Preparation and Physico Chemical Investigation of Manganese (II) Complexes with Hydrazone Ligands

*Sahbaa A. Ahmed
Department of Chemistry/ College of Science/ University of Mosul

**Amira J. Al-Shaheen
Department of Chemistry/ College of Education for Pure Science/ University of Mosul

**E-mail: Sahbaa.ali@gmail.com *E-mail: a.inorganic@yahoo.com

(Received 25/9/2018 ; Accepted 25/10/2018)

ABSTRACT
The work reported deals with the preparation and characterization of a number of new complexes of manganese (II). The complexes are formed by the reaction of the mentioned metal salts with three ligands of Schiff base type; the ligands are: dibenzoinlidenemalonoyldihydrazide (L1H4), dibenzoinlidenesuccinylldihydrazide (L2H4) and dibenzoinlidenephthaloyldihydrazide (L3H4). The prepared complexes have been characterized by molar conductance, CHN analysis, metal contents, electronic spectra, infrared spectra, and magnetic susceptibility measurements. The different studies suggest that all the complexes are hexacoordinated with octahedral geometry in the neutral medium; the ligands formed cationic complexes of the type [Mn(LH4)]X2 were X=Cl−1 and NO3−1, while in a basic medium anionic complexes of the general formula K2[Mn(L)].

Keywords: Acid hydrazide, Hydrazone ligands, Schiff base complexes, Manganese (II) complexes.

INTRODUCTION
The coordination chemistry of hydrazones and their metal complexes have gained importance because of their use as a model for biological system. In addition, they are known to exhibit a wide variety of pharmacological properties such as analgesic, antinflammatory, antimalarial,
antihelmintic activity, antitubercular, hypotensive actions, xanthitumor, anticonvulsant, and
carcinostatic activity (Singh and Singh, 2013; Jang et al., 2005; Sallomi et al., 2011; Al-Shaheen et al., 2012; Al-Shaheen et al., 2013; Al-Shaheen et al., 2017). Biological activities of hydrazone metal complexes are also reported for several transitional metals (Bernhardt et al., 2008; Alagesan et al., 2013; Sathyadevi et al., 2012). Recently, considerable attention has been paid to chemistry of the metal complexes of Schiff bases containing oxygen, nitrogen and other donors because they offer many attractive properties such as displaying a double role of electron transport and light emission, higher thermal stability and easy sublimation (Saydam and Alkan, 2001; Ciobanu et al., 2006; Sone and Fukuda, 1987). Schiff bases derived from the reaction of the aldehydes or ketones with hydrazides are very interesting since they are present in keto-enol forms and can form different types of complexes (Suresh and Prakash, 2011; Feng et al., 2009; Wageih and Moawaad, 2001). In present work, new manganese complexes are formed with ligands derived from benzoin and malonyl dihydrazide (L1H4), succinylldihydrazide (L2H4) and phthaloyldihydrazide (L3H4), (Scheme 1) have been synthesized and are characterized by different chemical, physical and spectral methods.

EXPERIMENTAL

Material and Measurement

All the chemicals used were supplied from Fluka, BDH, Aldrich, Merck, Acid hydrazides, malonyl, succinyl and phthaloyl dihydrazides were prepared by the condensation of the corresponding esters and hydrazine hydrate in 1: 2 molar ratio according to the reported procedure (Baker et al., 1950). Manganese contents were determined by atomic absorption method, CHN analyzer type vector, mode 1 E.A 3000 v.3.0 single Euro.in College of Pure Science/ University of Baghdad. Electronic spectra were recorded on Shimadzu UV-160 spectrophotometer for 10^{-3} M for complexes in DMF at 25°C using 1 cm quartz cell. Infrared absorption was recorded on a Perkin-Elmer 580 spectrophotometer as KBr Pelletes in the range 400-4000 cm$^{-1}$. Molar conductance of the complexes was measured at room temperature for 10^{-3} M in DMF solution using conductivity bridge type LF-42. Magnetic susceptibility of the complexes was measured by Bruker-BM6.

Preparation of Hydrazone

These were prepared according to the literature method (Baker et al., 1950) by reacting to a solution of acid dihydrazide (0.01mole, 1.43g) malonyldihydrazide (MDH2) or (0.01mole, 1.50g) succinylldihydrazide (SDH2) or (0.01 mole, 2.15g) phthaloyldihydrazide (PDH2)] in ethanol 20 ml was add to the solution of benzoin (0.02mole, 4.70g) in ethanol. The reaction mixture was heated under reflux for 3-9 hrs. After cooling, fine precipitate was formed which was filtered off, washed with cold ethanol and dried in oven at 70-80 °C .

Preparation of the Metal Complexes

In order to the metal complexes (1:1 molar ratio, manganese salts: ligand), a general procedure has been used for the preparation of the complexes in neutral and basic medium. In neutral medium a solution of (0.001 mole, 0.125g) of manganese chloride or (0.001 mole, 0.178g) manganese nitrate in 10 ml of ethanol has been added to the solution of one of acid dihydrazides [L1H4 (0.001 mole, 0.520g) or L2H4 (0.001 mole, 0.534g) or L3H4(0.001 mole, 0.582g)]. An ethanolic mixture containing manganese (II) salt and the ligand has been refluxed for about three hours. After cooling, the separated complexes were filtered off, recrystallized from hot water and dried. The alkaline medium complexes have been prepared by applying the same above amounts except that the ligands were treated with 1M KOH solution. Complete precipitation of the complexes were achieved at pH 9-10. The mixtures were left to stand for 30 minutes, then filtered off, recrystallized from hot water and dried in oven at 70-80 °C.
Preparation of ligand, (L₁H₄), (L₂H₄), (L₃H₄)

RESULTS AND DISCUSSION

The reaction of benzoin and acid dihydrazide in ethanol gave the desired hydrazone ligand (L₁H₄), (L₂H₄), (L₃H₄) (Scheme 1) in excellent yield and purity. The analytical data and some of the physical properties of the prepared ligand and its complexes are shown in (Table 1) which indicates that metal chlorides and metal nitrate form 1:1 (M:L) complexes with general formula, [M(LH₄)]X₂ and K₂[M(L)]. For all the complexes, the metal contents and the molar conductance values are in a good agreement with the given formulations as shown (Table 1). The solid complexes are colored, and conductance in DMF (Sallomi and Al-Shaheen, 1994; Despaigne et al., 2009; Chohan et al., 2000). Most of the complexes melted in the temperature range 207-307°C. The molar conductivities of the complexes in DMF indicated the presence of two types of complexes, a molar conductance data of 10⁻³ M solutions of the complexes (Table 1) at room temperature which show values (110-188) ohm⁻¹ cm² mol⁻¹ indicating that they are 1:2 electrolytes in the neutral medium, while in the basic medium as 2:1 electrolytes. (Geary, 1971).

Table 1: Some physical and analysis data of the ligand and their complexes

No. of Complexes	Formula	Color	M.P. (°C)	\(\Lambda_M\) DMF Ohm⁻¹. cm². mol⁻¹	% Mn analysis Calc. (obser)	% analysys. Calc. (obser)
1	L₁H₄	Yellow	150			
2	[Mn (L₁H₄)Cl₂]	Yellow	207	147	8.51	8.85
3	K₂[Mn (L₁)]	Dark Yellow	232	110	8.47	8.67
4	[Mn (L₂H₄)]NO₃₂	Yellow	307	164	7.86	8.05
5	L₂H₄	Yellow	190			
6	[Mn (L₂H₄)]NO₃₂	Light Yellow	242	135	7.71	7.96
7	L₃H₄	Yellow	144			
8	[Mn (L₃H₄)]Cl₂	Light Yellow	261	178	7.76	8.32
9	K₂[Mn (L₃)]	Dark Yellow	273	188	7.73	8.09

(R’ = CH₂, CH₂-CH₂, -ph
R’ = CH₂ (in L₁H₄), (in L₁H₄), R’ = CH₂-CH₂ (in L₂H₄), R’ = -ph
(Scheme 1)
The electronic spectra of the metal complexes were carried out in DMF. The electronic spectra of Mn(II) complexes (Table 2) showed only one broad band centered at 13333-15060 cm\(^{-1}\) due to the transition \(^{2}T_{2g} \rightarrow ^{2}T_{1g}\). This band in due to the excitation states in system \(d^5\) reported octahedral complexes (Nicholls, 1973; El-Tabl \textit{et al.}, 2012; Singh \textit{et al.}, 2013; Al-Shaheen and Al-Dabagh, 2009) octahedral geometry. In addition, high intensity bands were observed in the ultraviolet region of the spectra and assigned to C-T transitions which due to the partial electron density migration from the filled ligands \(\pi\)-orbital to the empty metal \(\pi\)-orbitals. The observed CT bands suggested the presence of some \(\pi\)-character in coordination bonds between the metal ions and the ligand. The magnetic moment of the prepared complexes at room temperature is presented in (Table 2). The results show that Mn(II) complexes (1.51-2.09) B.M. are all paramagnetic and in good agreement with the low spin octahedral structure (Sadhuukhan \textit{et al.}, 2011; Al-Shaheen, 2011).

Table 2: Electronic spectrum cm\(^{-1}\) and magnetic moment data of the complexes

No. of Complexes	Formula	\(\mu_{\text{eff}}\) B.M.	\(\nu_1\) C.T	
1	[Mn (L\(_1\)H\(_4\))Cl\(_2\)]	1.95	13333	35087
2	K\(_2\)[Mn (L\(_1\))]	1.51	13386	40485
3	[Mn (L\(_1\)H\(_4\))](NO\(_3\))\(_2\)]	1.76	14598	33222
4	[Mn (L\(_2\)H\(_4\))]Cl\(_2\)]	1.51	13513	33222
5	K\(_2\)[Mn (L\(_2\))]	1.95	13477	36362
6	[Mn (L\(_2\)H\(_4\))](NO\(_3\))\(_2\)]	1.76	14598	20333
7	[Mn (L\(_3\)H\(_4\))]Cl\(_2\)]	2.09	14992	32051
8	K\(_2\)[Mn (L\(_3\))]	1.97	15060	36496
9	[Mn (L\(_3\)H\(_4\))](NO\(_3\))\(_2\)]	2.08	13513	33222

The coordination sites of the ligands were inferred by infrared spectroscopy, which is considered a useful technique for the IR spectra of the structure of complexes. The infrared data of the main absorption bands of the ligands and the complexes are given in (Table 3).

The important infrared spectral of the ligand showed a band at (3400-3500) cm\(^{-1}\) assigned to \(\nu\)OH. For the complexes, the stretching and deformation vibrations of OHgroups were shifted to lower frequency in the (1,3,4,6,7,9) complexes while in the (2,5,8) complexes frequencies did not appear. (Nakamoto, 1997). In the infrared spectra of complexes, the absence of the bands due to OH-stretching and deformation vibrations was attributed to the coordination of the ligand through deprotonation of the alcoholic hydroxyl groups, compared to their positions in the free ligands spectrum indicating coordination of alcoholic hydroxyl groups through their oxygen atoms. The IR spectrum of the ligand showed a band at (3200-3300) cm\(^{-1}\) assigned to \(\nu\)NH. This band has been shifted to a lower frequency in (1,3,4,6,7,9) complexes formation (NH). This band however did not appear in the (2,5,8) complexes (Taylor \textit{et al.}, 1974). The infrared spectral of the ligand showed a band at (1615-1630) cm\(^{-1}\) assigned to \(\nu\) C=\(\text{N}\). In the complexes, the C=\(\text{N}\) stretching band shows negative shift of about 15 - 45 cm\(^{-1}\), indicating the involvement of azomethine nitrogen atom in complexes formulation (Taylor \textit{et al.}, 1974; Abd-Elzaher, 2002). The stretching band of the azomethine group was also shifted ,suggesting coordination through azomethine nitrogen. The \(\nu\) C=\(\text{O}\) in the ligand appeared at (1675-1695) cm\(^{-1}\); this band shifted to lower frequency in the (1,3,4,6,7,9) complexes while in the (2,5,8) complexes frequencies did not appear.

In addition, the stretching vibration of C-O single bond split into two peaks due to (C-O) which supports the above suggested coordination of the hydroxyl groups without deprotonation (Sallomi and Al-Shaheen, 1998; Sallomi \textit{et al.}, 2011) (Table 3). The negative shift of about 10 -35 cm\(^{-1}\) in the stretching frequency of carbonyl group suggests coordination through the carbonyl oxygen atom as observed in similar acid hyrazide and hydrazine complexes (Holm \textit{et al.}, 1966; Sallomi,1998). On the other hand, the absence of the stretching band was due to NH and C=O moiety was attributed, as reported for similar cases (Stratton, 1969) to the presence of the
The presence of these bands is strong evidence for the enolization deprotonation in alkaline solution. In all complexes of both types, positive shift was observed in the stretching vibration of N-N band. Since the shift is less than 50 cm\(^{-1}\) only one nitrogen atom is involved in bonding (Zhang et al., 2005). In addition to the above mentioned perturbation in infrared spectra, new bands around 470 - 480 cm\(^{-1}\) and 430- 440cm\(^{-1}\) were observed and tentatively assigned to M-N and M-O stretching modes, respectively (Wilkinson et al., 1987; Nakamoto, 1997).

Table 3: Important IR spectral bands (cm\(^{-1}\)) of the free ligands and their complexes

No. of Complexes	ν O-H	ν N-H	ν C=N	ν C=O	ν N-N	ν C-O	ν M-N	ν M-O	
L\(_1\)H\(_4\)	1	2	3	4	5	6	7	8	9
	3400	3200	3250	3410	3295	3300	3500	3400	3400
	3250	3240	3240	3300	3280	3290	3200	3180	3180
	1630	1600	1660	1615	1600	1585	1625	1615	1585
	1685	1680	1685	1695	1660	1585	1675	1660	1640
	1035	1050	1045	1030	1045	1040	1020	1040	1050
	1200	1180	1200	1220	1200	1190	1180	1200	1185
	-	480	480	-	480	-	-	-	480
	440	470	435	440	440	440	440	-	440

CONCLUSION

According to the above studies, it was concluded that all the ligands act as neutral hexadentate in neutral solution giving cationic complexes and coordinating through alcoholic oxygen, carbonyl oxygen and azomethine nitrogen atoms. Basic medium neutral complexes were obtained Fig. (1).

\[
\text{Fig. 1: The proposed structures of complexes}\]

(a) neutral medium

(b) basic medium
REFERENCES

Abd-Elzaher, M.M. (2002). Spectroscopic characterization of some tetradente Schiff base and their complexes with nickel, copper and zinc. J. Chinese Chem. Soc., 48, 153.

Al-Shaheen, A.J.; Al-Dabagh, A.M. (2009). Preparation and spectroscopic characterization of some mixed ligand complexes of homodinuclear of Co(II), Ni(II) and Cu(II). 1st. Scientific Conference Proceeding Part 5 Chem., Kirkuk University J. Sci. Studies, 4, 3, 33.

Alagesan, M.; Bhuvanesh, N.S.P.; Dharmaraj, N. (2013). Potentially cytotoxic new Copper(II) hydrazone complexes: synthesis, crystal structure and biological properties. J. Chem. Soc., Dalton Trans., 42, 7210 - 7223.

Al-Shaheen, A.J. (2011). Synthesis and fungitoxicity of copper (II) complexes. The 2nd Scientific Conference in Chemistry. Raf. J. Chem., 22-23.

Al-Shaheen, A.J.; Al-Bayati, M.R.; Ali, A.M. (2017). Synthesis and characterization some of metal(II) complexes with 2-(6-methoxy naphthalene-2-yl) propionic acid (2-hydroxy benzylidene) hydrazone. International J. Enhanced-Resear., Technol. and Engn., 6(11).

Al-Shaheen, A.J.; Sallomi, I.J.; Al-Sabaawi, S.A. (2012). Preparation, characterization of acid hyrazide Schiff Base complexes of nickel (II) and their biological activity. Iraqi National J. Chem., 48.

Al-Shaheen, A.J.; Sallomi, I.J.; Al-Sabaawi, S.A. (2013). Some new schiff base complexes of copper (II) and their biological screening. Kirkuk Uni. J. Sci. Studies, 8(2), 48-58.

Baker, W.; Haksar, C.N.; Mcomie, J.F.W. (1950). Fluorescent reagents, acyl chlorides and acyl hydrazides. J. Chem. Soc., 170.

Bernhardt, P.V.; Wilson, G.J.; Sharpe, P.C.; Kalinowski, D.S.; Richardson, D.R. (2008). Tuning the antiproliferative activity of biologically active iron chelators: characterization of the coordination chemistry of 2-acetylpyridine and 2-benzoxylypyridine hydrazone ligands. J. Biol. Inorg. Chem., 13, 107-119.

Chohan, Z.H.; Farooq, M.A.; Iqbal, M.S. (2000). Synthesis, characterization and biological properties of anions on bivalent transition metal Co (II) and Ni (II) complexes with acylhydrazine-derived ONO donor Schiff bases. Metal-Based Drugs, 7, 133-139.

Ciobanu, A.; Zalaru, F.; Albinescu, D.; Zalaru, C. (2006). Coordination compound of Cu(II) and Ni(II) with Schiff bases derived from formylmenthone and o-, m-,p- toluidine. Southern Brazil J., 7(8), 95-104.

Despaigne, A.R.; Dasilva, J.G.; Docarmo, A.C.; Piro, O.E.; Castellano, E.E.; Beraldo, H. (2009). Copper(II) and zinc(II)complexes with 2-benzoil pyridine-methyl hydrazone. J. Mol. Struct., 920, 97-102.

El-Table, A.S.; Shakdofa, M.M.E.; Shakdofa, A.M.E. (2012). Metal complexes of N-(2-hydroxy5-phenyldiazenyl)benzylidene isonicotino hydrazone. synthesis, spectroscopic characterization and anti bacterial activity. J. Serb. Chem. Soc., 77,1-29.

Feng, Y.; Wang, C.; Zhao, Y.; Li, J.; Liao, D.; Yan, S.; Wang, Q. (2009). Out- of- plane. Dimeric Mn(III) quadridentate Schiff-base complexes: synthesis, structure and magnetic properties. Inorganic Chem. Acta, 362(10), 3563-3568.

Geary, W.J. (1971). The use of conductivity measurement in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev., 7, 81-122.

Holm, R.H.; Evere, J.R.; Chakravorty, R.S. (1966). Metal complexes of schiff bases and 3 – ketoimines. Inorganic Chem., 7, 83

Jang, Y.J.; Lee, U.; Koo, B.K. (2005). Synthesis and crystal structures of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) metal complexes with NNO functionalized ligand. Bull. Korean Soc., 26(6), 925-929.

Nakamoto, K. (1997)." Infrared and Raman 7 Spectra of Inorganic and Coordination Compound". 5th ed., Part B, John Wiley and Sons, Incorporation.

Nicholls, D. (1973). "The Chemistry of Iron, Cobalt, Nickel". Pergamo Press. 1st ed.
Sadhukhan, D.; Ray, A.; Pilet, G.; Rizzoli, C.; Rosair, G.M.; Gomez-Garcia, C.J.; Signorella, S.; Bellu, S.; Mitra, S. (2011). Weak interaction modulating the dimensionality in superamolecular architectures in three new nickel(II) hydrazone complexes, magnetostructural correlation, and catalytic potential for epoxidation of alkenes under phase transfer conditions. Inorg. Chem., 50, 8326-8339.

Sallomi, I.J.; Shaheen, A.J. (1998). Complexes of cobalt (II), nickel(II) and copper(II) with ortho- and para- phenylene diamine derivatives. Polyhedron, 17, 1429.

Sallomi, I.J.; Al-Shaheen, A.J. (1994). Complexes of hydrazide Schiff bases. Transition, Met. Chem., 19, 275.

Sallomi, I.J.; Al-Shaheen, A.J.; Al-Sabaawi, S.A. (2011). Acid hydrazide Schiff base complexes of cobalt (II) and their biological activity. Raf. J. Sci., 2nd Sci-Conference in Chemistry 22-23 November, 389-400.

Sallomi, I.J.; Al-Shaheen, A.J.; Al-Sabaawi, S.A. (2011). Acid hydrazide Schiff base complexes of cobalt (II) and their biological activity. Raf. J. Sci., 2nd Sci-Conference in Chemistry 22-23 November, 389-400.

Sathyadevi, P.; Krishnamoorthy, P.; Algesan, M.; Thanigaimani, K.; Muthiah, P.T.; Dharmaraj, N. (2012). Synthesis crystal structure, electrochemistry and studies on protein binding, antioxidant and biocidal activities of Ni(II) and Co(II) hydrazone complexes. Polyhedron, 31, 294-306.

Saydam, S.; Alkan, C. (2001). Synthesis and characterization of a new thiazole Schiff base of 5-bromo-2-hydroxybenzylidene -2- aminobenzothiazole and its Complexes with Co(II), Cu(II) and Ni(II). Polish J. Chem., 75, 29-33.

Singh, V.P.; Singh, P. (2013). Synthesis, spectral characterization and thermal studies of Co(II), Ni(II), Cu(II), and Zn(II) complexes with 2-amino benzoic acid .and 2-hydroxy benzoic acid thiophene 2-methylene hydrazide. J. Mol. Struct., 1035,363-370.

Singh, V.P.; Singh, S.; Singh, D.P.; Singh, P.; Tiwari, K.; Mishra, M.; Butcher, R.J. (2013). Synthesis, spectral and single x-ray diffraction studies on Co(II), Ni(II), Cu(II), and Zn(II) complexes with o-amino acetophenone benzoic acid hydrazone. Polyhedron. 56,71-81.

Sone, K.; Fukuda, Y. (1987). Inorganic Thermochromism: Inorganic Chemistry.

Stratton, W.J.; Reng, M.F.; Drug, R.F. (1969). Metal complexes with azine ligand hydrolysis and template synthesis in the iron (III)-2-pyridinaldazine system. Inorganic Chem. Acta., 3, 97.

Suresh, M.S.; Prakash, V. (2011). Preparation, characterization and antibacterial studies of chelates of Schiff base derived from 4-aminoantipyrievanillin and o-phen- Ylene diamine. International J. Cur. Research, 3,68.

Taylor, M.K.; Trotter, K.D.; Reiglinski, J.; Berlouis, L.E.A.; patronKennedy, R.D. (1974). Iron (III) complexes of pentadentate ligands. Inorganic Chem. Acta., 8, 191.

Wagei, G.H.; Moawaad, N. (2001). Synthesis, characterization and antimicrobial activity of Co(II), Ni (II) and Cu (II) with new asymmetrical Schiff base. Transition Metal Chem. 26(6), 644.

Wilkinson, G.; Gillard, R.D.; McCleverty, J.A. (1987). "Comprehensive Coordination Chemistry". Pergamon Press, Great Britain, 1184 p.

Zhang, L.; Lu, X.; Zhou, Q.; Chen, C.; Kang, B. (2005). Coordination modes of diphosphines in silver(I)-di-phosphine complexes mediated by 2,4,6-tri(2- pyridy l)-1,3,5triazine(tptz). Transition Metal Chem., 30(1), 76.