Distribution, diet, and trophic level of *Arvicanthis abyssinicus* and *Tachyoryctes splendens* around the area of recently extinct Ethiopian Wolf *Canis simiensis* on Mount Guna, northwestern Ethiopia

Hirpasa Teressa & **Wondimu Ersino** & **Tadele Alemayo**

1 College of Natural and Computational Sciences, Department of Biology, Wolkite University, P.O. Box 07, Ethiopia.
2 Department of Biology, Wachemo University, HV3M+368, Hosaena, Ethiopia.
3 Department of Wildlife and Ecotourism Management, Mekelle University, Mekelle, Ethiopia.
4 College of Natural and Computational Sciences, Department of Biology, Wolkite University, P.O. Box 07, Ethiopia.
5 tadelealemayo@gmail.com (corresponding author), 6 wondimuersino5@gmail.com, 7 tadelealemayo@gmail.com

Abstract: Abyssinian Grass Rats *Arvicanthis abyssinicus* and Common Mole Rats *Tachyoryctes splendens* are preyed upon by the Ethiopian Wolf *Canis simiensis*. The aim of this study was to assess distribution, diet, and trophic level of *Arvicanthis abyssinicus* and *Tachyoryctes splendens* on Mount Guna, where wolves have recently become extinct. Rodents were captured with Sherman trap and identified, and samples were taken to Debre Tabor University for dissection and diet analysis via microscopy examination of stomach contents. 110 *A. abyssinicus* and 52 *T. splendens* were captured from the study area, and the estimated population sizes of *A. abyssinicus* and *T. splendens* in Mt. Guna computed by Peterson-Lincoln Index were 1,364 and 416, respectively. In addition, 379 burrows (203 of *A. abyssinicus* and 176 of *T. splendens*) were counted. Both species were observed to consume plants and arthropods, with plants predominant. We recommend that intensive studies should be carried out to determine the effects of rodent communities upon Mt. Guna afroalpine and subafroalpine ecosystems.

Keywords: Afroalpine, diets, Mt. Guna, stomach analysis, subafroalpine.

Afan Oromo abstract: Guduunfaa: Gosoota hantuutaa keessaa tuqaa (*Tachyoryctes splendens*) fi hantuutni huuraa (*Arvicanthis abyssinicus*) soorata jeedala diituu (*Canis simiensis*) keessaa isaan tokko. Kaayyoon qo’annoo kan aanka bakka daraan jeedali diituu irra jirachaa turte keessatti iddoowwan hantuutni armaan olii kun quban, nyaata isaanii fi sadarkaa saaphaphuu nyaataa isaan irraadu argamu adda baasuu ture. Hantuutuni kunneen erga kuyeefamani booda nyaata garaachaa isaanii keessatti argamu adda baasuuf gara Yuunivarsiitti Dabra Taabottii geefaman. Bu’aan qo’anichaa aka mul’isitti hantuuta huuraa laakkoofsan 110 ta’ani fi tuqaa laakkoofsan 52 ta’antu bakka qo’annoon kun itti gageeffame sanaa qabame. Lakkooftii hantuutota sanaa yaro “Peterson-Lincoln Index’n shallagamu kan hantuuta huuraa 1,364 fi kan tuqaa 416’tti tilmaamama. Dabalataanis, boolla hantuuta gara 379 (kan hantuuta huuraa 203 fi kan tuqaa 176) ta’antu bakkichaa adda ba’e. Caalatti biqiltoota kan sooratan ta’anis, gosootni hantuutotooa kun mukoofaat fi libsiosaat garaagarraa akka nyaataanu qo’anoo kanaa mirkanuu’e. Bu’aa qo’anoo kanaarratti hundaa’uun dhibbaan gosootni hantuutaa kun Gaara Gunaa irraan ga’aa jirn gaddi fageeyenaa akka qorataamu yadaa dihiyessina.

Editor: Giovanni Amori, CNR - Institute of Research on Terrestrial Ecosystems, Roma, Italy.
Date of publication: 26 February 2022 (online & print)

Citation: Teressa, H., W. Ersino & T. Alemayo (2022). Distribution, diet, and trophic level of *Arvicanthis abyssinicus* and *Tachyoryctes splendens* around the area of recently extinct Ethiopian Wolf *Canis simiensis* on Mount Guna, northwestern Ethiopia. *Journal of Threatened Taxa* 14(2): 20539–20549. https://doi.org/10.11609/jott.14.2.20539-20549

Copyright: © Teressa et al. 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Debre Tabor University.

Competing interests: The authors declare no competing interests.

Author details: **HIRPASA TERESSA** is lecturer at Wolkite University, Department of Biology. He received a bachelor’s degree in Applied Biology from Hawassa University and a master’s degree in zoology from Mekelle University, Ethiopia. For the last 10 years, he has been teaching different zoological courses, and conducting various researches on animal ecology and conservation as well as on importance of animal kingdom. **WONDIMU ERSINO**, a former lecturer at Wachamo University, is PhD students at Department of Evolutionary Zoology and Human Biology, University of Debrecen, Hungary. He received bachelor’s degree in Applied Biology from Ambo University and master’s degree in Zoology from Mekelle University, Ethiopia. For the last 10 years, he has thought different zoological courses, and conducted researches on Animal Ecology. **TADELE ALEMAYO**, a former lecturer at Department of Wildlife and Ecotourism Management, is PhD students at Mekelle University, Ethiopia. He received bachelor’s degree in Applied Biology from Mekelle University and master’s degree in Ecological and Systematic Zoology from Jima University, Ethiopia.

Author contributions: All authors equally contributed to proposal development, data collection, and write up of this study. However, the corresponding author has prepared the manuscript for publication and carried out activities during publication process.

Acknowledgements: We would like to thank Debre Tabor University for supporting this work through financial grant. We would also thank farmers around Mt. Guna for their valuable help during data collection.
INTRODUCTION

Rodents exploit a wide range of habitats throughout the world (Lange et al. 2004). Their distribution and abundance is influenced by vegetation structure and composition (Gebresilassie et al. 2004; Kannan & James 2009), which influence micro-climate and provide food and cover against predators (Hansson 1999).

Ethiopia is a physically and biologically diverse country in Africa, where differences in climate and topography have resulted in a wide diversity of habitats and species (Tedla 1995; Abunie 2000). Of 284 mammals identified from Ethiopia, rodents comprise 25% and contribute about 84% of the total endemic species (Yalden & Largen 1992; Bekele et al. 1993; Bekele & Leris 1997; Laverenchenko et al. 1997). Ecological knowledge about these rodent, including their distribution and abundance, is limited (Habtamu & Bekele 2008).

Distribution and abundance of rodents can be estimated by trapping and recording of animals signs, holes, or related elements that infer the presence of animals (Krebs 1978; Rabinovich 1980). The best techniques are those based on the use of capture traps and recording of signs, due to the crepuscular habits of rodents (Aplin et al. 2003).

Rodents are omnivorous, mainly consuming plant parts such as fruits and seeds, as well as small arthropods (Best et al. 1993). Techniques commonly used to assess the diets of rodents include field observations of partially consumed organisms (Meyer & Shiels 2009), captive-feeding trials (Shiels 2011), and stomach content analyses (Ruffino et al. 2011). While effective, stomach content analysis has in a relatively small number of studies (Hope & Parmenter 2007).

The Ethiopian Wolf Canis simensis is a Critically Endangered medium-sized canid highly adapted to live in Ethiopian afroalpine and subafroalpine ecosystems above altitudes of 3,000 m, and it is the almost exclusive predator of high altitude rodents (Marino et al. 2010; Yihune & Bekele 2012). The Ethiopian Wolf Conservation Program (EWCP) team confirmed the extinction of this species from Mt. Guna in 2011, after several years of serious decline (IUCN/SSC 2011). A preliminary survey by Debre Tabor University staff in 2014 confirmed that the Ethiopian Wolf had not been seen for the last four years in Mt. Guna (Sillero-Zubiri & Macdonald 1997). As a result, rodent numbers were observed to have increased on Mt. Guna, possibly resulting in ecosystem disturbance.

Fluctuations in rodent population density can have major impacts on the dynamics of their food (arthropods and plants) and predators (Ims & Fuglei 2005). If the population density of rodents in an ecosystem exceeds the carrying capacity, prey can be affected by overconsumption and the ecosystem can collapse unless control measures are taken. Conversely, if the population density of rodents is too low to sustain predators, they can become locally extinct. The aim of the present study was to assess distribution, diet and trophic level of two rodent species on Mt. Guna known to be prey of the now-extinct Ethiopian Wolf population.

MATERIALS & METHODS

Study area

Mt. Guna is located in South Gondar Zone at 11.7500°N, 38.2500°E, with a peak rises to 4,231 m (Figure 1). Mt. Guna has afroalpine (3,500–4,231 m) and subafroalpine (3,200–3,500 m) ecosystems suitable to Ethiopian Wolf Canis simensis and mountain rodents. The area coverage is 210 km² of land above 3,200 m, and 110 km² above 3,400 m, but no more than 40 km² above 3,800 m which is good habitat for Ethiopian Wolf (Sillero-Zubiri & Macdonald 1997; Belste et al. 2012).

Mt. Guna is surrounded by six districts of South Gondar Zone namely Lay and Tach Gayint, Farta, East Este, Simada, and Dera. The economy of the people living in those districts is mainly dependent on subsistence Agriculture. They cultivate crops like barley, wheat, bean, potato, and own livestock including cattle, sheep, donkey, and horse. The vegetation of Mt. Guna includes different grass species like ‘guassa’ and tree species with many animal lives including rodents, jackals, gelada baboons, hyenas, and rock hyraxes. The area is also inhabited by giant lobelia tree which is known to be the unique characteristic to afroalpine and subafroalpine ecosystems (ALZR 2006; Belste et al. 2012).

Data collection

Before starting the field work, permission for rodent collection and habitat observation was acquired from South Gondar Zone Wildlife Conservation Authority Office, Ethiopia. A quantitative cross-sectional study was conducted in the dry season of 2015 on Mt. Guna, northwestern Ethiopia. Samples were collected at three localities: bottom, middle and top of Mt. Guna. Three 60 X 60 m trapping grids (1.08 ha) were set at each site, and 36 Sherman traps were placed: 12 at top of afroalpine, 12 at middle, and 12 at bottom of subafroalpine ecosystem in the sampling period. Traps were baited with a mixture of rolled oats and peanut butter. The traps were set...
in the late afternoon (1500–1600 h) and left in the sampling sites for three consecutive days and nights. They were checked during the morning (0600–1200 h) and afternoon (1600–1800 h). Capture terms consisted of two sampling periods (February and March) separated by a month interval without trapping. All captured rodents were used for species identification, distribution, as well as stomach contents analysis according to the standard (Hope & Parmenter 2007). After identification done through morphological characteristics including differences in body size, shape, fur texture and colour (Aplin et al. 2003; Jonathan 2004), only two species of rodent namely Abyssinian Grass Rat *A. abyssinicus*, and Common Mole Rat *T. splendens* were counted, marked and released to their respective habitats with other trapped rodents when encountered. In addition, active burrows (fresh burrows that have marks of rodents and freshly excavated soil and cut parts of various plants) of the above rodents were identified and counted from the same grids for further determination of distribution and abundances. Percentage of active burrows in the area was estimated as:

\[
\text{Population of active burrows } \% = \frac{\text{Number of active burrows}}{\text{Total burrows examined all over}} \times 100
\]

(Feliciano et al. 2002; Desoky 2007).

Eight rodents (four for each species) were taken to Debre Tabor University, laboratory of Department of Biology, for dissection to remove the gastro-intestinal contents. Diet analysis was carried out using the method of DeBlasé & Martin (1981). Accordingly, contents of the stomach were placed in a petri dish and thoroughly mixed to loosen material to give all constituents a uniform distribution. Then the contents were examined under a light microscope at 20x magnification to identify food items. Four fields of observation were examined. The diagram of food web was also drawn and trophic level of rodents was shown for Mt. Guna based on current result and the literature.

Since Belste et al. (2012) reported the presence of Ethiopian Wolf in Mt. Guna after the report of species extinction (IUCN/SSC 2011), interview questions were administered to check the presence-absence of the
species. Fifty local people were purposively selected and interviewed to know when the wolf was observed for the last time in the study area and the reason for extinction. The local people were purposively selected based on the knowledge of the wolf, distance from the study area (nearby) and residence in the adjacent villages.

Data analysis

Distribution of *A. abyssinicus* and *T. splendens* was calculated with descriptive statistics. Number of rodents and their burrows collected from the three sites was shown on table and graph. Absolute number of the rodents in a population was calculated by Peterson-Lincoln index (Seber 1982) as follows. \[N = \frac{M \times S}{R} \], where \(N \) = population size estimate, \(M \) = marked individuals released, \(S \) = size of second sample captured, and \(R \) = marked animals recaptured.

Food web for the overall study area was shown by table and diagram. Independent two-sample t-test on Minitab software was used to compare food items eaten by both species. In addition, Independent two-sample t-test on R-software was used to compare distribution of both species among the three sites. Statistical value of 0.05 was taken as significance level.

RESULTS

Rodent species identification and distribution

In the present study, two species of rodent namely Abyssinian Grass Rat and Common Mole Rat were collected from afroalpine and subafroalpine ecosystems of Mt. Guna (Image 1). From all sites, a total of 162 rodents were captured during the first session of study period. From these, 110 (52.73% from the top, and 47.27% from the middle) were *A. abyssinicus* and 52 (23.08% from the top, 26.92% from the middle, and 50% from the bottom) were *T. splendens*. Regarding to the distribution, high number of *A. abyssinicus* (52.73%) was collected from the peak of the mountain following the middle (47.27%); however, low number of *T. splendens* (23.08%) was collected from the top, even though there was no significant differences among the three sites (\(p= 0.41, df= 2.22 \)). On the other hand, high number of *T. splendens* (50%) was sampled from the bottom of Mt. Guna from where no single *A. abyssinicus* was collected as indicated on Table 1. In addition, 124 *A. abyssinicus* and 48 *T. splendens* were captured in the second session of the study period with almost similar distribution as of first session (Table 2). The overall estimated population number of *A. abyssinicus* and *T. splendens* in the study area computed by Peterson-Lincoln Index was 1,364 and 416, respectively.

A total of 379 burrows, of which 179 were active, were counted from the same grids laid in total of 3.24 ha to sample rodents. As shown on Table 1, there was no *A. abyssinicus* burrow counted from the bottom of the study area whereas 104 (59.09 %) *T. splendens* burrows were counted from the same site. However, there was high population of *A. abyssinicus* at the top (\(n= 107, 52.63 \% \)) followed by the middle (\(n= 96, 47.37 \% \)) of the mountain. These distribution differences of burrows among the three sites were also not significant (\(p= 0.84, df= 2 \)). Out of the total burrows of each rodent, 51.14 % of them were active for *T. splendens*, whereas 43.84 % were active for *A. abyssinicus*. Such high percentage of active burrows supports the existence of significant numbers of both rodents in the study area.

Stomach content analysis

Eight rodents: four *T. splendens* and four *A. abyssinicus* were dissected and stomach contents were taken. Diets of each rodent were identified into plant and arthropod types under the light microscope. Accordingly, *T. splendens* and *A. abyssinicus* have been identified to consume both plants and arthropods (Table 3). In contrast, there was no significant difference on the consumption of arthropods between both species (\(p= 0.466, df= 4 \)). In addition to the stomach content analysis, the remains of leftover of plant parts and arthropod parts after their feeding were observed on the way to their burrows during field work.

Habitat observation

During data collection, the authors have repeatedly observed Mt. Guna afroalpine and subafroalpine ecosystems. Destruction of grasses and other vegetation due to high population of rodents, rock hyraxes and livestock at the bottom and middle of the ecosystems was observed (Figure 2). Furthermore, the same condition was seen at the top of afroalpine due to high populations of rodents and some groups of Gelada *Theropithecus gelada*, endemic to Mt. Guna, foraging in the same habitat. Moreover, rodents living adjacent to agricultural lands were observed to migrate to agricultural fields and damage farmers’ crops.

Assessment on the extinction of Ethiopian wolf

Side by side with data collection of rodents in Mt. Guna, 50 respondents were interviewed to check whether Ethiopian Wolf is present or locally extinct. All interviewees assured the local extinction of the wolf.
by habitat destruction in spite of other factors such as human killing, rabies virus and climate change they were asked. Most of the respondents had observed the wolf between 6–8 years followed by before 10 years. All of them responded that they have never seen the wolf since four years (Figure 2). They said that a single wolf has been observed for years until total disappearance from the study area in 2011.

Table 1. Number of rodents collected in first session and total burrows counted from the three sites of Mt. Guna.

No. of rodent	No. of burrows			
Grids				
Top	58 (52.73%)	12 (23.08%)	107 (52.63%)	12 (6.82%)
Middle	52 (47.27%)	14 (26.92%)	96 (47.37%)	60 (34.09%)
Bottom	---	26 (50%)	---	104 (59.09%)
Total	110 (100%)	52 (100%)	203 (100%)	176 (100%)

df = 2.22 p = 0.41

Table 2. Number of first captures and recaptures of A. abyssinicus and T. splendens by Sherman traps from three sites (three grids from each site= S1, S2 and S3) of Mt. Guna

Species	Site	First capture (marked individuals and released)	Second capture	Marked animals recaptured
A. abyssinicus	Top	S1 23	27	2
		S2 20	19	1
		S3 15	21	1
		Total 58	67	4
	Middle	S1 15	20	2
		S2 20	19	2
		S3 17	18	2
		Total 52	57	6
	Overall total	110	124	10
T. splendens	Top	S1 4	5	--
		S2 5	2	--
		S3 3	4	1
		Total 12	11	1
	Middle	S1 6	8	1
		S2 3	5	1
		S3 5	4	--
		Total 14	17	2
	Bottom	S1 7	5	--
		S2 9	7	1
		S3 10	8	--
		Total 26	20	1
	Overall total	52	48	4
Image 1. Grid sites: A—bottom | B—middle | C—top of Mt. Guna. © Hirpasa Teressa
DISCUSSIONS

In the present study, distribution, diets and trophic level of two species of rodents, the Abyssinian Grass Rat and Common Mole Rat, were assessed. Both species were identified in afroalpine and subafroalpine ecosystems of Mt. Guna. Mark-recapture method indicated that there was high population of *T. splendens* at the bottom, while *A. abyssinicus* was abundant at the peak of Mt. Guna. In agreement to the current study, Belste et al. (2012) identified Abyssinian Grass Rat and Common Mole Rat along with common home rat *Arvicanthis* spp., Harrington’s Rat *Desmomys harringtoni*, Harsh-furred Rat *Lophuromys flavopunctatus*, and White-footed Rat *Stenocephalemys albipes* from the study area.

Since active burrows give an idea of the number of rodents living in the study area (Desoky 2007), burrow count was also carried out to support the mark-recapture method. The result of burrow counts confirmed the existence of high population of *A. abyssinicus* and *T. splendens* in the study area. Like trap method, burrow count method also indicated that there was high population of *T. splendens* at the bottom, but *A. abyssinicus* was totally absent from the bottom grids though field observation depicted the existence of it in smaller number. However, there was high distribution of *A. abyssinicus* at the top and middle of the ecosystems. Study conducted by Yihune & Bekele (2012) in afroalpine habitat of Simien Mountains National Park (SMNP) also identified significant number of *A. abyssinicus* and *T. splendens*.

Environmental degradation due to high population of rodents as a result of the extinction of wolf predator from Mt. Guna was clearly seen through field observation. In support to this, study shows that cyclic fluctuations in population density of rodents have major impacts on the dynamics of their food and vertebrate predators (Ims & Fuglei 2005). In addition, high population of livestock was observed in the ecosystems. Such pressures can lead to massive destruction, depletion and degradation of wildlife habitats as well as severe reduction in wildlife population (Hillman 1993). Furthermore, field observation and interviews of local farmers showed that those rodents living in the study area migrated to nearby agricultural fields for searching of additional foods. Such migration observed to cause crop damage in agricultural fields even though it was not quantified by the present study.

Out of the total diets consumed by both species, there was high frequency of plant parts (not identified into species level) in their stomach contents which assures the fact that the majority of their diet is plant. However, more plant parts were consumed by Common Mole Rats than by Abyssinian Grass Rats. Even though both species consume arthropods (not identified into species level), it was significantly less when compared to plant parts. In agreement to the current study, Best et al. (1993) identified that rodents are omnivorous animals mainly consuming large quantities of plant parts. This might be due to the availability, selectivity, and palatability of plant diets in afroalpine and subafroalpine habitat as already stated by Beyene (1986) for other species of the Tachyoryctes genera.

Based on the current result of stomach content analysis and other published literatures, trophic levels and food web have been diagrammatically shown for the study area. Besides to the stomach content analysis,
Table 4. Major animals identified from Mt. Guna and their food items.

Animal species (Belste et al. 2012)	Food items	Identification of food items
Rodents		
Common Mole Rat Tachyoryctes splendens	Plant parts, arthropods	Current Lab work
Abyssinian Grass Rat Arvicanthus abyssinicus	Plant parts, arthropods	Current Lab work
Harrington’s Rat Desmomys harringtoni	---	xx
Harsh-furred Rat Lophurornys flavopunctatus	Arthropods, small vertebrates, plant matter	Dieterlen 1976
White-footed Rat Stenoccephalyms albipes	---	xx
Carnivores		
Common Jackal Canis aureus	Rodents, ungulates, livestock	Bolkokvic et al. 2013
Black-backed Jackal Canis mesomelas	Rodents, ungulates, birds, reptiles, insects, grass	Humphries et al. 2015
Ethiopian Wolf Canis simensis*	Rodents, sheep (rare)	Ashanafi et al. 2005
Caracal Caracal caracal	Rodents, birds, ungulates	Braczkowski et al. 2012
Wildcat Felix silvestris lycica	Shrews, rabbits, birds, reptiles, rodents, insects	Moleon & Gil-Sanchez 2003
Serval Leptailurus serval	Rodents, antelopes, insects, reptiles	Ramesh & Downs 2014
Leopard Panther pardus	Livestock, monkey, rodents, birds, hares	Kshettry et al. 2018
Spotted Hyena Crocuta crocuta	Livestock, human, porcupine, hare, bushbuck, kudu, waterbuck, common duiker	Yirga et al. 2015
Striped Hyena Hyena hyaena	Mammals, rodents, insects, livestock	Alam & Khan 2015
Common Dwarf Mongoose Helogale parvula	Insects, spiders, scorpion, lizards, snakes, small birds and rodents	Ramulondi & Zengeya 2014
African civet Cicetetci civetta	Mammals, birds, reptiles, insects, plant parts	Tadesse et al. 2017
Gelada baboon Therapithecus gelada	Grasses, herbs, other plant parts	Kelil et al. 2018
Vervet Monkey Cercopithecus aethiops	Invertebrates, plant parts	Tournier et al. 2014
Olive baboon Papio anubis	Plant parts, insects, birds, mushrooms	Okecha & Newton-Fisher 2006
Herbivores		
Common Duiker Sylvicapra grimmia	Herbivores feed on vegetation such as grasses, fruits, leaves, roots, bulbs, etc.	Karmiris et al. 2011
Klipspringer Oreotragus oreotragus		
Rock Hyrax Heterohyrax brucei		
Birds		
Hooded Vulture Necrosyrtes monachus		
Greater Spotted Eagle Aquila clanga		
Red-throated Bee-eater Merops bullocki		
Blue-winged Goose Cyanochen cyanopterus		
Wattled Ibis Bastrychia carunculata		
Black-winged Lovebird Apappinis taranta		
White-collared Pigeon Columba albitorques		
Ring-necked Dove Streptopelia capicola		
Red-eyed Dove Streptopelia semitoquata		
Thick-billed Raven Corvus crassirostris		
Fan-tailed Raven Corvus rhipidurus		
Abyssinian Long Claw Macronyx flavicollis		
Abyssinian Catbird Paraphasme galinieri		
Ankober Serin Serin anikoberensis		
White-cheeked Turaco Tauraco leucotis		
Moorland Francolin Francolinus psilorhinchus		
Red-fronted Parrot Poicephalus gilbei		
African Firefinch Lagonosticta rubicata		
Ethiopian Swallow Hirundo aethiopica		
Widowbird Euplectes orix		

*—Locally extinct | **—No published work on the diets of the animals.

A review by Lopes et al. (2016) identified all diet types and food categories for tropical birds. The study revealed 23 food types frequently eaten by birds and proposed standard names for birds (e.g., granivore, frugivore, and insectivore). Accordingly, plant diet consumed by birds mainly are fruits, seeds, grains, plant fluids, leaves, buds, grasses, nectar, pollen, etc. In addition, birds also consume insects including ants, cockroaches, termites, locusts, bugs, beetles, flies, butterflies, dragonflies, bees, wasps, stoneflies, and mayflies. Birds of prey eat animal flesh including fish, reptiles, mammals, birds, insects, and molluscs.
diets of animals existing in Mt. Guna were reviewed and summarized in Table 4. Based on the summary, a diagram of food web was drawn (Figure 3).

As shown on Figure 4, *T. splendens* and *A. abyssinicus* consume both plants and arthropods, hence grouped under omnivorous animals (2nd, 3rd and even more trophic levels). However, it is difficult to determine specific position of omnivores’ trophic level since they consume materials from different trophic levels of the food web (Williams & Martinez 2004).

Ethiopian Wolf *Canis simensis*, which is endemic to Ethiopia, is the rarest canid in the world with a total global population of 500 individuals and classified as ‘Endangered’ on the IUCN Red List of Threatened Species (Marino & Sillero-Zubiri 2013; Marino et al. 2017). The wolf highly adapted to live in afroalpine and subafroalpine ecosystems above altitudes of 3,000 m, and is almost exclusively the predator of high altitude rodents (Marino et al. 2010; Yihune & Bekele 2012). Study shows that Ethiopian Wolf is an important flagship species for conservation of the afroalpine biodiversity (IUCN/SSC 2011), but faces serious threats to its survival in its ecosystem. In the present study, all the interviewees agreed the local extinction of Ethiopian Wolf *Canis simensis* due to habitat degradation. According to the respondents the single wolf was seen in 2011 for the last time. This agrees with the report by IUCN/SSC (2011) on its extinction from Mt. Guna although Belste et al. (2012) claimed to identify the wolf from the same study area referring to the local community. For long, the ecosystems of Ethiopian highlands had been threatened by overpopulation, overgrazing, and crop cultivation (Leipzig 1996). Similarly, Mt. Guna is currently under human induced threats from agricultural expansion, livestock overstocking, overharvesting of natural resources and settlements (Belste et al. 2012) that might mainly resulted in the local extinction of Ethiopian Wolf.

CONCLUSION

In the current study, the distribution, diets and trophic level of two rodent species namely Abyssinian Grass Rat and Common Mole Rat was assessed from Mt. Guna afroalpine and subafroalpine ecosystems. The results from Sherman traps and burrows count showed that both species were identified to be highly populated in the study area. Stomach content analysis revealed that both species consume both plants and arthropods, hence grouped under omnivorous animals (2nd, 3rd and even more trophic levels). Furthermore, Ethiopian Wolf was also confirmed to be locally extinct from Mt. Guna due to habitat degradation.

Based on the current study, we recommend that intensive studies should be carried out to analyse the effect of rodent community on Mt. Guna ecosystems due to the extinction of Ethiopian Wolf. To reduce effects of rodent pests and environmental degradation in the present study area, the long run rodent prey control by their predator, and habitats conservation should
also be taken into consideration. Further study that include different seasons and impact of pest rodents on agricultural lands should also be carried out in Mt. Guna.

REFERENCES

Abunie, L. (2000). The challenges of conserving Ethiopian wildlife: overview. Walia 21: 56–62.

Alam, M.S. & J.A. Khan (2015). Food habits of Striped Hyena (Hyaena hyaena) in a semi-arid conservation area of India. Journal of Arid Land 7: 860–866. https://doi.org/10.1007/s40333-015-0007-2

Amhara Livelihood Zone Reports (2006). Simada Woreda, South Gondar Administrative Zone.

Aplin, K.P., R.R. Brown, J. Jacob, C. J. Krebs & G.R. Singleton (2003). Field methods for rodent studies in Asia and the Indo-Pacific. Australian Centre for International Agricultural Research, Camberra.

Ashenafi, Z.T., T. Coulson, C. Sillero-Zubiri & N. Leader-Williams (2005). Behaviour and ecology of the Ethiopian wolf (Canis simensis) in a human-dominated landscape outside protected areas. Animal Conservation 8: 113–121.

Bekele, A. & H. Leirs (1997). Population ecology of rodents of maize fields and grasslands in Central Ethiopia. Belgium Journal of Zoology 127: 39–48.

Best, T.L., M.P. Skupski & R.A. Smartt (1993). Field methods for rodent studies in Asia and the Indo-Pacific. Field methods for rodent studies in Asia and the Indo-Pacific.

Belste, F., H. Yosef, A. Birhanemeskel, K. Asmamaw, A. Yeshanew & A. Getasew (2012). Socioecological Condition, Tourism Potentials and Biodiversities Study Report for Mount Guna Proposed Community Conservation Area. Amhara National Regional State Bureau of Culture, Tourism and Parks Development in Collaboration with Organization for Rehabilitation and Development in Amhara, Ethiopia.

Best, T.L., M.P. Skupski & R.A. Smartt (1993). Field methods for rodent studies in Asia and the Indo-Pacific. Field methods for rodent studies in Asia and the Indo-Pacific.

Bekele, A.E., M. Capanna, L.F. Corti, D.A. Marcus & Schlitter (1993). Systematics and geographic variation of Ethiopian Anirvantus (Rodenta, Muridae). Journal of Zoology 230: 117–134.

Beyene, S. (1986). Ecology of giant mole rat, Tachyoryctes macrocephalus, bole, mountains national park, Ethiopia (Unpublished master’s thesis). Addis Ababa University, Ethiopia.

Bošković, I., M. Šperanda, T. Florijanić, N. Šprem, S. Ozić, D. Degmečić & D. Jelkić (2013). Dietary Habits of the Golden Jackal (Canis aureus L.) in the Eastern Croatia. Agriculturae Conspectus Scientificus 78: 245–248.

Braczkowski, A., L. Watson, D. Coulson, J. Lucas, B. Peiser & M. Rossi (2012). The diet of caracal, Caracal caracal, in two areas of the southern Cape, South Africa as determined by scat analysis. South African Journal of Wildlife Research 42: 111–116.

DeBlasé, A.F. & R.E. Martin (1981). Diet analysis. In: A Manual of Mammalogy (With Keys to Families of the World) (2nd ed.), Wm. C. Brown Company Publishers, Iowa, 436 pp.

Desoky, A.S.S. (2007). Management strategies for rodents within different ecosystems (Unpublished master’s thesis). Assiut University, Egypt.

Dieterlen, F. (1976). Die afrikanische Muridengattung Lophuromys Peters, 1874, Stuttgarter Beitr. Naturkunde, ser A., no 285.

Feliciano, B.R., F.A.S. Fernandes, D. Frettas & M.S.L. Figueiredo (2002). Population dynamics of small rodents in a grass land between fragments of Atlantic forest in South eastern Brazil. Mammalian Biology 67: 304–314.

Gebresilassie, W., A. Bekele, G. Belay & M. Balakrishnan (2004). Micro-habitat choice and diet of rodents in Maynuugus irrigation field, northern Ethiopia. African Journal of Ecology 42: 315–321.

Habtu, T. & A. Bekele (2008). Habitat association of insectivores and rodents of Aalatib National Park, northwestern Ethiopia. Tropical Ecology 49: 1–11.

Hansson, L. (1999). Intraspecific variation in dynamics: small rodents between food and predation in changing landscapes. Oikos 85: 159–169.

Hillman, J.C. (1993). Ethiopia: Compendium of wildlife conservation information. Vol.2, NYZS and EWCO, Addis Ababa, Ethiopia, 580 pp.

Hope, A.G. & R.R. Parmenter (2007). Food Habits of Rodents Inhabiting Arid and Semi-arid Ecosystems of Central New Mexico. Special Publication of the Museum of Southwestern Biology 9: 1–75.

Humphries, B.D., T. Ramesh & C.T. Downs (2015). Diet of black-backed jackals (Canis Mesomelas) on farm lands in the KwaZulu-Natal Midlands, South Africa. Mammalia 80(4): 405–412. https://doi.org/10.1515/mammalia-2014-0103

Im, R.A. & E. Fuglei (2005). Trophic interaction cycles in tundra ecosystems and the impact of climate change. BioScience 55: 311–322.

International Union for Conservation of Nature/Species Survival Commission, IUCN/SSC, Canid Specialist Group (2011). Strategic plan for Ethiopian wolf conservation, IUCN/SSC Canid Specialist Group. Oxford, United Kingdom.

Jonathan, K. (2004). The Kingdom Pocket Guide to African Mammals. A and C black publishers ltd., London.

Kannan, R. & D.A. James (2009). Effects of climate change on global biodiversity: a review of key literature. Tropical Ecology 50: 31–39.

Kasimr, I., P.D. Platis, S. Kazantzidis & T.G. Papachristou (2011). Diet selection by domestic and wild herbivore species in a coastal Mediterranean wetland. Annales Zoologici Fennici 48: 233–242.

Kay, E.H. & M.E. Hoekstra (2001). Rodents. Current Biology 18.

Kelli, A., M. Addisu, B. Aferework & P.I. Fashing (2018). Diet and activity patterns of Arsi geladas in low-elevation disturbed habitat south of the Rift Valley at Indetu, Ethiopia. Primates 59: 153–161.

Krebs, C.J. (1978). Ecology: The experimental analysis of distribution and abundance (2nd ed.). Harper and Row, New York.

Kshettry, A., S. Vaidyanathan & V. Athreya (2018). Diet selection of Leopards (Panthera pardus) in a human-use landscape in north-eastern India. Tropical Conservation Science 11: 1–9.

Lange, S., J. Stalleicken & H. Burda (2004). Functional morphology of the ear in fossorial rodents, Microtus arvalis and Arvicolis terestris. Journal of Morphology 262: 770–779.

Lavrenchenko, L.A., V.M. Milisnikov, A.A. Aniskin, Warhavsky & S. Gebrekidan (1997). The genetic diversity of small mammals of the Bale Mountains. SINET: Ethiopian Journal of Science 20: 213–233.

Leipzig (1996). Ethiopia: Country report to the FAO international technical conference on plant genetic resources prepared by plant genetic resources center. Addis Ababa, Ethiopia.

Lopes, L.E.M. Fernandes, C.I. Matthew, Medeiros & M.A. Marini (2016). A classification scheme for avian diet types. Journal of Field Ornithology 87(3): 309–314.

Marino, J., C. Sillero-Zubiri, A. Deressa, E. Bedin, A. Bitewa, F. Lema, G. Rskay, A. Banyard & A.R. Fooks (2017). Rabies and distemper outbreaks in smallest Ethiopian Wolf population. Emerging Infectious Diseases 23: 2102–2104.

Meyer, W.M. & A.B. Shiels (2009). Black Rat (Rattus rattus) predation on non-indigenous snails in Hawaii: complex management implications. Pacific Science 63: 339–347.

Moleón, M. & J.M. Gil-Sánchez (2003). Food habits of the wildcat (Felis silvestris) in a peculiar habitat: the Mediterranean high mountains. Journal of Zoology 260: 17–22.

Okecha, A.A. & N.E. Newton-Fisher (2006). The Diet of Olive Baboons (Papio anubis) in the Budongo Forest Reserve, Uganda. Springer, New York.

Rabinovich, J.E. (1980). Introducción a la ecología de poblaciones animales (1st ed.). Vol. 313, Compañía Editorial Continental, S.A., Mexico DF.

Ramesh, T. & C.T. Downs (2014). Diet of serval (Leptailurus serval) on
farmlands in the Drakensberg Midlands, South Africa. *Mammalia* https://doi.org/10.1515/mammalia-2014-0053

Ramulondi, E. & T. Zengeya (2014). Dwarf Mongoose. South African Nationals Biodiversity Institute: www.sanbi.org/animal-of-the-week/dwarf-mongoose/

Ruffino, L., J.C. Russell, B. Pisanu, S. Caut & E. Vidal (2011). Low individual-level dietary plasticity in an island-invasive generalist forager. *Population Ecology* 53: 535–548.

Seber, G.A.F. (1982). *The estimation of animal abundance and related parameters* (2nd ed.). New York, McMillan.

Shiels, A.B. (2011). Frugivory by introduced Black Rats (*Rattus rattus*) promotes dispersal of invasive plant seeds. *Biological Invasions* 13: 781–792.

Sillero-Zubiri, C. & D. Macdonald (1997). IUCN/SSC canid specialist group: The Ethiopian Wolf- Status Survey and Conservation Action Plan, IUCN, Gland, Switzerland, 123 pp.

Tadesse, H., B. Afework, A. Raya, G. Tsegaye, B. Belay, T. Taye & B. Berhanu (2017). Diets of the African Civet *Civettictis civetta* (Schreber, 1778) in selected coffee forest habitat, south-western Ethiopia. *African Journal of Ecology* 55(4): 573–579. https://doi.org/10.1111/aje.12390

Tedla, S. (1995). Protected areas management crisis in Ethiopia. *Walia* 16: 17–30.

Tournier, E., V. Tournier, E.V. Waal, A. Barrett, L. Brown & R. Bshary (2014). Differences in Diet Between Six Neighbouring Groups of Vervet Monkeys. *Ethology* 120: 471–482.

Williams, R.J. & N.D. Martinez (2004). Limits to trophic levels and omnivory in complex food webs: theory and data. *The American Naturalist* 163: 459–468.

Yihune, M. & A. Bekele (2012). Diversity, distribution and abundance of rodent community in the Afro-alpine habitats of the Simien Mountains National Park, Ethiopia. *International Journal of Zoological Research* 8: 137–148.

Yirga, G., H. Hans, D. Iongh, H.C. Leirs, K. Gebrehiwot, J. Deckers & H. Bauer (2015). Food base of the Spotted Hyena (*Crocuta crocuta*) in Ethiopia. *Wildlife Research* 41(1): 19–24. https://doi.org/10.1071/WR14126
Distribution, diet, and trophic level of *Arvicandis abyssinicus* and *Tachyoryctes splendens* around the area of recently extinct Ethiopian Wolf *Canis simiensis* on Horton Guna, northwestern Ethiopia
– Hirpara Teressa, Wondimu Ersinò & Tadele Alemay, Pp. 20539–20549

Communications
Seasonal composition of avian communities in different habitats of Harike Wetland, a Ramsar site in Punjab, India
– Jagdeep Singh & Onkar Singh Braich, Pp. 20550–20565

Temporal changes in species richness of waterfowl (Anseriformes) community in D’Ering Memorial Wildlife Sanctuary, Arunachal Pradesh, India
– Tapak Tamir & Daniel Mize, Pp. 20566–20575

Reptilian assemblages in the wetlands of Amboli hill complex, northern Western Ghats, Maharashtra, India during the monsoon season
– Sachinkumar R. Patil & Kiran Choudaj, Pp. 20576–20583

Butterfly diversity and composition at Chemerong Amenity Forest, Terengganu, Malaysia
– Muhammad Hafiz Sulaiman, Abdul Munir Mohd Zaki, Geok Chin Yap, Nur Atiqa Aniruddin & Ju Lian Chong, Pp. 20584–20596

Ecological niche modeling for reintroduction and conservation of *Aristolochia cathcartii* Hook.f. & Thomson (Aristolochiaceae), a threatened endemic plant in Assam, India
– Bhaskar Sarma & Bhaben Tanti, Pp. 20597–20605

New host plant records of *Fig Was Scale Ceroplastes rusci* (Linnaeus, 1758) (Hemiptera: Coccidae) from India
– Arvind Kumar & Renu Pandey, Pp. 20606–20614

Seasonal variations influencing the abundance and diversity of plankton in the Swarnamukhi River Estuary, Nellore, India
– Krupa Ratnam, V.P. Limna Mol, S. Venkatnarayanan, Dilip Kumar Jha, G. Dharani & Swarnamukhi River Estuary, Nellore, India
– Prakash Ghorbani Organli & Matthias Waltert, Pp. 20625–20630

Rediscovey of *Platerus pilcheri* Distant (Hemiptera: Reduviidae), a forgotten assassin bug from India, with comments on its range extension
– H. Sankararaman, Anubhav Agarwal, Valérie A. Lemaître & Hemant V. Ghate, Pp. 20631–20636

First record of *Prospoponoides millidgei* & Russell-Smith, 1992 (Araneae: Linyphiidae) from India, with the description of a new species
– Anusmitha Domichan & K. Sunil Jose, Pp. 20625–20630

First record of *Pygospila tyres* Cramer, 1780 (Lepidoptera: Crambidae: Spilomelinae) distributed in Asia and Australia
– Aparna S. Kalawate, A. Shabnam & K.P. Dinesh, Pp. 20637–20642

First record and description of female *Onomarchus leucanotus* (Serville, 1838) (Insect: Orthoptera: Tettigoniidae) from peninsular India
– Sunil M. Gaikwad, Yogesh J. Koli & Gopal A. Raut, Pp. 20643–20647

New records of odonates (Insecta: Odonata), Archibasis oscillans Selys, 1877 and *Merogomphus tamaracherriensis* Fraser, 1931 from Maharashtra, India
– Akshay Dalvi & Yogesh Koli, Pp. 20648–20653

New records of odonates (Insecta: Odonata), Archibasis oscillans Selys, 1877 and *Merogomphus tamaracherriensis* Fraser, 1931 from Maharashtra, India
– Akshay Dalvi & Yogesh Koli, Pp. 20648–20653

A checklist of dragonflies & damselflies (Insecta: Odonata) of Kerala, India
– Sujith V. Gopalan, Muhammed Sherif & A. Vivek Chandran, Pp. 20654–20665

First photographic evidence of Asiatic Black Bear *Ursus thibetanus* in Kaziranga Tiger Reserve, India
– Priyanka Borah, Jyotish Ranjan Oeka, Mujahid Ahmad, Rabindra Sharma, Ruchi Badola & Syed Ainiul Hussain, Pp. 20666–20671

First record of Small Minivet *Pericrocotus cinnamomeus* (Aves: Passeriformes: Campephagidae) from Kashmir, India
– Zakir Hussain Najar, Bilal A. Bhat & Riyaz Ahmad, Pp. 20680–20682

Geodorum laxiflorum Wall. ex Triana (Melastomataceae): a new addition to the flora of Manipur, India
– Rajkumari Jashmi Devi, Deepashree Khuralajam, Peimichon Langkan & Bisheswor Thongam, Pp. 20686–20688

Melastoma imbricatum Wall. ex Triana (Melastomataceae): a new distribution record for Maharashtra state of India
– Ashish Ravindra Bhoyar, Swapnil Nandgawe, Syed Abrar Ahmed & Saduram Madavi, Pp. 20689–20691

Photographic record of *Armillaria mellea* a bioluminescent fungi from Lonavala in Western Ghats, India
– Swandand R. Patil & Shubham V. Yadav, Pp. 20692–20694

Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)
– Pandi Karthik, Pp. 20695–20697

Reply to the “Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)” by P. Karthik
– S.R. Chandramouli, R.S. Naveen, S. Sureshmarimuthu, S. Babu, P.V. Karunakaran & Honnavalli N. Kumara, Pp. 20698–20700