A review on algae and plants as potential source of arachidonic acid

Sanaa M.M. Shanab, Rehab M. Hafez *, Ahmed S. Fouad

Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt

ABSTRACT

Some of the essential polyunsaturated fatty acids (PUFAs) as ARA (arachidonic acid, n-6), EPA (eicosapentaenoic acid, n-3) and DHA (Docosahexaenoic acid, n-3) cannot be synthesized by mammals and it must be provided as food supplement. ARA and DHA are the major PUFAs that constitute the brain membrane phospholipid. n-3 PUFAs are contained in fish oil and animal sources, while the n-6 PUFAs are mostly provided by vegetable oils. Inappropriate fatty acids consumption from the n-6 and n-3 families is the major cause of chronic diseases as cancer, cardiovascular diseases and diabetes. The n-6: n-3 ratio (lower than 10) recommended by the WHO can be achieved by consuming certain edible sources rich in n-3 and n-6 in daily food meal. Many researches have been screened for alternative sources of n-3 and n-6 PUFAs of plant origin, microbes, algae, lower and higher plants, which biosynthesize these valuable PUFAs needed for our body health. Biosynthesis of C18 PUFAs, in entire plant kingdom, takes place through certain pathways using elongases and desaturases to synthesize their needs of ARA (C20-PUFAs). This review is an attempt to highlight the importance and function of PUFAs mainly ARA, its occurrence throughout the plant kingdom (and others), its biosynthetic pathways and the enzymes involved. The methods used to enhance ARA productions through environmental factors and metabolic engineering are also presented. It also deals with advising people that healthy life is affected by their dietary intake of both n-3 and n-6 FAs. The review also addresses the scientist to carry on their work to enrich organisms with ARA.

© 2018 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Polyunsaturated fatty acids (PUFAs) are represented by two families: n-6 (or ω-6) and n-3 (or ω-3), which are biosynthesized from linoleic acid (LA) and linolenic acid (ALA), respectively. These two fatty acids (FAs) are essential for human fitness. In n-3 PUFAs family, Alpha-linolenic acid (ω-3 ALA, C18:3) and EPA (C20:5, n-3) and DHA (C22:6, n-3) are the main representatives. While n-6 PUFAs include γ-linoleic acid (LA, C18:3, n-6) and ARA (C20:4, n-6). PUFAs especially n-3 series are necessary nutrients for health, growth and development of human and animals. EPA and DHA (n-3) play an important role in the cardiovascular system and treating psychiatric disorders. DHA being an essential FA, it can protect against neuro-generative diseases as Alzheimer and Parkinson as well as multiple sclerosis diseases.

There must be an equilibrium between ω-3 and ω-6 fatty acids (FAs) in our daily meals because both work together to promote healthy life. ω-3 FAs exhibits anti-inflammatory and antioxidant activities and prevent breast cancer. On the contrary, ω-6 FAs, precursors of arachidonic acid, promote inflammation, tumor growth and induced inflammatory responses, pain and emotion. Their deficiency can cause dramatic effects on the immune system for the resistance to allergies and parasites. Oxidation-independent ARA derivatives are necessary for stress tolerance and in the non-pathogenic fungi Mortierella spp. from which the species M. alpina 1S-4 and ATCC 32,222 produced ARA up to 70% of lipids.

The objective of this review was to record the importance of the C20 PUFA termed arachidonic acid (ω-6, C20:4). Its different sources, biosynthetic pathways, its derivatives (eicosanoids) and their functions, the balance between ω6 and ω3 fatty acids to keep healthy life as well as how to increase ARA content either through environmental and growth culture conditions and/or metabolic engineering techniques.

Importance of arachidonic acid

ARA (C20H32O2, C20:4) is a long chain polyunsaturated fatty acid (LC-PUFA) of ω-6 family also known as 5,8,11,14-eicosatetraenoic acid (n-6) (Fig. 1).

It is considered as an important constituent of the biomembranes, a precursor of prostaglandins and many other eicosanoids. Both ARA and DHA (C22:6, ω-3) are the major constituents of the brain phospholipid membrane, can act as an immune-suppressant, and induce inflammatory responses, blood clotting and cell signalling. Free ARA and its metabolites are important for the function of skeletal muscle and nervous system as well as the immune system for the resistance to allergies and parasites. Oxidation-independent ARA derivatives are necessary for stress responses, pain and emotion. Their deficiency can cause dramatic problems as hair loss, fatty liver degeneration, anemia and reduced fertility in adults. The insufficient synthesis of ARA can be a risk factor for reduced fertility in adults. Free ARA and its metabolites are important for the immune system for the resistance to allergies and parasites. Their deficiency can cause dramatic problems as hair loss, fatty liver degeneration, anemia and reduced fertility in adults.

Sources of arachidonic acid

Microbes

Many microbes including fungi, yeast and some bacteria have the ability to synthesize significant amounts of LC-PUFAs, mainly ARA. Psychrophilic bacterium Flavobacterium strain 651 produced 1.4–2.7% ARA. The higher ARA-producers were the non-pathogenic fungi Mortierella spp. from which the species M. alpina 1S-4 and ATCC 32,222 produced ARA up to 70% of lipids.

Algae

Cyanobacteria (blue-green algae)

In unicellular, non-heterocystous and heterocystous cyanobacterial species, no ARA was detected but different C18 FAs (C18:1, C18:2, C18:3 (ω-6) and C18:4) as well as C20:4 were biosynthesized. In cyanobacterium, Porphyridium pseudopristleyi strains 79S11 and 64S01 recording 24% and 32% of their total FA contents, respectively.

Microalgae

Porphyridium purpureum is a unicellular red alga that approximately the only microalga reported to produce significant quantity of ARA. Under stress culture conditions (suboptimal light intensity, pH and temperature, increased salinity and limited nutrients), ARA production may reach as much as 40% of the total FAs, while in the favorable growth conditions PUFA largely represented by eicosapentaenoic acid (EPA), as reported by many investigators. Euglena gracilis was recorded to contain ARA which was synthesized from LA (C18:2).

The fresh-water green alga Parietochloris incisa is considered the richest plant source of ARA, which reached 77% of total FAs content. The biosynthetic pathway of this PUFA was known by labeling the algal culture with radioactive precursors (pulse follow labeling with [2-14C]sodium acetate) which was incorporated on the biosynthetic pathway. Through elongation and desaturation, C20 PUFAs were synthesized. The main labeled FAs just after the pulse were 16:0, 16:1 and 18:1; however, all other C18 as well as C20 FAs were already labeled (after short pulse, 0.5 h). Labeled acetate involved in the new synthesis and elongation of C18 to C20 FAs. Similar phenomena occur in Pavlova lutheri. During the track, ARA became the second most labeled FA after 16:0. The presence of labeled 18:1, 18:2, 18:3n-6 and 20:3n-6 indicated that the biosynthetic pathway leading to ARA is the same as that of Porphyridium cruentum. Labelling of oleic acid (11-C18:1) suggested rapid conversion of 18:1 to 18:2, 18:3 to 20:3n-6 and ARA through the n-6 pathway. Fatty acids shorter than 18:1 were not labeled. Parietochloris incisa, contrary to higher plants, algal triacylglycerols (TAG) contains saturated (SFAs) and monounsaturated fatty acids (MUFA) accumulate PUFAs within TAG lipids.

ARA has been identified in many algal groups which grow photoautotrophically or heterotrophically. The biosynthetic pathway of PUFAs involves elongation of the short chain fatty acid followed...
by progressive desaturation using desaturases (Des) and elongases (Elo) [36]. Many earlier studies were performed based on screening for PUFAs presence in marine microalgae as well as in different seaweeds belonging to various algal divisions (Phaeophyceae, Rhodophyceae, Dinophyceae, Chlorophyceae) [40–42]. Screening of ARA presence in green microalgae Myremica incisa [43] and Parietochloris incisa [37,44] and following the pathway of its biosynthesis by labeled acetate was recorded. Red microalgae are used for testing the different environmental and culture conditions on FA and ARA production using the algal species Porphyridium purpureum, P. cruentum, Ceramium rubrum and Rododendra subfusca where ARA production reached 40–60% of total FAs content [30,31,34,35,44–47]. Diatoms were recorded to contain great amount of ARA and C22 FAs. From diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonanana were selected for genetic manipulation and altering culture requirements for PUFAs biosynthesis [38,48–50]. Not only ARA was detected in variable amounts in Chryso, Crypto, Hapto, Dino, Phaeo and Rodophycean species but also C18 and C22 FAs (with 4, 5 and 6 double bounds) [51,45].

Macroalgae

Marine macroalgae are considered as an excellent wellspring of PUFAs with ω-6 FA: ω-3 FA ratio less than 10 which is largely recommended by the WHO to prevent inflammatory, cardiovascular and neuro-chronic sickness [52]. The red alga Palmarea palmata contains EPA as predominant fatty acid as well as a marginal concentration of ARA and LA. In the red alga Gracilaria sp., ARA can reach 60% of total FAs content [53,54]. The brown seaweed Sargassum natans have DHA as reported by Van Ginneken et al. [52] who analyzed the fatty acid composition of nine seaweeds (four brown, three red and two green). The investigated green seaweeds (Ulva lactuca, Caulerpa taxifolia) showed no ARA.

Pereira et al. [45] investigated seventeen macroalgal species from Chlorophyta, Phaeophyta and Rhodophyta as novel dietary sources of PUFAs. They recorded that the major PUFAs in all phyta were C18 and C20 (LA, ARA and EPA). They reported that Rhodophycean and Phaeophycean investigated species showed higher concentration of PUFAs especially of ω-3 family. Ulva sp. was the only Chlorophyta which presented high concentration of ω-3 PUFAs (ALA). Macroalgae can be deeming as a potential source of essential PUFAs which may provide human beings with the needed FAs in their diets when it is used as foods or food products.

El-Shoubaky et al. [41] investigated four marine seaweeds (three green; Enteromorpha intestinalis, Ulva rigida, U. fasciata and one red; Hypnea cornuta) for their essential FA contents. They emphasized that the red alga Hypnea cornuta produce ARA and EPA by 1.09 and 6.26%, respectively which disappear from the tested green algal samples. The authors mentioned the presence of Oleic acid (C18:1, ω-9), Omega-9 family is necessary and the body can manufacture the required amount by itself and doesn’t need to be supplemented. Also, the red seaweed Porphrya sp. contains the essential FAs; ALA, ARA and EPA as mentioned by Sánchez-Machado et al. [55].

Barbosa et al. [56] performed a review dealing with oxylipins biosynthesis (oxygenated derivatives of PUFAs) in macroalgae and their biological activities. They recorded the marine oxylipins derived from lipoxigenases (LOX) metabolism of PUFAs precursors (of C16 to C22) and unsaturation types (ω3, ω6, ω9) [57]. Similar to higher plants, Chlorophyta oxidize C18 substrates while Rhodophyta exploit C18 and C20 PUFAs for oxylipin production. In algal systems, oxidized FA derivatives may participate in defense mechanisms against pathogenic infection, injuries, metal toxicity or other stresses [53,54,58–63].

Studies concerning macroalgae proposed that metabolic pathway of octadecanoid may be derived from the chloroplast, while eicosanoid pathway may be from ancient eukaryotes. So, microalgae are able to metabolize C18 PUFA at C9, C11 and C15 through 5-, 8-, 12- and 15- lipoxigenases, respectively [64]. Different from macroalgae, Diatoms (microalgae) has no C18 PUFA-derived Lox products [65].

Lichens

ARA was detected in some species of lichens (symbiosis association between fungi and algae). According to Yamamoto and Watanabe [66], small amount of ARA was detected in Cetraria pseducedocippa (5.2%), Cladonia mitis (2.3%), and Nephroma arcticum (1.7%). Rezanka and Dembitsky [67] found ARA in 8 lichens collected in the Tian Shan mountains of Kirghizstan; 1.47% in Pettigera canina, 1.90% in Xanthoria sp., 2.39% in Acaerospora gobiensis, 2.52% in Cladonia furcate, 2.92% in Parmelia tinctina, 3.43% in P. comischadalis, 3.64% in Lecanora fructulosa and 4.17% in Leptogium saturninum. ARA composition of the lichen Ramalina lacera varied from 0.96 to 2.25% according to the type of substrate it grown on [68]. Epiphytic lichens of Collema species (Collema flaccidum and C. fusciorens) recorded 1.9% and 2.1% ARA [69]. Lichens Cetraria islandica and Xanthoria parietina recorded 2708.8 and 24535.4 pmol/g plant weight, respectively [70].

Plants

All the paragraph will be changed to: ARA was found in lower plant species; Liverworts [70], Mosses [70–75], Hornworts, Lycophytes and Monilophytes [70]. ARA was also detected in seagrasses [76]. Some terrestrial plants have little amounts of ARA [70,77–79]. Table 1 summarized amounts of ARA in species of the plant kingdom.

Others

The major supply of ARA is from marine fish oil and animal tissues [80]. In aquaculture and marine ecosystem, ARA, EPA and DHA are the main food constituents of the larvae of many aquatic organisms. Some species of shrimps, bivalves and abalone had intermediate amount of ARA, while sea cucumber, starfish and some species of corals had higher level of ARA (20–30%) [76]. Really, fishes aren’t the real producers of PUFA; fishes only heap them by the intake of PUFA-rich microalgae through food-chain [48]. Mammals including humans cannot synthesize ARA directly due do the genetic absence of some of its biosynthesis enzymes [43]. Therefore, human and animal needs for ARA must require supplementation via dietary intake of its precursors [81].

Biosynthesis of arachidonic acids

The entire genes involved in LC-PUFAs biosynthesis have been distinguished in animals, plants, mosses, fungi, algae and aquatic organisms. Within these organisms, two different pathways have been identified for the synthesis of ARA (C20:4 ω-6) depends on the action and types of both desaturases (Des) and elongases (Elo) on linoleic acid [82,83]. (Fig. 2). The first pathway is the conventional 6α-pathway in eukaryotes and the second is the alternative 8α-pathway in protists and some microalgae [84].

In plants, LC-PUFAs syntheses start in plastids with the formation of FAs using fatty acid synthase (FAS) complex. Stearic acid (SA, C18:0) is desaturated to Oleic acid (OA, C18:1Δ9) by Δ9-Des. Some terrestrial plants, cyanobacteria and microbes have Δ12-Des which convert OA to linoleic acid (LA, C18:2Δ9,12, ω-6).

\[
\text{SA} \xrightarrow{\Delta9-Des} \text{OA} \xrightarrow{\Delta12-Des} \text{LA}
\]
Type	Species	ARA contents	References
Liverworts	Conocephalum conicum	1233225.6†	[70]
	Marchantia polymorpha	903496.0†	
	Riccia fluitans	452189.2†	
Mosses	Marchantia polymorpha	92*	[71]
	Physcomitrella patens	15.9–18.7	[72]
	Pottia lanceolata	6–10	
	Atrichum undulatum		
	Brachythecium ratabulum	Up to 31	
	Rhynehstegium murale		
	Mnium cuspidatum	30	[73]
	Mnium medium		
	Hylcomium splendens		
	Pleuroziun schreberi		
	Mnium hornum	26.03	[74]
	Mnium hornum	26.03	[74]
	Leptobryum pyriforme	20	[75]
	Physcomitrella patens	2648874.2†	[70]
	Pudaria hygrometrica	898972.3†	
	Polytrichium juniperinum	35394.6†	
	Hedwigia ciliate	20464.8†	
	Hylcomium splendens	86608.3†	
Hornworts	Anthoceros agrestis	69691.7†	[70]
	Anthoceros punctatus	24687.6†	
	Pheoceros laevis	316375.5†	
Lycophytes	Huperzia phlegmaria	83663.7†	[70]
Monilophyte (fern)	Polypodium vulgar	44425.8†	[70]
	Davalliia canariensis	2884.3†	
	Tectaria zeylanica	3843.1†	
	Polytrichium aculeatum	16165.1†	
	Onoclea sensibilis	32079.4†	
	Blechnum spicant	7979.1†	
	Thelypteris palustr	6753.9†	
	Gymnocarpium robertianum	12083.0†	
	Asplenium trichomanes	20835.6†	
	Adiantum venustum	3516.8†	
	Sphaeropteris cooperi	75994.9†	
	Salvinia natans	4784.5†	
	Salvinia molesta	13175.0†	
	Anemia phyllitidis	307394.3†	
	Lygodium volubile	12143.7†	
	Osmunda regalis	64628.3†	
	Augiopteris evecta	1386.0†	
	Equisetum trachydon	6125.1†	
Seagrasses	Cymodocea sp.	0.3–2.3	[76]
	Thalassia sp.		
	Enhalus sp.		
	Halodule sp.		
Higher terrestrial plants	Agathis araucana	26773.4†	[70]
	Beta maritima L. (wild beet)	0.52	[77]
	Cardaria draba L. (hoary cress)	0.56	
	Chenopodium album L. (goosefoot)	1.30	
	Chenopodium murale L. (goosefoot)	1.01	
	Malva sylvestris L. (common mallow)	5.30	
	Plantago major L. (plantain)	1.02	
	Sisymbrium irio L. (common mustard)	0.32	
	Sonchus tenerrimus L. (sow-thistle-of-the-wall)	1.83	
	Stellaria media Villars (chickweed)	0.41	
	Verbena officinalis L. (vervain)	0.62	
	Araucaria bidwillii	0.6	[78]
	Araucaria cunninghamii	4.5	
	Araucaria araucana	8.7	
	Agathis robusta	2.00	
	Agathis araucana	0.5	
	Agathis dammara	5.2	
	Artemisia armeniaca	6.47	[79]
	Artemisia incarnata	7.79	
	Artemisia tournefortiana	2.61	
	Artemisia hausknechtii	7.44	
	Artemisia scoparia	3.17	

* % of total FAs.
*† mg/L under photomixotrophic conditions.
*† pmol/g plant weight.
Human and animals have lost their ability to synthesize LC-PUFAs due to the absence of D12-Des gene and consequently cannot produce LA from OA [85], but have restricted potential to synthesize ARA [86]. Most of the synthesized ARA is provided by β-oxidation of small portion of the dietary LA [81].

In the conventional pathway, the D6-Des converted LA (n-6) to ω-6 pathway:

\[\text{LA} \rightarrow \text{D6-Des} \rightarrow \text{GLA} \rightarrow \text{DGLA} \rightarrow \text{ARA}\]

In alternative Δ8-pathway, the Δ9-Elo converts LA to form eicosadienoic acid (EDA, C20:2 Δ11,14) which in turn with the help of Δ8-Des generates DGLA, then to ARA by Δ5-Des.

LA $\xrightarrow{\Delta 8-Des}$ EDA $\xrightarrow{\Delta 9-Elo}$ DGLA $\xrightarrow{\Delta 5-Des}$ ARA (Alternative Δ8-pathway)

Conventional Δ6-pathway

ω-6 pathway

\[\text{Linoleic acid (LA, C18:2Δ9,12)} \rightarrow \text{D6-Des} \rightarrow \text{Δ6-Des} \rightarrow \text{ω-6 pathway (GLA, C18:3Δ6,9,12)} \rightarrow \text{Δ3-Des} \rightarrow \text{Δ15 Des} \rightarrow \text{ω-3 pathway (ALA, C18:3Δ9,12,15)}\]

ω-3 pathway

\[\text{α-Linolenic acid (ALA, C18:3Δ9,12,15)} \rightarrow \text{Δ6-Des} \rightarrow \text{Δ6-Des} \rightarrow \text{Eicosatetraenoic acid (ETE, C20:4Δ8,11,14,17)} \rightarrow \text{Δ5-Des} \rightarrow \text{Eicosapentaenoic acid (EPA, C20:5Δ5,8,11,14,17)}\]

Fig. 2. Conventional and alternative pathways for the biosynthesis of ARA after Venegas-Caleron et al. [82] and Ruiz-Lopez et al. [83]. Des, desaturase; Elo, elongase.

Biosynthesis of PUFAs by algae can progressively desaturate monoenoic acids yielding di- and poly-enoic acids. Nichols and Wood [87] examined FA metabolism in the chloroplast of many algae. He showed that, cyanobacteria and green algae incorporate radioactive acetate efficiently into the FAs of their polar lipids with no differences in the rate of labeling in different lipids.

Nichols and Appleby [36] reported that Ochromonas danica and Porphyridium cruentum (Rhodophyceae) synthesized ARA (C20:4) through a pathway involving γ-linolenic acid (C18:3). Whereas Euglena gracilis (Euglenophyceae) was incapable of converting γ-linoleic acid to C20:2 ω-6 then to ARA (but use α-linoleic acid, C18:2, Δ9, 12). TAG are indigent in PUFAs and are composed of SFA and MUFA. TAG of only few algae have PUFAs as EPA and ARA in P. cruentum [31] and EPA in Ectocarpus fasciiculatus [88]. In P. cruentum, C18:1 is stepwise desaturated to C18:2 and C18:3 ω-6 before it is elongated to C20:3 ω-6 and then (by Δ5) desaturated to C20:4 ω-6 (ARA) as demonstrated by Khozin et al. [89].

The biosynthesis of LC-PUFAs in microalgae was understood by using several inhibitors as (SHAM): 4-chloro-5(dimethylamino)-2-phenyl-3(2H) pyridazinone and SAN 9785, BASF13-338, which are selective inhibitors of the ω-3 chloroplastic desaturase [90]. SAN9785 was shown to inhibit the assembly of TAG [91], while SHAM (Salicyl hydroxamic acid) was proved to affect both Δ12 and Δ15 microsomal Des in root of wheat seedlings and in cotyledons of linseed [92]. SHAM was recently shown to inhibit the Δ6 desaturation of LA in P. cruentum. SHAM or SAN 9785 can hinder either ARA production or TAG accumulation in P. incisa. Labeling investigations indicated that ARA accumulated in TAG could be transported to polar lipids as a response to low temperature stress in the experimental alga [32,93].

Arachidonic acids avalanche and eicosanoids

ARA is localized in the sn-2 position of phospholipid in membranes. Firstly, ARA is released from the membranes phospholipids by phospholipase A2 (PLA2). It is the precursor of C20 PUFAs known as eicosanoids which is formed through ARA cascade via three different pathways (Fig. 3): cyclooxygenase (COX), cytochrome P-450 (cyt P-50) or lipoxygenase (LOX). Many eicosanoids exhibit biological and pharmaceutical activities which may have physiological or pathological values [12,13]; ω-6 ARA produces powerful inflammatory, immune-active and pro-aggregatory eicosanoids, while those derived from ω-3 FAs are anti-inflammatory and modulate plaque aggregation and immune-reactivity [94,95].
Factors promoting arachidonic acid biosynthesis

Environmental and growth culture conditions

High yield of ARA always achieved in unfavorable conditions which reduced cell growth. Both high algal biomass and ARA content were stimulated by the addition of small amount of the phytohormone 5-aminolevulinic acid (20 mg/l) to the algal culture medium of the red microalga *Porphyridium purpureum*. Studies pivot on green algae as *Parietochloris incisa* and *Myrmecia incisa* for the improvement of ARA synthesis through the optimization of growth culture conditions [44, 96]. Environmental factors (light, temperature, pH, ...) and culture conditions (chemical composition of media, stress, ...) may affect lipid profile and PUFA proportion but have no direct effect on ARA production.

Metabolic engineering of arachidonic acids

Genetically modified crops and microalgae emanate as divergent source of PUFAs [97, 98]. Significant improvement has been made to identify the genes implicated in LC-PUFAs biosynthesis of numerous organisms [81, 99–101] and utilize them for the formation of transgenic plants, microbes and algae with novel FAs as ARA or over-expressing its amounts in the naturally producing tissues. Plants possess the ability to be green factories for the yield of non-native important compounds via metabolic engineering [102–104]. The main goal of the metabolic transgenic plants is the accumulation of high levels of LC-PUFAs especially ARA, which would provide a novel and cost-effective spring of these FAs [105, 106].

Transgenic with Bryophyte genes

The Bryophyte *Marchantia polymorpha* L. produces ARA from linoleic acid by a successive reactions catalyzed by Δ6-desaturase, Δ6-elongase, and Δ5-desaturase genes [107]. Kajikawa et al. [108] separated a β-ketoacyl CoA synthase (KCS) gene, MpFAE2 from liverwort *M. polymorpha*, and distinguished its substrate peculiarity using dsRNA-mediated gene silencing (MpFAE2-dsRNA) technique as well as studying its overexpression (MpFAE2-Overexpression). Transgenic *Marchantia* plants with MpFAE2-dsRNA accumulated about 1.3–1.6 folds of ARA as compared with the amount present in thalli of wild type (2.7% of total FAs), while the transgenic ones overexpressing the MpFAE2 gene produce an amount nearly similar to the wild type (2.6–3.2% of total FAs).

Kajikawa et al. [109] isolated and characterized the three cDNAs coding for 6-desaturase (MpDES6), 6-elongase (MpELO1), and 5-desaturase (MpDES5) from *M. polymorpha*. The presence of LA and ALA in the wild-type yeast *Pichia pastoris* encouraged Kajikawa and his co-authors to co-express these genes in this yeast. The metabolic engineered yeast could accumulate ARA (0.1% of the total lipid). They referred the increase in ARA yield to MpDES6 which use LA in both glycerolipids and acyl-CoA pool so, facilitate substrate supply to MpELO1.

Fig. 3. Production of eicosanoids from arachidonic acid and their harmful effects. Adapted after Neitzel [12] and Pratt and Brown [13]. PLA2, phospholipase A2; COX, cyclooxygenase; LOX, lipoxygenase; EOX, epoxygenase.
Few years later, Kajikawa et al. [110] overexpressed these native three genes in the same liverwort, while newly introduced and co-expressed them in both Nicotiana tabacum cv. Petit Havana SR1 and Glycine max cv. Jack plants. Transgenic *M. polymorpha* plants yield an improvement of ARA 3-folds more than the wild type. The production of ARA in transgenic tobacco plants were up to 15.5% of the total FAs in the leaves and 19.5% of the total FAs in the seeds of transgenic soybean plants. These results proposed that *M. polymorpha* can provide genes critical for ARA-engineering in plants.

Transgens with fungal genes

Many studies describing efforts to perform transgens carrying genes encoding for desaturase and elongase isolated from the fungus *Mortierella alpina*. Parker-Barnes et al. [99] demonstrated that the coexpression of elongase and Δ5-desaturase genes from *M. alpina* in yeast could produce 1.32 μg endogenous ARA. Seed-specific expression of Δ6, Δ5 desaturase and GLELO elongase genes from *M. alpina* combined with the endogenous Δ15-desaturase in soybean plant led to the production of 2.1%, 0.8% and 0.5% ARA in transgenic embryos, T1 and T2 seeds, respectively [111].

Transgenics with algal genes

Transgenic production of ARA in oilseeds was performed using Des and Elo originated from marine microalgae. Petrie et al. [112] focused on constructing a microalgal Δ9-desaturase pathway in oilseeds. They found that the seed-specific expression of a Δ 9-elongase of the alga *Isochrysis galbana* and Δ8- and Δ5-desaturases of the alga *Pavlova salina* in Arabidopsis thaliana plant produced 20% ARA in seed oil, while their expressions in *Brassica napus* plant yielded 10% ARA in seed oil. They found that the bulk of ARA was naturally improved at sn-2 position in triacylglycerol.

Transgenics with heterogenous genes

Several reports were conducted to produce and increase the yield of ARA in transgenics using the suitable diverges of sources and combinations of genes encoding from ARA-producing organisms. Metabolic engineering using the fatty acids front-end Des from the marine diatom *Phaeodactylum tricornutum* was firstly recorded by Domergue et al. [113]. The genes encoding for Δ5- and Δ6-desaturases (Ptd5 and Ptd6) were expressed in the yeast *Saccharomyces cervisiae* to determine their role in EPA biosynthesis and no ARA was recorded in this case. While co-expressing both Ptd5 and Ptd6 desaturases with Δ6-elongase from the moss *Physcomitrella patens* producing 7.3% ARA. While the addition of Δ12-desaturase of the plant *Calendula officinalis* to the construct achieving high production of ARA (12% of total seed FAs). Addition of Δ6/5-elongase of *Thraustochytrium sp.* to the transgenic *B. juncea* plant achieved a small significant increment of ARA reaching 13.7% of total seed FAs. While by adding o3/Δ17-desaturase of fungus *Phytophthora infestans* to the construct a decrease in ARA amount were recorded. Moreover, further introduction of Δ6/5-elongase from the fish *Oncorhynchus mykiss* as well as Δ4-desaturase and a lysophosphatic acid acyl transferase of fungus *Thraustochytrium sp.* improves the movement of LC-PUFAs between the acyl-CoA and glycerolipid pools producing 9.6% of C20-C22 3- FAs, but only 4% ARA of total seed FAs.

Avoiding the “elongation bottleneck”, Robert et al. [116] used group of genes encoding elongation and desaturation for LC-PUFA to be expressed in the model plant *A. thaliana*. Δ5/Δ6 desaturase from the zebrafish *Danio rerio* (D5/D6Des) in combination with Δ6-elongase from the nematode *Caenorhabditis elegans* (D6Elo) were introduced in *Arabidopsis* recording 0.2–1.4% ARA in seeds. Transgenic plant with a second construct bearing genes encoding for Δ4-desaturase (D4Des) and Δ5-elongase (D5Elo) from the microalga *Pavlova salina* detected lower ARA in seeds. Employing the acyl-CoA dependant desaturase (Δ5/Δ6) revealed high production of C20 PUFA than the acyl-PC pathway.

Due to the similarity between the acyl-CoA-dependent Δ6-pathway and the alternative Δ8-pathway through LA-CoA and ALA-CoA, Sayanova et al. [117] isolated a gene coding for C20 Δ8-desaturase from soil amoeba, *Acanthamoeba castellani*.* This amoeba has the capability of synthesis and accumulation of ARA through the alternative Δ9 elongation/Δ8 desaturation pathway. Successive expression of Δ8- and Δ5-desaturation from *A. castellanii* in the yeast *Saccharomyces cerevisiae* strain W303-1A revealed the formation of small amounts of ARA in their transgenic cells. Similar unpredicted yield of C20 FAs (ARA) in acyl-CoA pool was reported in the leaf tissues of the transgenic Arabidopsis plants coexpressing both Δ8-desaturation of the amoeba *A. castellani* and Δ9-elongase of alga *Isochrysis galbana*.

Hoffmann et al. [118] isolated genes encoding for acyl-CoA-dependent EPA biosynthesis Δ6- and Δ5-desaturases from both
microalgae *Mantoniella squamata* (MsΔ6, MsΔ5) and *Ostreococcus tauri* (OtΔ6, OtΔ5) and the moss *P. patens* (PtΔ6, PtΔ5). All these genes were successfully established in seeds of *A. thaliana* plants under the control of a seed-specific promoter Δ6-elongase PSE1 from the moss *P. patens*. Transformed *Arabidopsis* signed as triple-Ms. plants (MsΔ6, MsΔ5, PSE1), triple-Ot (OtΔ6, OtΔ5, PSE1) and triple-Pt plants (PtΔ6, PtΔ5, PSE1) were constructed to avoid the bottleneck described by Abbadi et al. [106]. The FAs analysis of T2 seed of transgenic plants showed the induction of new FAs and denoting that triple-Ms. plants has an established ο3 pathway, while triple-Ot and triple-Pt plants has both the ο6 and ο3 pathways so, this indicate that the modified pathway enhance the flux during LC-PUFA biosynthesis. They also reported the formation of non-native ARA in transgenic plants showing its enhancement the flux during LC-PUFA biosynthesis. They also reported D5-desaturase from the fungus *Thraustochytrium* sp. (PSE1) in cassette 1 and a Δ5-desaturase from the fungus *Physcomitrella patens* (PSE1) in the second and a Δ5-desaturase from *Thraustochytrium sp.* (TcΔ5). Then they built 4, 5 and 6-gene constructs designed as A4, A5 and A6. The A4 constructs were built by adding three different ο3 desaturases [A15-desaturase gene from cyanobacterium *Microcoleus chthonoplastes* (McA15), Δ5-desaturase gene from the higher plant *Perilla frutescens* (PerFA15) and Hp-ο3 gene from the fungus *Hyaloperonospora parasitica* to A3.1 core forming A4.1, A4.2 and A4.3, respectively. The A5.1 construct was formed from A3.1 core in addition to Δ12-desaturase gene from the fungus *Phytophthora sojae* (PsA12) and ο3 desaturase gene from the fungus *Phytophthora infestans* (Pio3). The six-gene constructs, A6.1 and A6.2, were designed by incorporating FAD3 genes (McA15 and PerFA15) into A5.1, respectively. They reported that the analysis of total fatty acid methyl-esters (FAMEs) indicated that the transgenic *Arabidopsis* T2 lines carrying the A3.1 core construct accumulated 0.4 to 6.4% ARA in their seeds. The Fatty acid analysis of T2 seed of the three constructs, containing FAD3-like sequences, A4.1, A4.2 and A4.3 revealed that average levels of ARA in A4.1 (with McA15) were increased from 2.2% to 4.6% and were reduced to 1.5% in A4.2 (with PerFA15), while no significant decrease in ARA were recorded for A4.3 (with Hp-ο3). They revealed that the expression of cyanobacterial McA15 might be the cause of the extra-plastidial lipid enrichment in transgenic seeds while, the expression of PerFA15 microsomal desaturase shifted the pathway streaming in the transgenic seeds from n-6 to n-3. They also demonstrated that the mature seeds of A5.1, A6.1 and A6.2 transgenic plants expressed low amount of ARA, ranging from 0.4% to 1.8% in A5.1, 0.7% to 2.8% in A6.1 and 0.3% to 1.4% in A6.2.

To summarize the main requirement for metabolic engineering, Ruiz-Lopez et al. [83] revealed that stable transformation with multiple genes (sources and combinations) required their coordination of expressions with a least three successive non-native genes from PUFAs pathways.

Conclusions

The higher ARA-producers fungi were the non-pathogenic *Mortierella* spp. which produces ARA up to 70% of total FAs. Algal species belonging to different divisions were recorded either to have lower ARA content or ο16, ο20 and ο22 FAs. Certain algal species were reported to contain naturally higher ARA content which may reach 77% of total FAs as in green microalga *Parietochloris incise*, 40% of total FAs in the red alga *Porphyridium purpureum* and 20–30% in diatoms as *Phaeodactylum tricornutum* and *Thalasiosira pseudonana*. Lower plants (mosses and ferns) have higher amounts of ARA than seagrasses and terrestrial higher plants. Environmental factors and chemical composition of media have no direct effect on ARA production. Transgenic techniques using types of Des and Elo genes from different sources were isolated and co-expressed in different plants with non-native ARA. This technique led to increase ARA production ranges from 10 to 20% total FAs.
Future perspectives

There is an urgent demand for searching of more candidates in the plant kingdom which could naturally provide valuable amounts of PUFA s or could be stably genetically modified for higher PUFA s content, especially ARA. Large scale production of the selected algal species that biosynthesize the needed PUFA s (ARA, EPA, DHA) and maximize their production through the abiotic stress factors and/or the metabolic engineering that must be applied worldwide to satisfy the humanity’s need of these valuable PUFA s. Major advances should focus more on green biotechnology to ameliorate PUFA s profile in metabolic engineering plants (native and non-native ARA producers), taking in consideration the sources, combinations and promoters of the constructed genes vectors.

Attentions must be made to all peoples to avoid excess consumption of ω-6 PUFA and to keep balance between ω-3 and ω-6 PUFA s ingested in dietary sources to keep healthy life and avoid dangerous diseases caused by this unbalanced intake. Serious Awareness must be addressed to vegetarian peoples to add n-6 oil supplements to their diet to have equi-potio n between n-3 and n-6 PUFA to become healthier. This must be achieved by informing peoples that n6-PUFA s are not interconvertible to Ω3-FA s due to the absence of the some specific enzymes so, the balance of ω-3 and ω-6 PUFA s can be easily influenced by food.

More researches must be performed to assure the beneficial or harmful effects of the metabolically engineered ARA on human especially those incorporated in food and pharmaceuticals. So, consumers will accept dealing with these products without fear.

Conflict of interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

[1] Schmidt EB, Christensen JHT, Aardestrup I, Madsen T, Riahi S, Hansen VE, et al. Who and FAO joint consultation. Fats and oils in human nutrition. Nutr Rev 2011; 59(7):202–5.
[2] Australian Plant Information. Antifreeze, Food and Shelter. In: Information about Australia’s Flora. The Plant Underworld, Australian National Botanic Gardens and Centre of Australian National Biodiversity Research, Canberra; 2012 [last update: 2015 Dec 24], available from: <https://www.anbg.gov.au/cryptograms/underworld/pa nel-3/index.html>.
[3] Jacq E, Prieur D, Nichols P, White DC, Porter T, Geesey GG. Microscopic examination and fatty acid characterisation of filamentous bacteria colonizing substrata around subtidal hydrothermal vents.Arch Microbiol 1989;152:64–71.
[4] Malouff J. Omega-3/6 fatty acids: alternative sources of production. Al-Hasan RH, Hantash FM, Radwan SS. Enriching marine macroalgae with Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z. Biosynthesis of arachidonic acid in freshwater microalgae. Pavlova lutheri (Trebuxiophyceae). Microbiol Biotechnol 1991;35:530–5.
[5] Dengue VK, Satrouitinov AD, Dedyukhina EG, Chistyakova TI, Vainshtein MB. Biosynthesis of arachidonic acid from hexatrienic fatty acids of marine algae. J Gen Microbiol 1991;137:1825–30.
[6] Iwamiw N, Yamaguchi T, Takeuchi M. Fatty acid metabolism in bacteria that produce eicosapentaenoic acid isolated from sea urchin Strongylocentrotus nudus. Nippon Suis Gakk 1995;61:295–10.
[7] Nichols DS, Brown JL, Nichols PD, McMeekin TA. Production of eicosapentaenoic and arachidonic acids by an Antarctic bacterium: response to growth temperature. FEMS Microbiol Lett 1997;152:349–54.
[8] Lewis TE, Nichols PD, McMeekin TA. The biotechnological potential of Thraustochytrids. Mar Biotechnol 1999;1:580–7.
[9] S. M. M. Shanab et al./ Journal of Advanced Research 11 (2018) 3–13
[10] Hamit Y. fencee, Food and Shelter. In: Information about Australia’s Flora. The Plant Underworld, Australian National Botanic Gardens and Centre of Australian National Biodiversity Research, Canberra; 2012 [last update: 2015 Dec 24], available from: <https://www.anbg.gov.au/cryptograms/underworld/pa nel-3/index.html>.
[11] Jacq E, Prieur D, Nichols P, White DC, Porter T, Geesey GG. Microscopic examination and fatty acid characterisation of filamentous bacteria colonizing substrata around subtidal hydrothermal vents. Arch Microbiol 1989;152:64–71.
[12] Malouff J. Omega-3/6 fatty acids: alternative sources of production. Al-Hasan RH, Hantash FM, Radwan SS. Enriching marine macroalgae with Bigogno C, Khozin-Goldberg I, Adlerstein D, Cohen Z. Biosynthesis of arachidonic acid in freshwater microalgae. Pavlova lutheri (Trebuxiophyceae). Microbiol Biotechnol 1991;35:530–5.
[13] Dengue VK, Satrouitinov AD, Dedyukhina EG, Chistyakova TI, Vainshtein MB. Biosynthesis of arachidonic acid from hexatrienic fatty acids of marine algae. J Gen Microbiol 1991;137:1825–30.
[14] Iwamiw N, Yamaguchi T, Takeuchi M. Fatty acid metabolism in bacteria that produce eicosapentaenoic acid isolated from sea urchin Strongylocentrotus nudus. Nippon Suis Gakk 1995;61:295–10.

Conflict of interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

[1] Schmidt EB, Christensen JHT, Aardestrup I, Madsen T, Riahi S, Hansen VE, et al. Marine n-3 fatty acids: basic features and background. Lipids 2001;36:565–8.
[2] Hallahan B, Garland MR. Essential fatty acids and mental health. Br J Psychiatry 2005;186:275–7.
[3] Valenzuela R, Sanhueza J, Valenzuela A. Docosahexaenoic Acid (DHA), an important fatty acid in aging and the protection of neurodegenerative diseases. J Nutr Ther 2012;1:63–72.
[4] Okuyama H, Kobayashi T, Watanabe S. Carcinogenesis and metastasis are affected by dietary n-6/n-3 fatty acids. In: Ohigashi H, Osaka T, Terao J, Watanabe S, Yoshikawa T, editors. Food factors for cancer prevention. Tokyo: Springer-Verlag; 1996. p. 677.
[5] Tsuboi T, Itokawa H, Toheda H, Takayama S, Yoshikawa T, editors. Food factors for cancer prevention. Tokyo: Springer-Verlag; 1996. p. 677.
[6] Martinez RS, Brandt CAM, Harell-Bagou S, Weis RJ. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 2013;11:2259–81.
[7] Pushparaj B, Buccioni A, Paperi R, Piccardi R, Ena A, Carlozzi P, Sili C. Fatty acid composition of Antarctic cyanobacteria. Phycologia 2008;47(4):430–40.
[8] Cohen Z, Vochnak A, Richmond A. Effect of environmental conditions on fatty acid composition of the red algae Porphyridium cruentum: correlation to growth rate. J Physiol 1988;24:328–32.
[9] Cohen Z. The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium cruentum. J Am Oil Chem Soc 1990;67:916–20.
[10] Rigby C, Khzinogoldberg I, Cohen Z. Accumulation of Arachidonic acid–rich triacylglycerol in the microalga Parachlorella incisa (Trebuexiophyceae, Chlorophyta). Phycology 2007;2:153–43.
[11] Rigby C, Khizinogoldberg I, Boushiba S, Vochnak A, Cohen Z. Lipid and fatty acid composition of the green oleaginous alga Parachlorella incisa, the richest plant source of arachidonic acid. Phycology 2000;2:497–503.
[12] Su C, Luo K, Jiang L, Li Z, Guo X, Sun Y, et al. Enhancing total fatty acids and arachidonic acid production by the red microalga Porphyridium purpureum. Bioreos Bioproc 2016;3:1–9.
[13] Su C, Luo K, Zheng L, Guo X, Chang J, Nibukwimana T, et al. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by micr algae Porphyridium purpureum. Bioproc Biosyst Eng 2016;39:1–8.
[14] Nichols BW, Appleby RS. The distribution of arachidonic acid in algae. Phytochemistry 1969;8:1907–15.
[15] Rigby C, Khizinogoldberg I, Adlerstein D, Cohen Z. Biosynthesis of arachidonic acid in the oleaginous microalga Parachlorella incisa (Chlorophyceae): Radio labeling studies. Lipids 2002;37:209–16.
[16] Hamilton ML, Haslam RP, Napier J, Satyawan O. Metabolic engineering of Rhodococcus tricentron for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 2014;22:3–9.
[17] Eichenberger W, Criibi C. Lipids of Pavlova lutheri: cellular site and metabolic role of DGCC. Phycology 1997;36:5161–7.
[18] Al Hasan RH, Hantash FM, Radwan SS. Enriching marine macroalgae with eicosatetraenoic (arachidonic) and eicosapentaenoic acids by chilling. Appl Microbiol Biotechnol 1991;35:530–5.
[19] El-Shohabaly GA, Maustafa AM, Salem EA. Comparative phytochemical investigation of beneficial essential fatty acids on a variety of marine seaweeds algae. Res J Phytopathol 2008;16:28–18.
[20] Widjaja-Adhi AMK, Naoya S, Sayoka I, Nobuko B, Masayuki A, Masashi H, et al. Effects of brown seaweed lipids on fatty acid composition and hydroxyproline levels of mouse liver. J Agric Food Chem 2011;59:4156–63.
[21] Ouyang L, Chen SH, Li Y, Zhou ZG. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich micro alga Myrionecta rubra in the green microalga Porphyridium incisa. J Appl Phycol 2008;20:245–51.
[104] Thelen JJ, Ohlrogge JB. Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 2002;4:12–21.

[105] Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 2004;22:739–45.

[106] Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, et al. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 2004;16:2734–46.

[107] Dembitsky VM. Lipids of bryophytes. Prog Lipid Res 1993;32:281–356.

[108] Kajikawa M, Yamamoto S, Yamato RT, Kanamaru H, Sakuradani E, Shimizu S, et al. Functional analysis of \(\beta \)-ketocacyl-\(\text{COA} \) synthase gene. MPFAE2, by gene silencing in the liverwort Marchantia polymorpha L. Biosci Biotechnol Biochem 2003;67:605–12.

[109] Kajikawa M, Yamato RT, Kohzu Y, Nojiri M, Sakuradani E, Shimizu S, et al. Isolation and characterization of \(\Delta6 \)-Desaturase, an ELO-Like Enzyme and \(\Delta5 \)-Desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Mol Biol 2004;54:335–52.

[110] Kajikawa M, Matsu K, Ochiai M, Tanaka Y, Kita Y, Ishimoto M, et al. Production of arachidonic and eicosapentaenoic acids in plants using Bryophyte fatty acid \(\Delta6 \)-Desaturase, \(\Delta5 \)-Elongase, and \(\Delta5 \)-Desaturase genes. Biosci Biotechnol Biochem 2008;72(2):435–44.

[111] Chen R, Matsu K, Ogawa M, Oe M, Ochiai M, Kawashima H, et al. Expression of \(\Delta6 \), \(\Delta5 \) Desaturase and GLELO elongase genes from Mortierella Alpina for production of arachidonic acid in soybean [Glycine Max (L.) Merrill] seeds. Plant Sci 2005;170:395–406.

[112] Petrie JR, Shrestha P, Zhou XR, Mansour MP, Liu Q, Belide S, et al. Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE 2012;7(11):e49165.

[113] Domergue F, Lerchl J, Zähringer U, Heinz E. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 2002;296:4105–13.

[114] Kinney AJ, Cahoon EB, Damude HG, Hitz WD, Kolar CW, Liu ZB. Production of very long chain polyunsaturated fatty acids in oilseed plants. World Patent Appl. 2004. No. WO 2004/071467 [2004 Aug 26].

[115] Wu G, Truksa M, Datla N, Vinten P, Bauer J, Zank T, et al. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 2006;24:913–7.

[116] Sanyanova O, Haslam R, Qi B, Lazarus CM, Napier JA. The alternative pathway \(\text{C20} \Delta8 \)-desaturase from the non-photosynthetic organism Acanthuramoeba castellani is an atypical cytochrome \(B5 \)-fusion desaturase. FEBS Lett 2006;580:1946–52.

[117] Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of \(\omega3 \)-very long chain polyunsaturated fatty acid production by an exclusively acyl-\(\text{COA} \)-dependent pathway. J Biol Chem 2008;283 (33):22352–62.

[118] Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, Pye MF, et al. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 2010;22:3193–205.

[119] Cheng BF, Wu CT, Vinten P, Falk K, Bauer J, Qiu X. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res 2010;19:221–9.

[120] Ruiz-Lopez N, Haslam RP, Venegas-Caleron M, Li T, Bauer J, Napier JA, et al. Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Res 2012;21(6):1233–43.

Sanaa M.M. Shanab is a Professor of Phycology in Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt. She had her Doctoral d’etat from France. She published over 50 papers in different areas of Phycology. She supervised on 17 M.Sc. and Ph. D. theses. She reviewed numerous online articles and 25 M.Sc. and Ph.D. theses to most of the Egyptian Universities. She attended 14 training and educational courses as well as 23 scientific conferences. She is an active member in 8 regional and international scientific journals and a member of the scientific editorial board of Baghdad Journal of Science.

Rehab M. Hafez is a Lecturer of Plant Cytogenetics from Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt. Her research interests lie in the area of Cytogenetics in relation with tissue culture, mutation, transformation, biotechnology, phytoremediation and nanotechnology. She published 3 papers and 6 abstract in conferences. She supervises on 4 M.Sc. and one Ph.D. theses. She also attended 8 scientific training courses, 16 educational courses, 4 training courses in quality assurance of education and international conferences. She is the director of questionnaire unit and an internal auditing for quality management systems in her Faculty.

Ahmed S. Fouad is a Lecturer of Plant Cytology and Genetics from Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt. His research interests lie in the area of Genetics, Cytology, Plant Tissue Culture, Transformation, Molecular Biology, Bioinformatics and Bio-Nanotechnology. He attended 4 international conferences, 5 scientific workshops, 16 educational courses, 6 workshops in quality assurance of education and has 6 ISO certifications. He has 7 publications (paper and sequences in the Gene Bank). He is an internal auditing for quality management systems in his Faculty.