Variations in early life history traits of Japanese anchovy *Engraulis japonicus* in the Yangtze River Estuary

Chunlong Liu 1, Weiwei Xian Corresponding Author, 1, 2, Shude Liu 1, Yifeng Chen 3

1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
3 Laboratory of Biological Invasion and Adaptive Evolution, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

Resources of Japanese anchovy are undergoing dramatic recessions in China as the consequence of intensifying anthropogenic activities. Elucidating the influences of local-scale environmental factors on early life history traits is of great importance to design strategies conserving and restoring the declining anchovy resources. In this research, we studied hatching date and early growth of anchovy in the Yangtze River Estuary (YRE) using information obtained from otolith microstructure. Onset of hatching season and growth rates of anchovy was compared to populations in Japan and Taiwan. In YRE, hatching date of anchovy ranged from February 26th to April 6th and mean growth rate ranged from 0.27 to 0.77 mm/d. Anchovy hatching later had higher growth rates than individuals hatching earlier before the 25th day. Among populations, hatching onsets of anchovy in higher latitude were later than populations in lower latitude, and growth rates of anchovy in YRE were much lower than populations in Japan and Taiwan. Variations in hatching onset and early growth patterns of anchovy thus provide important knowledge on understanding the adaptation of anchovy in YRE and designing management strategies on conserving China’s anchovy resources.
Variations in early life history traits of Japanese anchovy *Engraulis japonicus* in the Yangtze River Estuary

Chunlong Liu¹, Weiwei Xian¹,², Shude Liu¹, Yifeng Chen³

Address:

¹ CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

² Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

³ Laboratory of Biological Invasion and Adaptive Evolution, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Correspondence author E-mail: wwxian@qdio.ac.cn

Postal address: Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

Running title: Early life history of Japanese anchovy
TITLE: Variations in early life history traits of Japanese anchovy Engraulis japonicus in the Yangtze River Estuary

ABSTRACT: Resources of Japanese anchovy are undergoing dramatic recessions in China as the consequence of intensifying anthropogenic activities. Elucidating the influences of local-scale environmental factors on early life history traits is of great importance to design strategies conserving and restoring the declining anchovy resources. In this research, we studied hatching date and early growth of anchovy in the Yangtze River Estuary (YRE) using information obtained from otolith microstructure. Onset of hatching season and growth rates of anchovy was compared to populations in Japan and Taiwan. In YRE, hatching date of anchovy ranged from February 26th to April 6th and mean growth rate ranged from 0.27 to 0.77 mm/d. Anchovy hatching later had higher growth rates than individuals hatching earlier before the 25th day. Among populations, hatching onsets of anchovy in higher latitude were later than populations in lower latitude, and growth rates of anchovy in YRE were much lower than populations in Japan and Taiwan. Variations in hatching onset and early growth patterns of anchovy thus provide important knowledge on understanding the adaptation of anchovy in YRE and designing management strategies on conserving China’s anchovy resources.
INTRODUCTION

Japanese anchovy (*Engraulis japonicus* Temminck & Schlegel, 1846) is a widespread fish in the northwest Pacific Ocean with great contributions to fishery resources and ecosystem functions (Zhao et al., 2003; Takasuka & Aoki, 2006; Wan & Bian, 2012). As the keystone species in coastal and marine ecosystems, anchovy plays the crucial role on connecting different trophic levels by acting as the predator for plankton and the prey for piscivorous fishes (Iseki & Kiyomoto, 1997; Kim & Lo, 2001; Wang et al., 2006; Hsieh et al., 2009). Due to the high susceptibility to environmental changes, anchovy resources exhibit remarkable fluctuations across years and regions (Takahashi et al., 2001; Takasuka et al., 2007). Elucidating the mechanisms responsible for fluctuations of anchovy resources is thus important to develop strategies for conserving coastal and marine biodiversity. Despite of the profound impacts of climatic factors on anchovy resources (Kim & Lo, 2001; Hsieh et al., 2009), local-scale environmental factors (e.g. sea surface temperature and habitat quality) are also the key determinants on dynamics of anchovy population, which has been well studied in Japan, Korea and Taiwan (Chen & Chiu, 2003; Takahashi & Watanabe, 2004; Takasuka et al., 2007).

However in mainland China, the region owning the widest distributions and largest catches of anchovy (Fisheries and Aquaculture Department, FAO, Rome, Italy; available: http://www.fao.org/home/en/), little effort was paid to explore the influence of local environmental factors on anchovy populations (but see Zhu et al., 2007).

Early life history in larval stage is the “window” in which fish has the highest vulnerability
and mortality rates (Takasuka et al., 2003; Takahashi & Watanabe, 2004; Starrs et al., 2016). In early life history, growth rate is the main factor determining larval duration and mortality, which are both closely related to recruitment strength (Takasuka et al., 2003; Takahashi & Watanabe, 2004; Starrs et al., 2016). Within a population, fish with faster growth could gain the larger size by accelerating the development and metamorphosis compared to other individuals from the same cohort, consequently having the shorter larval duration and higher survival rate (“growth-mortality” hypothesis; Takahashi et al., 2001; Hwang et al., 2006; Takasuka & Aoki, 2006; Itoh et al., 2011). Early growth of anchovy is significantly affected by local environmental factors and even slight environmental changes might cause great variations in population mortality and the amount of recruitments into the adult population (Takahashi et al., 2001; Chen & Chiu, 2003; Takahashi & Watanabe, 2004; Hwang et al., 2006; Zenitani et al., 2009). Water temperature is one of the most important factors affecting anchovy early growth (Hwang et al., 2006; Takasuka et al., 2007). When temperature is lower than the optimal growth temperature, higher temperature would consistently accelerate fish growth by improving individual metabolic rate (Hwang et al., 2006; Takasuka et al., 2007). In addition, a number of studies have emphasized the importance of habitat quality on fish growth (e.g. Amara et al., 2007; Amara et al., 2009). The degradation in habitat quality decelerates fish growth through reducing food availability and directing fish to devote more energy for tolerating higher pollution (Amara et al., 2007; Amara et al., 2009). Understanding variations in early growth of anchovy under different environments could therefore provide crucial insights on predicting population dynamics and
estimating the year-class recruitment strength (Takasuka et al., 2007).

China’s anchovy resources are undergoing dramatic declines as the consequence of dam construction, intensified overfishing and water pollution (Zhao et al., 2003; Zhu et al., 2007). The recession in anchovy resources is especially striking between 1993 and 2002, with annual catch rapidly decreasing from 4.12 to 0.18 million tons, posing significant threats to fishery economy and ecosystem functions (Zhao et al., 2003). To conserve and restore the declining anchovy resources, it’s urgently needed to design applicable management strategies to ensure the success of population recruitment based on the adaptivity of anchovy to China’s environments (Hwang et al., 2006; Wang et al., 2006). In consideration of the key role of growth in the process of population recruiting, determining the impacts of environmental changes on early growth could shed important lights on elucidating anchovy adaptivity in the early life history (Takasuka & Aoki, 2006; Takasuka et al., 2007).

The Yangtze River Estuary (YRE) is an important spawning, feeding and nursery ground for Japanese anchovy and other fishes benefiting from the high productivity contributed by abundant sediments in the outflow of the Yangtze River (Zhou et al., 2008; Yu & Xian, 2009; Zhang et al., 2009). However, intensifying urbanization and increasing anthropogenic activities are causing severe degradations of the aquatic ecosystem in the YRE, leading to remarkable declines in anchovy resources (Jiao et al., 2007). To provide knowledge on the conservation of anchovy resources in YRE, we aim for achieving two overarching targets using information obtained from otolith microstructure: (1) to determine the growth pattern in early life history of
anchovy from YRE; (2) to detect changes in anchovy early growth among groups with different hatching dates and among populations across the northwestern Pacific Ocean. By revealing the intra- and inter-population differences in early growth patterns, our study could contribute valuable information to the development of cost-effective strategies on managing anchovy resources in the highly exploited aquatic ecosystems of YRE.

MATERIALS AND METHODS

Field Sampling

Anchovy larvae were collected in May, 2012 in the “Spring investigation of fishery resources and ecology in Yangtze River Estuary” survey. Forty stations were set from the mouth of the Yangtze River to the offshore (30°45′ N - 30°45′ N, 122°20′ E - 123°20′ N) (Xing et al., 2014; Li et al., 2015). In this survey, environmental factors showed noticeable variations among stations, indicating the very high physical and chemical heterogeneity in YRE. For example, the depth ranged from 3 to 60 m and salinity ranged from 0.13 to 33.98‰ (Supplement 1). At each station, a horizontal plankton net (0.8 m diameter with 0.5 mm mesh size) was towed at the surface with a speed of two knots for ten minutes to sample anchovy. During this survey, anchovy were collected in two stations (Station 29, 1129 individuals; Station 30, 1342 individuals). Sampled larvae were immediately preserved in 90% ethanol and taken back to the laboratory. All specimens were collected in accordance with wild animal conservation law issued by the
People's Republic of China for the purposes of conducting research on Japanese anchovy.

Environmental data

Data of daily sea surface temperatures (SST) in each station were obtained from NOAA SST High Resolution Dataset (http://www.esrl.noaa.gov/psd/) to represent the water temperature across anchovy growing seasons (from February 26\(^{th}\) to May 3\(^{rd}\), 2012; see Results). Daily SST data are generated from an Advanced Very High Resolution Radiometer (AVHRR), which can infer the precise SST at very high resolution (1.09 km) using multi spectral analysis. The time series SST data allowed us to assess the influence of water temperature on anchovy growth by comparing growth patterns among individual hatching on different dates.

Otolith microstructure analysis

A subset of 200 individuals were randomly selected from samples at Station 29 and 30. Standard length (SL) of each individual was measured to the nearest mm, and both right and left sagittal otoliths were extracted from fish head under a dissecting microscope. Either the right or left otolith was mounted on a slide using melting thermoplastic glue and polished with 15 \(\mu\)m lapping film until increments could be clearly interpreted (*Wang & Tzeng, 1999*). Each unbroken otolith section was photographed at 400\(\times\) magnification using a digital camera fixed to a light microscope (BH2, Olympus Optical Co. Ltd., Tokyo, Japan) to obtain the picture of each section with clear increments. Numbers and widths of otolith increments were counted and measured along the
maximum otolith radius (OR) from the nucleus to the edge using Increment Analysis Program (Huazhong Agricultural University, Wuhan, Hubei Province, China). For each section, we made two independent measurements on increment numbers. If the difference in two numbers differed less than 5%, one number was randomly selected as the increment number of this otolith; otherwise the increment number was measured again. If the third number differed by <5% compared to one of the first two numbers, the third number was used as the increment number. If the third evaluation still differed the first two numbers by >5%, that otolith section was discarded.

Data analysis

The daily age (D) of each individual was determined using the increment number plus three, because the first increment of anchovy otolith is deposited on the fourth day after hatching (Tsuji & Aoyama, 1984). Hatch dates were thus back-calculated by subtracting age from the catch date (May 3rd). Daily somatic growth rates were back-calculated from increment width using the biological intercept method (Campana, 1990), with the length at hatching (5.6 mm) as the biological intercept (Tsuji & Aoyama, 1984). Data normality test indicated that the variances of SL and D were not equal for anchovy from two stations, and Wilcoxon signed-rank tests were thus used to compare frequency distributions of both SL and D between stations. Linear regression was used to fit relationships between SL and OR and between SL and D. Non-parametric repeated measures analysis of covariance was performed to compare the relationship of SL with D between two stations. Because of the significantly positive relationships between
OR and SL (see Result), otolith increment widths were used as the proxy of anchovy early growth.

Given the possible differences in early growth among individuals hatching on different dates, anchovy from each station were divided into three nearly equal-sized groups according to hatching dates for the comparison in otolith growth trajectory within population. Anchovy hatching from February 26th to March 16th were categorized “early group”, from March 17th to March 26th as “middle group”, and from March 27th to April 6th as “late group”. A repeated measures analysis of variance (RM-ANOVA) was used to compare otolith growth trajectories among groups in each station (Searcy & Sponaugle, 2000). Because the minimum age of anchovy was 24 days, the level of RM-ANOVA was set at 24 to include all samples. The within-subject factor was daily growth rate and the between-subject factor was group. Because the distribution of increment widths was not normal, data of increment widths were log-transformed before RM-ANOVA.

Compared to anchovy in YRE, populations in Japan and Taiwan should be less affected by pollutions and overfishing due to the better conservation on coastal and marine environments (Kim & Lo, 2001; Chai et al., 2006; Wang et al., 2006; Takasuka et al., 2007). To assess the difference in early growth of anchovy living under different habitat quality, mean growth rate of each anchovy were calculated for the comparison in growth of anchovy in Japan and Taiwan. To do so, we conducted the extensive searches on data of hatching onset and early growth rates from scientific papers. Only studies reporting both two characters were kept. For each region, mean
growth rates of anchovy in populations with earliest hatching dates were selected as representative to compare growth of the first emerging individuals. Consequently, data of anchovy in Taiwan (Chiu & Chen, 2001) and Japan (Takahashi et al., 2001) were used for inter-population comparisons. All the analyses were performed in R 3.2.0 (R Development Core Team, 2014) using the packages sm (Bowman & Azzalini, 2014).

RESULTS

There was a continuous increase in SST during anchovy growth season (Figure 1; Supplement 2). SST rose from 6.2 to 16.6°C at Station 29 and from 6.7 to 16.0°C at Station 30 between 29th February and 3rd May. The consistent rising in SST indicated that the early, middle and late groups experienced different thermal environments during their growing seasons.

SL and D of anchovy at Station 29 were both significantly lower than Station 30 (Figure2; Table 1), demonstrating anchovy were larger and older in the offshore. Hatch dates ranged from February 26th to April 6th at Station 29, and from February 28th to April 5th at Station 30 (Figure 2; Table 1). Growth rates of anchovy ranged from 0.27 to 0.77 mm/d and from 0.29 to 0.73 mm/d at Station 29 and 30 respectively (Table 1; Supplement 3). Relationships between SL and OR were both significantly positive at two stations (both $p < 0.01$). No significant difference was found in the relationships of SL with D between two stations ($p > 0.05$), and the SL-D relationship were described by a common regression equation for two populations: $SL = 0.386D + 4.87$ ($R^2 = 0.55$, $p < 0.01$). Despite of the overall similar patterns of increasing growth rates for three groups before
the 25th day, significant differences were found in growth trajectories between three groups at each station (Station 29, all $p < 0.05$; Station 30, all $p < 0.05$), with anchovy hatching later showing much faster growth (Figure 3). After the 25th day, differences in growth trajectory among groups became larger, with growth rates being highest for early groups and lowest for late groups.

The ranges of standard length were largely overlapped for three populations, suggesting the similar ontogenic stage of anchovy from Japan, YRE and Taiwan (Table 2). There was a countergradient pattern in hatching onsets among populations, with the onset being later with increasing latitude in a rate of 15 d per five degrees. However, no consistent pattern was found between growth rates and latitude. The minimum and maximum growth rates of anchovy from YRE were both clearly lower than those of anchovy from Taiwan and Japan. The highest growth rate of YRE population was even lower than the minimum growth rate of population in Japan.

DISCUSSION

Understanding the response of fish early growth to environmental changes is of great importance to predict the strength of population recruitment and dynamics of fishery resources (Takasuka et al., 2003; Takasuka & Aoki, 2006). Comparing growth rates and growth patterns of individuals from different populations or groups is a common way to investigate the influences of environmental changes on fish early growth (Chen & Chiu, 2003; Yasue & Takasuka, 2009). In this study, we found significant differences in early growth of anchovy hatching on different dates and among populations from different regions. Variations in growth patterns on the temporal and
spatial scales provide important knowledge on elucidating the adaptation of anchovy in YRE and facilitating the conservation across the northwestern Pacific Ocean.

Hatching date is proven as the key factor affecting anchovy growth during the early life history, with growth rates showing an increasing pattern with hatching date. Differences in early growth of anchovy hatching on different dates have been reported for populations in the Yellow Sea \cite{Hwang2006} and the East China Sea \cite{Takasuka2006}. Increasing temperature is attributed as the primary factor accelerating anchovy early growth. Growth rates of anchovy are found positively related to temperature up to 20 - 26°C \cite{Hwang2006, Takasuka2006}. During the growth season beginning from February, SST in YRE rapidly rises from 6°C to 16°C in May, thus increasing growth rates by improving individual metabolic rate and prey abundance. However, higher growth rates in the beginning may not compensate for the shorter growing season of late-hatching anchovy because of their lower growth rates compared to early-hatching anchovy after the 25th day.

It is important to note that growth rates of anchovy in YRE are much lower than populations in Japan and Taiwan. This result is unexpected as the high productivity in YRE should have supported the faster early growth of anchovy \cite{Zhou2008}. Although there are difficulties in determining the specific mechanisms, several factors might be responsible for lower growth rates. First, polluted waters could decelerate fish growth by directing more energy toward the tolerance of worse conditions \cite{Amara2007, Amara2009}. Aquatic ecosystems of YRE are threatened by increasing anthropogenic activities and sewage discharges with an
unparalleled magnitude (Wang et al., 2006; Jiao et al., 2007). To tolerate the degrading environments, anchovy have to reduce the energy devoted for growth and consequently have slower growth. Second, the mis-match of hatching season with the occurrence of optimal conditions might be another factor decelerating fish growth (“match/mismatch hypothesis”; Frank & Leggett, 1982; Takasuka et al., 2003; Takahashi & Watanabe, 2004). Due to the influence of the Asian monsoon on runoff in the Yangtze River, water and sediment flowing into in YRE have clear monthly changes (Jiang et al., 2014; Tang et al., 2018). In February, water and sediment reach to the lowest values across the year, decreasing the nutrition supporting the growth of plankton. Anchovy hatching from February therefore have the lower growth rate due to lower temperature and insufficient food. Third, variations of intrinsic attributes among populations would also contribute to the difference in early growth. Growth rates of fish are determined by the interplay of phenotypic plasticity and genetic adaptivity (Conover & Present, 1990; Sexton et al., 2002; Liu et al., 2015). Across the northwestern Pacific Ocean, there might be substantial differences in phenotypic and genetic attributes among populations in Japan, YRE and Taiwan, causing unregular spatial patterns in growth rates. Overall, the lower growth rates will contribute to smaller length of anchovy in YRE by the end of the first growth season, finally decreasing overwinter survival rates and the strength of population recruitment (Amara et al., 2007; Amara et al., 2009). Future strategies on conserving anchovy resources should take the inter-population variations in early growth into account to accelerate population recruitment.

Later hatching onset of anchovy in higher latitude reveals their shorter first growing season,
which is in accordance with the pattern of “counter-gradient variation”. The decrease in length of growing season is applicable for other marine fishes, such as *Menidia menidia* (*Conover & Present, 1990*) and *Morone saxatilis* (*Conover et al., 1997*). Changes in environmental factors might be the main driver for variations of hatching onset. In the higher latitude, lower water temperature and shorter daytime contribute to the lower metabolic rate and growth rates, impeding the maturation and reproduction of fish (*Conover & Present, 1990*; *Tarkan, 2006*; *Benejam et al., 2009*; *Carmona-Catot et al., 2011*). Additionally, lower temperature decelerates gonad development by depressing the growth of plankton and copepods (*Hwang et al., 2006*; *Tanaka et al., 2008*). Delayed maturation and spawning therefore result in the later fish hatching in higher latitude. Given the wide distribution of anchovy across the northwestern Pacific Ocean, variations in hatching onset among populations should be integrated into management strategies of anchovy resources to better back-calculate the spawning season and predict dynamics of population recruitment.

Intensifying anthropogenic activities and environmental pollutions are threatening the function of estuarine ecosystems (*Gilliers et al., 2006*; *Amara et al., 2009*; *Bacheler et al., 2009*). Elucidating the influence of environmental changes on fish early life history traits is crucial for estimating year-class strength of population recruitment and annual fishery resources (*Wang & Tzeng, 1999*; *Takasuka et al., 2007*). Our results suggest that shifts in hatching dates and growth patterns play a key role on anchovy adaptivity in YRE and across the northwestern Pacific Ocean. In consideration of the increasing impacts of climate changes and habitat modifications on
estuarine ecosystems (Zhou et al., 2008; Zhang et al., 2009), future researches should quantify the influence of different environmental factors on anchovy early growth to provide useful information on restoring anchovy resources and conserving fish diversity in YRE and other estuaries.

ACKNOWLEDGEMENTS

We thank Yushun Chen and three anonymous reviewers for their helpful comments on the manuscript. We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for the editing of an English text of a draft of this manuscript.
REFERENCES

Amara R, Meziane T, Gilliers C, Hermel G, and Laffargue P. 2007. Growth and condition indices in juvenile sole Solea solea measured to assess the quality of essential fish habitat. *Marine Ecology Progress Series* **351**:201-208.

Amara R, Selleslagh J, Billon G, and Minier C. 2009. Growth and condition of 0-group European flounder, *Platichthys flesus* as indicator of estuarine habitat quality. *Hydrobiologia* **627**:87-98.

Bacheler NM, Paramore LM, Buckel JA, and Hightower JE. 2009. Abiotic and biotic factors influence the habitat use of an estuarine fish. *Marine Ecology Progress Series* **377**:263-277.

Benejam L, Alcaraz C, Sasal P, Simon-Levert G, and García-Berthou E. 2009. Life history and parasites of the invasive mosquitofish (*Gambusia holbrooki*) along a latitudinal gradient. *Biological Invasions* **11**:2265-2277.

Bowman AW, and Azzalini A. 2014. R package 'sm': nonparametric smoothing methods (version 2.2-5.4) URL http://www.stats.gla.ac.uk/~adrian/sm, http://azzalini.stat.unipd.it/Book_sm.

Campana SE. 1990. How reliable are growth back-calculations based on otoliths? *Canadian Journal of Fisheries and Aquatic Sciences* **47**:2219-2227.

Carmona-Catot G, Benito J, and García-Berthou E. 2011. Comparing latitudinal and upstream–downstream gradients: life history traits of invasive mosquitofish. *Diversity and
Chai C, Yu Z, Song X, and Cao X. 2006. The Status and Characteristics of Eutrophication in the Yangtze River (Changjiang) Estuary and the Adjacent East China Sea, China. *Hydrobiologia* **563**:313-328.

Chen C-S, and Chiu T-S. 2003. Early Life History Traits of Japanese Anchovy in the Northeastern Waters of Taiwan, with Reference to Larval Transport. *Zoological Studies* **42**:248-257.

Chiu TS, and Chen CS. 2001. Growth and temporal variation of two Japanese anchovy cohorts during their recruitment to the East China Sea. *Fisheries Research* **53**:1-15.

Conover DO, Brown JJ, and Ehtisham A. 1997. Countergradient variation in growth of young striped bass (*Morone saxatilis*) from different latitudes. *Canadian Journal of Fisheries and Aquatic Sciences* **54**:2401-2409.

Conover DO, and Present TMC. 1990. Countergradient variation in growth rate: compensation for length of the growing season among *Atlantic silversides* from different latitudes. *Oecologia* **83**:316-324.

Frank KT, and Leggett WC. 1982. Environmental Regulation of Growth Rate, Efficiency, and Swimming Performance in Larval Capelin (*Mallotus villosus*), and its Application to the Match/Mismatch Hypothesis. *Canadian Journal of Fisheries and Aquatic Sciences* **39**:691-699.

Gilliers C, Le Pape O, Désaunay Y, Morin J, Guéralt D, and Amara R. 2006. Are growth
and density quantitative indicators of essential fish habitat quality? An application to the
common sole *Solea solea* nursery grounds. *Estuarine, Coastal and Shelf Science* **69**:96-
106.

Hsieh CH, Chen CS, Chiu TS, Lee KT, Shieh FJ, Pan JY, and Lee MA. 2009. Time series
analyses reveal transient relationships between abundance of larval anchovy and
environmental variables in the coastal waters southwest of Taiwan. *Fisheries
Oceanography* **18**:102-117.

Hwang SD, Song MH, Lee TW, McFarlane GA, and King JR. 2006. Growth of larval Pacific
anchovy *Engraulis japonicus* in the Yellow Sea as indicated by otolith microstructure
analysis. *Journal of Fish Biology* **69**:1756-1769.

Iseki K, and Kiyomoto Y. 1997. Distribution and settling of Japanese anchovy (*Engraulis
japonicus*) eggs at the spawning ground off Changjiang River in the East China Sea.
Fisheries Oceanography **6**:205-210.

**Itoh S, Saruwatari T, Nishikawa H, Yasuda I, Komatsu K, Tsuda A, Setou T, and Shimizu
M. 2011.** Environmental variability and growth histories of larval Japanese sardine
(*Sardinops melanostictus*) and Japanese anchovy (*Engraulis japonicus*) near the frontal
area of the Kuroshio. *Fisheries Oceanography* **20**:114-124.

Jiang Z, Liu J, Chen J, Chen Q, Yan X, Xuan J, and Zeng J. 2014. Responses of summer
phytoplankton community to drastic environmental changes in the Changjiang (Yangtze
River) estuary during the past 50 years. *Water Research* **54**:1-11.
Jiao N, Zhang Y, Zeng Y, Gardner WD, Mishonov AV, Richardson MJ, Hong N, Pan D, Yan X-H, Jo Y-H, Chen C-TA, Wang P, Chen Y, Hong H, Bai Y, Chen X, Huang B, Deng H, Shi Y, and Yang D. 2007. Ecological anomalies in the East China Sea: Impacts of the Three Gorges Dam? Water Research 41:1287-1293.

Kim J, and Lo NCH. 2001. Temporal variation of seasonality of egg production and the spawning biomass of Pacific anchovy, Engraulis japonicus, in the southern waters of Korea in 1983–1994. Fisheries Oceanography 10:297-310.

Li Y, Shen Z, Xian W, and Liu S. 2015. Structure characteristics of nutrients and their restrictive effect on phytoplankton in the Yangtze River Estuary Marine Sciences 39:125-134.

Liu C, Chen Y, Olden JD, He D, Sui X, and Ding C. 2015. Phenotypic shifts in life history traits influence invasion success of Goldfish in the Yarlung Tsangpo River, Tibet. Transactions of the American Fisheries Society 144:602-609.

R Development Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://Rproject.org. (accessed 23 December 2016).

Searcy PS, and Sponaugle S. 2000. Variable larval growth in a coral reef fish. Marine Ecology Progress Series 206:213-226.

Sexton JP, McKay JK, and Sala A. 2002. Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecological Applications 12:1652-1660.

Starrs D, Ebner BC, and Fulton CJ. 2016. All in the ears: unlocking the early life history biology
and spatial ecology of fishes. *Biological Reviews* **91**:86-105.

Takahashi M, and Watanabe Y. 2004. Growth rate-dependent recruitment of Japanese anchovy *Engraulis japonicus* in the Kuroshio-Oyashio transitional waters. *Marine Ecology Progress Series* **266**:227-238.

Takahashi M, Watanabe Y, Kinoshita T, and Watanabe C. 2001. Growth of larval and early juvenile Japanese anchovy, *Engraulis japonicus*, in the Kuroshio - Oyashio transition region. *Fisheries Oceanography* **10**:235-247.

Takasuka A, and Aoki I. 2006. Environmental determinants of growth rates for larval Japanese anchovy *Engraulis japonicus* in different waters. *Fisheries Oceanography* **15**:139-149.

Takasuka A, Aoki I, and Mitani I. 2003. Evidence of growth-selective predation on larval Japanese anchovy *Engraulis japonicus* in Sagami Bay. *Marine Ecology Progress Series* **252**:223-238.

Takasuka A, Oozeki Y, and Aoki I. 2007. Optimal growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? *Canadian Journal of Fisheries and Aquatic Sciences* **64**:768-776.

Tanaka H, Takasuka A, Aoki I, and Ohshimo S. 2008. Geographical variations in the trophic ecology of Japanese anchovy, *Engraulis japonicus*, inferred from carbon and nitrogen stable isotope ratios. *Marine Biology* **154**:557-568.

Tang J, Li Q, and Chen J. 2018. Summertime runoff variations and their connections with Asian summer monsoons in the Yangtze River basin. *Journal of Water and Climate Change* **9**:89-
Tarkan AS. 2006. Reproductive ecology of two cyprinid fishes in an oligotrophic lake near the southern limits of their distribution range. *Ecology of Freshwater Fish* 15:131-138.

Tsuji S, and Aoyama T. 1984. Daily growth increments in otoliths of Japanese anchovy larvae *Engraulis japonica*. *Bulletin of the Japanese Society of Scientific Fisheries* 50:1105-1108.

Wan R, and Bian X. 2012. Size variability and natural mortality dynamics of anchovy *Engraulis japonicus* eggs under high fishing pressure. *Marine Ecology Progress Series* 465:243-251.

Wang Y, Liu Q, and Ye Z. 2006. A Bayesian analysis on the anchovy stock (*Engraulis japonicus*) in the Yellow Sea. *Fisheries Research* 82:87-94.

Wang YT, and Tzeng WN. 1999. Differences in growth rates among cohorts of *Encrasicholina punctifer* and *Engraulis japonicus* larvae in the coastal waters off Tanshui River Estuary, Taiwan, as indicated by otolith microstructure analysis. *Journal of Fish Biology* 54:1002-1016.

Xing J, Xian W, and Shen X. 2014. Distribution and Source of Particulate Organic Carbon and Particulate Nitrogen in the Yangtze River Estuary in Summer 2012. *Environmental Science* 35:2520-2527.

Yasue N, and Takasuka A. 2009. Seasonal variability in growth of larval Japanese anchovy *Engraulis japonicus* driven by fluctuations in sea temperature in the Kii Channel, Japan. *Journal of Fish Biology* 74:2250-2268.

Yu H, and Xian W. 2009. The environment effect on fish assemblage structure in waters adjacent
to the Changjiang (Yangtze) River estuary (1998–2001). *Chinese Journal of Oceanology and Limnology* **27**:443-456.

Zenitani H, Kono N, Tsukamoto Y, and Masuda R. 2009. Effects of temperature, food availability, and body size on daily growth rate of Japanese anchovy *Engraulis japonicus* larvae in Hiuchi-nada. *Fisheries Science* **75**:1177-1188.

Zhang W, Feng H, Chang J, Qu J, Xie H, and Yu L. 2009. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. *Environmental Pollution* **157**:1533-1543.

Zhao X, Hamre J, Li F, Jin X, and Tang Q. 2003. Recruitment, sustainable yield and possible ecological consequences of the sharp decline of the anchovy (*Engraulis japonicus*) stock in the Yellow Sea in the 1990s. *Fisheries Oceanography* **12**:495-501.

Zhou M, Shen Z, and Yu R. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. *Continental Shelf Research* **28**:1483-1489.

Zhu J, Zhao X, and Li F. 2007. Growth characters of the anchovy stock in the Yellow Sea with its annual and seasonal variations. *Marine Fisheries Research* **28**:64-72.
FIGURE CAPTIONS

FIGURE 1 Trends in sea surface temperature (SST) at Stations 29 and 30 during growing season of anchovy in the Yangtze River Estuary. Anchovy in each station were divided into three groups (Early, Middle and Late) based on their hatching dates, which were shown in X axis.

FIGURE 2 Frequency distributions of (A) standard lengths of anchovy at Station 29; (B) standard lengths of anchovy at Station 30; (C) hatching dates of anchovy at Station 29; (D) hatching dates of anchovy at Station 30.

FIGURE 3 Mean growth trajectories of anchovy in three groups at (A) Station 29; (B) Station 30. Growth rates were back-calculated from increment widths in otolith microstructure using the biological intercept method. Days where anchovy numbers were less than five were excluded.
TABLE 1. Number (N), standard length, hatching date and mean growth rate of anchovy from three groups at the Stations 29 and 30 in the Yangtze River Estuary. Three groups were divided according to individual hatching dates. Hatching date and growth rate were back-calculated from the number and width of increments deposited in otolith section.

TABLE 2. Distribution, standard length, hatching onset and mean growth rate of anchovy in populations from Taiwan, the Yangtze River Estuary and Japan.
SUPPORTING INFORMATION

Supplement 1: Data of environmental factors in 40 stations in the Yangtze River Estuary in May, 2012. Station of 1, 2, 5, 6 and 9 were not accessed due to the lower depth.

Supplement 2: Data of daily sea surface temperatures (SST) at Station 29 and 30 during growing seasons of anchovy in the Yangtze River Estuary.

Supplement 3: Standard length (mm), weight (g), increment number and width of each increment (μm) for each anchovy at Station 29 and 30.
Figure 1

Changes in sea surface temperature (SST).

Trends in sea surface temperature (SST) at Stations 29 and 30 during growing season of anchovy in the Yangtze River Estuary. Anchovy in each station were divided into three groups (Early, Middle and Late) based on their hatch dates, which were shown in X axis.
Figure 2

Distributions of standard length and hatching date.

Frequency distributions of (A) standard lengths of anchovy at Station 29; (B) standard lengths of anchovy at Station 30; (C) hatching dates of anchovy at Station 29; (D) hatching dates of anchovy at Station 30.
Figure 3

Growth trajectories of anchovy.

Mean growth trajectories of anchovy from three groups at Stations 29 and 30 (excluding days where anchovy numbers were less than five). Growth rates were back-calculated from increment widths in otolith microstructure using the biological intercept method.
Table 1 (on next page)

Biological data of anchovy.

Number (N), standard length, hatching date and mean growth rate of anchovy from three groups at the Stations 29 and 30 in the Yangtze River Estuary. Three groups were divided according to individual hatch dates. Hatching date and growth rate were back-calculated from the number and width of increments deposited in otolith section.
Station	Group	N	Standard length (mm)	Hatching date	Mean growth rate (mm d\(^{-1}\))		
			Mean	Range		Mean	Range
29	Early	51	22.67	16.72 - 32.00	2/26 - 3/16	0.38	0.27 - 0.55
29	Middle	96	19.63	12.93 - 29.27	3/17 - 3/26	0.46	0.30 - 0.59
29	Late	41	15.90	11.07 – 20.87	3/27 - 4/6	0.51	0.37 - 0.77
30	Early	55	24.59	18.81 - 30.12	2/28 - 3/16	0.41	0.29 - 0.56
30	Middle	94	21.47	14.62 - 28.63	3/17 - 3/26	0.50	0.38 - 0.68
30	Late	27	17.93	14.02 - 21.87	3/30 - 4/5	0.55	0.42 - 0.73
Table 2 (on next page)

Information of three anchovy populations.

Distribution, standard length, hatching onset and mean growth rate of anchovy in populations from Taiwan, the Yangtze River Estuary and Japan.
Region	Latitude	Standard length (mm)	Hatching onset	Mean growth rate (mm d\(^{-1}\))	Source	
Taiwan	24 - 25°N	Minimum: 17.2	Maximum: 31.3	Minimum: 2/12	Maximum: 0.37	Chiu and Chen (2001)
The Yangtze River Estuary	30 - 31°N	Minimum: 11.07	Maximum: 32	Minimum: 2/26	Maximum: 0.2	Present study
Japan	35 - 40°N	Minimum: 20	Maximum: 35	Minimum: 3/3	Maximum: 0.49	Takahashi et al. (2001)