Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Editorial

COVID-19 and the global OHCA crisis: An urgent need for system level solutions

In this edition of Resuscitation, two systematic reviews and a national Spanish cohort study highlight the alarming impact of the COVID-19 pandemic on the management and outcomes of out-of-hospital cardiac arrest (OHCA). The rapidly increasing literature in this area is highlighted by the difference in the number of identified studies between the two systematic reviews, despite only a small difference in search dates. Compared with historical data, these papers consistently show that during the COVID-19 period there were more cardiac arrests in the home, ambulance response time increased, and a marked decrease in patient survival. In contrast to data included in the two systematic reviews, OHCA incidence in Spain actually decreased although this is likely explained by differences in system response. The net result is a significant excess OHCA mortality during the COVID-19 period.

Studies to date provide important information as to what has happened during the peak of COVID-19, and should drive others to explore changes in their own system. The findings do, however, raise three critical questions for clinicians, public health and policy makers:

1) Which factors drive the increase in OHCA incidence and mortality during pandemic periods?
2) What actions are needed to limit the medium- and long-term impact of COVID-19 on OHCA, particularly as cases fall and lockdown measures decrease?
3) What actions are needed to limit the impact on OHCA in future waves of the COVID-19 pandemic or future pandemics?

COVID-19 has directly impacted on each link in the cardiac arrest chain of survival. However, the mechanisms that have led to this impact reflect the direct effects of COVID-19, the indirect effects of COVID-19 and the wider societal context. In the context of OHCA, these causal pathways are inevitably complex and our understanding is very limited. In Fig. 1, we present broader system factors that may influence these causal pathways. Improving our understanding of these factors will require our OHCA data collection to move beyond the standard Utstein dataset. In the remainder of this editorial, we highlight some of the key data needed to help us better understand these causal pathways.

The direct contribution of COVID-19 infections on excess OHCA incidence and mortality is uncertain. Studies to date suggest less than one-third of this excess can be explained by individuals with known or presumed COVID-19 infection. However, these data likely under-report the true effect due to narrow Public Health case definitions, compared with the diverse symptoms with which patients commonly present. Comprehensive laboratory testing of patients for SARS-CoV, in particular those where resuscitation efforts are either not initiated or terminated in the field, would support our understanding of the extent of the direct effect of COVID-19 on OHCA. In view of the challenges associated with any additional burden on COVID-19 testing capability and potential issues associated with false-negatives, indirect epidemiological evidence that explores whether OHCA incidence and mortality is associated with factors such as COVID-19 case numbers and system changes (e.g. lockdowns) would also be informative.

In patients infected with COVID-19, improved understanding of OHCA pathophysiology may inform potential mitigations and the clinical management of OHCA. In some patients, the OHCA may be precipitated by hypoxic respiratory failure. This might also explain, in part, the lower rate of shockable rhythms documented in the pandemic OHCA cohorts and may also have implications regarding the utility of providing ‘hands only’ bystander CPR in these patients. Additionally, SARS-CoV infection has also been documented to cause myocarditis, and arrhythmias, and a hyper-coagulable state leading to thrombotic events including cerebral vascular accidents. The degree to which these factors may be causing OHCA can only be determined by conducting and reporting post-mortem findings on these patients as well as collecting and analysing data on patient’s symptoms and clinical course prior to their cardiac arrest. To date, there have been few studies of post-mortem on COVID-19 patients and none specifically on OHCA patients. Similarly, several of the studies on OCHA during COVID-19 reported as limitations the lack of availability of clinical data beyond the standard Utstein template.

Across many healthcare systems, health and social care services were reconfigured in response to the pandemic. These changes included reducing access to preventive care across both primary and secondary care, and cancellation of elective operations. In addition, clinical pathways were redesigned to support telemedicine and limit face-to-face direct contact between healthcare providers and patients, except where deemed essential. Guidelines were also changed for dispatchers and responders regarding ambulance dispatch and patient transport decisions. Prior to COVID-19, there was increasing evidence that OHCA patients often accessed healthcare services in the period preceding their cardiac arrest.
triage when assessing patients over the telephone, there is a need to understand how frequently OHCA patients contacted the health care system prior to their arrest, the associated clinical advice, and the extent to whether this advice was impacted by changes in response to COVID-19.

Clinical concern regarding the risk of transmission of COVID-19 infection risk to the bystander drove modifications to changes in cardiac arrest clinical guidelines and the personal protective equipment (PPE) worn by pre-hospital responders and dispatcher.20–22 The requirement to wear this PPE was identified as leading to potential delays in both the dispatch process as well as the medical response.2 This concern may also have contributed to reduced incidence of bystander CPR.23 While important to protect clinicians from the additional risk potentially associated with treating an infectious patient in cardiac arrest,24 much uncertainty remains regarding the specific risk associated with various treatments and interventions delivered during a resuscitation25 and in particular the most appropriate mitigation strategies for use in the pre-hospital setting. Further research is warranted to inform the requirements and design of PPE for use in the pre-hospital setting.

Understanding the causal factors associated with the excess OHCA incidence and mortality during the pandemic will inform strategies to limit the effect of future pandemic waves. Internationally, we have tended to focus on the obvious cases of COVID-19 presenting to hospitals, often in overwhelming numbers. Stepping back to take a broader system view will ensure that we do not miss other potential opportunities to save lives. The consistent evidence across multiple healthcare systems in relation to OHCA is a red flag, that highlights the need for a coordinated response.

Many countries are now entering a second wave of COVID-19. We must use this opportunity to move away from siloed care delivery to ensure a co-ordinated system-wide (pre-hospital care, hospital care, primary care, public health) response to OHCA.

Conflicts of interest

None declared.

References

1. Lim, et al. Incidence and outcome of out-of-hospital cardiac arrests in the COVID-19 era: a systematic review and meta-analysis. Resuscitation 2020;157:248–58.
2. Scquizzato, et al. Effects of COVID-19 pandemic on out-of-hospital cardiac arrests: a systematic review. Resuscitation 2020;157:241–7.
3. Ortiz, et al. Influence of the Covid-19 pandemic on out-of-hospital cardiac arrest. A Spanish nationwide prospective cohort study. Resuscitation 2020;157:230–40.
4. Nolan J, Soar J, Eikeland H. The chain of survival. Resuscitation 2006;71:270–1.
5. Gupta R, Dhamija RK. Covid-19: social distancing or social isolation? BMJ 2020;369.
6. Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the utstein resuscitation registry templates for out-of-hospital cardiac arrest. Resuscitation 2015;328–40.
7. Marijon E, Karam N, Jost D, et al. Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: a population-based, observational study. Lancet Public Health 2020;5(8):e437–43.
8. Sayre MR, Barnard LM, Counts CR, et al. Prevalence of COVID-19 in out-of-hospital cardiac arrest: implications for bystander CPR. Circulation 2020;142:507–9. doi: http://dx.doi.org/10.1161/ CIRCULATIONAHA.120.049851.
9. Pritchard M, Dankwa EA, Hall M, et al. ISARIC clinical data report 4 October 2020. medRxiv 2020. doi:http://dx.doi.org/10.1101/ 2020.07.17.20155218.
10. Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020. doi: http://dx.doi.org/10.1016/j.hrthm.2020.05.001.
11. Bhatia A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020;17:1439–44.
12. Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med 2020;382:e60.
13. Hess DC, Eldadshen W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res 2020;1.
14. Maielse A, Manetti AC, La Russa R, et al. Autopsy findings in COVID-19-related deaths: a literature review. Forensic Sci Med Pathol 2020;17:19–276.
15. Avery J, Bloom B. COVID-19, a UK perspective. Eur J Emerg Med 2020;27(3):156–7. doi:http://dx.doi.org/10.1097/MEJ.000000000000700.
16. Hollander JE, Carr BG. Virtually perfect? Telemedicine for COVID-19. N Engl J Med 2020;382:1679–81.
17. Shuuy M, Koh M, Qu F, et al. Health care utilization prior to out-of-hospital cardiac arrest: a population-based study. Resuscitation 2019;141:158–65.
18. Lee SY, Song KJ, Do Shin S, Hong KJ. Epidemiology and outcome of emergency medical service witnessed out-of-hospital-cardiac arrest by prodromal symptom: nationwide observational study. Resuscitation 2020;150:50–9.
19. Marjion E, Uy-Evanado A, Dumas F, et al. Warning symptoms are associated with survival from sudden cardiac arrest. Ann Internal Med 2016;164:23–9.
20. Leong YC, Cheskes S, Drennan IR, Buick JE, Latchmansingh RG, Verbeek PR. Clinical considerations for out-of-hospital cardiac arrest management during COVID-19. Resuscitation Plus 2020;4:100027.
21. Jost D, Derkenne C, Kedzirewicz R, et al. The need to adapt the rescue chain for out-of-hospital cardiac arrest during the COVID-19 pandemic: experience from the Paris fire brigade basic life support and advanced life support teams. Resuscitation 2020;153:56–7.
22. Perkins G, Morley P, Nolan J, et al. International liaison committee on resuscitation: COVID-19 consensus on science, treatment recommendations and task force insights. Resuscitation 2020;151:145–7.
23. Grunau B, Bal J, Scheuermeyer F, et al. Bystanders are less willing to resuscitate out-of-hospital cardiac arrest victims during the COVID-19 pandemic. Resuscitation Plus 2020;100034.
24. Christian MD, Loutfy M, McDonald LC, et al. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg Infect Dis 2004;10:287.
25. Couper K, Taylor-Phillips S, Grove A, et al. COVID-19 in cardiac arrest and infection risk to rescuers: a systematic review. Resuscitation 2020;151:59–66.

Michael D. Christian*
London’s Air Ambulance, Royal London Hospital, Barts NHS Health Trust, UK

Keith Couperab
aWarwick Medical School, University of Warwick, Coventry, UK
bCritical Care Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

* Corresponding author at: Royal London Hospital Helipad, Whitechapel Rd, Whitechapel, London E1 1FR, England, UK. E-mail address: Michael.christian@utoronto.ca (M. Christian).

http://dx.doi.org/10.1016/j.resuscitation.2020.11.004
Crown Copyright © 2020 Published by Elsevier B.V. All rights reserved.