579–3583.

Iruela-Arispe, M. L., F. Hasselaar, and H. Sage. 1991. Differential expression of extracellular proteins is correlated with angiogenesis in vitro. *Lab. Invest.* 64:174–186.

Kinsella, M. G., and T. N. Wight. 1986. Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration. *J. Cell Biol.* 102:679–687.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature (Lond.)* 227:680–685.

Lampugnani, M. G., M. Resnati, E. Dejana, and P. C. Marchisio. 1991. The role of integrins in the maintenance of endothelial monolayer integrity. *J. Cell Biol.* 112:479–490.

Lindner, V., M. A. Reidy, and J. Fingerle. 1989. Regrowth of arterial endothelium. Denudation with minimal trauma leads to complete endothelial cell regrowth. *Lab. Invest.* 61:556–563.

Madri, J. A., and K. S. Stenn. 1982. Aortic endothelial cell migration. I. Matrix requirements and composition. *Am. J. Path.* 106:180–186.

Madri, J. A., B. M. Pratt, and J. Yannariello-Brown. 1988. Matrix-driven cell size changes modulates aortic endothelial cell proliferation and sheet migration. *Lab. Invest.* 132:18–27.

Miyake, M., and S. Hakomori. 1991. A specific cell surface glycoconjugate controlling cell motility: evidence by functional monoclonal antibodies that inhibit cell motility and tumor cell metastasis. *Biochemistry.* 30:3328–3334.

Noden, D. M. 1991. Development of craniofacial blood vessels. In *Development of the Vascular System.* F. N. Feinberg, G. K. Sherer, and R. Auerbach, editors. *Issues Biomed.* Karger, Basel. 1-24.

Ogawa, S., M. Claus, K. Kowahara, R. Shreeerwak, C. Butura, S. Koga, and D. Stern. 1991. Hypoxia induces endothelial cell synthesis of membrane-associated proteins. *Proc. Natl. Acad. Sci. USA.* 88:9897–9901.

Ponder, B. A. J., and M. M. Wilkinson. 1983. Organ-related differences in binding of Dolichos biflorus agglutinin to vascular endothelium. *Dev. Biol.* 96:535–541.

Porter, G. A., G. E. Palade, and A. J. Milic. 1990. Differential binding of the lectins Griffonia simplicifolia I and Lycopersicon esculentum to microvascular endothelium: organ-specific localization and partial glycoprotein characterization. *Eur. J. Cell Biol.* 51:85–95.

Ronen, E. M., and I. D. Goldberg. 1989. Protein factors which regulate cell motility. In *In Vitro Cell Dev. Biol.* 25:1079–1087.

Sage, H., R. B. Vernon, S. E. Funk, E. A. Everitt, and J. Angelio. 1989. SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca2+-dependent binding to the extracellular matrix. *J. Cell Biol.* 109:341–356.

Sato, Y., and D. B. Rifkin. 1988. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. *J. Cell Biol.* 107:1199–1205.

Schnitzler, J. E., P. J. Shen, and G. E. Palade. 1990. Lectin analysis of common glycoproteins detected on the surface of continuous microvascular endothelium in situ and in culture: identification of sialoglycoproteins. *Eur. J. Cell Biol.* 52:241–251.

Sholley, M. M., G. P. Ferguson, H. R. Seibel, J. L. Montour, and J. D. Wilson. 1984. Mechanism of neurovascularization: vascular sprouting can occur without proliferation of endothelial cells. *Lab. Invest.* 51:624–634.

Sholley, M. M., M. A. Gimbrone, and R. S. Cotran. 1977. Cellular migration and replication in endothelial cell regeneration: a study using irradiated endothelial cultures. *Lab. Invest.* 36:18–25.

Simionescu, M., N. Simionescu, and G. E. Palade. 1982. Differentiated microdomains on the luminal surface of the capillary endothelium: Distribution of lectin receptors. *J. Cell Biol.* 94:406–413.

Soda, R., and M. Ravassol. 1983. Mapping of the bone marrow sinus endothelium with lectins and glycosylated ferritins: identification of differential microdomains and their functional significance. *J. Ultrastruct. Res.* 84:299–310.

Soule, H. R., R. E. Lanford, and J. S. Butel. 1982. Detection of simian virus 40 surface-associated large tumor antigen by enzyme-catalyzed radiiodination. *Int. J. Cancer.* 15:337–344.

Tsukih, R., Y. Sato, and D. B. Rifkin. 1990. Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells. *J. Cell Biol.* 110:511–517.

Vlodavsky, I., L. K. Johnson, and D. Gospodarowicz. 1979. Appearance in confluent vascular endothelial cell monolayers of a specific cell surface protein (CSP-60) not detected in actively growing endothelial cells or in cell types growing in multiple layers. *Proc. Natl. Acad. Sci. USA.* 76:2306–2310.

Zimmerman, L. H., R. A. Levine, and H. W. Farber. 1991. Hypoxia induces a specific set of stress proteins in cultured endothelial cells. *J. Clin. Invest.* 87:908–914.