Abstract

This paper describes Centre for Development of Advanced Computing’s (CDACM) submission to the shared task: 'Tool Contest on POS tagging for Code-Mixed Indian Social Media (Facebook, Twitter, and Whatsapp) Text’, collocated with ICON-2016. The shared task was to predict Part of Speech (POS) tag at word level for a given text. The code-mixed text is generated mostly on social media by multilingual users. The presence of the multilingual words, transliterations, and spelling variations make such content linguistically complex. In this paper, we propose an approach to POS tag code-mixed social media text using Recurrent Neural Network Language Model (RNN-LM) architecture. We submitted the results for Hindi-English (hi-en), Bengali-English (bn-en), and Telugu-English (te-en) code-mixed data.

1 Introduction

Code-Mixing and Code-Switching are observed in the text or speech produced by a multilingual user. Code-Mixing occurs when a user changes the language within a sentence, i.e. a clause, phrase or word of one language is used within an utterance of another language. Whereas, the co-occurrence of speech extract of two different grammatical systems is known as Code-Switching.

The language analysis of code-mixed text is a non-trivial task. Traditional approaches of POS tagging are not effective, for this text, as it does not adhere to any grammatical structure in general. Many studies have shown that RNN based POS taggers produced comparable results and, is also the state-of-the-art for some languages. However, to the best of our knowledge, no study has been done for RNN based POS tagging of code-mixed data.

In this paper, we have proposed a POS tagger using RNN-LM architecture for code-mixed Indian social media text. Earlier, researchers have adopted RNN-LM architecture for Natural Language Understanding (NLU) (Yao et al., 2013; Yao et al., 2014) and Translation Quality Estimation (Patel and Sasikumar, 2016). RNN-LM models are similar to other vector-space language models (Bengio et al., 2003; Morin and Bengio, 2005; Schwenk, 2007; Mnih and Hinton, 2009) where we represent each word with a high dimensional real-valued vector. We modified RNN-LM architecture to predict the POS tag of a word, given the word and its context. Let’s consider the following example:

Input: behen ki shaaadi and m not there
Output: G_N G_PRP G_N CC G_V G_R G_R

In the above sentence, to predict POS tag (G_N) for the word shaaadi using an RNN-LM model with window size 3, the input will be ki shaaadi and. Whereas, in standard RNN-LM model, ki and will be the input with shaaadi as the output. We will discuss details of various models tried and their implementations in section 3.

In this paper, we show that our approach achieves results close to the state-of-the-art systems such as \[1\]Stanford (Toutanova et al., 2003), and \[2\]HunPos (Halácsy et al., 2007).

\[1\]http://nlp.stanford.edu/software/tagger.shtml (Maximum-Entropy based POS tagger)
\[2\]https://code.google.com/archive/p/hunpos/ (Hidden Markov Model based POS tagger)
2 Related Work

POS tagging has been investigated for decades in the literature of Natural Language Processing (NLP). Different methods like a Support Vector Machine (Márquez and Giménez, 2004), Decision Tree (Schmid and Laws, 2008), Hidden Markov Model (HMM) (Kupiec, 1992) and Conditional Random Field Auto Encoders (Ammar et al., 2014) have been tried for this task. Among these works, Neural Network (NN) based models is mainly related to this paper. In NN family, RNN and HMM techniques for POS tagging of Chinese is found to be better for modeling of long-range dependencies than Simple RNN. Simple RNN also suffers from the problem of vanishing and exploding gradient (Bengio et al., 1994). LSTM and other complex RNN models tackle this problem by introducing a gating mechanism. Many variants of LSTM (Graves, 2013; Yao et al., 2014; Jozefowicz et al., 2015) have been tried in literature for the various tasks. We implemented the following set of equations:

\[h_t = \text{sigm}(W_{xh}x_t + W_{hh}h_{t-1} + b_h) \]
\[y_t = \text{softmax}(W_{hy}h_t + b_y) \]

3 Experimental Setup

3.1 RNN Models

There are many variants of RNN networks for different applications. For this task, we used elaman (Elman, 1990), Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), Deep LSTM, Gated Recurrent Unit (GRU) (Cho et al., 2014), which are widely used RNN models in the NLP literature.

In the following sub-sections, we gave a brief description of each model with mathematical equations (1, 2, and 3). In the equations, \(x_t \) and \(y_t \) are the input and output vectors respectively. \(h_t \) and \(h_{t-1} \) represent the current and previous hidden states respectively. \(W \) are the weight matrices and \(b \) are the bias vectors. \(\odot \) is the elementwise multiplication of the vectors. We used \(\text{sigm} \), the logistic sigmoid and \(\text{tanh} \), the hyperbolic tangent function to add nonlinearity in the network with \(\text{softmax} \) function at the output layer.

3.1.1 ELMAN

Elman and Jordon (Jordan, 1986) networks are the simplest network in RNN family and are known as Simple RNN. Elman network is defined by the following set of equations:

\[h_t = \text{sigm}(W_{xh}x_t + W_{hh}h_{t-1} + b_h) \]
\[y_t = \text{softmax}(W_{hy}h_t + b_y) \]

3.1.2 LSTM

LSTM is found to be better for modeling of long-range dependencies than Simple RNN. Simple RNN also suffers from the problem of vanishing and exploding gradient (Bengio et al., 1994). LSTM and other complex RNN models tackle this problem by introducing a gating mechanism. Many variants of LSTM (Graves, 2013; Yao et al., 2014; Jozefowicz et al., 2015) have been tried in literature for the various tasks. We implemented the following version:

\[i_t = \text{sigm}(W_{xi}x_t + W_{hi}h_{t-1} + b_i) \]
\[o_t = \text{sigm}(W_{xo}x_t + W_{ho}h_{t-1} + b_o) \]
\[f_t = \text{sigm}(W_{xf}x_t + W_{hf}h_{t-1} + b_f) \]
\[j_t = \text{tanh}(W_{xj}x_t + W_{hj}h_{t-1} + b_j) \]
\[c_t = c_{t-1} \odot f_t + i_t \odot j_t \]
\[h_t = \text{tanh}(c_t) \odot o_t \]
\[y_t = \text{softmax}(W_{hy}h_t + b_y) \]

where \(i, o, f \) are input, output and forget gates respectively. \(j \) is the new memory content and \(c \) is updated memory.

3.1.3 Deep LSTM

In this paper, we used Deep LSTM with two layers. Deep LSTM is created by stacking multiple LSTM on the top of each other. The output of lower LSTM forms input to the upper LSTM. For example, if \(h_t \) is the output of lower LSTM, then we apply a matrix transform to form the input \(x_t \) for the upper LSTM. The Matrix transformation enables us to have two consecutive LSTM layers of different sizes.
3.1.4 GRU

GRU is quite a similar network to the LSTM, without any memory unit. GRU network also uses a different gating mechanism with reset (r) and update (z) gates. The following set of equations defines a GRU model:

$$
 r_t = \text{sigmoid}(W_{xr}x_t + W_{hr}h_{t-1} + b_r)
$$

$$
 z_t = \text{sigmoid}(W_{xz}x_t + W_{hz}h_{t-1} + b_z)
$$

$$
 \tilde{h}_t = \tanh(W_{x\tilde{h}}x_t + W_{h\tilde{h}}(r_t \odot h_{t-1}) + b_{\tilde{h}})
$$

$$
 h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t
$$

$$
 y_t = \text{softmax}(W_{hy}h_t + b_y)
$$

3.2 Implementation

All the models were implemented using THEANO framework (Bergstra et al., 2010; Bastien et al., 2012). For all the models, the word embedding dimensionality was 100, no of hidden units were 100 and the context word window size was 5 ($w_{t-2}w_{t-1}w_tw_{t+1}w_{t+2}$). We initialized all the square weight matrices as random orthogonal matrices. All the bias vectors were initialized to zero. Other weight matrices were sampled from a Gaussian distribution with mean 0 and variance 0.0001.

We trained all the models using Truncated Back-Propagation-Through-Time (T-BPTT) (Werbos, 1990) with the stochastic gradient descent. Standard values of hyper-parameters were used for RNN model training, as suggested in the literature (Yao et al., 2014; Patel and Sasikumar, 2016). The depth of BPTT was fixed to 7 for all the models. We trained each model for 50 epochs and used Ada-delta (Zeiler, 2012) to adapt the learning rate of each parameter automatically ($\epsilon = 10^{-6}$ and $\rho = 0.95$).

3.3 Data

We used the data shared by the contest organizers (Jamatia and Das, 2016). The code-mixed data of bn-en, hi-en and te-en was shared separately for the Facebook (fb), Twitter (twt) and What-sapp (wa) posts and conversations with Coarse-Grained (CG) and Fine-Grained (FG) POS annotations. We combined the data from fb, twt, and wa for CG and FG annotation of each language pair. The data was divided into training, testing, and development sets. Testing and development sets were randomly sampled from the complete data. Table 1 details sizes of the different sets at the sentence and token level. Tag-set counts for CG and FG are also provided.

We preprocessed the text for Mentions, Hashtags, Smilies, URLs, Numbers and, Punctuations. In the preprocessing, we mapped all the words of a group to a single new token as they have the same POS tag. For example, all the Mentions like @dhoni, @bcci, and @iitb were mapped to @user; all the Hashtags like #dhoni, #bcci, #iitb were mapped to #user.

3.4 Methodology

The RNN-LM models use only the context words’ embedding as the input features. We experimented with three RNN model configurations. In the first setting (Simple_RNN, LSTM, Deep LSTM, GRU), we learn the word representation from scratch with the other model parameters. In the second configuration (GRU_Pre), we trained word representations (pre-training) using word2vec (Mikolov et al., 2013b) tool and fine-tuned with the training of other parameters of the network. Pre-training not only guides the learning towards minima with better generalization in non-convex optimization (Bengio, 2009; Erhan et al., 2010) but also improves the accuracy of the system (Kreutzer et al., 2015; Patel and Sasikumar, 2016). In the third setting (GRU_Pre_Lang), we also added language of the words as an additional feature with the context words. We learn the vector representation of languages similar to that of words, from scratch.

4 Results

We used F1-Score to evaluate the experiments, results are displayed in the Table 2. We trained models as described in the section 3.4. To compare our results, we also trained the Stanford and HunPos taggers on the same data, accuracy is given in Table 2.

From the table, it is evident that pre-training and language as an additional feature is helpful. Also, the accuracy of our best system (GRU_Pre_Lang) is comparable to that of Stanford and HunPos. GRU models are out-performing other models (Simple_RNN, LSTM, Deep LSTM) for this task also as reported by Chung et al. (2014) for a suit of NLP tasks.
Table 1: Data Distribution; CG: Coarse-Grained, FG: Fine-Grained

code-mix	#sentences	#tokens	#tags						
	training	dev	testing		training	dev	testing	CG	FG
hi-en	2430	100	100	37799	1888	1457	18	40	
bn-en	524	50	50	11977	1477	1231	18	38	
te-en	1779	100	100	26470	1436	1543	18	50	

Table 2: F1 scores for different experiments

model	hi-en %F1 score	bn-en %F1 score	te-en %F1 score			
	CG	FG	CG	FG	CG	FG
Simple_RNN	78.16	68.73	70.16	64.49	72.27	
LSTM	62.75	53.94	41.91	35.05	57.59	51.45
Deep LSTM	70.07	59.78	54.64	46.88	65.86	59.45
GRU	78.29	69.32	71.90	64.96	72.40	68.72

	CG	FG	CG	FG	CG	FG
GRU_Pre	80.51	71.72	74.77	68.54	74.02	70.05
GRU_Pre_Lang	80.92	73.10	74.05	69.23	74.00	70.33
HunPos	77.50	69.04	76.55	71.02	74.30	70.73
Stanford	79.89	73.91	79.36	73.44	77.05	73.42

5 Submission to the Shared Task

The contest was having two type of submissions, first, constrained: restricted to use only the data shared by the organizers with the participants’ implemented systems; second, unconstrained: participants were allowed to use the publicly available resources (training data, implemented systems etc.).

We submitted for all the language pairs (hi-en, bn-en and, te-en) and domains (fb, twt and, wa). For constrained submission, the output of GRU_Pre_Lang was used. We trained Stanford POS tagger with the same data for unconstrained submission. Jamatia and Das (2016) evaluated all the submitted systems against another gold-test set and reported the results.

6 Analysis

We did a preliminary analysis of our systems and reported few points in this section.

- The POS categories, contributing more in the error are G_X, G_V, G_N and G_J for coarse-grained and V_VM, JJ, N_NN and N_NNP for fine-grained systems. Also, we did the confusion matrix analysis and found that these POS tags are mostly confused with each other only. For instance, G_J POS tag was tagged 28 times wrongly to the other POS tags in which 17 times it was G_N.

- RNN models require a huge amount of corpus to train the model parameters. From the results, we can observe that for hi-en and te-en with only approx 2K training sentences, the results of best RNN model (GRU_Pre_Lang) are comparable to Stanford and HunPos. For bn-en, the corpus was very less (only approx 0.5K sentences) for RNN training which resulted into poor performance compared to Stanford and HunPos. With this and the earlier work on RNN based POS tagging, we can expect that RNN models could achieve state-of-the-art accuracy with given the sufficient amount of training data.

- In general, LSTM and Deep LSTM models perform better than Simple_RNN. But here, Simple_RNN is outperforming both LSTM and Deep LSTM. The reason could be less amount of data for training such a complex model.

- Few orthographically similar words of English and Hindi, having different POS tags are given with examples in Table 3. System confuses in POS tagging of such words. With adding language as an additional feature, we were able to tag these type of words correctly.
Table 3: Similar words in hi-en data

word	lang	example	POS
are	hi	are shyaam kidhar ho?	PSP
are	en	they are going.	G_V
to	hi	tumane to dekha hi nhi.	G_PRT
to	en	they go to school.	CC
hi	hi	mummy to aisi hi hain.	G_V
hi	en	hi, how are you.	G_PRT

7 Conclusion and Future Work

We developed language independent and generic POS tagger for social media text using RNN networks. We tried Simple_RNN, LSTM, Deep LSTM and, GRU models. We showed that GRU outperforms other models, and also benefits from pre-training and language as an additional feature. Also, the accuracy of our approach is comparable to that of Stanford and HunPos.

In the future, we could try RNN models with more features like POS tags of context words, prefixes and suffixes, length, position, etc. Word characters also have been found to be a very useful feature in RNN based POS taggers.

References

[Ammar et al.2014] Waleed Ammar, Chris Dyer, and Noah A Smith. 2014. Conditional random field autoencoders for unsupervised structured prediction. In Advances in Neural Information Processing Systems, pages 3311–3319.

[Bastien et al.2012] Frederic Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. 2012. Theano: new features and speed improvements. In NIPS 2012 deep learning workshop.

[Bengio et al.1994] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. In IEEE Transactions on Neural Networks, pages 157–166.

[Bengio et al.2003] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model. In Journal of Machine Learning Research, volume 3.

[Bengio2009] Yoshua Bengio. 2009. Learning Deep Architectures for AI. Foundations and trends® in Machine Learning, 2(1):1–127.

[Bergstra et al.2010] James Bergstra, Olivier Breuleux, Frederic Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. 2010. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for scientific computing conference (SciPy), volume 4.

[Cho et al.2014] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar.

[Chung et al.2014] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. In arXiv:1412.3555 [cs.NE].

[Das and Petrov2011] Dipanjan Das and Slav Petrov. 2011. Unsupervised part-of-speech tagging with bilingual graph-based projections. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 600–609. Association for Computational Linguistics.

[Duong et al.2013] Long Duong, Paul Cook, Steven Bird, and Pavel Pecina. 2013. Simpler unsupervised pos tagging with bilingual projections. In ACL (2), pages 634–639.

[Elman1990] Jeffrey L Elman. 1990. Finding Structure in Time. Cognitive science, 14(2):179–211.

[Erhan et al.2010] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. 2010. Why Does Unsupervised Pre-training Help Deep Learning? Journal of Machine Learning Research, 11(Feb):625–660.

[Gouws and Søgaard2015] Stephan Gouws and Anders Søgaard. 2015. Simple task-specific bilingual word embeddings. In Proceedings of NAACL-HLT, pages 1386–1390.

[Halácsy et al.2007] Péter Halácsy, András Kornai, and Csaba Oravecz. 2007. Hunpos: An open source trigram tagger. In Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions, pages 209–212. Association for Computational Linguistics.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. In Neural computation, pages 1735–1780.

[Jamatia and Das2016] Anupam Jamatia and Amitava Das. 2016. Task Report: Tool Contest on POS
Tagging for Code-Mixed Indian Social Media (Facebook, Twitter, and Whatsapp) Text@ICON 2016. In Proceedings of ICON 2016.

[Jamatia et al.2015] Anupam Jamatia, Björn Gambäck, and Amitava Das. 2015. Part-of-speech tagging for code-mixed English-Hindi Twitter and Facebook chat messages. RECENT ADVANCES IN, page 239.

[Jordan1986] Michael I. Jordan. 1986. Attractor Dynamics and Parallelism in a Connectionist Sequential Machine. In Proceedings of 1986 Cognitive Science Conference, pages 531–546.

[Jozefowicz et al.2015] Rafał Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on Machine Learning, pages 2342–2350.

[Kreutzer et al.2015] Julia Kreutzer, Shigehiko Schamoni, and Stefan Riezler. 2015. QUality Estimation from ScraTCH (QUETCH): Deep Learning for Word-level Translation Quality Estimation. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 316–322, Lisboa, Portugal.

[Kupiec1992] Julian Kupiec. 1992. Robust part-of-speech tagging using a hidden markov model. Computer Speech & Language, 6:225–242.

[Márquez and Giménez2004] L. Márquez and J. Giménez. 2004. A general pos tagger generator based on support vector machines. Journal of Machine Learning Research.

[Mikolov et al.2010] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. 2010. Recurrent neural network based language model. In Proceedings of Interspeech, volume 2, Makuhari, Chiba, Japan.

[Mikolov et al.2013a] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013a. Exploiting Similarities among Languages for Machine Translation. In CoRR, pages 1–10.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pages 3111–3119.

[Mnih and Hinton2009] Andriy Mnih and Geoffrey E. Hinton. 2009. A scalable hierarchical distributed language model. In Advances in neural information processing systems, pages 1081–1088.

[Morin and Bengio2005] Frederic Morin and Yoshua Bengio. 2005. Hierarchical Probabilistic Neural Network Language Model. In Aistats, volume 5, pages 246–252.

[Patel and Sasikumar2016] Raj Nath Patel and M Sasikumar. 2016. Translation Quality Estimation using Recurrent Neural Network. In Proceedings of the First Conference on Machine Translation, volume 2, pages 819–824, Berlin, Germany. Association for Computational Linguistics.

[Pimpale and Patel2015] Prakash B. Pimpale and Raj Nath Patel. 2015. Experiments with POS Tagging Code-mixed Indian Social Media Text. ICON.

[Qin2015] Longlu Qin. 2015. POS tagging of Chinese Buddhist texts using Recurrent Neural Networks. Technical report, Stanford University.

[Sarkar2015] Kamal Sarkar. 2015. Part-Of-Speech Tagging for Code-mixed Indian Social Media Text at ICON 2015. ICON.

[Schmid and Laws2008] Helmut Schmid and Florian Laws. 2008. Estimation of conditional probabilities with decision trees and an application to fine-grained pos tagging. In Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1, pages 777–784. Association for Computational Linguistics.

[Schwenk2007] Holger Schwenk. 2007. Continuous space language models. In Computer Speech and Language, volume 21, pages 492–518.

[Socher et al.2013a] Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013a. Parsing With Compositional Vector Grammars. In Proceedings of the ACL 2013, pages 455–465.

[Socher et al.2013b] Richard Socher, Alex Perelygin, and Jy Wu. 2013b. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of EMNLP, pages 1631–1642.

[Toutanova et al.2003] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003. Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, pages 173–180. Association for Computational Linguistics.

[Vyas et al.2014] Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika Bali, and Monojit Choudhury. 2014. Pos tagging of english-hindi code-mixed social media content. In EMNLP, volume 14, pages 974–979.

[Wang et al.2015] Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and Hai Zhao. 2015. Part-of-speech tagging with bidirectional long short-term memory recurrent neural network. arXiv preprint arXiv:1510.06168.

[Werbos1990] Paul J. Werbos. 1990. Backpropagation through time: what it does and how to do it. In IEEE, volume 78, pages 550–1560.
[Yao et al.2013] Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang Shi, and Dong Yu. 2013. Recurrent neural networks for language understanding. In INTERSPEECH, pages 2524–2528.

[Yao et al.2014] Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geoffrey Zweig, and Yangyang Shi. 2014. Spoken language understanding using long short-term memory neural networks. In Spoken Language Technology Workshop (SLT), IEEE, pages 189–194.

[Zeiler2012] Matthew D. Zeiler. 2012. ADADELTA: an adaptive learning rate method. arXiv:1212.5701 [cs.LG].

[Zennaki et al.2015] Othman Zennaki, Nasredine Semmar, and Laurent Besacier. 2015. Unsupervised and Lightly Supervised Part-of-Speech Tagging Using Recurrent Neural Networks. In Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, Shanghai, China.