The Distribution, Abundance and Subcellular Localization of Kinesin

Peter J. Hollenbeck

MRC Cell Biophysics Unit, 26 Drury Lane, London WC2B 5RL, England

Abstract. An antiserum which binds kinesin specifically on Western blots was used to determine the distribution and abundance of chicken kinesin by correlated immunoblotting and immunolocalization. Quantitative immunoblotting showed that the abundance of kinesin varied widely in different cell and tissue types, from 0.039% of total protein in epidermal fibroblasts to 0.309% in sympathetic neurons; of the types examined, only red blood cells lacked detectable kinesin. The molar ratio of tubulin/kinesin varied over a narrower range. To analyze the intracellular distribution of kinesin, cultured fibroblasts were fractionated by sequential extraction with saponin-, Triton X-100-, and SDS-containing buffer. Quantitative blotting of the resulting cell fractions indicated that 68% of fibroblast kinesin is in soluble form, 32% is membrane- or organelle-associated, and none is detectable in cytoskeletal fractions. To visualize this distribution, cells treated by the same extraction protocol were immunofluorescently stained with antikinesin and antitubulin. Without extraction, kinesin staining was located throughout cultured neurons and fibroblasts. However, when fibroblasts were extracted with saponin or Brij 58 before fixation, subsequent staining revealed that the remaining kinesin fraction was colocalized with interphase microtubules, but not with mitotic spindles. Prefixation extraction with Triton abolished antikinesin staining. These data suggest that kinesin may play a role in tubovesicular movement but provide no evidence for a role in mitosis.

KINESIN is a mechanochemical enzyme which was identified and purified from nervous tissue based upon its microtubule-binding properties (Lasek and Brady, 1985; Vale et al., 1985a; Brady, 1985) and its ability to generate microtubule-based motility in vitro (Vale et al., 1985b). It is a microtubule-activated ATPase (Kuznetsov and Gelfand, 1986; Cohn et al., 1986; Penningroth et al., 1987; Saxton et al., 1988; Bloom et al., 1988) of high molecular mass (Vale et al., 1985b; Bloom et al., 1988), comprising a 110-135-kD polypeptide species that is catalytic (Penningroth et al., 1987; Bloom et al., 1988), along with a 60-65-kD species; the native kinesin molecule probably contains two molecules of each species (Bloom et al., 1988). Kinesin has been prepared from nervous tissue of squid (Vale et al., 1985b), chicken (Brady, 1985), cow (Vale et al., 1985; Kuznetsov and Gelfand, 1986), and pig (Amos, 1987), as well as from sea urchin eggs (Scholey et al., 1985) and Drosophila embryos (Saxton et al., 1988), and there is some phylogenetic variation in its reported physical properties (reviewed by Hollenbeck, 1988).

Kinesin binds to artificial surfaces such as glass or latex beads in vitro and generates ATP-dependent microtubule (MT) translocation relative to them (Vale et al., 1985b). This in vitro motility has certain kinetic and physiological properties in common with rapid axonal transport; however, kinesin-based movement is unidirectional, such that kinesin-coated beads translocate exclusively toward the plus ends of the MTs, and MTs always glide with their minus ends forward (Vale et al., 1985c; Porter et al., 1987; Saxton et al., 1988).

Although no direct evidence exists for the function of kinesin in vivo, three roles in cell motility have been suggested. First, the studies summarized above have led to the proposal that kinesin serves as a motor for anterograde organelle movement in axons (Vale et al., 1985c; Vale et al., 1986; Sheetz, 1987), where essentially all MTs are arranged with their plus ends distal to the cell body (Burton and Paige, 1981; Heidemann et al., 1981). Second, based upon the isolation of kinesin from sea urchin eggs and immunostaining of the sea urchin mitotic spindle with a kinesin antibody, a role for kinesin in anaphase chromosome movement has been suggested (Scholey et al., 1985; Vale et al., 1986). However, more recent work indicates that extraction of the MT component of the sea urchin egg spindle does not eliminate an-

Peter Hollenbeck's present address is Department of Anatomy and Cellular Biology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115.
tubulin (prepared by the method of Murphy and Borisy, 1975), 10 mg/ml n-glucose, 18 U/ml hexokinase, 0.4 mM AMP-PNP, 10 μM taxol, incubated for 30 min at 25°C, and then centrifuged through cushions of 20% (wt/vol) sucrose in PMED plus 10 μM taxol and 0.1 mM AMP-PNP and centrifuged as above. The washed pellets were resuspended in 20 vol of PMED plus 10 mM MgATP and 0.3 M NaCl and centrifuged as above. The supernatant was layered over linear gradients of 5-20% sucrose in PMED and centrifuged at 250,000 × g for 9 h at 4°C in a rotor (model SW41; Beckman Instruments Inc., Palo Alto, CA) or 125,000 × g for 18 h in a rotor (model SW28; Beckman Instruments, Inc.). Fractions from the sucrose gradients were analyzed by SDS-PAGE and the kinesin peak was pooled. Pure 120-KD kinesin polypeptide was then prepared by preparative gel electrophoresis of peak sucrose gradient fractions on 1.5-mm-thick 7% SDS polyacrylamide gels. Preparative gels were stained briefly with 0.05% Coomassie brilliant blue to locate the 120-KD kinesin polypeptide, which was excised, dehydrated, and stored in 100% ethanol at −20°C. To elute kinesin, the gel pieces were rehydrated for 5 min in 125 mM Tris, 200 mM glycerol, 1% SDS, 10 mM DTT, pH 6.8, and subjected to a field of 200 V for 4–6 h in a Blottrap electroelution apparatus (Schleicher & Schuell). The eluted protein was dialyzed vs. PBS and its concentration was determined by the method of Brahamall et al. (1969).

Antiserum Preparation

The preimmune sera of Dutch rabbits were screened on western blots (sera diluted 1:200) of whole chicken brain and chick embryonic fibroblasts, and by immunofluorescence microscopy (diluted 1:50) of cultured chick embryonic neurons and fibroblasts fixed both with and without earlier extraction. Rabbits without detectable autoantibodies were selected for immunization, and additional preimmune serum was collected for control experiments. The immunization schedule was as follows: an intramuscular injection with 300 μg electrophoretically pure kinesin in complete Freund's adjuvant followed at 4 wk by an intramuscular injection with 200 μg kinesin in incomplete Freund's and at 8 wk by an intravenous injection with 200 μg of kinesin in PBS. 10 d after the intravenous boost, rabbits were test bled and their sera were examined by western blots and immunofluorescence microscopy. If a serum was positive, specific, and of high titer, blood was taken by cardiac puncture.

Cell Culture and Red Blood Cell Preparation

Sym pathetic ganglia from 12-d chick embryos were dissected, dissociated, and cultured as previously described (Hollenbeck et al., 1985; Hollenbeck and Bray, 1987). Chick embryonic fibroblasts were prepared from 10-d embryos by standard procedures (Bray and Chapman, 1985) and were grown on plastic in Leibowitz L-15 medium plus 10% FCS, 0.6% glucose, 2 mM l-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and passed two to three times before use. For immunofluorescence staining, cells were grown on glass coverslips (coated with poly-L-lysine for some experiments). To purify red blood cells, chicken blood was collected into PBS plus 25 U/ml heparin, and delipidated. Cells were pelleted, washed in PBS, and red cells were separated from leukocytes by cellulose absorption (Beutler et al., 1976).

Fixation and Immunofluorescent Staining

Cells were fixed at 37°C in 3.7% formaldehyde in PBS. When extracted before fixation, cells were incubated at 37°C in 0.1 M Pipes, 5 mM MgSO4, 10 mM EGTA, 4% polyethylene glycol, and one of the following detergents: 0.02% saponin, 0.2% Brij-58, or 1% Triton X-100. Cells were then fixed in the same solution plus 3.7% formaldehyde. All fixed cultures were washed in PBS plus 0.05% Triton X-100 (PBSTx) and then incubated sequentially in: rabbit anti-kinesin serum diluted 1:200 in PBSTx plus 1% BSA; YLI rat anti-tubulin diluted 1:5000; Texas red-conjugated donkey anti-rabbit Ig diluted 1:75. Coverslips were then mounted using 1 mg/ml p-phenylenediamine in 90% glyc erol/10% 10 X PBS (Johnson and Araujo, 1981).

Cell Fractionation

Confluent cultures of chick embryonic epidermal fibroblasts in 60-mm plastic dishes were washed thoroughly with PBS to remove serum protein. Then, the cells were covered with warm 0.1 M Pipes, 5 mM MgSO4, 10
mM EGTA, 2 mM DTT, protease inhibitors (except SBTI), 4% polyethylene glycol, 10 μM taxol, plus 0.02% saponin. After 10 min at 37°C, the supernatant was removed and replaced with the same buffer containing 1% Triton X-100 instead of saponin. After 3 min, that supernatant was removed and replaced with the same buffer containing 1% SDS instead of Triton X-100, and lacking taxol and polyethylene glycol. The remaining protein was removed into this buffer by scraping with a rubber policeman. Identical cultures were washed and treated with the SDS step only to obtain total cellular protein in one fraction. Protein was recovered from each fraction by chloroform extraction (Wessely and Plügg, 1984), assayed, and prepared for electrophoresis (see below). In experiments to determine the distribution of influenza hemagglutinin, fibroblasts were subjected to the above procedure with the following additions: cells were infected with 40 plaque-forming units/cell of A/PR8/8/34 (HI subtype) influenza virus for 4 h before extraction, and were treated with cold trypsin for 10 min to cleave cell surface hemagglutinin into HA1 and HA2 immediately before extraction (Matlin and Simons, 1983).

Electrophoresis and Immunoblotting

Proteins were separated by SDS-PAGE (Laemmli et al., 1970) on 7%, 8%, or 12% gels and stained with Coomassie blue. Cell and tissue samples were prepared for electrophoresis by homogenizing in 10 vols of hot 125 mM Tris, pH 6.8, 5% 2-mercaptoethanol, 10% glycerol, 4% SDS, heating to 100°C for 2 min, and storing at −70°C until needed. Proteins were transferred from gels to nitrocellulose by the method of Kyhse-Anderson (1984) for 15 Vh, giving efficient and uniform transfer of polypeptides ranging from 29 to 300 kD. To visualize total protein, some nitrocellulose blots were stained with 0.1% India ink in PBS. Immunostaining was carried out as follows: blots were blocked for 30 min in 5% donkey or sheep serum, washed in TBS plus 0.05% Tween-20 and 0.1% NaN3, then incubated in 1st antibody, washed in azide-free TBS, incubated in 2nd antibody (HRP-conjugated donkey anti-rabbit Ig or HRP-conjugated sheep anti-mouse Ig, 1 μg/ml in TBS), and washed in TBS. They were then developed for 10–20 s using 0.05% 3,3′-diaminobenzidine, 0.03% CoCl2, and 0.02% H2O2, and quenched with 1% azide in cold water. To determine the percent kinesin in different cells and tissues, protein samples and pure 120-kD kinesin polypeptide standards were electrophoresed on the same 8% gel and transferred to the same nitrocellulose sheet. After antibody binding (rabbit anti-kinesin 1:5,000) and development, the staining intensity of each band was determined by quantitative reflectance densitometry (Bamburg and Bray, 1987) with white light, using a Chromoscan 3 (Joyce-Loebl, Gateshead, UK) or a Hoefer GS 300 (Hoefer Scientific, San Francisco, CA). Plotting the amount of kinesin standard against band intensity gave linear regression fits with correlation coefficients of t a >10.98 for the range of 5 to 50 ng kinesin. The amount of kinesin in each tissue sample was then determined by reference to the standard line for each blot: Quantitation of tubulin was performed by the same method, using DMIA monoclonal mouse anti-α-tubulin (10 μg/ml) as the probe and a 40–200-ng range of purified chicken brain tubulin as standards on 12% gels. DMIA is directed against a highly conserved region of α-tubulin (Breitling and Little, 1986), and thus gives a highly specific signal regardless of the source of the tubulin which is used to probe the ER- and golgi-specific forms of influenza hemagglutinin, which run close together on gels with apparent molecular weights of 70–72 kD (Matlin and Simons, 1983; Matlin, 1986), were quantitated together on blots of 12% gels using an affinity-purified rabbit anti-α-tubulin at 100 μg/ml (Matlin, 1986). Ribophorin II, a rough ER-specific glycoprotein involved in ribosome binding (Krebich et al., 1978; Marcastel et al., 1984; Hortsch and Meyer, 1985) was quantitated using monoclonal rabbit anti-ribophorin II (Crimando et al., 1987). Glutathione-insulin transhydrogenase, an ER-specific enzyme (Ansgere et al., 1973; Varandani, 1973), was quantitated using monoclonal mouse antibody V83 (Dawson and Varandani, 1987).

Results

Production and Characterization of Anti-Kinesin Serum

Like other kinesins, chicken brain kinesin is efficiently prepared by exploiting its AMP-PNP-dependent, ATP-sensitive binding to MTs. It has a heavy chain with an estimated molecular mass of 120 kD (Fig. 1), slightly lower than previously reported (Brady, 1985). The elimination of competing, ATP-insensitive MAPs at the outset of the procedure (Bloom et al., 1988) together with the use of glucose and hexokinase to deplete ATP (Amos, 1987), resulted in a high yield: preparative gel electrophoresis of peak kinesin fractions from sucrose gradients recovered 500–600 μg of kinesin 120-kD polypeptide per 100 g of chicken brain. Immunization of rabbits with electroeluted kinesin (Fig. 1, lane f) resulted in the production of an immune serum which recognized kinesin alone on immunoblots of whole chicken brain, cultured sympathetic neurons, cultured epidermal fibroblasts (Fig. 2), and other tissues. A strong signal was obtained against 10 ng of purified kinesin (Fig. 2, lane d), and as little as 1 ng of kinesin could be detected (not shown).

Kinesin Distribution and Abundance

Kinesin was detected by immunoblotting in nearly all of the chick tissues and cell types screened (see Table I). These included tissues derived from all three primary germ layers, as well as primary cell cultures from epidermis and peripheral nervous system. The abundance of kinesin varied eight-fold, from 0.039% of the total protein in fibroblasts to 0.309% in sympathetic neurons. Assuming a composition of two 120-kD heavy chains per kinesin molecule (Bloom et al., 1988), this represents a range of 0.16–1.3 μmol kinesin per kilogram. Of the samples examined, only red blood cells lacked detectable levels of kinesin. Since the maximum capacity of the gel and transfer system is 30 μg protein per sample, and the lower limit of detection is ~1 ng of kinesin, a negative result indicates a level of <0.003% kinesin. Tubulin levels also varied widely in the samples examined, from <0.5% of total protein in red blood cells to 28.3% in 12 d brain (Table I).
and organelle-associated proteins are liberated by Triton extraction, but not by saponin. Two other ER-specific proteins, ribophorin II (Kreibich et al., 1978; Marcantonio et al., 1984; Hortsch and Meyer, 1985) and glutathione-insulin transhydrogenase (Ansgore et al., 1973; Varandani, 1973), were also undetectable in the saponin-soluble fraction (not shown).

When the kinesin content of these three fractions was assayed by quantitative immunoblotting (Table II), the saponin-soluble fraction was found to be highly enriched in kinesin, containing 68% of the total kinesin in just 14% of the total protein. The Triton-soluble fraction was also enriched over whole cells, with 32% of the total kinesin in 21% of the total protein. Kinesin was not detectable in the Triton-insoluble, SDS-soluble fraction, although it contained 65% of the total protein.

Immunolocalization of Kinesin in Cultured Cells

When cultured neurons were examined by double-label indirect immunofluorescent staining with antikinesin and anti-α-tubulin, both labels showed bright, uniform staining extending throughout the cell bodies and neurites, and into the proximal portion of the growth cones (Fig. 3). Faint antikinesin staining also extended into the lamellipodia of growth cones, but the size and morphology of these cells prevented the resolution of any detail in this region. To compare the distribution of the kinesin proteins in these cells, the immunodetection of kinesin was performed by double-label indirect immunofluorescent staining as described in Materials and Methods. The validity of this fractionation scheme was tested by determining the distribution of tubulin and organelle-specific proteins among the fractions. Tubulin was present in the saponin-soluble and Triton-insoluble fractions but was absent in the saponin-insoluble, Triton-soluble fraction (Table II), suggesting that saponin treatment successfully released essentially all of the soluble protein in these cells. On the other hand, the organelle-specific forms of the membrane protein influenza hemagglutinin (Matlin, 1986) were largely restricted to the saponin-insoluble, Triton-soluble fraction (Table II), confirming that organelle-associated proteins are liberated by Triton extraction, but not by saponin. Two other ER-specific proteins, ribophorin II (Kreibich et al., 1978; Marcantonio et al., 1984; Hortsch and Meyer, 1985) and glutathione-insulin transhydrogenase (Ansgore et al., 1973; Varandani, 1973), were also undetectable in the saponin-soluble fraction (not shown).

Table I. Abundance of Kinesin and Tubulin as Percentages of Total Protein in Chick Cells and Tissues

Cell or tissue	Kinesin	Tubulin	Total tubulin/kinesin
Red blood cells*	UD	.488 ± 0.033	–
Fibroblasts†	0.039 ± 0.002	2.45 ± 0.04	137
Liver	0.052 ± 0.004	1.10 ± 0.02	46
Epidermis	0.058 ± 0.001	1.76 ± 0.07	66
Skeletal muscle	0.070 ± 0.005	2.64 ± 0.04	82
Heart	0.071 ± 0.005	2.17 ± 0.02	67
Intestine	0.107 ± 0.004	3.20 ± 0.07	65
Brain	0.290 ± 0.011	28.3 ± 0.3	213
Sympathetic neurons‡	0.309 ± 0.004	13.6 ± 0.4	96

* Purified from adult chicken blood as described in Materials and Methods.
† Prepared from the epidermis of 12-d embryos as described in Materials and Methods.
‡ Dissected from 10-d chicken embryos and grown 48 h in culture before harvesting. All other samples were dissected from 12-d chicken embryos and immediately prepared for electrophoresis. Values for kinesin and tubulin are means of five determinations ±SEM. The molar ratio of tubulin to kinesin was calculated as described in Results. UD, undetectable.

Table II. Kinesin Distribution in Chick Epidermal Fibroblasts

Fraction	Kinesin	Total protein	Total kinesin	Total hemagglutinin	
Soluble (saponin)	0.165 ± 0.005	14 ± 1	68 ± 2	22 ± 2	UD
Organelle (Tx-100)	0.051 ± 0.002	21 ± 1	32 ± 1	UD	90 ± 4
Cytoskeletal (SDS)	UD	65 ± 2	UD	78 ± 4	10 ± 1

Fractions of cultured chick epidermal fibroblasts were prepared and subjected to quantitative immunoblotting as described in Materials and Methods. All values are the means of five to six determinations ±SEM. The mean percents of total proteins and their errors have been rounded to the nearest whole percent. UD, undetectable.

Figure 2. Characterization of antikinesin serum on immunoblots. India ink–stained nitrocellulose blots of lanes from 8% gels loaded with (a) 5 µg chicken brain homogenate, (b) 5 µg cultured sympathetic neurons, (c) 5 µg chick epidermal fibroblasts. Antikinesin-stained blots of lane d) 10 ng pure chicken brain kinesin, (e) 5 µg chick brain homogenate, (f) 3.5 µg cultured chick sympathetic neurons, (g) 10 µg chick epidermal fibroblasts.
tributions of the two labels, and to provide localization data correlative with the quantitative immunoblotting described above, I performed double staining with fibroblasts prepared by the same extraction protocol. When fixed without earlier extraction, fibroblasts showed a uniform antikinesin stain which was less intense than that of neurons (Fig. 4 a). To remove soluble protein and reveal the distribution of the remaining kinesin, fibroblasts were extracted with 0.02% saponin or 0.2% Brij 58 (Cande et al., 1981; Clark and Rosenbaum, 1982; Forman, 1982) before fixation. In interphase cells, the resulting pattern of antikinesin staining ranged from vaguely to distinctly fibrillar (Fig. 4 c), and this fibrillar staining was largely codistributed with antitubulin staining in the same cells (Fig. 4 d). Extraction with 1% Triton X-100 before fixation eliminated the antikinesin signal almost completely but had no effect on the MT cytoskeleton (Fig. 4, e and f). Neither preimmune serum nor immune serum absorbed against kinesin showed detectable staining of unextracted or extracted cells.

Although mitotic chick fibroblasts are highly rounded and the mitotic figures are small, it was clear that unextracted mitotic cells also showed diffuse antikinesin staining. The mitotic spindle and poles did not stain, and in fact the region of the spindle formed a visible zone of exclusion; this was a uniform result for all cultures examined (Fig. 5). When extracted with saponin or Brij 58–containing buffer before fixation, mitotic cells showed greatly reduced antikinesin staining which remained diffuse and uniform, and revealed no additional detail (not shown). Kinetochores, midbodies, and interphase centrosomes did not stain with antikinesin in extracted or unextracted cells.

Discussion

An essential step in elucidating the function of kinesin in the cell is to determine how the enzyme is distributed. Thus far, attempts to accomplish this by immunolocalization have produced conflicting results (Scholey et al., 1985; Leslie et al., 1987; Neighbors et al., 1988). In this study, I have approached this problem by combining the techniques of quantitative immunoblotting and immunofluorescent localization in the same system. The results reported here show that kinesin is essentially ubiquitous, but present in widely varying amounts in different cell types; that kinesin is largely soluble; that its distribution is consistent with a role in organelle transport and ER network formation, but not with its participation in anaphase chromosome movement.

Abundance of Kinesin in Different Cell Types

If kinesin generates force for MT-based organelle transport, it should be almost universal in eukaryotic cells, and its abundance should vary between cell types with widely differing amounts of transport. In this study, kinesin was found in nearly all of the cell types examined (Table I), and its abundance did vary in a manner consistent with a role in transport: brain and sympathetic neurons, which have copious organelle transport, have the highest levels of kinesin; non-neuronal tissues contain considerably less. Only red blood cells, which have a marginal band of MTs but no organelle transport (Harris, 1983), lack detectable kinesin.

A comparison of kinesin and myosin abundance reveals

Figure 3. Immunostaining of sympathetic neurons. Double-label indirect immunofluorescence of a chick sympathetic neuron in culture: (a) antikinesin staining; (b) antitubulin staining of the same cell. Both antigens are detected in the cell body, neurite, and proximal growth cones, but diffuse kinesin staining is also present in lamellipodia of the growth cones. Bar, 40 μm.
that absolute levels of myosin in brain (~0.5%; Burridge and Bray, 1975) and highly motile nonmuscle cells such as platelets and Acanthamoeba (0.3-1.0%; Pollard, 1981) are closely similar to those of kinesin in neural tissue (0.3%, Table I).

In addition, the molar ratio of neural tubulin/kinesin (96-213; Table I) is close to the actin/myosin ratio in nonmuscle cells (70-110; Pollard, 1981). By analogy with actomyosin composition in different cell types (Pollard, 1981), cells with abundant organelle transport might be expected to have not only the highest levels of kinesin, but also the most kinesin relative to tubulin; thus, the molar ratio of tubulin/kinesin would be lowest in neurons. That this is not the case may be due to two sources of variation in tubulin organization: the fraction of total tubulin which is polymerized varies from cell type to cell type (e.g., Caron et al., 1985), as does the amount of tubulin in structural, as opposed to transport, MTs. An example of the latter comes from neurons, where recent evidence indicates that ~75% of MTs are not available as substrata for organelle transport (Miller et al., 1987). Therefore, if the tubulin/kinesin ratios in Table I could be adjusted to reflect the fraction of polymerized tubulin actually available to interact with kinesin in different cell types, the ratio would probably be lowest for neurons.

Distribution into Different Subcellular Compartments

In cultured fibroblasts, most of the kinesin (68%) can be extracted by a low concentration of saponin, a treatment which is known to preserve the integrity of organelles and their capacity for transport (Forman, 1983), and which liberates little if any organelle-associated protein in this system (Table II). This strongly suggests that most of the kinesin in these cells is associated with neither organelles nor the cytoskeleton, but exists in a soluble pool. The existence of a soluble, cytoplasmic pool is consistent with the original identification of kinesin as an activity in a soluble fraction of axoplasm (Vale et al., 1985a), and explains the diffuse cytoplasmic staining seen when antikinesins are used in immunocytochemistry (Fig. 4 a; Scholey et al., 1985; Neighbors et al., 1988). The kinesin remaining in cells after saponin treatment is released by Triton, a treatment which also liberates the vast majority of organelle-associated hemagglutinin (Table II). This strongly suggests that the saponin-insoluble kinesin is associated with intracellular membrane; such organelle-associated kinesin is likely to be the fraction actively engaged in intracellular transport. The existence of soluble and insoluble pools of kinesin is similar to the disposition proposed for nonmuscle myosin (Citi and Kendrick-Jones, 1987). The question of whether kinesin, like myosin, undergoes a specific modification (Craig et al., 1983) which might
function to recruit it from one subcellular pool to another awaits further analysis.

Immunofluorescent Localization of Kinesin

The results of antikinesin staining on cultured cells concur with those obtained by quantitative immunoblotting. Unextracted neurons and fibroblasts show diffuse cytoplasmic antikinesin staining, the intensity of which is consistent with the relative abundance of kinesin in the two cell types (Table I, Figs. 3 and 4). Extraction of interphase fibroblasts before fixation reduces the total antikinesin staining intensity, as expected from quantitative blotting of cell fractions, and reveals an informative pattern: a saponin-insoluble, Triton-soluble component which is codistributed with MTs. In mitotic cells, however, no antikinesin staining is visible along the MTs of the mitotic spindle, whether cells are extracted before fixation or not. The absence of antikinesin staining of mitotic spindle MTs has also been reported in cultured mammalian epithelial cells (Neighbors et al., 1988). This is in contrast to the results of Scholey et al. (1985), who obtained intense antikinesin staining of the mitotic spindle of fertilized sea urchin eggs. Neighbors et al. (1988) reported staining of mitotic spindle poles, a feature observed neither in this study nor those of sea urchin eggs (Scholey et al., 1985; Leslie et al., 1987); the reason for this discrepancy is unclear.

The results obtained in these studies shed light on which intracellular structure is responsible for most of the antikinesin staining reported. This structure must be saponin insoluble, Triton soluble, enriched in an organelle-containing fraction, codistributed with interphase MTs in cultured vertebrate cells, and enriched in the spindles of sea urchin eggs, although probably not a component of the spindle MTs (Leslie et al., 1988). The ER fits all of these criteria: it is known to be codistributed with MTs in cultured vertebrate cells (Terasaki et al., 1986), and is resistant to treatment with mild detergents such as saponin and Brij 58, but soluble in Triton X-100 (Table II). In addition, by comparison with vertebrate somatic cells, the mitotic spindle of echinoderm eggs is very rich in ER-derived vesicles, which are thought to regulate Ca++ levels (Petzet and Hafner, 1986; Hafner and Petzet, 1987) and probably undergo transport along spindle MTs (Rehbuhn, 1972; Harris, 1975). The data thus support the hypothesis that kinesin is associated with, and drives the transport of, ER and ER-derived vesicles along MTs.

In the case of fibroblasts, we have enough information to ask whether the quantity of kinesin in the cell seems sufficient to generate and maintain a network of ER which spans the cell and colocalizes with many MTs (Terasaki et al., 1986). The following values can be used for calculation: 78% of chick epidermal fibroblast tubulin is polymerized (Table II); 13 tubulin dimers form 8 nm of MT (Amos, 1979); fibroblasts contain tubulin dimers and kinesin in a 137:1 molar ratio (Table I); and 32% of the kinesin is organelle-associated (Table II). If it is assumed that 50% of the MT length in these cells has associated ER, the result is that fibroblasts contain on average approximately one organelle-associated kinesin molecule per 100 nm of MT. Since very small numbers of kinesin molecules (~10) have been shown to drive the movement of 190 μm diameter synthetic beads in vitro (Gelles et al., 1988), a model in which the quantity of kinesin present in fibroblasts powers the elongation and reorganization of ER would seem reasonable.
Harris, J. R. 1983. Ultrastructure and biochemistry of the erythrocyte. In Physiology and Biochemistry of the Domestic Fowl. B. M. Freeman, editor. Academic Press Inc., London. 235–312.

Harris, P. 1985. The role of membranes in the organization of the mitotic apparatus. Exp. Cell Res. 94:400–425.

Hollenbeck, P. J., and R. J. Adams. 1985. Effects of the uncoupling agents FCCP and CCCP on the salatory movements of cytoplasmic organelles. Cell Biol. Int. Rep. 9:193–199.

Hortsch, M., and D. Meyer. 1985. Immunoochemical analysis of rough and smooth microsomes from rat liver. Segregation of docking protein in rough membranes. Eur. J. Biochem. 150:559–564.

Johnson, G. D., and G. M. de C. N. Araujo. 1981. A simple method for reducing the fading of immunofluorescence during microscopy. J. Immunol. Methods. 43:349–350.

Kilmartin, J. B., B. Wright, and C. Milstein. 1982. Rat monoclonal antitubulin antibodies derived by using a nonsecreting rat cell line. J. Cell Biol. 93:576–582.

Kreibich, G., C. M. Freienstein, B. N. Pereya, B. L. Ulrich, and D. D. Sabinini. 1978. Proteins of rough microsomal membranes related to ribosome binding. J. Cell Biol. 77:484–506.

Kaznetsov, V. I., and V. I. Gelfand. 1986. Bovine brain kinesins is a microtubule-activated ATPase. Proc. Natl. Acad. Sci. USA. 83:8530–8534.

Kyse-Anderson, J. 1984. Electrophoretic analysis of multiple gel subfractions contain equimolar amounts of ribophorins and ribosomes. J. Cell Biol. 93:576–582.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 227:680–685.

Lee, C., and L. B. Chen. 1988. Dynamic behavior of endoplasmic reticulum in living cells. Cell. 54:37–46.

Leslie, R. J., R. B. Bird, L. Wilson, J. R. McIntosh, and J. M. Scholey. 1987. Kinesin is associated with a nonmicrotubule component of sea urchin mitotic spindles. Proc. Natl. Acad. Sci. USA. 84:2771–2775.

Marchant, E. A., J. A. Costesec, C. K. Kimmie, and G. Kreibich. 1984. Segregation of the polypeptide translation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. J. Cell Biol. 99:2254–2259.

Matlin, K. S. 1986. Ammonium chloride slows transport of the influenza virus hemagglutinin but does not cause mis-sorting in a polarized epithelial cell line. J. Biol. Chem. 261:15172–15178.

Matlin, K. S., and K. Simons. 1983. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell. 34:233–243.

Miller, R. H., R. J. Lasek, and M. J. Katz. 1987. Preferred microtubules for vesicle transport in lobster axons. Science (Wash. DC). 235:220–222.

Murphy, D. B., and G. G. Borisy. 1975. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc. Natl. Acad. Sci. USA. 72:2696–2700.

Neighbors, B. M., R. C. Williams, and J. R. McIntosh. 1988. Localization of kinesin in cultured cells. J. Cell Biol. 106:1193–1204.

Penningroth, S. M., P. M. Rose, and D. D. Peterson. 1987. Evidence that the 116-kDa component of kinesin binds and hydrolyzes ATP. FEBS (Fed. Eur. Biochem. Soc.) Letts. 222:204–210.

Petzet, C., and M. Hafner. 1986. Visualization of the Ca2+-transport system of the mitotic apparatus of sea urchin eggs with a monoclonal antibody. Proc. Natl. Acad. Sci. USA. 83:1719–1722.

Pollard, T. D. 1981. Cytoplasmic contractile proteins. J. Cell Biol. 91(suppl.):1566–1658.

Porter, M. E., J. M. Scholey, D. L. Semple, G. P. A. Vigers, R. D. Vale, M. P. Sheetz, and J. R. McIntosh. 1987. Characterization of the microtubule movement produced by sea urchin egg kinesin. J. Biol. Chem. 262:2794–2802.

Rebunl, L. I. 1972. Polarized intracellular particle transport: salatory movements and cytoplasmic streaming. Int. Rev. Cytol. 32:93–137.

Scholey, J. M., M. E. Porter, P. M. Grissom, and J. R. McIntosh. 1985. Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature (Lond.). 318:483–486.

Terasaki, M., L. B. Chen, and K. Fujiiwara. 1986. Localization of endoplasmic reticulum in living and fixed cells with fluorescent dyes. J. Cell Biol. 103:1557–1568.

Vale, R. D. 1987. Intracellular transport using microtubule-based motors. Annu. Rev. Cell Biol. 3:347–378.

Vale, R. D., and H. Hotani. 1988. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol. 107:2233–2241.

Vale, R. D., B. J. Schnapp, T. S. Reese, and M. P. Sheetz. 1985a. Organelle, bead, and microtubule translocations promoted by soluble factors from the giant squid axon. Cell. 40:559–569.

Vale, R. D., T. S. Reese, and M. P. Sheetz. 1985b. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 42:39–50.

Vale, R. D., B. J. Schnapp, T. Mitchison, E. Steuer, T. S. Reese, and M. P. Sheetz. 1985c. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 43:623–632.

Vale, R. D., J. M. Scholey, and M. P. Sheetz. 1986. Kinesin: possible biological roles for a new microtubule motor. Trends Biochem. Sci. 11:464–468.

Varandani, P. T. 1973. Insulin degradation. V. Unmasking of glutathione-insulin transhydrogenase in rat liver microsomal membrane. Biochim. Biophys. Acta. 304:642–659.

Vale, R. D., and U. J. Fluigg. 1984. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138:141–143.