Photoemission evidence for crossover from Peierls-like to Mott-like transition in highly strained VO$_2$

J. Laverock,1 A. R. H. Preston,1 D. Newby, Jr.,1 K. E. Smith,1 S. Sallis,2 L. F. J. Piper,2
S. Kittiwatanakul,3 J. W. Lu,4 S. A. Wolf,$^3,^4$ M. Leandersson,5 and T. Balasubramanian5

1Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
2Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902
3Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
4Department of Materials Science and Engineering, University of Virginia, VA 22904
5MAX-lab, Lund University, SE-221 00 Lund, Sweden

We present a spectroscopic study that reveals that the metal-insulator transition of strained VO$_2$ thin films may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical strain. Comparison with a moderately strained system, which does involve the lattice, demonstrates the crossover from Peierls- to Mott-like transitions.

PACS numbers: 71.30.+h, 71.27.+a, 79.60.-i

The metal-insulator transition (MIT) in VO$_2$ is of both fundamental and technical interest, the former due to lingering important questions about its origins1,2, and the latter due to possible applications in electronic devices such as ultrafast optical switches and field effect transistors3,4. In bulk VO$_2$, a large structural distortion accompanies the transition from the metallic rutile to the insulating monoclinic phase, which is known to impose a significant bottleneck on the timescale of the photoinduced transition5. Recently, the possibility of tailoring the transition temperature of the MIT in VO$_2$ through doping and/or nanoscale engineering6,7,9 has heralded renewed interest in the potential application of VO$_2$ as a novel functional material. Whereas the mechanism of the MIT in bulk VO$_2$ is now reasonably well understood as an orbital-assisted collaborative Mott-Peierls transition (or associated variants)10,11 (i.e. the MIT involves both the lattice and electron-correlation effects), the situation is less clear under large applied strain to the lattice. For example, the introduction of Nb as an isoelectronic dopant to V leads to an expansion of the c/a constant, and eventually (for $\geq 15\%$ Nb) an insulating rutile phase is observed12 (i.e. without any structural distortion).

The crucial aspects of the electronic structure of VO$_2$ center around the behavior of the V a_{1g} orbital, which is oriented along the rutile c-axis (c_{B1}-axis), and is also labeled as $d_{||}$ for this reason. In the Peierls-type model, this orbital becomes split in the insulating monoclinic phase due to the dimerization of V atoms in the c_{B1}-axis, and the associated twisting of the VO$_6$ octahedra pushes the e^π_g bands upwards in energy, decoupling them1. On the other hand, the correlation-driven mechanism2 proposes that the strong correlations in the a_{1g} orbital are screened by the e^σ_g band in the metallic phase. In the insulating phase, the e^σ_g states are empty, and the unscreened correlations open the gap. In the past, it has been difficult to distinguish between these two models, owing to the large structural distortion that accompanies the transition. However, a growing body of experimental and theoretical evidence supports that both are important in driving the MIT of bulk VO$_2$. For example, the local density approximation (LDA) fails to reproduce the MIT13 without recourse to hybrid functionals beyond the LDA14, and dynamical mean-field theory (DMFT) calculations15,16 (that explicitly include dynamical electron correlations) are required to explain a good deal of the experimental data (for example, Refs. 6,10,12,17). We report here a photoemission spectroscopy (PES) study of strained VO$_2$ thin films, in which we show that the MIT may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical strain.

High-quality thin films (~ 40 nm) of VO$_2$ were grown on rutile TiO$_2$(110)- and TiO$_2$(100)-oriented substrates by reactive bias target ion-beam deposition7. X-ray

![FIG. 1: V 3d PES spectra of VO$_2$(110) during a heating cycle through the MIT. (a) A two-dimensional map of the evolution of the V 3d states with time. (b) Spectrum recorded halfway through the heating cycle compared with a linear sum of the insulating and metallic factors. (c) The goodness-of-fit parameter, χ^2, between the time-dependent data and its fit to the two end-members of the series. Also shown is the evolution of the fraction, x, of the insulating spectrum used to describe the data.](image-url)
diffraction measurements confirm the epitaxy of VO$_2$ with the substrate and establish the expanded c_R-axis lattice parameter of VO$_2$ compared with the bulk8. This tensile strain is found to be approximately twice as large for VO$_2$/TiO$_2$(100) [hereafter referred to as VO$_2$(100)] at $+3.7\%$, whereas the c_R-axis strain of VO$_2$/TiO$_2$(110) [referred to as VO$_2$(110)] is $+1.7\%$. Atomic force microscopy measurements8 suggest a very low root-mean-square roughness of $\sim 0.3 - 0.4 \text{ nm}$. Both samples display MITs above room temperature, at 345 K and 340 K for VO$_2$(110) and VO$_2$(100) respectively. Note that the MIT temperature of our VO$_2$(110) film is lower than that observed in Ref. 6. PES measurements were carried out at beamline 13 (MAX III) of MAX-lab, Lund University, Sweden, using a Scienta R-4000 analyzer set to an energy resolution of 12 meV, with pressures in the analysis chamber of better than 5×10^{-10} torr between room temperature and 150°C. The binding energy of the PES spectra were referenced to polycrystalline gold in electrical contact with the samples. The samples were prepared for ultra-high vacuum measurements by several (one to three) repetitions of annealing in a partial O$_2$ environment ($\sim 450°C$, 1×10^{-6} ttr O$_2$, 30 mins). This procedure has been carefully developed to remove contaminant surface species from the samples without modifying the chemical environment of VO$_2$. Samples were aligned using low-energy electron diffraction and Laue x-ray diffraction. Soft x-ray spectroscopy measurements were performed at beamline X1B of the National Synchrotron Light Source (NSLS), Brookhaven. X-ray absorption spectroscopy (XAS) measurements were made in total electron yield mode with a beamline resolution of 0.2 eV, and the photon energy was calibrated with reference to TiO$_2$ spectra. Resonant x-ray emission spectroscopy (RXES) measurements were recorded with a Nordgren-type grating spectrometer18 set to an energy resolution of 0.7 eV and the instrument was calibrated using a Zn reference spectrum.

For moderately-strained VO$_2$(110), angle-integrated PES spectra of the V 3d states near E_F are shown in Fig. 1a as a function of time during a slow heating cycle through the MIT. The evolution of the V 3d states is characterized by a transfer in spectral weight from $\sim 1 \text{ eV}$ binding energy towards E_F, associated with the shift in the quasiparticle peak energy that becomes gapped out below the MIT15. The small remnant weight near 1 eV in the metallic phase represents the lower Hubbard band (LHB) of the rutile metallic phase, and is slightly shifted towards higher binding energies, in agreement with cluster DMFT (cDMFT) results15. These results are in excellent agreement with previous PES measurements of both bulk and thin-film VO$_2$17,19,20. In Fig. 1b, a comparison of the metallic and insulating spectra (end members of the heating cycle) is made with a spectrum recorded midway through the series. A linear superposition of the two end members is also shown, supporting real space measurements of bulk VO$_2$ that find no evidence of an intermediate phase in the transition21. Indeed, the spectra throughout the heating cycle have been carefully analyzed using a factor analysis approach, and we find only two factors are required to reproduce the spectra for all energies and temperatures measured (Fig. 1c).

In Fig. 2, angle-integrated PES spectra of the O 2p and V 3d states of moderately strained VO$_2$(110) and VO$_2$(100) are shown across the MIT. In VO$_2$(110), a large gap develops in the insulating (room temperature) spectra, the magnitude of which is $\sim 300 \text{ meV}$ (measured from extrema in the first derivative). However, for the highly strained VO$_2$(100) system (Fig. 2b), the magnitude of the insulating gap is much smaller, at $\lesssim 50 \text{ meV}$, with only a weak shift in the O 2p band. Here, the strong double-peaked structure in the O 2p manifold is less prominent; rather the spectra exhibit broad, asymmetric peaks, similar to earlier PES studies of VO$_2$19. The weak opening of the insulating gap in films under high strain compared to moderate strain constitutes our first clue that the physics of the MIT may be different for highly strained VO$_2$(100).

In order to understand in more detail the behavior of the two systems across the MIT, we now focus on the dependence of the V 3d states with photon polarization. By rotating the polarization vector of the incident photons, it is possible to couple to different symmetry orbitals, providing orbital-resolution to PES measurements. In particular, for $E \parallel c_R$, the matrix elements that couple the PES process of the V 3d states are maximized for the a_{1g} states. In Fig. 3a, high-resolution angle-integrated spectra above and below the MIT are shown for $E \parallel c_R$ and $E \perp c_R$ for VO$_2$(110), normalized to the intensity between 1.0 and 1.2 eV. It is clear from Fig. 3a that there is a substantial change in the shape of the spectra across the transition, and even in the relative energies of features between different polarizations. In Fig. 3b, the polarization anisotropy, $I_{\parallel} - I_{\perp}$, is shown for the spectra from metallic and insulating phases, representing approx-

![Graph showing PES spectra for VO$_2$(110) and VO$_2$(100)]
FIG. 3: High resolution V 3d PES spectra across the MIT of the VO$_2$ thin films at 30 eV. (a) Spectra of moderately-strained VO$_2$(110) for two different incident photon polarizations: $E \parallel c_R$ and $E \perp c_R$. (b) Polarization anisotropy of VO$_2$(110) in the insulating and metallic phases compared with cDMFT calculations of Biermann et al.15. (c) Polarization-dependent spectra of highly-strained VO$_2$(100). Shown at the bottom of the figure is the weak polarization anisotropy for this system.

In Fig. 3c, high-resolution spectra of highly-strained VO$_2$(100) are shown alongside their polarization anisotropy. These spectra show much weaker anisotropy, with very similar shapes both above and below the transition: a very small quasiparticle ‘peak’ shifts to deeper energies (and diminishes in intensity) in the insulating phase. Examination of the first derivative of both photon polarizations in the insulating phase reveal both extrema lie ~ 50 meV below E_F, demonstrating the relative isotropy of the gap for VO$_2$(100). The similarity of the polarization anisotropy across the MIT suggests that the population of orbitals is approximately the same in the insulating and metallic phases, inconsistent with the structural distortion that preferentially occupies the a_{1g} orbitals. DMFT calculations of the rutile phase with varying on-site Hubbard U have demonstrated that an insulating rutile phase (i.e. without structural distortion) may be stabilized for large values of U16. Bulk rutile VO$_2$ is believed to lie close to (but on the metallic side of) the crossover region (in which both metallic and insulating phases are stable). However, the nature of the insulating rutile phase is very different from the insulating M_1 phase of bulk VO$_2$, and is characterized by a very small insulating gap and almost even population of t_{2g} orbitals (similar to the metallic phase). Our PES measurements of highly strained VO$_2$(100) are consistent with such a scenario, in which we observe both a very small insulating gap ($\lesssim 50$ meV) and similar populations of the t_{2g} orbitals across the transition, in contrast to our results of the moderately strained VO$_2$(110) system. It is suggested that the large tensile strain of VO$_2$(100) leads to a narrowing of the bandwidth, W, of the t_{2g} bands, and the accompanying increase in the relative importance of electron correlations, characterized by U/W. In this simple model (schematically depicted in Fig. 4), $U/W_{\text{bulk}} < U/W_{(110)} < U/W_{(100)}$, and the system may be pushed into the coexistence region of the phase diagram, with a crossover from the traditional lattice-electronic mechanism of the bulk system to an electronic one for the highly strained system. For Nb-...
doped VO$_2$, an insulating rutile phase has already been observed, for which the mechanism was interpreted as electronic in origin, assisted by the disorder12. Here, we show that such an electronic driven transition can also be stabilized for pure VO$_2$ at ambient pressures by introducing large tensile strain to the system. These findings are in agreement with a recent optical study of similar VO$_2$ thin films, in which the decoupling of the structural and electronic components of the MIT was reported22. One can then circumvent the well-known structural bottleneck in the timescale of the transition5, of substantial value for applications that are envisaged to exploit the ultra-fast nature of the MIT of VO$_2$23. Furthermore, this observation that the electronic-driven transition in highly-strained VO$_2$ is quite different to that in moderately strained VO$_2$ (in agreement with DMFT) supplies additional weight to the argument that both the Peierls-type and Mott-type mechanisms are important in stabilizing the M_1 phase of bulk VO$_2$.

In order to reinforce our PES results, soft x-ray XAS and RXES measurements have also been performed, and are shown in Fig. 5. It is well known that XAS of the O K-edge17,24 and V $L_{3,2}$-edge10 are sensitive to changes in the population of the t_{2g} orbitals across the MIT, and we have previously demonstrated that RXES at the V L_3-edge is a sensitive probe of the structural distortion associated with the MIT in moderately strained VO$_2$25,26. For VO$_2$(100), we find our XAS spectra from films in the metallic phase at the V $L_{3,2}$- and O K-edges (Fig. 5a,b) are in good agreement with other such measurements of the metallic phase of bulk and moderately-strained VO$_2$10,17,25. However, the spectra from insulating films are almost identical to those from the metallic films, with only a weak shift in the O K-edge threshold (of $\lesssim 0.1$ eV, which is the accuracy of these measurements) indicating the very small insulating gap. In particular, the a_{1g} ($d_{||}$) peak, a signature of V-V dimerization in the distorted monoclinic phase, is absent at low temperature. Similarly, RXES measurements of VO$_2$(100) are not found to exhibit any temperature dependence across the MIT (Fig. 5c). For moderately strained VO$_2$(110), a large change in the relative intensity of the V 3d feature at ~ 515 eV is related to the different bonding environments of V-O induced by the structural distortion of the VO$_6$ octahedra at the MIT25. Here, we find this ratio is the same for the insulating and metallic spectra of VO$_2$(100), indicating the twisting of the VO$_6$ octahedra is absent in this sample. Both of these observations are consistent with the PES evidence described above, and together suggest a rutile-like structure exists in both metallic and insulating phases. Moreover, recent temperature-dependent x-ray diffraction measurements on similar thin films22 suggest that the change in lattice spacing at the MIT is very weak (by an order of

![Image of Fig. 5: Soft x-ray measurements on VO$_2$(100) through the MIT. (a) Polarization-dependent O K-edge XAS. (b) Polarization-dependent V $L_{3,2}$-edge XAS. At the bottom of the figure, the anisotropy between $E \parallel c_R$ and $E \perp c_R$ are shown. (c) RXES spectra, recorded at the V L_3-edge peak.]
magnitude) for their highly strained VO$_2$(100) films compared with the bulk, and is decoupled from the electronic transition. For our VO$_2$(100) samples, we find a similar suppression of the lattice spacing component of the transition compared with VO$_2$(110)8, emphasizing the weaker role of the lattice in the MIT of VO$_2$(100).

In summary, we have observed a crossover from a Mott–Peierls-like transition to a Mott-like transition with an increase in tensile strain along the c$_B$-axis in VO$_2$ through several different spectroscopic techniques. XAS and RXES were used to demonstrate the absence of the large structural distortion at the MIT that characterizes bulk and moderately strained VO$_2$. PES measurements revealed a weak insulating gap as well as the suppression of orbital redistribution across the transition. We further showed that by exploiting the relative polarization of the incident photons, PES can probe changes in the orbital occupation across electronic phase transitions. Our observations have important implications for novel functional material engineering of VO$_2$, suggesting a route towards circumventing the structural bottleneck in the ultrafast timescale of the MIT.

Acknowledgements. The authors acknowledge useful discussions with R. D. Averitt, E. Abreu and M. Liu. The Boston University program is supported in part by the Department of Energy under Grant No. DE-FG02-98ER45680. The NSLS, Brookhaven, is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. SK, JWL and SAW are thankful for financial support from the Army Research Office through MURI Grant No. W911-NF-09-1-0398.

1. J. B. Goodenough and H. Y.-P. Hong, Phys. Rev. B 8, 1323 (1973).
2. A. Zylbersztejn and N. F. Mott, Phys. Rev. B 11 4383 (1975).
3. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, Jr., L. A. Boanter and T. E. Haynes, Optics Lett. 30, 558 (2005).
4. H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang and Y.-S. Lim, New J. Phys. 6, 52 (2004).
5. A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer and R. W. Schoenlein, Phys. Rev. B 70, 161102(R) (2004).
6. Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).
7. K. G. West, J. W. Lu, J. Yu, D. Kirkwood, W. Chen, Y. H. Pei, J. Claassen and S. A. Wolf, J. Vac. Sci. Technol. A 26, 133 (2008).
8. See Supplemental Material at [url] for details of the sample growth and characterization.
9. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman and J. Wu, Nature Nanotechn. 4, 732 (2009); J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel and J. Wu, Nano Lett. 10, 2667 (2010).
10. M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streletsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H.-J. Lin, C. T. Chen, D. I. Khomskii and L. H. Tjeng, Phys. Rev. Lett. 95, 196404 (2005).
11. C. Weber, D. D. O’Regan, N. D. M. Hine, M. C. Payne, G. Kotliar and P. B. Littlewood, Phys. Rev. Lett. 108, 256402 (2012).
12. P. Lederer, H. Launois, J. P. Pouget, A. Casalot and G. Villeneuve, J. Phys. Chem. Solids 33, 1969 (1972).
13. V. Eyert, Ann. Phys. (Leipzig) 11, 650 (2002).
14. V. Eyert, Phys. Rev. Lett. 107, 016401 (2011).
15. S. Biemann, A. Poteryaev, A. I. Lichtenstein and A. Georges, Phys. Rev. Lett. 94, 026404 (2005).
16. B. Lazarovits, K. Kim, K. Haule and G. Kotliar, Phys. Rev. B 81, 115117 (2010).
17. T. C. Koethe, Z. Hu, M. W. Haverkort, C. Schüffler-Langeheine, F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh, H.-J. Lin, C. T. Chen and L. H. Tjeng, Phys. Rev. Lett. 97, 116402 (2006).
18. J. Nordgren, G. Bray, S. Cramm, R. Nyholm, J.-E. Rubensson and N. Wassdahl, Rev. Sci. Instrum. 60, 1690 (1989).
19. K. Okazaki, H. Wadati, A. Fujimori, M. Onoda, Y. Muraoka and Z. Hiroi, Phys. Rev. B 69, 165104 (2004) K. Saeki, T. Wakita, Y. Muraoka, M. Hirai, T. Yokoya, R. Eguchi and S. Shin, Phys. Rev. B 80, 125406 (2009).
20. R. Eguchi, M. Taguchi, M. Matsumani, K. Horiba, K. Yamamoto, Y. Ishida, A. Chainani, Y. Takata, M. Yabashi, D. Miwa, Y. Nishino, K. Tamatsuke, T. Ishikawa, Y. Senba, H. Ohashi, Y. Muraoka, Z. Hiroi and S. Shin, Phys. Rev. B 78, 075115 (2008); T. Kanki, H. Takami, S. Ueda, A. N. Hattori, K. Hattori, H. Daimon, K. Kobayashi and H. Tanaka, Phys. Rev. B 84, 085107 (2011).
21. S. A. Corr, D. P. Shoemaker, B. C. Melot and R. Seshadri, Phys. Rev. Lett. 105, 056404 (2010).
22. E. Abreu, M. Liu, J. Lu, K. G. West, S. Kitiwatanakul, W. Yin, S. A. Wolf and R. D. Averitt, New J. Phys. 14, 083026 (2012).
23. A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráki, P. Forget and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
24. M. Abbate, F. M. F. de Groot, J. C. Fuggle, Y. J. Ma, C. T. Chen, F. Sette, A. Fujimori, Y. Ueda and K. Kosuge, Phys. Rev. B 43, 7263 (1991).
25. J. Laverock, L. F. J. Piper, A. R. H. Preston, B. Chen, J. McNulty, K. E. Smith, S. Kitiwatanakul, J. W. Lu, S. A. Wolf, P.-A. Glans and J.-H. Guo, Phys. Rev. B 85, 081104(R) (2012).
26. L. F. J. Piper, A. DeMasi, S. W. Cho, A. R. H. Preston, J. Laverock, K. E. Smith, K. G. West, J. W. Lu and S. A. Wolf, Phys. Rev. B 82, 235103 (2010).