COMPACT GROUPS WITH PROBABILISTICALLY CENTRAL MONOTHEtic SUBGROUPS

BY

Joaõ Azevedo and Pavel Shumyatsky∗

Department of Mathematics, University of Brasilia
Brasilia-DF 70910-900, Brazil
e-mail: J.P.P.Azevedo@mat.unb.br, pavel@unb.br

ABSTRACT

If \(K \) is a closed subgroup of a compact group \(G \), the probability that a randomly chosen pair of elements from \(K \) and \(G \) commute is denoted by \(\Pr(K, G) \). Say that a subgroup \(K \leq G \) is \(\epsilon \)-central in \(G \) if \(\Pr(\langle g \rangle, G) \geq \epsilon \) for any \(g \) in \(K \). Here \(\langle g \rangle \) denotes the monothetic subgroup generated by \(g \in G \). Our main result is that if \(K \) is \(\epsilon \)-central in \(G \), then there is an \(\epsilon \)-bounded number \(e \) and a normal subgroup \(T \leq G \) such that both the index \([G : T] \) and the order of the commutator subgroup \([K^e, T] \) are finite and \(\epsilon \)-bounded. In particular, if \(G \) is a compact group for which there is \(\epsilon > 0 \) such that \(\Pr(\langle g \rangle, G) \geq \epsilon \) for any \(g \in G \), then there is an \(\epsilon \)-bounded number \(e \) and a normal subgroup \(T \) such that both the index \([G : T] \) and the order of \([G^e, T] \) are finite and \(\epsilon \)-bounded.

1. Introduction

In this paper, all compact groups are Hausdorff topological spaces. By a subgroup of a topological group we mean a closed subgroup unless explicitly stated otherwise. If \(S \) is a subset of a topological group \(G \), then we denote by \(\langle S \rangle \) the subgroup (topologically) generated by \(S \). A subgroup of \(G \) is monothetic if it is generated by a single element.

∗ Supported by CNPq and FAPDF.

Received November 16, 2021 and in revised form April 27, 2022
The Borel σ-algebra \mathcal{M} of a compact group G is the one generated by all closed subsets of G. We say that a measure on (G, \mathcal{M}) is a (left) Haar measure provided μ is both inner and outer regular, $\mu(K) < \infty$ and $\mu(xE) = \mu(E)$ for all compact subsets K and measurable subsets E of G (see [14, Chapter 4] or [22, Chapter II]). Recall that there is a unique Haar measure μ on (G, \mathcal{M}) such that $\mu(G) = 1$.

Let G be a compact group and let K be a subgroup of G. Consider the set $C = \{(x, y) \in K \times G \mid xy = yx\}$. This is closed in $K \times G$ since it is the preimage of 1 under the continuous map $f : K \times G \to G$ given by $f(x, y) = [x, y]$. Denoting the normalized Haar measures of K and G by ν and μ, respectively, the probability that a random element from K commutes with a random element from G is defined as $\Pr(K, G) = (\nu \times \mu)(C)$. This is a well-studied concept (see in particular [5, 6, 10, 12, 15, 18, 19, 23, 28]).

Recently, Detomi and the second author proved in [3] that if G is finite and $\Pr(K, G) \geq \epsilon$ for some $\epsilon > 0$, then there is a normal subgroup T of G and a subgroup B of K such that the indices $[G : T]$ and $[K : B]$ and the order of the subgroup $[T, B]$ are ϵ-bounded. Throughout the article we use the expression “(a, b, \ldots)-bounded” to mean that a quantity is bounded from above by a number depending only on the parameters a, b, \ldots. If B and T are subgroups of a group G, we denote by $[T, B]$ the subgroup generated by all commutators $[t, b]$ with $t \in T$ and $b \in B$. In the case where $K = G$, this is a well-known theorem due to P. M. Neumann [25]. Conversely, if K is a subgroup of a finite group G, and if $T \leq G$ and $B \leq K$, then $\Pr(K, G)$ is bounded away from zero in terms of the indices $[G : T]$ and $[K : B]$ and the order of $[T, B]$. The present work grew out of a desire to understand the impact of similar probabilistic considerations on the structure of a compact group. Our first goal is to extend the main result of [3] to compact groups.

Proposition 1.1: Let $\epsilon > 0$ and let G be a compact group having a subgroup K such that $\Pr(K, G) \geq \epsilon$. Then there is a normal subgroup $T \leq G$ and a subgroup $B \leq K$ such that the indices $[G : T]$ and $[K : B]$ and the order of $[T, B]$ are ϵ-bounded.

Let G be a compact group and let K be a subgroup of G. If $\Pr(\langle g \rangle, G) \geq \epsilon$ for every $g \in K$ we say that K is ϵ-central in G, and in the case where $K = G$ we say that G is ϵ-central. If e is a positive integer, we denote by G^e the subgroup generated by all eth powers of elements of G. Recall that a group G
has finite exponent e if $G^e = 1$ and e is the least positive number with this property. It is easy to see that if G has exponent e, then $\text{Pr}(\langle g \rangle, G) \geq \frac{1}{e}$ for all $g \in G$. More generally, if $G^e \leq Z(G)$, where $Z(G)$ denotes the center of G, then $\text{Pr}(\langle g \rangle, G) \geq \frac{1}{e}$ for all $g \in G$. We shall prove the following theorem.

Theorem 1.2: Let $\epsilon > 0$ and assume that the subgroup K is ϵ-central in G. Then there is an ϵ-bounded number e and a finite-index normal subgroup $T \leq G$ such that the index $[G : T]$ and the order of $[K^e, T]$ are ϵ-bounded.

The theorem implies that if G is an ϵ-central compact group, then there is an ϵ-bounded number e and a normal subgroup T such that the index $[G : T]$ and the order of $[K^e, T]$ are ϵ-bounded. Moreover, the exponent of the commutator subgroup $[T, T]$ is ϵ-bounded. Indeed, passing to the quotient over $[G^e, T]$ we can assume that all eth powers of elements of G centralize T. In particular, $T/Z(T)$ has exponent e, and a theorem of Zelmanov [34] ensures that $T/Z(T)$ is locally finite. A result of Mann [20] can then be used to deduce that $[T, T]$ has finite ϵ-bounded exponent.

As usual, we denote the conjugacy class of an element $x \in G$ by x^G. It is easy to see that if K is a subgroup of G such that $|x^G| \leq n$ for every $x \in K$, then K is $\frac{1}{n}$-central in G. More generally, let l, n be positive integers and suppose that K is a subgroup of a compact group G such that any conjugacy class containing an lth power x^l of an element $x \in K$ is of size at most n. It is not difficult to see that K is $\frac{1}{ln}$-central in G. It turns out that this admits a converse: if K is ϵ-central in G, then there exist ϵ-bounded integers l and n such that every conjugacy class containing an lth power of an element of K has cardinality at most n. Indeed, let $x \in K$. Since $\text{Pr}(\langle x \rangle, G) \geq \epsilon$, in view of Proposition 1.1 there is a normal subgroup T of G and a subgroup B of $\langle x \rangle$ such that the indices $[G : T]$ and $[\langle x \rangle : B]$ and the order of $[T, B]$ are ϵ-bounded. Hence, as required, there are ϵ-bounded numbers l and n such that $[G : C_G(x^l)] \leq n$ for all $x \in K$. Therefore we have proved that:

Theorem: For every $0 < \epsilon \leq 1$ there are positive integers l and n depending only on ϵ with the property that if K is an ϵ-central subgroup of the compact group G, then $[G : C_G(g^l)] \leq n$ for all $g \in K$.

Taking this into consideration, Theorem 1.2 will follow from the next proposition.
PROPOSITION 1.3: Let G be a compact group and let l, n be positive integers. Suppose that there is a subgroup K of G such that $[G : C_G(g^l)] \leq n$ for every $g \in K$. Then there exist a positive integer e, depending only on l and n, and a normal subgroup T of G, such that the index $[G : T]$ and the order of $[K^e, T]$ are (l, n)-bounded.

Recall that a group is said to be a BFC-group if its conjugacy classes are finite and have bounded size. A famous theorem of B. H. Neumann says that in a BFC-group the commutator subgroup G' is finite [24]. It follows that if $|x^G| \leq n$ for every $x \in G$, then the order of G' is bounded by a number depending only on n. A first explicit bound for the order of G' was found by J. Wiegold [31], and the best known was obtained in [9] (see also [26] and [30]). Proposition 1.3 is an extension of the Neumann theorem (in the particular case where $K = G$ and $l = 1$ the proof shows that we can take $T = G$ and $e = 1$). Recently, some other generalizations of Neumann’s theorem have been obtained (see in particular [1, 2, 4]).

We end this introduction with the remark that Theorem 1.1 admits a converse:

THEOREM: For any positive integers s, e, m there is $0 < \epsilon \leq 1$ depending only on s, e, m with the property that if K is a subgroup of a compact group G and if G has a normal subgroup T of index at most s such that $[K^e, T]$ has order at most m, then K is ϵ-central in G.

To see this simply note that if K is as above, then $[G : C_G(g^e)] \leq ms$ for every $g \in K$.

2. Preliminaries

In this section we record some results needed in the proofs of the main theorems. The following lemma is [28, Lemma 3.1].

LEMMA 2.1: Let G be a compact group and let K be a subgroup of G. Then either $\mu(K) = 0$ or $\mu(K) > 0$ and K is open on G. Furthermore, in the latter case,

$$\mu(K) = [G : K]^{-1}.$$
Lemma 2.2: Let G be a compact group, and let K and H be subgroups of G with $K \leq H$. Assume further that $\mu(K) \geq \epsilon \mu(H) > 0$ for some positive ϵ. Then $[H : K] \leq \epsilon^{-1}$.

Proof. Since $\mu(K), \mu(H) > 0$, the previous lemma implies that both subgroups are of finite index and $\mu(K) = [G : K]^{-1}$ and $\mu(H) = [G : H]^{-1}$. Hence the result. \qed

For every $x \in G$, the centralizer $C_G(x)$ equals $f^{-1}_x(1)$, where f_x is the continuous function $f_x(y) = [x, y]$, so this subgroup is closed and measurable.

Lemma 2.3: Let H and K be subgroups of a compact group G, with $H \leq K$. Then

$$\Pr(K, G) \leq \Pr(H, G) \leq \Pr(H, K).$$

In particular, $\Pr(G, G) \leq \Pr(K, G) \leq \Pr(K, K)$.

Proof. Let μ, ν and λ be the normalized Haar measures of G, K and H, respectively. Given $x \in G$, the map $\alpha : \{hC_H(x) \mid h \in H\} \rightarrow \{kC_K(x) \mid k \in K\}$ taking $hC_H(x)$ to $hC_K(x)$ is injective. We deduce that $[H : C_H(x)] \leq [K : C_K(x)]$ and $\nu(C_K(x)) \leq \lambda(C_H(x))$. We have

$$\Pr(H, G) = \int_G \lambda(C_H(x))d\mu(x) \geq \int_G \nu(C_K(x))d\mu(x) = \Pr(K, G).$$

The other inequality is proved in an analogous way. \qed

Suppose that G is a compact group and let N be a normal subgroup of G. The normalized Haar measure on G/N coincides with the one induced by the normalized Haar measure on G. If A is a measurable subset of G, we denote by χ_A the characteristic function of A. We say that $x \in G$ is an FC-element if the conjugacy class of x in G is finite.

In the case of finite groups the next lemma was established in [3].

Lemma 2.4: Let G be a compact group and let N be a normal subgroup of G. For any subgroup K of G, we have

$$\Pr(K, G) \leq \Pr(KN/N, G/N) \Pr(K \cap N, N).$$
Proof. If X is a compact group, we denote by μ_X the normalized Haar measure of X. We have

$$
\Pr(K, G) = \int_K \mu_G(C_G(x))d\mu_K(x).
$$

If $x \in G$ is an FC-element, then

$$
\mu_G(C_G(x)N) = [C_G(x)N : C_G(x)]\mu_G(C_G(x)) = [N : C_N(x)]\mu_G(C_G(x)),
$$

so $\mu_G(C_G(x)N)\mu_N(C_N(x)) = \mu_G(C_G(x))$. Let $\text{FC}(K)$ be the abstract subgroup of K consisting of elements having finite conjugacy class in G. Then

$$
\int_K \mu_G(C_G(x))d\mu_K(x) = \int_{\text{FC}(K)} \mu_G(C_G(x))d\mu_K(x)
$$

$$
= \int_{\text{FC}(K)} \mu_G(C_G(x)N)\mu_N(C_N(x))d\mu_K(x)
$$

$$
\leq \int_K \mu_G(C_G(x)N)\mu_N(C_N(x))d\mu_K(x).
$$

We now apply the extended Weil formula [27, p. 88] to the last integral and obtain

$$
\Pr(K, G)
$$

$$
\leq \int \left(\int_{K \cap N} \mu_G(C_G(xk)N)\mu_N(C_N(xk))d\mu_{K \cap N}(k) \right) d\mu_{K \cap N}(x(K \cap N))
$$

(1)

$$
\leq \int \left(\int_{K \cap N} \mu_G(C_G(xN))\mu_N(C_N(xk))d\mu_{K \cap N}(k) \right) d\mu_{K \cap N}(x(K \cap N))
$$

$$
= \int \mu_G(C_G(xN)) \left(\int_{K \cap N} \mu_N(C_N(xk))d\mu_{K \cap N}(k) \right) d\mu_{K \cap N}(x(K \cap N)).
$$

If x is any element of K, define the set

$$
A_x = \{(k, n) \in (K \cap N) \times N \mid [xk, n] = 1\}
$$

$$
= \{(k, n) \in (K \cap N) \times N \mid xk \in C_G(n) \cap x(K \cap N)\}.$$
If $C_G(n) \cap x(K \cap N)$ is nonempty, then it equals $tC_{K \cap N}(k)$ for some $t \in x(K \cap N)$. Thus,

$$A_x = \{(k, n) \in (K \cap N) \times N \mid xk \in tC_{K \cap N}(k)\} = \{(k, n) \in (K \cap N) \times N \mid k \in x^{-1}tC_{K \cap N}(k)\}.$$

We use the Lebesgue–Fubini Theorem to give an estimate for the expression in the last line of (1):

$$\int_{K \cap N} \mu_N(C_N(xk))d\mu_{K \cap N}(k) = \int_{(K \cap N) \times N} \chi_{A_x}(k,n)(d\mu_{K \cap N} \times \mu_N)(k,n)
\leq \int_N \mu_{K \cap N}(x^{-1}tC_{K \cap N}(n))d\mu_N(n)
= \int_N \mu_{K \cap N}(C_{K \cap N}(n))d\mu_N(n)
= \Pr(K \cap N, N).$$

Replacing this back in (1) we have

$$\Pr(K, G) \leq \int_{K \cap N} \mu_N(C_N(xK))\left(\int_{K \cap N} \mu_N(C_N(xn))d\mu_{K \cap N}(n)\right)d\mu_{\frac{K}{K \cap N}}(x(K \cap N))
\leq \Pr(K \cap N, N) \int_{\frac{K}{K \cap N}} \mu_N(C_N(xN))d\mu_{\frac{K}{K \cap N}}(x(K \cap N)).$$

Finally, since $K/K \cap N$ and KN/N are isomorphic, we can apply Corollary 2.5 in [28] with respect to the last integral above to conclude that

$$\int_{\frac{K}{K \cap N}} \mu_N(C_N(xN))d\mu_{\frac{K}{K \cap N}}(x(K \cap N)) = \int_{\frac{KN}{N}} \mu_N(C_N(xN))d\mu_{\frac{KN}{N}}(xN)
= \Pr(KN/N, G/N).$$

The lemma follows. ■

If A and B are normal subgroups of a group G such that $[A : C_A(B)] \leq m$ and $[B : C_B(A)] \leq m$, then $[A, B]$ has m-bounded order. This well-known result is due to Baer, cf. [29, 14.5.2]. We need a variation of it, which is [3, Lemma 2.1].
Lemma 2.5: Let $m \geq 1$ and let G be a group containing a normal subgroup A and a subgroup B such that $[A : C_A(y)] \leq m$ and $[B : C_B(x)] \leq m$ for all $x \in A, y \in B$. Assume further that $\langle B^G \rangle$ is abelian. Then $[A, B]$ has finite m-bounded order.

The next theorem holds in any group and plays a key role in the proof of Theorem 1.1. It is taken from [1].

Theorem 2.6: Let m be a positive integer, G a group having a subgroup K such that $|x^G| \leq m$ for each $x \in K$, and let $H = \langle K^G \rangle$. Then the order of the commutator subgroup $[H, H]$ is finite and m-bounded.

The next lemma is essentially Lemma 2.1 in [5].

Lemma 2.7: Let G be a compact group with normalized Haar measure μ and let $r \geq 1$. Suppose that X is a closed symmetric subset of G containing the identity. If $\mu(X) > \frac{1}{r+1}$, then $\langle X \rangle = X^{3^r}$.

Proof. Suppose $x_i \in X^{3^{i+1}} \setminus X^{3^i}$ for $i = 0, \ldots, r$. Then for each i, as long as $X^{3^{i+1}} \setminus X^{3^i}$ is nonempty, we have

$$x_i X \subseteq X^{3^{i+2}} \setminus X^{3^{i-1}}.$$

So, assume that the sets $X^{3^{i+1}} \setminus X^{3^i}$ are nonempty for $i = 0, \ldots, r$. Then $x_0 X, \ldots, x_r X$ are disjoint subsets of G, each of measure $\mu(X)$, and

$$\mu \left(\bigcup_{i=0}^{r} x_i X \right) = (r+1)\mu(X) > 1.$$

Therefore $X^{3^{i+1}} = X^{3^i}$ for some $i \leq r$. In particular, $X^{3^r} = \langle X \rangle$.

In a compact group G the set $\{ x \in G \mid |x^G| \leq n \}$ is closed and thus measurable.

Lemma 2.8: Let G be a compact group and n a positive integer. The set $X = \{ x \in G \mid |x^G| \leq n \}$ is a closed subset of G.

Proof. It is sufficient to show that if $a \in G \setminus X$, then a is contained in an open subset U which has empty intersection with X. Since $a \notin X$, we can choose $n+1$ elements x_1, \ldots, x_{n+1} in such a way that the conjugates a^{x_i} are distinct for $i = 1, \ldots, n+1$. Set

$$U = \{ u \in G ; \ [u, x_i x_j^{-1}] \neq 1 \text{ for } 1 \leq i, j \leq n+1 \}.$$
Observe that $a \in U$ and every element in U has at least $n + 1$ conjugates, whence $U \cap X = \emptyset$. Further, since the commutator map is continuous, U is open. The proof is complete.

Remark 2.9: If S is any subset of G, we denote by x^S the set of S-conjugates of x in G. The previous argument also proves that the set $\{ x \in G \mid |x^S| \leq n \}$ is closed in G for any (not necessarily closed) subset S of G.

3. Proof of Proposition 1.1

Now we are able to prove Proposition 1.1, which we restate here for the reader’s convenience.

Proposition 1.1: Let $\epsilon > 0$ and let G be a compact group having a subgroup K such that $\Pr(K, G) \geq \epsilon$. Then there is a normal subgroup $T \leq G$ and a subgroup $B \leq K$ such that the indices $[G : T]$ and $[K : B]$ and the order of $[T, B]$ are ϵ-bounded.

Proof. Let μ and ν be the normalized Haar measures of G and K, respectively. Set

$$X = \{ x \in K \mid |x^G| \leq 2/\epsilon \}.$$

Note that X is measurable, by Lemma 2.8: it is the intersection of K and the closed set $\{ x \in G \mid |x^G| \leq 2/\epsilon \}$. We have

$$K \setminus X = \{ x \in K \mid |x^G| > 2/\epsilon \}.$$

Since $\mu(C_G(x)) < \epsilon/2$ for all $x \in K \setminus X$, it follows that

$$\epsilon \leq \Pr(K, G) = \int_K \mu(C_G(x))d\nu(x)$$

$$= \int_X \mu(C_G(x))d\nu(x) + \int_{K \setminus X} \mu(C_G(x))d\nu(x)$$

$$\leq \int_X d\nu(x) + \int_{K \setminus X} \frac{\epsilon}{2}d\nu(x)$$

$$= \nu(X) + \frac{\epsilon}{2}(1 - \nu(X)) \leq \nu(X) + \frac{\epsilon}{2}.$$
This implies that $\epsilon/2 \leq \nu(X)$. Let B be the subgroup generated by X. Then, by Lemma 2.7, every element of B is a product of at most $6/\epsilon$ elements of X. Clearly, $\nu(B) \geq \nu(X) \geq \epsilon/2$, so the index of B in K is at most $2/\epsilon$, by Lemma 2.2. Furthermore, $|b^G| \leq (2/\epsilon)^{6/\epsilon}$ for every $b \in B$.

Let $L = \langle B^G \rangle$. Theorem 2.6 tells us that the commutator subgroup $[L, L]$ has finite ϵ-bounded order. Let us use the bar notation for images of subgroups of G in $G/[L, L]$. By Lemma 2.4, $\Pr(K, G) \geq \nu(C_K(y)) < \epsilon/2$ for all $y \in G \setminus Y$.

Observe that Y is closed, by Remark 2.9. Arguing as before, since $\nu(C_K(y)) < \epsilon/2$ for all $y \in G \setminus Y$, we have

$$\epsilon \leq \Pr(K, G) = \int_{G} \nu(C_K(y)) d\mu(y)$$

$$= \int_{Y} \nu(C_K(y)) d\mu(y) + \int_{G \setminus Y} \nu(C_K(y)) d\mu(y)$$

$$\leq \int_{Y} d\mu(y) + \int_{G \setminus Y} \epsilon/2 d\mu(y)$$

$$= \mu(Y) + \epsilon/2 - (1 - \mu(Y)) \leq \mu(Y) + \epsilon/2.$$

Therefore, $\mu(Y) \geq \epsilon/2$. Let E be the subgroup generated by Y. Lemma 2.7 ensures that every element of E is a product of at most $6/\epsilon$ elements of Y. Also, we have $\mu(E) \geq \mu(Y) \geq \epsilon/2$, so the index of E in G is at most $2/\epsilon$, by Lemma 2.2. Since $|y^K| \leq \epsilon/2$ for every $y \in Y$, it follows that $|g^K| \leq (2/\epsilon)^{6/\epsilon}$ for every $g \in E$. Let T be the maximal normal subgroup of G contained in E. Then the index $[G : T]$ is ϵ-bounded. Moreover, $|b^G| \leq (2/\epsilon)^{6/\epsilon}$ for every $b \in B$ and $|g^K| \leq (2/\epsilon)^{6/\epsilon}$ for every $g \in T$. As L is abelian, we can apply Lemma 2.5 and deduce that $[T, B]$ has finite ϵ-bounded order. The proposition follows. ■
4. About ϵ-central subgroups

Let G be a topological group generated by a symmetric set X. If it is possible to write $g \in G$ as a product of finitely many elements from X, we denote by $w(g)$ the shortest length of such an expression. If g cannot be written as a product of finitely many elements of X, we simply say that $w(g)$ is infinite. The next result is Lemma 2.1 in [4].

Lemma 4.1: Let G be a group generated by a symmetric set X and let D be a subgroup of index m in G. Then every coset Db contains an element such that $w(g) \leq m - 1$.

We remark that Lemma 4.1 holds for topological groups and their closed (open) subgroups of finite index. Indeed, for an integer $r \geq 0$ let D_r be the union of the cosets of D containing some element g with $w(g) \leq r$. Then $D_r \subseteq D_{r+1}$ and $D_r X \subseteq D_{r+1}$ for all r. Let R be the minimal integer such that $D_{R+1} = D_R$. Then D_R is a closed set containing the group generated by X, so $D_R = G$. Since D has m cosets and $D_0 = D$, $R < m$.

We now proceed to the proof of Proposition 1.3, which we restate here for the reader’s convenience.

Proposition 1.3: Let G be a compact group and let l, n be positive integers. Suppose that there is a subgroup K of G such that $[G : C_G(g^l)] \leq n$ for every $g \in K$. Then there exists a positive integer e, depending only on l and n, and a normal subgroup T of G, such that the index $[G : T]$ and the order of $[K^e, T]$ both are finite and (l, n)-bounded.

Let G be a compact group satisfying the hypothesis of Proposition 1.3. Let X be the union of the conjugacy classes of G containing an lth power of an element of K and let H be the subgroup generated by X. Define m as the maximum of the indices of $C_H(x)$ in H, where $x \in X$. Obviously, $m \leq n$.

Lemma 4.2: For any $x \in X$ the order of the subgroup $[H, x]$ is m-bounded.

Proof. Since the index of $C_H(x)$ in H is at most m, Lemma 4.1 guarantees that there are elements y_1, \ldots, y_m in H such that each y_i is a product of at most $m - 1$ elements of X and the subgroup $[H, x]$ is generated by the commutators $[y_i, x]$, for $i = 1, \ldots, m$. For any such i write $y_i = y_{i1} \cdots y_{i(m-1)}$, where y_{ij} belongs
to X. Using the standard commutator identities, we can rewrite $[y_i, x]$ as a product of conjugates in H of the commutators $[y_{ij}, x]$. Let $\{h_1, \ldots, h_s\}$ be the set of conjugates in H of all elements from the set $\{x, y_{ij} \mid 1 \leq i, j \leq m - 1\}$. Note that the number s here is m-bounded. This follows from the fact that $C_H(x)$ has index at most m in H for every $x \in X$. Let D be the subgroup of H generated by h_1, \ldots, h_s. Since $[H, x]$ is contained in the commutator subgroup D', it suffices to show that D' has finite m-bounded order. Observe that the center $Z(D)$ has index at most m^s in D, since the index of $C_H(h_i)$ is at most m for every h_i. Thus, by Schur’s theorem [29, 10.1.4], we conclude that D' has finite m-bounded order.

We now argue by induction on m. If $[H : C_H(g^{l^2})] \leq m - 1$ for all $g \in K$, then by induction the result holds. We therefore assume that there is $d \in K$ such that $[H : C_H(d^2)] = m$. Of course, necessarily, $[H : C_H(d^l)] = m$. Set $a = d^l$ and choose b_1, \ldots, b_m in H such that $a^H = \{a^{b_i} \mid i = 1, \ldots, m\}$ and $w(b_i) \leq m - 1$ (the existence of the elements b_i is guaranteed by Lemma 4.1).

Since $C_H(a) = C_H(a^l)$, it follows that $$ (a^l)^H = \{(a^l)^{b_i} \mid i = 1, \ldots, m\}. $$

Set $U = C_G(\langle b_1, \ldots, b_m \rangle)$. Note that the index of U in G is n-bounded. Indeed, since $w(b_i) \leq m - 1$ we can write $b_i = b_{i1} \ldots b_{i(m-1)}$, where $b_{ij} \in X$ and $i = 1, \ldots, m$. By the hypothesis, the index of $C_G(b_{ij})$ in G is at most n for any such element b_{ij}. Thus, $[G : U] \leq n^{(m-1)m}$.

Lemma 4.3: Suppose that $u \in U$ and $ua \in X$. Then $[H, u] \leq [H, a]$.

Proof. For each $i = 1, \ldots, m$ we have $(ua)^{b_i} = ua^{b_i}$, since u belongs to U. By hypothesis, $ua \in X$. Hence, taking into account the assumption on the cardinality of the conjugacy class of ua in H, we deduce that $(ua)^H$ consists exactly on the elements $(ua)^{b_i}$, for $i = 1, \ldots, m$. Therefore, given an arbitrary element $h \in H$, there exists $b \in \{b_1, \ldots, b_m\}$ such that $(ua)^h = (ua)^b$ and so $u^h a^h = ua^b$. It follows that $[u, h] = a^b a^{-h} \in [H, a]$, and the lemma holds.

Let R be the normal closure in G of the subgroup $[H, a]$, that is, $R = [H, a^{b_1}] \ldots [H, a^{b_n}]$, where a^{b_i} are all the conjugates of a in G (if $|a^G| \leq n - 1$, then not all the a^{b_1}, \ldots, a^{b_n} are pairwise distinct). By Lemma 4.2, each of the subgroups $[H, a^{b_i}]$ has n-bounded order. Thus, the order of R is n-bounded as well.
Let $Y_1 = Xa^{-l} \cap U$ and $Y_2 = Xa^{-1} \cap U$. Note that for any $y \in Y_1$, the product ya^l belongs to X. So, by Lemma 4.3 applied with a^l in place of a and y in place of u, the subgroup $[H, y]$ is contained in $[H, a^l]$, which is contained in R. Similarly, for any $y \in Y_2$, we have $[H, y] \leq R$. Set $Y = Y_1 \cup Y_2$. Thus, \[[H, Y] \leq R. \]

Let U_0 be the maximal normal subgroup of G contained in U. Observe that the index of U_0 in G is n-bounded. Observe further that for any $u \in U_0$ the commutators $[u, a^{-l}]$ and $[u, a^{-l}]$ lie in Y. Since $[U_0, a^{-l}] = [U_0, a]$, we deduce that \[[H, [U_0, a]] \leq R. \]

Let $K_0 = K \cap U_0$. We remark that $(ua)^l(a^l)^{-1} \in Y$ whenever $u \in K_0$. We pass to the quotient $\overline{G} = G/R$ and use the bar notation to denote images in \overline{G}. We know that Y is central in \overline{H}. We also deduce that $[\overline{U_0}, \overline{a}] \leq Z(\overline{H})$.

Since $(ua)^l(a^l)^{-1} \in Y$ whenever $u \in K_0$ and since $Y \leq Z(\overline{H})$, it follows that in the quotient $\overline{G}/Z(\overline{H})$ the element \overline{a} commutes with $\overline{U_0}$ and $(\overline{ua})^l(\overline{a})^{-l} = 1$ for every $\overline{a} \in \overline{K_0}$. This implies that $\overline{K_0}$ has exponent dividing l modulo $Z(\overline{H})$. It follows that $\overline{K_0}$ is abelian and every element of $\overline{K_0}^{l^2}$ is again an lth power of an element in $\overline{K_0}$. We therefore deduce that \[\Pr(\overline{K_0}^{l^2}, \overline{G}) \geq \frac{1}{n}. \]

By Proposition 1.1 there is a normal subgroup \overline{T} in \overline{G} and a subgroup \overline{V} in $\overline{K_0}^{l^2}$ such that the indices $[\overline{G} : \overline{T}]$ and $[\overline{K_0}^{l^2} : \overline{V}]$ and the order of $[\overline{T}, \overline{V}]$ are (l, n)-bounded. Let T be the inverse image of \overline{T} in G and V the inverse image of \overline{V} in $K_0^{l^2}$. Bearing in mind that the order of R is n-bounded, we conclude that the indices $[G : T]$ and $[K_0^{l^2} : V]$ are (n, l)-bounded, as also is the order of $[T, V]$. As the index of V in $K_0^{l^2}$ is bounded, there is a positive (n, l)-bounded integer e such that $K^e \leq V$. This completes the proof of the proposition.

Corollary 4.4: Let G be a compact group and let G_0 be the connected component of identity in G. Then, the following are equivalent:

(i) The probability $\Pr(G_0, G)$ is positive.

(ii) The centralizer $C_G(G_0)$ is open in G.

(iii) The connected component G_0 is ϵ-central in G for some $\epsilon > 0$.

Proof. Suppose first that $\Pr(G_0, G) > 0$. Then there are subgroups of finite index T of G and B of G_0 such that $[T, B]$ is finite. Since G_0 is divisible [21], the only finite index subgroup of G_0 is G_0 itself. Therefore, the set of commutators $\{[x, y] \mid x \in G_0, y \in T\}$ is connected and finite, hence is trivial and $T \leq C_G(G_0)$.

Now, assume that $C_G(G_0)$ is open in G and let μ and μ_0 be the normalized Haar measures of G and G_0, respectively. For any $x \in G_0$, the inclusion $C_G(G_0) \leq C_G(x)$ holds, thus $\mu(C_G(G_0)) \leq \mu(C_G(x))$. We have

$$\Pr(\langle x \rangle, G) = \int_{G_0} \mu(C_G(x)) d\mu_0(x) \geq \mu(C_G(G_0)) > 0.$$

We conclude that G_0 is ϵ-central, where $\epsilon = [G : C_G(G_0)]^{-1}$, and so (ii) implies (iii).

Now we assume the validity of (iii) and prove that (i) holds. By Theorem 1.2, there are a finite index subgroup T of G and a natural number e such that $[G_0^e, T]$ is finite. Since G_0 is divisible, $G_0 = G_0^e$ and so T centralizes G_0 and $T \leq C_G(x)$ for any $x \in G_0$. Writing μ and μ_0 for the normalized Haar measures of G and G_0, respectively, we have

$$\Pr(G_0, G) = \int_{G_0} \mu(C_G(x)) d\mu_0(x) \geq \mu(T) > 0. \quad \Box$$

5. Corollaries for Finite Groups

In this section we collect some easy corollaries of Theorem 1.2 for finite groups. Roughly, we show that many well-known results on the exponent of a finite group admit a probabilistic interpretation in the spirit of Theorem 1.2.

The restricted Burnside problem was whether the order of an r-generator finite group of exponent e is bounded in terms of r and e alone. This was famously solved in the affirmative by Zelmanov [32, 33]. Theorem 1.2 enables us to obtain the following extension of Zelmanov’s theorem.

Theorem 5.1: Let G be a finite ϵ-central r-generator group. Then G has a normal subgroup N such that both the index $[G : N]$ and the order of the commutator subgroup $[N, N]$ are (r, ϵ)-bounded.
Proof. By Theorem 1.2 there is an ϵ-bounded number e and a normal subgroup $T \leq G$ such that the index $[G : T]$ and the order of $[G^e, T]$ are ϵ-bounded. The solution of the Restricted Burnside problem implies that the index $[G : G^e]$ is (e, r)-bounded. Therefore the subgroup $N = G^e \cap T$ has the required properties.

An important part of the eventual solution of the restricted Burnside problem was developed by Hall and Higman in their paper [13]. They proved that if p is a prime and G is a finite group with Sylow p-subgroups of exponent p^s, then G has a normal series of s-bounded length all of whose factors are p-groups, or p'-groups, or direct products of nonabelian simple groups of order divisible by p.

Theorem 5.2: Let p be a prime and G a finite group with ϵ-central Sylow p-subgroups. Then G has a normal series of ϵ-bounded length all of whose factors are p-groups, or p'-groups, or direct products of nonabelian simple groups of order divisible by p.

Proof. Let P be a Sylow p-subgroup of G. By Theorem 1.2 there is an ϵ-bounded number e and a normal subgroup $T \leq G$ such that the index $[G : T]$ and the order of $[P^e, T]$ are ϵ-bounded. Set $P_0 = P^e$. It is sufficient to show that T has a normal series with the required properties. Note that $[P_0, T]$ is normal in T. Let Z be the inverse image in T of the center of $T/[P_0, T]$. Consider the normal series

$$1 \leq [P_0, T] \leq Z \leq T.$$

Here $[P_0, T]$ has ϵ-bounded order, $Z/[P_0, T]$ is abelian, and T/Z has Sylow p-subgroups of exponent dividing e. According to the Hall–Higman theory T/Z has a normal series of ϵ-bounded length with the required properties. Thus, the result follows.

Given a group-word w, we write $w(G)$ for the corresponding verbal subgroup of a group G, that is, the subgroup generated by the values of w in G. The word is said to be a law in G if $w(G) = 1$. In view of Theorem 1.2 it is easy to see that if $w(G)$ is ϵ-central in G, then a law of (ϵ, w)-bounded length holds in the group G. This simple observation provides a tool for obtaining extensions of results about finite groups satisfying certain laws. We will illustrate this with a theorem bounding the nonsoluble length of a finite group. The concept of nonsoluble length $\lambda(G)$ of a finite group G was introduced in [17]. This is the
minimum number of nonsoluble factors in a normal series of \(G \) in which every factor either is soluble or is a direct product of non-abelian simple groups. (In particular, the group is soluble if and only if its nonsoluble length is 0.)

It was shown in [7] that if a word \(w \) is a law in the Sylow 2-subgroup of a finite group \(G \), then \(\lambda(G) \) is bounded in terms of the length of the word \(w \) only.

This can be extended as follows.

Theorem 5.3: Let \(w \) be a group-word and \(P \) a Sylow 2-subgroup of a finite group \(G \) such that \(w(P) \) is \(\epsilon \)-central in \(P \). Then \(\lambda(G) \) is \((\epsilon, w) \)-bounded.

Proof. As explained above, this is straightforward combining the result in [7] and Theorem 1.2.

For a group of automorphisms \(A \) of a group \(G \) we write \(C_G(A) \) for the centralizer of \(A \) in \(G \). It is well-known that if a finite group \(G \) admits a coprime group of automorphisms \(A \), then \(C_G/N(A) = NC_G(A)/N \) for any \(A \)-invariant normal subgroup \(N \) of \(G \) (see for example [8, Theorem 6.2.2 (iv)]). Here the group \(A \) is a coprime group of automorphisms if \((|G|, |A|) = 1 \). The symbol \(A^\# \) stands for the set of nontrivial elements of the group \(A \). The main result of [16] states that if a finite group \(G \) admits an elementary abelian coprime group of automorphisms \(A \) of order \(p^2 \) such that \(C_G(\phi) \) has exponent dividing \(\epsilon \) for each \(\phi \in A^\# \), then the exponent of \(G \) is \((\epsilon, p) \)-bounded. We can now extend this in the following way.

Theorem 5.4: Let \(\epsilon > 0 \), and let \(G \) be a finite group admitting an elementary abelian coprime group of automorphisms \(A \) of order \(p^2 \) such that \(C_G(\phi) \) is \(\epsilon \)-central in \(G \) for each \(\phi \in A^\# \). Then there is a \((p, \epsilon) \)-bounded number \(e \) and an \(A \)-invariant normal subgroup \(T \) such that the index \([G : T] \) and the order of \([G^e, T] \) are \((p, \epsilon) \)-bounded.

Proof. Let \(A_1, \ldots, A_{p+1} \) be the subgroups of order \(p \) in \(A \) and set \(G_i = C_G(A_i) \) for \(i = 1, \ldots, p+1 \). According to Theorem 1.2 there is an \(\epsilon \)-bounded number \(d \) and, for \(i = 1, \ldots, p+1 \), \(A \)-invariant normal subgroups \(T_i \leq G \) such that the index \([G : T_i]\) and the order of \([G_i^d, T_i]\) are \(\epsilon \)-bounded. Set \(T = \bigcap T_i \) and observe that \(T \) is \(A \)-invariant and the index of \(T \) in \(G \) is \((p, \epsilon) \)-bounded.

Let \(N_i = [G_i^d, T] \) and \(N_0 = \prod N_i \). Note that the subgroup \(N_0 \) is normal in \(T \) and has \((p, \epsilon) \)-bounded order. Let \(N = \langle N_0^G \rangle \) be the normal closure of \(N_0 \) in \(G \). Since the index of \(T \) in \(G \) is \((p, \epsilon) \)-bounded, it follows that the order of
N is (p, ϵ)-bounded as well. We also observe that N is A-invariant since the subgroups N_i are. Let C be the centralizer of T modulo N, that is,

$$C = \{x \in G \mid [T, x] \leq N\}.$$

Clearly, the subgroup C is A-invariant. Moreover $G^d_i \leq C$ for $i = 1, \ldots, p + 1$. Hence, $C_{G/C}(A_i)$ has exponent dividing d for each $i = 1, \ldots, p + 1$. Now the main result of [16] says that the exponent of G/C is (d, p)-bounded. Therefore there exists a (p, ϵ)-bounded number e such that $G^e \leq C$, that is, $[G^e, T] \leq N$. This completes the proof. □

Corollary 5.5: Under the hypotheses of Theorem 5.4 there exists a number $\epsilon_0 > 0$ depending only on ϵ and p such that G is ϵ_0-central.

Proof. Assume the hypotheses of Theorem 5.4. The theorem tells us that there is a (p, ϵ)-bounded number e and a normal subgroup T such that the index $[G : T]$ and the order of $[G^e, T]$ are (p, ϵ)-bounded. As explained in the introduction, Theorem 1.2 admits a converse. Hence the result. □

In the spirit of the work [11] we record the following theorem.

Theorem 5.6: Let $\epsilon > 0$, and let G be a finite group admitting an elementary abelian coprime group of automorphisms A of order p^3 such that the commutator subgroup of $C_G(\phi)$ is ϵ-central in G for each $\phi \in A^\#$. Then there is a (p, ϵ)-bounded number e and an A-invariant normal subgroup T such that the index $[G : T]$ and the order of $[[G, G]^e, T]$ are (p, ϵ)-bounded.

Proof. Let A_1, \ldots, A_s be the subgroups of order p of A and let D_i denote the commutator subgroup of $C_G(A_i)$ for $i = 1, \ldots, s$. According to Theorem 1.2 there is an ϵ-bounded number d and, for $i = 1, \ldots, s$, A-invariant normal subgroups $T_i \leq G$ such that the index $[G : T_i]$ and the order of $[D_i^d, T_i]$ are ϵ-bounded. Set $T = \bigcap T_i$ and observe that T is A-invariant and the index of T in G is (p, ϵ)-bounded. Let $N_i = [D_i^d, T]$ and $N_0 = \prod N_i$. Note that N_0 is normal in T and has (p, ϵ)-bounded order. Let $N = \langle N_0^G \rangle$ be the normal closure of N_0 in G. Since the index of T in G is (p, ϵ)-bounded, it follows that the order of N is (p, ϵ)-bounded. We also observe that N is A-invariant since the subgroups N_i are. Let C be the centralizer of T modulo N, that is, $C = \{x \in G \mid [T, x] \leq N\}$. Clearly, the subgroup C is A-invariant. Moreover $D_i^d \leq C$ for $i = 1, \ldots, s$. Hence, $C_{G/C}(A_i)$ has commutator subgroup of
exponent dividing d for each $i = 1, \ldots, s$. Now the main result of [11] says that the exponent of the commutator subgroup of G/C is (d, p)-bounded. Therefore there exists a (p, ε)-bounded number e such that $[G, G]^e \leq C$, that is,

$$[[G, G]^e, T] \leq N.$$

This completes the proof. □

References

[1] C. Acciarri and P. Shumyatsky, A stronger form of Neumann’s BFC-theorem, Israel Journal of Mathematics 242 (2021), 269–278.
[2] E. Detomi, M. Morigi and P. Shumyatsky, BFC-theorems for higher commutator subgroups, Quarterly Journal of Mathematics 70 (2019), 849–858.
[3] E. Detomi and P. Shumyatsky, On the commuting probability for subgroups of a finite group, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 152 (2022), 1551–1564.
[4] G. Dierings and P. Shumyatsky, Groups with boundedly finite conjugacy classes of commutators, Quarterly Journal of Mathematics 69 (2018), 1047–1051.
[5] S. Eberhard, Commuting probabilities of finite groups, Bulletin of the London Mathematical Society 47 (2015), 796–808.
[6] A. Erfanian, R. Rezaei and P. Lescot, On the relative commutativity degree of a subgroup of a finite group, Communications in Algebra 35 (2007), 4183–4197.
[7] F. Fumagalli, F. Leinen and O. Puglisi, An upper bound for the nonsolvable length of a finite group in terms of its shortest law, Proceedings of the London Mathematical Society 125 (2022), 1066–1082.
[8] D. Gorenstein, Finite Groups, Chelsea, New York, 1980.
[9] R. M. Guralnick and A. Maroti, Average dimension of fixed point spaces with applications, Journal of Algebra 226 (2011), 298–308.
[10] R. M. Guralnick and G. Robinson, On the commuting probability in finite groups, Journal of Algebra 300 (2006), 509–528.
[11] R. M. Guralnick and P. Shumyatsky, Derived subgroups of fixed points, Israel Journal of Mathematics 126 (2001), 345–362.
[12] W. H. Gustafson, What is the probability that two groups elements commute?, American Mathematical Monthly 80 (1973), 1031–1304.
[13] P. Hall and G. Higman, The p-length of a p-soluble group and reduction theorems for Burnside’s problem, Proceedings of the London Mathematical Society 6 (1956), 1–42.
[14] E. Hewitt and K. Ross, Abstract Harmonic Analysis. Vol. I, Die Grundlehren der mathematischen Wissenschaften. Vol. 115, Springer, Berlin–Göttingen–Heidelberg, 1963.
[15] K. H. Hofmann and F. G. Russo, The probability that x and y commute in a compact group, Mathematical Proceedings of the Cambridge Philosophical Society 153 (2012), 557–571.
[16] E. I. Khukhro and P. Shumyatsky, Bounding the exponent of a finite group with automorphisms, Journal of Algebra 212 (1999), 363–374.
[17] E. I. Khukhro and P. Shumyatsky, *Non-soluble and non-p-soluble length of finite groups*, Israel Journal of Mathematics **207** (2015), 507–525.

[18] P. Lescot, *Sur certains groupes finis*, Revue de Mathématiques Spéciales (Avril 1987), 276–277.

[19] P. Lescot, *Degré de commutativité et structure d’un groupe fini. 1*, Revue de Mathématiques Spéciales Avril (1988), 276–279.

[20] A. Mann, *The exponent of central factors and commutator groups*, Journal of Group Theory **10** (2007), 435–436.

[21] J. Mycielski, *Some properties of connected compact groups*, Colloquium Mathematicaum **5** (1958), 162–166.

[22] L. Nachbin, *The Haar Integral*, Van Nostrand, Princeton, NJ–Toronto, ON–London, 1965.

[23] R. K. Nath and M. K. Yadav, *Some results on relative commutativity degree*, Rendiconti del Circolo Matematico di Palermo **64** (2015), 229–239.

[24] B. H. Neumann, *Groups covered by permutable subsets*, Journal of the London Mathematical Society **29** (1954), 236–248.

[25] P. M. Neumann, *Two combinatorial problems in group theory*, Bulletin of the London Mathematical Society **21** (1989), 456–458.

[26] P. M. Neumann and M. R. Vaughan-Lee, *An essay on BFC groups*, Proceedings of the London Mathematical Society **35** (1977), 213–237.

[27] H. Reiter, *Classical Harmonic Analysis and Locally Compact Groups*, London Mathematical Society Monographs, Vol. 22, The Clarendon Press, Oxford University Press, New York, 2000.

[28] R. Rezaei and A. Erfanian, *On the commutativity degree of compact groups*, Archiv der Mathematik **43** (2009), 345–356.

[29] D. J. S. Robinson, *A Course in the Theory of Groups*, Graduate Texts in Mathematics, Vol. 80. Springer, New York, 1996.

[30] D. Segal and A. Shalev, *On groups with bounded conjugacy classes*, Quarterly Journal of Mathematics. Oxford **50** (1999), 505–516.

[31] J. Wiegold, *Groups with boundedly finite classes of conjugate elements*, Proceedings of the Royal Society of London **238** (1957), 389–401.

[32] E. I. Zelmanov, *Solution of the restricted Burnside problem for groups of odd exponent*, Mathematics of the USSR-Izvestiya **36** (1991), 41–60.

[33] E. I. Zelmanov, *Solution of the restricted Burnside problem for 2-groups*, Mathematics of the USSR-Sbornik **72** (1992), 543–565.

[34] E. I. Zelmanov, *On periodic compact groups*, Israel Journal of Mathematics **77** (1992), 83–95.