A Screen for Germination Mutants in Saccharomyces cerevisiae

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Kloimwieder, Anne, and Fred Winston. 2011. A screen for germination mutants in Saccharomyces cerevisiae. G3 1(2): 143-149.
Published Version	doi:10.1534/g3.111.000323
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:10304560
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
A Screen for Germination Mutants in Saccharomyces cerevisiae

Anne Kloimwieder and Fred Winston
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115

ABSTRACT Spore germination in Saccharomyces cerevisiae is a process in which a quiescent cell begins to divide. During germination, the cell undergoes dramatic changes in cell wall and membrane composition, as well as in gene expression. To understand germination in greater detail, we screened the S. cerevisiae deletion set for germination mutants. Our results identified two genes, TRF4 and ERG6, that are required for normal germination on solid media. TRF4 is a member of the TRAMP complex that, together with the exosome, degrades RNA polymerase II transcripts. ERG6 encodes a key step in ergosterol biosynthesis. Taken together, these results demonstrate the complex nature of germination and two genes important in the process.

KEYWORDS
Saccharomyces cerevisiae
germination
sporulation
ERG6
TRF4

In the budding yeast, Saccharomyces cerevisiae, unfavorable growth conditions, specifically the absence of nitrogen and the presence of a non-fermentable carbon source, trigger MATa/MATα diploid cells to undergo meiosis, forming a tetrad with four spores. During meiosis, extensive changes in transcription and histone modifications occur (Chu et al. 1998; Govin et al. 2010a; Govin et al. 2010b; Krishnamoorthy et al. 2006; Primig et al. 2000). Furthermore, a special spore cell wall is formed as cells go through meiosis (reviewed in Neiman 2005). Beginning in meiosis II, the prospore membrane begins to form from a collection of vesicles that flatten out to form a double membrane. The sites of prospore membrane formation are the four meiotic spindle pole bodies, which nucleate microtubules during the first meiotic division. As meiosis II proceeds, so does spore formation, as the prospore membranes expand to enclose each new haploid nucleus. After nuclear division is complete, the prospore membrane closes and spore wall synthesis begins between the two layers of the prospore membrane. The spore cell wall has two inner layers, composed mainly of mannan and beta-glucan, and two outer layers, composed mainly of chitosan and dityrosine. This is in contrast to the vegetative cell wall, which contains only two layers, composed mainly of beta-glucan and mannan. The spore cell wall, especially the two outer layers, provides protection against adverse conditions.

Spores are largely transcriptionally and translationally inert until the return to favorable growth conditions, when they undergo germination and resume vegetative growth (Bengues et al. 2002; Joseph-Strauss et al. 2007). In S. cerevisiae very little is known about germination, although it is clearly an important developmental process. The ras/mitogen-activated protein kinase pathway has been shown to be important for germination in S. cerevisiae (Herman and Rine 1997), and a recent study showed that the transcription factor Ume6 is also required for germination in S. cerevisiae (Strich et al. 2010). Germination has also been studied in other fungi, such as Aspergillus nidulans and Neurospora crassa. These studies have also implicated the ras/mitogen-activated protein kinase pathway (Osherov and May 2001; Truesdell et al. 1999), the cyclic AMP/protein kinase A pathway (Bruno et al. 1996), and the Ca2+/calmodulin-mediated signaling pathway (Kim et al. 1998; Shaw and Hoch 2000).

The transcriptional program that occurs in S. cerevisiae during germination can be divided into two stages: first, spores respond to glucose, and second, they respond to other nutritional components, such as amino acids (Joseph-Strauss et al. 2007). Gene expression during germination shares many characteristics with exit from other resting states, such as stationary phase. Like these states, germination requires large transcriptional changes in the cell, with about one-sixth of the genome undergoing transcriptional changes (Joseph-Strauss et al. 2007). Some of these changes in gene expression include the induction of genes associated with protein translation such as rRNA processing genes and ribosomal proteins and the repression of genes associated with the absence of an optimal carbon source such as proteasome and stress genes (Joseph-Strauss et al. 2007; Martinez et al. 2004; Radonjic et al. 2005).

Given the importance of germination, we wanted to identify genes required for this process. To do this, we screened the S. cerevisiae deletion set for germination mutants. Our results identified two genes,
TRF4 and ERG6, TRF4 encodes a member of the TRAMP complex that, together with the exosome, degrades RNA polymerase II transcripts (Lacava et al. 2005). ERG6 encodes a step of the ergosterol biosynthetic pathway. Ergosterol is a sterol that plays an important role in membrane fluidity (Valachovic et al. 2006). For both mutants, significant germination defects are observed on solid media but not in liquid media. Taken together, our results suggest that multiple functions are likely required for germination and these respond to specific environmental conditions.

MATERIALS AND METHODS

Yeast strains and media
Except when otherwise noted, all *S. cerevisiae* strains (Table 1) are derivatives of an SK28C strain with three single nucleotide polymorphisms from the SK1 background, in the genes *MKT1* and *TAO3*, and in the promoter region of *RME1*, that increase sporulation of SK28C to near SK1 levels (Deutschbauer and Davis 2005). This strain background will be referred to as SK28C. Capital letters denote wild type alleles, lowercase letters denote mutant alleles, and Δ indicates a complete open reading frame deletion. To create *erg6Δ::KanMX* and the other deletion alleles in SK28C background, PCR-mediated disruption of the entire open reading frame was used (Goldstein and Mccusker 1999; Sikorski and Hieter 1989). Deletions were initially made in diploids to create a heterozygote, followed by sporulation to recover haploid deletion mutants, and mating of the haploid segregants to obtain homozygous deletions. All deletions were confirmed by PCR. The SK1 alleles in the SK28C strains were confirmed by sequencing. Media and basic yeast techniques have been described previously (Rose et al. 1990). YPD medium (Rose et al. 1990) was the standard rich medium used in the germination and growth tests.

Synthetic genetic array (SGA) screen for a germination defect by ether sensitivity
A collection of diploid yeast strains containing homozygous deletions of every nonessential gene (Giaever et al. 2002) was screened for defects in germination or sporulation by screening for strains unable to produce viable cells after meiosis and exposure to ether. The collection was spotted onto YPD plates, allowed to grow for 2 days at 30°C, scored for growth, and replica plated onto 1% potassium acetate sporulation plates. After 7 days, the sporulation plates were lightly replica plated to YPD and immediately treated with ether vapors. To treat cells with ether vapors, open plates were placed face down over liquid ether in a sealed container for 40 min. This treatment killed all vegetative cells, leaving only spores, which are ether resistant. Plates were then grown at room temperature for 3 days and scored for growth. Strains with wild-type growth initially and severely reduced growth after ether treatment were identified as candidate sporulation or germination mutants. The screen was performed three times. Mutants that were identified in at least two of three screens (supporting information, Table S1) were selected for further analysis.

To focus on germination, those candidates that had been previously identified as meiotic or sporulation mutants were eliminated from further analysis (Deutschbauer et al. 2002; Enyenihi and Saunders 2003; Marston et al. 2004; Rabitsch et al. 2001). Next, the remaining candidates were tested for their ability to sporulate. To do this, candidates were inoculated into 1 ml of YPD medium and grown to saturation overnight. The next day, 9 ml of YP-Acetate (YPD) medium was added and cultures were aged to allow sporulation to saturation. The cultures were pelleted at 4000 rpm, washed with 10 ml of D2O, and then inoculated into 10 ml of 0.3% potassium acetate sporulation medium and allowed to sporulate for 7 days. After 7 days the number of tetrads was scored to assess sporulation levels. Candidates with greater than 7% tetrads in the culture were dissected to test for a potential germination defect. Candidates were determined to have a putative germination defect if there was no or little growth of tetrads after 2 days at 30°C, as compared to wild-type.

Growth curves
Cells were inoculated and grown to saturation overnight. The next day, cells were diluted and grown to approximately 2 × 10^6 cells/ml in YPD medium. Then, for at least four generations, cell number was determined each hour using a hemacytometer. Cells were in the

Table 1. *S. cerevisiae* strains used in this study

Yeast Strain	Genotype
FY4	MATa
FY2839	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G)
FY2840	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) trf4Δ::kanMX6
FY2841	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) trf4Δ::kanMX6
FY2842	MATa/MATa RME1Δ(nis-308a)/RME1Δ(nis-308a) TA03(E1493Q)/TA03(E1493Q) MKT1Δ(D30G)/MKT1Δ(D30G) his3Δ1/ his3Δ1 leu2Δ0/leu2Δ0 lys2Δ0/lys2Δ0 ura3Δ0/ura3Δ0 trf4Δ::kanMX6/trf4Δ::kanMX6
FY2843	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) ybl083cΔ::kanMX6
FY2844	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) ybl083cΔ::kanMX6
FY2845	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) yml013c-α::kanMX6
FY2846	MATa his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) yml013c-α::kanMX6
FY2847	MATa/MATa RME1Δ(nis-308a)/RME1Δ(nis-308a) TA03(E1493Q)/TA03(E1493Q) MKT1Δ(D30G)/MKT1Δ(D30G) his3Δ1/ his3Δ1 leu2Δ0/leu2Δ0 lys2Δ0/lys2Δ0 ura3Δ0/ura3Δ0 ybl083c::kanMX6/ybl083c::kanMX6
FY2848	MATa/MATa RME1Δ(nis-308a)/RME1Δ(nis-308a) TA03(E1493Q)/TA03(E1493Q) MKT1Δ(D30G)/MKT1Δ(D30G) his3Δ1/ his3Δ1 leu2Δ0/leu2Δ0 lys2Δ0/lys2Δ0 ura3Δ0/ura3Δ0 ybl083c::kanMX6/ybl083c::kanMX6
FY2852	MATa RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) erg6Δ::kanMX6
FY2854	MATa RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) erg6Δ::kanMX6
FY2855	MATa RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) htz1Δ::kanMX6
FY2856	MATa RME1Δ(nis-308a) TA03(E1493Q) MKT1Δ(D30G) htz1Δ::kanMX6
FY2857	MATa/MATa RME1Δ(nis-308a)/RME1Δ(nis-308a) TA03(E1493Q)/TA03(E1493Q) MKT1Δ(D30G)/MKT1Δ(D30G) erg6Δ::kanMX6/erg6Δ::kanMX6
FY2858	MATa/MATa RME1Δ(nis-308a)/RME1Δ(nis-308a) TA03(E1493Q)/TA03(E1493Q) MKT1Δ(D30G)/MKT1Δ(D30G) htz1Δ::kanMX6/htz1Δ::kanMX6
logarithmic phase for the entire time course. Doubling times were calculated using linear regression with a semi-log plot.

Budding assays

Yeast strains were first sporulated as follows. Strains were purified on YPD plates, and single colonies were inoculated into 1 ml of YPD medium and grown to saturation overnight. These cultures were then used to inoculate 10 ml of YPA medium. Cultures were again allowed to grow to saturation overnight. Cultures in YPA medium were pelleted at 4,000 rpm for 5 min at 4°C, washed with 10 ml dH2O, and inoculated into 10 ml of 0.3% potassium acetate sporulation medium. After 2 days, sporulation cultures were checked for tetrads. Cultures in YPA medium were used to inoculate 10 ml of YPA liquid which was grown to saturation overnight. Each 10 ml of a single colony from a YPD plate was used to inoculate 10 ml of YPD plates, and single colonies were inoculated into 1 ml of YPD medium. Cultures were again allowed to grow to saturation overnight. Cultures in YPA medium were pelleted for 2 min at 3000 rpm. The supernatant was discarded and 50 μl of 0.5% Triton-X was added. After 30 min at room temperature, 100 μl of 0.5% Triton-X was added and spores were mixed using a vortex. This cell suspension was then added to 2 ml of YPD to create a final cell concentration of 1 x 10^7 cells/ml. Cells were monitored each hour for at least 6 hr. At each time point, the number of budding cells was counted as a measure of germination. At least 100 cells were counted at each time point.

Pedigree analysis of germination

Ten microliters of sporulation culture was added to 50 μl of 0.5 mg/ml zymolyase in 1M sorbitol and left at room temperature for 10 min. After 2 days, sporulation cultures were checked for tetrads. Cultures in YPA medium were pelleted for 2 min at 4000 rpm. Per gram of cells, 5 ml of 0.1 M sodium phosphate buffer pH 7.2, 2 μl concentrated mercaptoethanol, and 0.8 mg of 0.5 mg/ml zymolyase in 1 M sorbitol were added and cultures were shaken at 30°C, 190 rpm for 4 hr, dissociating tetrads into single spores. After 4 hr, 5 ml of 0.5% Triton-X were added per gram. Spores were then washed three times with 5 ml 0.5% Triton-X, pelleted each time for 5 min at 4000 rpm. After washes, the resulting pellet was resuspended in 2-3 ml of 0.5% Triton-X to generate a spore suspension of no greater than 5 ml. Percoll gradients were prepared by layering from the bottom 9 ml of each of the following four mixtures in 40 ml Sorvall tubes: (1) 8 ml Percoll, 1 ml 0.5% Triton-X, 1 ml 2.5 M sucrose; (2) 7 ml Percoll, 2 ml 0.5% Triton-X, 1 ml 2.5 M sucrose; (3) 6 ml percoll, 3 ml 0.5% Triton-X, 1 ml 2.5 M sucrose; and (4) 5 ml Percoll, 4 ml 0.5% Triton-X, 1 ml 2.5 M sucrose. Top of this gradient, 1.5 ml of the spore suspension was layered. These gradients were then spun at 10,000 rpm at 4°C for 1 hr in a SA-60 rotor in a Sorvall centrifuge. After centrifugation, the top three layers, consisting of vegetative cells and debris were removed and discarded. The remaining spore layer, consisting of >99.9% spores, was then removed by pipette and washed three times with 30 ml 0.5% Triton-X. After the washes, spores were re-suspended in 5 ml 0.5% Triton-X and stored at 4°C. Percoll was purchased from MP Biomedical.

Table 2 Sporulation in diploid deletion strains

Gene	Percent Sporulation	Gene	Percent Sporulation
YEL045C	27.6	RMD7	0.0
PHO88	20.7	RVS161	0.0
BUD30	18.9	SEC22	0.0
YBL083C	17.0	VPS4	0.0
SNT309	17.7	PKP1	0.0
YML013C-A	16.5	NEM1	0.0
ERG6	10.0	KCS1	0.0
NEW1	9.8	POP2	0.0
LHS1	8.9	VAM6	0.0
UBP6	7.8	YGR162W	0.0
RPA49	7.6	SPT20	0.0
TRF4	7.2	SLG1	0.0
SEL1	6.6	SSE1	0.0
BRR1	5.9	NPR2	0.0
PRO1	4.5	YKL118W	0.0
IWR1	2.7	VPH2	0.0
YDR433W	2.0	SFP1	0.0
DID2	1.6	YLR235C	0.0
PAT1	1.4	RA1	0.0
YNL025C	1.4	BRO1	0.0
YKR035C	1.4	RAD6	0.0
PLC1	1.3	DAO1	0.0
YME1	0.8	VPS20	0.0
RPL22A	0.5	STO1	0.0
CBC2	0.5	YNR042W	0.0
PHO86	0.4	PEP494	0.0
SFP7	0.4	IMP2	0.0
MET22	0.0	SLX8	0.0
IES6	0.0	VAM7	0.0
VMA8	0.0	SHP1	0.0

Figure 1 Results from three screens for germination mutants. A Venn diagram shows results from the three screens for germination mutants.
Microscopy time courses
Purified spores were diluted to between 1-5 × 10⁷ cells/ml and sonicated to disperse the spores. Two small agar pads were created by dissolving 0.1 g of low-melt agarose into 5 ml SC-complete medium and plating approximately 1 ml sandwiched between two cover slips. Then, 0.5 µl of wild-type or deletion mutant cells were spread on separate agar pads. These agar pads were then placed cell side down on a glass slide so that the spores were sandwiched between the glass slide and the agar. The glass slide was contained in a small dish to prevent the agar from drying out. Cells were then monitored on slide and the agar. The glass slide was contained in a small dish to prevent the agar from drying out. Cells were then tracked for germination by the appearance of the first bud. Cells were also monitored for two subsequent cell divisions by bud appearance.

RESULTS
A screen for S. cerevisiae germination mutants
To identify genes required for germination, we performed a screen of the S. cerevisiae diploid deletion set to identify mutants defective for this process (described in Materials and Methods). Because our screen would identify both meiosis and germination mutants, we removed from consideration any meiosis or sporulation mutants identified in previous screens (Deutschbauer et al. 2002; Enyenihi and Saunders 2003; Marston et al. 2004; Rabitsch et al. 2001). Our screen was performed three times, each time identifying an average of 77 candidates, with an overlap of approximately 56% with at least one of the other two screens. The 58 mutants identified in at least two of the three screens were included in secondary analysis (Figure 1).

Each of the 58 candidates was tested for sporulation and germination. Of these, twelve mutants sporulated and produced complete tetrads at a sufficient level (above 7% sporulation) to analyze possible germination defects (Table 2). Four of the twelve mutants appeared to have a germination defect: trf4Δ, erg6Δ, ybl083cΔ, and yml013c-aΔ. Of the mutants that exhibited a sporulation defect, several seemed to be functionally related in mRNA export, Cdc48 function, or ESCRTIII complex. To study the germination phenotype of each deletion in a genetic background in which sporulation occurs at a high frequency, each deletion was constructed in the SK288C strain background (see Materials and Methods). In this strain background, two of the candidates, trf4Δ and erg6Δ, showed germination defects after dissection of tetrads on rich (YPD) plates. TRF4 encodes a member of the TRAMP complex, that together with the exosome, degrades RNA polymerase II transcripts (Wyers et al. 2005). ERG6 encodes a step of the ergosterol biosynthetic pathway (Gaber et al. 1989).

Analysis of germination in trf4Δ mutants
To assess the trf4Δ germination phenotype, both homoyzogous wild-type and trf4Δ/trf4Δ diploids were sporulated and tetrads were dissected on YPD plates. Germination was assessed by comparing the growth of the wild-type and trf4Δ strains after germination and after normal vegetative growth. As can be seen in Figure 2, trf4Δ spores exhibit a growth defect compared with wild-type (Figure 2A). When vegetatively growing cells are grown on a YPD plate, the wild-type and trf4Δ strains grow at a more comparable level, although there is a mild growth impairment for trf4Δ (Figure 2B). The more severe growth defect after germination indicates that trf4Δ cells have a germination defect on solid media.

To assay the trf4Δ germination defect in a more quantitative fashion, germination time courses were performed in liquid YPD medium. To do this, purified spores were inoculated into liquid YPD medium and monitored over a time course of six hours. At each hour, the number of budding cells was counted as a measure of germination. Our results (Figure 3A) show that, in liquid YPD medium, germination occurred asynchronously, over approximately 3 hr for both wild-type and trf4Δ spores. Furthermore, the kinetics of appearance of budding cells was similar between the two strains, although the number of germinating trf4Δ spores was less than the number for wild-type throughout the time course, suggesting that fewer trf4Δ spores

Figure 2 Growth of trf4Δ mutants on solid media. (A) Wild-type and homozygous trf4Δ diploids were sporulated and dissected on YPD plates. Shown are the germination plates, each after 2 d of incubation at 30°C. (B) Wild-type and trf4Δ haploid strains were streaked for single colonies on YPD medium and were incubated for 2 d at 30°C.

Figure 3 Analysis of trf4Δ germination and growth in liquid media. (A) Wild-type and trf4Δ spores were inoculated into YPD liquid media. The number of budding cells was counted each hour as a measure of germination. Shown here is the average ± SE of five experiments. (B) Wild-type and trf4Δ strains in logarithmic phase were counted every hour to determine their generation times in liquid media. Shown is the average ± SE of three experiments.
were able to germinate. We also measured the generation time for wild-type and trf4Δ mutants growing vegetatively in YPD liquid medium and found that the trf4Δ mutant had a modest growth defect (Figure 3B). From these results, we are unable to conclude that trf4Δ germination in liquid YPD medium is slower; however, trf4Δ does cause a decrease in the frequency of spores that can germinate in both liquid and solid YPD.

To further analyze trf4Δ, pedigree analysis was performed to measure germination time on solid medium. In this analysis, spores were dissected to specific positions on a YPD plate. Each spore was then monitored for the time to germinate. In addition, two additional rounds of cell division were monitored. As shown in Figure 4, trf4Δ spores germinated more slowly than wild-type on YPD plates. First, compared with wild-type, many spores do not germinate at all (Figure 4A). Among the cells that do germinate, the trf4Δ mutants averaged over an hour longer than wild-type (6 hr vs. 4.7 hr; Figure 4B). In contrast to the longer time for trf4Δ spores to germinate, there was no trf4Δ growth defect observed in the subsequent generations that were monitored (Figure 4B). In fact, the trf4Δ cells appeared to divide slightly faster than wild-type. In conclusion, on YPD plates, trf4Δ mutants appear to germinate at lower frequency and more slowly than wild-type.

Analysis of erg6Δ

The second mutant that showed a germination defect was erg6Δ. Because previous studies have suggested that particular auxotrophies could affect the growth of erg6Δ mutants (Boer et al. 2008; Gaber et al. 1989), all erg6Δ experiments were done with prototrophic strains. To examine the effect of an erg6Δ mutation on germination, an SK288C homozygous erg6Δ diploid was sporulated and tetrads were dissected. Our results show that erg6Δ spores exhibit a severe growth defect after dissection on YPD plates compared to a wild-type diploid (Figure 5A). Based on colony size, this defect is unlikely to be caused by poorer vegetative growth (Figure 5B).

To examine the effect of erg6Δ on germination in liquid YPD medium, time courses were performed using purified spores, monitoring germination by the timing of bud emergence. As shown in Figure 6A, erg6Δ spores exhibited a defect in germination, both in terms of the rate at which buds appeared and the percentage of spores that budded. To determine whether the germination defect might be related to slower growth of erg6Δ mutants, the generation time in liquid YPD was measured. Our results show that erg6Δ mutants do have a longer generation time in liquid medium (Figure 6B). The slower growth of erg6Δ in liquid YPD might account for some of the differences seen for the rate of germination, although it would not account for the lower frequency of spores that are able to germinate.

To gain an additional view of the germination defect in erg6Δ mutants, individual spores on SC agar were used for live cell imaging, with pictures taken every 5 min at multiple positions for both the wild-type and erg6Δ spores. Sample frames are shown in Figure 7, while a movie is shown as Figure S1. Using these images, each spore was monitored for the time to germinate. From this analysis, erg6Δ spores averaged a time to bud of 7.4 ± 0.77 hr, while wild-type averaged 5.4 ± 0.77 hr, a statistically significant difference (P = 0.0019) and greater than the vegetative growth difference as judged by colony size (Figure 5B) or by measurement of generation time (Figure 6B). Taken together, these analyses show that erg6Δ mutants exhibit a germination defect on solid media.

DISCUSSION

In this study, we screened for S. cerevisiae germination mutants, leading to the identification of two genes, TRF4 and ERG6. Both trf4Δ and erg6Δ mutants exhibit germination defects on solid media, while the results are less clear in liquid media. On solid media, the trf4Δ mutants had a lower percentage of spores able to germinate, and those that did, took significantly longer. While the erg6Δ mutant spores germinated at a frequency close to that of wild-type, they took longer and, interestingly, exhibited slower growth for at least the first two cell divisions after germination.

Figure 5 Growth of erg6Δ mutants on solid media. (A) Wild-type and homozygous erg6Δ diploids were sporulated and dissected on YPD plates. Shown are the germination plates, each after 2 d of incubation at 30°C. (B) Wild-type and erg6Δ haploid strains were streaked for single colonies on YPD medium and were incubated for 2 d at 30°C.
mutants also identified trf4Δ mutants, although this screen was done in liquid media (Deutschbauer et al. 2002).

There are several reasons why TRF4 might be important for germination. Trf4 is a member of the TRAMP complex, which degrades cryptic unstable transcripts (CUTs) (Butler 2002; Davis and Ares 2006; Wyers et al. 2005). The TRAMP complex also plays a role in degrading antisense transcripts (Camblong et al. 2007), in stimulating the degradation of spliced out introns, and in telomere maintenance (San Paolo et al. 2009). Additionally, the TRAMP complex has been shown to play a role in regulating histone levels (Reis and Campbell 2007). Thus, a trf4Δ mutation might indirectly impair germination by alterations in gene expression, including an alteration in histone levels.

The role of Erg6 in maintaining proper cell membrane composition could be responsible for the germination defects seen in erg6Δ mutants. In the absence of Erg6, which catalyzes a step in ergosterol biosynthesis, cells produce zymosterol instead of ergosterol, changing the composition of the cell membrane (Bard et al. 1977). These changes result in changes in membrane fluidity and could result in changes in lipid rafts, which are important for cell signaling (Gaber et al. 1989; Sharma 2006; Valachovic et al. 2006). Changes in cell signaling could play an important role in spore germination leading to the delayed germination seen in erg6Δ mutants. We were unable to test whether the addition of exogenous ergosterol is capable of rescuing the observed defect, as S. cerevisiae is unable to take up ergosterol under aerobic conditions (Lewis et al. 1985).

One intriguing result is that the germination defects for both trf4Δ and erg6Δ are more pronounced on solid than liquid media. Cells, and specifically spores, have been previously observed to behave differently on solid vs. liquid media (Piccirillo et al. 2010). Differences on solid media vs. liquid media is also the most probable reason that our screen failed to identify previously identified germination mutants as our screen was conducted on solid media while previous screens were conducted in liquid media (Deutschbauer et al. 2002; Herman and Rine 1997). Taken together, the results described here present evidence for two genes, TRF4 and ERG6, with roles in germination.

ACKNOWLEDGMENTS
We thank Bruno Afonso and Pam Silver for their generous help with the photomicroscopy experiments. This work was supported by NIH grant GM45720 to F.W. and by a National Science Foundation Graduate Fellowship to A.K.
LITERATURE CITED

Bard, M., R. A. Woods, D. H. Barton, J. E. Corrie, and D. A. Widdowson, 1977 Sterol mutants of Saccharomyces cerevisiae: chromatographic analyses. Lipids 12: 645–654.

Boer, V. M., S. Amini, and D. Botstein, 2008 Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc. Natl. Acad. Sci. USA 105: 6930–6935.

Brengues, M., L. Pintard, and B. Lapeyre, 2002 mRNA decay is rapidly induced after spore germination of Saccharomyces cerevisiae. J. Biol. Chem. 277: 40505–40512.

Bruno, K. S., R. Arayamo, P. F. Minke, R. L. Metzenberg, and M. Plamann, 1996 Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J. 15: 5772–5782.

Butler, J. S., 2002 The yin and yang of the exosome. Trends Cell Biol. 12: 90–96.

Camblong, J., N. Iglesias, C. Fickentscher, G. Dieppois, and F. Stutz, 2007 Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131: 706–717.

Chu, S., J. DeRisi, M. Eisen, J. Mulholland, D. Botstein et al., 1998 The transcriptional program of sporulation in budding yeast. Science 282: 699–705.

Deutschbauer, A. M., and R. W. Davis, 2005 Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat. Genet. 37: 1333–1340.

Deutschbauer, A. M., R. M. Williams, A. M. Chu, and R. W. Davis, 2002 Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99: 15530–15535.

Enyehi, A. H., and W. S. Saunders, 2003 Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163: 47–54.

Gaber, R. F., D. M. Copple, B. K. Kennedy, M. Vidal, and M. Bard, 1989 The yeast gene ERG6 is required for normal membrane function of Saccharomyces cerevisiae growth in fl. Yeast 5: 737–744.

Goldstein, A. L., and J. H. McCusker, 1999 Three new dominant drug resistance genes in the yeast Candida albicans. J. Bacteriol. 163: 199–207.

Marston, A. L., W. H. Tham, H. Shah, and A. Amon, 2004 A genome-wide screen identifies genes required for centromeric cohesion. Science 303: 1367–1370.

Martinez, M. J., S. Roy, A. B. Archuleta, P. D. Wentzell, S. S. Anna-Arriola et al., 2004 Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol. Biol. Cell 15: 5295–5305.

Neiman, A. M., 2005 Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69: 565–584.

Osherov, N., and G. S. May, 2001 The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 199: 153–160.

Piccirillo, S., M. G. White, J. C. Murphy, D. J. Law, and S. M. Honigberg, 2010 The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies. Genetics 184: 707–716.

Primig, M., R. M. Williams, E. A. Winzeler, G. G. Tevdzade, A. R. Conway et al., 2000 The core meiotic transcriptome in budding yeasts. Nat. Genet. 26: 415–423.

Rabitsch, K. P., A. Toth, M. Galova, A. Schleiffer, G. Schaffner et al., 2001 A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr. Biol. 11: 1001–1009.

Radinicz, M., J. C. Andrau, P. Lijnzaad, P. Kemmeren, T. T. Kockelkorn et al., 2005 Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol. Cell 18: 171–183.

Reis, C. C., and J. L. Campbell, 2007 Contribution of Trf4p/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae. Genetics 175: 993–1010.

Rockmill, B., E. J. Lambie, and G. S. Roeder, 1991 Spore enrichment. Methods Enzymol. 194: 146–149.

Rose, M. D., F. Winston, and P. Hieter, 1990 Methods in Yeast Genetics: A Laboratory Course Manual. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

San Paolo, S., S. Vanacova, L. Schenk, T. Scherrer, D. Blank et al., 2002 Distinct roles of non-canonical poly(A) polymerases in RNA metabolism. PLoS Genet. 5: e1000555.

Sharma, S. C., 2006 Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae. FEM. Yeast Res. 6: 1047–1051.

Shaw, B. D., and H. C. Hoch, 2000 Ca2+ regulation of Phyllosticta medicaginis sporulation and appressorium Formation. Fungal Genet. Biol. 31: 43–53.

Sikorski, R. S., and P. Hieter, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.

Strich, R., S. Khakhina, and M. J. Mallory, 2011 Ume6p is required for germination and early colony development of yeast ascospores. FEMS Yeast Res. 11: 104–113.

Truesdell, G. M., C. Jones, T. Holt, G. Henderson, and M. B. Dickman, 1999 A Ras protein from a phytopathogenic fungus causes defects in hyphal growth polarity, and induces tumors in mice. Mol. Gen. Genet. 262: 46–54.

Vujić, M. B., B. M. Bareither, M. Shah Alam Bhuiyan, J. Eckstein, R. Babich et al., 2006 Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid composition, fl. Genetics 173: 1893–1908.

Wyers, F., M. Rougemaille, G. Badis, J. C. Rousselle, M. E. Dufour et al., 2005 Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121: 725–737.

Communicating editor: Brenda J. Andrews