Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1

Dear Editor,

The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a great threat to the public health of people and the normal economic and social development around the world. As of January 8, 2021, more than 88 million people were infected with SARS-CoV-2, resulting in more than 1.9 million death. Early detection and treatment of SARS-CoV-2 are of prime significance for effective control of COVID-19. Currently, nucleic acid amplification (e.g., RT-PCR) and detection of IgG, IgM, or viral antigen are employed in clinical diagnosis, and there is only one drug, remdesivir, was approved for COVID-19 treatment. Although various virus-based and host-based therapeutics, such as remdesivir, lopinavir/ritonavir, umifenovir, ribavirin, chloroquine, hydroxychloroquine, interferon, Tocilizumab, convalescent plasma, neutralizing antibody, and traditional Chinese medicine, have been tested to treat COVID-19, developing novel therapeutic strategies, recombinant S1 protein was thrown to the complex background screening process, and continuously reduced the concentration of S1 to increase the screening pressure to obtain high-performance aptamers (Supplementary Fig. S1). In the final round of screening, the evolved sub-library bound to S1 protein to form a stable complex in human serum. After high-throughput sequencing, the six most enriched aptamer candidates (nCoV-S1-Apts) were selected for performance verification (Supplementary Table S1).

The interaction analysis results of capillary zone electrophoresis (CZE) showed that due to the different binding ratios, nCoV-S1-Apts formed stable polymorphic complexes with S1 (Fig. 1a), and had nanomolar affinity ($K_D = 0.118 \pm 0.033 - 85.610 \pm 14.219$ nM) (Fig. 1b). The interfering substances existing in vivo environments including human serum albumin (HSA), IgG Fc, normal human serum (NHS), and IgG Anti-S1 were introduced to evaluate the specificity of nCoV-S1-Apts. The results showed that the peak area of nCoV-S1-Apt1 did not change significantly during the interaction with the above interfering components (Fig. 1c and Supplementary Fig. S2). The results indicated that nCoV-S1-Apts exhibited stronger specificity and better anti-plasma protein interference properties, which is beneficial to reduce potential off-target effects and cytotoxicity (Supplementary Fig. S3). The affinity and specificity of nCoV-S1-Apt1 were verified by surface plasmon resonance (SPR) (Fig. 1d and Supplementary Fig. S4).

In order to determine the possible binding site(s) of nCoV-S1-Apt1, we docked nCoV-S1-Apt1 to S1. Visualization of docking possess was performed using PyMOL. The results showed that nCoV-S1-Apt1 residues from 45 to 71 bind to the two main active sites designated for ACE2 binding (Supplementary Fig. S5). Different types of interactions were observed in the S1-aptamer complex, e.g., 32 polar contacts, 20 Vdw, 15 H-bonds, 26 hydrophobic, 4 ionic, and 18 aromatic, yielding -12.17 kcal/mol binding free energy with K_D value of 0.1 nM. This data suggested that nCoV-S1-Apt1 may be used as a potent inhibitor of the RBD domain of S1.

In addition, the binding affinities between nCoV-S1-Apt1 and RBD were determined via CE (Fig. 1e). Data showed that nCoV-S1-Apt1 combined with RBD to form stable complexes with a K_D of 1.56 ± 0.22 nM. Therefore, we sought to determine the binding kinetics of nCoV-S1-Apts and S1. The K_D of nCoV-S1-Apts to S1 is 1.5×10^4 times lower than that of RBD (Supplementary Fig. S6), which indicates that the binding time of nCoV-S1-Apts to S1 is significantly longer than that of RBD. S1 provides a more stable and selective aptamer interaction with the above interfering components (Fig. 1c and Supplementary Fig. S2). The results indicated that nCoV-S1-Apts exhibited stronger specificity and better anti-plasma protein interference properties, which is beneficial to reduce potential off-target effects and cytotoxicity (Supplementary Fig. S3). The affinity and specificity of nCoV-S1-Apt1 were verified by surface plasmon resonance (SPR) (Fig. 1d and Supplementary Fig. S4).

The results showed that nCoV-S1-Apt1 residues from 45 to 71 bind to the two main active sites designated for ACE2 binding (Supplementary Fig. S5). Different types of interactions were observed in the S1-aptamer complex, e.g., 32 polar contacts, 20 Vdw, 15 H-bonds, 26 hydrophobic, 4 ionic, and 18 aromatic, yielding -12.17 kcal/mol binding free energy with K_D value of 0.1 nM. This data suggested that nCoV-S1-Apt1 may be used as a potent inhibitor of the RBD domain of S1.

In addition, the binding affinities between nCoV-S1-Apt1 and RBD were determined via CE (Fig. 1e). Data showed that nCoV-S1-Apt1 combined with RBD to form stable complexes with a K_D of 1.56 ± 0.22 nM. Therefore, we sought to determine the binding kinetics of nCoV-S1-Apts and S1. The K_D of nCoV-S1-Apts to S1 is 1.5×10^4 times lower than that of RBD (Supplementary Fig. S6), which indicates that the binding time of nCoV-S1-Apts to S1 is significantly longer than that of RBD. S1 provides a more stable binding site for the aptamer than RBD, thereby greatly extending the binding time and exhibiting the kinetic advantage of drug-receptor interaction, and further helping to significantly improve the interaction potency.

To evaluate the recognition and detection potential of nCoV-S1-Apt1, we developed an AuNPs colorimetric assay, which could quickly and specifically detect S1 protein in human serum with a detection limit of ~ 3.125 nM (Fig. 1f, g and Supplementary Fig. S7). Meanwhile, FAM-labeled nCoV-S1-Apt1 was employed as a fluorescent probe to capture S1 protein in human serum (Fig. 1h). The CE laser-induced fluorescence (LIF) analysis results showed that nCoV-S1-Apt1 formed a significant complex with
5 nM of S1 protein in human serum. In addition, we introduced the SARS-CoV-2 spike-pseudotyped virus into the human serum, and tested it on CE-LIF. The results demonstrated that FAM-nCoV-S1-Apt1 exhibited satisfactory recognition (Fig. 1i) and detection linearity (Fig. 1j) in the range of 10^2–10^5 virus particles. To confirm the multi-scale inhibitory effect of nCoV-S1-Apt1 on SARS-CoV-2, inhibition tests were carried out from 3 levels of RBD, S1, and pseudovirus. We established a ternary competitive binding assay, in which ACE2 protein or anti-S1 IgG was introduced to compete with the nCoV-S1-Apt1 (Fig. 1k). The results showed that
Fig. 1 Identification of SARS-CoV-2 against aptamers with high neutralization activity. a The binding between aptamers of nCoV-S1-Apt1 ~6 (0.2 μM) and S1 protein (2 μM) was characterized by CZE. “•” and “□” indicate the two forms complex peaks formed by aptamer and S1 protein. The black arrows indicate the unbound aptamer peak. b The secondary structures and Kd of nCoV-S1-Apt1 ~6. c Specificity verification of aptamers of nCoV-S1-Apt1 ~6. The relative fluorescence unit (RFU) of 0.2 μM nCoV-S1-Apt1 ~6 peak areas in PBS (pH 7.2), HSA (2 μM), Fc (2 μM), NHS (20× diluted), and IgG anti-S1 (2 μM) were shown. n = 3; p < 0.05 (*). d Affinity characterization via surface plasmon resonance (SPR). e CE electrophoretogram of the binding of nCoV-S1-A1 to S1 (blue line), S1 without protein (red line), and the black line is the free nCoV-S1-Apt1 without adding protein. f G Detection of S1 protein by AuNPs colorimetric assay using nCoV-S1-Apt1. R1, NHS was added for specific comparison by two-fold stepwise gradient dilution. R2 and R3, S1 at gradient concentrations (1.5625–800 nM) in PBS and 20× diluted NHS, respectively. n Detection of S1 protein with FAM-labeled nCoV-S1-A1 in NHS. Data from the bottom to the top are CE-analysis lines of 0.2 μM nCoV-S1-Apt1 incubated with S1 protein (0, 5, 10, 20, 50, 100, 200 nM) in 20× diluted NHS. S1-Apt1 indicates the complex peaks formed by nCoV-S1-Apt1 and S1. I Detection of pseudovirus with FAM-labeled nCoV-S1-Apt1 in NHS. Data from the bottom to the top are the CE-analysis lines of 0.2 μM nCoV-S1-Apt1 incubated with various amounts of pseudovirus (0, 293, 586, 1172, 2344, 4688, 9375, 18750, 37 500, 75 000 NTU/mL) in 20× diluted NHS. S1-Apt1 indicates the complex peaks formed by nCoV-S1-Apt1 and pseudovirus. j Standard curve of pseudovirus detection with nCoV-S1-Apt1 (R² = 0.981). k Competition tests via CE. ACE2 protein or anti-S1 IgG compete with the nCoV-S1-Apt1 to bind S1 protein. 0.2 μM nCoV-S1-Apt1 (red line); 0.2 μM nCoV-S1-Apt1 + 0.2 μM S1 (black line); 0.2 μM nCoV-S1-Apt1 + 0.2 μM S1 + 0.4 μM ACE2 (blue line); 0.2 μM nCoV-S1-Apt1 + 0.2 μM S1 + anti-S1 IgG (pink line). l IC₅₀ of nCoV-S1-Apt1 against RBD binding to ACE2 determined via competitive ELISA. m nCoV-S1-Apt1 inhibits the expression of luciferase by blocking pseudovirus infection. n CLSM images of GFP expression. Repression of GFP expression represents the pseudovirus infection is inhibited by nCoV-S1-Apt1. Cell nuclei were stained with DAPI (blue). Scale bar, 25 μm.

the addition of ACE2 protein or anti-S1 IgG reduced the nCoV-S1-Apt1/S1 complex, suggesting that nCoV-S1-Apt1 competed with ACE2 protein or anti-S1 IgG to bind to S1 at a specific site. Furthermore, we evaluated the IC₅₀ of nCoV-S1-Apt1 on the binding of RBD to ACE2 by competitive ELISA (Fig. 1f). nCoV-S1-Apt1 showed potent inhibition activity with IC₅₀ of 80.12 nM.

To identify and verify the inhibitory effect and neutralization performance of nCoV-S1-Apt1 on S1/ACE2 binding and SARS-CoV-2 infection, we next employed a SARS-CoV-2 spike-pseudovirus infection model, which stably expresses both green fluorescent protein (GFP) and firefly luciferase. The data manifested that the introduction of nCoV-S1-Apt1 significantly reduced the expression of GFP and luciferase (Fig. 1m, n and Supplementary Fig. S8), and nCoV-S1-Apt1 displayed a dose-dependent inhibitory profile on pseudovirus infection. Therefore, nCoV-S1-Apt1 can prevent SARS-CoV-2 infection by binding to the RBD of S1 and hindering the recognition and interaction of S1 to ACE2, which implies its great potential as a new neutralizing antiviral agent against SARS-CoV-2 infection.

In summary, six DNA aptamers with high affinity to S1 protein were screened by CE-selected SELEX in this study, and nCoV-S1-Apt1 showed excellent neutralization activity. Hence, this study proposes the potential use of aptamer in COVID-19 therapy or prevention, and provides a basis for the design of fusion inhibitor, neutralizing oligonucleotide, or targeted delivery system for SARS-CoV-2. It also presents an universal and feasible identification strategy for virus-suppressing aptamer selection based on multi-scale target selection. In addition, an authentic SARS-CoV-2 virus challenge and in vivo verification test should be performed in the next stage. We are working on it and digging in establishing an aptamer-based diagnosis and treatment platform for control of COVID-19.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (21675012, 21874010, 21827810, 31871003, and 31901053), the Beijing Nova Program (2020-2022), the Fundamental Research Funds for the Central Universities from Beijing Institute of Technology (2018CXS10023), the Hu-Xiang Young Talent Program (2018BS0304), the Natural Science Foundation of Guangdong Province (2019A1515010076), the Postdoctoral Science Foundation of China (2020M670169), and Guangxi Key Research and Development Project (No. AB20117001). We thank Biological & Medical Engineering Core Facilities (Beijing Institute of Technology) for providing advanced equipment.

AUTHOR CONTRIBUTIONS

Y.H. and F.Q. conceived and designed the experiments. G.Y. performed the majority of the experiments. Z.L., I.M., and L.Z. participated in experiments. W.G. involved in the work. F.Q., and G.Y. analyzed the data. W.W., H.X., and Y.Z. provided insightful suggestions. G.Y. and Y.H. wrote the paper. All authors read and approved the contents of the manuscript.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41392-021-00649-6.

Competing interests: F.Q., Y.H., and G.Y. have filed a patent related to the aptamers. The remaining authors declare no competing interests.

REFERENCES

1. Ravi, N., Cortade, D. L., Ng, E. & Wang, S. X. Diagnostics for SARS-CoV-2 detection: a comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens. Bioelectron. 165, 112454 (2020).
2. Song, Y. et al. COVID-19 treatment: close to a cure? A rapid review of pharma- cotherapies for the novel coronavirus (SARS-CoV-2). Int. J. Antimicrob. Agents 56, 100808 (2020).
3. Zhao, Y. et al. Nucleic acids analysis. Sci. China Chem. 64, 171–203 (2020).
4. Hu, B. et al. Therapeutic siRNA: state of the art. Signal Transduct. Target Ther. 5, 101 (2020).
5. Song, Y. et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92, 9895–9900 (2020).

Correspondence: Yuanyu Huang (yyhuang@bit.edu.cn)
