BACKGROUND

Anal cancer is a rare malignancy, with 8300 patients diagnosed each year in the United States.1 However, the incidence is rising due to increases in anal squamous cell carcinoma (ASCC).1,2 ASCC is associated with human papillomavirus (HPV) infection, making it more common in men who have sex with men and patients with immunodeficiency and tobacco exposure.3 Patients infected with human immunodeficiency virus (HIV) are 40-80 times more likely to develop ASCC relative to the general population.4
Like other HPV-related cancers, ASCC is a preventable disease; safe sexual practices, regular screening, and, more recently, vaccination all decrease the likelihood of the infection. Low health literacy and inadequate access to these preventive measures are hypothesized to mediate higher rates of HPV infection and HPV-associated cancers in patients of lower socioeconomic status (SES) and racial/ethnic minorities. Socioeconomic disparities in ASCC outcomes have also been demonstrated, with low income and Black patients having a higher risk of death.

Diagnostic and treatment initiation delays have been studied as potential mediators of socioeconomic disparities in cancer outcomes. Patients who are Black, publicly insured, or living in areas with lower education have been shown to suffer longer treatment delays in ASCC. Treatment delays have been associated with decreased survival in multiple cancers. In addition, low SES patients have been found to present to care at more advanced stages of ASCC and other cancers, often with adverse effects on survival.

The purpose of this study was to measure the association between SES (as measured by primary payer, race, income, employment, and partnership status) and baseline disease characteristics and outcomes. Outcomes included the tumor-node (TN) stage at diagnosis, the duration from diagnosis to treatment initiation, relapse-free survival (RFS), and overall survival (OS). Given the strong association between HIV infection and ASCC, this study also compared the socioeconomic characteristics of ASCC patients by HIV status.

2 | METHODS

2.1 | Participants

In this institutional review board-approved study, 111 patients with biopsy-proven, nonmetastatic ASCC treated at a large academic institution in a densely populated urban setting between 1 January 2005 and 1 May 2018 were retrospectively reviewed. All patients underwent staging with either positron emission tomography-computed tomography (PET-CT) or CT to rule out metastatic disease. Only patients eligible for definitive chemoradiation therapy were included. Data were obtained by reviewing patient charts in the electronic medical record and Census data using patient ZIP codes.

2.2 | Predictor and outcome variables

Given a relatively small sample size, predictor variables were categorized into the minimum number of groups possible as follows: primary payer (private, Medicare, and Medicaid), race/ethnicity (racial majority/White, racial minority/non-White), income (low, middle, upper), employment (employed or retired, unemployed or disabled), and partnership status (partnered, unpartnered). Incomes were estimated using median household incomes by census tract for the year during which the patient received treatment. Incomes were then categorized into three tiers by comparing the tract median household income to the surrounding metropolitan area. Retirement, as a voluntary withdrawal from prior employment accompanied by regular income such as Social Security payments and retirement account withdrawals, was combined with employed work status. Additional potentially confounding covariates between SES and baseline disease characteristics and outcomes were selected a priori and included age, gender, HIV status, and TN stage.

The primary outcomes were the TN stage at diagnosis, the duration from diagnosis to treatment initiation, RFS, and OS. Date of diagnosis was defined as the date of biopsy or, if unavailable on chart review, the date of diagnostic imaging. Date of treatment initiation was defined as the first radiation fraction date. Diagnosis to treatment initiation durations were inclusive of weekends and holidays. RFS was defined as any disease recurrence (local, regional, or distant) and death was not included. OS was defined as death due to any cause.

2.3 | Statistical analysis

Chi-square was used to compare the TN stage at diagnosis by SES. The duration from diagnosis to treatment initiation for each patient was log-transformed, then means by SES were compared using the t-test and one-way analysis of variance (ANOVA), with pairwise comparisons for means by primary payer and income tier. For RFS and OS, survival characteristics were calculated from the date of the final radiation treatment until censoring for freedom from disease recurrence and overall survival at patients’ last clinical or imaging follow-up. RFS and OS curves were created via the Kaplan-Meier method using the log-rank test for significance. Unadjusted and adjusted hazard ratios for socioeconomic factors were calculated using Cox proportional hazards regression. Variables significant at P < .05 in univariate analysis were included in the multivariate model. All data were analyzed using STATA software version 15 (StataCorp).

3 | RESULTS

3.1 | Patient characteristics

Table 1 shows SES and baseline disease characteristics by payer. Compared to patients with private insurance, Medicaid patients were more likely to be unemployed or disabled (78.9% vs 7.9%, P < .001) and in the lowest income tier (89.5% vs 0.0%, P = .001). They were also more likely to be racial minorities (78.1% vs 9.4%, P < .001), single (57.4%
vs 21.3%, \(P = .001 \)), and HIV-positive (66.7% vs 26.7%, \(P = .001 \)). The TN stage at diagnosis was not associated with SES, as shown in Table 2.

3.2 Duration from diagnosis to treatment initiation

The median duration from diagnosis to treatment initiation for the entire cohort was 7.9 weeks (IQR 5.9-10.0). Table 3 shows median durations by SES. The median duration from diagnosis to treatment initiation was significantly longer for Medicaid patients compared to those with private insurance (8.9 weeks vs 7.4 weeks, \(P = .016 \)). Unpartnered patients also experienced a longer delay compared to partnered patients (8.0 weeks vs 6.7 weeks, \(P = .016 \)). No statistically significant differences were observed for unemployed compared to employed patients (8.4 vs 7.6), patients in the racial minority compared to those in the racial majority (8.1 vs 7.6), and HIV-positive compared to HIV-negative patients (8.7 vs 7.6).

SES factor or covariate	Medicaid Total (%): n = 49	Medicare Total (%): n = 21	Private Total (%): n = 34	\(P \)-value
Race				
Majority	24 (33.3)	17 (23.6)	31 (43.1)	<.001
Minority	25 (78.1)	4 (12.5)	3 (9.4)	
Income level				
Low	17 (89.5)	2 (10.5)	0 (0.0)	.001
Middle	18 (43.9)	8 (19.5)	15 (36.6)	
Upper	6 (24.0)	7 (28.0)	12 (48.0)	
Employment status				
Employed or retired	14 (23.3)	16 (26.7)	30 (50.0)	<.001
Unemployed or disabled	30 (78.9)	5 (13.2)	3 (7.9)	
Partnership status				
Partnered	8 (22.9)	8 (22.9)	19 (54.2)	.001
Unpartnered	35 (57.4)	13 (21.3)	13 (21.3)	
Age, median (IQR)	56.4 (50.7-61.1)	68.5 (64.2-70.5)	54.0 (49.6-58.7)	<.001
Gender				
Male	41 (59.4)	12 (17.4)	16 (23.2)	.001
Female	8 (22.9)	9 (25.7)	18 (51.4)	
TN stage				
T1/T2, N-negative	24 (48.0)	10 (20.0)	16 (32.0)	.970
T1/T2, N-positive and T3/T4, N-negative	17 (43.6)	8 (20.5)	14 (35.9)	
T3/T4, N-positive	8 (53.3)	3 (20.0)	4 (26.7)	
HIV status				
HIV-negative	19 (32.2)	18 (30.5)	22 (37.3)	.001
HIV-positive	30 (66.7)	3 (6.7)	12 (26.7)	

Note: Frequencies were compared between groups using Pearson’s Chi-square for categorical predictor variables and the \(t \) test for age.

Abbreviations: ASCC, anal squamous cell carcinoma; IQR, interquartile range; SES, socioeconomic status; TN, tumor-node.
3.3 | Relapse-free survival

Due to overlap between the Kaplan-Meier curves for the T1/T2, N-positive and T3/T4, N-negative groups, these categories were combined in order to maintain the proportional hazards assumption in the Cox models. In univariate Cox regression, race, payer, and TN stage were significantly associated with RFS. The 2-year RFS was 64.4% for Medicaid patients compared to 93.8% for privately insured patients (HR 4.3, \(P = .021 \)), and 53.3% for racial minorities compared to 93.5% for racial majority patients (HR 3.6, \(P = .001 \)). Compared to T1/T2, N-negative disease (88.7%), the 2-year RFS was 70.2% for T1/T2, N-positive and T3/T4, N-negative disease (HR 4.2, \(P = .017 \)) and 43.0% for T3/T4, N-positive disease (HR 6.1, \(P = .001 \)). In multivariate analysis, racial minority status (HR 2.7, \(P = .030 \)) remained significantly associated with lower RFS, as did higher stage disease (HR 3.2, \(P = .022 \) for T1/T2, N-positive and T3/T4, N-negative; HR 4.4, \(P = .009 \) for T3/T4, N-positive). Hazard ratios for relapse in univariate and multivariate Cox regression are in Table 4. Kaplan-Meier RFS curves for significant factors are in Figure 1.

3.4 | Overall survival

In univariate Cox regression, OS was significantly associated with race and payer. The 2-year OS was 82.9% for Medicaid patients and 93.5% for privately insured patients (HR 4.9, \(P = .038 \)). By race, the 2-year OS was 73.7% for racial minority patients and 92.6% for racial majority patients (HR 3.2, \(P = .008 \)). In multivariate analysis, racial minority status (HR 2.8, \(P = .047 \)) remained significantly associated with lower OS. Hazard ratios for survival in univariate and multivariate Cox regression are in Table 5. Kaplan-Meier curves are in Figure 2.

SES factor or covariate	T1/T2, N-negative Total (%) \(n = 52 \)	T1/T2, N-positive and T3/T4, N-negative Total (%) \(n = 42 \)	T3/T4, N-positive Total (%) \(n = 17 \)	\(P \)-value
Race				
Majority	34 (46.0)	30 (40.5)	10 (13.5)	.626
Minority	18 (48.7)	12 (32.4)	7 (18.9)	
Income level				
Low	11 (52.4)	9 (42.9)	1 (4.8)	.614
Middle	18 (40.9)	19 (43.2)	7 (15.9)	
Upper	13 (52.0)	8 (32.0)	4 (16.0)	
Employment status				
Employed or retired	28 (45.9)	24 (39.3)	9 (14.7)	.808
Unemployed or disabled	23 (52.3)	15 (34.1)	6 (13.6)	
Partnership status				
Partnered	17 (48.6)	10 (28.6)	8 (22.9)	.091
Unpartnered	32 (47.1)	30 (44.1)	6 (8.8)	
Age, median (IQR)	56.3 (50.8-62.2)	57.5 (53.3-63.4)	58.0 (51.1-65.5)	.3521
Gender				
Male	34 (44.7)	31 (40.8)	11 (14.5)	.639
Female	18 (51.4)	11 (31.4)	6 (17.1)	
HIV status				
HIV-negative	24 (40.7)	25 (42.4)	10 (16.9)	.382
HIV-positive	28 (53.8)	17 (32.7)	7 (13.5)	

Note: Frequencies were compared between groups using Pearson’s Chi-square for categorical predictor variables and the \(t \) test for age.

Abbreviations: ASCC, anal squamous cell carcinoma; IQR, interquartile range; SES, socioeconomic status; TN, tumor-node.
AHMAD et Al.

3.5 | Patient characteristics by HIV status

Table 6 shows SES and baseline disease characteristics by HIV status. Compared to patients without HIV, HIV-positive patients were significantly more likely to be male (65.8% vs 34.2%, \(P < .001 \)) and younger (median age 54 vs 63, \(P < .001 \)). Additionally, HIV-positive patients were more likely to be insured by Medicaid (61.2% vs 38.8%, \(P = .001 \)), in the racial minority (62.2% vs 37.8%, \(P = .022 \)), in the lowest income tier (71.4% vs 28.6%, \(P = .018 \)), and unemployed (72.7% vs 27.3%, \(P < .001 \)).

4 | DISCUSSION

This study investigated the impact of socioeconomic factors on the TN stage at diagnosis, treatment initiation delays, and survival in patients undergoing definitive chemoradiation therapy for ASCC. SES was not associated with the TN stage at diagnosis, but patients who were single or insured by Medicaid experienced longer delays from diagnosis to treatment initiation. Medicaid payer and racial minority status were associated with lower RFS and OS, and race was an independent predictor for both survival outcomes.

In previous studies of patients with ASCC, Black patients and patients referred from a public (as compared to a private) hospital to a radiation oncology center were found to present with more advanced disease.\(^{14,15}\) Larger-scale studies in other cancers have similarly demonstrated a correlation between SES and disease stage at presentation, with more advanced disease in non-White, lower income, and Medicaid patients.\(^{18-21}\) Such delays in diagnosis may primarily reflect impaired access to care, although additional socioeconomic barriers such as low health literacy regarding cancer symptomatology may also contribute.\(^{22,23}\) In this study, no demographic or socioeconomic indicator included in the analysis was associated with a higher TN stage at diagnosis.

This inconsistent finding may reflect the fact that no patient lacked insurance in this study. Many treated prior to federal Medicaid expansion in 2013 were covered by Healthy San Francisco (SF), a program that subsidizes medical services for uninsured residents of the city and county of San Francisco, California. Indeed, prior studies that failed to identify an association between SES and disease stage at presentation (despite finding differences in survival by SES) were conducted in Canada and the United Kingdom, which offer universal health coverage.\(^{24,25}\) Similarly, SES disparities in cancer outcomes are weak among patients in Medicare and Veterans Administration healthcare systems (large single-payer programs).\(^{20,26}\) Thus, in this study of patients residing almost exclusively in the city and county of San Francisco, SES may not serve as a proxy for access to care.\(^{21}\) It is also possible that there are patients of even lower SES who failed to present to care at all, therefore biasing this study toward patients with a threshold level of SES.

Timeliness of care is widely recognized as an important health care quality metric.\(^{27}\) ASCC patients who are Black, publicly insured, or living in areas with lower education have been shown to experience greater treatment initiation delays.\(^{10}\) In this study, median time from diagnosis to treatment initiation for the entire cohort was 7.9 weeks, with unpartnered and Medicaid patients suffering longer delays. This is consistent with research in other cancers, in which married patients have been found to present to care at earlier stages and to have improved survival.\(^{28}\) The
effect of marital status may reflect increased social support and encouragement to seek and adhere to treatment. Additionally, marital status correlates with higher education and income potential and may itself be considered a component of SES. Medicaid payer status has been correlated with treatment initiation delays in other cancer sites, which may reflect socioeconomic barriers as well administrative hurdles such as longer reimbursement times and higher rates of denied claims.

Socioeconomic disparities in cancer survival are well established in the research literature, persisting and even widening despite the improvements in diagnosis and treatment for many cancers. In ASCC, Black patients and patients residing in lower income areas have been shown to experience worse survival. In this study, racial minority and Medicaid patients had significantly lower RFS and OS. The causes of socioeconomic health disparities are complex and multifactorial, which the authors conceptualize within two major categories: (a) health care system factors such as access to and quality of care, and (b) patient-level differences in health status and cancer-related risk factors and behaviors.

This study minimizes the first set of factors, as all patients were insured and received chemoradiation therapy at a single

SES factor or covariate	Univariate analysis	Multivariate analysis				
Primary payer	HR	95% CI	P-value			
Private	Ref.	Ref.				
Medicaid	4.3	1.2-14.9	0.021	2.9	0.8-10.5	.110
Medicare	3.4	0.8-13.6	0.084	3.1	0.8-12.4	.112

Race						
Majority	Ref.	Ref.				
Minority	3.6	1.7-7.7	0.001	2.7	1.1-6.5	.030

Income level					
Upper	Ref.	Ref.			
Low	2.5	0.7-8.5	0.147		
Middle	1.4	0.4-4.5	0.590		

Employment status					
Employed or retired	Ref.	Ref.			
Unemployed or disabled	1.8	0.8-3.9	0.150		

Partnership status					
Partnered	Ref.	Ref.			
Unpartnered	1.7	0.7-4.3	0.244		

| Age | 1.0 | 1.0-1.0 | 0.980 | | |

Gender					
Male	Ref.	Ref.			
Female	0.6	0.2-1.4	0.239		

TN Stage						
T1/T2, N-negative	Ref.	Ref.				
T1/T2, N-positive and T3/T4, N-negative	3.1	1.2-8.0	0.024	3.2	1.2-8.8	.022
T3/T4, N-positive	6.1	2.1-17.3	0.001	4.4	1.4-13.0	.009

HIV Status					
HIV-negative	Ref.	Ref.			
HIV-positive	1.9	0.9-3.9	0.099		

Note: Unadjusted and adjusted hazard ratios were calculated using Cox regression. Variables significant at \(P < .05 \) in univariate analysis were included in the multivariate model.

Abbreviations: ASCC, anal squamous cell carcinoma; CI, confidence interval; HR, hazard ratio; RFS, relapse-free survival; SES, socioeconomic status; TN, tumor-node.
academic cancer center. Furthermore, the TN stage at presentation did not vary significantly by social group. The second set of factors is highly relevant, as the impact of SES on health status has been shown to be comparable in magnitude to that of well-recognized risk factors such as diabetes and obesity. For example, in head and neck cancer, Medicaid enrollees' higher rates of alcohol and tobacco use have been shown to mediate poorer local control and overall survival. Medicaid patients also have higher rates of chronic health conditions and are more likely to rate their health negatively. Importantly, the poor health status and outcomes of Medicaid patients may reflect the consequences of prior uninsured status, as patients may enroll in Medicaid retroactively, following a new diagnosis or catastrophic health event.

Race is a robust determinant of health, with racial minorities having higher rates of illness and death. While economic factors such as income, education, and occupation trend closely with race, racial differences in health persist at all levels of SES, suggesting an independent effect of race. Indeed, in this study, race remained a significant predictor of lower RFS and OS in multivariate analysis. Exposure to psychosocial stressors such as prejudice and discrimination is hypothesized to mediate noneconomic effects of race on health.

Figure 1: Relapse-Free Survival by Race and by Payer. These survival curves were created in STATA software version 15 using the Kaplan-Meier method with the log-rank test for significance. Only variables significant at $P < 0.05$ in logrank test or Cox proportional hazards regression are shown. ASCC, anal squamous cell carcinoma; RFS, relapse-free survival; SES, socioeconomic status; TN, tumor-node.
social and structural factors mediating HIV transmission is crucial to reduce rates of infection. While cancer research is advancing rapidly with newer targeted biological therapies, this study shows that SES influences cancer treatment and survival, whether as a direct contributor to outcomes or as an indicator of other related factors. We suggest that attention to the nonbiologic influencers of health—at clinical, research, and policy levels—provides an important avenue to reduce gaps in outcomes.

Clinicians may pursue such changes at the patient level or community- and system-wide with Quality Improvement (QI) initiatives and policy advocacy. Considering patients’ social contexts during diagnostic and therapeutic planning may reveal specific barriers to care, such as inadequate transportation, challenges in navigating cancer treatment, and lack of social support. Identification of barriers at the outset provides an opportunity for proactive, practical intervention, such as provision of transportation vouchers and consultation with a social worker. “Time to Treat” QI initiatives using patient navigators have been shown to reduce clinical delays. The use of patient navigators has also been specifically proposed as a strategy to ameliorate disparities.

Table 5: SES factors associated with OS in ASCC

SES factor or covariate	Univariate analysis		Multivariate analysis			
	HR	95% CI	P-value	HR	95% CI	P-value
Primary payer						
Private	Ref.			Ref.		
Medicaid	4.9	1.1-21.9	.038	2.9	0.6-14.7	.189
Medicare	4.3	0.8-22.0	.083	3.7	0.7-19.3	.121
Race						
Majority	Ref.			Ref.		
Minority	3.2	1.4-7.6	.008	2.8	1.0-7.7	.047
Income level						
Upper	Ref.					
Low	2.7	0.5-14.6	.257			
Middle	2.7	0.6-12.6	.199			
Employment status						
Employed or retired	Ref.					
Unemployed or disabled	2.2	0.9-5.5	.076			
Partnership status						
Partnered	Ref.					
Unpartnered	1.8	0.6-5.5	.276			
Age	1.0	1.0-1.0	.391			
Gender						
Male	Ref.					
Female	0.6	0.2-1.6	.306			
TN stage						
T1/T2, N-negative	Ref.					
T1/T2, N-positive and T3/T4, N-negative	2.6	1.0-7.1	.059			
T3/T4, N-positive	3.5	1.0-12.8	.060			
HIV status						
HIV-negative	Ref.					
HIV-positive	1.5	0.6-3.5	.353			

Note: Unadjusted and adjusted hazard ratios were calculated using Cox regression. Variables significant at P < .05 in univariate analysis were included in the multivariate model. Abbreviations: ASCC, anal squamous cell carcinoma; CI, confidence interval; HR, hazard ratio; OS, overall survival; SES, socioeconomic status; TN, tumor-node.
Overall Survival by Race

![Overall Survival by Race](Image)

FIGURE 2 OS in ASCC by SES. Survival curves were created in STATA software version 15 using the Kaplan-Meier method with the log-rank test for significance. Only variables significant at $P < .05$ in log-rank test or Cox proportional hazards regression are shown. ASCC, anal squamous cell carcinoma; OS, overall survival; SES, socioeconomic status.

TABLE 6 SES and baseline disease characteristics of ASCC patients by HIV Status

SES factor or covariate	HIV-positive total (%) n = 52	HIV-negative total (%) n = 59	P-value
Race			
Majority	29 (39.2)	45 (60.8)	.022
Minority	23 (62.2)	14 (37.8)	
Income level			
Low	15 (71.4)	6 (28.6)	.018
Middle	16 (36.4)	28 (63.6)	
Upper	9 (36.0)	16 (64.0)	
Employment status			
Employed or retired	17 (27.9)	44 (72.1)	<.001
Unemployed or disabled	32 (72.7)	12 (27.3)	
Partnership status			
Partnered	14 (40.0)	21 (60.0)	.213
Unpartnered	36 (52.9)	32 (47.1)	
Primary payer			
Private	12 (35.3)	22 (64.7)	.001
Medicaid	30 (61.2)	19 (38.8)	
Medicare	3 (14.3)	18 (85.7)	
Age, median (IQR)	54.0 (49.2-57.0)	62.7 (55.5-68.5)	<.001
Gender			
Male	50 (65.8)	26 (34.2)	<.001
Female	2 (5.7)	33 (94.3)	
TN stage			
T1/T2, N-negative	28 (53.8)	24 (46.2)	.382
T1/T2, N-positive and T3/T4, N-negative	17 (40.5)	25 (59.5)	
T3/T4, N-positive	7 (41.2)	10 (58.8)	

Note: Frequencies were compared between groups using Pearson’s Chi-square for categorical predictor variables and the t test for age.

Abbreviations: ASCC, anal squamous cell carcinoma; IQR, interquartile range; SES, socioeconomic status; TN, tumor-node.
among vulnerable populations.41,42 Finally, via direct and longitudinal clinical care, physicians are uniquely able to identify social determinants of health. Given their credibility to the public, physicians are also positioned to influence public policy priorities in order to reduce health inequities.43

There are several study limitations that are important to review. This study analyzed 111 patients treated at a high-volume academic center over 14 years. Over this period, policies affecting access to care, among many other sociopolitical factors, may have changed. Additionally, given the rarity of ASCC, treatment at a higher volume center such as our institution is likely to be associated with improved outcomes, limiting generalizability to smaller centers.44 Other than age and HIV status, this analysis did not account for medical comorbidities or tobacco use, the latter of which is a strong risk factor for HPV-related cancers.45 Thus, the impact of SES independent of health status cannot be completely elucidated. Finally, patient incomes were estimated by census tract. San Francisco is a densely populated city and county; wealthy San Francisco neighborhoods border those plagued by poverty, and census tracts may not reflect these socioeconomic differences. Nevertheless, regardless of the precise etiology, these findings demonstrate strong social disparities in ASCC outcomes and support the need for targeted interventions aimed at marginalized populations.

5 | CONCLUSIONS

This study of 111 ASCC patients receiving chemoradiation therapy at a single academic medical center demonstrates that SES is significantly associated with treatment delays, RFS, and OS. These findings underscore the importance of social contextual factors in ASCC outcomes. Greater attention in clinical practice and research to the nonbiologic influencers of health is needed to improve outcomes in socioeconomically vulnerable populations.

CONFLICT OF INTEREST

No authors have conflict of interest to declare.

AUTHOR CONTRIBUTIONS

All authors contributed to the study design, data analysis, and writing of the manuscript, with the first author assuming primary responsibility. The second and senior authors compiled the original clinical dataset.

ORCID

Tessnim R. Ahmad https://orcid.org/0000-0001-9525-9645
Mekhail Anwar https://orcid.org/0000-0002-6650-2594

REFERENCES

1. Cancer stat facts: anal cancer. Surveillance, Epidemiology, and End Results Program (SEER) 2019; https://seer.cancer.gov/statfacts/html/anus.html. Accessed May 1, 2019.
2. Kang YJ, Smith M, Canfell K. Anal cancer in high-income countries: Increasing burden of disease. PLoS ONE. 2018;13(10):e0205105.
3. Grulich AE, Poynten IM, Machalek DA, Jin F, Templeton DJ, Hillman RJ. The epidemiology of anal cancer. Sex Health. 2012;9(6):504–508.
4. Melbye M, Rabkin C, Frisch M, Biggar RJ. Changing patterns of anal cancer incidence in the United States, 1940–1989. Am J Epidemiol. 1994;139(8):772–780.
5. Medford RJ, Salit IE. Anal cancer and intraepithelial neoplasia: epidemiology, screening and prevention of a sexually transmitted disease. CMAJ. 2015;187(2):111–115.
6. Jemal A, Simard EP, Dorell C, et al. Annual Report to the Nation on the Status of Cancer, 1975–2009, featuring the burden and trends in human papillomavirus(HPV)-associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst. 2013;105(3):175–201.
7. Benard VB, Johnson CJ, Thompson TD, et al. Examining the association between socioeconomic status and potential human papillomavirus-associated cancers. Cancer. 2008;113(10 Suppl):2910–2918.
8. Bilimoria KY, Bentrem DJ, Rock CE, Stewart AK, Ko CY, Halverson A. Outcomes and prognostic factors for squamous-cell carcinoma of the anal canal: analysis of patients from the National Cancer Data Base. Dis Colon Rectum. 2009;52(4):624–631.
9. Lin D, Gold HT, Schreiber D, Leichman LP, Sherman SE, Becker DJ. Impact of socioeconomic status on survival for patients with anal cancer. Cancer. 2018;124(8):1791–1797.
10. Ramey SJ, Rich BJ, Kwon D, et al. Demographic disparities in delay of definitive chemoradiation for anal squamous cell carcinoma: a nationwide analysis. J Gastrointest Oncol. 2018;9(6):1109–1126.
11. Huang J, Barbera L, Brouwers M, Brownman G, Mackillop WJ. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol. 2003;21(3):555–563.
12. Murphy CT, Galloway TJ, Handorf EA, et al. Survival impact of increasing time to treatment initiation for patients with head and neck cancer in the United States. J Clin Oncol. 2016;34(2):169–178.
13. Bleicher RJ, Ruth K, Sigurdson ER, et al. Time to surgery and breast cancer survival in the United States. JAMA Oncol. 2016;2(3):330–339.
14. Bitterman DS, Grew D, Gu P, et al. Comparison of anal cancer outcomes in public and private hospital patients treated at a single radiation oncology center. J Gastrointest Oncol. 2015;6(5):524–533.
15. Johnson LG, Madeleine MM, Newcomer LM, Schwartz SM, Daling JR. Anal cancer incidence and survival: the surveillance, epidemiology, and end results experience, 1973–2000. Cancer. 2004;101(2):281–288.
16. Walker GV, Grant SR, et al. Disparities in stage at diagnosis, treatment, and survival in nonelderly adult patients with cancer according to insurance status. J Clin Oncol. 2014;32(28):3118–3125.
17. Census Reports. FFIEC Online Census Data System 2019; https://www.ffiec.gov/census/. Accessed May 1, 2019.
18. Schwartz KL, Crossley-May H, Vigneau FD, Brown K, Banerjee M. Race, socioeconomic status and stage at diagnosis for five common malignancies. Cancer Causes Control. 2003;14(8):761–766.
19. Clegg LX, Reichman ME, Miller BA, et al. Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. *Cancer Causes Control*. 2009;20(4):417-435.

20. Byers TE, Wolf HJ, Bauer KR, et al. The impact of socioeconomic status on survival after cancer in the United States: findings from the National Program of Cancer Registries Patterns of Care Study. *Cancer*. 2008;113(3):582-591.

21. Bilimoria KY, Ko CY, Tomlinson JS, et al. Wait times for cancer surgery in the United States: trends and predictors of delays. *Ann Surg*. 2011;253(4):779-785.

22. Naghavi AO, Echevarria MI, Grass GD, et al. Having Medicaid insurance negatively impacts outcomes in patients with head and neck malignancies. *Cancer*. 2016;122(22):3529-3537.

23. Davidson PL, Bastani R, Nakazono TT, Carreon DC. Role of community risk factors and resources on breast carcinoma stage at diagnosis. *Cancer*. 2015;121(23):129-137.

24. Booth CM, Li G, Zhang-Salomon J, Mackillop WJ. The impact of socioeconomic status on stage of cancer at diagnosis and survival: a population-based study in Ontario, Canada. *Cancer*. 2010;116(17):4160-4167.

25. Brewster DH. Relation between socioeconomic status and tumour stage in patients with breast, colorectal, ovarian, and lung cancer: results from four national, population based studies. *BMJ*. 2001;322(7290):830-831.

26. Page WF, Kuntz AJ. Racial and socioeconomic factors in cancer survival. A comparison of Veterans Administration results with selected studies. *Cancer*. 1980;45(5):1029-1040.

27. Institute of Medicine (US) Committee on Quality of Health Care in America. *Crossing the Quality Chasm: A New Health System for the 21st Century*. Washington, DC: National Academies Press (US), 2001.

28. Aizer AA, Chen M-H, McCarthy EP, et al. Marital status and survival in patients with cancer. *J Clin Oncol*. 2013;31(31):3869-3876.

29. Parker K, Horwitz J, Mahb B. On views of race and inequality, Blacks and Whites are worlds apart. 2016; https://www.pewsocialtrends.org/2016/6/27/on-views-of-race-and-inequality-blacks-and-whites-are-worlds-apart/.

30. Aizer AA, Wilhite TJ, Chen M-H, et al. Lack of reduction in racial disparities in cancer-specific mortality over a 20-year period. *Cancer*. 2014;120(10):1532-1539.

31. Stringhini S, Carmeli C, Jokela M, et al. Socioeconomic status and the 25 x 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. *Lancet*. 2017;389(10075):1229-1237.

32. Thomas MR, Waxmonska JA, Gabow PA, Flanders-McGinnis G, Socherman R, Rost K. Prevalence of psychiatric disorders and costs of care among adult enrollees in a Medicaid HMO. *Psychiatr Serv*. 2005;56(11):1394-1401.

33. Cheung PT, Wiler JL, Lowe RA, Ginde AA. National study of barriers to timely primary care and emergency department utilization among Medicaid beneficiaries. *Ann Emerg Med*. 2012;60(1):4-10. e2.

34. Bradley CJ, Gardiner J, Given CW, Roberts C. Cancer, medical enrollment, and survival disparities. *Cancer*. 2005;103(8):1712-1718.

35. Williams DR, Priest N, Anderson NB. Understanding associations among race, socioeconomic status, and health: patterns and prospects. *Health Psychol*. 2016;35(4):407-411.

36. Hall HI, Espinoza L, Benbow N, Hu YW. Epidemiology of HIV infection in large urban areas in the United States. *PLoS ONE*. 2010;5(9):e12756.

37. Pellowski JA, Kalichman SC, Matthews KA, Adler N. A pandemic of the poor: social disadvantage and the U.S. HIV epidemic. *Am Psychol*. 2013;68(4):197-209.

38. Bryant AK, Huynh-Le M-P, Simpson DR, Gupta S, Sharabi AB, Murphy JD. Association of HIV status with outcomes of anal squamous cell carcinoma in the era of highly active antiretroviral therapy. *JAMA Oncol*. 2018;4(1):120-122.

39. Graboyes EM, Garrett-Mayer E, Sharma AK, Lentsch EJ, Day TA. Adherence to National Comprehensive Cancer Network guidelines for time to initiation of postoperative radiation therapy for patients with head and neck cancer. *Cancer*. 2017;123(14):2651-2660.

40. Lo DS, Zeldin RA, Skrastins R, et al. Time to treat: a system redesign focusing on decreasing the time from suspicion of lung cancer to diagnosis. *J Thorac Oncol*. 2007;2(11):1001-1006.

41. Natale-Pereira A, Enard KR, Nevarez L, Jones LA. The role of patient navigators in eliminating health disparities. *Cancer*. 2011;117(15 Suppl):3543-3552.

42. Moy B, Chabner BA. Patient navigator programs, cancer disparities, and the patient protection and affordable care act. *Oncologist*. 2011;16(7):926-929.

43. Earnest MA, Wong SL, Federico SG. Perspective: physician advocacy: what is it and how do we do it? *Acad Med*. 2010;85(1):63-67.

44. Amini A, Jones BL, Ghosh D, Schefter TE, Goodman KA. Impact of facility volume on outcomes in patients with squamous cell carcinoma of the anal canal: analysis of the National Cancer Data Base. *Cancer*. 2017;123(2):228-236.

45. Randapani SV, Eaton M, Thomas CR Jr, Pagnini PG. HIV-positive anal cancer: an update for the clinician. *J Gastrointest Oncol*. 2011;4(1):120-122.