SOME INEQUALITIES FOR GENERALIZED
BELL–TOUCHARD POLYNOMIALS

HAI-RONG YAN, QIAO-LING ZHANG AND AI-MIN XU

(Communicated by N. Elezović)

Abstract. A unified generalization for the Bell-Touchard polynomials of order \(k \) and the \(r \)-Bell polynomials is established. It is shown that the generating function of the generalized Bell-Touchard polynomials is logarithmically absolutely monotonic. Applying this result we obtain some inequalities for the generalized Bell-Touchard polynomials. In particular, we obtain the logarithmic convexity of the generalized Bell-Touchard polynomials.

1. Introduction and main results

Asai et al. [1] introduced the Bell number of order \(k \) as follows. For an integer \(k \geq 1 \), define the \(k \)-times iterated exponential function denoted by \(\exp_k(z) \):

\[
\exp_k(z) = \exp(\exp \cdots (\exp(z))) \quad \text{\(k \)-times}
\]

(1.1)

Let \(\{B_k(n)\}_{n=0}^{\infty} \) be the sequence of numbers given in the power series of \(\exp_k(z) \), namely,

\[
\exp_k(z) = \sum_{n=0}^{\infty} \frac{B_k(n)}{n!} z^n.
\]

(1.2)

The Bell numbers \(\{b_k(n)\}_{n=0}^{\infty} \) of order \(k \) are defined by

\[
b_k(n) = \frac{B_k(n)}{\exp_k(0)}, \quad n \geq 0.
\]

(1.3)

In particular, when \(k = 2 \), the numbers \(b_2(n) \) are usually known as the Bell numbers, the first few terms of which are 1, 1, 2, 5, 15, 52, 203. Thus, it is natural that

\[
ee^{e^z-1} = \sum_{n=0}^{\infty} \frac{b_2(n)}{n!} z^n
\]

(1.4)

Mathematics subject classification (2010): 11B73, 26A48, 26A51, 33B10.

Keywords and phrases: Bell-Touchard polynomial, inequality, absolutely monotonic, completely monotonic, logarithmic convexity.

* Corresponding author.
because \(\exp_2(0) = e \). Qi [15] found the (logarithmically) absolute and complete monotonicity of the generating functions \(e^{e^{z+x}} \) for the Bell numbers \(b_2(n) \). Based on the results, he obtain some interesting inequalities for the Bell numbers \(b_2(n) \) with the aid of properties of absolutely and completely monotonic functions.

As a different generalization of the Bell numbers \(b_2(n) \) for \(n \geq 0 \), the Touchard polynomials \(T_n(x) \) can be defined by

\[
e^{e^{z-1}} = \sum_{n=0}^{\infty} T_n(x) \frac{z^n}{n!}.
\]

It is clear \(T_n(1) = b_2(n) \). It is pointed out in [16] that there have been many researches on applications of the Touchard polynomials in soliton theory [5, 6, 7]. For more details on the Touchard polynomials, see the recent book [8] and references therein.

Recently, Qi et al. [17] gave a unified generalization \(T_{k,n}(x_k) \) so called the Bell-Touchard polynomials for the Bell numbers of order \(k \) and the Touchard polynomials:

\[
\exp(x_1(\exp(\cdots x_{k-1}(\exp(x_k(\exp(z) - 1) - 1)\cdots)))) - 1 = \sum_{n=0}^{\infty} T_{k,n}(x_k) \frac{z^n}{n!},
\]

where \(x_k = (x_1, x_2, \ldots, x_k) \). In their interesting paper, the explicit formula, inversion formula, and recurrence relations for the generalization in terms of the Stirling numbers of the first and second kinds were established. They also derived logarithmic convexity and logarithmic concavity for the generalization, and confirmed that the generalization satisfies conditions for sequences required in white noise distribution theory.

Let \(r_k = (r_1, r_2, \ldots, r_k) \). Define a sequence of bivariate functions

\[
g_i(t, z) = \exp(x_i(\exp(t) - 1) + rz), \quad 1 \leq i \leq k.
\]

We construct a new function sequence \(\{ T_i(t, z) \}_{i=0}^{k} \) recursively by

\[
\begin{align*}
T_0(t, z) &= t, \\
T_i(t, z) &= g_{k+1-i}(T_{i-1}(t, z), z), \quad 1 \leq i \leq k.
\end{align*}
\]

Further we let \(\mathcal{T}_k(z) := \mathcal{T}_k(z; \{ x_i \}_{i=1}^{k}, \{ r_i \}_{i=1}^{k}) = \lim_{t \to z} T_k(t, z) \). We generalize the Bell-Touchard polynomials by the following generating function

\[
\mathcal{T}_k(z) = \sum_{n=0}^{\infty} T_{k,n}(x_k; r_k) \frac{z^n}{n!}.
\]

For convenience, we would like to recommend \(T_{k,n}(x_k; r_k) \) the name \(r \)-Bell-Touchard polynomials of order \(k \). It is clear that \(T_{k,n}(x_k; r_k) \) reduce to the Bell-Touchard polynomials \(T_{k,n}(x_k) \) when all \(r_i = 0 \). When \(k = 1 \), \(r_1 = r \) and \(x_1 = x \), the polynomials \(T_{1,n}(x; r) \) are the known \(r \)-Bell polynomials [9] usually denoted by \(B_{n,r}(x) \) where \(r \) is a non-negative integer. As we know, the \(r \)-Bell polynomials are defined by

\[
B_{n,r}(x) = \sum_{i=0}^{n} S_r(n + r, i + r)x^i,
\]
where $S_r(n+r,i+r)$ are the r-Stirling numbers of the second kind [2]. The exponential generating function for the r-Bell polynomials $B_{n,r}(x)$ was given by [2, 9]:

$$\sum_{n=0}^{\infty} B_{n,r}(x) \frac{x^n}{n!} = e^{x(e^z-1)+rz}.$$

In particular, we call $B_{n,r}(1) := B_{n,r}$ the r-Bell numbers originally studied by Carlitz [3, 4], and they were systematically treated in [2, 9]. For divisibility properties of the r-Bell numbers one can refer to the recent work [10].

The first purpose of this paper is to verify that the functions $\Sigma_k(-z)$ are logarithmically completely monotonic for all $k \geq 1$.

Theorem 1. If $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$, then the functions $\Sigma_k(-z)$ are logarithmically completely monotonic on $(-\infty, \infty)$ for all $k \geq 1$.

Remark 1. According to Theorem 1, it is equivalent that $\Sigma_k(z)$ is a logarithmically absolutely monotonic function on $(-\infty, \infty)$ if $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$.

By using the above theorem, we establish the following inequalities for the r-Bell-Touchard polynomials $\{T_{k,n}(x_k;r_k)\}_{n=0}^{\infty}$ by Qi’s technique used in [15, 17, 18].

Theorem 2. Let $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$. Let $q \geq 1$ be a positive integer and let $|a_{ij}|_q$ denote a determinant of order q with elements a_{ij}. If a_i for $1 \leq i \leq q$ are non-negative integers, then

$$|T_{k,a_i+a_j}(x_k;r_k)|_q \geq 0 \quad (1.6)$$

and

$$|(-1)^{a_i+a_j}T_{k,a_i+a_j}(x_k;r_k)|_q \geq 0. \quad (1.7)$$

Theorem 3. Let $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$. If $a = (a_1,a_2,\cdots,a_n)$ and $c = (c_1,c_2,\cdots,c_n)$ are non-increasing n-tuples of non-negative integers such that $\sum_{i=1}^{n-j} a_i \geq \sum_{i=1}^{j} c_i$ for $1 \leq j \leq n-1$ and $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} c_i$, then

$$\prod_{i=1}^{n} T_{k,a_i}(x_k;r_k) \geq \prod_{i=1}^{n} T_{k,c_i}(x_k;r_k). \quad (1.8)$$

Taking $a_1 = a_2 = \cdots = a_q = n+l$, $a_{q+1} = a_{q+2} = \cdots = a_n = l$ and $c_1 = c_2 = \cdots = c_n = q+l$ in (1.8), we immediately have the following corollary.

Corollary 1. Let $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$. If $l \geq 0$ and $n \geq q \geq 0$, then

$$\left(T_{k,n+1}(x_k;r_k)\right)^q \left(T_{k,l}(x_k;r_k)\right)^{n-q} \geq \left(T_{k,q+l}(x_k;r_k)\right)^n. \quad (1.9)$$

Taking $a_1 = q+l$, $a_2 = n-q+l$, $c_1 = m+l$ and $c_2 = n-m+l$ in (1.8), we have another inequality for the r-Bell-Touchard polynomials.
COROLLARY 2. Let $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$. If $l \geq 0$, $n \geq q \geq m$, $2q \geq n$ and $2m \geq n$, then

$$T_{k,q+l}(x_k; r_k) T_{k,n-q+l}(x_k; r_k) \geq T_{k,m+l}(x_k; r_k) T_{k,n-m+l}(x_k; r_k).$$ \hspace{1cm} (1.10)

In particular, when $n = 2$ and $q = 1$ in (1.9), it is easy to see

$$T_{k,l}(x_k; r_k) T_{k,l+2}(x_k; r_k) \geq (T_{k,l+1}(x_k; r_k))^2,$$

which means that the sequence $\{T_{k,l}(x_k; r_k)\}_{l=0}^{\infty}$ is logarithmically convex. Note that (1.11) is also a special case of (1.10) when $n = q = 2$ and $m = 1$.

THEOREM 4. Let $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$. For $l \geq 0$ and $m, n \in \mathbb{N}$, let

$$G_{l,m,n} = T_{k,l+2m+n}(x_k; r_k) (T_{k,l}(x_k; r_k))^2 - T_{k,l+m+n}(x_k; r_k) T_{k,l+m}(x_k; r_k) T_{k,l}(x_k; r_k) - T_{k,l+n}(x_k; r_k) T_{k,l+2m}(x_k; r_k) T_{k,l}(x_k; r_k) + T_{k,l+n}(x_k; r_k) (T_{k,l+m}(x_k; r_k))^2,$$

$$H_{l,m,n} = T_{k,l+2m+n}(x_k; r_k) (T_{k,l}(x_k; r_k))^2 - 2 T_{k,l+m+n}(x_k; r_k) T_{k,l+m}(x_k; r_k) T_{k,l}(x_k; r_k) + T_{k,l+n}(x_k; r_k) (T_{k,l+m}(x_k; r_k))^2,$$

$$I_{l,m,n} = T_{k,l+2m+n}(x_k; r_k) (T_{k,l}(x_k; r_k))^2 - 2 T_{k,l+n}(x_k; r_k) T_{k,l+2m}(x_k; r_k) T_{k,l}(x_k; r_k) + T_{k,l+n}(x_k; r_k) (T_{k,l+m}(x_k; r_k))^2.$$

Then we have

$$G_{l,m,n} \geq 0, \quad H_{l,m,n} \geq 0,$$

$$H_{l,m,n} \leq G_{l,m,n}, \quad \text{when } \quad m \leq n,$$

$$I_{l,m,n} \geq G_{l,m,n}, \quad \text{when } \quad n \geq m.$$ \hspace{1cm} (1.12)

THEOREM 5. Let $r_i \geq 0$ and $x_i > 0$ for $1 \leq i \leq k$. For $q, n \in \mathbb{N}$, we have

$$\left(\prod_{l=0}^{n} T_{k,q+2l}(x_k; r_k) \right)^{\frac{1}{n+1}} \geq \left(\prod_{l=0}^{n-1} T_{k,q+2l+1}(x_k; r_k) \right)^{\frac{1}{n}}.$$ \hspace{1cm} (1.13)

As consequences, it is worth noting that the r-Bell polynomials $B_{n,r}(x)$ have the same properties when $x > 0$ because $B_{n,r}(x) = T_{1,n}(x; r)$. In particular, for fixed $x > 0$, the sequence of the r-Bell polynomials $\{B_{n,r}(x)\}_{n=0}^{\infty}$ is logarithmically convex.

2. Proofs of main theorems

It was introduced in [15] that an infinitely differentiable function f is said to be completely monotonic on an interval I if it satisfies $(-1)^m f^{(m)}(z) \geq 0$ on I for all $m \geq 0$. An infinitely differentiable function f is said to be logarithmically completely monotonic on an interval I if $(-1)^m (\ln f(z))^{(m)} \geq 0$ on I for all $m \geq 1$. For more information, see [13, 19, 21]. As pointed out in [15], a logarithmically completely monotonic
function on an interval I is also completely monotonic on the interval I, but not conversely. Based on these facts, we can give a proof on the complete monotonicity for the functions $\mathcal{V}_k(-z)$ for all $k \geq 1$.

Proof of Theorem 1. We prove this theorem by induction on k. For $k = 1$, it is obvious that

$$(-1)^m \left(\ln(\mathcal{V}_1(-z)) \right)^{(m)} = \begin{cases} x_1 e^{-z} + r_1, & m = 1, \\ x_1 e^{-z}, & m \geq 2, \end{cases}$$

which implies that, for $z \in (-\infty, \infty)$,

$$(-1)^m \left(\ln(\mathcal{V}_1(-z)) \right)^{(m)} \geq 0,$$

because $x_1 > 0$ and $r_1 \geq 0$. Thus, $\mathcal{V}_1(-z)$ is a logarithmically completely monotonic function. We assume that $\mathcal{V}_k(-z)$ is logarithmically completely monotonic for all $k \leq K$ with $K \geq 1$. By the assumption, $\mathcal{V}_K(-z) := \mathcal{V}_K(-z; \{x_i\}_{i=1}^K, \{r_i\}_{i=1}^K)$ is completely monotonic. It implies that $\mathcal{V}_K(-z; \{x_i\}_{i=2}^{K+2}, \{r_i\}_{i=2}^{K+2})$ is also completely monotonic, which is equivalent to

$$(-1)^m \left(\mathcal{V}_K(-z; \{x_i\}_{i=2}^{K+2}, \{r_i\}_{i=2}^{K+2}) \right)^{(m)} \geq 0, \quad m \geq 0.$$

Since $\mathcal{V}_{K+1}(-z) = \exp \left\{ x_1 \mathcal{V}_K(-z; \{x_i\}_{i=2}^{K+1}, \{r_i\}_{i=2}^{K+1}) - r_1 z \right\}$, we have

$$(-1)^m \left(\ln(\mathcal{V}_{K+1}(-z)) \right)^{(m)} = \begin{cases} -x_1 \left(\mathcal{V}_K(-z; \{x_i\}_{i=2}^{K+1}, \{r_i\}_{i=2}^{K+1}) \right)' + r_1, & m = 1, \\ (-1)^m x_1 \left(\mathcal{V}_K(-z; \{x_i\}_{i=2}^{K+2}, \{r_i\}_{i=2}^{K+2}) \right)^{(m)}, & m \geq 2. \end{cases}$$

Therefore, we can conclude that the function $\mathcal{V}_{K+1}(-z)$ is logarithmically completely monotonic because $(-1)^m \left(\ln(\mathcal{V}_{K+1}(-z)) \right)^{(m)} \geq 0$, and the proof is complete. □

Clearly, $\mathcal{V}_k(-z)$ is completely monotonic according to Theorem 1. We are now in a position to give the proofs of theorems 2-5 by Qi’s technique used in [15, 17, 18].

Proof of Theorem 2. According to [12] and [13, p. 367], we obtain that if f is completely monotonic on $[0, \infty)$, then

$$|f(a_i + a_j)(z)|_q \geq 0 \quad (2.1)$$

and

$$|(-1)^{a_i + a_j} f(a_i + a_j)(z)|_q \geq 0. \quad (2.2)$$

By replacing $f(z)$ by the function $\mathcal{V}_k(-z)$ in (2.1) and (2.2) and taking the limit $z \to 0^+$, we have

$$\lim_{z \to 0^+} |(\mathcal{V}_k(-z))^{(a_i + a_j)}|_q = |(-1)^{a_i + a_j} T_{k,a_i + a_j}(\mathbf{x}_k; \mathbf{r}_k)|_q \geq 0$$
and
\[
\lim_{z \to 0^+} |(-1)^{a_i+a_j}(\Xi_k(-z))^{(a_i+a_j)}|_q = |T_{k,a_i+a_j}(x_k;r_k)|_q \geq 0.
\]

Thus, the desired determinant inequalities (1.6) and (1.7) are derived. \qed

Proof of Theorem 3. According to [13, p. 367, Theorem 2], we obtain that if \(f \) is completely monotonic on \([0, \infty)\), then
\[
\prod_{i=1}^{n}(-1)^{a_i}f^{(a_i)}(z) \geq \prod_{i=1}^{n}(-1)^{c_i}f^{(c_i)}(z).
\]
If we replace \(f(z) \) by the function \(\Xi_k(-z) \), we have
\[
\prod_{i=1}^{n}(-1)^{a_i}(\Xi_k(-z))^{(a_i)} \geq \prod_{i=1}^{n}(-1)^{c_i}(\Xi_k(-z))^{(c_i)}.
\]
Taking the limit \(z \to 0^+ \) gives
\[
\prod_{i=1}^{n}T_{k,a_i}(x_k;r_k) \geq \prod_{i=1}^{n}T_{k,c_i}(x_k;r_k),
\]
Thus, the proof of Theorem 3 is complete. \qed

Proof of Theorem 4. In [20, Theorem 1 and Remark 2], it was obtained that if \(f \) is completely monotonic on \((0, \infty)\) and
\[
G_{m,n} = (-1)^n \left\{ f^{(n+2m)}f^2 - f^{(n+m)}f^{(m)}f - f^{(n)}f^{(2m)}f + f^{(n)}[f^{(m)}]^2 \right\},
\]
\[
H_{m,n} = (-1)^n \left\{ f^{(n+2m)}f^2 - 2f^{(n+m)}f^{(m)}f + f^{(n)}[f^{(m)}]^2 \right\},
\]
\[
I_{m,n} = (-1)^n \left\{ f^{(n+2m)}f^2 - 2f^{(n)}f^{(2m)}f + f^{(n)}[f^{(m)}]^2 \right\},
\]
for \(n, m \in \mathbb{N} \), then
\[
G_{m,n} \geq 0, \quad H_{m,n} \geq 0,
\]
\[
H_{m,n} \leq G_{m,n}, \quad \text{when } m \leq n, \quad (2.3)
\]
\[
I_{m,n} \geq G_{m,n}, \quad \text{when } m \geq n.
\]
Replacing \(f(z) \) by \((-1)^l(\Xi_k(-z))^{(l)}\) in \(G_{m,n} \), \(H_{m,n} \) and \(I_{m,n} \), and simplifying give
\[
G_{m,n} = (-1)^{l+n} \left\{ \left(\Xi_k(-z)\right)^{(l+2m+n)} \left[(\Xi_k(-z))^{(l)} \right]^2
- \left(\Xi_k(-z)\right)^{(l+m+n)} \left(\Xi_k(-z)\right)^{(l+m)} \left(\Xi_k(-z)\right)^{(l)}
- \left(\Xi_k(-z)\right)^{(l+n)} \left(\Xi_k(-z)\right)^{(l+2m)} \left(\Xi_k(-z)\right)^{(l)}
+ \left(\Xi_k(-z)\right)^{(l+n)} \left[(\Xi_k(-z))^{(l+m)} \right]^2 \right\},
\]
\[H_{m,n} = (-1)^{l+n} \left\{ (\mathcal{T}_k(-z))^{(l+2m+n)[(\mathcal{T}_k(-z))^{(l)}]}^2
- 2(\mathcal{T}_k(-z))^{(l+m+n)}(\mathcal{T}_k(-z))^{(l+m)}(\mathcal{T}_k(-z))^{(l)}
+ (\mathcal{T}_k(-z))^{(l+n)}[(\mathcal{T}_k(-z))^{(l+m)}]^2 \right\}, \]

and

\[I_{m,n} = (-1)^{l+n} \left\{ (\mathcal{T}_k(-z))^{(l+2m+n)[(\mathcal{T}_k(-z))^{(l)}]}^2
- 2(\mathcal{T}_k(-z))^{(l+n)}(\mathcal{T}_k(-z))^{(l+2m)}(\mathcal{T}_k(-z))^{(l)}
+ (\mathcal{T}_k(-z))^{(l+n)}[(\mathcal{T}_k(-z))^{(l+m)}]^2 \right\}. \]

Further taking \(z \to 0^+ \) gives

\[
\lim_{x \to 0^+} G_{m,n} = \mathcal{G}_{l,m,n}, \\
\lim_{x \to 0^+} H_{m,n} = \mathcal{H}_{l,m,n}, \\
\lim_{x \to 0^+} I_{m,n} = \mathcal{I}_{l,m,n}.
\]

Substituting these into (2.3) and simplifying we obtain the inequalities in (1.12). The proof of Theorem 4 is complete. □

Proof of Theorem 5. In [13, p. 369] and [14, p. 429, remark], it was stated that if \(f(z) \) is a completely monotonic function such that \(f^{(k)}(z) \neq 0 \) for \(k \geq 1 \), then the sequence \(\ln([-1]^{k-1} f^{(k-1)}(z)), k \geq 1 \), is convex. Combining with Nanson’s inequality listed in [11, p. 205, 3.2.27], we have

\[
\left[\prod_{l=0}^{n} (-1)^{q+2l+1} f^{(q+2l+1)}(z) \right]^{\frac{1}{n+1}} \geq \left[\prod_{l=1}^{n} (-1)^{q+2l} f^{(q+2l)}(z) \right]^{\frac{1}{n}}, \quad q \geq 0.
\]

Replacing \(f(z) \) by \(\mathcal{T}_k(-z) \) in the above inequality gives

\[
\left[\prod_{l=0}^{n} (-1)^{q+2l+1}(\mathcal{T}_k(-z))^{(q+2l+1)} \right]^{\frac{1}{n+1}} \geq \left[\prod_{l=1}^{n} (-1)^{q+2l}(\mathcal{T}_k(-z))^{(q+2l)} \right]^{\frac{1}{n}}, \quad q \geq 0.
\]

Letting \(z \to 0^+ \) in the above inequality leads to (1.13). The proof of Theorem 5 is complete. □

3. Conclusions

In this paper, we have established a unified generalization for the Bell-Touchard polynomials of order \(k \) and the \(r \)-Bell polynomials, and have further shown that the
generating function of the generalized Bell-Touchard polynomials is logarithmically absolutely monotonic. Making use of the result we have obtained some inequalities for the generalized Bell-Touchard polynomials. In particular, the logarithmic convexity of the generalized Bell-Touchard polynomials has been derived.

Acknowledgement. This work was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY18A010001), the National Natural Science Foundation of China (Grant No. 11201430) and the Ningbo Natural Science Foundation (Grant No. 2017A610140).

REFERENCES

[1] N. Asai, I. Kubo, H. - H. Kuo, Bell numbers, log-concavity, and log-convexity, Acta Appl. Math. 63(1-3) (2000), 79–87.
[2] A. Z. Broder, The r-Striling numbers, Discrete Math. 49 (1984), 241–259.
[3] L. Carlitz, Weighted Stirling numbers of the first and second kind I, Thd Fibonacci Quarterly 18 (1980), 147–162.
[4] L. Carlitz, Weighted Stirling numbers of the first and second kind II, Thd Fibonacci Quarterly 18 (1980), 242–257.
[5] W. - X. Ma, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys. Conf. Ser. 411(1) (2013), Article ID: 012021, 11 pages.
[6] W. - X. Ma, Bilinear equations and resonant solutions characterized by Bell polynomials, Rep. Math. Phys. 72(1) (2013), 41–56.
[7] W. - X. Ma, Trilinear equations, Bell polynomials, and resonant solutions, Front. Math. China 8(5) (2013), 1139–1156.
[8] T. Mansour, M. Schork, Commutation Relations, Normal Ordering and Stirling Numbers, CRC, 2015.
[9] I. Mező, The r-Bell numbers, J. Integer Sequence 14 (2011), Article 11.1.1.
[10] I. Mező, J. L. Ramírez, Divisibility properties of the r-Bell numbers and polynomials, J. Number Theory 177 (2017), 136–152.
[11] D. S. Mitrović, Analytic inequalities, Springer-Verlag, 1970.
[12] D. S. Mitrović, J. E. Pečarić, On two-place completely monotonic functions, Anzeiger Öster. Akad. Wiss. Math.-Naturwiss. Kl. 126 (1989), 85–88.
[13] D. S. Mitrović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, 1993.
[14] J. E. Pečarić, Remarks on some inequalities of A. M. Fink, J. Math. Anal. Appl. 104(2) (1984), 428–431.
[15] F. Qi, Some inequalities for the Bell numbers, Proc. Indian Acad. Sci. Math. Sci. 127(4) (2017), 551–564.
[16] F. Qi, D. Lim, B. - N. Guo, Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2018), in press; Available online at https://doi.org/10.1007/s13398-017-0427-2.
[17] F. Qi, D. - W. Niu, D. Lim, B. - N. Guo, A unified generalization of the Bell numbers and the Touchard polynomials and its properties, ResearchGate Working Paper (2017), available online at https://doi.org/10.13140/RG.2.2.36733.05603.
[18] F. Qi, D.-W. Niu, D. Lim, and B.-N. Guo, Generalizations of the Bell numbers and polynomials and their properties, Preprints 2017, 2017080090, 12 pages; Available online at https://doi.org/10.20944/preprints201708.0090.v1.
[19] R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions—Theory and Applications, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012.
[20] H. Van Haeringen, *Inequalities for real powers of completely monotonic functions*, J. Math. Anal. Appl. 210(1) (1997), 102–113.

[21] D. V. Widder, *The Laplace Transform*, Princeton University Press, Princeton, 1946.

(Received April 27, 2018)

Hai-Rong Yan
Institute of Mathematics
Zhejiang Wanli University
Ningbo 315100, China
e-mail: yanhairong151009@hotmail.com

Qiao-Ling Zhang
Institute of Mathematics
Zhejiang Wanli University
Ningbo 315100, China
e-mail: qiaoolingzhang7@hotmail.com

Ai-Min Xu
Institute of Mathematics
Zhejiang Wanli University
Ningbo 315100, China
e-mail: xuaaimin1009@hotmail.com