Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Dysgeusia
A review in the context of COVID-19

Davis C. Thomas, BDS, DDS, MSD, MSc Med, MSc; Deepti Chablani, BDS, MDS; Srishti Parekh, BDS, MDS; Reshmy Chellam Pichammal, BDS; Karpagavalli Shanmugasundaram, BDS, MDS; Priyanka Kodaganallur Pitchumani, BDS

ABSTRACT

Background. Taste disorders in general, and dysgeusia in particular, are relatively common disorders that may be a sign of a more complex acute or chronic medical condition. During the COVID-19 pandemic, taste disorders have found their way into the realm of general as well as specialty dentistry, with significance in screening for patients who potentially may have the virus.

Types of Studies Reviewed. The authors searched electronic databases (PubMed, Embase, Web of Science, Google Scholar) for studies focused on dysgeusia, ageusia, and other taste disorders and their relationship to local and systemic causes.

Results. The authors found pertinent literature explaining the normal physiology of taste sensation, proposals for suggested new tastes, presence of gustatory receptors in remote tissues of the body, and etiology and pathophysiology of taste disorders, in addition to the valuable knowledge gained about gustatory disorders in the context of COVID-19. Along with olfactory disorders, taste disorders are one of the earliest suggestive symptoms of COVID-19 infection.

Conclusions. Gustatory disorders are the result of local or systemic etiology or both. Newer taste sensations, such as calcium and fat tastes, have been discovered, as well as taste receptors that are remote from the oropharyngeal area. Literature published during the COVID-19 pandemic to date reinforces the significance of early detection of potential patients with COVID-19 by means of screening for recent-onset taste disorders.

Practical Implications. Timely screening and identification of potential gustatory disorders are paramount for the dental care practitioner to aid in the early diagnosis of COVID-19 and other serious systemic disorders.

Key Words. Dysgeusia; gustation; virus; taste disorders; infections; burning mouth syndrome; COVID-19; drug-induced; taste receptors; newer tastes.

The 5 special senses described in the literature are taste, smell, vision, hearing, and equilibrium.1-3 Taste is proposed to be guiding an organism toward appropriate recognition and consumption of nutrients. It also helps the organism in the prevention of consumption of materials that are toxic or difficult to digest. In humans, 5 types of basic tastes have been identified, namely sour, salt, sweet, bitter, and umami.4 Newer tastes, such as metallic, fatty, and calcium, have also been identified.5 Each taste sensation supposedly gravitates people toward specific foods. For example, sweet-tasting foods inherently announce the carbohydrate content that then could serve as an energy source. The sensation of salt controls sodium intake and aids in the maintenance of water and electrolyte content. Although bitter is supposed to warn against poisonous food content, there are several cultures and nations in the world that savor a bitter taste in foods that are not poisonous. It would be interesting to see why bitter tastants (any chemical that elicits a taste sensation) form a substantial component of traditional medicines, such as those used in Ayurveda, the Indian medical science. Differences in taste perceptions and preferences are seen as resulting from genetic variations, personal experiences, cultural diversity, psychology, personality traits, and, of course, pathologic changes in taste sensations. The physiology of gustation is complex, involving multiple receptors, pathways, and brain centers. In our comprehensive review, we summarized the
various subtopics under which the sensation of gustation is discussed and the possible mechanisms of gustatory disorders. In the context of the COVID-19 pandemic, the topic of dysgeusia assumes paramount importance, especially because it is one of the first symptoms of COVID-19 to appear. The astute and educated dental care practitioner is one of the earliest to pick up symptoms of dysgeusia.

NEUROANATOMY AND PHYSIOLOGY OF GUSTATION

The transmission of taste signals from various sites in the oral cavity to the brain stem is believed to occur through cranial nerves, namely, facial, glossopharyngeal, and vagus.6 The location and course of the first-, second-, and third-order neurons, their corresponding ganglia and nuclei, and the cortical centers of taste have been well elucidated (Figure 1).7 Third-order neurons carrying the taste sensations from the thalamus also project into the orbitofrontal cortex, termed the secondary taste cortex, which is responsible for the reward value of taste.8-10 The difficulty in pinpointing a single cortical area as responsible for taste comes from the varied results that functional imaging studies have yielded in the past few decades.11-13

The functional unit of taste is the taste bud, located on the various tongue papillae. The relative location of the taste buds on these papillae are shown in Figure 2. Taste buds have receptors, which are the biological transducers that convert chemical energy from tastants into electrical energy, facilitating the transmission of these taste impulses.7,14,15

Taste buds are present on the tongue, palate, pharynx, epiglottis, and esophagus.7 Remote taste receptors have been reported in tissues from the gastrointestinal tract, bladder, brain, respiratory tract, heart, buccal mucosa, sinuses, white blood cells, bone marrow, thyroid, keratinocytes, and testicles.16-24 The functional specificity of taste cells has prompted researchers to divide them into the following 5 types: type I (gliallike), type II (bitter, sweet, umami), type III (sour), type IV (pluripotent), and type V (marginal cells).25,26 The older concept of “taste mapping”—representing the tongue diagrammatically and showing the relative concentrations of specific taste sensations—has been replaced largely with the newer concept that all areas of the tongue represent the different tastes almost equally (Figure 3).27 A similar topographic arrangement in the cerebral cortex has also been proposed.28

GUSTATION AS RELATED TO OLFACTION: THE CONCEPT OF FLAVOR

Flavor is defined as a blend of taste, smell, and touch, acting as a premonition on the safety and quality of the food being consumed.29-31 It is a perception with multiple inputs from additional sensations, including vision and hearing.32,33 The robust interaction between the gustatory and olfactory areas of the brain is well known.34-37 There is a blend of olfaction, gustation, and texture in most of the taste perception (Figure 4).38,39 The orbitofrontal cortex, the basolateral amygdala, and the insular cortex have been reported to be associated with interactions among odor, taste, and flavor.40,41 Odors conditioning and enhancing specific tastes, such as saltiness, have been reported in studies during the past few decades.42,43

INDIVIDUAL TASTE SENSATIONS

The analgesic effect of sweet sensation may have a role in activating the endogenous opioid system; in addition, endocannabinoids have been reported to change taste perception by means of modulating sweet receptors.44 This might explain the preference for sweet foods in patients with chronic pain syndromes, such as burning mouth syndrome (BMS). The role of sweet sensation in regulating food intake, glucose homeostasis, and energy balance may be instrumental in the discovery of newer drugs for diseases such as diabetes and obesity.45-47 Sour taste is generally considered to be an indicator of acid (hydrogen ions). The presence of salt-sensing cells in the taste buds in fungiform papillae and their absence in the circumvallate papillae, has been confirmed.48-50 Salt sensation has a crucial role to play in the normal development of the gustatory circuits in the central nervous system.51 The role of tongue cleaning and its positive effect on the identification of salt sensation has been well known.52,53 Researchers have proposed that salt sensitivity in people with normal blood pressure could predict their susceptibility to hypertension.54-56

Umami (glutamic acid) occurs naturally in a variety of foods, including tomatoes, seafood, and egg yolks.57,58 Multiple umami receptors have been identified in rodents in the past 2 decades, and the taste is mediated through glossopharyngeal nerve.59-64 Certain published articles refer to a
positive aspect of umami taste in terms of improvement of nutritional intake, enhancement of habitual choice of healthy foods, and improvement of food flavor. The proposed negative effects of umami include hepatotoxicity, asthma, migraine headache, and central nervous system damage. Owing to the finding that a reduction in umami taste perception may trigger loss of appetite, subsequent health issues, and reduction in the quality of life, testing for this taste has been proposed to be one of the key tools for managing the treatment of patients with dysgeusia.

Figure 1. Neuroanatomy of the taste pathway. CN: Cranial nerve. Figure courtesy of Swetha Kannan and Dr. Sita Mahalakshmi Baddireddy.

Figure 2. Location of taste buds within various papillae. Figure courtesy of Dr. Srishti Parekh.
The bitter taste receptors that are present in the respiratory tract have been proposed to have crucial roles in the body’s defense mechanism against possible invading microbes. Their role in the possible detection of certain bacteria and in the process of bronchodilation has also been proposed.
and could become a novel target for therapy. Through the research of the previous 2 decades, we have come to know that approximately 30 taste receptor genes code for the bitter taste. Fat taste (oleogustus) is one of the newer described taste sensations and is proposed to be carried via the glossopharyngeal and chorda tympani nerves. Calcium taste has been found to help modulate calcium metabolism, intake, and homeostasis in mammals and has specific receptors coded via multiple genes.

EPIDEMIOLOGY OF GUSTATORY DISORDERS

Prevalence rates for taste disorders have been reported as ranging from 0.6% through 20% in the literature. Researchers have found that, in general, women perceive taste better. Researchers from multiple studies have reported that there is a decline in taste perception with increasing age. There is a reported reduction in prevalence of taste dysfunctions with aging in women compared with men. Researchers reported a strange association of taste disorders with educational attainment, in that the higher the level of education, the lower the incidence of taste disorders. There was similar association reported with olfactory disorders; however, the researchers failed to provide a plausible explanation for this phenomena. Sour tasting ability was consistently found to be most affected with aging. Liu and colleagues found that Black participants in their study had a higher prevalence of taste disorders, suggesting an association between ethnicity and taste disorders.

ETIOPATHOLOGY OF GUSTATORY DISORDERS

Taste disorders can range from dysgeusia (abnormal taste sensation) to ageusia (complete loss of taste sensation), depending on the degree of severity of the taste abnormality. The various terms used for the types of taste disorders are provided in Table 1. The total experience of taste has olfaction as a major component. Most apparent gustatory dysfunctions (such as dysgeusia) are the result of impaired olfaction (for example, allergies) rather than gustation. Abnormalities in transport (inability of the tastant to reach the receptor), gustatory unit (abnormality of peripheral sensory organs), and neuronal unit (such as damage to the peripheral or central nervous system) are the mechanisms of such gustatory dysfunctions. In the oral cavity, the gustatory receptors can be exposed to pathologies (such as inflammation) or artificial restorative dental materials (such as acrylic) and can thereby affect gustation.

Several genes and their associated receptors (for example, ENaC, T1R, T2R, TAS2R, and TRPV1) have been identified as coding for specific taste sensations. Conceivably, any sequence variation in these receptors and genes can cause a taste disorder. Researchers have reported that more than 50% of the drugs prescribed routinely in the United States cause some level of a taste disorder. The various medications that can cause dysgeusia are summarized in Table 2. Aging is also a factor for reduction in taste sensation.

RELEVANCE IN MEDICINE AND DENTISTRY

As alluded to earlier, multiple cranial nerves are involved in the sensation of taste, including trigeminal, facial, glossopharyngeal, and vagus. Mediators of chemosensation of taste include, but are not limited to, the tongue (factors are health of the tongue and papillae of the tongue), saliva (quality, quantity), oral mucous membrane, nerves, and neurotransmitters. Consequently, any alterations in these factors can contribute to a change in taste perception. As would be expected, dentists are among the first clinicians that patients approach with taste disorders. The most common symptoms in these patients include dysgeusia, phantogeusia, or an accompanying burning sensation. Many dental-related factors have been hypothesized to cause taste alterations, including local trauma, medications, infections, dental restorations, and salivary gland dysfunctions. Radiation therapy of the head and neck area have also been found to result in dysgeusia. Dysgeusia is also associated with several orofacial pain conditions, such as BMS and temporomandibular disorders. Researchers have also reported an association between dysgeusia and other conditions, such as Bell palsy and Guillain-Barré syndrome. The relevance of dysgeusia in the context of the COVID-19 pandemic is explained below.
Dysgeusia has been found to be associated with several systemic medical conditions, however, the mechanisms contributing to it are diverse. Systemic diseases commonly exhibiting taste dysfunction include, but are not limited to, Sjögren syndrome (SS), chronic renal failure, end-stage liver disease, endocrine disturbances (such as diabetes mellitus and thyroid disorders), genetic disorders (familial dysautonomia), neurologic disorders, and psychiatric conditions. Alterations in taste function have also been found in pregnant and postmenopausal women. The conditions that are related to taste disorders etiopathologically and their proposed mechanisms are summarized in Table 3.

Dysgeusia in autoimmune disorders

There are contradicting reports on the association between reduced salivary flow and taste disorders. SS, an autoimmune disorder with associated xerostomia, has been reported to include taste disorders as well. The mechanisms proposed to explain dysgeusia associated with SS include systemic inflammation, interaction with genetic pathways that influence gustation, an increase in the taste threshold, and small fiber neuropathy. Possibly due to the fact that sweet taste is independent of salivation, there was minimal alteration of the sweet taste in patients with SS. Other dysgeusia-associated disorders include autoimmune encephalitis, myasthenia gravis, systemic lupus erythematosus, multiple sclerosis, and Parkinson disease.

Dysgeusia associated with BMS

Taste alterations accompany BMS. These include phantogeusia (bitter, metallic, burning quality). The qualities of bitter and metallic that patients report as being associated with BMS are thought to be from cranial nerve IX being disinhibited subsequent to possible damage or hypofunction of the chorda tympani nerve. Consequently, it has been reported in the literature that patients with BMS find relief from symptoms when consuming sugary or sweet foods, which possibly stimulate a hypofunctioning chorda tympani nerve. There is a reported increase in taste threshold (that is, decreased taste sensitivity) of all tastes except umami. An increased fungiform papillae count has been proposed to be associated with “supertasters,” who are apparently at a higher risk of having BMS. Psychological factors have also been implicated in dysgeusia related to BMS.

Dysgeusia associated with infections

Diseases such as upper respiratory infections, viral hepatitis, and oral cavity infections have been associated with an increase in the detection and identification of individual taste stimuli via taste buds, thereby causing dysgeusia. Inflammation has been found to disrupt normal cell turnover of taste buds, leading to dysgeusia. HIV infections and subsequent therapies have been reported to be associated with dysgeusia.

Table 1. Taste terminology.

TASTE TERMINOLOGY	DESCRIPTION
Ageusia	Complete loss of taste sensation
Aliageusia	Bad taste to normally considered “good” taste
Dysgeusia	General term used for any abnormal taste sensation
Gustation	The scientific term given for the process of taste sensation
Hypergeusia	Increased sense of taste
Hypogeusia	Diminished sense of taste
Parageusia	Altered taste sensation in the presence of a tastant
Phantogeusia	Taste sensation in the absence of a tastant
Presbygeusia	An alteration in taste sensation considered as a result of aging
Tastant	Any chemical that elicits taste sensation
Taste Agnosia	A term used when a person cannot recognize a taste sensation, independent of normalcy in intellect, sensory processing, and linguistic abilities

Systemic conditions affecting taste

Dysgeusia has been found to be associated with several systemic medical conditions, however, the mechanisms contributing to it are diverse. Systemic diseases commonly exhibiting taste dysfunction include, but are not limited to, Sjögren syndrome (SS), chronic renal failure, end-stage liver disease, endocrine disturbances (such as diabetes mellitus and thyroid disorders), genetic disorders (familial dysautonomia), neurologic disorders, and psychiatric conditions. Alterations in taste function have also been found in pregnant and postmenopausal women. The conditions that are related to taste disorders etiopathologically and their proposed mechanisms are summarized in Table 3.
dysgeusia include, but are not limited to, rhinosinusitis, hepatitis E, *Helicobacter pylori*, Lyme disease, leprosy, syphilis, and cytomegalovirus.99,136,206,207

COVID-19 AND DYSGEUSIA

Although the COVID-19 pandemic began in early 2020, the data regarding anosmia and dysgeusia in the context of the association, pathogenesis, diagnosis, and prognosis of the disease are limited.208 A change in taste sensation is one of the earliest symptoms of COVID-19 and many times precedes the actual respiratory manifestation of the disease.209-213 Multiple hypotheses have been proposed in an attempt to explain the mechanistic pathway of how the COVID-19 organism affects gustatory senses.209,214 These include, but are not limited to, damage to the central nervous system, abnormal zinc homeostasis, angiotensin-converting enzyme 2 receptor manifestation, and increased proinflammatory cytokines.14,139-143 There is a high rate of sensation recovery rate in patients with COVID-19; however, whether more permanent loss of taste sensation occurs with COVID-19 infection is still unclear.215,216 The higher prevalence of taste alterations associated with the pandemic has prompted organizations, such as the European Centre for Disease Prevention and

TYPE OF DRUGS	REPRESENTATIVE DRUGS
Antianemic	Ferric carboxymaltose¹¹⁶⁻¹¹⁸
Antibacterial	Ampicillin, ciprofloxacin, metronidazole¹¹⁶⁻¹¹⁸
Anticholinergic	Atropine¹¹⁶⁻¹¹⁸
Antidepressant	Amitriptyline, clomipramine, desipramine¹¹⁶⁻¹¹⁸
Antiepileptic	Carbamazepine, phenytoin¹¹⁶⁻¹¹⁸
Antifungal	Griseofulvin¹¹⁶⁻¹¹⁸
Antihistamine and Decongestant	Chlorthalidone, loratadine¹¹⁶⁻¹¹⁸
Antihypertensive and Cardiac Medications	Acetazolamide, amiodarone, propranolol, nitroglycerine¹¹⁶⁻¹²⁰
Anti-inflammatory	Dexamethasone¹¹⁶⁻¹¹⁸
Antimanic	Lithium¹¹⁶⁻¹¹⁸
Antimigraine	Dihydroergotamine, sumatriptan¹¹⁶⁻¹¹⁸
Antineoplastic	Cisplatin, methotrexate, vincristine¹¹⁶⁻¹¹⁸
Antiparkinsonian	Levodopa¹¹⁶⁻¹¹⁸
Antipsychotic	Clozapine, trifluoperazine¹¹⁶⁻¹¹⁸
Antiviral	Aciclovir, interferon¹¹⁶⁻¹¹⁸
Anxiolytic	Alprazolam, buspirone¹¹⁶⁻¹¹⁸
Bronchodilator	Bitolterol¹¹⁶⁻¹¹⁸
Central Nervous System Stimulant	Amphetamine¹¹⁶⁻¹¹⁸
Drugs for Peptic Ulcer and Gastroesophageal Reflux Disease	Esomeprazole¹¹⁶⁻¹¹⁸
Hypnotic	Eszopiclone, zolpidem¹¹⁶⁻¹¹⁸
Hypoglycemic	Metformin¹¹⁶⁻¹¹⁸
Intestinal Anti-infective	Miconazole¹¹⁶⁻¹¹⁸
Intestinal Anti-inflammatory	Budesonide¹¹⁶⁻¹¹⁸
Lipid-Lowering	Atonvastatin¹¹⁶⁻¹¹⁸
Muscle Relaxant	Baclofen, dantrolene¹¹⁶⁻¹¹⁸
Pancreatic Enzyme Preparation	Pancrelipase¹¹⁶⁻¹¹⁸
Stomatologic Preparation	Hydrogen peroxide¹¹⁶⁻¹¹⁸
Smoking-Cessation Aids	Nicotine¹¹⁶⁻¹¹⁸
Thyroid	Levothyroxine sodium, propythiouracil¹¹⁶⁻¹¹⁸
DISORDER	PROPOSED MECHANISM OF ACTION
-------------------------------	---
Aging and Cognition^{130,131}	Cognitive processes like language and memory involved in taste recognition impaired in older adults
	Increased bitterness threshold in older adults
Bacterial Infections¹³²	Alteration of gene expression by stimulation of Toll-like receptors
Cancer Treatment⁹⁷	Damage to and reduced turnover of taste receptor cells
	Loss of connectivity between receptor cells and neurons
	Direct neuronal damage
Chronic Kidney Disease^{96,133,134}	Raised salivary sodium, salivary urea, salivary bicarbonate
	Reduced salivary zinc
	Uremic toxins
	Altered axon conduction
	Impaired cognitive status
Chronic Rhinosinusitis^{135,136}	Altered functionality of T2R38 bitter taste receptor
Chemotherapy¹³⁷	Alteration in zinc metabolism
	Carbonic anhydrase VI deficiency
Consumption of Ethyl Alcohol^{14,138}	Change in taste receptor sensitivity
	Abnormalities in micronutrient absorption
	Changes in saliva
	Alterations in taste buds
COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2)^{14,139-144}	Damage to the central nervous system by the virus attaching to the angiotensin-converting enzyme 2 receptors in glial cells and spinal neurons
	Abnormal zinc homeostasis
	Increased proinflammatory cytokines
	Direct infection of cells in the tongue
	Consequences of obstruction of taste cells chemesthesis due to inflammation and damage to cranial nerves VII, IX, and X
Diabetes Mellitus¹⁴⁵⁻¹⁴⁷	Xerostomia secondary to diabetes mellitus
	Diabetic neuropathy
	Reduction in innervation of taste buds
	Increased apoptosis of taste buds
	Lower density of the fungiform papillae
Drug Induced^{14,99,148-150}	Hyposalivation
	Adverse effects on taste receptors
	Adverse effects on taste neural pathway
	Abnormalities in neurotransmitter function
Fungal Infection, Candida albicans^{99,151}	Mechanical barrier by formation of pseudomembrane due to disproportional overgrowth
Genetic Disorders^{14,152-154}	Reduced number of taste papillae
	Changes in taste phenotypes
HIV and AIDS^{99,155,156}	Directly affects gustatory neurons
	Development of local lesions
	Xerostomia
	Chemosensory alterations secondary to antiretroviral therapy
	Neuronal degeneration secondary to HIV leukoencephalopathy
Liver Failure⁵⁹	Deficiency of vitamins B and C, zinc, and copper
Control, the American Academy of Otolaryngology—Head and Neck Surgery, and the World Health Organization, to recommend using taste alterations as a screening test and, when screening is positive, advise the clinician to test the patient for COVID-19. Identification of gustatory disturbances in the absence of concomitant symptoms of COVID-19 is of paramount importance to alerting physicians about the possibility of COVID-19, thereby aiding in self-isolating and testing the people affected.

Diagnostic Testing for Gustation

Various taste-testing measures have been used, ranging from simple chairside testing to objective and measured research-level testing for gustation. In a clinical setup, a clinician may use such tastants as a dilute aqueous solution of sugar, salt, sour, and bitter, although this method is subjective and lacks sufficient sensitivity and specificity. Objective testing can be done using electrogustometry, filter paper disk method, whole mouth method, taste strip method, and e-tongue method. The electrogustometry method tests the taste sensory nerves by means of measuring the electrical taste threshold in the soft-tissue areas supplied via the chorda tympani, greater petrosal, and glossopharyngeal nerves. In the filter paper disk method, test disks soaked in different taste solutions are placed on selected parts of the oral cavity. These tastes are applied in increasing concentration grades from the lowest to a point at which the participant identifies the correct taste. In the whole mouth method, participants rinse their mouths with multiple taste solutions with various molarities and identify the taste. This method also tests for taste threshold.

Table 3. Continued

DISORDER	PROPOSED MECHANISM OF ACTION
Multiple Sclerosis	Central demyelination
Neurodegenerative Disorders (Dementia, Alzheimer, and Others)	Insular atrophy
Parkinson Disease	Neurodegenerative changes of the frontal operculum or orbitofrontal cortex
Rheumatoid Arthritis	Neuropathy of terminal nerve fibers
Sjögren Syndrome	Neoprophathy secondary to rheumatoid arthritis drugs
Stroke	Injury to the insula, pons, thalamus, midbrain, and internal capsule
Systemic Lupus Erythematosus	Proinflammatory cytokines
Thyroid Disorder	Zinc deficiency secondary to thyroid disease
Toxins: Environmental	Chemosensory dysfunction
Viral Diseases	Nasal blockage; increased mucus production

Inflammation affecting gene expression in taste bud cells
In the taste strip method, filter paper strips embedded with the 4 basic tastes are used and placed in successive graded concentrations at the center of the anterior one-third of the tongue when the tongue is protruded.220,222 The e-tongue method is used mostly in pharmaceutical research and uses an analytical instrument that helps interpret the data from a sensor that records electrical signals from the taste fibers.223

EFFECT OF TASTE AND SMELL DISORDERS ON NUTRITION

Taste and smell sensations are closely interrelated when it comes to motivation to eat, enjoyment of food, and activation of the satiety centers of the brain.224 Induction of abnormal eating habits by means of olfactory disorders has been documented in the literature.29 Although taste disorders have been reported to affect body weight, evidence is lacking to link the former to an abnormal nutritional status.224,225 Patients with dysgeusia do not have a substantial change in their nutrition.226,227 Systemic diseases, such as diabetes and hypertension, have been reported to be associated with changes in the chemosensory function.224 There have also been several researchers who have linked ageusia to weight loss and even to anorexia.228-234 Substantial taste disturbances, such as reduction in taste acuity, abnormal salt taste, and metallic taste, have been proposed to cause noncompliance with recommended renal diets in patients with chronic kidney disease, thereby culminating in nutritional deficiencies.235-237 The effect of dysgeusia on quality of life has been reported as varied in the literature, however, most researchers report considerable reductions in quality of life.238,239

CLINICAL PEARLS

Taste alterations, as one of the earliest symptoms of COVID-19, can be used as a simple, early screening tool for detection of the infection. The simplest tool for testing olfaction is to have the patient respond to smelling small amounts of odorants that are easily identifiable, such as coffee, fragrant soap, or other nonpungent material. Care must be taken to ascertain that the patient is not experiences any nasal blockage, such as would occur with a common cold. In conjunction, the sense of taste can be checked easily by means of simply having the patient taste (sip and spit) dilute aqueous solutions of sugar, salt, sour, and bitter, as we mentioned above. The use of commercially available, more sophisticated kits is not usually warranted, as these techniques, such as electrogustometry, may be beyond the purview of a routine dental practice setup. Clinicians should understand that it is unlikely the patient will pick up minimal alterations of gustation unless prompted by the screening dentist. In the era of COVID-19, it may be prudent for dental clinicians to screen every patient routinely for olfactory and gustatory changes using a simple questionnaire with yes or no answers. The clinician should keep in mind that, in addition to COVID-19, several other conditions, including systemic diseases and medications, may be related etiologically to gustatory disorders. In the event that gustatory screening is positive for dysgeusia, the patient should be referred promptly for COVID-19 screening. If the patient is negative for COVID-19 and dysgeusia continues, the patient should be referred to a special senses clinic, possibly working together with the patient’s primary care physician.

Also, we should understand that taste disorders contribute considerably to reduced quality of life in patients. Screening for taste alterations can form the foundation for an early warning and detection system that a dentist can use to attempt to quell the spread and effects of COVID.

CONCLUSIONS

Gustatory disturbances are prevalent in several systemic disorders and infections, including COVID-19. Taste disorders, regardless of the etiologic factor, affect the quality of life of patients in general and of patients with COVID-19 in particular. Screening and identification of possible taste disorders should form the standard of care for dental clinicians, especially in the context of the COVID-19 pandemic. Early recognition of gustatory disorders may be crucial in identifying possible infection with the COVID-19 virus in the dental patient population. Dental clinicians must be aware of the fact that multiple factors (in addition to COVID-19) may be instrumental in the etiology and pathophysiology of dysgeusia, and a comprehensive workup of the case is needed to reach a conclusion about etiology. Knowing the short- and long-term consequences of COVID-19

260 JADA 153(3) http://jada.ada.org March 2022
infection, early screening, and identification are instrumental in potentially changing the life of a patient for the better.

Dr. Thomas is an assistant professor, Center for Temporomandibular Disorders and Orofacial Pain, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ. Address correspondence to Dr. Thomas, Center for Temporomandibular Disorders and Orofacial Pain, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, 110 Bergen St, Newark, NJ 07103, email davisct1@gmail.com.

Dr. Chabliani is an assistant professor, Department of Oral and Maxillofacial Surgery, Terna Dental College, Navi Mumbai, India.

Dr. Parekh is a periodontist in private practice, Mumbai, India. Dr. Pichammal is a dentist in private practice, Chennai, India.

Dr. Shamugasundaram is a professor and the head, Department of Oral Medicine and Maxillofacial Radiology, Seema Dental College and Hospital, Rishikesh, Uttarakhand, India.

Dr. Pitchumani is a postgraduate resident, Department of Periodontology, Ohio State University College of Dentistry, Columbus, OH.

Disclosures. None of the authors reported any disclosures.

The authors acknowledge Swetha Kannan and Dr. Sita Mahalakshmi Baddreddy for designing and digitizing Figures 1 and 3 and Dr. Srishti Parekh for designing and digitizing Figures 2 and 4.
126. Gruschka M, Epstein JB, Gorsky M. Burning mouth syndrome and other oral sensory disorders: a unifying hypothesis. Pain Res Manag. 2003;8(3):133-135.

127. De Seta D, Mancini P, Minari A, et al. Bell's palsy: symptom recurrence and accompanying the facial pain. ScientificWorldJournal. 2014;2014:801971.

128. Park JM, Kim MG, Jung J, et al. Effect of age and severity of facial pain on taste thresholds in Bell's palsy patients. J Audiol Otol. 2017;21(1):16-21.

129. Nakamura T, Tsukita K, Suzuki A, et al. Peculiar unpleasant dysgeusia as the sole initial symptom of Guillain-Barré syndrome. Intern Med. 2020;59(6):635-637.

130. Fukunaga A, Uematsu H, Sagimoto K. Influences of aging on taste perception and oral somatic sensation. J Gerontol A Biol Sci Med Sci. 2005;60(1):109-113.

131. Mojet J, Christ-Hazelhof E, Heidema J. Taste perception with age: generic or specific losses in threshold sensitivity to the five basic tastes. Chem Senses. 2001; 26(7):945-960.

132. Wang H, Zhou M, Brand J, Huang L. Inflammation and taste disorders: mechanisms in taste buds. Ann N Y Acad Sci. 2009;1170:596-603.

133. Brennan F, Stevenson J, Brown M. The pathophysiology and management of taste changes in chronic kidney disease: a review. J Ren Nutr. 2020;30(3):368-379.

134. Kim TH, Kim YH, Bae NY, Kang SS, Lee JB, Kim SB. Salty taste thresholds and preference in patients with chronic kidney disease according to disease stage: a cross-sectional study. Nutr Diest. 2018;75(1):59-64.

135. Rowan NR, Soler ZM, Orhieno F, Storck KA, Snath TL, Schlösser BJ. Impact of bitter taste receptor phenotype upon clinical presentation in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018;8(9):1031-1032.

136. Orhieno F, Schlösser BJ, Rowan NR, et al. Taste impairment in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018;8(7):783-789.

137. Lyckholm L, Heeding SP, Parker G, et al. Taste profiles in patients with post-surgical control trial of oral zinc for chemotherapy-related taste and smell disorders. J Pain Palliat Care Pharmacother. 2012;26(2):111-114.

138. Silva CS, Dias VR, Almeida JA, Brazil JM, Soares MS. Burning mouth syndrome: diagnostic and associated factors: a case-control retrospective study. Med Clin (Barc). 2014;9:50.

139. Canzolla AP, Lovero B, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6. ACS Chem Neurosci. 2020;11(17):2774-2781.

140. Khan AS, Ichihashi A, Khan NA. Obesity and COVID-19: oro-naso-sensory perception. J Clin Med. 2020;9(7):2158.

141. De Carli M, Gambino R, Lubrano C, et al. Impaired taste sensation in type 2 diabetic patients without chronic complications: a case-control study. J Endocrinol Invest. 2018;41(7):765-772.

142. Syed Q, Hendler KT, Koncilja K. The impact of aging and medical status on dysgeusia. Am J Med. 2016;129(7):753.e1-753.e6.

143. Genter MB, Doty RL. Touchy exposures and the senses of taste and smell. Handb Clin Neurol. 2019;164:389-406.

144. Nolden AA, Hvad LD, Bolting A, Reed DR. Chemosensory changes from cancer treatment and their effects on patients' behavior: a scoping review. Nutr. 2019;11(10):2285.

145. van Oort S, Kramer E, de Groot JW, Visser O. Taste alterations and cancer treatment. Curr Opin Support Palliat Care. 2018;12(1):162-167.

146. Sakashita S, Takayama K, Nishiooka K, Katoh T. Taste disorders in healthy “carriers” and “non-carriers” of Candida albicans and in patients with candidosis of the tongue. J Dermatol. 2004;31(11):890-897.

147. Riso DS, Mezzavilla M, Pagani L, et al. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PCR-based model. Sci Rep. 2016;6:25506.

148. Riso D, Morini G, Pagani L, et al. Genetic signature of differential sensitivity to stevioside in the Italian population. Genes Nutr. 2019;14(3):401.

149. Kim UK, Jorgensen E, Coon H, Leppert ML, Risch N, Drayna D. Positional cloning of the human gustatory function of HIV infected women. J Acoust Soc Am. 2003;299(5610):1221-1225.

150. Riso DS, Mezzavilla M, Pagani L, et al. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PCR-based model. Sci Rep. 2016;6:25506.

151. Zybina MA, Chernichenko VA, Lur’e-Frolovskova TA, Aranguyeva VV, Zakshuk AL. Combined treatment of inimmortal renal cancer with the use of preoperative intensive fractional irradiation. Article in Russian. Khim (Mosk). 19??;70(1):72-76.

152. Doty RL. Systemic diseases and disorders. Handb Clin Neurol. 2019;164:361-387.

153. Philippis N, Noblet V, Hamadou M, et al. The insula, a grey matter of tastes: a volumetric MRI study in dementia with Lewy bodies. Alzheimer Res Ther. 2020;12(1):79.

154. Devi L, Ohno M. Generic reductions of beta-site amyloid precursor protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of conditioned taste aversion memory in FXFAD Alzheimer’s disease model mice. Eur J Neurosci. 2010;31(10):110-118.

155. Cecchini MF, Fasano A, Boschi F, Oscurati F, Tinazzi M. Taste in Parkinson’s disease. J Neurol. 2015;262(4):806-813.

156. Shah M, Deeb J, Fernando M, et al. Abnormality of taste and smell in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(3):232-237.

157. Steinbach S, Prof F, Schulze-Koops H, et al. Gustatory and olfactory function in rheumatoid arthritis. Scand J Rheumatol. 2011;40(3):169-177.

158. Ono da, Ikeda M. Gustatory disturbance due to cerebrovascular disorder. Laryngoscope. 1999;109(1):123-128.

159. Prof F, Steinbach S, Dechant C, et al. Gustatory and olfactory function in patients with granulomatosis with polyangiitis (Wegener’s). Scand J Rheumatol. 2014;43(6):512-518.

160. Kim A, Feng P, Ohkuri T, et al. Defects in the sensory input of the chorda tympani nerve and the cerebrovascular disorder. Laryngoscope. 2012;57(1):94-101.

161. Kamel UF, Rodríguez-Suárez M, Rodríguez de Rivera-Camilo ME, Pérez-Pérez AM, López-López J. Burning mouth syndrome and associated factors: a case-control retrospective study. Med Clin (Barc). 2017;148(4):153-157.

162. Chimenos-Küstner E, de Luca-Monasterios F, Jääskeläinen SK. Pathophysiology of primary Sjogren’s syndrome: a review. Clin Exp Rheumatology (Oxford). 2011;29(1):151-154.

163. Kveton JF, Bartoshuk LM. The effect of unilateral chorda tympani damage on taste. J Audiol Otol. 1994;184.

164. Chaudhari N, Mittal R. Potential mechanisms for chemotherapy-related taste and smell disorders in COVID-19 patients: oro-naso-sensory perception. Front Neurol. 2020;11:185.

165. Soares MS. Burning mouth syndrome: diagnostic and therapeutic keys. Article in Spanish. Med Clin (Barc). 2014;142(8):370-374.

166. Banasikiewicz SK. Pathophysiology of burn-mouth syndrome. Clin Neurophysiol. 2012;123(1):71-77.

167. Ancellotti S, Ciglerová D, Gómez-Gómez JM. The effect of sensory input of the chorda tympani nerve and the number of fungiform papillae in burning mouth syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(1):65-72.

168. Elav E, Karmaz B, Schaham R, Czerniak R, Grunewald RH. Evidence of chorda tympani dysfunction in patients with burning mouth syndrome. JAMA. 2007;183(5):626-633.

169. Kitov JF, Bartoshuk LM. The effect of unilateral chorda tympani damage on taste. Laryngoscope. 1994;104(1 Pt 1):25-29.
190. Nari-Heir C, Zagary JG, Thomas D, Ananthan S. Burning mouth syndrome: current concepts. J Indian Prosthodont Soc. 2015;15(4):300-307.

191. Hirsch AR, Zaid A, Kim AY, Lai NS, Sharma S. Pilot study: alleviation of pain in burning mouth syndrome with topical sucralose. Headache. 2011;51(3):444-446.

192. Klasser GD, Cruicksh A, Su N. Burning mouth syndrome. Oral Maxillofac Surg Clin North Am. 2016;28(3):381-396.

193. Imura H, Shimada M, Yamasaki Y, Sugimoto K. Characteristic changes of saliva and taste in burning mouth syndrome patients. J Oral Pathol Med. 2016;45(3):231-236.

194. Just T, Steiner S, Pau HW. Oral pain perception and taste in burning mouth syndrome. J Oral Pathol Med. 2010;39(1):22-27.

195. Khan J, Arzwar M, Noboru N, Thomas D, Kalladka M. Topical application in burning mouth syndrome. J Dent Sci. 2019;14(4):352-357.

196. Nari-Heir C, Shigdar D, Almaas D, Koczenewski OA, Elav R, Heim G. Primary burning mouth syndrome: literature review and preliminary findings suggesting possible association with pain modulation. Quintessence Int. 2017;49(1):49-62.

197. Kim MJ, Kim J, Kho HS. Comparison of clinical characteristics between burning mouth syndrome patients with bilateral and unilateral symptoms. Int J Oral Maxillofac Surg. 2020;49(1):38-43.

198. Bergdahl M, Bergdahl J. Perceived taste disturbance in adults: prevalence and association with oral and psychological factors and medication. Clin Oral Investig. 2002;6(3):145-149.

199. Cullen MM, Leopold DA. Disorders of smell and taste. Med Clin North Am. 1999;83(1):57-74.

200. Graham CS, Graham BG, Bartlett JA, Heald AE, Schiffman SS. Taste and smell losses in HIV infected patients. Physiol Behav. 1995;58(2):287-293.

201. Goodspeed RB, Gent JF, Catalanotto FA. Chemosensory dysfunction. Clinical evaluation results from a taste and smell clinic. Postgrad Med. 1987;81(1):251-257, 260.

202. Smith FR, Henkin RI, Dell RB. Disordered gustatory acuity in liver disease. Gastroenterology. 1976;70(4):968-971.

203. Henkin RI, Larson AL, Powell RD. Hypoguesia, dysguesia, hyposmia, and dysosmia following influenza-like infection. Ann Oral Rhinol Laryngol. 1975;84(5 Pt 1):672-682.

204. Funasuna AJ, Nwankwo U, Adebayo AM, Nwargiu OG. Association between sex, CD4 cell counts, antiretroviral medications, and olfactory and gustatory functions of HIV-infected adults. Otolaryngol Head Neck Surg. 2018;158(1):90-99.

205. Raja JV, Raul P, Khan M, Banu A, Bhushaiah S. Evaluation of gustatory function in HIV-infected subjects with and without HAART. J Oral Pathol Med. 2013;42(3):216-221.

206. Higuchi MA, Fukaje J, Tsugawa J, et al. Dysguesia in a patient with guillain-barré syndrome associated with acute hepatitis e: a case report and literature review. Intern Med. 2015;54(12):1543-1546.

207. Cecchini MP, Pellegrini C, Bassetto MA, et al. Might Helicobacter pylori infection be associated with distortion on taste perception? Med Hypotheses. 2013;81(3):496-499.

208. Carrillo-Lacan RM, Altez-Fernandez C. Anosmia and dysgeusia in COVID-19: a systematic review. Wellcome Open Res. 2020;5:94.

209. Locaia-Nur F, Chaimani-Wu N, Fortuna G, Stoussi H. Dysgeusia in COVID-19: possible mechanisms and implications. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130(3):344-346.

210. Qiu C, Cui C, Hautefort C, et al. olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study. Otolaryngol Head Neck Surg. 2020;163(4):714-721.

211. Melley LE, Bress E, Polan E. Hypogeusia as the initial presenting symptom of COVID-19. BMJ Case Rep. 2020;13(5):e236080.

212. Aziz M, Persietti A, Lee-Smith WM, Gajendran M, Bagnasco A, Sasso L. The effects of swallowing disorders, dysgeusia, oral mucositis and xerostomia on nutritional status, oral intake and weight loss in head and neck cancer patients: a systematic review. Cancer Treat Rev. 2016;45:105-119.

213. McLaughlin L. Taste dysfunction in head and neck cancer survivors. Oncol Nurs Forum. 2013;40(1):E4-E13.

214. Woschnag H, Stollberger C, Finsterer J. Taste loss is of weight loss. Lancet. 2002;359(9309):891.

215. Erkurt E, Ekkili M, Tunali C. Supportive treatment in weight-losing cancer patients due to the additive adverse effects of radiation treatment and/or chemotherapy. J Exp Clin Cancer Res. 2000;19(4):341-349.

216. Chapman-Novakofski K, Brewer MS, Risikowski J, Bukowski C, Winter L. Alterations in taste thresholds in men with chronic obstructive pulmonary disease. J Am Diet Assoc. 1999;99(12):1536-1541.

217. Pookothill JM. Maintenance of weight loss using taste and smell sensations. J Womeans Health. 1999;8(1):109-113.

218. Fitzgerald C, Wiese G, Moorthi RN, Moe SM, Hill Qaist K, Running CA. Characterizing dysgeusia in hemodialysis patients. Chem Senses. 2019;44(3):165-171.

219. McMahon J, Campbell KL, Basser JD. Taste perception in kidney disease and relationship to dietary sodium intake. Appetite. 2014;83:236-241.

220. Lynch KE, Lynch R, Curhan GC, Brunelli SM. Altered taste perception and nutritional status among hemodialysis patients. J Ren Nutr. 2015;25(4):288-295.e1.

221. Fox RL. Age-related defects in taste and smell. Otolaryngol Clin North Am. 2018;51(4):815-825.

222. Ponticelli C, Clari M, Frigerio S, et al. Dysgeusia and health-related quality of life in cancer patients receiving chemotherapy: a cross-sectional study. Eur J Cancer Care (Engl.). 2017;26(1).