A comprehensive in silico analysis, distribution and frequency of human Nkx2-5 mutations; A critical gene in congenital heart disease

Samira Kalayinia1, Serwa Ghasemi2, Nejat Mahdieh1*®

1Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
2Department of Biology, School of Basic Sciences, Islamic Azad University Research Tehran Branch, Tehran, Iran

Abstract

Introduction: Congenital heart disease (CHD) affects 1% to 2% of live births. The Nkx2-5 gene, is known as the significant heart marker during embryonic evolution and it is also necessary for the survival of cardiomyocytes and homeostasis in adulthood. In this study, Nkx2-5 mutations are investigated to identify the frequency, distribution, functional consequences of mutations by using computational tools.

Methods: A complete literature search was conducted to find Nkx2-5 mutations using the following key words: Nkx2-5 and/or CHD and mutations. The mutations were in silico analyzed using tools which predict the pathogenicity of the variants. A picture of Nkx2-5 protein and functional or structural effects of its variants were also figured using I-TASSER and STRING.

Results: A total number of 105 mutations from 18 countries were introduced. The most (24.1%) and the least (1.49%) frequency of Nkx2-5 mutations were observed in Europe and Africa, respectively. The c.73C>T and c.533C>T mutations are distributed worldwide. c.325G>T (62.5%) and c.896A>G (52.9%) had the most frequency. The most numbers of Nkx2-5 mutations were reported from Germany. The c.541C>T had the highest CADD score (Phred score = 38) and the least was for c.380C>A (Phred score=0.002). 41.9% of mutations were predicted as potentially pathogenic by all prediction tools.

Conclusion: This is the first report of the Nkx2-5 mutations evaluation in the worldwide. Given that the high frequency of mutation in Germany, and also some mutations were seen only in this country, therefore, presumably the main origin of Nkx2-5 mutations arise from Germany.

Introduction

Congenital heart disease (CHD) is the most common defect in heart structure1 that occurring 1%–2% of live births and 10% of abortions.2,3 In spite of numerous research studies aiming to detect CHD reasons, the exact etiology of this disease is still obscure. The past decades studies estimated that chromosomal abnormalities and single gene disorders result in 8% of CHDs.1 Some transcriptional factors regulate cardiac development including GATA binding protein 4 (GATA4), T-box transcription factor (TBX) and NK2 home box 5 (Nkx2-5). These are as CHD prime causes, with topping the list of Nkx2-5.1 The Nkx2-5 gene, a highly conserved gene from Drosophila to humans, is located on chromosome 5q35 and contained two exons. It is known as the significant heart marker during embryonic evolution and it is also necessary for the survival of cardiomyocytes and homeostasis in adulthood. The most of Nkx2-5 mutations have been observed in CHD cases, including tetralogy of Fallot (TOF), ventricular septal defect (VSD), atrial septal defect (ASD), and transposition of the great arteries (TGA).1 Studies in human and animal models indicated Nkx2-5 expression only in cardiac tissue, thereby emphasizing its significant role in heart development. Mice which lacked even one copy of Nkx2-5 gene, represented various heart abnormalities. Furthermore, it has been observed that Nkx2-5 is involved in postnatal heart protection.1 Any changes in the genes, especially critical genes in a specific pathway, have a significant effect on the health. Evaluation of Nkx2-5 mutations can prepare early diagnosis of a variety of CHDs. These mutations display

#Equally first authors.
*Corresponding Author: Nejat Mahdieh, Email: nmahdieh@yahoo.com

© 2019 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dominant inheritance pattern. Mutation screening can also determine family members that may be at risk. To our knowledge, there is no comprehensive study about frequencies and distribution of Nkx2-5 mutations in the worldwide populations. In this study, we reviewed all mutations of Nkx2-5 which reported up to now.

Materials and Methods
Searching methods and data collection
The FASTA format of Nkx2-5 reference genome and protein sequence was downloaded from the UCSC database (build37/hg 19 version). As a first attempt to investigate the relationships between Nkx2-5 mutations and CHD, the search was performed in the database of PubMed, Google Scholar, John Wiley, and Elsevier. Some key words were applied in our literature search such as: “CHD”, “Nkx2-5” and “mutation”. Searching the literature was without any limitation in language and time. For finding any other reported mutations, we surveyed in the several free public databases for genetic variations, such as the single nucleotide polymorphism database (dbSNP), the human gene mutation database (HGMD), the exome aggregation consortium (ExAC) and 1000 Genome. All the statistical analyses were performed using IBM SPSS Statistics for Windows, version 24.0 (Armonk, NY: IBM Corp).

In silico analyses
The functional and pathogenicity consensus of mutations were predicted using computational tools such as Mutation Taster, Sorting Intolerant From Tolerant, version 6.2.1 (SIFT), Polymorphism Phenotyping, version 1.03 (Polyphen2), PROVEAN, version 2.0.23 and combined annotation dependent depletion (CADD), version 1.3. SIFT interprets results using the TrEMBL (version 34.3) and Swiss-Prot (version 51.3) and classifies mutations as deleterious (<0.05) and/or tolerated (≥0.05). PolyPhen2 predicts the impact of an amino acid change on protein structure and function by applying protein 3D structure and multiple sequence alignment. It classifies mutations as possibly damaging, probably damaging, or benign. The PROVEAN also classifies mutations as deleterious or natural. These tools evaluate the functional consequences of mutations at five principal levels; protein stability, posttranslational, transcriptional, translational, and splicing. The protein FASTA sequence (NP_004378.1) of selected mutations was used as the input file of these prediction tools.

Protein structure prediction
I-TASSER (Iterative Threading Assembly Refinement) was applied for evaluating the Nkx2-5 protein structure/function resulting from the mutation with the most frequency. It is a platform which generates some models of query protein applying state-of-art algorithms. The quality of protein features prediction, is judged with some scores; C-score (confidence score), models with C-score >- 1.5 have correct fold; TM-score (template modeling score), the value range is in [0, 1], a higher score displays a better structure; and RMSD, with the range similar to TM-score, determines accuracy of the model. I-TASSER also predicts solvent accessibility with the range from 9 (highly exposed) to 0 (buried) residue position.

Protein network prediction
The STRING database version 10.5 was used for describing of the proteins which have interaction with Nkx-2.5 protein. This database provides a useful evaluation of protein-protein associations, including physical and functional interactions.

Results
In silico analyses

The functional and pathogenicity consensus of mutations were predicted using computational tools such as Mutation Taster, Sorting Intolerant From Tolerant, version 6.2.1 (SIFT), Polymorphism Phenotyping, version 1.03 (Polyphen2), PROVEAN, version 2.0.23 and combined annotation dependent depletion (CADD), version 1.3. SIFT interprets results using the TrEMBL (version 34.3) and Swiss-Prot (version 51.3) and classifies mutations as deleterious (<0.05) and/or tolerated (≥0.05). PolyPhen2 predicts the impact of an amino acid change on protein structure and function by applying protein 3D structure and multiple sequence alignment. It classifies mutations as possibly damaging, probably damaging, or benign. The PROVEAN also classifies mutations as deleterious or natural. These tools evaluate the functional consequences of mutations at five principal levels; protein stability, posttranslational, transcriptional, translational, and splicing. The protein FASTA sequence (NP_004378.1) of selected mutations was used as the input file of these prediction tools.

Protein structure prediction
I-TASSER (Iterative Threading Assembly Refinement) was applied for evaluating the Nkx2-5 protein structure/function resulting from the mutation with the most frequency. It is a platform which generates some models of query protein applying state-of-art algorithms. The quality of protein features prediction, is judged with some scores; C-score (confidence score), models with C-score >- 1.5 have correct fold; TM-score (template modeling score), the value range is in [0, 1], a higher score displays a better structure; and RMSD, with the range similar to TM-score, determines accuracy of the model. I-TASSER also predicts solvent accessibility with the range from 9 (highly exposed) to 0 (buried) residue position.

Protein network prediction
The STRING database version 10.5 was used for describing of the proteins which have interaction with Nkx-2.5 protein. This database provides a useful evaluation of protein-protein associations, including physical and functional interactions.

Results
Literature review
A total number of 59 articles were surveyed. We found 105 mutations (Table 1) containing 80 missenses, 12 deletions, 3 insertions, and 10 nonsenses. These mutations were documented from 18 countries, which among them, America, Germany and China had the most number of Nkx2-5 mutations, respectively (Figure 1). We obtained some significance information from these searches including: mutation features according to DNA and protein sequences, CHD type related to any mutation, the number of reported affected cases harboring specific mutation, the total number of studied individuals, and the place where study performed there. The number of studied individuals were as 2230, 1199, 2827, 335 and 146 individuals in America, Europe, Asia, Africa and Australia, respectively. 30 mutations in America (c.533C>T with the most frequency), 49 in Europe (c.896A>G with most frequency), 46 in Asia (c.738T>A with most frequency) and 2 mutations both in Africa and Australia have been found. Moreover, the frequency of Nkx2-5 mutations was as 4.12% in America, 24.1% in Europe, 6.15% in Asia, 1.5% in Africa and 2% in Australia. The location of Nkx2-5 mutations was illustrated in Figure 2.

Frequency and distribution of the mutations
The c.73C>T was detected in 8 countries including: America, Spain, Brazil, Italy, Germany, Korea, Lebanon and Turkey. The c.533C>T was also observed in 4 countries like America, Germany, Japan and Australia. These findings indicate that the distribution of c.73C>T and c.533C>T mutations are more than other Nkx2-5 mutations in worldwide. c.325G>T (62.5%) and c.896A>G (52.9%) had the most frequency, although the distribution of them was only in Germany. The most numbers of Nkx2-5 mutations were reported from Germany, among them, c.896A>G (94.5%) and c.547A>G (42.6%) were the most common mutations in this country. The frequency of the Nkx2-5 mutations in continents were indicated in Figure 3.
Table 1. The reported of Nkx2-5 mutations

Mutation DNA	Mutation Protein	Mutation Type	America 11, 18-20	Europe 25, 28, 30-44	Asia 1, 29, 45-47	Africa 46, 48	Australia 70	CHD Type	A/B
c.17delC	p.A6V	Indel	1/235	1/235				TOF	1/235
c.44A>T	p.K15I	Missense	1/608	1/608				SASD	1/608
c.55A>G	p.N19D	Missense	2/136	2/136				AF, AVB	2/136
c.56A>G	p.N19S	Missense	18/68	18/68				VSD	18/68
c.61G>C	p.E21Q	Missense	1/608	2/146	1/146		1/146	TOF, AF	4/720
c.61G>T	p.E21ter	Nonsense	1/28	1/28				AVSD, HLH	1/28
c.64C>A	p.Q22K	Missense	1/268	1/268				ASD	1/268
c.65A>C	p.Q22P	Missense	1/608	2/100				TOF, VSD	3/128
c.73C>T	p.R25C	Missense	7/466	21/311				TOF, HLHS, TA, JAA, AVC, TD, DCM, VSD, ASD, PFO	38/1764
c.94G>A	p.E32K	Missense	1/13	1/13				ASD	1/13
c.106C>A	p.R36S	Missense	1/68	1/68				VSD	1/68
c.126_142del	p.P43Gfs59	Missense	1/58	1/58				ASD	1/58
c.133T>C	p.S45P	Missense	1/68	1/68				VSD	1/68
c.138C>G	p.C46W	Missense	1/58	1/58				ASD	1/58
c.151T>C	p.F51L	Missense	1/68	1/68				VSD	1/68
c.160G>A	p.E54K	Missense	1/268	1/268				TOF	1/268
c.175G>G	p.P59A	Missense	3/136	3/136				VSD	3/136
c.202G>A	p.E68K	Missense	1/13	1/13				ASD	1/13
c.206T>C	p.L69P	Missense	1/68	1/68				VSD	1/68
c.230C>T	p.P77L	Missense	1/68	1/68				VSD	1/68
c.262delG	p.A88Xfs	Indel	1/18	1/18				ASD	1/18
c.312delG	p.K104fs	Indel	2/12	2/12				AVB, ASD	2/12
c.325G>T	p.E109ter	Nonsense	5/8	5/8				ASD, VSD, PAS, PFO, AVB	5/8
c.326A>T	p.E109V	Missense	1/140	1/140				ASD	1/140
c.340T>A	p.C114S	Missense	5/68	5/68				ASD, AVSD	5/68
c.340T>C	p.C114R	Missense	22/68	22/68				AVSD	22/68
c.353A>G	p.K113R	Missense	5/68	5/68				ASD, VSD	5/68
c.355G>T	p.A119S	Missense	3/169	3/169				TD, DCM, AVSD, HLHS	4/389
c.365T>C	p.L122P	Missense	6/399	6/399				ASD	1/331
c.371A>G	p.K124R	Missense	6/68	6/68				ASD	6/68
c.377A>T	p.E126V	Missense	11/68	11/68				ASD, VSD, AVSD	11/68
c.380C>A	p.A127E	Missense	1/608	1/608				ASD	1/608
c.397C>T	p.P133S	Missense	6/68	6/68				ASD	6/68
c.397-400del	p.P133Gfs42	Indel	1/3	1/3				Hetrotaxi	1/3
c.403G>A	p.A135T	Missense	9/68	9/68				VSD, AVSD	9/68
c.403delG	p.A135Rfs	Indel	11/185	11/185				ASD, VSD, PDA, TOF, AF	11/185
c.424C>T	p.R142C	Missense	13/50	13/50				ASD, VSD, TOF	13/50
c.431T>C	p.L144T	Missense	11/68	11/68				VSD, AVSD	11/68
c.434T>C	p.F145S	Missense	1/110	1/110				FA, AF	2/270
c.437C>G	p.S146W	Missense	1/260	1/260				DCM, AVB, AF	1/260
c.445C>T	p.Q149ter	Nonsense	3/92	7/52	1/26			ASD, VSD, AVB	11/170
c.448G>A	p.V150I	Missense	1/7	1/7				VSD	1/7
c.461A>G	p.E154G	Missense	2/213	2/213				ASD, AVB	2/213
c.479A>C	p.Q160P	Missense	4/8	4/8				ASD, AVB	4/8
Mutation Type	America 15, 18–29	Europe 25, 28, 30–44	Asia 29, 30, 45–67	Africa 48, 49	Australia 70	CHD Type	A/B		
----------------	------------------	---------------------	------------------	-------------	-------------	----------	-----		
c.482G>C	PR161P Missense	2/141				TD	2/141		
c.498-499insC	p.E167fs Indel	1/16				ASD, VSD, AVB	1/16		
c.508C>T	p.Q170ter Nonsense	4/33				ASD, AVB	4/33		
c.512T>C	p.L171P Missense	9/48				ASD, VSD, AVB	9/48		
c.512insGC	p.A172fs Indel	3/8				ASD	3/8		
c.533C>T	p.T178M Missense	12/33	1/18	2/146		ASD, AVB	15/197		
c.536C>T	p.S179F Missense	5/226				ASD	5/226		
c.538A>G	p.T180A Missense	2/146				AF	2/146		
c.541C>T	p.Q181H Missense	1/331				ASD	1/331		
c.543G>C	p.Q81H Missense	4/11				ASD, VSD, VSD	4/11		
c.547A>G	p.K183E Missense	29/68				VSD, AVS	29/68		
c.550A>T	p.I184F Missense	1/23				DCM, ASD, VSD, AVB	1/23		
c.552G>G	p.I184M Missense	2/245				DCM, ASD, VSD, AVB	2/245		
c.554A>G	p.W185L Missense	3/16				ASD	3/16		
c.557T>C	p.F186S Missense	2/136				AF, AVB	2/136		
c.559C>T	p.Q187H Missense	6/68				ASD	6/68		
c.560T>C	p.Q187H Missense	2/50				ASD, VSD, TOF	2/50		
c.564A>G	p.N188K Missense	5/92	1/26			ASD, VSD, AVB	5/118		
c.565C>G	p.R189G Missense	5/92	1/26			ASD, VSD, AVB	6/118		
c.568C>T	p.R190C Missense	1/18				ASD	1/18		
c.569G>T	p.R190L Missense	2/121				AVB	2/121		
c.569G>A	p.R190H Missense	3/48	2/121			ASD, VSD, AVB	5/169		
c.572A>G	p.Y191C Missense	5/92	1/26			ASD, VSD, AVB	2/118		
c.574A>T	p.Q192X Missense	5/142				BAV	5/142		
c.575A>C	p.Q192T Missense	6/68				ASD	6/68		
c.575A>G	p.K192R Missense	2/68				ASD	2/68		
c.581A>G	p.L194R Missense	2/68				ASD	2/68		
c.592C>T	p.Q195ter Missense	3/33	2/98			AVB, ASD	5/131		
c.605-606delTG	p.L202fs Indel	3/16				ASD, VSD, AVB	3/16		
c.608A>G	p.E203G Missense	1/150				VSD	1/150		
c.614T>A	p.V205E Missense	6/68				ASD	6/68		
c.615delG	p.L207Cfs Indel	2/213				ASD, AVB	2/213		
c.626C>T	p.P209L Missense	1/140				VSD	1/140		
c.632C>T	p.P211L Missense	2/50				ASD, VSD, TOF	2/50		
c.646C>T	p.R216C Missense	1/608	38/150			ASD, VSD, PDA, TOF, PHT	39/758		
c.656C>T	p.A219V Missense	1/608				TOF, ASD	1/608		
c.6760A>G	p.D226N Missense	3/150				VSD, ASD, PDA	3/150		
c.694G>A	p.G232R Missense	1/331				ASD	1/331		
c.InsTCCCT701	p.A235ApFSter	1/608	5/68			SASD, AVB, ASD	6/676		
c.707C>T	p.P236H Missense	1/327				ICA	1/327		
c.712-728del	p.Y241fs Indel	2/213				ASD, AVB	2/213		
c.733T>A	p.N246K Missense	42/185				ASD, VSD, PDA, TOF, AF	42/185		
c.742T>C	p.Y248H Missense	5/68				ASD	5/68		
c.762delC	p.A255Pfs Indel	1/121				ASD, AVB	1/121		
c.768T>A	p.Y256ter Missense	1/7				ASD, AVB	1/7		
c.769C>G	p.P257A Missense	1/30				VSD	1/30		

Table 1. (Continued)
Table 1. Continued

DNA	Protein Type	America	Europe	Asia	Africa	Australia	CHD Type	A/B
c.777G>A	p.Y259ter Nonsense	7/92	1/26	ASD, VSD, AVB	8/118			
c.792C>A	p.C264ter Nonsense	1/109	ASD	1/109				
c.795C>A	p.S265R Missense	3/8	TD	3/8				
c.809G>A	p.C270Y Missense	2/213	ASD, AVB	2/213				
c.823A>T	p.P271T Missense	1/608	COA	1/608				
c.848C>A	p.P283Q Missense	1/135	VSD, PDA, AS	1/135				
c.delAAC871	p.del291N Indel	1/608	DORV	1/608				
c.872G>A	p.N291 Missense	1/100	TD, AF	1/100				
c.877G>A	p.V293ter Indel	4/15	WP	4/15				
c.880C>G	p.N294H Missense	14/68	AVSD	14/68				
c.896A>G	p.D299G Missense	36/68	ASD, VSD, AVSD	36/68				
c.958G>A	p.G320S Missense	17/68	ASD, AVSD, VSD	17/68				
c.965G>A	p.R322Q Missense	2/68	ASD	2/68				
c.967G>A	p.A323T Missense	1/608	TOF	1/608				

The number of mutations in studied patients: 30
The number of studied individuals in studied patients: 2230
The number of patients carrying mutation in studied patients: 92
The frequency of mutation in studied patients: 4.12

Bioinformatics
Computational analyses of the 105 mutations, predicted pathogenic effect for most of them (Table 2). SIFT tool predictions were included: 55 deleterious, 38 tolerable and 12 not available (N/A). Polyphen2 determined 27 possibility damaging, 37 probably damaging, 29 benign and 12 N/A. Using PROVEAN also detected 53 deleterious, 40 natural and 12 N/A. The c.541C>T had the highest CADD score (Phred score=38) and the least was for c.380C>A (Phred score=0.002).

Prediction of the normal and mutant models
Five structural/functional models of normal Nkx2-5 protein were obtained by I-TASSER as an output. We selected the structure with the highest scores, C-score: -4.50, TM-score: 0.25±0.07 and RMSD: 17.8±2.5Å. Moreover, we captured the three-dimensional models of mutant protein p.R25C generating by I-TASSER and

Figure 1. Frequency of Nkx2-5 mutations in some countries.
selected the structure with the highest scores, C-score: -3.38, TM-score: 0.34±0.11 and RMSD: 14.6±3.7Å. The result assessing showed the solubility of mutant protein was reduced in comparison with normal protein but the protein structure was the same. Indeed, solvent accessibility was predicted both native Arginine residue with score of 6 and variant Cysteine residue with score of 4 as buried exposed (Figure 4).

Protein association analyses

Any change in Nkx2-5 pathway network can affect on this protein functions or vice versa. The STRING analysis represented 10 interactive proteins; GATA4, MEF2A, TBX5, SMAD4, HAND1, HAND2, MEF2C, BMP4, NOG and SRF for Nkx2-5 protein in protein-protein association software (Figure 5).

Discussion

CHD is the most common birth defect in worldwide. Although there are several important genes which play important role in the CHD etiology, but the Nkx2-5 is topping the list. Nkx2-5 is one of the master transcription factors of heart development that regulates cardiac ion channels. This gene was identified as the first gene involved in CHD by genetic association studies in large families. We determined the frequency/distribution of Nkx2-5 mutations and evaluated these mutations by using computational tools (Mutation Taster, SIFT, Polyphen2, PROVEAN and CADD).

This protein consists some conserved regions: DNA binding home domain (HD), peptide conserved TN-domain near the amino acid terminus and NK2-domain located c-terminal to the HD. Studies have demonstrated that HD domain has critical role in DNA binding, interaction with other proteins and transcriptional regulation. In the majority of reported cases, the variant is a missense mutation (33 missense mutations) located within the HD domain of the Nkx2-5 gene (Figure 2). Moreover, the most common CHD types resulting from Nkx2-5 mutation were ASD and VSD. In the past years, in silico analyses as an efficient tool has classified variants as being neutral or lethal. Both SIFT and Polyphen2 are the most common in silico prediction tools applied in diagnostic laboratories. The
Mutation Type	Frequency	dbSNP	HGMD	Mutation Taster	Polyphen2	PROVEAN	SIFT	CADD	EXAC	1000G		
c.17delc	Indel	0.42%	CM123285	DC	BENIGN	NE	DE	25.4				
c.44A>T	Missense	0.16%	387906773	CM033925	DC	PRD	DE	28.9				
c.55A>G	Missense	1.47%	_	DC	POD	NE	TO	24.3				
c.56A>G	Missense	26/47%	_	DC	POD	NE	TO	22.9				
c.61G>C	Missense	0.55%	104893904	CM033525	DC	PRD	NE	26.4	91			
c.61G>T	Nonsense	3.57%	104893904	CM033525	DC	NA	NA	NA	37			
c.64C>A	Missense	0.37%	764389026	CM1110282	DC	POD	NE	25.2				
c.65A>G	Missense	2.34%	201442000	CM033926	DC	POD	NE	25.2	21			
c.65A>C	Missense	0.16%	201442000	CM033926	DC	POD	DE	24.5				
c.73C>T	Missense	2.15%	28936670	CM993125	DC	PRD	NE	29.9	411	51		
c.94G>A	Missense	7.69%	552617433	CM086531	DC	BENIGN	NE	TO	17.87	1	1	
c.106C>A	Missense	0.37%	_	CM0910533	DC	PRD	NE	TO	23.5			
c.126_142del	Indel	1.72%	_	CM109031	DC	PRD	DE	34				
c.133T>C	Missense	1.47%	779548360	DC	PRD	NE	TO	24.8				
c.138C>G	Missense	1.72%	757461276	CM109031	DC	PRD	NE	28.5				
c.151T>C	Missense	1.47%	753937287	DC	POD	NE	TO	23.4	1			
c.160G>A	Missense	0.37%	_	CM1110284	DC	BENIGN	NE	TO	22.7			
c.175C>G	Missense	2.20%	387906775	CM108740	DC	PRD	NE	TO	18.81			
c.202G>A	Missense	7.69%	_	DC	BENIGN	NE	TO	16.42				
c.206T>C	Missense	1.47%	_	DC	PRD	NE	TO	23.1				
c.230C>T	Missense	1.47%	_	DC	BENIGN	NE	TO	12.85				
c.262delG	Indel	5.5%	606231360	CD051763	DC	POD	NE	TO	25.1			
c.312delG	Indel	16.66%	774878026	CD067184	DC	BENIGN	DE	TO	25			
c.325G>T	Nonsense	62.5%	_	CM082970	DC	NA	NA	NA	36			
c.326A>T	Missense	0.71%	_	CM110809	DC	BENIGN	DE	TO	10.39			
c.340T>A	Missense	7.35%	_	DC	BENIGN	DE	TO	13.12				
c.340T>C	Missense	32.35%	_	DC	BENIGN	DE	TO	18.11				
c.353A>G	Missense	7.35%	_	DC	BENIGN	NE	TO	17.89				
c.355G>T	Missense	1.02%	137852684	CM061152	DC	BENIGN	NE	TO	10.02	101	3	
c.365T>C	Missense	0.30%	_	CM123330	DC	BENIGN	NE	TO	15.81			
c.371A>G	Missense	8.82%	_	DC	BENIGN	NE	TO	11.83				
c.377A>T	Missense	16.17%	_	DC	BENIGN	DE	TO	13.84				
c.380C>A	Missense	0.16%	387906774	CM033928	DC	BENIGN	NE	TO	0.002			
c.397C>T	Missense	8.82%	_	DC	BENIGN	DE	DE	19.71				
c.397-400del	Indel	33.33%	_	DC	PRD	DE	DE	32				
c.403G>A	Missense	13.23%	_	DC	BENIGN	NE	TO	16.4				
c.403delG	Indel	5.94%	_	DC	BENIGN	NE	TO	26.4				
c.424C>T	Missense	26%	_	CM021252	DC	PRD	DE	34				
c.431T>C	Missense	16.17%	747932354	_	DC	PRD	DE	26.9				
c.434T>C	Missense	0.74%	72354027	CM127833	DC	PRD	DE	28.2				
c.437C>G	Missense	0.38%	397516909	_	DC	PRD	DE	31				
c.445C>T	Nonsense	6.47%	_	CM993126	DC	NA	NA	NA	37			
c.448G>A	Missense	14.28%	201582515	CM098203	DC	PRD	NE	29.1		1		
c.461A>G	Missense	0.93%	587782928	_	DC	PRD	DE	27.6				
c.479A>C	Missense	50%	199475601	CM071903	DC	PRD	DE	26.7				
c.482G>C	Missense	1.41%	137852685	CM061151	DC	PRD	DE	33	1	1		
c.498-499insC	Indel	6.25%	_	CM050501	DC	PRD	DE	35				
c.508C>T	Nonsense	12.12%	104893901	CM980448	DC	NA	NA	NA	37			
c.512T>C	Missense	18.75%	_	CM044907	DC	PRD	DE	27.9				
c.512nsGC	Indel	37.5%	_	CI075550	DC	PRD	DE	34				
c.533C>T	Missense	7.61%	104893900	CM980449	DC	PRD	DE	29.3				
c.536C>T	Missense	2.21%	_	CM0910532	DC	PRD	DE	27.7				
c.538A>G	Missense	1.36%	_	DC	PRD	DE	DE	25.6				
c.541C>T	Nonsense	0.3%	_	DC	NA	NA	NA	38				
Mutation	Mutation type	Frequency	dbSNP	HGMD	Mutation taster	Polyphen2	PROVEAN	SIFT	CADD	EXAC	1000G	
----------	--------------	-----------	-------	------	-----------------	-----------	---------	------	------	------	--------	
c.543G>C	Missense	36.36%	72554028	CM096566	DC	PRD	DE	DE	27.8	_	_	
c.547A>G	Missense	42.64%	137852686	_	DC	POD	DE	DE	26	_	_	
c.550A>T	Missense	4.34%	_	_	DC	POD	DE	DE	27.8	_	_	
c.552C>G	Missense	0.81%	_	CM135608	DC	POD	DE	DE	24.8	_	_	
c.554G>T	Missense	18.75%	797045792	CM050301	DC	POD	DE	DE	30	_	_	
c.557T>C	Missense	1.47%	_	_	DC	BENIGN	DE	DE	24.4	_	_	
c.559C>T	Nonsense	8.82%	_	_	DC	NA	NA	NA	37	_	_	
c.561T>C	Missense	4%	_	CM021253	DC	POD	DE	DE	25.8	_	_	
c.564A>C	Missense	4.23%	_	CM993127	DC	PRD	DE	DE	26.3	_	_	
c.565C>G	Missense	5.08%	_	CM993128	DC	POD	DE	DE	26.9	_	_	
c.568C>T	Missense	5.5%	104893906	CM051567	DC	PRD	DE	DE	32	_	_	
c.569G>T	Missense	1.65%	_	CM107631	DC	POD	DE	DE	34	_	_	
c.569G>A	Missense	2.95%	_	CM049406	DC	POD	DE	DE	34	_	_	
c.572A>G	Missense	1.69%	_	CM993129	DC	PRD	DE	DE	25.5	_	_	
c.574A>T	Nonsense	3.52%	_	_	DC	NA	NA	NA	37	_	_	
c.575A>C	Missense	8.82%	_	_	DC	PRD	DE	DE	26.9	_	_	
c.575G>A	Missense	2.94%	_	_	DC	PRD	DE	DE	26	_	_	
c.581A>G	Missense	2.94%	_	_	DC	PRD	DE	DE	25.9	_	_	
c.592T>C	Nonsense	3.81%	104893903	CM980450	DC	NA	NA	NA	37	_	_	
c.605-606delIG	Indel	18.75%	_	CD050462	DC	POD	DE	DE	35	_	_	
c.608A>G	Missense	0.66%	77153353	CM109892	DC	BENIGN	DE	DE	24.1	4	_	
c.614T>A	Missense	8.82%	_	_	DC	BENIGN	NE	TO	22.9	_	_	
c.615delG	Indel	0.93%	_	_	DC	POD	NE	TO	33	_	_	
c.626C>T	Missense	0.71%	_	CM110810	DC	BENIGN	NE	TO	21.9	_	_	
c.632C>T	Missense	4%	3729754	DC	PRD	DE	TO	23.4	21	1	_	
c.646C>T	Missense	5.14%	104893905	CM013526	DC	PRD	DE	TO	33	_	_	
c.656C>T	Missense	0.16%	104893902	CM013527	DC	PRD	DE	TO	33	_	_	
c.676G>A	Missense	2%	_	CM1010049	DC	BENIGN	DE	DE	25.4	1	_	
c.694G>A	Missense	0.3%	_	CM123331	DC	PRD	DE	DE	28.7	_	_	
c.701InsTCCCC	Indel	0.88%	_	CD034942	DC	BENIGN	NE	TO	34	_	_	
c.707C>A	Missense	0.3%	397515399	CM123618	DC	POD	DE	TO	24.7	1	_	
c.721-728del	Indel	0.93%	587782930	_	_	DC	BENIGN	NE	TO	35	_	_
c.738T>A	Missense	22.7%	_	_	DC	POD	DE	DE	24.2	_	_	
c.742T>C	Missense	7.35%	_	_	DC	POD	DE	DE	26.2	_	_	
c.762delC	Indel	0.82%	_	CD107632	DC	BENIGN	NE	TO	28	_	_	
c.768T>A	Missense	14.28%	104893907	CM066150	DC	NA	NA	NA	35	_	_	
c.769C>G	Missense	3.33%	387906776	_	CM104914	DC	POD	NE	TO	8.926	_	_
c.777C>G	Nonsense	6.77%	_	_	CM993130	DC	NA	NA	NA	36	_	_
c.792C>A	Nonsense	0.91%	_	CM023353	DC	NA	NA	NA	37	_	_	
c.795C>A	Missense	37.5%	_	CM113773	DC	POD	NE	DE	25.7	_	_	
c.809G>A	Missense	0.93%	587782931	_	_	DC	POD	DE	DE	25.3	7	_
c.823C>A	Missense	0.16%	368366482	CM033929	DC	POD	NE	DE	23.7	10	3	_
c.848C>A	Missense	0.74%	375086983	CM108634	DC	BENIGN	NE	TO	11.39	7	_	
c.delAAC871	Indel	0.16%	756974215	_	DC	NA	NE	TO	16.05	_	_	
c.872A>T	Missense	1%	756974215	_	DC	POD	NE	DE	27.1	_	_	
c.877delG	Indel	26.6%	749577797	_	DC	NA	NA	NA	35	_	_	
c.880A>C	Missense	20.58%	_	_	DC	BENIGN	NE	DE	23.1	_	_	
c.896G>A	Missense	52.94%	137852683	_	_	DC	BENIGN	NE	TO	17.59	_	_
c.958G>A	Missense	25%	_	_	DC	POD	DE	TO	25	_	_	
c.965G>A	Missense	2.94%	376426882	_	DC	POD	DE	DE	33	_	_	
c.967G>A	Missense	0.16%	_	CM033930	DC	POD	DE	TO	24.9	_	_	

Polyphen-2, score =0-0.15: Benign; score =0.15-0.85: Possibly damaging; score =0.85-1: Probably damaging; PROVEAN, score ≤ 2.5: Deleterious; score >2.5: Natural; SIFT, score ≤ 0.05: Deleterious; score >0.05: Tolerable; CADD, Phred ≤ 20: Damaging; Phred >20: Natural. DC: Disease Causing; POD: Possibly Damage; PRD: Probably Damaging; DE: Deleterious; NE: natural; TO: Tolerable; NA: Not Available.
approach which was used to classified variants as “Benign” or “Pathogenic” according to combined predictions from the five computational tools. This approach was applied to ensure all likely pathogenic variants of Nkx2-5 gene would not be missed. In current study, we could determine high confidence information regarding the effect of amino acid change on Nkx2-5 structure/function applying solely computational tools. The present work is the first attempt to asses all mutations of the Nkx2-5 gene and overall, we reported 105 variants of Nkx2-5 gene. Among them, c.380C>A variant was predicted to be benign by SIFT, Polyphen2 and PROVEAN tools but disease causing by Mutation taster. However, the low CADD score (Phred score= 0.002) confirmed that it can be a polymorphism. The c.541C>T had the highest CADD score (Phred score=38) and was only observed in England. Given this information, it can be deduced that c.541C>T is a mutation with founder's effect which resulting in ASD in England. The highest frequency Nkx2-5 mutations, about 99.6%, was revealed in Germany. It means that more association studies in this country can discover more new mutations in this gene.

Given that the c.73C>T (p.R25C) was distributed in all continents, it seems to be a hotspot position. Although HGMD documented this mutation as a pathogenic variant, but the 1000 Genome and ExAC databases reported it as a heterozygous form. Moreover, most of the software's predicted it as a disease causing variant. c.325G>T and c.896A>G were observed with the high frequency just in Germany, this indicates a founder effect of these mutations. c.325G>T is a nonsense mutation which generates a truncated protein, while c.896A>G was predicted as a benign variant by several prediction tools, it was reported as a pathogenic variant in HGMD and not registered in 1000 G and ExAC.

Among Nkx2-5 network proteins, BMP2 protein is a cardiac factor which elicits expression ectopically of the heart markers GATA4 and Nkx2-5. It plays critical role in myocardial differentiation and regulation of proliferation. The Nkx2.5 has binding site in SMAD4 enhancer, thus BMP2 activity is needed for heart progenitor characteristics. TBX5 and Nkx2-5, both of them operate as co-activators for GATA4 pathway activity, any changes in these proteins can disrupt cardiac septation. This study indicates that the frequency and distribution of Nkx2-5 mutations is more in Europe (Figure 3) and Asia and America are standing in next steps. This result shows that maybe the source of Nkx2-5 mutations was from Europe and by migration transferred to other continents. Finally, it should be noted there are many modifier factors in Nkx2-5 pathway which might affect on manifestation resulting from Nkx2-5 mutations. Large population

![Three-dimensional models of normal (left) and mutant (right) Nkx2-5, p.R25C, proteins were predicted by I-TASSER (Iterative Threading Assembly Refinement). A: Representation of predicted Secondary Structure. B: Representation of predicted Solvent Accessibility.](image-url)
studies, variants frequency assessment in both of normal and patient population, functional study of mutations by animal models and evaluate expression level arising from mutations, can improve our understanding in this category.

Conclusion
Here, in silico analyses and structural model of Nkx2-5 have been submitted for the first time. Nkx2-5 plays critical role in embryonic cardiac development and has several important mutable regions with high distribution. Our results indicated that Nkx2-5 gene can be a significant candidate for CHD etiology investigation. Bioinformatics approaches permit large numbers of variants to be evaluated at the same time and predicted effects of all variants at the protein level. It should be noted that our information are according to database, however, any pathogenic variants should be experimentally confirmed. Regarding that some mutations observed only in Germany, also high frequency and diversity of mutations in this country, it seems Nkx2-5 has a significant role in this part of the world.

Competing interests
None.

Ethical approval
The study is performed in accordance with the Helsinki Declaration and has been approved by the Rajaie Cardiovascular, Medical and Research Center (RHC.AC.IR.REC.1395.46; 24 December 2016) ethics Committees.

Acknowledgments
This project was provided by Rajaie Cardiovascular Medical and Research Center, Tehran, Iran, Zanjan University of Medical Sciences, Zanjan, Iran and Islamic Azad University, Science and Research Branch, Tehran, Iran.

References
1. Chung I-M, Rajakumar G. Genetics of congenital heart defects: the NXX2-5 gene, a key player. Genes 2016;7(2):6. doi: 10.3390genes7020006
2. Hoffman J. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 1995;16(4):155-165. doi: 10.1007/BF00794186
3. Hoffman JJ, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002;39(12):1890-1900. doi: 10.1016/s0735-1097(02)1886-7
4. Kalayinia S, Biglari A, Rokni-Zadeh H, et al. The Nkx2-5 Gene Mutations Related to Congenital Heart Diseases in Iranian Patients Population. Int Cardiovasc Res J 2018;12(3).
5. Qin X, Xing Q, Ma L, et al. Genetic analysis of an enhancer of the Nkx2-5 gene in ventricular septal defects. Gene 2012;508(1):106-109. doi: 10.1016/j.gene.2012.07.019
6. Sherry ST, Ward M-H, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29(1):308-311. doi: 10.1093/nar/29.1.308
7. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. Human gene mutation database (HGMD®): 2003 update. Hum Mutat 2003;21(6):577-581. doi: 10.1002/humu.10212
8. Karczewski KJ, Weiburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 2016;45(D1):D840-D845. doi: 10.1093/nar/gkw971
9. Consortium GP. A global reference for human genetic variation. Nature 2015;526(7571):68. doi: 10.1038/nature15393
10. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014;11(4):361. doi: 10.1038/nmeth.2890
11. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009;4(7):1073. doi: 10.1038/nprot.2009.86
12. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7(4):248. doi: 10.1038/nmeth0410-248
13. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015;31(16):2745-2747. doi: 10.1093/bioinformatics/btv195
14. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46(3):310. doi: 10.1038/ng.2892
15. Ritchie MD, Rowan S, Kucera G, Stubblefield T, Blair M, Carter S, et al. Chromosome 4q25 variants are genetic modifiers of rare ion channel mutations associated with familial atrial fibrillation. J Am Coll Cardiol 2012;60(13):1173-1181. doi: 10.1016/j.jacc.2012.04.030
16. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010;5(4):725. doi: 10.1038/nprot.2010.5
17. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Ceps J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2014;43(D1):D447-D452. doi: 10.1093/nar/gku1003
18. Goldmuntz E, Geiger E, Benson DW. NXX2. 5 mutations in patients with tetralogy of fallot. Circulation 2001;104(21):2565-2568. doi: 10.1161/hc4601.098427
19. Draus J, Hauck M, Goetsch M, Austin EH 3rd, Tomita-Mitchell A, Mitchell ME. Investigation of somatic NXX2-5 mutations in congenital heart disease. J Med Genet 2009;46(2):115-122. doi: 10.1136/jmg.2008.060277
20. Schott J-J, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, et al. Congenital heart disease caused by mutations in the transcription factor NXX2-5. Science 1998;281(5373):108-111. doi: 10.1126/science.281.5373.108
21. Kasahara H, Benson DW. Biochemical analyses of eight NXX2. 5 homeodomain missense mutations causing
Nkx2-5 mutations

atrioventricular block and cardiac anomalies. Cardiovasc Res 2004;64(1):40-51. doi: 10.1016/j.cardiores.2004.06.004

22. Costa MW, Guo G, Wolstein O, Vale M, Castro ML, Wang L, et al. Functional characterization of a novel mutation in NKKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy. Circ Cardiovasc Genet 2013;6(3):238-247. doi: 10.1161/CIRCGENETICS.113.000057

23. Ouyang P, Saarel E, Bai Y, Luo C, Lv Q, Xu Y, Wang F, et al. A de novo mutation in NKKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta 2011;412(1-2):170-175. doi: 10.1016/j.cca.2010.09.035

24. Gunteroth W, Chun L, Patton KK, Matsushita MM, Page RL, Raskind WH. Wenckebach periodicity at rest that normalizes with tachycardia in a family with a NKKX2.5 mutation. Am J Cardiol 2012;110(11):1646-1650. doi: 10.1016/j.amjcard.2012.07.033

25. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Biggs S, et al. Mutations in the cardiac transcription factor NKKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999;104(11):1567-1573. doi: 10.1172/JCI15145

26. Hanley A, Walsh KA, Joyce C, McLellan MA, Clauss S, Hagen A, et al. Mutation of a common amino acid in NKKX2.5 results in dilated cardiomyopathy in two large families. BMC Med Genet 2016;17(1):83. doi: 10.1186/s12881-016-0347-6

27. Perera JL, Johnson NM, Judge DP, Crosson JE. Novel and highly lethal NKKX2.5 missense mutation in a family with sudden death and ventricular arrhythmia. Pediatr Cardiol 2014;35(7):1206-1212. doi: 10.1007/s00246-014-0917-3

28. König K, Will JC, Berger F, Müller D, Benson DW. Familial congenital heart disease, progressive atrioventricular block and the cardiac homeobox transcription factor gene NKKX2.5. Clin Res Cardiol 2006;95(9):499-503. doi: 10.1007/s00392-006-0412-9

29. Gioli-Pereira L, Pereira AC, Mesquita SM, Xavier-Neto J, Lopes AA, Krieger JE. NKX2.5 mutations in patients with familial atrioventricular conduction caused by mutations in the NKX2.5, GATA4, and TBX5 genes in congenital heart disease: atrial fibrillation and syncopes part of the phenotype? Eur Heart J 2009;30(18):2117-2125. doi: 10.1093/eurheartj/ehp157

30. Stallmeyer B, Fenge H, Nowak-Göttl U, Schulze-Bahr E. Mutational spectrum in the cardiac transcription factor gene NKX2.5 associated with congenital heart disease. Clin Genet 2010;138(3):261-265. doi: 10.1111/j.1399-0004.2008.0385.x

31. Hermanns P, Grasberger H, Refetto S, Pohlenz J. Mutations in the NKX2.5 gene and the PAX8 promoter in a girl with thyroid dysgenesis. J Clin Endocrinol Metab 2011;96(6):E977-E981. doi: 10.1210/jc.2010-2341

32. Reamont-Buettner SM, Hecker H, Spanel-Borowski K, Craatz S, Kuenzel E, Borlak J. Novel NKX2-5 mutations in diseased heart tissues of patients with cardiac malformations. Am J Pathol 2004;164(6):2117-2125. doi: 10.1016/S0002-9440(10)63770-4

33. Reamont-Buettner SM, Sattlegger E, Cibibilli Y, Inga A, Wessel A, Borlak J. Transcriptional defect of an inherited NKKX2-5 haplotype comprising a SNP, a nonsynonymous and a synonymous mutation, associated with human congenital heart disease. PLoS One 2013;8(12):e83295. doi: 10.1371/journal.pone.083295

34. Esposito G, Grutter G, Drago F, Costa MW, De Santis A, Rosco G, et al. Molecular analysis of PRKAG2, LAMP2, and NKKX2-5 genes in a cohort of 125 patients with accessory atrioventricular connection. Am J Med Genet A 2009;149(7):1574-1577. doi: 10.1002/ajmg.a.32907

35. Dentice M, Cordeddu V, Bosica A, Ferrara AM, Santarpia L, Salvatore D, et al. Missense mutation in the transcription factor NKKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J Clin Endocrinol Metab 2006;91(4):1428-1433. doi: 10.1210/jc.2005-1350

36. De Luca A, Sarkozy A, Consoli F, Ferese R, Guida V, Dentici ML, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart 2010;96(9):673-677. doi: 10.1136/hrt.2009.181685

37. Sarcozy A, Conti E, Neri C, Digilio MC, Esposito G, Toscano A, et al. Spectrum of atrial septal defects associated with mutations of NKKX2.5 and GATA4 transcription factors. J Med Genet 2005;42(2):e16-e16. doi: 10.1136/jmg.2004.026740

38. Belfagna G, Ceczetto A, Dal Bianco L, Lorenzon A, Angelini A, Padalino M, et al. R25C mutation in the NKKX2.5 gene in Italian patients affected with non-syndromic and syndromic congenital heart disease. J Cardiovasc Med (Hagerstown) 2013;14(8):582-586. doi: 10.2459/JCM.0b013e328356a326

39. Gutierrez-Roelens I, Sluymans T, Gewillig M, Devriendt K, Vinkka M. Progressive AV-block and anomalous venous return among cardiac anomalies associated with two novel missense mutations in the CSX/NKKX2-5 gene. Hum Mutat 2002;20(1):75-76. doi: 10.1002/humu.9041

40. Gutierrez-Roelens I, De Roy L, Ovaert C, Sluymans T, Devriendt K, Brunner HG, et al. A novel CSX/NKKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncope part of the phenotype? Eur J Hum Genet 2006;14(12):1313. doi: 10.1038/sj.ejhg.5201702

41. Granados-Riveron JT, Pope M, Bu'Lock FA, Thornborough C, Eason J, Settfield K, et al. Combined mutation screening of the NKX2-5, GATA4, and TBX5 genes in congenital heart disease: Multiple heterozygosity and novel mutations. Congenit Heart Dis 2012;7(2):151-159. doi: 10.1111/j.1747-0803.2011.00573.x

42. Belvis R, Tizzano EF, Martí-Fàbregas J, Leta RG, Baena M, Carreras F, et al. Mutations in the NKKX2-5 gene in patients with stroke and patent foramen ovale. Clin Neurol Neurosurg 2009;111(7):574-578. doi: 10.1016/j.clineuro.2009.04.004

43. Bjørnstad PG, Leren TP. Familial atrial septal defect in the oval fossa with progressive prolongation of the atrioventricular conduction caused by mutations in the NKKX2-5 gene. Cardiol Young 2009;19(1):40-44. doi: 10.1017/S1047711508003387

44. Liu X-Y, Wang J, Yang Y-Q, Zhang YY, Chen XZ, Zhang W, et al. Novel NKKX2-5 mutations in patients with familial atrial septal defects. Pediatr Cardiol 2011;32(2):193-201. doi: 10.1007/s00246-010-9859-6
46. Wang J, Chen Q, Wang L, Zhou S, Cheng L, Xie X, et al. Identifying novel mutations of NKK2-5 congenital heart disease patients of Chinese Minority Groups. *Int J Cardiol* 2011;148(1):102-104. doi: 10.1016/j.ijcard.2010.05.041

47. Chen Y, Mao J, Sun Y, Zhang Q, Cheng HB, Yan WH, et al. A novel mutation of GATA4 in a familial atrial septal defect. *Clin Chim Acta* 2010;411(21-22):1741-1745. doi: 10.1016/j.cca.2010.07.021

48. Peng T, Wang L, Zhou S-F, Li X. Mutations of the GATA4 and NKK2-5 genes in Chinese pediatric patients with non-familial congenital heart disease. *Genetica* 2010;138(11-12):1231-1240. doi: 10.1007/s10709-010-9522-4

49. Wang J, Liu X, Yang Y. Novel NKK2-5 mutations responsible for congenital heart disease. *Genet Mol Res* 2011;10(4):2905-2915. doi: 10.4238/2011.November.29.1

50. Wang J, Xin Y-F, Liu X-Y, Liu ZM, Wang XZ, Yang YQ. A novel NKK2-5 mutation in familial ventricular septal defect. *Int J Mol Med* 2011;27(3):369-375. doi: 10.3892/ijmm.2010.385

51. Qu C-J, Liu Q-X, Yuan F, Wang J, Zhao CM, Liu XY, et al. A novel NKK2-5 loss-of-function mutation associated with congenital bicuspid aortic valve. *Am J Cardiol* 2014;114(12):1891-1895. doi: 10.1016/j.amjcard.2014.09.028

52. Yuan F, Qiu X-B, Li R-G, Qu XK, Wang J, Xu YJ, et al. A novel NKK2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. *Int J Mol Med* 2015;35(2):478-486. doi: 10.3892/ijmm.2014.2029

53. Huang R-T, Xue S, Xu Y-J, Zhou M, Yang YQ. A novel NKK2-5 loss-of-function mutation responsible for familial atrial fibrillation. *Int J Mol Med* 2013;31(5):1119-1126. doi: 10.3892/ijmm.2013.1316

54. Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. Screening NKK2-5 mutation in a sample of 230 Han Chinese children with congenital heart diseases. *Genet Test Mol Biomarkers* 2009;13(2):159-162. doi: 10.1089/gtmb.2008.0044

55. Wang J, Liu C, Jia X, Liu X, Xu Y, Yan S, et al. Next-generation sequencing of NKK2-5, FOXE1, PAX8, NKK2-5, and TSHR in 100 Chinese patients with congenital hypothyroidism and athyreosis. *Clin Chim Acta* 2017;470:36-41. doi: 10.1016/j.cca.2017.04.020

56. Tong Y-F. Mutations of NKK2-5 and GATA4 genes in the development of congenital heart disease. *Gene* 2016;588(1):86-94. doi: 10.1016/j.gene.2016.04.061

57. Zheng J, Li F, Liu J, Xu Z, Zhang H, Fu Q, et al. Investigation of somatic NKK2-5 mutations in Chinese children with congenital heart disease. *Int J Med Sci* 2015;12(7):538. doi: 10.7150/ijms.11700

58. Yu H, Xu J-H, Song H-M, Zhao L, Xu WJ, Wang J, et al. Mutational spectrum of the NKK2-5 gene in patients with lone atrial fibrillation. *Int J Med Sci* 2014;11(6):554. doi: 10.7150/ijms.8407

59. Xie W-H, Chang C, Xu Y-J, Li RG, Qu XK, Fang WY, et al. Prevalence and spectrum of NKK2-5 mutations associated with idiopathic atrial fibrillation. *Clinics (Sao Paulo)* 2013;68(6):777-784. doi: 10.6061/clinics/2013(06)09

60. Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, et al. Phenotypes with GATA4 or NKK2-5 mutations in familial atrial septal defect. *Am J Med Genet A* 2005;135(1):47-52. doi: 10.1002/ajmg.a.30684

61. Ikeda Y, Hiroi Y, Hosoda T, Tsunomiyama T, Matsuo S, Ito T, et al. Novel point mutation in the cardiac transcription factor CSX/NKK2-5 associated with congenital heart disease. *Circ J* 2002;66(6):561-563. doi: 10.1253/circj.66.561

62. Kodo K, Nishizawa T, Furutan M, Arai S, Ishihara K, Oda M, et al. Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. *Circ J* 2012;76(7):1703-1711. doi: 10.1253/circj.CJ.76-1389

63. Izzumi K, Noon S, Wilkens A, Krantz ID. NKK2-5 mutation identification on exome sequencing in a patient with heterotaxy. *Eur J Med Genet* 2014;57(10):558-561. doi: 10.1016/j.ejmg.2014.08.003

64. Hosoda T, Komuro I, Shiojima I, Hiroi Y, Harada M, Murakawa Y, et al. Familial atrial septal defect and atrioventricular conduction disturbance associated with a point mutation in the cardiac homeobox gene CSX/NKK2-5 in a Japanese patient. *Jpn Circ J* 1999;63(5):425-426. doi: 10.1253/jjcm.63.425

65. Dinesh S, Kusuma L, Smitha R, Savitha MR, Krishnamurthy B, Narayananappa D, et al. Single-nucleotide polymorphisms of NKK2-5 found in congenital heart disease patients of Mysore, South India. *Genet Test Mol Biomarkers* 2010;14(6):873-879. doi: 10.1089/gtmb.2010.0100

66. Hassan OKA, Fahed AC, Batrawi M, Arabi M, Refaat MM, DePalma SR, et al. NKK2-5 mutations in an inbred consanguineous population: genetic and phenotypic diversity. *Sci Rep* 2015;5:8848. doi: 10.1038/srep08848

67. Akcaboy M, Cengiz F, Incceoglu B, Ucar T, Atalay S, Tutar E, et al. The effect of p.Arg25Cys alteration in NKK2-5 on contratruncal heart anomalies: mutation or polymorphism? *Pediatr Cardiol* 2008;29(1):126-129. doi: 10.1007/s00246-007-9058-2

68. Koss M, Bolze A, Brendolan A, Saggese M, Capellini TD, Bojjilova E, et al. Congenital asplenia in mice and humans with mutations in a Pbx/Nkx2-5/p15 module. *Dev Cell* 2012;22(5):913-926. doi: 10.1016/j.devcel.2012.02.009

69. Rifai L, Maazouzi W, Selmani A. Novel point mutation in the NKK2-5 gene in a Moroccan family with atrioventricular conduction disturbance and an atrial septal defect in the oval fossa. *Cardiol Young* 2007;17(1):107-109. doi: 10.1017/S1047951106001338

70. Elliott DA, Kirk EP, Yeoh T, Chandar S, McKenzie F, Taylor P, et al. Cardiac homeobox gene NKK2-5mutations and congenital heart disease: Associations with atrial septal defect and hypoplastic left heart syndrome. *J Am Coll Cardiol* 2003;41(11):2072-2076. doi: 10.1016/s0735-1097(03)00420-0

71. Bernier P-L, Stefanescu A, Samoukovic G, Tchervenkov CI. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. *Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu* 2010;26-34. doi: 10.1053/j.pcsu.2010.02.005

72. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkk2-5. lies genetically upstream of multiple genes essential for heart development. *Development* 1999;126(6):1269-1280.

73. Furtado MB, Wilmanns JC, Chandan A, Tonta M, Biben C, Eichenlaub M, et al. A novel conditional mouse model for Nkk2-5 reveals transcriptional regulation of cardiac ion channels. *Differentiation* 2016;91(1-3):29-41. doi: 10.1016/j.diff.2015.12.003
74. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. *Nature* 2003;424(6947):443. doi: 10.1038/nature01827

75. Chen Y-Z, Ying H, Zhang J, Cheng W, Kang Y-X, Hua Z-C. Biochemical analyses of Csx/Nkx2.5 mutants and their structure–function relationship. *Int J Mol Sci* 2007;8(4):284-294. doi: 10.3390/ijms.08040284

76. Kasahara H, Izumo S. Identification of the in vivo casein kinase II phosphorylation site within the homeodomain of the cardiac tissue-specifying homeobox gene product Csx/Nkx2.5. *Mol Cell Biol* 1999;19(1):526-536. doi: 10.1128/mcb.19.1.526

77. Wang J, Greene SB, Martin JF. BMP signaling in congenital heart disease: new developments and future directions. *Birth Defects Res A Clin Mol Teratol* 2011;91(6):441-448. doi: 10.1002/bdra.20785

78. Luna-Zurita L, Stirnimann CU, Glatt S, Kaynak BL, Thomas S, Baudin F, et al. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. *Cell* 2016;164(5):999-1014. doi: 10.1016/j.cell.2016.01.004