Biaxial strain enhanced piezoelectric properties in monolayer g-C$_3$N$_4$

San-Dong Guo1,2, Wen-Qi Mu1 and Yu-Tong Zhu1

1School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China and 2Key Laboratory of Advanced Semiconductor Devices and Materials, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Graphite-like carbon nitride (g-C$_3$N$_4$) is considered as a promising candidate for energy materials. In this work, the biaxial strain (-4%-4%) effects on piezoelectric properties of g-C$_3$N$_4$ monolayer are studied by density functional theory (DFT). It is found that the increasing strain can reduce the elastic coefficient C_{11}-C_{12}, and increases piezoelectric stress coefficient e_{11}, which lead to the enhanced piezoelectric strain coefficient d_{11}. Compared to unstrained one, strain of 4% can raise the d_{11} by about 330%. From -4% to 4%, strain can induce the improved ionic contribution to e_{11} of g-C$_3$N$_4$, and almost unchanged electronic contribution, which is different from MoS$_2$ monolayer (the enhanced electronic contribution and reduced ionic contribution). To prohibit current leakage, a piezoelectric material should be a semiconductor, and g-C$_3$N$_4$ monolayer is always a semiconductor in considered strain range. Calculated results show that the gap increases from compressive strain to tensile one. At 4% strain, the first and second valence bands cross, which has important effect on transition dipole moment (TDM). Our works provide a strategy to achieve enhanced piezoelectric effect of g-C$_3$N$_4$ monolayer, which gives a useful guidance for developing efficient energy conversion devices.

PACS numbers: 71.20.-b, 77.65.-j, 72.15.Jf, 78.67.-n
Keywords: g-C$_3$N$_4$, Piezoelectrics, 2D materials

I. INTRODUCTION

Analogous to graphene, monolayer g-C$_3$N$_4$ has been achieved by top-down methods, which provides several potential applications including superior photocatalytic activities1,2, sensing3 and memory devices4. For example, g-C$_3$N$_4$ can generate hydrogen from water under visible light with an appropriate band gap of 2.7 eV5. Many g-C$_3$N$_4$/semiconductor heterostructures have been constructed to improve the photocatalytic performance of g-C$_3$N$_4$ to restrain the recombination of photogenerated carriers, like g-C$_3$N$_4$/MoS$_2$6, g-C$_3$N$_4$/TiO$_2$7 and g-C$_3$N$_4$/CdS8. Because of non-centrosymmetric structure, the monolayer g-C$_3$N$_4$ can exhibit a piezoelectricity, which may produce potential piezocatalysis applications.

In fact, due to potential nanoscale piezoelectric applications, the piezoelectricities of two-dimensional (2D) materials have attracted growing interest9. Experimentally, the piezoelectric coefficient $(e_{11}=2.9\times10^{-10}$ C/m2) of the monolayer MoS$_2$ has been measured with the 2H phase10,11, and an intrinsic vertical piezoelectric response12 has been proved to exist in the Janus MoSe$_2$ monolayer. The theoretical studies on piezoelectric properties of 2D materials, such as transition metal dichalcogenides (TMD), Janus TMD, group IIA and IIB metal oxides, group-V binary semiconductors and group III-V semiconductors, have been widely studied$^{13-22}$. The giant piezoelectricities in monolayer SnSe, SnS, GeS and GeS have been reported, as high as 75-251 pm/V19. A only in-plane piezoelectricity exits in many 2D materials, for example TMD monolayers18, and an additional out-of-plane piezoelectricity has also been predicted in many 2D Janus materials13,15,16. A pure out-of-plane piezoelectric response has been predicted in penta-graphene17, and two strategies are proposed to enhance its piezoelectric properties by strain and constructing Janus monolayer. The strain effects on the piezoelectric response of MoS$_2$23, AsP14, SnSe14 and Janus TMD monolayers24 have been reported, and their piezoelectric properties can be effectively tuned. For example, the d_{22} of SnSe monolayer at -3.5% strain along the armchair direction is up to 628.8 pm/V from unstrained 175.3 pm/V14.

In this work, the biaxial strain-tuned piezoelectric properties of g-C$_3$N$_4$ monolayer are studied by using density functional perturbation theory (DFPT)25. Only in-plane piezoelectricity exists for g-C$_3$N$_4$ monolayer. The
TABLE I. For monolayer g-C$_3$N$_4$, the lattice constants a_0 (Å), the elastic constants C_{ij} (Nm$^{-1}$), shear modulus G_{2D} (Nm$^{-1}$), Young’s modulus C_{2D} (Nm$^{-1}$), Poisson’s ratio ν, the HSE06 gaps (eV) and piezoelectric coefficients $e_{11}(sum)$ (the electronic $e_{11}(ele)$ and ionic $e_{11}(ion)$ contribution) [10$^{-10}$ C/m] and d_{11} (pm/V), with previous theoretical values and experimental results given in parentheses and square brackets.

a_0	C_{11}	C_{12}	G_{2D}
3.142 (3.13532)[7.130$^\Delta$]	184.92	48.02	68.45
C_{2D} & ν & G_{ap} & $e_{11}(sum)$			
172.45 & 0.26 & 2.77(2.7632)[2.77$^\Delta$] & 1.94 (2.1834)			
$e_{11}(ele)$ & $e_{11}(ion)$ & d_{11}			
3.02 & -1.08 & 1.42			

In independent piezoelectric constants d_{11} is predicted to be 1.42 pm/V. It is found that tensile strain of 4% can improve d_{11} to 6.12 pm/V, which is due to reduced C_{11}-C_{12} and enhanced e_{11}. Different from MoS$_2$, increasing strain can enhance the ionic contribution to e_{11}. It is found that the gap of g-C$_3$N$_4$ increases from 4% to 4% strain. Strain can also induce the cross between the first and second valence bands, producing important effects on TDM. Therefore, our works give an experimental proposal to achieve enhanced piezoelectricity in g-C$_3$N$_4$ monolayer.

The rest of the paper is organized as follows. In the next section, we shall give our computational details and methods about piezoelectric coefficients. In the third section, we perform symmetry analysis for elastic and piezoelectric coefficients. In the fourth sections, we shall present main results of g-C$_3$N$_4$ monolayer. Finally, we shall give our conclusions in the fifth section.

II. COMPUTATIONAL DETAIL

Within the framework of DFT26, we carry out our calculations by using the VASP code$^{27-29}$ with the projected augmented wave (PAW) method. A kinetic cut-off energy of 500 eV is adopted, and we use the popular GGA of Perdew, Burke and Ernzerhof (GGA-PBE)30 as the exchange-correlation potential to calculate piezoelectric and elastic properties. To avoid interactions between two neighboring images, a vacuum spacing of more than 19 Å along the z direction is added. The total energy convergence criterion is set to 10$^{-8}$ eV, and the Hellmann-Feynman forces on each atom are less than 0.0001 eV Å$^{-1}$. The elastic stiffness tensor C_{ij} and the piezoelectric stress coefficients e_{ij} are calculated by using strain-stress relationship (SSR) and DFPT method25. Within SSR and DFPT, the electronic and ionic contribution to the elastic and piezoelectric stress coefficients can be calculated directly from VASP code. The Brillouin zone sampling of g-C$_3$N$_4$ monolayer is done using a Monkhorst-Pack mesh of 11×11×1 for C_{ij}, and 6×11×1

II. SYMMETRY ANALYSIS

In noncentrosymmetric crystals, a change of polarization can be induced by strain or stress. The phenomenon can be described by the third-rank piezoelectric stress tensors e_{ijk} and strain tensor d_{ijk}, which are from the sum of ionic and electronic contributions:

$$e_{ijk} = \frac{\partial P_i}{\partial \varepsilon_{jk}} = e_{ele}^{ij} + e_{ion}^{ij}$$ \hspace{1cm} (1)

and

$$d_{ijk} = \frac{\partial P_i}{\partial \sigma_{jk}} = d_{ele}^{ij} + d_{ion}^{ij}$$ \hspace{1cm} (2)

In which P_i, ε_{jk} and σ_{jk} are polarization vector, strain and stress, respectively. For 2D materials, if we only consider in-plane strain components$^{33-36}$ using Voigt notation, the d_{ij} can be derived by the relation:

$$\begin{pmatrix}
e_{11} & e_{12} & e_{16} \\
e_{21} & e_{22} & e_{26} \\
e_{31} & e_{32} & e_{36}
\end{pmatrix}
= \begin{pmatrix}
d_{11} & d_{12} & d_{16} \\
d_{21} & d_{22} & d_{26} \\
d_{31} & d_{32} & d_{36}
\end{pmatrix}
\begin{pmatrix}
C_{11} & C_{12} & C_{16} \\
C_{21} & C_{22} & C_{26} \\
C_{61} & C_{62} & C_{66}
\end{pmatrix}$$ \hspace{1cm} (3)

The elastic tensor C_{ij} can be calculated by SSR, and the e_{ij} can be attained by DFPT. The space group number of monolayer g-C$_3$N$_4$ is 187, and the corresponding point group 6m2 reduces e_{ij}, d_{ij} and C_{ij} into:

$$\begin{pmatrix}
e_{11} & -e_{11} & 0 \\
0 & 0 & -e_{11}
\end{pmatrix}$$ \hspace{1cm} (4)

$$\begin{pmatrix}
d_{11} & -d_{11} & 0 \\
0 & 0 & -2d_{11}
\end{pmatrix}$$ \hspace{1cm} (5)

$$\begin{pmatrix}
C_{11} & C_{12} & 0 \\
C_{12} & C_{11} & 0 \\
0 & 0 & C_{11} - C_{12}
\end{pmatrix}$$ \hspace{1cm} (6)

Here, the only in-plane d_{11} is derived by Equation 3:

$$d_{11} = \frac{e_{11}}{C_{11} - C_{12}}$$ \hspace{1cm} (7)
Figure 1 shows a large aperture and a triazine ring as a unit. Firstly, the optimized lattice constants of monolayer g-C\textsubscript{3}N\textsubscript{4} is a=b=7.134 Å using GGA, which agrees well with previous theoretical and experimental values5,32. The band structure of the g-C\textsubscript{3}N\textsubscript{4} monolayer using HSE06 is calculated, which shows an indirect band gap semiconductor with the valence band maximum (VBM) at \(\Gamma \) point and the conduction band minimum (CBM) at \(K \) point. The position of CBM is different from previous one (at M point)32, which may be due to different HSE06 parameters. The calculated HSE06 band gap is 2.77 eV, which is very close to the experimental value (2.7 eV)5 and the previous calculated result (2.76 eV)32. The independent elastic stiffness coefficients of \(C_{11} \) and \(C_{12} \) are calculated, and the monolayer has constants of \(C_{11}=184.92\) Nm-1 and \(C_{12}=48.02\) Nm-1, which meet the Born criteria of mechanical stability. These elastic constants are larger than ones of MoS\textsubscript{2}18,20. The 2D Youngs moduli \(C^{2D} \) and shear modulus \(G^{2D} \) can be expressed as33:

\[
C^{2D} = \frac{C_{11}^2 - C_{12}^2}{C_{11}} \tag{8}
\]

\[
G^{2D} = C_{66} \tag{9}
\]

The corresponding Poisson’s ratios is given:

\[
\nu^{2D} = \frac{C_{12}}{C_{11}} \tag{11}
\]

The calculated values are \(C^{2D}=172.45\) Nm-1, \(G^{2D}=68.45\) Nm-1 and \(\nu^{2D}=0.26 \). The related data of g-C\textsubscript{3}N\textsubscript{4} monolayer are listed in Table I.

The rectangle supercell is used to calculate piezoelectric stress coefficients of g-C\textsubscript{3}N\textsubscript{4} monolayer by DFPT, and the x and y directions are shown in Figure 1. The calculated piezoelectric coefficient \(e_{11} = 1.94 \times 10^{-10} \) C/m, being close to previous value \(e_{11} = 2.18 \times 10^{-10} \) C/m34. It is found that the electronic contribution is opposite to ionic contribution, and they are 3.02 \(\times 10^{-10} \) C/m and \(-1.08 \times 10^{-10} \) C/m, respectively. Based on calculated \(e_{11} \), \(C_{11} \) and \(C_{12} \), the predicted \(d_{11} \) is 1.42 pm/V, which is smaller than most 2D TMD monolayers20. Strain strategy is an effective method to improve piezoelectric effect of 2D materials14,23,24. Here, we only consider biaxial strain, which can not produce polarization, not like uniaxial strain. In the simulation, the small biaxial strain (-4% to 4%) effects on piezoelectric properties of monolayer g-C\textsubscript{3}N\textsubscript{4} are studied, which may be easily achieved in experiment. The elastic constants \(C_{11}-C_{12} \), piezoelectric coefficients \(e_{11} \) and \(d_{11} \) as a function of biaxial strain are plotted in Figure 2. It is clearly seen that the \(C_{11}-C_{12} \) decreases, and \(e_{11} \) increases, when the strain changes.
from -4% to 4%. This will lead to improved d_{11} according to Equation 7 with 4% to 4% strain. At 4% strain, the d_{11} becomes 6.12 pm/V from unstrained 1.42 pm/V, increased by 331%.

The ionic contribution and electronic contribution to e_{11} as a function of biaxial strain are also plotted in Figure 2. It is found that there are narrow variations for electronic contribution with -4% to 4% strain, and only varies -0.35×10$^{-10}$ C/m. However, the magnitude change of the ionic contribution is very large, and about 4.52×10$^{-10}$ C/m. Therefore, the ionic contribution has an important role to enhance piezoelectric effect of g-C$_3$N$_4$ monolayer caused by strain, which is different from a typical 2D piezoelectric material MoS$_2$. The MoS$_2$ monolayer has the same point group 6m2 with g-C$_3$N$_4$, which gives rise to the same reduced piezoelectric coefficients. The elastic constants C_{11}-C_{12}, piezoelectric coefficients e_{11} and d_{11}, and the ionic contribution and electronic contribution to e_{11} of monolayer MoS$_2$ as a function of biaxial strain are plotted in Figure 3. For unstrained MoS$_2$, our calculated C_{11} (131.76 Nm$^{-1}$), C_{12} (31.20 Nm$^{-1}$), e_{11} (3.78×10$^{-10}$ C/m) and d_{11} (3.76 pm/V) agree well with previous theoretical values (130 Nm$^{-1}$, 32 Nm$^{-1}$, 3.64×10$^{-10}$ C/m, 3.73 pm/V)20. For C_{11}-C_{12}, e_{11} and d_{11}, the change trend is similar to one of g-C$_3$N$_4$ with strain changing from -4% to 4%. However, the electronic part has positive contribution to improve piezoelectric effect of MoS$_2$, while the ionic part gives negative effect. Thus, the electronic part dominate the enhancement of piezoelectric effect of monolayer MoS$_2$ caused by strain.

The monolayer g-C$_3$N$_4$ at applied strain, exhibiting piezoelectricity, not only should break inversion symmetry, but also should have a band gap. To confirm strained g-C$_3$N$_4$ to be a semiconductor, the energy band structures and gaps using HSE06 as a function of strain are plotted in Figure 4. It is clearly seen that the gap increases from 2.39 eV (-4%) to 3.07 eV (4%), but the positions of VBM and CBM do not change. It is found that the strain can induce the cross between the first and second valence bands at about 4% strain, which produces important effect on TDM. The TDM is the electric dipole moment associated with the transition between the two states, and we calculate the squares of TDM from the highest valence band to the lowest conduction band, which is also shown in Figure 4. The calculated results show that the outline of TDM has little change from -4% to 2%, which are mainly along Γ-K and K-M. However, the magnitude of TDM becomes huge along Γ-A and Γ-B at 4% strain because of band cross between the first and second valence bands. So, strain can also produce important influence on optical absorptions of monolayer g-C$_3$N$_4$.

V. CONCLUSION

In summary, the reliable first-principles calculations are performed to investigate the biaxial strain (-4%-4%)
FIG. 4. (Color online) The energy band structures, TDM and energy band gap (Gap) of monolayer g-C$_3$N$_4$ using HSE06 with the application of biaxial strain (-4%-%4%).

effects on piezoelectric properties in monolayer g-C$_3$N$_4$. Compared to unstrain one, compressive strain reduces e_{11}, and increases C_{11}-C_{12}. However, tensile strain produces opposite effects on e_{11} and C_{11}-C_{12}. These lead to improved d_{11} from compressive strain to tensile one. Calculated results show that the ionic contribution to e_{11} of g-C$_3$N$_4$ is in favour of the strain-induced enhanced d_{11}, which is different from MoS$_2$ monolayer. It is found that the HSE06 gap increases from 2.39 eV (-4%) to 3.07 eV (4%). The tensile strain (4%) can induce the cross between the first and second valence bands, which can induce huge TDM. Our predictive findings can provide a simple way to achieve energy-efficient energy transformation devices.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation of Shaanxi Provincial Department of Education (19JK0809). We are grateful to the Advanced Analysis and Computation Center of China University of Mining and Technology (CUMT) for the award of CPU hours and WIEN2k/VASP software to accomplish this work.

1. P. Niu, L. L. Zhang, G. Liu and H. M. Cheng, Adv. Funct. Mater. 22, 4763 (2012).
2. S. B. Yang, Y. J. Gong, J. S. Zhang, L. Zhan, L. L. Ma, Z. Y. Fung, R. Vajtai, X. C. Wang and P. M. Ajayan, Adv. Mater. 25, 2452 (2013).
3. T. Y. Ma, Y. H. Tang, S. Dai and S. Z. Qiao, Small 10, 2382 (2014).
4. F. Zhao, H. H. Cheng, Y. Hu, L. Song, Z. P. Zhang, L. Jiang and L. T. Qu, Sci. Rep. 4, 5882 (2014).
5. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nat. Mater. 8,
6

Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang et al., Angew. Chem., Int. Ed. 52, 3621 (2013).

J. W. Zhou, M. Zhang and Y. F. Zhu, Phys. Chem. Chem. Phys. 17, 3647 (2015).

J. Fu, B. B Chang, Y. L. Tian, F. N. Xi and X. P. Dong, J. Mater. Chem. A 1, 3083 (2013).

W. Wu and Z. L. Wang, Nat. Rev. Mater. 1, 16031 (2016).

W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone and Z. L. Wang, Nature 514, 470 (2014).

H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, Y. Ye, X. Yin and X. Zhang, Nat. Nanotechnol. 10, 151 (2015).

A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang and L. J. Li, Nat. Nanotechnol. 12, 744 (2017).

L. Dong, J. Lou and V. B. Shenoy, ACS Nano, 11, 8242 (2017).

S. D. Guo, X. S. Guo, Y. Y. Zhang and K. Luo, J. Alloy. Compd. 822, 153577 (2020).

S. D. Guo, X. S. Guo, R. Y. Han and Y. Deng, Phys. Chem. Chem. Phys. 21, 24620 (2019).

S. D. Guo, X. S. Guo, Z. Y. Liu and Y. N. Quan, J. Appl. Phys. 127, 064302 (2020).

S. D. Guo and S. Q. Wang, J. Phys. Chem. Solids 140, 109375 (2020).

M. N. Blonsky, H. L. Zhuang, A. K. Singh and R. G. Hennig, ACS Nano, 9, 9885 (2015).

R. X. Fei, We. B. Li, J. Li and L. Yang, Appl. Phys. Lett. 107, 173104 (2015).

K. N. Duerloo, M. T. Ong and E. J. Reed, J. Phys. Chem. Lett. 3, 2871 (2012).

Y. Chen, J. Y. Liu, J. B. Yu, Y. G. Guo and Q. Sun, Phys. Chem. Chem. Phys. 21, 1207 (2019).

Y. G. Guo, H. Q. Zhu and Q. Wang, ACS Appl. Mater. Interfaces 11, 1033 (2019).

N. Jena, Dimple, S. D. Behere and A. D. Sarkar, J. Phys. Chem. C 121, 9181 (2017).

Dimple, N. Jena, A. Rawat, R. Ahammed, M. K. Mohanta and A. D. Sarkar, J. Mater. Chem. A 6, 24885 (2018).

X. Wu, D. Vanderbilt and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

G. Kresse, J. Non-Cryst. Solids 193, 222 (1995).

G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

V. Wang, N. Xu, J. C. Liu, G. Tang and W. T. Geng, arXiv:1908.08269v4 (2019).

J. J. Liu, J. Phys. Chem. C 119, 28417 (2015).

R. C. Andrew, R. E. Mapasha, A. M. Ukpong and N. Chetty, Phys. Rev. B 85, 125428 (2012).

M. Zelisko, Y. Hanlumyuang, S. B. Yang, Y. M. Liu, C. H. Lei, J. Y. Li, P. M. Ajayan and P. Sharma, Nat. Commun. 5, 4284 (2014).