Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions

Katharine E. Hubbard,1 Noriyuki Nishimura,1,3 Kenichi Hitomi,2 Elizabeth D. Getzoff,2 and Julian I. Schroeder1,4

1Division of Biological Sciences, Cell and Developmental Biology Section, Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Molecular Biology, the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA

The plant hormone abscisic acid (ABA) regulates many key processes in plants, including seed germination and development and abiotic stress tolerance, particularly drought resistance. Understanding early events in ABA signal transduction has been a major goal of plant research. The recent identification of the PYRABACTIN (4-bromo-N-[pyridin-2-yl methyl]naphthalene-1-sulfonamide) RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family of ABA receptors and their biochemical mode of action represents a major breakthrough in the field. The solving of PYR/RCAR structures provides a context for resolving mechanisms mediating ABA control of protein–protein interactions for downstream signaling. Recent studies show that a pathway based on PYR/RCAR ABA receptors, PROTEIN PHOSPHATASE 2Cs (PP2Cs), and SNF1-RELATED PROTEIN KINASE 2s (SnRK2s) forms the primary basis of an early ABA signaling module. This pathway interfaces with ion channels, transcription factors, and other targets, thus providing a mechanistic connection between the phytohormone and ABA-induced responses. This emerging PYR/RCAR–PP2C–SnRK2 model of ABA signal transduction is reviewed here, and provides an opportunity for testing novel hypotheses concerning ABA signaling. We address newly emerging questions, including the potential roles of different PYR/RCAR isoforms, and the significance of ABA-induced versus constitutive PYR/RCAR–PP2C interactions. We also consider how the PYR/RCAR–PP2C–SnRK2 pathway interfaces with ABA-dependent gene expression, ion channel regulation, and control of small molecule signaling. These exciting developments provide researchers with a framework through which early ABA signaling can be understood, and allow novel questions about the hormone response pathway and possible applications in stress resistance engineering of plants to be addressed.

Drought is one of the major abiotic stresses affecting plants; >50% of the Earth’s surface area, including the vast majority of agricultural lands, is vulnerable to drought (Kogan 1997). Drought-induced crop losses have a significant economic impact, which is predicted to increase with global climate change (Marris 2008; Battisti and Naylor 2009). The phytohormone abscisic acid (ABA) is the central regulator of abiotic stress resistance in plants, and coordinates a complex regulatory network enabling plants to cope with decreased water availability (Cutler et al. 2010; Kim et al. 2010). Plant ABA content significantly increases under drought or salinity stress conditions, stimulating stomatal closure, changes in gene expression, and the accumulation of osmo-compatible solutes, thus increasing the plant’s capacity to cope with stress conditions [Seki et al. 2007; Cutler et al. 2010; Kim et al. 2010]. ABA also plays important roles during plant development, including embryo and seed development, and the promotion of seed dormancy [Finkelstein et al. 2002]. Given the importance of ABA to plant physiology and development, understanding the signal transduction processes linking the hormone to target responses is a focus of abiotic stress research.

While many intermediate signaling components have been extensively characterized, our understanding of ABA signaling has been hampered by the lack of knowledge regarding the ABA receptor(s). The recent identification of PYRABACTIN [4-bromo-N-[pyridin-2-yl methyl]naphthalene-1-sulfonamide] RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) proteins [Ma et al. 2009; Park et al. 2009] provided the field with exciting new avenues of research into ABA perception, allowing existing hypotheses to be tested and novel ideas concerning ABA signaling to be generated. This review summarizes the many new findings in early ABA signaling, and also highlights and discusses emerging questions about the signaling network.

The central ABA signaling module

Much recent progress into ABA signal transduction indicates that the earliest events of the signaling pathway
Identification of ABA receptors

The first stage of hormone signaling must be the specific recognition of the hormone by a receptor. Recent studies identified and confirmed the PYR/RCAR proteins as ABA-binding proteins that interact with the PP2Cs, which function as negative regulators of ABA signaling [Ma et al. 2009; Park et al. 2009]. Six of the nine PP2C proteins in the clade containing ABI1 have been shown to be negative regulators of ABA responses (see Table 1; Koornneef et al. 1984; Leung et al. 1994, 1997; Meyer et al. 1994; Rodriguez et al. 1998; Leonhardt et al. 2004; Saëz et al. 2004; Kuhn et al. 2006; T Yoshida et al. 2006; Nishimura et al. 2007). Combined cell signaling and genetic analyses provided early evidence that the PP2C ABA-INSENSITIVE 1 (ABI1) functions very early in the ABA signaling pathway, upstream of all known rapid signaling responses—including anion channel activation [Pei et al. 1997], increases in cytosolic free calcium concentration ([Ca$^{2+}$]$_{cyt}$) [Allen et al. 1999], activation of the SnRK2 OPEN STOMATA 1 (OST1) [Mustilli et al. 2002], Ca$^{2+}$ channel activation, and reactive oxygen species (ROS) production [Murata et al. 2001]. Therefore, identifying proteins that interact with PP2Cs was one strategy used to isolate novel components of early ABA signaling and identify the PYR/RCARs [Ma et al. 2009; Santiago et al. 2009b; Nishimura et al. 2010]. RCAR1/ PYR1-LIKE 9 (PYL9) was identified in a yeast two-hybrid screen using the PP2C ABI2 as bait [Ma et al. 2009], and a similar strategy using HOMOLOGY TO ABI1 (HAB1) as bait identified PYL5, PYL6, and PYL8 [Santiago et al. 2009b]. Independently, an in vivo strategy of ABI1 complex purification from Arabidopsis plants led to the identification of nine of the 14 PYR/RCARs as the major in planta interactors of ABI1 [Nishimura et al. 2010]. In an alternative approach, chemical genetics identified mutations in the PYR1 gene based on insensitivity to the synthetic ABA agonist pyrabactin [Park et al. 2009]. These multiple independent lines of evidence indicated that the previously uncharacterized PYR/RCAR proteins are major early ABA signaling components. The Arabidopsis thaliana genome encodes 14 PYR/RCAR proteins that are highly conserved at the amino acid sequence level [Table 1]. PYR/RCARs are small soluble proteins belonging to the START/Bet v I superfamily that contain a central hydrophobic ligand-binding pocket [Jyer et al. 2001]. The identification of this new class of ABA signaling proteins has resulted in great excitement within the plant hormone signaling field, providing new avenues of research into ABA signal transduction.

While the case for PYR/RCARs acting in ABA signaling is strong, this does not strictly exclude the possibility that other ABA receptors exist [for detailed discussion, see Klingler et al. 2010]. Two other unrelated ABA receptors have been proposed: ChlH/GUN5 and GTG1/GTG2. ChlH/GUN5 was identified through homology with an ABA-binding protein from Vicia faba [Zhang et al. 2002; Shen et al. 2006], and overexpression of either the full-length protein [Shen et al. 2006] or the C-terminal half of the protein was reported to confer ABA hypersensitivity [Wu et al. 2009]. However, the homologous ChlH/GUN5 protein in barley did not bind ABA [Müller and Hansson 2009], and further analyses are required to uncover the significance of this protein class in ABA signaling [Wasilewska et al. 2008]. GTG1 and GTG2 are membrane proteins with homology with noncanonical G protein-coupled receptors (GPCRs) with nine transmembrane domains, which may interact with ABA through coupling with an ABA-binding protein.

Figure 1. The core ABA signaling pathway. Recent progress in understanding early ABA signal transduction has led to the construction of a PYR/RCAR–PP2C–SnRK2 signal transduction model. In the absence of ABA, PP2Cs inhibit protein kinase (SnRK2) activity through removal of activating phosphates. ABA is bound by intracellular PYR/PYL dimers, which dissociate to form ABA receptor–PP2C complexes. Complex formation therefore inhibits the activity of the PP2C in an ABA-dependent manner, allowing activation of SnRK2s. Several SnRK2 targets have been identified both at the plasma membrane and in the nucleus, resulting in control of ion channels, secondary messenger production, and gene expression. Red connections on left indicate an inhibitory interaction.
domains that hydrolyze GTP (Pandey et al. 2009). Double gtg1gtg2 mutants retain an ABA response, but have a partially reduced sensitivity to ABA at the level of seed germination and stomatal responses, consistent with the existence of alternative ABA perception pathways (i.e., by PYR/RCARs). A proposed GPCR (GCR2) was also proposed to act as an ABA receptor, but this has been disputed (e.g., Guo et al. 2008), and so will not be discussed further here.

Capturing the message—ABA binding and interactions with PP2Cs

The strategies described above showed that PYR/RCARs acted with PP2Cs to confer ABA-induced inhibition of PP2C activity in vitro. Next, it was critical to determine if PYR/RCAR proteins bind ABA directly, and thus act as receptors. Initial evidence for ABA binding of PYR1 was obtained through heteronuclear single quantum coherence nuclear magnetic resonance studies (Park et al. 2009) and isothermal titration calorimetry analyses (Ma et al. 2009), but whether PYR/RCARs and PP2Cs functioned together as ABA coreceptors remained unknown. Direct ABA binding to PYR/PYLs was subsequently established through the elucidation of PYR1, PYL1, and PYL2 crystal structures in the presence of ABA (Melcher et al. 2009; Miyazono et al. 2009; Nishimura et al. 2009; Santiago et al. 2009a; Yin et al. 2009). The ligand-binding site of PYR/RCAR proteins lies within a large internal cavity. The majority of protein interactions with the ABA molecule are through nonpolar contacts; however, the ring carbonyl, central hydroxyl, and carboxylic acid groups of ABA are held in place through water-mediated hydrogen bonds (Melcher et al. 2009; Miyazono et al. 2009; Nishimura et al. 2009; Santiago et al. 2009a; Yin et al. 2009).

Table 1. *The ABA signaling toolkit*

Protein Family	Locus Number	Gene Name(s)	Example Protein Structural Motifs	References
PYR/RCAR (14)	At4g17870	PYR1	![PP2C domain]	Ma et al. 2009
Bet v domain proteins	At5g67950	PYL1	![PP2C domain]	Park et al. 2009
	At2g256040	PYL2	![PP2C domain]	Santiago et al. 2009b
	At2g38310	PYL4	![PP2C domain]	Nishimura et al. 2010
PPK2 Group A (9)	At3g57200	AB1	![PP2C domain]	Koornneef et al. 1984
Mg²⁺-dependent	At5g67950	AB2	![PP2C domain]	Meyer et al. 1994
Ser/Thr protein phosphatase	At1g72770	HAB1	![PP2C domain]	Leung et al. 1994
	At1g75050	HAB2	![PP2C domain]	Rodriguez et al. 1998
	At3g11410	AtPP2CA (phy3)	![PP2C domain]	Saez et al. 2004
	At5g51760	AHH1	![PP2C domain]	Leonhardt et al. 2004
			![PP2C domain]	Kuhn et al. 2006
			![PP2C domain]	Nishimura et al. 2007
SnRK2 (10)	At3g05050	SnRK2.2/SnRK2D	![PP2C domain]	Merlot et al. 2002
Ser/Thr protein kinase	At5g66880	SnRK2.3/SnRK2I	![PP2C domain]	Yoshida et al. 2002
	At4g33950	OST1/SnRK2.6/SnRK2E	![PP2C domain]	Fuji et al. 2007
			![PP2C domain]	Fuji et al. 2009
CDPK (34)	At4g23650	CPK3	![PP2C domain]	Chol et al. 2005
Ca²⁺-dependent	At4g69570	CPK4	![PP2C domain]	Mori et al. 2006
Ser/Thr kinase	At2g17290	CPK6	![PP2C domain]	Ma and Wu 2007
	At1g36570	CPK11	![PP2C domain]	Zhu et al. 2007
	At4g64720	CPK21	![PP2C domain]	Geiger et al. 2010
	At4g64740	CPK23	![PP2C domain]	
	At4g37530	CPK32	![PP2C domain]	
CalM/CLM (57)	At5g53920	CML9	![PP2C domain]	Delk et al. 2005
Ca²⁺-dependent	At5g37750	CML24/TCH2	![PP2C domain]	Magnan et al. 2008
Calmodulin-like	At4g75100	CML1	![PP2C domain]	
Calmodulin-like	At5g71000	CML9	![PP2C domain]	
CBL (10)	At4g75100	CBL1	![PP2C domain]	Guo et al. 2002
	At3g37750	CML24/TCH2	![PP2C domain]	Albrecht et al. 2003
Calmodulin B like	At5g71000	CBL1	![PP2C domain]	Cheong et al. 2003
	At4g64600	CML9	![PP2C domain]	Cheong et al. 2007
			![PP2C domain]	Pandey et al. 2008
CIPK/SnRK2 (25)	At5g18100	CPK15/PK35	![PP2C domain]	Guo et al. 2002
Ser/Thr protein kinase	At1g03700	CPK15/PK35	![PP2C domain]	Cheong et al. 2007
	At1g03700	CPK13/PK37	![PP2C domain]	Pandey et al. 2008
Rboh (10)	At4g79100	RbohD	![PP2C domain]	Kwak et al. 2003
NADPH oxidase	At4g45100	RbohF	![PP2C domain]	Suhita et al. 2004
	At4g45100	RbohD	![PP2C domain]	
PP2A	At1g24490	RCN1	![PP2C domain]	Kwak et al. 2002
Protein phosphatase regulatory subunit	At1g24490	RCN1	![PP2C domain]	

For each gene family, loci associated with ABA signaling in experimental studies are shown. The number in brackets after the gene family name indicates the number of family members encoded in the *A. thaliana* genome. Representative protein structural motifs are depicted for each gene family, with the functional domains indicated. Where mutant names differ from gene names, the alternative mutant name is indicated in brackets. Protein structure information was obtained from UniProt. [NLS] Nuclear localization signal; [PPI] protein phosphatase interaction motif. The CBL–CIPK interaction domain is characterized by the primary amino acid sequence NAF (Albrecht et al. 2001).
A

B

C

D

Figure 2. Structural mechanism of ABA–PYR/RCAR–PP2C interactions. The structures of PYR/RCAR proteins in both ABA-unbound conformations [gold] and ABA-bound conformations [green], and in complex with PP2C. The following structures are shown: a PYL2 homodimer in the absence of ABA [A], and a symmetrical PYL2 dimer with both ABA molecules shown in orange [B]. Note that the cap and lock have changed position to come in closer contact with the ABA molecule, while reducing dimer interaction. [C] An asymmetrical PYR1 dimer exhibiting “closed” hormone-bound [green] and “open” hormone-free [gold] subunit conformations. [D] A PYL2–HAB1 [PP2C] complex: A tryptophan residue from the PP2C [purple] inserts into the gap between the cap and lock to interact with the ABA molecule. The cap makes contact with the Mg$^{2+}$-containing active site of the PP2C, therefore preventing phosphatase activity in the presence of ABA. The structures of PYR1 [Nishimura et al. 2009], PYL2, and the HAB1–PYL2 complex [Melcher et al. 2009] are oriented to align PYR/RCAR (shown at left).
Yin et al. 2009) and PYL2–HAB1 (Melcher et al. 2009)—identify a conserved tryptophan residue from the PP2C that inserts between the cap and lock of the PYR/RCAR protein, forming a novel hydrogen bond between the indole ring of the tryptophan and the ketone group of ABA. ABA binding is thus stabilized further by the presence of the PP2C, which is reflected in the ~10-fold increase in PYR/RCAR–ABA binding affinity in the presence of PP2Cs (Ma et al. 2009; Santiago et al. 2009b). For example, the binding affinity of S1(+)-ABA for RCAR1/PYL9 shifts from ~600 nM to 60 nM in the presence of ABI2 (Ma et al. 2009). This may be a function of the ABA off-rate, with PP2C binding favoring PYR/RCAR lid closure, and thus decreasing the rate of ABA dissociation from the protein (Nishimura et al. 2009). The PYR/RCAR proteins occlude access to the catalytic site of the PP2C (Melcher et al. 2009; Miyazono et al. 2009; Yin et al. 2009), therefore providing a direct structural explanation for PYR/RCAR inhibition of PP2C activity (Ma et al. 2009; Park et al. 2009).

The structures provide a framework for mapping known ABA signaling mutations to biological function. The abi1-1 (G180D) and abi2-1 (G168D) mutations result in the loss of interaction with PYR/RCARs (Ma et al. 2009; Park et al. 2009) and dominant ABA insensitivity. In the PYR/RCAR–PP2C complex, the G180/G168 residues are in close proximity to the cap; thus, in the mutant protein, the bulkier aspartic acid residue would disrupt hydrogen bonding and introduce a steric constraint to PYR/RCAR and PP2C binding (Yin et al. 2009). Mutations in the PYR/RCAR cap or lock [e.g., PYR1 P88, R116] also reduce ABA sensitivity (Melcher et al. 2009; Miyazono et al. 2009; Nishimura et al. 2009; Park et al. 2009; Yin et al. 2009), underlining the importance of these loops for ABA binding and receptor function. Mutations of residues that make direct contact with the ABA molecule [e.g., PYR1 K59, R116; PYL2 L91] reduce ABA binding and disrupt ABA-induced PYR1 interactions with PP2Cs (Melcher et al. 2009; Nishimura et al. 2009), underlining the importance of ABA-induced conformational changes. ABA binding can, however, be functionally separated from PP2C interaction and inhibition, the PYR1K88S (corresponding to the cap) mutant protein retains ABA binding, but loses ABI1 binding (Park et al. 2009)—a pattern repeated in the PYR1K88S [lock] mutant protein (Melcher et al. 2009). The ABA-dependent root growth phenotype of Arabidopsis pyr1pyl1pyl2pyl4 seedlings is complemented by overexpression of the wild-type PYR1 but not PYR1K88S [lock] (Melcher et al. 2009).

Interestingly, there are biochemical differences in the PYR/RCAR–PP2C interaction, depending on the PYR/RCAR isoform, indicating possible functional specialization among the family members. Some PYR/RCARs interact with ABI1 in the absence of ABA treatment, whereas, for others, the interaction is induced by exogenous ABA (Ma et al. 2009; Park et al. 2009; Santiago et al. 2009b), for PYR1 and PYL1–4, the PYR–PP2C interaction is ABA-dependent, while, for other members of the family (PYL5–12), the interaction is constitutive in yeast two-hybrid analysis (Ma et al. 2009; Park et al. 2009). This pattern was also observed in Arabidopsis plants, without adding exogenous ABA, the most abundant ABI1 interactors were PYL5–12, whereas exogenous ABA treatment increased PYR1/PYL1–4 interactions with ABI1 (Nishimura et al. 2010). Some evidence indicates the possibility that formation of the protein–protein complex between PYR/RCAR and PP2C can be functionally separated from PP2C inhibition: For RCAR1 [PYL9], the interaction with ABI1 and ABI2 is constitutive, but ABA is still required for inhibition of phosphatase activity (Ma et al. 2009).

Handing on the signal—SnRK2s as positive regulators

As PYR/RCARs function through ABA-dependent inhibition of PP2C activity, targets of PP2Cs represent the next stage of the signaling pathway. The SnRK2 Ser/Thr kinase OST1 [OST1/SnRK2.6/SnRK2E] is a known positive regulator of ABA-dependent stomatal movements (Mustilli et al. 2002; Yoshida et al. 2002), and is closely related to the ABA-activated protein kinase [AAPK] of V. faba (Li et al. 2000). The Arabidopsis genome encodes 10 SnRK2s, of which SnRK2.6/OST1, SnRK2.2, and SnRK2.3 have been associated with ABA signaling. Triple snrk2.2snrk2.3snrk2.6 mutants are almost completely unresponsive to ABA [Fujii and Zhu 2009; Fujita et al. 2009; Nakashima et al. 2009], indicating that these SnRK2s form a major hub in the ABA signaling network. The C termini of SnRK2.2, SnRK2.3, and SnRK2.6 contain an Asp-enriched domain [Domain II] [Table 1] required for both ABA-specific activation of the kinase [Belin et al. 2006] and interaction with ABI1 [R Yoshida et al. 2006]. HAB1 dephosphorylates the kinase within this activation domain to repress kinase activity [Belin et al. 2006; Boudsocq et al. 2007; Vlad et al. 2009]. Consistent with this, an unbiased phosphopeptide array screening approach to identify targets of the PP2Cs HAB1, ABI1, and ABI2 isolated OST1 as a PP2C target [Vlad et al. 2009]. The PYR/RCAR-mediated inhibition of PP2C activity therefore results in SnRK2 kinase activation, allowing the phosphorylation of downstream targets. Some PP2C–SnRK2 interactions may be constitutive, as ABI1 and SnRK2.3 interact in both the presence and absence of ABA [Umezawa et al. 2009; Nishimura et al. 2010]. In contrast, yeast three-hybrid analyses indicate the ABA dependency of ABI2–SnRK2.6 and HAB1–SnRK2.6 interactions with PYL8 and PYL5, respectively [Fujii et al. 2009]. More thorough testing in planta may reveal interesting isoform-specific differences in complex assembly.

Emerging questions relating to the central signaling module

The central PYR/RCAR–PP2C–SnRK2 signaling module provides an elegant model of early events in ABA signal transduction at a molecular and structural level. However, to understand the early signaling pathway more fully, the following important questions should be addressed.

Does PP2C binding dissociate the PYR1/PYL1.2 dimer?

Structural and mutational analyses indicate significant overlap between PYR1/PYL1.2 residues located in the
dimer interface and those participating in the PYR1/PYL1,2–PP2C complex, suggesting that PYR1/PYL1,2 homodimers and PYR1/PYL1,2–PP2C complexes are mutually exclusive (Fig. 2). The model therefore implies that formation of PYR1/PYL1,2–PP2C complexes is correlated with dissociation of PYR1/PYL1,2 homodimers, but does not directly distinguish whether dimer dissociation precedes PP2C complex formation or vice versa. As described above, binding of ABA energetically weakens the homodimeric interface between the PYR1/PYL1,2s; however, ABA-bound PYR1/PYL1,2 dimers are stable enough to form both in concentrated solutions of purified proteins and when overexpressed in plant tissues (Nishimura et al. 2009; Santiago et al. 2009a; Yin et al. 2009). The protein and hormone concentrations could tune the association/dissociation equilibria for homodimers and PP2C inhibition complexes, to appropriately respond to the plant’s environmental conditions.

Do PYR/RCAR heterodimers occur and regulate ABA sensitivity?

The PYR/RCAR family proteins in *Arabidopsis* are very closely related in sequence and structure, suggesting the possibility of heterodimer formation. Different PYR/RCAR isoforms have different ligand and protein affinities; for example, PYR1 interacts with HAB1 only in the presence of [+]ABA, while PYL2 and HAB1 interact in the presence of both the natural and unnatural ABA isomers (Park et al. 2009). PYR/RCAR heterodimers may further modulate ABA sensitivity, and provide increased flexibility in the signaling cascade.

How is ABA dependency of PYR/RCAR–PP2C complexes achieved?

As described earlier, PYL5–12 (excluding PYL8) form constitutive complexes with PP2Cs (Ma et al. 2009; Park et al. 2009), yet RCAR1 (PYL9)-mediated inhibition of ABI1 and ABI2 is ABI-dependent (Ma et al. 2009). Constitutive PYL5–PYL12 (excluding PYL8) interaction with PP2Cs suggests that these PYR/RCARs may not energetically favor receptor–receptor dimer formation. The crystal structures indicate that PYR/RCAR–PP2C interactions occur at the surface created by the closing of the ligand-binding pocket, which raises the question of how ABA can access the receptor protein if binding of the PP2C has already closed the cap and lock loops. All structural studies thus far have considered PYR/RCAR proteins of the same subfamily (PYR1–PYL2); structure studies of PYL5–12 isoforms in the presence and absence of ABA and in complex with PP2Cs should help to resolve this uncertainty in mechanism.

Which PYR/RCAR and PP2C isoforms form functional receptor complexes in planta?

The vast majority of research on PYR/RCAR–PP2C interactions has been done in vitro or through heterologous expression in tobacco. Under these conditions, multiple combinations of PYR/RCAR–PP2C can form complexes, for example, ABI1 interacts with PYR1, PYL1, PYL8 (RCAR3), and RCAR1 (PYL9) (Ma et al. 2009; Miyazono et al. 2009; Park et al. 2009; Yin et al. 2009; Szostkiewicz et al. 2010). However, the diversity of interactions indicated in vitro does not necessarily occur in intact plants. In vitro analysis indicates that the specific PYR/RCAR–PP2C isoforms in a complex determine its biochemical parameters; for example, half maximal inhibition of PP2C activity occurs at a lower [ABA] in a PYL9–ABI1 complex than a PYL9–ABI2 complex (Szostkiewicz et al. 2010). Determination of the major interactions in vivo is therefore required to relate biochemical and physiological data. Identification of PYR/RCAR–ABI1 interactions in *Arabidopsis* leaves indicates that several combinations of interactions may occur at any one time (Nishimura et al. 2010). This question needs to be considered in a cell- or tissue-specific manner for full characterization of the physiologically relevant pathways. Similarly, identification of the most relevant in planta PP2C–SnRK2 interactions is required.

How are SnRK2s activated?

Given that PP2C-mediated inhibition of OST1 occurs through dephosphorylation, the origin of the activating phosphorylation should be considered. Two models of SnRK2 activation can be envisaged: autophosphorylation or phosphorylation by upstream kinases. In-gel analysis indicates that SnRK2s autophosphorylate (Belin et al. 2006; Boudsocq et al. 2007; Fujii et al. 2009; Vlad et al. 2009), yet OST1 can be activated by osmotic stress in the abi1-1 and abi2-1 backgrounds, indicating a role for an unknown protein kinase (R Yoshida et al. 2006). The current model predicts that SnRK2s are constitutively active and lose their ABA dependency in the absence of PP2Cs. Consistent with this, in an abi1hab1pp2ca mutant, SnRK2.2 and SnRK2.3 (and SnRK2.6, to a lesser extent) activity is up-regulated (Fujii et al. 2009). SnRK2.6/OST1 is reported to mediate ABA-independent responses, indicating additional possible regulation mechanisms (Zheng et al. 2010). Testing the model that inhibition of PP2C activity alone is sufficient for SnRK2 activation in planta (Fujii et al. 2009) is important; additional components might reduce the energetic cost incurred by continual removal of activating phosphates by PP2Cs.

Do PP2Cs target proteins other than SnRK2s?

The identification of SnRK2s as direct targets of PP2Cs reveals one downstream pathway for ABA signaling through PP2Cs, but does not rule out others. Genetic analyses indicate both independent and overlapping functions for the closely related PP2Cs ABI1 and ABI2 (e.g., Gilmour and Thomashow 1991; Gosti et al. 1995; Pei et al. 1997; Murata et al. 2001; Rubio et al. 2009). Phosphopeptide array studies (Vlad et al. 2009) identified additional HAB1 targets, including enzymes involved in primary metabolism and proton pumps. Other PP2C-interacting proteins identified include the chromatin remodeling factor SWI3 (Saez et al. 2008), several calcineurin-B-like protein (CBL)-interacting protein kinases (CIPK) (Guo et al. 2007)
Location of ABA perception

The identification of the PYR/RCAR proteins as ABA receptors provides clear evidence that ABA perception occurs primarily intracellularly through small soluble proteins. The site of ABA perception has been debated for several years, with evidence for both intracellular and extracellular receptors. Early studies suggested the presence of a transmembrane ABA receptor; ABA binding to proteins in V. faba is abolished in the presence of trypsin, suggesting an ABA-binding site on the external face of the membrane (Hornberg and Weiler 1984). An extracellular model of ABA perception was also suggested through experiments using ABA–protein conjugates that were unable to enter the cell, but were able to induce gene expression in rice suspension cells (Schultz and Quatrano 1998). However, the extracellular pH dependence of ABA responses also indicated an intracellular site of ABA action in one of these studies (Anderson et al. 1994). More directly, several independent studies in guard cells have suggested that ABA action can be intracellular. Patch-clamp analysis of guard cells showed that cytosolic ABA application is sufficient for rapid regulation of ion channels (Schwarz et al. 1994; Schwarz and Schroeder 1998; Levchenko et al. 2005). Microinjection of either ABA or photolabile ABA stimulated stomatal closure (Allan et al. 1994; Schwartz et al. 1994), again suggesting an intracellular site of ABA perception. Some of the conflicting data may be resolved with the recent identification of two ABC transporters that mediate transmembrane ABA flux. AtABC40 and AtABCG25 are both members of the ABCG subfamily, with AtABCG40/PDR12 being a full-length transporter and AtABCG25 being a half-size ABC transporter. AtABC40 increases the rate of ABA uptake into cells when expressed heterologously in yeast or cultured tobacco BY2 cells (Kang et al. 2010), whereas AtABCG25 mediates ABA efflux (Kuromori et al. 2010). AtABCG40 is expressed primarily in guard cells and AtABCG25 is expressed primarily in the leaf vasculature, suggesting that the two transporters act coordinately to control ABA flux in mature plants, with AtABCG25 mediating ABA efflux from the site of ABA synthesis, and AtABC40 allowing ABA uptake at the guard cell plasma membrane. Lack of effects of microinjected ABA may therefore be explained through the cellular export of ABA.

Potential alternative ABA receptors have different cellular locations than the PYR/RCARs, which may contribute to the diversity in predicted ABA response sites. GTG1 and GTG2 are plasma membrane proteins (Pandey et al. 2009), and therefore might be responsible for ABA perception at the plasma membrane. ChlH/GUN5, being part of the chlorophyll biosynthesis pathway, is located within the chloroplast. As ABA is synthesized from intermediates in the carotenoid biosynthesis pathway, which is also chloroplast-located, there is the potential for a plastid-specific ABA perception mechanism that may therefore link light perception to ABA responses.

How does the central signaling module interact with other ABA-dependent processes?

As described above, ABA activates downstream signaling through the PYR/RCAR-mediated inactivation of PP2Cs, resulting in the activation of SnRK2s. Several targets of SnRK2.6/OST1 have been identified—including the ion channels SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) and AtABCG25 mediating ABA release from shoots. ChlH/GUN5, being part of the chlorophyll biosynthesis pathway, is located within the chloroplast. As ABA is synthesized from intermediates in the carotenoid biosynthesis pathway, which is also chloroplast-located, there is the potential for a plastid-specific ABA perception mechanism that may therefore link light perception to ABA responses.

Regulation of ion channels

Stomatal aperture is regulated by the coordinated actions of ion channels at the plasma membrane and tonoplast (for review, see Schroeder et al. 2001). ABA induces a large depolarization at the plasma membrane that is controlled through (1) the inhibition of the plasma membrane H+-ATPase (Goh et al. 1996), (2) inhibition of the K+ influx channel (Schroeder and Hagiwara 1989, Lemtiri-Chlieh and MacRobbie 1994), and (3) activation of the slow (S-type) anion channel (Schroeder and Hagiwara 1989). This depolarization activates K+ efflux from the cell, resulting in a net loss of solutes and a decrease in turgor. SnRK2 phosphorylation is now associated with two of these major regulatory events at the plasma membrane, namely, the inhibition of K+ influx channels and the activation of S-type anion channels. Thus, the central signaling module interfaces with membrane proteins required for stomatal closure.

Electrophysiological analyses established that S-type anion channels are dependent on ATP and sensitive to the Ser/Thr kinase inhibitor K252a, providing early evidence that phosphorylation is required for ABA responses and...
channel activation in guard cells (Schmidt et al. 1995). Consistent with this, activation of S-type anion channels is abolished in abi1-1 and abi1-2 (Pei et al. 1997). SLAC1, identified recently as the S-type anion channel, is a 10-transmembrane domain protein with an extended cytosolic N-terminal region (N Segmuller et al. 2008) that includes an OST1 phosphorylation site required for channel activity (Geiger et al. 2009; Lee et al. 2009; Vahisalu et al. 2010). Expression of SLAC1 and OST1, but not SLAC1 alone, resulted in channel activity (Geiger et al. 2009; Lee et al. 2009). OST1 needed to be constitutively bound to SLAC1 via split YFP (bimolecular fluorescence complementation [BiFC]) constructs for strong anion channel activation (Geiger et al. 2009). The addition of ABI1, ABI2, or PP2CA to the system abolished channel activity (Geiger et al. 2009; Lee et al. 2009), demonstrating that the PP2C–SnRK2 regulatory module can be reconstituted. Expression of RCAR1/PYL9 conferred ABA-dependent phosphorylation of the SLAC1 N terminus when coexpressed with ABI1 and OST1 (Geiger et al. 2010). ABA-dependent activation of the channel in this heterologous system remains to be demonstrated.

Guard cell K⁺ uptake is also SnRK2-dependent. Kᵦ⁺ currents are inhibited by protein phosphatase inhibitors (Li et al. 1994; Thiél and Blatt 1994), indicating that inward-rectifying K⁺ uptake channels KAT1 (Schachtman et al. 1992) and KAT2 are targets of a phosphorylation-dependent pathway. Both KAT1 and KAT2 facilitate K⁺ influx in guard cells, with dominant-negative mutations in both channel proteins inhibiting K⁺ uptake (Kwak et al. 2001; Lebaudy et al. 2008). Following previous conflicting reports arguing for (Mori et al. 2000) and against (Li et al. 1998) phosphorylation of KAT1 by the OST1 homolog AAPK in V. faba, OST1 has been shown recently to phosphorylate the C terminus of KAT1 in Arabidopsis, mutation of the phosphorylated residue inhibits both K⁺ conductance and complementation of a K⁺-deficient yeast strain, indicating that this site is critical for channel activity (Sato et al. 2009).

ROS and Ca²⁺ signaling

ABA-dependent stomatal closure is associated with small signaling molecules [also known as secondary messengers], including nitric oxide (Garcia-Mata et al. 2003), ROS (Pei et al. 2000), and cytosolic free calcium (McAinsh et al. 1990). ABA-induced stomatal closure is dependent on two plasma membrane NADPH oxidases (RboH1 and RboH2) (Kwak et al. 2003) that generate ROS in the cell wall space. ABA-induced increases in ROS (Pei et al. 2000; Mustilli et al. 2002; Suhita et al. 2004) are ablated in the ost1-2 mutant (Mustilli et al. 2002; Suhita et al. 2004), indicating that SnRK2s function upstream of ROS production [Fig. 1]. A recent study showed that RboH2 is a direct target of OST1; RboH2 and OST1 interact physically in BiFC assays, and OST1 phosphorylates two sites in the extended N terminus (Sirichandra et al. 2009). One of the target motifs (R-X-X-S) is conserved between all Arabidopsis Rboh isoforms, suggesting that SnRK2 activation may be a widespread mechanism of Rboh regulation.

Analysis of ABA-induced stomatal closure in Arabidopsis under conditions in which increases in [Ca²⁺]cyt are inhibited indicates that [Ca²⁺]cyt-dependent mechanisms are responsible for ~70% of stomatal closure (Siegel et al. 2009), and several Ca²⁺-associated proteins are required for normal stomatal closure, including CIPKs, CBLs, and CIPKs [Table 1; for review, see Dodd et al. 2008, Kim et al. 2010; Kuída et al. 2010]. However, the central PYR/RCAR–PP2C–SnRK2 signaling module is not thought to be Ca²⁺-dependent; ABI1 contains a Ca²⁺-binding EF hand domain, suggesting Ca²⁺ sensitivity of the phosphatase (Leung et al. 1994; Meyer et al. 1994), but expression of truncated ABI1 provides tentative evidence that the EF hand may not have physiological significance (Sheen 1998). This raises the question: How is Ca²⁺ sensitivity of stomatal closure achieved if the seemingly Ca²⁺-independent central signaling module directly targets channels responsible for ion efflux? The identification of RbohF as an OST1 phosphorylation target provides a possible mechanistic link between the central signaling module and [Ca²⁺]cyt-dependent processes. H₂O₂ stimulates Ca²⁺-permeable channels [Iₖ,ca] at the plasma membrane, and H₂O₂-induced stomatal closure requires external Ca²⁺, showing that the ROS–Iₖ,ca–[Ca²⁺]cyt pathway is involved in ABA signaling (Pei et al. 2000; Murata et al. 2001; Kwak et al. 2003; Suhita et al. 2004). Ca²⁺-dependent and Ca²⁺-independent pathways can function in parallel to regulate cellular components; for example, the N terminus of SLAC1 is phosphorylated by both SnRK2.6/OST1 (Geiger et al. 2009) and the Ca²⁺-dependent kinases CPK21 and CPK23 (Geiger et al. 2010).

Transient increases in [Ca²⁺]cyt are observed in guard cells under resting or nonstimulated conditions (for example, see Young et al. 2006), which might appear to contradict a model of [Ca²⁺]cyt being required for ABA-induced stomatal closure. However, recent studies suggest that physiological stimuli such as ABA and CO₂ increase or “prime” the sensitivity of Ca²⁺-dependent processes (Young et al. 2006). Notably, in the presence of the stimulus, ABA or CO₂ downstream target signaling proteins are more Ca²⁺-responsive (Young et al. 2006). For example, [Ca²⁺]cyt-dependent activation of S-type anion channels and Kᵦ⁺ channel down-regulation are induced by pre-exposure to ABA (Siegel et al. 2009; Chen et al. 2010), and also by pre-exposure to high extracellular Ca²⁺ [Allen et al. 2002]. This novel Ca²⁺ sensitivity priming model could produce specificity in plant [Ca²⁺]cyt signaling, in light of the diversity and large number (>200) of Ca²⁺ sensors encoded in the Arabidopsis genome (Day et al. 2002). How priming functions at a mechanistic level is an important unresolved question, but several nonmutually exclusive mechanisms can be envisaged, including subcellular relocalization of Ca²⁺ sensors, post-translational modification, protein–protein interactions, coincidence detection of parallel signaling pathways, and transcriptional reprogramming [Fig. 3; for review, see Kim et al. 2010]. Further analysis of potential priming mechanisms is required to fully understand the mechanisms of [Ca²⁺]cyt-dependent ABA signaling.
Transcriptional responses

ABA treatment induces changes in gene expression in more than ~10% of the Arabidopsis genome (Sánchez et al. 2004; Seki et al. 2007; Yang et al. 2008; Zeller et al. 2009), resulting in the increased expression of stress-associated and signaling component transcripts. The major ABA-dependent cis-regulatory element associated with expression of abiotic stress-responsive genes is the ABA response element (ABRE; ACGTGT) (for review, see Yamaguchi-Shinozaki and Shinozaki 2005). Analysis of synthetic promoters suggests that, although a single ABRE may be insufficient, two copies of the ABRE or a single ABRE combined with the related ABRE-coupling element (ABRE-CE; ACGCGT/G/C) renders a promoter ABA-sensitive [Hobo et al. 1999; Zhang et al. 2005]. Several bZIP transcription factors—including SnRK2 phosphorylation targets ABI5, AREB1/ABF2, and AREB2/ABF4 [Johnson et al. 2002; Furihata et al. 2006; Fujii et al. 2009; Nakashima et al. 2009]—bind the ABRE and induce ABA-dependent gene expression. Correspondingly, ABA-induced gene expression is compromised in snrk2.2snrk2.3snrk2.6 mutants (Fujii and Zhu 2009; Nakashima et al. 2009). However, transcriptome analysis indicates that, despite significant overlap between genes misregulated in snrk2.2snrk2.3snrk2.6 mutants and abi5 mutants, some transcripts are misregulated in the snrk2 triple mutant and not abi5, and vice versa [Nakashima et al. 2009]. Thus, a full description of the complexity of ABA-induced transcriptional regulation may also include the action of the central signaling module on alternative transcriptional activators binding to other ABA-related cis-elements. One possible class of alternate transcriptional regulators is the Ca²⁺-regulated CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATORS (CAMTAs) [Bouche et al. 2002; Finkler et al. 2007], which bind the ABRE-CE [Doherty et al. 2009], and therefore may contribute to ABA-dependent transcriptional regulation or function in a parallel stress signaling pathway. An additional layer of complexity in ABA-induced control of gene expression is provided by links to chromatin remodeling. HAB1 interacts with the A. thaliana homolog of the yeast SWI3 subunit of SWI/SNF chromatin remodeling complexes, and swi3b knockout plants have reduced sensitivity to ABA in seed germination and growth assays [Saez et al. 2008].

Conclusions

Recently, a revolution has occurred in our understanding of ABA perception and signaling, allowing signaling cascades from ABA binding to target responses to be mapped out. As with all major discoveries, the identification of the PYR/RCAR–PP2C signaling mechanisms...
raises interesting new questions. ABA signaling issues still needing to be resolved include the detailed biochemical and structural mechanisms of dimer dissociation and PP2C association, and ABA-receptor responses in those PYR/RCARs that interact constitutively with PP2Cs. The considerable evidence reviewed here suggests that ABA signaling is mediated by a complex protein network, so other known and potentially unknown components remain to be integrated with PYR/RCAR receptor signaling. To complement the biochemical and structural details, the central signaling module also needs to be considered in a physiological context, as it is likely that cell and tissue specificity exists within the network. In addition to enabling new approaches to understanding the fundamental biology of ABA signaling, the identification of PYR/RCARs may enable new strategies for the development of drought-resistant crops.

Acknowledgments
We thank Mark Estelle, TaeHoun Kim, Sean Cutler, and Maik Böhmer for reading and comments on the manuscript. We apologize for any errors or omissions.

We thank Mark Estelle, TaeHoun Kim, Sean Cutler, and Maik Böhmer for reading and comments on the manuscript. We apologize for any errors or omissions.

We thank Mark Estelle, TaeHoun Kim, Sean Cutler, and Maik Böhmer for reading and comments on the manuscript. We apologize for any errors or omissions.

We thank Mark Estelle, TaeHoun Kim, Sean Cutler, and Maik Böhmer for reading and comments on the manuscript. We apologize for any errors or omissions.

We thank Mark Estelle, TaeHoun Kim, Sean Cutler, and Maik Böhmer for reading and comments on the manuscript. We apologize for any errors or omissions.

References

Allrechts V, Ritz O, Linder S, Harter K, Kudla J. 2001. The NAF calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant Cell 13: 457–470.

Allan AC, Fricker MD, Ward JL, Beale MH, Trewavas AJ. 1994. Abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell Physiol 35: 204–212.

Anderson BE, Ward JM, Schroeder JI. 1994. Evidence for an extracellular receptor site for abscisic acid in commelinina guard cells. Plant Physiol 104: 1177–1183.

Battisti DS, Naylor RL. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323: 240–244.

Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H. 2002. A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277: 21851–21861.

Boudsocq M, Droillard MJ, Barbier-Brygoo H, Lauriere C. 2007. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63: 491–503.

Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S. 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15: 1833–1845.

Cheong YH, Pandey GK, Grant JJ, Battistic O, Li L, Kim B-G, Lee S-C, Kudla J, Luan S. 2007. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52: 223–239.

Choi H-J, Park H-J, Park JH, Kim S, Im M-Y, Seo H-H, Kim Y-W, Hwang I, Kim SY. 2005. Arabidopsis calcium-dependent protein kinase AtCIPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139: 1750–1761.

Cutler SR, Rodríguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: Emergence of a core signaling network. Annu Rev Plant Biol 61: 651–679.

Day I, Reddy V, Shad Ali G, Reddy A. 2002. Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3: research0056. doi: 10.1186/gb-2002-3-10-research0056.

Delk NA, Johnson KA, Chowdhury NJ, Braam J. 2005. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139: 240–253.

Dodd AN, Kudla Jr, Sanders D. 2010. The language of calcium signalling. Annu Rev Plant Biol 61: 593–620.

Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21: 972–984.

Finkelstein R, Reeves W, Arizumii T, Steber C. 2008. Molecular aspects of seed dormancy. Annu Rev Plant Biol 59: 387–415.

Finkler A, Kaplan B, Fromm H. 2007. Ca2+-responsive cis elements in plants. Plant Signal Behav 2: 17–19.

Fujii H, Zhu JK. 2009. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci 106: 8380–8385.

Fujii H, Verslues PE, Zhu JK. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19: 485–494.

Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK. 2009. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462: 660–664.

Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kodokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, et al. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50: 2123–2132.

Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci 103: 1988–1993.

Garcia-Mata C, Gay R, Sokolovsky S, Hils A, Lamattina L, Blatt MR. 2003. Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci 100: 11116–11121.
New discoveries in early ABA signal transduction

Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, et al. 2009. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. *Plant Natl Acad Sci* 106: 21425–21430.

Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, et al. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca\(^{2+}\) affinities. *Proc Natl Acad Sci* 107: 8023–8028.

Gilmour SJ, Thomasow MF. 1991. Cold-acclimation and cold-regulated gene-expression in ABA mutants of *Arabidopsis thaliana*. *Plant Mol Biol* 17: 1233–1240.

Gilroy S, Jones RL. 1994. Perception of gibberellin and abscisic acid at the external face of the plasma membrane of barley (*Hordeum vulgare*) aleurone protoplasts. *Plant Physiol* 104: 1185–1192.

Goh CH, Kinoshita T, Oku T, Shimazaki K. 1996. Inhibition of blue light-dependent H\(^+\) pumping by abscisic acid in *Vicia* guard-cell protoplasts. *Plant Physiol* 111: 433–440.

Gosti F, Bertauche N, Vartanian N, Giraudat J. 1995. Abscisic-acid-dependent and abscisic-acid-independent regulation of gene expression by progressive drought in *Arabidopsis thaliana*. *Mol Gen Genet* 246: 10–18.

Guo Y, Xiong L, Song C-P, Gong D, Halfter U, Zhu J-K. 2002. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in *Arabidopsis*. *Dev Cell* 3: 233–244.

Guo J, Zeng Q, Emami M, Ellis BE, Chen J-G. 2008. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in *Arabidopsis*. *PLoS ONE* 3: e2982. doi: 10.1371/journal.pone.0002982.

Hobo T, Asada M, Kowyama Y, Hattori T. 1999. ACGT-3: A protein kinase–phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in *Arabidopsis*. *Plant Cell* 14: 2849–2861.

Kim T-H, Bo¨hmer M, Hu H, Nishimura N, Schroeder JI. 2010. Calcium signals: The lead currency of plant information processing. *Plant Cell* 22: 541–563.

Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI. 2006. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in *Arabidopsis*, and effects of abh1 on AtPP2CA mRNA. *Plant Physiol* 140: 127–139.

Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K. 2010. ABC transporter AtABC25 is involved in abscisic acid transport and responses. *Proc Natl Acad Sci* 107: 2361–2366.

Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI. 2001. Dominant negative guard cell K\(^+\) channel mutants reduce inward-rectifying K\(^+\) currents and light-induced stomatal opening in *Arabidopsis*. *Plant Physiol* 127: 473–485.

Kwak JM, Moon J-H, Murata Y, Kuchitsu K, Leonhardt N, Delong A, Schroeder JI. 2002. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in *Arabidopsis*. *Plant Cell* 14: 2849–2861.

Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI. 2003. NADPH oxidase AtRbohD and AtRbohF genes function in ROS-dependent ABA signaling in *Arabidopsis*. *EMBO J* 22: 2623–2633.

Lebady A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud J-B, Very A-A, Simonneau T, Sentenac H. 2008. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. *Proc Natl Acad Sci* 105: 5271–5276.

Lee SC, Lan W, Buchanan BB, Luan S. 2009. A protein kinase–phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. *Proc Natl Acad Sci* 106: 21419–21424.

Lemtiri-Chlief F, MacRobbie EA. 1994. Role of calcium in the modulation of *Vicia* guard cell potassium channels by abscisic acid: A patch-clamp study. *J Membr Biol* 137: 99–107.

Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI. 2004. Microarray expression analyses of *Arabidopsis* guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. *Plant Cell* 16: 596–615.

Leung J, Bouvier-Durand M, Morris P, Guerrier D, Chefdor F, Giraudat J. 1994. *Arabidopsis* ABA response gene ABI1: Features of a calcium-modulated protein phosphatase. *Science* 264: 1448–1452.

Leung J, Merlot S, Giraudat J. 1997. The *Arabidopsis* ABCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 Genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. *Plant Cell* 9: 759–771.

Levchenko V, Konrad KR, Dietrich P, Roelfsema MRG, Hedrich R. 2005. Cytosolic abscisic acid activates guard cell anion channels without preceding Ca\(^{2+}\) signals. *Proc Natl Acad Sci* 102: 4203–4208.

Li W, Luan S, Schreiber SL, Assmann SM. 1994. Evidence for protein phosphatase 1 and 2A regulation of K\(^+\) channels in two types of leaf cells. *Plant Physiol* 106: 963–970.

Li J, Julie Lee Y-R, Assmann SM. 1998. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. *Plant Physiol* 116: 785–795.

Li J, Wang X-Q, Watson MB, Assmann SM. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. *Science* 287: 300–303.
Ma SY, Wu WH. 2007. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65: 511–518.

Ma Y, Sztokiewicz I, Korte A, Moe D, Yang Y, Christmann A, Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064–1068.

Magnan F, Ranty B, Charpenteur M, Sotta B, Galaud J-P, Aldon D. 2008. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56: 575–589.

Marris E. 2008. Water: More crop per drop. Nature 453: 273–277.

Meyer K, Leube M, Grill E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452–1455.

Mori IC. 2000. Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia faba guard cells. Plant Cell Physiol 41: 850–856.

Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y-F, Andreoli S, Sanchez J-P, Duque P, Chua N-H. 2004. ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. PERS Lett 421: 185–190.

Nishimura N, Hitomi K, Arvai AS, Ramroo RP, Hitomi C, Cutler SR, Schroeder JJ, Getzoff ED. 2009. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326: 1373–1379.

Pandey GK, Grant JJ, Cheong YH, Kim B-G, Li LG, Luan S. 2008. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant 1: 238–248.

Pei Z-M, Murata Y, Benning G, Thromine S, Kusumoto J, Allen GJ, Grill E, Schroeder JI. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734.

Rodriguez PL, Benning G, Grill E. 1998. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. PERS Lett 421: 185–190.

Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL. 2004. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37: 354–369.

Sánchez J-P, Duque P, Chua N-H. 2004. ABA activates ADPR cyclase and CADPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J 38: 381–395.

Sato A, Sato Y, Fukuo Y, Fujimura M, Umezawa T, Shinozaki K, Hibi T, Tamaguchi M, Miyauchi Y, Takahashi M, et al. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50: 1345–1363.

Sato A, Sato Y, Takahashi M, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K. 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452: 483–486.

SnRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50: 1345–1363.

Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K. 2008. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452: 483–486.

Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. 2007. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50: 935–949.

Pei Z-M, Murata Y, Benning G, Thromine S, Kusumoto J, Allen GJ, Grill E, Schroeder JI. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734.

Rodriguez PL, Benning G, Grill E. 1998. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. PERS Lett 421: 185–190.

Rubio S, Rodriguez A, Saez A, Dizon MB, Galle A, Kim T-H, Santiago J, Flexas J, Schroeder JI, Rodriguez PL. 2009. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150: 1345–1355.

Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL. 2004. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37: 354–369.

Saez A, Rodriguez A, Santiago J, Rubio S, Rodriguez PL. 2008. HAB1–SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20: 2972–2988.

Sánchez J-P, Duque P, Chua N-H. 2004. ABA activates ADPR cyclase and CADDPR induces a subset of ABA-responsive genes in Arabidopsis. Plant J 38: 381–395.

Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA. 2009a. CDPKs reveal its role as a negative regulator of abscisic acid signalling. Plant J 37: 354–369.

Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA. 2009a. CDPKs reveal its role as a negative regulator of abscisic acid signalling. Plant J 37: 354–369.

Sato A, Sato Y, Fukuo Y, Fujimura M, Umezawa T, Shinozaki K, Hibi T, Tamaguchi M, Miyauchi Y, Goto DB, et al. 2009. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424: 439–448.
New discoveries in early ABA signal transduction

Schachtman DP, Schroeder JJ, Lucas WJ, Anderson JA, Gaber RF. 1992. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258: 1654–1658.

Schmidt C, Schelle I, Liao YJ, Schroeder JJ. 1995. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci 92: 9535–9539.

Schroeder JJ, Hagiwara S. 1989. Cytosolic calcium regulates ion channels in the plasma-membrane of Vicia faba guard-cells. Nature 338: 427–430.

Schroeder JJ, Kwas JM, Allen GJ. 2001. Guard cell abscisic acid signalling and engineering drought hardness in plants. Nature 410: 327–330.

Schultz TF, Quatrano RS. 1995. Strong acid: An intracellular locus of phytohormone action. Proc Natl Acad Sci 92: 4019–4023.

Schwarz A, Wu WH, Tucker EB, Assmann SM. 1994. Inhibition of inward K+ channels and stomatal response by abscisic acid: An intracellular locus of phytohormone action. Proc Natl Acad Sci 91: 4019–4023.

Schwarz M, Schroeder JJ. 1998. Abscisic acid maintains S-type anion channel activity in ATP-depleted Vicia faba guard cells, indicating phosphorylation inhibition. FEBS Lett 428: 177–182.

Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10: 296–302.

Sheen J. 1998. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci 95: 975–980.

Shen Y-Y, Wang X-F, Wu F-Q, Xin Q, Cao Z, Liu Z-Q, Du S-Y, Mei C, Zhao C-X, Wang X-F, Shang Y, Jiang T, et al. 2009. The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: New evidence in Arabidopsis. Plant Physiol 150: 1940–1954.

Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K. 2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43: 1473–1483.

Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder J. 2006. CO2 signaling in guard cells: Calcium sensitivity of S-type anion and inward-rectifying K+ channels and stomatal response by abscisic acid. Trends Plant Sci 11: 258–264.

Schumacher VP, Cao Z, Shang Y, Wang X-F, Shang Y, Jiang T, et al. 2009. The Mg-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: New evidence in Arabidopsis. Plant Physiol 150: 1940–1954.

Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K, Hirayama T. 2006. ABA-hypersensitive gca2 mutant. Proc Natl Acad Sci 103: 7506–7511.

Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S. 2009. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58: 1068–1082.

Zhang D-P, Wu Z-Y, Li X-Y, Zhao Z-X. 2005. Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 138: 714–725.
kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in *Arabidopsis*. *Plant Physiol* **153**: 99–113.

Zhu S-Y, Yu X-C, Wang X-J, Zhao R, Li Y, Fan R-C, Shang Y, Du S-Y, Wang X-F, Wu F-Q, et al. 2007. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in *Arabidopsis*. *Plant Cell* **19**: 3019–3036.
Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions

Katharine E. Hubbard, Noriyuki Nishimura, Kenichi Hitomi, et al.

Genes Dev. 2010, 24:
Access the most recent version at doi:10.1101/gad.1953910

References

This article cites 129 articles, 63 of which can be accessed free at:
http://genesdev.cshlp.org/content/24/16/1695.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.