Medium pH between 5.5 and 7.5 has Minimal Effects on Tissue Culture of Apple

Xiaoxin Shi and Lili Yang
College of Horticulture, Agricultural University of Hebei, Baoding, Hebei 071001, China

Guojun Yan
School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia

Guoqiang Du1
College of Horticulture, Agricultural University of Hebei, Baoding, Hebei 071001, China

Additional index words. Malus domestica, tissue culture, pH value, ion content change, proliferation and rooting, adventitious bud regeneration from leaves

Abstract. Medium pH is generally adjusted to 5.8 to 6.0 for plant tissue culture. Our research indicated that pH generally falls between 5.5 and 7.5 in an ordinarily made medium which can be directly used for apple tissue culture without adjusting pH. Repeated adjustment of pH by adding NaOH and HCl leads to the increase in Na+ and Cl− concentration and decrease in Mg2+ and Ca2+ concentration in the medium due to precipitation. To determine the pros, cons, and necessity of pH levels while making medium in plant tissue culture, subculture proliferation, adventitious root induction, and organ regeneration, the apple cultivars Fuji, Golden Delicious, Jonagold, and Gala were used and hardness of the medium and the ion content of Na+, Cl−, Mg2+, and Ca2+ in the medium under different pH were measured. In the lower pH range of 5.0–5.5, plantlets could be subcultured and grew normally; however, the medium did not solidify or solidified poorly resulting in problems associated with handling. No significant difference was found among the treatments when pH ranged 6.0–8.0 in terms of proliferation, adventitious root induction, and adventitious bud regeneration from leaves, except a slight decrease in shoot number proliferation in ‘Jonagold’ and in adventitious bud regeneration from leaves in ‘Fuji’ and ‘Golden Delicious’ at pH above 7.5. The hardness of the medium increased with the increased pH. The superfluous Cl− and Na+ generated during the process of overadjusting pH to 7.0 by adding NaOH and then readjusting to 6.0 by adding HCl significantly affected the proliferation, rooting, and organ regeneration of apple plantlets. A relative broad range of medium pH (5.5–7.5) is suitable for apple tissue culture. We suggest that it is not necessary to always adjust medium pH to 5.8–6.0 in apple tissue culture; especially the repeated adjustment should be avoided.

Plant tissue culture technique has been improved remarkably in the last few decades. The technique is widely used in plant propagation (Pattnaik and Chand, 1997), virus transformation (Falco et al., 2000; Taskin et al., 2003; Xue et al., 1999), germlasm preservation (Forline et al., 1998; Gagliardi et al., 2002; Orlikowska, 1992; Reed et al., 1998; Zacchini and Agazio, 2004), and secondary metabolite production (Bourgaud et al., 2001; Cheng et al., 2008). The most commonly used culture medium is the Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) or the variant of it. The pH of the medium is generally suggested as 5.5–6.0 and not much research on it has been reported (Beyl, 2011).

Generally, the medium is adjusted to a certain pH depending on the plant species used and the purpose. For example, tetraploid black locust showed the highest proliferation rate at pH 5.6–6.0, whereas the Erqiao black locust preferred pH 6.4 (Huang and Liu, 2003). Growth and nutrient uptake of teak (Tectona grandis) seedlings in vitro was optimum on a medium at pH of 6.0 (Hong and Yin, 2010; Zhou et al., 2009). The pH of the medium is also responsible for the occurrence of vitrification (a phenomenon of plantlets appearing turgid, glaucous, and watery), which has been shown on Prunus salicina within pH 5.4 to 5.8 (Ding et al., 2008). In the case of apple, the medium pH regulated root formation of the microcuttings of the cultivars Gala and Triple Red Delicious by affecting indole-3-butyric acid (IBA) uptake (Harbage and Stimart, 1996; Harbage et al., 1998), and for cultivar Jork9, better rooting occurred at pH 5.3 (Klerk et al., 2008).

However, not all plant species are that sensitive to pH variation of the medium within a certain range. For instance, the proliferation and growth of Oncidium plantlets did not show significant difference with variable pH from 5.2 to 6.5 (Cui et al., 2004). Likewise, plantlets of Plantago almagrensis and Plantago algarbiensis performed equally with variation of medium pH from 5.05 to 5.75 (Martins et al., 2011). Although optimal medium pH varied from plant species to species, in most cases, it is adjusted to the range of 5.0–6.0 (Li, 2002).

Adjusting medium pH is normally done by adding diluted HCl or NaOH solution. In many cases, repeated adjustment by adding HCl and NaOH in turn is needed to get an exact pH value. It is quite understandable that adding these chemicals changes the ion concentration which might have adverse effects on plant growth. The objectives for this study were 1) to analyze the changes of the ion concentration in medium after adjustment of pH, 2) to assess the effect of medium pH range on apple subculture proliferation, rooting, and adventitious bud regeneration from leaves, and 3) to determine the necessity of pH adjustment while preparing medium for apple tissue culture.

Materials and Methods

Plant materials. The plantlets of Malus domestica ‘Fuji’, ‘Golden Delicious’, ‘Jonagold’, and ‘Gala’, and one apple rootstock M26 were studied. These were subcultured in vitro for years using the MS medium containing benzyladenine (BA) 1.0 mg L−1, naphthaleneacetic acid (NAA) 0.05 mg L−1, sucrose 35.0 g L−1, and agar (from Haiyan Agar Limited, Qingdao, China) 6.0 g L−1, in a culture room under the condition of 2000 lx light intensity with 14-h-photoperiod at 25 ± 3 °C. The medium pH was adjusted to 5.8–6.0 before autoclaving at 121 °C for 20 min.

Analysis of ion content in different pH medium after adjustment. The MS medium containing BA 1.0 mg L−1, NAA 0.05 mg L−1, and sucrose 35.0 g L−1 was prepared and divided into four subsets. The pH of two of them were adjusted to 6.0 and 7.0 by adding 1 mol L−1 NaOH and/or 1 mol L−1 HCl depending on the initial medium pH. The third one was adjusted to 7.0 first, and then readjusted to 6.0, resulting in three treatments, and the fourth one was taken as control without adjusting pH. The medium pH was measured using a pH meter (Sartorius PB-10; Germany). The amount of 1 mol L−1 NaOH or 1 mol L−1 HCl added was recorded. Volumetric differences among treatments were equalized by deionized and distilled water. The medium was autoclaved at 121 °C for 20 min before use.

The content of Na+, Mg2+, and Ca2+ ions in the medium was determined by using inductively coupled plasma atomic emission spectrometry (VISTA-MPX, Varian Inc., CA), and
that of Cl− ion was determined by using ion chromatography (Metrohm 882 Compact IC plus, Herisau, Switzerland).

Effect of medium pH on proliferation of apple plantlets in vitro. Subculture medium, basic MS containing BA 1.0 mg L−1, NAA 0.05 mg L−1, sucrose 35.0 g L−1, and agar 6.0 g L−1 was prepared. Six different media with pH adjusted to 5.5, 6.0, 6.5, 7.0, and 7.5, and an adjusted 7.0 medium readjusted to 6.0 were used. The subcultured apple plantlets with similar growth status were subcultured onto the medium. Each treatment consisted of 54 plantlets equally distributed in nine 100-mL conical flasks. The number of total new shoots and the effective new shoots that were longer than 1.5 cm (able to be used for rooting) were recorded 35 d after inoculation. Rooting rate was calculated as the percentage of the number of roots per plant, and length of roots was measured 30 d after light culture.

Effect of medium pH on adventitious root induction. New shoots longer than 1.5 cm were inoculated onto the rooting medium containing ½-strength MS, indoleacetic acid 1.0 mg L−1, IBA 0.4 mg L−1, sucrose 25.0 g L−1, and agar 6.0 g L−1. The pH of the medium was adjusted as of the subculture experiment. Nine shoots were inoculated in each conical flask. The materials were cultured in a cabinet with a 14-h-photoperiod at 25 ± 3°C. Rooting rate, number of roots per plant, and length of roots were recorded 35 d after inoculation. Rooting rate was calculated as the percentage of the shoots that produced roots.

Effect of medium pH on adventitious bud induction from leaves in vitro. The top second to fourth leaves (expanding or fully expanded) were collected from the plantlets that subcultured for about 30 d. Each leaf was crosscut twice without breaking and inoculated on the MS medium containing BA 1.0 mg L−1, thidiazuron 0.5 mg L−1, NAA mg L−1, sucrose 30.0 g L−1, and agar 6.0 g L−1 with the pH adjustment as of the above sections. Eight leaves were inoculated in each conical flask. The materials were dark-cultured for 20 d before light culture started to solidify when its pH reached 5.5, although it was soft and could crack while the conical flask was tilted. The medium solidity was optimal when pH value ranged from 6.0 to 6.5. It was noted that when the pH was adjusted up to 7.0 or higher, the medium became too hard for the tender plantlets to be inoculated which probably affected the nutrition uptake as evidenced by the yellowish leaves. This hard medium also showed a tendency of cracking itself.

Effect of medium pH on proliferation of subculture. The proliferation efficiency of subculture in four apple varieties and M26 was unaffected by the medium pH within the range from 5.5 to 7.5. The number of shoots and the number of effective shoots were not influenced by the tested pH, except for ‘Fuji’ apple at pH 7.5 (Table 2). It appeared that the apple plantlets were compatible with a wide pH range of medium during the subculture stage. On the other hand, the readjustment of pH from 7.0 back to 6.0 significantly lowered the number of shoots and the number of effective shoots in ‘Fuji’ and ‘Jonagold’ apple. The readjustment by adding HCl resulted in the increase of Cl− ion (Table 1). Even though the medium pH was relatively optimal, the side effect of the ion concentration was prominent.

Effect of medium pH on adventitious root induction. Root induction was not significantly influenced by medium pH, except for ‘Fuji’ apple at pH 7.5, which had significant low rooting (Table 3). In the case where pH was readjusted, lower rooting percentage and number of roots have been recorded in all varieties and M26, although root length was not significantly affected. The materials were cultured in a cabinet with a 16-h-photoperiod at 25 ± 3°C. Root induction was not significantly influenced by the medium pH. However, the medium of which pH had been readjusted showed significantly decreased adventitious bud regeneration of ‘Fuji’, ‘Jonagold’, and M26, but those of ‘Golden Delicious’ and ‘Gala’ were not significantly affected by the readjustment.

Discussion

Apple is an important fruit species worldwide which can be readily propagated by tissue culture. It has been documented in different plant species that the medium pH is an important factor for the growth and development of plantlets in vitro. Repeated use of NaOH and HCl to adjust the medium pH results in imbalanced ion concentration in the medium leading to the problem of nutrient uptake by the young plantlets. Thus, the present study investigated the influence of medium pH on tissue culture performance of different apple cultivars and the consequence of pH readjustment on growth of apple plantlets.

Our major conclusions are that pH falls between 5.5 and 7.5 in an ordinarily made medium which can be directly used for apple tissue culture without adjusting pH. Repeated adjustment of pH by adding NaOH and HCl leads to the increase in Na+ and Cl− concentration and decrease in Mg2+ and Ca2+ availability in the medium due to precipitation. In the lower pH range of 5.0–5.5, plantlets could be subcultured and grew normally; however, the medium did not solidify or solidified poorly resulting in problems associated with handling. No significant difference was found among the treatments when pH ranged from 6.0 to 8.0 in terms of proliferation, adventitious root induction, and adventitious bud regeneration from leaves, except a slight decrease in shoot number proliferation in ‘Jonagold’ and in adventitious bud regeneration from leaves.

Table 1. Effect of pH adjustment on ion concentration in medium solution.

Medium pH	Na+ (mg L−1)	Cl− (mg L−1)	Ca2+ (mg L−1)	Mg2+ (mg L−1)
5.1 (Initial)	11.6 c	320.9 b	188.0 a	39.4 a
Adjusted to 6.0	49.4 b	321.1 b	160.4 b	35.8 a
Adjusted to 7.0	106.0 a	321.6 b	122.0 c	35.0 b
Adjusted to 7.0, readjusted to 6.0	104.8 a	363.0 a	117.2 c	34.2 b

Different letters following the data within each column represent the significance at the level of α = 0.05.
in ‘Fuji’ and ‘Golden Delicious’ at pH above 7.5. The hardness of the medium increased with increased pH. The superfluous Cl– and Na+ generated during the process of overadjusting pH to 7.0 by adding NaOH and then readjusting to 6.0 by adding HCl NaOH significantly affected the proliferation, rooting, and organ regeneration of apple plantlets.

In most cases, the medium pH ranging from 5.8 to 6.0 was considered as optimal for tissue culture. The initial pH of the medium could be varied depending on the medium components (Bennett et al., 2003; Woodward et al., 2006), the water used (Beyl, 2011), and the ways whether acid or alkaline solution was used for the plant growth regulator to dissolve. In this research, a wider pH range (5.5 to 7.5) was tested to get a better understanding. In our experiment, the initial medium pH was 5.1 in the ready-made MS medium. BA was one of the most common plant growth regulators used in plant tissue culture and was dissolved in 1 mol·L−1 HCl normally as a stock solution. For MS medium preparation, the pH could be lowered by adding BA that was prepared by dissolving in HCl, resulting in poor solidification of the medium and more NaOH was needed for the pH adjustment. Therefore, NaOH solution was added to increase the pH value and the concentration of 1 mol·L−1 NaOH is recommended in this process. However, the results of this experiment clearly indicate that adding NaOH changed the ion concentration of medium solution. And this is particularly true in the case where addition of NaOH and HCl was implemented to readjust the medium pH. This ion concentration change showed adverse influence on plant nutrient uptake. Moreover, precipitation was found in the solution during the process of pH adjustment, and the reaction of Mg2+ and Ca2+ with OH− contributed to this phenomenon, which led to changes in some ion concentrations in the medium. In the real operating process, this phenomenon was hardly noticed due to the presence of agar.

The medium pH has considerable influence on the physical strength or hardness of the medium which has also been reported in several works on different species. The medium was too soft and had a poor solidity at the pH lower than 5.5, which posed a handling problem. Thus, it is not recommended to use such a low pH unless specifically needed for some species. In this work, the plantlets of four apple cultivars and a rootstock showed broad medium pH adaptability in some species. In this work, the plantlets of four apple cultivars and a rootstock showed broad medium pH adaptability in some species. In this work, the plantlets of four apple cultivars and a rootstock showed broad medium pH adaptability in some species. In this work, the plantlets of four apple cultivars and a rootstock showed broad medium pH adaptability in some species.

Table 2. Influence of medium pH on proliferation efficiency of apple cultivars in vitro.

Medium pH	Fuji	Golden Delicious	Jonagold	Gala	M26					
	No. of shoots	effective shoots								
5.5	5.24 a′	2.37 a	6.36 a	2.69 a	4.90 a	3.47 a	7.54 a	3.55 a	7.80 a	2.60 a
6.0	4.73 ab	2.03 a	6.55 a	3.20 a	4.23 ab	3.13 ab	7.16 a	2.80 a	9.33 a	2.73 a
6.5	4.60 ab	2.30 a	6.87 a	2.80 a	4.13 a	3.08 a	7.08 a	2.51 a	7.93 a	2.97 a
7.0	5.10 a	1.80 ab	7.08 a	2.20 a	3.89 a	2.82 a	7.22 a	2.42 a	8.00 a	2.55 a
7.5	4.42 ab	1.50 b	6.51 a	2.51 a	4.28 ab	3.24 a	7.27 a	2.31 a	8.25 a	3.42 a
6.0 (Readjusted)	3.93 b	1.31 b	6.82 a	2.42 a	3.40 b	2.30 b	7.03 a	2.29 a	8.47 a	2.64 a

Table 3. Effect of medium pH on rooting ability of apple shoots in vitro.

Medium pH	Fuji	Golden Delicious	Jonagold	Gala	M26				
	Rooting (%)	No. of roots per plant	Root length (cm)	No. of roots per plant	Root length (cm)	No. of roots per plant	Root length (cm)	No. of roots per plant	Root length (cm)
5.5	69.56 a′	3.69 a	3.82 a	98.90 a	4.63 a	4.21 a	100.00 a	6.63 a	4.57 a
6.0	78.21 a	3.76 a	3.25 a	100.00 a	4.48 a	4.05 a	94.23 a	6.12 a	4.26 a
6.5	70.23 a	3.65 a	2.89 a	98.02 a	3.83 a	4.02 a	100.00 a	5.16 a	4.20 a
7.0	73.94 a	3.09 ab	3.63 a	89.56 ab	4.34 a	4.72 a	93.30 a	5.02 a	3.28 a
7.5	52.31 b	2.89 b	2.56 a	88.30 ab	3.38 a	4.62 a	98.30 a	6.32 a	4.74 a
6.0 (Readjusted)	40.23 b	1.83 c	2.23 a	66.67 b	3.17 a	3.83 a	74.26 b	5.78 a	4.79 a

Table 4. Effect of medium pH on adventitious bud regeneration from leaf explants of apple in vitro.

Medium pH	Fuji	Golden Delicious	Jonagold	Gala	M26				
	Regeneration (%)	No. of buds							
5.5	46.60 a′	2.33 a	96.91 a	16.57 a	100.00 a	16.72 a	100.00 a	5.74 a	5.92 a
6.0	50.00 a	2.78 a	95.34 a	19.07 a	97.63 ab	15.33 ab	95.05 ab	29.63 a	21.07 a
6.5	39.34 a	2.25 a	93.39 a	17.88 a	83.05 bc	15.81 ab	93.30 a	29.63 a	19.03 a
7.0	44.35 a	3.50 a	89.50 a	14.81 a	95.77 abc	15.81 ab	98.34 a	29.63 a	19.03 a
7.5	41.54 a	2.33 a	89.07 a	16.44 a	89.23 abc	15.81 ab	97.63 a	29.63 a	17.27 ab
6.0 (Readjusted)	16.06 b	0.92 b	93.07 a	18.84 a	75.05 c	9.29 b	100.00 a	33.77 a	74.79 b

aDifferent letters following the data within each column represent the significance at the level of α = 0.05.

bDifferent letters following the data within each column represent the significance at the level of α = 0.05.

different letters following the data within each column represent the significance at the level of α = 0.05.
Literature Cited

Bennett, I.J., D.A.J. McDavid, and J.A. McComb. 2003. The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropagated Eucalyptus globulus. Biol. Plant. 47:355–360.

Beyl, C. 2011. Getting started with tissue culture: Media preparation, sterile technique, and laboratory equipment, p. 11–26. In: R. Trigiano and D. Gray (eds.). Plant tissue culture, development, and biotechnology. CRC Press, Boca Raton, FL.

Bourgaud, F., A. Gravot, S. Milesi, and E. Gontier. 2001. Production of plant secondary metabolites: A historical perspective. Plant Sci. 161:839–851.

Cao, X.X. and X.Y. Han. 2003. pH value in the culture of the tissue of plants. J. Hangzhou Teachers College (Natural Science Edition) 2:60–63.

Cheng, D.M., G.G. Yousef, M.H. Grace, R.B. Beyl, C. 2011. Getting started with tissue culture: globubus Eucalyptus survival in soil of micropropagated and indole butyric acid on root induction and plantlet. J. Biol. 21:29–31.

Ding, Y., Y. Qiao, Zh. Zhang, Zh. Dong, and Zh. Forsline, P.L., L.E. Towill, J. Waddell, C. Stushnoff, Falco, M.C., A.T. Neto, and E.C. Ulian. 2000. Ery and longevity of cryopreserved dormant Survival and proliferation of two apple cultivars. J. Amer. Soc. Hort. Sci. 123:6–10.

Ding, Y., Y. Qiao, Zh. Zhang, Zh. Dong, and Zh. Forsline, P.L., L.E. Towill, J. Waddell, C. Stushnoff, Falco, M.C., A.T. Neto, and E.C. Ulian. 2000. Ery and longevity of cryopreserved dormant Survival and proliferation of two apple cultivars. J. Amer. Soc. Hort. Sci. 123:6–10.

Hong, S. and M. Yin. 2010. The optimization for high-frequency proliferation of adventitious buds of Eumomopterys henryi Oliv. J. Nuclear Agr. Sci. 24:532–536.

Hu, C. and Q. Liu. 2003. The effects of growth regulator, regulator in vitro growth and pH value on the in vitro growth of tetraploidy and Erqiao black locust. J. Cent. South Forestry Univ. 23:38–41.

Klerk, J., J. Hanceaková, and J. Jasik. 2008. Effect of medium-pH and MES on adventitious root formation from stem disks of apple. Plant Cell Tissue Organ Cult. 95:285–292.

Li, J. 2002. An introduction to plant tissue culture. 2nd ed. China Agricultural University Press, Beijing, China.

Martins, N., S. Goncalves, T. Palma, and A. Romano. 2011. The influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis. Plant Cell Tissue Organ Cult. 107:113–121.

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15:473–497.

Orlikowska, T. 1992. Effects of in vitro storage at 4°C on survival and proliferation of two apple rootstocks. Plant Cell Tissue Organ Cult. 31:1–7.

Pattnaik, S.K. and P.K. Chand. 1997. Rapid clonal propagation of three mulberries, Morus cathayana Hems., M. hou Kois. and M. serrata Roxb., through in vitro culture of apical shoot buds and nodal explants from mature trees. Plant Cell Rpt. 16:503–508.

Ramírez-Malagón, R.L. Pérez-Moreno, A. Borodanenko, G.J. Salinas-González, and N. Ochoa-Alejo. 2006. Differential organ infection studies, potyvirus elimination, and field performance of virus-free garlic plants produced by tissue culture. Plant Cell Tissue Organ Cult. 86:103–110.

Reed, B.M., J. Denoma, J. Luo, Y.J. Chang, and L. Towill. 1998. Cryopreservation and long-term storage of pear germplasm. In Vitro Cell. Dev. Biol. Plant 34:256–260.

Subba Reddy, Ch.V. and P. Sreenivasulu. 2011. Generation of sugarcane streak mosaic virus-free sugarcane (Saccharum spp. hybrid) from infected plants by in vitro meristem tip culture. Eur. J. Plant Pathol. 130:597–604.

Tang, Q. and M. Feng. 2007. DPS Data Processing System: Experimental design, statistical analysis, and data mining. Science Press, Beijing, China.

Tang, Q. and C. Zhang. 2013. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 20:254–260.

Taskin, K.M., K.A. Turgut, G. Ercan, and R.J. Scott. 2003. Agrobacterium-mediated transformation of Arabis gumnosioniana. Plant Cell Tissue Organ Cult. 72:173–180.

Woodward, J., J. Bennett, and S. Passwon. 2006. The effect of nitrogen source and concentration, medium pH and buffering on in vitro shoot growth and rooting in Eucalyptus marginata. Scientia Hort. 110:208–213.

Xue, B., K.S. Ling, C.L. Reid, S. Krastanov, M. Sekiya, E.A. Momol, S. Silej, J. Mozars, D. Gonzales, and T.J. Burr. 1999. Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 35:226–231.

Zacchini, M. and M. Agazio. 2004. Micropropagation of a local olive cultivar for germplasm preservation. Biol. Plant. 48:589–592.

Zhang, Y. 2006. Factors relating to success in plant tissue culture. Northern Hort. 3:132–133.

Zhou, Z., D. Xu, K. Ling, L. Huang, and Zh. Liu. 2009. Effects of calcium ions and pH values on the growth and nutrient uptake of teak (Tectona grandis) tube seedlings. J. Cent. South Univ. Forestry Technol 29:1–5.