Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS

Jean-Pierre de Vera,1 Mashal Alawi,2 Theresa Backhaus,3 Mickael Baqué,1 Daniela Billi,4 Ute Böttger,5 Thomas Berger,6 Maria Bohmier,6 Charles Cockell,7 René Demets,8 Rosa de la Torre Noetzel,9 Howell Edwards,10 Andreas Elsaesser,11 Claudia Fogliarone,4 Annelle Fiedler,12 Bernard Foing,8 Frédéric Foucher,13 Jörg Fritz,14 Franziska Hanke,5 Thomas Herzog,15 Gerda Horneck,6 Heinz-Wilhelm Hübers,8 Björn Hüwe,12 Jasmin Joshi,12,16 Natalia Kozyrovska,17 Martha Kruchten,3 Peter Lasch,10 Natuschka Lee,19 Stefan Leuko,6 Thomas Leya,20 Andreas Lorek,1 Jesús Martínez-Frias,21 Joachim Meessen,3 Sophie Moritz,12 Ralf Moeller,6 Karen Olsson-Francis,22 Silvano Onofri,23 Sieglinde Ott,3 Claudia Pacelli,23 Olga Podolich,17 Elke Rabbow,6 Günther Reitz,6 Petra Retberg,6 Oleg Reva,24 Lynn Rothschild,25 Leo Garcia Sancho,26 Dirk Schulze-Makuch,27 Laura Selbmann,23,28 Frances Westall,13 David Wolter,1 and Laura Zucconi23

1German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany.
2GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany.
3Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany.
4University of Rome Tor Vergata, Department of Biology, Rome, Italy.
5German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany.
6German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany.
7School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
8European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, the Netherlands.
9Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
10Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, West Yorkshire, UK.
11Institut für experimentelle Physik, Experimentelle Molekulare Biophysik, Frei Universität Berlin, Berlin, Germany.
12University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany.
13CNRS, Centre de Biophysique Moléculaire, UPR 4301, Orléans, France.
14Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
15TH Wildau (Technical University of Applied Sciences), Wildau, Germany.
16Hochschule für Technik HSR Rapperswil, Institute for Landscape and Open Space, Rapperswil, Switzerland.
17Institute of Molecular Biology & Genetics of NASU, Kyiv, Ukraine.
18Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany.
19Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
20Extremophile Research & Biobank CCCryo, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
21Instituto de Geociencias, CSIC-Universidad Complutense de Madrid, Madrid, Spain.
22School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK.
23Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
24Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
25NASA Ames Research Center, Moffett Field, California, USA.
26LCM, Universidad Complutense Madrid, Madrid, Spain.
27Technical University Berlin, ZAA, Berlin, Germany.
28Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy.
29AWI, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany.
30TU Berlin, Institute of Environmental Technology, Environmental Microbiology, Berlin, Germany.
31University of Potsdam, Institute of Earth and Environmental Sciences, Potsdam, Germany.

© Jean-Pierre de Vera et al., 2019; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Abstract

BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports—among others—the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit. Key Words: EXPOSE-R2—BIOMEX—Habitability—Limits of life—Extremophiles—Mars. Astrobiology 19, 145–157.

1. Results from Previous Spaceflight and Ground-Based Experiments

Previous experiments in spaceflight and ground-based studies, which were performed before the BIOMEX (BIOlogy and Mars EXperiment) proposal submission to ESA, showed that, in particular, microcolonies of bacteria, meristematic black fungi, and symbiotic associations of microorganisms such as lichens are able to survive and be reactivated after simulated and direct space experiments (Tarasenko et al., 1990; Horneck et al., 1994; de Vera et al., 2003, 2004a, 2004b, 2007, 2008, 2010; de la Torre Noetzel et al., 2007; Sancho et al., 2007; Onofri et al., 2008, 2010; Olsson-Francis et al., 2009; de la Torre et al., 2010; de Vera and Ott, 2010). Bacteria strains such as Bacillus subtilis and Deinococcus radiodurans have shown a certain radiation and vacuum tolerance (Horneck, 1993; Horneck et al., 1994, 2001; Retterberg et al., 2002, 2004; Möller et al., 2007a, 2007b, 2007c; Pogoda de la Vega et al., 2007; Wassmann et al., 2012; Panitz et al., 2014). Gram-negative endophytic bacteria and cyanobacteria survived a 14-day shuttle flight (within the shuttle interior) and exhibited enhanced plant colonizing activity in microgravity (Tarasenko et al., 1990). During the BIOPAN 5 and 6 experiments, the lichens Rhizocarpon geographicum and Xanthoria elegans were analyzed after exposure to space conditions of about 11–14 days coupled with parallel tests in ground-based facilities. These results have led to the conclusion that the tested symbiotic eukaryotic associations of alga and fungi in the lichen were not seriously damaged, and nearly 70–100% of the tested lichens survived. The lichens were physiologically active and able to germinate and grow. Furthermore, investigations on the mutation rate of photoproducts on the DNA have shown that the mycobiont (the fungal symbiont) is practically unaffected by UV radiation and that the algal symbiont is more sensitive (de Vera et al., 2003, 2004a, 2004b, 2007, 2008, 2010; de Vera, 2005; de la Torre Noetzel et al., 2007; Sancho et al., 2007; de la Torre et al., 2010; de Vera and Ott, 2010). Cyanobacteria, as has been shown by analysis on akinetes (resting-state cells of cyanobacteria), were also able to survive the low Earth orbit and simulated extraterrestrial conditions (Olsson-Francis et al., 2009), while vegetative cells of Chroococcidiopsis sp. CCME 029 survived prolonged desiccation periods (Billi, 2009; Fagliarone et al., 2017) and a few minutes of exposure to an attenuated Mars-like UV flux (Cockell et al., 2005). Numerous species mentioned in this study were even able to survive simulated catastrophes as induced by asteroid impact simulations (Horneck et al., 2001, 2008; Stöffler et al., 2007; Meyer et al., 2011). Mars simulation tests with methanogenic archaea have also shown a remarkable level of survival and demonstrated physiological activity during exposure to Mars-like environmental conditions (Morozova and Wagner, 2007; Morozova et al., 2007, 2015; Schirmack et al., 2014). The same has been observed for meristematic black fungi during a ground-based experiment in the facilities at the German Aerospace Center (DLR) Cologne named EVT (Experiment Verification Test), which was performed for the Lichens and Fungi Experiment (LIFE) on EXPOSE-E (Onofri et al., 2008) and after the final space experiment (Onofri et al., 2012, 2015). In other ground-based experiments, we were able to show that Paenibacillus sp. caused biocorrosion of anorthosite rock (Lytvyvenko et al., 2006). In total, we can presume that a wide variety of different microorganisms, even from higher evolutionary advanced levels than those of archaea or bacteria, are able to resist and survive space and Mars-like conditions for a period of time (at least for 1.5 years). However, because of the limited capacity of the space exposure facilities, further work with replicates and other samples is still needed to finally answer questions on the degree of Mars’ habitability or the kind of space and Mars-like environmental conditions that are limiting factors in reference to the most important vital functions of life (de Vera et al., 2014; Schulze-Makuch et al., 2015).

The BIOMEX results presented here further advance our knowledge and address pressing questions as mentioned above.
BIOMEX selected samples for spaceflight

Archaea
Methanosarcina sp. strain SMA-21 (terrestrial permafrost) (GFZ/AWI Potsdam)

Bacteria
Deinococcus radiodurans wild type and crtI or crtB (nonpigmented) (DLR Cologne)

Biofilm containing *Leptothrix, Pedomicrobium, Pseudomonas, Hyphomonas, Tetrasphaera* (TU Berlin)

Cyanobacterium Nostoc sp. strain CCCryo 231-06 (Fraunhofer IZI-BB)

Cyanobacterium Gloeocapsa OU-20 (Astrobiology Center Edinburgh)

Cyanobacterium Chroococcidiopsis sp. CCME 029 (Uni Roma)

Alga
Green alga *Sphaerocystis* sp. CCCryo 101-99 (Fraunhofer IZI-BB)

Lichens
Circinaria gyrosa (INTA)

Buellia frigida (Antarctic lichen) (H-H-Uni Düsseldorf)

Fungi
Cryptoendolithic Antarctic black fungus *Cryomyces antarcticus* CCFEE 515 (Uni Viterbo)

Bryophytes
Grimmia sessitana (alpine samples) (Uni Potsdam)

Marchantia polymorpha L. (Uni Potsdam)

Biomolecules
Pigment Chlorophyll (H-H-Uni Düsseldorf)

Pigment beta-Carotene (H-H-Uni Düsseldorf)

Pigment Naringenin (H-H-Uni Düsseldorf)

Pigment Quercitin (H-H-Uni Düsseldorf)

Pigment Parietin (H-H-Uni Düsseldorf)

Pigment Melanin (H-H-Uni Düsseldorf)

Cellulose (H-H-Uni Düsseldorf)

Chitin (H-H-Uni Düsseldorf)

Biofilm
Kombucha biofilm containing: Yeasts; *Saccharomyces ludwigii, Schizosaccharomyces pombe, Zygosaccharomyces rouxii, Zygosaccharomyces bailii, Brettanomyces bruxellensis; Bacteria; Paenibacillus* sp. IMBG221, *Acetobacter nitrogenifigens, Gluconacetobacter kombuchae* sp. nov., *Gluconacetobacter xylinum* (NAS Ukraine)

Substrates/Minerals
Agar (as a substitute for Murein) (H-H-Uni Düsseldorf)

Minerals lunar analog mixture (MfN Berlin)

Minerals P-MRS: Early acidic Mars analog (Mixture of Fe2O3, montmorillonite, chamosite, kaolinite, siderite, hydromagnesite, quartz, gabbro, and dunite) (MfN Berlin)

Minerals S-MRS: Late basic Mars analog (Mixture of hematite, goethite, gypsum, quartz, gabbro, dunite) (MfN Berlin)

Silica discs (glass) (Astrobiology Center Edinburgh)

Gray shaded cells indicate the samples for which results are available and included in this special collection.
to an extended degree in comparison to previously executed space experiments, which, for the most part, were more restricted and focused on investigating the likelihood of an interplanetary transfer of life as is formulated in the lithopanspermia hypothesis (Richter, 1865; Thomson, 1894; Arrhenius, 1903; see also Lee et al., 2017). Accordingly, these new BIOMEX experiments in space were intended to address new questions in planetary research and improve future space exploration goals. Nevertheless, it is clear that the results obtained by BIOMEX could also be used to evaluate previously performed space experiments in reference to lithopanspermia.

Table 2. Mars and Lunar Analog Mineral Mixtures

Component	P-MRS (wt %)	S-MRS (wt %)	LRA (wt %)
Gabbro (Groß-Bieberau, Germany)	3	32	-
Dunite—Olivine F096 (Aheim, Norway)	2	15	5.7
CPx—Diopside (Kragerø, Norway)	-	-	8.9
OPx—Hyperstenh (Egersund, Norway)	-	-	5.7
Anorthosite—Plagioclase (Larvik, Norway)	-	-	66.8
Quarzite (Bayerischen Wald, Germany)	10	3	-
Apatite (Minas Gerais, Brasil)	-	-	1.1
Hematite (Cerro Bolivar, Venezuela)	5	13	-
Ilmenite (Flekkefjord, Norway)	-	-	1.1
Iron (Fe)	-	-	1.3
Montmorillonite (Hallertau, Germany)	45	-	-
Chamosite (Nucic, Czech Republic)	20	-	-
Kaolinite (Hirschau, Germany)	5	-	-
Siderite (Hüttenberg, Austria)	5	-	-
Hydromagnesite (Albaner Berge, Italy)	5	-	-
Goethite (Salchendorf, Germany)	-	7	-
Gypsum (Nütttermoor, Germany)	-	30	-
Volcanic slag (Aeolian islands, Italy)	-	-	9.4

P-MRS: phyllosilicatic martian regolith = early acidic. S-MRS: sulfatic martian regolith = late basic. LRA: lunar regolith analog.

2. Sample Selection

As a consequence of results obtained in previous space experiments that engendered a significant number of still-open questions, a proposal named BIOMEX (ILSRA-2009-0834) was submitted in 2009. This was in response to the ESA international research announcement for research in space life sciences at the International Space Station (ISS)—ILSRA-2009—and BIOMEX was successfully selected. The proposal included replicate exposure of known species used in previous space experiments such as the reassessed Antarctic

![FIG. 1. Mars analog pellets integrated in the EXPOSE-R2 hardware.](image-url)
fungus *Cryomyces antarcticus*, the cyanobacterium *Chroococcidiopsis* sp., the lichen *Circinaria gyrosa* (formerly known as *Aspicilia fruticulosa* before reclassification; Sohrabi *et al.*, 2013), and a set of new, preselected organisms for further preflight experiments (see Table 1). After survival of these organisms was shown, the samples were incorporated into the BIOMEX experiment, integrated into the final EXPOSE-R2 hardware, and sent to space on the ISS.

This new sample set was chosen systematically and comprised a selection from archaea, bacteria, and eukaryotes, which represent the three main domains of the tree of life. Most of these organisms were collected from Mars analog habitats distributed on different continents, which include the Alps (climatic and geomorphologic Mars analogy: gullies, polygons, temperatures below 0°C, dryness, and elevated UV irradiation), the steppe highlands of Central Spain (characterized by extreme insolation, high temperature contrasts, and arid summers Crespo and Barreno, 1978), and regions in the Arctic and Antarctica. The aim of selecting a wide variety of species was to identify which are able to demonstrate the limits of life with regard to the applied space and Mars-like conditions in low Earth orbit, as well as further our understanding of the kind of species for which Mars could be habitable.

2.1. Biological samples

A set of organisms was tested, which were embedded in, or grown on, Mars (optionally lunar) analogs and other terrestrial minerals. Bacteria, biofilms of bacteria and yeast species, cyanobacteria, archaea, lichens, snow/permafrost algae, meristematic black fungi, and bryophytes of mostly alpine and polar habitats of desiccation- and radiation-resistant strains were chosen because some of these organisms are thought to be among the oldest on Earth (Wang *et al.*, 1999; Schidlowski, 2001; Campbell *et al.*, 2003; Yuan *et al.*, 2005) and, over time, have evolutionarily adapted to different environmental conditions. Some of these organisms could even be Mars-relevant because they use Mars-atmosphere resources such as CO2 to form methane, a trace gas found remotely in the martian atmosphere (Formisano *et al.*, 2004; Mumma *et al.*, 2009) and in situ at Gale Crater by way of the rover Curiosity (Webster *et al.*, 2015). The processes that lead to extreme variations in the methane concentration of the martian atmosphere, in particular the potential for abiogenic origin (Lefèvre and Forget, 2009), have recently been reviewed (Yung *et al.*, 2018). In previous studies, some of the organisms studied in the BIOMEX experiments have also exhibited a high resistance under simulated and real space conditions or simulated martian conditions. Others, like the newly selected bryophytes, provide insights on the resistance capabilities of an evolutionarily younger life-form. Details on the selected species are listed in Table 1.

2.2. Mars and lunar analog mineral mixtures

With the BIOMEX experiment, our goal was to analyze the effects of a space environment that approaches as closely as possible Mars-like environmental conditions and includes the use of Mars analog mixtures that could serve as a substrate or an embedding matrix for biological samples (see Table 2 and Figs. 1 and 2). These Mars analog mineral mixtures mimic the regolith cover from early and late evolutionary stages of Mars (Böttger *et al.*, 2012). The components of the mixtures were developed in the Museum für Naturkunde (MfN) Berlin (Germany) in the context of the Helmholtz-Alliance “Planetary Evolution and Life” proposal and based on several observational studies (Bibring *et al.*, 2005, 2006; Poulet *et al.*, 2005; Chevrier and Mathé, 2007). It is important to test the effects of space and the martian environment on minerals in parallel biological investigations. A welcome consequence of this space experiment would be that the investigated samples would also be tested for viability and space-resistance capacity and provide valuable data if used in a replicate space experiment with regard to the probability of lithopanspermia in the Earth-Mars system. The lithopanspermia hypothesis has also been investigated in previous space experiments on FOTON/BIOPAN some years ago and on the EXPOSE-E mission on the ISS. However, replicates are still needed. Besides the Mars analog mineral mixtures, the MfN also provided a lunar regolith analog (see Table 2 and Figs. 1 and 3) for investigation into the influence of the lunar surface material on organisms, which could be relevant for life-support systems such as the selected and tested cyanobacteria (not part of this special collection of articles).
Table 3. Experiment Verification Tests (EVTs)

EXPOSE-R2 EVT part 1	BIOMEX Experiment
Test parameter	**performed**
Vacuum 10⁻³ Pa	7 d, pressure: 3.5×10⁻²
Mars atmosphere	7 d, pressure: 6.5×10²
(CO₂ gas composition)	± 0.12 Pa
103 Pa	
Temperature	48 cycles
–10°C to +45°C	
Temperature max and min	–25°C ± 0.5°C, 1 h
–25°C and +60°C	+60°C ± 0.5°C, 1 h
Irradiation	0 s → 0 J/m²
254 nm	18 s → 10.1 J/m²
Hg low-pressure lamp	2 min 59 s → 100.2 J/m²
@ 56 μW/cm²	29 min 46 s → 1000.2 J/m²
	4 h 57 min 37 s → 9999.9 J/m²
EXPOSE-R2 EVT part 2 (run 1+2)	**BIOMEX Experiment**
Run 1	
Irradiation	0 s → dark
200–400 nm	18 min → 1.4×10³ J/m²
SOL2000 @ 1,271.2 W/m²	3 h → 1.4×10⁴ J/m²
(200–400 nm)	99 h → 4.5×10⁵ J/m²
	148 h → 6.8×10⁵ J/m²
Run 2	
Irradiation	0 s → dark
200–400 nm	432 s → 5.5×10² J/m²
(0.1% ND filter)	(1.0% ND filter)
SOL2000 @ 1,271.2 W/m²	1 h 12 min → 5.5×10³ J/m²
(as for a 12-month mission duration)	30 h → 1.4×10⁵ J/m²
	60 h → 2.7×10⁶ J/m²
	120 h → 5.5×10⁷ J/m²
Gluing test	>24 h vulcanization, glue: Wacker-silicone

ND: neutral density.

Table 4. Scientific Verification Tests (SVTs)

SVT	Duration	Pressure	Atmosphere	Temperature (T)	T extremes	Irradiation
Tray 1	December 2013–January 2014, 38 d	vacuum pressure at 4.1×10⁻³ Pa	Mars atmosphere (95.55% CO₂, 2.7% N₂, 1.6% Ar, 0.15% O₂, and ~ 370 ppm H₂O at 1 kPa)	T cycles between –25°C (16 h in the dark) and +10°C (8 h during irradiation)	–23°C	The upper layers of each tray: UVR_{200–400 nm} with 1271 Wm^{–2} (5.7×10³ J m^{–2}) for 5924 min
Tray 2	Mars atmosphere	– –	–	–	–	The lower layers of the trays were kept in the dark
FIG. 4. Visual table of the sample distribution within the EXPOSE-R2 hardware.

FIG. 5. The distribution of neutral density filters and the values of transmission depending on the used material.
Table 5. Results Listed According to the Topics “Limits of Life” and Habitability of Life

Sample category / domain	species	Results on limits of life	Results on Habitability of Mars				
		selection tests	EVT/SVT	space	selection tests	EVT/SVT	space
Archaea	Methanosarcina sp.strain SMA-21 (terrestrial permafrost) (GFZ/AWI Potsdam)	−	+				
Bacteria	Cyanobacterium Chroococcidiopsis sp. CCME 009 (Uni Roma)	+	+				
Fungi	Cryptoendolithic Antarctic black fungus Cryptomyces antarcticus CCFEE 515 (Uni Viterbo)	+	±	+	±		
Lichens	Circinaria gyrosa (INTA)	±	±		±		
	Buellia frigida (Antarctic lichen) (H-H-Uni Düsseldorf)	+	±	±	±		
Bryophytes	Grimmia sessitana (alpine samples) (Uni Potsdam)	−	+		+		
	KOMBUCHA/ Biofilm containing: Yeasts: Saccharomyces ludwigi, Schizosaccharomyces pombe, Zygosaccharomyces rouxi, Zygosaccharomyces bailii, Brettanomyces bruxellensis; Bacteria: Paenibacillus sp. IMBG221, Acetobacter nitrogenifigens, Gluconacetobacter kumbuchae sp. nov., Gluconacetobacter xylinum (NAS Ukraine)	±	±		±		

(±) Survival / metabolically active / growth capacity, (−) partly survival, more damaged
were additionally applied to the samples of the methanogen archaeon Methanosarcina soligelidi SMA 21. In this case, these filters were used because of the specific nature of this organism’s original habitat, which is situated within permafrost-affected soils and protected by soil particles with different grain sizes. Deinococcus radiodurans was covered by neutral density filters with a transmission of 0.01%. The measured and calculated data with regard to the final doses the samples experienced, which included UVA, UVB, UVC, PAR (photosynthetically active radiation), and Lyman alpha, are represented in Fig. 6 and were kindly provided by ESA via computations completed by the company RedShift Design and Engineering BVBA.

Significant variation was observed in the dose of UV among samples that were placed within sample sites not protected by filters. The observed variations could be explained by the dependence of the sample position in the hardware, which would have been exposed to a variety of shadowing effects during the orbit of the ISS. When filters were not used in the BIOMEX experiments, the final doses varied between 4.5×10^6 and 8.4×10^5 kJ/m². Specific organisms exposed without any neutral density filters include the epilithic lichens Cinclaria gyrosa and Buellia frigida, the epilithically living bryophytes Grimmia sp., and Marchantia polymorpha, the iron bacteria biofilm, and the kombucha biofilm. Biomolecules exposed on the surface and embedded in the Mars analog mineral pellets also endured the same direct space conditions without any neutral density filters.

3. Overview of Results within This Special Collection

The results presented in this special collection are arranged to provide an overview of each step of the processes involved in the BIOMEX experiment, that is, from selecting sample categories.

Table 6. Detailed Result List Explaining the Classification Shown in Table 5
Sample category / domain
species
Results on limits of life
Results on Habilitability of Mars

Archaia

| Methanosarcina sp strain SMA-21 (terrestrial permissoil) (GFZ/AN Potdam) |
| Decrease of CH₄ production rate on the used Mars-analog high concentration of perchlorates (not applied in BIOMEX space exposure) |
| Methanotrophic bacterial biofilm biomass (P-MRS not exposed to perchlorates) | Survival and recovery on Mars analog minerals, lower DNA-damage particularly in the more protected unialgal/algae biomass. |

Bacteria

| Cyanobacterium Gloeocapsa rubogina sp. CCME 029 (Uni Roma) |
| Survival and recovery on Mars analog minerals, lower DNA-damage in the more protected unialgal/algae biomass. |
| On irradiated S-MRS 40% still growing, on irradiated P-MRS 75% growing. In Martian atmosphere without irradiation on S-MRS about 55% growth and on P-MRS about less than 25% growth. In all cases within both MRS significant membrane damage. On LRA no significant changes in growth and loss damaged membranes |

Fungi

| Grimmia recurvata (algic lichen) (Uni Potsdam) |
| Quick moderate-high recovery of the PSI activity in the space dark control (vacuum and Mars atmosphere), where also morphology and DNA stability was observed. But irradiated samples under the same conditions were significantly affected. |
| Quick moderate-high recovery of the PSI activity in the more protected dark control areas |

Lichens

| Mucoromela porphyria sp. (INTA) |
| Quick moderate-high recovery of the PSI activity in the space dark control (vacuum and Mars atmosphere), where also morphology and DNA stability was observed. But irradiated samples under the same conditions were significantly affected. |
| Quick moderate-high recovery of the PSI activity in the more protected dark control areas |

Bryophytes

| Grimmia recurvata (algic lichen) (Uni Potsdam) |
| The mosses were still in their state during the EXPOSE-R2 mission on the ISS. This earliest eustein mosses of land plants is highly resistant to extreme dynamic conditions. |
| The mosses were still vital after other type of radiation expected during the EXPOSE-R2 mission on the ISS. This earliest eustein mosses of land plants is highly resistant to extreme dynamic conditions. |

Biofilm

| KOMBUCHA Biofilm containing Yeasts: Saccharomyces ludwigii, Schizosaccharomyces pombe, Zygospaoroma renulai, Zygospaoroma halii, Brettanomyces broacculae; bacteria: Faebusbacillus sp. IABG/221, Acetobacter meiotigmoglates; Gluconacetobacter kombucha sp. nov., Gluconacetobacter sulfinus (NAS Ukraine) |
| After returning to Earth, the space-floved bacterial-yeast community recovered in two months. Within the UV-irradiated samples, a degradation of DNA, changes in the cellular membranes, and an inhibition of cellulose synthesis were observed. After a series of culture experiments, the revived communities restored partially their composition and the associated activities. |
| After returning to Earth, the space-floved bacterial-yeast community recovered in two months. Within the UV-irradiated samples, a degradation of DNA, changes in the cellular membranes, and an inhibition of cellulose synthesis were observed. After a series of culture experiments, the revived communities restored partially their composition and the associated activities. |

S-MRS: sulfatic martian regolith. P-MRS: phyllosilicatic martian regolith. LRA: lunar regolith analog.
samples for simulation experiments to the final exposure experiments in space. Results from pretests on the chosen methanogenic archaeon of the genus *Methanosarcina* at the preselection level are reported in Serrano et al. (2019). This archaeon was chosen because of its relevance with regard to its potential for being metabolically active on Mars. Therefore, the first tests were designed to use different substrates that contained magnesium perchlorate to establish a Mars-relevant perchlorate environment and mineral mixture before attempting the next selection step of applying atmospheric and radiation-related environmental conditions within the preflight experiments EVTs and SVTs. With regard to the EVTs and SVTs, we present the results obtained by analysis of the fungus *Cryomyces antarcticus* (Pacelli et al., 2019) and the moss *Grimmia* sp. (Huwe et al., 2019). Results obtained after space exposure are shown from a series of analyses on the biofilm kombucha (Podolich et al., 2019), the cyanobacterium *Chroococcidiopsis* (Billi et al., 2019), the cryptoendolithic Antarctic fungus *Cryomyces antarcticus* (Onofri et al., 2019), and the lichens *Buellia frigida* (Backhaus et al., this issue) and *Circinaria glyrosa* (de la Torre et al., not part of this issue). A rough summary of the different studies is given in Table 5, and more details are shown in Table 6. Survival, physiological activity, and growth capacity were detected in all organisms tested. However, life’s vital functions decreased from slight to significant, and the reader is directed to specific articles in this collection for detailed discussion of these findings. Several of the selected archaea, bacteria, and heterogeneous multilayered biofilms formed by a multitude of species were found to be the most resistant to simulated or direct space and Mars-like conditions. Less resistance and a significant decrease in cell numbers and vitality with regard to the Mars-like environment were shown for multicellular life-forms such as the tested fungus *Cryomyces antarcticus* (Onofri et al., 2019) and the lichens *Buellia frigida* (Backhaus et al., 2019) and *Circinaria glyrosa* (de la Torre Noetzel et al., 2019). The bryophyte *Grimmia* sp. was an exception (Huwe et al., 2019), but further analysis after space exposure might show whether this specific moss is also resistant to the conditions in space. Actual results in reference to the bryophytes were shown only for the preflight selection mode of EVT and SVT. Our results so far indicate that present Mars seems to be habitable for archaea and bacteria over longer timescales. However, a clearer understanding of the limits of life would be achievable with the implementation of extended space exposure experiments on the Moon, for example, with similar space exposure facilities as those used in the present study (see de Vera et al., 2012).

Acknowledgments

This research was supported by the Italian Space Agency (ASI grant BIOMEX Cyan 051-R.0 to D.B., ASI grant BIOMEX MicroColonial Fungi 063-R.0 to S.O.); the German Aerospace Center (DLR-grants: Department of Infrastructure and Management, Astrobiology Laboratories through a grant DLR-FuW-Project BIOMEX (2474128)/Department of Radiation Biology supported by the grant DLR-FuE-Projekt ISS LIFE, Programm RF-FuW, Teilprogramm 475); the German Helmholtz Association through the Helmholtz-Alliance “Planetary Evolution and Life”; the Spanish Ministry of Economy, Industry and Competitive-ness (MINECO, project SUBLIMAS “SURvival of Bacteria and Lichens on Mars Analogs and Space,” ESP2015-69810-R, 2015, to R. de la Torre, and project “CTM2015- 64728-C2-1-R” to L.G. Sancho); and the National Academy of Sciences of Ukraine (grant 47/2017). We also kindly acknowledge support from the Alexander von Humboldt Foundation, the German Federal Ministry of Economics and Technology (BMWi: grant to D.W. (50WB1152) and S.O., T.B. (50WB1153) in the frame of the BIOMEX project). L.S. acknowledges The Italian Antarctic National Museum (MNA) for financial support to the Culture Collection of Fungi From Extreme Environments (CCFEE). Also, Dirk Schulze-Makuch acknowledges the support of the ERC Advanced Grant HOME (# 339231). We would like to thank personally Antje Hermelink and the Robert Koch Institute for the SEM images, and Victor Parro (Centro de Astrobiologia) for his opinion and suggestions concerning microbial survival to perchlorate exposure. Thank you also to Ralf Liebermann as well as Dorit Siebert and Sandra Jönsson, University of Potsdam, for supporting sample handling. The authors express appreciation to Mr. Vyacheslav Moskaluky for excellent service regarding the examination of extracellular membrane vesicles, using a scanning electron microscope. We would like to express a special thank you to the BGR for the logistics for the necessary field work in Antarctica during the GANOVEX 10 expedition so that the collection of samples within Mars-analog field sites for BIOMEX was possible, and we are very thankful to Andreas Läufer, the expedition leader.

We thank ESA for supporting the EXPOSE experiments and in particular the BIOMEX project (ESA-ILSRA 2009-0834, PI: J.-P. de Vera), and we thank the cosmonauts for their excellent EVA work. Thank you also for the final dose calculation and providence of data by RedShift. Moreover, we would like to thank the anonymous reviewers for constructive feedback.

Author Disclosure Statement

No competing financial interests exist.

References

Arrhenius, S. (1903) Die Verbreitung des Lebens im Weltenraum. *Umschau* 7:481–485.

Backhaus, T., Meeßen, J., Demets, R., de Vera, J.-P., and Ott, S. (2019) Characterization of viability of the lichen *Buellia frigida* after 1.5 years in space on the International Space Station. *Astrobiology*, 19:233–241; doi:10.1089/ast.2018.1894.

Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., Arvidson, R., Mangold, N., Mustard, J., Drossart, P., OMEGA Team, Erard, S., Forni, O., Combes, M., Encracen, T., Fouchet, T., Merchiori, R., Belluci, G., Altieri, F., Formisano, V., Bonello, G., Capaccioni, F., Cerroni, P., Coradini, A., Fonti, S., Kottsov, V., Ignatiev, N., Moroz, V., Titov, D., Zasova, L., Mangold, M., Pinet, P., Douté, S., Schmitt, B., Toti, C., Huber, E., Hoffmann, H., Jaumann, R., Keller, U., Duxbury, T., and Forget, F. (2015) Mars surface diversity as revealed by the OMEGA/Mars express observations. *Science* 350:1576–1581.

Bibring, J.-P., Squyres, S.W., and Arvidson, R.E. (2006) Planetary science. Merging views on Mars. *Science* 313:1899–1901.

Billi, D. (2009) Subcellular integrities in *Chroococcidiopsis* sp. CCME 029 survivors after prolonged desiccation
revealed by molecular probes and genome stability assays. *Extremophiles* 13:49–57.

Billi, D., Verseux, C., Fagioli, C., Napoli, A., Baqué, M., and de Vera, J.-P. (2019) A desert cyanobacterium under simulated Mars-like conditions in low Earth orbit: implications for the habitability of Mars. *Astrobiology* 19:158–169; doi:10.1089/ast.2017.1807.

Böttger, U., de Vera, J.-P., Fritz, J., Weber, I., Hübers, H.-W., and Schulze-Makuch, D. (2012) Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. *Planetary and Space Science* 60:356–362.

Campbell, N.A., Reece, J.B., and Markl, J. (2003) Biologie. Spektrum Akademischer Verlag, 533–639.

Chevrier, V. and Matheré, P.E. (2007) Mineralogy and evolution of the surface of Mars: a review. *Planetary and Space Science* 55:289–314.

Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I., and Panitz, C. (2005) Effects of a simulated martian UV flux on the cyanobacterium, *Chroococcidiopsis* sp. 029. *Astrobiology* 5:127–140.

Crespo, A. and Barreno, E. (1978) Sobre las comunidades terricolas de liquenes vagantes Sphearothalio, Xanthoparmelion vagantis al. Nova). *Acta Botánica Malacitana* 4:55–62.

de Vera, J.-P., Rettberg, P., and Ott, S. (2004a) The Chevrier, V. and Mathe, P.E. (2007) Mineralogy and evolution of the surface of Mars: a review. *Planetary and Space Science* 55:289–314.

Campbell, N.A., Reece, J.B., and Markl, J. (2003) Biologie. Spektrum Akademischer Verlag, 533–639.

Chevrier, V. and Matheré, P.E. (2007) Mineralogy and evolution of the surface of Mars: a review. *Planetary and Space Science* 55:289–314.

Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I., and Panitz, C. (2005) Effects of a simulated martian UV flux on the cyanobacterium, *Chroococcidiopsis* sp. 029. *Astrobiology* 5:127–140.

Crespo, A. and Barreno, E. (1978) Sobre las comunidades terricolas de liquenes vagantes Sphearothalio, Xanthoparmelion vagantis al. Nova). *Acta Botánica Malacitana* 4:55–62.

de Vera, J.-P., Rettberg, P., and Ott, S. (2004a) The BIOMEX: HABITABILITY TESTS ON THE ISS 155 potential of lichen symbiosis to cope with extreme conditions beyond,'’ *Astrobiology* 19:221–232. doi:10.1089/ast.2018.1889.

Faggioli, C., Mosca, C., Ubaldi, L., Verseux, C., Baqué, M., Wilmotte, A., and Billi, D. (2017) Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium *Chroococcidiopsis*. *Extremophiles* 21:981–991.

Formisano, V., Atrey, S., Encrenaz, T., Ignatiev, N., and Giuranna, M. (2004) Detection of methane in the atmosphere of Mars. *Science* 306:1758–1761.

Horneck, G. (1993) Responses of *Bacillus subtilis* spores to space environment: results from experiments in space. *Orig Life Evol Biosph* 23:37–52.

Horneck, G., Bücke, H., and Reitz, G. (1994) Long term survival of bacterial spores in space. *Adv Space Res* 14:41–45.

Horneck, G., Stöffler, D., Eschweiler, U., and Hornemann, U. (2001) Bacterial spores survive simulated meteorite impact. *Icarus* 149:285–290.

Horneck, G., Stöffler, D., Ott, S., Horneck, G., Rettberg, P., and Ott, S. (2004a) The potential of lichen symbiosis to cope with extreme conditions of outer space—I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. *Int J Astrobiol* 1:285–293.

de Vera, J.-P., Horneck, G., Rettberg, P., and Ott, S. (2004a) The potential of lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. *Adv Space Res* 33:1236–1243.

de Vera, J.-P., Horneck, G., Rettberg, P., and Ott, S. (2004b) In the context of panspermia: may lichens serve as shuttles for their bionts in space? In *Proceedings of the III European Workshop on Exo-Astrobiology, Mars: The Search for Life*, ESA SP-545, edited by R.A. Harris and L. Ouwehand, European Space Agency, Noordwijk, the Netherlands, pp 197–198.
Morozova, D., Moeller, R., Rettberg, P., Wagner, D. (2015) Survival of rock-colonizing organisms after 1.5 years in outer space. *Astrobiology* 12:508–516.

Onofri, S., de Vera, J.-P., Zucchini, L., Selbmann, L., Scalzi, G., Venkateswaran, K.J., Rabbow, E., de la Torre, R., and Horneck, G. (2015) Survival of Antarctic cryptoendolithic fungi in simulated martian conditions on board the International Space Station. *Astrobiology* 15:1052–1059.

Onofri, S., Selbmann, L., Pacelli, C., Zucchini, L., Rabbow, E., and de Vera, J.-P. (2019) Survival, DNA, and ultrastructural integrity of a cryptoendolithic Antarctic fungus in Mars and lunar rock analogs exposed on the ISS. *Astrobiology* 19:170–182. doi:10.1089/ast.2017.1728.

Pacelli, C., Selbmann, L., Zucchini, L., Coleine, C., de Vera, J.-P., Rabbow, E., Böttger, U., Dadachova, E., and Onofri, S. (2019) Responses of the black fungus *Cryomyces antarcticus* to simulated martian and space conditions on rock analogs. *Astrobiology* 19:209–220. doi:10.1089/ast.2016.1631.

Panitz, C., Horneck, G., Rabbow, E., Retberg, P., Moeller, R., Cadet, J., Douki, Th., and Reitz, G. (2014) The SPORES experiment of the EXPOSE-R mission: *Bacillus subtilis* spores in artificial meteorites. *Int J Astrobiol* 14:105–114.

Podolich, O., Kukharenko, O., Haïdak, A., Zaëts, I., Zaïka, L., Storozhuk, O., Palchikovska, L., Orlovskas, I., Reva, O., Borisova, T., Khirunenko, L., Sosnin, M., Rabbow, E., Kravchenko, V., Skoryk, M., Krensmoyk, M., Demets, R., Olsson-Francis, K., Kozysnova, N., and de Vera, J.-P. (2019) Multimicrobial kombucha culture tolerates Mars-like conditions simulated on low Earth orbit. *Astrobiology* 19:183–196. doi:10.1089/ast.2017.1746.

Pogoda de la Vega, U., Retberg, P., and Reitz, G. (2007) Simulation of the environmental climate conditions on martian surface and its effect on *Deinococcus radiodurans*. *Adv Space Res* 40:1672–1677.

Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C., and The Omega Team. (2005) Phyllosilicates on Mars and implications for early martian climate. *Nature* 438:623–627.

Rabbow, E., Retberg, P., Parpart, A., Panitz, C., Schulze, W., Molter, F., Jaramillo, R., Demets, R., Weiß, P., and WilIecker, R. (2017) EXPOSE-R2: the astrobiological ESA mission on board of the International Space Station. *Front Microbiol* 8, doi:10.3389/fmicb.2017.01533.

Retberg, P., Eschweiler, U., Strauch, K., Reitz, G., Horneck, G., Wänke, H., Brack, A., and Barbier, B. (2002) Survival of microorganisms in space protected by meteorite material: results of the experiment EXOBIOLIGE of the PERSEUS mission. *Adv Space Res* 30:1539–1545.

Retberg, P., Rabbow, E., Panitz, C., and Horneck, G. (2004) Biological space experiments for the simulation of martian conditions: UV radiation and martian soil analogues. *Adv Space Res* 33:1294–1301.

Richter, H. (1865) Zur Darwinschen Lehre. Schmidts Jahrb. *Ges Med* 126:243–249.

Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Rios, A., Pintado, A., Wierzchos, J., and Schuster, M. (2007) Lichens survive in space: results from the 2005 LICHENS experiment. *Astrobiology* 7:443–454.

Schidlowski, M. (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. *Precambrian Res* 106:117–134.

Schirmack, J., Böhm, M., Brauer, C., Löhmansrören, H.-G., de Vera, J.-P., Möhlmann, D., and Wagner, D. (2014) Laser
spectroscopic real time measurements of methanogenic activity under simulated martian subsurface analogue conditions. *Planet Space Sci* 98:198–204.

Schulze-Makuch, D., Schulze-Makuch, A., and Houtkooper, J.M. (2015) The physical, chemical, and physiological limits of life. *Life* 5:1472–1486.

Serrano, P., Alawi, M., de Vera, J.-P., and Wagner, D. (2019) Response of methanogenic archaea from Siberian permafrost and nonpermafrost environments to simulated Mars-like desiccation and the presence of perchlorate. *Astrobiology* 19:197–208; doi:10.1089/ast.2018.1877.

Sohrabi, M., Stenroos, S., Myllys, L., Sochting, U., Ahti, T., and Hyvönén, J. (2013) Phylogeny and taxonomy of the ‘manna lichens’. *Mycol Progress* 12:231–269.

Stöffler, D., Horneck, G., Ott, S., Hornemann, U., Cockell, C.S., Möller, R., Meyer, C., de Vera, J.P., Fritz, J., and Artemieva, N.A. (2007) Experimental evidence for the impact ejection of viable microorganisms from Mars-like planets. *Icarus* 186:585–588.

Tarasenko, V.A., Kozyrovsk, N., Nechitailo, G.P., Ngo Ke, S., and Tarnavskaja, E.B. (1990) Cytological aspects of relationships of eucaryotes and nitrogen-fixing eu- and cyanobacteria in artificial association under microgravity. In *Abstracts of the XXIII COSPAR 1990*, The Hague, the Netherlands, p 55.

Thomson, W. (1894) 1871 presidential address to the British Association. In *Popular Lectures and Addresses*, MacMillan and Co., New York, pp 132–205.

Wang, D.Y.C., Kumar, S., and Hedges, S.B. (1999) Divergence time estimated for the early history of animal phyla and the origin of plants, animals and fungi. *Proc Biol Sci* 266:163–171.

Wassmann, M., Moeller, R., Rabbow, E., Panitz, C., Horneck, G., Reitz, G., Douki, Th., Cadet, J., Stan-Lotter, H., Cockell, Ch.S., and Rettberg, P. (2012) Survival of spores of the UV-resistant *Bacillus subtilis* strain MW01 after exposure to low Earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E. *Astrobiology* 12:498–507.

Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A., Meslin, P.-Y., Farley, K.A., Conrad, P.G., Christensen, E.L., Pavlov, A.A., Martin-Torres, J., Zorzano, M.-P., McConnochie, T.H., Owen, T., Eigenbrode, J.L., Glavin, D.P., Steele, A., Malespin, C.A., Archer, P.D., Jr., Sutter, B., Coll, P., Freissinet, C., McKay, C.P., Moores, J.E., Schwenzer, S.P., Bridges, J.C., Navarro-Gonzalez, R., Gellert, R., Lemmon, M.T., the MSL Science Team. (2015) Mars methane detection and variability at Gale Crater. *Science* 347:415–417.

Yuan, X., Xiao, S., and Taylor, T.N. (2005) Lichen like symbiosis 600 million years ago. *Science* 308:1017–1020.

Yung, Y.L., Chen, P., Nealson, K., Atreya, S., Beckett, P., Blank, J.G., Ehlmann, B., Eiler, J., Etope, G., Ferry, J.G., Forget, F., Gao, P., Hu, R., Kleinböhl, A., Kusman, R., Le-fèvre, F., Miller, C., Mischna, M., Mumma, M., Newman, S., Oehler, D., Okumura, M., Oremland, R., Orphan, V., Popa, R., Russell, M., Shen, L., Sherwood Lollar, B., Staehle, R., Stamenković, V., Stolper, D., Templeton, A., Vandaele, A.C., Viscardi, S., Webster, C.R., Wennberg, P.O., Wong, M.L., and Worden, J. (2018) Methane on Mars and habitability: challenges and responses. *Astrobiology* 18:1221–1242.

Address correspondence to:
Jean-Pierre de Vera
German Aerospace Center (DLR)
Institute of Planetary Research, Management and Infrastructure
Research Group Astrobiological Laboratories
Rutherfordstr. 2
12489 Berlin
Germany

E-mail: jean-pierre.devera@dlr.de

Submitted 29 April 2018
Accepted 7 January 2019

Abbreviations Used
BIOMEX = BIOlogy and Mars EXperiment
DLR = German Aerospace Center
EVTs = Experiment Verification Tests
ISS = International Space Station
MfN = Museum für Naturkunde
PAR = photosynthetically active radiation
SVTs = Scientific Verification Tests
This article has been cited by:

1. Pacelli Claudia, Selbmann Laura, Zucconi Laura, Coleine Claudia, de Vera Jean-Pierre, Rabbow Elke, Böttger Ute, Dadachova Ekaterina, Onofri Silvano. 2019. Responses of the Black Fungus Cryomyces antarcticus to Simulated Mars and Space Conditions on Rock Analogs. *Astrobiology* 19:2, 209-220. [Abstract] [Full Text] [PDF] [PDF Plus]

2. Billi Daniela, Verseux Cyprien, Fagliarone Claudia, Napoli Alessandro, Biqué Mickael, de Vera Jean-Pierre. 2019. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. *Astrobiology* 19:2, 158-169. [Abstract] [Full Text] [PDF] [PDF Plus]

3. Huwe Björn, Fiedler Annelie, Moritz Sophie, Rabbow Elke, de Vera Jean Pierre, Joshi Jasmin. 2019. Mosses in Low Earth Orbit: Implications for the Limits of Life and the Habitability of Mars. *Astrobiology* 19:2, 221-232. [Abstract] [Full Text] [PDF] [PDF Plus]

4. Backhaus Theresa, Meeßen Joachim, Demets René, de Vera Jean-Pierre, Ott Sieglinde. 2019. Characterization of Viability of the Lichen Buellia frigida After 1.5 Years in Space on the International Space Station. *Astrobiology* 19:2, 233-241. [Abstract] [Full Text] [PDF] [PDF Plus]