This may be the author's version of a work that was submitted/accepted for publication in the following source:

Alturki, Hmidan A., Brookes, Denise Sk, & Davies, Peter S.W. (2020) Does spending more time on electronic screen devices determine the weight outcomes in obese and normal weight Saudi Arabian children? *Saudi Medical Journal, 41*(1), pp. 79-87.

This file was downloaded from: https://eprints.qut.edu.au/196926/

© 2020 The Author(s)

This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial 4.0

Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.15537/smj.2020.1.24786
Does spending more time on electronic screen devices determine the weight outcomes in obese and normal weight Saudi Arabian children?

Hmidan A. Alturki, M.Nut, PhD, Denise S.K. Brookes, PhD, Peter S.W. Davies, PhD, R.Nutr.

ABSTRACT

The objectives of this study were to investigate if ownership and duration of using electronic devices determine the weight status in an urban Saudi school-aged child.

Methods: A multicenter, cross-sectional study conducted in Riyadh, Saudi Arabia between December 2015 and March 2016. A total of 1023 children were randomly selected, aged 9.00 to 11.99 years. The participants were divided into 2 groups (normal weight and obese), and further stratified by gender. A self-paced questionnaire was used to collect sedentary behaviors data, in addition to the anthropometric measurements and body fat composition of the participants.

Results: Hours spent watching TV/DVD/videos were not significantly different between the participating groups or both genders, be it during weekdays (p=0.75) or on weekends (p=0.93). Electronic device utilization hours were significantly different between the groups, specifically in boys. Obese children, particularly during weekdays, had higher utilization rates of tablets and mobile phones at p<0.01 in weekdays and weekends. The most popular electronic device owned was a tablet (67.1% among normal weight and 70.2% obese groups). This was followed by gaming consoles owned, predominantly by boys rather than girls. Ownership of a smartphone was significantly higher in the obese group (p=0.01), especially in boys (p=0.01).

Conclusion: Using modern electronic screen devices has begun to replace TV viewing. Excessive use of internet, and watching electronic screen devices, especially mobiles and tablets, have been associated with the increasing risk of obesity in urban Saudi school-aged child.

Keywords: obesity, electronic devices, Saudi children, screens watching
The dramatic increase in the use of electronic screen devices, along with all kinds of media, has encouraged sitting and discouraged walking and other physical activities, especially among children and youth age = 5 to 24 years old. Currently, most epidemiological studies have tested this hypothesis, especially around the concept of “television (TV) viewing”. Evidence supports the contention that excessive screen time sitting is correlated with increased body mass index (BMI) among children and adolescents aged between 2 and 18 years. However, it is critical to examine if excessive media-based inactivity is characteristic only of obese children who are normally not very active, prior to concluding that this high frequency of sitting in front of a screen as “a single marker of inactivity” may unfairly implicate school-aged children’s increasing weight. Therefore, understanding the differences regarding screen-based inactivity between normal weight and obese children, may help us to better understand this relationship and the consequences this has for children’s weight status.

Most studies; however, have not fully examined the ownership of new electronic screen devices, specifically smartphones and tablets, and children’s use of these devices. Our study advances previous analyses by considering this relatively new piece of technology. New screen devices, such as mobiles and tablets, may override TV viewing in children, and this necessitates an examination of their link to obesity. It is evident that more research is required to better comprehend the links between indicators of media-based inactivity behaviors and poor health outcomes, such as obesity.

In the past few years, Saudi Arabia has emerged as a developing country experience dramatic changes in increased sedentary lifestyles due to its astonishing economic growth. Increasingly, contemporary life in Saudi Arabia involves additional time sitting coupled with physical inactivity, which has risen dramatically in recent decades. The major influences on this change are the rise of new technologies that people now own and control, combined with the problem of the limited availability of facilities and places suitable for outdoor/indoor activities where children can play. Saudi Arabia has a desert climate that is generally not helpful for engaging in physical activities for a substantial part of the year. This lifestyle has seen increased usage of media-based activity by children, not only with traditional ones, such as TVs and computers screens, but also with new screen technologies including smartphones, tablets, and other mobile entertainment devices. Due to globalization, these mobile screen devices can be used everywhere, and at any time. This phenomenon is coupled with accelerated growth in technical applications and media that many children and young people find attractive and convenient.

Limited research on this topic has been documented in Saudi Arabia, with no evidence on the differences between normal weight and obese children, with specific references to the time spent using new screen devices. The aim of this study, therefore, is to examine in-depth if there are differences between obese and normal weight Saudi Arabian school-aged boys and girls, specifically regarding the ownership and duration spent on various electronic screen devices. In addition, this study evaluates whether the association of weight status varies between time spent on TV screens, computer, video gaming, and smartphone/tablets devices. This study hypothesizes that obese children of both genders have more ownership and therefore greater use of these electronic screen devices.

Methods. The methodology details for this study are documented elsewhere. Briefly, data used to accomplish the cross-sectional study was collected between December 2015 and March 2016 in Riyadh, Saudi Arabia. The city is geographically organized into 5 major areas (north, south, east, west, and the center), where 2 private school and 2 government primary schools (one school for each gender) have met the criteria for random selection of convenience samples. Accordingly, students in grades 4, 5, and 6 reach the criteria for selection due to the unique body mass index (BMI) percentile attributes according to CDC data. Subsequently, the selected class range was grouped as follows: a) normal weight (BMI between 25\(^{th}\) and 75\(^{th}\) percentiles) and b) obese group (BMI >95\(^{th}\) percentile).

Among the 1023 eligible students aged between 9.00 and 11.99 years from the complete sample, there were 497 obese and 526 normal weight children.

This research attained the ethical threshold where 2 important institutions tendered their authorization. The first was the Saudi Ministry of Health - Institutional Review Board (Approval no. 15-336E) and the second was the University of Queensland Behavioral and Social Sciences Ethical Review Committee (Approval No. 2015001629). Furthermore, the Ministry of Education in Saudi Arabia approved the collection of study data in the selected schools.
Anthropometric measurements. The study required the measurement of anthropometric variables of waist circumference (WC), height, and weight. Measurements were undertaken by trained data collectors using standard protocols. Waist circumference was measured at the level of the umbilicus to the nearest 0.5 centimeter (cm), by using a simple tape measure, and it recorded as specified according to the CDC children anthropometric reference percentile data. Measurement of height was registered in the CDC children anthropometric reference using a simple tape measure, and it recorded as specified of the umbilicus to the nearest 0.5 centimeter (cm), by using a simple tape measure, and it recorded as specified of the CDC children anthropometric reference percentile data.10 Measurement of height was registered to the nearest cm, while that of weight to the nearest 100 grams excluding clothes and shoes using the same device (Calibrated portable Seca scale). The next step involved the calculation of BMI in kg/cm². Subsequently, Bioelectrical Impedance Analysis was used, by device (Omron BF511, model HBF-511B-E), to analyze body composition, and then classified according to the method proposed by McCarthy et al.11

Sedentary data. A self-report method involving questionnaires on participants’ sedentary behaviors was used in our study and is widely acceptable, valid and reliable. Data on screen-based behaviors were collected using a variety of questionnaires, with specific queries gathering data on the time children spent watching TVs, computers, video games, and other new electronic screen devices, for example smartphones, tablets on a daily basis. A child’s time spent using these screen devices was determined by the same question for each device. Each question investigated the weekdays and weekends separately to include duration usually spent watching/using, with the answers to each device categorized as follows: a) I do not watch or use; b) 0.5 to <1 hour, c) 1 to <2 hour, d) 2 to <3 hour, e) 3 to <4 hour, and f) ≥4 hours. In addition, details of the specific screen device(s) owned (for example, smartphones, tablets, game consoles), were recorded. These questionnaire booklets were sent to parents/guardians to be completed at home.

Statistical analysis. The study utilizes descriptive statistics where the mode of representation is proportions or means ± standard deviations (SD). The t-test determines age distribution for the obese and normal weight groups. The Chi-square served to establish if there is a significant relationship or association between any of the groups and the dependent variable. The final step involved the use of logistic regression to test the impact of the dependent variable on the possibility of grouping a child under the obese group. All data were analyzed using the Statistical Package for Social Sciences, version 24 (IBM Corp, Inc, Chicago, IL, USA). For the purposes of this study, the level of significance was set as p<0.05.

Results. A total of 1200 eligible children had their parents’ consent to take part in this study. The total number of children accepted into the sample that meet our eligibility criteria was 1023. This final sample represented different locations in Riyadh, and the group stratification was 497 obese and 526 normal weight children.

Table 1 shows the anthropometric data collected in the study organized by the number of children for each age group and mean±SD. The data stratification is by gender for each classification, either obese or normal weight. It is important to note that there was no significant variation in age distribution in either of the groups for both boys and girls. Also, waist circumference determined age distribution for the obese and normal weight groups. The Chi-square served to establish if there is a significant relationship or association between any of the groups and the dependent variable. The final step involved the use of logistic regression to test the impact of the dependent variable on the possibility of grouping a child under the obese group. All data were analyzed using the Statistical Package for Social Sciences, version 24 (IBM Corp, Inc, Chicago, IL, USA). For the purposes of this study, the level of significance was set as p<0.05.

Table 1 - Anthropometric measurements of sample children categorized as normal weight (≥25th & ≤75th P) and obese (≥ 95th P) of body mass index for age percentile.

Measurements	Normal weight (n=236)	Boys (n=232)	Odd ratio (95%CI)	Girls (n=290)	Odd ratio (95%CI)	Normal weight (n=526)	Obese group (n=497)	Odd ratio (95%CI)	
Children	p=0.394	p=0.578	p=0.26						
Age groups	(mean ± SD)								
09 - <10	81 (34.3)	79 (34.1)	Ref	92 (31.8)	Ref	173 (32.9%)	167 (33.6%)	Ref	
10 - <11	89 (37.9)	76 (32.8)	1.14 (0.73-1.76)	104 (35.9)	84 (31.7)	1.18 (0.78-1.78)	193 (36.7)	160 (32.2)	1.16 (0.86-1.56)
11 - <12	66 (28.0)	77 (33.2)	0.83 (0.53-1.31)	94 (32.0)	93 (35.1)	0.96 (0.64-1.45)	160 (30.4)	170 (34.2)	0.90 (0.67-1.23)
Age in years	9.94±0.79	9.99±0.82	p=0.461	10.01±0.80	10.02±0.82	p=0.863	9.98±0.79	10.01±0.82	p=0.544
Weight (kg)	33.7±6.2	35.8±10.4	0.000	34.8±7.0	53.0±11.5	0.000	34.3±6.6	54.3±11.1	0.000
Height (cm)	138.7±7.1	141.4±7.6	0.011	139.3±8.4	139.9±7.9	0.011	139.0±7.8	140.9±7.8	0.022
Waist circum. (cm)	67.9±6.7	86.3±9.4	0.000	65.8±7.0	78.9±8.4	0.000	66.8±6.9	82.3±9.6	0.000
Body fat (%)	20.1±6.4	35.5±3.4	0.000	22.8±6.0	35.9±3.6	0.000	21.6±6.3	35.7±3.5	0.000
BMI (kg/m²)	17.4±2.0	27.7±5.3	0.000	17.8±2.1	26.5±2.8	0.000	17.6±2.0	27.1±3.1	0.000

Values are presented as number and percentages (%). BMI: body mass index, ‘t’ test. *Significant p-value.

www.smj.org.sa Saudi Med J 2020; Vol. 41 (1)
and body %fat parameters measured for both groups fell within the correct clinical range. As expected, the study yielded statistically significant (p=0.001) results differences in weight, height, WC, %fat, and BMI between the groups, as the cohort was identified and selected appropriately.

A comparison of the type of screen devices owned by Saudi Arabian children, between obese and normal weight, is summarized in Table 2. The analysis revealed that the obese group owned more smartphones than children of normal weight (odds ration [OR]=1.37, 95% confidence interval [CI]=1.05-1.79, p=0.019), particularly amongst boys (OR=1.60, 95% CI=1.10-2.31, p=0.012). However, no statistical differences emerged between gender or group and weight status for owned tablets or game consoles. Among children, our data showed that there is more ownership of tablets rather than mobile phones being recorded at 67.4% versus (vs) 41.7% for boys and 69.9% vs 22.6% for girls. Moreover, game consoles were more popular with boys than girls at 66.2% vs 9.2%.

Daily screen watching hours during weekdays are shown in Table 3, including the OR of children categorized as obese. Our data varies between the groups, especially in the boys. The time spent watching TV/DVD/videos revealed no statistical differences for obese or normal weight groups. In comparison, however, the duration of computer or internet use (p=0.001), playing video games (p=0.005), using smartphones and tablet devices (p<0.001), were all positively associated with an increased risk of being obese. This data was specifically the case among boys. For all screen devices, the percentage of normal weight children who did “not watch or use a screen” was higher compared to the obese group.

Daily screen duration hours during weekends are shown in Table 4, including the OR of children categorized as obese. Same as for the weekdays, data showed no relationships between the duration of using TV/DVD/videos and weight status. The exception was the duration of playing video games and weight status, but this had no relationship as well. However, differences in being obese or of normal weight regarding the duration of using a computer or internet were found between groups (p=0.003), and trends were evident between genders. The duration of using smartphones and tablet devices >4 hours/day was positively related to obesity between groups (p<0.001), and in the boys (p=0.001).

Discussion. Saudi Arabian society has undergone dramatic lifestyle changes in recent decades. Despite this, limited research has been done on electronic screen devices ownership and duration habits of Saudi Arabians, especially those of children. Our study reports the prevalence of screen watching factors among boys and girls, aged 9 to 12 years. Our study highlights that duration of using a mobile screen device is positively associated with the occurrence of obesity in Saudi Arabian children, which was not seen in the normal weight group. Interestingly, these factors affected boys and girls differently. Computer/internet use, playing video games, and mobile screen devices, were significantly associated with obesity in boys, but not in girls. Moreover, the aforementioned screen devices contributed to a higher risk of being obese in both groups. However, importantly and interestingly, duration on traditional screens (TV, DVD, and Videos) did not indicate a difference in the weight status for either group. One of the merit of this study is to obtain information on how many electronic screen devices are owned by Saudi children among different groups (normal weight vs obese) and genders. It is also the first to make an in-depth comparison of screen utilization habits, example between normal weight and obese children in Saudi Arabia.

In our study, longer durations were shown among obese children regarding computer/internet use, video

Table 2 - Screen devices owned and weight status categorized as normal weight (≥25th & ≤75th P) and obese (≥95th P) of body mass index for age percentile.
Child ownership

Smartphones
Tablets (iPad)
Game consoles

Values are presented as numbers and percentages (%). *p<0.05: OR - odds ration; CI - confidence interval, *Significant p-values
Table 3 - Daily screen duration hours during weekdays of Saudi Arabian children categorized as normal weight (≥25th & ≤75th P) and obese (≥95th P) of body mass index for age percentile.

Screen using habits (daily hours) (weekdays)	Normal weight	Obese	OR (95%CI)	Normal weight	Obese	OR (95%CI)	Normal weight	Obese	OR (95%CI)	Normal weight group	Obese group	OR (95%CI)	
TV/DVD/video													
Don't watch or use													
0.5–<1 hour	13 (5.5)	9 (3.9)	0.167†	Ref	13 (4.5)	15 (5.7)	0.916	Ref	26 (4.9)	24 (4.8)	0.616†	Ref	
1–<2 hours	85 (36.0)	83 (35.8)	1.41 (0.57-3.47)	73 (25.2)	67 (25.3)	0.79 (0.35-1.79)	158 (50.0)	150 (50.2)	1.02 (0.56-1.87)				
2–<3 hours	39 (16.5)	49 (21.1)	1.81 (0.70-4.68)	64 (22.1)	62 (23.4)	0.84 (0.37-1.90)	103 (39.6)	111 (22.3)	1.16 (0.63-2.16)				
3–<4 hours	21 (8.9)	20 (8.6)	1.37 (0.48-3.92)	33 (11.4)	34 (12.8)	0.89 (0.36-2.16)	54 (10.3)	54 (10.9)	1.08 (0.55-2.11)				
≥4 hours	22 (9.4)	9 (3.9)	0.59 (0.18-1.86)	44 (15.8)	37 (14.7)	0.72 (0.30-1.72)	66 (13.0)	46 (9.7)	0.75 (0.38-1.47)				
Computer/internet													
Don't watch or use													
½–<1 hour	94 (39.8)	48 (18.1)	0.001‡	Ref	129 (44.4)	93 (35.1)	0.052	Ref	223 (42.3)	135 (27.2)	0.001‡	Ref	
1–<2 hours	55 (23.3)	69 (29.7)	2.80 (1.69-4.66)	69 (23.8)	63 (23.8)	1.26 (0.82-1.95)	124 (36.2)	132 (26.6)	1.75 (1.27-2.43)				
2–<3 hours	47 (19.9)	61 (26.3)	2.96 (1.71-4.91)	37 (12.8)	43 (16.2)	1.61 (0.96-2.69)	84 (16.0)	104 (20.9)	2.04 (1.42-2.92)				
3–<4 hours	25 (10.6)	53 (14.2)	2.95 (1.56-5.57)†	21 (7.2)	34 (12.8)	2.24 (1.22-4.11)	46 (8.7)	67 (13.4)	2.40 (1.56-3.70)				
≥4 hours	18 (7.6)	46 (19.8)	7.46 (1.95-28.50)†	19 (6.6)	13 (4.9)	0.94 (0.44-2.01)	22 (4.2)	23 (4.6)	1.72 (0.92-3.21)				
Video games (PlayStation, Xbox, etc.)													
Don't watch or use													
½–<1 hour	105 (44.5)	88 (37.9)	0.009‡	Ref	208 (71.7)	190 (71.7)	0.276	Ref	313 (59.5)	278 (55.9)	0.002‡	Ref	
1–<2 hours	51 (21.6)	44 (19.0)	1.02 (0.62-1.68)	45 (15.5)	35 (13.2)	0.85 (0.52-1.38)	96 (18.3)	79 (15.9)	0.92 (0.66-1.30)				
2–<3 hours	41 (17.4)	32 (13.8)	0.93 (0.54-1.60)	20 (6.9)	14 (5.3)	0.76 (0.37-1.56)	61 (11.6)	46 (9.3)	0.84 (0.56-1.28)				
3–<4 hours	18 (7.6)	46 (19.8)	3.04 (1.65-5.63)†	9 (3.1)	14 (5.3)	1.70 (0.72-4.02)	27 (5.1)	60 (12.0)	2.50 (1.54-4.05)				
≥4 hours	9 (3.8)	10 (4.3)	1.32 (0.51-3.40)	2 (0.7)	7 (2.6)	3.83 (0.78-18.67)	11 (2.1)	17 (3.4)	1.74 (0.80-3.77)				
Mobile screen devices													
Don't watch or use													
½–<1 hour	78 (33.1)	47 (20.3)	0.001‡	Ref	99 (34.1)	81 (30.6)	0.585	Ref	177 (33.6)	128 (25.8)	0.001‡	Ref	
1–<2 hours	58 (24.6)	39 (16.8)	1.11 (0.64-1.92)	76 (26.2)	61 (23.0)	0.98 (0.62-1.53)	134 (25.5)	100 (20.1)	1.03 (0.73-1.45)				
2–<3 hours	49 (20.8)	43 (18.5)	1.45 (0.84-2.51)	48 (16.6)	47 (17.7)	1.19 (0.72-1.96)	97 (18.4)	90 (18.1)	1.28 (0.89-1.85)				
3–<4 hours	27 (11.4)	50 (16.6)	3.07 (1.70-5.55)†	28 (9.7)	33 (12.5)	1.44 (0.80-2.58)	55 (10.5)	83 (16.7)	2.08 (1.38-3.16)				
≥4 hours	15 (6.4)	30 (12.9)	3.31 (1.61-6.80)†	17 (5.9)	23 (8.7)	1.65 (0.82-3.30)	32 (6.1)	53 (10.7)	2.29 (1.39-3.75)†				
value													

Values are presented as numbers and percentages (%); "p<0.05; OR - odds ratio; CI - confidence interval, †Significant p-values.
also have the highest risk to be obese, in both an absolute and comparative values. Additionally, trending declines in watching TV were observed. Interestingly, these trends were significantly identified for weekdays.

Evidence for a link with obesity is commonly supported for time spent watching TV than other support devices. It is possible that “TV watching time” is more often combined with “unconscious eating” and snacking. Furthermore, it is more passive and increases exposure to clever food marketing campaigns.22,23 Electronic devices, such as computers and game consoles, require increased physical interaction and, consequently, “unconscious eating” of high energy-dense snacks was shown to be less pronounced.24 However, smartphones and tablets have features that imitate the characteristics of TVs, computers, and video games. Consequently, these characteristics may be highly considered to yield a greater impact on weight status, and more independent research focus on these specific media devices is necessary.

It remains important that the measure of duration be considered on all screen devices as total screen time,25 and to also separate this duration spent on mobiles screen devices, as being more the norm for acceptable or utilized devices. Only a few studies have systematically reported a relationship between obesity and smartphones/tablets, despite the evidence that childhood obesity is linked to excessive TV viewing, equating to five or more hours per day.26 We have shown that increased duration of time that children spend in front of mobile screen devices, including TV, increase the risk of obesity. Importantly, we demonstrated that the duration of time regarding mobile screen devices encourages a significantly higher risk of obesity. Parents...
may be strongly advised to limit their children’s time on mobile screen devices. Therefore, it is important
to provide alternative activities for their children, for example free time to play, exercise, and organize
sporting games. This is critical considering the increased
prevalence of childhood obesity and associated health
concerns potentially due to the increased trend in the
use of mobile screen devices in school-aged children.
The easy availability of marketing and applications
that target this segment of the population should be
properly managed. The relationship between mobile
screen devices use and youth obesity warrants further
investigation.

A paucity of research is shown regarding the access
or ownership of children’s mobile screen devices. Our
results revealed for the boys’ group, there was
a direct association between screen time and obesity.
Conversely, in girls a weak association emerged. The
interaction between screen watching time and gender,
however, yielded no statistical significance. However,
it still shows a significant differentiation between
the normal weight and obese groups. A significant
association between BMI and girls watching TV has
been reported, but our current study elicited no
difference among girls in all screen devices viewing. A
difference was detected among the boys as evident in
other devices.

Interestingly, Saudi girls in this current study in
both groups seem to spend the same amount of time
using all screen devices. This can be fairly explained
in that Saudi girls, due to the country’s conservative
social traditions and culture, in most cases have fewer
opportunities when compared to boys to engage in
leisure time physical activity. Socio-culturally, most
Saudi families do not encourage girls to participate in
leisure time physical activities or pursuits. Accordingly,
they spend more of their time at home watching and
using electronic/digital screens. Higher use of screen

time among girls compared to boys was reported among
Canadian and Greek youth. As well, research done in
five European countries has established that girls, unlike
boys, spend most of their time in sedentary lifestyles.
These findings are similar to those found in our analysis.
Therefore, the study provides good insights into the
existence of gender differences.

Study limitations. Despite the data in this study
being largely self-reported, which can lead to recall
and social desirability bias, most of the questions
used to collect the sedentary data did originate from
previously validated measures. Furthermore, data on
child sedentary behaviours were collected from parents,
which is suggested for children less than 12 years
of age. Prompt cards were employed to help their
understanding of the questions and improve response
accuracy.

A strength of the current study was the ability to
recruit children from Saudi Arabia only. However, it will
be interesting if another study is conducted that is able
to comment on this type of current study population
compared to other communities in Saudi Arabia and of
the same age group.

While eating during watching screens is seen as the
mechanism that triggers this increasing obesity onset
among children, yet the current study did not investigate
this issue. Instead, it focused only on obtaining and
documenting differences in screen watching habits
between obese and normal weight children. The effects
of eating while watching screen is an important topic of
academic debate and research, but it widely explored in
other academic health research studies.

Our study does not include an investigation
regarding the influences of how long participants
engaged in physical activities, which is published
elsewhere. Despite this, it does support the notion
that increased sedentary behaviors are related to BMI
more than physical activities for this pre-adolescent
age group. Consequently, the important role of each
factor (physical activity vs sedentary behaviors) require
to recognized, thus emphasizing the need to investigate
these links separately. Previous research studies indicate
that sedentary and physical activity behaviors should be
deemed distinct constructs, that is, evaluations in one
field should not necessarily be applied as markers of the
other. Our current understanding of what predicts
sedentary lifestyles in children still remains some way
behind that concerning physical activities, so the
current study’s data and analysis make an important
contribution to the relevant evidence base.

In conclusion, during weekdays, computer and
internet use, electronic games, mobile screen devices
may lead to unhealthy weight gain among children.
During weekends, only smartphones and tablet devices were used, and this contributed to obesity. Although computer and internet use on weekends highlighted the differences, the association was borderline and not significant among the genders. Generally, watching TV does not explain much of the variation in children's body weight. More attention should be given to the use of smartphones and tablet devices especially among children.

Acknowledgment. The authors gratefully thank all the parents and families of our study's sample of children who contributed to this study and agreed to participate. We would like to thank Mr. Phillip Thomas for the English language editing and proof-reading.

References

1. Tripathi M, Shailendra M. Screen time and adiposity among children and adolescents: a systematic review. J Public Health (Oxf) 2019; 1-18.
2. Melkevik O, Haug E, Rasmussen M, Siri Fisman A, Wold B, Borraccino A, et al. Are associations between electronic media use and BMI different across levels of physical activity? BMC Public Health 2015; 15: 497.
3. Rideout V. The common sense census: media use by tweens and teens, San Francisco (2015). [Updated 2018. Accessed 2019 March 25th]. Available from: https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-tweens-and-teens
4. Robinson T, Banda J, Hale L, Lu A, Fleming-Milici F, Calvert S, et al. Screen media exposure and obesity in children and adolescents. Pediatrics 2017; 140: S97-S101.
5. Al-Nakeeb Y, Lyons M, Collins P, Al-Nuaim A, Al-Hazzaa H, Duncan M, Nevill A. Obesity, physical activity and sedentary behavior amongst British and Saudi youth: a cross-cultural study. Int J Environ Res Public Health 2012; 9: 1490-1506.
6. Denicola E, Aburizaiza O, Siddique A, Khwaja H, Carpenter D. Obesity and public health in the Kingdom of Saudi Arabia. Rev Environ Health 2015; 30: 191-205.
7. Owen N. Too much sitting and too little exercise: sedentary behavior and health. Rev Bras Ativ Fis Saúde 2018; 23: 1-4.
8. Alturki HA, Mueen FZ, Z马来, Al-Naisee A. iPad usage and obesity among Saudi children. J Public Health Nutr 2018; 12: 2280-2290.
9. Centers for Disease Control and Prevention (CDC). Children BMI, 2000. [Updated 2001. Accessed 2017 February 10th]. Available from: http://www.cdc.gov/nccdphp/dnpa/bmi/childrens_BMI/about_childrens_BMI.htm
10. Fryar CD, Gu Q, Ogden CL. Anthropometric reference data for children and adults: United States, 2007-2010. Vital Health Stat 2012; 252: 1-48.
11. McCarthy HD, Cole TJ, Fry T, Jebb SA, Prentice AM. Body fat reference curves for children. Int J Obes (Lond) 2006; 30: 598-602.
12. Al-Hazzaa HM, Masaigector L. Arab teens lifestyle study (ATLS): Objectives, design, methodology and implications. Diabetes Metab Syndr Obes 2011; 4: 417-426.
13. Atkin AJ, Gorely T, Cleggs SA, Yates T, Edwardson C, Brage S, et al. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol 2012; 41: 1460-1471.
14. Zhang G, Wu L, Zhou L, Lu W, Mao C. Television watching and risk of childhood obesity: A meta-analysis. Eur J Public Health 2016; 26: 13-18.
15. Chassiakos R, Yolanda L, Radesky J, Christakis D, Moreno MA, Cross C, et al. Children and adolescents and digital media. Pediatrics 2016; 138: e20162593.
16. Greer C, Ferguson D. Tablet computers and traditional television (TV) viewing. Is the iPad replacing TV? Int J New Media Technol 2014; 21: 244-256.
17. Loprinzi PD, Davis RE. Secular trends in parent-reported television viewing among children in the United States, 2001-2012. Child Care Health Dev 2016; 2: 288-291.
18. Bucksch J, Inchley J, Hamrick Z, Finne E, Kolip Z, HBSC Study Group Germany. Trends in television time, non-gaming PC use and moderate-to-vigorous physical activity among German adolescents 2002–2010. BMC Public Health 2014; 14: 351.
19. Lopes AS, Silva KS, Filho VCB, Bezerra J, De Oliveira ESA, Nahas MV. Trends in screen time on week and weekend days in a representative sample of Southern Brazil students. J Public Health 2014; 36: 608-614.
20. Marques D, De Matos MG. Trends and correlates of overweight and obesity among adolescents from 2002 to 2010: A three-cohort study on a representative sample of Portuguese adolescents. Ann Hum Biol 2014; 26: 844-849.
21. Sigmund E, Sigmundowith D, Badura P, Kalman M, Hamrzk, Pavelka J. Temporal trends in overweight and obesity, physical activity and screen time among Czech adolescents from 2002 to 2014: A national health behaviour in school-aged children study. Int J Environ Res Public Health 2015; 12: 11848-11868.
22. Mathur U, Stevenson RJ. Television and eating: repetition enhances food intake. Front Psychol 2015; 6: 1657.
23. Jenkin GN, Madhvari N, Signal L, Bowers S. A systematic review of persuasive marketing techniques to promote food to children on television: persuasive TV Food marketing to children. Obesity Reviews 2014; 15: 281-293.
24. Al-Agha AE, Nizar SF, Nahhas AM. The association between body mass index and duration spent on electronic devices in children and adolescents in Western Saudi Arabia. Saudi Med J 2016; 37: 436-439.
25. Stiglic N, Viner RM. Effects of screen time on the health and well-being of children and adolescents: a systematic review of reviews. BMJ Open 2019; 9: e023191.
26. Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput J, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab 2016; 41: S240-S265.
27. Hamlen KR. Understanding children’s choices and cognition in video game play: a synthesis of three studies. Zeitschrift für Psychologie 2013; 221: 107-114.
28. Rideout V. Measuring time spent with media: the Common Sense census of media use by US 8- to 18-year-olds. J Child Media 2016; 10: 138-144.
29. Al-Hazzaa HM, Al-Nakeeb Y, Duncan MJ, Al-Sohayel HI,Abuhasan NA, Masaigector AO, et al. A cross-cultural comparison of health behaviors between Saudi and British Adolescents living in urban areas: gender by country analyses. Int J Environ Res Public Health 2013; 3: 6701-6720.
30. Health Fact Sheets. Physical activity and screen time among Canadian children and youth, 2016 and 2017. Statistics Canada, 2019; Catalogue no.82-625-X [Updated 2019. Accessed 2019 Jun 25th]. Available from: https://www150.statcan.gc.ca/n1/pub/82-625-x/2019001/article/00003-eng.pdf
Screen utilization in normal and obese children ... Alturki et al

31. Loucaides CA, Jago R, Theophanous M. Physical activity and sedentary behaviours in Greek Cypriot children and adolescents: A cross-sectional study. *Int J Behav Nutr Phys Act* 2011; 8: 90.

32. Verloigne M, van lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: An observational study within the ENERGY-project. *Int J Behav Nutr Phy Act* 2012; 9: 34.

33. Koning, Maaike, de Jong, Astrid, de Jong, Elske, et al. Agreement between parent and child report of physical activity, sedentary and dietary behaviours in 9-12-year-old children and associations with children's weight status. *BMC Psychology* 2018; 6: 14.

34. Alturki HA, Brookes DS, Davies PS. Differences in Physical behaviour between obese and normal weight Saudi Arabian boys and girls: what is worth noting? *J Phys Act Health* 2018; 2: 51-65.

35. Hands BP, Chivers PT, Parker HE, Beilin L, Kendall G, Larkin D. The associations between physical activity, screen time and weight from 6 to 14 years: The Raine Study. *J Sci Med Sport* 2011; 14: 397-403.

36. Strain T, Milton K, Dall P, Standage M, Mutrie N. How are we measuring physical activity and sedentary behaviour in the four home nations of the UK? A narrative review of current surveillance measures and future directions. *Br J Sports Med* 2019; 0: 1-9.

37. Pearson N, Braithwaite RE, Biddle SJ, van Sluijs EM, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. *Obes Rev* 2014; 8: 666-675.

38. Uijtdewilligen L, Nauta J, Singh AS, van Mechelen W, Twisk JW, van der Horst K, et al. Determinants of physical activity and sedentary behavior in young people: a review and quality synthesis of prospective studies. *Br J Sports Med* 2011; 45: 896-905.