Magnetic resonance imaging T_1- and T_2-mapping to assess renal structure and function: a systematic review and statement paper

Marcos Wolf1, Anneloes de Boer2, Kanishka Sharma3, Peter Boor4, Tim Leiner5, Gere Sunder-Plassmann6, Ewald Moser7, Anna Caroli8 and Neil Peter Jerome9,10

1Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria, 2Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands, 3Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK, 4Institute of Pathology & Division of Nephrology, RWTH University of Aachen, Aachen, Germany, 5Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands, 6Department of Medicine III, Division of Nephrology and Dialysis, General Hospital and Medical University of Vienna, Vienna, Austria, 7Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria, 8Medical Imaging Unit, Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy, 9Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway and 10Department of Circulation and Medical Imaging, NTNU – Norwegian University of Science and Technology, Trondheim, Norway

Correspondence and offprint requests to: Marcos Wolf; E-mail: marcos.wolf@meduniwien.ac.at; Twitter handle: @renalMRI

ABSTRACT

This systematic review, initiated by the European Cooperation in Science and Technology Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (PARENCHIMA), focuses on potential clinical applications of magnetic resonance imaging in renal non-tumour disease using magnetic resonance relaxometry (MRR), specifically, the measurement of the independent quantitative magnetic resonance relaxation times T_1 and T_2 at 1.5 and 3Tesla (T), respectively. Healthy subjects show a distinguishable cortico-medullary differentiation (CMD) in T_1 and a slight CMD in T_2. Increased cortical T_1 values, that is, reduced T_1 CMD, were reported in acute allograft rejection (AAR) and diminished T_1 CMD in chronic allograft rejection. However, ambiguous findings were reported and AAR could not be sufficiently differentiated from acute tubular necrosis and cyclosporine nephrotoxicity. Despite this, one recent quantitative study showed in renal transplants a direct correlation between fibrosis and T_1 CMD. Additionally, various renal diseases, including renal transplants, showed a moderate to strong correlation between T_1 CMD and renal function. Recent T_2 studies observed increased values in renal transplants compared with healthy subjects and in early-stage autosomal dominant polycystic kidney disease (ADPKD), which could improve diagnosis and progression assessment compared with total kidney volume alone in early-stage ADPKD. Renal MRR is suggested to be sensitive to renal perfusion, ischaemia/oxygenation, oedema, fibrosis, hydration and comorbidities, which reduce specificity. Due to the lack of standardization in patient preparation, acquisition protocols and adequate patient selection, no widely accepted reference values are currently available. Therefore this review encourages efforts to optimize and standardize (multi-parametric) protocols to increase specificity and to tap the full potential of renal MRR in future research.

Keywords: magnetic resonance imaging, kidney, mapping, relaxometry, chronic kidney disease

INTRODUCTION

Kidneys are morphologically complex organs. Renal pathologies induce (micro-) structural and functional changes that may be captured with magnetic resonance imaging (MRI) owing to its exceptional soft tissue contrast. Despite the frequent and successful use of magnetic resonance relaxometry (MRR) in other organs (e.g. cardiac MRI) to assess oedema, amyloid deposition and fibrosis, the application of renal MRR is still scarce.

Renal MRR holds the promise to non-invasively quantify tissue inflammation and alterations, such as interstitial or cellular oedema and/or fibrosis, as well as renal function. This review article evaluates and summarizes data on renal T_1 and T_2 mapping using clinical 1.5 and 3Tesla (T) systems and provides...
recommendations for upcoming research efforts to promote MRR in clinical practice.

MATERIALS AND METHODS

The European Cooperation in Science and Technology (COST) Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (PARENCHIMA) (www.renalmri.org) initiated this systematic review by an extended PubMed search regarding renal mapping (see Supplementary data) on 25 October 2017 to identify human in vivo T_1 and T_2 measurements at 1.5 and 3T. Titles and abstracts of 357 publications were processed to identify matches aligning with the aim of this article. Furthermore, relevant references within the acquired papers and selected studies by the authors were added. Our analysis reaches back to the year 1983 and includes studies with field strengths below 1.5T. Some handpicked qualitative studies and preclinical studies were also included to present readers with relevant trends in the measurement of renal T_1 and T_2 values. Studies regarding renal neoplasms and/or dynamic contrast-enhanced MRI were excluded. For details on data collection, see Supplementary data.

BASIC PRINCIPLES OF MAGNETIC RELAXATION MECHANISMS

MRI is a non-invasive technique to map the human body using the interaction of three magnetic fields: (i) a strong static field (B_0 or main magnet) to magnetize the whole sample and to allow the signal to be measured; (ii) gradient coils producing three (G_x, G_y, G_z) linear, orthogonal gradients to allow the signal to be registered in space; and (iii) a radio frequency (RF) field (B_1 or excitation field) to change steady-state magnetization produced by B_0 and to enable the readout of the measured signal (using an appropriately frequency-tuned coil or antenna) [1].

When subjects are placed inside the MRI scanner, nuclear spins align with B_0 (Figure 1a and b). The application of an RF pulse (B_1; usually in the range of milliseconds and milliseconds) changes this macroscopic magnetization and proton spins are perturbed (i.e. tipped away from B_0). RF pulses are named after their effect on the net magnetization vector, i.e. an RF pulse tilts the magnetization into the y direction (B_0) or excitation field) to change steady-state magnetization produced by B_0 and to enable the readout of the measured signal (using an appropriately frequency-tuned coil or antenna) [1].

The MOLLI sequence and its variants, based on the technique developed in 1970 by Look and Locker [6], sacrifice the requirement of pre-excitation equilibrium to save time and report a modified, shorter, apparent T_1 (often denoted T_1^*) derived from repeated efficient sampling of a single excitation pulse. This type of sequence is sufficiently fast, so it is well suited for cardiac imaging, but the comparability between T_1 and T_1^* is limited [7, 8].

T_1 relaxation time

The gold standard for T_1 measurement, the inversion recovery (IR) technique, first inverts the magnetization in the z direction using a 180° pulse, which is followed by a waiting time, TI (inversion time), and a successive 90° pulse to initiate data readout with further 180° pulses. This IR preparation module has to be repeated several times by incrementing TI to acquire three to eight data points using a long TR (repetition time; i.e. five to seven times T_1), to ensure full relaxation before each inversion pulse, which leads to long overall IR-T1 measurement times (Figure 1a and c).

The desire for faster T_1 measurement compatible with individual breath-holds has given rise to several efficient methods, the most common being variable flip-angle (VFA) and modified Look-Locker imaging (MOLLI).

In VFA, two or more spoiled gradient recalled-echo acquisitions with differing excitation pulse flip-angles give rise to signals modulated by T_1 [4]; while substantially faster than IR-T1, care must be taken before considering VFA to provide quantitative, rather than relative, T_1 measures [5]. VFA measurements are susceptible to B_1 inhomogeneity and thus require additional B_1 mapping. Also, the accuracy of the resulting T_1 depends on the relation of the chosen flip-angles with respect to the observed T_1 range.

The T_2 measurement is sensitive to imperfect slice selection pulse profiles, diffusion, flow and field inhomogeneities [9]. A T_2 preparation module decreases the influence of imperfect slice selection profiles, diffusion and flow. Carr–Purcell–Meiboom–Gill (CPMG) and similar preparations can help to compensate for field inhomogeneities. Therefore T_2 preparations are used in cardiac imaging to visualize oedema after myocardial infarction [10], and can be performed during free breathing, although image registration prior to T_2 calculation is required. Commonly at least three source images with
different echo times are recommended for accurate T_2 estimation using two- or three-parameter exponential fittings [10–13].

RENA L T_1 MAPPING

Reference values and physiological modulations

In the early 1980s, renal MRI detected relatively increased T_1 values in the medulla compared with the cortex in healthy subjects. This corticomedullary differentiation (CMD) is presumably caused by the higher free water content, i.e. higher mobility of water molecules, in the medullary tubules and collecting ducts [14, 15]. Additionally Hricak et al. [14] reported that hydration and the water balance management of the kidneys are important influencing factors, because T_1 CMD decreases during dehydration (relative cortical T_1 increase) and increases after rehydration, i.e. forced diuresis [14], but the impact in healthy subjects or patients was never reassessed at 1.5 T and 3T. Another inevitable variation is caused by the increase of B_0 from 1.5 and 3T, as T_1 generally increases. Further variation of renal T_1 values was reported due to different MRI acquisition schemes and breathing strategies [16, 17], even though high interexamination repeatability for single acquisition schemes was proven [18–20]. Therefore no widely accepted reference values are published and the given limitations have to be considered when comparing different studies (Table 1).

T_1 modulation by the inhalation of oxygen and carbogen. T_1 and T_2^* relaxation times are modulated by oxygen level changes in the blood and/or tissue, although caused by different mechanisms [21]. T_2^*, i.e. blood oxygen level changes.
Author	Year	Subject	Sample size	Group	In vivo repeatability	GFR	Hydration	Respiratory compensation	Sequence	Cortex	Medulla	Other modalities
Blu¨ml et al.	1993	Healthy	9	—	No	Not measured	None	BH	IR TurboFLASH	966 ± 41	1320 ± 76	
Jones et al.	2002	Healthy	9	Normoxia	No	Not measured	None	BH	IR segmented half Fourier	882 ± 59*	1168 ± 118	
de Bondt et al.	2004	Healthy	4	—	No	Not measured	None	BH	IR SS FSE, half Fourier	966 ± 58	1412 ± 58	T₂
Blu¨ml et al.	1993	Healthy	9	—	No	Not measured	None	BH	IR TurboFLASH	966 ± 41	1320 ± 76	
O'Connor et al.	2007	Healthy	5	Normoxia	No	Not measured	None	FB	VFA 3D T1w FFE	961 ± 48	1228 ± 118	
Breidthardt et al.	2015	Healthy	10	Mean eGFR >101 ± 17	Yes	MDRD eGFR	4-h fasting	TRIG	IR bFFE	1080 ± 68		
Chen et al.	2016	Healthy	9	—	No	Not measured	None	BH	MOLLI	827 ± 50	1381 ± 95	
Cox et al.	2017	Healthy	8	—	No	eGFR	2-h fasting	BH	IR SE EPI	1024 ± 71	1272 ± 140	
Study	Year	Group	Number	Type	eGFR	BG or FB	Technique	TRIG	eGFR	Background	eGFR	p-Value
-------	------	-------	--------	------	------	--------	----------	------	------	------------	------	---------
Peperhove et al. [26]	2018	Healthy, LuTx and renal allograft mixed	14	Native kidneys	No Cockroft–Gault	BH	MOLLI	987 ± 102*	1428 ± 98*	–		
		Healthy, LuTx	52	Native kidneys	No Cockroft–Gault	BH	MOLLI	1058 ± 96*	1414 ± 101*	–		
		Renal allograft	49	Renal allograft	eGFR >90	BH	MOLLI	509 ± 105*	1556 ± 76*	–		
					eGFR 60–89	BH	MOLLI	1058 ± 108	1427 ± 89*	–		
					eGFR 30–59	BH	MOLLI	1077 ± 132	1432 ± 123*	–		
					eGFR 15–29	BH	MOLLI	1273 ± 97	1546 ± 51*	–		
					eGFR <15	BH	MOLLI	1297 ± 113	1490 ± 97	–		
								1377 ± 109	1515 ± 45	–		
de Baudrejus et al. [11]	2004	Healthy	6	—	No	BH	IR SS FSE, half-Fourier	1142 ± 154	1540 ± 142	T1*		
					Normoxia, conventional acquisition	BH	IR HASTE breath	1187 ± 112	1523 ± 116	–		
					No	BH	IR SS FSE	1387 ± 130	1587 ± 121	T2*		
					Pure O2, novel acquisition	BH	IR SS FSE	1717 ± 212	1578 ± 123	–		
Gillis et al. [20]	2014	Healthy	12	MRI1, eGFR 98 ± 15	Yes	CKD-eGFR 6-h fasting	BH	MOLLI	1176 ± 104	1650 ± 86	–	
					MRI2, eGFR 98 ± 15				1406 ± 96	1636 ± 80	–	
Li et al. [12]	2015	Healthy	5	—	No	BH	IR SS FSE	1361 ± 86	1676 ± 94	T1*		
Chen et al. [17]	2016	Healthy	26	—	No	BH	IR SS FSE	1544 ± 88	1640 ± 55	–		
Gillis et al. [28]	2016	Healthy	24	Mean eGFR 100 ± 14	No	CKD-EPI-eGFR	BH	MOLLI	1366 ± 112*	Not measured	–	
								1500 ± 81*	Not measured	–		
Fierec et al. [29]	2016	Renal allograft	29	Renal allograft	No	CKD-EPI-eGFR	BH	MOLLI	1334 ± 57	1473 ± 48	–	

The given T1 relaxation times of the cortex and medulla are mean ± SD in ms. Patient studies are highlighted in grey.

3D, three-dimensional; 99mTc-DTPA, 99mTc-diethylene triamine pentaacetic acid; a, year; bFFE, balanced fast field echo; BOLD, blood oxygen level dependant; BH, breath hold; CKD, chronic kidney disease; CO2, carbon dioxide; DWI, diffusion-weighted imaging; EPI, echo-planar imaging; e/mGFR, estimated or measured glomerular filtration rate (in mL/min/1.73 m2); GE, gradient echo; FFE, fast field echo; FSE, fast spin echo; FLASH, fast low angle shot; FB, free breathing; HASTE, half Fourier acquisition single shot turbo spin echo; LuTx, lung transplantation; MDRD, modification of diet in renal disease; ME, multi-echo; MS, multishot; PC, phase contrast; SE, spin-echo; SS, single shot; T, Tesla; T1, spin–lattice relaxation time; T2, spin–spin relaxation time; T1w, T1 weighted; TRIG, triggered MRI acquisition with regards to breathing motion; trueFISP, true fast imaging with steady-state precession; TSE, turbo spin echo.

Other symbols refer to the statistical significance within the associated study:

- P < 0.0001
- P < 0.001
- P < 0.01
- P < 0.05
- P < 0.08
- P < 0.1
- P = 0.01
- P = 0.03
- P = 0.047
- P < 0.05
dependent (BOLD) MRI, associated changes are reviewed by Pruimj et al. [30].

To our knowledge, modulations of renal T_1 values during the inhalation of pure oxygen (O_2) and carbogen (5% carbon dioxide mixed with 95% O_2) were only observed in healthy volunteers. In 2002, Jones et al. [21] reported a significant decrease in cortical T_1 values during O_2 inhalation at 1.5T. These findings were confirmed in 2007 and 2009 with an even more pronounced reduction in cortical T_1 values following the inhalation of O_2 and carbogen [23, 24]. In these studies, the lack of a renal hydration protocol [except in O’Connor et al. [24]], the free breathing acquisition, the VFA method and dyspnœa during the carbogen inhalation (leading to increased breathing motion), as well as the temporal and spatial acquisition constraints, can be considered as important limitations [23, 24].

The first 3T study was carried out by Ding et al. [27] when healthy subjects were evaluated during exposure to normoxia and O_2. Thereafter a multiparametric renal MRI study evaluated five healthy volunteers who underwent a hyperoxia challenge (~80% O_2); again cortical T_1 values decreased, but unlike previous publications, no statistical significance was observed [18].

These studies show that cortical T_1 is sensitive to oxygenation level changes. However, the contribution of vasoconstriction and vasodilatation as well as perfusion changes during O_2 inhalation of O_2 and carbogen [23, 24]. In these studies, the lack of a renal hydration protocol [except in O’Connor et al. [24]], the free breathing acquisition, the VFA method and dyspnœa during the carbogen inhalation (leading to increased breathing motion), as well as the temporal and spatial acquisition constraints, can be considered as important limitations [23, 24].

Clinical studies

Renal transplants—early qualitative and semi-quantitative MRI studies. Imaging of renal transplants in the iliac fossae is less confounded by breathing motion, which enabled renal MRI evaluations in the 1980s [31]. Early qualitative and/or semi-quantitative renal MRI studies revealed a reduced T_1 CMD in acute allograft rejection (AAR), and even diminished T_1 CMD in chronic allograft rejection (CAR) [15, 31–34]. However, acute tubular necrosis (ATN) could not be sufficiently differentiated from AAR [32, 34–36], and even diminished T_1 CMD was reversible in some cases of ATN and AAR [36]. Thus scrutiny of the reduced T_1 CMD linked both oedema and fibrosis to prolonged T_1 values, which partially explains the low specificity of these renal transplant evaluations [37].

Another interesting finding on renal transplant observation was the clearly preserved T_1 CMD during an acute decline in renal function under cyclosporine therapy, which was linked to cyclosporine nephrotoxicity (CN) [32, 34]. However, three successive studies presented ambiguous outcomes [33, 37, 38]. Thereafter, no further research efforts were made, so no final conclusion can be made.

All these envisioned early MRI studies on renal transplants applied field strengths <1.5T, which today are not frequently in clinical use. However, in contrast to recent MRI evaluations, all of these studies applied histological validation. A low specificity was observed due to different acquisition settings (e.g. vendors and protocols), low reproducibility of the two-point method to calculate T_1 [31] and lack of a standardized patient preparation (e.g. hydration protocol) [14, 15]. In addition, loss of T_1 CMD was reversible after clinical improvement in some cases of ATN and AAR, which could have decreased the specificity further [36]. Therefore recommendations could not advocate qualitative and/or semi-quantitative MRI evaluations over ultrasound and scintigraphy [34].

Renal transplants—quantitative MRI studies. T_1 measurements on renal transplants at 1.5T were presented by Huang et al. [19] in 2011, when renal transplants and native kidneys with unknown underlying renal disease confirmed the trend of higher cortical and medullary T_1 values in renal transplants. They also achieved a high short-term in vivo repeatability (~±10%). In addition, strong correlations were observed between estimated glomerular filtration rate (eGFR) and cortical T_1 in both groups (native cortex: $r = -0.83, P = 0.0001$; transplant cortex: $r = -0.80, P = 0.0017$), but medullary T_1 values only significantly correlated with eGFR in the transplant group ($r = -0.94, P < 0.0001$) [19].

The second quantitative T_1 assessment of renal transplant was presented by Friedli et al. [29]. A total of 29 patients underwent a multiparametric MRI approach at 3T, including a validation against histological samples. With regard to T_1, only T_1 CMD showed a moderate correlation with renal interstitial fibrosis ($R^2 = 0.29, P < 0.001$) and eGFR ($R^2 = 0.22, P < 0.05$). No correlation was established between T_1 values and cellular inflammation [29].

In 2018, renal T_1 was evaluated in 49 renal transplant patients, 52 patients after lung transplantation (LuTx; native kidneys) and 14 healthy volunteers [26]. Their aim was to assess acute kidney injury (AKI) after LuTx (reported incidence ~60%), and after a 3- and 6-month follow-up. T_1 CMD was significantly decreased and mean cortical and medullary T_1 were significantly higher in renal transplants compared with healthy volunteers and the LuTx group ($P < 0.001$). However, T_1 CMD was also reduced in the LuTx group compared with volunteers ($P < 0.05$), which was linked to the incidence of AKI after LuTx. All patients and healthy volunteers were further grouped according to Kidney Disease Outcomes Quality Initiative (KDOQI) stages. Remarkable were the significantly lower cortical T_1 values in subjects with eGFR ≥ 60 mL/min/1.73 m2 as compared with <60 mL/min/1.73 m2 and that cortical T_1 negatively correlated ($r = -0.642, P < 0.001$) and T_1 CMD positively correlated ($r = 0.542, P < 0.001$) with eGFR for all participants. In contrast, medullary T_1 showed only a weak correlation with eGFR ($r = -0.341, P < 0.001$). During the 3- and 6-month follow-up, cortical T_1 and T_1 CMD exhibited a significant correlation with eGFR ($P < 0.001$ and < 0.01, respectively) in the LuTx and renal transplantation groups [26].

In summary, we identified only three quantitative T_1 studies on renal allografts at 1.5 and 3T. In contrast to early qualitative and semi-quantitative MRI studies, only one quantitative study applied a histological validation, in which it was shown that...
Table 2. Quantitative T₂ studies at 1.5 and 3T

Author	Year	Subject	Sample size	Group	In vivo repeatability	GFR	Hydration	Respiratory compensation	Sequence	Cortex	Medulla	Other modalities	
1.5T													
de Bazelaire et al. [11]	2004	Healthy	4	—	No	Not measured	None	BH	SE T₂ prep	87 ± 4	85 ± 11	T₁	
Zhang et al. [45]	2011	Healthy	4 Day 1	Yes	Not measured	None	BH	2D ME TSE	112[‡]	137[‡]	T₂*		
			4 Day 2										
Mathys et al. [46]	2011	Healthy	6	—	No	TUC	2-h fasting	FB	ME SE	125 ± 7^a	–	T₂*	
		Renal allograft	6 GFR >40	No	TUC	2-h fasting	FB	ME SE	147 ± 13[*]	–	T₂*		
		Renal allograft	9 GFR <40	No	TUC	2-h fasting	FB	ME SE	150 ± 20[‡]	–			
3T													
de Bazelaire et al. [11]	2004	Healthy	6	—	No	Not measured	None	BH	SE T₂ prep	76 ± 7	81 ± 8	T₁	
Li et al. [12]	2015	Healthy	5	—	No	Not measured	None	BH	CPMG T₂ prep	121 ± 5	138 ± 7	T₁	
Franke et al. [47]	2017	Healthy	3	—	No	Not measured	None	ME GE SE	132 ± 6^v	–			
		ADPKD	TKV <300 mL	No	Not measured	None	ME GE SE	417 ± 65^{*v}	–				
			TKV 300–400 mL	No	Not measured	None	ME GE SE	592 ± 231^v	–				
			TKV >400 mL	No	Not measured	None	ME GE SE	669 ± 170^v	–				

The given T₂ relaxation times of the cortex and medulla are mean ± SD in ms. Patient studies are highlighted in grey.

2D, two dimensional; BH, breath-hold; FB, free breathing; GE, gradient echo; ME, multi-echo; prep, preparation; T_T, Tesla; T₁, spin–lattice relaxation time; T₂, spin–spin relaxation time; T₂*, apparent transverse relaxation time; T₁W, T₁ weighted; TKV, total kidney volume; TUC, timed urine collection; TSE, turbo spin echo.

^aRecalculated: reported values in mean ± SD: R_D day 1: 8.9 ± 0.66^s (cortex) and 7.3 ± 0.75^s (medulla); day 2: 8.9 ± 0.66^s (cortex) and 7.0 ± 0.75^s (medulla).

Other symbols refer to the statistical significance within the associated study:

- H₁₇₀10^P < 0.001;
- H_{0.01} < P < 0.05.

^v^P < 0.001; ^v^H < 0.01; ^v[‡] < 0.05.
state-of-the-art T_1 measurements, i.e. T_1 CMD, could be used to assess renal interstitial fibrosis in allografts [29]. Another important finding was that T_1 values were sensitive to presumable AKI alterations in the context of post-LuTx [26]. However, the specificity of renal MRR regarding AAR, CAR, ATN or drug-induced toxicity was not further assessed or improved. Furthermore, these studies show that T_1 mapping has the potential to estimate renal function.

Non-invasive assessment of renal function. The first quantitative T_1 measurements on patients at 1.5T were published in 2007 [22]. A small and unbalanced group was primarily enrolled for the evaluation of a renal artery stenosis: one patient with CKD and hypertension and nine patients with hypertension alone. A loose hydration protocol was applied before the MRI acquisition, and afterwards all patients underwent a 99mTc-diethylene triamine pentaacetic acid renography to measure the single-kidney GFR (SKGFR). A significant correlation was depicted only between cortical T_1 values and the SKGFR ($r = -0.5$, $P = 0.03$) [22].

In 2015 the association between cortical T_1, renal perfusion (from arterial spin labeling (ASL); see also Odudu et al. [39]) and eGFR in patients with chronic heart failure (HF) and control subjects with different levels of renal impairment was evaluated [25]. Renal perfusion was similar in chronic HF patients with and without renal impairment, but cortical T_1 showed a significant correlation with eGFR ($r = -0.41$, $P = 0.013$), which reflects the potential to assess CKD. Chronic HF patients had significantly higher cortical T_1 compared with all control subjects, and chronic HF patients with renal impairment had significantly higher cortical T_1 compared with chronic HF patients without renal impairment [25].

After the ASL reproducibility study of Gillis et al. in 2014 [20], a follow-up study evaluated renal perfusion and cortical T_1 in healthy volunteers and CKD patients with different aetologies at 3T. Significantly higher cortical T_1 values were found in CKD patients and a correlation between cortical T_1 and eGFR was observed ($r = -0.58$, $P < 0.001$) [28].

One year later a multiparametric renal MRI study assessed T_1 in healthy subjects and CKD patients with various renal diseases after a short fasting period (>2 h) at 3T [18]. Compared with volunteers, CKD showed significantly higher cortical T_1, and T_1 CMD was reduced ($P < 0.01$). They achieved an interscan coefficient of variation of $<2.9\%$ and high intraclass correlation for the cortex and medulla (0.848 and 0.997, respectively, using spin-echo echo-planar imaging) [18].

As previously envisioned also, three renal transplant studies assessed the correlation of T_1 values and the renal function at 1.5 and 3T (see above) [19, 26, 29].

In summary, the envisioned studies show that the degree of renal impairment correlates moderately to strongly with cortical T_1 and T_1 CMD in CKD with various renal diseases [18, 22, 28], renal transplants [19, 26, 29], and chronic HF patients [25]. These findings are also in line with some qualitative assessments in the 1990s [40, 41], but not with all [42], due to the fact that renal T_1 values are modulated by many confounders, such as the degree of fibrosis [29], comorbidities (e.g. liver cirrhosis) [43, 44], the acquisition protocol (e.g. breathing motion) and fastening and hydration level [14], which all together seem to be responsible for the accomplished correlations in the envisioned quantitative studies at 1.5 and 3T. To our knowledge, only one study correlated renal T_1 values with measured GFR [22]. It should be noted that adequate patient preparation (e.g. hydration protocol, medication intake), patient selection in the context of comorbidities and acquisition protocols (e.g. triggered breath-hold) together with reference measurement of the renal function can improve T_1 renal function correlations, which advocates for further research in this field.

RENAL T2 MAPPING

Reference values and physiological modulations

In healthy subjects, medullary T_2 is consistently longer than cortical T_2. As previously envisioned, Hricak et al. [14] evaluated the effect of fasting and hydration and showed that T_2 CMD decreased during hydration (i.e. forced diuresis), but these findings were never re-evaluated. Additional variation can also be found due to the increase in B_0 from 1.5 and 3T, which is accompanied by a general decrease in T_2, and by the fact that different MRI acquisitions and breathing strategies report unequal values. But for healthy subjects a high day-to-day repeatability was shown by a multi-echo spin-echo method with a mean variability of $<4\%$ for both cortex and medulla at 1.5T [45].

Closely linked to T_2 is T_2^*, which is thought to reflect tissue oxygenation [45, 46]. For measurement of T_2^*, both T_2 and T_2^* are required. T_2^*, i.e. renal BOLD MRI, is discussed by Pruijm et al. in this issue [30].

These variations have to be considered when comparing different studies (Table 2).

Clinical studies

In the 1980s renal transplants were evaluated regarding T_2, and MRI was shown to be useful to identify fluid collections in necrotic transplant, perinephric lymphocele and haematoma [31].

To our knowledge, the first quantitative clinical, i.e. renal transplant, study on T_2 values at 1.5 Tesla (T) was reported in 2011. One of two T_2 acquisition protocols identified a significant increase in cortical T_2 in 15 renal transplants compared with 6 healthy subjects. However, no significant difference was observed with regards to the allograft function [46].

In 2017, whole kidney T_2 values in animals with juvenile cystic kidneys and nine autosomal dominant polycystic kidney disease (ADPKD) patients were reported. A strong significant increase in T_2 values was seen in early-stage ADPKD patients compared with healthy volunteers. Based solely on T_2 values, early-stage ADPKD patients with a kidney volume <300 mL could be distinguished from healthy volunteers, which was not possible based on total kidney volume (TKV) [47].

In summary, human in vivo measurements of renal T_2 are relatively scarce. Therefore no final conclusion can be made regarding renal function estimation or renal transplant assessments. Nevertheless, interesting findings were obtained, which clearly advocate for future research. Early-stage ADPKD
patients could benefit from the T_2 evaluations and the potentially improved assessment of early-disease progression compared with TKV [47]. This might be of special interest in the evaluation of novel therapeutic agents such as tolvaptan. The assessment of AKI in the context of ischaemia reperfusion injury, e.g. induced kidney damage during renal allograft surgery, also seems to be a potential application for T_2, as in vivo measurements were shown to be feasible [46]. Animal studies have shown that T_2 is sensitive to ischaemia–reperfusion injury [48, 49]. During initial ischaemia, T_2 decreases, probably due to deoxygénation, followed by an increase during reperfusion [50]. In the longer term, an elevation of T_2 that is more pronounced in the medulla compared with the cortex has been found [51, 52], which was attributed to consecutive inflammation and oedema (T_2 increase) [50–52]. Human studies are necessary to determine whether the T_2 changes following AKI can predict the recovery of renal function.

DISCUSSION

In recent decades, quantitative renal T_1 and T_2 mapping have been shown not only to be feasible, but also to provide non-invasive valuable information regarding renal structure and function in healthy, AKI, CKD, renal transplant and ADPKD patients at 1.5 and 3T (Tables 1 and 2).

Renal T_1 has been shown to be modulated by hydration and, in particular, cortical T_1 is sensitive to oxygenation. T_1 CMD is a potential candidate biomarker to assess AAR, CAR, ATN, CN, fibrosis and renal function. Renal T_2 was measured in only a few studies but showed the potential to evaluate renal transplants and to improve the diagnosis and progression of early-stage ADPKD.

However, the variation in T_1 and T_2 values is large, mainly due to the great diversity of the MRR methods applied, but also due to physiological (e.g. water balance management during fasting and forced diuresis) and pathological alterations (e.g. fibrosis) of the renal parenchyma. In virtually all renal diseases, renal function and microstructure are altered together, and this review on T_1 and T_2 unveiled the high sensitivity towards each of these processes as well as the complicated interpretation of the acquired data due to the low specificity.

In conclusion, currently available data suggest that the full potential of renal T_1 and T_2 mapping has not yet been tapped and adequate patient selection, with regard to comorbidities, alongside technical and physiological standardization, will significantly increase the specificity of renal MRR. On route towards renal T_1 or T_2 mapping as a biomarker it will be necessary to validate renal MRR against widely accepted reference measurements (e.g. nuclear medicine evaluations) as well as against histological findings, when possible. Last but not least, the integration of different quantitative renal MRI data into a multiparametric approach will likely enable us to gain the best insight into renal pathophysiology. The COST Action PARENCHIMA (www.renalmri.org) is working on standardization of multiparametric renal MRI techniques to tackle these challenges.

SUPPLEMENTARY DATA

Supplementary data are available at ndt online.

ACKNOWLEDGEMENTS

This article is based upon work from the COST Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (PARENCHIMA), funded by COST (European Cooperation in Science and Technology). www.cost.eu. For additional information, please visit PARENCHIMA project website: www.renalmri.org.

FUNDING

M.W. was supported by the Austrian Science Fund (FWF; project P28867). A.d.B. was supported by an Alexandre Suerman scholarship for MD/PhD students at the University Medical Center Utrecht, Utrecht, The Netherlands. K.S. was supported by the Biomarker Enterprise to Attack Diabetic Kidney Disease project funded by the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement 115974. This joint undertaking received support from the European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations. P.B. was supported by Deutsche Forschungsgemeinschaft (BO 3755/6–1, SFB/TRR57, SFB/TRR219) and by the German Ministry of Education and Research (BMBF Consortium STOP-FSGS number 01GM1518A). N.P.J. was supported by the Liaison Committee for Education, Research and Innovation in Central Norway (grant number 90065000).

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Moser E, Stadlbauer A, Windschberger C et al. Magnetic resonance imaging methodology. Eur J Nucl Med Mol Imaging 2009; 36(Suppl 1): S30–S41
2. Bloch F, Hansen WW, Packard M. Nuclear Induction. Phys Rev 1946; 69: 127
3. Rinck PA. Magnetic Resonance in Medicine: A Critical Introduction. Norderstedt, Germany: – Books on Demand, 2018
4. Cheng H-LM, Wright GA. Rapid high-resolution T_1 mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 2006; 55: 566–574
5. Wang HZ, Riederer SJ, Lee JN. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1987; 5: 399–416
6. Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 41: 250–251
7. Messroghli DR, Radjenovic A, Kozerke S et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141–146
8. Messroghli DR, Greiser A, Fröhlich M et al. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081–1086
9. Brown RW, Cheng Y-CN, Mark Haacke E et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Canada; Hoboken, NJ: John Wiley & Sons, 2014
10. Kellman P, Aletras AH, Mancini C et al. T2-prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo. Magn Reson Med 2007; 57: 891–897
11. de Bazelaire CMJ, Duhamel GD, Rošky NM et al. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230: 652–659
12. Li X, Bolan PJ, Ugurlu K et al. Measuring renal tissue relaxation times at 7 T. NMR Biomed 2015; 28: 63–69
24. O'Connor JPB, Naish JH, Jackson A
23. O'Connor JPB, Jackson A, Buonaccorsi GA
22. Lee VS, Kaur M, Bokacheva L
21. Jones RA, Ries M, Moonen CTW
20. Gillis KA, McComb C, Foster JE
19. Huang Y, Sadowski EA, Artz NS
15. Marotti M, Hricak H, Terrier F
14. Hricak H, Crooks L, Sheldon P
13. Messroghli DR, Moon JC, Ferreira VM et al. Clinical recommendations for cardiovascular magnetic resonance imaging of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19: 75
12. Hricak H, Crooks L, Shelden P et al. Nuclear magnetic resonance imaging of the kidney. Radiology 1983; 146: 425–432
11. Marotti M, Hricak H, Terrier F et al. MR in renal disease: importance of cortical-medullary distinction. Magn Reson Med 1987; 5: 160–172
10. Blüm S, Schad LR, Stepanov B et al. Spin-lattice relaxation time measurement by means of a TurboFLASH technique. Magn Reson Med 1993; 30: 289–295
9. Chen Y, Lee GR, Aandal G et al. Rapid volumetric T1 mapping of the abdomen using three-dimensional through-time spiral GRAPPA. Magn Reson Med 2016; 75: 1457–1465
8. Cox EF, Buchanan CE, Bradley CR et al. Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol 2017; 8: 696
7. Huang Y, Sadowski EA, Artz NS et al. Measurement and comparison of T1 relaxation times in native and transplanted kidney cortex and medulla. J Magn Reson Imaging 2011; 33: 1241–1247
6. Gillis KA, McComb C, Foster JE et al. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol 2014; 15: 23
5. Jones RA, Ries M, Moonen CTW et al. Imaging the changes in renal T1 induced by the inhalation of pure oxygen: a feasibility study. Magn Reson Med 2002; 47: 728–735
4. Lee VS, Kaur M, Bokacheva L et al. What causes diminished corticomedullary differentiation in renal insufficiency? J Magn Reson Imaging 2007; 25: 790–795
3. O’Connor JPB, Naish JH, Jackson A et al. Comparison of normal tissue R1 and R2 modulation by oxygen and carbogen. Magn Reson Med 2009; 61: 75–83
2. Breidhardt T, Cox EF, Squire I et al. The pathophysiology of the chronic cardiorenal syndrome: a magnetic resonance imaging study. Eur Radiol 2015; 25: 1684–1691
1. Jones RA, Ries M, Moonen CTW et al. Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 2018; 28: 44–50
27. Ding Y, Mason RP, McColl RW et al. Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies. J Magn Reson Imaging 2013; 38: 1230–1236
26. Gillis KA, McComb C, Patel RK et al. Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease. Neuphon 2016; 133: 183–192
25. Friedli I, Crowe LA, Berchtold L et al. New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation. Sci Rep 2016; 6: 30088
24. Prujim M, Mendichovszky IA, Liss P et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant 2018; 33 (Suppl 2): ii22–ii28
23. Geisinger MA, Risius B, Jordan ML et al. Magnetic resonance imaging of renal transplants. AJR Am J Roentgenol 1984; 143: 1229–1234
22. Hricak H, Terrier F, Demas BE. Renal allografts: evaluation by MR imaging. Radiology 1986; 159: 435–441
21. Baumgartner BR, Nelson RC, Ball TJ et al. MR imaging of renal transplants. AJR Am J Roentgenol 1986; 147: 949–953
20. Hricak H, Terrier F, Marotti M et al. Posttransplant renal rejection: comparison of quantitative scintigraphy, US, and MR imaging. Radiology 1987; 162: 685–688
19. Steinberg HV, Nelson RC, Murphy FB et al. Renal allograft rejection: evaluation by Doppler US and MR imaging. Radiology 1987; 162: 337–342
18. Liu JT, Lee JK, Heiken JP et al. Renal transplants: can acute rejection and acute tubular necrosis be differentiated with MR imaging? Radiology 1991; 179: 61–65
17. Winsett MZ, Amaro EG, Fawcett HD et al. Renal transplant dysfunction: MR evaluation. AJR Am J Roentgenol 1988; 150: 319–323
16. Mitchell DG, Roza AM, Spritzer CE et al. Acute renal allograft rejection: difficulty in diagnosis of histologically mild cases by MR imaging. J Comput Assist Tomogr 1987; 11: 655–663
15. Odudu A, Nery F, Harteveld AA et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33 (Suppl 2): ii15–ii21
14. Semelka RC, Chew W, Hricak H et al. Fat-saturation MR imaging of the upper abdomen. AJR Am J Roentgenol 1990; 155: 1111–1116
13. Semelka RC, Corrigan K, Ascher SM et al. Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology 1994; 190: 149–152
12. Kettritz U, Semelka RC, Brown ED et al. MR findings in diffuse renal parenchymal disease. J Magn Reson Imaging 1996; 6: 136–144
11. Lee KS, Muizoa A, Báez AB et al. Corticomedullary differentiation on T1-weighted MRI: comparison between cirrhotic and noncirrhotic patients. J Magn Reson Imaging 2012; 35: 644–649
10. Yamada F, Amano Y, Hidaka F et al. Pseudonormal corticomedullary differentiation of the kidney assessed on T1-weighted imaging for chronic kidney disease patients with cirrhosis. Magn Reson Med Sci 2015; 14: 165–171
9. Zhang J, Storey PH, Ruisink H et al. Reproducibility of R2* and R2 measurements in human kidneys. Proc Int Soc Magn Reson Med 2011; 19: 2954
8. Mathys C, Blondin D, Wittsack H-J et al. Magnetic resonance T2 mapping and diffusion-weighted imaging for early detection of cystogenesis and response to therapy in a mouse model of polycystic kidney disease. Kidney Int 2017; 92: 1544–1554
7. Yuasa Y, Kundel HL. Magnetic resonance imaging following unilateral occlusion of the renal circulation in rabbits. Radiology 1985; 154: 151–156
6. Thickman D, Kundel H, Biery D. Magnetic resonance evaluation of hydronephrosis in the dog. Radiology 1984; 152: 113–116
5. Pohlmann A, Hentschel J, Fechner M et al. High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury. PLoS One 2013; 8: e57411
4. Ko S-F, Yip H-K, Zhen Y-Y et al. Severe bilateral ischemic-reperfusion renal injury: hyperacute and acute changes in apparent diffusion coefficient, T1, and T2 mapping with immunohistochemical correlations. Sci Rep 2017; 7: 1725
3. Huerper K, Rong S, Gutberlet M et al. T2 relaxation time and apparent diffusion coefficient for noninvasive assessment of renal pathology after acute kidney injury in mice: comparison with histopathology. Invest Radiol 2013; 48: 834–842
Received: 30.4.2018; Editorial decision: 29.5.2018

M. Wolf et al.