Research Article

Radial Radio Number of Hexagonal and Its Derived Networks

Kins Yenoke,1 Mohammed K. A. Kaabar2,3,4 Mohammed M. Ali Al-Shamiri5,6 and R. C. Thivyarathi7

1Department of Mathematics, Loyola College, Chennai, India
2Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
3Gofa Camp Near Gofa Industrial College and German Adebabay, Nifas Silk-Lafto, Addis Ababa 26649, Ethiopia
4Jabalia Camp, United Nations Relief and Works Agency (UNRWA), Palestinian Refugee Camp, Gaza Strip, Jabalya, Jabalia, State of Palestine
5Department of Mathematics, Faculty of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
6Department of Mathematics and Computer, Faculty of Science, Ibb University, Ibb, Yemen
7RMK College of Engineering and Technology, Tiruvallur, Tamil Nadu, India

Correspondence should be addressed to Mohammed K. A. Kaabar; mohammed.kaabar@wsu.edu

Received 7 May 2021; Revised 30 June 2021; Accepted 21 July 2021; Published 9 August 2021

Academic Editor: Hans Engler

Copyright © 2021 Kins Yenoke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A mapping \(\gamma: V(G) \rightarrow N \cup \{0\} \) for a connected graph \(G = (V, E) \) is called a radial radio labelling if it satisfies the inequality
\[
|\gamma(x) - \gamma(y)| + d(x, y) \leq \text{rad}(G) + 1 \quad \forall x, y \in V(G)
\]
where \(\text{rad}(G) \) is the radius of the graph \(G \). The radial radio number of \(G \) denoted by \(\operatorname{rr}(\gamma) \) is the maximum number mapped under \(\gamma \). The radial radio number of \(G \) denoted by \(\operatorname{rr}(G) \) is equal to min \(\{\operatorname{rr}(\gamma)\} \) is a radial radio labelling of \(G \).

1. Introduction

In this twenty-first century, our day-to-day life is pervaded by the communication devices which are functioning with the help of electromagnetic waves. By designating a portion of the electromagnetic spectrum that has wavelengths ranging from 1 mm to 100 kms, or equivalently, frequencies from 300 GHz to 3 kHz are called radio waves which are used in the field of communication engineering. Due to the high cost of the spectrum, maximizing the number of channels in a predefined bandwidth gives a huge profit to the country. Hence, the graph labelling concepts play a vital role in maximizing such an optimization channel assignment problem. This channel assignment problem inspired Hale [1] in 1980 to introduce the graph-theoretic concept using graph labelling. Chartrand et al. [2] were motivated by these concepts in 2001 and introduced a new channel assignment problem called the radio labelling problem which is used to allot the maximum number of channels for the frequency modulation radio stations. A radio labelling of a connected graph \(G \) is an injection \(\gamma: V(G) \rightarrow N \) such that
\[
d(x, y) + |\gamma(x) - \gamma(y)| \geq 1 + \text{diam}(G) \forall x, y \in V(G).
\]

The radio number of \(G \), denoted by \(\operatorname{rn}(\gamma) \), is the maximum number assigned to any vertex of \(G \). The radio number of \(G \), denoted by \(\operatorname{rn}(G) \), is the minimum value of \(\operatorname{rn}(\gamma) \) taken over all labellings \(\gamma \) of \(G \). Computing such a problem for graphs with diameter two itself is NP-hard [3]. For the past two decades, several authors have studied the radio number problem for general graphs and interconnection networks. In the recent years, researchers have introduced the variations of radio labelling and called them as a different labelling either by changing \(|\gamma(x) - \gamma(y)| \) as \((|\gamma(x) + \gamma(y)|)/2, \sqrt{|\gamma(x) - \gamma(y)|}, |\gamma(x) - \gamma(y)|/2, \) and \((2|\gamma(x) - \gamma(y)|)/(|\gamma(x) + \gamma(y)|) \) or \(\text{diam}(G) \) as \(\text{diam}(G) - 1, \text{rad}(G) \), etc.

Motivated by the radio labelling problem, in order to increase the number of channels by splitting the given geographical area into two subregions, Selvam et al. [4] brought in the radial radio labelling concept in 2017. A mapping \(\gamma: V(G) \rightarrow N \cup \{0\} \) for a connected graph \(G = \)}
\((V, E)\) is called a radial radio labelling if this satisfies the inequality \(|\tau(x) - \tau(y)| + \delta(x, y) \geq \text{rad}(G) + 1\ \forall x, y \in V(G)\), where \(\text{rad}(G)\) is the radius of the graph \(G\). The radial radio number of \(\tau\) denoted by \(rr(\tau)\) is the maximum number mapped under \(\tau\). The radial radio number of \(G\) denoted by \(rr(G)\) is equal to \(\min(rr(\tau))/|\tau|\) is a radial radio labelling of \(G\). It is obvious from the definitions that, for any connected graph \(G\), \(rr(G) \geq \text{rad}(G)\). However, the radial radio number is reduced to the radial number for any self-centered graphs, which is for the graphs that satisfy \(\text{rad}(G) = \text{diam}(G)\). For example, the radial number and radial radio number for the complete graphs \(K_n\) and complete bipartite graphs \(K_{m,n}\) are \(n\) and \(m + n + 1\), respectively. Hence, \(rr(G) > rr(G)\) for any graph \(G\) which is not self-centered. Selvam et al. [4] proved that \(rr(G) \geq n\) for any self-centered graph \(G\). In addition, Selvam et al. [5] proved few results connecting the clique number \(\omega\) and \(rr(G)\) as follows: (i) \(\omega(G) \leq rr(G)\), (ii) for \(m \geq 1, 3\) a graph \(G\) which satisfies \(rr(G) = m + \omega \) and \(\omega = 3\), and (iii) \(3\) a graph \(G\) with \(rr(G) = \omega + 1\), whenever \(\omega \geq 4\). Yenoke [6] determined the upper bounds for the radial radio number of certain uniform cyclic and split graphs. Moreover, Arputha Jose and Giridharan [7] proved that \(rr(MT(n)) \leq 2n + 1\) and \(rr(D(n)) \leq 2n + 2\), where \(MT(n)\) is the Mongolian tent and \(D(n)\) is the diamond graph. This research article highlights the newly defined enhanced hexagonal difference hexagonal network. Also, the radial radio number for \(Hx_\eta\), \(\text{HDN(}\eta)\), and \(EDH(\eta)\) was resolved.

2. Hexagonal and Its Derived Networks

In 2D geometry, the hexagonal network is the triangular tessellation of the Euclidean plane, and this was broadly analysed in [8–10]. In the graph theoretical approach, a hexagonal network of dimension \(\eta\) is denoted by \(Hx_\eta\) which contains \(6(\eta - 2)\) vertices of degree 4, 6 corner vertices of degree 3, and \(3\eta^2 - 9\eta + 7\) vertices of degree 6. It was identified that each side of a square is equal to the dimension \(\eta\). Also, 3 a unique centre vertex at a distance \(\eta - 1\) from the corner vertices. Therefore, \(\text{diam}(Hx_\eta)\) and \(\text{rad}(Hx_\eta)\) are \(2\eta - 2\) and \(\eta - 1\), respectively. In addition, it has \(9\eta^2 - 15\eta + 6\) edges and \(3\eta^2 - 3\eta + 1\) vertices. See Figure 1(a).

Manuel et al. [11] placed a vertex in the face of each triangle and then joined it by the corresponding three vertices of the triangle and derived an architecture from the hexagonal network called an enhanced hexagonal network, and it is denoted by \(\text{HDN}(\eta)\). In addition, \(|E(\text{HDN}(\eta))| = 9\eta^2 - 15\eta + 7\) and \(|V(\text{HDN}(\eta))| = 27\eta^2 - 51\eta + 24\). See Figure 1(b). Also, the diameter and radius are the same as in \(Hx_\eta\). This paper studies a new network named enhanced hexagonal difference hexagonal network which is obtained from the enhanced hexagonal network by removing all the edges of \(Hx_\eta\) from \(\text{HDN}(\eta)\). That is, \(\text{EDH}(\eta) = \text{HDN}(\eta) - E(Hx_\eta)\). It is denoted by \(EDH(\eta)\). The number of vertices and edges in \(EDH(\eta)\) is \(9\eta^2 - 15\eta + 7\) and \((27\eta^2 - 51\eta + 24) - (9\eta^2 - 15\eta + 6) = 18\eta^2 - 36\eta + 18\), respectively. See Figure 1(c). Furthermore, the diameter and the radius for \(EDH(\eta)\) are \(4(\eta - 1)\) and \(2(\eta - 1)\), respectively.

Even though the vertices of the three axes \(a, \beta, \gamma\) of \(Hx_\eta\) are already defined in the literature, for the requirement of the proof, we have renamed the vertices of the vertical lines \((\beta - \text{lines})\) from the left most top to the right most bottom as \(y_1^1, y_2^1, \ldots, y^1_{\eta}, y_1^2, y_2^2, \ldots, y^2_{\eta+1}, y_1^3, y_2^3, \ldots, y^3_{2\eta}, y_1^4, y_2^4, \ldots, y^4_{2\eta+1}, \ldots, y^\eta_{2\eta} \ldots, y^\eta_1, y_1^4, y_2^4, \ldots, y^4_{\eta-1}, y_1^\eta, \ldots, y^{\eta+1}_{\eta-2} \ldots, y^\eta_{\eta-1}\). See Figure 2(a).

3. Radial Radio Number of \(Hx_\eta\), \(\text{HDN}(\eta)\), and \(EDH(\eta)\)

In this section, we have determined the upper bounds for the radial radio number of the hexagonal network, the enhanced hexagonal network, and the newly defined network \(EDH(\eta)\).

Theorem 1. Let \(Hx_\eta\) be a hexagonal network of dimension \(\eta\); then, the radial radio number of \(Hx_\eta\) satisfies \(rr(Hx_\eta) \leq (\eta - 1)(\eta^2 - \eta - 1) + 1\).

Proof. First, we partition the vertex set \(V(Hx_\eta)\) into five disjoint sets \(W_1 = \{y_\sigma^\eta : \sigma = 1, 2, \ldots, \eta, \eta, \sigma = 1, 2, \ldots, \eta - 1\}\), \(W_2 = \{y_\sigma^{(\eta - 1) + 2}/\sigma = 1, 2, \ldots, \eta, \eta = 1, 2, \ldots, \eta - 1\}\), \(W_3 = \{y_\sigma^{(\eta - 1) + 2}/\sigma = 1, 2, \ldots, \eta, \eta = 1, 2, \ldots, \eta - 1\}\), and \(W_5 = \{y_\sigma^{(\eta - 1) + 2}/\sigma = 1, 2, \ldots, \eta, \eta = 1, 2, \ldots, \eta - 1\}\), and \(W_5 = \{y_\sigma^{(\eta - 1) + 2}/\sigma = 1, 2, \ldots, \eta, \eta = 1, 2, \ldots, \eta - 1\}\).

Define a mapping \(\tau: V(Hx_\eta) \rightarrow N \cup \{0\}\) as follows:
Next, we claim that \mathcal{F} satisfies the radial radio labelling condition. Since $\text{rad}(\text{HX}_\eta) = \eta - 1$, we must verify that $|\tau(x) - \tau(y)| + d(x, y) \geq \eta - 1 + 1 = \eta \forall x, y \in V(\text{HX}_\eta)$.

Let $x, y \in \text{HX}_\eta$.

Case 1: if $x, y \in W_1$, then $x = y^p_s$ and $y = y^q_r$, where $1 \leq r, p \leq \eta$, $1 \leq s, q \leq \eta - 1$. Therefore, $\tau(x) = (\eta - 1)(r - 1) + (\eta - 1)(s - 1)$, $\tau(y) = (\eta - 1)(p - 1) + (\eta - 1)(q - 1)$, and $d(x, y) \geq 1$. If $s = q$ and $r \neq p$, then $|\tau(x) - \tau(y)| + d(x, y) \geq ((\eta - 1)(r - 1) + (\eta - 1)\eta, \eta - 1(\eta - 1)(p - 1) + (\eta - 1)(\eta - 1)(q - 1)) + 1$.

See Figure 2(b).

Figure 1: HX_η, $\text{HDN}(\eta)$, and $\text{EDH}(\eta)$ for $\eta = 6$.

Figure 2: Naming of vertices in $\text{HDN}(3)$ and a radial radio labelling of $\text{HDN}(4)$ which attains the bound.

\begin{align*}
|\tau(x) - \tau(y)| + d(x, y) &\geq ((\eta - 1)(r - 1) + (\eta - 1)\eta, \\
&\cdot (s - 1) - ((\eta - 1)(p - 1) + (\eta - 1)(q - 1)) + 1
\end{align*}
If \(r = p \) and \(s \neq q \), then \(\| \mathcal{T}(x) \| + d(x, y) \geq \| \eta(l-1) \| + 1 \geq \eta \). Otherwise, the condition is obviously true.

Case 2: if \(x, y \in W_2 \), then \(x = \psi^{r+s} \) and \(y = \psi^{(p-1)q} \), where \(1 \leq r, p \leq \eta \), \(1 \leq s \), and \(q \leq \eta - 1 \). Here, \(d(x, y) \geq 1 \). Furthermore, \(\| \mathcal{T}(x) \| + d(x, y) \geq \| \eta(l-1) \| + 1 + (\eta(q - 1) + 1) \). If both \(r \neq p \) and \(s \neq q \), then there is nothing to verify. If \(s = q \) and \(r \neq p \) or \(s \neq q \) and \(r = p \), then as in the previous case, \(\| \mathcal{T}(x) \| + d(x, y) \geq \| \eta(l-1) \| + (\eta - 1)q \). If \(s \neq q \), then there is nothing to verify. If \(s = q \) and \(r = p \), then as in the previous case, \(\| \mathcal{T}(x) \| + d(x, y) \geq \| \eta(l-1) \| + (\eta - 1)q \). In each case, we can verify that \(\| \mathcal{T}(x) \| + d(x, y) \geq \eta \).

Case 7: suppose \(x, y \in W_3 \); then, \(d(x, y) \geq 1 \). Hence, \(\| \mathcal{T}(x) \| + d(x, y) \geq \| \eta(l-1) \| + 1 \). Since \(1 \leq s \leq \eta - 1 \), \(1 \leq p, q \leq \eta - 2 \), and \(r, t \in 0, \eta \), \(d(x, y) \geq 1 \). Hence, we get \(\| \mathcal{T}(x) \| + d(x, y) \geq \eta \). In each case, we can verify that \(\| \mathcal{T}(x) \| + d(x, y) \geq \eta \).

Case 8: suppose \(x \in W_3.4 \) and \(y \in W_4 \); then, \(x = \psi^{r+s} \) and \(y = \psi^{(p-1)q} \), where \(1 \leq r, p \leq \eta \), \(1 \leq s \), and \(q \leq \eta - 1 \). Therefore, \(\| \mathcal{T}(x) \| + d(x, y) \geq \| \eta(l-1) \| + 1 + \eta - 1 \geq \eta \). Since \(r \leq \eta \), \(1 \leq s \leq \eta - 1 \), and \(1 \leq p, q \leq \eta - 2 \) and \(r, t \in 0, \eta \), \(d(x, y) \geq 1 \). Hence, for the above possibilities, \(\| \mathcal{T}(x) \| + d(x, y) \geq \eta \).

Theorem 2. Let HDN(\(\eta \)) be an enhanced hexagonal network of dimension \(d \); then, the radial radio number of HDN(\(\eta \)) satisfies \(r_r(\text{HDN}(\eta)) \leq (\eta - 1)(\eta^2 - \eta - 1) + (2\eta - 3)(\eta - 2)^2 + 2 \).

Proof. First, let us partition the face vertices of HDN(\(\eta \)) into four disjoint sets \(V_1 = \{x^{2-\eta}_{\alpha} | \alpha = 1, 2, \ldots, \eta - 1, \eta \} \), \(V_2 = \{x^{2-\eta}_{\eta} | \alpha = 1, 2, \ldots, \eta - 1, \eta \} \), \(V_3 = \{x^{2-\eta}_{\eta+1} | \alpha = 1, 2, \ldots, (2\eta/2), \eta \} \), \(V_4 = \{x^{2-\eta}_{\eta+2} | \alpha = 1, 2, \ldots, \eta - (2 + \eta)/2 \}. \) The remaining vertices in HDN(\(\eta \)) are partitioned into 5 disjoint sets as in Theorem 1.
\[\gamma(x_2^\eta) = (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((\sigma - 1) + (\eta - 1)(\sigma - 1)) + 2, \quad \sigma = 1, 2, \ldots, \eta - 1, 2 = 1, 2, \ldots, 2(\eta - 1), \]
\[\gamma(x_2^{(\eta - 1)\sigma}) = (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((\sigma - 1) + (\eta - 1)(\sigma - 1)) + 2, \quad \sigma = 1, 2, \ldots, \eta - 1, 2 = 1, 2, \ldots, 2(\eta - 1), \]
\[\gamma(x_{\eta - r - 1}^2) = (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((\sigma - 1) + (\eta - 1)(\sigma - 1)) + 2, \quad \sigma = 1, 2, \ldots, \frac{2}{\eta}, 2 \leq 1, 2, \ldots, 2\eta - 3, \]
\[\gamma(x_{\eta - r - 1}^{(\eta - 1)\sigma}) = (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((\sigma - 1) + (\eta - 1)(\sigma - 1)) + 2, \quad \sigma = 1, 2, \ldots, \eta - \frac{1 + \eta - 1}{2}, 2 \leq 1, 2, \ldots, 2\eta - 3. \]

(3)

The remaining vertices are labelled as in Theorem 1. See Figure 3(b).

Next, we claim that \(|\gamma(x) - \gamma(y)| + d(x, y) \geq \eta \forall x, y \in V(\text{HDN}(\eta)).

Let \(x, y \in V(\text{HDN}(\eta)).

\[
|\gamma(x) - \gamma(y)| + d(x, y),
\]
\[
\geq |(\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((r - 1) + (\eta - 1)(s - 1)) + 2 - ((\eta - 1)(\eta^2 - \eta - 1)),
\]
\[
+ (\eta - 2)((p - 1) + (\eta - 1)(q - 1)) + 2)| + 2,
\]
\[
\geq |(-2 + \eta)(r - p)| + 2,
\]
\[
\geq \eta.
\]

If \(s \neq q\) and \(r = p\), then \(|\gamma(x) - \gamma(y)| + d(x, y) \geq |(\eta - 2)(\eta - 1)(s - q)| + 2 > \eta.\) If both \(r \neq p\) and \(s \neq q), the condition is obviously true.

Case 2: if \(x, y \in V_2\), then \(x = x_2^{(\eta - 1)\sigma} + y = x_p^{(\eta - 1)2^s}\), where \(1 \leq r, p \leq \eta - 1, 1 \leq s, q \leq 2(\eta - 1).\) Here, \(d(x, y) \geq 2.\) Furthermore, \(|\gamma(x) - \gamma(y)| = |(\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((r - 1) + (\eta - 1)(s - 1)) + 2 - ((\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((p - 1) + (\eta - 1)(q - 1)) + 2)|.\) The verification for different possibilities is the same as in Case 1.

Case 3: suppose \(x, y \in V_1;\) then, \(d(x, y) \geq 2, \gamma(x) = (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((r - 1) + (\eta - 1)(s - 1)) + 2, \) and \(\gamma(y) = (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((p - 1) + (\eta - 1)(q - 1)) + 2, \) where \(1 \leq r, p \leq 2(\eta - 3)/2, 1 \leq s, q \leq 2(\eta - 1).\) If either \(r \neq p\) or \(s \neq q), then \(|\gamma(x) - \gamma(y)| + d(x, y) \geq |(\eta - 2)(r - p)| + 2 \geq \eta\) or \(|\gamma(x) - \gamma(y)| + d(x, y) \geq |(\eta - 2)(s - q)| + 2 \geq \eta.\)

\[
\gamma(x_2^\eta) = (1 + \eta)(\eta^2 - \eta - 1) + (\eta - 2)((r - 1) + (\eta - 1)(s - 1)) + 2,
\]
\[
\gamma(x_{\eta - r - 1}^{q + 1}) = (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((p - 1) + (\eta - 1)(q - 1)) + 2,
\]

(5)
where $1 \leq r \leq 1$, $1 \leq s \leq 2(\eta - 1)$, $1 \leq p \leq (2\eta - 3)/2$, and $1 \leq q \leq 2\eta - 3$. If $r = p$ and $s = q$, then $d(x, y) = \eta$.

Again, if either $r \neq p$ or $s \neq q$, then $|\bigcap(x)\setminus(y)| \geq \eta - 2$ and $d(x, y) \geq 2$. From the above possibilities, $|\bigcap(x)\setminus(y)| + d(x, y) \geq \eta$.

Case 7: if $x \in V_1$ and $y \in V_4$, then $\bigcap(x) = (\eta - 1)\{(\eta^2 - \eta - 1) + (\eta - 2)((r - 1) + (\eta - 1)(s - 1)) + 2\}$ and $\bigcap(x_{p-1}(\eta^2 - \eta - 1) + (\eta - 2)((p - 1) + (\eta - 1)(q - 1)) + 2$, where $1 \leq r \leq \eta + 1, 1 \leq s \leq 2(\eta - 1)$, $1 \leq p \leq \eta - ((2\eta - 3) + 1)/2$, and $1 \leq q \leq 2\eta - 3$. Since $d(x, y) \geq \eta$, there is nothing to verify.

Case 8: if $x \in V_2$ and $y \in V_3$, then $x = x_{p-1}(\eta^2 - \eta - 1)$ and $y = x_{p-1}(\eta^2 - \eta - 1)$, where $1 \leq r \leq \eta - 1$, $1 \leq s \leq 2(\eta - 1)$, $1 \leq p \leq (2\eta - 3)/2$, and $1 \leq q \leq 2\eta - 3$. Therefore, $\bigcap(x) = ((\eta - 1) - (\eta - 1)(s - 1) + 1), \bigcap(y) = ((\eta - 1) - (\eta - 1)(q - 1) + 2$, and $d(x, y) \geq \eta$. Hence, $|\bigcap(x)\setminus(y)| + d(x, y) \geq \eta$.

Case 9: if $x \in V_2$ and $y \in V_4$, then the verification is similar to Case 6.

Case 10: if $x \in V_3$ and $y \in V_4$, then $|\bigcap(x)\setminus(y)| = |((\eta - 1)(r - 1) + (\eta - 1)(s - 1) + 1) - (\eta - 1)(\eta^2 - \eta - 1) + (\eta - 2)((p - 1) + (\eta - 1)(q - 1) + 2, where $x = x_{p-1}(\eta^2 - \eta - 1)$ and $y = x_{p-1}(\eta^2 - \eta - 1)$, $1 \leq r \leq (2\eta - 3)/2, 1 \leq s \leq 2\eta - 3, 1 \leq p \leq \eta - ((2\eta - 3) + 1)/2$, and $1 \leq q \leq 2\eta - 3$. If $s = p$, then $d(x, y) = \eta$.

Therefore, $|\bigcap(x)\setminus(y)| + d(x, y) \geq |((\eta - 1)(r - 1) + 1) - (\eta - 1)(q - 1) + 1 + 2| + (\eta - 1)(\eta^2 - \eta - 1) + (2\eta - 3)(-2 + \eta) + (\eta - 2)^2 + 2$. Therefore, $rr(\bigcap(x)\setminus(y)) \leq (\eta - 1)\left(\eta^2 - \eta - 1 + (2\eta - 3)(-2 + \eta) + (\eta - 2)^2\right) + 2$. Therefore, $rr(\bigcap(x)\setminus(y)) \geq (\eta - 1)\left(\eta^2 - \eta - 1 + (2\eta - 3)(\eta - 2)\right) + (\eta - 2)^2 + 2$. Therefore, $rr(\bigcap(x)\setminus(y)) \geq (\eta - 1)\left(\eta^2 - \eta - 1 + (2\eta - 3)(\eta - 2)\right) + (\eta - 2)^2 + 2$. Therefore, $rr(\bigcap(x)\setminus(y)) \geq (\eta - 1)\left(\eta^2 - \eta - 1 + (2\eta - 3)(\eta - 2)\right) + (\eta - 2)^2 + 2$.

Theorem 3. The radial radio number of $EDH(\eta)$ satisfies $rr(EDH(\eta)) \leq (2\eta - 3)(\eta^2 - \eta - 1 + (2\eta - 3)(\eta - 2)) + 1, \eta > 1$.

Proof. Define a mapping $\bigcap: V(EDH(\eta)) \rightarrow N \cup \{0\}$ as follows:

Figure 3. A radial radio labelling of HDN(4) and EDH(4) which attains the bound.
we have left the proof to the reader.

Furthermore, these studies can be extended to the radio number of HDN, and EDH.

In this research study, we have introduced the enhanced hexagonal difference hexagonal network from the existing enhanced hexagonal network. Furthermore, we have investigated

$$rr(EDH(\eta)) \leq (2\eta - 3)\lceil \eta(\eta - 2) + 2(\eta - 1) \rceil + 1, \eta > 1.$$

Also, the radial radio number of HDN(\eta) and EDH(\eta) was presented. These bounds will motivate other researchers to conduct further research studies on the applications of the enhanced hexagonal network and its derived networks. Furthermore, these studies can be extended to the radio k-chromatic number and its variations.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

$$\tau(y^2_\sigma) = (2\eta - 3)(\sigma - 1) + (2\eta - 3)(\eta - 1)(2 - 1), \quad \sigma = 1, 2, \ldots, \eta - 1, \sigma = 1, 2, \ldots, \eta - 2,$$

$$\tau(y^{n_\sigma - 2}_\sigma) = (2\eta - 3)(\sigma - 1) + (2\eta - 3)(\eta - 1)(2 + 2), \quad \sigma = 1, 2, \ldots, \eta - 1, \sigma = 1, 2, \ldots, \eta - 2,$$

$$\tau(y^{\eta_\sigma - 1}_\sigma) = (2\eta - 3)(\sigma - 1) + (2\eta - 3)(2 - 1)(\eta - 1) + 1, \quad \sigma = 1, 2, \ldots, \eta, \sigma = 1, 2, \ldots, \eta - 1,$$

$$\tau(y^{\eta_\sigma - 1}_\sigma) = (2\eta - 3)(\sigma - 1) + (2\eta - 3)(2 - 1)(\eta - 1) + 3, \quad \sigma = 1, 2, \ldots, \eta, \sigma = 1, 2, \ldots, \eta - 2,$$

$$\tau(y^{2\eta_\sigma - 1}_\sigma) = (2\eta - 3)(\sigma - 1) + (2\eta - 3)(2 - 1)(\eta - 1) + 2, \quad \sigma = 1, 2, \ldots, \eta, \sigma = 1, 2, \ldots, \eta - 2.$$

(6)

See Figure 2(b).

As the remaining part of the proof is similar to Theorem 2, we have left the proof to the reader. □

4. Conclusion

In this research study, we have introduced the enhanced hexagonal difference hexagonal network from the existing enhanced hexagonal network. Furthermore, we have investigated

$$rr(EDH(\eta)) \leq (2\eta - 3)\lceil \eta(\eta - 2) + 2(\eta - 1) \rceil + 1, \eta > 1.$$

Also, the radial radio number of HDN(\eta) and EDH(\eta) was presented. These bounds will motivate other researchers to conduct further research studies on the applications of the enhanced hexagonal network and its derived networks. Furthermore, these studies can be extended to the radio k-chromatic number and its variations.

References

[1] W. K. Hale, "Frequency assignment: theory and applications," *Proceedings of the IEEE*, vol. 68, no. 12, pp. 1497–1514, 1980.

[2] G. Chartrand, D. Erwin, and P. Zhang, "A graph labelling problem suggested by FM channel restrictions," *Bulletin of the Institute of Combinatorics and its Applications*, vol. 43, pp. 43–57, 2005.

[3] D. Fotakis, G. Pantziou, G. Pentaris, and P. Spirakis, "Assignment in mobile and radio networks," *DIMACS Series in Discrete Mathematics and Theoretical Computer Science*, vol. 45, p. 7390, 1999.

[4] A. Selvam, M. Bhuvaneshwari, and S. Vimalajenifer, "A note on radial number of a graph," *International Journal of Applied and Advanced Scientific Research*, vol. 62–68, 2017.

[5] A. Selvam, M. Bhuvaneshwari, and S. Vimalajenifer, "The radial number and the clique number of a graph," *International Journal of Engineering and Advanced Technology*, vol. 9, pp. 1002–1006, 2019.

[6] K. Yenoke, "Radial radio number of cyclic and wheel split graphs," *International Journal of Advance Research, Ideas and Innovation in Technology*, vol. 6, pp. 222–227, 2020.

[7] T. Arputha Jose and M. Giridharan, "Radial radio mean labeling of Mongolian tent and Diamond graphs," *International Journal for Research in Applied Science and Engineering Technology*, vol. 8, no. 7, pp. 2078–2083, 2020.
[8] M. Born, "On the stability of crystal lattices IX. Covariant theory of lattice deformations and the stability of some hexagonal lattices," *Mathematical Proceedings of the Cambridge Philosophical Society*, vol. 38, no. 1, pp. 82–99, 1942.

[9] M.-S. Chen, K. G. Shin, and D. D. Kandlur, "Addressing, routing, and broadcasting in hexagonal mesh multiprocessors," *IEEE Transactions on Computers*, vol. 39, no. 1, pp. 10–18, 1990.

[10] M. Lee and J. Sivaswamy, *Hexagonal Image Processing*, Springer-Verlag London Limited, Berlin, Germany, 2005.

[11] P. Manuel, R. Bharati, I. Rajasingh, and C. Monica, "On minimum metric dimension of honeycomb networks," *Journal of Discrete Algorithms*, vol. 6, no. 1, pp. 20–27, 2008.