modAL: A modular active learning framework for Python

Tivadar Danka
Biological Research Centre
Hungarian Academy of Sciences
Szeged, H6720, Hungary

Peter Horvath
Biological Research Centre
Hungarian Academy of Sciences
Szeged, H6720, Hungary

Abstract
modAL is a modular active learning framework for Python, aimed to make active learning research and practice simpler. Its distinguishing features are (i) clear and modular object oriented design (ii) full compatibility with scikit-learn models and workflows. These features make fast prototyping and easy extensibility possible, aiding the development of real-life active learning pipelines and novel algorithms as well. modAL is fully open source, hosted on GitHub.\(^1\) To assure code quality, extensive unit tests are provided and continuous integration is applied. In addition, a detailed documentation with several tutorials are also available for ease of use. The framework is available in PyPI and distributed under the MIT license.

Keywords: Active Learning, scikit-learn, Machine Learning, Python

1. Introduction
Upon learning patterns from data in real-life applications, labelling examples often consume significant time and money, which makes it infeasible to obtain large training sets. For example, sentiment analysis of texts requires extensive manual annotation, which costs expert time. Another example is the optimization of black box functions, for which the evaluation is costly or derivatives are not available. In these cases, active learning can be used to query labels for the most informative instances. modAL is an active learning framework for Python, designed with modularity, flexibility and extensibility in mind. Built on top of scikit-learn (Pedregosa et al. (2011); Buitinck et al. (2013)), it allows the rapid prototyping of active learning workflows with a large degree of freedom. It was designed to be easily extensible, allowing researchers to implement and test novel active learning strategies with minimal effort.

2. Design principles and features
Our objective with modAL was to create an active learning library which takes advantage of the advanced features of Python and the extensive ecosystem of scikit-learn, making

\(^1\) https://github.com/modAL-python/modAL
the implementation of complex workflows simple and intuitive. Specifically, modAL was
designed with the following goals in mind.

1. **Modularity: separating and recombining parts of a workflow.** In general,
an active learning workflow consists of a learning algorithm and a query strategy.
In modAL, this is represented by the `ActiveLearner` class, for which these compo-
nents are passed upon object creation. Learning algorithms can be used with query
strategies in any combination, making rapid prototyping possible.

2. **Extensibility: simple customization of parts.** In a modAL active learning work-
flow, a query strategy is simply a function, given to the object representing the active
learning algorithm upon initialization. Implementing custom query strategies can be
done without understanding class structures or modAL internals. Thus it requires
minimal effort, allowing researchers to easily test novel strategies and compare them
with existing ones.

3. **Flexibility: compatibility with the scikit-learn ecosystem.** scikit-learn is one
of the most popular machine learning tools in Python, used by researchers and prac-
titioners as well. modAL is built on top of it, allowing the use any of its classifier and
regressor algorithms in active learning pipelines. Objects in modAL also follow the
scikit-learn API, making it possible to insert them into already existing workflows.

modAL supports a wide range of active learning algorithms for both pool-based and
stream-based (Atlas et al. (1990)) scenarios. For multiclass problems, uncertainty sampling
methods such as least confident (Lewis and Catlett (1994)), max margin and max entropy
sampling; committee-based methods such as query by committee (Seung et al. (1992)) and
query by disagreement (Cohn et al. (1994)); ranked batch-mode sampling (Cardoso et al.
(2017)); expected error reduction (Roy and McCallum (2001)) is provided. For multilabel
classification, SVM binary minimum (Brinker (2006)); max loss and mean max loss (Li et al.
(2004)); MinConfidence, AvgConfidence, MinScore, AvgScore (Esuli and Sebastiani (2009))
algorithms are implemented. For density weighting, the information density framework
(McCallum and Nigam (1998)) is available. In addition to classification, active regression.
Moreover, Bayesian optimization is available with probability of improvement, expected
improvement and upper confidence bound strategies (Shahriari et al. (2016)).

3. **Classes and interfaces**

For modularity and easy extensibility, active learning workflows are abstracted and repre-
sented by the `ActiveLearner`, `BayesianOptimizer`, `Committee` and `CommitteeRegressor`
classes. All classes inherit from the `sklearn.base.BaseEstimator` class. `ActiveLearner`
serves as an abstract model for general active learning algorithms, while `Committee` and
`CommitteeRegressor` implements committee-based strategies. Bayesian optimization algo-
rithms are represented by `BayesianOptimizer`. All classes require a learner and a query
strategy upon initialization. In the case of `ActiveLearner` and `BayesianOptimizer`, the
learner is an arbitrary object implementing the scikit-learn API, while the for `Committee`
and `CommitteeRegressor`, a list of `ActiveLearner` instances must be provided. Again,
the query function can be factored into two functions: one calculating the utility for each instance and one selecting the instances to be queried based upon the utility score. This modular design makes easy extensibility and interaction with other libraries possible. The use of `ActiveLearner` is demonstrated below.

```python
from modAL.models import ActiveLearner
from modAL.uncertainty import uncertainty_sampling
from sklearn.ensemble import RandomForestClassifier

# initializing the learner
learner = ActiveLearner(
    estimator=RandomForestClassifier(),
    query_strategy=uncertainty_sampling
)

# training
learner.fit(X_training, y_training)

# query for labels
query_idx, query_inst = learner.query(X_pool)

# obtaining new labels from the Oracle...

# supply label for queried instance
learner.teach(X_pool[query_idx], y_new)
```

4. Comparison with other libraries

To assess the features of modAL, a comparison between libraries is provided. We compare modAL to the Python libraries acton\(^2\), alp\(^3\), libact\(^4\) (Yang et al. (2017)) and the Java library JCLAL (Reyes et al. (2016)) in Tables 1, 2. The comparison is made with respect to supported algorithms, design and support. For Python libraries, a runtime comparison for least confident sampling, query by committee\(^5\) and expected error reduction can be found in Table 3. The runtime data was obtained by averaging the result of 10 runs for each algorithm. During each run, 10 queries were made. The comparison script is available at https://github.com/modAL-python/modAL/blob/master/examples/runtime_comparison.py.

5. Availability

The framework is fully open-source, hosted on GitHub.\(^6\) Besides the core features, detailed documentation and a wealth of examples and tutorials are available at the project website\(^7\), making active learning accessible for a wide range of users. All tutorials and examples

2. https://github.com/chengsoonong/acton
3. https://github.com/davefernig/alp
4. https://github.com/ntucllab/libact
5. A minor bugfix was applied on alp for QBC to work, see https://github.com/davefernig/alp/issues/1
6. https://github.com/modAL-python/modAL
7. https://modAL-python.github.io
Table 1: Comparison of libraries with respect to supported algorithms.

	pool	stream	regression	committee	multilabel	information density	expected error	variance reduction	hierarchical sampling	meta-learning	batch	cost	Bayes optimization	cost sensitive
modAL	✓	✓	✓	✓	✓	✓	X	X	X	✓	✓	✓	✓	✓
acton	✓	X	✓	X	X	X	X	X	X	X	X	✓	✓	✓
alp	✓	X	✓	X	X	X	X	X	X	X	X	✓	✓	✓
libact	✓	X	✓	✓	✓	✓	✓	✓	✓	✓	X	✓	✓	✓
JCLAL	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	X	✓	✓	✓

Table 2: Comparison of libraries with respect to design and support.

	sklearn model usability	follows sklearn API	actively maintained	Python version	documentation, tutorials
modAL	✓	✓	✓	3	✓
acton	✓	✓	✓	3	✓
alp	✓	✓	✓	2, 3	X
libact	✓	✓	✓	2, 3	✓
JCLAL	✓	–	✓	–	✓

Table 3: Comparison of Python libraries with respect to runtime. For each algorithm, 10 queries were made in a run and each run was repeated 10 times.

	least confident	QBC	EER
modAL	0.0087 s	0.0465 s	2.1255 s
acton	0.1860 s	0.5858 s	–
alp	0.0055 s	0.0573 s	–
libact	0.0191 s	0.0324 s	2.8436 s

on the official website can be downloaded as a Jupyter notebook. To assure code quality, extensive unit tests are provided with 98% code coverage. Continuous integration is applied using Travis-CI. modAL is also available from PyPI.

Acknowledgments

T.D. and P.H. acknowledges support from the European Regional Development Funds (GINOP-2.3.2-15-2016-00001, GINOP-2.3.2-15-2016-00037).
References

L. Atlas, D. Cohn, and R. Ladner. Training connectionist networks with queries and selective sampling. In Advances in Neural Information Processing Systems 2, pages 566–573. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1990.

K. Brinker. On active learning in multi-label classification. In Myra Spiliopoulou, Rudolf Kruse, Christian Borgelt, Andreas Nürnberger, and Wolfgang Gaul, editors, From Data and Information Analysis to Knowledge Engineering, pages 206–213, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-31314-4.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux. API design for machine learning software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122, 2013.

T.N.C. Cardoso, R.M. Silva, S. Canuto, M.M. Moro, and M.A. Gonalves. Ranked batch-mode active learning. Information Sciences, 379:313–337, February 2017.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201–221, May 1994. ISSN 1573-0565. doi: 10.1007/BF00993277. URL https://doi.org/10.1007/BF00993277.

A. Esuli and F. Sebastiani. Active learning strategies for multi-label text classification. In Mohand Boughanem, Catherine Berrut, Josiane Mothe, and Chantal Soule-Dupuy, editors, Advances in Information Retrieval, pages 102–113, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-00958-7.

D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning, 1994.

X. Li, L. Wang, and E. Sung. Multilabel svm active learning for image classification. In 2004 International Conference on Image Processing, 2004. ICIP '04., volume 4, pages 2207–2210 Vol. 4, Oct 2004. doi: 10.1109/ICIP.2004.1421535.

A. McCallum and K. Nigam. Employing em and pool-based active learning for text classification. In ’98 Proceedings of the Fifteenth International Conference on Machine Learning (ICML), pages 350–358. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1998.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

O. Reyes, E. Pérez, M del Carmen Rodríguez-Hernández, H. M. Fardoun, and Sebastián Ventura. JCLAL: A java framework for active learning. Journal of Machine Learning Research, 17(95):1–5, 2016. URL http://jmlr.org/papers/v17/15-347.html
N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In Proceedings of the International Conference on Machine Learning (ICML), pages 441–448. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 2001.

H.S. Seung, M. Oper, and H. Sompolinsky. Query by committee. In Proceedings of the ACM Workshop on Computational Learning Theory, pages 287–294, 1992. doi: 10.1145/130385.130417.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, Jan 2016. ISSN 0018-9219. doi: 10.1109/JPROC.2015.2494218.

Y.-Y. Yang, S.-C. Lee, Y.-A. Chung, T.-E. Wu, S.-A. Chen, and H.-T. Lin. libact: Pool-based active learning in Python. Technical report, 2017. arXiv: https://arxiv.org/abs/1710.00379.