Estratégia Fármaco-Invasiva no Infarto do Miocárdio: Análise Descritiva, Apresentação de Sintomas Isquêmicos e Preditores de Mortalidade

Pharmaco-invasive Strategy in Myocardial Infarction: Descriptive Analysis, Presentation of Ischemic Symptoms and Mortality Predictors

Henrique Tria Bianco,¹ Rui Povoa,¹ Maria Cristina Izar,¹ Claudia Maria Rodrigues Alves,² Adriano Henrique Pereira Barbosa,² Maria Teresa Nogueira Bombig,¹ Iran Conçalves Jr.,¹ Bráulio Luna Filho,¹ Ana Caroline Aguirre,¹ Pedro Ivo de Marquí Moraes,¹ Dirceu Almeida,¹ Flávio Tocci Moreira,¹ Fernando Focaccia Povoa,² Edson Stefanini,² Adriano Mendes Caixeta,² Amanda S. Bacchin,¹ Valdir Ambrósio Moisés,² Francisco A. H. Fonseca²

Universidade Federal de São Paulo – Cardiologia,¹ São Paulo, SP – Brasil
Universidade Federal de São Paulo Escola Paulista de Medicina – Medicina,² São Paulo, SP – Brasil

Artigo recebido em 13/01/2022, revisado em 15/04/2022, aceito em 01/06/2022

Resumo

Fundamento: O infarto do miocárdio com elevação do segmento-ST (IAMCSST) é definido por sintomas acompanhados por alterações típicas do eletrocardiograma. Entretanto, a caracterização dos sintomas isquêmicos não é clara, principalmente em subgrupos, como mulheres e idosos.

Objetivos: Analisar a tipificação dos sintomas isquêmicos, métricas temporais e observar a ocorrência de desfechos intra-hospitalares, em análise dos escores preditivos, em pacientes com IAMCSST, em estratégia fármaco-invasiva.

Métodos: Estudo envolvendo 2.290 pacientes. Tipos de apresentações clínicas pré-definidas: dor típica, dor atípica, dispneia, sincope. Medimos o tempo entre o início dos sintomas à demanda pelo atendimento e o intervalo entre a chegada à unidade-médica e trombolise.

Odds-ratios (OR; IC-95%) foram estimadas em modelo de regressão. Curvas ROCs foram construídas para preditores de mortalidade. Nível de significância adotado (alfa) foi de 5%.

Resultados: Mulheres apresentaram alta prevalência de sintomas atípicos; maior tempo entre o início dos sintomas e a procura por atendimento; atraso entre a chegada ao pronto-socorro e a fibrinólise. A mortalidade hospitalar foi de 5,6%. Predição de risco pela classificação Killip-Kimball: AUC: [0,77 (0,73-0,81)] em classe ≥II. Subgrupos estudados [OR (IC-95%)]: mulheres [2,06 (1,42-2,99); p=0,01]; insuficiência renal crônica [3,39 (2,13-5,42); p<0,001]; idosos [2,09 (1,37-3,19) p<0,001]; diabéticos [1,55 (1,04-2,29); p=0,02]; obesos 1,56 [(1,01-2,40); p=0,04]; acidente vascular cerebral prévio [2,01 (1,02-3,96); p=0,04] correlacionaram-se com maiores taxas de mortalidade.

Conclusão: Apesar das mais altas taxas de mortalidade em alguns subgrupos, disparidade significativa persiste nas mulheres, com atrasos no reconhecimento dos sintomas e trombolise imediata. Destaca-se a aplicabilidade do escore Killip-Kimball na predição, independentemente da apresentação clínica.

Palavras-chave: Infarto do Miocárdio por Supradesnivelamento do Segmento ST; Síndrome Coronária Aguda; Intervenção Coronária Percutânea/métodos; Terapia Trombolítica/métodos Angina Pectoris; Hospitalização; Mortalidade.

Abstract

Background: ST-segment elevation myocardial infarction (STEMI) is defined by symptoms accompanied by typical electrocardiogram changes. However, the characterization of ischemic symptoms is unclear, especially in subgroups such as women and the elderly.

Objectives: To analyze the typification of ischemic symptoms, temporal metrics and observe the occurrence of in-hospital outcomes, in the analysis of predictive scores, in patients with STEMI, in a drug-invasive strategy.

Methods: Study involving 2,290 patients. Types of predefined clinical presentations: typical pain, atypical pain, dyspnea, syncope). We measured the time between the onset of symptoms and demand for care and the interval between arrival at the medical unit and thrombolysis. Odds-ratios (OR; CI-95%) were estimated in a regression model. ROC curves were constructed for mortality predictors. The adopted significance level (alpha) was 5%.

Results: Women had a high prevalence of atypical symptoms; longer time between the onset of symptoms and seeking care; delay between arrival at the ER and fibrinolysis. Hospital mortality was 5.6%. Risk prediction by Killip-Kimball classification: AUC: [0.77 (0.73-0.81)] in class.
Introdução

Apesar dos avanços nas abordagens de reperfusão, o infarto agudo do miocárdio continua a ser a principal causa de morte em todo o mundo. Seu diagnóstico é considerado quando se pode detectar alterações típicas do eletrocardiograma (ECG) e/ou a elevação de marcadores, especialmente as troponinas, que recebem cada vez mais atenção como marcadores específicos de injúria miocárdica. O infarto do miocárdio com supradesnvilemento do segmento ST (IAMCSST) geralmente é causado por oclusão coronária aguda, secundária à ruptura de placa e trombose, e requer a intervenção precoce.1 Portanto, o controle do IAMCSST deve ser realizado o mais rápido possível para evitar maiores lesões ao miocárdio e diminuir o risco de complicações e mortalidade. Embora a intervenção coronária percutânea (ICP) seja considerada o “padrão-ouro” de tratamento, ela não está suficientemente disponível, especialmente nos países em desenvolvimento. O estudo STREAM valoriza uma estratégia de reperfusão combinando terapia fibrinolítica e transferência imediata a um centro terciário, para a realização da ICP de resgate em pacientes que não respondem à fibrinólise, bem como uma angiografia diagnóstica precoce e uma ICP secundária no período de 24 horas após a trombolise.2 Entretanto, alguns fatores podem influenciar a demora em procurar assistência emergencial, tais como a percepção e o reconhecimento de sintomas isquêmicos agudos. A interpretação de sinais de alerta é o gatilho que leva os pacientes a buscar a assistência médica, devido à gravidade dessa condição potencialmente fatal. Em contraste, a dor deve ser vista como um fenômeno multidimensional que envolve aspectos fisiológicos, sensoriais e socioculturais, e pode ser afetado por expectativas dentro de um contexto cultural.

A estratificação dos riscos permite aos prestadores identificar o nível certo de cuidado e serviços para subgrupos de pacientes distintos. Ela é o processo de atribuir um status de risco e, em seguida, usar esse relatório para orientar sobre que cuidado é oferecido para melhorar os desfechos gerais de saúde. No entanto, durante o processo diagnóstico de infarto do miocárdio, com base em relatórios clínicos e critérios de ECG, podem surgir diferenças em relação a como os sintomas são tratados, especialmente em subgrupos específicos, tais como grupos de mulheres ou de pessoas mais idosas, apresentando evidências e relevância de recanalização precoce, cujos benefícios se tornam mais discretos ou até inexistentes na reperfusão tardia.3,4 Além disso, ainda há controvérsias e interesses especiais em relação ao desempenho de preditores de mortalidade precoces em pacientes que passaram por tratamento trombolíticos em uma abordagem fármaco-invasiva. Portanto, o presente estudo considerou a avaliação estratificada de sintomas isquêmicos, fundamentalmente associados a métricas temporais, incluindo o tempo entre o aparecimento dos sintomas e a busca por tratamento médico, as necessidades médicas do paciente entre a chegada à unidade de emergência e o reconhecimento da condição aguda, com o início imediato dos protocolos de reperfusão. No cenário da estratégia fármaco-invasiva, pode-se também especular sobre possíveis diferenças na forma em que os sintomas apareceram e os tempos pivotais em alguns subgrupos, considerando o impacto da reperfusão tardia em desfechos clínicos relevantes.

Dessa forma, nosso estudo teve o objetivo de examinar as associações entre a apresentação de sintomas isquêmicos e fatores de risco com os desfechos cardiovasculares em uma coorte de pacientes com IAMCSST durante o período de hospitalização, bem como realizar uma análise precisa das classificações de previsão de risco.

Métodos

Desenho do estudo e declarações éticas

Estudo prospectivo e observacional, com um tamanho de amostra definido por conveniência, envolvendo 2.290 pacientes com IAMCSST que foram admitidos consecutivamente internados em um hospital universitário na cidade de São Paulo, Brasil. Todos os pacientes foram inicialmente submetidos a terapia trombolítica com tenecteplase (TNK) em unidades hospitalares e centros de cuidado primários e, em seguida, encaminhados à angiografia coronária. Quando apropriado, foram realizadas intervenções coronárias percutâneas no período de 24 horas após a fibrinólise, ou imediatamente, se houvesse a necessidade de tratamento de resgate. Este estudo está de acordo com a Declaração de Helsinki, o comitê de ética local aprovou o protocolo de pesquisa, e o consentimento informado foi obtido de todos os pacientes ou seus guardiães legais. O estudo está registrado em ClinicalTrials.gov (NCT02090712).

Estratégia fármaco-invasiva

A estratégia fármaco-invasiva é definida pelo tratamento de fibrinólise com um bolus intravenoso de TNK, com uma dose ajustada pelo peso, seguida de cateterismo cardíaco no período de 24 horas, mesmo em pacientes estáveis com reperfusão bem-sucedida, com a intenção de tratar...
a lesão culpada. Após os resultados do estudo STREAM em junho de 2013, os pacientes com mais de 75 anos de idade receberam meia dose de tenecteplase (1/2 TNK). No diagnóstico, os pacientes receberam ácido acetilsalicílico e clopidogrel conforme recomendado pelas diretrizes.\(^3\) As angioplastias de resgate foram indicadas pela equipe médica local, devido a trombose ineficaz no tratamento da artéria relacionada ao infarto (ARI). O termo lesão culpada foi usado para designar o vaso arterial responsável pelos sintomas do paciente com IAMCSST. Na maioria dos casos, apenas as lesões culpadas foram tratadas, ou seja, apenas lesões em ARI foram tratadas diretamente por angioplastia e colocação de stent. O presente estudo contou com um banco de dados centralizado, contendo um perfil demográfico, dados clínicos, ECGs, tratamentos, intervalos de tempo e eventos hospitalares. Portanto, todos os desfechos relevantes foram sistematicamente registrados e as taxas de mortalidade foram analisadas por observadores independentes.

Definições de apresentações clínicas

A apresentação clínica de sintomas isquêmicos agudos foi relatada pelos pacientes, e equipes treinadas analisaram os dados durante o período de internação hospitalar.

1) Dor torácica típica: dor torácica opressiva à esquerda, que pode se irradiar para o membro superior esquerdo, de grande intensidade e prolongada (mais de 20 minutos), que não melhorou ou teve alívio apenas parcial com repouso ou nitrato sublingual. A irradiiação para mandíbula, membro superior direito, dorso, ombros e epigástrico também foi considerada para essa apresentação. Esse grupo incluiu pacientes com apresentação concomitante de dispneia ou episódio sincopal.

2) Dor atípica: dor no quadrante superior direito ou região epigástrica do abdômen, dorsal, região mandibular ou outra região não torácica, referida como pontada, queimação de intensidade variável, duração prolongada (maior que 20 minutos). Incluídos nesse grupo estavam os pacientes com apresentação concomitante de dispneia ou episódios sincopais.

3) Dispneia: foram incluídos neste grupo os pacientes que não relataram dor torácica, mas que se queixaram de cansaço agudo ou piora desse sintoma nas últimas horas. Foi considerada a experiência subjetiva de desconforto respiratório, composta por sensações qualitativamente diferentes e com intensidade variável.

4) Síncope: foram considerados os pacientes que não relataram dor torácica, mas sim desmaio ou perda súbita e transitória da consciência ou qualquer piora nas últimas horas.

Tempos pivotais medidos

1) Intervalo de tempo entre o início da dor torácica persistente, ou outra queixa representativa de sintomas isquêmicos, e a chegada do paciente à unidade de saúde;

2) Intervalo de tempo entre chegada à unidade de saúde e trombose;

3) Intervalo de tempo entre a trombose e a angiografia coronária.

Escores de previsão

Predutores de risco usados durante a primeira consulta médica:

1) Classificação Killip-Kimball (KK);\(^6\) 2) TIMI-Risk;\(^7\) 3) Escore GRACE\(^8\)

Variáveis angiográficas

Cardiologistas intervencionistas experientes realizaram análises angiográficas pelo escore de fluxo [TIMI- flow], perfusão coronária epicárdica;\(^9\) e [Myocardial Blush Grade (MBG)], perfusão miocárdica no nível do tecido;\(^10\) obtendo-se TIMI-flow e MBG antes e pós-intervenção percutânea, quando aplicáveis (chamados de escores iniciais e finais). Complicações inerentes ao procedimento também foram relatadas. A estratégia do procedimento (aspiração do trombo, dilatação do balão, seleção do stent e regime de anticoagulação) foi deixada a critério do operador.

Análise estatística

Este estudo buscou alcançar uma coleta de dados prospectiva e consecutiva de uma grande população, em que práticas médicas padrão atuais são aplicadas em uma rede organizada. As variáveis contínuas foram expressas como média ± desvio padrão (DP) ou mediana e faixa interquartil [FIQ (25º - 75º percentis)], de acordo com normalidade dos dados. Para avaliar as suposições de normalidade, usamos o teste D’Agostino-Pearson, desenvolvido para avaliar uma amostragem grande, e a confirmação foi feita pela inspeção visual de gráficos de dispersão. Variáveis categóricas foram descritas como frequências absolutas e relativas, e examinadas pelo teste qui-quadrado de Pearson. Para comparações de variáveis numéricas entre grupos, usamos o teste t de Student não pareado ou o teste U de Mann-Whitney quando a distribuição não-Gaussiana foi considerada. As análises de variância simples pelo teste “t”, ou de seus equivalentes não paramétricos foram realizadas para a observação da distribuição e da homocedasticidade dos valores. Para comparar proporções entre os grupos, o teste \(\chi^2 \) (qui-quadrado) foi usado para amostras independentes. Para presumir uma igualdade de variância entre os grupos, os ajustes foram feitos usando-se o teste de Levene. O risco relativo foi determinado pela razão entre os portadores de determinada variável e os não portadores. Para analisar a relação de algumas variáveis categóricas e os desfechos, elas foram transformadas em dicotômicas. Portanto, o teste de proporção (qui-quadrado) foi usado para observar a independência entre as univariadas para obter as razões de chance (RC) em um modelo de correlação entre univariadas potencialmente preditivas e os desfechos. Na estatística multivariada verificamos as relações de múltiplas variáveis, apenas para as com significância na entrada (variáveis com \(p <0,10\), para a observação de seu grau de independência. Utilizamos o modelo de regressão logística binária, pela técnica de máxima verossimilhança, em que a variável dependente era dicotômica e as variáveis preditoras inseridas pelo modelo stepwise, considerando a ausência de colinearidade pelo índice VIF (fator de inflação da variância), com a qualidade do ajuste avaliada pelo diagrama de Hosmer-Lemeshow. As variáveis preditoras...
foram analisadas simultaneamente, de forma que o efeito de cada variável foi ajustado para ter um efeito nas demais. Esse modelo de regressão adicciona sistematicamente a variável mais significativa ou remove a variável menos significativa durante cada etapa. O Índice α de Crombach-padronizado foi usado para calcular a confiabilidade dos escores angiográficos TIMI-flow e MBG estimados pelos operadores médicos.

As curvas de característica de operação do receptor (ROC) foram construídas para determinar a sensibilidade e a especificidade dos escores de predição de desfechos hospitalares. A forma da curva ROC e a área sob a curva (AUC) ajudaram a estimar o nível de poder discriminativo de um teste. Um teste diagnóstico perfeito tem uma AUC de 1,0, enquanto um teste não discriminatório tem uma área de 0,5. Outras análises também foram aplicadas, considerando as razões de probabilidade na previsão de eventos. Portanto, com base nas razões de probabilidade, a razão de chance diagnóstica (RCD), uma métrica global de precisão diagnóstica, foi calculada, ou seja, a razão de chance de positividade em sujeitos com o desfecho para a chance em sujeitos sem o desfecho. Consideramos o valor de p<0,05 como estatisticamente significativo, em testes bicaudais. As análises foram realizadas usando SPSS-versão-20 (IBM-SPSS Statistics, EUA)®.

Resultados

Características clínicas e epidemiológicas

A Tabela 1 mostra que os pacientes tinham uma mediana (FIQ) de 58 (50-65) anos de idade, e aproximadamente 70% eram homens. A maioria dos pacientes era hipertensivo e fumante, e aproximadamente um terço deles tinha diabetes. Uma pequena proporção dos pacientes teve eventos anteriores, tais como infarto do miocárdio, revascularização cirúrgica ou percutânea, e acidente vascular cerebral prévio. O grupo mais velho tinha ≥60 anos de idade. Os preditores de risco incluíam dados sobre o histórico médico do paciente e os fatores de risco, que foram analisados durante a admissão hospitalar. Este estudo também apresenta dados sobre variáveis hemodinâmicas obtidas na emergência, tais como dados laboratoriais (necrose e marcadores bioquímicos) (Tabela 2).

Eskores de predição, apresentação clínica e tempos pivotais

Na análise dos sintomas isquêmicos, a maioria dos pacientes relataram dor torácica definida como típica, que pode ou não estar associada a dispneia e síncope. Angina antes do evento estava presente em 28%, que era mais prevalente em pacientes com infarto do miocárdio prévio. As mulheres apresentaram uma alta frequência de sintomas atípicos, tais como dispneia e síncope, conforme mostrado na Tabela 3.

As mulheres apresentaram uma demora entre a chegada do paciente na unidade de emergência e o início do tratamento: [mulheres (2 horas e 17 minutos) vs. homens (1 hora e 58 minutos), p=0,021]. O tempo estratificado (≥240 minutos) para receber o tratamento foi favorável aos homens: [RC 0,73; IC 95% (0,55-0,98), p=0,03]. Outra constatação relevante foi o intervalo mais longo entre o aparecimento dos sintomas e a procura de tratamento médico entre as mulheres: [mulheres: (3 horas e 14 minutos) vs. homens (2 horas e 48 minutos), p=0,008]. Mulheres diabéticas apresentaram maior tempo entre o início dos sintomas até a trombólise, incluindo, nesse período, a chegada à unidade de pronto socorro no início do tratamento (intervalo entre dor e trombólise), especialmente quando comparadas aos homens não diabéticos (Figura1).

A maioria dos pacientes estava em uma classe funcional baixa de acordo com o escore KCl: I (73%), II (16,3%), III (2,2%),
Tabela 2 – Características clínicas e hemodinâmicas, escores de predição e tempos pivotais foram obtidos durante a primeira consulta médica e durante o período de internação hospitalar

Variáveis obtidas durante a primeira consulta	Medidas
Variáveis hemodinâmicas	
Pressão arterial sistólica, mmHg; md (FIQ)	130 (115-150)
Pressão arterial diastólica, mmHg; md (FIQ)	80 (70-93)
Freqüência cardíaca, md (FIQ)	76 (66-90)
Classificação Killip-Kimball, n (%)	
Killip-Kimball – I: 1670 (72,0)	
Killip-Kimball – II: 362 (15,8)	
Killip-Kimball – III: 52 (2,3)	
Killip-Kimball – IV: 203 (8,0)	
Apresentação clínica	
(sintoma principal), n (%)	
Dor típica: 1939 (88,5)	
Dor atípica: 166 (7,6)	
Dispneia: 38 (1,7)	
Síncope: 26 (1,2)	
* Alguns pacientes (4%) com mais de um sintoma relatado	
Escaros de risco	
TIMI-Risk, (0-14); md (FIQ)	3 (2-5)
Escore GRACE, (0-14); md (FIQ)	135 (115-160)
Tempos pivotais	
Tempo dor-unidade de saúde, min; md (FIQ)	120 (60-220)
Tempo dor-agulha, min; md (FIQ)	222 (140-345)
Tempo porta-agulha, min; md (FIQ)	71 (42-135)
Tempo lise-angiografia, horas, md (FIQ)	12 (5,67-23)
Variáveis obtidas durante a internação hospitalar	**Medidas**
Biomarcadores de necrose	
Troponina inicial, mg/L; md (FIQ)	2655 (538-7967)
Troponina máxima, mg/L; md (FIQ)	4718 (1481-9842)
Variáveis laboratoriais	
Hemoglobina/hematócritos, g/dL/%; m ± DP	14,37 ± 2,09 /42,92 ± 12,56
Glicemia do sangue/Hemoglobina glicada, mg/dL / %; md (FIQ)	122 (102-160) / 6 (5,6-6,8)
Colesterol total, mg/dL; md (FIQ)	191 (157-225)
HDL-C, mg/dL; md (FIQ)	37 (25-46)
LDL-C, mg/dL; md (FIQ)	110 (60-142)
Triglicéridos, mg/dL; md (FIQ)	118 (77-175)
*AST, u/L; md (FIQ)	144 (63-280)
†ALT, u/L; md (FIQ)	43 (27-72)
Creatinina, mg/dL; md (FIQ)	0,9 (0,74-1,10)
Taxa de filtração glomerular estimada, (MDRD); md (FIQ)	85 (64-107)

*Notas: Dados são expressos como mediana (md) e faixa interquartil (FIQ) ou média e desvio padrão (m ± dp), e variáveis categóricas foram expressas como frequência (%). Métricas de tempo são expressas em minutos (min). Taxa de filtração glomerular por Modificação da dieta em doença renal (MDRD); *AST: aspartato aminotransferase; †ALT: alanina aminotransferase.

Aproximadamente 24% dos pacientes foram encaminhados para angioplastia de resgate, conforme avaliação da equipe médica local, por não atingirem os critérios para uma terapia de reperfusão bem-sucedida.

Achados angiográficos (artéria culpada)

1) artéria descendente anterior esquerda (ADAE): 46,3%; 2) artéria coronária direita (ACD): 32,1%; 3) artéria circunflexa esquerda (ACX): 6,1%; 4) artéria coronária esquerda principal (ACEP): 0,4%; 5) artéria descendente posterior (ADP): 0,3%; 6) tronco ventricular posterior
Bianco et al., Infarto Agudo do Miocárdio em uma Estratégia Fármaco-Invasiva

Artigo Original

Tabela 3 – Variáveis associadas ao tipo de apresentação clínica em um modelo univariado e após ajustes multivariados em regressão logística multinomial

Variáveis	Dor típica	Dor atípica	Dispneia	Síncope
Modelo sem ajustes				
Variáveis	Razão de chance (IC 95%), p-valor			
n = 1939	n = 166	n = 38		
Masculino	0,95 (0,71-1,27), p=0,74	1,05 (0,79-1,40), p=0,73	0,51 (0,27-0,96), p=0,026	0,39 (0,18-0,83), p=0,018
Obesidade	1,07 (0,78-1,50), p=0,65	0,92 (0,67-1,28), p=0,65	0,30 (0,09-0,98), p=0,02	0,29 (0,07-1,26), p=0,09
Alcoolismo	0,80 (0,56-1,15), p=0,24	1,24 (0,86-1,76), p=0,24	1,15 (0,46-2,77), p=0,44	1,49 (0,56-3,97), p=0,39
Hipertensão	0,96 (0,73-1,26), p=0,78	1,03 (0,79-1,35), p=0,79	1,31 (0,67-2,56), p=0,26	0,67 (0,31-1,44), p=0,32
Dislipidemia	1,39 (1,07-1,81), p=0,013	0,71 (0,55-0,93), p=0,013	1,25 (0,66-2,35), p=0,52	0,35 (0,15-0,84), p=0,019
Infarto do miocárdio prévio	1,05 (0,68-1,61), p=0,81	0,95 (0,62-1,46), p=0,82	3,31 (1,63-6,72), p=0,002	0,67 (0,16-2,86), p=0,59
Acidente vascular cerebral prévio	0,75 (0,42-1,34), p=0,34	1,32 (0,74-2,37), p=0,34	1,82 (0,55-6,00), p=0,24	0,85 (0,11-6,32), p=0,87
Doença arterial periférica	0,78 (0,45-1,35), p=0,30	1,27 (0,74-2,20), p=0,38	1,52 (0,46-5,00), p=0,45	0,71 (0,09-5,29), p=0,74
Doença renal crônica	0,53 (0,35-0,79), p=0,002	1,88 (1,26-2,80), p=0,002	4,47 (2,19-9,10), p=0,001	1,97 (0,67-5,77), p=0,27
Tabagismo	1,17 (0,90-1,53), p=0,23	0,85 (0,65-1,11), p=0,23	1,15 (0,59-2,25), p=0,74	0,59 (0,27-1,27), p=0,22
Diabetes	0,95 (0,72-1,27), p=0,76	1,04 (0,78-1,39), p=0,75	2,26 (1,21-4,24), p=0,013	0,70 (0,28-1,74), p=0,52
Idosos	0,87 (0,67-1,13), p=0,32	1,14 (0,88-1,46), p=0,32	1,77 (0,94-3,33), p=0,07	0,76 (0,34-1,66), p=0,56
Modelo ajustado				
Variável	Razão de chance (IC 95%), p-valor			
Homens	NA	NA	0,51 (0,26-0,97), p=0,04	0,32 (0,15-0,70), p=0,005
Obesidade	NA	NA	0,29 (0,08-0,95), p=0,04	NA
Dislipidemia	1,44 (1,10-1,87), p=0,007	0,69 (0,53-0,90), p=0,007	NA	0,36 (0,15-0,87), p=0,02
Infarto do miocárdio prévio	NA	NA	2,68 (1,28-5,58), p=0,008	NA
Doença renal crônica	0,50 (0,34-0,75), p=0,001	1,97 (1,32-2,94), p=0,001	3,33 (1,59-6,98), p=0,001	NA
Diabetes mellitus	NA	NA	1,93 (1,01-3,71), p=0,04	NA

Notas: Os dados são expressos para (RC; IC 95%, p-valor). Na análise multivariada, as variáveis preditoras foram analisadas simultaneamente, de forma que o efeito de cada variável foi ajustado para ter um efeito nas demais. Negrito indica significância estatística. Doença renal crônica (DRC) foi estimada pela Modificação da dieta em doença renal (MDRD); idosos: idade ≥60 anos. Negrito indica significância estatística. NA: não aplicável.

Os escores TIMI-flow e MBG (iniciais e finais) foram registrados, classificados de 0 a 3: [TIMI-flow inicial: (3)] e [MBG inicial: (3)] em aproximadamente 60% e 42%, respectivamente. Quando esses escores pós-procedimento percutâneo foram analisados, os índices de TIMI-flow final: (3) e de MGB final: (3) eram 78% e 58%. (VP): 0,9%; 7) ramificação marginal esquerda: 1,0%; 8) ramificação diagonal: 0,7%; 9) artéria não identificada: 12,1%. A análise de subgrupo não encontrou associações significativas entre a artéria culpada e fatores de risco prévios, nem com a apresentação clínica inicial de sintomas isquêmicos.
respeitivamente, com um alto nível de confiabilidade. O α de Cronbach = 0,88.

Desfechos associados a complicações no laboratório de hemodinâmica e pelo evento índice

A duração média da internação hospitalar foi de 2,0 ± 1,3 dias, da admissão no hospital terciário até a alta ou transferência para um hospital de contrarreferência para continuar o tratamento. Um período de internação mais longo foi observado no grupo dos idosos: [1,9 dias (não idosos) vs. 2,3 dias (idosos), p=0,004] e notadamente no grupo de pacientes que precisaram receber transfusões de material sanguíneo devido a sangramento: [1,9 dias (sem sangramento) vs. 3,4 dias (sangramento importante), p=0,004].

O presente estudo registrou a frequência das complicações durante o procedimento angiográfico, bem como aqueles observados durante o período de hospitalização. Essas complicações incluíram eventos importantes, tais como dissecação ou ruptura da coronária, entre outros, como complicações clínicas, arritmias e sangramento no local na incisão. Embora infrequentes, sangramentos importantes eram independentemente associados à mortalidade hospitalar. Índices de sangramento mais altos foram observados no grupo dos idosos: [RC: 1,86; IC 95% (1,04-3,16), p=0,023].

Preditores e variáveis associadas às taxas de mortalidade

A taxa de mortalidade hospitalar era 5,6%, com 128 mortes, das quais 23 (17,9%) ocorreram no laboratório de hemodinâmica, com instabilidade elétrica ou complicações mecânicas sendo as causas mais prevalentes, e com uma incidência mais alta ocorrendo no grupo de resgate (11,5% vs. 2,4%). Em relação às características epidemiológicas e fatores de risco, uma distribuição similar das variáveis analisadas foi observada em pacientes sobreviventes, em comparação com os que morreram durante o período de internação, exceto pelo escore GRACE, que apresentou valores mais altos nos pacientes que morreram [134 (115-157) vs. 202 (155-233), p<0,001]. O escore GRACE (escor mediano 136) apresentou boa sensibilidade mais especificidade baixa [sensibilidade: 0,86%; especificidade: 0,53%]. O escore de previsão TIMI-Risk (escor mediano 3) apresentou os seguintes resultados: sensibilidade: 0,87%; especificidade: 0,57% (Tabela 4).

A classificação funcional KK demonstrou bom desempenho na previsão da mortalidade hospitalar: AUC: [0,77 IC 95% (0,73-0,81), p<0,001] no grupo com um escore ≥II, demonstrando melhor precisão que os escores angiográficos de reperfusão: TIMI-Flow (3) e MBG (3), AUC: [0,69; IC 95% (0,64-0,75), p<0,001] bem como um melhor desempenho quando os pacientes foram estratificados de acordo com a fração de ejeção ventricular esquerda, AUC: [0,52; 95% CI (0,47-0,58), p=0,34].

Nosso estudo teve o cuidado de avaliar o desempenho dos escores de previsão: TIMI-Risk, AUC: [0,79; IC 95% (0,75-0,84)], p<0,001; GRACE, AUC: [0,82; 95% IC 0,78-0,86], p<0,001; AUC de Killip-Kimbll AUC: [0,82; IC 95% (0,78-0,87), p<0,001], (Figura 2). Para as categorias de Killip-Kimbll, os seguintes escores foram obtidos: razão de probabilidade positiva: 3,76; razão de probabilidade negativa: 0,33; e RCD (Razão de chance diagnóstica: 11,39) para os índices de previsão de mortalidade hospitalar, definidos como a probabilidade dos pacientes na classe funcional ≥ II (II, III, IV) que morreram, em relação à probabilidade dos pacientes do grupo funcional ≥ II que sobreviveram.

Em um modelo de regressão logística com análises de covariância, obesidade, sexo feminino, pacientes com diabetes mellitus, insuficiência renal crônica, acidente vascular cerebral prévio e a idade estavam associados aos índices mais altos de eventos fatais (Figura 3). O ajuste do modelo apresentou um bom desempenho preditivo.

Discussão

Mesmo com a existência de várias terapias eficazes, as informações qualitativas ainda não estão disponíveis para estratificação, especialmente na estratégia fármaco-invasiva, em que a avaliação de saúde inicial parece estar proximamente relacionada ao prognóstico. Há muitas abordagens para a estratificação de risco. Algumas são muito complexas e caras, mas procedimentos simples também podem ser eficazes. Sob essa perspectiva, o presente estudo tentou oferecer dados epidemiológicos sobre as várias formas de sintomas isquêmicos agudos, bem como demonstrar a aplicabilidade de alguns escores de previsão em pacientes que receberam cuidados médicos principalmente nas unidades de saúde básica, e foram encaminhados a um hospital universitário terciário para estudos angiográficos e procedimentos invasivos.

Nem todas as síndromes coronárias agudas apresentam sinais ou sintomas clásicos, tais como dor pré-cordial ou retroesternal típica, o que atrás o diagnóstico e as abordagens terapêuticas
Tabela 4 – Variáveis clínicas e epidemiológicas entre os grupos de “sobreviventes” e “mortes”

Variáveis	Grupo de sobreviventes	Grupo de mortes	p-valor
Epidemiológicas			
Idade, anos:	58 (50-66)	56 (48-65)	0,047
Sexo masculino:	Homens: 71,1%	Homens: 53,2%	0,02
Escore de risco			
Killip-Kimball, (%)			
Killip-Kimball – I: 75,6%	Killip-Kimball – I: 20,6%	0,09	
Killip-Kimball – II: 18,4%	Killip-Kimball – II: 7,9%	0,42	
Killip-Kimball – III: 2,2%	Killip-Kimball – III: 4,8%	0,96	
Killip-Kimball – IV: 5,7%	Killip-Kimball – IV: 66,5%	0,08	
TIMI-Risk:	3 (2-5)	6 (5-8,2)	0,26
Escore GRACE:	134 (115-157)	202 (155-233)	p <0,001
Variáveis de ECG			
Parete do ECG	parede anterior	parede anterior	0,68
	parede inferior	parede inferior	0,58
	parede lateral	parede lateral	0,45
Variáveis hemodinâmicas			
Artéria relacionada ao infarto	ADA: 45,5%	ADA: 38,9%	0,84
	ACD: 32,5%	ACD: 36,5%	
	ACX: 6%	ACX: 10,3%	
	Outros: 22,4%	Outros: 14,3%	
†Fração de ejeção ventricular esquerda (FEVE):	50 (40-59)	49 (40-60)	0,17
TIMI-flow inicial	TIMI-0: 19,6%	TIMI-0: 36,8%	0,97
	TIMI-1: 3,3%	TIMI-1: 11,3%	
	TIMI-2: 15,4%	TIMI-2: 17%	
	TIMI-3: 61,7%	TIMI-3: 34,9%	
TIMI-flow final	TIMI-0: 4,6%	TIMI-0: 19,8%	0,10
	TIMI-1: 1,2%	TIMI-1: 4,7%	
	TIMI-2: 14,1%	TIMI-2: 24,5%	
	TIMI-3: 80,1%	TIMI-3: 50,9%	
Grau Blush miocárdico inicial:	Blush-0: 40,8%	Blush-0: 71,7%	0,77
	Blush-1: 3,8%	Blush-1: 2,8%	
	Blush-2: 2,6%	Blush-2: 1,9%	
	Blush-3: 52,8%	Blush-3: 23,6%	
Grau Blush miocárdico final:	Blush-0: 24,7%	Blush-0: 61%	0,39
	Blush-1: 8,8%	Blush-1: 9,5%	
	Blush-2: 6,1%	Blush-2: 5,7%	
	Blush-3: 60,4%	Blush-3: 23,8%	
Variáveis laboratoriais			
Troponina inicial	2704 (618-7889)	3413 (280-11506)	0,83
Troponina máxima	4820 (1661-9796)	7925 (1145-1774)	0,80
TFGe, (MDRD)	86 (67-107)	91 (66-111)	0,62
Hemoglobina	14,5 (13,3-15,7)	13,7 (12,5-15,1)	0,05
Hematócitos	42,9 (39,6-46,2)	41 (37,9-45,5)	0,14
Em nossa coorte, a demora em reconhecer os sintomas, possivelmente devido a sua aparência atípica, teve um impacto em métricas temporais para trombólise, tais como os registrados nos grupos de mulheres e diabéticos.

Diabetes é um fator de risco potencial em mulheres. Uma meta-análise para estimar o risco relativo de doença cardíaca coronária fatal associada ao diabetes, envolvendo aproximadamente 450.000 pacientes, revelou um risco relativo 50% mais alto nas mulheres.24 O risco coronário mais alto associado ao diabetes em mulheres pode refletir um viés de tratamento favorável aos homens. Estudos mostram que homens com diabetes ou doença cardiovascular estabelecida têm maior probabilidade de receber tratamento com antiagregantes plaquetários, estatinas ou medicamentos anti-hipertensivos que as mulheres.25,26,27 Além disso, há relatórios de má adesão às recomendações de diretrizes entre as mulheres, tais como um tempo mais longo entre a chegada no hospital e a colocação do balão.28,29 Também observou-se que os homens receberam a terapia fibrinolítica mais cedo, possivelmente devido à apresentação mais clara de sintomas isquêmicos.

A aparência clínica, definida acima como dispneia, era mais prevalente em pacientes com infartos anteriores, possivelmente devido a comprometimento miocárdico de curto prazo após um infarto agudo do miocárdio.11 Nos últimos anos, grandes avanços no diagnóstico e no tratamento contribuíram para a redução da mortalidade devido a doença cardíaca coronária. Na verdade, foram feitos esforços para se alcançar a prevenção primária mais ativa, com um controle melhor dos fatores de risco, e recursos farmacológicos. Entretanto, a prevenção e o tratamento de doenças cardiovasculares precisam estar amplamente disponíveis e aplicados sem distinção.

Escores de risco

Embora não exista um modelo de estratificação ideal, ele deve conter as seguintes características: facilidade de implementação, objetividade, precisão e uso disseminado. Killip-Kimball, um método de classificação funcional aplicado durante a primeira consulta médica, foi um preditor importante de desfechos favoráveis durante o período de internação hospitalar, com um bom valor preditivo negativo. O índice de gravidade da insuficiência cardíaca durante o período de internação foi usado para identificar os sinais de insuficiência cardíaca na admissão hospitalar, que desempenharam um papel relevante nas taxas de mortalidade durante a internação, uma vez que as proporções de mortes e na distribuição de dados de sobrevida foram significativamente diferentes dentro da classe >I de Killip-Kimball.

Escores de previsão para mortalidade hospitalar. Nota: Estatísticas C, ROC e AUC. TIMI-Risk, AUC: [0,79; IC 95% (0,75-0,84), p<0,001]; Escore GRACE, AUC: [0,82; IC 95% (0,78-0,86), p<0,001]; Killip-Kimball, AUC: [0,82; IC 95% (0,78-0,87), p<0,001].

Tempos pivotais

Fator	Tempo dorr-água (min)	Tempo lise-água (min)	Tempo lise-catóterismo (horas)
Tempo dorr-água, (min):	220 (140-345)	245 (150-516)	0,08
Tempo lise-água, (min):	75 (45-135)	78,5 (45-163,7)	0,12
†Tempo lise-catóterismo, (horas):	11 (5-22)	11 (5-21,7)	0,43

Nota: Dados são expressos como mediana (md) e faixa interquartil (FIQ), e variáveis categóricas foram expressas como frequência (%). O teste χ² (qui-quadrado) foi usado para as amostras independentes. TFGe: Taxa de filtração glomerular estimada por Modificação da dieta em doença renal (MDRD).

Figura 2 – Escores de previsão para mortalidade hospitalar. Nota: Estatísticas C, ROC e AUC. TIMI-Risk, AUC: [0,79; IC 95% (0,75-0,84), p<0,001]; Escore GRACE, AUC: [0,82; IC 95% (0,78-0,86), p<0,001]; Killip-Kimball, AUC: [0,82; IC 95% (0,78-0,87), p<0,001].
taxa de mortalidade hospitalar

A taxa de mortalidade, incluindo eventos durante o procedimento angiográfico e os relacionados ao evento índice, estava associada a complicações mecânicas e distúrbios elétricos graves e irreversíveis. Relatou-se que a demora no tempo de recanalização está associada a um comprometimento maior da função ventricular, distúrbios de microcirculação e taxas de mortalidade mais altas. É interessante notar que nosso estudo não identificou associação entre as taxas de mortalidade entre pacientes no grupo com fração de ejeção ventricular esquerda (FEVE) mais baixa nem com os escores angiográficos. De fato, a lesão culpada totalmente ocluída (TIMI-flow-0) não demonstrou estar associada às maiores taxas de mortalidade hospitalar após o IAMCSST tratado com TNK, em comparação com aqueles que apresentavam TIMI-flow ≥1. Além disso, as arritmias ventriculares malignas podem aparecer mais cedo nos processos isquêmicos e continuar a ser uma causa esperada de morte em infartos do miocárdio. Em nossa coorte, as taxas de mortalidade hospitalar foram mais altas entre os pacientes que apresentaram arritmias ventriculares malignas do que os pacientes que não apresentaram arritmias ventriculares, definidas como taquicardia ou fibrilação. Entretanto, devido à característica observacional de nosso estudo, várias dificuldades foram encontradas na caracterização dessas arritmias ventriculares, especialmente no período pós-angioplastia, já que a ocorrência desses eventos foi difícil de prever. Portanto, pode-se especular que distúrbios elétricos graves podem ser um marcador forte de desfechos hospitalares, apesar do sucesso da intervenção coronária percutânea, especialmente no período pós-angioplastia, apesar do sucesso da intervenção coronária percutânea.
Pontos fortes e limitações

O presente estudo tem limitações. Primeiramente, foi um estudo observacional, com correção de fatores de confusão medidos ou conhecidos. Portanto, não podemos concluir que as associações observadas são causais. Além disso, nossos registros incluem apenas pacientes que foram submetidos a intervenção fármaco-invasiva, desconsiderando aqueles que foram encaminhados para tratamento percutâneo primário ou que tinham contraindicações formais para fibrinólise. Considerando que o estudo foi realizado em um único centro universitário, esses padrões de prática e resultados devem ser interpretados com cuidado. Outra limitação de nosso estudo foi a análise dos desfechos apenas para o período de internação hospitalar. Em um sentido importante, nossa validação interna indicou que o ajuste do modelo era bom e os modelos de previsão diagnóstica tiveram um bom desempenho para fazer a previsão do prognóstico independentemente.

Conclusões

Nossos dados revelaram taxas de mortalidade hospitalar mais altas em mulheres, em pacientes com diabetes mellitus, obesidade, DRC e acidentes vasculares prévios, bem como em idosos. A disparidade relacionada ao sexo persiste nas mulheres, com demoras no reconhecimento dos sintomas de isquemia, e o início imediato de terapia fibrinolítica, levando a priores resultados clínicos. A aplicabilidade do escore de Killip-Kimball para prever eventos fatais com precisão deve ser destacada, independentemente da apresentação clínica do evento isquêmico agudo, medido na primeira consulta médica, especialmente na estratégia fármaco-invasiva.

Contriuição dos autores

Concepcão e desenho da pesquisa: Bianco HT, Gonçalves Jr. I, Stefaniini E, Fonseca FAH; Obtenção de dados: Bianco HT, Alves CMR, Barbosa AHP, Gonçalves Jr. I, Aguirre AC, Moraes PIM, Povoa FF, Stefaniini E, Caixeta AM, Bacchin AS, Moises VA, Fonseca FAH; Análise e interpretação dos dados: Bianco HT, Povoa R, Izar MC, Alves CMR, Barbosa AHP, Moraes PIM, Almeida D, Povoa FF, Bacchin AS, Fonseca FAH; Análise estatística: Bianco HT, Povoa R, Izar MC, Luna Filho B, Moreira FE, Caixeta AM; Redação do manuscrito: Bianco HT, Bombig MTN, Aguirre AC, Moreira FT; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Bianco HT, Povoa R, Izar MC, Barbosa AHP, Bombig MTN, Luna Filho B, Almeida D, Stefaniini E, Caixeta AM, Moises VA, Fonseca FAH.

Referências

1. Montecucco F, Carbone F, Schindler TH. Pathophysiology of ST-segment elevation myocardial infarction: Novel mechanisms and treatments. Eur Heart J. 2016;37(16):1268-83. doi: 10.1093/eurheartj/ehv592.
2. Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Yves Lambert Y, et al, for the STREAM Investigative Team. Fibrinolysis or Primary PCI in ST-Elevation Myocardial Infarction. N Engl J Med. 2013;368(15):1379-87. doi: 10.1056/NEJMoa1301092.
3. Packova E, Jäger B, Farhan S, Christ G, Schreiber W, Weidinger F, et al. Vienna STEMI Registry Group. Gender differences in short- and long-term mortality in the Vienna STEMI registry. Int J Cardiol. 2017;244:303-8. doi: 10.1016/j.ijcard.2017.05.068.
4. Kereiakes DJ, Weaver WD, Anderson JL, Feldman T, Gibbler B, Aufderheide T, et al. Time delays in the diagnosis and treatment of acute myocardial infarction: a tale of eight cities. Report from the prehospital study group and the Cincinnati Heart Archinte.163.19.2345.
5. Bianco B, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Calafiore AIP, et al. 2017 ESC Scientific Document Group. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2017;39(2):119-77. doi: 10.1093/eurheartj/ehv393.
6. Killip T 3rd, Kimball JT. Treatment of myocardial infarction in a coronary care unit: a two years experience with 250 patients. Am J Cardiol. 1967;20(4):457-64. doi: 10.1016/0002-9149(67)90023-9.
7. Morrow DA, Elliott M, Antman AC, Charlesworth A, Cairns R, Murphy SA, et al. TIMI Risk Score for ST-Elevation Myocardial Infarction: A Convenient, Bedside, Clinical Score for Risk Assessment at Presentation. Circulation. 2000;102(17):2031-7. doi: 10.1161/01.cir.102.17.2031.
8. Granger CB, Robert I, Goldberg RJ, Dabbous O, Karen S, Pieper KS, et al. Global Registry of Acute Coronary Events Investigators Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med. 2003;163(19):2345–53. doi: 10.1001/archinte.163.19.2345.
9. Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Dalen J, et al. The Thrombolysis in Myocardial Infarction (TIMI) trial, Phase I findings, An analysis of patient acceptance. Am J Cardiol. 1967;20(4):773-80. doi: 10.1016/0002-9149(67)90019-2.
10. Henriques JPS, Zijlstra F, van Hof AW, Menko-Jan de Boer, Dambrook JHE, Jan-Henk E, et al. Angiographic Assessment of Reperfusion in Acute Myocardial Infarction by Myocardial Blush Grade. Circulation. 2000;102(17):2031-7. doi: 10.1161/01.cir.102.17.2031.
11. Ting HH, Bradley EH, Wang MR Y, Lichtman JH, Nallamothu BK, Sullivan MD., et al. Factors Associated With Longer Time from Symptom Onset to Hospital Presentation for Patients With ST-Elevation Myocardial Infarction. Arch Intern Med. 2008;168(9):959–68. doi: 10.1001/archinte.168.9.959.

12. Kyöti V, Sipilä J, Rautava P. Gender and in-hospital mortality of ST-segment elevation myocardial infarction (from a multi-national nationwide registry study of 31,689 patients). Am J Cardiol. 2015;115(3):303–6. doi: 10.1016/j.amjcard.2014.11.001

13. D’Onofrio G, Safidar B, Lichtman JH, Strait KM, Dreyer RF, Geda M, et al. Sex differences in reperfusion in young patients with ST-segment-elevation myocardial infarction: results from the VIRGO study. Circulation 2015;131(15):1324–32. doi: 10.1161/CIRCULATIONAHA.114.012293.

14. Bugiardini R, Yan AT, Yan RT, Fitchett D, Langer A, Manfrini O, et al. Factors influencing underutilization of evidence-based therapies in women. Eur Heart J 2017;11:1137–44. doi: 10.1093/eurheartj/ehx027.

15. Hani Jneid, Gregg F, Conronow, Christopher P, Cannon, Adrian F, Hernandez, Igor F, Palacios, Andrew O, Mareeheid, H, et al. Sex differences in medical care and early death after acute myocardial infarction. Circulation 2008;119(25):2803–10. doi: 10.1161/CIRCULATIONAHA.108.789900.

16. Lawesson SS, Alfredsson J, Mats F, Swahn E. Time trends in STEMI—improved outcome and outcome but still a gender gap: a prospective observational cohort study from the SWEDEHEART register. BMJ Open 2012;2(2):e000726. doi: 10.1136/bmjopen-2011-000726.

17. Stuart E, Sheifer MR, Canos KP, Weinfurt UK, Umesh K, Farrell A, et al. Sex differences in coronary artery size assessed by intravascular ultrasound. Ital Heart J 2002;Suppl.;3(1):71-7. PMID: 11899576

18. Petronio AS, Musamegi C, Limbruno U, Buglioni R, Amoroso G, Merelli A, et al. Coronary angioplasty in women: risk factors and sex-related differences in coronary anatomy evaluated with intravascular ultrasonography. Ital Heart J 2000;139(4):649–53. doi: 10.1002/0002-8703(200009)139:4<649::AID-IHJ7>3.0.CO;2-5.

19. Keteepa-Arachi T, Sharma S. Cardiovascular Disease in Women: Understanding Symptoms and Risk Factors. Eur Cardiol. 2017;12(1):10-3. doi: 10.15420/ecr.2016:32:1.

20. Mosca L, Benjamin EJ, Berra K, Bezanson J, Dolor RJ, Lloyd-Jones DM, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women. J Am Heart J 2011;11:1337–44. doi: 10.1016/j.ahj.2005.05.015.

21. Rahimi K, Watzlawek S, Thiele H, Secknus MA, Hayerizadeh BF, Niebauer J, et al. Incidence, time course, and predictors of early malignant ventricular arrhythmias after non-ST-segment elevation myocardial infarction in patients with early invasive treatment. Eur Heart J 2006;27(14):1706–11. doi: 10.1093/eurheartj/eht100.

22. Amin AP, Speratus JA, Reid KJ, Lan X, Buchanan DM, Decker C, et al. The prognostic importance of worsening renal function during an acute myocardial infarction on long-term mortality. Am Heart J. 2010;160(6):1065–71. doi: 10.1016/j.ahj.2010.08.007.

23. Joachim H, X, Shilpak MG, Liu HH, Schiller NB, Whobey MA. Association between renal insufficiency and inducible ischemia in patients with coronary artery disease: The Heart and Soul Study. J Am Soc Nephrol. 2003;14(12):3233-9. doi: 10.1161/01.ASN.0000095642.25603.7a.

24. Turak O, Alar S, Sripol D, Yaya C, Oksu F, Cagli K, et al. Severity of coronary artery disease is an independent risk factor for decline in kidney function. Eur J Intern Med. 2016;33:93-7. doi: 10.1016/j.ejim.2016.06.031.

25. de Boer SPM, Roos-Hesselink J, van Leeuwen MAH, Lenzen MJ, van Geuns RJ, Regar E. Excess mortality in women compared to men after PCI in STEMI: an analysis of 11,931 patients during 2000-2009. Int Cardiol. 2014 20;176(2):456-53. PMID: 25129766

26. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 2006;332(7533):73–8. doi: 10.1136/bmj.38678.389537.C.

27. Tonstad S, Rosvold EO, Furu K, Skurtveit S. Under treatment and overtreatment with statins: the Oslo Health Study 2000-2001. Diab Med. 2004;20(7):492-502. doi: 10.1038/sj/diab.1102135.x

28. Cull CA, Neil HA, Holman RR. Changing aspirin use in patients with type 2 diabetes in the UKPDS. Diab Med. 2004;21(12):1368-71. doi: 10.1111/j.1464-5491.2004.01328.x.

29. Duncan J Campbell, Jihenhra B Somaratne, Alicia J Jenkins, David L Prior, Michael Yll, James F Kenny, et al. Differences in Myocardial Structure and Coronary Microvasculature Between Men and Women With Coronary Artery Disease. Hypertension 2011;57(2):186-192. doi: 10.1161/ HYPERTENSIONAHA.110.165043.

30. Milcent C, Dormont B, Durand-Zaleski I, Gabriel P. Gender differences in hospital mortality and use of percutaneous coronary intervention in acute myocardial infarction: microsimulation analysis of the 1999 nationwide French hospitals database. Circulation. 2007;115(7):833-9. doi: 10.1161/ CIRCULATIONAHA.106.664979.

31. Cantor WJ, Fitchett D, Borgundvaag B, Ducas J, Heffernan M, Cohen EA, et al. Routine early angioplasty after fibrinolysis for acute myocardial infarction. N Engl J Med. 2009;360(26):2705-18. doi: 10.1056/NEJMoa0808276.

32. Mega JL, Morrow DA, Ostör E, Dorobantu M, Qin J, Antman EM, Braunwald E. Outcomes and optimal antithrombotic therapy in women undergoing fibrinolysis for ST-elevation myocardial infarction. Circulation. 2007;115(22):2822e8. doi: 10.1161/CIRCULATIONAHA.106.679548.

33. Kreeikas DJ, Weaver WD, Anderson JL, Feldman T, Gihler B, Auerdehbeide T, et al. Time delays in the diagnosis and treatment of acute myocardial infarction: a tale of eight cities. Report from the prehospital study group and the Cincinnati Heart Project. Am Heart J 1990;120(4):773-80. doi: 10.1016/0002-8703(90)90192-2.

34. Henkel DM, Witt BJ, Gersh BJ, Jacobsen SJ, Weston SA, Meuveren RA, et al. Ventricular arrhythmias after acute myocardial infarction: a 20-year community study. Am Heart J. 2006;151(4):806–12. doi: 10.1016/j.ahj.2005.05.015.

35. Vernino S, Brown Jr RD, Sejvar JJR, Petty GW, O'Fallon M. Cause-specific mortality after first cerebral infarction: a population-based study. Stroke 2003;34(8):1828–32. doi: 10.1161/01.STR.0000080534.98416.A0.

36. Dhamoon MS, Tai W, Boden-Albala B, Rundek T, Paik MC, Sacco RL, et al. Risk of myocardial infarction or vascular death after first ischemic stroke: the Northern Manhattan Study. Stroke 2007;38(6):1752–8. doi: 10.1161/ STROKEAHA.106.480988.

37. Miettinen H, Lehto S, Salomaa V, Mähönen M, Niemelä M, Haffner SM, et al. Type 2 diabetes as a “coronary heart disease equivalent”: an 18-year prospective population-based study in Finnish subjects. Diabetes Care. 2005;28(12):2901-7. doi: 10.2337/diacare.28.12.2901.

Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons