The burden of Chronic Rhinosinusitis with Nasal Polyps and its relation to Asthma in Finland

Bettina Mannerström1, Sanna Toppila-Salmi2, Jenni Hälfors1, Juhani Aakko1, Kaisa Nieminen3, Gunilla Telg4, and Lauri Lehtimäki5

1Medaffcon Oy Espoo Finland
2Helsingin yliopisto
3AstraZeneca Oy
4AstraZeneca AB
5Tampereen yliopisto

May 10, 2022

Abstract

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is commonly associated with asthma. Treatment of CRSwNP includes intranasal and systemic corticosteroids, with non-responsive patients commonly considered for endoscopic sinus surgery (ESS). This nationwide register-based study evaluated the incidence, prevalence, and treatment burden of CRSwNP in Finland, and their association with the presence and severity of comorbid asthma. Methods: Electronic health records of patients diagnosed with CRSwNP between 1.1.2012-31.12.2018 in Finnish specialty and primary care were included in the study. The patients were divided into subgroups based on presence, severity, and control of asthma: no asthma, mild to moderate asthma, severe controlled asthma, and severe uncontrolled asthma. A mean cumulative count of ESS was calculated over time per subgroup. Results: The prevalence of CRSwNP increased from 602.2 to 856.7 patients per 100 000 population between years 2012 and 2019 (p < 0.001). A total of 18 563 patients (59.9% male) had incident CRSwNP between 2012 and 2019, with 27% having asthma, 6% having severe asthma, and 1.5% having severe uncontrolled asthma. In the no asthma, severe controlled asthma, and severe uncontrolled asthma subgroups, systemic corticosteroids were used by 54.1%, 94.9% and 99.3% (p < 0.001), respectively, while the ESS count three years post diagnosis was 0.49, 0.68 and 0.80, respectively. Conclusions: The prevalence of CRSwNP showed a significant increase in the recent decade in Finland. Comorbid asthma, and in particular severe asthma, increased the probability of receiving systemic corticosteroids and undergoing ESS. Thus, improved management of CRSwNP in patients with comorbid asthma is urgently needed.
Contact details

Sanna Toppila-Salmi, Department of Allergology, Skin and Allergy Hospital, and Department of Pulmonary Medicine, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland, sanna.salmi@helsinki.fi

Jenni Hällfors, Medaffcon Oy, Espoo, Finland, jenni.hallfors@gmail.com

Juhani Aakko, Medaffcon Oy, Espoo, Finland, juhani.aakko@medaffcon.fi

Bettina Mannerström, Medaffcon Oy, Espoo, Finland, bettina.mannerstrom@medaffcon.fi

Kaisa Nieminen, AstraZeneca Nordic, Espoo, Finland, kaisa.nieminen@astrazeneca.com

Gunilla Telg, AstraZeneca Nordic, Södertälje, Sweden, gunilla.telg@astrazeneca.com

Lauri Lehtimäki, Tampere University Respiratory Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland, lauri.lehtimaki@tuni.fi and Allergy Centre, Tampere University Hospital, Tampere, Finland.

Acknowledgements

We would like to thank Mariann Lassenius and Iiro Toppila, Medaffcon for their significant contribution in the study design. We would also like to thank Josefine Persson, AstraZeneca for her valuable input to the study design and reviewing of the manuscript.

Authorship: STS, KN, GT, LL contributed to study design. All authors STS, JA, BM, JH, KN, GT and LL contributed to interpretation of data and were involved in manuscript writing and revision. JA and JH contributed to data acquisition and analyses. All authors STS, JA, BM, JH, KN, GT and LL gave final approval for manuscript publication and agreed to be accountable for all aspects of their work.

The study was funded by AstraZeneca Nordic, Sweden.

Abstract

Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is commonly associated with asthma. Treatment of CRSwNP includes intranasal and systemic corticosteroids, with non-responsive patients commonly considered for endoscopic sinus surgery (ESS). This nationwide register-based study evaluated the incidence, prevalence, and treatment burden of CRSwNP in Finland, and their association with the presence and severity of comorbid asthma.

Methods: Electronic health records of patients diagnosed with CRSwNP between 1.1.2012-31.12.2018 in Finnish specialty and primary care were included in the study. The patients were divided into subgroups based on presence, severity, and control of asthma: no asthma, mild to moderate asthma, severe controlled asthma, and severe uncontrolled asthma. A mean cumulative count of ESS was calculated over time per subgroup.

Results: The prevalence of CRSwNP increased from 602.2 to 856.7 patients per 100 000 population between years 2012 and 2019 (p < 0.001). A total of 18 563 patients (59.9% male) had incident CRSwNP between 2012 and 2019, with 27% having asthma, 6% having severe asthma, and 1.5% having severe uncontrolled asthma. In the no asthma, severe controlled asthma, and severe uncontrolled asthma subgroups, systemic corticosteroids were used by 54.1%, 94.9% and 99.3% (p < 0.001), respectively, while the ESS count three years post diagnosis was 0.49, 0.68 and 0.80, respectively.
Conclusions: The prevalence of CRSwNP showed a significant increase in the recent decade in Finland. Comorbid asthma, and in particular severe asthma, increased the probability of receiving systemic corticosteroids and undergoing ESS. Thus, improved management of CRSwNP in patients with comorbid asthma is urgently needed.

Key words: Asthma, comorbidity, CRSwNP, endoscopic sinus surgery, nasal polyps

Word count: 3 079

1. Introduction

Chronic rhinosinusitis (CRS) is a common disease with significant impact on the patients’ health and the societal economy. Chronic rhinosinusitis is generally categorized into two major subtypes based upon phenotypic appearance: CRS without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP). Nasal polyps (NP) are benign inflammatory masses in the mucosa of the nose and paranasal sinuses. CRSwNP is associated with morbidity and decreased quality of life. CRSwNP is estimated to affect 1–4% of the general population and 25–30% of patients with CRS. Yet, there is a paucity of prevalence data on CRSwNP across many geographic areas. Based on a few studies, the NP prevalence estimates in the Nordic countries range from 2.7% in Sweden to 4.3% in Finland, based on single municipality studies. Subsequently, updated population-based data on the prevalence and incidence of CRSwNP is required.

Epidemiological, clinical, and pathophysiological studies suggest that asthma is strongly associated with CRSwNP. Inflammation in the nasal mucosa and lower airways are directly related, with a correlation between the inflammatory profiles of nasal and bronchial biopsies in patients with CRSwNP. It has been reported that up to 45% of CRSwNP patients have or will develop asthma. The prevalence of CRSwNP is higher in patients with asthma (7%) compared to the general population (4%). However, in the Finnish asthma population, the prevalence of NP has been shown to be as high as 16.5%.

The mainstay therapy of CRSwNP includes medical treatments such as nasal or oral corticosteroids. For patients with CRSwNP who do not respond to conservative therapy, endoscopic sinus surgery (ESS) is considered. CRSwNP patients have been demonstrated to benefit from ESS, although a part of the CRSwNP patients have polyp regrowth and a need for a revision ESS as signs of uncontrolled disease. Among Finnish patients treated with functional endoscopic sinus surgery (FESS), the prevalence of CRSwNP as the primary diagnosis has been reported to be 17%.

A limited number of studies indicate that both medical interventions and FESS improve nasal outcomes in patients with CRS and asthma, but, more information is needed about the burden of CRS and how it is affected by concomitant asthma. The aim of this nation-wide real-world study was to evaluate prevalence and incidence of CRSwNP in Finland, and to describe treatment burden of CRSwNP and how this is related to the presence and severity of co-morbid asthma.

2. Methods

The study was conducted with permission from the Finnish Social and Health Data Permit Authority Findata (THL/4801/14.02.00/2020 [2020/576]) by the provision of the Act on the Secondary Use of Health and Social Data (finlex 552/2019), therefore no informed consent from the patients was required.

2.1 Identification of patients with CRSwNP

The data was available from 1 January 2000 to 31 December 2019. The study cohort included incident adult patients with a diagnosis of CRSwNP between 1 January 2012 to 31 December 2018. The patients were
identified on their index date, the date of first CRSwNP diagnosis, by having any of the following ICD-10 diagnosis codes: J32.4 or J33.0, J33.1, J33.8, J33.9, or a polypectomy of internal nose reported by the Nordic Classification of Surgical Procedures (NCSP) code DHB20. Patients with cystic fibrosis (E84*) or ciliary dyskinesia (Q33*, Q34*) were excluded from the study.

The patients were identified from the national Finnish Care Register for Health Care (Hilmo) and Register of Primary Health Care (Avohilmo) visits, from where their diagnoses, procedures, visits, and resource utilization were extracted. The data from the Care Register for Health Care was complemented with data from the Social Insurance Institution (SII) for reimbursed medications and purchases, and with data from Statistics Finland for vitality status and causes of death.

Data from 2000-2012 was used to assess comorbidities and clinical characteristics. The baseline period was set to 36 months prior to index, where baseline comorbidities and characteristics were described. Patients were followed up until the end of the study (31 January 2019) or death. Data for at least one year of follow-up was available for all patients (Figure 1).

2.2 Asthma subgroups

Based on the presence and severity of asthma during baseline and follow-up, patients with CRSwNP were divided into subgroups: no asthma, mild to moderate asthma, severe controlled asthma, and severe uncontrolled asthma. Patients were considered to have asthma if they had an ICD-10: J45 diagnosis at least twice or at least two asthma controller medication purchases (inhaled corticosteroids (ICS) in single inhalers (ATC-codes: R03BA01, R03BA02, R03BA05, R03BA07, R03BA08, R03BA09) or in combination with long-acting beta-2-agonists (R03AK06, R03AK07, R03AK08, R03AK09, R03AK10, R03AK11)). Severe asthma was defined as asthma with a daily use of fluticasone propionate [?] 800 μg or equivalent (80% adherence to 1 000 μg of fluticasone propionate or equivalent) complemented with at least one other controller (Leukotriene Receptor Antagonists (LTRA), Long-acting beta-agonist (LABA), Long-acting muscarinic antagonists (LAMA), or biologic asthma medication). The daily average ICS use was calculated as fluticasone propionate equivalent based on a sliding window of three consecutive purchases (the total micrograms of ICS at three consecutive purchases were divided by days from the first purchase to the fourth consecutive purchase). The patients with severe asthma were further divided into those with controlled and uncontrolled asthma. Asthma was considered uncontrolled in patients who had been hospitalized for asthma (ICD:10 J45-J46), had a record of emergency room visit for asthma (ICD:10 J45-J46), or had an outpatient visit for acute asthma (ICD-10: J46).

2.3 Statistical analyses

The annual incidence and prevalence of CRSwNP were assessed during 1 January 2012 – 31 December 2019 by dividing the number of incident and prevalent cases by the total Finnish population. Patients who fulfilled the criteria for CRSwNP during 1 January 2000 – 31 December 2011 were included in the prevalence assessment. Incident patients were defined as patients with a first record fulfilling the criteria for CRSwNP during 1 January 2012 – 31 December 2019. The presence of a monotonic time trend in prevalence and incidence was assessed using the Mann-Kendall test.

Patient demographics, clinical characteristics and disease burden were tabulated at baseline, overall and by subgroups, and described using summary statistics (mean with standard deviation, median with interquartile range, or frequency as the total number of patients and proportion (%) of all patients). The Charlson comorbidity index was calculated using ICD-10 codes as implemented in the comorbidity R package.\(^{21,22}\) Chi-squared test was used for assessing differences in systemic corticosteroid (SCS) use between the asthma subgroups during baseline.

Time to first and repeated ESS were assessed using Kaplan-Meier fits, where time from index to surgery was defined as an event and the end of follow-up or death as a censoring event. In the Kaplan-Meier fit of repeated ESS, only patients with at least one ESS were included. The Kaplan-Meier fits were visualized including the 95% Confidence Intervals (CIs), and median survival was reported, if reached. A mean cumulative count of
ESS (with 95% CIs) was calculated over time overall and per subgroup using a Mean Cumulative Function (MCF)23. All statistical analyses were run using R version 4.0.3 on RStudio Server version 1.4.1103 24, under Microsoft Windows Server 2016 Standard.

3. Results

3.1 CRSwNP prevalence and incidence

Altogether, 53 119 fulfilled the study diagnosis criteria for CRSwNP, and 18 563 (35%) were incident patients. The results show a continuous increase in lifetime prevalence of CRSwNP patients from 602.2 patients per 100 000 population in 2012 to 856.7 patients per 100 000 population in 2019 (p < 0.001) (Figure 1 and 2A). In the same time period, the incidence decreased from 50.5 patients per 100 000 in 2012 to 43.4 patients per 100 000 in 2019 (p = 0.004).

The mean annual incidence of CRSwNP per 100 000 population are visualized in Figure 2. Patients aged 50-59 and 60-69 years had the highest incidence of CRSwNP (Figure 2B). The mean annual incidence was 96.4/100 000 population (standard deviation (SD): 6.4) for patients aged 50-59 years and 103.2/100 000 population (SD: 4.6) for patients aged 60-69 years. Males had a higher incidence than females and the difference is highlighted in the age groups from 30-39 onwards (Figure 2C and Figure 2D).

3.2 Demographic and clinical characteristics

Characteristics of patients with incident CRSwNP at the time of study inclusion (1 January 2012-31 December 2018) are presented in Table 1. CRSwNP patients were more frequently male (59.9%) and their median age at the time of diagnosis was 53 years (interquartile range 39 - 65). Out of all incident patients (n=18 563), 27.0 % had been diagnosed with asthma, with 5.8% of the incident patients having severe asthma. The number of patients with severe uncontrolled asthma was 283 patients (1.5% of the incident patients). A total of 62.7% of the patients had used any systemic corticosteroids (SCS) during the study period (2012-2019). The use of SCS was more common in patients with comorbid asthma, especially in those with more severe asthma (p < 0.001). At baseline, the most common comorbidities were upper airway diseases, dental problems, cardiovascular diseases, back pain, and obesity (Supplemental Material Table S1). Nasal polyps, both acute and chronic sinusitis and acute respiratory infections were reported during the follow-up period, Supplemental Material Table S2. Also, oral health problems, including periodontitis and dental caries persisted in patients during the follow-up, Supplemental Material Table S2.

3.3 Frequency and time to first and repeated surgery in different subgroups

The mean cumulative count with 95% CIs for ESS for all incident CRSwNP patients during an eight-year follow-up is presented in Figure 3A. At one year follow-up, the mean number of ESS per patient was 0.44 (95% CI 0.43 – 0.44) ESS. At five years of follow-up, the mean cumulative count per patient was 0.59 (95% CI 0.58 – 0.60) ESS. Both asthma status and asthma severity had an impact on the mean cumulative count for ESS, and a CRSwNP patient with severe controlled asthma had undergone on average 0.68 (95% CI 0.63 – 0.73) ESS within three years after the diagnosis. The corresponding count for a severe uncontrolled asthma patient was 0.80 (95% CI 0.70 – 0.90) ESS within three years after the diagnosis, Figure 3B.

Overall, during the follow-up period, 8 673 patients out of the total 18 563 incident CRSwNP patients (46.7%) had undergone an ESS to treat the polyps. The probability of having an ESS was 40.6% (95% CI 39.9 – 41.3 %) for the CRSwNP patients during the first year after the diagnosis of polyps (Figure 4A). The median time from the diagnosis of polyps to first ESS in patients with mild to moderate asthma was 20 months, while the median time for patients with severe uncontrolled asthma was 11 months. Patients in all asthma groups were more likely to have the first surgery earlier compared to non-asthma patients. Still, for the non-asthma CRSwNP patients, the probability of ESS was 41.5 % (95% CI 40.6 – 42.3%) within the first two years after the diagnosis of polyps, Figure 4B.
Out of the 8,673 CRSwNP patients who had an ESS, 7,227 (83.3%) had only one ESS, whereas 1,446 (16.6%) patients had two or more sinus surgeries. Overall, the probability for at least one revision ESS during follow-up within two years after the first ESS was 10.6% (95% CI 10.0 – 11.3%) (Figure 5A). Figure 5B shows that any asthma comorbidity increased the likelihood of having another surgery. In addition, the patients with more severe asthma were more likely to have the revision surgery earlier compared to non-asthma CRSwNP patients. The probability of repeated ESS within two years after the first ESS was 9.5% (95% CI 8.7 - 10.2%), 12.6% (95% CI 11.2 – 14.0%), 13.5% (95% CI 10.3 – 16.7%) and 17.9% (95% CI 11.9 – 23.5%), for patients with no asthma, mild to moderate asthma, severe controlled asthma, and severe uncontrolled asthma, respectively.

4. Discussion

In the current nationwide observational study, we found an increase in the prevalence of CRSwNP from 2012 to 2019. Further, about a quarter of the patients with CRSwNP suffered from comorbid asthma. Asthma, and especially more severe asthma, was associated with higher need for systemic corticosteroids and more frequent sinus surgeries.

In the last two decades, the prevalence of CRSwNP has risen (Hedman 1999, Johansson 2003), and our study showed a continued increase during the study period, from about 6.0% in 2012 to 8.6% in 2019. The increase was particularly pronounced in the subjects between 50 and 70 years of age. There was a slight decrease in incidence of CRSwNP during the study period, however, the higher incidence at the beginning of the study period may be due to the lesser availability of data in the Avohilmo register initially, which was initiated in 2011. Thus, as the incidence remained similar throughout the study period, the slight rise in prevalence is likely related to the ageing population.

The mean annual incidence peaked in patients aged 60-69 years (103.2/100 000). In general, the average age of onset of CRSwNP was 52 years, and the typical age at diagnosis ranged from 50 to 60 years, which is in line with previously reported findings. In our study, males had a higher mean annual incidence of CRSwNP than females, albeit this is inconclusive, as there is no consensus with regards to gender in the literature. Further, our study found that 27% of CRSwNP patients had asthma as a comorbidity, which is an estimate based on real-world data. In examples from literature, estimates suggest that up to 67% (range, 40%-67%) of CRSwNP patients are having comorbid asthma. The reason for the difference between the findings in our study compared with previous literature may be that in real-world, many patients with CRSwNP still have undiagnosed asthma.

In Finland, CRSwNP management is initiated rapidly after the diagnosis. About two thirds (62.7%) of the patients with CRSwNP were treated with SCSSs and about half of them had ESS. In our study, more than 40% of the CRSwNP patients had ESS within the first-year post diagnosis, 38.9% had only one ESS, whereas 7.8% needed ESS at least twice. Apart from a small study reporting a 7% revision rate in CRSwNP patients, several studies report rates of 14-25%. The short time between diagnosis of CRSwNP and ESS is because the official diagnosis for CRSwNP is usually given after nasal endoscopy, which is performed at the hospital, where the patient with uncontrolled CRS has been referred for consideration of ESS.

Comorbid asthma and especially severe asthma increase the probability of being treated both with SCSSs and surgical treatment. In line with previous studies, our study showed that asthma status and especially the severity of asthma was associated with the likelihood of having an earlier ESS. In addition, asthma comorbidity increased the likelihood of repeated ESS. For patients with more severe asthma, it has been shown that CRSwNP is more difficult to manage, and that the condition increased the probability of a recurring ESS. However, ESS in CRSwNP patients is associated with a high rate of recurrence which is likely to contribute to the burden of the disease, further exacerbated by comorbidities such as asthma.

The management of patients with CRSwNP and severe uncontrolled asthma remains a challenge. There is an unmet need in improving the management of CRSwNP to achieve greater patient satisfaction and disease prevention. Targeted therapies are needed that can decrease the type-2 inflammation common in CRSwNP and asthma, preferably as a single therapy treating both the upper and lower airway disease.
years, the introduction of biological therapies targeting type 2 inflammation has increased the treatment options for CRSwNP. These new biologics include dupilumab, an anti-IL-4Ra monoclonal antibody, that has demonstrated broad efficacy across upper and lower airway disease. Further, other emerging biologics have also shown effects in reducing CRSwNP symptoms, including the anti-IgE monoclonal antibody omalizumab and anti-IL-5 antibody mepolizumab. Presumably, targeted biologicals may demonstrate greater beneficial effects in patients with both asthma and CRSwNP.

Our results suggest that type-2 high conditions (comorbid CRSwNP and asthma) increase probability of revision ESS. Although these findings require validation in other populations, in terms of patient counseling use, our results emphasize the importance of diagnostics and management of both CRSwNP and asthma to prevent uncontrolled disease, suffering and costs. Further, depending on the national reimbursement policies of biological medications, some patients with comorbid asthma and CRSwNP may find it easier to access these new treatments based on the severity of asthma rather than CRSwNP.

There are certain limitations typically associated with retrospective database analyses. These include the risk that some information may not have been consistently recorded for all patients, potentially impacting the population size and other outcomes. Further, the asthma severity and the level of control were based on dispensed medication and health care visits without knowledge of asthma symptoms. Nevertheless, the major strength of this study is that it includes an unselected population-based cohort of Finnish CRSwNP patients, which limit the risk of selection bias. Furthermore, it includes real-world data from mandatory national health-care registries with high quality and coverage from both primary and secondary care, providing a solid and unique set of data.

In conclusion, CRSwNP is a prevalent and increasing health problem with frequent need for treatments with potentially severe side effects. As concurrent asthma and especially severe asthma is associated with need for even more intense treatment, these subjects need special attention. New treatment modalities, such as monoclonal antibodies, are needed to tackle airway inflammation and decrease the need for systemic corticosteroids and surgical procedures to improve burden of disease in subjects with CRSwNP.

References
1. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl S29):1-464. doi:10.4193/Rhin20.600
2. Hulse KE, Stevens WW, Tan BK, Schleimer RP. Pathogenesis of nasal polyposis. Clin Exp Allergy. 2015;45(2):328-346. doi:10.1111/cea.12472
3. Grayson JW, Cavada M, Harvey RJ. Clinically relevant phenotypes in chronic rhinosinusitis. J of Otolaryngol - Head & Neck Surg. 2019;48(1):23. doi:10.1186/s40463-019-0350-y
4. Stevens WW, Schleimer RP, Kern RC. Chronic Rhinosinusitis with Nasal Polyps. J Allergy Clin Immunol Pract. 2016;4(4):565-572. doi:10.1016/j.jaip.2016.04.012
5. Chen S, Zhou A, Emmanuel B, Thomas K, Guiang H. Systematic literature review of the epidemiology and clinical burden of chronic rhinosinusitis with nasal polyposis. Current Medical Research and Opinion. 2020;36(11):1897-1911. doi:10.1080/03007995.2020.1815682
6. Hastan D, Fokkens WJ, Bachert C, et al. Chronic rhinosinusitis in Europe - an underestimated disease. A GA2LEN study: Chronic rhinosinusitis in Europe. Allergy. 2011;66(9):1216-1223. doi:10.1111/j.1398-9995.2011.02646.x
7. Hedman J, Kaprio J, Poussa T, Nieminen MM. Prevalence of asthma, aspirin intolerance, nasal polyposis and chronic obstructive pulmonary disease in a population-based study. Int J Epidemiol. 1999;28(4):717-722. doi:10.1093/ije/28.4.717
8. Johansson L, Åkerlund A, Melén I, Holmberg K, Bende M. Prevalence of Nasal Polyps in Adults: The Skovde Population-Based Study. Ann Otol Rhinol Laryngol. 2003;112(7):625-629.
9. Jarvis D, Newson R, Lotvall J, et al. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. *Allergy*. 2012;67(1):91-98. doi:10.1111/j.1398-9995.2011.02709.x

10. Langdon C, Mullol J. Nasal polyps in patients with asthma: prevalence, impact, and management challenges. *J Asthma Allergy*. 2016;9:45-53. doi:10.2147/JAA.S86251

11. Håkansson K, Buchert C, Konge L, et al. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported. *PLOS ONE*. 2015;10(7):e0127228. doi:10.1371/journal.pone.0127228

12. Bousquet J, Schünemann HJ, Samolinski B, et al. Allergic Rhinitis and its Impact on Asthma (ARIA): Achievements in 10 years and future needs. *Journal of Allergy and Clinical Immunology*. 2012;130(5):1049-1062. doi:10.1016/j.jaci.2012.07.053

13. Dixon AE, Kaminsky DA, Holbrook JT, Wise RA, Shade DM, Irvin CG. Allergic Rhinitis and Sinusitis in Asthma. *Chest*. 2006;130(2):429-435. doi:10.1378/chest.130.2.429

14. van der Veen J, Seys SF, Timmermans M, et al. Real-life study showing uncontrolled rhinosinusitis after sinus surgery in a tertiary referral centre. *Allergy*. 2017;72(2):282-290. doi:10.1111/all.12983

15. Deal RT, Kountakis SE. Significance of nasal polyps in chronic rhinosinusitis: symptoms and surgical outcomes. *Laryngoscope*. 2004;114(11):1932-1935. doi:10.1097/01.mlg.0000147922.12228.1f

16. Mascarenhas JG, da Fonseca VMG, Chen VG, et al. Long-term outcomes of endoscopic sinus surgery for chronic rhinosinusitis with and without nasal polyps. *Braz J Otorhinolaryngol*. 2013;79(3):306-311. doi:10.5935/1808-8094.20130055

17. Hopkins C, Rudnik L, Lund VJ. The predictive value of the preoperative Sinonasal Outcome Test-22 score in patients undergoing endoscopic sinus surgery for chronic rhinosinusitis. *Laryngoscope*. 2015;125(8):1779-1784. doi:10.1002/lary.25318

18. Rihkanen H, Toppila-Salmi S, Arffman M, Manderbacka K, Keskimäki I, Hytönen M. Aikuisten siivutotulehdusten tähystyskirurgia Suomessa. Published online 2017. Accessed December 27, 2021. https://helda.helsinki.fi/handle/10138/298065

19. Gill AS, Smith KA, Meeks H, et al. Asthma increases long-term revision rates of endoscopic sinus surgery in chronic rhinosinusitis with and without nasal polyposis. *Int Forum Allergy Rhinol*. 2021;11(8):1197-1206. doi:10.1002/alr.22779

20. Rix I, Håkansson K, Larsen CG, Frendo M, von Buchwald C. Management of Chronic Rhinosinusitis with Nasal Polyps and Coexisting Asthma: A Systematic Review. *Am J Rhinol Allergy*. 2015;29(3):193-201. doi:10.2500/ajr.2015.29.4178

21. Quan H, Li B, Couris CM, et al. Updating and Validating the Charlson Comorbidity Index and Score for Risk Adjustment in Hospital Discharge Abstracts Using Data From 6 Countries. *American Journal of Epidemiology*. 2011;173(6):676-682. doi:10.1093/aje/kwq433

22. Gasparini A. comorbidity: An R package for computing comorbidity scores. *JOSS*. 2018;3(23):648. doi:10.21105/joss.00648

23. Nelson WB. *Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and Other Applications*. Society for Industrial and Applied Mathematics; 2003. doi:10.1137/1.9780898718454

24. R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing; 2020. https://www.R-project.org/

25. Grigoreas C, Vourdas D, Petalas K, Simeonidis G, Demeroutis I, Tsioulos T. Nasal polyps in patients with rhinitis and asthma. *Allergy Asthma Proc*. 2002;23(3):169-174.
26. Beule A. Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities, and economic burden. *GMS Current Topics in Otorhinolaryngology - Head and Neck Surgery; 14:Doc11*. Published online December 22, 2015. doi:10.3205/CTO000126

27. Koskinen A, Salo R, Huhtala H, et al. Factors affecting revision rate of chronic rhinosinusitis. *Laryngoscope Investig Otolaryngol*. 2016;1(4):96-105. doi:10.1002/lio2.27

28. Williamson PA, Vaidyanathan S, Cearie K, Barnes M, Lipworth BJ. Airway dysfunction in nasal polyposis: a spectrum of asthmatic disease?: Airway dysfunction in nasal polyposis. *Clinical & Experimental Allergy*. 2011;41(10):1379-1385. doi:10.1111/j.1365-2222.2011.03793.x

29. Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic Rhinosinusitis with Nasal Polyps and Asthma. *The Journal of Allergy and Clinical Immunology: In Practice*. 2021;9(3):1133-1141. doi:10.1016/j.jaip.2020.09.063

30. Veloso-Teles R, Cerjeira R. Endoscopic Sinus Surgery for Chronic Rhinosinusitis with Nasal Polyps: Clinical Outcome and Predictive Factors of Recurrence. *Am J RhinolAllergy*. 2017;31(1):56-62. doi:10.2500/ajra.2017.31.4402

31. Loftus CA, Soler ZM, Koochakzadeh S, et al. Revision surgery rates in chronic rhinosinusitis with nasal polyps: meta-analysis of risk factors. *Int Forum Allergy Rhinol*. 2020;10(2):199-207. doi:10.1002/alr.22487

32. Lilja MJ, Koskinen A, Virkkula P, et al. Factors Affecting the Control of Chronic Rhinosinusitis With Nasal Polyps: A Comparison in Patients With or Without NERD. *AllergyRhinol (Providence)*. 2021;12:2152656721100384. doi:10.1177/21526567211003844

33. Penttila E, Sillanpaa S, Vento SI, et al. Eosinophilia, asthma, NERD and the use of oral corticosteroids predict uncontrolled chronic rhinosinusitis with nasal polyps after surgery. *Asian Pac J Allergy Immunol*. Published online 2022. doi:10.12932/AP-310321-1102

34. Bachert C, Bhattacharyya N, Desrosiers M, Khan AH. Burden of Disease in Chronic Rhinosinusitis with Nasal Polyps. *JAA*. 2021;Volume 14:127-134. doi:10.2147/JAA.S290424

35. Claeys N, Teeling MT, Legrand P, et al. Patients Unmet Needs in Chronic Rhinosinusitis With Nasal Polyps Care: A Patient Advisory Board Statement of EUFOREA. *Front Allergy*. 2021;2:761388. doi:10.3389/falgy.2021.761388

36. Kotisalmi E, Hakulinen A, Makela M, Toppila-Salmi S, Kauppi P. A comparison of biologicals in the treatment of adults with severe asthma – real-life experiences. *asthma res and pract*. 2020;6(1):2. doi:10.1186/s40733-020-00055-9

37. Bachert C, Hellings PW, Mullol J, et al. Dupilumab improves patient-reported outcomes in patients with chronic rhinosinusitis with nasal polyps and comorbid asthma. *The Journal of Allergy and Clinical Immunology: In Practice*. 2019;7(7):2447-2449.e2. doi:10.1016/j.jaip.2019.03.023

38. Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. *The Lancet*. 2019;394(10209):1638-1650. doi:10.1016/S0140-6736(19)31881-1

39. Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. *Journal of Allergy and Clinical Immunology*. 2020;146(3):595-605. doi:10.1016/j.jaci.2020.05.032

40. Charles D, Shanley J, Temple S, Rattu A, Khaleva E, Roberts G. Real-World Efficacy of Treatment with Benralizumab, Dupilumab, Mepolizumab and Reslizumab for Severe Asthma: A Systematic Review and Meta-analysis. *Clin Experimental Allergy*. Published online February 16, 2022:cea.14112. doi:10.1111/cea.14112

9
41. Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. *Allergy*. 2019;74(12):2312-2319. doi:10.1111/all.13875

Tables

Table 1. Patient characteristics of the 18563 subjects with incident CRSwNP and in subgroups of these subjects at baseline and follow-up

n (% of incident patients)	Incident patients
Male (%)	18563 (100.0)
Age (median [IQR])	11117 (59.9)
SCS (%)	53.0 [39.0, 65.0]
ESS (%)	11633 (62.7)
ESS once (%)	8673 (46.7)
ESS repeated (%)	7227 (38.9)
Charlson comorbidity index (%)	1446 (7.8)
0	14407 (77.6)
1	2960 (15.9)
2	845 (4.6)
3	253 (1.4)
4	50 (0.3)
5+	48 (0.3)

SCS, any systemic corticosteroids use; ESS, endoscopic sinus surgery; IQR, interquartile range

Figure legends

Figure 1. Identification of patients with CRSwNP and asthma subgroup division

Figure 2. A) Annual prevalence of CRSwNP in Finland between 2012 and 2019. Mean annual incidence of CRSwNP in Finland per age group B) overall, C) among males, D) among females

Figure 3. Mean cumulative count for ESS among (A) CRSwNP patients, and (B) by asthma status (no asthma, mild to moderate asthma, severe controlled asthma, and severe uncontrolled asthma)

Figure 4. Time to first ESS among (A) CRSwNP patients, and (B) by asthma status (no asthma, mild to moderate asthma, severe controlled asthma, and severe uncontrolled asthma)

Figure 5. Time to repeated ESS among (A) CRSwNP patients, and (B) by asthma status (no asthma, mild to moderate asthma, severe controlled asthma, and severe uncontrolled asthma)

Appendices

Supplemental Material Table S1. The most common comorbidities at baseline

Supplemental Material Table S2. The most common comorbidities at end of follow-up
Incident patients
n=18563

Asthma overall
n=5003 (27%)

No asthma
n=13560 (73%)

Mild-moderate
n=3934 (21.2%)

Severe overall
n=1069 (5.8%)

Severe controlled
786 (4.2%)

Severe uncontrolled
N=283 (1.5%)

CRSwNP patients
n=53119

Figure 1_Toppila-Salmi et al.
Figure 2_Toppila-Salmi et al.
Figure 3_Toppila-Salmi et al.
Figure 4_Toppila-Salmi et al.
Figure 5_Toppila-Salmi et al.