Convergence of spherical averages for actions of free groups

By Alexander I. Bufetov

1. Introduction

Let \((X, \nu)\) be a probability space and suppose a free group \(F_m\) with \(m\) generators acts on \((X, \nu)\) by measure-preserving transformations. Let \(\{a_1, \ldots, a_m\}\) be a set of free generators for \(F_m\) and let \(T_1, \ldots, T_m : X \to X\) be transformations corresponding to the generators. Write \(T^{-i} = T_{-1}^i\) for \(i = 1, \ldots, m\), and set \(A = \{-m, \ldots, -1, 1, \ldots, m\}\). We also have the action \(F_m\) on \(L_1(X, \nu)\), defined by \(T_g \varphi = \varphi \circ T_{g^{-1}}\), \(g \in F_m\).

Consider the set \(W_A\) of all finite words over the alphabet \(A\):
\[
W_A = \{w = w_1w_2\ldots w_n \mid w_i \in A\}.
\]
For each \(w \in W_A\), \(w = w_1 \ldots w_n\), define a transformation
\[
T_w = T_{w_1}T_{w_2}\ldots T_{w_n}.
\]

Let \(\Pi\) be a stochastic \(2m \times 2m\) matrix, whose rows and columns are indexed by elements of \(A\), that is, \(\Pi = (p_{ij}), i, j \in A\). Assume that \(\Pi\) has a unique stationary distribution \((p_{-m}, \ldots, p_{-1}, p_1, \ldots, p_m)\) and that \(p_i > 0\) for all \(i \in A\).

For \(w \in W_A\), \(w = w_1 \ldots w_n\), denote
\[
p(w) = p_{w_nw_{n-1}}p_{w_{n-1}w_{n-2}}\ldots p_{w_2w_1}, \quad \pi(w) = p_{w_n}p(w).
\]
Consider the operators
\[
s_n^\Pi = \sum_{|w| = n} \pi(w)T_w.
\]

In this paper, we investigate convergence of this sequence of operators.

Definition 1. We shall say that the matrix \(\Pi\) generates the free group if \(p_{ij} = 0\) is equivalent to \(i + j = 0\).
We shall need the symmetry condition
\[p_i = p_{-i}, \quad p_{-i,-j} = \frac{p_{ij}}{p_i}. \]
Relation (3) is equivalent to saying that all operators \(s_n^\Pi \) are self-adjoint.

Let \(F^2_m \) be the subgroup of words of even length in \(F_m \), that is, the subgroup generated by \(a_i a_j, i,j \in \{1, \ldots, m\} \).
Recall that \(L \log L(X,\nu) = \{ \varphi \in L_1(X,\nu) : \int_X |\varphi| \log^+ |\varphi| d\nu < \infty \} \).

Theorem 1. Let \((X,\nu)\) be a Lebesgue probability space. Assume the matrix \(\Pi \) generates the free group and satisfies (3). Then for any \(\varphi \in L \log L(X,\nu) \), the sequence \(s_{2n}^\Pi \varphi \) converges as \(n \to \infty \) both \(\nu \)-almost everywhere and in \(L_1(X,\nu) \) to an \(F^2_m \)-invariant function.

Remark. The sequence \(s_{2n+1}^\Pi \varphi \) also converges. The sequence \(s_n^\Pi \) need not converge, however, because the action of \(F_m \) might have an eigenfunction with eigenvalue \(-1\), that is, a nonzero function \(\psi \in L_1(X,\nu) \) such that \(T_i \psi = -\psi \) for all \(i \in A \) (for the same reason, the limit in Theorem 1 must be \(F^2_m \)-invariant but need not be \(F_m \)-invariant). If the action does not have eigenfunctions with eigenvalue \(-1\) then for any \(\varphi \in L \log L(X,\nu) \) the sequence \(s_{2n}^\Pi \varphi \) converges as \(n \to \infty \) both \(\nu \)-almost everywhere and in \(L_1(X,\nu) \) to an \(F_m \)-invariant limit.

Averages \(s_{2n}^\Pi \) converge under weaker assumptions on the matrix \(\Pi \) than in Theorem 1.

Definition 2. A matrix \(\Pi \) with nonnegative entries will be called irreducible if for some \(n > 0 \) all entries of the matrix \(\Pi + \Pi^2 + \ldots + \Pi^n \) are positive (if \(\Pi \) is stochastic then this is equivalent to saying that in the corresponding Markov chain any state is attainable from any other state).

Definition 3. A matrix \(\Pi \) with nonnegative entries will be called strictly irreducible if \(\Pi \) is irreducible and \(\Pi \Pi^T \) is irreducible (here \(\Pi^T \) stands for the transpose of \(\Pi \)).

Clearly, a matrix generating the free group is strictly irreducible.

Theorem 2. Let \((X,\nu)\) be a Lebesgue probability space and let \(p > 1 \). Assume the matrix \(\Pi \) is strictly irreducible and satisfies (3). Then for any \(\varphi \in L_p(X,\nu) \), the sequence \(s_{2n}^\Pi \varphi \) converges as \(n \to \infty \) both \(\nu \)-almost everywhere and in \(L_p \) to an \(F^2_m \)-invariant function.

2. History

First ergodic theorems for actions of arbitrary countable groups were obtained by V. I. Oseledets [17] in the following setting.

Let \(\Gamma \) be a countable group that acts by measure-preserving transformations of a probability space \((X,\nu)\), and for \(g \in \Gamma \) let \(T_g \) be the corresponding
transformation. Let μ be a probability measure on Γ satisfying the condition $\mu(g^{-1}) = \mu(g)$. Let $\mu^{(n)}$ be the n-th convolution of μ. The ergodic theorem of Oseledets states that for $\varphi \in L \log L(X, \nu)$, the averages

$$A_{2n}\varphi = \sum_{g \in \Gamma} \mu^{(2n)}(g)T_g \varphi$$

converge almost everywhere. The proof is based on consideration of the self-adjoint Markov operator $Q = \sum_{g \in \Gamma} \mu(g)T_g$.

In 1969 Y. Guivarc'h [9] (motivated by the work of Arnold and Krylov [1]) considered uniform spherical averages on the free group; that is,

$$s_n = \frac{1}{2m(2m-1)^{n-1}} \sum_{g:|g|=n} T_g$$

and proved that for $\varphi \in L_2(X, \nu)$ the sequence $s_{2n}\varphi$ converges in L_2 to an F^2_m-invariant function.

In 1986 R. I. Grigorchuk [6] (see also [7]) announced pointwise convergence for the averages

$$C_N = \frac{1}{N} \sum_{n=0}^{N-1} s_n.$$

In 1994 Nevo and Stein proved:

Theorem 3 (Nevo and Stein [15]). Let $p > 1$. Then for any $\varphi \in L_p(X, \nu)$ the sequence $s_{2n}\varphi$ converges as $n \to \infty$ both ν-almost everywhere and in L_p to an F^2_m-invariant function.

The Nevo-Stein theorem is a particular case of Theorem 1; we shall however consider it separately in Section 4 in order to illustrate the ideas of the proof of Theorem 1.

3. The Markov operator

Recall that if (Z, μ) is a probability space then a linear operator Q on $L_1(Z, \mu)$ is called a *measure-preserving Markov operator* if it preserves the cone of nonnegative functions, L_1-norm, and L_∞-norm.

Let $p = \{p_-m, \ldots, p_{-1}, p_1, \ldots, p_m\}$ be the stationary distribution of the matrix Π.

Consider the space $Y = X \times A$ with the measure $\eta = \nu \times p$ and a Markov operator P on $L_1(Y, \eta)$ given by

$$P\varphi(x, i) = \sum_{j \in A} p_{ij} \varphi(T_ix, j).$$

P is a measure-preserving Markov operator on $L_1(Y, \eta)$. It was introduced by R. I. Grigorchuk [7], J.-P. Thouvenot (oral communication), and myself [3].
For \(n > 1 \) we have

\[
P^n \varphi(x, i) = \sum_{w \in W(n-1), j \in A} p_{iw_{n-1}} p(w) \varphi(T_w T_i x, j),
\]

which implies:

Proposition 1. Let \(\psi \in L_1(X, \nu) \). Let \(\varphi \in L_1(Y, \eta) \) be given by \(\varphi(x, a) = \psi(x) \). Then

\[
s_n \psi = \sum_{i \in A} p_i P^n \varphi(x, i).
\]

To prove Theorem 1, it suffices to prove the following:

Lemma 1. Suppose \(\Pi \) generates the free group and satisfies the symmetry condition (3). Suppose the action of \(F_m^2 \) on \((X, \nu) \) is ergodic. Then for any \(\varphi \in L \log L(Y, \eta) \),

\[
P^n \varphi \to \int_Y \varphi d\eta
\]

both \(\eta \)-almost everywhere and in \(L_1(Y, \eta) \).

First we discuss ergodicity of \(P \) and \(P^2 \).

Lemma 2. If the action of \(F_m \) on \((X, \nu) \) is ergodic and \(\Pi \) is strictly irreducible, then \(P \) is ergodic.

Definition 4. A function \(\varphi \in L_1(Y, \eta) \) does not depend on \(A \) if there exists \(\psi \in L_1(X, \nu) \) such that \(\varphi(x, a) = \psi(x) \) for all \(a \in A \).

Definition 5. A subset of \(A \) of \(Y \) will be called \(P \)-invariant if \(P \chi_A = \chi_A \) (where \(\chi_A \) stands for the characteristic function of \(A \)).

Ergodicity of a measure-preserving Markov operator is equivalent to the absence of nontrivial invariant subsets (see [20]). Lemma 2 follows now from:

Proposition 2. Suppose that \(\Pi \) is strictly irreducible. Then \(A \subset Y \) is \(P \)-invariant if and only if \(\chi_A \) does not depend on \(A \) and is \(F_m \)-invariant.

Proof. If \(p_{kl} > 0 \) then \(\chi_A(T_k x, l) = \chi_A(x, k) \). If \((\Pi^T \Pi)_{ij} > 0 \) then there exists \(k \in A \) such that \(p_{ki} > 0, p_{kj} > 0 \). Therefore, \(\chi_A(x, k) = \chi_A(T_k x, i) = \chi_A(T_k x, j) \), which implies \(\chi_A(x, i) = \chi_A(x, j) \) and proves that \(\chi_A \) does not depend on \(A \). The equality \(\chi_A(T_i x, j) = \chi_A(x, i) \), true when \(p_{ij} > 0 \), and the irreducibility of \(\Pi \) imply group-invariance of \(\chi_A \).

Lemma 3. Suppose that \(\Pi \) is strictly irreducible and \(F_m^2 \) acts ergodically on \((X, \nu) \). Then the operator \(P^2 \) is ergodic.
By Lemma 2, \(P \) is ergodic. If \(P^2 \) is not ergodic, then there exists a nonconstant function \(\psi \in L_1(Y, \eta) \) such that \(P\psi = -\psi \). Arguing in the same way as in Proposition 2, we obtain that \(\psi \) does not depend on \(A \), in other words, there exists \(\phi \in L_1(X, \nu) \) such that \(\psi(x, a) = \phi(x) \). The relation \(P\psi = -\psi \) implies \(T_i \phi = -\phi \) for all \(i \in A \), whence \(T_g \phi = \phi \) for all \(g \in F_m^2 \), and the Lemma is proved.

Remark. The Kakutani-Hopf ergodic theorem for Markov operators immediately implies that if the action of \(F_m \) on \((X, \nu) \) is ergodic then for any \(\phi \in L_1(X, \nu) \),

\[
\frac{1}{N} \sum_{n=0}^{N-1} s_n^\Pi \phi \rightarrow \int_X \phi \, d\nu
\]

both \(\nu \)-almost everywhere and in \(L_1(X, \nu) \) as \(N \rightarrow \infty \) (see [7], [3]).

The operator adjoint to \(P \) is given by

\[
P^* \phi(x, i) = \sum_{j \in A} p^{-i, -j} \phi(T_{-j} x, j).
\]

Consider a unitary operator \(U \) given by

\[
U \phi(x, i) = \phi(T_i x, -i).
\]

Clearly, \(U^2 = \text{Id} \).

Proposition 3. Suppose the matrix \(\Pi \) satisfies the symmetry condition (3). Then \(P = UP^* U \).

Indeed, using (3), we can write

\[
P^* \phi(x, i) = \sum_{j \in A} p_{-i, -j} \phi(T_{-j} x, j) = UPU \phi(x, i).
\]

4. Uniform spherical averages

In this section, we illustrate the method of the proof of Theorem 1, by deducing the Nevo-Stein theorem from Rota’s “Alternierende Verfahren” theorem [19] applied to the Markov operator (5).

Consider uniform spherical averages (4). They are a particular case of the averages \(s_n^\Pi \) for \(\Pi \) defined by \(p_{ij} = 1/(2m - 1) \) for \(i + j \neq 0 \) and \(p_{ij} = 0 \) for \(i + j = 0 \).

For \(\Pi \) thus defined, the Markov operator (5) takes the form

\[
P \phi(x, i) = \frac{1}{2m - 1} \sum_{j: i + j \neq 0} \phi(T_i x, j)
\]
and its adjoint is given by

\[P^* \varphi(x, i) = \frac{1}{2^{m+1}} \sum_{j + j \neq 0} \varphi(T_{-j}x, j). \]

Lemma 4. For \(P \) given by (9) and \(U \) given by (8),

\[P^*P = \frac{2m - 2}{2m - 1}UP + \frac{1}{2m - 1} \text{Id}. \]

Proof. We have

\[UP\varphi(x, i) = P\varphi(T_i x, -i) = \frac{1}{2^{m+1}} \sum_{k:k \neq i} \varphi(x, k) \]

and

\begin{align*}
P^*P\varphi(x, i) & = \frac{1}{2^{m+1}} \sum_{j + j \neq 0} P\varphi(T_{-j}x, j) \\
& = \frac{1}{(2m - 1)^2} \sum_{j + j \neq 0 \land k + k \neq 0} \sum_{k:k \neq i} \varphi(x, k) \\
& = \frac{2m - 2}{(2m - 1)^2} \sum_{k:k \neq i} \varphi(x, k) + \frac{1}{2^{m+1}} \varphi(x, i) \\
& = \frac{(2m - 2)}{2^{m+1}} UP + \frac{1}{2^{m+1}} \text{Id}\varphi(x, i).
\end{align*}

From Lemma 4 and Proposition 3, by induction, we obtain

\[(P^*)^n P^n = \frac{2m - 2}{2m - 1} UP^{2n-1} + \frac{1}{2^{m+1}} (P^*)^{n-1} P^{n-1} \]

or

\[P^{2n-1} = \frac{2m - 1}{2m - 2} UP(P^*)^n P^{n-1} - \frac{1}{2^{m+1}} UP(P^*)^{n-1} P^{n-1}. \]

The Nevo-Stein theorem easily follows now from the Alternierende Verfahren theorem of Gian-Carlo Rota [19]:

Theorem 4 (Rota [19]). Let \((Z, \mu)\) be a probability space. Let \(Q\) be a measure-preserving Markov operator on \(L_1(Z, \mu)\). Then for any \(\varphi \in L \log L(Z, \mu)\) the sequence \((Q^*)^n Q^n \varphi\) converges \(\mu\)-almost everywhere and in \(L_1\) as \(n \to \infty\).

Theorem 4 generalizes Stein’s theorem [21] on convergence of powers of self-adjoint operators and easily follows from the Martingale convergence theorem; we recall its proof in Section 6. Ornstein’s counterexample [16] shows that neither Stein’s nor Rota’s theorem holds for \(\varphi \in L_1\).

The equation (10) and Theorem 4 yield the convergence of \(P^{2n}\varphi\) for \(\varphi \in L \log L(Y, \eta)\). Lemma 3 implies \(F_{m^2}\)-invariance of the limit. The Nevo-Stein theorem is proved.
5. Proof of Lemma 1

Lemma 5. Suppose Π generates the free group and satisfies the symmetry condition (3). Then there exists a positive constant c depending only on Π such that for any nonnegative $\varphi \in L_1(Y, \eta)$ and any $n > 0$,

\[(P^*)^n P^n \varphi \geq c U P^{2n-1} \varphi.\]

Proof. We first prove the statement for $n = 1$:

\[P^* P \varphi \geq c U P \varphi.\]

Now,

\[P^* P \varphi (x, i) = \sum_{j, k \in A} \frac{p_{ji} p_{jk}}{p_i} p_{jk} \varphi (x, k).\]

If Π generates the free group, then for any $i, k \in A$ we have $\sum_{j \in A} \frac{p_{ji} p_{jk}}{p_i} p_{jk} > 0$. Since

\[U P (x, i) = \sum_k p_{-i, k} \varphi (x, k),\]

(12) is proved; in view of Proposition 3, (11) follows by induction, and the lemma is proved.

Now we prove L_1-convergence of the powers P^n. The following proposition is well known (see, for example, [11]).

Proposition 4. Let Q be a measure-preserving Markov operator on a probability space (Z, μ). Then the tail sigma-algebra of Q is trivial if and only if for any $\varphi \in L_1(Z, \mu)$, $(Q^*)^n \varphi \to \int_Z \varphi d\mu$ in $L_1(Z, \mu)$ as $n \to \infty$.

Since $P = UP^* U$, triviality of the tail sigma-algebra of P is equivalent to the triviality of that of P^*. To establish this triviality, we shall use the following version of the 0-2 law for Markov operators.

Lemma 6. Let Q be an arbitrary measure-preserving Markov operator on a probability space (Z, μ).

If the tail sigma-algebra of Q is trivial then for any $\varphi, \psi \in L_2(Z, \mu)$

\[\int_Z (Q^*)^n \varphi \cdot (Q^*)^n \psi d\mu \to \int_Z \varphi d\mu \int_Z \psi d\mu\]

as $n \to \infty$.

If the tail sigma-algebra of Q is nontrivial then for any $\varepsilon > 0$ there exist positive functions $\varphi, \psi \in L_\infty(Z, \mu)$ of integral 1 such that

\[\limsup_{n \to \infty} \int_Z (Q^*)^n \varphi \cdot (Q^*)^n \psi d\mu < \varepsilon.\]
The proof of Lemma 6 closely models Vadim A. Kaimanovich’s proof of the 0-2 law [11] and will be given in Section 6.

Lemma 7. Under assumptions of Lemma 1, for any $\varphi, \psi \in L_2(Y, \eta),$

$$\int_Y P^n \varphi \cdot \psi d\eta \to \int_Y \varphi d\eta \int_Y \psi d\eta.$$

This follows from the K-property for the operator P, which we prove in Section 7 (Lemma 10).

Lemma 6, Lemma 7, and the inequality (11) easily imply triviality of the tail sigma-algebra of P.

Indeed, for any positive $\varphi, \psi \in L_\infty(Y, \eta),$ we have

$$\int_Y P^n \varphi \cdot P^n \psi d\eta = \int_Y (P^*)^n P^n \varphi \cdot \psi d\eta \geq c \int_Y U P^{2n-1} \varphi \cdot \psi d\eta \to c \int_Y \varphi d\eta \int_Y \psi d\eta$$

as $n \to \infty$. In view of Lemma 6, this relation implies that P^* (and hence also P, since $P = UP^*U$) has trivial tail sigma-algebra.

Proposition 4 yields that for any $\varphi \in L_1(Y, \eta),$

$$P^n \varphi \to \int_Y \varphi d\eta$$

in L_1 as $n \to \infty$.

Now we establish pointwise convergence of $P^n \varphi$ for $\varphi \in L \log L(Z, \mu)$.

Recall that if (Z, μ) is an arbitrary probability space then the Orlicz norm (see [24], [22]) on the space $L \log L(Z, \mu)$ can be introduced, for example, by putting

$$||\varphi||_{L \log L} = \inf\{c : \int_Z \frac{|\varphi|}{c} \cdot \log\left(\frac{|\varphi|}{c} + 2\right) d\mu \leq 1\}.$$

Lemma 8. Let (Z, μ) be a probability space and let Q be a measure-preserving Markov operator on $L_1(Z, \mu)$.

For any $p > 1$ there exists a constant $A_p > 0$ such that for any $\varphi \in L_p(Z, \mu)$ we have

$$\|\sup_n (Q^*)^n Q^n \varphi\|_{L_p} \leq A_p \|\varphi\|_{L_p}.$$

There exists a constant $A > 0$ such that for any $\varphi \in L \log L(Z, \mu),$

$$\|\sup_n (Q^*)^n Q^n \varphi\|_{L_1} \leq A \|\varphi\|_{L \log L}.$$

Lemma 8 will be proved in Section 6.

Lemmas 5, 8 yield:
Lemma 9. Let $p > 1$. Then there exists a constant $p > 1$ such that for any $\varphi \in L_p(Y, \eta)$,
\[\| \sup_n P^{2n} \varphi \|_{L_p} \leq A_p \| \varphi \|_{L_p}. \]
There exists a constant $A > 0$ such that for any $\varphi \in L \log L(y, \eta)$,
\[\| \sup_n P^{2n} \varphi \|_{L_1} \leq A \| \varphi \|_{L \log L}. \]

Proposition 5. Let Q be a measure-preserving Markov operator on a probability space (Z, μ). If the tail sigma-algebra of Q^* is trivial then for any $\varphi \in L_2(Z, \mu)$ we have $Q^n \varphi \to \int \varphi$ in L_2 as $n \to \infty$.

The proof is given in Section 6.

Now let $\varphi \in L_2(Y, \eta)$, $\int_Y \varphi d\eta = 0$. Then $\|P^n \varphi\|_{L_2} \to 0$ as $n \to \infty$ by Proposition 5. By Lemma 9, for any positive integer k, we have
\[\| \sup_n P^{2n+2k} \varphi \|_{L_2} \leq A_2 \| P^{2k} \varphi \|_{L_2}, \]
and the right part of the inequality tends to 0 as $k \to \infty$. This implies pointwise convergence of $P^{2n} \varphi$ for $\varphi \in L_2(Y, \eta)$, and, since we have L_1-convergence for the whole sequence $P^n \varphi$, we also have pointwise convergence for $P^n \varphi$ with $\varphi \in L_2(Y, \eta)$.

Since L_2 is dense in $L \log L$, pointwise convergence of $P^n \varphi$ for $\varphi \in L_2$ and the $L \log L$-maximal inequality of Lemma 9 yield pointwise convergence of $P^n \varphi$ for any $\varphi \in L \log L$.

To complete the proof of Lemma 1 and Theorem 1, it only remains to prove Lemmas 6,7, 8 and Proposition 5. We do so in the following two sections.

6. Proofs of Lemmas 6, 8 and of Proposition 5

Let (Z, μ) be a probability space and let Q be an arbitrary measure-preserving Markov operator on $L_1(Z, \mu)$. Let
\[Z^Z = \{ z = (z_n), n \in \mathbb{Z}, z_n \in Z \} \]
be the space of bi-infinite sequences of elements of Z and let Q_μ be the Markov measure on Z^Z corresponding to the operator Q and the stationary distribution μ. Let σ_Q be the shift on (Z^Z, Q_μ) given by $(\sigma_Q(z))_n = (z)_{n+1}$; clearly, σ_Q preserves the measure Q_μ.

For any $k, m \in \{-\infty\} \cup \mathbb{Z} \cup \{ \infty \}$, $k \leq m$, denote by \mathcal{F}_k^m the sigma-algebra on Z^Z generated by the random variables z_l, $k \leq l \leq m$. In particular, \mathcal{F}_k is the sigma-algebra generated by z_k. We shall sometimes write $\mathcal{F}_{\geq k}$ for \mathcal{F}_k^∞ and $\mathcal{F}_{\leq k}$ for $\mathcal{F}_{-\infty}^k$.
If \(\varphi \in L_1(Z, \mu) \) and \(\Phi \in L_1(Z^\mathbb{Z}, Q_\mu) \) is given by \(\Phi(z) = \varphi(z_0) \), then
\[
E\left(\Phi(z) | F_{-n}^\infty\right) = Q^n \varphi(z_{-n}), \quad \text{and} \quad E\left(E\left(\Phi(z) | F_{-n}^\infty\right) | F_0\right) = (Q^*)^n Q^n \varphi(z_0).
\]

Rota's theorem (Theorem 4) and Lemma 8 immediately follow now from the inverted Martingale dominated convergence theorem and the corresponding maximal inequalities (see [13, Chap. IV, Props. 2-8, 2-10]). This argument implies, moreover, the following:

Proposition 6. Suppose that the tail sigma-algebra of \(Q^* \) is trivial. Then for all \(\varphi \in L \log L(Z, \mu), \lim_{n \to \infty} (Q^*)^n Q^n \varphi = f \varphi d\mu. \)

Proposition 6 implies Proposition 5, because if the tail sigma-algebra of a Markov operator is trivial then for any \(\varphi \in L_2(Z, \mu) \) satisfying \(\int_z \varphi d\mu = 0 \), we have
\[
\int_Z (Q^n \varphi)^2 d\mu = \int_Z (Q^*)^n Q^n \varphi \cdot \varphi d\mu \to 0
\]
as \(n \to \infty \), by Proposition 6.

Now we prove Lemma 6. The proof closely models Kaimanovich's proof of the 0-2 law for Markov operators [11].

The first part of the lemma is a corollary of Proposition 5. To prove the second part, let \(F_\infty \) be the tail sigma-algebra of \(Q \), that is, \(F_\infty = \bigwedge_{k>0} F_{\geq k} \), and assume there exists \(A \in F_\infty \) such that \(0 < Q_\mu(A) < 1 \). Set
\[
\Phi(z) = \chi_A(z) / Q_\mu(A), \quad \Psi(z) = \chi_{(Z^\mathbb{Z} \setminus A)}(z) / Q_\mu(Z^\mathbb{Z} \setminus A).
\]
Then \(\Phi, \Psi \) are positive, bounded, tail-measurable, \(\int \Phi dQ_\mu = \int \Psi dQ_\mu = 1 \), \(\Phi \cdot \Psi = 0 \). Let \(M \) be a constant such that \(M > \Phi, M > \Psi \). Set \(\varphi_k(z_k) = E(\Phi(z)|F_{\leq k}), \psi_k(z_k) = E(\Psi(z)|F_{\leq k}) \). Clearly, \(\varphi_k, \psi_k \) are positive and bounded from above by \(M \). By the Martingale convergence theorem, \(\varphi_k(z_k) \to \Phi(z), \psi_k(z_k) \to \Psi(z) \) both \(Q_\mu \)-almost everywhere and in \(L_1(Z^\mathbb{Z}, Q_\mu) \) as \(k \to \infty \).

Since \(\Phi, \Psi \) are \(F_\infty \)-measurable, we have
\[
E(\varphi_k(z_k)|F_\infty) \to \Phi, \quad E(\psi_k(z_k)|F_\infty) \to \Psi
\]
both \(Q_\mu \)-almost everywhere and in \(L_1(Z^\mathbb{Z}, Q_\mu) \) as \(k \to \infty \).

Choose \(k \) in such a way that
\[
\int_{Z^\mathbb{Z}} E(\varphi_k(z_k)|F_\infty) E(\psi_k(z_k)|F_\infty) dQ_\mu < \varepsilon.
\]
Clearly,
\[
E(\varphi_k(z_k)|F_{\geq n+k}) = (Q^*)^n \varphi(z_{n+k}), \quad E(\psi_k(z_k)|F_{\geq n+k}) = (Q^*)^n \psi(z_{n+k}).
\]

Therefore, as \(n \to \infty \),
\[
\int_Z (Q^*)^n \varphi_k(z) \cdot (Q^*)^n \psi_k(z) d\mu = \int_{Z^\mathbb{Z}} E(\varphi_k(z_k)|F_{\geq n+k}) E(\psi_k(z_k)|F_{\geq n+k}) dQ_\mu
\]
\[
\to \int_{Z^\mathbb{Z}} E(\varphi_k(z_k)|F_\infty) E(\psi_k(z_k)|F_\infty) dQ_\mu < \varepsilon,
\]
and Lemma 6 is proved.
7. K-property and the proof of Lemma 7

Let Y^Z be the space of biinfinite sequences of elements of Y:

$$Y^Z = \{ y : y = (y_n), n \in \mathbb{Z}, y_n \in Y \}.$$

Let P_η be the measure corresponding to the operator P and the stationary distribution η, and let σ_P be the shift on (Y^Z, P_η). In order to prove Lemma 7, it suffices to show that σ_P is mixing. To do so, we establish the following

Lemma 10. Assume F^2_m acts ergodically on (X, ν) and assume the matrix Π is strictly irreducible. Then the system (Y^Z, P_η, σ_P) has K-property.

The proof is based on the Rohlin-Sinai theorem [18]. First, we give another realization of σ_P.

Let Σ_A be the space of bi-infinite sequences of symbols of A:

$$\Sigma_A = \{ \omega : \omega = (\omega_n), n \in \mathbb{Z}, \omega_n \in A \}.$$

Let $\sigma_A : \Sigma_A \rightarrow \Sigma_A$ be the shift on Σ_A. Let μ_Π be the σ_A-invariant Markov measure on Σ_A corresponding to the matrix Π and its stationary distribution p. Consider the map $T : \Sigma_A \times X \rightarrow \Sigma_A \times X$ given by the formula

$$T(\omega, x) = (\sigma_A \omega, T_{\omega_0} x).$$

Clearly, the map T preserves the measure $\mu_\Pi \times \nu$.

Lemma 11. The systems $(\Sigma_A \times X, \mu_\Pi \times \nu, T)$ and (Y^Z, P_η, σ_P) are isomorphic.

Proof. Let $y \in Y^Z$. Then $y = (y_n)$, where $y_n \in Y$; that is, $y_n = (i_n, x_n)$, $i_n \in A$, $x_n \in X$. Set $\omega(y) = (i_n)$, $n \in \mathbb{Z}$ and $x(y) = x_0$. The map $F : Y^Z \rightarrow \Sigma_A \times X$ given by $F(y) = (\omega(y), x(y))$ produces the desired isomorphism (F is invertible because for P_η-almost all $y \in Y^Z$, we have $x_1 = T_{i_0} x_0$, $x_2 = T_{i_1} x_1$, $x_{-1} = T_{-i_{-1}} x_0$, etc.)

Now we establish the K-property for the system $(\Sigma_A \times X, \mu_\Pi \times \nu, T)$. The proof follows the method of Oseledets [17].

As in last section, write $F^m(Y^Z)$ for the σ-algebra in Y^Z generated by the random variables y_l, $k \leq l \leq m$; write $F^m(\Sigma_A)$ for the σ-algebra in Σ_A generated by the random variables ω_l, $k \leq l \leq m$; write $F_{\geq k}$ instead of F^k, $F_{\leq k}$ instead of F^k, and F_k instead of F^k; finally, denote by $B(X)$ the σ-algebra of all ν-measurable subsets of X, by $B(\Sigma_A \times X)$ the σ-algebra of all $\mu_\Pi \times \nu$-measurable subsets of $\Sigma_A \times X$.

Let $\pi(T)$ be the Pinsker σ-algebra of T. We shall use the Rohlin-Sinai theorem [18] to prove the triviality of $\pi(T)$, and therefore the K-property of T.
Consider the σ-algebra $\mathcal{G}_+ = \mathcal{F}_{\geq 0}(\Sigma_A) \times \mathcal{B}(X)$ (the future of our Markov process). Clearly, $T_\mathcal{G}_+ \supset \mathcal{G}_+$, and $\forall k \in \mathbb{Z} T^k \mathcal{G}_+ = \mathcal{B}(\Sigma_A \times X)$; by the Rohlin-Sinai theorem [18], $\mathcal{G}_+ \supset \pi(T)$. Let $\mathcal{G}_- = \mathcal{F}_{\leq 0}(\Sigma_A) \times \mathcal{B}(X)$ (the past of our Markov process). Clearly, $T^{-1} \mathcal{G}_- \supset \mathcal{G}_-$, and $\forall k \in \mathbb{Z} T^k \mathcal{G}_- = \mathcal{B}(\Sigma_A \times X)$. By the Rohlin-Sinai theorem, $\mathcal{G}_- \supset \pi(T^{-1}) = \pi(T)$. We have, therefore, $\pi(T) \subset \mathcal{G}_+ \land \mathcal{G}_-$. It is easy to check that $(\mu \land \nu)$ almost surely we have

\[(14) \quad (\mathcal{F}_{\geq 0}(\Sigma_A) \times \mathcal{B}(X)) \land (\mathcal{F}_{\leq 0}(\Sigma_A) \times \mathcal{B}(X)) = \mathcal{F}_0(\Sigma_A) \times \mathcal{B}(X).\]

For $k \in \mathbb{Z}$, let $\mathcal{G}_k = \mathcal{F}_k(\Sigma_A) \times \mathcal{B}(X)$ (the moment k of our Markov process). By (14), $\pi(T) \subset \mathcal{G}_0$. Since $T \pi(T) = \pi(T)$ and $T^k \mathcal{G}_0 = \mathcal{G}_k$, $\pi(T) \subset \land_{k \in \mathbb{Z}} \mathcal{G}_k$.

Now let $\varphi : \Sigma_A \times X \to \mathbb{R}$ be $\pi(T)$-measurable. Then for any $k \in \mathbb{Z}$ there exists $\psi : Y \to \mathbb{R}$ such that $\varphi(\omega, x) = \psi_k(\omega_k, x)$.

Since for all $k \in \mathbb{Z}$ we have $E(E(\varphi|\mathcal{G}_k)\mathcal{G}_0) = \varphi$, we obtain

\[(15) \quad (P^*)^k P^k \varphi_0 = P^k (P^*)^k \varphi_0 = \varphi_0 \quad \text{for all} \quad k \in \mathbb{N}.\]

To prove the triviality of $\pi(T)$, it remains to prove that a function $\varphi_0 : Y \to \mathbb{R}$, satisfying (15), is a constant.

Proposition 7. Suppose Π is strictly irreducible, $\varphi \in L_1(Y, \eta)$. Then a set A is $P^* P$-invariant if and only if χ_A does not depend on A.

Indeed,

\[P^* P \chi_A(x, i) = \sum_{k,l} \frac{p_{k,l} o_k}{p_i} p_{k,l} \chi_A(x, l)\]

and, for i, l fixed, we have $\sum_k \frac{p_{k,l} o_k}{p_i} p_{k,l} > 0$ if and only if $(\Pi^T \Pi)_{i,l} > 0$, which implies the proposition.

Lemma 12. Suppose the matrix Π is strictly irreducible. Suppose a set $A \subset Y$ is both $P^* P$ and $(P^*)^2 P^2$ invariant. Then χ_A does not depend on A and is F^2_m-invariant.

By the previous proposition, χ_A does not depend on A. Write

\[\chi_A(x, i) = (P^*)^2 P \chi_A(x, i) = \sum \frac{p_{j,l} o_j}{p_i} p_{k,l} \chi_A(T_i T_{-j} x, m).\]

We have, then, $\chi_A(x) = \chi_A(T_i T_{-j} x)$ for all j, l such that $(\Pi^T \Pi)_{i,l} > 0$. Since the matrix Π is strictly irreducible, the claim is proved.

Lemma 10 is proved and it implies, in particular, that σ_P is mixing, which yields Lemma 7.

The proof of Theorem 1 is complete.
Remark 1. Let \((Z, \mu)\) be a Lebesgue probability space, \(Q\) a measure-preserving Markov operator on \(L_1(Z, \mu)\), \((Z^Z, Q_\mu)\) the space of trajectories of \(Q\), \(\sigma_Q\) the corresponding shift, and \(\pi(\sigma_Q)\) the Pinsker sigma-algebra of \(\sigma_Q\). Then we have:

PROPOSITION 8. Note that \(\pi(\sigma_Q) \subset \mathcal{F}_0(Z^Z)\). If \(C \subset Z\) and the set
\[\{z : z_0 \in C\} \in \pi(\sigma_Q) \text{ then } \chi_C = Q^k(Q^*)^k \chi_C = (Q^*)^kQ^k \chi_C \text{ for any } k \in \mathbb{N}. \]

The proof is the same as that of Lemma 10: first, the Rohlin-Sinai theorem gives that \(\pi(\sigma_Q) \subset \mathcal{F}_{\geq 0}(Z^Z) \cap \mathcal{F}_{\leq 0}(Z^Z) = \mathcal{F}_0(Z^Z)\), then the \(\sigma_Q\)-invariance of \(\pi(\sigma_Q)\) implies that \(\pi(\sigma_Q) \subset \wedge_{k \in \mathbb{Z}} \mathcal{F}_k(Z^Z)\), which implies the proposition.

Remark 2. Let \(\mu\) be an arbitrary Borel probability \(\sigma_A\)-invariant measure on \(\Sigma_A\). Clearly, the map \(T\), defined by (13), preserves the measure \(\mu \times \nu\).

Let \(B = (B_{ij})\), \(i, j \in A\), be a \(0-1\) matrix, and let \(\mu\) be a Gibbs measure (in the sense of Bowen [2]) on the subshift of \(\Sigma_A\) given by the matrix \(B\).

Arguing in the same way as in the proof of Lemma 10, we see that if \(B\) is strictly irreducible and the action of \(F_\mu^2\) on \(X\) is ergodic, then the system \((\Sigma_A \times X, \mu \times \nu, T)\) has the \(K\)-property.

8. Proof of Theorem 2

LEMMA 13. Suppose that \(\Pi\) satisfies (3) and that all entries of the matrix \(\Pi I + (\Pi I)^2 + \cdots + (\Pi I)^k\) are positive. Then there exists a constant \(c > 0\) such that for any nonnegative \(\varphi \in L_1(Y, \eta)\),
\[((P^*)^n P^n + (P^*)^n PP^*P^n + \cdots + (P^*)^n PP^*P^n)^n \varphi \geq cU P^{2n-1} \varphi \]
almost everywhere.

The proof is the same as that of Lemma 5.

LEMMA 14. Let \((Z, \mu)\) be a probability space, let \(Q\) be a measure-preserving Markov operator on \(L_1(Z, \mu)\), let \(p > 1\) and let \(k\) be a positive integer. Then for any \(\varphi \in L_p(X, \nu)\) the sequence \(Q^n(Q^*Q)^k(Q^*)^n \varphi\) converges \(\mu\)-almost everywhere in \(L_p\) as \(n \to \infty\).

Moreover,
\[\|\sup_n (Q^*Q)^k Q^n \varphi\|_{L_p} \leq A_p \|
\phi\|_{L_p}. \]

Let \(\varphi \in L_1(Z, \mu)\) and define \(\Phi \in L_1(Z^Z, Q_\mu)\) by \(\Phi(z) = \varphi(z_0)\). Set
\[\Phi_0^n(z) = E(\Phi(z) | \mathcal{F}_n^\infty) = (Q^*)^n \varphi(z_n) \]
and for \(i \geq 1\) let
\[\Phi_i^n(z) = E(E(\Phi_{i-1}^n(z) | \mathcal{F}_{n-1}) | \mathcal{F}_n). \]
Clearly,
\[\Phi_i^i(z) = (Q^*Q)^i(Q^*)^n\phi(z_n), \]
and
\[E(\Phi_i^i(z)|F_0) = Q^n(Q^*Q)^i(Q^*)^n\phi(z_n). \]

The statement of the proposition follows now from Rota’s theorem (Theorem 4) and the \(L_p \) maximal inequality for martingales (see [13, Prop. IV-2-8]) by induction on \(i \).

In a similar fashion, Lemma 6 implies:

Lemma 15. Let \(k \) be a nonnegative integer. If the tail sigma-algebra of \(Q \) is trivial then for any \(\phi, \psi \in L_2(Z, \mu) \)
\[\int Q^k(Q^*)^n\phi \cdot Q^k(Q^*)^n\psi d\mu \rightarrow \int \phi d\mu \int \psi d\mu \]
as \(n \rightarrow \infty \).

If the tail sigma-algebra of \(Q \) is nontrivial then for any \(\varepsilon > 0 \) there exist positive functions \(\phi, \psi \in L_\infty(Z, \mu) \) of integral 1 such that
\[\limsup_{n \rightarrow \infty} \int Q^k(Q^*)^n\phi \cdot Q^k(Q^*)^n\psi d\mu < \varepsilon. \]

The rest of the proof goes the same way as that of Theorem 1, with Lemma 14 being used instead of Lemma 8 and Lemma 15 assuming the role of Lemma 6.

9. A conjecture

Theorem 2 can be applied to obtain spherical convergence for actions of some classes of Markov groups (in the sense of Gromov [8]).

Let \(\Gamma \) be a Markov group. Its elements can then be coded by admissible words in a topological Markov chain. Assume that the matrix \(A \) of the chain is irreducible and let \(\Pi \) be the matrix of the Parry measure (in other words, the measure of maximal entropy) corresponding to \(A \). If \(\Pi \) is strictly irreducible and satisfies the symmetry condition (3), then Theorem 2 is applicable. The spherical averages \(s_{\Pi}^f \) for \(\Pi \) thus chosen can easily be reduced to uniform spherical averages in \(\Gamma \) (see [4]). Theorem 2 then yields convergence of uniform spherical averages for the group \(\Gamma \). For example, this takes place for Vershik’s locally finite groups [23].

Gromov [8] proved that Gromov hyperbolic groups are Markov. If the coding satisfied the assumptions of Theorem 2, then Theorem 2 would yield the following:
Conjecture 1. Let Γ be a Gromov hyperbolic group, let S be a symmetric set of generators, and denote by Γ^2 the subgroup generated by elements that have a geodesic representation of even length over the alphabet S. Let $p > 1$. Suppose Γ acts on a probability space (X, ν) by measure-preserving transformations.

Then for any $\varphi \in L^p(X, \nu)$ the sequence

$$s_{2n}\varphi = \frac{1}{\# \{ g : |g|_S = 2n \}} \sum_{g : |g|_S = 2n} T_g \varphi$$

converges as $n \to \infty$ almost everywhere and in L_p to a Γ^2-invariant function.

Assuming exponential mixing, Fujiwara and Nevo [5] obtained a convergence theorem for Cesaro averages of the spherical averages for Gromov hyperbolic groups.

Acknowledgements. I am deeply grateful to Rostislav I. Grigorchuk, who introduced me to this subject, and to Amos Nevo, who suggested to use Rota’s theorem. Vadim A. Kaimanovich made many important suggestions, both on content and on presentation; I am greatly indebted to him. I am grateful to Charles Fefferman, Boris M. Gurevich, Gregory A. Margulis, Valeriy I. Oseledets, Yakov G. Sinai, Elias M. Stein, Jean-Paul Thouvenot, and Anatoly M. Vershik for useful discussions. While I was working on the paper, I visited La Sapienza di Roma and KTH Stockholm in the framework of “Russian-Swedish Workshop on Dynamical Systems”. I am deeply grateful to these institutions for their hospitality. This research was partially supported by the CRDF under grant RM1-2086.

References

[1] V. I. Arnold and A. L. Krylov, Equidistribution of points on a sphere and ergodic properties of solutions of ordinary differential equations in the complex plane, Dokl. Akad. Nauk SSSR 148 (1963), 9–12.
[2] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer-Verlag, New York, 1975.
[3] A. I. Bufetov, Operator ergodic theorems for actions of free semigroups and groups, Funct. Anal. Appl. 34 (2000), 239–251.
[4] ———, Markov averaging and ergodic theorems for several operators, in Topology, Ergodic Theory and Algebraic Geometry, AMS Transl. 202 (2001), 39–50.
[5] K. Fujiwara and A. Nevo, Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems 18 (1998), 843–858.
[6] R. I. Grigorchuk, Pointwise ergodic theorems for actions of free groups, Proc. Tambov Workshop in the Theory of Functions, 1986.
[7] R. I. Grigorchuk, Ergodic theorems for actions of free semigroups and groups, *Math. Notes*, 65 (1999), 654–657.

[8] M. Gromov, Hyperbolic groups, in *Essays in Group Theory*, MSRI Publ. 8 (1987), 75–263, Springer-Verlag, New York.

[9] Y. Guivarc’h, Généralisation d’un théorème de von Neumann, *C. R. Acad. Sci. Paris Sér. A B* 268 (1969), 1020–1023.

[10] A. G. Kachurovskii, A martingale ergodic theorem, *Math. Notes* 64 (1998), 266–269.

[11] V. A. Kaimanovich, Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, in *Harmonic Analysis and Discrete Potential Theory* (M. A. Picardello, ed.), Plenum, New York (1992), 145–181.

[12] M. Lin, Support overlapping L_1 contractions and exact nonsingular transformations, dedicated to the memory of Anzelm Iwanik, *Colloq. Math.* 84/85 (2000), 515–520.

[13] J. Neveu, *Discrete-Parameter Martingales*, North-Holland, Oxford, 1975.

[14] A. Nevo, Harmonic analysis and pointwise ergodic theorems for noncommuting transformations, *J. A. M. S.* 7 (1994), 875–902.

[15] A. Nevo and E. M. Stein, A generalization of Birkhoff’s pointwise ergodic theorem, *Acta Math.* 173 (1994), 135–154.

[16] D. Ornstein, On the pointwise behavior of iterates of a self-adjoint operator, *J. Math. Mech.* 18 (1968/1969) 473–477.

[17] V. I. Oseledec’, Markov chains, skew-products, and ergodic theorems for general dynamical systems, *Th. Prob. App.* 10 (1965), 551–557.

[18] V. A. Rohlin and Ya. G. Sinai, The structure and properties of invariant measurable partitions, *Dokl. Akad. Nauk SSSR* 141 (1961), 1038–1041.

[19] G.-C. Rota, An “Alternierende Verfahren” for general positive operators, *Bull. A. M. S.* 68 (1962), 95–102.

[20] M. Rosenblatt, *Markov Operators, Structure and Asymptotic Behaviour*, Springer-Verlag, New York, 1971.

[21] E. M. Stein, On the maximal ergodic theorem, *Proc. Nat. Acad. Sci. USA* 47 (1961), 1894–1897.

[22] ———, (with the assistance of T. S. Murphy), Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals, *Princeton Math. Series* 43, Princeton Univ. Press, Princeton, NJ, 1993.

[23] A. M. Vershik, Dynamical theory of growth in groups: entropy, boundaries, examples, *Russian Math. Surveys* 55 (2000), 667–733.

[24] A. Zygmund, *Trigonometric Series*, Cambridge University Press, Cambridge, 1968.

(Received May 9, 2001)