Intelligent Controllers to Extract Maximum Power for 10 KW Photovoltaic System

M. Rupesh*, T. S. Vishwanathb

*BVRIT HYDERABAD College of Engineering for Women, Electrical & Electronics Engineering, Hyderabad, India
bElectronics & Communication Engineering, Bheemanna Khandre Institute of Technology Bhalki, India

PAPER INFO

Paper history:
Received 26 October 2021
Received in revised form 21 December 2021
Accepted 23 December 2021

Keywords:
Intelligent Controller
Cascaded Feed Forward Neural Network
Particle Swarm Optimization
Genetic Algorithm
Maximum Power Point
Photovoltaic

Abstract

This research looks at how photovoltaic (PV) cells generate energy in different weather conditions. Photovoltaic power today plays a key role in the production of energy and satisfying the needs of consumers all over the world. The PV cell's ability to generate electricity was entirely dependent on sunshine and temperature fluctuations in the environment. Several researchers are working on a variety of MPPT methods for a photovoltaic system. Outdated MPPT techniques are unable to withstand a dramatic change in weather conditions. The fundamental purpose of this study is to associate the numerous unadventurous and clever controllers for MPPT of the PV system, such as the PSO, GA, and CFFNN. The MATLAB environment was used to create and simulate the recommended intelligent controller for MPPT in the PV system. Furthermore, the aforementioned findings like Voltage, Current, and Power with respect to different irradiance and temperature are compared and evaluated. The performance of the above-mentioned topologies has been related to the optimum intelligent controller for the PV system and concluded that the CFFNN gives better efficiency with minimum time required to extract.

doi: 10.5829/ije.2022.35.04a.18

NOMENCLATURE

PV	Photovoltaic
MPP	Maximum Power Point
PSO	Particle Swarm Optimization
CFFNN	Cascaded Feed Forward Neural Network
GA	Genetic Algorithm
N	Diode Constant
K	Bllothsman Constant
T	Temperature in Kelvin
Q	Electricity Charge
B0	Maximum Diode Current
G	Irradiance
Gref	Reference Irradiance
Eg	Silicon diode Band Width
D	Duty Cycle
f	Desired objective function
Xi	Location of Particle
Vi	Speed of Particle
w	Sluggishness weight
r1, r2	Orbitory variables
C1, C2	Reasoning and Common Coefficients
Pbesti	Best location of particle of i
Gbest	Best global location of i
MG	Micro Grid
REG	Renewable Energy Generation
DG	Distribution Generation
P & O	Perturb and Observation
INC	Incremental Conductance

1. INTRODUCTION

The growing pace of population expansion and levels of urbanization are to blame for the rapid rise in energy consumption, CO2 emissions, and worldwide demand and supply insufficiency [1-2]. Under environmental concerns such as energy shortages and pollution, renewable energy sources like solar and wind are the greatest ideal replacement energy sources, with solar and wind being the most prevalent energy in current power systems. Micro grid (MG) is a low-voltage distribution system that combines flexible DGs like wind, solar, and fuel cells with controllable storage and loads [3-6]. They increase network stability and offer long-lasting, high-

*Corresponding Author Email: m.rupesh1@gmail.com (M. Rupesh)
quality electricity. Managing an Micro Grid through a large number of Distributing Generations, variable loads, and ESA is challenging, especially given the high degree of renewable energy (REG) generating penetration. To highlight the high use of efficiency power, the REG is generally arranged using maximum power tracking (MPPT) algorithms [7-10]. As a result of the fluctuating and uncontrolled meteorological circumstances, it is classified as a generation that cannot be regulated [11-15]. Maximum power monitoring technology will be critical for getting the most energy out of a solar cell under a variety of weather situations. Regulating the solar powered non-linear current and voltage properties throughout times of low sunlight or incompletely covered conditions is a key issue. Researchers have proposed a number of MPPT techniques to obtain maximum energy output from a photovoltaic system.

P&O, Incremental Conductance and feedback power methods are among the numerous little MPPT approaches that are extremely common. Due to a lack of self-regulation capacity, the foregoing traditional approaches flop to reach the desired quickness of process and extreme power output. Various intelligent controllers based on MPPT methods are presented in this paper to attain peak power as well as operating speed (auto-adjustment). In the Matlab software, intelligence-based MPPT methods are modelled and assessed. The mathematical formulation for the solar system and the construction of the boost converter are described in section 2. Section 3 describes the different smart controllers. In section 4, the proposed smart regulators are designed and simulated in MATLAB, with the performance of the PV system evaluated under several climate situations. Section 5 concludes with the hardware and comparative investigation. The suggested research’s conclusion is presented in section 6.

2. MODELING OF PV & BOOST CONVERTER

2.1. PV System Design

The solar cell is shown as a dependent current source with extra series and parallel resistors connected to a diode in Figure 1. It's worth noting that when solar light is not there, the PV cell serves as a load and produces no power [16]. The actual current commencing the current source (PV cell) is determined by the amount of sunlight that shines on the PV cell (photo-current) (Figure 1). In an open circuit, the voltage is zero.

The Solar cell voltage generation will be affected by the voltage loss through the diode as given in Equation (1):

\[V = \left(\frac{N_{ST}}{q} \right) \ln \frac{h}{I_S} + 1 \]

where

PV Cell Open circuited Voltage = V
N stands for the diode constant 1.50
Boltz const K = (1.381 x 10^-23 J.K^-1)
T = Temperature in Kelvin
Q stands for “elementary charge” (1.602 x 10^-19 Coulomb)
Io is the Maximum current of a diode (A)
The Generated Current by light (Radiation) is given in Equation (2).

\[I_L = \left(\frac{G}{G_{ref}} \right) \left(I_{L,ref} + \alpha I_{sc} (T_c - T_{cref}) \right) \]

where

G = irradiation instantaneous (W/m²)
Gref = standard Condition with reference irradiation 1000 Watts per square metre
ILref denotes a reference. Under normal circumstances, photoelectric current 0.15 A
Instant temperature Tc.
Tcref stands Model temp at 298.0 K
aIsc stands SC current temp co-eff (A/K)=0.0065 AK^-1
IL = Current Generated by the Light = Iph (A)
Output current and Reverse saturation current as Equations (3) and (4).

\[I_o = I_{oL} \left(\frac{T_c}{T_{ref}} \right)^{3.5} e^{(\frac{V_{oc}-V_{ref}}{K T_{ref}}) - \frac{V_{oc}}{K T_{ref}}} \]

\[I_{oc} = \frac{I_{scn}}{e^{\frac{V_{oc}}{K T_{ref}}} - 1} \]

where

Io = Current Capacity in Reverse
Current Capacity = Ior
Eg is the band gap of a silicon diode, which is 1.10 eV.
Current S C (Ish = IL)
Under SC circumstances, the maximum current generated by a cell: Volt = 0.00 V, which is shown in Equation (5).

\[I_{sh} = (I_L - I_o) \left(e^{\frac{V_{oc}}{K T_{ref}}} - 1 \right) \]

2.2. Design of Boost Converter

This converter is a DC-DC level up converter that transforms fluctuating
DC voltage caused by weather variations to a constant stepped up voltage that may be linked to an inverter for grid integration and residential use. This converter is made up of a diode, a MOSFET, and a load ingredient to obtain the output voltage. Depending on the triggering duty cycle, the output voltage varies. The fundamental construction of a boost converter is shown in Figure 2.

The duty cycle of MOSFET can be calculated as Equation (6).

\[
D = \left[1 - \frac{V_{\text{min}}}{V_{\text{out}}} \right] \tag{6}
\]

Change in ripple current as Equation (7):

\[
dl = \frac{l_{\text{ripple}} \times l_{\text{out}} \times v_{\text{out}}}{v_{\text{in}}} \tag{7}
\]

The output current of converter as Equation (8):

\[
l_{\text{out}} = \frac{\text{Converter Power Rating}}{\text{Converter output voltage}} \tag{8}
\]

Inductance of boost converter as Equation (9):

\[
L = \frac{|v_{\text{in}}(v_{\text{out}} - v_{\text{in}})|}{dV/dx} \tag{9}
\]

Acceptable change in voltage as in Equation (10)

\[
DV = \frac{v_{\text{out}}}{dv \text{ percent}/100} \tag{10}
\]

Output capacitor to reduce the ripples as in Equation (11).

\[
C = \frac{l_{\text{out}} \times D}{I_{\text{out}}} \tag{11}
\]

Output Resistor as shown in Equation (12).

\[
R = \frac{v_{\text{out}}}{I_{\text{out}}} \tag{12}
\]

3. MPPT ALGORITHMS

3.1. Particle Swarm Optimization

The movement of particles is influenced by two variables: the Pbest, which is used to save the best location of each particle as an individual best position, and the Gbest, which is discovered by comparing individual particle swarm positions [18] and saved as the best position of the swarm. This method is used by the particle swarm to move towards the best place while continually revising its route and speed. As a result, each particle swiftly converges to an optimum or near-optimal global optimal. The equations that describe the conventional PSO technique are as follows in Equations (13) and (14).

\[
V_i(k + 1) = wV_i(k) + c_1r_1(P_{\text{best}} - x_i(k)) + c_2r_2(g_{\text{best}} - x_i(k)) \tag{13}
\]

\[
x_i(k + 1) = x_i(k) + v_i(k + 1) \tag{14}
\]

where i = 1, 2, 3, N where xi and vi are the speed and location of particle i; k is the repetition number; w is the sluggishness weight; r1 and r2 are arbitrary variables with ideals homogeneously spread between [0,1]; and c1 and c2 are the reasoning and common coefficients. The specific best location of particle i is pbest, while the swarm finest location of all particles is gbest. If the initialization requirement Equation (16) was met, the technique was modified as Equation (15):

\[
P_{\text{best}} = x_{ik} \tag{15}
\]

\[
f(x_{ik}) > f(P_{\text{best}}) \tag{16}
\]

where f is the desired objective function to be maximized.

Step 1: Selection of Parameter:

For the suggested MPP procedure, the pulse width of the converter was outlined as the location of the particle, and the produced power was selected as the fitness value, assessment function. Each particle's location and preliminary speed were erratically adjusted in a identical spreading across the exploration space.

Step 2: Fitness Evaluation:

After the controller sends the duty cycle instruction, which indicates particle i's location, the fitness value of particle i is calculated.

Step 3: (Updating Distinct and Global Best Data):

By associating the afresh computed fitness values to the prior ones and substituting the pbest and gbest matching to their locations as needed, each particle's fitness values, separate best locations (Pbest), and global best fitness values (gbest) are informed.

Step 4 (Update Speed and Location of Each Particle):

After analysing all particles, apprise the speeds and locations of each particle in the swarm using the PSO Equations (13) and (14).

Step 5 (Determination of Convergence): The converge criteria is either finding the best solution or completing the most iterations. The operation will end if the convergence condition is fulfilled; otherwise, repeat Steps 2 through 5.

Step 6. (Initialization):

The converge criteria in the conventional PSO technique is either finding the best solution or achieving the maximum number of repetitions. The fitness value of
PV systems, on the other hand, is not constant since it varies depending on the weather and load.

When the PV module output changes, the PSO must be re-initialized and examine for a new MPP. When the following functions are met, the suggested PSO algorithm is reinitialized for this application using Equation (17):

\[
\frac{P_i(k+1) - P_i(k)}{P_i(k)} > \Delta p
\]

Particle swarm Optimization algorithm flowchart is shown in Figure 3.

3.2 Genetic Algorithm

The MPPT procedure, which is founded on the Genetic Algorithm (GA), is a natural genetics-inspired optimization method. This approach, which is based on the notion of "endurance of the fittest," is used to identify an optimum set of parameters. In actuality, the search for a GA technique entails [17]. Selection, crossover, and mutation are the three basic operators. Selection is a method of choosing genetic material from the current generation's population for inclusion in the next generation's population depending on its fitness. The crossover operator connects two chromosomes to make new genetic material. The mutation operator tries to merge two chromosomal parents. At iteration, the intended output voltage matches to the chromosomal location (k). Four people are applied sequentially to the starting population, which is made up of chromosomal parents. Equation (20) gives the population's initial locations.

\[
[P_1, P_2, P_3, P_4] = [0.8, 0.6, 0.4, 0.2]V_{oc}
\]

The fitness is the produced power Ppv, which is ranked decreasingly and selected using elitism as a criteria.

To generate a kid, the crossover stage involves merging two chromosomal parents. In reality, Equations (21) and (22) are used in this phase.

\[
\text{child}(k) = r P(k) - (1 - r)P(k + 1)
\]

\[
\text{child}(k + 1) = (r - 1) P(k) - (r) P(k + 1)
\]

where r is an arbitrary integer. Equation (23). shows the relationship between the ISSBC's output voltage and duty cycle.

\[
a(k) = \text{child}(k)/V
\]

Genetic algorithm flowchart is shown in Figure 4.

3.3 Cascaded Feed Forward Neural Network Method

The CFNN is a feed-forward (FF) neural network with a connection from the influence layer and individually preceding layer to the subsequent layers.

Figure 3. PSO Algorithm flowchart

Figure 4. Genetic Algorithm Flowchart
The production layer is also publicly connected with the influence layer head-to-head to the hidden layer in a three-layer network. With enough hidden neurons, a cascading network with two or more layers, like FF networks, may learn any arbitrarily limited I-O connection [19-25]. The CFNN can be used for any kind of contribution to cartography creation.

The advantage of this method is that, it accounts for the non-linear relationship between entry and departure deprived of removing the linear association in the middle of the two.

The meeting created between the contribution and the production in a perceptron is a kind of unswerving connotation, however the meeting shaped in the middle of the influence and the invention in an FFNN is a subordinate connotation. An activation function in the hidden layer makes the connection non-linear. When the perceptron and multilayer grid connecting forms are merged, the grid is moulded through a straight link between the influence layer and the production layer, as well as the connection parenthetically. The CFNN is the network that results from this connecting model.

A cascading neural network is the network shaped by this linking paradigm (CFNN). The following are some examples of Equation (24):

$$y = \sum_{i=1}^{n} f_i w_i x_i + f_o \left(\sum_{j=1}^{m} w_j f_j \left(\sum_{h=1}^{p} w_{hi} x_h \right) \right)$$

(24)

where \(w_{ii}\) is the weight from the influence layer to the invention layer and \(f_i\) is the activation function. If a bias is applied to the influence layer, and each neuron in the hidden layer has an activation function of \(f_h\), the equation becomes as Equation (25):

$$y = \sum_{i=1}^{n} f_i w_i x_i + f_o \left(w^b + \sum_{j=1}^{m} w_j f_j (w^b + \sum_{h=1}^{p} w_{hi} x_h) \right)$$

(25)

The CFNN model is used to analyse time series data in this study. Thus, the delays of time series data \(X_t-1, X_t-2, ..., X_t-p\) are represented by the neurons in the contribution layer, and the production is represented by the current data \(X_t\).

As shown in Figure 5, the suggested multi-layered cataract neural network model was created for a procedure to trace extreme power spots for the PV arrangement. PV voltage and current are two of the contributions to this network. The gate pulse of the DC-DC converter is the source of this network's production. From the influence layer to the invention layer, there are four hidden layers. Each hidden layer uses a different number of neurons, for example, layer 1 uses 20 neurons, layer 2 uses 30 neurons, layer 3 uses 20 neurons, and layer 4 uses 5 neurons, as illustrated in Figure 5a. More than 10,000 data points, such as PV voltage, PV current, and gate pulse, were used to train the proposed network. The MPPT algorithm was created after more than 1000 epochs were completed, and the network was well-trained. As demonstrated in Figure 5b, the optimum dynamic presentation of the suggested CNFF is \(9.2922 \times 10^{-17}\). Figure 5c shows the pitch examination, \(Mu\), and authentication patterned for the planned CNFF. Finally, in Figure 5d, the planned system regression value is shown.

4. SIMULATION RESULTS

The discovery of the Maximum Power Point utilizing several methods has been implemented in this work, and the outcomes are presented in Figure 6.
4.1. Particle Swarm Optimisation (PSO) The proposed PSO technique was applied in a 10 kW PV system MATLAB/Simulink model. Under typical operating settings, this simulation model was examined. The simulation's outcomes are assessed. Adjustable irradiance has been added to the contribution of a PV model to assess the enactment of arrangement using the same simulation model. The PV produced power and MPPT power have been measured and displayed in Figure 7a under several weather conditions. Figure 7b shows the boost converter voltage and current waveforms under various climate circumstances, 494.5 V and 19.78 V, respectively. Figure 7c shows PV voltage 308 V and Boost converter voltage 494.4 V under varied irradiance conditions.

4.2. Genetic Algorithm (GA) As illustrated in Figure 6, the proposed GA Organizer was employed in a MATLAB/Simulink model for 10 kW rating. Under typical operating settings, this simulation model was examined. The simulation's outcomes are assessed. The changing irradiance input of the PV system has been used to the same simulation model, which analyses system performance. The PV power and MPPT power of 9743 W were measured and schemed in Figure 8a. under various weather conditions. Under various weather conditions, the boost converter voltage and current waveforms are shown. Figure 8b shows 491 V and 19.8 correspondingly. Under different irradiance a, relate PV voltage 310 V and Boost converter voltage 491 V. are shown in Figure 8c.

4.3. Cascaded Feed Forward Neural Network Method As illustrated in Figure 6, the suggested CNFF Controller was executed in a MATLAB/Simulink model of a 10 KW rating. Under typical operating settings, this simulation model was examined. The simulation's outcomes are assessed. The changing irradiance input of the PV system has been used to the
same simulation model, which analyses system performance. The PV power and MPPT power 9915 W have been measured and plotted in Figure 9a under various weather conditions. Figure 9b shows the boost converter voltage and current waveforms under several climate situations (422 V and 19.8, correspondingly).

5. HARDWARE IMPLEMENTATION

As illustrated in Figure 10a, the suggested scheme was constructed as a serviceable prototypical of a 10W PV model and power converter. The suggested CNFF system has been connected to an Arduino Mega 2560, which allows duty cycle development based on input changes. Using a MATLAB simulation library, the Mega 2560 communicates directly with MATLAB. Table 2 contains design information. The suggested algorithm generates switching pulses, and its run cycle will alter when climate change occurs. Figure 10b shows how the suggested method generates half of the usage cycle. The suggested method generates a 90 percent operational cycle in Figure 10c. Figure 10e shows the suggested technique for the gate pulses under various climate circumstances in
MATLAB. Figure 10f shows a prototype model of a 28.2 V DC-DC converter with a 12 V input voltage.
6. CONCLUSION

The maximum energy output of solar systems under a range of climatic circumstances was the focus of this study. The photovoltaic cell's mathematical model has been created, and its performance in various weather situations has been analyzed. As per the simulation findings, the MPPT process was required to produce the PV model maximum power. A number of MPPT processes were tried in this study under a range of climatological circumstances. The subsequent processes were analyzed, namely GA, PSO and CNFF. In comparison to other MPPT algorithms, The GA gives 91.92% of efficiency with 1.5s time. The PSO MPPT gives maximum efficiency of 97.99% with 0.9s and finally the CFFNN delivers better outcomes like 99.15% of efficiency with 0.6 s of time according to simulation findings and comparative assessments. Finally, the suggested CFFNN MPPT algorithm was used to create and test prototype work model.

7. REFERENCES

1. M. Rupesh, T. S. Vishwanath “Comparative analysis of P & O and Incremental conductance methods for standalone PV system,” International Journal of Engineering and Technology, Vol. 7, No. 3.29, (2018), 519-529. doi: 10.14419/j.et.v7i3.29.19303.
2. B. Hajipour, S.M Hasheminejad, H.R. Haghgooy, “Extracting Technical Specifications of Solar Panel Type to design a 10 MW Hybrid Power Plant”, International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 4, April 2019, 562-568. doi: 10.5829/ije.2019.32.04A.14
3. M. Rupesh and T. V. Shivalingappa, “Evaluation of Optimum MPPT Technique for PV System using MATLAB/Simulink International Journal of Engineering and Advanced Technology, No. 5, (2019), 1403-1408.
4. H. Rahimi Mirazizi, M. Agha Shafiyi, “Evaluating Technical Requirements to Achieve Maximum Power Point in PV Powered Z-Source Inverter”, International Journal of Engineering, Transactions C, Aspects, Vol. 31, No. 6, (2018), 921-931. doi: 10.5829/ije.2018.31.06c.09
5. L. Yang and Z. Yunbo, “A Novel Improved Variable Step Size INC MPPT Method for PV Systems”, Chinese Control and Decision Conference (CCDC), Nanchang, China. (2019), 5070-5073, doi: 10.1109/CCDC.2019.8832451
6. D. Singh and H. Singh “Technical Survey and Review on MPPT Techniques to attain Maximum Power of Photovoltaic System”, 5th International Conference on Signal Processing Computing and Control (SPCC), Solan, India, (2019), 265-268, doi: 10.1109/ISPCC48220.2019.8988382
7. M. L. Azad, P. K. Sadhu and S. Das, “Comparative Study between P & O and Incremental Conduction MPPT Techniques - A Review”, International Conference on Intelligent Engineering and Management (ICIEM), London, UK, (2020), 217-222, doi: 10.1109/ICIEM48762.2020.9160316
8. M. Sarvi, M. Derakhshan, M. Sadighizadeh, “A New Intelligent Controller for Parallel DC/DC Converters”, International Journal of Engineering, Transactions A: Basics, Vol. 27, No. 1, (2014), 131-142. doi: 10.5829/dosi.ije.2014.27.01a.16
9. D. Haji and N. Genc “Fuzzy and P & O based MPPT Controllers under different Conditions” 7th International Conference on Renewable Energy Research and Applications (ICRERA) Paris, France, (2018), 649-655, doi: 10.1109/ICRERA.2018.8566943.
10. M. L. Shah, A. Dhaneria, P. S. Modi, H. Khambadia and K K D. “Fuzzy Logic MPPT for Grid Tie Solar Inverter”, IEEE International Conference for Innovation in Technology (INOCON), Bangalore, India, (2020), doi: 10.1109/INOCON50539.2020.9298323.
11. M. R. Javed, A. Waheed, U. S. Virk and S. Z. Ul Hassan, “Comparison of the Adaptive Neural-Fuzzy Interface System (ANFIS) based Maximum Power Point Tracking (MPPT) with other Solar MPPT Methods”. IEEE 23rd International Multitopic Conference (INMIC) Bahawalpur, Pakistan, (2020), doi: 10.1109/INMIC50486.2020.9318178
12. T. Boutabba, S. Drid, L. Chirifi-Alaoui, M E Benbouzid, “A New Implementation of Maximum power Point Tracking based on Fuzzy Logic Algorithm for Solar Photovoltaic System”, International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 4, (2018), 580-587. doi: 10.58229/ije.2018.31.04A.09
13. H. Heidari, M Taraﬁdar Hagh, “Optimal Reconfiguration of Solar Photovoltaic Array using a Fast Parallelized Particle Swarm Optimization in Confront of Partial Shading”, International Journal of Engineering, Transaction B: Applications, Vol. 32, No. 8, (2019), 1177-1185, doi: 10.5829/ijeb.2019.32.08B.14
14. S Paul and J Thomas, “Comparison of MPPT using GA optimized ANN employing PI Controller for Solar PV system with MPPT using Incremental Conductance”, International Conference on Power Signal Control and Computations (EPSICON), Thrissur, India, (2014). doi: 10.1109/EPSICON.2014.6887518
15. A Guediri, A. Guediri, S. Touil, “Optimization Using a Genetic algorithm based on DFIG Power Supply for the Electrical Grid”, International Journal of Engineering: Transaction A: Basics Vol. 35, No. 2, (2022), 121-129. doi: 10.5829/ije.2022.35.01A.11
16. L. Zaghiba, M. Khennane, A. Borni, A. Fezanni, A. Boukhakour, Idriss Hadj Mahammed, Samir Hamid Oudjana “A Genetic Algorithm based improved P & O–PI MPPT Controller for stationery and Tracking Grid Connected Photovoltaic System”, 7th International Renewable and Sustainable Energy Conference (IRSEC), Agadir, Morocco, (2019), 1-6. doi: 10.1109/IRSEC48032.2019.9078304
17. S. Paul, “Comparison of MPPT using GA Optimized ANN employing PI Controller with GA Optimized ANN employing fuzzy controller for PV System”, IET 4th International Conference on Sustainable Energy and Intelligent Systems (SEISCON) Chennai, (2013), 266-271, doi: 10.1049/ie.2013.0324
18. R. Khanki, M. A. M. Radzi, and M. H. Marhaban, “Comparison of ANN and P & O MPPT Methods for PV Applications under changing solar irradiance”, IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, (2013), 287-292, doi: 10.1109/CEAT.2013.6775642
19. H. Elaissouli, M. Zerouali, A. E. Ogli and B. Thadaf, “MPPT Algorithm based on Fuzzy Logic and Artificial Neural Network (ANN) for a Hybrid Solar/Wind Power Generation System”, 4th International Conference on Intelligent Computing in Data Sciences (ICDS), FEZ, Morocco, (2020), doi:10.1109/ICDS5068.2020.9268747
20. M. S. Bouakkaz, A. Boukaddoum, O. Boudebbouz, A. Bouraoui, N. boutasseta and I. Attou, “ANN based MPPT Algorithm Design using Real Operating Climatic Condition”, 2nd International Conference on Mathematics and Information Technology (ICMIT), Aïd r, Algeria, (2020), 159-163, doi: 10.1109/ICMIT47780.2020.9046972
21. L. Bouselham, M. Hajji, B. Hajji and H Bouali, “A MPPT based ANN Controller applied to PV Pumping System”, International Conference on Renewable and Sustainable Energy (IRSEC), Marrakech, Morocco, (2016), 86-92, doi: 10.1109/IRSEC.2016.7983918
22. S. Messalti, A. G. Harrag and A E Loukriz, “A New Neural Networks MPPT Controller for PV Systems, IREC2015, the sixth” International Renewable Energy Congress, Sousse, Tunisia, (2015), doi: 10.1109/IREC.2015.7110907
23. Arulmozhiyal and K. R. Baskaran, “Implementation of a Fuzzy PI Controller for Speed Control of Induction Motors Using FPGA,” Journal of Power Electronics, Vol. 10, (2010), 65-71, doi: 10.6113/JPE.2010.10.1.065
24. Sabir Messalti, D. Zhang, Abd Elhamid Loukriz., “Common Mode Circulating Current Control of Interleaved Three-Phase Two-Level Voltage-Source Converters with Discontinuous Space-Vector Modulation,” IEEE Energy Conversion Congress and Exposition, Vol. 1-6, (2009), 3906-3912, doi: 10.1109/IECCE.2009.5110907
25. Z. Yinhai, Songsong Wang, Haixia Xia, Jinf Ge., "A Novel SVPWM Modulation Scheme,” in Applied Power Electronics Conference and Exposition. APEC 2009. Twenty-Fourth Annual IEEE, (2009), 128-131. doi: 10.1109/APEC.2009.4802644.

Persian Abstract
چکیده
این تحقیق به چگونگی تولید انرژی سلول های فتوولتائیک (PV) برای برق فتوولتائیک امروزی اشاره کرده که این روش کنترل هوشمندی است. در این روش، برای بهینه سازی تأمین انرژی بهتر، تغییرات در شرایط آب و هوایی و تغییرات در نور و باد، به مدت زمان لازم برای استخراج انرژی بهتر استفاده می شود. مطالعه محیط MATLAB و CNFNN و GA PSO و MPPT سیستم PV و CFFNN که کنترل هسته ای برای سیستم MPPT استفاده می شود، برای کنترل کننده های متعدد غیرماجراجویی و هوشمند بهتر استفاده می شود. نتیجه گیری می گردد که CFFNN با حداقل زمان لازم برای استخراج کارایی بهتری ارائه می گردد.