Bodies invisible from one point

Alexander Plakhov∗ Vera Roshchina†

Abstract

We show that there exist bodies with mirror surface invisible from a point in the framework of geometrical optics. In particular, we provide an example of a connected three-dimensional body invisible from one point.

Mathematics subject classifications: 37D50, 49Q10

Keywords: invisible bodies, billiards, shape optimization.

The issue of invisibility attracts a lot of attention nowadays. Various physical and technological ideas aiming at creation of objects invisible for light rays are being widely discussed. A brief review of the major developments is provided in our recent work [4]. For a more entertaining treatment of the subject the reader may refer to a recent article in the BBC Focus Magazine [1]. Most of the recent developments are based on the wave representation of light (e.g. [3, 6, 7]). However, here we study the notion of invisibility from the viewpoint of geometrical optics. In other words, we consider a model where a bounded open set B with a piecewise smooth boundary in Euclidean space \mathbb{R}^d, $d \geq 2$ represents a physical body with mirror surface, and the billiard in the complement of this domain, $\mathbb{R}^d \setminus B$, represents propagation of light outside the body. This work continues the series of results on invisibility obtained in [2, 4, 5].

A semi-infinite broken line $l \subset \mathbb{R}^d \setminus B$ with the endpoint at $O \in \mathbb{R}^d \setminus \bar{B}$ is called a billiard trajectory emanating from O, if the endpoints of its segments (except for O) are regular points of the body boundary ∂B and the outer normal to ∂B at any such point is the bisector of the angle formed by the segments adjoining the point.

∗Department of Mathematics, University of Aveiro, Portugal and Institute for Information Transmission Problems, Russia
†CIMA, University of Évora, Portugal; Ciência 2008
Definition 1. We say that B is invisible from a point $O \notin \bar{B}$, if for almost any ray with the vertex at O there exists a billiard trajectory emanating from O with a finite number of segments such that the first segment (adjoining O) and the last (infinite) segment belong to the ray (see Fig. 1).

Figure 1: A billiard trajectory emanating from O with the first and last segments contained in a ray with vertex at O (the body itself is not shown).

The main result of this note is the following

Theorem 1. For each d there exists a body $B \subset \mathbb{R}^d$ invisible from a point. If $d \geq 3$ then the body is connected.

Not much is known today about invisibility in the billiard setting. In the limit where the point of reference O goes to infinity the notion of invisibility from a point is transformed into the notion of invisibility in one direction (see [2], [4] and [5]). There exist two- and three-dimensional bodies invisible in one direction [2] and three-dimensional bodies invisible in two orthogonal directions [4]. It is straightforward to generalize these results to obtain d-dimensional bodies that are invisible in $d-1$ mutually orthogonal directions. On the other hand, there are no bodies invisible in all directions (or, equivalently, invisible from all points).

The proof of the theorem is based on a direct construction. In the proof we use the following lemma.

Lemma 1 (A characteristic property of a bisector in a triangle). Consider a triangle ABC and a point D lying on the side AC. Let $AB = a_1$, $BC = a_2$, $AD = b_1$, $DC = b_2$, and $BD = f$ (see Fig. 2). The segment BD is the bisector of the angle $\angle ABC$ if and only if

$$(a_1 + b_1)(a_2 - b_2) = f^2.$$

Proof. Consider the following relations on the values a_1, a_2, b_1, b_2, and f:

(a) $a_1/a_2 = b_1/b_2$;
(b) $a_1a_2 - b_1b_2 = f^2$;
(c) \((a_1 + b_1)(a_2 - b_2) = f^2\).

The equalities (a) and (b) are well known; each of them is a characteristic property of triangle bisector as well. It is interesting to note that each of these algebraic relations is a direct consequence of the two others.

Assume that \(BD\) is the bisector of the angle \(\angle ABC\). Then the equalities (a) and (b) are true, therefore (c) is also true. The direct statement of the lemma is thus proved.

To derive the inverse statement, we need to apply the sine rule and some trigonometry. Denote \(\alpha = \angle ABD\), \(\beta = \angle CBD\), and \(\gamma = \angle BDC\) (see Fig. 2). Applying the sine rule to \(\triangle ABD\), we have
\[
\frac{a_1}{\sin \gamma} = \frac{b_1}{\sin \alpha} = \frac{f}{\sin(\gamma - \alpha)},
\]
and applying the sine rule to \(\triangle BDC\), we have
\[
\frac{a_2}{\sin \gamma} = \frac{b_2}{\sin \beta} = \frac{f}{\sin(\gamma + \beta)}.
\]

This implies that
\[
a_1 + b_1 = \frac{f}{\sin(\gamma - \alpha)} (\sin \gamma + \sin \alpha) = f \frac{\sin \frac{\gamma + \alpha}{2}}{\sin \frac{\gamma - \alpha}{2}},
\]
\[
a_2 - b_2 = \frac{f}{\sin(\gamma + \beta)} (\sin \gamma - \sin \beta) = f \frac{\sin \frac{\gamma - \beta}{2}}{\sin \frac{\gamma + \beta}{2}}.
\]

Using the equality (c), one gets
\[
f^2 \frac{\sin \frac{\gamma + \alpha}{2}}{\sin \frac{\gamma - \alpha}{2}} \frac{\sin \frac{\gamma - \beta}{2}}{\sin \frac{\gamma + \beta}{2}} = f^2,
\]
whence
\[\sin \frac{\gamma + \alpha}{2} \sin \frac{\gamma - \beta}{2} = \sin \frac{\gamma - \alpha}{2} \sin \frac{\gamma + \beta}{2}, \]

After some algebra as a result we have
\[\cos \left(\gamma + \frac{\alpha - \beta}{2} \right) = \cos \left(\gamma - \frac{\alpha - \beta}{2} \right). \]

The last equation and the conditions \(0 < \alpha, \beta, \gamma < \pi \) imply that \(\alpha = \beta \).

The inverse statement of the lemma is also proved.

Proof of Theorem Consider confocal ellipse and hyperbola on the plane. In a convenient coordinate system in which the major and minor axes of the ellipse coincide with the coordinate axes, the ellipse is given by the equation
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad a > b > 0, \]
and the hyperbola is given by the equation
\[\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1, \]
with the relation
\[c^2 = a^2 - b^2 = \alpha^2 + \beta^2 \quad \text{(1)} \]
ensuring that the ellipse and the parabola are confocal. Observe that the two foci \(F_1 \) and \(F_2 \) are located at \((\pm c, 0)\). Finally, we require the intersection of the ellipse with each of the branches of the hyperbola to be in-line with the relevant focus (the dashed line on Fig. 3). It is an elementary exercise to

![Figure 3: An ellipse and hyperbola satisfying the conditions (1) and (2).](image-url)
check that this property is guaranteed by the condition
\[\frac{1}{b^2} - \frac{1}{b'^2} = \frac{1}{c^2}. \] (2)

On Fig. 4 the ellipse is indicated by \(\mathcal{E} \), the right branch of the hyperbola by \(\mathcal{H} \) (the other branch is not considered), and the foci by \(F_1 \) and \(F_2 \).

![Figure 4: A body having zero resistance to a flow of particles emanating from a point.](image)

Choose an arbitrary point \(B \) on \(\mathcal{H} \), such that it lies outside of the ellipse, and denote by \(A \) the intersection of the segment \(F_1B \) with the ellipse. Let \(H \) be the closest intersection point with the ellipse as we move from \(B \) along the branch of the hyperbola towards the ellipse (see Fig. 4, where the relevant point \(B \) happens to belong to the top segment of the hyperbola’s branch \(\mathcal{H} \)). We are interested in the curvilinear triangle \(ABH \) and its symmetric (w.r.t. the major axis of the ellipse) counterpart \(A'B'H' \). We denote the union of the aforementioned curvilinear triangles by \(B_1 \) (shown in grey color on Fig. 4). By construction
\[\angle AF_1F_2 = \angle A'F_1F_2. \] (3)

Consider a particle emanating from \(F_1 \) and making a reflection from \(B_1 \). The first reflection is from one of the arcs \(AH \) or \(A'H' \). Without loss of generality the point of first reflection \(C \) lies on \(A'H' \) (see Fig. 5). We have
\[\angle CF_1F_2 < \angle A'F_1F_2. \] (4)

After the reflection the particle passes through the focus \(F_2 \) and then intersects \(\mathcal{H} \) at a point \(D \) (recall that by construction the segments \(HF_2 \) and \(H'F_2 \) are orthogonal to the major axis \(F_1F_2 \), hence, the intersection of the ray that
emerges from C and passes through F_2 necessarily reaches the hyperbola outside of the ellipse).

By the focal property of ellipse we have

$$|F_1C| + |F_2C| = |F_1H| + |F_2H|,
$$

and by the focal property of hyperbola,

$$|F_1D| - |F_2D| = |F_1H| - |F_2H|. \hspace{1cm} (6)$$

Multiplying both parts of (5) and (6) and bearing in mind that F_1F_2 is orthogonal to F_2H, we obtain

$$
(|F_1C| + |F_2C|)(|F_1D| - |F_2D|) = |F_1H|^2 - |F_2H|^2 = |F_1|F_2|^2. \hspace{1cm} (7)
$$

Applying Lemma 1 to the triangle CF_1D and using (7) we conclude that F_1F_2 is a bisector of this triangle, that is,

$$
\angle CF_1F_2 = \angle DF_1F_2. \hspace{1cm} (8)
$$

Using (3), (4), and (7), we obtain that $\angle DF_1F_2 < \angle AF_1F_2$, therefore D lies on the arc HB. After reflecting at D the particle moves along the line DE containing F_1. This property can be interpreted as B_1 having zero resistance to the flow of particles emanating from F_1.

Now consider the body B_2 obtained from B_1 by dilation with the center at F_1 and such that B_1 and B_2 have exactly two points in common (in Fig. 6 the dilation coefficient is greater than 1). A particle emanating from F_1 and reflected from B_1 at C and D, further moves along the line DE containing F_1, besides the equality (8) takes place.
Then the particle makes two reflections from B_2 at E and G and moves freely afterwards along a line containing F_1, besides the equality

\[\angle EF_1F_2 = \angle GF_1F_2. \]

(9)

takes place. Using (8) and (9), as well as the (trivial) equality $\angle DF_1F_2 = \angle EF_1F_2$, we find that

\[\angle CF_1F_2 = \angle GF_1F_2. \]

This means that the initial segment F_1C of the trajectory and its final ray GK lie in the same ray F_1K. The rest of the trajectory, the broken line $CDEG$, belongs to the convex hull of the set $B_1 \cup B_2$. Thus we have proved that $B_1 \cup B_2$ is a two-dimensional body invisible from the point F_1.

In the case of a higher dimension d the (connected) body invisible from F_1 is obtained by rotation of $B_1 \cup B_2$ about the axis F_1F_2: a three-dimensional body is shown on Fig. 7. Observe that because of the rotational symmetry of the body the trajectory of the particle emitted from the relevant focal point (that corresponds to F_1 in the two-dimensional case) lies within a plane that contains the major axis of the relevant ellipsoids.

Another example of a three-dimensional body invisible from a point can be obtained by rotating the two-dimensional construction around the axis perpendicular to the major axes of the ellipses and passing through the focal point F_1 (see Fig. 8).

Remark 1. From the proof of the theorem we see that the invisible body is determined by 5 parameters: a, b, α, β, and the inclination of the line F_1B, with 2 conditions imposed by (1) and (2). Thus, the construction is defined
by three parameters. One of them is the scale, and the second and third ones can be taken to be the angles $\angle HF_1F_2$ and $\angle BF_1F_2$.

Acknowledgements

This work was partly supported by **FEDER** funds through **COMPETE**–Operational Programme Factors of Competitiveness and by Portuguese funds through the **Center for Research and Development in Mathematics and Applications (CIDMA)** and the Portuguese Foundation for Science and Technology (FCT), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690 and project PTDC/MAT/113470/2009.

References

[1] How to make anything invisible BBC Focus, Issue 336, December 2011, 33–39.

[2] A. Aleksenko and A. Plakhov. Bodies of zero resistance and bodies invisible in one direction. Nonlinearity **22**, 1247-1258 (2009).
Figure 8: Another body invisible from one point

[3] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry and M. Wegener. *Three-Dimensional Invisibility Cloak at Optical Wavelengths*. Science 328, 337339 (2010).

[4] A. Plakhov and V. Roshchina. *Invisibility in billiards*. Nonlinearity 24, 847–854 (2011).

[5] A. Plakhov and V. Roshchina. *Fractal bodies invisible in 2 and 3 directions*. arXiv:1107.5667 (2011).

[6] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith *Metamaterial Electromagnetic Cloak at Microwave Frequencies*, Science 314, 977 (2006).

[7] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal and X. Zhang. *Three-dimensional optical metamaterial with a negative refractive index*. Nature, 455 (2008).