Graphs with no 7-wheel subdivision

Rebecca Robinson and Graham Farr
Clayton School of Information Technology
Monash University
Clayton, Victoria, 3800
Australia
Rebecca.Robinson@monash.edu
Graham.Farr@monash.edu
June 13, 2012; amended 17 Dec 2013

Abstract

The subgraph homeomorphism problem, SHP(H), has been shown to be polynomial-time solvable for any fixed pattern graph H, but practical algorithms have been developed only for a few specific pattern graphs. Among these are the wheels with four, five, and six spokes. This paper examines the subgraph homeomorphism problem where the pattern graph is a wheel with seven spokes, and gives a result that describes graphs with no W_7-subdivision, showing how they can be built up, using certain operations, from smaller ’pieces’ that meet certain conditions. We also discuss algorithmic aspects of the problem.

1 Introduction

A graph G is said to be a subdivision of a graph H if a graph isomorphic to H can be obtained from G by performing a series of edge-contractions on G where the contractions are limited to edges with at least one endvertex of degree exactly 2. In such a situation, G is often referred to as an H-subdivision. A particularly important application of this concept is found in Kuratowski’s famous theorem characterizing planarity, which tells us that a graph is non-planar if and only if it contains either a K_5-subdivision or a K_{3,3}-subdivision [10].

Characterizations of graphs containing no subdivisions of a particular fixed graph (which we call the pattern graph) H are few and far between. Some notable examples are where the pattern graph is K_4 [3, 5], K_{3,3} [9], W_4 [6], W_5 [6], and W_6 [13], where W_k denotes the wheel with k spokes.

The algorithmic problem of determining whether or not some graph contains a subdivision of a particular pattern graph is known as the subgraph homeomorphism problem, or topological containment:

\text{SUBGRAPH HOMEOMORPHISM (H) (abbreviated SHP(H))}

Instance: Graph G.
Question: Does G contain a subdivision of H?

Provided the pattern graph H is fixed, it is known from general results of Robertson and Seymour that SHP(H) can be solved in polynomial time for any H [11],
recently improved in [7, 8] to establish fixed-parameter tractability, using elements of the Robertson-Seymour approach). However, precise characterizations are only known for a handful of pattern graphs, including those listed above. The difficulty of finding a complete characterization increases very rapidly as the size of H increases, hence few characterizations are known. A more complete review of previous research in this area can be found in [13].

This paper builds on the results of [6] and [13] to give a result pertaining to graphs that do not contain a subdivision of W_7, the wheel with seven spokes. The result gives a characterization for such graphs, provided they have ‘pieces’ of a particular bounded size (this is defined below in more detail), and leads to an efficient algorithm for solving SHP(W_7).

The main result of this paper is Theorem 18 which characterizes (up to bounded size pieces) graphs that do not contain subdivisions of W_7. The proof is constructed in a similar way to the proofs of the main theorems in [13] and [6], which characterize graphs with no subdivisions of W_6 and W_5 respectively. The proof of Theorem 18 begins by showing that for some graph G that meets the conditions of the hypothesis, there must exist some W_6-subdivision H centred on a specific vertex v_0 of degree ≥ 7. It is then observed that some neighbour u of v_0 exists such that u is not a neighbour of v_0 in H, and that, since G is 3-connected, there must be two disjoint paths in G from u to H that do not meet v_0. The proof examines all possible placings of these paths, and shows that each resulting graph must contain a W_7-subdivision, if it is to satisfy the conditions of the Theorem. As in [13], parts of proofs in this paper requiring exhaustive case analysis depend on results generated by a program written in C. This program automates the construction of the small graphs arising as cases in the proof, and tests each graph for the presence of a W_7-subdivision. The complete code for the program can be found online at http://www.csse.monash.edu.au/~rebeccar/wheelcode.html. For further discussion of this program and the algorithms used, see [12].

While the proof of Theorem 18 uses the same overall method as the main theorems of [13] and [6], a key difference is that in this theorem, one of the conditions of the hypothesis is a minimum bound on $|V(G)|$. This has certain implications in designing an algorithm (given in Section 9) which solves SHP(W_7) for any given input graph, the steps of which follow from each of the restrictions placed on G in Theorem 18. One of the steps in this algorithm involves exhaustive search, for a W_7-subdivision, in ‘pieces’ of the graph that are of bounded size (where the maximum bound of each such ‘piece’ is less than the minimum bound of $|V(G)|$ in Theorem 18). By contrast, the theorem for W_6 in [13] describes completely the structure of a graph with no W_6-subdivisions, and as such the corresponding algorithm for solving SHP(W_6) does not require an exhaustive search for W_6-subdivisions at any point.

This paper begins by presenting some definitions of terms used throughout. We then give a short section stating two simple but important lemmas which are proved in [13], but also used frequently in this paper. Sections 4 and 5 define various types of reductions and separating sets respectively, each of which is forbidden in a graph meeting the conditions of the main theorem, Theorem 18. With each such definition a corresponding theorem is given, proving that a certain operation can be performed on some input graph G (either performing a reduction, or dividing the input graph into components along the given separating set) without altering the existence or otherwise of a W_7-subdivision in G.

In Section 6, we give some results on graphs with no 6-wheel subdivisions, building on the main result of [13]. The final theorem in this section (Theorem 17) gives the important result that any graph G meeting the conditions of Theorem 18 must contain a W_6-subdivision centred on any given vertex v_0 of degree ≥ 7 in G. This result is key
to proving Theorem 18. Section 7 gives some further lemmas which support the main result, then Section 8 contains the main theorem of the paper, Theorem 18, and its proof. An algorithm which solves SHP(W_7) follows from this result: this is given in Section 9. Finally, some concluding remarks are given suggesting further work in this area.

2 Definitions

If G is a graph, and E' is a set of edges in G, then $G - E'$ denotes the graph obtained from G after the removal of all the edges of E'.

If X is a set of vertices in graph G, then $G - X$ denotes the graph obtained from G after the removal of all the vertices of X.

A separating set S in a graph G is a set of vertices in G whose removal disconnects G.

The neighbourhood $N_G(v)$ of a vertex v in G is the set of vertices which are adjacent to v in G.

An internal 3-edge-cutset in a graph G is a set E' of at most three edges of G such that $G - E'$ is disconnected with each component having at least two vertices.

An internal 4-edge cutset in a graph G is a set E' of four edges of G such that $G - E'$ is disconnected with each component having at least three vertices, and exactly two edges in E' share an endpoint.

Given a path P where $x, y \in V(P)$, then $xP y$ denotes the subpath of P between x and y, including x and y.

If W is a set of vertices in graph G, then $G|W$ denotes the set of all maximal subsets U of $V(G)$ such that any two vertices of U are joined by a path in G with no internal vertex in W. Each element of $G|W$ is referred to as a bridge of $G|W$.

The centre of a wheel subdivision W_n is the vertex of degree n in that wheel subdivision. The rim of a wheel subdivision W_n is the cycle around the outside of that wheel subdivision (excluding the centre). The spoke-meets-rim vertices of a wheel subdivision W_n are the n vertices of degree 3 in that wheel subdivision. The spokes of a wheel subdivision W_n are the n paths from the centre vertex to the spoke-meets-rim vertices in that wheel subdivision.

If G is a graph, and S is a set of vertices such that $S \in V(G)$, then $\langle S \rangle$ is the subgraph induced by S.

$X \setminus S$ denotes the set-theoretic difference of X and S.

$X - v$ is equivalent to $X \setminus \{v\}$.

$H \cap X$ is equivalent to $H \cap \langle X \rangle$.

3 Two important lemmas

The proofs of the following two lemmas, Lemma 1 and Lemma 2, are given in [13]. These lemmas are used many times throughout the paper to support the proofs of other lemmas and theorems.

Lemma 1. Let G be a 3-connected graph containing a separating set S such that $|S| = 3$. Let X be some bridge of $G|S$ which contains at least two vertices not in S. Suppose there are at least four edges joining the vertices in S to the vertices in $X \setminus S$, and suppose there is some vertex $x \in S$ which has at least two neighbours y and z in $X \setminus S$. Then there exists:

- a path P in $\langle X \rangle$ such that P has only its endpoints in S but does not meet x; and
• two paths Q_1 and Q_2 and two vertices q_1 and q_2 such that q_1 and q_2 are two distinct vertices on P, and Q_1 and Q_2 are paths from x to q_1 and x to q_2 respectively, which meet only at x, and which contain no other vertex of P.

Lemma 2. Let G be a 3-connected graph containing a separating set S such that $|S| = 3$. Let X be some bridge of $G \setminus S$. Suppose there is some vertex $x \in S$ which has three neighbours w, y and z in $X \setminus S$. Then there exists:

• a path P in $⟨X⟩$ such that P has only its endpoints in S, but does not meet x; and

• three paths Q_1, Q_2 and Q_3 and three vertices q_1, q_2 and q_3, such that q_1, q_2 and q_3 are distinct vertices on path P, and Q_1, Q_2 and Q_3 are paths from x to q_1, x to q_2 and x to q_3 respectively, that are pairwise vertex-disjoint except at x.

4 Reductions

Each reduction defined in this section is forbidden in a graph that meets the conditions of the main theorem, Theorem 18. For each reduction given, we prove that performing that reduction on G will not alter the presence or otherwise of a W_k-subdivision in G, for some bounded value of k. This means that each of the reductions are useful in creating an algorithm to solve SHP(W_k), since they can be performed in polynomial time on the input graph, thus reducing the size of the graph, and modifying it to help meet the conditions of Theorem 18.

Note that Reductions 1 and 2 are generalizations of Reductions 1 and 2 in [13].

Reduction 1. Let G be a 3-connected graph containing a set $S = \{u, v, w\}$ of vertices. Suppose there are at least three bridges X, Y, Z of $G \setminus S$, such that each of the bridges Y and Z contains a subdivision of X. Suppose that v and w are either adjacent or joined by a path in some fourth bridge A of $G \setminus S$. Call this path (or edge) P_w. Suppose also that v and u are either adjacent or joined by a path in some bridge B of $G \setminus S$ other than X, Y, Z or A (if A exists). Call this path (or edge) P_u.

Form G' from G by removing $X \setminus S$ and adding a single edge from u to w, if such an edge does not already exist.

Theorem 1. Let G be some 3-connected graph on which Reduction 1 can be performed. Let G' be the resulting graph after Reduction 1 has been performed on G. Then G contains a W_k-subdivision if and only if G' contains a W_k-subdivision, where $k \geq 4$.

Proof. It is obvious that if G' contains a W_k-subdivision, then G will also, since G contains a subdivision of G'.

Assume then that G contains a W_k-subdivision, H. The centre of H must either be in $G - X$, in S, or in $X \setminus S$.

Let us consider these three possibilities.

(a) The centre of H is in $G - X$. Without loss of generality, assume that $⟨Y \setminus S⟩$ contains the centre of H.

Suppose firstly that H is contained in two bridges of $G \setminus S$ (that is, Y and some other bridge). If X is not one of these two bridges, then removing $X \setminus S$ will have no effect on the existence of the W_k-subdivision. If, however, part of H is in $⟨X \setminus S⟩$, then another W_k-subdivision which does not pass through $⟨X \setminus S⟩$ can be formed using parts of $⟨Z \setminus S⟩$, since Z contains a subdivision of a structure isomorphic to X. Thus, $X \setminus S$ can again be removed from the graph without altering the existence or otherwise of a W_k-subdivision.
Suppose now that H is contained in at least three bridges of $G|S$ (that is, Y and at least two other bridges). Assume without loss of generality that one of these bridges is Z. If X is not another of the three bridges, then again, the removal of $X \setminus S$ will have no effect on the existence of H. Suppose then that $\langle X \setminus S \rangle$ is used in forming H. All spoke-meets-rim vertices in H must be contained in Y in this situation. Thus $X \setminus S$ and $Z \setminus S$ can only contain vertices of degree 2 in H, and no bridge of $G|S$ other than X, Y, and Z can contain any part of H at all (except for vertices of S). Thus the part of $\langle X \setminus S \rangle$ used in G to form H can be replaced by one of P_w, P_u, or uw in G'.

(b) The centre of H is in S. There are two possibilities:

(b)(i) Vertex v forms the centre of H.

In this case, the rim of H must be contained in at most two of the bridges of $G|S$. Assume without loss of generality that neither of these two bridges are A or B. If the rim does not pass through $\langle X \setminus S \rangle$, then $X \setminus S$ can only be used in H to form part of a spoke. However, any spoke passing through $X \setminus S$ can be replaced either by P_w or P_u in G', so $X \setminus S$ is not necessary in forming a W_4-subdivision in G'.

Suppose now that the rim of H passes through $\langle X \setminus S \rangle$. Without loss of generality, assume the rim of H is contained in $\langle X \cup Y \rangle$. Then the remaining bridges of $G|S$ can only be used to form (at most two) spokes in H. If $\langle Z \setminus S \rangle$ is used to form any spokes in H, then instead use one or both of P_w and P_u to create the corresponding spokes in G'. Use $\langle Z \rangle$ in G' to replace that portion of H contained in $\langle X \rangle$ in G.

(b)(ii) Either w or u forms the centre of H (assume u without loss of generality).

Again, the rim of H must be contained in at most two of the bridges of $G|S$. Suppose firstly that the rim of H does not pass through $\langle X \setminus S \rangle$. Without loss of generality, assume that the rim is contained in $\langle Y \cup Z \rangle$. Again, if $X \setminus S$ is used in H, it must be to form part of a spoke, joining the rim of H either at vertex v or vertex w. This path can be replaced by one of uw or P_u in G'.

Suppose now that the rim of H does pass through $\langle X \setminus S \rangle$. Assume without loss of generality that the rim is contained in $\langle X \cup Y \rangle$. Again, the other bridges of $G|S$ can only be used to form spokes in H. If $\langle Z \setminus S \rangle$ is used to form any spokes in H, then instead use one or both of P_u and uw to create these spokes in G'. In any case, use $\langle Z \rangle$ in G' to replace that portion of H contained in $\langle X \rangle$ in G.

(c) The centre of H is in $X \setminus S$.

If H is entirely contained in X, then in G', either Y or Z can be used to create a W_4-subdivision, since each of these bridges contains a subdivision of X. Similarly, if H is contained in X and only one other bridge, then at least one of Y or Z can still be used to replace the parts of H contained in X in G.

Suppose then that H is contained in at least three bridges of $G|S$ (that is, X and at least two other bridges). If Y and Z are not two of these bridges, then at least one of Y or Z can be used to replace the parts of H contained in X in G. Assume then that the two of the bridges are Y and Z. All spoke-meets-rim vertices in H must be contained in X in this situation. Thus $Y \setminus S$ and $Z \setminus S$ can only contain vertices of degree 2 in H, and no bridge of $G|S$ other than X, Y, and Z can contain any part of H at all (except for vertices of S). In G', then, replace the part of $Y \setminus S$ used in G to form H with one of P_w, P_u, or uw, and instead use Y to form those parts of H contained in X in G.

Reductions 1A, 1B, and 1C, which follow, are special cases of Reduction 1, where the bridge to be removed from the graph is limited in size.
Reduction 1A

Let G be a 3-connected graph containing a set $S = \{u, v, w\}$ of vertices. Suppose there are at least three bridges X, Y, and Z of $G|S$, such that $X \setminus S$ contains a single vertex x. Suppose that v and w are either adjacent or joined by a path in some fourth bridge A of $G|S$. Call this path (or edge) P_w. Suppose also that v and u are either adjacent or joined by a path in some bridge B of $G|S$ other than X, Y, Z or A (if A exists). Call this path (or edge) P_u.

Form G' from G by removing vertex x and adding a single edge from u to w, as in Figure 1.

Reduction 1B

Let G be a 3-connected graph containing a set $S = \{u, v, w\}$ of vertices. Suppose there are at least three bridges X, Y, and Z of $G|S$, such that $X \setminus S$ contains exactly two vertices, and each of the bridges Y and Z contains a subdivision of X. Suppose that v and w are either adjacent or joined by a path in some fourth bridge A of $G|S$. Call this path (or edge) P_w. Suppose also that v and u are either adjacent or joined by a path in some bridge B of $G|S$ other than X, Y, Z or A (if A exists). Call this path (or edge) P_u.

Form G' from G by removing $X \setminus S$ and adding a single edge from u to w, if such an edge does not already exist.

Reduction 1C

Let G be a 3-connected graph containing a set $S = \{u, v, w\}$ of vertices. Suppose there are at least three bridges X, Y, and Z of $G|S$, such that $X \setminus S$ contains exactly three vertices, and each of the bridges Y and Z contains a subdivision of X. Suppose that v and w are either adjacent or joined by a path in some fourth bridge A of $G|S$. Call this path (or edge) P_w. Suppose also that v and u are either adjacent or joined by a path in some bridge B of $G|S$ other than X, Y, Z or A (if A exists). Call this path (or edge) P_u.

Form G' from G by removing $X \setminus S$ and adding a single edge from u to w, if such an edge does not already exist.
Reduction 2. Let \(G \) be a 3-connected graph containing a set \(S = \{ u, v, w \} \) of vertices such that both \(u \) and \(w \) have degree \(< k \), where \(k \geq 5 \). Suppose there are three bridges of \(G|S \), namely \(X, Y \) and \(Z \), such that each of the bridges \(Y \) and \(Z \) contains a subdivision of \(X \). Suppose that \(v \) and \(w \) are either adjacent or joined by a path in some fourth bridge \(A \) of \(G|S \). Call this path (or edge) \(P_w \).

Form \(G' \) from \(G \) by removing \(X \setminus S \) and adding a single edge from \(v \) to \(u \).

Theorem 2. Let \(G \) be a graph on which Reduction 2 can be performed. Let \(G' \) be the resulting graph after Reduction 2 has been performed on \(G \), with \(k \geq 5 \). Then \(G \) contains a \(W_k \)-subdivision if and only if \(G' \) contains a \(W_k \)-subdivision.

Proof. It is obvious that if \(G' \) contains a \(W_k \)-subdivision, then \(G \) will also, since \(G \) contains a subdivision of \(G' \).

Assume then that \(G \) contains a \(W_k \)-subdivision, \(H \). The centre of \(H \) must either be in \(G \setminus X \), in \(S \), or in \(X \setminus S \).

Consider the three possibilities.

(a) The centre of \(H \) is in \(G \setminus X \). Without loss of generality, assume that \(\langle Y \setminus S \rangle \) contains the centre of \(H \).

Suppose firstly that \(H \) is contained in at most two bridges of \(G|S \) (that is, \(Y \) and some other bridge). If \(X \) is not one of these two bridges, then removing \(X \setminus S \) will have no effect on the existence of the \(W_k \)-subdivision. If, however, part of \(H \) is in \(\langle X \setminus S \rangle \), then another \(W_k \)-subdivision which does not pass through \(\langle X \setminus S \rangle \) can be formed using parts of \(\langle Z \setminus S \rangle \), since \(Z \) contains a subdivision of a structure isomorphic to \(X \). Thus, \(X \setminus S \) can again be removed from the graph without altering the existence or otherwise of a \(W_k \)-subdivision.

Suppose now that \(H \) is contained in at least three bridges of \(G|S \) (that is, \(Y \) and at least two other bridges). Assume without loss of generality that one of these bridges is \(Z \). If \(X \) is not another of the three bridges, then again, the removal of \(X \setminus S \) will have no effect on the existence of \(H \). Suppose then that \(\langle X \setminus S \rangle \) is used in forming \(H \). All spoke-meets-rim vertices in \(H \) must be contained in \(Y \) in this situation. Thus \(X \setminus S \) and \(Z \setminus S \) can only contain vertices of degree 2 in \(H \), and no bridge of \(G|S \) other than \(X, Y \), and \(Z \) can contain any part of \(H \) at all (except for vertices of \(S \)). The part of \(\langle X \setminus S \rangle \) used in \(G \) to form \(H \) must be either a path from \(u \) to \(v \), from \(v \) to \(w \), or from \(u \) to \(w \). In the first two cases, this path can be replaced in \(G' \) by \(uv \) or \(P_w \) respectively. In the third case, observe that the part of \(\langle Z \setminus S \rangle \) used in \(G \) to form \(H \) must be either a path from \(u \) to \(v \) or from \(v \) to \(w \). This path, then, is replaced in \(G' \) by either \(uv \) or \(P_w \), and \(\langle Z \setminus S \rangle \) is instead used in \(G' \) to create the path from \(u \) to \(w \).

(b) The centre of \(H \) is in \(S \). Since vertices \(w \) and \(u \) each have degree \(< k \), \(H \) must be centred on \(v \).

In this case, the rim of \(H \) must be contained in at most two of the bridges of \(G|S \). Assume without loss of generality that neither of these two bridges are \(A \). If the rim does not pass through \(\langle X \setminus S \rangle \), then \(X \setminus S \) can only be used in \(H \) to form part of a spoke. However, any spoke passing through \(X \setminus S \) can be replaced either by \(P_w \) or \(uv \) in \(G' \), so \(X \setminus S \) is not necessary in forming a \(W_k \)-subdivision in \(G' \).

Suppose now that the rim of \(H \) passes through \(\langle X \setminus S \rangle \). Without loss of generality, assume the rim of \(H \) is contained in \(\langle X \cup Y \rangle \). Then the remaining bridges of \(G|S \) can only be used to form (at most two) spokes in \(H \).

If \(\langle Z \setminus S \rangle \) is used to form any spokes in \(H \), then instead use one or both of \(P_w \) and \(uv \) to create the corresponding spokes in \(G' \). Use \(\langle Z \rangle \) in \(G' \) to replace that portion of \(H \) contained in \(\langle X \rangle \) in \(G \).

(c) The centre of \(H \) is in \(X \setminus S \).

If \(H \) is entirely contained in \(X \), then in \(G' \), either \(Y \) or \(Z \) can be used to create a \(W_k \)-subdivision, since these bridges each contain a subdivision of \(X \). Similarly, if \(H \)
is contained in X and only one other bridge, then at least one of Y or Z can still be used to replace the parts of H contained in X in G.

Suppose then that H is contained in at least three bridges of $G\mid S$ (that is, X and at least two other bridges). If Y and Z are not two of these bridges, then at least one of Y or Z can be used to replace the parts of H contained in X in G. Assume then that two of the bridges are Y and Z. All spoke-meets-rim vertices in H must be contained in X in this situation. Thus $Y \setminus S$ and $Z \setminus S$ can only contain vertices of degree 2 in H, and no bridge of $G\mid S$ other than X, Y, and Z can contain any part of H at all (except for vertices of S). The part of $(Y \setminus S)$ used in G to form H must be either a path from u to v, from v to w, or from u to w. In the first two cases, this path can be replaced in G' by uv or P_w respectively, while Y can instead be used to form those parts of H contained in X in G. In the third case, that part of $(Z \setminus S)$ used in G to form H must be either a path from u to v or from v to w. Replace this path in G' by either uv or P_w, then use Z to form those parts of H contained in X in G.

Reduction 2A and Reduction 2B, which follow, are special cases of Reduction 2 where the bridge to be removed from the graph is limited in size.

Reduction 2A

Let G be a 3-connected graph containing a set $S = \{u, v, w\}$ of vertices such that both u and w have degree $< k$, where $k \geq 5$. Suppose there are three bridges of $G\mid S$, namely X, Y and Z, such that $X \setminus S$ contains a single vertex x. Suppose that v and w are either adjacent or joined by a path in some fourth bridge of $G\mid S$. Call this path (or edge) P_w.

![Figure 2: Reduction 2A: G and G'](#image)

Form G' from G by removing vertex x and adding a single edge from v to u, as in Figure 2.

Reduction 2B

Let G be a 3-connected graph containing a set $S = \{u, v, w\}$ of vertices such that both u and w have degree $< k$, where $k \geq 5$. Suppose there are three bridges of $G\mid S$, namely X, Y and Z, such that $X \setminus S$ contains exactly two vertices, and each of the bridges
Y and Z contains a subdivision of X. Suppose that v and w are either adjacent or joined by a path in some fourth bridge of G|S. Call this path (or edge) P_w.

Form G' from G by removing $X \setminus S$ and adding a single edge from v to u.

Reduction 3. Let k be some integer ≥ 7. Let G be a 3-connected graph containing a set $S = \{t, u, v, w\}$ of vertices, such that there exists some bridge X of G|S, where $|X| \leq k$, and $X \cap S = \{u, v, w\}$. Suppose that for each vertex $i \in \{u, v, w\}$, either i has degree $< k$, or every bridge of G|S contains at most one neighbour of i not in S. Suppose that v and u are adjacent, and that v and w are adjacent.

Form G' from G by removing $X \setminus S$ and adding an edge from w to u, if such an edge does not already exist (as in Figure 3).

![Figure 3: Reduction 3: G and G′](image_url)

Theorem 3. Let G be a graph on which Reduction 3 can be performed. Let G' be the resulting graph after Reduction 3 has been performed on G, with $k \geq 7$. Then G contains a W_k-subdivision if and only if G' contains a W_k-subdivision.

Proof. It is obvious that if G' contains a W_k-subdivision, then G will also, since G contains a subdivision of G'. Assume then that G contains a W_k-subdivision, H.

Since $|X| \leq k$, the maximum degree of any vertex in $X \setminus S$ is $k - 1$. Therefore, the centre of H cannot be in $X \setminus S$.

Suppose H is centred on some vertex $v_0 \in \{u, v, w\}$. Since v_0 must then have degree $\geq k$, each bridge of G|S must contain at most one neighbour of v_0 not in S, by the hypothesis of the theorem. Since there are only three vertices in S other than v_0, the rim can pass through S at most three times, and thus can be contained in at most three bridges of G|S. Since S can contain at most three spoke-meets-rim vertices of H, and each of the three bridges containing parts of H can have at most one neighbour of v_0 not in S, H can have at most 6 spokes. This is a contradiction, since $k \geq 7$. Therefore, the centre of H cannot be in $\{u, v, w\}$.

Suppose then that the centre of H is in $G - X$. If $(X \setminus S)$ does not contain part of H, then removing $X \setminus S$ will have no effect on the existence of the W_k-subdivision. Suppose then that part of H is contained in $(X \setminus S)$.
Suppose firstly that $\langle X \setminus S \rangle$ contains only a single path belonging to H. Call this path Q. If Q runs from u to w, then replace Q with the edge uw in G'. If Q runs from u to v, then the edge uv cannot be used as part of H in G. Thus, use uv to replace Q in G'. If Q runs from u to v, then the edge uv cannot be used as part of H in G'. Thus, use uv to replace Q in G'. Similarly, replace Q with the edge vw in G' if Q runs from v to w.

Suppose then that $X \setminus S$ contains spoke-meets-rim vertices belonging to H. Since the centre of H is not in X, $X \setminus S$ can contain only one spoke-meets-rim vertex of H. Two of the vertices in $\{u, v, w\}$ must then lie on the rim of H, while the third lies on a spoke. Thus, neither uv nor vw can be used to form part of H in G. Use two of uv, vw, and uw, then, to form the required paths in G', so that the vertex in $\{u, v, w\}$ that was previously on a spoke of H now forms the required spoke-meets-rim vertex.

Thus, Reduction 3 can be performed on G without altering the existence or otherwise of a W_k-subdivision.

Reduction 4. Let k be some integer ≥ 7. Let G be a 3-connected graph containing a set $S = \{t, u, v, w\}$ of vertices, such that there exist at least four bridges of $G|S$: W, X, Y, and Z. Suppose that each of these four bridges contains all vertices of S. Suppose that either:

(i) $|X| \leq k$; or
(ii) $|X| = k + 1$, and there are exactly four edges joining S to $X \setminus S$.

Suppose that for each vertex $i \in S$, either i has degree $< k$, or every bridge of $G|S$ contains at most one neighbour of i not in S. Suppose that v and w are either adjacent or joined by a path in some fifth bridge A of $G|S$. Call this path (or edge) P_w. Suppose also that v and u are either adjacent or joined by a path in some bridge B of $G|S$ other than W, X, Y, Z or A (if A exists). Call this path (or edge) P_u. Suppose also that v and t are either adjacent or joined by a path in some bridge C of $G|S$ other than W, X, Y, Z, A, or B (if A and B exist). Call this path (or edge) P_t.

Form G' from G by removing $X \setminus S$, as in Figure 4.

\[\text{Figure 4: Reduction 4: } G \text{ and } G'\]

Theorem 4. Let G be a graph on which Reduction 4 can be performed. Let G' be the resulting graph after Reduction 4 has been performed on G, with $k \geq 7$. Then G contains a W_k-subdivision if and only if G' contains a W_k-subdivision.
Proof. It is obvious that if G' contains a W_k-subdivision, then G will also, since G contains a subdivision of G'.

Assume then that G contains a W_k-subdivision, H.

By the same reasoning used in Theorem 3 for Reduction 3, H cannot be centred in S.

Suppose that H is centred in $X \setminus S$. Thus, there exists some vertex v_0 in $X \setminus S$ with degree ≥ 7. G must then fall into case (ii) as described in the definition of Reduction 4 where $|X| = k + 1$, and there are exactly four edges joining S to $X \setminus S$. Since there are exactly k vertices in $X - v_0$, v_0 must be adjacent to every vertex in $X - v_0$. Therefore, each of the four edges joining X to $X \setminus S$ has v_0 as an endpoint. The removal of v_0 will disconnect $X \setminus (S \cup \{v_0\})$ from the rest of the graph, then, thus violating 3-connectivity.

Suppose then that the centre of H is in $G - X$. Let U be the bridge of $G|S$ containing the centre of H. Note that U could be any one of W, Y, or Z, or some other bridge (other than X).

Since the rim of H can pass through S at most four times, H can be contained in the union of at most four bridges of $G|S$ (that is, U and at most three other bridges). If $X \setminus S$ does not contain part of H, then removing $X \setminus S$ will have no effect on the existence of the W_k-subdivision. Suppose then that part of H is contained in $X \setminus S$.

Suppose H is contained in exactly four bridges of $G|S$ (including X). Without loss of generality, assume these bridges are W, X, Y, and Z. Recall that U is one of the bridges of $G|S$ other than X, that is, $U \in \{W, Y, Z\}$. Assume without loss of generality that $U = W$ — in other words, H is centred in W. Apart from W, each of the bridges containing parts of H can contain only a single path belonging to H. In X, call this path Q. If v is an endpoint of Q, replace it with one of P_t, P_u, or P_w in G'. If not, then there exists some other bridge U' (where $U' \in \{Y, Z\}$) that contains only a single path Q' belonging to H, such that v is an endpoint of Q'. One of P_t, P_u, or P_w can be used to replace Q in G', leaving U' free. Parts of U' can then be used to replace Q in G, so that X is no longer required.

Suppose now that H is contained in at most three bridges of $G|S$. If the part of H contained in $X \setminus S$ is only a single path, it can be replaced as in the previous paragraph. Suppose then that X contains a single spoke-meets-rim vertex and the three paths meeting this vertex. Then, since at least one of W, Y, or Z is not used to form H in G, use this bridge in G' to form the parts of H previously contained in X.

Thus, Reduction 4 can be performed on G without altering the existence or otherwise of a W_k-subdivision.

Reduction 5. Let k be some integer ≥ 7. Let G be a 3-connected graph containing a set $S = \{t, u, v, w\}$ of vertices, such that there exist at least three bridges of $G|S$: X, Y, and Z. Suppose that $|X| \leq k$, and $X \cap S = \{u, v, w\}$, and that Y and Z also contain the vertices u, v, w. Suppose that for each vertex $i \in S$, either i has degree $< k$, or every bridge of $G|S$ contains at most one neighbour of i not in S. Suppose also that v and u are either adjacent, or joined by a path P_u in some fourth bridge A of $G|S$.

Form G' from G by removing $X \setminus S$ and adding an edge from v to w, if such an edge does not already exist (as in Figure 5).

Theorem 5. Let G be a graph on which Reduction 4 can be performed. Let G' be the resulting graph after Reduction 4 has been performed on G, with $k \geq 7$. Then G contains a W_k-subdivision if and only if G' contains a W_k-subdivision.

Proof. It is obvious that if G' contains a W_k-subdivision, then G will also, since G contains a subdivision of G'.
Assume then that G contains a W_k-subdivision, H.

Since $|X| \leq k$, the maximum degree of any vertex in $X \setminus S$ is $k - 1$. Therefore, the centre of H cannot be in $X \setminus S$.

Suppose H is centred on some vertex $v_0 \in S$. Since v_0 must have degree $\geq k$, each bridge of $G|S$ must contain at most one neighbour of v_0 not in S, by the hypothesis of the theorem. Since there are only three vertices in S other than v_0, the rim can pass through S at most three times, and thus can be contained in at most three bridges of $G|S$. Since S can contain at most three spoke-meets-rim vertices of H, and each of the three bridges containing parts of H can have at most one neighbour of v_0 not in S, H can have at most 6 spokes. This is a contradiction, since $k \geq 7$. Therefore, the centre of H cannot be in S.

Suppose then that the centre of H is in $Z \setminus S$. If $\langle X \setminus S \rangle$ does not contain part of H, then removing $X \setminus S$ will have no effect on the existence of the W_k-subdivision. Suppose then that part of H is contained in $\langle X \setminus S \rangle$.

1. Suppose firstly that $\langle X \setminus S \rangle$ contains only a single path belonging to H. Call this path Q.

Suppose Q runs from v to u. In this situation, H cannot contain P_u, since P_u would meet Q at both its endpoints. Thus, Q can be replaced with P_u in G'.

Suppose Q runs from v to w. Q can then be replaced with vw in G'.

Assume then that Q’s endpoints are u and w.

If $\langle Y \setminus S \rangle$ is not used to form any part of H, then replace Q in G' with some path in $\langle Y \rangle$. Suppose then that part of $\langle Y \setminus S \rangle$ is used to form part of H in G.

1.1. Suppose firstly that $Y \setminus S$ contains spoke-meets-rim vertices of H.

Since the centre of H is not in Y, and since two vertices in S are already used in H as endpoints of the path Q, $Y \setminus S$ can contain only a single spoke-meets-rim vertex of H (else it is routine to show that H cannot be a subdivision of W_k). Call this spoke-meets-rim vertex y. Recall that Q runs from u to w. Thus, $H \cap \langle Y \rangle$ must meet S at the vertices t, v, and some vertex x_1, where $x_1 \in \{u, w\}$. Let x_2 be the vertex in $\{u, w\}$ such that $x_1 \neq x_2$. There are three possibilities:

(i) tHy is part of a spoke of H, while x_1Hy and vHy are part of the rim;
(ii) x_1H_y is part of a spoke of H (and Q is part of the same spoke), while tHy and vHy are part of the rim; or

(iii) vHy is part of a spoke of H, while tHy and x_1H_y are part of the rim.

Suppose (i) is true. If Q also forms part of the rim of H, then Q and $H \cap \langle Y \rangle$ can be replaced in G' with a path P_t in $\langle Y \rangle$ from t to x_2, a path in $\langle Y \rangle$ from x_1 to an internal vertex y_1 of P_t, and either the path P_u (if $x_1 = u$), or the edge vw (if $x_1 = w$). The part of H’s rim previously formed by x_1H_y, vHy, and Q is now formed by x_2P_{t,y_1}, the path from x_1 to y_1, and either P_u or vw. If Q forms part of a spoke of H, then Q and $H \cap \langle Y \rangle$ can be replaced in G' with a path P_t in $\langle Y \rangle$ from t to x_2, a path in $\langle Y \rangle$ from x_1 to an internal vertex y_1 of P_t, and either the edge vw (if $x_1 = u$), or the path P_u (if $x_1 = w$). In both cases, the part of spoke previously formed by tHy is now formed by tP_{t,y_1}.

If (ii) is true, Q and $H \cap \langle Y \rangle$ can be replaced in G' with a path P_t in $\langle Y \rangle$ from t to x_2, and either the edge vw or the path P_u. Then the part of H’s rim previously formed by tHy and vHy is now formed by P_t and either vw or P_u. The part of spoke that was formed by Q and x_1H_y is no longer needed, as the rim now meets x_2, making x_2 a spoke-meets-rim vertex where previously it was not.

Suppose (iii) is true. If Q also forms part of the rim of H, then Q and vHy can be replaced in G' with the path P_u and the edge vw. The part of H’s rim previously formed by Q is now formed by P_u and vw (note that the paths tHy and x_1H_y are still used). The part of spoke previously formed by vHy is no longer needed, as v is now a spoke-meets-rim vertex. If Q forms part of a spoke of H, then Q and $H \cap \langle Y \rangle$ can be replaced in G' with the path P_u, the edge vw, and a path in $\langle Y \rangle$ from t to x_2. The parts of spokes previously formed by vHy and Q are no longer needed, as v and x_2 are now spoke-meets-rim vertices.

1.2. Assume now that $\langle Y \setminus S \rangle$ contains only a single path belonging to H. Call this path R.

Since Q already forms a path from u to w, one of the following must hold:

(i) R has v as an endpoint; or

(ii) R forms a path from x to t, where $x \in \{u, w\}$.

Suppose (i) holds. If R runs from v to u, replace it with P_u in G'. If R runs from v to w, replace it with vw in G'. In each case, use part of $\langle Y \rangle$ to replace Q in G', so that $X \setminus S$ is no longer needed. If R runs from v to t, then regardless of whether Q and R form parts of spokes of H or of the rim of H, they can be replaced in G' either by the edge vw and a path in $\langle Y \setminus S \rangle$ from t to u, or by the path P_u and a path in $\langle Y \setminus S \rangle$ from t to w. Figure [6] illustrates some examples of different configurations that may occur in this case. Note that in some cases, parts of $H \cap \langle Z \rangle$ that were previously part of the rim of H may become part of a spoke in G', and vice versa.

Suppose then that (ii) holds. Replace Q in G' with a path P_R in $\langle Y \rangle$ that runs from R to w (if $x = u$), or R to u (if $x = w$). Let p be the endpoint of P_R that lies on R. If x is not a spoke-meets-rim vertex in H, then P_R also replaces the path xRp in G'. If x is a spoke-meets-rim vertex in H, then p replaces it as a spoke-meets-rim vertex in G'.

2. Suppose now that $X \setminus S$ contains spoke-meets-rim vertices belonging to H.

Since the centre of H is not in X, $X \setminus S$ can contain only one spoke-meets-rim vertex of H.

If v is not a spoke-meets-rim vertex in H, then replace $H \cap \langle X \rangle$ in G' with P_u and vw. Suppose then that v is a spoke-meets-rim vertex in G.

13
Figure 6: Theorem 5, Case 1.2: Replacing Q and R with different paths in G' when R runs from v to t.

If $\langle Y \setminus S \rangle$ is not used to form any part of H in G, then use part of $\langle Y \setminus S \rangle$ in G' to replace the part of H previously contained in $\langle X \setminus S \rangle$. Suppose then that part of $\langle Y \setminus S \rangle$ is used to form part of H in G. Only a single path belonging to H can be contained in $\langle Y \rangle$. Call this path Q. The path Q has t as one endpoint, and some vertex x as the other endpoint, where $x \in \{u, v, w\}$.

Suppose $x = v$. If Q forms part of a spoke of H, and the rim of H in $\langle X \rangle$ runs from u to v, then replace $H \cap \langle X \rangle$ in G' with the edge vw and a path in $\langle Y \rangle$ from Q to u. If Q forms part of a spoke of H, and the rim of H in $\langle X \rangle$ runs from v to w, then replace $H \cap \langle X \rangle$ in G' with the path P_u and a path in $\langle Y \rangle$ from Q to w. If Q forms part of the rim of H, and the rim of H in $\langle X \rangle$ runs from u to v, then replace $H \cap \langle X \rangle$ in G' with the path P_u and a path in $\langle Y \rangle$ from Q to w. If Q forms part of the rim of H, and the rim of H in $\langle X \rangle$ runs from v to w, then replace $H \cap \langle X \rangle$ in G' with the edge vw and a path in $\langle Y \rangle$ from Q to u.

Suppose then that $x \in \{u, w\}$. Let x_2 be the other vertex in $\{u, w\}$, such that $x \neq x_2$. If Q forms part of the rim of H, replace $H \cap \langle X \rangle$ in G' with a path in $\langle Y \rangle$ from Q to x_2, and either the path P_u (if $x = u$), or the edge vw (if $x = w$). If Q forms
part of a spoke of \(H \), replace \(Q \) and \(H \cap \langle X \rangle \) in \(G' \) with a path \(P_t \) in \(Y \) from \(t \) to \(x_2 \), and a path in \(Y \) from \(v \) to some internal vertex of \(P_t \).

Thus, if there exists a \(W_k \)-subdivision \(H \) in \(G \) that is centred in \(Z \setminus S \), then a \(W_k \)-subdivision also exists in \(G' \). If \(H \) is instead centred in \(Y \setminus S \), or in some other bridge of \(G|S \) (other than \(X \), which has already been dealt with), then essentially the same arguments used for the \(Z \setminus S \) case can be used to show that a \(W_k \)-subdivision can still be formed in \(G' \).

Thus, Reduction 6 can be performed on \(G \) without altering the existence or otherwise of a \(W_k \)-subdivision. \(\square \)

Reduction 6. Let \(k \) be some integer \(\geq 5 \). Let \(G \) be a 3-connected graph containing a separating set \(S = \{t, u, v, w\} \) of vertices. Suppose there exist at least three bridges of \(G|S \), \(X \), \(Y \), and \(Z \), such that \(X \cap S = \{u, v, w\} \), \(Y \cap S = \{u, v, w\} \), \(|X| \leq k \), and \(Z \) also contains \(\{u, v, w\} \). Suppose that for each vertex \(i \in \{u, v, w\} \), either \(i \) has degree \(< k \), or \(X \setminus S \) contains at most one neighbour of \(i \). Suppose that \(v \) and \(w \) are adjacent. Suppose also that \(v \) and \(u \) are either adjacent or joined by a path \(P_{u_1} \) in some bridge \(A \) of \(G|S \) other than \(X \), \(Y \), \(Z \), and by a path \(P_{u_2} \) in some bridge \(B \) of \(G|S \) other than \(X \), \(Y \), \(Z \), or \(A \).

Form \(G' \) from \(G \) by removing \(X \setminus S \) and adding a single edge from \(u \) to \(w \), if such an edge does not already exist.

Theorem 6. Let \(G \) be some 3-connected graph on which Reduction 6 can be performed. Let \(G' \) be the resulting graph after Reduction 6 has been performed on \(G \). Then \(G \) contains a \(W_k \)-subdivision if and only if \(G' \) contains a \(W_k \)-subdivision, where \(k \geq 5 \).

Proof. It is obvious that if \(G' \) contains a \(W_k \)-subdivision, then \(G \) will also, since \(G \) contains a subdivision of \(G' \).

Assume then that \(G \) contains a \(W_k \)-subdivision, \(H \).

Since \(|X| \leq k \), the maximum degree of any vertex in \(X \setminus S \) is \(k - 1 \). Therefore, the centre of \(H \) cannot be in \(X \setminus S \).

(a) Suppose \(H \) is centred on some vertex \(v_0 \in \{u, v, w\} \).

The rim of \(H \) can pass through at most three bridges of \(G|S \). Assume without loss of generality that \(B \) is not one of these bridges. If \(X \) is also not one of these bridges, then \(X \setminus S \) can only contain part or all of a single spoke of \(H \). This can be replaced in \(G' \) by one of \(P_{u_2} \), \(vw \), or \(uw \).

Suppose then that \(X \) contains part of the rim of \(H \). Since \(v_0 \) must then have degree \(\geq k \), \(v_0 \) can have at most one neighbour in \(X \setminus S \), by the hypothesis of the theorem. Thus, \(X \setminus S \) contains at most one spoke-meets-rim vertex of \(H \).

If \(Y \) also contains part of the rim of \(H \), then, since \(X \cap S = Y \cap S = \{u, v, w\} \) the rim of \(H \) must be entirely contained in \(\langle X \cup Y \rangle \). Thus, at most two other bridges can contain parts of \(H \): each of these bridges may contain a single spoke from \(v_0 \) to some vertex in \(\{u, v, w\} - v_0 \). Assume without loss of generality that \(B \) is not one of these bridges. Then these two spokes can be replaced in \(G' \) by two of \(P_{u_2}, vw \), and \(uw \).

Suppose then that \(Y \) does not contain part of the rim of \(H \). Then \(Y \) can only be used to form some spoke \(P \) in \(H \) from \(v_0 \) to some vertex in \(\{u, v, w\} - v_0 \). If \(P \) is a path from \(u \) to \(w \), replace \(P \) with \(uw \) in \(G' \). If \(P \) is a path from \(u \) to \(v \), replace \(P \) with \(P_{u_2} \) in \(G' \) (since it is assumed that \(B \) is not used to form any part of \(H \) in \(G \)). If \(P \) is a path from \(v \) to \(w \), then the edge \(vw \) cannot be used to form part of \(H \) in \(G \) — thus, use \(vw \) to replace \(P \) in \(G' \). The bridge \(Y \) can then be used in \(G' \) to replace the part of \(H \) formed by \(X \) in \(G \).

(b) Suppose then that \(H \) is centred in \(G - X \). Let \(U \) be the bridge of \(G|S \) containing the centre of \(H \).

The rim of \(H \) must be contained in \(U \) and at most three other bridges of \(G|S \).
Suppose the rim of H is contained in four bridges of $G|S$. Then no other bridge of $G|S$ can contain any part of H, since every spoke of H must be contained in (U). Thus, if the rim of H does not pass through $X \setminus S$, the removal of $X \setminus S$ will have no effect on the existence of H. Assume then that the rim of H passes through $X \setminus S$. Without loss of generality, assume that B is not one of the four bridges containing the rim of H. Then that part of the rim of H contained in (X) can be replaced in G' by one of P_{uw}, vw, or uw.

Suppose then that the rim of H is contained in at most three bridges of $G|S$. Without loss of generality, assume that B is not one of these bridges. Note that $(X \setminus S)$ can contain either a single path belonging to H, or a single spoke-meets-rim vertex of H and the three paths that meet this vertex. If the former is true, replace this path in G' with one of P_{uw}, vw, or uw. If the latter is true, replace these paths in G' with two of P_{uw}, vw, and uw, so that some vertex in $\{u, v, w\}$ becomes the spoke-meets-rim vertex previously contained in $X \setminus S$.

\[\Box\]

5 Separating sets

For each type of separating set S defined in this section, we prove a theorem. Each such theorem supposes the existence of some graph G containing such a set S, and forms two smaller graphs from G by performing the following steps:

(a) Divide G along S into two components G_1 and G_2.

(b) Add some small structure X to G_1 to form G'_1, where $|V(X)| < |V(G_2)|$.

(c) Add some small structure Y to G_2 to form G'_2, where $|V(Y)| < |V(G_1)|$.

It is then shown that if G contains a W_7-subdivision, then either G'_1 or G'_2 will also, and if G does not contain a W_7-subdivision, then neither G'_1 nor G'_2 will.

These theorems enable such separating sets to be used in an algorithm for SHP(W_7), in that the input graph G can be separated along any existing separating set of an appropriate type, and each resulting component then examined using a divide-and-conquer method. This method is also used in [6, 13] with internal 3-edge-cutsets and in [13] with internal 4-edge-cutsets, both of which are also used in the W_7 algorithm outlined here in Section 9. The types of separating sets defined in this section are more complex, however, and fall into two distinct categories: the edge-vertex-cutsets, of which there are eight different types; and the internal $\{1,1,1,1\}$-cutsets, which consists of four disjoint edges.

Definition

A type 1 edge-vertex-cutset in a graph G is a set $S = \{e_1, e_2, v\}$ of two edges e_1, e_2 of G and one vertex v of G such that $G - S$ is disconnected, with each component having at least four vertices.

Theorem 7. Let G be a 3-connected graph which contains a type 1 edge-vertex-cutset $S = \{e_1, e_2, v\}$. Let G_1, G_2 be the components of $G - S$. Let u_1, \ldots, u_i be the neighbours of v in G_1, and let v_1, \ldots, v_j be the neighbours of v in G_2.

Form G'_1 from G by replacing G_2 with the subgraph X, where:

- if $j < 3$, X contains only the vertices v_1, \ldots, v_j, all of which are made adjacent if they were not already, such that v_1 is an endpoint of e_1 and v_j is an endpoint of e_2;

- if $j = 3$, X contains v_1, v_2, v_3 and v_1 and v_3 are made adjacent if they were not already;

- if $j > 3$, X contains v_1, \ldots, v_j and v_1 and v_j are made adjacent if they were not already.

Then G'_1 contains a type 1 edge-vertex-cutset $S' = \{e_1, e_2, v\}$, where S' is a subset of S.
• if $j \geq 3$, X contains only the vertices v_1, v_2, v_3, such that v_1 is an endpoint of e_1, v_3 is an endpoint of e_2, and v_2 is adjacent to both v_1 and v_3.

Form G'_2 from G by replacing G_1 with the subgraph Y, where:

• if $i < 3$, Y contains only the vertices u_1, \ldots, u_i, all of which are made adjacent if they were not already, such that u_1 is an endpoint of e_1 and u_i is an endpoint of e_2;

• if $i \geq 3$, Y contains only the vertices u_1, u_2, u_3, such that u_1 is an endpoint of e_1, u_3 is an endpoint of e_2, and u_2 is adjacent to both u_1 and u_3.

Then G contains a W_7-subdivision if and only if at least one of G'_1 and G'_2 contains a W_7-subdivision.

Proof. (\Rightarrow) Suppose firstly that G contains a W_7-subdivision H.

If H is entirely contained in G_1 or G_2, then H will also be contained in G'_1 or G'_2 respectively. Suppose then that H contains parts of both G_1 and G_2.

Suppose firstly that H is centred in $G - v$. Without loss of generality, suppose H is centred in G_1. Then one of the following must be true:

(A) G_2 contains a single path of H;

(B) v forms a spoke-meets-rim vertex of H, and two separate paths of H enter G_2 at this vertex and leave G_2 via e_1 and e_2; or

(C) G_2 contains a single spoke-meets-rim vertex of H.

Each of the three possibilities can also be formed by X in G'_1. (If H is instead centred in G_2, then similarly H will also be contained in G'_2.)

Suppose now that H is centred on v. Since $|N_H(v)| = 7$, one of G_1, G_2 can contain at most three of the vertices in $N_H(v)$. Assume without loss of generality that this is G_2. Then, since G_2 can contain at most three spoke-meets-rim vertices of H, X can be used in G'_2 to replace the parts of H previously contained in G_2. (If instead G_1 contains no more than three vertices in $N_H(v)$, then the same argument applies to show that H is also contained in G'_1.)

Thus, whenever G contains a W_7-subdivision, at least one of G'_1 or G'_2 does also.

(\Leftarrow) Suppose now that either G'_1 or G'_2 contains a W_7-subdivision — assume G'_1 without loss of generality. If H is entirely contained in $G'_1 - X$, then H is also contained in G. Suppose then that H contains parts of X. One of the following must hold:
(a) X contains a single path of H;
(b) v forms a spoke-meets-rim vertex of H, and two separate paths of H enter X at this vertex and leave X via e_1 and e_2;
(c) X contains a single spoke-meets-rim vertex of H; or
(d) H is centred on v, and X contains two or three spoke-meets-rim vertices of H.

If (a), (b), or (c) hold, then by 3-connectivity of G, the required paths can be formed in G_2. If (d) holds, then by Lemma 1 or Lemma 2, the required structure can also be formed in G_2.

Thus, whenever G'_1 contains a W_7-subdivision, G does also. (By the same argument, whenever G'_2 contains a W_7-subdivision, G does also.)

Definition
A type 1a edge-vertex-cutset in a graph G is a set $S = \{e_1, e_2, v\}$ of two edges e_1, e_2 of G and one vertex v of G such that $G - S$ is disconnected, with each component having at least three vertices, and v has degree < 7.

Theorem 8. Let G be a 3-connected graph which contains a type 1a edge-vertex-cutset $S = \{e_1, e_2, v\}$. Let G_1, G_2 be the components of $G - S$. Let u_1, \ldots, u_i be the neighbours of v in G_1, and let v_1, \ldots, v_j be the neighbours of v in G_2.

Form G'_1 from G by replacing G_2 with the subgraph X, where X contains only the two adjacent vertices x_1, x_2, both of which are made adjacent to v, such that x_1 is an endpoint of e_1, and x_2 is an endpoint of e_2.

Form G'_2 from G by replacing G_1 with the subgraph Y, where Y contains only the two adjacent vertices y_1, y_2, both of which are adjacent to v, such that y_1 is an endpoint of e_1, and y_2 is an endpoint of e_2.

Then G contains a W_7-subdivision if and only if at least one of G'_1 and G'_2 contains a W_7-subdivision.

Proof. (\Rightarrow) Suppose firstly that G contains a W_7-subdivision H.

If H is entirely contained in G_1 or G_2, then H will also be contained in G'_1 or G'_2 respectively. Suppose then that H contains parts of both G_1 and G_2.

Since v has degree < 7, H must be centred in $G - v$. Without loss of generality, suppose H is centred in G_1. Then one of the following must be true:

(A) G_2 contains a single path of H;
(B) v forms a spoke-meets-rim vertex of H, and two separate paths of H enter G_2 at this vertex and leave G_2 via e_1 and e_2; or
(C) G_2 contains a single spoke-meets-rim vertex of H.

Each of the three possibilities can also be formed by X in G'_1. (If H is instead centred in G_2, then similarly H will also be contained in G'_2.)

Thus, whenever G contains a W_7-subdivision, at least one of G'_1 or G'_2 does also.

(\Leftarrow) Suppose now that either G'_1 or G'_2 contains a W_7-subdivision — assume G'_1 without loss of generality. If H is entirely contained in $G'_1 - X$, then H is also contained in G. Suppose then that H contains parts of X. One of the following must hold:

(a) X contains a single path of H;
(b) v forms a spoke-meets-rim vertex of H, and two separate paths of H enter X at this vertex and leave X via e_1 and e_2; or
(c) X contains a single spoke-meets-rim vertex of H.

By 3-connectivity of G, the required paths can be formed in G_2 for any of these three cases. Thus, whenever G'_1 contains a W_7-subdivision, G does also. (By the same argument, whenever G'_2 contains a W_7-subdivision, G does also.) □

Definition

A type 2 edge-vertex-cutset in a graph G is a set $S = \{e, v_1, v_2\}$ of two vertices v_1, v_2 of G and one edge e of G such that $G - S$ is disconnected, with each component having at least four vertices.

Theorem 9. Let G be a 3-connected graph with no type 1 edge-vertex-cutsets, but which contains a type 2 edge-vertex-cutset $S = \{e, v_1, v_2\}$. Let G_1, G_2 be the components of $G - S$.

Form G'_1 from G by replacing G_2 with the subgraph X, where:

(i) if v_1 and v_2 both have fewer than three neighbours in G_2, X contains two adjacent vertices, x_1 and x_2, each of which is adjacent to both v_1 and v_2, such that x_1 is an endpoint of e;

(ii) if both v_1 and v_2 have ≥ 3 neighbours in G_2, X contains three pairwise-adjacent vertices, x_1, x_2, x_3, each of which is adjacent to both v_1 and v_2, such that x_1 is an endpoint of e;

(iii) if only one of v_1 and v_2 has ≥ 3 neighbours in G_2, X is formed as in (ii), but with no edge between x_1 and the member of $\{v_1, v_2\}$ with fewer than three neighbours in G_2.

Form G'_2 from G by replacing G_1 with the subgraph Y in the same manner.

Then G contains a W_7-subdivision if and only if at least one of G'_1 and G'_2 contains a W_7-subdivision.

Proof. (\Rightarrow) Suppose firstly that G contains a W_7-subdivision H.

If H is entirely contained in G_1 or G_2, then H will also be contained in G'_1 or G'_2, respectively. Suppose then that H contains parts of both G_1 and G_2.

Suppose firstly that H is centred in $G_1 \setminus \{v_1, v_2\}$. Without loss of generality, suppose H is centred in G_1. Then one of the following must be true:

(A) G_2 contains a single path of H;

(B) one of v_1, v_2 forms a spoke-meets-rim vertex of H, and two separate paths of H enter G_2 at this vertex and leave G_2 via the other two members of S; or

(C) G_2 contains a single spoke-meets-rim vertex of H.

Each of the three possibilities can easily be formed by X in G'_1. (If H is instead centred in G_2, then similarly H will also be contained in G'_2.)

Suppose now that H is centred on either v_1 or v_2 — assume v_1 without loss of generality. By the same argument used in Theorem 7, some component $G_x \in \{G_1, G_2\}$ contains at most three members of $N_H(v_1)$, and thus contains at most three spoke-meets-rim vertices of H. Suppose $G_x = G_2$. If G_2 contains three spoke-meets-rim vertices of H, then G_2 must contain at least three neighbours of v_1, thus X is formed as in either case (ii) or (iii) of the hypothesis, and vertices x_1, x_2 and x_3 can be used to form the three spoke-meets-rim vertices previously contained in G_2. If G_2 contains
fewer than three spoke-meets-rim vertices of \(H \), then one or both of \(x_1 \) and \(x_2 \) can be used in \(X \) to form these spoke-meets-rim vertices.

If \(G_x = G_1 \), \(Y \) can be used in \(G'_1 \) in the same manner to replace the parts of \(H \) previously contained in \(G_1 \).

Thus, whenever \(G \) contains a \(W_7 \)-subdivision, at most one of \(G'_1 \) or \(G'_2 \) does also.

\((\Leftarrow)\) Suppose now that either \(G'_1 \) or \(G'_2 \) contains a \(W_7 \)-subdivision — assume \(G'_1 \) without loss of generality. If \(H \) is entirely contained in \(G'_1 - X \), then \(H \) is also contained in \(G \). Suppose then that \(H \) contains parts of \(X \). One of the following must hold:

(a) \(X \) contains a single path of \(H \);

(b) one of \(v_1, v_2 \) forms a spoke-meets-rim vertex of \(H \), and two separate paths of \(H \) enter \(G_2 \) at this vertex and leave \(G_2 \) via the other two members of \(S \);

(c) \(X \) contains a single spoke-meets-rim vertex of \(H \);

(d) \(H \) is centred on \(v_1 \) or \(v_2 \), and \(X \) contains two spoke-meets-rim vertices of \(H \); or

(e) \(H \) is centred on \(v_1 \) or \(v_2 \), and \(X \) contains three spoke-meets-rim vertices of \(H \).

If (a), (b), or (c) hold, then by 3-connectivity of \(G \), the required paths can be formed in \(G_2 \).

Suppose (d) holds. Without loss of generality, suppose \(H \) is centred on \(v_1 \). If \(v_1 \) has only one neighbour in \(G_2 \), then a type 1 edge-vertex-cutset exists in \(G \). Assume then that \(G_2 \) contains \(\geq 2 \) neighbours of \(v_1 \). By Lemma 1, then, the required structure can be formed in \(G_2 \).

Suppose (e) holds. Since \(X \) contains three vertices in this case, \(X \) must have been formed using case (ii) or (iii), thus \(G_2 \) must contain at least three neighbours of \(v_1 \). By Lemma 2 then, the required structure can be formed in \(G_2 \).

Thus, whenever \(G'_1 \) contains a \(W_7 \)-subdivision, \(G \) does also. (By the same argument, whenever \(G'_2 \) contains a \(W_7 \)-subdivision, \(G \) does also.)

\[\square \]

Definition

A type 2a edge-vertex-cutset in a graph \(G \) is a set \(S = \{e, v_1, v_2\} \) of two vertices \(v_1, v_2 \) of \(G \) and one edge \(e \) of \(G \) such that \(G - S \) is disconnected with each component having at least three vertices, and for each vertex \(v_i \), \(1 \leq i \leq 2 \), either:

- \(v_i \) has at most two neighbours in one of the components of \(G - S \); or
- \(v_i \) has degree \(< 7 \).

Theorem 10. Let \(G \) be a 3-connected graph with no type 1 edge-vertex-cutsets, but which contains a type 2a edge-vertex-cutset \(S = \{e, v_1, v_2\} \). Let \(G_1, G_2 \) be the components of \(G - S \).

Form \(G'_1 \) from \(G \) by replacing \(G_2 \) with the subgraph \(X \), where \(X \) contains two adjacent vertices, \(x_1 \) and \(x_2 \), each of which is adjacent to both \(v_1 \) and \(v_2 \), such that \(x_1 \) is an endpoint of \(e \).

Form \(G'_2 \) from \(G \) by replacing \(G_1 \) with the subgraph \(Y \) in the same manner.

Then \(G \) contains a \(W_7 \)-subdivision if and only if at least one of \(G'_1 \) and \(G'_2 \) contains a \(W_7 \)-subdivision.

Proof. (\(\Rightarrow \)) Suppose firstly that \(G \) contains a \(W_7 \)-subdivision \(H \).

If \(H \) is entirely contained in \(G_1 \) or \(G_2 \), then \(H \) will also be contained in \(G'_1 \) or \(G'_2 \) respectively. Suppose then that \(H \) contains parts of both \(G_1 \) and \(G_2 \). If \(H \) is centred
in \(G \setminus \{v_1, v_2\} \), then by the same arguments used in Theorem[]. \(H \) is also contained in either \(G'_1 \) or \(G'_2 \).

Suppose now that \(H \) is centred on \(v_1 \) or \(v_2 \) — assume \(v_1 \) without loss of generality. Since this means that \(v_1 \) has degree \(\geq 7 \), some component \(G_x \in \{G_1, G_2\} \) must contain at most two neighbours of \(v_1 \), and thus contains at most two spoke-meets-rim vertices of \(H \). By Lemma[] this structure can be replaced by \(X \) if \(G_x = G_2 \), or \(Y \) if \(G_x = G_1 \).

Thus, whenever \(G \) contains a \(W_7 \)-subdivision, at least one of \(G'_1 \) or \(G'_2 \) does also.

(\(\Leftarrow \)) Suppose now that either \(G'_1 \) or \(G'_2 \) contains a \(W_7 \)-subdivision — assume \(G'_1 \) without loss of generality. If \(H \) is entirely contained in \(G'_1 - X \), then \(H \) is also contained in \(G \). Suppose then that \(H \) contains parts of \(X \). One of the following must hold:

(a) \(X \) contains a single path of \(H \);

(b) one of \(v_1, v_2 \) forms a spoke-meets-rim vertex of \(H \), and two separate paths of \(H \) enter \(G_2 \) at this vertex and leave \(G_2 \) via the other two members of \(S \);

(c) \(X \) contains a single spoke-meets-rim vertex of \(H \); or

(d) \(H \) is centred on \(v_1 \) or \(v_2 \), and \(X \) contains two spoke-meets-rim vertices of \(H \).

By the same arguments used in Theorem[] whenever \(G'_1 \) contains a \(W_7 \)-subdivision, \(G \) does also. (Similarly, whenever \(G'_2 \) contains a \(W_7 \)-subdivision, \(G \) does also.) \(\square \)

Definition

A type 3 edge-vertex-cutset in a graph \(G \) is a set \(S = \{v, e_1, e_2, e_3, e_4\} \) of one vertex \(v \) of \(G \) and four edges \(e_1, \ldots, e_4 \) of \(G \) such that \(G - S \) is disconnected, with each component having at least four vertices, and with one of the components containing exactly two vertices incident with \(e_1, \ldots, e_4 \).

Theorem 11. Let \(G \) be a 3-connected graph with no type 1 or 2 edge-vertex-cutsets, but which contains a type 3 edge-vertex-cutset \(S = \{v, e_1, e_2, e_3, e_4\} \). Let \(G_1 \) be the component of \(G - S \) that contains exactly two vertices, say \(v_1 \) and \(v_2 \), incident with \(e_1, \ldots, e_4 \), and let \(G_2 \) be the other component of \(G - S \).

Form \(G'_1 \) from \(G \) by replacing \(G_2 \) with the subgraph \(X \), where:

(i) if \(v \) has fewer than three neighbours in \(G_2 \), \(X \) contains two adjacent vertices, \(x_1 \) and \(x_2 \), each of which is adjacent to \(v \), such that each of \(x_1, x_2 \) forms an endpoint of exactly two edges in \(e_1, \ldots, e_4 \);

(ii) if \(v \) has \(\geq 3 \) neighbours in \(G_2 \), \(X \) contains three pairwise-adjacent vertices, \(x_1, x_2, x_3 \), each of which is adjacent to \(v \), such that each of \(x_1 \) and \(x_3 \) forms an endpoint of exactly one edge in \(e_1, \ldots, e_4 \), while \(x_2 \) forms an endpoint of the two remaining edges in \(e_1, \ldots, e_4 \).

Form \(G'_2 \) from \(G \) by replacing \(G_1 \) with the subgraph \(Y \), where:

(i) if \(v \) has fewer than three neighbours in \(G_1 \), \(Y \) contains only the two vertices \(v_1 \) and \(v_2 \), and the edges \(v_1v_2 \) and \(v_2v_1 \);

(ii) if \(v \) has \(\geq 3 \) neighbours in \(G_1 \), \(Y \) contains the vertices \(v_1 \) and \(v_2 \) and a third vertex, \(y \), such that these three vertices are pairwise-adjacent and are each adjacent to \(v \).

Then \(G \) contains a \(W_7 \)-subdivision if and only if at least one of \(G'_1 \) and \(G'_2 \) contains a \(W_7 \)-subdivision.
Proof. If either v_1 or v_2 has only one incident edge in e_1, \ldots, e_4, then a type 2 edge-vertex-cutset exists in G. Assume then that this is not the case; thus, v_1 and v_2 each have exactly two incident edges in e_1, \ldots, e_4. Without loss of generality, assume that v_1 is incident with e_1 and e_2, and that v_2 is incident with e_3 and e_4.

(⇒) Suppose firstly that G contains a W_7-subdivision H.

If H is entirely contained in G_1 or G_2, then H will also be contained in G'_1 or G'_2 respectively. Suppose then that H contains parts of both G_1 and G_2.

The centre of H can be either in G_1, in G_2, or v. Consider each of the cases.

Case 1
Suppose H is centred in G_1. Then one of the following must be true:

(A) G_2 contains a single path of H;

(B) one of v, v_1, v_2 is contained in H, and two separate paths of H leave G_1 at this vertex and return to G_1 via other members of S, such that these paths are vertex-disjoint within G_2;

(C) G_2 contains a single spoke-meets-rim vertex of H; or

(D) H is centred on one of v_1, v_2, and G_2 contains two spoke-meets-rim vertices of H.

In each case, the required structure can easily be formed in X, giving a W_7-subdivision in G'_1.

Case 2
Suppose now H is centred in G_2. Then one of the following must be true:

(A) G_1 contains a single path of H;

(B) G_1 contains two disjoint paths of H, one being just a single vertex from $\{v_1, v_2\}$;

(C) G_1 contains a single spoke-meets-rim vertex of H;

(D) G_1 contains two spoke-meets-rim vertices of H; or

(E) v_1, v_2, and some third vertex in G_1 form three spoke-meets-rim vertices of H.

In each case, the required structure can easily be formed in Y, giving a W_7-subdivision in G'_2.

Case 3
Suppose now that H is centred on v. Since $|N_H(v)| = 7$, some component $G_x \in \{G_1, G_2\}$ contains at most three of the vertices in $N_H(v)$. If $G_x = G_2$, then, since G_2 can contain at most three spoke-meets-rim vertices of H, X can be used in G'_2 to replace the parts of H previously contained in G_2. If $G_x = G_1$, Y can be used in G'_1 to replace the parts of H previously contained in G_1.

Thus, whenever G contains a W_7-subdivision, at least one of G'_1 or G'_2 does also.

(⇐) Suppose now that either G'_1 or G'_2 contains a W_7-subdivision.

Case 1
Suppose firstly that G'_1 contains a W_7-subdivision. If H is entirely contained in $G'_1 - X$, then H is also contained in G. Suppose then that H contains parts of X. One of the following must hold:

(a) X contains a single path of H;
(b) one of \(v, v_1, \text{ or } v_2\) is contained in \(H\), and two separate paths of \(H\) leave \(G_1\) at this vertex and return to \(G_1\) via other members of \(S\), such that these paths are vertex-disjoint within \(X\);

(c) \(X\) contains a single spoke-meets-rim vertex of \(H\);

(d) \(H\) is centred on one of \(v, v_1, \text{ or } v_2\), and \(X\) contains two spoke-meets-rim vertices of \(H\); or

(e) \(H\) is centred on \(v\), and \(X\) contains three spoke-meets-rim vertices of \(H\).

If (a) or (c) hold, then by 3-connectivity of \(G\), the required paths can be formed in \(G_2\).

Suppose (b) holds. The two paths in \(G'_1\) must meet at either \(v_1\) or \(v_2\) — suppose without loss of generality. Thus, one of the paths contains \(e_1\), while the other contains \(e_2\). By 3-connectivity, there must be two paths in \(G_2 \cup S \cup \{v_1, v_2\}\) joining \(v_1\) to \(\{v, v_2\}\) such that these paths are vertex-disjoint except at \(v_1\), otherwise the removal of \(v_1\) and some other vertex in \(G_2\) will disconnect the graph. Use these two paths to replace the original paths in \(G'_1\).

Suppose (d) holds. If \(v\) has only one neighbour in \(G_2\), then a type 2 edge-vertex-cutset exists in \(G\). Assume then that \(G_2\) contains at least two neighbours of \(v\). Thus, if \(H\) is centred on \(v\), by Lemma 1 the required structure can also be formed in \(G_2\). Similarly, if \(H\) is centred on \(v_1\) or \(v_2\), then by Lemma 1 the required structure can be formed in \(G_2\), since each of these vertices has two neighbours in \(G_2\).

Suppose (e) holds. Since \(X\) contains three vertices in this case, \(X\) must have been formed using case (ii) in the Theorem, thus \(G_2\) must contain at least three neighbours of \(v\). By Lemma 2 then, the required structure can be formed in \(G_2\).

Case 2

Suppose now that \(G'_2\) contains a \(W_7\)-subdivision. If \(H\) is entirely contained in \(G'_2 - X\), then \(H\) is also contained in \(G\). Suppose then that \(H\) contains parts of \(Y\). One of the following must hold:

(a) \(Y\) contains a single path of \(H\);

(b) \(Y\) contains two disjoint paths of \(H\);

(c) \(Y\) contains a single spoke-meets-rim vertex of \(H\);

(d) \(Y\) contains two spoke-meets-rim vertices of \(H\); or

(e) \(Y\) contains three spoke-meets-rim vertices of \(H\).

If (a), (b), (c), or (d) hold, then by 3-connectivity of \(G\), the required paths can be formed in \(G_1\).

Suppose (e) holds. By 3-connectivity, there exists a path \(P_1\) in \(\langle V(G_1) \cup \{v\}\rangle\) from \(v_1\) to \(v\), and a path \(P_2\) in \(\langle V(G_1) \cup \{v\}\rangle\) from \(v_2\) to \(v\). Let \(p\) be the vertex closest to \(v_1\) along \(P_1\) where these paths meet. Then the paths \(P_2\) and \(v_1P_1p\) form the required structure in \(G_1\), with \(v_1, v_2,\) and \(p\) forming the three spoke-meets-rim vertices.

Thus, whenever one of \(G'_1\) or \(G'_2\) contains a \(W_7\)-subdivision, \(G\) does also.

Definition

A **type 3a edge-vertex-cutset** in a graph \(G\) is a set \(S = \{v, e_1, e_2, e_3, e_4\}\) of one vertex \(v\) of \(G\) and four edges \(e_1, \ldots, e_4\) of \(G\) such that \(G - S\) is disconnected with each component having at least three vertices, \(v\) either has degree < 7, or has at most

23
two neighbours in one of the components of $G - S$, and one of the components of $G - S$ contains exactly two vertices, v_1 and v_2, incident with e_1, \ldots, e_4, such that v_1 is incident with e_1 and e_2, and v_2 is incident with e_3 and e_4.

Theorem 12. Let G be a 3-connected graph with no type 1 or 2 edge-vertex-cutset, but which contains a type 3a edge-vertex-cutset $S = \{v, e_1, e_2, e_3, e_4\}$. Let G_1 be the component of $G - S$ that contains exactly two vertices, say v_1 and v_2, incident with e_1, \ldots, e_4, and let G_2 be the other component of $G - S$.

Form G'_1 from G by replacing G_2 with the subgraph X, where X contains two adjacent vertices, x_1 and x_2, each of which is adjacent to v, such that each of x_1, x_2 forms an endpoint of exactly two edges in e_1, \ldots, e_4.

Form G'_2 from G by replacing G_1 with the subgraph Y, where Y contains only the two vertices v_1 and v_2, and the edges vv_1, vv_2, and v_1v_2.

Then G contains a W_7-subdivision if and only if at least one of G'_1 and G'_2 contains a W_7-subdivision.

Proof. Without loss of generality, assume that v_1 is incident with e_1 and e_2, and that v_2 is incident with e_3 and e_4.

(\Rightarrow) Suppose firstly that G contains a W_7-subdivision H.

If H is entirely contained in G_1 or G_2, then H will also be contained in G'_1 or G'_2, respectively. Suppose then that H contains parts of both G_1 and G_2. If H is centred in $G - \{v\}$, then by the same arguments used in Theorem 11 H is also contained in either G'_1 or G'_2.

Suppose now that H is centred on v. Since this means that v has degree ≥ 7, some component $G_x \in \{G_1, G_2\}$ must contain at most two neighbours of v, and thus contains at most two spoke-meets-rim vertices of H. This structure can be replaced by X if $G_x = G_2$, or Y if $G_x = G_1$.

Thus, whenever G contains a W_7-subdivision, at least one of G'_1 or G'_2 does also.

(\Leftarrow) Suppose now that either G'_1 or G'_2 contains a W_7-subdivision.

Case 1

Suppose firstly that G'_1 contains a W_7-subdivision. If H is entirely contained in $G'_1 - X$, then H is also contained in G. Suppose then that H contains parts of X. One of the following must hold:

(a) X contains a single path of H;

(b) one of v, v_1, or v_2 is contained in H, and two separate paths of H leave G_1 at this vertex and return to G_1 via other members of S, such that these paths are vertex-disjoint within X;

(c) X contains a single spoke-meets-rim vertex of H; or

(d) H is centred on one of v, v_1, or v_2, and G_2 contains two spoke-meets-rim vertices of H.

By the same arguments used in Theorem 11 whenever G'_1 contains a W_7-subdivision, G does also.

Case 2

Suppose now that G'_2 contains a W_7-subdivision. If H is entirely contained in $G'_2 - X$, then H is also contained in G. Suppose then that H contains parts of Y. One of the following must hold:

(a) Y contains a single path of H;
(b) Y contains two disjoint paths of H;

(c) Y contains a single spoke-meets-rim vertex of H; or

(d) Y contains two spoke-meets-rim vertices of H.

Again, by the same arguments used in Theorem 11 whenever G'_2 contains a W_7-subdivision, G does also.

Thus, whenever one of G'_1 or G'_2 contains a W_7-subdivision, G does also. □

Definition

A type 4 edge-vertex-cutset in a graph G is a set $S = \{v_1, v_2, e_1, e_2\}$ of two vertices v_1, v_2 of G and two edges e_1, e_2 of G such that $G - S$ is disconnected, with each component having at least four vertices, and with one of the components containing exactly one vertex incident with e_1 and e_2.

Theorem 13. Let G be a 3-connected graph with no type 1, 2, or 3 edge-vertex-cutsets, but which contains a type 4 edge-vertex-cutset $S = \{v_1, v_2, e_1, e_2\}$. Let G'_1 be the component of $G - S$ that contains exactly one vertex incident with e_1 and e_2, and let G'_2 be the other component of $G - S$.

Form G'_1 from G by replacing G'_2 with the subgraph X, where X contains three pairwise-adjacent vertices, x_1, x_2, x_3, each of which is adjacent to both v_1 and v_2, such that x_1 and x_2 form endpoints of e_1 and e_2 respectively.

Form G'_2 from G by replacing G'_1 with the subgraph Y, where Y contains three pairwise-adjacent vertices, y_1, y_2, y_3, each of which is adjacent to both v_1 and v_2, such that y_1 forms an endpoint of both e_1 and e_2.

Then G contains a W_7-subdivision if and only if at least one of G'_1 and G'_2 contains a W_7-subdivision.

Proof. Let u be the vertex incident with both e_1 and e_2 in G_1.

(\Rightarrow) Suppose firstly that G contains a W_7-subdivision H.

If H is entirely contained in G_1 or G_2, then H will also be contained in G'_1 or G'_2 respectively. Suppose then that H contains parts of both G_1 and G_2.

The centre of H can be either in G_1, in G_2, or on one of v_1, v_2. Consider each of the cases.

Case 1

Suppose H is centred in G_1. Then one of the following must be true:

(A) G_2 contains a single path of H;

(B) one of v_1, v_2, or u is contained in H, and two separate paths of H leave G_1 at this vertex and return to G_1 via other members of S, such that these paths are vertex-disjoint within G_2;

(C) G_2 contains a single spoke-meets-rim vertex of H; or

(D) H is centred on u, and G_2 contains two spoke-meets-rim vertices of H.

In each case, the required structure can easily be formed in X.

Case 2

Suppose now H is centred in G_2. Then one of the following must be true:

(A) G_1 contains a single path of H;
(B) G_1 contains two disjoint paths of H;

(C) G_1 contains a single spoke-meets-rim vertex of H; or

(D) u and some other vertex in G_1 form two spoke-meets-rim vertices of H.

In each case, the required structure can easily be formed in Y.

Case 3

Suppose now that H is centred on either v_1 or v_2 — assume v_1 without loss of generality. Since $|N_H(v_1)| = 7$, some component $G_x \in \{G_1, G_2\}$ contains at most three of the vertices in $N_H(v)$. If $G_x = G_2$, then, since G_2 can contain at most three spoke-meets-rim vertices of H, X can be used in G_2' to replace the parts of H previously contained in G_2. If $G_x = G_1$, Y can be used in G_1' to replace the parts of H previously contained in G_1.

Thus, whenever G contains a W_7-subdivision, at least one of G_1' or G_2' does also.

(⇐) Suppose now that either G_1' or G_2' contains a W_7-subdivision.

Case 1

Suppose firstly that G_1' contains a W_7-subdivision. If H is entirely contained in $G_1' - X$, then H is also contained in G. Suppose then that H contains parts of X. One of the following must hold:

(a) X contains a single path of H;

(b) one of v_1, v_2, u is contained in H, and two separate paths of H leave G_1 at this vertex and return to G_1 via other members of S, such that these paths are vertex-disjoint within X;

(c) X contains a single spoke-meets-rim vertex of H;

(d) H is centred on one of v_1, v_2, u, and G_2 contains two spoke-meets-rim vertices of H; or

(e) H is centred on v_1 or v_2, and X contains three spoke-meets-rim vertices of H.

If (a), (b), or (c) hold, then by 3-connectivity of G, the required paths can be formed in G_2.

Suppose (d) holds. If either of v_1 or v_2 has only one neighbour in G_2, then a type 2 edge-vertex-cutset exists in G. Assume then that G_2 contains at least two neighbours of v_1 and at least two neighbours of v_2. Thus, if H is centred on v_1 or v_2, by Lemma 1 the required structure can also be formed in G_2. Similarly, if H is centred on u, then by Lemma 1 the required structure can be formed in G_2, since u has two neighbours in G_2.

Suppose (e) holds. If either of v_1 or v_2 has fewer than three neighbours in G_2, then a type 3 edge-vertex-cutset exists in G. Assume then that G_2 contains at least three neighbours of v_1 and at least three neighbours of v_2. Thus, by Lemma 2 the required structure can also be formed in G_2.

Case 2

Suppose now that G_2' contains a W_7-subdivision. If H is entirely contained in $G_2' - X$, then H is also contained in G. Suppose then that H contains parts of Y. One of the following must hold:

(a) Y contains a single path of H;
(b) Y contains two disjoint paths of H;
(c) Y contains a single spoke-meets-rim vertex of H; or
(d) Y contains two spoke-meets-rim vertices of H.

By 3-connectivity of G, the required paths can be formed in G_1 for any of these cases.

Thus, whenever one of G'_1 or G'_2 contains a W_7-subdivision, G does also. \square

Definition

A type 4a edge-vertex-cutset in a graph G is a set $S = \{v_1, v_2, e_1, e_2\}$ of two vertices v_1, v_2 of G and two edges e_1, e_2 of G such that $G - S$ is disconnected with each component having at least three vertices, with one of the components containing exactly one vertex incident with e_1 and e_2, and for each vertex v_i, $1 \leq i \leq 2$, either:

- v_i has at most two neighbours in one of the components of $G - S$; or
- v_i has degree < 7.

Theorem 14. Let G be a 3-connected graph with no type 1, 2, 2a, or 3 edge-vertex-cutsets, but which contains a type 4a edge-vertex-cutset $S = \{v_1, v_2, e_1, e_2\}$. Let G_1 be the component of $G - S$ that contains exactly one vertex incident with e_1, e_2, and let G_2 be the other component of $G - S$.

Form G'_1 from G by replacing G_2 with the subgraph X, where X contains two adjacent vertices, x_1 and x_2, each of which is adjacent to both v_1 and v_2, such that x_1 and x_2 form endpoints of e_1 and e_2 respectively.

Form G'_2 from G by replacing G_1 with the subgraph Y, where Y contains two adjacent vertices, y_1 and y_2, each of which is adjacent to both v_1 and v_2, such that y_1 forms an endpoint of both e_1 and e_2.

Then G contains a W_7-subdivision if and only if at least one of G'_1 and G'_2 contains a W_7-subdivision.

Proof. Let u be the vertex incident with both e_1 and e_2 in G_1.

(\Rightarrow) Suppose firstly that G contains a W_7-subdivision H.

If H is entirely contained in G_1 or G_2, then H will also be contained in G'_1 or G'_2 respectively. Suppose then that H contains parts of both G_1 and G_2.

If H is centred in $G \setminus \{v_1, v_2\}$, then by the same arguments used in Theorem 13, H is also contained in either G'_1 or G'_2.

Suppose then that H is centred on v_1 or v_2 — assume v_1 without loss of generality. Since this means that v_1 has degree ≥ 7, some component $G_x \in \{G_1, G_2\}$ must contain at most two neighbours of v_1, and thus contains at most two spoke-meets-rim vertices of H. By Lemma 1, this structure can be replaced by X if $G_x = G_2$, or Y if $G_x = G_1$.

Thus, whenever G contains a W_7-subdivision, at least one of G'_1 or G'_2 does also.

(\Leftarrow) Suppose now that either G'_1 or G'_2 contains a W_7-subdivision.

Case 1

Suppose firstly that G'_1 contains a W_7-subdivision. If H is entirely contained in $G'_1 - X$, then H is also contained in G. Suppose then that H contains parts of X. One of the following must hold:

(a) X contains a single path of H;
(b) one of v_1, v_2, or u is contained in H, and two separate paths of H leave G_1 at this vertex and return to G_1 via other members of S, such that these paths are vertex-disjoint within X;

(c) X contains a single spoke-meets-rim vertex of H; or

(d) H is centred on one of v_1, v_2, or u, and G_2 contains two spoke-meets-rim vertices of H.

By the same arguments used in Theorem 13, the required paths can be formed in G_2 for any of these cases.

Case 2

Suppose now that G'_2 contains a W_7-subdivision. If H is entirely contained in $G'_2 - X$, then H is also contained in G. Suppose then that H contains parts of Y. One of the following must hold:

(a) Y contains a single path of H;

(b) Y contains two disjoint paths of H;

(c) Y contains a single spoke-meets-rim vertex of H; or

(d) Y contains two spoke-meets-rim vertices of H.

By the same arguments used in Theorem 13, the required paths can be formed in G_1 for any of these cases.

Thus, whenever one of G'_1 or G'_2 contains a W_7-subdivision, G does also. □

Definition

An internal $(1,1,1,1)$-cutset in a graph G is a set E' of four disjoint edges of G such that $G - E'$ is disconnected, with each component having at least five vertices.

Theorem 15. Let G be a 3-connected graph with no internal 4-edge-cutsets and no type 1 or 1a edge-vertex-cutsets, which contains an internal $(1,1,1,1)$-cutset $E' = \{e_1, e_2, e_3, e_4\}$. Let G_1, G_2 be the components of $G - E'$. Let the endpoints of e_1, \ldots, e_4 in G_1 be the four distinct vertices u_1, u_2, u_3, u_4, and let the endpoints of e_1, \ldots, e_4 in G_2 be the four distinct vertices v_1, v_2, v_3, v_4. Form G'_1 from G by replacing G_2 with the subgraph X, where X contains only the four vertices v_1, v_2, v_3, v_4, all of which are made adjacent to one another if they were not already.

Then G contains a W_k-subdivision centred in G_1 if and only if G'_1 contains a W_k-subdivision, where $k \geq 5$.

Proof. (\Rightarrow) Suppose firstly that G contains a W_k-subdivision H centred in G_1. If H is entirely contained in G_1 then H is also contained in G'_1.

If however H is not entirely contained in G_1, but rather contains edges of E', then one of the following statements must be true:

(A) a single path of H leaves and returns to G_1 via E';

(B) two disjoint paths of H leave and return to G_1 via E';

(C) there is a single spoke-meets-rim vertex of H in G_2; or

(D) G_2 contains two spoke-meets-rim vertices belonging to H such that the portion of rim between these vertices is entirely contained in G_2.

28
If (A) holds, the portion of H in G_2 can be replaced by a single edge in X.

If (B) holds, the portion of H in G_2 can be replaced by two edges in X.

Suppose (C) holds. Any vertex in X can be used as the spoke-meets-rim vertex of H that was previously contained in G_2.

Suppose (D) holds. In G, two of the vertices in u_1, \ldots, u_4 must lie on spokes of H, while the other two lie on the rim of H. Without loss of generality, assume that u_1 and u_2 lie on spokes, and u_3 and u_4 lie on the rim. Then in G_1', use v_1 and v_2 to form the two spoke-meets-rim vertices that were previously in G_2.

Thus whenever G contains a W_k-subdivision centred in G_1, G_1' must also.

(\Leftarrow) Assume now that G_1' contains a W_k-subdivision. If none of the edges in E' are used to form H in G_1', then H is also contained in G.

Suppose then that H contains edges of E'. One of the following must hold:

(a) a single path of H leaves and returns to G_1 via E';
(b) two paths of H, say P_1 and P_2, leave and return to G_1 via E';
(c) one of the vertices in X serves as a spoke-meets-rim vertex belonging to H; or
(d) two of the vertices in X serve as two spoke-meets-rim vertices belonging to H, such that the portion of rim between these vertices is entirely contained in X.

By the 3-connectivity of G we know that there must exist paths in $G_2 \cup E'$ between each pair of the vertices u_1, u_2, u_3, u_4. Thus if either (a) or (c) is true, we can use one or parts of two of these paths to form the required paths in H.

Suppose (b) is true. Without loss of generality, suppose that P_1 enters X at v_1 and leaves at v_2; and that P_2 enters X at v_3 and leaves at v_4. There are three possibilities:

(i) P_1 and P_2 are both parts of spokes of H;
(ii) P_1 and P_2 are both parts of the rim of H; or
(iii) one of the paths forms part of a spoke of H, and the other forms part of the rim of H.

Suppose that (i) holds. Let S_1 be the spoke of H containing P_1, and let S_2 be the spoke of H containing P_2. Let v be the centre of H, and let s_1 and s_2 be the points at which S_1 and S_2 respectively meet the rim of H. Without loss of generality, suppose that v_1 and v_3 are closer to v along S_1 and S_2 respectively than v_2 and v_4. If P_1 and P_2 are both path of the same spoke of H (that is, $S_1 = S_2$), then a single path in G_2 from v_1 to v_4 can be used in G to form the shortest path between v_1 and v_4.

(By 3-connectivity, such a path must exist.) Assume then that S_1 and S_2 are separate spokes of H.

Suppose that $\{v_1, v_3\}$ and $\{v_2, v_4\}$ can be separated in G_2 by a single vertex, q. Let W be the component of $G_2 - q$ containing v_1 and v_3, and let Z be the component of $G_2 - q$ containing v_2 and v_4. If W contains more than three vertices, then a type 1 edge-vertex-cutset can be formed by the vertex q and the edges e_1 and e_3. If W contains fewer than three vertices (which implies $V(W) = \{v_1, v_3\}$ and that q is adjacent to v_1 and v_3), an internal 4-edge-cutset can be formed by the edges e_2, e_4, qv_1, and qv_3. Assume then that W contains exactly three vertices. If Z contains more than three vertices, then a type 1 edge-vertex-cutset can be formed by the vertex q and the edges e_2 and e_4. If Z contains fewer than three vertices, an internal 4-edge-cutset can be formed by the edges e_1, e_3, qv_2, and qv_4. Assume then that Z contains exactly three vertices. Then, since q can have degree at most six, a type 1a edge-vertex-cutset
can be formed by the vertex q and either the edges e_1 and e_3 or the edges e_2 and e_4. Therefore, such a vertex q cannot exist in G_2. Thus, there must be at least two disjoint paths in G_2 joining $\{v_1, v_3\}$ to $\{v_2, v_4\}$. Call these paths P_1' and P_2'.

If P_1' and P_2' run from v_1 to v_2 and from v_3 to v_4, then they can be used to replace P_1 and P_2 in G. Suppose then that P_1' is a path from v_1 to v_4, and P_2' is a path from v_3 to v_2. Then in G, the two spokes S_1 and S_2 can be replaced by the paths $vS_2v_3P_2'v_2S_1v_1$ and $vS_1v_1P_1'v_4S_2v_2$

Suppose (ii) holds. Without loss of generality, suppose that the portion of the rim of H in $G_1' - X$ consists of a path from v_1 to v_3 and a path from v_2 to v_4. By the same argument used in (i), there must exist two disjoint paths in G_2, P_1' and P_2', joining $\{v_1, v_3\}$ to $\{v_2, v_4\}$. In G, P_1' and P_2' can be used to replace the parts of the rim not in $G_1 \cup E'$, regardless of whether they run from v_1 to v_2 and v_3 to v_4, or from v_1 to v_4 and v_3 to v_2.

Suppose (iii) holds. Without loss of generality, suppose that P_1 forms part of the rim of H, and P_2 forms part of a spoke S_1 of H such that v_3 is closer to the centre of H along P_2 than v_4. Let s_1 be the vertex at which S_1 meets the rim of H. By the 3-connectivity of G, there must be some path P_1' from v_1 to v_2 in G_2. Use this to form that part of the rim formed by P_1 in G_1'. There must also be some path P_2' in G_2 that runs from v_3 to some vertex q on P_1', such that P_2' meets P_1' only at q. Let P_2' replace that part of H formed by $v_3S_1s_1$ in G_1', so that q becomes a spoke-meets-rim vertex in G instead of s_1, and a new spoke is formed by the path $vS_1v_3P_2'q$.

Suppose (d) is true. Without loss of generality, suppose v_1 and v_2 are the two spoke-meets-rim vertices in X. By the 3-connectivity of G we know that there must exist a path P in G_2 from v_1 to v_2, otherwise the removal of either u_1 or u_2 and some other vertex in G_2 will disconnect the graph, placing v_1 and v_2 in separate components. Suppose that P can be separated from v_3, v_4 in G_2 by the removal of a single vertex, q. Let V_1 be the component of $G_2 - q$ containing v_1 and v_2, and let V_3 be the component of $G_2 - q$ containing v_3 and v_4. If V_3 contains more than three vertices, then a type 1 edge-vertex-cutset can be formed by the vertex q and the edges e_3 and e_4. If V_3 contains fewer than three vertices, then an internal 4-edge-cutset can be formed by the edges e_1, e_2, qv_3, and qv_4. Assume then that V_3 contains exactly three vertices. By the same argument, V_1 must also contain exactly three vertices. Then, since q can have degree at most six, a type 1a edge-vertex-cutset can be formed by the vertex q and either the edges e_1 and e_2 or the edges e_3 and e_4. Therefore, such a vertex q cannot exist in G_2. Thus, there must be at least two disjoint paths in G_2 joining P to v_3 and v_4. These two paths and the path P form the required structure in H.

Thus whenever G_1' contains a W_4-subdivision, G must also.

6 Results on graphs with no 6-wheel subdivisions

The following two theorems build directly on the results of [13], and relate specifically to W_6-subdivisions, rather than W_7-subdivisions. However, they are key to proving Theorem [18] in this paper, particularly Theorem [17] which strengthens the main result of [13].

Theorem [10] given below, follows from the main theorem of [13] (titled Theorem 4 in that paper).

Theorem 16. Let G be a 3-connected graph with at least 12 vertices. Suppose G has no internal 3-edge-cutsets, no internal 4-edge-cutsets, and is a graph on which neither Reduction [24] nor Reduction [41] can be performed.

Then G has a W_6-subdivision if and only if G contains some vertex v_0 of degree at least 6.
Proof. Suppose that G is not topologically contained in Graph A, shown in Figure 8. Then Theorem 4 of [13] applies to G, thus proving the hypothesis. If however G is topologically contained in Graph A, then G can contain at most 11 vertices (since $|V(A)| = 11$), which contradicts the original assumption that $|V(G)| \geq 12$.

Figure 8: Graph A

Theorem 17, which follows, builds on the previous theorem characterizing graphs that do not contain a W_6-subdivision. The extra conditions forbidding certain types of edge-vertex-cutsets and additional types of reductions allow for a strengthened result in the case where the W_6-subdivision found is not centred on the given vertex of degree ≥ 6.

Theorem 17. Let G be a 3-connected graph with at least 14 vertices. Suppose G has no type 1, 2, 3, or 4 edge-vertex-cutsets, and is a graph on which neither Reduction 1A, Reduction 1B, Reduction 2A, nor Reduction 2B can be performed, for $k = 7$. Let v_0 be a vertex of degree ≥ 6 in G. Then either G has a W_6-subdivision centred on v_0, or G has a W_6-subdivision centred on some vertex v_1 of degree ≥ 7.

Proof. Suppose G and v_0 satisfy the hypotheses of the theorem. From Theorem 16, G contains a W_6-subdivision, H, and from the proof of this theorem, Theorem 4 of [13] also applies to G. Referring to the proof of Theorem 4 in [13], we know that in all cases other than (b)(ii), H must be centred on v_0.

Looking more closely at the proof of (b)(ii), where G contains the structure illustrated in Figure 9 there are a number of ways in which W_6-subdivisions are formed. Firstly, all possible ways of adding a single path Q to the structure in Figure 9 are tested, excluding those cases where the path added meets internally either the path from v_0 to v_1, or the path from v_0 to v_3. Each of the resulting graphs is found to contain a W_6-subdivision. Since the original structure contains no vertices of degree ≥ 5 other than v_0, there can be no vertices with degree ≥ 6 other than v_0 in the resulting graph once Q is added. Thus, the W_6-subdivision created in each case must be centred on v_0.

Case 1: Existence of path R

The next part of the proof looks at the addition of some new path R to the graph of Figure 9 such that R runs from v_4 to some point on the path from v_0 to v_1, as in Figure 10. All ways of adding R to this structure are tested for a W_6-subdivision.
Figure 9: (b)(ii): Starting graph

Again, since \(v_0\) is the only vertex in the graph of Figure 10 of degree \(\geq 5\), any \(W_6\)-subdivision created by adding an edge to this graph must be centred on \(v_0\). The same argument follows in the next part of the proof, where single edges are added to the graph of Figure 11 and the resulting graph tested for the presence of a \(W_6\)-subdivision.

Figure 10: Configuration for path \(R\)

The next part of Case 1 assumes that \(\langle U_4 \rangle\) in \(G\) is isomorphic to that part of the graph illustrated in either Figure 10 or Figure 11 and looks further at the structure of the bridges \(U_2\) and \(U(u)\). As with the original proof, suppose firstly that \(U_2\) and \(U(u)\) each contain at most two vertices not in \(W\). There must then exist some fourth bridge of \(G|W\), \(U^*\), since \(G\) has at least 14 vertices. Each bridge of \(G|W\) must contain at least 2 vertices not in \(W\), otherwise Reduction 1A can be performed on \(G\), and thus to avoid internal 3-edge-cutsets, there must be at least 4 edges joining \(W\) to \(U_2 \setminus W\), likewise joining \(W\) to \(U(u) \setminus W\) and to \(U^* \setminus W\). Thus some vertex \(x \in W\) has two neighbours in \(U_2\), some vertex \(y \in W\) has two neighbours in \(U(u)\), and some vertex \(z \in W\) has at least two neighbours in \(U^*\). Note that \(U_2\) and \(U(u)\) each contain exactly two vertices not in \(W\). To avoid the possibility of Reduction 1B being performed on \(G\), then, vertices \(x, y,\) and \(z\) must all be distinct. If this were not the case, then either \(U_2\) or \(U(u)\) would be contained as a subdivision in at least two other bridges of \(G|W\). Thus \(v_0 \in \{x, y, z\}\), so \(v_0\) has two neighbours in some bridge other than \(U_4\). By Lemma 1, this bridge along with \(U_4\) can be used to form a \(W_6\)-subdivision centred on
Following the original proof again, we now suppose at least one of \(U_2 \) and \(U(u) \) (assume \(U_2 \)) has more than two vertices not in \(W \). To avoid an internal 4-edge-cutset, there must be at least five edges connecting \(U_2 \setminus W \) to \(W \). There are two cases:

(i) there will be two vertices \(x \) and \(y \) in \(W \) each with two neighbours in \(U_2 \setminus W \); or

(ii) one vertex in \(W \) will have three neighbours in \(U_2 \setminus W \).

Case 1.1

Suppose firstly that (i) is true. If \(v_0 \in \{ x, y \} \), then a \(W_6 \)-subdivision can be formed centred on \(v_0 \). Suppose then that \(\{ x, y \} = \{ v_1, v_3 \} \), and that \(v_0 \) has exactly one neighbour in \(U_2 \setminus W \), say \(v_0' \). If \(|U_2 \setminus W| > 3 \), then, a type 2 edge-vertex-cutset can be formed from \(v_1, v_3 \), and the edge \(v_0v_0' \). Assume then that \(|U_2 \setminus W| = 3 \).

If \(U(u) \setminus W \) contains more than one neighbour of \(v_0 \), then a \(W_6 \)-subdivision can be formed centred on \(v_0 \). Assume then that \(U(u) \setminus W \) contains exactly one neighbour of \(v_0 \), say \(v_0'' \). Then if \(|U(u) \setminus W| > 3 \), a type 2 edge-vertex-cutset can be formed from \(v_1, v_3 \), and the edge \(v_0v_0'' \). Assume then that \(|U(u) \setminus W| \leq 3 \).

\(U(u) \) must have at least two vertices not in \(W \), otherwise Reduction 1A or Reduction 2A can be performed. Thus, \(U(u) \setminus W \) contains either two or three vertices.

Suppose firstly that \(U(u) \) has exactly two vertices not in \(W \). There must then exist some fourth bridge of \(G|W, U^* \), since \(G \) has at least 14 vertices. \(U^* \) must have at least two vertices not in \(W \) to avoid Reduction 1A. Thus, some vertex \(z_1 \in W \) must have two neighbours in \(U(u) \setminus W \), and some vertex \(z_2 \in W \) must have two neighbours in \(U^* \). One of \(z_1 \) or \(z_2 \) must be \(v_0 \), otherwise \(U(u) \) will be contained as a subdivision in at least two other bridges of \(G|W \), thus allowing Reduction 1B to be performed. Thus, using Lemma 1, a \(W_6 \)-subdivision can be formed centred on \(v_0 \) using parts of either \(U^* \) or \(U(u) \), and \(U_4 \).

Suppose now that \(U(u) \) has exactly three vertices not in \(W \). To avoid internal 4-edge-cutsets, there must be five edges joining \(W \) to \(U(u) \setminus W \). If \(v_0 \) has two or more neighbours in \(U(u) \setminus W \), then a \(W_6 \)-subdivision can be formed centred on \(v_0 \). If either \(v_1 \) or \(v_3 \) has three neighbours in \(U(u) \setminus W \), then a \(W_6 \)-subdivision can be formed centred on that vertex, which is of degree \(\geq 7 \). Assume then that each of \(v_1 \) and \(v_3 \) has exactly two neighbours in \(U(u) \setminus W \), while \(v_0 \) has exactly one neighbour in \(U(u) \setminus W \). Since \(v_1 \) and \(v_3 \) each have two neighbours in \(U_2 \setminus W \) as well, it is apparent that \(W_6 \)-subdivisions can still be formed centred on these two vertices. Also, since
$|U_4 \cup U_2 \cup U(u)| \leq 13$, but $|V(G)| \geq 14$, there must exist some fourth bridge of $G\vert W$ other than U_4, U_2, and $U(u)$. Thus, v_1 and v_3 each have degree ≥ 7.

Case 1.2

Suppose now that (ii) is true. By Lemma 2, a W_6-subdivision can be formed centred on the vertex with three neighbours in $U_2 \setminus W$, and by the argument used in the previous case, if that vertex is either v_1 or v_3, then it must be of degree ≥ 7.

Case 2: No path R

In the second part of the proof, it is assumed that none of the bridges U_2, U_4, or $U(u)$ meet internally either P_1 or P_3.

By the arguments in the original proof, we know that there must exist a W_6-subdivision H centred on some vertex $x \in W$. If $x = v_0$, we have nothing more to prove. Assume instead then that x is either v_1 or v_3, and we must show x to have degree ≥ 7.

Case 2.1

Firstly, suppose that there are at least four bridges of $G\vert W$. The vertices in $N_H(x) \setminus W$, of which there must be at least four, are contained in at most two bridges of W. These four neighbours of x, plus the neighbours in the remaining two bridges and the edge xv_0, mean that x has degree ≥ 7.

Case 2.2

Suppose now that there are only three bridges of $G\vert W$. Since $|V(G)| \geq 14$, then, one of the following must be true:

(i) two of these bridges must each contain at least four vertices not in W, while the third must contain at least three vertices not in W; or

(ii) one bridge contains at least five vertices in W.

Suppose firstly that (i) is true. Let A and B be the two bridges with at least four vertices not in W, and let C be the bridge with at least three vertices not in W.

If any two bridges have two neighbours of v_0 not in W, then a W_6-subdivision can be formed centred on v_0. Assume then that two of the bridges, call them U^* and U^{**}, have one neighbour of v_0 not in W. At least one of these two bridges, say U^*, must be A or B. Thus, a type 2 edge-vertex-cutset can be formed from v_1, v_3, and the edge joining v_0 to $U^* \setminus W$.

Suppose now that (ii) is true. Let A be the bridge with at least five vertices in W. If v_0 has more than two neighbours in $A \setminus W$, then by Lemma 2 there exists a W_6-subdivision centred on v_0. Assume then that v_0 has at most two neighbours in $A \setminus W$. Then a type 4 edge-vertex-cutset can be formed from v_1, v_3, and the two edges joining v_0 to $U^* \setminus W$.

7 Supporting lemmas

The following lemmas are used in support of the main theorem of this paper, Theorem 18. The first, Lemma 3, follows easily from Lemmas 1 and 2, and is used often throughout the paper in showing the existence of a W_7-subdivision.

Lemmas 4 to 8 and Lemma 10 are all similar in nature: each requires a graph G containing some separating set S such that $|S| = 4$ and S contains some vertex v of degree ≥ 7. By then imposing certain conditions on the neighbours of v, it is shown
that a W_7-subdivision must exist centred on v. These lemmas are all used in the main theorem. Theorem \ref{main}

Lemmas \ref{main} and \ref{main1} both handle situations which often arise in the main theorem.

Lemma 3. Let G be a 3-connected graph containing a separating set $S = \{u, v, w\}$. Let X and Y be two distinct bridges of $G|S$. Suppose that v and w are either adjacent or joined by a path P_w in some third bridge A of $G|S$. Suppose also that v and u are either adjacent or joined by a path P_u in some bridge of $G|S$ other than X, Y, or A (if A exists). If v has at least three neighbours in $X \setminus S$, and at least two neighbours in $Y \setminus S$, then v has a W_7-subdivision centred on it.

Proof. By Lemma \ref{main} and Lemma \ref{main1} a W_5-subdivision can easily be formed centred on v using parts of X and Y, using the other two vertices in S as parts of the rim, but not as spoke-meets-rim vertices. P_w and P_u form the two extra spokes required to make a W_7-subdivision. \hfill \qed

Lemma 4. Let G be a 3-connected graph containing a separating set $S = \{t, u, v, w\}$. Suppose v has degree ≥ 7, and suppose there are at least three bridges of $G|S$, X, Y, and Z, such that Y contains all four vertices in S, while X and Z each contain v. Suppose also that one of the following holds:

- either one of X, Z contains all four vertices in S; or
- there exists some fourth bridge W of $G|S$ such that W also contains v.

Suppose for each U_i, u_j, where $U_i, U_j \in \{W, X, Z\}$ and $U_i \neq U_j$, that one of the following holds:

- either $U_i \cap S \neq U_j \cap S$; or
- $U_i \cap S = U_j \cap S = S$.

Suppose that v and u are either adjacent or joined by a path in some bridge A of $G|S$ other than X, Y, Z, or W (if W exists). Call this path (or edge) P_u. Suppose also that v and w are either adjacent or joined by a path in some bridge B of $G|S$ other than X, Y, Z, W, or A (if W and A exist). Call this path (or edge) P_w. Suppose also that v and t are either adjacent or joined by a path in some bridge C of $G|S$ other than X, Y, Z, W, A, or B (if W, A, and B exist). Call this path (or edge) P_t.

Then if any bridge of $G|S$ contains more than one neighbour of v not in S, G contains a W_7-subdivision centred on v.

Proof. Suppose there exists some bridge M of $G|S$ such that $M \setminus S$ contains at least two neighbours of v.

(a) Suppose firstly that $M = Y$.

It cannot be the case that $X \cap S = Z \cap S$ unless $X \cap S = Z \cap S = S$. Therefore, since v is contained in $X \cap S$, $Y \cap S$ and $Z \cap S$, there exists some cycle C disjoint from v that passes through $(X \setminus S)$, $(Y \setminus S)$, and $(Z \setminus S)$. Since X, Y, and Z each contain v, they must each contain at least one neighbour in S of v. Therefore, there exists a W_6 subdivision H centred on v such that the rim is formed from C, three of the spokes are formed from P_u, P_w, and P_t, one spoke lies in $(X \setminus S) \cup \{v_0\}$, one spoke lies in $(Y \setminus S) \cup \{v_0\}$, and one spoke lies in $(Z \setminus S) \cup \{v_0\}$.

We know that $Y \setminus S$ contains some vertex y adjacent to v, such that $y \notin N_H(v)$. Let v_1 be the spoke-meets-rim vertex of H in $Y \setminus S$. Let P_1 be the spoke of H from v to v_1. Since y is contained in the bridge Y, there must be some path Q_1 in $(Y \setminus S)$ joining y to $H \cap (Y \setminus S)$ that first meets $H \cap (Y \setminus S)$ at some vertex p. 35
1. Suppose firstly that \(p \) does not lie on \(P_1 \). Then form a \(W_7 \)-subdivision in \(G \) from \(H \cup v_yQ_1p \).

2. Suppose now that \(p \) lies on \(P_1 \). Without loss of generality, let \(H, y, \) and \(Q_1 \) be chosen to minimise the distance between \(p \) and \(v_1 \) along \(P_1 \).

Suppose there exists some path \(Q_2 \) from \(vP_1p - p \) to \((H \cap (Y)) - vP_1p \) that meets \(H \) only at its endpoints. Such a path cannot meet \(v_1P_1p \), or the distance between \(p \) and \(v_1 \) is no longer minimal with regards to \(H, y, \) and \(Q_1 \). Suppose then that \(Q_2 \) runs from \(vP_1p - p \) to \((H \cap (Y)) - P_1 \). Then a \(W_7 \)-subdivision can be formed using parts of \(H \) as well as \(Q_1 \) and \(Q_2 \). Suppose then that no such path exists. If \(Q_1 \) is trivial, that is, \(y = p \), then the 3-connectivity of \(G \) is violated, since the removal of \(y \) and \(v \) will disconnect the graph. Assume then that \(y \neq p \). Then by 3-connectivity, there must be some path \(Q_3 \) in \((Y) \) joining \(Q_1 - p \) to \((H \cap (Y)) - P_1 \), such that \(Q_3 \) meets \(Q_1 \) only at one endpoint, say \(p_1 \), and meets \(H \) only at the other endpoint, say \(q \). If such a path does not exist, the removal of \(p \) and \(v \) will disconnect the graph. If \(q \in (Y \setminus S) \), form a \(W_7 \)-subdivision from \(H \cup yv \cup yQ_1p_1Q_3q \). Suppose then that \(q \in S \). Without loss of generality, suppose \(q = w \).

The portion of the rim of \(H \) that is contained in \((Y) \) consists of a path, say \(R \), and a single vertex in \(S \) disjoint from this path.

2.1. Suppose that \(w \) forms one of the endpoints of \(R \). Then form a \(W_7 \)-subdivision from \(H \) by replacing the portion of rim formed by \(v_1 Rw \) with the path \(v_1P_1pQ_1p_1Q_3w \), so that \(v_yQ_1p_1 \) becomes a spoke, and \(y \) and \(p \) both become spoke-meets-rim vertices.

2.2. Suppose then that \(u \) and \(t \) form the two endpoints of \(R \). Thus, one of \((X) \), \((Z) \) contains a path in \(H \) from \(w \) to \(t \), while the other contains a path in \(H \) from \(w \) to \(u \).

2.2.1. Suppose one of \(X \), \(Z \) contains all four vertices in \(S \). Without loss of generality, suppose \(X \cap S = S \). Since the rim of \(H \) in \(Y \) runs from \(u \) to \(t \), \((X) \) must contain a path \(R_1 \) in \(H \) either from \(w \) to \(t \) or from \(w \) to \(u \), such that \(R_1 \) meets \(S \) only at its endpoints. Assume without loss of generality that \(R_1 \) is a path from \(w \) to \(t \).

Since \(X \) contains all four vertices in \(S \), there exists some neighbour \(u_1 \) of \(u \) in \(X \setminus S \), and since \(u_1 \) is contained in the bridge \(X \), there exists a path \(R_2 \) in \((X \setminus S) \) from \(u_1 \) to \(R_1 \) that meets \(R_1 \) only at some vertex \(r \). Let \(R_x = uu_1R_2rR_1t \). Since \(v \in X \), there exists some path \(P_2 \) in \(X \) from \(v \) to \(R_x \), which contains all four vertices in \(S \), and \(R_3 \) in \((V) \) such that \(R_x \) becomes a spoke-meets-rim vertex, and by replacing the path \(v_1Ru \) in \((Y) \) with the path \(v_1P_1pQ_1p_1Q_3w \), so that \(v_yQ_1p_1 \) again forms a new spoke.

2.2.2. Suppose now that \(|X \cap S| = 3 \) and \(|Z \cap S| = 3 \). Then, by the hypothesis of the Lemma, there exists some fourth bridge \(W \) of \(G \mid S \) which also contains \(v \). If \(|W \cap S| = 4 \), then the arguments used in case 2.2.1 can be applied to show that a \(W_7 \)-subdivision can be formed in \(G \). Assume then that \(|W \cap S| = 3 \).

By the hypothesis of the Lemma, no two of \(W \cap S, X \cap S, \) and \(Z \cap S \) can be the same. Since one of \((X), (Z) \) contains a path in \(H \) from \(w \) to \(t \), and the other contains a path in \(H \) from \(w \) to \(u \), we know that \(\{(X \cap S), (Z \cap S)\} = \{\{t, v, w\}, \{u, v, w\}\} \).

Thus, \(W \cap S = \{t, u, v\} \). Therefore, there exists a path \(R_2 \) in \((W) \) from \(t \) to \(u \) that meets \(S \) only at its endpoints, and a path \(P_2 \) in \((W) \) from \(v \) to \(R_2 \) that meets \(S \) only at \(v \) and \(R_2 \) only at some vertex \(r \). Suppose without loss of generality that the part of the rim of \(H \) in \((X) \) consists of a path from \(t \) to \(w \). Then form a \(W_7 \)-subdivision from \(H \) by removing the portion of \(H \) contained in \((X \setminus S) \) and instead using the paths \(P_2 \) and \(R_2 \) in \((W) \), so that \(r \) becomes a spoke-meets-rim vertex, and by replacing the path \(v_1Ru \) in \((Y) \) with the paths \(v_1P_1pQ_1p_1Q_3w \), so that \(v_yQ_1p_1 \) again forms a new spoke.
(b) Suppose now that $M \neq Y$.

1. Suppose that $|M \cap S| = 3$. Then the same arguments used in (a) can be used to show that a W_7-subdivision exists in G centred on v. (If M is some bridge U' where $U' \in \{X, Z, A, B, C\}$, then at the points in the proof where U' is required, instead use the structure contained in Y.)

2. Suppose now that $|M \cap S| = 3$. Let x_1, x_2 be the two neighbours of v in $M \setminus S$.

Since $v \in M \cap S$, suppose without loss of generality that $M \cap S = \{u, v, w\}$. We know that $G \setminus \{u, v, w\}$ can have at most two components, $\langle M \setminus \{u, v, w\} \rangle$ and $G \setminus M$.

Since $\langle M \setminus \{u, v, w\} \rangle$ contains at least two neighbours of v (x_1 and x_2), and $G \setminus M$ contains at least three neighbours of v (one neighbour lies along the path P_i, and two neighbours lie in two other bridges of $G|S$, since at least three bridges of $G|S$ contain v), by Lemma 3 a W_7-subdivision exists centred on v.

Thus, whenever any bridge of $G|S$ contains more than one neighbour of v not in S, G contains a W_7-subdivision centred on v.

Lemma 5. Let G be a 3-connected graph containing a separating set $S = \{t, u, v, w\}$. Suppose v has degree ≥ 7, and suppose there are at least three bridges of $G|S$, X, Y, and Z, such that Y contains all four vertices in S, while X and Z each contain v.

Suppose also that one of the following holds:

- either one of X, Z contains all four vertices in S; or
- there exists some fourth bridge W of $G|S$ such that W also contains v.

Suppose for each U_i, U_j, where $U_i, U_j \in \{W, X, Z\}$ and $U_i \neq U_j$, that one of the following holds:

- either $U_i \cap S \neq U_j \cap S$; or
- $U_i \cap S = U_j \cap S = S$.

Suppose that v and u are either adjacent or joined by a path in some bridge A of $G|S$ other than X, Y, Z, or W (if W exists). Call this path (or edge) P_u. Suppose also that v and w are either adjacent or joined by a path in some bridge B of $G|S$ other than X, Y, Z, W, or A (if W and A exist). Call this path (or edge) P_w.

Then if any bridge of $G|S$ contains more than two neighbours of v not in S, G contains a W_7-subdivision centred on v.

Proof. Suppose there exists some bridge M of $G|S$ such that $M \setminus S$ contains at least three neighbours of v.

(a) Suppose firstly that $M = Y$.

By the same arguments used in Lemma 4, there exists some W_6 subdivision H centred on v such that two of the spokes are formed from P_u and P_w, two spokes lie in $\langle (Y \setminus S) \cup \{v_0\} \rangle$, and two spokes lie in two other bridges of $G|S$. Let v_1 and v_2 be the spoke-meets-rim vertices of H in $Y \setminus S$. Let P_1 and P_2 be the spokes of H from v to v_1 and from v to v_2 respectively.

We know that $Y \setminus S$ contains some vertex y adjacent to v, such that $y \notin N_H(v)$. Since y is contained in the bridge Y, there must exist some path Q_1 in $\langle Y \setminus S \rangle$ from y to $H \cap (Y \setminus S)$, such that Q_1 first meets $H \cap (Y \setminus S)$ at some vertex p.

1. Suppose firstly that p does not lie on P_1 or P_2. Then form a W_7-subdivision in G from $H \cup vyQ_1p$.

2. Suppose now that p lies on P_1 or P_2. Without loss of generality, let p lie on P_1, and let $H, y,$ and Q_1 be chosen to minimise the distance between p and v_1 along P_1.

37
Suppose there exists some path Q_2 from $vP_1p - p$ to $(H \cap (Y')) - vP_1p$ that meets H only at its endpoints. Such a path cannot meet v_1P_1p, or the distance between p and v_1 is no longer minimal with respect to H, y, and Q_1. Suppose then that Q_2 runs from $vP_1p - p$ to $(H \cap (Y')) - P_1$. Then a W_7-subdivision can be formed using parts of H, Q_1, and Q_2. Suppose then that no such path exists. If Q_1 is trivial, that is, $y = p$, then the 3-connectivity of G is violated, since the removal of y and v will disconnect the graph. Assume then that $y \neq p$. Then by 3-connectivity, there must be some path Q_3 in (Y) joining $Q_1 - p$ to $(H \cap (Y')) - P_3$, such that Q_3 meets Q_1 only at one endpoint, say p_1, and meets H only at the other endpoint, say q. If such a path does not exist, the removal of p and v will disconnect the graph. If $q \in (Y \setminus S)$, form a W_7-subdivision from parts of H, Q_1, and Q_3. Suppose then that $q \in S$. Without loss of generality, suppose $q = w$.

The portion of the rim of H that is contained in (Y) consists of a path, say R, and a single vertex in S disjoint from this path.

2.1. Suppose that w forms one of the endpoints of R. Then form a W_7-subdivision from H by replacing the portion of rim formed by v_1Rw with the path $v_1P_1pQ_1p_1Q_3w$, so that vyQ_1p_1 becomes a spoke, and p becomes a spoke-meets-rim vertex instead of v_1. (If v_2 is on the path R, then extend the spoke formed by P_2 along R so that v_1 also becomes a spoke-meets-rim vertex.)

2.2. Suppose then that u and t form the two endpoints of R. Thus, one of (X), (Z) contains a path in H from w to t, while the other contains a path in H from w to u.

By the same arguments used in case 2.2 of Lemma 4, a W_7-subdivision can be formed from H by replacing parts of the rim so that the rim in (Y) runs from u to w, and the three spokes in Y are formed from the paths vP_1p, vyQ_1p_1, and either P_2 or $P_2 \cup v_2Rv_1$ (depending on whether or not v_2 still lies on the new rim).

(b) Suppose now that $M \neq Y$.

1. Suppose that $|M \cap S| = S$. Then the same arguments used in (a) can be used to show that a W_7-subdivision exists in G centred on v. (If M is some bridge U' where $U' \in \{X, Z, A, B\}$, then at the points in the proof where U' is required, instead use the structure contained in Y.)

2. Suppose now that $|M \cap S| = 3$. Let x_1, x_2, x_3 be the three neighbours of v in $M \setminus S$.

Let $S_1 = M \cap S$. We know that $G - S_1$ can have at most two components, $\langle M \setminus S_1 \rangle$ and $G - M$. Since $\langle M \setminus S_1 \rangle$ contains at least three neighbours of v (x_1, x_2, x_3), and $G - M$ contains at least two neighbours of v (in two other bridges of $G|S$, since at least three bridges of $G|S$ contain v), then if $S_1 = \{u, v, w\}$, by Lemma 3 a W_7-subdivision exists centred on v. Suppose then that one of u, w is not in S_1. Without loss of generality, suppose $S_1 = \{t, u, v\}$. Then, since P_w is in $G - M$ (except for v), there are now at least three neighbours of v in $G - M$ (in two of $X \setminus S, Y \setminus S$, and $Z \setminus S$, and along the path P_w). Thus, by applying Lemma 2 to both $\langle M \setminus S_1 \rangle$ and $G - M$, and using the path P_u, a W_7-subdivision can still be formed centred on v.

Thus, whenever any bridge of $G|S$ contains more than two neighbours of v not in S, G contains a W_7-subdivision centred on v.

Lemma 6. Let G be a 3-connected graph containing a separating set $S = \{t, u, v, w\}$ such that the removal of any smaller subset of S will separate G into at most three components. Suppose v has degree ≥ 7, and suppose there are at least three bridges of $G|S$, X, Y, and Z, such that Y contains all four vertices in S, while X and Z each contain v. Suppose also that one of the following holds:

- either one of X, Z contains all four vertices in S; or
there exists some fourth bridge \(W \) of \(G|S \) such that \(W \) also contains \(v \).

Suppose for each \(U_i, U_j \), where \(U_i, U_j \in \{W, X, Z\} \) and \(U_i \neq U_j \), that one of the following holds:

- either \(U_i \cap S \neq U_j \cap S \);
- \(U_i \cap S = U_j \cap S = \emptyset \).

Suppose that \(v \) and \(u \) are either adjacent or joined by a path in some bridge \(A \) of \(G|S \) other than \(X, Y, Z, \) or \(W \) (if \(W \) exists). Call this path (or edge) \(P_u \). Suppose also that \(v \) and \(w \) are either adjacent or joined by a path in some bridge \(B \) of \(G|S \) other than \(X, Y, Z, W, \) or \(A \) (if \(W \) and \(A \) exist). Call this path (or edge) \(P_w \).

Then if any two bridges of \(G|S \) each contain more than one neighbour of \(v \) not in \(S \), \(G \) contains a \(W_7 \)-subdivision centred on \(v \).

Proof. Suppose there exist bridges \(M_1 \) and \(M_2 \) of \(G|S \) such that \(M_1 \setminus S \) and \(M_2 \setminus S \) each contain at least two neighbours of \(v \).

By the same kind of arguments used early in the proof of Lemma 5 there exists some \(W_6 \) subdivision \(H_1 \) centred on \(v \) such that two of the spokes are formed from \(P_u \) and \(P_w \), two spokes lie in \(\langle (M_1 \setminus S) \cup \{v_0\} \rangle \), and two spokes lie in two other bridges of \(G|S \). There also exists some other \(W_6 \) subdivision \(H_2 \) centred on \(v \) such that two of the spokes are formed from \(P_u \) and \(P_w \), two spokes lie in \(\langle (M_2 \setminus S) \cup \{v_0\} \rangle \), and two spokes lie in two other bridges of \(G|S \).

Suppose the rim of \(H_1 \) in \(\langle M_1 \rangle \) runs from \(x_1 \) to \(x_2 \), where \(x_1 \neq x_2 \) and \(\{x_1, x_2\} \subseteq \{t, u, w\} \). Let \(x_3 \) refer to the third vertex in \(\{t, u, w\} \), such that \(x_3 \notin \{x_1, x_2\} \).

1. Suppose the rim of \(H_2 \) in \(\langle M_2 \rangle \) does not run from \(x_1 \) to \(x_2 \).

 Without loss of generality, suppose the rim of \(H_2 \) in \(M_2 \) runs from \(x_2 \) to \(x_3 \). Let \(U \) be the bridge of \(G|S \) such that \(\langle U \rangle \) contains a path from \(x_2 \) to \(x_3 \) that forms part of the rim of \(H_1 \). Then form a \(W_7 \)-subdivision from \(H_1 \) by replacing \(H_1 \cap \langle U \rangle \) with \(H_2 \cap \langle M_2 \rangle \).

2. Suppose then that the rim of \(H_2 \) in \(\langle M_2 \rangle \) runs from \(x_1 \) to \(x_2 \).

2.1. Suppose firstly that \(M_1, M_2 \in \{W, X, Y, Z\} \).

 Since \(M_1 \) and \(M_2 \) each contain \(x_1, v, \) and \(x_2 \), and \(M_1 \cap S \neq M_2 \cap S \) unless \(M_1 \cap S = M_2 \cap S = S \), one of \(M_1, M_2 \) must contain all of \(S \). Suppose without loss of generality that \(M_2 \cap S = S \).

 There exists a path \(R \) in \(H_2 \cap \langle M_2 \rangle \) from \(x_1 \) to \(x_2 \) that meets \(S \) only at its endpoints, such that \(R \) forms part of the rim of \(H_2 \). Since \(M_2 \) contains all four vertices in \(S \), there exists some neighbour \(x'_3 \) of \(x_3 \) in \(M_2 \setminus S \), and since \(x'_3 \) is contained in the bridge \(M_2 \), there exists a path \(R' \) in \(\langle M_2 \setminus S \rangle \) from \(x'_3 \) to \(R \) that meets \(R \) only at some vertex \(r \). Let \(R_1 = x_3x'_3R'rRx_1 \), and let \(R_2 = x_3x'_3R'rRx_2 \). Let \(U_1 \) be the bridge of \(G|S \) such that \(\langle U_1 \rangle \) contains a path from \(x_1 \) to \(x'_3 \) that forms part of the rim of \(H_1 \). Let \(U_2 \) be the bridge of \(G|S \) such that \(\langle U_2 \rangle \) contains a path from \(x_2 \) to \(x'_3 \) that forms part of the rim of \(H_1 \). If both of the spoke-meets-rim vertices in \(H_2 \cap \langle M_2 \rangle \) lie on \(R_1 \), form a \(W_7 \)-subdivision from \(H_1 \) by replacing \(H_1 \cap \langle U_1 \rangle \) with \(R_1 \) and the two paths that form spokes in \(H_2 \cap \langle M_2 \rangle \). If both of the spoke-meets-rim vertices in \(H_2 \cap \langle M_2 \rangle \) lie on \(R_2 \), form a \(W_7 \)-subdivision from \(H_1 \) by replacing \(H_1 \cap \langle U_2 \rangle \) with \(R_2 \) and the two paths that form spokes in \(H_2 \cap \langle M_2 \rangle \). Suppose then that one spoke-meets-rim vertex in \(H_2 \cap \langle M_2 \rangle \), say \(v_1 \), lies on \(R_1 - r \), and the other, say \(v_2 \), lies on \(R_2 - r \). Then form a \(W_7 \)-subdivision from \(H_1 \) by removing \(H_1 \cap \langle U_1 \rangle \), and adding the path \(R_1 \), the two paths that form spokes in \(H_2 \cap \langle M_2 \rangle \), and the path \(v_2R_2r \).

2.2. Suppose now that one of \(M_1, M_2 \) is not in \(\{W, X, Y, Z\} \).
If either of M_1 or M_2 contain all of S, then the same argument used in case 2.1 can be applied. Assume then that $M_1 \cap S = M_2 \cap S = \{x_1, v, x_2\}$.

By 3-connectivity, there are two disjoint paths P_1 and P_2 in $\langle M_2 \rangle$, such that these paths run from v to x_1 and v to x_2 respectively, and meet S only at their endpoints. By using these two paths, and by applying Lemma 1 to M_1 and Lemma 2 to the component of $G - \{x_1, v, x_2\}$ which contains X, Y, and Z, a W_7-subdivision can be formed centred on v.

Thus, whenever any two bridges of $G|S$ each contain more than one neighbour of v not in S, G contains a W_7-subdivision centred on v. □

Lemma 7. Let G be a 3-connected graph containing a separating set $S = \{t, u, v, w\}$ such that the removal of any smaller subset of S will separate G into at most three components. Suppose v has degree ≥ 7, and suppose there are at least three bridges of $G|S$, X, Y, and Z, such that Y contains all four vertices in S, while X and Z each contain v. Suppose also that one of the following holds:

- either one of X, Z contains all four vertices in S; or
- there exists some fourth bridge W of $G|S$ such that W also contains v.

Suppose for each U_i, U_j, where $U_i, U_j \in \{W, X, Z\}$ and $U_i \neq U_j$, that one of the following holds:

- either $U_i \cap S \neq U_j \cap S$; or
- $U_i \cap S = U_j \cap S = S$.

Suppose that v and u are either adjacent or joined by a path in some bridge A of $G|S$ other than X, Y, Z, or W (if W exists). Call this path (or edge) P_u.

Then if some bridge of $G|S$ contains more than one neighbour of v not in S, and some other bridge of $G|S$ contains more than two neighbours of v not in S, G contains a W_7-subdivision centred on v.

Proof. Suppose there exist bridges M_1 and M_2 of $G|S$ such that $M_1 \setminus S$ contains at least three neighbours of v, and $M_2 \setminus S$ contains at least two neighbours of v.

By the same arguments used in Lemma 1 there exists some W_6 subdivision H centred on v such that exactly two spokes of H lie in $\langle M_1 \rangle$.

We know that $M_1 \setminus S$ contains some vertex x adjacent to v, such that $x \notin N_H(v)$. By the same arguments used in Lemma 2 there exists some path or paths from x to $H \cap \langle M_1 \rangle$ which can be used to construct a W_7-subdivision centred on v. □

Lemma 8. Let G be a 3-connected graph containing a separating set $S = \{t, u, v, w\}$ such that the removal of any smaller subset of S will separate G into at most three components. Suppose v has degree ≥ 7, and suppose there are at least three bridges of $G|S$, X, Y, and Z, such that Y contains all four vertices in S, while X and Z each contain v. Suppose also that one of the following holds:

- either one of X, Z contains all four vertices in S; or
- there exists some fourth bridge W of $G|S$ such that W also contains v.

Suppose for each U_i, U_j, where $U_i, U_j \in \{W, X, Z\}$ and $U_i \neq U_j$, that one of the following holds:

- either $U_i \cap S \neq U_j \cap S$; or
• $U_i \cap S = U_j \cap S = S$.

Suppose that v and u are either adjacent or joined by a path in some bridge A of $G|S$ other than X, Y, Z, or W (if W exists). Call this path (or edge) P_u.

Then if there exist three bridges of $G|S$ that each contain more than one neighbour of v not in S, G contains a W_7-subdivision centred on v.

Proof. Suppose there exist bridges M_1, M_2, and M_3 of $G|S$ such that each contain at least two neighbours of v not in S.

By the same arguments used in Lemma 6, there exists some W_6 subdivision H_1 centred on v such that one spoke is formed from P_u, two spokes lie in $\langle (M_1 \setminus S) \cup \{v_0\}\rangle$, two spokes lie in $\langle (M_2 \setminus S) \cup \{v_0\}\rangle$, and one spoke lies in some other bridge of $G|S$. There also exists some other W_6 subdivision H_2 centred on v such that one spoke is formed from P_u, two spokes lie in $\langle (M_2 \setminus S) \cup \{v_0\}\rangle$, two spokes lie in $\langle (M_3 \setminus S) \cup \{v_0\}\rangle$, and one spoke lies in some other bridge of $G|S$. Again by using the arguments in Lemma 6, a W_7-subdivision can be formed centred on v using parts of H_1 and H_2. □

Lemma 9. Let G be a 3-connected graph with at least 19 vertices, containing no internal 3-edge-cutsets, no type 1, 2, 2a, or 3 edge-vertex-cutsets, and on which Reductions 1A, 1B, and 1C cannot be performed. Suppose G contains a separating set $S = \{u, v, w\}$, such that there exist at least three bridges, X, Y, Z, of $G|S$. Suppose that $Z \setminus S$ contains at least three neighbours of v. Suppose that v is either adjacent to u or joined by a path in some fourth bridge A of $G|S$ other than X, Y, Z. Call this path (or edge) P_u. Suppose also that v is either adjacent to w or joined by a path in some other bridge B of $G|S$ other than X, Y, Z, or A (if A exists). Call this path (or edge) P_w. Then there exists a W_7-subdivision in G.

Proof. If any bridge of $G|W$ other than Z contains more than one neighbour of v not in S, then by Lemma 3 a W_7-subdivision can be formed centred on v. Assume that this is not the case. Thus, if any bridge other than Z contains more than three vertices not in S, a type 2 edge-vertex-cutset can be formed from u, w, and an edge incident with v in that bridge. Assume then that every bridge of $G|S$ other than Z contains at most three vertices not in S.

$X \setminus S$ must contain more than one vertex, otherwise Reduction 1A can be performed on G. Thus, to prevent an internal 3-edge-cutset, there must exist some fourth edge joining $X \setminus S$ to S. Some member x of S then must have at least two neighbours in $X \setminus S$. Since v can have at most one neighbour in $X \setminus S$, we can suppose that $x \in \{u, w\}$. Assume $x = u$ without loss of generality.

$Y \setminus S$ must also contain more than one vertex, again to avoid enabling Reduction 1A. By the same argument, some member $y \in \{u, w\}$ must have at least two neighbours in $Y \setminus S$. Consider the two options:

(a) Suppose $y = w$.

If u has more than two neighbours in $Z \setminus S$ then by Lemma 3a a W_7-subdivision can be formed centred on u. Similarly, if w has more than two neighbours in $Z \setminus S$ then a W_7-subdivision can be formed centred on w. Assume then that u and w each have at most two neighbours in $Z \setminus S$. Then if $Z \setminus S$ contains more than three vertices, there exists a type 3 edge-vertex-cutset in G. Assume then that $|Z \setminus S| \leq 3$.

Since each bridge of $G|S$ contains at most three vertices not in S, and $|V(G)| \geq 19$, there must exist at least three more bridges of $G|S$ other than X, Y, and Z. By the same arguments used for X and Y, these bridges must each contain at least two but no more than three vertices not in S, and can contain no more than one neighbour of v not in S. □
Suppose every bridge of $G|S$ other than Z contains only two vertices not in S. Then, since there are at least five such bridges of $G|S$, there must exist some bridge that is contained as a subdivision in at least two other bridges, thus enabling Reduction IB. Suppose then that this is not the case; thus, there exists some bridge U' of $G|S$ other than Z such that $|U' \setminus S| = 3$.

If any bridge of $G|S$ other than Y has three neighbours of w not in S, then by Lemma 3 a W_7-subdivision can be formed. Suppose then that every bridge of $G|S$ other than Y has at most two neighbours of w not in S. Similarly, if any bridge of $G|S$ other than X has three neighbours of u not in S, then by Lemma 3 a W_7-subdivision can be formed. Suppose then that every bridge of $G|S$ other than X has at most two neighbours of u not in S.

Suppose $U' \notin \{X, Y\}$. Then u and w each have at most two neighbours in $U' \setminus S$. Since $U' \neq Z$, $U' \setminus S$ contains only one neighbour of v, say v'. Thus, a type 2a edge-vertex-cutset can be formed from u, w, and vv'.

Suppose then that $U' \in \{X, Y\}$. Without loss of generality, suppose that $U' = X$, thus, $|X \setminus S| = 3$. If u has at most two neighbours in $X \setminus S$, then a type 2a edge-vertex-cutset can be formed, as in the previous paragraph. Suppose then that u has three neighbours in $X \setminus S$. If any bridge of $G|S$ other than X has more than one neighbour of u not in S, then by Lemma 3 a W_7-subdivision can be formed centred on u. Suppose then that each bridge of $G|S$ other than X contains at most one neighbour of u not in S. Let B be the set of bridges of $G|S$ other than X, Y, Z. For each bridge $B_i \in B$, $B_i \setminus S$ contains exactly one neighbour of u, one neighbour of v, and two neighbours of w (since otherwise an internal 3-edge-cutset would exist). Since there are only four edges joining S to each $B_i \setminus S$, there can be at most two vertices in each $B_i \setminus S$, otherwise an internal 4-edge-cutset exists. Thus, each of the bridges in B are isomorphic. Since $|B| \geq 3$, Reduction 1B can be performed on G.

(b) Suppose now that $y = u$, and that w has only one neighbour in $Y \setminus S$.

If u has more than two neighbours in $Y \setminus S$, then by Lemma 3 a W_7-subdivision can be formed from bridges X and Y. Assume then that u has exactly two neighbours in $Y \setminus S$. Thus, there are exactly four edges joining S to $Y \setminus S$. To avoid an internal 4-edge-cutset, then, $|Y \setminus S| = 2$.

Suppose u has at least two neighbours in $Z \setminus S$. Then Reduction IB can be performed, since $\langle Y \rangle$ is contained as a subdivision in both $\langle X \rangle$ and $\langle Z \rangle$. Suppose then that u has only one neighbour, say u', in $Z \setminus S$. Then, to avoid creating a type 2 edge-vertex-cutset from v, w, and the edge uu', $|Z \setminus S| \leq 3$. Thus, since $|V(G)| \geq 19$, there must be at least three more bridges of $G|S$ other than X, Y, and Z.

If any bridge of $G|S$ other than X and Y contains more than one neighbour of u not in S, then $\langle Y \rangle$ is contained as a subdivision in the induced subgraph formed by that bridge, as well as in $\langle X \rangle$, and so Reduction IB can be performed. Thus, there exist at least three bridges other than Z which contain only one neighbour of u not in S. Since each of these bridges also contains only one neighbour of v not in S, and has at most three vertices not in S, at least one of the bridges must be contained as a subdivision in the other two. Thus, either Reduction IB or Reduction IC can be performed on G.

Lemma 10. Let G be a 3-connected graph with at least 19 vertices, containing no internal 3-edge-cutsets, no type 1, 2, 2a, or 3 edge-vertex-cutsets, and on which Reductions IA, IB, and IC cannot be performed. Suppose G contains a separating set $S = \{t, u, v, w\}$. Suppose v has degree ≥ 7, and suppose there are at least three bridges of $G|S$, X, Y, and Z, such that Y contains all four vertices in S, X and Z each contain v, and $Y \setminus S$ contains at most one neighbour of u. Suppose also that one of the following holds:

\[\square \]
• either one of \(X, Z \) contains all four vertices in \(S \); or

• there exists some fourth bridge \(W \) of \(G|S \) such that \(W \) also contains \(v \).

Suppose that one of the following holds:

• either \(X \cap S \neq Z \cap S \); or

• \(X \cap S = Z \cap S = S \).

Suppose that \(v \) and \(u \) are either adjacent or joined by a path in some bridge \(A \) of \(G|S \) other than \(X, Y, Z, \) or \(W \) (if \(W \) exists). Call this path (or edge) \(P_u \).

Then if \(Y \setminus S \) contains more than three neighbours of \(v \), \(G \) contains a \(W_7 \)-subdivision.

Proof. Suppose \(Y \setminus S \) contains at least four neighbours of \(v \).

By the same arguments used in Lemma 9, there exists some \(W_6 \) subdivision \(H \) centred on \(v \) such that one of the spokes is formed from \(P_u \), three spokes lie in \(\langle (Y \setminus S) \cup \{v_0\} \rangle \), and two spokes lie in two other bridges of \(G|S \).

If there exists some bridge of \(G|S \) that contains \(v \) other than \(X, Y, Z, \) or \(A \), then this bridge can be used to form a path from \(v \) to \(w \) or from \(v \) to \(t \), thus forming a \(W_7 \)-subdivision. Assume then that no other bridges of \(G|S \) exist.

Let \(v_1, v_2, v_3 \) be the spoke-meets-rim vertices of \(H \) in \(Y \setminus S \), in order around the rim of \(H \). Let \(P_1, P_2, P_3 \) be the spokes of \(H \) from \(v \) to \(v_1, v \) to \(v_2 \), and \(v \) to \(v_3 \) respectively. Let \(H \) be chosen to minimise the sum of the lengths of the paths \(P_1, P_2, P_3 \).

We know that \(Y \setminus S \) contains some vertex \(y \) adjacent to \(v \), such that \(y \notin N_H(v) \).

Suppose firstly that \(y \) is some vertex in \(H \). If \(y \in H - (P_1 \cup P_2 \cup P_3) \), then \(H \cup vy \) is a \(W_7 \)-subdivision. Suppose then that \(y \in P_i \), where \(i \in \{1, 2, 3\} \). Then the path \(vyP_iv_i \) forms a shorter path than \(P_i \) from \(v \) to \(v_i \), such that this path is still vertex-disjoint from \(H - P_i \), so the sum of the lengths of \(P_1, P_2, P_3 \) is no longer minimal.

Suppose then that \(y \notin H \). By the 3-connectivity of \(G \), there must be two distinct vertices \(q_1 \) and \(q_2 \) in \(H \), and two paths \(Q_1 \) and \(Q_2 \) in \(\langle Y \rangle \), from \(y \) to \(q_1 \) and \(y \) to \(q_2 \) respectively, such that \(Q_1 \) and \(Q_2 \) are vertex-disjoint except at \(y \) and are disjoint from \(H \) except at their endpoints. (Note that if the rim of \(H \) in \(\langle Y \rangle \) meets \(u \), then neither \(Q_1 \) nor \(Q_2 \) can meet \(u \), since by the conditions of the hypothesis, \(u \) has only one neighbour in \(Y \setminus S \), and this neighbour lies in \(H \).) For most placements of \(q_1 \) and \(q_2 \), it is straightforward to check that a \(W_7 \)-subdivision can be formed centred on \(v \). The only situation where this is not the case is for \(\{q_1, q_2\} = \{v_1, v_3\} \). Suppose then that \(q_1 = v_1 \) and \(q_2 = v_3 \).

Let \(S_1 = \{q_1, v, q_2\} \). Suppose there exists some path from \(y \) to \(H - S_1 \) such that \(y, v_2, \) and \(u \) are not each in three separate bridges of \(G|S_1 \). It is straightforward to check that a \(W_7 \)-subdivision exists in the resulting graph. Suppose then that \(S_1 \) forms a separating set, the removal of which places \(y, v_2, \) and \(u \) in three separate components.

Call \(B \) the bridge of \(G|S_1 \) containing \(y \). Call \(C \) the bridge of \(G|S_1 \) containing \(v_2 \). Call \(D \) the bridge of \(G|S_1 \) containing \(u \) and \(w \).

Suppose there exists some internal vertex on one of the paths \(P_1 \) or \(P_3 \) such that this vertex is contained in one of the bridges \(B, C, \) or \(D \). It is straightforward to check that the existence of such a vertex will result in a \(W_7 \)-subdivision. Assume then that if such a vertex exists, it is contained in some fourth bridge \(E \) of \(G|S_1 \).

Suppose firstly that such a bridge \(E \) exists, and contains internal vertices of both the paths \(P_1 \) and \(P_3 \). Then by Lemma 9 a \(W_7 \)-subdivision exists in \(G \).

Assume then that if the paths \(P_1 \) and \(P_3 \) both contain internal vertices, that the internal vertices of \(P_1 \) are contained in some bridge \(E \) such that \(E \notin \{B, C, D\} \), while the internal vertices of \(P_2 \) are contained in some other bridge \(F \) such that \(F \notin \{B, C, D, E\} \). By Lemma 9 then, a \(W_7 \)-subdivision exists in \(G \).
Thus, whenever \(Y \setminus S \) contains more than three neighbours of \(v \), \(G \) contains a \(W_7 \)-subdivision.

\[\square \]

Lemma 11. Let \(G \) be a 3-connected graph with at least 19 vertices. Suppose \(G \) has no internal 3 or 4-edge-cutsets, no type 1, 2, 2a, 3, 3a, or 4 edge-vertex-cutsets, and is a graph on which none of Reductions 4A, 4B, 4C, 4A, and 4 can be performed. Let \(S = \{u,v,w\} \) be a separating set of vertices in \(G \) such that \(v \) is adjacent to both \(u \) and \(w \), and such that there are exactly two bridges, \(X \) and \(Y \), of \(G|S \). Suppose that \(v \) has at least four neighbours in \(X \setminus S \). Then \(G \) contains a \(W_7 \)-subdivision.

Proof. By Lemma 2 \(\langle X \rangle \) contains a structure \(H \), which consists of the following:

- a path \(P_H \) from \(u \) to \(w \), that meets \(S \) only at its endpoints; and
- three paths \(Q_{H_1}, Q_{H_2}, Q_{H_3} \) and three vertices \(q_{H_1}, q_{H_2}, q_{H_3} \), such that \(q_{H_1}, q_{H_2}, q_{H_3} \) are distinct vertices in order on the path \(P_H \), and \(Q_{H_1}, Q_{H_2}, Q_{H_3} \) are paths from \(v \) to \(q_{H_1} \), \(v \) to \(q_{H_2} \), and \(v \) to \(q_{H_3} \) respectively, that are pairwise vertex-disjoint except at \(v \) and meet \(S \) only at \(v \), such that each \(Q_{H_i} \) is disjoint from \(P_H \) except at \(q_{H_i}, 1 \leq i \leq 3 \).

Let \(H \) be chosen to minimise \(|E(H)| \).

If \(v \) contains more than one neighbour in \(Y \setminus S \), then by Lemma 8 a \(W_7 \)-subdivision exists centred on \(v \). Assume then that \(v \) has exactly one neighbour \(v' \) in \(Y \setminus S \). Then if \(|Y \setminus S| > 3 \), a type 2 edge-vertex-cutset can be formed from \(u, w \), and the edge \(vv' \).

Assume then that \(|Y \setminus S| \leq 3 \).

There exists some vertex \(a \in N(v \setminus \{w,v'\})(v) \setminus N_H(v) \), since \(v \) has at least four neighbours in \(X \setminus S \).

Suppose firstly that \(a \in H \). If \(a \in H - (Q_{H_1} \cup Q_{H_2} \cup Q_{H_3}) \), then a \(W_7 \)-subdivision exists in \(G \) centred on \(v \), namely \(H \cup \{v_0\} \). Suppose then that \(a \in Q_{H_i}, \) where \(1 \leq i \leq 3 \).

Then the path \(vaQ_{H_i}q_{H_i} \) forms a shorter path than \(Q_{H_i} \) from \(v \) to \(q_{H_i} \), such that this path is still vertex-disjoint from \(H - v - q_{H_i} \), so \(|E(H)| \) is no longer minimal.

Suppose then that \(a \notin H \). By the 3-connectivity of \(G \), there must be two distinct vertices in \(H \), \(p_1 \) and \(p_2 \), and two paths in \(\langle X \rangle \), \(P_1 \) and \(P_2 \), from \(a \) to \(p_1 \) and from \(a \) to \(p_2 \) respectively, such that \(P_1 \) and \(P_2 \) are vertex-disjoint except at \(a \) and are disjoint from \(H \) except at their endpoints. For most placements of \(p_1 \) and \(p_2 \), it is straightforward to check that a \(W_7 \)-subdivision can be formed centred on \(v \). The situations where this is not the case are:

1. \(\{p_1, p_2\} = \{u, q_{H_2}\} \)
2. \(\{p_1, p_2\} = \{w, q_{H_2}\} \)
3. \(\{p_1, p_2\} = \{q_{H_1}, q_{H_3}\} \)
4. \(\{p_1, p_2\} = \{u, q_{H_3}\} \)
5. \(\{p_1, p_2\} = \{w, q_{H_1}\} \)

Each of these cases are addressed below.

Cases 1 and 2: \(\{p_1, p_2\} = \{u, q_{H_2}\} \) or \(\{p_1, p_2\} = \{w, q_{H_2}\} \)

Without loss of generality, let \(p_1 = u \) and \(p_2 = q_{H_2} \).

Let \(S_1 = \{u, v, q_{H_2}\} \).

(a) Suppose firstly there exists some path \(P_A \) in \(\langle X \rangle \) from \(P_1 \cup P_2 \) to \(H - S_1 \), such that the removal of \(S_1 \) does not separate \(a \) from \(H \). Then either the graph is
equivalent to one of those with the placement of p_1 and p_2 mentioned above, where a W_7-subdivision is formed, or P_4 meets H only at w. Suppose the latter holds. Let p_a be the vertex along P_A closest to w where P_A meets $P_1 \cup P_2$. There are three possibilities: p_a is on $P_1 - a$, p_a is on $P_2 - a$, or $p_a = a$.

Let $W = \{u, v, w, q_{H2}\}$. Assume that the removal of W separates a from $H - W$, since otherwise a W_7-subdivision exists in G.

Let A be the bridge of $G|W$ containing a. Let $B' = uP_Hq_{H2} \cup Q_{H1}$.

1. Suppose that S_1 is not a separating set of G, that is, there exists some path $P_{B'}$ disjoint from S_1 joining B' to $(H \cup \langle A \rangle) - B'$. Such a path either results in a W_7-subdivision, or meets $(H \cup \langle A \rangle) - B'$ only at w. Suppose the latter holds. Let p_b be the vertex along $P_{B'}$ closest to w where $P_{B'}$ meets B'. There are four possibilities: p_b is on $Q_{H1} - q_{H1}$, p_b is on $uP_Hq_{H1} - q_{H1}$, p_b is on $q_{H1}P_Hq_{H2} - q_{H1}$, or $p_b = q_{H1}$. For each of the four placements of p_b, there are three possible placements of p_a, so G contains one of twelve possible structures.

Let $C' = wP_Hq_{H2} \cup Q_{H3}$.

1.1. Suppose $S_2 = \{w, v, q_{H2}\}$ is not a separating set, but rather there exists some path $P_{C'}$ disjoint from S_2 joining C' to $(H \cup \langle A \rangle) - C'$. Such a path either results in a W_7-subdivision, or meets $(H \cup \langle A \rangle) - C'$ only at u. Suppose the latter holds. Let p_c be the vertex along $P_{C'}$ closest to u where $P_{C'}$ meets C'. There are four possibilities: p_c is on $Q_{H3} - q_{H3}$, p_c is on $q_{H2}P_Hq_{H3} - q_{H3}$, p_c is on $q_{H3}P_Hw - q_{H3}$, or $p_c = q_{H3}$. For each of the four placements of p_c, there are twelve possible placements of p_a and p_b, so G contains one of forty-eight possible structures.

Let $B = V(B' \cup P_{B'})$, and let $C = V(C' \cup P_{C'})$.

1.1.1. Suppose A, B, C, and Y are not all separate bridges of $G|W$, but rather, some path Q exists that prevents the removal of W from placing each of $A \setminus W$, $B \setminus W$, $C \setminus W$ and $Y \setminus W$ in separate components. The program was used to generate each of the forty-eight possible structures that G contains, and new graphs were generated from each of these by adding such a path Q. Each possible placement of Q was then tested for the presence of a W_7-subdivision. In every case, a W_7-subdivision was found to exist.

1.1.2. Suppose then that A, B, C, and Y all form separate bridges of $G|W$.

Suppose there exists some vertex $v_0 \in \{u, v, w\}$ with degree ≥ 7 such that some bridge of $G|W$ contains at least three neighbours of v_0 not in W. Then by Lemma 6, there exists a W_7-subdivision centred on that vertex. Suppose then that no such vertex exists in W.

Suppose there exists some vertex $v_0 \in \{u, v, w\}$ with degree ≥ 7 such that two bridges of $G|W$ each contain two neighbours of v_0 not in W. Then by Lemma 7, there exists a W_7-subdivision centred on that vertex. Suppose then that no such vertex exists in W.

Suppose then there exists some vertex v_0 in $\{u, v, w\}$ with degree ≥ 7 such that some bridge of $G|W$ contains two neighbours of v_0 not in W. If $v_0 = v$, then by Lemma 4, there exists a W_7-subdivision in G. If $v_0 \in \{u, w\}$, then since v_0 has only six neighbours in $A \cup B \cup C \cup Y$, there must be some fifth bridge D of $G|W$ that contains v_0. Since there are only two bridges of $G|\{u, v, w\}$, D must also contain q_{H2}, and therefore must contain a path from v_0 to q_{H2} that meets W only at its endpoints. Thus, Lemma 4 can again be applied to show there exists a W_7-subdivision in G.

Since each vertex in $\{u, v, w\}$ with degree ≥ 7 has no more than one neighbour not in W in each bridge of $G|W$, and since $|Y \setminus S| < 7$, Reduction 3 can be performed on G.

1.2. Suppose then that S_2 is a separating set, that is, no such path $P_{C'}$ exists.
Thus, C' now forms a bridge of $G|S_2$ and of $G|W$.

Suppose there exists some bridge U of $G|W$ such that $U \setminus W$ contains more than one neighbour of v. Then by Lemma 4 there exists a W_7-subdivision centred on v. Suppose then that no such bridge exists, that is, each bridge of $G|W$ contains at most one neighbour of v not in W.

Suppose there exists some bridge U of $G|W$ such that $U \cap W = W$, and $U \setminus W$ contains at least four neighbours of u. Then by Lemma 10 there exists a W_7-subdivision centred on u. Suppose then that no such bridge U exists, that is, any bridge containing all vertices in W contains at most three neighbours of u not in W.

Suppose there exists some vertex $v_0 \in \{u, w\}$ with degree ≥ 7 such that some bridge U of $G|W$ contains at least three neighbours of v_0 not in W. If $v_0 = w$, then by Lemma 5 there exists a W_7-subdivision centred on v_0. Suppose then that $v_0 = u$. If some bridge of $G|W$ other than U contains at least two neighbours of u not in W, then by Lemma 5 a W_7-subdivision can be formed centred on u. Suppose then that all bridges of $G|W$ other than U contain at most one neighbour of u not in W. Then, since u has degree ≥ 7, there must either exist some fourth bridge other than A, B, and Y which contains u, or u must be adjacent to at least one of w, q_{H2}. Thus, Lemma 5 can be applied to show that a W_7-subdivision exists centred on u. Suppose then that no such vertex v_0 exists in W.

Suppose then there exists some vertex $v_0 \in \{u, w\}$ with degree ≥ 7 such that two bridges of $G|W$, say U_1 and U_2, each contain two neighbours of v_0 not in W. Again, if $v_0 = w$, then by Lemma 6 there exists a W_7-subdivision centred on that vertex. Suppose then that $v_0 = u$. If some bridge of $G|W$ other than U_1 and U_2 contains at least two neighbours of u not in W, then by Lemma 6 a W_7-subdivision can be formed centred on u. Suppose then that all bridges of $G|W$ other than U_1 and U_2 contain at most one neighbour of u not in W. Then, since u has degree ≥ 7, there must either exist some fourth bridge other than A, B, and Y which contains u, or u must be adjacent to at least one of w, q_{H2}. Thus, Lemma 6 can again be applied to show that a W_7-subdivision exists centred on u. Suppose then that no such vertex v_0 exists in W.

Suppose then there exists some vertex $v_0 \in \{u, w\}$ with degree ≥ 7 such that some bridge U of $G|W$ contains two neighbours of v_0 not in W. Since v_0 has either five (if $v_0 = u$) or six (if $v_0 = w$) neighbours in $A \cup B \cup C \cup Y$, there must be some fifth bridge D of $G|W$ that contains v_0, and if $v_0 = u$, some sixth bridge E of $G|W$ that also contains v_0. Since there are only two bridges of $G|\{u, v, w\}$, D must also contain q_{H2}, and therefore must contain a path from v_0 to q_{H2} that meets W only at its endpoints. Thus, Lemma 5 can be applied to show that there exists a W_7-subdivision in G. Suppose then that no such vertex exists in W.

Thus, since each vertex in $\{u, v, w\}$ with degree ≥ 7 has no more than one neighbour not in W in each bridge of $G|W$, and since $|Y \setminus S| < 7$, Reduction 3 can be performed on G.

2. Suppose now that S_1 is a separating set, that is, no such path $P_{B'}$ exists joining B' to $(H \cup (A)) - B'$. Call B the bridge of $G|S_1$ and of $G|W$ that contains B'.

Let $C' = wP_Hq_{H2} \cup Q_{H3}$. Suppose that $S_2 = \{w, v, q_{H2}\}$ is not a separating set, but rather there exists some path $P_{C'}$ disjoint from S_2 joining C' to $(H \cup (A)) - C'$. Such a path either results in a W_7-subdivision, or meets $(H \cup (A)) - C'$ only at u. If the latter holds, then by symmetry of the graph, the same arguments used in case 1.2 above can be applied to show that G contains a W_7-subdivision. Assume then that no such path $P_{C'}$ exists. Call C the bridge of $G|S_2$ and $G|W$ that contains C'.

Suppose there exists some bridge U of $G|W$ such that $U \setminus W$ contains more than one neighbour of v. Then by Lemma 4 there exists a W_7-subdivision centred on v. 46
Suppose then that no such bridge exists, that is, each bridge of $G|W$ contains at most one neighbour of v not in W.

Suppose there exists some vertex $v_0 \in \{u, w\}$, and some bridge U of $G|W$ such that $U \cap W = W$, and $U \setminus W$ contains at least four neighbours of v_0. Then by Lemma 10 there exists a W_7-subdivision centred on v_0. Suppose then that no such bridge U exists, that is, any bridge containing all vertices in W contains at most three neighbours not in W or u and w.

Suppose now that $B \setminus S_1$ contains at least four neighbours of u. Then, since $|B \setminus S_1| > 3$ and there is only one neighbour of v in $B \setminus S_1$, a type 2 edge-vertex-cutset can be formed from u, q_{H2}, and the edge incident with v in $\langle B \rangle$. Suppose then that $B \setminus S_1$ contains at most three neighbours of u. By the same argument, $C \setminus S_2$ can contain at most three neighbours of w, or a type 2 edge-vertex-cutset is created.

Suppose there exist at least four bridges of $G|S_1$, that is, at least two bridges of $G|S_1$ exist other than B and the bridge containing w. Then by Lemma 9 a W_7-subdivision exists in G (since at least three bridges of $G|S_1$ exist that do not contain internal vertices on the path Q_{H2}). Suppose then there are at most three bridges of $G|S_1$.

Suppose there exist at least four bridges of $G|S_2$, that is, at least two bridges of $G|S_2$ exist other than C and the bridge containing u. Then by Lemma 11 a W_7-subdivision exists in G. Suppose then there are at most three bridges of $G|S_2$.

Suppose then there exists some vertex v_0 in $\{u, w\}$ with degree ≥ 7 such that some bridge U of $G|W$ contains at least three neighbours of v_0 not in W. If some bridge of $G|W$ other than U contains at least two neighbours of v_0 not in W, then by Lemma 9 a W_7-subdivision can be formed centred on v_0. Suppose then that all bridges of $G|W$ other than U contain at most one neighbour of v_0 not in W. Then, since v_0 has degree ≥ 7, there must exist some fourth bridge other than A, B, and Y which contains v_0, or v_0 must be adjacent to some vertex in W other than v. Thus, Lemma 2 can be applied to show that a W_7-subdivision exists centred on v_0. Suppose then that no such vertex v_0 exists in W.

Suppose then there exists some vertex v_0 in $\{u, w\}$ with degree ≥ 7 such that two bridges of $G|W$, U_1 and U_2, each contain two neighbours of v_0 not in W. If some bridge of $G|W$ other than U_1 and U_2 contains at least two neighbours of v_0 not in W, then by Lemma 3 a W_7-subdivision can be formed centred on v_0. Suppose then that all bridges of $G|W$ other than U_1 and U_2 contain at most one neighbour of v_0 not in W. Then, since v_0 has degree ≥ 7, there must exist some fourth bridge other than A, B, and Y which contains v_0, or u must be adjacent to some vertex in W other than v. Thus, Lemma 3 can again be applied to show that a W_7-subdivision exists centred on v_0. Suppose then that no such vertex v_0 exists in W.

Suppose then there exists some vertex v_0 in $\{u, w\}$ with degree ≥ 7 such that some bridge U of $G|W$ contains two neighbours of v_0 not in W. Since v_0 has at most five neighbours in $A \cup B \cup C \cup Y$, there must exist fifth and sixth bridges D and E of $G|W$, each of which contain v_0. Since there are only two bridges of $G|S$, D must also contain q_{H2}, and therefore must contain a path from v_0 to q_{H2} that meets W only at its endpoints. Thus, Lemma 3 can be applied to show there exists a W_7-subdivision in G. Suppose then that no such vertex exists in W.

Thus, since each vertex in $\{u, v, w\}$ with degree ≥ 7 has no more than one neighbour not in W in each bridge of $G|W$, and since $|Y \setminus S| < 7$, Reduction 3 cannot be performed on G.

(b) Suppose now that the removal of S_1 separates a from H, that is, no such path P_A exists. Let A be the bridge of $G|S_1$ containing a. Let B be the bridge of $G|S_1$ containing q_{H1}. Let C be the bridge of $G|S_1$ containing w and q_{H3}.
1. Suppose there exists some internal vertex \(q \) on the path \(Q_{H_2} \).

By 3-connectivity, there must be some path \(Q \) contained in \(\langle X \rangle \) that joins \(q \) to \(H - Q_{H_2} \). It is straightforward to check that the existence of such a path will result in a \(W_7 \)-subdivision, unless \(Q \) first meets \(H - Q_{H_2} \) at either \(u \) or \(w \). Suppose then that this is the case. If every path \(Q \) from \(Q_{H_2} - \{ v, q_{H_2} \} \) to \(H - Q_{H_2} \) first meets \(H - Q_{H_2} \) at \(u \), then \(Q \) is contained in a separate bridge from \(A, B, \) or \(C \), and thus Lemma 9 can be applied to show that a \(W_7 \)-subdivision exists in \(G \). Suppose then that some such path \(Q \) first meets \(H - Q_{H_2} \) at \(w \). Thus, \(q \) is contained in the bridge \(C \).

Suppose there exists some fourth bridge of \(G|S_1 \). Then by Lemma 9 a \(W_7 \)-subdivision exists in \(G \). Suppose then that \(A, B, \) and \(C \) are the only three bridges of \(G|S_1 \).

Suppose \(u \) has at most two neighbours in \(C \setminus S_1 \). Then, unless \(|(A \cup B) \setminus \{ v, q_{H_2} \}| = 3 \), a type 2 or 4 edge-vertex-cutset can be formed from \(v, q_{H_2} \), and the edge or edges joining \(u \) to \(C \setminus S_1 \) (since \(C \setminus S_1 \) contains at least four vertices: \(q, q_{H_3}, w, \) and at least one vertex in \(Y \setminus S \)).

Assume then that \(|(A \cup B) \setminus \{ v, q_{H_2} \}| = 3 \). Thus, there must be only one vertex in \(A \setminus S_1 \), and one vertex in \(B \setminus S_1 \). Then, since \(|Y \cup A \cup B| \leq 9 \), and \(|V(G)| \geq 19 \), there must be at least 10 vertices in \(C \setminus (Y \cup \{ q_{H_2} \}) \). Since \(|(A \cup B) \setminus S_1| = 2 \), there must be only two edges joining \(q_{H_2} \) to \((A \cup B) \setminus S_1 \). These two edges and the vertices \(w \) and \(v \) form a type 4 edge-vertex-cutset.

Suppose then that \(u \) has three neighbours in \(Y \setminus S \). If \(u \) also has at least three neighbours in \(X \setminus S \), then by applying Lemma 2 to \(X \) and \(Y \) and using the edge \(vu \), a \(W_7 \)-subdivision can be formed centred on \(u \). Assume then that \(u \) has only two neighbours in \(X \setminus S \), say \(u_1 \) and \(u_2 \). Then a type 4 edge-vertex-cutset is formed from \(v, u, u_1, \) and \(uu_2 \). (Since \(u \) has three neighbours in \(Y \setminus S \), we know that \(|Y \setminus \{ w, v \}| = 4 \).

2. Assume then that no such vertex \(q \) exists — that is, \(v \) is adjacent to \(q_{H_2} \), and \(Q_{H_2} \) is a single edge. Then by Lemma 9 a \(W_7 \)-subdivision exists in \(G \).

Case 3: \(\{ p_1, p_2 \} = \{ q_{H_1}, q_{H_3} \} \)

Without loss of generality, suppose \(p_1 = q_{H_1} \) and \(p_2 = q_{H_3} \). Let \(W = \{ q_{H_1}, v, q_{H_3} \} \).

Suppose that \(a, q_{H_2} \), and \(u \) are not each in three separate bridges of \(G[W] \). Therefore, there must exist some path either from \(a \) to \(H - W \), or from \(vP_{H}q_{H_3}uP_{H}q_{H_1} - q_1 - q_3 \) to \(Q_{H_2} \cup q_{H_1}P_{H}q_{H_3} - q_1 - q_3 \). It is straightforward to check that if such a path exists in \(G \), then a \(W_7 \)-subdivision also exists in \(G \). Suppose then that \(W \) forms a separating set, the removal of which places \(a, q_{H_2} \), and \(u \) in three separate components.

Let \(A \) be the bridge of \(G[W] \) containing \(a \). Let \(B \) be the bridge of \(G[W] \) containing \(q_{H_2} \). Let \(C \) be the bridge of \(G[W] \) containing \(u \) and \(w \).

1. Suppose there exists some internal vertex \(q \) on one of the paths \(Q_{H_1} \) or \(Q_{H_3} \). Without loss of generality, suppose \(q \) lies on \(Q_{H_1} \). By 3-connectivity, there must be some path \(Q \) contained in \(\langle X \rangle \) that joins \(q \) to \(H - Q_{H_1} \). It is straightforward to check that the existence of such a path will result in a \(W_7 \)-subdivision, unless \(Q \) first meets \(H - Q_{H_1} \) at \(w \) or at \(q_{H_3} \). Suppose then that this is the case. Let \(q' \) be the point at which \(Q \) first meets \(H - Q_{H_1} \).

1.1. Suppose first that \(q' = q_{H_3} \). Suppose there exists some path \(Q' \) joining \((Q \cup Q_{H_1}) \setminus W \) to \((H \cup \langle A \rangle) - Q_{H_1} \). Such a path will result in the existence of a \(W_7 \)-subdivision. Suppose then that no such path \(Q' \) exists. Then \(q \) is contained in some fourth bridge of \(U_q \) of \(G[W] \) such that \(U_q \notin \{ A, B, C \} \).

1.1.1. Suppose there also exists some internal vertex \(r \) on \(Q_{H_3} \). By 3-connectivity, there must be some path \(R \) contained in \(\langle X \rangle \) that joins \(r \) to \(H - Q_{H_3} \). Let \(r' \) be the point at which \(R \) first meets \(H - Q_{H_3} \). It is straightforward to check that the existence of such a path will result in a \(W_7 \)-subdivision, unless \(r' \in \{ q_{H_1}, u \} \). Suppose then that
this is the case.

1.1.1.1. Suppose \(r' = q_{H1} \).

Suppose there exists some path \(R' \) joining \((R \cup Q_{H3}) \setminus W\) to \((H \cup \langle A \rangle \cup \langle U_q \rangle) - Q_{H3}\). Such a path will result in the existence of a \(W_7 \)-subdivision. Suppose then that no such path \(R' \) exists. Then \(r \) is contained in some fifth bridge of \(U_r \) of \(G\setminus W \) such that \(U_r \notin \langle A, B, C, U_q \rangle \). Thus, Lemma 9 can be applied to show that a \(W_7 \)-subdivision exists in \(G \).

1.1.1.2. Suppose \(r' = u \).

Suppose that \(q_{H1} \) has at least two neighbours in \(C \setminus W \). Thus, some neighbour \(p' \) of \(q_{H1} \) exists in \(C \setminus W \) such that \(p' \notin N_H(q_{H1}) \).

Suppose firstly that \(p' \in H \). Thus, either \(p' \in q_{H3}P_H w - q_{H3} \), or \(p' \in q_{H1}P_H u - q_{H1} \). If the former holds, then a \(W_7 \)-subdivision can be found in \(G \). Suppose then that the latter holds. Since \(p' \notin N_H(q_{H1}) \), the path \(q_{H3}p'Huw \) is a shorter path from \(q_{H1} \) to \(u \) than the path \(q_{H1}P_H u \). Thus, \(|E(H)|\) is no longer minimal.

Suppose then that \(p' \notin H \). Then by 3-connectivity, there must be some path in \(\langle C \cap X \rangle \) joining \(p' \) to \(q_{H3}P_H w \). Such a path will create a \(W_7 \)-subdivision in \(G \).

Suppose then that no such vertex \(p' \) exists, that is, \(C \setminus W \) contains at most one neighbour, say \(p_1 \), of \(q_{H1} \). Then a type 2 edge-vertex-cutset can be formed from \(v \), \(q_{H3} \), and the edge \(q_{H3}p_1' \) (since \(C \setminus W \) contains at least four vertices, and the other side of the cutset contains at least the vertices \(q_{H1}, q, a, q_{H2} \).)

1.1.2. Suppose then that no such vertex \(r \) exists, that is, \(Q_{H3} \) is a single edge. Then Lemma 9 can be applied to show that a \(W_7 \)-subdivision exists in \(G \).

1.2. Suppose now that \(q' = w \). Thus, \(q \in C \).

1.2.1. Suppose there also exists some internal vertex \(r \) on \(Q_{H3} \). By 3-connectivity, there must be some path \(R \) contained in \(X \) that joins \(r \) to \(H - Q_{H3} \). Let \(r' \) be the point at which \(R \) first meets \(H - Q_{H3} \). It is straightforward to check that the existence of such a path will result in a \(W_7 \)-subdivision, unless \(r' \in \{q_{H1}, u\} \).

Suppose firstly that \(r' = q_{H1} \).

Suppose there exists some path \(R' \) joining \((R \cup Q_{H3}) \setminus W\) to \((H \cup \langle A \rangle) - Q_{H3}\). Such a path will result in the existence of a \(W_7 \)-subdivision. Suppose then that no such path exists. Then \(r \) is contained in some fourth bridge \(U_r \) of \(G\setminus W \) such that \(U_r \notin \langle A, B, C \rangle \). By symmetry, then, the same arguments applied in case 1.1.1.2 can be applied here to show that \(G \) must contain a \(W_7 \)-subdivision.

Suppose then that \(r' = u \). A \(W_7 \)-subdivision can then be found in \(G \).

1.2.2. Suppose then that no such vertex \(r \) exists, that is, \(Q_{H3} \) is a single edge.

Suppose \(q_{H3} \) has at least two neighbours in \(C \setminus W \). Thus, some neighbour \(p' \) of \(q_{H3} \) exists in \(C \setminus W \) such that \(p' \notin N_H(q_{H3}) \). By symmetry, the same arguments used in case 1.1.1.2 can be applied to show that \(G \) must contain a \(W_7 \)-subdivision.

Suppose then that no such vertex \(p' \) exists, that is, \(C \setminus W \) contains at most one neighbour, say \(p_2' \), of \(q_{H3} \). Then unless \(|V(G - (C - q_{H3}))| \leq 3\), a type 2 edge-vertex-cutset can be formed from \(v \), \(q_{H1} \), and the edge \(q_{H3}p_2' \) (since \(C \setminus W \) contains at least four vertices). Suppose then that \(|V(G - (C - q_{H3}))| \leq 3\). Thus, \(|A \setminus W| = 1 \) and \(|B \setminus W| = 1 \), and there are no bridges of \(G\setminus W \) other than \(A, B, \) and \(C \).

1.2.2.1. Suppose that \(q_{H1} \) has degree \(\geq 7 \).

Since \(q_{H1} \) has only two neighbours in \(A \cup B \), \(q_{H1} \) must have at least five neighbours in \((C \cap X) \setminus W \). Thus, at least three neighbours, say \(x_1, x_2, x_3 \), of \(q_{H1} \) exist in \((C \cap X) \setminus W \) such that \(x_1, x_2, x_3 \notin N_H(q_{H1}) \).

By the 3-connectivity of \(G \), there must be at least two disjoint paths in \((C \cap X) \), say \(P_{x1} \) and \(P_{x2} \), joining \{\(x_1, x_2, x_3 \)\} to \((H \cap (C)) \setminus \{q_{H1}\} \). Let \(y_1 \) and \(y_2 \) be the two vertices in \((H \cap (C)) \setminus \{q_{H1}\} \) where \(P_{x1} \) and \(P_{x2} \) first meet \((H \cap (C)) \setminus \{q_{H1}\} \) respectively. Without loss of generality, suppose that \(x_1 \) is an endpoint of \(P_{x1} \), and \(x_2 \)
is an endpoint of P_2.

If there are two vertices y'_1 and y'_2 such that $\{y'_1, y'_2, q_{H_1}\}$ separates $\{x_1, x_2, x_3\}$ from $H \cap (C)$, then Lemma 2 can be applied to the bridge of $G \mid Z$ containing $x_1, x_2,$ and x_3, and thus a W_7-subdivision can be formed centred on q_{H_1}. Suppose then that
\[
{x_1, x_2} = \{y_1, y_2\}
\]
By 3-connectivity, there must exist two paths from x_2 to $\{y_1, y_2\}$ such that these paths are disjoint except at $x_1,$ and meet H only at y_1 and y_2. These paths allow a W_7-subdivision to be formed centred on q_{H_1}.

Suppose then that there exists some path P_{23} from x_3 to $(H \cap (C)) \setminus \{q_{H_1}\}$, such that P_{23} is disjoint from P_{21} and P_{22}. Let y_3 be the vertex closest to x_3 along P_{23} where P_{23} meets $(H \cap (C)) \setminus \{q_{H_1}\}$.

Suppose that each of $y_1, y_2,$ and y_3 lie on one of the paths $q_{H_3}P_{H_3}w, qQ_{H_1}v,$ or qQw. Then a W_7-subdivision exists in G.

Suppose then that one of y_1, y_2, y_3 — assume y_1 without loss of generality — does not lie on $q_{H_3}P_{H_3}w, qQ_{H_1}v,$ or qQw. Thus, y_1 lies on either $q_{H_1}P_{H_3}w$, or $q_{H_1}Q_{H_1}q$.

Suppose $y_1 = x_1$, that is, the path P_{21} is only a single vertex. If x_1 lies on $q_{H_1}P_{H_3}w$, then the path $q_{H_1}x_1u$ is a shorter path from q_{H_1} to u than the path $q_{H_1}P_{H_3}w$. If x_1 lies on $q_{H_1}Q_{H_1}q$, then the path $q_{H_1}x_1Q_{H_1}$ is a shorter path from q_{H_1} to q than $q_{H_1}Q_{H_1}q$.

Thus, if $y_1 = x_1$, $|E(H)|$ is no longer minimal. Assume then that $y_1 \neq x_1$, that is, the path P_{23} is not trivial.

By 3-connectivity, then, there must be some path in $(C \cap X)$ disjoint from P_{21} that joins x_1 to $(H \cap (C)) \setminus \{q_{H_1}\}$. Call this path Q_{x_1}. Let z_1 be the point closest to x_1 along Q_{x_1} where Q_{x_1} meets $(H \cap (C)) \setminus \{q_{H_1}\}$. If z_1 and y_1 both lie on $q_{H_1}P_{H_3}w$, or if z_1 and y_1 both lie on $q_{H_1}Q_{H_1}q$, then by 3-connectivity there must be some other path in $(C \cap X)$ disjoint from P_{21} that joins x_1 to $(H \cap (C)) \setminus \{q_{H_1}\}$. Assume then that z_1 and y_1 do not both lie on $q_{H_1}P_{H_3}w$ and do not both lie on $q_{H_1}Q_{H_1}q$.

Suppose y_2 and y_3 each lie on one of the paths $q_{H_3}P_{H_3}w, qQ_{H_1}v,$ or qQw. Then it is straightforward to check that a W_7-subdivision can be formed in G, regardless of the position of y_1 and z_1.

Suppose then that one of y_2, y_3 — assume y_2 without loss of generality — lies on either $q_{H_1}P_{H_3}w$ or $q_{H_1}Q_{H_1}q$. By the same argument used above for y_1, assume that P_{22} is not trivial, that is, $y_2 \neq x_2$. Thus, by 3-connectivity, there must be some path Q_{x_2} in $(C \cap X)$ from x_2 to $(H \cap (C)) \setminus \{q_{H_1}\}$ such that this path is disjoint from P_{22}.

Let z_2 be the point closest to x_2 along Q_{x_2} where Q_{x_2} meets $(H \cap (C)) \setminus \{q_{H_1}\}$. By the same argument used above for y_1 and z_1, assume that y_2 and z_2 do not both lie on $q_{H_1}P_{H_3}w$ and do not both lie on $q_{H_1}Q_{H_1}q$.

Suppose $\{y_1, z_1\} = \{y_2, z_2\}$, that $\{y_1, z_1, q_{H_1}\}$ forms a separating set in G, and that x_1 and x_2 are in separate bridges of $G \mid \{y_1, z_1, q_{H_1}\}$. Since q_{H_1} has at least three neighbours in a third bridge of $G \mid \{y_1, z_1, q_{H_1}\}$, by Lemma 3 a W_7-subdivision exists in G. Assume then that this is not the case.

Suppose y_3 lies on one of the paths $q_{H_3}P_{H_3}w, qQ_{H_1}v,$ or qQw. Then it is straightforward to check that a W_7-subdivision can be formed in G, regardless of the positions of $y_1, z_1, y_2,$ and z_2.

Suppose then that y_3 lies on either $q_{H_1}P_{H_3}w$ or $q_{H_1}Q_{H_1}q$. By the same argument used above for y_1, assume that P_{23} is not trivial, that is, $y_3 \neq x_3$. Thus, by 3-connectivity, there must be some path Q_{x_3} in $(C \cap X)$ from x_3 to $(H \cap (C)) \setminus \{q_{H_1}\}$ such that this path is disjoint from P_{23}. Let z_3 be the point closest to x_3 along Q_{x_3} where Q_{x_3} meets $(H \cap (C)) \setminus \{q_{H_1}\}$. By the same argument used above for y_1 and z_1, assume that y_3 and z_3 do not both lie on $q_{H_1}P_{H_3}w$ or on $q_{H_1}Q_{H_1}q$.

By the same argument used above, if $\{y_3, z_3\} = \{y_1, z_1\}$, or if $\{y_3, z_3\} = \{y_2, z_2\}$, and if $\{y_3, z_3, q_{H_1}\}$ forms a separating set in G such that x_3 is in a separate bridge of $G \mid \{y_3, z_3, q_{H_1}\}$ from either x_1 or x_2, then by Lemma 3 a W_7-subdivision can be
formed in G. Assume then that this is not the case.

It can be seen then that any possible placement of $y_1, z_1, y_2, z_2, y_3, z_3$ results in the existence of a W_7-subdivision in G.

1.2.2.2. Assume then that q_{H1} has degree <7. Reduction 2A can be performed on G.

2. Assume then that no such vertex q exists — that is, v is adjacent to both q_{H1} and q_{H3}, and both Q_{H1} and Q_{H3} are single edges. Then by Lemma 9 a W_7-subdivision exists in G.

Cases 4 and 5: \{p_1, p_2\} = \{u, q_{H3}\} or \{p_1, p_2\} = \{w, q_{H1}\}.

Without loss of generality, let $p_1 = u$ and $p_2 = q_{H3}$. Let $W = \{u, v, q_{H3}\}$.

Suppose that a, q_{H2}, and u are not each in three separate bridges of $G|W$. Therefore, there must exist some path either from a to $H - W$, or from $uP_hq_{H3} - q_{H3}$ to $Q_{H2} \cup Q_{H1} \cup uP_hq_{H3} - q_{H3}$. It is straightforward to check that such a path results in the existence of a W_7-subdivision in G. Suppose then that W forms a separating set, the removal of which places a, q_{H2}, and w in three separate components.

Let A be the bridge of $G|W$ containing a. Let B be the bridge of $G|W$ containing q_{H1} and q_{H2}. Let C be the bridge of $G|W$ containing w and Y.

If any bridge of $G|W$ contains more than two neighbours of v not in W, then by Lemma 10 a W_7-subdivision can be formed. Suppose then that each bridge of $G|W$ contains at most two neighbours of v not in W. Then, if any bridge of $G|W$ contains more than three vertices not in W, a type 2 or 4 edge-vertex-cutset can be formed from u, q_{H3}, and one or two of the edges incident with v. Assume then that each bridge of $G|W$ contains at most three vertices not in W. Thus, since $|V(G)| \geq 19$, there must be at least six bridges of $G|W$.

If any bridge of $G|W$ contains only one vertex not in W, then Reduction 1A can be performed on G. Assume then that each bridge has at least two but no more than three vertices not in W.

Suppose firstly that each bridge of $G|W$ contains only two vertices not in W. Then, since $|V(G)| \geq 19$, there must exist at least eight bridges of $G|W$. Thus, there must be at least one bridge of $G|W$ which is contained as a subdivision in two others, and so Reduction 1B can be performed on G.

Suppose then there exists some bridge U of $G|W$ such that $|U \setminus W| = 3$. There must be at least five edges joining $U \setminus W$ to W, to avoid an internal 4-edge-cutset. Suppose that each vertex in W has at most two neighbours in $U \setminus W$. Then either a type 2a or type 3a edge-vertex-cutset exists in G. Assume then that at least one vertex in W has three neighbours in $U \setminus W$. We know this vertex is not v (since this will result in a W_7-subdivision, using Lemma 2) — assume then without loss of generality that u has three neighbours in $U \setminus W$.

If any bridge of $G|W$ other than U has more than one neighbour of u not in W, then by Lemma 11 a W_7-subdivision exists centred on u. Assume then that each bridge of $G|W$ other than u contains at most one neighbour of u not in W.

If each bridge of $G|W$ other than U has only two vertices not in W, then Reduction 1B can be performed on G. Assume then that there exists some bridge other than U, say U', which contains three vertices not in W. By the same argument used above for U, we can assume that $U' \setminus W$ contains either three neighbours of u or three neighbours of q_{H2}. Since we have already assumed that $U' \setminus W$ contains at most one neighbour of u, we can assume now that $U' \setminus W$ contains three neighbours of q_{H2}. Thus, if any bridge other than U' contains more than one neighbour of q_{H2} not in W, a W_7-subdivision can be formed centred on q_{H2}. Assume then that this is not the case.

Each bridge of $G|W$ other than U and U', then, contains at most one neighbour
of \(u \) and of \(qH_2 \), and at most two neighbours of \(v \). Thus, each such bridge can contain at most two vertices not in \(W \). Therefore, since \(|V(G)| \geq 19 \) and \(|U \cup U'| = 9 \), there must be at least five bridges of \(G|W \) other than \(U \) and \(U' \), each of which are identical. Thus, Reduction 1B can be performed on \(G \).

\[\square \]

8 Main result

The following theorem is the main result of this paper. It allows graphs with no \(W_7 \)-subdivisions to be characterized up to bounded size pieces.

Theorem 18. Let \(G \) be a 3-connected graph with at least 38 vertices. Suppose \(G \) has no internal 3 or 4-edge-cutsets, no internal \((1,1,1,1)\)-cutsets, no type 1, 1a, 2, 2a, 3, 3a, 4, or 4a edge-vertex-cutsets, and is a graph on which Reductions 1A, 1B, 1C, 2A, 2B, 3, 4, and 6 cannot be performed, for \(k = 7 \).

Then \(G \) has a \(W_7 \)-subdivision if and only if \(G \) contains some vertex \(v_0 \) of degree at least 7.

Proof. Let \(G \) be a graph that meets the conditions of the Theorem. The forward implication is trivial.

Suppose then that \(G \) has a vertex \(v_0 \) of degree at least 7. By Theorem 17, \(G \) must contain a \(W_6 \)-subdivision. Furthermore, we can assume by Theorem 17 that either some \(W_6 \)-subdivision is centred on \(v_0 \), or that some \(W_6 \)-subdivision in \(G \) is centred on some other vertex of degree \(\geq 7 \) in \(G \). If the latter is true, take this new vertex as \(v_0 \). Let \(H \) be this \(W_6 \)-subdivision. Let \(v_1, v_2, v_3, v_4, v_5, v_6 \) be the six spoke-meets-rim vertices of \(H \), in order around the rim of \(H \). For each \(i, 1 \leq i \leq 6 \), let \(P_i \) be the spoke from \(v_0 \) to \(v_i \) in \(H \). Let \(C \) be the rim of \(H \).

There are three possibilities.

(a) There is a vertex \(u_1 \) on the rim of \(H \) such that \(u_1 \notin \{v_1, \ldots, v_6\} \), and there is a path from \(v_0 \) to \(u_1 \) that does not meet \(H \) except at its endpoints. This path together with \(H \) gives a \(W_7 \)-subdivision.

(b) \(G \) has a vertex \(u \in N_G(v_0) \setminus N_H(v_0) \) such that the bridge of \(G|V(H) \) containing \(u \) also contains two vertices, \(u_1 \) and \(u_2 \), on two separate spokes of \(H \). Assume without loss of generality that \(u_1 \) is on \(P_1 \), and \(u_2 \) is on either \(P_2, P_3, \) or \(P_4 \). It is routine to verify that all instances in this case except for three result in the presence of a \(W_6 \)-subdivision. The three specific instances are as follows:

(b)(i) \(u_1 = v_1, u_2 = v_3 \).

(b)(ii) \(u_1 = v_1, u_2 = v_4 \).

(b)(iii) \(u_1 = v_1, u_2 \in P_4 \setminus \{v_0, v_4\} \).

Dealing with these three cases takes up most of the proof, and we return to them shortly.

(c) There is a vertex \(u_1 \) on one of the spokes of \(H \), and there is a path from \(v_0 \) to \(u_1 \) that does not meet \(H \) except at its endpoints. This case is dealt with in the same way as in (c), where it is shown that in order to preserve 3-connectivity, the graph must fall into one of the two previous cases.

We return now to the three subcases in (b).

For each of these three subcases, let \(U(u) \) be the bridge of \(G|V(H) \) containing \(u \). Recall that this bridge also contains the vertices \(u_1 \) and \(u_2 \). Thus, there exists some path \(P'_{u_1} \) joining \(u_1 \) to \(u \) such that \(P'_{u_1} \) is contained in \(\langle U(u) \rangle \), and some path \(P'_{u_2} \) joining \(u_2 \) to \(u \) such that \(P'_{u_2} \) is contained in \(\langle U(u) \rangle \). Let \(u' \) be the vertex closest to \(u_1 \) along \(P'_{u_1} \) where \(P'_{u_1} \) and \(P'_{u_2} \) meet. (Note that it is possible that \(u = u' \).)
Denote by P_{u_1} the path $u_1 P_{u_1} u'$. Denote by P_{u_2} the path $u_2 P_{u_2} u'$. Denote by $P_{u'}$ the path $v_0 u \cup u P_{u_2} u'$. Note that the three paths P_{u_1}, P_{u_2}, $P_{u'}$ meet only at u' (see Figure 12).

Case (b)(i): $u_1 = v_1$, $u_2 = v_3$ (Figure 13)

Let $W = \{v_0, v_1, v_3\}$. Let H_2 be the subgraph consisting of the path from v_1 to v_3 that passes through v_2, not including endpoints, and all of P_2 except for v_0. Let H_4 be the subgraph consisting of the path from v_1 to v_3 that passes through v_4, v_5, v_6, not including endpoints, and all of P_4, P_5, and P_6 except for v_0.

1. Suppose there exists some path Q from some point in H_2 to some point in H_4.

Using the program, all possible configurations of such a path were tested for the presence of a W_7-subdivision. All but two were found to contain a W_7-subdivision: the two exceptions are shown in Figure 14. Suppose G contains the structure shown in one of these two graphs.
1.1. Suppose W is not a separating set of G. Then, there exists a path R in G such that $V(H_2 \cup H_4)$ is contained in the bridge $U(u)$. Testing all possible configurations of R results in eight graphs that do not contain a W_7-subdivision, all of which are shown in Figure 15. Suppose G contains the structure shown in one of these graphs.

1.1.1. Consider the set $S_1 = \{v_0, v_1, v_5\}$ in each of the graphs of Figure 15. Suppose this is not a separating set, but rather there exists some path R_1 that prevents the removal of S_1 from separating the graph. Figure 16 shows the graphs not containing a W_7-subdivision that can result from such a path. Suppose G contains the structure shown in one of these graphs.

1.1.1.1. Consider now the set $S_2 = \{v_0, v_3, v_5\}$ in the graph of Figure 16. Suppose this is not a separating set, but rather there exists some path R_2 that prevents the removal of S_2 from separating the graph. Figure 17 shows the graphs not containing a W_7-subdivision that can result from such a path. Suppose G contains the structure shown in one of these graphs.

1.1.1.1.1. Consider now the set $S_3 = \{v_0, v_1, v_3, v_5\}$ in the graph of Figure 17. Suppose this is not a separating set, but rather there exists some path R_3 that prevents the removal of S_3 from separating the graph. Searching and checking using the program shows that such a path will always result in the creation of a W_7-subdivision in G. Figure 18 shows an example.

1.1.1.1.2. Suppose then there is no such path R_3. Thus, S_3 forms a separating set of size 4 in G. Let U_2 be the bridge of $G|S_3$ containing v_2; U_4 be the bridge of $G|S_3$ containing v_4; U_6 be the bridge of $G|S_3$ containing v_6; and $U_{u'}$ be the bridge of $G|S_3$ containing u'. (See Figure 19).

Let $S_4 = \{v_1, v_3, v_5\}$.

(A) Suppose S_4 forms a separating set, such that $G|S_4$ has at least four bridges.
Figure 15: Case (b)(i), Path R, Case 1.1.
Figure 16: Case (b)(i), Path R_1, Case 1.1.1.
Figure 17: Case (b)(i), Path R_2, Exception 1.1.1.1.

Figure 18: Case (b)(i), W_7-subdivision created by path R_3
say, T_1, T_2, T_3, and T_4.

Without loss of generality, suppose that T_1 contains the bridges U_2, U_4, U_6, and $U_{u'}$ (since while these are separate bridges of $G|S_3$, they must all be contained in the one bridge of $G|S_4$). Thus, each of T_2, T_3, and T_4 forms a bridge of $G|S_3$ as well as $G|S_4$. Therefore, there exist three disjoint paths, P_{t_1}, P_{t_2}, and P_{t_3}, from v_1 to v_3, v_1 to v_5, and v_3 to v_5 respectively, such that each of these paths are in a separate bridge of $G|S_3$, and none of these paths are in the bridges U_2, U_4, U_6, or $U_{u'}$.

Suppose there exists some vertex $i \in S_3$ with degree ≥ 7 such that some bridge of $G|S_3$ contains at least two neighbours of i not in S_3. By Lemma 4 then, there exists a W_7-subdivision centred on i. Table 1 shows how Lemma 4 can be applied.

Table 1: Case (b)(i), 1.1.1.1.2.(A): Applying Lemma 4 to G.

| Required in Lemma 4 | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|----------------------|---------------------|---------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | Any three of the bridges $U_2, U_4, U_6, U_{u'}$ |

Required in Lemma 4	v	$P_{u'}, P_{w'}, P_{t}$
Equivalent construct in G	i	The three paths in $\{P_{t_1}, P_{t_3}, P_{t_1}, P_{t_2}, P_{t_3}\}$ with i as an endpoint

Assume then that no such vertex i exists in S_3. Then, since each vertex in S_3 is known to have degree ≥ 7, because of bridges T_2, T_3, T_4, as well as the structures shown in Figure 17 each bridge of $G|S_3$ must contain at most one neighbour not in S_3 of each vertex in S_3. Therefore, for each bridge U of $G|S_3$, there are at most four edges joining S_3 to $U \setminus S_3$. Thus, each of the bridges of $G|S_3$ that contains all of S_3 can contain at most four vertices not in S_3, otherwise an internal $(1,1,1,1)$-cutset exists. Reduction 4 can therefore be performed on G.

(B) Assume then that if $\{v_1, v_3, v_5\}$ forms a separating set, its removal separates G into at most three components.

Suppose there exists some vertex $i \in S_3$ with degree ≥ 7 such that some bridge of $G|S_3$ contains at least three neighbours of i not in S_3. By Lemma 5 then, there exists
Any three of the bridges B; Path or paths in P.

Since i, thus Lemma 4 can again be applied to show that there exists a W_7-subdivision in G. Table 2 shows how Lemma 5 can be applied to G.

| Required in Lemma | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|-------------------|------------------------|-----------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | Any three of the bridges U_2, U_4, U_6, U_w. |

Required in Lemma	v	P_u, P_w
Equivalent construct in G	i	P_1, P_3, P_5.

Table 2: Case (b)(i), 1.1.1.1.2.(B): Applying Lemma 5 to G.

Assume then that no such vertex i exists in S_3.

Suppose there exists some vertex $i \in S_3$ with degree ≥ 7 such that two bridges of $G|S_3$ each contain two neighbours of i not in S_3. By Lemma 6, then, there exists a W_7-subdivision in G. (Table 3 shows how Lemma 6 can be applied.) Suppose then that $i \in \{v_1, v_5\}$. By the assumptions already made in this case (B), $X \setminus S_3$ can contain no more than two neighbours of i (or Lemma 4 would apply), and each bridge of $G|S_1$ other than X contains at most one neighbour of i not in S_3 (or Lemma 6 would apply). Thus, i can have no more than six neighbours in $U_2 \cup U_4 \cup U_6 \cup U_w$. Since i has degree ≥ 7, there must be some fifth bridge A of $G|S_3$ that contains i. Thus, Lemma 4 can again be applied to show that there exists a W_7-subdivision in G.

| Required in Lemma | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|-------------------|------------------------|-----------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | Any three of the bridges U_2, U_4, U_6, U_w. |

Required in Lemma	v_0	P_1, P_3, P_5.
Equivalent construct in G	v	P_u, P_w, P_t.

Table 3: Case (b)(i), 1.1.1.1.2.(B): Applying Lemma 4 to G, where $i = v_0$.

Assume then that there is no such vertex i in S_3. Thus, each bridge has at most one neighbour of any vertex in S_3 with degree ≥ 7. The following points then hold:

- Since we know that v_0 has degree ≥ 7, v_0 must have at most one neighbour not in S_3 in each bridge of $G|S_3$.

- For each vertex $i \in \{v_1, v_3, v_5\}$, we know that i has degree ≥ 5. Thus, if there exist at least two bridges that each contain more than one neighbour of i, then i has degree ≥ 7. However, we have already assumed that such a vertex cannot exist. Thus, for each i, there can be at most one bridge of $G|S_3$ that contains more than one neighbour of i not in S_3.

Let B be the set of bridges of $G|S_3$ such that for each bridge $U \in B$, there exists some vertex $i \in S_3$ which has at least two neighbours in $U \setminus S_3$. Given the two points...
above, we know that \(|B| \leq 3\). Thus, there exists some bridge \(X \in \{U_2, U_4, U_6, U_{u'}\}\) such that \(X \notin B\). In other words, there are only four edges joining \(S_3\) to \(X \setminus S_3\).

If \(|X \setminus S_3| \geq 5\), then, an internal (1, 1, 1, 1)-cutset exists in \(G\). Assume then that \(|X \setminus S_3| < 5\). Then Reduction 4 can be performed on \(G\).

1.1.1.2. Suppose now that no such path \(R_2\) exists, that is, \(S_2\) forms a separating set in \(G\). Denote by \(U_4\) the bridge of \(G|S_2\) containing \(v_4\). Denote by \(U_2\) the bridge of \(G|S_2\) containing \(v_2\). (See Figure 20)

Figure 20: Case (b)(i), 1.1.1.2.
Figure 21: Case (b)(i), 1.1.1.2: Example of an internal vertex on P_3 contained in U_2 resulting in a W_7-subdivision.

It is straightforward to check that a W_7-subdivision exists in G. Assume then that A contains internal vertices of at most one of these paths.

(A)(i) Suppose firstly that such vertices are on P_3, if they exist.

If there are any bridges of $G|S_2$ other than A, U_2, or U_4, then by Lemma 9 a W_7-subdivision exists in G. Table 5 shows how Lemma 9 can be applied.

| Required in Lemma 9 | $S = \{u, v, w\}$ | Bridges X, Y of $G|S$ |
|------------------------------------|--------------------|------------------------|
| Equivalent construct in G | $S_2 = \{v_0, v_3, v_5\}$ | U_4 and A |
| Required in Lemma 9 | Bridge Z of $G|S$ containing ≥ 3 neighbours of v not in S | P_u, P_w |
| Equivalent construct in G | U_2 contains ≥ 3 neighbours of v_0 not in S_2 | P_5: path from v_0 to v_3 in some fourth bridge of $G|S_2$ other than A, U_2, or U_4. |

Table 5: Case (b)(i), 1.1.1.2: Applying Lemma 9 to G, where there are at least four bridges of $G|S_2$.

Assume then that only three bridges of $G|S_2$ exist: A, U_2, and U_4. Since no internal vertices of P_3 or P_5 are contained in either U_2 or U_4, and A may contain internal vertices of P_3 but not P_5, it can be assumed that P_5 is a single edge.

If either $A \setminus S_2$ or $U_4 \setminus S_2$ contains more than one neighbour of either v_0 or v_5, then by Lemma 3 a W_7-subdivision exists in G (see Table 5). Assume then that $A \setminus S_2$ and $U_4 \setminus S_2$ each contain at most one neighbour of v_0 and at most one neighbour of v_5.

If either $A \setminus S_2$ or $U_4 \setminus S_2$ contains more than two neighbours of v_3, then by applying Lemma 2 to that bridge and to U_2, a W_7-subdivision can be formed. Assume then that each of these bridges contain at most two neighbours of v_3 not in S_2. Thus, since there are at most four edges joining S_2 to $A \setminus S_2$, and at most four edges joining S_2 to
Table 6: Case (b)(i), 1.1.1.2: Applying Lemma 3 to G, where $A \setminus S_2$ or $U_4 \setminus S_2$ contains more than one neighbour of v_0 or v_5.

$U_4 \setminus S_2$, there can be at most two vertices in each of $A \setminus S_2$ and $U_4 \setminus S_2$, otherwise an internal 4-edge-cutset exists in G. Therefore, if A contains no internal vertices on the path P_3, either Reduction 1A or 1B can be performed (see Figure 22 for an example). Assume then that A contains some such vertex.

If $|(A \cup U_4) \setminus S_2| = 4$, then a type 3 edge-vertex-cutset can be formed from v_3 and the four edges joining $\{v_0, v_5\}$ to $(A \cup U_4) \setminus S_2$. Assume then that $|(A \cup U_4) \setminus S_2| \leq 3$.

Let $S_3 = \{v_0, v_1, v_3, v_5\}$. Suppose there exists some path in U_2 such that v_4', v_2, and v_6 are not each in separate bridges of $G|S_3$. It is straightforward to check that a W_7-subdivision then exists in G (see Figure 22 for an example). Suppose then that no such path exists, that is, each of u', v_2, and v_6 are in separate bridges of $G|S_3$. Call these bridges $T_{v'}$, T_2, and T_6 respectively. Note that U_4 and A also form bridges of $G|S_3$.

Let $i \in \{v_0, v_3\}$. Suppose there exists some bridge U of $G|S_3$ such that $U \setminus S_3$ contains more than one neighbour of i. Then by Lemma 4 there exists a W_7-subdivision centred on v_0 (see Table 7).

Assume then that no such bridge U exists, that is, each bridge of $G|S_3$ contains at most one neighbour of v_0 or in S_3, and at most one neighbour of v_5 not in S_3.

Suppose then there exists some bridge U of $G|S_3$ such that $U \cap S_3 = S_3$, and $U \setminus S_3$ contains at least four neighbours of some vertex i, where $i \in \{v_1, v_3\}$. Then by Lemma 10 there exists a W_7-subdivision centred on i (see Table 8).
Figure 23: Case (b)(i), 1.1.1.2: Example of path disjoint from S_3 joining u' and v_2 creating a W_7-subdivision.

| Required in Lemma [4] | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|------------------------|------------------------|--------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u'}, T_2, U_4$ |
| Required in Lemma [4] | v | P_u, P_v, P_i |
| Equivalent construct in G | $i \in \{v_0, v_5\}$ | P_5, path from i to v_3 in $\langle A \rangle$, path from i to v_1 in $\langle T_6 \rangle$. |

Table 7: Case (b)(i), 1.1.1.2: Applying Lemma [4] to G, where some bridge $U \setminus S_3$ contains more than one neighbour of v_0.

| Required in Lemma [10] | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|------------------------|------------------------|--------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u'}, T_2, U_4$ |
| Required in Lemma [10] | v, u | P_u |
| Equivalent construct in G | $i \in \{v_1, v_3\}$, v_0 | path from v_0 to i in $\langle T_6 \rangle$. |

Table 8: Case (b)(i), 1.1.1.2: Applying Lemma [10] to G, where some bridge $U \setminus S_3$ contains at least four neighbours of $i \in \{v_1, v_3\}$.

Assume then that no such bridge U exists, that is, any bridge containing all vertices in S_3 contains at most three neighbours not in S_3 of each of v_1 and v_3.

Suppose there exists some vertex $i \in \{v_1, v_3\}$ with degree ≥ 7 such that some bridge U' of $G|S_3$ contains at least three neighbours of i not in S_3. If there exists some bridge U'' of $G|S_3$ such that $U'' \cap S_3 = \{v_1, v_3, v_5\}$, then by Lemma [5] a W_7-subdivision exists centred on i (see Table 9). Assume then that no such bridge U'' exists, that is, $\{v_1, v_3, v_5\}$ is not a separating set of G. If some bridge of $G|S_3$ other than U contains at least two neighbours of i not in S_3, then by Lemma [7] a W_7-subdivision can be formed centred on i (see Table 10). Suppose then that all bridges of $G|S_3$ other than U contain at most one neighbour of i not in S_3. Then, since i has degree ≥ 7, there must either exist some fifth bridge X of $G|S_3$ which contains i, or i must be
adjacent to some other vertex \(j \) in \(S_3 \). Thus, Lemma 8 can be applied to show that a \(W_7 \)-subdivision exists centred on \(i \) (see Table 11). Assume then that no such vertex \(i \) exists in \(\{v_1, v_3\} \).

| Table 9: Case (b)(i), 1.1.1.2: Applying Lemma 8 to \(G \), where some bridge \(U \setminus S_3 \) contains at least three neighbours of \(i \in \{v_1, v_3\} \) and some bridge \(U' \) exists where \(U' \cap S_3 = \{v_1, v_3, v_3\} \). |
|---|---|---|
| Required in Lemma 8 | \(S = \{t, u, v, w\} \) | Bridges \(X, Y, Z \) of \(G|S \) |
| Equivalent construct in \(G \) | \(S_3 = \{v_0, v_1, v_3, v_5\} \) | \(T_u', T_2, U_4 \) |
| Required in Lemma 8 | \(v \) | \(P_u, P_w \) |
| Equivalent construct in \(G \) | \(i \in \{v_1, v_3\} \) | path in \(\langle T_6 \rangle \), path in \(\langle U' \rangle \) |

| Table 10: Case (b)(i), 1.1.1.2: Applying Lemma 8 to \(G \), where some bridge \(U \setminus S_3 \) contains at least three neighbours of \(i \in \{v_1, v_3\} \), and some other bridge contains at least two neighbours of \(i \) not in \(S_3 \). |
|---|---|---|
| Required in Lemma 8 | \(S = \{t, u, v, w\} \) | Bridges \(X, Y, Z \) of \(G|S \) |
| Equivalent construct in \(G \) | \(S_3 = \{v_0, v_1, v_3, v_5\} \) | \(T_u', T_2, U_4 \) |
| Required in Lemma 8 | \(v \) | \(P_u \) |
| Equivalent construct in \(G \) | \(i \in \{v_0, v_3\} \) | path in \(\langle T_6 \rangle \) |

| Table 11: Case (b)(i), 1.1.1.2: Applying Lemma 8 to \(G \), where some bridge \(U \setminus S_3 \) contains at least three neighbours of \(i \in \{v_1, v_3\} \). |
|---|---|---|
| Required in Lemma 8 | \(S = \{t, u, v, w\} \) | Bridges \(X, Y, Z \) of \(G|S \) |
| Equivalent construct in \(G \) | \(S_3 = \{v_0, v_1, v_3, v_5\} \) | \(T_u', T_2, U_4 \) |
| Required in Lemma 8 | \(v \) | \(P_u, P_w \) |
| Equivalent construct in \(G \) | \(i \in \{v_0, v_3\} \) | path in \(\langle X \rangle \) or \(ij \) edge; path in \(\langle T_6 \rangle \) |

Suppose then there exists some vertex \(i \in \{v_1, v_3\} \) with degree \(\geq 7 \) such that two bridges of \(G|S_3 \), \(U' \) and \(U'' \), each contain two neighbours of \(i \) not in \(S_3 \). If some bridge of \(G|S_3 \) other than \(U' \) and \(U'' \) contains at least two neighbours of \(i \) not in \(S_3 \), then by Lemma 8 a \(W_7 \)-subdivision can be formed centred on \(i \) (see Table 12). Suppose then that all bridges of \(G|S_3 \) other than \(U' \) and \(U'' \) contain at most one neighbour of \(i \) not in \(S_3 \). Then, since \(i \) has degree \(\geq 7 \), there must exist some fifth bridge \(X \) of \(G|S_3 \) which contains \(i \), or \(i \) must be adjacent to some other vertex \(j \) in \(S_3 \). Thus, Lemma 8 can be applied again to show that a \(W_7 \)-subdivision exists centred on \(i \) (see Table 13). Assume then that no such vertex \(i \) exists in \(\{v_1, v_3\} \).

| Table 12: Case (b)(i), 1.1.1.2: Applying Lemma 8 to \(G \), where three bridges each contain at least two neighbours of \(i \in \{v_1, v_3\} \) not in \(S_3 \). |
|---|---|---|
| Required in Lemma 8 | \(S = \{t, u, v, w\} \) | Bridges \(X, Y, Z \) of \(G|S \) |
| Equivalent construct in \(G \) | \(S_3 = \{v_0, v_1, v_3, v_5\} \) | \(T_u', T_2, U_4 \) |
| Required in Lemma 8 | \(v \) | \(P_u \) |
| Equivalent construct in \(G \) | \(i \in \{v_1, v_3\} \) | path in \(T_6 \) |
Suppose then there exists some vertex \(i \in \{v_1, v_3\} \) with degree \(\geq 7 \) such that some bridge \(U \) of \(G[S_3] \) contains two neighbours of \(i \) not in \(S_3 \). Since \(i \) has at most five neighbours in \(T_w' \cup T_2 \cup T_6 \cup U_4 \), there must be some fifth bridge \(X \) of \(G[S_3] \) that contains \(i \), and some sixth bridge \(Y \) of \(G'[S_3] \) that also contains \(i \). Thus, Lemma \(4 \) can be applied to show there exists a \(W_7 \)-subdivision in \(G' \) (see Table 14). Suppose then that no such vertex exists in \(S_3 \).

Thus, each vertex in \(S_3 \) in \(G \) with degree \(\geq 7 \) has no more than one neighbour not in \(S_3 \) in each bridge of \(G[S_3] \). Reduction \(5 \) can then be applied to show that \(G \) contains a \(W_7 \)-subdivision.

(A) Suppose now that if \(A \) contains internal vertices on one of the paths \(P_3 \) or \(P_5 \), such vertices are on \(P_5 \). The same arguments used in (A)(i) can be applied to show that \(G \) contains a \(W_7 \)-subdivision.

(B) Suppose then there is no such bridge \(A \), that is, there exist only two bridges of \(G[S_2] : U_2 \) and \(U_4 \). Thus, the paths \(P_3 \) and \(P_5 \) are single edges. By Lemma \(11 \) then, a \(W_7 \)-subdivision exists in \(G \).

1.1.2. Suppose now that no such path \(R_1 \) exists, that is, \(S_1 \) forms a separating set in \(G \). Let \(U_6 \) be the bridge of \(G[S_1] \) containing \(v_0 \). Let \(U_2 \) be the bridge of \(G[S_1] \) containing \(v_2 \). Observe that \(v_0 \) has at least four neighbours in \(U_2 \). (See Figure 24)

Since \(v_0 \) is a separating vertex, some internal vertex on one of the paths \(P_1 \) or \(P_5 \) such that this vertex is contained in either \(U_2 \) or \(U_6 \). It is routine to check that the existence of such a vertex will result in a \(W_7 \)-subdivision, regardless of which other vertices it is adjacent to in its containing bridge. (See Figure 25 for an example of such a situation.)

Suppose then that no internal vertices of \(P_1 \) or \(P_5 \) are contained in either \(U_2 \) or \(U_6 \).

(A) Suppose there exists some third bridge \(A \) of \(G[S_1] \). Suppose that \(A \) contains internal vertices on both the paths \(P_1 \) and \(P_5 \). Then it is straightforward to check that a \(W_7 \)-subdivision exists in \(G \). Assume then that \(A \) contains internal vertices of at most one of these paths.

(A)(i) Suppose firstly that such vertices are on \(P_1 \), if they exist.

If there are any bridges of \(G[S_1] \) other than \(A \), \(U_2 \), and \(U_6 \), then by Lemma \(9 \) a \(W_7 \)-subdivision exists in \(G \). Table 15 shows how Lemma \(9 \) can be applied in this situation.
Figure 24: Case (b)(i), 1.1.2.

Figure 25: Case (b)(i), 1.1.2: Example of an internal vertex on P_5 contained in U_2 resulting in a W_7-subdivision.
Assume then that \(A \setminus S_1 \) and \(U_6 \setminus S_1 \) each contain at most one neighbour of \(v_0 \) and at most one neighbour of \(v_5 \).

Suppose \(|(A \cup U_6) \setminus S_1| > 3\). Then a type 3 edge-vertex-cutset can be formed from vertex \(v_3 \) and the four edges joining \(S_1 \) to \((A \cup U_6) \setminus S_1\). Assume then that \(|(A \cup U_6) \setminus S_1| \leq 3\).

Let \(S_3 = \{v_0, v_1, v_3, v_5\} \). Suppose there exists some path in \(U_2 \) such that \(u', v_2, \) and \(v_4 \) are not each in separate bridges of \(G|S_3\). It is straightforward to check that a \(W_7 \)-subdivision then exists in \(G \) (see Figure 20 for an example). Suppose then that no such path exists, that is, each of \(u', v_2, \) and \(v_4 \) are in separate bridges of \(G|S_3\). Call these bridges \(T_{u'}, T_2, \) and \(T_4 \) respectively. Note that \(U_6 \) and \(A \) also form bridges of \(G|S_3\).

Suppose there exists some bridge \(U \) of \(G|S_3 \) such that \(U \setminus S_3 \) contains more than one neighbour of either \(v_0 \) or \(v_5 \). Then by Lemma 3 there exists a \(W_7 \)-subdivision in \(G \) (see Table 7).

Assume then that no such bridge \(U \) exists, that is, each bridge of \(G|S_3 \) contains at most one neighbour of \(v_0 \) not in \(S_3 \) and at most one neighbour of \(v_5 \) not in \(S_3 \).

Suppose then there exists some bridge \(U \) of \(G|S_3 \) such that \(U \cap S_3 = S_3 \), and \(U \setminus S_3 \) contains at least four neighbours of some vertex \(i \), where \(i \in \{v_1, v_3\} \). Then by Lemma 10 there exists a \(W_7 \)-subdivision centred on \(i \) (see Table 15).

Assume then that no such bridge \(U \) exists, that is, any bridge containing all vertices in \(S_3 \) contains at most three neighbours not in \(S_3 \) of each of \(v_1 \) and \(v_3 \).

Suppose there exists some vertex \(i \in \{v_1, v_3\} \) with degree \(\geq 7 \) such that some bridge \(U \) of \(G|S_3 \) contains at least three neighbours of \(i \) not in \(S_3 \). (Note that by the

| Required in Lemma 9 | \(S = \{u, v, w\} \) | Bridges \(X, Y \) of \(G|S \) |
|----------------------|--------------------------|--------------------------|
| Equivalent construct in \(G \) | \(S_1 = \{v_0, v_1, v_5\} \) | \(U_6, A \) |
| Required in Lemma 9 | Bridge \(Z \) of \(G|S \) containing \(\geq 3 \) neighbours of \(v \) not in \(S \) | \(P_u, P_w \) |
| Equivalent construct in \(G \) | \(U_2 \) contains \(\geq 3 \) neighbours of \(v_0 \) not in \(S_1 \) | \(P_5 \); path from \(v_0 \) to \(v_1 \) in some fourth bridge of \(G|S \) other than \(U_2, U_6, \) or \(A \) |

Table 15: Case (b)(i), 1.1.2: Applying Lemma 9 to \(G \), where there are at least four bridges of \(G|S_1 \).

If either \(A \setminus S_1 \) or \(U_6 \setminus S_1 \) contains more than one neighbour of either \(v_0 \) or \(v_5 \), then by Lemma 3 a \(W_7 \)-subdivision exists in \(G \) (see Table 10).

| Required in Lemma 8 | \(S = \{u, v, w\} \) | Bridge \(X \) of \(G|S \) with \(\geq 3 \) neighbours of \(v \) not in \(S \) |
|----------------------|--------------------------|--------------------------|
| Equivalent construct in \(G \) | \(S_1 = \{v_0, v_1, v_5\} \) | \(U_2 \setminus S_1 \) contains \(\geq 3 \) neighbours of \(v_0 \) |
| Required in Lemma 3 | Bridge \(Y \) of \(G|S \) with \(\geq 2 \) neighbours of \(v \) not in \(S \) | \(P_u, P_w \) |
| Equivalent construct in \(G \) | Either \(A \) or \(U_6 \) | \(P_5 \); path from \(v_0 \) to \(v_1 \) in either \(\langle U_6 \rangle \) or \(\langle A \rangle \) |

Table 16: Case (b)(i), 1.1.2: Applying Lemma 8 to \(G \), where \(A \setminus S_1 \) or \(U_6 \setminus S_1 \) contains more than one neighbour of either \(v_0 \) or \(v_5 \).
Figure 26: Case (b)(i), 1.1.2: Example of a path disjoint from S_3 joining u' and v_2 creating a W_7-subdivision.

| Required in Lemma | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|--------------------|------------------------|----------------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u''}, T_2, U_6$ |
| Required in Lemma | v | P_u, P_w, P_t |
| Equivalent construct in G | $i \in \{v_0, v_5\}$ | P_3: path from i to v_1 in $\langle A \rangle$, path from i to v_3 in $\langle T_4 \rangle$ |

Table 17: Case (b)(i), 1.1.2: Applying Lemma 4 to G, where $U \setminus S_3$ contains more than one neighbour of either v_0 or v_5.

| Required in Lemma | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|--------------------|------------------------|----------------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u''}, T_2, U_6$ or T_4 |
| Required in Lemma | v, u | P_u |
| Equivalent construct in G | $i \in \{v_1, v_3\}$ | path in $\langle A \rangle$ (if $i = v_1$) or P_3 (if $i = v_3$) |

Table 18: Case (b)(i), 1.1.2: Applying Lemma 10 to G, where $U \setminus S_3$ contains more than three neighbours of either v_1 or v_3.

assumption of the previous paragraph, $U \setminus S_3$ must then contain only three neighbours of i.) If some bridge of $G|S_3$ other than U contains at least two neighbours of i not in S_3, then by Lemma 7 a W_7-subdivision can be formed centred on i (see Table 19). Suppose then that all bridges of $G|S_3$ other than U contain at most one neighbour of i not in S_3. Then, since i has degree ≥ 7, either there must exist some fifth bridge X of $G|S_3$ which contains i, or i must be adjacent to some other vertex j in S_3. Thus, Lemma 5 can be applied to show that a W_7-subdivision exists centred on i (see Table 20). Assume then that no such vertex i exists in $\{v_1, v_3\}$.

Suppose then there exists some vertex $i \in \{v_1, v_3\}$ with degree ≥ 7 such that two bridges of $G|S_3$, U' and U'', each contain two neighbours of i not in S_3. If some bridge
Table 19: Case (b)(i), 1.1.2: Applying Lemma 7 to G, where $U \setminus S_3$ contains more than two neighbours of $i \in \{v_1, v_3\}$, and some other bridge contains more than one neighbour of i not in S_3.

| Required in Lemma 7 | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|----------------------|----------------------|-----------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u'}, T_2, U_6$ or T_4 |
| Required in Lemma 7 | v | P_u, P_w |
| Equivalent construct in G | $i \in \{v_1, v_3\}$ | path in (A) (if $i = v_1$) or P_3 (if $i = v_3$) |

Table 20: Case (b)(i), 1.1.2: Applying Lemma 5 to G, where $U \setminus S_3$ contains more than two neighbours of either v_1 or v_3.

| Required in Lemma 5 | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|----------------------|----------------------|-----------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u'}, T_2, U_6$ or T_4 |
| Required in Lemma 5 | v | P_u, P_w |
| Equivalent construct in G | $i \in \{v_1, v_3\}$ | path in (X) or edge ij; path in (A) (if $i = v_1$) or P_3 (if $i = v_3$) |

Table 21: Case (b)(i), 1.1.2: Applying Lemma 8 to G, where three bridges each contain two neighbours of $i \in \{v_1, v_3\}$ not in S_3.

| Required in Lemma 8 | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|----------------------|----------------------|-----------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u'}, T_2, U_6$ or T_4 |
| Required in Lemma 8 | v | P_u |
| Equivalent construct in G | $i \in \{v_1, v_3\}$ | path in (A) (if $i = v_1$) or P_3 (if $i = v_3$) |

Table 22: Case (b)(i), 1.1.2: Applying Lemma 6 to G, where two bridges each contain two neighbours of $i \in \{v_1, v_3\}$ not in S_3.

| Required in Lemma 6 | $S = \{t, u, v, w\}$ | Bridges X, Y, Z of $G|S$ |
|----------------------|----------------------|-----------------------------|
| Equivalent construct in G | $S_3 = \{v_0, v_1, v_3, v_5\}$ | $T_{u'}, T_2, U_6$ or T_4 |
| Required in Lemma 6 | v | P_u, P_w |
| Equivalent construct in G | $i \in \{v_1, v_3\}$ | path in (X) or edge ij; path in (A) (if $i = v_1$) or P_3 (if $i = v_3$) |

Table 19: Case (b)(i), 1.1.2: Applying Lemma 7 to G, where $U \setminus S_3$ contains more than two neighbours of $i \in \{v_1, v_3\}$, and some other bridge contains more than one neighbour of i not in S_3.

Suppose then there exists some vertex $i \in \{v_1, v_3\}$ with degree ≥ 7 such that some bridge U of $G|S_3$ contains two neighbours of i not in S_3. Since i has only five neighbours in $T_{u'} \cup T_2 \cup T_4 \cup U_6$, there must exist two more bridges X and Y of $G|S_3$ that each
contain \(i \). Thus, Lemma 4 can be applied to show there exists a \(W_7 \)-subdivision in \(G' \) (see Table 23).

| Required in Lemma 4 | Equivalent construct in \(G \) | Bridges \(X, Y, Z \) of \(G|S \) |
|----------------------|-------------------------------|-----------------------------------|
| \(S = \{ t, u, v, w \} \) | \(S_3 = \{ v_0, v_1, v_3, v_5 \} \) | \(T_{u'}, T_2, U_6 \) or \(T_4 \) |

Table 23: Case (b)(i), 1.1.2: Applying Lemma 4 to \(G \), where \(U \setminus S_3 \) contains more than one neighbour of either \(v_1 \) or \(v_3 \).

Suppose then that no such vertex \(i \) exists in \(S_3 \). Thus, each vertex in \(S_3 \) in \(G \) with degree \(\geq 7 \) has no more than one neighbour not in \(S_3 \) in each bridge of \(G|S_3 \). Reduction 5 can then be applied to \(G \).

(A)(ii) Suppose now that if \(A \) contains internal vertices on one of the paths \(P_1 \) or \(P_3 \), such vertices are on \(P_3 \). The same arguments used in (A)(i) can be applied to show that \(G \) contains a \(W_7 \)-subdivision.

(B) Suppose then there are only two bridges of \(G|S_1 \): \(U_2 \) and \(U_6 \). Thus, the paths \(P_1 \) and \(P_3 \) are single edges. By Lemma 11, then, a \(W_7 \)-subdivision exists in \(G \).

1.2. Suppose then that no such path \(R \) exists, that is, \(W \) forms a separating set in \(G \) such that \(u' \) and \(v_2 \) are in separate bridges of \(G|W \). Let \(U_2 \) be the bridge of \(G|W \) containing \(v_2 \). Recall that \(U(u) \) is the bridge of \(G|W \) containing \(u' \). (See Figure 24)

Suppose there exists some internal vertex on one of the paths \(P_1 \) or \(P_3 \) such that this vertex is contained in either \(U_2 \) or \(U(u) \). The existence of such a vertex will result in a \(W_7 \)-subdivision — Figure 25 shows an example of such a situation. Assume then that no internal vertices of \(P_1 \) or \(P_3 \) are contained in either \(U_2 \) or \(U(u) \).

(A) Suppose there exists some third bridge \(A \) of \(G|W \).

Suppose that \(A \) contains internal vertices on both the paths \(P_1 \) and \(P_3 \). Then it is straightforward to check that a \(W_7 \)-subdivision exists in \(G \). Assume then that \(A \)
contains internal vertices of at most one of these paths — without loss of generality, assume that such vertices are on \(P_1 \), if they exist.

If there are any bridges of \(G|W \) other than \(A, U_2, \) or \(U(u) \), then by Lemma 9, a \(W_7 \)-subdivision exists in \(G \) (see Table 24).

Required in Lemma 9	Required in Lemma 9	Equivalent construct in \(G \)	Bridges \(X \) and \(Y \) of \(G	S \)	
\(S = \{u, v, w\} \)	Bridge \(Z \) of \(G	S \) containing \(\geq 3 \) neighbours of \(v \) not in \(S \)	\(U_2 \) contains \(\geq 3 \) neighbours of \(v_0 \)	\(P_3 \), path in some fourth bridge of \(G	W \) other than \(U_2, U(u), \) or \(A \)
\(W = \{v_0, v_1, v_3\} \)	\(P_u, P_w \)				

Table 24: Case (b)(i), 1.1.2: Applying Lemma 9 to \(G \), where there are at least four bridges of \(G|W \).

Assume then that only three bridges of \(G|W \) exist: \(A, U_2, \) and \(U(u) \). Since \(P_3 \) contains no internal vertices in any of these three bridges, it can be assumed that \(P_3 \) is a single edge.

If either \(A \setminus W \) or \(U(u) \setminus W \) contains more than one neighbour of \(v_0 \), then by Lemma 3, a \(W_7 \)-subdivision exists in \(G \). Assume then that \(A \setminus W \) and \(U(u) \setminus W \) each contain at most one neighbour of \(v_0 \).

Suppose \(|(A \cup U(u)) \setminus W| > 3 \). Then a type 4 edge-vertex-cutset can be formed from \(v_1, v_3 \), and the two edges joining \(v_0 \) to \((A \cup U(u)) \setminus W \). Assume then that \(|(A \cup U(u)) \setminus W| \leq 3 \). Thus, one of \(A \setminus W \), \(U(u) \setminus W \) contains at most one vertex, while the other contains at most two vertices. Without loss of generality, suppose that \(|A \setminus W| = 1 \), and \(|U(u) \setminus W| \leq 2 \).

Suppose that \(v_1 \) has degree \(\geq 7 \). Since \(v_1 \) can have at most three neighbours in
A union U, there must be at least four neighbours of v_1 in $U_2 \setminus W$. Thus, there exist two neighbours of v_1 in $U_2 \setminus W$, say x_1 and x_2, such that $x_1, x_2 \notin N_H(v_1)$. By 3-connectivity, there must exist paths in $\langle U_2 \setminus W \rangle$ joining x_1 and x_2 to $H \cap \langle U_2 \rangle$. Such paths either result in a W_7-subdivision, or create a graph that is equivalent to one of those analysed previously in case 1.1.2.

Assume then that v_1 has degree < 7. By the same arguments, assume that v_3 also has degree < 7. Thus, Reduction 2A can be performed on G.

(B) Suppose then there are only two bridges of $G \setminus W$: U_2 and $U(u)$. Since neither of these bridges contain internal vertices on either of the paths P_1 or P_3, both of the paths P_1 and P_3 must be single edges. Thus, by Lemma 11, a W_7-subdivision exists in G.

2. Assume then that there is no such path Q from H_2 to H_4 as tested for in case 1. Thus, there exist at least three bridges of $G \setminus W$: U_2, U_4, and $U(u)$, where U_2 and U_4 are the bridges containing H_2 and H_4 respectively. (See Figure 29.)

![Figure 29: Case (b)(i), 2.](image)

Suppose that U_2 contains some internal vertex x of P_1, and some internal vertex y of P_3. Then, since $U_2 \setminus W$ contains at least three neighbours of v_0 (along P_1, P_2, and P_3), a W_7-subdivision can be formed centred on v_0 by applying Lemma 2 to U_2 and U_4, and by using $U(u)$ to form a seventh spoke from v_0 to either v_1 or v_3.

Assume then that U_2 does not contain internal vertices of both P_1 and P_3. By symmetry of the graph, assume also that $U(u)$ does not contain internal vertices of both P_1 and P_3.

Suppose then that U_2 contains some vertex x such that x is an internal vertex of either P_1 or P_3. Then by Lemma 3, a W_7-subdivision exists centred on v_0. Suppose then that no internal vertices of P_1 or P_3 are contained in U_2. By symmetry of the graph, assume also that no internal vertices of P_1 or P_3 are contained in $U(u)$.

If U_4 contains no internal vertices of P_1 or P_3, then by Lemma 9, a W_7-subdivision exists in G. Assume then without loss of generality that U_4 contains some internal vertex of P_1, say x. By 3-connectivity, there exists some path P_x contained in $U_4 \setminus W$ joining x to $H \cap U_4$ that meets H only at its endpoints. It is straightforward to check that the existence of such a path will result in a W_7-subdivision, except where P_x meets...

Suppose there exist at least two more bridges of $G|W$ other than U_2, U_4, and $U(u)$. Then by Lemma 9, a W_7-subdivision exists in G. Assume then that there are at most four bridges of $G|W$. Let U' be the fourth bridge of $G|W$, if such a bridge exists.

If any bridge other than U_4 contains more than one neighbour of v_0 not in W, then by applying Lemma 1 to that bridge, a W_7-subdivision can be formed centred on v_0.

Assume then that each of $U_2 \setminus W$, $U(u) \setminus W$, and $U' \setminus W$ contain at most one neighbour of v_0.

Suppose that $|(U_2 \cup U(u)) \setminus W| > 3$. Then a type 4 edge-vertex-cutset can be formed from v_1, v_3, and the two edges joining v_0 to $(U_2 \cup U(u)) \setminus W$. Assume then that $|(U_2 \cup U(u)) \setminus W| \leq 3$. By the same argument, assume that $|(U_2 \cup U') \setminus W| \leq 3$ and $|(U(u) \cup U') \setminus W| \leq 3$. Therefore, $|(U_2 \cup U(u) \cup U') \setminus W| \leq 4$. Since $|V(G)| \geq 38$, then, U_4 must contain at least 34 vertices.

Let $S = \{v_1, v_0, v_5\}$.

2.1. Suppose that x, v_6, and v_4 are not in three separate bridges of $G|S$, but rather, there exists some path P disjoint from S joining two of these vertices.

Searching and checking with the program shows that such a path results in a W_7-subdivision, except in the graphs of Figure 31. Suppose that G contains the configuration shown in one of these graphs. Then G falls into case 1. Figure 32 shows how a graph isomorphic to the type of graph analysed in case 1 (pictured in Figure 14) is contained as a subdivision in G. The parts of the graph in bold are those parts also contained in the graph of case 1.

2.2. Suppose then that x, v_6, and v_4 are each in three separate bridges of $G|S$.

Let T_x be the bridge of $G|S$ containing x. Let T_6 be the bridge of $G|S$ containing v_6. Let T_4 be the bridge of $G|S$ containing v_4 and $G \setminus U_4$. By the same argument used previously for bridges U_2, $U(u)$, and U', there can be at most four vertices in $G \setminus T_4$. Thus, $|T_4| \geq 34$. Since there are at most four vertices in T_4 but not in U_4, $|T_4 \cap U_4| \geq 30$.

Let $S_1 = \{v_6, v_0, v_5\}$.

2.2.1. Suppose that v_6 and v_4 are not in separate bridges of $G|S_1$, but rather,
Figure 31: Case (b)(i), 2: Path Q exists such that x, v_6, and v_4 are not in three separate bridges of $G|S$.
Figure 32: Case (b)(i), 2: Graphs of Figure 31 equivalent to those of Figure 14 in Case 1.
there exists some path disjoint from S_1 joining these vertices.

Searching and checking with the program shows that such a path results in a W_7-subdivision, except in the graphs of Figure 33. Suppose that G contains the configuration shown in one of these graphs.

![Graphs showing cases of W_7-subdivision](image)

Figure 33: Case (b)(i), 2: Path exists such that v_6 and v_4 are not in separate bridges of $G\setminus S_1$.

Suppose there exists some internal vertex y on the path P_5. If y is contained in some bridge of $G\setminus S$ other than T_4, then by applying Lemma 1 to that bridge, a W_7-subdivision exists centred on v_0. Assume then that y is contained in T_4. By 3-connectivity, there exists some path P_y contained in $T_4 \setminus S$ joining y to $H \cap T_4$ that meets H only at its endpoints. Searching and checking by the program shows that all possible placements of such a path result in the existence of a W_7-subdivision, except where P_y meets H at v_3. However, if G contains such a path, then G falls into case 1. Figure 34 shows how a graph isomorphic to the type of graph analysed in case 1 (pictured in Figure 14) is contained as a subdivision in G, where P_y meets H at v_3.

Assume then that P_5 is a single edge.

Note that $|(T_x \cup T_b) \setminus S| \leq 3$, since otherwise a type 4 edge-vertex-cutset can be formed from v_1, v_3, and the two edges joining v_0 to $(T_x \cup T_b) \setminus S$. Thus, one of the bridges T_x, T_b contains only one vertex not in S. Assume without loss of generality that this bridge is T_x. Thus, each vertex in S contains exactly one neighbour in $T_x \setminus S$. 76
Figure 34: Case (b)(i), 2: Graphs of Figure 33 plus path P_y equivalent to graphs of Figure 14 in Case 1.
Reduction 6 can therefore be performed on G. Table 25 shows how Reduction 6 can be applied.

Required in Reduction 6	Equivalent construct in G	Required in Reduction 6	Equivalent construct in G			
$S = \{ t, u, v, w \}$	Bridge X of $G	S$	Bridge Y of $G	S$	Bridge Z of $G	S$
$\{ v_0, v_1, v_3, v_5 \}$	T_x	$\{ v_0, v_1, v_3, v_5 \}$ containing v_4				
$\{ v_0, v_1, v_3, v_5 \}$	T_x	$\{ v_0, v_1, v_3, v_5 \}$ containing v_4				

Table 25: Case (b)(i), 2.2.1: Applying Reduction 6 to G.

2.2.2. Suppose then that v_0 and v_4 are each in separate bridges of $G|S_1$.

Let A be the bridge of $G|S_1$ containing v_6 and $G \setminus U_4$. Let B be the bridge of $G|S_1$ containing v_4. If there are at least two neighbours of v_0 in $B \setminus S_1$, then by applying Lemma 1 to B, it is straightforward to check that a W_7-subdivision exists in G. Assume then that there is at most one neighbour of v_0 in $B \setminus S_1$. Thus, if $|B \setminus S_1| > 3$, a type 2 edge-vertex-cutset can be formed from v_5, v_3, and the edge joining v_0 to $B \setminus S_1$. Assume then that $|B \setminus S_1| \leq 3$.

By the same argument used previously, if there exists some third bridge of $G|S_1$ other than A and B, then there can be at most four vertices in $G \setminus A$. Regardless of the number of bridges of $G|S_1$, then, $|G \setminus A| \leq 4$. However, since the set $G \setminus A = T_4 \cap U_4$, this contradicts the conclusion drawn at the start of case 2.2, where it is determined that $|T_4 \cap U_4| \geq 30$.

Case (b)(ii): $u_1 = v_1, u_2 = v_4$ (Figure 35)

Figure 35: Case (b)(ii): $u_1 = v_1, u_2 = v_4$

Let $W = \{ v_0, v_1, v_4 \}$. Let H_2 be the subgraph consisting of the part of the rim from v_1 to v_4 that passes through v_2 and v_3, not including endpoints, and all of P_2 and P_3 except for v_0. Let H_5 be the subgraph consisting of the part of the rim from v_1 to v_4 that passes through v_5 and v_6, not including endpoints, and all of P_5 and P_6 except for v_0. Recall that $U(u)$ is the bridge of $G[V(H)]$ which contains u'.

Suppose there exists some path Q in G such that H_2 is contained in $U(u)$. Testing with the program shows that all possible configurations of such a path result in the
presence of a W_7-subdivision. Assume then that no such path exists. By symmetry of the graph, assume also that no path exists in G such that H_5 is contained in $U(u)$.

1. Suppose there exists some path Q from some point in H_2 to some point in H_5, such that Q is disjoint from W. (By the previous paragraph, it can also be assumed that such a path must also be disjoint from all vertices in $U(u)$.) All but four of the possible configurations contain a W_7-subdivision. The four exceptions are shown in Figure 36. Suppose that G contains the configuration shown in one of these graphs.

![Figure 36: Case (b)(ii), path Q from H_2 to H_5.](image)

We know then that $U(u)$ forms a bridge of $G[W$, and that $H_2 \cup H_5$ is in some bridge of $G[W$ other than $U(u)$. Call this bridge U_2.

1.1. Suppose there exists some internal vertex x on one of the paths P_1 or P_4.

1.1.1. Suppose x is contained in the bridge U_2. Thus, there exists some path P_x from x to $H_2 \cup H_5 \cup Q$ such that P_x is contained in $U_2 \setminus W$ and meets $H_2 \cup H_5$ only at its endpoint, say, x'. Such a path results in a W_7-subdivision existing in G, unless x is an internal vertex of the path P_4 and $x' \in \{v_2, v_6\}$, regardless of which of the configurations of Figure 36 is contained in G. Suppose then that $x' \in \{v_2, v_6\}$. Then G falls into Case (b)(i). Figure 37 shows how a graph isomorphic to the type of graph analysed in Case (b)(i) is contained as a subdivision in G if the path P_x exists as described. The parts of the graph in bold are those parts also contained in the graph of Case (b)(i). The dashed curves represent the four possible different placements of path Q.

1.1.2. Suppose x is contained in the bridge $U(u)$.

Suppose x lies on the path P_4. Since $x \in U(u)$, the neighbour of v_0 along P_4 is also in $U(u)$. Thus, v_0 has at least two neighbours in $U(u) \setminus W$. Lemma 11 can be applied to bridge $U(u)$, then, and a W_7-subdivision can thus be formed, as shown in Figure
Figure 37: Case (b)(ii), path P_x places G in Case (b)(i). Compare Figure 13.

Figure 38: Case (b)(ii), 1.1.2: internal vertex on P_4 contained in $U(u)$ results in W_7-subdivision

Assume then that x is an internal vertex of the path P_1.

Suppose there exists some internal vertex y on the path P_4. If $y \in U(u)$, then by Lemma 2 a W_7-subdivision exists. If $y \in U_2$, then the graph falls into case 1.1.1 above. Assume then that no internal vertex of P_4 is contained in U_2 or $U(u)$.

Suppose there exists some bridge A of $G|W$ other than U_2 and $U(u)$. Then a W_7-
subdivision can be formed in G, with two spokes in $\langle U(u) \rangle$ (by Lemma 1), four spokes in $\langle U_2 \rangle$, and one spoke in $\langle A \rangle$ (from v_0 to v_1). Figure 39 illustrates such a situation.

Figure 39: Case (b)(ii), 1.1.2: third bridge A of $G\mid W$ results in W_7-subdivision

Assume then that U_2 and $U(u)$ are the only bridges of $G\mid W$, and as such P_4 is a single edge.

Suppose v_0 has ≥ 3 neighbours in $U(u) \setminus W$. Then by Lemma 2 a W_7-subdivision exists centred on v_0. Assume then that v_0 has at most two neighbours in $U(u) \setminus W$.

1.1.2.1. Suppose v_1 has at most two neighbours in $U_2 \setminus W$, say x_1 and x_2.

If $|U(u) \setminus W| = 3$, a type 4 edge-vertex-cutset can be formed from the edges v_1x_1 and v_1x_2, and the vertices v_0 and v_4. Assume then that $U(u) \setminus W$ contains only the two vertices x and u'. This implies that v_0 is adjacent to x.

Assume then that either v_4 has degree < 7, or that at least one of the edges v_1v_4, v_4x does not exist in G.

Suppose the edge v_0v_1 exists in G. Then by Lemma 3 a W_7-subdivision exists centred on v_0. Assume then that such an edge does not exist. Therefore, v_0 has exactly two neighbours in the set $\{v_1, x, u'\}$, and v_4 either has at most two neighbours in this set, or has degree < 7. Thus, a type 4a edge-vertex-cutset can be formed from the edges v_1x_1 and v_2x_2, and the vertices v_4 and v_0.

1.1.2.2. Suppose then that v_1 has some third neighbour y in $U_2 \setminus W$, such that $y \notin N_H(v_1)$.

By 3-connectivity, there must exist some path Y in $U_2 \setminus W$ joining y to $H \cup Q$, such that Y meets $H \cup Q$ only at its endpoint, say y'. Using the program to generate and check all possible such paths Y, it is found that a W_7-subdivision exists in G for each case, except where y' is an internal vertex on the path Q. Assume then that this
is the case for all such paths Y.

Consider the set $S = \{v_1, v_2, v_6\}$. Suppose S does not form a separating set in G. Then there exists some path disjoint from S joining the two components of $(H \cup U(u) \cup Q) - S$. Using the program to generate and check all possible such paths, it is found that a W_7-subdivision exists in each case. Assume then that S forms a separating set in G. Let T' be the bridge of $G|S$ containing y. Let T'' be the bridge of $G|S$ containing v_3, v_5, and $U(u)$.

Suppose v_1 has degree ≥ 7. Thus, there exist at least two neighbours of v_1, say a_1 and a_2, such that $a_1, a_2 \neq y$ and $a_1, a_2 \notin N_{H \cup P_0}(v_1)$. By 3-connectivity, there must exist paths A_1 and A_2 joining H to a_1 and a_2 respectively. Using the program to generate and check all possible such paths A_1 and A_2, it is found that a W_7-subdivision exists in G for each case. Assume then that v_1 has degree < 7. Thus, v_1 has at most four neighbours in $U_2 \setminus W$.

Suppose $|U(u) \setminus W| = 3$. Suppose also that v_4 has at most two neighbours in $U(u) \setminus W$, say b_1 and b_2 (if a second neighbour exists). Since v_1 has degree < 7, and v_0 has only two neighbours in $U(u) \setminus W$, then a type 2a or 4a edge-vertex-cutset can be formed from $v_0, v_1, v_b b_1$, and $v_2 b_2$ (if b_2 exists). Assume then that v_4 is adjacent to all three vertices in $U(u) \setminus W$. If v_4 has ≥ 3 neighbours in $U_2 \setminus W$, then, by Lemma 2, a W_7-subdivision exists centred on v_4. Assume then that v_4 has at most two neighbours, say c_1 and c_2, in $U_2 \setminus W$. Then a type 4 edge-vertex-cutset can be formed from $v_1, v_0, v_4 c_1$, and $v_4 c_2$.

Assume then that $|U(u) \setminus W| = 2$.

Since $|V(G)| \geq 38$, then, we know that U_2 contains at least 36 vertices. In the remainder of this case, the structure of U_2 is more closely examined. Various sets of size 3 contained in U_2 are identified to be separating sets. For each such separating set U^*, all but one of the bridges of $G|U^*$ are shown to be limited in size to some small number of vertices, otherwise some forbidden edge-vertex-cutset exists. It is then shown that the intersection of each of the ‘large’ bridges can contain at most two vertices, which results in a contradiction.

Step 1: Bounding $|V(G) \setminus T''|$. Recall that $S = \{v_1, v_2, v_6\}$, that T' is the bridge of $G|S$ containing y, and that T'' is the bridge of $G|S$ containing v_3, v_5, and $U(u)$.

Suppose $|V(G) \setminus T''| \geq 3$. Recall that for any neighbour y of v_1 where $y \in U_2 \setminus W$ but $y \notin N_{H}(v_1)$, all paths in $U_2 \setminus W$ joining y to $H \cup Q$ must first meet $H \cup Q$ at an internal vertex of the path Q. Thus, any neighbour of v_1 in $U_2 \setminus W$ is also in the bridge T'. Any neighbours of v_1 that are not in T', then, must be in $U(u) \setminus W$. Since $|U(u) \setminus W| = 2$, there can be only two such neighbours of v_1. Thus, a type 4 edge-vertex-cutset can be formed from v_2, v_6, and the edges joining v_1 to $U(u) \setminus W$.

Assume then that $|V(G) \setminus T''| \leq 2$.

Let $X_1 = (T'' \cap U_2) \setminus W$. Since $|U_2 \setminus W| \geq 33$, and $|V(G) \setminus T''| \leq 2$, X_1 must contain at least 31 vertices.

Consider now the set $S_1 = \{v_2, v_0, v_4\}$. Suppose that S_1 is not a separating set, but rather, there exists some path disjoint from S_1 joining v_3 to v_1. Using the program to check all possible placements of such a path shows that a W_7-subdivision exists in each case. Suppose then that S_1 forms a separating set in G, with at least two bridges: T_3, which contains the vertex v_3, and T_1, which contains the vertices v_1, v_5, v_6, u', and x.

Step 2: Bounding $|V(G) \setminus T_1|$. Suppose v_0 has more than two neighbours in $T_3 \setminus S_1$. Then a W_7-subdivision exists in G, by applying Lemma 2 to T_1 and T_3, and using the edge $v_0 v_4$ as a seventh spoke. Assume then that v_0 has at most two neighbours in $T_3 \setminus S_1$. Then, if $|T_3 \setminus S_1| > 3$, a type 2 or 4 edge-vertex-cutset can be formed from v_2, v_4, and the edge or edges joining S_1 to $T_3 \setminus S_1$. Assume then that $|T_3 \setminus S_1| \leq 3$. 82
Suppose there exists some bridge of G other than T_1 and T_3. Then G falls into Case (b)(i), as illustrated in Figure 40. Assume then that there are only two bridges of $G|S_1$. Thus, there are at most three vertices in $V(G) \setminus T_1$.

![Figure 40: Case (b)(ii), third bridge of $G|S_1$ places G in Case (b)(i).](image)

Recall $X_1 = (T'' \cap U_2) \setminus W$, and $|X_1| \geq 31$.
Let $X_2 = X_1 \cap T_1$. Since $|X_1| \geq 31$ and $|V(G) \setminus T_1| \leq 3$, X_2 must contain at least 28 vertices.

Step 3: Excluding vertices on P_2. Suppose there exists some internal vertex p_2 on the path P_2.

By 3-connectivity, there exists some path Q_2 from p_2 to $H - P_2$ such that Q_2 meets $H - P_2$ only at its endpoint, say, q_2. Using the program to generate and check all possible placements of Q_2, it is found that the existence of such a path results in a W_7-subdivision in G, unless q_2 is contained in the bridge T_3, or $q_2 = v_4$. If the former is true for any such path Q_2, then all internal vertices on the path P_2 are contained in the bridge T_3, and thus are not in the set X'. Suppose then that $q_2 = v_4$ for all such paths Q_2. This, however, would mean that all such vertices q_2 are contained in some third bridge of $G|S_1$ other than T_1 or T_3, and we have already deduced in Step 2 that no such bridge exists.

Assume then that X_2 does not contain any internal vertices on the path P_2.

Consider the set $S_2 = \{v_6, v_0, v_4\}$. Suppose that S_2 is not a separating set, but rather, there exists some path disjoint from S_2 joining v_5 to v_1. Using the program to check all possible placements of such a path shows that a W_7-subdivision exists in each case. Suppose then that S_2 forms a separating set in G, with at least two bridges: Y_5, which contains the vertex v_5, and Y_1, which contains v_1, v_2, v_3, and $U(u)$.

Step 4: Bounding $|V(G) \setminus Y_1|$. Suppose v_0 has more than two neighbours in $Y_5 \setminus S_2$. Then a W_7-subdivision exists in G, by applying Lemma 2 to Y_1 and Y_5, and using the edge v_0v_4 as a seventh spoke. Assume then that v_0 has at most two neighbours in $Y_5 \setminus S_2$. Then, if $|Y_5 \setminus S_2| > 3$, a type 2 or 4 edge-vertex-cutset can be formed from v_6, v_4, and the edge or edges joining S_2 to $Y_5 \setminus S_2$. Assume then that
$|Y_5 \setminus S_2| \leq 3$.

Suppose there exists some bridge of $G|S_2$ other than Y_5 and Y_1. Then G falls into Case (b)(i), as illustrated in Figure 41. Assume then that there are only two bridges of $G|S_2$. Thus, there are at most three vertices in $V(G) \setminus Y_1$.

Figure 41: Case (b)(ii), third bridge of $G|S_2$ places G in Case (b)(i).

Recall $X_2 = (U_2 \cap T'' \cap T_1) \setminus W$, and $|X_2| \geq 28$.

Let $X_3 = X_2 \cap Y_1$. Since $|X_2| \geq 28$, and $|V(G) \setminus Y_1| \leq 3$, X_3 must contain at least 25 vertices.

Step 5: Excluding vertices on P_6. Suppose there exists some internal vertex p_6 on the path P_6.

By 3-connectivity, there exists some path Q_6 from p_6 to $H - P_6$ such that Q_6 meets $H - P_6$ only at its endpoint, say, q_6. Using the program to generate and check all possible placements of Q_6, it is found that the existence of such a path results in a W_7-subdivision in G, unless q_6 is contained in the bridge Y_5, or $q_6 = v_4$. If the former is true for any such path Q_6, then all internal vertices on the path P_6 are contained in the bridge Y_5, and thus are not in the set X''. Suppose then that $q_6 = v_4$ for all such paths Q_6. This, however, would mean that all such vertices q_6 are contained in some third bridge of $G|S_2$ other than Y_1 or Y_5, and we have already shown in Step 4 that no such bridge exists.

Assume then that X_3 does not contain any internal vertices on the path P_6.

Step 6: Bounding vertices on v_1Cv_2. Suppose there exists some internal vertex p'_2 on the path v_1Cv_2.

If G contains the configuration shown in either the second or fourth graphs of Figure 36 then one of the endpoints of Q forms such a vertex, and so any internal vertices on v_1Cv_2 are contained in the bridge T' (and thus are not contained in X_3).

Suppose then that G contains the configuration shown in either the first or third graphs of Figure 36. By 3-connectivity, there exists some path Q'_2 from p'_2 to $H - v_1Cv_2$ such that Q'_2 meets H only at its endpoint, say, q'_2. Using the program to generate and check all possible placements of Q'_2, it is found that the existence of such a path results in a W_7-subdivision in G, unless q'_2 is contained in the bridge T', or $q'_2 = v_4$. If
the former is true for any such path Q'_1, then all internal vertices on the path v_1Cv_2 are contained in the bridge T', and thus are not in the set X_3. Suppose then that $q'_2 = q_4$ for all such paths Q'_2.

Let a_1 be the vertex closest to v_1 along v_1Cv_2, and let a_n be the vertex closest to v_2 along v_1Cv_2. Note that the removal of v_1, v_2, and v_4 disconnects the graph, placing a_1 and a_n in a separate component from the other vertices in H. Let A be the bridge of $G\{v_1, v_2, v_4\}$ containing a_1, a_n, and the other internal vertices along v_1Cv_2. If v_4 contains at least three neighbours in $A \{v_1, v_2, v_4\}$, then by applying Lemma 2 to the bridge A, a W_7-subdivision can be formed in G. Suppose then that v_4 contains at most two neighbours in $A \{v_1, v_2, v_4\}$, say, v'_1 and v'_2 (if a second neighbour exists). Then, if $|A \{v_1, v_2, v_4\}| > 3$, a type 2 or 4 edge-vertex-cutset can be formed from v_1, v_2, and the edges $v_4v'_1$ and $v_4v'_2$ (if v'_2 exists).

Assume then that $|A \{v_1, v_2, v_4\}| \leq 3$.

Recall $X_3 = (U_2 \cap T'' \cap T_1 \cap Y_1) \setminus W$, and $|X_3| \geq 25$.

Let $X_4 = X_3 \setminus (A \{v_1, v_2, v_4\})$. Since $|X_3| \geq 25$ and $|A \{v_1, v_2, v_4\}| \leq 3$, X_4 must contain at least 22 vertices.

Step 7: Bounding vertices on v_6Cv_1. Suppose there exists some internal vertex p'_6 on the path v_6Cv_1.

If G contains the configuration shown in either the third or fourth graphs of Figure 38 then one of the endpoints of Q forms such a vertex, and so any internal vertices on v_6Cv_1 are contained in the bridge T' (and thus are not contained in X_4).

Suppose then that G contains the configuration shown in either the first or second graphs of Figure 38. By 3-connectivity, there exists some path Q'_6 from p'_6 to $H - v_6Cv_1$ such that Q'_6 meets H only at its endpoint, say, q'_6. Using the program to generate and check all possible placements of Q'_6, it is found that the existence of such a path results in a W_7-subdivision in G, unless q'_6 is contained in the bridge T', or $q'_6 = v_4$. If the former is true for any such path Q'_6, then all internal vertices on the path v_6Cv_1 are contained in the bridge T', and thus are not in the set X_4. Suppose then that $q'_6 = v_4$ for all such paths Q'_6.

Let b_1 be the vertex closest to v_1 along v_6Cv_1, and let b_n be the vertex closest to v_6 along v_6Cv_1. Note that the removal of v_1, v_6, and v_4 disconnects the graph, placing b_1 and b_n in a separate component from the other vertices in H. Let B be the bridge of $G\{v_1, v_6, v_4\}$ containing b_1, b_n, and the other internal vertices along v_6Cv_1.

By the same argument used in the previous paragraph for the bridge A, it can be assumed that $|B \{v_1, v_6, v_4\}| \leq 3$.

Let $X_5 = X_4 \setminus (B \{v_1, v_6, v_4\})$. Since $|X_4| \geq 22$ and $|B \{v_1, v_6, v_4\}| \leq 3$, X_5 must contain at least 19 vertices.

Consider now the set $S' = \{v_4, v_2, v_6\}$. Suppose there exists a second bridge of $G\{v_4\}$ other than that containing v_1. Let Z_1 be the bridge of $G\{v_4\}$ that contains v_1.

Step 8: Bounding $V(G) \setminus Z_1$. Suppose v_4 has at least three neighbours not in Z_1, say, a_1, a_2, and a_3. If a_1, a_2, and a_3 are all contained in one bridge of $G\{v_4\}$, then by Lemma 2 a W_7-subdivision exists centred on v_4 (see Figure 29). If two of these vertices, say a_1 and a_2, are in one bridge, while a_3 is in a separate bridge, then a W_7-subdivision can be formed by applying Lemma 1 to the bridge containing a_1 and a_2, and using the bridge containing a_3 to create a spoke-meets-rim vertex at v_2 (see Figure 29). Suppose then that a_1, a_2, and a_3 are each in separate bridges of $G\{v_4\}$, say, A_1, A_2, A_3. To avoid the possibility of Reduction 1A, each of $A_1 \setminus S'$, $A_2 \setminus S'$, $A_3 \setminus S'$ must contain at least two vertices. Thus, to avoid an internal 4-edge-cutset, there exists some vertex v' in S' such that v' has at least two neighbours in at least one of $A_1 \setminus S'$, $A_2 \setminus S'$, $A_3 \setminus S'$. Since each vertex in S' also has at least three neighbours in $Z_1 \setminus S'$, by Lemma 8 a W_7-subdivision can be formed in G centred on v' (see Figure 29).
Suppose then that \(v_4 \) has at most two neighbours not in \(Z_1 \). Therefore, unless \(|V(G) \setminus Z_1| \leq 3 \), a type 2 or 4 edge-vertex-cutset is formed from \(v_2, v_6 \), and the edge or edges joining \(v_4 \) to \(V(G) \setminus Z_1 \). Suppose then that \(|V(G) \setminus Z_1| \leq 3 \).
Recall \(X_5 = ((U_2 \cap T' \cap T_1 \cap Y_1) \setminus W) \setminus (A \setminus \{v_1, v_2, v_4\}) \setminus (B \setminus \{v_1, v_6, v_4\}) \), and that \(|X_5| \geq 19 \).

Let \(X_6 = X_5 \cap Z_1 \). Since \(|X_5| \geq 19 \) and \(|V(G) \setminus Z_1| \leq 3 \), \(X_6 \) must contain at least 16 vertices.

Step 9: Proving \(|X_6| \geq 16 \) is a contradiction. The vertices \(v_2 \) and \(v_6 \) are contained in the set \(X_6 \), but no other vertices in \(H \) can be contained in \(X_6 \). To preserve 3-connectivity, though, there must exist some path \(P_X \) disjoint from \(\{v_2, v_6\} \) joining \(X_6 \setminus \{v_2, v_6\} \) to \(H \). Let \(p_X \) be the vertex where \(P_X \) first meets \(H \). To avoid creating a \(W_7 \)-subdivision, it must be the case that \(p_X \in \{v_1, v_4\} \). However, it has already been argued earlier in this case that any neighbour of \(v_1 \) in \(U_2 \setminus W \) is also in the bridge \(T' \). Since any path joining \(T' \) to \(X_6 \) must pass through some vertex in \(\{v_1, v_2, v_6\} \), it cannot be the case that \(p_X = v_1 \). Assume then that \(p_X = v_4 \), and that any path joining \(X_6 \) to \(H \) must pass through one of \(v_2, v_4, \) or \(v_6 \), that is, the set \(S' \). However, (from Step 8) \(X_6 \) only contains vertices in the bridge \(Z_1 \) of \(G|S' \). Thus, \(X_6 \) can only contain the two vertices \(v_2 \) and \(v_6 \), and so \(|X_6| = 2 \), which is a contradiction.

1.1.3. Suppose then that \(P_1 \) and \(P_4 \) do not contain any internal vertices in the bridges \(U_2 \) or \(U(u) \), but rather, \(x \) is contained in some third bridge \(A \) of \(G|W \) other than \(U_2 \) or \(U(u) \). If \(A \) contains internal vertices of both \(P_1 \) and \(P_4 \), then a \(W_7 \)-subdivision can be formed in \(G \). Suppose then that \(A \) contains internal vertices of only one of these paths.

If there exists some fourth bridge of \(G|W \) other than \(U_2 \), \(U(u) \), and \(A \), then by Lemma 4 a \(W_7 \)-subdivision exists in \(G \). (See Table 25.)

Suppose then that \(U_2 \), \(U(u) \), and \(A \) are the only bridges of \(G|W \).

Suppose \(x \) is on the path \(P_4 \). Then \(G \) falls into Case (b)(i). Figure 45 shows how a graph isomorphic to the type of graph analysed in Case (b)(i) is contained as a subdivision in \(G \) in this situation.

Suppose then that \(x \) is on the path \(P_1 \), and \(P_4 \) is a single edge.

If \(v_0 \) contains more than one neighbour in \(U(u) \setminus W \) or in \(A \setminus W \), then by Lemma

Figure 44: Case (b)(ii). \(W_7 \)-subdivision exists when \(v_4 \) has three neighbours not in \(X_1 \), each in a separate bridge of \(G|S' \).
Required in Lemma 9

| Required in Lemma 9 | Equivalent construct in G | Bridges X, Y of $G|S$ | Bridges $U(u)$, A of $G|W$ |
|---------------------|--------------------------|------------------|-------------------|
| $S = \{u, v, w\}$ | $W = \{v_0, v_1, v_4\}$ | | |
| Required in Lemma 9 | Bridge Z of $G|S$ containing ≥ 3 neighbours of v not in S | P_u, P_w | |
| Equivalent construct in G | Bridge U_2 of $G|W$ | One of P_1 or P_4 (whichever of these has no vertices contained in $A \setminus W$); path in fourth bridge of $G|W$ other than U_2, $U(u)$, and A. |

Table 26: Case (b)(ii), 1.1.3: Applying Lemma 9 to G, where there are at least four bridges of $G|W$.

![Figure 45: Case (b)(ii), vertex x on path P_4 places G in Case (b)(i). Compare Figure 13.](image)

3 a W_7-subdivision exists in G. Assume then that v_0 contains exactly one neighbour in $U(u) \setminus W$, and exactly one neighbour in $A \setminus W$. Thus, if $|(U(u) \cup A) \setminus W| > 3$, a type 4 edge-vertex-cutset can be formed from v_1, v_4, and the edges from v_0 to the two neighbours of v_0 in $(U(u) \cup A) \setminus W$.

Assume then that $|(U(u) \cup A) \setminus W| \leq 3$. Thus, one of $U(u) \setminus W$, $A \setminus W$ contains only one vertex.

If either of the edges v_1v_4 or v_0v_1 exist in G, then, Reduction 1A is possible. Assume then that these edges do not exist in G.

Suppose v_1 has degree ≥ 7. Then there exist three neighbours of v_1, say, a_1, a_2, and a_3, such that $a_i \notin N_{H \cup P_{u_1}}(v_1)$ for all $1 \leq i \leq 3$.

By 3-connectivity, there exist at least two paths disjoint from v_1, joining $\{a_1, a_2, a_3\}$ to $H \cup Q \cup U(u) \cup A$, such that these paths are also vertex-disjoint from each other. Call these paths P_{a_1} and P_{a_2}. Let a'_1 and a'_2 be the vertices where P_{a_1} and P_{a_2} first meet $H \cup Q \cup U(u) \cup A$ respectively.
Suppose that \(\{v_1, a'_1, a'_2\} \) forms a separating set in \(G \), the removal of which places \(\{a_1, a_2, a_3\} \) and \(H \cup Q \cup U(u) \cup A \) in different components. Then, since the bridge of \(G\backslash \{v_1, a'_1, a'_2\} \) containing \(a_1, a_2, a_3 \) contains at least three neighbours of \(v_1 \), and the bridge of \(G\backslash \{v_1, a'_1, a'_2\} \) containing \(U(u) \) and \(A \) contains at least two neighbours of \(v_1 \), Lemma 3 applies to show that \(G \) contains a \(W_7 \)-subdivision.

Suppose then that \(\{v_0, a'_1, a'_2\} \) does not form a separating set in \(G \). Thus, there exists some path joining \(\{a_1, a_2, a_3\} \) to \(H \cup Q \cup U(u) \cup A \), say \(P_{a'_1} \), such that \(P_{a'_1} \) is vertex-disjoint from both \(P_{a'_1} \) and \(P_{a'_2} \), and \(P_{a'_1} \) first meets \(H \cup Q \cup U(u) \cup A \) at some vertex \(a'_3 \). If \(v_4 \in \{a'_1, a'_2, a'_3\} \) or \(v_0 \in \{a'_1, a'_2, a'_3\} \), then Reduction IA can be performed on \(G \). Assume then that this is not the case. Using the program to search and check all other possible placements of \(a'_1, a'_2, a'_3 \) shows that a \(W_7 \)-subdivision exists in each case.

Assume then that \(v_1 \) has degree \(< 7 \).

If \(v_4 \) also has degree \(< 7 \), then Reduction 2A can be performed on \(G \). Assume then that \(v_4 \) has degree \(\geq 7 \).

(A) Suppose \(v_1 \) has at most two neighbours in \(U_2 \setminus W \), say, \(x_1 \) and \(x_2 \).

If \(|U(u) \cup A \setminus W| = 3 \), a type 4 edge-vertex-cutset can be formed from the edges \(v_1x_1 \) and \(v_1x_2 \), and the vertices \(v_0 \) and \(v_4 \). Assume then that \(U(u) \setminus W \) contains only \(u' \), and \(A \setminus W \) contains only \(x \).

Since we know that the edges \(v_1v_4 \) and \(v_0v_1 \) do not exist in \(G \), \(v_0 \) and \(v_4 \) must each have exactly two neighbours in the set \(\{v_1, x, u'\} \). Therefore, a type 4a edge-vertex-cutset can be formed from the edges \(v_1x_1 \) and \(v_2x_2 \), and the vertices \(v_4 \) and \(v_0 \).

(B) Suppose then that \(v_1 \) has some third neighbour \(y \) in \(U_2 \setminus W \), such that \(y \notin N_H(v_1) \).

By 3-connectivity, there must exist some path \(Y \) in \(U_2 \setminus W \) joining \(y \) to \(H \cup Q \), such that \(Y \) meets \(H \cup Q \) only at its endpoint, say \(y' \). Using the program to generate and check all possible such paths \(Y \), it is found that a \(W_7 \)-subdivision exists in \(G \) for each case, except where \(y' \) is an internal vertex on the path \(Q \). Assume then that this is the case for all such paths \(Y \).

Consider the set \(S = \{v_1, v_2, v_6\} \). Suppose \(S \) does not form a separating set in \(G \). Then there exists some path disjoint from \(S \) joining the two components of \((H \cup U(u) \cup A \cup Q) \setminus S \). Using the program to generate and check all possible such paths, it is found that a \(W_7 \)-subdivision exists in each case. Assume then that \(S \) forms a separating set in \(G \). Let \(T' \) be the bridge of \(G\setminus S \) containing \(y \). Let \(T'' \) be the bridge of \(G\setminus S \) containing \(v_3, v_5, U(u), \) and \(A \).

Suppose \(|U(u) \cup A \setminus W| = 3 \). Suppose also that \(v_1 \) has at most two neighbours in \((U(u) \cup A) \setminus W \), say \(b_1 \) and \(b_2 \) (if a second neighbour exists). Since \(v_1 \) has degree \(< 7 \), and \(v_0 \) has only two neighbours in \((U(u) \cup A) \setminus W \), then a type 2a or 4a edge-vertex-cutset can be formed from \(v_0, v_1, v_4b_1 \), and \(v_4b_2 \) (if \(b_2 \) exists). Assume then that \(v_4 \) is adjacent to all three vertices in \((U(u) \cup A) \setminus W \). Since \(v_4 \) has degree \(\geq 7 \), \(v_4 \) must have \(\geq 3 \) neighbours in \(U_2 \setminus W \). Thus, by Lemma 3, a \(W_7 \)-subdivision exists centred on \(v_4 \).

Assume then that \(|U(u) \cup A \setminus W| = 2 \).

Suppose \(|V(G) \setminus T''| \geq 3 \). Recall that for any neighbour \(y \) of \(v_1 \) where \(y \in U_2 \setminus W \) but \(y \notin N_H(v_1) \), all paths in \(U_2 \setminus W \) joining \(y \) to \(H \cup Q \) must first meet \(H \cup Q \) at an internal vertex of the path \(Q \). Thus, any neighbour of \(v_1 \) in \(U_2 \setminus W \) is also in the bridge \(T' \). Any neighbours of \(v_1 \) that are not in \(T' \), then, must be in \(U(u) \setminus W \) or \(A \setminus W \). Since \(|U(u) \cup A \setminus W| = 2 \), there can be only two such neighbours of \(v_1 \). Thus, a type 4 edge-vertex-cutset can be formed from \(v_2, v_6 \), and the edges \(v_1x \) and \(v_1u' \).

Assume then that \(|V(G) \setminus T''| < 3 \).

Let \(X = (T'' \cap U_2) \setminus W \). Since \(|V(G)| \geq 38 \), \(|U(u) \cup A| = 5 \) (including \(W \)), and
\(|V(G) \setminus T'| \leq 2\), \(X\) must contain at least 31 vertices.

Consider the set \(S_1 = \{v_2, v_0, v_4\}\). Suppose that \(S_1\) is not a separating set, but rather, there exists some path disjoint from \(S_1\) joining \(v_3\) to \(v_1\). Using the program to check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_1\) forms a separating set in \(G\), with at least two bridges: \(T_3\), which contains the vertex \(v_3\), and \(T_1\), which contains the vertices \(v_1, v_5, v_6, u',\) and \(x\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|T_3 \setminus S_1| \leq 3\) and that there are no bridges of \(G|S_1\) other than \(T_1\) and \(T_3\). Thus, \(|V(G) \setminus T_1| \leq 3\).

Let \(X' = X \cap T_1\). Since \(|X| \geq 31\), \(X'\) must contain at least 28 vertices.

Suppose there exists some path disjoint from \(S_1\) joining \(v_3\) to \(v_1\). Using the program to generate and check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_1\) forms a separating set in \(G\), with at least two bridges: \(Y_5\), which contains the vertex \(v_3\), and \(Y_1\), which contains \(v_1, v_2, v_3,\) and \(U(u)\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|Y_5 \setminus S_2| \leq 3\) and that there are no bridges of \(G|S_2\) other than \(Y_3\) and \(Y_1\). Thus, \(|V(G) \setminus Y_1| \leq 3\).

Let \(X'' = X' \cap Y_1\). Since \(|X'| \geq 28\), \(X''\) must contain at least 25 vertices.

Suppose there exists some path disjoint from \(S_2\) joining \(v_5\) to \(v_1\). Using the program to generate and check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_2\) forms a separating set in \(G\), with at least two bridges: \(Y_3\), which contains the vertex \(v_5\), and \(Y_1\), which contains \(v_1, v_2, v_3,\) and \(U(u)\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|Y_5 \setminus S_2| \leq 3\) and that there are no bridges of \(G|S_2\) other than \(Y_3\) and \(Y_1\). Thus, \(|V(G) \setminus Y_1| \leq 3\).

Let \(X'' = X' \cap Y_1\). Since \(|X'| \geq 28\), \(X''\) must contain at least 25 vertices.

Suppose there exists some path disjoint from \(S_2\) joining \(v_5\) to \(v_1\). Using the program to generate and check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_2\) forms a separating set in \(G\), with at least two bridges: \(Y_3\), which contains the vertex \(v_5\), and \(Y_1\), which contains \(v_1, v_2, v_3,\) and \(U(u)\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|Y_5 \setminus S_2| \leq 3\) and that there are no bridges of \(G|S_2\) other than \(Y_3\) and \(Y_1\). Thus, \(|V(G) \setminus Y_1| \leq 3\).

Let \(X'' = X' \cap Y_1\). Since \(|X'| \geq 28\), \(X''\) must contain at least 25 vertices.

Suppose there exists some path disjoint from \(S_2\) joining \(v_5\) to \(v_1\). Using the program to generate and check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_2\) forms a separating set in \(G\), with at least two bridges: \(Y_3\), which contains the vertex \(v_5\), and \(Y_1\), which contains \(v_1, v_2, v_3,\) and \(U(u)\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|Y_5 \setminus S_2| \leq 3\) and that there are no bridges of \(G|S_2\) other than \(Y_3\) and \(Y_1\). Thus, \(|V(G) \setminus Y_1| \leq 3\).

Let \(X'' = X' \cap Y_1\). Since \(|X'| \geq 28\), \(X''\) must contain at least 25 vertices.

Suppose there exists some path disjoint from \(S_2\) joining \(v_5\) to \(v_1\). Using the program to generate and check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_2\) forms a separating set in \(G\), with at least two bridges: \(Y_3\), which contains the vertex \(v_5\), and \(Y_1\), which contains \(v_1, v_2, v_3,\) and \(U(u)\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|Y_5 \setminus S_2| \leq 3\) and that there are no bridges of \(G|S_2\) other than \(Y_3\) and \(Y_1\). Thus, \(|V(G) \setminus Y_1| \leq 3\).

Let \(X'' = X' \cap Y_1\). Since \(|X'| \geq 28\), \(X''\) must contain at least 25 vertices.

Suppose there exists some path disjoint from \(S_2\) joining \(v_5\) to \(v_1\). Using the program to generate and check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_2\) forms a separating set in \(G\), with at least two bridges: \(Y_3\), which contains the vertex \(v_5\), and \(Y_1\), which contains \(v_1, v_2, v_3,\) and \(U(u)\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|Y_5 \setminus S_2| \leq 3\) and that there are no bridges of \(G|S_2\) other than \(Y_3\) and \(Y_1\). Thus, \(|V(G) \setminus Y_1| \leq 3\).

Let \(X'' = X' \cap Y_1\). Since \(|X'| \geq 28\), \(X''\) must contain at least 25 vertices.

Suppose there exists some path disjoint from \(S_2\) joining \(v_5\) to \(v_1\). Using the program to generate and check all possible placements of such a path shows that a \(W_7\)-subdivision exists in each case. Suppose then that \(S_2\) forms a separating set in \(G\), with at least two bridges: \(Y_3\), which contains the vertex \(v_5\), and \(Y_1\), which contains \(v_1, v_2, v_3,\) and \(U(u)\).

By the same arguments used in Case 1.1.2, it can be assumed that \(|Y_5 \setminus S_2| \leq 3\) and that there are no bridges of \(G|S_2\) other than \(Y_3\) and \(Y_1\). Thus, \(|V(G) \setminus Y_1| \leq 3\).

Let \(X'' = X' \cap Y_1\). Since \(|X'| \geq 28\), \(X''\) must contain at least 25 vertices.
Using the program to generate and check all possible placements of Q'_6, it is found that the existence of such a path results in a W_7-subdivision in G, unless q'_6 is contained in the bridge T', or $q'_6 = v_4$. Thus, by the same arguments used in Case 1.1.2, it can be assumed either that all internal vertices on the path v_6Cv_1 are contained in the bridge T', and thus are not in the set Z, or that all internal vertices on the path v_6Cv_1 are contained in some bridge B of $G\{v_1, v_6, v_4\}$ such that B contains no vertices in $H - v_4 - V(v_6Cv_1)$, and $|B \setminus \{v_1, v_6, v_4\}| \leq 3$. Let $Z' = Z - (B \setminus \{v_1, v_6, v_4\})$. Since $|Z| \geq 22$, $|Z'| \geq 19$.

Let $S' = \{v_4, v_2, v_6\}$. Suppose there exists a second bridge of $G|S'$ other than that containing v_1. Let X_1 be the bridge of $G|S'$ that contains v_1.

By the same argument used in Case 1.1.2, assume that v_4 has at most two neighbours not in X_1. Therefore, unless $|V(G) \setminus X_1| \leq 3$, a type 2 or 4 edge-vertex-cutset is formed from v_2, v_6, and the edge or edges joining v_4 to $V(G) \setminus X_1$. Suppose then that $|V(G) \setminus X_1| \leq 3$. Let $Z'' = Z' \cap X_1$. Since $|Z'| \geq 19, |Z''| \geq 16$. However, again using the same arguments of Case 1.1.2, Z'' can only contain the two vertices v_2 and v_6, which is a contradiction.

1.2. Suppose then that P_1 and P_4 are single edges. Then by Lemma 11, a W_7-subdivision exists in G.

2. Assume now there is no such path Q from H_2 to H_5.

Thus, there exist at least three bridges of $G|W$: U_2, U_5, and $U(u)$, where U_2 and U_5 are the bridges containing the subgraphs H_2 and H_5 respectively.

Suppose that $U_2 \setminus W$ contains some internal vertex a on the path P_1, and some internal vertex b on the path P_4. There must exist paths P_a and P_b in $(U_2 \setminus W)$ joining a and b to $H \cap (U_2 \setminus W)$ respectively. Using the program to generate and check all possible placements of such paths shows that a W_7-subdivision exists in each case. Assume then that $U_2 \setminus W$ does not contain internal vertices on both P_1 and P_4. By symmetry of the graph, assume also that $U_5 \setminus W$ does not contain internal vertices on both P_1 and P_4.

Suppose there exists some bridge A of $G|W$ such that $A \setminus W$ contains at least three neighbours of v_0. If $A \notin \{U_2, U_5\}$, then Lemma 12 applies to show that a W_7-subdivision exists. Suppose then without loss of generality that $A = U_2$. Thus, given the conclusion drawn in the previous paragraph, A does not contain internal vertices of both P_1 and P_4. Without loss of generality, suppose that there are no internal vertices of P_4 contained in A. If U_5 does not contain any internal vertices of P_4, then Lemma 3 applies to show that a W_7-subdivision exists. If U_5 does contain internal vertices of P_4, then a W_7-subdivision is shown to exist by applying Lemma 2 to both U_2 and U_5, and using $U(u)$ to form a path from v_0 to either v_1 or v_4 as a seventh spoke.

Assume then that each bridge of $G|W$ contains at most two neighbours of v_0 not in W.

Let A be some bridge of $G|W$. Let a_1 be some neighbour of v_0 in $A \setminus W$, and let a_2 be the second neighbour of v_0 in $A \setminus W$ if such a vertex exists. If $|A \setminus W| > 3$, then a type 2 or 4 edge-vertex-cutset can be formed from v_1, v_4, v_0a_1, v_0a_2 (if a_2 exists).

Assume then that each bridge of $G|W$ contains at most three vertices not in W. Then, since $|V(G)| \geq 38$, there must be at least 12 bridges of $G|W$.

If there exists some bridge of $G|W$ that contains only one vertex not in W, then Reduction 1A can be performed on G. Assume then that each bridge of $G|W$ contains at least two vertices not in W.

Suppose each bridge of $G|W$ contains exactly two vertices not in W. Then, since $|V(G)| \geq 38$, there must exist at least 18 bridges of $G|W$. At least one bridge of $G|W$ must be contained as a subdivision in two others, therefore Reduction 1B can be performed on G. 91
Assume then that there exists some bridge of $G[W$, say, U', such that $|U' \setminus W| = 3$. To avoid an internal 4-edge-cutset, there must be at least five edges joining W to $U' \setminus W$.

2.1. Suppose there exists some vertex $i \in \{v_1, v_4\}$ such that i has at least three neighbours in $U' \setminus W$. If there exists some bridge U'' such that $U'' \neq U'$ and i has at least two neighbours in $U'' \setminus W$, then by Lemma 3 a W_7-subdivision exists centred on i. Assume then that every bridge of $G[W$ other than U' (of which there are at least 11) contains exactly one neighbour of i not in W. Let j be the vertex in $\{v_1, v_4\}$ other than i.

2.1.1. Suppose there exists some bridge U_j of $G[W$ such that $U_j \setminus W$ contains at least three neighbours of j. If there exists some bridge U_j' such that $U_j' \neq U_j$ and j has at least two neighbours in $U_j' \setminus W$, then by Lemma 3 a W_7-subdivision exists centred on j. Assume then that every bridge of $G[W$ other than U_j contains exactly one neighbour of j not in W. Thus, there are at least ten bridges of $G[W$ that contain only one neighbour of i not in W and only one neighbour of j not in W. Since it has already been assumed that each bridge of $G[W$ contains at most two neighbours of v_0 not in W, it must be the case that Reduction 1B can be performed on G.

2.1.2. Assume then that each bridge of $G[W$ contains at most two neighbours of j not in W. Thus, there are at least 11 bridges of $G[W$ each with exactly one neighbour of i not in W, at most two neighbours of j not in W, and at most two neighbours of v_0 not in W. Either Reduction 1B or Reduction 1C can thus be performed on G.

2.2. Suppose then that there are two vertices in W, say x and y, such that x and y each have exactly two neighbours in $U' \setminus W$. Then a type 2a or 4a edge-vertex-cutset can be formed from x, y, and the edge or edges joining the third vertex in W to $U' \setminus W$.

Case (b)(iii): $u_1 = v_1$, $u_2 \in P_4 \setminus \{v_0, v_4\}$ (Figure 46)

![Figure 46: Case (b)(iii): $u_1 = v_1$, $u_2 \in P_4 \setminus \{v_0, v_4\}$](image)

Let $W = \{v_0, v_1, v_4\}$. Let H_2 be the subgraph consisting of the path from v_1 to v_4 that passes through v_2 and v_3, not including endpoints, and all of P_2 and P_3 except for v_0. Let H_5 be the subgraph consisting of the path from v_1 to v_4 that passes through v_5 and v_6, not including endpoints, and all of P_5 and P_6 except for v_0. Recall that $U(u)$ is the bridge of $G[V(H)]$ which contains u'.

1. Suppose there exists some path Q from some point in H_2 to some point in H_5. All but four of the possible configurations contain a W_7-subdivision. The four exceptions are shown in Figure 47. Suppose that G contains the configuration shown in one of these graphs.
1.1. Suppose there exists some path R in G such that W is not a separating set. Using the program to generate and check all possible placements of such a path, it is found that the existence of such a path R results in the existence of a W_7-subdivision in G.

1.2. Suppose that no such path R exists in G, that is, $U(u)$ forms a bridge of $G|W$, and $H_2 \cup H_5$ is in some bridge of $G|W$ other than $U(u)$. Call this bridge U_2. The same argument as in Case (b)(ii) 1.2.1.2 can be applied to show that G contains a W_7-subdivision.

2. Assume now there is no such path Q from H_2 to H_5. By symmetry of the graph, we can similarly assume that neither H_2 nor H_5 are contained in the bridge $U(u)$.

Thus, there exist at least three bridges of $G|W$: U_2, U_5, and $U(u)$, where U_2 and U_5 are the bridges containing the subgraphs H_2 and H_5 respectively. The same argument as in Case (b)(ii) 2 can be applied to show that G contains a W_7-subdivision.

9 Algorithm

Theorem 18 forms the basis for the following algorithm for solving SHP(W_7).

Algorithm 1

1. Input: Graph G.

2. If G is 3-connected, go to Step 4; otherwise:
(a) If G is not connected, apply the algorithm recursively to each connected component.

(b) If G is not 2-connected, apply the algorithm recursively to each block.

(c) Find a separating set V_0 for G of size 2. Form G' by adding an edge between the two members of V_0 if none exists already.

(d) Find the bridges U_1,\ldots,U_k of $G'\setminus V_0$, and apply the algorithm recursively to each $\langle U_i \rangle$, $1 \leq i \leq k$. If any $\langle U_i \rangle$ is accepted, accept G; otherwise reject G.

3. If G has an internal 3-edge-cutset, separate G into parts along its 3-edge cutset as described in Algorithm 2 of [6], and apply the algorithm recursively to each part.

4. If G has an internal 4-edge-cutset, separate G into parts along its 4-edge-cutset as described in Algorithm 1 of [13], and apply the algorithm recursively to each part.

5. If G has a type 1 or 1a edge-vertex-cutset, separate G into parts along its type 1 or 1a edge-vertex-cutset as follows:

 (a) Let $S = \{e_1,e_2,v\}$ be a type 1 or 1a edge-vertex-cutset of G.

 (b) Let G_1, G_2 be the two components of $G - S$.

 (c) Form G_1' from G by replacing G_2 as described in Theorem 7 (if S is a type 1 edge-vertex-cutset) or Theorem 8 (if S is a type 1a edge-vertex-cutset), and similarly, form G_2' from G by replacing G_1 as described in Theorem 7 (if S is a type 1 edge-vertex-cutset) or Theorem 8 (if S is a type 1a edge-vertex-cutset).

 (d) Apply the algorithm recursively to G_1' and G_2'. If either is accepted, accept G; otherwise reject G.

6. If G has a type 2 or 2a edge-vertex-cutset, separate G into parts along its type 2 or 2a edge-vertex-cutset as follows:

 (a) Let $S = \{e,v_1,v_2\}$ be a type 2 or 2a edge-vertex-cutset of G.

 (b) Let G_1, G_2 be the two components of $G - S$.

 (c) Form G_1' from G by replacing G_2 as described in Theorem 9 (if S is a type 2 edge-vertex-cutset) or Theorem 10 (if S is a type 2a edge-vertex-cutset), and similarly, form G_2' from G by replacing G_1 as described in Theorem 9 (if S is a type 2 edge-vertex-cutset) or Theorem 10 (if S is a type 2a edge-vertex-cutset).

 (d) Apply the algorithm recursively to G_1' and G_2'. If either is accepted, accept G; otherwise reject G.

7. If G has a type 3 or 3a edge-vertex-cutset, separate G into parts along its type 3 or 3a edge-vertex-cutset as follows:

 (a) Let $S = \{v,e_1,e_2,e_3,e_4\}$ be a type 3 or 3a edge-vertex-cutset of G.

 (b) Let G_1, G_2 be the two components of $G - S$, such that G_1 is the component of $G - S$ that contains exactly two vertices incident with e_1,\ldots,e_4.

94
(c) Form \(G'_1\) from \(G\) by replacing \(G_2\) as described in Theorem 11 (if \(S\) is a type 3 edge-vertex-cutset) or Theorem 12 (if \(S\) is a type 3a edge-vertex-cutset), and similarly, form \(G'_2\) from \(G\) by replacing \(G_1\) as described in Theorem 11 (if \(S\) is a type 3 edge-vertex-cutset) or Theorem 12 (if \(S\) is a type 3a edge-vertex-cutset).

(d) Apply the algorithm recursively to \(G'_1\) and \(G'_2\). If either is accepted, accept \(G\); otherwise reject \(G\).

8. If \(G\) has a type 4 or 4a edge-vertex-cutset, separate \(G\) into parts along its type 4 or 4a edge-vertex-cutset as follows:

(a) Let \(S = \{v_1, v_2, e_1, e_2\}\) be a type 4 or 4a edge-vertex-cutset of \(G\).

(b) Let \(G_1, G_2\) be the two components of \(G - S\), such that \(G_1\) is the component of \(G - S\) that contains exactly one vertex incident with \(e_1, e_2\).

(c) Form \(G'_1\) from \(G\) by replacing \(G_2\) as described in Theorem 13 (if \(S\) is a type 4 edge-vertex-cutset) or Theorem 14 (if \(S\) is a type 4a edge-vertex-cutset), and similarly, form \(G'_2\) from \(G\) by replacing \(G_1\) as described in Theorem 13 (if \(S\) is a type 4 edge-vertex-cutset) or Theorem 14 (if \(S\) is a type 4a edge-vertex-cutset).

(d) Apply the algorithm recursively to \(G'_1\) and \(G'_2\). If either is accepted, accept \(G\); otherwise reject \(G\).

9. If \(G\) has an internal \((1,1,1,1)\)-cutset, separate \(G\) into parts along its internal \((1,1,1,1)\)-cutset as follows:

(a) Let \(E' = \{e_1, e_2, e_3, e_4\}\) be an internal \((1,1,1,1)\)-cutset of \(G\).

(b) Let \(G_1, G_2\) be the two components of \(G - S\). Let \(u_1, u_2, u_3, u_4\) be the endpoints of \(e_1, \ldots, e_4\) in \(G_1\), and let \(v_1, v_2, v_3, v_4\) be the endpoints of \(e_1, \ldots, e_4\) in \(G_2\).

(c) Form \(G'_1\) from \(G\) by replacing \(G_2\) with the subgraph \(X\), where \(X\) contains only the four vertices \(v_1, \ldots, v_4\), all of which are made adjacent to one another if they were not already. Form \(G'_2\) from \(G\) by replacing \(G_1\) with the subgraph \(Y\), where \(Y\) contains only the four vertices \(u_1, \ldots, u_4\), all of which are made adjacent to one another if they were not already.

(d) Apply the algorithm recursively to \(G'_1\) and \(G'_2\). If either is accepted, accept \(G\); otherwise reject \(G\).

10. If some reduction \(R\) (where \(R\) is one of Reductions 1A, 1B, 1C, 2A, 2B, 3 or 9) can be performed on \(G\), put \(G' = R(G)\). Apply the algorithm recursively to \(G'\). If \(G'\) is accepted, accept \(G\); otherwise, reject \(G\).

11. If \(|V(G)| < 38\), perform an exhaustive search of \(G\) for a \(W_7\)-subdivision. If such a subdivision is found, accept \(G\); otherwise reject \(G\).

12. If \(G\) has some vertex of degree at least 7, accept \(G\); otherwise, reject \(G\).

Note that while certain steps in this algorithm must be performed in the order given, in other cases the order can be varied with no effect on the algorithm’s correctness. For example, step 10 (performing reductions on \(G\)) could be executed before any of the steps 3 through to 9 without affecting the outcome of the algorithm. However, steps 5, 6, 7 and 8, all of which deal with edge-vertex-cutsets, must be performed in the order given, since, for example, the theorem given in Section 5 regarding type 2 edge-vertex-cutsets.
edge-vertex-cutsets only applies to graphs with no type 1 edge-vertex-cutsets. Note also that while Step 11 could be performed earlier in the algorithm without altering its correctness, for the purposes of efficiency it is more desirable that this step be performed later.

Steps 2, 3, 4, and 12 use the same techniques as the algorithms presented in [6] and [13] for solving SHP(W_4), SHP(W_5), and SHP(W_6). Step 5 uses the same technique as in the algorithm of [13] to deal with internal 4-edge-cutsets. Steps 5 to 9 deal with the new forbidden separating sets defined in Section 5 and the correctness of these steps follows from the theorems given in that section (Theorems 7 to 15). Step 10 deals with the forbidden reductions defined in Section 4 and the correctness of this step follows from the theorems given in that section (Theorems 1 to 6).

Using the same arguments given in [13], the most complex steps in this algorithm (those involving finding sets of four edges; i.e., Steps 4, 7, and 9) have a worst case complexity of $O(m^5)$. Thus, assuming an imbalanced division of G at each recursion of the algorithm, as with the algorithm for SHP(W_6) in [13], this algorithm’s total complexity is $O(m^6)$, and therefore runs in polynomial time.

10 Concluding remarks

It is hoped that further work in this area may lead to a characterization for the general wheel, W_k. As mentioned in the Introduction to this paper, such a characterization may not be complete, but rather rely on parameterization of the input, taking k as the parameter, and yielding an algorithm that is fixed-parameter tractable. Certain features of the algorithm in Section 9 may lend themselves to a parameterized algorithm. In particular, the overall structure of the algorithm — breaking down the input graph into smaller, manageable components, until its size is bounded by some constant, then performing exhaustive search on the remaining, constant-sized input — strongly resembles the parameterized algorithmic technique of reducing to a problem kernel, as described in [4].

It is, however, probable that certain difficulties will arise in looking at characterizations beyond W_7. Given the large increase in length and difficulty between the proofs of the W_5 [6] and W_6 cases [13], and even more so between the W_6 and W_7 case, it seems likely that a characterization involving W_8 would be extremely complex. While some of the techniques used in this paper — all of the Reductions defined in Section 4 for example — are generalizable to higher cases, others are not. Each of the edge-vertex-cutsets defined in Section 5 is useful in the algorithm for solving SHP(W_7) because of an associated theorem that applies only to the W_7 case — these theorems rely on the fact that for $k \leq 7$, if G contains some W_k-subdivision H such that H is centred on some vertex v in an edge-vertex-cutset S, there exists some component G_1 of $G - S$ such that G_1 contains at most three neighbours of v in H. This no longer holds when $k = 8$. Thus, in dealing with pattern graphs W_k for $k \geq 8$, it would be necessary to find new techniques to replace edge-vertex-cutsets, or to develop new theorems that broaden their usefulness.

It may also be possible to use some of the techniques presented in this paper to work towards characterizing pattern graphs other than wheels. For example, developing a characterization of graphs containing no subdivisions of K_5 would be worth investigating.
References

[1] R. Balasubramanian, Michael R. Fellows, and Venkatesh Raman. An improved fixed-parameter algorithm for vertex cover. *Inform. Process. Lett.*, 65:163–168, 1998.

[2] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. *SIAM J. Comput.*, 22:560–572, 1993.

[3] G.A. Dirac. A property of 4-chromatic graphs and remarks on critical graphs. *J. London Math. Soc.*, 27:69–81, 1952.

[4] R.G. Downey and M.R. Fellows. *Parameterized Complexity*. Monographs in Computer Science. Springer-Verlag, New York, 1999.

[5] R.J. Duffin. Topology of series-parallel networks. *J. Math. Anal. Appl.*, 10:303–318, 1965.

[6] G. Farr. The subgraph homeomorphism problem for small wheels. *Discrete Math.*, 71:129–142, 1988.

[7] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan. Finding topological subgraphs is fixed-parameter tractable. In L. Fortnow and S. P. Vadhan, editors, *Proc. 43rd Ann. ACM Symp. on Theory of Computing*, STOC 2011, pages 479–488, New York, 2011. ACM.

[8] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded topological subgraphs. arXiv:1111.1109v1 [cs.DS], Nov 2011.

[9] D.W. Hall. A note on primitive skew curves. *Bull. Amer. Math. Soc.*, 49:935–937, 1943.

[10] C. Kuratowski. Sur le problème des courbes gauches en topologie. *Fund. Math.*, 15:271–283, 1930.

[11] N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. *J. Combin. Theory Ser. B*, 63:65–110, 1995.

[12] Rebecca Robinson and Graham Farr. Search strategies for developing characterizations of graphs without small wheel subdivisions. Technical Report 2009/241, Clayton School of Information Technology, Monash University, 2009. Available at http://www.cse.cse.monash.edu.au/publications/2009/tr-2009-241-full.pdf.

[13] Rebecca Robinson and Graham Farr. Structure and recognition of graphs with no 6-wheel subdivision. *Algorithmica*, 55(4):703–728, 2009.