Most of the phylogenetic diversity of life is found in bacteria and archaea, and is reflected in the diverse metabolism and functions of bacterial and archaeal polyamines. The polyamine spermidine was probably present in the last universal common ancestor, and polyamines are known to be necessary for critical physiological functions in bacteria, such as growth, biofilm formation, and other surface behaviors, and production of natural products, such as siderophores. There is also phylogenetic diversity of function, indicated by the role of polyamines in planktonic growth of different species, ranging from absolutely essential to entirely dispensable. However, the cellular molecular mechanisms responsible for polyamine function in bacterial growth are almost entirely unknown. In contrast, the molecular mechanisms of essential polyamine functions in archaea are better understood: covalent modification by polyamines of translation factor aIF5A and the agmatine modification of tRNA\(^{1\text{le}}\).

As with bacterial hyperthermophiles, archaeal thermophiles require long-chain and branched polyamines for growth at high temperatures. For bacterial species in which polyamines are essential for growth, it is still unknown whether the molecular mechanisms underpinning polyamine function involve covalent or noncovalent interactions. Understanding the cellular molecular mechanisms of polyamine function in bacterial growth and physiology remains one of the great challenges for future polyamine research.

Polyamines (Fig. 1) are a relatively overlooked component of the bacterial and archaean metabolomes. This is due to several factors, including the patchwork phylogenetic distribution of any specific polyamine, the nontrivial problem of their detection and quantification, and the dearth of knowledge in bacteria about any molecular mechanisms that polyamines are involved in. Consequently, the terms “enigmatic” and “mysterious” occasionally decorate the titles of polyamine papers, yet the polyamine spermidine was almost certainly present in the last universal common ancestor of life (LUCA),\(^2\) because LUCA likely encoded spermidine synthase (1). The extent to which polyamine functions are selected for by evolution can be inferred from the fact that two entirely independent biosynthetic pathways exist for spermidine production; similarly, two distinct, independent pathways exist for homospermidine biosynthesis, and polyamine biosynthetic enzyme arginine decarboxylase has convergently evolved from four different protein folds (2). This minireview will discuss polyamine function in archaea and bacteria but will not discuss production of agmatine, putrescine, or cadaverine by acid-inducible basic amino acid decarboxylases (2, 3) or the agmatine deiminase system that takes up exogenous agmatine and exports putrescine (4). It will not, for the most part, cover inferred functions of polyamines determined from observations of in vitro biochemical behaviors of polyamines in binding RNA and DNA and other macromolecules. To highlight the phylogenetically narrow scope of current published polyamine function studies in bacteria, the host phylum of the various bacterial species discussed is indicated.

Archaea

Archaea (Archaeabacteria) were formerly viewed as extremophile bacteria until they were unveiled as the third domain of life by Woese and Fox (5). They differ from bacteria in having isoprene lipids conjugated by ether bonds to glycerol-1-phosphate in their membranes, they lack peptidoglycan in their cell walls, and their informational proteins (e.g. those involved in transcription and translation) are more similar to eukaryotes than to bacteria (6). Recently, culture-independent sequencing approaches have greatly expanded the known phylogenetic diversity of archaea, with many new phylum-level lineages being discovered in diverse habitats (6–8). The lifestyles of archaea (e.g. hyperthermophiles, methanogens, and halophiles) do not necessarily reflect phylogeny but have been a useful descriptor before specific molecular phylogenetic attributions were possible.

The distribution of individual polyamines (Fig. 1) among archaean groups is distinctive. Some of the earliest observations about polyamines in archaea were that they are absent in halophiles (9–11). It was also noted that the halophile *Halobacterium halobium* was unable to take up exogenous putrescine (9), but cell extracts of *H. halobium* and *Halococcus morrhuae* were able to produce agmatine from added arginine (11). Polyamines can be described by the number of methylene carbons between amine groups (e.g. putrescine is represented by [4] and spermidine by [34]). Analysis of diverse hyperthermophilic, acidophilic, and thermoacidophilic archaea found a variety of linear polyamines, including norspermidine [33], spermidine [34], homospermidine [44], norspermine [333], spermine [343], thermoperamide [334], caldopentamine [333], and caldohexamidine [33333], and quaternary branched pentaamine \(N^\alpha\)-bis...
Some methanogens contain only homospermidine and putrescine, the majority contain only spermidine, and some contain both homospermidine and spermidine (13). This diversity of polyamine structures and phylogenetic distribution suggests lifestyle-related functions for different polyamines. However, some core conserved functions of polyamines in archaea can be discerned.

Deoxyhypusine/hypusine modification of translation factor aIF5A

A common feature of archaea is the presence of the polyamine-derived deoxyhypusine/hypusine modification of translation elongation factor aIF5A (14). In eukaryotes, the aminobutyl moiety of spermidine is transferred by deoxyhypusine synthase (DHS) to a single lysine residue in eIF5A to form deoxyhypusine, which, after hydroxylation by deoxyhypusine hydroxylase, forms the hypusine post-translational modification (15–17). Hypusine modification of eIF5A is required for translation of mRNAs encoding polyproline tracts that would otherwise cause ribosome stalling and translational arrest (18). DHS is essential for growth of eukaryotes as phylogenetically distant as budding yeast (19), mouse (20), and trypanosomatid parasites (21, 22). Diverse archaea have been shown to contain either deoxyhypusine- or hypusine-modified aIF5A (14, 23, 24). Analysis of archaeal genomes by BLASTP indicates that all archaea are likely to encode DHS. Inhibition of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius DHS by N1-guanyl-1,7-diaminoheptane led to cell cycle arrest (25).

Although deoxyhypusine formation in eukaryotes depends on spermidine as an aminobutyl group donor (15), and this is likely to apply to most archaea (Fig. 1), the mechanism of deoxyhypusine formation in halophiles does not depend on spermidine. Halophiles do not accumulate either spermidine or putrescine; however, they do accumulate agmatine. An agmatinase-like gene (agmatinase converts agmatine to putrescine) is necessary for deoxyhypusine formation in Halorubrum rubrum, and only deoxyhypusine, and not hypusine, is detected in aIF5A (26). The H. volcanii agmatinase-like gene is essential for growth even though putrescine and spermidine are not accumulated. It was suggested that the aminobutyl moiety of deoxyhypusine in

![Diagram of polyamines](image_url)
H. volcanii might be derived from putrescine or from agmatine that is transferred to eIF5A and the guanidino group subsequently released to form deoxyhypusine by the action of the agmatinase-like enzyme. Currently, it is not certain whether putrescine is required for growth of halophiles, and, as mentioned above, the halophile H. halobium was unable to take up exogenous putrescine (9).

In contrast, the recombinant DHS of the hyperthermophilic euryarchaeote Thermococcus kodakarenensis transfers the aminobutyl group of spermidine to T. kodakarenensis aIF5A to form deoxyhypusinated aIF5A (26) (Fig. 2). Although spermidine is required for deoxyhypusine formation in T. kodakarenensis (26), putrescine is not required for growth because spermidine is synthesized from agmatine via aminopropylagmatine rather than putrescine (27). Some methanogens, in particular the Methanosarcinaceae, accumulate only homospermidine rather than spermidine (13). Homospermidine contains two aminobutyl groups, and the human DHS can use homospermidine to donate an aminobutyl group to eIF5A (28). Intriguingly, homospermidine-accumulating members of the Methanosarcinaceae are capable of nitrogen fixation (29), and recently homospermidine biosynthesis was shown to be essential for normal diazotrophic (nitrogen-fixing) growth of the filamentous cyanobacterium Anabaena (30). Spermidine is therefore dispensable for growth in archaeal halophiles and some methanogens.

Agmatinylation of tRNAile

In most but not all archaea, agmatine is transferred to tRNAile to form the covalent modification known as agmatidine (2-aminopropylagmatine) on the cytidine of the anticodon CAT (31, 32) (Fig. 2). This modification, performed by the enzyme TiaS, is required for the discrimination of isoleucine and methionine codons and is essential for growth. The enzyme TiaS is also essential for growth (33). A few archaeal species, including Candidatus Korarchaeum cryptofilum OPF8 and Nanoarchaeum equitans do not encode a TiaS homologue and instead encode tRNAile genes with TAT anticodons (34). In the vast majority of archaea, it is likely that agmatine, specifically, will be necessary for growth due to the need for the agmatidine modification of tRNAile. The role of agmatine in agmatinylation explains why agmatine but not putrescine is essential for growth of T. kodakarenensis (35) and why agmatine is the only polyamine accumulated in some extreme halophiles (36). An equivalent modification of tRNAile in bacteria is achieved by covalent attachment of lysine (37) by the enzyme TilS (38), a nonhomologous equivalent of TiaS that has arisen by convergent evolution (34). Due to the role of agmatine in agmatinylation of tRNAile, provision of agmatine by arginine decarboxylase is required for the essential deoxyhypusine formation in T. kodakarenensis (27) resulted in depletion of spermidine and branched-chain polyamines (N4-aminopropylspermidine and N4,6-bis(aminopropyl)spermidine, originally misassigned as spermine and N4-aminopropylspermidine) and severe growth defects at 85 °C, and even more so at 93 °C, that could be slightly reversed at 85 °C but not at 93 °C by supplying spermidine. If only the branched-chain polyamines are eliminated by deletion of the branched-chain aminopropyltransferase BspA, growth at 93 °C is abolished, but some growth can be restored by provision of 1 mM N4-bis(aminopropyl)spermidine (41). These findings establish the essential role of branched polyamines in high-temperature growth of T. kodakarenensis. In vitro biochemical studies indicate that both linear long-chain polyamines and branched polyamines induce structural changes to DNA that are proposed to facilitate growth at extreme temperatures (42, 43).

Absence of polyamines in halophilic archaea

In notable contrast to the exotic polyamine content of hyperthermophiles that, in addition to branched polyamines, can contain long linear chain polyamines, such as caldohexamine featuring five aminopropyl group additions (12), halophilic archaea contain only agmatine. The genes encoding the spermidine biosynthetic enzymes SAM decarboxylase and spermidine synthase have been lost from halophiles. Archaeal halophiles grow in up to 3 mM external NaCl by using a salt-in strategy, accumulating in their cytosol millimolar quantities of KCl (44). An interesting question then is whether polyamines have been lost from halophiles because they are not capable of performing their usual functions in high KCl or whether high KCl renders the noncovalent function of polyamines superfluous. Certainly, halophiles have evolved to supply an aminobutyl group for deoxyhypusine formation without the participation of spermidine or homospermidine (26).

In conclusion, agmatine and agmatidine formation are essential for growth in most but not all archaea, and agmatine is required for spermidine biosynthesis (Fig. 2). Agmatine or possibly putrescine is required for the essential deoxyhypusine modification of aIF5A in halophiles. Spermidine or homospermidine are essential in most archaea except halophiles for deoxyhypusine formation. Finally, long-chain and branched-chain polyamines are essential for growth at very high temperatures. Whether spermidine has a noncovalent role in archaeal physiology is not known, and due to its role in deoxyhypusine formation and long- and branched-polyamine biosynthesis, it will be technically and conceptually challenging to address this question. It also remains to be proven that the role of deoxyhypusinated aIF5A in archaea is the same as that of hypusinated eIF5A in eukaryotes.
Bacteria

Most of the known phylogenetic diversity of life is found in the bacterial domain, and that diversity has significantly expanded recently with the identification of multiple new candidate phyla using culture-independent metagenomic sequencing and single-cell sequencing (8). In addition to the 30 or so traditional phyla, such as Cyanobacteria, Proteobacteria, and Firmicutes, 134 new putative phyla have been identified (8). However, polyamine metabolism and potential function have been analyzed in only a few bacterial species, most extensively in *Escherichia coli* and *Thermus thermophilus*. The identification of polyamines has by definition been limited to culturable species, which represent a very small fraction of total bacteria (45). Much of the analysis of polyamine distribution in bacteria has been performed by the indefatigable Koei Hamana and coworkers (46, 47). Putrescine and spermidine are the most common polyamines in bacteria (48), but the presence of other polyamines has poor correlation with bacterial lifestyles, such as psychrophily, halophily, acidophily, or alkaliphily, except for thermophily, where a strong correlation exists with the presence of long-chain and branched polyamines (47). Some bacteria do not produce polyamines, and one of the earliest identified examples of polyamine auxotrophy was found in the firmicute opportunistic pathogen *Staphylococcus aureus* (49).

Covalent roles

Unlike the roles of agmatine and spermidine in covalently modifying translation factor alF5A and tRNA^{His} in archaea, the equivalent modification of the bacterial alF5A orthologue EF-P uses distinct mechanisms, resulting in β-lysine, 5-aminopentanol, or L-rhamnose modifications to EF-P (50), and tRNA^{His} is modified by lysine (34). A limited number of cases of polyamines being used covalently have been identified. The diamine cadaverine (Fig. 1) was found to be covalently attached to the cell wall peptidoglycan of the Negativicutes species *Selenomonas ruminantium* (51). Inhibition of the cadaverine-producing enzyme lysine decarboxylase by the specific inhibitor DL-α-difluoromethyllysine prevented cadaverine accumulation and incorporation into peptidoglycan, resulting in cell swelling and severe inhibition of cell growth (52). Cadaverine and spermidine were found to be covalently linked to the cell wall peptidoglycan in the related species *Anaerovibrio lipolytica* (53), and agmatine, putrescine, and cadaverine were found covalently linked to peptidoglycan in other *Selenomonas* species and related species (54). It was presumed that incorporation of polyamines into peptidoglycan increased the rigidity of cell walls, thereby contributing to their essential role in growth. However, the definitive proof of that role would require mutants that accumulate polyamines normally but that cannot covalently link the polyamines to peptidoglycan. There has been no systematic attempt to identify polyamines covalently linked to cellular proteins in bacteria where polyamines are known to be essential for growth.

Roles in cell growth

With growth being the most obvious readout for physiological importance, it was noted nearly 70 years ago that putrescine, spermidine, spermine, and agmatine, but not cadaverine or ornithine, promoted the growth of opportunistic pathogen γ-proteobacterium *Haemophilus influenzae* (55). norspermidine was subsequently shown to be more effective than spermidine or homospermidine, and the simple diamine 1,3-diaminopropane also allowed growth (56). Similarly, it was shown that the nonpathogenic β-proteobacterium *Neisseria flava* has an absolute growth requirement for exogenous putrescine (57). The most commonly used model bacterium for studying polyamine metabolism is γ-proteobacterium *E. coli*, and it has served as the primary template for understanding polyamine metabolism in other bacteria (2). It is generally thought that spermidine is the most important polyamine in archaea and eukaryotes due to its role in deoxyhypusine/hypusine formation and in bacteria due to its ubiquitous distribution (48). When Celia and Herb Tabor obtained a Mu transposon-disrupted SAM decarboxylase mutant strain of *E. coli* that was completely deficient in spermidine, the strain still grew at 75% of the WT rate (58). Disruption of all *E. coli* polyamine biosynthesis, including putrescine and cadaverine, reduced aerobic planktonic growth by 40–50% (59, 60). However, the polyamine-deficient strain exhibited an absolute requirement for spermidine for growth under strictly anaerobic conditions. The fact that a spermidine-deficient strain of *E. coli* could still grow at 75% of the WT rate under aerobic conditions suggests that there is not a specific requirement for spermidine *per se* in *E. coli* growth. Both homospermidine and aminopropylcadaverine could replace the role of spermidine in *E. coli* growth, albeit less efficiently (60). Recently, it was found that norspermidine is more efficient at replacing spermidine for growth at 37 °C but that homospermidine is the most efficient triamine at 42 °C (61). These findings indicate that the exact structure, number of methylene groups, and symmetry of the triamine are not critical for function during growth of *E. coli*, suggesting that the general physicochemical attributes (*i.e.* distributed positive charges over a flexible backbone) are more important.

In contrast to the important but not critical role of polyamines in planktonic growth of *E. coli*, polyamine biosynthesis is absolutely essential for growth of opportunistic pathogen γ-proteobacterium *Pseudomonas aeruginosa* PAO1 (62), foodborne pathogen ε-proteobacterium *Campylobacter jejuni* (63), plant pathogen α-proteobacterium *Agrobacterium tumefaciens* C58 (64), and plant pathogen β-proteobacterium *Ralstonia solanacearum* (65). Whereas *P. aeruginosa*, *C. jejuni*, and *A. tumefaciens* synthesize spermidine, *R. solanacearum* produces only putrescine and 2-hydroxyputrescine (66) (Fig. 1). The Lyme disease agent spirochete *Borrelia burgdorferi* has lost its polyamine biosynthetic pathway, but genetic abrogation of its PotABCD polyamine uptake transporter abolishes growth in polyamine-free medium (67). Nitrogen-fixing filamentous cyanobacterium *Anabaena* sp. strain 7120 normally accumulates only homospermidine, and genetic elimination of homospermidine biosynthesis abolished diazotrophic (nitrogen-fixing) growth in liquid culture (30). Extreme thermophiles, such as *T. thermophilus*, like archaeal thermophiles, accumulate a variety of long-chain and branched polyamines (reviewed by Oshima (68)). Depletion of long-chain and branched polyamines by deletion of the aminopropylagmatine gene (speB) resulted in a severe growth defect at 78 °C but not at 75 °C (69).
Spermidine essential for growth
Pseudomonas aeruginosa (γ-Proteobacteria) (62)
Campylobacter jejuni (−Proteobacteria) (63)
Agrobacterium tumefaciens (−Proteobacteria) (64)
Borrelia burgdorferi (Spirochaetes) (67)
Putrescine essential for growth
Ralstonia solanacearum (−Proteobacteria) (65)

Homospermidine essential for nitrogen-fixing growth
Anabaena sp. strain 7120 (Cyanobacteria) (30)

Long-chain and branched polyamines essential for growth above 78°C
Thermus thermophilus (Deinococcus-Thermus) (69)

Spermidine essential for anaerobic growth
Escherichia coli (−Proteobacteria) (59)
Spermidine required for normal aerobic growth
Escherichia coli (−Proteobacteria) (58,59)
Salmonelectrona enterica sv. Typhimurium (−Proteobacteria) (72)
Yersinia pestis (−Proteobacteria) (71)
Sinorhizobium meliloti (−Proteobacteria) (74)
Bacteroides dorei (Bacteroidetes) (75)
Bacteroides thetaiotaomicron (Bacteroidetes) (76)
Norspermidine required for normal aerobic growth
Vibrio cholerae (−Proteobacteria) (73)
Homospermidine required for normal aerobic growth
Anabaena sp. strain 7120 (Cyanobacteria) (30)

Putrescine required for normal autolysis
Streptococcus pneumoniae (Firmicutes) (78)

Polyamines dispensable for growth
Bacillus subtilis (Firmicutes) (77)
Streptococcus pneumoniae (Firmicutes) (78)

Norspermidine required for/or stimulates biofilm formation
Vibrio cholerae (−Proteobacteria) (73,81)
Spermidine required for biofilm formation
Bacillus subtilis (Firmicutes) (77,85)
Yersinia pestis (−Proteobacteria) (71)

Spermidine biosynthesis inhibits biofilm formation
Agrobacterium tumefaciens (−Proteobacteria) (88)
Synechocystis sp. strain PCC 6803 (Cyanobacteria) (89)

Acid-inducible-type ornithine decarboxylase inhibits biofilm formation
Shewanella oneidensis (−Proteobacteria) (87)

Putrescine required for swarming
Proteus mirabilis (−Proteobacteria) (90)

Spermidine required for swarming
Escherichia coli (−Proteobacteria) (91)

1,3-diaminopropane required for surface-associated mobility
Acinetobacter baumannii (−Proteobacteria) (92)

Figure 3. Polyamine-dependent growth and surfaces behaviors among different bacterial species. Only cases where genetic mutations have been used to confirm polyamine dependence are listed. The host phylum is indicated in parentheses followed by the relevant reference.

The long-chain and branched polyamines of *T. thermophilus* were found to be necessary for the maintenance of the ribosome, tRNA, and structural integrity during growth at high temperatures (70).

In other species investigated, polyamine depletion reduces growth, but nevertheless, polyamines are not essential. A polyamine auxotrophic strain of the bubonic plague agent *γ*-proteobacterium *Yersinia pestis*, lacking both putrescine and spermidine, grew at 65% of the WT rate (71). Similarly, a spermidine-deficient mutant strain of the food-borne pathogen *Salmonella enterica* serovar Typhimurium grew at 60% of the WT rate (72). Cholera agent *γ*-proteobacterium *Vibrio cholerae* accumulates norspermidine rather than spermidine, and a norspermidine auxotrophic mutant strain grew at 0–50% of the WT rate (73). The nitrogen-fixing α-proteobacterium *Sinorhizobium meliloti* accumulates putrescine, spermidine, and homospermidine, and a polyamine auxotrophic mutant strain grew at 60% of the WT rate (74). Outside of the Proteobacteria, a polyamine auxotrophic mutant strain of the commensal gut bacterium *Bacteroides dorei* exhibited a severe growth defect (75), and growth was ~50% of WT in a polyamine auxotrophic mutant strain of the key gut microbe *Bacteroides thetaiotaomicron* (76). In stark contrast to the examples discussed above, polyamine-deficient mutant strains of the firmicute species *Bacillus subtilis* and *Streptococcus pneumoniae*, which normally produce spermidine, exhibit no planktonic growth defect in the absence of spermidine (77, 78). Polyamine-dependent growth among different species is listed in Fig. 3.

Roles in biofilm development and other surface behaviors

Biofilms (Fig. 4) are communities of bacterial cells sheathed in a protective matrix of exopolysaccharides, proteins, and DNA, and the biofilm matrix protects the encapsulated cells against environmental insults (79, 80). The first indication that polyamines affected biofilm development was the observation that exogenous norspermidine stimulates biofilm formation of *V. cholerae* via a norspermidine sensor (*NspS*) that is a homologue of the spermidine transporter substrate-binding protein PotD (81). It was subsequently shown that norspermidine biosynthesis is required for normal biofilm formation in *V. cholerae* (73). Exogenous spermidine was found to inhibit biofilm formation, an effect dependent on the PotD protein (82), whereas inhibition of *V. cholerae* biofilm formation by the tetraamine spermine is achieved via NspS (83). Biofilm formation in *Y. pestis* is also dependent on polyamine biosynthesis, and polyamines are required for expression of the matrix exopolysaccharide biosynthetic genes, although it is not clear whether it is putrescine or spermidine that is the necessary polyamine
Spermidine biosynthesis is required for robust colony and pellicle biofilm formation in
B. subtilis (77) (Fig. 4). Exogenous norspermidine is twice as effective as spermidine in promoting
B. subtilis biofilm formation, but homospermidine is completely ineffective (85). The effect of spermidine on biofilm
formation is mediated by activation of the matrix regulator
SlrR, although it is likely that the actual target of spermidine is
upstream of SlrR (86). In contrast to the stimulatory role of
polyamines in biofilm development in some species, in others,
depletion of polyamines stimulates biofilm formation. A
migrant of the acid-inducible-type ornithine decarboxylase in
\(\text{Shewanella oneidensis} \) increased biofilm
formation, although it is not known in this case whether endog-
enous polyamine levels were decreased (87). A partially spermi-
dine-depleted biosynthetic ornithine decarboxylase mutant
strain of \(\text{A. tumefaciens} \) exhibited increased cellulose produc-
tion and biofilm formation, even though planktonic growth
was inhibited (88). However, complete spermidine depletion
resulted in growth arrest (64). A spermidine-depleted mutant
strain of cyanobacterium \(\text{Synechocystis} \) sp. strain PCC 6803 also
exhibited increased biofilm formation (89). Polyamine-depend-
ent biofilm development among different species is listed in
Fig. 3.

Another surface behavior of bacteria is the coordinated mul-
ticellular migration known as swarming, by which a population
of cells can move across surfaces. Putrescine was found to be a
self-produced extracellular signal for swarming and was neces-
sary for effective migration across agar surfaces, in the \(\gamma \)-pro-
teobacterial common urinary tract pathogen \(\text{Proteus mirabilis} \)
(90). Spermidine rather than putrescine was found to be impor-
tant for swarming behavior of \(\text{E. coli} \) (91). Surface-associated
motility of the nosocomial \(\gamma \)-proteobacterial pathogen
\(\text{Acinetobacter baumannii} \) was found to depend on biosynthesis of 1,3-
diaminopropane, a relatively rare polyamine (92). It is perhaps
salient that \(\text{A. baumannii} \) also uses 1,3-diaminopropane and its
biosynthetic precursor 2,4-diaminobutyrate in the synthesis of
the iron-scavenging siderophores baumannoferrin A and B (93). Polyamine-dependent surface behaviors among different
species are listed in Fig. 3.

Polyamine-based siderophores

Due to their distributed positive charges and flexible back-
bone, polyamines are often incorporated into natural products,
especially iron-scavenging siderophores. They are usually
employed as a structural chassis onto which are incorporated
hydroxamate groups (94) or independently functional groups,
such as catecholate ligands and polycarboxylate groups (2). The
spermidine-based dicatecholate siderophore petrobactin (Fig. 5)
produced by the anthrax agent \(\text{Bacillus anthracis} \) is a stealth
siderophore that avoids sequestration by the human innate
immunity protein siderocalin (95). A homospermidine-based
petrobactin-related siderophore rhodopetrobactin (Fig. 5) is
produced by the metabolically flexible environmental
\(\alpha \)-pro-
teobacterium \(\text{Rhodopseudomonas palustris} \) (96). The tricat-
echolate siderophore agrobactin (Fig. 5) uses a spermidine scaf-
dfold and is synthesized by the plant pathogen \(\text{A. tumefaciens} \)
(97), whereas a norspermidine-based tricatcholate siderophore
vibriobactin (Fig. 5) is produced by \(\text{V. cholerae} \) (98). An exten-
sive review of polyamine-containing siderophores and other
natural products is not possible in this minireview, but it is
worth mentioning the analytical chemical and biochemical tour
de force by Codd et al. (99, 100) that revealed the biosynthetic
sequence of the linear and cyclic diamine-based desferrioxam-
ine-type siderophores.

Conclusions

The polyamine spermidine is probably as old as cellular life,
but we know very little about its molecular function in bacteria.
What we do know about the role of spermidine in bacterial physiology comes from a very limited part of the bacterial tree of life, and even fewer studies of the role of homospermidine have been made. Although it is assumed that homospermidine is simply a replacement for spermidine, some bacteria produce both, indicating different functions in those species. Diamines are likely to have functions independent of their roles as precursors of triamines, because many bacteria produce only diamines. Within the archaea, with the exception of the role of long-chain and branched polyamines in growth of hyperthermophiles, the function of polyamines was not discovered intentionally. The role of spermidine in deoxyhypusine modification of αIF5A was inferred from the similarity of αIF5A and eIF5A, and the role of agmatine in modification of tRNA^agm^ was discovered tangentially when it was realized that, unlike bacteria, lysine was not the archaean modification of tRNA^lys^ in an extremely halophilic bacterium. There remains a considerable challenge to understand polyamine function in archaea and bacteria, and especially in bacteria requiring a greater sampling of phylogenetic diversity because published studies have focused mainly on Proteobacteria and Firmicutes and mainly on pathogens rather than environmental bacteria. If it is determined that polyamines are not involved in covalent modifications in bacteria, larger-scale approaches are required, combining omics, genetics, and fresh thinking.

References

1. Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., and Martin, W. F. (2016) The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 CrossRef Medline
2. Michael, A. J. (2016) Biosynthesis of polyamines and polyamine-containing molecules. Biochem. J. 473, 2315–2329 CrossRef Medline
3. Kanjee, U., Gutsche, I., Ramachandran, S., and Houry, W. A. (2011) The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. Biochemistry 50, 9388–9398 CrossRef Medline
4. Griswold, A. R., Jameson-Lee, M., and Burne, R. A. (2006) Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J. Bacteriol. 188, 834–841 CrossRef Medline
5. Woese, C. R., and Fox, G. E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74, 5088–5090 CrossRef Medline
6. Spang, A., Caceres, E. F., and Ettema, T. J. G. (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 CrossRef Medline
7. Adam, P. S., Borrel, G., Brochier-Armanet, C., and Gribaldo, S. (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425 CrossRef Medline
8. Castelle, C. J., and Banfield, J. F. (2018) Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 CrossRef Medline
9. Chen, K. Y., and Martynowicz, H. (1984) Lack of detectable polyamines in an extremely halophilic bacterium. Biochem. Biophys. Res. Commun. 124, 423–429 CrossRef Medline
10. Kamekura, M., Bardocz, S., Anderson, P., Wallace, R., and Kushner, D. J. (1986) Polyamines in moderately and extremely halophilic bacteria. Biochim. Biophys. Acta 880, 204–208 CrossRef
11. Hamana, K., Kamekura, M., Onishi, H., Akazawa, T., and Matsuzaki, S. (1985) Polyamines in photosynthetic and extreme-halophilic archaeabacteria. J. Biochem. 97, 1653–1658 CrossRef Medline
12. Hamana, K., Tanaka, T., Hosoya, R., Nitsui, M., and Itoh, T. (2003) Cellular polyamines of the acidophilic, thermophilic and thermocar- diophilic archaeabacteria. Acidibios, Ferroplasmas, Pyrobaculum, Pyrococcus, Staphylothermus, Thermococcus, Thermodiscus and Vul- caniseta. J. Gen. Appl. Microbiol. 49, 287–293 CrossRef Medline
13. Scherer, P., and Kniefel, H. (1983) Distribution of polyamines in metha- nogenetic bacteria. J. Bacteriol. 154, 1315–1322 Medline
14. Bartig, D., Schumann, H., and Klink, F. (1990) The unique posttransla- tion modification leading to deoxyhypusine or hypusine is a general feature of the archaeabacterial kingdom. Syst. Appl. Microbiol. 13, 112–116 CrossRef
15. Park, M. H., Cooper, H. L., and Folk, J. E. (1981) Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proc. Natl. Acad. Sci. U.S.A. 78, 2869–2873 CrossRef Medline
16. Cooper, H. L., Park, M. H., Folk, J. E., Safer, B., and Braverman, R. (1983) Identification of the hypusine-containing protein hy^+ as translation initiation factor eIF4D. Proc. Natl. Acad. Sci. U.S.A. 80, 1854–1857 CrossRef Medline
17. Park, J. H., Aravind, L., Wolff, E. C., Kaevel, J., Kim, Y. S., and Park, M. H. (2006) Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. Proc. Natl. Acad. Sci. U.S.A. 103, 51–56 CrossRef Medline
18. Gutierrez, E., Shin, B. S., Woolstenhulme, C. J., Kim, J. R., Saini, P., Bus- kirk, A. R., and Dever, T. E. (2013) eIF5A promotes translation of poly- proline motifs. Mol. Cell 51, 35–45 CrossRef Medline
19. Sasaki, K., Abid, M. R., and Miyazaki, M. (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett. 384, 151–154 CrossRef Medline
20. Nishimura, K., Lee, S. B., Park, J. H., and Park, M. H. (2012) Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids 42, 703–710 CrossRef Medline
21. Nguyen, S., Jones, D. C., Wylie, S., Fairlamb, A. H., and Phillips, M. A. (2013) Allosteric activation of trypanosomatid deoxyhypusine synthase by a catalytically dead paralog. J. Biol. Chem. 288, 15256–15267 CrossRef Medline
22. Chawla, B., Jhingran, A., Singh, S., Tyagi, N., Park, M. H., Srinivasan, N., Roberts, S. C., and Madhubala, R. (2010) Identification and characterization of a novel deoxyhypusine synthase in Leishmania donovani. J. Biol. Chem. 285, 453–463 CrossRef Medline
23. Schumann, H., and Klink, F. (1989) Archaeabacterial protein contains hypusine a unique amino acid characteristic for eukaryotic translation initiation factor 4D. Syst. Appl. Microbiol. 11, 103–107 CrossRef
24. Bartig, D., Lemkemeier, K., Frank, J., Lottspeich, F., and Klink, F. (1992) The archaeabacterial hypusine-containing protein: structural features suggest common ancestry with eukaryotic translation initiation factor 5A. Eur. J. Biochem. 204, 751–758 CrossRef Medline
25. Janssen, B. P., Malandrin, L., and Johansson, H. E. (2000) Cell cycle arrest in archaea by the hypusination inhibitor N^guanyl-1,7-diaminohexanate. J. Bacteriol. 182, 1158–1161 CrossRef Medline
26. Prunetti, L., Graf, M., Blaby, K. P., Peil, L., Makkay, A. M., Starosta, A. L., Papke, R. T., Oshima, T., Wilson, D. N., and de Crécy-Lagard, V. (2016) Deciphering the translation initiation factor 5A modification pathway in halophilic archaea. Archaea 2016, 7316725 Medline
27. Morimoto, N., Fukuda, W., Nakajima, N., Masuda, T., Terui, Y., Kanai, T., Oshima, T., Imanaka, T., and Fujisawa, S. (2010) Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermo- coccus kodakarensis. J. Bacteriol. 192, 4991–5001 CrossRef Medline
28. Park, J. H., Wolff, E. C., Folk, J. E., and Park, M. H. (2003) Reversal of the deoxyhypusine synthase reaction: generation of spermidine or homo- spermidine from deoxyhypusine by deoxyhypusine synthase. J. Biol. Chem. 278, 32683–32691 CrossRef Medline
29. Chien, Y. T., Auerbuch, V., Brabban, A. D., and Zinder, S. H. (2000) Analysis of genes encoding an alternative nitrogenase in the archaeon Methanosarcina Barkeri. J. Bacteriol. 182, 3247–3253 CrossRef Medline
30. Burnat, M., Li, B., Kim, S. H., Michael, A. J., and Flores, E. (2018) Homospermidine biosynthesis in the cyano bacterium Anabaena requires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth. Mol. Microbiol. 109, 763–780 CrossRef Medline
THEMATIC MINIREVIEW: Polyamine function in archaea and bacteria

31. Mandal, D., Köhler, C., Su, D., Russell, S. P., Krivos, K., Castleberry, C. M., Blum, P., Limbach, P. A., Söll, D., and RajBhandary, U. L. (2010) Agmatidine, a modified cytidine in the anticodon of archaeal tRNA(ile), base pairs with adenosine but not with guanosine. Proc. Natl. Acad. Sci. U.S.A. 107, 2872–2877 CrossRef Medline

32. Ikeuchi, Y., Kimura, S., Numata, T., Nakamura, D., Yokogawa, T., Ogata, T., Wada, T., Suzuki, T., and Suzuki, T. (2010) Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat. Chem. Biol. 6, 277–282 CrossRef Medline

33. Blaby, I. K., Phillips, G., Blaby-Haas, C. E., Gulig, K. S., El Yacoubi, B., and Ishihama, A., Yuhara, H., and Kamio, Y. (2000) Covalent linkage of polyamines to peptidoglycan in Selenomonas ruminantium. J. Bacteriol. 145, 122–128 CrossRef Medline

34. Suzuki, T., and Numata, T. (2014) Convergent evolution of AUA decoding in bacteria and archaea. RNA Biol. 11, 1586–1596 CrossRef Medline

35. Fukuda, W., Morimoto, N., Imanaka, T., and Fujiwara, S. (2008) Agmatine is essential for the cell growth of Thermococcus kodakaraiensis. FEMS Microbiol. Lett. 287, 113–120 CrossRef Medline

36. Hamana, K., Hamana, H., and Itoh, T. (1995) Ubiquitous occurrence of agmatine as the major polyamine within extremely halophilic archaeabacteria. J. Gen. Appl. Microbiol. 41, 153–158 CrossRef

37. Muramatsu, T., Yokoyama, S., Horie, N., Matsuda, A., Ueda, T., Yamazumi, Z., Kuchino, Y., Nishimura, S., and Miyazawa, T. (1988) A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J. Biol. Chem. 263, 9261–9267 Medline

38. Soma, A., Ikeuchi, Y., Kanemasa, S., Kobayashi, K., Ogasawara, N., Ote, T., Kato, J., Watanabe, K., Sekine, Y., and Suzuki, T. (2003) An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol. Cell. 12, 689–698 CrossRef Medline

39. Graham, D. E., Xu, H., and White, R. H. (2002) Methanococcus jannaschii uses a pyruvyl-dependent arginine decarboxylase in polyamine biosynthesis. J. Biol. Chem. 277, 25300–25307 CrossRef Medline

40. Giles, T. N., and Graham, D. E. (2008) Crenarchaeal arginine decarboxylase evolved from an adenylate–adenosylmethionine decarboxylase enzyme. J. Biol. Chem. 283, 25829–25838 CrossRef Medline

41. Okada, K., Hidese, R., Fukuda, W., Niitsu, M., Takao, K., Horai, Y., Umezawa, N., Higuchi, T., Oshima, T., Yoshikawa, Y., Imanaka, T., and Fujiwara, S. (2014) Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles. J. Bacteriol. 196, 1866–1876 CrossRef Medline

42. Nishio, T., Yoshiba, A., Fukuda, W., Umezawa, N., Higuchi, T., Fujiwara, S., Imanaka, T., and Yoshikawa, K. (2018) Branched-chain polyamine found in hyperthermophiles induces unique temperature-dependent structural changes in genome-size DNA. Chemphyschem 19, 2299–2304 CrossRef Medline

43. Terui, Y., Ohnuma, M., Hiraga, K., Kawashima, E., and Oshima, T. (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem. J. 388, 427–433 CrossRef Medline

44. Oren, A. (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4, 2 CrossRef Medline

45. Stewart, E. J. (2012) Growing unculturable bacteria. J. Bacteriol. 194, 4151–4160 CrossRef Medline

46. Hamana, K., and Matsuzaki, S. (2002) Identification of a novel aminopropyltransferase in the cell wall peptidoglycan of Selenomonas ruminantium. J. Bacteriol. 184, 356–362 CrossRef Medline

47. Hosoya, R., Yokoyama, Y., Hamana, K., and Itoh, T. (2006) Polyamine analysis within the thirteen eubacterial phyla Acidobacteria, Actinobacteria, Chlorobibi, Chloroflexi, Chrysogobiidae, Deferribacteres, Firobacteria, Firmicutes, Fusobacteria, Gemmatimonadetes, Nitrospira, Planctomycetes and Verrucomicrobia. Microbiol. Cult. Coll. 22, 21–33

48. Michael, A. J. (2016) Polyamines in eukaryotes, bacteria, and archaea. J. Biol. Chem. 291, 14896–14903 CrossRef Medline

49. Rosenthal, S. M., and Dubin, D. T. (1962) Metabolism of polyamines by Staphylococcus. J. Bacteriol. 84, 859–863 Medline
putrescine/spermidine transport system, PotABCD, that is spermidine specific and essential for cell survival. *Mol. Microbiol.* **108**, 350–360 CrossRef Medline

68. Oshima, T. (2010) Enzymes of biosyntheses of unusual polyamines in an extreme thermophile, *Thermus thermophilus*. *Plant Physiol. Biochem.* **48**, 521–526 CrossRef Medline

69. Ohnuma, M., Terui, Y., Tamakoshi, M., Mitome, H., Niitsu, M., Samejima, K., Kawashima, E., and Oshima, T. (2005) N²-Aminopropylglycine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, *Thermus thermophilus*. *J. Biol. Chem.* **280**, 30073–30082 CrossRef Medline

70. Nakashima, M., Yamagami, R., Tomikawa, C., Ochi, Y., Moriya, T., Asahara, H., Fetherston, J. D., Perry, R. D., Becerra-Rivera, V. A., Bergstrom, E., Thomas-Oates, J., and Dunn, M. F. (2017) Long branched polyamines are required for maintenance of the ribosome, tRNA\(^\text{T\textsubscript{1}}\) and tRNA\(^\text{T\textsubscript{2}}\) in *Thermus thermophilus* cells at high temperatures. *Genes Cells* **22**, 628–645 CrossRef Medline

71. Patel, C. N., Wortham, B. W., Lines, J. L., Fetherston, J. D., Perry, R. D., and Oliveira, M. A. (2006) Polyamines are essential for the formation of plaque biofilm. *J. Bacteriol.* **188**, 2355–2363 CrossRef Medline

72. Green, R., Hanfrey, C. C., Elliott, K. A., McCloskey, D. E., Wang, X., Kanugula, S., Pegg, A. E., and Michael, A. J. (2011) Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation. *Mol. Microbiol.* **81**, 1109–1124 CrossRef Medline

73. Lee, J., Sperandio, V., Frantz, D. E., Longgood, J., Camilli, A., Phillips, C. M., Michael, A. J., and Fuqua, C. (2016) Spermidine inversely influences surface interactions and planktonic growth in *Agrobacterium tumefaciens*. *J. Bacteriol.* **198**, 2682–2691 CrossRef Medline

74. Hobley, L., Li, B., Wood, J. L., Kim, S. H., Naidoo, J., Ferreira, A. S., Khomutov, M., Khomutov, A., Stanley-Wall, N. R., and Michael, A. J. (2017) Spermidine promotes *Bacillus subtilis* biofilm formation by activating expression of the matrix regulator slrR. *J. Biol. Chem.* **292**, 12041–12053 CrossRef Medline

75. Ding, Y., Peng, N., Du, Y., Ji, L., and Cao, B. (2014) Disruption of putrescine biosynthesis in *Shewanella oneidensis* enhances biofilm cohesive-ness and performance in Cr(VI) immobilization. *Appl. Environ. Microbiol.* **80**, 1498–1506 CrossRef Medline

76. Wang, Y., Kim, S. H., Natarajan, R., Heindl, J. E., Bruger, E. L., Waters, M. F., Michael, A. J., and Fuqua, C. (2016) Spermidine inversely influences surface interactions and planktonic growth in *Agrobacterium tumefaciens*. *J. Bacteriol.* **198**, 2682–2691 CrossRef Medline

77. Lee, J., Sperandio, V., Frantz, D. E., Longgood, J., Camilli, A., Phillips, C. M., Michael, A. J., and Fuqua, C. (2016) Spermidine inversely influences surface interactions and planktonic growth in *Agrobacterium tumefaciens*. *J. Bacteriol.* **198**, 2682–2691 CrossRef Medline

78. Green, R., Hanfrey, C. C., Elliott, K. A., McCloskey, D. E., Wang, X., Kanugula, S., Pegg, A. E., and Michael, A. J. (2011) Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation. *Mol. Microbiol.* **81**, 1109–1124 CrossRef Medline

79. Lee, J., Sperandio, V., Frantz, D. E., Longgood, J., Camilli, A., Phillips, C. M., Michael, A. J. (2009) An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in *Vibrio cholerae*. *J. Biol. Chem.* **284**, 9899–9907 CrossRef Medline

80. Becker-Rivera, V. A., Bergström, E., Thomas-Oates, J., and Dunn, M. F. (2018) Polyamines are required for normal growth in *Sinorhizobium meliloti*. *Microbiology* **164**, 600–613 CrossRef Medline

81. Sakana, M., Sugiyama, Y., Nara, M., Kitakata, A., and Kurihara, S. (2018) Functional analysis of arginine decarboxylase gene speA of *Bac teroides dorei* by markerless gene deletion. *FEMS Microbiol. Lett.* **365**, 10.1093/femsle/fny003 CrossRef Medline

82. Sakana, M., Sugiyama, Y., Kitakata, A., Kataya, T., and Kurihara, S. (2016) Carboxyspermidine decarboxylase of the prominent intestinal microbiota species *Bacteroides thetaiotaomicron* is required for spermidine biosynthesis and contributes to normal growth. *Amino Acids* **48**, 2443–2451 CrossRef Medline

83. Burrell, M., Hanfrey, C. C., Murray, E. J., Stanley-Wall, N. R., and Michael, A. J. (2010) Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in *Bacillus subtilis* biofilm formation. *J. Biol. Chem.* **285**, 39224–39238 CrossRef Medline

84. Potter, A. J., and Paton, J. C. (2014) Spermine biosynthesis and transport modulate pneumococcal autoysis. *J. Bacteriol.* **196**, 3556–3561 CrossRef Medline

85. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. (1995) Microbial biofilms. *Annu. Rev. Microbiol.* **49**, 711–745 CrossRef Medline

86. Fleming, H. C., and Wingender, J. (2010) The biofilm matrix. *Nat. Rev. Microbiol.* **8**, 623–633 CrossRef Medline

87. Karatan, E., Duncan, T. R., and Watnick, P. I. (2005) NspS, a predicted polyamine sensor, mediates activation of *Vibrio cholerae* biofilm formation by norspermidine. *J. Bacteriol.* **187**, 7434–7443 CrossRef Medline

88. McGinnis, M. W., Parker, Z. M., Walter, N. E., Rutkowsky, A. C., Caraya-Marin, C., and Karatan, E. (2009) Spermidine regulates *Vibrio cholerae* biofilm formation via transport and signaling pathways. *FEMS Microbiol. Lett.* **299**, 166–174 CrossRef Medline

89. Sobe, R. C., Bond, W. G., Wotan, C. K., Zayner, J. P., Burriss, M. A., Fernandez, N., Bruger, E. L., Waters, C. M., Neufeld, H. S., and Karatan, E. (2017) Spermine inhibits *Vibrio cholerae* biofilm formation through the NspS-MbaA polyamine signaling system. *J. Biol. Chem.* **292**, 17025–17036 CrossRef Medline

90. Wortham, B. W., Oliveira, M. A., Fetherston, J. D., and Perry, R. D. (2010) Polymers are required for the expression of key Hms proteins impor-