Probucol suppresses human glioma cell proliferation in vitro via ROS production and LKB1-AMPK activation

Yong-sheng JIANG1, Jing-an LEI2, Fang FENG2, Qi-ming LIANG2, Fu-rong WANG2, *

1Tumor Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; 2Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Aim: Probucol, an anti-hyperlipidemic drug, has been reported to exert antitumor activities at various stages of tumor initiation, promotion and progression. In this study we examined whether the drug affected glioma cell growth in vitro and the underlying mechanisms.

Methods: Human glioma U87 and glioblastoma SF295 cell lines were used. Cell proliferation was accessed using the cell proliferation assay and BrdU incorporation. The phosphorylation of AMPK, liver kinase B1 (LKB1) and p27 Kip1 was detected by Western blot. The activity of 26S proteasome was assessed with an in situ fluorescent substrate. siRNAs were used to suppress the expression of the relevant signaling proteins.

Results: Treatment of U87 glioma cells with probucol (10–100 μmol/L) suppressed the cell proliferation in dose- and time-dependent manners. Meanwhile, probucol markedly increased the ROS production, phosphorylation of AMPK at Thr172 and LKB1 at Ser428 in the cells. Furthermore, probucol significantly decreased 26S proteasome activity and increased p27Kip1 protein level in the cells in an AMPK-dependent manner. Probucol-induced suppression of U87 cell proliferation could be reversed by pretreatment with tempol (a superoxide dismutase mimetic), MG132 (proteasome inhibitor) or compound C (AMPK inhibitor), or by gene silencing of LKB1, AMPK or p27Kip1. Similar results were observed in probucol-treated SF295 cells.

Conclusion: Probucol suppresses human glioma cell proliferation in vitro via ROS production and LKB1-AMPK activation, which reduces 26S proteasome-dependent degradation of p27Kip1.

Keywords: glioma; probucol; anti-proliferation; ROS; AMPK; LKB1; 26S proteasome; p27Kip1; tempol; MG132; compound C
tory focus of studies have investigated the suppression of cell proliferation by the inhibition of cell cycle progression and regulation of mitosis by AMPK8, 9. Understanding the effect of AMPK activation on cellular proliferation is important for the prevention and treatment of cancer and other cellular proliferative diseases.

Probucol, a rarely used cholesterol-lowering drug with antioxidant properties10, is the only agent that consistently inhibits atherosclerosis and restenosis11, 12. It attenuates atherogenesis in animals and humans and regresses xanthomas in hypercholesterolemic patients13. In animals, probucol prevents intimal thickening after balloon injury, independent of its ability to lower cholesterol and inhibit lipoprotein lipid oxidation14. Probucol is reported to exert antitumor activities at various stages of tumor initiation, promotion and progression15. However, these findings do not explain the roles of probucol in AMPK activation and cell growth in glioma. Based on these reports, we hypothesized that activation of the LKB1-AMPK signaling pathway mediates the suppressive effect of probucol on glioma cell proliferation. In fact, it has been reported that activation of LKB1-AMPK signaling induces apoptosis in human glioblastoma cells16–19. Here, we provide evidence of a novel molecular mechanism in which probucol activates AMPK to inhibit glioma cell growth through a 26S-proteasome-dependent signaling pathway.

Materials and methods

Materials

Probucol and AICAR (5-aminooimidazole-4-carboxamide ribonucleoside) were purchased from Sigma (St Louis, MO, USA). Probucol was dissolved in DMSO to make a 500 mmol/L stock solution (0.1% v/v final concentration) and stored at -80°C. AMPKa1/2 siRNA, LKB1 siRNA, p27Kip1 siRNA, and antibodies against p27Kip1 and GAPDH were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Primary antibodies against AMPK\alpha, phospho-AMPK\alpha (Thr172), LKB1, and p-LKB1 (Ser428) and secondary antibodies were obtained from Cell Signaling Technology (Beverly, MA, USA). The siRNA delivery agent Lipofectamine 2000 was purchased from Invitrogen (Carlsbad, CA, USA). MG132 and compound C were obtained from Enzo Life Sciences International, Inc (Plymouth Meeting, PA, USA). Other chemicals were obtained from Sigma-Aldrich (St Louis, MO, USA) unless otherwise indicated.

Cell culture

The human glioma U87 and glioblastoma SF295 cell lines, obtained from the European Collection of Cell Cultures (Wiltshire, UK), were seeded into 96-well plates. Then, 48 h after culturing, the cells were serum-starved for 24 h and treated as indicated with probucol or vehicle control.

Cell proliferation assay

The cells were split into 96-well plates before the cell proliferation assay as described previously16. The assay was performed using the CellTiter96 nonradioactive cell proliferation assay (Promega, Madison, WI, USA), according to the manufacturer's directions. The absorbance at 570 nm was read by an enzyme-linked immunosorbent assay plate reader. To verify equal cell numbers at the start of the assay, absorbance was normalized to initial readings. Data are presented as the mean of four measurements per condition.

Cellular DNA synthesis

Cellular DNA synthesis was assessed with 5-bromo-2'-deoxyuridine (BrdU) incorporation as per the manufacturer's instructions (Roche, Mannheim, Germany). Briefly, mouse VSMCs (1×104 cells/well) were seeded onto 96-well plates and incubated in full growth media overnight, followed by synchronization via serum starvation for 24 h. The cells were then incubated in mouse VSMC culture medium (with 10 µmol/L BrdU) for 16 h.

Transfection of siRNA into cultured cells

U87 cells were transfected in 6-well plates according to a previously described protocol20. Briefly, a 10 µmol/L stock solution of siRNA was prepared in 20 mmol/L KCl, 6.0 mmol/L HEPES (pH 7.5), and 0.2 mmol/L MgCl\textsubscript{2}. For each transfection, 100 µL transfection media (Gibcol, USA) containing 4 µL siRNA stock solution was incubated with 100 µL transfection media containing 4 µL transfection reagent (Lipofectamine 2000, Invitrogen, USA) for 30 min at room temperature. The siRNA-lipid complex was then added to each well, which contained 1 mL transfection media. After incubation for 6 h at 37°C, the transfection media was replaced with normal growth media, and the cells were cultured for an additional 48 h.

Semi-quantitative reverse transcription polymerase chain reaction

The cultured U87 cells were washed with cold PBS and total RNA was extracted in 1 mL of TRIZOL reagent (Invitrogen) per 100-mm dish. Total RNA (400 ng) from each sample was used for cDNA synthesis using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer's instructions and as described previously21. Prepared cDNA samples were amplified and analyzed with PCR using the following primers: p27Kip1, 5'-CGCTTTTGTTCGTGAGTAA (forward) and 5'-TTCGGAGCTGTTTAAC (reverse). Reactions were run for 30 cycles with the following conditions: denaturation for 30 s at 94°C, annealing for 30 s at 57°C, and extension for 30 s at 72°C. Constitutively expressed GAPDH mRNA was amplified as a control.

Western blot

The cells were homogenized on ice in cell-lysis buffer containing 20 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 1 mmol/L Na\textsubscript{2}EDTA, 1 mmol/L EGTA, 1% Triton, 2.5 mmol/L sodium pyrophosphate, 1 mmol/L beta-glycerophosphate, 1 mmol/L Na\textsubscript{3}VO\textsubscript{4}, 1 µg/mL leupeptin, and 1 mmol/L PMSF. Proteins were separated by SDS-PAGE, transferred to nitrocellulose membranes and probed using specific antibodies. Band
intensity (area×density) was measured with densitometry (model GS-700, Imaging Densitometer; Bio-Rad, USA). Background intensity was subtracted from all calculated areas.

26S proteasome activity determination
The 26S proteasome function was measured as described previously[23]. Briefly, the cells were washed with cold PBS and then with buffer I (50 mmol/L Tris, pH 7.4, 2 mmol/L DTT, 5 mmol/L MgCl₂, 2 mmol/L ATP). The cells were then pelleted by centrifugation. Homogenization buffer (50 mmol/L Tris (pH 7.4), 1 mmol/L DTT, 5 mmol/L MgCl₂, 2 mmol/L ATP, 250 mmol/L sucrose) was added, and the cells were vortexed for 1 min. Cell debris was removed by centrifugation at 10000×g for 5 min followed by 10000×g for 20 min. Protein concentration was determined by a BCA (bicinchoninic acid) assay (Pierce, Rockford, IL, USA). Protein (100 μg) from each sample was diluted with buffer I to a final volume of 1 mL. The fluorogenic proteasome substrate Suc-LLVY-7-amido-4-methylcoumarin (chymotrypsin-like, Sigma, St Louis, MO, USA) was added at a final concentration of 80 μmol/L in 1% DMSO. Cleavage activity was monitored continuously by detection of free 7-amido-4-methylcoumarin with a fluorescence plate reader (Gemini, Molecular Devices, Sunnyvale, CA, USA) at 380/460 nm at 37°C.

Statistical analysis
The results are expressed as the mean±SEM. Statistical significance for comparisons between two groups was calculated using the two-tailed Student’s t test. To assess comparisons between multiple groups, analysis of variance (ANOVA) followed by the Bonferroni procedure was performed using GraphPad Prism 4 Software (GraphPad Software, Inc, San Diego, CA, USA). A P value <0.05 is considered to be statistically significant.

Results
Probucol increases the level of AMPK Thr172 phosphorylation and AMPK activity in glioma cells
Probucol is well characterized as a lipid-lowering drug that protects against atherosclerosis and tumor formation[25]. To investigate whether probucol activates AMPK in glioma cells, confluent U87 cells (originally isolated from a human glioblastoma patient) were treated with varying concentrations of probucol from 0.5 to 24 h. AMPK activation was indirectly assessed by Western blot analysis of AMPK phosphorylation at Thr172, which is essential for AMPK activity. The phosphorylation of AMPK in U87 cells gradually increased beginning 2 h after incubation with 50 μmol/L of probucol and reached peak levels at 12 h (Figure 1A).

We next examined the dose-dependent effects of probucol on AMPK-Thr172 phosphorylation. As depicted in Figure 1B, probucol did not affect phosphorylation of AMPK at a concentration of 1 μmol/L; however, at 10 μmol/L, probucol significantly enhanced AMPK phosphorylation. Increasing concentrations of probucol (25–100 μmol/L) further enhanced AMPK phosphorylation. Probucol treatment did not alter the total levels of AMPK, suggesting that probucol-induced phosphorylation of AMPK was not due to increased expression of the protein. In addition, increased AMPK phosphorylation was associated with elevated AMPK activity (Figure 1C), as measured by the SAMS peptide assay[26].

Probucol increases LKB1 phosphorylation at Ser428 in a dose-dependent manner
Recent studies have suggested that LKB1 acts as an AMPK kinase in vitro and in cultured cells[24]. Because probucol treatment activates AMPK, we next examined whether probucol affects LKB1 phosphorylation. A 2-h treatment with probucol (10–100 μmol/L) did not alter the overall LKB1 levels but did significantly increase the phosphorylation of LKB1-Ser428 compared with untreated cells (Figure 1D). Consistent with probucol-mediated AMPK phosphorylation, there was a dose-dependent increase in the LKB1 phosphorylation at Ser428 in response to probucol.

Probucol-induced AMPK phosphorylation in U87 glioma cells is LKB1-dependent
To determine whether probucol-induced AMPK activation is dependent on LKB1, we suppressed the LKB1 expression by siRNA in U87 cells. LKB1 siRNA suppressed the expression of LKB1 by 50% compared with control cells. We found that LKB1 siRNA, but not control siRNA, inhibited probucol-dependent phosphorylation of AMPK at Thr172 (Figure 1E). These experiments suggest that LKB1 is required for the probucol-induced AMPK activation in glioma cells.

We next evaluated whether LKB1 phosphorylation at Ser428 was required for probucol-induced AMPK activation. Using site-directed mutagenesis, we developed an LKB1 mutant in which an amino acid essential for LKB1 activation, serine 428, was mutated to alanine (LKB1-S428A). Because probucol treatment increased phosphorylation of AMPK in U87 cells infected with adenovirus encoding WT-LKB1, we next investigated whether adenoviral overexpression of the LKB1 mutant would prevent the probucol-dependent phosphorylation of AMPK. As hypothesized, the LKB1-S428A mutant did abolish the probucol-enhanced phosphorylation of AMPK-Thr172 (Figure 1F). These data suggest that Ser428 phosphorylation of LKB1 is essential for probucol-induced AMPK activation in glioma cells.

Activation of LKB1-AMPK signaling by probucol is reactive oxygen species-dependent
Earlier studies have found that LKB1-AMPK signaling is activated by reactive oxygen species (ROS)[28], such as H₂O₂ or ONOO⁻. To determine whether ROS caused the probucol-induced AMPK activation, we assayed superoxide anion levels in U87 cells following exposure to probucol. Exposure of U87 cells to probucol dose-dependently increased the production of superoxide anions, as detected via the intensity of DHE fluorescence (Figure 2A). To investigate whether probucol activates the LKB1-AMPK pathway via ROS, we monitored both LKB1 and AMPK-Thr172 phosphorylation under condi-
Figure 1. Probucol activates AMPK signaling via LKB1-mediated phosphorylation of Thr172 in cultured U87 glioma cells. (A) Time-dependent effects of probucol on AMPK-Thr172 phosphorylation in U87 glioma cells. Confluent U87 glioma cells were exposed to 50 μmol/L probucol as indicated. The blot is representative of three independent experiments. \(^b\)P<0.05 vs control. (B) Dose-dependent effects of probucol on AMPK-Thr172 phosphorylation in U87 glioma cells. Confluent U87 glioma cells were exposed to probucol (1–100 μmol/L) for 2 h. The blot is representative of three independent experiments. \(^b\)P<0.05 vs control. (C) Confluent U87 glioma cells were treated with vehicle or probucol (50 μmol/L) for 2 h. AMPK activity was assayed using the SAMS peptide as a substrate. \(n=5\) in each group. \(^b\)P<0.05 vs control. (D) Time-dependent effects of probucol on LKB1-Ser428 phosphorylation in U87 glioma cells. Confluent U87 glioma cells were exposed to probucol (50 μmol/L) for 2 h. The blot is representative of three independent experiments. \(^b\)P<0.05 vs control. (E) U87 glioma cells were transfected with control siRNA or LKB1 siRNA for 48 h. The infected cells were then treated with probucol (50 μmol/L) for 2 h. (F) U87 glioma cells were infected with GFP-adenovirus or adenovirus expressing the mutant LKB1 (Ad-S428A) for 48 h. The infected cells were then treated with probucol (50 μmol/L) for 2 h. AMPK-Thr172 phosphorylation was detected by Western blot. The blot is representative from three independent experiments.
tions in which the production of ROS was inhibited. Tempol (1 mmol/L) markedly attenuated the probucol-enhanced phosphorylation of both LKB1-Ser428 (Figure 2B) and AMPK-Thr172 (Figure 2C). These data suggest that probucol activates LKB1-AMPK signaling via ROS.

Probucol inhibits U87 glioma cell proliferation

Activation of LKB1-AMPK signaling suppresses the proliferation of vascular cells and cancer cells\(^\text{[8]}\); therefore, we hypothesized that probucol could also inhibit glioma cell growth. To test this hypothesis, we investigated the effect of probucol on glioma cell growth. The proliferation of cultured U87 cells was quantified with an \(OD_{570}\) assay. As shown in Figure 3A, following treatment of 10–100 μmol/L probucol for 24 h, the growth rate of U87 cells was significantly reduced. Consistent with this, incorporation of the thymidine analog BrdU, which indicates DNA synthesis, was significantly decreased in glioma cells treated with 10–100 μmol/L probucol compared with untreated cells (Figure 3B).

To further study the time-course of probucol’s effects on glioma cell growth, we treated U87 cells with 50 μmol/L probucol from 2–24 h. Probucol effectively inhibited U87 cell proliferations in a dose-dependent manner (Figure 3C and 3D). These results demonstrate that probucol inhibits glioma cell proliferation.

Inhibition of the ROS-LKB1-AMPK signaling axis abolishes probucol-induced suppression of U87 cell proliferation

We next investigated the role of LKB1-AMPK signaling in probucol-suppressed U87 cell proliferation. Probucol significantly attenuated cultured U87 cell proliferation in the vehicle control group but not in cells pretreated with tempol (Figure 4A). Consistent with this, probucol dramatically decreased the incorporation of BrdU in U87 cells transfected with control siRNA but not in U87 cells transfected with LKB1 siRNA (Figure 4B) and AMPKα siRNA (Figure 4C). Taken together, these data suggest that probucol suppresses U87 cell proliferation via activation of ROS-LKB1-AMPK signaling.

Probucol increases the total p27\(^\text{kip1}\) protein levels without altering P-p27\(^\text{kip1}\) levels in U87 cell via AMPK activation

p27\(^\text{kip1}\) plays an important role in the cell cycle\(^\text{[26]}\). Therefore, we investigated whether probucol, via AMPK, alters the expression of p27\(^\text{kip1}\). The level of total p27\(^\text{kip1}\) (T-p27\(^\text{kip1}\)) protein was increased dramatically in probucol-treated U87 cells compared with vehicle-treated U87 cells (Figure 5A). However, probucol did not increase the level of p27\(^\text{kip1}\) protein in U87 cells incubated with an AMPK inhibitor, compound C.

To further validate the role of AMPK in p27\(^\text{kip1}\) protein expression, we performed siRNA knockdown of AMPKα to test its contribution in increasing p27\(^\text{kip1}\) expression in the probucol-treated U87 cells. The level of p27\(^\text{kip1}\) protein was enhanced significantly by probucol in the control siRNA-transfected U87 cells but not in the AMPKα siRNA-transfected U87 cells (Figure 5B). Collectively, these results demonstrate that AMPK plays a key role in the probucol-increased p27\(^\text{kip1}\)
protein expression in U87 cells.

To determine whether probucol regulates p27Kip1 stability through Thr198, which can be phosphorylated by LKB1-AMPK[27], we evaluated the levels of phosphorylated p27Kip1. As shown in Figure 5A and 5B, although the level of phosphorylated p27Kip1 (P-p27Kip1) was increased by probucol treatment, the ratio of P-p27Kip1 to T-p27Kip1 was not altered by probucol or AMPK inhibition (data not shown). These data indicate that the increased P-p27Kip1 is likely due to the higher levels of T-p27Kip1 that are induced by probucol.

Figure 3. Probucol inhibits U87 glioma cell proliferation. (A) Cultured U87 glioma cells were incubated with probucol (1–100 μmol/L) for 2 h after an overnight serum starvation. The cell proliferation assay was performed following the manufacturer’s protocol. (B) BrdU incorporation was measured in U87 glioma cells. (C) Cultured U87 glioma cells were incubated with 50 μmol/L probucol (2–24 h) after starvation overnight. Cell proliferation assay was performed as per the manufacturer’s protocol. (D) BrdU incorporation was measured in U87 glioma cells. Mean±SEM. n=5. *P<0.05 vs control.

Figure 4. Probucol inhibits U87 glioma cell proliferation via LKB1/AMPK signaling. (A) Cultured U87 glioma cells pretreated with tempol (1 mmol/L) for 30 min were incubated with probucol (50 μmol/L) for 24 h. The cell proliferation assay was performed as the manufacturer’s protocol. n=3 in each group. *P<0.05 vs control. NS indicates no significance. (B) Cultured U87 glioma cells transfected with LKB1 siRNA for 48 h were incubated with probucol (50 μmol/L) for 24 h. Cell proliferation assay was performed as the manufacturer’s protocol. n=3 in each group. *P<0.05 vs control. NS indicates no significance. (C) Cultured U87 glioma cells transfected with AMPKα siRNA for 48 h were incubated with probucol (50 μmol/L) for 24 h. Cell proliferation assay was performed as the manufacturer’s protocol. n=3. *P<0.05 vs control. NS indicates no significance.

Probucol does not increase p27Kip1 gene expression in cultured cells

Next, we examined how AMPK regulates p27Kip1 protein
expression in U87 cells. RT-PCR analysis indicated that probucol did not alter the p27Kip1 mRNA expression in U87 cells treated with either vehicle or compound C (Figure 5A). Further, probucol did not increase the p27Kip1 mRNA level in U87 cells transfected with control or AMPKα siRNA (Figure 5B). Taken together, these data suggest that probucol increases p27Kip1 protein expression via a gene expression-independent pathway.

Probucol reduces 26S proteasome activity via AMPK activation

It has been reported that p27Kip1 protein can be degraded by 26S proteasome in vascular smooth muscle cells. We hypothesized that probucol may increase p27Kip1 protein via suppression of proteasome-dependent degradation. To test this hypothesis, we assayed 26S proteasome activity in U87 cells. 26S proteasome activity decreased dramatically in probucol-treated U87 cells compared with vehicle-treated U87 cells (Figure 6A). However, probucol did not reduce 26S proteasome activity in U87 cells incubated with an AMPK inhibitor, compound C. Similarly, when AMPK activity was reduced by AMPKα siRNA in U87 cells, the 26S proteasome activity was not inhibited significantly by probucol, but it was inhibited in the U87 cells expressing control siRNA (Figure 6B). These data demonstrate that the 26S proteasome pathway is involved in probucol-mediated effects on p27Kip1 protein levels.

Inhibition of AMPK via activation of the 26S proteasome induces p27Kip1 degradation

To further establish a direct connection between the inhibition of proteasome activity and increased p27Kip1 levels, we treated cells with the proteasome inhibitor MG132 and detected the p27Kip1 levels in AMPK-inhibited cells. As shown in Figure 6C, the effects of compound C on p27Kip1 degradation were blocked by MG132 treatment, suggesting that the inhibition of 26S proteasome activity is involved in probucol-enhanced protein levels of p27Kip1.

p27Kip1 mediates the effects of probucol on U87 cell proliferation

Finally, we investigated whether p27Kip1 is required for probucol’s ability to inhibit U87 cell proliferation. To determine the effect of p27Kip1 inhibition, we transfected U87 cells with either control or p27Kip1 siRNA for 48 h and then treated the cells with either an AMPK activator (AICAR, 1 mmol/L, used as a positive control) or probucol (50 μmol/L) for 12 h. Cell proliferation was assayed with BrdU incorporation. Transfection with p27Kip1 siRNA but not control siRNA attenuated AICAR- and probucol-reduced U87 cell proliferation (Figure 6D, 6E). These findings indicate that p27Kip1 is responsible for the decreased proliferation in U87 cells following AMPK activation.

Probucol activates LKB1-AMPK signaling, increases p27Kip1 protein levels, and reduces proliferation of human glioblastoma cells

To further confirm our central hypothesis, we tested the effects of probucol on a human glioblastoma cell line, SF295. Treatment of SF295 cells with probucol (50 μmol/L, 12 h) significantly increased the phosphorylation of LKB1 and AMPK and...
also increased the p27^{Kip1} protein levels (Figure 7A). Similar to U87 cells, the proliferation of SF295 cells was reduced by probucol treatment (Figure 7B). These findings support the hypothesis that probucol, via LKB1-AMPK/p27^{Kip1} signaling, suppresses glioma cell growth.
AMPK activation might reduce the overall oxidant stress by considering that AMPK might function as a redox sensor and production of reactive species in index hypoxia. Thus, we have demonstrated antioxidant effects of probucol and AMPK activation by probucol in glioma cells. Studies [21, 28] have shown that AMPK-Thr172 phosphorylation induced by probucol. These results strongly suggest that ROS-LKB1 might be required for AMPK activation by probucol in glioma cells. Studies [21, 29] have demonstrated antioxidant potentials.

In the present study, we have shown that LKB1-AMPK signaling mediates probucol-suppressed glioma cell proliferation. The mechanism underlying this process is a novel pathway in which glioma cell proliferation is inhibited by probucol as a result of p27^{Kip1} upregulation, which is controlled by the 26S proteasome. These findings indicate that the LKB1-AMPK pathway is an important mediator for glioma cell growth and suggest that probucol, which modulates LKB1-AMPK signaling, may be beneficial in treating malignant gliomas.

The major finding of our study is that probucol, a lipid-lowering drug, activates AMPK via the ROS-dependent LKB1 pathway. This work has demonstrated, for the first time, that AMPK is a target of probucol, which potently modulates glioma cell growth and functions as an anticancer agent aimed at inhibiting cell proliferation, including in gliomas.

In summary, we have shown that activation of LKB1-AMPK signaling is critical for probucol-reduced glioma cell proliferation (Figure 6F). Due to its effects on glioma cell proliferation, the LKB1-AMPK signaling pathway may emerge as an important therapeutic target in gliomas. The identity of the downstream targets of AMPK signaling and the manner in which these effectors regulate AMPK-mediated glioma cell function remain to be further elucidated.

Acknowledgements
This study was supported by the National Natural Science Foundation of China (No 81371222).

Author contribution
Yong-sheng JIANG conducted the majority of the experiments, analyzed the data, and wrote the manuscript. Jing-an LEI, Fang FENG, and Qi-ming LIANG conducted parts of the experiments. Fu-rong WANG conceived the project.

References
1. Ricard D, Ibdiai A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet 2012; 379: 1984–96.
2. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson 1564
J1. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010; 60: 166–93.

3 Wong ML, Kaye AH, Hovens CM. Targeting malignant glioma survival signalling to improve clinical outcomes. J Clin Neurosci 2007; 14: 301–8.

4 Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 2009; 89: 777–98.

5 Xie Z, Dong Y, Scholz R, Neumann D, Zou MH. Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation 2008; 117: 952–62.

6 Zhou R, Wang L, Xu X, Chen J, Hu LH, Chen LL, et al. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro. Acta Pharmacol Sin 2013; 34: 1061–9.

7 Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG 4th, Schlattner U, et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 2004; 279: 43940–50.

8 Song P, Wang S, He C, Liang B, Violetter B, Zou MH. AMPKalpha2 deletion exacerbates neointima formation by upregulating Skp2 in vascular smooth muscle cells. Circ Res 2011; 109: 1230–9.

9 Fu YN, Xiao H, Ma XW, Jiang SY, Xu M, Zhang YY. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 2011; 32: 879–87.

10 Kyaw M, Yoshizumi M, Tsuchiya K, Izawa Y, Kanematsu Y, Tamaki T. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases. Acta Pharmacol Sin 2004; 25: 977–85.

11 Yamashita S, Matsuzawa Y. Where are we with probucol: a new life for an old drug? Atherosclerosis 2009; 207: 16–23.

12 Liu GX, Ou DM, Li LX, Chen LX, Huang HL, Liao DF, et al. Probucol inhibits oxidized-low density lipoprotein-induced adhesion of monocytes to endothelial cells in vitro. Acta Pharmacol Sin 2002; 23: 516–22.

13 Sawayama Y, Shimizu C, Maeda N, Tatsukawa M, Kinukawa N, Koyanagi S, et al. Effects of probucol and pravastatin on common carotid atherosclerosis in asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). J Am Coll Cardiol 2002; 39: 610–6.

14 Taridiff JC, Cote G, Lesperance J, Bourassa M, Lambert J, Doucet S, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl J Med 1997; 337: 365–72.

15 Iqbali M, Okazaki Y, Okada S. Probucol modulates iron nitritiotriacetate (Fe-NTA)-dependent renal carcinogenesis and hyperproliferative response: diminution of oxidative stress. Mol Cell Biochem 2007; 304: 61–9.

16 Lee DH, Lee TH, Jung CH, Kim YH. Wogonin induces apoptosis by activating the AMPK and p53 signaling pathways in human glioblastoma cells. Cell Signal 2012; 24: 2216–25.

17 Schuetz TA, Becker S, Mang A, Torna A, Buzug TM. A computational multiscale model of glioblastoma growth: regulation of cell migration and proliferation via microRNA-451, LKB1 and AMPK. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 6620–3.

18 Ferla R, Hasinger E, Sumacek Z. Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol Lett 2012; 4: 1077–81.

19 Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 2010; 37: 620–32.

20 Wang S, Xu J, Song P, Wu Y, Zhang J, Chul Choi H, et al. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Hypertension 2008; 52: 484–90.

21 Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, et al. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res 2010; 106: 1117–28.

22 Xu J, Wu Y, Song P, Zhang M, Wang S, Zou MH. Proteasome-dependent degradation of guanosine 5′-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 2007; 116: 944–53.

23 Tanous D, Hime N, Stocker R. Anti-atherosclerotic and anti-diabetic properties of probucol and related compounds. Redox Rep 2008; 13: 48–59.

24 Choi HC, Song P, Xie Z, Wu Y, Xu J, Zhang M, et al. Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo. J Biol Chem 2008; 283: 20186–97.

25 Wang S, Zhang C, Zhang M, Liang B, Zhu H, Lee J, et al. Activation of AMP-activated protein kinase alpha2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med 2012; 18: 902–10.

26 Liu DC, Zang CB, Liu HY, Possinger K, Fan SG, Elstner E. A novel PPAR alpha/gamma dual agonist inhibits cell growth and induces apoptosis in human glioblastoma T98G cells. Acta Pharmacol Sin 2004; 25: 1312–9.

27 Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218–24.

28 Colle D, Santos DB, Moreira EL, Hartwig JM, dos Santos AA, Zimmermann LT, et al. Probucol increases striatal glutathione per-oxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS One 2013; 8: e67658.

29 Wu YI, Sala-Newby GB, Shu KT, Yeh HI, Nakayama KI, Nakayama K, et al. S-phase kinase-associated protein-2 (Skp2) promotes vascular smooth muscle cell proliferation and neointima formation in vivo. J Vasc Surg 2009; 50: 1136–42.