Large lepton flavor violating signals in supersymmetric particle decays at future e^+e^- colliders.

W. Poroda,b and W. Majerottoa

a Inst. f. Hochenergiephysik, Öster. Akademie d. Wissenschaften, A-1050 Vienna, Austria

b Inst. für Theor. Physik, Universität Zürich, CH-8057 Zürich, Switzerland

Abstract

We study lepton flavor violating signals at a future e^+e^- linear collider within the general MSSM, allowing for the most general flavor structure. We demonstrate that there is a large region in parameter space with large signals, while being consistent with present experimental bounds on rare lepton decays such as $\mu^- \rightarrow e^-\gamma$. In our analysis, we include all possible signals from charged slepton and sneutrino production and their decays as well as from the decays of neutralinos and charginos. We also consider the background from the Standard Model and the MSSM. We find that in general the signature $e\tau E_T$ is the most pronounced one. We demonstrate that even for an integrated luminosity of 100 fb$^{-1}$ the signal can be large. At a high luminosity linear collider, precision experiments will allow one to determine the lepton flavor structure of the MSSM.
There are stringent constraints on lepton flavor violation (LFV) in the charged lepton sector, the strongest coming from the decay branching ratio of $\mu^– \rightarrow e^-\gamma$, $BR(\mu^– \rightarrow e^-\gamma) < 1.2 \times 10^{-11}$ \cite{1}. Others are $BR(\mu^– \rightarrow e^-e^+e^-) < 10^{-12}$, $BR(\tau^– \rightarrow e^-\gamma) < 2.7 \times 10^{-6}$, $BR(\tau^– \rightarrow \mu^-\gamma) < 1.1 \times 10^{-6}$, see \cite{2}.

On the other hand, recent experiments \cite{3} indicate that at least ν_μ and ν_τ have an almost maximal mixing angle, $\sin^2 2\theta_{atm} > 0.88$. The latest results of SNO \cite{4} suggest that also the $\nu_e - \nu_\mu$ sector contains a large mixing, whereas the third mixing angle has to be small \cite{5}. The Standard Model can account for the lepton flavor conservation in the charged lepton sector, but has to be extended to account for neutrino masses and mixings, e.g. by the see-saw mechanism and by introducing heavy right-handed Majorana neutrinos \cite{6}.

In general, a gauge and supersymmetric invariant theory does neither conserve total lepton number $L = L_e + L_\mu + L_\tau$ nor individual lepton number L_e, L_μ or L_τ. One usually invokes R-parity symmetry, which forces total lepton number conservation but still allows the violation of individual lepton number, e.g. due to loop effects in $\mu^– \rightarrow e^-\gamma$ \cite{7}. The Minimal Supersymmetric Standard Model (MSSM) with R-parity conservation embedded in a GUT theory induces LFV \cite{8, 9, 10} at the weak scale. This is a consequence of having leptons and quarks in the same GUT multiplet and of the quark flavor mixing due to the CKM matrix. A general analysis of flavor changing neutral (FCNC) effects in K- and B-meson as well as in lepton physics was recently performed in \cite{11}.

Moreover, in the MSSM a large ν_μ-ν_τ mixing can lead to a large $\tilde{\nu}_\mu$-$\tilde{\nu}_\tau$ mixing via renormalisation group equations \cite{12}. This leads to clear LFV signals in slepton and sneutrino production and in the decays of neutralinos and charginos into sleptons and sneutrinos at the LHC \cite{13} and in e^+e^- and $\mu^+\mu^-$ collisions \cite{14, 15}. Signatures due to \tilde{e}_R-$\tilde{\mu}_R$ mixing were discussed in \cite{16}. In all these studies, it has been assumed that only one lepton flavor violating term dominates.

In this letter, we study the consequences of LFV in the sfermion sector at future e^+e^- colliders, respecting present bounds on rare lepton decays. Assuming the most general mass matrices for sleptons and sneutrinos, we demonstrate that large signals are expected.

The most general charged slepton mass matrix including left-right mixing as well as flavor mixing is given by:

$$M_i^2 = \begin{pmatrix} M_{LL}^2 & M_{LR}^{2L} \\ M_{LR}^{2R} & M_{RR}^2 \end{pmatrix},$$

(1)
where the entries are 3×3 matrices. They are given by

$$M^2_{LL,i,j} = M^2_{L,i,j} + \frac{v_d^2 Y^E_{ki} Y^E_{kj}}{2} + \frac{(g^2 - g'^2)(v_d^2 - v_u^2)\delta_{ij}}{8},$$

(2)

$$M^2_{LR,i,j} = \frac{v_d A_{ji}^*}{\sqrt{2}}.$$

(3)

$$M^2_{RR,i,j} = M^2_{E,i,j} + \frac{v_d^2 Y^E_{ik} Y^E_{jk}}{2} - \frac{g'^2(v_d^2 - v_u^2)\delta_{ij}}{4}.$$

(4)

The indices $i, j, k = 1, 2, 3$ characterize the flavors e, μ, τ. M^2_{LL} and M^2_{RR} are the soft SUSY breaking mass matrices for left and right sleptons, respectively. A_{ij} are the trilinear soft SUSY breaking couplings of the sleptons and Higgs boson. The physical mass eigenstates states \tilde{l}_n are given by $\tilde{l}_n = R_{inm} \tilde{l}'_m$ with $\tilde{l}'_m = (\tilde{e}_L, \tilde{\mu}_L, \tilde{\tau}_L, \tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R)$. Similarly, one finds for the sneutrinos

$$M^2_{\tilde{\nu},i,j} = M^2_{L,i,j} + \frac{(g^2 + g'^2)(v_d^2 - v_u^2)\delta_{ij}}{8}.$$

(5)

with the physical mass eigenstates $\tilde{\nu}_i = R_{ij} \tilde{\nu}'_j$ and $\tilde{\nu}'_j = (\tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau)$. The relevant interactions for this study are given by:

$$\mathcal{L} = \bar{\tilde{l}}_i (c^L_{ikm} P_L + c^R_{ikm} P_R) \tilde{\chi}^0_{k\tilde{m}} + \bar{\tilde{l}}_i (d^L_{ijr} P_L + d^R_{ijr} P_R) \tilde{\chi}^-_i \tilde{\nu}_r + \bar{\tilde{\nu}}_i (e^L_{ilm} P_L + e^R_{ilm} P_R) \tilde{\chi}^+_i \tilde{l}_m.$$

(6)

The specific form of the couplings $c^L_{ikm}, c^R_{ikm}, d^L_{ikm}, d^R_{ikm}, e^L_{ikm}$ and e^R_{ikm} will be given elsewhere [17]. The first two terms in Eq. (6) give rise to the signals whereas the last one will give rise to the SUSY background.

As mentioned above, most studies so far consider the case where only one of the flavor mixing entries in the slepton (Eq. (1)) and sneutrino mass (Eq. (5)) matrices is non-zero, as for instance, $M^2_{L,23} \neq 0$. It is the purpose of this study to allow for all possible flavor violating entries in Eqs. (1) and (5) which are compatible with the present bounds on lepton number violating processes, such as $\mu^- \rightarrow e^- \gamma, e^- e^+ e^-$, $\tau^- \rightarrow e^- \gamma, \tau^- \rightarrow \mu^- \gamma$ and $Z \rightarrow e\mu, e\tau, \mu\tau$. For definiteness, we have taken the first of the mSUGRA points of Snowmass’ 01 [18] as reference point which is characterized by $M_1/2 = 250$ GeV, $M_0 = 100$ GeV, $A'_0 = -100$ GeV, $\tan \beta = 10$ and $\sign(\mu) = +$. Note that A'_0 has to be multiplied by the Yukawa couplings.
TABLE I: SUSY parameters at the scale $Q = \sqrt{M_{Q3}M_{U3}}$ for $M_{1/2} = 250$ GeV, $M_0 = 100$ GeV, $A_0' = -100$ GeV, $\tan \beta = 10$ and $\text{sign}(\mu) = +$.

Parameter	Value
M_1	107.9
M_2	208.4
M_3	611.6
M_{E1}	138.7
M_{L1}	202.3
A_e/Y_e	-257.3
M_{E3}	136.3
M_{L3}	201.5
$A_τ/Y_τ$	-257.3
M_{D1}	536
M_{U1}	540
M_{Q1}	562
A_b	-863
A_t	-503

TABLE II: SUSY spectrum for $M_{1/2} = 250$ GeV, $M_0 = 100$ GeV, $A_0 = -100$ GeV, $\tan \beta = 10$ and $\text{sign}(\mu) = +$.

Parameter	Value
m_{H^0}	111
m_{A^0}	395
m_{H^+}	403
$m_\tilde{g}$	618
$m_\tilde{\chi}^0_1$	193.6
$m_\tilde{\chi}^0_2$	376.2
$m_\tilde{\chi}^0_3$	355.1
$m_\tilde{\chi}^0_4$	376.0
$m_\tilde{\tau}_1$	138.6
$m_\tilde{\tau}_2$	217.7
$m_\tilde{\nu}_e$	199.4
$m_\tilde{\nu}_\tau$	198.5
$m_{\tilde{d}_R}$	560
$m_{\tilde{d}_L}$	585
$m_{\tilde{u}_R}$	561
$m_{\tilde{u}_L}$	579
$m_{\tilde{b}_1}$	530
$m_{\tilde{b}_2}$	559
$m_{\tilde{t}_1}$	407
$m_{\tilde{t}_2}$	600

to get the A parameter as given in Eq. (3). The corresponding parameters at the scale $Q = \sqrt{M_{Q3}M_{U3}}$ are given in Table I and the physical masses (computed at one-loop) in Table II. We keep all parameters fixed except for the slepton parameters M_{L}^2, M_{R}^2 and A_t where all entries are varied in the whole range compatible with the experimental constraints.

We find values for $|M_{R,ij}^2|$ up to $8 \cdot 10^3$ GeV2, $|M_{L,ij}^2|$ up to $6 \cdot 10^3$ GeV2 and $|A_{ij}v_d|$ up to 650 GeV2 compatible with the constraints. In most cases, one of the mass squared parameters is at least one order of magnitude larger than all the others. However, there is a sizable part in parameters where at least two of the off-diagonal parameters have the same order of magnitude as shown in Fig. II.

In what follows, we concentrate on possible LFV signals at a 500 GeV e^+e^- collider: $e\mu H_R$, $e\tau H_R$, $\mu\tau H_R$, as well as the possibility of two additional jets. We consider the following SUSY
processes: \(e^+e^- \rightarrow \tilde{l}_i^-\tilde{l}_j^+\), \(\nu_l\bar{\nu}_\gamma\), \(\tilde{\chi}^0_i\tilde{\chi}^0_j\), \(\tilde{\chi}^+_i\tilde{\chi}_j^-\) as well as stop and Higgs production. We take into account all possible SUSY and Higgs cascade decays. We have taken into account ISR- and SUSY-QCD corrections for the production cross sections.

The main sources for the LFV signal stem from production of sleptons, sneutrinos and their decays, for example:

\[
e^+e^- \rightarrow \tilde{l}_i^-\tilde{l}_j^+ \rightarrow l_k^-l_m^+2\tilde{\chi}_1^0. \tag{7}
\]

We have also included the oscillation between flavors, being important in the case that \(\Delta m^2 < m\Gamma\) [14, 19].

For the background we take into account all possible SUSY cascade decays faking the signal and the Standard Model background from \(W\)-boson pair production, \(t\)-quark pair production and \(\tau\)-lepton pair production. The SM background has been calculated with the program Whizard [20]. A SUSY background reaction is, for example, the chain \(\tilde{\chi}^0_r \rightarrow l_j^-\nu_l\tilde{\chi}^+_s \rightarrow l_j^-\nu_k\tilde{\chi}^0_n\). We have generated 8000 points consistent with the experimental, varying the parameters randomly on a logarithmic scale: \(10^{-8} \leq |A_{ij}| \leq 50\) GeV, \(10^{-8} \leq M_{ij}^2 \leq 10^4\) GeV\(^2\). About 1200 of these have at least one signal larger than 0.1 fb. In
Table III we present the maximal cross section for various signals with a cross section larger than 10^{-2} fb. The cross section for e^τ E_T can go up to 250 fb leading to about 10^5 events with a luminosity of 500 fb$^{-1}$. In the case of two leptons with different flavors and 2 jets, we have put a veto on b-jets because of the large background stemming from t-quark production. One observes that the cross section for μ^τ E_T is somewhat smaller than the cross section for e^μ E_T and e^τ E_T. The reason for this is that $\tilde{e}\tilde{e}$ production is larger than $\tilde{\mu}\tilde{\mu}$ ($\tilde{\tau}\tilde{\tau}$) due to the additional t-channel contribution.

In Fig. 2a we show the cross section in fb of $e^+e^-\rightarrow e^\tau$ E_T as a function of $BR(\tau^-\rightarrow e^-\gamma)$ and in Fig. 2b the ratio signal over square root of the background (S/\sqrt{B}) as a function $BR(\tau^-\rightarrow e^-\gamma)$ assuming an integrated luminosity of 100 fb$^{-1}$. Although no cuts have been applied, there is in most cases a spectacular signal. The cases where the ratio S/\sqrt{B} is of order 1 or smaller should clearly improve, once appropriate cuts are applied. For example, a cut on the angular distribution of the final state leptons will strongly reduce the WW background. Further cuts as applied in the study of slepton production [21] will enhance the ratio S/\sqrt{B}.

There is an accumulation of points in Fig. 2a along a band. These points are characterized by large $\tilde{e}_R-\tilde{\tau}_R$ mixing which is less constraint by $\tau^-\rightarrow e^-\gamma$ than the corresponding left-left or left-right mixing.

In Fig. 3 we study the dependence of the signal on the collider energy for different beam polarizations. The various kinks are due to the onset of the different production cross sections.
sections. One observes a strong dependence on the beam polarization. Beam polarization is not only useful for a possible reduction of the background, but might also serve as a possible tool to disentangle different contributions to the signal. We have chosen a point giving rise to a LFV signal in several channels. The largest flavor violation entries are in this case $M_{E,13}^2 = 3440 \text{ GeV}^2$, $M_{L,12}^2 = -2.4 \text{ GeV}^2$, $v_1 A_{31} = 1.8 \text{ GeV}^2$. In this particular example, the branching ratios for the rare lepton decays are within the reach of the next generation of experiments, e.g. $\text{BR}(\tau^- \to e^- \gamma) = 2.6 \cdot 10^{-7}$.

For other points of the parameter space there will be only one or two channels with large LFV signals. However, the point chosen demonstrates the general behavior of strong beam polarization dependence of the various signals and is therefore quite representative. In the case of additional jets in the final state, the cross section is lower as can be seen.
FIG. 3: The cross sections in fb for the signals $(e^\pm \mu^\mp E_T)$ (a), $(e^\pm \tau^\mp E_T)$ (b), and $(\mu^\pm \tau^\mp E_T)$ (c) as a function of \sqrt{s} for different beam polarizations. The different lines correspond to $(P_-, P_+) = (0, 0)$ (full), $(P_-, P_+) = (-0.8, -0.6)$ (dashed), $(P_-, P_+) = (-0.8, 0.6)$ (dashed dotted), $(P_-, P_+) = (0.8, -0.6)$ (long dashed) and $(P_-, P_+) = (0.8, 0.6)$ (dotted).

from Table [II]. At large values of \sqrt{s} there are of course more open channels due to the production of squarks. The corresponding LFV signals also show a pronounced dependence on beam polarization [L7].

In conclusion, we have shown that the most general flavor violating structure of the slepton and sneutrino mass matrix may lead to large lepton flavor violating signals at a future e^+e^- collider – despite the strong constraints on rare lepton decays.

This work was supported by the ‘Fonds zur Förderung der wissenschaftlichen Forschung’ of Austria, project No. P13139-PHY and the Erwin Schrödinger fellowship Nr. J2095, by
the EU TMR Network Contract No. HPRN-CT-2000-00149, and partly by the Swiss 'Nationalfonds'.

[1] M. L. Brooks et al. [MEGA Collaboration], Phys. Rev. Lett. 83, 1521 (1999).
[2] D. E. Groom et al. [Particle Data Group Collaboration], Eur. Phys. J. C 15, 1 (2000).
[3] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1562;
 S. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 86, 5651 (2001);
 S. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 86 (2001) 5656.
[4] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 87 (2001) 071301.
[5] M. Apollonio et al. [CHOOZ Collaboration], Phys. Lett. B 466, 415 (1999); F. Boehm et al.,
 Phys. Rev. Lett. 84 (2000) 3764.
[6] M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories”,
 Proceedings of the Workshop, Stony Brook, New York, North-Holland, 1979; T. Yanagida,
 (KEK, Tsuhuba), 1979; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912;
[7] F. Borzumati and A. Masiero, Phys. Rev. Lett. 57, 961 (1986).
[8] J. F. Donoghue, H. P. Nilles and D. Wyler, Phys. Lett. B 128 (1983) 55; L. J. Hall, V. A. Kostelecky
 and S. Raby, Nucl. Phys. B 267 (1986) 415; F. Gabbiani and A. Masiero, Phys. Lett. B 209
 (1988) 289; J. S. Hagelin, S. Kelley and T. Tanaka, Nucl. Phys. B 415 (1994) 293;
 R. Barbieri and L. J. Hall, Phys. Lett. B 338 (1994) 212.
[9] J. Hisano, D. Nomura and T. Yanagida, Phys. Lett. B 437, 351 (1998).
[10] J. Hisano et al.,Phys. Lett. B 391, 341 (1997) [Erratum-ibid. B 397, 357 (1997)]; J. Hisano
 et al.,Phys. Rev. D 53, 2442 (1996); J. Hisano et al.,Phys. Lett. B 357, 579 (1995).
[11] F. Gabbiani et al., Nucl. Phys. B 477 (1996) 321.
[12] J. Hisano and D. Nomura, Phys. Rev. D 59, 116005 (1999); J. R. Ellis et al., Eur. Phys. J. C
 14, 319 (2000); J. L. Feng, Y. Nir and Y. Shadmi, Phys. Rev. D 61, 113005 (2000).
[13] I. Hinchliffe and F. E. Paige, Phys. Rev. D 63, 115006 (2001); K. Agashe and M. Graesser,
 Phys. Rev. D 61, 075008 (2000); N. V. Krasnikov, JETP Lett. 65, 148 (1997).
[14] N. Arkani-Hamed et al., Phys. Rev. Lett. 77, 1937 (1996); N. Arkani-Hamed et al., Nucl.
 Phys. B 505, 3 (1997).
[15] H. Baer et al., Phys. Rev. D 63, 095008 (2001); J. Hisano et al., Phys. Rev. D 60, 055008.
(1999); D. Nomura, Phys. Rev. D 64, 075001 (2001); M. Guichait, J. Kalinowski and P. Roy, Eur. Phys. J. C 21, 163 (2001).

[16] N. V. Krasnikov, Phys. Lett. B 388, 783 (1996).

[17] W. Majerotto and W. Porod, in preperation.

[18] G. Weiglein, talk presented at Snowmass 01.

[19] M. Dine, Y. Grossman and S. Thomas, arXiv:hep-ph/0111154.

[20] W. Kilian, LC-TOOL-2001-039 in, '2nd ECFA/DESY Study 1998-2001', p1924-1980.

[21] R. Becker and C. Vander Velde, In 'Muenchen/Annecy/Hamburg 1992-93, e^+e^- collisions at 500-GeV', p457-473, ed. P. Zerwas, DESY-93-123C.