Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis

GM Clifford1,*, JS Smith1, T Aguado2 and S Franceschi1

1Unit of Field and Intervention Studies, International Agency for Research on Cancer, 150, cours Albert Thomas, 69008, Lyon, France; 2Department of Vaccines and Biologicals, WHO, Geneva, Switzerland

Particular types of human papillomavirus (HPV) infection may preferentially progress from high-grade squamous intraepithelial lesions (HSIL) to squamous cell carcinoma of the cervix (SCC). We performed a meta-analysis of published data to compare HPV type distribution in HSIL and SCC. HPV16, 18 and 45 were each more prevalent in SCC than HSIL, whereas the reverse was true for other oncogenic types including HPV31, 33, 52 and 58. These data suggest that HSILs infected with HPV16, 18 and 45 preferentially progress to SCC. This may have implications for follow-up protocols of future HPV-based cervical cancer screening programmes and for HPV vaccine trials.

British Journal of Cancer (2003) 89, 101–105. doi:10.1038/sj.bjc.6601024 www.bjcancer.com

© 2003 Cancer Research UK

Keywords: Human papillomavirus; high grade intraepithelial lesions; cervical cancer; squamous cell carcinoma; epidemiology; meta-analysis

Epidemiological studies have established human papillomavirus (HPV) infection as the central cause of invasive cervical cancer (ICC) and its precursor lesions (Walboomers et al, 1999). However, only a fraction of precancerous lesions progress to ICC. A strong candidate factor for differential progression is HPV type (Lorincz ICC. A strong candidate factor for differential progression is HPV type (Lorincz et al, 1992).

Identifying HPV types that preferentially progress from high-grade squamous intraepithelial lesions (HSIL) to ICC has implications not only for follow-up protocols in ICC screening programmes, but also for prophylactic type-specific HPV vaccine trials. For ethical reasons, final outcome measures in such trials will be the prevention of HSIL. However, it is important to know whether the HPV type distribution in HSIL is representative of those that go on to cause cancer.

Articles presenting HPV type-specific prevalence data were identified from Medline. Studies had to include at least 20 cases of squamous cell or histologically unspecified cervical cancer (Clifford et al, 2002) and/or 20 histologically verified cases of HSIL. In this study, HSIL refers both to lesions classified by the Bethesda system, that is, CIN2/3, and those classified separately as CIN2 and CIN3. Studies had to use polymerase chain reaction (PCR)-based assays to identify HPV, and to present prevalence of at least one HPV type other than HPV6, 11, 16 or 18 (Clifford et al, 2002). Studies had to use PCR primers (5318 SCC, 3502 HSIL). The SCC : HSIL ratios were calculated for all cases tested for HPV, and thus represents the prevalence in either single or multiple infections.

Overall, HPV prevalence was slightly higher in SCC cases (87.6%) than HSIL (84.2%) (SCC:HSIL ratio 1.04, 95% CI 1.03–1.06) (Table 2). HPV16 was the most common type in both SCC (54.3%) and HSIL (45.0%), but was more prevalent in SCC (ratio of 1.21, 95% CI 1.16–1.26). HPV18 was also more prevalent in SCC (12.6%) than in HSIL (7.0%), with a ratio of 1.79 (95% CI 1.56–2.10). HPV45 was associated with a ratio of 1.85 (95% CI 1.35–2.91), similar to that of HPV18. All other HR types included were additionally calculated within more homogeneous study subgroups: (i) studies that did not report any multiple infections (6558 SCC, 2182 HSIL), (ii) studies testing for HPV from biopsies (7128 SCC, 1483 HSIL), and (iii) studies using ‘broad'-spectrum PCR primers (5318 SCC, 3502 HSIL). The SCC:HSIL ratios were calculated separately for HSILs classified by the Bethesda system and for CIN3 only. Across all these subanalyses, SCC:HSIL ratios remained consistent for HPV16 (range: 1.04–1.25), HPV18 (1.46–1.93) and HPV45 (1.20–4.61). HPV31, 33, 35, 52 and 58 were consistently associated with ratios of 0.3–0.9, with the exception of HPV58 for biopsy studies (1.06, 95% CI 0.73–2.08).

Where sample size permitted, subanalyses were also stratified by region. When estimated from studies within Asia, Europe and South/Central America, respectively, there was no material difference in SCC:HSIL ratios for HPV16 (1.46, 1.17, 1.40), HPV18 (1.74, 2.02, 1.46), HPV45 (4.35, 1.39, 1.20), HPV33 (0.56, 0.62, 0.76), HPV35 (0.66, 0.85, 0.97) and HPV58 (0.37, 0.47, 0.48).
HPV16 or HPV16/18 vaccines may be an underestimate of the beneficial effect on the prevention of ICC. Even in countries with established screening programmes, women still die from rapidly progressing cancers that escape periodic examination. Given that HPV16, 18 and 45 appear to have greater progressive potential, and in the event that future cervical screening programmes include HPV typing, women infected with HPV16, 18 and 45 may require closer surveillance than women infected with other HR HPV types.

Our findings suggest that worldwide, HSIL infected with HPV16, 18 or 45 are more likely to progress to SCC than HSIL infected with other HR types. This could be interpreted in two ways: either these types have a greater potential to induce fully malignant transformation, and/or these infections somehow preferentially evade the host immune system. Compared to other HR types, HPV16, 18 and 45 may require closer surveillance than women infected with other HR HPV types.

ACKNOWLEDGEMENTS

The work reported in this paper was undertaken by Dr Gary Clifford during the tenure of an IARC Postdoctoral Fellowship from the International Agency for Research on Cancer. We thank Dr Massimo Tommasino for his critical comments during the preparation of the manuscript.
REFERENCES

Chan PK, Lam CW, Cheung TH, Li WW, Lo KW, Chan MY, Cheung JL, Cheng AF (2002) Association of human papillomavirus type 58 variant with the risk of cervical cancer. J Natl Cancer Inst 94: 1249–1253

Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S (2002) Human papillomavirus types in invasive cancer worldwide: a meta-analysis. Br J Cancer 88: 63–73

Hildesheim A, Hadjimichael O, Schwartz PE, Wheeler CM, Barnes W, Lowell DM, Willett J, Schiffman M (1999) Risk factors for rapid-onset cervical cancer. Am J Obstet Gynecol 180: 571–577

Londesborough P, Ho L, Terry G, Cuzick J, Wheeler C, Singer A (1996) Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities. Int J Cancer 69: 364–368

Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ (1992) Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 79: 328–337

Molano ML., van den Brule AJC, Plummer M., Weiderpass E, Posso H, Aralan A, Meijer CJLM, Muñoz N, Franceschi S, the HPV Study Group (in press) Determinants of clearance of HPV infections in women with normal cytology from Colombia. A population-based five-year follow-up study. Am. J. Epidemiol

Schwartz SM, Daling JR, Shera KA, Madeleine MM, McKnight B, Galloway DA, Porter PL, McDougall JK (2001) Human papillomavirus and prognosis of invasive cervical cancer: a population-based study. J Clin Oncol 19: 1906–1915

Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Petz J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19

Woodman CBJ, Collins S, Rollason TP, Winter H, Bailey A, Yates M, Young LS (2003) Human papillomavirus 18 and rapidly progressing cervical intraepithelial neoplasia. Lancet 361: 40–43

Appendix

Study methods and type-specific prevalence of human papillomavirus by study and by region are summarised in Table A1.

Correction: The reference to “Obstet Gynecol 79: 328–337” should be corrected to “Obstet Gynecol 79: 328–337” in the Appendix section.
Table A1

First author	Reference	Country	PCR primers used to identify all HPV +ve cases	CINII/CINIII/HSIL	HPV-specific prevalence (% of all cases tested)	No. cases															
Africa																					
La Ruche	Int J Cancer (1998)	Ivory Coast	Exfol. cells	MY09/11	49	0/0/0/49	77.6	30.6	10.2	0.0	6.1	8.2	4.1	0.0	4.1	0.0	2.0	0.0			
de Vuyst	Sex Transm Dis (2003)	Kenya	Exfol. cells	SPF10	29	0/0/0/29	96.6	34.5	3.4	6.9	6.9	1.4	6.9	24.1	17.2	0.0	3.4	10.3	6.9	0.0	10.3
Africa sub-total					78	0/0/0/78	84.6	32.1	7.7	2.6	6.4	11.5	6.4	0.0	3.8	3.8	0.0	10.3			
Asia																					
Chan MKM	Gynecol Oncol (1996)	China	Exfol. cells	MY09/11	45	10/35/0/0	55.6	24.4	8.9	0.0	0.0	4.4									
Chan PKS	J Med Virol (1999)	China	Exfol. cells	MY09/11	89	29/60/0/0	58.4	25.8	4.5	0.0	1.1	1.1									
Wu CH	Sex Transm Dis (1994)	China	Fixed	TS-PCR only	34	13/15/0/0	76.5	35.3	20.6	0.0	4.4										
Nagai Y	Gynecol Oncol (2000)	Japan	Exfol. cells	L1C1/L1C2	58	0/58/0/0	96.6	37.9	3.4	15.5	6.9	0.0									
Saito J	J Obstet Gynecol Pract (2001)	Japan	Exfol. cells	L1C1/L1C2	38	0/0/0/38	100.0	34.2	18.4	0.0	0.0										
Sasagawa T	Cancer Epidemiol Biomarkers Prev (2001)	Japan	Exfol. cells	LCR-E7	137	0/0/0/137	91.2	35.8	2.2	2.2	9.5	2.2									
Asia sub-total					726	62/243/52/369	76.4	31.4	6.9	1.0	4.9	11.2	6.4	0.0	3.8	3.8	0.0	10.3			
Europe																					
Baay MFD	Eur J Gynecol. Oncol (2001)	Belgium	Fixed	GP5+/6+	97	42/55/0/0	82.5	56.2	6.2	0.0	6.2	2.1	2.1	0.0	1.0	1.0	0.0				
Tachezy R	Hum. Genet. (1999)	Czech Republic	Exfol. cells	MY09/11	88	0/0/0/88	58.0	43.2	5.7	3.4	1.1	6.8									
Sebbelov	Res Virol. (1994)	Denmark	Fixed	GP5/6	34	0/34/0/0	91.2	85.3	0.0	0.0	29.4										
Bergeron B	Am J Surg Pathol (1992)	France	Fresh	L1 primers	53	0/0/0/53	92.5	56.6	3.8	1.9											
Merkelbach-Brue S	Diagn Mol. Pathol (1999)	Germany	Fixed	GP5/6	88	2/67/0/0	78.4	61.4	1.1	3.4	1.1										
Meyer T	Int J Gynecol Cancer (2001)	Germany	Fixed	GP5/6	288	0/0/288	94.4	46.2	6.2	1.4	13.2	9.4	1.7	5.6	3.1	0.7	1.4	1.0	0.3	1.4	
Nindi I	J Clin Pathol (1999)	Greece	Exfol. cells	GP5+/6+	65	31/34/0/0	87.7	56.9	6.2	1.5	18.5	7.7									
Nindi I	Int J Gynecol Pathol (1997)	Greece	Exfol. cells	GP5+/6+	85	0/0/0/85	83.5	36.5	2.4	5.9	12.9										
Labropoulou V	Sex Transm Dis (1997)	Greece	Fixed	MY09/11	50	0/0/0/50	88.0	36.0	12.0	6.0	0.0	4.0									
Paraskevaidis E	Gynecol Oncol (2001)	Greece	Exfol. cells	MY09/11	28	0/0/28	89.3	35.7	1.1	13.2	4.3	1.1									
Sebbelov	Res Virol. (1994)	Greenland	Fixed	GP5/6	30	0/30/0/0	63.3	70.0	3.3	6.7	1.0										
Butler D	J Pathol (2000)	Ireland	Fixed	TS-PCR only	27	0/27/0/0	85.2	70.4	3.7	3.7	0.0	0.0									
O’Leary JJ	Hum. Pathol. (1998)	Ireland	Fixed	GP5/6	20	0/20/0/0	95.0	95.0	0.0	0.0	0.0										
Laxoni	Pathologica (2000)	Italy	Fixed	GP5+/6+	36	19/17/0/0	100.0	50.0	8.3	2.8	2.8	5.6	5.6	2.8	0.0	0.0					

Comparison of HPV type distribution in HSIL and SCC

GM Clifford et al, British Journal of Cancer (2003), 89 (1), 101–105 & 2003 Cancer Research UK Molecular and Cellular Pathology
Study	Country	Location	Sample Size	HPV Type	HPV16/18	HPV31/33	HPV45	HPV51/52	HPV56/58	HPV6/11	HPV13	HPV15	HPV39	HPV42/43	HPV53	HPV54	HPV57	HPV61	HPV62	HPV70	HPV71	HPV73/74	HPV82	HPV8	HPV97	HPV99	Notes
Zerbini M	Italy	Exfol. cells	MY09/11	89	0/0/0/89	79.8	50.6	3.4	2.2	7.9	9.0																
Medeiros R	Portugal	Fixed biopsies	MY09/11	78	10/68/0/0	85.9	82.1	0.0	1.3																		
Bosch	Spain	Exfol. cells	MY09/11	157	0/157/0/0	70.7	49.0	0.6	1.3	5.7	0.6																
Kalantari M	Sweden	Exfol. cells	MY09/11	164	69/95/0/0	82.9	36.0	7.3	7.3	10.4																	
Zehbe I	Sweden	Fixed biopsies	GPS+/6+	103	55/48/0/0	95.1	50.5	9.7	1.9	7.8	9.7	1.9	0.0	7.8	1.9	0.0											
Bollen LJM	The Netherlands	Exfol. cells	SPF1/0	216	44/172/0/0	97.7	56.9	13.9	19.4	11.6	8.3																
Cornelissen MTE	The Netherlands	Fixed biopsies	MY09/11	89	16/73/0/0	88.8	52.8	6.7	12.4	5.7	0.6																
Reesink-Peters N	The Netherlands	Exfol. cells	SPF10	216	44/172/0/0	97.7	56.9	13.9	19.4	11.6	8.3																
Arends MJ	UK	Fixed biopsies	GPS+/6+	40	20/20/0/0	60.0	50.0	10.0	0.0																		
Cuzick J	UK	Exfol. cells	TS-PCR only	73	12/61/0/0	91.8	63.0	20.5	26.0	16.4	2.7																
Giannoudis A	UK	Fixed biopsies	GPS+/6+	118	31/87/0/0	100.0	68.6	4.2	0.0	14.4	11.0	3.4	0.8	2.5	0.0	2.5	0.8	2.5									
Herrington CS	UK	Exfol. cells	TS-PCR only	38	12/26/0/0	92.1	50.0	7.9	18.4	7.9																	
Southern SA	UK	Fixed biopsies	GPS+/6+	26	0/26/0/0	100.0	61.5	7.7	0.0	15.4	3.8																
Europe sub-total				2271	406/1181/0/684	87.1	52.6	6.5	2.4	2.6	0.3	2.5	1.5	0.6	1.8	1.6											
North America	Canada	Exfol. cells	MY09/11	58	0/0/0/58	98.3	75.9	8.6	0.0	27.6	5.2	0.0	0.0	0.0	0.0	0.0	0.0										
Adam E	USA	Exfol. cells	MY09/11	257	0/0/0/257	78.2	51.0	13.6	1.9	4.7	13.6																
Aoyama C	USA	Fixed biopsies	GPS+/6+	21	4/15/0/2	95.2	52.4	0.0	19.0	19.0																	
Schiff M	USA	Exfol. cells	MY09/11	112	7/50/2/0	77.7	17.0	4.5	18.2	22.3	45.1	6.1	4.5	4.5	12.5	4.5	2.9	6.3	9.8								
North America sub-total				448	74/50/2/0	81.5	45.8	10.0	1.2	11.2	5.4	10.6	2.9	9.4	2.9	8.2	2.9	1.8	4.1	6.5							
South/Central America	Argentina	Exfol. cells	MY09/11	86	13/24/0/97	97.7	50.0	14.0	7.0	2.3	7.0																
Alonzo LV	Argentina	Biopsies	GPS+/6+	36	0/36/0/0	80.6	41.7	11.1	0.0	5.6																	
Lorenzato F	Brazil	Exfol. cells	MY09/11	60	0/0/0/60	86.7	56.7	3.3	3.3	8.3	100.0	0.0	1.7														
Bosch	Colombia	Exfol. cells	MY09/11	125	0/125/0/0	63.2	32.8	0.0	2.4	2.4	1.6																
Herrero R	Costa Rica	Exfol. cells	MY09/11	125	0/0/0/125	88.8	44.8	5.6	2.4	6.4	3.2	9.6	7.2	3.2	0.8	3.2	7.2	0.8	3.2	0.0							
Ferrera A	Honduras	Exfol. cells	MY09/11	83	36/47/0/0	80.7	34.9	7.2	3.6	8.4	4.8	7.2	1.2	1.2	0.0	1.2	0.0	0.0	0.0								
Rattray	Jamaica	Exfol. cells	GPS+/6+	66	27/39/0/0	80.3	24.2	45.1	3.6	9.1	7.6	13.6															
Strickler HD	Jamaica	Exfol. cells	MY09/11	183	11/72/0/0	92.3	23.5	10.9	4.4	8.7	7.7	12.6	9.3	11.5	5.5	2.2	4.9	2.2	1.1	4.9							
Illades-Aguiar	Mexico	Fresh	MY09/11	27	0/0/0/27	85.2	37.0	3.7	0.0	14.8	14.8	3.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Torroella-Kouri M	Mexico	Exfol. cells	MY09/11	24	0/0/0/24	83.3	58.3	12.5	0.0	8.3	12.5	0.0	0.0	0.0	4.2	0.0	0.0	0.0									
South/Central America sub-total				815	187/343/0/285	84.3	36.9	7.1	4.4	6.4	5.5	10.2	5.4	5.5	2.5	2.0	4.7	1.1	1.4	2.0							
Total				4338	729/1824/51/1733	84.2	45.0	7.1	2.3	8.8	7.2	6.9	5.2	4.4	1.5	3.0	2.9	1.1	1.1	2.1							

Exfol. Cells = exfoliated cells.