Review Article

Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

Ahmad Mohammad Abdel-Mawgoud, Gregory Stephanopoulos

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

Article Info

Article history:
Received 2 October 2017
Received in revised form 14 November 2017
Accepted 4 December 2017

Keywords:
Biosurfactant
Glycolipids biosynthesis
Glycosyl/acyl transferases
Glycosides
Physiological roles
Lipid biotechnology

Abstract

Glycosylated lipids (GLs) are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME) of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction ... 3
2. Definition and classification of simple glycolipids .. 4
3. Surfactant properties of simple glycolipids ... 4
4. Chemical groups and origins of microbial simple glycolipids 4
 4.1. Bacterial simple glycolipids .. 5
 4.2. Fungal simple glycolipids .. 5
5. Physiological roles of simple glycolipids ... 5
6. Bioactivities of simple glycolipids ... 5
7. Biosynthesis of simple glycolipids ... 6
8. Metabolic engineering of simple glycolipids .. 10
 8.1. Engineering heterotrophic carbon source utilization 10
 8.2. Heterologous expression of GL biosynthetic pathway 10
 8.3. Blocking competing pathways ... 14
 8.4. Tailoring the GL pool composition .. 14
9. Summary and perspectives .. 14

References ... 15

1. Introduction

Lipid biotechnology research has focused to date on developing sustainable alternatives to depleting fossil fuels. One strategy was plant-derived fuel, biodiesel [1]. A main drawback of this approach
is that oil and land allocated for biodiesel production compete with those allocated for human food consumption. Moreover, replacement of natural vegetations with plants used for biodiesel production generates long-term environmental concerns. Another strategy is to use lipids originating from microbes, called “single cell oil” (SCO) as substrates for biodiesel production. We believe that accumulating knowledge and developed biomolecular tools obtained from lipid engineering of oleogenic microbes can now be harnessed for the microbial production of lipid derivatives of added-value.

Glycosylation of organic molecules, including lipids, usually leads to derivatives of new and/or better physicochemical properties and biological activities [2,3] that reflect in higher market prices. Metabolic engineering of lipid derivatives has previously investigated polyunsaturated fatty acids [4] and fatty acid derivatives that are used as substrates for oleochemical industries, e.g. heterologous production of ricinoleic acid by Y. lipolytica [5]. Other added-value lipid derivatives of commercial interest include wax esters, polyhydroxalkanoates (bioplastics), hydroxylated fatty acids, carotenoids, polyenic polymers [6] and glycolipids.

This review focuses on simple glycolipids (SGLs) as an important family of glycolipids (GLs) class. The importance of SGLs stems from the fact that this family of GLs comprises a wide range of bioactive molecules with potential biomedical, pharmaceutical and cosmetic applications [7,8]. Nonetheless, many simple GLs are limited commercially because of their still low yield and high cost of production, particularly of high purity simple GLs aimed for biopharmaceutical purposes.

We present the chemical groups of simple GLs, their microbial producers and their biological activities. Then, we describe the key biosynthetic enzymes and metabolic precursors involved in biosynthesis of simple GLs. Finally, we discuss metabolic engineering strategies for simple GLs production in native and heterologous hosts.

2. Definition and classification of simple glycolipids

The term glycolipids (GLs), in general, encompasses a wide diversity of structurally heterogeneous biological compounds that are produced by microbes, plants, animals and humans [9]. As their names suggest, they are composed of glycosyl and lipid moieties. The IUPAC uses the term GLs to broadly designate any compound containing one or more monosaccharide residues bound by glycosidic linkage to a hydrophobic moiety [10]. Our definition of GLs is even broader to include glycoside and non-glycoside GLs in which the sugar and lipid residues are linked together via glycosidic (e.g. O- or N-glycosidic linkages) and non-glycosidic linkages (e.g. ester or amide linkages), respectively (Fig. 1). The glycosyl residue can be mono-, di-, oligo or polysaccharides (e.g. glucose, cellobiose or glycan, respectively), alcohol sugars/polyols (like mannitol, erythritol or arabinol, etc.), amino sugars (like desosamine, etc) or sugar acids (like glucuronic acids). The lipid residue of GLs ranges from fatty acids, fatty alcohols, fatty amino alcohols, polyketides, sterols, hopenanoids and carotenoids with different substitutions, chain lengths, saturation levels, branching and di-/oligo-/polymerizations.

Numerous classifications exist for GLs [10], the most convenient of which is their classification into simple and complex GLs [11−13] (Fig. 1). Simple GLs (SGLs), sometimes called saccharolipids [14], are two-component (glycosyl and lipid moieties) GLs in which the glycosyl and lipid moieties are directly linked to each other. Complex glycolipids (CGLs) are, however, structurally more heterogeneous, as they contain, in addition to the glycosyl and lipid moieties, other residues like glycerol (glycolglycerolipids), peptide (glycopeptidolipids), acylated-sphingosine (glycosphingolipids), or other residues (Fig. 1). Polysaccharide-containing GLs, although containing no residues other than glycosyl and lipid moieties, are classified under complex glycolipids because of the complex nature of their polysaccharide residues; however, oligosaccharide-containing GLs are classified as simple GLs [13] (Fig. 1). Simple glycolipids addressed in this review are those of natural microbial origin, therefore, SGLs of synthetic or other biological origins are not mentioned.

3. Surfactant properties of simple glycolipids

Simple glycolipids (SGLs) are amphiphilic molecules as they comprise both the hydrophilic glycosyl and the lipophilic lipid residues. This amphiphilic nature confers surfactant activity to most GLs; those of which with pronounced surfactant activity are called biosurfactant. Compared to petroleum-derived (e.g. alkyl-benzene sulfonates) or plant-based (e.g. alkyl polyglycosides) synthetic surfactants [15], microbially-produced SGL biosurfactants are mostly of higher surface activity, higher emulsifying power, lower critical micelle concentrations, higher biodegradability (compared to petroleum-derived surfactants), lower ecotoxicity [16] and lower protein denaturing potency [17–19]. The advanced properties of microbial SGLs are suggested to be attributed to a peculiar mosaic distribution of regions of polarity over the GL molecule, as well as to their branched or sometimes circular structures compared to synthetic surfactants [18]. Moreover, most SGLs are naturally produced as complex mixtures of congeners or homologues that vary in the number of glycosyl units and extent of their acylation, the number of conjugate lipid chains, their lengths, the extent of unsaturations and substitutions; these factors together contribute to their unique surfactant properties and behaviors [18].

Although the unique surface properties of some SGLs qualified some of them to be marketed as ecological surfactants [20,21], yet, their competitiveness in the detergent market is limited because of their higher prices compared to alkyl polyglycosides synthetic surfactants which are at least 50% less expensive. For example, the estimated cost of large-scale production of the SGLs: sophorolipid and rhamnolipid biosurfactants, are about US$ 2.5−3/Kg [21,22] and US$ 5−20/Kg [23], respectively, compared to US$ 1−3/Kg for the synthetic alkyl polyglycoside surfactants [23].

Aside from their surface activities, nearly all natural SGLs have interesting biological activities, as described later, that let them occupy market niches not approachable by synthetic surfactants [24]. Noteworthy, the biological activities of SGLs are thought to stem from their surface activities [25].

4. Chemical groups and origins of microbial simple glycolipids

Microbiologically produced SGLs are classified in chemical groups based on their chemical structures so that every group comprises SGLs members sharing unique glycosyl and/or lipid moieties for SGLs produced by bacteria (Table 1) and fungi (Table 2). In this classification, some SGLs congeners are classified in separate groups when they originate from different microbial origins and vice versa. Under each SGL group, exhaustive list of its members, together with their chemical names, their microbial producers as well as their taxonomic phyla is mentioned (Tables 1 and 2). Furthermore, the confirmed chemical structures of representative or prototypic members of each SGL group are presented (Fig. 3). Based on our survey of microorganisms producing SGLs, we found that 50% of all known microbial SGLs are produced by microbes belonging to the phylum Actinobacteria (Fig. 2). Second in rank to Actinobacteria, comes phylum Proteobacteria followed by...
the two major fungal phyla, Ascomycota and Basidiomycota, consecutively (Fig. 2).

4.1. Bacterial simple glycolipids

Overall, bacterially produced simple glycolipids (SGLs) outnumber fungi-ly produced ones (Fig. 2). A previous survey of about 16000 pooled natural bacterial metabolites revealed that about 20% of them are glycosylated, about 30% of these glycosylated metabolites are glycosylated lipids of which glycosylated macro-lactones/-lactams take a share of about 20% and other glycosylated lipids (including SGLs) take a share of 10% [26]. Nearly all glycosylated macro-lactones/-lactams are produced by members of the phylum Actinobacteria. We classified bacterially produced SGLs in 10 groups (Table 1).

4.2. Fungal simple glycolipids

Fungally produced simple glycolipids (SGLs) are less numerous than bacterially-produced ones (Fig. 2). Fungal SGLs are classified in 10 groups that are mainly produced by members of the phyla Ascomycota and Basidiomycota (Table 2).

5. Physiological roles of simple glycolipids

For most SGLs, the exact physiological roles to their native producers are not clearly known. Generally, SGLs are secondary metabolites that are not essential for cell viability. Nonetheless, given their antimicrobial properties, SGLs are suggested to help producing organism dominate environmental niches by inhibiting the growth of other organisms [153]. In addition, SGLs are required to coordinate multicellular or group behaviors (biofilm formation and swarming) and enhance growth of producing organisms on hydrophobic carbon sources [154–156]. Some additional roles are assigned to specific SGLs like rhamnolipids, which are considered as virulence factors that modulate host immune response [29]. Similarly to their unglycosylated counterparts, glycosylated carotenoids are postulated to act as photoprotectants and antioxidants to protect organisms from injuries caused by free radicals and active oxygen species [106]. In thermophiles, glyco-carotenoids are thought to stabilize and reinforce cell membranes [113]. Hapno-noids are sterol analogues in bacteria. Similarly to sterol in eukaryotes, hopanoids and their glycosylated derivatives are thought to help stabilize and regulate membrane fluidity and permeability particularly during shifts in pH and other physicochemical conditions [117,157]. Sophorolipids are suggested to act as extracellular forms of carbon storage that can be recycled later under starvation conditions [154].

6. Bioactivities of simple glycolipids

Simple glycolipids (SGLs) have very interesting biological activities on other organisms ranging from viruses to human cells. Although the mechanism of these bioactivities is not definitively known, it is suggested that most of SGLs bioactivities arise from their surface activities. Collectively, many of them have antiviral,
antimicrobial, anti-inflammatory and anticancer activities (Table 3). Many reviews are found in literature detailing the potential biomedical and cosmeceutical applications of biosurfactants in general, many of which are simple glycolipids [8,158–160].

7. Biosynthesis of simple glycolipids

With few exceptions, the exact biosynthetic steps of majority of simple glycolipids (SGLs) are not yet fully understood. Generally however, biosynthesis of SGLs implicates the supply and linking of glycosyl and lipid precursors. Pathways supplying glycolipid precursors are depicted later (Fig. 5) and are thought to play an important role in regulation of SGLs biosynthesis. Linking of glycosyl and lipid precursors is mostly via O-glycosidic or ester bonds (Fig. 1B) that are formed by glycosyltransferases (GT) (Fig. 4 B1, B2) [215] or acyltransferases (AT) [216] (Fig. 4 A1, A2), respectively. Glycosyltransferases catalyze the transfer of the sugar moiety from an activated glycosyl donor, usually sugar-nucleotide (Leloir GTs) or -phosphate (non-Leloir GTs), to a lipid acceptor (or a sugar acceptor for extending the sugar backbone of glycolipids), by making glycosidic bonds between the hydroxyl groups (nucleophile) of the acceptor and the anomeric carbon of the sugar donor (Fig. 4 B1, B2) [215]. Acyltransferases (AT) catalyze the transfer of the lipid moiety from an activated acyl donor, mostly acyl-CoA or -ACP, to a glycosyl acceptor (or a lipid acceptor for extending the lipid backbone of the glycolipid) by making an ester bond between the hydroxyl group (nucleophile) of the acceptor and the acyl donor’s carbonyl group [216] (Fig. 4 A1, A2).

Concerning the fate of SGLs, one report showed that the flocculosin GL can be degraded by its producing yeast, Pseudozyma flocculosa, which feeds on it under nutrient limitations [153]. Glycolipids could theoretically be hydrolyzed by one or more of the following enzymes. First, glycoside hydrolases (GH) that hydrolyze the sugar-sugar or sugar-lipid glycosidic bonds (Fig. 4 B1, B2) [153,217]. Second, carbohydrate esterases (CE) hydrolyze the sugar-lipid ester bonds (Fig. 4 A2). Lipid esterases (LE), also known as lipases, hydrolyze lipid-lipid ester bonds (Fig. 4 A1) in glycolipids with multimeric hydroxysterol lipid moieties e.g. rhamnolipids (Fig. 3). This hypothesis is corroborated by reports showing the hydrolysis of polymeric hydroxyalkanoate lipid moieties by microbial lipases/esterases [218–220]. Nonetheless, the metabolic fate of SGLs is one of the subjects that require thorough investigations.

Among the poorly studied aspects in SGLs metabolism also are the transport SGLs across microbial membranes. Some SGLs require active transport for their exportation out of the cell, like cellobirose...
Fig. 3. Structures of prototypic members of bacterial and fungal simple glycolipid (SGL) groups. The glycolipid and lipid residues are colored in red and blue, respectively. Bacterial and fungal SGLs are represented in the upper and lower halves (separated by a line) of the figure, respectively. The representative structure of fungally produced glycosylated paraconic acids (20th group of SGLs) is not given as their structures have been debated [27,28].
Table 1

Chemical groups and members of bacterial simple glycolipids as well as names and phyla of native producers.
Common name
Bacteria
1- Rhamnolipids
Monorhamnolipids: α-1-rhamnopyranosyl-RR-3-(3'-hydroxyalkanoyloxy)alkanoate (Cₙ-1₆)
Di-rhamnolipids: α-1-rhamnopyranosyl-(1-2)-α-1-rhamnopyranosyl-RR-3-(3'-hydroxyalkanoyloxy)alkanoate (Cₙ-1₆)
2- Glucolipids
Rubrivivin KG1: β-1-glucopyranosyl-3-(3'-hydroxytetradecanoyloxy)decanoate
3- Trehalolipids
α,α-(1-1)-Trehalose 6-mono-O-mycolates
α,α-(1-1)-Trehalose 2,3-di-O-mycolates
Cord factor: α,α-(1-1)-Trehalose 6,6-di-O-mycolates
α,α-(1-1)-Trehalose 2,3,5-tri-O-mycolates
STL-1, α,α-(1-1)-Trehalose 2,2'-di-O-succinyl-3,4-di-O-alkanoates
STL-2, α,α-(1-1)-Trehalose 2,3,4-mono-O-succinyl-di-O-alkanoates
STL-3, α,α-(1-1)-Trehalose 2,3,4,2'-mono-O-succinyl-tri-O-alkanoates
4- Other glycosylated (non-trehalose containing) mycolates
Sucrose 6-mono-O-mycolates
Fructose 6-mono-O-mycolates
Fructose 1,6-di-O-mycolates
Glucose-6-β-hydroxy-α-hexadecenoyl-eicosenoate
Mannose 6-mono-O-mycolates
Maltose 6-mono-O-mycolates
Maltose 6,6-di-O-mycolates
Maltotriose 6,6-di-O-mycolates
Cellobiose 6-mono-O-mycolates
5- Trehalose-containg Oligosaccharide lipids
Lipid Q: β-1-glucose-(1-3)-α,α-(1-1)-trehalose hexanoyl-succinyl-3-(hexanoyloxy)octanoyl-3-(hexanoyloxy)decanoate
GL2: β-1-glucose-(1-2)-α,α-(1-1)-trehalose 4,6,2,3-tetra-O-alkanoates (C₉-1₀)
GL3: β-1-glucose-(1-2)-α,α-(1-1)-trehalose-(6'-1')-β,β-galactose-4,6,2,3-tetra-O-alkanoates (C₉-1₀)
β,β-glucose-(1-3)-α,α-(1-1)-trehalose-(6'-1')-β,β-glucone-(6'-1')-β,β-glucose mono-O-succinyl-hepta-O-alkanoate (C₂₅.a)
4,6-(1-Carboxyethylidene)-3-0-Me-β,β-glucose-(1-3)-4,6-(1-carboxyethylidene)-β,β-glucose-(1-4)-β,β-glucose-(1-6)-α,α-(1-1')-trehalose-4'-0-alkanoyl-6'-0-alkanoate
6- Glycosylated fatty alcohols
Alkane 1,2-diol glycolide; Hexose 1-(O-hexose)alk-2-ylalkanoate (Diol – C₁₉₂₀, alkanoate – C₁₆₁₆)
1-(O-hexose)-3,25-hexacosanediol and its homologue: 1-(O-hexose)-3,27-octacosanediol
1-(O-hexose)-3-keto-25-hexacosanol and its homologue: 1-(O-hexose)-3-keto-27-octacosanol
1-(O-hexose)-3,25,27-octacosanetriol
1-(O-hexose)-3-keto-25,27-octacosanediol OR its isomer: 1-(O-hexose)-27-keto-3,25-octacosanediol
7- Glycosylated macro-lactones/lactams
Barseolinol A/B/C: 2-deoxy-α-1-fucopyranoside of C₁₂₇-membered macro lactone
Fluvirincinic: amino sugar glycosides of C₁₄₆-membered macro lactam
Vicenistatin: amino sugar (vicenamins) glycoside of C₁₉₂-membered macro lactam
Vicenistatin M: α-mycarose glycoside of C₂₀₅-membered macro lactam
Ehrythromycin A, B, D, C, E, F and Ehrythromycin esters (C₁₄₆-membered macro lactam glycosides)
Oleandomycin (C₁₄₆-membered macro lactam glycosides)
Pikromycin, Narbomicyn, 5-O-mycarosinyl-narbonolide (C₁₄₆-membered macro lactam glycosides)
10,11-Dihydropikromycin, Kayamicin (C₄₄-membered macro lactam glycosides)
Spinosyns (Tetracyclic macrolide) containing fosamine (amino sugar) and tri-O-methyl rhannose
Lepicidin A
Leucomycins, Josamycins, Platemycins, Medicamycins, Espinomycins
Carbomycin B, platemycin W1/2, Niddamycin, Midecamycin A3/A4
Acunycin (cirracycin B), Cirracycin F and derivatives
Chalcomycins, Neutramycins
Aldgamycin F, E and Swalpamycin
Common name: Chemical names (C_n chain length of fatty acid chains)

Spiramycins
Tylosins
Concanamycins
Tetrins and related compounds, Madurafuscin
Pimaricin
Colubridicin A
Nystatin
Amphotericin B
Oasomycins, Desertomycins
Rapamycin
Avermectins
PM100117 and PM100118

8- Glycomacrodiolides (glycosylated macrocyclic dilactones):

Glucolipin A_B; B: dilactone of two glucosides of 3-hydroxy fatty acids C₁₉C₁₉	Streptomyces purpuraginsiceroticus, Nocardia vaccinii [66]	Actinobacteria
Fattiviracin A₁: dilactone of two glucosides of 3,17-, ω-1-trihydroxy fatty acids C₂₀C₂₀	Kibdelosporangium albatum [67]	Actinobacteria
Cycloviracin B1 and B2: dilactones glucosides of 3,19-, ω-1-trihydroxy fatty acids (C₂₂-26) and of 3,17-, ω-1-trihydroxy fatty acids (C₂₂-24)	Streptomyces microtatus [67]	Actinobacteria
Elaiphylons, Efomycin G	Streptomyces spp. [68]	Actinobacteria
Halochelides A, B, C	Streptomyces spp. [69–71]	Actinobacteria
Bispolides A1, A2, A3, B1, B2a, B2b and B3	Microbispora species [72]	Actinobacteria
Macrovinacins A-D: related to fattiviracin and cycloviracins	Streptomyces sp. [73]	Actinobacteria

9- Glyco-carotenoids-terpenoids:

9.1-Acyllic glyco-carotenoids

Rhodopis glucoside	Halorhodospira abdelmalekii, H. halochloris [74]	Proteobacteria
Dihydroxylycopene mono-/di-glucosides and their acyl (C₁₂, or C₁₄) derivatives	Halorhodospira abdelmalekii, H. halochloris [74]	Proteobacteria
Ω-2-Glucosyl 4',4"'-diaponeurosporene-6,6'-dioic acid	Pseudomonas rhodos [75], Rhizobium lupini [76,77]	Proteobacteria
1'-GLucoliquoxyl-3',4'-didehydro 1',2'-dihydro-β-β'-carotene monoester	Chondromyces apiculatus [78], Myxococcus fulus [79]	Proteobacteria
Staphyloxanthin: 2α-O-glucopyranosyl 1-β-(4',4"'-dianapoenurosporene-4-sate) 6-O-(12-methyltetraedranoato)	Staphylococcus spp. [80]	Firmicutes
4-D-Glucoapopenurosporene 4,4'-diaponeurosporene	Streptomyces faecium [81]	Firmicutes
Hydroxy-diaponeurosporene glucoside esters	Heliorestis sp. [82]	Firmicutes
Rhodopin β-D-glucoside, Rhodopin β-D-glucose	Rhodopseudomonas acidiphila, Rhodospirillum tenuu and Rhodococcus purpureus [83]	Proteobacteria
Oscillaxanthin: 1',1'-dihydroxy-2,2'-di-β-β'-rhamnosyl-1,2',1'-tetrahydro-3,4',3',4'-tetrahexahydroapopenurosporene	Oscillatoria rubescens [84]	Cyanobacteria
Bacterioruberin mono- and di-glucosides	Unidentified Halophilic bacterium [85]	Proteobacteria
Diapolicypenic acid xylosyl esters A, B, and C	Rubritalea squalenicae [86]	Verrucomicrobia
Methil 5-glucosyl 5,6-dihydro-ap-4,4'-lycopene	Planococcus maritimus [87]	Firmicutes
Vancomycin	Amycolatopsis [88]	Actinobacteria

9.2-Monocyclic glyco-carotenoids

Salinaxanthin	Salinibacter ruber [89], Rhodothermus marinus [90]	Bacteroidetes
Phleixanthophyll, 4-ketophleixanthophyll	Mycobacterium pheii [91]	Actinobacteria
Phleixanthophyll palmitate: (2'S)-1'-[(6-O-palmitoylβ-β'-glucopyranosyl)oxy]-3',4'-didehydro-1,2'-dihydro-β-β'-caroten-2'-ol	Nocardia sp. [92]	Actinobacteria
1'-[(6-O-acetylβ-β'-glucopyranosyl)oxy]-1',2'-dihydro-β-β'-caroten-4-one	Rhodococcus rhodochrous [93,94]	Actinobacteria
Myxobactone	Myxococcus fulus [79,95]	Proteobacteria
Myxobactin	Myxococcus fulus [96]	Proteobacteria
Keto-myxoxaxanthin glucoside ester (Myxobactone ester)	Roseifexus castenhali [97]	Chloroflexi
OH-γ-carotene glucoside lactate: 1'-(6-O-laurylβ-β'-glucopyranosyl)oxy]-1'-2'-dihydro-β-β'-caroten	Chlorobium tepidum [98]	Chlorobi
OH-Chlorobactene glucoside lactate: 1'-(6-O-laurylβ-β'-glucopyranosyl)oxy]-1'-2'-dihydro-β-β'-caroten	Chlorobium tepidum [98]	Chlorobi
OH-γ-carotene glucoside ester derivative	Chloroflexus aurantiacus [99]	Chloroflexi
1'-β-D-glucopyranosyl 3,4',3'-4 tetrahydro-1',2'-dihydro-β-β'-caroten-2-one	Microthermus ruber [100]	Deinococcus-Thermus
Myxoxanthophyll like glycaracenotid: (3R,2'S)-5-methyl-2'-2,4-di-O-methyl β-β'-fluoside	Synechocystis sp. [101]	Cyanobacteria
Sinoxanthin: (2'S)-1'-(β-D-glucopyranosylxylo)-3',4'-didehydro-1',2'-dihydro-β-β'-caroten-2'-ol	Salinispora sp. [102]	Actinobacteria

9.3-Bicyclic glyco-carotenoids

Corynexanthin monoglucoside	Corynebacterium sp. [103]	Actinobacteria
Corynexanthin diglucoside	Arthrobacter sp [104]	Actinobacteria
Sarccoxanthin monoglucosides	Curtobacterium flaccumfaciens [105], Micrococcus luteus [106], M. yunamensis [107]	Actinobacteria
Sarccoxanthin diglucoside	Micrococcus luteus [106], M. yunamensis [107], Erwinia herbicola, Rhodobacter sphaeroides [108]	Actinobacteria
Zeaxanthin mono- and di-glucosides	Sulfolobus shibatae [109]	Archaeabacteria
Zeaxanthin mono- and di-rhamnolides (mainly Z-isomers), Zeaxanthin di-glucoside	Corynebacterium autotrophicum (Xanthobacter autotrophicus) [110]	Proteobacteria
Zeaxanthin mono- and di-rhamnolides	Corynebacterium autotrophicum (Xanthobacter autotrophicus) [110]	Proteobacteria
Aastaxanthin dirhamnolide	Sphingomonas astaxanthinifaciens [111]	Proteobacteria
Myxoxaxanthin rhamnolide	Sorangium composition [112]	Proteobacteria

(continued on next page)
lipo方向盘, mannosylerythritol lipids [221] and sophorolipids [222], whereas, many other SGLs are thought to passively diffuse out of the cell.

To give a general overview, we present the general biosynthetic map of SGLs showing the diversity of the immediate glycosyl and lipid precursors of SGLs and the pathways furnishing them (Fig. 5).

8. Metabolic engineering of simple glycolipids

Metabolic engineering can be employed to satisfy demand for simple glycolipids (SGLs) by offering solutions to the main challenges facing their production and commercialization. The most important challenge is the high cost of production of SGLs at high purities to qualify for medical or cosmeceutical applications (usually >90–95% purities are required) [21,22]. This high cost stems from a multiplicity of factors including the inherent low yield/productivity of microbial SGLs, costly raw nutritive materials, expensive biosafety containment measures when using pathogenic SGLs producers, expensive/laborious foam control and expensive downstream processing and purification. Furthermore, SGLs are in many cases naturally produced as mixture of homologues/congeners that are difficult to separate; this makes the study and attribution of a specific activity to a specific SGL homologue/congener unattainable. Lastly, there is accumulating evidence that SGLs biosynthesis is tightly regulated in native producers e.g. rhamnolipid production in Pseudomonas aeruginosa [226] and sophorolipids production in Starmerella bombicola [222]. These tight genetic and metabolic regulations possibly explain the limited improvement in SGL yields using simple optimization media components and process conditions in native SGL producers. One should not be misled, however, by the extraordinarily high GL yields reported in literature that are obtained through media optimization, particularly for rhamnolipids [231]. Such reports are questionable due to different quantification methods used that vary in their specificity and/or sensitivity. Standardized protocols for SGLs quantification were made recently available [232,233] and are expected to profoundly minimize discrepancies in quantification values in glycolipid research.

Although their cost-effectiveness is still unclear, chemical synthesis of GL could overcome many of the problems of SGL production. Nonetheless, chemical synthesis of SGLs is confronted also by many other limitations and concerns. First, the difficult stereoselective synthesis of glycolipids which are mostly chiral molecules. An attempt to chemically synthesize monorhamnolipid, that is naturally produced as α-L-rhamnopyranosanyl-R-β-hydroxydecanoyl-R-β-hydroxydecanoate, resulted in the inevitable co-production of three other diastereomers with different configurations of the β-hydroxyl groups (R,R; R,S; S,S; S,R) and different surface activities [234–236]. Second, certain ecological/health issues are associated with synthetic approaches that most probably involve the use of non-sustainable petrochemical substrates and generate toxic waste products [237]. Thirdly, the biodegradability and toxicity issues of co-produced new-to-nature SGLs diastereomers require attention and investigation. Genetic engineering and synthetic biology could offer promising ecological solutions to current challenges facing SGLs production, particularly after recent advances in metabolic engineering and tools for cloning and heterologous expression of large biosynthetic pathways. The following sections discuss some of the metabolic engineering strategies for SGLs production.

8.1. Engineering heterotrophic carbon source utilization

Raw nutritive materials accounts for approximately more than 85% of the total estimated production/operation costs of SGLs [21]. A wide range of low-cost renewable raw materials were suggested for SGLs production [238,239], yet, the capacity of GL producers to utilize these raw materials should be investigated or genetically engineered in the selected production host. A successful example of the latter is the engineering of P. aeruginosa strain to utilize whey waste for RLs production via heterologous expression of E. coli lac genes [240]. Likewise, bacterial and fungal GL producers could be engineered to utilize cheap waste liginocellulosic wastes [241–243]. Although enhancing the utilization of waste oils by expression of lipid esterases seems a good strategy given the low cost and high GL yields [244,245] associated with these oily carbon sources, these carbon sources are, however, cumbersome during recovery of glycolipids as they necessitate extra steps for their removal adding to the net cost of glycolipids recovery [246].

8.2. Heterologous expression of GL biosynthetic pathway

Containment of biosafety level 2 organisms contribute remarkably in the operational costs of simple glycolipids (SGLs)
Table 2

Common name: Chemical names (Cₙ: chain length of fatty acid chains)	Producer	Phylum
Fungi		
1- Mannosyl-erythritol lipids (MEL, Ustilipids) and MEL congeners		
MEL	Ustilago maydis, Pseudomyza (Candida) antarctica [128,129], Kurtzmanomyces [130]	Basidiomycota
Mannosylmannitol lipids (MML), mannosylerythritol lipids (MEL) and mannosylarabitol lipids (MAL)	Geotrichum candidum [131]	Ascomycota
2- Cellobiose lipids (CL, Ustilaginacids)		
Cellobiose (β-D-Glc-(1→4)-β-D-Glc) 2'-O-hexanoic acid 1-O-16:0,10:1-dihydroxyhexadecanoate or 1-O-16:0,10:1-dihydroxyhexadecanoate methyl ester	Ustilago maydis [128]	Basidiomycota
Cellobiose 6'-O-acetyl-2'-O-β-hydroxyalkanoyl-1-O-16:0,10:1-dihydroxyhexadecanoate or 1-O-16:0,10:1,α-trihydroxy hexadecanoate	Ustilago maydis [128], Pseudomyza fusiformata [133]	Basidiomycota
3- Sophorolipids		
Sophorose (β-D-Glc-(1→2)-β-D-Glc) 1-0-O-16:0,10:1-dihydroxyalkanoate or 1-0-16:0,10:1,α-trihydroxy alkanolate (C₉₀-C₉₀:0,2)	Starmerella (Candida) bombicola, Candida apicola and other spp. [137]	Ascomycota
Sophorose (β-D-Glc-(1→2)-β-D-Glc) 1-0-O-16:0,10:1-dihydroxyalkanoate or 1-0-16:0,10:1,α-trihydroxy alkanolate (C₉₀-C₉₀:0,2)	Cryptococcus curvatus [137]	Basidiomycota
Sophorose 6'-mono-O-acetyl or 6,6'-di-O-acetyl -1-O-16:0,10:1-dihydroxyhexadecanoate or 1-O-16:0,10:1,α-trihydroxy alkanolate (C₉₀-C₉₀:0,1)	Starmerella (Candida) bombicola, Candida apicola and other spp. [137], Wickerhamiella domercqiae [138,139]	Ascomycota
Sophorose lipid lactonic/ring form, lactonization of free carboxyl group with C-4' or C-6' (intramolecular ester bonds)	Starmerella (Candida) bombicola, Candida apicola and other spp. [137]	Ascomycota
Dimeric and trimeric sophorolipids (intramolecular ester bonds between carboxyl of one molecule to C-4' of another molecule)	Candida spp. [140]	Ascomycota
4- Glucosyl-di-xylolyl lipids (Glykenins)		
Glykenins A, B, C: O-β-β-gluco-(1→2)-D-β-β-xylose-(1→2)-D-β-ω-xylose tetrahydroxyhexacosanoic acids, mono-di or tri-acetylated	Basidiomycesous sp. [141]	Basidiomycota
5- Polyl fatty acid esters (Lamocins and their congeners)		
Lamocins	Aureobasidium pullulans	Ascomycota
Mannitol and pentitol esters of 3-D-hydroxypalmitic and 3-D-hydroxysearic acids	Rhodotorula glutinis and Rhodotorula graminis	Basidiomycota
6- Glucosyl and mannosyl lipids		
Monoglucosyoxyoctadecenoic acid	Aspergillus niger [142]	Ascomycota
Halymycin B: mannosylated tetramer of 3.5-dihydroxydecanic acid	Fusarium sp. [143]	Ascomycota
Halymycin P: acetylated halymycin B, halymycin G: mannosylated trimer of 3.5-dihydroxydecanic acid (3R,5R)-3-O-β-D-mannosyl-3,5-dihydroxydecanic acid	Simplicillium lamellicola [144]	Ascomycota
7- Glycosylated polyketides		
Roselinpin 1, 2: 2,4,6,8,10,12,14,16,18-nonamethyl-5,9,13-tri-oxy-2,6,6,10E-icosenic acid mannosylated (+acylated) at C-13, D-arabitol ester	Glocladium [145,146]	Ascomycota
TMC-151 A – F: 2, 4,6,8,10,12,14,16,18-nonamethyl-5,9,13-tri-oxy-2,6,6,10E-icosenic acid mannosylated (+acylated) at C-13, D-arabitol ester	Glocladium catenulatum [147]	Ascomycota
TMC-154: isomeric form of roselin pin 1 and TMC-171 A – C: as roselin 3 but esterified to mannotol	Glocladium [148]	Ascomycota
Roselinpin 3A to 3E: 14,15-dehydro derivatives of roselin 1A/B	Clonostachys candidalabrus [149]	Ascomycota
Cladinolon A: 15-mannosyl-2,4,6,8,10,12,14,16,18,20-decetoxy-3,7,11,15-tetrahydroxy-4,8,12-docosenoic acid arabinol ester	Glocladium [150]	Ascomycota
8- Glucosyl-galactosyl lipids		
Emamygucin 1A: o-β-glucopyranosyl-α-β-galactopyranose 3’-O- hydroxydocosanoate with 17-(α-carboxybenzyloxy) group of oxalate ester at OH of C-17	Fungal species [151]	NA
Emamygucin 1B: Trehalose 3’-O-docosanoate with 17-(α-carboxybenzyloxy) group of oxalate ester at OH of C-17	Fungal species [151]	NA
Emamygucin 2: as emamygucin 1A without the oxalate ester	Fungal species [151]	NA
9- Glycosylated sterols		
Ergosterol-β-o-glucopyranoside	Pichia pastoris, Sordaria macrospora, Rhynchosporium secalis [152]	Ascomycota
10- Glycosylated paraconic acids		
Gobienines A/B/C (non-confirmed structure [28])	Acarospora gobiensis (Lichen) [27]	Basidiomycota

Production. Moreover, working with pathogenic or opportunistic pathogens presents a health risk to manufacturing personnel as well as to public and environment. Heterologous expression of GL biosynthetic genes in hosts that are Generally Recognized As Safe (GRAS) is, therefore, a promising solution as it would require a less costly biosafety level 1 manufacturing facility. Heterologous expression of rhamnolipids (RLs) in non-pathogenic hosts has received much attention because of the large commercial potential of RLs and because the main and best RLs producers is the opportunistic pathogenic bacterium
Table 3
Biological activities of different chemical groups of microbial simple glycolipids.

Chemical group of simple glycolipids (SGLs)	A	B	C	D	E	F	G	H	I	J	K	L
Bacterial SGLs						↑					↑	
1. Rhamnolipids	A1	B1	C1	D1			G1				I1	
2. Glycolipids (Rubrivertin)												
3. Trehalolipids			C3	E3	F3	G3						
4. Other glycosylated mycolates												
5. Oligosaccharide lipids												
6. Glycosylated fatty alcohols												
7. Glycosylated macro-lactones/lactams	A7	B7	C7	D7	E7	G7					I7	
8. Glycomacrodialolides	A8	B8	C8	D8	E8	G8	G9	H9				
9. Glyco-carotenoids/terpenoids												
10. Glycosylated hopanoids												
Fungal SGLs												
11. Mannosyl-erythritol lipids	A11	E11	F11	H11	J11							
12. Cellobiose lipids	A12	B12										
13. Sophorolipids	C13											
14. Glucosyl-di-xyllosyl lipids (Glykenins)	A14											
15. Polyol fatty acid esters	A15											
16. Glucosyl and mannosyl lipids	C16											
17. Glycosylated polyketides	C17	D17										
18. Glucosyl-galactosyl lipids	C18											
19. Glycosylated sterols												
20. Glycosylated paraconic acids												

References:
A1: [23] B8: [161,162,212] D7: [58,61,65] F3: [36,163,164] H9: [165] A7: [56] B12: [135,166–168] D8: [169,170] F11: [171–175] H11: [129] A8: [72,176,177] C1: [178] D17: [149] F13: [171] A11: [182] C3: [183] E3: [47,184] G1: [185] A12: [188–190] C7: [191] E5: [32,47] G3: [192,193] A14: [194] C8: [56,73] E7: [195] G7: [53,64,196] A15: [198–200] C13: [197] E8: [70,71,176] G8: [201] A16: [144] C17: [203] E11: [204,205] G9: [206] B1: [23,158,207–212] C18: [151] E15: [198] G13: [213,214] A.M. Abdel-Mawgoud, G. Stephanopoulos / Synthetic and Systems Biotechnology 3 (2018) 3–19

a The signs ↑ and ↓ denotes for stimulation and inhibition, respectively.
Pseudomonas aeruginosa [247]. One example is the successful expression of rhamnolipids biosynthetic genes of *P. aeruginosa* in non-pathogenic bacteria, namely *P. putida* [246] and *P. fluorescens* [248] as well as in *E. coli* [249,250], the best of which was recombinant *P. putida* [246], though, all recombinant strains produced RLs at much lower yields than the native producer. Interestingly, the non-pathogenic strain *P. chlororaphis* is naturally producing mono-rhamnolipids and not di-rhamnolipids as it lacks the gene coding for the second rhamnosyltransferase, *rhlC* [251]. Heterologous expression of *rhlC* from *P. aeruginosa* in *P. chlororaphis* resulted in production of di-RL at concentration more than twice that of mono-RL [251].

Fig. 4. Key enzymes of glycolipid biosynthesis and hydrolysis. Last steps of glycolipid biosynthesis involves linking of sugar and lipid moieties via either or both Acyl Transferases (AT) (A1 and A2, forward reactions) and Glycosyl Transferases (GT) (B1 and B2, forward reactions) which catalyze the ester and glycosidic bonds formation, respectively. Glycolipids are catabolized or broken down by Lipid Esterase (LE), Carbohydrate Esterases (CE) and Glycoside Hydrolases (GH) that hydrolyze the bond between alkyl-alkanoate ester, acyl-sugar ester and glycosidic bonds, respectively (reverse reactions).

L1: Coenzyme A (CoA-S-) or Acyl Carrier Protein (ACP-S-) activating groups on acyl donors; L2: Nucleotides or phosphates activating groups on glycosyl donors. R: any substitution that could be glycosyl, lipid, or glycolipid units. Notes: β-glucose and R-3-hydroxyalkanoate are used as examples of any sugar and hydroxyl fatty acid of any chain length (n), respectively. Hydrolysis reactions do not generate activated products.

Interestingly, 17 genes were heterologously expressed in an *E. coli* strain that is already producing 6-deoxyerythronolide B precursor to produce the glycosylated macrolide, erythromycin C [255]. The cloned genes encoded the deoxysugar, desosamine, biosynthetic enzymes and the enzymes converting 6-deoxyerythronolide B to erythromycin C [255,256].

Selection criteria for candidate hosts for heterologous glycolipid production should include, in addition to being non-pathogenic, to be natively tolerant to high concentrations of the target SGLs if high productivities are sought [246]. This is particularly important for SGLs which mostly demonstrate antimicrobial activities.

Moreover, the candidate host should, preferably, abundantly produce the precursors required for SGLs biosynthesis. A good approach would be starting with analysis of the intracellular concentration of lipid and glycosyl precursors. One example is the evaluation of the R-specific enoyl-CoA hydratase-2 (ECH-2) activity.
in crude cell lysate of target host organism as this predicts the potential of this host to synthesize R-3-hydroxyalkanoate precursors [257] that form the lipid part of many R-3-hydroxyfatty acid-containing glycolipids, e.g. rhamnolipids and rubiwettins. The ECH-2 activity was recently reported to be significantly implicated in rhamnolipids biosynthesis [258].

Oleaginous yeasts, like Yarrowia lipolytica and Rhodosporidium toruloides, are potential candidates in view of their already high lipid flux [259,260]; therefore, they are supposed to have abundant lipid precursors for GLs biosynthesis.

8.3. Blocking competing pathways

Blocking competitive pathways is an important strategy that is expected to enhance GLs biosynthesis. One example is blocking polyhydroxyalkanoates (PHA) synthesis in P. aeruginosa that changed the distribution of produced rhamnolipids (RLs) congeners by doubling the amount of produced mono-rhamnolipids relative to di-rhamnolipids [258]. Also, PHA mutant of P. putida was used to enhance heterologous production of RLs [246].

8.4. Tailoring the GL pool composition

Most simple glycolipids (SGLs) are naturally produced in mixtures of congeners and homologues like rhamnolipids [29] and sophorolipids [222]. For studying the functions and properties of each GL species in these natural mixtures, engineered production of purified GL should be sought. This can be achieved by selectively knocking out the genes coding for biosynthesis of specific congeners or forms. A recent example is the production of sophorolipids pool enriched to 88% in the acidic non-lactonized free form by using a mutant strain of Starmerella bombycina [261] that is defective in lactone esterase [262].

9. Summary and perspectives

More than 5 decades of glycolipids research has led to the discovery of a huge number of simple microbial glycolipids, around 140 of which are cited in this review. In spite of the many publications demonstrating their great biomedical potential, the majority of discovered simple glycolipids are still unable to translate into commercial products because of their high cost of production mainly stemming from low biological yields. Metabolic engineering has the potential to overcome this cost problem particularly after the revolutionary developments in genetic engineering and synthetic biology techniques that were witnessed in the last 5 years.

This review is an attempt to structure the literature available on simple glycolipids aiming at providing metabolic engineers with an outlook on glycolipids and their biosynthesis. It highlights some of aspects and details that are still missing in the biosynthesis, transport and catabolism of glycolipids that need to be pursued and applied profitably in engineering cost-effective microbial glycolipid producers.

Acknowledgement

This work was funded by the United States Department of Energy - Chicago (DoE-Chicago) grant DE-SC0008744 to Professor Gregory Stephanopoulos. Dr. Ahmad M. Abdel-Mawgoud is funded by a postdoctoral fellowship from the Natural Sciences and
Engineering Research Council of Canada (NSERC), funding reference number PDF-488195-2016, and partly by the US DoE grant DE-SC0008744 mentioned above. The authors would like to thank Ms. Nada Swedan for her generous shared contribution in drawing chemical structures and filling tables' data.

References

[1] Schorren U, Kempers P. Lipid biotechnology: industrially relevant production processes. Eur J Lipid Sci Technol 2009;111(7):627–45.
[2] Herrera-González A, et al. Functionalization of natural compounds by enzymatic fructosylation. Appl Microbiol Biotechnol 2017;101(13):3223–34.
[3] Gant RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glycolipid (diversification/randomization) of drugs and small molecules. Nat Prod Rep 2011;28(1):1811–53.
[4] Zhang B, et al. De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleanogen yeast Yarrowia Lipolytica. Microcell Factory 2012;11(1):51–62.
[5] Beopoulou A, et al. Metabolic engineering for ricinoleic acid production in the oleanogen yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 2014;98(1):1251–62.
[6] Sabirova JS, et al. The ‘LipoYeasts’ project: using the oleanogen yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microbiol Res 2011;166:164–5.
[7] Varvarou A, lakouvo K. Biosurfacants in cosmetics and bio-pharmaceuticals. Lett Appl Microbiol 2015;61(3):214–23.
[8] Lukic M, Pantelic I, Savic S. An overview of novel surfactants for formulation of cosmetics with certain emphasis on acidic substances. Tenside Surfactants Deterg 2016;53(1):7–19.
[9] Holst O. Glycolipids: occurrence, significance, and properties. In: Fraser-Reid BD, Tsatsas K, Thiern J, editors. Glycoscience: chemistry and chemical biology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 1603–27.
[10] Chester MA. IUPAC-IUB joint commission on biochemical nomenclature (JCBN) nomenclature of glycolipids. J Mol Biol 1999;286(3):963–70.
[11] Leray C. Complex lipids. In: Introduction to lipidsomics. CRC Press; 2012. p. 211–24.
[12] Leray C. Simple lipids with two different components. In: Introduction to lipidsomics. CRC Press; 2012. p. 169–210.
[13] Leray C. Complex glycolipids. In: Introduction to lipidsomics. CRC Press; 2012. p. 247–94.
[14] Merrill Jr AH, Vu MN. Glycolipids. In: Encyclopedia of cell biology. Waltham: Academic Press; 2016. p. 180–93.
[15] Hill K, Rhode O. Sugar-based surfactants for consumer products and technical applications. Lipid/Fett 2014;6(1):25–33.
[16] Poremba K, et al. Marine Biosurfactants, III. Toxicity testing with marine surfactants. Z für Naturforsch C 1991;20A.
[17] Madsen JK, Kaspersen JD, Andersen CB, Nedergaard Pedersen J, Andersen KK, Pedersen JS, Otzen DE. Glycolipid biosurfactants activate, dimerize and stabilize T. longinuosus lipase in a pH-dependent fashion. Biochemistry 2008;47(41):12625–35. doi:10.1021/bi801602f.
[18] Otzen DE. Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim Biophys Acta (BBA) Biomembr 2017;1859(4):639–57. doi:10.1016/j.bbamem.2017.05.003.
[19] Rapp P, et al. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. Lipids 1995;30(5):510–7.
[20] Vollbrecht E, et al. Production and structure elucidation of di- and oligo-saccharide biosurfactants from Tsukamurella sp. nov. Appl Microbiol Biotechnol 1998;50(5):510–7.
[21] Shibuya T, et al. Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytootechnology 2000;32(1):259–64.
[22] Espuny MJ, et al. Nutritional requirements of a biosurfactant producing strain Rhodococcus sp sp 5177. Biotechnol Lett 1996;18(5):521–6.
[23] Pauser E, et al. Marine Biosurfactants, III. Production and characterization of an anionic trehalose tetaester from the marine bacterium Arthrobacter sp. FK 1. Z fur Naturforsch C 1991;20A.
[24] Suzuki T, Tanaka H, Itoh S. Sucrose lipids of arthrobacter, corynebacteria and nocardia. Agric Biol Chem 1974;38(3):557–63.
[25] Itoh S, Suzuki T. Fructose lipids of arthrobacter, corynebacteria, nocardia and mycobacteria grown on fructose. Agric Biol Chem 1974;38(8):1443–9.
[26] Izumiya H, et al. L-Glutamic acid fermentation; Part VI. Structure of a sugar liquid lipids produced by Brevibacterium th Passive. Agric Biol Chem 1969;33(5):764–70.
[27] Li Z-Y, et al. Formation and identification of interfacial-active glycolipids from resting microbial cells. Appl Environ Microbiol 1984;48(3):610–7.
[28] Esch SW, et al. A novel trisaccharide glycolipid biosurfactant containing trehalose bear ester-linked hexanoate, succinate, and acylxylool moieties: NMR and MS characterization of the undervatized structure. Carbohydr Res 1999;319(1):112–23.
[29] Konishi M, et al. Deep-sea Rhodococcus sp. BS-15, lacking the pyrophophogenic fas genes, produces a novel glucolipid biosurfactant. Mar Biotechnol 2014;16(4):484–93.
[30] Kim J-S, et al. Microbial glucolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 1990;31(4):257–66.
[31] Poormals V, Burger C, V. Penta- and disaccharide lipid formation by Nocardia corynebacteroides grown on n-alkanes. Appl Microbiol Biotechnol 1989;31(5):473–9.
[32] Palme O, et al. Selected microbial glycolipids: production, modification and characterization. In: Ser R, editor. Biosurfacants. New York, NY: Springer New York; 2010. p. 185–202.
[33] Yamashita Y, et al. Pyruvylated glycolipids from Mycobacterium smegmatis. Nature and location of the lipid components. J Biol Chem 1985;260(7):4117–21.
[34] Saadat S, Ballou CE. Pyruvylated glycolipids from Mycobacterium smegmatis. Structures of two oligosaccharide components. J Biol Chem 1983;258(3):1813–8.
[35] van der Meer MT, et al. Alkane-1,2-diol-based glycosides and fatty glycosides and wax esters in Biosulfus castenholzii and hot spring microbial mats. Arch Microbiol 2007;187:263–72.
[36] Baurersachs T, et al. Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 2009;70(17):2034–9.
[37] Mikami Y, et al. A new antifungal macrolide compound, brasilinolide B, produced by Nocardia brasiliensis. J Antibiot (Tokyo) 2000;53(1):70–4.
[38] Komatsu K, et al. Absolute stereochemistry of immunosuppressive macrolide brasilinolide A and its new congener brasilinolide C. J Org Chem 2004;69(5):1535–41.
[39] Shindo K, et al. Vicenistatin, a novel 20-membered macrolide lactam antitumor antibiotic. J Antibiot (Tokyo) 1993;46(7):1076–81.
[40] Matsushima Y, et al. Isolation and structure elucidation of vicenistatin M, and importance of the vicenamin aminoviridin sugar for exerting cytotoxicity of vicenistatin. J Antibiot (Tokyo) 2001;54(3):211–9.
[41] Dembitsky VM. Astonishing diversity of natural surfactants: 2. Polyether glycosidic iminosides and macrocyclic lipids. Lipids 2005;40(3):215–48.
[42] Vilches C, et al. Biosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance. Microbiology 1990;136(8):1447–54.
[43] Mertz FP, Yao RC. Streptomyces sporispora spinae sp. nov. isolated from soil collected in a sugar mill rum still. Int J Syst Evol Microbiol 1990;40(1):34–9.
[44] Hara G, Hutchinson CR. A macrolide 3-O-acetyltransferase gene from the midamycin-producing species Streptomyces mycoforaciens. J Bacteriol 1992;174(15):5141–4.
[45] Balz RH, et al. Biosynthesis of the macrolide antibiotic tylosin. A preferred pathway from tylosine to tylosin. J Antibiot (Tokyo) 1983;36(2):131–41.
[46] Kong F, et al. Colichicidicin A, a novel macrolide antibiotic from a Streptomyces sp. Tetrahedron Lett 1999;40(52):9219–23.
Lutnaes BF, Oren A, Liaaen-Jensen S. New C40-carotenoid acyl glycoside as a new antibiotic from Amycolatopsis sp. ST 101170. Tetrahedron Lett 1997;38(38):5058–5061.

Kleinig H, Reichenbach H, Achenbach H. Carotenoid pigments of Cryobacterium araucanum (Mycobacteriales). Arch f. Mikrobiol 1970;74(3):223–234.

Takaichi S, et al. Antibiotics and related compounds and their pentaerythritol esters. J Antibiot (Tokyo) 1995;55(7):1–10.

Haydock SF, et al. The putative elaiophylin biosynthetic gene cluster in Thermobifida fusca. Environ Microbiol 2004;6(5):441–452.

Richter TKS, Hughes CC, Moore BS. Suxiamox, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environ Microbiol 2015;17(6):2158–2171.

Dembitsky VM. Astonishing diversity of natural surfactants: 3. Carotenoid glycolipids and isopenoid glycolipids. Lipids 2005;40(5):535–571.

Qian-Cutrone J, et al. Glucolipsin A and B, two new glucokinase activators from Rhodobacter capsulatus. J Biol Chem 2004;279(45):48913–48920.

Qian-Cutrone J, et al. Prokaryotic triterpenoids: O-alpha-L-fucoside, not rhamnoside. Plant Cell Physiol 2001;42(7):328–338.

Yamada T, Minoura K, Numata A. Halicholelide, a potent cytotoxic macrolide from a Streptomyces species separated from a marine fish. Tetrahedron Lett 2002;43(9):1721–1724.

Yamada T, et al. Halicholebidoles B and C, potent cytotoxic macrolides from a Streptomyces species separated from a marine fish. Tetrahedron Lett 2012;53(23):2842–2844.

Asker D, et al. Astaxanthin dirhamnoside, a new astaxanthin derivative from the green alga Porphyridium cruentum. J Nat Prod 2006;69(6):763–765.

Takaichi S, et al. Structure elucidation of a novel carotenoid from a new marine bacterium, Rhodovulum marinus from submarine Icelandic hot springs. Biochem Syst Ecol 1995;23(9):625–635.

Kleinig H, Reichenbach H. Biosynthesis of carotenoid glucoside esters in Streptomyces microflavus. Arch Microbiol 1996;166(4):270–278.

Kleinig H, et al. Carotenoids of rhizobia. 1. New Carotenoids from Rhizobium lupini. Helvetica Chim Acta 1977;60(1):254–258.

Kleinig H, Brouglot WJ. Carotenoid pigments in a red strain of Rhizobium meliloti. J Bacteriol 1978;134:461–464.

Kleinig H, Reichenbach H. A new carotenoid glucoside ester from Chondrocystis apiculata. Phytochemistry 1973;12(10):2483–2485.

Kleinig H, Reichenbach H. Biosynthesis of carotenoid glucoside esters in Myxococcus fulvus (Myxobacteria): inhibition by nicotine and carotenoid turnover. Biochim Biophys Acta (BBA) Lipids Lipid Metab 1973;306(2):249–256.

Kleinig H, et al. New C30-catenorhizin c30-acid glycosyl esters from Pseudomonas sp. Z. für Naturforsch C 1978;33c:189–191.

Kleinig H, et al. New Carotenoids from Rhizobium lupini. Helvetica Chim Acta 1977;60(1):254–258.

Kleinig H, Brouglot WJ. Carotenoid pigments in a red strain of Rhizobium meliloti. J Bacteriol 1978;134:461–464.

Kleinig H, Reichenbach H. A new carotenoid glucoside ester from Chondrocystis apiculata. Phytochemistry 1973;12(10):2483–2485.

Kleinig H, Reichenbach H. Biosynthesis of carotenoid glucoside esters in Myxococcus fulvus (Myxobacteria): inhibition by nicotine and carotenoid turnover. Biochim Biophys Acta (BBA) Lipids Lipid Metab 1973;306(2):249–256.

Marshall JRT, Wilmshurst GP. Pigments of Staphylococcus aureus, a series of new carotenoid carotenoids. J Bacteriol 1981;147(3):900–913.

Taylor RF, Davies BH. Triterpenoid carotenoids and related lipids. Triterpenoid monohydroxy- and monoglucosylxy-carotenoids from Streptococcus faecalis UNH 564p. Biochem J 1974;139(3):561–567.

Takachi S, et al. Novel carotenoid glucoside esters from alkalophilic halobacteria. Arch Microbiol 2003;179(2):95–100.

Schmerk CL, et al. Elucidation of the Burkholderia cenocepacia hopanoid group in a carotenoid from a thermophilic filamentous photosynthetic bacterium huncastenholzii. Plant Cell Physiol 2001;42(12):1355–1362.

Takaichi S, et al. New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1, 2-dihydro-4, 5, 7-tetrahydroxy-carotenone, and OH- chlorobacteone and OH-chlorobacteone glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 1997;168(4):270–277.

Takaichi S, et al. A monocyclic carotenoid glucoside ester is a major carotenoid in the green filamentous bacterium Chloroflexus aurantis. Plant Physiol 1995;103(5):773–781.

Burgess ML, et al. Carotenoid glycoside esters from the thermophilic bacterium Methanothermobacterthermoautotrophicus. J Nat Prod 1995;58(6):3936–3941.

Takaichi S, Maoka T, Masamoto K. Myxoxanthophyll in Synchechiopsis sp. PCC 6803 is myoxol 2′-dimethyl-fucoside, (3R,3′,5′)-myoxol 2′-2′,4-di-O-methyl-alpha-l-fucoside, not rhamnose. Plant Cell Physiol 2001;42(7):756–762.

Richards TKS, Hughes CC, Moore BS. Suxiamox, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environ Microbiol 2015;17(6):2158–2171.

Dembitsky VM. Astonishing diversity of natural surfactants: 3. Carotenoid glycolipids and isopenoid glycolipids. Lipids 2005;40(5):535–571.

Arigona N, Laien-Jensen S. Bacterial carotenoids. 38. C 50 –carotenoids. 9. Isolation of decaprenoxanthin mono- and diglucoside from an Arthrobacter sp. Acta Chem Scand 1972;26(6):2524–6.

Haberli A, Bircher C, Jann K. Isolation of a new carotenoid and two new carotenoid glycosides from Curtobacterium flaccumfaciens pv poinsettiae. Helvetica Chim Acta 2000;83(2):328–335.

Osawa A, et al. Characterization and antioxidative activities of rare C50 carotenoids-sarcinaxanthin, sarcinaxanthin monoglucoside, and sarcinaxanthin diglucoside obtained from Micrococcus yunnanensis. J Oleo Sci 2010;59(12):653–693.

Osawa A, et al. Characterization and antioxidative activities of rare C50 carotenoids-sarcinaxanthin, sarcinaxanthin monoglucoside, and sarcinaxanthin diglucoside obtained from Micrococcus yunnanensis. J Oleo Sci 2010;59(12):653–693.

Hunter CN, et al. Introduction of new carotenoids into the bacterial photosynthetic apparatus in a new strain of Rhodopseudomonas palustris. J Bacteriol 1994;176(12):3697–2.

Kull DR, Pander H. Isolation and structure elucidation of carotenoid glycosides from the thermophiliic archaea Sulfolobus shibatae. J Nat Prod 1997;60(4):371–4.

Hirtzberg S, Borgh C, Laien-Jensen S. Bacterial carotenoids. L. absolute configuration of zeaxanthin dihydrorhabdosin. Arch Microbiol 1976;110(1):95–99.

Asker D, et al. Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinificans. J Antibiot 1998;51(12):1067–1073.

Kleinig H, et al. Carotenoid pigments of Sorangium compositum (Myxobacterales). Z für Naturforsch C 1979:181. 610.

Kleinig H, Reichenbach H. Carotenoid pigments of Sorangium compositum (Myxobacterales). Arch für Mikrobiol 1970;74(3):223–224.

Kleinig H, et al. Carotenoids of Rhizobium lupini. Helvetica Chim Acta 1977;60(1):254–258.

Kleinig H, Brouglot WJ. Carotenoid pigments in a red strain of Rhizobium meliloti. J Bacteriol 1978;134:461–464.

Takachi S, et al. A new carotenoid glucoside diester in Corynebacterium glutamicum and identi...
glucuronopyranosyl bacteirohapanotenol, a novel hopanoid from the bacterium Rhodospirillum rubrum. Biochem J 1999;278(1):159–61.

[12] Hirai Y, et al. Cholesterol glucosyltransferase in Helicobacter pylori: compositional and structural analysis. J Bacteriol 1995;177(18):3527–33.

[13] Haque M, et al. Steryl glycolipids: a characteristic feature of the Helicobacter sp. J Bacteriol 1995;177(18):5334–7.

[14] Shibata S, et al. Cholesterol glucosyltransferase are specific antigens of Borrelia causing Lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem 2009;284(20):13326–34.

[15] Smith PF. Biosynthesis of cholesteryl glucoside by Mycoplasma gallinarum. J Bacteriol 1971;102(1):986–91.

[16] Mayberry WR, Smith PF. Structures and properties of acyl diglucosylcho- lesterol and galactofuranosyl diglucosyacylcholesterol from Acetobacter pasteurianum. Biochin Biophys Acta 1983;752(3):344–43.

[17] Siboni S, et al. Glycolipids of the Clostridium tetani strain cultivated from cattle on renewable resources. Appl Microbiol Biotechnol 1999;51(1):33–9.

[18] Morita T, et al. Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 2003;97(11):4691–700.

[19] Kakugawa K, et al. Isolation of yeast Kutzmanzymomyces sp. S-11, a novel producer of mannosylerythritol lipid. Biosci Biochem Biochem Bio 2002;66(1):188–91.

[20] Kurz M, et al. Ustilagin, acylated β-D-mannosylerythritol D-erythritol lipids from Ustilago maydis and Geotrichum candidum. J Antibiot (Tokyo) 2003;56(2):91–101.

[21] Price NPJ, et al. Formation of the two novel glycolipid biosurfactants, mannosyl- erythritol lipid and mannosylgalactoyl lipid, by Pseudomyxa parantartica JCM 11752T. Appl Microbiol Biotechnol 2012;96(4):931–8.

[22] Kulakovskyava TV, et al. Ustilagin acid secretion by Pseudomyxa fusiformata strain CL317. FEMS Yeast Res 2005;5(10):729–34.

[23] Kulakovskyava TV, et al. Characterization of an antifungal glycolipid secreted by the yeast Symposporomyces papiophilili. FEMS Yeast Res 2004;5(3):247–52.

[24] Puchkov EO, et al. The mycocidal, membrane-active complex of Cryptococcus humilica is a new type of cellolose lipid with detergent features. Biochim Biophys Acta (BBA) Biomembr 2002;1558(2):161–70.

[25] Cheng Y, et al. Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellolose lipid with antifungal activity. Appl Environ Microbiol 2003;69(5):2595–602.

[26] Daniel H-J, et al. Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida boidinii ATCC 22114 using depraining whey concentrates as substrates. Appl Microbiol Biotechnol 1999;51(1):40–5.

[27] Ma X, Li H, Song X. Surface and biological activity of sophorolipid molecules produced by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. J Colloid Interface Sci 2012;376(1):165–72.

[28] Chen J, et al. Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme Microb Technol 2006;39(3):501–6.

[29] Price NPJ, et al. Structural characterization of novel sophorolipid bio- surfactants from a newly identified species of Candida yeast. Carbohydr Res 2012;348(3):33–41.

[30] Nishida E, et al. Structure elucidation of glykenin, glycosidic antibiotics from Streptomyces sp. 45F1. J Antibiot (Tokyo) 1996;49(10):998–1005.

[31] Le Dang Q, et al. Antimicrobial activities of novel mannosyl lipids isolated from marine algae. J Antibiot (Tokyo) 1996;49(10):998–1005.

[32] Ron EZ, Rosenberg E. Natural roles of biosurfactants. Environ Microbiol 2008;10(1):17–26.

[33] Van Bogaert INA, et al. The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 2013;88(3):501–9.

[34] Van Hamme J, Sterckx S. Immunological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 2006;24(6):604–20.

[35] Ron EZ, Rosenberg E. Natural roles of biosurfactants. Environ Microbiol 2009;11(3):708–20.

[36] Cunningham BL, et al. Comparative analysis of the Candida albicans cellobiose lipid 6-deoxy-dimycocerosate and its role in virulence. J Bacteriol 2005;187(1):35–63.

[37] Ayers S, et al. Anthelmintic constituents of Clonostachys candelabrum. J Antibiot (Tokyo) 2010;63(3):119–22.

[38] Kasa Y, et al. Production of di-rhamnolipid. Burns 2006;32(1):24.

[39] Matsuno T, Miki W. Biological functions and activities of animal carotenoids. Pure Appl Chem 1991;63(1):141–6.

[40] Mabine B, et al. Antifungal activity of floculoscin, a novel glycolipid isolated from Pseudomyxa floculosa. Antimicrob Agents Chemother 2005;49(4):1597–9.

[41] Puchkov EO, et al. Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humilica humilica compound (microcin). Biochim Biophys Acta (BBA) Biomembr 2001;1512(2):239–50.

[42] Kulakovskyava TV, Kulakovskyava EV, Golubev VI. ATP leakage from yeast cells treated by extracellular glycolipids of Pseudomyxa fusiformata. FEMS Yeast Res 2003;3(4):401–4.

[43] Harman P, Kretzschmar G, Seibert G. Secondary metabolites by chemical screening. 7: D. Elaisphin derivatives and their biological activities. J Antibiot 1990;43(11):1431–40.

[44] Ohtogu K, et al. In vitro and in vivo antiprotozoal activities of bisporolid and their derivatives. J Antibiot 2010;63(5):275–7.

[45] Isoda H, et al. The neutrice-initiating effect of microbial extracellular glyco- lipids in PC12 cells. Cryptotechnology 1999;31(1):165.

[46] Shibahara M, et al. Mannosylerythritol lipid increases levels of galactoar- amide in and neure outgrowth from PC12 pheochromocytoma cells. Cryptotechnology 2000;32(1):247–51.

[47] Wakamatsu Y, et al. Oligosaccharides isoprene thiol induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 2001;286(2):374–83.

[48] Isoda H, et al. Differentiation of human promyelocytic leukemia cell line HL-60 by microbial glycolipids. Lipids 1997;32(3):263–71.

[49] Isoda H, et al. Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci Biotechnol Biochem 1997;61(4):609–14.

[50] Lee S-Y, et al. Structure determination and biological activities of elaiophycin produced by Streptomyces sp. SMY-846. J Microbiol Biotechnol 1996;6:245–9.

[51] Katsau M, et al. New macrodolide antibiotics, 11-O-monomethylyl- and 11,11′-O-di(methylyl)elaiophylins, from Streptomyces sp. HKI-0113 and HKI-0114. J Nat Prod 1998;61(11):1337–9.

[52] Haferburg D, et al. Antiphypoviral activity of rhomnolipid from Pseudo- monas aeruginosa strain 140. J Antimicrob Chemother 1982;7(4):353–5.

[53] Janek T, Lukaszewicz M, Krasowska A. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf B Biointerfaces 2013;101:379–86.

[54] Rodrigues L, et al. Role of intermediates in the augmented resistance of trehalose-6,6-dimycocerosate-treated mice to influenza virus infection. J General Virol 1987;68(3):835–43.

[55] Watanabe R, et al. Inhibitory effect of trehalose dimycolate (TDM) and its stereoisomeric derivatives, trehalose dicyanomycosides (TDCMs), with low
toxicity on lung metastasis of tumour cells in mice. Vaccine 1999;17(11):484–92.

[185] ANDRA J, et al. Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and bio-physical characterization. Biol Chem 2006;387(3):301–10.

[186] Díaz De Rienzo MA, et al. Surfactant biosurfactins: possible uses as bioactive material and antimicrobial agent. Nat Biotechnol 2005;13(6):120–6.

[187] Lydon Hl, Bacille N, Callaghan B, Marchant R, Mitchell CA, Banat IM. Adjuvant antibacterial activity of acidic sophorolipids with potential for facilitating wound healing. Antimicrob Agents Chemother 2017. https://doi.org/10.1128/AAC.02487-16.

[188] Haskins RH, Thorn JA. Biochemistry of the ustilaginales: VII. Antibiotic activity of the ustilaginales. J Biol Chem 1951;209:15–6.

[189] Manitchotpisit P, et al. Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity. World J Microbiol Biotechnol 2015;31(10):2067–75.

[190] Ogasawara Y, et al. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Strepto- myces radiomycus. Antimicrob Agents Chemother 2000;44(4):1093–400.

[191] Naruse N, et al. Fluvirucins A1, A2, B1, B3, B4 and B5, new antibiotics produced by Pseudomonas aeruginosa LBI 9901. J Antibiot 2000;53(9):960–71.

[192] Perez M, et al. PM100117 and PM100118, new antitumor macrolides produced by a marine Streptomyces caniferus GUA-06-05-006A. J Antibiot 2017;70(2):136–42.

[193] Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable resources for biofuel production by an engineered yeast. New Biotechnol 2015;31(10):77–85.

[194] Aloni YR, Verger R, Assoushalam A, Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. In: Sandalov G, editor. Lipases and phospholipases: methods and protocols. Totowa, NJ: Humana Press; 2012. p. 31–51.

[195] Kulakovskaya E, Kulakovskaya T. Chapter 5-Metabolism of yeast extracellular glycolipids. In: Extracellular glycolipids of yeasts. Academic Press; 2014. p. 65–74.

[196] Van Bogaert IN, et al. Surfactant biosurfactins: microbial synthesis and application. Biofuels. CRC Press; 2014. p. 19–26.

[197] Hundle BS, et al. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc Natl Acad Sci 1992;89(19):9321–5.

[198] Carlini GR, et al. The functions of sterol glucosides come to those who wait; recent advances in plants, fungi, bacteria and animals. Prog Lipid Res 2010;49(3):262–88.

[199] Teichmann B, et al. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 2007;66(2):525–33.

[200] Zhang M, et al. Mycolic acids: structures, biosynthesis, and biological activities. J Antibiot 1991;44(7):733–40.

[201] Jemmott J, et al. Expression of two human acyl-CoA:diacylglycerol acyl-transferase isoforms in yeast and selectivity of microbial inhibitors toward the isoforms. J Microbiol Biotechnol 2014;30(8):2199–204.

[202] Irorere VU, et al. Microbial rhamnolipid production: a critical re-evaluation. Biotechnol Biofuels 2017;10(1):77.

[203] Jonasson M, et al. Characteristic of rhamnolipid biosurfactant as an antifungal agent against plant pathogenic fungus. J Microbiol Biotechnol 2005;15(6):1164–9.

[204] Sanchez L, et al. Rhamnolipids elicit defense responses and induce disease resistance against fungal, hemibiotrophic and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol 2012;160(3):1630–41.

[205] Fu SL, et al. Sophorolipid treatment decreases LPS induced inflammatory responses and NO production in macrophages. J Am Coll Surg 2007;205(3):544.

[206] Hagler M, et al. Sophorolipids decrease IgE production in U266 cells by downregulation of BLyS (BAFF) (Pax5), TLR-2, STAT3 and IL-6. J Allergy Clin Immunol 2007;119(1):5263.

[207] Williams CJ, Thorson JS. Natural product glycosyltransferases: properties and applications. In: Advances in enzymology and related areas of molecular biology. New York: John Wiley & Sons; 1999. p. 55–119.

[208] Rodríguez RC. Antibiotics. Microbiol Mol Biol Rev 2013;77(2):277–321.

[209] Davies G, Henrisat B. Structures and mechanisms of glycolipid hydrolases. Structure 1995;3(9):653–60.

[210] Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable resources for biofuel production by an engineered yeast. New Biotechnol 2015;31(10):77–85.

[211] Aloni YR, Verger R, Assoushalam A, Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. In: Sandalov G, editor. Lipases and phospholipases: methods and protocols. Totowa, NJ: Humana Press; 2012. p. 31–51.

[212] Kulakovskaya E, Kulakovskaya T. Chapter 5-Metabolism of yeast extracellular glycolipids. In: Extracellular glycolipids of yeasts. Academic Press; 2014. p. 65–74.

[213] Van Bogaert IN, et al. Surfactant biosurfactins: microbial synthesis and application. Biofuels. CRC Press; 2014. p. 19–26.

[214] Hundle BS, et al. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc Natl Acad Sci 1992;89(19):9321–5.

[215] Carlini GR, et al. The functions of sterol glucosides come to those who wait; recent advances in plants, fungi, bacteria and animals. Prog Lipid Res 2010;49(3):262–88.

[216] Teichmann B, et al. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 2007;66(2):525–33.

[217] Abdel-Mawgoud AM, L. Synthetic and Systems Biotechnology 3 (2018) 3–19
platform. ACS Synth Biol 2015;4(6):707–13.

[244] Shah V, Jurjevic M, Badia D. Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 2007;23(2):512–5.

[245] Ozdal M, Gurkok S, Ozdal OG. Optimization of rhamnolipid production by Pseudomonas aeruginosa OGI using waste frying oil and chicken feather peptone. 3 Biotech 2017;7(2):117.

[246] Wittgens A, et al. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 2011;10(1):80.

[247] Dobler L, et al. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 2016;33(1):123–35.

[248] Ochsner UA, et al. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 1995;61(9):3503–6.

[249] Wang QH, et al. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 2007;98(4):842–53.

[250] Cabrera-Valladares N, et al. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 2006;73(1):187–94.

[251] Solaiman DY, et al. Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Appl Microbiol Biotechnol 2015;99(10):4333–42.

[252] Tavares LFD, et al. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururienis. Appl Microbiol Biotechnol 2013;97(5):1909–21.

[253] Muller MM, Haussmann R. Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 2011;91(2):251–64.

[254] Heider SAE, et al. Production and glucosylation of C30 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2014;98(3):1223–35.

[255] Pfrü F, et al. Production of the potent antibacterial polyketide erythromycin C in Escherichia coli. Appl Environ Microbiol 2005;71(5):2539–47.

[256] Baltz RH. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotech 2006;24(12):1533–40.

[257] Abdel-Mawgoud AM, Lépine F, Déziel E. A chiral high-performance liquid chromatography–tandem mass spectrometry method for the stereospecific analysis of enoyl-coenzyme A hydratases/isomerases. J Chromatogr A 2013;1306:37–43.

[258] Adrio JL. Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng 2017;114:1915–20. https://doi.org/10.1002/bit.26337.

[260] Agostos JM, et al. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 2011;90(4):1219–27.

[261] Baccile N, et al. Development of a cradle-to-grave approach for acetylated acidic sophorolipid biosurfactants. ACS Sustain Chem Eng 2017;5(1):1186–98.

[262] Ciesielska K, et al. Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase required for lactonization of sophorolipids. J Proteomics 2014;98(Supplement C):159–74.