Poor Correlation of Diversified MDR Genes in Gonococci Plasmids: Does Alteration in Chromosomal DEGs, PBP2 and Target Mutations Sufficient to Widespread Multi-Resistance in Neisseria gonorrhoeae?

Asit Kumar Chakraborty*
Department of Biotechnology and Biochemistry, Genetic Engineering Laboratory, Vidyasagar University, Midnapore, India

Abstract

Spread of ceftriaxone and ciprofloxacin resistant gonococci diseases demand new drug development as research have contradicted potent carbapenem and aminoglycoside antibiotics against Neisseria gonorrhoeae infections. PubMed and GenBank analysis demonstrated only bla TEM and tetM genes present in N. gonorrhoeae plasmids where as in most MDR Enterobacteriaceae, hundred diversified beta-lactamase genes (blaOXA, blaCTX-M, blaCMY and blaNDM1) as well as many drug modified genes (aacA1/C1, catB3, aph, strA/B, sul1/2, aad, aph and aac(6’)-Ib) are frequent in plasmids and chromosome. Thus existing knowledge on gonococci mdr genes is limited and merely few chromosomal drug efflux genes (DEGs=ermAB, mtrCDE, macAB etc.) and penicillin binding proteins (PBP=penA and penA) have assigned as cause of multi-resistance. It appeared that N. gonorrhoeae had limited life cycle outside the host limiting conjugation with other MDR-bacteria to acquire mdr genes easily. BLAST-search confirmed that every MDR N. gonorrhoeae genome did carry mtrB RND transporter gene linked to mtrC outer membrane efflux gene (MFS) similar to P. aeruginosa mexAB-family transporters. Further, macA/B transporters are involved in macrolide drug efflux and many mutations in penA, gyrA, mtrR and porB genes are maximum in MDR strains although mtrF and norA efflux genes are infrequent. We argue that plasmid mediated multi-resistance in gonococcal diseases needs to be reinvestigated and mutation theory (penA, gyrA, mtrR) may not sufficient to prove the worldwide spread of multi-drug resistant STDs.

Keywords: MDR gonorrhoea; Chromosomal drug efflux genes; acrAB-mexAB; Penicillin binding proteins; blaTEM and tetM

Introduction

Sexually transmitted diseases (STD) play a critical role in society as most STDs are unnoticed and are delayed treatment due to drug unresponsiveness. Gonorrhoea transmission is globally increasing [62 million/year] as marriage age is increased from 20-25 year age group to 25-35 age groups due to higher education, job insecurity and high cost of urban houses [1]. Likely, most young people fall prey to uncontrolled sex partners with hygienic sub-standard and one contact with the mouth, penis, vagina, or anus of an infected sexual partner is sufficient for MDR gonorrhoea disease [2]. Gonorrhoea is caused by diplococcic gram (-) bacterium Neisseria gonorrhoeae which evade the epithelial cells of endocervix, urethra, rectum, oropharynx, nasopharynx and conjunctiva [3,4]. Major symptoms are exudation of pus from genitails as gonococi evade host defences by antigenic variation and capsule formation [5,6]. During our studies with MDR-bacteria of Kolkata water bodies (Ganga River), a huge blaTEM, blaCTX-M, acrAB, sul1, tetA/C, strA/B, mcr, catA3, aac6’-Ib, aacC2 etc MDR genes were detected in conjugated plasmids as found in most MDR Enterobacteriaceae studied worldwide [7]. However, our search of 20 bla (beta-lactamase) genes in N. gonorrhoeae plasmids and chromosomes failed except blaTEM [8,9] and tetM [10]. Single copy penA and ponA genes encoding penicillin binding proteins were located in chromosome but hardly satisfy with the all cephalosporin resistance in N. gonorrhoeae. It appeared that 85 years antibiotic chemicals insult in hosts had favoured many chromosomal changes over-expressing mutated porins, PBPAs, rRNAs, gyrA/B and parC/E as well as DEGs (macA/B, mtrF, emrE, and mtrCDE) differing that found in many MDR Enterobacteriaceae which mostly mediated by large MDR conjugative plasmids [11]. Recently, we have published the MDR bacterial contamination in rain water, drain water, Ganga River water and Bay of Bengal sea water [7,12,13] and PubMed and GenBank search indicated diversified beta-lactamase genes with 500 mutations as well as many heterogeneities intent genes, aac genes and mex genes [13-15]. We noticed that nature of MDR genes implicated in gonococcus multi-resistance was different and interestingly, most potent carbapenem drugs (imipenem) were contradicted for gonococcal treatment. Few plasmids were recovered on BLAST search carrying only blaTEM beta-lactamase and tetracycline binding protein, tetM. There was no trace of OXA, CTX-M, and CMY, NDM1 type beta-lactamases, neither acyltransferases (AAC), phosphotransferases (APH) nor drug transporter like acrAB and mexAB/CD/EF genes. Such MDR genes were very abundant (>95% all clinical isolates) causing multi-drug resistance in most Enterobacteriaceae were studied so far [7,12]. Recent outbreaks of pan drug resistant species suggested that mexAB/acrAB types drug transporter like mtrCDE genes regulated by mtrR/tetR type repressor for over expression and multi-resistance although many mutations in porB, ponA, penA and gyrA genes have also been suggested [16,17,1].

History of drug development and drug failure against gonococcal diseases

Every medicine had been prescribed since the discovery of penicillin antibiotics in 1928 by Alexander Fleming and thereafter by Dr. Selman Waksman discovered over twenty antibiotics including streptomycin. So...
sulphamethizides was introduced in 1930, sulfa-drugs in 1940, penicillin’s in 1943, tetracycline in 1945, streptomycin and chloramphenicol in 1949, erythromycin in 1952, ciprofloxacin in 1965 and so on had been prescribed for gonococcal infections. Sadly, gonococcal drug resistance appeared as early as in 1958 but confirmed in 1976 when blaTEM beta-lactamase gene was recovered from gonococcal plasmid in Asia and Africa [18,19]. Streptomycin and tetracycline resistance appeared between 1958-1962 followed by aminoglycosides resistance in 1980 [20], ciprofloxacin resistance in 1985 [21] and azithromycin resistance between 1995-1999 [22]. So modified derivatives of penicillin like cefixime, ceftriaxone and cefotaxime (cephalosporins) were in centre stage of gonococcal infections for decades [23]. Tetracycline was useless when tetM gene was discovered in plasmids and ciprofloxacin became useless when gyrA, parC and parE mutations were confirmed in 1990. But cefixime was removed as blaCTX-M gene was confirmed in gonococcal plasmids. Many mutations in the membrane porin genes (porB) were implicated in cephalosporins, tetracycline and aminoglycosides drug resistance.

The recent emergence of the first *N. gonorrhoeae* "superbug" strain in Japan (H041/ MLST ST7363) was shown to exhibit extremely resistance to all antibiotics including cefixime (MIC=8 µg/ml), and ceftriaxone (MIC=2-4 µg/ml) as well against other antibiotics [24,25]. *N. gonorrhoeae* F89 strain was isolated in France with high resistance properties and almost against all antibiotics including cefixime (MIC=8 µg/ml), and ceftriaxone (MIC=8 µg/ml) as well against other antibiotics [24,25]. *N. gonorrhoeae* H041/ MLST ST7363 was shown to exhibit extremely resistance [22]. So modified derivatives of penicillin like cefixime, ceftriaxone and cefotaxime (cephalosporins) were in centre stage of gonococcal infections for decades [23]. Tetracycline was useless when tetM gene was discovered in plasmids and ciprofloxacin became useless when gyrA, parC and parE mutations were confirmed in 1990. But cefixime was removed as blaCTX-M gene was confirmed in gonococcal plasmids. Many mutations in the membrane porin genes (porB) were implicated in cephalosporins, tetracycline and aminoglycosides drug resistance.

Treatment options of gonococcal infections

In 2000 ciprofloxacin resistance first reported in Hawaii of USA, followed by drug resistance among homosexuals in 2004. Ciprofloxacin resistance was increased 0.6% in 2001 to 6.7% in 2007 among homosexuals. In 2006 13.8% all clinical *N. gonorrhoeae* were ciprofloxacin resistant leading to withdraw of ciprofloxacin for gonorrhoea treatment in 2007 [26]. In 2010 ceftriaxone plus azithromycin or doxycycline were recommended for gonococcal treatment. But new cases of gonococcal infections in the USA were increased to 820,000 demonstrating the need for new drug development. The activity of broad spectrum fluoroquinolones in gonococcal treatment were reported as ciprofloxacin_{in}cefloxacin_{in}norfloxacin_{in}levofloxacin_{in}chlorofloxacin_{in}gemifloxacin. Patients who can tolerate neither ceftriaxone nor ciprofloxacin, spectinomycin in 2 g i.m. single dose has been recommended. Gentamicin+Azithromycin or Gemifloxacin (320 mg)+Azithromycin (2 g) are used in many cases but 20-30% patients might suffer nausea and vomiting [27]. As the situation in the USA is very grim for STD, newly experimental drugs like ETX0914 (Entasis Therapeutics) may be cleared by FDA very soon. Matsumoto et al. have revealed that synthetic drug efflux inhibitors might be used against MDR gonococcal diseases.

Carbenemems drugs as choice against *Neisseria gonorrhoeae*

Carbenemems drugs must be recommended against *N. gonorrhoeae* infections as meropenem was found very successful against gram (-) infections. However, recent reports showed that a single dose of imipenem-clastatin cured 116 of 122 men with uncomplicated *N. gonorrhoea* as blaKPC/blaVIM type of class B beta-lactamases were absent in such clinical isolates. Further study indicated that penA gene coding for PBP2 with mutations in A501, G545 and P551 might contribute to extended spectrum cephalosporins resistance in *N. gonorrhoeae*. Similarly, rpm gene of ribosomal protein S10 and mtrR mutations may also involve in aminoglycoside resistance [29,30]. In 2007, about 350000 cases of gonococcal infections were reported in the United States which was increased few fold in recent years indicating the importance of new drug development. Unemo M et al. studied XRD gonococcal strain H041 and F89 with high level ceftriaxone resistant and ertapenem appeared promising drug. However, result indicated carbapenem drugs had failed to give superior pharmaco kinetic parameters to clear gonococcal infections as compared in ceftriaxone, the best drug recommended yet.

Results

Complete genome sequencing of *Neisseria gonorrhoeae*

The first complete genome of *N. gonorrhoeae* was done in 2000 and the strain NCCP11945 was done in 2001 [31]. Many laboratory strains were sequenced and many mdr genes were detected in complete genome [32]. Recently, WHO supported Sanger Institute of UK has completed many full length genome sequencing of MDR Neisseria reference clones and many mutations are identified in penA, porB, porF and mtrR and gyrA mdr genes (Table 1).

Many MDR genes were poorly assimilated in gonococcal plasmids and chromosome

Many MDR genes were found in single conjugative plasmids (50-500 kb) that had been fully sequenced from *Escherichia coli*, *Salmonella enterica* and *Pseudomonas aeruginosa*. At least 20 types beta-lactam genes (TEM, OXA, CMY, NDM1, KPC, VIM, IMP, FOX, ACC, etc.) with ten thousands mutations were detected in many Enterobacteriaceae plasmids [33]. As we compared with the available very few *N. gonorrhoeae* plasmids, only blaTEM-1 and blaTEM-135 genes were detected and two mutations were predominant as demonstrated in Table 1 [34-38]. Further only tetM gene [22] was found but no tetA, tetC, catB3, strA/B, sul1/2, acrAB, mtdA, mcr-1, vanA, arr3, aacA1/C1, aphA4, aadA2 etc genes highlighted in BLAST search. Our search however, was confirmed acrB/mexB RND drug transporter (mtrD) as important candidate of MDR gene in *N. gonorrhoeae* which actively transport drugs as tripartite protein complex involving acrA or mexA (mtrC) as well as TolC or OprM like membrane proteins (mtrX) as demonstrated in Table 2. Figure 1 demonstrated the seq2 BLAST sequence similarity between acrB of *Salmonella* and mexB of *Neisseria* which was known as mtrD. The mechanisms of drug resistance in *N. gonorrhoeae* are different and depicted in Figure 2. The correct positions of different mdr genes and DEGs was depicted in Figure 3 pinpointing the localization of mtrCD-mtrX (mexAB-oprM type), mtrF, macAB and ermAB (farAB) mdr drug-efflux genes in *Neisseria gonorrhoeae* FA19 (accession number CP010262; nt. 1-2232367).

Molecular mechanisms of penA genes in *N. gonorrhoeae*

Penicillin-resistant gonococcal strains had many point mutations in the penA gene which encodes PBP2 that binds strongly β-lactam antibiotics decreasing effective drug concentration and thus increasing AMR [39,40]. Penicillin binding protein (PBP2) with P531S and F540L mutations and aspartic acid insertion after amino acid 345 greatly
affected the use of cephalosporins as treatment options [41]. Further analysis of penA genes found more mutations than expected (I312M, V316T, N328T, S342A, S353T, R412Q, A502V, F504L, N513Y, G543S, A550T, P552S/L and K556Q) (Figure 4). Multidrug-resistant H041 and WHO_Z strain penA genes are highly mutated with >50 mutations (protein ids. BAK19153, SBO71709) as compared to WHO_L strains (protein id. SBO56999) that has acquired few mutations (A402V, F405V, A411V, A417T, and G543S) as compared to wild type strain (protein id. AAA25463). Cephalosporin resistant N. gonorrhoeae strain A3210 penA protein (protein id. ANI26527) has moderate mutations at the C-terminal as compared to MS11 strain. Similarly, many mutations in penC gene have been implicated as AMR inducer (Q172E, N648S, N432S, N648S, S341N, D494N and S341S) implying

Accession	Strain no	mtrD	penA	ponA	macB	ermB	porB	mtrF
AE004989	FA 1090	mexB	AAW80178	AAW88660	AAW90081	AAW9307	AAW90430	AAW9016
CP012028	35/02	AWP14242/8	AWP14613	AWP15416	AWP14514/3	AWP14822/1	AWP15153	AWP14432
CP012027	FA6140	AWP12794	AWP12982	AWP13752	AWP12880	AWP13148	AWP13281	AWP12798
CP012026	FA19	AWP10807	AWP11052	AWP11771	AWP10893	AWP1159	nd	nd
CP003909	MS11	EEZ48388	EEZ48220	EEZ48707	EEZ48314	AGU65171	EEZ48806.2	EEZ48387
CP001050	NCCP11945	AF30251	AF30347	AF28848	AF30348	AF30680	ACF31060	ACF30250
CP016016	34530	ANJ04111	ANJ50573	ANJ49290	ANJ50489	ANJ50724	ANJ51042*	ANJ50416
LT592161	WHO_Y	SBO69656	SBO73065	SBO60086	SBO70245	SBO74513	SBO76109	SBO69682
LT592159	WHO_U	SBO68533	SBO70018	SBO58843	SBO69230	SBO71116	SBO72388	SBO68571
LT592153	WHO_Z	SBO69419	SBO71709	SBO60042	SBO70015	SBO74544	SBO76145	SBO69401
LT591897	WHO_F	SBO21786	SBO22365	SBO18214	SBO22019	SBO22721	SBO23078	SBO21795
LT591901	WHO_L	SBO49030	SBO56999	SBO47370	SBO52892	SBO56120	SBQ5148	SBO49018

Table 2: Confirmation of MexAB proteins in all Neisseria gonorrhoeae genome: MexAB efflux pump is also detected in strain numbers.

Figure 1: Seq-2 sequence similarity between Salmonella enterica and Neisseria gonorrhoeae mexB proteins. Major GenBank data have demonstrated mtrCD as mexAB related proteins which have similarity to acrAB drug transporters as well.
multi-resistance was associated with other mdr genes like potent drug transporter, mtrCD [42]. Ceftriaxone resistance was implicated for mutations in multiple loci of Neisseria gonorrhoeae isolates at the PIB, PBP2 and mtrR genes [43,44]. Recently, many mutations in blaTEM gene like M182T, P14S/L, G228S and Q269K were found in gonococcal plasmids with 8%, 4.5%, 1.3% and 0.6% frequency respectively but 80% isolates were blaTEM-1 variant like blaTEM-135 (18). The widespread of ceftriaxone, azithromycin and ciprofloxacin was depicted in Figure 5 and India had worse hit including American and European countries and also African countries whose data was limited. Further, many drug acetyl transferases are assembled in MDR conjugative plasmids but no has genes has been implicated in N. gonorrhoeae [45]. Thus penA gene mutations and rearrangement theory still hold promise but contradictory to believe all beta-lactams resistance and a role of drug transporters (mtrCDE and emrAB) is presumptive as compared to mexAB/CD genes of Pseudomonas aeruginosa. Importantly, Neisseria meningitis penA gene mutations are also implicated in multi-resistance with 8-13 mutations like V51, T69V, V81A, E107K, N129S, L131I, N150D, K178Q, K1179I, D183K and L195R (protein ids. WP_002234448, WP_002246789, WP_061726051). Figure 6 demonstrated the mutations of 301-360 amino acids of penA protein in different drug resistant strains and such changes keeping the drug binding normal or higher indeed unique. PenA protein of Neisseria flavescens and Neisseria dentiae have 37 and 55 mutations suggesting gene alteration is common phenomenon in bacterial species in response to adaptation. The mutation theory for PenA mutations in cephalosporins resistance may correlate with changes in a b helical structures as shown in Figure 7. Such demonstration is important but not conclusive.

Molecular mechanism of ponA genes in N. gonorrhoeae

PenA gene and PonA genes encode penicillin binding protein

![Figure 4: Multiple alignment of few penA proteins of Neisseria gonorrhoeae to demonstrate many mutations.](image)

![Figure 5: High rate worldwide emergence of multidrug-resistance STD diseases. The 2014 GASP (WHO) data indicated a massive spread of gonococcal diseases with all three best drugs (ceftriaxone, azithromycin and ciprofloxacin) resistant species. India and China got worse hit including American and European countries and also African countries whose data was limited.](image)

![Figure 6: BLAST Seq2 alignment of 301-360 amino acids of penA protein of different strains of Neisseria gonorrhoeae demonstrating the chimeric gene formation producing pan cephalosporin drug resistance isolates.](image)

![Figure 7: Secondary structure alteration of PenA protein of MDR Neisseria gonorrhoeae. H, E and T mean Helix, Sheet and Turn conformations.](image)
type-2 and type-1 (PBPs) that also has been implicated in ceftriaxone and other cephalosporins resistance in *N. gonorrhoeae* [46]. For the inactivation of penicillin and cephalosporin drugs, ponA and penA genes must be over-expressed. Genome analysis suggested that a single gene was present with promoter activation. Biochemical characterization indicated that mutant enzyme could neutralize ceftriaxone more efficiently and thus >20 mutations accumulated in ponA genes giving multi-resistance and mutations are frequent similar to many mutations of blaOXA in other MDR Enterobacteriaceae [10].

Molecular mechanisms of porB genes in *N. gonorrhoeae*

PorB type genes were implicated in normal entry of drug and chemicals into *N. gonorrhoeae* cells. However, it was proved that mutations in the porB gene were sufficient to show the ceftaxime and imipenem resistance in *N. gonorrhoeae* due to reduced drug entry (Figure 8). Most isolates (282/289, 98%) contained the porB1b (NEIS2020) allele associated with decreased susceptibility to β-lactams and tetracycline with AMR conferred through non-synonymous substitutions in loop III of PorB [47]. A total of 31 distinct loop III regions were identified with those containing G120K and A121D/N mutations associated with resistant MIC values to penicillin and tetracycline. Interestingly, only 3/289 (1%) isolates contained amino acid substitution DS26N found in plQ (NEIS0408) associated with decreased susceptibility to ceftazidime and ceftriaxone. However, these isolates lacked mosaic penA (NEIS1753), mtrR (NEIS1635) and porB1b (NEIS2020) mutations (Figure 7). PlQ gene association in multi-resistance to be confirmed. Thus various penA, mtrR, porB and ponA mutations in *Neisseria gonorrhoeae* isolates were demonstrated with reduced susceptibility to ceftazidime or ceftriaxone (Tables 1 and 2).

Molecular mechanisms of drug efflux genes in *N. gonorrhoeae*

Chromosomal mtrCDE, FarA/B (ermA/B), macA/B, mtrF, and norM type’s drug efflux pumps have been implicated in tetracycline and cephalosporin resistance in *N. gonorrhoeae* [48]. Most strains have all such genes but norM (Table 2). Over expression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in *Neisseria gonorrhoeae*. However, mtrR de-repression due to C120T mutation in upstream of mtrC, have activated mtrCDE efflux pump in maintaining high AMR for many aminoglycosides and macrolides [49]. We presented the mutations of promoters of mtrR and mtrCD locus but mutations were rare (Figure 9) and also the hyper resistance WHO_Z strain showed only three mutations in mtrR (Figure 10). Interestingly, no mutations in the TATAAT box of mtrCD and mtrR between WHO_L and WHO_Z strains indicating mutation theory of promoters failed (Figure 11). Our recent data suggested that acrAB and tetA highly activated in Kolkata MDR-bacteria [50,51] and have similarities to *Pseudomonas aeruginosa* mexAB, mexCD and mexEF drug transporter genes. In *Escherichia coli* acrA-acrB-ToIc contributed the drug efflux pump giving resistance to beta-lactams, quinolones and aminoglycosides [51]. Analysis suggested that in *N. gonorrhoeae* mtrCDE multiple drug efflux genes were activated to show the XDR pattern drug resistance although it lacked many bla genes and aac, aad, aph types’ aminoglycosides modifying genes as well as highly abundant strA/B, tetA/C, sul1/2 and catB3 genes. The drug efflux genes like macA/B, ermA/B, norA, and mtrF, were also implicated in gonococcal drug resistant and were sequenced in most genomes of MDR *N. gonorrhoeae* (Table 2). However, penA, ponA like penicillin binding proteins likely inactivated the penicillin drugs and porB protein mutation further restricted the entry of drugs into *N. gonorrhoeae* cytoplasm. VanA gene cluster implicated in vancomycin resistance and teta/C type drug efflux genes involved in tetracycline resistance. Surprisingly, no blaOXA, blaDHA, blalMP, blakPC, blasPM and blaNMD1 or blactX-M genes were not detected in genome analysis of *N. gonorrhoeae*. Thus we concluded mtrCDE of *N. gonorrhoeae* are highly required for XDR type drug resistance having similarity 66% similarity to both *Escherichia coli* acrAB and *Pseudomonas aeruginosa* mexAB drug efflux proteins (Figure 1).

Search of *N. gonorrhoeae* FA1090 genome (accession no. AE004696) indicated that acrA type gene was located (acriflavin transporter, Protein Id. AAW90013) but there was no mention for acrB gene. Blast search of AE004696 sequence did indicate few homologies at nt.1325311-1324757 and nt. 1323646-1323188 corresponding to the nt. 3305-3862 and nt. 4973-5401 of *Escherichia coli* acrAB (accession no. U00734 at nt. 2312-5463) with 68% and 62% similarities respectively. This indicated a real acrAB type RND transporter gene in *N. gonorrhoeae*. Search further indicated that a 268aa protein of mtrD (mexD) indeed was located in *N. gonorrhoeae* genome downstream of mtrC between nucleotides 1323095-1326298. This protein is similar to mtrD protein in other *N. gonorrhoeae* genes like strain 35/02 (accession no. CP012028) with few mutations (T397I, T402I, T405I, T473I, and G474A) [47]. A total of 31 distinct loop III regions were identified with those containing G120K and A121D/N mutations associated with resistant MIC values to penicillin and tetracycline. Interestingly, only 3/289 (1%) isolates contained amino acid substitution DS26N found in plQ (NEIS0408) associated with decreased susceptibility to ceftazidime and ceftriaxone. However, these isolates lacked mosaic penA (NEIS1753), mtrR (NEIS1635) and porB1b (NEIS2020) mutations (Figure 7). PlQ gene association in multi-resistance to be confirmed. Thus various penA, mtrR, porB and ponA mutations in *Neisseria gonorrhoeae* isolates were demonstrated with reduced susceptibility to ceftazidime or ceftriaxone (Tables 1 and 2).

Figure 8: Multi-alignment of few porB membrane channel proteins of *Neisseria gonorrhoeae* to demonstrate isomers (porB1a and porB1b) and many mutations.

Figure 9: A 201 bp upstream sequence of penA gene of strain FA19 was compared by BLAST search.

Figure 10: Comparison of amino acid sequence of mtrR repressor of *N. gonorrhoeae* MDR strain WHO_L and PDR strain WHO_Z.
A661V and I1020V). It has 49% similarity to Salmonella enteric acrB protein (protein id. AK022252) and 49% similarity to Escherichia coli acrB protein (protein id. AAA67135) but has 49% and 40% similarities to mexB and mexF protein of Pseudomonas aeruginosa respectively. We concluded that most N. gonorrhoeae genomes (strains; WHO_Z, WHO_U, NCCP11945, FDAOARG_260, MS11, FA6140, 35/02, and FA 1090 etc.) have efflux genes that likely kick out drugs (penicillins and carbapenems, fluoroquinolones and DNA intercalators like doxorubicin). The nature of TolC and oprM types periplasmic membrane fusion proteins in N. gonorrhoeae to be studied but mexX/AmrX were located downstream of mtrD (protein id. AAW90013) signalling the authentic mexA-mexB-oprM type drug efflux system common in all drug resistant N. gonorrhoeae and designated as mtrC-mtrD-mtrX (Figure 3).

MacA/B genes were predominant in N. gonorrhoeae genome and study indicated that such proteins actively transported kanamycin, tobramycin, erythromycin and streptomycin drugs giving multi-resistance. mtrD and mtrF crystal structure were developed recently to address the drug pump mechanisms [52]. AbgT drug transporter was frequently found in gonococcal chromosome [53]. It appears a genetic island was involved in multi-resistance involving many drug and metabolite transporters. A 515 a long farB or ermB transporter (protein id. EEA43389, KMY25942, ACF30680) was also implicated in drug resistance in gonorrhoeae (accession no. CP001050) (Table 2).

Mechanism of tetracycline resistance in N. gonorrhoeae

Tetracycline resistance associated with the tetM plasmid [54]. TetM protein of E. coli is 639aa long and could bind strongly 30S ribosomal proteins releasing to tetracycline from ribosome. So the mechanism of other Tet proteins like tetA and tetC tetracycline drug effluxs are different as those pump to remove tetracycline from bacterial ribosome releasing to tetracycline from ribosome. So the TetM protein of E. coli (accession no. CP001050) (Table 2). Mechanism of rRNA mutations in multi-resistance of N. gonorrhoeae

Figure 11: Comparison of mtrR gene upstream and downstream between MDR strain WHO_F and PDR strain WHO_Z.

DNA gyrase has two subunits (gyrA and gyrB) and is involved in DNA supercoiling regulating DNA replication, recombination and transcription. Ciprofloxacin inactivates gyrase stopping cell division but mutations and modification in 3-D structure in the gyrA and gyrB subunits reduces the binding efficiency with fluoroquinolones antibiotics. Mutations in gyrA (S91F, D95G/A/N/Y), parC (D86N, S87R/I/N and S88P) and parE (G410V) were implicated in ciprofloxacin and norfloxacin resistance [56]. parC and parE are DNA topoisomerase IV genes subunits and also are involved in chromosome remodelling and DNA topology [57]. However, higher lipophilic fluoroquinolones like moxifloxacin and gatifloxacin have low response to such mutations and still are used in gonococcal infections.

Mechanism of rRNA mutations in multi-resistance of N. gonorrhoeae

Mutation C2599T in 23S rRNA was found in 25/289 (9%) isolates and these N. gonorrhoeae had azithromycin MIC values >8 µg/ml. One isolate, MUNG19, had mutation A2134G, 23S rRNA allele 456, and had resistant MIC to azithromycin, 256 µg/ml. Spectromycin resistance was conferred through deletion of codon 27 and, subsequent L28 replacement mutation in rpsE (NEIS0149) allele 83 or mutation C1186T in 16S rRNA allele 1538. Two isolates, ATLO121 and MUNG18, were found with either of these mutations with confirmed case of AMR.

Discussion

The real time sequencing of Neisseria gonorrhoeae genome (accession no. CP012028) indicated the presence of MacA (protein id. AKP14513 nt. 425862-427796 complement) and PBP2 (protein id.AKP14613; nt. 539173-540921 complement) mtrD genes. But further analysis suggested that mtrD (protein id. AKP14428), mtec (protein id.AKP14429) drug transporter under the regulation of mtrR (protein id.AKP14430), two ABC transporters (protein ids.AKP16180, AKP14470) and 23S 16S rRNA methyl transferases (protein ids. AKP16100, AKP14615), phospho-Ne-acetyl muramoylpentapeptidetrasferases (protein id. AKP14608) were present in the genome and likely contributed to the AMR.

Similarly, penA gene (protein id. SBO59320; nt. 133102-133225 complement) and abgT antibiotic resistant protein (protein id. SBO68571; nt. 133378-133534) were located in N. gonorrhoeae strain WHO_U (accession no. LT592159). However, mtrC (protein id.SBO68545; nt. 133102-133225 complement), mtrD (protein id.SBO68533) and mtrE (protein id. SBO68524; nt. 132630-132773) antibiotic transporters were accumulated at the same locus and likely controlled by acrR (protein id. SBO68553) in case of mtrC and pdrR (protein id.SBO68504) in case of mtrE transporters (Lee SG et al.). A 522aa long abgT transporter (protein ids. SBO68571, SBO69438, and SBO96603) for aminobenzoate-glutamate involved in folate biosynthesis was implicated as drug transporter in N. gonorrhoeae and had been sequenced, over-expressed and crystal structure was elucidated. Similarly, mtrF transporter was implicated in AMR in gonorrhoeae as found in many genomic fragments (accession nos. AF176821, EQ973013, DS999940, FMSZ01000045 and GG749376).

PonA gene encoding penicillin binding protein-1 (protein id. AAB52536) was cloned (accession no. U72876). Genome sequencing of many N. gonorrhoeae genome was confirmed the mutational activation PBP1/2 causing acute penicillin resistance (see accession nos. CP000150, LT592146/50/53/57/59, LT591898 and LT591901/4/8). A Canadian study indicated 252 N. gonorrhoeae strains real-time PCR chromosomal DNA was positive 100% for ponA, and penA, 99.6% for mtrR, and 95.2% for pdrR [58]. But we doubt that plasmid-mediated blaCTX-M, tetC, strAB, sul1/2, aacA4, aacC1 must be overlooked due to lack of proper plasmid isolation from N. gonorrhoeae. BLAST analysis of genomic sequence (Ch-1) of WHO_Z PDR strain of N. gonorrhoeae
did not find such genes (accession number used: X75761 for tetA, KC590080 for tetC, EF516991 for cat, KM877269 for sulI, AP012056 for sul2, D90119 for norA, NG_050417 for mcr-1, KR047792 for vanA, J01749 for amp, X92506 for CTX-M, AF297554 for KPC, KC539430 for NDM1, AF227505 for OXA1 and JN207493 for OXA23).

Kubanov et al. studied recently 124 N. gonorrhoeae strains obtained from 9 regions in Russia using N. gonorrhoeae Multi-Antigen Sequence Typing (NG-MAST), an antimicrobial susceptibility test according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria and an oligonucleotide microarray for the identification of mutations in the penA, porA, rpsJ, gyrA and parC genes responsible for penicillin-G, tetracycline, and fluoroquinolone resistance [34]. NG-MAST analysis showed a diversified population of N. gonorrhoeae in Russia with 58 sequence types, 35 of which were described for the first time. The STs 807, 1544, 1993, 5714, 9476 and 12531, which were typical for some Russian Federation regions and several countries of the former Soviet Union, were represented by five or more isolates. Preliminarily susceptible (G-807, G-12531) and resistant (G-5714, G-9476) geno-groups were revealed. Chen et al. in China also correlated the mutations in Non-mosaic penA alleles with A501T and G542S alterations, an H105Y alteration in mtrR gene and an A102D/N alteration in porB1b gene with decreased susceptibility or resistance to ceftriaxone (Figure 10) [58].

Chen et al. have been reported cefixime and ceftriaxone resistant isolates of a strain cluster of ST4378, a genotype that differs in the porB sequence by only one nucleotide from ST4107, in Taiwan during April 2006 to June 2012 [59]. Genes involved in β-lactam binding proteins (ponA), quinolone resistant genes (gyrA and parC) and multidrug transporter regulatory genes (mtrR, porB1b and pilQ) were sequenced with many polymorphisms. The adenine deletion in the 13bp promoter region associated with increased expression of the MtrCDE efflux pump was found in 178/289 (62%) isolates (proNEIS1635 allele 3) and was associated with mutations in many of the other AMR loci including penA (NEIS1753), ponA (NEIS00414) and porB (NEIS2020).

However, Acinetobacter baumannii or Proteus mirabilis type MDR genomic islands with aad, sulI, blaTEM, aph, and strAB mdr genes have not detected in N. gonorrhoeae genome (see, accession nos. KU743384, NJ439039). Recently, WHO reported the active increase in antibiotic resistance N. gonorrhoeae with very difficult or impossible to cure using cefalosporins? Of the 77 countries surveyed, 97% resistant to cefipramoxin, 81% resistant to azithromycin and 66% resistant to cephalosporins [9,24,51].

Conclusion

MDR mechanisms are thus quite different in Neisseria gonorrhoeae as reflected by accumulation of mutations in chromosomal penicillin binding proteins and porin genes [50]. Also different mdr genes like that cat and bla genes are rarely seen in plasmids or chromosome of N. gonorrhoeae except blaTEM and tetM. However, many drug efflux genes (macB, farB, mdtA, ABC) were implicated in AMR of N. gonorrhoeae and inhibitors of efflux pumps may best choice for drug development against MDR N. gonorrhoeae infections [28]. Then why most early proton drug efflux genes like tetA or tetC did not assimilated in gonococcal plasmids? MtrCDE drug efflux likely acrAB/mexAB types and thus is an important target for new drug development. Plasmid mediated over expression is important for MDR but we see only tetM and blaTEM in few plasmids are activated although mtrR activation has been demonstrated in mtrCDE efflux genes. In most MDR Enterobacteriaceae (E. coli, S. enterica, P. aeruginosa, A. baumannii) thousands large plasmids with 5-15 mdr genes and 10-20 TRA conjugative proteins have been reported including many IS-elements. G20 Nations have agreed at Meeting at Berlin (May 2017) and recent Meeting at Humbreg (July 2017) to act together to control anti-microbial resistance and to develop new drug against superbugs. Higher derivatives of fluoroquinolones (NIf-Q2; WQ-3810) were found effective to kill ciprofloxacin resistant N. gonorrhoeae [60,61]. We hope crystal structure is pivotal to understand anti-metabolite transporters structure and functions for new drug development against N. gonorrhoeae [62]. We demand a new direction in gonococcal research to identify new plasmids and related mdr genes directing new control measures for STDs [63,64].

Acknowledgement

We thank Dr. J.B. Medda of OAER for financial assistance and Dr. Samit Adhya of Indian Institute of Chemical Biology for various suggestions during the work.

References

1. Unemo M, Shafer WM (2014) Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 27: 587-613.
2. Eisenstein B, Sox T, Biswas G, Blackman E, Sparling P (1977) Conjugal transfer of the gonococcal penicillinase plasmid. Science 195: 998-1000.
3. Golparian D, Tabrizi SN, Unemo M (2013) Analytical specificity and sensitivity of the APTIMA Combo 2 and APTIMA GC assays for detection of commensal Neisseria species and Neisseria gonorrhoeae on the Gen-Probe Panther instrument. Sex Transm Dis 40: 175-178.
4. Phillips I (1976) Beta-lactamase producing penicillin-resistant gonococcus. Lancet 308: 656-657.
5. Cannon J, Sparling PF (1984) The genetics of the gonococcus. Ann Rev Microbiol 38: 111-133.
6. Shimuta K, Watanabe Y, Nakayama S (2015) Emergence and evolution of internationally disseminated cefalosporin-resistant Neisseria gonorrhoeae clones from 1995 to 2005 in Japan. BMC Infect Dis 15: 378.
7. Chakraborty AK (2017) Multi-drug resistant bacteria from Kolkata Ganga river with heterogeneous MDR genes have four hallmarks of cancer cells but could be controlled by organic phyto-extracts. Biochem Biotechnol Res 5: 11-23.
8. Chakraborty AK (2016) Multi-drug resistant genes in bacteria and 21st Century problems associated with antibiotic therapy. Biochemol Ind J 12: 113.
9. Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, et al. (2011) Is Neisseria gonorrhoeae initiating a future era of untreatable gonococcal? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55: 3538-3545.
10. Gascayne-Binzi DM, Heritage J, Hawkey PM (1993) Nucleotide sequences of the tet (M) genes from the American and Dutch type tetracycline resistance plasmids of Neisseria gonorrhoeae. J Antibiotic Chemother 32: 667-676.
11. Warner DM, Shafer WJ, Jerse AE (2008) Clinically relevant mutations that cause depression of the Neisseria gonorrhoeae Mcf-C-Mtr-Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70: 462-478.
12. Chakraborty AK (2017) Collistin drug resistant determinant Mcr-1 gene spreads in conjugal plasmids creating huge confusion for the treatment of multi-drug resistant infections. Ame Res J Biotechnol 1: 1-9.
13. Chakraborty AK (2016) Complexity, heterogeneity, 3-D structures and transcriptional activation of multi-drug resistant clinically relevant bacterial beta-lactamases. Trends Biotechnol-open access 2: 1-001.
14. Chakraborty AK, Malty M, Patra S, Mukherjee S, Mandal T (2017) Complexity, heterogeneity and mutational analysis of antibiotic inactivating acetyl transferases in MDR conjugal plasmids conferring multi-resistance. Res Rev. J Microbiol Biotechnol 6: 28-43.
15. Chakraborty AK (2016) in silico analysis of hotspot mutations in the bacterial NDM-1 and KPC-1 carbapenemases that cause severe MDR phenotypes. Biochem Biotechnol Res 4: 17-26.
16. Lee SG, Lee H, Jeong SH (2010) Various penA mutations together with mtrR,
porB and porA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefoxime or ceftriaxone. J Antimicrob Chemother 65: 669-675.

17. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, et al. (2011) High-Level Cefoxime- and Ceftriaxone-Resistant Neisseria gonorrhoeae in France: Novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemo 56: 1273-1280.

18. Ashford WA, Golash RG, Henning VG (1976) Penicillinase producing Neisseria gonorrhoeae. Lancet 308: 657-658.

19. Mylnarczyk-Bonikowska B, Kujawa M, Mylnarczyk G, Malejczyk M, Majewski S (2016) Dominating type of penicillin-clasps in Neisseria gonorrhoeae strains isolated in 2010-2012 in Warsaw. Med Dosw Mikrobiol 68: 34-38.

20. Sparling PF, Sanabbi FA, Blackman E (1975) Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae. J Bacteriol 124: 740-749.

21. Camara J, Serra J, Ayats J, Bastida T, Carmona-Pont D, et al. (2012) Molecular characterization of two high-level cefoxime-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrobial Chemother 67: 1588-1590.

22. Morse SA, Johnson SR, Bidde JW, Roberts MC (1986) High level tetracycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant. Antimicrob Agents Chemother 30: 644-670.

23. Chen CC, Yen MY, Wong WW, Li LH, Huang YL, et al. (2013) Tracing subsequent dissemination of a cluster of gonococcal infections caused by an ST1407-related clone harbouring mosaic penA alleles in Taiwan. J Antimicrobial Chemother 68: 1567-1571.

24. Ohnishi M, Ono E, Shimuta K, Watanabe H, Okamura N (2010) Identification of TEM-135 beta-lactamase in penicillinase-producing Neisseria gonorrhoeae strains in Japan. Antimicrob Agents Chemother 54: 3021-3023.

25. Ohnishi M, Watanabe Y, Ono E (2010) Spread of a chromosomal ceftoxime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob Agents Chemother 54: 1060-1067.

26. Whiley DM, Jacobsson S, Tapsall JW, Nissen MD, Sloots TP, et al. (2010) Alterations of the pilQ gene in Neisseria gonorrhoeae are unlikely contributors to decreased susceptibility to cefixime and cefotaxime in clinical gonococcal isolates. J Antimicrobial Chemother 65: 2543.

27. Zaranontelli L, Borthagaray G, Lee EH, Shafer WM (1999) Decreased adazithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother 43: 2468-2472.

28. Matsumoto Y, Hayama K, Sakakihara S, Nishino K, Noji H, et al. (2011) Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS One 6: 18547.

29. Harrison OB, Clemence M, Dillard JP (2016) Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J Infect 73: 578-587.

30. Zhao S, Duncans M, Tomberg J, Davies C, Unemo M, et al. (2009) Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae. Antimicrob Agents Chemother 53: 3744-3751.

31. Chung GT, Yoo JS, Oh HB, Lee YS, Cha SH, et al. (2001) Complete genome sequence of Neisseria gonorrhoeae NCCP11945. J Bacteriol 190: 6035-6036.

32. Abrams AJ, Trees DL, Nicholas RA (2015) Complete genome sequences of three Neisseria gonorrhoeae laboratory reference Strains, Determined Using PacBio Single-Molecule Real-Time Technology. Genome Announc 3: 1052-1500.

33. Gong Z, Lai W, Liu M, Hua Z, Sun Y, et al. (2016) Novel genes related to Ceftriaxone resistance found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In vitro. Antimicrob Agents Chemother 60: 2043-2051.

34. Gianecini R, Oviedo C, Littvik A, Mendez E, Piccoli L, et al. (2015) Identification of TEM-135 beta-lactamase in Neisseria gonorrhoeae Strains carrying African and Toronto plasmids in Argentina. Antimicrob Agents Chemother 59: 717-720.

35. Kirven LA, Thornsberry C (1977) Transfer of beta-lactamase genes of Neisseria gonorrhoeae by conjugation. Antimicrob Agents Chemother 11: 1004-1006.

36. Muller EE, Fayemio SA, Lewis DA (2011) Characterization of a novel [beta]-lactamase-producing plasmid in Neisseria gonorrhoeae: sequence analysis and molecular typing of host gonococci. J Antimicrob Chemother 66: 1514-1517.
the mtrR and penB resistance determinants. Antimicrob Agents Chemother 49: 4327-4334.

58. Peterson SW, Martin I, Demczuk W, Bharat A (2015) Molecular assay for detection of genetic markers associated with decreased susceptibility to cephalosporins in Neisseria gonorrhoeae. J Clin Microbiol 53: 2042-2048.

59. Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS (2014) Antimicrobial resistance, genetic resistance determinants for ceftriaxone and molecular epidemiology of Neisseria gonorrhoeae isolates in Nanjing, China. J Antimicrob Chemother 69: 2959-2965.

60. Biedenbach DJ, Turner LL, Jones RN, Farrell DJ (2012) Activity of JNJ-Q2, a novel fluoroquinolone, tested against Neisseria gonorrhoeae, including ciprofloxacin-resistant strains. Diagn Microbiol Infect Dis 74: 204-206.

61. Kazamori D, Aoi H, Sugimoto K, Ueshima T, Amano H (2014) In vitro activity of WQ-3810, a novel fluoroquinolone, against multidrug-resistant and fluoroquinolone-resistant pathogens. Int J Antimicrob Agents 44: 443-449.

62. Lei HT, Chou TH, Su CC, Bolla JR (2014) Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel. PLoS One 9: E97475.

63. Chakraborty AK (2015) High mode contamination of multi-drug resistant bacteria in Kolkata: mechanism of gene activation and remedy by heterogenousphyto-antibiotics. Indian J Biotechnol 14: 149-159.

64. Kubanov A, Vorobyev D, Chestkov A, Leinsoo A (2016) Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia. BMC Infect Dis 16: 389.