INVESTIGATION OF TIGECYCLINE SUSCEPTIBILITY OF MULTIDRUG-RESISTANT *ACINETOBACTER BAUMANNII* ISOLATES BY DISC DIFFUSION, AGAR GRADIENT AND BROTH MICRODILUTION TESTS

Emel Çalışkan¹, Nevin İnce², Nida Akar³ and Cihadiye Elif Öztürk¹

¹Duzce University Faculty of Medicine, Department of Medical Microbiology, Duzce, Turkey; ²Duzce University Faculty of Medicine, Department of Clinical Microbiology and Infectious Diseases, Duzce, Turkey; ³Hacettepe University Faculty of Medicine, Department of Medical Mycology, Ankara, Turkey

SUMMARY – The use of tigecycline is becoming increasingly important because of the high levels of antibiotic resistance in *Acinetobacter baumannii* (*A. baumannii*) isolates. In this prospective study, multidrug-resistant *A. baumannii* isolates were obtained from various tissue and fluid samples of patients admitted to or treated at various departments and tested in Laboratory of Microbiology, Duzce University Medical Faculty between January 2013 and December 2015. Tigecycline resistance in multidrug-resistant *A. baumannii* isolates were analyzed using the disc diffusion test (DDT), agar gradient test (AGT), and gold standard test [broth microdilution test (BMT)]. *A. baumannii* isolates resistant to multiple drugs were included in the study (N=94). Using the BMT method, 89 (95%), 4 (4%) and 1 (1%) *A. baumannii* isolates were determined as tigecycline susceptible, intermediate and resistant isolates, respectively. Using the Food and Drug Administration criteria, the rates of major error (ME), minor error (mE) and categorical agreement (CA) for DDT were 26%, 67% and 9%, respectively. In contrast, for AGT, the rates of ME, mE and CA were 0%, 4%, 95%, respectively. Tigecycline resistance as assessed by BMT showed no increase between 2013 and 2015. Accordingly, isolates found to be resistant or intermediate by DDT should be confirmed by BMT. Due to the ease of application, AGT is a safe method of detecting susceptibility.

Key words: *Acinetobacter baumannii*; Agar gradient test; Broth microdilution test; Disc diffusion test; Multidrug-resistance; Tigecycline

Introduction

Acinetobacter species are among the leading causes of nosocomial infections in recent years. *Acinetobacter* (*A.*) *baumannii* are immobilized, non-fermentative, oxidase negative, gram-labile coccobacilli that cause serious infections such as ventilator-associated pneumonia, meningitis, endocarditis, and bloodstream, urinary tract and wound infections. Development of resistance to many antibiotics, including the carbapenem group, has contributed to treatment failure. Multidrug-resistance, defined as resistance to typical molecules from at least three classes of antibiotics, is frequently and especially found in *A. baumannii* isolates¹. Therefore, drug regimens containing combinations of colistin and tigecycline are used in the treatment of multidrug-resistant infections²,³.

Tigecycline is a relatively new, broad spectrum, semisynthetic glycyycline derived from minocycline with *in vitro* activity against multidrug-resistant *A.*
Many gram-positive and gram-negative facultative aerobes, and anaerobic bacteria are used. The disc diffusion test (DDT), agar gradient test (AGT) and broth microdilution test (BMT) are typically used to determine the susceptibility of bacterial isolates to tigecycline.

This study aimed to detect the rate of tigecycline resistance in A. baumannii isolates that are resistant to multiple drugs and the change of resistance rate over years. Further, we also wanted to assess conformity among tigecycline susceptibility profiles generated by DDT, AGT and BMT as the gold standard test, to precisely determine sensitivity.

Material and Methods

In this prospective study, multidrug-resistant A. baumannii isolates were obtained from various tissue and fluid samples of patients admitted to or treated at the various departments, and tested in Laboratory of Microbiology, Düzce University Medical Faculty between January 2013 and December 2015. A. baumannii isolates were identified using conventional microbiological methods on an automated bacterial identification system (Vitek 2, bioMerieux, France). Antibiotic susceptibility of A. baumannii isolates to tigecycline was tested using the methods described below.

Disc diffusion test

Bacterial suspensions prepared to 0.5 McFarland turbidity units were inoculated onto MH agar (Oxoid, UK) and a 15-μg tigecycline disc (Bioanalyze, Turkey) was placed on the agar. Plates were incubated at 36 °C for 20-24 hours. Susceptibility to tigecycline was defined based on clear zone diameters as susceptible (≥19 mm), intermediate (15-18 mm), or resistant (≤14 mm), based on the Food and Drug Administration (FDA) criteria for susceptibility zone diameters for Enterobacteriaceae. According to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria for Escherichia coli, isolates were categorized as resistant if the zone diameter was <15 mm and susceptible if the zone diameter was ≥18 mm.

Agar gradient test

Bacterial suspensions prepared to 0.5 McFarland turbidity units were inoculated onto MH agar (Oxoid, UK) and gradient antibiotic test strips (AB Biodisc, Sweden) were placed on the agar. Plates were incubated at 36 °C for 20-24 hours. The minimum inhibitory concentration (MIC) values reported by FDA and EUCAST in Enterobacteriaceae species were used to determine the susceptibility of tigecycline.

Broth microdilution test

MH bouillon (Oxoid, UK) was prepared according to the Clinical and Laboratory Standards Institute (CLSI) recommendations and added to 96-well microdilution plates. Tigecycline active ingredients were resuspended as per manufacturer’s recommendations, stock solutions were prepared, and serial tigecycline dilutions (32-0.062 μg/mL) were prepared from stock. A. baumannii isolates were diluted to 0.5 McFarland turbidity units and further diluted to a ratio of 1:100. Bacterial suspensions were then added to microplate wells, except for those designated as negative controls, and incubated at 36 °C for 20-24 hours. The lowest antimicrobial drug concentration without bacterial growth was identified as the minimal inhibitory concentration required to inhibit the growth of organisms (MIC). According to the FDA criteria for Enterobacteriaceae, isolates were categorized as resistant if MIC was ≥8 μg/mL, intermediate if MIC was 4-6 μg/mL, and susceptible if MIC was ≤2 μg/mL. According to the EUCAST criteria for Enterobacteriaceae, isolates were categorized as resistant if MIC was >2 μg/mL and susceptible if MIC was ≤1 μg/mL.

Statistical analysis

Kruskal-Wallis test was used to determine the change in tigecycline resistance over years. Very major errors (VME) were considered in cases where BMT indicated resistance and the comparative method indicated susceptibility; major errors (ME) when an isolate was categorized as susceptible by BMT and resistant by the comparative method; and minor errors (mE) when an isolate was categorized as susceptible or resistant by BMT and intermediate by the comparative method, or vice versa. Categorical agreement (CA) was defined as the percentage of isolates recorded in the same susceptibility category by DDT, AGT and BMT.

Results

This study analyzed 94 multidrug-resistant A. baumannii isolates obtained from samples sent to our lab-
oratory between January 2013 and December 2015. Out of 94 isolates, 25 (27%) were from samples obtained in 2013, 32 (34%) from samples collected in 2014, and 37 (39%) from samples obtained in 2015. Isolates were obtained from the following sources: deep tracheal aspiration (DTA, n=33; 35%), blood (n=31; 33%), wounds (n=17; 18%), sputum (n=10; 11%), and bronchoalveolar lavage (BAL, n=3; 3%).

Results according to the FDA criteria

Broth microdilution test showed 89 (95%) isolates to be susceptible to tigecycline, 4 (4%) were intermediate, and 1 (1%) was resistant. DDT showed that 5 (5%) isolates were susceptible to tigecycline, 65 (69%) were intermediate, and 24 (26%) were resistant. In contrast, AGT revealed that all isolates were susceptible to tigecycline.

Results according to the EUCAST criteria

Broth microdilution test showed 88 (94%) isolates were susceptible to tigecycline, 5 (5%) were intermediate, and 1 (1%) was resistant. DDT showed 16 (17%) isolates to be susceptible to tigecycline, 54 (57%) were intermediate, and 24 (26%) were resistant. AGT showed that 93 (99%) isolates were susceptible and 1 (1%) was resistant to tigecycline. BMT, DDT and AGT results are shown in Table 1.

There were no significant differences in tigecycline resistance among samples obtained in 2013, 2014 and 2015, as evaluated by BMT. The only isolate found to be resistant had been obtained from a blood sample from 2015 (p=0.824). The distributions of MIC$_{50}$ versus MIC$_{90}$ values of tigecycline according to years are shown in Table 2.

Discussion

Tigecycline binds to the 30S ribosomal subunit and inhibits bacterial protein synthesis and is effective against many gram-positive and gram-negative bacteria. Many resistant A. baumannii isolates have been detected in many facilities, especially in intensive care units, and treatment of such infections is complicated. Accurate detection of tigecycline susceptibility is important because it has been reported that A. baumannii infections respond faster to treatment with

Table 1. BMT, DDT and AGT results, n (%)

Method	Susceptible	Intermediate	Resistant	VME*	ME	mE	CA
BMT	89 (95)	4 (4)	1 (1)				
DDT	5 (5)	65 (69)	24 (26)		23 (26)	63 (67)	8 (9)
AGT	94 (100)	0 (0)	0 (0)	1	0 (0)	4 (4)	89 (95)

Method	Susceptible	Intermediate	Resistant	VME	ME	mE	CA
BMT	88 (94)	5 (5)	1 (1)		24 (26)		
DDT	16 (17)	54 (57)	0 (0)	1			
AGT	93 (99)	1 (1)	0 (0)	0	5 (5)	88 (94)	

Table 2. Distribution of MIC$_{50}$ vs. MIC$_{90}$ values of tigecycline according to years

Year	MIC$_{50}$	MIC$_{90}$
2013	0.5	2
2014	0.5	1
2015	0.5	2

DDT = disc diffusion test; AGT = agar gradient test; BMT = broth microdilution test; FDA = Food and Drug Administration; EUCAST = European Committee on Antimicrobial Susceptibility Testing; VME = very major errors; ME = major errors; mE = minor errors; CA = categorical agreement; *percentage of VME was not calculated because only one isolate was determined as resistant by BMT.
tigecycline. Jones et al. have reported results of their five-center study which assessed susceptibility of multidrug-resistant *A. baumannii* isolates. They found that a ≥19 mm zone diameter, as recommended by the FDA, led to an unacceptable error rate of 23%. However, assessment based on a zone diameter of ≥16 mm/≤12 mm resulted in an acceptable error rate of 9.7%.

Thamlikitkul et al. found that only 44.6% of *Acinetobacter* spp. isolates could be defined as susceptible to tigecycline when zone size was set at ≥19 mm. Further, they found that 96.6% of *Acinetobacter* spp. isolates could be categorized as susceptible if a diameter of ≥13 mm was used. They also report that susceptibility by DDT was as high as 99% when the zone diameter was ≥13 mm, and that DDT specificity was 100% when compared to the results obtained by BMT. Gulhan et al. found that 3% of the isolates were resistant, 49% were intermediate, and 48% were susceptible when the zone diameter conditions were set at ≥19 mm and ≤14 mm. These percentages decreased to 1%, 1% and 97%, respectively, when the zone diameters were set at ≥16 mm and ≤12 mm. Mansur et al. were able to detect 83% (25/30) susceptibility using DDT when the zone diameter for susceptibility was set at ≥16 mm. According to the FDA and EUCAST, we recorded ME, ME and CA rates of 26%, 67%, 9% and 27%, 54%, 20% with DDT, respectively. These results imply that the MIC values, as determined by the FDA and EUCAST, are not consistent with the zone diameter results. Therefore, when determining tigecycline susceptibility, the results of BMT may be more precise if the isolates are initially categorized as resistant or intermediate by DDT. Furthermore, given the ease of using DDT, it is essential that studies on tigecycline susceptibility precisely define zone diameter for the three categories of resistant, intermediate and susceptible isolates.

Studies using AGT demonstrate different results. Navon-Venezia et al. found 66% of multidrug-resistant *A. baumannii* isolates to be resistant, 12% intermediate and 22% susceptible to tigecycline when AGT was used. Thamlikitkul et al. report on 25% resistance to tigecycline in *A. baumannii* isolates, as determined by AGT, to be inaccurate. Similarly, Mansur et al. also state that 30% resistance to tigecycline in *A. baumannii* isolates determined by AGT method was inaccurate. Bedenic et al. have reported that AGT (E-test) did not provide reliable results. Interestingly, Akin et al. report rates of tigecycline resistance to be 5.3% by BMT and 17.9% by AGT. Bogaerts et al. did not detect tigecycline resistance by AGT in carbapenem-resistant *A. baumannii* isolates, and Nayman-Álpat et al. did not detect resistance to tigecycline by AGT in 100 *A. baumannii* isolates from various clinical samples. Contrary to this, we recorded ME, ME and CA rates of 0%, 4%, 95% and 0%, 5%, 94% with AGT, according to the FDA and EUCAST criteria, respectively. In agreement with our observations, Zarete et al. have also reported that the results obtained by AGT and BMT methods are similar and that AGT is suitable for detecting tigecycline resistance. Fernandez-Mazarrasa et al. found that resistance rates determined by AGT were different if MH agar from different manufacturers was used and that higher levels of tigecycline resistance were associated with the concentration of manganese in the medium. Therefore, it is possible that variations in the sensitivity profiles reported may be due to differences in the concentration of medium components such as manganese.

With respect to change in resistance over time, in their study conducted in the United States, Loan et al. have reported a susceptibility rate of 91.5% for tigecycline in *A. baumannii* isolates. Sohail et al. in their study from Pakistan conducted between 2012 and 2014 found this rate to be 99.3%. Sader et al. in a study conducted in 11 centers in Latin America between 2011 and 2014 have reported a MIC₉₀ value of 1 and MIC₉₀ value of 2 for tigecycline in *A. baumannii* isolates. Similarly, studies from Turkey report high tigecycline susceptibility rates. Specifically, Akin et al. found a tigecycline susceptibility rate of 94.7% in *A. baumannii* isolates between 2006 and 2008, while in the study by Mansur et al. it was 100% and in the study by Direkel et al. it was 96.2%. We showed a tigecycline susceptibility rate of 95%, which is comparable with those reported in the literature. Collectively, these observations suggest that because the susceptibility of *A. baumannii* isolates to tigecycline has not significantly changed over years, tigecycline might still be an appropriate treatment option for infections caused by multidrug-resistant *A. baumannii*. However, as there might be regional differences in susceptibility due to antibiotic usage policies, it would be essential to precisely determine tigecycline susceptibility and administer treatment accordingly.

Conclusions

In conclusion, the AGT is a safe method for determining susceptibility when the appropriate MH agar
is used, as it can be easily performed. The incompatibility between the results of DDT and BMT methods necessitates further confirmation of resistance or intermediate susceptibility of isolates using BMT.

References

1. Akin FE, Bayram A, Balci I. Comparison of disc diffusion, E-test, and broth microdilution methods for the determination of resistance to colistin, polymyxin B, and tigecycline in multi-resistant Acinetobacter baumannii isolates. Mikrobiyol Bul. 2010;44:203-10.

2. Tunay H, Demirdal T, Demirturk N. Changing definitions related with the resistance of Acinetobacter infections and current condition in the resistance. Türk Mikrobiyol Cem Derg. 2012;42:123-6.

3. Bilgehan H. Klinik mikrobiyolojik tanı. 4th edn. Fakülteler Ki-

4. Gulhan B, Nergiz S, Mese S, Ozekinci T, Atmaca S. Evaluation of disk diffusion zone diameters by two different break points for tigecycline in Acinetobacter baumannii strains. Ankem Derg. 2009;23:78-81.

5. Cilli A. The yield of tigecycline in the treatment of community-acquired pneumonia. Tuber Toraks. 2013;61:155-61. doi: 10.5578/tt.5032.

6. European Committee on Antimicrobial Susceptibility Test-

7. Morfin-Otero R, Nortega ER, Dowzicky MJ. Antimicrobial susceptibility trends among gram-positive and-negative clinical isolates collected between 2005 and 2012 in Mexico: results from the Tigecycline Evaluation and Surveillance Trial. Ann Clin Microbiol Antimicrob. 2015;14:53. doi: 10.1186/s12941-015-0116-y.

8. Mansur A, Kucuk C, Eroyn Y, Yetkin F. Evaluation of tigecycline susceptibility by disk diffusion, E-test and broth microdilution methods in 30 multi drug resistant or extreme drug resistant Acinetobacter isolates. J Inonu Fac Med. 2011;18:257-62.

9. Pachon-Ibanez ME, Jimenez-Mejias ME, Pichardo C, Lla-

10. Arda B. Case of multidrug-resistant Acinetobacter baumannii. Ankem Derg. 2010;24:78-81.

11. Jones RN, Ferraro MJ, Roller LB, Schreckenberger PC, Swen-

12. Thamlikitkul V, Tiengrim S, Tribuddharat C. Comment on: High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2007;60(1):177-8. doi: 10.1093/jac/dkm142.

13. Navon-Venezia S, Leavitt A, Carmeli Y. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2007;59:772-4. doi: 10.1093/jac/dkm018.

14. Bedenic B, Cavic G, Vranic-Ladavac M, Barisic N, Kar-

15. Bogaerts P, Naas T, Wybo I, Bauraing C, Soetens O, Pierard D, et al. Outbreak of infection by carbapenem-resistant Acine-

16. Nayman Alpat S, Aybey AD, Aksit F, Özsunes I, Kiremitci A, Ushler G. In vitro tigecycline and carbapenem susceptibilities of clinical isolates of Acinetobacter baumannii. Mikrobiyol Bul. 2010;44:641-5.

17. Zarate MS, Serruto G, Smayevsky J. The susceptibility to tigecycline of Acinetobacter spp. may vary depending on the methodology used. Int J Infect Dis. 2010;Suppl 3:351-2. doi: https://doi.org/10.1016/j.ijid.2009.08.015.

18. Fernandez-Mazarrasa C, Mazarrasa O, Calvo J, Arco A, Martínez LM. High concentrations of manganese in Mueller-Hinton agar increase MICs of tigecycline determined by E-test. J Clin Microbiol. 2009;47:827-9. doi: 10.1128/JCM.02464-08.

19. Lolas K, Rice WT, Munoz-Price LS, Quinl JP. Multi city outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimi-

20. Sadeh M, Rashid A, Aslam B. Antimicrobial susceptibility of Acinetobacter clinical isolates and emerging antibiogram trends for nosocomial infection management. Rev Soc Bras Med Trop. 2016;49:300-4. doi: 10.1590/0037-8682-0111-2016.

21. Sadeh HS, Castanheira M, Farrell DJ, Flamm RK, Mendes RE, Jones RN. Tigecycline antimicrobial activity tested against clinical bacteria from Latin American medical centres: results from SENTRY Antimicrobial Surveillance Program (2011-2014). Int J Antimicrob Agents. 2016;48:144-50. doi: 10.1016/j.ijantimicag.2016.04.021.

22. Dirikel S, Copur Cicek A, Karagoz A, Aydogan Ejder N, Ok-

50

Acta Clin Croat, Vol. 61, No. 1, 2022
ISPITIVANJE OSJETLJIVOSTI NA TIGECIKLIN MULTIREZISTENTNIH IZOLATA ACINETOBACTER BAUMANNII TESTOVIMA DISK DIFUZIJE, AGAR GRADIJENTA I MIKRODILUCIJE U BUJONU

E. Çalışkan, N. İnce, N. Akar i C.E. Öztürk

Primjena tigeciklina postaje sve važnija zbog visoke razine otpornosti na antibiotike u izolatima Acinetobacter baumannii (A. baumannii). U ovoj prospektivnoj studiji dobiveni su multirezistentni izolati A. baumannii iz različitih uzoraka tkiva i tekućina bolesnika primijenjenih ili liječenih na različitim klinikama, koji su testirani u Laboratoriju za mikrobiologiju Medicinskog fakulteta Sveučilišta Dužce u razdoblju od siječnja 2013. do prosinca 2015. godine. Otpornost na tigeciklin u multirezistentnim izolatima A. baumannii analizirana je primjenom testa disk difuzije (disc diffusion test, DDT), testa gradijenta agara (agar gradient test, AGT) i zlatnog standardnog testa (broth microdilution test, test mikrodilucije u bujonu, BMT). U studiji su ispitana 94 izolata A. baumannii rezistentna na više lijekova. Metodom BMT utvrđeno je da su 89 (95%), 4 (4%) izolata i 1 (1%) izolat A. baumannii osjetljivi, srednje osjetljivi i rezistentni na tigeciklin. Primjenom kriterija FDA, stope velike greške (ME), male greške (mE) i kategoričkog poklapanja (CA) za DDT iznosile su 26%, 67% odnosno 9%. Nasuprot tome, stope ME, mE i CA za AGT bile su 0%, 4% odnosno 95%. Otpornost na tigeciklin procijenjena metodom BMT nije pokazala povećanje između 2013. i 2015. godine. Izolate za koje je metodom DDT utvrđeno da su otporni ili srednje otporni treba potvrditi metodom BMT. Zahvaljujući jednostavnoj primjeni AGT je sigurna metoda otkrivanja osjetljivosti.

Ključne riječi: Acinetobacter baumannii; Test gradijenta agara; Test mikrodilucije u bujonu; Test disk difuzije; Multirezistentnost; Tigeciklin