Nano-structural effects on Hematite (α-Fe$_2$O$_3$) Nanoparticle Radiofrequency Heating

Supplemental Information

Camilah D. Powell, Amanda W. Lounsbury, Zachary S. Fishman, Christian L. Coonrod, Miranda J. Gallagher, Dino Villagran, Julie B. Zimmerman, Lisa D. Pfefferle, Michael S. Wong

Sample Names	Avg. Size (nm)
nanorods	31
nanosheets	9
nanodiamonds	15
nanospheres	21
rugby balls	23

Table S2: Crystallinity of the Hematite Particles

Sample	Crystallinity
nanorods	Polycrystalline2
nanosheets	Polycrystalline2
nanodiamonds	Single crystal1
nanosphere	Polycrystalline1
rugby balls	Polycrystalline1
Figure S1: Particle size histograms of α-Fe$_2$O$_3$ nanomaterials.

Figure S2: SEM image of the nanosheet morphology, scale bar: 1 μm.
Figure S3: Magnetization curves at 300K from 0 kOe to 50 kOe for the hematite nanorods (grey squares), nanosheets (green asterisks), nanodiamonds (yellow diamonds), nanospheres (blue spheres), and rugby balls (red triangles) shaped particles.

Figure S4: SAR values for the hematite solutions of varying concentrations; 4 mg/mL (red diagonal stripes) and 1 mg/mL (solid grey).
1 A. W. Lounsbury, R. Wang, D. L. Plata, N. Billmyer, C. Muhich, K. Kanie, T. Sugimoto, D. Peak and J. B. Zimmerman, *J. Colloid Interface Sci.*, 2019, **537**, 465–474.

2 Z. S. Fishman, Y. He, K. R. Yang, A. W. Lounsbury, J. Zhu, T. M. Tran, J. B. Zimmerman, V. S. Batista and L. D. Pfefferle, *Nanoscale*, 2017, **9**, 12984–12995.

3 S. Tong, C. A. Quinto, L. Zhang, P. Mohindra and G. Bao, *ACS Nano*, 2017, **11**, 6808–6816.