Association between HLA class II gene and susceptibility or resistance to chronic hepatitis B

Ye-Gui Jiang, Yu-Ming Wang, Tong-Hua Liu, Jun Liu

Ye-Gui Jiang, Yu-Ming Wang, Jun Liu, Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
Tong-Hua Liu, Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, China
Correspondence to: Dr. Ye-Gui Jiang, Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China. jiangyegui@yahoo.com.cn
Telephone: +86-23-68754141 Fax: +86-23-68754479
Received: 2003-05-10 Accepted: 2003-06-19

Abstract

AIM: To investigate the association between the polymorphism of HLA-DRB1, -DQA1 and -DQB1 alleles and viral hepatitis B.

METHODS: HLA-DRB1, -DQA1 and -DQB1 alleles in 54 patients with chronic hepatitis B, 30 patients with acute hepatitis B and 106 normal control subjects were analyzed by using the polymerase chain reaction/sequence specific primer (PCR/SSP) technique.

RESULTS: The allele frequency of HLA-DRB1*0301 in the chronic hepatitis B group was markedly higher than that in the normal control group (17.31 % vs 5.67 %), there was a significant correlation between them ($\chi^2=12.3068, Pc=0.0074, RR=4.15$). The allele frequency of HLA-DQA1*0501 in the chronic hepatitis B group was significantly higher than that in the normal control group (25.96 % vs 13.68 %), there was a significant correlation between them ($\chi^2=9.0022, Pc=0.0157, RR=2.87$). The allele frequency of HLA-DQB1*0301 in the chronic hepatitis B group was notably higher than that in the normal control group (35.58 % vs 18.87 %), there was a significant correlation between them ($\chi^2=15.5938, Pc=0.0075, RR=4.07$). The allele frequency of HLA-DRB1*1101/1104 in the chronic hepatitis B group was obviously lower than that in the normal control group (0.96 % vs 13.33 %), there was a significant correlation between them ($\chi^2=11.9206, Pc=0.0145, RR=18.55$). The allele frequency of HLA-DQA1*0301 in the chronic hepatitis B group was remarkably lower than that in the normal control group (14.42 % vs 30 %), there was a significant correlation between them ($\chi^2=8.7396, Pc=0.0167, RR=0.35$).

CONCLUSION: HLA-DRB1*0301, HLA-DQA1*0501 and HLA-DQB1*0301 are closely related with susceptibility to chronic hepatitis B, and HLA-DRB1*1101/1104 and HLA-DQA1*0301 are closely related with resistance to chronic hepatitis B. These findings suggest that host HLA class II gene is an important factor determining the outcome of HBV infection.

INTRODUCTION

The progression of hepatitis B virus (HBV) infection may be influenced by a number of factors including the viral genotype and the level of viremia, but these factors alone do not account for the variability in outcome. There is an increasing awareness that host factors are involved. A great deal of evidences suggest that both cellular and humoral immune responses are required for viral clearance$^{[1-3]}$. Polymorphisms of human leukocyte antigen (HLA) influence immune responses. Variability in immune response is often associated with HLA polymorphism. HLA genotype of an individual may influence the progression of HBV infection. Patients who have successfully recovered from acute hepatitis B develop strong HLA classes I and II restricted T cell response, whereas these responses are weak or absent in patients with chronic hepatitis B$^{[4, 5]}$. In the present study, we have analyzed the polymorphism of HLA-DRB1, -DQA1 and -DQB1 alleles in patients with chronic and acute hepatitis B and healthy controls using the polymerase chain reaction with sequence specific primers (PCR/SSP). This study aimed at investigating whether these alleles might be associated with susceptibility or resistance to chronic hepatitis B.

MATERIALS AND METHODS

Subjects

Fifty-two patients (43 males, 9 females, mean age: 33.46 years) with chronic hepatitis B and 30 patients (24 males, 6 females, mean age: 33.25 years) with acute hepatitis B, and 106 healthy blood donors (88 males, 18 females, mean age: 31.27 years) were included in this study. All the patients were from the Institute of Infectious Diseases, Southwest Hospital of Third Military Medical University. The diagnosis of all the cases was made according to the criteria established on the Viral Hepatitis Conference held in 2000. All the patients and controls were Chinese Han people without relatives from Chongqing. The subjects were divided into chronic hepatitis B group, acute hepatitis B group and healthy control group.

Primer synthesis and reagents

The polymorphisms of HLA-DRB1, -DQA1 and -DQB1 alleles were assessed by PCR/SSP technique. HLA-DRB1, -DQA1 and -DQB1 loci of specific PCR primers were designed by Olerup et al$^{[6, 7]}$, and synthesized by Shanghai Branch, Canadian Sangon Company. The primers amplifying human growth hormone gene (5’-primer: 5’-GGG TCC CCA ACC ATT CCC TTA-3’, 3’-primer: 5’-TCA CGG ATT TCT GTT GTG TTT-3’) were synthesized by Shanghai Branch, Canadian Sangon Company. Taq DNA polymerase and dNTP were purchased from Shanghai Branch, Canadian Sangon Company, pBR322/Hand III marker and the ReadyPCR™ whole blood genomic DNA purification system were provided by Sino-American Biotechnology Company.

Methods

DNA extraction Genomic DNA was extracted from peripheral blood by using the Ready PCR™ whole blood genomic DNA purification system.
PCR amplification

A total amount of 25 µl PCR reaction solution contained 8 pmol each of sequence specific primer (3.2 µl), 0.8 pmol of each internal control primer (0.32 µl), 50-100 ng of genomic DNA (2 µl), 2.5 µl of 10×buffer, 25 mmol/L of MgCl₂ (2.5 µl), 10 mmol/L of dNTP (1 µl), 5 unit/µl of Taq polymerase (0.5 µl) and 13 µl of deminized H₂O. The PCR cycling parameters of HLA-DRB1 alleles were as follows: pre-denaturation at 94 °C for 5 min, denaturation at 94 °C for 50 s, annealing at 65 °C for 1 min, extension at 72 °C for 1 min, and final extension at 72 °C for 5 min. The PCR cycling parameters of HLA-DQA1 and -DQB1 alleles were as follows: pre-denaturation at 94 °C for 4 min, denaturation at 94 °C for 1 min, annealing at 65 °C for 1 min, extension at 72 °C for 1 min, and final extension at 72 °C for 2 min. In each PCR reaction a primer pair was included to amplify the human growth hormone gene, which functioned as an internal positive amplification control and gave rise to a 429 base pair fragment.

Detection of PCR products PCR products were loaded in 2 % agarose gel containing 0.5 µg/ml of ethidium bromide, electrophoresed for 20 min at 15 V/cm, examined under ultraviolet light. The individual alleles were assigned for the specific pattern of appropriately sized bands.

Statistical analysis

Allele frequencies of HLA-DRB1, -DQA1 and -DQB1 were calculated by direct count. AF for the study group was compared with that for the control group using Chi-square (χ²) test. The Fisher’s exact test was used when χ² value exceeded 3.84, the P values were corrected for the number of alleles (corrected P=PC). Relative risk frequencies (RR) were calculated according to Wolf formula.

RESULTS

HLA-DRB1 alleles in patients with chronic and acute hepatitis B and healthy controls

The distribution of HLA-DRB1 alleles is shown in Table 1. The allele frequencies of HLA-DRB1*0301 in the chronic hepatitis B group (17.31 %) were markedly higher than those in the normal control group (5.67 %), there was a significant correlation between them (χ²=12.3068, P=0.0074, RR=4.15). The allele frequencies of HLA-DRB1*0401/0411 in the chronic hepatitis B group (0.96 %) were significantly lower than those in the acute hepatitis B group (13.33 %), with significant correlation between them (χ²=11.9206, P=0.0145, RR=18.55). The data of electrophoresis of HLA-DRB1 alleles amplification are shown in Figure 1.

Table 1 Allele frequency of HLA-DRB1 in patients with chronic and acute hepatitis B and normal healthy individuals

HLA-DRB1 allele	Normal control (n=100)	Chronic hepatitis B (n=52)	Acute hepatitis B (n=30)
PN AF	PN AF	PN AF	
0101/0103	1 0.47	1 0.96	1 1.67
0102	12 5.66	18 17.31	6 10.00
0401/0411	24 11.32	13 12.50	7 11.67
0701/0702	11 5.19	8 7.69	4 6.67
0801/0804	9 4.25	6 5.77	3 5.00
0901	32 15.09	16 15.39	8 13.33
1001	2 0.94	2 1.92	1 1.67
1101/1104**	13 6.13	1 0.96	8 13.33
1201/1202	34 16.04	15 14.42	8 13.33
1301/1302	4 1.89	1 0.96	1 1.67
1303/1304	1 0.47	1 0.96	1 1.67
1401/1404	14 6.60	6 5.77	4 6.67
1402/1403	0 0.00	0 0.00	0 0.00
1501/1502	34 16.04	11 10.58	5 8.33
1601/1602	13 6.13	2 1.92	1 1.67
Blank	8 3.77	3 2.89	2 3.33

HLA-DQA1 alleles in patients with chronic and acute hepatitis B and healthy controls

The distribution of HLA-DQA1 alleles is shown in Table 2. The allele frequencies of HLA-DQA1*0501 in the chronic hepatitis B group (25.96 %) were markedly higher than those in the normal control group (13.68 %), there was a significant correlation between them (χ²=9.2002, P=0.0157, RR=2.87). The allele frequencies of HLA-DQA1*0301 in the chronic hepatitis B group (14.42 %) was significantly lower than those in the acute hepatitis B group (30 %), there was a significant correlation between them (χ²=7.6781, P=0.0388, RR=3.70). The data of electrophoresis of HLA-DQA1 alleles amplification are shown in Figure 2.

Table 2 Allele frequency of HLA-DQA1 in patients with chronic and acute hepatitis B and normal healthy individuals

HLA-DQA1 allele	Normal control (n=106)	Chronic hepatitis B (n=52)	Acute hepatitis B (n=30)
PN AF	PN AF	PN AF	
0103	17 8.02	9 8.65	4 6.67
0102	45 21.23	22 21.15	12 20.00
0103	9 4.25	5 4.81	2 3.33
0104	3 1.42	1 0.96	1 1.67
0201	7 3.30	3 2.88	1 1.67
0301*	57 26.89	15 14.42	18 30.00
0302	1 0.47	0 0.00	0 0.00
0401	2 0.49	1 0.96	1 1.67
0501**	29 13.68	27 25.96	10 16.67
0601	23 10.85	12 11.54	6 10.00
Blank	19 8.96	9 8.65	5 8.33

Figure 1 Electrophoresis of HLA-DRB1 alleles amplification by PCR/SSP. M: pBR322DNA/MSP I marker, 1: negative control, 2: 0101/0103, 3: 0301, 4: 0401/0411, 5: 0701/0702, 6: 0801/0804, 7: 0901, 8: 1001, 9: 1101/1104, 10: 1201/1202, 11: 1301/1302, 12: 1303/1304, 13: 1401/1404, 14: 1402/1403, 15: 1501/1502, 16: 1601/1602.
Electrophoresis of HLA-DQA1 alleles amplification by PCR/SSP. M: pBR322DNA/MSP I marker, 1: negative control, 2: 0101/0104, 3: 0101/0102/0104, 4: 0102/0103, 5: 0103, 6: 0201, 7: 0301, 8: 0302, 9: 0401, 10: 0501, 11: 0601, 12: A (when the amplification product was -DQA1*0104, “A” was negative. When the amplification product was non-DQA1*0104, “A” was positive).

Figure 2 Electrophoresis of HLA-DQA1 alleles amplification by PCR/SSP. M: pBR322DNA/MSP I marker, 1: negative control, 2: 0101/0104, 3: 0101/0102/0104, 4: 0102/0103, 5: 0103, 6: 0201, 7: 0301, 8: 0302, 9: 0401, 10: 0501, 11: 0601, 12: A (when the amplification product was -DQA1*0104, “A” was negative. When the amplification product was non-DQA1*0104, “A” was positive).

Table 3 Allele frequency of HLA-DQB1 in patients with chronic and acute hepatitis B and normal healthy individuals

HLA-DQB1 allele	Normal control (n=106)	Chronic hepatitis B (n=52)	Acute hepatitis B (n=30)			
	PN	AF	PN	AF	PN	AF
0201	23	10.85	10	9.62	6	10.00
0301*	40	18.87	37	35.58	16	26.67
0302	14	6.61	6	5.77	3	5.00
0303	35	16.51	15	14.42	10	16.67
0401	11	5.19	5	4.81	3	5.00
0402	2	0.94	1	0.96	1	1.67
0501	9	4.25	3	2.88	2	3.33
0502	20	9.43	7	6.73	3	5.00
0503	6	2.83	2	1.92	1	1.67
0601	20	9.43	7	6.73	7	11.67
0602	12	5.66	4	3.85	3	5.00
0603	5	2.36	2	1.92	1	1.67
0604	7	3.30	2	1.92	2	3.33
Blank	8	3.77	3	2.89	2	3.33

PN: positive number, AF: allele frequency. \(\chi^2=45.5938, P=0.0075, RR=4.07. \)

Table 3 Allele frequency of HLA-DQB1 in patients with chronic and acute hepatitis B and normal healthy individuals

DISCUSSION

Host and viral factors undoubtedly influence the clinical expression and behavior of chronic hepatitis B. Attempts to explain the clinical expression and the behavior of chronic hepatitis B by viral factors have shown the importance of viral genotypes and viraemia level for the clinical presentation. However, there remain large inconsistencies, and it is very likely that immune response to hepatitis B virus (HBV) of the host can modify disease outcomes. HLA is a critical genetic factor that determines individual variations of immune response. The ternary structure of HLA molecules and their roles in the control of immune response have been clearly elucidated. There are many reports about statistical associations between HLA and diseases. HLA gene contributes to the host response against HBV. Individuals with different HLA types may differ in susceptibility or resistance to disease, and associations between HLA polymorphism and susceptibility or resistance to diseases have been identified.

Researches on the correlation between HLA and hepatitis B have been performed for many years. Traditional serological method was used in some investigations, but it has become obsolete and inaccurate. To have a better understanding of the disease, correlation between hepatitis B and HLA should be further studied using nucleotide-typing techniques. Therefore, in the present study, we examined the HLA-DRB1, -DQA1 and -DQB1 alleles by PCR/SSP technique in patients with hepatitis B in an attempt to investigate the association between the polymerase of HLA class II gene and hepatitis B. Fourteen HLA-DRB1 alleles, ten HLA-DQA1 alleles and thirteen HLA-DQB1 alleles were detected. The allele frequencies of HLA-DRB1, -DQA1 and -DQB1 in healthy individuals tallied with genetic characteristics of the Han people in southern region of China.

A previous study showed that the allele frequencies of HLA-B8, DR3, A30, DQA1*0501 in patients with chronic hepatitis B were markedly increased, suggesting that these alleles are associated with chronic hepatitis B. Thio et al. [8] found that HBV persistence was significantly associated with class II alleles, DQA1*0501 (OR=2.6) and DQB1*0301 (OR=3.9), the two-locus haplotype consisted of these same two alleles (OR=3) and the three-locus haplotype consisted of DQA1*0501, DQB1*0301 and DRB1*1102 (OR=10.7). The study by Shen et al. suggested that the susceptibility to chronic hepatitis B was strongly associated with HLA-DRB1*10 allele in northern Chinese patients [9]. In the present study, we found that the allele frequencies of HLA-DRB1*0301, -DQA1*0501 and -DQB1*0301 in the chronic hepatitis B group were markedly higher than those in the normal control group, there was a significant correlation between them (Tables 1, 2 and 3). These findings suggest that HLA-DRB1*0301, -DQA1*0501 and -DQB1*0301 are closely associated with the susceptibility to chronic hepatitis B, and may be the susceptible gene.

Cotrina et al. [9] analyzed the HLA-DRB1 genotype in a series of patients with chronic hepatitis B and acute hepatitis B, which further confirmed that HLA-DRB1*1301 and -DRB1*1302 alleles were associated with the clearance of HBV infection and protected people against chronic hepatitis B. Diepolder et al. [10] found that a strong virus-specific CD4+ and CD8+ T lymphocyte response to hepatitis B virus was associated with viral clearance, patients with acute hepatitis B carrying HLA-DR13 had a more vigorous CD4+ T cell response to HBV core than patients not carrying HLA-DR13, suggesting that HLA-DR13 is associated with a self-limited course of HBV infection, and the beneficial effect of HLA-DR13 alleles on the outcome of HBV infection could be explained by a more vigorous HBV core-specific CD4+ T cell response, which might be either due to a more proficient antigen presentation by HLA-
REFERENCES

1. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamanoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi H, Kakizoe T. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000; 356: 802-807.

2. Chiarl R, Hames G, Stroobant V, Texier C, Maillere B, Boon T, Couillie PG. Identification of a tumor-specific shared antigen derived from an Ehrlich tumor and presented to CD4 T cells on HLA class II molecules. Cancer Res 2000; 60: 4855-4863.

3. Feinmesser M, Sulkis A, Morgenstern S, Sulkis J, Stern S, Okon E. HLA-DR and beta 2 microglobulin expression in medullary and atypical medullary carcinoma of the breast: histopathologically similar but biologically distinct entities. J Clin Pathol 2001; 54: 285-291.

4. Zhang SL, Liao M, Zhu J, Chai NL. Predominant Th-2 immune response and chronic hepatitis B virus infection. Shijie Huaner Xiuha 2001; 5: 513-515.

5. Chen WN, Oon CJ. Mutation “hot spot” in HLA class I-restricted T cell epitope on hepatitis B surface antigen in chronic carriers and hepatocellular carcinoma. Biochem Biophys Commun 1999; 262: 757-761.

6. Olerup O, Zetterqvist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992; 39: 225-235.

7. Olerup O, Aldener A, Fogdell A. HLA-DRB1 and DQA1 typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours. Tissue Antigens 1993; 41: 119-134.

8. Jiang YG, Li QF, Mao Q, Wang YM. Primary human fetal hepatocytes with HBV infection in vitro. Shijie Huaner Xiuha 2000; 8: 403-405.

9. Sing G, Butterworth L, Chen X, Bryant A, Cooksey G. Composition of peripheral blood lymphocyte populations during different stages of chronic infection with hepatitis B virus. J Viral Hepat 1998; 5: 83-93.

10. Cao T, Meuleman P, Desombere I, Sallberg M, Leroux-Roels G. In vivo inhibition of anti-hepatitis B virus core antibody (HBcAb) immunoglobulin G production by HBcAg-specific CD4(+) Th1-type T-cell clones in a hu-PBL-NOD/SCID mouse model. J Viral Ther 2001; 7: 1149-1156.

11. Du YP, Deng CS, Lu DY, Huang MF, Guo SF, Hou W. The relation between HLA-DQA1 genes and genetic susceptibility to duodenal ulcer in Wuhan Han. World J Gastroenterol 2000; 6: 107-110.

12. Ding HL, Cheng H, Fu ZZ, Deng QL, Yan T. The relationship of IL2 and DR3 genes with susceptibility to type 1 diabetes mellitus in south China Han population. World J Gastroenterol 2000; 6: 113-124.

13. Lin J, Deng CS, Sun J, Zheng XG, Huang X, Zhou Y, Xiong P, Wang YP. HLA-DRB1 allele polymorphisms in genetic susceptibility to esophageal carcinoma. World J Gastroenterol 2003; 9: 412-416.

14. Pu J, Yang XS, Zhang YL, Pan LJ, Zhou DY. Expression of HLA-DR in epithelium around lympholymphocite of human gastrointestinal mucosa. Shijie Huaner Xiuha Zahi 2000; 8: 706-707.

15. Zhai SH, Liu JB, Zhu P, Wang YH, CDS4, CD80, CD86 and HLA-ABC expressions in liver cirrhosis and hepatocarcinoma. Shijie Huaner Xiuha Zahi 2000; 8: 292-295.

16. Qu S, Li QF, Deng YZ, Zhang J. Cloning and expression of HLA-B7 gene. World J Gastroenterol 1999; 5: 345-348.

17. Asti M, Martinetti M, Zavaglia C, Cuccia MC, Gubser I, Tinelli C, Cividini A, Bruno S, Salvanesci L, Ideo G, Mondelli MU, Silini EM. Human leukocyte antigen class II and III alleles and severity of hepatitis C virus-related chronic liver disease. Hepatology 1999; 29: 1272-1279.

18. Barrett S, Ryan E, Crowe J. Association of the HLA-DRB1*01 allele with spontaneous viral clearance in an Irish cohort infected with hepatitis C virus via contaminated anti-D immunoglobulin. J Hepatol 1999; 30: 979-983.

19. Lechmann M, Schneider EM, Giers G, Kaiser R, Dumoulin FL, Sauerbruch T, Spengler U. Increased frequency of the HLA-DR15 (B1*1501) allele in German patients with self-limited hepatitis C virus infection. Eur J Clin Invest 1999; 29: 337-343.

20. Mangia A, Gentile R, Cascavilla I, Margaglione M, Villani MR, Stella F, Modola G, Agostiano V, Gaudiano C, Andriulli A. HLA class II favors clearance of HCV infection and progression of the chronic liver damage. J Hepatol 1999; 30: 984-989.

21. Chang KM, Gruener NH, Southwood S, Sidney J, Pape GR, Chisari FV, Sette A. Identification of HLA-A3- and -B7-restricted CTL response to hepatitis C virus in patients with acute and chronic hepatitis C. J Immunol 1999; 162: 1156-1164.

22. Aalenon L, Partenen J, Auvinen E, Rihkanen H, Vaheri A. HLA-DR alleles and human papillomavirus DNA in adult-onset laryngeal papillomatosis. J Infect Dis 1999; 179: 682-685.

23. Harcourt G, Hellier S, Bunce M, Satsangi J, Collier J, Chapman R, Phillips R, Kieraner P. Effect of HLA class II genotype on T helper lymphocyte responses and viral control in hepatitis C virus infection. J Viral Hepat 2001; 8: 174-179.

24. Zhou HC, Xu DZ, Wang XP, Zhang JX, Huang Y, Yan YP, Zhu J, Yin BQ. Identification of the epitopes on HCV core protein recognized by HLA-A2-restricted cytotoxic T lymphocytes. World J Gastroenterol 2001; 7: 583-586.

25. Ma X, Qiu DK. Relationship between autoimmune hepatitis and HLA-DR4 and DRB2 alphaic sequences in the third hypervariable region in Chinese. World J Gastroenterol 2003; 7: 727-731.

26. Godkin A, Jaegust N, Thurus M, Openpaws P, Thomas H. Characterization of novel HLA-DR1-restricted HCV epitopes reveals both qualitative and quantitative differences in HCV-specific CD4+ T cell responses in chronically infected and non-viremic patients. Eur J Immunol 2001; 31: 1428-1446.

27. Bosi I, Ancora G, Mantovani W, Miniero R, Verucchi G, Attard L, Venturi V, Papa I, Sandri F, Dallacasa P, Salvioi GP, HLA DR13 and HCV vertical infection. Pediatr Res 2002; 51: 746-749.

28. Hue S, Cacoub P, Renou C, Haffon P, Thibault V, Charlotte F, Picon M, Rifflet H, Piette JC, Pol S, Callat-Zucman S. Human leukocyte antigen class II alleles may contribute to the severity of hepatitis C virus-related liver disease. J Infect Dis 2002; 186: 106-109.

29. Mc Dermott AB, Cohen SB, Zuckerman JN, Madrigal JA. Human leukocyte antigens influence the immune response to a presF5 hepatitis B vaccine. Vaccine 1999; 17: 330-339.

30. Mc Dermott AB, Madrigal JA, Sabin CA, Zuckerman JN, Cohen SB. The influence of host factors and immunogenetics on lymphocyte responses to Hepagene vaccination. Vaccine 1999; 17: 1329-1337.

31. Wang FS, Xing LH, Liu MX, Zhu CL, Liu HG, Wang HF, Lei ZY. Dysfunction of peripheral blood dendritic cells from patients with chronic hepatitis B virus infection. World J Gastroenterol 2001; 7: 537-541.

32. Sobo Y, Sugi K, Tomiyama H, Saito S, Fujiyama S, Morimoto M, Hasuike S, Tsuobuchi H, Tanaka K, Takiguchi M. Identification of hepatitis B virus-specific CTL epitopes presented by HLA-A*2402, the most common HLA class I allele in East Asia. J Hepatol 2001; 34: 922-929.

33. Thimme R, Chang KM, Pemberton J, Sett A, Chisari FV. De-
generate immunogenicity of an HLA-A2-restricted hepatitis B virus nucleocapsid cytotoxic T-lymphocyte epitope that is also presented by HLA-B51. J Virol 2001; 75: 3984-3987

34 Pellegris G, Ravagnani F, Notti P, Fissi S, Lombardo C. B and C hepatitis viruses, HLA-DQ1 and -DR3 alleles and autoimmunity in patients with hepatocellular carcinoma. J Hepatol 2002; 36: 521-526

35 Desombere I, Gijbels Y, Verwulgen A, Leroux-Roels G. Characterization of the T cell recognition of hepatitis B surface antigen (HBsAg) by good and poor responders to hepatitis B vaccines. Clin Exp Immunol 2000; 122: 390-399

36 Chen DF, Kliem V, Endres W, Brunkhorst R, Tillmann HL, Koch KM, Manns MP, Stangel W. Relationship between human leukocyte antigen determinants and courses of hepatitis B virus infection in Caucasian patients with end-stage renal disease. Scand J Gastroenterol 1996; 31: 1211-1215

37 Thio CL, Carrington M, Marti D, O’ Brien SJ, Vlahov D, Nelson KE, Astremborski J, Thomas DL. Class II HLA alleles and hepatitis B virus persistence in African Americans. J Infect Dis 1999; 179: 1004-1006

38 Shen JJ, Ji Y, Gu XL, Huang RJ, Sun YP. The association of HLA-DRB1*10 with chronic hepatitis B in Chinese patients. Zhonghua Weshengwxue He Mianiyixue Zazhi 1999; 19: 58-59

39 Cotrina M, Buti M, Jardi R, Rodriguez-Frias F, Campins M, Esteban R, Guardia J. Study of HLA-II antigens in chronic hepatitis C and B and in acute hepatitis B. Gastroenterol Hepatol 1997; 20: 115-118

40 Diepolder HM, Jung MC, Keller E, Schraut W, Gerlach JT, Gruner N, Zachoval R, Hoffmann RM, Schirren CA, Scholz S, Pape GR. A vigorous virus-specific CD4+ T cell response may contribute to the association of HLA-DR13 with viral clearance in hepatitis B. Clin Exp Immunol 1996; 113: 244-251

Edited by Wang XL