Short research communication

Translocation of a 190-kb mitochondrial fragment into rice chromosome 12 followed by the integration of four retrotransposons

Minoru Ueda 1,2, Nobuhiro Tsutsumi 2 and Koh-ichi Kadowaki 1

1 Genetic Diversity Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
2 Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan

Corresponding address: Koh-ichi Kadowaki, Ph.D, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan. Tel: +81-29-838-7449 Fax: +81-29-838-7408 e-mail: kadowaki@affrc.go.jp

Received: 2005.05.06; Accepted: 2005.06.08; Published: 2005.07.01

A 190-kb mitochondrial DNA sequence interrupted by seven foreign DNA segments was identified in rice chromosome 12. This fragment is the largest mitochondrial fragment translocated into the rice nuclear genome. The sequence is composed of a 190-kb segment of mitochondrial origin corresponding to 38.79% of the mitochondrial genome, 45 kb comprising four segments of retrotransposon origin, and 13 kb comprising three segments of unknown origin. The 190-kb sequence shows more than 99.68% similarity to the current mitochondrial sequence, suggesting that its integration into the nucleus was quite recent. Several sequences in the 190-kb segment have been rearranged relative to the current mitochondrial sequence, suggesting that the past and present arrangements of the mitochondrial genome differ. The four retrotransposons show no mutual sequence similarity and are integrated into different locations, suggesting that their integration events were independent, frequent, and quite recent. A fragment of the mitochondrial genome present in the nuclear genome, such as the 248-kb sequence characterized in this study, is a good relic with which to investigate the past mitochondrial genome structure and the behavior of independent retrotransposons during evolution.

Key words: mitochondria, nuclear, genome, integration, retrotransposon

1. Introduction

It is well accepted that present-day mitochondria and chloroplasts resulted from the integration of living organisms into an ancestral mother cell [1]. During evolution, most genes originally encoded by the endosymbiont have been translocated to the nuclear genome. However, most processes of gene translocation are still unclear. In recent studies, many mitochondrial genes that have been translocated into the nuclear genome have been successfully identified using molecular techniques. For instance, the respiratory mitochondrial gene cox2, which is ubiquitously found in the mitochondrial genome, is absent in the mitochondrial genome of the cowpea but has been translocated to the nuclear genome [2]. In rice, rps11 was the such organellar gene identified as having translocated to the nucleus. An rps11-related sequence is present in the rice mitochondrial genome but it is non-functional because of an internal stop codon in the original reading frame. A functional rps11 gene has been identified in the rice nuclear genome and is well characterized [3]. However, such successful gene translocations are rare events. More than 500 translocation events have been identified in which a mitochondrial sequence transferred into the rice nuclear genome [4]. The fate of the longest fragment, comprising 248 kb, identified in these events is further characterized in this study.

2. Materials and Methods

2.1 Program

The available rice genome database (http://rgp.dna.affrc.go.jp/) and the BLAST programs in the RiceBLAST BLAST Search Service (http://riceblast.dna.affrc.go.jp/) were used in this study. The parameters used in the BLASTN programs were the default values.

3. Results and Discussion

3.1 Identification of a 248-kb mitochondrial sequence in rice chromosome 12

The complete mitochondrial genome of rice has been sequenced [5]. Most of the nuclear genome sequence is also available for rice (http://rgp.dna.affrc.go.jp/). DNA sequences that have translocated from the mitochondrial genome to the nuclear genome have been identified at over 500 loci [4]. The longest of these sequences, a 248-kb mitochondrial fragment, was identified on chromosome 12 (Fig. 1). The 248-kb mitochondrial DNA fragment in the nuclear genome is designated 248-kb numtDNA in this study. The sequence starts at position 20493130 and ends at 20741523, corresponding to 71.2-71.7 centimorgans, on chromosome 12. The 248-kb numtDNA was contiguous across three overlapping bacterial artificial chromosome (BAC) clones: AL731738, AL713949, and AL732377. In the 248-kb numtDNA, seven segments of DNA comprising 58 kb are of non-mitochondrial origin. The remaining 190-kb numtDNA is of mitochondrial origin, corresponding to 38.79% of the mitochondrial genome. It has 99.68% identity with the original mitochondrial sequence [5], strongly suggesting that the sequence transferred from the mitochondrial to the nuclear genome very recently. However, the arrangement of DNA segments is very different in the 248-kb numtDNA and the present mitochondrial genome. This suggests that the past mitochondrial DNA conformation was quite different from the present conformation, rather than that DNA fragments from different mitochondrial positions integrated into the same chromosomal locus or that DNA rearrangements have occurred within the nuclear genome. Mutation is much faster in nuclear genome than in the mitochondrial genome [6]. If the
mutation rate is $5-30 \times 10^{-9}$ per site per year in the plant nucleus [6], the translocation of the 190-kb numtDNA is estimated to have happened about $1.0-6.4 \times 10^5$ years ago. The similarities between each part of the mitochondrial fragments are shown in Table 1.

A 620-kb mitochondrial sequence has been identified in the Arabidopsis nuclear genome [7]. Our study and the previous Arabidopsis study suggest that the plant nuclear genome is flexible enough to accept into chromosomes more than 190 kb of foreign DNA sequence at a time.

3.2 Recent integration of four retrotransposons into the 190-kb numtDNA

Seven segments comprising 58 kb within the 248-kb numtDNA are inferred to be of non-mitochondrial origin because no homology was identified between them and the present rice mitochondrial genomic sequence. Four of these segments were found to be retrotransposon-related sequences in that they contain 3982-bp, 4228-bp, 3155-bp, and 3237-bp long terminal repeats (LTR). The total lengths of the four retrotransposons are 10.7 kb, 11.3 kb, 12.1 kb, and 3237-bp long terminal repeats (LTR). The total lengths of the four retrotransposons are 10.7 kb, 11.3 kb, 12.1 kb, and 10.7 kb, respectively (Table 1). One of them is a Ty3-gypsy like retrotransposon on the basis of its structure [8], but the other three are class I retrotransposons that had not yet been categorized. To determine the possible ancestral retrotransposons, we conducted NCBI BLAST searches [9] using internal sequences from the three retrotransposons as queries. Among the retrotransposons extracted from the analysis, we found several retrotransposons encoding full sets of proteins, including capsid-like protein, endonuclease, integrase, protease, reverse transcriptase, and Rnase-H [8]. A comparison of the orders of these protein-encoding sequences strongly suggests that all the retrotransposons are Ty3-gypsy like retrotransposon. Therefore, we conclude that all four retrotransposons in the 248-kb numtDNA were derived from a Ty3-gypsy like retrotransposon.

In conclusion, the 248-kb numtDNA is a good relic sequence with which to determine the past mitochondrial genome structure and the behavior of independent retrotransposons during evolution. DNA segments of foreign origin, like numtDNA, should make a considerable contribution to the study of genome evolution.

Table 1. Evolutionary information on the DNA segments in the 248-kb numtDNA

Position	on chr12	on genome	mt Similarity	Remarks
20493130-2050933	174769-182286	1) 99.89%	1) 99.47%	
20505934-20514652	336511-341789	1) 99.89%	1) 99.47%	
20514653-20527904	177831-190726	1) 99.88%	1) 100%	
20527905-20538625	317744-317382	1) 99.73%	1) 99.73%	
20538626-20542685	317387-313326	1) 99.73%	1) 99.98	
20542686-20583082	92237-51835	1) 99.84%	1) 99.84%	
20583083-20584200	Unknown 1			
20584201-20596624	51835-40090	1) 99.94%	1) 99.91%	
20596625-20607940	7395-6728	1) 99.70%	1) 99.91%	
20607941-20626615	6733-6114	1) 99.84%	1) 99.84%	
20626616-20638693	165164-183215	1) 99.83%	1) 99.83%	
20638694-20673702	183211-208532	1) 99.12%	1) 99.12%	
20673703-20677265	281779-285341	1) 99.69%	1) 99.69%	
20677266-20682489	416262-421493	1) 99.90%	1) 99.90%	
20682490-20685923	Unknown 3			
20685924-20716720	273647-254621	1) 99.83%	1) 99.83%	
20716721-20727451	7395-6111	1) 100%	1) 100%	
20727452-20741523	175795-189870	1) 98.41%	1) 98.41%	

Positions on chromosome 12 (chr12) and the mitochondrial (mt) genome and their sequence similarities are shown. 1) comparing the mt genome against the nuclear genome. 2) comparing one part of the LTR against the other part of the LTR in the same retrotransposon. *1, *2, *4 thought to be Ty3-gypsy like retrotransposons. *1 Retrotransposon

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (grant 15208001) to N.T. and K.K. We thank Drs. F. Quetier, T. Nishikawa and A. Miyao for helpful discussions.
Conflict of interest

The authors have declared that no conflict of interest exists.

References

1. Gray MW. The endosymbiont hypothesis revisited. Int Rev Cytol 1992; 141: 233-357.
2. Nugent JM, and Palmer JD. RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 1991; 66(3):473-81.
3. Kadowaki K, Kubo N, Ozawa K, et al. Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals. EMBO J 1996; 15(23):6652-61.
4. Richly E, Leister D. NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 2004; 21(6):1081-4.
5. Notsu Y, Masood S, Nishikawa T, et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 2002; 268(4):434-45.
6. Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 1987; 84(24):9054-8.
7. Stupar RM, Lilly JW, Town CD, et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2; implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci U S A 2001; 98(9):5099-103.
8. Kumar A, Bennett JL. Plant retrotransposons. Annu Rev Genet 1999; 33:479-532.
9. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17):3389-402.

Figures

Figure 1. Schematic representation of the 248-kb mitochondrial sequence on chromosome 12 and the corresponding sequences on a master circle of rice mitochondrial genome. (A) Three contiguous BAC clones carrying mitochondrial sequences are indicated by bold lines. cM, centimorgans. A black box and a circle represent a mitochondrial sequence and a centromere on chromosome 12, respectively. Four striped boxes show retrotransposon sequences. Three white boxes indicate sequences of unknown origin. (B) A presumptive mitochondrial master circle of the rice mitochondrial genome. Sequences with strong similarity are shown in the same colors.
Figure 2. A model for the evolution of the 248-kb numtDNA on rice chromosome 12. Step 1, integration of a 190-kb mitochondrial fragment into chromosome 12. Step 2-1, integration of four retrotransposons into the 190-kb mitochondrial fragment. Step 2-2, recombination events within the mitochondrial genome.