An Update Review on the Anthelmintic Activity of Bitter Gourd, *Momordica charantia*

Sutthaya Poolperm, Wannee Jiraungkoorskul

Mahidol University International College, Mahidol University, Nakhon Pathom 73170, 'Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

ABSTRACT

Momordica charantia (Family: *Cucurbitales*), as known as bitter melon or gourd, is a daily consumption as food and traditional medicinal plant in Southeast Asia and Indo-China. It has been shown to possess anticancer, antidepressant, antidiabetic, anti-inflammatory, antimicrobial, antiobesity, antioxidant, and antituerc properties. Its common phytochemical components include alkaloids, charantin, flavonoids, glycosides, phenolics, tannins, and terpenoids. This plant is rich in various saponins including momordin, momordin, momordicoside, karavilagenin, karaviloside, and kuguacin, all of which have been reported to contribute to its remedial properties including antibacterial, antifungal, antiviral, and antiparasitic infections. Based on established literature on the anthelmintic activity of *M. charantia* and possible mode of action, this review article has attempted to compile *M. charantia* could be further explored for the development of potential anthelmintic drug.

Key words: Helminth, infection, *Momordica charantia*, plant, traditional medicine, worm

ANTHELMINTIC PLANTS

Helminthic infection is one of the health problems that affect human and livestock in the world. The helminths which infect the gastrointestinal system are cestodes, nematodes, and trematodes. The synthetic drugs available have been shown to have side effects; moreover, resistance of the parasites to existing drugs is increasing.12 Because of limited availability and affordability of modern medicines, most of the world's population depends to a greater extent on traditional medical remedies.2,3 Anthelmintic infection could be prevented by maintaining environment sanitary and treatment as well as pharmacotherapy using synthetic drugs or traditional medicine as alternative; one of them is *Momordica charantia*. The present review explores scientific evidence to provide updated information about the properties of *M. charantia*, one of the anthelmintic plants, which is being investigated for its mechanism.

TAXONOMICAL CLASSIFICATION

The taxonomy of *M. charantia* is in the Kingdom: *Plantae*; Subkingdom: *Viridiplantae*, Infrakingdom: *Streptophyta*, Superdivision: *Embryophyta*, Division: *Tracheophyta*, Subdivision: *Spermatophyta*, Class: *Magnolipsida*, Superorder: *Rosanae*, Order: *Cucurbitales*, Family: *Cucurbitaceae*, Genus: *Momordica*, Species: *M. charantia*.4,5 The plant genus *Momordica* is a small shrub or perennial climber belonging to the family *Cucurbitaceae*, which comprised almost sixty species distributed across tropical and subtropical regions.4,5

NOMENCLATURE

M. charantia is a native of the tropics areas including East Africa, South America, Asia, the Caribbean, India, and Southeast Asia.3,4 The genus "Momordica" from Latin "Mordeo" means to bite and the species "charantia" from Greek means beautiful flower.4,5 The vernacular names of *M. charantia* include bitter melon, bitter gourd, balsam pear, or African cucumber (English); kyethinkhathee (Burmese); lai pu tao, ku gua (Chinese); balsamagurk (Danish); margose, momordique amere (French); balsambirne (German); karela, tita kerala (Hindi); paria, pare (Indonesian); pomo meraviglia (Italian); niga uri, tsuru reishi (Japanese); mreah (Khmer); kaypa (Malayalam); karli (Marathi); karelaa (Nepalese); karavelli (Sanskrit); karavila, pavakai (Sinhalese); balsam, *Momordica* amarga (Spanish); bittergurka (Swedish); kakara (Telugu); mara (Thai); and la khoqua (Vietnamese).9,10

PLANT DESCRIPTION OF MOMORDICA CHARANTIA

M. charantia is an annual or perennial monoeconomic climber, 2–3 m height with no hair or slightly hairy. It can be cultivated up to high altitude. Stem: The well-branched, slender, green stem is usually slightly five angled or ridged and carries unbranched tendrils in the leaf axils. Root: The central taproot comes to the apex where the stem spreads to climb. Leaf: The leaf is simple, alternate, rounded rim in 4–12 cm long with 3–7 deeply separated lobes. It is carried singly along the stem on...
3–5 cm long stalks. It has an unpleasant smell when crushed. Flower: Male and female flowers are separated with a little difference. They have five oval yellow petals 10–30 cm long and five central stamens. Fruit: The orange to yellow pendulous cylindrical fruit is egg shaped and 2–10 cm long, which covered with longitudinal ridges and warts. Seed: The seed is 8–15 mm long black but covered with a soft, flesh white in unripe to red in ripe [Figure 1].

PHYTOCHEMICAL SUBSTANCES
The active phytochemical substances of M. charantia are as follows: (1) athocyanins, ascorbins, a bound from of ascorbic acid,[12-14] (2) carotene, pigment of carpels, while lycopene characterizes the red aril;[13] and (3) charantin, a natural steroidal glucoside mixture of stigmastanol glucoside and sitosterol glucoside, which has antidiabetic property.[15,16,17] There also are flavonoids, quercitin, and luteolin.[18,19] Saponins include momordicin, momordin, momordicoside, karavilogenin, karaviloside, and kugucin.[20,21] Steroids include sitosterol, daucosterol,[22] terpenoids, curcurbitacins, and cucurbitane-type triterpenoids, known for its bitterness and antioxidant properties.[24,26]

TRADITIONAL USES
The fruits of M. charantia have been used not only as a vegetable but also as a traditional medicine. The uses or phytochemical properties of M. charantia from several literature reviews are antibacterial,[27,28] anticancer,[29,30] antidepressant,[31] antiobesity,[32-34] antifungal,[35,36] anti-inflammatory,[37,38] antioxidant,[39,40] antipyretic,[41] antiulcer,[42] and antiviral activities.[43] It also uses to treat the cardiovascular,[44] gout,[45] and hepatic diseases.[46]

ANTHELMINTIC ACTIVITY
The extracts of various plant parts of M. charantia including the leaf, fruit, and seeds have been investigated and found to be pharmacologically active against helmintics.

Ascaris suum
Tjokropranoto and Nathania[49] from Indonesia reported that the mean percentage of paralyzed or dead of Ascaris suum, large roundworm of pigs, after treated for 3 h with 10%, 20%, and 40% concentrations of 70% ethanolic extract of M. charantia leaves was 75%, 83%, and 88%, compared with 100% of pyrantel pamoate, a standard drug treatment. Chastity et al.[50] from Indonesia studied the effect of 70% ethanolic extract of M. charantia leaves on A. suum. The mortality time of worms was 16, 12, and 10 h in 20%, 40%, and 80% concentrations of plant extracts compared with 4 h of pyrantel pamoate.

Ascaridia galli
Shahadat et al.[51] from Bangladesh revealed the effects of 3% aqueous extract of M. charantia fruit, against Ascaridia galli, gastrointestinal nematode in chicken. They reported that the in vitro mortality rate was 38% and 75% after 4 and 12 h of plant extract, respectively. Alam et al.[52] from Bangladesh reported the 22%, 70%, and 90% mortality of A. galli, Heterakis gallinae, and Capillaria spp., gastrointestinal nematodes of chicken, after treatment with 25, 50, and 100 mg/ml concentrations of M. charantia leaves.

Fasciola hepatica
Pereira et al.[53] from Brazil studied the effect of M. charantia leaves extract on the eggs of Fasciola hepatica, liver fluke in mammals. They reported that no larvae were found after 12 days exposure with 12.5 mg/ml of plant extract. Moreover, F. hepatica eggs incubated with plant subfractions at concentrations of 1000, 100, 10, 1, 0.1, 0.01 μg/mL affected embryonic development with n-butanol showed the strongest inhibition of miracidia formation.

Stellantchasmus falcatus
Buddhachat et al.[54] (2012) from Thailand studied the effect of aqueous extract of M. charantia fruit on the mortality and tegumental surface change on Stellantchasmus falcatus, a gastrointestinal trematode of fresh fish, birds, and mammals. They reported that the 12.5%, 50%, and 100% concentrations of plant extracts were able to kill all the worms at 280, 270, and 80 min, respectively. The tegumental surface of worm exhibited bleeding, rupturing, and curving of the spine.

Strongyloides spp.
Amin et al.[55] from Bangladesh reported that the effects of 25, 50, and 100 mg/ml of aqueous extract of M. charantia leaves showed 24%, 80%, and 100%, respectively, efficacy against Strongyloides sp. in the cattle. The seeds extract showed 20%, 60%, and 98%, respectively.

Caenorhabditis elegans
Beloin et al.[56] reported that the effect of 500 μg/ml of M. charantia leave extract in West Africa was shown potent activity against Caenorhabditis elegans, a nematode.

Earthworm
Sen et al.[57] from India studied in vitro anthelmintic activity of methanolic extract of 150 mg/ml of whole fruit, fruit peel, seed, whole fruit juice, and peel juice of M. charantia against Indian adult earthworms (Eisenia fetida). They reported the fruit peel showed paralysis time at 8.5 min and death time at 14.5 min like those of 8.2 min and 16.3 min of 40 mg/ml of albendazole, standard drug treatment. Vedamurthy et al.[58] from India studied the M. charantia seed extract against Perheretima posthuma, Indian adult earthworm. The chloroform extract exhibited the best anthelmintic activity by inducing paralysis within 3 min and death within 8 min, followed by ethanol, aqueous, and petroleum ether extract. Vinav et al.[59] from India studied the effect of M. charantia fruit on E. fetida. They reported that the 10 mg/ml of aqueous and methanolic extracts exhibited paralysis time at 117 min and 100 min and death time at 151 min and 140 min, respectively.

PHYTOCHEMICAL SUBSTANCES IN ANTHELMINTIC ACTIVITIES
The mechanism of drugs or anthelmintic plants against helminthes are following mechanism: nicotinic agonists, acetylcholinesterase inhibitors, calcium permeability increase, β-tubulin binding, inhibition of oxidative

![Figure 1: Fruit of Momordica charantia (a) external morphology, (b) cut surface, (c) pericarp, and (d) seeds](image-url)
phosphorylation, and inhibition of arachidonic acid metabolism. Recent studies have suggested that phytochemical substances or plant secondary metabolites may offer a promising alternative approach to control helminthic infections. Saponins can potentially act as anthelmintic effect by inhibiting the enzyme acetylcholinesterase, hence the worm paralysis, and lead to death. They affect the permeability of the cell membrane of worms and cause vacuolization and disintegration of tegument. Moreover, saponin can irritate the mucous membrane channel gastrointestinal of worms that interfere with the absorption of food. Alkaloids including steroidal alkaloid and oligoglycosides have neurotoxic properties, which effect on acetycholine-stimulated body wall muscle contraction, so act as acetylcholinesterase inhibitors, course worm paralysis. They also act as an antioxidant, capable of reducing the nitrate generation which can interfere in local homeostasis that is essential for the development of helminths. Flavonoid compounds including apigenin can inhibit larval growth and inhibit the arachidonic acid metabolism which may lead to the degeneration of neurons in the worm’s body and lead to death. Tannins can be potentially act as anthelmintic effect by reducing migratory ability and survival of newly hatched larvae. They reduce worm burden and caused damage to the cuticle and digestive tissues of worms. Moreover, tannins inhibit energy generation of worms by uncoupling the oxidation phosphorylation and bind to glycoprotein on the cuticles of the worms and lead to death.

CONCLUSION

Many of the traditional medicinal plants have been evaluated for their anthelmintic activities; several plants still need to be confirmed the efficiency and safety. Several researchers reported that *M. charantia* may present the anthelmintic property using the *in vitro* and *in vivo* studies and the phytochemical substances analysis. This review article has attempted to compile the new medicinal plant *M. charantia* to be one of the choices of anthelmintic plants.

Acknowledgement

A special thanks to the members of the Fish Research Unit, Department of Pathobiology, Faculty of Science, Mahidol University, for their support. We would like to thank anonymous reviewers and editors of this review article for their perceptive comments and positive criticism in this review article.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Kappagoda S, Singh U, Blackburn BG. Antiparasitic therapy. Mayo Clin Proc 2011;86:561-83.
2. Rajeswari V. Anthelmintic activity of plants: A review. Res J Phytochem 2014;8:57-63.
3. Veerakumari L. Botanical anthelmintics. Asian J Sci Technol 2015;6:1881-94.
4. Integrated Taxonomic Information System (ITIS). Momordica charantia. Taxonomic Serial No. 22939. Geological Survey, VA, USA: 2016.
5. Sharma S, Tandon S, Senwar B, Singh K. Momordica charantia Linn.: A comprehensive review on bitter remedy. J Pharm Res 2011;4:42-7.
6. Bharath L, John K. Momordica Genus in Asia: An Overview. New Delhi: Springer; 2013.
7. Sathish Kumar D, Vamshi Sharithnath K, Yogesanwar P, Harini A, Sudhakar K, Sudha P et al. A medicinal potency of Momordica charantia. Int J Pharm Sci Res 2010;1:95-100.
8. Deai S, Tatke P. Charantin: An important lead compound from Momordica charantia for the treatment of diabetes. J Pharm Phytomed 2015;3:163-6.
9. Ahmad N, Hasan N, Ahmad Z, Zishan M, Zohrameena S. Momordica charantia: For traditional uses and pharmacological actions. J Drug Deliv Ther 2016;6:40-4.
10. Gupta M, Sharma S, Gautam A, Bhadauria R. Momordica charantia Linn. (Karela): Nature’s silent healer. Int J Pharm Sci Res 2011;11:32-7.
11. Upadhaya A, Agrahari P, Singh D. A review on salient pharmacological features of Momordica charantia. Int J Pharmocol 2015;11:405-13.
12. Sen S, Chakraborty R, Bora B, Dey B, Sarkar B, Saharan B. In vitro anthelmintic and antioxidant potential of fruits of Momordica charantia: A comparative study. Indian J Health Sci 2014;7:113-7.
13. Gad A. Influence of total anthocyanins from bitter melon (Momordica charantia Linn.) on antioxidant and radical scavenging agents. Iran J Pharm Res 2016;15:301-9.
14. Anilakumar K, Kumar G, Ilayaraja N. Nutritional, pharmacological and medicinal properties of Momordica charantia. Int J Nutr Food Sci 2015;4:75-83.
15. Zhang M, Hettiarachchy N, Hong R, Chen P, Over K. Effect of maturity stages and drying methods on the retention of selected nutrients and phytochemicals in bitter melon (Momordica charantia) leaf. J Food Sci 2008;73:441-8.
16. Pitapanyapong J, Chitprasert S, Goto M, Jaratchayakul W, Sasaki M, Shitipurak A. New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction. Sep Purif Technol 2007;52:416-33.
17. Patel R, Mahobia N, Upkar N, Waseem N, Talaviya H, Patel Z. Analgesic and antipyretic activities of Momordica charantia Linn. Fruits. J Adv Pharm Technol Res 2010;1:415-8.
18. Shan B, Xie J, Zhu J, Peng Y. Ethanol modified supercritical carbon dioxide extraction of flavonoids from Momordica charantia L. and its antioxidant activity. Food Bioprocess Technol Process 2012;50:579-87.
19. Tan S, Parks S, Thamapolous C, Roach P. Extraction of flavonoids from bitter melon. Food Nutr Sci 2014;5:458-65.
20. Keller A, Mek J, Kavakier A, He K, Brantilles A, Knelly E. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro. Phytomedicine 2011;19:32-7.
21. Ameivaer A, Arnhan T, Ahmat M. Determination of saponin from Momordica charantia L. in different areas. J Food Saf Qual 2013;4:496-500.
22. Li W, Lin Z, Yang C, Wang Y, Gao Y. Study on the chemical constituents of Momordica charantia L. leaves and method for their quantitative determination. Biomed Res 2015;26:415-9.
23. Kim H, Mok S, Kwon S, Lee D, Cho E, Lee S. Phytochemical constituents of bitter melon (Momordica charantia). Nat Prod Sci 2013;19:286-9.
24. Wang Y, Avula B, Liu Y, Khan I. Determination and quantitation of five cucurbitane triterpenoids in Momordica charantia by reversed-phase high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr Sci 2008;46:133-6.
25. Lee S, Eom S, Kim Y, Park N, Park S. Cucurbitane-type triterpenoids in Momordica charantia Linn. J Med Plants Res 2009;3:1264-9.
26. Zhao G, Liu J, Deng Y, Li H, Chen J, Zhang Z et al. Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia. Fitoterapia 2014;96:75-82.
27. Costa JG, Nascimento EM, Campos AR, Rodrigues FF. Antibacterial activity of Momordica charantia (Cucurbitaceae) extracts and fractions. J Basic Clin Pharm 2010;2:46-51.
28. Yaldiz G, Sekeroglu N, Kukal M, Demirkol G. Antimicrobial activity and agricultural properties of bitter melon (Momordica charantia L.) grown in northern parts of Turkey: A case study for adaptation. Nat Prod Res 2015;29:543-5.
29. Pitchakarn P, Ogawa K, Takahashi S, Assamoto M, Hewonoinr T et al. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci 2010;101:2234-40.
30. Shobha C, Vishwanath P, Suma M, Prashant A, Rangaswamy C, Gowdappa B. In vitro anti-cancer activity of ethanolic extract of Momordica charantia on cervical and breast cancer cell lines. Int J Health Allied Sci 2015;4:210-7.
31. Meera S, Nagarjunna CG. Antistress and immunomodulatory activity of aqueous extract of Momordica charantia. Pharmacog Mag 2009;5:69-73.
32. Tripathi UN, Chandra D. Diabetes induced oxidative stress: A comparative study on protective role of Momordica charantia and metformin. Pharmacog Res 2009;1:299-306.
33. Tahira S, Hussain F. Antidiabetic evaluation of Momordica charantia L fruit extracts. West Indian Med J 2014;63:294-9.
34. Perumal V, Kho V, Abdul-Hamid A, Ismail A, Saari K, Murugesu S et al. Evaluation of antimicrobial properties of Momordica charantia in streptozotocin induced diabetic rats using metabolomics approach. Int Food Res J 2015;22:1298-306.
35. Gupta M, Sharma S, Bhadauria R. In vitro efficacy of Momordica charantia extracts against phytopathogenic fungi. Fuszainox-upororum. J Biopesticides 2016;9:9-22.
36. Wang S, Zheng Y, Xiang F, Li S, Yang G. Antifungal activity of Momordica charantia seed
extracts toward the pathogenic fungus Fusarium solani L. J Food Drug Anal 2016;24:881-7.

37. Leelaprapaksh G, Caroline Rose J, Mohan Dass S. In vitro anti-inflammatory activity of Momordica charantia by inhibition of lipooxygenase enzyme. Int J Pharm Pharm Sci 2012;4:148-52.

38. Chao CY, Sung PJ, Wang WH, Kuo YH. Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules 2014;19:12777-88.

39. Wang J, Ryu HK. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet. Nutr Res Pract 2015;9:489-95.

40. Santos AK, Costa JG, Menezes IR, Canzaniço IF, Santos KK, Matias EF, et al. Antioxidant activity of five Brazilian plants used as traditional medicines and food in Brazil. Pharmcogn Mag 2010;6:335-8.

41. Nagarani G, Abirami A, Siddharaju P. A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and anti-inflammatory activity of leaf extract from different, Momordica species. Food Sci Hum Wellness 2014;3:36-48.

42. Patel S, Patel T, Parmar K, Bhatt Y, Patel Y, Patel N. Isolation, characterization and antimicrobial activity of charantin from Momordica charantia Linn. fruit. Int J Drug Dev Res 2010;2:629-34.

43. Alam S, Asad M, Asdaq SM, Prasad VS. Antiulcer activity of methanolic extract of Momordica charantia L. in rats. J Ethnopharmacol 2009;123:464-8.

44. Rao N, Veno K, Sovmya U, Gangadi J, Anrudh K. Evaluation of anti-ulcer activity of Momordica charantia in rats. Int J Pharm Biol Sci 2011;1:1-16.

45. Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar Jr. Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Curr Med Res 2009;9:1080-94.

46. Sheriff O, Yusuf F. Cardio-protective properties of Momordica charantia Linn. fruit extracts. Int J Res Ayurveda Pharm 2016;7:123-7.

47. Beloin N, Gbeassor M, Akpagana K, Hudson J, Soussa K, Kounaglo K, et al. Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J Ethnopharmacol 2005;96:49-55.

48. Vedamurthy A, Rampuravala J, Paarakh P, Jogaiah S, Joy H. Evaluation of anthelmintic activity of Momordica charantia L. seeds. Indian J Nat Prod Resour 2015;6:153-167.

49. Vinav G, Jigna V, Mahaddesi B. Phytochemical and in vitro anthelmintic activity of Momordica charantia Linn fruit extracts. Int J Res Ayurveda Pharm 2016;7:123-7.

50. Hrickova G, Velevny S, editors. Parasitic helminths of humans and animals: Health impact and control. In: Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. Vienna: Springer; 2013. p. 29-99.

51. Melzig MF, Bader G, Loose R. Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 2001;67:43-8.

52. Bauri R, Tigga M, Kullu S. A review on use of medicinal plants to control parasites. Indian J Nat Prod Resour 2015;6:269-77.

53. Wink M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012;17:12771-91.

54. Jain P, Singh S, Singh S, Verma S, Kharya M, Solanki S. Anthelmintic potential of herbal drugs. Int J Res Dev Pharm Life Sci 2013;2:412-7.

55. Ferrándiz ML, Alcaraz MJ. Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions 1991;32:283-8.

56. Yoon YA, Kim H, Lim Y, Shim YH. Relationships between the larval growth inhibition of Caenorhabditis elegans by aperiphen derivatives and their structures. Arch Pharm Res 2006;29:682-8.

57. Ishiol Z, Mufti K, Khan M. Anthelmintic effects of condensed tannins. Int J Agric Biol 2002;4:438-40.

58. Williams A, Frullanas C, Ramsay A, Mueller-Harvey I, Thornsberg S. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS One 2014;9:e89738.