Representation of Universal Algebra

Aleks Kleyn

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Abstract. Theory of representations of universal algebra is a natural development of the theory of universal algebra. Morphism of the representation is the map that conserve the structure of the representation. Exploring of morphisms of the representation leads to the concepts of generating set and basis of representation. In the book I considered the notion of tower of T^i-representations of Ω_i-algebras, $i = 1, ..., n$, as the set of coordinated T^i-representations of Ω_i-algebras.
Contents

Chapter 1. Preface ... 5
 1.1. Preface ... 5
 1.2. Conventions ... 6

Chapter 2. Representation of Universal Algebra 7
 2.1. Representation of Universal Algebra 7
 2.2. Morphism of Representations of Universal Algebra 9
 2.3. Automorphism of Representation of Universal Algebra 20
 2.4. Representation of Group .. 21
 2.5. Single Transitive T^*-Representation of Group 25
 2.6. Basis of T^*-representation 28
 2.7. Basis Manifold of Representation 35
 2.8. Few Applications of Basis of Representation 36

Chapter 3. Tower of Representations of Universal Algebras 37
 3.1. Tower of Representations of Universal Algebras 37
 3.2. Morphism of Tower of T^*-Representations 40
 3.3. Endomorphism of Tower of Representations 43
 3.4. Basis of Tower of Representations 44
 3.5. Examples of Basis of Tower of Representation 51
 3.6. Representations in Category 52

Chapter 4. References ... 53

Chapter 5. Index ... 54

Chapter 6. Special Symbols and Notations 56
CHAPTER 1

Preface

1.1. Preface

In my papers, I often explore problems relating to the representation of universal algebra. Initially it was small sketches which I repeatedly corrected and rewrote. However gradually there were new observations. As a result, auxiliary tool became a consistent theory.

I realized this when I was writing book [7], and I decided to dedicate a separate book to the questions related with representation of universal algebra. Exploring of the theory of representations of universal algebra shows that this theory has a lot of common with theory of universal algebra.

The definition of vector space as representation of field in the Abelian group was the main impetus of deeper exploring of representations of universal algebra. I put attention that this definition changes role of linear map. It was found that linear map is the map that preserves the structure of the representation. It is easy to generalize this structure for an arbitrary representation of universal algebra. Thus I came to the notion of morphism of representation.

The set of regular automorphisms of vector space forms a group. This group is single transitive on the set of bases of vector space. This statement is the foundation of the theory of invariants of vector space.

The natural question arises. Can we generalize this structure to arbitrary representation? The basis is not the only set that forms the vector space. If we add an arbitrary vector to the set of vectors of basis, then a new set also generates the same vector space, however this set is not basis. This statement is initial point where I started exploring of generating set of representation. Generating set of representation is one more interesting parallel between theory of representations and theory of universal algebra.

The set of automorphisms of representations is loop. Nonassociativity of the product is the source of numerous questions which require additional research. All these questions lead to the need to understand the theory of invariants of a given representation.

If we consider the theory of representations of universal algebra as an extension of the theory of universal algebra, then why not consider the representation of one representation in another representation. Thus the concept of the tower representations appeared. The most amazing fact is the statement that all maps in the tower of representations are coordinated.
1.2. Conventions

(1) Function and mapping are synonyms. However according to tradition, correspondence between either rings or vector spaces is called mapping and a mapping of either real field or quaternion algebra is called function.

(2) In [8], an arbitrary operation of algebra is denoted by letter ω, and Ω is the set of operations of some universal algebra. Correspondingly, the universal algebra with the set of operations Ω is denoted as Ω-algebra. Similar notations we see in [1] with small difference that an operation in the algebra is denoted by letter f and \mathcal{F} is the set of operations. I prefered first case of notations because in this case it is easier to see where I use operation.

(3) Since the number of universal algebras in the tower of representations is varying, then we use vector notation for a tower of representations. We denote the set $(A_1, ..., A_n)$ of Ω_i-algebras A_i, $i = 1, ..., n$ as \mathbf{A}. We denote the set of representations $(f_1, ..., f_{n-1,n})$ of these algebras as \mathbf{f}. Since different algebras have different type, we also talk about the set of $\overline{\Omega}$-algebras. In relation to the set \mathbf{A}, we also use matrix notations that we discussed in section [5]-2.1. For instance, we use the symbol \mathbf{A}_1 to denote the set of Ω-algebras $(A_2, ..., A_n)$. In the corresponding notation $(\mathbf{A}_1, \mathbf{f})$ of tower of representation, we assume that $\mathbf{f} = (f_2, ..., f_{n-1,n})$.

(4) Since we use vector notation for elements of the tower of representations, we need convention about notation of operation. We assume that we get result of operation componentwise. For instance,

$$\mathbf{r}(\mathbf{a}) = (r_1(a_1), ..., r_n(a_n))$$

(5) I believe that diagrams of maps are an important tool. However, sometimes I want to see the diagram as three dimensional figure and I expect that this would increase its expressive power. Who knows what surprises the future holds. In 1992, at a conference in Kazan, I have described to my colleagues what advantages the computer preparation of papers has. 8 years later I learned from the letter from Kazan that now we can prepare paper using LaTeX.

(6) Without a doubt, the reader may have questions, comments, objections. I will appreciate any response.
CHAPTER 2

Representation of Universal Algebra

2.1. Representation of Universal Algebra

Definition 2.1.1. Suppose we defined the structure of Ω_2-algebra on the set M ([1, 8]). We call the endomorphism of Ω_2-algebra

$$t : M \to M$$

transformation of universal algebra M.2,3

We denote δ identical transformation.

Definition 2.1.2. Transformations is left-side transformation or $T*$-transformation if it acts from left

$$u' = tu$$

We denote *M the set of $T*$-transformations of universal algebra M.4

Definition 2.1.3. Transformations is right-side transformations or *T-transformation if it acts from right

$$u' = ut$$

We denote M^* the set of nonsingular *T-transformations of universal algebra M.5

Definition 2.1.4. Suppose we defined the structure of Ω_1-algebra on the set *M ([1]). Let A be Ω_1-algebra. We call homomorphism

(2.1.1)

$$f : A \to ^*M$$

left-side or $T*$-representation of Ω_1-algebra A in Ω_2-algebra M.6

Definition 2.1.5. Suppose we defined the structure of Ω_1-algebra on the set M^* ([1]). Let A be Ω_1-algebra. We call homomorphism

$$f : A \to M^*$$

right-side or *T-representation of Ω_1-algebra A in Ω_2-algebra M.7

We extend to representation theory convention described in remark [5]-2.2.15. We can write duality principle in the following form

Theorem 2.1.6 (duality principle). Any statement which holds for $T*$-representation of Ω_1-algebra A holds also for *T-representation of Ω_1-algebra A.

2,3If the set of operations of Ω_2-algebra is empty, then t is a map.
Remark 2.1.7. There exist two forms of notation for transformation of Ω_2-algebra M. In operational notation, we write the transformation A as either Aa which corresponds to the T^\star-transformation or aA which corresponds to the $\star T$-transformation. In functional notation, we write the transformation A as $A(a)$ regardless of the fact whether this is T^\star-transformation or this is $\star T$-transformation. This notation is in agreement with duality principle.

This remark serves as a basis for the following convention. When we use functional notation we do not make a distinction whether this is T^\star-transformation or this is $\star T$-transformation. We denote *M the set of transformations of Ω_2-algebra M. Suppose we defined the structure of Ω_1-algebra on the set *M. Let A be Ω_1-algebra. We call homomorphism

\begin{equation}
(2.1.2) \quad f : A \rightarrow ^*M
\end{equation}

representation of Ω_1-algebra A in Ω_2-algebra M.

Correspondence between operational notation and functional notation is unambiguous. We can select any form of notation which is convenient for presentation of particular subject. □

Diagram

\[
\begin{array}{ccc}
M & \xrightarrow{f(a)} & M \\
\downarrow^f & & \downarrow^f \\
A & & A
\end{array}
\]

means that we consider the representation of Ω_1-algebra A. The map $f(a)$ is image of $a \in A$.

Definition 2.1.8. Suppose map (2.1.2) is an isomorphism of the Ω_1-algebra A into *M. Than the representation of the Ω_1-algebra A is called effective. □

Remark 2.1.9. Suppose the T^\star-representation of Ω_1-algebra is effective. Then we identify an element of Ω_1-algebra and its image and write T^\star-transormation caused by element $a \in A$ as

\[v' = av\]

Suppose the $\star T$-representation of Ω_1-algebra is effective. Then we identify an element of Ω_1-algebra and its image and write $\star T$-transormation caused by element $a \in A$ as

\[v' = va\]

Definition 2.1.10. We call a representation of Ω_1-algebra transitive if for any $a, b \in V$ exists such g that

\[a = f(g)(b)\]

We call a representation of Ω_1-algebra single transitive if it is transitive and effective. □

Theorem 2.1.11. T^\star-representation is single transitive if and only if for any $a, b \in M$ exists one and only one $g \in A$ such that $a = f(g)(b)$

Proof. Corollary of definitions 2.1.8 and 2.1.10. □
2.2. Morphism of Representations of Universal Algebra

Theorem 2.2.1. Let A and B be Ω_1-algebras. Representation of Ω_1-algebra B
\[g : B \rightarrow ^*M \]
and homomorphism of Ω_1-algebra
\[(2.2.1) \quad h : A \rightarrow B \]
define representation f of Ω_1-algebra A
\[A \xrightarrow{f} ^*M \]
\[\downarrow h \]
\[\downarrow g \]
\[B \]

Proof. Since mapping g is homomorphism of Ω_1-algebra B into Ω_1-algebra *M, the mapping f is homomorphism of Ω_1-algebra A into Ω_1-algebra *M. □

Considering representations of Ω_1-algebra in Ω_2-algebras M and N, we are interested in a mapping that preserves the structure of representation.

Definition 2.2.2. Let
\[f : A \rightarrow ^*M \]
be representation of Ω_1-algebra A in Ω_2-algebra M and
\[g : B \rightarrow ^*N \]
be representation of Ω_1-algebra B in Ω_2-algebra N. Tuple of maps
\[(2.2.2) \quad (r : A \rightarrow B, R : M \rightarrow N) \]
such that
- r is homomorphism of Ω_1-algebra
- R is homomorphism of Ω_2-algebra

\[(2.2.3) \quad R \circ f(a) = g(r(a)) \circ R \]
is called **morphism of representations from f into g**. We also say that **morphism of representations of Ω_1-algebra in Ω_2-algebra** is defined. □

For any $m \in M$ equation (2.2.3) has form
\[(2.2.4) \quad R(f(a)(m)) = g(r(a))(R(m)) \]

Remark 2.2.3. We may consider a pair of maps r, R as map
\[F : A \cup M \rightarrow B \cup N \]
such that
\[F(A) = B \quad F(M) = N \]
Therefore, hereinafter we will say that we have the map (r, R). □
Remark 2.2.4. Let us consider morphism of representations (2.2.2). We denote elements of the set B by letter using pattern $b \in B$. However if we want to show that b is image of element $a \in A$, we use notation $r(a)$. Thus equation
\[r(a) = r(a) \]
means that $r(a)$ (in left part of equation) is image $a \in A$ (in right part of equation). Using such considerations, we denote element of set N as $R(m)$. We will follow this convention when we consider correspondences between homomorphisms of Ω_1-algebra and mappings between sets where we defined corresponding representations.

There are two ways to interpret (2.2.4)

- Let transformation $f(a)$ map $m \in M$ into $f(a)(m)$. Then transformation $g(r(a))$ maps $R(m) \in N$ into $R(f(a)(m))$.
- We represent morphism of representations from f into g using diagram

\[
\begin{array}{ccc}
M & \xrightarrow{R} & N \\
\downarrow f & & \downarrow g \\
A & \xrightarrow{r} & B \\
\end{array}
\]

From (2.2.3) it follows that diagram (1) is commutative.

\[\square \]

Theorem 2.2.5. Let us consider representation
\[f : A \rightarrow^* M \]
of Ω_1-algebra A and representation
\[g : B \rightarrow^* N \]
of Ω_1-algebra B. Morphism
\[h : A \rightarrow B \]
of representations from f into g satisfies equation
\[(2.2.5) \quad H \circ \omega(f(a_1), \ldots, f(a_n)) = \omega(g(h(a_1)), \ldots, g(h(a_n))) \circ H \]
for any n-ary operation ω of Ω_1-algebra.

PROOF. Since f is homomorphism, we have
\[(2.2.6) \quad H \circ \omega(f(a_1), \ldots, f(a_n)) = H \circ f(\omega(a_1, \ldots, a_n)) \]
From (2.2.3) and (2.2.6) it follows that
\[(2.2.7) \quad H \circ \omega(f(a_1), \ldots, f(a_n)) = g(h(\omega(a_1, \ldots, a_n))) \circ H \]
Since h is homomorphism, from (2.2.7) it follows that
\[(2.2.8) \quad H \circ \omega(f(a_1), \ldots, f(a_n)) = g(\omega(h(a_1), \ldots, h(a_n))) \circ H \]
Since g is homomorphism, (2.2.5) follows from (2.2.8).

\[\square \]
Theorem 2.2.6. Let the map

\[h : A \rightarrow B \quad H : M \rightarrow N \]

be morphism from representation

\[f : A \rightarrow *M \]

of \(\Omega_1 \)-algebra \(A \) into representation

\[g : B \rightarrow *N \]

of \(\Omega_1 \)-algebra \(B \). If representation \(f \) is effective, then the map

\[*H : *M \rightarrow *N \]

defined by equation

(2.2.9)

\[*H(f(a)) = g(h(a)) \]

is homomorphism of \(\Omega_1 \)-algebra.

Proof. Because representation \(f \) is effective, then for given transformation \(f(a) \) element \(a \) is determined uniquely. Therefore, transformation \(g(h(a)) \) is properly defined in equation (2.2.9).

Since \(f \) is homomorphism, we have

(2.2.10)

\[*H(\omega(f(a_1), \ldots, f(a_n))) = *H(\omega(a_1, \ldots, a_n)) \]

From (2.2.9) and (2.2.10) it follows that

(2.2.11)

\[*H(\omega(f(a_1), \ldots, f(a_n))) = g(h(\omega(a_1, \ldots, a_n))) \]

Since \(h \) is homomorphism, from (2.2.11) it follows that

(2.2.12)

\[*H(\omega(f(a_1), \ldots, f(a_n))) = g(\omega(h(a_1), \ldots, h(a_n))) \]

Since \(g \) is homomorphism,

\[*H(\omega(f(a_1), \ldots, f(a_n))) = \omega(g(h(a_1)), \ldots, g(h(a_n))) = \omega(\omega(f(a_1)), \ldots, *H(f(a_n))) \]

follows from (2.2.12). Therefore, the map \(*H \) is homomorphism of \(\Omega_1 \)-algebra. \(\square \)

Theorem 2.2.7. Given single transitive representation

\[f : A \rightarrow *M \]

of \(\Omega_1 \)-algebra \(A \) and single transitive \(T* \)-representation

\[g : B \rightarrow *N \]

of \(\Omega_1 \)-algebra \(B \), there exists morphism

\[h : A \rightarrow B \quad H : M \rightarrow N \]

of representations from \(f \) into \(g \).
PROOF. Let us choose homomorphism h. Let us choose element $m \in M$ and element $n \in N$. To define map H, let us consider following diagram

![Diagram](image)

From commutativity of diagram (1), it follows that

$$H(am) = h(a)H(m)$$

For arbitrary $m' \in M$, we defined unambiguously $a \in A$ such that $m' = am$. Therefore, we defined mapping H which satisfies to equation (2.2.3). \qed

Theorem 2.2.8. Let

$$f : A \to ^*M$$

be single transitive representation of Ω_1-algebra A and

$$g : B \to ^*N$$

be single transitive representation of Ω_1-algebra B. Given homomorphism of Ω_1-algebra

$$h : A \to B$$

let us consider a map

$$H : M \to N$$

such that (h, H) is morphism of representations from f into g. This map is unique up to choice of image $n = H(m) \in N$ of given element $m \in M$.

\textbf{PROOF}. From proof of theorem 2.2.7 it follows that choice of homomorphism h and elements $m \in M$, $n \in N$ uniquely defines the map H. \qed

Theorem 2.2.9. Given single transitive representation

$$f : A \to ^*M$$

of Ω_1-algebra A, for any endomorphism of Ω_1-algebra A there exists endomorphism

$$p : A \to A \quad P : M \to M$$

of representation f.
2.2. Morphism of Representations of Universal Algebra

Theorem 2.2.10. Let

\[f : A \to ^* M \]

be representation of \(\Omega_1 \)-algebra \(A \),

\[g : B \to ^* N \]

be representation of \(\Omega_1 \)-algebra \(B \),

\[h : C \to ^* L \]

be representation of \(\Omega_1 \)-algebra \(C \). Given morphisms of representations of \(\Omega_1 \)-algebra

\[p : A \to B \quad P : M \to N \]

\[q : B \to C \quad Q : N \to L \]

There exists morphism of representations of \(\Omega_1 \)-algebra

\[r : A \to C \quad R : M \to L \]

where \(r = qp \), \(R = QP \). We call morphism \((r, R)\) of representations from \(f \) into \(h \) product of morphisms \((p, P)\) and \((q, Q)\) of representations of universal algebra.

Proof. We represent statement of theorem using diagram.
Map r is homomorphism of Ω_1-algebra A into Ω_1-algebra C. We need to show that tuple of maps (r, R) satisfies to (2.2.3):

$$R(f(a)m) = QP(f(a)m)$$
$$= Q(g(p(a))P(m))$$
$$= h(qp(a))QP(m))$$
$$= h(r(a))R(m)$$

□

Definition 2.2.11. Let \mathcal{A} be category of Ω_1-algebras. We define category $T^\star \mathcal{A}$ of T^\star-representations of Ω_1-algebra from category \mathcal{A}. T^\star-representations of Ω_1-algebra are objects of this category. Morphisms of T^\star-representations of Ω_1-algebra are morphisms of this category.

Theorem 2.2.12. Endomorphisms of representation f form semigroup.

Proof. From theorem 2.2.10, it follows that the product of endomorphisms $(p, P), (r, R)$ of the representation f is endomorphism $(pr, P R)$ of the representation f.

□

Definition 2.2.13. Let us define equivalence S on the set M. Transformation f is called coordinated with equivalence S, when $f(m_1) \equiv f(m_2) \text{(mod} S)$ follows from condition $m_1 \equiv m_2 \text{(mod} S)$.

Theorem 2.2.14. Let us consider equivalence S on set M. Let us consider Ω_1-algebra on set $^\star M$. Since transformations are coordinated with equivalence S, we can define the structure of Ω_1-algebra on the set $^\star (M/S)$.

Proof. Let $h = \text{nat } S$. If $m_1 \equiv m_2 \text{(mod} S)$, then $h(m_1) = h(m_2)$. Since $f \in ^\star M$ is coordinated with equivalence S, then $h(f(m_1)) = h(f(m_2))$. This allows to define transformation F according to rule

$$F([m]) = h(f(m))$$

Let ω be n-ary operation of Ω_1-algebra. Suppose $f_1, ..., f_n \in ^\star M$ and

$$F_1([m]) = h(f_1(m)) \quad ... \quad F_n([m]) = h(f_n(m))$$

We define operation on the set $^\star (M/S)$ according to rule

$$\omega(F_1, ..., F_n)[m] = h(\omega(f_1, ..., f_n)m)$$

This definition is proper because $\omega(f_1, ..., f_n) \in ^\star M$ and is coordinated with equivalence S.

□

Theorem 2.2.15. Let

$$f : A \to ^\star M$$

be representation of Ω_1-algebra A,

$$g : B \to ^\star N$$

be representation of Ω_1-algebra B. Let

$$r : A \longrightarrow B \quad R : M \longrightarrow N$$

be morphism of representations from f into g. Suppose

$$s = rr^{-1} \quad S = RR^{-1}$$
Then there exist decompositions of r and R, which we describe using diagram

\begin{align*}
\text{(1)} & \quad s = \ker r \text{ is a congruence on } A. \text{ There exists decompositions of homomorphism } r \\
& \quad (2.2.13) \quad r = itj \\
& \quad j = \text{nat } s \text{ is the natural homomorphism } \\
& \quad (2.2.14) \quad j(a) = j(a) \\
& \quad t \text{ is isomorphism } \\
& \quad (2.2.15) \quad r(a) = t(j(a)) \\
& \quad i \text{ is the inclusion mapping } \\
& \quad (2.2.16) \quad r(a) = i(r(a)) \\
\text{(2)} & \quad S = \ker R \text{ is an equivalence on } M. \text{ There exists decompositions of homomorphism } R \\
& \quad (2.2.17) \quad R = ITJ \\
& \quad J = \text{nat } S \text{ is surjection } \\
& \quad (2.2.18) \quad J(m) = J(m) \\
& \quad T \text{ is bijection } \\
& \quad (2.2.19) \quad R(m) = T(J(m)) \\
& \quad I \text{ is the inclusion mapping } \\
& \quad (2.2.20) \quad R(m) = I(R(m)) \\
\end{align*}

(3) F is T^*-representation of Ω_1-algebra A/s in M/S

(4) G is T^*-representation of Ω_1-algebra rA in RM

(5) (j,J) is morphism of representations f and F

(6) (t,T) is morphism of representations F and G

(7) (i,T^{-1}) is morphism of representations G and F

(8) (i,I) is morphism of representations G and g
(9) There exists decompositions of morphism of representations

\[(r, R) = (i, I)(t, T)(j, J)\]

Proof. Existence of diagrams (1) and (2) follows from theorem II.3.7 ([8], p. 60).

We start from diagram (4).

Let \(m_1 \equiv m_2 \pmod{S} \). Then

\[(2.2.22) \quad R(m_1) = R(m_2)\]

Since \(a_1 \equiv a_2 \pmod{s} \), then

\[(2.2.23) \quad r(a_1) = r(a_2)\]

Therefore, \(j(a_1) = j(a_2) \). Since \((r, R) \) is morphism of representations, then

\[(2.2.24) \quad R(f(a_1)(m_1)) = g(r(a_1))(R(m_1))\]

\[(2.2.25) \quad R(f(a_2)(m_2)) = g(r(a_2))(R(m_2))\]

From (2.2.22), (2.2.23), (2.2.24), (2.2.25), it follows that

\[(2.2.26) \quad R(f(a_1)(m_1)) = R(f(a_2)(m_2))\]

From (2.2.26) it follows

\[(2.2.27) \quad f(a_1)(m_1) \equiv f(a_2)(m_2) \pmod{S}\]

and, therefore,

\[(2.2.28) \quad J(f(a_1)(m_1)) = J(f(a_2)(m_2))\]

From (2.2.28) it follows that we defined map

\[(2.2.29) \quad F(j(a))(J(m)) = J(f(a)(m))\]

reasonably and this map is transformation of set \(M/S \).

From equation (2.2.27) (in case \(a_1 = a_2 \)) it follows that for any \(a \) transformation is coordinated with equivalence \(S \). From theorem 2.2.14 it follows that we defined structure of \(\Omega_1 \)-algebra on the set \(*(M/S)\). Let us consider \(n \)-ary operation \(\omega \) and \(n \) transformations

\[F(j(a_1))(J(m)) = J(f(a_1)(m))) \quad i = 1, \ldots, n\]

of the set \(M/S \). We assume

\[\omega(F(j(a_1)), \ldots, F(j(a_n)))(J(m)) = J(\omega(f(a_1), \ldots, f(a_n)))(m)\]

Therefore, map \(F \) is representations of \(\Omega_1 \)-algebra \(A/s \).

From (2.2.29) it follows that \((j, J) \) is morphism of representations \(f \) and \(F \) (the statement (5) of the theorem).

Let us consider diagram (5).

Since \(T \) is bijection, then we identify elements of the set \(M/S \) and the set \(MR \), and this identification has form

\[(2.2.30) \quad T(J(m)) = R(m)\]

We can write transformation \(F(j(a)) \) of the set \(M/S \) as

\[(2.2.31) \quad F(j(a)) : J(m) \to F(j(a))(J(m))\]
Since T is bijection, we define transformation
\[T(J(m)) \to T(F(j(a))(J(m))) \]
(2.2.32)
of the set RM. Transformation (2.2.32) depends on $j(a) \in A/s$. Since t is bijection, we identify elements of the set A/s and the set rA, and this identification has form
\[t(j(a)) = r(a) \]
(2.2.33)
Therefore, we defined map
\[G: rA \to \ast RM \]
according to equation
\[G(t(j(a))(T(J(m)))) = T(F(j(a))(J(m))) \]
(2.2.34)
Let us consider n-ary operation ω and n transformations
\[G(r(a_i))(R(m)) = T(F(j(a_i))(J(m))) \quad i = 1, ..., n \]
of space RM. We assume
\[\omega(G(r(a_1)), ..., G(r(a_n)))(R(m)) = T(\omega(F(j(a_1)), ..., F(j(a_n)))(J(m))) \]
(2.2.35)
According to (2.2.34) operation ω is defined reasonably on the set $\ast RM$. Therefore, the map G is representations of Ω_1-algebra.

From (2.2.34) it follows that (t, T) is morphism of representations F and G (the statement (6) of the theorem).

Since T is bijection, then from equation (2.2.30) it follows that
\[J(m) = T^{-1}(R(m)) \]
(2.2.36)
We can write transformation $G(r(a))$ of the set RM as
\[G(r(a)) : R(m) \to G(r(a))(R(m)) \]
(2.2.37)
Since T is bijection, we define transformation
\[T^{-1}(R(m)) \to T^{-1}(G(r(a))(R(m))) \]
(2.2.38)
of the set M/S. Transformation (2.2.38) depends on $r(a) \in rA$. Since t is bijection, then from equation (2.2.33) it follows that
\[j(a) = t^{-1}(r(a)) \]
(2.2.39)
Since, by construction, diagram (5) is commutative, then transformation (2.2.38) coincides with transformation (2.2.31). We can write the equation (2.2.35) as
\[T^{-1}(\omega(G(r(a_1)), ..., G(r(a_n)))(R(m))) = \omega(F(j(a_1)), ..., F(j(a_n)))(J(m)) \]
(2.2.40)
Therefore, (t^{-1}, T^{-1}) is morphism of representations G and F (the statement (7) of the theorem).

Diagram (6) is the most simple case in our prove. Since map I is immersion and diagram (2) is commutative, we identify $n \in N$ and $R(m)$ when $n \in \text{Im} R$. Similarly, we identify corresponding transformations.
\[g'(i(r(a)))(I(R(m))) = I(G(r(a))(R(m))) \]
(2.2.41)
\[\omega(g'(r(a_1)), ..., g'(r(a_n)))(R(m)) = I(\omega(G(r(a_1)), ..., G(r(a_n)))(R(m))) \]
Therefore, (i, I) is morphism of representations G and g (the statement (8) of the theorem).
To prove the statement (9) of the theorem we need to show that defined in the proof representation \(g' \) is congruent with representation \(g \), and operations over transformations are congruent with corresponding operations over \(*N \).

\[
g'(i(r(a)))(I(R(m))) = I(G(r(a))(R(m))) \quad \text{by (2.2.41)}
\]

\[
= I(G(t(j(a)))(T(J(m)))) \quad \text{by (2.2.15), (2.2.19)}
\]

\[
= IT(F(j(a))(J(m))) \quad \text{by (2.2.34)}
\]

\[
= ITJ(f(a)(m)) \quad \text{by (2.2.29)}
\]

\[
= R(f(a)(m)) \quad \text{by (2.2.17)}
\]

\[
= g(r(a))(R(m)) \quad \text{by (2.2.3)}
\]

\[
\omega(G(r(a_1)), ..., G(r(a_n)))(R(m)) = T(\omega(F(j(a_1)), ..., F(j(a_n)))(J(m)))
\]

\[
= T(F(\omega(j(a_1), ..., j(a_n)))(J(m)))
\]

\[
= T(F(j(\omega(a_1, ..., a_n)))(J(m)))
\]

\[
= T(J(f(\omega(a_1, ..., a_n))(m)))
\]

\[
\square
\]

Definition 2.2.16. Let

\[
f : A \rightarrow *M
\]

be representation of \(\Omega_1 \)-algebra \(A \),

\[
g : B \rightarrow *N
\]

be representation of \(\Omega_1 \)-algebra \(B \). Let

\[
r : A \longrightarrow B \quad R : M \longrightarrow N
\]

be morphism of representations from \(f \) into \(g \) such that \(f \) is isomorphism of \(\Omega_1 \)-algebra and \(g \) is isomorphism of \(\Omega_2 \)-algebra. Then map \((r, R) \) is called isomorphism of representations.

Theorem 2.2.17. In the decomposition (2.2.21), the map \((t, T) \) is isomorphism of representations \(F \) and \(G \).

Proof. The statement of the theorem is corollary of definition 2.2.16 and statements (6) and (7) of the theorem 2.2.15.

From theorem 2.2.15 it follows that we can reduce the problem of studying of morphism of representations of \(\Omega_1 \)-algebra to the case described by diagram

(2.2.42)
Theorem 2.2.18. We can supplement diagram (2.2.42) with representation F_1 of Ω_1-algebra A into set M/S such that diagram

\[
\begin{array}{ccc}
M & \xrightarrow{J} & M/S \\
\downarrow f(a) & & \downarrow F(j(a)) \\
A & \xrightarrow{j} & M/S
\end{array}
\]

is commutative. The set of transformations of representation F and the set of transformations of representation F_1 coincide.

Proof. To prove theorem it is enough to assume

$$F_1(a) = F(j(a))$$

Since map j is surjection, then $\text{Im} F_1 = \text{Im} F$. Since j and F are homomorphisms of Ω_1-algebra, then F_1 is also homomorphism of Ω_1-algebra. \qed

Theorem 2.2.18 completes the series of theorems dedicated to the structure of morphism of representations Ω_1-algebra. From these theorems it follows that we can simplify task of studying of morphism of representations Ω_1-algebra and not go beyond morphism of representations of form

$$\text{id} : A \rightarrow A, \quad R : M \rightarrow N$$

In this case we identify morphism of (id, R) representations of Ω_1-algebra and map R. We will use diagram

\[
\begin{array}{ccc}
M & \xrightarrow{R} & N \\
\downarrow f(a) & & \downarrow g(a) \\
A & \xrightarrow{j} & N
\end{array}
\]

to represent morphism (id, R) of representations of Ω_1-algebra. From diagram it follows

\[
R \circ f(a) = g(a) \circ R
\]

By analogy with definition 2.2.11. we give following definition.

Definition 2.2.19. We define category $T \star A$ $T\star$-representations of Ω_1-algebra A. $T\star$-representations of Ω_1-algebra A are objects of this category. Morphisms (id, R) of $T\star$-representations of Ω_1-algebra A are morphisms of this category. \qed
2.3. Automorphism of Representation of Universal Algebra

Definition 2.3.1. Let
\[f : A \to \ast M \]
be representation of \(\Omega_1 \)-algebra \(A \) in \(\Omega_2 \)-algebra \(M \). The morphism of representations of \(\Omega_1 \)-algebra
\[(r : A \to A, R : M \to M) \]
such that \(r \) is endomorphism of \(\Omega_1 \)-algebra and \(R \) is endomorphism of \(\Omega_2 \)-algebra is called endomorphism of representation \(f \).

Definition 2.3.2. Let
\[f : A \to \ast M \]
be representation of \(\Omega_1 \)-algebra \(A \) in \(\Omega_2 \)-algebra \(M \). The morphism of representations of \(\Omega_1 \)-algebra
\[(r : A \to A, R : M \to M) \]
such that \(r \) is automorphism of \(\Omega_1 \)-algebra and \(R \) is automorphism of \(\Omega_2 \)-algebra is called automorphism of representation \(f \).

Theorem 2.3.3. Let
\[f : A \to \ast M \]
be representation of \(\Omega_1 \)-algebra \(A \) in \(\Omega_2 \)-algebra \(M \). The set of automorphisms of the representation \(f \) forms loop \(\mathfrak{A}(f) \).

Proof. Let \((r, R), (p, P)\) be automorphisms of the representation \(f \). According to definition 2.3.2 maps \(r, p \) are automorphisms of \(\Omega_1 \)-algebra \(A \) and maps \(R, P \) are automorphisms of \(\Omega_2 \)-algebra \(M \). According to theorem II.3.2 ([8], p. 57), the map \(rp \) is automorphism of \(\Omega_1 \)-algebra \(A \) and the map \(RP \) is automorphism of \(\Omega_2 \)-algebra \(M \). From the theorem 2.2.10 and the definition 2.3.2, it follows that product of automorphisms \((rp, RP)\) of representation \(f \) is automorphism of the representation \(f \).

Let \((r, R)\) be an automorphism of the representation \(f \). According to definition 2.3.2 the map \(r \) is automorphism of \(\Omega_1 \)-algebra \(A \) and the map \(R \) is automorphism of \(\Omega_2 \)-algebra \(M \). Therefore, the map \(r^{-1} \) is automorphism of \(\Omega_1 \)-algebra \(A \) and the map \(R^{-1} \) is automorphism of \(\Omega_2 \)-algebra \(M \). The equation (2.3.1) is true for automorphism \((r, R)\). Assume \(a' = r(a), m' = R(m) \). Since \(r \) and \(R \) are automorphisms then \(a = r^{-1}(a'), m = R^{-1}(m') \) and we can write (2.2.4) in the form
\[R(f(r^{-1}(a'))(R^{-1}(m'))) = g(a')(m') \]
Since the map \(R \) is automorphism of \(\Omega_2 \)-algebra \(M \), then from the equation (2.3.1) it follows that
\[f(r^{-1}(a'))(R^{-1}(m')) = R^{-1}(g(a')(m')) \]
The equation (2.3.2) corresponds to the equation (2.2.4) for the map \((r^{-1}, R^{-1})\).

Therefore, map \((r^{-1}, R^{-1})\) of the representation \(f \).

\[^{2.2}\text{Look [4], p. 24, [3] for definition of loop.} \]
Remark 2.3.4. It is evident that the set of automorphisms of Ω_1-algebra A also forms loop. Of course, it is attractive to assume that the set of automorphisms forms a group. Since the product of automorphisms f and g is automorphism fg, then automorphisms $(fg)h$ and $f(gh)$ are defined. However, it does not follow from this statement that

\[(fg)h = f(gh)\]

\[\square\]

2.4. Representation of Group

Group is among few algebras that allow somebody to consider the product of transformations of the set M in such a way that, if transformations belong to the representation, then their product also belongs to the representation. In case of group representation we can define homomorphism (2.1.1) either as

\[f(ab) = f(a) \circ f(b)\]

or as

\[f(ab) = f(b) \circ f(a)\]

We should remember that order of maps in product depends on order of maps on diagram and how these maps act over elements of the set (from left or from right).

Definition 2.4.1. Let *M be a group and δ be unit of group *M. Let G be group. We call a homomorphism of group (2.4.1) either as

\[f : G \rightarrow ^*M\]

covariant T^*-representation of group G in set M if map f holds

\[(2.4.2) \quad f(ab)u = f(a)(f(b)u)\]

\[\square\]

Remark 2.4.2. Since map (2.4.1) is homomorphism, then

\[(2.4.3) \quad f(ab)u = (f(a)f(b))u\]

We use here convention

\[f(a)f(b) = f(a) \circ f(b)\]

Thus, the idea of covariant representation is that we multiply elements of group in the same order as we multiply transformations of representation. From equations (2.4.2) and (2.4.3) it follows

\[(2.4.4) \quad (f(a)f(b))u = f(a)(f(b)u)\]

Equation (2.4.4) together with associativity of product of transformations expresses associative law for covariant T^*-representation. This allows writing of equation (2.4.4) without using of brackets

\[f(ab)u = f(a)f(b)u\]

\[\square\]
Definition 2.4.3. Let $\star M$ be a group and δ be unit of group $\star M$. Let G be group. We call an antihomomorphism of group

$$f : G \to \star M$$

contravariant \star-representation of group G in set M if map f holds

(2.4.5) $$f(ba)u = f(a)(f(b)u)$$

□

Definition 2.4.4. Let M^* be a group and δ be unit of group M^*. Let G be group. We call map

(2.4.6) $$f : G \to M^*$$

covariant $\star T$-representation of group G in set M if map f holds

(2.4.7) $$uf(ab) = (uf(a))f(b)$$

□

Remark 2.4.5. Since map (2.4.6) is homomorphism, then

(2.4.8) $$uf(ab) = u(f(a)f(b))$$

From equations (2.4.7) and (2.4.8) it follows

(2.4.9) $$(f(a)f(b))u = (uf(a))f(b)$$

Equation (2.4.9) together with associativity of product of transformations expresses **associative law for covariant $\star T$-representation.** This allows writing of equation (2.4.9) without using of brackets

$$uf(ab) = uf(a)f(b)$$

□

Definition 2.4.6. Let M^* be a group and δ be unit of group M^*. Let G be group. We call map

$$f : G \to M^*$$

covariant $\star T$-representation of group G in set M if map f holds

(2.4.10) $$uf(ab) = (uf(a))f(b)$$

□

Definition 2.4.7. We call the transformation

$$t : M \to M$$

nonsingular transformation, if there exists inverse map. □

Theorem 2.4.8. For any $g \in G$ transformation is nonsingular and satisfies equation

(2.4.11) $$f(g^{-1}) = f(g)^{-1}$$

Proof. Since (2.4.5) and

$$f(e) = \delta$$

we have

$$u = \delta(u) = f(gg^{-1})(u) = f(g)(f(g^{-1})(u))$$

This completes the proof. □
Theorem 2.4.9. The group operation determines two different representations on the group:

- The left or $T\star$-shift t_*
 \[b' = t_*(a)b = ab \]
 \[b' = t_*(a)(b) = ab \]

 is covariant $T\star$-representation

- The right or $\star T$-shift t_*
 \[b' = b \star (a) = ba \]
 \[b' = \star t(a)(b) = ba \]

 is covariant $\star T$-representation

Proof. $T\star$-shift is not a representation of group in a group, because the transformation t_* is not a homomorphism of group. $T\star$-shift is the representation of the group in the set which is carrier of this group. Similar remark is true for $\star T$-shift.

Equation (2.4.13) follows from associativity of product

\[t_*(ab)c = (ab)c = a(bc) = t_*(a)(t_*(b)c) = (t_*(a) \circ t_*(b))c \]

In a similar manner we prove the equation (2.4.15).

Theorem 2.4.10. Let $T\star$-representation

\[u' = f(a)u \]

be contravariant $T\star$-representation. Then $T\star$-representation

\[u' = h(a)u = f(a^{-1})u \]

is covariant $T\star$-representation.

Proof. Statement follows from chain of equations

\[h(ab) = f((ab)^{-1}) = f(b^{-1}a^{-1}) = f(a^{-1})f(b^{-1}) = h(a)h(b) \]

Remark 2.4.11. If we suppose the choice of a side to place the operator of representation on is arbitrary, we can get the impression we may not go beyond exploration either $T\star$-representations or covariant representations. Section [5]-5.2 serves as good illustration that different forms of representation are essential. When we need to show the order of factors we will use operational notation. Theorems 2.5.12, 2.5.15 are examples when functional notation has advantage.

Definition 2.4.12. Let f be $T\star$-representation of the group G in set M. For any $v \in M$ we define orbit of $T\star$-representation of the group G as set

\[f(G)v = \{ w = f(g)v : g \in G \} \]

Since $f(e) = \delta$ we have $v \in f(G)v$.
Theorem 2.4.13. Suppose
\[v \in f(G)u \]
Then
\[f(G)u = f(G)v \]

Proof. From (2.4.16) it follows that there exists \(a \in G \) such that
\[v = f(a)u \] \(\text{(2.4.17)} \)
Suppose \(w \in f(G)v \). Then there exists \(b \in G \) such that
\[w = f(b)v \] \(\text{(2.4.18)} \)
If we substitute (2.4.17) into (2.4.18) we get
\[w = f(b)(f(a)u) \] \(\text{(2.4.19)} \)
Since (2.4.2), we see that from (2.4.19) it follows that \(w \in f(G)u \). Thus
\[f(G)v \subseteq f(G)u \]

Since (2.4.11), we see that from (2.4.17) it follows that
\[u = f(a)^{-1}v = f(a^{-1})v \] \(\text{(2.4.20)} \)
From (2.4.20) it follows that \(u \in f(G)v \) and therefore
\[f(G)u \subseteq f(G)v \]
This completes the proof. \(\square \)

Thus, \(T \)-representation \(f \) of group \(G \) in set \(M \) forms equivalence \(S \) and the orbit \(f(G)u \) is equivalence class. We will use notation \(M/f(G) \) for quotient set \(M/S \) and this set is called space of orbits of \(T \)-representation \(f \).

Theorem 2.4.14. Suppose \(f_1 \) is \(T \)-representation of group \(G \) in set \(M_1 \) and \(f_2 \) is \(T \)-representation of group \(G \) in set \(M_2 \). Then we introduce direct product of \(T \)-representations \(f_1 \) and \(f_2 \) of group
\[f = f_1 \times f_2 : G \to M_1 \otimes M_2 \]
\[f(g) = (f_1(g), f_2(g)) \]

Proof. To show that \(f \) is a representation, it is enough to prove that \(f \) satisfies the definition 2.4.1.
\[f(e) = (f_1(e), f_2(e)) = (\delta_1, \delta_2) = \delta \]
\[f(ab)u = (f_1(ab)u_1, f_2(ab)u_2) \]
\[= (f_1(a)f_1(b)u_1, f_2(a)f_2(b)u_2) \]
\[= f_1(a)f_1(b)u_1, f_2(a)f_2(b)u_2 \]
\[= f(a)f(b)u \]
\[\square \]
2.5. Single Transitive T^\star-Representation of Group

Definition 2.5.1. We call kernel of inefficiency of T^\star-representation of group G a set

$$K_f = \{ g \in G : f(g) = \delta \}$$

Theorem 2.5.2. A kernel of inefficiency of the T^\star-representation of group G is a subgroup of the group G.

Proof. Assume $f(a_1) = \delta$ and $f(a_2) = \delta$. Then

$$f(a_1a_2)u = f(a_1)(f(a_2)u) = u$$

$$f(a^{-1}) = f^{-1}(a) = \delta$$

Theorem 2.5.3. T^\star-representation of the group G is effective iff kernel of inefficiency $K_f = \{ e \}$.

Proof. Statement is corollary of definitions 2.1.8 and 2.5.1 and of the theorem 2.5.2.

If an action is not effective we can switch to an effective one by changing group $G_1 = G/K_f$ using factorization by the kernel of inefficiency. This means that we can study only an effective action.

Definition 2.5.4. Consider T^\star-representation f of group G in set M. A little group or stability group of $x \in M$ is the set

$$G_x = \{ g \in G : f(g)x = x \}$$

T^\star-representation f of group G is said to be free, if for any $x \in M$ stability group $G_x = \{ e \}$.

Theorem 2.5.5. Given free T^\star-representation f of group G in the set A, there exist 1–1 correspondence between orbits of representation, as well between orbit of representation and group G.

Proof. Given $a \in A$ there exist $g_1, g_2 \in G$

(2.5.1)

$$f(g_1)a = f(g_2)a$$

We multiply both parts of equation (2.5.1) by $f(g_1^{-1})$

$$a = f(g_1^{-1})f(g_2)a$$

Since the representation is free, $g_1 = g_2$. Since we established 1–1 correspondence between orbit and group G, we proved the statement of the theorem.

Definition 2.5.6. We call a space V homogeneous space of group G if we have single transitive T^\star-representation of group G on V.

Theorem 2.5.7. If we define a single transitive covariant representation f of the group G on the manifold A then we can uniquely define coordinates on A using coordinates on the group G.

If f is a covariant T^\star-representation than $f(a)$ is equivalent to the T^\star-shift t_a on the group G. If f is a covariant T^\star-representation than $f(a)$ is equivalent to the T^\star-shift $t(a)$ on the group G.

Proof. We select a point \(v \in A \) and define coordinates of a point \(w \in A \) as coordinates of \(a \in G \) such that \(w = f(a)v \). Coordinates defined this way are unique up to choice of an initial point \(v \in A \) because the action is effective.

If \(f \) is a covariant \(T \ast \)-representation we will use the notation
\[
f(a)v = av
\]
Because the notation
\[
f(a)(f(b)v) = a(bv) = (ab)v = f(ab)v
\]
is compatible with the group structure we see that the covariant \(T \ast \)-representation \(f \) is equivalent to the \(T \ast \)-shift.

If \(f \) is a covariant \(\ast T \)-representation we will use the notation
\[
v f(a) = va
\]
Because the notation
\[
(v f(b))f(a) = (vb)a = v(ba) = v f(ba)
\]
is compatible with the group structure we see that the covariant \(\ast T \)-representation \(f \) is equivalent to the \(\ast T \)-shift. \(\square \)

Remark 2.5.8. We will write effective \(T \ast \)-covariant representation of the group \(G \) as
\[
v' = t \ast (a)v = av
\]
Orbit of this representation is
\[
Gv = t \ast (G)v
\]
We will use notation \(M/t \ast (G) \) space of orbits of effective \(T \ast \)-covariant representation of the group. \(\square \)

Remark 2.5.9. We will write effective \(\ast T \)-covariant representation of the group \(G \) as
\[
v' = v \ast t(a) = va
\]
Orbit of this representation is
\[
vG = v \ast t(G)
\]
We will use notation \(M/\ast t(G) \) for the space of orbits of effective \(\ast T \)-covariant representation of the group. \(\square \)

Theorem 2.5.10. Free \(T \ast \)-representation is effective. Free \(T \ast \)-representation \(f \) of group \(G \) in set \(M \) is single transitive representation on orbit.

Proof. The statement of theorem is the corollary of definition 2.5.4. \(\square \)

Theorem 2.5.11. \(T \ast \) - and \(\ast T \)-shifts on group \(G \) are commuting.

Proof. This is the consequence of the associativity on the group \(G \)
\[
(t \ast (a) \circ \ast t(b))c = a(cb) = (ac)b = (\ast t(b) \circ t \ast (a))c
\]
\(\square \)

Theorem 2.5.11 can be phrased n the following way.

Theorem 2.5.12. Let \(G \) be group. For any \(a \in G \), the map \((id, t \ast (a)) \) is automorphism of representation \(\ast t \).
2.5. Single Transitive T^\star-Representation of Group

Proof. According to theorem 2.5.11
(2.5.2) \[t_\star(a) \circ t_\star(b) = t_\star(b) \circ t_\star(a) \]
Equation (2.5.2) coincides with equation (2.2.3) from definition 2.2.2 when $r = id$, $R = t_\star(a).$ □

Theorem 2.5.13. Suppose we defined a single transitive covariant T^\star-representation f of the group G on the manifold M. Then we can uniquely define a single transitive covariant $\star T$-representation h of the group G on the manifold M such that diagram

\[
\begin{array}{ccc}
M & \xrightarrow{h(a)} & M \\
| & & | \\
\downarrow{f(b)} & & \downarrow{f(b)} \\
M & \xrightarrow{h(a)} & M
\end{array}
\]

is commutative for any $a, b \in G$.^2^3^4

Proof. We use group coordinates for points $v \in M$. Then according to theorem 2.5.7 we can write the left shift $t_\star(a)$ instead of the transformation $f(a)$.

Let points $v_0, v \in M$. Then we can find one and only one $a \in G$ such that
\[v = v_0 a = v_0 \circ t_\star(a) \]
We assume
\[h(a) = t_\star(a) \]
For some $b \in G$ we have
\[w_0 = f(b)v_0 = t_\star(b)v_0 \quad w = f(b)v = t_\star(b)v \]
According to theorem 2.5.11 the diagram
(2.5.3) \[
\begin{array}{ccc}
v_0 & \xrightarrow{h(a) = t_\star(a)} & v \\
| & & | \\
\downarrow{f(b) = t_\star(b)} & & \downarrow{f(b) = t_\star(b)} \\
w_0 & \xrightarrow{h(a) = t_\star(a)} & w
\end{array}
\]
is commutative.

Changing b we get that w_0 is an arbitrary point of M.

We see from the diagram that if $v_0 = v$ than $w_0 = w$ and therefore $h(e) = \delta$. On other hand if $v_0 \neq v$ then $w_0 \neq w$ because the T^\star-representation f is single transitive. Therefore the $\star T$-representation h is effective.

In the same way we can show that for given w_0 we can find a such that $w = h(a)w_0$. Therefore the $\star T$-representation h is single transitive.

In general the product of transformations of the T^\star-representation f is not commutative and therefore the $\star T$-representation h is different from the T^\star-representation f. In the same way we can create a T^\star-representation f using the $\star T$-representation h. □

Representations f and h are called **twin representations of the group $G**.

^2^3^4You can see this statement in [2].
Remark 2.5.14. It is clear that transformations $t_*(a)$ and $t(a)$ are different until the group G is nonabelian. However they both are maps onto. Theorem 2.5.13 states that if both $*T$- and $T*$-shift presentations exist on the manifold M we can define two commuting representations on the manifold M. The $*T$-shift or the $T*$-shift only cannot represent both types of representation. To understand why it is so let us change diagram (2.5.3) and assume $h(a)v_0 = t_*(a)v_0 = v$ instead of $h(a)v_0 = v_0, t(a) = v$ and let us see what expression $h(a)$ has at the point w_0. The diagram

\[
\begin{array}{c}
\begin{array}{c}
v_0 \\
\downarrow \\
w_0
\end{array}
\begin{array}{c}
h(a) = t_*(a) \\
f(b) = t_*(b) \\
f(b) = t_*(b)
\end{array}
\begin{array}{c}
v \\
w
\end{array}
\end{array}
\]

is equivalent to the diagram

\[
\begin{array}{c}
\begin{array}{c}
v_0 \\
\downarrow \\
w_0
\end{array}
\begin{array}{c}
h(a) = t_*(a) \\
 f^{-1}(b) = t_*(b^{-1}) \\
f(b) = t_*(b)
\end{array}
\begin{array}{c}
v \\
w
\end{array}
\end{array}
\]

and we have $w = bv = bav_0 = bab^{-1}w_0$. Therefore

\[
h(a)w_0 = (bab^{-1})w_0
\]

We see that the representation of h depends on its argument. □

Theorem 2.5.15. Let f and h be twin representations of the group G. For any $a \in G$ the map $(id, h(a))$ is automorphism of representation f.

Proof. The statement of theorem is corollary of theorems 2.5.12 and 2.5.13. □

Remark 2.5.16. Is there an automorphism of representation t_* different from automorphism $(id, \cdot t(a))$? If we assume

\[
r(g) = cg^{-1} \\
R(a)(m) = cmac^{-1}
\]

then it is easy to see that the map $(r, R(a))$ is automorphism of the representation t_*. □

2.6. Basis of $T*$-representation

Definition 2.6.1. Let $f : A \to *M$
be representation of Ω_1-algebra A in Ω_2-algebra M. The set $N \subset M$ is called stable set of representation f, if $f(a)(m) \in N$ for each $a \in A$, $m \in N$. □

We also say that the set M is stable with respect to the representation f.
Theorem 2.6.2. Let
\[f : A \rightarrow \ast M \]
be representation of \(\Omega_1 \)-algebra \(A \) in \(\Omega_2 \)-algebra \(M \). Let set \(N \subset M \) be subalgebra of \(\Omega_2 \)-algebra \(M \) and stable set of representation \(f \). Then there exists representation
\[f_N : A \rightarrow \ast N \]
such that \(f_N(a) = f(a)|_N \). Representation \(f_N \) is called subrepresentation of representation \(f \).

Proof. Let \(\omega_1 \) be \(n \)-ary operation of \(\Omega_1 \)-algebra \(A \). Then for each \(a_1, \ldots, a_n \in A \) and each \(b \in N \)
\[\omega_1(f_N(a_1), \ldots, f_N(a_n))(b) = \omega_1(f(a_1), \ldots, f(a_n))(b) \]
\[= f(\omega_1(a_1, \ldots, a_n))(b) \]
\[= f_N(\omega_1(a_1, \ldots, a_n))(b) \]
Let \(\omega_2 \) be \(n \)-ary operation of \(\Omega_2 \)-algebra \(M \). Then for each \(b_1, \ldots, b_n \in N \) and each \(a \in A \)
\[\omega_2(f_N(a)(b_1), \ldots, f_N(a)(b_n)) = \omega_2(f(a)(b_1), \ldots, f(a)(b_n)) \]
\[= f(a)(\omega_2(b_1, \ldots, b_n)) \]
\[= f_N(a)(\omega_2(b_1, \ldots, b_n)) \]
We proved the statement of theorem. \(\square \)

From the theorem 2.6.2, it follows that if \(f_N \) is subrepresentation of representation \(f \), then the map \((id : A \rightarrow A, id_N : N \rightarrow M) \) is morphism of representations.

Theorem 2.6.3. The set \(B_f \) of all subrepresentations of representation \(f \) generates a closure system on \(\Omega_2 \)-algebra \(M \) and therefore is a complete lattice.

Proof. Let \((K_\lambda)_{\lambda \in \Lambda} \) be the set of subalgebras of \(\Omega_2 \)-algebra \(M \) that are stable with respect to representation \(f \). We define the operation of intersection on the set \(B_f \) according to rule
\[\bigcap f_{K_\lambda} = f_{\cap K_\lambda} \]
We defined the operation of intersection of subrepresentations properly. \(\cap K_\lambda \) is subalgebra of \(\Omega_2 \)-algebra \(M \). Let \(m \in \cap K_\lambda \). For each \(\lambda \in \Lambda \) and for each \(a \in A \), \(f(a)(m) \in K_\lambda \). Therefore, \(f(a)(m) \in \cap K_\lambda \). Therefore, \(\cap K_\lambda \) is the stable set of representation \(f \).

We denote the corresponding closure operator by \(J_f \). Thus \(J_f(X) \) is the intersection of all subalgebras of \(\Omega_2 \)-algebra \(M \) containing \(X \) and stable with respect to representation \(f \).

Theorem 2.6.4. Let \(f : A \rightarrow \ast M \)

2.4 This definition is similar to definition of the lattice of subalgebras ([8], p. 79, 80)
2.5 The statement of theorem is similar to the statement of theorem 5.1, [8], p. 79.
be representation of Ω_1-algebra A in Ω_2-algebra M. Let $X \subset M$. Define a subset $X_k \subset M$ by induction on k.

$$X_0 = X$$

$$x \in X_k \Rightarrow x \in X_{k+1}$$

$$x_1, \ldots, x_n \in X_k, \omega \in \mathcal{S}_n \Rightarrow \omega(x_1, \ldots, x_n) \in X_{k+1}$$

$$x \in X_k, a \in A \Rightarrow f(a)(x) \in X_{k+1}$$

Then

$$\bigcup_{k=0}^{\infty} X_k = J_f(X)$$

Proof. If we put $U = \cup X_k$, then by definition of X_k, we have $X_0 \subset J_f(X)$, and if $X_k \subset J_f(X)$, then $X_{k+1} \subset J_f(X)$. By induction it follows that $X_k \subset J_f(X)$ for all k. Therefore, (2.6.1)

$$U \subset J_f(X)$$

If $a \in U^n$, $a = (a_1, \ldots, a_n)$, where $a_i \in X_{k_i}$, and if $k = \max\{k_1, \ldots, k_n\}$, then $\omega(a_1, \ldots, a_n) \in X_{k+1} \subset U$. Therefore, U is subalgebra of Ω_2-algebra M.

If $m \in U$, then there exists such k that $m \in X_k$. Therefore, $f(a)(m) \in X_{k+1} \subset U$ for any $a \in A$. Therefore, U is stable set of the representation f.

Since U is subalgebra of Ω_2-algebra M and is a stable set of the representation f, then subrepresentation f_U is defined. Therefore, (2.6.2)

$$J_f(X) \subset U$$

From (2.6.1), (2.6.2), it follows that $J_f(X) = U$. □

Definition 2.6.5. $J_f(X)$ is called subrepresentation generated by set X, and X is a generating set of subrepresentation $J_f(X)$. In particular, a generating set of representation f is a subset $X \subset M$ such that $J_f(X) = M$. □

Definition 2.6.6. Let $X \subset M$ be generating set of representation $f : A \rightarrow ^*M$

Let the map

$$(h : A \rightarrow A, H : M \rightarrow M)$$

is endomorphism of the representation f. Let the set $X' = HX$ be the image of the set X under the map H. Endomorphism (h, H) of representation f is called regular on generating set X, if the set X' is the generating set of representation f. Otherwise, endomorphism of representation (h, H) is called singular on generating set X. □

Definition 2.6.7. Endomorphism of representation f is called regular, if it is regular on every generating set. □

It is easy to see that the definition of generating set of representation does not depend on whether representation is effective or not. For this reason hereinafter we will assume that the representation is effective and we will use convention for effective $T\star$-representation in remark 2.1.9.

From theorem 2.6.4, it follows next definition.

Definition 2.6.8. Let $X \subset M$. For each $x \in J_f(X)$ there exists Ω_2-word defined according to following rule.
(1) If \(m \in X \), then \(m \) is \(\Omega_2 \)-word.
(2) If \(m_1, ..., m_n \) are \(\Omega_2 \)-words and \(\omega \in \Omega_2(n) \), then \(m_1...m_n\omega \) is \(\Omega_2 \)-word.
(3) If \(m \) is \(\Omega_2 \)-word and \(a \in A \), then \(am \) is \(\Omega_2 \)-word.

\(\Omega_2 \)-word \(w(m, f, X) \) that represent given element \(m \in J_f(X) \) is called coordinates of element \(m \) relative to set \(X \). Denote \(W(f, X) \) the set of coordinates of representation \(J_f(X) \).

Representation of \(m \in M \) in form of \(\Omega_2 \)-word is ambiguous. If \(m_1, ..., m_n \) are \(\Omega_2 \)-words, \(\omega \in \Omega_2(n) \) and \(a \in A \), then \(\Omega_2 \)-words \(am_1...m_n\omega \) and \(am_1...am_n\omega \) describe the same element of \(\Omega_2 \)-algebra \(M \). It is possible that there exist equations related to specific character of representation. For instance, if \(\omega \) is operation of \(\Omega_1 \)-algebra \(A \) and operation of \(\Omega_2 \)-algebra \(M \), then we require that \(\Omega_2 \)-words \(a_1...a_n\omega x \) and \(a_1x...a_nx\omega \) describe the same element of \(\Omega_2 \)-algebra \(M \). Listed above equations determine equivalence \(r_{\Omega_2} \) on the set of \(\Omega_2 \)-words \(M_{\Omega_2} \).

Theorem 2.6.9. Endomorphism \((r, R) \) of representation
\[
 f : A \to ^*M
\]
generates the map of coordinates
\[
w(f, r, R, X) : W(f, X) \to W(f, X') \quad X \subset M \quad X' = R(X)
\]
such that
(1) If \(m \in X \), \(m' = R(m) \), then
\[
w(f, r, R, X)(m) = m'
\]
(2) If
\[
m_1, ..., m_n \in W_f(X) \\
m_1' = w(f, r, R, X)(m_1) \quad ... \quad m_n' = w(f, r, R, X)(m_n)
\]
then for operation \(\omega \in \Omega_2(n) \) holds
\[
w(f, r, R, X)(m_1...m_n\omega) = m_1'...m_n'\omega
\]
(3) If
\[
m \in W(f, X) \quad m' = w(f, r, R, X)(m) \\
a \in A \\
a' = r(a)
\]
then
\[
w(f, r, R, X)(am) = a'm'
\]

Proof. Statements (1), (2) of the theorem are true by definition of the endomorphism \(R \). The statement (3) of the theorem follows from the equation (2.2.4).

Theorem 2.6.10. Let
\[
f : A \to ^*M
\]
be representation of \(\Omega_1 \)-algebra \(A \) in \(\Omega_2 \)-algebra \(M \). Let map
\[
r : A \to A
\]
be endomorphism of \(\Omega_1 \)-algebra \(A \). For given sets \(X \subset M \), \(X' \subset M \) let map
\[
R_1 : X \to X'
\]
agree with the structure of Ω_2-algebra M, i.e., for given operation $\omega \in \Omega_2(n)$, if

$$x_1, \ldots, x_n, x_1 \ldots x_n \omega \in X$$

then $R_1(x_1 \ldots x_n \omega) = R_1(x_1) \ldots R_1(x_n) \omega$. Let us consider the map of coordinates

$$w(r, R_1, X) : W(f, X) \rightarrow W(f, X')$$

that satisfies conditions (1), (2), (3) of theorem 2.6.9. There exists endomorphism $R : M \rightarrow M$

defined by rule

$$R(m) = w(f, r, R_1, X)(w(m, f, X))$$

and the map (r, R) is morphism of representations $J_f(X)$ and $J_f(X')$.

Proof. We prove the theorem by induction over complexity of Ω_2-word.

If $w(m, f, X) = m$, then $m \in X$. According to condition (1) of theorem 2.6.9,

$$R(m) = w(r, R_1, X)(w(m, X)) = w(r, R_1, X)(m) = R_1(m)$$

Therefore, maps R and R_1 coincide on the set X, and the map R agrees with structure of Ω_2-algebra.

Let $\omega \in \Omega_2(n)$. Let the statement of induction be true for $m_1, \ldots, m_n \in J_f(X)$. Let $w_1 = w(m_1, X)$, ..., $w_n = w(m_n, X)$. If $m = m_1 \ldots m_n \omega$, then according to condition (2) of definition 2.6.8,

$$w(m, f, X) = w_1 \ldots w_n \omega$$

According to condition (2) of theorem 2.6.9,

$$R(m) = w(r, R_1, X)(w(m, X)) = w(r, R_1, X)(w_1 \ldots w_n \omega)$$

$$= w(r, R_1, X)(w_1) \ldots w(r, R_1, X)(w_n) \omega$$

$$= R(m_1) \ldots R(m_n) \omega$$

Therefore, the map R is endomorphism of Ω_2-algebra M.

Let the statement of induction be true for $m \in J_f(X)$, $w(m, X) = w_m$. Let $a \in A$. According to condition (3) of definition 2.6.8,

$$w(am, X) = aw_m$$

According to condition (3) of theorem 2.6.9,

$$R(am) = w(r, R_1, X)(w(am, X)) = w(r, R_1, X)(aw_m)$$

$$= r(a)w(r, R_1, X)(w_m) = r(a)R(m)$$

From equation (2.2.4) it follows that the map (r, R) is morphism of the representation f. \hfill \Box

Theorem 2.6.11. Automorphism (r, R) of representation

$$f : A \rightarrow {}^*M$$

is regular endomorphism.
2.6. Basis of T^*-representation

Proof. Let X be generating set of representation f. Let $X' = R(X)$.

According to theorem 2.6.9 endomorphism (r, R) forms the map of coordinates $w(f, r, R, X)$.

Let $m' \in M$. Since R is automorphism, then there exists $m \in M$, $R(m) = m'$. According to definition 2.6.8, $w(m, X)$ is coordinates of m relative to generating set X. According to theorem 2.6.10,

$$w(m', X') = w(f, r, R)(w(m, X))$$

is coordinates of m' relative to generating set X'. Therefore, X' is generating set of representation f. According to definition 2.6.7, automorphism (r, R) is regular. □

If the set $X \subset M$ is generating set of representation f, then any set $Y, X \subset Y \subset M$ also is generating set of representation f. If there exists minimal set X generating the representation f, then the set X is called basis of representation f.

Theorem 2.6.12. The generating set X of representation f is basis iff for any $m \in X$ the set $X \setminus \{m\}$ is not generating set of representation f.

Proof. Let X be generating set of representation f. Assume that for some $m \in X$ there exist word

$$(2.6.4) \quad w = w(m, f, X \setminus \{m\})$$

Consider element m' such that it has word

$$(2.6.5) \quad w' = w(m', f, X)$$

that depends on m. According to the definition 2.6.8, any occurrence of m into word w' can be substituted by the word w. Therefore, the word w' does not depend on m, and the set $X \setminus \{m\}$ is generating set of representation f. Therefore, X is not basis of representation f. □

Remark 2.6.13. The proof of the theorem 2.6.12 gives us effective method for constructing the basis of the representation f. Choosing an arbitrary generating set, step by step, we remove from set those elements which have coordinates relative to other elements of the set. If the generating set of the representation is infinite, then this construction may not have the last step. If the representation has finite generating set, then we need a finite number of steps to construct a basis of this representation.

As noted by Paul Cohn in [8], p. 82, 83, the representation may have inequivalent bases. For instance, the cyclic group of order six has bases $\{a\}$ and $\{a^2, a^3\}$ which we cannot map one into another by endomorphism of the representation.

Theorem 2.6.14. Automorphism of the representation f maps a basis of the representation f into basis.

Proof. Let the map (r, R) be automorphism of the representation f. Let the set X be a basis of the representation f. Let $X' = R(X)$.

Assume that the set X' is not basis. According to the theorem 2.6.12 there exists such $m' \in X'$ that $X' \setminus \{x\}$ is generating set of the representation f. According to the theorem 2.3.3 the map (r^{-1}, R^{-1}) is automorphism of the representation f. According to the theorem 2.6.11 and definition 2.6.7, the set $X \setminus \{m\}$ is generating set of the representation f. The contradiction completes the proof of the theorem. □
Let X be the basis of the representation f. According to theorems 2.6.9, 2.6.10, the automorphism (r, R) of the representation f is uniquely defined by map of coordinates $w(f, r, R, X)$. Let $X' = R(X)$ be the image of the basis X under the map R. According to the theorem 2.6.14, the set X' is a basis of the representation f.

Definition 2.6.15. Let X be the basis of the representation f and $Y \subset M$. The map

$$ V : X \to W(f, Y) $$

and the endomorphism r of A-algebra A generate a map

$$ W(r, V) : W(f, X) \to W(f, Y) $$

determined according to following rules.

1. If $m \in X$, then
 $$ W(r, V)(m) = V(m) $$

2. If $m_1, ..., m_n \in M$, then for operation $\omega \in \Omega_2(n)$ holds

 $$ W(r, V)(w(m_1, f, X) ... w(m_n, f, X)\omega) = W(r, V)(w(m_1, f, X)) ... W(r, V)(w(m_n, f, X))\omega $$

3. If $m \in M, a \in A$, then
 $$ W(r, V)(aw(m, f, X)) = r(a)W(r, V)(w(m, f, X)) $$

Theorem 2.6.16. Let X be the basis of the representation f. For given automorphism (r, R) of the representation f, let us consider the map

$$ V(r, R) : x \in X \to w(R(x), f, X) \in W(f, X) $$

Automorphism (r, R) of representation generates the map of coordinates

$$ W(f, r, R, X)(w(m, f, X)) = W(r, V)(w(m, f, X)) $$

which satisfies to equation

$$ W(f, r, R, X)(w(m, f, X)) = w(R(m), f, X) $$

Proof. We prove the theorem by induction over complexity of Ω_2-word. If $m \in X$, then

$$ w(m, f, X) = m $$

Equation (2.6.10) follows from equations (2.6.11), (2.6.9), (2.6.6).

Let statement of theorem is true for $m_1, ..., m_n \in M$. Let $\omega \in \Omega_2(n)$. If $m \in M, m = m_1...m_n\omega$, then from condition (2) of definition 2.6.8 and equation
Equation (2.6.10) follows for given \(m \) from equation (2.6.12).

Let statement of theorem is true for \(m_1 \in M \). Let \(a \in A \). From condition (3) of definition 2.6.8 and equation (2.6.8), it follows

\[
W(f, r, R, X)(w(am, f, X)) = W(f, r, R, X)(aw(m, f, X)) = W(r, V)(aw(m, f, X)) = W(r(a)W(r, V)(w(m, f, X)) = r(a)W(r, V)(w(m, f, X)) = r(a)w(R(m), f, X) = w(r(a)R(m), f, X) = w(R(am), f, X)
\]

Equation (2.6.10) follows for \(am \) from equation (2.6.13). \(\square \)

From the theorem 2.6.16, it follows that the set of coordinates \(w(f, X)(r, R) \) determines the rule how coordinates change relative to the basis \(X \) under automorphism of the representation \(f \). Namely, if we replace each occurrence of element \(x \in X \) in the word \(w(m, f, X) \) by the word \(w(R(x), f, X) \), then we get the word \(w(R(m), f, X) \). The set of words

\[
w(f, X)(r, R) = \{ w(x', f, X) : x' \in R(X) \} = \{ w(R(x), f, X) : x \in X \}
\]

is called coordinates of automorphism \((r, R)\) of representation \(f \).

2.7. Basis Manifold of Representation

The set \(B(f) \) of bases of representation \(f \) is called basis manifold of representation \(f \).

According to theorem 2.6.14, automorphism \((id, R)\) of representation \(f \) generates transformation \(R(f) \) of the basis manifold of representation. This transformation is called active. According to theorem 2.3.3, we defined active representation

\[
f_B : \mathfrak{A}(f) \to ^*B(f)
\]

of loop \(\mathfrak{A}(f) \) in basis manifold \(B(f) \).

Automorphism \((id, S)\) of representation \(f_B \) is called passive transformation of the basis manifold of the representation \(f \). Let \(X \) be the basis of the representation \(f \), \(X' = S(X) \). For
basis \(Y \), let there exists an active transformation \(R \) such that \(Y = R(X) \). Assume \(Y' = R(X') \). Then \(S(Y) = Y' \).

Proof. The theorem states that a passive map is defined on the orbit of the active representation. To prove the theorem it is enough to prove commutativity of the diagram

\[
\begin{array}{ccc}
B(f) & \xrightarrow{R} & B(f) \\
\downarrow S & & \downarrow S \\
B(f) & \xrightarrow{R} & B(f)
\end{array}
\]

\[\square\]

2.8. Few Applications of Basis of Representation

Example 2.8.1. Consider the vector space \(\mathbb{V} \) over the field \(F \). Given the set of vectors \(\overline{e}_1, \ldots, \overline{e}_n \), according to algorithm of construction of coordinates over vector space, coordinates include such elements as \(\overline{e}_1 + \overline{e}_2 \) and \(a \overline{e}_1 \). Recursively using rules, contained in the definition 2.6.8, we conclude that the set of vectors \(\overline{e}_1, \ldots, \overline{e}_n \) generates the set of linear combinations

\[a^1 \overline{e}_1 + \ldots + a^n \overline{e}_n \]

According to the theorem 2.6.12, the set of vectors \(\overline{e}_1, \ldots, \overline{e}_n \) is a basis if for any \(i \), \(i = 1, \ldots, n \), vector \(\overline{e}_i \) is not linear combination of other vectors. This requirement is equivalent to the requirement of linear independence of vectors. \[\square\]

Example 2.8.2. Let \(G \) be Abelian group, and \(M \) be a set. Let us consider effective representation of group \(G \) on the set \(M \). For given \(a \in G \), \(A \in M \) we assume \(A \rightarrow A + a \). We also use notation \(a = AB \) if \(B = A + a \). Then we can represent action of group as \(B = A + AB \). We can select for basis of the representation the set of points such that one and only one points belongs to each orbit. \[\square\]
CHAPTER 3

Tower of Representations of Universal Algebras

3.1. Tower of Representations of Universal Algebras

Let us consider set of \(\Omega_i \)-algebras \(A_i, i = 1, ..., n \). Assume \(\bar{\Omega} = (A_1, ..., A_n) \).

Assume \(f = (f_{1,2}, ..., f_{n-1,n}) \).

Definition 3.1.1. Consider set of \(\Omega_i \)-algebras \(A_i, i = 1, ..., n \). Set of representations \(f_{i,i+1}, i = 1, ..., n-1, \) of \(\Omega_i \)-algebra \(A_i \) in \(\Omega_{i+1} \)-algebra \(A_{i+1} \) is called tower \((\bar{\Omega}, f)\) of representations of \(\bar{\Omega} \)-algebras.

Let us consider following diagram for the purposes of illustration of definition 3.1.1

(3.1.1)

\[
\begin{array}{c}
A_{i+2} \\
\text{\(f_{i,i+1}(a_i) \)} \\
A_{i+1} \\
\text{\(f_{i,i+1}(a_{i+1}) \)} \\
A_i \\
\end{array}
\]

\(f_{i,i+1} \) is representation of \(\Omega_i \)-algebra \(A_i \) in \(\Omega_{i+1} \)-algebra \(A_{i+1} \). \(f_{i+1,i+2} \) is representation of \(\Omega_{i+1} \)-algebra \(A_{i+1} \) in \(\Omega_{i+2} \)-algebra \(A_{i+2} \).

Theorem 3.1.2. The mapping

\(f_{i,i+2} : A_i \to *A_{i+2} \)

is representation of \(\Omega_i \)-algebra \(A_i \) in \(\Omega_{i+1} \)-algebra \(*A_{i+2} \).

Proof. Automorphism \(f_{i+1,i+2}(a_{i+1}) \in *A_{i+2} \) corresponds to arbitrary \(a_{i+1} \in A_{i+1} \). Automorphism \(f_{i,i+1}(a_i) \in *A_{i+1} \) corresponds to arbitrary \(a_i \in A_i \). Since \(f_{i,i+1}(a_i)(a_{i+1}) \in A_{i+1} \) is image of \(a_{i+1} \in A_{i+1} \), then element \(a_i \in A_i \) generates transformation of \(\Omega_{i+1} \)-algebra \(*A_{i+2} \) which is defined by equation

(3.1.2) \(f_{i,i+2}(a_i)(f_{i+1,i+2}(a_{i+1})) = f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1})) \)
Let ω be n-ary operation of Ω_i-algebra. Because $f_{i,i+1}$ is homomorphism of Ω_i-algebra, then

\begin{equation}
(3.1.3) \quad f_{i,i+1}(\omega(a_{i,1}, \ldots, a_{i,n})) = \omega(f_{i,i+1}(a_{i,1}), \ldots, f_{i,i+1}(a_{i,n}))
\end{equation}

For $a_i, \ldots, a_n \in A_i$ we define operation ω on the set $\star^* A_{i+2}$ using equations

\begin{align*}
(3.1.4) \quad &\omega(f_{i,i+2}(a_{i,1})(f_{i+1,i+2}(a_{i+1})), \ldots, f_{i,i+2}(a_{i,n})(f_{i+1,i+2}(a_{i+1}))) \\
&= \omega(f_{i+1,i+2}(f_{i,i+1}(a_{i,1}))(a_{i+1})), \ldots, f_{i+1,i+2}(f_{i,i+1}(a_{i,n}))(a_{i+1})) \\
&= f_{i+1,i+2}(\omega(f_{i,i+1}(a_{i,1}), \ldots, f_{i,i+1}(a_{i,n}))(a_{i+1}))
\end{align*}

First equation follows from equation (3.1.2). We wrote second equation on the base of demand that map $f_{i,i+1+2}$ is homomorphism of Ω_i-algebra. Therefore, we defined the structure of Ω_i-algebra on the set $\star^* A_{i+2}$.

From (3.1.4) and (3.1.3) it follows that

\begin{align*}
(3.1.5) \quad &\omega(f_{i+1,i+2}(a_{i,1}), \ldots, f_{i+1,i+2}(a_{i,n})) \\
&= f_{i+1,i+2}(f_{i,i+1}(\omega(a_{i,1}, \ldots, a_{i,n}))(a_{i+1})) \\
&= f_{i+1,i+2}(\omega(a_{i,1}, \ldots, a_{i,n}))(f_{i+1,i+2}(a_{i+1}))
\end{align*}

From equation (3.1.5) it follows that

\begin{align*}
\omega(f_{i,i+2}(a_{i,1}), \ldots, f_{i,i+2}(a_{i,n})) = f_{i+2}(\omega(a_{i,1}, \ldots, a_{i,n}))
\end{align*}

Therefore, the map $f_{i,i+2}$ is homomorphism of Ω_i-algebra. Therefore, the map $f_{i,i+2}$ is T^*-representation of Ω_i-algebra A_i in Ω_{i+1}-algebra $\star A_{i+2}$.

Theorem 3.1.3. (id,$f_{i+1,i+2}$) is morphism of T^*-representations of Ω_i-algebra from $f_{i,i+1}$ into $f_{i,i+2}$.

Proof. Let us consider diagram (3.1.1) in more detail.

\begin{equation}
(3.1.6) \quad \begin{array}{c}
A_{i+1} \xrightarrow{f_{i+1,i+2}} \star A_{i+2} \\
| \quad \downarrow f_{i,i+1}(a_i) \quad \downarrow f_{i,i+2}(a_i) \\
A_{i+1} \xrightarrow{f_{i+1,i+2}} \star A_{i+2} \\
| \quad \downarrow f_{i,i+1} \quad \downarrow f_{i,i+2} \\
A_i \xrightarrow{id} \quad \star A_{i+2}
\end{array}
\end{equation}

The statement of theorem follows from equation (3.1.2) and definition 2.2.2.

Theorem 3.1.4. Consider tower $(\overline{A}, \overline{f})$ of representations of $\overline{\Omega}$-algebras. Since identity transformation

$\delta_{i+2} : A_{i+2} \rightarrow A_{i+2}$

of Ω_{i+2}-algebra A_{i+2} belongs to representation $f_{i+1,i+2}$, than the representation $f_{i,i+2}$ of Ω_i-algebra A_i in Ω_{i+1}-algebra $\star A_{i+2}$ can be extended to representation

$f'_{i,i+2} : A_i \rightarrow \star A_{i+2}$

of Ω_i-algebra A_i in Ω_{i+2}-algebra A_{i+2}.
Proof. According to the equation (3.1.2), for given \(a_{i+1} \in A_{i+1} \) we can define a mapping

\[
 f'_{i,i+2} : A_i \rightarrow A_{i+2}^*
\]

\[
 f'_{i,i+2}(a_i)(f_{i+1,i+2}(a_{i+1}))(a_{i+2}) = f_{i+1,i+2}(f_i(a_i)(a_{i+1}))(a_{i+2})
\]

Let there exist \(a_{i+1} \in A_{i+1} \) such that

\[
 f_{i+1,i+2}(a_{i+1}) = \delta_{i+2}
\]

Then from (3.1.7), (3.1.8), it follows that

\[
 f'_i(a_{i+1})(a_{i+2}) = f_{i+1,i+2}(f_i(a_{i+1}))(a_{i+2})
\]

Let \(\omega \) be \(n \)-ari operation of \(\Omega_i \)-algebra \(A_i \). Since \(f_{i,i+2} \) is homomorphism of \(\Omega_i \)-algebra, then, from the equation (3.1.2), it follows that

\[
 f_{i,i+2}(\omega(a_{i1}, ..., a_{in}))(f_{i+1,i+2}(a_{i+1}))(a_{i+2})
\]

\[
 = \omega(f_{i,i+2}(a_{i1}))(f_{i+1,i+2}(a_{i+1}))(a_{i+2}), ...
\]

\[
 = f_{i+1,i+2}(\omega(f_{i,i+1}(a_{i1}))(a_{i+1})), ...
\]

From equations (3.1.8), (3.1.9), (3.1.11), it follows that

\[
 f'_i(a_{i+1})(a_{i+2})
\]

\[
 = \omega(f'_i(a_{i1}))(a_{i+2}), ...
\]

\[
 = f_{i+1,i+2}(\omega(f_{i,i+1}(a_{i1}))(a_{i+1})), ...
\]

The equation (3.1.12) defines an operation \(\omega \) on the set \(A_{i+2}^* \)

\[
 \omega(f'_{i,i+2}(a_{i1}, ..., a_{i+2})) = f'_{i,i+2}(\omega(a_{i1}, ..., a_{i+2}))
\]

and the mapping \(f'_{i,i+2} \) is homomorphism of \(\Omega_i \)-algebra. Therefore, we have a representation of \(\Omega_i \)-algebra \(A_i \) in \(\Omega_{i+2} \)-algebra \(A_{i+2} \).

Definition 3.1.5. Let us consider the tower of representations

\[
 ((A_1, A_2, A_3), (f_{1,2}, f_{2,3}))
\]

The map \(f_* = (f_{1,2}, f_{1,3}) \) is called representation of \(\Omega_1 \)-algebra \(A_1 \) in representation \(f_{2,3} \).

Definition 3.1.6. Let us consider the tower of representations \((\overline{A}, \overline{f}) \). The map

\[
 f_* = (f_{1,2}, ..., f_{1,n})
\]

is called representation of \(\Omega_1 \)-algebra \(A_1 \) in tower of representations

\[
 ((\overline{A}_{[1]}, \overline{f}) = ((A_2, ..., A_n), (f_{2,3}, ..., f_{n-1,n}))
\]
3.2. Morphism of Tower of T^*-Representations

Definition 3.2.1. Let us consider the set of Ω_i-algebras $A_i, B_i, i = 1, ..., n$. The set of maps $(h_1, ..., h_n)$ is called **morphism from tower of T^*-representations** (A, f) into tower of T^*-representations (B, g), if for any $i, i = 1, ..., n - 1$, the tuple of maps (h_i, h_{i+1}) is morphism of T^*-representations from $f_{i,i+1}$ into $g_{i,i+1}$.

For any $i, i = 1, ..., n - 1$, we have diagram

$$
\begin{array}{c}
A_{i+1} \xrightarrow{h_{i+1}} B_{i+1} \\
A_i \xrightarrow{h_i} B_i
\end{array}
$$

Equations

$$
(3.2.2) \quad h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1}
$$

$$
(3.2.3) \quad h_{i+1}(f_{i,i+1}(a_i)(a_{i+1})) = g_{i,i+1}(h_i(a_i))(h_{i+1}(a_{i+1}))
$$

express commutativity of diagram (1). However for morphism $(h_i, h_{i+1}), i > 1$, diagram (3.2.1) is not complete. Assuming similar diagram for morphism (h_i, h_{i+1}), this diagram on the top layer has form

$$
\begin{array}{c}
A_{i+2} \xrightarrow{h_{i+2}} B_{i+2} \\
A_{i+2} \xrightarrow{h_{i+2}} B_{i+2} \\
A_i \xrightarrow{h_i} B_i
\end{array}
$$

Unfortunately, the diagram (3.2.4) is not too informative. It is evident that there exists morphism from A_{i+2} into B_{i+2}, mapping $f_{i,i+2}(a_i)$ into $g_{i,i+2}(h_i(a_i))$. However, the structure of this morphism is not clear from the diagram. We need consider map from A_{i+2} into B_{i+2}, like we have done this in theorem 3.1.3.

Theorem 3.2.2. Since T^*-representation $f_{i+1,i+2}$ is effective, then (h_i, h_{i+2}) is morphism of T^*-representations from T^*-representation $f_{i,i+2}$ into T^*-representation $g_{i,i+2}$ of Ω_i-algebra.
PROOF. Let us consider the diagram

![Diagram](image)

The existence of map $*h_{i+2}$ and commutativity of the diagram (2) and (3) follows from effectiveness of map $f_{i+1,i+2}$ and theorem 2.2.6. Commutativity of diagrams (4) and (5) follows from theorem 3.1.3.

From commutativity of the diagram (4) it follows that

$$(3.2.5) \quad f_{i+1,i+2} \circ f_{i,i+1}(a_i) = f_{i,i+2}(a_i) \circ f_{i+1,i+2}$$

From equation (3.2.5) it follows that

$$(3.2.6) \quad *h_{i+2} \circ f_{i+1,i+2} \circ f_{i,i+1}(a_i) = *h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2}$$

From commutativity of diagram (3) it follows that

$$(3.2.7) \quad *h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1}$$

From equation (3.2.7) it follows

$$(3.2.8) \quad *h_{i+2} \circ f_{i+1,i+2} \circ f_{i,i+1}(a_i) = g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i)$$

From equations (3.2.6) and (3.2.8) it follows that

$$(3.2.9) \quad *h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i)$$

From commutativity of the diagram (5) it follows that

$$(3.2.10) \quad g_{i+1,i+2} \circ g_{i,i+1}(h_{i}(a_i)) = g_{i,i+2}(h_{i}(a_i)) \circ g_{i+1,i+2}$$

From equation (3.2.10) it follows that

$$(3.2.11) \quad g_{i+1,i+2} \circ g_{i,i+1}(h_{i}(a_i)) \circ h_{i+1} = g_{i,i+2}(h_{i}(a_i)) \circ g_{i+1,i+2} \circ h_{i+1}$$

From commutativity of the diagram (2) it follows that

$$(3.2.12) \quad *h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1}$$

From equation (3.2.12) it follows that

$$(3.2.13) \quad g_{i,i+2}(h_{i}(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2} = g_{i,i+2}(h_{i}(a_i)) \circ g_{i+1,i+2} \circ h_{i+1}$$

From equations (3.2.11) and (3.2.13) it follows that

$$(3.2.14) \quad g_{i,i+2} \circ g_{i,i+1}(h_{i}(a_i)) \circ h_{i+1} = g_{i,i+2}(h_{i}(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2}$$
External diagram is diagram (3.2.1) when \(i = 1 \). Therefore, external diagram is commutative

\[
\text{(3.2.15)} \quad h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1}
\]

From equation (3.2.15) it follows that

\[
\text{(3.2.16)} \quad g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) = g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1}(a_{i+1})
\]

From equations (3.2.9), (3.2.14) and (3.2.16) it follows that

\[
\text{(3.2.17)} \quad h_{i+2} \circ f_{i,i+2}(a_i) = g_{i,i+2}(h_i(a_i)) \circ h_{i+2}
\]

Because the map \(f_{i+1,i+2} \) is injection, then from equation (3.2.17) it follows that

\[
\text{(3.2.18)} \quad h_{i+2} \circ f_{i,i+2}(a_i) = g_{i,i+2}(h_i(a_i)) \circ h_{i+2}
\]

From equation (3.2.18) commutativity of the diagram (1) follows. This proves the statement of theorem. \(\square \)

Theorems 3.1.3 and 3.2.2 are true for any layer of tower of \(T^\star \)-representations. In each particular case we need properly show sets and direction of the map. Meaning of given theorems is that all maps in tower of \(T^\star \)-representations act coherently.

The theorem 3.2.2 states that unknown map on the diagram (3.2.4) is the map \(*h_{i+2} \).

Theorem 3.2.3. Let us consider the set of \(\Omega \)-algebra \(A_i, B_i, C_i, i = 1, \ldots, n \).

Given morphisms of tower of representations

\[
\overline{\tau} : (A, \overline{f}) \to (B, \overline{g})
\]

\[
\overline{\eta} : (B, \overline{g}) \to (C, \overline{h})
\]

There exists morphism of representations of \(\Omega \)-algebra

\[
\tau : (A, \overline{f}) \to (C, \overline{h})
\]

where \(r_k = q_kp_k \), \(k = 1, \ldots, n \). We call morphism \(\tau \) of tower of representations from \(\overline{f} \) into \(\overline{h} \) product of morphisms \(\overline{\tau} \) and \(\overline{\eta} \) of tower of representations.

Proof. For each \(k, k = 2, \ldots, n \), we represent statement of theorem using diagram
Map \(r_{k-1} \) is homomorphism of \(\Omega_{k-1} \)-algebra \(A_{k-1} \) into \(\Omega_{k-1} \)-algebra \(C_{k-1} \). We need to show that tuple of maps \((r_{k-1}, r_k)\) satisfies to (3.2.2):

\[
\begin{align*}
 r_k(f_{k-1,k}(a_{k-1})a_k) &= q_k p_k(f_{k-1,k}(a_{k-1})a_k) \\
 &= q_k(g_{k-1,k}(p_{k-1}(a_{k-1}))p_k(a_k)) \\
 &= h_{k-1,k}(g_{k-1,k}(p_{k-1}(a_{k-1}))q_k p_k(a_k)) \\
 &= h_{k-1,k}(r(a_{k-1}))r_k(a_k)
\end{align*}
\]

3.3. Endomorphism of Tower of Representations

Definition 3.3.1. Let \((\overline{A}, \overline{f})\) be tower of representations of \(\Omega \)-algebras. The morphism of tower of representations \((h_1, \ldots, h_n)\) such, that for each \(k, k = 1, \ldots, n, h_k \) is endomorphism of \(\Omega_k \)-algebra \(A_k \) is called **endomorphism of tower of representations** \(\overline{f} \).

Definition 3.3.2. Let \((\overline{A}, \overline{f})\) be tower of representations of \(\Omega \)-algebras. The morphism of tower of representations \((h_1, \ldots, h_n)\) such, that for each \(k, k = 1, \ldots, n, h_k \) is automorphism of \(\Omega_k \)-algebra \(A_k \) is called **automorphism of tower of representations** \(f \).

Theorem 3.3.3. Let \((\overline{A}, \overline{f})\) be tower of representations of \(\Omega \)-algebras. The set of automorphisms of the representation \(\overline{f} \) forms loop.\(^{3.1}\)

Proof. Let \(\overline{\sigma}, \overline{\tau} \) be automorphisms of the tower of representations \(\overline{f} \). According to definition 3.3.2, for each \(k, k = 1, \ldots, n, \) maps \(r_k, p_k \) are automorphisms of \(\Omega_k \)-algebra \(A_k \). According to theorem II.3.2 ([8], p. 57), for each \(k, k = 1, \ldots, n, \) the map \(r_k p_k \) is automorphism of \(\Omega_k \)-algebra \(A_k \). From the theorem 3.2.3 and the definition 3.3.2, it follows that product of automorphisms \(\overline{\sigma} \overline{\tau} \) of the tower of representations \(\overline{f} \) is automorphism of the tower of representations \(\overline{f} \).

Let \(\overline{\sigma} \) be an automorphism of the tower of representations \(\overline{f} \). According to definition 3.3.2 for each \(i, i = 1, \ldots, n, \) map \(r_i \) is automorphism of \(\Omega_i \)-algebra \(A_i \). Therefore, for each \(i, i = 1, \ldots, n, \) the map \(r_i^{-1} \) is automorphism of \(\Omega_i \)-algebra \(A_i \). The equation (3.2.3) is true for automorphism \(\overline{\tau} \). Assume \(a_i = r_i(a_i), i = 1, \ldots, n. \) Since \(r_i, i = 1, \ldots, n, \) is automorphism then \(a_i = r_i^{-1}(a_i') \) and we can write (3.2.3) in the form

\[
(3.3.1) \quad h_{i+1}(f_{i,i+1}(h_{i}^{-1}(a_i'))(h_{i+1}(a_{i+1}'))) = g_{i,i+1}(a_i')(a_{i+1}')
\]

Since the map \(h_{i+1} \) is automorphism of \(\Omega_{i+1} \)-algebra \(A_{i+1} \), then from the equation (3.3.1) it follows that

\[
(3.3.2) \quad f_{i,i+1}(h_{i}^{-1}(a_i'))(h_{i+1}(a_{i+1}')) = h_{i+1}^{-1}(g_{i,i+1}(a_i')(a_{i+1}'))
\]

The equation (3.3.2) corresponds to the equation (3.2.3) for the map \(\overline{\tau}^{-1} \). Therefore, map \(\overline{\tau}^{-1} \) is automorphism of the representation \(\overline{f} \).

\(^{3.1}\)Look [4], p. 24, [3] for definition of loop.
3.4. Basis of Tower of Representations

Definition 3.4.1. Tower of T-representations $(\overline{A}, \overline{J})$. is called effective, if for any i the representation $f_{i,i+1}$ is effective.

Theorem 3.4.2. Let us consider the tower of T-representations $(\overline{A}, \overline{J})$. Let representations $f_{i,i+1}, \ldots, f_{i+k-1,i+k}$ be effective. Then representation $f_{i,i+k}$ is effective.

Proof. We will prove the statement of theorem by induction.

Let representations $f_{i,i+1}, f_{i+1,i+2}$ be effective. Assume that transformation $f_{i,i+1}(a_i)$ is not identity transformation. Then there exists $a_{i+1} \in A_{i+1}$ such that $f_{i,i+1}(a_i)(a_{i+1}) \neq a_{i+1}$. Because the representation $f_{i+1,i+2}$ is effective, then transformations $f_{i+1,i+2}(a_{i+1})$ and $f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1}))$ do not coincide. According to construction in theorem 3.1.2, the transformation $f_{i,i+2}(a_i)$ is not identity transformation.

Assume the statement of theorem is true for $k-1$ representations. Let $f_{i,i+1}, \ldots, f_{i+k-1,i+k}$ be effective. According to proven above, the representation $f_{i,i+k}$ is effective.

Theorem 3.4.3. Consider tower $(\overline{A}, \overline{J})$ of representations of $\overline{\Omega}$-algebras. Let identity transformation
\[\delta_{i+2} : A_{i+2} \rightarrow A_{i+2} \]
of Ω_{i+2}-algebra A_{i+2} belong to representation $f_{i+1,i+2}$. Let representations $f_{i,i+1}$, $f_{i+1,i+2}$ be effective. Then representation $f'_{i,i+2}$ defined in the theorem 3.1.4, is effective.

Proof. Let there exist $a_{i+1} \in A_{i+1}$ such that
\[f_{i+1,i+2}(a_{i+1}) = \delta_{i+2} \]
Assume that the representation $f'_{i,i+2}$ is not effective. Then there exist
\[a_{i+1}, a_{i+2} \in A_i \quad a_{i+1} \neq a_{i+2} \]
such that
\[f'_{i,i+2}(a_{i+1})(a_{i+2}) = f'_{i,i+2}(a_{i+2})(a_{i+2}) \]
From equations (3.1.9), (3.4.2), it follows that
\[f_{i+1,i+2}(f_{i,i+1}(a_{i+1})(a_{i+1}))(a_{i+1}) = f_{i+1,i+2}(f_{i,i+1}(a_{i+1})(a_{i+1}))(a_{i+2}) \]
Since a_{i+2} is arbitrary, than, from (3.4.3), it follows that
\[f_{i+1,i+2}(f_{i,i+1}(a_{i+1})(a_{i+1})) = f_{i+1,i+2}(f_{i,i+1}(a_{i+1})(a_{i+1}))(a_{i+1}) \]
Since the representation $f_{i,i+1}$ is effective, than, from the condition (3.4.1), it follows that
\[f_{i,i+1}(a_{i+1})(a_{i+1}) \neq f_{i,i+1}(a_{i+1})(a_{i+2})(a_{i+1}) \]
From the condition (3.4.5) and the equation (3.4.4), it follows that the representation $f_{i+1,i+2}$ is not effective. The contradiction completes the proof of the theorem.
We construct the basis of the tower of representations in a similar way that we constructed the basis of representation in the section 2.6.

We will write elements of tower of representations \((\mathcal{A}_{[1]}, \mathcal{F})\) as tuple \((a_2, ..., a_3)\), where \(a_i \in A_i\), \(i = 2, ..., n\).

Definition 3.4.4. Let \((\mathcal{A}, \mathcal{F})\) be tower of representations. The tuple of sets

\[\mathcal{N}_{[1]} = (N_2 \subset A_2, ..., N_n \subset A_n) \]

is called **tuple of stable sets of tower of representations** \(\mathcal{F}\), if

\[f_{i-1,i}(a_{i-1}) \in N_i \quad i = 2, ..., n \]

for every \(a_1 \in A_1, a_2 \in N_2, ..., a_n \in N_n\). We also will say that tuple of sets

\[\mathcal{N}_{[1]} = (N_2 \subset A_2, ..., N_n \subset A_n) \]

is stable relative to tower of representations \(\mathcal{F}\).

Theorem 3.4.5. Let \(\mathcal{F}\) be tower of representations. Let set \(N_i \subset A_i\) be subalgebra of \(\Omega_i\)-algebra \(A_i\), \(i = 2, ..., n\). Let tuple of sets

\[\mathcal{N}_{[1]} = (N_2 \subset A_2, ..., N_n \subset A_n) \]

be stable relative to tower of representations \(\mathcal{F}\). Than there exists representation

(3.4.6)

\[(A_1, N_2, ..., N_n, (f_{N_2,1,2}, ..., f_{N_n,n-1,n}))\]

such that

\[f_{N_i,i-1,i}(a_{i-1}) = f_{i-1,i}(a_{i-1})|_{N_i} \quad i = 2, ..., n \]

The tower of representations (3.4.6) is called **tower of subrepresentations**.

Proof. Let \(\omega_{i-1,1}\) be \(m\)-ary operation of \(\Omega_i\)-algebra \(A_{i-1}\), \(i = 2, ..., n\). Than for any \(a_{i-1,1}, ..., a_{i-1,m} \in N_{i-1}^{3.2}\) and any \(a_i \in N_i\)

\[\omega_{i-1,1}(f_{N_{i-1,i-1},i}(a_{i-1,1}), ..., f_{N_{i-1,i-1},i}(a_{i-1,m}))(a_i) = f_{i-1,i}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i) = f_{N_{i,i-1,i}}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i) \]

Let \(\omega_{i,2}\) be \(m\)-ary operation of \(\Omega_i\)-algebra \(A_i\), \(i = 2, ..., n\). Than for any \(a_{i,1}, ..., a_{i,n} \in N_i\) and any \(a_{i-1} \in N_{i-1}\)

\[\omega_{i,2}(f_{N_{i-1,i},i}(a_{i-1,1}), ..., f_{N_{i-1,i},i}(a_{i-1,m}))(a_{i,1}, ..., a_{i,n}) = f_{i-1,i}(a_{i-1} \omega_{i,2}(a_{i,1}, ..., a_{i,n}))(a_{i,1}, ..., a_{i,n}) = f_{N_{i,i-1,i}}(\omega_{i,2}(a_{i,1}, ..., a_{i,n}))(a_{i,1}, ..., a_{i,n}) \]

We proved the statement of theorem. \(\square\)

From theorem 3.4.5, it follows that if map \((f_{N_2,1,2}, ..., f_{N_n,n-1,n})\) is tower of subrepresentations of tower of representations \(\mathcal{F}\), then map

\[(id : A_1 \to A_1, id_2 : N_2 \to A_2, ..., id_n : N_n \to A_n) \]

is morphism of towers of representations.

\(3.2\) Assume \(N_1 = A_1\).
Theorem 3.4.6. The set\(^{3,3}\) \(B_T\) of all towers of subrepresentations of tower of representations \(\overrightarrow{f}\), generates a closure system on tower of representations \(\overrightarrow{f}\) and therefore is a complete lattice.

Proof. Let for given \(\lambda \in \Lambda, K_{\lambda,i}, i = 2, \ldots, n\), be subalgebra of \(\Omega_i\)-algebra \(A_i\) that is stable relative to representation \(f_{i-1,i}\). We determine the operation of intersection on the set \(B_T\) according to rule

\[
\bigwedge \lambda f_{K_{\lambda,i},i-1,i} = f_{\bigwedge K_{\lambda,i},i-1,i}, \quad i = 2, \ldots, n
\]

\[
\bigwedge K_{\lambda,i} = \left(K_1 = A_1, K_2 = \bigcap K_{\lambda,2}, \ldots, K_n = \bigcap K_{\lambda,n} \right)
\]

\(\bigcap K_{\lambda,i}\) is subalgebra of \(\Omega_i\)-algebra \(A_i\). Let \(a_i \in \bigcap K_{\lambda,i}\). For any \(\lambda \in \Lambda\) and for any \(a_{i-1} \in K_{i-1}\),

\[
f_{i-1,i}(a_{i-1})(a_i) \in K_{\lambda,i}
\]

Therefore,

\[
f_{i-1,i}(a_{i-1})(a_i) \in K_i
\]

Repeating this construction in the order of increment \(i, i = 2, \ldots, n\), we see that \((K_1, \ldots, K_n)\) is tuple of stable sets of tower of representations \(\overrightarrow{f}\). Therefore, we determined the operation of intersection of towers of subrepresentations properly. \(\Box\)

We denote the corresponding closure operator by \(\overline{J(\overrightarrow{f})}\). If we denote \(X_{[1]}\) the tuple of sets \((X_2 \subset A_2, \ldots, X_n \subset A_n)\) then \(\overline{J(\overrightarrow{f}, X_{[1]})}\) is the intersection of all tuples \((K_1, \ldots, K_n)\) stable with respect to representation \(\overrightarrow{f}\) and such that for \(i = 2, \ldots, n, K_i\) is subalgebra of \(\Omega_i\)-algebra \(A_i\) containing \(X_{[1]}\).

Theorem 3.4.7. Let\(^{3,5}\) \(\overrightarrow{f}\) be the tower of representations. Let \(X_i \subset A_i, i = 2, \ldots, n\). Assume \(Y_1 = A_1\). Step by step increasing the value of \(i, i = 2, \ldots, n\), we define a subsets \(X_{i,m} \subset A_i\) by induction on \(m\).

\[
X_{i,0} = X_i
\]

\[
x \in X_{i,m} \Rightarrow x \in X_{i,m+1}
\]

\[
x_1 \in X_{i,m}, \ldots, x_p \in X_{i,m}, \omega \in \overrightarrow{f}(p) \Rightarrow \omega(x_1, \ldots, x_p) \in X_{i,m+1}
\]

\[
x_i \in X_{i,m}, x_{i-1} \in Y_{i-1} \Rightarrow f_{i-1,i}(x_{i-1})(x_i) \in X_{i,m+1}
\]

For each value of \(i\), we assume

\[
Y_i = \bigcup_{m=0}^{\infty} X_{i,m}
\]

Then

\[
\overrightarrow{Y} = (Y_1, \ldots, Y_n) = \overline{J(\overrightarrow{f}, X_{[1]})}
\]

Proof. For each value of \(i\) the proof of the theorem coincides with the proof of theorem 2.6.4. Because to define stable subset of \(\Omega_i\)-algebra \(A_i\) we need only certain stable subset of \(\Omega_{i-1}\)-algebra \(A_{i-1}\), we have to find stable subset of \(\Omega_{i-1}\)-algebra \(A_{i-1}\) before we do this in \(\Omega_i\)-algebra \(A_i\). \(\Box\)

\(^{3,3}\)This definition is similar to definition of the lattice of subalgebras ([8], p. 79, 80).

\(^{3,4}\)For \(n = 2, J_2(f_{1,2}, X_2) = J_{f_{1,2}}(X_2)\). It would be easier to use common notation in sections 2.6 and 3.4. However I think that using of vector notation in section 2.6 is premature.

\(^{3,5}\)The statement of theorem is similar to the statement of theorem 5.1, [8], p. 79.
\(\mathcal{J}(\overline{f}, \overline{X}[1]) \) is called **tower of subrepresentations** of tower of representations \(\overline{f} \) generated by tuple of sets \(\overline{X}[1] \), and \(\overline{X}[1] \) is a tuple of generating sets of tower subrepresentations \(\mathcal{J}(\overline{f}, \overline{X}[1]) \). In particular, a **tuple of generating sets of tower of representations** \(\overline{f} \) is a tuple \((X_2 \subset A_2, ..., X_n \subset A_n) \) such that \(\mathcal{J}(\overline{f}, \overline{X}[1]) = \mathcal{A} \).

Definition 3.4.8. Let \((X_2 \subset A_2, ..., X_n \subset A_n) \) be tuple of generating sets of tower of representations \(\overline{f} \). Let \(\mathcal{A} \) be endomorphism of tower of representations \(\overline{f} \). Let the tuple of sets \(\overline{X}[1] = \mathcal{A}(\overline{X}[1]) \) be image of tuple of sets \(\overline{X}[1] \) under the map \(\mathcal{A} \). Endomorphism \(\mathcal{A} \) of tower of representations \(\overline{f} \) is called **regular on tuple of generating sets** \(\overline{X}[1] \), if the tuple of sets \(\overline{X}[1] \) is tuple of generating sets of tower of representations \(\overline{f} \). Otherwise, endomorphism \(\mathcal{A} \) is called **singular on tuple of generating sets** \(\overline{X}[1] \).

Definition 3.4.9. Endomorphism of tower of representations \(\overline{f} \) is called **regular**, if it is regular on any tuple of generating sets.

It is easy to see that definition of the tuple of generating sets of tower of representations does not depend on whether tower of representations is effective or not. For this reason hereinafter we will assume that the tower of representations is effective and we will use convention for effective \(\overline{f} \)-representation in remark 2.1.9.

From theorem 3.4.7, it follows next definition.

Definition 3.4.10. Let \((X_2 \subset A_2, ..., X_n \subset A_n) \) be tuple of sets. For each tuple of elements \(\overline{a}, \overline{a} \in \mathcal{J}(\overline{f}, \overline{X}[1]) \), there exists tuple of \(\Omega \)-words defined according to following rule.

1. If \(a_1 \in A_1 \), then \(a_1 \) is \(\Omega_1 \)-word.
2. If \(a_i \in X_i, i = 2, ..., n \), then \(a_i \) is \(\Omega_i \)-word.
3. If \(a_{i,1}^1, ..., a_{i,p}^1 \) are \(\Omega_i \)-words, \(i = 2, ..., n \), and \(\omega \in \Omega_i(p) \), then \(a_{i,1}^1...a_{i,p}^1\omega \) is \(\Omega_i \)-word.
4. If \(a_i \) is \(\Omega_i \)-word, \(i = 2, ..., n \), and \(a_{i-1} \) is \(\Omega_{i-1} \)-word, then \(a_{i-1}a_i \) is \(\Omega_{i} \)-word.

Tuple of \(\Omega \)-words

\[
\overline{w}(\overline{a}, \overline{f}, \overline{X}[1]) = (w_1(a_1, \overline{f}, \overline{X}[1]), ..., w_n(a_n, \overline{f}, \overline{X}[1]))
\]

that represents given element \(\overline{a} \in \mathcal{J}(\overline{f}, \overline{X}[1]) \) is called **tuple of coordinates of element** \(\overline{a} \) relative to tuple of sets \(\overline{X}[1] \). Denote \(\overline{W}(\overline{f}, \overline{X}[1]) \) the set of tuples of coordinates of tower of representations \(\mathcal{J}(\overline{f}, \overline{X}[1]) \).

Representation of \(a_i \in A_i \) as \(\Omega_i \)-word is ambiguous. If \(a_{i,1}^1, ..., a_{i,p}^i \) are \(\Omega_i \)-words, \(\omega \in \Omega_i(p) \) and \(a_{i-1} \in A_{i-1} \), then \(\Omega_i \)-words \(a_{i-1}a_{i,1}^1...a_{i,p}^1\omega \) and \(a_{i-1}a_{i,1}^1...a_{i-1}a_{i,p}^1\omega \) represent the same element of \(\Omega_i \)-algebra \(A_i \). It is possible that there exist equations related with a character of a representation. For instance, if \(\omega \) is the operation of \(\Omega_{i-1} \)-algebra \(A_{i-1} \) and the operation of \(\Omega_i \)-algebra \(A_i \), then we can request that \(\Omega_i \)-words \(a_{i-1,1}^1...a_{i-1,p}^1\omega \) and \(a_{i-1,1}^1...a_{i-1,p}a_{i-1}^1\omega \) represent the same element of \(\Omega_i \)-algebra \(A_i \). Listed above equations for each value \(i, i = 2, ..., n \), determine equivalence \(r_i \) on the set of \(\Omega_i \)-words \(W_i(\overline{f}, \overline{X}[1]) \). According to the construction, equivalence \(r_i \) on the set of \(\Omega_i \)-words \(W_i(\overline{f}, \overline{X}[1]) \) depends not only on the choice of the set \(X_i \), but also on the choice of the set \(X_{i-1} \).
Theorem 3.4.11. Endomorphism \(\tau \) of tower of representations \(\mathcal{F} \) forms the map of coordinates
\[
\varpi(\mathcal{F}, \tau, \mathcal{X}_{[1]}): W(\mathcal{F}, \mathcal{X}_{[1]}) \to W(\mathcal{F}, \mathcal{X}_{[1]}) \quad \mathcal{X}_{[1]} \subset A_{[1]} \quad \mathcal{X}_{[1]} = r_{[1]}(\mathcal{X}_{[1]})
\]
such that for any \(i, \) \(i = 2, \ldots, n, \)

1. If \(a_i \in X_i, \) \(a_i' = r_i(a_i), \) then
 \[w_i(\mathcal{F}, \tau, \mathcal{X}_{[1]})(a_i) = a_i' \]

2. If
 \[a_{i,1}, \ldots, a_{i,n} \in W_i(\mathcal{F}, \mathcal{X}_{[1]}) \]
 \[a_{i,1}' = w_i(\mathcal{F}, \tau, \mathcal{X}_{[1]})(a_{i,1}) \quad \ldots \quad a_{i,p}' = w_i(\mathcal{F}, \tau, \mathcal{X}_{[1]})(a_{i,p}) \]
 then for operation \(\omega \in \Omega_i(p) \) holds
 \[w_i(\mathcal{F}, \tau, \mathcal{X}_{[1]})(a_{i,1} \ldots a_{i,p}\omega) = a_{i,1}' \ldots a_{i,p}' \omega \]

3. If
 \[a_i \in W_i(\mathcal{F}, \mathcal{X}_{[1]}) \quad a_i' = w_i(\mathcal{F}, \tau, \mathcal{X}_{[1]})(a_i) \]
 \[a_{i-1} \in W_{i-1}(\mathcal{F}, \mathcal{X}_{[1]}) \quad a_{i-1}' = w_{i-1}(\mathcal{F}, \tau, \mathcal{X}_{[1]})(a_{i-1}) \]
 then
 \[w_i(\mathcal{F}, \tau, \mathcal{X}_{[1]})(a_{i-1}a_i) = a_{i-1}'a_i' \]

Proof. Statements (1), (2) of the theorem are true by definition of the endomorphism \(h_i. \) The statement (3) of the theorem follows from the equation (3.2.3).

Theorem 3.4.12. Let \(\mathcal{F} \) be tower of representations. Let map
\[r_1: A_1 \to A_1 \]
be endomorphism of \(\Omega_1 \)-algebra \(A_1. \) For given sets \(X_i \subset A_i, \) \(X_i' \subset A_i, \) \(i = 2, \ldots, n, \) let map
\[R_i: X_i \to X_i' \]
agree with the structure of \(\Omega_i \)-algebra \(A_i, i. e., \) for given operation \(\omega \in \Omega_i(p), \) if
\[x_{i,1}, \ldots, x_{i,p}, x_{i,1} \ldots x_{i,p} \omega \in X_i \]
then
\[R_i(x_{i,1} \ldots x_{i,p} \omega) = R_i(x_{i,1}) \ldots R_i(x_{i,p}) \omega \]

Let us consider the map of coordinates
\[
\varpi(\mathcal{F}, (r_1, R_2, \ldots, R_n), \mathcal{X}_{[1]}): W(\mathcal{F}, \mathcal{X}_{[1]}) \to W(\mathcal{F}, \mathcal{X}_{[1]})
\]
that satisfies conditions (1), (2), (3) of theorem 3.4.11. For each \(i, \) \(i = 2, \ldots, n, \) there exists endomorphism
\[r_i: A_i \to A_i \]
defined by rule
\[r_i(a_i) = w_i(\mathcal{F}, (r_1, R_2, \ldots, R_n), \mathcal{X}_{[1]})(w_i(a_i, \mathcal{F}, \mathcal{X}_{[1]})) \]
and the map \(\tau \) is morphism of towers of representations \(\mathcal{F}(\mathcal{F}, \mathcal{X}_{[1]}) \) and \(\mathcal{F}(\mathcal{F}, \mathcal{X}_{[1]}). \)
3.4. Basis of Tower of Representations

Proof. If \(n = 1 \), then tower of representations \(\mathcal{F} \) is representation of \(\Omega \)-algebra \(A_1 \) in \(\Omega_2 \)-algebra \(A_2 \). The statement of theorem is corollary of theorem 2.6.10.

Let the statement of theorem be true for \(n - 1 \). We do not change notation in theorem when we move from one layer to another because a word in \(\Omega_{n-1} \)-algebra \(A_{n-1} \) does not depend on word in \(\Omega_n \)-algebra \(A_n \). We prove the theorem by induction over complexity of \(\Omega_n \)-word.

If \(w_n(a_n, \mathcal{F}, \mathcal{X}[1]) = a_n \), then \(a_n \in X_n \). According to condition (1) of theorem 3.4.11,

\[
r_n(a_n) = w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_n(a_n, \mathcal{F}, \mathcal{X}[1]))
= w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (a_n)
= R_n(a_n)
\]

Therefore, maps \(r_n \) and \(R_n \) coincide on the set \(X_n \), and the map \(r_n \) agrees with structure of \(\Omega_n \)-algebra.

Let \(\omega \in \Omega_n(p) \). Let the statement of induction be true for

\[
a_{n,1}, ..., a_{n,p} \in J_n(\mathcal{F}, \mathcal{X}[1])
\]

Let

\[
w_{n,1} = w_n(a_{n,1}, \mathcal{F}, \mathcal{X}[1]) \quad \text{...} \quad w_{n,p} = w_n(a_{n,p}, \mathcal{F}, \mathcal{X}[1])
\]

If

\[
a_n = a_{n,1}...a_{n,p}\omega
\]

then according to condition (3) of definition 3.4.10,

\[
w_n(a_n, \mathcal{F}, \mathcal{X}[1]) = w_{n,1}...w_{n,p}\omega
\]

According to condition (2) of theorem 3.4.11,

\[
r_n(a_n) = w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_n(a_n, \mathcal{F}, \mathcal{X}[1]))
= w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_{n,1}...w_{n,p}\omega)
= w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_{n,p}\omega)
= r_n(a_{n,1})...r_n(a_{n,p})\omega
\]

Therefore, the map \(r_n \) is endomorphism of \(\Omega_n \)-algebra \(A_n \).

Let the statement of induction be true for

\[
a_n \in J_n(\mathcal{F}, \mathcal{X}[1]) \quad w_n(a_n, \mathcal{F}, \mathcal{X}[1]) = w_n
a_{n-1} \in J_{n-1}(\mathcal{F}, \mathcal{X}[1]) \quad w_{n-1}(a_{n-1}, \mathcal{F}, \mathcal{X}[1]) = w_{n-1}
\]

According to condition (4) of definition 3.4.10,

\[
w_n(a_{n-1}a_n, \mathcal{F}, \mathcal{X}[1]) = w_{n-1}w_n
\]

According to condition (3) of theorem 3.4.11,

\[
r_n(a_{n-1}a_n) = w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_n(a_{n-1}a_n, \mathcal{F}, \mathcal{X}[1]))
= w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_{n-1}w_n)
= w_{n-1}(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_{n-1})w_n(\mathcal{F}, (r_1, R_2, ..., R_n), \mathcal{X}[1]) (w_n)
= r_{n-1}(a_{n-1})r_n(a_n)
\]

From equation (3.2.3) it follows that the map \(\mathcal{F} \) is morphism of the tower of representations \(\mathcal{F} \). \(\square \)
Theorem 3.4.13. Automorphism τ of tower of representations \mathcal{F} is regular endomorphism.

Proof. Let $X^{[1]}$ be tuple of generating sets of tower of representations \mathcal{F}. Let $X^{[1]} = \tau^{[1]}(X^{[1]})$.

According to theorem 3.4.11 endomorphism τ forms the map of coordinates $w(f, \tau, X^{[1]})$.

Let $a' \in A$. Since τ is automorphism, then there exists $a \in A$, $\tau(a) = a'$. According to definition 3.4.10, $w(a, X^{[1]})$ is coordinates of a relative to tuple of generating sets $X^{[1]}$. According to theorem 3.4.12, $w(a', X^{[1]}) = w(f, \tau, X^{[1]})(w(a, X^{[1]}))$ is coordinates of a' relative to tuple of sets $X^{[1]}$. Therefore, $X^{[1]}$ is generating set of representation \mathcal{F}. According to definition 3.4.9, automorphism τ is regular. □

If the tuple of sets $X^{[1]}$ is tuple of generating sets of tower of representations \mathcal{F}, then any tuple of sets $Y^{[1]}, X_i = Y_i \subset A_i, i = 2, ..., n$, also is tuple of generating sets of tower of representations \mathcal{F}. If there exists tuple of minimal sets $X^{[1]}$ generating the tower of representations \mathcal{F}, then the tuple of sets $X^{[1]}$ is called basis of tower of representations \mathcal{F}.

Theorem 3.4.14. We define a basis of tower of representations by induction over n. For $n = 2$, the basis of tower of representations is the basis of representation $f_{1,2}$. If tuple of sets $X^{[1,n]}$ is basis of tower of representations $\mathcal{F}^{[1]}$, then the tuple of generating sets $X^{[1]}$ of tower of representations \mathcal{F} is basis iff for any $a_n \in X_n$ the tuple of sets $(X_2, ..., X_{n-1}, X_n \setminus \{a_n\})$ is not tuple of generating sets of tower of representations \mathcal{F}.

Proof. For $n = 2$, the statement of the theorem is corollary of the theorem 2.6.12.

Let $n > 2$. Let $X^{[1]}$ be tuple of generating sets of tower of representations \mathcal{F}. Let tuple of sets $X^{[1,n]}$ be basis of tower of representations $\mathcal{F}^{[1]}$. Assume that for some $a_n \in X_n$ there exist word

\[w_n = w_n(a_n, \mathcal{F}, (X_1, ..., X_{n-1}, X_n \setminus \{a_n\})) \]

Consider $a'_n \in A_n$ such that it has word

\[w'_n = w_n(a'_n, \mathcal{F}, X^{[1]}) \]

that depends on a_n. According to the definition 2.6.8, any occurrence a_n into word w'_n can be substituted by the word w_n. Therefore, the word w'_n does not depend on a_n, and the tuple of sets $(X_2, ..., X_{n-1}, X_n \setminus \{a_n\})$ is the tuple of generating sets of tower of representations \mathcal{F}. Therefore, $X^{[1]}$ is not basis of the tower of representations \mathcal{F}. □

The proof of the theorem 3.4.14 gives us effective method for constructing the basis of tower of representations \mathcal{F}. We start to build a basis in the most low layer. When the basis is constructed in layer i, $i = 2, ..., n - 1$, we can proceed to the construction of basis in layer $i + 1$.

Theorem 3.4.15. Automorphism of the tower of representations \mathcal{F} maps a basis of the tower of representations \mathcal{F} into basis.
3.5. Examples of Basis of Tower of Representation

Affine space is effective representation of vector space in Abelian group. We consider this example in chapter 7.

Example 3.5.1. Let A_2 be free algebra over field A_1. Considering the algebra A_2 as a ring, we can determine free vector space A_3 over the algebra A_2. Let \mathfrak{e}_{32} be basis of algebra A_3 over algebra A_2. A vector $a_3 \in A_3$ has representation

\[(3.5.1)\]

\[a_3 = a_3^j \mathfrak{e}_{32-j} = \begin{pmatrix} a_3^1 & \ldots & a_3^n \end{pmatrix} \begin{pmatrix} \mathfrak{e}_{32-1} \\ \vdots \\ \mathfrak{e}_{32-n} \end{pmatrix}\]

Let \mathfrak{e}_{21} be basis of algebra A_2 over field A_1. Because $a_3^j \in A_2$, we can write their coordinates relative to basis \mathfrak{e}_{21}

\[(3.5.2)\]

\[a_3^j = a_3^{ji} \mathfrak{e}_{21-i} = \begin{pmatrix} a_3^{j1} & \ldots & a_3^{jm} \end{pmatrix} \begin{pmatrix} \mathfrak{e}_{21-n} \\ \vdots \\ \mathfrak{e}_{21-m} \end{pmatrix}\]

From equations (3.5.1), (3.5.2) it follows

\[(3.5.3)\]

\[a_3 = a_3^{ji} \mathfrak{e}_{21-i} \mathfrak{e}_{32-j} = \begin{pmatrix} a_3^{11} & \ldots & a_3^{1m} \\ \vdots & \ldots & \vdots \\ a_3^{n1} & \ldots & a_3^{nm} \end{pmatrix} \begin{pmatrix} \mathfrak{e}_{21-n} \\ \vdots \\ \mathfrak{e}_{21-m} \end{pmatrix} \begin{pmatrix} \mathfrak{e}_{32-1} \\ \vdots \\ \mathfrak{e}_{32-n} \end{pmatrix}\]

Equation (3.5.3) shows the structure of coordinates in vector space A_3 over field A_1. It is easy to see that vectors

\[\mathfrak{e}_{31-ij} = \mathfrak{e}_{21-i} \mathfrak{e}_{32-j}\]

\[3.6 X''_j = X'_j, j \neq i, X''_i = X'_i \setminus \{x'_i\}\]

\[3.7 X''_j = X_j, j \neq i, X''_i = X_i \setminus \{x_i\}\]
are linear independent over field A_1. Therefore, we build the basis \overline{e}_{31} of vector space A_3 over field A_1. Therefore, we can rewrite equation (3.5.3) as

\begin{equation}
(3.5.4) \quad a_3 = a_{ji}^{j} \overline{e}_{31,ij} = \begin{pmatrix}
 a_{31}^{11} & \cdots & a_{31}^{1m} & \cdots & a_{31}^{n1} & \cdots & a_{31}^{nm}
 \end{pmatrix}
\end{equation}

It is easy to see that we can identify vector $\overline{e}_{31,ij}$ with tensor product $\overline{e}_{21} \otimes \overline{e}_{32,j}$.

\section*{3.6. Representations in Category}

\begin{definition}
Let for any objects B and C of category B the structure of Ω-algebra is defined on the set of morphisms $\text{Mor}(B,C)$. The set of homomorphisms of Ω-algebra

\[f_{B,C} : A \to \text{Mor}(B,C) \]

is called \textbf{representation of } Ω-\textbf{algebra A in category B}. \hfill \square
\end{definition}

If we assume that the set $\text{Mor}(B,C)$ is defined only when $B = C$, than we get definition of T^*-representation. The difference in definitions is that we do not restrict ourselves by transformations of the set B, but consider Ω-algebra of maps from the set B into set C. At first sight there is no fundamental differences between considered theories. However we can see that representation of vector space in category of bundles lead us to connection theory.
CHAPTER 4

References

[1] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982), eprint http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html (The Millennium Edition)
[2] P. K. Rashevsky, Riemann Geometry and Tensor Calculus, Moscow, Nauka, 1967
[3] A. G. Kurosh, Lectures on General Algebra, Chelsea Pub Co, 1965
[4] Lev V. Sabinin, Smooth Quasigroups and Loops, Kluwer Academic Publisher, 1999
[5] Aleks Kleyn, Lectures on Linear Algebra over Division Ring, eprint arXiv:math.GM/0701238 (2010)
[6] Aleks Kleyn, Fibered ℵ-Algebra, eprint arXiv:math.DG/0702561 (2007)
[7] Aleks Kleyn, Introduction into Geometry over Division Ring, eprint arXiv:0906.0135 (2010)
[8] Paul M. Cohn, Universal Algebra, Springer, 1981
active representation of loop $\mathfrak{A}(f)$ in basis manifold $\mathcal{B}(f)$ 35
active transformation of basis manifold of representation 35
associative law for covariant $\star T$-representation 22
associative law for covariant $T \star$-representation 21
automorphism of representation of \mathfrak{g}-algebra 20
automorphism of tower of representations 43
basis manifold of representation 35
basis of representation 33
basis of tower of representations 50
category of $T \star$-representations of Ω_1-algebra \mathfrak{A} 19
category of $T \star$-representations of Ω_1-algebra from category \mathfrak{A} 14
contravariant $\star T$-representation of group 22
contravariant $T \star$-representation of group 22
coordinates of automorphism of representation 35
coordinates of element m relative to set X 31
covariant $\star T$-representation of group 22
covariant $T \star$-representation of group 21
direct product of $T \star$-representations of group 24
effective representation of Ω-algebra \mathfrak{A} 8
effective tower of $T \star$-representations 44
effective $T \star$-representation of group 25
endomorphism of representation of \mathfrak{g}-algebra 20
endomorphism of representation regular on generating set X 30
endomorphism of representation singular on generating set X 30
endomorphism of tower of representations 43
endomorphism of tower of representations regular on tuple of generating sets 47
free $T \star$-representation of group 25
generating set of representation 30
generating set of subrepresentation 30
homogeneous space of group 25
isomorphism of representations of Ω-algebra 18
kernel of inefficiency of $T \star$-representation of group G 25
left shift on group 23
left-side representation of Ω_1-algebra \mathfrak{A} in Ω_2-algebra \mathfrak{M} 7
left-side transformation 7
little group 25
loop of automorphisms of representation 20
morphism from tower of $T \star$-representations into tower of $T \star$-representations 40
morphism of representations from f into g 9
morphism of representations of Ω_1-algebra in Ω_2-algebra 9
nonsingular transformation 22
orbit of $T \star$-representation of group 23
passive transformation of the basis manifold of representation 35
product of morphisms of representations of universal algebra 13
product of morphisms of tower of representations 42
regular endomorphism of representation 30
regular endomorphism of tower of representations 47
representation of Ω-algebra in
representation 39
representation of Ω-algebra in tower of
representations 39
representation of Ω-algebra A in category B
representation of Ω₁-algebra A in Ω₂-algebra M 8
right shift on group 23
right-side representation of Ω₁-algebra A in
Ω₂-algebra M 7
right-side transformation 7
set of coordinates of representation 31
set of tuples of coordinates of tower of
representations 47
single transitive representation of Ω-algebra
A 8
space of orbits of T⋆-representation 24
stability group 25
stable set of representation 28
T-representation of Ω₁-algebra A in Ω₂-algebra M 7
T-shift 23
T-transformation 7
subrepresentation generated by set X 30
subrepresentation of representation 29
tower of representations of Ω₁-algebras 37
tower of subrepresentations 45
tower of subrepresentations of tower of
representations 7 generated by tuple of
sets 47
transformation coordinated with
equivalence 14
transformation of universal algebra 7
transitive representation of Ω₁-algebra A 8
T⋆-representation of Ω₁-algebra A in Ω₂-algebra M 7
T⋆-shift 23
T⋆-transformation 7
tuple of coordinates of element a relative to
tuple of sets 47
tuple of generating sets of tower of
representations 47
tuple of generating sets of tower
subrepresentations 47
tuple of stable sets of tower of
representation 45
twin representations of group 27
CHAPTER 6

Special Symbols and Notations

\(\mathfrak{A}(f) \) loop of automorphisms of representation \(f \) 20
\(\ast t \) right shift 23
\(t_\ast \) left shift 23
\(\mathcal{B}(f) \) basis manifold of representation \(f \) 35
\(\mathcal{B}_f \) lattice of subrepresentations of representation \(f \) 29
\(\mathcal{B}_f^T \) lattice of towers of subrepresentations of tower of representations \(\mathcal{F} \) 46
\(\mathfrak{f}_\mathcal{B} \) active representation of loop \(\mathfrak{A}(f) \) in basis manifold \(\mathcal{B}(f) \) 35
\(f(G)v \) representation orbit of group \(G \) 23

\(G_x \) little group of \(x \) 25
\(vG \) orbit of effective covariant \(\ast T\)-representation of group \(G \) 26
\(Gv \) orbit of effective covariant \(T\ast \)-representation of group \(G \) 26
\(G_x \) stability group of \(x \) 25
\(J_f \) closure operator of representation \(f \) 29
\(\mathcal{J}(\mathcal{F}) \) closure operator of tower of representations \(\mathcal{F} \) 46
\(\mathcal{J}(\mathcal{F}, \mathcal{X}_{[1]}) \) tower of subrepresentations of tower of representations \(\mathcal{F} \) generated by tuple of sets \(\mathcal{X}_{[1]} \) 47
\(M^\ast \) set of \(\ast T\)-transformations of set \(M \) 7
\(\ast M \) set of transformations of set \(M \) 8
\(\ast M \) set of \(T\ast \)-transformations of set \(M \) 7
\(M/\ast t(G) \) space of orbits of effective \(\ast T\)-covariant representation of the group \(G \) 26
\(M/t_\ast (G) \) space of orbits of effective \(T\ast \)-covariant representation of the group \(G \) 26

\(M/f(G) \) space of orbits of \(T\ast \)-representation \(f \) of group \(G \) in set \(M \) 24
\(T \ast A \) category of \(T\ast \)-representations of \(\Omega_1 \)-algebra \(A \) 19
\(T \ast A \) category of \(T\ast \)-representations of \(\Omega_1 \)-algebra from category \(A \) 14
\(W(f, X) \) set of coordinates of representation \(J_f(X) \) 31
\(\mathcal{W}(\mathcal{F}, \mathcal{X}_{[1]}) \) set of tuples of coordinates of tower of representations \(\mathcal{F}(\mathcal{F}, \mathcal{X}_{[1]}) \) 47
\(\mathcal{W}(\pi, \mathcal{F}, \mathcal{X}_{[1]}) \) tuple of coordinates of element \(\pi \) relative to tuple of sets \(\mathcal{X}_{[1]} \) 47
\(\delta \) identical transformation 7
Представление универсальной алгебры

Александр Клейн

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Аннотация. Теория представлений універсальної алгебри є естественним развитием теории універсальної алгебри. Морфизм представлений - это отображение, сохраняющее структуру представления. Изучение морфизмов представлений ведёт к понятию множества образующих и базиса представления. В книге рассмотрено понятие башни T^*-представлений Ω_i-алгебр, $i = 1, ..., n$, как множество согласованных T^*-представлений Ω_i-алгебр.
Оглавление

Глава 1. Предисловие ... 5
1.1. Предисловие ... 5
1.2. Соглашения ... 6

Глава 2. Представление универсальной алгебры 7
2.1. Представление универсальной алгебры 7
2.2. Морфизм представлений универсальной алгебры 9
2.3. Автоморфизм представления универсальной алгебры 20
2.4. Представление группы 21
2.5. Однотранзитивное T^*-представление группы 26
2.6. Базис T^*-представления 30
2.7. Многообразие базисов представления 37
2.8. Несколько примеров базиса представления 37

Глава 3. Башня представлений универсальных алгебр 39
3.1. Башня представлений универсальных алгебр 39
3.2. Морфизм башни T^*-представлений 42
3.3. Эндоморфизм башни представлений 45
3.4. Базис башни представлений 46
3.5. Примеры базиса башни представлений 54
3.6. Представление в категории 55

Глава 4. Список литературы 57

Глава 5. Предметный указатель 58

Глава 6. Специальные символы и обозначения 60
Глава 1

Предисловие

1.1. Предисловие

В статьях я часто рассматривала вопросы, связанные с представлением универсальной алгебры. Вначале это были небольшие наброски, которые я много-кратно исправлял и переписывал. Но постепенно появились новые наблюдения. В результате вспомогательный инструмент превратился в стройную теорию.

Я это понял, когда я работал над книгой [7], и решил посвятить отдельную книгу вопросам, связанным с представлением универсальной алгебры. Изучение теории представлений универсальной алгебры показывает, что эта теория имеет много общего с теорией универсальной алгебры.

О сновным толчком к более глубокому изучению представлений универсальной алгебры послужило определение векторного пространства как представление поля в абелевой группе. Я обратил внимание, что это определение меняет роль линейного отображения. По сути, линейное отображение - это отображение, которое сохраняет структуру представления. Эту конструкцию легко обобщить на произвольное представление универсальной алгебры. Таким образом появилось понятие морфизма представлений.

Множество невырожденных автоморфизмов векторного пространства порождает группу. Эта группа действует однотранзитивно на множестве базисов векторного пространства. Это утверждение является фундаментом теории инвариантов векторного пространства.

Возникает естественный вопрос. Можно ли обобщить эту конструкцию на произвольное представление? Базис - это не единственное множество, которое порождает векторное пространство. Если мы к множеству векторов базиса добавим произвольный вектор, то новое множество по прежнему порождает тоже самое векторное пространство, но базисом не является. Это утверждение является исходной точкой, от которой я начал изучение множества образующих представления. Множество образующих представления - это ещё одна интересная параллель теории представлений с теорией универсальной алгебры.

Множество автоморфизмов представления является лупой. Неассоциативность произведения порождает многочисленные вопросы, которые требуют дополнительное исследование. Все эти вопросы ведут к необходимости понимания теории инвариантов заданного представления.

Если мы рассматриваем теорию представлений универсальной алгебры как расширение теории универсальной алгебры, то почему не рассмотреть представление одного представления в другом представлении. Так появилась концепция башни представлений. Самый удивительный факт - это то, что все отображения в башне представлений действуют согласовано.

5
1.2. Соглашения

(1) Функция и отображение - синонимы. Однако существует традиция соответствие между кольцами или векторными пространствами называть отображением, а отображение поля действительных чисел или алгебры кватернионов называть функцией. Я тоже следую этой традиции, хотя встречается текст, в котором неясно, какому термину надо отдать предпочтение.

(2) В [8] произвольная операция алгебры обозначена буквой ω, и Ω - множество операций некоторой универсальной алгебры. Соответственно, универсальная алгебра с множеством операций Ω обозначается Ω-алгебра. Аналогичные обозначения мы видим в [1] с той небольшой разницей, что операция в алгебре обозначена буквой f и F - множество операций. Я выбрал первый вариант обозначений, так как в этом случае легче видно, где я использую операцию.

(3) Так как число универсальных алгебр в башне представлений переменно, то мы будем пользоваться векторными обозначениями для башни представлений. Множество $(A_1, ..., A_n)$ Ω_i-алгебр A_i, $i = 1, ..., n$ мы будем обозначать \overrightarrow{A}. Множество представлений $(f_{1,2}, ..., f_{n-1,n})$ этих алгебр мы будем обозначать \overrightarrow{f}. Так как разные алгебры имеют разный тип, мы также будем говорить о множестве Ω-алгебр. По отношению к множеству \overrightarrow{A} мы также будем пользоваться матричными обозначениями, предложенными в разделе [5]-2.1. Например, символом $\overrightarrow{A}_{[1]}$ мы будем обозначать множество Ω-алгебр $(A_1, ..., A_n)$. В соответствии с обозначением $(\overrightarrow{\Omega}, \overrightarrow{f})$ башни представлений подразумевается, что $\overrightarrow{f} = (f_{2,3}, ..., f_{n-1,n})$.

(4) Так как мы пользуемся векторными обозначениями для элементов башни представлений, необходимо соглашение о записи операций. Предполагается, что операции выполняются покомпонентно. Например,

$$\overrightarrow{r}(\overrightarrow{a}) = (r_1(a_1), ..., r_n(a_n))$$

(5) Я считаю диаграммы отображений важным инструментом. Однако временами возникает желание увидеть диаграмму трёх мерной, что увеличил бы её выразительную мощность. Кто знает какие сюрпризы готовит будущее. В 1992 на конференции в Казани я рассказывал своим коллегам какие преимущества имеет компьютерная подготовка статей. Спустя 8 лет из письма из Казани я узнал, что теперь можно готовить статьи с помощью LaTeX.

(6) Без сомнения, у читателя могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.
Глава 2

Представление универсальной алгебры

2.1. Представление универсальной алгебры

Определение 2.1.1. Пусть на множестве M определена структура Ω_2-алгебры ([1, 8]). Мы будем называть эндоморфизм Ω_2-алгебры $t : M \to M$ преобразованием универсальной алгебры M.\(^{2,1}\)

Мы будем обозначать δ тождественное преобразование.

Определение 2.1.2. Преобразование называется левосторонним преобразованием или T^\star-преобразованием, если оно действует слева

$$u' = tu$$

Мы будем обозначать $^\star M$ множество T^\star-преобразований универсальной алгебры M.\(^\square\)

Определение 2.1.3. Преобразование называется правосторонним преобразованием или $^\star T$-преобразованием, если оно действует справа

$$u' = ut$$

Мы будем обозначать $^\star M$ множество $^\star T$-преобразований универсальной алгебры M.\(^\square\)

Определение 2.1.4. Пусть на множестве $^\star M$ определена структура Ω_1-алгебры ([1]). Пусть A является Ω_1-алгеброй. Мы будем называть гомоморфизм

(2.1.1)

$$f : A \to ^\star M$$

левосторонним или T^\star-представлением Ω_1-алгебры A в Ω_2-алгебре M.\(^\square\)

Определение 2.1.5. Пусть на множестве $^\star M$ определена структура Ω_1-алгебры ([1]). Пусть A является Ω_1-алгеброй. Мы будем называть гомоморфизм

$$f : A \to ^\star M$$

правосторонним или $^\star T$-представлением Ω_1-алгебры A в Ω_2-алгебре M.\(^\square\)

Мы распространяем на теорию представлений соглашение, описанное в замечании [5]-2.2.15. Мы можем записать принцип двойственности в следующей форме

\(^{2,1}\)Если множество операций Ω_2-алгебры пусто, то t является отображением.
2. Представление универсальной алгебры

Теорема 2.1.6 (принцип двойственности). Любое утверждение, справедливое для T_\ast-представления Ω_1-алгебры A, будет справедливо для $\ast T$-представления Ω_1-алгебры A.

Замечание 2.1.7. Существует две формы записи преобразования Ω_2-алгебры M. Если мы пользуемся операторной записью, то преобразование A записывается в виде Aa или aA, что соответствует T_\ast-преобразованию или $\ast T$-преобразованию. Если мы пользуемся функциональной записью, то преобразование A записывается в виде $A(a)$ независимо от того, это T_\ast-преобразование или $\ast T$-преобразование. Эта запись согласована с принципом двойственности.

Это замечание является основой следующего соглашения. Когда мы пользуемся функциональной записью, мы не различаем T_\ast-преобразование и $\ast T$-преобразование. Мы будем обозначать $\ast M$ множество преобразований Ω_2-алгебры M. Пусть на множестве $\ast M$ определена структура Ω_1-алгебры. Пусть A является Ω_1-алгеброй. Мы будем называть гомоморфизм

\[f : A \rightarrow \ast M \]

представлением Ω_1-алгебры A в Ω_2-алгебре M.

Соответствие между операторной записью и функциональной записью однозначно. Мы можем выбирать любую форму записи, которая удобна для изложения конкретной темы. □

Diagramma

\[\begin{array}{ccc}
M & \xrightarrow{f(a)} & M \\
\downarrow{f} & & \downarrow{f} \\
A & & A
\end{array} \]

означает, что мы рассматриваем представление Ω_1-алгебры A. Отображение $f(a)$ является образом $a \in A$.

Определение 2.1.8. Мы будем называть представление Ω_1-алгебры A эффективным, если отображение (2.1.2) - изоморфизм Ω_1-алгебры A в $\ast M$. □

Замечание 2.1.9. Если T_\ast-представление Ω_1-алгебры эффективно, мы можем отождествлять элемент Ω_1-алгебры с его образом и записывать T_\ast-преобразование, порождённое элементом $a \in A$, в форме

\[v' = av \]

Если $\ast T$-представление Ω_1-алгебры эффективно, мы можем отождествлять элемент Ω_1-алгебры с его образом и записывать $\ast T$-преобразование, порождённое элементом $a \in A$, в форме

\[v' = va \]

Определение 2.1.10. Мы будем называть представление Ω_1-алгебры транзитивным, если для любых $a, b \in V$ существует такое g, что

\[a = f(g)(b) \]

Мы будем называть представление Ω_1-алгебры однотранзитивным, если оно транзитивно и эффективно. □
Теорема 2.1.11. T^*-представление однотранзитивно тогда и только тогда, когда для любых $a, b \in M$ существует одно и только одно $g \in A$ такое, что $a = f(g)(b)$.

Доказательство. Следствие определений 2.1.8 и 2.1.10.

2.2. Морфизм представлений универсальной алгебры

Теорема 2.2.1. Пусть A и B - Ω_1-алгебры. Представление Ω_1-алгебры B

$$g : B \to ^*M$$

и гомоморфизм Ω_1-алгебры

(2.2.1) $$h : A \to B$$

определяют представление f Ω_1-алгебры A

$$A \xrightarrow{f} M \xleftarrow{g} B$$

Доказательство. Отображение f является гомоморфизмом Ω_1-алгебры A в Ω_1-алгебру *M, так как отображение g является гомоморфизмом Ω_1-алгебры B в Ω_1-алгебру *M.

Если мы изучаем представление Ω_1-алгебры в Ω_2-алгебрах M и N, то нас интересуют отображения из M в N, сохраняющие структуру представления.

Определение 2.2.2. Пусть

$$f : A \to ^*M$$

представление Ω_1-алгебры A в Ω_2-алгебре M и

$$g : B \to ^*N$$

представление Ω_1-алгебры B в Ω_2-алгебре N. Пара отображений

(2.2.2) $$(r : A \to B, R : M \to N)$$

tаких, что

• r - гомоморфизм Ω_1-алгебры
• R - гомоморфизм Ω_2-алгебры

(2.2.3) $$R \circ f(a) = g(r(a)) \circ R$$

называется морфизмом представлений из f в g. Мы также будем говорить, что определён морфизм представлений Ω_1-алгебры в Ω_2-алгебре.

Для произвольного $m \in M$ равенство (2.2.3) имеет вид

(2.2.4) $$R(f(a)(m)) = g(r(a))(R(m))$$
Замечание 2.2.3. Мы можем рассматривать пару отображений \(r, R \) как отображение

\[
F : A \cup M \to B \cup N
\]

такое, что

\[
F(A) = B \quad F(M) = N
\]

Поэтому в дальнейшем мы будем говорить, что дано отображение \((r, R)\). □

Замечание 2.2.4. Рассмотрим морфизм представлений (2.2.2). Мы можем обозначать элементы множества \(B \), пользуясь буквой по образцу \(b \in B \). Но если мы хотим показать, что \(b \) является образом элемента \(a \in A \), мы будем пользоваться обозначением \(r(a) \). Таким образом, равенство

\[
r(a) = r(a)
\]

означает, что \(r(a) \) (в левой части равенства) является образом \(a \in A \) (в правой части равенства). Пользуясь подобными соображениями, мы будем обозначать элемент множества \(N \) в виде \(R(m) \). Мы будем следовать этому соглашению, изучая соотношения между гомоморфизмами \(\Omega_1 \)-алгебр и отображениями между множествами, где определены соответствующие представления.

Мы можем интерпретировать (2.2.4) двумя способами

- Пусть преобразование \(f(a) \) отображает \(m \in M \) в \(f(a)(m) \). Тогда преобразование \(g(r(a)) \) отображает \(R(m) \in N \) в \(R(f(a)(m)) \).
- Мы можем представить морфизм представлений из \(f \) в \(g \), пользуясь диаграммой

\[
\begin{array}{ccc}
M & \xrightarrow{r} & B \\
\downarrow{f} & & \downarrow{g} \\
A & \xrightarrow{h} & N
\end{array}
\]

Из (2.2.3) следует, что диаграмма (1) коммутативна. □

Теорема 2.2.5. Рассмотрим представление

\[
f : A \to ^*M
\]

\(\Omega_1 \)-алгебры \(A \) и представление

\[
g : B \to ^*N
\]

\(\Omega_1 \)-алгебры \(B \). Морфизм

\[
h : A \xrightarrow{H} B \quad H : M \xrightarrow{H} N
\]

представлений из \(f \) в \(g \) удовлетворяет соотношению

\[
(2.2.5) \quad H \circ \omega(f(a_1), ..., f(a_n)) = \omega(g(h(a_1)), ..., g(h(a_n))) \circ H
\]

для произвольной \(n \)-арной операции \(\omega \) \(\Omega_1 \)-алгебры.
Доказательство. Так как \(f \) - гомоморфизм, мы имеем

\[
H \circ \omega(f(a_1), ..., f(a_n)) = H \circ f(\omega(a_1, ..., a_n))
\]

Из \((2.2.3) \) и \((2.2.6) \) следует

\[
H \circ \omega(f(a_1), ..., f(a_n)) = g(h(\omega(a_1, ..., a_n))) \circ H
\]

Так как \(h \) - гомоморфизм, из \((2.2.7) \) следует

\[
H \circ \omega(f(a_1), ..., f(a_n)) = g(\omega(h(a_1), ..., h(a_n))) \circ H
\]

Так как \(g \) - гомоморфизм, из \((2.2.8) \) следует \((2.2.5) \).

\[\square\]

Теорема 2.2.6. Пусть отображение

\[
h : A \rightarrow B \quad H : M \rightarrow N
\]

является морфизмом из представления

\[
f : A \rightarrow \ast M
\]

\(\Omega_1 \)-алгебры \(A \) в представление

\[
g : B \rightarrow \ast N
\]

\(\Omega_1 \)-алгебры \(B \). Если представление \(f \) эффективно, то отображение

\[
\ast H : \ast M \rightarrow \ast N
\]

определённое равенством

\[
(2.2.9) \quad \ast H(f(a)) = g(h(a))
\]

является гомоморфизмом \(\Omega_1 \)-алгебры.

Доказательство. Так как представление \(f \) эффективно, то для выбранного преобразования \(f(a) \) выбор элемента \(a \) определён однозначно. Следовательно, преобразование \(g(h(a)) \) в равенстве \((2.2.9) \) определено корректно.

Так как \(f \) - гомоморфизм, мы имеем

\[
(2.2.10) \quad \ast H(\omega(f(a_1), ..., f(a_n))) = \ast H(\omega(f(a_1), ..., a_n))
\]

Из \((2.2.9) \) и \((2.2.10) \) следует

\[
(2.2.11) \quad \ast H(\omega(f(a_1), ..., f(a_n))) = g(h(\omega(a_1, ..., a_n)))
\]

Так как \(h \) - гомоморфизм, из \((2.2.11) \) следует

\[
(2.2.12) \quad \ast H(\omega(f(a_1), ..., f(a_n))) = g(\omega(h(a_1), ..., h(a_n)))
\]

Так как \(g \) - гомоморфизм,

\[
\ast H(\omega(f(a_1), ..., f(a_n))) = g(h(\omega(h(a_1), ..., h(a_n)))) = \omega(\ast H(f(a_1)), ..., \ast H(f(a_n)))
\]

следует из \((2.2.12) \). Следовательно, отображение \(\ast H \) является гомоморфизмом \(\Omega_1 \)-алгебры.

\[\square\]

Теорема 2.2.7. Если представление

\[
f : A \rightarrow \ast M
\]

\(\Omega_1 \)-алгебры \(A \) однотранзитивно и представление

\[
g : B \rightarrow \ast N
\]

\(\Omega_1 \)-алгебры \(B \) однотранзитивно, то существует морфизм

\[
h : A \longrightarrow B \quad H : M \longrightarrow N
\]
представлений из \(f \) в \(g \).

Доказательство. Выберем гомоморфизм \(h \). Выберем элемент \(m \in M \) и элемент \(n \in N \). Чтобы построить отображение \(H \), рассмотрим следующую диаграмму

\[
\begin{array}{ccc}
M & \xrightarrow{H} & N \\
\downarrow m \quad & & \downarrow n \\
A & \xrightarrow{h} & B
\end{array}
\]

Из коммутативности диаграммы (1) следует

\[H(am) = h(a)H(m) \]

Для произвольного \(m' \in M \) однозначно определён элемент \(a \in A \) такой, что \(m' = am \). Следовательно, мы построили отображение \(H \), которое удовлетворяет равенству (2.2.3).

Теорема 2.2.8. Если представление

\[f : A \to ^*M \]

\(\Omega_1 \)-алгебры \(A \) однотранзитивно и представление

\[g : B \to ^*N \]

\(\Omega_1 \)-алгебры \(B \) однотранзитивно, то для заданного гомоморфизма \(\Omega_1 \)-алгебры

\[h : A \longrightarrow B \]

отображение

\[H : M \longrightarrow N \]

tакое, что \((h, H) \) является морфизмом представлений из \(f \) в \(g \), единственно с точностью до выбора образа \(n = H(m) \in N \) заданного элемента \(m \in M \).

Доказательство. Из доказательства теоремы 2.2.7 следует, что выбор гомоморфизма \(h \) и элементов \(m \in M \), \(n \in N \) однозначно определяет отображение \(H \).

Теорема 2.2.9. Если представление

\[f : A \to ^*M \]

\(\Omega_1 \)-алгебры \(A \) однотранзитивно, то для любого эндоморфизма \(\Omega_1 \)-алгебры \(A \) существует эндоморфизм

\[p : A \longrightarrow A \quad P : M \longrightarrow M \]

представление \(f \).
ДОКАЗАТЕЛЬСТВО. Рассмотрим следующую диаграмму

\[
\begin{array}{ccc}
M & \xrightarrow{H} & M \\
\downarrow & & \downarrow \\
A & \xrightarrow{p} & A
\end{array}
\]

Утверждение теоремы является следствием теоремы 2.2.7.

Теорема 2.2.10. Пусть

\[
f : A \rightarrow *M
\]
представление \(\Omega_1\)-алгебры \(A\),

\[
g : B \rightarrow *N
\]
представление \(\Omega_1\)-алгебры \(B\),

\[
h : C \rightarrow *L
\]
представление \(\Omega_1\)-алгебры \(C\). Пусть определены морфизмы представлений \(\Omega_1\)-алгебры

\[
p : A \rightarrow B \quad P : M \rightarrow N
\]

\[
q : B \rightarrow C \quad Q : N \rightarrow L
\]

Тогда определён морфизм представлений \(\Omega_1\)-алгебры

\[
r : A \rightarrow C \quad R : M \rightarrow L
\]

где \(r = qp\), \(R = QP\). Мы будем называть морфизм \((r, R)\) представлений из \(f\) в \(h\) произведением морфизмов \((p, P)\) и \((q, Q)\) представлений универсальной алгебры.
Доказательство. Мы можем представить утверждение теоремы, пользуясь диаграммой

Отображение r является гомоморфизмом Ω_1-алгебры A в Ω_1-алгебру C. Нам надо показать, что пара отображений (r, R) удовлетворяет (2.2.3):

$$R(f(a)m) = QP(f(a)m)$$
$$= Q(g(p(a))P(m))$$
$$= h(qp(a))QP(m)$$
$$= h(r(a))R(m)$$

Определение 2.2.11. Допустим A категория Ω_1-алгебр. Мы определим категорию $T^* A$ T^*-представлений универсальной алгебры из категории A. Объектами этой категории являются T^*-представления Ω_1-алгебры. Морфизмами этой категории являются морфизмы T^*-представлений Ω_1-алгебры.

Теорема 2.2.12. Эн доморфизмы представления f порождают полугруппу.

Доказательство. Из теоремы 2.2.10 следует, что произведение эн доморфизмов $(p, P), (r, R)$ представления f является эн доморфизмом (pr, PR) представления f.

Определение 2.2.13. Пусть на множестве M определена эквивалентность S. Преобразование f называется согласованным с эквивалентностью S, если из условия $m_1 \equiv m_2 \pmod{S}$ следует $f(m_1) \equiv f(m_2) \pmod{S}$.

Теорема 2.2.14. Пусть на множестве M определена эквивалентность S. Пусть на множестве $*M$ определена Ω_1-алгебра. Если преобразования согласованы с эквивалентностью S, то мы можем определить структуру Ω_1-алгебры на множестве $*(M/S)$.

Доказательство. Пусть $h = \text{nat} S$. Если $m_1 \equiv m_2 \pmod{S}$, то $h(m_1) = h(m_2)$. Поскольку $f \in *M$ согласовано с эквивалентностью S, то $h(f(m_1)) =$
2.2. Морфизм представлений универсальной алгебры

$h(f(m))$. Это позволяет определить преобразование F согласно правилу

$$F([m]) = h(f(m))$$

Пусть ω - n-арная операция Ω_1-алгебры. Пусть $f_1, ..., f_n \in \ast M$ и

$$F_1([m]) = h(f_1(m)) \quad ... \quad F_n([m]) = h(f_n(m))$$

Мы определим операцию на множестве $\ast(M/S)$ по правилу

$$\omega(F_1, ..., F_n)[m] = h(\omega(f_1, ..., f_n)m)$$

Это определение корректно, так как $\omega(f_1, ..., f_n) \in \ast M$ и согласовано с эквивалентностью S.

Теорема 2.2.15. Пусть

$$f : A \rightarrow \ast M$$

представление Ω_1-алгебры A,

$$g : B \rightarrow \ast N$$

представление Ω_1-алгебры B. Пусть

$$r : A \rightarrow B \quad R : M \rightarrow N$$

морфизм представлений из f в g. Положим

$$s = r^{-1} \quad S = RR^{-1}$$

Тогда для отображений r, R существуют разложения, которые можно описать диаграммой

(1) $s = \ker r$ является конгруэнцией на A. Существует разложение гомоморфизма r

(2.2.13) $r = itj$

(2.2.14) $j(a) = j(a)$
2. Представление универсальной алгебры

\[r(a) = t(j(a)) \]
(2.2.15) \hfill i - вложение

\[r(a) = i(r(a)) \]
(2.2.16) \hfill t - изоморфизм

(2) \(S = \ker R \) является эквивалентностью на \(M \). Существует разложение отображения \(R \)

\[R = ITJ \]
(2.2.17) \hfill J = \text{nat} S - сюръекция

\[J(m) = J(m) \]
(2.2.18) \hfill T - биекция

\[R(m) = T(J(m)) \]
(2.2.19) \hfill I - вложение

\[R(m) = I(R(m)) \]
(2.2.20)

(3) \(F - T\ast\)-представление \(\Omega_1\)-алгебры \(A/s \) в \(M/S \)

(4) \(G - T\ast\)-представление \(\Omega_1\)-алгебры \(rA \) в \(RM \)

(5) \((j, J) - \text{морфизм представлений} f \) и \(F \)

(6) \((t, T) - \text{морфизм представлений} F \) и \(G \)

(7) \((t^{-1}, T^{-1}) - \text{морфизм представлений} G \) и \(F \)

(8) \((i, I) - \text{морфизм представлений} G \) и \(g \)

(9) Существует разложение морфизма представлений

\[(r, R) = (i, I)(t, T)(j, J) \]
(2.2.21)

Доказательство. Существование диаграмм (1) и (2) следует из теоремы II.3.7 ([8], c. 74).

Мы начнём с диаграммы (4).

Пусть \(m_1 \equiv m_2 \pmod{S} \). Следовательно,

\[R(m_1) = R(m_2) \]
(2.2.22) \hfill Если \(a_1 \equiv a_2 \pmod{s} \), то

\[r(a_1) = r(a_2) \]
(2.2.23) \hfill Следовательно, \(j(a_1) = j(a_2) \). Так как \((r, R) - \text{морфизм представлений} \), то

\[R(f(a_1)(m_1)) = g(r(a_1))(R(m_1)) \]
(2.2.24)

\[R(f(a_2)(m_2)) = g(r(a_2))(R(m_2)) \]
(2.2.25)

Из (2.2.22), (2.2.23), (2.2.24), (2.2.25) следует

\[R(f(a_1)(m_1)) = R(f(a_2)(m_2)) \]
(2.2.26) \hfill Из (2.2.26) следует

\[f(a_1)(m_1) \equiv f(a_2)(m_2) \pmod{S} \]
(2.2.27) \hfill и, следовательно,

\[J(f(a_1)(m_1)) = J(f(a_2)(m_2)) \]
(2.2.28)
Из (2.2.28) следует, что отображение
\[(2.2.29) \quad F(j(a))(J(m)) = J(f(a)(m))\]
opределено корректно и является преобразованием множества \(M/S\).

Из равенства (2.2.27) (в случае \(a_1 = a_2\)) следует, что для любого \(a\) преобразование согласовано с эквивалентностью \(S\). Из теоремы 2.2.14 следует, что на множество \(*\(M/S\)*) определена структура \(\Omega_1\)-алгебры. Рассмотрим \(n\)-арную операцию \(\omega\) и \(n\) преобразований
\[F(j(a_i))(J(m)) = J(f(a_i)(m)) \quad i = 1, \ldots, n\]
пространства \(M/S\). Мы положим
\[\omega(F(j(a_1)), \ldots, F(j(a_n)))(J(m)) = J(\omega(f(a_1), \ldots, f(a_n)))(m)\]
Следовательно, отображение \(F\) является представлением \(\Omega_1\)-алгебры \(A/s\).

Из (2.2.29) следует, что \((j, J)\) является морфизмом представлений \(f\) и \(F\) (утверждение (5) теоремы).

Рассмотрим диаграмму (5).

Так как \(T\) - биекция, то мы можем отождествить элементы множества \(M/S\) и множества \(M^R\), причём это отождествление имеет вид
\[(2.2.30) \quad T(J(m)) = R(m)\]
Мы можем записать преобразование \(F(j(a))\) множества \(M/S\) в виде
\[(2.2.31) \quad F(j(a)) : J(m) \to F(j(a))(J(m))\]
Так как \(T\) - биекция, то мы можем определить преобразование
\[(2.2.32) \quad T(J(m)) \to T(F(j(a))(J(m)))\]
множества \(R^M\). Преобразование (2.2.32) зависит от \(j(a) \in A/s\). Так как \(t\) - биекция, то мы можем отождествить элементы множества \(A/s\) и множества \(rA\), причём это отождествление имеет вид
\[(2.2.33) \quad t(j(a)) = r(a)\]
Следовательно, мы определили отображение \(G : rA \to *R^M\)
согласно равенству
\[(2.2.34) \quad G(t(j(a)))(T(J(m))) = T(F(j(a))(J(m)))\]
Рассмотрим \(n\)-арную операцию \(\omega\) и \(n\) преобразований
\[G(r(a_i))(R(m)) = T(F(j(a_i))(J(m))) \quad i = 1, \ldots, n\]
пространства \(R^M\). Мы положим
\[(2.2.35) \quad \omega(G(r(a_1)), \ldots, G(r(a_n)))(R(m)) = T(\omega(F(j(a_1), \ldots, F(j(a_n)))(J(m)))\]
Согласно (2.2.34) операция \(\omega\) корректно определена на множестве \(*R^M\). Следовательно, отображение \(G\) является представлением \(\Omega_1\)-алгебры.

Из (2.2.34) следует, что \((t, T)\) является морфизмом представлений \(F\) и \(G\) (утверждение (6) теоремы).

Так как \(T\) - биекция, то из равенства (2.2.30) следует
\[(2.2.36) \quad J(m) = T^{-1}(R(m))\]
Мы можем записать преобразование \(G(r(a)) \) множества \(M \) в виде

\[
G(r(a)) : R(m) \rightarrow G(r(a))(R(m))
\]

Так как \(T \) - биекция, то мы можем определить преобразование

\[
T^{-1}(R(m)) \rightarrow T^{-1}(G(r(a))(R(m)))
\]

множества \(M/S \). Преобразование \((2.2.38) \) зависит от \(r(a) \in rA \). Так как \(t \) - биекция, то из равенства \((2.2.33) \) следует

\[
j(a) = t^{-1}(r(a))
\]

Так как по построению диаграмма \((5)\) коммутативна, то преобразование \((2.2.38) \) совпадает с преобразованием \((2.2.31) \). Равенство \((2.2.35) \) можно записать в виде

\[
T^{-1}(\omega(G(r(a_1)),...,G(r(a_n)))(R(m))) = \omega(F(j(a_1),...,F(j(a_n)))(J(m))
\]

Следовательно, \((t^{-1}, T^{-1}) \) является морфизмом представлений \(G \) и \(F \) (утверждение \((7) \) теоремы).

Диаграмма \((6)\) является самым простым случаем в нашем доказательстве. Поскольку отображение \(I \) является вложением и диаграмма \((2)\) коммутативна, мы можем отождествить \(n \in N \) и \(R(m) \), если \(n \in \text{Im}R \). Аналогично, мы можем отождествить соответствующие преобразования.

\[
g'(i(r(a)))(I(R(m))) = I(G(r(a))(R(m)))
\]

\[
\omega(g'(r(a)),...,g'(r(a_n)))(R(m)) = I(\omega(G(r(a_1),...,G(r(a_n)))(R(m)))
\]

Следовательно, \((i, I) \) является морфизмом представлений \(G \) и \(g \) (утверждение \((8) \) теоремы).

Для доказательства утверждения \((9) \) теоремы осталось показать, что определённое в процессе доказательства представление \(g' \) совпадает с представлением \(g \), а операции над преобразованиями совпадают с соответствующими операциями на \(*N \).

\[
g'(i(r(a)))(I(R(m))) = I(G(r(a))(R(m))) \quad \text{согласно } (2.2.41)
\]

\[
= I(G(t(j(a)))(T(J(m)))) \quad \text{согласно } (2.2.15), (2.2.19)
\]

\[
= IT(F(j(a))(J(m))) \quad \text{согласно } (2.2.34)
\]

\[
= ITJ(f(a)(m)) \quad \text{согласно } (2.2.29)
\]

\[
= R(f(a)(m)) \quad \text{согласно } (2.2.17)
\]

\[
= g(r(a))(R(m)) \quad \text{согласно } (2.2.3)
\]

\[
\omega(G(r(a_1),...,G(r(a_n)))(R(m)) = T(\omega(F(j(a_1),...,F(j(a_n)))(J(m)))
\]

\[
= T(F(\omega(j(a_1),...,j(a_n)))(J(m)))
\]

\[
= T(F(j(\omega(a_1,...,a_n)))(J(m))
\]

\[
= T(J(f(\omega(a_1,...,a_n))(m))
\]

\[
\square
\]
Определение 2.2.16. Пусть

\[f : A \to {}^* M \]

представление \(\Omega_1 \)-алгебры \(A \),

\[g : B \to {}^* N \]

представление \(\Omega_1 \)-алгебры \(B \). Пусть

\[r : A \to B \quad R : M \to N \]

морфизм представлений из \(r \) в \(R \) такой, что \(f \) - изоморфизм \(\Omega_1 \)-алгебры и \(g \) - изоморфизм \(\Omega_2 \)-алгебры. Тогда отображение \((r, R)\) называется \textbf{изоморфизмом представлений}.

Теорема 2.2.17. В разложении (2.2.21) отображение \((t, T)\) является изоморфизмом представлений \(F \) и \(G \).

Доказательство. Следствие определения 2.2.16 и утверждений (6) и (7) теоремы 2.2.15.

Из теоремы 2.2.15 следует, что мы можем свести задачу изучения морфизмов представлений \(\Omega_1 \)-алгебры к случаю, описываемому диаграммой

(2.2.42)

Диаграмма (2.2.42) может быть дополнена представлением \(F_1 \) \(\Omega_1 \)-алгебры \(A \) в множестве \(M/S \) так, что диаграмма

(2.2.43)

коммутативна. При этом множество преобразований представления \(F \) и множество преобразований представления \(F_1 \) совпадают.
ДОКАЗАТЕЛЬСТВО. Для доказательства теоремы достаточно положить

\[F_1(a) = F(j(a)) \]

Так как отображение \(j \) - сурьекция, то \(\text{Im} F_1 = \text{Im} F \). Так как \(j \) и \(F \) - гомоморфизмы \(\Omega_1 \)-алгебры, то \(F_1 \) - также гомоморфизм \(\Omega_1 \)-алгебры.

Теорема 2.2.18 завершает цикл теорем, посвящённых структуре морфизма представлений \(\Omega_1 \)-алгебры. Из этих теорем следует, что мы можем упростить задачу изучения морфизма представлений \(\Omega_1 \)-алгебры и ограничиться морфизмом представлений вида

\[id : A \rightarrow A \quad R : M \rightarrow N \]

В этом случае мы можем отождествить морфизм \((id, R)\) представлений \(\Omega_1 \)-алгебры и отображение \(R \). Мы будем пользоваться диаграммой

![Diagram](image-url)

для представления морфизма \((id, R)\) представлений \(\Omega_1 \)-алгебры. Из диаграммы следует

\[R \circ f(a) = g(a) \circ R \]

Мы дадим следующее определение по аналогии с определением 2.2.11.

Определение 2.2.19. Мы определим категорию \(T^*A \) представлений \(\Omega_1 \)-алгебры \(A \). Объектами этой категории являются \(T^* \)-представлениями \(\Omega_1 \)-алгебры \(A \). Морфизмами этой категории являются морфизмы \((id, R)\) \(T^* \)-представлений \(\Omega_1 \)-алгебры \(A \).

Определение 2.3.1. Пусть

\[f : A \rightarrow \text{M} \]

представление \(\Omega_1 \)-алгебры \(A \) в \(\Omega_2 \)-алгебре \(M \). Морфизм представлений \(\Omega_1 \)-алгебры

\[(r : A \rightarrow A, R : M \rightarrow M) \]

tакой, что \(r \) - эндоморфизм \(\Omega_1 \)-алгебры и \(R \) - эндоморфизм \(\Omega_2 \)-алгебры называется эндоморфизмом представления \(f \).

Определение 2.3.2. Пусть

\[f : A \rightarrow \text{M} \]

представление \(\Omega_1 \)-алгебры \(A \) в \(\Omega_2 \)-алгебре \(M \). Морфизм представлений \(\Omega_1 \)-алгебры

\[(r : A \rightarrow A, R : M \rightarrow M) \]
такой, что r - автоморфизм Ω_1-алгебры и R - автоморфизм Ω_2-алгебры называется
автоморфизмом представления f.

Теорема 2.3.3. Пусть

$$f : A \to \ast M$$

представление Ω_1-алгебры A в Ω_2-алгебре M. Множество автоморфизмов
представления f порождает лупу $\Aut(f)$.

ДОКАЗАТЕЛЬСТВО. Пусть $(r, R), (p, P)$ - автоморфизмы представления f.
Согласно определению 2.3.2 отображения r, p являются автоморфизмами Ω_1-
алгебры A в Ω_2-алгебре M. Согласно теореме II.3.2 ([8], с. 60) отображение rp является автоморфизмом
Ω_1-алгебры A и отображение RP является автоморфизмом Ω_2-алгебры M. Из
теоремы 2.2.10 и определения 2.3.2 следует, что произведение автоморфизмов
(rp, RP) представления f является автоморфизмом представления f.

Пусть (r, R) - автоморфиз представления f. Согласно определению 2.3.2
отображение r является автоморфизмом Ω_1-алгебры A и отображение R являет-
ся автоморфизмом Ω_2-алгебры M. Следовательно, отображение r^{-1} являет-
ся автоморфизмом Ω_1-алгебры A и отображение R^{-1} является автоморфизмом
Ω_2-алгебры M. Для автоморфизма (r, R) справедливо равенство (2.2.4). Поло-
жим $a' = r(a)$, $m' = R(m)$. Так как r и R - автоморфизмы, то $a = r^{-1}(a')$, $m = R^{-1}(m')$ и равенство (2.2.4) можно записать в виде

(2.3.1)

$$R(f(r^{-1}(a')))(R^{-1}(m')) = g(a')(m')$$

аа Так как отображение R является автоморфизмом Ω_2-алгебры M, то из равенства (2.3.1) следует

(2.3.2)

$$f(r^{-1}(a'))(R^{-1}(m')) = R^{-1}(g(a')(m'))$$

Равенство (2.3.2) соответствует равенству (2.2.4) для отображения (r^{-1}, R^{-1}). Следовательно, отображение (r^{-1}, R^{-1}) является автоморфизмом представле-
ния f.

Замечание 2.3.4. Очевидно, что множество автоморфизмов Ω_1-алгебры A
также порождает лупу. Конечно, заманчиво предположить, что множество ав-
томорфизмов порождает группу. Так как произведение автоморфизмов f и g
является автоморфизмом fg, то определены автоморфизмы $(fg)h$ и $f(gh)$. Но
из этого утверждения не следует, что

$$(fg)h = f(gh)$$

2.4. Представление группы

Группа - одна из немногих алгебр, которая позволяет рассматривать произ-
ведение преобразований множества M таким образом, что если преобразования
принадлежат представлению, то их произведение также принадлежит пред-
ставлению. В случае представления группы гомоморфизм (2.1.1) может быть
определен либо как

$$f(ab) = f(a) \circ f(b)$$

2.2 Определение лупы приведено в [4], с. 24; [3], с. 39.
либо как
\[f(ab) = f(b) \circ f(a) \]
При этом следует помнить, что порядок отображений при суперпозиции зависит от порядка отображений на диаграмме и с какой стороны отображения действуют на элементы множества.

Определение 2.4.1. Пусть \(*M \) - группа и \(\delta \) - единица группы \(*M \). Пусть \(G \) - группа. Мы будем называть гомоморфизм групп
\[f : G \rightarrow *M \]
ковариантным \(T*\)-представлением группы \(G \) в множестве \(M \), если отображение \(f \) удовлетворяет условиям
\[f(ab)u = f(a)(f(b)u) \]

Замечание 2.4.2. Поскольку отображение (2.4.1) - гомоморфизм, то
\[f(ab)u = (f(a)f(b))u \]
Мы здесь пользуемся соглашением
\[f(a)f(b) = f(a) \circ f(b) \]
Таким образом, концепция ковариантного представления состоит в том, что в каком порядке мы перемножаем элементы группы, в том же порядке перемножаются соответствующие преобразования представления. Из равенств (2.4.2) и (2.4.3) следует
\[(f(a)f(b))u = f(a)(f(b)u) \]
Равенство (2.4.4) совместно с ассоциативностью произведения преобразований представляет собой закон ассоциативности для ковариантного \(T*\)-представления. Это позволяет записывать равенство (2.4.4) без использования скобок
\[f(ab)u = f(a)f(b)u \]

Определение 2.4.3. Пусть \(*M \) - группа и \(\delta \) - единица группы \(*M \). Пусть \(G \) - группа. Мы будем называть антигомоморфизм групп
\[f : G \rightarrow *M \]
контравариантным \(T*\)-представлением группы \(G \) в множестве \(M \), если отображение \(f \) удовлетворяет условиям
\[f(ba)u = f(a)(f(b)u) \]

Определение 2.4.4. Пусть \(M^* \) - группа и \(\delta \) - единица группы \(M^* \). Пусть \(G \) - группа. Мы будем называть гомоморфизм групп
\[f : G \rightarrow M^* \]
ковариантным \(*T\)-представлением группы \(G \) в множестве \(M \), если отображение \(f \) удовлетворяет условиям
\[uf(ab) = (uf(a))f(b) \]
Замечание 2.4.5. Поскольку отображение (2.4.6) - гомоморфизм, то
\[(2.4.8)\]
\[uf(ab) = u(f(a)f(b))\]
Из равенств (2.4.7) и (2.4.8) следует
\[(2.4.9)\]
\[u(f(a)f(b)) = (uf(a))f(b)\]
Равенство (2.4.9) совместно с ассоциативностью произведения преобразований представляет собой закон ассоциативности для ковариантного \(*T\)-представления. Это позволяет записывать равенство (2.4.9) без использования скобок
\[uf(ab) = uf(a)f(b)\]

Определение 2.4.6. Пусть \(M^*\) - группа и \(\delta\) - единица группы \(*M\). Пусть \(G\) - группа. Мы будем называть отображение
\[f : G \rightarrow M^*\]
контравариантным \(*T\)-представлением группы \(G\) в множестве \(M\), если отображение \(f\) удовлетворяет условиям
\[(2.4.10)\]
\[uf(ba) = (uf(a))f(b)\]

Определение 2.4.7. Мы будем называть преобразование
\[t : M \rightarrow M\]
невырожденным преобразованием, если существует обратное отображение.

Теорема 2.4.8. Для любого \(g \in G\) преобразование \(f(g)\) является невырожденным и удовлетворяет равенству
\[(2.4.11)\]
\[f(g^{-1}) = f(g)^{-1}\]
Доказательство. На основании (2.4.5) и
\[f(e) = \delta\]
мы можем записать
\[u = \delta(u) = f(gg^{-1})(u) = f(g)(f(g^{-1})(u))\]
Это завершает доказательство.

Теорема 2.4.9. Групповая операция определяет два различных представлений на группе:
• Левый или \(T^*\)-сдвиг \(t_*\),
\[(2.4.12)\]
\[b' = t_*(a)b = ab\]
\[b' = t_*(a)(b) = ab\]
является ковариантным \(T^*\)-представлением
\[(2.4.13)\]
\[t_*(ab) = t_*(a) \circ t_*(b)\]
• Правый или $*T$-сдвиг $*_t$,

$$(2.4.14) \quad b' = b*_t(a) = ba$$

является ковариантным $*T$-представлением

$$(2.4.15) \quad *_t(ab) = *_t(a)_*t(b)$$

Доказательство. $T*$-сдвиг не является представлением группы в группе, так как преобразование $*_t$ не является гомоморфизмом группы. $T*$-сдвиг является представлением группы в множестве, являющимся носителем этой группы. Аналогичное замечание верно для $*_T$-сдвига.

Равенство $(2.4.13)$ следует из ассоциативности произведения

$$t_*(ab)c = (ab)c = a(bc) = t_*(a)(t_*(b)c) = (t_*(a) \circ t_*(b))c$$

Аналогично доказывается равенство $(2.4.15)$.

Теорема 2.4.10. Пусть $T*$-представление $u' = f(a)u$ является контравариантным $T*$-представлением. Тогда $T*$-представление $u' = h(a)u = f(a^{-1})u$ является ковариантным $T*$-представлением.

Доказательство. Утверждение следует из цепочки равенств

$$h(ab) = f((ab)^{-1}) = f(b^{-1}a^{-1}) = f(a^{-1})f(b^{-1}) = h(a)h(b)$$

Замечание 2.4.11. Если предположить, что выбор с какой стороны писать оператор представления произволен, то может создаться впечатление, что мы можем ограничиться рассмотрением либо $T*$-представлений, либо ковариантных представлений. Раздел 5.2 служит хорошей иллюстрацией, что разные формы представления существенны. В тех случаях, когда необходимо указать порядок сомножителей, мы будем пользоваться операторной формой записи. Теоремы 2.5.12, 2.5.15 являются примерами, когда функциональная запись имеет преимущество.

Определение 2.4.12. Пусть f - $T*$-представление группы G в множестве M. Для любого $v \in M$ мы определяем орбиту $T*$-представления группы G как множество

$$f(G)v = \{w = f(g)v : g \in G\}$$

Так как $f(e) = \delta$, то $v \in f(G)v$.

Теорема 2.4.13. Если

$$(2.4.16) \quad v \in f(G)u$$

то

$$f(G)u = f(G)v$$
Доказательство. Из (2.4.16) следует существование \(a \in G \) такого, что
(2.4.17) \[v = f(a)u \]
Если \(w \in f(G)v \), то существует \(b \in G \) такой, что
(2.4.18) \[w = f(b)v \]
Подставив (2.4.17) в (2.4.18), мы получим
(2.4.19) \[w = f(b)(f(a)u) \]
На основании (2.4.2) из (2.4.19) следует, что \(w \in f(G)u \). Таким образом,
\[f(G)v \subseteq f(G)u \]
На основании (2.4.11) из (2.4.17) следует, что
(2.4.20) \[u = f(a)^{-1}v = f(a^{-1})v \]
Равенство (2.4.20) означает, что \(u \in f(G)v \) и, следовательно,
\[f(G)u \subseteq f(G)v \]
Это завершает доказательство. □

Таким образом, \(T^\ast \)-представление \(f \) группы \(G \) в множестве \(M \) порождает отношение эквивалентности \(S \) и орбита \(f(G)u \) является классом эквивалентности. Мы будем пользоваться обозначением \(M/f(G) \) для фактор множества \(M/S \) и мы будем называть это множество пространством орбит \(T^\ast \)-представления \(f \).

Теорема 2.4.14. Если определены \(T^\ast \)-представления \(f_1 \) группы \(G \) в множестве \(M_1 \) и \(T^\ast \)-представление \(f_2 \) группы \(G \) в множестве \(M_2 \), то мы можем определить прямое произведение \(T^\ast \)-представлений \(f_1 \) и \(f_2 \) группы
\[f = f_1 \times f_2 : G \to M_1 \otimes M_2 \]
\[f(g) = (f_1(g), f_2(g)) \]

Доказательство. Чтобы показать, что \(f \) является представлением, достаточно показать, что \(f \) удовлетворяет определению 2.4.1.
\[f(e) = (f_1(e), f_2(e)) = (\delta_1, \delta_2) = \delta \]
\[f(ab)u = (f_1(ab)u_1, f_2(ab)u_2) \]
\[= (f_1(a)(f_1(b)u_1), f_2(a)(f_2(b)u_2)) \]
\[= f(a)(f_1(b)u_1, f_2(b)u_2) \]
\[= f(a)(f(b)u) \]
□
2.5. Однотранзитивное $T*$-представление группы

Определение 2.5.1. Мы будем называть ядром неэффективности $T*$-представления группы G множество

$$K_f = \{g \in G : f(g) = \delta\}$$

Теорема 2.5.2. Ядро неэффективности $T*$-представления группы G — это подгруппа группы G.

Доказательство. Допустим $f(a_1) = \delta$ и $f(a_2) = \delta$. Тогда

$$f(a_1a_2)u = f(a_1)(f(a_2)u) = u$$

$$f(a^{-1}) = f^{-1}(a) = \delta$$

Теорема 2.5.3. $T*$-представление группы G эффективно тогда и только тогда, когда ядро неэффективности $K_f = \{e\}$.

Доказательство. Утверждение является следствием определений 2.1.8 и 2.5.1 и теоремы 2.5.2.

Если действие не эффективно, мы можем перейти к эффективному заменой группой $G_1 = G/K_f$, пользуясь факторизацией по ядру неэффективности. Это означает, что мы можем изучать только эффективное действие.

Определение 2.5.4. Рассмотрим $T*$-представление f группы G в множестве M. Малая группа или группа стабилизации элемента $x \in M$ — это множество

$$G_x = \{g \in G : f(g)x = x\}$$

Мы будем называть $T*$-представление f группы G свободным, если для любого $x \in M$ группа стабилизации $G_x = \{e\}$.

Теорема 2.5.5. Если определено свободное $T*$-представление f группы G на множестве A, то определено взаимно однозначное соответствие между орбитами представления, а также между орбитой представления и группой G.

Доказательство. Допустим для точки $a \in A$ существуют $g_1, g_2 \in G$

(2.5.1)

$$f(g_1)a = f(g_2)a$$

Умножим обе части равенства (2.5.1) на $f(g_1^{-1})$

$$a = f(g_1^{-1})f(g_2)a$$

Поскольку представление свободное, $g_1 = g_2$. Теорема доказана, так как мы установили взаимно однозначное соответствие между орбитой и группой G.

Определение 2.5.6. Мы будем называть пространство V однородным пространством группы G, если мы имеем однотранзитивное $T*$-представление группы G на V.

□
Теорема 2.5.7. Если мы определим однотранзитивное ковариантное представление на многообразии \(A \), то мы можем однозначно определить координаты на \(A \), пользуясь координатами на группе \(G \).

Если \(f \) - ковариантное \(T^\star \)-представление, то \(f(a) \) эквивалентно \(T^\star \)-сдвигу \(t(a) \) на группе \(G \). Если \(f \) - ковариантное \(\star T \)-представление, то \(f(a) \) эквивалентно \(\star T \)-сдвигу \(\star t(a) \) на группе \(G \).

Доказательство. Мы выберем точку \(v \in A \) и определим координаты точки \(w \in A \) как координаты \(a \in G \) такового, что \(w = f(a)v \). Координаты, определённые таким образом, однозначны с точностью до выбора начальной точки \(v \in A \) так как действие эффективно.

Если \(f \) - ковариантное \(T^\star \)-представление, мы будем пользоваться записью \(f(a)v = av \)

Так как запись

\[f(a)(f(b)v) = a(bv) = (ab)v = f(ab)v \]

совместима с групповой структурой, мы видим, что ковариантное \(T^\star \)-представление \(f \) эквивалентно \(T^\star \)-сдвигу.

Если \(f \) - ковариантное \(\star T \)-представление, мы будем пользоваться записью \(vf(a) = va \)

Так как запись

\[(vf(b))f(a) = (vb)a = v(ba) = vf(ba) \]

совместима с групповой структурой, мы видим, что ковариантное \(\star T \)-представление \(f \) эквивалентно \(\star T \)-сдвигу.

Замечание 2.5.8. Мы будем записывать \(T^\star \)-ковариантное эффективное представление группы \(G \) в форме

\[v' = t^\star(a)v = av \]

Орбита этого представления имеет вид

\[Gv = t^\star(G)v \]

Мы будем пользоваться обозначением \(M/t^\star(G) \) для пространства орбит \(T^\star \)-ковариантного эффективного представления группы.

Замечание 2.5.9. Мы будем записывать \(\star T \)-ковариантное эффективное представление группы \(G \) в форме

\[v' = v \star t(a) = va \]

Орбита этого представления имеет вид

\[vG = v \star t(G) \]

Мы будем пользоваться обозначением \(M/\star t(G) \) для пространства орбит \(\star T \)-ковариантного эффективного представления группы.

Теорема 2.5.10. Свободное \(T^\star \)-представление эффективно. Свободное \(T^\star \)-представление \(f \) группы \(G \) в множестве \(M \) однотранзитивно на орбите.

Доказательство. Следствие определения 2.5.4.

Теорема 2.5.11. \(T^\star \) и \(\star T \)-сдвиги на группе \(G \) перестановочны.
ДОКАЗАТЕЛЬСТВО. Это следует из ассоциативности группы G

$$(t_*(a) \circ t_*(b))c = a(cb) = (ac)b = (t_*(b) \circ t_*(a))c$$

\square

Теорема 2.5.11 может быть сформулирована следующим образом.

Теорема 2.5.12. Пусть G - группа. Для любого $a \in G$ отображение $(id, t_*(a))$
является автоморфизмом представления T.

ДОКАЗАТЕЛЬСТВО. Согласно теореме 2.5.11

(2.5.2)

$$t_*(a) \circ t_*(b) = t_*(b) \circ t_*(a)$$

Равенство (2.5.2) совпадает с равенством (2.2.3) из определения 2.2.2 при условии $r = id, R = t_*(a)$.

\square

Теорема 2.5.13. Если мы определили однотранзитивное ковариантное T^*-
представление f группы G на многообразии M, то мы можем однозначно
определить однотранзитивное ковариантное T^*-представление h группы G
на многообразии M такое, что диаграмма

$$
\begin{array}{ccc}
M & \xrightarrow{h(a)} & M \\
\downarrow{f(b)} & & \downarrow{f(b)} \\
M & \xrightarrow{h(a)} & M
\end{array}
$$

коммутативна для любых $a, b \in G$.

ДОКАЗАТЕЛЬСТВО. Мы будем пользоваться групповыми координатами для
tочек $v \in M$. Тогда согласно теореме 2.5.7 мы можем записать T^*-сдвиг $t_*(a)$
вместо преобразования $f(a)$.

Пусть точки $v_0, v \in M$. Тогда мы можем найти одно и только одно $a \in G$
такое, что

$$v = v_0a = v_0 \cdot t(a)$$

Мы предположим

$$h(a) = t(a)$$

Существует $b \in G$ такое, что

$$w_0 = f(b)v_0 = t_*(b)v_0 \quad w = f(b)v = t_*(b)v$$

Согласно теореме 2.5.11 диаграмма

$$
\begin{array}{ccc}
v_0 & \xrightarrow{h(a)} & v \\
\downarrow{f(b)=t_*(b)} & & \downarrow{f(b)=t_*(b)} \\
w_0 & \xrightarrow{h(a)} & w
\end{array}
$$

коммутативна.

Изменяя b мы получим, что w_0 - это произвольная точка, принадлежащая
M.

². Это утверждение можно также найти в [2].
2.5. Однотранзитивное T^*-представление группы

Мы видим из диаграммы, что, если $v_0 = v$ then $w_0 = w$ и следовательно $h(e) = \delta$. С другой стороны, если $v_0 \neq v$, то $w_0 \neq w$ потому, что T^*-представление f однотранзитивно. Следовательно $\star T$-представление h эффективно.

Таким же образом мы можем показать, что для данного w_0 мы можем найти a такое, что $w = h(a)w_0$. Следовательно $\star T$-представление h однотранзитивно.

В общем случае, произведение преобразований T^*-представления f не коммутативно и следовательно $\star T$-представление h отлично от T^*-представления f. Таким же образом мы можем создать T^*-представление f, пользуясь $\star T$-представлением h.

Мы будем называть представления f и h парными представлениями группы G.

Замечание 2.5.14. Очевидно, что преобразования $t^*(a)$ и $\star t(a)$ отличаются, если группа G неабелева. Тем не менее, они являются отображениями на. Теорема 2.5.13 утверждает, что, если оба представления $\star T$- и T^*-сдвига существуют на многообразии M, то мы можем определить два перестановочных представления на многообразии M. Только T^*- или $\star T$-сдвиг не может представлять оба типа представления. Чтобы понять почему это так, мы можем изменить диаграмму (2.5.3) и предположить $h(a)v_0 = t^*(a)v_0 = v$ вместо $h(a)v_0 = v_0, t(a) = v$ и проанализировать, какое выражение $h(a)$ имеет в точке w_0. Диаграмма

\[\begin{array}{ccc}
 v_0 & \xrightarrow{h(a) = t^*(a)} & v \\
 & \downarrow{f(b) = t^*(b)} & \downarrow{f(b) = t^*(b)} \\
 w_0 & \xrightarrow{h(a)} & w
\end{array} \]

эквивалентна диаграмме

\[\begin{array}{ccc}
 v_0 & \xrightarrow{h(a) = t^*(a)} & v \\
 & \downarrow{f(b) = t^*(b)} & \downarrow{f(b) = t^*(b)} \\
 w_0 & \xrightarrow{h(a)} & w
\end{array} \]

и мы имеем $w = bv = bab^{-1}w_0 = bab^{-1}w_0$. Следовательно

\[h(a)w_0 = (bab^{-1})w_0 \]

Мы видим, что представление h зависит от его аргумента.

Теорема 2.5.15. Пусть f и h - парные представления группы G. Для любого $a \in G$ отображение $(id, h(a))$ является автоморфизмом представления f.

Доказательство. Следствие теорем 2.5.12 и 2.5.13.

Замечание 2.5.16. Существует ли автоморфизм представления t^*, отличный от автоморфизма $(id, t(a))$? Если мы положим

\[r(g) = cgc^{-1}, \]

\[R(a)(m) = ctma^{-1} \]

то нетрудно убедиться, что отображение $(r, R(a))$ является автоморфизмом представления t^*.
2.6. Базис T^*-представления

Определение 2.6.1. Пусть $f : A \to \ast M$ представление Ω_1-алгебры A в Ω_2-алгебре M. Множество $N \subset M$ называется стабильным множеством представления f, если $f(a)(m) \in N$ для любых $a \in A$, $m \in N$. □

Мы также будем говорить, что множество M стабильно относительно представления f.

Теорема 2.6.2. Пусть $f : A \to \ast M$ представление Ω_1-алгебры A в Ω_2-алгебре M. Пусть множество $N \subset M$ является подалгеброй Ω_2-алгебры M и стабильным множеством представления f. Тогда существует представление $f_N : A \to \ast N$ такое, что $f_N(a) = f(a)|_N$. Представление f_N называется подпредставлением представления f.

Доказательство. Пусть ω_1 - n-арная операция Ω_1-алгебры A. Тогда для любых $a_1, \ldots, a_n \in A$ и любого $b \in N$

$$\omega_1(f_N(a_1), \ldots, f_N(a_n))(b) = \omega_1(f(a_1), \ldots, f(a_n))(b) = f(\omega_1(a_1, \ldots, a_n))(b) = f_N(\omega_1(a_1, \ldots, a_n))(b)$$

Пусть ω_2 - n-арная операция Ω_2-алгебры M. Тогда для любых $b_1, \ldots, b_n \in N$ и любого $a \in A$

$$\omega_2(f_N(a)(b_1), \ldots, f_N(a)(b_n)) = \omega_2(f(a)(b_1), \ldots, f(a)(b_n)) = f(a)(\omega_2(b_1, \ldots, b_n)) = f_N(a)(\omega_2(b_1, \ldots, b_n))$$

Утверждение теоремы доказано. □

Из теоремы 2.6.2 следует, что если f_N - подпредставление представления f, то отображение $(id : A \to A, id_N : N \to M)$ является морфизмом представлений.

Теорема 2.6.3. Множество $^{2,4} B_f$ всех подпредставлений представления f порождает систему замыканий на Ω_2-алгебре M и, следовательно, является полной структурой.

Доказательство. Пусть $(K_\lambda)_{\lambda \in \Lambda}$ - семейство подалгебр Ω_2-алгебры M, стабильных относительно представления f. Операцию пересечения на множестве B_f мы определим согласно правилу

$$\bigcap fK_\lambda = f \cap K_\lambda$$

Операция пересечения подпредставлений определена корректно. $\cap K_\lambda$ - подалгебра Ω_2-алгебры M. Пусть $m \in \cap K_\lambda$. Для любого $\lambda \in \Lambda$ и для любого $a \in A$, 2,4Это определение аналогично определению структуры подалгебр ([8], стр. 93, 94)
2.6. Базис T^*-представления

$f(a)(m) \in K_\lambda$. Следовательно, $f(a)(m) \in \cap K_\lambda$. Следовательно, $\cap K_\lambda$ - стабильное множество представления f. □

Обозначим соответствующий оператор замыкания через J_f. Таким образом, $J_f(X)$ является пересечением всех подалгебр Ω_2-алгебры M, содержащих X и стабильных относительно представления f.

Теорема 2.6.4. Пусть $\hat{f} : A \to ^*M$
представление Ω_1-алгебры A в Ω_2-алгебре M. Пусть $X \subset M$. Определем подмножество $X_k \subset M$ индукцией по k.

$$
X_0 = X
x \in X_k \Rightarrow x \in X_{k+1}
$$

$x_1 \in X_k, ..., x_n \in X_k, \omega \in \mathcal{H}(n) \Rightarrow \omega(x_1, ..., x_n) \in X_{k+1}$

$$
x \in X_k, a \in A \Rightarrow f(a)(x) \in X_{k+1}
$$

Тогда

$$
\bigcup_{k=0}^{\infty} X_k = J_f(X)
$$

Доказательство. Если положим $U = \cup X_k$, то по определению X_k имеем $X_0 \subset J_f(X)$, и если $X_k \subset J_f(X)$, то $X_{k+1} \subset J_f(X)$. По индукции следует, что $X_k \subset J_f(X)$ для всех k. Следовательно,

(2.6.1)

Если $a \in U^n, a = (a_1, ..., a_n)$, где $a_i \in X_{k_i}$, а если $k = \max\{k_1, ..., k_n\}$, то $\omega(a_1, ..., a_n) \in X_{k+1} \subset U$. Следовательно, U является подалгеброй Ω_2-алгебры M.

Если $m \in U$, то $m \in X_k$ для некоторого k. Следовательно, $f(a)(m) \in X_{k+1} \subset U$ для любого $a \in A$. Следовательно, U - стабильное множество представления f.

Так как U - подалгеброй Ω_2-алгебры M и стабильное множество представления f, то определено подпредставление f_U. Следовательно,

(2.6.2)

$J_f(X) \subset U$

Из (2.6.1), (2.6.2), следует $J_f(X) = U$. □

Определение 2.6.5. $J_f(X)$ называется подпредставлением, порождённым множеством X, а X - множеством образующих подпредставления $J_f(X)$. В частности, множеством образующих представления f будет такое подмножество $X \subset M$, что $J_f(X) = M$. □

Определение 2.6.6. Пусть $X \subset M$ - множество образующих представления $f : A \to ^*M$

Пусть отображение

$$(h : A \to A, H : M \to M)$$

$\text{Утверждение теоремы аналогично утверждению теоремы 5.1, [8], стр. 94.}
является эндоморфизмом представления \(f \). Пусть множество \(X' = HX \) является образом множества \(X \) при отображении \(H \). Эндоморфизм \((h, H)\) представления \(f \) называется невырожденным на множестве образующих \(X \), если множество \(X' \) является множеством образующих представления \(f \). В противном случае, эндоморфизм представлений \((h, H)\) называется вырожденным на множестве образующих \(X \).

Определение 2.6.7. Эндоморфизм представления \(f \) называется невырожденным, если он невырожден на любом множестве образующих.

Нетрудно видеть, что определение множества образующих представления не зависит от того, эффективно представление или нет. Поэтому в дальнейшем мы будем предполагать, что представление эффективно и будем опираться на соглашение для эффективного \(T^* \)-представления в замечании 2.1.9.

Из теоремы 2.6.4 следует следующее определение.

Определение 2.6.8. Пусть \(X \subset M \). Для любого \(x \in J_f(X) \) существует \(\Omega_2 \)-слово, определённое согласно следующему правилу:

1. Если \(m \in X \), то \(m = \Omega_2 \)-слово.
2. Если \(m_1, ..., m_n = \Omega_2 \)-слова и \(\omega \in \Omega_2(n) \), то \(m_1...m_n\omega = \Omega_2 \)-слово.
3. Если \(m = \Omega_2 \)-слово и \(a \in A \), то \(am = \Omega_2 \)-слово.

\(\Omega_2 \)-слово \(w(m, f, X) \), представляющее данный элемент \(m \in J_f(X) \), называется координатами элемента \(m \) относительно множества \(X \). Обозначим \(W(f, X) \) множество координат представления \(J_f(X) \).

Представление \(m \in M \) в виде \(\Omega_2 \)-слова неоднозначно. Если \(m_1, ..., m_n = \Omega_2 \)-слова, \(\omega \in \Omega_2(n) \) и \(a = A \), то \(\Omega_2 \)-слова \(am_1...m_n\omega \) и \(am_1...am_n\omega \) описывают один и тот же элемент \(\Omega_2 \)-алгебры \(M \). Возможны равенства, связанные со спецификой представления. Например, если \(\omega \) является операцией \(\Omega_1 \)-алгебры \(A \) и операцией \(\Omega_2 \)-алгебры \(M \), то мы можем потребовать, что \(\Omega_2 \)-слова \(a_1...a_n\omega x \) и \(a_1x...a_n\omega x \) описывают один и тот же элемент \(\Omega_2 \)-алгебры \(M \). Перечисленные выше равенства определяют отношение эквивалентности \(r_{\Omega_2} \) на множестве \(\Omega_2 \)-символов \(M_{\Omega_2} \).

Теорема 2.6.9. Эндоморфизм \((r, R)\) представления

\[f : A \rightarrow *M \]

порождает отображение координат

\[w(f, r, R, X) : W(f, X) \rightarrow W(f, X') \quad X \subset M
\]

такое, что

1. Если \(m \in X, m' = R(m) \), то
 \[w(f, r, R, X)(m) = m' \]

2. Если \(m_1, ..., m_n \in W(f)(X) \)
 \[m_1' = w(f, r, R, X)(m_1) \quad ..., \quad m_n' = w(f, r, R, X)(m_n) \]
 то для операции \(\omega \in \Omega_2(n) \) справедливо
 \[w(f, r, R, X)(m_1...m_n\omega) = m_1'...m_n'\omega \]
2.6. Базис T^\star-представления

Если $m \in W(f, X)$, $m' = w(f, r, R, X)(m)$,
$a \in A$, $a' = r(a)$,
то $w(f, r, R, X)(am) = a'm'$

Доказательство. Утверждения (1), (2) теоремы справедливы в силу определения эндоморфизма R. Утверждение (3) теоремы следует из равенства (2.2.4).

Теорема 2.6.10. Пусть $f : A \to {}^n M$
представление Ω_1-алгебры A в Ω_2-алгебре M. Пусть отображение $r : A \to A$
является эндоморфизмом Ω_1-алгебры A. Для заданных множеств $X \subset M$, $X' \subset M$ пусть отображение $R_1 : X \to X'$
согласовано со структурой Ω_2-алгебры M, т. е. для данной операции $\omega \in \Omega_2(n)$, если
$x_1, ..., x_n, x_1...x_n\omega \in X$
то $R_1(x_1...x_n\omega) = R_1(x_1)...R_1(x_n)\omega$. Рассмотрим отображение координат
$w(r, R_1, X) : W(f, X) \to W(f, X')$
удовлетворяющее условиям (1), (2), (3) теоремы 2.6.9. Существует эндоморфизм $R : M \to M$
opределённый правилом

\[R(m) = w(f, r, R_1, X)(w(m, f, X)) \]

и отображение (r, R) является морфизмом представлений $J_f(X)$ и $J_f(X')$.

Доказательство. Мы будем доказывать теорему индукцией по сложности Ω_2-слова.

Если $w(m, f, X) = m$, то $m \in X$. Согласно условию (1) теоремы 2.6.9,
$R(m) = w(r, R_1, X)(w(m, f, X)) = w(r, R_1, X)(m) = R_1(m)$
Следовательно, на множестве X отображения R и R_1 совпадают, и отображение R согласовано со структурой Ω_2-алгебры.

Пусть $\omega \in \Omega_2(n)$. Пусть предположение индукции верно для $m_1, ..., m_n \in J_f(X)$. Пусть $w_1 = w(m_1, X)$, $w_n = w(m_n, X)$. Если $m = m_1...m_n\omega$, то согласно условию (2) определения 2.6.8,
$w(m, f, X) = w_1...w_n\omega$
Согласно условию (2) теоремы 2.6.9,
$R(m) = w(r, R_1, X)(w(m, f, X)) = w(r, R_1, X)(w_1...w_n\omega) = w(r, R_1, X)(w_1)...w(r, R_1, X)(w_n)\omega = R(m_1)...R(m_n)\omega$
Следовательно, отображение R является эндоморфизмом Ω_2-алгебры M.

Пусть предположение индукции верно для $m \in J_f(X)$, $w(m, X) = w_m$. Пусть $a \in A$. Согласно условию (3) определения 2.6.8,

$$w(am, X) = aw_m$$

Согласно условию (3) теоремы 2.6.9,

$$R(am) = w(r, R_1, X)(w(am, X)) = w(r, R_1, X)(aw_m) = r(a)w(r, R_1, X)(w_m) = r(a)R(m)$$

Из равенства (2.2.4) следует, что отображение (r, R) является морфизмом представления f. □

Теорема 2.6.11. Автоморфизм (r, R) представления $f : A \rightarrow ^* M$ является невырожденным эндоморфизмом.

ДОКАЗАТЕЛЬСТВО. Пусть X - множество образующих представления f. Пусть $X' = R(X)$.

Согласно теореме 2.6.9 эндоморфизм (r, R) порождает отображение координат $w(f, r, R, X)$.

Пусть $m \in M$. Так как R - автоморфизм, то существует $m \in M$, $R(m) = m'$. Согласно определению 2.6.8 $w(m, X)$ - координаты m относительно множества образующих X. Согласно теореме 2.6.10,

$$w(m', X') = w(f, r, R, X)(w(m, X))$$

координаты m' относительно множества образующих X'. Следовательно, X' - множество образующих представления f. Согласно определению 2.6.7, автоморфизм (r, R) - невырожден.

Если множество $X \subseteq M$ является множеством образующих представления f, то любое множество Y, $X \subseteq Y \subseteq M$ также является множеством образующих представления f. Если существует минимальное множество X, порождающее представление f, то такое множество X называется **базисом представления f.**

Теорема 2.6.12. Множество образующих X представления f является базисом тогда и только тогда, когда для любого $m \in X$ множество $X \setminus \{m\}$ не является множеством образующих представления f.

ДОКАЗАТЕЛЬСТВО. Пусть X - множество образующих расслоения f. Допустим для некоторого $m \in X$ существует слово (2.6.4)

$$w = w(m, f, X \setminus \{m\})$$

Рассмотрим элемент m', для которого слово (2.6.5)

$$w' = w(m', f, X)$$

зависит от m. Согласно определению 2.6.8, любое вхождение m в слово w' может быть заменено словом w. Следовательно, слово w' не зависит от m, а множество $X \setminus \{m\}$ является множеством образующих представления f. Следовательно, X не является базисом расслоения f. □
Замечание 2.6.13. Доказательство теоремы 2.6.12 даёт нам эффективный метод построения базиса представления f. Выбрав произвольное множество образующих, мы шаг за шагом исключаем те элементы множества, которые имеют координаты относительно остальных элементов множества. Если множество образующих представления бесконечно, то рассмотренная операция может не иметь последнего шага. Если представление имеет конечное множество образующих, то за конечное число шагов мы можем построить базис этого представления.

Как отметил Кон в [8], стр. 96, 97, представление может иметь неживучие базисы. Например, циклическая группа шестого порядка имеет базисы $\{a\}$ и $\{a^2, a^3\}$, которые нельзя отобразить один в другой эндоморфизмом представления.

Теорема 2.6.14. Автоморфизм представления f отображает базис представления f в базис.

Доказательство. Пусть отображение (r, R) - автоморфизм представления f. Пусть множество X - базис представления f. Пусть $X' = R(X)$.

Допустим множество X' не является базисом. Согласно теореме 2.6.12 существует $m' \in X'$ такое, что $X' \setminus \{x'\}$ является множеством образующих представления f. Согласно теореме 2.3.3 отображение (r^{-1}, R^{-1}) является автоморфизмом представления f. Согласно теореме 2.6.11 и определению 2.6.7, множество $X \setminus \{m\}$ является множеством образующих представления f. Полученное противоречие доказывает теорему. □

Пусть X - базис представления f. Согласно теоремам 2.6.9, 2.6.10, автоморфизм (r, R) представления f однозначно определяет отображением координат $w(f, r, R, X)$. Пусть $X' = R(X)$ - образ базиса X при отображении R. Согласно теореме 2.6.14, множество X' является базисом представления f.

Определение 2.6.15. Пусть X - базис представления f и $Y \subseteq M$. Отображение

$$V : X \to W(f, Y)$$

и эндоморфизм r \mathfrak{G}-алгебры A порождают отображение

$$W(r, V) : W(f, X) \to W(f, Y)$$

определенную согласно следующим правилам.

1. Если $m \in X$, то

\[(2.6.6)\quad W(r, V)(m) = V(m)\]

2. Если $m_1, \ldots, m_n \in M$, то для операции $\omega \in \Omega_2(n)$ справедливо

\[(2.6.7)\quad W(r, V)(w(m_1, f, X) \ldots w(m_n, f, X) \omega) = W(r, V)(w(m_1, f, X)) \ldots W(r, V)(w(m_n, f, X)) \omega\]

3. Если $m \in M$, $a \in A$, то

\[(2.6.8)\quad W(r, V)(aw(m, f, X)) = r(a)W(r, V)(w(m, f, X))\]

□
Теорема 2.6.16. Пусть X - базис представления f. Для заданного автоморфизма (r, R) представления f рассмотрим отображение

$$V(r, R) : x \in X \rightarrow w(R(x), f, X) \in W(f, X)$$

Автоморфизм (r, R) представления порождает отображение координат

$$W(f, r, R, X)(w(m, f, X)) = W(r, V)(w(m, f, X))$$

которое удовлетворяет равенству

$$W(f, r, R, X)(w(m, f, X)) = w(R(m), f, X)$$

Доказательство. Мы будем доказывать теорему индукцией по сложности Ω_2-слова.

Если $m \in X$, то

$$w(m, f, X) = m$$

Равенство (2.6.10) следует из равенств (2.6.11), (2.6.9), (2.6.6).

Пусть теорема верна для $m_1, ..., m_n \in M$. Пусть $\omega \in \Omega_2(n)$. Если $m \in M$, $m = m_1...m_n\omega$, то из условия (2) определения 2.6.8 и равенства (2.6.7) следует

$$W(f, r, R, X)(w(m, f, X))$$

$$= W(f, r, R, X)(w(m_1, f, X)...w(m_n, f, X)\omega)$$

$$= W(r, V)(w(m_1, f, X)...w(m_n, f, X)\omega)$$

$$= W(r, V)(w(m_1, f, X)...W(r, V)(w(m_n, f, X))\omega$$

$$= W(f, r, R, X)(w(m_1, f, X))...W(f, r, R, X)(w(m_n, f, X))\omega$$

$$= w(R(m_1), f, X)...w(R(m_n), f, X)\omega$$

$$= w(R(m_1...m_n\omega), f, X) = w(R(m), f, X)$$

Равенство (2.6.10) для заданного m следует из равенства (2.6.12).

Пусть теорема верна для $m \in M$. Пусть $a \in A$. Из условия (3) определения 2.6.8 и равенства (2.6.8) следует

$$W(f, r, R, X)(w(am, f, X))$$

$$= W(f, r, R, X)(aw(m, f, X))$$

$$= W(r, V)(aw(m, f, X))$$

$$= r(a)W(r, V)(w(m, f, X))$$

$$= r(a)W(f, r, R, X)(w(m, f, X))$$

$$= r(a)w(R(m), f, X) = w(r(a)R(m), f, X)$$

$$= w(R(am), f, X)$$

Равенство (2.6.10) для am следует из равенства (2.6.13).

Из теоремы 2.6.16 следует, что множество координат $w(f, X)(r, R)$ определяет правило как изменяются координаты относительно базиса X при автоморфизме представления f. А именно, если мы каждое входящее слово $w(R(x), f, X)$ заменим словом $w(R(x), f, X)$, то мы получим слово $w(R(m), f, X)$. Мы будем называть множество слов

$$w(f, X)(r, R) = \{w(x', f, X) : x' \in R(X)\} = \{w(R(x), f, X) : x \in X\}$$

координатами автоморфизма (r, R) представления f. \[\square\]
2.7. Многообразие базисов представления

Множество $B(f)$ базисов представления f называется многообразием базисов представления f.

Согласно теореме 2.6.14, автоморфизм (id, R) представления f порождает преобразование $R(f)$ многообразия базисов представления. Это преобразование называется активным. Согласно теореме 2.3.3, определено активное представление

$$f_B : \mathfrak{A}(f) \to ^* \mathcal{B}(f)$$

луны $\mathfrak{A}(f)$ в многообразии базисов $\mathcal{B}(f)$.

Аutomорфизм (id, S) представления f_B называется пассивным преобразованием многообразия базисов представления.

Теорема 2.7.1. Пусть (id, S) - пассивное преобразование многообразия базисов представления f. Пусть X - базис представления f, $X' = S(X)$. Пусть для базиса Y существует активное преобразование R такое, что $Y = R(X)$. Положим $Y' = R(X')$. Тогда $S(Y) = Y'$.

Доказательство. Теорема утверждает, что пассивное отображение определено на орбите активного. Для доказательства теоремы достаточно доказать коммутативность диаграммы

\[
\begin{array}{ccc}
B(f) & \xrightarrow{R} & B(f) \\
\downarrow S & & \downarrow S \\
B(f) & \xrightarrow{R} & B(f)
\end{array}
\]

2.8. Несколько примеров базиса представления

Пример 2.8.1. Рассмотрим векторное пространство V над полем F. Если дано множество векторов $\overline{e}_1, \ldots, \overline{e}_n$ то, согласно алгоритму построения координат над векторным пространством, координаты включают такие элементы как $\overline{e}_1 + \overline{e}_2$ и $a \overline{e}_1$. Рекурсивно применяя правила, приведенные в определении 2.6.8, мы придем к выводу, что множество векторов $\overline{e}_1, \ldots, \overline{e}_n$ порождает множество линейных комбинаций

$$a_1 \overline{e}_1 + \ldots + a_n \overline{e}_n$$

Согласно теореме 2.6.12, множество векторов $\overline{e}_1, \ldots, \overline{e}_n$ является базисом при условии, если для любого i, $i = 1, \ldots, n$, вектор \overline{e}_i не является линейной комбинацией остальных векторов. Это требование равносильно требованию линейной независимости векторов.

Пример 2.8.2. Пусть G - абелева группа, и M - множество. Рассмотрим эффективное представление группы G на множестве M. Для заданных $a \in G$, $A \in M$ положим $A \to A + a$. Мы будем также пользоваться записью $a = \overrightarrow{AB}$, если $B = A + a$. Тогда действие группы можно представить в виде $B = A + \overrightarrow{AB}$. В качестве базиса представления можно выбрать множество точек таким образом, что каждой орбите представления принадлежит одна и только одна точка.
Глава 3

Башня представлений универсальных алгебр

3.1. Башня представлений универсальных алгебр

Рассмотрим множество Ω_i-алгебр A_i, $i = 1, ..., n$. Положим $\mathcal{A} = (A_1, ..., A_n)$. Положим $\overline{f} = (f_1, ..., f_{n-1}, n)$.

Определение 3.1.1. Рассмотрим множество Ω_i-алгебр A_i, $i = 1, ..., n$. Множество представлений $f_{i,i+1}$, $i = 1, ..., n-1$, Ω_i-алгебры A_i в Ω_{i+1}-алгебре A_{i+1} называется башней $(\mathcal{A}, \overline{f})$ представлений Ω-алгебр.

Мы можем проиллюстрировать определение 3.1.1 с помощью диаграммы

Ω-алгебра A_i в Ω_{i+1}-алгебре A_{i+1} порождает преобразование Ω_{i+1}-алгебры Ω_{i+2}, определённое равенством

$$f_{i,i+1}(a_i)((f_{i+1,i+2}(a_{i+1}))(\overline{f}_{i,i+1}(a_i))) = f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1}))$$

Теорема 3.1.2. Отображение

$$f_{i,i+2} : A_i \to \Omega_{i+2}$$

является представлением Ω-алгебры A_i в Ω_{i+1}-алгебре Ω_{i+2}.

Доказательство. Произвольному $a_{i+1} \in A_{i+1}$ соответствует автоморфизм $f_{i+1,i+2}(a_{i+1}) \in \Omega_{i+2}$. Произвольному $a_i \in A_i$ соответствует автоморфизм $f_{i,i+1}(a_i) \in \Omega_{i+1}$. Так как образом элемента $a_{i+1} \in A_{i+1}$ является элемент $f_{i,i+1}(a_i)(a_{i+1}) \in A_{i+1}$, то тем самым элемент $a_i \in A_i$ порождает преобразование Ω_{i+1}-алгебры Ω_{i+2}, определённое равенством

$$f_{i,i+2}(a_i)((f_{i+1,i+2}(a_{i+1}))(\overline{f}_{i,i+1}(a_i))) = f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1}))$$
Пусть ω - n-арная операция Ω*-алгебры. Так как $f_{i,i+1}$ - гомоморфизм Ω*-алгебры, то

$$f_{i,i+1}(ω(a_{i,1},...,a_{i,n})) = ω(f_{i,i+1}(a_{i,1}),...,f_{i,i+1}(a_{i,n}))$$

(3.1.3)

Для $a_{1},...,a_{n} \in A_{i}$ мы определяем операцию ω на множестве $^{*}A_{i+2}$ с помощью равенства

$$ω(f_{i,i+2}(a_{i,1}))(f_{i,i+2}(a_{i,1})),...,f_{i,i+2}(a_{i,n}))(f_{i,i+2}(a_{i,1})))$$

(3.1.4)

$$= ω(f_{i+1,i+2}(a_{i+1}))(a_{i+1}),...,f_{i+1,i+2}(a_{i,n}))(a_{i+1}))$$

$$= f_{i+1,i+2}(ω(a_{i+1},...,a_{i,n}))(a_{i+1}))$$

Пусть i_{n} - арная операция $Ω$*-алгебры. Тогда отображение $f_{i,i+1}$ является гомоморфизмом $Ω$*-алгебры. Следовательно, мы определили структуру $Ω$*-алгебры на множестве $^{*}A_{i+2}$.

Из (3.1.4) и (3.1.3) следует

$$ω(f_{i,i+2}(a_{i,1}))(f_{i,i+2}(a_{i,1})),...,f_{i,i+2}(a_{i,n}))(f_{i,i+2}(a_{i,1})))$$

(3.1.5)

$$= f_{i,i+2}(f_{i,i+2}(ω(a_{i,1},...,a_{i,n}))(ω_{n}))$$

$$= f_{i,i+2}(ω(a_{i,1},...,a_{i,n}))(f_{i,i+2}(ω_{n}))$$

Из равенства (3.1.5) следует

$$ω(f_{i,i+2}(a_{i,1}),...,f_{i,i+2}(a_{i,n})) = f_{i,i+2}(ω(a_{i,1},...,a_{i,n}))$$

Следовательно, отображение $f_{i,i+2}$ является гомоморфизмом $Ω$*-алгебры. Следовательно, отображение $f_{i,i+2}$ является T*-представлением $Ω$*-алгебры A_{i} в $Ω_{i+1}$-алгебре $^{*}A_{i+2}$.

Теорема 3.1.3. $(id, f_{i,i+2})$ является морфизмом T*-представлений $Ω$*-алгебры из $f_{i,i+1}$ в $f_{i,i+2}$.

Доказательство. Рассмотрим более детально диаграмму (3.1.1).

(3.1.6)

$A_{i+1} \xrightarrow{f_{i,i+1}} f_{i+1,i+2} \xrightarrow{*} ^{*}A_{i+2}$

Утверждение теоремы следует из равенства (3.1.2) и определения 2.2.2.

Теорема 3.1.4. Рассмотрим башню (A, f) представлений Ω*-алгебр. Если тождественное преобразование

$$δ_{i+2} : A_{i+2} \rightarrow A_{i+2}$$
\(\Omega_{i+2} \)-алгебры \(A_{i+2} \) принадлежит представлению \(f_{i+1,i+2} \), то представление \(f_{i,i+2} \) \(\Omega_i \)-алгебры \(A_i \) в \(\Omega_{i+1} \)-алгебре \(*A_{i+2} \) может быть продолжено до представления

\[
f'_{i,i+2} : A_i \to *A_{i+2}
\]

\(\Omega_i \)-алгебры \(A_i \) в \(\Omega_{i+2} \)-алгебре \(A_{i+2} \).

Докажем. Согласно равенству (3.1.2), для заданного \(a_{i+1} \in A_{i+1} \) мы можем определить отображение

\[
f_{i,i+2} : A_i \to *A_{i+2}
\]

Пусть существует \(a_{i+1} \in A_{i+1} \) такое, что

\[
f_{i+1,i+2}(a_{i+1}) = \delta_{i+2}
\]

Тогда из (3.1.7), (3.1.8) следует

\[
f'_{i,i+2}(a_{i+2}) = f_{i+1,i+2}(f_{i,i+1}(a_{i+1}))(a_{i+2})
\]

Пусть \(\omega \) - \(n \)-арная операция \(\Omega_i \)-алгебры \(A_i \). Поскольку \(f_{i,i+2} \) - гомоморфизм \(\Omega_i \)-алгебры, то из равенства (3.1.2) следует

\[
f_{i,i+2}(\omega(a_{i+1},...,a_{i+n}))(f_{i+1,i+2}(a_{i+1}))(a_{i+2})
\]

(3.1.10)

\[
= \omega(f_{i+1,i+2}(a_{i+1}),(f_{i+1,i+2}(a_{i+1}))(a_{i+2})), ..., f_{i,i+2}(a_{i+n}))(f_{i+1,i+2}(a_{i+1}))(a_{i+2})
\]

(3.1.11)

Из равенств (3.1.8), (3.1.9), (3.1.11) следует

\[
f'_{i,i+2}(\omega(a_{i+1},...,a_{i+n}))(a_{i+2})
\]

(3.1.12)

\[
= \omega(f'_{i,i+2}(a_{i+2}),(a_{i+2})), ..., f'_{i,i+2}(a_{i+n}))(a_{i+2})
\]

(3.1.13)

\[
\omega(f'_{i,i+2}(a_{i+1},...,f'_{i,i+2}(a_{i+n}))) = f'_{i,i+2}(\omega(a_{i+1},...,a_{i+n}))
\]

При этом отображение \(f'_{i,i+2} \) является гомоморфизмом \(\Omega_i \)-алгебры. Следовательно, мы построили представление \(\Omega_i \)-алгебры \(A_i \) в \(\Omega_{i+2} \)-алгебре \(A_{i+2} \).

Определение 3.1.5. Рассмотрим базис представлений

\((A_1, A_2, A_3), (f_{1,2}, f_{2,3})\)

Отображение \(f_* = (f_{1,2}, f_{1,3}) \) называется представлением \(\Omega_1 \)-алгебры \(A_1 \) в представлении \(f_{2,3} \).

\[\square\]
Определение 3.1.6. Рассмотрим башню представлений \((A, \bar{f})\). Отображение

\[f_* = (f_{1,2}, \ldots, f_{1,n}) \]

называется представлением \(\Omega_1\)-алгебры \(A\) в башне представлений

\[(A_{[1]}, \bar{f}) = ((A_2, \ldots, A_n), (f_{2,3}, \ldots, f_{n-1,n})) \]

□

3.2. Морфизм башни \(T^*\)-представлений

Определение 3.2.1. Рассмотрим множество \(\Omega_i\)-алгебр \(A_i, B_i, i = 1, \ldots, n\). Множество отображений \((h_1, \ldots, h_n)\) называется морфизмом из башни \(T^*\)-представлений \((A, \bar{f})\) в башню \(T^*\)-представлений \((B, \bar{g})\), если для каждого \(i, i = 1, \ldots, n - 1\), пара отображений \((h_i, h_{i+1})\) является морфизмом \(T^*\)-представлений из \(f_{i,i+1}\) в \(g_{i,i+1}\).

Для любого \(i, i = 1, \ldots, n - 1\), мы имеем диаграмму

(3.2.1)

Равенства

(3.2.2) \[h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1} \]

(3.2.3) \[h_{i+1}(f_{i,i+1}(a_i)(a_{i+1})) = g_{i,i+1}(h_i(a_i))(h_{i+1}(a_{i+1})) \]

выражают коммутативность диаграммы (1). Однако уже для морфизма \((h_i, h_{i+1})\), \(i > 1\), диаграмма (3.2.1) неполна. Учитывая аналогичную диаграмму для морфизма \((h_i, h_{i+1})\) эта диаграмма на верхнем уровне приобретает вид

(3.2.4)
К сожалению, диаграмма (3.2.4) малоинформационна. Очевидно, что существует морфизм из $*A_{i+2}$ в $*B_{i+2}$, отображающий $f_{i,i+2}(a_i)$ в $g_{i,i+2}(h_i(a_i))$. Однако структура этого морфизма из диаграммы неясна. Мы должны рассмотреть отображение из $*A_{i+2}$ в $*B_{i+2}$, так же мы это сделали в теореме 3.1.3.

Теорема 3.2.2. Если $T\ast$-представления $f_{i+1,i+2}$ эффективные, то $(h_i,*h_{i+2})$ является морфизмом $T\ast$-представлений из $T\ast$-представления $f_{i,i+2}$ в $T\ast$-представление $g_{i,i+2} \Omega_i$-алгебры.

Доказательство. Рассмотрим диаграмму

![Diagram](image)

Существование отображения $*h_{i+2}$ и коммутативность диаграмм (2) и (3) следует из эффективности отображения $f_{i+1,i+2}$ и теоремы 2.2.6. Коммутативность диаграмм (4) и (5) следует из теоремы 3.1.3.

Из коммутативности диаграммы (4) следует

(3.2.5) \[f_{i+1,i+2} \circ f_{i,i+1}(a_i) = f_{i,i+2}(a_i) \circ f_{i+1,i+2} \]

Из равенства (3.2.5) следует

(3.2.6) \[*h_{i+2} \circ f_{i+1,i+2} \circ f_{i,i+1}(a_i) = *h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} \]

Из коммутативности диаграммы (3) следует

(3.2.7) \[*h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \]

Из равенства (3.2.7) следует

(3.2.8) \[*h_{i+2} \circ f_{i+1,i+2} \circ f_{i,i+1}(a_i) = g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) \]

Из равенств (3.2.6) и (3.2.8) следует

(3.2.9) \[*h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) \]

Из коммутативности диаграммы (5) следует

(3.2.10) \[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) = g_{i,i+2}(h_i(a_i)) \circ g_{i+1,i+2} \]

Из равенства (3.2.10) следует

(3.2.11) \[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ g_{i+1,i+2} \circ h_{i+1} \]

Из коммутативности диаграммы (2) следует

(3.2.12) \[*h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \]
Из равенства (3.2.12) следует
(3.2.13) \[g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2} = g_{i,i+2}(h_i(a_i)) \circ g_{i+1,i+2} \circ h_{i+1} \]
Из равенств (3.2.11) и (3.2.13) следует
(3.2.14) \[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2} \]
Внешняя диаграмма является диаграммой (3.2.1) при \(i = 1 \). Следовательно, внешняя диаграмма коммутативна
(3.2.15) \[h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1}(a_{i+1}) \]
Из равенства (3.2.15) следует
(3.2.16) \[g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) = g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} \]
Из равенств (3.2.9), (3.2.14) и (3.2.16) следует
(3.2.17) \[*h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2} \]
Так как отображение \(f_{i+1,i+2} \) - инъекция, то из равенства (3.2.17) следует
(3.2.18) \[*h_{i+2} \circ f_{i,i+2}(a_i) = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \]
Из равенства (3.2.18) следует коммутативность диаграммы (1), откуда следует утверждение теоремы. \(\square \)

Теоремы 3.1.3 и 3.2.2 справедливы для любых уровней башни \(T^* \)-представлений. В каждом конкретном случае надо правильно указывать множества, откуда и куда направлено отображение. Смысл приведенных теорем состоит в том, что все отображения в башне представлений действуют согласованно.

Теорема 3.2.2 утверждает, что неизвестное отображение на диаграмме (3.2.4) является отображением \(*h_{i+2} \).

Теорема 3.2.3. Рассмотрим множество \(\Omega \)-алгебр \(A_i, B_i, C_i, i = 1, ..., n \). Пусть определены морфизмы башни представлений
\[\varphi : (\mathcal{A}, \mathcal{f}) \to (\mathcal{B}, \mathcal{g}) \]
\[\varphi : (\mathcal{B}, \mathcal{g}) \to (\mathcal{C}, \mathcal{h}) \]
Тогда определён морфизм представлений \(\Omega \)-алгебры
\[\varphi : (\mathcal{A}, \mathcal{f}) \to (\mathcal{C}, \mathcal{h}) \]
где \(r_k = q_k p_k, k = 1, ..., n \). Мы будем называть морфизм \(\varphi \) башни представлений из \(\mathcal{f} \) в \(\mathcal{h} \) произведением морфизмов \(\varphi \) и \(\varphi \) башни представлений.
Доказательство. Для каждого $k, k = 2, ..., n$, мы можем представить утверждение теоремы, пользуясь диаграммой

Отображение r_{k-1} является гомоморфизмом Ω_{k-1}-алгебры A_{k-1} в Ω_{k-1}-алгебру C_{k-1}. Нам надо показать, что пара отображений (r_{k-1}, r_k) удовлетворяет (3.2.2):

$$r_k(f_{k-1,k}(a_{k-1})a_k) = q_k p_k(f_{k-1,k}(a_{k-1})a_k) = q_k(g_{k-1,k}(p_{k-1}(a_{k-1}))p_k(a_k)) = h_{k-1,k}(q_{k-1}p_{k-1}(a_{k-1})q_kp_k(a_k)) = h_{k-1,k}(r(a_{k-1}))r_k(a_k)$$

3.3. Эндоморфизм башни представлений

Определение 3.3.1. Пусть (\mathcal{A}, f) башня представлений Ω-алгебр. Морфизм башни представлений $(h_1, ..., h_n)$ такой, что для любого $k, k = 1, ..., n$, h_k - эндоморфизм Ω_k-алгебры A_k, называется эндоморфизмом башни представлений f.

Определение 3.3.2. Пусть (\mathcal{A}, f) башня представлений Ω-алгебр. Морфизм башни представлений $(h_1, ..., h_n)$ такой, что для любого $k, k = 1, ..., n$, h_k - автоморфизм Ω_k-алгебры A_k, называется автоморфизмом башни представлений f.

Теорема 3.3.3. Пусть (\mathcal{A}, f) башня представлений Ω-алгебр. Множество автоморфизмов представления f порождает лупу.3.1

Доказательство. Пусть $\mathcal{P}, \mathcal{P}^*$ - автоморфизмы башни представлений f. Согласно определению 3.3.2 для любого $k, k = 1, ..., n$, отображения r_k, p_k являются автоморфизмами Ω_k-алгебры A_k. Согласно теореме П.3.2 ([8], с. 60) для любого $k, k = 1, ..., n$, отображение $r_k p_k$ является автоморфизмом Ω_k-алгебры A_k. Из теоремы 3.2.3 и определения 3.3.2 следует, что произведение 3.1 Определение лупы приведено в [4], с. 24, [3], с. 39.
автоморфизмов \(\mathfrak{P} \) башни представлений \(\mathfrak{T} \) является автоморфизмом башни представлений \(\mathfrak{f} \).

Пусть \(\mathfrak{r} \) - автоморфизм башни представлений \(\mathfrak{T} \). Согласно определению 3.3.2 для любого \(i, i = 1, \ldots, n \), отображение \(r_i \) является автоморфизмом \(\Omega_i \)-алгебры \(A_i \). Следовательно, для любого \(i, i = 1, \ldots, n \), отображение \(r_i^{-1} \) является автоморфизмом \(\Omega_i \)-алгебры \(A_i \). Для автоморфизма \(\mathfrak{r} \) справедливо равенство (3.2.3). Пусть \(a'_i = r_i(a_i) \), \(i = 1, \ldots, n \). Так как \(r_i, i = 1, \ldots, n \), - автоморфизм, то \(a_i = r_i^{-1}(a'_i) \) и равенство (3.2.3) можно записать в виде

\[
(3.3.1) \qquad h_{i+1}(f_{i,i+1}(h_i^{-1}(a'_i)))(h_{i+1}(a'_i+1)) = g_{i,i+1}(a'_i)(a'_i+1)
\]

Так как отображение \(h_{i+1} \) является автоморфизмом \(\Omega_{i+1} \)-алгебры \(A_{i+1} \), то из равенства (3.3.1) следует

\[
(3.3.2) \qquad f_{i,i+1}(h_i^{-1}(a'_i)(h_{i+1}(a'_i+1))) = h_{i+1}(g_{i,i+1}(a'_i)(a'_i+1))
\]

Равенство (3.3.2) соответствует равенству (3.2.3) для отображения \(\mathfrak{r}^{-1} \). Следовательно, отображение \(\mathfrak{r}^{-1} \) является автоморфизмом представления \(\mathfrak{T} \).

3.4. Базис башни представлений

Определение 3.4.1. Башня \(T \)-представлений (\(\bar{A}, \mathfrak{T} \)), называется эффективной, если для любого \(i \) представление \(f_{i,i+1} \) эффективно.

Теорема 3.4.2. Рассмотрим башню \(T \)-представлений (\(\bar{A}, \mathfrak{T} \)). Пусть представления \(f_{i,i+1}, \ldots, f_{i+k-1,i+k} \) эффективны. Тогда представление \(f_{i,i+k} \) эффективно.

Доказательство. Мы докажем утверждение теоремы по индукции.

Пусть представления \(f_{i,i+1}, f_{i+1,i+2} \) эффективны. Предположим, что преобразование \(f_{i,i+1}(a_i) \) не является тождественным преобразованием. Тогда существует \(a_{i+1} \in A_{i+1} \) такой, что \(f_{i,i+1}(a_i)(a_{i+1}) \neq a_{i+1} \). Так как представление \(f_{i+1,i+2} \) эффективно, то преобразования \(f_{i+1,i+2}(a_{i+1}) \) и \(f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1})) \) не совпадают. Согласно построению, выполненному в теореме 3.1.2, преобразование \(f_{i,i+2}(a_i) \) не является тождественным преобразованием. Следовательно, представление \(f_{i,i+2} \) эффективно.

Предположим утверждение теоремы верно для \(k-1 \) представлений и пусть \(f_{i,i+1}, \ldots, f_{i+k-1,i+k} \) эффективны. Согласно предположению индукции, представления \(f_{i+k-1,i}, f_{i+k-1,i+k} \) эффективны. Согласно доказанному выше, представление \(f_{i,k+i} \) эффективно.

Теорема 3.4.3. Рассмотрим башню (\(\bar{A}, \mathfrak{T} \)) представлений \(\bar{\Omega} \)-алгебр. Пусть тождественное преобразование

\[
\delta_{i+2} : A_{i+2} \to A_{i+2}
\]

\(\Omega_{i+2} \)-алгебры \(A_{i+2} \) принадлежит представлению \(f_{i+1,i+2} \). Пусть представления \(f_{i,i+1}, f_{i+1,i+2} \) эффективны. Тогда представление \(f'_{i,i+2} \), определённое в теореме 3.1.4, эффективно.

Доказательство. Пусть существует \(a_{i+1} \in A_{i+1} \) такой, что

\[
f_{i+1,i+2}(a_{i+1}) = \delta_{i+2}
\]
Допустим, что представление \(f'_{i,i+2} \) не является эффективным. Тогда существуют
\[(3.4.1)\]
a\(i\) \(a\) \(\in\) \(A\) \(a\) \(\neq\) \(a\)
tакие, что
\[(3.4.2)\]
\(f'_{i,i+2}(a_{i+1}) = f'_{i,i+2}(a_{i+2})\)
Из равенств (3.1.9), (3.4.2), следует
\[(3.4.3)\]
\(f_{i,i+1},i+2(a_{i+2}) = f_{i,i+1},i+2(a_{i+2})\)
Так как \(a_{i+2} \) произвольно, то из (3.4.3) следует
\[(3.4.4)\]
\(f_{i,i+1},i+2(a_{i+2}) = f_{i,i+1},i+2(a_{i+2})\)
Поскольку представление \(f_{i,i+1} \) эффективно, то из условия (3.4.1) следует
\[(3.4.5)\]
\(f_{i,i+1}(a_{i+1}) = f_{i,i+1}(a_{i+2})\)
Из условия (3.4.5) и равенства (3.4.4) следует, что представление \(f_{i,i+1},i+2 \) не является эффективным. Полученное противоречие доказывает утверждение теоремы.

Мы строим базис представления башни представлений по той же схеме, что мы построили базис представления в секции 2.6.

Мы будем записывать элементы башни представлений \((A_1,\ f)\) в виде кортежа \((a_2,\ ...,\ a_n)\), где \(a_i \in A_i\), \(i = 2,\ ...,\ n\).

Определение 3.4.4. Пусть \((A,\ f)\) - башня представлений. Кортеж множеств
\[N_1 = (N_2 \subset A_2,\ ...,\ N_n \subset A_n)\]
nазывается кортежем стабильных множеств башни представлений \(f\), если
\[f_{i-1,i}(a_{i-1})(a_i) \in N_i\]
для любых \(a_i \in A_i\), \(a_2 \in N_2,\ ...,\ a_n \in N_n\). Мы также будем говорить, что кортеж множеств
\[N_1 = (N_2 \subset A_2,\ ...,\ N_n \subset A_n)\]
стабилен относительно башни представлений \(f\).

Теорема 3.4.5. Пусть \(f\) - башня представлений. Пусть множество \(N_i \subset A_i\) является подалгеброй \(\Omega_i\)-алгебры \(A_i\), \(i = 2,\ ...,\ n\). Пусть кортеж множеств
\[N_1 = (N_2 \subset A_2,\ ...,\ N_n \subset A_n)\]
стабилен относительно башни представлений \(f\). Тогда существует башня представлений
\[(3.4.6)\]
\((A_1, N_2,\ ...,\ N_n), (f_{N_2,1,2},\ ..., f_{N_n,n-1,n})\)
такая, что
\[f_{N_i,i-1,i}(a_{i-1}) = f_{i-1,i}(a_{i-1})\]
Башня представлений (3.4.6) называется башней подпредставлений.
ДОКАЗАТЕЛЬСТВО. Пусть \(\omega_{i-1,1} - m\)-арная операция \(\Omega_{i-1}\)-алгебры \(A_{i-1}, i = 2, ..., n \). Тогда для любых \(a_{i-1,1}, ..., a_{i-1,m} \in N_{i-1} \) и любого \(a_i \in N_i \)

\[
\omega_{i-1,1}(f_{N_i,i-1,1}(a_{i-1,1}), ..., f_{N_i,i-1,1}(a_{i-1,m}))(a_i)
\]

\[
= \omega_{i-1,1}(f_{i-1,1}(a_{i-1,1}), ..., f_{i-1,1}(a_{i-1,m}))(a_i)
\]

\[
= f_{i-1,1}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i)
\]

\[
= f_{N_i,i-1,1}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i)
\]

Пусть \(\omega_{i,2} - m\)-арная операция \(\Omega_i\)-алгебры \(A_i, i = 2, ..., n \). Тогда для любых \(a_{i,1}, ..., a_{i,n} \in N_i \) и любого \(a_{i-1} \in N_{i-1} \)

\[
\omega_{i,2}(f_{N_i,i-1,1}(a_{i-1,1}), ..., f_{N_i,i-1,1}(a_{i-1,m}))(a_i,1), ..., f_{i-1,1}(a_{i-1})(a_{i,m}))
\]

\[
= f_{i-1,1}(a_{i-1})(\omega_{i,2}(a_{i,1}, ..., a_{i,m}))(a_i)
\]

\[
= f_{N_i,i-1,1}(a_{i-1})(\omega_{i,2}(a_{i,1}, ..., a_{i,m}))(a_i)
\]

Утверждение теоремы доказано. \(\square \)

Из теоремы 3.4.5 следует, что если отображение \((f_{N_2,1,2}, ..., f_{N_n,1,n}) \) - башня подпредставлений башни представлений \(f \), то отображение

\[
(id : A_1 \rightarrow A_1, id_2 : N_2 \rightarrow A_2, ..., id_n : N_n \rightarrow A_n)
\]

является морфизмом башен представлений.

Теорема 3.4.6. Множество \(\mathfrak{D}_T \) всех башен подпредставлений башни представлений \(f \), порождает систему замыканий на башне представлений \(f \), следовательно, является полной структурой.

ДОКАЗАТЕЛЬСТВО. Пусть для данного \(\lambda \in \Lambda, K_{\lambda,i}, i = 2, ..., n, - подалгебра \(\Omega_i\)-алгебры \(A_i \), стабильная относительно представления \(f_{i-1,i} \). Операцию пересечения на множестве \(\mathfrak{D}_T \) мы определим согласно правилу

\[
\bigcap f_{K_{\lambda,i-1,i}} = f_{\cap K_{\lambda,i-1,i}}, i = 2, ..., n
\]

\[
\bigcap K_{\lambda,i} = \left(K_1 = A_1, K_2 = \bigcap K_{\lambda,2}, ..., K_n = \bigcap K_{\lambda,n} \right)
\]

\(\cap K_{\lambda,i} - подалгебра \(\Omega_i\)-алгебры \(A_i \). Пусть \(a_i \in \cap K_{\lambda,i}. \) Для любого \(\lambda \in \Lambda \) и для любого \(a_{i-1} \in K_{i-1} \),

\[
f_{i-1,i}(a_{i-1})(a_i) \in K_{\lambda,i}
\]

Следовательно,

\[
f_{i-1,i}(a_{i-1})(a_i) \in K_i
\]

Повторяя приведенное построение в порядке возрастания \(i, i = 2, ..., n, \) мы видим, что \((K_1, ..., K_n) \) - кортеж стабильных множеств башни представления \(f \). Следовательно, операция пересечения башен подпредставлений определена корректно. \(\square \)

\(^{3.2} \)Положим \(N_1 = A_1. \)

\(^{3.3} \)Это определение аналогично определению структуры подалгебр \(([8], \text{стр. 93, 94}) \)
Обозначим соответствующий оператор замыкания через \(\mathcal{J}(\mathcal{J}) \). Если мы обозначим через \(X_{[1]} \) кортеж множеств \((X_2 \subset A_2, ..., X_n \subset A_n) \) то \(\mathcal{J}(\mathcal{J}, X_{[1]}) \) является пересечением всех кортежей \((K_1, ..., K_n) \), стабильных относительно представления \(\mathcal{J} \) и таких, что для \(i = 2, ..., n, K_i \) - подалгебра \(\Omega_i \)-алгебры \(A_i \), содержащая \(X_{[1]} \).

Теорема 3.4.7. Пусть \(f : \mathcal{J} \to \mathcal{J} \) - башня представлений. Пусть \(X_i \subset A_i, i = 2, ..., n \). Положим \(Y_1 = A_1 \). Последовательно увеличивая значение \(i, i = 2, ..., n \), определим подмножества \(X_{i,m} \subset A_i \) индукцией по \(m \).

\[
X_{i,0} = X_i
\]

\[
x \in X_{i,m} \Rightarrow x \in X_{i,m+1}
\]

\[
x_1 \in X_{i,m}, ..., x_p \in X_{i,m}, \omega \in \mathcal{F}(p) \Rightarrow \omega(x_1, ..., x_p) \in X_{i,m+1}
\]

\[
x_i \in X_{i,m}, x_{i-1} \in Y_{i-1} \Rightarrow f_i(x_{i-1}) \in X_{i,m+1}
\]

Для каждого значения \(i \) положим

\[
Y_i = \bigcup_{m=0}^{\infty} X_{i,m}
\]

Тогда

\[
\mathcal{Y} = (Y_1, ..., Y_n) = \mathcal{J}(\mathcal{J}, X_{[1]})
\]

Доказательство. Для каждого значения \(i \) доказательство теоремы совпадает с доказательством теоремы 2.6.4. Так как для определения устойчивого подмножества \(\Omega_i \)-алгебры \(A_i \), нас интересует только некоторое устойчивое подмножество \(\Omega_i \)-алгебры \(A_{i-1} \), мы должны сперва найти устойчивое подмножество \(\Omega_i \)-алгебры \(A_{i-1} \). □

\(\mathcal{J}(\mathcal{J}, X_{[1]}) \) называется башней подпредставлений башни представлений \(\mathcal{J} \), порождённой кортежем множеств \(X_{[1]} \), а \(X_{[1]} \) - кортежем множеств образующих башни подпредставлений \(\mathcal{J}(\mathcal{J}, X_{[1]}) \). В частности, кортеж множеств образующих башни представлений \(\mathcal{J} \) будет такой кортеж \((X_2 \subset A_2, ..., X_n \subset A_n) \), что \(\mathcal{J}(\mathcal{J}, X_{[1]}) = X_{[1]} \).

Определение 3.4.8. Пусть \((X_2 \subset A_2, ..., X_n \subset A_n) \) - кортеж множеств образующих башни представлений \(\mathcal{J} \). Пусть отображение \(\mathcal{h} \) является эндоморфизмом башни представления \(\mathcal{J} \). Пусть кортеж множеств \(\mathcal{X}_{[1]} = \mathcal{h}(X_{[1]}) \) является образом кортежа множеств \(X_{[1]} \) при отображении \(\mathcal{h} \). Эндоморфизм \(\mathcal{h} \) башни представлений \(\mathcal{J} \) называется невырожденным на кортеже множеств образующих \(X_{[1]} \), если кортеж множеств \(\mathcal{X}_{[1]} \) является кортежем множеств образующих башни представлений \(\mathcal{J} \). В противном случае, эндоморфизм \(\mathcal{h} \) называется вырожденным на кортеже множеств образующих \(X_{[1]} \). □

Определение 3.4.9. Эндоморфизм башни представлений \(\mathcal{J} \) называется невырожденным, если он невырожден на любом кортеже множеств образующих.

3.4 Пусть \(n = 2 \), \(J_2(f_{1,2}, X_2) = J_{f_{1,2}}(X_2) \). Было бы проще использовать единные обозначения в разделах 2.6 и 3.4. Однако использование векторных обозначений в разделе 2.6 мне кажется несоответствующим.

3.5 Утверждение теоремы аналогично утверждению теоремы 5.1, [8], стр. 94.
Нетрудно видеть, что определение кортежа множеств образующих башни представлений не зависит от того, эффективна башня представлений или нет. Поэтому в дальнейшем мы будем предполагать, что башня представлений эффективна и будем опираться на соглашение для эффективного \(T^* \)-представления в замечании 2.1.9.

Из теоремы 3.4.7 следует следующее определение.

Определение 3.4.10. Пусть \((X_2 \subseteq A_2, ..., X_n \subseteq A_n)\) - кортеж множеств. Для любого кортежа элементов \(\pi, \pi' \in J(f, X_{[1]}), \) существует кортеж \(\overline{\pi} \)-слов, определённых согласно следующему правилу.

1. Если \(a_1 \in A_1 \), то \(a_1 \) - \(\Omega_1 \)-слово.
2. Если \(a_i \in X_i \), \(i = 2, ..., n \), то \(a_i \) - \(\Omega_i \)-слово.
3. Если \(a_{i,1}, ..., a_{i,p} \) - \(\Omega_i \)-слова, \(i = 2, ..., n \), и \(\omega \in \Omega_i(p) \), то \(a_{i,1}...a_{i,p}\omega \) - \(\Omega_i \)-слово.
4. Если \(a_i \) - \(\Omega_i \)-слово, \(i = 2, ..., 3 \), и \(a_{i-1} \) - \(\Omega_{i-1} \)-слово, то \(a_{i-1}a_i \) - \(\Omega_i \)-слово.

Кортеж \(\overline{\pi} \)-слов

\[
\overline{\pi}(\pi, f, X_{[1]}) = (w_1(a_1, f, X_{[1]}), ..., w_n(a_n, f, X_{[1]}))
\]

представляющий данный элемент \(\pi \in J(f, X_{[1]}), \) называется кортежем координат элемента \(\pi \) относительно кортежа множеств \(X_{[1]} \). Обозначим \(W(f, X_{[1]}) \) множество кортежей координат башни представлений \(J(f, X_{[1]}) \).

Представление \(a_i \in A_i \) в виде \(\Omega_i \)-слова неоднозначно. Если \(a_{i,1}, ..., a_{i,p} \) - \(\Omega_i \)-слова, \(\omega \in \Omega_i(p) \) и \(a_{i-1} \) - \(\Omega_{i-1} \)-слово, то \(\Omega_i \)-слова \(a_{i-1}a_{i,1}...a_{i,p}\omega \) и \(a_{i-1}a_{i,1}...a_{i-1}a_{i,p}\omega \) описывают один и тот же элемент \(\Omega_i \)-алгебры \(A_i \). Возможны равенства, связанные со спецификой представления. Например, если \(\omega \) является операцией \(\Omega_{i-1} \)-алгебры \(A_{i-1} \) и операцией \(\Omega_i \)-алгебры \(A_i \), то мы можем потребовать, что \(\Omega_i \)-слова \(a_{i-1}a_{i,1}...a_{i-1}p\omega \) и \(a_{i-1}a_{i,1}...a_{i-1}p\omega \) описывают один и тот же элемент \(\Omega_i \)-алгебры \(A_i \). Перечисленные выше равенства для каждого значения \(i, i = 2, ..., n \), определяют отношение эквивалентности \(r_i \) на множестве \(\Omega_i \)-слов \(W_i(f, X_{[1]}) \). Согласно построению, отношение эквивалентности \(r_i \) на множестве \(\Omega_i \)-слов \(W_i(f, X_{[1]}) \) зависит не только от выбора множества \(X_i \), но и от выбора множества \(X_{i-1} \).

Теорема 3.4.11. Эндоморфизм \(\pi \) башни представлений \(J \) порождает отображение координат

\[
\pi(f, \pi, X_{[1]}): W(f, X_{[1]}) \rightarrow W(f, X_{[1]}) \quad X_{[1]} \subset A_{[1]} \quad X_{[1]} = \pi_{[1]}(X_{[1]})
\]

такое, что для любого \(i, i = 2, ..., n \),

1. Если \(a_i \in X_i \), \(a_i' = r_i(a_i) \), то \(w_i(f, \pi, X_{[1]})(a_i) = a_i' \)

2. Если \(a_{i,1}, ..., a_{i,n} \in W_i(f, X_{[1]}) \)
 \[a_{i,1}' = w(f, \pi, X_{[1]})(a_{i,1}) \quad ... \quad a_{i,p}' = w(f, \pi, X_{[1]})(a_{i,p}) \]
3.4. Базис башни представлений 51

Доказательство. Утверждения (1), (2) теоремы справедливы в силу определения эндоморфизма h_i. Утверждение (3) теоремы следует из равенства (3.2.3). □

Теорема 3.4.12. Пусть \mathcal{F} башня представлений. Пусть отображение $r_1 : A_1 \to A_1$
является эндоморфизмом Ω_1-алгебры A_1. Для заданных множеств $X_i \subset A_i$, $X_i' \subset A_i$, $i = 2, ..., n$, пусть отображение $R_i : X_i \to X_i'$ согласовано со структурой Ω_i-алгебры A_i, т. е. для данной операции $\omega \in \Omega_i(p)$, если

$$x_{i,1}, ..., x_{i,p}, x_{i,1}, ..., x_{i,p} \in X_i$$

то

$$R_i(x_{i,1}, ..., x_{i,p}) = R_i(x_{i,1}) ... R_i(x_{i,p})$$

Рассмотрим отображение координат

$$w(\mathcal{F}, (r_1, R_2, ... , R_n), X_1) : W(\mathcal{F}, X_1) \to W(\mathcal{F}, X_1)$$

удовлетворяющее условиям (1), (2), (3) теоремы 3.4.11. Для каждого i, $i = 2, ..., n$, существует эндоморфизм $r_i : A_i \to A_i$

определённый правилом

(3.4.7) $$r_i(a_i) = w_i(\mathcal{F}, (r_1, R_2, ... , R_n), X_i)(w_i(a_i, \mathcal{F}, X_i))$$

и отображение τ является морфизмом башен представлений $\mathcal{F}(\mathcal{F}, X_i)$ и $\mathcal{F}(\mathcal{F}, X_i)$. □

Пусть утверждение теоремы верно для $n - 1$. Обозначения в теореме не меняются при переходе от одного уровня к другому, так как слово в Ω_{n-1}-алгебре A_{n-1} не зависит от слова в Ω_n-алгебре A_n. Мы будем доказывать теорему индукцией по сложности Ω_n-слова.
Если \(w_n(a_n, \overline{f}, \overline{X}[1]) = a_n \), то \(a_n \in X_n \). Согласно условию (1) теоремы 3.4.11,
\[
 r_n(a_n) = w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_n(a_n, \overline{f}, \overline{X}[1]))
 = w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(a_n)
 = R_n(a_n)
\]
Следовательно, на множестве \(X_n \) отображения \(r_n \) и \(R_n \) совпадают, и отображение \(r_n \) согласовано со структурой \(\Omega_n \)-алгебры.

Пусть \(\omega \in \Omega_n(p) \). Пусть предположение индукции верно для
\[
 a_{n,1}, ..., a_{n,p} \in J_n(\overline{f}, \overline{X}[1])
\]
Пусть
\[
 w_{n,1} = w_n(a_{n,1}, \overline{f}, \overline{X}[1]) \quad w_{n,p} = w_n(a_{n,p}, \overline{f}, \overline{X}[1])
\]
Если
\[
 a_n = a_{n,1}...a_{n,p}\omega
\]
то согласно условию (3) определения 3.4.10,
\[
 w_n(a_n, \overline{f}, \overline{X}[1]) = w_{n,1}...w_{n,p}\omega
\]
Согласно условию (2) теоремы 3.4.11,
\[
 r_n(a_n) = w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_n(a_n, \overline{f}, \overline{X}[1]))
 = w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_{n,1}...w_{n,p}\omega)
 = w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_{n,1})...w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_{n,p})\omega
 = r_n(a_{n,1})...r_n(a_{n,p})\omega
\]
Следовательно, отображение \(r_n \) является эндоморфизмом \(\Omega_n \)-алгебры \(A_n \).

Пусть предположение индукции верно для
\[
 a_n \in J_n(\overline{f}, \overline{X}[1]) \quad w_n(a_n, \overline{f}, \overline{X}[1]) = w_n
\]
\[
 a_{n-1} \in J_{n-1}(\overline{f}, \overline{X}[1]) \quad w_{n-1}(a_{n-1}, \overline{f}, \overline{X}[1]) = w_{n-1}
\]
Согласно условию (4) определения 3.4.10,
\[
 w_n(a_{n-1}a_n, \overline{f}, \overline{X}[1]) = w_{n-1}w_n
\]
Согласно условию (3) теоремы 3.4.11,
\[
 r_n(a_{n-1}a_n) = w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_n(a_{n-1}a_n, \overline{f}, \overline{X}[1]))
 = w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_{n-1}w_n)
 = w_{n-1}(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_{n-1})w_n(\overline{f}, (r_1, R_2, ..., R_n), \overline{X}[1])(w_n)
 = r_{n-1}(a_{n-1})r_n(a_n)
\]
Из равенства (3.2.3) следует, что отображение \(\overline{f} \) является морфизмом башни представлений \(\overline{f} \).

Теорема 3.4.13. Автоморфизм \(\overline{f} \) башни представлений \(\overline{f} \) является невырожденным эндоморфизмом.
Доказательство. Пусть $\overline{X}_{[1]}$ - кортеж множеств образующих башни представлений \overline{f}. Пусть $\overline{X'}_{[1]} = \tau(\overline{X}_{[1]})$.

Согласно теореме 3.4.11 эндоморфизм τ порождает отображение координат $\overline{w}(\overline{f}, \tau, \overline{X}_{[1]})$.

Пусть $\sigma' \in A$. Так как τ - автоморфизм, то существует $\sigma \in A, \tau(\sigma) = \sigma'$. Согласно определению 3.4.10 $\overline{w}(\sigma, \overline{X}_{[1]})$ - координаты σ относительно кортежа множеств образующих $\overline{X}_{[1]}$. Согласно теореме 3.4.12, $\overline{w}(\sigma', \overline{X'}_{[1]}) = \overline{w}(\overline{f}, \tau, \overline{X}_{[1]})(\overline{w}(\sigma, \overline{X}_{[1]}))$

координаты σ' относительно кортежа множеств $\overline{X}_{[1]}$. Следовательно, $\overline{X}_{[1]}$ - множество образующих представлений \overline{f}. Согласно определению 3.4.9, автоморфизм τ невырожден. □

Если кортеж множеств $\overline{X}_{[1]}$ является кортежем множеств образующих башни представлений \overline{f}, то любой кортеж множеств $X_1, \ldots, X_{n-1}, X_n \{ a_n \}$ также является кортежем множеств образующих в слое γ представлений \overline{f}_n.

Теорема 3.4.14. Базис башни представлений определён индукцией по n. При $n = 2$ базис башни представлений является базисом представления $f_{1,2}$. Если кортеж множеств $\overline{X}_{[1]}$ является базисом башни представлений $\overline{f}_{[1]}$, то кортеж множеств $X_2, \ldots, X_{n-1}, X_n \{ a_n \}$ является кортежем множеств башни представлений \overline{f}. Следовательно, $\overline{X}_{[1]}$ не является базисом башни представлений \overline{f}.

Доказательство. При $n = 2$ утверждение теоремы является следствием теоремы 2.6.12.

Пусть $n > 2$. Пусть $\overline{X}_{[1]}$ - кортеж множеств образующих башни расслоений \overline{f}. Пусть кортеж множеств $\overline{X}_{[1]}$ является базисом башни расслоений $\overline{f}_{[1]}$. Допустим для некоторого $a_n \in X_n$ существует слово

(3.4.8) $w_n = w_n(a_n, \overline{f}, (X_1, \ldots, X_{n-1}, X_n \{ a_n \}))$

Рассмотрим $a'_n \in A_n$, для которого слово

(3.4.9) $w'_n = w_n(a'_n, \overline{f}, \overline{X}_{[1]})$

зависит от a_n. Согласно определению 2.6.8, любое вхождение a_n в слово w'_n может быть заменено словом w_n. Следовательно, слово w'_n не зависит от a_n, а кортеж множеств $(X_2, \ldots, X_{n-1}, X_n \{ a_n \})$ является кортежем множеств образующих башни представлений \overline{f}. Следовательно, $\overline{X}_{[1]}$ не является базисом башни представлений \overline{f}. □

Доказательство теоремы 3.4.14 даёт нам эффективный метод построения базиса башни представлений \overline{f}. Мы начинаем строить базис в самом нижнем слое. Когда базис построен в слое $i, i = 2, \ldots, n - 1$, мы можем перейти к построению базиса в слое $i + 1$.

Докладчицкая 3.4. Базис башни представлений 53
Теорема 3.4.15. Автоморфизм башни представлений \mathcal{F} отображает базис башни представлений \mathcal{F} в базис.

Доказательство. При $n = 2$ утверждение теоремы является следствием теоремы 2.6.14.

Пусть отображение ϖ - автоморфизм башни представлений \mathcal{F}. Пусть кортеж множеств $X_{[1]}$ - базис башни представлений \mathcal{F}. Пусть $X_{[1]} = \varpi(\mathcal{F})$.

Допустим кортеж множеств $X_{[1]}$ не является базисом. Согласно теореме 3.4.14 существуют $i, i = 2, ..., n$, и $x_i' \in X_i$ такие, что кортеж множеств $X''_{[1]}$ является кортежем множеств образующих башни представлений \mathcal{F}. Согласно теореме 3.4.13 и определению 3.4.9, кортеж множеств $X'''_{[1]}$ является кортежем множеств образующих представления \mathcal{F}. Полученное противоречие доказывает теорему.

3.5. Примеры базиса башни представлений

Аффинное пространство - это эффективное представление векторного пространства в абстрактной группе. Этот пример рассмотрен в главе 7-6.

Пример 3.5.1. Пусть A_2 - свободная алгебра над полем A_1. Рассматривая алгебру A_2 как кольцо, мы можем определить свободное векторное пространство A_3 над алгеброй A_2. Пусть ϖ_{32} - базис алгебры A_3 над алгеброй A_2. Вектор $a_3 \in A_3$ имеет представление

$$a_3 = a_3^{ij} \varpi_{32} = \begin{pmatrix} a_3^1 & \cdots & a_3^n \end{pmatrix} \begin{pmatrix} \varpi_{32}^{11} & \cdots & \varpi_{32}^{1n} \\ \cdots & \cdots & \cdots \\ \varpi_{32}^{n1} & \cdots & \varpi_{32}^{nn} \end{pmatrix}$$

Пусть ϖ_{21} - базис алгебры A_2 над полем A_1. Так как $a_3^j \in A_2$, то мы можем записать их координаты относительно базиса ϖ_{21}

$$a_3^j = a_3^{ij} \varpi_{21} = \begin{pmatrix} a_3^{j1} & \cdots & a_3^{jm} \end{pmatrix} \begin{pmatrix} \varpi_{21}^{11} & \cdots & \varpi_{21}^{1m} \\ \cdots & \cdots & \cdots \\ \varpi_{21}^{m1} & \cdots & \varpi_{21}^{mn} \end{pmatrix}$$

Из равенств (3.5.1), (3.5.2) следует

$$a_3 = a_3^{ij} \varpi_{21} \varpi_{32} = \begin{pmatrix} a_3^{11} & \cdots & a_3^{1m} \\ \cdots & \cdots & \cdots \\ a_3^{n1} & \cdots & a_3^{nm} \end{pmatrix} \begin{pmatrix} \varpi_{21}^{11} & \cdots & \varpi_{21}^{1m} \\ \cdots & \cdots & \cdots \\ \varpi_{21}^{m1} & \cdots & \varpi_{21}^{mn} \end{pmatrix}$$

Равенство (3.5.3) показывает структуру координат в векторном пространстве A_3 над полем A_1. Нетрудно убедиться, что векторы $\varpi_{31-ij} = \varpi_{21} \varpi_{32}$.

3.6 $X''_{ij} = X'_i, j \neq i, X''_{i} = X'_i \setminus \{x'_i\}$
3.7 $X'''_{ij} = X_i, j \neq i, X'''_{i} = X_i \setminus \{x_i\}$
3.6. Представление в категории

линейно независимы над полем A_1. Следовательно, мы построили базис \mathbf{e}_{31} векторного пространства A_3 над полем A_1. Следовательно, мы можем переписать равенство (3.5.3) в виде

\[
(3.5.4) \quad a_3 = a_3^{ji} \mathbf{e}_{31,ij} = \begin{pmatrix}
\mathbf{e}_{31,11} \\
\vdots \\
\mathbf{e}_{31,1m} \\
\mathbf{e}_{31,n1} \\
\vdots \\
\mathbf{e}_{31,nm}
\end{pmatrix}
\]

Нетрудно убедиться, что вектор $\mathbf{e}_{31,ij}$ можно отождествить с тензорным произведением $\mathbf{e}_{21,i} \otimes \mathbf{e}_{32,j}$. □

3.6. Представление в категории

Определение 3.6.1. Пусть для любых объектов B и C категории B на множестве морфизмов $\text{Mor}(B, C)$ определена структура Ω-алгебры. Множество гомоморфизмов Ω-алгебры

\[f_{B,C}: A \to \text{Mor}(B, C)\]

называется представлением Ω-алгебры A в категории B. □

Если предположить, что множество $\text{Mor}(B, C)$ определено только, когда $B = C$, то мы получим определение T^*-представления. Различие в определении состоит в том, что мы не ограничиваем себя преобразованиями множества B, а рассматриваем Ω-алгебру отображений из множества B в множество C. На первый взгляд нет принципиальных различий между рассматриваемыми теориями. Однако нетрудно заметить, что представление векторного пространства в категории расслоений приводит к теории связностей.
Глава 4

Список литературы

[1] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982),
eprint http://www.math.uwaterloo.ca/~sburris/litdocs/ualg.html
(The Millennium Edition)
[2] П. К. Рашевский, Риманова геометрия и тензорный анализ,
М., Наука, 1967
[3] А. Г. Курош, Общая алгебра, (лекции 1969 - 70 учебного года), М.,
МГУ, 1970
[4] Lev V. Sabinin, Smooth Quasigroups and Loops, Kluwer Academic Publisher,
1999
[5] Александр Клейн, Лекции по линейной алгебре над телом,
eprint arXiv:math.GM/0701238 (2010)
[6] Александр Клейн, Расслоенная \mathfrak{g}-алгебра,
eprint arXiv:math.DG/0702561 (2007)
[7] Александр Клейн, Введение в геометрию над телом,
eprint arXiv:0906.0135 (2010)
[8] П. Кои, Универсальная алгебра, М., Мир, 1968
Глава 5
Предметный указатель

Т-представление Ω₁-алгебры A в Ω₂-алгебре M 7
Т-преобразование 7
Т-сдвиг 24

T*-представление Ω₁-алгебры A в Ω₂-алгебре M 7
T*-преобразование 7
T*-сдвиг 23

автоморфизмы башни представлений 45
автоморфизмы представлений Ω-алгебры 21
активное представление лупы Ω(f) в многообразии базисов B(f) 37
активное преобразование многообразия базисов представления 37
базис башни представлений 53
базис представления 34
башня подпредставлений 47
башня подпредставлений башни представлений 7, порождённая кортежем множеств X[1] 49
башня представлений Ω-алгебр 39
группа стабилизации 26
закон ассоциативности для ковариантного *Т*-представления 23
закон ассоциативности для ковариантного T*-представления 22
изоморфизм представлений Ω-алгебры 19
категория T*-представлений Ω-алгебры 20
категория T*-представлений Ω₁-алгебры из категории A 14
ковариантное *Т*-представление группы 22
cовariantное T*-представление группы 22
контравариантное *Т*-представление группы 23
контравариантное T*-представление группы 22
координаты автоморфизма представления 36
координаты элемента m относительно множества X 32
кортеж координат элемента π относительно кортежа множеств X[1] 50
кортеж множеств образующих башни подпредставлений 49
кортеж множеств образующих башни представлений 49
кортеж стабильных множеств башни представлений 47
левостороннее представление Ω₁-алгебры A в Ω₂-алгебре M 7
левостороннее преобразование 7
левый сдвиг на группе 23
лупа автоморфизмов представления 21
малая группа 26
многообразие базисов представления 37
множество координат представления 32
множество кортежей координат башни представлений 50
множество образующих подпредставления 31
множество образующих представлений 31
морфизм из башни T*-представлений в башню T*-представлений 42
морфизм представлений Ω₁-алгебры в Ω₂-алгебре 9
морфизм представлений из f в g 9
невырожденное преобразование 23
невырожденный эндоморфизм представления 32
однородное пространство группы 26
однотранзитивное представление Ω-алгебры A 8
орбита T^*-представления группы 24
парные представления группы 29
пассивное преобразование многообразия близов представления 37
представление, порождённое множеством X 31
правостороннее представление Ω_1-алгебры A в Ω_2-алгебре M 7
правостороннее преобразование 7
правый сдвиг на группе 24
представление Ω-алгебры A в категории B 55
представление Ω-алгебры в башне представлений 42
представление Ω-алгебры в представлении 41
представление Ω_1-алгебры A в Ω_2-алгебре M 8
преобразование универсальной алгебры 7
преобразование, согласованное с эквивалентностью 14
произведение морфизмов башни представлений 44
произведение морфизмов представлений универсальной алгебры 13
пространство орбит T^*-представления 25
прямое произведение T^*-представлений группы 25
свободное T^*-представление группы 26
стабильное множество представления 30
транзитивное представление Ω-алгебры A 8
невырожденный эндоморфизм башни представлений 49
эндоморфизм башни представлений 45
эндоморфизм башни представлений, вырожденный на кортеже множеств образующих 49
эндоморфизм башни представлений, невырожденный на кортеже множеств образующих 49
эндоморфизм представления F-алгебры 20
эндоморфизм представления
вырожденный на множестве образующих X 32
эндоморфизм представления, невырожденный на множестве образующих X 32
эффективная башня T^*-представлений 46
эффективное T^*-представление группы 26
эффективное представление Ω-алгебры A 8
ядро неэффективности T^*-представления группы G 26
Глава 6

Специальные символы и обозначения

\[\mathfrak{A}(f) \] луна автоморфизмов представления \(f \)

\(t \) правый сдвиг \(24 \)
\(t \) левый сдвиг \(23 \)

\(B(f) \) многообразие базисов представления \(f \)

\(B_f \) структура всех подпредставлений представления \(f \)

\(B_\Pi \) структура башен подпредставлений башни представлений \(\mathcal{J} \)

\(f_B \) активное представление луны \(\mathfrak{A}(f) \) в многообразии базисов \(B(f) \)

\(f(G)v \) орбита представления группы \(G \)

\(G_x \) малая группа элемента \(x \)

\(vG \) орбита ковариантного эффективного \(*T \)-представления группы

\(Gv \) орбита ковариантного эффективного \(T* \)-представления группы

\(G_x \) группа стабилизации элемента \(x \)

\(J_f \) оператор замыкания представления \(f \)

\(\mathcal{J}(\mathcal{J}) \) оператор замыкания башни представлений \(\mathcal{J} \)

\(\mathcal{J}(\mathcal{J}, X_{[1]} \) башня подпредставлений башни представлений \(\mathcal{J} \), порождённая кортежем множеств \(X_{[1]} \)

\(M^* \) множество \(*T \)-преобразований множества \(M \)

\(*M \) множество преобразований множества \(M \)

\(*M \) множество \(T* \)-преобразований универсальной алгебры \(M \)

\(M/\ast t(G) \) пространство орбит \(*T \)-ковариантного эффективного представления группы \(G \)

\(M/\ast t(G) \) пространство орбит \(T* \)-ковариантного эффективного представления группы \(G \)

\(M/\ast f(G) \) пространство орбит \(T* \)-представления группы \(G \) в множестве \(M \)

\(T \ast \mathcal{A} \) категория \(T \ast \)-представлений \(\Omega_1 \)-алгебры \(\mathcal{A} \)

\(T \ast \mathcal{A} \) категория \(T \ast \)-представлений \(\Omega_1 \)-алгебры из категории \(\mathcal{A} \)

\(W(f, X) \) множество координат представления \(J_f(X) \)

\(W(f, X_{[1]} \) множество кортежей координат башни представлений \(\mathcal{J}(f, X_{[1]} \)

\(\mathfrak{T}(f, X_{[1]} \) кортеж координат элемента относительно кортежа множеств \(X_{[1]} \)

\(\delta \) тождественное преобразование