Inverse Co-even Domination of Graphs

Ahmed A. Omran¹ and Manar M. Shalaan²
¹ Department of Mathematics, College of Education for Pure Science, University of Babylon, Babylon, Iraq
² e-mail: manarmacki92@gmail.com

Abstract

The purpose of this paper is to introduce a new inverse domination parameter in the graphs it is called inverse co-even domination number. Some properties of the theory to this definition were only touched. Also, many properties and limitations on this definition are determined. Additionally, some properties of inverse co-even domination number for some certain graphs and its complement are founded, such as regular, complete, path, cycle, wheel, complete bipartite, and star.

Mathematical subject classification: 05C69

Keywords: Domination number, Co-even domination number, Inverse co-even domination number.

1. Introduction

In this work, all graphs are undirected, simple, and finite. In a graph $G = (V(G), E(G))$ with vertex set $V(G)$ and edge set $E(G)$. The number of edges that incident to the vertex v is constituted the degree of v, and denoted by $deg(v)$. There are special kinds of vertices depend on its degree as an example an isolated vertex if $d(v) = 0$ and a pendent vertex if $d(v) = 1$. The minimum and maximum degree of G denoted by $\delta(G)$ and $\Delta(G)$, respectively. In case $\Delta(G) = \delta(G)$, G is called a regular graph [1], [2]. The concept of domination in graphs has led to solving many problems in the great a huge range of various fields in graph theory as topological graph [3] and labeled graph [4,5] and others.

Now, if there is $D \subseteq V$ such that $N[D] \equiv V$, then this set is called a dominating. Furthermore, if D has no proper subset say F such that F is a dominating, then D is called minimal. $MDS(G)$ refers to the set of all minimal dominating of a graph G. The minimum cardinality all member in the set $MDS(G)$ is called the domination number of G and denoted by $\gamma(G)$ [6]. After this, there are many different definitions of parameter domination of graphs are introduced as in [7-9].
Furthermore, the notion of the inverse domination number is discussed. Kulli and Sgarkanti [10] introduced this concept and finding it by this way if \(D \) belongs to \(MDS(G) \) and there is another dominating set disjoint from the set \(D \) say \(H \) then \(H \) is called the inverse dominating respect to \(D \). Again, the minimum cardinality of all these is called inverse domination number.

In recent years many researchers worked of this notion, readers may be referred to [11-14]

Now, a new domination parameter in the graphs it is called co-even domination number denoted by \(\gamma_{coe}(G) \) and it is inverse (ICED) denoted by \(\gamma_{coe}^{-1}(G) \) are defined below. Some properties for some certain graphs of inverse co-even domination number are been discussed. Also, some bounds for \(\gamma_{coe}^{-1}(G) \) are obtained and characterized the graphs obtaining those bounds.

Definition 2.1[9]. Let \(G = (V, E) \) be a graph and \(D \subseteq V \) such that the set \(D \) is dominating. The set \(D \) is called co-even dominating (CEDS) if each vertex \(v \in V - D \) has an even degree. The co-even domination number is the cardinality of minimum CEDSD and denoted by \(\gamma_{coe}(G) \) and the set \(D \) is called \(\gamma_{coe}^{-1}(G) \) set.

Definition 2.2. Consider \(D \) be \(\gamma_{coe}^{-1}(G) \) set of a graph \(G \). If \(V - D \) contains a set \(F \) belong to CEDS(G), then \(F \) is called inverse co-even dominating set (ICEDS) of \(G \) with respect to the set \(D \) and is denoted \(D^{-1} \). The minimum cardinality of these sets is called inverse co-even domination number and is denoted by \(\gamma_{coe}^{-1}(G) \).

Proposition 2.3.[9]. Assume that \(G = (n, m) \) be a graph and \(D \) is a CEDS, then

1. All vertices of odd or zero degrees belong to every co-even dominating set.
2. \(\deg(v) \geq 2 \), for all \(v \in V - D \)
3. If \(G \) is \(r \)-regular graph then \(\gamma_{coe}(G) = \left\{ \begin{array}{ll} n, & \text{if } r \text{ is odd} \\ \gamma(G), & \text{if } r \text{ is even} \end{array} \right. \)
4. \(\gamma(G) \leq \gamma_{coe}(G) \).

Theorem 2.4. If \(G = (n, m) \) is a graph has \(\gamma_{coe}(G) \) and \(\gamma_{coe}^{-1}(G) \), then

\[
2n - 2\gamma_{coe}(G) - \gamma_{coe}^{-1}(G) \leq m \leq \frac{n(n-1)}{2}.
\]

proof. Firstly, to prove \(m \geq 2n - 2\gamma_{coe}(G) - \gamma_{coe}^{-1}(G) \). Since \(G \) has co-even domination number \(\gamma_{coe}(G) \), then there is a \(D \) is \(\gamma_{coe}^{-1}(G) \) set. Thus, each vertex in the set \(V - D \) is adjacent to at least one vertex in \(D \). Therefore, there are at least \(n - \gamma_{coe}(G) \) edges. Now, there are two subcases that depend on the set \(V - D - D^{-1} \) as follows.

Subcase 1. If \(V - D - D^{-1} = \emptyset \), then there are at least \((n - \gamma_{coe}(G))/2 \) edge joining every two vertices pairwise in \(V - D \) to keep that every vertex in \(V - D \) has even degree. Similarly, there
are at least \((n - \gamma_{\text{coe}}^{-1}(G))/2\). Therefore, the minimum edges in this case is \(n - \gamma_{\text{coe}}(G) + (n - \gamma_{\text{coe}}^{-1}(G))/2 + (n - \gamma_{\text{coe}}^{-1}(G))/2 = 2n - \gamma_{\text{coe}}(G) - (\gamma_{\text{coe}}(G) + \gamma_{\text{coe}}^{-1}(G))/2\).

Subcase 2. If \(V - D - D^{-1} \neq \emptyset\), then there is a set \(T = V - D - D^{-1}\). Since the set \(D^{-1}\) is co-even dominating, there is at least one edge join each vertex in \(T\) with some vertices in \(D^{-1}\). Therefore, the minimum edges in this case is \(2n - 2\gamma_{\text{coe}}(G) - \gamma_{\text{coe}}^{-1}(G) < 2n - \gamma_{\text{coe}}(G) - (\gamma_{\text{coe}}(G) + \gamma_{\text{coe}}^{-1}(G))/2\). Thus,

\[
m \geq 2n - 2\gamma_{\text{coe}}(G) - \gamma_{\text{coe}}^{-1}(G).
\]

Secondly, it is easy to see that \(m \leq \frac{n(n-1)}{2}\) when the graph \(G\) is complete. Therefore, the proof is done. □

Proposition 2.5. Assume that \(G = (n, m)\) be a graph and \(D\) is a CEDS, then

1) If \(G\) has a vertex of degree zero or odd, then \(G\) has no inverse co-even dominating set.

2) If \(G\) is a null, path, star, or wheel then \(G\) has no inverse ICEDS if \(r\) is odd. Otherwise, \(G\) has an ICEDS.

3) If \(G\) has an inverse co-even dominating set \(D^{-1}\), then \(\deg(v) \geq 2\) for all \(v \in V\).

4) \(\gamma_{\text{coe}}(G) \leq \gamma_{\text{coe}}^{-1}(G)\).

5) \(1 \leq \gamma_{\text{coe}}^{-1}(G) \leq n - \gamma_{\text{coe}}(G)\).

Proof. 1) From Proposition 2.3.(1), all vertices of odd or zero degrees belong to every co-even dominating set. Thus, there is no ICEDS, since if there is a dominating set \(F\) in \(V - D\), then all vertices of odd or zero degrees lie outside of \(F\). Therefore, \(F\) is not co-even dominating set, that means \(F\) is not inverse co-even dominating set.

2) If \(G\) is \(r - \text{regular}\) and \(r\) is odd, then there is a unique co-even dominating set contains all vertices in \(G\). Thus, there is no inverse co-dominating set. Otherwise, \(G\) has an inverse co-even dominating set.

3) It is clear that \(\deg(v) \geq 2\) for all \(v \in V - D\), Proposition 2.3.(2). Now, since \(G\) has an inverse co-even dominating set \(D^{-1}\), then \(\deg(v) \geq 2\), for all \(v \in V - D^{-1}\). Therefore, the result is obtained.

4) and 5) The proof is straightforward. □

Proposition 2.6. Assume that \(G = (n, m)\) be a graph and \(D\) is a CEDS, then

1) If \(G\) be a null, path, star, or wheel then \(G\) has no inverse co-dominating set.

2) \(\gamma_{\text{coe}}^{-1}(C_n) = \left\lfloor \frac{n}{3} \right\rfloor\), where \(C_n\) is a cycle of order \(n\).
3) \(\gamma_{\text{coe}}^{-1}(K_n) = 1 \), if \(n \equiv 1 \pmod{2} \). Otherwise \(K_n \) has no ICEDS where \(K_n \) is complete of order \(n \); \(n \geq 3 \).

4) \(\gamma_{\text{coe}}^{-1}(K_{m,n}) = 2 \), if \(m \) and \(n \) are even. Otherwise \(K_{m,n} \) has no ICEDS where \(K_{m,n} \) is complete bipartite.

Proof. 1) If \(G \) is null, path, or star, then \(G \) has a vertex of degree one or zero, then \(G \) has no ICEDS according to Proposition 2.3(1). Now, if \(G \) is a star, then \(D \) contains all vertices in \(G \) or all vertices except the center vertex. In both cases \(G \) has no inverse co-even dominating set.

2) Since \(C_n \) is 2-regular graph, then \(\gamma_{\text{coe}}^{-1}(C_n) = \gamma_{\text{coe}}^{-1}(C_n) = \left\lceil \frac{n}{2} \right\rceil \).

3) If \(n \equiv 1 \pmod{2} \), then all vertices of even degree. Thus, it is obvious that \(\gamma_{\text{coe}}^{-1}(K_n) = 1 \).

4) According to Proposition 2.3.(2), \(\deg(C) \geq 2 \), for all \(C \in G \). This case occurs when \(m \) and \(n \) are even. Thus, we can take one vertex from each sets \(V_1 \) and \(V_2 \) different from the tow vertices in \(D \) to dominate all vertices where \(V_1 \) and \(V_2 \) are the partite set in \(G \). Therefore, the result is obtained.

\(\square \)

Proposition 2.7. Assume that \(G \) be a graph has \(\gamma_{\text{coe}}^{-1}(G) \) and let \(D \) be a \(\gamma_{\text{coe}}^{-1}\)-set. If for each vertex \(u \in D \), such that \(\langle N[u] \rangle \) is a complete subgraph induced by \(N[u] \) of order at least three, then \(\gamma_{\text{coe}}^{-1}(G) = \gamma_{\text{coe}}^{-1}(G) = \left\lceil \frac{n}{3} \right\rceil \).

Proof. Let \(u_1 \in D \), then by the hypothesis \(\langle N[u_1] \rangle \) is a complete of order at least three. Now, to prove that each vertex says \(u_1 \) adjacent to \(u_1 \) must belong to \(V - D \). Suppose that \(u_i \) belongs to the set \(D \), then there are two different cases.

Case 1. If \(u_i \) adjacent to only vertices in \(N[u_1] \), this leads to a contradiction with the minimum of \(D \).

Case 2. If \(u_i \) adjacent to a vertex or more in \(V - D \), then the subgraph induced by set \(N[u_1] \) union with the set of these vertices must be complete subgraph, since \(\langle N[u_1] \rangle \) is complete. Again, this leads to a contradiction with the minimum of \(D \).

Thus, from two cases above, \(\langle D \rangle \) is independent, and all vertices which dominated by a vertex in \(D \) must belong to \(V - D \). Thus, the induced subgraph of these vertices with a vertex in \(D \) constitutes a complete subgraph. Therefore, each vertex in \(V - D \) has an even degree, so it is clear that \(\gamma_{\text{coe}}^{-1}(G) = \gamma_{\text{coe}}(G) \). \(\square \)

Proposition 2.8. Assume that \(D \) be any \(\gamma_{\text{coe}}^{-1}\)-set and \(V - D \) is independent with condition every vertex of graph \(G \) has even degree, then \(\gamma_{\text{coe}}^{-1}(G) + \gamma_{\text{co}}(G) = n \).

Proof. Let \(D \) be any \(\gamma_{\text{coe}}^{-1}\)-set and \(V - D \) is an independent set, then \(V - D \) is MCEDS, since it has no proper CEDS and for each vertex belong to \(V - (V - D) \equiv D \) has even degree. Thus, the proof is done. \(\square \)

Proposition 2.9. Assume that \(G \) be a \((n, m)\)-graph with \(\gamma_{\text{coe}}^{-1}(G) = \gamma_{\text{co}}(G) \), then \(m \geq 2n - 3\gamma_{\text{coe}}(G) \).
Proof. Assume that D and D^{-1} be minimum CEDS and ICEDS of G respectively. Then each vertex in the set $(V - D - D^{-1})$ has even degree by definition of minimum co-even dominating set. Thus, the minimum number of vertices that adjacent to a vertex in the set $(V - D - D^{-1})$ is two, one of them is adjacent to a vertex in D and another is adjacent to a vertex in D^{-1}. Furthermore, the minimum number of edges between the two sets occurs where each vertex of them adjacent to only one vertex of the other. Thus, $m \geq |V - D - D^{-1}| + |D| = 2(n - 2y_{coe}(G)) + y_{coe}(G) = 2n - 3y_{coe}(G)$. □

3. Inverse Co-even dominating set in the complement of a graph

Proposition 3.1. Assume that G be a graph, then

1) $y_{coe}(C_n) = y_{coe}(\overline{C_n}) = 2$, if n is odd; $n \neq 3$, Otherwise has no inverse co-even dominating set

2) $y_{coe}(K_{m,n}) = y_{coe}(\overline{K_{m,n}}) = 2$, if m and n are odd, Otherwise has no inverse co-even dominating set.

Proof. 1) If n is odd; $n \neq 3$, then the degree of all vertices in $\overline{C_n}$ are even. Also, any adjacent vertices in C_n have dominated all vertices in $\overline{C_n}$. Therefore, $y_{coe}(\overline{C_n}) = y_{coe}(\overline{C_n}) = 2$. Otherwise, each vertex in $\overline{C_n}$ has odd degree, then according to proposition 2.5(1), G has no inverse co-even dominating set.

2) It is obvious that $\overline{K_{m,n}} = K_m \cup K_n$, so if m and n are odd in G, then each vertex of K_m or K_n, has even degree. Therefore, we can take two vertices one of them from K_m and the other from K_n such that these vertices different from the two vertices which chooses in the minimum dominating set D that taken $y_{coe}(\overline{K_{m,n}})$. Thus, in this case $y_{coe}(\overline{K_{m,n}}) = 2$. Otherwise the graph $\overline{K_{m,n}}$ has no inverse co-even dominating according to proposition 2.5(1). □

Observation 3.2. A graph G has no ICEDS, if $G \cong \overline{P_n}$, $\overline{S_n}$, $\overline{W_n}$, $\overline{K_n}$.

Proof. It is obvious from proposition 2.5(1). □

4. Conclusion

Throughout, this a new parameter of domination is called the inverse co-even domination number is introduced. Some of the results of this number are obtained for certain graphs as a path, cycle, star, wheel, regular, complete, and complete bipartite and it is complement of each of them.

References:

[1] F. Harary, Graph Theory, Addison-Wessley, Reading Mass. (1969).
[2] Koh, Khee Meng, et al. Graph Theory: Undergraduate Mathematics. World Scientific Publishing Company, 2015.
[3] A. A. Jabor., A. A. Omran, Domination in Discrete Topology Graph, AIP. Third International Conference of Science(ICMS2019),Vol.2183(2019): 030006-1–030006-3; https://doi.org/10.1063/1.5136110.

[4] M.N. Al-Harere, A. A. Omran, Binary operation graphs, AIP conference proceeding vol.2086, Maltepe University, Istanbul, Turkey,030008, 31 July - 6 August (2018). https://doi.org/10.1063/1.5095093.

[5] M.N. Al-Harere, A. A. Omran, On binary operation graphs, Boletim da Sociedade Paranaense de Matemática, Vol 38 No7, 59-67,2020.

[6] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).

[7] A. A. Omran and Haneen H. Oda, Hn-Domination in Graphs, Baghdad Science Journal 16.1, 242-247, (2019).

[8] A. A. Omran and Y. Rajihy, Some properties of frame domination in graphs, Journal of Engineering and Applied Sciences, 12, 8882-8885, (2017).

[9] M.M.Shalaan and A. A. Omran, Co-even Domination in Graphs, International Journal of Control and Automation, Vol. 13, No. 3, pp. 330-334, 2020.

[10] V.R. Kulli and N.R. Nandargi, "Inverse Domination in Graphs", Nat. Acad. Sci. Lett., 473-475, 14 (1991).

[11] Edward M. Kiunisal."Inverse Closed Domination in Graphs." Global Journal of Pure and Applied Mathematics 12.2: 1845-1851, (2016).

[12] T.G. Jayasree, and R. I. Radha. "The Results on the Inverse domination number of some class of graphs." International Journal of Mechanical Engineering and Technology (IJMET) 9.1: 995-1004, (2018).

[13] M. Karthikeyan, and A. Elumalai. "Inverse Domination Number of Jump Graph." International Journal of Pure and Applied Mathematics 103.3: 477-483, (2015).

[14] Kiunisala, M. Edward and F. P. Jamil. "Inverse domination Numbers and disjoint domination numbers of graphs under some binary operations." Applied Mathematical Sciences 8.107: 5303-5315, (2014)