Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species

Sang-Chul Kim, Jung Sung Kim and Joo-Hwan Kim*

Department of Life Science, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, Korea

Received: 24 June 2015; Accepted: 13 February 2016; Published: 29 February 2016

Associate Editor: Chelsea D. Specht

Citation: Kim S-C, Kim JS, Kim J-H. 2016. Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species. AoB PLANTS 8: plw015; doi:10.1093/aobpla/plw015

Abstract. Genomic events including gene loss, duplication, pseudogenization and rearrangement in plant genomes are valuable sources for exploring and understanding the process of evolution in angiosperms. The family Melanthiaceae is distributed in temperate regions of the Northern Hemisphere and divided into five tribes (Heloniadeae, Chionographideae, Xerophylleae, Melanthieae and Parideae) based on the molecular phylogenetic analyses. At present, complete chloroplast genomes of the Melanthiaceae have been reported from three species. In the previous genomic study of Liliales, a trnI-CAU gene duplication event was reported from Paris verticillata, a member of Parideae. To clarify the significant genomic events of the tribe Parideae, we analysed the complete chloroplast genome sequences of two Trillium species representing two subgenera: Trillium and Phyllantherum. In Trillium tschonoskii (subgenus Trillium), the circular double-stranded cpDNA sequence of 156,852 bp consists of two inverted repeat (IR) regions of 26,501 bp each, a large single-copy (LSC) region of 83,981 bp and a small single-copy (SSC) region of 19,869 bp. The chloroplast genome sequence of T. maculatum (subgenus Phyllantherum) is 157,359 bp in length, consisting of two IRs (25,535 bp), one SSC (19,949 bp) and one LSC (86,340 bp), and is longer than that of T. tschonoskii. The results showed that the cpDNAs of Parideae are highly conserved across genome structure, gene order and contents. However, the chloroplast genome of T. maculatum contained a 3.4-kb inverted sequence between ndhC and rbcL in the LSC region, and it was a unique feature for subgenera Phyllantherum. In addition, we found three different types of gene duplication in the intergenic spacer between rpl23 and ycf2 containing trnI-CAU, which were in agreement with the circumscription of subgenera and sections in Parideae excluding T. govanianum. These genomic features provide informative molecular markers for identifying the infrageneric taxa of Trillium and improve our understanding of the evolution patterns of Parideae in Melanthiaceae.

Keywords: Chloroplast genome; comparative genomics; gene duplication; single inversion; Trillium maculatum; Trillium tschonoskii, trnI-CAU.

Introduction

The chloroplast that characterizes all green plants (Viridiplantae) originated from an endosymbiotic event between independent living cyanobacteria and a non-photosynthetic host (Dyall et al. 2004). Chloroplast genomes of flowering plants are typically circular double-stranded DNA molecules, and usually contain two inverted repeat (IR) regions (IRA and IRB) separated by

* Corresponding author's e-mail address: kimjh2009@gachon.ac.kr

Published by Oxford University Press on behalf of the Annals of Botany Company.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The monophyly of subgenus Phyllantherum supported in many previous studies (Osaloo and Kawano 1999; Farmer and Schilling 2002; Farmer 2006). On the other hand, subgenus Trillium is rendered a paraphyletic group by the inclusion of Phyllantherum.

Currently, complete chloroplast genomes of the Melanthiaceae have been reported from Paris verticillata (KJ433485; Do et al. 2014), Veratrum patulum (KF437397; Do et al. 2013) and Chionographis japonica (KF951065; Bodin et al. 2013), which represent three tribes of Parideae, Melanthieae and Chionographideae, respectively. In this study, we analysed complete chloroplast genome sequences of subgenera Trillium and Phyllantherum of Trillium to better understand the evolution of the chloroplast genomes in tribe Parideae and across the Melanthiaceae. We analysed the sequence variation between two subgenera and proposed novel molecular markers for phylogenetic studies by comparing the two newly generated genome sequences. In addition, we characterized the trnI-CAU duplication event in Parideae, detected in P. verticillata chloroplast genome (KJ433485), to determine the origin of the repeating unit. Consequently, these results provide additional knowledge about the patterns of the chloroplast genome evolution within tribe Parideae.

Methods

DNA extraction, sequencing and annotation

We collected Trillium tschonoskii from Ulleung Island, South Korea. The voucher specimen and plant materials were deposited at the herbarium (GCU) and Medicinal Plant Resources Bank (MPRB) of Gachon University. Trillium maculatum was obtained from the Abraham Baldwin Agricultural College, USA (voucher No. Susan Farmer 19990006). We used silica gel-dried leaves from each species to extract total genomic DNA using the DNeasy Plant Mini Kit (Qiagen, Seoul, South Korea).

The HiSeq 2000 system was employed to sequence chloroplast genomes of T. tschonoskii and T. maculatum. Raw data were assembled using Geneious ver. 7.1 (Biomatters Ltd, New Zealand) with default settings. After trimming the sequences, we mapped pair-end reads to the reference sequence of P. verticillata (KJ433485). Aligned contigs were ordered according to the reference genome and the gaps were filled via direct sequencing of polymerase chain reaction (PCR) products with newly designed primers. In addition, the ambiguous sequences including low assembly coverage regions and the borders of the four junctions between LSC, SSC and IR regions were confirmed using the Sanger method.

Complete chloroplast genomes of both species were annotated by Geneious ver. 7.1 (Biomatters Ltd), with
manual corrections for putative start and stop codons. The exon positions of protein-coding genes and intron were determined using released Liliales chloroplast genome sequences as references. All tRNA sequences were confirmed utilizing the web-based online tool of tRNAscan-SE (Schattnert et al. 2005) with default settings to corroborate tRNA boundaries identified by Geneious. The genome maps were generated using OrganelarGenomeDRAW (OrganelarGenomeDRAW; Lohse et al. 2007) followed by manual modification.

Comparison of the chloroplast genome sequences of two subgenera

The simple sequence repeats (SSRs) were analysed using Phobos Version 3.3.12 (Kraemer et al. 2009), with thresholds of eight repeat units for mononucleotide SSRs, four repeat units for dinucleotide, trinucleotide SSRs and three repeat units for tetranucleotide, pentanucleotide and hexanucleotide SSRs. All the detected repeats were manually verified, and the redundant results were removed. We aligned the plastid genome sequences of two Trillium using MAFFT (Kato et al. 2002). The identified insertion/deletion mutations (indels) from the results were confirmed by reassembling the whole reads generated by HiSeq 2000. The single nucleotide polymorphisms (SNPs) were analysed using Geneious 7.1 (Kearse et al. 2012), and each indel and SNP were separated based on the position excluding one of IR regions. Since we are comparing only two genomes, we quantified the sequence divergence as the ratio of aligned nucleotide sites within specifically different regions (p-distance). Sanger sequences and assembled genomes were calculated using mean p-distance in MEGA 6.0 (Tamura et al. 2013).

Twenty-nine species, representing the two subgenera of Trillium in Parideae, were selected for comparative sequencing of inversion. The PCR amplification primers were designed based on the sequence comparisons among three chloroplast genome sequences of two Trillium species (in this study), and P. verticillata (KJ433485). Presence and absence PCR amplifications were carried out using various combinations of the three primers (11F: 5′-CCC TAG GTT TTT TTC TCC AAG-3′; I1R: 5′-TTA TGT AGC TTA TCC TTT AGA CC-3′ and I2R: 5′-AGA AGG TCT ACG GGA C-3′).

trnl-CAU duplication pattern in the tribe Parideae

To clarify the trnl-CAU duplication pattern in the tribe Parideae, we designed two primers (Primer 1: 5′-GAA GAG TGC TCC GAC CCA ATG CT-3′; Primer 2: 5′-TTA TGA AAC TCT TGG ACC CC-3′) for amplifying the intergenic spacer (IGS) region of rpl23-ycf2 based on the identical sequence among the three species (P. verticillata, T. maculatum and T. tschonoskii). The PCR condition for IGS region of rpl23-ycf2 was at initial denaturation at 94 °C for 5 min, followed by 30 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for 1 min and extension at 72 °C for 2 min, with a final extension at 72 °C for 5 min. We obtained variously sized PCR products ranging from 500 to 1200 bp, and compared the sequences of this region from 33 species covering the infrageneric classification of the tribe. Sequence editing and assembly were performed using Sequencher (ver. 5.1). The sequence alignment was initially performed using MAFFT (Kato et al. 2002) and was adjusted manually.

Results

Comparison of the complete chloroplast genomes of subgenera Trillium and Phyllantherum

We sequenced the complete chloroplast genome sequence of two Trillium species, T. tschonoskii (subgenus Trillium; GenBank accession number KR780076) and T. maculatum (subgenus Phyllantherum; GenBank accession number KR780075) (Table 1). In total, 4,292,702 (T. tschonoskii) and 18,348,134 (T. maculatum) paired-end reads were generated. Out of those, 60,805 and 246,240 reads were identified as the chloroplast genome sequences for T. tschonoskii and T. maculatum, respectively. The chloroplast genome of T. tschonoskii was composed of 156,852 bp in length (AT content 62.5 %), and it comprised a LSC region (19,869 bp), an IR region (19,869 bp) and two IGS regions (26,501 bp), while T. maculatum was 157,359 bp in length (AT content 62.5 %, 86,340 bp of LSC, 19,949 bp of SSC and 25,535 bp of IRs).

The gene content and order were slightly different between both species because of the rpl22 position in the IR-LSC boundary and trnl-CAU duplication in IR. While the rpl22 gene remained in the LSC region of the T. maculatum plastid genome, this gene was present in the IR region of T. tschonoskii plastid genome (Fig. 2). In total, 116 genes of T. maculatum were identified and consisted of 78 coding genes, 4 rRNA genes, 31 tRNA genes, 2 pseudogenes, while those of T. tschonoskii were 115 genes without tRNA gene duplication [see Supporting Information—Table S1]. In addition, T. tschonoskii has 17 coding genes, 4 tRNA genes, 9 rRNA genes, 2 pseudogenes, whereas T. maculatum has 8 coding genes, 4 rRNA genes, 8 tRNA genes, 2 pseudogenes, duplicated in the IR region, making a total of 138 genes and 137 genes presented in the T. tschonoskii and T. maculatum chloroplast genome, respectively. Among these genes, 22 intron-containing genes were found including...
15 protein-coding genes and 7 tRNA genes. Among them, ycf3 and clpP gene contained two introns. The trnK-UUU has the largest intron (T. tschonoskii: 2614 bp, T. maculatum: 2640 bp) including the matK gene. Ycf15 and ycf68 in the IR region were pseudogenized because of the presence of several internal stop codons.
Furthermore, the cemA gene located in the LSC of both genomes was also pseudogenized.

Characterization of single inversion in subgenus Phyllantherum

Based on comparison of *T. maculatum*, *T. tschonoskii* and *P. verticillata*, a single inversion of 3.4 kb is characterized in the chloroplast genome of *T. maculatum*. This inversion is located between the *ndhC* and *rbcL* genes. We designed three different primers including I1F (5′-CCC TAG GTT TTT TTC TTC AAG-3′), I1R (5′-TTA TGT AGC TTA TCC TTT AGA GCC-3′) and I2R (5′-AGA AGG TCT ACG GTT CGA G-3′) to confirm and clarify the distribution of this inversion throughout the genus *Trillium*. Specifically, the primer pairs of I1F and I1R worked only in the normal type, while I2R and I1R primer pairs were utilized for the recognized inversion type among examined species. The results showed that the inversion occurred in all examined species of the subgenera *Phyllantherum* (Fig. 3A and B).

Indels, SNPs and SSR between two subgenera of Trillium

A total of 402 indels were detected between *T. maculatum* and *T. tschonoskii*, and most indels were located in the IGS regions (78.2%). 66.2% of the total number of indels were found in the LSC, while 22.1% and 11.7% were present in the SSC and IR regions, respectively [Table 1, see Supporting Information—Table S2]. The average length of indels was 74.8 bp, and the largest indel was located in *ycf1* and *ycf2*. The frequency of 1 bp indels was 10.6%, while 79.3% of all indels were over 20 bp in length. In rRNA sequences, one indel of 3 bp and four indels of 5 bp were found in 16S rRNA and 23S rRNA. In addition, indel events were identified in 20 coding genes of both species (*accD*, *atpB*, *ccsA*, *cemA*, *clpP*, *infA*, *matK*, *ndhF*, *rpl2*, *rpl20*, *rpl32*, *rpoC1*, *rpoC2*, *rps11*, *rps15*, *rps18*, *ycf1* and *ycf2*).

A total of 2861 SNPs were detected between *T. maculatum* and *T. tschonoskii* (Table 2), and 1620 SNPs were transversions. In total, 1707 (59.7%) SNPs were located in the coding regions, and 1154 (40.3%) were within IGS regions or within introns.

In our result of SNPs, p-distance values in coding regions range from 0.002 to 0.23 and the average value was 0.02. On the other hand, the average p-distance value in non-coding regions was 0.034. Figure 4 shows the average p-distance for five classes of genomic regions: protein-coding genes, tRNAs, rRNAs, IGSs and introns. The IGS divergence is almost double that of the next highest class (genes). Introns hold the lowest sequence divergence, at an average of 0.011%.

We detected SSRs longer than 8 bp in *T. maculatum*, *T. tschonoskii* and *P. verticillata* chloroplast genomes by the method of Qian et al. (2013). According to Qian et al., the threshold was set because 8 bp or longer SSRs are prone to slip strand mispairing, which is thought to be the primary mutational mechanism causing their high level of polymorphism. In this analysis, the total number of SSRs was 204 in *P. verticillata*, 205 in *T. maculatum* and 213 in *T. tschonoskii* (Table 3). The most abundant type of SSR in Parideae was a mononucleotide, with 138 in *P. verticillata*, 121 in *T. maculatum* and 133 in *T. tschonoskii*. In addition to mononucleotide SSRs, there are 52 dinucleotide SSRs in *P. verticillata*, 57 in *T. maculatum* and 53 in *T. tschonoskii*. Trinucleotide SSRs were less frequent with 6, 14 and 7 in *P. verticillata*, *T. maculatum* and *T. tschonoskii*, respectively. The hexanucleotide SSRs were found only in *Trillium* species.
Figure 3. Confirmation of inversion (3492 bp) between ndhC and rbcL in the genus Trillium. (A) Design of primer to amplify junction regions between atpB and rbcL regions. The positions of atpB and rbcL genes in LSC regions are drawn based on the sequence assembly results of T. tschonoskii, T. maculatum in this study (red text). *The data downloaded from the NCBI. The forward primer I1F contains the sequence in atpB region. The sequence of the reverse primer (I1R) is located in the rbcL gene. Polymerase chain reaction amplification of IGS between atpB and rbcL. Relationships of Parideae lineages followed the phylogenetic trees of S. C. Kim, J. S. Kim, W. C. Mark, F. F. Michael and J. H. Kim (unpublished data). (B) Primers were designed to amplify junction regions between trnV-UAC and rbcL regions. The positions of trnV-UAC and rbcL genes in LSC regions are drawn based on the sequence assembly results of T. tschonoskii, T. maculatum in this study (red text). *The data downloaded from the NCBI. The forward primer I2R contains the sequence in trnV-UAC region. The sequence of the reverse primer I1R is located in the rbcL gene. Polymerase chain reaction amplification of IGS between trnV-UAC and rbcL. Relationships of Parideae lineages followed the phylogenetic trees of S. C. Kim, J. S. Kim, W. C. Mark, F. F. Michael and J. H. Kim (unpublished data).
The majority of mononucleotide repeats were A-T rich (Table 3).

Type of trnI-CAU of Parideae

We compared the sequences of the IGS region between rpl23 and ycf2 using 33 species including Xerophyllum to understand the evolutionary impication of trnI-CAU duplication, which was reported from the Paris chloroplast genome (Do et al. 2014). Based on the results, we found that this region is of highly variable length among the species, and we distinguished three major types based on the number of copies of trnI-CAU (Fig. 5). Type A was composed of a single trnI-CAU and was found in Xerophyllum, Pseudotrillium rivale and T. undulatum. It was also identified in several Trillium and Paris species, but with variable lengths: in subgenus Trillium species, the sequences ranged from 207 to 445 bp, in which there are two tandem repeats of ‘CAG GTA TTA TCA TAC TGA AA’ (20 bp) and ‘CAT ATT ATC ATA CTG AAA’ (18 bp). Similarly, in subgenus Daiswa of Paris, there were 24 bp random tandem repeats of TAT AAC TTA ACA GGA ATC ATC GTA. Type B contained two copies of trnI-CAU. This type is found in subgenus Phyllantherum of Trillium and section Kinugasa of subgenus Paris. The lengths of tandem repeat sequences were 180 bp (subgenera Phyllantherum) and 155 bp (section Kinugasa of subgenus Paris), which included 74 bp of trnI-CAU. Remarkably, section Kinugasa (Paris japonica) has the longest length of IGS between rpl23 and ycf2 among the tribe Parideae. Type C, possessing three copies of trnI-CAU genes in the sequenced region, was detected in T. govanianum and section Paris of subgenus Paris. They included three fully repeated units including trnI-CAU, and the lengths were 155 and 139 bp, respectively.

Discussion

Comparison of complete plastid genomes of subgenera Trillium and Phyllantherum

The plastid genome structure of the two Trillium species, T. maculatum and T. tschonoskii, have a typical form found in most angiosperms (Zhang et al. 2011; Kim and Kim 2013; Li et al. 2013; Qian et al. 2013). The T. tschonoskii chloroplast genome was 507 bp shorter than T. maculatum, and we confirmed that the length variation among Parideae chloroplast genomes including *Paris verticillata* occurred by gene deletion and duplication as well as its IR expansion.

Although chloroplast genomes are considered highly conserved among land plants, sequence polymorphisms were often observed among closely related species. From the T. tschonoskii and T. maculatum chloroplast genome sequences, we confirmed that 402 indels and 2861 SNPs were present between the two species.

In addition, we found that SSRs (i.e. microsatellites), composed of 1–6 bp in length per unit, are distributed throughout both genomes. The SSRs have been accepted as one of the major molecular markers for genome variation between species or within populations due to their high polymorphism within the species and have been widely practiced for analysing plant population structure, diversity, differentiation and maternity analysis (Liu et al. 2013). Simple sequence repeats have successfully been applied to the study of Poaceae, Brassicaceae and Solanaceae (Provan et al. 1997, 1999; Bryan et al. 1999; Flannery et al. 2006). Simple sequence repeats detected in the present study will provide basic information for the further analysis of genetic diversity in Parideae.

Based on our results, the IR/LSC boundary and the IR/SSC boundary differed between the two subgenera of Trillium. Inverted repeat/large single-copy junction was expanded to a part of rps3 in T. tschonoskii, whereas that of T. maculatum was found at rps19. The ycf1 gene was completely located in SSC of T. tschonoskii, but a part of the ycf1 gene was duplicated in IR of T. maculatum. Within the Parideae, the IR boundary pattern of T. tschonoskii was more similar to *P. verticillata* than T. maculatum (Fig. 2).

Inversion events in Melanthiaceae

Inversions caused by the recombination between repeated sequences are considered to be a main mechanism for changes in gene order among plastid genomes (Jansen and Ruhlman 2012). Most of the reported inversions in plastid genomes are in the LSC region (Kim et al. 2005). In subtribe Phaseolinae of Fabaceae, there is a 78 kb inversion between trnH/rpl14 and rps19/rps8 in the chloroplast genome (Tangphatsornruang et al. 2010). Additionally, Kim et al. (2005) reported that the inversion occurred in the spacer between tRNA^{gly} and tRN^{ser} genes of Lactuca sativa. Also, they defined two inversions that characterize Asteraceae. The two inversions were identical across all members of Asteraceae, suggesting that the inversion events are likely to occur simultaneously or within a short period of time following the origin of the family. In Campanulaceae, >50 large

Table 1. The number and total length of insertion–deletion mutations between the chloroplast genomes of *T. tschonoskii* and *T. maculatum* in Parideae.

Region	Number of indels	Total length of indels
IGS	262	5139
Intron	51	528
Coding gene	86	3005
Table 2. Single nucleotide polymorphisms found between the plastid genomes of *T. tschonoskii* and *T. maculatum*. (A) Single nucleotide polymorphisms in coding gene. (B) Single nucleotide polymorphisms in intron. (C) Single nucleotide polymorphisms in IGS regions. Bold values represent p-distance > 0.08.

Gene	Aligned length (bp)	No. SNP	p-Distance	Gene	Aligned length (bp)	No. SNP	p-Distance	Gene	Aligned length (bp)	No. SNP	p-Distance
(A)											
psbD	1062	2	0.002	ycf4	555	4	0.007	rpl2	828	14	0.017
psaB	2205	5	0.002	cemA	695	5	0.007	rm55	121	2	0.017
psaA	2253	4	0.002	rm23S	2814	19	0.007	rpl36	114	2	0.018
atpE	405	1	0.002	ndhD	1503	10	0.007	rm4.5S	103	2	0.019
psbB	1527	3	0.002	ndhE	306	2	0.007	rm16S	1494	30	0.02
petB	648	1	0.002	ndhI	543	4	0.007	rpl14	369	9	0.024
psbA	1062	3	0.003	rps15	276	3	0.007	ycf2	7209	146	0.024
ndhK	768	2	0.003	rpoB	3213	25	0.008	rps7	468	11	0.024
ndhC	363	1	0.003	psbF	120	1	0.008	rpl20	387	9	0.025
rbcL	1434	5	0.003	rps8	399	3	0.008	rps18	363	8	0.026
petA	963	3	0.003	psbN	132	1	0.008	rps3	657	18	0.027
ndhB	1533	5	0.003	ycf15	234	2	0.009	trnT-UGU	73	2	0.027
ccsA	969	3	0.003	pebT	108	1	0.009	trnE-UUC	73	2	0.027
rps16	252	1	0.004	rps14	303	3	0.01	trnC-GCA	71	2	0.028
atpA	1524	6	0.004	rps4	606	6	0.01	trnQ-UUG	72	2	0.028
atpH	246	1	0.004	rpoA	1023	10	0.01	rps12	372	11	0.03
psbC	1422	6	0.004	infA	243	2	0.01	rpl33	201	7	0.035
psbE	252	1	0.004	rpoC1	2097	22	0.011	rpl22	387	13	0.035
petD	483	2	0.004	trnS-GCU	88	1	0.011	rpl32	156	6	0.04
atpB	1521	7	0.005	rpl123	282	3	0.011	trnP-UUG	74	3	0.041
ycf68	376	2	0.005	ndhF	2232	26	0.012	trnJ-CAU	74	3	0.041
ndhG	531	3	0.006	matK	1554	22	0.014	rps11	405	19	0.048
ndhA	1083	7	0.006	trnH-GUG	74	1	0.014	rps19	351	24	0.084
ndhH	1182	7	0.006	trnW-CCA	74	1	0.014	clpP	639	65	0.111
atpF	555	4	0.007	rpl16	411	6	0.015	ycf1	6778	664	0.121
rpoC2	4140	27	0.007	rps2	711	12	0.017	accD	1566	323	0.23
Gene	Aligned length (bp)	No. SNP	p-Distance	Gene	Aligned length (bp)	No. SNP	p-Distance				
--------------	---------------------	---------	------------	---------------	---------------------	---------	------------				
(B) atpF intron	812 14 0.018			rpoC1 intron	714 9 0.013						
clpP intron	709 12 0.034			rps16 intron	783 11 0.015						
clpP intron 2	983 29 0.012			trnI-GAU intron	936 2 0.002						
ndhA intron	1077 6 0.006			trnK-UUU intron	1109 34 0.012						
ndhB intron	695 1 0.001			trnL-UAA intron	538 2 0.004						
petB intron	823 4 0.005			trnV-UAC	595 4 0.007						
petD intron	747 5 0.007			yc3 intron1	737 7 0.006						
rpl16 intron	1075 26 0.026			yc3 intron2	738 8 0.01						
rpl2 intron	664 3 0.005										
(C) trnL-CAA_ndhB	578 1 0.002			rna23S_rna4.5S	102 2 0.02						
ndhB_rps7	323 1 0.003			rpl32_trnL-UAG	938 16 0.02						
atpL_rps2	242 1 0.004			ndhH_rps15	110 2 0.02						
rps12_trnV-GAC	1905 8 0.004			rpoB_trnC-GCA	859 16 0.022						
psaL_ycf4	376 2 0.005			rps19_trnH-GUG	147 3 0.022						
petB_petD	205 1 0.005			atpA_atpF	92 2 0.023						
psbE_petL	952 6 0.006			trnG-GCC_trnM-CAU	132 3 0.023						
psbB_psBT	168 1 0.006			petA-psbJ	1139 26 0.023						
ycf4_cemA	785 5 0.007			petG_trnW-CCA	138 3 0.023						
rna16S_trn1-GAU	296 2 0.007			rps8_rpl14	179 4 0.023						
trnA-UGC_rna23S	144 1 0.007			ndhE_ndhG	301 4 0.023						
trnR-ACG_trnN-GUU	572 4 0.007			rps15_ycf1	429 9 0.023						
rps14_psaB	132 1 0.008			trnK-UUU_rps16	783 23 0.024						
psbN_psbH	124 1 0.008			rpl20_clpP	1208 25 0.024						
infA_rps8	296 2 0.008			trnL-UAG_ccsA	82 2 0.025						

Continued
Table 2. Continued

IGS	Aligned length (bp)	No. SNP	p-Distance	IGS	Aligned length (bp)	No. SNP	p-Distance
trnC-GCA_petN	831	8	0.01	ndhD_pscC	119	3	0.025
trnD-GUC_trnY-GUA	412	4	0.01	cemA_petA	242	6	0.026
trnS-GGA_rps4	307	3	0.01	trnQ-UUG_psbK	360	9	0.027
ycf15_trnL-CAA	674	2	0.01	trnG-UCC_trnR-UCU	150	4	0.027
psbM_trnD-GUC	1031	11	0.011	trnT-UGU_trnL-UAA	739	21	0.029
trnT-GGU_psbD	1016	12	0.011	rpoA_rps11	68	2	0.029
ndhJ_ndhK	89	1	0.011	atpH_atpI	655	19	0.031
psaL_rpl33	482	3	0.011	rps16_trnQ-UUG	1204	37	0.037
petD_rpoA	179	2	0.011	trnW-CCA_trnP-UGG	167	6	0.037
ndhG_ndhI	283	3	0.011	ndhF_rpl32	778	28	0.038
trnF-GAA_ndhJ	686	8	0.012	psbK_psb1	396	15	0.039
rps2_rpoC2	246	3	0.013	psaC_ndhE	380	14	0.04
ycf3_trnS-GGA	759	8	0.013	psbH_petB	134	5	0.042
rps4_trnT-UGU	320	4	0.013	trnE-UUC_trnT-UGU	724	26	0.044
trnL-UGA_trnF-GAA	386	5	0.013	rpl33_rps18	200	8	0.049
atpE_atpH	474	7	0.015	clpP-psbB	507	23	0.049
psbZ_trnG-GCC	296	4	0.015	rps11_rpl36	151	7	0.051
trnM_CAU_atpE	206	3	0.015	trnS-GCU_trnG-UCU	1178	57	0.052
psaA_ycf3	642	10	0.016	psbI_trnS-GCU	124	6	0.054
petL_petG	183	3	0.016	psbC_trnS-UGA	140	8	0.08
rpl36_inA	154	2	0.016	rpl23_trnL-CAU	210	11	0.065
rpl14_rpl16	126	2	0.016	rpoC1_rpoB	37	2	0.077
psbA_trnK-UUU	243	10	0.017	trnN-GUU_ndhF	782	31	0.086
petN_psbM	712	12	0.017	rpl22_rps19	115	4	0.091
trnY-GUA_trnE-UUC	59	1	0.017	rps3_rpl22	80	5	0.098
ccsA_ndhD	242	4	0.018	accD_psaI	285	20	0.099
rpoC2_rpoC1	154	3	0.019	psbT_psbN	65	10	0.154
trnP-UGG_psaJ	388	7	0.019	trnH-GUG_rpl2	44	8	0.186
rpl16_rps3	166	3	0.019	trnI-CAU_ycf2	210	20	0.238
rps7_rps12	54	1	0.019	rbcL_accD	2090	236	0.291
inversions occurred during diversification of the family, in which at least 20 occurred in Cyphia, and a minimum of 53 are now known in Labelia (Knox 2014). Fabaceae are known to exhibit a number of unusual phenomena in their chloroplast genome: Trifolium subterraneum has undergone extensive genomic reconfiguration, including the loss of six genes and two introns and numerous gene order changes, attributable to 14–18 inversions (Cai et al. 2008).

Our results confirmed a single inversion in Melanthiaceae. It was remarkable that a single inversion of 3492 bp embedded four genes between ndhC and rbcl genes, which specifically occurred in the monophyletic subgenus Phyllantherum (Fig. 3). This event is thought to have occurred after the evolutionary divergence between subgenus Phyllantherum and subgenus Trillium. This new finding may be an effective molecular marker for classifying subgenera of the genus Trillium.

Diverse patterns of trnI-CAU duplication in Parideae

Gene duplication is an important process in organelar genome evolution. Most duplicated genes occur within the IR regions due to the mechanisms underlying IR expansion and contraction (Xiong et al. 2009). Gene duplication in plastid genome has been reported in tRNA genes (Hipkins et al. 1995; Vjverberg and Bachmann 1999; Schmickl et al. 2009) and in some protein-coding genes. Most of the duplications can be detected only in rearranged chloroplast genomes, as in grasses, legumes and conifers. Hipkins et al. (1995) compared the number of direct repeats between partially duplicated trnY-GUA and the complete trnY-GUA gene in Pseudotsuga. They found that the length-variable region in Pseudotsuga comprised imperfect tandem direct repeats based on the trnY gene sequence. Schmickl et al. (2009) used the 5′-trnL-UAA_trnF-GAA region for phylogeographic reconstructions, gene diversity calculations and phylogenetic analyses among the genera Arabidopsis and Boechera. The Cruciferous taxa are characterized by these pseudogenes in at least four independent phylogenetic lineages. In addition, the tRNA gene as well as the coding gene could be confirmed by duplication events in Jasminum and Menodora, which have the duplicated rbcl_psaI region. Most chloroplast gene duplications outside of the IR involve tRNAs, as in the case of Oleaceae (Lee et al. 2007).

A total of 30–32 tRNA genes are present within the chloroplast genome of land plants (Tsudzuki et al. 1994; Vjverberg and Bachmann 1999), and they may be involved in chloroplast genome rearrangements through their secondary structure (Howe et al. 1988). These genes are dispersed throughout the genome, but five to eight

Table 3. Number of SSRs present in the three Parideae chloroplast genomes.

Taxon	Paris verticillata	Trillium maculatum	Trillium tschonoskii
Genome size	157 379	157 359	156 852
No. of SSRs			
A/T	133	117	127
C/G	5	4	6
AC/GT	3	3	3
AG/CT	17	19	18
AT/TA	32	35	32
AAG/CTT	2		
AAT/ATT	6	10	3
ACT/AGT	2		
ATC/GAT			
AAG/CTT	1	1	1
AATC/GATT	1		
AATG/CATT	1		
AGAT/ATCT	1		
ACTAT/ATAGT	1		
AATAAT/ATTT	1		
AATAT/ATATT	2		
AATATG/CATATT			
AAATC/GATTT	1		
ATATCC/GGATAT			
AAAAT/ATTTTT			
AAGACT/AGTCTT			
AACTAC/GTAGTT			
AAAGAG/CTCTTT			
ATATATG/CATATT			
AAAATC/GATTT			
ATATCC/GGATAT			
AAAATAT/ATTTTT			
AAGACT/AGTCTT			
AACTAC/GTAGTT			
AAAGAG/CTCTTT			
Total	204	205	213
genes are located in the IR (Mareché-Drouard et al. 1993). We found that three major types of trnI-CAU gene duplication are located between rpl23 and ycf2 at the IR of tribe Parideae (Fig. 5). Traditionally, Parideae included two genera, Paris and Trillium; however, Trillium was separated into two genera Trillium and Pseudotrillium in recent classifications (Farmer and Schilling 2002).

Using the various duplication patterns of trnI-CAU in the IR region, the infrageneric circumscription of Parideae member was strongly supported. The type of trnI-CAU that had been discovered in Xerophyllum, Pseudotrillium and T. undulatum with one trnI-CAU between rpl23 and ycf2 was seen to be similar to the ancestor of Parideae (Type A, Fig. 5). This type was found also in most chloroplast genomes of Liliales (Liu et al. 2012; Bodin et al. 2013; Do et al. 2013; Kim and Kim 2013). It was modified in subgenus Trillium of Trillium and subgenus Daiswa of Paris to be extended by the tandem repeat between trnI-CAU and ycf2. Type B was found in subgenus Phyllantherum of Trillium and section Kinugasa of subgenus Paris although section Kinugasa possessed the additional tandem repeat between trnI-CAU units. Type C, which was found in T. govanianum and section Paris of subgenus Paris, has three copies of the trnI-CAU gene. From the results, we suggested that duplicate events of trnI-CAU have occurred independently in the tribe Parideae of Melanthiaceae, and it provided useful information for determining the infrageneric circumscription. However, T. govanianum, which was classified into another genus Trillidium by Farmer and Schilling (2002) based on morphological characters and geographical distribution, was more similar to Paris than Trillium. Also, this result showed that the trnI-CAU gene duplication pattern of T. govanianum was more similar to Paris than Trillium. Interestingly, it was positioned at the same clade together with the North American species T. undulatum in the molecular phylogenetic tree (Farmer and Schilling 2002; S. C. Kim, J. S. Kim, W. C. Mark, F. F. Michael, J. H. Kim.

Figure 5. Summary of three types of trnI-CAU gene duplication in the tribe Parideae. *Including tandem repeats.
unpublished data). Further studies are necessary to clarify the relationship between both species.

Conclusions

We analysed the complete chloroplast genomes of two species of *T. tschonoskii* (subgenus *Trillium*) and *T. maculatum* (subgenus *Phyllantherum*) to verify the specific feature in the genome level. As a result, we found a 3.4 kb inverted sequence between *ndhC* and *rbcL* in the LSC region in the chloroplast genome of *T. maculatum*, which was unique to subgenus *Phyllantherum*. In addition, three different gene duplication patterns of *trnL*-CAU gene were found and they were the informative molecular markers for identifying the infrageneric taxa of *Trillium*.

Sources of Funding

This work was supported by the National Research Foundation of Korea (NRF) Grant Foundation (MEST 2010-0029131) and Korea National Arboretum (KNA1-2-13,14-2).

Contributions by the Authors

J.-H.K conceived and designed the experiments, S.-C.K. performed the experiments, S.-C.K. and J.S.K. analysed the data and S.-C.K. and J.-H.K. wrote the paper.

Conflict of Interest Statement

None declared.

Acknowledgements

The authors thank Dr Susan Farmer of Abraham Baldwin Agricultural College who kindly provided the *Trillium maculatum* for this study. Also we thank the editors and two reviewers for valuable comments and suggestions.

Supporting Information

The following additional information is available in the online version of this article –

Table S1. Genes found in *Trillium tschonoskii* and *T. maculatum* chloroplast genomes.

Table S2. The detailed list of insertion–deletion mutations between the chloroplast genomes of *T. tschonoskii* and *T. maculatum* in Parideae.

Table S3. Sequences of rpl23_ycf2 IGS among Parideae species.

Literature Cited

Bodin SS, Kim JS, Kim J-H. 2013. Complete chloroplast genome of *Chionoglyphus japonica* (Willd.) Maxim. (Melanthiaceae): comparative genomics and evaluation of universal primers for Liliales. *Plant Molecular Biology Reporter* 31:1407–1421.

Bryan GJ, McNicoll J, Ramsay G, Meyer RC, De Jong WS. 1999. Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. *Theoretical and Applied Genetics* 99:859–867.

Cai Z, Guisinger M, Kim H-G, Ruck E, Blazier JC, Mcmurtry V, Kuehl JV, Boore J, Jansen RK. 2008. Extensive reorganization of the plastid genome of *Trifolium subterraneum* (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. *Journal of Molecular Evolution* 67:696–704.

Do HD, Kim JS, Kim JH. 2013. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of *Veratrum patulum* O. Loes. (Melanthiaceae). Gene 530:229–235.

Do HDK, Kim JS, Kim J-H. 2014. A *trnL*-CAU triplication event in the complete chloroplast genome of *Paris verticillata* M.Bieb. (Melanthiaceae, Liliales). *Genome Biology and Evolution* 6:1699–1706.

Dyoll SD, Brown MT, Johnson PJ. 2004. Ancient invasions: from endosymbionts to organelles. *Science* 304:253–257.

Farmer SB. 2006. Phylogenetic analyses and biogeography of Trilliacese. *Aliso* 22:579–592.

Farmer SB, Schilling EE. 2002. Phylogenetic analyses of Trilliacese based on morphological and molecular data. *Systematic Botany* 27:674–692.

Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR. 2006. Plastid genome characterisation in *Brassica* and *Brassicaceae* using a new set of nine SSRs. *Theoretical and Applied Genetics* 113:1221–1231.

Freeman JD. 1969. A revisionary study of sessile-flowered *Trillium* L. (Lilaceae). *PhD Dissertation*, Vanderbilt University, Nashville, USA.

Freeman JD. 1975. Revision of *Trillium* subgenus *Phyllantherum* (Lilaceae). *Brittonia* 27:1–62.

Gene Codes Corporation. 2012. *Sequencer* (version 5.1). Ann Arbor, MI: Gene Codes Corporation.

Hippkins VD, Marshall KA, Neale DB, Rottmann WH, Strauss SH. 1995. A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir: *Pseudotsuga*) is caused by variation in the number of direct repeats derived from a partially duplicated tRNA gene. *Current Genetics* 27:572–579.

Howe CJ, Barker RF, Bowman CM, Dyer TA. 1988. Common features of three inversions in wheat chloroplast DNA. *Current Genetics* 13:343–349.

Jansen RK, Ruhlman TA. 2012. Plastid genomes of seed plants. In: Bock R, Knoop V, eds. *Genomics of chloroplasts and mitochondria*. Dordrecht, The Netherlands: Springer, 103–126.

Jansen RK, Raubeson LA, Boore JL, Depamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alversion AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, Mcneal JR, Leebens-Mack J, Cui L. 2005. Methods for obtaining and analyzing whole chloroplast genome sequences. *Methods in Enzymology* 395:348–384.

Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, Mcneal JR, Kuehl JV, Boore JL. 2007. Analysis of 81 genes from 64 plastid genomes
resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. *Proceedings of the National Academy of Sciences of the USA* **104**(19): 19369–19374.

Kato H, Terauchi R, Utech FH, Kawano S. 1995. Molecular systematics of the Trilliaceae sensu lato as inferred from rbcL sequence data. *Molecular Phylogenetics and Evolution* **4**(1): 184–193.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* **30**(3): 3059–3066.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duron C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* **28**(16): 2096–2100.

Kim JS, Kim J-H. 2013. Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two Lilies (*Lilium longiflorum* and *Alstroemeria aurea*). *PLoS ONE* **8**(6): e68180.

Kim K-J, Choi K-S, Jansen RK. 2005. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). *Molecular Biology and Evolution* **22**(6): 1783–1792.

Knox EB. 2014. The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. *Proceedings of the National Academy of Sciences of the USA* **111**(10): 11097–11102.

Kraemer L, Beszteri B, Gäebler-Schwarz S, Held C, Leese F, Mayer C, Marechal-Drouard L, Weil JH, Dietrich A. 1993. Transfer RNA genes in plants. *Annual Review of Plant Biology* **44**(1): 25–42.

Lohse M, Drechsel O, Bock R. 2007. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. *Current Genetics* **52**(2): 267–274.

Maréchal-Drouard L, Weil JH, Dietrich A. 1993. Transfer RNAs and transfer RNA genes in plants. *Annual Review of Plant Biology* **44**(1): 13–32.

Osvalo SK, Kawano S. 1999. Molecular systematics of Trilliaceae II. Phylogenetic analyses of *Trillium* and its allies using sequences of *rbcL* and *matK* genes of cpDNA and internal transcribed spacers of 18S–26S nrDNA. *Plant Species Biology* **14**(3): 75–94.

Osvalo SK, Utech FH, Ohara M, Kawano S. 1999. Molecular systematics of Trilliaceae I. Phylogenetic analyses of *Trillium* using *matK* gene sequences. *Journal of Plant Research* **112**(1): 35–49.

Provan J, Corbett G, McNicol JW, Powell W. 1997. Chloroplast DNA variability in wild and cultivated rice (*Oryza spp.*) revealed by polymorphic chloroplast simple sequence repeats. *Genome* **40**(1): 104–110.

Provan J, Russell JR, Booth A, Powell W. 1999. Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus *Hordeum*. *Molecular Ecology* **8**(5): 505–511.

Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J, Xu H, Chen S. 2013. The complete chloroplast genome sequence of the medicinal plant *Salvia miltiorrhiza*. *PLoS ONE* **8**(1): e57607.

Ravi V, Khurana JP, Tyagi AK, Khurana P. 2008. An update on chloroplast genome. *Plant Systematics and Evolution* **271**(1): 101–122.

Rudall PJ, Stobart KL, Hong W-P, Conran JG, Furrness CA, Kite GC, Chase MW. 2000. Consider the lilies: systematics of Liliales. In: Wilson KL, Morrison D, eds. Monocots: systematics and evolution. *Collingwood: CSIRO Publishing*. 347–359.

Schattner P, Brooks AN, Lowe TM. 2005. The trNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. *Nucleic Acids Research* **33**: W686–W689.

Schmickl R, Kiefer C, Dobes C, Koch MA. 2009. Evolution of trnF(GAA) pseudogenes in cruciferous plants. *Plant Systematics and Evolution* **282**(2): 229–240.

Shendure J, Ji H. 2008. Next-generation DNA sequencing. *Nature Biotechnology* **26**(11): 1135–1145.

Takhtajan A. 1997. *Diversity and classification of flowering plants*. New York: Columbia University Press.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution* **30**(12): 2725–2729.

Tangphatsornruang S, Sangsrokdu K, Chansaphat J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S. 2010. The chloroplast genome sequence of mungbean (*Vigna radiata*) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. *DNA Research* **17**(11): 1–22.

The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society* **161**(2): 105–121.

Tsudzuki J, Ito T, Tsudzuki T, Wakasugi T, Sugiuira M. 1994. A new gene encoding RNA*θ* (GGG) is present in the chloroplast genome of black pine: a compilation of 32 trRNA genes from black pine chloroplasts. *Current Genetics* **26**(3): 153–158.

Vijverberg K, Bachmann K. 1999. Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genomes of *Microseris* (Asteraceae) and the use of structural mutations in phylogenetic analyses. *Molecular Biology and Evolution* **16**(8): 1329–1340.

Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B, Fu XY, Yao QH. 2009. Gene duplication, transfer, and evolution in the chloroplast genome. *Biotechnology Advances* **27**(3): 340–347.

Zhang Y-J, Ma P-F, Li D-Z. 2011. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (*Poaceae: Bambusoideae*). *PLoS ONE* **6**(9): e20596.

Zamlefer WB, Williams NH, Whitten WM, Judd WS. 2001. Generic circumscription and relationships in the tribe Melanthieae (Lilioides, Melanthiaceae), with emphasis on *Zigadenus*: evidence from ITS and trnL-F sequence data. *American Journal of Botany* **88**(3): 1657–1669.