Identification of the non-tree vegetation of opada forest reserve for conservation

Ebiloma, S.O.

Received: 10.08.2019 Revised: 27.10.2019 Accepted: 29.12.2019

Abstract

Objectives of study: to identify the non-tree vegetation of Opada Forest Reserve (OFR) and provide comprehensive vegetation data for monitoring, conservation and management of present biodiversity. OFR is about 215.76 km2 in size. Its map was gridded at an interval of one degree and each grid was 3.61 km2. Using a table of random numbers, ten of the grids were randomly selected. Within each grid, straight line transects of 2 km long were randomly laid using Global Positioning System, to locate transects in the right grids and prismatic compass to maintain straight transects, 25 m × 25 m quadrates were taken at regular intervals of 500 m. Each transect accommodated four quadrats which were 40 altogether. 1 m2 sub-plots were located at the four corners of the quadrates for identification and counting of species. There were 160 sub-plots for this assessment. About 48- grass species, 12- climbers, 37- herbs, 4- shrubs and 5- sedges were identified.

Key Words: Kogi State, Opada Forest Reserve, non-tree vegetation, shrub, grass, herb,

Introduction

Biodiversity refers to the total variety of living organisms (plants, animals, macro and micro organisms) that exist on planet earth. The biodiversity of a place is the totality of the genes, species and ecosystems that exist in that place (Ayodele and Lameed 1999). The manifestation of biodiversity is the biological resources (genes, species, organisms, ecosystems) and ecological processes of which they are part. Biodiversity is therefore considered at 3 major levels: Genetic diversity: This is the variety of genetic information contained in all of the individual plants, animals and micro-organisms occurring within populations of species. Simply it is the variation of genes within species and populations. Species diversity: This is the variety of species or the living organisms. Species Richness: This refers to the total count/number of species in a defined area. Various indices are used including the Mangalet index and Menhink index. Species Abundance- This referred to the relative numbers among species. If all the species have the same equal abundance, this means that the variation is high hence high diversity, however if the one species is represented by 96 individuals, whilst the rest are represented by 1 species each, this is low diversity. Taxonomic or phylogenetic diversity- This considers the genetic relationships between the different groups of species. The measures are based on analysis, resulting into a hierarchical classification representing the phylogenetic evolution of the taxa concerned. Ecosystem diversity: This relates to the variety of habitats, biotic communities and ecological processes in the biosphere. (Thecla 2009), Non-tree vegetation refers to all vegetation excluding trees. Especially shrubs, grasses, climbers, herbs, and sedge vegetation. Flora or plant diversity refers to the variety of plants that exist in the world. Different types of plants compete with plants and other organisms to survive in an ecosystem. Over time, they develop various characteristics to help them survive, which leads to plant diversity. The diversity of plant life exists for many reasons - a key factor being adaptive changes which allow different species to thrive in the many varied environments of the world. Plants have developed adaptations for different soil types, methods of pollination, daylight hours, temperature, altitude, competition with other plants. The list is endless; even two plants of the same species, separated by geography will have different genetic make-up. Diversity within any population is vital.
for that population’s survival. The single most important fact about biological diversity is that it is not evenly distributed over the planet. This comes about quite simply because more species live in some places than others. This means that adverse changes in the environment will have a greater effect on biodiversity in some areas than in others. For example, the South American rainforests are particularly rich in terms of their biodiversity and their destruction is well publicized (Botanic Gardens Conservation International 2018).

The role that science can play in combating “Climate Change and its Impact” is to evolve ways for the conservation and management of the present biodiversity, especially biodiversity in the wild and make provisions or simulate ideas for meeting the needs of man for food, herbs and wood from outside the nature reserves such as forest, game reserves and national parks. As agreed to by Gerber (2010) in his article “conservation biology” and Okonkwo (2015), Discoveries of plants with good life supporting potentials, as well as advancements in health care deliveries depend on the availability of the right biodiversity resources in adequate amounts; conservation ensures sustainability of the wild species of these resources in continuity.

Objectives of the study
1. To identify the non-tree vegetation of Opada Forest Reserve (OFR) and
2. To provide comprehensive vegetation data (information) for effective conservation, monitoring and management of the flora of OFR.

Material and Methods

Description of the study area

Opada Forest Reserve is located in the eastern part of Kogi State, Nigeria. It has a total land area of 215.96km² (83.08sq miles). It lies between latitude 07° 48’ 00.00” N to Latitude 07° 57’ 00.00” N and Longitude 007° 19’ 00.00” E to Longitude 07° 31’ 00.00” E. the forest is watered by the following six rivers; Egashi, Iyale, Oju ajoma-egbi, Emae, Inergia and Oje-ajokpa rivers. The forest reserve was set aside in accordance with section 36 of the forestry ordinance of Nigeria, it was surveyed in Feb, 1933, mapped in March, 1933 and approved 29th January, 1934.

Data collection

Coordinates were taken round the boundaries of the reserve to assess the integrity of the size of the place with the aid of Global Positioning Systems (GPS). Data generated from GPS assessment were sent to a GIS station for the production of a map. The resulting map was gridded to obtain 41 plots, 25% (10 plots) were selected using a table of random numbers (Steel et al. 1997). Within each study plot, a straight line transect of 2km long was randomly laid. The transect lines were established with the help of a GPS, in order to locate transects in the right sampling plots and a prismatic compass was used to maintain straight line transects. In the process of establishing the transect lines, tree trunks, low hanging branches and shrubs were tagged at 25m interval along the transect lines, in areas where there were no vegetation to tag, stem cuttings were firmly dug into the soil at the point to be tagged, however some spots were too rocky to be dug, big rock pieces were piled and the peak of the pack tagged. Each tag was given a numerical number. This was necessary for easy identification of sampling routes. Tall grasses, shrubs and herbs along transect lines were simply reduced to ease movement in very bushy areas.

25m × 25m quadrates, were established at regular intervals of 500m along the transect lines and alternately located on either side of the transect lines. Each transect accommodated four quadrants, there were 40 quadrates altogether. 1m² sub-plots were located at the four corners of each quadrant for the thorough identification and counting of grass species, there were 160 such sub-plots for grass assessment. Within each sub-plot, each non-tree plant was thoroughly counted; samples of each plant species were uprooted and carefully preserved in poly-bags and brought to the office for identification. The figures obtained from this exercise within the sub-plots can be used by management to extrapolate the population of each identified species per hectare.

Results and Discussion

The results from the study are presented on tables 1 and 2. Table 1 revealed that 48 grass species were identified in the course of the studies from the 10 transects used for the study.
Table 1: Grasses of Opada forest reserve study sites

SN	SCIENTIFIC NAME	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	Total	
1	Andropogon tectorum	128	80	50	130	7	360	230	164	772	1921		
2	Andropogon gayanus			79	35	16						130	
3	Afram angustifolium	10										10	
4	Anetlema aequinoctialae	10										10	
5	Asystasia gangetica	10	70	50	100	50	100					230	
6	Borreria verticillata											15	
7	Byrsocarpus coccineus	100	20	20								140	
8	Cana Indica	76	22									98	
9	Cassia obtusifolia	3										3	
10	Cissampelos macroonata	40	20									60	
11	Cyperus dilataus	12	25	80								158	
12	Commelina benghalensis	104	65	70								239	
13	Colocasia esculentum	20										20	
14	Costus afer	50	263	7	27	85	212					644	
15	Crinum zeylanicus	374	206	170								750	
16	Culcasia scandens	7										7	
17	Cyperus esculentus	20	60									80	
18	Cynodon dactylon	180										180	
19	Desmodium gengeticum	6	62	54	32							154	
20	Desmodium solicifolium	20	10									37	
21	Dissotis irvingiana	35	12									77	
22	Fimbristyis dichotoma	177										177	
23	Gunterbergi nigritana	15										15	
24	Imparata cylindrical	14	10	12	20	12					68		
25	Impomoea involucrate	15	40									55	
26	Jussiea decurrens	10										10	
27	Mariscus alternifolius	216	32	84	36	10						378	
28	Melanthera scandens	5										5	
29	Mimosa Invisa	35										35	
30	Montila whiteit	30										30	
31	Oldenlandia alfinis	80	10									90	
32	Oplismenus hirtellus	80										80	
33	Panicum brevifolium	140	550									590	
34	Panicum maximum	40	29	140	10							219	
35	Pennisetum bizzantha	20										20	
36	Pennisetum polystachyon	80	100	13								193	
37	Phyllanthum amarus,	15	15									15	
38	Pilostigma thonningii	40										40	
39	Rottboelia cochinchinensis	84	54	5	45	8	150	170				516	
40	Scleria boivinii	40										40	
41	Scleria naumanniana	60	110									170	
42	Stylosanthes erecta	30										30	
43	Spigelia anthelina	10	30									40	
44	Sesamum indicum	50										50	
45	Seteria anceps	95										95	
46	Schizachyrium sanguineum	100	105									205	
47	Tephrosia bracteolate	40	200									240	
48	Vigna pubigura	40	10	35								85	
SN	Name of plant	Total	Typess	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_10
----	--------------------------------	-------	--------	-----	-----	-----	-----	-----	-----	-----	-----	-----	------
1	Aframum Angustifolium	127	Herb	16	95	16							
2	Asystasia gagecita	230	Herb	10	70	50							100
3	Anelilema Aeginoctiale	10	Herb	10									
4	Cana indica	85	Herb	63	22								
5	Colocasia Esculentum	20	Climber	20									
6	Commelina Bengalensis	259	Herb	104	65	90							
7	Commelina Diffusa	451	Herb	158	23	45	106	23	8	30		58	
8	Crinum Zeylanicus	754	Herb			378	206	170					
9	Cissampelos Macronata	60	Climber			40	20						
10	Cissus populnea	669	Climber	15	70	265	7	17	85	212			
11	Cymperus Dilatatus	158	Sedge	41		12	25						80
12	Cymperus Esculentus	80	Sedge	20		60							
13	Calciasia scandens	7	Herb			7							
14	Desmodium Gangeticum	202	Herb	6	112	54	30						
15	Desmodium Salicifolium	17	Herb			10	7						
16	Dioscorea Bulbifera	982	Herb	50		250	116	107	300	159			
17	Dissotis Irvingiana	77	Herb	35	12					30			
18	Fimbristylis Dichotoma	117	Herb			117							
19	Guntenbergia Nigratiana	15	Herb			15							
20	Impomoea Involuta	55	Climber			15	40						
21	Jussiaea decurrens	10	Herb			10							
22	Mariscus alternititus	384	Sedge		6	216	32	84	36	10			
23	Melanthera Scandens	5	Herb			5							
24	Mimosa invisa	35	Shrub										35
25	Oldenlandia Affinis	90	Herb			80	10						
26	Phyllanthus Amarus	15	Herb										15
27	Scleria boivinii	180	Sedge	40		110						30	
28	Scleria Naumanniana	110	Sedge	60		50							
29	Sesamum indicum	95	Herb										95
30	Stylosanthes	39	Herb	30									
Identification of the non-tree vegetation of opada forest reserve

	Species Name	Life Form	Abundance	Height 1	Height 2	Height 3
31.	Spigelia anthelmia	Herb	10	30		
32.	Tephrosia Bracteolate	Shrub	40	200		
33.	Vigna gracil	Herb	15	30	30	
34.	Asparagus africanus Ixon & A. Pauli	Climber	1	35	63	10
35.	Byrso carpus Coccineus (schum & Thinn)	Herb	100	30	30	
36.	Choclospernum Tictorium	Herb	3	1		
37.	Combretum molle (R.Br. Ex G.Don)	Climber	5	10		2
38.	Desmodium solicitum (Poir)DC	Herb	10	7	10	
39.	Desmodium velatum DC	Herb	35	40	60	
40.	Eriosema elomeratum Hook.F.	Herb	5			
41.	Gongronema Latifolium	Climber	5	3		
42.	Gardenia terifolia schum & Thinn	Shrub	1	1	11	1
43.	Icacinia terifolia olie	Herb	110			
44.	Lantana spp	Herb	15	21	30	
45.	Mucuna pruriens DC	Herb	10			
46.	Nelsonia campestris R.Br.	Herb	100			100
47.	Olax viridis	Herb	101	1		
48.	Pipper guineensis	Herb	1	1		
49.	Palisota hirsute K.Schum	Herb	20	35	10	
50.	Paulinia pinattu. Linn	Herb	95			
51.	Sarcococ phallus latifolius (S.M) Bruce	Shrub	2	1	10	
52.	Siphonochilus aethiopicus	Herb	20	5		64
53.	Sidalinifolia juss ex cav.	Herb	20	12	27	
54.	Tregia spp pax	Herb	17	3	22	
55.	Urena lobata Linn	Herb	40		100	40
56.	Uvaria chamae	Climber			7	
In the course of this study, 12- climbers, 37- herbs, 4- shrubs and 5- sedges were identified as presented on table 2.

The above vegetation lists were compiled with the aid of important plant identification aids “Some changes and corrections…” (Lowe and Sholade 1990). The useful plants of West tropical Africa (Daziel 1953), Flora of West African trees volume 1 part one and two and volume 2 (Hutchinson and Daziel 1954). A hand book of West African weeds (Okeziel et al. 1998). The flora of Nigeria: grasses (Lowe 1989), Traditional medicine and Pharmacopoeia (Mashana et al. 2000).

There is more to non-tree forest vegetation than meets the eyes, important products derived from non-tree forest vegetation abound and include: Food products, edible fruits, Vegetables, Spices, condiments and herbs. Industrial plant oils and waxes, plant gums, natural plant pigments, seeds, fibers and rattan, vegetable tanning materials, essential oils, insecticides/herbicides and medicinal plants. In a study by Lorena (2009) to access the role of plant interactions in the restoration of degraded ecosystem a meta analysis across life-forma and ecosystems. The life-form of the interacting species, particularly of neighbours, largely influenced the interaction outcome. Herbs had strong negative effects, especially on other herb species, whereas shrubs had large facilitative effects, especially on trees. Semiarid and tropical systems showed in general more positive neighbour effects than wetlands and particularly mesic temperate systems, where negative interactions predominated. However, these results were largely influenced by the over-representation of herb species in wetlands and temperate habitats, survival facilitation being found in all systems when only woody species were considered. Pre-existing vegetation can have large impacts on species establishment in degraded habitats. He also observed that inhibition predominates in herbaceous communities typical of early-successional stages, whereas facilitation prevails in communities dominated by shrubs and trees, whereas restoring herbaceous communities seems largely reliable on removal techniques, augmenting populations of nurse shrubs and trees should be considered a promising strategy for restoring woody late-succession communities.

The grass species are working hard to keep us cool, soak up carbon, capture particulates in the air, produce oxygen, capture rain water and reduce run-off (Lorena, 2009) which results in land degradation like erosion. However, keeping lawns green in Southern California is said to increase greenhouse gas emissions, rather than absorbing them, the problem is all the emissions needed to keep the lawns healthy: mowing, leaf-blowing, production of fertilizer all these add up to four times the amount of greenhouse gas that the grass can store in its soil as carbon. Spreading fertilizer causes soil beneath the grass to release nitrous oxide, and while its warming effects are dwarfed by those of carbon dioxide, it is, 300 times more potent as a greenhouse gas (Brennan, 2010; Ensarbete, 2015). “An athletic field gets tilled every year, over a 35-year timescale; there’s no net storage of carbon.” (Townsend 2010). While these findings hold true for Southern California, they might not for parts of the world with enough rainfall to keep lawns green without watering — “in a place where lawns grow naturally, where you don’t have to irrigate or fertilize them, and you don’t have to mow them all the time.” Furthermore, cattle emit huge amounts of methane, especially if corn-fed. Grass that may help tackle global warming by cutting the level of methane given off by cows is being developed reports the latest issue of the Society of Chemical Industry (2008) Timothy, (2009). Methane is denser than and 23 times more effective as a global warming agent than carbon dioxide” (Townsend 2010). Grasses can sequester huge amounts of carbon annually, especially when grazing practices include high density, short-term exposure efforts with the cattle eating the grasses.
down and moving on to let the grasses grow back. This sustainable grazing technique causes some root shedding below the soil line, leaving lots of organic matter, and thus, carbon. On just one acre of biologically healthy grassland soil, there can be between 0.5 - 1.5 tons of carbon deposited in the soil annually. This is equivalent to taking up to 5.5 tons of CO₂ out of the atmosphere and sinking it into an acre of soil. While this impressive level of carbon sequestration is impossible in the high desert with little rainfall, it is absolutely viable where there is rain or available water to grow pasture. With proper management, ruminants can once again contribute to the life and water cycle supporting ecology of our biological system. This amazing ecological interaction on 11 billion global acres of grazed land would equate to sequestering 60% of human-caused CO₂

Conclusion
The non-tree forest products are of extreme importance in today’s world economy considering the long list of products and benefits derivable from them. Except their use is properly studied and known abuse, indiscriminate utilization of the wild species and possible extinction is inevitable.

Recommendation
Information on the possible contribution in combating “Climate Change and its Impact on Africa” by this group of plant species that are so abundant in the environment is scanty and so needs scientific attention and results made public. Even if the use of some of them is not currently known their conservation should of a necessity be promoted pending when knowledge gets to that junction. Opada Forest Reserve till date is a natural forest, even with serious illegal exploitations there has never been any form of enrichment planting or restocking with plants or animals but for external boundary maintenance. Pressure from conservationist and international public opinion is strongly requested to prevail on the government of Nigeria to upgrade Opada forest reserve to a game reserve or better still to a national park so as to ensure sustainability of the reserve for posterity in perpetuity.

References
Ayodele, I.A., Lameed, G.A. 1999. THE current status of Biodiversity management. Essentials of Biodiversity Management. Power house press and publishers. Ibadan. 74 pp.

Botanic Gardens Conservation International 2018. Plant Diversity
http://www.bgci.org/cultivate/plant_diversity [accessed 18.03.18]

Brennan, P. 2010. Greenhouse grass: Do lawns make global warming worse? http://greenoc.freedomblogging.com/2010/01/19/greenhouse-grass-do-lawns-make-global-warming-worse/18809/ [accessed 17.03.18].

Daiziel, J.M. 1953. The useful plants of West Tropical Africa. Britain. 610pp.

Ensarbete, E. 2015. Energy use and carbon footprint from lawn management. A case study in the Uppsala region of Sweden. http://www.w-program.nu/filer/exjobb/Therese_Wesstrom.pdf [accessed 17.03.18].

Gerber, L. 2010 Conservation Biology. Nature Education Knowledge. 3(10):14

Hutchson, J. and Daiziel, J.M. 1954. Flora of West Tropical Africa. Second edition. 11(1): 544.

Lorena Gómez-Aparicio 2009. The role of plant interactions in the restoration of degraded ecosystem a meta analysis across life-forma and ecosystems. Journal of Ecology. 97: 6

Lowe, J. 1989. The flora of Nigeria: Grasses. Second edition. Ibadan University press. 326pp.

Lowe, J. and Soladaye, M.O. 1990. Some changes and corrections to names of Nigerian plants. Nigerian journal of Botany, 3: 1-24.

Mashana, N.R., Abbiw, D.K., Addae-Mensah, I., Adjanouhoun, E., Ahyi, M.R.A., Ekpere, J.A., Enow-Drock, E.G., Gbile, Z.O., Naomesi, G.K., Odei, M.A., Odunlami, H., Oteng-Yeboah, A.A., Sarpong, K.S.A. and Takie, A.N. 2000. Traditional medicine and pharmacopoeia. Contribution to the revision of ethno-botanical and floristic studies in Ghana. Accra. 920pp.

Okezie, I.A. and Agyakwa, C.W. 1998. A hand book of West African weeds. International institute of Tropical Agriculture. Second edition. Ibadan. 565pp.

Okonkwo, T. 2015. “Sustainable development and protection of endangered species fauna and flora in the wild in
developing countries”, *International Journal of Development and Sustainability*, 4(11):1086-1115.

Steel, R.G.D., Torrie, H.J. and Dickek, A.D. 1997. *Principles and Procedures of Statistics. A Biometrical approach*. New York. 666 pp

Thecla, M. and Mutia 2009. Biodiversity Conservation. https://orkustofnun.is/gogn/unu-gtp-sc/UNU-GTP-SC-10-0805b.pdf (assessed 08/06/2018)

Townsend, S. 2010. Lawns may contribute to global warming. http://www.csmonitor.com/Environment/Bright-Green/2010/0122/Lawns-may-contribute-to-global-warming

Timothy, J. L. 2009. In Defense of the Cow: How Eating Meat Could Help Slow Climate Change *Chemistry*, 126: 1122 - 1126.