Leukocyte migratory responses to apoptosis

Citation for published version:
Gregory, CD, Rossi, AG, Bournazou, I, Zhang, L & Willems, JJLP 2011, 'Leukocyte migratory responses to apoptosis: the attraction and the distraction' Cell adhesion & migration, vol 5, no. 4, pp. 293-7. DOI: 10.4161/cam.5.4.16743

Digital Object Identifier (DOI):
10.4161/cam.5.4.16743

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Cell adhesion & migration

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Leukocyte migratory responses to apoptosis
The attraction and the distraction

Christopher D. Gregory,1,2,* Adriano G. Rossi,1 Irini Bournazou,1 Lihui Zhuang1 and Jorine J.L.P. Willems1

1MRC Centre for Inflammation Research; Queens Medical Research Institute; University of Edinburgh; 2ImmunoSolv Limited; The Chancellor’s Building; Edinburgh, UK

An expanding body of evidence demonstrates that cells undergoing apoptosis send out a selection of molecular navigational signals including proteins, lipids and nucleotides that serve to recruit phagocytes to the dying targets, which are subsequently engulfed and removed. This homeostatic process is essentially non-phlogistic, contrasting markedly with the acute inflammatory responses elicited in phagocytes by damaging or infectious agents. The “professional” scavengers of apoptotic cells are mononuclear phagocytes—the macrophages—and sites of high-rate apoptosis are clearly characterized by macrophages associated with the apoptotic cells. By contrast, members of the other class of professional phagocytes—the granulocytes—are not recruited to sites of apoptosis as a direct consequence of the cell-death program. Indeed, recent work indicates that apoptotic cells release a mixture of migratory cues to leukocytes in order to selectively attract mononuclear phagocytes but not granulocytes through functional balancing of positive and negative signals. Here we discuss these molecular mechanisms that not only serve as migratory cues but also may activate responding phagocytes to engulf apoptotic cells effectively. Finally, we speculate upon new therapeutic opportunities these mechanisms offer for a range of pathological conditions, including inflammatory disorders and cancer.

Introduction

Inherent in the cell-death program apoptosis are cellular responses to the program, not least of which are the responses of phagocytes that locate, recognize, engulf and degrade dying cells. The efficiency and importance of these phagocytic responses is illustrated by the paucity of readily detectable apoptotic cells in tissues and by the pathological consequences of persistent apoptotic cells, particularly illustrated in animal models in which specific pathways in these responses are blocked.1-10 Recently, knowledge of the molecular mechanisms underlying the “scent” of cell death11—the mechanisms by which phagocytes initially locate and navigate towards apoptotic cells—has increased substantially. Predictably, as the molecular complexity of the chemoattractive mechanisms unfolds, additional questions arise, some of which we will address here. Specifically, given that phagocyte chemoattractant moieties released by apoptotic cells have potential to act on both groups of professional phagocytes—both the mononuclear phagocytes and the granulocytes—how is it that only mononuclear phagocytes are actively recruited to locations of apoptosis? Furthermore, since the chemoattractants of phagocytes have multifunctional properties, are these important in the apoptotic-cell clearance process? Finally, can these migratory mechanisms be targeted therapeutically?

Phagocyte Chemoattractant Signals Coupled to Clearance of Dead and Dying Cells

We have recently rationalized three main phases in the clearance of apoptotic cells: recognition, response and removal.10

Key words: apoptosis, migration, chemotaxis, macrophage, monocyte, granulocyte, phagocytosis, lactoferrin, ATP, fractalkine

Submitted: 05/02/11
Accepted: 06/02/11
DOI: 10.4161/cam.5.4.16743
*Correspondence to: Christopher D. Gregory; Email: chris.gregory@ed.ac.uk
Acting early in the recognition phase are the molecules that signal the location of the apoptotic cell to phagocytes. Immediately juxtaposed cells of a variety of different lineages—including for example, fibroblasts, epithelial cells and myocytes—can phagocytose their apoptotic neighbors and although little is yet known of the signaling processes underlying such “non-professional” phagocytic responses, (cf. ELMO1 in clearance of apoptotic germ cells in the testis13), it is assumed that the early migratory responses are generally not required. It is conceivable, however, that additional functional (e.g., pro-phagocytic, vide infra) effects of the same chemotacticants as those required for recruitment of professional phagocytes may be required for the response phase of non-professional phagocytes of apoptotic cells. We will consider here the responses of the professional phagocytes, since these are invariably found at sites of apoptosis in multiple tissues, embryonic and adult.

Over recent years, the spectrum of chemotacticants produced by apoptotic cells to activate directed migration of mononuclear phagocytes has grown markedly. The best characterized players now include the lipids lysophosphatidylcholine (LPC) and sphingosine-1-phosphate (S1P),13,14 the nucleotides, ATP and UTP,15,16 as well as the classical protein chemokines, CX3CL1 (fractalkine) and CCL2 (MCP-1).17,18 All of these molecules appear to act through phagocyte-associated G-protein-coupled receptors—G2A (for LPC), P2Y2 (for nucleotides), CX3CR1 (for CX3CL1), CCR2 (for CCL2) and ill-defined GPCR (for S1P).13,15,17,18 Other phagocyte chemotacticants proteins released from apoptotic cells include the covalent dimer of ribosomal protein S19, endothelial monocyte-activating polypeptide II (EMAP II), thrombospondin 1, TGFβ and annexin I (reviewed in refs. 9 and 19).

Several important questions arise in connection with the attributes of such a panoply of potential chemotacticants: (1) Which molecules are actively released from stressed (pre-apoptotic) cells, dying (apoptotic) cells or passively released from dead (lysed, necrotic, post-apoptotic cells)? (2) Which ones are specifically chemotactic for (or enable directed migration of) mononuclear phagocytes? (3) Do these molecules have additional functions of relevance to the clearance process (response and removal phases)? (4) Which molecules predominate in supporting clearance of dying and dead cells in normal or pathological processes in vivo?

Phagocyte Chemoattractants Released from Stressed, Apoptotic and Dead Cells

An extensive array of small molecules and macromolecules such as heat shock proteins, nucleotides and formylated peptides that have the potential to act as phagocyte chemoattractants are released from cells whose plasma membranes have lost integrity.20-23 Such cells would include those that undergo primary necrosis and those that reach the post-apoptotic state—a situation that occurs in pathological conditions and also occurs frequently in vitro when, as is usually the case with cell cultures, apoptotic cells persist because of the absence of effective phagocytic clearance mechanisms. Persistence of apoptotic cells does not occur under normal circumstances in vivo, although can occur when molecular clearance pathways are blocked and has been linked to autoimmune disease (reviewed in ref. 8).

Of importance to the biological value of apoptosis and to the phagocytic clearance process is the essence of speed: phagocytes responding at a distance require time to sense and locate apoptotic cells. To this end, cells committed to undergo apoptosis would be expected to produce chemoattractant/pro-migratory signals actively at an early stage in the process, in concert with the molecular machinery of the apoptosis program. Indeed, it seems likely that stressed cells that are not of necessity committed to undergo apoptosis—but rather are pre-apoptotic, with commitment to the cell-death program a fate decision still to be concluded—may also send out earlier navigational signals to phagocytes. Since phagocytes have the ability either to promote cell death or cell survival,24-27 such signals (perhaps depending additionally on phagocyte activation properties of migration-controlling factors, as we discuss later) could conceivably either promote or prevent commitment to apoptosis in pre-apoptotic, stressed cells. In this way, the phagocyte response could be pivotal in certain circumstances to the fundamental fates of cell death or survival.

While several studies associate chemotacticant release with the activation of the apoptosis program and demonstrate active release prior to plasma membrane breakdown (reviewed in refs. 14, 15 and 17), such investigations tend not to differentiate between processes occurring in stressed cells that lead to apoptosis and mechanisms activated specifically in apoptosis. Both situations are likely to have significant biological value. Other studies provide compelling arguments for a mechanistic association of chemotacticant release and the activation of the apoptosis machinery by demonstrating that effector proteases in the apoptosis program act on key substrates that consequently mediate release of chemoattractive molecules. Thus, Lauber and colleagues showed that release of the chemotactic lipid LPC from apoptotic cells is dependent on the activation of phospholipase A2 (which hydrolyses membrane-associated phosphatidylcholine to produce LPC) by the apoptotic effector protease, caspase-3.3 More recently, Ravichandran’s group demonstrated that the release of nucleotides in apoptosis occurs via the plasma membrane channel pannexin 1 (PANX1). Significantly, PANX1 was found to be a target in apoptosis for the effector proteases caspase-3 and caspase-7 with a specific caspase cleavage site in the channel being required for its regulation during the apoptosis program.16

Specific and Combinatorial Signals for Selective Attraction of Mononuclear Phagocytes

Regardless of whether chemotactic factor release occurs as a specific consequence of activation of the apoptosis machinery or as a result of pre-apoptotic stress (both are biologically relevant), how is selective attraction of mononuclear phagocytes ultimately achieved? This is an important consideration because it is clear that factors which have the capability to effect attraction of both types of professional phagocytic leukocytes—mononuclear and polymorphonuclear (granulocytes)—are released from apoptotic cells. For example,
ATP is known to act as a chemoattractant (or at least an activator of migration) for both granulocytes and mononuclear phagocytes but granulocytes are not recruited to sites of apoptosis to mediate cell clearance whereas mononuclear phagocytes are. Similar arguments can be made for the cytokine-like polypeptide EMAP II which also has functional activity in promoting granulocyte chemotaxis. Recent work suggests a possible mechanism of selective recruitment of professional phagocytes whereby release of multiple regulators of migration by apoptotic cells functionally ‘filters out’ granulocytes resulting in preferential mononuclear phagocyte attraction (Fig. 1). The paradigm for this mechanism that comprises a balance of positive and negative migratory cues (“Find Me” versus “Keep Out” signals) lies in the developing nervous system. Thus, we suggest that a key molecule in this filtration process is lactoferrin—a pleiotropic protein with anti-inflammatory properties which we reported to be released from apoptotic cells of multiple cell lineages. Even primary human lymphocytes were found to release lactoferrin in response to apoptotic stimuli. Significantly, we showed that lactoferrin binds to specific receptors on granulocytes and markedly inhibits their ability to migrate towards numerous chemoattractants in vitro or to respond to acute inflammatory stimuli in vivo. By negatively regulating granulocyte activation and migratory responses, apoptotic cells are thus able to deploy a barrage of leukocyte pro-migratory molecules—including those that may otherwise recruit granulocytes—in pursuit of macrophage attraction (Fig. 1).

Our studies indicated that other negative regulators of granulocyte migration are also likely to be produced by apoptotic cells because residual migration inhibitory activity was observed in the absence of lactoferrin or when its function had been neutralized. Indeed, although to our knowledge no other specific negative regulators of neutrophil recruitment released from apoptotic cells have been directly implicated, (although annexin 1 may be a candidate in this respect in view of its ability to inhibit neutrophil-endothelial binding under conditions of flow) there are other potential candidate molecules that could fulfill this role. For example, the laminin-related neural guidance protein, Netrin-1 functionally inhibits neutrophil recruitment through attenuation of trans-epithelial migration. Furthermore, depending on the local concentrations and site of generation, agents that elevate cAMP (especially the prostaglandins PGE2, PGI2 and PGD2) in neutrophils may dampen neutrophil recruitment and activation. Other lipids demonstrated, especially by Serhan and colleagues, to play important roles in the resolution of inflammation are the lipoxins, resolvins and protectins. These lipids generated and released during different phases of the resolving inflammatory response have an intriguing biological profile that are likely important in selective recruitment and activation of specific leukocyte subtypes. Furthermore, it has been well documented that apoptotic cells that interact with macrophages can cause the phagocytes to switch from a pro-inflammatory to a more anti-inflammatory phenotype. Consequently, there is a downregulation of pro-inflammatory mediator generation.

Figure 1. Leukocyte migratory factors released from apoptotic cells: "Keep Out" and "Find Me" signals. Selective attraction of mononuclear phagocytes to sites of apoptosis is proposed to result from a balance between positive signals that attract leukocytes (or specifically mononuclear phagocytes) and negative, anti-inflammatory signals that inhibit granulocyte migration. Four categories of signaling factors are proposed: (1) factors that promote migration of both mononuclear phagocytes and granulocytes (e.g., ATP, EMAP II); (2) factors that promote selective migration of mononuclear phagocytes (e.g., CXCL1, CCL2); (3) factors inhibiting granulocyte migration (none yet defined as released from apoptotic cells but candidates include lipoxins and netrin-1); (4) factors that both attract mononuclear phagocytes but inhibit granulocyte migration (e.g., lactoferrin). The promoters of monocyte/macrophage attraction may also prepare these professional phagocytes for enhanced clearance of apoptotic cells. Adapted from reference 11.
and release (e.g., IL-1, IL-8 and TNFα) with pro-active release of mediators with anti-inflammatory potential (including IL-10, TGFβ and PGE2). This change in the inflammatory milieu per se may favor differential recruitment of different leukocyte populations. Thus future studies will undoubtedly identify what specific environmental factors and/or other negative regulators of neutrophil recruitment are responsible for the leukocyte profile seen at sites of apoptotic cell clearance, including inflammatory sites and tumors.

Phagocyte-Activating Properties of Chemoattractants

In addition to providing critical migratory cues to phagocytes, chemoattractants released from apoptotic cells also appear to activate mononuclear phagocytes in order to improve their preparedness for apoptotic cell removal (Fig. 1). Presumably by divergent intracellular signaling pathways or differential receptor usage, apoptotic cells thus seem capable of conditioning phagocytes remotely, not only to locate them but also to make provision for effective recognition and removal. For example, interaction of the chemokine CXCL1 with its receptor on macrophages activates the phagocytes to produce MFG-E8, a bridging molecule that connects phagocyte αv integrins with the phosphatidylserine that is exposed on apoptotic cells, thereby promoting engulfment. In addition, other factors such as annexin I, IL10 and TGFβ that are released from apoptotic cells not only have reported chemoattractant activity for mononuclear phagocytes (or in some cases at least have indirect capacity to activate chemotaxis via specific chemoattractant induction) but also have capability in promoting apoptotic-cell clearance. Furthermore, the ATP that is released from apoptotic cells has potential to enhance their recognition by macrophages since recent work has demonstrated that extracellular ATP promotes, via P2X1 or P2X3 receptors, macrophage binding of apoptotic cells. Lactoferrin has also been found to function as a chemoattractant for mononuclear phagocytes and it will be important to determine whether this highly pleiotropic glycoprotein also activates macrophages to phagocytose their apoptotic targets more effectively, particularly since phagocytic responses to pathogens in macrophages are stimulated by lactoferrin. Further work will be required to determine the full extent of the molecular mechanisms underlying phagocyte “activation-for-clearance” properties of leukocyte migratory regulatory molecules released by apoptotic cells.

Conclusions

The phagocytic cues emanating from apoptotic cells are both complex and curious, and much research is needed in order to expand the currently limited level of understanding of the underlying molecular mechanisms. There is no doubt that the molecules that regulate leukocyte responses to the apoptosis program have broad therapeutic potential. For example, suppression of macrophage recruitment to high-grade tumors (in which apoptosis abounds) through antagonistic targeting of the molecular players is likely to have negative influences on tumor growth, especially in view of the pro-tumor functions of tumor-associated macrophages (TAM). Furthermore, inhibition of effective interaction of TAM with apoptotic cells could conceivably lead to persistence of dead cells, pro-inflammatory sequelae and subsequent anti-tumor responses. As we have previously rationalized, antagonism of lactoferrin’s anti-inflammatory effects in the microenvironment of high-grade malignancies could also facilitate anti-tumor immune responses, including those elicited by granulocytes, recruited as a consequence of relaxation of the mechanisms that otherwise inhibit their migration. By contrast, agonists of the leukocyte migratory control mechanisms generated by apoptosis have great potential to be used to treat inflammatory disorders, allergies and wounds. In conclusion, the future holds great promise, not only in improving our understanding of the “outreach” of apoptosis to the innate immune system, but also in applying that knowledge to the development of new therapies to a range of pathological conditions in which apoptosis is a prominent process.

Acknowledgments

The authors’ work is supported by Leukaemia and Lymphoma Research, the Medical Research Council (UK), The Technology Strategy Board and ImmunoSolv Limited.

References

1. Savill J, Dramisfield I, Gregory C, Hadlett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2002; 2:965-75.
2. Lauber K, Blumenhal SG, Wabel M, Wesselborg S. Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 2004; 14:277-87.
3. Gilroy DW, Lawrence T, Perretti M, Rossi AG. Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 2004; 3:401-16.
4. Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 2006; 27:244-50.
5. Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med 2006; 12:1056-64.
6. Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 2007; 7:964-74.
7. Gregory CD, Pound JD, Eds. Results of defective clearance of apoptotic cells: lessons from knock-out mouse models: Springer 2009.
8. Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease. J Cell Biol 2010; 189:1059-70.
9. Gregory CD, Pound JD. Micronenvironmental influences of apoptosis in vivo and in vitro. Apoptosis 2010; 15:1029-49.
10. Gregory CD, Pound JD. Cell death in the neighbour-hood: direct and indirect effects of apoptosis in normal and neoplastic tissues. J Pathol 2011; 223:177-94.
11. Gregory C. Cell biology: Sent by the scent of death. Nature 2009; 461:181-2.
12. Elliott MR, Zheng S, Park D, Wooddon RJ, Reardon MA, Juncadella IJ, et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 2010; 467:533-7.
13. Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenhal SG, Lindemann RK, et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 2003; 113:717-30.
14. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a ‘come-and-get-me’ signal. FASEB J 2008; 22:629-38.
15. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadi A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461:282-6.
16. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 2010; 467:865-7.
17. Truman LA, Ford CA, Paikowska M, Pound JD, Wilkinson SJ, Dumitriu HE, et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 2008; 112:5026-36.
signals guide neutrophils to sites of sterile inflammation. Slaba I, Waterhouse CC, et al. Intravascular danger: a ‘DAMP’ view of inflammatory arthritis. Nat Rev Rheumatol 2007; 3:382-90.

21. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 2009; 106:20388-93.

22. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010; 330:362-6.

23. Zhang Q, Raaf M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464:104-7.

24. Duffield JS, Erwig LP, Wei XQ, Liew FY, Rees AJ, Savill JS. Activated macrophages direct apoptosis and suppress mitosis of mesangial cells. J Immunol 2000; 164:2110-9.

25. Hoppenr DJ, Hengartner MO, Schnabel R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 2001; 412:202-6.

26. Reddien PW, Cameron S, Horvitz HR. Phagocytosis promotes programmed cell death in C. elegans. Nature 2001; 412:198-202.

27. Ogden CA, Pound JD, Barth BK, Owens S, Johannessen I, Wood K, et al. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol 2005; 174:3015-23.

28. Kao J, Ryan J, Beert G, Chen J, Shen H, Fan YG, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem 1992; 267:20239-47.

29. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 2006; 314:1792-5.

30. Bourazou I, Pound JD, Duffin R, Bourazou S, Melville LA, Brown SB, et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 2009; 119:20-32.

31. Bourazou I, Mackenzie KJ, Duffin R, Rossi AG, Gregory CD. Inhibition of eosinophil migration by lactoferrin. Immunol Cell Biol 2010; 88:220-3.

32. Hayhoe RP, Kamal AM, Solito E, Flower RJ, Cooper D, Perretti M. Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement. Blood 2006; 107:2123-30.

33. Ly NP, Komatsuuki K, Fraser IP, Tseng AA, Prodhain P, Moeoe KJ, et al. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci USA 2005; 102:14729-34.

34. Rosenberger P, Schwab JM, Mirakaj Y, Masekowsky E, Mager A, Monote-Garcia JC, et al. Hyponia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 2009; 10:195-202.

35. Kunkel SL, Thrall RS, Kunkel RG, McCormick JR, Ward PA, Zazier RB. Suppression of immune complex vasculitis in rats by prostaglandin. J Clin Invest 1979; 64:1525-9.

36. Kunkel SL, Ogawa H, Conran PB, Ward PA, Zazier RB. Suppression of acute and chronic inflammation by orally administered prostaglandins. Arthritis Rheum 1983; 24:1151-8.

37. Pons F, Williams TJ, Kirk SA, McDonald F, Rossi AG. Pro-inflammatory and anti-inflammatory effects of the stable prostaglandin D2 analogue, ZK 118.182. Eur J Pharmacol 1994; 261:237-47.

38. Rampart M, Williams TJ. Polymorphonuclear leukocyte-dependent plasma leakage in the rabbit skin is enhanced or inhibited by prostacyclin, depending on the route of administration. Am J Pathol 1986; 124:66-73.

39. Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 2010; 177:1576-91.

40. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Hadlett C, O’Neill LA, et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J 2007; 21:325-32.

41. Serhan CN, Chiang, N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008; 8:349-61.

42. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkonitaite I. Immunosuppressive effects of apoptotic cells. Nature 1997; 390:350-1.

43. Fadok VA, Bratton DL, Koneal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGFβ, PGE2 and PAF. J Clin Invest 1998; 101:890-8.

44. Miksa M, Amin D, Wu R, Ravikumar TS, Wang P. Fractalkine-induced MFG-E8 leads to enhanced apoptotic cell clearance by macrophages. Mol Med 2007; 13:553-60.

45. Marques-da-Silva C, Burnstock G, Ojcius DM, Coutinho-Silva R. Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunology 2011; 216:5-11.

46. de la Rosa G, Yang D, Tewary P, Varadhachary A, Oppenheim JJ. Lactoferrin acts as an alarmin to promote the recruitment and activation of APCs and antigen-specific immune responses. J Immunol 2008; 180:6068-76.

47. Kari K, Komine K, Komine Y, Kuroishi T, Korutsumi T, Kobayashi J, et al. Lactoferrin stimulates A Staphylococcus aureus killing activity of bovine phagocytes in the mammary gland. Microbiol Immunol 2002; 46:187-94.