Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Seroconversion after COVID-19 vaccination for multiple sclerosis patients on high efficacy disease modifying medications

ABSTRACT

The impaired ability to mount an effective immune response to vaccination leaves immunosuppressed patients at higher risk of severe COVID-19 infection. This retrospective study aimed to evaluate COVID-19 seroconversion and antibody titers for patients on immune modulating therapies compared to those not on disease modifying therapy (DMT). As expected, individuals on B-cell depletion therapies (BCDT) and those on sphingosine 1-phosphate (S1P) modulators had an impaired humoral response to mRNA vaccination. We observed variable seroconversion depending on the type of B-cell depleting medication, with a smaller percentage of seroconversion in patients on infused BCDT (iBCDT, ocrelizumab and rituximab) compared to ofatumumab. The humoral response to vaccination was not impaired for individuals on natalizumab or for untreated MS patients. These observations may influence DMT selection during the COVID-19 era.

1. Introduction

The introduction of safe and effective vaccines against COVID-19 represents a major scientific victory, emerging from the shadow of the pandemic. Nevertheless, immune compromised patients are less able to mount an appropriate immune response to vaccination, leaving this vulnerable population at risk for severe infections (Bar-Or et al., 2020; van Assen et al., 2016; Iannetta et al., 2021; Smets et al., 2021; Taliany et al., 2022; Georgieva et al., 2021). B-cell depleting medications, commonly used to treat patients with multiple sclerosis (MS) as well as other autoimmune diseases, may put individuals at greater risk for severe COVID-19 infection, as well as impair their humoral response to vaccination (Bar-Or et al., 2020; Waldman et al., 2021; Conte, 2021). More information about how DMT impact vaccination responses is needed to develop effective management strategies for MS patients (Saker et al., 2020). This retrospective study aimed to evaluate COVID-19 antibody responses after vaccination for patients on high efficacy immune modulating therapies compared with untreated patients.

2. Methods

Subjects: We performed a retrospective chart review of patients (N = 90) cared for by a single provider at the Yale University Multiple Sclerosis Center who had systematically checked COVID-19 spike antibody levels among patients on immunomodulatory therapy. Data was extracted on 10/25/2021 and covered the time period between December 2020 – October 2021. All patients had undergone vaccination with a COVID-19 vaccine cleared for Emergency Use Authorization by the FDA and had COVID-19 spike protein antibodies measured for clinical purposes > 2 weeks after vaccination. We included all DMTs used by > 1 patient, including patients who initiated DMT before or within 2 weeks of their second dose of COVID-19 vaccination. Patients were categorized into those receiving iBCDT (N = 54; ocrelizumab (N = 44) and rituximab (N = 10)), subcutaneous B-cell depletion with ofatumumab (N = 7 for Fig. 1; N = 4 in quantitative analysis), natalizumab (N = 5), the S1P modulators (N = 4; fingolimod (N = 3) and siponimod (N = 1)), and controls who were not on DMTs (N = 23). All participants were ≥ 18 years old, and diagnosed with MS, clinically isolated syndrome (CIS), neuromyelitis optica spectrum disorder (NMOSD), autoimmune encephalitis, or were undergoing workup for MS. Most (78%) COVID-19 spike antibody testing utilized the DiaSorin Liaison chemiluminescence assay; only these patients’ data were included for quantitative analysis of mean spike antibody titers. Qualitative COVID spike antibody seropositivity was determined based on test-specific lab reference ranges. When available, CD19 lymphocyte counts were measured at the same time as COVID-19 antibodies. In addition to the above cohort, we reviewed all patients at our center who were treated with ofatumumab and had anti-spike antibodies for COVID-19 measured (N = 7). The Yale University Institutional Review Board approved the study protocols.

2.1. Data analysis

Statistical tests were performed using R-Studio statistics software (R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018) and summary statistics are reported in Table 1. Time from infusion to vaccination was calculated for iBCDT, but this could not be determined for ofatumumab due to the monthly self-administration schedule. Mean antibody levels were compared across DMT groups using one-way ANOVA. Linear regression modeling was performed using stepwise model selection and Akaikes Information Criteria (StepAIC function for R) to generate models with the minimal set of optimal features. Fisher exact test and Chi Square test of independence were used to evaluate frequency of antibody positivity among all subjects stratified by DMT use. Student’s T-test was utilized to evaluate difference in mean antibody levels between various DMTs compared to controls, and between iBCDT and ofatumumab.

3. Results

On average, COVID-19 spike antibody titers were significantly lower
for those on BCDT compared to the control group (defined as untreated patients) \(p < 0.001 \) (Table 1). When infused BCDT and ofatumumab were considered separately, antibody levels for iBCDT were significantly lower than those for patients on subcutaneous BCDT \(p < 0.001 \) for ofatumumab compared to rituximab and to ocrelizumab). Seroconversion rates varied depending on type of anti-CD20 monoclonal antibody, with rituximab having the lowest seroconversion rate (11%) and ofatumumab having the highest seroconversion rate (75%). All patients on BCDT were fully B-cell depleted at the time of COVID antibody measurement. There were few natural COVID-19 infections reported, and all occurred in subjects on B-cell therapies. Two subjects on ocrelizumab and one on rituximab remained antibody negative after infection and vaccination, while the other subjects (two on ocrelizumab and one on ofatumumab) had positive antibodies after infection and vaccination (Table 1). We additionally sought to determine if the response to vaccination in ofatumumab was solely due to the short duration of...
treatment. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; this patient did mount an antibody response albeit with a low titer which could not be directly compared to our ofatumumab patients’ titers given different lab analysis. Because only a small number of patients on ofatumumab were available in the initial cohort, we expanded our chart review to include all patients at our Center who had been exposed to this medication around the time of their vaccination (Fig. 1). One additional patient was identified who had ofatumumab exposure prior to vaccination; they subsequently mounted an antibody response. Moreover, several patients were identified who initiated ofatumumab > 2 weeks after vaccination; all of these maintained a positive spike antibody response (Fig. 1).

As expected, patients on S1P modulators demonstrated an attenuated spike antibody response compared to controls, while natalizumab-treated patients did not (p = 0.01, p = 0.06).

A linear regression model controlling for DMT, CD19 lymphocyte subset count, vaccine brand, time since vaccination, and duration of DMT found ofatumumab use (r-value 5.1) and CD19 lymphocyte count (r-value 4.4) to be significant predictors of COVID-19 antibody levels (p-value < 0.001, R2 = 0.65).

4. Discussion

The COVID-19 pandemic has introduced new uncertainty regarding optimal treatment of autoimmune inflammatory disease. Although BCDT are highly effective in controlling disease activity, their use increases risk of severe COVID (Simpson-Yap et al., 2021; MP Sormani et al., 2021a) and attenuates humoral vaccine responses (Fagni et al., 2021). Practitioners must therefore weigh the long-term risks of neurologic damage with the short-term risks of COVID-19 infection and sequelae. We observed heterogeneous antibody responses among patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.

While provocative, these data require replication in larger, prospective cohorts. We had access to only a small cohort of patients taking ofatumumab, and many had initiated treatment shortly before or around the same time as their COVID-19 vaccination. The vaccine response among ofatumumab patients could therefore be related to B-cell populations that had not yet been impacted by the medication. We expect that the antibody response to vaccination will depend on the overall cutaneous immune response to vaccination. In our cohort, one subject was initiated on ocrelizumab shortly (2 weeks) before vaccination; all of these main patients taking different types of BCDT, with a smaller percentage of seroconversion in patients on iBCDT compared to ofatumumab, consistent with emerging data presented at ECTRIMS 2021 (Karussis et al., 2021). Natalizumab-treated patients maintained a strong antibody response to vaccination.
Sormani, M.P., Inglese, M., Schiavetti, I., et al., 2021b. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. EBioMedicine 72, 103581.

Tallantyre, E.C., Vickaryous, N., Anderson, V., et al., 2022. COVID-19 vaccine response in people with multiple sclerosis. Ann. Neurol. 91 (1), 89–100.

van Assen, S., Holvast, A., Benne, C.A., et al., 2010. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheumatol. 62, 75–81.

Waldman, R.A., Creed, M., Sharp, K., et al., 2021. Toward a COVID-19 vaccine strategy for patients with pemphigus on rituximab. J. Am. Acad. Dermatol. 84, e197–e198.

Elle Levit*, Erin E. Longbrake1, Sharon S Stoll1
Department of Neurology, Yale University, New Haven, CT, United States

* Corresponding author.
E-mail address: elle.levit@yale.edu (E. Levit).

1 These authors contributed equally to this work.