\(\Lambda_c^+ - \Lambda_c^- \) production asymmetries in two component models

J. Magnin

and

L.M. Mendoza Navas

Depto. de Física, Universidad de los Andes,
AA 4976, Santafé de Bogotá, Colombia

Abstract

Experiments on charm hadroproduction have shown a substantial difference in the production of charm and anticharm hadrons. In this work we study \(\Lambda_c^+ \) and \(\Lambda_c^- \) inclusive production in \(p-N \) interactions in the framework of two component models. We show that the recombination two component model gives a qualitatively and quantitatively good description of \(\Lambda_c^\pm \) production while the intrinsic charm model seems to be ruled out by recent experimental data from the SELEX Collaboration.

It is well known from experiments that there is a substantial difference in the production of charm and anticharm hadrons in hadron-hadron interactions. Leading (L) particles, which share one or more valence quarks with the initial hadrons, are favored in the incident hadron direction over Non-Leading (NL) particles, which share none. This effect, known as Leading Particle Effect, has been observed in inclusive production of charm mesons and baryons in \(\pi^- - N, p - N, K - N \) and \(\Sigma^- - N \) interactions by several experiments \cite{1, 2, 3}.

Leading particle effects can be quantified by means of a production asymmetry, which is defined as

\[
A \equiv \frac{d\sigma^L - d\sigma^{NL}}{d\sigma^L + d\sigma^{NL}}. \tag{1}
\]

*jmagnin@uniandes.edu.co
Asymmetries in charm-anticharm production indicate that charm hadro-
nization cannot proceed by independent fragmentation alone. They imply
also that some sort of recombination mechanism, involving valence quarks in
the initial hadrons, must take place in the production.

Several models have been proposed to explain charm hadroproduc-
tion. However, no theoretical consensus has been reached yet on what is the
dominant mechanism giving rise to the observed asymmetries. This is partly due
to the lack of simultaneous measurements of charm-anticharm asymmetries
and inclusive particle distributions in the same experiment. Actually, as
models depend on a set of parameters, and these parameters can be adjusted
to describe either the charm-anticharm asymmetries or the inclusive particle
distributions, a meaningful comparison of models to experimental data must
be done on both, asymmetries and inclusive particle distributions.

Among the proposed models are the String Fragmentation model (SF) \[4\],
implemented in the Lund Pythia-Jetset package \[5\]; the recombination of
charm quarks produced perturbatively with the remnants of the initial ha-
drons \[6\]; the Intrinsic Charm model (IC) \[7\] and the recombination two
component model (R2C) \[8\].

Aiming to extract information on the charm hadron production mech-
anism, in this work we shall compare predictions of both, the IC and R2C
two component models to recent experimental data on \(p + N \rightarrow \Lambda^\pm c + X \)
by the SELEX Collaboration \[3\].

In two component models the total cross section for charm hadron pro-
duction receives contributions from two different processes, namely perturba-
tive production of a \(c\bar{c} \) pair in QCD followed by independent fragmentation,
and contributions coming from another, non-perturbative, mechanism. So
far, two possibilities have been considered for this second contribution: IC
coalescence \[7\] and the recombination of charm quarks, already present in
the sea of the initial hadrons, with valence and sea quarks from the initial
hadrons \[8\]. Then, in the \(p + N \rightarrow \Lambda^\pm + X \) reaction,

\[
\frac{d\sigma}{dx_F} = \frac{d\sigma^{\text{Frag.}}}{dx_F} + \frac{d\sigma^{\text{IC(Rec.)}}}{dx_F}. \tag{2}
\]

The first term in the RHS of Eq. (2) describes the production of charm
hadrons by independent fragmentation, while the second one is the contribu-
tion to \(\Lambda^\pm \) inclusive production coming from the IC or the recombination
mechanisms.
Charm hadron production by independent fragmentation is given by

$$\frac{d\sigma^{\text{Frag.}}}{dx_F} = \frac{1}{2} \sqrt{s} \int H^{ab}(x_a, x_b, Q^2) \times \frac{1}{E} \frac{D_{\Lambda_c}(z)}{z} dz dp_T^2 dy,$$

(3)

where

$$D_{\Lambda_c/c}(z) = \frac{N_{\Lambda_c}}{z [1 - 1/z - \epsilon_c/(1 - z)]^2}$$

(4)

is the Peterson fragmentation function [9] with N_{Λ_c} a normalization constant. $H^{ab}(x_a, x_b, Q^2)$ contains information on the initial hadron structures and the dynamics of the perturbative QCD (pQCD) charm production. At Leading Order (LO) it is given by

$$H^{ab}(x_a, x_b, Q^2) = \Sigma_{a,b} \left[q_a(x_a, Q^2) \bar{q}_b(x_b, Q^2) + \bar{q}_a(x_a, Q^2) q_b(x_b, Q^2) \right] \left. \frac{d\hat{\sigma}}{dt} \right|_{qq} + \left. \frac{d\hat{\sigma}}{dt} \right|_{gg}.$$

(5)

In Eqs. (3) and (4), $x_i; i = a, b$ is the momentum fraction of the initial hadron carried by the parton i, z and p_T^2 are the momentum fraction of the initial hadron carried by the charm quark and its transverse momentum squared respectively, and y is the rapidity of the charm antiquark. The sum in Eq. (3) runs over light and strange quarks.

Up to LO in the pQCD processes (see Fig. 1), no contribution to the $\Lambda^+_c - \Lambda^-_c$ asymmetry arises from the charm quark production. At Next to Leading Order (NLO), a small $c - \bar{c}$ asymmetry translates into a tiny $\Lambda^+_c - \Lambda^-_c$ asymmetry [10]. However, this effect is very small and has the opposite sign to the experimentally observed asymmetry in $p + N$ interactions. Then, the second term in the RHS of Eq. (2) must give the dominant contribution to the $\Lambda^+_c - \Lambda^-_c$ asymmetry.

In the IC model for the $p + N \to \Lambda^+_c + X$ reaction in the $x_F > 0$ region, the second term in the RHS of Eq. (2) comes from fluctuations of protons in the beam to $|uudc\bar{c}\rangle$ Fock states [7]. These Fock states break up in the collision contributing to Λ^+_c production through the coalescence of the intrinsic charm quark with u and d quarks. To obtain a Λ^-_c purely from this process, a fluctuation of the proton to a $|uudu\bar{u}dd\bar{c}\rangle$ Fock state is required. As the
probability of the later is smaller than for the former, Λ_c^+ production is favored in the proton direction. The Λ_c^+ differential cross section for the intrinsic charm process is [7]

$$d\sigma_{IC} = \rho_{IC} \int_0^1 dx_u dx_u' dx_d dx_c dx_{\bar{c}}$$

$$\times \delta (x_F - x_u - x_d - x_c) \frac{dP_{IC}}{dx_u...dx_{\bar{c}}},$$

(6)

where

$$\frac{dP_{IC}}{dx_u...dx_{\bar{c}}} = N_0 \alpha_s^4 \left(M_{c\bar{c}}^2\right)$$

$$\times \frac{\delta (1 - \sum_{i=u}^{\bar{c}} x_i)}{\left(m_p^2 - \sum_{i=u}^{\bar{c}} \hat{m}_i^2 x_i\right)^2}$$

(7)

is the probability of the $|uudc\bar{c}\rangle$ fluctuation of the proton, and ρ_{IC} is a parameter which must be fixed from experimental data. Neglecting contributions
coming from the $|uudu\bar{d}d\bar{c}\bar{c}\rangle$ Fock states of the proton, which are very small, the Λ_c^- differential cross section is given only by the first term in the RHS of Eq. (2).

In the R2C model, the second term in the RHS of Eq. (2) has the form \[8, 11\]

$$
\frac{d\sigma_{\text{Rec.}}}{dx_F} = r_{\text{Rec}} \int_0^1 \frac{dx_u}{x_u} \frac{dx_d}{x_d} \frac{dx_c}{x_c} F_3(x_u, x_d, x_c) \times R_3(x_u, x_d, x_c, x_F),
$$

(8)

where F_3 and R_3 are the multiquark distribution and the recombination functions respectively. As for the intrinsic charm model, r_{Rec} is a parameter which must be fixed from experimental data.

For Λ_c^+ production in $p + N$ interactions in the $x_F > 0$ region, F_3 is given by

$$
F_3(x_u, x_d, x_c) \sim x_u u(x_u) x_d d(x_d) x_c c(x_c) \times \rho(x_u, x_d, x_c),
$$

(9)

while for Λ_c^- production

$$
F_3(x_u, x_d, x_c) \sim x_u \bar{u}(x_u) x_d \bar{d}(x_d) x_c \bar{c}(x_c) \times \rho(x_u, x_d, x_c).
$$

(10)

In Eqs. (9) and (10), $xq(x)$ is the q-flavored quark distribution in the proton. Notice that the multiquark distribution of Eq. (9) receives contributions from u and d valence and sea quarks, while Eq. (10) is constructed only by using sea quark distributions. Thus, Λ_c^- production is due solely to the recombination of antiquarks popped up from the vacuum in the interaction. As quarks and antiquarks are created in pairs from the vacuum, Λ_c^+’s can also be formed by the recombination of u and d sea quarks, in addition to the u and d valence quarks, with charm quarks, thus giving rise to a $\Lambda_c^+ - \Lambda_c^-$ asymmetry.

The momentum correlation function ρ, which we assume to be the same for both Λ_c^+ and Λ_c^- production, is usually taken as \[11\]

$$
\rho(x_u, x_d, x_c) = (1 - x_u - x_d - x_c)^\gamma,
$$

(11)

with the exponent γ fixed appealing to some consistency condition like [11]

$$
xq(x_i) = \int_0^{1-x_i} dx_j
$$
for the valence quarks in the proton.

In Eqs. (9) and (10) we are assuming the existence of charm quarks inside
the proton. Indeed, assuming that the global scale of the whole process is of
the order of \(Q^2 \sim 4m_c^2 \), there should be a substantial contribution of charm
quarks to the proton structure \([12]\). However, charm quarks in the proton
may have a twofold origin, namely, a non-perturbative component which must
exist over a time scale independent of \(Q^2 \), and a perturbative component due
to the QCD evolution. The non-perturbative contribution is expected to be
small, of the order of 1 % or less \([13]\), and at \(Q^2 \sim 4m_c^2 \) the perturbative
component must be dominant. On the other hand, by assuming the existence
of charm inside the proton we are consistently including the flavor exitation
diagrams which are not considered in the LO calculation of Eq. (2)- (5) \([14]\)
(See Fig. 2). Note that flavor exitation diagrams are usually included in
the pQCD calculation at NLO, but only for the perturbatively generated
charm quarks. The non-perturbative charm sea must be taken into account
through the recombination process. Moreover, it is difficult to account for
the recombination of the spectator c-quark (see Fig. 2) when flavor exitation
diagrams are included into a NLO pQCD calculation of charm production.

The recombination function \(R_3 \) is given by \([15]\)

\[
R_3(x_u, x_d, x_c, x_F) = \alpha \frac{(x_u x_d)^{n_1} x_c^{n_2}}{x_F^{n_1 + n_2 - 1}} \times \delta (x_u + x_d + x_c - x_F)
\]

with \(n_1 = 1 \) and \(n_2 = 5 \) \([16]\) and \(\alpha \) is a normalization constant. The same
recombination function is used for \(\Lambda^-_c \) inclusive production.

In order to compare model predictions to experimental data, we have used

\[
\frac{dN^{\Lambda^-_c}}{dx_F} = N \left[\frac{d\sigma}{dx_F^{Frag}} + r^{IC,Rec} \frac{d\sigma}{dx_F^{Rec,IC}} \right],
\]

and similarly for the \(\Lambda^-_c \) differential cross section. In the equation above,
\(N \) is a global normalization constant which has been adequately fixed from
experimental data. The \(r^{IC,Rec} \) parameter was allowed to be different for the
IC and R2C models, however, it was fixed to the same value for particle and
antiparticle production within each model. The $\Lambda_c^+ - \Lambda_c^-$ asymmetry as a function of x_F was calculated according to Eq. (1) using the parametrization of Eq. (14) for the particle and antiparticle x_F inclusive distributions.

To control the size of each individual contribution to the total differential cross section, the calculated distributions for the fragmentation, IC and recombination processes for Λ_c^+ production were each normalized to unity. The recombination differential cross section for Λ_c^- production was normalized by multiplying by σ^{-1}, where $\sigma = \int_0^1 \frac{d\sigma}{dx_F} \sigma_{\Lambda_c^+} dx$ before normalization. Thus, the contribution of the light sea to the Λ_c^+ and Λ_c^- production is the same. In this way, the coefficients r_{IC} and r_{Rec} give the relative size of the IC and Recombination component respectively, in comparison to the independent fragmentation process in the total cross section.

Prediction by the IC and R2C models are shown in Fig. 3 for both the $\Lambda_c^+ - \Lambda_c^-$ asymmetry and the inclusive particle distribution as a function of
x_F. Model predictions are also compared to the $p + N \to \Lambda^\pm + X$ data from the SELEX Collaboration [3].

Curves were obtained using the GRV-92 [12] parton distributions in nucleons in Eqs. (5), (9) and (10). The exponent γ in the correlation function of Eq. (11) was fixed to $\gamma = -0.1$ [8] and the overall Q^2 scale was chosen as $Q^2 = 4m_c^2$ with $m_c = 1.5$ GeV. In the Peterson fragmentation function we used $\epsilon = 0.06$. In order to fix the parameter $r^{*IC,Rec}$ in both the IC and R2C models, we adjusted the curves to describe first the asymmetry. Once this parameter was fixed, we compared model predictions to experimental data on the x_F particle distribution.

As can be seen in the figure, the IC model cannot describe simultaneously the $\Lambda^+_c - \Lambda^-_c$ asymmetry and the $\Lambda_c x_F$ distribution. On the other hand, the

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure3.png}
\caption{Left: $\Lambda^+_c - \Lambda^-_c$ asymmetry in pN interactions. Solid line is the prediction of the R2C model with $r^{Rec} = 1.5$ and dashed line is the prediction of the IC model with $r^{IC} = 0.4$. Right: $\Lambda_c x_F$ distribution in pN interactions. Solid line is the prediction of the R2C model and dashed line is the prediction of the IC. Dot-dashed line shows the Λ^-_c distribution as predicted by the R2C model. Experimental data are from Ref. [3].}
\end{figure}
R2C model gives a qualitative and quantitatively good description of both, the asymmetry and the x_F particle distribution.

Furthermore, in order to fit the Λ_c x_F distribution, the recombination part of Eq. (2) must be of the order of 1.5 times bigger than the fragmentation contribution. This implies that the main mechanism in Λ_c production is recombination, even in the low x_F region (see Fig. 4). It is interesting to note also that recombination seems to be bigger than independent fragmentation also for Λ_c^- production. The IC contribution to the proton structure, which

Figure 4: Λ_c^+ (solid line) and Λ_c^- (point dashed line) particle distributions predicted by the R2C model in $p-p$ interactions. Dashed line is the contribution to Λ_c^+ and Λ_c^- production coming from the independent fragmentation. Experimental data are from Ref. [3].

is expected to be small, can only give a marginal contribution, and only at high x_F ($x_F \to 1$) values, to the Λ_c^\pm production in proton-proton interactions. Thus, the recombination mechanism seems to be the principal contribution to the hadronization process, even more important than independent fragmentation of charm quarks.
Acknowledgments

J.M and L.M. acknowledge J.A. Appel for useful comments and suggestions. The authors wish to acknowledge the Organizing Committee of SILAFAE-III for the warm hospitality at the Conference. J.M is partially supported by COLCIENCIAS, the Colombian Agency for Science and Technology, under contract No. 242-99.

References

[1] M. Adamovich et al. (WA82 Collaboration), Phys. Lett. B305 (1993) 402; M. Adamovich et al. (WA92 Collaboration), Nucl. Phys. B495 (1997) 3; G. Alves et al. (E769 Collaboration), Phys. Rev. Lett. 72 (1994) 812; ibid. 77 (1996) 2388; ibid. 77 (1996) 2392; E.M. Aitala et al., Phys. Lett. B371 (1996) 157.

[2] J.C. Anjos et al. (E791 Collaboration), talk at the Hyperon’99 Conference, hep-ex/9910049.

[3] F. Garcia et al. (SELEX Collaboration), hep-ex/9910039.

[4] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Phys. Rep. 91 (1983) 31.

[5] PYTHIA 5.7 and JETSET 7.4 Physics Manual, CERN-TH-7112/93(1993). H.U. Bengtsson and T. Sjostrand, Comput. Phys. Commun. 46 (1987) 43 and T. Sjostrand, CERN-TH.7112/93 (1993).

[6] V.G. Kartvelishvili, A.K. Likhoded and S.R. Slobospitskii, Sov. J. Nucl. Phys. 33 (1981) 434.

[7] R. Vogt and S.J. Brodsky, Nucl. Phys. B478 (1996) 311.

[8] J.C. Anjos, G. Herrera, J. Magnin and F.R.A. Simão, Phys. Rev. D56 (1997) 394.

[9] C. Peterson, D. Schlatter, J. Schmitt and P. Zerwas, Phys. Rev. D27 (1983) 105.

[10] P. Nason, S. Dawson and R.K. Ellis, Nucl. Phys. B327 (1989) 49.
[11] J. Ranft, Phys. Rev. D18 (1978) 1491.

[12] M. Glück, E. Reya and A. Vogt, Z. Physik C53 (1992) 127.

[13] S.J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. B93 (1980) 451; S.J. Brodsky, C. Peterson and N. Sakai, Phys. Rev. D23 (1981) 2745.

[14] V. Barger, F. Halzen and W.Y. Keung, Phys. Rev. D25 (1982) 112.

[15] R.C. Hwa, Phys. Rev. D51 (1995) 85.

[16] G. Herrera and J. Magnin, Eur. Phys. J. C2 (1998) 477.