Improvement in quality of frozen Jersey bull semen following fortification with chloroquine diphosphate and ascorbic acid

MADHUMEET SINGH1 AND AKSHAY SHARMA2

Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176 062 India

Received: 20 December 2017; Accepted: 29 January 2018

ABSTRACT

The present study was conducted with an objective of studying the role of certain additives e.g. chloroquine diphosphate and ascorbic acid in maintaining the membrane integrity, viability and motility of spermatozoa at various pre- and post-freezing stages of semen of Jersey bulls maintained under sub-temperate climate. Work was conducted at Sperm Station Palampur, Himachal Pradesh, India, on six apparently healthy pure bred Jersey breeding bulls. A total of 36 ejaculates (6 from each bull), were analysed at six different stages of processing namely neat semen evaluation, post-dilution, post-equilibration, post-thaw and after 1 and 2 h incubation post-thaw at 37°C for progressive motility, live dead count, reaction to hypo-osmotic solution and acrosomal integrity, respectively. Evaluation of the semen was done for three groups, i.e. control group (G1), semen fortified with chloroquine diphosphate (G2) and ascorbic acid (G3). The results of the study revealed a significant improvement in progressive motility, live sperm percentage, reaction to hypo-osmotic solution and acrosomal integrity of semen having chloroquine diphosphate (G2) and ascorbic acid (G3) as additives when compared to control group. So, fortification of semen should be done with chloroquine diphosphate and ascorbic acid to improve the quality of semen in future.

Key words: Ascorbic acid, Chloroquine diphosphate, Jersey bulls, Live sperm percentage, Progressive motility

In the present scenario of spiraling human population growth, there is an increased pressure for augmenting milk production as per equation of demand and supply. Mammalian spermatozoa are extremely sensitive to oxidative damage, in-vivo as well as in-vitro. Lipid peroxidation plays a leading role in spermatozoon aging, shortening its life span in-vitro and affecting the preservation of semen for artificial insemination. Cold shock treatment also causes the spermatozoon to increase its susceptibility to lipid peroxidation. Therefore, to protect the spermatozoa from physical and physiological damages, the role of membrane stabilizer(s) and natural antioxidant(s) addition comes into play, as it helps to improve the quality of cryopreserved semen. The presence of high concentrations of long chain polyunsaturated fatty acids within the lipid structure of sperm cells requires efficient antioxidant systems to defend peroxidative damages associated with sperm dysfunction (Cecil and Baskt 1993). Long term storage and preservation of animal semen remains a subject of interest ever since artificial insemination (AI) embarked on a large scale. The success of cryopreservation depends largely on the specific susceptibility of sperm cells to low temperature (Sharma et al. 2012).

Attempts to reduce peroxidative damage during semen cryopreservation have also been made by adding ascorbic acid in the semen diluents. Ascorbic acid, a biologically active reducing agent, has been demonstrated to restore fertility possibly by reduction of anti-agglutination factor on sperm membrane from inactive form to active form (Lindahl 1966). Membrane stabilizers and antioxidants have beneficial effect on the membrane integrity and biofunctional activity of spermatozoa. The beneficial effect of chloroquine diphosphate as membrane stabilizer in preservation of buffalo semen has been demonstrated by different workers (Kumar 1992). The present investigation was undertaken to study the effect of certain semen diluents additives (chloroquine diphosphate and ascorbic acid) on the preservability of Jersey bull semen in-vitro vis-a-vis in-vivo.

MATERIALS AND METHODS

The study was conducted on six apparently healthy pure bred Jersey breeding bulls, aged between 5–8 years, maintained at Sperm Station, Palampur, Himachal Pradesh, India (32.6°N, 76.3°E, altitude 1290.8 m). A total of 36 ejaculates (6 from each bull) were investigated during October 2017 in the present study. Semen was collected twice a week from each bull. Bulls were already trained to donate semen in the artificial vagina.
Semen evaluation and processing

Neat semen: Collected semen was examined for mass motility, progressive motility, live and dead count of spermatozoa, acrosomal integrity and hypo-osmotic swelling test (HOST) before processing.

Semen dilution and evaluation: After evaluation, neat semen was extended in Tris based extender (Tris-2.42 g, Citric acid monohydrate-1.36 g, Glucose-1.00 g; Sigma-Aldrich Corporation) to a concentration of 60 million/ml and extended semen was divided into three aliquots. First aliquot (10 ml diluted semen) served as control (G₁), while other two were modified either with chloroquine diphosphate (G₂) or ascorbic acid (G₃) for having desired concentration of additives. The final concentrations of chloroquine diphosphate and ascorbic acid were 10⁻⁵ M and 0.02% in the G₂ and G₃ groups, respectively. Finally diluted semen (control) and treated samples placed in the water jugs (37°C) were shifted to the cooling cabinet. All three groups were again subjected to the evaluation tests viz. progressive motility, live dead count, acrosomal integrity and hypo-osmotic swelling test (Sharma et al. 2012).

Equilibration, filling, sealing and pre-freezing evaluation

Freezing of the semen

Thawing of semen and post-thaw incubation evaluation: Semen straws from all three groups were thawed at 37°C for 30 sec and semen samples were evaluated at 0, 1 and 2 h post-thaw for progressive motility, differential staining for live dead spermatozoa, acrosomal characteristics and for reaction to hypo-osmotic solution i.e. HOS test.

Statistical analysis: The data were analyzed by ANOVA with SPSS® 20 level version for windows.

RESULTS AND DISCUSSION

It is very useful to estimate the percentage of live spermatozoa in the semen sample in addition to other parameters, since some live non-motile spermatozoa become motile after dilution and storage (Tomar et al. 1969) and only the proportion of viable spermatozoa are able to participate in vital processes in reproduction.

Viability: The mean live sperms percentage after extension with Tris dilutor for G₁, G₂ and G₃ was 80.53±0.76, 81.17±0.83 and 80.49±0.82, respectively, indicating that practically there was no difference among groups (Table 1). This viability may be related to those reported by Verma (1997). After equilibration, live sperms percentage was 76.77±0.68 for untreated semen (G₁) which was nearly in accordance with Nath et al. (1996) and higher than that reported by Angasaria et al. (2002). These differences may be due to the cooling and equilibration time and glycerolization (Veeraiah et al. 1999). A combination of livability along with post-thaw motility is a good index for judging semen quality and probably fertility status of bull (Singh and Pant 2001). Present viability and motility was higher than those reported by Angasaria et al. (2002) and Shanmugavel and Singh (2002), and lower than those recorded by Singh and Pant (2001). This variation could be due to thawing procedure and glycerol concentration (Robbins et al. 1976), freezing rate and time of equilibration, and age of egg used in diluent (Veeraiah et al. 1997).

It is evident that after freeze-thawing there was certain damage to the cytoskeleton of spermatozoa and hence livability of spermatozoa was reduced. Effect of additives in the dilutor on post-thaw (0 h) livability was encouraging and an increase in percent live sperm was noticed (Table 1). It is evident that the progressive fall in live sperms per hour was slightly less (8.44%) in ascorbic acid group and provided better protection than chloroquine diphosphate (8.89%). Increase in post-thaw livability in presence of ascorbic acid and chloroquine diphosphate has been reported (Singh 2002). The better effect of ascorbic acid as compared to chloroquine diphosphate may be because of less damage in the presence of ascorbic acid as it has been reported to protect the sperm cell from peroxidase damage (Sidhu et al. 1996).

Motility: The estimate of mass motility is not very precise to judge the individual sperm motility. Addition of additives improved the progressively motile sperm percentage marginally but the difference was non-significant (Table 1). However, Singh (2002) and Kumar (2007) recorded better motility in additives (ascorbic acid and chloroquine diphosphate) added semen at this stage in buffalo semen and this variation could be due to species. After freeze-thawing, post-thaw motility reduced and the marked reduction in sperm motility could be attributed to death of spermatozoa during freezing, reduction of cAMP (Kakar and Anand 1984), and decrease in ATP level due to

Table 1. Effect of additives on live sperm and progressive motility (%) in semen of Jersey bulls

Stage of semen processing	G₁ (Control group)	G₂ (Chloroquine diphosphate)	G₃ (Ascorbic acid)			
	Live sperms	Progressive motility	Live sperms	Progressive motility	Live sperms	Progressive motility
Neat semen	81.39±0.88	75.42±0.55	81.39±0.88	75.42±0.55	81.39±0.88	75.42±0.55
After dilution at 37°C	80.53±0.76	74.31±0.41	81.17±0.83	74.97±0.38	80.49±0.82	74.14±0.39
Post equilibration at 4°C	76.77±0.68	71.06±0.65	78.64±0.78	72.36±0.57	78.86±0.76	71.61±0.52
Post-thaw (0 h)	53.16±1.19	47.58±1.08	56.58±1.14	50.14±1.01	57.39±1.02	51.28±0.90
1 h post-thaw incubation	44.50±1.16	38.69±0.92	47.39±1.19	40.97±1.02	47.55±1.07	41.86±0.82
2 h post-thaw incubation	36.22±0.08	28.28±0.98	38.80±1.13	32.03±1.04	40.50±0.96	32.67±0.90

Means with different superscripts within the same row differ significantly for the same parameter (P<0.05)
After dilution at 37°C 67.47±0.05 86.17±0.94 68.97±1.14 86.94±0.80 69.17±0.92 86.89±0.92
Neat semen 66.42±1.12 87.28±0.94 66.42±1.12 87.28±0.94 66.42±1.12 87.28±0.94
1 h post-thaw incubation 33.06±0.83a 59.69±0.84a 39.22±0.76b 62.06±0.73b 37.94±0.93b 63.47±0.76b
(Srivastava and Kumar 2014).

Sperm GSH levels by 78% and SOD activity by 50%
spermatozoa in egg yolk-Tris-glycerol extender reduces
due to the fact that cryopreservation and thawing of bovine
an evidence of its anti-oxidative property which might be
due to the variation in the concentration of ascorbic acid
motility with ascorbic acid treated semen which may be
Verma and Kanwar (1998). However, Aurich (P<0.05) increase in post-thaw motility was about 3.7% in
our study. Such improvement had been reported earlier by
Veeraiah et al. (1999). However, lower (Thakur 2003) and
higher (Srivastava and Kumar 2014) progressively motile
spermatozoa have also been reported at post-thaw stage.
This variation may be due to kind of dilutor (Rao et al.
2002) and glycerol concentration (Sagdeo et al.1991).

After addition of ascorbic acid (G3), the significant
(P<0.05) increase in post-thaw motility was about 3.7% in
our study. Such improvement had been reported earlier by
Verma and Kanwar (1998). However, Aurich et al. (1997)
could not find any substantial improvement in post-thaw
motility with ascorbic acid treated semen which may be
due to the variation in the concentration of ascorbic acid
used. Better protection provided by the ascorbic acid serves
an evidence of its anti-oxidative property which might be
due to the fact that cryopreservation and thawing of bovine
spermatozoa in egg yolk-Tris-glycerol extender reduces
sperm GSH levels by 78% and SOD activity by 50%
(Srivastava and Kumar 2014).

Hypo-osmotic swelling test: Deterioration of
spermatozoa function due to change in structural
components occurs during the process of semen processing,
freezing, cryostorage and thawing (Centola et al. 1992).
Hence, the study of sperm membrane functional test is of
specific importance.

In the present study, significant (P<0.05) increase in
spermatozoa that reacted to hypo-osmotic solution was
found at post-thaw stage in the semen supplemented with
ascorbic acid and chloroquine diphosphate and the
corresponding vales were 40.78±0.93, 45.97±0.76 and
45.56±0.99 for G1, G2 and G3, respectively (Table 2). These
observations were in agreement to that of Singh (2002) and
Kumar (2007). The increase in HOS reactive spermatozoa
in the presence of additives was also in consonance with
the findings of Srivastava (2000) where he recorded
difference of 9.44% with ascorbic acid and 4.52% with
chloroquine diphosphate added semen.
Significant increase in the post-thaw HOS positive
spermatozoa in the presence of ascorbic acid may be due to
its effect as an antioxidant that reduces the damage caused
by free radical (Srivastava and Kumar 2014) and
chloroquine diphosphate (membrane stabilizer) is
responsible for protecting the membrane damage to sperm
cells. The membrane stabilizing effect of ascorbic acid
(Aurich et al. 1997) and chloroquine diphosphate had been
reported earlier. Chloroquine diphosphate is reported to act
as a phosphodiesterase inhibitor which appears to be
responsible for enhancing metabolic activity of spermatozoa
(Norman and Gombe 1975).

Acrosomal integrity: Acrosome, carrying various
enzymes, plays an important role in the process/events
of fertilization. Detachment of acrosome or loss of acrosomal
membrane integrity may results into decrease ATP and loss
of intracellular enzymes and proteins. The assessment of
acrosomal integrity is therefore, always a part of assessment
of spermatozoa (Noakes et al. 2009).

No significant difference among treatment groups was
noticed in post-thaw incubated semen. These observations
were similar to those reported by Rao et al. (2002). Whereas,
higher (Thakur 2003) as well as lower (Al-Khanak and Al-
Hanak 1989) acrosomal integrity has also been observed.
As expected, like other three parameters, acrosomal
abnormalities increased following incubation of thawed
semen indicating a progressive deterioration of semen
quality with post-thaw interval (Table 2). In support to our
study, higher percentages than present study have been
reported (Singh and Nigam 1998).

Finally, it is evident that the protection for acrosome
during post-thaw incubation was higher with ascorbic acid
followed by chloroquine diphosphate. Similar results had
been reported by Kumar (2007) and Srivastava and Kumar
(2014). Ascorbic acid has its beneficial effect on semen
freezing through preventing damage caused by reactive
oxygen species. Though its effect was not evident in
statistical terms immediately after thawing, however it was
well noticed following incubation.

In brief, ascorbic acid (anti-oxidant) as well as
chloroquine diphosphate (membrane stabilizer) improved
the post-thaw quality of frozen semen of Jersey bulls in
our study. Also, ascorbic acid gave numerically better
(however, non-significant) protection to frozen spermatozoa
of Jersey bulls as compared to chloroquine diphosphate.
So, a conclusion can be drawn that additives added to the

Table 2. Effect of additives on HOS and acrosomal integrity (%) in semen of Jersey bulls

Stage of semen processing	G1 (Control group)	G2 (Chloroquine diphosphate)	G3 (Ascorbic acid)			
	HOS reactive	Acrosomal integrity	HOS reactive	Acrosomal integrity	HOS reactive	Acrosomal integrity
Neat semen	66.42±1.12	87.28±0.94	66.42±1.12	87.28±0.94	66.42±1.12	87.28±0.94
After dilution at 37°C	67.47±0.05	86.17±0.94	68.97±1.14	86.94±0.80	69.17±0.92	86.89±0.92
Post equilibration at 4°C	63.31±1.11	82.47±1.05	64.97±0.97	84.06±0.82	64.58±0.98	84.47±0.86
Post-thaw (0 h)	40.78±0.93	67.92±0.93	45.97±0.76	68.36±0.79	45.56±0.99	69.97±0.56
1 h post-thaw incubation	33.06±0.83a	59.69±0.84a	39.22±0.76b	62.06±0.73b	37.94±0.93b	63.47±0.76b
2 h post-thaw incubation	25.36±0.77a	52.28±0.83a	31.22±0.73b	56.44±0.98b	30.56±0.86b	56.72±0.76b

Means with different superscripts within the same row differ significantly for the same parameter (P<0.05).
semen helped in improving the quality of semen.

REFERENCES

Al-Khanak K H and Al-Hanak H. 1989. The protective action of tocopherol during cryopreservation of bull semen. Zhivotnov dni Nauki 26: 70–74.

Angasaria H, Pareek P K and Dutt M. 2002. Changes in sperm motility, percent live and acrosome in relation to freezing and thawing in crossbred bull semen. XVIII Annual Convention and National Symposium on Reproductive Technologies for Augmentation of Fertility in Livestock, November 14–16, Izatnagar, India.

Aurich J E, Schonherr U, Hoppe H and Aurich C. 1997. Effect of antioxidants on motility and membrane integrity of chilled stored stallion semen. Theriogenology 48: 185–92.

Cecil H C and Baskt M R. 1993. In-vitro lipid peroxidation of turkey spermatozoa. Poultry Science 72: 1370–78.

Centola G M, Raubertas R F and Mattox J I I. 1992. Cryopreservation of human semen: comparison of cryopreservatives, sources of variability and prediction of post-thaw survival. Journal of Andrology 13: 283–88.

Heath E and Gupta R C. 1980. Observations on electron microscopic differentials of bovine spermatozoa. Indian Veterinary Journal 57: 800–05.

Kakar S S and Anand S R. 1984. Acrosomal damage and enzyme leakage during freeze preservation of buffalo spermatozoa. Indian Journal of Experimental Biology 22: 5–10.

Kumar S. 2007. Effect of certain additives in the diluter on post-thaw recovery rate of bovine semen. Indian Journal of Veterinary Research 16(1): 29–42.

Lindahl P E. 1966. Sperm agglutinating and antiagglutinating factors in normal follicular fluid from cattle. International Journal of Fertility 11: 297–305.

Nath K C, Ahmad K, Dutta G, Barthakur T and Borgohain B N. 1996. Semen quality and release of certain enzymes during the course of freezing bull spermatozoa. Indian Journal of Animal Reproduction 17: 130–31.

Noakes D E, Parkinson T J and England G C W. 2009. Veterinary Reproduction and Obstetrics. 9th edn.WB Saunders Company Ltd., London.

Norman C and Gombe S. 1975. Stimulatory effect of the lysosomal stabilizer Chloroquine on the respiration and motility of fresh and aged bovine spermatozoa. Journal of Reproduction and Fertility 44: 481–86.

Rao K N, Rao S, Naidu A S, Naidu K V and Rao M M. 2002. Post thaw evaluation and fertility of bovine semen diluted in Biociphos plus and Tris extenders. Indian Journal of Animal Reproduction 23: 29–31.

Robbins R K, Chandler P T and Saacke R G. 1976. Influences of freeze rate, thaw rate and glycerol level on acrosomal retention and survival of bovine spermatozoa frozen in French straws. Journal of Animal Science 42(1): 145–54.

Sagdeo L R, Chitnis A B, Deshmukh S N and Kaikini A S. 1991. Seasonal variation in relation to freezeability of jersey and cross bulls with varying levels of exotic inheritance. Indian Journal of Animal Reproduction 12: 117–21.

Shamugavel S and Singh S V. 2002. Physical and biochemical constituents of Sahiwal bull semen in relation to their quality. Indian Journal of Animal Sciences 72: 57–58.

Sharma M, Singh M, Kapoor S and Jasial S. 2012. Inter relationship between some routine semen evaluation parameters in Jersey x local hill cattle crossbred bulls. Open Veterinary Journal 2: 26–31.

Sidhu S S, Pangawkar G R and Chaudhary R K. 1996. Effect of some additives on the release of enzymes from buffalo spermatozoa during cryopreservation. Indian Veterinary Journal 73: 154–58.

Singh G. 2002. ‘Studies on the effect of additives on membrane integrity and viability of fresh and cryopreserved buffalo bulls spermatozoa.’ M.V.Sc. Thesis, Punjab Agriculture University, Ludhiana, India.

Singh M M and Nigam J M. 1998. Effect of post-thaw incubation interval to AI on semen quality and conception rate in cattle. Proceedings of Special Celebrating Conference of ICAR, September 14–16, Milan, Italy, pp 600.

Singh M M and Pant H C. 2001. Comparative study on absolute index (motility index) of sperm survival and progressive motility of buffalo and cattle. Indian Veterinary Journal 78: 965–66.

Srivastava S. 2000. ‘Effect of some additives on the freezeability of Holstien-Friesisan and Crossbred bulls.’ M.V.Sc. Thesis, IVRI, Izatnagar, Uttar Pradesh.

Srivastava S and Kumar S. 2014. Incorporation of ascorbic acid, caffeine and chloroquine diphosphate in dilutor improves structural and functional status of frozen semen. Open Access Library Journal 1: 1–12.

Thakur S. 2003. ‘Studies on some managerial practices responsible for repeat breeding in cattle.’ M.V.Sc. Thesis, CSKHPKV, Palampur, Himachal Pradesh.

Tomar N S, Sharma O P and Singh B P. 1969. Preservation of cattle and buffalo semen at 4ºC to 7ºC. Indian Journal of Dairy Sciences 22: 187–92.

Veeraiah G, Babu R K and Venugopal N K. 1997. The effect of the age of eggs and age of the diluent used on the quality of frozen semen. Indian Journal of Animal Reproduction 18: 65–66.

Veeraiah G, Venugopal N K and Babu R K. 1999. Effects of various levels of glycerol and egg yolk in freezing of Ongole bull semen. Indian Journal of Animal Reproduction 20: 149–52.

Verma N K. 1997. ‘Cryopreservation studies of crossbred bull semen with special reference to buffers, membrane stabilizer and seminal enzymes.’ M.V.Sc. Thesis, IVRI, Izatnagar, Uttar Pradesh.

Verma A and Kanwar K C. 1998. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: an in vitro analysis. Andrologia 30: 325–29.