Agro-Morphological Variation in Some Iranian Melon (Cucumis melo L.) Genotypes Revealed by Multivariate Analysis

E. Ghorbani, A. Motallebi-Azar, S. Bolandnazar

ABSTRACT
Diversity of 9 local Iranian genotypes of melon was studied based on 28 quantitative and qualitative agro-morphological traits, using multivariate statistical methods. Analysis of variance showed significant differences between genotypes for all quantitative traits. However, the studied melon genotypes were previously clustered in two main groups of inodorous and cantalupensis, cluster analysis classified them in four different groups based on all traits, in particular outlaying Shadegani genotype from Inodorous group. Clustering was also supported by principal components analysis (PCA). The first two PCs contributed 60% of the total variability and demonstrated variations mainly on the basis of yield related traits including fruit number, day to flower, day to harvest, fruit weight, fruit length and other distinctive traits such as rind pattern, peduncle attachment strength, fruit firmness and aroma. Accordingly, agro-morphological traits could be used for variation studies in melons and results might be useful for improving breeding programs.

Key words: Agro-morphological characterization, Cluster analysis, Diversity evaluation, Genetic improvement, Principal components analysis, Ward’s method.

INTRODUCTION
Melon (Cucumis melo), an important tropical and subtropical vegetable crop of family cucurbitaceae, is highly polymorphic in fruit morphology and yield related traits. Iran as third leading country in melon production (FAO 2014), is considered to be one of the primary diversity centers for melon (Raghami et al. 2014); But unfortunately the most known traditional landraces of Iranian melon are exposed to genetic erosion due to introduction and cultivation of improved non-native commercial varieties. Extensive collection and diversity evaluation of local melon accessions is not only vital for conservation purposes, but also for genetic improvement throughout selecting valuable genetic resources in breeding programs (Sarkar and Kundagrami, 2015). Availability of genetic variation among local genotypes of melon is a determining factor in success of breeding programs. Higher genetic distance between parents leads to better selection of desirable parental combinations and achieving higher heterosis in their progeny (Arya et al., 2017).

Various techniques are available for evaluating diversity in different collections of plant genotypes using pedigree records, morphological, biochemical and molecular markers (Esghii and Akhundova, 2010). Morphological characterization of genotypes is the first step in description and classification of germplasm and has been proven as an effective, inexpensive and easy method to measure with straightforward detection in comparison with other approaches (Darvishzdeh and Hatami 2012). Multivariate analysis techniques such as principal component analysis (PCA) and cluster analysis are essential tools for measuring and classifying the variability in plant genetic resources based on agro-morphologic and physiological traits (Singh et al., 2017).

Genetic diversity in different genotypes of melon has been analyzed worldwide, based on various techniques such as assessment of morphological traits (Laghetti et al. 2008; Escríbano and Lazaro 2009), molecular markers such as isozymes (McCreight et al. 2004), amplified fragment length polymorphism (AFLP) (Yashiro et al. 2005), random amplified polymorphic DNA (RAPD) (Sensoy et al. 2007; Yi et al. 2009) and simple sequence repeat (SSR) (Hanane et al. 2015). There are also a few studies on the genetic structure of Iranian melon (Abdollahi et al. 2015; Danesh et al. 2015; Kohpayegani and Behbahani 2008; Nasrabadi et al. 2012; Raghani et al. 2014); But there are still many accessions, landraces and improved cultivars remaining to be studied.

In present study, agro-morphological diversity among some Iranian Cucumis melo genotypes belonging to inodorous and cantalupensis groups were studied in order to increase understanding of the genetic variability of Iranian genotypes.

MATERIALS AND METHODS
Seeds of 10 melon genotypes were used in this study, including nine Iranian accessions belonging to inodorous
and cantaloupensis groups and one exotic commercial cultivar belonging to inodorous group (Table 1). All seeds were obtained from Horticultural Science Research Institute of Iran.

The experiment was conducted in the research field of Tabriz University, Tabriz, Iran, as a randomized complete block design with three replicates and 10 plants per plot. Seeds were directly sown in double rows (2 m apart) with 60 cm spacing. Irrigation (furrow system), fertilization, hand weeding and other management practices were performed when required throughout the growing period. Data were collected on five randomly selected plants from the middle row of each plot. 28 agro-morphological characteristics were scored, including 15 qualitative fruit related traits according to UPOV (The International Union of Protection of New Varieties of Plants) descriptors (UPOV 2014) and 13 additional quantitative traits (Table 2).

Analysis of variance (one-way ANOVA) and Duncan test for mean comparison were conducted on quantitative parameters to determine the differences between varieties. Cluster analysis (UPMGA, based on Squared Euclidean distance measure using WARD method) was performed on all variables, to estimate the multivariate relationships among genotypes. Principal component analysis (PCA) was also done to check the results of UPGMA-based clustering. All statistical analysis was carried out using IBM SPSS Statistics 23 software.

RESULTS AND DISCUSSION

Quantitative and Qualitative variability among genotypes

Fruit appearances of 10 melon genotypes are shown in Fig 1 and their Morphological performance data is presented in Table 3. Fruit morphology traits including shape, rind coloring pattern, flesh color and aroma were extremely divergent among studied genotypes. Inodorous fruits varied in shape from elongated (Dargazi, Shadegani and Minoo), to Ovate (Jalallii and Charjoo) and round (Honeydew). But cantaloupensis group were all Broad elliptic types. Inodorous fruits except Shadegani attached hardly to stem at maturity, but cantaloupensis genotypes absicised when mature. Fruit odor in cantaloupensis group was medium to very strong and in inodorous group very weak to medium, except in Shadegani fruits with strong odor. Rind color, grooves and patches showed highly diverse pattern among genotypes. According to Munger and Robinson (1991), melons of cantaloupensis group are defined as medium-large size fruits, smooth, scaly or netted rind of variable color, aromatic with sweet, juicy flesh and abscission layer at maturity and inodorous group as large-sized non-aromatic, non-climacteric and long-storing fruits, with smooth or wrinkled, but not netted rind. However, there are still other types with characteristics not included in this classification. This is especially a challenge for inodorous type Iranian accessions which differ from other melons belonging to the var. inodorus, in their netted skin surface and rugby ball-shaped fruits and it is suggested to consider them in other group called Iranisans (Lotfi and Kashi, 1999).

Mean comparison of quantitative characters in studied melon genotypes revealed significant variation for all 13 traits (Table 4). Lateral branch number and fruit number values in cantaloupensis group were significantly higher than inodorous group. But high number of lateral branches cannot be a differentiating characteristic for melons of cantaloupensis group according to previous studies which used lower lateral branching Cantaloupe genotypes as parental lines (Luan et al., 2010). Lateral branching is typically associated with producing bisexual and female flowers and in this study, multi-lateral branching genotypes (cantaloupensis group and Shadegani genotype from inodorous group) were significantly early flowering and early harvesting plants, bearing more fruits. Fruit weight was negatively correlated with number of fruits (data not shown); hence less fruiting genotypes of each group had higher fruit weight. Fruits formed near the crown and after more internodes in inodorous group have more source leaves and less competing sinks, resulting in significantly higher fruit weight and yield, compared with cantaloupensis group (Feyzian et al., 2009). Despite almost equal diameters between two major groups, fruit length was higher in inodorous group, resulting in long shaped fruits (ie: high length/diameter ratio), except Honeydew variety which is a local Iranian melon. Cavity size was negatively correlated with length and length/width ratio (Table 4).

Table 1: List of C. melo genotypes assessed for genetic variation analysis. Genotypes names, Bioclimatic Zone and their assignment to varietal groups.

Genotype name	Type of genotype	Source	Cultivar group
Charjoo	Traditional cultigen	Iran-Golestan-Gonbad	Inodorous
Dargazi	Traditional cultigen	Iran-Khorasan-Dargaz	Inodorous
Garmak	Traditional cultigen	Iran-Isfahan	Cantaloupensis
Honey Dew	Commercial cultivar	Unknown	Inodorous
Jalallii	Traditional cultigen	Iran-Semnan-Eyvanakey	Inodorous
Magasii	Traditional cultigen	Iran-Khorasan-Neyshaboo	Cantaloupensis
Minoo095	Traditional cultigen	Iran-Khorasan	Inodorous
Samsouri	Traditional cultigen	Iran-Varamin	Cantaloupensis
Saveii	Traditional cultigen	Iran-Varamin	Cantaloupensis
Shadegani	Traditional cultigen	Iran-Golpayegan	Inodorous
Agro-Morphological Variation in Some Iranian Melon (*Cucumis melo* L.) Genotypes Revealed by Multivariate Analysis

PGMA and PCA based cluster analysis

The unweighted pair group method arithmetic (UPGMA) using Squared Euclidean distances matrix based on the agro-morphological markers, grouped the analyzed genotypes into four clusters according to melon types of cantaloupensis and inodorous (Fig 2). As seen from the dendrogram (Fig 2), inodorous group except Shadegani genotype are classified in one major group and all cantaloupensis genotypes are clustered in one major group beside Shadegani. Among inodorous genotypes, Minoo was the most divergent and was clustered in a different subgroup, which is in agreement with distinct characteristics in this genotype compared to other inodorous types (Tables 3 and 4). Three genotypes of Garmak, Samsouri and Saveii were very similar according to most traits and were merged closely in one cluster. Shadegani and Magasii genotypes with relatively more similarity (Tables 3 and 4) were clustered in one subgroup in the main cluster of cantaloupes near the inodorous. Shadegani was different than inodorous group mainly based on aroma and abscission of peduncle and Magasii was different than cantaloupensis group based on rind netting and soluble solids content.

In previous studies, Shadegani was clustered as an *inodorous* local cultivar (Abdollahi *et al*., 2015). The discrepancies between Shadegani and the *inodorous* types might be due to the differences in cultivation history and adaptation of populations to local conditions and also the high rate of out crossing in melon landraces and cultivars, which causes gene flow between populations and lose of characteristic traits among them.

Table 2: Analyzed traits for genetic variation analysis of Iranian melon genotypes.

Trait	Unit, Interval or class
Qualitative Traits	
Fruit: shape in longitudinal section	1 Round, 3 Broad elliptic, 5 Medium elliptic, 7 Ovate, 9 Elongated
Fruit: change of skin color from young fruit to maturity	3 early in fruit development, 5 late in fruit development, 7 very late or no change
Fruit: ground color of skin	3 White, 5 Yellow, 7 Green, 9 Grey
Fruit: intensity of ground color of skin	3 Light, 5 Medium, 7 Dark
Fruit: hue of ground color of skin	1 absent/very weak, 3 Orange, 5 Ochre, 7 Greenish, 9 Greyish
Fruit: rate of change of skin color from maturity to over maturity	1 Absent/very slow, 3 Slow, 5 Medium, 7 Fast
Fruit: size of dots	1 Absent, 3 Small, 5 Medium, 7 Large
Fruit: color of dots	1 Absent, 3 White, 5 Yellow, 7 Green
Fruit: size of patches	1 Absent, 3 Small, 5 Medium, 7 Large
Strength of attachment of peduncle at maturity	1 Very weak, 3 Weak, 5 Medium, 7 Strong, 9 Very strong
Fruit: width of grooves	1 Absent, 3 Narrow, 5 Medium, 7 Broad
Fruit: depth of grooves	1 Absent/very shallow, 3 Shallow, 5 Medium, 7 Deep, 9 Very deep
Fruit: color of grooves	1 Absent, 3 White, 5 Yellow, 7 Green
Fruit: main color of flesh	1 Yellowish white, 3 Greenish white, 5 Green, 7 Orange
Fruit: Aroma	1 Very weak, 3 Weak, 5 Medium, 7 Strong, 9 Very strong
Quantitative Traits	
Lateral branch number	To include all branches of more than 12.5 cm on the main stem
Day to first female flower opening	
Day to harvest	
Number of fruits per plant	Fruits of at least 7.5 cm in diameter
Yield	(g.plant⁻¹)
Fruit weight	(g)
Fruit length	(cm)
Fruit diameter	At position of maximum fruit diameter (cm)
Flesh pulp thickness	At position of maximum fruit diameter (cm)
Cavity thickness	At position of maximum fruit diameter (cm)
Ratio length/diameter	(N) measured with a penetrometer
Fruit pulp firmness	(°Brix) measured with a digital refractometer

diameter ratio (data not shown), resulting in relatively bigger cavity versus thinner pulp in round genotypes. Total soluble solids value did not show a regular pattern among genotypes; After Honydew as a commercially improved cultivar, Charjoo (*inodorous* group) and Magasii (*cantaloupensis* group) contained the highest amount of total soluble solids.

In previous studies, Shadegani was clustered as an *inodorous* local cultivar (Abdollahi *et al*., 2015). The discrepancies between Shadegani and the *inodorous* types might be due to the differences in cultivation history and adaptation of populations to local conditions and also the high rate of out crossing in melon landraces and cultivars, which causes gene flow between populations and lose of characteristic traits among them.
The result of the PCA showed that five Principal Component axes (PC) had Eigenvalues greater than 1 and all together accounted for 92.7% of the total variability. The first component, which explained 43.6% of the total variance, was strongly and positively correlated with yield related traits including day to flower, day to harvest, yield, fruit weight, fruit length, fruit length/diameter ratio and other distinctive traits such as peduncle attachment strength and fruit firmness; and was negatively correlated with lateral branch number, fruit number, aroma and main color of flesh. The second component with 16.42% of total variance was positively associated with traits fruit diameter, pulp thickness and rate of color change at maturity; and negatively with traits width, depth and color of grooves.

In general, the results obtained from PCA were in agreement with UPGMA clustering (Fig 3). Attending to the first and second principal components, the two dimensional PCA plot graphic showed a classification of the melon genotypes in four groups: a first group formed by multi-lateral branching genotypes with high number of early flowering and early harvesting small round aromatic fruits with patches and grooves on rind, corresponding to the genotypes Garmak, Samsouri and Saveii. The second group consisted of two genotypes Magasii and Shadegani, which were separated from other groups based on intermediate values for traits multi-lateral branching, day to flowering and harvesting, Total soluble solids and aroma and also for extreme values of color change rate at maturity and over-

Table 3: Expression of qualitative fruit related traits in local Iranian melon genotypes.

Genotype	Shape in longitudinal section	Change of skin color	Ground color of skin	Intensity of ground color of skin	Hue of ground color of skin
Charjoo	Ovate	Late	Green	Medium	Greyish
Dargazii	Elongated	Late	Grey	Medium	Greenish
Garmak	Broad elliptic	Late	Green	Light	Ochre
HoneyDew	Round	Late	White	Light	Greenish
Jalalii	Ovate	Late	Yellow	Dark	Absent
Magasii	Broad elliptic	Early	Green	Medium	Greyish
Minoo	Elongated	Early	Yellow	Medium	Greenish
Samsouri	Broad elliptic	Late	Yellow	Light	Ochre
Saveii	Broad elliptic	Late	Yellow	Light	Ochre
Shadegani	Medium elliptic	Early	Yellow	Medium	Orange

Genotype	Color change From maturity to over maturity	Size of dots	Color of dots	Density of patches	Strength of attachment of peduncle at maturity
Charjoo	Medium	Large	Green	Dense	Medium
Dargazii	Absent	Medium	Green	Medium	Very strong
Garmak	Absent	Small	Yellow	Very dense	Very weak
HoneyDew	Absent	Absent	Absent	Absent	Very strong
Jalalii	Absent	Absent	Absent	Dense	Very strong
Magasii	Fast	Large	Green	Absent	Very weak
Minoo	Absent	Absent	Absent	Absent	Very strong
Samsouri	Slow	Absent	Absent	Very dense	Very weak
Saveii	Slow	Medium	Green	Very dense	Very weak
Shadegani	Fast	Absent	Medium	Medium	Very weak

Genotype	Width of grooves	Depth of grooves	Color of grooves	Main color of flesh	Aroma
Charjoo	Absent	Absent	Absent	Green	Medium
Dargazii	Absent	Absent	Absent	Greenish white	Very weak
Garmak	Narrow	Medium	Green	Green	Medium
HoneyDew	Absent	Absent	Absent	Greenish white	Medium
Jalalii	Absent	Absent	Absent	Yellowish white	Very weak
Magasii	Broad	Shallow	Green	Green	Very strong
Minoo	Broad	Medium	Green	Yellowish white	Weak
Samsouri	Narrow	Medium	Green	Greenish white	Strong
Saveii	Narrow	Medium	Green	Orange	Strong
Shadegani	Broad	Medium	Green	Orange	Strong
Table 4: Mean comparison of quantitative traits in local Iranian melon genotypes.

Means within rows followed by the same letter are not significantly different from each other (Duncan's post hoc analysis of subsets, P = 0.05).

Genotype	Lateral branch number	Day to first flower (day)	Day to harvest (day)	Yield (g/plant⁻¹)	Number of fruits per plant	Fruit weight (g)	Fruit length (cm)
Charjoo	5.4±0.22de	41.6±1.04b	84.6±0.65cd	3419.80±411.16abc	1.7±0.21c	1948.7±143.03cd	22.0±0.89c
Dargazii	4.6±0.31fg	43.1±0.34ab	85.4±0.92bc	4050.30±162.45ab	1.8±0.29bc	2230.70±56.58b	25.0±0.46b
Garmak	13.2±0.32a	33.1±0.64d	69.9±1.26f	3468.20±314.36abc	3.3±0.36a	1051.50±71.47c	11.4±0.52g
HoneyDew	4±0.00g	44±0.57a	89.3±0.92a	4318.40±275.16ab	2.1±0.31bc	2053.6±45.54bc	19.4±0.48d
Jalalii	4±0.00g	42.9±0.57ab	88.1±0.74ab	3539.90±369.85abc	1.7±0.21c	2079.0±68.43bc	23.2±0.84c
Magasii	6±0.00d	34.9±0.74d	76.5±1.34e	2838.10±381.36c	2.6±0.26abc	1090.40±51.77e	13.1±0.54g
Minoo	5.1±0.3ef	44.6±0.48a	86.4±1.23abc	4405.00±331.18a	1.8±0.25bc	2446.3±49.99a	30.5±0.53a
Samsouri	7±0.33c	32.9±0.99d	74.7±0.78e	2681.60±398.08bc	2.7±0.37ab	1024.6±5.63e	12.7±0.39g
Savei	9±0.33b	33.5±0.79d	75.9±1.15e	2927.50±203.81c	3±0.3a	1004.0±10.35e	13.9±0.38f
Shadegani	6±0.00d	37.4±0.73c	81.7±1.31d	3313.80±353.23bc	1.9±0.23bc	1804.20±44.14d	17.7±0.67e
C.V.	41.99	13.27	8.67	32.83	41.36	34.45	33.22

Genotype	Fruit diameter (cm)	Ratio length/diameter	Flesh pulp thickness (cm)	Cavity thickness (cm)	Fruit pulp firmness (N)	Soluble solids (%Brix)
Charjoo	14.40±0.38ab	1.52±0.05d	3.30±0.08ab	7.65±0.32ab	7.63±0.42b	10.87±0.41a
Dargazii	10.25±0.42e	2.48±0.1b	2.90±0.12bc	4.65±0.32d	7.40±0.49b	7.26±0.15d
Garmak	12.35±0.49c	0.92±0.02g	2.70±0.23b	7.60±0.29b	5.32±0.22cd	7.58±0.37cd
HoneyDew	14.70±0.39a	1.32±0.03e	3.30±0.17ab	7.85±0.29ab	9.29±0.28a	11.47±0.34a
Jalalii	13.25±0.42abc	1.76±0.05c	3.85±0.18a	5.75±0.31c	8.16±0.52b	7.10±0.38d
Magasii	12.00±0.66cd	1.09±0.02f	2.45±0.23c	7.10±0.24b	3.06±0.19e	9.58±0.47b
Minoo	10.95±0.26de	2.80±0.06a	2.90±0.14bc	5.15±0.22cd	7.93±0.35b	8.14±0.18bcd
Samsouri	14.00±0.34ab	0.91±0.02g	2.95±0.26bc	8.10±0.34a	4.53±0.13d	7.33±0.46d
Savei	14.15±0.57ab	0.99±0.03f	3.25±0.27ab	7.65±0.26ab	5.73±0.27c	8.11±0.9cd
Shadegani	13.15±0.58bc	1.36±0.07e	2.80±0.2bc	7.45±0.4ab	5.17±0.14cd	9.12±0.42bc
C.V.	15.54	42.38	23.22	21.56	31.40	22.99

Fig 1: photographs of fruits of *Cucumis melo* genotypes used in present study.

Fig 2: UPGMA cluster analysis of local Iranian melon genotypes by Ward’s grouping method and using Euclidean distances. Dendrogram is based on qualitative and quantitative agro-morphological traits.
Agro-Morphological Variation in Some Iranian Melon (Cucumis melo L.) Genotypes Revealed by Multivariate Analysis

maturity and fruit firmness. Charjoo, Dargazi, Honeydew and Jalali were clustered in the third group based on yield related traits, despite variations in different shape related characteristics. Minoo genotype was an outlier due to extreme values of yield related traits and rind pattern characteristics.

CONCLUSION

In this study, different multivariate approaches including Mean comparison, PCA analysis and two-way cluster analysis were applied to describe and understand the extent of genetic variability in melon genotypes. Present classification using agro-morphological markers revealed a broad diversity in 9 local Iranian melon genotypes. We believe distinct sub-clusters among two major groups of cantalopensis and inodorous type, due to transition of dominant traits from cantalopensis and other groups and fixation by farmer selections. Since melon is a cross pollinated plant with broad variation among different varieties, different genotypes could be introduced as suitable parents in melon breeding programs. Results of this study could be utilized in germplasm management activities and improvement of genetically diverse melon accessions.

REFERENCES

Abdollahi, M.B., Rahmany, Sh., Shaaf, S., Khoie, Gh.S., Rastgou, M., Rafezi, R. (2015). Towards the identification of retrotransposon-based and ISSR molecular markers associated with populations resistant to ZYMV in melon. South African Journal of Botany. 100: 141-147. DOI: 10.1016/j.sajb.2015.05.027.

Arya, V.K., Singh, J., Kumar, L., Kumar, R., Kumar, P., Chand, P. (2017). Genetic variability and diversity analysis for yield and its components in wheat (Triticum aestivum L.). Indian Journal of Agricultural Research. 51 (2): 128-134. DOI: 10.18805/ijare.v0iOF.7634.

Danesh, M., Lotfi, M., Azizinia, Sh. (2015). Genetic diversity of Iranian cultivars revealed by AFLP markers. International Journal of Horticultural Sciences and Technology. 2(1): 43-53. doi: 10.22059/IJHST.2015.54263.

Darvishzadeh, R. and Hatami, M.H. (2012). Analysis of genetic variation for morphological and agronomic traits in Iranian oriental tobacco (Nicotiana tabacum L.) genotypes. Crop Breeding Journal. 2(1): 57-61. DOI: 10.20290/cbj.2012.100419.

Espiribano, S. and Lázaro, A. (2009). Agro-morphological diversity of Spanish traditional melons (Cucumis melo L.) of the Madrid provenance. Genetic Resources and Crop Evolution 56: 481-497. DOI: 10.1007/s10722-008-9380-4.

F.A.O. 2014. Food and Agriculture Organization of the United Nations, FAOSTAT database. Available at. http://apps.fao.org.

Feyzian, E., Dehghani, H., Rezai, A.M., Jalali, J.M. (2009). Diallel cross analysis for maturity and yield-related traits in melon (Cucumis melo L.). Euphytica. 168: 215-223. DOI: 10.1007/s10681-009-9904-9

Kouhpaygani, J.A. and Behbahani, M. (2008). Genetic diversity of some populations of Iranian melon using SSR markers. Biotechnology 7(1): 19-26. DOI: 10.3923/biotech.2008.19.26.

Laghetti, G., Accogli, R., Hammer, K. (2008). Different cucumber melon (Cucumis melo L.) races cultivated in Salento (Italy). Genetic Resources and Crop Evolution. 55: 619-623. DOI: 10.1007/s10722-008-9341-y.

Lotfi, M. and Kashi, A. (1999). The Iranian melon as a new cultivar group. In Taxonomy of cultivated plants. Andrews, S., Leslie, A.G., Alexander, C. (eds). pp. 447-449. (Royal Botanic Gardens, Kew).

Luan, F., Sheng, Y., Wang, Y., Staub, J.E. (2010). Performance of melon hybrids derived from parents of diverse geographic Origins. Euphytica, 173: 1–16. doi: 10.1007/s10681-009-0110-6.

McCreight, J.E., Staub, J.D., Lopez-Seze, A. (2004). Isozyme variation in Indian and Chinese melon (Cucumis melo L.) germplasm collections. Journal of American Society of Horticultural Sciences. 129: 811-818.

Munger, H.M. and Robinson, R.W. (1991). Nomenclature of Cucumis melo L. Cucurbit Genetics Cooperative Report 14: 43- 44.

Nasrabadi, N.H., Nemati, H., Sobhani, A., Sharifi, M. (2012). Study of morphologic variation of different Iranian melon cultivars. African Journal of Agricultural Research. 7: 2764-2769. DOI: 10.5897/AJAR11.2159.

Raghami, M., pez-Sese, L.I., Hasandokht, M.R., Zamani, Z., Moghadam, M.R., Kashi, A. (2014). Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Systematic and Evolution. 30: 139–151. DOI: 10.1007/s00606-013-0866-y.

Sarkar M. and Kundagrami, S. (2016). Multivariate analysis in some genotypes of mungbean (Vigna radiata L. Wilczek) on the basis of agronomic traits of two consecutive growing cycles. Legume Research. 39 (4): 523-527. DOI:10.18805/lr.v0iOF.11037.

Sensoy, S., Buyukalaca, S., Abak, K. (2007). Evaluation of genetic diversity in Turkish melons based on phenotypic characters and RAPD markers. Genetic Resources and Crop Evolution. 54: 1351–1365. DOI: 10.1007/s10722-006-9120-6.
Singh, S.R., Ahmed, N., Singh, D.B., Srivastva, K.K., Singh, R.K., Abid Mir, (2017). Genetic variability determination in garden pea (Pisum sativum L, sub sp. Hortense Asch. and Graebn.) by using the multivariate analysis. Legume Research. 40 (3): 416-422. DOI:10.18805/ir.v0i0.7300.

UPOV. (2014). Guidelines for the Conduct of Tests for distinctness, Homogeneity and Stability, Melon (Cucumis melo L.). 69p. TG/104/05-Rev., Geneva.

Yashiro, K., Iwata, H., Akashi, Y., Tomita, K., Kuzuya, M., Tsumura, Y., Kato, K. (2005). Genetic relationship among East and South Asian melon (Cucumis melo L) revealed by AFLP analysis. Breeding Science 55: 197–206. DOI: 10.1270/jsbbs.55.197.

Yi, S.S., Akashi, Y., Tanaka, K., Cho, T.T., Khaing, M.T., Yoshino, H., Nishida, H., Yamamoto, T., Win, K., Kato, K. (2009). Molecular analysis of genetic diversity in melon landraces (Cucumis melo L.) from Myanmar and their relationship with melon germplasm from East and South Asia. Genetic Resources and Crop Evolution. 56:1149–1161. DOI: 10.1007/s10722-009-9438-y.