Approximation results of Artin-Tougeron-type for general filtrations and for \(C^r \)-equations.

Genrich Belitskii, Alberto F. Boix and Dmitry Kerner

Abstract. Artin approximation and other related approximation results are used in various areas. The traditional formulation of such results is restricted to filtrations by powers of ideals, \(\{I^j\} \), and to Noetherian rings. In this short note we extend several approximation results both to rather general filtrations and to \(C^r \)-rings, for \(2 \leq r \leq \infty \).

We use the multivariable notations, \(x = (x_1, \ldots, x_m) \), \(y = (y_1, \ldots, y_n) \). For a descending filtration by ideals, \(\{I_j\} \), we denote \(I_{\infty} := \cap I_j \).

1. Introduction

Various versions of Artin approximation are widely used in Algebraic/Analytic Geometry, Commutative Algebra and Singularity Theory. Recently they became important in other areas, see [Rond.18] for the general introduction and the review of the current state of research.

Traditionally, the approximation statements were restricted to Noetherian rings and to filtrations by powers of ideals, \(\{I^j\} \). (Two notable exceptions being [Schoutens.88] and [Moret-Bailly.12].)

For various recent applications in Singularity Theory one needs these approximations both for rings of differentiable/smooth functions and for more general filtrations/completions (e.g. for non-isolated singularities), see [Bel.Ker.16b] and [Boi.Gre.Ker]. In this note we extend some of the classical approximation results both to rather general filtrations and to \(C^r \)-rings, where \(2 \leq r \leq \infty \). This allows, e.g. immediate applications of Artin approximation to the study of non-isolated singularities of maps and schemes.

Below we recall some classical results.

1.1. Polynomial equations. Let \(R \) be a commutative unital ring, with filtration \(\{I_j\} \). Consider a (finite) system of polynomial equations, \(F(y) = 0 \), where \(F(y) \in R[y]^n \).

Definition 1.1. The Artin approximation property, AP, holds for \(R \{I_j\} \) if for every finite system of polynomial equations over \(R \), a solution in the completion \(\hat{R}^{\{I_j\}} \) implies a solution in \(\hat{R} \), which can be chosen arbitrary close to the formal solution in the filtration topology.

The famous characterization of rings with AP reads:

Theorem 1.2. [Popescu.00, Remark 2.15], see also [Popescu.86, Theorem 1.3] and [Rotthaus.90, Theorem 1]

Let \(R \) be a commutative Noetherian excellent ring.

1. If the pair \((R, I) \) is Henselian, for some ideal \(I \subset R \), then AP holds for \(R \{I^j\} \).

2. If a local ring \((R, m) \) has AP, for the filtration \(\{m^j\} \), then it is Henselian.

1.2. Analytic/algebraic equations. When the equations \(F(x, y) = 0 \) are non-polynomial, the formal solution does not imply any ordinary solution. Yet the approximation holds for analytic equations and for equations given by a W-system.

Theorem 1.3. Let \(\hat{y}(x) \in k[\{x\}]^n \) be a formal solution, i.e. \(F(x, \hat{y}(x)) = 0 \), assume \(\hat{y}(0) = 0 \).

1. [Denef-Lipshitz, Theorem 1.1] Let \(k \) be either a field or a discrete valuation ring, and suppose the system of equations \(F(x, y) = 0 \) is given by a W-system, i.e., \(F(x, y) \in k[x, y]^n \). For every \(N \in \mathbb{N} \) there exists a W-solution \(y(x) \in k[\{x\}]^n \) satisfying: \(y(x) - \hat{y}(x) \in m^{N+1} \cdot k[\{x\}]^n \).

2. [Artin.68, Theorem 1.2], [Wavrik.75, page 135, Theorem 1], [Schemmel.1982] Let \(k \) be a valued field of arbitrary characteristic, and suppose that the completion of \(k \) with respect to its absolute value is separable over \(k \). Suppose the system of equations \(F(x, y) = 0 \) is \(k \)-analytic. \(F(x, y) \in k[\{x, y\}]^n \). For every \(N \in \mathbb{N} \) there exists an analytic solution \(y(x) \in k[\{x\}]^n \) satisfying: \(y(x) - \hat{y}(x) \in m^{N+1} \cdot k[\{x\}]^n \).

We recall the widely used cases of this theorem:

Date: July 24, 2019 filename: approximation.results.Cinfty.Artin.Tougeron.type.2.10.tex.
2010 Mathematics Subject Classification. Primary 13B40. Secondary 13J05, 14B12, 26E10.
Key words and phrases. Artin approximation, Tougeron approximation, analytic/algebraic/power series equations, Implicit Function theorem. germs of differentiable functions.

A.F. Boix was partially supported by Israel Science Foundation (grant No. 844/14) and Spanish Ministerio de Economía y Competitividad MTM2016-7881-P.

D.Kerner was partially supported by Israel Science Foundation (grant No. 844/14).
1. (for W-systems) Algebraic equations, i.e., $F(x,y) \in \k(x,y)^s$, then part one ensures the approximation by an algebraic solution, $y(x) \in \hat{\k}(x,y)^n$.

2. (for valued fields) The completion of \k with respect to its absolute value is separable over \k, e.g. in the following cases: when \k is complete, when \k is perfect, and when \k is discrete, see [Abhyankar-van der Put, pages 38–39]).

Over reals the approximation statement is much stronger:

Theorem 1.4. [Tougeron.76, Theorem 1.2] Let $F(x,y) \in \mathbb{R}[x,y]^s$ and assume \hat{y}_0 is a formal solution. There exists a solution $y(x) \in C^\infty(\mathbb{R}^m, o)^n$, whose Taylor series is $\hat{y}(x)$.

1. Moreover, for any $N \in \mathbb{N}$ there is an analytic solution, $y_{an}(x) \in \mathbb{R}[x]^n$, that is m^N-homotopic to $y(x)$.

2. If, moreover, $F(x,y) \in \mathbb{R}[x,y]^s$ (algebraic power series) then for any $N \in \mathbb{N}$ the approximating solution can be chosen algebraic, $y(x) \in \mathbb{R}[x]^n$. If in addition $y(x) \in \mathbb{R}[x]^n$, then the m^N-homotopy can be chosen analytic.

Recall that two solutions, $y(x), z(x)$, are I-homotopic, for an ideal $I \subset R$, if there exists a $(C^\infty$/analytic)-family of solutions, $y(x,t),$ such that $y(x) = y(x,0)$, $y(x) = y(x,1)\), and $y(x,t) - y(x,t) \in I \cdot C^\infty(\mathbb{R}^m, o)^n$ for any t.

1.3. C^∞-equations. Let $F \in C^\infty(\mathbb{R}^m \times \mathbb{R}^n, o)^s$, the ring of smooth function-germs at the origin $o \in \mathbb{R}^m \times \mathbb{R}^n$. A formal solution of the equation $F(x,y) = 0$ is a power series $\hat{y}_0 \in \mathbb{R}[x]^n$ satisfying $F(\hat{y}_0) = 0$. This condition is understood in the following sense. Borel’s lemma ensures the surjectivity of the completion map, $C^\infty(\mathbb{R}^m, o) \rightarrow \mathbb{R}[x]$. Thus one takes a(ny) Borel-representative $\hat{y}_0 \in C^\infty(\mathbb{R}^m, o)^n$ of \hat{y}, and verifies $F(\hat{y}_0) = 0$. This does not depend on the choice of Borel-representative.

The naive generalization of theorems 1.2, 1.3, 1.4 to C^∞-equations fails, even for linear equations with C^∞-coefficients.

Example 1.5. i. Take a flat function $\tau \in (x)\infty \subset C^\infty(\mathbb{R}^1, o)$, e.g. $\tau(x) = \begin{cases} e^{1/x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$. Consider the equation $\tau^2(x)y = \tau(x)$. Every formal series $\hat{y} \in \mathbb{R}[x]$ is a formal solution, but the equation has no continuous solutions.

ii. Take a flat function $\tau \in (x_1, x_2)\infty \subset C^\infty(\mathbb{R}^1, o)$ and consider the equation $x_1 \cdot y = \tau(x)$. Assume $\tau \notin (x_1)$, e.g. τ vanishes only at the origin. Then $y = 0$ is a formal solution, but there are no continuous solutions.

iii. More generally, suppose for some ring R with a filtration $\{I_j\}$ holds: $I \cdot I_j = I_{j-1} \neq 0$ and there exists a $a \in R$ satisfying $(a) \nsubseteq I_{\infty}$. Then AP does not hold for $R, \{I_j\}$. For example, consider the equation $ay = b$, where $b \in I_{\infty}$, $a \notin (a)$. It has a formal solution, $y = 0$, in the sense that $a \cdot 0 - b \notin I_{\infty}$, but no ordinary solutions.

Yet, under some additional assumptions, some approximation results are possible in the C^∞ case.

Theorem 1.6. 1. [van der Put.77, §3.2.2] Given a set of polynomials in one variable with smooth coefficients, $F(y) \in (C^\infty(\mathbb{R}^1, o)[y])^s$, let $A \subset C^\infty(\mathbb{R}^1, o)$ be the subalgebra generated by the coefficients of $F(y)$. Suppose $A \cap m^\infty = \{0\} \subset C^\infty(\mathbb{R}^1, o)$. Then any formal solution $\hat{y}_0 \in \mathbb{R}[x]^n$ lifts to an ordinary solution, $y_0 \in (C^\infty(\mathbb{R}^1, o))^s$, such that $F(y_0) = 0 \in (C^\infty(\mathbb{R}^1, o))^s$ and \hat{y}_0 is the Taylor expansion of y_0.

2. [Bel.Ker.16a, Theorem 5.3] Let $F(x,y) \in (C^\infty(\mathbb{R}^m \times \mathbb{R}^n, o))^s$ and suppose the equation $F(x,y) = 0$ has a formal solution, $\hat{y}_0(x)$. Denote $h(x) := \det \left[\frac{\partial F(x, \hat{y}_0)}{\partial \hat{y}_0} \right] \left(\frac{\partial F(x, \hat{y}_0)}{\partial \hat{y}_0} \right)^T$ and suppose $h \cdot m^\infty = m^\infty$. Then $\hat{y}_0(x)$ lifts to an ordinary solution, $y_0 \in C^\infty(\mathbb{R}^1, o)^n$, $F(x, y_0) = 0$, whose Taylor series at the origin is $\hat{y}_0(x)$.

In part 2 we take some Borel representative $\hat{y}_0 \in (C^\infty(\mathbb{R}^m, o))^n$ of \hat{y}_0 and for it compute $h(x)$ and then verify $h \cdot m^\infty = m^\infty$. As before, this does not depend on the choice of representative.

1.4. Our results.

- In §2 we reduce the verification of AP for $R, \{I_j\}$ to AP for $R, \{I_j\}$, under very weak assumptions on I_j.

In particular, this extends part 1. of Theorem 1.2 to rather general filtrations $\{I_j\}$. Similarly we extend theorem 1.3.

The importance of these results is clear: finer filtrations ensure finer approximations.

- In §3 we extend part 2. of theorem 1.6 to the ring $C^\infty(\mathbb{R}^p, o)/J$, filtered by $\{I_j\}$. Moreover, we strengthen it, in the spirit of theorem 1.4, to ensure a solution that is analytic/algebraic modulo the ideal of flat functions, I_{∞}.

In this section we assume the surjectivity of the completion map $C^\infty(\mathbb{R}^p, o)/J \rightarrow C^\infty(\mathbb{R}^p, o)/J$. For general filtrations this question is more complicated than the classical (Borel) surjectivity $C^\infty(\mathbb{R}^p, o) \rightarrow \mathbb{R}[x]$. The necessary/sufficient conditions for the surjectivity are obtained in [Bel.Boi.Ker].

- In §4 we extend part 2 of theorem 1.6 to C^r equations.
2. ARTIN-TYPE APPROXIMATION FOR GENERAL FILTRATIONS

2.1. The case of polynomial equations. Let R be a commutative (not necessarily Noetherian) ring, with a filtration $\{I_\bullet\}$. The following condition is a weakening of being finitely generated:

(1) For any N there exists $\tilde{N} = \tilde{N}(N) \gg 1$ and a finite set $\{q_\alpha\}$ in $I_{\tilde{N}}$ such that $I_{N+\tilde{N}} \subseteq (\{q_\alpha\})$.

Lemma 2.1. Suppose R has AP for a filtration $\{I_j\}$. Then R has AP for any filtration $\{a_j\}$ satisfying condition (1) and such that $a_j \subseteq I_{N_j}$, for some sequence satisfying $\lim_{j \to \infty} n_j = \infty$.

Proof. Let $F(y) \in R[y]^n$ be a system of polynomial equations. We should prove: any $\hat{R}(a_\bullet)$-formal solution is a_\bullet-approximated by a solution in R.

Take the completion $\hat{R}(a_\bullet) \to \hat{R}(a_\bullet)$ and let $\hat{y}_0 \in (\hat{R}(a_\bullet))^n$ be a formal solution. For any N and any $\tilde{N} \gg N$ exists $y_\tilde{N} = y_N \in R^n$ (not necessarily a solution) such that $y_N - \psi(y_N) \in a_{N+1} \cdot (\hat{R}(a_\bullet))^n$.

By the assumption (1) there exists a finite set of elements $\{q_\alpha\} \subseteq a_{N+1}$ such that $\hat{y}_0 - \phi(y_N) \in (\{q_\alpha\}) \cdot (\hat{R}(a_\bullet))^n$.

Change the variable, $y = y_N + \sum \hat{y}_0 q_\alpha$. The initial system of equations becomes $F(y_N + \sum \hat{y}_0 q_\alpha) = 0$, for the unknowns $\{\hat{y}_0\}$. This system has a $\hat{R}(a_\bullet)$-formal solution, coming from \hat{y}_0.

By the assumption $a_j \subseteq I_{N_j}$, thus we have the natural map $\hat{R}(a_\bullet) \to \hat{R}(I_\bullet)$. (It is not necessarily injective.) This map sends the $\hat{R}(a_\bullet)$-formal solution to a $\hat{R}(I_\bullet)$-formal solution:

(2) $\phi(I_\bullet)(F)(\psi(\hat{y}_0)) = \phi(a_\bullet)(F)(\psi(\hat{y}_0)) = \psi(0) = 0 \in (\hat{R}(I_\bullet))^n$.

Now, by AP for $\{I_\bullet\}$-filtration, we get an ordinary solution, $F(y_N + \sum \hat{y}_0 q_\alpha) = 0$, for some $\{\hat{y}_0\} \subseteq R^n$. Then $y_N + \sum \hat{y}_0 q_\alpha \in R^n$ is the needed ordinary solution. (It approximates \hat{y}_0 for the filtration a_\bullet.)

Example 2.2.

i. Suppose two filtrations are equivalent, $\{I_j\} \sim \{a_j\}$, then R has AP for $\{I_j\}$ iff it has AP for $\{a_j\}$.

ii. For a Noetherian local ring, (R, m), many filtrations satisfy $\cap I_j = 0$. In particular, for any j and a corresponding $n_j < \infty$ holds $I_{n_j} \subseteq m^j$. Thus AP for $\{m^j\}$ implies AP for I_\bullet.

iii. For the non-isolated singularities one needs filtrations of the form $\{m^j \cdot J\}$, where the ideal J defines the singular locus. (In particular J is not m-primary.) More generally, one needs filtrations of the form $\{(\cap q_\alpha^{n_\alpha(j)} \cdot J)\} \cap J$, where $\{q_\alpha\}$ is a finite set of ideals and $\lim_{j \to \infty} n_\alpha(j) = \infty$, and $height(J) < height(q_\alpha)$, for any α. These filtrations are not equivalent to $\{I^n\}$ for any $I \subseteq R$. Thus theorem 1.2 cannot be applied directly, but lemma 2.1 is applicable.

2.2. Analytic/algebraic equations over \mathbb{k}. Theorem 1.3 was initially stated for the filtration $\{m^j\}$. Let R be one of $\mathbb{k}[x,j]$, $\mathbb{k}[x,j]/j$. (Here \mathbb{k} is a field or a discrete valuation ring, with the assumptions as in theorem 1.3.) Let $F(\underbrace{x, y}) = 0$ be the corresponding system of W-system/analytic equations, i.e. $F \in R[y]$ or $R[y]$.

Lemma 2.3. Suppose a filtration $\{I_j\}$ of R, satisfies: $m^j \supseteq I_{n_j}$, for any j and a corresponding $n_j < \infty$. Suppose the equation $F(\underbrace{x, y}) = 0$ has a formal solution, $\hat{y}_0 \in (\hat{R}(I_\bullet))^n$. For every $N \in \mathbb{N}$ there exists an analytic/W-system solution $\underbrace{y_N} \in R^n$ satisfying: $y_N - \hat{y}_0 \in I_{N+1} \cdot (\hat{R}(I_\bullet))^n$.

The proof goes by the same argument as in lemma 2.1.

2.3. Analytic equations over \mathbb{R}, a generalization of Tougeron’s theorem. Let $R = \mathbb{R}[x]/j$, filtered by $\{I_j\}$ and $F(\underbrace{x, y}) \in (R[y]^n)$. Suppose the equation $F(\underbrace{x, y}) = 0$ has a formal solution, $\hat{y}_0 \in (\hat{R}(I_\bullet))^n$.

Proposition 2.4. 1. For any $N \in \mathbb{N}$ there exists a solution $\underbrace{y_N} \in (C^\infty(\mathbb{R}^m, o)/j)^n$, that satisfies:

\[y_N - \hat{y}_0 \in I_N \cdot m^{2N} \cdot (C^\infty(\mathbb{R}^m, o)/j)^n. \]

2. Moreover, for any $j \in \mathbb{N}$ there exists an analytic solution, $\underbrace{y_{2N}} \in R^n$ that is $I_N \cdot m^j$-homotopic to \hat{y}_0.

3. If moreover, J is algebraically generated and $F(\underbrace{x, y})$ is an algebraic power series then for any $j \in \mathbb{N}$ the approximating solution can be chosen algebraic, $\underbrace{y_{2N}} \in (\mathbb{R}(x)[j]^n)$. If in addition $\hat{y}_0 \in (\mathbb{R}(x)[j])^n$, then the $I_N \cdot m^j$-homotopy can be chosen analytic.

Here $\underbrace{y_{2N}} - \hat{y}_0 \in I_N \cdot m^{\infty}$, as before: for an(ay) C^∞-representative of \hat{y}_0.

Proof.

Step 1. We reduce to the case $R = \mathbb{R}[x]$. Let $\underbrace{F(\underbrace{x, y})} \in \mathbb{R}[x, y]$ be a representative of $F(\underbrace{x, y})$. Fix some (finite) set of generators, $\{q_\alpha\}$, of J. Consider the equation

(3) $\underbrace{F(\underbrace{x, y})} = \sum_{\alpha} q_\alpha z_\alpha$.

Here $\{z_\alpha\}$ are s-columns of new variables. A formal solution of $F(\underbrace{x, y}) = 0$ implies a formal solution of (3). Thus, assuming a needed (analytic/algebraic) solution, $\underbrace{y_N}$ of (3) (homotopic to the formal solution), we get the needed (analytic/algebraic) solution $\underbrace{y_N}$ of $F(\underbrace{x, y}) = 0$, homotopic to \hat{y}_0.

Step 2. Let $R = \mathbb{R}(x)$ and $F(x, y) \in \mathbb{R}(x, y)$. Denote by $\zeta_i \in \mathbb{R}^n$ the Nth approximation to the formal solution $\tilde{y}_0 \in (\hat{R}(I))^n$, i.e. $\zeta_i - \tilde{y}_0 \in I_N \cdot (\hat{R})^n$. Fix some generators $\{q_a\}$ of I_N and consider the shifted equation,

$$F(x, \zeta_i + \sum \alpha q_a \zeta_{a}) = 0.$$

This is an analytic equation on the new $(n \times \text{columns})$ variables $\{\zeta_i\}$. The formal solution \tilde{y}_0 ensures a formal solution $\{\zeta_i\}$ of (4). Then theorem 1.4 ensures C^∞-solutions, $\{\zeta_i\}$, whose Taylor series are $\{\zeta_i\}$.

Define $\zeta_i := \zeta_i + \sum q_a \zeta_{a} \in C^\infty(\mathbb{R}^n, o)^n$. Then $\zeta_i - \tilde{y}_0 \in \mathbb{R} \cdot \tilde{y}_0 \in I_N \cdot \mathbb{R}^n \cdot C^\infty(\mathbb{R}^n, o)^n$. Moreover, for any $j \in \mathbb{N}$, Tougeron’s theorem ensures analytic solutions, $\{\zeta_i\}$ in $\mathbb{R}(x)$, which are m^j-homotopic to $\{\zeta_i\}$.

This homotopy gives the needed $I_N \cdot m^j$-homotopy of \tilde{y}_0 to $\tilde{y}_0 := \zeta_i + \sum q_a \zeta_{a} \cdot o$.

This proves parts 1. and 2. of the theorem.

Part 3. follows similarly, from the $F(x, y) \in \mathbb{R}(x)^n$- part of Tougeron’s theorem.

Remark 2.5. This proposition is a weak generalization of Tougeron’s theorem. One would like to replace the conclusion “$\tilde{y}_0 - \tilde{y}_0 \in I_N \cdot \mathbb{R}^n$” by the stronger conclusion $\tilde{y}_0 - \tilde{y}_0 \in I_N$, i.e. “$\tilde{y}_0$ is the image of \tilde{y}_0 under the $\{I_j\}$-completion”. However, this cannot hold without further assumptions. Indeed, this would imply (trivially) the surjectivity of the completion map, $C^\infty(\mathbb{R}^n, o) \rightarrow C^\infty(\mathbb{R}^n, o)$ (I_j). But already this surjectivity places significant restrictions on the filtration $\{I_j\}$, see [Bel.Boi.Ker].

3. APPROXIMATION FOR C^∞-EQUATIONS

Let $R = \mathbb{R}(x)$, with some filtration $\{I_j\}$. In this section we always assume the completion map is surjective, $R \rightarrow \hat{R}$. This holds for many filtrations, the sufficient conditions are established in [Bel.Boi.Ker]. In particular, the surjectivity holds for filtrations satisfying:

$$(Z, o) := V(I_{\infty}) = V(I_N), \text{ for } N > 1, \{I_N \subseteq I(Z, o)\}, \text{ for some } N < \infty.$$

Here $I(Z, o)$ is the ideal of all function-germs that vanish on (Z, o).

3.1. Formal solutions. We often compare elements of $\hat{R}(I)$ and \mathbb{R}. To simplify the expressions we often put these elements in one formula.

i. For $y_1 \in R$ and $\tilde{y}_0 \in \hat{R}(I)$ the notation $y_1 - \tilde{y}_0 \in I_j$ means: for some representative $\tilde{y}_0 \in R$ of \tilde{y}_0 holds: $y_1 - y_0 \in I_j$. (This does not depend on the choice of representative.)

Similarly, the homotopy notation $\tilde{y}_0 \sim y_1$ means: for a representative of \tilde{y}_0.

ii. For $F(x, y) \in \mathbb{R}(R, o)$ and $\tilde{y}_0 \in \hat{R}$ the notation $F(x, \tilde{y}_0) \in I_N$ means: for some representative $\tilde{y}_0 \in R$ of \tilde{y}_0 holds $F(x, \tilde{y}_0) \in I_N$. (This does not depend on the choice of representative.)

Take a system of equations, $F(x, y) = 0$, where $F \in \mathbb{R}(R, o)$.

Definition 3.1. A formal solution is an element $\tilde{y}_0 \in \hat{R}$ such that $F(x, \tilde{y}_0) \in I_N \cdot \mathbb{R}^n$.

3.2. The approximation theorem. Suppose there exist a formal solution $\tilde{y}_0 \in \hat{R}$.

i. Define the auxiliary function-germ as the determinant of the matrix,

$$h_{\tilde{y}}(x) := \det \left(\frac{\partial F(x, \tilde{y})}{\partial y} \right).$$

As before, in $F(x, \tilde{y})$ we substitute a(ny) C^∞-representative of \tilde{y}. As before, the non-uniqueness of the representative changes $h(x)$ only by an element of I_{∞}. The matrix $\frac{\partial F(x, \tilde{y})}{\partial y}$ is of size $s \times n$, thus $h = 0$ unless $n \geq s$.

Theorem 3.2. Suppose the completion map is surjective, $R \rightarrow \hat{R}$. Suppose there exists a formal solution, $\tilde{y}_0 \in \hat{R}$, $\tilde{y}_0(0) = 0$, and for it holds: $h_{\tilde{y}} \in I_{\infty}$.

i. There exists an ordinary solution, $y \in R^n$, such that $F(x, y(x)) = 0$ and the I_j-completion map sends y to \tilde{y}_0.

ii. Suppose $F(x, y) \in \mathbb{R}(R, o)$ and $\tilde{y}_0 \in \mathbb{R}$, and moreover holds:

a. the ideals J and all $\{I_j\}$ are analytically generated;

b. $Z = V(I_{\infty}) \subseteq V(I_N)$, $I_N \subseteq I(Z, o)$;

c. $h_{\tilde{y}}$ has finite orders at all points of (Z, o).

Then for any $N \in \mathbb{N}$ exists a solution

$$\tilde{y}_N \in \mathbb{R}(R, o) \cdot C^\infty(\mathbb{R}^n, o)^n, \quad F(x, \tilde{y}_N(x)) = 0, \quad \text{such that } \tilde{y}_N \sim \tilde{y}_0.$$

3. Suppose $F(x, y) \in \mathbb{R}(R, o)$ and $\tilde{y}_0 \in \mathbb{R}$, and moreover holds:
a. the ideals J and all $\{I_r\}$ are algebraically generated;

b. $(Z,o) := V(I_{\infty}) = V(I_N)$ for $N \geq 1$ and $I_{\infty} \subseteq I(Z,o)^{\infty}$;

c. $h_{\bar{y}}$ has finite orders at all points of (Z,o).

Then for any $N \in \mathbb{N}$ exists a solution
\[
\bar{y}_N \in \left(\mathbb{R}^{(x)} + \frac{C^{\infty}(\mathbb{R}^m, o)}{J} \right)^n, \quad F(\bar{x}, \bar{y}_N(x)) = 0 \quad \text{such that } y_{\bar{y}}^{\infty} \sim \bar{y}_N.
\]

Proof.

1. (The proof expands the initial idea from [Bel.Ker.16a].) Let $\bar{y} \in \mathbb{R}^n$ be a C^{∞}-representative of $\hat{y}_{\bar{y}}$, thus $F(x, \bar{y}) \in I_{\infty} \cdot \mathbb{R}^s$. Shift the variables, $\bar{y} = \hat{y} + \Delta \bar{y}$, and take the Taylor expansion $F(x, \hat{y} + \Delta \bar{y})$ with remainder:

\[
F(x, \hat{y} + \Delta \bar{y}) = F(x, \hat{y}) + \frac{\partial F(x, \hat{y})}{\partial y} \cdot \Delta \bar{y} + (\Delta \bar{y})^T \left(\int_0^1 (1 - \xi) \frac{\partial^2 F(x, \hat{y} + \xi \Delta \bar{y})}{\partial y^2} d\xi \right) (\Delta \bar{y}).
\]

Thus $F(x, \hat{y} + \Delta \bar{y}) = 0$ is a C^{∞}-implicit function equation.

We are looking for the solution in the form
\[
\Delta \bar{y}(x) = h(x) \cdot \left(\frac{\partial F(x, \hat{y})}{\partial y} \right)^T \cdot \left[\frac{\partial F(x, \hat{y})}{\partial y}, \frac{\partial F(x, \hat{y})}{\partial y} \right]^T \cdot \bar{z}.
\]

Here \ldots^T is the adjugate matrix, while $\bar{z} \in \mathbb{R}^s$ is a column of free variables.

This substitution gives the equation:
\[
\frac{F(x, \hat{y})}{h(x)^2} + \bar{z} \cdot \bar{z}^T \cdot \ldots = 0.
\]

These are s equations in s variables.

By the assumption $\frac{F(x, \hat{y})}{h(x)^2} \in I_{\infty} \cdot \mathbb{R}^s$. The entries of the matrix \ldots belong to R and depend on \bar{z} via $\Delta \bar{y}$.

Thus they are well defined for any $\bar{z} \in \mathbb{R}^s$, and not just for small values of \bar{z}.

Finally, invoke the implicit function theorem in the ring R to get a solution $\bar{z}(x) \in I_{\infty} \cdot \mathbb{R}^s$. This gives the solution $y_{\bar{z}}(x) = \hat{y}(x) + \Delta \bar{y}(x) \in \mathbb{R}^n$ to $F(x, \hat{y}) = 0$.

Note that $y_{\bar{z}}(x)$ is sent to $\hat{y}_{\bar{y}}(x)$ by the completion map, as was claimed.

2. **Step 1.** Present $F = F_{\text{ann}} + F_{\text{flat}}$, where $F_{\text{ann}} \in (\mathbb{R}(\mathbb{Z}, \mathbb{Y}, \mathbb{J}))^n$ and $F_{\text{flat}} \in I_{\infty} \cdot \left(C^{\infty}((\mathbb{R}^m, \mathbb{O})/J) \right)^n$. If $F(x, \hat{y}) \in I_{\infty} \cdot \mathbb{R}^s$, then also $F_{\text{ann}}(x, \hat{y}) \in I_{\infty} \cdot \mathbb{R}^s$. Thus, for the Taylor expansion of $\hat{y}_{\bar{y}}$ holds: $F_{\text{ann}}(x, \hat{y}) = 0$.

Thus, by proposition 2.4 there exists a family $y(t) \in \left(C^{\infty}((\mathbb{R}^m, \mathbb{O}) \times [0,1])^n \right)$ satisfying:
\[
\forall t : y(t) - \hat{y} \in I_N \cdot m^1 \cdot \mathbb{R}^s, \quad F_{\text{ann}}(x, y(t)) = 0, \
\quad y(0) = \hat{y} \in I_N \cdot m^{\infty} \cdot \mathbb{R}^s, \quad \left. \frac{\partial y(t)}{\partial t} \right|_{t=0} \in (\mathbb{R}(\mathbb{Z}, \mathbb{Y}, \mathbb{J}))^n.
\]

Step 2. We verify for any t: $h_{\hat{y}(t)} \cdot I_{\infty} = I_{\infty}$.

Indeed, $h_{\hat{y}(t)} \cdot I_{\infty} = I_{\infty}$ and $h_{\hat{y}(t)}$ has finite order at all points of Z. As Z is closed, and we work with the germ (Z,o), we can assume Z is compact, then this order is bounded. Thus there exists a C^{∞}-representative $\hat{y}_{\bar{y}}$ of $\hat{y}_{\bar{y}}$ satisfying for some $d \in \mathbb{N}$:
\[
h_{\hat{y}(t)}^{-1}(0) \subseteq (Z,o), \quad \forall z \in Z : \text{ord}_z(h_{\hat{y}(t)}) \leq d.
\]

Thus, for $N \gg 1$ and any $t \in [0,1]$ we have: $h_{\hat{y}(t)}^{-1}(0) \subseteq (Z,o)$, and for any $z \in Z$: $\text{ord}_z(h_{\hat{y}(t)}) \leq d$. This implies, for any t: $h_{\hat{y}(t)} \cdot I_{\infty} = I_{\infty}$.

Step 3. Finally we consider the equation $F(x, y(t) + \Delta(t)) = 0$, where $\Delta(t)$ is a (column of) new variable.

Expand it as in equation (7) to get the solution, $\Delta(t) \in I_{\infty} \cdot \left(C^{\infty}((\mathbb{R}^m, \mathbb{O}) \times [0,1],/J) \right)^n$. Define $y_N := y(1) + \Delta(1)$, this is a solution, analytic mod I_{∞}. And by our construction holds $y_N^{\infty} \sim y_{\bar{y}}$.

3. The proof is the same, just we use the algebraic part of proposition 2.4.

Example 3.3. Let $R = C^{\infty}(\mathbb{R}^m, o)/J$ with a filtration $\{I_r\}$ satisfying: $I_{\infty} \subseteq m^{\infty}$, $V(I_{\infty}) = V(m) = o \in \mathbb{R}^m$. This ensures the surjectivity of completion, $R \rightarrow \hat{R}^{\mathbb{A}}$, see [Bel.Bol.Ker].

i. Suppose the linear part of the equations is non-degenerate at 0, i.e., the matrix $\frac{\partial F(\bar{x}, \hat{y})}{\partial y}_{|y=0} = \bar{y}_{\bar{x}}$ is of rank s, with $s \leq n$. Then $h_{\bar{y}}$ is invertible for any formal solution $\bar{y}_{\bar{y}}$. In particular $h_{\bar{y}} \cdot m^{\infty} = m^{\infty}$. Thus any formal solution extends to a C^{∞}-solution.

ii. More generally, assume the derivative $\frac{\partial F(\bar{x}, \hat{y})}{\partial y}_{|y=0} = 0$ is non-degenerate off the origin. Thus $h_{\bar{y}} = 0$ vanishes at 0 only. Then $h_{\bar{y}} \cdot m^{\infty} = m^{\infty}$ holds e.g. if $h_{\bar{y}} = 0$ is analytic. This gives a Tougeron type statement for the classical m-adic completion. For $J = 0$ this gives part 2 of theorem 1.6.
Example 3.4. Let $R = C^\infty(\mathbb{R}^m, 0)/J$ and assume $(Z, o) := V(I_\infty)$ is an analytic germ and moreover: $I_\infty \subseteq I(Z, o)^\infty$, and $(Z, o) = V(I_N)$ for $N > 1$. By [Bel.Boi.Ker] the completion is surjective again. Given a system of equations, $F(\tilde{x}, y) = 0$, with a formal solution, \tilde{y}, we should check $h_{\tilde{y}} \cdot I_\infty = I_\infty$. Suppose $h_{\tilde{y}}$ is presentable in the form $h_{\tilde{y}} = h_\infty$, where $h_\infty \in I_\infty$ and $\tilde{y} \in \mathbb{R}[1/j, h_\infty^{-1}(0)] = Z$. (Here we choose some C^∞-representative y_0 of \tilde{y}, and $h_{\tilde{y}}$ does not depend on this choice.)

Then, by Lojasiewicz inequality, there exist constants $C > 0$ and $\delta > 0$ such that

\[h_{\tilde{y}}(x) \geq C \cdot \text{dist}(x, Z)^\delta \]

holds in a neighborhood of (Z, o). Therefore $h_{\tilde{y}} \cdot I_\infty = I_\infty$ and thus $h_{\tilde{y}} \cdot I_\infty = I_\infty$. Thus theorem 3.2 ensures a C^∞-solution, $F(\tilde{x}, y_0) = 0$, whose I-completion is \tilde{y}.\[\text{Remark 3.5. In parts 2,3 of theorem 3.2 we assume that $F(\tilde{x}, y)$ is analytic/algebraic modulo I_∞-terms in \tilde{x}. We can allow also the flat terms in y, i.e. } \text{ “}$F(\tilde{x}, y) = 0$ which are in I_∞-terms in variables y. Namely, for $F(\tilde{x}, y) \in C^{r_m, r_n}(\mathbb{R}^m \times \mathbb{R}^n, o)$ all the derivatives $\frac{\partial^{r_m+r_n} F}{\partial x_i \partial y_j} \mid_{\tilde{x}=0, y=0}$ exist and are continuous. Here $2 \leq r_m \leq r_n < \infty$. Moreover, if $r_n < \infty$ then we assume $r_m + 2 \leq r_n$.

Fix an ideal $J \subseteq C^{r_m, r_n}(\mathbb{R}^m, o)$ and take the quotient rings, $C^{r_m, r_n}(\mathbb{R}^m \times \mathbb{R}^n, o)/J$ and $R := C^{r_m, r_n}(\mathbb{R}^m, o)/J$.

An element $F \in \left(C^{r_m, r_n}(\mathbb{R}^m \times \mathbb{R}^n, o) \right)^n$ defines the system of equations, $F(\tilde{x}, y) = 0$.

Definition 4.1. A solution $mod(I)$ to the system $F(\tilde{x}, y) = 0$ is an element $\tilde{y}_0 \in R^n$ satisfying $F(\tilde{x}, \tilde{y}_0) \in I \cdot R^n$.

As in the C^∞-case (equation (6)) we define the function

\[(13) \quad h_{\tilde{y}_0}(x) := \text{det} \left(\frac{\partial F(x, \tilde{y}_0)}{\partial y} \right) \cdot \left(\frac{\partial F(x, \tilde{y}_0)}{\partial y} \right)^T \]

The matrix $\frac{\partial F(x, \tilde{y}_0)}{\partial y}$ is of size $s \times n$, thus $h = 0$ unless $n \geq s$. The entries of the matrix $\frac{\partial F(x, y)}{\partial y}$ lie in $C^{r_m, r_n-1}(\mathbb{R}^m \times \mathbb{R}^n, o)$. Therefore (as $r_n > r_m$) the entries of the matrix $\frac{\partial F(x, \tilde{y}_0)}{\partial y}$ lie in R.

Proposition 4.2. Suppose $\tilde{y}_0 \in R^n$ is a mod(I)-solution to $F(\tilde{x}, \tilde{y}_0(x)) = 0$, and there holds: $I \subseteq (h_{\tilde{y}_0})^2 \subset R$. Then exists an ordinary solution, $y_0 \in \mathbb{R}^n$, such that $F(\tilde{x}, y_0(x)) = 0$ and $y_0 - \tilde{y}_0 \in \frac{1}{(h_{\tilde{y}_0})^2}I \cdot R^n$.

Proof. The proof is the same as for theorem 3.2. Shift the variables, $y = \tilde{y}_0 + \Delta y$, to get the Taylor expansion as in equation (7)

Note that the entries of $\frac{\partial F(x, \tilde{y}_0)}{\partial y}$ and of $\frac{\partial F(x, \tilde{y}_0 + \Delta y)}{\partial y}$ belong to R, as $r_n \geq r_m + 2$. Thus $F(x, \tilde{y}_0 + \Delta y) = 0$ is a C^∞-implicit function equation.

Proceed as in the proof of theorem 3.2 to get to equation (9).

By the assumption $F(x, \tilde{y}_0(x)) \in \frac{I}{h_{\tilde{y}_0}(x)} \cdot R^n$. The entries of the matrix $\left[\ldots \right]$ belong to R and depend on x via Δy. Thus they are well defined for any $x \in \mathbb{R}^s$, and not just for small values of x.

Finally, invoke the implicit function theorem in the ring R to get a solution $y_0(x) \in I \cdot R^n$. This gives the solution $y_0(x) = \tilde{y}_0(x) + \Delta y(x) \in R^n$ to $F(x, y) = 0$. Note that $y_0(x)$ approximates the initial $\tilde{y}_0(x)$, as was claimed.\[\text{Remark 4.3. The assumption } I \subseteq (h_{\tilde{y}_0})^2 \text{ can be weakened. Take the annihilator of cokernel of the matrix, } \text{Ann.Coker} \left[\frac{\partial F(x, \tilde{y}_0)}{\partial y} \right] \subseteq R, [\text{Eisenbud, §20}]. \text{ This ideal satisfies:}

\[\text{Ann.Coker} \left[\frac{\partial F(x, \tilde{y}_0)}{\partial y} \right] \supseteq \left(\det \left[\frac{\partial F(x, \tilde{y}_0)}{\partial y} \right] \cdot \left(\frac{\partial F(x, \tilde{y}_0)}{\partial y} \right)^T \right) \]

and the proper inclusion often holds. Then theorem 4.2 holds with h replaced by any $\tilde{h} \in \text{Ann.Coker} \left[\frac{\partial F(x, \tilde{y}_0)}{\partial y} \right].$ \]
Approximation results of Artin-Tougeron-type for general filtrations and for C^r-equations.

REFERENCES

[Abhyankar-van der Put] S.S. Abhyankar, M. van der Put, Homomorphisms of analytic local rings. J. Reine Angew. Math. 242 1970 26–60.

[Artin.68] M. Artin, On the solutions of analytic equations. Invent. Math. 5 1968 277–291.

[Artin.69] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. IHES, 36, (1969), 23-58. DOI: 10.1007/BF02684596

[Bel.Ker.16a] G. Belitskii, D. Kerner, A strong version of implicit function theorem. Eur. J. Math. 2 (2016), no. 2, 418–443.

[Bel.Ker.16b] G. Belitski, D. Kerner, Group actions on filtered modules and finite determinacy. Finding large submodules in the orbit by linearization, C. R. Math. Acad. Sci. R. Can. 38 (2016), no. 4, 113–153.

[Bel.Ker.] G. Belitski, D. Kerner, Finite determinacy of matrices over local rings. II. Group-actions involving the ring automorphisms, arXiv:1604.06247.

[Boi.Gre.Ker] A.F. Boix, G.-M. Greuel, D. Kerner, Pairs of Lie-type and large orbits of group actions on filtered modules, arXiv:1808.06185.

[Bel.Boi.Ker] G. Belitskii, A.F. Boix, D. Kerner, Surjectivity of the completion map for rings of C^∞-functions. Necessary conditions and sufficient conditions, arxiv temporary identifier: 2777553.

[Denef-Lipshitz] J. Denef, L. Lipshitz, Ultraproducts and approximation in local rings. II. Math. Ann. 253 (1980), no. 1, 1–28.

[Eisenbud] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995. xvi+785.

[Ku.Pf.Po.Ro.Mo] H. Kurke, G. Pfister, D. Popescu, M. Roczen, T. Mostowski, Die Approximationseigenschaft lokaler Ringe. Lecture Notes in Mathematics, Vol. 634. Springer-Verlag, Berlin-New York, 1978. iv+204 pp.

[Ku.Pf.Po.Ro.Mo] H. Kurke, G. Pfister, D. Popescu, M. Roczen, T. Mostowski, Die Approximationseigenschaft lokaler Ringe. Lecture Notes in Mathematics, Vol. 634. Springer-Verlag, Berlin-New York, 1978. iv+204 pp.

[Popescu.18] K. Nakazato, Counter-examples to non-noetherian Elkik’s approximation theorem. J. Pure Appl. Algebra 222 (2018), no. 12, 4151–4160.

[Popescu-Popescu] G. Pfister, D. Popescu, Die strenge Approximationseigenschaft lokaler Ringe. Invent. Math. 30 (1975), no. 2, 145–174.

[Popescu.86] D. Popescu, General Néron desingularization and approximation. Nagoya Math. J. 104 (1986), 85–115.

[Popescu.00] D. Popescu, Commutative Rings and Algebras. Artin approximation, in Handbook of algebra, Vol 2, pages 321-356, 2000.

[Raynaud] M. Raynaud, Anneaux locaux henséliens. Lecture Notes in Mathematics, Vol. 169 Springer-Verlag, Berlin-New York 1970 vi+129 pp.

[Rond.18] G. Rond, Artin approximation, J. Singul. 17 (2018), 108–192.

[Rotthaus.90] C. Rotthaus, Rings with approximation property. Math. Ann. 287 (1990), no. 3, 455–466.

[Schemmel.82] K.-P. Schemmel, Eine notwendige und hinreichende Bedingung für die Approximationseigenschaft analytischer Potenzreihenringe über einem Körper beliebiger Charakteristik. Rev. Roumaine Math. Pures Appl. 27 (1982), no. 8, 875–884.

[Tougeron.68] J.C. Tougeron, Idéaux de fonctions différentiables. I. Ann. Inst. Fourier (Grenoble) 18 1968 fasc. 1, 177–240.

[Tougeron.76] J.C. Tougeron, Solutions d’un système d’équations analytiques réelles et applications. Ann. Inst. Fourier (Grenoble) 26 (1976), no. 3, x, 109–135.

[van der Put.77] M. van der Put, Some properties of the ring of germs of C^r-functions. Compositio Math. 34 (1977), no. 1, 99–108.

[Schoutens.88] H. Schoutens, Approximation properties for some non-Noetherian local rings, Pacific J. Math. 131 (1988), no. 2, 331–359.

[Wavrik.75] J.J. Wavrik, A theorem on solutions of analytic equations with applications to deformations of complex structures. Math. Ann. 216 (1975), no. 2, 127–142.

Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be’er Sheva 84105, Israel.

E-mail address: genrich@math.bgu.ac.il
E-mail address: fernanal@post.bgu.ac.il
E-mail address: dmitry.kerner@gmail.com