A Meta-analysis of intradermal versus intramuscular influenza vaccines: Immunogenicity and Adverse Events

Fawziah Marra, Flora Young, Kathryn Richardson, Carlo A. Marra

Objective To determine immunogenicity and safety of intradermal (ID) influenza vaccines compared with intramuscular (IM) administration and effect of dose and age.

Design Meta-analysis.

Setting Systematic review and meta-analysis of randomized controlled trials on influenza vaccines.

Sample Randomized, controlled trials comparing ID seasonal split-virus influenza vaccines with 15 μg IM control in subjects 18 years of age or older and assessed antibody response at 21–28 days post-vaccination were considered for inclusion.

Results A total of 13 trials were included. The pooled immunogenicity outcomes did not differ significantly between the IM and ID vaccine groups for the H1N1 (ratio of GMTR: 0.92, 95% confidence interval 0.77–1.09; seroconversion: 0.94, 0.86–1.02; seroprotection: 0.97, 0.94–1.00) and B strains (GMTR: 0.93, 0.80–1.08; seroconversion: 0.91, 0.80–1.04; seroprotection: 0.97, 0.91–1.03). For the H3N2 strain, there was no significant difference in GMTR (0.97, 0.80–1.18); however, there was a lower pooled seroconversion (0.89, 0.80–0.99) and seroprotection rate (0.98, 0.96–0.99) for ID recipients. There was a statistically significant association between increasing doses of the ID vaccination with increasing immunogenicity response \((P = 0.01)\).

There were no differences in adverse event rates within 3 days post-vaccination for ID versus IM. But for adverse events occurring 7 days post-vaccination, ID vaccination was associated with a greater incidence of local events but not systemic events.

Conclusions There was no significant difference in immunologic response when comparing ID with IM administration of the influenza vaccination in the overall population, but higher doses of ID vaccine in the older adult population produced a better response.

Keywords Influenza vaccine, intradermal, meta-analysis, route of administration.

Introduction

The global burden of influenza is enormous as in a typical year 20% of the world’s population is infected and about half million individuals are associated with significant morbidity and mortality. Older adults are at a higher risk of developing complications because of an influenza infection, with a mortality rate of 22 per 100 000 person-years in those older than 65 years of age compared with three per 100 000 person-years in those who are younger.

Influenza vaccines are very effective at preventing influenza infections with an efficacy rate of 80% (95% confidence interval 56–91) in healthy adults 65 years of age or younger reported in a meta-analysis. Unfortunately, vaccines are less effective in older adults because of immunosenescence, whereby there is deterioration in immune function secondary to aging, especially in the ability to mount a primary immune response to new antigens. Antibody responses to influenza vaccines in older adults were found to be less than in younger adults, with odds ratios for seroconversion and seroprotection rates ranging from 0.34 to 0.59.

Because of the vulnerability of older adults to complications secondary to influenza infections and the lower efficacy of vaccines in older adults, several innovative methods of vaccination have been investigated to improve immune response. Some of these strategies include vaccines that are adjuvanted, live attenuated, intranasal, virosomal, administered at a higher dose, and administered intradermally (ID). ID vaccines are theorized to improve immune response because of the abundance of immunostimulatory cells such as dendritic cells in the dermis.
This is a promising mode of administration and has been studied in various populations, including both older adults and younger adults. We have previously published a qualitative systematic review on this topic, but the objective of this study was to conduct a quantitative approach and perform a meta-analysis of studies that compared ID vaccines with traditional methods of administration in adults to determine their immunogenicity and safety and also to determine the effect of dose and age on immunogenicity.

Materials and methods

Literature search strategy and study selection

The online databases of Embase, MEDLINE, and PubMed were searched to identify potential studies using the following search strategy: ‘influenza vaccine,’ ‘intradermal drug administration,’ ‘injections, intradermal,’ ‘intradermal influenza vaccine.’ Articles were limited to English only. The databases were searched from January 1, 1996 to February 10, 2012.

Two investigators searched the literature and extracted data independently. Inclusion criteria were the same as those used for our systematic review and were as follows: (i) randomized trials comparing ID administration of seasonal split-virus influenza vaccines with intramuscular (IM) control; (ii) study participants were 18 years of age or older; (iii) studies assessed antibody response by the hemagglutinin (HA) inhibition method; (iv) studies reported results as the geometric mean titer (GMT), the geometric mean titer ratio (GMTR), seroprotection rate, and seroconversion or significant increase rate assessed at 21–28 days post-vaccination. Finally, if multiple doses were evaluated in a study as well as the single dose, we only included the results associated with the single-dose administration. The following studies were excluded: (i) those that investigated pandemic influenza vaccines; (ii) those that evaluated whole-virus vaccines; and (iii) those that included immunocompromised subjects.

Outcome assessment

Immunogenicity was assessed using geometric mean titer ratio (i.e., mean fold increase in GMT from pre-vaccination to post-vaccination), seroprotection rate (i.e., % with anti-HA titer ≥40), and seroconversion (i.e., post-vaccination titers ≥40 for those with pre-vaccination titer <10) as these are the immunogenicity criteria used by the European Medicines Agency (EMA) to assess influenza vaccines. The EMA criteria state that for those 18–60 years of age, one of the following criteria needs to be satisfied: GMTR > 2.5, seroconversion rate > 40%, or seroprotection rate > 70%. However, for those >60 years of age, the criteria are as follows: GMTR > 2.0, seroconversion rate > 30%, or seroprotection rate > 60%. For the meta-analysis, our pooled outcomes included GMTR, seroprotection rate, and seroconversion rate at days 21–28 post-vaccination for each of the three strains included in the seasonal influenza vaccine. Outcomes up to 12 months post-vaccination were also assessed, if data were available. Safety outcomes included systemic and local adverse events within 3 days post-vaccination and within 7 days post-vaccination as per EMA standard.

Data synthesis and statistical analysis

Data from RCTs were extracted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) 5 statement. The methodological quality of the RCTs, including risk of bias assessment, was assessed according to Cochrane Collaboration recommendations and the Jadad score for consideration of random sequence generation, allocation concealment, blinding procedures, address of incomplete outcome data, and unselective reporting. This scoring tool is appropriate to use despite the fact that some studies were not double-blinded and different routes of administration are used.

The ratio was used as the effect measure for comparing the GMTR from the ID and IM vaccination groups. For each study, the logarithm of the ratio of GMTR and corresponding SEs was estimated from the reported GMTR and 95% confidence interval (CI) in both groups. For all other outcomes, the risk ratio (RR) was calculated from the proportions reported in each study. Risk ratios from different studies were combined and weighted by the inverse of their variances using a random-effects model to obtain a pooled RR with 95% CI.

An estimate of the between-study variance was provided, and meta-regression was used to examine the extent to which study-level variables explained heterogeneity in the treatment effects. The following variables were considered: age (≤60, >60 years), sex ratio, dose, proportion with influenza vaccination history in previous year, and number of years study was conducted. Random-effects meta-analysis was stratified by the study-level variable that explained the most heterogeneity between studies.

A sensitivity analysis was performed excluding the first-year results from one study whose results had been overly influential in the immunogenicity meta-analyses. Analyses were performed using cochrane revman version 5 and stata version 9 (www.cochrane.org).

Results

The literature search yielded 245 citations, from which 210 were excluded because the title or abstract revealed them to be not related to influenza vaccination or they were duplications. Full articles of the remaining 35 studies were
Table 1. Pooled risk ratios for intradermal compared with intramuscular influenza vaccine for efficacy

Vaccine Strain	Author	Dose used in study (µg)	Total number of patients	Ratio of GMTR, [95% CI]	Seroconversion, RR [95% CI]	Seroprotection, RR [95% CI]
H1N1	Auewarakul et al.	ID 3	400	–	0.90 [0.85, 0.95]	0.95 [0.92, 0.99]
		IM 15	100	–	0.87 [0.59, 1.28]	0.85 [0.61, 1.17]
	Belshe et al. 19	ID 3	29	0.75 [0.62, 0.90]	0.71 [0.63, 0.79]	0.84 [0.78, 0.90]
		IM 15	31	0.42 [0.42, 0.43]	1.05 [0.86, 1.28]	0.89 [0.78, 1.03]
	Beran et al. 15	ID 3	378	1.02 [0.94, 1.11]	1.17 [0.95, 1.43]	0.97 [0.89, 1.05]
	(Year 1)	IM 15	376	–	–	–
	Kenney et al. 21	ID 3	50	0.92 [0.88, 1.09]	0.92 [0.78, 1.08]	0.91 [0.85, 0.97]
		IM 15	50	0.79 [0.76, 0.83]	0.68 [0.33, 1.44]	1.00 [0.96, 1.04]
	Van Damme et al.	ID 3	60	0.92 [0.88, 1.09]	0.92 [0.78, 1.08]	0.91 [0.85, 0.97]
		IM 15	60	0.79 [0.76, 0.83]	0.68 [0.33, 1.44]	1.00 [0.96, 1.04]
Subtotal				0.92 [0.88, 1.09]	0.92 [0.78, 1.08]	0.91 [0.85, 0.97]
Belshe et al. 26 (>60 years)	ID 6	56	1.03 [0.97, 1.09]	0.74 [0.46, 1.18]	1.00 [0.97, 1.03]	
		IM 15	46	0.90 [0.74, 1.11]	0.92 [0.63, 1.33]	1.07 [0.83, 1.38]
Belshe et al. 26 (≤60 years)	ID 6	60	0.92 [0.78, 1.08]	0.91 [0.85, 0.97]		
		IM 15	63	0.79 [0.76, 0.83]	0.68 [0.33, 1.44]	1.00 [0.96, 1.04]
Beran et al. 15 (Year 1)	ID 6	28	0.92 [0.63, 1.33]	1.07 [0.83, 1.38]		
		IM 15	31	0.48 [0.48, 0.49]	0.82 [0.76, 0.88]	
	Chuaychoo et al. 27	ID 6	375	0.93 [0.87, 1.00]	0.99 [0.91, 1.08]	
		IM 15	376	1.07 [0.86, 1.34]		
	Van Damme et al.	ID 6	60	0.81 [0.72, 0.91]	0.97 [0.89, 1.05]	
		IM 15	60	0.92 [0.88, 1.09]		
Subtotal				0.92 [0.88, 1.09]	0.92 [0.78, 1.08]	0.91 [0.85, 0.97]
Arnou et al. 16	ID 9	1255	0.94 [0.94, 0.95]	0.96 [0.97, 1.02]		
		IM 15	421	1.02 [0.93, 1.13]		
	Belshe et al. 19	ID 9	27	0.97 [0.73, 1.29]		
		IM 15	31	0.66 [0.54, 0.80]		
Beran et al. 15 (Year 2)	ID 9	544	0.91 [0.91, 0.92]	0.96 [0.93, 1.00]		
		IM 15	547	0.91 [0.91, 0.92]		
Beran et al. 15 (Year 3)	ID 9	417	0.95 [0.94, 0.96]	0.99 [0.95, 1.04]		
		IM 15	411	0.91 [0.89, 0.93]	1.03 [0.80, 1.33]	
Chi et al. 23	ID 9	63	0.81 [0.76, 0.87]	0.97 [0.91, 1.02]		
		IM 15	65	1.17 [1.16, 1.19]	1.04 [0.99, 1.09]	
	Leroux-Roel et al.	ID 9	383	1.05 [0.97, 1.15]		
		IM 15	385	1.04 [0.99, 1.09]		
Subtotal				1.04 [0.99, 1.09]		
Arnou et al. 24 (Year 2)	ID 15	262	0.92 [0.85, 1.01]	1.00 [0.93, 1.07]		
		IM 15	143	1.36 [1.33, 1.39]		
Arnou et al. 24 (Year 3)	ID 15	298	1.00 [0.97, 1.03]	1.14 [1.05, 1.24]		
		IM 15	67	1.12 [0.76, 1.65]		
	Holland et al. 25	ID 15	359	1.58 [1.56, 1.60]		
		IM 15	358	0.90 [0.89, 0.91]		
Van Damme et al. 22	ID 15	395	1.18 [0.85, 1.63]	0.93 [0.88, 0.99]		
Subtotal				1.18 [0.85, 1.63]		
Holland et al. 25	ID 21	359	1.19 [1.04, 1.36]	1.04 [0.90, 1.20]		
		IM 15	358	1.19 [1.04, 1.36]		
Subtotal				1.19 [1.04, 1.36]		
Total				1.80 [1.78, 1.82]		

© 2012 John Wiley & Sons Ltd
Table 1. (Continued)

Vaccine Strain	Author	Dose used in study (µg)	Total number of patients	Ratio of GMTR, [95% CI]	Seroconversion, RR [95% CI]	Seroprotection, RR [95% CI]
H3N2	Auewarakul et al.²⁰	ID 3	400	–	0.86 [0.78–0.95]	0.91 [0.86–0.96]
	Belshe et al.¹⁹	ID 3	29	1.86 [1.57, 2.21]	0.74 [0.57, 0.96]	0.83 [0.70, 0.99]
	Beran et al.¹⁵	ID 3	278	0.38 [0.38, 0.39]	0.56 [0.48, 0.65]	0.92 [0.88, 0.95]
	Kenney et al.²¹	ID 3	50	2.68 [2.44, 2.93]	1.18 [0.92, 1.51]	0.98 [0.91, 1.05]
	Van Damme et al.¹⁷	ID 3	60	0.54 [0.49, 0.60]	0.74 [0.57, 0.96]	1.00 [0.95, 1.05]
	Subtotal					
	Belshe et al.²⁶	ID 6	56	1.01 [0.36, 2.80]	0.79 [0.62, 1.0]	0.94 [0.90, 0.99]
	(60 years)	IM 15	46	0.57 [0.52, 0.61]	0.41 [0.20, 0.83]	0.93 [0.86, 1.01]
	Belshe et al.²⁶	ID 6	60	1.12 [1.05, 1.18]	0.80 [0.64, 1.01]	1.00 [0.97, 1.03]
	(<60 years)	IM 15	63	1.33 [1.12, 1.59]	0.81 [0.65, 1.02]	0.90 [0.78, 1.03]
	Beran et al.¹⁵	ID 6	375	0.46 [0.45, 0.47]	0.67 [0.59, 0.77]	0.91 [0.87, 0.95]
	(Year 1)	IM 15	376	0.72 [0.67, 0.78]	0.83 [0.68, 1.02]	0.97 [0.83, 1.14]
	Chuaychoo et al.²⁷	ID 6	81	0.58 [0.53, 0.64]	0.89 [0.71, 1.11]	0.98 [0.93, 1.04]
	Van Damme et al.¹⁷	ID 6	60	0.74 [0.51, 1.06]	0.77 [0.68, 0.87]	0.95 [0.91, 1.00]
	Subtotal					
	Arnou et al.¹⁶	ID 9	1255	1.03 [1.02, 1.04]	0.96 [0.89, 1.03]	0.98 [0.95, 1.00]
	Belshe et al.¹⁹	ID 9	27	0.71 [0.61, 0.83]	0.80 [0.64, 1.01]	0.95 [0.78, 1.15]
	Beran et al.¹⁵	ID 9	544	1.00 [0.99, 1.01]	1.05 [0.93, 1.17]	0.98 [0.96, 0.99]
	(Year 2)	IM 15	547			
	Beran et al.¹⁵	ID 9	417	1.31 [1.30, 1.33]	1.33 [1.17, 1.52]	1.01 [1.00, 1.02]
	(Year 3)	IM 15	411			
	Chi et al.²³	ID 9	63	0.84 [0.77, 0.90]	–	0.97 [0.79, 1.19]
	Leroux-Roel et al.¹⁸	ID 9	383	1.36 [1.35, 1.38]	1.07 [1.00, 1.14]	1.01 [1.00, 1.02]
	Subtotal					
	Arnou et al.²⁴	ID 15	262	1.03 [0.91, 1.17]	1.04 [0.93, 1.17]	1.00 [0.98, 1.01]
	(Year 2)	IM 15	143	1.19 [1.17, 1.21]	1.16 [0.91, 1.47]	1.02 [0.99, 1.06]
	Arnou et al.²⁴	ID 15	298	1.12 [1.07, 1.16]	1.17 [0.96, 1.44]	1.15 [1.01, 1.32]
	(Year 3)	IM 15	67			
	Holland et al.²⁵	ID 15	359	1.54 [1.52, 1.56]	–	–
	Van Damme et al.²²	ID 15	395	0.88 [0.87, 0.89]	–	–
	Subtotal					
	Holland et al.²⁵	ID 21	359	1.16 [0.86, 1.56]	1.17 [1.00, 1.36]	1.07 [0.95, 1.19]
		IM 15	358	1.75 [1.73, 1.78]	–	–
	Subtotal					
	Total					
Table 1. (Continued)

Vaccine Strain	Author	Dose used in study (µg)	Total number of patients	Ratio of GMTR, [95% CI]	Seroconversion, RR [95% CI]	Seroprotection, RR [95% CI]
B Strain	Auewarakul et al.¹⁰	ID 3	400	–	0.60 [0.46, 0.77]	0.76 [0.62, 0.94]
	Belshe et al.¹⁹	IM 15	100	1.0	0.81 [0.54, 1.23]	0.88 [0.71, 1.09]
	Beran et al.¹⁵ (Year 1)	IM 15	31	0.48 [0.47, 0.48]	0.44 [0.35, 0.55]	0.51 [0.43, 0.62]
	Kenney et al.²¹	ID 3	376	0.81 [0.75, 0.88]	1.00 [0.83, 1.20]	1.00 [0.96, 1.04]
	Van Damme et al.¹⁷	IM 15	50	0.89 [0.81, 0.97]	1.08 [0.83, 1.40]	1.07 [0.89, 1.28]
Subtotal						
Belshe et al.²⁶ (≥60 years)	ID 6	56	0.81 [0.52, 1.26]	0.74 [0.52, 1.07]	0.82 [0.64, 1.05]	
Belshe et al.²⁶ (≤60 years)	ID 6	60	0.81 [0.78, 0.84]	0.75 [0.35, 1.60]	0.92 [0.78, 1.04]	
Belshe et al.¹⁹	ID 6	28	1.30 [0.99, 1.55]	0.97 [0.68, 1.38]	1.03 [0.89, 1.20]	
Beran et al.¹⁵ (Year 1)	ID 6	58	0.55 [0.54, 0.55]	0.57 [0.47, 0.70]	0.59 [0.50, 0.70]	
Chuaychoo et al.²⁷	ID 6	81	0.70 [0.66, 0.75]	0.60 [0.36, 0.99]	1.00 [0.97, 1.03]	
Van Damme et al.¹⁷	ID 6	60	1.24 [1.13, 1.36]	1.08 [0.83, 1.40]	1.11 [0.93, 1.32]	
Subtotal						
Arnowet al.¹⁶	ID 9	1255	0.79 [0.62, 0.91]	0.80 [0.61, 1.04]	0.94 [0.86, 1.03]	
Belshe et al.¹⁹	IM 15	421	0.96 [0.96, 0.97]	0.93 [0.85, 1.02]	0.97 [0.91, 1.04]	
Beran et al.¹⁵ (Year 2)	ID 9	544	0.80 [0.68, 0.94]	0.90 [0.61, 1.32]	0.95 [0.78, 1.15]	
Beran et al.¹⁵ (Year 3)	ID 9	417	1.00 [0.99, 1.01]	1.23 [0.95, 1.59]	1.02 [0.96, 1.09]	
Chi et al.²³	ID 9	63	0.71 [0.67, 0.76]	–	0.61 [0.30, 1.22]	
Leroux-Roel et al.¹⁸	IM 15	65	1.12 [1.11, 1.13]	1.04 [0.96, 1.13]	1.06 [1.00, 1.11]	
Subtotal						
Arnowet al.²⁴ (Year 2)	ID 15	547	0.93 [0.87, 0.99]	0.99 [0.92, 1.06]	1.01 [0.97, 1.05]	
Arnowet al.²⁴ (Year 3)	IM 15	385	1.14 [1.13, 1.15]	2.87 [1.86, 4.42]	1.71 [1.48, 1.98]	
Holland et al.²⁵	ID 15	359	1.36 [1.35, 1.38]	–	–	
Van Damme et al.²²	IM 15	358	1.02 [1.01, 1.03]	–	–	
Subtotal						
Holland et al.²⁵	ID 21	359	1.20 [1.04, 1.39]	8.67 [8.65, 4.15]	1.38 [0.90, 2.12]	
Subtotal						
Total						
retrieved for further evaluation, from which a further 22 studies were excluded because of various reasons (i.e. animal studies, non-randomized, use of whole-virus vaccine, assessment of titers not within 21–28 days).

Thirteen randomized, controlled, open-label trials were included in this meta-analysis, and these were also included in our systematic review. Seven trials were performed in young adults 18–60 years of age, four trials were performed in elderly subjects >60 years, and two trials included both young adults and elderly participants, of which one performed separate analyses for both groups and one provided a separate analysis for the elderly population only. Nine trials had a Jadad score of 3, and four trials had a score of 1.

Study or Subgroup	Weight	IV, Random, 95% CI	Weight	IV, Random, 95% CI
Belshe 2007	2.3%	0.75 [0.27, 2.06]		
Beran 2009 - year 1	6.0%	0.42 [0.33, 0.53]		
Kenney 2004	4.0%	1.02 [0.56, 1.86]		
Van Damme 2009	2.8%	0.98 [0.41, 2.31]		
Subtotal (95% CI)	15.1%	0.70 [0.40, 1.24]		

Heterogeneity: Tau² = 0.22; Chi² = 10.38, d.f. = 3 (P = 0.02); I² = 71%
Test for overall effect: Z = 1.23 (P = 0.22)

Study or Subgroup	Weight	IV, Random, 95% CI	Weight	IV, Random, 95% CI
Belshe 2004 >60 years	5.5%	0.79 [0.57, 1.10]		
Belshe 2004 ≤60 years	4.4%	1.03 [0.62, 1.73]		
Belshe 2007	2.0%	0.90 [0.30, 2.73]		
Beran 2009 - year 1	6.0%	0.48 [0.37, 0.62]		
Chuaychoo 2010	3.7%	0.93 [0.49, 1.78]		
Van Damme 2009	2.6%	0.81 [0.33, 2.00]		
Subtotal (95% CI)	24.3%	0.75 [0.54, 1.03]		

Heterogeneity: Tau² = 0.08; Chi² = 11.76, d.f. = 5 (P = 0.04); I² = 57%
Test for overall effect: Z = 1.79 (P = 0.07)

Study or Subgroup	Weight	IV, Random, 95% CI	Weight	IV, Random, 95% CI
Arnou 2010	6.2%	0.94 [0.78, 1.15]		
Belshe 2007	2.1%	0.66 [0.22, 1.96]		
Beran 2009 - year 2	6.4%	0.91 [0.78, 1.08]		
Beran 2009 - year 3	5.9%	0.95 [0.74, 1.23]		
Chi 2010	4.2%	0.81 [0.46, 1.43]		
Leroux-Roel 2008	6.0%	1.17 [0.92, 1.49]		
Subtotal (95% CI)	30.8%	0.96 [0.87, 1.06]		

Heterogeneity: Tau² = 0.00; Chi² = 3.79, d.f. = 5 (P = 0.58); I² = 0%
Test for overall effect: Z = 0.74 (P = 0.46)

Study or Subgroup	Weight	IV, Random, 95% CI	Weight	IV, Random, 95% CI
Arnou 2009 - year 2	5.6%	1.36 [1.00, 1.86]		
Arnou 2009 - year 3	5.8%	1.00 [0.75, 1.32]		
Van Damme 2010	6.1%	0.90 [0.73, 1.12]		
Subtotal (95% CI)	23.7%	1.18 [0.89, 1.56]		

Heterogeneity: Tau² = 0.06; Chi² = 14.36, d.f. = 3 (P = 0.002); I² = 79%
Test for overall effect: Z = 1.13 (P = 0.26)

Study or Subgroup	Weight	IV, Random, 95% CI	Weight	IV, Random, 95% CI
Holland 2008	6.1%	1.80 [1.45, 2.23]		
Subtotal (95% CI)	6.1%	1.80 [1.45, 2.23]		

Heterogeneity: Not applicable
Test for overall effect: Z = 5.35 (P < 0.00001)

Figure 1. Pooled immunogenicity for (a) ratio of GMTR, (b) risk ratio of seroconversion, (c) risk ratio of seroprotection for intradermal compared with intramuscular influenza vaccine for H1N1 strain.
Immunogenicity

The immunogenicity outcomes (i.e., GMTR, seroprotection, and seroconversion) for the H1N1, H3N2, and B strains did not differ significantly across the intramuscular and intradermal vaccine groups, except for the H3N2 strain, where there was a lower pooled seroconversion (RR 0·89, 95% CI 0·80–0·99) and seroprotection rate (RR 0·98, 95% CI, 0·96–0·99) for ID recipients. This is shown in Table 1.

Meta-analyses of studies stratified by ID dose are shown in Figures 1–3. For H1N1 at a dose of 15 μg, the seroconversion RR was 1·19 (95% CI, 1·04–1·36), while at 6 μg, it was 0·85 (95% CI, 0·73–1·00), and also at 3 μg, the seroprotection rate was significantly lowered for ID recipients with a RR of 0·91 (95% CI, 0·85–0·97) compared with IM recipients (Figure 1). For H3N2 at 15 μg, the seroconversion RR was 1·17 (1·00–1·36), while at 3 μg, it was 0·79 (0·62–1·00) compared with IM groups. Also at 3 μg, the seroprotection RR was 0·94 (0·90–0·99) (Figure 2). For B at 15 μg, the GMTR RR was 1·20 (1·04–1·39), while at 9 μg, it was 0·93 (0·87–0·99) (Figure 3).
Generally for ID at the same dose as control (15 μg), there were no significant differences between the outcomes, apart from the fact that ID was superior to IM vaccination for H1N1 and H3N2 seroconversion and for B GMTR. In the meta-regression, age had P-values of <0.1 for H1N1 GMTR (P = 0.05) and B seroconversion (P = 0.01). No other study-level variables were significantly associated with more than one immunogenicity outcome in the meta-regression for H1N1, H3N2, or B influenza strains.

Adverse events within 3 days post-vaccination

There were no differences in adverse event rates within 3 days post-vaccination for ID versus IM vaccination. There was little evidence of heterogeneity (only ≥1 ADR had P < 0.05). In meta-regression, age was the strongest predictor

Seroprotection rate

Study or Subgroup	Weight	Risk ratio IV, Random, 95% CI	Risk ratio IV, Random, 95% CI
1.3.1 3 mcg			
Auewarakul 2007	7.5%	0.95 [0.92, 0.99]	
Belshe 2007	0.7%	0.85 [0.61, 1.17]	
Beran 2009 - year 1	5.7%	0.84 [0.78, 0.90]	
Kenney 2004	2.9%	0.89 [0.78, 1.03]	
Van Damme 2009	5.2%	0.97 [0.89, 1.05]	
Subtotal (95% CI)	22.1%	0.91 [0.85, 0.97]	
Total events			
Heterogeneity: Tau² = 0.00; Chi² = 10.86, d.f. = 4 (P = 0.03); I² = 63%			
Test for overall effect: Z = 2.74 (P = 0.006)			
1.3.3 6 mcg			
Belshe 2004 >60 years	7.5%	1.00 [0.96, 1.04]	
Belshe 2004 ≤60 years	7.9%	1.00 [0.97, 1.03]	
Belshe 2007	1.2%	1.07 [0.83, 1.38]	
Beran 2009 - year 1	5.5%	0.82 [0.76, 0.88]	
Chuaychoo 2010	5.0%	0.99 [0.91, 1.08]	
Van Damme 2009	5.2%	0.97 [0.89, 1.05]	
Subtotal (95% CI)	32.3%	0.96 [0.91, 1.02]	
Total events			
Heterogeneity: Tau² = 0.00; Chi² = 25.18, d.f. = 5 (P = 0.0001); I² = 80%			
Test for overall effect: Z = 1.31 (P = 0.19)			
1.3.4 9 mcg			
Arnou 2010	7.3%	1.01 [0.97, 1.06]	
Belshe 2007	0.9%	0.97 [0.73, 1.29]	
Beran 2009 - year 2	7.7%	0.96 [0.93, 1.00]	
Beran 2009 - year 3	7.3%	0.99 [0.95, 1.04]	
Chi 2010	1.2%	1.03 [0.80, 1.33]	
Leroux-Roel 2008	7.2%	1.04 [0.98, 1.09]	
Subtotal (95% CI)	31.6%	1.00 [0.97, 1.02]	
Total events			
Heterogeneity: Tau² = 0.00; Chi² = 6.88, d.f. = 5 (P = 0.23); I² = 27%			
Test for overall effect: Z = 0.11 (P = 0.91)			
1.3.5 15 mcg			
Arnou 2009 - year 2	5.1%	1.14 [1.05, 1.24]	
Arnou 2009 - year 3	2.7%	1.08 [0.93, 1.25]	
Van Damme 2010	6.3%	0.93 [0.88, 0.99]	
Subtotal (95% CI)	14.1%	1.04 [0.90, 1.29]	
Total events			
Heterogeneity: Tau² = 0.01; Chi² = 15.04, d.f. = 2 (P = 0.0005); I² = 87%			
Test for overall effect: Z = 0.55 (P = 0.58)			
Total (95% CI)	100.0%	0.97 [0.94, 1.00]	
Total events			
Heterogeneity: Tau² = 0.00; Chi² = 73.75, d.f. = 19 (P < 0.0001); I² = 74%			
Test for overall effect: Z = 1.88 (P = 0.06)			
of the results, so meta-analyses of studies stratified by age (≤60, >60 years) are shown in Table 2. However, no consistent patterns between age and the RR for adverse events were observed. Age was only significantly associated with malaise (P = 0.03), with a RR of 0.84 (95% CI 0.71–0.98) for those aged ≤60 when comparing ID versus IM groups.

Adverse events within 7 days post-vaccination
Intradermal vaccination was associated with a greater incidence of local adverse events (Table 3) when compared with IM administration. This was particularly true for the categories of ≥1 ADR (RR 1.94, 95% CI 1.60–2.35), erythema (5.34, 4.35–6.55), swelling (4.65, 3.70–5.85), induration (4.41, 4.05–4.85), and injection-site reaction (4.85, 3.98–5.76).

Table 3. Results for local adverse events within 7 days after vaccination.

Study or Subgroup	Weight	IV, Random, 95% CI	Risk ratio	IV, Random, 95% CI
2.1.1 3 mcg				
Belshe 2007	2.9%	1.86 [0.73, 4.77]		
Beran 2009 - year 1	5.8%	0.38 [0.31, 0.48]		
Kenney 2004	4.0%	2.68 [1.41, 5.07]		
Van Damme 2009	3.5%	0.54 [0.25, 1.18]		
Subtotal (95% CI)	16.2%	0.98 [0.34, 2.63]		
Heterogeneity: Tau² = 1.06; Chi² = 39.96, d.f. = 3 (P < 0.00001); I² = 92% Test for overall effect: Z = 0.04 (P = 0.97)				

2.1.2 6 mcg				
Belshe 2004 >60 years	4.6%	0.57 [0.34, 0.94]		
Belshe 2004 ≤60 years	4.6%	1.12 [0.67, 1.85]		
Belshe 2007	2.8%	1.33 [0.51, 3.48]		
Beran 2009 - year 1	5.8%	0.46 [0.37, 0.58]		
Chuaychoo 2010	6.0%	0.72 [0.38, 1.39]		
Van Damme 2009	5.8%	0.58 [0.28, 1.22]		
Subtotal (95% CI)	18.4%	0.87 [0.48, 1.98]		
Heterogeneity: Tau² = 0.12; Chi² = 13.71, d.f. = 5 (P = 0.02); I² = 64% Test for overall effect: Z = 2.06 (P = 0.04)				

2.1.3 9 mcg				
Arnou 2010	5.9%	1.03 [0.85, 1.24]		
Belshe 2007	3.1%	0.71 [0.30, 1.71]		
Beran 2009 - year 2	6.0%	1.00 [0.85, 1.18]		
Beran 2009 - year 3	5.6%	1.31 [0.98, 1.77]		
Chi 2010	4.0%	0.84 [0.44, 1.60]		
Leroux-Roel 2008	5.8%	1.36 [0.97, 1.73]		
Subtotal (95% CI)	13.3%	1.10 [0.96, 1.27]		
Heterogeneity: Tau² = 0.01; Chi² = 7.82, d.f. = 5 (P = 0.17); I² = 36% Test for overall effect: Z = 1.35 (P = 0.18)				

2.1.4 15 mcg				
Arnou 2009 - year 2	5.7%	1.19 [0.92, 1.53]		
Arnou 2009 - year 3	5.2%	1.12 [0.77, 1.63]		
Holland 2008	5.6%	1.54 [1.16, 2.03]		
Van Damme 2010	5.8%	0.88 [0.71, 1.09]		
Subtotal (95% CI)	22.4%	1.15 [0.89, 1.47]		
Heterogeneity: Tau² = 0.05; Chi² = 10.09, d.f. = 3 (P = 0.02); I² = 70% Test for overall effect: Z = 1.07 (P = 0.28)				

2.1.5 21 mcg				
Holland 2008	5.6%	1.75 [1.32, 2.31]		
Subtotal (95% CI)	5.6%	1.75 [1.32, 2.31]		
Heterogeneity: Not applicable Test for overall effect: Z = 3.94 (P < 0.0001)				

| Total (95% CI) | 100.0% | 0.97 [0.78, 1.20] | | |
| Heterogeneity: Tau² = 0.20; Chi² = 174.94, d.f. = 20 (P < 0.00001); I² = 89% Test for overall effect: Z = 2.07 (P = 0.78) |

Figure 2. Pooled immunogenicity for (a) ratio of GMTR, (b) risk ratio of seroconversion, (c) risk ratio of seroprotection for intradermal compared with intramuscular influenza vaccine for H3N2 strain.
Meta-analysis of intradermal versus intramuscular influenza vaccines

Sensitivity analysis

The adverse event results remained unchanged when excluding the first-year data from one study, whose results had been overly influential in the immunogenicity meta-analyses. However, in the sensitivity analysis, none of the immunogenicity outcomes remained significantly different overall across ID and IM recipients. Although the strong associations with dose remained, the pooled RRs in those dose subgroups with significant results in the main analysis were still comparable. Also other results from the meta-regressions were consistent with conclusions made in the main analysis.

B Seroconversion rate

Study or Subgroup	Weight	Risk ratio IV, Random, 95% CI	Risk ratio
2.2.1 3 mcg	27.7%	0.79 [0.62, 1.00]	
Auewarakul 2007	6.6%	0.86 [0.78, 0.95]	
Belshe 2007	4.9%	0.74 [0.57, 0.96]	
Beran 2009 - year 1	6.1%	0.56 [0.48, 0.65]	0.52 [0.44, 0.61]
Kenney 2004	5.1%	1.18 [0.92, 1.51]	
Van Damme 2009	4.9%	0.74 [0.57, 0.96]	
Subtotal (95% CI)	27.7%	0.79 [0.62, 1.00]	0.67 [0.59, 0.75]
Total events			0.70 [0.62, 0.80]
Heterogeneity:			Tau² = 0.06; Ch² = 32.85, d.f. = 3 (P < 0.0001); I² = 88%
Test for overall			effect: Z = 1.98 (P = 0.05)

2.2.2 6 mcg

Study or Subgroup	Weight	Risk ratio IV, Random, 95% CI	Risk ratio
Belshe >60 years	6.3%	0.77 [0.59, 0.97]	0.73 [0.57, 0.94]
Belshe ≤60 years	8.8%	0.80 [0.64, 1.01]	0.78 [0.63, 0.96]
Beran 2009 - year 1	6.3%	0.67 [0.59, 0.77]	0.66 [0.57, 0.77]
Chuaychoo 2010	5.6%	0.83 [0.68, 1.02]	0.82 [0.68, 1.02]
Van Damme 2009	5.4%	0.89 [0.71, 1.11]	0.89 [0.71, 1.11]
Subtotal (95% CI)	29.6%	0.77 [0.68, 0.87]	0.77 [0.68, 0.87]
Total events			0.70 [0.62, 0.80]
Heterogeneity:			Tau² = 0.01; Ch² = 9.16, d.f. = 5 (P = 0.10); I² = 45%
Test for overall			effect: Z = 4.07 (P < 0.0001)

2.2.3 9 mcg

Study or Subgroup	Weight	Risk ratio IV, Random, 95% CI	Risk ratio
Arnou 2010	6.8%	0.96 [0.89, 1.03]	
Belshe 2007	5.3%	0.80 [0.64, 1.01]	
Beran 2009 - year 2	6.5%	1.05 [0.93, 1.17]	1.05 [0.93, 1.17]
Beran 2009 - year 3	6.4%	1.33 [1.17, 1.52]	1.33 [1.17, 1.52]
Leroux-Roel 2008	6.9%	1.07 [1.00, 1.14]	1.07 [1.00, 1.14]
Subtotal (95% CI)	31.9%	1.04 [0.93, 1.17]	1.04 [0.93, 1.17]
Total events			0.75 [0.65, 0.85]
Heterogeneity:			Tau² = 0.01; Ch² = 23.40, d.f. = 4 (P = 0.0001); I² = 83%
Test for overall			effect: Z = 0.75 (P = 0.45)

2.2.4 15 mcg

Study or Subgroup	Weight	Risk ratio IV, Random, 95% CI	Risk ratio
Arnou 2009 - year 2	5.2%	1.16 [0.91, 1.47]	1.18 [0.94, 1.51]
Arnou 2009 - year 3	5.6%	1.17 [0.96, 1.44]	1.17 [0.96, 1.44]
Subtotal (95% CI)	10.8%	1.17 [1.00, 1.36]	1.17 [1.00, 1.36]
Total events			1.00 [0.77, 1.31]
Heterogeneity:			Tau² = 0.00; Ch² = 0.01, d.f. = 1 (P = 0.94); I² = 0%
Test for overall			effect: Z = 1.95 (P = 0.05)

Total (95% CI)

Risk ratio IV, Random, 95% CI	Risk ratio IV, Random, 95% CI
0.86 [0.78, 0.95]	1.18 [0.92, 1.51]
0.74 [0.57, 0.96]	0.74 [0.57, 0.96]
0.79 [0.62, 1.00]	0.79 [0.62, 1.00]
0.86 [0.78, 0.95]	0.74 [0.57, 0.96]
0.79 [0.62, 1.00]	0.79 [0.62, 1.00]
0.79 [0.62, 1.00]	0.79 [0.62, 1.00]
0.96 [0.89, 1.03]	1.00 [0.93, 1.17]
0.80 [0.64, 1.01]	0.80 [0.64, 1.01]
0.96 [0.89, 1.03]	0.96 [0.89, 1.03]
0.80 [0.64, 1.01]	0.80 [0.64, 1.01]
0.96 [0.89, 1.03]	0.96 [0.89, 1.03]
0.80 [0.64, 1.01]	0.80 [0.64, 1.01]
0.80 [0.64, 1.01]	0.80 [0.64, 1.01]
1.00 [0.93, 1.17]	1.00 [0.93, 1.17]

Total (95% CI) 100-0% 0.89 [0.80, 0.99]

Test for overall effect: Z = 2.22 (P = 0.03)
Discussion

The results of this meta-analysis suggest there is no difference in overall immunogenicity outcomes when comparing ID with conventional IM influenza vaccine administration. However, our meta-analysis did see a significant dose–response relationship in favor of ID administration. This is consistent with the results of the Keitel et al. study where higher doses of IM influenza vaccines in older adults (60 µg HA/strain) had 44–71% higher HA inhibition antibody titers compared with those who received the standard 15 µg HA/strain. In fact, of the three trials included in this meta-analysis that compared the 15 µg dose ID with 15 µg IM, two showed superiority of ID over IM and one of the trials showed non-inferiority between ID and IM. ID administration of influenza vaccine therefore promises as a potential strategy to improve the immunogenicity response in

Table C: Seroprotection rates

Study or Subgroup	Weight	IV, Random, 95% CI	Weight	IV, Random, 95% CI
2.3.1 3 mcg				
Auewarakul 2007	4·9%	0·91 [0·86, 0·96]		
Belshe 2007	0·9%	0·83 [0·70, 0·99]		
Beran 2009 - year 1	7·0%	0·92 [0·88, 0·95]		
Kenney 2004	4·1%	0·98 [0·91, 1·05]		
Van Damme 2009	6·3%	1·00 [0·95, 1·05]		
Subtotal (95% CI)	23·3%	0·94 [0·90, 0·99]		
Total events				
Heterogeneity: Tau² = 0·00; Chi² = 12·92, d.f. = 4 (P = 0·01); I² = 69%				
Test for overall effect: Z = 2·39 (P = 0·02)				
2.3.3 6 mcg				
Belshe 2004 >60 years	3·3%	0·93 [0·86, 1·01]		
Belshe 2004 ≤60 years	8·2%	1·00 [0·97, 1·03]		
Belshe 2007	1·5%	0·90 [0·78, 1·03]		
Beran 2009 - year 1	6·9%	0·91 [0·87, 0·95]		
Chuaychoo 2010	1·2%	0·97 [0·83, 1·14]		
Van Damme 2009	5·1%	0·98 [0·93, 1·04]		
Subtotal (95% CI)	26·2%	0·95 [0·91, 1·00]		
Total events				
Heterogeneity: Tau² = 0·00; Chi² = 14·42, d.f. = 5 (P = 0·01); I² = 65%				
Test for overall effect: Z = 2·06 (P = 0·04)				
2.3.4 9 mcg				
Arnou 2010	9·0%	0·98 [0·95, 1·00]		
Belshe 2007	0·8%	0·95 [0·78, 1·15]		
Beran 2009 - year 2	10·1%	0·98 [0·96, 0·99]		
Beran 2009 - year 3	10·6%	1·01 [1·00, 1·02]		
Chi 2010	0·7%	0·97 [0·79, 1·19]		
Leroux-Roel 2008	10·5%	1·01 [1·00, 1·02]		
Subtotal (95% CI)	41·7%	1·00 [0·98, 1·01]		
Total events				
Heterogeneity: Tau² = 0·00; Chi² = 16·20, d.f. = 5 (P = 0·006); I² = 69%				
Test for overall effect: Z = 0·61 (P = 0·54)				
2.3.5 15 mcg				
Arnou 2009 - year 2	7·3%	1·02 [0·99, 1·06]		
Arnou 2009 - year 3	1·5%	1·15 [1·01, 1·32]		
Subtotal (95% CI)	8·8%	1·07 [0·95, 1·19]		
Total events				
Heterogeneity: Tau² = 0·00; Chi² = 2·84, d.f. = 1 (P = 0·09); I² = 65%				
Test for overall effect: Z = 1·15 (P = 0·25)				
Total (95% CI)	100·0%	0·98 [0·96, 0·99]		
Total events				
Heterogeneity: Tau² = 0·00; Chi² = 77·91, d.f. = 18 (P < 0·00001); I² = 77%				
Test for overall effect: Z = 2·67 (P = 0·008)				
older adults as they are at higher risk of morbidity and mortality because of influenza illness. Thus, a higher dose of influenza vaccine administered ID may be a good option in the older adult population to improve their immunogenicity response.

The meta-analysis was performed on both adults and elderly. As the licensed vaccines are two separate formulations, one for adults (9 µg) and another for the elderly (15 µg), analyses were also performed within the separate age groups, but findings were similar for most outcomes. Because of the large number of results presented, we decided not to also present the results separately by the two age groups. However, age group (<60 and >60 years) was examined as a possible explanatory factor for

A GMTR

Study or Subgroup	Weight	IV, Random, 95% CI	Risk ratio	IV, Random, 95% CI
3.1.1 3 mcg				
Belshe 2007	2.1%	1.30 [0.52, 3.26]		
Beran 2009 - year 1	6.2%	0.48 [0.40, 0.57]		
Kenney 2004	3.6%	0.81 [0.45, 1.46]		
Van Damme 2009	3.0%	0.89 [0.44, 1.80]		
Subtotal (95% CI)	14.9%	0.73 [0.45, 1.17]		
Heterogeneity: Tau² = 0.14; Chi² = 8.97, d.f. = 3 (P = 0.03); I² = 67%				
Test for overall effect: Z = 1.32 (P = 0.19)				
3.1.2 6 mcg				
Belshe 2004 >60 years	5.3%	0.81 [0.58, 1.13]		
Belshe 2004 ≤60 years	4.4%	0.70 [0.45, 1.11]		
Belshe 2007	2.0%	1.30 [0.50, 3.38]		
Beran 2009 - year 1	6.2%	0.55 [0.46, 0.66]		
Chuaychoo 2010	3.0%	0.50 [0.25, 1.00]		
Van Damme 2009	3.0%	1.24 [0.62, 2.49]		
Subtotal (95% CI)	23.9%	0.72 [0.65, 0.94]		
Heterogeneity: Tau² = 0.05; Chi² = 11.00, d.f. = 5 (P = 0.05); I² = 55%				
Test for overall effect: Z = 2.39 (P = 0.02)				
3.1.3 9 mcg				
Arnou 2010	6.4%	0.96 [0.84, 1.10]		
Belshe 2007	2.3%	0.80 [0.33, 1.95]		
Beran 2009 - year 2	6.3%	0.94 [0.81, 1.09]		
Beran 2009 - year 3	5.7%	1.00 [0.77, 1.30]		
Chi 2010	4.3%	0.71 [0.44, 1.16]		
Leroux-Roel 2008	6.2%	1.12 [0.93, 1.35]		
Subtotal (95% CI)	31.2%	0.98 [0.90, 1.06]		
Heterogeneity: Tau² = 0.00; Chi² = 4.28, d.f. = 5 (P = 0.51); I² = 0%				
Test for overall effect: Z = 0.52 (P = 0.60)				
3.1.4 15 mcg				
Arnou 2009 - year 2	6.3%	1.14 [0.97, 1.34]		
Arnou 2009 - year 3	5.6%	1.32 [0.90, 1.75]		
Holland 2008	6.0%	1.36 [1.09, 1.70]		
Van Damme 2010	6.2%	1.02 [0.85, 1.22]		
Subtotal (95% CI)	24.0%	1.17 [1.03, 1.34]		
Heterogeneity: Tau² = 0.01; Chi² = 4.77, d.f. = 3 (P = 0.19); I² = 37%				
Test for overall effect: Z = 2.44 (P = 0.01)				
3.1.5 21 mcg				
Holland 2008	6.0%	1.59 [1.27, 1.99]		
Subtotal (95% CI)	6.0%	1.59 [1.27, 1.99]		
Heterogeneity: Not applicable				
Test for overall effect: Z = 4.09 (P < 0.0001)				
Total (95% CI)	100.0%	0.93 [0.79, 1.10]		
Heterogeneity: Tau² = 0.10; Chi² = 150.12, d.f. = 20 (P < 0.00001); I² = 87%				
Test for overall effect: Z = 0.87 (P = 0.39)				

Figure 3. Pooled immunogenicity for (a) ratio of GMTR, (b) risk ratio of seroconversion, (c) risk ratio of seroprotection for intradermal compared with intramuscular influenza vaccine for B strain.

© 2012 John Wiley & Sons Ltd
heterogeneity seen within the results, and those with significant differences between the groups are reported in the results. In the meta-regression, age had \(P \)-values of <0.1 for H1N1 GMTR (\(P = 0.05 \)) and B seroconversion (\(P = 0.01 \)). No statistically significant differences in adverse events in the first 3 days were found between the two groups. For adverse events in the first 7 days, there were no differences in systemic adverse events; however, there was a higher incidence of local adverse events, specifically erythema, swelling, induration, and pruritis in the ID group when compared with the IM group.

There are several limitations in this meta-analysis. There was significant heterogeneity across studies for the immunogenicity outcomes. This finding may be due to differences between studies such as ages of the study population and doses used. However, the differences in dosing across studies permitted a dose–response analysis (data not supplied). Furthermore, we were not able to include all the data from the included studies into the meta-analysis because some of the data were either not included in the study article or were presented as figures. Authors of the studies were contacted for additional information, but we
were unsuccessful in obtaining the necessary data. Another limitation in this meta-analysis is that none of the included trials were double-blinded. However, as the outcomes assessed are objective laboratory values, this is unlikely to affect results. Additionally, we excluded trials that included immunocompromised patients, who are likely to have different immune responses from those who are immunocompetent. As such, these results cannot be extrapolated to those who are immunocompromised. Finally, none of the included trials assessed clinical outcomes, such as occurrence of influenza illness, hospitalizations, and mortality. This is a significant limitation, given that antibody response is not necessarily the best predictor of clinical efficacy in older adults. Recent studies demonstrate that serum HA antibody titers may not be associated with the development of influenza.30 Because of this possible lack of correlation, there is still much to be done in this area to evaluate cell-mediated immunity and its association with clinical efficacy, especially in older individuals and those with chronic illness.
Table 2. Pooled risk ratios for intradermal compared with intramuscular influenza vaccine for adverse events within 3 days post-vaccination

ADR	Age group	Author	Risk ratio (95% CI)	P-Value	I² (%)	
≥1 local ADR	18–60 years	Arnou et al.	0.91 (0.77, 1.07)	0.74	73	
		Betshie et al.	1.18 (1.16, 1.89)	0.003	26	
		Beran et al.	0.77 (0.55, 1.07)	0.23	0	
		Beran et al.	0.92 (0.66, 1.27)	0.50	0	
		Beran et al.	1.13 (0.78, 1.63)	0.50	0	
		Leroux-Roel et al.	0.73 (0.55, 0.98)	0.86	0	
	>60 years	Arnou et al.	0.99 (0.82, 1.19)	0.27	15	
		Holland et al.	1.16 (0.86, 1.58)	0.82	60	
		Van Damme et al.	0.92 (0.65, 1.32)	0.48	N/A	
	Total	Arnou et al.	1.26 (0.96, 2.67)	0.91	0	
		Beran et al.	0.17 (0.01, 4.07)	0.77	0	
		Leroux-Roel et al.	1.99 (0.08, 4.87)	0.48	0	
		Subtotal	0.76 (0.12, 4.66)	0.23	0	
	Pyrexia	18–60 years	Arnou et al.	2.01 (0.86, 4.66)	0.06	0
		Beran et al.	0.75 (0.27, 2.08)	0.06	0	
		Beran et al.	1.68 (0.40, 6.98)	0.06	0	
		Beran et al.	3.43 (0.72, 16.43)	0.06	0	
		Leonce-Roel et al.	1.99 (0.54, 7.30)	0.06	0	
		Subtotal	1.62 (0.98, 2.70)	0.06	0	
		Arnou et al.	0.81 (0.43, 1.50)	0.06	0	
		Holland et al.	0.89 (0.40, 2.00)	0.06	0	
		Van Damme et al.	0.50 (0.19, 1.32)	0.06	0	
		Total	1.08 (0.73, 1.61)	0.06	0	
	Malaise	18–60 years	Arnou et al.	0.87 (0.69, 1.09)	0.06	0
		Beran et al.	0.76 (0.43, 1.34)	0.06	0	
		Beran et al.	0.85 (0.52, 1.40)	0.06	0	
		Beran et al.	0.78 (0.41, 1.49)	0.06	0	
		Leonce-Roel et al.	0.81 (0.58, 1.21)	0.06	0	
		Subtotal	0.84 (0.71, 0.98)	0.06	0	
		Arnou et al.	1.12 (0.86, 1.45)	0.06	0	
		Holland et al.	1.19 (0.78, 1.81)	0.06	0	
		Van Damme et al.	0.95 (0.51, 1.75)	0.06	0	
		Subtotal	1.11 (0.90, 1.37)	0.06	0	
		Total	0.93 (0.82, 1.06)	0.06	0	
	Shivering	18–60 years	Arnou et al.	1.15 (0.79, 1.69)	0.06	0
		Beran et al.	1.23 (0.75, 2.02)	0.06	0	
		Beran et al.	0.88 (0.57, 1.36)	0.06	0	
		Beran et al.	1.17 (0.71, 1.93)	0.06	0	
		Leonce-Roel et al.	0.80 (0.50, 1.29)	0.06	0	
		Subtotal	1.03 (0.85, 1.26)	0.06	0	
		Arnou et al.	0.84 (0.61, 1.18)	0.06	0	
		Holland et al.	3.52 (0.43, 28.50)	0.06	0	
		Van Damme et al.	1.04 (0.60, 1.81)	0.06	0	
		Subtotal	0.92 (0.69, 1.22)	0.06	0	
	Total	Arnou et al.	0.99 (0.84, 1.17)	0.06	0	
Table 3. Pooled risk ratios for intradermal compared with intramuscular influenza vaccine for local adverse events within 7 days post-vaccination

ADR	Age group	Author	Risk ratio (95% CI)	P-Value	I² (%)
≥1 local ADR	18–60 years	Arnou et al.⁶	1.39 [1.30, 1.49]		
		Belshe et al.⁹	1.48 [1.16, 1.89]		
		Beran et al.¹⁵ (Year 2)	1.67 [1.51, 1.85]		
		Beran et al.¹⁵ (Year 3)	1.67 [1.48, 1.88]		
		Van Damme et al.¹⁷	6.43 [3.18, 13.0]		
		Subtotal	1.66 [1.40, 1.96]	<0.00001	86
>60 years		Arnou et al.²⁴ (Year 1)	2.46 [2.24, 2.69]		
		Holland et al.²⁵	2.24 [1.97, 2.55]		
		Van Damme et al.²²	2.08 [1.78, 2.42]		
		Subtotal	2.29 [2.07, 2.52]	<0.00001	48
Total	18–60 years	Arnou et al.¹⁶	1.26 [0.06, 26.12]		
		Audewarakul et al.²⁰	4.62 [1.69, 18.18]		
		Belshe et al.²⁶	1.54 [5.86, 39.62]		
		Belshe et al.¹⁹	3.75 [2.59, 6.81]		
		Beran et al.¹⁵ (Year 2)	7.31 [5.68, 9.41]		
		Beran et al.¹⁵ (Year 3)	5.64 [4.34, 7.32]		
		Kenny et al.²¹	12.0 [4.68, 30.77]		
		Van Damme et al.¹⁷	3.92 [2.55, 6.03]		
		Subtotal	6.31 [4.29, 9.27]	<0.00001	87
>60 years		Arnou et al.²⁴ (Year 1)	4.73 [4.10, 5.46]		
		Belshe et al.²⁶	9.70 [3.75, 25.08]		
		Chi et al.²³	5.08 [2.72, 9.49]		
		Holland et al.²⁵	4.12 [3.32, 5.10]		
		Van Damme et al.²²	4.72 [3.64, 6.14]		
		Subtotal	2.93 [0.15, 56.61]	<0.00001	0
Total	18–60 years	Arnou et al.¹⁶	2.99 [2.48, 3.60]		
		Belshe et al.²⁶	5.94 [2.66, 13.26]		
		Belshe et al.¹⁹	4.24 [2.27, 7.94]		
		Kenny et al.²¹	8.40 [3.63, 19.46]		
		Van Damme et al.¹⁷	8.10 [4.14, 15.83]		
		Subtotal	5.12 [3.13, 8.38]	<0.00001	73
>60 years		Arnou et al.²⁴ (Year 1)	4.28 [3.49, 5.24]		
		Belshe et al.²⁶	14.66 [3.71, 57.96]		
		Holland et al.²⁵	4.51 [3.46, 5.90]		
		Van Damme et al.²²	4.52 [3.12, 6.59]		
		Subtotal	4.45 [3.83, 5.17]	<0.00001	2
Total	18–60 years	Arnou et al.¹⁶	2.33 [1.98, 2.74]		
		Audewarakul et al.²⁰	17.77 [6.53, 44.79]		
		Belshe et al.²⁶	17.74 [4.94, 33.87]		
		Beran et al.¹⁵ (Year 2)	4.49 [3.38, 5.98]		
		Beran et al.¹⁵ (Year 3)	3.23 [2.44, 4.28]		
		Kenny et al.²	4.25 [1.54, 11.74]		
		Van Damme et al.¹⁷	4.91 [2.87, 8.40]		
		Subtotal	4.71 [3.13, 7.09]	<0.00001	86
>60 years		Arnou et al.²⁴ (Year 1)	4.65 [3.78, 5.71]		
		Belshe et al.²⁶	16.81 [4.27, 66.14]		
		Holland et al.²⁵	3.91 [3.09, 4.95]		
		Van Damme et al.²²	3.11 [2.26, 4.28]		
		Subtotal	4.12 [3.14, 5.40]	<0.00001	65
Total			4.41 [3.38, 5.75]	<0.00001	84
Conclusion

In conclusion, there were no differences in immunogenicity outcomes when comparing ID with conventional IM administration of influenza vaccination in all patients. But in older adults, administration of the ID influenza vaccine at a higher dose elicited a better immune response. Rates of adverse events were comparable between ID and IM administration, but ID influenza vaccines were associated with a greater incidence of local adverse events in the first 7 days.

Authors’ contributions

FM and FY designed the study, extracted the data, and reviewed the selected papers. KR did the statistical analyses. FY, KR, and FM drafted the manuscript and approved the final manuscript. CM assisted with the statistical analysis and reviewed final draft.

Funding

No specific funding.

Conflict of interest

FY, FM, and KR have no relationships with Sanofi Pasteur, GlaxoKlineSmith and Novartis that might have an interest in the submitted work in the previous 3 years. Also, their spouses, partners, or children have no financial relationships that may be relevant to the submitted work; and FY, FM, and KR have no non-financial interests that may be relevant to the submitted work.

Table 3. (Continued)

ADR	Age group	Author	Risk ratio (95% CI)	P-Value	I² (%)
Ecchymosis	18–60 years	Arnou et al.16	1.01 [0.74, 1.38]		
		Beran et al.15 (Year 2)	0.91 [0.39, 2.13]		
		Beran et al.15 (Year 3)	0.98 [0.49, 1.98]		
		Van Damme et al.17	1.50 [0.16, 14.12]		
	Total	Arnou et al.24 (Year 1)	0.92 [0.64, 1.33]		
		Holland et al.25	1.44 [0.90, 2.30]		
		Van Damme et al.22	1.58 [0.78, 3.21]		
	Total		1.19 [0.84, 1.69]	0.32	35
Pruritis	18–60 years	Arnou et al.16	3.44 [2.69, 4.40]		
		Beran et al.15 (Year 2)	4.43 [3.20, 6.15]		
		Beran et al.15 (Year 3)	3.83 [2.64, 5.54]		
		Kenny et al.21	10.50 [2.60, 42.43]		
		Van Damme et al.17	39.83 [2.49, 637.02]		
	Subtotal	Arnou et al.24 (Year 1)	4.85 [3.81, 6.17]	<0.00001	36
		Chi et al.23	3.81 [1.34, 10.85]		
		Holland et al.25	3.44 [2.43, 4.88]		
		Van Damme et al.22	4.30 [2.87, 6.43]		
	Subtotal		4.32 [3.62, 5.14]	<0.00001	0
Pain	18–60 years	Arnou et al.16	0.89 [0.80, 1.00]		
		Auewarakul et al.20	0.80 [0.62, 1.03]		
		Belshe et al.19	0.77 [0.49, 1.21]		
		Beran et al.15 (Year 2)	0.96 [0.82, 1.11]		
		Beran et al.15 (Year 3)	1.16 [0.98, 1.37]		
		Van Damme et al.17	0.89 [0.72, 1.11]		
	Subtotal	Arnou et al.24 (Year 1)	1.33 [1.14, 1.54]	0.22	48
		Chi et al.23	1.02 [0.38, 2.73]		
		Holland et al.25	1.03 [0.78, 1.36]		
		Van Damme et al.22	0.95 [0.72, 1.25]		
	Subtotal		1.12 [0.92, 1.37]	0.26	48
Total		Arnou et al.24 (Year 1)	0.99 [0.88, 1.11]	0.82	67
ADR	Age group	Author	Risk ratio (95% CI)	P-Value	\hat{I}^2 (%)
--------------	-----------	--------------------------	---------------------	---------	----------------
≥1 systemic ADR	18–60 years	Arnou et al.¹⁶	0.93 [0.83, 1.04]		
		Belshe et al.¹⁹	0.87 [0.63, 1.19]		
		Beran et al.¹⁵ (Year 2)	0.86 [0.72, 1.03]		
		Beran et al.¹⁵ (Year 3)	1.19 [0.95, 1.50]		
		Subtotal	0.95 [0.84, 1.08]	0.44	46
	>60 years	Arnou et al.²⁴ (Year 1)	1.04 [0.91, 1.18]		
		Holland et al.²⁵	2.24 [1.97, 2.55]		
		Van Damme²²	2.14 [1.77, 2.59]		
		Subtotal	1.70 [1.00, 2.89]	0.05	97
Fever	18–60 years	Arnou et al.¹⁶	1.15 [0.67, 2.00]		
		Auewarakul el.²⁰	0.75 [0.31, 1.84]		
		Belshe et al.¹⁹	0.12 [0.00, 2.77]		
		Beran et al.¹⁵ (Year 2)	1.61 [0.53, 4.89]		
		Beran et al.¹⁵ (Year 3)	4.90 [1.08, 22.25]		
		Subtotal	1.23 [0.65, 2.31]	0.52	41
	>60 years	Arnou et al.²⁴ (Year 1)	0.72 [0.49, 1.08]		
		Holland et al.²⁵	0.97 [0.53, 1.79]		
		Van Damme et al.²²	0.69 [0.37, 1.29]		
		Subtotal	0.77 [0.57, 1.03]	0.08	0
Headache	18–60 years	Arnou et al.¹⁶	0.98 [0.83, 1.14]		
		Auewarakul el.²⁰	0.71 [0.46, 1.08]		
		Belshe et al.¹⁹	0.75 [0.48, 1.18]		
		Beran et al.¹⁵ (Year 2)	1.08 [0.82, 1.42]		
		Beran et al.¹⁵ (Year 3)	1.19 [0.86, 1.64]		
		Van Damme et al.¹⁷	1.21 [0.75, 1.93]		
		Subtotal	0.99 [0.86, 1.13]	0.87	19
	>60 years	Arnou et al.²⁴ (Year 1)	1.03 [0.85, 1.23]		
		Chi et al.²³	0.41 [0.13, 1.23]		
		Holland et al.²⁵	0.98 [0.75, 1.29]		
		Subtotal	0.98 [0.80, 1.20]	0.85	24
Malaise	18–60 years	Arnou et al.¹⁶	0.94 [0.76, 1.17]		
		Auewarakul el.²⁰	0.54 [0.35, 0.84]		
		Belshe et al.¹⁹	1.28 [0.66, 2.48]		
		Van Damme et al.¹⁷	0.91 [0.47, 1.77]		
		Subtotal	0.85 [0.61, 1.18]	0.33	53
	>60 years	Arnou et al.²⁴ (Year 1)	1.08 [0.85, 1.38]		
		Holland et al.²⁵	1.15 [0.80, 1.66]		
		Subtotal	1.10 [0.90, 1.35]	0.34	0
Mylagia	18–60 years	Arnou et al.¹⁶	0.80 [0.68, 0.94]		
		Auewarakul el.²⁰	0.60 [0.42, 0.87]		
		Belshe et al.¹⁹	0.95 [0.53, 1.73]		
		Beran et al.¹⁵ (Year 2)	0.48 [0.33, 0.68]		
		Beran et al.¹⁵ (Year 3)	1.12 [0.76, 1.67]		
		Van Damme et al.¹⁷	0.55 [0.25, 1.22]		
		Subtotal	0.72 [0.56, 0.93]	0.01	62
	>60 years	Arnou et al.²⁴ (Year 1)	0.98 [0.80, 1.12]		
		Holland et al.²⁵	1.01 [0.72, 1.41]		
		Subtotal	0.98 [0.83, 1.17]	0.86	0
	Total		0.80 [0.66, 0.97]	0.03	64
Table 4. (Continued)

ADR	Age group	Author	Risk ratio (95% CI)	P-Value	I^2 (%)
Shivering	18–60 years	Arnou et al.\(^1\)	1.27 [0.89, 1.82]	0.19	N/A
	>60 years	Arnou et al.\(^2\) (Year 1)	0.76 [0.57, 1.02]		
		Holland et al.\(^3\)	1.68 [0.46, 6.05]		
		Subtotal	0.87 [0.48, 1.57]	0.65	28
		Total	1.03 [0.65, 1.61]	0.91	64
Arthralgia	18–60 years	Auewarakul et al.\(^4\)	0.98 [0.51, 1.89]		
		Beran et al.\(^5\) (Year 2)	0.94 [0.59, 1.52]		
		Beran et al.\(^5\) (Year 3)	3.19 [1.46, 6.96]		
		Subtotal	1.36 [0.68, 2.74]	0.38	73
		Total	1.36 [0.68, 2.74]	0.38	73
Chills	18–60 years	Auewarakul et al.\(^4\)	0.61 [0.26, 1.43]		
		Subtotal	0.61 [0.26, 1.43]	0.25	N/A
	>60 years	Chi et al.\(^6\)	1.02 [0.06, 1.59]		
		Subtotal	1.02 [0.06, 1.59]	0.99	N/A
		Total	0.64 [0.28, 1.44]	0.28	0
Nausea	18–60 years	Auewarakul et al.\(^4\)	0.69 [0.22, 2.12]		
		Subtotal	0.69 [0.22, 2.12]	0.52	N/A
	>60 years	Chi et al.\(^6\)	0.68 [0.12, 3.92]		
		Subtotal	0.68 [0.12, 3.92]	0.66	N/A
		Total	0.69 [0.27, 1.77]	0.43	0
Arthralgia	18–60 years	Auewarakul et al.\(^4\)	0.98 [0.51, 1.89]		
		Beran et al.\(^5\) (Year 2)	0.94 [0.59, 1.52]		
		Beran et al.\(^5\) (Year 3)	3.19 [1.46, 6.96]		
		Subtotal	1.36 [0.68, 2.74]	0.38	73
		Total	1.36 [0.68, 2.74]	0.38	73

References

1. Dolin R. Chapter 180. Influenza; in Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J (eds): Harrison’s Principles of Internal Medicine, 17e: http://www.accessmedicine.com/content.aspx?aID=2895663 (Accessed 03 March 2011).

2. Thompson WW, Shay DK, Weintraub E et al. Morbidity associated with influenza and respiratory syncytial virus in the United States. JAMA 2003; 289:179–186.

3. Jefferson T, Di Pietrantonji C, Rivetti A, Bawazer GA, Al-ansy LA, Ferroni E. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev 2007; 7:CD001269.

4. Ginaldi L, Loretto MF, Corsi MP, Modesti M, Martinis MD. Immunosenescence and infectious diseases. Microbes Infect 2001; 3:851–857.

5. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 2006; 24:1159–1169.

6. Deans GD, Stiver HG, McElhaney JE. Influenza vaccines provide diminished protection but are cost-saving in older adults. J Intern Med 2010; 267:220–227.

7. McElhaney JE, Dutz JP. Better influenza vaccines for older people: what will it take? J Infect Dis 2008; 198:632–634.

8. McElhaney JE, Zhou X, Talbot HK et al. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine 2012; [E-pub ahead of print].

9. Young F, Marra F. A systematic review of intradermal influenza vaccines. Vaccine. 2011; 29:8788–8801.

10. European Agency for the Evaluation of Medicinal Products. Note for guidance on harmonization of requirements for influenza vaccines. 12 March 1997. Available at: http://www.ema.europa.eu/pdfs/human/bwp/021496en.pdf [Accessed 21 June 2010].

11. Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Plos Medicine. 2009; 6:e1000100.

12. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5. Chester, England: Wiley-Blackwell, 2008.

13. Jadad AR, Moore RA, Carroll D et al. Assessing quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17:1–12.

14. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controll Clin Trials 1986; 7:177–188.

15. Beran I, Ambrozaitis A, Laiskonis A et al. Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial. BMC Med 2009; 7:13.

16. Arnou R, Eavis P, Pardo JR, Ambrozaitis A, Kazek MP, Weber F. Immunogenicity, large scale safety and lot consistency of an intradermal influenza vaccine in adults aged 18–60 years: randomized, controlled, phase III trial. Hum Vaccin 2010; 6:346–354.
17 Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 2009; 27:454–459.

18 Leroux-Roels I, Vets E, Freese R et al. Seasonal influenza vaccine delivered by intradermal microinjection: a randomised controlled safety and immunogenicity trial in adults. Vaccine 2008; 26:6614–6619.

19 Belshe RB, Newman FK, Wilkins K et al. Comparative immunogenicity of trivalent influenza vaccine administered by intradermal or intramuscular route in healthy adults. Vaccine 2007; 25:6755–6763.

20 Auewarakul P, Kositanont U, Sornsathapornkul P, Tothong P, Kanyok R, Thongcharoen P. Antibody responses after dose-sparing intradermal influenza vaccination. Vaccine 2007; 25:659–663.

21 Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM. Dose sparing with intradermal injection of influenza vaccine. New Engl J Med. 2004; 351:2295–2301.

22 Van Damme P, Arnou R, Kafeja F et al. Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study. BMC Infect Dis 2010; 10:134.

23 Chi RC, Rock MT, Neuzil KM. Immunogenicity and safety of intradermal influenza vaccination in healthy older adults. Clin Infect Dis 2010; 50:1331–1338.

24 Arnou R, Icardi G, De Decker M et al. Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study. Vaccine 2009; 27:7304–7312.

25 Holland D, Booy R, De Looze F et al. Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J Infect Dis 2008; 198:650–658.

26 Belshe RB, Newman FK, Cannon J et al. Serum antibody responses after intradermal vaccination against influenza. New Engl J Med 2004; 351:2286–2294.

27 Chuaychoo B, Wongsurakiat P, Nana A, Kositanont U, Maranetra KN. The immunogenicity of intradermal influenza vaccination in COPD patients. Vaccine 2010; 28:4045–4051.

28 Keitel WA, Atmar RL, Cate TR et al. Safety of high doses of influenza vaccine and effect on antibody responses in elderly persons. Arch Intern Med 2006; 166:1121–1127.

29 Simonsen L. The global impact of influenza on morbidity and mortality. Vaccine 1999; 17(Suppl1):S3–S10.

30 McElhaney JE. Influenza vaccine responses in older adults. Ageing Res Rev 2001; 10:379–388.