Linear Optimal Fusion of Local Unbiased FIR Filters

Xuefeng Fan1, and Shunyi Zhao1,* Yuriy S. Shmaiy\textsuperscript{2,**}

1Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China
2Department of Electronics Engineering, Universidad de Guanajuato, Salamanca 36885, Mexico

Abstract. This paper presents a multi-sensor decentralized fusion unbiased finite impulse response (UFIR) filter for discrete time-invariant state-space models. Fusion is provided in the minimum variance sense. By calculating the cross covariance between any of two local filters for the extended state-space model, linear optimal weights are derived to fuse local UFIR estimates. Simulation conducted for a two-state polynomial model shows that the proposed fusion UFIR filter has higher robustness than the fusion Kalman filter against errors in the noise statistics and temporary model uncertainties.

1 Introduction

State estimation plays as an important role in many engineering areas such as tracking [1], multi degrees-of-freedom mechanical systems [2], timekeeping and clock synchronization [3], and positioning. Generally, estimates can be provided employing either the finite impulse response (FIR) structures having limited memory or infinite impulse response (IIR) ones requiring all data [4].

The Kalman filter (KF) [5], which has an IIR structure, has been applied widely owing to simple programming, small required memory, and fast recursive computation. However, the KF-based estimators often face problems in industrial applications when the noise environment is augmented with outliers and become non-Gaussian and/or both the process and its measurement undergo temporary uncertainties [6]. Under such conditions, the KF produces extra errors and may become redundantly noisy or biased, while the extended KF (EKF) may even diverge. Therefore, many efforts were made during decades to improve the performance and satisfy the required conditions [7–9].

Unlike the KF, linear FIR estimators can be represented in discrete time index \(n \) on an averaging horizon \([m, n] \) of \(N \) points, from \(m = n - N + 1 \) to \(n \), in a batch form of [10]

\[
\hat{x}_n = \sum_{i=m}^{n} H_i y_i + \sum_{i=m}^{n} L_i u_i ,
\]

where \(\hat{x}_n \) is the estimate of state \(x_n \), \(y_i \) is the observation vector, and \(u_i \) is the control input. Matrices \(H_i \) and \(L_i \) are the filter gains, which must be determined to obey some cost function. Since data beyond the horizon \([m, n] \) do not affect estimate \(\hat{x}_n \), the FIR structure has higher robustness than the KF. It is also known that the FIR structure has the inherent bounded input/bounded output (BIBO) stability [11, 12] and produces smaller round-off errors [11].

Among different kinds of FIR estimators, the unbiased FIR (UFIR) filter [13] is blind on given horizons. It is also a robust linear estimator owing to an ability to ignore the noise statistics and initial values. Unlike the KF, which relies on accurate noise statistics, initial state, and initial errors, the UFIR filter requires only an optimal averaging horizon \(N_{\text{opt}} \) in order to minimize the mean square error [14]. Because \(N_{\text{opt}} \) can be determined in a way much easier than for the noise statistics, the UFIR filter often demonstrates better performance than the KF [15, 16].

To meet the requirements for accuracy in wireless sensor networks (WSN), the information fusion filtering theory has been developed for multi-sensor systems [17]. Common strategies of the WSN include the centralized and decentralized fusion [18]. The former can minimize information losses, but with poor flexibility and large computational burden. The latter employs estimates provided by local filters, which can overcome the above shortcomings and improve accuracy of local estimators [19]. However, existing fusion filtering algorithms were mostly constructed based on the KF, while the FIR-type estimators are still under the development for fusion in WSN. Motivated by above, this paper proposes a linear optimal decentralized state fusion strategy based on discrete-time state-space UFIR filtering.

The notations used in this paper are summarized as follows: \(I_k \) denotes the \(k \times k \) identity matrix, \(\mathbb{E}[x] \) denotes the expectation of \(x \), \(x^T \) denotes the transpose of \(x \), and \(0 \) denotes the zero matrix of proper dimensions.

2 Problem Formulation and Preliminaries

Consider the following linear discrete time-invariant multi-sensor system

\[
x_{n+1} = A x_n + E u_n + B w_n ,
\]

\[
y_n = C^{[i]} x_n + v_n^{[i]} ,
\]

\[
e_{n} = y_n - y_n^{[i]} .
\]
where \(i = 1, 2, \ldots, r \) is the sensor index, \(x_n \in R^k \) is the state vector, \(y_{m}^{[i]} \in R^{m} \) is the measurements provided by \(i \)th sensor, \(u_n \in R^k \) is a known control signal, and \(A, E, B, \) and \(C \) are known constant matrices of proper dimensions. Here, \(w_n \in R^k \) and \(v_{m}^{[i]} \in R^{m} \) are the process and measurement noise vectors, which are assumed to be zero mean, \(\mathbb{E}[w_n] = 0, \mathbb{E}[v_{m}^{[i]}] = 0 \), uncorrelated and white Gaussian with variances \(Q \) and \(R_{m} \), respectively.

The aim now is to design a decentralized UFIR filter \(\hat{X}_n \) for time-invariant systems represented with (2)-(3) in frames of the optimal information fusion strategy.

2.1 Extended State Space Model

On a horizon \([m, n] \), equations (2) and (3) can be expanded as shown in [13],

\[
X_{m,n} = A_{m,n}x_m + E_{m,n}u_{m,n} + B_{m,n}w_{m,n}, \quad (4)
\]

\[
y_{m,n}^{[i]} = C_{m,n}x_m + G_{m,n}^{[i]}u_{m,n} + F_{m,n}^{[i]}w_{m,n} + V_{m,n}^{[i]}, \quad (5)
\]

where the extended vectors are specified by

\[
X_{m,n} = \begin{bmatrix} x_{m,n}^T & x_{m,n-1}^T & \cdots & x_{m,n-l+1}^T \end{bmatrix}^T, \quad U_{m,n} = \begin{bmatrix} u_{m,n}^T & u_{m,n-1}^T & \cdots & u_{m,n-l+1}^T \end{bmatrix}^T, \quad Y_{m,n}^{[i]} = \begin{bmatrix} (y_{m,n}^{[i]})^T & (y_{m,n-1}^{[i]})^T & \cdots & (y_{m,n-l+1}^{[i]})^T \end{bmatrix}^T, \quad W_{m,n} = \begin{bmatrix} w_{m,n}^T & w_{m,n-1}^T & \cdots & w_{m,n-l+1}^T \end{bmatrix}^T, \quad V_{m,n}^{[i]} = \begin{bmatrix} (v_{m,n}^{[i]})^T & (v_{m,n-1}^{[i]})^T & \cdots & (v_{m,n-l+1}^{[i]})^T \end{bmatrix}^T.
\]

Extended matrices \(A_{m,n} \), \(B_{m,n} \), \(C_{m,n} \), \(G_{m,n}^{[i]} \), \(F_{m,n}^{[i]} \), \(E_{m,n} \), \(G_{m,n}^{[i]} \), \(F_{m,n}^{[i]} \), and \(F_{m,n}^{[i]} \) are time-invariant and \(N \)-dependent,

\[
A_{m,n} = \begin{bmatrix} (A^{N-1})^T & (A^{N-2})^T & \cdots & A^T & I_3^T \end{bmatrix}^T, \quad B = \begin{bmatrix} AB \cdots A^{N-2}B & A^{N-1}B \end{bmatrix}^T, \quad(6)
\]

\[
B_{m,n} = \begin{bmatrix} 0 & 0 & \cdots & 0 & B & AB & \cdots & A^{N-3}B & A^{N-2}B \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 0 & B \end{bmatrix}^T, \quad (7)
\]

\[
C_{m,n}^{[i]} = \overline{C_{m,n}^{[i]}}, \quad G_{m,n}^{[i]} = \overline{C_{m,n}^{[i]}}, \quad E_{m,n}, \quad (8)
\]

\[
F_{m,n}^{[i]} = \overline{F_{m,n}^{[i]}}, \quad (9)
\]

where

\[
\overline{C_{m,n}^{[i]}} = \text{diag}(C^{[i]}_m, C^{[i]}_m, \ldots, C^{[i]}_m), \quad (11)
\]

and \(E_{m,n} \) can be obtained as (7) by substituting \(B \) with \(E \).

2.2 Local UFI Filter

A local \(i \)th subsystem can also be modeled with (4) and (5) and designed as the UFI filter employing measurements on \([m, n] \) to provide state estimation at \(n \).

In the discrete convolution form, the \(i \)th FIR state estimate \(\hat{x}_{n}^{[i]} \) can be obtained in the batch form as

\[
\hat{x}_{n}^{[i]} = H_{n}^{[i]}Y_{n}^{[i]} + F_{n}^{[i]}U_{n,m} + \hat{X}_n, \quad (12)
\]

where \(H_{n}^{[i]} \) and \(L_{n}^{[i]} \) still needs to be determined.

To guarantee unbiasedness in the local estimator (12), the unbiasedness condition \(\mathbb{E}[\hat{x}_{n}^{[i]}] = \mathbb{E}[X_n] \) must be satisfied. Using the first row vector of (4) and substituting (5) into (12) yield

\[
x_{n} = A_{n,m}^{-1}x_{m} + \overline{E}_{n,m}U_{n,m} + B_{n,m}w_{n,m}, \quad (13)
\]

\[
y_{n}^{[i]} = H_{n}^{[i]}C_{n,m}x_{m} + G_{n,m}^{[i]}U_{n,m} + F_{n,m}w_{n,m} + V_{n,m}^{[i]} + F_{n,m}^{[i]}U_{n,m}, \quad (14)
\]

where \(\overline{E}_{n,m} \) and \(B_{n,m} \) are the first vector rows of \(E_{m,n} \) and \(B_{m,n} \). By averaging (13) and (14) and referring to the zero-mean assumption of the noise sources, we obtain

\[
H_{n}^{[i]}C_{n,m}x_{m} + H_{n}^{[i]}G_{n,m}^{[i]}U_{n,m} + L_{n}^{[i]}U_{n,m}
\]

\[
= A_{n,m}^{-1}x_{m} + \overline{E}_{n,m}U_{n,m}, \quad (15)
\]

To solve (15), the unbiasedness constraints \(H_{n}^{[i]}C_{n,m} = A_{n,m}^{-1} \) and \(H_{n}^{[i]}G_{n,m}^{[i]} = \overline{E}_{n,m} \) must be satisfied that yields

\[
H_{n}^{[i]} = A_{n,m}^{-1}C_{n,m}^{-1}, \quad G_{n,m}^{[i]} = \overline{E}_{n,m}C_{n,m}^{-1}, \quad (16)
\]

\[
L_{n}^{[i]} = \overline{E}_{n,m} - H_{n}^{[i]}G_{n,m}^{[i]}, \quad (17)
\]

Substituting (16) and (17) into (12) gives

\[
\hat{x}_{n} = H_{n}^{[i]}Y_{n}^{[i]} - G_{n,m}^{[i]}U_{n,m} + \overline{E}_{n,m}U_{n,m}, \quad (18)
\]

where \(H_{n}^{[i]} \) is specified by (16).

Following the lines developed in [20], the \(i \)th local batch UFI filter (18) can be equivalently realized through an iterative procedure of

\[
\hat{x}_{n+1}^{[i]} = A_{n}^{-1}H_{n}^{[i]}Y_{n}^{[i]} + B_{n}u_{n} + E_{n}w_{n}, \quad (19)
\]

\[
M_{n}^{[i]} = [(C_{n}^{[i]})^T C_{n}^{[i]} + (AM_{n-1}A^T)^{-1}]^{-1} + A_{n}^{-1}, \quad (20)
\]

\[
\hat{x}_{n}^{[i]} = \hat{x}_{n}^{[i]} + M_{n}^{[i]}(C_{n}^{[i]})(y_{n}^{[i]} - C_{n}^{[i]}\hat{x}_{n}^{[i]}), \quad (21)
\]

where \(l \) is an iterative index ranging from \(s = m + k - 1 \) to \(n \) and initial values \(M_{0}^{[i]} \) and \(\hat{x}_{0}^{[i]} \) are computed in short batch forms as

\[
\hat{x}_{n}^{[i]} = A_{n}^{-1}H_{n}^{[i]}Y_{n}^{[i]} - G_{n,m}^{[i]}U_{n,m} + \overline{E}_{n,m}U_{n,m}, \quad (22)
\]

where \(\overline{E}_{n,m} \) corresponds to \(l = n \).

Provided local estimates \(\hat{x}_{n}^{[i]} \), \(i \in [1, r] \), the linear optimal fusion strategy can be implemented in the minimum mean square error (MSE) sense as will be shown next.

3 Optimal Decentralized State Fusion

In this section, we first derive an optimal state fusion weighted matrix for the FIR structure and next discuss fusion errors.

Employing local UFI filters, fusion of filtering estimates can be organized as

\[
\hat{x}_{n} = \alpha_1\hat{x}_{n}^{[1]} + \alpha_2\hat{x}_{n}^{[2]} + \cdots + \alpha_r\hat{x}_{n}^{[r]}, \quad (24)
\]

where \(\alpha_i \), \(i \in [1, r] \), are weights, which are required to be optimal. By applying the unbiasedness conditions
\(\mathbb{E}\{\hat{x}_n\} = \mathbb{E}\{x_n\} \) and \(\mathbb{E}\{\hat{x}_n^2\} = \mathbb{E}\{x_n^2\} \) to (24) and taking the expectation on both sides yield

\[
I_k = \alpha_1 + \alpha_2 + \cdots + \alpha_r. \quad (25)
\]

Next, a new variable \(\Lambda = [\alpha_1, \alpha_2, \cdots, \alpha_r] \) produces the unbiasedness constraint

\[
\Lambda I = I_k, \quad (26)
\]

where \(I = [I_k, I_k, \cdots, I_k]^T \) \(k \times k \). Using (24), we can now calculate the fusion estimation error \(e_n \) by

\[
e_n = x_n - \left(\alpha_1 \hat{x}_n^{[1]} + \alpha_2 \hat{x}_n^{[2]} + \cdots + \alpha_r \hat{x}_n^{[r]} \right) = \Lambda(x_n - \hat{x}_n^{[1]} + \cdots + \alpha(x_n - \hat{x}_n^{[r]})) = \Lambda[(x_n - \hat{x}_n^{[1]} - \cdots - x_n - \hat{x}_n^{[r]})^T]. \quad (27)
\]

Since all of the estimates are unbiased, the error covariance matrix of the fusion estimate can be computed by

\[
P = \mathbb{E}\{e_n e_n^T\} = \Lambda \Sigma \Lambda^T, \quad (28)
\]

where \(\Sigma = \{P_{ij}\}_{i,j=1,2,\ldots,r} \) with \(P_{ij} = \mathbb{E}\{((x_n - \hat{x}_n^{[i]})(x_n - \hat{x}_n^{[j]}))^T\} \).

Taking the trace operator, we next define \(J = \text{tr}(\Lambda \Sigma \Lambda^T) \) and minimize \(J \) subject to the constrain (26). Applying the Lagrange multiplier approach, an auxiliary cost function \(J^* \) is constructed as

\[
J^* = \text{tr}(\Lambda \Sigma \Lambda^T) + 2\Gamma(\Lambda \tilde{I} - I_k), \quad (29)
\]

where \(\Gamma = (\Lambda_{ij})_{k \times k} \) is a \(k \times k \) matrix. Setting \(\partial J^*/\partial \Lambda = 0 \) and considering \(\Sigma^T = \Sigma \) allows writing

\[
2\Lambda \Sigma + 2\tilde{I} \tilde{\Sigma} = 0. \quad (30)
\]

Combining (30) with the constraint (26) and using the formulation of block matrix inversion, a solution can be found as

\[
\tilde{\Sigma} = (\tilde{\Sigma}^{-1} + \gamma^{-1})^{-1} \gamma^{-1}. \quad (31)
\]

In the minimum variance sense [17], the optimal linear fusion UFIR filter becomes

\[
\hat{x}_n^{[\Lambda]} = \tilde{\Lambda}_1 \hat{x}_n^{[1]} + \tilde{\Lambda}_2 \hat{x}_n^{[2]} + \cdots + \tilde{\Lambda}_r \hat{x}_n^{[r]}, \quad (32)
\]

where weights \(\tilde{\Lambda}_i \) are given by (31), \(\tilde{\Lambda} = [\tilde{\Lambda}_1, \tilde{\Lambda}_2, \cdots, \tilde{\Lambda}_r] \) \(r \times r \) collects the particular weights, and \(\Sigma = \{P_{ij}\}_{i,j=1,2,\ldots,r} \) is an \(kr \times kr \) symmetric positive definite matrix, which will be considered below.

3.1 Error Cross Covariance \(P_{ij} \)

As can be seen, to compute optimal weights \(\tilde{\Lambda}_i \), matrix \(\Sigma = \{P_{ij}\}_{i,j=1,2,\ldots,r} \) is required, because it contains the error cross covariances \(P_{ij} \) for the \(r \)th and \(j \)th subsystems.

For the \(i \)th sensor, we write the estimation error as

\[
e_n^{[i]} = x_n - \hat{x}_n^{[i]} = \left(A^{nm} - H_n^{[i]} C_{nm} \right) x_n + \tilde{B}_{n,m} W_{nm} + \tilde{H}_{n,m} F_{nm} + V_{n,m}, \quad (33)
\]

and further reduce it to

\[
e_n^{[i]} = (\tilde{B}_{n,m} - H_n^{[i]} F_{nm}^{[j]}) W_{nm} - H_n^{[i]} V_{n,m}, \quad (34)
\]

referring to \(A^{nm} = H_n^{[i]} C_{nm} \). Since \(W_{nm} \) and \(V_{n,m} \) are uncorrelated, we have \(\mathbb{E}\{W_{nm} V_{n,m}^T\} = 0 \), and the error cross covariances between the \(i \)th and \(j \)th sensors can be found as

\[
P_{ij} = \mathbb{E}\{e_n^{[i]} e_n^{[j]}^T\} = (\tilde{B}_{n,m} - H_n^{[i]} F_{nm}^{[j]}) \mathbb{E}\{W_{nm} W_{nm}^T\} (\tilde{B}_{n,m} - H_n^{[j]} F_{nm}^{[j]})^T + \tilde{H}_{n,m} \mathbb{E}\{V_{n,m}^T \} (\tilde{H}_{n,m})^T \quad (35)
\]

that allows specifying the following covariances

\[
\tilde{Q} = \mathbb{E}\{W_{nm} W_{nm}^T\} = \mathbb{E}\{[w_{n,1}^T, w_{n,2}^T, \cdots, \bar{x}_{n,m}] \cdots \} = \text{diag}(Q, \bar{Q}, \cdots, \tilde{Q}), \quad (36)
\]

\[
R_{ij} = \mathbb{E}\{V_{n,m}^T \} \quad \mathbb{E}\{[v_{n,1}^T, v_{n,2}^T, \cdots, v_{n,m}^T] \cdots \} = \text{diag}(R_{ij}, R_{ij}, \cdots, R_{ij}), \quad (37)
\]

where \(R_{ij} = \mathbb{E}\{v_{n,1}^T v_{n,1}^T\} \). Substituting (36) and (37) into (35), the cross error covariance \(P_{ij} \) between the \(i \)th and \(j \)th sensor subsystems is finally given by

\[
P_{ij} = (\tilde{B}_{n,m} - H_n^{[i]} F_{nm}^{[j]}) \text{diag}(\tilde{Q}_{B_{n,m}} - H_n^{[j]} F_{nm}^{[j]})^T + \tilde{H}_{n,m} R_{ij} (\tilde{H}_{n,m})^T. \quad (38)
\]

3.2 Fusion UFIR Filtering Algorithm

At this point, the optimal decentralized state fusion UFIR estimate can be summarized as

\[
\hat{x}_n = \tilde{\Lambda}_1 \hat{x}_n^{[1]} + \tilde{\Lambda}_2 \hat{x}_n^{[2]} + \cdots + \tilde{\Lambda}_r \hat{x}_n^{[r]}, \quad (39)
\]

where estimates \(\hat{x}_n^{[i]}, i \in [1, r] \), are given by (19)-(23), optimal matrix weights \(\tilde{\Lambda}_i \) by (31), and the error cross covariance \(P_{ij} \) by (38). A structure of the proposed algorithm is shown in Fig. 1. As can be seen, each subsystem estimates states independently at \(n \) and the estimation errors of any two sensors are fused to determine the cross covariance matrix \(\{P_{ij}\}, [i, j] \in [1, r] \).
4 Simulations

In this section, we provide simulations employing a two-state polynomial model to demonstrate better performance of the proposed algorithm (denoted as FUF) against the fusion KF (denoted as FKF) in different noise environments. To this end, we consider a time-invariant system combined with three sensors

\[
x_{n+1} = \begin{bmatrix} 1 & \tau \\ 0 & 1 \end{bmatrix} x_n + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_n + \begin{bmatrix} 0.1 \\ 1 \end{bmatrix} w_n, \quad \text{(40)}
\]

\[
y^{[i]}_n = C^{(i)} x_n + v^{[i]}_n, \quad \text{(41)}
\]

where \(i \in [1, 3], \tau = 0.1, \) and \(u_n = 0.1. \) The covariances of process noise \(w_n \) and measurement noise \(v^{[i]}_n \) are \(Q = 0.1, R^{[1]} = 5, R^{[2]} = 8, \) and \(R^{[3]} = 10. \)

4.1 Comparing Local and Fusion Performances

To show that FUF outperforms any of the local UFIR filters, we assume that the noise statistics and modeling parameters are known accurately. We then simulate the process at 500 points and provide filtering with 100 Monte-Carlo runs. Even a quick look shows that the FUF has better accuracy than any of the local filters.

![Figure 2. RMSEs produced by local and fusion filters: (a) first state and (b) second state.](image)

4.2 Robustness Against Incorrectness in Noise Covariances

Information of noise not always completely available that may severely affect estimates. To investigate effect of errors in the noise covariances, in this part we introduce a scaling coefficient \(\beta \) and substitute \(Q \) with \(Q^\beta = \beta Q. \)

By defining \(J_n = E \{ (x_n - \hat{x}_n)(x_n - \hat{x}_n)^T \} \), the average RMSEs computed by \(\sqrt{\text{tr}(J_n)} \) over 100 Monte-Carlo runs for the FKF and FUF with \(\beta = 0.01, 0.1, 1, 10, 100 \) are listed in Table 1. For each \(\beta \), the smallest values are bolded for clarity. The results are supported with Fig. 3, in which three sub-figures sketch the RMSEs for \(\beta = 0.1, \beta = 1, \) and \(\beta = 100. \) It follows from Fig. 3 that the FUF performance is less vulnerable to \(\beta \) than that of FKF. Specifically, when noise is exactly known by \(\beta = 1, \) the difference between the FUF and FKF outputs is indistinguishable. When \(\beta \neq 1, \) errors in FKF grow more rapidly and may become unacceptable, while the FUF still provides good estimates even when \(\beta \gg 1 \) and \(\beta \ll 1. \)

\(\beta \)	0.01	0.1	1	10	100
FKF	14.8	5.10	1.23	1.39	3.10
FUF	1.25	1.23	1.25	1.26	1.32

4.3 Robustness Against Temporary Model Uncertainty

It is known that temporary uncertainties such as jumps in frequency and velocity [6] may severely affect estimates on a short time span. To learn effects associated with such phenomena, we set

\[
A = \begin{bmatrix} 1 & \tau + d \\ 0 & 1 \end{bmatrix},
\]

where \(d = 0.1 \) acts on \(100 \leq n \leq 150 \) and \(d = 0 \) otherwise. Because \(d \) is unknown, all algorithms are run with \(d = 0 \) over all time.

Figure 4a and Fig. 4b illustrate typical responses of the FKF and FUF to model mismatch at \(100 \leq n \leq 150 \) for the two-state polynomial model. As can be seen, the FKF estimates of the first state are poor and get worse than in the FUF. The difference between the FUF and FKF estimates of the second state is less pronounced, but the observations are generally the same.

5 Conclusion

Under the linear unbiased minimum variance rule, this paper derives an optimal fusion UFIR filter for linear discrete time-invariant system with multiple sensors. The proposed algorithm has several useful characteristics. Its accuracy is fundamentally better than in any of local UFIR filters. Under the idea conditions, the FUF provides accuracy, which is closely related to FKF. When the underlying model is uncertain, the FUF outperforms the FKF as being a more robust estimator. Although better performance of the FUF has been confirmed, the determination of optimal horizons for local UFIR filters remains an open problem.

References

[1] Eli B., Tracking and Kalman Filtering Made Easy (John Wiley & Sons, 1998) 20-40
To this end, we consider a time-invariant system combined of the proposed algorithm (denoted as FUF) against the fusion UFIR algorithm. In this section, we provide simulations employing a two-dimensional process model with a low-dimension input signal. We assume that the noise statistics and modeling parameters are known accurately. We then simulate the proposed algorithm with the matching fusion UFIR algorithm. To show that FUF outperforms any of the local UFIR filters, we consider an experiment with an input signal of two sinusoidal components for the first state, and four sinusoidal components for the second state. The parameters are as follows: $\tau = 1$, $\sqrt{\beta} = 0.5$, $\beta = 1$, $\sqrt{\beta} = 1.5$, $\beta = 1$, $\tau = 10$, and $\sqrt{\beta} = 5$. The results show that the FUF algorithm has better accuracy than any of the local filters. The average root MSEs (RMSEs) produced by the FUF and the fusion UFIR algorithms are evaluated over 100 Monte-Carlo trials.

Figure 2. The covariances of x_n are computed by R with $Q = I$, the average of $\sqrt{J_n}$ is computed by J_n over 100 Monte-Carlo trials. The results are supported with Fig. 3, in which three sub-figures sketch the RMSEs for $\beta = 0.1, 1, 10$.

Figure 3. Averaged $\sqrt{\text{tr}(J_n)}$ caused by system noises uncertainties with $\beta = 0.01, 0.1, 1, 10, 100$ for FKF and FUF.

Figure 4. Estimation errors produced by FKF and FUF in response to temporary model uncertainty in a gap of $100 \leq n \leq 150$: (a) first state and (b) second state.

References

[2] Sakaino S., Sato T., and Ohnishi K., IEEE Transactions on Industrial Informatics 7, 446-454 (2011)

[3] Shmaliy Y. S., IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control 53, 862-870 (2006)

[4] Algazi V. R., Suk M., and Rim C. S., IEEE Transactions on Circuits & Systems CAS-33, 590-596 (1986)

[5] Kalman, R. E., Journal of Basic Engineering Transactions 82, 34-45 (1960)

[6] Shmaliy Y. S., WSEAS International Conference on Signal Processing 1, 126–131 (2011)

[7] Cang W. and Yang H., Chinese Journal of Chemical Engineering 23, 1965-1969 (2015)

[8] Germain G., Tarbouriech S., and Peres P. L. D., International Journal of Robust & Nonlinear Control 23, 1965-1969 (2015)

[9] Julier S. J. and Uhlmann J. K., Proceedings of SPIE - The International Society for Optical Engineering 3068, 182–193 (1999)

[10] Jazwinski A. H., Stochastic Process and Filtering Theory, Academic Press (Academic Press: New York, 1970) 30-100

[11] Kwon W. H., Kim. P. S., and Han S. H., Automatica 38, 545-551 (2002)

[12] Han S. H., Kwon W. H., and Kim P. S., IEEE Transactions on Automatic Control 47, 1904-1908 (2002)

[13] Shmaliy Y. S., IEEE Transactions on Signal Processing 58, 3086-3096 (2010)

[14] Ramirez-Echeverria, F., Sarr A., and Shmaliy Y. S., IEEE Transactions on Signal Processing 62, 557-561 (2014)

[15] Shmaliy Y. S., IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control 53, 862-870 (2006)

[16] Zhao S., Shmaliy Y. S., Huang B., and Liu F., Automatica 53, 355-361 (2015)

[17] Sun S. and Deng Z., Automatica 40, 1017-1023 (2004)

[18] Deng Z., Information Fusion Estimation Theory and Application (Science Press, 2012) 20-110

[19] Tian T., Sun S., and Na L., Information Fusion 27, 126-137 (2016)

[20] Shmaliy Y. S., IEEE Transactions on Signal Processing 59, 2465-2473 (2011)