A Conjectural Formula for Genus One Gromov-Witten Invariants of a Class of Local Calabi-Yau n-folds

Xiaowen Hu

May 11, 2014

Abstract

We conjecture a formula for the generating function of genus one Gromov-Witten invariants of the local Calabi-Yau manifolds which are the total spaces of splitting bundles over projective spaces. We prove this conjecture in several special cases, and assuming the validity of our conjecture we check the integrality of genus one BPS numbers of local Calabi-Yau 5-folds defined by A. Klemm and R. Pandharipande.

1 Introduction

After a series of splendid works with Jun Li and R. Vakil (see [10] the references therein), A. Zinger finally explicitly computed the genus one Gromov-Witten invariants of Calabi-Yau hypersurfaces in projective spaces. This result is generalized to complete intersections in projective spaces by A. Popa in [8]. Our object is to find a similar formula for the genus one Gromov-Witten invariants of the local Calabi-Yau n-fold

$$X = \text{Tot}(\mathcal{O}(-c_1) \oplus \cdots \mathcal{O}(-c_m) \rightarrow \mathbb{P}^{n-m}),$$

where $c_i \in \mathbb{Z}_{>0}$ for $1 \leq i \leq m$ and $\sum_{i=1}^{m} c_i = n - m + 1$.

Let us first recall Zinger’s formula. Let the target space Y be a degree n hypersurface in \mathbb{P}^{n-1}. For $q = 0, 1, \ldots$, define $I_{0,q}$ by

$$\sum_{q=0}^{\infty} I_{0,q}(t) w^q = e^{wt} \sum_{d=0}^{\infty} e^{dt} \prod_{r=1}^{d} (nw + r) \prod_{r=1}^{d} (w + r)^n.$$

(2)

It is easy to see that for $0 \leq q \leq n - 2$, $I_{0,q}$ are solutions of the Picard-Fuchs operator

$$\mathcal{L} = \left(\frac{d}{dt} \right)^{n-1} - nc' \prod_{r=1}^{n-1} (\frac{d}{dt} + r).$$

(3)

For $q \geq p \geq 0$, we inductively define

$$I_{p,q}(t) = \frac{d}{dt} \left(\frac{I_{p-1,q}(t)}{I_{p-1,0}(t)} \right),$$

(4)

and the mirror map is given by

$$T = \frac{I_{0,1}(t)}{I_{0,0}(t)}.$$

(5)
Thus $T - t$ and $I_{p, p}(t)$ are series of e^t for $p \geq 0$. The genus one degree d Gromov-Witten invariants $N_{1, d}^X$ are given by

$$
\sum_{d=1}^{\infty} N_{1, d}^X e^{dT} = \left(\frac{(n - 2)(n + 1)}{48} + \frac{1 - (1 - n)^n}{24n^2} \right) (T - t) + \frac{n^2 - 1 + (1 - n)^n}{24n} \ln I_{0, 0}(t)
- \left\{ \begin{array}{l}
\frac{n-1}{48} \ln(1 - n^n e^t) + \frac{n-1}{8n} \sum_{p=0}^{n-3} \frac{(n-1-2p)^2}{8} \ln I_{p, p}(t), \quad \text{if} \quad 2 \nmid n;
\frac{n-1}{48} \ln(1 - n^n e^t) + \frac{n-1}{8n} \sum_{p=0}^{n-3} \frac{(n-1-2p)^2}{8} \ln I_{p, p}(t), \quad \text{if} \quad 2 \nmid n.
\end{array} \right.
$$

(6)

Before Zinger’s work, the formula for $n = 5$ or 6 (Y is a quintic 3-fold or a sextic 4-fold, resp.) had been conjectured via mirror symmetry and physical arguments on the B-side, see [2] and [6]. For $n \geq 7$, the B-side interpretation is still absent, at least to the best knowledge of the author.

The Gromov-Witten invariants of local Calabi-Yau manifolds which are total spaces of vector bundles over toric varieties are in principle less difficult to compute, because we can directly apply the virtual localization method. But in dimension greater than 3, it seems not easy to get a closed formula due to the complicated combinatorics. Thus to get a formula for local Calabi-Yau spaces, a possible approach is just to adapt Zinger’s method to the local case, i.e., we need to

1. Find a standard vs reduced comparison formula for relevant Hodge integrals on $\mathcal{M}_{1, k}(\mathbb{P}^{n-m+1}, d)$ and $\mathfrak{M}_{1, k}(\mathbb{P}^{n-m+1}, d)$.
2. Find a formula for Hodge integrals on $\mathcal{M}_{1, k}$.
3. Write the Hodge integrals on $\mathfrak{M}_{1, k}(\mathbb{P}^{n-m+1}, d)$ as contributions of graphs by localization.
4. Generalize the combinatorial arguments in [10] to the local cases.

In principle also, the above procedure should be less difficult than that of the compact cases, since in the latter cases the involved sheaves $R^0\pi_* f^* \mathcal{O}(n - m + 2)$ is not locally free. We have made some progress on this and hope to address it in the future. In this article, however, we get a formula by a mixture of physical arguments and mathematical observations on Zinger’s proof, and we check the formula by proving it in several most simple cases, and also by checking the integrality of the BPS numbers of local Calabi-Yau 5-folds.

Now let us take a closer look at [6]. For the first term, the coefficient of $T - t$ physically (see [2]) comes from the integral

$$
\frac{1}{24} \int_{Y} k \wedge c_{n-3}(Y),
$$

(7)

where k is the Kähler class of Y associated with the variable T, and is H here, the class induced by the hyperplane class in the ambient space \mathbb{P}^{n-1}. The Chern class is easily computed

$$
c_{n-3}(Y) = \left(\frac{(n - 2)(n + 1)}{2n} + \frac{1 - (1 - n)^n}{n^3} \right) H^{n-3}.
$$

(8)

For the local case, for the target space X of the form [11], the series corresponding to [2] is

$$
\sum_{q=0}^{\infty} I_{0, q}(t) w^q = e^{wt} \sum_{d=0}^{\infty} e^{dt} \prod_{i=1}^{m} \prod_{s=0}^{d-1} \frac{(-c_i w - s)}{(w + s)^{n-m+1}},
$$

(9)

which encodes the genus zero one-point and two-point Gromov-Witten invariants of X by [9]. It is easy to see that, when $m > 1$ the mirror map is the identity map $T = t$, so the first term of [9] has

\footnotesize

The potential F_1 differs from the nowadays usual choice of potential by a factor 2, so the coefficient $\frac{1}{12}$ is taken as $\frac{1}{24}$ here.

\normalsize
no counterpart in these cases. When \(m = 1 \), \(X \) is the total space of the canonical bundle of \(\mathbb{P}^{n-1} \), and \(c_{n-1}(X) = -\frac{n(n+1)(n-2)}{4} H^{n-1} \). The Kähler class is still \(H \), but the integral of \(c_{n-1}(X) \wedge H \) over the local space \(X \) should be taken as the integral of the (formal) quotient of \(c_{n-1}(X) \wedge H \) by the Euler class of \(\mathcal{O}(-n) \) over the compact part \(\mathbb{P}^{n-1} \), as a general principle.

We can also get the same result in another way. In the mathematical proof of Zinger, the coefficient of \(T - t \) comes from a computation of residues. In fact, the first term of the coefficient comes from a residue at 0, and the second term from a residue at \(-n \). In the local case, by a speculation on Zinger’s proof, there should be no residues at \(-n \) and the residue at 0 is the same as the global case.

So the counterpart of the first term in the formula for \(K_{p_{n-1}} \) should be

\[
\frac{(n+1)(n-2)}{48} (T - t).
\]

(10)

For the second term of (6), since in the local case we always have \(I_{0,0}(t) = 1 \) from (9), it has no counterpart in the local case.

For the third term of (6), we follow the arguments in [6]. By some physical argument, this term comes from the behavior of the potential at the conifold point of the moduli space on the B-side, and the coefficient \(-\frac{n-1}{48} \) (or \(-\frac{n-4}{8} \) (if \(n \) is odd or even, resp.) should be universal. The \(1 - n^e t^e \) comes from the discriminant of the Picard-Fuchs operator (3). In the local case, the Picard-Fuchs operator is

\[
\mathcal{L} = \left(\frac{d}{dt} \right)^{n-m+1} - e^t \prod_{i=1}^{m} (-c_i \frac{d}{dt} - s),
\]

and the discriminant is

\[
\Delta = 1 - \prod_{i=1}^{m} (-c_i)^e t^e.
\]

(11)

So the counterpart of the third term in the local case should be

\[
- \left\{ \begin{array}{ll}
\frac{n+1}{48} \ln(1 - \prod_{i=1}^{m} (-c_i)^e t^e), & \text{if } 2 \nmid n; \\
\frac{n-4}{8} \ln(1 - \prod_{i=1}^{m} (-c_i)^e t^e), & \text{if } 2 \mid n.
\end{array} \right.
\]

(12)

The fourth group of terms of (6) seems the most mysterious. On one hand, I believe that, to get a series of \(e^t \) (not a mixture of \(t \) and \(e^t \), or equivalently, without log \(q \) terms, where \(q = e^t \)) from the solutions of the corresponding Picard-Fuchs equation, and to encode enough data from these solutions to get the genus one invariants, the inductive procedure [4] is somewhat ubiquitous, and thus in the same way we obtain \(I_{p,p}(t) \) in the local case. On the other hand, by a speculation on the argument in [6], I believe that if one could find a B-side interpretation of (6), the coefficient of \(I_{p,p}(t) \) would come from the fact \(h^{p,p} = 1 \) for \(0 \leq p \leq n - 2 \) (corresponding to the Ramond-Ramond sector on the B-side) and the elementary identities

\[
\frac{1}{2} + \frac{3}{2} + \cdots + \frac{n-2}{2} - 2p = \frac{(n-1-2p)^2}{8}
\]

or

\[
\frac{2}{2} + \frac{4}{2} + \cdots + \frac{n-2}{2} - 2p = \frac{(n-2p)(n-2-2p)}{8}
\]

for \(n \) is odd or even, resp.. So the counterpart of the fourth group of terms in the local cases should be

\[
- \left\{ \begin{array}{ll}
\sum_{p=1}^{(n-1)/2} \frac{(n+1-2p)^2}{8} \ln I_{p,p}(t), & \text{if } 2 \nmid n; \\
\sum_{p=1}^{(n-2)/2} \frac{(n+2-2p)(n-2-2p)}{8} \ln I_{p,p}(t), & \text{if } 2 \mid n.
\end{array} \right.
\]

(13)

Combining the above discussions, we obtain the following

\[\text{2Writing the local Gromov-Witten invariants as Hodge integrals over the moduli space of stable maps to the compact part, to make the WDVV equation still hold, we need to cancel one of the two copies of contributions of the Euler class at the node, in the usual derivation of the WDVV equation.}\]
Conjecture 1. Let X be of the form $[1]$. For $m = 1$, we have

$$\sum_{d=1}^{\infty} N_{1,d} x^d e^{dT} = \frac{(n-2)(n+1)}{48} (T-t) - \left\{ \begin{array}{ll} \frac{n+1}{48} \ln(1+n^ne^t) + \frac{\sum_{p=1}^{n-1} (n+1-2p)^2}{8} \ln I_{p,p}(t), & \text{if } 2 \nmid n; \\ \frac{n^2}{48} \ln(1-n^ne^t) + \frac{\sum_{p=1}^{n-2} (n+2-2p)^2}{8} \ln I_{p,p}(t), & \text{if } 2 \mid n. \end{array} \right. \quad (14)$$

For $m \geq 2$, we have (in these cases $T = t$)

$$\sum_{d=1}^{\infty} N_{1,d} x^d e^{dt} = -\left\{ \begin{array}{ll} \frac{n+1}{48} \ln(1 - \prod_{i=1}^{m} (-c_i)^e e^t) + \sum_{p=1}^{(n-1)/2} \frac{(n+1-2p)^2}{8} \ln I_{p,p}(t), & \text{if } 2 \nmid n; \\ \frac{n^2}{48} \ln(1 - \prod_{i=1}^{m} (-c_i) e^t) + \sum_{p=1}^{(n-2)/2} \frac{(n+2-2p)^2}{8} \ln I_{p,p}(t), & \text{if } 2 \mid n. \end{array} \right. \quad (15)$$

In fact, the above discussions suggest a recipe to get genus one Gromov-Witten invariants from genus zero invariants for Calabi-Yau n-folds with $h^{1,1} = 1$. Thus one can try to make similar conjectures for, e.g., Calabi-Yau complete intersections in Grassmannians. It is very desirable to give a B-side interpretation of these formulae, e.g., by solving the tt^*-equations.

The $n = 3$ and $n = 4$ cases of the conjecture $[1]$ has been given in $[1]$ and $[6]$. The main theorem of this article is

Theorem 1. The conjecture $[1]$ holds for degree one invariants, and holds for $X = \text{Tot}(\mathcal{O}(1)^{\oplus(l+1)} \to \mathbb{P}^l)$ and $X = \text{Tot}(\mathcal{O}(1)^{\oplus(-1)} \oplus \mathcal{O}(-2) \to \mathbb{P}^l)$ in all degrees, for $l \geq 1$.

We prove this theorem by virtual localization ($[3]$). Finally, we check the integrality of $n_{1,d}$ defined for Calabi-Yau 5-folds in $[2]$, from our conjectural formulae $[14]$ and $[15]$.

Conventions:
- We use $[x^k] f(x)$ to represent the coefficient of x^k in the Laurent expansion of $f(x)$ at $x = 0$. In this article x may be q, e^t, Q or w.
- Since the compact part of the target spaces that we consider in this article are always projective spaces, we use H to denote the hyperplane class throughout. Also, $N_{1,q}$ always denotes the genus one Gromov-Witten invariants of the Calabi-Yau space X with no insertion.
- We always understand $Q = e^T$ and $q = e^t$. In the first three sections we usually use e^t and e^T. In the section 4 we use Q and q, and understand that $I_{p,p}(q)$ means replacing e^t by q in the expansion of $I_{p,p}(t)$.
- In the graphs that represent the fixed loci in the moduli spaces of genus one stable maps, \circ represents a genus one component, and \bullet represents a genus zero component.
- The formal integrals over $\mathcal{M}_{0,1}$ and $\mathcal{M}_{0,2}$ are understood as extending the range of n in the following identity to $n \geq 1$:

$$\int_{\mathcal{M}_{0,n}} \prod_{i=1}^{n} (w_i - \psi_i) = \prod_{i=1}^{n} w_i \left(\sum_{i=1}^{n} w_i \right)^{n-3}.$$

Acknowledgements. The author thanks Prof. Jian Zhou for his great patience and guidance during all the time. He also thanks Huazhong Ke, Jie Zhou, Xiaobo Zhuang, and Di Yang for helpful discussions. He especially thanks Jie Zhou for carefully reading an earlier version of the introduction and giving suggestions.

2 Degree one invariants

The genus one degree one invariants of local Calabi-Yau n-folds of the form of $[1]$ can be easily computed by virtual localization. Let the torus $(\mathbb{C}^*)^{n-m+1}$ acts on \mathbb{P}^{n-m} with fixed point P_i, $1 \leq i \leq n - m + 1$, such that the $n - m$ weights at P_i is $\alpha_i - \alpha_k$, for $k \in \{1, \ldots, n - m + 1\} \setminus \{i\}$. We choose the linearizations of $\mathcal{O}(-c_i)$ with weight $-c_i \alpha_k$ at P_k, for $1 \leq i \leq m$, $1 \leq k \leq n - m + 1$. The
torus action naturally induces an action on $\mathcal{M}_{1,0}(\mathbb{P}^{n-1}, 1)$, whose fixed loci are corresponding to the graphs of the form

$$
\Gamma_{ij} = \begin{array}{c}
\bullet \\
\circ \\
\bullet
\end{array},
$$

where $1 \leq i \neq j \leq n - m + 1$. Let us first assume $m = 1$. Then the contribution of Γ_{ij} is

$$
\int_{\mathcal{M}_{1,1}} \frac{(\alpha_j - \alpha_i) \prod_{k \neq i} \Lambda_1^i(\alpha_i - \alpha_k) \cdot \Lambda_1^j(-\nu \alpha_i) \prod_{a=1}^{n-1} (-n \alpha_j + a(\alpha_j - \alpha_i))}{(\alpha_i - \alpha_j - \psi)(\alpha_i - \alpha_j)(\alpha_j - \alpha_i) \prod_{k \neq i,j} \prod_{a=0}^{1} (\alpha_i - \alpha_k + a(\alpha_j - \alpha_i))} = \frac{(-1)^{n-1} \alpha_i \prod_{a=1}^{n-1} ((n-a)\alpha_j + a\alpha_i)}{24 \prod_{j \neq i,j} (\alpha_j - \alpha_k)} \left(\sum_{k \neq i,j} \frac{1}{\alpha_i - \alpha_k} - \frac{1}{n \alpha_i} \right).
$$

Note that

$$
\sum_{j \neq i} \frac{\prod_{a=1}^{n-1} ((n-a)\alpha_j + a\alpha_i)}{\prod_{k \neq i,j} (\alpha_j - \alpha_k)} = n^{n-1} \alpha_i^{n-1} \sum_{j \neq i} \frac{1}{(\alpha_j - \alpha_i) \prod_{k \neq i,j} (\alpha_j - \alpha_k)} + (n-1)!
$$

$$
= -\frac{n^{n-1} \alpha_i^{n-1}}{\prod_{j \neq i} (\alpha_i - \alpha_j)} + (n-1)!,
$$

which are easily to show by the residue theorem on \mathbb{P}^1. Thus we have

$$
\sum_{j \neq i} \frac{n \alpha_i \prod_{a=1}^{n-1} ((n-a)\alpha_j + a\alpha_i)}{\prod_{k \neq i,j} (\alpha_j - \alpha_k)} \left(\sum_{k \neq i,j} \frac{1}{\alpha_i - \alpha_k} - \frac{1}{n \alpha_i} \right)
$$

$$
= n \alpha_i \left(\sum_{k \neq i} \frac{1}{\alpha_i - \alpha_k} \right) \sum_{j \neq i} \frac{\prod_{a=1}^{n-1} ((n-a)\alpha_j + a\alpha_i)}{\prod_{k \neq i,j} (\alpha_j - \alpha_k)} - \sum_{j \neq i} \frac{\prod_{a=1}^{n-1} ((n-a)\alpha_j + a\alpha_i)}{\prod_{k \neq i,j} (\alpha_j - \alpha_k)}
$$

$$
+ n \alpha_i \sum_{j \neq i} \frac{\prod_{a=1}^{n-1} ((n-a)\alpha_j + a\alpha_i)}{\prod_{k \neq i,j} (\alpha_j - \alpha_k)}
$$

$$
= \left[n \alpha_i \left(\sum_{k \neq i} \frac{1}{\alpha_i - \alpha_k} \right) - 1 \right] \left(-\frac{n^{n-1} \alpha_i^{n-1}}{\prod_{j \neq i} (\alpha_i - \alpha_j)} + (n-1)! \right)
$$

$$
+ \prod_{j \neq i} (\alpha_i - \alpha_j) \sum_{j \neq i} \frac{1}{\alpha_i - \alpha_j} - \frac{n^{n-1} \alpha_i^{n-1}}{2 \prod_{j \neq i} (\alpha_i - \alpha_j)}
$$

$$
= n! \alpha_i \left(\sum_{k \neq i} \frac{1}{\alpha_i - \alpha_k} \right) - (n-1)! - \frac{n^{n-1} \alpha_i^{n-1}}{2 \prod_{j \neq i} (\alpha_i - \alpha_j)}
$$

and thus

$$
\sum_{i=1}^{n} \sum_{j \neq i} \frac{n \alpha_i \prod_{a=1}^{n-1} ((n-a)\alpha_j + a\alpha_i)}{\prod_{k \neq i,j} (\alpha_j - \alpha_k)} \left(\sum_{k \neq i,j} \frac{1}{\alpha_i - \alpha_k} - \frac{1}{n \alpha_i} \right)
$$

$$
= n! \cdot \frac{n(n-1)}{2} - n! - \frac{n^{n-1} \alpha_i^{n-1}}{2} = \frac{(n! - n^{n-1} \alpha_i^{n-1})(n-2)(n+1)}{2}.
$$

(16)
Now assume \(m \geq 2 \). The contribution of \(\Gamma_{ij} \) is

\[
\int_{M_{ij}} \frac{(\alpha_j - \alpha_i) \prod_{k \neq i} \Lambda^j_k(\alpha_i - \alpha_k) \cdot \prod_{i=1}^{m} \left(\Lambda^j_i(-c_i\alpha_i) \prod_{a=1}^{n-1}(\alpha_j - \alpha_a) + a(\alpha_j - \alpha_a) \right)}{(\alpha_i - \alpha_j - \psi)(\alpha_i - \alpha_j)(\alpha_j - \alpha_k) \prod_{k \neq i,j}(\alpha_i - \alpha_k)(\alpha_j - \alpha_k)}
\]

\[
= \frac{(-1)^{n-m+1} \alpha_i^m \prod_{i=1}^{m} \left(c_i \prod_{a=1}^{n-1}(\alpha_j - \alpha_a) + a(\alpha_j - \alpha_a) \right)}{24 \prod_{k \neq i,j}(\alpha_i - \alpha_k)(\alpha_j - \alpha_k)} \left(\sum_{k \neq i,j} \frac{1}{\alpha_i - \alpha_k} - \sum_{l=1}^{m} \frac{1}{c_l \alpha_i} \right).
\]

Similar to the \(m = 1 \) case, we have

\[
\sum_{j \neq i} \prod_{k=i}^{m} \prod_{k \neq j}(\alpha_i - \alpha_j) = \frac{\prod_{i=1}^{m} c_i^j \alpha_i^{n-2m+1}}{\prod_{j \neq i}(\alpha_i - \alpha_j)} \sum_{j \neq i} \frac{1}{\alpha_i - \alpha_j} - \frac{(n-2m+1) \prod_{i=1}^{m} c_i^j \alpha_i^{n-2m}}{2 \prod_{j \neq i}(\alpha_i - \alpha_j)}.
\]

So

\[
\sum_{j \neq i} \frac{\alpha_i^m \prod_{i=1}^{m} \left(c_i \prod_{a=1}^{n-1}(\alpha_j - \alpha_a) + a(\alpha_j - \alpha_a) \right)}{(\alpha_i - \alpha_j) \prod_{k \neq i,j}(\alpha_j - \alpha_k)} \left(\sum_{k \neq i,j} \frac{1}{\alpha_i - \alpha_k} - \sum_{l=1}^{m} \frac{1}{c_l \alpha_i} \right)
\]

\[
\quad = \sum_{j \neq i} \left[\sum_{k \neq i} \frac{1}{\alpha_i - \alpha_k} \cdot \frac{\alpha_i^m \prod_{i=1}^{m} \left(c_i \prod_{a=1}^{n-1}(\alpha_j - \alpha_a) + a(\alpha_j - \alpha_a) \right)}{(\alpha_i - \alpha_j) \prod_{k \neq i,j}(\alpha_j - \alpha_k)} \right] + \alpha_i^m \prod_{i=1}^{m} \left(c_i \prod_{a=1}^{n-1}(\alpha_j - \alpha_a) + a(\alpha_j - \alpha_a) \right)
\]

\[
\quad = -\sum_{k \neq i} \frac{1}{\alpha_i - \alpha_k} \cdot \frac{\prod_{i=1}^{m} c_i^k \alpha_i^{n-m+1}}{\prod_{j \neq i}(\alpha_i - \alpha_j)} + \frac{\prod_{i=1}^{m} c_i^j \alpha_i^{n-m+1}}{\prod_{j \neq i}(\alpha_i - \alpha_j)} \sum_{j \neq i} \frac{1}{\alpha_i - \alpha_j}
\]

\[
\quad = \left(\sum_{l=1}^{m} \frac{1}{c_l} - \frac{n-2m+1}{2} \right) \prod_{i=1}^{m} c_i^j \alpha_i^{n-m} \prod_{j \neq i}(\alpha_i - \alpha_j).
\]

Therefore for \(m \geq 2 \) we obtain

\[
N_{1,d}^X = \frac{(-1)^{n-m+1}}{24} \left(\sum_{l=1}^{m} \frac{1}{c_l} - \frac{n-2m+1}{2} \right) \prod_{i=1}^{m} c_i^j \alpha_i^{n-m}.
\] (17)

We need to check that our conjectural formulae \([14] \) and \([15] \) match \([10] \) and \([17] \). First we give a lemma.

Lemma 2.1. If \(n \) is odd, suppose \(n = 2r + 1 \), we have

\[
\text{Res}_{w=0} \frac{(2w+1) \prod_{i=1}^{n} c_i \alpha_i^{n-1}}{(w+1)^{r-m+1} \prod_{i=1}^{m} c_i \alpha_i^{n-1}} = -\frac{1}{12} \left(\frac{1}{c_i} - \sum_{l=1}^{m} c_l \right) \prod_{i=1}^{m} c_i^j.
\] (18)
If \(n \) is even, suppose \(n = 2r \), we have

\[
\text{Res}_{w=0} \frac{\prod_{i=1}^{m} \Gamma_s^{-1} (c_i w + s)}{(w + 1)^{-m+1} w^{r-m}} = -\frac{1}{24} \left(\frac{1}{c_i} - \sum_{i=1}^{m} c_i + \frac{3}{2} \right) \prod_{i=1}^{m} c_i^{-1}.
\] (19)

Proof: The crucial point is to notice that

\[
\text{Res}_{w=0} \frac{(2w + 1) \prod_{i=1}^{m} \Gamma_s^{-1} (c_i w + s)}{(w + 1)^{-m+1} w^{r-m+1}} = \text{Res}_{w=-1} \frac{(2w + 1) \prod_{i=1}^{m} \Gamma_s^{-1} (c_i w + s)}{(w + 1)^{-m+1} w^{r-m+1}}
\]

and

\[
\text{Res}_{w=0} \frac{\prod_{i=1}^{m} \Gamma_s^{-1} (c_i w + s)}{(w + 1)^{-m+1} w^{r-m+1}} = \text{Res}_{w=-1} \frac{\prod_{i=1}^{m} \Gamma_s^{-1} (c_i w + s)}{(w + 1)^{-m+1} w^{r-m+1}}
\]

by substitution of variables. Thus by the residue theorem on \(\mathbb{P}^1 \), it suffices to compute

\[
\text{Res}_{w=\infty} \frac{(2w + 1) \prod_{i=1}^{m} \Gamma_s^{-1} (c_i w + s)}{(w + 1)^{-m+1} w^{r-m+1}}
\]

and

\[
\text{Res}_{w=\infty} \frac{\prod_{i=1}^{m} \Gamma_s^{-1} (c_i w + s)}{(w + 1)^{-m+1} w^{r-m+1}}.
\]

We leave the details to the reader. \(\square \)

The functions \(I_{0,q}(t) \) for \(X \) are defined by

\[
\sum_{q=0}^{\infty} I_{0,q}(t) w^q = e^t \sum_{d=0}^{\infty} \prod_{i=1}^{m} \Gamma_s^{d-1} (-c_i w - s) \prod_{i=1}^{m} (w + s)^{n-m+1} = e^t \left[1 + \sum_{d=1}^{\infty} \prod_{i=1}^{m} \Gamma_s^{d-1} (c_i w + s) \prod_{i=1}^{m} (w + s)^{n-m+1} \right].
\] (20)

For \(q \geq p \), define

\[
I_{p,q}(t) = \frac{d}{dt} \left(\frac{I_{p-1,q}(t)}{I_{p-1,p-1}(t)} \right).
\] (21)

Proposition 2.1. For \(2 \nmid n \),

\[
\sum_{p=1}^{(n-1)/2} \frac{(n + 2p - 2p)^2}{8} [c^t] (\ln I_{p,p}(t)) = -\frac{(-1)^{\sum_{i=1}^{m} c_i}}{24} \left(\sum_{i=1}^{m} \frac{1}{c_i} - \sum_{i=1}^{m} c_i \right) \prod_{i=1}^{m} c_i^t,
\] (22)

and for \(2 \mid n \),

\[
\sum_{p=1}^{(n-2)/2} \frac{(n + 2p - 2p)(n - 2p)}{8} [c^t] (\ln I_{p,p}(t)) = -\frac{(-1)^{\sum_{i=1}^{m} c_i}}{24} \left(\sum_{i=1}^{m} \frac{1}{c_i} - \sum_{i=1}^{m} c_i + \frac{3}{2} \right) \prod_{i=1}^{m} c_i^t.
\] (23)

Proof: For a fixed \(n \), suppose

\[
\frac{(-1)^{n-m+1} \prod_{i=1}^{m} \Gamma_s^{c_i-1} (c_i w + s)}{(w + 1)^{n-m+1}} = a_1 w + a_2 w^2 + \cdots,
\] (24)

then a straightforward induction shows

\[
I_{p,p}(t) = 1 + e^t \sum_{k=1}^{p} a_k \binom{p-1}{k-1} + O(e^t).
\] (25)
Now we treat the cases that \(n \) is odd or even separately.

(i) \(n = 2r + 1 \), and \(r \geq 0 \). By (25) we have

\[
\sum_{p=1}^{(n-1)/2} \frac{(n+1-2p)^2}{8} |e^r| (\ln I_{p,p}(t)) = \sum_{p=1}^{r} \frac{(r+1-p)^2}{2} \sum_{k=1}^{p} a_k \left(\frac{p-1}{k-1} \right)
\]

\[
= \sum_{k=1}^{r} a_k \sum_{p=1}^{r} \frac{(r+1-p)^2}{2} \left(\frac{p-1}{k-1} \right).
\]

Since

\[
(m + 1 - p)^2 = (p + 1)p - p(2m + 3) + (m + 1)^2,
\]

we have

\[
\sum_{p=1}^{r} (r+1-p)^2 \left(\frac{p-1}{k-1} \right)
\]

\[
= \sum_{p=1}^{r} \left((p+1)p \left(\frac{p-1}{k-1} \right) - (2r+3)p \left(\frac{p-1}{k-1} \right) + (r+1)^2 \left(\frac{p-1}{k-1} \right) \right)
\]

\[
= \sum_{p=1}^{r} \left((k+1)k \left(\frac{p+1}{k+1} \right) - (2r+3)k \left(\frac{p}{k} \right) + (r+1)^2 \left(\frac{r}{k} \right) \right)
\]

\[
= (k+1)k \left(\frac{r+2}{k+2} \right) - (2r+3)k \left(\frac{r+1}{k+1} \right) + (r+1)^2 \left(\frac{r}{k} \right)
\]

\[
= (k+2)(k+1) - 2(k+2) + 2 \left(\frac{r+2}{k+2} \right) - (2r+3)(k+1) - (r+1) + (r+1)^2 \left(\frac{r}{k} \right)
\]

\[
= 2 \left(\frac{r+2}{k+2} \right) - \left(\frac{r+1}{k+1} \right).
\]

Thus by (26) and (27) we have

\[
\sum_{p=1}^{(n-1)/2} \frac{(n+1-2p)^2}{8} |e^r| (\ln I_{p,p}(t)) = \frac{1}{2} \sum_{k=1}^{r} a_k \left(\frac{r+2}{k+2} - \left(\frac{r+1}{k+1} \right) \right)
\]

\[
= \frac{1}{2} \|w^{-2}\| \left(\frac{2(-1)^{n-m+1} \prod_{i=1}^{m} c_i \cdot (c_i w + s)}{(w+1)^{n-m+1}} \cdot \left(1 + \frac{1}{w} \right)^{r+2} \right)
\]

\[- \frac{1}{2} \|w^{-1}\| \left(\frac{(-1)^{n-m+1} \prod_{i=1}^{m} c_i \cdot (c_i w + s)}{(w+1)^{n-m+1}} \cdot \left(1 + \frac{1}{w} \right)^{r+1} \right)
\]

\[
= \frac{(-1)^{n-m+1} \prod_{i=1}^{m} c_i \cdot (c_i w + s)}{2 \|w^{-m}\|} \left(\frac{2w+1}{w+1} \prod_{i=1}^{m} c_i \cdot \left((w+1)^{w+1} \right) \right).
\]

Thus by (18) we obtain (22).

(ii) \(n = 2r \), and \(r \geq 1 \). By (25) we have

\[
\sum_{p=1}^{(n-2)/2} \frac{(n+2-2p)(n-2p)}{8} |e^r| (\ln I_{p,p}(t)) = \sum_{p=1}^{r-1} \frac{(r+1-p)(r-p)}{2} \sum_{k=1}^{p} a_k \left(\frac{p-1}{k-1} \right)
\]

\[
= \sum_{k=1}^{r-1} a_k \sum_{p=1}^{r-1} \frac{(r+1-p)(r-p)}{2} \left(\frac{p-1}{k-1} \right).
\]
A similar computation as in the n odd case shows
\[
\sum_{p=1}^{r-1} (r + 1 - p)(r - p) \binom{p - 1}{k - 1} = 2 \binom{r + 1}{k + 2}.
\] (29)

Thus by (28) and (29), we see
\[
\sum_{p=1}^{(n-2)/2} \frac{(n-2p)(n-2-2p)}{8} \left[\ln I_{p,p}(t) \right] = \sum_{k=1}^{r} a_k \binom{r + 1}{k + 2}
\]
\[
= \left[w^{-2} \right] \left[-1 \right]^{n-m+1} \prod_{i=1}^{m} \left(\frac{c_i - 1}{w + 1} \right) \cdot \left(1 + \frac{1}{w} \right)^{r+1}
\]
\[
= (-1)^{n-m+1} \prod_{i=1}^{m} c_i \cdot \left[w^{-m-1} \right] \left(\frac{2w + 1}{w + 1} \right)^{r-m} \cdot \left(\frac{\prod_{i=1}^{m} \left(c_i w + s \right)}{(w + 1)^{n-m+1}} \right).
\]

Then (23) follows from (19). □

When $m \geq 2$, Prop.2.1 together with the contribution from $-\frac{n+1}{48} \ln(1 - \prod_{i=1}^{m} (-c_i)^{e_i})$ or $-\frac{n-1}{48} \ln(1 - \prod_{i=1}^{m} (-c_i)^{e_i})$ (n is odd or even, resp.) gives (17). When $m = 1$, from (20) it is easy to see
\[
T = t + \sum_{d=1}^{\infty} e^{dt} \frac{(-1)^{nd}}{d} \frac{(nd)!}{(d!)^n}
\]
Take this into account, we also recover (10). So we have proved

Theorem 2.1. The conjecture (7) holds for all degree one invariants. □

Remark 2.1. The same method shows that for the Calabi-Yau hypersurface Y in \mathbb{P}^{n-1} we have
\[
N_{1,1}^Y = n! \left[\frac{(n-2)(n+1)}{48} + \frac{1 - (1-n)^n}{24n^2} \sum_{s=2}^{n} \frac{s^n - s + 1}{s} \right] - \frac{n^{n-1}(n-1)(n+2)}{48}.
\]

3 Two extremal cases

In general as the degree d increase, the graphs and their contributions corresponding to the fixed loci will become more and more complicated, and thus a direct computation through virtual torus localization seems very difficult. But for some special target spaces we can make a good choice of the linearization so that a lot of graphs give zero contributions (see, e.g., [4]). In principle, the larger m is, the more flexible the choice of the linearizations is. We shall consider the two extremal cases: $X = \text{Tot}(O(-1)^{\oplus(l+1)} \rightarrow \mathbb{P}^l)$ and $X = \text{Tot}(O(-1)^{\oplus(l-1)} \oplus O(-2) \rightarrow \mathbb{P}^l)$. In these two cases it is easy to see from (20) and (21) that $I_{p,p}(t) = 1$ for p in the ranges that appear in (14) and (15). So to prove conjecture (1) in these two cases is equivalent to show

Theorem 3.1. For $X = \text{Tot}(O(-1)^{\oplus(l+1)} \rightarrow \mathbb{P}^l)$ we have
\[
N_{1,d} = \frac{(-1)^{(l+1)d}(l+1)}{24d}. \quad (30)
\]

For $X = \text{Tot}(O(-1)^{\oplus(l-1)} \oplus O(-2) \rightarrow \mathbb{P}^l)$ we have
\[
N_{1,d}^{X} = \frac{(-1)^{(l-1)d}(l-1)^4d}{24d}. \quad (31)
\]

In the following we treat the two cases separately. The choice of linearizations are following those of the similar cases in [6] and [7]. In the following computations we shall make repeatedly use of $\lambda^2 = 0$ on $\mathcal{M}_{1,m}$ for $m \geq 1$, for example from this we have $\Lambda_Y^2(x)\Lambda_Y^2(-x) = -x^2$.
3.0.1 $\mathcal{O}(-1)^{(l+1)} \rightarrow \mathbb{P}^l$

Write $\mathcal{O}(-1)^{(l+1)} = \bigoplus_{i=1}^{l+1} L_i$, and choose torus linearizations on L_i with weight $\alpha_i - \alpha_k$ at P_k, for $1 \leq i, k \leq l + 1$. In particular, L_i has weight zero at P_i. The fixed loci with nonzero contributions are of the form

$$\Gamma_{ij} = i \overset{\alpha}{\underset{d}{\rightarrow}} j,$$

where $1 \leq i \neq j \leq l + 1$. The contribution of Γ_{ij} is

$$\frac{1}{d} \int_{\mathcal{X}_{1,1}} \frac{\alpha_i - \alpha_k}{d} \prod_{k \neq i,j} \Lambda_1^j (\alpha_i - \alpha_k) \prod_{k=1}^{l+1} \left(\Lambda_1^j (\alpha_k - \alpha_i) \prod_{a=1}^{d-1} (\alpha_k - \alpha_j + a \frac{\alpha_i - \alpha_k}{d})\right)$$

$$= - \frac{1}{24d} \left(\alpha_j - \alpha_i\right) \prod_{k \neq i,j} (\alpha_i - \alpha_k)(\alpha_k - \alpha_i) \prod_{k=1}^{l+1} \prod_{a=0}^{d-1} (\alpha_k - \alpha_j + a \frac{\alpha_j - \alpha_i}{d}),$$

Note that

$$\alpha_i - \alpha_k + (d - a) \frac{\alpha_j - \alpha_i}{d} = - \left(\alpha_k - \alpha_j + a \frac{\alpha_j - \alpha_i}{d}\right),$$

so the contribution is

$$\frac{(-1)^{(l-1)d} \prod_{k \neq i,j} (\alpha_i - \alpha_k)}{24d} \prod_{k \neq i,j} (\alpha_j - \alpha_k)$$

Since for any fixed i we have

$$\sum_{j \neq i} \prod_{k \neq i,j} (\alpha_i - \alpha_k) = 1,$$

we obtain

$$N_{1,d} = \frac{(-1)^{(l-1)d}(l+1)}{24d}.$$

3.0.2 $\mathcal{O}(-1)^{(l-1)} \oplus \mathcal{O}(-2) \rightarrow \mathbb{P}^l$

Choose the linearizations on L_i such that for $1 \leq i \leq l - 1$, L_i has weight $\alpha_i - \alpha_k$ at P_k, and L_l has weight $\alpha_l + \alpha_{l+1} - 2\alpha_k$ at P_k, $1 \leq k \leq l + 1$. The fixed loci which may have nonzero contributions are of three types.

Type I:

$$\Gamma_{s;k_1,d_1;\ldots;k_m,d_m} = \begin{array}{c}
\bullet \\
\vdots \\
\bullet \\
\bullet \\
\end{array}$$

where $1 \leq k_1, \ldots, k_m \leq l - 1$, $m \geq 1$, with edges of degree d_1, \ldots, d_m respectively, and $s = l$ or
The crucial observation is that, in these contributions the factor α and we shall see that α of the other types. So we are able to set α, where $1 \leq l + 1$. When $s = l + 1$, the contribution is

\[
\frac{1}{|\text{Aut}(\Gamma_{x:ki_{1},\ldots,ki_{m}})|} \prod_{i=1}^{m} \frac{d_{i}}{d_{i}} \int_{\mathcal{M}_{x:ki_{1},\ldots,ki_{m}}} \prod_{i=1}^{m} (\alpha_{l+1} - \alpha_{j})^{m-1} \Lambda\gamma (\alpha_{l+1} - \alpha_{j}) \prod_{j=1}^{l} \left((\alpha_{l+1} - \alpha_{j})^{m-1} \Lambda\gamma (\alpha_{l+1} - \alpha_{j}) \right)
\]

\[
\prod_{j=1}^{l-1} \left((\alpha_{j} - \alpha_{l+1})^{m-1} \Lambda\gamma (\alpha_{j} - \alpha_{l+1}) \prod_{i=1}^{m} d_{i-1} \prod_{i=1}^{m} (\alpha_{l+1} - \alpha_{j}) + a_{\alpha_{j+1}-\alpha_{k_{i}}} \right)
\]

\[
\prod_{i=1}^{m} \left((\alpha_{l+1} - \alpha_{1})^{m-1} \Lambda\gamma (\alpha_{l+1} - \alpha_{1}) \prod_{i=1}^{m} d_{i-1} \prod_{i=1}^{m} (\alpha_{l+1} - \alpha_{j}) + a_{\alpha_{l+1}-\alpha_{k_{i}}} \right)
\]

\[
\prod_{i=1}^{m} \left(\frac{d_{i}}{d_{i}} \prod_{j=1}^{l} (\alpha_{l+1} - \alpha_{k_{j}})^{d_{i}-1} (\alpha_{k_{j}} - \alpha_{i}) \prod_{r \neq l+1,l,k_{j}} (\alpha_{k_{j}} - \alpha_{i}) \right)
\]

Similarly, when $s = l + 1$, the contribution is

\[
\frac{1}{|\text{Aut}(\Gamma_{k_{1},\ldots,k_{m}})|} \prod_{i=1}^{m} d_{i}^{2} \int_{\mathcal{M}_{x:ki_{1},\ldots,ki_{m}}} \prod_{i=1}^{m} \left(\frac{d_{i}}{d_{i}} \prod_{j=1}^{l} (\alpha_{l+1} - \alpha_{k_{j}})^{d_{i}-1} (\alpha_{k_{j}} - \alpha_{i}) \prod_{r \neq l+1,l,k_{j}} (\alpha_{k_{j}} - \alpha_{i}) \right)
\]

The crucial observation is that, in these contributions the factor $\alpha_{l+1} - \alpha_{l}$ appears at least once, and we shall see that $\alpha_{l+1} - \alpha_{l}$ does not appear in the denominator of the sums of the contributions of the other types. So we are able to set $\alpha_{l+1} = \alpha_{l}$ and thus the type I graphs contribute nothing.

Type II:

$$\Gamma_{x:k_{0},d_{0};k_{1},d_{1};\ldots;k_{m},d_{m}} = \begin{array}{c}
\includegraphics[scale=0.5]{diagram}
\end{array}$$

where $1 \leq k_{0}, k_{1}, \ldots, k_{m} \leq l - 1$, $m \geq 0$, with edges of degree $d_{0}, d_{1}, \ldots, d_{m}$ respectively, and $s = l$.
or \(l + 1 \). When \(s = l + 1 \), the contribution is

\[
\frac{1}{|\text{Aut}(\Gamma'_{s;k_0,k_1,\ldots,k_m})|} \prod_{i=0}^{n} d_i \int_{\mathcal{M}_{l,1}} \prod_{j \neq k_0} \Lambda_{l}^{\gamma} (\alpha_{k_0} - \alpha_j) \prod_{i=1}^{l-1} \Lambda_{l-1}^{\gamma} (\alpha_i - \alpha_{k_0}) \cdot \Lambda_{l}^{\gamma} (\alpha_l + \alpha_{l+1} - 2\alpha_{k_0})
\]

\[
= \frac{1}{|\text{Aut}(\Gamma'_{s;k_0,k_1,\ldots,k_m})|} \prod_{i=0}^{m} \alpha_i \frac{1}{\alpha_{l} - \alpha_{l+1}} \prod_{j=1}^{l-1} \frac{1}{\alpha_{l} - \alpha_{l+1}} \prod_{j=1}^{l-1} (\alpha_j - \alpha_{l+1} + a \frac{\alpha_{l+1} - \alpha_{k_0}}{d_i})
\]

When \(m > 0 \), the power of \(\alpha_{l+1} - \alpha_l \) in the numerator is not less than that in the denominator. To show that the sums of contributions of the type II graphs has no factor of \(\alpha_{l+1} - \alpha_l \) in its denominator, we only need to consider the \(m = 0 \) case. When \(m = 0 \), the above contribution is

\[
\frac{(-1)^{(l-1)d_l+1} d_0^{d_l-1} \prod_{j=1}^{l-1, j \neq k_0} (\alpha_{k_0} - \alpha_j) \cdot \prod_{k=0}^{d_0} (\alpha_l - \alpha_{k_0} + a \frac{\alpha_{l+1} - \alpha_{k_0}}{d_i})}{24d_0!} \prod_{r=1}^{d_0} (\alpha_{l+1} - \alpha_{k_0})^{d_0} \prod_{r \neq 1, l, k_0} (\alpha_{l+1} - \alpha_r) \cdot (\alpha_{l+1} - \alpha_l).
\]

Thus the sum of the contributions of \(\Gamma'_{l;k_0} \) and \(\Gamma'_{l+1;k_0} \) is

\[
\frac{(-1)^{(l-1)d_l+1} d_0^{d_l-1} \prod_{j=1}^{l-1} (\alpha_{k_0} - \alpha_j)}{24d_l!} \prod_{r=1}^{d_0} (\alpha_{l+1} - \alpha_{k_0})^{d_0} \prod_{r \neq 1, l, k_0} (\alpha_{l+1} - \alpha_r) (\alpha_{l+1} - \alpha_l)
\]

The sum of the group of terms in the square brackets of the last expression is divisible by \(\alpha_{l+1} - \alpha_l \). Therefore we have shown that the sum of the contributions of type II graphs has no factor \(\alpha_{l+1} - \alpha_l \) in its denominator. We shall see the type III contribution also has no factor \(\alpha_{l+1} - \alpha_l \) in the denominator. So we are able to set \(\alpha_{l+1} = \alpha_l \). Then we see that a type II graph has no contribution unless \(m = 0 \) or \(m = 1 \). Now we compute the contributions of \(m = 0 \) and \(m = 1 \) cases separately.
\[
\begin{align*}
\prod_{a=0}^{d} (\alpha_l - \alpha_k + a, \frac{\alpha_{l+1} - \alpha_k}{d}) &= (\alpha_l - \alpha_k) \frac{d!}{d^d} \prod_{a=1}^{d} \left(\frac{d(\alpha_l - \alpha_k)}{a} + \alpha_{l+1} - \alpha_k \right) \\
&= (\alpha_l - \alpha_k) \frac{d!}{d^d} \left((2d)! (\alpha_l - \alpha_k)^{d} + (\alpha_{l+1} - \alpha_l) \frac{(2d)!}{(d)!^2} (\alpha_l - \alpha_k)^{d-1} \sum_{a=1}^{d} \frac{a}{d} + O[(\alpha_{l+1} - \alpha_l)^2] \right) \\
&= \frac{(2d)!}{d^d} (\alpha_l - \alpha_k)^{d+1} + (\alpha_{l+1} - \alpha_l) \frac{(2d)!}{d^d} (\alpha_l - \alpha_k)^{d} \sum_{a=0}^{d} \frac{d}{d+a} + O[(\alpha_{l+1} - \alpha_l)^2], \\
(\alpha_{l+1} - \alpha_k)^{d} &= (\alpha_l - \alpha_k)^{d} + d(\alpha_{l+1} - \alpha_l)(\alpha_l - \alpha_k)^{d-1} + O[(\alpha_{l+1} - \alpha_l)^2], \\
\prod_{r \neq l, l, k_0} (\alpha_{l+1} - \alpha_r) &= \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \sum_{r \neq l, l, k_0} \frac{1}{\alpha_l - \alpha_l} + O[(\alpha_{l+1} - \alpha_l)^2], \\
\text{we have} \\
\prod_{a=0}^{d} (\alpha_l - \alpha_k + a, \frac{\alpha_{l+1} - \alpha_k}{d}) &= (\alpha_l - \alpha_k) \frac{d!}{d^d} \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \\
&- \prod_{a=0}^{d} (\alpha_{l+1} - \alpha_k + a, \frac{\alpha_{l+1} - \alpha_k}{d}) \prod_{r \neq l, l, k_0} (\alpha_{l+1} - \alpha_l) \\
&= (\alpha_{l+1} - \alpha_l) \frac{(2d)!}{d^d} (\alpha_l - \alpha_k)^{d} \sum_{a=1}^{d} \frac{a}{d+a} \cdot (\alpha_l - \alpha_k)^{d} \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \\
&- (\alpha_{l+1} - \alpha_l) \frac{(2d)!}{d^d} (\alpha_l - \alpha_k)^{d} \sum_{a=0}^{d} \frac{d}{d+a} \cdot (\alpha_l - \alpha_k)^{d} \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \\
&- d(\alpha_{l+1} - \alpha_l)(\alpha_l - \alpha_k)^{d-1} \cdot \frac{(2d)!}{d^d} (\alpha_l - \alpha_k)^{d+1} \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \\
&- (\alpha_{l+1} - \alpha_l) \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \sum_{r \neq l, l, k_0} \frac{1}{\alpha_l - \alpha_l} \cdot \frac{(2d)!}{d^d} (\alpha_l - \alpha_k)^{d+1}(\alpha_l - \alpha_k)^{d} + O[(\alpha_{l+1} - \alpha_l)^2] \\
&= (\alpha_{l+1} - \alpha_l) \frac{(2d)!}{d^d} (\alpha_l - \alpha_k)^{2d} \prod_{r \neq l, l, k_0} (\alpha_l - \alpha_l) \\
&\cdot \left(\sum_{a=1}^{d} \frac{a}{d+a} - 2d - 1 - (\alpha_l - \alpha_k) \sum_{r \neq l, l, k_0} \frac{1}{\alpha_l - \alpha_l} \right) + O[(\alpha_{l+1} - \alpha_l)^2].
\end{align*}
\]
Thus setting $\alpha_{t+1} = \alpha_t = \alpha$, the sum of the contributions of $\Gamma'_{t;\alpha_{t0}}$ and $\Gamma'_{t+1;\alpha_{t1}}$ is

$$\frac{(-1)^{(l-1)d_1+d_1}d_1^{d_1-1}}{24d!} \cdot \frac{\prod_{j=1, \neq \alpha_{t0}}^{l-1} (\alpha_{t0} - \alpha_j)}{(\alpha_{t+1} - \alpha_{t0})^d (\alpha_t - \alpha_{t0})^d \cdot \prod_{r \neq l+1, l, k_0} (\alpha_{t+1} - \alpha_r) (\alpha_t - \alpha_r)} \cdot \frac{(2d)!}{d!} (\alpha_t - \alpha_{t0})^{2d} \prod_{r \neq l+1, l, k_0} (\alpha_t - \alpha_r) \cdot \left(2 \sum_{a=1}^{d} \frac{a}{d + a} - 2d - 1 - (\alpha_t - \alpha_{t0}) \sum_{r \neq l+1, l, k_0} \frac{1}{\alpha_t - \alpha_r}\right).$$

The contribution of $\Gamma'_{t+1;\alpha_{t1},k_1}$ is

$$\frac{1}{d_0!d_1!} \left(- \frac{1}{24} (-1)^{(l-1)d_1} d_0 (\alpha_{t0} - \alpha_t) \prod_{j=1, \neq \alpha_{t0}}^{l-1} (\alpha_{t0} - \alpha_j)^2 \cdot (\alpha_t + \alpha_{t+1} - 2\alpha_{t0}) \right)$$

$$\frac{\int_{\mathbb{R}^{d_1}} \frac{1}{\prod_{i=0}^{l-1} (\alpha_t + \alpha_{t+1} - 2\alpha_{t0})} \cdot \prod_{\alpha_{t0} - \alpha_{t+1} + (\alpha_{t+1} - \alpha_{t0}) \cdot (\alpha_{t+1} - \alpha_t) (\alpha_{t+1} - \alpha_t)} (-1)^{(l-1)(d_1-1)} \prod_{i=0}^{d_1-1} (\alpha_t - \alpha_{t+1} + a \frac{\alpha_{t+1} - \alpha_{t0}}{d_1}) \prod_{i=0}^{l-1} (\alpha_{t0} - \alpha_{t+1}) \cdot (\alpha_{t0} - \alpha_t) \cdot (\alpha_{t0} - \alpha_t) \cdot (\alpha_{t0} - \alpha_t)} {24d_0!d_1!} \left(\prod_{j=1, \neq \alpha_{t0}}^{l-1} (\alpha_{t0} - \alpha_j) \cdot (\alpha_t + \alpha_{t+1} - 2\alpha_{t0}) \right)$$

$$\frac{1}{d_0!d_1!} \cdot \left(\prod_{i=0}^{d_1-1} (\alpha_t - \alpha_{t+1} + a \frac{\alpha_{t+1} - \alpha_{t0}}{d_1}) \prod_{i=0}^{l-1} (\alpha_{t0} - \alpha_{t+1}) \cdot (\alpha_{t0} - \alpha_t) \cdot (\alpha_{t0} - \alpha_t) \cdot (\alpha_{t0} - \alpha_t) \right)$$

setting $\alpha_{t+1} = \alpha_t = \alpha$, the above contribution becomes

$$\frac{(-1)^{(l-1)d_1+d_1}d_0(2d_0)!/2(d_1)!}{48(d_0)!^2(d_1)!^2d_1} \prod_{j=1, \neq \alpha_{t0}}^{l-1} (\alpha_{t0} - \alpha_j) \cdot \prod_{j=1, \neq \alpha_{t0}}^{l-1} (\alpha_{t1} - \alpha_j) \cdot \frac{\alpha - \alpha_{t0}}{d\alpha - d_1 \alpha_{t0} - d_0 \alpha_{t1}}.$$

Therefore the sum of the contributions of $\Gamma'_{t+1;\alpha_{t0},k_1}$ and $\Gamma'_{t;\alpha_{t1},k_1}$ is

$$\frac{(-1)^{(l-1)d_1+d_1}d_0(2d_0)!/2(d_1)!}{24(d_0)!^2(d_1)!^2d_1} \prod_{j=1, \neq \alpha_{t0}}^{l-1} (\alpha_{t0} - \alpha_j) \cdot \prod_{j=1, \neq \alpha_{t0}}^{l-1} (\alpha_{t1} - \alpha_j) \cdot \frac{\alpha - \alpha_{t0}}{d\alpha - d_1 \alpha_{t0} - d_0 \alpha_{t1}}.$$

Type III:

$$\Gamma_{ij} = \frac{i d j}{\alpha - \alpha_{t0}}.$$
where \(1 \leq i, j \leq l - 1, i \neq j\). The contribution of \(\Gamma_{ij}\) is

\[
\frac{1}{d} \int_{X_{1,1}} \prod_{k=1, k \neq i}^{l-1} \Lambda_{i}^{\gamma}(\alpha_{i} - \alpha_{k}) \cdot \prod_{k=1}^{l-1} \Lambda_{k}^{\gamma}(\alpha_{k} - \alpha_{i}) \cdot \Lambda_{i}^{\gamma}(\alpha_{l} + \alpha_{l+1} - 2\alpha_{i})
\]

Combining the three type of contributions, we obtain

\[
\begin{align*}
\frac{(-1)^{(l-1)}d}{24d} & \prod_{k=1, k \neq i, j}^{l-1} (\alpha_{i} - \alpha_{k}) \cdot (\alpha - \alpha_{j})^{3} \\
& \cdot \prod_{\alpha=1}^{l-1} (2\alpha - 2\alpha_{j} + a^{2}\alpha_{j} - a_{i}) \\
& \prod_{\alpha=1}^{l-1} (\alpha_{i} - \alpha_{k}) \prod_{\alpha=0}^{d}(\alpha_{i} - \alpha + a^{2}\alpha_{j} - a_{i})^{2}.
\end{align*}
\]

Combining the three type of contributions, we obtain

\[
N_{1,d}^{X} = \sum_{k_{0}=1}^{l-1} \frac{(-1)^{(l-1)}d(2d)!}{24(d_{0})^{2}d} \prod_{j=1, j \neq k_{0}}^{l-1} (\alpha_{k_{0}} - \alpha_{j}) \left(2d \sum_{a=1}^{d} \frac{1}{d + a} + 1 + (\alpha - \alpha_{k_{0}}) \sum_{j=1, \neq k_{0}}^{l-1} \frac{1}{\alpha - \alpha_{j}}\right)
\]

\[
\sum_{d_{0}+d_{1}+d_{k}=d} \sum_{k=1, k \neq 1, k \neq 1}^{l-1} \frac{(-1)^{(l-1)}d}{24(d_{0})^{2}d_{1}d_{1}} \prod_{j=1, \neq k}^{l-1} (\alpha_{k} - \alpha_{j}) \cdot \prod_{\alpha=1}^{l-1} (\alpha - \alpha_{j})
\]

\[
\sum_{i=1}^{l-1} \sum_{j=1, \neq i}^{l-1} \frac{(-1)^{(l-1)}d}{12d} \prod_{k=1, \neq i, j}^{l-1} (\alpha_{i} - \alpha_{k}) \cdot \prod_{\alpha=1}^{l-1} (\alpha - \alpha_{i})^{3} \prod_{\alpha=1}^{l-1} (2\alpha - 2\alpha_{j} + a^{2}\alpha_{j} - a_{i})
\]

\[
\prod_{\alpha=1}^{l-1} (\alpha_{i} - \alpha_{j}) \prod_{\alpha=0}^{d}(\alpha_{i} - \alpha + a^{2}\alpha_{j} - a_{i})^{2}.
\]

Let us first assume \(l \geq 3\). Note that \(N_{1,d}^{X}\) is a priori a rational number. So it is straightforward to see that, for fixed \(1 \leq i, j \leq l - 1, i \neq j\), to cancel the denominators of the form \(d\alpha - d_{1}\alpha_{i} - d_{0}\alpha_{j}\), it
forces that there exist \(b \in \mathbb{Q}, \beta_{ij} \in \mathbb{Q}\alpha_1 + \cdots + \mathbb{Q}\alpha_{l-1}, \) such that

\[
\begin{align*}
\beta_{ij} + \beta_{ij} = \sum_{d_0, d_1 \geq 1} \frac{(-1)^{l-1} d_0 (2d_0)! (2d_1)!}{24(d_0)!^2 (d_1)!^2 d_1} \cdot \frac{(\alpha - \alpha_j)^2}{d_0 - d_1 \alpha_i - d_0 \alpha_j} + \frac{(-1)^{l-1} d_0}{24d} \cdot \frac{d_0 (2d_0)! (2d_1)!}{24(d_0)!^2 (d_1)!^2 d_1}.
\end{align*}
\]

Dividing both side by \(\alpha \) and let \(\alpha \to \infty \), we obtain

\[
\begin{align*}
b &= \sum_{d_0, d_1 \geq 1} \frac{(-1)^{l-1} d_0 (2d_0)! (2d_1)!}{24(d_0)!^2 (d_1)!^2 d_1 d} + \frac{(-1)^{l-1} d_0 2^{2d-1}}{12d} \\
&= \frac{(-1)^{l-1} d_0}{24d} \left(\sum_{d_0, d_1 \geq 1} \frac{d_0 (2d_0)! (2d_1)!}{(d_0)!^2 (d_1)!^2 d_1} + 4^d \right).
\end{align*}
\]

Then since

\[
\begin{align*}
\sum_{j=1}^{l-1} \sum_{i=1, i \neq j}^{l-1} \sum_{k=1, k \neq i, j}^{l-1} \frac{\alpha_i - \alpha_k}{\alpha_j - \alpha_k} &= \sum_{i=1}^{l-1} \left(\sum_{j=1, j \neq i}^{l-1} (\alpha_i - \alpha_j) \cdot \prod_{j=1, j \neq i}^{l-1} \frac{1}{(\alpha_j - \alpha_i) \prod_{k=1, k \neq i, j}^{l-1} (\alpha_j - \alpha_k)} \right) \\
&= \sum_{i=1}^{l-1} \left(\sum_{j=1, j \neq i}^{l-1} (\alpha_i - \alpha_j) \cdot \frac{1}{\prod_{j=1, j \neq i}^{l-1} (\alpha_i - \alpha_j)} \right) \\
&= l - 1,
\end{align*}
\]

we have

\[
\begin{align*}
N_{1,d}^X &= (l-1)b + (l-1) \sum_{d_0, d_1 = d} \frac{(-1)^{l-1} d_0 (2d_0)! (2d_1)!}{24(d_0)!^2 (d_1)!^2 d_1} \\
&= \frac{(-1)^{l-1} (l-1)4^d}{24d}.
\end{align*}
\]

For \(l = 2 \), (32) still holds, and has been proved in [6] without giving the details. Here we give another proof for this, which is interesting itself since we make use of the proof of the \(l = 3 \) case to prove a combinatorial identity. It suffices to prove the following lemma.

Lemma 3.1.

\[
\begin{align*}
\frac{(2d)!}{(d!)^2} \left(2d \sum_{a=1}^{d} \frac{1}{d + a} + 1 \right) - \sum_{d_0, d_1 = d} d_0 (2d_0)! (2d_1)! (d_0)!^2 (d_1)!^2 d_1 = 4^d.
\end{align*}
\]

\(^3\text{Thanks Si-Qi Liu for telling the author that (33) can also be proved using Mathematica.} \)}
Proof: Consider the case $l = 3$. We have

$$N_{1,d}^X = -\frac{(2d)!}{24(d!)^2d} \left(2d \sum_{a=1}^{d} \frac{1}{d+a} + 1 \right) \frac{(\alpha - \alpha_2)^2}{(\alpha - \alpha_1)(\alpha - \alpha_2)}$$

$$+ \frac{(2d)!}{24(d!)^2d} \left(\frac{(\alpha - \alpha_2)(\alpha - \alpha_1)}{(\alpha - \alpha_2)^2} + \frac{(\alpha_2 - \alpha_1)(\alpha - \alpha_2)}{(\alpha - \alpha_1)^2} \right)$$

$$- 2 \sum_{d_0 + d_1 = d} \frac{d_0(2d_0)!}{24(d_0!)^2(d_1!)^2d_1d}$$

$$+ \sum_{d_0 + d_1 = d} \frac{d_0(2d_0)!}{24(d_0!)^2(d_1!)^2d_1d} \left(\frac{\alpha - \alpha_1}{d_0a - d_1\alpha_1 - d_0\alpha_2} + \frac{\alpha - \alpha_2}{d_0\alpha - d_1\alpha_2 - d_0\alpha_1} \right)$$

$$+ \sum_{i=1}^{2} \sum_{j=1, \neq i}^{2} \frac{(-1)^{(i-1)d}}{12d} \cdot \frac{(\alpha - \alpha_i) \prod_{a=1}^{2d-1} (2\alpha - 2\alpha_j + \alpha \cdot \alpha_i)}{(\alpha - \alpha_j) \prod_{a=1}^{2d-1} (\alpha - \alpha_i + \alpha \cdot \alpha_i - \alpha_j)^2}$$

$$= -\frac{(2d)!}{24(d!)^2d} \left(2d \sum_{a=1}^{d} \frac{1}{d+a} + 1 \right) \frac{(\alpha - \alpha_2)^2}{(\alpha - \alpha_1)(\alpha - \alpha_2)}$$

$$- 2 \sum_{d_0 + d_1 = d} \frac{d_0(2d_0)!}{24(d_0!)^2(d_1!)^2d_1d}$$

$$+ \frac{1}{(\alpha - \alpha_2)^2(\alpha - \alpha_1)^2} \left(1 + (\alpha - \alpha_2)^3(b\alpha + \beta_12 + \frac{(2d)!}{24(d!)^2d}(\alpha - \alpha_2)) \right)$$

$$+(\alpha - \alpha_2)^3(b\alpha + \beta_21 + \frac{(2d)!}{24(d!)^2d}(\alpha_2 - \alpha_1)).$$

It forces that $\alpha - \alpha_2$ divides $b\alpha + \beta_12 + \frac{(2d)!}{24(d!)^2d}(\alpha - \alpha_2)$, and also $\alpha - \alpha_1$ divides $b\alpha + \beta_21 + \frac{(2d)!}{24(d!)^2d}(\alpha_2 - \alpha_1)$. Thus

$$\beta_12 = \frac{(2d)!}{24(d!)^2d} - b\alpha - \frac{(2d)!}{24(d!)^2d} \alpha_1,$$

$$\beta_21 = \frac{(2d)!}{24(d!)^2d} - b\alpha - \frac{(2d)!}{24(d!)^2d} \alpha_2,$$

and

$$N_{1,d}^X = -\frac{(2d)!}{24(d!)^2d} \left(2d \sum_{a=1}^{d} \frac{1}{d+a} + 1 \right) \frac{(\alpha - \alpha_2)^2}{(\alpha - \alpha_1)(\alpha - \alpha_2)}$$

$$+ \frac{b(\alpha - \alpha_1)^3(\alpha - \alpha_2) + b(\alpha - \alpha_2)^3(\alpha - \alpha_1)}{(\alpha - \alpha_1)^2(\alpha - \alpha_2)^2}$$

$$= -\frac{(2d)!}{24(d!)^2d} \left(2d \sum_{a=1}^{d} \frac{1}{d+a} + 1 \right) \frac{(\alpha - \alpha_2)^2}{(\alpha - \alpha_1)(\alpha - \alpha_2)}$$

$$+ \frac{2b + \frac{b(\alpha - \alpha_2)^2}{(\alpha - \alpha_1)(\alpha - \alpha_2)}}{2}$$

Therefore it forces that

$$b = \frac{(2d)!}{24(d!)^2d} \left(2d \sum_{a=1}^{d} \frac{1}{d+a} + 1 \right).$$
4 Integality of \(n_{1,d} \) for local Calabi-Yau 5-folds

The Gopokumar-Vafa invariants \(n_{0,d}(\gamma_1, \cdots, \gamma_k) \) for a Calabi-Yau \(n \)-fold \(X \), where \(\gamma_1, \cdots, \gamma_k \in H^*(X) \) are defined by (see, e.g., [6], [7])

\[
\sum_{\beta \neq 0} \langle \gamma_1, \cdots, \gamma_k \rangle^X_{0,k,d} q^\beta = \sum_{\beta \neq 0} n_{0,\beta}(\gamma_1, \cdots, \gamma_k) \sum_{d=1}^{\infty} \frac{1}{d^{1-k}} q^{d\beta}. \tag{34}
\]

When \(n \geq 6 \), the definition of Gopokumar-Vafa invariants in genus one is still absent. For \(n = 4 \), the invariants \(n_{1,d} \) are defined in [6], and for \(n = 5 \) in [7]. The integality of \(n_{1,d} \) has been verified in low degrees in [6] for \(X \) of the form \(\mathbb{P}^1 \) when \(n = 4 \), and in [7] the case \(X = \text{Tot}(\mathcal{O}(-1)^{\mathbb{P}^3} \to \mathbb{P}^2) \) when \(n = 5 \). The remaining three cases for \(n = 5 \) are \(\mathcal{O}(-1) \oplus \mathcal{O}(-3) \to \mathbb{P}^3 \), \(\mathcal{O}(-2) \oplus \mathcal{O}(-2) \to \mathbb{P}^3 \), \(\mathcal{O}(-5) \to \mathbb{P}^4 \).

For Calabi-Yau 5-folds, once we have \(N_{1,d}, n_{0,1}(\gamma_1) \) and \(n_{0,i}(\gamma_2, \gamma_3) \) for \(1 \leq i \leq d \), all \(\gamma_1 \in H^6(X) \) and all \(\gamma_2, \gamma_3 \in H^4(X) \) as inputs, the invariants \(n_{1,d} \) are defined through a complicated simultaneous recursion of many invariants. For the details we refer the reader to [7]. The invariants \(n_{0,i}(\gamma_1) \) and \(n_{0,i}(\gamma_2, \gamma_3) \) are defined by [34], and the one-point and two-point genus zero Gromov-Witten invariants on the left of [34] can be extracted from the formulae in [6] (see also [35]). Assuming the validity of our conjectural formulae [13] and [15] for \(n = 5 \), we have checked the integality of \(n_{1,d} \) in for \(1 \leq d \leq 100 \) for these three cases using a Maple programme, and for \(1 \leq d \leq 20 \) we list them in the following.

4.1 \(X = \mathbb{P}^4 \)

\[
\langle H^3 \rangle_{0,1,d} = -\frac{1}{5} [x^2 Q^d] \left(e^{-x f(q)} \sum_{d=0}^{\infty} q^d \prod_{s=0}^{d-1} (-5x-s)^{5} \right),
\]

where \(Q = q e^{f(q)} \) and the mirror map

\[
f(q) = \sum_{d=1}^{\infty} q^d \frac{(-1)^d (5d)!}{d!(d!)^5}. \]

For \(\langle H^2, H^2 \rangle_{0,2,d} \), we follow the notations in the remark 3.4 in [9] and define \(F(w, q) \) and \(F_i(q) \) by

\[
F(w, q) = \sum_{d=0}^{\infty} q^d \prod_{r=1}^{5d} (-5w-r)^{5} = F(0, q) + \sum_{i=1}^{\infty} F_i(q) w^i,
\]

and let

\[
I_1(q) = 1 + q \frac{d}{dq} \frac{F_1(q)}{F(0, q)}.
\]

Then

\[
\langle H^2, H^2 \rangle_{0,2,d} = -\frac{1}{5} [Q^d] \left(-f(q) + \frac{F_1(q)}{F(0, q)} + q \frac{d}{dq} \frac{F_2(q)}{F(0, q)} I_1(q) \right).
\]

\footnote{When \(n \geq 4 \), the Gromov-Witten invariants in genus at least two are trivall, due to the dimension constraint and the string equation.}

\footnote{We need also the Poincaré pairing on \(H^4(X) \oplus H^6(X) \), which in the local cases are defined via the general principle mentioned in the footnote in Page 3. For example, for \(X = \mathbb{P}^4 \), we have \(\langle H^2, H^2 \rangle_X = -\frac{1}{2} \).}
The conjectural formula (14) in this case reads
\[
\sum_{d=1}^{\infty} N_{1,d}Q^d = \frac{3}{8} f(q) - \frac{1}{8} \ln(1 + 5^5q) - 2 \ln I_{1,1}(q) - \frac{1}{2} \ln I_{2,2}(q),
\]
where
\[
I_{1,1}(q) = 1 + \sum_{d=1}^{\infty} \frac{(-1)^d(5d)!}{(d!)^5} q^d,
\]
and
\[
I_{2,2}(q) = 1 + \frac{1}{I_{1,1}(q)} \sum_{d=1}^{\infty} (-1)^d \frac{(nd)!}{(d!)^n} q^d + \frac{1}{I_{1,1}(q)} \sum_{d=1}^{\infty} \left(\frac{(-1)^n nd(nd)!}{(d!)^n} \sum_{s=d+1}^{nd-1} \frac{1}{s} \right) q^d.
\]

\begin{tabular}{|c|c|}
\hline
\(d\) & \(n_{0,d}(H^3)\) of \(K_{P^4}\) \\
\hline
1 & 130 \\
2 & -58345 \\
3 & 55837430 \\
4 & -73589158000 \\
5 & 115854201969950 \\
6 & -20434235412313875 \\
7 & 39005119173987697630 \\
8 & -78913606642194095804000 \\
9 & 1669447288789130694033224250 \\
10 & -365889343261650276399759555175 \\
11 & 825627129183279407802045607394310 \\
12 & -190615095874156816116638558317767574480 \\
13 & 4491714794958888771450771829378033670230 \\
14 & -107667316864820156273192312584585440698457095 \\
15 & 261915168370711178492182001044618321338813469450 \\
16 & -645393917552138476376093839553201039666790189529280 \\
17 & 160844564437001168916957634727089346407225594867091080 \\
18 & -4049011495564074654404411325327805800339427963862185528005 \\
19 & 10284566695008271699589128589728350347114600022600731093548670 \\
20 & -263343050244486861033964360994375819798940753071425109074393898000 \\
\hline
\end{tabular}
d	$n_{0,d}(H^2, H^2)$ of K_{P^4}	$n_{1,d}$ of K_{P^4}
1	245	0
2	-289035	0
3	499858460	138263175125
4	-101355889195	-502345733521805
5	224234151509675	1625739014586631100
6	-524191823614046300	-4991836999879872628150
7	1272851040234464504790	14290114955810054172550700
8	-31777727076990402350118750	-439386009096882061090032617300
9	81033105451821118038400330625	128301145686957983686779831220
10	-21010809962234326675476798422750	-37279008029268264120510592773314550
11	5521684097530427421557084925003565	108007778797127346376877874887763587150
12	-1467310058144521736953946444230597767540	-31243380949758383754174103026588005609926750
13	393563544488399018105036315876566792311135	903072807874710632569913387841027502777326800
14	-106400976807608701622296726078463500726511377961970	-260959628664299991445716478810388636452207299316310
15	289624478492348885737946426072924327337201627396250	7541452197993604753879936408390248835523907361074200
16	-79304558509583208268501575306282770036005404547746270	-21800287431262666464163674964378026073821556734372213400
17	1867580405051157938147098147931632353311673301482974031124005645	630457897353330241059812044159053398376532549249949897687300
18	-603583838621757243435085701726681467968037123021501795632035	-182421186456815829506157885517426326597137430136994284773704950
19	1675850405051157938147098147931632353311673301482974031124005645	528133007550254253143927733347423831897591633865113159271700486035

It is interesting to note that they are all multiples of 5, and when $5 \nmid d$, $n_{1,d}$ is a multiple of 25.

4.2 $X = \text{Tot}(\mathcal{O}(–1) \oplus \mathcal{O}(–3) \to \mathbb{P}^3)$

\[
\langle H^3 \rangle_{0,1,d} = \frac{(d-1)!(3d-1)!}{(d!)^4}.
\]

\[
\langle H^2, H^2 \rangle_{0,2,d} = [q^d] \left(\frac{\sum_{d=1}^{\infty} q^d (3d)!}{1 + \sum_{d=1}^{\infty} q^d (3d)!} \right)^{\frac{1}{d}}.
\]
$$
\sum_{d=1}^{\infty} N_{1,d} q^d = -\frac{1}{8} \ln(1 - 27q) - \frac{1}{2} \ln \left(1 + \sum_{d=1}^{\infty} q^d \frac{(3d)!}{(d!)^3}\right).
$$

Table 1: Low degree genus 0 and genus 1 BPS numbers of $\text{Tot}(\mathcal{O}(-1) \oplus \mathcal{O}(-3) \to \mathbb{P}^3)$

d	$n_{0,d}(H^3)$	$n_{0,d}(H^2,H^2)$	$n_{1,d}$
1	2	5	0
2	7	53	0
3	62	888	135
4	720	16578	4069
5	10090	336968	102497
6	158809	7208592	2529330
7	2714782	159953128	62485370
8	49299360	3644804226	1549538856
9	937750740	8475783392	38632050468
10	1850320115	200278261068	968230418446
11	376107425518	47940402636848	24386703246083
12	7835027188272	1159841269631844	616987529756004
13	166623467599342	28312447677391792	1567308566208659
14	3606416097808937	696398907175066480	39958344201671692
15	79251821904257590	17241740125645491096	1022055487533281200
16	1764772740099673920	429315366375232815762	262188626394087701664
17	39757622487694555282	10743399666271987545848	6743753349276509395348
18	904958567371990915302	270039166920941445186084	173872012409851929166786
19	2078888672249855553518	6814313281153255310131216	4492655791971935260396097
20	481526012065391894029200	172564210354543917847594608	116315885319017767137751283

4.3 $X = \text{Tot}(\mathcal{O}(-2) \oplus \mathcal{O}(-2) \to \mathbb{P}^3)$

$$
\langle H^3 \rangle_{0,1,d}^X = \frac{(2d-1)!(2d-1)!}{(d!)^4}.
$$

$$
\langle H^2, H^2 \rangle_{0,2,d}^X = [q^d] \left(\frac{\sum_{d=1}^{\infty} q^d (\frac{(2d)!}{(d!)^2})^2 \sum_{r=d+1}^{2d+1} r}{1 + \sum_{d=1}^{\infty} q^d (\frac{(2d)!}{(d!)^4})^2} \right).
$$

$$
\sum_{d=1}^{\infty} N_{1,d} q^d = -\frac{1}{8} \ln(1 - 16q) - \frac{1}{2} \ln \left(1 + \sum_{d=1}^{\infty} q^d \frac{(2d)!^2}{(d!)^4}\right).
$$
Table 2: Low degree genus 0 and genus 1 BPS numbers of $\text{Tot}(O(-2) \oplus O(-2) \rightarrow \mathbb{P}^3)$

d	$n_{0,d}(H^3)$	$n_{0,d}(H^2, H^2)$	$n_{1,d}$
1	1	2	0
2	2	12	0
3	11	122	20
4	76	1344	411
5	635	16182	6228
6	5926	204508	92696
7	60095	2683410	1372416
8	647000	36160512	20351408
9	7296000	49743288	303008660
10	8536790	6954446148	4529630140
11	1028170055	98509313850	6798636924
12	12695240996	1410519352384	1024271346252
13	160018462071	20380347529206	15484823717804
14	2052731611966	29674754566052	234834989626688
15	26734938900985	439510828254174	357157291880416
16	328292721754800	64120438449904656	54460625124782072
17	4710828711092291	950056145934862062	83296434040238536
18	6354790178313374	14139866390015314240	12750049354231063044
19	865157668345976759	211286868769225452618	195680390778912132364
20	11870040942305597380	31684875775889623680	300860642249496135414

References

[1] Aganagic, Mina., Bouchard, Vincent., Klemm, Albrecht. Topological strings and (almost) modular forms. Communications in Mathematical Physics 277.3 (2008): 771-819.

[2] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C. (1993). Holomorphic anomalies in topological field theories. Nuclear Physics B, 405(2), 279-304.

[3] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C. (1994). Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Communications in Mathematical Physics, 165(2), 311-427.

[4] Graber, Tom., Pandharipande, Rahul. Localization of virtual classes. Inventiones mathematicae 135.2 (1999): 487-518.

[5] Gholampour, Amin., Hsian-Hua Tseng. On computations of genus zero two-point descendant Gromov-Witten invariants. arXiv preprint arXiv:1207.6071 (2012).

[6] Klemm, A., Pandharipande, R. Enumerative geometry of Calabi-Yau 4-folds. Communications in Mathematical Physics 281.3 (2008): 621-653.

[7] Pandharipande, Rahul., Zinger, Aleksey. Enumerative geometry of Calabi-Yau 5-folds. arXiv preprint arXiv:0802.1640 (2008).

[8] Popa, Alexandra. The genus one Gromov-Witten invariants of Calabi-Yau complete intersections. Transactions of the American Mathematical Society 365.3 (2013): 1149-1181.

[9] Popa, Alexandra. Two-point Gromov-Witten formulas for symplectic toric manifolds. arXiv preprint arXiv:1206.2703 (2012).

[10] Zinger, Aleksey. The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces. Journal of the American Mathematical Society 22.3 (2009): 691-737.
Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China

E-mail address: huxw08@mails.tsinghua.edu.cn