A simple and efficient protocol for the mass propagation of Cymbidium mastersii: an ornamental orchid of Northeast India

Padmaja Mohanty, Sumi Paul, Meera C. Das*, Suman Kumaria and Pramod Tandon
Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong, Meghalaya 793022, India

Received: 19 April 2012; Returned for revision: 22 May 2012; Accepted: 14 August 2012; Published: 21 August 2012

Citation details: Mohanty P, Paul S, Das MC, Kumaria S, Tandon P. 2012. A simple and efficient protocol for the mass propagation of Cymbidium mastersii: an ornamental orchid of Northeast India. AoB PLANTS 2012: pls023; doi:10.1093/aobpla/pls023

Abstract

Background and aims Cymbidium mastersii is an epiphytic orchid distributed mainly in Northeast India. Owing to its high commercial value in the floricultural industry, natural populations are under threat from over-exploitation. Mass propagation provides an alternative means of satisfying the demand. Unfortunately, conventional propagation is slow and difficult, suggesting in vitro methods for mass multiplication may be more appropriate. The objective of this study was to develop an efficient protocol.

Methodology and principal results Four nutrient media were evaluated for seed germination and early protocorm development: Murashige and Skoog (MS), half-strength MS, Knudson ‘C’ (KC), and Vacin and Went (VW). In addition, the effects of plant growth regulators 6-benzylaminopurine (BAP), kinetin (KN), α-naphthalene acetic acid (NAA) and indole-3-butyric acid (IBA) were studied alone and in combination. The maximum percentage seed germination (93.58 ± 0.56) was obtained in MS basal medium after 8–9 weeks of culture. Secondary protocorms (protocorm-like bodies) were developed from primary protocorms on MS medium fortified with different concentrations and combinations of cytokinins (BAP and KN) and auxins (NAA and IBA). The highest numbers of secondary protocorms (20.55 ± 0.62)/primary protocorms were obtained in MS medium supplemented with 5.0 μM BAP and 2.5 μM NAA. The most effective auxin source promoting root production (7.46 ± 0.09 per shoot) was 10.0 μM IBA. The plants were acclimatized effectively (survival percentage 88 %) in a greenhouse using a rooting medium of crushed sterile brick and charcoal (1:1 v/v) and vermicompost (leaf litter + cow dung, 1:1 v/v).

Conclusions An efficient protocol was established for in vitro propagation of C. mastersii using seed as the starting material. The percentage seed germination varied with the composition of the nutrient media and was highest in full-strength MS basal medium. The number of secondary protocorms that developed from primary protocorms was increased by the addition of 5.0 μM BAP and 2.5 μM NAA. In vitro raised plantlets acclimatized in a greenhouse were closely similar to the mother plants in morphology.

* Corresponding author’s e-mail address: dasmeera73@gmail.com

Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

The Orchidaceae represents a peak in the evolution of monocots and is one of the most successful families of flowering plants, as is clear from its wide distribution and numerous species (20 000–30 000) (Chowdhery 2001). Increased globalization of the floriculture trade has made orchids the most popular cut flower and potted floriculture crop with a wholesale value estimated at $126 million (United States Department of Agriculture 2004). Cymbidium comprises more than 70 natural species and hundreds of manmade hybrids. This rich variety has contributed significantly to the development of the international trade in orchid cut flowers (Vij et al. 2004). Cymbidium mastersii is an epiphytic orchid found principally in the Sikkim-Himalayas and the Khasi Hills of Meghalaya, India, at an altitude of 1700–2300 m (Bose and Bhattacharjee 1980). Its beautiful sweet-scented white flowers explain its high commercial value. Currently, ruthless collection of this species from its natural habitat, linked to unauthorized trading, fulfils market demand. As a consequence, it is becoming increasingly rare in the wild (Hedge 1999).

An alternative source of these plants is clearly needed and mass propagation offers a solution (Stanberg and Kane 1998).

The regeneration and multiplication of orchids through seeds in nature are limited due to suppressed endosperm and requirements of fungal partners (Sung-kumlong and Deb 2008). In vitro asymbiotic seed germination of orchids has been frequently used for the production of commercially important orchids and shown to be an efficient tool for the production of orchids for conservation and rehabilitation (Kauth et al. 2006). The in vitro asymbiotic seed germination of orchids by Knudson (1922) and shoot tip culture in Cymbidium by Morel (1964) laid the milestone of orchid tissue culture. Mass propagation protocols of different Cymbidium spp. using different explants such as mature seeds (Chung et al. 1985; Hossain et al. 2010), immature seeds (Shimasaki and Uemoto 1990; Das et al. 2007), flower stalks (Wang 1988), pseudobulbs (Shimasaki and Uemoto 1990), shoot segments (Nayak et al. 1997), flower buds (Shimasaki and Uemoto 1991), protocorms (Corrie and Tandon 1993), protocorm-like bodies (PLBs) (Begum et al. 1994), thin cell layers (TCLs) of PLBs (Malabadi et al. 2008) and artificial seeds based on PLBs (Nhut et al. 2005) have been standardized. In vitro seed germination of orchids is greatly influenced by several factors like seed age, nutrient media and organic carbon source, etc. The development of protocorms from germinated seeds and the subsequent induction of secondary protocorms or PLBs, from different tissues as explants has become a reliable method for breeding orchids. Propagation by the formation of PLBs is a preferred option because a large number of PLBs can be obtained in a short period of time. Protocorm-like bodies can proliferate and regenerate rapidly into complete plantlets (Liu et al. 2003). Moreover, PLBs are well-differentiated tissues that are sometimes regarded as orchid embryos that can develop two distinct bipolar structures, namely, the shoot and root meristem. Thus, these structures are able to convert to plantlets easily when grown on appropriate nutrient medium (Ng and Saleh 2011).

Although C. mastersii faces rapid destruction due to exploitation and also urbanization and habitat loss, there is, to date, no published information on how it may be effectively mass propagated in vitro. We have addressed this shortcoming by developing an efficient protocol for rapid propagation of C. mastersii starting with in vitro asymbiotic seed germination, leading to PLB induction followed by plantlet development and successful ex vitro acclimation. Our present study constitutes the first report of the large-scale production of C. mastersii.

Materials and methods

Seed source and sterilization

Seven-month-old fruit capsules of C. mastersii were collected from plants grown in the greenhouse of the Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong, India. Capsules were washed with 2–3 drops of Tween 20 and surface-disinfected in 0.1% mercuric chloride solution for 2 min followed by 70% ethanol for 30 s and surface flaming. Finally, the capsules were rinsed five times with sterile distilled water and dried. All subsequent work was carried out aseptically in laminar flow cabinets. The capsules were then dissected longitudinally with a surgical blade and extracted seeds were spread thinly over the surface of liquid culture medium contained in 25 × 150 mm glass test tubes (20 test tubes per capsule) each containing 10 ml of medium.

Media and culture conditions

Four nutrient media were compared for their suitability as germination media and for protocorm development: Murashige and Skoog (MS), half-strength MS, Knudson ’C’ (KC), and Vacin and Went (VW) (Murashige and Skoog 1962; Knudson 1946; Vacin and Went 1949). All media were supplemented with 3% sucrose (w/v) and solidified with 0.8% agar (‘Hi media’, India). The pH was adjusted to 5.8 prior to autoclaving at 121°C.
experiments were repeated three times. Twenty test tubes were taken for each treatment and all tocmor per test tube) were used for the experiment.

development. Sixty-day-old primary protocorms (one protocorm per test tube) were used for the experiment. Data were recorded after 60 days in culture. Means of 20 test tubes were taken for each treatment and all experiments were repeated three times.

Growth regulators
The most effective medium for seed germination and protocorm development was supplemented with different concentrations of 6-benzylaminopurine (BAP), kinetin (KN), α-naphthalene acetic acid (NAA) and indole-3-butyric acid (IBA) (2.5, 5.0, 10.0 μM) alone and in combination to study their effectiveness in promoting proliferation of protocorms and subsequent plantlet development. Sixty-day-old primary protocorms (one protocorm per test tube) were used for the experiment. Data were recorded after 60 days in culture. Means of 20 test tubes were taken for each treatment and all experiments were repeated three times.

Results
Asymbiotic seed germination
Percentage seed germination was highest in MS (93.058 ± 0.56) followed by half-strength MS (85.72 ± 0.66), KC (73.55 ± 0.58) and VW (67.13 ± 0.64) (Table 1). In C. mastersi, an undifferentiated embryo occupies the centre of the seed covered by a transparent integument or testa (Fig. 1A). Germination was marked by swelling and emergence of the embryo from the testa. Seed germination was first evident by swelling and within 5–9 weeks the undifferentiated embryos formed an irregular shaped cell mass—the spherules. After 3–4 weeks, these spherules turned green and formed round structures—the protocorms. After 12 weeks (Fig. 1B), protocorms became visible microscopically at the vegetative apex while rhizoids appeared below (Fig. 1C). This was followed by the development of 2–3 leaf primordia and 1-2 roots (after 14 weeks) when MS basal medium or half-strength MS medium was used. In KC and VW medium, development of protocorms reached the promeristem stage after 12 weeks of culture. Murashige and Skoog basal medium was demonstrably the most effective of the media tested (Table 1). Protocorms cultured in VW medium did not develop beyond the vegetative apex stage, while half-strength MS and KC supported only poor growth of protocorms in comparison with MS medium (Table 1).

Production of secondary protocorms from primary protocorms
Sixty-day-old protocorms obtained from MS basal medium were subcultured on fresh MS medium supplemented with different concentrations of BAP (2.5, 5.0, 10.0 μM), KN (2.5, 5.0, 10.0 μM), NAA (2.5, 5.0, 10.0 μM) and IBA (2.5, 5.0, 10.0 μM) alone and in combination. This resulted in the generation of secondary protocorms (PLBs) instead of shoot formation directly (Fig. 2A and B). Protocorm-like body development initiated after 30 days of culture (Fig. 2A). The maximum number of PLBs (20.55 ± 0.62) per protocorm was observed after 60 days of culture in MS medium containing BAP (5.0 μM) and NAA (2.5 μM), followed by BAP (5.0 μM) alone (Table 2). Almost all the PLBs were converted into plantlets (Fig. 2C and D) in the following 20–30 days of the time period, giving rise to multiple numbers of shoots on the same media.

Rooting and acclimatization
In attempts to increase the number of roots and their length, plantlets were supplied with different concentration of auxins (Table 3). Murashige and Skoog medium supplemented with 10 μM IBA induced the most roots (7.46 ± 0.09) per shoot (Fig. 2E), followed by 15 μM IBA. In comparison, NAA was much less effective at inducing new root formation and promoting root extension. The plantlets were acclimatized in a greenhouse after potting up in a mixture of sterile brick and charcoal...
pieces mixed with vermicompost. The percentage survival was 88% after 12 weeks of hardening (Fig. 2F).

Discussion

We show that an *in vitro* asymbiotic seed germination technique is an effective tool for the mass propagation of *C. mastersii*. If adopted commercially this will reduce the demand for wild-grown material and thus should benefit conservation of the surviving natural populations.

Nutrient requirements for orchid seed germination are thought to be species specific (Arditti and Ernst 1984; Kauth et al. 2008). It was, therefore, not surprising that the various asymbiotic media used in this present study, with their different compositions and concentrations of mineral salts, organic supplements and vitamins, varied in their suitability for *in vitro* germination. The full-strength MS medium tested contained higher concentrations of macro and micro elements than the half-strength MS, KC and VW media with which we compared it. The nitrogen source plays a major role in effecting orchid seed germination (Van Waes and Debergh 1986; Anderson 1996; Stewart and Kane 2006). This may explain the superior seed germination on MS. It was reported by Kramer and Kozlowski (1979) that nitrogen present in MS medium greatly influences the growth and differentiation of cells. According to Dohling et al. (2008), the presence of nitrate in the form of ammonium nitrate in MS medium is the most suitable source for seed germination and plantlet development of *Dendrobium longicornu* and *Dendrobium for- mosum*. Also, pyridoxine, thiamine and nicotinic acid, as vitamins, are absent from KC and VW media but present in the MS media. This, too, may have promoted germination in *C. mastersii*. Our findings parallel those obtained for *Cattleya* spp. by Mead and Bulard (1979). These additional factors included in full-strength MS may also have aided protocorm development.

According to Teixeira da Silva et al. (2006), the development of plantlets from orchid seed can either be direct or indirect through secondary protocorms/PLBs.

Table 1 Comparative effect of four culture media on asymbiotic germination of seeds and protocorm development of *C. mastersii*.

Medium	Time required (weeks)	% seed germination (mean ± SE)	Protocorm development (% response)			
	Spherule formation	Protocorm formation	Stage 1	Stage 2	Stage 3	
MS	5–6	8–9	93.58 ± 0.56	71.72 ± 1.85	60.71 ± 1.24	51.59 ± 0.99
Half MS	5–6	7–8	85.72 ± 0.66	61.11 ± 0.45	54.75 ± 0.37	47.77 ± 0.56
KC	7–8	9–10	73.55 ± 0.58	53.03 ± 0.83	39.53 ± 0.66	36.65 ± 0.45
VW	8–9	11–12	67.13 ± 0.64	38.44 ± 0.26		

Stage (1): vegetative apex stage. Stage (2): 2–3 leaves stage. Stage (3): 1–2 roots stage.

Mean values within a column followed by the same letters are not significantly different at *P* < 0.05 according to Duncan’s multiple range test; *n* = 20 per treatment conducted in triplicate.

Fig. 1 Different stages in the germination of seeds of *C. mastersii*. (A) Mature seeds containing embryos inside the integuments, bar = 100 μm. (B) Rounded protocorms after 9 weeks of culture. (C) Young protocorm with a vegetative apex at the upper side (arrow), bar = 1 mm. (D) Complete plantlet with 2–3 leaves and 1–2 roots, bar = 5 mm.
These PLBs are the outcome of continuous division of the outer tissues of protocorms (Huan and Tanaka 2004a, b) or pseudobulbs, rhizomes, roots and shoot segments (Chang and Chang 1998). Protocorm origin holds advantages because a large number of plantlets can be obtained from a single protocorm. Protocorms were shown by Griesbach (1983) to be the most effective explants for PLB regeneration in several orchid species. This may be ascribed to the presence of highly meristematic tissues. In the case of C. mastersii, we observed that protocorms cultured on the MS basal medium alone did not give rise to PLBs. This was perhaps because endogenous auxins and cytokinins are insufficient for PLB development since the addition of auxins and cytokinins resulted in PLB proliferation. Our results revealed optimal concentrations of auxins (NAA or IBA) for PLB generation with yield decreasing at higher levels. The yield of PLBs tended to increase with the cytokinin concentration (BAP and KN), which agrees with findings by Kim and Kako (1982). Primary protocorms responded significantly to a combination of 5.0 μM BAP and 2.5 μM NAA, yielding the highest numbers of PLBs, suggesting a synergistic effect which was also observed in the case of Cymbidium nativity and C. lapine dancer (Fujii et al. 1999). Kusumoto (1978) suggested that the negative effect of NAA on PLB proliferation in the case of cymbidiums was overcome by BA. This was paralleled in our results. In Cymbidium, PLBs were found to regenerate complete plantlets that were closely similar to those arising from somatic embryos (Teixeira da Silva et al. 2006). This was also observed in C. mastersii. Indole butyric acid was found to be the superior auxin for promoting rooting. The maximum number (7.46 ± 0.09) of roots per shoot was recorded in the medium supplemented with 10.0 μM IBA. Giridhar et al. (2001) and Nongdam et al. (2006) have also reported the effectiveness of IBA in the case of the medicinal orchids Vanilla planifolia and Cymbidium pendulum.

Conclusions and forward look
Cymbidium mastersii is an endangered epiphytic orchid of Northeast India of high commercial value. An alternative source of material is needed to satisfy commercial

![Fig. 2 Development of plants via PLB.](https://www.aobplants.org/content/doi/10.1093/aobpla/pls023/176762)
demands if wild populations are to be saved. In the present study, a successful attempt was made to develop an in vitro system for the mass propagation of *C. mastersii*. This was based on the germination of seeds from a small number of fruit capsules and manipulating their development through primary protocorm production. Each protocorm in turn produced numerous well-rooted plantlets that could be successfully weaned in greenhouse conditions to generate independently growing plants that were indistinguishable from the original parent. The protocol is uncomplicated and will enable commercial production of *C. mastersii*, thereby relieving pressure on the surviving natural population. This study is an initial attempt to mass propagate *C. mastersii* and the method we describe could be rendered commercially successful with the application of bioreactor technology.

Sources of funding

This work was supported by financial assistance from the Centre for Advanced Studies in Botany, NEHU, Shillong, India.

Contributions by the authors

All the authors contributed to a similar extent overall and have seen and agreed to the submitted manuscript.

Acknowledgements

The authors acknowledge the Centre for Advanced Studies in Botany, NEHU, Shillong, India, for financial assistance to carry out the research work.

Conflict of interest statement

None declared.
References

Anderson AB. 1996. The reintroduction of Plantanthera ciliaris in Canada. In: Allen C, ed. North American native terrestrial orchids propagation and production. North American Native Terrestrial Orchid Conference, Germantown, MD, 73–76.

Arditti J, Ernst R. 1984. Physiology of germinating orchid seeds. In: Arditti J, ed. Orchid biology: reviews and perspectives—III. New York: Cornell University Press, 177–222.

Begum AA, Tamoki M, Kako S. 1994. Formation of protocorm-like bodies (PLBs) and shoot development through in vitro culture of outer tissue of Cymbidium PLB. Journal of the Japanese Society for Horticultural Science 63: 663–673.

Bose TK, Bhattacharjee SK. 1980. Orchids of India. Calcutta, India: Naya Prakash, 188.

Chang C, Chang WC. 1998. Plant regeneration from callus culture of Cymbidium ensifolium var. misericos. Plant Cell Reports 17: 251–255.

Chowdhery HJ. 2001. Orchid diversity in North-East India. Journal of the Orchid Society of India 15: 1–17.

Chung JD, Chun CK, Choi SO. 1985. Asymmetric germination of Cymbidium ensifolium. II. Effects of several supplements to the medium, pH values and light and/or dark culture periods on growth of rhizome and organogenesis for rhizome. Journal of Korean Society of Horticultural Science 26: 86–92.

Corrie S, Tandon P. 1993. Propagation of Cymbidium giganteum Wall. through high frequency conversion of encapsulated protocorms under in vitro and in vivo conditions. Indian Journal of Experimental Botany 31: 61–64.

Das MC, Kumaria S, Tandon P. 2007. Protocorm regeneration, multiple shoot induction and ex vitro establishment of Cymbidium devonianum Paxt. Asian Journal of Plant Sciences 6: 349–353.

Dohling S, Kumaria S, Tandon P. 2008. Optimization of nutrient requirements for asymbiotic seed germination of D. longicornu and D. formosum Roxb. Proceedings of the Indian National Science Academy 74: 167–171.

Fujii K, Kawano M, Kako S. 1999. Effects of benzyladenine and α-naphthaleneacetic acid on the formation of protocorm-like bodies (PLBs) from explants of outer tissue of Cymbidium PLBs cultured in vitro. Journal of the Japanese Society for Horticultural Science 68: 35–40.

Giridhar P, Obul Reddy B, Ravishankar GA. 2001. Silver nitrate influences in vitro shoot multiplication and root formation in Vanilla planifolia Andr. Current Science 81: 1166–1170.

Griesbach RJ. 1983. The use of indoleacetylarnino acids in the in vitro propagation of Phalaenopsis orchids. Scientia Horticulturae 19: 363–366.

Hedge SN. 1999. Cymbidium culture techniques and trade. SFRI Bulletin no. 8: 2.

Hossain MM, Sharma M, Teixeira da Silva JA, Pathak P. 2010. Seed germination and tissue culture of Cymbidium giganteum Wall. ex Lindl. Scientia Horticulturae 123: 479–487.

Huan LVT, Tanaka M. 2000a. Effects of red and blue light emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid. Environmental Control Biology 42: 57–64.

Huan LVT, Tanaka M. 2000b. Callus induction from protocorm-like body segments and plant regeneration in Cymbidium (Orchidaceae). Journal of Horticultural Science and Biotechnology 79: 406–410.

Kauth PJ, Vendrame WA, Kane ME. 2006. In vitro seed culture and seedling development of Calopogon tuberosus. Plant Cell, Tissue and Organ Culture 85: 91–102.

Kauth PJ, Dutra D, Johnson TR, Stewart SL, Kane ME, Vendrame W. 2008. Techniques and applications of in vitro orchid seed germination. In: Teixeira da Silva JA, ed. Flornulture, ornamental and plant biotechnology: advances and topical issues. Vol. V, 1st edn. Isleworth, UK: Global Science Books Ltd, 375–391.

Kim KW, Kako S. 1982. Effect of plant growth regulators on organ formation in the Cymbidium shoot apex culture in vitro. Journal of the Japanese Society for Horticultural Science 51: 106–114.

Knudson L. 1922. Nonsymbiotic germination of orchid seeds. Botanical Gazette 73: 1–25.

Knudson L. 1946. A new nutrient solution for germination of orchid seed. American Orchid Society Bulletin 15: 214–217.

Kramer PJ, Kozlowski TT. 1979. Physiology of woody plants. New York: Academic Press.

Kusumoto M. 1978. Effects of combination of growth regulating substances, and of organic matter on the proliferation and organogenesis of Cymbidium protocorms cultured in vitro. Journal of the Japanese Society for Horticultural Science 47: 391–400.

Liao CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT. 2003. Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Reports 21: 993–998.

Malabadi RB, Teixeira da Silva JA, Nataraja K, Mulgund GS. 2008. Shoot tip transverse thin cell layers and 2,4-epibrassinolide in the micropropagation of Cymbidium bicolor Lindl. Florniculture and Ornamental Botany Technology 2: 44–48.

Mead JW, Bulard C. 1979. Vitamins and nitrogen requirements of Orchis laxiflora Lamk. New Phytology 83: 129–136.

Morel G. 1964. Tissue culture—a new means of clonal propagation of orchids. American Orchid Society Bulletin 33: 437–478.

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum 15: 473–497.

Nayak NR, Rath SP, Patnaik S. 1997. In vitro propagation of three epiphytic orchids, Cymbidium aloifolium (L.) Sw., Dendrobium aphyllum (Roxb.) Fisch. and Dendrobium maschatum (Buch-Ham) Sw. through thidiazuron-induced high frequency shoot proliferation. Scientia Horticulturae 71: 243–250.

Ng CY, Saleh NM. 2011. In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell, Tissue and Organ Culture 105: 191–202.

Nhut DT, Tien TNT, Huang MTN, Hien NTH, Huyen PX, Luan VQ, Le BV, Teixeira da Silva JA. 2005. Artificial seeds for preservation and propagation of Cymbidium spp. Propagation of Ornamental Plants 9: 67–73.

Nongdam P, Nirmala C, Tewari R. 2006. In vitro multiplication of Cymbidium pendulum orchids via embryo culture. Plant Cell Biotechnology and Molecular Biology 7: 145–150.

Shimasaki K, Uemoto S. 1990. Micropropagation of terrestrial Cymbidium species using rhizomes developed from seeds and pseudobulbs. Plant Cell, Tissue and Organ Culture 22: 237–244.
Shimasaki K, Uemoto S. 1991. Rhizome induction and plantlet regeneration of Cymbidium goeringii from flower bud cultures in vitro. Plant Cell, Tissue and Organ Culture 25: 49–52.

Stanberg ML, Kane ME. 1998. In vitro seed germination and greenhouse cultivation of Encyclia boothiana var. erythronoides, an endangered Florida orchid. Lindleyana 13: 101–112.

Stewart SL, Kane ME. 2006. Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell, Tissue and Organ Culture 86: 147–158.

Sungkumlong, Deb CR. 2008. Effects of different factors on immature embryo culture, PLBs differentiation and rapid mass multiplication of Coelogyne suaveolens (Lindl.) Hook. Indian Journal of Experimental Biology 46: 243–248.

Teixeira da Silva JA, Chan MT, Sanjaya NA, Chai ML, Tanka M. 2006. Priming abiotic factors for optimal hybrid Cymbidium (Orchidaceae) PLB and callus induction, plantlet formation and their subsequent cytogenetic stability analysis. Scientia Horticulturae 109: 368–378.

United States Department of Agriculture (USDA). 2004. Floriculture crops summary. http://usda.mannlib.cornell.edu/reports/nass/other/zfc-bb/ (15 June 2005).

Vacin E, Went F. 1949. Some pH change in nutrient solution. Botanic Gardens Conservation News 110: 605–613.

Van Waes JM, Debergh PC. 1986. In vitro germination of some Western European orchids. Physiologia Plantarum 67: 253–261.

Vij SP, Agarwal S, Pathak P. 2004. Regeneration competence of Cymbidium Great Waltz × Valey flower roots: a study in vitro. Journal of the Orchid Society of India 18: 109–115.

Wang X. 1988. Tissue culture of Cymbidium: plant and flower induction in vitro. Lindleyana 3: 184–189.