2N-WEAK MODULE AMENABILITY OF SEMIGROUP ALGEBRAS

HOGER GHAHRAMANI

Abstract. Let S be an inverse semigroup with the set of idempotents E. We prove that the semigroup algebra $\ell^1(S)$ is always $2n$-weakly module amenable as an $\ell^1(E)$-module, for any $n \in \mathbb{N}$, where E acts on S trivially from the left and by multiplication from the right.

1. Introduction

Let \mathcal{A} be a Banach algebra, and let \mathcal{X} be a Banach \mathcal{A}-bimodule. A linear map $D : \mathcal{A} \to \mathcal{X}$ is called a derivation if $D(ab) = aD(b) + D(a)b$ for all $a, b \in \mathcal{A}$. Each map of the form $a \to ax - xa$, where $x \in \mathcal{X}$, is a continuous derivation which will be called an inner derivation.

For any Banach \mathcal{A}-module \mathcal{X}, its dual space \mathcal{X}^* is naturally equipped with a Banach \mathcal{A}-module structure via

$\langle x, af \rangle = \langle xa, f \rangle$ \quad $\langle x, fa \rangle = \langle ax, f \rangle \quad (a \in \mathcal{A}, f \in \mathcal{X}^*, x \in \mathcal{X})$.

Note that the Banach algebra \mathcal{A} itself is a Banach \mathcal{A}-bimodule under the algebra multiplication. So $\mathcal{A}^{(n)}$, the n-th dual space of \mathcal{A}, is naturally a Banach \mathcal{A}-bimodule in the above sense for each $n \in \mathbb{N}$. The Banach algebra \mathcal{A} is called n-weakly amenable if every continuous derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ is inner. If \mathcal{A} is n-weakly amenable for each $n \in \mathbb{N}$ then it is called permanently weakly amenable.

The concept of n-weakly amenability was introduced by Dales, Ghahramani and Grønbæk in [6]. Johnson showed in [10] that for any locally compact group G, the group algebra $L^1(G)$ is always 1-weakly amenable. It was shown further in [6] that $L^1(G)$ is in fact n-weakly amenable for all odd numbers n. Whether this is still true for even numbers n was left open in [6]. Later in [11] Johnson proved that $\ell^1(G)$ is $2n$-weakly amenable for each $n \in \mathbb{N}$ whenever G is a free group. The problem has been resolved affirmatively for general locally compact group G in [5] and in [12] independently, using a theory established in [13]. In [19], as an application of a common fixed point property for semigroups, a short proof to $2m$-weak amenability of $L^1(G)$ was presented. Mewomo in [14] investigate the n-weak amenability of semigroup algebras and showed that for a Rees matrix semigroup S, $\ell^1(S)$ is n-weakly amenable when n is odd. Also he obtained a similar result for a regular semigroup S with finitely many idempotents.

1

MSC(2010): 43A20; 46H25; 43A10.

Keywords: $2n$-weak module amenability; Inverse semigroup; Semigroup algebra; Banach module; Module derivation.

1
Let \mathcal{A} and \mathcal{U} be Banach algebras such that \mathcal{A} is a Banach \mathcal{U}-bimodule with compatible actions, that is
\[\alpha(ab) = (\alpha a)b, \quad (ab)\alpha = a(b\alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathcal{U}). \]

Let \mathcal{X} be a Banach \mathcal{A}-bimodule and a Banach \mathcal{U}-bimodule with compatible actions, that is
\[\alpha(ax) = (\alpha a)x, \quad a(\alpha x) = (\alpha a)x, \quad (\alpha x)a = \alpha(xa) \quad (a \in \mathcal{A}, \alpha \in \mathcal{U}, x \in \mathcal{X}), \]
and similarly for the right or two-sided actions. Then \mathcal{X} is called a *Banach \mathcal{A}-\mathcal{U}-module*, and is called a *commutative* Banach \mathcal{A}-\mathcal{U}-module whenever $\alpha x = x\alpha$ for all $\alpha \in \mathcal{U}$ and $x \in \mathcal{X}$.

Let \mathcal{A} and \mathcal{U} be as above and \mathcal{X} be a Banach \mathcal{A}-\mathcal{U}-module. A bounded map $D : \mathcal{A} \to \mathcal{X}$ is called a *module derivation* if
\[
D(a \pm b) = D(a) \pm D(b), \quad D(ab) = aD(b) + D(a)b \quad (a, b \in \mathcal{A}),
\]
and
\[
D(\alpha a) = \alpha D(a), \quad D(a\alpha) = D(a).\alpha \quad (a \in \mathcal{A}, \alpha \in \mathcal{U}).
\]
Note that D is not necessarily linear and if there exists a constant $M > 0$ such that $\|D(a)\| \leq M \|a\|$ for each $a \in \mathcal{A}$, then D is bounded and its boundedness implies its norm continuity. When \mathcal{X} is a commutative Banach \mathcal{A}-\mathcal{U}-module, each $x \in \mathcal{X}$ defines an \mathcal{U}-module derivation
\[D_x(a) = xa - ax \quad (a \in \mathcal{A}), \]
these are called *inner* module derivations.

If \mathcal{X} is a (commutative) Banach \mathcal{A}-\mathcal{U}-module, then so is \mathcal{X}^*, where the actions of \mathcal{A} and \mathcal{U} on \mathcal{X}^* are naturally defined as above. So by letting $\mathcal{X}^{(0)} = \mathcal{X}$, if we define $\mathcal{X}^{(n)}$ ($n \in \mathbb{N}$) inductively by $\mathcal{X}^{(n)} = (\mathcal{X}^{(n-1)})^*$, then $\mathcal{X}^{(n)}$ is a (commutative) Banach \mathcal{A}-\mathcal{U}-module.

Note that when \mathcal{A} acts on itself by algebra multiplication, it is not in general a Banach \mathcal{A}-\mathcal{U}-module, as we have not assumed the compatibility condition $a(\alpha b) = (a\alpha)b$ ($a, b \in \mathcal{A}, \alpha \in \mathcal{U}$). If we consider the closed ideal J of \mathcal{A} generated by elements of the form $(a\alpha)b - a(\alpha b)$ for $a, b \in \mathcal{A}, \alpha \in \mathcal{U}$, then J is an \mathcal{U}-submodule of \mathcal{A}. So the quotient Banach algebra \mathcal{A}/J is a Banach \mathcal{U}-module with compatible actions and hence from definition of J, when \mathcal{A}/J acts on itself by algebra multiplication, it is a Banach (\mathcal{A}/J)-\mathcal{U}-module. Therefore, $(\mathcal{A}/J)^{(n)}$ ($n \in \mathbb{N}$) is a Banach (\mathcal{A}/J)-\mathcal{U}-module. In general \mathcal{A}/J is not a commutative \mathcal{U}-module. If \mathcal{A}/J is a commutative \mathcal{U}-module, then $(\mathcal{A}/J)^{(n)}$ ($n \geq 0$) is a commutative Banach (\mathcal{A}/J)-\mathcal{U}-module. Now it is clear when \mathcal{A} is a commutative \mathcal{U}-module, then $J = \{0\}$ and hence by multiplication of \mathcal{A} from both sides, $\mathcal{A}^{(n)}$ ($n \geq 0$) is a commutative Banach \mathcal{A}-\mathcal{U}-module.

Let the Banach algebra \mathcal{A} be a Banach \mathcal{U}-module with compatible actions. From the above observations, $(\mathcal{A}/J)^{(n)}$ ($n \geq 0$) is a Banach \mathcal{A}-\mathcal{U}-module by the \mathcal{A}-module actions $a\Phi = (a + J)\Phi$ and $\Phi a = \Phi(a + J)$ for $a, b \in \mathcal{A}, \Phi \in (\mathcal{A}/J)^{(n)}$ (the \mathcal{U}-module actions are similar to actions on $(\mathcal{A}/J)^{(n)}$ as \mathcal{U}-module). Note that whenever \mathcal{A}/J is a commutative \mathcal{U}-module, then $(\mathcal{A}/J)^{(n)}$ ($n \geq 0$) is a commutative Banach \mathcal{A}-\mathcal{U}-module by the above actions. Now we are ready to define the notion of n-weak module amenability. We say that \mathcal{A} is *n-weakly module amenable* ($n \in \mathbb{N}$) if $(\mathcal{A}/J)^{(n)}$ is a commutative Banach \mathcal{A}-\mathcal{U}-module, and each continuous module derivation $D : \mathcal{A} \to (\mathcal{A}/J)^{(n)}$ is inner; that is $D(a) = D_\Phi(a) = a\Phi - \Phi a$ for some
Now for any $s \in S$, give some properties of these module actions.

Proof. For all $s \in S$, we have the followings

(i) $\delta_e \Phi = \Phi \delta_e$;
(ii) $\delta_e \Phi = \Phi \delta_e$.

Remark 2.1. With the above notation, for all $e \in E$ and $\Phi \in (\ell^1(S)/J)^{(n)} (n \geq 0)$ we have the followings

(i) $\delta_e \Phi = \Phi \delta_e$;
(ii) $\delta_e \Phi = \Phi \delta_e$.

Proof. For all $e, d \in E$, we have $\delta_e - \delta_d = \delta_e \Phi - \delta_d \Phi = \Phi \delta_e - \delta_d \Phi$ and also denote the $\ell^1(S)$ module actions of $f \in \ell^1(S)$ on $\Phi \in (\ell^1(S)/J)^{(n)}$ by $f \Phi$ and $f \Phi$. In the next remark we give some properties of these module actions.

2. Main result

A discrete semigroup S is called an inverse semigroup if for each $s \in S$ there is a unique element $s^* \in S$ such that $ss^* s = s$ and $s^* ss^* = s^*$. An element $e \in S$ is called an idempotent if $e = e^* = e^2$. The set of idempotents of S is denoted by E. There is a natural order on E, defined by

$$e \leq d \iff ed = e \quad (e, d \in E),$$

and E is a commutative subsemigroup of S, which is also a semilattice [9, Theorem V.1.2]. Elements of the form ss^* are idempotents of S and in fact all elements of E are in this form.

The algebra $\ell^1(E)$ could be regarded as a subalgebra of $\ell^1(S)$. Hence $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E)$-module with compatible actions. In this article we let $\ell^1(E)$ act on $\ell^1(S)$ by multiplication from right and trivially from left, that is

$$\delta_{se} = \delta_{se} \delta_e = \delta_{se} \delta_e = \delta_{se} \delta_e \quad (s \in S, e \in E).$$

In this case, the ideal J (see section 1) is the closed linear span of $\{\delta_{st} - \delta_{et} \mid s, t \in S, e \in E\}$. With the notations of the previous section $(\ell^1(S)/J)^{(n)} (n \geq 0)$ is a Banach $\ell^1(S)$-$\ell^1(E)$-module. Note that we show the $\ell^1(E)$-module actions of $f \in \ell^1(E)$ on $\Phi \in (\ell^1(S)/J)^{(n)}$ by $f \Phi$ and $f \Phi$, and also denote the $\ell^1(S)$ module actions of $f \in \ell^1(S)$ on $\Phi \in (\ell^1(S)/J)^{(n)}$ by $f \Phi$ and $f \Phi$. In the next remark we give some properties of these module actions.
Similarly, we get $\delta_e + J = \delta_e + J$ for $e \in E$ and $s \in S$. Hence

$$\delta_e.(\delta_s + J) = \delta_s + J = \delta_e + J = (\delta_e + J).\delta_e$$

and

$$\delta_e(\delta_s + J) = (\delta_e + J)(\delta_s + J) = \delta_e + J = \delta_e + J = (\delta_e + J)(\delta_e + J) = (\delta_e + J)\delta_e,$$

for all $e \in E$ and $s \in S$. Since $\text{lin}\{\delta_s \mid s \in S\}$ is dense in $\ell^1(S)$ and J is closed in $\ell^1(S)$, it follows that

$$\delta_e.(f + J) = (f + J).\delta_e$$

and

$$\delta_e(f + J) = f + J = (f + J)\delta_e,$$

for all $e \in E$ and $f \in \ell^1(S)$. So by induction on n we arrive at

$$\delta_e.\Phi = \Phi.\delta_e$$

and

$$\delta_e.\Phi = \Phi\delta_e = \Phi,$$

for all $e \in E$ and $\Phi \in (\ell^1(S)/J)^{(n)}$ $(n \geq 0)$. □

In view of this remark (i), we find that $(\ell^1(S)/J)^{(n)}$ $(n \geq 0)$ is a commutative $\ell^1(E)$-module.

For an inverse semigroup S, the quotient S/\approx is a discrete group, where \approx is an equivalence relation on S as follows:

$$s \approx t \iff \delta_s - \delta_t \in J \quad (s, t \in S).$$

Indeed, S/\approx is homomorphic to the maximal group homomorphic image G_S [15] of S (see [3], [16] and [17]). As in [18, Theorem 3.3], we may observe that $\ell^1(S)/J \cong \ell^1(G_S)$. Also see [8].

Since for proof of the main result we use a common fixed point property for semigroups, now we recall some notions related to common fixed point theorem. Let S be a (discrete) semigroup. The space of all bounded complex valued functions on S is denoted by $\ell^\infty(S)$. It is a Banach space with the uniform supremum norm. In fact $\ell^\infty(S) = (\ell^1(S))^\ast$. For each $s \in S$ and each $f \in \ell^\infty(S)$ let $\ell_s f$ be the left translate of f by s, that is $\ell_s f(t) = f(st)$ $(t \in S)$ (the right translate $r_s f$ is defined similarly). We recall that $f \in \ell^\infty(S)$ is weakly almost periodic if its left orbit $\mathcal{L}_0(f) = \{\ell_s f \mid s \in S\}$ is relatively compact in the weak topology of $\ell^\infty(S)$. We denote by $WAP(S)$ the space of all weakly almost periodic functions on S, which is a closed subspace of $\ell^\infty(S)$ containing the constant function and invariant under the left and right translations. A linear functional $m \in WAP(S)^\ast$ is a mean on $WAP(S)$ if $\|m\| = m(1) = 1$. A mean m on $WAP(S)$ is a left invariant mean (abbreviated LIM) if $m(\ell_s f) = m(f)$ for all $s \in S$ and all $f \in WAP(S)$. If S is an inverse semigroup, it is well known that $WAP(S)$ always has a LIM [7, Proposition 2]. Let C be a subset of a Banach space X. We say that $\Gamma = \{T_s \mid s \in S\}$ is a representation of S on C if for each $s \in S$, T_s is a mapping from C into C and $T_{st}(x) = T_s(T_t(x))$ $(s, t \in S, x \in C)$. We say that $x \in C$ is a common fixed point for (the representation of) S if $T_s(x) = x$ for all $s \in S$.

Let X be a Banach space and C a nonempty subset of X. A mapping $T : C \rightarrow C$ is called nonexpansive if $\|T(x) - T(y)\| \leq \|x - y\|$ for all $x, y \in C$. The mapping T is called affine if C is convex and $T(\gamma x + \eta y) = \gamma T(x) + \eta T(y)$ for all constants
\(\gamma, \eta \geq 0 \) with \(\gamma + \eta = 1 \) and \(x, y \in C \). A representation \(\Gamma \) of a semigroup \(S \) on \(C \) acts as nonexpansive affine mappings, if each \(T_s \) \((s \in S) \) is nonexpansive and affine.

A Banach space \(X \) is called \(L\)-embedded if there is a closed subspace \(X_0 \subseteq X^{**} \) such that \(X^{**} = X \oplus_{\ell_1} X_0 \). The class of \(L \)-embedded Banach spaces includes all \(L^1(\Sigma, \mu) \) (the space of of all absolutely integrable functions on a measure space \((\Sigma, \mu) \)), preduals of von Neumann algebras, dual spaces of \(M \)-embedded Banach spaces and the Hardy space \(H_1 \). In particular, given a locally compact group \(G \), the space \(L^1(G) \) is \(L \)-embedded. So are its even duals \(L^1(G)^{(2n)} \) \((n \geq 0)\). For more details we refer the reader to [19] and the references therein.

The next lemma is the common fixed point theorem for semigroups in [19, Theorem 2], which will be used in our proof to the main result.

Lemma 2.2. Let \(S \) be a discrete semigroup and \(\Gamma \) a representation of \(S \) on an \(L \)-embedded Banach space \(X \) as nonexpansive affine mappings. Suppose that \(WAP(S) \) has a \(LIM \) and suppose that there is a nonempty bounded set \(B \subseteq X \) such that \(B \subseteq \overline{T_s(B)} \) for all \(s \in S \), then \(X \) contains a common fixed point for \(S \).

We now can prove the main result of the paper.

Theorem 2.3. Let \(S \) be an inverse semigroup with the set of idempotents \(E \). Consider \(\ell^1(S) \) as a Banach module over \(\ell^1(E) \) with the trivial left action and natural right action. Then the semigroup algebra \(\ell^1(S) \) is 2n-weakly module amenable as an \(\ell^1(E) \)-module for each \(n \in \mathbb{N} \).

Proof. Let \(D : \ell^1(S) \to (\ell^1(S)/J)^{(2n)} \) be a continuous module derivation. Since \(ss^* \in E \) for all \(s \in S \), from Remark 2.1(ii), we have

\[
D(\delta_{ss^*}) = D(\delta_{ss^*} \ast \delta_{ss^*}) = D(\delta_{ss^*} \ast \delta_{ss^*}) \\
= \delta_{ss^*} D(\delta_{ss^*}) + D(\delta_{ss^*}) \delta_{ss^*} \\
= 2D(\delta_{ss^*}).
\]

Hence \(D(\delta_{ss^*}) = 0 \) for all \(s \in S \). Define \(\phi : S \to (\ell^1(S)/J)^{(2n)} \) by

\[
\phi(s) = D(\delta_s) \delta_s \quad (s \in S).
\]

We see that

\[
\phi(st) = D(\delta_s \ast \delta_t) \delta_{st} \\
= (\delta_s D(\delta_t)) \delta_s \ast \delta_t + (D(\delta_s) \delta_t) \delta_s \ast \delta_t \\
= \delta_s (D(\delta_t) \delta_t) \delta_s \ast \delta_t + (D(\delta_s) \delta_t) \delta_s \ast \delta_t \\
= \delta_s (\delta(\delta_t) \delta_t) \delta_s \ast \delta_t + D(\delta_s) \delta_s \ast \delta_t \\
= \delta_s \phi(t) \delta_s \ast \phi(s),
\]

for all \(s, t \in S \). Let \(B = \phi(S) \). Then \(B \) is a nonempty bounded subset of \((\ell^1(S)/J)^{(2n)} \). For any \(s \in S \) define the mapping \(T_s : (\ell^1(S)/J)^{(2n)} \to (\ell^1(S)/J)^{(2n)} \) by

\[
T_s(\Phi) = \delta_s \Phi \delta_s \ast \phi(s) \quad (\Phi \in (\ell^1(S)/J)^{(2n)}).
\]

Clearly each \(T_s \) \((s \in S) \) is an affine mapping and for every \(\Phi, \Psi \in (\ell^1(S)/J)^{(2n)} \) and \(s \in S \) we have

\[
\| T_s(\Phi) - T_s(\Psi) \| = \| \delta_s \Phi \delta_s \ast \phi(s) - \delta_s \Psi \delta_s \ast \phi(s) \| \leq \| \Phi - \Psi \|.
\]
So each T_s ($s \in S$) is nonexpansive. Now by using (1) for any $s, t \in S$ and $\Phi, \Psi \in (\ell^1(S)/J)^{(2n)}$ we find
\[
T_{st}(\Phi) = \delta_{st} \Phi \delta_{(st)^*} + \phi(st)
\]
\[
= \delta_s (\delta_t \Phi \delta_{(st)^*}) \delta_{s^*} + \delta_t \phi(t) \delta_{s^*} + \phi(s)
\]
\[
= \delta_s T_t(\Phi) \delta_{s^*} + \phi(s)
\]
\[
= T_s(T_t(\Phi)).
\]
So $\Gamma = \{T_s \mid s \in S\}$ defines a representation of S on $(\ell^1(S)/J)^{(2n)}$ which is nonexpansive and affine. From definition of T_s and (1), for any $s, t \in S$ it follows that $T_s(\Phi(t)) = \delta_s \phi(t) \delta_{s^*} + \phi(s) = \phi(st)$. Therefore $T_s(B) \subseteq B$ ($s \in S$). Let $\Phi \in B$. Now by Remark 2.1(ii) and the fact that $D(\delta_{s^*}) = 0$ ($s \in S$), we have
\[
T_s(T_{s^*}(\Phi)) = T_{ss^*}(\Phi) = \delta_{s^*} \Phi \delta_{ss^*} + \phi(ss^*) = \Phi \quad (s \in S).
\]
Since $T_{ss^*}(\Phi) \in B$, it follows that $T_s(B) = B$ for each $s \in S$. Here S is regarded as a discrete semigroup.

Since $\ell^1(S)/J \cong \ell^1(G_S)$, where G_S is the maximal group homomorphic image, it follows that $(\ell^1(S)/J)^{(2n)}$ is L-embedded. Also WAP(S) has a LIM. So by Lemma 2.2, there is $\Upsilon \in (\ell^1(S)/J)^{(2n)}$ such that $T_s(\Upsilon) = \Upsilon$ for all $s \in S$, or
\[
\delta_s \Upsilon \delta_{s^*} + \phi(s) = \Upsilon,
\]
for all $s \in S$. So $\delta_s \Upsilon \delta_{s^*} + D(\delta_s) \delta_{s^*} = \Upsilon$ ($s \in S$). Hence
\[
D(\delta_s) = \Upsilon \delta_s - \delta_s \Upsilon,
\]
for all $s \in S$. By definition of left module action of $\ell^1(E)$ on $\ell^1(S)$, we have $\delta_e \delta_s = \delta_s$ ($e \in E, s \in S$). Since $\text{lin}\{\delta_s \mid s \in S\}$ is dense in $\ell^1(S)$, we find $\delta_\varepsilon f = f$ for all $e \in E$ and $f \in \ell^1(S)$. Hence $\delta_e (f + J) = f + J$ ($e \in E, f \in \ell^1(S)$). Furthermore a routine inductive argument shows that for each $e \in E$ and $\Phi \in (\ell^1(S)/J)^{(2n)}$ ($n \geq 0$), we have $\delta_e \Phi = \Phi$. From this result and the fact that D is a module mapping, for any $s \in S$ and $\lambda \in \mathbb{C}$ we have
\[
D(\lambda \delta_s) = D(\lambda \delta_{ss^*} \delta_s)
\]
\[
= \lambda \delta_{ss^*} \lambda D(\delta_s)
\]
\[
= \lambda \delta_{ss^*} \Upsilon \delta_s - \delta_s \Upsilon
\]
\[
= \lambda \Upsilon \delta_s - \delta_s \Upsilon.
\]
Since D is additive, we get $D(f) = \Upsilon f - f \Upsilon$ for any $f \in \ell^1(S)$ of finite support. But D is continuous and functions of finite support are dense in $\ell^1(S)$, hence
\[
D(f) = \Upsilon f - f \Upsilon = D(\Upsilon^{-1}) f \quad (f \in \ell^1(S)),
\]
therefore D is inner. The proof is complete.

In [4], it has been proved that $\ell^1(S)$ is $(2n + 1)$-weakly module amenable as an $\ell^1(E)$-module, for each $n \in \mathbb{N}$, where S is an inverse semigroup with the set of idempotents E. From this result and above theorem we get the next corollary.

Corollary 2.4. Let S be an inverse semigroup with the set of idempotents E. Consider $\ell^1(S)$ as a Banach module over $\ell^1(E)$ with the trivial left action and natural right action. Then the semigroup algebra $\ell^1(S)$ is permanently weakly module amenable as an $\ell^1(E)$-module.
With the notations in previous corollary, we have the next result.

Corollary 2.5. Each continuous module derivation $D : \ell^1(S) \to (\ell^1(G_S))^{(n)}$ ($n \in \mathbb{N}$) is inner.

References

1. M. Amini, D. Ebrahimi Bagha, Weak module amenability for semigroup algebras, Semigroup Forum, 71 (2005), 18-26.
2. M. Amini and A. Bodaghi, Module amenability and weak module amenability for second dual of Banach algebras, Chamchuri J. Math. 2(1) (2010), 57-71.
3. M. Amini, A. Bodaghi, and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum 80 (2010), 302-312.
4. A. Bodaghi, M. Amini and R. Babaei, Module derivations into iterated duals of Banach algebras, Proc. Romanian Academy, series A, 12 (2011), 277–284.
5. Y. Choi, F. Ghahramani, Y. Zhang, Approximate and pseudo-amenable of various classes of Banach algebras, J. Funct. Anal. 256 (2009), 3158–3191.
6. H. G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, Stud. Math. 128 (1998), 19–54.
7. J. Duncan, I. Namioka, Amenability of inverse semigroups and their semigroup algebras. Proc. R. Soc. Edinb. A 80 (1988), 309-321.
8. D. Ebrahimi Bagha and M. Amini, Module derivation problem for inverse semigroups, Semigroup Forum 85 (2012), 525-532.
9. J. M. Howie, An introduction to semigroup theory, Academic Press, London. 1976.
10. B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc., 23(3) (1991), 281–284.
11. B. E. Johnson, Permanent weak amenability of group algebras of free groups, Bull. London Math. Soc. 31 (5) (1999), 569-573.
12. V. Losert, On derivation and crossed homomorphisms, in: Banach Algebra 2009, in: Banach Center Pub., Vol. 91, Inst. Math., Pol. Acad. Sci, Warszawa, 2010, 199–217.
13. V. Losert, The derivation problem for group algebras, Ann. of Math. 168 (2008), 221–246.
14. O. T. Mewomo, On n-weak amenability of Rees semigroup algebras, Proc. Indian Math. Sci., 118(4) (2008), 547–555.
15. W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41-48.
16. H. Pourmahmood-Aghababa, (Super) Module amenability, module topological center and semigroup algebras, Semigroup Forum 81 (2010), 344-356.
17. H. Pourmahmood-Aghababa, A note on two equivalence relations on inverse semigroups, Semigroup Forum 84 (2012), 200-202.
18. R. Rezavand et al., Module Arens regularity for semigroup algebras, Semigroup Forum 77 (2008), 300-305.
19. Y. Zhang, $2m$-weak amenability of group algebras, J. Math. Anal. Appl. 396 (2012), 412–416.