BORROMEO SurgEY EQUIVALENCE OF SPIN 3-MANIFOLDS WITH BOUNDARY

EVA CONTRERAS AND KAZUO HABIRO

ABSTRACT. Matveev introduced Borromean surgery on 3-manifolds, and proved that the equivalence relation on closed, oriented 3-manifolds generated by Borromean surgeries is characterized by the first homology group and the torsion linking pairing. Massuyeau generalized this result to closed, spin 3-manifolds, and the second author to compact, oriented 3-manifolds with boundary.

In this paper we give a partial generalization of these results to compact, spin 3-manifolds with boundary.

1. INTRODUCTION

Matveev [5] introduced an equivalence relation on 3-manifolds generated by Borromean surgeries. This surgery transformation removes a genus 3 handlebody from a 3-manifold and glues it back in a nontrivial, but homologically trivial way. Thus, Borromean surgeries preserve the homology groups of 3-manifolds, and moreover the torsion linking pairings. Matveev gave the following characterization of this equivalence relation.

Theorem 1.1 (Matveev [5]). Two closed, oriented 3-manifolds M and M' are related by a sequence of Borromean surgeries if and only if there is an isomorphism $f: H_1(M;\mathbb{Z}) \to H_1(M';\mathbb{Z})$ inducing isomorphism on the torsion linking pairings.

Massuyeau [4] showed that Borromean surgery induces a natural correspondence on spin structures, and thus can be regarded as a surgery move on spin 3-manifolds. He generalized Theorem 1.1 as follows.

Theorem 1.2 (Massuyeau [4]). Two closed spin 3-manifolds M and M' are related by a sequence of Borromean surgeries if and only if there is an isomorphism $f: H_1(M;\mathbb{Z}) \to H_1(M';\mathbb{Z})$ inducing isomorphism on the torsion linking pairings, and the Rochlin invariants of M and M' are congruent modulo 8.

In a paper in preparation [3], the second author generalizes Matveev’s theorem to compact 3-manifolds with boundary (see Theorem 2.2 below).

In the present paper, we attempt to generalize the above results to compact spin 3-manifolds with boundary.

After defining the necessary ingredients in Sections 2 and 3, our main result is stated in Theorem 3.6.

Acknowledgments. The second author was partially supported by JSPS, Grant-in-Aid for Scientific Research (C) 24540077.

The first author would like to thank Anna Beliakova for guidance and support, to Christian Blanchet, and to Gwénaël Massuyeau for several helpful discussions.
Figure 1. A Y-clasper.

Figure 2. How to replace a Y-clasper with a 6-component framed link. Here the framings of the three inner components are zero and the framings of the three outer components are determined by the annuli in the Y-clasper.

2. Y-surgery on 3-manifolds

Unless otherwise specified, we will make the following assumptions in the rest of the paper. All manifolds are compact and oriented. Moreover, all 3-manifolds are connected. All homeomorphisms are orientation-preserving. The (co)homology groups with coefficient group unspecified are assumed to be with coefficients in \mathbb{Z}.

2.1. Y-surgery and Y-equivalence. Borromean surgery is equivalent to Y-surgery used in the theory of finite type 3-manifold invariants in the sense of Goussarov and the second author [1, 2].

A Y-clasper in a 3-manifold M is a connected surface (of genus 0, with 4 boundary components) embedded in M, which is decomposed into one disk, three bands and three annuli as depicted in Figure 1. We associate to a Y-clasper G in M a 6-component framed link L_G contained in a regular neighborhood of G in M as depicted in Figure 2. Surgery along the Y-clasper G is defined to be surgery along the framed link L_G. The result M_{L_G} from M of surgery along L_G is called the result of surgery along the Y-clasper G and is denoted by M_G.

By Y-surgery we mean surgery along a Y-clasper. Thus, we say that a 3-manifold M' is obtained from another 3-manifold M by a Y-surgery if there is a Y-clasper G in M such that the result of surgery, M_G, is homeomorphic to M'. It is well-known that this relation is symmetric, i.e., if M' is obtained from M by a Y-surgery then, conversely, M can be obtained from M' by a Y-surgery.

The Y-equivalence is the equivalence relation on 3-manifolds generated by Y-surgeries.
2.2. \(\Sigma\)-bordered 3-manifolds. Throughout the paper, we fix a closed surface \(\Sigma\), which may have arbitrary finite number of components. In this paper, we consider 3-manifolds whose boundaries are parameterized by \(\Sigma\).

A \(\Sigma\)-bordered 3-manifold is a pair \((M, \phi)\) of a compact, connected 3-manifold \(M\) and a homeomorphism \(\phi: \Sigma \cong \partial M\).

Two \(\Sigma\)-bordered 3-manifolds \((M, \phi)\) and \((M', \phi')\) are said to be homeomorphic if there is a homeomorphism \(\Phi: M \cong M'\) such that \((\Phi|\partial M) \circ \phi = \phi'\).

2.3. \(Y\)-equivalence for \(\Sigma\)-bordered 3-manifolds. The notions of \(Y\)-surgery and \(Y\)-equivalence extend to \(\Sigma\)-bordered 3-manifolds in a natural way.

For a \(\Sigma\)-bordered 3-manifold \((M, \phi)\) (or a homology isomorphism \(\phi\)) and a \(\Sigma\)-clasper \(G\) in \(M\), the result of surgery \(M_G\) has an obvious boundary parameterization \(\phi_G: \Sigma \cong \partial M_G\) induced by \(\phi\). Thus surgery along a \(\Sigma\)-clasper \(G\) in a \(\Sigma\)-bordered 3-manifold \((M, \phi)\) yields a \(\Sigma\)-bordered 3-manifold \((M, \phi_G) := (M_G, \phi_G)\). Two \(\Sigma\)-bordered 3-manifolds \((M, \phi)\) and \((M', \phi')\) are said to be related by a \(\Sigma\)-clasper \(G\) in \(M\) such that \((M, \phi_G)\) is homeomorphic to \((M', \phi')\). The \(\Sigma\)-equivalence on \(\Sigma\)-bordered 3-manifolds is generated by \(\Sigma\)-surgeries.

The following well known characterization of the \(\Sigma\)-equivalence is useful.

Lemma 2.1. Two \(\Sigma\)-bordered 3-manifolds \((M, \phi)\) and \((M', \phi')\) are \(\Sigma\)-equivalent if and only if there are finitely many, mutually disjoint \(\Sigma\)-claspers \(G_1, \ldots, G_n\) \((n \geq 0)\) in \(M\) such that the result of surgery, \((M, \phi)G_1, \ldots, G_n\) is homeomorphic to \((M', \phi')\).

2.4. Homology isomorphisms between compact 3-manifolds. Let \((M, \phi)\) and \((M', \phi')\) be \(\Sigma\)-bordered 3-manifolds. Set

\[\delta := \phi' \circ \phi^{-1}: \partial M \cong \partial M'.\]

A homology isomorphism\(^1\) from \((M, \phi)\) to \((M', \phi')\) (or a homology isomorphism from \(M\) to \(M'\) along \(\delta\)) is an isomorphism \(f = (f_i, \mathcal{I}_i)\) of the homology exact sequences of pairs \((M, \partial M)\) and \((M', \partial M')\)

\[\ldots \rightarrow H_i(\partial M) \xrightarrow{\delta} H_i(M) \xrightarrow{f_i} H_i(M, \partial M) \xrightarrow{\mathcal{I}_i} H_{i-1}(\partial M) \rightarrow \ldots\]

satisfying the following properties:

(i) \(f_0([pt]) = [pt]\);

(ii) \(f_i\) and \(\mathcal{I}_i\) are compatible with the intersection forms, i.e., for \(i = 0, 1, 2, 3\), the square commutes:

\[
\begin{array}{ccc}
H_i(M) \times H_{3-i}(M, \partial M) & \xrightarrow{\langle, \rangle_M} & \mathbb{Z} \\
\downarrow \quad f_i \quad \downarrow \mathcal{I}_i \\
H_i(M') \times H_{3-i}(M', \partial M') & \xrightarrow{\langle, \rangle_{M'}} & \mathbb{Z}
\end{array}
\]

Here \(\langle, \rangle_M\) and \(\langle, \rangle_{M'}\) denote the intersection forms.

(iii) \(f_1\) and \(\mathcal{I}_1\) are compatible with the torsion linking pairings, i.e., the square commutes:

\[
\begin{array}{ccc}
\text{Tors } H_1(M) \times \text{Tors } H_1(M, \partial M) & \xrightarrow{\text{Tors } f_1 \times \text{Tors } \mathcal{I}_1} & \mathbb{Q}/\mathbb{Z} \\
\downarrow \quad \text{Tors } \mathcal{I}_1 \quad \downarrow \text{Tors } f_1 \\
\text{Tors } H_1(M') \times \text{Tors } H_1(M', \partial M') & \xrightarrow{\text{Tors } \langle, \rangle_{M'}} & \mathbb{Q}/\mathbb{Z}.
\end{array}
\]

\(^1\)In [4], this is called "full enhanced homology isomorphism". In this paper, we call it "homology isomorphism" for simplicity.
Here Tors denotes torsion part, and τ_M denotes the torsion linking pairing of M.

The classification of compact 3-manifolds up to Y-equivalence is given by the following result.

Theorem 2.2 *(3)*. Let Σ be a closed surface, and let (M, ϕ) and (M', ϕ') be two Σ-bordered 3-manifolds. Then the following conditions are equivalent.

1. (M, ϕ) and (M', ϕ') are Y-equivalent.
2. There is a homology isomorphism from (M, ϕ) to (M', ϕ').

For closed 3-manifolds, Theorem 2.2 is equivalent to Matveev’s theorem (Theorem 1.1).

3. Y-surgery on spin 3-manifolds

3.1. Spin structures. For an oriented manifold M with vanishing second Stiefel-Whitney class, let $\text{Spin}(M)$ denote the set of spin structures on M.

It is well known that $\text{Spin}(M)$ is affine over $H^1(M; \mathbb{Z}_2)$, i.e., acted by $H^1(M; \mathbb{Z}_2)$ freely and transitively

$$\text{Spin}(M) \times H^1(M; \mathbb{Z}_2) \to \text{Spin}(M), \quad (s, c) \mapsto s + c.$$

An embedding $f : M' \hookrightarrow M$ of a manifold M' into M induces a map

$$i^* : \text{Spin}(M) \to \text{Spin}(M').$$

If i is an inclusion map, $i^*(s), s \in \text{Spin}(M)$, is denoted also by $s|_{M'}$.

3.2. Y-surgery and spin structures. Let G be a Y-clasper in a 3-manifold M. Let $N(G)$ be a regular neighborhood of G in M. Note that the result of surgery, M_G, can be identified with the manifold

$$(M \setminus \text{int} N(G)) \cup_{\partial N(G)} N(G)_G$$

obtained by gluing $M \setminus \text{int} N(G)$ with $N(G)_G$ along $\partial N(G)$.

As is proved by Massuyeau [4], for a spin structure $s \in \text{Spin}(M)$, there is a unique spin structure s_G on M_G such that

$$s_G|_{M \setminus \text{int} N(G)} = s|_{M \setminus \text{int} N(G)}.$$

This gives a bijection

$$\text{Spin}(M) \xrightarrow{\sim} \text{Spin}(M_G), \quad s \mapsto s_G.$$

The spin 3-manifold (M_G, s_G) is called the result of surgery on the spin 3-manifold (M, s) along G.

As in Section 2.1 the Y-equivalence on spin 3-manifolds is the equivalence relation generated by Y-surgery.

3.3. Twisting a spin structure along an orientable surface. Let (M, s) be a spin 3-manifold possibly with boundary, and let T be an orientable surface properly embedded in M. Then we can twist the spin structure s along T. More precisely, we can define a new spin structure $s \ast T = s + [T] \in \text{Spin}(M)$, where $[T] \in H^1(M; \mathbb{Z}_2)$ is the Poincaré dual of $[T] \in H_2(M, \partial M; \mathbb{Z}_2)$. (One can consider similar operation when T is non-orientable, but we do not need it in this paper.)

Note that twisting along a closed surface preserves the restriction of the spin structure to the boundary.
Proposition 3.1. If T is a closed, orientable surface in a spin 3-manifold (M, s), then $(M, s * T)$ is Y-equivalent to (M, s).

Proof. We may assume that T is connected, since the general case follows from this special case.

Take a bicollar neighborhood $T \times [-1, 2] \subset M$. Set $T_2 = T \times \{2\} \subset M$. Let c be a simple closed curve in T bounding a disk in T. Let A denote a bicollar neighborhood of c in T. Let D and T' be the two components of $T \setminus \text{int} A$, where D is a disk. Set

$$V_0 = A \times [-1, 1], \quad V_1 = (A \cup D) \times [-1, 1], \quad V_2 = (A \cup T') \times [-1, 1],$$

$$M_i = M \setminus \text{int} V_i, \quad i = 0, 1, 2.$$

Note that $M_1, M_2 \subset M_0$. For $i = 0, 1, 2$, let $s_i = s|_{M_i} \in \text{Spin}(M_i)$.

Let $K = (c, +1)$ denote the framed knot in M whose underlying knot is c and the framing is $+1$. Let M_K denote the result of surgery along K, which may be regarded as the manifold $M_0 \cup_0 (V_0)_K$ obtained from M_0 and the result of surgery $(V_0)_K$ by glueing along their boundaries in the natural way. We may regard M_0, M_1 and M_2 as submanifolds of M_K.

Note that V_1 and $(V_1)_K$ are 3-balls. Hence there is a unique spin structure $s_K \in \text{Spin}(M_K)$ such that $(s_K)|_{M_1} = s_1$. We have the spin homeomorphism $(M, s) \cong (M_K, s_K)$.

We have

$$s_K|_{M_0} = s_0 * D = s_0 * T_2.$$

Hence we have

$$s_K|_{M_2} = s_2 * T_2.$$

It suffices to prove that (M_K, s_K) is Y-equivalent to $(M, s * T_2) = (M, s * T)$. Since the framed knot K is null-homologous in V_2 and $+1$-framed, $(V_2)_K$ is Y-equivalent to V_2 in a way respecting the boundary [5]. This Y-equivalence extends to Y-equivalence of M_K and M. This Y-equivalence implies the desired Y-equivalence of (M_K, s_K) and $(M, s * T_2)$ since we have

$$s_K|_{M_2} = s_2 * T_2 = (s * T_2)|_{M_2},$$

and since the maps

$$\text{Spin}(M_K) \to \text{Spin}(M_2), \quad \text{Spin}(M) \to \text{Spin}(M_2)$$

induced by inclusions are injective.

\[\square\]

3.4. (Σ, s_Σ)-**bordered spin 3-manifolds.** We fix a spin structure $s_\Sigma \in \text{Spin}(\Sigma)$. In the following we consider Y-equivalence of spin 3-manifolds with boundary parameterized by the spin surface (Σ, s_Σ).

A (Σ, s_Σ)-**bordered spin 3-manifold** is a triple (M, ϕ, s) consisting of a (Σ)-bordered 3-manifold (M, ϕ) and a spin structure $s \in \text{Spin}(M)$ such that $\phi^*(s) = s_\Sigma$.

Clearly, surgery along a Y-clasper in M preserves the spin structure on the boundary of M. Hence a Y-surgery on a (Σ, s_Σ)-bordered spin 3-manifold yields another (Σ, s_Σ)-bordered spin 3-manifold.

3.5. **Gluing of (Σ, s_Σ)-bordered spin 3-manifolds.** Let (M, ϕ, s) and (M', ϕ', s') be two (Σ, s_Σ)-bordered spin 3-manifolds. Let $M'' = (-M) \cup_{\phi, \phi'} M'$ be the closed 3-manifold obtained from $-M$ (the orientation reversal of M) and M' by gluing their boundaries along $\phi' \circ \phi^{-1}$.

By a gluing of s and s', we mean a spin structure $s'' \in \text{Spin}(M'')$ satisfying

$$s''|_{-M} = s, \quad s''|_{M'} = s'.$$
If Σ is empty or connected, then s'' is uniquely determined by s and s'. Otherwise, s'' is not unique.

The spin manifold (M'', s'') is called a gluing of (M, ϕ, s) and (M', ϕ', s').

Proposition 3.2. All the gluings of two (Σ, s_{Σ})-bordered spin 3-manifolds (M, ϕ, s) and (M', ϕ', s') are mutually Y-equivalent.

Proof. If Σ has at most one boundary component, then there is nothing to prove since there is only one gluing of (M, ϕ, s) and (M', ϕ', s').

Suppose Σ has components $\Sigma_1, \ldots, \Sigma_n$ with $n \geq 2$. For $i = 2, \ldots, n$, choose a framed knot K_i in $M'' = (-M) \cup_{\phi, \phi'} M'$ which transversely intersects each of Σ_1 and Σ_i by exactly one point and is disjoint from the other components of Σ. There are 2^{n-1} gluings $s''_{e_2, \ldots, e_n} \in \text{Spin}(M'')$ of s and s' for $e_2, \ldots, e_n \in \{0, 1\}$, where for $i = 2, \ldots, n$ the framed knot K_i is even framed with respect to s''_{e_2, \ldots, e_n} if $e_i = 0$, and odd framed otherwise. Moreover, we have

$$ s''_{e_2, \ldots, e_n} = s''_{0, \ldots, 0} \bigcup_{2 \leq i \leq n, e_i = 1} \Sigma_i. $$

Hence, by Proposition 3.1, (M'', s'') and $(M'', s''_{0, \ldots, 0})$ are Y-equivalent. \(\square\)

3.6. **Rochlin invariant mod 8 of pairs of (Σ, s_{Σ})-bordered spin 3-manifolds.** Let (M, ϕ, s) and (M', ϕ', s') be two (Σ, s_{Σ})-bordered spin 3-manifolds. Set

$$ R_S((M, \phi, s), (M', \phi', s')) := (R(M'', s'')) \mod 8 \in \mathbb{Z}_8, $$

where $M'' = (-M) \cup_{\phi, \phi'} M'$ as before and $s'' \in \text{Spin}(M'')$ is any gluing of s and s'. Proposition 3.2 and Theorem 1.2 imply that (1) is well defined.

Lemma 3.3. The invariant $R_S((M, \phi, s), (M', \phi', s'))$ depends only on the Y-equivalence classes of (M, ϕ, s) and (M', ϕ', s').

Proof. Suppose that (M_1, ϕ_1, s_1) is Y-equivalent to (M_2, ϕ_2, s_2) and that (M'_i, ϕ'_i, s'_i) is Y-equivalent to (M''_i, ϕ''_i, s''_i) for $i = 1, 2$. Then (M''_1, s''_1) and (M''_2, s''_2) are Y-equivalent. Hence we have

$$ R_S((M_1, \phi_1, s_1), (M'_1, \phi'_1, s'_1)) = (R(M''_1, s''_1)) \mod 8 = (R(M''_2, s''_2)) \mod 8 = R_S((M_2, \phi_2, s_2), (M'_2, \phi'_2, s'_2)). $$

\(\square\)

3.7. **Main results.** Now we state the main result of the present paper, which gives a characterization of Y-equivalence of (Σ, s_{Σ})-bordered spin 3-manifolds in terms of homology isomorphism and the Rochlin invariant mod 8.

Conjecture 3.4. Let (M, ϕ, s) and (M', ϕ', s') be two (Σ, s_{Σ})-bordered spin 3-manifolds. Then the following conditions are equivalent.

1. (M, ϕ, s) and (M', ϕ', s') are Y-equivalent.
2. There is a homology isomorphism from (M, ϕ) to (M', ϕ'), and we have

$$ R_S((M, \phi, s), (M', \phi', s')) = 0 \mod 8. $$

It follows from Theorem 2.2 that Conjecture 3.4 is equivalent to the following.

Conjecture 3.5. Let (M, ϕ, s) and (M', ϕ', s') be two (Σ, s_{Σ})-bordered spin 3-manifolds. Then the following conditions are equivalent.

1. (M, ϕ, s) and (M', ϕ', s') are Y-equivalent.
2. (M, ϕ) and (M', ϕ') are Y-equivalent, and we have

$$ R_S((M, \phi, s), (M', \phi', s')) = 0 \mod 8. $$
The following theorem says that Conjecture 3.5 holds when $H_1(M;\mathbb{Z})$ has no 2-torsion. The proof of this result does not use definitions and results given in [4], which is not available when we are writing the present paper.

Theorem 3.6. In the setting of Conjecture 3.5, (1) implies (2). Moreover, if $H_1(M;\mathbb{Z})$ has no 2-torsion, then

(2) (M, ϕ) and (M', ϕ') are Y-equivalent.

implies (1).

4. Proof of Theorem 3.6

4.1. Proof of (1) ⇒ (2). Suppose that (1) of Theorem 3.5 holds. Then, clearly, (M, ϕ) and (M', ϕ') are Y-equivalent. We have to prove $R(M'', s'') \equiv 0 \pmod{8}$, where (M'', s'') is a gluing of (M, ϕ, s) and (M', ϕ', s').

Since (M, ϕ, s) and (M', ϕ', s') are Y-equivalent, Lemma 3.3 implies that (M'', s'') is Y-equivalent to a gluing (M_0'', s_0'') of (M, s) and itself.

Consider the 4-manifold C which is the quotient of the cylinder $M \times [0, 1]$ by the equivalence relation $(x, t) \sim (x, t')$ for $x \in \partial M$ and $t, t' \in [0, 1]$. Then we may naturally identify M_0'' with ∂C. The 4-manifold C has a spin structure s_C induced by the spin structure $s \times s_{[0,1]} \in \text{Spin}(M \times [0,1])$, where $s_{[0,1]}$ is the unique spin structure of $[0,1]$. We have

$$R(C, s_C) \equiv R(M \times [0,1], s \times s_{[0,1]}) \equiv \sigma(M \times [0,1]) = 0 \pmod{16}.$$

Since both s''_0 and s_C are gluings of (M, s) and itself, Proposition 3.2 implies that (M_0'', s_0'') and (C, s_C) are Y-equivalent. Hence, by Theorem 1.2 we have

$$R(M'', s'') \equiv R(M_0'', s_0'') \equiv R(C, s_C) \equiv 0 \pmod{8}.$$

4.2. Proof of (2') ⇒ (1) when $H_1(M;\mathbb{Z})$ has no 2-torsion. We assume that $H_1(M;\mathbb{Z})$ has no 2-torsion.

We divide the proof into three cases:

- M is a \mathbb{Z}_2-homology handlebody, i.e., ∂M is connected and $H_1(M, \partial M; \mathbb{Z}_2) = 0$.
- M has non-empty boundary.
- M is closed.

4.2.1. Case where M is a \mathbb{Z}_2-homology handlebody. Since $\text{Spin}(M) \rightarrow \text{Spin}(\Sigma)$ and $\text{Spin}(M') \rightarrow \text{Spin}(\Sigma)$ are injective, Y-equivalence of (M, ϕ) and (M', ϕ') implies Y-equivalence of (M, ϕ, s) and (M', ϕ', s').

4.2.2. Case where ∂M is non-empty. We will use the following result.

Lemma 4.1. Let M be a 3-manifold with boundary such that $H_1(M;\mathbb{Z})$ has no 2-torsion. Then M can be obtained from a \mathbb{Z}_2-homology handlebody V by attaching 2-handles h_1, \ldots, h_n (with $n \geq 0$) along simple closed curves c_1, \ldots, c_n in ∂V in such a way that each c_i is null-homologous (over \mathbb{Z}) in V.

Proof. M can be obtained from a solid torus V' of genus g by attaching some 2-handles along simple closed curves c'_1, \ldots, c'_k in $\partial V'$. After finitely many handle-slides, we can assume the following.

- There is a basis x_1, \ldots, x_g of $H_1(V';\mathbb{Z})$ such that we have

$$[c_i] = \sum_{j=1}^{g} a_{i,j} x_j$$

for $i = 1, \ldots, k$, where the matrix $(a_{i,j})$ is diagonal (but not necessarily square), in the sense that $a_{i,j} = \delta_{i,j} d_i$.

Clearly, $H_1(M; \mathbb{Z})$ is isomorphic to $\bigoplus_{i=1}^{k} \mathbb{Z}d_i$. By the assumption that $H_1(M; \mathbb{Z})$ has no 2-torsion, each d_i is either odd or 0.

We may assume that, for some n, we have $d_1 = \cdots = d_n = 0$ and d_{n+1}, \ldots, d_k are odd. The union $V := V' \cup h_{n+1}' \cup \cdots \cup h_k'$ is a \mathbb{Z}_2-homology handlebody. Setting $c_i = c_i', h_i = h_i'$ for $i = 1, \ldots, n$, we have the result.

Let M be obtained as above from a \mathbb{Z}_2-homology handlebody V by attaching 2-handles h_1, \ldots, h_n along disjoint simple closed curves $c_1, \ldots, c_n \subset \partial V$, $n = \text{rank } H_2(M; \mathbb{Z}) \geq 0$, such that c_i is null-homologous in M and such that $\partial M \setminus (c_1 \cup \cdots \cup c_n)$ is connected.

The proof is by induction on n. The case $n = 0$ is proved in Section 4.2.1.

Suppose $n > 0$.

Let $N = h_n = D^2 \times [0, 1] \subset M$ be one of the 2-handles. Set
\[A = \partial D^2 \times [0, 1] \subset \partial N, \]
\[B = D^2 \times \{0, 1\} \subset \partial N, \]
\[M_0 := \overline{M \setminus N} = V \cup h_1 \cup \cdots \cup h_{n-1} \subset M. \]

Thus, $M = M_0 \cup_A N$ is obtained from a 3-manifold M_0 by attaching N along an annulus $A \subset \partial M_0$.

Since (M, ϕ) and (M', ϕ') are Y-equivalent, it follows from Lemma 2.1 that there exists a disjoint family \mathcal{G} of Y-claspers in M and a homeomorphism $\Psi: (M_G, \phi_G) \xrightarrow{\cong} (M', \phi')$.

By isotoping \mathcal{G} if necessary, we may assume that \mathcal{G} is contained in the interior of M_0.

Set $\Sigma_0 := (\Sigma \setminus \text{int}(\phi^{-1}(B))) \cup A$. Then we have a Σ_0-bordered 3-manifold (M_0, ϕ_0) where $\phi_0: \Sigma_0 \xrightarrow{\cong} \partial M_0$ is obtained by gluing $\phi|_{\Sigma \setminus \text{int}(\phi^{-1}(B))}$ and id_A.

Set
\[M_0' := \Psi((M_0)_G) = M' \setminus \Psi(N) \subset M'. \]

We have a Σ_0-bordered 3-manifold (M_0', ϕ_0'), where $\phi_0': \Sigma_0 \xrightarrow{\cong} \partial M_0'$ is obtained by gluing $\phi'|_{\Sigma \setminus \text{int}(\phi^{-1}(B))}$ and $\Psi|_A: A \xrightarrow{\cong} \Psi(A)$.

We have a homeomorphism of Σ_0-bordered 3-manifolds
\[\Psi_0 := \Psi|_{M_0'}: ((M_0)_G, (\phi_0)_G) \xrightarrow{\cong} (M_0', \phi_0'). \]

Set $s_{\Sigma_0} = (\phi_0)^* (s|_{M_0}) \in \text{Spin}(\Sigma_0)$ and $s_{\Sigma_0}' = (\phi_0')^* (s'|_{M_0'}) \in \text{Spin}(\Sigma_0)$. Note that $s_{\Sigma_0}|_{\Sigma \setminus \text{int}(\phi^{-1}(B))} = s_{\Sigma_0}'|_{\Sigma \setminus \text{int}(\phi^{-1}(B))}$. Hence we have either
\begin{equation}
(2) \quad s_{\Sigma_0} = s_{\Sigma_0}'
\end{equation}
or
\begin{equation}
(3) \quad s_{\Sigma_0}' = s_{\Sigma_0} + [a]' \quad \text{and} \quad s_{\Sigma_0} \neq s_{\Sigma_0}',
\end{equation}
where $a = c_n = \partial D^2 \times \{1/2\} \subset A$ is the core of the annulus A, and $[a]' \in H^1(\Sigma_0; \mathbb{Z}_2)$ is the Poincaré dual to $[a] \in H_1(\Sigma_0; \mathbb{Z}_2)$.

Claim. We may assume (2).

Proof. If a is separating in Σ_0, then we have (2).

Suppose that a is non-separating in Σ_0, and that we have (3). Since a is null-homologous in $\partial V \subset M_0$, it is so also in M_0'. Therefore, there is a connected, oriented surface T_0 properly embedded in M_0' such that $\partial T_0 = a$. Set $D' = \Psi(D^2 \times \{1/2\})$, and $T' = T_0 \cup D'$, which is a connected, oriented, closed surface in M'.

Set \(\hat{s}' := s' \ast T' \in \text{Spin}(M') \) and \(\hat{s}'_{\Sigma_0} = (\phi_0'\ast (\hat{s}'|_{M_0'}) \in \text{Spin}(\Sigma_0) \). By Proposition 3.1, it follows that \((M', s')\) and \((M', \hat{s}')\) are \(Y\)-equivalent. Thus, we may replace the spin manifold \((M', s')\) with \((M', \hat{s}')\). We have
\[
\hat{s}'_{\Sigma_0} = (\phi_0'\ast ((s' \ast T')|_{M_0'}) = (\phi_0')^*(s') + [a'] = s'_{\Sigma_0} + [a'] = s_{\Sigma_0}.
\]
Hence, we have only to consider the case where (2) holds.

We assume (2). Set \(s_0 = s|M_0 \in \text{Spin}(M_0) \) and \(s_0' = s'|_{M_0'} \in \text{Spin}(M_0') \). Then \((M_0, \phi_0, s_0)\) and \((M_0', \phi_0', s_0')\) are \((\Sigma_0, s_{\Sigma_0})\)-bordered spin 3-manifolds.

We can use the induction hypothesis to deduce that \((M_0, \phi_0, s_0)\) and \((M_0', \phi_0', s_0')\) are \(Y\)-equivalent, and hence so are \((M, \phi, s)\) and \((M', \phi', s')\).

4.2.3. Case where \(M \) is closed. This case is a special case of Theorem 1.2.

Alternatively, this case easily follows from the previous case by considering the punctures \(M \setminus \text{int} B^3 \) and \(M' \setminus \text{int} B^3 \).

References

[1] M. Goussarov. Finite type invariants and \(n\)-equivalence of 3-manifolds. Compt. Rend. Acad. Sci. Paris Série I 329 (1999), 517–522.

[2] K. Habiro. Claspers and finite type invariants of links. Geom. Topol. 4 (2000), 1–83.

[3] K. Habiro. in preparation.

[4] G. Massuyeau. Spin Borromean surgeries. Trans. Amer. Math. Soc. 10 (2003), 3991–4016.

[5] S. V. Matveev. Generalized surgery of three-dimensional manifolds and representations of homology spheres. Mat. Zametki 42 (1987), 268–278, 345.