The comparative population genetics of *Neisseria meningitidis* and *Neisseria gonorrhoeae*

Lucile Vigue 1, Adam Eyre-Walker 2

1 Ecole Polytechnique, Paris, France
2 School of Life Sciences, University of Sussex, Brighton, United Kingdom

Corresponding Author: Adam Eyre-Walker
Email address: a.c.eyre-walker@sussex.ac.uk

Neisseria meningitidis (Nm) and *N. gonorrhoeae* (Ng) are closely related pathogenic bacteria. To compare their population genetics we compiled a dataset of 1145 genes found across 20 Nm and 15 Ng genomes. We find that Nm is seven-times more diverse than Ng in their combined core genome. Both species have acquired the majority of their diversity by recombination with divergent strains, however we find that Nm has acquired more of its diversity by recombination than Ng. We find that linkage disequilibrium declines rapidly across the genomes of both species. Several observations suggest that Nm has a higher effective population size than Ng; it is more diverse, the ratio of non-synonymous to synonymous polymorphism is lower, and linkage disequilibrium declines more rapidly to a lower asymptote in Nm. The two species share a modest amount of variation, half of which seems to have been acquired by lateral gene transfer and half from their common ancestor. We investigate whether diversity varies across the genome of each species and find that it does. Much of this variation is due to different levels of lateral gene transfer. However, we also find some evidence that the effective population size varies across the genome. We test for adaptive evolution in the core genome using a McDonald-Kreitman test and by considering the diversity around non-synonymous sites that are fixed for different alleles in the two species. We find some evidence for adaptive evolution using both approaches.
The comparative population genetics of *Neisseria meningitidis* and *Neisseria gonorrhoeae*

Lucile Vigue¹

Adam Eyre-Walker²

1. Ecole Polytechnique
 Paris
 France

2. School of Life Sciences
 University of Sussex
 Brighton
 United Kingdom

Correspondence: a.c.eyre-walker@sussex.ac.uk

Abstract

Neisseria meningitidis (Nm) and *N. gonorrhoeae* (Ng) are closely related pathogenic bacteria. To compare their population genetics we compiled a dataset of 1145 genes found across 20 Nm and 15 Ng genomes. We find that Nm is seven-times more diverse than Ng in their combined core genome. Both species have acquired the majority of their diversity by recombination with divergent strains, however we find that Nm has acquired more of its diversity by recombination than Ng. We find that linkage disequilibrium declines rapidly across the genomes of both species. Several observations suggest that Nm has a higher effective population size than Ng; it is more diverse, the ratio of non-synonymous to synonymous polymorphism is lower, and linkage disequilibrium declines more rapidly to a lower asymptote in Nm. The two species share a modest amount of variation, half of which seems to have been acquired by lateral gene transfer and half from their common ancestor. We investigate whether diversity varies across the genome of each species and find that it does. Much of this variation is due to different
levels of lateral gene transfer. However, we also find some evidence that the effective
population size varies across the genome. We test for adaptive evolution in the core genome
using a McDonald-Kreitman test and by considering the diversity around non-synonymous sites
that are fixed for different alleles in the two species. We find some evidence for adaptive
evolution using both approaches.

Introduction

The two closely related bacteria *Neisseria meningitidis* (Nm) and *Neisseria gonorrhoeae* (Ng) are major human pathogens. Ng is the causative agent of the sexually transmitted disease gonorrhoeae which currently infects 106 million people each year worldwide (WHO 2012). When untreated, gonococcal infections can result in long-term problems such as persistent urethritis, cervicitis, proctitis, pelvic inflammatory disease, infertility, first-trimester abortion, ectopic pregnancy and maternal death (WHO 2012). They also increase the risk of acquiring and transmitting HIV. In cases of pregnancy, Ng infections can cause severe damages to neonatal health (WHO 2012). In contrast, Nm is a human commensal infecting approximately 10% of the healthy human population (Claus et al. 2005; Yazdankhah et al. 2004), which only occasionally causes disease. However, it can cause meningococcal meningitidis and septicaemia with mortality rates that can reach 50% when untreated, and the global disease burden is estimated to be ~500,000 cases a year (Roberts 2008). Among the different micro-organisms that can cause meningitidis, it is regarded as one of the most important because of its ability to cause large epidemics.

Here we consider several aspects of the population genetics of these bacterial species. The two species are sister taxa (Bennett et al. 2012), and Nm is known to be considerably more diverse than Ng within the genes that they share in common (Bennett et al. 2012; Bennett et al. 2007). The first problem we address is why the two taxa differ in their diversities. There are several potential explanations. First, Ng might have a lower effective population size, either because it evolved from Nm and went through a bottleneck when the species was formed (Vazquez et al.
1993), or because it generally has a lower effective population size, possibly because it has a
lower census population size. Second, Ng might have a lower mutation rate than Nm. Third, Ng
might acquire less diversity through recombination than Nm. Both Ng and Nm are known to be
naturally transformable, and it has been known for many years that both species acquire
diversity, within their core genome, by homologous recombination with genetically divergent
strains (Spratt 1988; Spratt et al. 1989). We refer to this process as homologous lateral gene
transfer (hLGT), to differentiate it from the acquisition of accessory genes by non-homologous
lateral gene transfer (nhLGT) (however, note that the acquisition of new genes generally
involves homologous recombination with flanking genes, so nhLGT will typically involve some
hLGT (Kong et al. 2013)). hLGT leads to mosaic genes, in which parts of the gene have been
acquired from a highly divergent strain or a different bacterial species. In fact, Nm and Ng were
some of the first bacteria in which this form of recombination was demonstrated (Spratt 1988;
Spratt et al. 1989). It has been estimated that Nm acquires single nucleotide polymorphisms
(SNPs) through hLGT at a rate between 4 and 100x higher than via mutation (Feil et al. 2001;
Hao et al. 2011; Kong et al. 2013; Vos & Didelot 2009). In contrast this ratio has recently been
estimated to be only about two-fold in Ng (Ezewudo et al. 2015). It is unclear whether these
ratios are significantly different. We investigate this here.

The second question, we address is whether diversity varies across the core genome of the two
species. Genetic diversity is known to vary across the genome of many species. This was
originally demonstrated in *Drosophila melanogaster* by Begun and Aquadro (Begun & Aquadro
1992) who showed that diversity was positively correlated to the rate of recombination. This
was thought to be due to the effects of linked selection, in the form of genetic hitch-hiking
(Maynard Smith & Haigh 1974) and background selection (Charlesworth et al. 1993), depressing
diversity in regions of the genome with low rates of recombination. Variation in diversity across
the genome has been demonstrated in many other species including the bacterium *Escherichia
coli* (Maddamsetti et al. 2015; Martincorena et al. 2012). The reasons for this variation remain
unclear (Chen & Zhang 2013; Maddamsetti et al. 2015; Martincorena & Luscombe 2013).
The final question we address is whether Nm and Ng have undergone adaptive evolution. Nm and Ng inhabit different niches and one presumes they have undergone adaptive evolution to allow them to do this. Some of this adaptation may have been through the acquisition of new genes via nhLGT, but there might also be adaptation in the core genome. Two recent analyses using the d_{N}/d_{S} test on the core genome have found limited evidence for adaptive evolution in Nm (Yu et al. 2014) and Ng (Ezewudo et al. 2015), but this test is known to be very conservative. Here we apply two additional tests.
Materials and methods

Dataset

All 15 genomes of *Neisseria gonorrhoeae* that were present in Genbank in April 2018 (NCCP11945 (Chung et al. 2008), FA19 (Abrams et al. 2015), FA6140 (Abrams et al. 2015), 35/02 (Abrams et al. 2015), FA 1090, MS11, FA19, FA6140, 35/02, 32867, 34530, 34769, FDAARGOS 204, FDAARGOS 205, FDAARGOS 207, NCTC13799, NCTC13798, NCTC13800) and 20 randomly selected genomes of *Neisseria meningitidis* (MC58 (Tettelin et al. 2000), Z2491 (Parkhill et al. 2000), FAM18 (Bentley et al. 2007), 053442 (Peng et al. 2008), alpha14 (Schoen et al. 2008), 8013 (Rusniok et al. 2009), alpha710 (Joseph et al. 2010), WUE 2594 (Schoen et al. 2011), G2136 (Budroni et al. 2011), M01-240149 (Budroni et al. 2011), M04-240196 (Budroni et al. 2011), H44/76 (Budroni et al. 2011), M01-240355 (Budroni et al. 2011), NZ-05/33 (Budroni et al. 2011), 510612 (Zhang et al. 2014), NM3686, M7124, NM3682, NM3683, L91543) were downloaded from Genbank. From these all protein coding sequences were extracted. We retained those coding sequences that started NTG, terminated with TAA, TAG or TGA and had a length that is a multiple of three. We identified orthologs using reciprocal BLAST, with an e-value threshold of 0.00001; i.e. each protein coding gene in each genome was BLASTed against the genes of FA1090, and then the best hit was BLASTed back onto the original genome, retaining only those hits in which the original query sequence was the best hit. Similar selections of genes were obtained using alternative starting genomes. The protein sequences of the orthologs were aligned using MUSCLE (Edgar 2004). We selected genes where the alignments meet these criteria: the number of gaps is lower than 1% of the length of the sequence and the total number of nucleotides in gaps is lower than 10% of the total number of nucleotides in the sequence. Sequences with internal stop codons were removed. This resulted in a dataset of 1145 genes belonging to the core genome of both *Neisseria gonorrhoeae* and *Neisseria meningitidis*. We used the BioPython Phylo library (Cock et al. 2009) to estimate a phylogeny of the strains based on the core genome alignment.

Analyses
In most analyses we treated genes independently. However, to detect hLGT we ran ClonalFrameML (Didelot & Wilson 2015) on a concatenation of the protein coding sequences from the core genome of both species. Genes were concatenated randomly without respect for synteny. For some analyses we masked those regions inferred to be due to hLGT in the strains affected.

We investigated whether linkage disequilibrium (LD) declines with the distance between sites by measuring the LD between all pairs of polymorphisms within each gene; we did not concatenate the genes or align whole genomes, because with the gain and loss of genes the distance between sites differs depending on the strains being analysed. We measured LD using the r^2 statistic (Hill & Robertson 1968). LD values were then assigned to bins based on the distance between the two sites – 10bp bins between 1-100bp, a bin from 101-200bp and then 200bp bins between 201-800bp. We took the average LD and distance between sites for each bin in a manner which weighted each gene equally – we estimated the average LD and distance for pairs of sites in each bin for each gene and then averaged those values across genes. To estimate the approximate half-life of LD, we found the distance between sites that gave approximately half the LD between the LD for the 1-10bp bin and the asymptotic value of the LD.

Because r^2 is constrained to be positive, the expected value of r^2 is greater than zero even when there is no LD. To calculate the expected value of r^2 when there is no LD, we considered two bi-allelic loci with alleles at frequencies p_1 and p_2. The expected frequencies of the four haplotypes are p_1p_2, $p_1(1-p_2)$...etc. from which we generated four random variates from a multinomial distribution for a sample size of N chromosomes using Mathematica version 11; for each sample of haplotypes we calculated r^2. We repeated this procedure 10,000 times and calculated the mean to estimate the expected value of r^2. We found that the expected value of r^2 is independent of the allele frequencies.
To investigate the relationship between the non-synonymous, π_N, and synonymous, π_S, nucleotide diversity we used a variation of the method of James et al. (James et al. 2017) to combine data from different genes. If the distribution of fitness effects of new mutations is a gamma distribution (assuming most mutations are deleterious) then $\log(\pi_N)$ is expected to be linearly correlated to $\log(\pi_S)$ if there is variation in N_e (Welch et al. 2008). However, for many genes either π_N or π_S is zero, hence we need to combine genes together. We can do this by splitting the synonymous polymorphisms into two groups according to whether they were in an odd or even numbered codon and then using the two groups to estimate two synonymous nucleotide diversities that have independent sampling errors, π_{S1} and π_{S2}. One of these, π_{S1}, was used to rank and group genes, and the other was averaged across genes in the group to give an unbiased estimate of π_S for the group. π_N was also averaged across the genes in the group.

To investigate the diversity around sites that are fixed between Nm and Ng for different alleles we focused on genes that had at least one synonymous polymorphism and one fixed difference between the two species. For each fixed difference, we identified all the synonymous polymorphisms that were within 1 kb and we grouped them by windows of 100 bp. Since, background selection can potentially lead to a lower dip in diversity around fixed non-synonymous mutations we normalised the diversity around fixed synonymous and non-synonymous substitutions by dividing the number of synonymous polymorphisms in a particular window by the total number of synonymous polymorphisms in the gene, multiplied by the window size over the gene length.

Results

Recombination and mutation

We are interested in how genetic variation is generated and distributed in the two Neisseria species N. meningitidis (Nm) and N. gonorrhoeae (Ng). Although, the presence and absence of genes in the strains of the two species is an important aspect of this problem, here we focus on
the genetic variation that is present in the core genome that is common to both species. Using reciprocal BLAST, we identified 1145 genes present across the 15 genomes of Ng and 20 genomes of Nm that we analysed. The total length of this core genome is 1.1MB long. Defining a polymorphism as a site that contains two or more alleles within either of the two species, we find that Nm is ~7.6 fold more diverse than Ng consistent with previous qualitative reports (Bennett et al. 2012; Bennett et al. 2007). The difference in diversity is more apparent at synonymous (~8.9 fold) than non-synonymous (~5.5 fold) sites (Table 1), a pattern we return to later. The two species share a modest amount of diversity; 35% of all polymorphisms in Ng are shared with Nm, and 4.5% of those in Nm are shared with Ng.

It is well known that Nm and Ng undergo substantial levels of homologous recombination with divergent strains, possibly from other species of bacteria. This leads both to the acquisition of new genes, but also to the acquisition of parts of genes that are already present in the genome; we refer to these processes as non-homologous (nhLGT) and homologous lateral gene transfer (hLGT) respectively. To quantify the role that hLGT plays in the acquisition of diversity in the core genome we ran ClonalFrameML (Didelot & Wilson 2015) (Didelot & Wilson 2015). The method estimates the ratio of the rate at which recombination tracts initiate (R) and the rate of mutation (θ), both multiplied by twice the effective population size, N_e, along with the average recombination tract length, δ, and the proportion of sites that differ between the imported and resident sequences, v. Estimates of these parameters are given in Table 2. The overall effect of recombination relative to mutation can be estimated as Rδv/θ = r/m, where r and m are the rates at which variants are introduced into a genome by recombination and mutation respectively.

In Nm we find that recombination introduces 6.43 (95% CI = 6.16 to 6.71) times more variation than mutation, whereas in Ng it introduces 1.97 (1.76, 2.19) times as much. In Nm the r/m ratio has previously been estimated to be 5.37 (Hao et al. 2011), 6.71 (Vos & Didelot 2009), 16.4 (Kong et al. 2013) and 100 (Feil et al. 2001). Our estimate is similar to the first two estimates, but substantially lower than the last two estimates. Both of these latter estimates were
obtained from very closely related strains and hence may reflect the value of r/m before
natural selection has had an opportunity to operate. In Ng it has been estimated that 2.2x as
much variation is introduced by recombination (Ezewudo et al. 2015), which is very similar to
our estimate. The estimates of r/m mean that ~87% of all polymorphisms in Nm are a
consequence of recombination, whereas in Ng it is 66%. The difference between the two
species in the influence of recombination is largely driven by a difference in the ratio of the rate
at which recombination is initiated versus the mutation rate (R/θ), since although the tract
lengths are estimated to be on average slightly longer in Nm, they introduce slightly less
variation than Ng (Table 2).

ClonalframeML estimates the ratio of R and θ but not their absolute values. However, we can
estimate the absolute value as follows. We note that the nucleotide diversity is due to the input
of mutation and the input of recombination: i.e. $\pi = \theta + R \delta \nu$. If we note that ClonalframeML
gives us an estimate of R/θ we can rewrite this equation as $\pi = \theta + \theta \delta \nu R/\theta$, from which we
can estimate $\theta = \pi / (1 + \delta \nu R/\theta)$. Estimates of R and θ are given in Table 2. From this it is evident
that the nucleotide diversity is higher in Nm both because of a 3-fold greater mutational input
and a nine-fold greater rate at which recombination tracts initiate in Nm, at the population
level (i.e. when the tract length initiation rate and mutation rate are multiplied by N_e).

The parameters R and θ are the rates of recombination initiation and mutation, multiplied by
the effective population size. Hence a simple reason why both parameters are higher in Nm
might simply be that Nm has a higher N_e than Ng. To test this idea, we masked all sequences
that were identified as due to hLGT by ClonalframeML and estimated the levels of non-
synonymous and synonymous diversity. Under a model in which synonymous mutations are
neutral and non-synonymous mutations are deleterious, but drawn from some distribution, we
expect π_N/π_S to be lower in species with high N_e; this is because selection is more effective in
species with higher N_e and hence the proportion of mutations that are effectively neutral is
lower (Ohta 1972; Ohta 1977; Ohta 1992). This is what we find - $\pi_N/\pi_S = 0.095$ (SE = 0.0023) in
Nm versus 0.23 (0.014) in Ng. These are significantly different to each other (normal test $z = 9.5, p<0.001$).

As we described above, Nm and Ng share a modest amount of genetic variation. It is of some interest whether this is a consequence of hLGT or the inheritance of genetic variation from their common ancestor. If we exclude those sequences inferred to be due to hLGT we find that the two species still share a modest amount of genetic variation – 15.5% of all Ng polymorphisms are shared with Nm and 2.4% of Nm polymorphisms are shared with Ng, approximately half of all shared polymorphisms in each case, suggesting that some proportion of the shared variation originated from their common ancestor.

Linkage disequilibrium

Homologous recombination can both increase and decrease linkage disequilibrium (LD); homologous recombination with divergent strains, of the sort detected by ClonalFrameML, generates LD because it simultaneously introduces many polymorphisms that are initially linked to each other. However, homologous recombination amongst a set of closely related strains breaks-up LD. To investigate how these two forces play out, we calculated the LD between all pairs of sites within each gene and plotted these as a function of the distance between sites. As expected we observe a decline in LD with distance (Figure 1A). Both species show similar patterns with LD declining rapidly; in Nm the approximate half-life is 30bp and in Ng it is 100bp. The decline could be due to two processes. If most hLGT fragments tend to be short, with decreasing numbers of long fragments, then LD will be greater between closely linked sites. However, we also expect a decline due to recombination between closely related strains, and in fact we observe a decline even when we focus on those parts of the genome which do not appear to have undergone hLGT (Figure 1B).

In both species LD asymptotes above zero. The non-zero asymptote could be due to one of three reasons – statistical bias, population substructure and a balance between genetic drift and recombination. The statistical bias arises because our measure of LD, r^2 (Hill & Robertson...
cannot be negative, so positive values of r^2 are expected even if there is no LD if sample sizes are small; for sample sizes of 15 and 20 strains, the expected value of r^2 is 0.079 and 0.050 respectively (see materials and methods), so the asymptote is clearly above this level. Both, Nm and Ng have been shown to have some level of population structure so this is the likely to be part of the explanation (Budroni et al. 2011; Joseph et al. 2011). However, the slower decay in LD, and higher asymptote in Ng, is consistent with Ng having a smaller N_e than Nm – i.e. the non-zero asymptote might in part be caused by a balance between genetic drift creating LD, and recombination breaking it down.

Diversity across the genome

Nucleotide diversity is known to vary across the genomes of many organisms. This is largely thought to be driven by variation in the mutation rate or variation in the effects of linked selection. However, in bacteria, and particularly Nm and Ng, it could also be due to variation in the frequency of hLGT. All of these processes are expected to affect synonymous and non-synonymous diversity to greater or lesser extents, and indeed we observe a positive correlation between non-synonymous and synonymous diversity, demonstrating that both vary across the genome in concert. At least part of this pattern is driven by hLGT because genes with hLGT show higher π_N and π_S values than genes without any evidence of hLGT (Figure 2).

However, to investigate whether there is also variation in the effective population size across the genome we removed sequences inferred to be due to hLGT by ClonalFrameML from our data. This reduces our data substantially and so to reduce statistical sampling issues we used the method of James et al. (2016) to combine data from different genes. We find that π_N and π_S are still significantly correlated suggesting the correlation between them is not just driven by hLGT (Ng slope = 0.23, p<0.001; Nm slope = 0.53, p<0.001)(Figure 3). The remaining correlation could be due to variation in the mutation rate or variation in the effects of linked selection. We can test whether there is variation in the effects of linked selection by considering the slope between log(π_N) and log(π_S). Under a model in which there is no variation in linked selection then the slope of this relationship is expected to be one, and if there is variation in linked
selection the slope if expected to be less than one (Galtier 2016; Welch et al. 2008). Linked selection has two consequences. First, it increases the stochasticity in allele frequencies. For example, the spread of an advantageous mutation or the elimination of deleterious genetic variation, removes linked genetic diversity; whether a linked mutation survives either process is a random process depending on whether the advantageous or deleterious mutation occurs in linkage with the target mutation. This can be thought of as reduction in the effective population size. Second, genetic hitch-hiking leads to non-equilibrium dynamics. After a selective sweep, genetic diversity will recover, but this happens faster for deleterious than neutral mutations (Brandvain & Wright 2016; Do et al. 2015; Gordo & Dionisio 2005). In both cases we expect a negative correlation between π_N/π_S and π_S, which manifests itself in a positive correlation between $\log(\pi_N)$ and $\log(\pi_S)$ but with a slope of less than one (James et al. 2017). We find that the slope of the relationship between $\log(\pi_N)$ and $\log(\pi_S)$ is 0.23 (SE = 0.052) and 0.59 (0.070) for Ng and Nm respectively, in both cases significantly less than one (p<0.001); i.e. π_N increases as π_S increases but not as fast. The slopes are significantly different to each other (t-test, p<0.001).

Adaptive evolution

Nm and Ng are ecologically quite different and one presumes the two species have undergone adaptation to live in their respective environments. Some of this adaptation will have come about through the acquisition of whole genes through nhLGT. However, some of the adaptation may have occurred within the core genome of the two species either by new mutations, standing genetic variation, or hLGT. To investigate whether there has been adaptation in the core genome we used two approaches. First, we used the McDonald-Kreitman (McDonald & Kreitman 1991) approach to estimate the rate of adaptive evolution (Eyre-Walker 2006; Fay et al. 2001). In this method the numbers of non-synonymous and synonymous substitutions (i.e. differences between the two species, d_N and d_S respectively) are compared to the numbers of non-synonymous and synonymous polymorphisms (p_N and p_S respectively). Under a neutral model in which mutations are either neutral or strongly deleterious we expect $d_N/d_S = p_N/p_S$ (McDonald & Kreitman 1991). In contrast if there are slightly deleterious non-synonymous
mutations we expect $d_N/d_S < p_N/p_S$, and if there are some advantageous mutations we expect
$d_N/d_S > p_N/p_S$ (Eyre-Walker 2006; Fay et al. 2001). Summing d_N, d_S, p_N and p_S we calculate the
fixation index $FI = d_N p_S / d_S p_N$ (Gojobori et al. 2007); adaptive evolution is indicated if $FI > 1$.

We find that our estimate of FI differs if we use the polymorphism data of Nm or Ng; using the
SNP data of Nm we estimate that FI is significantly greater than one suggesting adaptive
evolution has occurred ($FI = 1.51$ with 95% CIs = 1.41 and 1.61), but if we use the SNP data of
Ng, our estimate is significantly less than one ($FI = 0.92$ (0.83, 0.99)). Estimates less than one
can occur if there are slightly deleterious mutations (SDMs) segregating, but even if we restrict
our analysis to common polymorphisms, which should remove many of the SDMs
(Charlesworth & Eyre-Walker 2008; Fay et al. 2001), we find that the $FI<1$ using the SNP data of
Ng (using SNPs with allele frequencies above 15%, $FI = 0.78$ (0.78, 0.88)). An explanation for
why FI differs between the two species is that either Nm has undergone population expansion,
or Ng has undergone contraction. If there are slightly deleterious mutations then population
size expansion leads to an overestimate of FI whereas contraction leads to an underestimate
(Eyre-Walker 2002; McDonald & Kreitman 1991). As we argue above, a simple explanation for
why Nm is more diverse than Ng is that Nm has a higher N_e. We find no evidence of expansion
or contraction amongst the current strains – Tajima’s D (Tajima 1989), a measure of a skew in
the site frequency spectrum away from what we expect for neutral mutations in a stationary
population size is close to zero and not significantly different to zero in both species in the
regions of the genome that have no evidence of hLGT (Tajima’s D = -0.073 and -0.093 in Nm and
Ng respectively), consistent with previous analyses in Nm (Joseph et al. 2011). However, the
expansion or contraction in either Nm or Ng could have occurred sometime in the past which
would not be visible to an analysis using Tajima’s D, but which might still affect the FI.

A second approach to test for adaptive evolution, is to investigate whether there is a dip in
genetic diversity around putatively advantageous mutations (Sattath et al. 2011) – as
advantageous mutations spread through a population it reduces diversity in its proximity. We
find that synonymous diversity is lower close to sites that are fixed for different nucleotides in
the two species, and this dip is significantly greater for non-synonymous than synonymous fixed
differences when considering diversity in Nm (p<0.001 for distances 1-100bp, 101-200bp and
201-300bp), consistent with a proportion of non-synonymous mutations being fixed by positive
adaptive evolution; a similar pattern is not evident in Ng, possibly because it is less diverse.

There is however an alternative explanation for the greater dip around non-synonymous
substitutions; if the strength of background selection (Charlesworth et al. 1995) varies across
the genome, then regions with high levels of background selection will have low diversity but
will tend to also fix slightly deleterious non-synonymous mutations. To investigate whether
there is evidence of this, we considered whether the ratio of the non-synonymous to
synonymous substitution rates, \(\log(d_{N}/d_{S})\), was correlated to synonymous diversity, \(\log(\pi_{S})\). We
again use the method of James et al. (James et al. 2017) to combine data from different genes
and find that a strong negative correlation in Nm (slope = -0.10, p = 0.018) but not in Ng (slope
= -0.001, p =0.97). This suggests that background selection might be a factor in Nm. To take into
account the potential variation in background selection, we normalised the data from each
gene by dividing the number of synonymous SNPs in each window by the average diversity in
each gene. This will account for variation in background selection at a gene level, but not at a
sub-gene level. The normalised data show a greater dip in diversity for fixed non-synonymous
than synonymous substitutions in both Nm (combining t-test results from the three closest
points, p<0.001), and Ng (p = 0.0024) (figure 4) although the differences are not large.

讨论

我们已经调查了两种细菌的比较性遗传学的几个方面。我们发现，正如其他人所
发现的（Bennett et al. 2012; Bennett et al. 2007），Nm显著地比Ng更丰富，但两个
物种共享的丰富度相当程度上是在它们共有的基因中。这种
共享的丰富度可能是由于祖先多态性造成的，那已经被
继承，或者由于hLGT在两个物种之间转移变异。我们发
现一个相当大的部分确实是由于hLGT，如果我们将这个部分
移除，那将对基因的丰富度有

appears to have undergone hLGT, the fraction of shared polymorphism drops considerably. However, there is some diversity that appears to have been inherited from the ancestor.

In both species we find that most of their genetic diversity has been acquired by recombination, rather than by mutation. In Nm we estimate that the total input from hLGT is six-fold greater than from mutation; this is in line with the estimates of Hao et al. (Hao et al. 2011) and Vos and Didelot (Vos & Didelot 2009), but lower than two other estimates (Feil et al. 2001; Kong et al. 2013). Both of these high estimates were derived by considering very closely related strains. If hLGT events are on average more deleterious than single nucleotide changes then we expect r/m estimates to be greater for more closely related strains, because natural selection has had more opportunity to remove the deleterious mutations in distantly related strains. This has the implication that r/m may be far higher amongst newly arising mutations than often thought. In Ng we find the input of hLGT is two-fold greater than mutation, consistent with the one previous estimate performed on a similar selection of strains (Ezewudo et al. 2015).

Nm might be more diverse than Ng either Nm has a higher mutation rate, a greater rate of hLGT or a higher effective population size. Several lines of evidence suggest that Nm has a higher N_e. First, Nm has higher values of both R and θ, where R and θ are estimates of the rate at which recombination initiates and the mutation rate, multiplied by N_e. Second, p_N/p_S is lower in Nm in the fraction of the genome which does not seem to have undergone hLGT. Third, LD declines faster in Nm and asymptotes at a lower level. However, this does not preclude a role for either faster rates of mutation or recombination in the greater diversity in Nm.

It is possible that the lower N_e in Ng is due to a bottleneck at the time when Ng was formed, assuming that it is a derivative of Nm (Vazquez et al. 1993). Alternatively, it may be due to the fact that Ng has a lower census population size. Currently ~10% of the human population is asymptomatically infected with Nm (Claus et al. 2005; Yazdankhah et al. 2004), whereas levels of Ng infection are thought to be very low – between 1 and 170 cases per 100,000 individuals in
Western Europe and America in 2017 (www.cdc.gov, ecdec.europa.eu). Hence, although there seems to be a poor correlation between census and effective population size across species (Bazin et al. 2006; Leffler et al. 2012; Lewontin 1974; Romiguier et al. 2014), we predict Nm to have a much larger N_e than Ng, simply because it infects many more people.

In addition to the influence of hLGT we see the signature of recombination between strains of the same species breaking down LD, since LD decreases with increasing distance between sites. Similar patterns have been previously reported in both Nm (Budroni et al. 2011) and Ng (Arnold et al. 2018) but these studies used different LD statistics and so it is hard to determine what the comparative patterns are. The patterns are similar in the two species, but they are consistent with a difference in N_e since the decay in LD is faster in Nm and asymptotes at a slightly lower value. In both species the asymptote is above what is expected under free recombination even taking into account sampling error and the fact that r^2 cannot be negative (see above). The asymptote might be above this level for two reasons. First, there might be a balance between drift and recombination. In a gene conversion model of recombination, a non-zero asymptote is expected because once sites are further apart than the gene conversion tract length, then increasing distance does not increase the rate of recombination. The asymptote is then determined by a balance between drift increasing LD, and recombination breaking it down. The second explanation is that there is population sub-structure in both species. It has been argued, based on the phylogeny of strains that there is substructure in Nm (Budroni et al. 2011; Kong et al. 2013) and Ng (De Silva et al. 2016; Ezewudo et al. 2015; Grad et al. 2016; Lee et al. 2018). In Nm it has been suggested that this structure arises because different sets of strains have different restriction modification systems (Budroni et al. 2011). However, the correspondence between clades of strains and these systems is not clear cut (Kong et al. 2013).

We find as others have found in some other species, that diversity varies across the genome in Nm and Ng, and that this variation affects both synonymous and non-synonymous sites. This is in large part driven by hLGT; regions of the genome with high rates of hLGT have high diversity. However, when we focus on the part of the genome that is inferred not to have undergone
hLGT we find that levels of non-synonymous and synonymous diversity are correlated, but in a manner which demonstrates that π_N/π_S declines with increasing π_S. A similar pattern has been observed within the genomes of various eukaryotes (Castellano et al. 2018; Gossmann et al. 2011; Murray et al. 2017) as well as between eukaryotic species (Chen et al. 2017; Galtier 2016; James et al. 2017). This pattern is consistent with an influence of linked selection on the genome – regions of the genome with high levels of linked selection have low π_S, but relatively high levels of π_N. Linked selection can influence diversity in two ways. First, both background selection and genetic hitch-hiking can reduce the effective population size of a genomic region. Second, hitch-hiking can lead to non-equilibrium dynamics which can affect the relative levels of selected and neutral diversity; after a hitch-hiking event deleterious genetic diversity will return to its equilibrium value faster than neutral diversity (Brandvain & Wright 2016; Do et al. 2015; Gordo & Dionisio 2005).

Nm and Ng occupy distinct niches and one might presume that they have undergone adaptive evolution. Such adaptation might have been achieved through the acquisition of new genes, and/or adaptation in their core genomes. We have tested for adaptive evolution in the core genome using two approaches – a McDonald-Kreitman test in which numbers of non-synonymous and synonymous substitutions are compared to numbers of non-synonymous and synonymous polymorphisms (Eyre-Walker 2006; McDonald & Kreitman 1991). We find significant evidence of adaptation when we compare the substitution data to the polymorphism data of Nm, but no evidence if we use the polymorphism data of Ng. These observations are consistent with a decrease in the N_e of Ng or an increase in Nm (Eyre-Walker 2002). The difference in N_e is consistent with the observation of higher diversity in Nm, lower π_N/π_S, more rapid decay in LD and the lower asymptote in LD. However, it is difficult to resolve whether Ng has undergone population size contraction or Nm population size expansion in the past. Finally, it is tempting to estimate the fraction of substitutions fixed by adaptive evolution as $1 - 1/F_I$ – see (Eyre-Walker 2006). However, the simultaneous introduction of multiple mutations by hLGT makes this estimate biased.
A central assumption in our analysis is that ClonalFrameML (Didelot & Wilson 2015) has correctly identified regions of the genome that have undergone hLGT. The method identifies the presence of hLGT from a clustering of mutations along an inferred clonal phylogeny; a sudden burst of mutations along a branch in the phylogeny, that are spatially clustered together in the genome are inferred to be due to hLGT. It will therefore be difficult for the method to detect hLGT with relatively similar or short sequences. Furthermore, because we have used a concatenation of protein coding sequences in our ClonalFrameML analysis it may be difficult to detect hLGT at the start and end of genes, because we will not have the flanking sequences which provide additional support for hLGT. To investigate whether this latter effect is important, we plotted the number of inferred hLGT events as a function of the distance from the start or end of genes. We found that events are inferred slightly less often at the start/end of genes, but the effect is not large (Figure 5).

The fact that ClonalFrameML has probably missed some hLGT events suggests that we may have underestimated the input of variation from hLGT in both species – i.e. we have underestimated r/m. However, an inability to correctly detect all hLGT events is unlikely to explain the differences in the relative contribution of hLGT and mutation in the two species, since both species have been treated identically. An inability to detect hLGT may however explain why π_N and π_S are correlated even in the parts of the genome with no apparent hLGT and hence there may be little or no variation in N_e across the genomes of Nm and Ng; there is an expectation that π_N / π_S is likely to be lower amongst hLGT fragments because the polymorphisms will be dominated by mutations that are fixed between species. Furthermore, it is possible that all the variation that is shared between Nm and Ng is a consequence of hLGT and we have not been able to identify all hLGT events.

Conclusions

We have investigated the diversity in Nm and Ng, and shown that Nm is more diverse than Ng. Both species have acquired most of their variation through homologous lateral gene transfer. Nm appears to have higher diversity in part due to it’s higher effective population size. In both
species LD decays relatively slowly as a function of the distance between sites and there is
some evidence of adaptive evolution in the core genome of the two species.

References

Abrams AJ, Trees DL, and Nicholas RA. 2015. Complete Genome Sequences of Three Neisseria
gonorrhoeae Laboratory Reference Strains, Determined Using PacBio Single-Molecule
Real-Time Technology. *Genome Announc* 3. 10.1128/genomeA.01052-15

Arnold BJ, Gutmann MU, Grad YH, Sheppard SK, Corander J, Lipsitch M, and Hanage WP. 2018.
Weak Epistasis May Drive Adaptation in Recombining Bacteria. *Genetics* 208:1247-1260.
10.1534/genetics.117.300662

Bazin E, Glemin S, and Galtier N. 2006. Population size does not influence mitochondrial genetic
diversity in animals. *Science* 312:570-572.

Begun DJ, and Aquadro CF. 1992. Levels of naturally occurring DNA polymorphism correlate with
recombination rates in *D. melanogaster*. *Nature* 356:519-520.

Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD, Parkhill J, and Maiden MC. 2012. A
genomic approach to bacterial taxonomy: an examination and proposed reclassification
of species within the genus Neisseria. *Microbiology* 158:1570-1580.
10.1099/mic.0.056077-0

Bennett JS, Jolley KA, Sparling PF, Saunders NJ, Hart CA, Feavers IM, and Maiden MC. 2007.
Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences
from multilocus sequence typing. *BMC Biol* 5:35. 10.1186/1741-7007-5-35

Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, Chillingworth T, Cronin A, Davis
PH, Holroyd NE, Jagels K, Maddison M, Moule S, Rabbinowitsch E, Sharp S, Unwin L,
Whitehead S, Quail MA, Achtman M, Barrell B, Saunders NJ, and Parkhill J. 2007.
Meningococcal genetic variation mechanisms viewed through comparative analysis of
serogroup C strain FAM18. *PLoS Genet* 3:e23. 10.1371/journal.pgen.0030023

Brandvain Y, and Wright SI. 2016. The Limits of Natural Selection in a Nonequilibrium World.
Trends Genet 32:201-210. 10.1016/j.tig.2016.01.004

Budroni S, Siena E, Hotopp JCD, Seib KL, Serruto D, Nofroni C, Comanducci M, Riley DR,
Daugherty SC, Angiuli SV, Covacci A, Pizza M, Rappuoli R, Moxon ER, Tettelin H, and
Medini D. 2011. Neisseria meningitidis is structured in clades associated with restriction
modification systems that modulate homologous recombination. *Proceedings of the
National Academy of Sciences of the United States of America* 108:4494-4499.
10.1073/pnas.1019751108

Castellano D, James J, and Eyre-Walker A. 2018. Nearly neutral evolution across the Drosophila
melanogaster genome. *Mol Biol Evol* in press.

Charlesworth B, Morgan MT, and Charlesworth D. 1993. The effect of deleterious mutations on
neutral molecular variation. *Genetics* 134:1289-1303.

Charlesworth D, Charlesworth B, and Morgan MT. 1995. The pattern of neutral molecular
variation under the background selection model. *Genetics* 141:1619-1632.
Charlesworth J, and Eyre-Walker A. 2008. The McDonald-Kreitman test and slightly deleterious mutations. *Mol Biol Evol* in press.

Chen J, Glemin S, and Lascoux M. 2017. Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species. *Mol Biol Evol* 34:1417-1428. 10.1093/molbev/msx088

Chen X, and Zhang J. 2013. No gene-specific optimization of mutation rate in Escherichia coli. *Mol Biol Evol* 30:1559-1562. 10.1093/molbev/mst060

Chung GT, Yoo JS, Oh HB, Lee YS, Cha SH, Kim SJ, and Yoo CK. 2008. Complete genome sequence of Neisseria gonorrhoeae NCCP11945. *J Bacteriol* 190:6035-6036. 10.1128/JB.00566-08

Claus H, Maiden MC, Wilson DJ, McCarthy ND, Jolley KA, Urwin R, Hessler F, Frosch M, and Vogel U. 2005. Genetic analysis of meningococci carried by children and young adults. *J Infect Dis* 191:1263-1271. 10.1086/428590

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, and de Hoon MJL. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* 25:1422-1423. 10.1093/bioinformatics/btp163

De Silva D, Peters J, Cole K, Cole MJ, Cresswell F, Dean G, Dave J, Thomas DR, Foster K, Waldram A, Wilson DJ, Didelot X, Grad YH, Crook DW, Peto TEA, Walker AS, Paul J, and Eyre DW. 2016. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. *Lancet Infectious Diseases* 16:1295-1303. 10.1016/S1473-3099(16)30157-8

Didelot X, and Wilson DJ. 2015. ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes. *Plos Computational Biology* 11. ARTN e1004041 10.1371/journal.pcbi.1004041

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32:1792-1797. 10.1093/nar/gkh340

Do R, Balick D, Li H, Adzhubei I, Sunyaev S, and Reich D. 2015. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. *Nat Genet* 47:126-131. 10.1038/ng.3186

Eyre-Walker A. 2002. Changing effective population size and the McDonald-Kreitman test. *Genetics* 162:2017-2024.

Eyre-Walker A. 2006. The genomic rate of adaptive evolution. *Trends Ecol Evol* 21:569-575.

Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, Del Rio C, Didelot X, Dillon JA, Selden RF, Shafer WM, Turingan RS, Unemo M, and Read TD. 2015. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance. *PeerJ* 3:e806. 10.7717/peerj.806

Fay J, Wycoff GJ, and Wu C-I. 2001. Positive and negative selection on the human genome. *Genetics* 158:1227-1234.

Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NP, Enricht MC, Goldstein R, Hood DW, Kalia A, Moore CE, Zhou J, and Spratt BG. 2001. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. *Proc Natl Acad Sci U S A* 98:182-187. 10.1073/pnas.98.1.182
Galtier N. 2016. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis. *PLoS Genet* 12:e1005774. 10.1371/journal.pgen.1005774

Gojobori J, Tang H, Akey JM, and Wu CI. 2007. Adaptive evolution in humans revealed by the negative correlation between polymorphism and fixation pahses of evolution. *Proc Natl Acad Sci USA* 104:3907-3912.

Gordo I, and Dionisio F. 2005. Nonequilibrium model for estimating parameters of deleterious mutations. *Phys Rev E Stat Nonlin Soft Matter Phys* 71:031907. 10.1103/PhysRevE.71.031907

Gossmann TI, Woolfit M, and Eyre-Walker A. 2011. Quantifying the variation in the effective population size within a genome. *Genetics* 189:1389-1402. 10.1534/genetics.111.132654

Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, Trees D, and Lipsitch M. 2016. Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000-2013. *Journal of Infectious Diseases* 214:1579-1587. 10.1093/infdis/jiw420

Hill WG, and Robertson A. 1968. Linkage disequilibrium in finite populations. *Theoret Appl Genet* 38:226-231.

James J, Castellano D, and Eyre-Walker A. 2017. DNA sequence diversity and the efficiency of natural selection in animal mitochondrial DNA. *Heredity (Edinb)* 118:88-95. 10.1038/hdy.2016.108

Joseph B, Schneiker-Bekel S, Schramm-Gluck A, Blom J, Claus H, Linke B, Schwarz RF, Becker A, Goesmann A, Frosch M, and Schoen C. 2010. Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. *J Bacteriol* 192:5363-5377. 10.1128/JB.00883-10

Joseph B, Schwarz RF, Linke B, Blom J, Becker A, Claus H, Goesmann A, Frosch M, Muller T, Vogel U, and Schoen C. 2011. Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. *PLoS ONE* 6. ARTN e18441 10.1371/journal.pone.0018441

Kong Y, Ma JH, Warren K, Tsang RS, Low DE, Jamieson FB, Alexander DC, and Hao W. 2013. Homologous recombination drives both sequence diversity and gene content variation in Neisseria meningitidis. *Genome Biol Evol* 5:1611-1627. 10.1093/gbe/evt116

Lee RS, Seemann T, Heffernan H, Kwong JC, da Silva AG, Carter GP, Woodhouse R, Dyet KH, Bulach DM, Stinear TP, Howden BP, and Williamson DA. 2018. Genomic epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in New Zealand. *Journal of Antimicrobial Chemotherapy* 73:353-364. 10.1093/jac/dkx405

Leffler EM, Bullaughey K, Matute DR, Meyer WK, Segurel L, Venkat A, Andolfatto P, and Przeworski M. 2012. Revisiting an old riddle: what determines genetic diversity levels within species? *PLoS biology* 10:e1001388. 10.1371/journal.pbio.1001388

Lewontin RC. 1974. *The genetic basis of evolutionary change*. New York: Columbia University Press.
Maddamsetti R, Hatcher PJ, Cruveiller S, Medigue C, Barrick JE, and Lenski RE. 2015. Synonymous Genetic Variation in Natural Isolates of Escherichia coli Does Not Predict Where Synonymous Substitutions Occur in a Long-Term Experiment. *Mol Biol Evol* 32:2897-2904. 10.1093/molbev/msv161

Martincorena I, and Luscombe NM. 2013. Non-random mutation: The evolution of targeted hypermutation and hypomutation. *BioEssays* : news and reviews in molecular, cellular and developmental biology 35:123-130. 10.1002/bies.201200150

Martincorena I, Seshasayee AS, and Luscombe NM. 2012. Evidence of non-random mutation rates suggests an evolutionary risk management strategy. *Nature* 485:95-98. 10.1038/nature10995

Maynard Smith J, and Haigh J. 1974. The hitch-hiking effect of a favourable gene. *Genet Res* 23:23-35.

McDonald JH, and Kreitman M. 1991. Adaptive evolution at the *Adh* locus in *Drosophila*. *Nature* 351:652-654.

Ohta T. 1972. Population size and rate of evolution. *J Mol Evol* 1:305-314.

Ohta T. 1977. Extension of the neutral mutation drift hypothesis. In: Kimura M, ed. *Molecular Evolution and Polymorphism*. Mishima: National Institute of Genetics, 148-167.

Ohta T. 1992. The nearly neutral theory of molecular evolution. *Ann Rev Ecol Syst* 23:263-286.

Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, Morelli G, Basham D, Brown D, Chillingworth T, Davies RM, Davis P, Devlin K, Feltwell T, Hamlin N, Holroyd S, Jagels K, Leather S, Moule S, Mungall K, Quail MA, Rajandream MA, Rutherford KM, Simmonds M, Skelton J, Whitehead S, Spratt BG, and Barrell BG. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. *Nature* 404:502-506. 10.1038/35006655

Peng J, Yang L, Yang F, Yang J, Yan Y, Nie H, Zhang X, Xiong Z, Jiang Y, Cheng F, Xu X, Chen S, Sun L, Li W, Shen Y, Shao Z, Liang X, Xu J, and Jin Q. 2008. Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. *Genomics* 91:78-87. 10.1016/j.ygeno.2007.10.004

Roberts L. 2008. An ill wind, bringing meningitis. *Science* 320:1710-1715.

Romiguier J, Gayral P, Ballenhien M, Bernard A, Cahais V, Chenuil A, Chiari Y, Dernat R, Duret L, Faivre N, Loire E, Lourenco JM, Nabholz B, Roux C, Tsagkogeorga G, Weber AAT, Weinert LA, Belkhir K, Bierne N, Glemin S, and Galtier N. 2014. Comparative population genomics in animals uncovers the determinants of genetic diversity. *Nature* 515:261-U243. 10.1038/nature13685

Rusniok C, Vallenet D, Floquet S, Ewles H, Mouze-Soulama C, Brown D, Lajus A, Buchrieser C, Medigue C, Glaser P, and Pelicic V. 2009. NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. *Genome Biol* 10:R110. 10.1186/gb-2009-10-10-r110
Sattath S, Elyashiv E, Kolodny O, Rinott Y, and Sella G. 2011. Pervasive Adaptive Protein Evolution Apparent in Diversity Patterns around Amino Acid Substitutions in Drosophila simulans. *PLoS Genetics* 7. ARTN e1001302 10.1371/journal.pgen.1001302

Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, and Frosch M. 2008. Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. *Proc Natl Acad Sci U S A* 105:3473-3478. 10.1073/pnas.0800151105

Schoen C, Weber-Lehmann J, Blom J, Joseph B, Goesmann A, Strittmatter A, and Frosch M. 2011. Whole-genome sequence of the transformable Neisseria meningitidis serogroup A strain WUE2594. *J Bacteriol* 193:2064-2065. 10.1128/JB.00084-11

Spratt BG. 1988. Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. *Nature* 332:173-176. 10.1038/332173a0

Spratt BG, Zhang QY, Jones DM, Hutchinson A, Brannigan JA, and Dowson CG. 1989. Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis. *Proc Natl Acad Sci U S A* 86:8988-8992.

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123:585-595.

Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, Rappuoli R, and Venter JC. 2000. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. *Science* 287:1809-1815.

Vazquez JA, Delafuente L, Berroa S, Orourke M, Smith NH, Zhou JJ, and Spratt BG. 1993. Ecological Separation and Genetic Isolation of Neisseria-Gonorrhoeae and Neisseria-Meningitidis. *Current Biology* 3:567-572. Doi 10.1016/0960-9822(93)90001-5

Vos M, and Didelot X. 2009. A comparison of homologous recombination rates in bacteria and archaea. *ISME J* 3:199-208. ismej200893 [pii]

Welch JJ, Eyre-Walker A, and Waxman D. 2008. Divergence and Polymorphism Under the Nearly Neutral Theory of Molecular Evolution. *J Mol Evol* 67:418-426. 10.1007/s00239-008-9146-9

WHO. 2012. Global action plan to control the spread and impact of antimicrobial resistance in *Neisseria gonorrhoeae*.

Yazdankhah SP, Kriz P, Tzanakaki G, Kremastinou J, Kalmusova J, Musilek M, Alvestad T, Jolley KA, Wilson DJ, McCarthy ND, Caugant DA, and Maiden MC. 2004. Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. *J Clin Microbiol* 42:5146-5153. 10.1128/JCM.42.11.5146-5153.2004
Yu D, Jin Y, Yin ZQ, Ren HG, Zhou W, Liang L, and Yue JJ. 2014. A Genome-Wide Identification of Genes Undergoing Recombination and Positive Selection in Neisseria. *Biomed Research International*. Artn 815672
10.1155/2014/815672

Zhang Y, Yang J, Xu L, Zhu Y, Liu B, Shao Z, Zhang X, and Jin Q. 2014. Complete Genome Sequence of Neisseria meningitidis Serogroup A Strain NMA510612, Isolated from a Patient with Bacterial Meningitis in China. *Genome Announc*. 2.
10.1128/genomeA.00360-14
Table 1 (on next page)

Nucleotide diversity estimates across all sites in the core genome (π) and at 0-fold non-synonymous sites (π_N) and 4-fold synonymous sites (π_S).
	\(\pi \)	\(\pi_S \)	\(\pi_N \)
N. gonorrhoeae	0.0029 (0.0008)	0.007 (0.002)	0.0014 (0.0004)
N. meningitidis	0.022 (0.007)	0.06 (0.02)	0.007 (0.002)
Ratio	7.6	8.6	5.0

Table 1. Diversity estimates across all sites in the core genome (\(\pi \)) and at 0-fold non-synonymous sites (\(\pi_N \)) and 4-fold synonymous sites (\(\pi_S \)).
Table 2 (on next page)

Recombination rate estimates obtained from ClonalFrameML along with their 95% confidence intervals.

Given is the rate at which recombination tracts initiate (R) relative to the rate of mutation (theta), both multiplied by the effective population size, the average length of recombination tracts (delta) and the proportion of sites that differ to the resident sequence (mu), along with the rate at which sites change due to recombination relative to mutation (r/m)
Table 2. Recombination rate estimates obtained from ClonalFrameML along with their 95% confidence intervals.
Figure 1 (on next page)

Decay in linkage disequilibrium with the distance between sites.

Linkage disequilibrium, as measured by r^2 (Hill & Robertson 1968), between pairs of polymorphic sites as a function of the distance between sites for (A) all sites and (B) for those sites not inferred to have undergone hLGT. Each point represents the average r^2 between all pairs of points separated by a certain distance in bins of 10bp between 0 and 100bp, a bin of 101 to 200bp and then bins of 200bp up to 800bp. Nm in green, Ng in red.
Correlation between non-synonymous and synonymous diversity across the genome.

The correlation between the log of the non-synonymous nucleotide diversity and the log of the synonymous diversity for core genes in A) Nm and B) Ng. Points in green are genes with evidence of hLGT and red are those genes without evidence of hLGT. Note that some genes are excluded because they have either no non-synonymous or synonymous diversity.
Figure 3 (on next page)

Correlation between non-synonymous and synonymous diversity excluding regions with evidence of hLGT.

The correlation between the log of the non-synonymous nucleotide diversity plotted and the log of the synonymous diversity for regions of the genome that have not undergone hLGT. Green is Nm, red is Ng. Also shown are the lines of best fit.
Figure 4 (on next page)

Synonymous diversity around sites fixed for either non-synonymous or synonymous substitutions.

Average synonymous diversity in A) Nm and B) Ng around sites that are fixed for either a non-synonymous (red) or synonymous (green) substitution between Nm and Ng.
Figure 5 (on next page)

hLGT tracts at the start and end of genes,

The number of sequences inferred to be due to hLGT in both species as a function of the distance from the A) start and B) end of genes, where the distance was the proportion of the gene length from the start and end.
