Title	Parametric inversion of spin currents in semiconductor microcavities.
Author(s)	Flayac, H.; Solnyshkov, D. D.; Malpuech, G.; Shelykh, Ivan A.
Citation	Flayac, H., Solnyshkov, D. D., Malpuech, G., & Shelykh, I. A. (2013). Parametric inversion of spin currents in semiconductor microcavities. Physical Review B, 87(7), 075316-.
Date	2013
URL	http://hdl.handle.net/10220/9910
Rights	© 2013 American Physical Society. This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: http://dx.doi.org/10.1103/PhysRevB.87.075316 . One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Parametric inversion of spin currents in semiconductor microcavities

H. Flayae,1,2 D. D. Solnyshkov,1 G. Malpuech,1 and I. A. Shelykh3,4
1Institut Pascal, PHOTON-N2, Clermont Université, Blaise Pascal University, CNRS, 24 avenue des Landais, 63177 Aubière Cedex, France
2Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne EPFL, CH-1015 Lausanne, Switzerland
3Science Institute, University of Iceland, Dunhagi-3, IS-107, Reykjavik, Iceland
4Division of Physics and Applied Physics, Nanyang Technological University 637371, Singapore

(Received 21 November 2012; published 19 February 2013)

The optical spin-Hall effect results in the formation of an antisymmetric real-space polarization pattern giving birth to spin currents. In this work, we show that the exciton-polariton parametric scattering allows us to reverse the sign of these currents. We describe the pulsed resonant excitation of a strongly coupled microcavity with a linearly polarized pump at normal incidence. The energy of the pulse is set to be close to the inflexion point of the lower polariton dispersion branch and the focusing in real space populates the reciprocal space on a ring. Above threshold, the parametric scattering towards the idler and the signal state is triggered on the whole elastic circle. The injected particles are scattered toward these states while propagating radially all over the plane, gaining a cross-linear polarization with respect to that of the pump during the nonlinear process. Consequently, the propagation of the polaritons within the effective magnetic field results in the optical spin-Hall effect, with inverted polarization domains.

DOI: 10.1103/PhysRevB.87.075316

PACS number(s): 71.36.+c, 71.35.Lk, 03.75.Mn

I. INTRODUCTION

In the domain of the mesoscopic physics, spintronics1 is currently one of the most promising areas. The main idea of this discipline is to control the spin of individual carriers, based on their quantum properties, which could have a huge impact on future information technologies. Although currently spintronics relies on the giant magnetoresistance effect in metals only, there are good perspectives that, in future devices which now still remain at the stage of the theoretical modeling, other effects will find their way to practical implementations. One of the most serious obstacles resides in the dramatic role played by the processes of spin relaxation.

In this context, it was proposed that the optical counterpart of spintronics, namely spinoptronics,2 could represent a valuable alternative, since the corresponding characteristic decoherence times are orders of magnitude longer than those of electrons and holes.3 The entities under study in spinoptronics are exciton-polaritons,4 which are the elementary excitations of semiconductor microcavities within the strong coupling regime. Being a mixture of quantum-well excitons and cavity photons, they possess numerous peculiar properties distinguishing them from other quasiparticles in mesoscopic systems. They inherit a very light effective mass from their photonic component, which allows their ballistic propagation at large velocities.5,6 Their excitonic part allows them to interact efficiently with each other, giving birth to strong nonlinear phenomena such as bistability,7 optical parametric oscillations,8 or the formation of an interacting quantum fluid of light9 and its topological excitations.10–13

Importantly, from the point of view of their spin structure, polaritons can be considered a two-level system, analogous to electrons.14 The two allowed spin projections ±1 correspond to the two opposite circular polarizations of the counterpart photons. As for any two-level system, one can introduce the concept of the pseudospin vector S for the description of the polarization dynamics of polaritons. In full analogy with the case of electrons in the context of spintronics, S undergoes a precession caused by effective magnetic fields, arising from intrinsic or extrinsic polarization splittings.14

Most of the recent developments in spin-optronics and prospects for its future applications3 are based on the spectacULAR progresses of the past few decades in the engineering of nanoscale systems and experimental investigation of their optical and transport properties, which revealed remarkable novel spin and light polarization effects.14 Among them is the optical analog of the spin-Hall effect, proposed in 2005,15 later observed experimentally several times16–19 and recently reinvestigated theoretically.20 The spin-Hall effect (SHE) for electrons consists in the generation of pure spin currents perpendicular to the electric current in 2D electron systems.21 There exist two variants of this effect: the extrinsic SHE22 provided by the spin-dependent Mott scattering of propagating electrons on impurities and the intrinsic SHE23 generated by the spin-orbit interaction (SOI) of the Rashba type, which results in the appearance of the k-dependent effective magnetic field rotating the spins of the propagating electrons. The optical spin-Hall effect (OSHE) is analogous to the intrinsic SHE. The role of Rashba SOI in this case is played by TE-TM splitting of the polariton mode24 that, however, does not break the time-reversal symmetry due to its peculiar wave-vector dependence.

In this paper we show that the spin currents created by the OSHE can be fully inverted under proper excitation of the polaritonic states. This phenomenon occurs when the parametric scattering of polaritons is triggered over an elastic circle at the magic angle in reciprocal space. The final signal and idler states gain a linear polarization that is rotated by $\pi/2$ with respect to that of the pump state subsequently inverting the spin domains over the whole cavity plane.

II. OPTICAL SPIN-HALL EFFECT

It is now well known that due to the long-range exchange interaction between an electron and a hole, for excitons having nonzero in-plane wave vectors, the states with dipole moments oriented along and perpendicular to the wave vector differ
slightly in energy. In microcavities, this splitting is amplified due to the exciton coupling with the cavity mode and can reach values of up to 1 meV. The transverse-electric–transverse-magnetic (TE-TM) splitting results in the appearance of a \(k \)-dependent effective magnetic field \(\mathbf{H}_{\ell} \) provoking the rotation of polariton pseudospin \(\mathbf{S} = (S_x, S_y, S_z)^T \). It is oriented in the plane of the microcavity and makes a double angle with respect to the wave vector:

\[
\mathbf{H}_{\ell}(\mathbf{k}) = \Delta_{\ell}(\mathbf{k})(\cos 2\phi, \sin 2\phi)^T,
\]

\[
\Delta_{\ell}(\mathbf{k}) = E_{\ell}(\mathbf{k}) - E_{t}(\mathbf{k}),
\]

where \(\phi \) is the polar angle. We note that the \(S_x \) and \(S_y \) components correspond to linear polarization of the polariton emission while the \(S_z \) component stands for the circularly polarized states. We measure \(\mathbf{H} \) in energy units and \(E_{\ell} \) and \(E_{t} \) are the dispersion relations of the TE and TM polarized polaritons [see Eq. (12)]. This orientation is imposed by the symmetry of the TE and TM states over an elastic circle. For example, along the \(x \) direction X-polarized polaritons are TM while they are TE along the \(y \) direction and reciprocally for \(Y \)-polarized particles. For polaritons propagating without scattering with a given value of \(\mathbf{k} \) and in the absence of spin relaxation, the dynamics of \(\mathbf{S} \) is governed by a simple vectorial precession equation:

\[
\frac{\partial \mathbf{S}(t)}{\partial t} = \frac{\mathbf{H}_{\ell}(\mathbf{k}) \times \mathbf{S}(t)}{\hbar},
\]

(3)

for both direct and reciprocal spaces [see Figs. 1(a) and 3(b)]. The formation of these domains is a direct consequence of the appearance of antisymmetric circularly polarized domains strongly dependent on the scattering angle \(\phi \). Consequently, the polarization of the emission becomes time-dependent effective magnetic field \(\Delta_{\ell}(\mathbf{k}) \). This leads to the precession amplitude of \(\mathbf{S} \) maximal when \(\mathbf{S} \cdot \mathbf{H}_{\ell} \) is maximal in diagonal directions, while there is no precession at all in all \(x \) and \(y \) directions where the vectors \(\mathbf{S} \) and \(\mathbf{H}_{\ell} \) are (anti-)parallel. Consequently, the polarization of the emission becomes strongly dependent on the scattering angle \(\phi \). This leads to the appearance of antisymmetric circularly polarized domains in the four quarters of the \((x, y) \) plane (diagonal directions) in both direct and reciprocal spaces [15] [see Figs. 1(a) and 3(b)]. The formation of these domains is a direct consequence of the onset of spin currents that are crucial in the context of designing the future spinoptronic devices.

Instead of using disorder scattering, it is possible to use a pump spot focused in real space to excite the polariton dispersion on a ring. The requirement is that the quasiresonant injection laser, positioned at normal incidence \((k_p = 0) \), is blue detuned from the bottom of the polariton branch. The resulting polaritons are then propagating radially outward from the spot with a kinetic energy \(E_k = \hbar \omega_p \), where \(\omega_p \) is the laser frequency [see Figs. 1(a) and 1(b)]. This setup allows us to obtain a homogeneous and isotropic distribution together with the possibility of investigating nonlinear regimes where disorder can be screened.

FIG. 1. (Color online) (a) Scheme of the microcavity illustrating the pumping geometry. The \(X \)-polarized (green double arrow) injected polaritons propagate radially outward form the narrow/pulsed pump spot and form circular polarization domains (color map) [see also Fig. 3]. (b) TE (purple surface) and TM (blue surface) lower polariton branches (their energy splitting has been emphasized for clarity). The red disk illustrates the pump \((p) \) excitation close to the inflexions of the branches [see Eq. (7)] that are both excited due to the \(X \)-polarized pump and the smallness of the spot in real space. The green disks mark the signal \((s) \) and idler \((i) \) states appearing when the OPO is triggered. The red arrows point an example of OPO process occurring along the \(x \) direction: Two pump polaritons from one branch are scattered toward the signal and idler states of the other branch. (c) Space-integrated densities of the \(X \)- (solid blue line) \(Y \)-polarized (dashed pink line) particles and the sum of the two (dashed-dotted black line) revealing the polarization inversion occurring after 25 ps and reaching its maximum at 35 ps. The vertical dashed lines mark the times at which the snapshots of Fig. 3 were taken.

The asymptotic analytical solution of the Schrödinger equation for a stationary distribution of the polariton spinor field \(\psi(r, \phi) = (\psi_+, \psi_-)^T \) can be obtained for the case of a Dirac \(\delta \) source at \(r = 0 \):

\[
\psi_+ = \sqrt{\frac{2N_0}{\pi k_0 \sigma}} e^{-i\phi} \left[\cos \phi e^{ik_0 r} + i \sin \phi e^{ik_0 r} \right] e^{-r/r_0},
\]

(4)

\[
\psi_- = \sqrt{\frac{2N_0}{\pi k_0 \sigma}} e^{i\phi} \left[\cos \phi e^{ik_0 r} - i \sin \phi e^{ik_0 r} \right] e^{-r/r_0}.
\]

(5)

Here \(N_0 \) is the population imposed by the source depending on the intensity of the pump, \(r_0 = \hbar k_0 \sigma/m^* \) is a mean decay length, where \(\sigma, m^* \), and \(k_0 = (k_l + k_i)/2 \) are the polaritons lifetime, effective mass and mean excitation wave vector, respectively, with \(k_{l,t} = \sqrt{2m j_{l,t} \omega P/\hbar} \) corresponding to the TM \((l) \) and TE \((t) \) waves, respectively. From Eqs. (4) and (5) we immediately obtain the corresponding distribution of circular polarization degree of the polariton emission \(\rho_c = \langle n_+ - n_- \rangle/(n_+ + n_-) \) where \(n_{\pm} = |\psi_\pm|^2 \):

\[
\rho_c (r, \phi) = \sin [(k_l - k_i) r] \sin [2\phi].
\]

(6)
revealing the alternating polarization domains. We see that \(\rho_s \) is a periodic function of both the radial and the angular coordinates. The corresponding radial frequency \(\nu_r = (k_l - k_i)/2\pi \) is associated with the strength of the TE-TM splitting \(\Delta_{lt} \), while the azimuthal one \(\nu_\phi = \pi^{-1} \) is imposed by the geometry of the effective magnetic field \(\mathbf{H}_{lt} \). Interestingly, each circular polarization extremum is associated with a phase dislocation while the total density \(n_+ + n_- \) remains smooth. This is characteristic of a Skyrmion as found in Ref. 20.

III. POLARIZATION INVERSION

The OSHE is a linear effect which does not involve polariton-polariton scattering. However, taking into account these nonlinear processes can bring qualitative changes to the related polarization textures and spin currents patterns. We have recently shown that in a regime where the interactions are dominant, the polarization currents become strongly focused and the skyrmions turn into half-solitons.20 This effect is due to the spin-anisotropy of polaritons self-interactions: The polaritons having the same spin projection interact much more efficiently than polaritons with opposite spins,29,30 the latter second-order process is actually mediated by a dark state. Moreover, the corresponding matrix elements can have opposite signs. This feature is responsible for number of spin-dependent nonlinear effects such as polarization multistability,31 self-induced Larmor precession,32 linear polarization buildup in polariton condensates,33 and the inversion of linear polarization in polariton parametric scattering.34 The latter effect is central for the purposes of the present paper as we will see soon.

Due to their hybrid nature, polaritons possess a strongly nonparabolic lower branch,4 which leads to the appearance of the so-called magic angle close to the inflexion point characterized by the wave number \(k_p \). Two identical polaritons with \(\mathbf{k} = \mathbf{k}_p \) can scatter to singlet states with \(\mathbf{k}_s = 0 \) and \(\mathbf{k}_s = 2\mathbf{k}_p \) conserving both the momentum and the energy:

\[
E(2\mathbf{k}_p) = 2E(\mathbf{k}_p).
\]

(7)

Therefore, under quasiresonant pumping at the magic angle, the system is driven into the so-called optical parametric oscillator regime8 (OPO). We note that with increasing pump power, the injected mode becomes more and more blueshifted due to polariton-polariton interactions and, therefore, the final-state selection can be power dependent.35 In polarization-resolved OPO experiments under linearly polarized excitation, the final states were found to be cross polarized with respect to the pump,34,36 which was theoretically explained using semiclassical spin-dependent kinetic equations containing the terms of spin-anisotropic polariton-polariton scattering.14,32,37 Later it was shown that the effect of polarization inversion is universal and can be experimentally observed in other pump geometries, e.g., in two-pump horizontal parametric scattering.38 Combined with the pseudospin rotation provided by effective TE-TM field, the effect of parametric polarization inversion can lead to dramatic changes in the pattern of spin currents, as we shall see in the next section.

IV. THE MODEL

We consider the disorder-free microcavity pumped by a laser spot strongly localized in the real space. Differing from the situation considered in Ref. 27, we take into account nonlinearities provided by spin-anisotropic polariton-polariton interactions and focus on the regime where the system is driven to OPO.

In the absence of TE-TM splitting, the polaritons eigenmodes are degenerated and fully isotropic in the 2D space \(E_i(k_i) = E_i(\mathbf{k}_i) \). Therefore, using the pumping scheme described in Sec. II [Fig. 1(a)] while carefully selecting the pump energy \(\hbar \omega_p \), it should actually be possible to reach the stationary OPO condition over the whole elastic circle (ring OPO) under cw excitation. This would give rise to a trichromatic nonlinear photon cloud expanding radially from the localized excitation spot. However, when the energy splitting is taken into account, as it should be, the TE and TM modes gain slightly different effective masses \(m_{lt}^p \) and \(m_{lt}^s \), and on the linear polarization basis, the dispersion branches \(E_X(k) \) and \(E_Y(k) \) become anisotropic. This is immediately seen from the basis transformation

\[
\begin{bmatrix}
E_X(k_x, k_\phi)
\end{bmatrix} = \begin{bmatrix}
\cos(k_\phi) & -\sin(k_\phi)
\sin(k_\phi) & \cos(k_\phi)
\end{bmatrix} \begin{bmatrix}
E_x(k_i)
E_y(k_i)
\end{bmatrix}.
\]

(8)

It means that exciting the system with a linearly polarized beam, induces a dependence of the OPO condition on azimuthal angle \(k_\phi \). To overcome this anisotropy we propose to use a pulsed excitation providing a sufficient energy broadening to encompass the magic point for any azimuthal directions. We model the quasiresonant polariton injection with a set of spin-dependent and driven/dissipative equations for the photonic \(\phi(\mathbf{r}, t) \) and excitonic \(\chi(\mathbf{r}, t) \) fields coupled via the strong light matter interaction characterized by the Rabi splitting \(\Omega_R = 10 \text{ meV} \):

\[
\begin{align*}
\frac{i\hbar}{2m_\phi} \frac{\partial \phi_{\pm}}{\partial t} &= -\frac{\hbar^2}{2m_\phi} \Delta \phi_{\pm} + \Omega_R \chi_{\pm} + \beta \left(\frac{\partial}{\partial x} \mp i \frac{\partial}{\partial y} \right) \phi_{\pm} + P_\pm e^{-i\omega_o t} - \frac{i\hbar}{2\tau_\phi} \phi_{\pm}, \\
\frac{i\hbar}{2m_\chi} \frac{\partial \chi_{\pm}}{\partial t} &= -\frac{\hbar^2}{2m_\chi} \Delta \chi_{\pm} + \Omega_R \phi_{\pm} + (\alpha_1 |\chi_{\pm}|^2 + \alpha_2 |\chi_{\pm}|^2) \chi_{\pm} - \frac{i\hbar}{2\tau_\chi} \chi_{\pm}.
\end{align*}
\]

(9, 10)

Here \(\tau_\chi = 400 \text{ ps} \) and \(\tau_\phi = 20 \text{ ps} \) are the lifetimes of excitons and photons, respectively. The functions \(P_\pm(\mathbf{r}, t) = P_-(\mathbf{r}, t) \), corresponding to the \(X \)-linear polarized pump spot, are 2-\(\mu \text{m} \)-large and 20-ps-long spatiotemporal Gaussians of amplitude 10 \(\hbar/\tau_\phi \). The energy of the pump \(\hbar \omega_p \) is blue detuned by \(\delta \) (defined below) from the bottom of the lower polariton branch, \(m_{lt} = 0.4\mu m_0 \), \(m_\phi = 5 \times 10^{-5}m_0 \) are the effective masses of the excitons and cavity photons respectively \((m_0 \equiv \text{the electron mass}) \).

The constant \(\beta = \hbar^2/4(1/m_{lt} - 1/m_\phi) \) defines the magnitude of the photonic TE-TM splitting with \(m_{lt}^{ph} = m_\phi \) and \(m_{lt}^{ph} = 0.95m_\phi \) being the effective masses of the TE and TM polarized photonic modes. The corresponding terms give rise to the in-plane effective magnetic field \(\mathbf{H}_B(\mathbf{k}) \). The constants
\[\alpha_1 = 6 \times 10^{-3} \text{ meV} \mu \text{m}^2 \text{ and } \alpha_2 = -0.2 \alpha_1 \text{ define the strength of the interaction between polaritons of the same and opposite circular polarizations, respectively. All the values of the parameters we consider are typical for GaAs based microcavities.} \]

To find the OPO condition we need to know the bare dispersion relations of the linearly polarized modes. We first find the dispersion relations for the TE and TM polariton modes diagonalizing the \(2 \times 2 \) Hamiltonian corresponding to the exciton-photon coupling,

\[
M_{ij} = \begin{bmatrix} E_i^{\text{ph}}(k_i) & \Omega R \\ \Omega R & E_X(k_i) \end{bmatrix},
\]

where \(E_i^{\text{ph}} = \hbar^2 k_i^2 / 2m_i \) are photonic dispersions for TE and TM polarized modes, and \(E_X = \hbar^2 k_x^2 / 2m_x \) is the excitonic dispersion, for which we supposed the longitudinal-transverse splitting to be negligibly small. The resulting polariton dispersions are given by the well-known expressions

\[
E_{i,t}(k_i) = \frac{E_i^{\text{ph}} + E_X}{2} - \frac{1}{2} \sqrt{(E_i^{\text{ph}} - E_X)^2 + 4\Omega R^2}.
\]

which reveal the strong nonparabolicity in the vicinity of the inflexion point. The transformation to the basis of circular polarizations, respectively. All the values of the parameters we consider are typical for GaAs based microcavities.

The energy of the angle-dependent OPO conditions is found from the solution of Eq. (7). For the previously defined parameters, we obtain that depending on the angle \(k_x \) the magic point lies in the interval of energies \(\Delta E_{\text{OPO}} = [-3.88, -3.78] \text{ meV} \) and the corresponding interval of wave vectors \(\Delta k_{\text{OPO}} = [1.49, 1.58] \mu \text{m}^{-1} \).

In the numerical simulations we then impose a detuning \(\delta = 1.17 \text{ meV} \). We consider an intermediate pump power slightly above the OPO threshold in order to remain in a regime where the interactions are not dominant and to keep the energy renormalization as weak as possible. Finally, we note that Eqs. (9) and (10) do not allow for spontaneous emission due to the rotation of the pseudospin of the scattered polaritons.

The Fig. 2 shows slices of the X [Figs. 2(a) and 2(c)] and Y [Figs. 2(b) and 2(d)] dispersions along the \(k_x \) [Figs. 2(a) and 2(b)] and \(k_y \) [Figs. 2(c) and 2(d)] direction integrated over 100 ps. These representations capture most of the OPO and inversion features in a single representation. We clearly see the pump (p) state in the X component and the signal (s) and idler (i) states appearing in the Y component. Note that although we pump with X-polarized light, the pump state is slightly visible in the Y component as well. This is simply due to the X to Y polarization conversion provided by TE-TM splitting away from the spot prior the inversion [blue regions in Fig. 3(a)].

The Fig. 3 shows the degrees of linear \(p_\ell = \Re(\rho_{\ell}^{+} \rho_{\ell}^{+} + n_{\rho_{\ell}^{-}}) \) [Figs. 3(a) and 3(c)] and circular \(p_\ell = (n_{\rho_{\ell}^{+} - n_{\rho_{\ell}^{-}}}) / (2n_{\rho_{\ell}^{+} + n_{\rho_{\ell}^{-}}}) \) [Figs. 3(b) and 3(d)] polarization of the photonic component (the quantity measured experimentally) at \(t = 15 \text{ ps and } t = 45 \text{ ps respectively} \) [vertical dashed lined in Fig. 1(b)]. Before the polarization inversion (onset of the OPO) [Figs. 3(a) and 3(b)] the diagonal polarization domains are those expected for the linear OSHE, while as soon as the OPO is triggered [Figs. 3(c) and 3(d)], at the edges of the spot the X-polarized pump polaritons are instantly converted to the Y-polarized polaritons in the signal and idler states. We then have a situation equivalent to the excitation in Y polarization corresponding to \(M_0 = -S_\ell u_\ell \). Consequently, as can be seen from Eq. (3), the pseudospin precession is reversed under \(S \rightarrow -S \) and the circular polarization domains become inverted (\(\sigma_+ \leftrightarrow \sigma_- \)) which corresponds to an inversion of the spin currents. Importantly, the outgoing nonlinear waves are bichromatic and have two different wave vectors associated to the signal and idler states, which explains the interferences visible in Fig. 3(d). The pump state is emptied due to the pulsed excitation [see Fig. 1(c)]. The dominant contribution to the measurable photonic component is the signal state since the \(k \)-dependent photonic fraction \(F_{\text{ph}}(k) \) of polaritons decreases from 0.5 in the signal to less than 0.1 in the idler. It can be

V. RESULTS AND DISCUSSION

The results are presented in Figs. 1(c), 2, and 3. Figure 1(c) shows the space-integrated photonic density of the X (solid blue line), Y (solid pink line) polarized polariton, and the sum of the two (black line) versus time revealing the X-polarized pulsed excitation and the polarization inversion produced by the OPO. Indeed, initially the polariton emission is mainly X polarized until the OPO stimulation becomes strong from about 25 ps, when it starts to be dominated by the Y polarization due to the rotation of the pseudospin of the scattered polaritons.

The Fig. 2 shows slices of the X [Figs. 2(a) and 2(c)] and Y [Figs. 2(b) and 2(d)] dispersions along the \(k_x \) [Figs. 2(a) and 2(b)] and \(k_y \) [Figs. 2(c) and 2(d)] direction integrated over 100 ps. These representations capture most of the OPO and inversion features in a single representation. We clearly see the pump (p) state in the X component and the signal (s) and idler (i) states appearing in the Y component. Note that although we pump with X-polarized light, the pump state is slightly visible in the Y component as well. This is simply due to the X to Y polarization conversion provided by TE-TM splitting away from the spot prior the inversion [blue regions in Fig. 3(a)].

The Fig. 3 shows the degrees of linear \(p_\ell = \Re(\rho_{\ell}^{+} \rho_{\ell}^{+} + n_{\rho_{\ell}^{-}}) \) [Figs. 3(a) and 3(c)] and circular \(p_\ell = (n_{\rho_{\ell}^{+} - n_{\rho_{\ell}^{-}}}) / (2n_{\rho_{\ell}^{+} + n_{\rho_{\ell}^{-}}}) \) [Figs. 3(b) and 3(d)] polarization of the photonic component (the quantity measured experimentally) at \(t = 15 \text{ ps and } t = 45 \text{ ps respectively} \) [vertical dashed lined in Fig. 1(b)]. Before the polarization inversion (onset of the OPO) [Figs. 3(a) and 3(b)] the diagonal polarization domains are those expected for the linear OSHE, while as soon as the OPO is triggered [Figs. 3(c) and 3(d)], at the edges of the spot the X-polarized pump polaritons are instantly converted to the Y-polarized polaritons in the signal and idler states. We then have a situation equivalent to the excitation in Y polarization corresponding to \(M_0 = -S_\ell u_\ell \). Consequently, as can be seen from Eq. (3), the pseudospin precession is reversed under \(S \rightarrow -S \) and the circular polarization domains become inverted (\(\sigma_+ \leftrightarrow \sigma_- \)) which corresponds to an inversion of the spin currents. Importantly, the outgoing nonlinear waves are bichromatic and have two different wave vectors associated to the signal and idler states, which explains the interferences visible in Fig. 3(d). The pump state is emptied due to the pulsed excitation [see Fig. 1(c)]. The dominant contribution to the measurable photonic component is the signal state since the \(k \)-dependent photonic fraction \(F_{\text{ph}}(k) \) of polaritons decreases from 0.5 in the signal to less than 0.1 in the idler. It can be
we should stress that we worked in a regime where the compression of the polarization domains due to nonlinearities is weak which corresponds to the formation of a skyrmion lattice in terms of Ref. 20. Therefore, we consider the interval of pump powers intermediate between the linear regime considered in Ref. 27 and strongly nonlinear regime considered in Ref. 20. Interestingly, during the inversion the phase singularity of each skyrmion is transferred from one component to the other. Additionally, one can expect that a further increase of the pump in the OPO regime would lead to the focusing of the inverted spin currents. This would actually compete with the small group velocity around the signal state. Indeed the polaritons density might decay before the spin focusing is triggered.

VI. CONCLUSIONS

In summary, we have shown that the optical parametric oscillations can be triggered on a whole elastic circle in planar microcavities under pulsed excitation. This regime is associated with the onset of linear polarization inversion leading to the inversion of the spin currents of the optical spin-Hall effect. Together with the effect of nonlinear focusing described earlier in Ref. 20, we have proposed two mechanisms allowing control of the spin currents in semiconductor microcavities, which could be crucial for future spinoptonic applications.

ACKNOWLEDGMENTS

We acknowledge the support of the joint ANR “QUANDYDE” project, FP7 ITN “SPINOPTRONICS” (237252), and IRSES POLAPHEN (246912) project. I.A.S. benefited from the Rannis “Center of Excellence in Polaritons” and the IRSES “SPINMET” project.
16. C. Leyder et al., Nat. Phys. 3, 628 (2007).
17. A. Amo, T. C. H. Liew, C. Adrados, E. Giacobino, A. V. Kavokin, and A. Bramati, Phys. Rev. B 80, 165325 (2009).
18. M. Maragkou et al., Opt. Lett. 36, 1095 (2011).
19. E. Kammann, T. C. H. Liew, H. Ohadi, P. Cilibrizzi, P. Tsotsis, Z. Hatzopoulos, P. G. Savvidis, A. V. Kavokin, and P. G. Lagoudakis, Phys. Rev. Lett. 109, 036404 (2012).
20. H. Flayac, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, Phys. Rev. Lett. 110, 016404 (2013).
21. Y. Kato et al., Science 306, 1910 (2004).
22. M. I. Dyakonov and V. I. Perel, Sov. Phys. JETP Lett. 13, 467 (1971).
23. S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).
24. I. A. Shelykh, G. Pavlovic, D. D. Solnyshkov, and G. Malpuech, Phys. Rev. Lett. 102, 046407 (2009).
25. M. Z. Maiaile, E. A. de Andradae Silva, and L. J. Sham, Phys. Rev. B 47, 15776 (1993).
26. G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. A. Kaliteevski, Phys. Rev. B 59, 5082 (1999).
27. W. Langbein, I. Shelykh, D. Solnyshkov, G. Malpuech, Y. Rubo, and A. Kavokin, Phys. Rev. B 75, 075323 (2007).
28. G. Christmann, G. Tosi, N. G. Berloff, P. Tsotsis, P. S. Eldridge, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Phys. Rev. B 85, 235303 (2012).
29. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, Phys. Rev. B 58, 7926 (1998).
30. M. Combescot and O. Betbeder-Matibet, Phys. Rev. B 74, 125316 (2006).
31. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Yuri G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).
32. D. N. Krizhanovskii, D. Sanvitto, I. A. Shelykh, M. M. Glazov, G. Malpuech, D. D. Solnyshkov, A. Kavokin, S. Ceccarelli, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 73, 073303 (2006).
33. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymaska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443, 409 (2006).
34. P. Renucci, T. Amand, X. Marie, P. Senellart, J. Bloch, S. Sermage, and K. V. Kavokin, Phys. Rev. B 72, 075317 (2005).
35. D. M. Whittaker, Phys. Rev. B 71, 115301 (2005).
36. G. Dasbach, C. Diederichs, J. Tignon, C. Ciuti, P. Roussignol, C. Delalande, M. Bayer, and A. Forchel, Phys. Rev. B 71, 161308(R) (2005).
37. I. A. Shelykh, M. M. Glazov, D. D. Solnyshkov, N. G. Galkin, A. V. Kavokin, and G. Malpuech, Phys. Status Solidi C 2, 768 (2005).
38. C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. P. Karr, E. Giacobino, and A. Bramati, Phys. Rev. Lett. 99, 196402 (2007).
39. D. Sanvitto, F. M. Marchetti, M. H. Szymanska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaitre, J. Bloch, C. Tejedor, and L. Vina, Nat. Phys. 6, 527 (2010).