DISTRIBUTION OF POINTS ON ABELIAN COVERS OVER
FINITE FIELDS

PATRICK MEISNER

ABSTRACT. We determine in this paper the distribution of the number of
points on the covers of $\mathbb{P}^1(\mathbb{F}_q)$ such that $K(C)$ is a Galois extension and
$\text{Gal}(K(C)/K)$ is abelian when q is fixed and the genus, g, tends to infinity. This generalizes the work of Kurlberg and Rudnick and Bucur, David,
Feigon and Lalin who considered different families of curves over \mathbb{F}_q. In all
cases, the distribution is given by a sum of $q + 1$ random variables.

1. Introduction

Let q be a power of a prime and C a smooth, projective curve over \mathbb{F}_q. Denote
$\mathbb{F}_q(X)$ as K and $K(C)$ as the field of functions of C. Then $K(C)$ is a finite
extension of K. Moreover, if we fix a copy of $\mathbb{P}^1(\mathbb{F}_q)$, then every finite extension of
K corresponds to smooth, projective curve (Corollary 6.6 and Theorem 6.9 from
Chapter I of [5]).

If $K(C)/K$ is Galois, then denote $\text{Gal}(C) = \text{Gal}(K(C)/K)$. Let $g(C)$ be the
genus of C. Define the family of smooth, projective curves

$$\mathcal{H}_{G, g} = \{ C : \text{Gal}(C) = G, g(C) = G \}.$$

We want to determine the probability, that a random curve in this family has a
given number of points. That is, for every $N \in \mathbb{Z}_{\geq 0}$, we want to determine

$$\text{Prob}(C \in \mathcal{H}_{G, g} : \#C(\mathbb{P}^1(\mathbb{F}_q)) = N) = \frac{|\{ C \in \mathcal{H}_{G, g} : \#C(\mathbb{P}^1(\mathbb{F}_q)) = N \}|}{|\mathcal{H}_{G, g}|}.$$

It is well know that

$$\#C(\mathbb{P}^1(\mathbb{F}_q)) = q + 1 - \text{Tr}(\text{Frob}_q)$$

where Frob_q is the q^{th}-power Frobenius. Moreover, a classical result due to Katz
and Sarnak [6] says that if g is fixed and we let q tend to infinity then the trace
of the Frobenius in a family is distributed like the trace of a random matrix in the
monodromy group associated to the family. We will be interested in what happens
when q is fixed and we let g tend to infinity.

Several cases of this are known for specific family of groups. It was first done by
Kurlberg and Rudnick [7] for hyper-elliptic curves ($G = \mathbb{Z}/2\mathbb{Z}$). This was extended
by Bucur, David, Feigon and Lalin [2],[3] for prime cyclic curves ($G = \mathbb{Z}/p\mathbb{Z}$, p
a prime). Lorenzo, Meleleo and Milione [8] then determined this for n-quadratic
curves ($G = (\mathbb{Z}/2\mathbb{Z})^n$). More recently the author [9] extended the work of Bucur,
David, Feigon and Lalin to the case of arbitrary cyclic curves ($G = \mathbb{Z}/r\mathbb{Z}$, r not
necessarily a prime).

In all the works mentioned above the probability is not determine for the whole
family $\mathcal{H}_{G, g}$ but instead for an irreducible moduli space of the family. That is, we
can write
\[\mathcal{H}_{G,g} = \bigcup_{\vec{d}(\vec{\alpha})} \mathcal{H}_{\vec{d}(\vec{\alpha})} \]
where \(\vec{d}(\vec{\alpha}) = (d(\vec{\alpha}))_{\vec{\alpha}} \) in a non-negative integer valued vector indexed by a set of \(|G| - 1 \) vectors (the \(\vec{\alpha} \)) and the union is over all such vectors that satisfy a linear equation and a set of linear congruence conditions. Moreover, \(\mathcal{H}_{\vec{d}(\vec{\alpha})} \) is a set of tuples of polynomials of prescribed degree that correspond to a curve with Galois group \(G \) and genus \(g(C) \). See Section 2 for a full description of these sets.

Remark 1.1. There is a natural correspondence between the genus of the curve and the degree of the discriminant of \(K(C) \). Through this correspondence we can view \(\mathcal{H}_{\vec{d}(\vec{\alpha})} \) as the set of curves such that the degree of the conductor of \(K(C) \) is fixed. Then the linear relationships that the union is over is the conductor-discriminant formula.

Moreover, all the previous results restrict to the case that \(q \equiv 1 \mod \exp(G) \) where \(\exp(G) = \min(n : ng = e \text{ for all } g \in G) \). This is in order to use Kummer theory to get a classification of the curves. Therefore, our main result will be for this irreducible moduli space under this same assumption.

Theorem 1.2. Let \(G = \mathbb{Z}/r_1\mathbb{Z} \times \cdots \times \mathbb{Z}/r_n\mathbb{Z} \) such that \(r_j | r_{j+1} \) and fix \(q \) such that \(q \equiv 1 \pmod{r_n} \) then as \(d(\vec{\alpha}) \to \infty \) for all \(\vec{\alpha} \in \mathcal{R} \),
\[
|\{ C \in \mathcal{H}_{\vec{d}(\vec{\alpha})} : \#C(\mathbb{P}^1(\mathbb{F}_q)) = M \} | \sim \text{Prob} \left(\sum_{i=1}^{q+1} X_i = M \right)
\]
where the \(X_i \) are i.i.d. random variables taking value 0 or \(\frac{|G|}{s} \) for some \(s \mid r_n \) such that
\[
X_i = \begin{cases} \frac{|G|}{s} & \text{with probability } \frac{s\phi_G(s)}{|G|(|q^s+|G|-1)|} \text{ if } s \neq 1 \\ \frac{|G|}{s} & \text{with probability } \frac{q}{(|G|-1)(q+|G|)-2\sigma_{r_S} \phi_G(s)+1} \\ 0 & \text{with probability } \frac{|G|}{|G|(|q^s+|G|-1)|} \end{cases}
\]
where \(\phi_G(s) \) is the number of elements of \(G \) of order \(s \).

Remark 1.3. Notice that in our result, we require \(d(\vec{\alpha}) \) to tend to infinity for all \(\vec{\alpha} \). This implies that the genus tends to infinity as the genus can be written as a linear combination of the \(d(\vec{\alpha}) \). However, the converse is not true. That is, if \(g \) tends to infinity, this only implies that at least one of the \(d(\vec{\alpha}) \) would tend to infinity. In this case, the error term would not necessarily go to zero. Bucur, David, Feigon, Kaplan, Lalin, Ozman and Wood [1] solve this problem for the whole space \(\mathcal{H}_{G,g} \) where \(G \) is a prime cyclic. Work is done towards extending this by the author to any abelian group in a forthcoming paper with success in the case \(G \) is a power of a prime cyclic \((G = (\mathbb{Z}/p\mathbb{Z})^n, p \text{ a prime}) \).

2. Genus Formula and Irreducible Moduli Space

In this section we will first determine a formula for the genus of the curve and from this formula create the irreducible moduli spaces \(\mathcal{H}_{\vec{d}(\vec{\alpha})} \).

Let \(C \) be a curve such that \(\text{Gal}(C) = G \) is abelian. Then we can find unique \(r_j \) such that \(r_j | r_{j+1} \) and \(G = \mathbb{Z}/r_1\mathbb{Z} \times \cdots \times \mathbb{Z}/r_n\mathbb{Z} \). Therefore, \(\exp(G) = r_n \). Since we are assuming \(q \equiv 1 \pmod{r_n} \), we get that \(\mu_{r_n} \subset K \) and hence \(K(C)/K \) is a
Kummer extension. Then Kummer Theory (Chap. 14 Proposition 37 of [4]) tells us
that there exists $F_1, \ldots, F_n \in \mathbb{F}_q[X]$ such that F_j is r_jth-power free and

$$K(C) = K(\sqrt[n]{F_1}, \ldots, \sqrt[n]{F_n}).$$

Let $g = g(C)$, be the genus of the curve C. Then the Riemann-Hurwitz formula
(Theorem 7.16 of [10]), says that

$$2g + 2|G| - 2 = \sum_{\mathfrak{P}} (e(\mathfrak{P}/P) - 1) \deg_{K(C)}(\mathfrak{P})$$

where the sum is over all primes \mathfrak{P} of $K(C)$, $e(\mathfrak{P}/P)$ is the ramification index and
$\deg_{K(C)}(\mathfrak{P})$ is the dimension of $\mathcal{O}_{K(C)}/\mathfrak{P}$ as a vector space over \mathbb{F}_q. By Proposition
7.7 of [10], we get that if $\mathfrak{P}|P$, then $\deg_{K(C)}(\mathfrak{P}) = f(\mathfrak{P}/P) \deg_{K}(P)$, where $f(\mathfrak{P}/P)$
is the inertia degree and $\deg_{K}(P)$ is the degree of the polynomial P. Moreover, since
our extension is Galois, we get that for any $\mathfrak{P}, \mathfrak{P}|P$, $e(\mathfrak{P}/P) = e(P)$ and $f(\mathfrak{P}/P) = f(\mathfrak{P}/P) := f(P)$. Hence,

$$\sum_{\mathfrak{P}|P} (e(\mathfrak{P}/P) - 1) \deg_{K(C)}(\mathfrak{P}) = g(P)(e(P) - 1)f(P) \deg_{K}(P)$$

$$= \left(|G| - \frac{|G|}{e(P)} \right) \deg_{K}(P),$$

where $g(P)$ is the number of $\mathfrak{P}|P$.

Therefore, (2.1) becomes

$$2g + 2|G| - 2 = \sum_{P} \left(|G| - \frac{|G|}{e(P)} \right) \deg_{K}(P)$$

where the sum is over all the primes in K. Hence it is enough to determine the
ramification index for all P in K.

Lemma 2.1. Let $K \subset L \subset L(\sqrt[2]{F(X)}) = L'$ be an extension of fields where
$F \in \mathbb{F}_q[X]$ is rth-power free and $[L' : L] = r$. Let \mathfrak{P} be a prime in L and \mathfrak{P}'
be a prime in L', lying over \mathfrak{P}. If $\text{ord}_\mathfrak{P}(F) = n$, then $e(\mathfrak{P}'/\mathfrak{P}) = \frac{n}{(r, n)}$.

Proof. Since $[L' : L] = r$, the characteristic polynomial is $Y^r - F(X)$. We can
write $F(X) = F_1(X)F_2(X)^n$ where $\text{ord}_\mathfrak{P}(F_2(X)) = 1$ and $(F_1(X)\mathcal{O}_L, \mathfrak{P}) = 1$.
Then $Y^r - F(X) \equiv Y^r \pmod{\mathfrak{P}}$. Hence,

$$\mathfrak{P}' = \mathfrak{P}\mathcal{O}_{L'} + \sqrt[2]{F(X)}\mathcal{O}_{L'}$$

will be a prime lying over \mathfrak{P}.

Now, $e(\mathfrak{P}'/\mathfrak{P})$ will be the smallest integer e such that $(\mathfrak{P}')^e \subset \mathfrak{P}\mathcal{O}_{L'}$. We have that

$$(\mathfrak{P}')^e = \sum_{j=0}^{e} \mathfrak{P}^{e-j} \left(\sqrt[2]{F(X)}\mathcal{O}_{L'} \right)^j.$$

Now,

$$\sum_{j=0}^{e-1} \mathfrak{P}^{e-j} \left(\sqrt[2]{F(X)}\mathcal{O}_{L'} \right)^j \subset \mathfrak{P}\mathcal{O}_{L'}.$$
so it remains to determine when \(\left(\sqrt[r]{F(X)}\mathcal{O}_{L'} \right)^e \subset \mathcal{O}_{L'} \). Finally,

\[
\left(\sqrt[r]{F(X)}\mathcal{O}_{L} \right)^e = \left(\sqrt[r]{F_1(X)F_2(X)}\mathcal{O}_{L'} \right)^e = \left(\sqrt[r]{F_1(X)}\mathcal{O}_{L'} \right)^e,
\]

and we see that \(e(\mathfrak{P}'/\mathfrak{P}) = \frac{r_1}{(r_2, m)} \).

\(\square \)

Lemma 2.2. Let \(K \subset L \subset \mathbb{L}(\sqrt[r]{F_1(X)}) = L' \subset \mathbb{L}(\sqrt[r]{F_1(X)}, \sqrt[r]{F_2(X)} = L'' \) be extensions of fields where \(F_1, F_2 \in \mathbb{F}_q[X] \) are \(r_1 \)th and \(r_2 \)th power free respectively and \([L': L] = r_1, [L'': L'] = r_2\). Let \(\mathfrak{P} \) be a prime in \(L \) and \(\mathfrak{P}' \) be a prime in \(L' \) lying above \(\mathfrak{P} \). If \(ord_{\mathfrak{P}}(F_1) = n \) and \(ord_{\mathfrak{P}}(F_2) = m \), then \(e(\mathfrak{P}'/\mathfrak{P}) = \text{lcm}(\frac{r_1}{(r_2, m)}, \frac{r_2}{(r_2, m)}) \).

Proof. Let \(\mathfrak{P}' \) be a prime in \(L' \) such that \(\mathfrak{P}'/\mathfrak{P}' \mathfrak{P} \), then by Lemma 2.1, \(e(\mathfrak{P}'/\mathfrak{P}) = \frac{r_1}{(r_1, m)} \). Therefore, \(ord_{\mathfrak{P}}(F_2) = m \frac{r_1}{r_2} \) and, again by Lemma 2.1, \(e(\mathfrak{P}'/\mathfrak{P}) = \frac{r_1}{(r_1, m)} \frac{r_2}{(r_2, m)} \). Hence, \(e(\mathfrak{P}'/\mathfrak{P}) = \frac{r_1}{(r_1, m)} \frac{r_2}{(r_2, m)} \). So it remains to show that this is \(\text{lcm}(\frac{r_1}{(r_1, m)}, \frac{r_2}{(r_2, m)}) \).

Let \(A, B, C \) be positive integers. We will show that \(A \frac{B}{B + C} = \text{lcm}(A, \frac{B}{B + C}) \).

Let \(A = \prod p_i^{a_i}, B = \prod p_i^{b_i}, C = \prod p_i^{c_i} \). Then the left hand and right hand sides are

\[
\prod p_i^{a_i + b_i - \min(b_i, a_i + c_i)} \prod p_i^{\max(a_i, b_i - \min(b_i, c_i))}
\]

respectively. If \(b_i \leq a_i + c_i \), then the left hand exponent becomes \(a_i \). Moreover, \(b_i \leq c_i \) so the right hand exponent would become \(\max(a_i, b_i - c_i) = a_i \) as \(a_i \geq b_i - c_i \).

If \(b_i \geq a_i + c_i \) then the left hand exponent becomes \(b_i - c_i \). Further, \(b_i \geq c_i \) so then the right hand exponent would become \(\max(a_i, b_i - c_i) = b_i - c_i \) as \(a_i \leq b_i - c_i \).

This completes the proof.

\[\square\]

So, we see that in order to determine the genus, we need to keep track of \(\text{ord}_P(F_j) \) for all \(P \in \mathbb{F}_q[X] \) and \(1 \leq j \leq n \). Towards this define the set

\[
\mathcal{R} = \{ 0, \ldots, r_1 - 1 \} \times \cdots \times \{ 0, \ldots, r_n - 1 \} \setminus \{ (0, \ldots, 0) \}
\]

to be the set of integer-valued vectors with \(j \) entry between 0 and \(r_j - 1 \) such that not all entries are 0. Write an element of \(\mathcal{R} \) as \(\vec{\alpha} = (\alpha_1, \ldots, \alpha_n) \). Then, for every \(\vec{\alpha} \in \mathcal{R} \), let

\[
f_{\vec{\alpha}} = \prod_{\text{ord}_P(F_j) = \alpha_j} P
\]

where the product is over all (finite) monic prime polynomials of \(\mathbb{F}_q[X] \). Then we can write

\[
F_j = c_j \prod_{\vec{\alpha} \in \mathcal{R}} f_{\vec{\alpha}}^{\alpha_j}
\]

for some \(c_j \in \mathbb{F}_q^* \) where we use the convention that \(f^0 \) is identically the constant polynomial 1.

Proposition 2.3. If \(P | f_{\vec{\alpha}} \) then \(e(P) = \text{lcm}_{j=1,\ldots,n} \left(\frac{r_j}{(r_j, \alpha_j)} \right) \).
Proof. If $P | f_\circ$ then $\ord_P(F_j) = \alpha_j$ for all j. Thus if we recursively apply Lemma 2.2, we get the result.

If P_∞ is the prime at infinity, then we see that $\ord_{P_\infty}(F) = \deg(F)$. Therefore, if $\deg(F_j) = d_j$,

$$e(P_\infty) = \lcm_{j=1,\ldots,n} \left(\frac{r_j}{(r_j, d_j)} \right).$$

Therefore, we can rewrite (2.2) as

$$2g + 2|G| - 2 = \sum_{\vec{\alpha} \in R} \left(|G| - \frac{|G|}{e(\vec{\alpha})} \right) \deg(f_{\vec{\alpha}}) + |G| - \frac{|G|}{e(\vec{d})}$$

where $\vec{d} = (d_1, \ldots, d_n)$ and for any $\vec{v} = (v_1, \ldots, v_n)$,

$$e(\vec{v}) = \lcm_{j=1,\ldots,n} \left(\frac{r_j}{(r_j, v_j)} \right).$$

Thus, what we want to keep track of is $\deg(f_{\vec{\alpha}})$. Hence, we will let $d(\vec{\alpha})$ be a non-negative integer for all $\vec{\alpha} \in R$ and

$$\vec{d}(\vec{\alpha}) = (d(\vec{\alpha}))_{\vec{\alpha} \in R}$$

be a vector indexed by the elements of $\vec{\alpha} \in R$. Moreover, for every $\vec{d}(\vec{\alpha})$ define

$$d_j := \sum_{\vec{\alpha} \in R} \alpha_j d(\vec{\alpha})$$

for $j = 1, \ldots, n$.

Define the sets

$$\mathcal{F}_d = \{ f : f, \text{ monic, squarefree and } \deg(f) = d \}$$

$$\mathcal{F}_{\vec{d}(\vec{\alpha})} = \{ (f_{\vec{\alpha}}) \in \prod_{\vec{\alpha} \in R} \mathcal{F}_{d(\vec{\alpha})} : (f_{\vec{\alpha}}, f_{\vec{\beta}}) = 1 \text{ for all } \vec{\alpha} \neq \vec{\beta} \}.$$

That is, the set of monic, square-free and pairwise coprime tuples of polynomials with prescribed degrees.

Consider $\vec{d}(\vec{\alpha})$ such that $d_j \equiv 0 \mod r_j$ for $j = 1, \ldots, n$, then for $(f_{\vec{\alpha}}) \in \mathcal{F}_{\vec{d}(\vec{\alpha})}$, the right side of (2.3) becomes

$$\sum_{\vec{\alpha} \in R} \left(|G| - \frac{|G|}{e(\vec{\alpha})} \right) d(\vec{\alpha}).$$

Now, consider $\vec{d}(\vec{\alpha})$ such that $d_j \equiv r_j - \beta_j \mod r_j$ for some $\vec{\beta} \in R$. Define $d'(\vec{\beta}) = d(\vec{\beta}) + 1$ and $d'(\vec{\alpha}) = d(\vec{\alpha})$ for $\vec{\alpha} \neq \vec{\beta}$ and $\vec{d}'(\vec{\alpha}) = (d'(\vec{\alpha}))$. Then

$$d'_j := \sum_{\vec{\alpha} \in R} \alpha_j d'(\vec{\alpha}) \equiv 0 \mod r_j.$$

This motivates define the set

$$\mathcal{F}_{\vec{d}'(\vec{\alpha})} = \{(f_{\vec{\beta}}, (f_{\vec{\alpha}})) \in \mathcal{F}_{d(\vec{\beta}) - 1} \times \prod_{\vec{\alpha} \in R} \mathcal{F}_{d(\vec{\alpha})} : (f_{\vec{\alpha}}, f_{\vec{\gamma}}) = 1 \text{ for all } \vec{\alpha}, \vec{\gamma} \in R \}.$$

This set is the same as the previous set except that the degree is dropped by 1 in the $\vec{\beta}^{th}$-coordinate.
Therefore, by the above argument we get that any tuple \((f_\bar{\alpha})\) lives in a unique \(F_{\vec{d}(\bar{\alpha})}\) such that \(d_j \equiv 0 \mod r_j\).

Hence if we define the set
\[
F_{[\vec{d}(\bar{\alpha})]} = F_{\vec{d}(\bar{\alpha})} \cup \bigcup_{\vec{\beta} \in \mathcal{R}} F_{\vec{d}(\bar{\alpha})}^{\vec{\beta}}
\]
then as \(\vec{d}(\bar{\alpha})\) runs over all vectors such that \(d_j \equiv 0 \mod r_j\), we get that the set \(F_{[\vec{d}(\bar{\alpha})]}\) runs over all tuples. Therefore, from now on we will always be assuming \(d_j \equiv 0 \mod r_j, j = 1, \ldots, n\).

Moreover, the genus of the curves corresponding to the tuples in \(F_{[\vec{d}(\bar{\alpha})]}\) is invariant. Indeed, if \((f_\bar{\alpha}) \in F_{\vec{d}(\bar{\alpha})}\), then we get that the genus, \(g\), satisfies
\[
2g + 2|G| - 2 = \sum_{\bar{\alpha} \in \mathcal{R}} \left(|G| - \frac{|G|}{e(\bar{\alpha})} \right) d(\bar{\alpha}).
\]

Further, if \((f_\bar{\alpha}) \in F_{\vec{d}(\bar{\alpha})}^{\vec{\beta}}\), the genus, \(g'\), satisfies
\[
2g' + 2|G| - 2 = \sum_{\bar{\alpha} \in \mathcal{R}} \left(|G| - \frac{|G|}{e(\bar{\alpha})} \right) d(\bar{\alpha}) + \left(|G| - \frac{|G|}{e(\bar{\alpha})} (d(\bar{\beta}) - 1) \right) + |G| - \frac{|G|}{e(\vec{d})} \sum_{\bar{\alpha} \in \mathcal{R}} d(\bar{\alpha})
\]
\[
= 2g + 2|G| - 2.
\]

Now, we need to add information about the leading coefficients, so define
\[
\tilde{F}_{\vec{d}(\bar{\alpha})} = (F_q^n)^n \times F_{\vec{d}(\bar{\alpha})}
\]
\[
\tilde{F}_{\vec{d}(\bar{\alpha})}^{\vec{\beta}} = (F_q^n)^n \times F_{\vec{d}(\bar{\alpha})}^{\vec{\beta}}
\]
\[
\tilde{F}_{[\vec{d}(\bar{\alpha})]} = (F_q^n)^n \times F_{[\vec{d}(\bar{\alpha})]}
\]

Every element of \(\tilde{F}_{[\vec{d}(\bar{\alpha})]}\) corresponds to a curve and every curve corresponds to an element of \(\tilde{F}_{[\vec{d}(\bar{\alpha})]}\). With that being said, we define
\[
\mathcal{H}_{\vec{d}(\bar{\alpha})} = \{ C : C \text{ corresponds to an element of } \tilde{F}_{[\vec{d}(\bar{\alpha})]} \}
\]
and we get
\[
\mathcal{H}_{G,g} = \bigcup \mathcal{H}_{\vec{d}(\bar{\alpha})}
\]
where the union is over all \(\vec{d}(\bar{\alpha})\) that satisfy
\[
2g + 2|G| - 2 = \sum_{\bar{\alpha} \in \mathcal{R}} \left(|G| - \frac{|G|}{e(\bar{\alpha})} \right) d(\bar{\alpha})
\]
\[
\sum_{\bar{\alpha} \in \mathcal{R}} \alpha_j d(\bar{\alpha}) \equiv 0 \mod r_j, j = 1, \ldots, n.
\]
3. Number of Points on the Curve

In this section, we will find a formula for the number of points on a curve in \(\mathcal{H}^G \). To begin, we will determine a formula for the number of points lying above \(x \) for all \(x \in \mathbb{P}^1(\mathbb{F}_q) \). In order to do this, however, we need a smooth, affine model of our curve at \(x \).

We can view \(K(C) \) as a vector space over \(K \) with dimension \(|G| \). Let
\[\mathcal{B} = \{ B_1, \ldots, B_{|G|} \} \]
be a basis of \(K(C) \) over \(K \). Since \(q \equiv 1 \pmod{\exp(G)} \), by Kummer Theory, we can assume that for all \(B_i \in \mathcal{B} \), there exists an \(m_i \in \mathbb{Z}_{>0} \) and \(H_i \in \mathbb{F}_q[X] \) such that \(H_i \) is \(m_i \)-power free and \(B_i = \sqrt[m_i]{H_i} \). Now, if \(x \in \mathbb{P}^1(\mathbb{F}_q) \), then we can find \(H_{j_1}, \ldots, H_{j_n} \) such that the smooth affine model of \(C \) at \(x \) is of the form
\[
Y_1^{m_{j_1}} = H_{j_1}(X) \quad Y_2^{m_{j_2}} = H_{j_2}(X) \quad \ldots \quad Y_n^{m_{j_n}} = H_{j_n}(X)
\]
Since \(x \) is smooth in this model, at most one of the \(H_{j_k} \) may have a root at \(x \) of order at most 1. Therefore, we see that the number of points lying over \(x \) will be
\[
\left\{ \begin{array}{ll}
\frac{m_{j_1} m_{j_2} \cdots m_{j_n}}{m_{j_k}} & H_{j_k}(x) \in (\mathbb{F}_q^*)^{m_{j_k}}, i = 1, \ldots, n \\
H_{j_k}(x) = 0, H_{j_i}(x) \in (\mathbb{F}_q^*)^{m_{j_i}}, i = 1, \ldots, n, i \neq k & \\
0 & \text{otherwise}
\end{array} \right.
\]
If we let \(\chi_m : \mathbb{F}_q^* \rightarrow \mu_m \) be a multiplicative character of order \(m \), and extend it to all of \(\mathbb{F}_q \) by setting \(\chi_m(0) = 0 \) then we see that we can write the number of points lying over \(x \) as
\[
\prod_{k=1}^n \left(1 + \sum_{i=1}^{m_{j_k}-1} \chi_{m_{j_k}}^i \left(H_{j_k}(x) \right) \right).
\]
Let \(B_i \notin K(B_{j_1}, \ldots, B_{j_n}) \). Then I claim that \(H_i(x) = 0 \). Indeed, consider the smooth projective curve \(C' \) such that \(K(C') = K(B_{j_1}, \ldots, B_{j_n}, B_i) \). Then \(C' \) will have an affine model of the form
\[
Y_s^{m_{j_1}} = H_i(X) \quad Y_k^{m_{j_k}} = H_{j_k}(X), 1 \leq k \leq n, k \neq s.
\]
That is \(H_i \) will replace \(H_{j_k} \) for some \(1 \leq s \leq n \).

Moreover, this affine model is not smooth at \(x \) by our choices of \(H_{j_1}, \ldots, H_{j_n} \). Therefore, one of four things may happen:

1. \(H_{j_k}(x) \) is divisible by \((X - x)^2 \) for some \(1 \leq k \leq n, k \neq s \)
2. \(H_i(X) \) is divisible by \((X - x)^2 \)
3. \(H_{j_k}(x) = H_{j_k'}(x) = 0 \) for some \(1 \leq k < k' \leq n, k, k' \neq s \)
4. \(H_{j_k}(x) = H_i(x) = 0 \) for some \(1 \leq k \leq n, k \neq s \)

Case one and three can’t happen because this would imply our original model was not smooth at \(x \). Therefore, case two or four must happen and in both of these cases \(H_i(x) = 0 \).

Hence, the number of points lying over \(x \) is
\[
\prod_{k=1}^n \left(1 + \sum_{i=1}^{m_{j_k}-1} \chi_{m_{j_k}}^i \left(H_{j_k}(x) \right) \right) = \sum_{j=1}^{|G|} \chi_{m_j}(H_j^{m_j}(x))
\]
Lemma 3.1. Let \(\mathcal{C} \in \mathcal{H}(\vec{d}(\vec{a})) \) such that \(C \) corresponds to \((\vec{c}, (f_{\vec{a}})) \in \hat{\mathcal{F}}(\vec{d}(\vec{a}))^*\). To use the discussion above, we want to find a basis for \(K(C) \) over \(K \) such that each element in the basis is an \(m \text{th} \) root of an \(m \text{th} \)-powerfree polynomial. Towards this, define

\[
\mathcal{S} = \{ \vec{s} = (s_1, \ldots, s_n) : s_j r_j \},
\]

the set of vectors whose \(j \text{th} \) component divides \(r_j \). For all \(\vec{s} \in \mathcal{S} \) define

\[
\ell(\vec{s}) = \text{lcm}(s_1, \ldots, s_n)
\]

\(\Omega_\vec{s} = \{ \vec{\omega} = (\omega_1, \ldots, \omega_n) : 1 \leq \omega_j \leq s_j, (\omega_j, s_j) = 1 \} \subset \mathcal{R} \).

For any \(\vec{s} \in \mathcal{S}, \vec{\omega} \in \Omega_\vec{s} \), and \((\vec{c}, (f_{\vec{a}})) \in \hat{\mathcal{F}}(\vec{d}(\vec{a}))\) define

\[
F_{(\vec{s})}(X) := c_{(\vec{s})} \prod_{\vec{a} \in \mathcal{R}} f_{\vec{a}}(X)^{\sum_j 1 \ell(\vec{a}) \omega_j \alpha_j \pmod{\ell(\vec{s})}}
\]

\[
c_{(\vec{\omega})} := \prod_{j=1}^n c_j^{\ell(\vec{\omega}) \omega_j \pmod{\ell(\vec{s})}}.
\]

When we write in the exponent * \pmod{\ell(\vec{s})}, we mean the smallest, non-negative integer that is congruent to * modulo \(\ell(\vec{s}) \). Moreover, we make the identification that \(f_{\vec{a}}(X)^0 \) is identically the constant polynomial 1. Hence, if \(\sum_{j=1}^n \ell(\vec{a}) \omega_j \alpha_j \equiv 0 \pmod{\ell(\vec{s})} \), then \(f_{\vec{a}}(X) \) does not divide \(F_{(\vec{s})}(X) \). In particular, if \(\vec{s} = (1, \ldots, 1) \), then \(\Omega_\vec{s} = \{ (1, \ldots, 1) \} \) and we make the identification

\[
F_{(1, \ldots, 1)}(X) = 1, c_{(1, \ldots, 1)} = 1
\]

Therefore, we see that a basis for \(K(C) \) over \(K \) can be given by

\[
\mathcal{B} = \left\{ \left(F_{(\vec{s})}(X) \right)^{\frac{1}{\ell(\vec{s})}}, \vec{s} \in \mathcal{S}, \vec{\omega} \in \Omega_\vec{s} \right\}
\]

This basis has the required property and hence the number of points lying over any \(x \in \mathbb{F}_q \) can be written as

\[
\sum_{\vec{s} \in \mathcal{S}} \sum_{\vec{\omega} \in \Omega_\vec{s}} \chi_\vec{\omega}(x) F_{(\vec{s})}(x).
\]

This leads to following lemma.

Lemma 3.1. Let \(C \in \mathcal{H}(\vec{d}(\vec{a})) \) that corresponds to \((\vec{c}, (f_{\vec{a}})) \in \hat{\mathcal{F}}(\vec{d}(\vec{a}))^*\). Then the number of affine points on the curve is

\[
\#C(\mathbb{F}_q) = \sum_{x \in \mathbb{F}_q} \sum_{\vec{s} \in \mathcal{S}} \sum_{\vec{\omega} \in \Omega_\vec{s}} \chi_\vec{\omega}(x) F_{(\vec{s})}(x).
\]

It remains to determine what happens at the point at infinity, \(x_{q+1} \). For any \(F(X) \in \mathbb{F}_q[X] \), let \(\tilde{F}(X) \) denote the polynomial that inverts the order of the coefficients of \(F(X) \). That is, if

\[
F(X) = a_0 + a_1 X + \cdots + a_d X^d,
\]

then

\[
\tilde{F}(X) = a_0 X^d + a_1 X^{d-1} + \cdots + a_d.
\]
Further, if we let $X' = 1/X$, then we have $F(X) = (X')^{-d}\bar{F}(X')$, where $d = \deg(F)$. Hence to determine what happens at x_{q+1}, we need to determine what happens when $X' = 0$. We see that

$$Y_j' = (X')^{-d_j}\bar{F}_j(X'), \ j = 1, \ldots, n.$$

If we write $d_j = r_j m_j + k_j$ with $1 \leq k_j \leq r_j$, and let $Y_j' = Y_j(X')^{m_j+1}$, then we have an isomorphism to the curve

$$(Y_j')^{r_j} = (X')^{-k_j}\bar{F}_j(X'), \ j = 1, \ldots, n.$$

So, we see we get a root at x_{q+1} if and only if $k_j \neq r_j$ if and only if $d_j \neq 0 \mod r_j$. Therefore, we can write

$$F_j(x_{q+1}) = \begin{cases} c_j & d_j \equiv 0 \mod r_j \\ 0 & d_j \not\equiv 0 \mod r_j \end{cases}$$

Likewise, we see that

$$F_{(\alpha)}^{(\omega)}(x_{q+1}) = \begin{cases} c_{(\alpha)}^{(\omega)} & \sum_{j=1}^n \ell(\bar{\omega})_j \omega_j d_j \equiv 0 \mod \ell(\bar{\omega}) \\ 0 & \sum_{j=1}^n \ell(\bar{\omega})_j \omega_j d_j \neq 0 \mod \ell(\bar{\omega}) \end{cases}.$$

Thus the number of points lying over x_{q+1} is

$$\sum_{\bar{\omega} \in \mathcal{S}} \sum_{\Omega_x} \chi_{\ell(\bar{\omega})} \left(F_{(\alpha)}^{(\omega)}(x_{q+1}) \right)$$

and we get the following lemma.

Lemma 3.2. Let $C \in \mathcal{H}_{d(\bar{\alpha})}$ that corresponds to $(\bar{c}, (f, \bar{\alpha})) \in \mathcal{F}_{d(\bar{\alpha})}$. Then the number of projective points on the curve is

$$\#C(\mathbb{P}^1(\mathbb{F}_q)) = \sum_{x \in \mathbb{P}^1(\mathbb{F}_q)} \sum_{\bar{\omega} \in \mathcal{S}} \sum_{\Omega_x} \chi_{\ell(\bar{\omega})} \left(F_{(\alpha)}^{(\omega)}(x) \right).$$

Remark 3.3. As we stated above, if $\bar{s} = (1, \ldots, 1)$, then $\Omega_{\bar{s}} = \{1, \ldots, 1\}$ and $F_{(1, \ldots, 1)}(X) = 1$. Hence

$$\sum_{x \in \mathbb{P}^1(\mathbb{F}_q)} \sum_{\omega \in \Omega_{(1, \ldots, 1)}} \chi_{(1, \ldots, 1)} \left(F_{(1, \ldots, 1)}^{(\omega)}(x) \right) = \sum_{x \in \mathbb{P}^1(\mathbb{F}_q)} 1 = q + 1.$$

Thus,

$$\#C(\mathbb{P}^1(\mathbb{F}_q)) = q + 1 + \sum_{x \in \mathbb{P}^1(\mathbb{F}_q)} \sum_{\bar{\omega} \in \mathcal{S}} \sum_{\bar{s} \neq (1, \ldots, 1)} \chi_{\ell(\bar{\omega})} \left(F_{(\alpha)}^{(\omega)}(x) \right)$$

and we get that

$$\text{Tr}(\text{Frob}_q) = -\sum_{x \in \mathbb{P}^1(\mathbb{F}_q)} \sum_{\bar{\omega} \in \mathcal{S}} \sum_{\bar{s} \neq (1, \ldots, 1)} \chi_{\ell(\bar{\omega})} \left(F_{(\alpha)}^{(\omega)}(x) \right)$$
4. Admissibility

From now on, we fix an ordering of the elements of $F_q = \{x_1, \ldots, x_q\}$ and let x_{q+1} denote the point at infinity of $\mathbb{P}^1(F_q)$, then we have reduced the problem down to determine the size of the set

$$\{(\vec{c}, (f_{\vec{a}})) \in \hat{F}_{[\bar{d}(\vec{a})]} : \chi_{\ell(p)}(F_{(\vec{s})}^{(\omega)}(x_i)) = \epsilon_{\vec{s}, \omega, i}, \vec{s} \in S, \omega \in \Omega_{\omega}, i = 1, \ldots, \ell\}$$

for some choices of $\epsilon_{\vec{s}, \omega, i} \in \mu_{\ell(p)} \cup \{0\}$ and $\ell = q + 1$. In fact, we will need to determine this for $\ell = 0$ as well as $\ell = q + 1$ in order to determine the probability. However, we will determine it for an arbitrary ℓ.

Clearly, not all choices give a non-empty set as the polynomials $F_{(\vec{s})}^{(\omega)}$ are highly dependent on each other. This section will be devoted to determining properties of the choices of $\epsilon_{\vec{s}, \omega}$ that give a non-empty set.

Definition 4.1. A set

$$\{\epsilon_{\vec{s}, \omega} \in \mu_{\ell(p)} \cup \{0\}, \vec{s} \in S, \omega \in \Omega_{\omega}\}$$

is called **admissible** if there exists $(\vec{c}, (f_{\vec{a}})) \in \hat{F}_{[\bar{d}(\vec{a})]}$ and an $x \in \mathbb{P}^1(F_q)$ such that

$$\epsilon_{\vec{s}, \omega} = \chi_{\ell(p)}(F_{(\vec{s})}^{(\omega)}(x))$$

for all $\vec{s} \in S, \omega \in \Omega_{\omega}$. (Note that $\epsilon_{(1,\ldots,1),(1,\ldots,1)} = 1$.)

Clearly, therefore, (4.1) will be non-empty if and only if the set

$$\{\epsilon_{\vec{s}, \omega, i} \in \mu_{\ell(p)} \cup \{0\}, \vec{s} \in S, \omega \in \Omega_{\omega}\}$$

is admissible for all i and distinct x_i.

Lemma 4.2. For all $\vec{s} \in S, \omega \in \Omega_{\omega}$ and $p|r_n$, prime, define

$$\vec{s}_p = (p^{v_p(s_1)}, \ldots, p^{v_p(s_n)})$$

$$\vec{\omega}_p = (\omega_1 \pmod{p^{v_p(s_1)}}, \ldots, \omega_n \pmod{p^{v_p(s_n)}}) \in \Omega_{\omega_p}.$$

Let m_p be the smallest, non-negative integer such that $m_p \equiv \ell(\vec{s}_p) \pmod{\ell(\vec{s}_p)}$. If $\{\epsilon_{\vec{s}, \omega} : \vec{s} \in S, \omega \in \Omega_{\omega}\}$ is admissible then

$$\epsilon_{\vec{s}, \omega} = \prod_{p|r_n} \ell(\vec{s}_p)$$

Proof. Let $\vec{s} \in S$. If there exists a $p|r_n$, prime such that $s_j = p^{v_j}$ for $j = 1, \ldots, n$, then $s_{j'} = (1, \ldots, 1), \omega_{j'} = (1, \ldots, 1) \text{ and } m_{j'} = 1 \text{ for all } j' \neq p$, making the statement trivial. Therefore, suppose there exists $\vec{s}', \vec{s}'' \in S \text{ such that } \vec{s}', \vec{s}'' \neq (1, \ldots, 1), s_j = s_j', s_j'' \text{ and } \gcd(\ell(\vec{s}'), \ell(\vec{s}'')) = 1$. (This is an analogue of writing \vec{s} as a product of coprime factors).

Define $m' \equiv \ell(\vec{s}')^{-1} \pmod{\ell(\vec{s}'')}$ and $m'' \equiv \ell(\vec{s}'')^{-1} \pmod{\ell(\vec{s}')}$. Moreover, let

$$\vec{\omega}' = (\omega_1', \ldots, \omega_n') = (\omega_1 \pmod{s_1'}, \ldots, \omega_n \pmod{s_n'}) \in \Omega_{\omega'}$$

$$\vec{\omega}'' = (\omega_1'', \ldots, \omega_n'') = (\omega_1 \pmod{s_1''}, \ldots, \omega_n \pmod{s_n''}) \in \Omega_{\omega''}.$$

Then there exists some polynomial H such that

$$(F_{(\vec{s}')}^{(\omega')}(X))^{m''} \ell(\vec{s}') \cdot F_{(\vec{s}'')}^{(\omega'')}(X)^{m'} \ell(\vec{s}'') = F_{(\vec{s})}^{(\omega)}(X)^{\ell(\vec{s})}$$
Moreover, all the factors that appear in \(F_{(\tilde{s})}(X) \) appear in either \(F_{(\tilde{s}^\prime)}(X) \) or \(F_{(s^\prime)}(X) \). That is to say, the former is zero at \(x \) if and only if one of the latter are zero at \(x \). Therefore,

\[
\chi_{\ell}(x) \left(F_{(\tilde{s})}(x) \right) = \chi_{\ell(\tilde{s}^\prime)}(x) \chi_{\ell(s^\prime)}(x)
\]

Iterating this process then we get the result with the Chinese Remainder Theorem.

\[\square \]

Corollary 4.3. \(\epsilon_{\tilde{s},\tilde{\omega}} \) uniquely determines and is uniquely determined by \(\epsilon_{\tilde{s},\tilde{\omega}_p} \) for all \(p \mid r_n \).

Proof. Straight forward from Lemma 4.2.

\[\square \]

Lemma 4.4. For any \(\tilde{s} = (s_1, \ldots, s_n) \in \mathcal{S} \), define \(\bar{s}_j \) to be the vector in \(\mathcal{S} \) that has \(s_j \) in the \(j \)th coordinate and 1 everywhere else. Let \(\bar{1} = (1, \ldots, 1) \in \Omega_{\bar{s}_j} \subset \Omega_{\tilde{s}} \). If \(\{ \epsilon_{\tilde{s},\tilde{\omega}} : \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}} \} \) is admissible and \(\epsilon_{\tilde{s},\tilde{\omega}} \not\equiv 0 \) for all \(j \) then

\[
\epsilon_{\tilde{s},\tilde{\omega}} = \prod_{j=1}^{n} \omega_j^{s_j_{\tilde{\omega}_j}}
\]

Proof. Recall that \(F_{j}(X) = \prod_{s \in \mathcal{R}} f_{s_j}(X) \). For all \(s_j \rvert r_j \) define

\[
F_{j,s_j}(X) := \prod_{s \in \mathcal{R}} f_{s_j}(X)^{s_j} = F_{(\bar{1})}(X).
\]

Therefore, there exists an \(H \) such that

\[
\prod_{j=1}^{n} F_{j,s_j}(X)^{\ell_j \omega_j} = F_{(\tilde{s})}(X)H(X)^{\ell_{\tilde{s}}}.
\]

Hence, if \(F_{j,s_j}(x) \neq 0 \) for all \(j \), then \(H(x) \neq 0 \) and

\[
\epsilon_{\tilde{s},\tilde{\omega}} = \chi_{\ell(\tilde{s})}(F_{(\tilde{s})}(x)) = \prod_{j=1}^{n} \omega_j^{s_j_{\tilde{\omega}_j}}(F_{j,s_j}(x)) = \prod_{j=1}^{n} \epsilon_{\tilde{s},\tilde{\omega}_j}.
\]

\[\square \]

As in the cyclic case in [9], it will be important to keep track of when and how an admissible set can have zero values. Fix a \(\tilde{\beta} \) such that \(f_{\tilde{\beta}}(x) = 0 \). Then \(F_{(\tilde{s})}(x) = 0 \) if and only if \(f_{\tilde{\beta}}(X) \mid F_{(\tilde{s})}(X) \) if and only if

\[
\sum_{j=1}^{n} \frac{\ell(\tilde{s})}{s_j} \omega_j_{\beta_j} \not\equiv 0 \pmod{\ell(\tilde{s})}.
\]

Define the set

\[
A_{\tilde{\beta}} := \{ \tilde{s}, \tilde{\omega} : \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}}, \sum_{j=1}^{n} \frac{\ell(\tilde{s})}{s_j} \omega_j_{\beta_j} = 0 \pmod{\ell(\tilde{s})} \}.
\]

Then \(F_{(\tilde{s})}(X) \neq 0 \) if and only if \((\tilde{s}, \tilde{\omega}) \in A_{\tilde{\beta}} \).
There is a natural bijective correspondence from \(A_{\vec{\beta}} \) to
\[\{ \vec{\omega} \in R^1 : \sum_{j=1}^{n} \frac{r_j}{r_n} \omega_j \beta_j \equiv 0 \pmod{r_n} \} \]
which sends \((\vec{s}, \vec{\omega}) \rightarrow (\frac{r_1}{s_1} \omega_1, \ldots, \frac{r_n}{s_n} \omega_n)\) where
\[R^1 = [1, \ldots, r_1] \times \cdots \times [1, \ldots, r_n]. \]

We will equate the definition of \(A_{\vec{\beta}} \) with this set and either talk about \((\vec{s}, \vec{\omega}) \in A_{\vec{\beta}}\)
using the first definition or just \(\vec{\omega} \in A_{\vec{\beta}}\) using the second definition depending on
whichever is the most convenient.

Let \(R' = R \cup \{(0, \ldots, 0)\} \) and define an equivalence relationship of \(R' \) by \(\vec{\beta} \sim \vec{\beta}' \)
if and only if \(A_{\vec{\beta}} = A_{\vec{\beta}'} \). Let \(\tilde{R} = R' / \sim \) and write \([\vec{\beta}] \in \tilde{R}\) as the equivalence class
of \(\vec{\beta} \) in \(\tilde{R} \).

Definition 4.5. An admissible set
\[\{ \vec{\epsilon}_{\vec{s}, \vec{\omega}} \in \mu_{\ell(\vec{s})} \cup \{0\}, \vec{s} \in S, \vec{\omega} \in \Omega_x \} \]
is called \([\vec{\beta}]\)-admissible if \(\vec{\epsilon}_{\vec{s}, \vec{\omega}} = 0 \) if and only if \((\vec{s}, \vec{\omega}) \notin A_{\vec{\beta}}\).

Remark 4.6. If \(\{ \vec{\epsilon}_{\vec{s}, \vec{\omega}} : \vec{s} \in S, \vec{\omega} \in \Omega_x \} \) is \([0]\)-admissible then \(\vec{\epsilon}_{\vec{s}, \vec{\omega}} \neq 0 \) for all \(\vec{s} \in S, \vec{\omega} \in \Omega_x \).

It will be useful later to classify the equivalence classes of \(\tilde{R} \). Towards this, for all \(p| r_n \), define
\[S_p = \{ \vec{s} = (s_1, \ldots, s_n) : s_j = p^{v_j}, 0 \leq v_j \leq v_p(r_j) \} \subset S \]
\[A_{\vec{\beta}, p} := \{ (\vec{s}, \vec{\omega}) : \vec{s} \in S_p, \vec{\omega} \in \Omega_x \sum_{j=1}^{n} \frac{\ell(\vec{s})}{s_j} \omega_j \beta_j \equiv 0 \pmod{\ell(\vec{s})} \} \]
\[= \{ \vec{\omega} \in R_p^1 : \sum_{j=1}^{n} p^{v_p(r_j) - v_p(r_j)} \omega_j \beta_j \equiv 0 \pmod{p^{v_p(r_n)}} \} \]
where we identify the two sets under the map \((\vec{s}, \vec{\omega}) \rightarrow (p^{v_p(r_1)} \omega_1, \ldots, p^{v_p(r_n)} \omega_n) \)
and \(R_p = [1, \ldots, p^{v_p(r_1)}] \times \cdots \times [1, \ldots, p^{v_p(r_n)}] \).

Then say \(\vec{\beta} \sim_p \vec{\beta}' \) if \(A_{\vec{\beta}, p} = A_{\vec{\beta}', p} \). Clearly, \(\vec{\beta} \sim \vec{\beta}' \) if and only if \(\vec{\beta} \sim_p \vec{\beta}' \) for all \(p| r_n \).

Lemma 4.7. If \(\vec{\beta} \sim_p \vec{\beta}' \) then \(v_p((\beta_j, r_j)) = v_p((\beta'_j, r_j)) \) for \(j = 1, \ldots, n \).

Proof. Let \(\vec{s} = (1, \ldots, 1, p^{v_p((\beta_j, r_j))}, 1, \ldots, 1) \), where the \(p^{v_p((\beta_j, r_j))} \) is in the \(j \)th coordinate. Then \((\vec{s}, (1, \ldots, 1)) \in A_{\vec{\beta}, p} = A_{\vec{\beta}', p} \). This implies that
\[\beta'_j \equiv 0 \pmod{p^{v_p((\beta_j, r_j))}} \]
And so \(v_p(\beta'_j) \geq v_p((\beta_j, r_j)) \). If \(v_p(\beta_j) \geq v_p(r_j) \) then \(v_p((\beta_j, r_j)) = v_p(r_j) \). Hence \(v_p((\beta'_j, r_j)) = r_j = v_p((\beta_j, r_j)) \). If \(v_p(\beta_j) < v_p(r_j) \) then \(v_p(\beta'_j) \geq v_p(\beta_j) \). Similarly, we can show that \(v_p(\beta_j) \geq v_p((\beta'_j, r_j)) \). Thus \(v_p((\beta'_j, r_j)) < v_p(r_j) \). Therefore, \(v_p((\beta'_j, r_j)) = v_p(\beta'_j) \) and we get out result. \(\square \)
Lemma 4.8. $\vec{\beta} \sim_p \vec{\gamma}$ if and only if there exists an $1 \leq m \leq p^{\max (0, \max (v_p (\frac{r_j}{r_j})))}$, $(m, p) = 1$ such that $\beta'_j \equiv m \beta_j \pmod{p^{v_p (r_j)}}$ for all j.

Proof. Suppose $\vec{\beta} \sim_p \vec{\gamma}$. Then we can find an m_j such that $1 \leq m_j \leq p^{\max (0, v_p (\frac{r_j}{r_j})))}$, $(m_j, p) = 1$ and

$$\beta'_j \equiv m_j \beta_j \pmod{p^{v_p (r_j)}}.$$

Moreover, for all j, define γ_j to be such that

$$\beta_j = p^{v_p (\beta_j)} \gamma_j.$$

Let k be such that $\min (v_p (\frac{r_j}{r_j} \beta_j)) = v_p (\frac{r_j}{r_j} \beta_k)$. Fix a_j and let $1 \leq \omega_k \leq p^{v_p (r_k)}$ be smallest such that

$$\omega_k \equiv -p^{v_p (\frac{r_j}{r_j} \beta_k)} \gamma_j \gamma_k^{-1} \pmod{p^{\max (0, v_p (\frac{r_j}{r_j})))}}.$$

Define $\vec{\omega} \in \mathcal{R}'_1$ such that $\omega_j = 1$, ω_k is as above and $\omega_l = p^{v_p (r_l)}$ otherwise. Then $\vec{\omega} \in A_{\vec{\beta}, p} = A_{\vec{\beta}, p}$. Hence,

$$0 \equiv p^{v_p (\frac{r_j}{r_j} \beta_k)} \omega_k + p^{v_p (\frac{r_j}{r_j} \beta_j)} \beta'_j \equiv p^{v_p (\frac{r_j}{r_j} \beta_k)} \beta_k \omega_k + p^{v_p (\frac{r_j}{r_j} \beta_j)} \beta_j m_j$$

$$\equiv -p^{v_p (\frac{r_j}{r_j} \beta_k)} \gamma_k m_k + p^{v_p (\frac{r_j}{r_j} \beta_j)} \gamma_j \gamma_k^{-1} + p^{v_p (\frac{r_j}{r_j} \beta_j)} \gamma_j \beta_j m_j$$

$$\equiv p^{v_p (\frac{r_j}{r_j} \beta_k)} \gamma_j (m_j - m_k) \pmod{p^{v_p (r_k)}}.$$

Therefore,

$$m_j \equiv m_k \pmod{p^{\max (0, v_p (\frac{r_j}{r_j})))}}.$$

Hence,

$$\beta'_j \equiv m_j \beta_j \equiv m_k \beta_j \pmod{p^{v_p (r_k)}}.$$

So, setting $m = m_k$ gives our desired result.

Conversely, suppose there exists an $1 \leq m \leq p^{\max (0, \max (v_p (\frac{r_j}{r_j})))}$, $(m, p) = 1$ such that $\beta'_j \equiv m \beta_j \pmod{p^{v_p (r_j)}}$ for all j. Let $\vec{\omega} \in A_{\vec{\beta}, p}$. Then

$$\sum_{j=1}^{n} p^{v_p (r_j)} - v_p (r_j) \omega_j \beta_j' \equiv \sum_{j=1}^{n} p^{v_p (r_j)} - v_p (r_j) \omega_j m \beta_j \equiv m \sum_{j=1}^{n} p^{v_p (r_j)} - v_p (r_j) \omega_j \beta_j \equiv 0 \pmod{p^{v_p (r_k)}}.$$

Therefore, $\vec{\omega} \in A_{\vec{\beta}, p} - A_{\vec{\gamma}, p}$. However, since $(m, p) = 1$, we can find an m' such that $\beta_j \equiv m' \beta'_j$. From which we get $A_{\vec{\beta}, p} \subset A_{\vec{\gamma}, p}$ and therefore $A_{\vec{\beta}, p} = A_{\vec{\gamma}, p}$ and $\vec{\beta} \sim_p \vec{\gamma}$.

$$\square$$

Note that

$$\prod_{p|r_n} p^{\max (0, \max (v_p (\frac{r_j}{r_j})))} = \ell c \left(\frac{r_j}{(r_j, \beta_j)} \right) = e(\vec{\beta}).$$

For any natural number m and $\vec{\beta} \in \mathcal{R}'$, define $m \vec{\beta} = (m \beta_1 \pmod{r_1}, \ldots, m \beta_n \pmod{r_n})$.

Corollary 4.9. $\vec{\beta} \sim \vec{\gamma}$ if and only if there exists an $1 \leq m \leq e(\vec{\beta})$, $(m, e(\vec{\beta})) = 1$ such that $m \vec{\beta} = m \vec{\gamma}.$
Proof. Suppose $\tilde{\beta} \sim \tilde{\beta}'$. Then $\tilde{\beta} \sim_p \tilde{\beta}'$ for all $p|\gamma_n$ and we can find an $1 \leq m_p \leq p_{\max(0, \min(v_p(\tilde{\beta}_j))}$, $(m_p, p) = 1$ such that $\beta_j = m_p \beta_j$ (mod $p_{\max(0, \min(v_p(\tilde{\beta}_j))}$). Let $1 \leq m \leq \prod_{p|\gamma_n} p_{\max(0, \min(v_p(\tilde{\beta}_j))}$, $(m, \gamma_n) = 1$ such that $m \equiv m_p \pmod{p_{\max(0, \min(v_p(\tilde{\beta}_j))}}$ for all $p|\gamma_n$. Then $\beta_j \equiv m \beta_j$ (mod r_j) and $\tilde{\beta}' = m \tilde{\beta}$.

Conversely, suppose such an m exists. Then let $m_p \equiv m \pmod{p_{\max(0, \min(v_p(\tilde{\beta}_j))}}$. Then $\beta_j \equiv m_p \beta_j$ (mod $p_{\max(\gamma_n)}$). Thus $\tilde{\beta} \sim_p \tilde{\beta}'$ for all p and therefore $\tilde{\beta} \sim \tilde{\beta}'$.

□

Corollary 4.10. There are $\phi(e(\tilde{\beta}))$ different $\tilde{\beta}'$ such that $\tilde{\beta}' \sim \tilde{\beta}$.

Proof. It is easy to see that, by construction, all the $m \tilde{\beta}$ are distinct for $1 \leq m \leq e(\tilde{\beta})$, $(m, e(\tilde{\beta})) = 1$.

□

Lemma 4.11. $|A_{\tilde{\beta}, p}| = p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_n) - v_p(e(\tilde{\beta}))}$

Proof. Consider the map

$\phi_{\tilde{\beta}} : \mathbb{Z}/p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_n) - v_p(e(\tilde{\beta}))} \to \mathbb{Z}/p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_n)}$

$(x_1, \ldots, x_n) \to \sum_{j=1}^{n} p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_n) - v_p(r_j)} \beta_j x_j$

Then $A_{\tilde{\beta}, p} = \ker(\phi_{\tilde{\beta}})$. Let $1 \leq k \leq n$ such that $v_p(\tilde{\beta}k) = \min(v_p(\tilde{\beta}_j))$. Then $\ker(\phi_{\tilde{\beta}}) \subseteq \mathbb{Z}/p_{\max(0, v_p(\tilde{\beta}))}^{\gamma_k}$.

Moreover

$\phi_{\tilde{\beta}}(0, \ldots, 0, x_k, 0, \ldots, 0) = p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_k)} \gamma_k x_k$

where $\beta_k = p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_k)} \gamma_k$. Therefore, since $(\gamma_k, p) = 1$, we get that $\ker(\phi_{\tilde{\beta}}) = \mathbb{Z}/p_{\max(0, v_p(\tilde{\beta}))}^{\gamma_k}$.

Hence

$|A_{\tilde{\beta}, p}| = |\ker(\phi_{\tilde{\beta}})| = p_{\max(0, v_p(\tilde{\beta}))}^{\gamma_k} = p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_n) - v_p(e(\tilde{\beta}))}$.

□

Corollary 4.12. $|A_{\tilde{\beta}}| = \frac{|G|}{e(\tilde{\beta})}$

Proof.

$|A_{\tilde{\beta}}| = \prod_{p|r_n} |A_{\tilde{\beta}, p}| = \prod_{p|r_n} p_{\max(0, v_p(\tilde{\beta}))}^{v_p(\gamma_n) - v_p(e(\tilde{\beta}))} = \frac{|G|}{e(\tilde{\beta})}$.

□

5. Value Taking

In this section we will determine for $0 \leq \ell \leq q$, the size of the set

$$\{ f_{\tilde{s}, \omega, i} \in \mathcal{F}_{\tilde{s}, \omega, \ell} : \chi_i(\tilde{s})(F_{\tilde{s}}(x_i)) = \epsilon_{i, \omega, \ell}(\tilde{s}) \}$$

where for $i = 1, \ldots, \ell$, the set

$$\{ \epsilon_{i, \omega, i} \in \mu_{\ell}(\tilde{s}) \cup \{ 0 \} : \tilde{s} \in \mathcal{S}, \omega \in \Omega_{\tilde{s}} \}$$

is admissible.
Remark 5.1. Since we are assuming for now that \(\ell \leq q \), we are only dealing with the affine points, hence we need only look at the set \(\mathcal{F}_{\vec{d};(\vec{\alpha})} \). If we want to incorporate the point at infinity by setting \(\ell = q + 1 \), we need to consider the full set \(\mathcal{F}_{[d;(\vec{\alpha})]} \) as will be done in Proposition 5.8.

Define \(\vec{\rho}_j = (1, \ldots, r_j, \ldots, 1) \in S \) where the \(r_j \) is in the \(j^{th} \) coordinate. Denote \(\vec{\Gamma} = (1, \ldots, 1) \). Then

\[
F_j(X) := \prod_{\vec{\alpha} \in R} F^{(\vec{\alpha})}_{\vec{\rho}_j} = F^{(\vec{\Gamma})}_{(\vec{\rho}_j)}(X).
\]

By Lemmas 4.2 and 4.4, we get that if \(\epsilon_{\vec{\xi},\vec{\omega},i} \neq 0 \) for all \(\vec{\xi} \in S, \vec{\omega} \in \Omega_x \) and \(i = 1, \ldots, \ell \), then the values of \(\epsilon_{\vec{\xi},\vec{\omega},i} \) will be uniquely determined by the values of \(\epsilon_{\vec{\rho}_j,\vec{\Gamma},i} \) for \(j = 1, \ldots, n \), \(i = 1, \ldots, \ell \). Moreover, (5.2) will be admissible for any choices of \(\epsilon_{\vec{\rho}_j,\vec{\Gamma},i} \). Therefore,

\[
|\{(f_{\vec{\alpha}}) \in \mathcal{F}_{d;\vec{\alpha}} : \chi_{(\vec{\alpha})}(F^{(\vec{\alpha})}_{\vec{x}}(x_i)) = \epsilon_{\vec{\xi},\vec{\omega},i} \in S, \vec{\omega} \in \Omega_x, i = 1, \ldots, \ell \}|\]

\[
= |\{(f_{\vec{G}}) \in \mathcal{F}_{d;\vec{G}} : \chi_{(\vec{G})}(F^{(\vec{G})}_{\vec{x}}(x_i)) = \epsilon_{\vec{\rho}_j,\vec{\Gamma},i} \in S, \vec{\omega} \in \Omega_x, i = 1, \ldots, \ell, j = 1, \ldots, n \}|\]

The size of this set is easily deduced from Proposition 3.4 of [9].

Proposition 5.2. Let \(\vec{d}(\vec{\alpha}) \) be as above. For \(0 \leq \ell \leq q \) let \(\epsilon_{\vec{\rho}_j,\vec{\Gamma},i} \in \mu_{r_j} \) for \(i = 1, \ldots, \ell \). Then the size of

\[
\{ (f_{\vec{\alpha}}) \in \mathcal{F}_{d;\vec{\alpha}} : \chi_{r_j}(F^{(\vec{\alpha})}_{j}(x_i)) = \epsilon_{\vec{\rho}_j,\vec{\Gamma},i}, 1 \leq i \leq \ell, 1 \leq j \leq n \}
\]

is

\[
S_n(\ell) = \frac{L_{|G|} - 2q\sum d(\vec{\alpha})}{\zeta_q(2)|G|^{n-1}} \left(\prod_{\vec{\alpha} \in R} \frac{q}{|G|(q + |G| - 1)} \right)^{\ell} \left(1 + O \left(q^{\frac{\min(d(\vec{\alpha}))}{2}} \right) \right)
\]

where \(\zeta_q(s) \) is the zeta function for \(K \) and

\[
L_n = \prod_{j=1}^{n} \frac{1 - \frac{j}{(|P| - 1)(|P| + j)}}{p}
\]

where the product is over all monic, irreducible polynomials of \(K \) and \(|P| = q^{\deg(P)} \).

Remark 5.3. First, note that \(|G| = r_1 \cdots r_n \). Moreover, Proposition 3.4 of [9] does not rely on the fact that the \(r_j | r_{j+1} \) and hence define a group. Secondly, observe that the size of the set is independent of the choices of \(\epsilon_{\vec{\rho}_j,\vec{\Gamma},i} \) as long as they are non-zero.

Remark 5.4. The error term is written in terms of \(\min(d(\vec{\alpha})) \) and so is only smaller than the main term if \(\min(d(\vec{\alpha})) \) tends to infinity. This is equivalent to saying that all the \(d(\vec{\alpha}) \) tend to infinity. This calculation is why we need that assumption in the Theorem 1.2 and why we can not easily extend this result to the whole space \(\mathcal{H}_{G,q} \). Therefore, improving this error term is one way in which we could extend the result however, this seems unlikely. A different method for doing this is the topic of a forthcoming paper by the author.

Corollary 5.5.

\[
|\mathcal{F}_{d;\vec{\alpha}}| = \frac{(q - 1)^n(q + |G| - 1) L_{|G|-2q\sum d(\vec{\alpha})}}{\zeta_q(2)|G|^{n-1}} \left(1 + O \left(q^{\frac{\min(d(\vec{\alpha}))}{2}} \right) \right)
\]
Proof. This is straight forward from setting $\ell = 0$ in Proposition 5.2 and summing up over the components of $\mathcal{F}_{d(\vec{a})}$ and choices of $\vec{c} \in (\mathbb{F}_q^n)$.

\[\square \]

Let us now determine the size of the set if some of the $\epsilon_{\vec{s}, \vec{\omega}, i}$ can be zero. With the notation of Section 4, we would need the set in 5.2 to be $[\vec{\beta}]$-admissible for some $[\vec{\beta}] \in \tilde{\mathcal{R}}$.

Proposition 5.6. Let $\{\epsilon_{\vec{s}, \vec{\omega}, i} : \vec{s} \in \mathcal{S}, \vec{\omega} \in \Omega_\mathcal{S}\}$ be an admissible set for $1 \leq i \leq \ell$ such that

$$m_{[\vec{\beta}]} := |\{1 \leq i \leq \ell : \{\epsilon_{\vec{s}, \vec{\omega}, i} : \vec{s} \in \mathcal{S}, \vec{\omega} \in \Omega_\mathcal{S}\} \text{ is } [\vec{\beta}] \text{-admissible}\}|$$

then

$$\left\{ \left\{(f_{\vec{a}}) \in \mathcal{F}_{d(\vec{a})} : \chi_{\ell(\vec{a})}(F^{(\vec{a})}_{\vec{s}}(x_i)) = \epsilon_{\vec{s}, \vec{\omega}, i}, \vec{s} \in \mathcal{S}, \vec{\omega} \in \Omega_\mathcal{S}, i = 1, \ldots, \ell \right\} \right\}$$

$$= \frac{L(G) - 2q^{\sum d(\vec{a})}}{\zeta_q(2)^{G-1}} \prod_{[\vec{\beta}] \in \tilde{\mathcal{R}}} \frac{\phi(e(\vec{\beta}^2))}{|G|(q + |G| - 1)} m_{[\vec{\beta}]} \left(q \frac{q}{|G|(q + |G| - 1)} \right)^{m_{[\vec{\beta}]} \left(1 + O(q^{-\min(d(\vec{a}))}) \right)}.$$
by $\chi_{r_j} (G_{j,r_j}(x_i))$, for $j = 1, \ldots, n$. Moreover, by Corollary 4.3 these will be determined by

$$
\chi_{p^r(r_j)} \left(G_{j,p^r(r_j)}(x_i) \right)
$$

for all $p|r_n$, $j = 1, \ldots, n$.

Now fix an $i \in M_{\beta}$. If $(\bar{s}, \bar{\omega}) \in A_{\beta}$, then

$$
F_{(\bar{s}, \bar{\omega})}^{(\gamma)}(X) = G_{(\bar{s}, \bar{\omega})}^{(\gamma)}(X)H(X)
$$

for some $H(X)$ such that $H(x_i) \neq 0$. Moreover, $H(X)$ depends only on the choice of partitions of the M_{β}. Therefore, for a fixed partition, we see that $\chi_{(\bar{s}, \bar{\omega})} (G_{(\bar{s}, \bar{\omega})}^{(\gamma)}(x_i))$ will be determined by $\chi_{(\bar{s}, \bar{\omega})} (F_{(\bar{s}, \bar{\omega})}^{(\gamma)}(x_i))$ for all $(\bar{s}, \bar{\omega}) \in A_{\beta}$. It remains to determine how many choices there are for $\chi_{(\bar{s}, \bar{\omega})} (G_{(\bar{s}, \bar{\omega})}^{(\gamma)}(x_i))$ such that $(\bar{s}, \bar{\omega}) \not\in A_{\beta}$.

Fix a $p|r_n$ and let k be such that

$$
\min \left(v_p \left(\frac{r_n}{r_j} \beta_j \right) \right) = v_p \left(\frac{r_n}{r_k} \beta_k \right)
$$

Then I claim that if we know $\chi_{p^r(r_k)} (G_{k,p^r(r_k)}(x_i))$ then we know $\chi_{p^r(r_j)} (G_{j,p^r(r_j)}(x_i))$ for all $1 \leq j \leq n$. If we write $\beta_j = p^{\nu_j}(\beta_j), r_j = p^{\nu_j}(r_j)s_j$ where $(\gamma_j, p) = (s_j, p) = 1$ and let

$$
\omega'_k \equiv \gamma_k^{-1} \beta_k \omega'_k s_k \pmod{v_p(f_n(x_n))},
$$

then we see that

$$
\frac{r_n}{r_k} \beta_k \omega'_k s_k + \frac{r_n}{r_j} \beta_j s_j \equiv 0 \pmod{r_n}
$$

Therefore, defining $\bar{\omega} \in \mathcal{R}^\dagger$ as $\omega_j = s_j, \omega_h = r_h, h \neq j, k$ and $\omega_k = \omega'_k s_k$, then $\bar{\omega} \in A_{\beta}$. So, defining $\bar{p} = (p^{\nu_j}(r_1), \ldots, p^{\nu_j}(r_n))$ we get by Lemma 4.4,

$$
\chi_{p^r(r_n)} \left(G_{(\bar{s}, \bar{\omega})}^{(\gamma)}(x_i) \right) = \chi_{p^r(r_n)} \left(G_{k,p^r(r_k)}(x_i) \right) \chi_{p^r(r_j)} \left(G_{j,p^r(r_j)}(x_i) \right)
$$

Moreover, as stated above, $\chi_{p^r(r_n)} \left(G_{(\bar{s}, \bar{\omega})}^{(\gamma)}(x_i) \right)$ is fixed by $\chi_{p^r(r_n)} \left(F_{(\bar{s}, \bar{\omega})}^{(\gamma)}(x_i) \right)$ and our choices of M_{β}. Hence knowing $\chi_{p^r(r_k)} (G_{k,p^r(r_k)}(x_i))$ fixes $\chi_{p^r(r_j)} (G_{j,p^r(r_j)}(x_i))$.

Therefore, to determine the number of possible values for $\chi_{p^r(r_j)} (G_{j,p^r(r_j)}(x_i))$, $j = 1, \ldots, n$, it is enough to determine the possible values for $\chi_{p^r(r_k)} (G_{k,p^r(r_k)}(x_i))$.

Finally, since $\chi_{p^r(r_k)} (G_{k,p^r(r_k)}(x_i))$ is determined by $\chi_{p^r(r_k)} (F_{k,p^r(r_k)}(x_i))$ and the choice of M_{β} there are $p^{\max(v_p(f_n(x_n))), 0}$ choices for $\chi_{p^r(r_k)} (G_{k,p^r(r_k)}(x_i))$.

All together, therefore, there are

$$
\prod_{p \mid r_n} p^{\max(0, \max_j (v_p(r_j)))} = \prod_{j=1, \ldots, n} \left(\frac{r_j}{(r_j, \beta_j)} \right) = e(\beta)
$$

different choices for

$$
\chi_{p^r(r_j)} \left(G_{j,p^r(r_j)}(x_i) \right) \text{ for all } p \mid r_n, j = 1, \ldots, n
$$

and hence $e(\beta)$ different choices for

$$
\chi_{(\bar{s}, \bar{\omega})}(G_{(\bar{s}, \bar{\omega})}^{(\gamma)}(x_i)), \bar{s} \in \mathcal{S}, \bar{\omega} \in \Omega_{\bar{s}}
$$

for a fixed choice of the M_{β}.
Therefore,
\[
\begin{align*}
&\left| \{(f_{\bar{\alpha}}) \in \mathcal{F}_{\bar{\alpha}} : \chi_{\ell(\bar{\alpha})}(F_{\bar{\alpha}}(x_i)) = \epsilon_{x,\bar{\omega},i}, \bar{s} \in S, \bar{\omega} \in \Omega_{\bar{\alpha}}, i = 1, \ldots, \ell \} \right| \\
= & \sum_{M_\beta} \sum_{\epsilon'_{x,\bar{\omega},i}} \left| \{(g_{\bar{\alpha}}) \in \mathcal{F}_{\bar{\alpha}} : \chi_{\ell(\bar{\alpha})}(G_{\bar{\alpha}}(x_i)) = \epsilon'_{x,\bar{\omega},i}, \bar{s} \in S, \bar{\omega} \in \Omega_{\bar{\alpha}}, i = 1, \ldots, \ell \} \right|
\end{align*}
\]
where the first sum is over all the partitions \(M_\beta = \bigcup_{\tilde{\beta} \sim \beta} M_\beta\), the second sum is over all \(\epsilon(\tilde{\beta})\) choices of \(\chi_{\ell(\bar{\alpha})}(G_{\bar{\alpha}}(x_i))\) and \(\tilde{\beta}(\bar{\alpha})\) is the vector such that \(d'(\bar{\alpha}) = d(\bar{\alpha}) - m_{\bar{\alpha}}\). Now since \(\epsilon'_{x,\bar{\omega},i} \neq 0\) for all \(\bar{s} \in S, \bar{\omega} \in \Omega_{\bar{\alpha}}, i = 1, \ldots, \ell\), we get by Proposition 5.2, the above line is equal to
\[
\sum_{M_\beta} \sum_{\epsilon'_{x,\bar{\omega},i}} \frac{L_{(\bar{\alpha})}(-q)^{\sum d'_{(\bar{\alpha})}}}{\zeta_0(2)^{|G|}} \left(\frac{q}{|G|(q + |G| - 1)} \right)^\ell \left(1 + O \left(q^{-\frac{\min(d(\bar{\alpha}))}{2}} \right) \right)
\]
\[
= \sum_{M_\beta} \prod_{[\tilde{\beta} \in R} \left(\frac{q}{|G|(q + |G| - 1)} \right)^m_{[\tilde{\beta}]} \left(1 + O \left(q^{-\frac{\min(d(\bar{\alpha}))}{2}} \right) \right)
\]
where the last equality comes from Corollary 4.3 that states that there are \(\phi(\epsilon(\tilde{\beta}))\) different \(\tilde{\beta}'\) such that \(\tilde{\beta}' \sim \tilde{\beta}\).

\[
\square
\]
Recall that \(x_{q+1}\) is the point at infinity and if \((\bar{c}, (f_{\bar{\alpha}})) \in \hat{\mathcal{F}}_{\bar{\alpha}}\), then
\[
F_{\bar{\alpha}}(x_{q+1}) = \begin{cases}
0 & \text{if } \sum_{j=1}^n \frac{\ell(\bar{\omega})}{\epsilon_{x,j}(s)} \omega_j d_j \equiv 0 \mod \ell(\bar{\omega}) \\
\epsilon_{x,j}(s) & \sum_{j=1}^n \frac{\ell(\bar{\omega})}{\epsilon_{x,j}(s)} \omega_j d_j \neq 0 \mod \ell(\bar{\omega})
\end{cases}
\]

Proposition 5.8. Let \(\{\epsilon_{x,\bar{\omega},i} : \bar{s} \in S, \bar{\omega} \in \Omega_{\bar{\alpha}}\}\) be an admissible set for \(1 \leq i \leq q + 1\) such that
\[
m_{[\tilde{\beta}]} := |\{1 \leq i \leq q + 1 : \epsilon_{x,\bar{\omega},i} : \bar{s} \in S, \bar{\omega} \in \Omega_{\bar{\alpha}}\} is \tilde{\beta} - admissible|
\]
then
\[
\left| \{(\bar{c}, (f_{\bar{\alpha}})) \in \hat{\mathcal{F}}_{\bar{\alpha}} : \chi_{\ell(\bar{\alpha})}(F_{\bar{\alpha}}(x_i)) = \epsilon_{x,\bar{\omega},i}, \bar{s} \in S, \bar{\omega} \in \Omega_{\bar{\alpha}}, i = 1, \ldots, q + 1 \} \right|
\]
\[
= \frac{(q - 1)^n(q + |G| - 1)}{q} \prod_{[\tilde{\beta} \in R} \left(\frac{q}{|G|(q + |G| - 1)} \right)^m_{[\tilde{\beta}]} \left(1 + O \left(q^{-\frac{\min(d(\bar{\alpha}))}{2}} \right) \right)
\]
Remark 5.9. Notice that we are looking at \((\vec{c}, (f_\vec{s})) \in \hat{\mathcal{F}}_{\vec{d}(\vec{c})}\). That is, when we add in the point at infinity, we must consider the whole irreducible coarse moduli space.

Proof. **Case 1:** \(\epsilon_{k, \vec{s}, q+1} \neq 0\) for all \(\vec{s} \in S, \vec{w} \in \Omega_{\vec{x}}\).

This means that \((\vec{c}, (f_\vec{c})) \in \hat{\mathcal{F}}_{\vec{d}(\vec{c})}\) and \(\chi_{\ell}(\vec{s})(F_{\vec{s}}(x_{q+1}))\) will be determine by \(\chi_{r_j}(F_j(x_{q+1})), j = 1, \ldots, n\). Moreover, \(\chi_{r_j}(c_j) = \chi_{r_j}(F_j(x_{q+1}))\), so \(c_j\) has \((q-1)/r_j\) choices for all \(j\). That is

\[
|\{(\vec{c}, (f_\vec{c})) \in \hat{\mathcal{F}}_{\vec{d}(\vec{c})} : \chi_{\ell}(\vec{s})(F_{\vec{s}}(x_i)) = \epsilon_{k, \vec{s}, i}, \vec{s} \in S, \vec{w} \in \Omega_{\vec{x}}, 1 \leq i \leq q + 1\}| = \sum_{c_j} |\{(f_\vec{s}) \in \mathcal{F}_{\vec{d}(\vec{c})} : \chi_{\ell}(\vec{s})(F_{\vec{s}}(x_i)) = \epsilon_{k, \vec{s}, i}, \vec{s} \in S, \vec{w} \in \Omega_{\vec{x}}, 1 \leq i \leq q\}|
\]

\[
= \sum_{c_j} \frac{L_{|G|}^{-2q} \sum_{d(\vec{c})} \phi(e(\vec{\beta}))}{\zeta_0(2)|G|^{-1}} \prod_{[\beta] \in \mathcal{R}} \left(\frac{\phi(e(\vec{\beta}))}{|G|(q + |G| - 1)} \right)^{m_{[\beta]}} \frac{q}{|G|(q + |G| - 1)}^{m_{[\beta]} - 1} \left(1 + O \left(q^{\min(m(\vec{d}(\vec{c})))} \right) \right)
\]

where the sum is over all \(c_j\) such that \(\chi_{r_j}(c_j) = \chi_{r_j}(F_j(x_{q+1}))\).

Case 2: the set \(\{\epsilon_{k, \vec{s}, q+1} : \vec{s} \in S, \vec{w} \in \Omega_{\vec{x}}\}\) is \([\vec{\beta}]\)-admissible for some \([\vec{\beta}] \in \hat{\mathcal{R}}, [\vec{\beta}] \neq [\vec{0}]\).

This means that \(\deg(F_j) = \beta_j^\prime\) (mod \(r_j\)) for some \(\vec{\beta} \sim \vec{\beta}\) and that \((\vec{c}, (f_\vec{c})) \in \hat{\mathcal{F}}_{\vec{d}(\vec{c})}\). Fix a \(p|\vec{r}, n\) and let \(k\) be such that \(\sum(v_p(\gamma_j \beta_j^\prime))^j = v_p(\gamma_k \beta_k^\prime)\). Then \(\chi_{p^\gamma_j \beta_j^\prime}(F_{k, p^\gamma_j \beta_j^\prime}(x_{q+1})) = \chi_{p^\gamma_j \beta_j^\prime}(c_k)\). So \(c_k\) has \(\frac{q-1}{p^\gamma_j \beta_j^\prime}\) choices.

Now suppose \(\vec{\beta} = p^\gamma_j \gamma_j\) and let \(\omega_k\) be such that

\[
\omega_k \equiv \gamma_k^{-1} \gamma_j p^{\gamma_j \beta_j^\prime} (r_j \beta_j^\prime)^j (\mod p^{\gamma_j \beta_j^\prime}).
\]

then \(\chi_{p^\gamma_j \beta_j^\prime}(c_k, c_j) \neq 0\) will be fixed. Therefore, for a choice of \(c_k\) there are \(\frac{q-1}{p^\gamma_j \beta_j^\prime}\) choices for \(c_j\) that satisfy this property.

Likewise for another \(p'|\vec{r}, n, p \neq p', k'\) be such that \(\sum(v_p'(\gamma_j' \beta_j'^\prime))^j = v_p'(\gamma_k' \beta_k'^\prime)\). Then the number of choices for \(c_k\) will be divided by \((p')^{\gamma_j' \beta_j'^\prime}\) whereas the number of choice for \(c_j, j \neq k'\) will be divided by \((p')^{\gamma_j' \beta_j'^\prime}\). Hence, the number of choices for the \(c_j\) will be

\[
\frac{(q - 1)^n}{\prod_{p|\vec{r}} (p^{\gamma_j \beta_j^\prime} \prod_{j \neq k} p^{\gamma_j \beta_j^\prime})} = e(\vec{\beta}) \prod_{j = 1}^n \frac{(q - 1)}{r_j}
\]

Moreover, \(m_{[\beta]}\) goes to \(m_{[\beta]} - 1\). So,

\[
|\{(\vec{c}, (f_\vec{c})) \in \hat{\mathcal{F}}_{\vec{d}(\vec{c})} : \chi_{\ell}(\vec{s})(F_{\vec{s}}(x_i)) = \epsilon_{k, \vec{s}, i}, \vec{s} \in S, \vec{w} \in \Omega_{\vec{x}}, 1 \leq i \leq q + 1\}|
\]
Corollary 5.10. Let \(\{ \epsilon_{\tilde{s}, \tilde{\omega}}, i : \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}} \} \) be an admissible set for \(1 \leq i \leq q + 1 \) such that
\[
m_{\tilde{\beta}} := |\{ 1 \leq i \leq q + 1 : \{ \epsilon_{\tilde{s}, \tilde{\omega}}, i : \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}} \} \text{ is } [\tilde{\beta}] - \text{admissible} \}|
\]
then
\[
|\{ (\tilde{c}, (f_{\tilde{s}})) \in \tilde{F}_{[\tilde{d}, \tilde{\alpha}]} : \chi_{\tilde{\alpha}}(F^{(\tilde{\omega})}_{(\tilde{s})}) (x_i) = \epsilon_{\tilde{s}, \tilde{\omega}, i}, \tilde{s}, \tilde{\omega} \in \Omega_{\tilde{x}}, i = 1, \ldots, q + 1 \}| = \prod_{\tilde{\beta} \in \mathcal{R}' \setminus [\tilde{\beta}] \neq 0} \left(\frac{\phi(e(\tilde{\beta})^2)}{|G|(q + |G| - 1)} \right)^{m_{\tilde{\beta}}} \left(\frac{q}{|G|(q + |G| - 1)} \right)^{m_{[\tilde{\beta}]}} \left(1 + O \left(q^{-\frac{\min(d(\tilde{\alpha}))}{2}} \right) \right).
\]

Proof. Straight forward from Proposition 5.8 and Corollary 5.5. \(\square \)

6. PROOF OF THEOREM 1.2

For any \((\tilde{c}, (f_{\tilde{s}})) \in \tilde{F}_{[\tilde{d}, \tilde{\alpha}]} \) and \(x \in \mathbb{P}^1(F_q) \),
\[
\sum_{\tilde{s} \in \mathcal{S}} \sum_{\tilde{\omega} \in \Omega_{\tilde{s}}} \chi_{\tilde{\alpha}} \left(F^{(\tilde{\omega})}_{(\tilde{s})} (x) \right) = |\{ \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}} : \chi_{\tilde{\alpha}} \left(F^{(\tilde{\omega})}_{(\tilde{s})} (x) \right) \neq 0 \}|
\]
if \(\chi_{\tilde{\alpha}} \left(F^{(\tilde{\omega})}_{(\tilde{s})} (x) \right) = 0 \) or 1 for all \(\tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}} \) and 0 otherwise.

Now, if \(\{ \chi_{\tilde{\alpha}} \left(F^{(\tilde{\omega})}_{(\tilde{s})} (x) \right) , \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}} \} \) is \([\tilde{\beta}] \)-admissible then
\[
|\{ \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega_{\tilde{s}} : \chi_{\tilde{\alpha}} \left(F^{(\tilde{\omega})}_{(\tilde{s})} (x) \right) \neq 0 \}| = |A_{\tilde{\beta}}| = \frac{|G|}{e(\tilde{\beta})}
\]
Recall that \(e(\tilde{\beta}) = \text{lcm} \left(\frac{r_j}{(r_j, s_n)} \right) |r_n \). Then the number of points lying over \(x \in \mathbb{P}^1(F_q) \) will be \(\frac{|G|}{s_n} \) for some \(s_n | r_n \).
Proposition 6.1. Let e_1, \ldots, e_{q+1} be such that $e_i = 0$ or $e_i = \frac{|G|}{s_n}$ for some $s_n|r_n$.

For all $s|r_n$ let

$$m_s = \{|1 \leq i \leq q+1 : e_i = \frac{|G|}{s}\}$$

and

$$m_0 = \{|1 \leq i \leq q+1 : e_i = 0\}$$

then

$$\left|\{(\vec{c}, (f_r)) \in \tilde{F}_{[\tilde{\beta}(\tilde{\omega})]} : \sum_{\vec{s} \in \mathcal{S}} \sum_{\tilde{\omega} \in \Omega_{\tilde{\omega}}} \chi_{\ell}(\tilde{\omega}) \left(F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)\right) = e_i, i = 1, \ldots, q+1\}\right|$$

$$= \left(\frac{|G|-1)(q+G|) - \sum_{s|r_n} s \phi_G(s) + 1}{G(q+G| - 1)}\right)^{m_0} \left(\frac{q}{G(q+G| - 1)}\right)^{m_1} \prod_{s|r_n, s \neq 1} \left(\frac{s \phi_G(s)}{G(q+G| - 1)}\right)^{m_s} \times (1 + O\left(q^{-\min(d(G))}\right))$$

where $\phi_G(s)$ is the number of elements of G with order s.

Proof. Let

$$M_s = \{1 \leq i \leq q+1 : e_i = \frac{|G|}{s}\}$$

$$M_0 = \{1 \leq i \leq q+1 : e_i = 0\}$$

If $i \in M_s$, $s \neq 0$, then the set

$$\{\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)), \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega\}$$

will be $[\tilde{\beta}]$-admissible for some $\tilde{\beta}$ such that $e(\tilde{\beta}) = s$. Moreover, if $(\vec{s}, \bar{\omega}) \in A_{\tilde{\beta}}$ then

$$\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)) = 1.$$

Fix a partition of M_s as

$$M_s = \bigcup_{|\tilde{\beta}| = s} \bigcup_{e(\tilde{\beta}) = s} \{i \in M_s : \{\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)), \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega\} \text{ is } [\tilde{\beta}]\text{-admissible}\}$$

and let $m_{s|\tilde{\beta}} = |M_{s|\tilde{\beta}}|$.

If $i \in M_0$, then the set

$$\{\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)), \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega\}$$

can be $[\tilde{\beta}]$-admissible for any $|\tilde{\beta}| \in \tilde{\mathcal{R}}$ as long as at least one of $\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})})$ is 1 or -1.

Fix a partition of M_0 as

$$M_0 = \bigcup_{|\tilde{\beta}| = s} \bigcup_{e(\tilde{\beta}) = s} \{i \in M_0 : \{\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)), \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega\} \text{ is } [\tilde{\beta}]\text{-admissible}\}$$

and let $m_{0|\tilde{\beta}} = |M_{0|\tilde{\beta}}|$.

If $i \in M_{0|\tilde{\beta}}$ then there is only one choice for the set $\{\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)), \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega\}$. (Namely, $\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)) = 1$ if $(\vec{s}, \bar{\omega}) \in A_{\tilde{\beta}}$ and 0 otherwise.) If $i \in M_{0|\tilde{\beta}}$, then there will be $|A_{\tilde{\beta}}| - 1 = \frac{|G|}{e(\tilde{\beta})} - 1$ choices for the set $\{\chi_{\ell}(\tilde{\omega}) (F_{(\tilde{\omega})}^{(\tilde{\beta})}(x_i)), \tilde{s} \in \mathcal{S}, \tilde{\omega} \in \Omega\}$.

Therefore,
\[|\{(\vec{c}, (f_a)) \in \tilde{F}_{[d(\vec{a})]} : \sum_{\vec{s} \in S, \sum_{i=1}^{q+1} \chi_{\ell}(s_i) \left(F^{(i)}_{\vec{a}}(x_i)\right) = \frac{G_i}{s_{n+1}}, i = 1, \ldots, q + 1}\}| \]
\[= \sum_{M_{[\vec{\beta}]} \sum_{M_{0, [\vec{\beta}]}} \sum_{\vec{c}, \vec{d}, \vec{\omega}} \prod_{\vec{\beta} \in \mathcal{R}'} \left(\frac{\phi(e(\vec{\beta}))}{|G||q + |G|-1|} \right)^{m_{\beta} + m_{0, [\beta]}} \left(\frac{q}{|G||q + |G|-1|} \right)^{m_{0, [\vec{\beta}]}} \times \]
\[= \sum_{M_{[\vec{\beta}]}} \sum_{M_{0, [\vec{\beta}]}} \sum_{\vec{c}, \vec{d}, \vec{\omega}} \prod_{\vec{\beta} \in \mathcal{R}'} \left(\frac{\phi(s^2)}{|G||q + |G|-1|} \right)^{m_{s}} \left(\frac{q}{|G||q + |G|-1|} \right)^{m_{1}} \times \]
\[= \prod_{s | r_n} \left(\frac{\phi(s^2)}{|G||q + |G|-1|} \right)^{m_{s}} \sum_{e(\vec{\beta}) = s} 1 = s \sum_{e(\vec{\beta}) = s} 1 \]
\[\sum_{\vec{\beta} \in \mathcal{R}} \phi(e(\vec{\beta}))|G| - e(\vec{\beta}) = \sum_{\vec{\beta} \in \mathcal{R}} (|G| - e(\vec{\beta})) = (|G| - 1)|G| - \sum_{\vec{\beta} \in \mathcal{R}} e(\vec{\beta}). \]

Now, for every $\vec{\beta} \in \mathcal{R}'$, we can view it in a natural way as element of G. Moreover, the order of $\vec{\beta}$ would be $e(\vec{\beta})$. Hence $s \sum_{e(\vec{\beta}) = s} 1 = s \phi_G(s)$. Further
\[\sum_{\vec{\beta} \in \mathcal{R}} e(\vec{\beta}) = \sum_{s | r_n} s \sum_{e(\vec{\beta}) = s} 1 = \sum_{s | r_n} s \phi_G(s) - 1. \]

Finally, we end it with the proof of Theorem 1.2.
Proof of Theorem 1.2.

\[
\left| \left\{ C \in H^1(d(\tilde{\alpha})) : \#C(\mathbb{P}^1(\mathbb{F}_q)) = M \right\} \right| \\
\frac{\left| H^1(d(\tilde{\alpha})) \right|}{\sum_{e_1, \ldots, e_{q+1}} \sum_{\sum e_i = M} \left| \{ (c_i, (f_\alpha)) \in \hat{F}_{|d(\tilde{\alpha})|} : \sum_{i \in S} \chi(\ell(x_i)) = e_i, i = 1, \ldots, q+1 \right\} |}
\]
\[
= \sum_{e_1, \ldots, e_{q+1}} \sum_{\sum e_i = M} \left(\frac{(|G| - 1)(q + |G|) - \sum_{s|\ell_n} s \phi_G(s) + 1}{|G|(q + |G| - 1)} \right)^{m_0} \left(\frac{q}{|G|(q + |G| - 1)} \right)^{m_1} \times
\]
\[
\prod_{s|\ell_n, s \neq 1} \left(\frac{s \phi_G(s)}{|G|(q + |G| - 1)} \right)^{m_s} \left(1 + O \left(q^{-\min(d(\tilde{\alpha}))} \right) \right)
\]
\[
= \text{Prob} \left(\sum_{i=1}^{q+1} X_i = M \right) \left(1 + O \left(q^{-\min(d(\tilde{\alpha}))} \right) \right).
\]

□

Acknowledgements: I would like to thank Chantal David for the countless discussions we had about this topic. I would also like to thank Elisa Lorenzo, Giulio Meleleo and Piermarco Milione for their helpful discussions about their paper which shed light on how to approach this problem.

References

[1] Alina Bucur, Chantal David, Brooke Feigon, Nathan Kaplan, Matilde Lalín, Ekin Ozman, and Melanie Mathett Wood, The distribution of points on cyclic covers of genus g, preprint (2015).

[2] Alina Bucur, Chantal David, Brooke Feigon, and Matilde Lalín, Biased statistics for traces of cyclic p-fold covers over finite fields, WIN–Women in Numbers: Research Directions in Number Theory 60 (2009), 121–143.

[3] Alina Bucur, Chantal David, Brooke Feigon, and Matilde Lalín, Statistics for traces of cyclic trigonal curves over finite fields, International Mathematics Research Notices (2009), rnp162.

[4] David Steven Dummit and Richard M Foote, Abstract algebra, vol. 1984, Wiley Hoboken, 2004.

[5] Robin Hartshorne, Algebraic geometry, vol. 52, Springer Science & Business Media, 1977.

[6] Nicholas M Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, vol. 45, American Mathematical Soc., 1999.

[7] Pär Kurlberg and Zéev Rudnick, The fluctuations in the number of points on a hyperelliptic curve over a finite field, Journal of Number Theory 129 (2009), no. 3, 580–587.

[8] Elisa Lorenzo, Giulio Meleleo, Piermarco Milione, and Alina Bucur, Statistics for biquadratic covers of the projective line over finite fields, to appear in Journal of Number Theory (2015).

[9] Patrick Meisner, Distribution of points on cyclic curves over finite fields, arXiv preprint arXiv:1511.07814 (submitted) (2015).

[10] Michael Rosen, Number theory in function fields, vol. 210, Springer Science & Business Media, 2013.