Preliminary Phytochemical and Physicochemical Analysis of Selected Mistletoes from Ethiopia

Abraham Yirgu (abrahamyirguw@gmail.com)
Ethiopian Environment and Research Institute https://orcid.org/0000-0001-7621-8733

Yalemtehay Mekonnen
Addis Ababa University Faculty of Science: Addis Ababa University College of Natural Sciences

Research note

Keywords: Phytochemical, physicochemical, Englerina woodfordioides, Phragmanthera regularis, Tapinanthus globiferus, Viscum tuberculatum, mistletoe, Ethiopia

DOI: https://doi.org/10.21203/rs.3.rs-101987/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives: Mistletoes have been used for the treatment of human and animal health ailments. This study investigated the physicochemical and phytochemical constituents of *Englerina woodfordioides*, *Phragmanthera regularis*, *Tapinanthus globiferus*, and *Viscum tuberculatum* from central Ethiopia.

Results: The four plant species collected from 11 host trees grown in six distinct locations revealed the presence of alkaloids, phenols, saponins, cardiac glycosides, steroids, terpenes, tannins, quinines, and coumarins. In contrast, no flavonoids, anthraquinones and phlobatannins were detected. The total ash value of *E. woodfordioides* and *P. regularis* ranges from 6.04 to 13.23% and 5.62 to 15.22%, respectively. Comparable total ash content was found in *T. globiferus* and *V. tuberculatum*. However, no significant difference was obtained in the mean percent moisture content of the study species.

Introduction

Mistletoes are hemi-parasitic parasitic flowering plants found attached to the branches of other plants [1]. They are known as complementary and alternative medicine in the treatment and management of various diseases around the world [2–5]. The biological activities of mistletoe rely on the presence of secondary metabolites [6]. The phytochemical composition of African mistletoes is largely dependent on a few species of *Tapinanthus* and *Phragmanthera* species grown in West African countries. The phytochemical composition of these mistletoes varied depending on the time of harvest, host plants and the manufacturing process [7–8].

Ethiopia has a long history and deep-rooted culture in using mistletoe to treat various health problems. Accordingly, *Englerina woodfordioides* use to treat diarrhea and eye disease [9], syphilis [10], otorrhoea, and scabies [11]. Similarly, *T. globiferus* were reported in the treatment of spider poisoning, urinary problem, cough, blotting [12], and dyspepsia and impotence [13]. Despite these importances, to our knowledge, the study on the phytochemical composition of species of mistletoes achieved less attention in the past. Therefore, the aim of this study was to investigate the phytochemical and physicochemical properties of *Phragmanthera regularis*, *Englerina woodfordioides*, *Tapinanthus globiferus* and *Viscum tuberculatum* in Ethiopia.

Materials And Methods

Plant collection and authentication

Mistletoes were collected from branches of trees grown in the roadside, homesteads, and natural forests in six localities in Ethiopia in April 2019. These specimens were identified by Melaku Wondafrash, plant taxonomist, at the National Herbarium (ETH) of the College of Natural Sciences, Addis Ababa University. Specimens were deposited at ETH.

Preparation of plant crude extracts

Fresh and healthy leaves of mistletoes were washed several times with running tap water to remove soil and debris. Air-dried leaves were fine powdered using an electrical grinder mill.

Plant crude extraction

Twenty grams leaf powder were separately macerated with 200 ml of chloroform (99.8% AR), ethyl acetate (99.8% AR), methanol (99% AR), and distilled water. Extracts were kept in a glass jar for seven days with occasional shaking at room temperature. These extracts were filtered using Whatman no. 1 filter paper. The marc was re-macerated with the same solvent until the extraction was exhausted. The first three solvents extracts were concentrated to dryness using a Rotary evaporator. The resulting aqueous filtrate was lyophilized.

Determination of solvent extraction yield

The crude extracting values of mistletoes were tested using the above-mentioned solvents. The percentage yield of extraction was determined as follows [14].

\[
\text{Extractive value} = \frac{\text{Mass obtained after extraction}}{\text{total mass taken for extraction}} \
\]

Determination of phytochemical constituents of plant extracts

Test for alkaloids

Wagner’s test

Crude extract powder was dissolved in de-ionized distilled water and filtered using Whatman no1 filter paper. The filtrate was acidified with hydrochloric acid (HCl) [15]. To this solution, Wagner’s reagent was dissolved in water and gently added to the test tube [16–17]. The formation of reddish-brown precipitate indicates the presence of alkaloids [15].

Test for anthraquinones
Borntrager's test

Crude extract was dissolved in chloroform, shaken for 5 min [18], and ammonia solution was added. The solution was filtered using Whatman no 1 filter paper [19]. The control test was done by adding ammonia solution in chloroform [20]. The formation of bright pink coloration in the upper aqueous layer indicates the presence of anthraquinones [20].

Test for cardiac glycosides

Keller-Killani test

Crude extract was diluted in distilled water [21]. Two milliliters of plant extract [22] were mixed with glacial acetic acid followed by drop wise addition of ferric chloride (FeCl$_3$) solution. Then, the mixture was poured into another test tube containing concentrated sulfuric acid (H$_2$SO$_4$). A brown ring formed at the interface indicates the presence of cardiac glycosides [21, 23].

Test for coumarins

Sodium hydroxide (NaOH) test

Crude extract was dissolved in distilled water. Sodium hydroxide solution was added to the aqueous plant extract. The appearance of yellow color indicates the presence of coumarins [24–25].

Test for flavonoids

NaOH or Alkaline Reagent test

Crude extract was dissolved in water and filtered using Whatman no 1 filter paper. The plant extract was treated with aqueous NaOH solution [22, 25]. The formation of intense yellow color, which becomes colorless on the addition of dilute acid, indicates the presence of flavonoids [23, 26–28].

Lead acetate test

Crude extract was dissolved in water and filtered using Whatman no 1 filter paper. To the extract, few drops of basic lead acetate solution were added. The formation of reddish-brown precipitate indicates the presence of flavonoids [17].

FeCl$_3$ test

Crude extract was dissolved in water and filtered using Whatman no 1 filter paper. Few drops of neutral FeCl$_3$ solution were added to the extract. The deposition of blackish-red precipitate indicates the presence of flavonoids [17].

Test for phenols

FeCl$_3$ test

Crude extract was mixed with distilled water [28]. The extract was treated with an aqueous FeCl$_3$ solution [29]. The formation of bluish-black color indicates the presence of phenols.

Test for phlobotannins

Precipitate test

Two milliliters of aqueous extract of the plant sample were boiled with HCl acid. The deposition of a red precipitate indicates the presence of phlobotannins [24–25].

Test for quinones

Two milliliters of plant extract were treated with HCl acid. The formation of a yellow-colored precipitate indicates the presence of quinones [30].
Test for saponins

Foam test

Plant extract was shaken vigorously with water. The appearance of foam indicates the presence of saponins [31–32].

Test for steroid

Liebermann-Burchard test

A few drops of acetic anhydride solution were added to the extract. To this solution, a few drops of concentrated H_2SO_4 were added carefully along the side of the test tube. Formation of reddish-brown ring at the junction of the two layers indicates the presence of steroids [17].

Test for tannins

FeCl$_3$ test: Plant extract was dissolved in distilled water, and then filtrated. Two milliliters FeCl$_3$ was added to the filtrate. The appearance of blue-black, greenish-black or dark blue color indicates the existence of tannins in the test samples [19].

Test for terpenoids

Salkowski’s test

Plant extract was added to 2 ml of chloroform. Three milliliters of concentrated H_2SO_4 were carefully added to form a layer. A reddish-brown coloration of the interface indicates the presence of terpenoids [21].

Test for reducing sugar

Benedict test

Plant extract was dissolved in distilled water and filtered separately. One milliliter of filtrate and 4 ml of Benedict’s reagent were mixed, and heated gently in a boiling water bath for 5 min. The appearance of green, red, or yellow coloration indicates the presence of reducing sugar in the plant extract [33].

Test for protein

Biuret test

Plant extract put in a test tube was treated with an equal volume of NaOH. Then, a few drops of CuSO$_4$ were added. Pink or purple color indicates the presence of proteins [34].

Determination of physicochemical analysis of plant materials

Total ash values

The total ash content of the plants was determined as stated in Idris et al [35] with some modifications. A dry heat-resistant porcelain crucible was weighed (W$_1$). Thereafter, 2 g of leaf powder was weighed along with crucible (W$_2$), and ignited gradually in an electrical muffle furnace, increasing the heat to 600°C until the plant materials were white that indicate the absence of carbon. The crucible was removed, and allowed to cool in a desiccator and then re-weighed (W$_3$).

$$\text{Total ash (\\%)} = \frac{(W_3 - W_2)}{(W_2 - W_1)} \times 100$$

Acid-insoluble and water-soluble ash

The acid-insoluble and water-soluble ashes were separately prepared by adding 25 ml of HCl into total ash content obtained in 2.6.1. The solutions were gently boiled for 5 min covered with a watch glass. The insoluble matters were filtered using Whatman no 40 Ashless filter paper. The filtrate was washed with...
hot water and then ignited for 15 minutes at 450 °C. The filter paper containing the insoluble matter were transferred to the original crucible, dried on a hot plate and ignited to 450°C to constant weight (W₄). The residue was cooled in desiccator and weighed.

\[
\text{Acid insoluble ash (\%)(W₄=W₃-W₂) x 100}
\]

\[
\text{Water-soluble ash (\%) = \frac{W₃-W₄}{W₃-W₂} x 100}
\]

Determination of moisture content

The moisture content (loss on drying) of the fresh leaves was determined as stated in Danso-Boateng et al [36]. The air-dried samples (3 g) were weighed and kept at 105 ± 3°C for 24 h. Samples were then removed from the oven, cooled in a desiccator, and weighed.

\[
\text{Moisture content (\%) = \frac{\text{Wet leaf with crucible} - \text{dry leaf with crucible}}{\text{Wet leaf with crucible}} x 100}
\]

Results

Plant collection and authentication

In this investigation, four mistletoes were collected from 11 host plants [Table 1].

Plants	Aerial parasitic plant	Host plant (Family name)	Location of collection	Voucher no
EWSM	Englerinawoodfordioides (Schweinf) M. Gilbert	Shinus molle (Anacardiaceae)	Shashemene	AY2
EWEG	Englerinawoodfordioides (Schweinf) M. Gilbert	Eucalyptus globulus (Myrtaceae)	Menagesha	AY4
EWDP	Englerinawoodfordioides (Schweinf) M. Gilbert	Discopodium pumilinervum (Solanaceae)	Gambo	AY19
EWAA	Englerinawoodfordioides (Schweinf) M. Gilbert	Acacia abyssinica (Fabaceae)	Gambo	AY34
PROEM	Phragmanthera regularis (Sprague) M. Gilbert	Olea europaea ssp. cuspidate (Oleaceae)	Menagesha	AY7
PROEC	Phragmanthera regularis (Sprague) M. Gilbert	Olea europaea ssp. cuspidate (Oleaceae)	Chilimo	AY9
PRFS	Phragmanthera regularis (Sprague) M. Gilbert	Ficus sur (Moraceae)	Menagesha	AY11
PRAM	Phragmanthera regularis (Sprague) M. Gilbert	Acacia melanoxylon (Fabaceae)	Menagesha	AY16
PRRA	Phragmanthera regularis (Sprague) M. Gilbert	Rosa abyssinica (Rosaceae)	Menagesha	AY18
PRSM	Phragmanthera regularis (Sprague) M. Gilbert	Shinus molle (Anacardiaceae)	Debre Libanose	AY20
PRFV	Phragmanthera regularis (Sprague) M. Gilbert	Ficus vasta (Moraceae)	Chilimo	AY25
VTTN	Viscum tuberculatum A. Rich	Tecteolobis (Rutaceae)	Gambo	AY24
TGES	Tapinanthus globiferus (A. Rich) Tieghem	Eucalyptus saligna (Myrtaceae)	Mekkassa	AY15

Solvent extraction yield

Methanol extraction provided the highest percent yield for *P. regularis* and aqueous solvents for *E. woodfordioides*, *T. globiferus*, and *V. tuberculatum*. In contrast, the lowest yield of extraction was obtained by ethyl acetate for *E. woodfordioides* and *P. regularis*, and chloroform for *T. globiferus*, and *V. tuberculatum*. There was also variation in solvent extraction yields between *E. woodfordioides* and *P. regularis* collected from *S. molle* and *O. europaeae*.

Phytochemical constituents of plant extracts

The phytochemical test showed that there were alkaloids, phenols, saponins, cardiac glycosides, steroids, terpenoids, tannins, quinines, and coumarins in one or the other four mistletoes. No flavonoids, anthraquinone and phlobatannin were detected. *E. woodfordioides* and *P. regularis* have similar results in the contents of flavonoids, cardiac glycosides, steroids, anthraquinones and phlobatannins. Tannins were found in all *E. woodfordioides*. Similar to this finding there was saponins to all *P. regularis* collected from different host plants. In contrast, the phytochemical composition of *V. tuberculatum* was much similar to *E. woodfordioides* collected from *E. globules* than the others [Table 2]. Meanwhile, a trace amount of reducing sugar was found in *E. woodfordioides*, *T. globiferus* and *V. tuberculatum*. In contrary, no protein was detected in all the samples.
Table 2
Phytochemical screening of aqueous extracts of aerial mistletoes

Active principles	Test method	Plant extracts											
	EWSM	EWEG	EWDP	EWAA	PROEM	PROEC	PRFS	PRAM	PRRA	PRSM	PRFV	VTTN	TGES
Alkaloids	Wagner	+	-	-	+	+	-	-	-	+	-	-	
Anthraquinones	Borntrager	-	-	-	-	-	-	-	-	-	-	-	
Cardiac glycosides	Keller Killani	-	-	-	-	-	-	-	-	-	-	-	+
Coumarins	NaOH	-	-	-	+	+	-	-	-	-	-	-	
Flavonoids	NaOH	-	-	-	-	-	-	-	-	-	-	-	
	Lead acetate	-	-	-	-	-	-	-	-	-	-	-	
	FeCl$_3$	-	-	-	-	-	-	-	-	-	-	-	
Phenols	FeCl$_3$	-	+	-	+	-	-	-	+	-	-	-	+
Phlobotannins	Precipitate test	-	-	-	-	-	-	-	-	-	-	-	
Quinones	-	+	-	-	+	+	-	-	+	-	-	-	+
Saponins	Foam test	+	-	+	-	+	+	+	+	+	+	-	+
Steroids	Liebermann-Burchard	+	+	+	+	+	+	+	+	+	+	+	+
Tannins	FeCl$_3$	+	+	+	+	+	+	+	+	+	+	+	+
Terpenoids	Salkowski	+	+	+	-	-	-	+	-	+	+	+	+

*(-) indicate the presence and (+) absence of the tested biochemical.

Physicochemical analysis of plant materials

There was significant difference in the percent of total ash values between and within species of mistletoes. The total ash value of *E. woodfordiodes* and *P. regularis* ranges from 6.04 to 13.23% and 5.62 to 15.22%, respectively. Comparable total ash content was found in *T. globiferus* and *V. tuberculatum* [Table 3]. Similarly, the results on the acid-insoluble ash and water-soluble ash revealed variation between and within species of mistletoes based on the host plants. No significant difference was obtained in the mean percent moisture content of the study species.
Table 3
Pair wise comparison of total ash content of mistletoes (mean ± SEM, n = 3, p < 0.05)

Plants	Mean ± SEM	Plants	Mean ± SEM									
	EWSM	EWEG	PROEM	PROEC	PRFS	TGES	PRAM	PRRA	EWDP	PRSM	VTTN	EWAA
EWSM	13.226 ± 0.157	7.1843	5.036	3.933	0.548	7.170	7.604	4.450	3.586	5.792	5.820	
EWEG	6.041 ± 0.157											
PROEM	8.190 ± 0.157	2.149	2.135	2.568	0.757	0.784	1.859	1.886				
PROEC	9.292 ± 0.157	3.251	1.102	3.237	3.670	0.517						
PRFS	12.677 ± 0.157	6.636	4.487	3.385	6.622	7.055	3.902	3.038	5.244	5.271		
TGES	6.055 ± 0.157											
PRAM	5.622 ± 0.157											
PRRA	8.776 ± 0.157	2.734	0.586	2.720	3.154	1.342	1.370					
EWDP	13.950 ± 0.157	0.724	7.908	5.760	4.657	1.272	7.894	8.328	5.174	4.310	6.516	6.544
PRSM	9.639 ± 0.157	3.598	1.449	3.584a	4.017	0.864	2.206	2.233				
VTTN	7.433 ± 0.157	1.392		1.378	1.811							
PRFV	15.224 ± 0.157	1.999	9.183	7.034	5.932	2.547	9.169	6.449	1.275	5.585	7.791	7.818
EWAA	7.406 ± 0.157	1.365		1.351	1.784							

*the Standard error of the mean of total ash content is 0.222

Discussion

There is an uneven distribution of mistletoes in Africa. Species such as *E. woodfordiodes*, *P. regularis*, and *V. tuberculatum* are limited to East Africa, and *T. globiferus* widely distributed from East to West Africa [37].

The results on the phytochemical content of *T. globiferus* agreed with that reported for the same species by Abubakar et al [14], Bassey [39] and Umarudeen and Chika [40] on anthraquinones, and tannins. In contrast, it partly agrees with results in other phytochemicals to Abubakar et al [14], Bassey [39] and Umarudeen and Chika [40]. On the other hand, the results obtained on alkaloids, quinone and terpenoids in *E. woodfordiodes* agreed to Ngbolua et al [41]. Similarly, the results obtained in *P. regularis* partly agrees with *P. incana* in tannins and anthraquinone [42], tannins, saponin and anthraquinone to *P. capitata* [43], alkaloid and tannins to *P australarobica* [38]. In general, it is necessary to consider the detection of preliminary phytochemical composition of mistletoe with respect to host plants, extraction solvents [8] and the test methods.

The determination of higher moisture content in this study indicated the more probability of microbial attack and enzymatic hydrolysis of the plant materials [44, 45–47]. The higher extraction yield of mistletoes using water and methanol in this study might be associated to the higher polarity of the extraction materials, the particle size of the raw materials, the solvent-to-solid ration, the extraction temperature and the extraction duration [48–49].

Conclusions

This study revealed the presence of secondary metabolites that have potential bioactive activities. Therefore, future studies need to investigate the potential use of these plants for their bioactive compounds using *in vitro* and *in vivo* models.

Limitations

This preliminary phytochemical and physicochemical study on mistletoes did not account quantification of bioactive compounds and limited to certain part of the country.

List Of Abbreviations

- EWSM- *Englerina woodfordioides* (Schweinf) M.Gilbert collected from *Shinus molle*
- EWEG- *Englerina woodfordioides* (Schweinf) M.Gilbert collected from *Eucalyptus globulus*
- EWDP- *Englerina woodfordioides* (Schweinf) M.Gilbert collected from *Discopodium penninervum*
- EWAA- *Englerina woodfordioides* (Schweinf) M.Gilbert collected from *Acacia abyssinica*
- PROEM- *Phragmanthera regularis* (Sprague) M.Gilbert collected from *Olea europea* ssp. *cuspidate* at Menagesha
PROEC - *Phragmanthera regularis* (Sprague) M.Gilbert collected from *Olea europea* ssp. *cuspidata* at Chilimo

PRFS - *Phragmanthera regularis* (Sprague) M.Gilbert collected from *Ficus sur*

PRAM - *Phragmanthera regularis* (Sprague) M.Gilbert collected from *Acacia melanoxylon*

PRRA - *Phragmanthera regularis* (Sprague) M.Gilbert collected from *Rosa abyssinica*

PRSM - *Phragmanthera regularis* (Sprague) M.Gilbert collected from *Shinus molle*

PRFV - *Phragmanthera regularis* (Sprague) M.Gilbert collected from *Ficus vasta*

VTTN - *Viscum tuberculatum* A. Rich collected from *Teclea nobilis*

TGES - *Tapinanthus globiferus* (A.Rich) Tieghem collected from *Eucalyptus saligna*

Declarations

Acknowledgment

The authors would like to express their thanks to their colleagues for unreserved laboratory assistances.

Authors’ contributions

AY investigated, analyzed the data, and drafted the manuscript. YM supervised this study and edited the manuscript. Both authors read and approved the final manuscript.

Authors’ details

1. College of Natural and Computational Sciences, Addis Ababa University. P.O.Box 1176, Addis Ababa, Ethiopia.
 2. Central Ethiopia Environment and Forest Research Center, Addis Ababa. P.O.Box 33042, Addis Ababa, Ethiopia

Competing interests

The authors declared no competing interests.

Availability of data and materials

Raw data from this study will be available for researcher upon request from the first author.

Consent for publication

Not applicable

Ethics approval and consent to participate

Not applicable

Funding

The expense of this study was covered by the first author, and hence did not receive any grants from any agencies or institution.

References

1. Mathiasen RL, Nickrent DL, Shaw DC, Watson DM. Mistletoes: Pathology, systematics, ecology and management. Plant Disease. 2008; 92(7):988-1006. https://doi.org/10.1094/PDIS-92-7-0988.

2. Kim C, An C, Lee H, Yi J, Cheong EJ, Lim S, Kim H. Proximate and mineral components of *Viscum album coloratum* grown on eight different host tree species. J For Res.2019; 30 (4): 1245-1253.

3. Marvibaigi M, Amini N, Supriyanto E, Abdul Majid FA, Kumar Jaganathan S, Jamil S, Almaki JH, Nasiri R. Antioxidant activity and ROS-dependent apoptotic effect of *Scurrula ferruginea* (Jack) Danser methanol extract in human breast cancer cell MDA-MB-231. PLoS ONE. 2016; 11(7): e0158942.
4. Yusuf L, Oladunmoye MK, Ogundare OA. *In vitro* antibacterial activities of mistletoe (*Viscum album*) leaves extract growing on cocoa tree in Akure North, Nigeria. European Journal of Biotechnology and Bioscience. 2013; 1(1): 37-42.

5. Önay-Uçar E, Karagoz A, Arda N. Antioxidant activity of *Viscum album* album. Fitoterapia. 2006; 77: 556-560.

6. Szurpnicka A, Kowalczyk A, Szterk A. Biological activity of mistletoe: *in vitro* and *in vivo* studies and mechanisms of action. Arch Pharm Res. 2020; 43: 593-629.

7. Nazaruk J, Orlikowski P. Phytochemical profile and therapeutic potential of *Viscum album*, Natural Product Research. 2015; DOI: 10.1080/14786419.2015.1022776.

8. Chanda S. Importance of pharmacognostic study of medicinal plants: an overview. Journal of Pharmacognosy and Phytochemistry. 2014; 2(5):69-73.

9. Alito MK. Use and management of medicinal plants by indigenous people of Jima Rare District in Oromia Region, Ethiopia. Haramaya University. 2014; MSc Thesis.

10. Zerabruk S, Yirga G. Traditional knowledge of medicinal plants in Gindeberet district, Western Ethiopia. South African Journal of Botany. 2012; 78: 165–9.

11. Yineng H, Yewhalaw D, Teketay D. Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2008; 4(1):11.

12. Megersa M. Ethnobotanical study of medicinal plants in Wayu Tuka Wereda, East Wollega Zone of Oromia Region, Ethiopia. Addis Ababa University School of Graduate Studies. 2010; MSc Thesis.

13. Teklehaymanot T. An ethnombotanical survey of medicinal and edible plants of Yalo Woreda in Afar regional state, Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2017; 13:40.

14. Abubakar K, Adebisi IM, Ugwah-Oguejiofor JC, Idris GO, Idris B, Mshelia HE. Phytochemical screening and anticonvulsant activity of the residual aqueous fraction of *Tapinanthus globiferus* growing on *Ficus glumes*. Herbal Medicine. 2016; 2(2): 1-6.

15. Rufai Y, Isah Y, Isyaka MS. Comparative phytoconstituents analysis from the root bark and root core extractives of *Cassia ferruginea* (Schrad D.C.) Plant Sch J Agric Vet Sci. 2016. 3(4): 275-284.

16. Jha DK, Panda L, Lavanya P, Ramaiya S, Anbarasu A. Detection and confirmation of alkaloids in leaves of *Justicia adhatoda* and Bioinformatics approach to elicit its anti-tuberculosis activity. Appl Biochem Biotechnol.2012; DOI 10.1007/s12010-012-9834-1.

17. Archana P, Samatha T, Mahitha B, Wari C, Swamy, NR. Preliminary phytochemical screening from leaf and seed extracts of *Senna alata* Roxb-an ethnomedicinal plant. IJPBR. 2012; 3(3): 82-89.

18. Yusuf, L., Oladunmoye, M.K., Ogundare, A.O. and Adebisi, I.O. Comparative antifungal and toxicological effects of the extract of mistletoes growing on two different host plants in Akure North, Nigeria. International Journal of Biotechnology and Food Science. 2014; 2 (2): 31-34.

19. Ayeni EA, Abubakar A, Ibrahim G, Atinga V, Muhammad Z. Phytochemical, nutraceutical and antioxidant studies of the aerial parts of Daucus carota L. (Apiaceae). J Herbed Pharmcol. 2018; 7(2): 68-73.

20. Mohammed SA, Abdullahi S, Lawan FA, Kyari AS, Abdulhamid BN, Amina I. The effect of crude mesocarp extract of *Hyphaene thebacea* (Doumpalm) on white blood cells and differential leucocytic count in wistar albino rats. Vom Journal of Veterinary Science. 2015; 10:104-113.

21. Ayoola GA, Coker HAB, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, Atangbayila TO. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Tropical Journal of Pharmaceutical Research. 2008; 7 (3): 1019-1024.

22. Madike LN, Takaidza S, Pillay M. Preliminary phytochemical screening of crude extracts from the leaves, stems, and roots of *Tulbaghia violacea*. International Journal of Pharmacognosy and Phytochemical Research. 2017; 9 (10): 1300-1308.

23. Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from *Ephedra intermedia* indigenous to Balochistan. The Scientific World Journal. 2017; https://doi.org/10.1155/2017/5873648.

24. Kasarkar A, Gavali A, Kolekar N, Kumbhar S, Wadkar S. Phytochemical screening of *Achyranthes aspera* L., *Amaranthus spinosus* L., *Parthenium hysterophorus* L., *Argemone mexicana* L., *Portulaca oleracea* L. and *Euphorbia geniculata* Ortega from Kolhapur district of Maharashtra. International Journal of Herbal Medicine 6(3):05-08.

25. Jayapriya G, Shoba FG (2014) Screening for phytochemical activity of *Urechites lutea* Asian Journal of Plant Science and Research. 2018; 4(6): 20-24.

26. Alebiosu CO, Yusuf AJ. Phytochemical screening, thin layer chromatographic studies and UV analysis of extracts of *Citrus lanatus*. Journal of Pharmaceutical, Chemical and Biological Sciences. 2015; 3(2): 214-220.

27. Dhawan D, Gupta J. Comparison of different solvents for phytochemical extraction potential from *Datura metel* plant leaves. Int J Biol Chem. 2016; 11: 17-22.

28. Bhattacharya M, Singh A, Ramrakhyani C. Preliminary phytochemical investigation of various extracts of *Dalbergia sissoo*. IOSR Journal of Applied Chemistry. 2015; 8 (12): 32-35.

29. Prabhavathi RM, Prasad MR, Jayaramu M. Studies on qualitative and quantitative phytochemical analysis of *Cissus quadrangularis*. Advances in Applied Science Research. 2016. 7(4): 11-17.

30. Jothi MM, Lakshman K. Preliminary studies of phytochemical investigation on coastal medicinal plants of Boloor, Mangalore. 2018; 5(2): 1309-1315.

31. Aziz A. Qualitative phytochemical screening and evaluation of anti-inflammatory, analgesic and antipyretic activities of *Microcos paniculata* barks and fruits. Journal of Integrative Medicine. 2015; 13(3): 173-184.

32. Mandal S, Patra A, Samanta A, Roy S, Mandal A, Mahapatra TD, Pradhan S, Das K, Nandi DK. Analysis of phytochemical profile of *Terminalia arjuna* bark extract with antioxidant and antimicrobial properties. Asian Pac J Trop Biomed. 2013; 3(12): 960-966.
33. Salman SM, Ali S, Ahmed A, Afridi MS, Rehman AU. Preliminary phytochemical, essential element analysis and antimicrobial activities of ethanolic extract of *Lotus corniculatus*. Int J Biosci. 2015; 7(2): 106-115.

34. Lanjwani AH, Ghangho IH, Ghangho AB, Khuhawar TMJ, Channa MJ. Qualitative examination of phytochemicals from some indigenous medicinal plants. Sindh Univ. Res. Jour. 2015; 47 (2): 261-264.

35. Idris OA, Wintola OA, Afolayan AJ. Comparison of proximate composition, vitamins (Ascorbic acid, α-tocopherol and retinol), anti-nutrients (phytate and oxalate) and the GC-MS analysis of the essential oil of the root and leaf of *Rumex crispus* Plants. 2019; 8, 51. doi:10.3390/plants8030051.

36. Danso-Boateng E. Effect of drying methods on nutrient quality of Basil (*Ocimum viride*) leaves cultivated in Ghana. International Food Research Journal. 2013; 20 (4): 1569-1573.

37. Polhill R, Wiens D. Mistletoes of Africa. 1st The Royal Botanic Gardens, Kew, London, UK; 1998.

38. Waly NM, Ali AEED, Jrais RN. Botanical and biological studies of six parasitic species of family Loranthaceae growing in Kingdom of Saudi Arabia. IJES. 2012; 1(4): 196-205.

39. Bassey ME. Phtyochemical investigations of *Tapinanthus globiferus* (Loranthaceae) from two hosts and the taxonomic implications. IJCEPR. 2012; 3 (2): 174-177.

40. Umadeen AM, Chika A. Phytochemical, elemental and *in-vitro* antioxidant activity screening of crude methanol *Tapinanthus globiferus* leaf extract. Int Arch Med Sci. 2019; 1(3): 29-34.

41. Ngbolua KN, Dalley-Divin KS, Jean MM, Jean-Claude KK, Odilon KK, Ulrich M, Desire MM, Mpiana PT, Mudogo V. Phytochemical investigation and TLC screening for antioxidant activity of 24 plant species consumed by the Eastern Lowland Gorillas (*Gorilla beringei graueri*). Hominidae, Primates) endemic to Democratic Republic of the Congo. J of Advancement in Medical and Life Sciences. 2014; 1(3): 1-6. https://doi: 10.15297/JALS.V1I3.02.

42. Ogunmefun OT, Saba AB, Fasola TR, Akharaiyi FC, Oridupa OA. Phytochemical and *in-vitro* antimicrobial evaluation of *Phragmanthera incana* (Schum.) Balle extracts on selected clinical microorganisms. British Microbiology Research Journal. 2016; 14(3):1-10.

43. Oluwole O, Osungunna MO, Abimbola Y. Phytochemical and antimicrobial screening of *Globimetula oreophila* (Oliv) van Tiegh and *Phragmanthera capitata* (Spreng) Balle. Int J Green Pharm. 2013; 7:127-30.

44. Ohikhena FU, Wintola OA, Afolayan AJ. Proximate composition and mineral analysis of *Phragmanthera capitata*(Sprengel) Balle, a mistletoe growing on rubber tree. Research Journal of Botany. 2017; 12: 23-31.

45. Akpabio UD, Ikpe EE. Proximate composition and nutrient analysis of *Aneliea aequinoctiale* Asian Journal of Plant Science and Research. 2013; 3(2): 55-61.

46. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohammed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering. 2013; 117: 426-436.

47. Rocha RP, Melo EC, Radunz LL. Influence of drying process on the quality of medicinal plants: a review. Journal of Medicinal Plants Research. 2011; 5 (33): 7076-7084.

48. Ihegboro GO, Ononamadu CJ, Afor E, Odogiyang GD. Cytotoxic and hepatothcurative effect of aqueous fraction of *Tapinanthus bangwensis* against paracetamol-induced hepatotoxicity. Journal of Evidene-Based Integrative Medicine. 2018; 23: 1-7.

49. Truong D, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and *in vitro* anti-inflammatory activities of *Severinia buxifolia*. Journal of Food Quality. 2019; https://doi.org/10.1155/2019/8178294.