Supporting Information

for Small, DOI: 10.1002/smll.202104702

3D Hollow Xerogels with Ordered Cellulose Nanocrystals for Tailored Mechanical Properties

Yang Yang, Heqin Huang, Dan Xu, Xiaojie Wang, Ye Chen, Xiaohui Wang, and Kai Zhang*
Supporting Information

Three-dimensional Hollow Xerogels with Ordered Cellulose Nanocrystals for Tailored Mechanical Properties

Yang Yang, Heqin Huang, Dan Xu, Xiaojie Wang, Ye Chen, Xiaohui Wang and Kai Zhang

Figure S1. TEM image of prepared CNCs and the size distribution of samples (N=50).

Figure S2. Schematic illustration of hydrogen bonding between CNCs and polyacrylamide (PAM) in the hydrogel.
Figure S3. Oscillation shear frequency sweep of the dynamic hydrogel containing 2 wt% CNCs with constant strain amplitude as 1%.

Figure S4. Birefringence of PC2/2 between the crossed polarizers.
Figure S5. The orientation index of three positions of PC xerogels with different stretching ratios.

Figure S6. Compression force-deformation curves of the PC xerogels.
Figure S7. The compression force-deformation curves of cylinder xerogels.

Figure S8. The compression force-deformation curves of PC xerogels.
Figure S9. Fracture energy (G_f) of PC and cylinder xerogels.

Figure S10. The second compression force-deformation cycles of PC and cylinder xerogels at almost the same strain (5%).
Table S1. The geometric parameters of samples (N≥3).

Elongation ratio	T/mm	D1/mm	D2/mm
1	0.63±0.02	6.25±0.27	8.50±0.12
2	0.49±0.08	4.09±0.32	8.59±0.07
5	0.24±0.01	2.70±0.11	8.52±0.01
10	0.16±0.03	1.79±0.04	8.71±0.09