SOME RESULTS OF MOISTURE AND SALT TRANSFER IN THE INITIAL PERIOD OF PLANT DEVELOPMENT

1A.A. Khojiyev, 2R.A. Muradov

1 Associate Professor, Tashkent institute of engineers of irrigation and mechanization of agriculture, Uzbekistan.
2 Doctor of Engineering Sciences, Professor, Tashkent institute of engineers of irrigation and mechanization of agriculture, Uzbekistan.
Email - akmal.durmanov.1977@mail.ru

Abstract: Water - as moisture, has essential role in all biochemical processes of plants, all vital processes, occurring in a vegetative organism, can proceed normally only under condition of sufficient saturation of cages by a moisture. Results of theoretical researches on dynamics of ground humidity have shown: (1) similarity of physical processes of change of humidity of soil on different irrigated areas. (2) hysteresis of the nature of humidity at an irrigation and drainage. (3) sharp recession of humidity of soil in the root zone.

Key Words: mathematical model, water stress factor, salinity, irrigation, mechanical composition of soil, hydromodular areas.

1. Introduction:
Among the main factors in the arid zone, an important role is played by the water and thermal regimes of soils, which mainly determine the fate of the crop of irrigated crops. This is explained by the fact that the subsoil processes are closely related to weather conditions and, depending on their behavior, the need for appropriate ameliorative impacts on the agricultural field is established.

At this stage, it is necessary, with the aim of reclamation, to use mathematical models for soils most common in the region. Such models are important as a basis for optimizing the use of land resources in irrigated areas by changing the structure of land use, specializing in agriculture, etc. With these studies it is necessary to use the achievements of the fundamental sciences, the mathematical apparatus and the computer. The introduction of new methods in land reclamation is a slow and time consuming process, in view of the fact that soils must be considered as a multipara meter and dynamically changing object.

Fig1. Schematic section of soil 0≤Z≤Z₁ – arable layer; Z₁≤Z≤L - subsoil layer

The conducted studies to date have proved the inconsistency of the interpretations of the management of the productivity of agro ecosystems, when only a few isolated indicators were taken into account or the informativeness of the integral indicators was usually judged from the data of correlation and regression analyzes that do not always reflect the actual processes taking place in the soil- plant”. In the methodology for assessing soils as an object of intensive agricultural use, a new stage has come-the transition from bathing assessments, studies of individual optimal parameters to the analysis of the productivity of agro ecosystems on the basis of their mathematical modeling[3; 4; 5].

2. Methodology study:
The spatial-temporal dynamics of soil moisture were investigated in several Water Consumers Association.
On the demonstration sites cotton was grown; space between the rows was 90 cm. Five sampling sites (four under cotton grown area and one at non-vegetated area – control) with four replications of each were selected randomly. Soil samples were collected annually during 2017-2018.

3. Analysis and Results:

The experiment consists of two parts: The first is the analysis of the dynamics of soil moisture based on the irrigation frequency. The soil moisture was measured right before and after the irrigation, the next were as well as 1, 2, 3 and 5 days before and after the irrigation. The sampling was replicated four times. Moisture is determined from 10-cm layers, and in the root and top soil - from 0.5 and 5-10 cm layers. The sampling arrangement is shown in Fig. 2.

Moisture (M) was calculated to determine the profile of the volumetric water content (Vs) of soil [3]. Both M and the soil water deficit amount (DWC) are defined by

\[M = V_s \cdot H \times 10, \]
\[DWC = SFC - WC, \]

where \(V_s \) is the volumetric water content (mm), \(H \) is the depth of soil (cm), and SFC is the soil field capacity (mm).

SFC was measured by the indoor J. C. WILCOX method. The bulk density of soil layer was measured by the cutting ring method and repeated three times. All climatic data, such as rainfall and evaporation were provided by a weather station near the field.

In the initial period of plant development under steady-state conditions, when transpiration of \(E_m \) can be neglected, the following mathematical model will be used for a two-layer medium consisting of arable and subarable layers [1; 2].

With soluble salts and small content in the solid phase (for example, chlorine), the equation of salt transfer satisfactorily describes the distribution of salts observed in nature and experiments without the last term \(\gamma(c_s - c) \), ie:

We note that in this case \(D \) takes into account the peculiarities of the motion of solutions in a non solvent medium (the so-called longitudinal and transverse effects) and is not equal to the usual diffusion coefficient in a resting solution[4; 5].

\[
\begin{cases}
0 \leq z \leq z_i \\
\frac{d}{dz} \left[D_1(W_1) \frac{dW_1}{dz} \right] - \frac{dK_1(W_1)}{dz} = 0, \\
\frac{d}{dz} \left[D_2(N_1) \frac{dN_1(W_1)}{dz} \right] - \frac{dV_1(N_1)}{dz} = 0, \\
\frac{d}{dz} \left[D_2(W_2) \frac{dW_2}{dz} \right] - \frac{dK_2(W_2)}{dz} = 0, \\
\frac{d}{dz} \left[D_2(N_1) \frac{dN_2(W_2)}{dz} \right] - \frac{dV_2(N_2)}{dz} = 0
\end{cases}
\]

\[W_1(0) = W_{ip} = \text{const}, \]
\[N_1(0) = N_{ip} = \text{const} \]
\[W_1(Z_1) = W_2(Z_1) \]
\[N_1(Z_1) = N_2(Z_1) \]
\[\left[K_1(W_1) - D_1(W_1) \frac{dW_1}{dz} \right]_{z=Z_i} = \left[K_2(W_2) - D_2(W_2) \frac{dW_2}{dz} \right]_{z=Z_i} \]
\[V_{N_1}(W_1) - D_{N_1}(W_1) \frac{dN_1(W_1)}{dz} \bigg|_{z=Z_i} = V_{N_2}(W_2) - D_{N_2}(W_2) \frac{dN_2(W_2)}{dz} \bigg|_{z=Z_i} \]

\[W_2(L) = W_{MC}, \]

\[N_2(L) = N_{MC} \]

where the following designations are entered for the arable and sub-plow layers respectively: \(W_1, W_2 \) – volumetric humidity; coefficients of moisture conductivity are adopted in the form [1; 3]:

\[K_1(W_1) = A_e e^{A_2 z}, \quad K_2(W_2) = B_1 e^{B_2 z}. \]

the speed of water movement in the ground is taken as [1]:

\[V_{N_1} = R_1 e^{R_1 z}, \quad V_{N_2} = P_1 e^{P_1 z}. \]

In view of the fact that the stationary regime is considered for the diffusivity coefficients, their mean values

\[D_1(W_1) = D_1 = const, \quad D_2(W_2) = D_2 = const \]

\[D_{N_1}(W_1) = D_{N_1} = const, \quad D_{N_2}(W_2) = D_{N_2} = const, \]

where: \(L \) – groundwater depth, m; \(Z_i \) – boundary between arable and subsoil layers, m; \(W_{IP} \) - some intermediate moisture capacity between wilting moisture \(W_3 \) and the maximum moisture capacity \(W_{mm} \), i.e.

\[W_3 < W_{IP} < W_{IIIb} \]

where: \(W_{mm} \) - full moisture capacity; \(Z \) - vertical coordinate directed down from the earth's surface.

Also \(N_{IP} \) - it is an intermediate concentration of the salts between the concentration of the salts in the wash water \(N_w \) and the concentration of the limiting saturation of water \(N_S \), i.e.

\[N_w \leq N_{IP} \leq N_S \]

As a result of these notations, we rewrite the boundary value problem (1) - (9) as follows

\[
\begin{align*}
D_1 \frac{d^2W_1}{dz^2} - A_1 A_2 e^{A_2 z} &= 0 \\
D_{N_1} \frac{d^2N_1}{dz^2} - R_1 R_2 e^{R_1 z} &= 0 \\
D_2 \frac{d^2W_2}{dz^2} - B_1 B_2 e^{B_1 z} &= 0 \\
D_{N_2} \frac{d^2N_2}{dz^2} - R_1 R_2 e^{R_2 z} &= 0 \\
A_e e^{A_2 z} - D_1 \frac{dW_1}{dz} \bigg|_{z=Z_i} &= B_1 e^{B_1 z} - D_2 \frac{dW_2}{dz} \bigg|_{z=Z_i} \\
R_1 e^{R_1 z} - D_{N_1} \frac{dN_1}{dz} \bigg|_{z=Z_i} &= P_1 e^{P_1 z} - D_{N_2} \frac{dN_2}{dz} \bigg|_{z=Z_i}
\end{align*}
\]

where \(A_1, A_2, B_1, B_2, D_1, D_2, R_1, R_2, P_1, P_2, D_{N_1}, D_{N_2} \) are some constants determined by comparing the analytical solution with the experimental data [1];

Integrating the first equation of system (16) we will successively find

\[
\begin{align*}
\frac{d^2W_1}{dz^2} - \frac{A_1 A_2}{D_1} e^{A_2 z} &= 0 \\
\frac{dW_1}{dz} &= \frac{A_1}{D_1} e^{A_2 z} + C_1
\end{align*}
\]
\[W_1 = \frac{A_1}{A_2 D_1} e^{A_2 L} + C_1 z + C_2 \] \hspace{1cm} (19)

Similarly, after integrating the other equations of the same system, we obtain
\[N_1 = \frac{R_1}{R_2 D_{N_1}} e^{R_2 L} + C_3 z + C_4 , \] \hspace{1cm} (20)

\[W_2 = \frac{B_1}{B_2 D_2} e^{B_2 L} + C_5 z + C_6 \] \hspace{1cm} (21)

\[N_2 = \frac{P_1}{P_2 D_{N_2}} e^{P_2 L} + C_7 z + C_8 \] \hspace{1cm} (22)

Using condition (2), we find from (19)
\[C_2 = W_{ipp} - \frac{A_1}{A_2 D_1} . \] \hspace{1cm} (23)

We also determine C4 from the conditions (3) and (26)
\[C_4 = N_{ipp} - \frac{R_1}{R_2 D_{N_1}} . \] \hspace{1cm} (24)

On the basis of (6) and (7) we find the relation
\[C_5 = C_1 \frac{D_2}{D_1} . \] \hspace{1cm} (25)

\[C_7 = C_3 \frac{D_{N_2}}{D_{N_1}} . \] \hspace{1cm} (26)

Expressions (8) and (9), using (8) and (9), we obtain
\[W_{ipp} = \frac{B_1}{B_2 D_2} e^{B_2 L} + C_5 L + C_6 \] \hspace{1cm} (27)

\[N_{ipp} = \frac{P_1}{P_2 D_{N_2}} e^{P_2 L} + C_3 \frac{D_{N_2}}{D_{N_1}} L + C_8 \] \hspace{1cm} (28)

The dependence of C6 on C1 is found from (24) with allowance for (22)
\[C_6 = W_{ipp} - \frac{B_1}{B_2 D_2} e^{B_2 L} - C_1 \frac{D_2}{D_1} L . \] \hspace{1cm} (29)

The value of C8 is determined from (19) with allowance for (23)
\[C_8 = N_{ipp} - \frac{P_1}{P_2 D_{N_2}} e^{P_2 L} - C_3 \frac{D_{N_2}}{D_{N_1}} L . \] \hspace{1cm} (30)

Results. Relation (4) with allowance for (21), (22) and (26) allows us to determine C1 from equality
\[W_{ipp} = \frac{B_1}{B_2 D_2} \left[e^{A_2 L} - e^{B_2 L} \right] - C_1 \frac{D_2}{D_1} \left[L - Z_1 \right] = W_{ipp} - \frac{A_1}{A_2 D_1} \left[e^{A_2 L} - 1 \right] + C_1 Z_1 \]

From where we find
\[C_1 = \frac{D_2}{D_1} \left[L - Z_1 \right] + Z_1 , \] \hspace{1cm} (31)

It is possible to establish the value of C3 from equation (22), (23), and (27)
\[N_{ipp} - \frac{P_1}{P_2 D_{N_2}} \left[e^{P_2 L} - e^{P_2 Z_1} \right] - C_3 \frac{D_{N_2}}{D_{N_1}} \left[L - Z_1 \right] = N_{ipp} - \frac{R_1}{R_2 D_{N_1}} \left[e^{R_2 Z_1} - 1 \right] + C_3 Z_1 \]

Hence we find
\[
C_3 = \frac{N_{IB} - N_{IP} - \frac{R_1}{R_2 D_{N_1}} \left[e^{R_z z_1} - 1 \right] - \frac{P_1}{P_2 D_{N_2}} \left[e^{P_z z_1} - e^{P_z z_1} \right]}{D_{N_2} \left[L - Z_1 \right] + Z_1}, \quad (32)
\]

Substituting the values of arbitrary \(C_1, C_2, C_3\)and \(C_4 \) in (19) and (20) we obtain the distribution of volumetric moisture and salt concentration in the arable layer as a function of \(z \).

\[
W_i = W_{IP} + \frac{A_1}{A_2 D_1} \left[e^{A_z z_1} - 1 \right] + \left[\frac{W_{IB} - W_{IP} - \frac{A_1}{A_2 D_1} \left[e^{A_z z_1} - 1 \right] - \frac{B_1}{B_2 D_2} \left[e^{B_z z_1} - e^{B_z z_1} \right]}{D_2 \left[L - Z_1 \right] + Z_1} \right] z \quad (33)
\]

\[
N_1 = N_{IP} + \frac{R_1}{R_2 D_{N_1}} \left[e^{R_z z_1} - 1 \right] + \left[\frac{N_{IB} - N_{IP} - \frac{R_1}{R_2 D_{N_1}} \left[e^{R_z z_1} - 1 \right] - \frac{P_1}{P_2 D_{N_2}} \left[e^{P_z z_1} - e^{P_z z_1} \right]}{D_{N_2} \left[L - Z_1 \right] + Z_1} \right] z \quad (34)
\]

The definite values of the constants \(C_5, C_6, C_7, \) and \(C_8 \) in (21) and (22) yield the distribution of the volumetric moisture content and the salt concentration in the subpolar layer as a function of \(z \).

\[
W_2 = W_{IB} - \frac{B_1}{B_2 D_2} \left(e^{B_z z_1} - e^{B_z z_1} \right) - \left[\frac{W_{IB} - W_{IP} - \frac{A_1}{A_2 D_1} \left[e^{A_z z_1} - 1 \right] - \frac{B_1}{B_2 D_2} \left[e^{B_z z_1} - e^{B_z z_1} \right]}{L - Z_1} + Z_1 \right] (L - z) \quad (35)
\]

\[
N_2 = N_{IB} - \frac{P_1}{P_2 D_{N_2}} \left(e^{P_z z_1} - e^{P_z z_1} \right) - \left[\frac{N_{IB} - N_{IP} - \frac{R_1}{R_2 D_{N_1}} \left[e^{R_z z_1} - 1 \right] - \frac{P_1}{P_2 D_{N_2}} \left[e^{P_z z_1} - e^{P_z z_1} \right]}{L - Z_1} + Z_1 \right] (L - z) \quad (36)
\]

Fig 3. Determination of the value of \(\beta_2 \) by the transcendental equation.

Determination of the constants was carried out according to the acad. F.B. Abataliev given in [1].

Table 1. Coefficients of the mathematical model for determining the parameters of moisture and salt transfer

Location of the object	Farm	Khavast district					
Farms	«Dehla	Musa	Samiyev	«Togay	«Kuxna	«Samo»	«Chehra»

Available online on – http://jedi.researchculturesociety.org/
4. Conclusions:

1. The developed models (34) - (36) can be used in the calculation of moisture and salt transfer both in the initial period of plant development and in the calculation of washing of saline lands.
2. The use of models and the coefficients of the mathematical model to determine the parameters of moisture and salt transfer make it possible to calculate the reserve of soil moisture and optimize the sowing time at its maximum value.

References:

1. Abutaliev F.B, KlenovV.B. Some questions of systematization of parameters characterizing the movement of a two-phase fluid in a porous medium. On Sat "Questions of computational mathematics and technology", T. 1965, 3-22 p.
2. Khojiev A.A, Muradov R.A. Moisture and salt transfer in the initial period of plant development. The path of science. International Journal, No. 8 (54), 2018, pp. 50-56.
3. Muradov R.A. Water use in conditions of shortage of irrigation water. T.: Journal "Bulletin of Tashkent State Technical University", 2010, № 1-2, p. 164-168.
4. Muradov R.A., Khojiev A.A. The optimal solution of leaching rates with a deficit of irrigation water. Agro Ilm Magazine, 2017, No. 5 (49), pp. 83-84.
5. Muradov R., Khojiev A. The optimal solution to salt washing standards for water shortage. “Agro ilm”, 2016 yil, 75 b.
6. Muradov R.A., Khojiev A.A. Modeling moisture and salt transfer in the initial period of plant development. Magazine Agro ilm, 2018, p. 44.
7. Muradov R.A. Some issues of efficient use of land in WUAs with a shortage of water resources. Sat articles ix international scientific practical conference “Agricultural science - agriculture”, Barnaul, Altai State Agrarian University, 2014, pp. 460-462.
8. Umurzakov, U.P., Ibragimov, A.G., Durmanov, A.S. Development of the organizational-economic mechanism and development of scientific, methodological and theoretical foundations for improving the efficiency of the rice growing industry to ensure the country's food security // Science and Practice Bulletin. Electron. journals 2017. №11 (24). P. 103-118. Access mode: http://www.bulletennauki.com/umurzakov. DOI: 10.5281 / zenodo.1048318
9. Durmanov, A., & Umarov, S. (2018). Economic-mathematical modeling of optimization production of agricultural production. Asia Pacific Journal of Research in Business Management, 9(6), 10-21.
10. Tulaboev, A., (2013), Blended learning approach with web 2.0 tools,” 2013 International Conference on Research and Innovation in Information Systems (ICRIIS), Kuala Lumpur, pp. 118-122. doi: 10.1109/ICRIIS.2013.6716695
11. Tulaboev, A., & Oxley, A. (2012). A case study on using web 2.0 social networking tools in higher education. In Computer & Information Science (ICCIS), 2012 International Conference on (1). 84-88.
12. Tulaboev, A., & Oxley, A. (2010). A pilot study in using web 2.0 to aid academic writing skills. In Open Systems (ICOS), 45-50.
13. Ibragimov, A. G., & Durmanov, A. S. (2017). Issues of the development of competitiveness and the prospects of specialization in rice farms. SAARJ Journal on Banking & Insurance Research, 6(5), 14-19. doi:10.5958/2319-1422.2017.00021.2.

14. Durmanov, A. Sh., & Khidirova, M. H. (2017). Measures to increase the volume of exports of fruit and vegetable products. Economics, (9), 30-34. (in Russian).

15. Umarov, S. R. (2017). Innovative development and main directions of water management. Economy and Innovative Technologies, (1). Available at: https://goo.gl/eEHSJK. (in Uzbek).

16. Durmanov, A. (2018). Cooperation as a basis for increasing the economic efficiency in protected cultivation of vegetables. Bulletin of Science and Practice, 4(8), 113-122.