On the interaction between cosmic rays and dark matter molecular clouds in the Milky Way – I. Basic considerations

D. W. Sciama*

1SISSA Via Beirut, 2-4, 34014 Trieste, Italy
2ICTP, Strada Costiera, 11, 34014 Trieste, Italy
3Nuclear and Astrophysics Laboratory, Keble Road, Oxford OX1 3RH

ABSTRACT
We explore some basic observational consequences of assuming that the dark matter in the Milky Way consists mainly of molecular clouds, and that cosmic rays can penetrate these clouds. In a favoured model of the clouds, this penetration would have the following consequences, all of which agree with observation.

(i) Cosmic ray nuclei would be fragmented when they enter a cloud, giving them a lifetime in the Galaxy of $\sim 10^{15}$ s (for relativistic nuclei).

(ii) Pionic γ-rays emitted by the clouds, after proton–proton (pp) collisions, would have a diffuse flux in the Galactic plane comparable to the flux from known sources for photon energies ≥ 1 GeV.

(iii) The heat input into the clouds from cosmic rays would be re-radiated mainly in the far-infrared. The resulting radiation background agrees, in both intensity and spectrum in different directions, with a known excess in the far-infrared background of the galaxy over emission by warm dust.

Key words: ISM: clouds – cosmic rays – dark matter – gamma-rays: observations – infrared: ISM: continuum.

1 INTRODUCTION
Various authors (Pfenniger, Combes & Martinet 1994; De Paolis et al. 1995; Gerhard & Silk 1996) have proposed a viable model in which most of the dark matter in the Milky Way is baryonic and consists of a population of self-gravitating clouds of mainly molecular hydrogen (possibly accompanied by clusters of brown dwarfs). A favoured set of parameters for these clouds is: mass $M \sim 10^{-3} M_\odot$, radius $r \sim 10^{14}$ cm, temperature $T \sim 10^4$ K, velocity dispersion $\sigma \sim 200$ km s$^{-1}$, for a halo distribution with a covering factor $f \sim 5 \times 10^{-4}$ (Draine 1998).

One way of testing this model observationally is to search for effects arising from the interaction of cosmic rays with these clouds. This paper is the first of a series in which such an interaction is investigated. In it only the basic implications of the interaction are considered. The many details involved will be examined in later papers of this series.

At the outset it has to be decided whether cosmic rays can penetrate the clouds. This question is discussed in Section 4. If the penetration does occur, a number of observable effects would arise for the favoured model of the clouds. In this paper the following effects are discussed.

(i) Cosmic ray nuclei would be completely fragmented when they penetrate a cloud. This process may determine the survival time of the nuclei in the Galaxy, rather than their leaking out of a confinement volume as envisaged in the usual picture of cosmic ray propagation. It is straightforward to calculate the mean survival time t_0, and for the favoured cloud model one finds for relativistic nuclei that $t_0 \sim 10^{15}$ s. This value agrees well with that derived from observations of the radioactive cosmic ray nuclei Be^{10} and Al^{26}. By contrast, the survival time in the leakage models cannot be calculated a priori.

(ii) Cosmic ray proton collisions with protons (pp collisions) in the clouds would lead to the production of neutral pions which would rapidly decay into γ-rays. In the favoured model for the clouds the resulting integrated γ-ray flux in the Galactic plane would be comparable to the γ-ray flux owing to known sources. The clouds would be optically thick for hadronic interactions of incident protons with energies close to 1 GeV, and allowance must be made for this in calculating the resulting γ-ray flux. A rough estimate of this optical depth effect suggests that the excess γ-ray flux in the Galactic plane would be noticeable only at photon energies exceeding ~ 1 GeV, and that this excess should be somewhere between a factor 1 and 2. This estimate agrees with analyses of the EGRET data, which find an unexplained excess in the γ-ray flux in the galactic plane of 60 per cent for γ-ray energies exceeding 1 GeV.

* Deceased 1999 December 19.
(iii) Cosmic ray collisions would also heat the clouds, and this heat would be mainly re-radiated in the far-infrared via molecular line emission. It is convenient to estimate the resulting diffuse far-infrared radiation F_{ν} in the Galactic plane by relating the heat input into a cloud to its emission rate F_{ν} for γ-rays with energies exceeding 1 GeV. One obtains in this way a conversion factor ~ 0.06 erg per γ-ray. One can then use this conversion factor to derive F_{ν} from F_{ν}. We find that $F_{\nu} \sim 2 \times 10^{-5}$ erg cm$^{-2}$ s$^{-1}$ in a sample direction in the Galactic plane. This intensity, and the spectrum of the excess, agree with the properties of a known excess in the far-infrared emissivity of the Galaxy over that expected for a standard warm interstellar dust model. The origin of this observed excess is controversial, and we here suggest that it is as a result of the emission from ‘dark matter’ molecular clouds powered by cosmic rays. In a later paper in this series we study in detail the relation between the intensity and the spectrum of the far-infrared and γ-ray emissivities of the Galaxy as a function of the direction of observation. The distribution of the clouds will play a crucial role here. Presumably this distribution is similar to that advocated for dark matter by Benson, Smialkowski & Wolfendale (1999).

These ideas can also be tested in the future when detectors, such as Planck, will be able to observe point sources with a flux density S greater than 1 Jy at 850 μm, even if only a few such sources exist over the whole sky. In the present model there would be about 10 such cloud sources, with correspondingly larger numbers of fainter sources. These sources should have S_{450} \leq S_{850}, in contrast to external galaxies which have S_{450} $>$ S_{850}. These predictions could lead to a decisive test of the model.

(iv) At high galactic latitudes the averaged column density of the clouds is about 10 times greater than that of the visible interstellar matter. In this case it has already been pointed out by De Paolis et al. (1999a,b) that the recently discovered γ-ray halo of the Galaxy (Dixon et al. 1998) may be owing to the interaction of cosmic rays with clouds in the halo. The implied far-infrared emission at high galactic latitudes then turns out to be of the same order as the observed galactic far-infrared excess in those directions.

The plan of the paper is as follows. Section 2 is concerned with some properties of the so-called ‘extreme scattering events’ (ESEs) which are used to determine several parameters of the molecular cloud model. In Section 3 we consider the formation epoch of the clouds which is a partial guide to their likely metallicity. This metallicity plays a crucial role in their far-infrared emissivity. Section 4 is devoted to a study of ionization, pionization and spallation losses of the cosmic rays penetrating the clouds, and the value of the collision time t_0 is determined. In Section 5 the temperature T of a cloud is derived and also the ratio F_{ν}/F_{γ}. The observed γ-ray emission of the Galaxy and its implications for the cloud model are considered in Section 6. This is followed in Section 7 by a discussion of the basic far-infrared properties of the model which are then compared with observation. Finally Section 8 contains our conclusions.

2 EXTREME SCATTERING EVENTS AND DARK MATTER MOLECULAR CLOUDS

Extreme scattering events (ESEs, see Fiedler et al. 1987) consist of occasional large disturbances to the radio emission of point sources. They are believed to be the result of plasma irregularities located in the Galaxy that drift across the radio sources. The origin of these irregularities is not known. Walker & Wardle (1998) suggested that they are the skins of dark matter molecular clouds (hereafter MCs) which have been ionized by interstellar ultraviolet radiation. One advantage of this suggestion, as Walker & Wardle pointed out, is that it leads to a determination of several parameters of the MCs, including the crucial result that their total mass is comparable to the dark matter mass of the Galaxy (see also Draine 1998).

The ESEs can be used to determine a further parameter of the MCs, namely the scaleheight H of their distribution in the Galaxy. This scale height helps to determine the number density n of MCs in the galactic plane. This density n enters into the calculation of both the collision time t_0 and the integrated γ-ray emissivity of the clouds in the galactic plane.

The angular distribution of ESEs in the Galaxy has recently been considered by Lazio (private communication). His statistical analysis led him to the conclusion that ESEs are a disc rather than a halo population, and so have nothing to do with the dark matter problem. However, at my suggestion, he kindly considered the intermediate possibility of a flattened halo distribution for the ESEs, and in particular the value 3 kpc for H. His Monte Carlo calculations found (private communication) that if the radius of the MC distribution in the galactic plane is 10 kpc, and H is 3 kpc, then the quadrupole moment q of their distribution is within one standard deviation of the value of q which he derived from the ESE data. For a radius of 25 kpc the difference in the q values lies within 1.5 σ. Accordingly we will adopt the value 3 kpc for H.

This value fits in with a previous analysis of a flattened dark halo of our Galaxy (Sciama 1999) where it was shown that 3 kpc is the smallest allowed value for H (cf. Sackett 1999). In particular this value is just compatible with recent estimates of the total density ρ of matter near the Sun, as derived from the vertical motions of nearby stars deduced from Hipparcos data (Pham 1997; Creze et al. 1998; Holmberg & Flynn 1998). Taking $\sim 100 \, M_{\odot} \, pc^{-2}$ for the column density of dark matter at the Sun on one side of the Galactic plane (Binney & Tremaine 1987) one would have with our adopted value of H a dark matter density near the Sun of $\sim 0.03 \, M_{\odot} \, pc^{-3}$. Taking $0.11 \, M_{\odot} \, pc^{-3}$ as the upper limit of ρ from the Hipparcos data, and 0.04 $M_{\odot} \, pc^{-3}$ for both the density of stars and the density of visible gas near the Sun, one just arrives at a consistent set of values. Since each MC is assumed to have a mass $\sim 10^{-3} M_{\odot}$, it follows that there are ~ 30 MCs pc^{-3} near the Sun.

One may speculate on the origin of the large flattening of the MC distribution. One contributing factor could be the accretion of interstellar gas subsequent to the formation of the MCs. Since the column density of an MC in our adopted model is $\sim 60 \, cm^{-2}$ or $\sim 10^{25}$ H$_2$ molecules cm$^{-2}$, which is much greater than the column density of the diffuse gas in the Galaxy, and since the MCs are moving supersonically through this gas, they would simply drill holes in the gas and scoop up all the material in their path (Tenorio-Tagle et al. 1987; Comeron & Torra 1992; Santillan et al. 1999). Accordingly their column density would increase at the rate $n_{\gamma} v$ per unit time, where n_{γ} is the number density of the gas. Allowing for an increase in n_{γ} in the past, and integrating over a time of 10^{10} yr, one arrives at a total accreted column density in H$_2$ of $\sim 3 \times 10^{24}$ cm$^{-2}$. This is not much less than the present column density of an MC, and given the various uncertainties in the calculation it is reasonable to suppose that the vertical component of the motion of the MCs may have been appreciably damped, thereby helping to give rise to their flattened distribution.

Another important consequence of this accretion of interstellar
gas concerns the composition of the MCs. They are sometimes considered to have a primordial composition, consisting primarily of H and He. However, the presence of a significant abundance of heavy elements in the MCs will be crucial for our discussion of their far-infrared emissivity. As we shall see, we will not need a full solar metallicity, but a significant contamination could arise from the accreted gas. Another source of metallicity will be described in the next section.

3 THE FORMATION EPOCH OF THE MCs

A clue to the likely formation epoch of the MCs can be found by noting that if the dark matter in all the galaxies is baryonic then the resulting mean density of these baryons at the present epoch is close to the value implied by big bang nucleosynthesis (BBNS) (Fukugita, Hogan & Peebles 1998). Apart from solving the well-known problem ‘where are the baryons?’, this result is helpful for determining the formation epoch of the MCs because it has recently been realized that at a red shift \(z \approx 3 \) the amount of ionized gas believed to be associated with the much smaller amount of neutral gas contained in the Lyman \(\alpha \) clouds is again close to the BBNS value (Rauch & Haehnelt 1995; Giallongo, Fontana & Madau 1997). Moreover, the evolution of the Lyman \(\alpha \) gas cloud system at lower redshifts is so rapid that the implied amount of gas decreases with decreasing red shift on the fast time-scale of 1 Gyr. Giallongo et al. speculate on why the gas is disappearing so fast and suggest that it may be driven out of the Lyman \(\alpha \) clouds by supernova explosions. From our point of view it is natural to suggest that one is here observing the formation of the MCs. This suggestion would imply that most Lyman \(\alpha \) clouds are associated with galaxies. This possibility has already been much debated in the literature and remains controversial. A recent supporting discussion (with references to earlier work) has been given by Ortiz-Gil et al. (1999).

One significance for us of these ideas is that at a red shift of 3 Lyman \(\alpha \) clouds already contained an observable abundance of metals (e.g. Songaila 1997). This provides a second reason for expecting MCs in the Galaxy to contain an appreciable abundance of metals.

4 THE ATTENUATION DEPTH OF MCs FOR COSMIC RAYS

If galactic cosmic rays penetrate the MCs, the question arises of the attenuation length of the clouds. Let us first consider whether this penetration actually occurs. This question has already been much discussed, both theoretically and observationally, for the known molecular clouds in the Galaxy (e.g. Cesarsky & Volk 1978; Lebrun & Paul 1978; Cesarsky 1980; Berezinskii et al. 1990). In their reviews of this question Cesarsky (1980) and Berezinskii et al. (1990) considered that \(\gamma \)-ray observations show conclusively that cosmic rays do enter molecular clouds.

Of course MCs are moving through the interstellar medium much faster than the known molecular clouds, and it is not clear whether penetration occurs in this case. It would be very difficult to carry out a convincing theoretical calculation to decide this question a priori and it may be better simply to assume that penetration does occur, and then compare the implied consequences with observation.

There are in fact a number of quite different consequences which can be tested observationally at the present time, in particular the lifetime \(t_0 \) for cosmic ray nuclei, and the \(\gamma \)-ray and far-infrared emissivity of the MCs. In addition their heating and cooling rates determine their temperature \(T \), which is a basic parameter of our adopted model.

The crucial property of the MCs which controls all these phenomena is their column density \(N \). In our adopted model \(N \sim 60 \, \text{g cm}^{-2} \) or \(N_{\text{H}_2} \sim 10^{23} \text{H}_2 \) molecules \(\text{cm}^{-2} \). This is much larger than the grammage implied by the observed partial spallation of the cosmic ray nuclei \((\sim 8 \, \text{g cm}^{-2}\) for light and medium mass nuclei and \(\sim 2 \, \text{g cm}^{-2}\) for heavy nuclei). It is comparable to the stopping power of \(\text{H}_2 \) for \(\sim 1 \, \text{GeV} \) protons as a result of their ionization losses, to the attenuation length for the hadronic interactions of GeV protons leading to the production of pions (pionization losses), and to the attenuation lengths associated with the bremsstrahlung losses of relativistic electrons, and the Compton losses of MeV and GeV photons (Review of Particle Physics 1996). Thus on the one hand the heat input into the MCs is large. On the other hand, self-shielding effects in the MCs will be important. Both these facts are used in the present paper, but a full discussion of them would require extensive calculations which will be left for later papers in this series.

It is remarkable that the parameters of the clouds derived in the literature from various observational constraints imply a column density for the clouds with just these properties. A likely explanation is that the requirement of stability of the clouds against gravitational collapse imposes a narrow range of masses and column densities on them. The stabilizing mechanism has not yet been identified, but a recent proposal, involving the solidification of \(\text{H}_2 \) in the clouds (Walker & Wardle 1999) is a promising candidate.

We now consider the calculation of the survival time \(t_0 \), and leave for the next section a discussion of the energetics of the MCs. As a cosmic ray nucleus propagates in the Galaxy it will be scattered by magnetic irregularities in the interstellar medium. The mean free path associated with this scattering process is believed to be about 0.1 pc (Berezinskii et al. 1990). In fact the resulting change of direction of a cosmic ray does not matter for the present calculation since it is being assumed that the distribution of clouds is approximately uniform on the relevant length-scale. For a relativistic cosmic ray nucleus the mean time \(t_0 \) for it to collide with an MC and be completely fragmented is given by \((\pi r_c^2 n_c)^{-1}\).

Note that this time corresponds to the complete removal of the nucleus from the propagating cosmic ray distribution. The fragmentation associated with its interaction with the ordinary interstellar medium is unaffected by its eventual absorption by a cloud, which simply replaces the somewhat ad hoc leakage process assumed in the usual theories. Thus the conventional view of the interaction of cosmic rays with gas (atomic and molecular) (Ramana Murthy & Wolfendale 1993; Wolfendale 1993; Erlykin et al. 1996) is unaffected by the introduction of extra molecular gas in the form of small clouds.

It is encouraging for our model that if \(r \sim 10^{14} \) cm and \(n \sim 30 \text{ pc}^{-3} \) one obtains \(t_0 \sim 10^{15} \) s. This is close to the value which has been derived for the mean ages of the radioactive cosmic ray nuclei \(\text{Be}^{10} \) and \(\text{Al}^{26} \) with energies \(\sim 1 \, \text{GeV} \) nucleon \(^{-1}\) (Simpson & Connell 1998; Webber & Soutoul 1998). Of course \(n \) would be expected to decrease with height above the galactic plane, but since the storage height of cosmic rays is believed to be less than the 3 kpc scale height of the MCs (Berezinskii et al. 1990) this should be a small effect. We therefore postulate that collision with MCs provides the main loss process for cosmic ray nuclei rather than leakage out of a confinement volume.
For subrelativistic nuclei of velocity v we would expect that $t_0 \approx 1/v$. While the relevant data are not very accurate there is some indication that indeed more Be10 has decayed the lower its velocity (Simpson 1983).

For cosmic ray protons the situation is different. As we have seen the column density of an MC is of the same order as the attenuation length of H$_2$ for GeV protons. Hence the collision of such a proton with an MC would degrade its energy but would not destroy it. Allowance should also be made for the smaller fractional energy losses of the more energetic protons. Again detailed calculations are needed, but it is clear that the effective lifetime of cosmic ray protons in the GeV energy range could exceed t_0 by a significant factor. Moreover much more energetic protons could have avoided appreciable energy losses over the whole lifetime of the Galaxy. Unfortunately, since the source spectrum of the cosmic rays is unknown, it is not possible to test this idea observationally. Similar arguments apply to cosmic ray spectrum of the cosmic rays is unknown, it is not possible to test the whole lifetime of the Galaxy. Unfortunately, since the source spectrum of the cosmic rays is unknown, it is not possible to test this idea observationally. Similar arguments apply to cosmic ray protons, which would be trapped in the clouds by ionization and bremsstrahlung losses.

5 THE ENERGETICS OF MCs

We have already noted that, because MCs in our adopted model have a column density ~ 60 g cm$^{-2}$, optical depth effects would be important for both ionization and pionization losses. Consider first the heating of the MCs by cosmic ray interactions. Since 60 g cm$^{-2}$ of H$_2$ can just stop 500 MeV protons owing to their ionization losses (Review of Particle Physics 1996) we need to know the energy density ϵ_{CR} in cosmic rays of up to this energy. The effective heating rate J per H$_2$ molecule in an MC will then be $\sim \epsilon_{CR}n_{H_2}^{-1}$. For $\epsilon_{CR} \sim 0.2$ eV cm$^{-3}$ (Webber 1998) and $N_{H_2} \sim 10^{25}$ cm$^{-2}$ one obtains $J \sim 10^{-22}$ erg s$^{-1}$H$_2^{-1}$. There will also be a contribution to J from electrons produced by pion and muon decay in the clouds, but for a rough estimate this contribution can be neglected.

To determine the cooling rate one must know the constitution of the MCs. As discussed previously it will be assumed that the MCs are contaminated by heavy elements, although any dust particles in them must have fallen to their centres to avoid opacity effects which have not been observed (Gerhard & Silk 1996). The steady state abundances of different molecules in the MCs represent the outcome of a large number of chemical reactions triggered by cosmic ray ionization, and have recently been computed for clouds nearly as dense as our MCs by Sternberg & Dalgarno (1995) and by Neufeld, Lepp & Melnick (1995). The latter authors also made extensive calculations of the resulting cooling rate J oping to molecular line emission excited by collisions with H$_2$, although they used a somewhat smaller cosmic ray ionization rate than we have adopted. The key point is that, for the large densities and optical depths involved in very dense clouds, many of the emission lines of a considerable number of molecular species become optically thick. An MC is thus rather like a star, which is opaque to the radiation produced by its internal heat sources. The important consequence for us is that even molecular species with a relatively small abundance will contribute significantly to the emissivity if they are abundant enough for their emission to be optically thick.

Neufeld et al. (1995) calculated the emission in all these hundreds of optically thick lines, and so derived the cooling rate of clouds, which are heated and ionized by cosmic rays, and are nearly as dense as our MCs. They represented their results graphically (for a number of final temperatures) as a function of the density n_{H_2} of H$_2$ molecules in the core of the clouds. Gerhard & Silk (1996) represented this cooling rate analytically in the form $2.1 \times 10^{-28}T_6^{2.6}n_{H_2}^{1.2}$ erg s$^{-1}$H$_2^{-1}$, where $T = 10T_{10}$ K and $n_{H_2} = 10^{11}n_{H_2}$, and used it to determine the temperature of an MC. For our choice of heating rate and MC parameters one obtains $T_{10} \sim 1.9$, which would satisfy the virial theorem for the clouds (Draine 1998). However this calculation should be repeated with a revised cooling rate based on the larger cosmic ray ionization rate being used here.

The strongest emission lines would lie in the far-infrared, with a cut-off at about 1000 GHz or 300 μm for our choice of T. There would be hundreds of lines in this frequency or wavelength range, and the resulting spectrum would look like a continuum to any detector unable to resolve them. To estimate the integrated intensity of this continuum for the whole Galaxy one would need to know the spatial distribution of both the cosmic rays and the MCs. To avoid obtaining a result that is too model dependent we prefer to proceed semi-empirically by relating the far-infrared emission of the MCs to their γ-ray emission. As we shall see, it is possible to use observational data on the γ-ray emission of the Galaxy as a partial substitute for a spatial model.

It is pointed out in the next section that the observed γ-ray emission in the plane of the Galaxy contains an excess component for γ-ray energies >1 GeV. We propose to identify this excess as pionic γ-rays emitted by MCs. Now the γ-ray emissivity of the MCs can be related to their far-infrared emissivity via a simple conversion factor. To derive this factor we note from Mori (1997) that, for a standard cosmic ray flux, the number of pionic γ-rays produced with energies >1 GeV is 3.2×10^{-26} s$^{-1}$H$_2^{-1}$. Because of self-shielding in the MCs this flux must be reduced to 1.6×10^{-26} s$^{-1}$H$_2^{-1}$ (see Section 6). Since the far-infrared flux $\sim 10^{-22}$ erg s$^{-1}$H$_2^{-1}$, it follows that the conversion factor ~ 0.06 erg photon$^{-1}$. This factor depends on the energy spectrum of the cosmic rays but not on their absolute flux.

6 THE γ-RAY EMISSIVITY OF THE MCs

We saw in Section 2 that, in our adopted model, the mean density of matter owing to the MCs near the Sun is nearly the same as that of the visible matter in the interstellar medium. At first sight this near-equality would lead to an approximate doubling of the γ-ray emissivity in the galactic plane since pionic γ-rays dominate the flux for energies exceeding 100 MeV (Ramana Murthy & Wolfendale 1993). Yet in their detailed analysis of the EGRET data Hunter et al. (1997) found good agreement between their model, using only visible matter sources, and the observational data in the galactic plane, for γ-ray energies <1 GeV. This apparent discrepancy with our model can be attributed to self-shielding effects. According to Mori (1997) pionic γ-rays of energy <1 GeV are produced mainly by incident protons, the energy of which lies in the range 1–3 GeV. These protons are heavily degraded in the MCs, so that a substantial fraction of the H$_2$ molecules would be shielded from them. On the other hand pionic γ-rays of energy >1 GeV are mainly produced by protons with energy >3 GeV, whose fractional energy loss is smaller. Thus shielding effects would be less important for these higher energy protons. Accordingly some sign of the presence of additional higher energy γ-rays would be expected in the observational data, if our model is correct.

In fact, as already mentioned, Hunter et al. (1997) found a...
60 per cent excess in the observed flux in the galactic plane over their model calculations for γ-rays with energies >1 GeV, and were unable to give a satisfactory account of this discrepancy. Other attempts to explain the excess (Fazio et al. 1996; Mori 1997; Strong, Moskalenko & Reimer 1998) have not led to a consensus. We therefore suggest here that the excess is due to pionic γ-rays emitted by MCs powered by cosmic rays. The fact that the excess is only 60 per cent rather than closer to a factor 2 can be taken to indicate some self-shielding even for the higher energy protons involved. The corresponding amount of self-shielding was used in the previous section to derive the conversion factor from γ-rays to far-infrared radiation.

We may add that the mean free path of a 1 GeV γ-ray in H$_2$ is 85 g cm$^{-2}$ (Review of Particle Physics 1996), so that the correction for attenuation of such a γ-ray in an MC is not large. However, if we wish to identify the EGRET excess with γ-rays from MCs we must impose a strong upper limit on the column density η of \sim100 g cm$^{-2}$. On the other hand, the absence of an EGRET excess below 1 GeV imposes a lower limit on η of \sim30 g cm$^{-2}$. Thus η is somewhat constrained. These constraints also lead to a reduction in the bremsstrahlung γ-rays emitted by cosmic ray electrons trapped by the clouds. As has already been mentioned, these constraints may have their origin in the mechanism which stabilizes the clouds.

According to the recent analysis of Dixon et al. (1998) the EGRET data also show that our Galaxy possesses a γ-ray halo. In this case the relevant column density in the MCs would be much greater than that in visible interstellar matter, and De Paolis et al. (1999a,b) have already attributed this γ-ray flux $[O(10^{-6} - 10^{-5})$ photon cm$^{-2}$ s$^{-1}$ above 1 GeV] to MCs in the galactic halo. In the next section our conversion factor will be applied to this flux as well as to the flux in the plane. We shall find that the resulting far-infrared flux is compatible with observation at high Galactic latitudes as well as in the plane.

7 THE FAR-INFRARED EMISSIVITY OF THE MCs

In this section we estimate the far-infrared emissivity of the MCs and compare the result with observation. To do this we use the conversion factor between the far-infrared and γ-ray fluxes from MCs arrived at in the previous section. To illustrate the method we estimate the average far-infrared flux F_ν in the range of directions $|b| < 2^\circ$, $\ell = 45^\circ$. A detailed study of various galactic latitudes and longitudes, and of the accompanying spectral effects, will be deferred to a later paper of this series.

In our chosen range of directions the average 60 per cent excess γ-ray flux $\sim 3 \times 10^{-4}$ photon cm$^{-2}$ s$^{-1}$ (Hunter et al. 1997). Accordingly, in these directions $F_\nu \approx 1.8 \times 10^{-4}$ erg cm$^{-2}$ s$^{-1}$. As already explained, this far-infrared radiation would be concentrated in hundreds of emission lines lying mainly in a range dictated by a Rayleigh–Jeans cut-off at low frequencies and a temperature cut-off at high frequencies. In our model, with $T \sim 20$ K, this high frequency cut-off would be in the vicinity of 1000 GHz (300 μm). This radiation would look like a smooth continuum to a detector unable to resolve the closely spaced emission lines.

Just such a diffuse emission component, cutting off at ~ 600 GHz, has in fact been discerned in our Galaxy, in the form of excess radiation over a warm dust component. This dust component has been fitted with a single temperature in the range 16–21 K (for an emissivity law ν^2). The excess component has been detected and interpreted by a number of workers (Page, Cheng & Meyer 1990; Meinhold et al. 1993; Reach et al. 1995; Lagache et al. 1998, 1999; Finkbeiner, Davis & Schlegel 1999).

For our purposes it is convenient to use the analysis of the COBE group (Reach et al. 1995), whose figure 7 shows clearly the excess component in the direction $|b| < 3^\circ$, $\ell = 45^\circ$, as a function of frequency. This component has cut-offs at 150 and 600 GHz. Its intensity near its peak ~ 1 MJy sr$^{-1}$, which converts to a total flux in this bandwidth 2×10^{-5} erg cm$^{-2}$ s$^{-1}$. All these properties agree well with those derived above for the far-infrared emission from MCs in this direction.

The same test can be carried out at high galactic latitude, but with less precision. In this case the EGRET data have been analysed by Dixon et al. (1998) to give for the photon flux above 1 GeV the range $10^{-6} - 10^{-5}$ photon cm$^{-2}$ s$^{-1}$. As we have seen, this flux has already been attributed to MCs by De Paolis et al. (1999a,b). The corresponding far-infrared flux would be in the range $6 \times 10^{-5} - 6 \times 10^{-4}$ erg cm$^{-2}$ s$^{-1}$. According to Reach et al. (1995) the excess far-infrared component at high latitudes ~ 0.03 of the value close to the galactic plane, that is, about 6×10^{-5} erg cm$^{-2}$ s$^{-1}$. This value just fits in with the range expected from the γ-ray data if MCs are the source of the high-latitude far-infrared excess.

A further possible observational test of the MC model concerns the far infrared emission from a single MC, which to many detectors would look like a point source. With 30 clouds pc$^{-3}$ close to the Sun, the nearest MCs would be less than a parsec away. In our model an average MC one parsec away would have a flux density S_{500} at 850 μm ~ 0.5 Jy. This would be a bright source for SCUBA, which observes at 850 μm (Holland et al. 1999), but unfortunately this detector has a very small field of view. In typical recent work areas $\sim 100 \text{arcmin}^2$ were surveyed (e.g. Barger, Cowie & Sanders 1999a). In such surveys point sources with S_{500} in the range 1–10 mJy were detected (for a review of these observations see Sanders 1999). Most of these sources are believed to be galaxies with red shifts greater than 1, although the identification process is a difficult one (Barger et al. 1999b; Richards 1999; Sanders 1999; Smail et al. 1999). The number of these galaxies with flux densities S_{500} exceeding a given limit is subject to very large evolutionary effects, of order 10^3, as a result of which less than 1 per cent of the point sources brighter than 1 mJy would be MCs. It would be difficult to identify these sources with sufficient completeness to pick out this small proportion of MCs. However, one way of testing for such a source would be to measure its flux density at 450 μm, which SCUBA can do. This wavelength is close to the temperature cut-off in the MC spectrum, so that for an MC $S_{500} \approx S_{500}$. By contrast, the few sources so far successfully measured at 450 μm, which presumably galaxies, have $S_{500} \approx 4 S_{500}$ (Blain et al. 1999; Eales et al. 1999).

For the future we note that Planck would easily be able to observe the nearby MCs with $S_{500} \sim 1$ Jy, and so test our prediction that there should be ~ 10 sources over the whole sky with $S_{500} > 1$ Jy. It could also carry out a study of the log N–log S relation of these sources and of their fluxes at other wavelengths such as 450 μm.

8 CONCLUSIONS

If the dark matter in the Galaxy consists mainly of molecular
clouds (MCs) and if cosmic rays can penetrate these clouds, there would be a number of observable consequences. This paper has discussed four such consequences for a favoured model of the clouds.

(i) Relativistic cosmic ray nuclei should have a survival time in the Galaxy $\sim 10^{11}$ s.

(ii) There should be an excess in the diffuse γ-ray flux in the galactic plane, for γ-ray energies exceeding ~ 1 GeV, of order 50 per cent over that owing to known sources.

(iii) There should be an excess in the diffuse far-infrared flux in the Galaxy over that radiated by warm dust. This excess flux should have a cut-off for wavelengths less than about 450 μm, and should decrease with galactic latitude. Its flux density at 850 μm close to the galactic plane at a longitude of 45° should be about 1 MJy sr$^{-1}$, corresponding to an energy flux $\sim 2 \times 10^{-2}$ erg cm$^{-2}$ s$^{-1}$.

(iv) The MCs would be discrete sources of far-infrared radiation, with about 10 sources in the sky having $S_{850} > 1$ Jy. These sources would be expected to exhibit a Euclidean log N--log S relation for uniformly distributed sources down to a flux level much less than 1 mJy, the present approximate limit of the SCUBA counts. However, at this lower flux level less than 1 per cent of the observed sources at 850 μm should be MCs (because of large evolution effects in the extragalactic sources). The MCs would be characterised by having $S_{850} \simeq S_{450}$, unlike galaxies which have $S_{850} \simeq \frac{1}{4} S_{50}$.

The first three of these consequences are in agreement with observation. The fourth consequence is not contradicted by the present SCUBA data, and can be tested by forthcoming measurements such as those planned for the Planck surveyor.

ACKNOWLEDGMENTS

I am grateful for very helpful discussions to the following people: B. T. Draine, L. Danese, G. de Zotti, G. B. Field, D. P. Finkbeiner, T. J. W. Lazio, M. Roncadelli, D. J. Schlegel, J. Silk and M. Walker, and to the referee, A. W. Wolfendale, for his valuable comments. I am also grateful to MURST for their financial support of this work.

REFERENCES

Barger A. J., Cowie L. L., Sanders D. B., 1999a, ApJ, 518, L5
Barger A. J. et al., 1999b, AJ, 117, 2656
Benson A., Smialkowski A., Wolfendale A. W., 1999, Astropart. Phys., 10, 313
Berezinskii V. S., Bulanov S. V., Dogiel V. A., Ginzburg V. L., Pushin V. S., 1990, in Ginzburg V. L., ed., Astrophysics of Cosmic Rays. North-Holland, Amsterdam
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton
Blain A. W., Kneib J.-P., Ivison R. J., Smail I., 1999, ApJ, 512, L87
Cesarsky C. J., Volk H. J., 1978, A&A, 70, 367
Cesarsky C. J., 1980, ARA&A, 18, 289
Comeron F., Torra J., 1992, A&A, 261, 94
Creze M., Chereul E., Bienayme O., Pichon C., 1998, A&A, 329, 920
De Paolis F., Ingrosso G., Jetzer Ph., Roncadelli M., 1995, Phys. Rev. Lett., 74, 14
De Paolis F., Ingrosso G., Jetzer Ph., Roncadelli M., 1999a, ApJ, 510, L103
De Paolis F., Ingrosso G., Jetzer Ph., Roncadelli M., 1999b, preprint (astro-ph/9906083)
Dixon D. D. et al., 1998, New Astron., 3, 539
Draine B. T., 1998, ApJ, 509, L41
Eales S. et al., 1999, ApJ, 515, 518
Erlykin A. D., Wolfendale A. W., Zhang L., Zielinska M., 1996, A&AS, 120, 397
Fatoohi L. J., Giller M., Wdowczyk J., Wolfendale A. W., Zhang L., 1996, A&AS, 120, 407
Fielder R. L., Dennison B., Johnston K. J., Hewish A., 1987, Nat, 326, 675
Finkbeiner D. P., Davis M., Schlegel D. J., 1999, ApJ, 524, 867
Fukugita M., Hogan C. J., Peebles P. J. E., 1998, ApJ, 503, 518
Gerhard O., Silk J., 1996, ApJ, 472, 34
Giallongo E., Fontana A., Madau P., 1997, MNRAS, 289, 629
Holland W. S. et al., 1999, MNRAS, 303, 659
Holmberg J., Flynn C., 1998, preprint (astro-ph/9812404)
Hunter S. D. et al., 1997, ApJ, 481, 205
Lagache G., Abergel A., Boulanger F., Puget J.-L., 1998, A&A, 333, 709
Lagache G., Abergel A., Boulanger F., Desert F. X., Puget J. L., 1999, A&A, 344, 322
Lebrun F., Paul J. A., 1978, A&A, 65, 187
Meinhold P. et al., 1993, ApJ, 409, L1
Mori M., 1997, ApJ, 478, 225
Neufeld D. A., Lepp S., Melnick G. J., 1995, ApJS, 100, 132
Ortiz-Gil A., Lanzetta K. M., Webb J. K., Barcons X., Fernandez-Soto A., 1999, ApJ, 523, 720
Page L. A., Cheng E. S., Meyer S. S., 1990, ApJ, 355, L1
Pfenniger D., Combes F., Martinet L., 1994, A&A, 285, 79
Pham H. A., Perryman M. A. C., Bernacca P. L., 1997, Hipparcos, Venice 1997. ESA SP-402, 559
Ramana Murthy P. V., Wolfendale A. W., 1993, Gamma Ray Astronomy, 2nd edn. Cambridge Univ. Press, Cambridge
Rauch M., Haehnelt M. G., 1995, MNRAS, 275, L76
Reach W. T. et al., 1995, ApJ, 451, 188
Review of Particle Physics 1996, Phys. Rev D, 54, 1
Richards E. A., 1999, ApJ, 513, L9
Sackett P. D., 1999, in Merritt D. R., Valluri M., Sellwood J. A., eds, ASP Conf. Ser. Vol. 182, Galaxy Dynamics. Astron. Soc. Pac., San Francisco, p. 433
Sanders D. B., 1999, preprint (astro-ph/9904292)
Santillan A., Franco J., Martos M., Kim J., 1999, ApJ, 515, 657
Sciama D. W., Harvey A., 1999, On Einstein’s Path. Springer, New York, p. 443
Simpson J. A., 1983, Ann. Rev. Nucl. Particle Sci., 33, 359
Simpson J. A., Connell J. J., 1998, ApJ, 497, L85
Smail I. et al., 1999, MNRAS, 308, 1061
Songaila A., 1997, ApJ, 490, L1
Sternberg A., Dalgarno A., 1995, ApJS, 99, 179
Stark A., Dalgarno A., 1995, ApJ, 497, 23
Strong A. W., Moskalenko I. V., Reiner O., 1998, preprint (astro-ph/9811296)
Tenorio-Tagle G., Franco J., Bodenheimer P., Rozyczka M., 1987, A&A, 179, 219
Walker M., Wardle M., 1998, ApJ, 498, L125
Walker M., Wardle M., 1999, preprint (astro-ph/9907023)
Webber W. R., 1998, ApJ, 506, 329
Webber W. R., Soutoul A., 1998, ApJ, 506, 335
Wolfendale A. W., 1993, Adv. Space Res., 13, 687

This paper has been typeset from a TeX/LaTeX file prepared by the author.