Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques

Tania Limongi1,2,*, Ermanno Miele1, Victoria Shalabaeva3, Rosanna La Rocca1, Rossana Schipani1, Natalia Malara1, Francesco de Angelis1, Andrea Giugni1,2, Enzo Fabrizio1,3,5

1 King Abdullah University of Science and Technology, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
2 King Abdullah University of Science and Technology, BESE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
3 Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy.
4 Interregional Research Center for Food Safety & Health (IRC-FSH), Department of Health Science, University "Magna Graecia" of Catanzaro, Complesso "Nino Bariotti", 88021 Roccella di Borgia, Italy
5 BIONEM, Bio-Nanotechnology and Engineering for Medicine, Department of Experimental and Clinical Medicine, University of Magna Graecia Viale Europa, Germaneto, 88100 Elezioni, Italy, Italy

*Corresponding Author: Tania Limongi, Physical Science & Engineering (PSE) Division, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology Bldg. 2, 4rd floor, Desk 4315-WS09, Desert side, Thuwal, 23955-6900, Kingdom of Saudi Arabia, Tel: 00399328336593; E-mail: tania.limongi@kaust.edu.sa

Rec date: Oct 31, 2014; Acc date: Dec 09, 2014; Pub date: Dec 12, 2014

Copyright © 2014 Limongi T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-ε-Caprolactone (PCL) is very attractive biodegradable polymer due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.

Keywords: Microfabrication; Micromolding; Tissue engineering; Biomaterials; 3D scaffold; Poly-epsilon-caprolactone; Fibroblasts

Abbreviations

PCL: Poly-ε-caprolactone; ECM: Extracellular Matrix; PLGA: poly-L-(glycolic acid); PLLA: poly-L-(lactic acid); PLA: poly (lactic acid); PEG: polyethylene glycol; Si: Silicon; DRIE: Deep Reactive Ion Etching; ATCC: American Type Culture Collection; DMEM: Dulbecco’s Modified Eagle’s Medium; BSA: Bovine Serum Albumin; PBS: Phosphate Buffered Saline; SEM: Scanning Electron Microscopy

Introduction

The latest improvements in biomaterials design and characterization, along with the impressive progress achieved in nanotechnologies and microfabrication techniques, have led to the production of highly performant micro- and nano-structured materials and devices designed for a variety of biomedical tissue engineering applications [1-5]. In recent years, micro- and nanotechnologies are giving extraordinary answers to the specific needs of regenerative medicine, by allowing the fabrication of new three-dimensional (3D) biocompatible cell culture systems. Despite the 3D in vivo cells and tissue growth, cell culture studies are mainly daily performed on two-dimensional (2D) glass or plastic surfaces, thus resulting in flat monolayers, which limit the biological relevance of assays in cellular and clinical research. To overcome such limitations due to the use of 2D cell culture systems use, recently 3D scaffolds have recently been fabricated by offering the possibility to regulate cell/tissue morphogenesis through the mimicking of the extracellular matrix (ECM) architecture. ECM, with its complex 3D interlacement of elastin, collagen, glycosaminoglycans, glycoproteins and proteoglycans, regulates the regeneration and maintenance of tissues and organs, thus playing a key role in successful tissue engineering applications, such as wound healing [6,7], skin, cartilage, bone and neural regeneration [8,9]. Several tissue engineering methods involve cell seeding onto 3D scaffolds for in vitro [10] or in vivo neotissue growth [11]. Microfabrication is one such technology with the higher potential to improve scaffold fabrication. Indeed thanks to its control over micro- and nano design, it allows the realization of devices with superficial features ranging from several nanometers to hundreds of microns, to be used for in vitro and in vivo
Materials and Methods

HEIDELBERG Instruments). Standard microlithography was employed. P-type silicon wafers (100) with resistivity 5-10 Ω/cm were fabricated using direct write lithography equipment (DWL66fs, TUCANO GABETTI, Vbias= -320 V, P=100 W), then etched in a 4% H2SO4:H2O2, 3:1 volume) and, finally, to an oxygen plasma cleaning to remove residual resist and contaminant. In order to reduce the adhesion of polymer during the nano-imprinting process, an anti-sticking layer was deposited by phase vapor chemical deposition. Few drops of silanizing agent (Trichloro(1H,1H,2H,2H-perfluorooctyl) silane 97%, Sigma) were placed into a glass vial and let evaporate in vacuum condition by exposing the silicon master surface to be functionalized. Silicon masters were then heated (T=110 °C) to stabilize the silane layer and then washed several times with acetone, isopropanol and deionized water.

Micromolding

Microstructured nanopatterned PCL surface was obtained by micromolding as follows. Poly-ε-caprolactone (PCL) (Sigma Aldrich, Mn = 70000-90000, Tmelt = 60°C) was melted on a glass slide previously cleaned (Acetone, 2-propanol and several rinses with H2O) and placed on a hot plate (T=130°C). Negative master was put in contact with the melted polymer avoiding the formation of air bubbles at the polymer-silicon interface. Polymer molding was performed with a press (Nanoimprinter, Obducat) in a two steps process: first, molding at T=68 °C and P= 5 bar; second, cooling and polymer solidification at constant pressure (P=5 bar) until reaching Tamb. The peel-off (silicon master detachment) was performed in water by applying a slight pull. Positive polymer structures, with aspect ratio more than 2, were obtained. Textures of a periodic hexagonal lattice of cylindrical biopolymer pillars were obtained. Microstructured nanopatterned PCL scaffolds were washed in deionized water overnight.

Cell culture

The NIH/3T3 mouse embryonic fibroblast cells were obtained from the American Type Culture Collection (ATCC). The NIH/3T3 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with high glucose, supplemented with 10% (v/v) fetal calf serum, penicillin G (100 U/ml) and streptomycin sulfate (100µg/ml). The cells were grown at 37°C in a humidified 5% CO2 atmosphere.

Immunofluorescence

Single substrates were sterilized by immersion in 99.9% ethanol (34963, Sigma-Aldrich), washed twice with sterile deionized water and further sterilized by UV irradiation for 1.5 h. Then the substrates were treated with Poly-D-lysine hydrobromide (P6407, Sigma-Aldrich) and DMEM medium complete in a 1:1 (v/v) ratio respectively for 48 hours in a cell culture incubator (37°C, 5% CO2, 95% humidity). After soaking, substrates were washed twice with sterile deionized water and, once dried, 4 x 10⁵ cells were plated on each substrate and grown for 24 hours. Afterwards the cells were fixed with 4% (w/v) paraformaldehyde for 1 hour at room temperature, permeabilized with 0.5% (v/v) Triton X-100 for 10 min and blocked with 1% (w/v) of
Bovine Serum Albumin (BSA) in phosphate buffered saline (PBS). At the end the samples were stained for 1 hour with antibody against Vinculin (Abcam ab18058) and detected with a secondary antibody (chicken anti-mouse Alexa Fluor 488, Invitrogen). Further for F-Actin staining, the cells were incubated with Alexa Fluor 546 phalloidin for 30 min at 4°C. Images were acquired at an upright Leica TCS SP5 AOBS TANDEM confocal microscope equipped with a 40X/0.80 APO L W UVI objective. Images were visualized and processed by using the Leica LAS AF, ImageJ and Adobe Photoshop CS3 softwares.

Scanning Electron Microscopy

Fibroblasts were grown for 24 hours and then fixed for 1 h in a solution of 1.2% (v/v) glutaraldehyde (G5882, Sigma) and 0.1 M sodium cacodylate (C0250, Sigma) at 4°C. After fixation, cells were extensively washed in the 0.1 M pH 7.4 sodium cacodylate buffer, and postfixed for 1 h in a solution of 1% (v/v) osmium tetroxide (CAS #20816-12-0, 19110, Electron Microscopy Sciences) and 0.1 M sodium cacodylate. After several washes in Milli-Q water, fixed samples were rinsed for 5 min in increasing concentrations of filtered (0.2 µm, Millex-LG Millipore) ice-cold ethanol (30%, 50%, 70%, 80%, 90% and 96% v/v), followed by 2 x 15 min rinses with filtered ice-cold 100% (v/v) ethanol. Graded dehydration with ethanol was followed by gradual replacement with hexamethyl disilazane (379212, Sigma) that was allowed to evaporate overnight in a fume hood. Samples were then glued with silver paint (Pelco) to Scanning Electron Microscopy (SEM) stubs, coated with 10 nm gold/palladium in a sputter coater (108 auto/SE Cressington), and observed with a JEOL JSM-6490LA variable pressure SEM.

Results

The fabrication approach of these biocompatible substrates consisted in obtaining a positive structure by polymer micromolding in a negative silicon master, fabricated by the means of standard optical lithography and Deep Reactive Ion Etching techniques as schematically summarized in Figure 1.

The optical resist layer was deposited onto cleaned Si wafer by spin coating and a void disk pattern (disk diameter and periodicity was set to be 10 µm and 20 µm, respectively) was defined by optical lithography (Figure 1A(i)). Time multiplexed Deep Reactive Ion Etching process was employed to determine 10 µm depth cylindrical wells by digging the void disks pattern (Figure 1A(ii)). Si molds were imaged with a scanning electron microscope (Figure 1A(iii)). The mold’s surface was primed by means of anti-sticking layer deposition (Figure 1B(i)). A direct nanoimprint process was performed by placing PCL pellets onto a silanized glass support, pre-melted at 130 °C (ii), Silicon mold is placed in contact with the polymer to imprint. After nanoimprinting process (T imprint= 68 °C, P imprint = 5 bar), mold and support are peeled-off and a 500 µm freestanding PCL pillared surface is obtained (iii)

Figure 1: In panel A a pictorial description of the Si mold fabrication by microlithography and DRIE processes is shown. Firstly, a 3.5 µm optical resist layer is obtained onto cleaned Si wafer by spin coating and a void disk pattern is defined by optical lithography (i). Disk diameter and periodicity is set to be 10 µm and 20 µm, respectively. (ii) Time multiplexed Deep Reactive Ion Etching process is employed to determine 10 µm depth cylindrical wells in correspondence to void disk pattern. (iii) Mold’s SEM images; cross section and top view. In panel B the mold’s surface is primed by means of anti-sticking layer deposition (i). A direct nanoimprint process is finally performed: PCL pellets are placed onto a silanized glass support and pre-melted at 130 °C (ii), Silicon mold is placed in contact with the polymer to imprint. After nanoimprinting process (Timprint= 68 °C, P imprint = 5 bar), mold and support are peeled-off and a 500 µm freestanding PCL pillared surface is obtained (iii)

Figure 2: Low (A) and (B) high–magnification SEM images of 3D micropillared surface. 10 µm bars.

Cylindrical pillars of 10 µm in height and 10 µm in diameter were arranged in a hexagonal lattice with periodicity of 30 µm (Figure 2A); the sidewall of the pillars was nano-sculptured with a regular pattern
of grooves (Figure 2B). The pillared surface was characterized by an interconnected structure with controlled space size and shape. Pillars interconnection facilitated cell ingrowth providing higher surface area for cells adhesion and expansion. The proposed architecture of the scaffold resulted as crucial for an efficient nutrient, gas and waste exchange system.

Small areas of confluence, with tightly packed cells, were observed on the microfabricated surface (Figure 3A) although few patches of grouped cells were observed (Figure 3B); however, there were still large number of isolated cells (Figure 3C-3F) that could be seen to strongly interact with the pillars. Cells were healthy and formed a well-developed suspended network in close contact with the micro and nano features of the PCL substrate. In Figures 3B and 3E, it is evident how the particular pillars arrangement promoted along the z-axis a double order of healthy growing cells. Fibroblasts within 24 hours produced filopodia (white arrows) sensing the microstructured biopolymer, and thicker pseudopodia-like (white asterisks) processes appeared to use pillars as stepping-stones (Figures 3D and 3G).

Figure 3: SEM images of NIH/3T3 cells cultured on micropillared surface. 5 μm bars.

PCL substrates were able to spatially direct cells growth and promote the formation of extending bridges between adjacent pillars (Figure. 3 E, F). Cells moved by means of actin filaments, extension of sheet-like and rod-like protrusions at the cell-surface front; many filopodia (Figure. 3 D, H) and large lamellipodia (Figure. 3 A, E, I) were formed.

In Figure 4, an optimal fibroblasts proliferation on the surface is reported, showing as cells grow mostly suspended in the inter-pillar spaces. F-actin and vinculin proteins were stained, thus making visible the formation of solid cellular adhesion on the microfabricated substrate. The optimal expression and localization of these proteins allowed the visualization of lamellipodial focal adhesions structures, which are essential for cellular spreading and polarisation. Lamellipodia were associated with filopodia that actively probed the external environment, by collecting topographical and biochemical information from the Extracellular Matrix (ECM) and material surface. The presence of lamellipodial and filopodia focal adhesions structures evidenced the strong adhesion and spreading of cells, which indicates the high cytocompatibility of the substrates.

Figure 4: Confocal analysis of NIH/3T3 cells cultured on pillared PCL substrates; F-actin (red) and vinculin (green) expression is reported. The overlay between F-actin and vinculin is shown in the right panel. 20 μm bars.

Discussion

The use of 3D polymeric scaffolds for cell lines, primary cells or stem cells is an increasingly widespread practice in tissue engineering. The requirements of scaffolds for medicine regeneration are different and strictly related to the structure and function of the tissue of interest. For these simple reasons, fabrication techniques need to be further developed to allow the realization of scaffold with the desired shape, degradation rate, porosity and mechanical properties. New design and manufacture methodologies are required and, in this context, our 3D microfabricated PCL scaffold represents an effective support for the realization of in vitro healthy cell cultures. Cells that are daily cultured on 2D cell culture system, flat dishes made of glass or polystyrene, adhere and spread on this surfaces forming unnatural attachments and proliferation. In the proposed pillared 3D cell culture system, cells grow suspended to one another forming, with the aid of the pillars, cell-to-cell attachments and double or multi order of growing cells, needed to achieve tissue and organ regeneration. Using the proper cell type, for instance embryonic stem cells, these layers could grow by differentiating into different tissues and organs with structural and physiological functionality. In this 3D cell culture environment, cells can exert forces on one another and can easily move and migrate; an efficient fluid transport is guaranteed by the
particular arrangement of the pillars on the device allowing optimal nutrients, gas and waste exchanges by growing cells suspended between the pillars. It should be noted that, due to the successfully application of the PCL in tissue engineering therapeutics [23-26], our 3D scaffold could be also used as simple and inexpensive drug-laden bioresorbable solution. Thus, we highlight the suitability of the material used and the techniques applied for future development of in vitro and in vivo applications in the field of regenerative medicine and tissue engineering improving patients’ survival and quality of life.

Acknowledgment

We thank Miss R. Giammria for revising the English text.

References

1. De la Puente P, Ludeña D (2014) Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Experimental cell research 322:1-11.
2. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, et al. (2012) Microfabricated biomaterials for engineering 3D tissues. Advanced materials 24:1782-1804.
3. Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, et al. (2012) Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33; 3824-3834.
4. Guo Q, Phllip JM, Majumdar S, Wu PH, Chen J, et al. (2013) Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair. Biomaterials 34:9365-9372.
5. Alepee N, Bahinski T, Daneshian M, De Wever B, Fritsche E, et al. (2014) Bioresorbable solution. Thus, we highlight the suitability of the
6. Engel H, Kao SW, Larson J, Uriel S, Jiang B, et al. (2014) Investigation of Dermis-derived Hydrogels for Wound Healing Applications. Biomedical Journal doi: 10.4103/2319-4170.132899.
7. Martino MM, Briqez PS, Guc E, Tortelli F, Kilarski WW, et al. (2014) State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. Altx
8. Tsao CT, Leung M, Chang JY, Zhang M. (2014) A simple material model to generate epidermal and dermal layers in vitro for skin regeneration. Journal of materials chemistry B 2: 5256-5264.
9. Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhoert WJ, et al. (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends in biotechnology 31: 169-176.
10. Limongi T, Miele E, Shalabaeva V, Rocca RL, Schipani R, et al. (2015) Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques. J Tissue Sci Eng 6: 145. doi:10.4172/2157-7552.1000145