On the vector-valued Littlewood-Paley-Rubio de Francia inequality

Denis Potapov∗ Fedor Sukochev† Quanhua Xu‡

Abstract

The paper studies Banach spaces satisfying the Littlewood-Paley-Rubio de Francia property \(LPR_p \), \(2 \leq p < \infty \). The paper shows that every Banach lattice whose 2-concavification is a UMD Banach lattice has this property. The paper also shows that every space having \(LPR_q \) also has \(LPR_p \) with \(q \leq p < \infty \).

MSC2000: 46B20, 46B42, 46E30

Keywords: Littlewood-Paley-Rubio de Francia inequality, UMD space of type 2, Banach lattices.

1 Introduction

Let \(X \) be a Banach space and \(L^p(\mathbb{R}; X) \) be the Bochner space of \(p \)-integrable \(X \)-valued functions on \(\mathbb{R} \). If \(X = \mathbb{C} \), we abbreviate \(L^p(\mathbb{R}; X) = L^p(\mathbb{R}) \), \(1 \leq p < \infty \). For every \(f \in L^1(\mathbb{R}; X) \), \(\hat{f} \) stands for the Fourier transform. If \(I \subseteq \mathbb{R} \) is an interval, then \(S_I \) is the Riesz projection adjusted to the interval \(I \), i.e.,

\[
S_I f(t) = \int_I \hat{f}(s) e^{2\pi ist} ds.
\]

∗School of Mathematics and Statistics, University of NSW, Kensington NSW 2052, Australia (first two authors); E-mail: d.potapov@unsw.edu.au
†E-mail: f.sukochev@unsw.edu.au
‡School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China and Laboratoire de Mathématiques, Université de Franche-Comté, 25030 Besançon cedex, France; E-mail: qxu@univ-fcomte.fr
The following remarkable inequality was proved by J.L. Rubio de Francia in [9].

For every $2 \leq p < \infty$, there is a constant c_p such that for every collection of pairwise disjoint intervals $(I_j)_{j=1}^\infty$, the following estimate holds

$$\left\| \left(\sum_{j=1}^\infty |S_{I_j}f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R})} \leq c_p \|f\|_{L^p(\mathbb{R})}, \quad \forall f \in L^p(\mathbb{R}).$$ \hspace{1cm} (1)

In this note, we shall discuss the version of the theorem above when functions take values in a Banach space X. Let $(\varepsilon_k)_{k \geq 1}$ be the system of Rademacher functions on $[0, 1]$. The space $\text{Rad}(X)$ is the closure in $L^p([0, 1]; X)$, $1 \leq p < \infty$ of all X-valued functions of the form

$$g(\omega) = \sum_{k=1}^n \varepsilon_k(\omega) x_k, \quad x_k \in X, \quad n \geq 1.$$

The above definition is independent of $1 \leq p < \infty$. It follows from the Khintchine-Kahane inequality (see [6]). In fact, the above fact is a consequence of a, so-called, contraction principle. It states that, for every sequence of elements $(x_j)_{j=1}^\infty \subseteq X$ and sequence of complex numbers $(\alpha_j)_{j=1}^\infty$ such that $|\alpha_j| \leq 1$, $j \geq 1$, the following inequality holds

$$\left\| \sum_{j=1}^\infty \alpha_j \varepsilon_j x_j \right\|_{L^p(\mathbb{R}; \text{Rad}(X))} \leq c_p \left\| \sum_{j=1}^\infty \varepsilon_j x_j \right\|_{L^p(\mathbb{R}; \text{Rad}(X))}.$$

We shall employ this principle on numerous occasions in this paper.

Following [1], we shall call X a space with the LPR_p property with $2 \leq p < \infty$, if there exists a constant $c > 0$ such that for any collection of pairwise disjoint intervals $(I_j)_{j=1}^\infty$ we have that

$$\left\| \sum_{j=1}^\infty \varepsilon_j S_{I_j}f \right\|_{L^p(\mathbb{R}; \text{Rad}(X))} \leq c \|f\|_{L^p(\mathbb{R}; X)}, \quad \forall f \in L^p(\mathbb{R}; X).$$ \hspace{1cm} (2)

It was proved in [5] that every space with the LPR_p property is necessarily UMD and of type 2. It is an open problem whether the converse is true. It is also unknown whether LPR_p is independent of p. Note that Rubio de Francia’s inequality says that C has the LPR_p property for every $2 \leq p < \infty$. By
the Khintchine inequality and the Fubini theorem we see that any L^p-space with $2 \leq p < \infty$ has the LPR$_p$ property. Using interpolation, we deduce that a Lorentz space $L^{p,r}$ has the LPR$_q$ property for some indices p, r and q. However, until recently there were no non-trivial examples of spaces with LPR$_p$ found.

If X is a Banach lattice, estimate (2) admits a pleasant form as in the scalar case:

$$
\left\| \left(\sum_{j=1}^{\infty} |S_j f|^2 \right)^{\frac{1}{2}} \right\|_{L^p[\mathbb{R};X]} \leq c \left\| f \right\|_{L^p[\mathbb{R};X]}, \quad \forall \ f \in L^p[\mathbb{R};X].
$$

We shall show that if the 2-concavification $X_{(2)}$ of X is a UMD Banach lattice, then (3) holds for all $2 < p < \infty$, so X is a space with the LPR$_p$ property. Recall that $X_{(2)}$ is the lattice defined by the following quasi-norm

$$
\left\| f \right\|_{X_{(2)}} = \left\| \left| f \right|^{\frac{1}{2}} \right\|^2_X.
$$

The space $X_{(2)}$ is a Banach lattice if and only if X is 2-convex, i.e.,

$$
\left\| \left(\sum_{j=1}^{n} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{X} \leq \left(\sum_{j=1}^{n} \left\| f_j \right\|^2_X \right)^{\frac{1}{2}}.
$$

We refer to [6] for more information on Banach lattices.

We shall also show that if X is a Banach space (not necessarily a lattice) with the LPR$_q$ property for some q, then X has the LPR$_p$ property for every $p \geq q$.

2 Dyadic decomposition

For every interval $I \subseteq \mathbb{R}$, let $2I$ be the interval of double length and the same centre as I. Let $\mathcal{I} = (I_j)_{j=1}^{\infty}$ be a collection of pairwise disjoint intervals. We set $2\mathcal{I} = (2I_j)_{j=1}^{\infty}$. The collection \mathcal{I} is called well-distributed if there is a number d such that each element of $2\mathcal{I}$ intersects at most d other elements of $2\mathcal{I}$.

In this section, we fix a pairwise disjoint collection of intervals $(I_j)_{j=1}^{\infty}$ and we break each interval $I_j, j \geq 1$ into a number of smaller dyadic subintervals such that the new collection is well-distributed. This construction was employed in a number of earlier papers.
We start with two elementary remarks on estimate (2) or (3). Firstly, it suffices to consider a finite sequence \((I_j)\) of disjoint finite intervals. Secondly, by dilation, we may assume \(|I_j| \geq 4\) for all \(j\). Thus all sums on \(j\) and \(k\) in what follows are finite. Fix \(j \geq 1\). Let \(I_j = (a_j, b_j)\). Let \(n_j = \max\{n \in \mathbb{N} : 2^{n+1} \leq b_j - a_j + 4\}\). We first split \(I_j\) into two subintervals with equal length

\[I_a^j = (a_j, a_j + b_j/2)\quad \text{and}\quad I_b^j = (a_j + b_j/2, b_j).\]

Then we decompose \(I_a^j\) and \(I_b^j\) into relative dyadic subintervals as follows:

\[I_a^j = \bigcup_{k=1}^{n_j} (a_{j,k}, a_{j,k+1}]\quad \text{and}\quad I_b^j = \bigcup_{k=1}^{n_j} (b_{j,k}, b_{j,k+1}],\]

where

\[a_{j,k} = a_j - 2 + 2^k, \quad 1 \leq k \leq n_j\quad \text{and}\quad a_{j,n_j+1} = \frac{a_j + b_j}{2};\]

\[b_{j,k} = b_j + 2 - 2^k, \quad 1 \leq k \leq n_j\quad \text{and}\quad b_{j,n_j+1} = \frac{a_j + b_j}{2}.\]

Let

\[I_{a,j,k}^j = (a_{j,k}, a_{j,k+1}], \quad I_{b,j,k}^j = (b_{j,k+1}, b_{j,k}]\]

for \(1 \leq k \leq n_j\) and let \(I_{a,j,k}^j, I_{b,j,k}^j\) be the empty set for the other \(k\)’s. Also put

\[\tilde{I}_{a,j,n_j}^j = (a_j - 2 + 2^{n_j}, a_j - 2 + 2^{n_j+1}]\quad \text{and}\quad \tilde{I}_{b,j,n_j}^j = (b_j + 2 - 2^{n_j+1}, b_j + 2 - 2^{n_j}].\]

Lemma 1. A Banach space \(X\) has the \(LPR_p\) property if there is a constant \(c > 0\) such that

\[\max_{u=a,b} \left\| \sum_{j=1}^{\infty} \varepsilon_j \sum_{k=1}^{n_j} \varepsilon_k^u S_{I_{j,k}^u} f \right\|_{L^p(\mathbb{R}; X)} \leq c \|f\|_{L^p(\mathbb{R}; \operatorname{Rad}_2(X))}, \quad \forall f \in L^p(\mathbb{R}; X), \quad (4)\]

where \(\operatorname{Rad}_2(X) = \operatorname{Rad}(\operatorname{Rad}'(X))\) and \(\operatorname{Rad}'(X)\) is the space with respect to another copy of the Rademacher system \((\varepsilon_k^u)_{k \geq 1}\).

Observe that if (4) holds, for every family of intervals \((I_j)_{j=1}^{\infty}\), then \(X\) is a UMD space. Indeed, (4) implies that

\[\left\| S_{I_{j,k}^u} f \right\|_{L^p(\mathbb{R}, X)} \leq c \|f\|_{L^p(\mathbb{R}, X)}, \quad u = a, b, \quad j \geq 1, \quad 1 \leq k \leq n_j.\]
That is, by adjusting the choice of intervals, it implies that every projection S_I is bounded on $L^p(\mathbb{R},X)$ and

$$\sup_{I \subseteq \mathbb{R}} \|S_I\|_{L^p(\mathbb{R},X) \to L^p(\mathbb{R},X)} < +\infty.$$

The latter is equivalent to the fact that X is UMD (see [3]).

Proof. Let $f \in L^p(\mathbb{R};X)$. Then

$$\left\| \sum_{j=1}^{\infty} \varepsilon_j S_{I_j} f \right\|_{L^p(\mathbb{R};\text{Rad}(X))} \leq \left\| \sum_{j=1}^{\infty} \varepsilon_j S_{I^a_j k} f \right\|_{L^p(\mathbb{R};\text{Rad}(X))} + \left\| \sum_{j=1}^{\infty} \varepsilon_j S_{I^b_j} f \right\|_{L^p(\mathbb{R};\text{Rad}(X))}.$$

Using the subintervals $I^a_{j,k}$ and the contraction principle, we write

$$\left\| \sum_{j=1}^{\infty} \varepsilon_j S_{I^a_j} f \right\|_{L^p(\mathbb{R};\text{Rad}(X))} = \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j S_{I^a_{j,k}} f \right\|_{L^p(\mathbb{R};\text{Rad}(X))} \sim \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \exp(-2\pi i a_j \cdot) S_{I^a_{j,k}} f \right\|_{L^p(\mathbb{R};\text{Rad}(X))}.$$

Note that

$$\exp(-2\pi i a_j \cdot) S_{I^a_{j,k}} f = S_{I^a_{j,k} - a_j} \left[\exp(-2\pi i a_j \cdot) f \right]$$

and

$$I^a_{j,k} - a_j = (2^k - 2, 2^{k+1} - 2], \quad k < n_j; \quad I^a_{j,n_j} - a_j \subseteq (2^{n_j} - 2, 2^{n_j+1} - 2].$$

Recall that X is a UMD space. Therefore, applying Bourgain’s Fourier multiplier theorem (see [3]) to the function

$$\sum_{j=1}^{n_j} \sum_{k=1}^{k_{n_j}} \varepsilon_j \exp(-2\pi i a_j \cdot) S_{I^a_{j,k}} f \in L^p(\mathbb{R};\text{Rad}(X)),$$
we obtain (the contraction principle being used in the last step)

\[
\left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \exp(-2\pi i a_j \cdot) S_{j,k} f \right\|_{L^p(\mathbb{R}; \text{Rad}(X))} \lesssim \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon_k \exp(-2\pi i a_j \cdot) S_{j,k} f \right\|_{L^p(\mathbb{R}; \text{Rad}_2(X))}.
\]

Similarly,

\[
\left\| \sum_{j=1}^{\infty} \varepsilon_j S_{j} f \right\|_{L^p(\mathbb{R}; \text{Rad}(X))} \lesssim \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon_k S_{j,k} f \right\|_{L^p(\mathbb{R}; \text{Rad}_2(X))}.
\]

Combining the preceding estimates, we get

\[
\left\| \sum_{j=1}^{\infty} \varepsilon_j S_{j} f \right\|_{L^p(\mathbb{R}; \text{Rad}(X))} \leq c_p \left[\left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon_k S_{j,k} f \right\|_{L^p(\mathbb{R}; \text{Rad}_2(X))} + \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon_k S_{j,k} f \right\|_{L^p(\mathbb{R}; \text{Rad}_2(X))} \right].
\]

Let us observe that, if \(X \) is a UMD space, the argument in the proof above shows that

\[
\left\| \sum_{j=1}^{\infty} \varepsilon_j S_{j} f \right\|_{L^p(\mathbb{R}; \text{Rad}(X))} \lesssim \max_{u=a,b} \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon_k S_{j,k} f \right\|_{L^p(\mathbb{R}; \text{Rad}_2(X))}.
\]

Moreover, the argument can be reversed to show the opposite estimate (see the proof of (5) below.) This observation is summarised in the following remark.

Remark 2. i) If \(X \) is a UMD space, then

\[
\left\| \sum_{j=1}^{\infty} \varepsilon_j S_{j} f \right\|_{L^p(\mathbb{R}; \text{Rad}(X))} \lesssim \max_{u=a,b} \left\| \sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon_k S_{j,k} f \right\|_{L^p(\mathbb{R}; \text{Rad}_2(X))}.
\]

\[6\]
ii) If $\mathcal{I} = (I_j)_{j \geq 1}$ is a collection of pairwise disjoint intervals and $\mathcal{I}_u = \left(I_{j,k}^u\right)_{j \geq 1, 1 \leq k \leq n_j}$, $u = a, b$, then both collections \mathcal{I}_a and \mathcal{I}_b are well-distributed.

iii) If X is a Banach lattice then it has the α-property (see [7]). That is,

$$
\left\| \sum_{j,k=1}^{\infty} \varepsilon_j \varepsilon_k' x_{jk} \right\|_{\mathrm{Rad}_2(X)} \sim \left\| \sum_{j,k=1}^{\infty} \varepsilon_j \varepsilon_k x_{jk} \right\|_{\mathrm{Rad}(X)}
$$

where (ε_{jk}) is an independent family of Rademacher functions.

iv) The above two observations imply that if X is a Banach lattice, then it has the LPR_p property if and only if estimate (2) holds for every well-distributed collection of intervals \mathcal{I}.

3 LPR-estimate for Banach lattices

Theorem 3. If X is a Banach lattice such that $X_{(2)}$ is a UMD Banach space, then X has the LPR_p property for every $2 < p < \infty$.

We shall need the following remark for the proof.

Remark 4. If X is UMD and $1 < p < \infty$, then the family $\{S_I\}_{I \subseteq \mathbb{I}}$ is R-bounded (see [4]), i.e.,

$$
\left\| \sum_{I \subseteq \mathbb{I}} \varepsilon_I S_I f_I \right\|_{L^p(R; \mathrm{Rad}(X))} \leq c_X \left\| \sum_{I \subseteq \mathbb{I}} \varepsilon_I f_I \right\|_{L^p(R; \mathrm{Rad}(X))}.
$$

Proof of Theorem 3 The proof directly employs the pointwise estimate of [9]. We assume, that X is a Köthe function space on a measure space (Ω, μ).

Let $f \in L^1_{\text{loc}}(\mathbb{R}; X)$. Let $M(f)$ be the Hardy-Littlewood maximal function of f, i.e.,

$$
M(f)(t) = \sup_{I \ni t} \frac{1}{|I|} \int_I |f(s)| \, ds
$$

and

$$
M_2(f) = \left[M |f|^2 \right]^{\frac{1}{2}}.
$$
Let
\[f^\sharp(t) = \sup_{I \subseteq \mathbb{R}} \frac{1}{|I|} \int_I |f(s) - f_I| \, ds, \quad f_I = \frac{1}{|I|} \int_I f(s) \, ds. \]

Note that \(M(f) \) is a function of two variables \((t, \omega)\): for each fixed \(\omega \), \(M(f)(\cdot, \omega) \) is the usual Hardy-Littlewood maximal function of \(f(\cdot, \omega) \). The same remark applies to \(M_2(f) \) and \(f^\sharp \). For \(f \) sufficiently nice (which will be assumed in the sequel), all these functions are well-defined.

Observe that due to Remark 2 we have only to show estimate (2) for a well-distributed family of intervals. Let us fix a family of pairwise disjoint intervals \(I \) and let us assume that \(I \) is well-distributed. Fix a Schwartz function \(\psi(t) \) whose Fourier transform satisfies
\[\chi[-1/2, 1/2] \leq \hat{\psi} \leq \chi[-1,1]. \]

If \(I \in I \), then we set
\[\psi_I(t) = |I| \exp(2\pi ic_I t) \psi(|I| t), \]
where \(c_I \) is the centre of \(I \). The Fourier transform of \(\psi_I \) is adapted to \(I \), i.e.
\[\chi_I \leq \hat{\psi}_I \leq \chi_{2I}. \]

In particular,
\[S_I(f) = \psi_I * S_I(f). \]

Consequently, from the Khintchine inequality and Remark 3,
\[\left\| \left(\sum_{I \in I} |S_I(f)|^2 \right)^{1/2} \right\|_{L_p(\mathbb{R}, X)} \leq c_p \| G(f) \|_{L_p(\mathbb{R}, X)}, \quad 1 < p < \infty, \]
where
\[G(f) = \left(\sum_{I \in I} |\psi_I * f|^2 \right)^{1/2}, \quad f \in L^1(\mathbb{R}; X). \]

Thus, to finish the proof, we need to show that
\[\|G(f)\|_{L_p(\mathbb{R}, X)} \leq c_p \|f\|_{L_p(\mathbb{R}, X)}, \quad 2 < p < \infty. \]
It was shown in [11] that $G(f(\cdot, \omega))^2$ is almost everywhere dominated by $M_2(f(\cdot, \omega))$, i.e.,

$$G(f(\cdot, \omega))^2 \leq c M_2(f(\cdot, \omega)), \quad \text{a.e. } \omega \in \Omega,$$

for some universal $c > 0$. Since

$$G(f(t, \omega)) = G(f(\cdot, \omega))(t) \quad \text{and} \quad M_2(f(t, \omega)) = M_2(f(\cdot, \omega))(t), \quad t \in \mathbb{R}, \ \omega \in \Omega,$$

we clearly have that

$$G(f)^2 \leq c M_2(f).$$

Therefore,

$$\|G(f)^2\|_{L^p(\mathbb{R}; X)} \leq c \|M_2(f)\|_{L^p(\mathbb{R}; X)}.$$

It remains to prove

$$\|G(f)\|_{L^p(\mathbb{R}; X)} \leq C \|G(f)^2\|_{L^p(\mathbb{R}; X)} \quad \text{and} \quad \|M_2(f)\|_{L^p(\mathbb{R}; X)} \leq C \|f\|_{L^p(\mathbb{R}; X)}.$$

The second inequality above immediately follows from Bourgain’s maximal inequality for UMD lattices (applied to $X(2)$ here, see [10, Theorem 3]):

$$\|M_2(f)\|_{L^p(\mathbb{R}; X)} = \|M(|f|^2)\|_{L^p(\mathbb{R}; X)} \leq C \|f\|_{L^p(\mathbb{R}; X)}.$$

It remains to show the first one. To this end we shall prove the following inequality (for a general f instead of $G(f)$)

$$\|f\|_{L^p(\mathbb{R}; X)} \leq C \|f^2\|_{L^p(\mathbb{R}; X)}.$$

This is again an immediate consequence of the following classical duality inequality (see [12, p. 146])

$$\left| \int_{\mathbb{R}} u v \right| \leq C \int_{\mathbb{R}} u^2 \mathcal{M}(v)$$

for any $u \in L^p(\mathbb{R})$ and $v \in L^{p'}(\mathbb{R})$, where $\mathcal{M}(v)$ denotes the grand maximal function of v. Note that $\mathcal{M}(v) \leq CM(v)$. Now let $g \in L^{p'}(\mathbb{R}; X^*)$ be a nice function. We then have

$$\left| \int_{\mathbb{R} \times \Omega} f g \right| \leq C \int_{\mathbb{R} \times \Omega} f^2 \mathcal{M}(g) \leq C \|f^2\|_{L^p(\mathbb{R}; X)} \|\mathcal{M}(g)\|_{L^{p'}(\mathbb{R}; X^*)} \leq C \|f^2\|_{L^p(\mathbb{R}; X)} \|g\|_{L^{p'}(\mathbb{R}; X^*)}.$$

9
where we have used again Bourgain’s maximal inequality for g (noting that X^* is also a UMD lattice). Therefore, taking supremum over all g in the unit ball of $L^p'(\mathbb{R}; X^*)$, we deduce the desired inequality, so prove the theorem.

Finally, observe that the proof above operates with individual functions. This, coupled with the UMD property of X, implies that X can always be assumed separable and it can always be equipped with a weak unit.

\[\square\]

4 LPR property for general Banach spaces

Let X be a Banach space (not necessarily a lattice). We shall prove the following theorem.

Theorem 5. If X has the LPR$_q$ for some $2 \leq q < \infty$, then X has the LPR$_p$ for any $q \leq p < \infty$.

The proof of the theorem requires some lemmas.

Lemma 6. Assume that X has the LPR$_q$ property. Let $(I_j)_{j \geq 1}$ be a finite sequence of mutually disjoint intervals of \mathbb{R} and $(I_{j,k})_{k=1}^{n_j}$ be a finite family of mutually disjoint subintervals of I_j for each $j \geq 1$. Assume that the relative position of $I_{j,k}$ in I_j is independent of j, i.e., $I_{j,k} - a_j = I_{j',k} - a'_j$ whenever both $I_{j,k}$ and $I_{j',k}$ are present (i.e., $k \leq \min\{n_j, n_{j'}\}$), where a_j is the left endpoint of I_j. Then

\[
\sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon'_k S_{I_{j,k}} f \sim \sum_{k=1}^{\infty} \varepsilon'_k \sum_{j : n_j \geq k} \varepsilon_j S_{I_{j,k} - a_j} (\exp(-2\pi i a_j \cdot) f)
\]

Proof. We first assume that $\bigcup_{k=1}^{n_j} I_{j,k} = I_j$ for each $j \geq 1$. Note that

\[
S_{I_{j,k}} f = \exp(2\pi i a_j \cdot) S_{I_{j,k} - a_j} (\exp(-2\pi i a_j \cdot) f).
\]

Thus, by the contraction principle,

\[
\sum_{j=1}^{\infty} \sum_{k=1}^{n_j} \varepsilon_j \varepsilon'_k S_{I_{j,k}} f \sim \sum_{k=1}^{\infty} \varepsilon'_k \sum_{j : n_j \geq k} \varepsilon_j S_{I_{j,k} - a_j} (\exp(-2\pi i a_j \cdot) f)
\]
Since X has the LPR$_q$ property, so does $\text{Rad}(X)$. Let us apply this property of $\text{Rad}(X)$ to the intervals $\left(\tilde{I}_k\right)_{k \geq 1}$, where $\tilde{I}_k = I_{j,k} - a_j$, for some j such that $n_j \geq k$ (for any such j the interval $I_{j,k} - a_j$ is independent of j by the assumptions of the lemma). We apply this property to the function

$$\sum_{k=1}^{\infty} \sum_{j: \ n_j \geq k} \varepsilon_j S_{I_{j,k} - a_j} (\exp(-2\pi ia_j) f) = \sum_{k=1}^{\infty} S_{\tilde{I}_k} \left[\sum_{j: \ n_j \geq k} \varepsilon_j (\exp(-2\pi ia_j f)) \right].$$

We obtain

$$\left\| \sum_{k=1}^{\infty} \varepsilon_k' \sum_{j: \ n_j \geq k} \varepsilon_j S_{I_{j,k} - a_j} (\exp(-2\pi ia_j f)) \right\|_q$$

$$\leq c \left\| \sum_{k=1}^{\infty} \sum_{j: \ n_j \geq k} \varepsilon_j S_{I_{j,k} - a_j} (\exp(-2\pi ia_j f)) \right\|_q \sim c \left\| \sum_{j=1}^{n_j} \sum_{k=1}^{n_j} \varepsilon_j S_{I_{j,k} f} \right\|_q$$

$$= c \left\| \sum_{j=1}^{\infty} \varepsilon_j S_{I_{j}} f \right\|_q \leq c \| f \|_q. \quad (5)$$

Assume now that $\bigcup_{k=1}^{n_j} I_{j,k} \neq I_j$ for some j. In this case, consider the family of intervals $\left(\tilde{I}_k\right)_{k=1}^{\infty}$ introduced above. Observe that every $\tilde{I}_k \subseteq [0, +\infty)$. Observe also that the the right ends of the intervals $(I_j - a_j)_{j \geq 1}$, that is the points $b_j - a_j$ do not belong to the union $\bigcup_{k=1}^{\infty} \tilde{I}_k$. Let $\left(\tilde{I}_\ell\right)_{\ell=1}^{\infty}$ be the family of disjoint intervals such that

$$\bigcup_{\ell=1}^{\infty} \tilde{I}_\ell = [0, +\infty) \setminus \bigcup_{k=1}^{\infty} \tilde{I}_k$$

and such that neither of the points $(b_j - a_j)_{j=1}^{\infty}$ is inner for some \tilde{I}_ℓ. Let also m_j be the maximum number such that the intervals \tilde{I}_ℓ with $\ell \leq m_j$ are all to the left of the point $b_j - a_j$. Set $I_{j,\ell} = \tilde{I}_\ell + a_j$. Then,

$$I_j = \bigcup_{k=1}^{n_j} I_{j,k} + \bigcup_{\ell=1}^{m_j} I_{j,\ell}. $$

It is clear that the relative position of $(I_{j,k})_{k=1}^{n_j} \cup (I_{j,\ell})_{\ell=1}^{m_j}$ in I_j is again independent of j.

Before we proceed, let us re-index the intervals $(I_{j,k})_{k=1}^{n_j}$ and $(I_{j,\ell})_{\ell=1}^{m_j}$ into a family $(I_{j,s})_{s=1}^{m_j+n_j}$ as follows. We arrange these intervals from left to right.
within I_j and index them sequentially from 1 up to $n_j + m_j$. Moreover, let $K_j \subseteq [1, n_j + m_j]$ be the subset corresponding to the first family of intervals and $L_j \subseteq [1, n_j + m_j]$ be the subset of indices corresponding to the second family of intervals. Observe that, if $K = \bigcup_{j=1}^{\infty} K_j$ and $L = \bigcup_{j=1}^{\infty} L_j$, then, for every j, $K_j = K \cap [1, n_j + m_j]$ and, similarly, $L_j = L \cap [1, n_j + m_j]$. Thus by the previous part we get

$$\left\| \sum_{s=1}^{n_j + m_j} \epsilon_j \epsilon_s S_{I_j,s} f \right\|_q \leq c_q \|f\|_q.$$

Observe also that

$$\sum_{j=1}^{\infty} \sum_{s=1}^{n_j + m_j} \epsilon_j \epsilon_s S_{I_j,s} f = \sum_{j=1}^{\infty} \sum_{s=1}^{n_j + m_j} \epsilon_j \epsilon_s S_{I_j,s} f = \sum_{s=1}^{\infty} \sum_{j: n_j + m_j \geq s} \epsilon_j \epsilon_s S_{I_j,s} f + \sum_{s \in L} \sum_{j: n_j + m_j \geq s} \epsilon_j \epsilon_s S_{I_j,s} f$$

Thus, by taking projection onto the subspace spanned by $\{\epsilon_s\}_{s \in K}$, we continue

$$\left\| \sum_{s \in K: n_j + m_j \geq s} \epsilon_j \epsilon_s S_{I_j,s} f \right\|_q \leq c_q \|f\|_q.$$

Finally, we observe that

$$\sum_{s \in K: n_j + m_j \geq s} \epsilon_j \epsilon_s S_{I_j,s} f = \sum_{j=1}^{n_j} \sum_{k=1}^{m_j} \epsilon_j \epsilon_k S_{I_{j,k}} f.$$

Hence the lemma is proved.

The following lemma is interesting in its own right. We shall only need its first part.

Lemma 7. Let Y be a Banach space. Let (Σ, ν) be a measure space and $(h_j) \subset L^2(\Sigma)$ a finite sequence.

i) If Y is of cotype 2 and there exists a constant c such that

$$\| \sum_{j} \alpha_j h_j \|_2 \leq c \left(\sum_{j} |\alpha_j|^2 \right)^{1/2}, \quad \forall \alpha_j \in \mathbb{C},$$

then

$$\| \sum_{j} h_j a_j \|_{L^2(\Sigma; Y)} \leq c \| \sum_{j} \epsilon_j a_j \|_{\text{Rad}(Y)}, \quad \forall a_j \in Y.$$
ii) If Y is of type 2 and there exists a constant c such that
\[
\left(\sum_j |\alpha_j|^2 \right)^{1/2} \leq c \left\| \sum_j \alpha_j h_j \right\|_2, \quad \forall \alpha_j \in \mathbb{C},
\]
then
\[
\left\| \sum_j \varepsilon_j a_j \right\|_{\text{Rad}(Y)} \leq c' \left\| \sum_j h_j a_j \right\|_{L^2(\Sigma; Y)}, \quad \forall a_j \in Y.
\]

Proof. i) Let $(a_j) \subset Y$ be a finite sequence. Consider the operator $u : \ell^2 \to Y$ defined by
\[
u(\alpha) = \sum_j \alpha_j a_j, \quad \forall \alpha = (\alpha_j) \in \ell^2.
\]
It is well known (see \[8, Lemma 3.8 and Theorem 3.9\]) that
\[
\pi_2(u) \leq c_0 \left\| \sum \varepsilon_j a_j \right\|_{\text{Rad}(Y)},
\]
where c_0 is a constant depending only on the cotype 2 constant of Y. Let $h(\sigma) = (h_j(\sigma))_j$ for $\sigma \in \Sigma$. Then by the assumption on (h_j) we get
\[
\left\| \sum_j h_j a_j \right\|_{L^2(\Sigma; Y)} =
\begin{align*}
&\pi_2(u) \sup \left\{ \left(\int_{\Sigma} \left| \sum_j \varepsilon_j h_j(s)^2 ds \right|^{1/2} : \xi \in \ell^2, \left\| \xi \right\|_2 \leq 1 \right\} \\
&\leq c' \left\| \sum \varepsilon_j a_j \right\|_{\text{Rad}(Y)}.
\end{align*}
\]

ii) Let H be the linear span of (h_j) in $L^2(\Sigma)$. Let h^*_j be the functional on H such that $h^*_j(h_k) = \delta_{j,k}$. We extend h^*_j to the whole $L^2(\Sigma)$ by setting $h^*_j = 0$ on H^\perp. Then $h^*_j \in L^2(\Sigma)$ and the assumption implies that
\[
\left\| \sum_j \beta_j h^*_j \right\|_2 \leq c' \left\| \sum_j |\beta_j|^2 \right\|^{1/2}, \quad \forall \beta_j \in \mathbb{C}.
\]
Now let $(a^*_j) \subset Y^*$ be a finite sequence. Applying i) to Y^* and (h^*_j) we obtain
\[
\left| \sum_j \langle a^*_j, a_j \rangle \right| = \left| \sum_j h^*_j a^*_j, \sum_j h_j a_j \right| \\
\leq \left\| \sum_j h^*_j a^*_j \right\|_{L^2(\Sigma; Y^*)} \left\| \sum_j h_j a_j \right\|_{L^2(\Sigma; Y)} \\
\leq c' \left\| \sum \varepsilon_j a^*_j \right\|_{\text{Rad}(Y^*)} \left\| \sum_j h_j a_j \right\|_{L^2(\Sigma; Y)}.
\]
Taking the supremum over \((a_j^\ast) \subset Y^*\) such that \(\| \sum \varepsilon_j a_j^\ast \|_{\text{Rad}(Y^*)} \leq 1\), we get the assertion.

Now we proceed to the proof of Theorem 5. It is divided into several steps.

The singular integral operator \(T\). Let \((I_j)_j\) be a family of disjoint finite intervals and \(\psi\) be a Schwartz function as in Sections 2 and 3. We keep the notation introduced there. We now set up an appropriate singular integral operator corresponding to (4). It suffices to consider the family \((I_{a,j,k})_{j,k}\), \((I_{b,j,k})_{j,k}\) being treated similarly. Henceforth, we shall denote \(I_{a,j,k}\) simply by \(I_{j,k}\). Let \(c_{j,k} = a_{j,k} + 2^{k-1}\) for \(1 \leq k \leq n_j\). Note that \(c_{j,k}\) is the centre of \(I_{j,k}\) if \(k < n_j\) and of \(\tilde{I}_{j,k}\) if \(k = n_j\). Define

\[\psi_{j,k}(x) = 2^k \exp(2\pi ic_{j,k} x) \psi(2^k x) \]

so that the Fourier transform of \(\psi_{j,k}\) is adapted to \(I_{j,k}\), i.e.

\[\chi_{I_{j,k}} \leq \hat{\psi}_{j,k} \leq 2\chi_{2I_{j,k}} \text{ for } k < n_j \quad \text{and} \quad \chi_{\tilde{I}_{j,n_j}} \leq \hat{\psi}_{j,n_j} \leq 2\chi_{2\tilde{I}_{j,n_j}}. \] (6)

We should emphasise that our choice of \(c_{j,k}\) is different from that of Rubio de Francia (in [9]) which is \(c_{j,k} = n_{j,k} 2^k\) for some integer \(n_{j,k}\). Rubio de Francia’s choice makes his calculations easier than ours in the scalar-valued case. The sole reason for our choice of \(c_{j,k}\) is that \(c_{j,k}\) splits into a sum of two terms depending on \(j\) and \(k\) separately. Namely, \(c_{j,k} = a_j - 2 + 2^k + 2^{k-1}\). By (6),

\[S_{I_{j,k}} f = S_{I_{j,k}} \psi_{j,k} * f. \]

We then deduce, by the splitting property and Remark 4

\[\| \sum_{j,k} \varepsilon_j \varepsilon_k S_{I_{j,k}} f \|_p \leq C_p \| \sum_{j,k} \varepsilon_j \varepsilon_k \psi_{j,k} * f \|_p. \]

Now write

\[\psi_{j,k} * f(x) = \int 2^k \psi(2^k (x - y)) \exp(2\pi i c_{j,k}(x - y)) f(y) dy \]

\[= \exp(2\pi i c_{j,k} x) \int 2^k \psi(2^k (x - y)) \exp(-2\pi i c_{j,k} y) f(y) dy \]

\[= \exp(2\pi i c_{j,k} x) \int K_{j,k}(x, y) f(y) dy, \]

14
where
\[K_{j,k}(x, y) = 2^k \psi(2^k(x-y)) \exp(-2\pi ic_{j,k} y). \tag{7} \]

Using the splitting property of the \(c_{j,k}\) mentioned previously and the contraction principle, for every \(x \in \mathbb{R}\) we have
\[
\left\| \sum_{j,k} \varepsilon_j \varepsilon'_k \psi_{j,k} * f(x) \right\|_{\text{Rad}_2(X)} \\
= \left\| \sum_{j,k} \varepsilon_j \varepsilon'_k \exp(2\pi ic_{j,k} x) \int K_{j,k}(x, y) f(y) dy \right\|_{\text{Rad}_2(X)} \\
\sim \left\| \sum_{j,k} \varepsilon_j \varepsilon'_k \int K_{j,k}(x, y) f(y) dy \right\|_{\text{Rad}_2(X)}.
\]

Thus we are led to introducing the vector-valued kernel \(K\):
\[
K(x, y) = \sum_{j,k} \varepsilon_j \varepsilon'_k K_{j,k}(x, y) \in L^2(\Omega), \quad x, y \in \mathbb{R}. \tag{8}
\]

\(K\) is also viewed as a kernel taking values in \(B(X, \text{Rad}_2(X))\) by multiplication. Let \(T\) be the associated singular integral operator:
\[
T(f)(x) = \int K(x, y) f(y) dy, \quad f \in L^p(\mathbb{R}; X).
\]

By the discussion above, inequality (4) is reduced to the boundedness of \(T\) from \(L^p(\mathbb{R}; X)\) to \(L^p(\mathbb{R}; \text{Rad}_2(X))\):
\[
\left\| T(f) \right\|_p \leq c_p \left\| f \right\|_p, \quad \forall f \in L^p(\mathbb{R}; X). \tag{9}
\]

The \(L^q\) boundedness of \(T\). We have the following.

Lemma 8. \(T\) is bounded from \(L^q(\mathbb{R}; X)\) to \(L^q(\mathbb{R}; \text{Rad}_2(X))\).

Proof. Let \(f \in L^q(\mathbb{R}; X)\). By the previous discussion we have
\[
\left\| Tf \right\|_q \sim \left\| \sum_{j,k} \varepsilon_j \varepsilon'_k \psi_{j,k} * f \right\|_q.
\]

By (6)
\[
\sum_{j,k} \varepsilon_j \varepsilon'_k \psi_{j,k} * f = \sum_{j,k} \varepsilon_j \varepsilon'_k \psi_{j,k} * (S_{2t_{j,k}} f).
\]
Note that for each \(j \) the last interval \(I_{j,n_j} \) above should be the dyadic interval \(\tilde{I}_{j,n_j} \). We claim that

\[
\left\| \sum_{j,k} \varepsilon_j \varepsilon_k' \psi_{j,k} * g_{j,k} \right\|_q \leq c \left\| \sum_{j,k} \varepsilon_j \varepsilon_k' g_{j,k} \right\|_q, \quad \forall \ g_{j,k} \in L^q(\mathbb{R}; X).
\]

Indeed, using the splitting property of the \(c_{j,k} \) we have

\[
\left\| \sum_{j,k} \varepsilon_j \varepsilon_k' \psi_{j,k} * g_{j,k} \right\|_q \sim \left\| \sum_{j,k} \varepsilon_j \varepsilon_k' \tilde{\psi}_{j,k} * \tilde{g}_{j,k} \right\|_q,
\]

where

\[
\tilde{\psi}_{j,k}(x) = 2^k \psi(2^k x) \quad \text{and} \quad \tilde{g}_{j,k}(x) = \exp(-2\pi ic_{j,k} x)g_{j,k}(x).
\]

For \(x \in \mathbb{R} \) define the operator \(N(x) : \text{Rad}_2(X) \to \text{Rad}_2(X) \) by

\[
N(x)(\sum_{j,k} \varepsilon_j \varepsilon_k' a_{j,k}) = \sum_{j,k} \varepsilon_j \varepsilon_k' \tilde{\psi}_{j,k}(x)a_{j,k}.
\]

It is obvious that \(N : \mathbb{R} \to B(\text{Rad}_2(X)) \) is a smooth function and

\[
\sum_{j,k} \varepsilon_j \varepsilon_k' \tilde{\psi}_{j,k} * \tilde{g}_{j,k} = N * \tilde{g} \quad \text{with} \quad \tilde{g} = \sum_{j,k} \varepsilon_j \varepsilon_k' \tilde{g}_{j,k}.
\]

It is also easy to check that \(N \) satisfies [11, Theorem 3.4]. Since \(\text{Rad}_2(X) \) is a UMD space, it follows from [11] that the convolution operator with \(N \) is bounded on \(L^q(\mathbb{R}; \text{Rad}_2(X)) \). Thus

\[
\left\| \sum_{j,k} \varepsilon_j \varepsilon_k' \tilde{\psi}_{j,k} * \tilde{g}_{j,k} \right\|_q \leq c \left\| \sum_{j,k} \varepsilon_j \varepsilon_k' \tilde{g}_{j,k} \right\|_q.
\]

Using again the splitting property of the \(c_{j,k} \) and going back to the \(g_{j,k} \), we prove the claim. Consequently, we have

\[
\left\| T(f) \right\|_q \leq c \left\| \sum_{j,k} \varepsilon_j \varepsilon_k' S_{2I_{j,k}} f \right\|_q.
\]

We split the family \(\{2I_{j,k}\} \) into three subfamilies \(\{2I_{j,3k+\ell}\} \) of disjoint intervals with \(\ell \in \{0, 1, 2\} \). Accordingly, we have

\[
\left\| T(f) \right\|_q \leq c \sum_{\ell=0}^2 \left\| \sum_{j,k} \varepsilon_j \varepsilon_k' S_{2I_{j,3k+\ell}} f \right\|_q.
\]
Each subfamily \(\{2I_{j,3k+\ell}\}_{j,k} \) satisfies the condition of Lemma 6. Hence
\[
\left\| \sum_{j,k} \varepsilon_j \varepsilon'_k S_{2I_{j,3k+\ell}} f \right\|_q \leq c \left\| f \right\|_q.
\]
Thus the lemma is proved. \(\square \)

An estimate on the kernel \(K \). This subsection contains the key estimate on the kernel \(K \) defined in (8). Fix \(x, z \in \mathbb{R} \) and an integer \(m \geq 1 \). Let
\[
I_m(x,z) = \{ y \in \mathbb{R} : 2^m|x-z| < |y-z| \leq 2^{m+1}|x-z| \}.
\]

Lemma 9. If \(X^* \) is of cotype 2 and if \((\lambda_{j,k}) \subset X^* \), then
\[
\int_{I_m(x,z)} \left\| \sum_{j,k} [K_{j,k}(x,y) - K_{j,k}(z,y)] \lambda_{j,k} \right\|^2_{X^*} dy \leq c \left\| \sum_{j,k} \varepsilon_j \varepsilon'_k \lambda_{j,k} \right\|^2_{\text{Rad}(X^*)}.
\]

Proof. Let \((\lambda_{j,k}) \subset X^* \) such that
\[
\left\| \sum_{j,k} \varepsilon_j \varepsilon'_k \lambda_{j,k} \right\|_{\text{Rad}(X^*)} \leq 1.
\]
By the definition of \(K_{j,k} \) in (7), we have
\[
\sum_{j,k} [K_{j,k}(x,y) - K_{j,k}(z,y)] \lambda_{j,k} = \sum_k \mu_k 2^k \left[\psi(2^k(x-y)) - \psi(2^k(z-y)) \right] q_k(y),
\]
where
\[
\mu_k = \left\| \sum_j \varepsilon_j \lambda_{j,k} \right\|_{\text{Rad}(X^*)} \quad \text{and} \quad q_k(y) = \mu_k^{-1} \sum_j \lambda_{j,k} \exp(-2\pi i c_{j,k} y).
\]
Since \(\text{Rad}(X^*) \) is of cotype 2,
\[
\sum_k \mu_k^2 \leq c \left\| \sum_k \varepsilon'_k \sum_j \varepsilon_j \lambda_{j,k} \right\|^2_{\text{Rad}(\text{Rad}(X^*))} \leq c.
\]
Thus
\[
\int_{I_m(x,z)} \left\| \sum_{j,k} [K_{j,k}(x,y) - K_{j,k}(z,y)] \lambda_{j,k} \right\|^2_{X^*} dy \\
\leq \sum_k 2^{2k} \sup_{y \in I_m(x,z)} \left| \psi(2^k(x-y)) - \psi(2^k(z-y)) \right|^2 \int_{I_m(x,z)} \left\| q_k(y) \right\|^2_{X^*} dy.
\]

17
Note that for fixed k

$$|c_{j,k} - c_{j',k}| \geq 2^k, \quad \forall j \neq j'.$$

(10)

Now we appeal to the following classical inequality on Dirichlet series with small gaps. Let (γ_j) be a finite sequence of real numbers such that

$$\gamma_{j+1} - \gamma_j \geq 1, \quad \forall j \geq 1.$$

Then, by [13, Ch. V, Theorem 9.9], for any interval $I \subset \mathbb{R}$ and any sequence $(\alpha_j) \subset \mathbb{C}$

$$\int_I \left| \sum_j \alpha_j \exp(2\pi i \gamma_j y) \right|^2 \, dy \leq c \max(|I|, 1) \sum_j |\alpha_j|^2,$$

where c is an absolute constant. Applying this to the function q_k, using Lemma 7 and (10), we find

$$\int_{I_m(x,z)} \|q_k\|_{X^*}^2 \, dy \leq c 2^{-k} \max(2^k |I_m(x,z)|, 1) \mu_k^{-2} \|\sum_j \varepsilon_j \lambda_{j,k}\|_{\text{Rad}(X^*)}^2
= c \max(2^m |x - z|, 2^{-k}).$$

Let

$$k_0 = \min \{ k \in \mathbb{N} : 2^{-k} \leq 2^m |x - z| \} \quad \text{and} \quad k_1 = \min \{ k \in \mathbb{N} : 2^{-k} \leq 2^{2m/3} |x - z| \}.$$

Note that $k_0 \leq k_1$. For $k \leq k_1$ we have

$$|\psi(2^k(x - y)) - \psi(2^k(z - y))| \leq c 2^k |x - z|.$$

Recall that ψ is a Schwartz function, in particular $|x|^2 |\psi(x)| \leq c$. Thus, for $k \geq k_1$, we have

$$|\psi(2^k(x - y)) - \psi(2^k(z - y))| \leq c 2^{-2k}|y - z|^{-2} \leq c 2^{-2k - 2m}|x - z|^{-2},$$

where the second estimate comes from the fact that $y \in I_m(x,z)$. Let

$$\alpha_k = 2^{2k} \sup_{y \in I_m(x,z)} |\psi(2^k(x - y)) - \psi(2^k(z - y))|^2 \int_{I_m(x,z)} \|q_k(y)\|_{X^*}^2 \, dy.$$
Combining the preceding inequalities, we deduce the following estimates on α_k:

$$
\begin{align*}
\alpha_k &\leq c 2^{2k} 2^k |x-z|^{2^k} = c 2^{3k} |x-z|^2 \quad \text{for} \quad k \leq k_0; \\
\alpha_k &\leq c 2^{2k} 2^k |x-z|^{2^m} = c 2^{4k} 2^m |x-z|^3 \quad \text{for} \quad k_0 < k < k_1; \\
\alpha_k &\leq c 2^{2k} (2^k + m |x-z|)^{-4} 2^m |x-z| = c 2^{-2k} 2^{-3m} |x-z|^{-3} \quad \text{for} \quad k \geq k_1.
\end{align*}
$$

Therefore,

$$
\int_{I_m(x,z)} \left\| \sum_{j,k} [K_{j,k}(x,y) - K_{i,k}(z,y)] \lambda_{j,k} \right\|^2_{X^*} dy
\leq \sum_{1 \leq k \leq k_0} \alpha_k + \sum_{k_0 < k < k_1} \alpha_k + \sum_{k \geq k_1} \alpha_k
\leq c \left[2^{3k_0} |x-z|^2 + 2^{4k_1} 2^m |x-z|^3 + 2^{-2k_1} 2^{-3m} |x-z|^{-3} \right]
\leq c 2^{-5m/3} |x-z|^{-1}.
$$

This is the desired estimate for the kernel K. \hfill \Box

The L^∞-BMO boundedness. Recall that T is the singular integral operator associated with the kernel K.

Lemma 10. The operator T is bounded from $L^\infty(\mathbb{R}; X)$ to $\text{BMO}(\mathbb{R}; \text{Rad}_2(X))$.

Proof. Recall that

$$
\|g\|_{\text{BMO}(\mathbb{R}; X)} \leq 2 \sup_{I \subseteq \mathbb{R}} \frac{1}{\|I\|} \int_I \|g(x) - b_I\|_X \, dx,
$$

where $\{b_I\}_{I \subseteq \mathbb{R}} \subseteq X$ is any family of elements of X assigned to each interval $I \subseteq \mathbb{R}$. Fix a function $f \in L^\infty(\mathbb{R}; X)$ with $\|f\|_\infty \leq 1$ and an interval $I \subseteq \mathbb{R}$. Let z be the centre of I and let $b_I = \int_{2I} K(z,y) f(y) \, dy$. Then, for $x \in I$,

$$
Tf(x) - b_I = \int_{(2I)^c} [K(x,y) - K(z,y)] f(y) \, dy + \int_{2I} K(x,y) f(y) \, dy.
$$

19
Thus
\[
\frac{1}{|I|} \int_I \| T f(x) - b_I \|_{\text{Rad}_2(X)} \, dx \\
\leq \frac{1}{|I|} \int_I \| \int_{(2t)^c} [K(x, y) - K(z, y)] f(y) \, dy \|_{\text{Rad}_2(X)} \, dx \\
+ \frac{1}{|I|} \int_I \| \int_{2t} K(x, y) f(y) \, dy \|_{\text{Rad}_2(X)} \, dx \\
\overset{\text{def}}{=} A + B.
\]

By Lemma \text{9}, we have
\[
B \leq |I|^{-1/q} \| T(f \chi_{2t}) \|_q \leq c.
\]

To estimate \(A \), fix \(x \in I \). Choose \((\lambda_{j, k}) \subset X^*\) such that
\[
\| \sum_j \varepsilon_j \varepsilon_k' \lambda_{j, k} \|_{\text{Rad}_2(X^*)} \leq 1.
\]
and
\[
\| \int_{(2t)^c} [K(x, y) - K(z, y)] f(y) \, dy \|_{\text{Rad}_2(X)} \\
\sim \sum_{j, k} \langle \lambda_{j, k}, \int_{(2t)^c} [K_{j, k}(x, y) - K_{j, k}(z, y)] f(y) \, dy \rangle
\]
Then by Lemma \text{9} we find
\[
\| \int_{(2t)^c} [K(x, y) - K(z, y)] f(y) \, dy \|_{\text{Rad}_2(X)} \\
\leq \int_{(2t)^c} \| \sum_{j, k} [K_{j, k}(x, y) - K_{j, k}(z, y)] \lambda_{j, k} \|_{X^*} \, dy \\
\leq \sum_{m=1}^{\infty} |I_m(x, z)|^{1/2} \left(\int_{I_m(x, z)} \| \sum_{j, k} [K_{j, k}(x, y) - K_{j, k}(z, y)] \lambda_{j, k} \|_{X^*}^2 \, dy \right)^{1/2} \\
\leq c \sum_{m=1}^{\infty} (2^m |x - z|)^{1/2} (2^{5m/3} |x - z|)^{-1/2} \\
\leq \sum_{m=1}^{\infty} c 2^{-m/3} \leq c.
\]
Therefore, \(A \leq c \). Thus \(T \) is bounded from \(L^\infty(\mathbb{R}; X) \) to \(\text{BMO}(\mathbb{R}; \text{Rad}_2(X)) \). \(\square \)
Combining the result of Lemma 10 and Lemma 8 and applying interpolation (see [2]), we immediately see that the operator T is bounded from $L^p(\mathbb{R}; X)$ to $L^q(\mathbb{R}; \text{Rad}_2(X))$ for every $q < p < \infty$. Thus Theorem 5 is proved.

Remark 11. Let

$$T(f)^+(x) = \sup_{x \in I} \frac{1}{|I|} \int_I \|T(f)(y) - T(f)_I\|_{\text{Rad}_2(X)} dy$$

and

$$M_q(f)(x) = \sup_{x \in I} \left(\frac{1}{|I|} \int_I \|f(y)\|_X^q dy \right)^{\frac{1}{q}}.$$

Under the assumption of Theorem 5 one can show the following pointwise estimate:

$$T(f)^+ \leq c M_q(f).$$

References

[1] E. Berkson, T. A. Gillespie, and J. L. Torrea, *Vector valued transference*, Functional Space Theory and its applications, Wuhan, 2003, pp. 1–27.

[2] O. Blasco and Q. H. Xu, *Interpolation between vector-valued Hardy spaces*, J. Funct. Anal. **102** (1991), 331–359.

[3] J. Bourgain, *Vector-valued singular integrals and the H^1-BMO duality*, Probability theory and harmonic analysis (Cleveland, Ohio, 1983), Monogr. Textbooks Pure Appl. Math., vol. 98, Dekker, New York, 1986, pp. 1–19.

[4] P. Clément, B. de Pagter, F. A. Sukochev, and H. Witvliet, *Schauder decomposition and multiplier theorems*, Studia Math. **138** (2000), 135–163.

[5] T. P. Hytönen, J. L. Torrea, and D. V. Yakubovich, *The Littlewood-Paley-Rubio de Francia property of a Banach space for the case of equal intervals*, Proc. Roy. Soc. Edinburgh Sect. A **139** (2009), 819–832.

[6] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces. II*, Springer-Verlag, Berlin, 1979.
[7] G. Pisier, *Some results on Banach spaces without local unconditional structures*, Compositio Math. **37** (1978) 3–19.

[8] G. Pisier, *Factorization of linear operators and geometry of Banach spaces*, CBMS Regional Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.

[9] J. L. Rubio de Francia, *A Littlewood-Paley inequality for arbitrary intervals*, Rev. Mat. Iberoamericana **1** (1985), 1–14.

[10] ———, *Martingale and integral transforms of Banach space valued functions*, Probability and Banach spaces (Zaragoza, 1985), Lecture Notes in Math., vol. 1221, Springer, Berlin, 1986, pp. 195–222.

[11] L. Weis, *Operator-valued Fourier multiplier theorems and maximal Lp-regularity*, Math. Ann. **319** (2001), 735–758.

[12] E. M. Stein, *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993.

[13] A. Zygmund, *Trigonometric series. Vol. I, II*, third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.