Towards sound use of statistics in nematology

Mahfouz M. M. Abd-Elgawad*

Abstract

Background: Inclusion of the statistical approach in the planning stage of adequate experimental design is crucial for correctly achieving the required conclusions. Modern applied statistics has been used extensively in nematological research worldwide. Although hypothesis testing is still essential to relevant research topics, more emphasis is directed towards other significant issues.

Main body: Issues of estimating the magnitudes of differences among various treatments, conception of optimum sampling size, determining spatial and temporal distribution of nematode ecology, nematode-host suitability designation, prediction of crop yield loss caused by plant-parasitic nematodes and other effects were discussed. So, this study presents highlights of developments in nematological statistics. Moreover, modern statistics should address issues of other nematology-associated disciplines. For example, statistics applied to compare the reliability of molecularly examined samples showed that fairly low-cost metabarcoding had significantly better accuracy in quantifying and identifying the extracted entomopathogenic nematodes (EPNs) than that of quantitative polymerase chain reaction. Thus, statistics could contribute to a cost-effective, value-added approach to pest management programs. Moreover, an empirical method to improve application strategies of EPNs could be recently modified concerning index of nematode dispersion in terms of the thumb rule value for the nematode-random distribution.

Conclusion: Common misuses of statistics in both nematological research and reporting could be avoided but useful conclusions via sound and modern statistical analyses of the data should be drawn.

Keywords: Experimental design, Nematological research, Nematode distribution, P value, Software programs, Statistics

Background

The development and progress in nematology has been accompanied by the relevant achievements made in the statistical use of its various aspects, whether basic or applied. Admittedly, nematologists utilizing statistics can offer the advances and application of statistical approaches to a broad range of topics in their various nematology-related disciplines. These methods encompass various directions in nematology but basically address the design of field, laboratory, and greenhouse bioassays and experiments, the setting and analysis of data from those tests, and the interpretation of their outputs (Nelson 1985; Abd-Elgawad 1998). Hence, in the absence of statistical analysis, all of the nematological collected data wouldn’t mean much. To name but a few, relevant statistics may serve a number of functions such as comparing means of variables, measuring regression and correlation, and predicting change in variables. Consequently, the types of statistical tests used in nematology may comprise analysis of variance (ANOVA), t-tests, regression tests, indices of dispersion, chi-squares, and other ones. Eventually, these tests help furnish nematologists with insights about procedures and operations which are either too big, too microscopic, or too many to be analyzed and interpreted by approaches other than statistics. Basically, the major role of statistics in
nematology is to assist in setting up bioassays and experiments and test hypotheses. However, this latter might sometimes be attenuated in proportion to the complexity (addition of extra-treatments, many factors affecting the targeted goal, use of raw rather than sterile soil where number and type of microorganisms are controlled, etc.) of experimental designs. Therefore, nematologists should always utilize the most simplest and proper experimental designs while searching other approaches that can benefit from advanced statistical applications.

In this respect, specific statistical tests are utilized in nematology to study spatial (horizontal and vertical) and temporal distribution of nematodes (Been and Schomaker 2013), measure reliability of methods which apply molecular identification on nematode samples (Dritsoulas et al. 2019), predictions of crop damage caused by plant-parasitic nematodes (PPNs) (Ferris 1984) and precise interpretation of data and results. Additionally, some statistical functions and concepts can also help choose optimum sample size or which species to study from a polyspecific nematode community (Abd-Elgawad et al. 2016), or inter-laboratory proficiency tests to examine and compare nematode counts (Berg et al. 2014). With the recent advances in nematology, many experiments may need the interpretation of large datasets that are too large or too complicated for scientists to analyze by hand. Therefore, scientists may utilize statistical software in the laboratory specifically designed for data processing. Using such software programs often requires preliminary training. Nematologists should be careful to use appropriate software programs to help them with nematode sampling and statistics in order to keep their findings meaningful (Abd-Elgawad 2020). On the other hand, some nematologists can create, develop, and modify these computer programs based on results from different situations and/or modification in the rule of thumb.

This review presents highlights for common misuses of statistics in nematological research and reporting. It also throws light on less recognized but useful statistical applications such as comparing accuracy between two groups of molecularly examined samples and optimizing screening of nematode-host suitability studies. Finally, this paper comments on a shift (Abd-Elgawad 2020) in the thumb rule value for the randomness of Taylor's Power Law (TPL) (Taylor 1961).

Main text

Misuses in experimental planning and analysis and interpretation of data

Basically, the process of planning an experiment so that data can be adequately analyzed by statistical methods should include the following steps to reach valid and objective conclusions (Montgomery 2001): (1) recognition of and statement of the problem, (2) selection of the response variable(s), (3) choice of factors, levels and range, (4) choice of adequate experimental design, (5) performance of the experiment, and (6) careful statistical analysis of the data especially when software programs are used. Any violation of one or more of these processes may result in misuses of the obtained data. Moreover, the whole process must rely on the researcher’s experience and his perfect knowledge of other relevant researches and publications. Strikingly, various degrees of such an experience, related to differences in the size of the sampling unit and the index of nematode dispersion used have led to misinterpretation of the data (Abd-Elgawad 2019). Valid as these units and indices are, they sometimes lack in the exactitude of the applied parameter. Hence a few nematologists tend to utilize several indices to the same entomopathogenic nematode (EPN) statistics to characterize their spatial distribution patterns in order to lessen the disadvantages of both issues. For instance, Wilson et al. (2003) employed unfamiliar dispersion indices in Nematology. They applied spatial analysis by distance indices (SADIE) that consider the geographic coordinates of the sampled nematode location. Then, Spiridonov et al. (2007) applied SADIE in addition to Lloyd’s index. Later, Bal et al. (2017) implemented several indices for perfection of statistical interpretation of the data. They harnessed SADIE in addition to Moran’s I and Geary’s c as two indicators of autocorrelation among spatial EPN distributions. Moreover, common sampling processes of EPNs may result in erratic results. For example, comparing different sampling methods which applied the same index (i.e., SADIE) to examine EPN distributions for better conceiving of various patterns is highlighted (Table 1). Dissimilarity in the size of the sampling area may account for various statistical interpretations of the obtained data (Been and Schomaker 2013; Abd-Elgawad 2019). In this vein, when the area or size of the soil sampling unit progressively increased, the measured dispersion of the same EPN population accordingly change from random to contagious and finally regular (Fig. 1). In other words, the shift in the spatial distribution pattern of the nematodes is definitely dictated by the area of the sampling unit (Fig. 2). Moreover, checking the pattern of nematode-infective juveniles (IJ)s)-natural distribution revealed apparent discrepancy among the used indices (Spiridonov et al. 2007). The authors speculated that the discrepancy may be related to using a scale finer than the commonly used one for EPN aggregation. On the other hand, Wilson et al. (2003) attributed uniform distribution pattern of EPN examined by software SADIE program to the symmetrical nature of their sampled plots as well. Therefore, matching different values for the same index.
EPN investigated population	Method of measuring EPNs	\(I_a \) value	Notes (geographical zone)	References
Heterorhabditis bacteriophora-infected stage juveniles (IJs) used in different distribution patterns	EPN-infected greater wax moth larvae over time	Mean values were less than one but differed significantly until 20 weeks after adding EPNs	The values indicate a more uniform distribution than a random one (New Jersey/USA)	Wilson et al. (2003)
Natural *Steinernema feltiae* and *S. affine* populations in grassland	IJs grouped to 4 groups of different physiological ages	The values were in the range 1.27–1.45, group II was the most aggregated stage	All values showed clumped distribution patterns (Merelbeke/Belgium)	Spiridonov et al. (2007)
H. bacteriophora or *S. carpocapsae*-infected greater wax moth larvae used within 24 h of starting IJ exit to planted fields and grassy plots	IJs of *H. bacteriophora* and *S. carpocapsae* recovered from greater wax moth larvae baits used after the cadavers	Mean values range < 1 to > 2. They differed between nematode species in bait traps and between control methods at 48 h and 16 days after placing the cadavers, respectively	Distribution patterns after dispersing from a grassy border plots into the adjacent cultivated field plots were more clumped for *H. bacteriophora* than for *S. carpocapsae* (Ohio/USA)	Bal et al. (2017)
H. indica natural populations in citrus and mango grove	EPN-infected greater wax moth larvae	0.913	\(I_a \) refers to uniform distribution (Giza/Egypt)	Abd-Elgawad (2020)

\(I_a = \) the observed value of distance to regularity/the mean randomized value (Perry 1995)
of aggregation by SADIE (I_a) using unequal sampling units in various regions (Table 1) should be cautiously interpreted. Thus, the difference in volume/area of the samplers (Fig. 2) can likely impact the obtained distribution patterns of EPNs. In this respect, in Holland, this unit was a 20 cm diameter borer/sampler (Taylor 1999), but as narrow as a 2 × 15 cm deep core in New Jersey, USA (Wilson et al. 2003). Another shift in its square shape and area occurred as its surface was 5 × 5 cm when a square auger was used to 5 or 10 cm deep at Merelbeke, Belgium (Spiridonov et al. 2007). Moreover, cylindrical bait trap of about 3 cm in diameter and 10 cm tall was employed in Ohio, USA (Bal et al. 2017), but a shovel is used to sample from approximately 30 cm diameter and 25 cm deep spots in El-Beheira governorate, Egypt (Abd-Elgawad 2014).

In addition to the above-mentioned confusion in determining the exact values for indices of nematode dispersion concerning the spatial and temporal distribution patterns for nematode ecology studies, there is another issue for the proper nematode transformation counts. It is apparent that the basic types of statistical tests utilized in nematology fall into four categories: correlation, regression, comparison of means, and nonparametric. Means comparisons statistically specify the difference between the means of two or more sets of variables/datasets. Correlation coefficient indicates how closely two or more variables are related. Regressions analyze if a shift in one variable can predict a shift in another. Nonparametric tests are utilized for datasets that don’t satisfy the prerequisites for parametric analysis tests. Hence, numerical values should be subjected to different transformation methods as a pre-requisite to comply with assumptions needed for these three basic types of parametric statistical analyses. For example, if such values indicate random or aggregated distribution, then PPN or EPN counts should be root-squared or log-transformed, respectively, before the statistical analyses, to fulfill the pre-requisites of normal distribution, and consequently apply such statistical approaches. In this vein, Abd-Elgawad (1992) found that the use of log transformed data led to identical statistical interpretation of three experiments analyzed according to nematode dispersion in TPL. Both log and TPL transformations significantly decreased the heterogeneity of variances ($P \leq 0.05$ and $P \leq 0.01$) approximating the pre-requisite of equal variance underlying parametric statistical analysis. Nonetheless, TPL equations could better reduce differences between treatment
variance than log transformation. So, such a difference in
indices of nematode dispersion for the nematode popula-
tion may give rise to problems of inadequate statistical
reporting and misinterpretation of the data (Abd-Elga-
wad 2019). Eventually, sampling unit should be standard-
ized with a norm model to obtain samples that can offer
logic comparative evaluations. This is also recommended
as it will allow future reviews to be so analytical that they
can build on previous studies for such objective and more
reliable investigations.

Other misuses have been raised by an overdepend-
ence on computer software without careful considera-
tion of the calculations which the computer is ought to
perform (Nelson and Rawlings 1983). Testa and Shields
(2017) implemented low labor in vivo mass rearing
approach for EPNs to decrease their cost of production
for an area-wide biocontrol project of arable crops. They
found that total cost of rearing one billion alive IJs that
can be applied in the field is about $350 USD ($0.35 per
million IJs). They valued the cost structure relying on eas-
ily obtainable Galleria larvae as the rearing susceptible
insects. In order to culture 1 billion, 10^9, alive IJs require
12,500 Galleria larvae, because each larva can yield
on average 80 million IJs under the preferred culturing
temperatures. However, the output of their assessing
(12,500 × 80 million) is 10^{12} not 10^9 alive IJs. The insects
are sold in 450 ml plastic containers with 250 Galleria
larvae. So, Testa and Shields (2017) estimated the sum
as 1 billion, which is apparently a misprint and should
be 10^{12}, IJs which needs 50 containers of insects with a
price ranging between $5 and 7 per container handled
(50 × $6 = $300). Factually, one Galleria larva can cul-
ture 68,000 to 100,000 IJs (Elson J. Shields, Cornell Uni-
versity, Ithaca, NY, Pers. Comm). Hence, Abd-Elgawad
(2017) noted that the discrepancy in their assessment of
cost is apparent. They stated that total labor which com-
prises time to furnish the IJs to inoculate the 50 contain-
ers, inoculation of a container, checking containers in the
culturing process, and gathering the IJs for application on
the spot is in the range 3–4 h (4 h × $12/h = $48). Inex-
pensive as it may be, the right estimate to culture one
billion alive IJs ready for practical use is about $0.875.
Nonetheless, the actual expense should be $875 ha$^{-1}$
when the same applied rate is 2.5×10^9 EPN ha$^{-1}$ with
correct estimations.

![Various samplers with different sizes used as tools to take nematode samples. a A spade to collect large samples of fairly undisturbed soils and roots, b A trowel to obtain samples of medium volumes, and c Soil tubes (augers) to get many sub-samples (cores).](image-url)
Common and sound uses of statistics in nematology

Such uses consider the planning stages of experimentation as crucial steps. They can rightly furnish for the sound objective(s) and consequent conclusions. Therefore, the above-mentioned steps for the process of such planning should be cared for. In this respect, nematologists should correctly choose the simplest experimental designs which are capable of achieving their objectives among many others (Montgomery 2001). They commonly utilize rational variables. For example, for studying the effect of certain ecological factors on nematodes, they should choose variables that are more impacted by the settings in which the nematodes occur. These factors are more useful than those that are less subject to ecological effects. Likewise, morphological, morphometric, and molecular characters and ratios that vary greatly among nematode populations in relation to their variations within populations are obviously more helpful for systematic and taxonomic studies than are those that offer lesser variability among nematode populations in proportion to their statistical variances within populations. Furthermore, the treatments which can offer the data/information required by the question under study should be accurately selected. Sound conception of comparisons among these treatments should be determined ahead of time; at the planning phase. While random lay out should assign the treatments to adequate experimental units, replication is direly required to assess experimental error and to stabilize the estimates of treatment means (Nelson 1985).

Nematologists usually apply statistics to look for indications of effects and they rely on the data to supply them with estimates of the magnitudes of these effects. So, there has also been some revision in our thinking about some concepts in order to soundly use and extensively apply statistical techniques to biological problems. For example, the use of large plots in field experiments because the variance of large plots is small was formerly recommended. Now, we recommend the use of small plots with a compensating rise in number of replications to utilize the available resources (Abd-Elgawad and Molinari 2008; Abd-Elgawad et al. 2012). On the other hand, pitfalls of classical approaches for rating PPN-host suitability were discussed (Roberts 1992; Abd-Elgawad 2003). In this vein, for better categorization, Abd-Elgawad (1991)’s report provided nematode-host suitability designation in which statistical analysis played a key role in terms of different levels of statistical probability (P) values (Table 2). The P value always gives the probability of observing the evidence given the null hypothesis (H₀). This hypothesis assumes non-significant difference between specified populations; i.e., any noted difference being due to sampling or/and experimental error. Thus, the P value is the probability, under the assumption of no association or no effect (H₀), of getting a result equal to or more extreme than what was actually found (Goodman 2005). Hence, the first step toward a shift in quantitative interpretation of P values is its

Further statistical considerations in nematode research and reporting

As the field of statistics is the science of learning from data, it has been used so and should further advance nematological types of research and relevant applications. Nematologists have been using statistics to help them utilize the proper methods to gather the data, implement the correct analyses, and effectively display the results. Furthermore, statistical processes should be harnessed to support novel methodologies and discoveries in nematology, make decisions based on sound data, and make predictions. Therefore, statistics can open new avenues to grasp subject(s) much more deeply. For example, one of the most effective, economical, ecologically benign treatments to reduce yield losses from nematode diseases is to use pathogen-resistant plant cultivars (Sasser et al. 1984). A recent approach is to use biochemical markers to rate pathogen-plant suitability especially for the most economically significant pathogens with potential genes for resistance via statistical approaches (e.g., Abd-Elgawad and Molinari 2008; Abd-Elgawad et al. 2012). On the other hand, pitfalls of classical approaches for rating PPN-host suitability were discussed (Roberts 1992; Abd-Elgawad 2003). In this vein, for better categorization, Abd-Elgawad (1991)’s report provided nematode-host suitability designation in which statistical analysis played a key role in terms of different levels of statistical probability (P) values (Table 2). The P value always gives the probability of observing the evidence given the null hypothesis (H₀). This hypothesis assumes non-significant difference between specified populations; i.e., any noted difference being due to sampling or/and experimental error. Thus, the P value is the probability, under the assumption of no association or no effect (H₀), of getting a result equal to or more extreme than what was actually found (Goodman 2005). Hence, the first step toward a shift in quantitative interpretation of P values is its
more soundly, they also applied canonical correspondence analysis which revealed the same abiotic variables (pH, and clay content) as most relevant factors to the community variation in both data sets. Eventually, such statistical inferences could help to determine the most cost-effective and reliable means of assessing soil food webs of techniques currently available (Dritsoulas et al. 2019). Furthermore, these conclusions implied a value-added approach to pest management programs.

Another example is related to nematode ecology which uses TPL as an empirical law (e.g., Duncan and Phillips 2009). As a rule of thumb, this law generally refers to a procedure or standard, based on practical experience rather than theory (Clapp et al. 2011). The law has been broadly applied as a principle in different disciplines other than nematology. Nevertheless, in nematology, it is used to describe and quantify nematode distribution patterns in Egypt (Abd-Elgawad 2014, 2016) and elsewhere (Duncan and Phillips 2009; Been and Schomaker 2013).

Thus, recent nematological investigations could integrate theoretical and empirical methods to improve TPL application. This was materialized in sufficient data which supported a shift in the thumb rule value for the randomness of TPL (Abd-Elgawad 2020).

Conclusions

Statistical planning of bioassays and experiments should be a pre-consideration in nematology. Common misuses of statistics in research and reporting should be avoided. On the contrary, useful conclusions from nematological data via upgraded and modern statistical analyses should be further drawn. Statistical analyses always develop and consequently can help in optimizing nematological conclusions. Reckoning with the careful and recent application of statistics, one may expect that data analyses and outputs will be scholarly better assessed in near future to achieve considerable advances in nematology. Nonetheless, the identification of research priorities for harnessing statistics in sustainable agriculture in the context of grasping nematode relevant ecology, biology, and interaction with other microorganisms and agricultural inputs may hasten such advances.

Abbreviations

EPN: Entomopathogenic nematode; \(H_0 \): The null hypothesis; IJs: Nematode-infected juveniles; \(P \): Statistical probability; PPN: Plant-parasitic nematode; qPCR: Quantitative polymerase chain reaction; \(r^2 \): Coefficient of determination; SADIE: Spatial analysis by distance indices; TPL: Taylor's Power Law.

Acknowledgements

This study was supported in part by the US-Egypt Project cycle 17 (no. 172) entitled “Preparing and evaluating IPM tactics for increasing strawberry and citrus production.” This article is derived from the Subject Data funded in part by NAS and USAID, and that any opinions, findings, conclusions, or

| Table 2 A rating for host suitability designation to Meloidogyne spp |
Parameters and variables*	Rating	Designation
Insignificant damage (\(P \approx 0.20 \)); RP, RM and/or RR = 0, \(R \approx 0 \)	0	Immune
Insignificant damage (\(P \approx 0.20 \)); \(E \leq 10 \), \(R < 1 \)	1	Highly resistant
Insignificant damage (\(P \approx 0.20 \)); \(E > 10 \), \(R < 1 \)	2	Resistant
Significant damage (\(P \approx 0.10 \)); \(E < 30 \), \(R < 1 \)	3	Moderately resistant
Insignificant damage (\(P \approx 0.10 \)); \(E > 20 \), \(R > 1 \)	4	Tolerant
Significant damage (\(P \approx 0.05 \)); \(E < 40 \), \(R < 1 \)	5	Hyper-susceptible
Significant damage (\(P \approx 0.05 \)); \(E > 30 \), \(R > 1 \)	6	Susceptible
Significant damage (\(P \approx 0.01 \)); \(E > 30 \), \(R > 1 \)	7	Highly susceptible

* \(P \) (probability level); \(E \) (number of egg masses/plant); \(R \) (reproduction factor) = \((PF/Pi) \), where \(PF \) and \(Pi \) are the final and initial populations of nematodes; RP (rate of penetration) = \((\text{count of total nematodes in root tissues}/\text{count of nematodes used in inoculation}) \times 100 \); RR (rate of reproduction) = \((\text{count of egg-laying females}/\text{total count of females and egg-laying females}) \times 100 \); RM (rate of maturation) = \((\text{count of egg-laying females}/\text{total count of females and egg-laying females}) \times 100 \).
recommendations expressed in it are those of the authors alone, and do not necessarily reflect the views of USAID or NAS. This study was supported in part by the NRC In-house project No. 12050105 entitled “Pesticide alternatives against soil-borne pathogens and pests attacking economically important solanaceous crops.”

Author’s contributions
The author has developed, implemented, and written this review article. He read and approved the final manuscript.

Funding
Financial support was made to develop and analyze the data by both US-Egypt Project related to Science and Technology Development Fund and National Research Centre, Egypt.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author declares that he has no competing interests.

Received: 27 March 2020 Accepted: 17 December 2020

Published online: 07 January 2021

References
Abd-Elgawad MMM (1991) A new rating scale for screening plant genotypes against root-knot and reniform nematodes. Anz Schadling Pflanzen schutz Umweltschutz 64:37–39
Abd-Elgawad MMM (1992) Spatial distribution of the phytomematode community in Egyptian citrus groves. Revue Nematol 14:367–373
Abd-Elgawad MMM (1998) Experimental design and analysis of biological statistics in the biological control of date palm red weevils, stem borers and grubs. AOAD Press, Khartoum, p 111
Abd-Elgawad MMM (2003) Classical vs. new biochemical methods of rating pathogen-host suitability. Egypt J Agric Res NRC 1(3):675–689
Abd-Elgawad MMM (2014) Spatial patterns of Tuta absoluta and heterorhabditid nematodes. Russ J Nematol 22(2):89–100
Abd-Elgawad MMM (2016) Use of Taylor’s Power Law parameters in nematode sampling. Int J Pharm Tech Res 9(12):999–1004
Abd-Elgawad MMM (2017) Comments on the economic use of entomopathogenic nematodes against insect pests. Bull NRC 41(1):66–84
Abd-Elgawad MMM (2019) Towards optimization of entomopathogenic nematodes for more service in the biological control of insect pests. Egypt J Biol Pest Cont 29:77. https://doi.org/10.1186/s41938-019-0181-1
Abd-Elgawad MMM (2020) Can rational sampling maximise isolation and fix distribution measure of entomopathogenic nematodes? Nematology. https://doi.org/10.1163/15685411-00033530
Abd-Elgawad MMM, Hasabo SA (1995) Spatial distribution of the phytomematode community in Egyptian bessereem clover fields. Fundam Appl Nematol 18(4):329–334
Abd-Elgawad MMM, Molinari S (2008) Markers of plant resistance to nematodes: classical and molecular strategies. Nematol Medit 36:3–11
Abd-Elgawad MMM, Kabeil SSA, Fanelli E, Molinari S (2012) Different levels of anti-oxidant enzyme activities in tomato genotypes susceptible and resistant to root-knot nematodes. Nematropica 42:328–334
Abd-Elgawad MMM, Koura FFH, Montasser SA, Hammam MMA (2016) Distribution and losses of Tylenchulus semipenetrans in citrus orchards on reclaimed land in Egypt. Nematology 18:1141–1150
Akinseya AN, Molami SO (2019) Screen house response of seven elite cassava (Manihot esculenta Crantz) varieties to Meloidogyne incognita infection. Nematropica 49:91–98
Bal HK, Acosta N, Cheng Z, Grewal PS, Hoy CW (2017) Effect of habitat and soil management on dispersal and distribution patterns of entomopathogenic nematodes. Appl Soil Ecol 121:48–59
Been TH, Schomaker CH (2013) Distribution patterns and sampling. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CAB Int, Wallingford, pp 331–358
Berg WVD, Hartsemma O, Nijs LMFD (2014) Statistical analysis of nematode counts from inter-laboratory proficiency tests. Nematology 16(2):229–243
Clapp JE, Thornburg EG, Galanter M, Shapiro FR (eds) (2011) Rule of thumb. Lawtalk: the unknown stories behind familiar legal expressions. Yale University Press, New Haven, pp 219–225
Dritsoulas A, Campos-Herrera R, Duncan LW (2019) Assessing the biogeography of entomopathogenic nematodes using metabarcoding. J Nematol 51:10
Duncan LW, Phillips MS (2009) Sampling root-knot nematodes. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, St. Albans, pp 275–300
Ferris H (1984) Probability range in damage predictions as related to sampling decisions. J Nematol 16(3):246–251
Goodman SN (2005) P value. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics, 2nd edn. Wiley, Chichester, pp 3921–3925
Held L, Ott M (2018) On P-values and Bayes factors. Annu Rev Stat Appl 5:393–419. https://doi.org/10.1146/annurev‑statistics‑031017‑100307
Montgomery DC (2001) Design and analysis of experiments. Wiley, New York
Nelson LA (1985) Design of greenhouse and field experiments for nematode investigations. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, volume 2: methodology. Cooperative Publication, Dept Plant Pathology, North Carolina State University and the USDAID, Raleigh, pp 177–186
Nelson LA, Rawlings JO (1983) Ten common misuse of statistics in agronomic research and reporting. J Agron Educ 12:100–105
Perry RN (1995) Spatial analysis by distance indices. J Anim Ecol 64:303–314
Roberts PA (1992) Current status of the availability, development, and use of host plant resistance to nematodes. J Nematol 24:213–227
Sasser JN, Carter CC, Hartman KM (1984) Standardization of host suitability studies and reporting of resistance to root-knot nematodes. A Cooper Publication, Dept Plant Pathology, North Carolina State University and USAID, Raleigh
Spiridonov SE, Moens M, Wilson MJ (2007) Fine scale spatial distributions of two entomopathogenic nematodes in a grassland soil. Appl Soil Ecol 37:192–201
Taylor LR (1961) Aggregation, variance and the mean. Nature 189:732–735.
https://doi.org/10.1038/189732a0
Taylor RAJ (1999) Sampling entomopathogenic nematodes and measuring their spatial distribution. In: Gwynn RL, Smits PH, Griffin C, Ehlers R-U, Boemare N, Masson J-P (eds) Application and persistence of entomopathogenic nematodes. European Commission (EUR 18873 EN), Brussels, pp 43–60
Testa AM, Shields EJ (2017) Low labor “in vivo” mass rearing method for entomopathogenic nematodes. Biol Cont 106:77–82
Wilson MJ, Lewis EE, Yoder F, Gaugler R (2003) Application pattern and persistence of the entomopathogenic nematode Heterorhabditis bacteriophora. Biol Cont 26:180–188

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.