Sleep-related hypoventilation and hypercapnia in multiple system atrophy detected by polysomnography with transcutaneous carbon dioxide monitoring

Atsuhiko Sugiyama1 · Jiro Terada2 · Yu Shionoya3 · Shigeki Hirano1 · Tatsuya Yamamoto1,4 · Yoshitaka Yamanaka1,5 · Nobuyuki Araki1 · Ken Koshikawa3 · Hajime Kasai3 · Shinobu Ikeda6 · Jiaqi Wang1 · Kyosuke Koide1 · Shoichi Ito1,7 · Satoshi Kuwabara1

Received: 3 September 2021 / Revised: 4 December 2021 / Accepted: 7 January 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Purpose We aimed to evaluate sleep-related hypoventilation in multiple system atrophy (MSA) using polysomnography (PSG) with transcutaneous partial pressure of carbon dioxide (PtcCO2) monitoring.

Methods This prospective study included 34 patients with MSA. Motor and autonomic function, neuropsychological tests, PSG with PtcCO2 monitoring, and pulmonary function tests were performed. Sleep-related hypoventilation disorder (SRHD) was defined according to the International Classification of Sleep Disorders, third edition.

Results Nine (27%) of the 34 patients met the diagnostic criteria of SRHD. Twenty-nine (85%) patients had sleep-related breathing disorders based on an Apnea–Hypopnea Index of ≥5/h. The patients with MSA and SRHD had a higher arousal index (p = 0.017) and obstructive apnea index (p = 0.041) than those without SRHD. There was no difference in the daytime partial pressure of carbon dioxide in arterial blood or respiratory function between MSA patients with and without SRHD.

Conclusion Sleep-related hypoventilation may occur in patients with MSA even with a normal daytime partial pressure of carbon dioxide. This can be noninvasively detected by PSG with PtcCO2 monitoring. SRBD and sleep-related hypoventilation are common among patients with MSA, and clinicians should take this into consideration while evaluating and treating this population.

Keywords Carbon dioxide · Hypercapnia · Neuropsychological tests · Respiratory function tests · Sleep

Introduction
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by a variable combination of autonomic failure, cerebellar ataxia, and parkinsonian features that are typically poorly responsive to levodopa. Respiratory symptoms, including sleep-related breathing disorders (SRBDs), stridor, and involuntary inspiratory sigh, are part of the clinical spectrum of multiple system atrophy [1]. SRBDs manifest as (1) stridor and obstructive sleep apnea mainly due to upper-airway obstruction and as (2) central sleep apnea, abnormal breathing patterns, including Cheyne–Stokes breathing, and irregular breathing caused by impaired autonomic control of respiration [2]. These symptoms due to impaired automatic control of respiration are commonly found in later disease stages of MSA but can be the primary presenting feature of the disease in some cases [2]. Impaired autonomic control of respiration has...
also been suggested as one of the causes of sudden death in MSA [3].

Respiratory chemosensitivity has an important role in autonomic control of respiration, especially during sleep [4]. Impaired ventilatory response to hypoxemia has been reported in patients with MSA [5], whereas the presence of impaired ventilatory response to hypercapnia in patients with MSA is controversial [5, 6]. A study on chemosensitivity to hypoxemia and hypercapnia measured by the standard rebreathing method in 12 patients with MSA demonstrated the presence of impaired chemosensitivity to hypoxemia despite normal chemosensitivity to hypercapnia [5]. However, a patient with reduced ventilatory response to CO₂ inhalation was reported in a case series [6]. Daytime hypoventilation and hypercapnia in patients with MSA have been reported in several studies [7–9]. Impairment of autonomic respiratory control is more likely to become apparent during sleep [10]. However, sleep-related hypoventilation in patients with MSA has not been fully investigated.

The American Academy of Sleep Medicine recommends measurement of the partial pressure of carbon dioxide in arterial blood (PₐCO₂) or monitoring of the transcutaneous partial pressure of carbon dioxide (PtcCO₂) for diagnosis of sleep-related hypoventilation disorder (SRHD) [11]. Therefore, in the present study, we aimed to evaluate SRHD in patients with MSA using polysomnography (PSG) with PtcCO₂ monitoring.

Methods

Subjects

This prospective study was approved by the Institutional Review Board of the Chiba University Graduate School of Medicine, and all patients provided written informed consent. Consecutive patients with MSA admitted to Chiba University Hospital between October 2018 and December 2020 were recruited in this study. The inclusion criterion was clinically possible or probable MSA based on the second consensus statement by Gilman and colleagues [12] (Supplementary Table S1). The exclusion criteria were (1) current or previous history of another neuropsychiatric disorder; (2) insufficient data from PSG, neuropsychological tests, and pulmonary function tests; and (3) PtcCO₂ monitoring data could not be analyzed due to motion artifacts. Seven patients were excluded because of current or previous history of other neuropsychiatric disease (two with depression, one with putaminal hemorrhage, one with brain infarction, one with schizencephaly, one with polymicrogyria, and one with Takayasu’s arthritis). Six patients were excluded because of incomplete measurement of PtcCO₂ due to equipment failure. Three patients were excluded because of insufficient data (one with incomplete PSG due to patient’s refusal to continue, one with incomplete neuropsychological tests due to blindness, and one with incomplete neuropsychological and pulmonary function tests due to spread of COVID-19). PtcCO₂ monitoring data could not be analyzed due to motion artifacts in three patients. On the basis of these criteria, a total of 34 patients with MSA (probable 27, possible 7) were included in the final analysis of this study (Fig. 1).

At the time of diagnosis of MSA, it was classified according to whether the clinical syndrome was dominated by parkinsonism (MSA-P) or cerebellar ataxia (MSA-C). The severity of motor dysfunctions was evaluated by the Unified Multiple System Atrophy Rating Scale (UMSARS) parts 1 and 2 scores, the International Cooperative Ataxia Rating Scale (ICARS) scores, and Movement Disorder Society-sponsored Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part III scores. Cognitive functions were evaluated...
with the Frontal Assessment Battery (FAB), Addenbrooke’s Cognitive Examination (ACEIII) [13], and Behavioral Assessment of the Dysexecutive Syndrome (BADS) [14]. The Self-Rating Depression Scale (SDS) and Hamilton Rating Scale for Depression (HAM-D-17) [15] were used to evaluate depression. In the autonomic evaluations, urinary symptoms were assessed by using the Overactive Bladder Symptom Score (OABSS) and International Prostate Symptom Score (IPSS). Postvoid residual urine volume was measured three times or more in each subject by ultrasonography, and the mean value was calculated. The head-up tilt test was performed for assessment of orthostatic hypotension as described previously [16].

Olfactory function was assessed by using the Japanese version of the Odor Stick Identification Test (OSIT-J, Dai-ichi Yakuhin Sangyo Co. Ltd., Japan) [17]. The total number of correct answers to the 12 odors constituted the OSIT-J score. Normal awake PtcCO2 was measured by arterial blood gas analysis. History of involuntary inspiratory sigh was assessed by patient interview. Fiberoptic laryngoscopy during wakefulness was performed to assess vocal cord adductor paralysis (VCAP).

The sleep-related symptoms of snoring, headache on waking, sweating, thirst on waking, and apnea were assessed by questionnaire. Daytime sleepiness was assessed by the Epworth Sleepiness Scale score [18]. The REM Sleep Behavior Disorder Screening Questionnaire-Japanese version (RBDSQ-J) was used to assess REM Sleep Behavior Disorder (RBD) [19].

PSG recording and scoring

All patients underwent standard, full, overnight PSG combined with PtcCO2 monitoring (TCMSTM, Radiometer, Denmark). Before and after each measurement, the sensor was automatically calibrated in the calibration chamber using a service gas (mixture of 7.5% CO2, 12.0% O2, and 80.5% N2). The following were recorded: electroencephalography (EEG; C4-M1, O2-M1, C3-M2, 1-M2), electrooculography, anterior tibial electromyography, electrocardiography, respiratory effort by thoracoabdominal piezoelectric belts, nasal airflow by nasal pressure cannula, nasal and oral flow by a thermistor, finger-pulse oximetry, snoring recording by a neck microphone, and assessment of body posture by a thoracic belt sensor. All sleep parameters recorded by PSG were analyzed and scored according to the American Academy of Sleep Medicine Manual for the Scoring of Sleep and Associated Events, version 2.3. Apnea was defined as a reduction in nasal airflow to <10% of baseline for ≥10 s, whereas hypopnea was defined as a reduction in nasal airflow signal amplitude of ≥30% for ≥10 s in association with either a ≥3% oxygen desaturation or electroencephalographic arousal. The Apnea–Hypopnea Index (AHI) was counted by the mean number of apneas and hypopneas per hour. SRBD was diagnosed based on an AHI of ≥5/h. The severity of SRBD was categorized as follows: mild (AHI, 5 to <15/h), moderate (AHI, 15 to <30/h), and severe (AHI, ≥30/h). Sleep-related hypoventilation disorder (SRHD) was defined as PtcCO2 > 55 mmHg or >50 mmHg if PtcCO2 increased by >10 mmHg for >10 min of sleep compared with the awake supine value.

Pulmonary function test

Pulmonary function testing using a CHSTAC-8900 spirometer (Chest MI, Tokyo, Japan) was performed in accordance with the guidelines of the American Thoracic Society and European Respiratory Society [20]. Total lung volume was determined by the helium dilution method, and DLCO and alveolar ventilation were determined by the single-breath method. The values for percent predicted forced expiratory volume in 1 s (FEV1 %) were calculated according to the equations of the Japanese Respiratory Society [21].

Nasal airflow analysis in patients with severe SRHD

Nasal airflow data were analyzed in three patients with severe SRHD who had the longest sleep time with PtcCO2 >55 mmHg. We measured the time at which a decrease in nasal airflow signal amplitude fulfilled the definition of an apnea or hypopnea event during sleep with a PtcCO2 >50 mmHg.

Statistical analysis

All statistical analyses were performed by using SPSS software, version 25.0 (IBM SPSS Statistics for Windows, IBM Corp.; Armonk, NY). Demographic and clinical, PSG, PtcCO2 monitoring, and pulmonary function test data between the patients with and without SRHD were analyzed by using Student’s t-test and the Mann–Whitney U-test for continuous variables, and Fisher’s exact probability test was used for categorical variables. Statistical significance was set at p <0.05.

Results

Overall clinical data and PSG, PtcCO2 monitoring, and pulmonary function tests findings

The demographic and clinical details of 34 patients with MSA are summarized in Table 1. Among the 34 MSA patients, 20 were MSA-C and 14 were MSA-P. VCAP was
found in six (18%) patients. Four patients had bilateral partial abduction restriction of the vocal cords, one patient had unilateral partial abduction restriction of the vocal cord, and one patient had unilateral complete abduction restriction of the vocal cord.

Table 2 and Fig. 2 summarize the results of PSG and PtCO₂ monitoring. Twenty-nine (85%) patients were diagnosed with SRBD based on an AHI of ≥ 5/h. Eight patients (24%) had mild SRBD, 12 (35%) were moderate, and 9 (27%) were severe. Nine (27%) patients met the diagnostic criteria of SRHD. Among them, one did not meet the criterion of SRBD, one was mild, three were moderate, and four were severe. Nasal airflow data during sleep of three patients with severe SRHD (cases 6, 11, and 12 in Fig. 2) and PtCO₂ > 50 mmHg are described in Table 3 and Fig. 3.

The results of the arterial blood gas analysis and pulmonary function tests are presented in Table 3. Two patients did not fulfill the total lung capacity, residual volume, or the diffusion capacity portions of the tests. Daytime hypercapnia (defined as PaCO₂ ≥ 45 mmHg) was observed in five (14.7%) patients. No MSA patient had severe daytime hypoventilation, defined as PaCO₂ > 50 mmHg.
Comparison of the clinical data and characteristics of PSG, PtcCO₂ monitoring, and pulmonary function tests between MSA patients with and without SRHD

A comparison of the clinical data between MSA patients with SRHD (MSA-SRHD) and without SRHD (MSA-nSRHD) is presented in Table 1. The MSA-SRHD group had a higher proportion of males (8/9 in the MSA-SRHD group vs. 12/25 in the MSA-nSRHD group, p = 0.037) and a lower MDS-UPDRS part 3 score (16.9 ± 11.8 in the MSA-SRHD group vs. 31.8 ± 16.2 in the MSA-nSRHD group, p = 0.017). There were no significant differences in cognitive,
No.	Age	Type of MSA	SRBD severity	AHI (hour)	Ratio of apnea types and hypopnea	SRHD	Max Pt CO₂ (mmHg)
1	68	MSA-C	3	86.2			
2	75	MSA-C	3	80.0			
3	62	MSA-C	3	64.1			
4	68	MSA-P	3	54.4			
5	52	MSA-P	3	53.1			
6	61	MSA-C	3	42.9			
7	63	MSA-C	3	40.6			
8	78	MSA-P	3	32.3			
9	54	MSA-C	3	30.9			
10	70	MSA-P	2	29.5			
11	63	MSA-C	2	25.6			
12	73	MSA-P	2	24.8			
13	71	MSA-P	2	23.7			
14	68	MSA-C	2	22.3			
15	68	MSA-P	2	21.9			
16	66	MSA-C	2	21.2			
17	57	MSA-P	2	20.7			
18	49	MSA-C	2	19.3			
19	64	MSA-C	2	17.9			
20	48	MSA-C	2	17.7			
21	74	MSA-P	2	15.0			
22	69	MSA-P	1	14.4			
23	71	MSA-C	1	12.4			
24	82	MSA-P	1	12.3			
25	52	MSA-P	1	12.1			
26	62	MSA-C	1	9.4			
27	72	MSA-P	1	8.1			
28	66	MSA-C	1	7.7			
29	71	MSA-C	1	7.0			
30	62	MSA-C	0	4.5			
31	69	MSA-P	0	4.3			
32	58	MSA-C	0	3.9			
33	53	MSA-C	0	3.5			
34	76	MSA-C	0	2.8			

Fig. 2 Results of polysomnography with monitoring of the transcutaneous partial pressure of carbon dioxide (PtCO₂) in each case. SRBD, sleep-related breathing disorder; AHI, apnea–hypopnea index; SRHD, sleep-related hypoventilation disorder; MSA-C, cerebellar subtype of multiple system atrophy; MSA-P, parkinsonian subtype of multiple system atrophy.
neuropsychiatric, and autonomic functions between the MSA-SRHD and MSA-nSRHD groups. Table 2 presents a comparison of the PSG and PtcCO2 monitoring results between the MSA-SRHD and MSA-nSRHD groups. In the PSG data, the MSA-SRHD group had a higher arousal index (46.4 [28.5–62.6] in the MSA-SRHD group vs. 31.2 [17.1–68.7] in the MSA-nSRHD group, \(p = 0.017 \)) and obstructive apnea index (6.3 [0.2–33.1] in the MSA-SRHD group vs. 0.6 [0–44.8] in the MSA-nSRHD group, \(p = 0.041 \)). In the PtcCO2 monitoring data, MSA-SRHD had a higher maximum PtcCO2 (56.2 ± 2.7 in the MSA-SRHD group vs. 45.5 ± 3.9 in the MSA-nSRHD group, \(p < 0.001 \)) and percentage of time with PtcCO2 > 50 mmHg during sleep (53.5 [27.3–100.0] in MSA-SRHD group vs. 0 [0–30.9] in the MSA-nSRHD group, \(p < 0.001 \)).

A comparison of the arterial blood gas analysis and pulmonary function results between MSA-SRHD and MSA-nSRHD is presented in Table 4. There were no differences in the daytime PaCO2 results between the MSA-SRHD and MSA-nSRHD groups (40.3 ± 3.5 vs. 41.7 ± 3.6 mmHg, \(p = 0.337 \)), indicating that basal ventilation during daytime was not impaired in MSA-SRHD. There was no significant difference in the pulmonary function results between the MSA-SRHD and MSA-nSRHD groups.

Discussion

Our results show that sleep-related hypoventilation and SRBD were common in patients with MSA, and these should be considered by clinicians during their clinical work-up as non-motor symptoms in patients with MSA. In our study, SRHD was observed in approximately one-fourth of patients with MSA. The frequency of SRHD and the clinical characteristics of patients with MSA with SRHD have not been adequately studied thus far. There was no difference in daytime PaCO2 or respiratory function between the patients with MSA with SRHD and those without SRHD. Patients with MSA and SRHD had a higher arousal index and obstructive apnea index than those without SRHD. However, some patients with SRHD did not exhibit a high AHI. The analysis of nasal airflow data in patients with MSA and severe SRHD revealed that the nasal airflow signal did not always meet the definition of an apnea or hypopnea event during sleep with a PtcCO2 > 50 mmHg. These findings suggested that SRHD could be overlooked with regular PSG alone and that PtcCO2 monitoring in addition to regular PSG might be important for the evaluation of sleep-related hypoventilation in patients with MSA.

SRBD is frequently observed in patients with MSA. We found that 85% of patients with MSA had SRBD, defined as an AHI of \(\geq 5/h \), which is comparable with previous studies using the same definition of SRBD that reported a prevalence of SRBD ranging from 48.6 to 88.9% in patients with MSA [22–27]. We also found that 62% of patients with MSA had moderate to severe SRBD, defined as an AHI of \(\geq 15/h \), which is consistent with previous studies reporting the prevalence of moderate to severe SRBD, defined as an AHI of \(\geq 15/h \), ranging from 37.5 to 66.7% in patients with MSA [23, 26, 27].

In this study, the pulmonary function test results were not significantly different between patients with MSA with and without SRHD. Our study did not compare the results of pulmonary function in patients with MSA with healthy controls, and there are limited data regarding the pattern of pulmonary function abnormalities in patients with MSA. One study demonstrated an increase in the alveolar-arterial oxygen gradient [9], and another showed a decrease in diffusing capacity in patients with MSA [28]. The mechanism behind these results remains to be elucidated.

Although the underlying pathophysiology of SRHD in patients with MSA remains unclear, SRHD may be caused by the involvement of central chemoreceptive neurons, hypoxia-sensitive carotid chemoreceptors, or autonomic centers controlling vascular tone. First, serotonergic neurons in the medullary raphe nuclei and glutamatergic neurons on the ventral surface of the medulla have been proposed to be responsible for central chemosensitivity to hypercapnia in previous experimental studies [29, 30]. Severe depletion of medullary serotonin neurons has been observed in patients with MSA who succumbed to sudden death [31]. Second, depletion of putative chemosensitive glutamatergic neurons in the arcuate nucleus, located just beneath the ventral medullary surface, has also been reported in MSA [32]. Additionally, depletion of neurokinin-1 receptor-immunoreactive neurons in the rostral ventrolateral medulla of patients with MSA has been reported [33]. Some of these neurons may correspond to the preBötzinger complex neurons implicated in sensitivity to hypoxia. In the present study, the MDS-UPDRS Part III score was lower in the MSA-SRHD group than in the MSA-nSRHD group, suggesting that some patients with MSA might have mild degeneration of the nigrostriatal system and severe degeneration of the medullary chemoreceptive neurons or carotid chemoreceptors. Finally, PtcCO2 measures the peripheral partial pressure of
CO₂, which increases not only during hypoventilation but also during peripheral hypoperfusion. Therefore, SRHD that manifests only during sleep is also likely to be influenced by sleep-related decreased sympathetic outflow including noradrenergic neurons that control the carotid body [34] or peripheral perfusion [35, 36]. Therefore, SRHD detected with overnight PtcCO₂ monitoring could be a sensitive measure of the degree of the underlying autonomic failure in MSA.

One clinical implication of detecting SRHD using PSG with PtcCO₂ monitoring is that noninvasive ventilation (NIV) rather than continuous positive airway pressure (CPAP) may be encouraged to treat SRHD associated with MSA. CPAP is an effective and noninvasive treatment
Sleep and Breathing (2022) 26:1779–1789

provides a reliable estimation of the
ing has been shown to be a minimally invasive method that
during sleep was not performed. Although direct
transcutaneous route alone, and arterial blood gas analysis
were misdiagnosed. Third, the
patients were clinically diagnosed without postmortem
this study lacked a healthy control group. Second, the MSA
cognitive impairment in patients with MSA.
progression and
related hypoventilation and associated hypercapnia on MSA
the indication for NIV [41]. Although the effect of sleep-
RG in hypoventilation conditions. NIV has been con-
utilized as an alternative for overcoming ventilatory insuf-
ficiency in patients with neuromuscular disease
forms of restrictive lung disease, and hypoventilation syn-
drome associated with daytime hypercapnia [39, 40]. Based
an algorithm for the treatment of chronic hypcapnic res-
piratory insufficiency in patients with neuromuscular disease
in the German National Guidelines, two of the eight MSA
-SRHD patients in this study with morning headache met
the indication for NIV [41]. Although the effect of sleep-
related hypoventilation and associated hypercapnia on MSA
progression and prognosis has not yet been investigated,
hypercapnia has been proposed as one of the factors affect-
ing cognitive function in patients with chronic obstructive
pulmonary disease [42]. Additional longitudinal studies are
warranted to clarify the effects of sleep-related hypoventila-
and associated hypercapnia on disease progression and
cognitive impairment in patients with MSA.

Limitations of our study include the following. First,
this study lacked a healthy control group. Second, the MSA
patients were clinically diagnosed without postmortem
confirmation, so it is possible that some of these patients
were misdiagnosed. Third, the PaCO₂ was measured by the
transcutaneous route alone, and arterial blood gas analysis
during sleep was not performed. Although direct PaCO₂
measurement remains the gold standard, PtcCO₂ monitor-
ing has been shown to be a minimally invasive method that
provides a reliable estimation of the PaCO₂ [43, 44]. Fourth,
in the present study, 22 of the 56 consecutive patients were
excluded for various reasons; therefore, unexpected selection
bias might have affected the study results. Fifth, the number
of patients included in the final analysis was not sufficient to
perform reliable multivariable analyses to identify independ-
ent factors associated with SRHD.

Conclusions

In conclusion, PtcCO₂ monitoring during PSG may reveal
sleep-related hypoventilation in patients with MSA who have
normal daytime PaCO₂. SRBD and sleep-related hypoventi-
lolation are common in patients with MSA, and clinicians
should take this into consideration as non-motor symptoms
in patients with MSA.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11325-022-02568-4.

Acknowledgements The authors sincerely thank Asami Uchida,
Eriko Abe, Ami Niwano, Miku Nagasawa, Yuri Imaizumi, and Kazuki
Yoshida (Division of Laboratory Medicine, Chiba University Hospital)
for their technical support in this research.

Author contribution Conceptualization: Atsuhiko Sugiyama and Jiro
Terada. Formal analysis and investigation: Ken Koshikawa, Shinobu
Ikeda, Jiaqi Wang, and Kyosuke Koide. Writing—original draft prepa-
ration: Atsuhiko Sugiyama, Yu Shionoya, and Hajime Kasai. Writing—
revise and editing: Shigeki Hirano, Tatsuya Yamamoto, Yoshitaka
Yamanaka, Nobuyuki Araki, Shoichi Ito, and Satoshi Kuwabara. Funding
acquisition: Atsuhiko Sugiyama. Supervision: Satoshi Kuwabara.
Funding This work was supported by the JPPS KAKENHI (Grant Number 18K15438).

Data Availability All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

Code availability Not applicable.

Declarations

Ethics approval This prospective study was approved by the Institutional Review Board of the Chiba University Graduate School of Medicine (approval reference number: 3122). This study was performed in line with the principles of the Declaration of Helsinki.

Consent to participate Written informed consent was obtained from all individual participants included in the study.

Consent to publish Not applicable.

Conflict of interest The authors declare no competing interests.

References

1. Jecmenica-Lukic M, Poewe W, Tolosa E, Wenning GK (2012) Premotor signs and symptoms of multiple system atrophy. Lancet Neurol 11(4):361–368
2. Irazno A (2007) Sleep and breathing in multiple system atrophy. Curr Treat Options 9(5):347–353
3. Shimohata T, Aizawa N, Nakayama H, Taniguchi H, Ohshima Y, Okumura H et al. (2016) Mechanism and prevention of sudden death in multiple system atrophy. Parkinsonism Relat Disord 30:1–6
4. Benarroch EE (2019) Control of the cardiovascular and respiratory systems during sleep. Auton Neurosci 218:54–63
5. Tsuda T, Onodera H, Okabe S, Kikuchi Y, Itoyama Y (2002) Impaired chemosensitivity to hypoxia is a marker of multiple system atrophy. Ann Neurol 52(3):367–371
6. Chokroverty S, Sharp JT, Barron KD (1978) Periodic respiration in erect posture in Shy-Drager syndrome. J Neurol Neurosurg Psychiatry 41(11):980–986
7. Glass GA, Josephs KA, Ahlskog JE (2006) Respiratory insufficiency as the primary presenting symptom of multiple-system atrophy. Arch Neurol 63(7):978–981
8. Shimohata T, Nakayama H, Shinoda H, Tsukada H, Takahashi S, Gejo F et al. (2006) Multiple system atrophy with progressive nocturnal hypoxemia: case report with polysomnography and continuous positive airway pressure treatment. Eur Neurol 56(4):258–260
9. Shimohata T, Shinoda H, Nakayama H, Ozawa T, Terajima K, Yoshizawa H et al. (2007) Daytime hypoxemia, sleep-disordered breathing, and laryngopharyngeal findings in multiple system atrophy. Arch Neurol 64(6):856–861
10. McNicholas WT, Rutherford R, Grossman R, Moldofsky H, Zamol N, Phillipson EA (1983) Abnormal respiration pattern generation during sleep in patients with autonomic dysfunction. Am Rev Respir Dis 128(3):429–433
11. American Academy of Sleep Medicine, (2014) The international classification of sleep disorders. 3rd Edition (ICSD-3).
12. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ et al. (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676
13. Takenoshita S, Terada S, Yoshida H, Yamaguchi M, Yabe M, Imai N et al. (2019) Validation of Addenbrooke’s cognitive examination III for detecting mild cognitive impairment and dementia in Japan. BMC Geriatr 19(1):123
14. Wilson BA, Alderman N, Burgess PW, Emslie H, Evans JJ (1996) Behavioural assessment of the Dysexecutive Syndrome, Thames Valley Test Company, Bury St. Edwards, UK.
15. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23(1):56–62
16. Sugiyama A, Yokota H, Yamanaka Y, Mukai H, Yamamoto T, Hirano S et al. (2020) Vertical pons hyperintensity and hot cross bun sign in cerebellar-type multiple system atrophy and spino-cerebellar ataxia type 3. BMC Neurol 20(1):157
17. Iijima M, Osaka M, Momose M, Kobayakawa T, Saito S, Iwata M, Uchiyama S (2010) Cardiac sympathetic degeneration correlates with olfactory function in Parkinson’s disease. Mov Disord 25(9):1143–1149
18. Johns MW (1994) Sleepiness in different situations measured by the Epworth Sleepiness Scale. Sleep 17(8):703–710
19. Miyamoto T, Miyamoto M, Iwanami M, Kobayashi M, Nakamura M, Inoue Y et al. (2009) The REM sleep behavior disorder screening questionnaire: validation study of a Japanese version. Sleep Med 10(10):1151–1154
20. Celli BR, MacNee W, ATS, ERS Task Force. (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23(6):932–946
21. Guideline of respiratory function tests—spirometry, flow-volume curve, diffusion capacity of the lung (2004) Nihon Kokyuki Gakkai Zasshi J Jpn Respir Soc Suppl:1–56.
22. Jin K, Okabe S, Chida K, Abe N, Kimpara T, Ohnuma A et al. (2007) Tracheostomy can fatally exacerbate sleep-disordered breathing in multiple system atrophy. Neurology 68(19):1618–1621
23. Deguchi K, Ikeda K, Goto R, Tskaguchi M, Urai Y, Kurokochi K et al. (2010) The close relationship between life-threatening breathing disorders and urine storage dysfunction in multiple system atrophy. J Neurol 257(8):1287–1292
24. Muntean ML, Sixel-Döring F, Trenkwalder C (2013) No difference in sleep and RBD between different types of patients with multiple system atrophy: a pilot video-polysomnographical study. Sleep Disord 2013:258390.
25. Guo XY, Cao B, Lei F, Huang L, Chen K, Song W et al. (2013) Clinical and polysomnographic features of patients with multiple system atrophy in Southwest China. Sleep Breath 17(4):1301–1307
26. Cao B, Wei QQ, Ou R, Zhao B, Hu T, Chen Y et al. (2018) Impact of sleep-related breathing disorder on motor and non-motor symptoms in multiple system atrophy. Sleep Breath 22(4):981–987
27. Parreira S, Antunes F, Coelho M, Bentes C, Peralta R (2021) Sighs during sleep in multiple system atrophy. Sleep Med 78:75–80
28. Wang Y, Shao WB, Gao L, Lu J, Gu H, Sun LH, et al. (2014) Abnormal pulmonary function and respiratory muscle strength findings in Chinese patients with Parkinson’s disease and multiple system atrophy-comparison with normal elderly. PLoS ONE 9(12):e116123.
29. Richerson GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5(6):449–461
30. Benarroch EEE (2007) Brainstem respiratory control: substrates of respiratory failure of multiple system atrophy. Mov Disord 22(2):155–161
31. Tada M, Kakita A, Toyoshima Y, Onodera O, Ozawa T, Morita T et al. (2009) Depletion of medullary serotoninergic neurons in patients with multiple system atrophy who succumbed to sudden death. Brain 132(Pt 7):1810–1819
32. Benarroch EE, Schmeichel AM, Low PA, Parisi JE (2007) Depletion of putative chemosensitivity respiratory neurons in the ventral medullary surface in multiple system atrophy. Brain 130(Pt 2):469–475
33. Benarroch EE, Schmeichel AM, Low PA, Parisi JE (2003) Depletion of ventromedullary NK-1 receptor-immunoreactive neurons in multiple system atrophy. Brain 126(Pt 10):2183–2190
34. Virkki A, Polo O, Gyllenberg M, Aittokallio T (2007) Can Carotid body perfusion act as a respiratory controller? J Theor Biol 249(4):737–748
35. Healey CJ, Fedullo AJ, Swinburne AJ, Wahl GW (1987) Comparisons of noninvasive measurements of carbon dioxide tension during withdrawal from mechanical ventilation. Crit Care Med 15(8):764–768
36. Clark JS, Votteri B, Ariagno RL, Cheung P, Eichhorn JH, Fallat RJ et al (1992) Noninvasive assessment of blood gases. Am Rev Respir Dis 145(1):220–232
37. Iranzo A, Santamaría J, Tolosa E (2000) Continuous positive air pressure eliminates nocturnal stridor in multiple system atrophy. Lancet 356(9238):1329–1330
38. Ghorayeb I, Yekhlef F, Bioulac B, Tison F (2005) Continuous positive airway pressure for sleep-related breathing disorders in multiple system atrophy: long-term acceptance. Sleep Med 6(4):359–362
39. Piper AJ, Sullivan CE (1994) Effects of short-term NIPPV in the treatment of patients with severe obstructive sleep apnea and hypercapnia. Chest 105(2):434–440
40. Kushida CA, Littner MR, Hirshkowitz M, Morgenthaler TI, Alessi CA, Bailey D et al (2006) Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep 29(3):375–380
41. Windisch W, Geiseler J, Simon K, Walterspacher S, Dreher M; on behalf of the Guideline Commission (2018) German National Guideline for treating chronic respiratory failure with invasive and non-invasive ventilation – revised edition 2017: part 2. Respiration 96(1):171–203.
42. Dodd JW, Getov SV, Jones PW (2010) Cognitive function in COPD. Eur Respir J 35(4):913–922
43. Eberhard P, Gisiger PA, Gardaz JP, Spahn DR (2002) Combining transcutaneous blood gas measurement and pulse oximetry. Anesthe Analg 94(1 Suppl):S76-80
44. Tobias JD (2009) Transcutaneous carbon dioxide monitoring in infants and children. Pediatr Anesth 19(5):434–444

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.