Multi-Spectral Image Classification with Ultra-Lean Complex-Valued Models

Utkarsh Singhal Stella X. Yu Zackery Steck Scott Kangas Aaron A. Reite
NSW floods become most expensive natural disaster on record with $5.5b in claims

By Melinda Hayter, Holly Tregenza, and Indiana Hansen
Posted Mon 21 Nov 2022 at 2:07pm, updated Tue 22 Nov 2022 at 1:15am
water absorbs IR, so appears **dark blue**

vegetation reflects IR, so appears **red**
Extra EM bands (e.g. infrared) can reveal changes invisible in RGB
Multi-Band Imaging

Source: https://seos-project.eu/classification/classification-c01-p05.html
Multi-Band Imaging

Source: https://seos-project.eu/classification/classification-c01-p05.html
Multi-Band Imaging

Source: https://seos-project.eu/classification/classification-c01-p05.html
Multi-Band Imaging
Multi-Band Imaging for HADR

Disaster Assessment
Multi-Band Imaging for HADR

Disaster Assessment

Environmental Impact Monitoring
Multi-Band Imaging for HADR

- Disaster Assessment
- Environmental Impact Monitoring
- Agricultural Health Measurement
Multi-Band Imaging for HADR

- Disaster Assessment
- Environmental Impact Monitoring
- Agricultural Health Measurement
- Urban Planning
Common Strategy for Dealing with New Datasets

- Large dataset \rightarrow supervised learning from scratch
Common Strategy for Dealing with New Datasets

- **Large dataset → supervised learning from scratch**

 Extremely successful for datasets like ImageNet
Common Strategy for Dealing with New Datasets

● Large dataset \rightarrow supervised learning from scratch

Extremely successful for datasets like ImageNet

● Small dataset \rightarrow transfer learning
Common Strategy for Dealing with New Datasets

- **Large dataset → supervised learning from scratch**
 Extremely successful for datasets like ImageNet

- **Small dataset → transfer learning**
 - Neural Net pre-trained on, e.g., ImageNet
 - Fine-tune on the smaller dataset
 - Extensive data augmentations
How to Handle a Multi-band Dataset?

- Supervised training from scratch?
How to Handle a Multi-band Dataset?

- Supervised training from scratch?
 Relatively limited labels
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 - Relatively limited labels

- Transfer learning from a large RGB dataset?
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

- **Transfer learning from a large RGB dataset?**
 Not 3 channel, encourages reduction to RGB
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

- **Transfer learning from a large RGB dataset?**
 Not 3 channel, encourages reduction to RGB

- Convert back to RGB?
How to Handle a Multi-band Dataset?

- **Supervised training from scratch?**
 Relatively limited labels

- **Transfer learning from a large RGB dataset?**
 Not 3 channel, encourages reduction to RGB

- **Convert back to RGB?**
 Loses the original benefits of multi-band data
How to Handle a Multi-band Dataset?

- Supervised training from scratch?
 Relatively limited labels

- **This Work**: Complex-valued Deep Learning as an alternative

- Convert back to RGB?
 Loses the original benefits of multi-band data
xView Multi-Band Image Dataset

![Image of xView Multi-Band Image Dataset](image)

RGB
- coastal blue
- blue
- green
- yellow
- red
- red edge
- near-IR1
- near-IR2

8-band
- coastal blue
- blue
- green
- yellow
- red
- red edge
- near-IR1
- near-IR2
Results: Simpler and Better Ultra-lean Models
Results: Simpler and Better Ultra-lean Models

Baseline: ResNet18 trained from scratch
Results: Simpler and Better Ultra-lean Models

Baseline: ResNet18 with ImageNet pre-training and data augmentation
Results: Simpler and Better Ultra-lean Models

Baseline: Reduce down to RGB + ImageNet pre-training + data augmentation
Results: Simpler and Better Ultra-lean Models

Higher accuracy, 194x smaller, no augmentation/pre-training, no RGB conversion
Imbalanced Classification Results

Higher Accuracy for 8 out of 10 classes
Methods: Co-domain Symmetric Models (CDS)[1]

[1]: Co-domain Symmetry for Complex-Valued Deep Learning, U. Singhal, Y. Xing, S.X. Yu, CVPR 2022
An Image is a Function from Domain to Co-Domain

Domain: Pixel Locations
Co-Domain: Pixel Values
An Image is a Function from Domain to Co-Domain
Domain Transformations Act on the Pixel Coordinates

Domain Transformation

- translation
- scaling
- rotation

- Images of a tiger before and after transformation.
Domain Transformations Act on the Pixel Coordinates

Domain Transformation

- translation
- scaling
- rotation

CNN [1]
Scale-Invariant CNN [2]
E(2)-Steerable CNN [3]

[1]: LeCun et al., Backpropagation Applied to Handwritten Zip Code Recognition
[2]: Xu et al., Scale-Invariance Convolutional Neural Network
[3]: Weiler et al., General E(2)-Equivariant Steerable CNNs
Co-Domain Transformations Act on the Pixel \textit{Values}

Domain Transformation

- translation
- scaling
- rotation

Co-domain Transformation

CNN [1]
Scale-Invariant CNN [2]
E(2)-Steerable CNN [3]
Co-Domain Transformations Act on the Pixel \textit{Values}

\begin{itemize}
\item \textbf{Domain Transformation}
\begin{enumerate}
\item \textbf{translation}
\item \textbf{scaling}
\item \textbf{rotation}
\end{enumerate}
\end{itemize}

\begin{itemize}
\item CNN [1]
\item Scale-Invariant CNN [2]
\item E(2)-Steerable CNN [3]
\end{itemize}
Co-Domain Encapsulates Diversity of Image Types

Thermal
RGB
Multi-Band
SAR

intensity
color
spectral
complex value
We Can Represent All These Data Types in Complex Values!

Thermal RGB Multi-Band SAR

Complex valued encodings
Complex-Valued Encoding for MSI Data

\[I = [I_1, I_2, \ldots, I_m] \rightarrow [I_1 + iI_2, \ I_2 + iI_3, \ \ldots, \ I_{m-1} + iI_m] \]

- Adjacent channels are paired into the real/imaginary parts of a complex number.
- Ratio of adjacent channels is represented by the phase.
- Imparts an ordering to the input channels
Robustness to Co-Domain Transformations

complex scaling

\[\vec{Z} \equiv s \cdot \hat{Z} \]
Robustness to Co-Domain Transformations

complex scaling

non-invariant

invariant

$\mathbf{Z} \equiv s \tilde{Z}$

Previously on CIFAR 10:

better generalization

color robustness

less redundant filters

lower bias/variance
Complex-Scale Equi-/In-variant Layers

Equivariant
- Equivariant Convolution
- Equivariant Batch-Norm
- Equivariant Non-Linearity
- Equivariant Pooling

Invariant
- Conjugate Layer
- Division Layer
- Prototype-Distance Invariant Layer
Two Architecture Styles

Type-I

Input → EConv → Division Layer → GTReLU → EConv → GTReLU → Pooling → Fully Connected → Prototype Distance → Output

Type-E

Input → EConv → Equivariant GTReLU → Pooling → Equivariant Fully Connected → Equivariant BN → Invariant Prototype Distance → Output
Summary

- Multi-Band imaging is invaluable for HADR applications.
- Traditional transfer learning approaches are not readily applicable.
- We propose using co-domain symmetric models trained from scratch.
- We propose a complex-valued encoding and use complex-scale invariant models.
- The resulting models have higher accuracy, significantly fewer parameters, no augmentation, no pre-training, and no RGB conversion.
Thank you!