A REMARK ON DESCENT FOR COXETER GROUPS

GUS LONERGAN

Abstract. Let \(\Gamma \) be a finite Coxeter group with reflection representation \(R \). We show that a \(\Gamma \)-equivariant quasicoherent sheaf on \(R \) descends to the quotient space \(R/\Gamma \) if it descends to the quotient space \(R/(s_i) \) for every simple reflection \(s_i \in \Gamma \).

Contents

1. Introduction 1
2. Two Algebras 2
3. Proof 5
References 7

1. Introduction

1.1. Let \(W \) be a finite Weyl group with reflection representation \(t \) over \(\mathbb{C} \), and let \(\widetilde{W} \) denote the extended affine Weyl group which also acts on \(t \) in the natural manner. In \cite[Thm 1.2]{R}, the author has demonstrated that there is an equivalence of categories between modules for a certain algebra, denoted \(H \), and the full subcategory of the category of \(\widetilde{W} \)-equivariant quasicoherent sheaves on \(t \) which descend to \(t/\Gamma \) for every finite parabolic subgroup \(\Gamma \) of the affine Weyl group \(W^\text{aff} \). On the other hand, it follows directly from the result of V. Ginzburg, \cite[Prop 6.2.5]{G}, that the category of \(H \)-modules is equivalent to the full subcategory of \(\widetilde{W} \)-equivariant quasicoherent sheaves on \(t \) which descend to \(t/W \). We would like to explain this apparent discrepancy.

1.2. In \cite[Lem 2.1.1]{W}, it is shown that every reflection in \(W^\text{aff} \) is conjugate in \(\widetilde{W} \) to a simple reflection of \(W^\text{aff} \). One sees therefore that a \(\widetilde{W} \)-equivariant quasicoherent sheaf on \(t \) which descends to \(t/W \) descends also to \(t/(s) \) for every reflection \(s \) in \(W^\text{aff} \). Now fix a finite parabolic subgroup \(\Gamma \) of \(W^\text{aff} \). Then \(\Gamma \) is generated by its reflections, and is the stabilizer in \(W^\text{aff} \) of some point of \(t \). Translating to 0, one sees that \(\Gamma \) is the Weyl group of some root subsystem of the root system of \(W \). It follows that \(t \) is the direct sum of the reflection representation \(t_\Gamma \) of \(\Gamma \) and the invariant subspace \((t)^\Gamma \). Thus Ginzburg’s claim is seen to follow from the author’s in light of the following:

Theorem 1.1. Let \(\Gamma \) be a finite Coxeter group with reflection representation \(R \) over \(\mathbb{C} \). Let \(X \) be a scheme over \(\mathbb{C} \) and let \(\mathcal{Y} \) be a \(\Gamma \)-equivariant \(R \)-bundle over \(X \).

\footnote{This fact may be standard but this is the only reference the author is aware of.}
Let M be a Γ-equivariant quasicoherent sheaf on Y. Then M descends to $Y//\Gamma$ if it descends to $Y//\langle s_i \rangle$ for every simple reflection s_i in Γ.

We emphasize that the content of this theorem is essentially all contained in the case $Y = R$.

1.3. Bad grammar. Let Γ be a finite group acting on a scheme Y with GIT quotient $q : Y \to Y//\Gamma$. Suppose M is a quasicoherent sheaf on Y. We say M descends to $Y//\Gamma$ to mean that M is equipped with an isomorphism $M \cong q^*M'$ for some quasicoherent sheaf M' on $Y//\Gamma$. This is not a property of M, but rather additional data. Note that in that case M receives a Γ-equivariant structure. Now suppose instead that M is a Γ-equivariant quasicoherent sheaf on Y. We employ the same phrase: M descends to $Y//\Gamma$ to mean that the underlying quasicoherent sheaf descends to $Y//\Gamma$ (in the previous sense), and moreover that the induced W-equivariant structure coincides with the original one. More generally, for a subgroup $\Gamma' \subset \Gamma$, we will say that M descends to $Y//\Gamma'$ to mean merely that the underlying Γ'-equivariant quasicoherent sheaf descends to $Y//\Gamma'$.

2. Two Algebras

2.1. The nil Hecke algebra. Let Γ be a finite Coxeter group with simple reflections $\{s_i\}_{i \in \Sigma}$. Denote by α_i the corresponding simple roots; then $\mathcal{O}(R)$ is naturally identified with the symmetric algebra on the various α_i. For $i, j \in \Sigma$ let $m_{i,j}$ denote the order of s_is_j. Following [4], the nil Hecke algebra is the algebra generated by the symbols $\{D_i\}_{i \in \Sigma}$ subject to the relations

$$D_i^2 = 0$$

and

$$D_iD_jD_i\ldots = D_jD_iD_j\ldots \quad \text{mod} \quad m_{i,j}$$

for all $i, j \in \Sigma$. The latter relations imply that for any $w \in \Gamma$ the element

$$D_w := D_{i_1}D_{i_2}\ldots D_{i_l}$$

is independent of choice of reduced expression $w = s_{i_1}s_{i_2}\ldots s_{i_l}$. Together with the former relations, one sees that $\{D_w\}_{w \in \Gamma}$ form a basis for the nil Hecke algebra, and also that the nil Hecke algebra is graded with each D_i in degree -1 by convention.

2.2. This algebra acts on $\mathcal{O}(R)$ by setting

$$D_i(f) = \alpha_i^{-1}.(1 - s_i)(f),$$

for any $f \in \mathcal{O}(R)$; this is the so-called Demazure operator. D_i acts by s_i-derivations, that is:

$$D_i(f.g) = D_i(f).g + s_i(f).D_i(g)$$

for any $f, g \in \mathcal{O}(R)$. One may accordingly take the smash product of the nil Hecke algebra with $\mathcal{O}(R)$. The resulting algebra, denoted \mathcal{H}, is free over its subalgebra $\mathcal{O}(R)$ with respect to both left and right multiplication, with basis $\{D_w\}_{w \in \Gamma}$ and is generated by the nil Hecke algebra and $\mathcal{O}(R)$ subject to the relations:

$$D_i.f = D_i(f) + s_i(f).D_i.$$
In fact it suffices to impose these relations when \(f = \theta \) is a linear function, in which case the relations become:

\[
D_i.\theta = \langle \alpha_i^\vee, \theta \rangle + s_i(\theta).D_i
\]

where \(\alpha_i^\vee \) is the coroot dual to \(\alpha_i \). We extend the grading on the nil Hecke algebra to one on \(\mathcal{H} \) by putting the linear functions in degree 1.

2.3. The algebra \(\mathcal{H} \) may also be understood as the largest subalgebra of the smash product \(\Gamma \# \text{Frac}(\mathcal{O}(R)) \) which stabilizes \(\mathcal{O}(R) \) in its action on \(\text{Frac}(\mathcal{O}(R)) \); \(D_i \) corresponds to the element \(\alpha_i^{-1}.(1 - s_i) \). Also \(\mathcal{H} \) receives an \(\mathcal{O}(R) \)-algebra map from \(\Gamma \# \mathcal{O}(R) \) determined by sending \(s_i \) to \(1 - \alpha_i.D_i \) in a diagram

\[
\Gamma \# \mathcal{O}(R) \to \mathcal{H} \to \Gamma \# \text{Frac}(\mathcal{O}(R)).
\]

2.4. The main point about \(\mathcal{H} \) is that it is in an appropriate sense dual to the Hopf algebroid \(\mathcal{O}(R \times_{R/\Gamma} R) \), whose comodules are equivalent to quasicoherent sheaves on \(R/\Gamma \) since \(R/\Gamma \) is faithfully flat. We therefore see that:

Lemma 2.1. The \(\Gamma \)-equivariant quasicoherent sheaf \(M \) on \(R \) descends to \(R//\Gamma \) if and only if the \(\Gamma \# \mathcal{O}(R) \)-module structure on \(M \) may be extended to an \(\mathcal{H} \)-module structure.

2.5. Suppose \(X \) is a scheme over \(\mathbb{C} \). Since \(R \) is an irreducible representation of \(W \), the category of \(W \)-equivariant \(R \)-bundles over \(X \) is equivalent to the category of \(\mathbb{G}_m \)-torsors over \(X \). Recall that \(\mathcal{H} \) is graded, extending the grading of \(\mathcal{O}(R) \) which comes from the dilation of \(R \). Therefore given a \(W \)-equivariant \(R \)-torsor \(\pi : Y \to X \) one may take the underlying \(\mathbb{G}_m \)-torsor \(\pi : \mathcal{L} \to X \) and form

\[
\mathcal{H}(Y) := \pi_* \mathcal{O}(\mathcal{L}) \otimes^{\mathbb{G}_m} \mathcal{H}.
\]

This is a quasicoherent sheaf of Hopf algebroids over \(\pi_* \mathcal{O}(Y) \) on \(X \) whose fibers are copies of \(\mathcal{H} \) and which receives a natural map from \(\Gamma \# \mathcal{O}(Y) := \pi_* \mathcal{O}(\mathcal{L}) \otimes^{\mathbb{G}_m} (\Gamma \# \mathcal{O}(R)) \). It is dual over \(\pi_* \mathcal{O}(Y) \) to the Hopf algebroid

\[
\pi_* \mathcal{O}(Y \times_{Y//\Gamma} Y)
\]

whose comodules over \(\pi_* \mathcal{O}(Y) \) are equivalent to quasicoherent sheaves on \(Y//\Gamma \), since \(Y \to Y//\Gamma \) is faithfully flat. Thus one obtains the generalization of Lemma 2.1.

Lemma 2.2. The \(\Gamma \)-equivariant quasicoherent sheaf \(M \) on \(Y \) descends to \(Y//\Gamma \) if and only if the \(\Gamma \# \mathcal{O}(Y) \)-module structure on \(\pi_* M \) may be extended to an \(\mathcal{H}(Y) \)-module structure.

2.6. The Demazure descent algebra. Now fix a simple reflection \(s_i \) and let \(M \) be an \((s_i) \)-equivariant quasicoherent sheaf on \(R \). Then \(M \) descends to \(R//\langle s_i \rangle \) if and only if for every \(m \in M \) there is a unique element \(m' \in M \) such that \(\alpha_i.m' = (1 - s_i)(m) \). In that case one may define the operator

\[
G_i : M \to M
\]

\[
m \mapsto m'.
\]

By the uniqueness of \(m' \), one sees that \(G_i \) is linear and satisfies the relations

\[
G_i^2 = 0
\]

and

\[
G_i(f.m) = D_i(f).m + s_i(f).G_i(m)
\]
for any \(f \in \mathcal{O}(R) \), \(m \in M \). This leads us to define the \textit{Demazure descent algebra}, \(D \), to be the algebra generated by \(\mathcal{O}(R) \) and the symbols \(\{G_i\}_{i \in \Sigma} \) subject to the relations
\[
G_i^2 = 0
\]
and
\[
G_i.f = D_i(f) + s_i(f).G_i
\]
for any \(f \in \mathcal{O}(R) \). As for \(\mathcal{H} \) the second relation follows from the relation
\[
G_i.\theta = \langle \alpha_i^\vee, \theta \rangle + s_i(\theta).G_i
\]
for any linear function \(\theta \in \mathcal{O}(R) \). It is easy to see that \(D \) is free over its subalgebra \(\mathcal{O}(R) \) with respect to both left and right multiplication, with basis consisting of all words in \(\{G_i\}_{i \in \Sigma} \) without double letters.

2.7. A \(D \)-module is precisely the same thing as a quasicoherent sheaf on \(R \) which descends to \(R/\langle s_i \rangle \) for each \(i \in \Sigma \). By Lemma 2.1, a quasicoherent sheaf on \(R \) which descends to \(R/\Gamma \) is the same thing as a module for the quotient
\[
\mathcal{H} = D/(D B D)
\]
where \(B_D \) is the set of Demazure braid relations,
\[
B_D = \{G_i G_j \tilde{G}_i \ldots - G_j G_i \tilde{G}_j \ldots \}_{i,j} \in \Gamma.
\]
On the other hand, a \(\Gamma \)-equivariant quasicoherent sheaf on \(R \) which descends to \(R/\langle s_i \rangle \) for every simple reflection \(s_i \) is the same thing as a module for the quotient
\[
\mathcal{I} := D/(D B D)
\]
where \(B \) is the set of Coxeter braid relations,
\[
B = \{s_i s_j s_i \ldots - s_j s_i s_j \ldots \}_{i,j} \in \Gamma
\]
where we have set \(s_i = 1 - \alpha_i.G_i \in D \) for each \(i \in \Sigma \).

2.8. Note that \(D \) is graded, with each \(G_i \) in degree \(-1\) and each linear operator \(\theta \) on \(R \) in degree \(1 \), so that the quotient map
\[
D \to \mathcal{H} = D/(D B D)
\]
respects the grading. Since the generators of \(B \) are also homogeneous, \(D/(D B D) \) is also graded and the quotient map
\[
D \to \mathcal{I} = D/(D B D)
\]
respects the grading. As in [24], for a \(W \)-equivariant \(R \)-bundle \(\pi : Y \to X \), we obtain the sheaves of algebras \(D(Y) \), \(\mathcal{I}(Y) \) on \(X \). They both receive algebra maps from \(\pi_* \mathcal{O}(Y) \), and are locally free on both sides over \(\pi_* \mathcal{O}(Y) \), and we have the sequence of surjective algebra homomorphisms:
\[
D(Y) \to \mathcal{I}(Y) \to \mathcal{H}(Y)
\]
which affine locally is identified up to \(\mathbb{G}_m \)-action with \(D \to I \to H \). A \(D(Y) \)-module over \(\pi_* \mathcal{O}(Y) \) is the same thing as a quasicoherent sheaf on \(Y \) which descends to \(Y/\langle s_i \rangle \) for each simple reflection \(s_i \). An \(\mathcal{I}(Y) \)-module over \(\pi_* \mathcal{O}(Y) \) is the same thing as a \(\Gamma \)-equivariant quasicoherent sheaf which descends to \(Y/\langle s_i \rangle \) for each simple reflection \(s_i \). Therefore to prove Theorem 1.1, it suffices to prove that the
natural map $\mathcal{I}(Y) \to \mathcal{H}(Y)$ is an isomorphism. For this it is enough to prove the case $Y = R$.

3. Proof

3.1. Recall we have the projection map $\mathcal{I} \to \mathcal{H}$, so that $\mathcal{D}B\mathcal{D} \subset \mathcal{D}B\mathcal{D}$. Let

$$B_{k,l} = s_{k_1}s_{k_2}\cdots s_{l_1}s_{l_2}\cdots$$

be one of the elements of B. Recall that $s_i = 1 - \alpha_i G_i$ for each i. Expanding $B_{k,l}$ with respect to the basis as a left $O(R)$-module consisting of monomials in the symbols G_i, we get

$$B_{k,l} = (-1)^{m_{k,l}}(\alpha_k s_k(\alpha_l), s_k s_l(\alpha_k) \cdots G_k G_l G_k \cdots - \alpha_l s_l(\alpha_k) s_l s_k(\alpha_l) \cdots G_l G_k G_l \cdots)$$

$$+l.o.t.$$.

Here the lower order terms are left $O(R)$-linear combinations of double-letter-free words in G_k, G_l of length strictly less than $m_{k,l}$. Such words correspond to elements of Γ with unique reduced expressions. Therefore in \mathcal{H}, the images of such words, together with the common image of $G_k G_l G_k \cdots$ and $G_l G_k G_l \cdots$, are $O(R)$-linearly independent. It follows that the lower order terms are zero, and also that the two coefficients are equal:

$$\alpha_k s_k(\alpha_l), s_k s_l(\alpha_k) \cdots = \alpha_l s_l(\alpha_k), s_l s_k(\alpha_l) \cdots.$$

We are able to compute them exactly. Let us embed the rank two root system $X_{k,l}$ consisting of those roots in the span of α_k, α_l inside two-dimensional real Euclidean space in the usual manner, so that the angle measured clockwise from α_k to α_l is less than π. Then the positive roots in $X_{k,l}$ are precisely those which lie in the \mathbf{R}_+^+-cone swept out by rotating the half line $\mathbf{R}_+^+ \alpha_k$ clockwise as far as $\mathbf{R}_+^+ \alpha_l$. Then $s_k \alpha_l$ is the root in $X_{k,l}$ closest in angle clockwise from α_k, and the rotation $s_k s_l$ sends any root α in $X_{k,l}$ to the root second closest in angle clockwise from α. It follows that the roots

$$\alpha_k, s_k(\alpha_l), s_k s_l(\alpha_k) \cdots$$

are precisely the positive roots of $X_{k,l}$, ordered clockwise from α_k to α_l. Likewise the roots

$$\alpha_l, s_l(\alpha_k), s_l s_k(\alpha_l) \cdots$$

are precisely the positive roots of $X_{k,l}$ ordered in the other direction. We may therefore write

$$B_{k,l} = (-1)^{m_{k,l}}\Delta_{k,l} B_{k,l}^D$$

where $\Delta_{k,l}$ is the product of positive roots in $X_{k,l}$ and $B_{k,l}^D = G_k G_l G_k \cdots - G_l G_k G_l \cdots$.

3.2. We are required to prove that $B_{k,l}^D \in \mathcal{D} B D$.

Lemma 3.1. For every integer $n > 0$ and every word Ξ in the symbols D_k, D_l, the elements $\Xi(\Delta_{k,l}), G_kG_lG_k \ldots$ and $\Xi(\Delta_{k,l}), G_lG_kG_l \ldots$ are both contained in $\mathcal{D} B D$.

Proof. For brevity we set
\[
A_k^n := G_kG_lG_k \ldots \tag{m_k,j+n}
\]
and
\[
A_l^n := G_lG_kG_l \ldots \tag{m_k,j+n}
\]
We proceed by induction on the length of the word Ξ. The case of length 0 follows by multiplying $\pm B_{k,l}$ on the right by words in G_k, G_l. Suppose next that the claim is known for all Ξ of length at most p. Let Ξ be a word of length $p + 1$, say $\Xi = D_\ell \Xi'$ for some word Ξ' of length p (the proof is the same if Ξ starts with D_l). By hypothesis,
\[
\Xi'(\Delta_{k,l}).A_k^n
\]
and
\[
\Xi'(\Delta_{k,l}).A_l^n
\]
are both contained in $\mathcal{D} B D$. Multiplying the first element on the left by G_k, we get that
\[
G_k.\Xi'(\Delta_{k,l}).A_k^n = \Xi(\Delta_{k,l}).A_k^n + s_k(\Xi'(\Delta_{k,l})).G_k \cdot A_k^n
\]
and
\[
G_k.\Xi'(\Delta_{k,l}).A_l^n = \Xi(\Delta_{k,l}).A_l^n + \Xi'(\Delta_{k,l}).A_k^{n+1} - \alpha_k.\Xi(\Delta_{k,l}).A_k^{n+1}
\]
is contained in $\mathcal{D} B D$. The second term of the RHS is contained in $\mathcal{D} B D$ by hypothesis, while the third term of the RHS is contained in $\mathcal{D} B D$, as one sees from the previous equation (substituting $n + 1$ for n and multiplying α_k). Thus $\Xi(\Delta_{k,l}).A_k^n$ is contained in $\mathcal{D} B D$, as required. \square

Lemma 3.2. There exists an element Z of the left $\mathbb{C}[\alpha_k, \alpha_l]$-submodule of \mathcal{H} spanned by the words in D_k, D_l such that $Z(\Delta_{k,l}) = 1$.

Proof. We note that the submodule in question is the subalgebra generated by α_k, α_l, D_k and D_l, which is the algebra associated to the rank 2 root system generated by α_k, α_l in the same way that \mathcal{H} is associated to the root system of Γ. We will call this algebra $\mathcal{H}_{k,l}$ and write $\Gamma_{k,l}$ for its associated Coxeter group. As we have already remarked, $\mathcal{H}_{k,l}$ is equal to the subalgebra of $\Gamma_{k,l} \# \mathbb{C}[\alpha_k, \alpha_l]$ consisting of all those elements which send $\mathbb{C}[\alpha_k, \alpha_l]$ to itself in the natural action on $\mathbb{C}(\alpha_k, \alpha_l)$. We note that
\[
\Delta_{k,l}^{-1} \sum_{g \in \Gamma_{k,l}} sgn(g) g
\]
is such an element, and it sends $\Delta_{k,l}$ to the non-zero scalar $|\Gamma_{k,l}|$. \square

In combination, we obtain:
Lemma 3.3. The elements $G_kG_1G_k\ldots$ and $G_1G_kG_1\ldots$ are both contained in $\mathcal{D}B\mathcal{D}$.

Finally, we have:

Theorem 3.4. $B^D_{k,l} \in \mathcal{D}B\mathcal{D}$.

Proof. By Lemma 3.2 it suffices to show that for every word Ξ in the symbols D_k, D_l, the element $\Xi(\Delta_{k,l}).B^D_{k,l}$ is contained in $\mathcal{D}B\mathcal{D}$. Again we proceed by induction on the length of Ξ. The length 0 case is the fact that $B_{k,l} \in \mathcal{D}B\mathcal{D}$. Suppose next that the claim is known for all Ξ of length at most p. Let Ξ be a word of length $p + 1$, say $\Xi = D_k\Xi'$ for some word Ξ' of length p (the proof is the same if Ξ starts with D_l). By hypothesis, $\Xi'(\Delta_{k,l}).B^D_{k,l}$ is contained in $\mathcal{D}B\mathcal{D}$. Therefore

$$G_k.\Xi'(\Delta_{k,l}).B^D_{k,l} = \Xi(\Delta_{k,l}).B^D_{k,l} + s_k(\Xi'(\Delta_{k,l})).G_k.B^D_{k,l}$$

$$= \Xi(\Delta_{k,l}).B^D_{k,l} - s_k(\Xi'(\Delta_{k,l})).G_kG_1G_k\ldots$$

is contained in $\mathcal{D}B\mathcal{D}$. By Lemma 3.3 we are done.

References

[1] G. Lonergan, A Fourier transform for the quantum Toda lattice, [arXiv:1706.05344] (2017).
[2] V. Ginzburg, Nil Hecke algebras and Whittaker D-modules, [arXiv:1706.06751] (2017).
[3] R. Bezrukavnikov, I. Mirkovic, Representations of semisimple Lie algebras in prime characteristic and noncommutative Springer resolution, [arXiv:1001.2554] (2010).
[4] S. Kumar, Kac-Moody groups, their flag varieties and representation theory. Progress in Mathematics, 204. Birkhäuser Boston, Inc., Boston, MA, 2002.
[5] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
E-mail address: gusl@mit.edu