Scaling Limit for Stochastic Control Problems in Population Dynamics

Paul Jusselin1 · Thibaut Mastrolia2

Accepted: 11 March 2023 / Published online: 10 April 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Going from a scaling approach for birth/death processes, we investigate the convergence of solutions to Backward Stochastic Differential Equations driven a sequence of converging martingales. We apply our results to non-Markovian stochastic control problems for discrete population models. In particular we describe how the values and optimal controls of control problems converge when the models converge towards a continuous population model.

Keywords Stochastic control · Population models · Birth and death processes · Backward stochastic differential equation (BSDE) · Stability of BSDEs · Martingale properties

1 Introduction
The sustainability of natural resources has become a major subject of interest in the last decades for public institutions. For instance, in 1983 the European Union has launched its common fisheries policy to manage European fish stocks. In August 2010, a report of European commission named Water Scarcity and Drought in the European Union, has emphasized that “an adequate supply of good-quality water is a pre-requisite for economic and social progress, so we need to do two things: we must learn to save water, and also to manage our available resources more efficiently”. A large part of academic literature has dealt with such issues. For example, Reed in [1], Clarke and Kirkwood in [2], Regnier and De Lara in [3] or Tromer and Doyen in [4] have studied the exploitation of a natural resource under uncertainty on its evolution.
in a multi-period model. May et al. in [5] have considered the problem by assuming that the intrinsic population growth rate is given by the difference between recruitment and mortality for general recruitment functions. These models have been extended to stochastic differential equations driven by a Brownian motion (see for instance the work of Saphores [6]). Evans et al. in [7] or more recently Kharroubi et al. in [8] have modelled the dynamic of the natural resource as the solution of the logistic stochastic differential equation to solve a control problem under interaction between species and delayed renewal of the resource. We also refer to the book [9] for stochastic and deterministic models and resource management problems. All the models mentioned above use a Brownian motion to describe the uncertainty of the system evolution. We refer to this class of model as *continuous models*. On the other side of the literature, Getz in [10] has studied control problems related to a birth/death process. This work has been extended more recently by Claisse in [11] to branching processes. We refer to those models as *discrete models*.

It is well known that some continuous population models can be seen as scaling limits of discrete models, see for example the work of Bansaye and Méléard in [12]. Hence continuous models can be considered as good approximations of the macroscopic evolution of a population size. Therefore it is relevant to consider continuous models for resources management purposes. Moreover those models are attractive from a tractability viewpoint compared to discrete models. Indeed solving control problems in Brownian driven model essentially boils down to solve a partial differential equation. Whereas for discrete models it leads to a finite difference equation (or integral-partial differential equation for more complex population models), which are often more complex to solve explicitly. Yet the remaining question is the relevancy of designing a management policy based on a continuous modeling while the controlled population (or resource) is naturally discrete.

To try to give an answer to this question we are going to consider a sequence of discrete population models that converges towards a continuous population model. For each of those models we consider a control problem. Each of them are the natural adaptations of the same control problem to the different models. Therefore we expect the solutions of the discrete control problems to converge towards the solution of the continuous limit problem. From Γ-convergence results adapted to stochastic control problems as in for instance the articles of Buttazzo and Del Maso [13] and Belloni et al. [14], we expect to have convergence of value functions (see also for instance [15, Theorem 10.22]) and a kind of weak convergence of optimal controls (see for instance [14, Proposition 2.8]). This is emphasized in a toy model (see Sect. 3) where besides convergence of the value functions we also get convergence in law of the state process under the optimal control. In this paper we prove the convergence of the controls as sequence of processes. This is stronger than Γ-convergence. Since we aim at dealing with non-Markovian stochastic control problems our problematic is to prove the convergence of solutions to a sequence of Backward Stochastic Differential Equations (BSDE for short) driven by a sequence of converging martingales.

We know from the seminal paper of Donsker [16] that a scaling in time procedure leads to the weak convergence of a random walk to a Brownian motion. Pardoux in [17, 18] has studied the weak convergence of Markovian BSDE driven by Brownian motions.
Extending this result to the theory of non-Markovian BSDE with fixed time horizon $T > 0$, Briand et al. in [19] have provided a time discretization of the Brownian motion to get the convergence of a time discretized BSDE. More precisely, they consider a sequence of random walks $(W^n)_{n \geq 0}$ converging towards a Brownian motion W. Then they prove the convergence of the solutions of a sequence of BSDEs driven the $(W^n)_{n \geq 0}$ towards the solution of a BSDE driven by W. The main idea is to prove the convergence of the terms involved in the martingale representation with respect to W^n when n goes to infinity. For this they use the convergence, in the sense of Coquet et al. [20], of the filtrations associated to each of the $(W^n)_{n \geq 0}$ towards the natural filtration associated to W. Those results have been extended in [21] to a more general situation, without assuming that W^n has a predictable representation property, but assuming that the brackets of the martingales $(W^n)_{n \geq 0}$ are uniformly bounded.

In the present paper we aim to extending both the results of [19] and [17] to a wider class of martingale convergence. Starting from a scaling result in [12] showing that a sequence of scaled birth/death processes $(X^K)_{K \in \{1, 2, \ldots\}}$ with scaling parameter $K > 0$ converges in law to the solution X of a stochastic Feller diffusion, we begin to extend it to more general birth and death intensities. We then consider a sequence of BSDEs of the form

\[(B)_K: Y^K_t = \xi^K + \int_t^T g^K(X^K_s, Y^K_s, Z^K_s) \cdot \phi^K_s \, dA^K_s - \int_t^T Z^K_s \cdot dM^K_s,\]

where ξ^K is some general terminal random condition, g^K the generator of the BSDE, M^K a two dimensional martingale associated to the population model X^K and $\phi^K \, dA^K$ denotes the measure associated to the angle bracket of M^K. We also consider the continuous counterpart of $(B)_K$,

\[(B): Y_t = \xi + \int_t^T g(X_s, Y_s, Z_s) \, dA_s - \int_t^T Z_s \, dM^X_s,\]

where ξ is some terminal condition, g is the generator of the BSDE, M^X is a one dimensional martingale related to the diffusion term of X and A is its angle bracket. The existence and uniqueness of solutions to such BSDEs driven by general martingales have been studied, for instance, by El Karoui and Huang in [22], Confortola and Fuhrman in [23], Bandini in [24] or more recently by Papapantoleon et al. in [25] in a general framework. Inspired by [21], we prove that the solution of $(B)_K$ converges to the solution of (B) when $(\xi^K)_{K \in \{1, 2, \ldots\}}$ converges toward ξ and $(g^K)_{K \in \{1, 2, \ldots\}}$ towards g. The difficulty pointed at this step, compared to [21], is that the brackets of the $(M^K)_{K \in \{1, 2, \ldots\}}$ are not bounded. Therefore we need a stronger assumption on the convergence of the sequence of terminal conditions. The methods used are related to the so-called martingale problem as stated by Jacod and Shiryaev in [26] and to the double-Picard iterations craftily used in [21].
1.1 Main Contributions

Compared to [17–19, 21], our approach deals with more general martingale terms, beyond the Brownian case, and beyond the convergence of a time discretization of the BSDE. This paper is also more focused on application in stochastic control problems, dealing with concrete example in population dynamic and resource management.

Finally we would like to point that we have learnt that a paper of Papapantoleon et al. dealing with convergence of BSDEs for a very general class of martingales is in progress and preliminary results in the one dimensional case are written in the PhD Thesis of Alexandros Saplaouras. Our results on BSDE are however not covered by the results in this PhD thesis since we prove that a BSDE driven by a two dimensional martingale converges to a BSDE driven by a one dimensional Brownian motion. Hence, our paper proves that the dimensionality of the underlying BSDE is reduced during the considered scaling procedure.

The structure of the paper is the following. In Sect. 2 we study the convergence of a rescaled birth/death process to the solution of a stochastic Feller type SDE by extending [12] to more general dynamics (see Theorem 1). We also provide fundamental properties of our state processes such as exponential moments (see Proposition 1 and Corollary 1). Section 3 introduces a toy model motivating our study and illustrated with numerical simulations. In Sect. 4 we first provide a convergence result for a sequence of martingale representations (see Proposition 2). Then in Theorem 2 we extend the convergence result of [21] by showing that the solutions to $(B)_K$ converge to the solution of (B). In Sect. 5 from our BSDE approach we deduce convergence of the values and optimal controls to a sequence of control problems. Our results go beyond Γ-convergence since we obtain a strong form of convergence for the optimal controls. Section 6 gives the main proofs of our results. Minor proofs are given in the appendix.

The technical spaces considered related to discrete and continuous models are defined in Appendix A. We provide below the notations for classical spaces used in this paper.

1.2 Classical Spaces

- L^p the set of real valued random variable Z such that

$$\|Z\|_{L^p}^p = \mathbb{E}[|Z|^p] < +\infty$$

- S^p_d is the set of \mathbb{F}-predictable \mathbb{R}^d valued process X such that

$$\|X\|_{S^p_d}^p = \mathbb{E}\left[\sup_{t \in [0,T]} \|X_t\|^p \right] < +\infty.$$
2 From a Discrete to a Continuous Population Model

In this section we define a sequence of discrete population models. We show that this sequence converges in law towards a continuous Feller population model by extending [12, Theorem III–3.2] to more general population dynamic models. From now on, we fix a finite time horizon \(T > 0 \).

2.1 Definition of the Discrete Population Models

We consider positive continuous functions \(f^b, f^d \) and \(\sigma \) defined from \(\mathbb{R} \) into \(\mathbb{R}^+ \) that satisfy the following standing assumption.

Assumption 1

(i) The functions \(f^b, f^d \) and \(\sigma \) are null on \(\mathbb{R}^- \), non-decreasing\(^1\) on \(\mathbb{R}^+ \), and there exists non negative constants \(\nu, \mu, \eta \) such that for any \(x \in \mathbb{R}^+ \)

\[
 f^b(x) \leq \nu x, \quad f^d(x) \leq \mu x, \quad \eta x \leq \sigma^2(x) \leq \eta(1 + x),
\]

(ii) \(f := f^b - f^d \) and \(\sigma^2 \) are Lipschitz continuous.

We note \(\Omega_d \) the set of right-continuous nondecreasing functions from \([0, T] \) into \(\mathbb{N} \) with a finite number of jumps, each positive and of size 1. We consider \(\mathbb{F} \) the natural filtration associated to a bivariate point process \((T_i)_{i \geq 1} \) with marks \((\xi_i)_{i \geq 1} \) in the set \(E = \{b, d\} \) in the sense of [27, Section 1]. We define a 2-dimensional point process \(N = (N^b, N^d) \) on \(\Omega_d^2 \) such that \(N^b \) (resp. \(N^d \)) is a point process with jump \(T_i \) when \(\xi_i = b \) (resp. \(\xi_i = d \)).

For a fixed positive integer \(K \in \{1, 2, \ldots\} \) and \(n \geq 0 \) we define a population model on the stochastic basis \((\Omega_d^2, \mathbb{F})\). The initial population is \(Kn \) and the processes \(N^b \) and \(N^d \) represent respectively the number of birth and death in the population. This means that when the process \(N^b \) jumps there is a new individual in the population and when \(N^d \) jumps there is one individual less in the population. Therefore at time \(t \) the population size is \(Kn + N^b_t - N^d_t \). As we are interested in the large population limit (which corresponds to \(K \) large) we consider the rescaled population process

\[
 X^{K,n} = n + \frac{N^b - N^d}{K}.
\]

We define the birth intensity in the model with parameter \(K \) and initial population \(n \) as

\[
 \lambda^{K,n,b}_t = \lambda^{K,b}(X^{K,n}_t) := f^b(X^{K,n}_{t-})K + \frac{\sigma^2(X^{K,n}_{t-})}{2}K^2.
\]

\(^1\) The non-decreasing property of \(f^b \) and \(f^d \) is due to the nature of the problem investigated. It can be mathematically relaxed without any impact on the study.
and the intensity of death
\[\lambda_{t}^{K,n,d} = \lambda^{K,d}(X_{t}^{K,n}) := f^{d}(X_{t}^{K,n})K + \frac{\sigma^{2}(X_{t}^{K,n})}{2}K^{2}. \]

Remark 1 Note that \(f^{b}(x) = \mu x \), \(f^{d}(x) = \nu x \) and \(\sigma^{2}(x) = \sigma^{2}x \) satisfy Assumption 1. Consequently, the model studied in Theorem III–3.2 in [12] is included in the scope of this paper. This framework is moreover consistent in view of the results in [28, Example 4].

Following Theorem 3.6 in [27] together with [28, Theorem 3.2] there exists a unique probability measure \(\mathbb{P}^{K,n} \) on \((\Omega_{d}^{2}, \mathbb{F})\) such that the processes
\[M_{t}^{K,n,i} = N_{t}^{i} - \int_{0}^{t} \lambda_{s}^{K,n,i}ds, \text{ for } i \in \{b, d\} \]
are local martingales. Note that if \(m \geq n \geq 0 \) then \(\mathbb{P}^{K,n} \) is absolutely continuous with respect to \(\mathbb{P}^{K,m} \) and following Theorem 4.5 in [27] we have
\[\frac{d\mathbb{P}^{K,n}}{d\mathbb{P}^{K,m}} = L_{t}^{n,m} \]
where
\[dL_{t}^{n,m} = L_{t}^{n,m} \left(\sum_{i \in \{b, d\}} \frac{\lambda_{t}^{K,n,i} - \lambda_{t}^{K,m,i}}{\lambda_{t}^{K,m,i}} \mathbb{1}_{X_{t}^{K,m} > 0}dM_{t}^{K,m,i} \right) \text{ with } L_{0}^{n,m} = 1. \]

We justify this change of measure in Appendix B.

For the rest of this work we fix an initial population \(x_{0} \in \mathbb{N} \) and do not write anymore the superscript \(x_{0} \) to lighten the notations. The rescaled population process is now noted
\[X^{K} = x_{0} + \frac{N^{b} - N^{d}}{K}. \]

We also introduce the stopping time \(\tau^{K} \) at which \(X^{K} \) becomes zero,
\[\tau^{K} := \inf \{ t \geq 0, \ X^{K}_{t} = 0 \}. \]

Note that this time is well-defined since
\[X^{K}_{t} = 0 \iff x_{0} + \frac{N_{t}^{b} - N_{t}^{d}}{K} = 0 \iff N_{t}^{b} - N_{t}^{d} = -x_{0}K. \]
In particular the sequence of stopping time \((\tau^K)_{K \in \{1,2,\ldots\}}\) is increasing for all paths. We then define \(T^K := T \wedge \tau^K\) as the admissible time horizon time horizon. We write \(\mathbb{E}\) instead of \(\mathbb{E}^{\mathbb{P}_K}\) when there is no ambiguity on the probability used. For any \(K\) we consider the processes \(M^K = (M^K,b, M^K,d)\), \(\lambda^K = \lambda^K,b - \lambda^K,d\) and for \(i \in \{b,d\}\)

\[
\Lambda^K_{t,i} = \int_0^t \lambda^K_{s,i} K^{-2} \, ds, \quad N^K_{t,i} = N^{i}\frac{K^{-2}}{K} \quad \text{and} \quad M^K_{t,i} = M^{i}\frac{K^{-1}}{K}.
\]

We note \(\overline{M}^{K} = (\overline{M}^{K,b}, \overline{M}^{K,d})\).

2.2 Scaling Limit of the Sequence \((X^K)_{K \in \{1,2,\ldots\}}\)

Intuitively, and having in mind [12, Theorem 3.2], a continuous version of the processes \((X^K)_{K \in \{1,2,\ldots\}}\), denoted by \(X\), would be an Ito diffusion with drift equal to \(f (X)\) and volatility given by \(\sigma^2 (X)\). We formalize this intuition in the following result which extends [12, Theorem 3.2]. The proof is given in Sect. 6.1.

Theorem 1 The sequence \((X^K, \overline{M}^{K}, \overline{N}^{K,b}, \overline{N}^{K,d}, \overline{\lambda}^{K,b}, \overline{\lambda}^{K,d})_{K \in \{1,2,\ldots\}}\) converges in law for the Skorokhod topology towards \((X, M, A, A, A, A)\) such that

(i) There exists a bi-dimensional Brownian motions \((B^b, B^d)\) satisfying

\[
M_t = \int_0^t \frac{\sigma (X_s)}{\sqrt{2}} \, d(B^b_s, B^d_s),
\]

(ii) With \(B = (B^b + B^d)/\sqrt{2}\), the process \(X\) is the unique strong solution of

\[
(S) : \quad X_t = x_0 + \int_0^t f (X_s) \, ds + \sigma (X_s) \, dB_s,
\]

(iii) \(A = \int_0^t \sigma^2 (X_s) \, ds\).

Moreover, there exists a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and a sequence \((N^{K,d}, N^{K,b})_{K \in \{1,2,\ldots\}}\) such that for any \(K \in \{1,2,\ldots\}\), \((N^{K,d}, N^{K,b})\) has the law of \((N^d, N^b)\) under \(\mathbb{P}^K\). Moreover on this space the sequence

\[
(X^K, \overline{M}^{K}, \overline{N}^{K,b}, \overline{N}^{K,d}, \overline{\lambda}^{K,b}, \overline{\lambda}^{K,d})_{K \in \{1,2,\ldots\}}
\]

converges in \(S^2_1 \times S^2_2 \times S^1_1 \times S^1_1 \times S^1_1 \times S^1_1\) to \((X, M, A, A, A, A)\) when \(K\) goes to \(+\infty\).

According to the last point of Theorem 1 from now on we work under the probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and we consider that the processes \((X^K, \overline{M}^{K}, \overline{N}^{K,b}, \overline{N}^{K,d}, \overline{\lambda}^{K,b}, \overline{\lambda}^{K,d})_{K \in \{1,2,\ldots\}}\) and \((X, M, A, A, A, A)\) are defined on this space. For any \(K\) we note \(\mathbb{P}^K\) the natural filtration associated to \(X^K\) and \(\mathbb{P}^X\) the natural filtration associated to \(X\).
Before going to the next section, we define some processes that we will extensively use in the rest of the paper. We note for $i \in \{b, d\}$

$$M_i^t := \int_0^t \frac{\sigma(X_s)}{\sqrt{2}} dB_i^s,$$

so that $M = (M^d, M^b)$ and $M^X := M^b + M^d$ that is written

$$M^X_t = \int_0^t \sigma(X_s) dB_s.$$

We also consider the processes

$$A^K_t := \int_0^t \frac{\lambda^K_{s,b} + \lambda^K_{s,d}}{K^2} ds, \quad p^K_{t,b} := \frac{\lambda^K_{s,b}}{\lambda^K_{s,b} + \lambda^K_{s,d}}, \quad \text{and} \quad p^K_{t,d} := \frac{\lambda^K_{s,d}}{\lambda^K_{s,b} + \lambda^K_{s,d}}.$$

Note that under the probability \mathbb{P}^K the random measure m associated to the process (N^b, N^d) interpreted as a compound jump process with values in $E = \{b, d\}$ admits as predictable compensator measure

$$\pi^K((de, dt)) = (\phi^K_{t,b}(de) + \phi^K_{t,d}(de)) dA^K_t$$

with $\phi^K_{t,i} = (\phi^K_{t,b}, \phi^K_{t,d}) = (p^K_{t,b}, p^K_{t,d}) K^2$ and where δ_i denotes the Dirac measure at point $i \in \{b, d\}$. This point of view is introduced in order to draw a parallel with the framework of [23] to which we will refer extensively in Sect. 4.2.

2.3 Uniform Exponential Moments

Finally we show that the sequence of processes $(X^K, \int_0^t X^K_s ds)$ admits exponential moments uniformly in K if σ^2 is linear. The proof of this result is postponed in Appendix F.

Proposition 1 If there exists a positive constant σ such that $\sigma^2(x) = \sigma^2 x$ there exists some positive constants β_0, K_0 and T such that for any $s \leq T$ we have

$$\sup_{K \geq K_0} \mathbb{E} \left[\exp \left(\beta_0 \int_0^s X^K_u du + \beta_0 X^K_s \right) \right] < \infty.$$

Without loss of of generality we assume that $K_0 = 0$. From now we fix a positive constant β strictly smaller than β_0. As a consequence of Proposition 1, for any integer q we have for any $s \leq T$

$$\sup_{K \in \{1, 2, \ldots \}} \mathbb{E} \left[\exp \left(\beta \int_0^s X^K_u du + \beta X^K_s \right) (1 + |X^K_s|^q) \right] < +\infty.$$
and

\[
\sup_{K \in \{1, 2, \ldots \}} \mathbb{E} \left[\int_0^T \exp \left(\beta \int_0^s X^K_u \, du + \beta X^K_s \right) \left(1 + |X^K_s|^q \right) ds \right] < +\infty.
\]

We deduce from Fatou’s Lemma together with Proposition 1 that \(X\) inherits from the exponential moments of \(X^K\) as stated in the following corollary.

Corollary 1 If there exists \(\sigma\) positive such that \(\sigma^2(x) = \sigma^2 x\) there exists some positive constants \(\beta_0\) and \(T\) such that for any \(s \leq T\) we have

\[
\mathbb{E} \left[\exp \left(\beta_0 \int_0^s X_u \, du + \beta_0 X_s \right) \right] < \infty.
\]

In order to benefit from those exponential moments we now assume that \(\sigma^2(x) = \sigma^2 x\) for some positive constant \(\sigma\) fixed.

3 Illustration of the Study on a Toy Model

In this section, we illustrate the \(\Gamma\)-convergence result applied to optimization problems in population dynamics. We consider specific parameters \(f^d\), \(f^b\) and a sequence of control problems for which we are able to make explicit computations. Then, we show that the sequence of optimal controls converges in law to the optimal control of a continuous problem. In this section, we aim at providing the general main ideas of the paper rather than being perfectly accurate. Rigorous statements will be given in Sect. 5.

3.1 Discrete Populations Models

We consider a discrete birth/death model as studied in [12] by choosing:

- The initial population \(x_0 \in \mathbb{N}\),
- The birth rate \(f^b(x) = \nu x\) for some \(\nu > 0\),
- The death rate \(f^d(x) = \mu x\) for some \(\mu > 0\),
- A volatility \(\sigma(x) = \sigma^2 x\) for some \(\sigma > 0\).

Recall from Remark 1 and from [12, Theorem 3.2] that \((X^K_t)_{t \in [0, T]}\) converges in law for the Skorokhod topology towards the continuous diffusion process \((X_t)_{t \in [0, T]}\) solution of the Feller stochastic differential equation

\[
\frac{dX_t}{X_t} = (\nu - \mu) X_t \, dt + \sigma \sqrt{X_t} \, dW_t,
\]

for \(W\) a Brownian motion.

In this toy model, we assume that a resource manager regulates the population \(X^K\) through an \(\mathbb{P}^K\)-predictable control \(\alpha\). A control \(\alpha\) is admissible if
There exists a unique law \(P^{K,\alpha} \) under which the death intensity of the population is

\[
\lambda_{t}^{K,d,\alpha} := K X_{t}^{K} \left(\mu + K \frac{\sigma^{2}}{2} \right) + K X_{t}^{K} \alpha_t,
\]

and the birth intensity is \(\lambda_{t}^{K,b} \). When this probability exists, it is the law of the population under the control \(\alpha \).

\(\lambda_{t}^{K,d,\alpha} \) is a non negative process \(P^{K,\alpha} \) almost surely.

We denote by \(A^{K} \) the set of admissible controls.

The agent is assumed to be penalized if he fails at reaching a fixed level \(\bar{x} > 0 \) of the resource at time \(T \) determined by a regulator. We model this penalization by the square of the difference between the effective population size at time \(T \) and the target \(\bar{x} \). So that the manager pays \(\gamma (X_{T}^{K} - \bar{x})^{2} \) at time \(T \) where \(\gamma \) is a positive constant. The manager payoff is also assumed to be penalized by the instantaneous amount \(\frac{|\alpha_{t} X_{t}^{K}|^{2}}{2} \) per unit of time when its effort is \(\alpha \). The problem of the resource manager is thus to solve

\[
(TM)_{K} : \quad V_{0}^{K} = \sup_{\alpha \in A^{K}} \mathbb{E}^{K,\alpha} \left[-\gamma (X_{T}^{K} - \bar{x})^{2} - \int_{0}^{T} \frac{(\alpha_{s} X_{s}^{K})^{2}}{2} \, ds \right]
\]

where \(\mathbb{E}^{K,\alpha} \) denotes the expectation taken under the probability \(\mathbb{P}^{K,\alpha} \). We assume that \(\sigma^{2} > 2\gamma \bar{x} \) and \(\gamma < \mu \).

To solve this problem, as usual in stochastic control theory, we study the corresponding Hamilton–Jacobi–Bellman (HJB for short) equation and use a verification argument. The HJB equation associated to the control problem \((TM)_{K}\) is

\[
(HJB)_{K} \left\{ \begin{array}{ll}
\partial_{t} U^{K} (t, x) + H^{K} (x, D_{+}^{K} U^{K} (t, x), D_{-}^{K} U^{K} (t, x)) = 0, \\
(t, x) \in [0, T) \times (\mathbb{N}^{*}/K), \\
U^{K} (T, x) = -\gamma (x - \bar{x})^{2}, \quad x \in (\mathbb{N}^{*}/K),
\end{array} \right.
\]

with Hamiltonian \(H^{K} \) given by

\[
H^{K} (x, p_{+}, p_{-}) = \sup_{\alpha} \left\{ K x \left(\nu + \frac{\sigma^{2}}{2} K \right) p_{+} + K x \left(\mu + \alpha + \frac{\sigma^{2}}{2} K \right) p_{-} - \frac{(\alpha x)^{2}}{2} \right\},
\]

and where

\[
D_{+}^{K} U^{K} (t, x) = U^{K} (t, x + 1/K) - U^{K} (t, x)
\]

and \(D_{-}^{K} U^{K} (t, x) = U^{K} (t, x - 1/K) - U^{K} (t, x) \).
The maximizer of the Hamiltonian is \(\alpha^{K,*} = \frac{Kp_x}{\lambda}1_{x>0} \), hence

\[
H^K(x, p_+, p_-) = Kx \left(v + \frac{\sigma^2}{2} K \right) p_+ + Kx \left(\mu + \frac{\sigma^2}{2} K \right) p_- + \frac{(Kp_x)^2}{2} 1_{x>0}.
\]

Note that we do not actually care about the value of the control when \(x = 0 \) since if the population reaches 0, it is stuck at this value. The partial differential equation (PDE for short) \((HJB)_K\) is quadratic, so we search for a solution under the form

\[
U^K(t, x) = a_K(t)x^2 + b_K(t)x + c_K(t).
\]

Identifying the monomials, we get that \(U^K \) is solution of \((HJB)_K\) if and only if \((a_K, b_K, c_K)\) is solution of the following systems of ODEs:

\[
\begin{align*}
\frac{da_K}{dt}(t) + 2a_K(t)(v - \mu) + 2a^2_K(t) &= 0, \\
b_K(t) - 2a_K(t)\left(\frac{a_K(t)}{K} - b_K(t)\right) + a_K(t)\left(\sigma^2 + \frac{\mu + v}{K}\right) + b_K(t)(v - \mu) &= 0, \\
c_K(t) + \frac{1}{2}\left(\frac{a_K(t)}{K} - b_K(t)\right)^2 &= 0,
\end{align*}
\]

By Cauchy–Lipschitz theorem this system admits a unique solution. Thus the optimal effort of the agent is

\[
\alpha^{K,*} = \frac{1}{X^K_t} \left(\frac{a_K(t)}{K} - 2X^K_t a_K(t) - b_K(t) \right) 1_{X^K_t > 0}
\]

and the corresponding death intensity is given by

\[
\lambda^{K,d,\alpha^{K,*}}_t = K X^K_t \left(\mu + \frac{\sigma^2}{2} \right) + \left(-2X^K_t a_K(t) + \frac{a_K(t)X^K_t}{K} - b_K(t) \right) 1_{X^K_t > 0}.
\]

Note that in view of \((ODE)_K\) and since \(a_K(T) \) is negative and \(b_K(T) \) positive, there exists a \(T \) small enough, independent of \(K \), such that for any \(K \) the control \(\alpha^{K,*} \) is in \(A^K \). We refer to Appendix C for more details on this point. We assume that we are considering such short enough time horizon here.

3.2 Continuous Populations Model

We now turn to the continuous version of the control problem. We assume that the manager controls the drift term in (2) through an \(\mathbb{F}^X_t \)-predictable process \(\alpha \). We say that \(\alpha \) is an admissible control when the following SDE admits a unique weak solution

\[
dX_t = (v - \mu - \alpha_t)X_t dt + \sigma \sqrt{X_t}dW_t.
\]

When such solution exists we note \(\mathbb{P}^\alpha \) its law that is the law of the population under the control \(\alpha \). We denote by \(A \) the set of admissible controls.
The control problem in the continuous framework is written

\[(TM): \quad V_0 = \sup_{\alpha \in A} \mathbb{E}^\alpha \left[-\gamma (X_T - \tilde{x})^2 - \int_0^T \frac{(\alpha_s X_s)^2}{2} ds \right]. \]

The associated HJB equation is given by

\[(HJB): \begin{cases} \partial_t U(t, x) + H(x, DU(t, x), \Delta U(t, x)) = 0, \quad (t, x) \in [0, T) \times \mathbb{R}^+, \\ U(T, x) = -\gamma (x - \tilde{x})^2, \quad x \in \mathbb{R}^+, \end{cases} \]

where the Hamiltonian \(H \) is

\[H(x, p, q) = \sup_\alpha \left\{ (v - \mu - \alpha)xp - \frac{|\alpha x|^2}{2} + \frac{1}{2} x \sigma^2 q \right\} = (v - \mu)xp + \frac{1}{2} x \sigma^2 q + \frac{p^2}{2} 1_{x > 0}. \]

The maximizer of the Hamiltonian is

\[\alpha^*(x, p) = -\frac{p}{x} 1_{x > 0}. \]

As previously, we are looking for a quadratic solution of the form

\[U(t, x) = a(t)x^2 + b(t)x + c(t). \]

Identifying the monomials, we get that \(U \) is solution of \((HJB)\) if and only if \((a, b, c)\) is solution of the following system of ODEs.

\[(ODE): \begin{cases} a'(t) + 2a(t)(v - \mu) + 2a^2(t) = 0, \quad a(T) = -\gamma, \\ b'(t) + 2a(t)b(t) + a(t)\sigma^2 + b(t)(v - \mu) = 0, \quad b(T) = 2\gamma \tilde{x}, \\ c'(t) + \frac{|b(t)|^2}{2} = 0, \quad c(T) = -\gamma \tilde{x}^2. \end{cases} \]

Hence, the optimal control is given by

\[\alpha^*_t = -\frac{DU(t, X_t)}{X_t} 1_{X_t > 0} = -\frac{2a(t)X_t + b(t)}{X_t} 1_{X_t > 0}. \]

Note that in view of \((ODE)\) and since \(a(T)\) is negative and \(b(T)\) positive, there exists a \(T\) small enough such that the control \(\alpha^*\) is in \(A\), see Appendix C for details. We assume that we are considering such time horizon here. We also note that \(a_K = a\) and as consequence of Grönwall Lemma \((b_K, c_K)_{K \in \{1, 2, \ldots\}}\) converges to \((b, c)\) when \(K\) goes to \(+\infty\). Consequently we get the convergence of the value of the control problems, \(\lim_{K \to +\infty} V_0^K = V_0\). Moreover a direct adaption of the proof of Theorem 1 gives the convergence in law of the optimally controlled population:
Fig. 1 Convergence of $(V^K_0)_{K \in \{1, 2, \ldots\}}$ towards V_0 with $\sigma^2 = 0.3$, $\mu = 0.1$, $\nu = 0.2$, $T = 0.1$, $x_0 = 50$, $\tilde{x} = 20$ and $\gamma = 1$

Fig. 2 Empirical distribution of the discrete optimal controls at time $t = 0.1$ for different values of K (in red) compared to the distribution of the continuous optimal control. The parameters are the same than in Fig. 1 (Color figure online)

$$\lim_{K \to +\infty} \mathbb{P}^{K, \alpha^*_K} = \mathbb{P}^{\alpha^*_*}.$$

Those convergences are illustrated in Figs. 1 and 2 respectively.

Remark 2 From [29], we note that the BSDE associated to the discrete problem $(\text{TM})_K$ and the one associated to the continuous problem (TM) are respectively given by

$$Y^K_t = \xi^K + \int_t^T \frac{(KZ^K_s)^2}{2} \mathbf{1}_{X^K_s > 0} dS - \int_t^T Z^K_s \cdot dM^K_s.$$
\[Y_t = \xi + \int_t^T \frac{Z_s^2}{2} 1_{X_s > 0} ds - \int_t^T Z_s \sigma \sqrt{X_s} dW_s. \]

with \(\xi^K = -\gamma (X^K_T - \Tilde{x})^2 \) and \(\xi = -\gamma (X_T - \Tilde{x})^2 \), so that

- (Value functions) \(V^K_0 = Y^K_0 \) and \(V^0 = Y^0 \);
- (Optimal controls) \(\alpha^K_t = -\frac{Z_t}{X^K_t} 1_{X^K_t > 0} \) and \(\alpha^*_t = -\frac{Z_t}{X_t} 1_{X_t > 0} \).

We have seen that \(Y^K_0 \) converges to \(Y^0 \) when \(K \) goes to \(+\infty \). Moreover, we have the convergence in law of the optimally controlled population corresponding roughly speaking to a weak convergence of the process \(Z^K \) toward \(Z \). In the following sections we aim at extending these results to more general BSDEs and control problems.

4 Convergence of BSDEs

In this section we prove the main results of this paper. We recall a convergence result of a sequence of martingale representations given in [30]. Then we extend it to the convergence of a sequence of BSDEs driven by the sequence of martingales \((M^K)_{K \in \{1, 2, \ldots \}} \).

4.1 Convergence of Martingale Representations

From Theorem 2 in [31] we know any \(\mathbb{F}^K \)-martingale has the representation property with respect to \(M^K \) (in the sense of Definition III–4.22 in [26]). Moreover we prove in Appendix E that any \(\mathbb{F}^X \)-martingale has the representation property relative to \(M^X \).

For any \(K \in \{1, 2, \ldots \} \) we consider \(\xi^K \in L^2 \) an \(\mathbb{F}^K \)-measurable real random variable and \(\xi \in L^2 \) an \(\mathbb{F}^X \)-measurable real random variable. We define the closed martingale \(Q^K \) by

\[
Q^K_t = \mathbb{E}[\xi^K | \mathcal{F}^K_t], \mathbb{P}-a.s.
\]

Since \(Q^K \) is an \(\mathbb{F}^K \)-martingale and \(\xi^K \in L^2 \), we know that there exists a unique process \(Z^K \in L^2(M^K) \) such that

\[
Q^K_t = \mathbb{E}[\xi^K | \mathcal{F}^K_t] = Q^K_0 + \int_0^t Z^K_s \cdot dM^K_s.
\]

Similarly considering the \(\mathbb{F}^X \)-martingale \(Q \) defined by \(Q_t = \mathbb{E}[\xi | \mathcal{F}_t], \mathbb{P} - a.s. \) since \(\xi \in L^2 \) we have existence and uniqueness of \(Z ^K \in L^2(M^K) \) such that

\[
Q_t = \mathbb{E}[\xi | \mathcal{F}^X_t] = Q_0 + \int_0^t Z_s dM_s^X.
\]

We have the following result similar to [30] adapted to our framework.

Proposition 2 (Martingale representations convergence) If the sequence \((\xi^K)_{K \in \{1, 2, \ldots \}} \) and \(\xi \) are in \(L^{2+\epsilon} \) and \((\xi^K)_{K \in \{1, 2, \ldots \}} \) converges towards \(\xi \) in \(L^{2+\epsilon} \) for \(\epsilon > 0 \) then

\[
\left(Q^K, \langle Q^K, Q^K \rangle, \langle Q^K, M^K \rangle \right) \rightarrow \left(Q, \langle Q, Q \rangle, \langle Q, M \rangle \right) \text{ as } K \rightarrow +\infty
\]

 Springer
in $S_1^{2+\varepsilon'} \times S_1^{1+\varepsilon'/2} \times S_2^{2+\varepsilon'}$ for any $\varepsilon' \in [0, \varepsilon)$.

The outline of the proof is given in Sect. 6.2.

Remark 3 Compared to Theorem 5 in [21] we have assumed that the convergence of $(\xi^K)_{K \in \{1, 2, \ldots\}}$ takes place in $L^2 + \varepsilon$ instead in L^2. This is in order to extend the convergence of $(\langle Q^K, M^K \rangle)_{K \in \{1, 2, \ldots\}}$ beyond S_1. If we indeed only assume that $\langle Q^K \rangle$ belongs to S_1 then $\langle Q^K, M^K \rangle$ is not squared integrable a priori. In [21] the authors do not face this issue by proving that the filtration of the scaled random walk converges weakly to the Brownian filtration, see [21, Proposition 3]. This result holds by assuming that the brackets of the martingales they consider are bounded, see Hypothesis (H1). This is no longer the case in our framework since the sequence $(\langle M^K \rangle_T)_{K \in \{1, 2, \ldots\}}$ is not bounded in general. However, if we instead consider a sequence of models with a bounded population then $(\langle M^K \rangle_T)_{K \in \{1, 2, \ldots\}}$ would be bounded. It may enable us to prove the weak convergence of the filtration and we might get the same result assuming only the L^2-convergence of $(\xi^K)_{K \in \{1, 2, \ldots\}}$.

4.2 Convergence of BSDEs

We now extend the previous result to convergence of a sequence of BSDEs driven by M^K.

For any $K \in \{1, 2, \ldots\}$ we consider an \mathcal{F}^K_T random variable ξ^K and two continuous functions g^K_b and g^K_d from \mathbb{R}^3 into \mathbb{R}. We write for $(x, y, z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^2$ $g^K(x, y, z) = (g^K_b(x, y, z^b), g^K_d(x, y, z^d))$.

Note that in the above equation, we implicitly use the decomposition $z = (z^b, z^d)$. We will always assume such convention when we are dealing with a pair of elements such that one element of the pair is related to the birth in the population and the other is related to the death.

We introduce the BSDE with generator g^K and terminal value ξ^K by setting

$$(B)_K: Y^K_t = \xi^K + \int_t^T g^K(x^K_s, y^K_s, z^K_s) \cdot dA^K_s - \int_t^T z^K_s \cdot dM^K_s.$$

Definition 1 A solution to BSDE $(B)_K$ is a pair of processes $(Y, Z) \in S^K$ such that the relation $(B)_K$ holds $\mathbb{P} - a.s.$.

As a consequence of Theorem 3.4 in [23] we have the following result.

Lemma 1 Assume that

(i) $\xi^K \in T^K$,

(ii) ...
(ii) There exists a positive constant L such that $\beta > L^2 + 2L$ and for any x, y, y', z, z' and $K \geq 0$ we have for $j \in \{b, d\}$

$$K^2 \left| g^K_j(x, y, z/K) - g^K_j(x, y', z'/K) \right| \leq L(\|y - y'| + \|z - z'|).$$

(iii) $g^K_j(X^K_t, 0, 0) \in \mathbb{H}^1$ for $j \in \{b, d\}$,

then the BSDE $(B)_K$ has a unique solution $(Y^K, Z^K) \in \mathbb{S}^K$.

We also introduce a class of BSDE driven by the martingale M^X. For an \mathcal{F}_T^X real valued random variable ξ and a continuous function g from \mathbb{R}^3 into \mathbb{R} we consider the BSDE

$$(B) : Y_t = \xi + \int_t^T g(X_s, Y_s, Z_s) dA_s - \int_t^T Z_s dM^X_s.$$

Definition 2 A solution to BSDE (B) is a pair of processes $(Y, Z) \in \mathbb{S}$ such that the relation (B) holds $\mathbb{P} - a.s.$

We get the following result on existence and uniqueness of solution to (B) which is a consequence of Theorem 6.1 in [22] or Theorem 2.1 in [32].

Lemma 2 Assume that

(i) $\xi \in \mathbb{T}$,

(ii) There exists a positive constant L such that $\beta > L^2 + 2L$ and for any x, y, y', z, z' we have:

$$|g(x, y, z) - g(x, y', z')| \leq L(\|y - y'| + \|z - z'|),$$

(iii) $g(X_t, 0, 0) \in \mathbb{H}$,

then the BSDE (B) has a unique solution $(Y, Z) \in \mathbb{S}$.

We are interested in the convergence of the solutions to $(B)_K$ when $(\xi^K)_{K \geq K}$ and $(g^K)_{K \in \{1, 2, \ldots\}}$ converge. Therefore we make the following converging assumptions on the drivers of the BSDEs $(B)_K$.

Assumption 2 (i) The sequence $(\xi^K)_{K \in \{1, 2, \ldots\}}$ converges towards $\xi \in \mathbb{T}$ in $L^{2+\varepsilon}$ for $\varepsilon > 0$,

(ii) There exists a positive constant C such that for any $x, x', y, z, K \in \{1, 2, \ldots\}$ and $j \in \{b, d\}$

$$K^2 \left| g^K_j(x, y, z) - g^K_j(x', y, z) \right| \leq C|x - x'|,$$
(iii) There exists a pair of continuous functions \((g_b, g_d)\) from \(\mathbb{R}^3\) and a positive sequence \((\nu_K)_{K \in \{1,2,\ldots\}}\) converging towards 0 such that for any \(K \geq 0, x, y\) and \(z\) we have for \(j \in \{b, d\}\):

\[
K^2 g_j^K(x, y, z/K) - g_j(x, y, z) \leq \nu_K(1 + x^2 + y^2 + \|z\|^2).
\]

Remark 4 Under Assumption 2 (iii) if for any \(K\) the pair \((g^K_b, g^K_d)\) satisfies assumptions (ii) and (iii) in Lemma 1 then the function \(g = (g_b + g_d)/2\) satisfies the assumptions (ii) and (iii) in Lemma 2.

For any \(K \in \{1,2,\ldots\}\) we consider \((Y^K, Z^K) \in \mathbb{S}^K\) the unique solution of \((B)_K\). We have the following convergence result for the sequence \((Y^K, Z^K)_{K \geq 0}\) whose proof is given in Sect. 6.3.

Theorem 2 Under Assumption 2 if the assumptions of Lemma 1 are satisfied for any \(K\) then the BSDE driven by \(M^X\) with generator \(g := \frac{g_b + g_d}{2}\) and terminal value \(\xi\) has a unique solution \((Y, Z)\) and we have the following convergence:

\[
\left(Y^K, \int_0^\cdot Z^K_t \cdot dM^K_t, \langle Y^K, \overline{M}^K \rangle, \langle Y^K \rangle \right) \to \left(Y, \int_0^\cdot Z_t dM^X_t, \langle Y, M \rangle, \langle Y \rangle \right) \text{ as } K \to +\infty
\]

in \(\mathcal{S}_2^2 \times \mathcal{S}_2^2 \times \mathcal{S}_1^1 \times \mathcal{S}_1^1\).

The convergence in Theorem 2 implies the following convergence

\[
\left(\int_0^\cdot \frac{Z^K_{t,b}}{K} \lambda^K_{t,b} \, dt, \int_0^\cdot \frac{Z^K_{t,d}}{K} \lambda^K_{t,d} \, dt, \int_0^\cdot |Z^K_t|^2 \cdot \phi^K_t \, dA^K_t \right) \to \left(\int_0^\cdot Z_t dA_t/2, \int_0^\cdot Z_t dA_t/2, \int_0^\cdot Z^2_t dA_t \right),
\]

in \(\mathcal{S}_1^1 \times \mathcal{S}_1^1 \times \mathcal{S}_1^1\) when \(K \to +\infty\).

5 Application to a Control Problem

In this section we apply the results of Sect. 4 to the convergence of a sequence of controls problems with \(\sigma^2(x) = \sigma^2 x\) for some positive constant \(\sigma\).

5.1 The Discrete Problem

We first focus on the discrete control problem in the same spirit than Sect. 3. We consider that a resource manager monitors his harvesting intensity through a control \(\alpha\), which is assumed to be bounded with bounds \(\underline{\alpha}, \overline{\alpha} > 0\). We assume that his harvesting
modifies the death rate of the natural resource according to a continuous function $h^K: \mathbb{R}^+ \times [-\bar{a}, \bar{a}] \mapsto \mathbb{R}$ which satisfies the following assumption.

Assumption 3 There exists a positive constant $C < 2\beta$ such that for any $(x, \alpha) \in \mathbb{R}^+ \times [-\bar{a}, \bar{a}]$

$$\frac{|h^K(x, \alpha)|^2}{\lambda_{K,d}(x)} \leq Cx \text{ and } Kf^{K,d}(x) + h^K(x, \alpha) \geq 0$$

with equality if $x = 0$.

The set of admissible controls is defined by

$$\mathcal{A}^K = \{\alpha - \mathbb{F}^K \text{ predictable s.t. } \alpha \in [-\bar{a}, \bar{a}]\}.$$

For any $\alpha \in \mathcal{A}^K$ we define

$$L_{t}^{K,\alpha} = \mathcal{E} \left(\int_{0}^{t} \frac{h^K(X^K_s, \alpha_s)}{\lambda^K_{s,d}} \, dM^K_{s,d} \right),$$

where \mathcal{E} denotes the Dooleans-Dade exponential process. We deduce from Assumption 3, Proposition 1 together with [33, Corollary 2.6] that $(L_{t}^{K,\alpha})_{t \in [0,T]}$ is a true martingale. Hence the law of the population process under the control α is given by $\mathbb{P}^{K,\alpha}$ characterized by

$$\frac{d\mathbb{P}^{K,\alpha}}{d\mathbb{P}} = L_{T}^{K,\alpha}.$$

Under the probability $\mathbb{P}^{K,\alpha}$ the death intensity of the population becomes

$$\lambda_{t}^{K,d,\alpha} = \lambda_{t}^{K,d} + h^K(X^K_t, \alpha_t)$$

and the birth intensity is unchanged.

We assume that the manager receives at maturity T a lump sum random compensation $\xi^K \in \mathbb{T}^K$ for his action. In addition, the manager receives continuous incomes along the time depending on the size of the population and on his control that is given by a function c^K from $\mathbb{R}^+ \times [-\bar{a}, \bar{a}]$ into \mathbb{R}. This gain can be negative which corresponds to a cost related to the effort of the manager. This is what we have considered in Sect. 3. Therefore, the goal of the manager is to solve the following maximization problem

$$(P)_K: \quad V^K_0 = \sup_{\alpha \in \mathcal{A}^K} J^K_0,\alpha \quad \text{with} \quad J^K_0,\alpha := \mathbb{E}^{K,\alpha} \left[\xi^K + \int_{0}^{T} c^K(X^K_s, \alpha_s) \, ds \right],$$

@ Springer
where $E_{K,\alpha}$ denotes the expectation taken under the probability $\mathbb{P}_{K,\alpha}$. Using the notations of Sect. 4.2 the BSDE associated to this control problem is

$$\text{(BSDE)}_{K}: \ Y^K_t = \xi^K + \int_t^T g^K(X^K_s, Z^K_s) \cdot \phi^K_s \, dA^K_s - \int_t^T Z^K_s \cdot dM^K_s$$

with for any $(x, z) \in \mathbb{R}^+ \times \mathbb{R}^2$

$$g^K(x, z) = (0, g^{K,d}(x, z^d))$$

where $g^{K,d}(x, z^d) = \sup_{\alpha \in [-a, a]} \left(c^K(x, \alpha) + z^d h^K(x, \alpha) \right) \frac{1}{\lambda^{K,d,x}(x)}$.

We need to assume that the functions c^K and h^K are chosen such that g^K satisfies the assumptions (ii) and (iii) of Lemma 1 and that the maximizer in the above equation is unique. Formally we make the following assumption.

Assumption 4

(i) $g^{K,d}(X^K, 0) \in \mathbb{H}^1_{x}$,

(ii) There exists a positive L satisfying $\beta > L^2 + 2L$ and such that for any x, z, z', α and $K \in \{1, 2, \ldots \}$ we have

$$\frac{|Kzh^K(x, \alpha) - Kz'h^K(x, \alpha)|}{\lambda^{K,d}(x)} \leq L|z - z'|.$$

(iii) For any x, z there exists a unique $\alpha^{K,*}(x, z)$ such that

$$g^{K,d}(x, z) = \frac{c^K(x, \alpha^{K,*}(x, z)) + z^d h^K(x, \alpha^{K,*}(x, z))}{\lambda^{K,d}(x)}.$$

We thus have the following characterization of the optimal control (we refer to Appendix 6.4 for the proof).

Theorem 3 (Verification for $(P)_K$) Let $(Y^K, Z^K) \in \mathbb{S}^K$ be the unique solution of $(\text{BSDE})_K$. Then $V^K_0 = Y^K_0$ and $\alpha^K_0 := \alpha^{K,*}(X^K_0, Z^K_0,d)$ solves the problem $(P)_K$.

We now define the continuous version of this control problem.

5.2 The Continuous Problem

As previously the resource manager monitors his harvesting intensity through a control α, assumed to be bounded with bounds $\underline{a}, \overline{a} > 0$. We assume that his harvesting modified the death rate of the natural resource according to a continuous function $h : \mathbb{R}^+ \times [-\overline{a}, \overline{a}] \mapsto \mathbb{R}$ which is assumed to satisfy the following assumption.

Assumption 5 There exists a positive constant $C < 2\beta$ such that for any $(x, \alpha) \in \mathbb{R}^+ \times [-\overline{a}, \overline{a}]$

$$\frac{h^2(x, \alpha)}{\sigma^2 x} \leq Cx \quad \text{and} \quad h(x, \alpha) + f^d(x) \geq 0.$$
with equality if \(x = 0 \).

The set of admissible control is

\[
A = \{ \alpha - \mathbb{F}X \text{ predictable s.t. } \alpha \in [-a, a] \}.
\]

Considering the process

\[
L_t^\alpha = \mathcal{E} \left(\int_0^t - \frac{h(X_s, \alpha_s)}{\sigma^2 X_s} dM_s^X \right),
\]

where we recall that \(X \) is given by (S). We deduce from Assumption 5 and Corollary 2.6 in [33] that \(L^\alpha \) is a true martingale. Hence, we define the probability \(\mathbb{P}^\alpha \) by

\[
\frac{d\mathbb{P}^\alpha}{d\mathbb{P}} = L_T^\alpha
\]

which is the probability measure corresponding to the control \(\alpha \). Under \(\mathbb{P}^\alpha \) the process \(X \) is a strong solution of

\[
X_t = x_0 + \int_0^t (f(X_s) - h(X_s, \alpha_s)) ds + \int_0^t \sigma \sqrt{X_s} dB_s^\alpha,
\]

where \(B^\alpha := B + \int_0^t \frac{h(X_s, \alpha_s)}{\sigma X_s} ds \) is a \(\mathbb{P}^\alpha \)-Brownian motion.

As in the discrete case we assume that the manager receives at maturity \(T \) a lump sum random compensation \(\xi \in \mathcal{T} \) for his action. In addition, the manager receives continuous incomes term depending on the size of the population and his control. This term is given by a function \(c \) from \(\mathbb{R}^+ \times [-a, a] \) into \(\mathbb{R} \). Therefore, the goal of the manager is to solve the following maximization problem

\begin{equation}
(P) : \quad V_0 = \sup_{\alpha \in A} J_0^\alpha \text{ with } J_0^\alpha := \mathbb{E}^\alpha \left[\xi + \int_0^T c(X_s, \alpha_s) ds \right],
\end{equation}

where \(\mathbb{E}^\alpha \) denotes the expectation taken under the probability \(\mathbb{P}^\alpha \). The BSDE associated to this control problem is

\begin{equation}
(BSDE) : \quad Y_t = \xi + \int_t^T g(X_s, Z_s) dA_s - \int_t^T Z_s dM_s^X
\end{equation}

with for any \((x, z) \in \mathbb{R}^+ \times \mathbb{R}\)

\[
g(x, z) = \sup_{\alpha \in [-a, a]} \left(c(x, \alpha) + zh(x, \alpha) \right) \frac{1}{\sigma^2 x}.
\]

We need to assume that the functions \(c \) and \(h \) are chosen such that \(g \) satisfies the assumptions (ii) and (iii) of Lemma 2 and that the maximizer in the above equation is unique. Formally we make the following assumption.
value functions

In this section, we show that under some natural assumptions the sequences of value functions and of the optimal controls converge respectively towards 0 and towards 0 such that for any x, z, z' and α we have

\[
\frac{|zh(x, \alpha) - z'h(x, \alpha)|}{\sigma^2 x} \leq L|z - z'|.
\]

(iii) For any x, z there exists a unique $\alpha^*(x, z)$ such that

\[
g(x, z) = \frac{c(x, \alpha^*(x, z)) + zh(x, \alpha^*(x, z))}{\sigma^2 x}
\]

We thus have the following characterization of the optimal control (we refer to Appendix 6.5 for the proof).

Theorem 4 (Verification for (P)) Let $(Y, Z) \in S$ be the unique solution of (BSDE). Then $V_0 = Y_0$ and $\alpha^*_t := \alpha^*(X_t, Z_t)$ solves the problem (P).

5.3 Convergence of the Value Functions and of the Optimal Controls

In this section, we show that under some natural assumptions the sequences of value functions $(V^K_0)_{K \in \{1, 2, \ldots\}}$ and of controls $(\alpha^{K,*})_{K \in \{1, 2, \ldots\}}$ converge respectively towards V_0 and α^*. More precisely we consider the following assumptions.

Assumption 7 (i) $(\xi^K)_{K \in \{1, 2, \ldots\}}$ converges to ξ in $L^{2+\epsilon}$ for some $\epsilon > 0$,

(ii) There exists a positive sequence $(\eta^K)_{K \in \{1, 2, \ldots\}}$ that converges towards 0 such that for any x, α, z and K we have

\[
K^2 \left| \frac{c^K(x, \alpha)}{\lambda K,d(x)} - \frac{c(x, \alpha)}{\sigma^2 x/2} \right| + \left| \frac{h^K(x, \alpha)}{\lambda K,d(x)} - \frac{h(x, \alpha)}{\sigma^2 x/2} \right| \leq \eta_K (1 + |x|)
\]

and

\[
\left| \alpha^{K,*}(x, z/K) - \alpha^*(x, z) \right| + \left| \left(\frac{Kh^K(x, \alpha)}{\lambda K,d(x)} \right)^2 - \left(\frac{h(x, \alpha)}{\sigma^2 x/2} \right)^2 \right| \leq \eta_K (1 + |x| + |z|).
\]

(iii) There exists a positive constant $C > 0$ such that for any x, x', z and K we have

\[
K^2 \left| \frac{c^K(x, \alpha) - zK^{-1}h^K(x, \alpha)}{\lambda K,d(x)} - \frac{c(x', \alpha) - zK^{-1}h^K(x', \alpha)}{\lambda K,d(x')} \right| \leq C|x - x'|
\]

and for any x, x', z, z', α, α' and K we have

\[
\left| \alpha^{K,*}(x, z/K) - \alpha^{K,*}(x', z'/K) \right| + \left| \left(\frac{Kh^K(x, \alpha)}{\lambda K,d(x)} \right)^2 - \left(\frac{Kh^K(x', \alpha')}{\lambda K,d(x')} \right)^2 \right| \leq C(|x - x'| + |\alpha - \alpha'| + |z - z'|).
\]
Assumption 7 contains the natural assumptions ensuring that the problem \((P)\) is the version of the problems \((P)_K\) in the framework of the continuous population model \(X\).

Using a slight abuse we note \(P^K, *\) the law of \(X^K\) under the control \(\alpha^K, *\) and \(P^*\) the law of \(X\) under the control \(\alpha^*\). We have the following convergence result which proof is given in Appendix 6.6.

Theorem 5

(i) We have in \(S^2_1 \times S^1_1 \times S^1_1\):

\[
\lim_{K \to +\infty} \left(Y^K, \int_0^\cdot \alpha^K, * \lambda^K, d K^{-2} ds, \int_0^\cdot (\alpha^K, *)^2 \lambda^K, d K^{-2} ds \right) = \left(Y, \int_0^\cdot \alpha_0 d A_s / 2, \int_0^\cdot \alpha_0^2 d A_s / 2 \right).
\]

(ii) The sequence \((P^K, *)_{K \in \{1, 2, \ldots\}}\) converges for the Skorohod topology towards \(P^*\).

Since \(Y^K_0 = V^K_0\) and \(Y_0 = V_0\) a consequence of Theorem 5 (i) is that \((V^K_0)_{K \in \{1, 2, \ldots\}}\) converges towards \(V_0\). The point (i) also implies that the sequence of controls \((\alpha^K)_{K \in \{1, 2, \ldots\}}\) converges towards the control \(\alpha\). But this convergence is in a weak sense and we do not get the convergence of \((\alpha^K, *)_{K \in \{1, 2, \ldots\}}\) towards \(\alpha^*\) in law for the Skorohod topology.

Remark 5 Note that the sequence of control problems considered in Sect. 3 when \(\alpha \in [-v, \bar{\alpha}]\) (for \(\bar{\alpha}\) positive) satisfy any of the assumptions of Sect. 5.

6 Proofs

6.1 Proof of Theorem 1

We introduce the process

\[
Y^K_t = \int_0^t f \left(X^K_s \right) ds.
\]

The proof is divided in four main steps detailed below.

1. We prove that \((S)\) admits a unique strong solution.
2. We show that the sequence \((Y^K, M^K, N^K, b, N^K, d, \Lambda^K, b, \Lambda^K, d)_{K \in \{1, 2, \ldots\}}\) is C-tight.
3. We show that for any limit point \((Y, M, N^b, N^d, \Lambda^b, \Lambda^d)\) of the above sequence we have \(\Lambda^b = N^b = \Lambda^d = N^d\) and \(Y\) is almost surely differentiable with derivative \(X\) weak solution of \((S)\).
4. Finally, we prove that up to a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) such that the above convergence holds in probability, the process \((X^K, M^K, N^K, b, N^K, d, \Lambda^K, b, \Lambda^K, d)_{K \in \{1, 2, \ldots\}}\) actually converges to \((X, M, A, A, A, A)\) when \(K\) goes to \(+\infty\) in \(S^2_1 \times S^2_2 \times S^1_1 \times S^1_1 \times S^1_1 \times S^1_1\).
Step 1: Pathwise uniqueness under existence. The uniqueness result is a direct consequence of [34, IX-Theorem 3.5 (ii)] under Assumption 1.

Step 2: Tightness property. We follow the proofs of Theorems 3.1 and 3.2 in [12].

Step 2a: uniform estimate.

Since \(x_0 \) is a positive constant, a direct adaptation of the proof of Proposition 2.7 in [12] enables us to get [12, Equation (3.4)] and more particularly

\[
\sup_{K} \mathbb{E} \left[\sup_{t \leq T} (X^K_t)^p \right] < +\infty, \quad p \geq 1.
\]

Step 2b: tightness

We aim to apply Aldous condition (see [35, Assumption (A)]) under Assumption 1 to get the desired tightness result. Fix \(\delta > 0 \) and two stopping times \(\tau \) and \(\tauhat \) for the filtration \((F^K_t)_{t \leq T}\) such that \(\tau \leq \tauhat \leq (\tau + \delta) \wedge T^K\).

First, recall that \(\overline{M}^{K,i}_t \), for \(i \in \{b, d\} \) is a local martingale. We choose a localizing sequence of increasing stopping time \(\rho^n \).

Recall now that \(X^K_t \) is a semi martingale given by

\[
X^K_t = x_0 + \frac{N^{b}_t - N^{d}_t}{K} = x_0 + \overline{M}^{K,b}_t - \overline{M}^{K,d}_t + \frac{1}{K} \left(\int_0^t \lambda^K_{s,b} \, ds - \int_0^t \lambda^K_{s,d} \, ds \right),
\]

which tends to 0 uniformly in \(K \) and \(n \) by using Step 2a. From Markov Inequality together with Aldous condition (see [35, Assumption (A)]) or [26, Condition IV–4.4]), we deduce that the sequences \((\overline{N}^{K,b})_{K \in \{1,2,\ldots\}}\) and \((\overline{N}^{K,d})_{K \in \{1,2,\ldots\}}\) are tight. Similar computation and localization procedure give that \((\overline{\Lambda}^{K,b})_{K \in \{1,2,\ldots\}}\) and \((\overline{\Lambda}^{K,d})_{K \in \{1,2,\ldots\}}\) are tight. The tightness of the sequence \((\overline{M}^{K,b}, \overline{M}^{K,d})_{K \in \{1,2,\ldots\}}\) then follows from Theorem VI–4.13 in [26] since \((\overline{M}^{K,i}) = \overline{\Lambda}^{K,i}_t\).
and note that
\[
\frac{1}{K} \mathbb{E} \left[\left| \int_{\tau}^{\bar{\tau}} (\lambda_{s}^{K,b} - \lambda_{s}^{K,d}) \, ds \right| \right] \leq \frac{1}{K} \mathbb{E} \left[\int_{\tau}^{\bar{\tau}} |\lambda_{s}^{K,b} - \lambda_{s}^{K,d}| \, ds \right] \\
\leq \mathbb{E} \left[\int_{\tau}^{\bar{\tau}} |f^{b}(X_{s}^{K}) - f^{d}(X_{s}^{K})| \, ds \right] \\
\leq C\delta \mathbb{E} \left[\sup_{s \leq \bar{T}} |X_{s}^{K}| \right],
\]
which tends to 0 uniformly in \(K \) by using Step 2a. Therefore, \((X^{K})_{K \in \{1,2,\ldots\}}\) is tight. The tightness of \((Y^{K})_{K \in \{1,2,\ldots\}}\) follows from Assumption 1-(ii).

Remark 6 We propose here an alternative argument for the tightness of \((Y^{K},N^{K,i},\overline{\Lambda}^{K,i})\).

Note that \(M^{K,b} \) and \(M^{K,d} \) are \(\mathbb{P}^{K} \)-local martingale. Hence, there exists a sequence of stopping time \((\rho_{n})_{n \in \mathbb{N}} \) such that \(\rho_{n} \rightarrow +\infty \) when \(n \rightarrow +\infty \), \((M^{K,b}_{t \wedge \rho_{n}})_{t \in [0,T]}\) and \((M^{K,d}_{t \wedge \rho_{n}})_{t \in [0,T]}\) are \(\mathbb{P}^{K} \)-martingales. For any \(t \in [0,T^{K}] \) we have

\[
\mathbb{E}[X_{t \wedge \rho_{n}}^{K}] \leq n_{0} + \int_{0}^{t \wedge \rho_{n}} C \mathbb{E}[X_{s}^{K}] \, ds.
\]

Taking the limit when \(n \) goes to \(\infty \), Fatou’s Lemma leads to \(\mathbb{E}[X_{t}^{K}] \leq n_{0} + \int_{0}^{t} C \mathbb{E}[X_{s}^{K}] \, ds \). Therefore, by using Grönwall’s inequality we deduce that \(\mathbb{E}[X_{t \wedge \tau^{K}}^{K}]_{K \in \{1,2,\ldots\}} \) is bounded uniformly with respect to \(K \). Note now that \(\mathbb{E}[\overline{N}_{t \wedge \rho_{n}}^{K,b}] \leq \int_{0}^{t \wedge \rho_{n}} \mathbb{E}[f^{b}(X_{s}^{K})/K + \frac{\sigma^{2}(X_{s}^{K})}{2}] \, ds \). Hence, by using again Fatou’s Lemma we deduce that \(\mathbb{E}[\overline{N}_{t \wedge \tau^{K}}^{K,b}]_{K \in \{1,2,\ldots\}} \) is bounded and since \(\overline{N}_{t}^{K,d} \leq \overline{N}_{t}^{K,b} + x_{0} \) for any \(t \leq T^{K} \) then \(\mathbb{E}[\overline{N}_{T^{K}}^{K,d}]_{K \in \{1,2,\ldots\}} \) is also bounded. Moreover \(f(X^{K}) \leq CX^{K} \), thus the sequence \(\mathbb{E}[Y_{T^{K}}^{K}]_{K \in \{1,2,\ldots\}} \) is bounded. From the particular result [26, IV-Theorem 3.37] and since the processes \(Y^{K}, N^{K,i}, \overline{\Lambda}^{K,i} \) are nondecreasing for any \(K \), we get that the sequences \((Y^{K})_{K \in \{1,2,\ldots\}} \), \((N^{K,b})_{K \in \{1,2,\ldots\}} \), \((N^{K,d})_{K \in \{1,2,\ldots\}} \), \((\overline{\Lambda}^{K,b})_{K \in \{1,2,\ldots\}} \) and \((\overline{\Lambda}^{K,d})_{K \in \{1,2,\ldots\}} \) are C-tight.

Step 2c: C–tightness

Since \(|\Delta N^{K,i}| = 1/K^{2} \) for \(i \in \{b,d\} \) and the processes \(Y^{K}, \Lambda^{K,b} \) and \(\Lambda^{K,d} \) are continuous for any \(K \) following Proposition VI–3.26 in [26] we get that the sequences \((Y^{K})_{K \in \{1,2,\ldots\}} \), \((N^{K,b})_{K \in \{1,2,\ldots\}} \), \((N^{K,d})_{K \in \{1,2,\ldots\}} \), \((\overline{\Lambda}^{K,b})_{K \in \{1,2,\ldots\}} \) and \((\overline{\Lambda}^{K,d})_{K \in \{1,2,\ldots\}} \) are C-tight. Similarly, since \(|\Delta \overline{M}^{K,i}| \leq K^{-1} \), we get that the sequence of \((\overline{M}^{K,i})_{K \in \{1,2,\ldots\}} \) is C–tight. Recalling that marginal tightness implies tightness (see Corollary IV–3.33 in [26]) we get that \((Y^{K}, \overline{M}^{K,b}, N^{K,b}, N^{K,d}, \overline{\Lambda}^{K,b}, \overline{\Lambda}^{K,d})_{K \in \{1,2,\ldots\}}\) is C-tight.
Step 3: Convergence of the processes and existence of a solution to (S)

We first show the following lemma:

Lemma 3 For \(i \in \{b, d\} \) the process \(|\overline{N}_t^{K,i} - \Lambda_t^{K,i}|\) converges uniformly towards 0 in probability.

Proof of Lemma 3 Recall that \(|\overline{N}_t^{K,i} - \Lambda_t^{K,i}| = \overline{M}_t^{K,i} / K\), then by using the BDG inequality and the results in Remark 6 and the step 2, we get

\[
\mathbb{E} \left[\sup_{t \in [0, T]} \frac{\overline{M}_t^{K,i}}{K^2} \right] \leq \frac{\mathbb{E} \left[\overline{N}_T^{K,i} \right]}{K^2} \to 0 \text{ when } K \to \infty.
\]

We conclude using Markov inequality. \(\square\)

In view of the tightness result obtained in Step 2, we denote by \((Y, M, N^{b,*}, N^{d,*}, \Lambda^b, \Lambda^d)\) a limit point of \((Y^K, \overline{M}^K, \overline{N}^{K,b}, \overline{N}^{K,d}, \overline{\Lambda}^{K,b}, \overline{\Lambda}^{K,d})_{K \in \{1, 2, \ldots\}}\) with \(M = (M^{b,*}, M^{d,*})\). By the Skorohod representation theorem since the limit of each marginal is continuous we can consider that \((Y^K, \overline{M}^K, \overline{N}^{K,b}, \overline{N}^{K,d})_{K \in \{1, 2, \ldots\}}\) converges almost surely and uniformly on \([0, T]\) towards \((Y, M, N^{b,*}, N^{d,*})\), i.e.

\[
\sup_{t \in [0, 1]} |Y^K_t - Y_t| \to 0, \quad K \to +\infty
\]

and for any \(i \in \{b, d\} \)

\[
\sup_{t \in [0, 1]} |\overline{M}_t^{K,i} - M_t^{i,*}| \to 0, \quad \sup_{t \in [0, 1]} |\overline{N}_t^{K,i} - N_t^{i,*}| \to 0, \quad K \to +\infty
\]

\[
\sup_{t \in [0, 1]} |\overline{\Lambda}_t^{K,i} - \Lambda_t^i| \to 0, \quad K \to +\infty
\]

According to Corollary IX–1.19 in [26] we have that \(M = (M^{b,*}, M^{d,*})\) is a local martingales. Moreover we have \([\overline{M}^{K,i}] = \overline{N}^{K,i}\) and \([\overline{M}^{K,b}, \overline{M}^{K,d}] = 0\) so Corollary VI–6.29 in [26] gives \([M_t^{i,*}] = N_t^{i,*} = \Lambda^i\) and \([M_t^{b,*}, M_t^{d,*}] = 0\). Since \(M_t^{i,*}\) is a continuous local martingale we get \langle M_t^{i,*} \rangle = \Lambda^i. By using localization argument, similar to those used in Step 2 or Remark 4, we also notice that \(\mathbb{E}[\overline{\Lambda}_t^{K,i}]\) is uniformly bounded in \(K\), so according to Fatou’s lemma \(\Lambda^i\) is integrable, therefore \(M_t^{i,*}\) is a true martingale. We recall that

\[
X^K_t = n_0 + \int_0^t f(X^K_s)ds + \overline{M}^{K,b}_t - \overline{M}^{K,d}_t.
\]

Then, \(X^K\) converges almost surely and uniformly on \([0, T]\) towards

\[
X_t := n_0 + Y_t + M_t^{b,*} - M_t^{d,*}
\]
and \(Y^K \) converges almost surely uniformly on \([0, T]\) towards
\[
\int_0^T f(X_s) ds.
\]
Since we have
\[
\langle M^{b,*} \rangle_t = \langle M^{d,*} \rangle_t = \int_0^t \frac{\sigma^2(X_s)}{2} ds \quad \text{and} \quad \langle M^{b,*}, M^{d,*} \rangle = 0
\]
we get from Theorem V–3.9 in [34] that there exists a bi-dimensional Brownian motion \((B^b, B^d)\) such that
\[
\langle M^{b,*}_t, M^{d,*}_t \rangle = \int_0^t \frac{\sigma(X_s)}{\sqrt{2}} d(B^b_s, B^d_s).
\]

So finally we have shown that
\[
X_t = n_0 + \int_0^t f(X_s) ds + \int_0^t \sigma(X_s) d\left(\frac{B^b_s + B^d_s}{\sqrt{2}}\right).
\]

This concludes the proof of the first part of Theorem 1 since \((X^K, M^K, N^K, b, \Lambda^K, b, \Lambda^K, d)\) converges in law for the Skorohod topology to \((X, M, A, A, A, A)\).

Step 4: Convergence of a copy \((X^K, M^K, N^K, b, \Lambda^K, b, \Lambda^K, d)\)\(_{K \in \{1, 2, \ldots\}}\) converges in law for the Skorohod topology to \((X, M, A, A, A, A)\) when \(K\) goes to \(+\infty\). To prove that the convergence actually holds in \(S_2^2 \times S_1^1 \times S_1^1 \times S_1^1 \times S_1^1\) we show that:

\[(i) \quad (\overline{N}^{K,b})_{K \in \{1, 2, \ldots\}} \text{ and } (\overline{N}^{K,d})_{K \in \{1, 2, \ldots\}} \text{ are bounded in } S_1^1,
(ii) \quad (\overline{\Lambda}^{K,b})_{K \in \{1, 2, \ldots\}} \text{ and } (\overline{\Lambda}^{K,d})_{K \in \{1, 2, \ldots\}} \text{ are bounded in } S_1^2,
(iii) \quad (\overline{M}^K)_{K \in \{1, 2, \ldots\}} \text{ is bounded in } S_4^1,
(iv) \quad (X^K)_{K \in \{1, 2, \ldots\}} \text{ is bounded in } S_4^1.
\]

Then we will get the convergence using dominated convergence.

Proof of \((i)\). We write
\[
\sup_{t \in [0, T]} (\overline{N}^{K,b}_s)^2 = (\overline{N}^{K,b}_T)^2 = \int_0^T \left(2 \frac{\overline{N}^{K,b}_s}{K^2} + K^{-4}\right) dN^{K,b}_s.
\]
Therefore we have for a positive constant C independent of K such that

$$
\mathbb{E} \left[\sup_{t \in [0, T]} \left(N_s^{K,b} \right)^2 \right] = \mathbb{E} \left[\int_0^T \left(2N_s^{K,b} + K^{-2} \right) \lambda_s^{K,b} \, ds \right] \\
\leq \mathbb{E} \left[\int_0^T \left(2N_s^{K,b} + K^{-2} \right) CX_s^K \, ds \right].
$$

Hence to conclude it is enough to show that $(\mathbb{E}[N_t^{K,b}X_t^K])_{t \in [0,T]}$ is bounded. We have

$$
N_t^{K,b}X_t^K = \int_0^t \left(X^K_s K^{-2} + N_s^{K,b} K^{-1} + K^{-3} \right) dN_s^{K,b} - \int_0^t \overline{N_s^{K,b}} K^{-1} dN_s^{K,d}
$$

So we get

$$
\mathbb{E} \left[N_t^{K,b}X_t^K \right] = \mathbb{E} \left[\int_0^t \left(X^K_s + K^{-1} \right) K^{-2} \lambda_s^{K,b} \, ds + \int_0^t \overline{N_s^{K,b}} K^{-1} \left(\lambda_s^{K,b} - \lambda_s^{K,d} \right) \, ds \right] \\
\leq \mathbb{E} \left[\int_0^t \left(X^K_s + K^{-1} \right) CX_s^K \, ds + \int_0^t \overline{N_s^{K,b}} CX_s^K \, ds \right].
$$

Therefore by Proposition 1 and Grönwall lemma we get point (i) (since the same results follows for $N_t^{K,d}$).

Proof of (ii). We have

$$
\sup_{t \in [0, T]} \overline{\Lambda}_t^{K,d} \leq C \int_0^T \overline{X}_s^K \, ds,
$$

therefore point (ii) follows from Proposition 1. Same proof holds for $\overline{N}_t^{K,d}$.

Proof of (iii). Using the Burkholder–Davis–Gundy inequality we get

$$
\mathbb{E} \left[\sup_{t \in [0, T]} \left| \overline{M}_t^{K,b} \right|^4 \right] \leq C \mathbb{E} \left[\left(\overline{N}_T^{K,b} \right)^2 \right].
$$

Therefore because of point (i) we get point (iii). Same proof holds for $\overline{M}_t^{K,d}$.

Proof of (iv). We write

$$
X_t^K = x^K_0 + \int_0^t \left(\lambda_s^{K,b} - \lambda_s^{K,d} \right) K^{-1} \, ds + \overline{M}_t^{K,b} - \underbar{M}_t^{K,d}
$$

$$
\leq x^K_0 + \int_0^t CX_s^K \, ds + \overline{M}_t^{K,b} - \underbar{M}_t^{K,d}.
$$
So we have
\[|X^K_t|^4 \leq C \left((X^K_0)^4 + \left(\int_0^T X^K_s \, ds \right)^4 + |\overline{M}^{K,b}_t|^4 + |\overline{M}^{K,d}_t|^4 \right) \]

taking the supremum over \(t \in [0, T] \) and then the expectation we obtain point (iv) as corollary of Proposition 1 and point (iii).

6.2 Outline of the Proof of Proposition 2

The convergence of \((Q^K)_{K \in \{1,2,\ldots\}} \), \((\langle Q^K \rangle)_{K \in \{1,2,\ldots\}} \), \(((Q^K, \overline{M}^{K}))_{K \in \{1,2,\ldots\}} \) in \(S^1_1 \times S^1_1 \times S^2_2 \) are consequences of [21, Proposition 2] or [30, Theorem 3.3]. We extend these convergence by using dominated convergence theorem. For this we show that for any \(0 < \varepsilon' < \varepsilon \) we have

(i) \((Q^K)_{K \in \{1,2,\ldots\}} \) is bounded in \(S^{2+\varepsilon}_1 \),

(ii) \((\langle Q^K \rangle)_{K \in \{1,2,\ldots\}} \) is bounded in \(S^{1+\frac{\varepsilon}{2}}_1 \),

(iii) \((\langle Q^K, \overline{M}^{K} \rangle)_{K \in \{1,2,\ldots\}} \) is bounded in \(S^{2+\varepsilon'}_1 \).

Proof of (i): By Doob’s maximal inequality we have for a positive constant \(C \)
\[
\mathbb{E} \left[\sup_{t \in [0,T]} |Q^K_t|^{2+\varepsilon} \right] \leq C \mathbb{E} \left[|Q^K_T|^{2+\varepsilon} \right] \leq C \mathbb{E} \left[|\xi^K|^{2+\varepsilon} \right].
\]

Therefore we get (i) since \((\xi^K)_{K \geq 0} \) is bounded in \(L^{2+\varepsilon} \).

Proof of (ii): By Equation (100.2) p. 183 in [36] and using BDG inequality we have
\[
\mathbb{E} \left[\langle Q^K \rangle_T^{1+\varepsilon/2} \right] \leq C \mathbb{E} \left[\sup_{t \in [0,T]} |Q^K_t|^{2+\varepsilon} \right],
\]

thus we get (ii).

Proof of (iii): Using Kunita–Watanabe inequality we have
\[
\| \langle Q^K, \overline{M}^{K} \rangle_T \|^2 \leq \langle Q^K \rangle_T \langle A^K \rangle_T.
\]

Therefore by Hölder inequality we get for any \(p > 1 \) such that \(p(1+\varepsilon'/2) < (1+\varepsilon/2) \):
\[
\mathbb{E} \left[\sup_{t \in [0,T]} \| \langle Q^K, \overline{M}^{K} \rangle_T \|^2+\varepsilon' \right] \leq \left(\mathbb{E} \left[\langle Q^K \rangle_T^{p(1+\varepsilon'/2)} \right] \right)^{1/p} \left(\mathbb{E} \left[\langle A^K \rangle_T^{q(1+\varepsilon'/2)} \right] \right)^{1/q},
\]

where \(q = (1 - p^{-1})^{-1} \).
6.3 Proof of Theorem 2

The proof of Theorem 2 is inspired from the proof of Theorem 12 in [21]. We proceed in three steps:

(i) We show that there exists $\alpha \in (0,1)$ and some α-contracting functions $(F^K)_{K \in \{1,2,\ldots\}}$ and F such that for any K, the unique solution of $(B)_K$ is the fixed point of F^K and the fixed point of F is solution to (B).

(ii) We introduce a double indexed sequence and prove a convergence result by induction.

(iii) We conclude.

6.3.1 Step (i)

For any K we define the function $F^K : \mathbb{S}^K \longrightarrow \mathbb{S}^K \quad (Y, Z) \longmapsto (Y', Z')$

where (Y', Z') is the unique solution of the BSDE:

$$Y'_t = \xi^K + \int_t^T g^K(X^K_s, Y_s, Z_s) \cdot \phi^K_s \, dA^K_s - \int_t^T Z'_s \cdot dM^K_s.$$

Since $(Y, Z) \in \mathbb{S}^K$ and because of assumptions (ii) and (iii) in Lemma 1 we have $g^K(X^K, Y, Z) \in \mathbb{H}^K_2$. So we can properly define

$$Y'_t = \mathbb{E} \left[\xi^K + \int_t^T g^K(X^K_s, Y_s, Z_s) \cdot \phi^K_s \, dA^K_s | \mathcal{F}_t^K \right]$$

and Z' is the unique process in \mathbb{H}^K_2 satisfying

$$\mathbb{E} [\xi^K + \int_0^T g^K(X^K_s, Y_s, Z_s) \cdot \phi^K_s \, dA^K_s | \mathcal{F}_t^K] = Y'^0_K + \int_0^t Z'_s \cdot dM^K_s.$$

Consider two pairs $(Y^1, Z^1), (Y^2, Z^2) \in \mathbb{S}^K$ and noting $(\overline{Y}^1, \overline{Z}^1) = F^K(Y^1, Z^1)$ (resp. $(\overline{Y}^2, \overline{Z}^2) = F^K(Y^2, Z^2)$). Using Ito’s formula on $e^{\beta A^K_t} |\overline{Y}^1_t - \overline{Y}^2|_t^2$ between 0 and T we get

$$-|\overline{Y}^1_0 - \overline{Y}^2_0|^2 = \int_0^T e^{\beta A^K_t} \left(\beta |\overline{Y}^1_t - \overline{Y}^2_t|^2 - 2(\overline{Y}^1_t - \overline{Y}^2_t)(g^K(X^K_t, Y^1_t, Z^1_t) - g^K(X^K_t, Y^2_t, Z^2_t)) \cdot \phi^K_t \right) \, dA^K_t$$

$$+ \int_0^T e^{\beta A^K_t} 2(\overline{Y}^1_t - \overline{Y}^2_t)(\overline{Z}^1_t - \overline{Z}^2_t) \cdot dM^K_t.$$
\[+ \int_0^T e^{A_K t} |Z_t^1 - Z_t^2|^2 dN^b_t + \int_0^T e^{A_K t} |Z_t^1 - Z_t^2|^2 dN^d_t. \]

Taking the expectation we get

\[|\bar{Y}_0 - \bar{Y}_0|^2 + \mathbb{E} \left[\int_0^T e^{A_K t} \beta |\bar{Y}_t^1 - \bar{Y}_t^2|^2 dA^K_t \right] + \mathbb{E} \left[\int_0^T e^{A_K t} |Z_t^1 - Z_t^2|^2 \phi^K_t dA^K_t \right] \]

\[\leq \mathbb{E} \left[\int_0^T e^{A_K t} 2|\bar{Y}_t^1 - \bar{Y}_t^2||g^K(\bar{X}_t^K, Y_t^1, Z_t^1) - g^K(\bar{X}_t^K, Y_t^2, Z_t^2)| \phi^K_t dA^K_t \right]. \]

Therefore using the assumptions of Lemma 1 together with Young’s inequality we get for any positive \(\alpha \) and \(\gamma \) that

\[\beta \| \bar{Y}^1 - \bar{Y}^2 \|^2_{\mathbb{H}_1^K} + \| \bar{Z}^1 - \bar{Z}^2 \|^2_{\mathbb{H}_2^K} \leq \left(\frac{L}{\gamma} + \frac{L}{\alpha} \right) \| \bar{Y}^1 - \bar{Y}^2 \|^2_{\mathbb{H}_1^K} + L \gamma \| Z^1 - Z^2 \|^2_{\mathbb{H}_2^K} + L \alpha \| Y^1 - Y^2 \|^2_{\mathbb{H}_1^K}, \]

or equivalently

\[\left(\beta - \frac{L}{\alpha} - \frac{L}{\gamma} \right) \| \bar{Y}^1 - \bar{Y}^2 \|^2_{\mathbb{H}_1^K} + \| \bar{Z}^1 - \bar{Z}^2 \|^2_{\mathbb{H}_2^K} \leq L \gamma \| Z^1 - Z^2 \|^2_{\mathbb{H}_2^K} + L \alpha \| Y^1 - Y^2 \|^2_{\mathbb{H}_1^K}. \]

Inspired by the proof of Theorem 3.4 in [23] we choose \(\gamma = \alpha / L \) and \(\alpha \in (0, 1) \) such that

\[\beta - \frac{L^2 + L}{\alpha} > L. \]

We can make such choice since \(\beta - L^2 - L > L \). Therefore we obtain

\[L \| \bar{Y}^1 - \bar{Y}^2 \|^2_{\mathbb{H}_1^K} + \| \bar{Z}^1 - \bar{Z}^2 \|^2_{\mathbb{H}_2^K} \leq \alpha \left(L \| Y^1 - Y^2 \|^2_{\mathbb{H}_1^K} + \| Z^1 - Z^2 \|^2_{\mathbb{H}_2^K} \right). \]

Therefore for any \(K \) the function \(F^K \) is an \(\alpha \)-contraction on \(S^K \) for the norm equivalent to \(\| \cdot \|_{S^K} \) and defined by

\[\|(Y, Z)\|_{S^K} = \left(L \| Y \|^2_{\mathbb{H}_1^K} + \| Z \|^2_{\mathbb{H}_2^K} \right)^{1/2}. \]

In the continuous case we consider

\[F : S \rightarrow S, \quad (Y, Z) \mapsto (Y', Z') \]
where \((Y', Z')\) is the unique solution of the BSDE:

\[
Y'_t = \xi + \int_t^T g(X_s, Y_s, Z_s) \, dA_s - \int_t^T Z'_s \cdot dM^K_s.
\]

Since \((Y, Z) \in S\) and because of Remark 4 we have \(g(X, Y, Z) \in \mathbb{H}_2\). So we can properly define

\[
Y'_t = \mathbb{E}[\xi + \int_t^T g(X_s, Y_s, Z_s) \cdot \phi_s \, dA_s | F_t]
\]

and \(Z'\) is the unique process in \(\mathbb{H}_2\) satisfying

\[
\mathbb{E}[\xi + \int_t^T g(X_s, Y_s, Z_s) \cdot \phi^K_s \, dA_s | F_t] = \int_0^t Z'_s \cdot dM_s.
\]

Similarly we obtain that \(F\) is an \(\alpha\)-contraction for the equivalent norm on \(S\):

\[
\| (Y, Z) \|_S = \left(L \| Y \|_{\mathbb{H}_2}^2 + \| Z \|_{\mathbb{H}_2}^2 \right)^{1/2}.
\]

6.3.2 Step (ii)

For any \(K \in \{1, 2, \ldots\}\) we define the sequence \((Y^{K,p}, Z^{K,p})_{p \geq 0}\) satisfying

\[
(Y^{K,0}, Z^{K,0}) = 0 \quad \text{and} \quad (Y^{K,p+1}, Z^{K,p+1}) = F^K(Y^{K,p}, Z^{K,p}).
\]

We similarly consider the sequence \((Y^p, Z^p)_{p \geq 0}\) defined by

\[
(Y^0, Z^0) = 0 \quad \text{and} \quad (Y^{p+1}, Z^{p+1}) = F(Y^p, Z^p).
\]

Since for any \(K \in \{1, 2, \ldots\}\), \(F^K\) is a contraction. For any \(K \geq 0\) the sequence \((Y^{K,p}, Z^{K,p})_{p \geq 0}\) converges towards \((Y^K, Z^K)\) in \(S^K\). In the same way \((Y^p, Z^p)_{p \geq 0}\) converges towards \((Y, Z)\) in \(S\).

We use the following notation:

\[
Q^{K,p+1}_t = \int_0^t Z^{K,p+1}_s \, dM^K_s, \quad \chi^{K,p}_t := \int_0^t g^K(X^K_s, Y^K_s, Z^K_s) \cdot \phi^K_s \, dA^K_s,
\]

\[
Q^{p+1}_t = \int_0^t Z^{p+1}_s \, dM^X_s \quad \text{and} \quad \chi^p_t := \int_0^t g(X^p_s, Y^p_s, Z^p_s) \, dA_s.
\]

So that we can write:

\[
Y^{K,p+1}_t = \xi^K + \chi^{K,p}_T - \chi^{K,p}_t - Q^{K,p+1}_T + Q^{K,p+1}_t
\]
and
\[Y_{t}^{p+1} = \xi + \chi_{t}^{p} - \chi_{t}^{p} - Q_{T}^{p+1} + Q_{t}^{p+1}. \quad (4) \]

We prove by induction that the following convergence holds for any \(p \):
\[
\left(Y^{K,p}, Q^{K,p}, \langle Q^{K,p}, M^{K} \rangle, \langle Q^{K,p} \rangle \right) \rightarrow \left(Y^{p}, Q^{p}, \langle Q^{p}, M \rangle, \langle Q^{p} \rangle \right)
\]
in \(S_{1}^{2+\varepsilon_{p}} \times S_{1}^{2+\varepsilon_{p}} \times S_{2}^{2+\varepsilon_{p}} \times S_{1}^{1+\varepsilon_{p}/2} \) where \(\varepsilon_{p} = \varepsilon/2^{p} \). Obviously the result holds for \(p = 0 \). We assume that the converge holds for \(p \) and show that it implies the convergence for \(p + 1 \).

We write
\[
\mathbb{E}[\xi^{K} + \chi_{T}^{K,p} | \mathcal{F}_{t}^{K}] = Y_{0}^{K,p+1} + Q_{t}^{K,p+1}
\]
and
\[
\mathbb{E}[\xi + \chi_{T}^{p} | \mathcal{F}_{t}^{X}] = Y_{0}^{p+1} + Q_{t}^{p+1}.
\]

We prove in Appendix 6.3.4 that the induction hypothesis implies that \(\langle \chi^{K,p} \rangle_{K \in \{1,2,\ldots\}} \)
converges towards \(\chi^{p} \) in \(S_{1}^{2+\tilde{\varepsilon}_{p}} \) where \(\tilde{\varepsilon}_{p} = (\varepsilon_{p} + \varepsilon_{p+1})/2 \). Therefore \(\langle \xi^{K} + \chi_{T}^{p,K} \rangle_{K \in \{1,2,\ldots\}} \)
converges towards \(\langle \xi + \chi^{p} \rangle \) in \(L^{2+\tilde{\varepsilon}_{p}} \). Since \(\tilde{\varepsilon}_{p} > \varepsilon_{p+1} \) using Proposition 2 we get
\[
\left(Q^{K,p+1}, \langle Q^{K,p+1}, M^{K} \rangle, \langle Q^{K,p+1} \rangle \right) \rightarrow \left(Q^{p+1}, \langle Q^{p+1}, M \rangle, \langle Q^{p+1} \rangle \right)
\]
in \(S_{1}^{2+\varepsilon_{p+1}} \times S_{2}^{2+\varepsilon_{p+1}} \times S_{1}^{1+\varepsilon_{p+1}/2} \). From Eqs. (3) and (4) we immediatly get that \(Y^{K,p+1} \)
converges towards \(Y^{p} \) in \(S_{1}^{2+\varepsilon_{p+1}} \). Therefore we get the convergence for \(p + 1 \).

6.3.3 Step (iii)

Note that a consequence of Step (i) is that for a certain positive constant \(C \) we have
\[
\| (Y^{K,p}, Z^{K,p}) - (Y^{K}, Z^{K}) \|_{S^{K}} + \| (Y^{p}, Z^{p}) - (Y, Z) \|_{S} \leq C\alpha^{p}. \quad (5)
\]

We write
\[
\| Q^{K} - Q \|_{2} \leq \| Q^{p} - Q \|_{2} + \| Q^{K} - Q^{K,p} \|_{2} + \| Q^{K} - Q^{p} \|_{2}.
\]

Notice that according to the BDG inequality there exists a positive constant \(C \) such that for any \(K \)
\[
\| Q^{K,p} - Q^{K} \|_{2}^{2} + \| Q^{p} - Q \|_{2}^{2} \leq C \left(\| Z^{K,p} - Z^{K} \|_{S^{K}}^{2} + \| Z^{p} - Z \|_{S}^{2} \right)
\]
which converges towards 0 uniformly in \(K \) when \(p \rightarrow +\infty \) by Eq. (5). Hence \((Q^{K})_{K \in \{1,2,\ldots\}} \)
converges in \(S_{1}^{2} \) towards \(Q \).

 Springer
Similarly we write
\[\| Y^K - Y \|_2 \leq \| Y^p - Y \|_2 + \| Y^{K,p} - Y^K \|_2 + \| Y^{K,p} - Y^p \|_2. \]
We proved in the previous section that the last term goes to 0 when \(K \to +\infty \). Remark that we have
\[Y^K_t - Y^{K,p}_t = E \left[\int_0^T (g^K(X^K_s, Y^K_s, Z^K_s) - g^K(X^{K,p}_s, Y^{K,p}_s - 1_s, Z^{K,p}_s - 1_s)) \cdot \phi^K_s dA^K_s | F^K_t \right]. \]
By using Jensen inequality, Doob’s inequality, the assumption (ii) in Lemma 1 and the uniform estimate in Step 2a in Sect. 6.1, we deduce that there exists a constant \(\tilde{L} > 0 \) such that
\[E \left[\sup_{t \in [0,T]} |Y^K_t - Y^{K,p-1}_t|^2 \right] \leq \tilde{L} E \left[\int_0^T |Y^K_s - Y^{K,p-1}_s|^2 ds \right] \\
+ \int_0^T e^{\beta A^K_s} |Z^K_s - Z^{K,p-1}_s|^2 \cdot \phi^K_s dA^K_s \\
\leq \tilde{L} \int_0^T E \left[\sup_{s \in [0,t]} |Y^K_s - Y^{K,p-1}_s|^2 \right] ds \\
+ \| Z^K - Z^{K,p-1} \|^2_{\| \|_{\mathbb{E}}}.
\]
By Grönwall’s lemma and Eq. (5), \(\| Y^K - Y^{K,p} \|_2 \) goes to 0 when \(p \to +\infty \). In the same way we get that \(\| Y - Y^p \|_2 \) goes to 0 when \(p \to +\infty \). So \(\| Y^K - Y \|_2 \) converges towards 0.
Finally notice that,
\[(Y^K, \overline{M}^K) = (Q^K, \overline{M}^K), (Y^K) = (Q^K), (Y, M) = (Q, M) \text{ and } (Y) = (Q). \]
So the convergence
\[((Y^K, \overline{M}^K), (Y^K)) \to ((Y, M), (Y)) \text{ as } K \to +\infty \]
in \(S^1_2 \times S^1_2 \) follows from Proposition 2 in [21] and from the convergence of \((Q^K, \overline{M}^K)_{K \in \{1,2,...\}} \) in \(S^2_1 \times S^2_2 \) towards \((Q, M) \).

6.3.4 Convergence of \((\chi^{p,K})_{K \in \{1,2,...\}} \) Towards \(\chi^p \)

To prove the convergence we first prove that \((\chi^{p,K})_{K \in \{1,2,...\}} \) converges towards \(\chi^p \) in probability for the uniform topology. Then we show that \((|\chi^{p,K}| + |\chi^p|)_{K \in \{1,2,...\}} \)
is bounded in $S^{2+	ilde{e}_p}$ where $\tilde{e}_p = (\varepsilon_p + \tilde{e}_p)/2 > \tilde{e}_p$. We conclude by dominated convergence.

For any n we note $Z^{p,n} = Z^p 1_{|Z^p|< n}$. We write

$$\sup_{t \in [0,T]} |\phi^K_t - \phi_t| \leq \sum_{i=b,d} T_{i,1}^{n,K,p} + T_{i,2}^{n,K,p} + T_{i,3}^{n,K,p} + T_{i,4}^{n,p}/2$$

where for $i \in \{b, d\}$, we recall that $g = (g_b + g_d)/2$,

$$T_{i,1}^{n,K,p} = \sup_{t \in [0,T]} \left| \int_0^t g^K_i(X^K_s, Y^K_s, Z^{p,n}_s) \phi^K_s, i dA^K_s \right|$$

$$T_{i,2}^{n,K,p} = \sup_{t \in [0,T]} \left| \int_0^t g^K_i(X^K_s, Y^K_s, Z^{p,n}_s/K) \phi^K_s, i dA^K_s \right|$$

$$T_{i,3}^{n,K,p} = \sup_{t \in [0,T]} \left| \int_0^t g_i(X_s, Y^p_s, Z^{p,n}_s/K) K^{-2} \phi^K_s, i dA^K_s \right|$$

$$T_{i,4}^{n,p} = \sup_{t \in [0,T]} \left| \int_0^t g_i(X_s, Y^p_s, Z^{p,n}_s) - g_i(X_s, Y^p_s, Z^p_s) dA_s \right|.$$

For $i \in \{b, d\}$ the sequence $(T_{i,4}^{n,p})_{n \geq 0}$ obviously converges to 0 in probability by almost sure convergence as n goes to infinity.

The sequence $(\int_0^T K^{-2} \phi^K_s, i dA^K_s)_{K \in [1,2,...]}$ converges towards $A/2$ in probability for the Skorohod topology and satisfy the P-UT condition by Proposition VI–6.12 in [26].

So for any n, $(T_{i,3}^{n,K,p})_{K \in [1,2,...]}$ converges towards 0 in probability (for the Skorohod topology) as a consequence of Theorem VI–6.22 in [26].

For the second term we write

$$|K^2 g^K_b(X^K, Y^{K,p}, Z^{p,n}/K) - g_b(X, Y^p, Z^{p,n})|$$

$$\leq |K^2 g^K_b(X^K, Y^{K,p}, Z^{p,n}/K) - K^2 g^K_b(X, Y^p, Z^{p,n}/K)|$$

$$+ |K^2 g^K_b(X, Y^p, Z^{p,n}/K) - g_b(X, Y^p, Z^{p,n})|.$$

So by assumptions of Lemma 1 and Assumption 2 we get:

$$|K^2 g^K_b(X^K, Y^{K,p}, Z^{p,n}/K) - g_b(X, Y^p, Z^{p,n})|$$

$$\leq C|X^K - X| + L|Y^{K,p} - Y^p| + v_K(|X|^2 + |Y^p|^2 + n^2).$$
Thus there exists $\tilde{C} > 0$

$$|T_{b,2}^{n,K,p}| + |T_{d,2}^{n,K,p}| \leq \tilde{C} A^K_L \left(\sup_{t \in [0,T]} |X_t^K - X_t| + \sup_{t \in [0,T]} |Y_t^{K,p} - Y_t^p| \\
+ \nu_K \left(\sup_{t \in [0,T]} |X_t|^2 + \sup_{t \in [0,T]} |Y_t^p|^2 + n^2 \right) \right)$$

which obviously goes to 0 in probability when $K \to +\infty$ according to Slutsky’s theorem, in view of the induction hypothesis and since $(\nu_K)_{K \in \{1,2,\ldots\}}$ goes to 0.

Finally we write:

$$|K^2 g^K_b(X^K_s, Y^{K,p}_s, Z^{K,p}_s) - K^2 g^K_b(X^K_s, Y^{K,p}_s, Z^{p,n}_s / K)|^2 \leq L^2 |K Z^{K,p.b}_s - Z^{p,n}_s|^2.$$

So we have

$$|T_{b,1}^{n,K,p}| + |T_{d,1}^{n,K,p}| \leq \sup_{t \in [0,T]} L^2 \int_0^t \left((K Z^{K,p}_s)^2 + (Z^{p,n}_s)^2 \\
- 2Z^{p,n}_s K Z^{K,p}_s \right) dA_s^K$$

Taking the average and going to the upper limit in K we get by induction hypothesis and from Theorem VI–6.22 in [26] that

$$\limsup_{K \to +\infty} \mathbb{E} \left[|T_{b,1}^{n,K,p}| + |T_{d,1}^{n,K,p}| \right] \leq L^2 \mathbb{E} \left[\sup_{t \in [0,T]} \int_0^t \left((Z^p_s)^2 + (Z^{p,n}_s)^2 \\
- 2Z^{p,n}_s Z^p_s \right) dA_s \right]$$

$$\leq L^2 \mathbb{E} \left[\sup_{t \in [0,T]} \int_0^t \left(Z^p_s - Z^{p,n}_s \right)^2 dA_s \right].$$

The RHS converges to 0 when $n \to +\infty$ by dominated convergence. Hence we have shown that $(\chi^{K,p})_{K \geq 0}$ converges to χ^p in probability for the uniform convergence.

To conclude we show that $(|\chi^{K,p}| + |\chi^p|)_{K \in \{1,2,\ldots\}}$ is bounded in $S^{2+\hat{\epsilon}}_p$. We write

$$\sup_{t \in [0,T]} |\chi_t^{K,p}| \leq C A^K_L \left(1 + \sup_{t \in [0,T]} |X^K_t| + \sup_{t \in [0,T]} |Y^K_t| \right) + C \int_0^T |K Z^K_s| \cdot \frac{\phi^K_s}{K^2} dA^K_s.$$

Using Kunita–Watanabe it is easy to see that the last term is bounded in $L^{2+\hat{\epsilon}}_p$. The other terms are bounded in $L^{2+\hat{\epsilon}}_p$ by induction assumption and Proposition 1. So $(\chi^{K,p})_{K \in \{1,2,\ldots\}}$ is bounded in $S^{2+\hat{\epsilon}}_1$. In the same way we show that $\chi^p \in S^{2+\hat{\epsilon}}_1$.

Therefore we obtain the convergence of $(\chi^{K,p})_{K \geq 0}$ towards χ^p in $S^{2+\hat{\epsilon}}_1$ by dominated convergence.
6.4 Proof of Theorem 3

From Assumption 4 (i)–(ii) we get that the generator g^K satisfies the conditions of Lemma 1. Therefore $(\text{BSDE})_K$ admits a unique solution $(Y^K, Z^K) \in \mathcal{S}^K$. We consider $\alpha^* = (X^K_t, Z^K_t)$, and show that α^* solve the optimal control problem $(\mathcal{C})_K$. Since α^* is admissible according to Assumption 4 (iii) we have $J^K_0, \alpha^* = Y^K_0$.

We now take any $\alpha \in \mathcal{A}^K$ and show that $J^K_0, \alpha^* \geq J^K_0, \alpha$.

By definition the first integrand term is almost surely non negative and therefore we have

$$J^K_0, \alpha^* \geq \xi^K + \int_0^T (c^K(X^K_t, \alpha^K_t) + Z^K_t \cdot h^K(X^K_t, \alpha^K_t)) \, ds - \int_0^T Z^K_s \cdot dM^K_s,$$

or equivalently

$$J^K_0, \alpha^* \geq \xi^K + \int_0^T c^K(X^K_t, \alpha_t) \, ds - \int_0^T Z^K_s \cdot dM^K_s,\alpha.$$

Taking the expectation with respect to \mathbb{P}^K, α we get the result.

6.5 Proof of Theorem 4

From Assumption 6 (i)–(ii) we get that the generator g satisfies the conditions of Lemma 2. Therefore (BSDE) admits a unique solution $(Y, Z) \in \mathcal{S}$. We consider $\alpha^* = (X_t, Z_t)$, and show that α^* solve the optimal control problem (\mathcal{C}). Since α^* is admissible according to Assumption 6 (iii) we have $J_0^{\alpha^*} = Y_0$.

We now take any $\alpha \in \mathcal{A}$ and show that $J_0^{\alpha^*} \geq J_0^{\alpha}$.
We write:

\[J_0^\alpha = \xi + \int_0^T (c(X_t, \alpha^*_t) + Z_t h(X_t, \alpha^*_t) - c(X_t, \alpha_t) - Z_t h(X_t, \alpha_t)) \, ds \]

\[+ \int_0^T (c(X_t, \alpha_t) + Z_t h(X_t, \alpha_t)) \, ds - \int_0^T Z_s \, dM^X_s. \]

By definition the first integrand term is almost surely non negative and therefore we have

\[J_0^\alpha \geq \xi + \int_0^T (c(X_t, \alpha_t) + Z_t h(X_t, \alpha_t)) \, ds - \int_0^T Z_s \, dM^X_s, \]

or equivalently

\[J_0^\alpha \geq \xi + \int_0^T c(X_t, \alpha_t) \, ds - \int_0^T Z_s \, dM^\alpha_s. \]

Taking the expectation with respect to \(\mathbb{P}^\alpha \) we get the result.

6.6 Proof of Theorem 5

According to Assumption 7 the sequences \((\xi^K)_{K \in \{1, 2, \ldots\}}\) and \((g^K)_{K \in \{1, 2, \ldots\}}\) satisfy the assumptions of Lemma 4 for any \(K \) and Assumption 2. So from Theorem 2 we have in \(\mathbb{S}_1^2 \times \mathbb{S}_1^1 \times \mathbb{S}_1^1 \)

\[\left(Y^K, \int_0^T Z^K_s \, d\lambda^K_s, K^{-1} \int_0^T |K Z^K_s d \lambda^K_s |^2 \, K^{-2} \, ds \right) \]

\[\to \left(Y, \int_0^T Z_s \sigma^2 X_s / 2 \, ds, \int_0^T Z^2_s \sigma^2 X_s / 2 \, ds \right) \text{ as } K \to +\infty. \quad (6) \]

6.6.1 Proof of Point (i)

We write

\[\left| \int_0^T \alpha_t^K \, \lambda^K_s \, dK^{-2} - \int_0^T \alpha_t^* \, dA_s / 2 \right| \]

\[\leq \int_0^T |\alpha_t^K - \alpha_t^*(X_t, Z_t / K)| \lambda^K_s \, dK^{-2} \, ds \]

\[+ \int_0^T \alpha_t^*(X_t, Z_t / K) \lambda^K_s \, dK^{-2} \, ds \]

\[- \int_0^T \alpha_t^*(X_t, Z_t / K) dA_s / 2 \]
\[+ \int_0^T \left| \alpha_{t}^{K,*}(X_t, Z_t/K) - \alpha_{t}^{*} \right| dA_t/2. \]

The second term converges towards 0 by Theorem 1. The last one terms goes to 0 from Assumption 7 (ii). Using Assumption 7 (iii) we can dominate the first term by

\[\int_0^T \left| \alpha_{t}^{K,*} - \alpha_{t}^{K,*}(X_t, Z_t/K) \right| dA_t/2 \]

that goes to 0 according to Theorem 1 and to the convergence (6).

In the same way, using that the control is bounded, we get that in probability

\[\int_0^T \left| \alpha_{t}^{K,*} \right|^2 dA_t/2 \to 0 \]

as \(K \to +\infty. \)

We then extend the convergences to \(S^2 \) by uniform integrability since the control is bounded. Thus we get the first statement of Theorem 5.

6.6.2 Proof of Point (ii)

We consider \((t_i)_{1 \leq i \leq n} \in [0, T]^n \) and a bounded continuous function \(f \) defined from \(\mathbb{R}^n \) into \(\mathbb{R} \). We show that

\[\mathbb{E}^{K,*}[f(X_{t_1}^K, \ldots, X_{t_n}^K)] \to \mathbb{E}^*[f(X_{t_1}, \ldots, X_{t_n})] \quad \text{as} \quad K \to +\infty \]

where \(\mathbb{E}^{K,*} \) (resp. \(\mathbb{E}^* \)) denotes the expectation under the control \(\alpha_{t}^{K,*} \) (resp. \(\alpha^* \)). We write

\[\mathbb{E}^{K,*}[f(X_{t_1}^K, \ldots, X_{t_n}^K)] = \mathbb{E}[f(X_{t_1}^K, \ldots, X_{t_n}^K) L_T^{K,\alpha_{t}^{K,*}}] \]

and

\[\mathbb{E}^*[f(X_{t_1}, \ldots, X_{t_n})] = \mathbb{E}[f(X_{t_1}, \ldots, X_{t_n}) L_T^{\alpha^*}] . \]

Suppose we have shown that \((L_T^{K,\alpha_{t}^{K,*}})_{K \in \{1, 2, \ldots\}} \) converges in probability surely towards \(L_T^{\alpha^*} \). Then writing

\[|L_T^{\alpha^*} - L_T^{K,\alpha_{t}^{K,*}}| = 2 \left(L_T^{\alpha^*} - L_T^{K,\alpha_{t}^{K,*}} \right) \]

\[= \left(L_T^{\alpha^*} - L_T^{K,\alpha_{t}^{K,*}} \right) + \left(L_T^{K,\alpha_{t}^{K,*}} - L_T^{K,\alpha_{t}^{K,*}} \right) \]

Springer
we get that \((L_T^{K, \alpha, s})_{K \in \{1, 2, \ldots \}} \) converges towards \(L_T^{\alpha, s} \) in \(L^1 \) by dominated converges and since

\[
\mathbb{E}[L_T^{\alpha, s}] = \mathbb{E}[L_T^{K, \alpha, s}] = 1.
\]

Then we conclude noticing that:

\[
|f(X_t, \ldots, X_n)L_T^{\alpha, s} - f(X_t, \ldots, X_n)L_T^{K, \alpha, s}| \\
\leq |f(X_t, \ldots, X_n) - f(X_t, \ldots, X_n)|L_T^{\alpha, s} + \|f\|_\infty |L_T^{\alpha, s} - L_T^{K, \alpha, s}|
\]

We finally prove the convergence of \((L_T^{K, \alpha, s})_{K \in \{1, 2, \ldots \}} \) towards \(L_T^{\alpha, s} \) in probability. We introduce the following sequences

\[
\varepsilon^K_1 = \int_0^T \log \left(1 + \frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} \right) dN^K_{s, d} - \int_0^T \frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} dN^K_{s, d},
\]

\[
\varepsilon^K_2 = \int_0^T \left(\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} \right)^2 dN^K_{s, d} - \int_0^T \left(\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} \right)^2 \lambda_s^{K, d} ds,
\]

\[
\varepsilon^K_3 = \int_0^T \left(\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} \right)^2 \lambda_s^{K, d} ds - \int_0^T \left(\frac{h(X_s, \alpha_s^*)}{\sigma^2 X_s/2} \right)^2 \lambda_s^{K, d} ds - \int_0^T \frac{h(X_s, \alpha_s^*)}{\sigma^2 X_s/2} dM^K_{s, d},
\]

\[
\varepsilon^K_4 = \int_0^T \frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} dM^K_{s, d} - \int_0^T h(X_s, \alpha_s^*) dM^K_{s, d}
\]

and show that they all converges to 0 in probability.

For some \(C > 0 \) independent of \(K \) we have

\[
|\varepsilon^K_1| \leq C \int_0^T \left(\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} \right)^3 dN^K_{s, d} 1_{\sup_{s \in [0,T]} |\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}}| < 1} + |\varepsilon^K_1| 1_{\sup_{s \in [0,T]} |\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}}| > 1}.
\]

The first term of the RHS converges towards 0 in probability according to Markov inequality. The second one converges almost surely towards 0 from Assumption 7-(i) since \(\sup_{s \in [0,T]} |\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}}| \). Remark that

\[
\varepsilon^K_2 = \int_0^T \left(\frac{h^K(X_s^{K, \alpha, s})}{\lambda_s^{K, d}} \right)^2 dM^K_{s, d}
\]
Consequently using Assumption 7 (iii) and Tchebychev inequality we get that $(\varepsilon_2^K)_{K \in \{1,2,...\}}$ converges towards 0 in probability. Notice that we have

\[
\varepsilon_3^K = \int_0^T \left[\left(\frac{Kh^K(X_s^K, \alpha_s^{K,*})}{\lambda^K,s,d(X_s)} \right)^2 - \left(\frac{Kh^K(X_s, \alpha^{K,*}(X_s, Z_s/K))}{\lambda^K,s,d(X_s)} \right)^2 \right] K^{-2}\lambda^K,s,d \, ds
\]

\[
+ \int_0^T \left(\frac{Kh^K(X_s, \alpha^{K,*}(X_s, Z_s/K))}{\lambda^K,s,d(X_s)} \right)^2 K^{-2}\lambda^K,s,d \, ds
\]

\[
- \int_0^T \left(\frac{Kh^K(X_s, \alpha^{K,*}(X_s, Z_s/K))}{\lambda^K,s,d(X_s)} \right)^2 \, dA_s/2
\]

\[
+ \int_0^T \left(\frac{Kh^K(X_s, \alpha^{K,*}(X_s, Z_s/K))}{\lambda^K,s,d(X_s)} \right)^2 - \left(\frac{h(X_s, \alpha_s^*)}{\sigma^2 X_s/2} \right)^2 \, dA_s/2.
\]

The second and last terms go to 0 in probability by Theorem 1, Assumption 7 (ii) and from Proposition VI–6.12 and Theorem VI–6.22 in [26]. Similarly the proof of Theorem 5 (i), the first term goes to 0 from Cauchy Schwarz inequality, Assumption 7 (iii) together with the convergence (6). Finally we write

\[
\varepsilon_4^K \leq \left| \int_0^T \frac{Kh^K(X_s^K, \alpha_s^{K,*})}{\lambda^K,s,d(X_s)} \, dM^K,s \right|
\]

\[
+ \left| \int_0^T \frac{Kh^K(X_s, \alpha_s^*)}{\lambda^K,s,d(X_s)} \, dM^K,s \right|
\]

\[
+ \left| \int_0^T \frac{h(X_s, \alpha_s^*)}{\sigma^2 X_s/2} \, dM^K,s \right|
\]

The second and last terms converge towards 0 by Assumption 7 (ii), Theorem 1, Proposition VI–6.12, Theorem VI–6.22 in [26] and Theorem 5. Using Ito’s isometry, Cauchy-Schwarz inequality, Assumption 7 (iii) together with Theorems 1 and 5 (i) we get that the first term goes to 0 in probability. Therefore $(\varepsilon_4^K)_{K \in \{1,2,...\}}$ converges towards 0 in probability.

Thus we conclude that $(L_T^K, \alpha^{K,*}_T)_{K \in \{1,2,...\}}$ converges toward $L_T^{\alpha^*}$ in probability.

Acknowledgements The authors are gratefully thankful to Vincent Bansaye, Mathieu Rosenbaum, Nizar Touzi for many interesting discussions. The authors gratefully acknowledge the financial supports of the ERC Grant 679836 Staqamof, the Chaires Analytics and Models for Regulation and Financial Risk. We also thank Dylan Possamaï for having pointed out that a work is in progress on the convergence of BSDEs in a general framework and that a general result on martingale representation convergences was published recently.

Declarations

Conflict of interest The authors declare no conflict of interests regarding this work and researches associated with do not involve Human Participants and/or Animals.
A: Spaces and Notations

- For any $K \in \{1, 2, \ldots \}$ we consider the sets.
 - $L^2(M^K)$ is the set of \mathcal{F}^K predictable process \mathbb{R}^2 valued Z such that
 \[
 \|Z\|^2_{L^2(M^K)} = \mathbb{E}\left[\int_0^T |Z_s|^2 \cdot \phi^K_s dA^K_s\right] < +\infty.
 \]
 - T^K is the set of \mathcal{F}^K_t measurable \mathbb{R} valued random variable ξ such that
 \[
 \|\xi\|^2_{T^K} = \mathbb{E}\left[e^{\beta A^K_T} |\xi|^2\right] < +\infty.
 \]
 - K^K is the set of \mathcal{F}^K-optional \mathbb{R} valued process Y such that
 \[
 \|Y\|^2_{K^K} = \mathbb{E}\left[e^{\beta A^K_T} \sup_{t \in [0,T]} |Y_t|^2\right] < +\infty.
 \]
 - H^K_2 is the set of \mathcal{F}^K-predictable \mathbb{R}^2 valued process Z such that
 \[
 \|Z\|^2_{H^K_2} = \mathbb{E}\left[\int_0^T e^{\beta A^K_T} Z_s^2 \cdot \phi^K_s dA^K_s\right] < +\infty \text{ with } Z^2 = (Z^2_1, Z^2_2).
 \]
 - H^K_1 is the set of \mathcal{F}^K-predictable \mathbb{R} valued process Y such that
 \[
 \|Y\|^2_{H^K_1} = \mathbb{E}\left[\int_0^T e^{\beta A^K_T} |Y_t|^2 dA^K_t\right] < +\infty.
 \]
 - S^K is the set of pair $(Y, Z) \in H^K_1 \times H^K_2$, we note $\|(Y, Z)\|^2_{S^K} = \|Y\|^2_{H^K_1} + \|Z\|^2_{H^K_2}$.

- We also consider the sets related to the continuous model.
 - $L^2(M^X)$ is the set of \mathcal{F}^X predictable process \mathbb{R} valued Z such that
 \[
 \|Z\|^2_{L^2(M^X)} = \mathbb{E}\left[\int_0^T |Z_s|^2 dA_s\right] < +\infty.
 \]
 - T is the set of \mathcal{F}^X_t measurable \mathbb{R} valued random variable ξ such that
 \[
 \|\xi\|^2_{T} = \mathbb{E}\left[e^{\beta A_T} |\xi|^2\right] < +\infty.
 \]
− \mathbb{K} is the set of \mathbb{F}^X-optional \mathbb{R} valued process Y such that
\[
\|Y\|_{\mathbb{K}}^2 = \mathbb{E}\left[e^{\beta T} \sup_{t \in [0, T]} |Y_t|^2 \right] < +\infty.
\]
− \mathbb{H} is the set of \mathbb{F}^X-predictable \mathbb{R} valued process Z such that
\[
\|Z\|_{\mathbb{H}}^2 = \mathbb{E}\left[\int_0^T e^{\beta A_t} Z_s^2 dA_t \right] < +\infty.
\]
− \mathbb{S} is the set of pair $(Y, Z) \in \mathbb{K} \times \mathbb{H}$, we note $\|(Y, Z)\|_{\mathbb{S}}^2 = \|Y\|_{\mathbb{K}}^2 + \|Z\|_{\mathbb{H}}^2$.

• Finally we consider the sets:
− L^p the set of real valued random variable Z such that
\[
\|Z\|_{L^p}^p = \mathbb{E}[|Z|^p] < +\infty
\]
− S^p_d is the set of \mathbb{F}-predictable \mathbb{R}^d valued process X such that
\[
\|X\|_{p}^p = \mathbb{E}\left[\sup_{t \in [0, T]} \|X_t\|^p \right] < +\infty.
\]

B: Change of Measure for Initial Population

We consider $m \in \mathbb{R}^*_+$ and $n \in (0, m)$ and define the process
\[
Q_{K, n, m}^t = \int_0^t \sum_{i \in \{b, d\}} \frac{\lambda_{s}^{n,K,i} - \lambda_{s}^{m,K,i}}{\lambda_{s}^{m,K,i}} \mathbf{1}_{\chi_{s}^{m,K} > 0} dM_{s}^{K,i}.
\]

We have $|\Delta Q_{K, n, m}^{t}| \leq 1$ and therefore $\Delta Q_{K, n, m}^{t} \geq 1$. Moreover from Assumption 1 we have for some constant C positive
\[
<Q_{K, n, m}^{t}, t> = \int_0^t \sum_{i \in \{b, d\}} \frac{|\lambda_{s}^{n,K,i} - \lambda_{s}^{m,K,i}|^2}{\lambda_{s}^{m,K,i}} \mathbf{1}_{\chi_{s}^{m,K} > 0} ds
\]
\[
\leq \int_0^t \sum_{i \in \{b, d\}} \frac{C(K^2 + K)|n - m|^2}{K^2 n \chi_{s}^{m,K} \chi_{min}} \mathbf{1}_{\chi_{s}^{m,K} > 0} ds
\]
\[
\leq \int_0^t \sum_{i \in \{b, d\}} \frac{C(K^2 + K)|n - m|^2}{K^2 n \chi_{min}} ds,
\]
where $X_{m,K}^{\min} > 0$ is the lowest positive value that the process $X_{m,K}$ can take. Therefore by Theorem 2.4 in [33] the process $L_n^{m,n}$ is a uniformly integrable martingale. Moreover according to Theorem III–3.11 in [26] under the probability \mathbb{P}_K for $i \in \{b, d\}$ the processes

$$M^{K,m,i} - (Q^{n,m}K, M^{K,m,i})$$

are local martingales. Finally we conclude since

$$M^{K,m,i}_t - (Q^{n,m}K, M^{K,m,i})_t = N_t - \int_0^t \lambda^{m,K,i}_s - (\lambda^{n,K,i}_s - \lambda^{m,K,i}_s) \mathbf{1}_{X^{m,K}_s > 0} \, ds$$

By [27] the probability \mathbb{P}_K, α^K_* exists. We recall that we have chosen T small enough such that a_K is negative and b_K positive on $[0, T]$. Hence we have

$$\lambda^{K,d,\alpha^K}_t \geq K X^K_{t^-} (\mu + K \sigma^2) + K X^K_{t^-} (\mu - a_K(t) + \frac{a_K(t)}{X^K_{t^-}} - b_K(t)) \mathbf{1}_{X^K_{t^-} > 0}.$$

We can always assume that T is small enough so that we can assume that for any $t \in [0, T], \sigma^2 - b_K(t) > 0$. So λ^{K,d,α^K}_* is \mathbb{P}_K, α^K_* almost surely nonnegative and the control α^K_* is admissible.

C.1: Discrete Models

We show that the control α^K_* is admissible. We have

$$\lambda^{K,d,\alpha^K}_t \geq K X^K_{t^-} (\mu + K \sigma^2) + K \left(-2a_K(t) X^K_{t^-} + \frac{a_K(t)}{X^K_{t^-}} - b_K(t) \right) \mathbf{1}_{X^K_{t^-} > 0}.$$

C.2: Continuous Models

We have

$$X_t \alpha^K_t = (-2a(t) X_t - b(t)) \mathbf{1}_{X_t > 0}.$$
So the SDE
\[dX_t = X_t(v - \mu - \alpha_t^*)dt + \sigma \sqrt{X_t}dW_t \]
writes
\[dX_t = (X_t(v - \mu) - (2a(t)X_t - b(t))1_{X_t > 0})dt + \sigma \sqrt{X_t}dW_t, \quad X_0 = x_0. \]

Obviously this SDE admits a unique strong solution given by
\[Y_t \inf_{s \in [0, t]} Y_s > 0 \]
where \(Y \) is the unique strong solution of
\[dY_t = (Y_t(v - \mu) + 2a(t)Y_t + b(t))dt + \sigma \sqrt{Y_t}dW_t, \quad Y_0 = x_0. \]

D: Feller Property of the Model

We consider a non negative real \(x \). We obviously have that when \(t \to 0 \) the \(X^K_{t,x} \) converges almost surely towards \(x \). Now we consider a non negative sequence \((x_n)_{n \geq 0} \) that converges towards \(x \) and show that for any \(t > 0 \), \((X^K_{t,x_n})_{n \geq 0} \) converges in law towards \(X^K_{t,x} \). We fix \(x_0 \) larger than \(x \) and any of the \(x_n \) and \(f \) a bounded continuous function on \(\mathbb{R}_+ \).

We write
\[\mathbb{E}^{K,x_n}[f(X^K_{t,x_n})] = \mathbb{E}^{K,x_0}[f(X^K_{t,x_n})L^K_{t,x_n,x_0}] \]
and
\[\mathbb{E}^{K,x}[f(X^K_{t,x})] = \mathbb{E}^{K,x_0}[f(X^K_{t,x})L^K_{t,x,x_0}], \]
and
\[|f(X^K_{t,x_n})L^K_{t,x_n,x_0} - f(X^K_{t,x})L^K_{t,x,x_0}| \leq |f(X^K_{t,x_n}) - f(X^K_{t,x})|L^K_{t,x,x_0} \]
\[+ |f(X^K_{t,x})||L^K_{t,x_n,x_0} - L^K_{t,x,x_0}|. \]

The first term of the right hand side (RHS for short) goes to 0 by dominated convergence. We can dominate the second one by
\[\|f\|_{\infty}|L^K_{t,x_n,x_0} - L^K_{t,x,x_0}| \]
that converges towards 0 according to Scheffé’s lemma. Therefore our model has the Feller property.

E: Martingale Representation with Respect to \(M^X \)

We show in this section that any \((\mathbb{F}^X, \mathbb{P})\)-martingale has the representation property relative to \(M^X \).
We set \(\mathcal{H} = \mathcal{F}^X_0 \) and \(\mathbb{P}_0 = \mathbb{P}_{X_0 = x_0} \), i.e. the probability measure on \(\mathcal{H} \) such that that \(\mathbb{P}_0(\{X_0 = x_0\}) = 1 \). For \(\tilde{X} \) a càdlàg process adapted to the filtration \(\mathbb{F}^X \) and \(\mathbb{B} \) and \(\mathbb{C} \) two \(\mathbb{F}^X \)-predictable processes with finite variation such that \(\mathbb{B}_0 = \mathbb{C}_0 = 0 \) we recall the definition of the martingale problem associated with \((\mathcal{H}, \tilde{X}) \) and \((\mathbb{P}_0, \mathbb{B}, \mathbb{C})\).

Definition 3 (Definition III–2.6 in [26]) A solution to the martingale problem associated with \((\mathcal{H}, \tilde{X}) \) and \((\mathbb{P}_0, \tilde{B}, \mathbb{C})\) is a probability measure \(\mathbb{Q} \) on \((\Omega, \mathbb{F}^X)\) such that

- The restriction of \(\mathbb{Q} \) to \(\mathcal{H} \) equals \(\mathbb{P}_0 \).
- \(\tilde{X} \) is a semi-martingale on \((\Omega, \mathbb{F}^X, \mathbb{Q})\) with characteristics \((\mathbb{B}, \mathbb{C})\).

We denote by \(s(\mathcal{H}, \tilde{X} | \mathbb{P}_0; \mathbb{B}, \mathbb{C}) \) the set of solutions to this martingale problem.

From this definition we see that the projection of \(\mathbb{P} \) on \(\mathbb{F}^K \) is a solution of \(s(\mathcal{H}, X | \mathbb{P}_0; D, A) \) where

\[
D_t = \int_0^t f(X_s)ds \quad \text{and} \quad A_t = \int_0^t \sigma^2 X_sds.
\]

We have \(M^X = X_t - D_t \) so that \(M^X \) is a \(\mathbb{F}^X \)-adapted process and it makes sense to consider the set \(s(\mathcal{H}, M^X | \mathbb{P}_0; 0, A) \). We show that

\[
s(\mathcal{H}, M | \mathbb{P}_0; 0, A) = s(\mathcal{H}, X | \mathbb{P}_0; D, A) \tag{7}
\]

and that \(s(\mathcal{H}, X | \mathbb{P}_0; D, A) \) is reduced to a singleton. This will be enough to conclude according to Theorem III–4.29 in [26].

Consider \(\mathbb{Q} \in s(\mathcal{H}, M | \mathbb{P}_0; 0, C) \). We have \(X = M^X + A \) and since \(D \) and \(C \) are continuous process with finite variation, we deduce that under \(\mathbb{Q} \) the characteristics of \(X \) are \((A, C)\). Conversely, if \(\mathbb{Q} \in s(\mathcal{H}, X | \mathbb{P}_0; D, A) \) then by recalling that \(M^X = X - D \) we obtain \(\mathbb{Q} \in s(\mathcal{H}, M | \mathbb{P}_0; 0, A) \). Hence, (7) holds.

Since (S) admits a unique strong solution it admits a unique solution in law (see Theorem IX–1.7 [34]). Therefore from Theorem III–2.26 in [26] the set \(s(\mathcal{H}, X | \mathbb{P}_0; D, C) \) is reduced to a singleton. As a consequence of (7), the set \(s(\mathcal{H}, M^X | \mathbb{P}_0; 0, C) \) is also reduced to a singleton. Therefore, we deduce from Theorem III–4.29 that all \((\mathbb{F}^X, \mathbb{P}) \)-martingales have the representation property relative to \(M^X \).

F: Proof of Proposition 1

For two non negative reals \(\nu \) and \(\mu \) we say that \(N \) is a linear branching process with birth rate \(\nu \) and intensity \(\mu \) if it can be written as \(N = N^b - N^d \) where \(N^b \) and \(N^d \) are two counting processes with respective intensity \(\nu N \) and \(\mu N \). This corresponds to a branching process as defined in Section III–3.3.1 in [37] with parameters \(\alpha = \nu + \mu \), \(p_0 = \frac{\mu}{\nu + \mu} \) and \(p_2 = \frac{\nu}{\nu + \mu} \).

To prove Proposition 1 we proceed in two steps:

- Step 1: We prove a result similar to Proposition 1 for linear branching process.
- Step 2: We show that a under some assumption a population processes is almost surely dominated by a linear branching process.
- Step 3: We conclude using the previous steps.
F.1: Step 1: Exponential Moments for Linear Branching Processes

We consider N a linear branching process with birth and death rate given by ν and μ.

We define the function F from $\mathbb{N} \times (\mathbb{R}_+^*)^2 \times \mathbb{R}_+$ into \mathbb{R}_+ by

$$F(n, \beta, t) = \mathbb{E}_n \left[e^{\beta_1 \int_0^t N_s ds + \beta_2 N_t} \right]$$

where \mathbb{E}_n is the expectation taker under the probability law that corresponds to initial condition population of size n. We have the following lemma:

Lemma 4 For any $\beta \in \mathbb{R}_+^2$ consider

$$\gamma_{\nu, \mu, \beta} = \frac{\nu + \mu - \beta_1}{2\nu}, \quad \phi_{\nu, \mu, \beta} = \nu \gamma_{\nu, \mu, \beta}^2 - \mu, \quad \Delta_{\nu, \mu, \beta} = \sqrt{\frac{\nu}{\phi_{\nu, \mu, \beta}}} (e^{\beta_2} - \gamma_{\nu, \mu, \beta}),$$

$$\alpha_{\nu, \mu, \beta} = \log \left(\frac{\Delta_{\nu, \mu, \beta} - 1}{\Delta_{\nu, \mu, \beta} + 1} \right) \text{ and } t^{*}_{\nu, \mu, \beta} = -\frac{\alpha_{\nu, \mu, \beta}}{2\sqrt{\nu \phi_{\nu, \mu, \beta}}}.$$

With those notations if β satisfies $\phi_{\nu, \mu, \beta} > 0$ and $\Delta_{\nu, \mu, \beta} > 1$, we have for any $t \in [0, t^{*}_{\nu, \mu, \beta})$

$$F(n, \beta, t) = \left(\frac{\phi_{\nu, \mu, \beta}}{\nu} \left(1 - \exp(\alpha_{\nu, \mu, \beta} + 2\sqrt{\nu \phi_{\nu, \mu, \beta}} t) - 1 \right) + \gamma_{\nu, \mu, \beta} \right)^n.$$

Note that since $(0, 0)$ satisfies the above conditions, they also hold for β_1 and β_2 small enough.

Proof of Lemma 4 Consider a population starting with one individual. We call τ the lifetime of this particle and $C = 1$ or 2 the size his offspring. Since all particles are independent and follow the same law we can consider that:

$$e^{\beta_1 \int_0^\tau N_s ds + \beta_2 N_\tau} = 1_{\tau > t} e^{\beta_1 t + \beta_2} + 1_{\tau \leq t} e^{\beta_1 \tau} \prod_{i=1}^C e^{\beta_1 \int_0^\tau N^{(i)}_{s-t} ds + \beta_2 N^{(i)}_{s-t}}$$

where $(N^{(i)})_{1 \leq i \leq 2}$ are independent copies of N.

Consider the stopping times

$$T_n = \inf \{ s > 0 \text{ s.t. } N_s = n \} \text{ and } T^{(i)}_n = \inf \{ s > 0 \text{ s.t. } N^{(i)}_s = n \} \text{ for } i = 1, 2.$$

\[\square \]
We define the stopping processes $N^{T_n} := N_{\wedge T_n}$ and $N^{(i)T_n} := N_{\wedge T_n}^{(i)}$. From Eq. (8) we get
\[
e^\beta_1 \int_0^{T_n} N^s \, ds + \beta_2 N^{T_n} \leq e^\beta_1 \int_0^{T_n} N^s \, ds + \beta_2 N_t = 1_{\tau \geq t} e^\beta_1 t + \beta_2
\]
and taking the average we have
\[
F_n(\beta, t) \leq e^{-(\nu + \mu)t} e^\beta_1 t + \beta_2
\]
where $F_n(\beta, t) = \mathbb{E}_1[e^\beta_1 \int_0^{T_n} N^s \, ds + \beta_2 N^{T_n}]$. We therefore consider the following ODE:
\[
(R)_{\nu, \mu, \beta}: f' = \nu f^2 - (\nu + \mu - \beta_1) f + \mu, \quad f(0) = e^\beta_2.
\]
We show that $(R)_{\nu, \mu, \beta}$ has a unique maximal solution defined on $t \in [0, t^*_{\nu, \mu, \beta})$ by
\[
f_{\nu, \mu, \beta}(t) = \sqrt{\frac{\phi_{\nu, \mu, \beta}}{\nu}} \left(\frac{2}{1 - \exp(\alpha_{\nu, \mu, \beta} + 2\sqrt{\nu\phi_{\nu, \mu, \beta} t})} - 1 \right) + \gamma_{\nu, \mu, \beta}.
\]
Using the change of variable $g = f - \gamma_{\nu, \mu, \beta}$, the ODE $(R)_{\nu, \mu, \beta}$ is equivalent to
\[
(R)'_{\nu, \mu, \beta}: g' = \phi_{\nu, \mu, \beta} \left(\frac{\nu}{\phi_{\nu, \mu, \beta}} g^2 - 1 \right).
\]
By Cauchy–Lipschitz theorem this ODE admits a maximal solution g. By hypothesis on β we have
\[
\phi_{\nu, \mu, \beta} \left(\frac{\nu}{\phi_{\nu, \mu, \beta}} g^2(0) - 1 \right) = \phi_{\nu, \mu, \beta} (\Delta^2_{\nu, \mu, \beta} - 1) > 0.
\]
So for all t such that $\frac{\nu}{\phi_{\nu, \mu, \beta}} g^2(t) - 1 > 0$ we can write
\[
\frac{g'(t)}{\phi_{\nu, \mu, \beta} g^2(t) - 1} = \phi_{\nu, \mu, \beta}.
\]
We recognize the derivative of
\[
x \rightarrow \frac{1}{2} \sqrt{\frac{\phi_{\nu, \mu, \beta}}{\nu}} \log \left(\frac{\sqrt{\nu}}{\phi_{\nu, \mu, \beta}} x - 1 \right).
\]
So integrating on both sides of (9) we have
\[
\log \left(\frac{\sqrt{\phi_{v,\mu,\beta}} g(t) - 1}{\sqrt{\phi_{v,\mu,\beta}} g(t) + 1} \right) = \alpha_{v,\mu,\beta} + 2\sqrt{\nu \phi_{v,\mu,\beta}} t.
\]

Therefore it is then easy to show that for any \(t < t_{v,\mu,\beta}^* \) we have
\[
g(t) + \gamma_{v,\mu,\beta} = \sqrt{\phi_{v,\mu,\beta}} \left(\frac{2}{1 - \exp(\alpha_{v,\mu,\beta} + 2\sqrt{\nu \phi_{v,\mu,\beta}} t) - 1} \right) + \gamma_{v,\mu,\beta}.
\]

Reciprocally it is easy to show that this function is a maximal solution of \((R)_{v,\mu,\beta}\) defined on \([0, t_{v,\mu,\beta}^*).\)

The function \(F_n(\beta, \cdot) \) being continuous a direct application of the Grönwall lemma gives that for any \(t \in [0, t_{v,\mu,\beta}^*), \) \(F_n(\beta, t) \leq f_{\mu, v, \beta}(t) \). By monotone convergence we obtain that \(F(1, \beta, t) \) is finite and taking the average in Eq. (8) we obtain that \(F(1, \beta, \cdot) \) is solution of \((R)_{\mu, v, \beta}\) therefore we have \(F(1, \beta, t) = f_{\mu, v, \beta}(t) \).

Finally if we consider a population \(N \) starting with \(n \) individual we can consider that
\[
N = \sum_{i=1}^{n} N^{(i)}
\]

where \((N^{(i)})_{1 \leq i \leq n}\) are independent copies of the branching process starting with one individuals. Therefore for \(t < t_{v,\mu,\beta}^* \) we get \(F(n, \beta, t) = F(1, \beta, t)^n \) which concludes the proof. \(\square \)

We now consider a sequence of branching process \((N^K)_K\) with initial condition \(Kn \) and parameters
\[
\mu^K = \mu + aK \text{ and } v^K = v + aK.
\]

We consider \(\beta_K = (\beta_1/K, \beta_2/K) \) such that \((v - \mu)^2 > 4a\beta_1\) and note
\[
\Lambda_\infty = \left(\frac{v - \mu}{2a} + \beta_2 \right), \quad \eta = \frac{\sqrt{(v - \mu)^2 - 4a\beta_1}}{2},
\]
\[
\alpha_\infty := \log \left(\frac{1}{\Lambda_\infty + 1} \right) \quad \text{and} \quad t_\infty^* = -\frac{\alpha_\infty}{2\eta}.
\]

We assume that \(\beta_1 \) and \(\beta_2 \) satisfy \(\Lambda_\infty > 1 \). Those conditions imply that for \(K \) large enough \(\beta_K \) satisfies the assumption in Lemma 4.
To lighten the notations we use the under-script K instead of (ν_K, μ_K, β_K). One can easily show the following convergence or equivalence:

$$1 - \gamma_K \sim \frac{\nu - \mu}{2a} K, \quad \frac{\phi_K}{\nu_K} \sim \frac{(\nu - \mu)^2 - 4a \beta_1}{4a^2}$$ \hfill (10)

$$\lim_{K \to +\infty} \Lambda_K = \Lambda_\infty, \quad \lim_{K \to +\infty} \sqrt{\nu_K \phi_K} = \eta,$$

$$\lim_{K \to +\infty} \alpha_K = \alpha_\infty \text{ and } \lim_{K \to +\infty} t^*_K = t^*_\infty. \hfill (11)$$

The convergence of the sequence $(t_K)_{K \in \{1, 2, \ldots\}}$ implies that for any $t < t^*_\infty$ and K large enough $F(nK, \beta_K, t)$ is finite. Moreover from (10) and (11) we get that the sequence $\left(F(nK, \beta_K, t) \right)_{K \in \{1, 2, \ldots\}}$ converges. More precisely it is easy to check that for any $t < t^*_\infty$ we have

$$\lim_{K \to +\infty} F(nK, \beta_K, t) = e^{n\Psi(\beta, t)}$$

where

$$\Psi(\beta, t) = \frac{\mu - \nu}{2a} + \frac{\eta}{a} \left(\frac{2}{1 - \exp(\alpha_\infty + 2\eta t)} - 1 \right).$$

Therefore we deduce that there exists $K_0 \in \mathbb{N}$, $T > 0$ and $\beta \in \mathbb{R}_+^2$ such that for any $s \in (0, T)$ we have

$$\sup_{K \geq K_0} \mathbb{E}_{nK} \left[e^{\frac{\beta_1}{K} \int_0^{t} N^b_{t} \, dt + \frac{\beta_2}{K} N^d_{t}} \right] < +\infty. \hfill (12)$$

F.2: Step 2: Domination of X^K by Linear Process

We begin by showing the following lemma.

Lemma 5 Consider two functions g_d and g_b from \mathbb{R}_+ into \mathbb{R}_+ such that

$$g_b(x) \leq \nu x, \quad g_d(x) \geq \mu x, \quad g_d(0) = 0.$$

and two counting processes N^b and N^d with respective intensity $g_d(N)$ and $g_b(N)$ where $N = N^b - N^d$. Up to an extension of the probability space, there exists a linear branching process \tilde{N} with birth rate ν and death rate μ, that can be built explicitly from N^b and N^d and their respective intensities.

Proof of Lemma 5 We proceed by thinning. We consider a multivariate point process X with values in $\mathcal{E} = \{b_1, b_2, d_1, d_2\}$ and let p be its corresponding random measure. For any $e \in \mathcal{E}$ we define:

$$N^e = \int_0^t \int_{\mathcal{E}} 1_{x=e} \, p(dx, dt).$$
For $i = 1$ and 2 we note $N^i = N^{bi} - N^{di}$ and
\[
\lambda^{bi} = \mu N^1, \quad \lambda^{di} = \nu N^1, \quad \lambda^{b2} = g_b(N^2) \quad \text{and} \quad \lambda^{d2} = g_d(N^2).
\]
We set $p(dx, dt) = m_t(x) \sum \delta T_i$ where \overline{T}_i denotes the ith jumping time of a Poisson process with intensity $\lambda_t := \lambda^{b1}_t + \lambda^{d2}_t$. The measure m_t is defined by:
\[
m_t(b_1) = \epsilon^1_t \delta_{b_1}, \quad m_t(b_2) = \epsilon^1_t \epsilon^2_t \delta_{b_2}, \quad m_t(d_2) = (1 - \epsilon^1_t) \delta_{d_2}, \quad m_t(d_1) = (1 - \epsilon^1_t) \epsilon^3_t \delta_{d_1},
\]
where $(\epsilon^i_t)_{1 \leq i \leq 3}$ are Bernoulli random variable with parameters $p^1_t = \lambda^{b1}_t / \lambda_t$, $p^2_t = \lambda^{b2}_t / \lambda_t$ and $p^3_t = \lambda^{d2}_t / \lambda_t$.

For existence of the process X see [27]. Basically, when there is an event either N^{b1} or N^{d2} jump. If N^{b1} has jumped, then N^{b2} may jump or not and if N^{d2} has jumped, then N^{d1} may jump or not. So almost surely we have $N^1 \geq N^2$. According to Proposition 1 in [38] for any $e \in E$ the process N^e is a counting process with intensity λ^e. This concludes the proof of the Lemma. \hfill \qed

Step 3: Conclusion

As consequence of Lemma 5 for any K up to an extension of the probability space we can consider that there exists a branching process with birth and death rate given by
\[
\nu_K = \nu + \frac{\sigma^2}{2} K \quad \text{and} \quad \mu_K = \frac{\sigma^2}{2} K
\]
that dominates X^K almost surely. So according to Eq. (12) in Step 2, there exists some positive constants β_0, T and K_0 such that for any $s \leq T$
\[
\sup_{K \geq K_0} \mathbb{E}\left[\exp\left(\beta_0 \int_0^s X^K_u du + \beta_0 X^K_s \right) \right] < +\infty.
\]
This conclude the proof of the proposition.

References

1. Reed, W.J.: Optimal escapement levels in stochastic and deterministic harvesting models. J. Environ. Econ. Manag. 6(4), 350–363 (1979)
2. Clark, C.W., Kirkwood, G.P.: On uncertain renewable resource stocks: optimal harvest policies and the value of stock surveys. J. Environ. Econ. Manag. 13(3), 235–244 (1986)
3. Regnier, E., De Lara, M.: Robust viable analysis of a harvested ecosystem model. Environ. Model. Assess. 20(6), 687–698 (2015)
4. Tromeur, E., Doyen, L.: Optimal harvesting policies threaten biodiversity in mixed fisheries. Environ. Model. Assess. 24(4), 387–403 (2019)
5. May, R.M., Beddington, J.R., Horwood, J.W., Shepherd, J.G.: Exploiting natural populations in an uncertain world. Math. Biosci. 42(3–4), 219–252 (1978)

6. Saphores, J.-D.: Harvesting a renewable resource under uncertainty. J. Econ. Dyn. Control 28(3), 509–529 (2003)

7. Evans, S.N., Hening, A., Schreiber, S.J.: Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments. J. Math. Biol. 71(2), 325–359 (2015)

8. Lim, T., Kharrouri, I., Ly-Vath, V.: Optimal exploitation of a resource with stochastic population dynamics and delayed renewal. arXiv preprint. arXiv:1807.04160 (2018)

9. De Lara, M., Doyen, L.: Sustainable Management of Natural Resources: Mathematical Models and Methods. Springer Science & Business Media, Berlin (2008)

10. Getz, W.M.: Optimal control of a birth-and-death process population model. Math. Biosci. 23(1–2), 87–111 (1975)

11. Claïsse, J.: Optimal control of branching diffusion processes: a finite horizon problem. Ann. Appl. Probab. 28(1), 1–34 (2018)

12. Bansaye, V., Mélané, S.: Stochastic Models for Structured Populations. Springer, Berlin (2015)

13. Buttazzo, G., Dal Maso, G.: Gamma-convergence and optimal control problems. J. Optim. Theory Appl. 38(3), 385–407 (1982)

14. Belloni, M., Buttazzo, G., Freddi, L.: Completion by gamma-convergence for optimal control problems. Ann. Fac. Sci. Toulouse Math. 2, 149–162 (1993)

15. Dal Maso, G.: An Introduction to Γ-Convergence, vol. 8. Springer Science & Business Media, Berlin (2012)

16. Donsker, M.D.: An invariance principle for certain probability limit theorems. Mem. Am. Math. Soc. 6, 12 (1951)

17. Pardoux, E.: Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: a probabilistic approach. J. Funct. Anal. 167(2), 498–520 (1999)

18. Pardoux, E.: BSDEs, weak convergence and homogenization of semilinear PDEs. In: Non Linear Analysis, Differential Equations and Control. NATO Science Series C: Mathematical and Physical Sciences, vol. 528, pp. 503–549. Kluwer Academic Publishers, Norwell (1999)

19. Briand, P., Delyon, B., Mémin, J.: Donsker-type theorem for BSDEs. Electron. Commun. Probab. 6(1), 1–14 (2001)

20. Coquet, F., Mémin, J., Slominski, L.: On weak convergence of filtrations. Séminaire de probabilités de Strasbourg 35, 306–328 (2001)

21. Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochastics 60(1–2), 57–83 (1997)

22. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. SIAM J. Control Optim. 31(5), 3592–3623 (2013)

23. Bandini, E.: Existence and uniqueness for BSDEs driven by a general random measure, possibly non quasi-left-continuous. Electron. Commun. Probab. 20(71), 1–13 (2015)

24. Papapantoleon, A., Possamaï, D., Saplaouras, A.: Existence and uniqueness results for BSDE with jumps: the whole nine yards. Electron. J. Probab. (2018). https://doi.org/10.1214/18-EJP240

25. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, vol. 288. Springer Science & Business Media, Berlin (2013)

26. Davis, M.H.A.: The representation of martingales of jump processes. SIAM J. Control Optim. 14(4), 623–638 (1976)

27. Carbone, R., Ferrario, B., Santacroce, M.: Backward stochastic differential equations driven by càdlàg martingales. Theory Probab. Appl. 52(2), 304–314 (2008)

28. Sokol, A.: Optimal Novikov-type criteria for local martingales with jumps. Electron. Commun. Probab. (2013). https://doi.org/10.1214/ECP.v18-2312
34. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, vol. 293. Springer Science & Business Media, Berlin (2013)
35. Aldous, D.: Stopping times and tightness. Ann. Probab. 6, 335–340 (1978)
36. Dellacherie, C., Meyer, P.-A.: Chap. V–VIII—Probabilités et potentiel. Hermann, Paris (1980)
37. Mélédard, S.: Modèles Aléatoires en Ecologie et Evolution. Springer, Berlin (2016)
38. Ogata, Y.: On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27(1), 23–31 (1981)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.