Rubus chingii Hu: A Review of the Phytochemistry and Pharmacology

Guohua Yu1,2, Zhiqiang Luo1,2, Wubin Wang2, Yihao Li2, Yating Zhou2 and Yuanyuan Shi1,2*

1 Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China, 2 School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China

Rubus chingii Hu (R. chingii), referred to as “Fu-Pen-Zi” in Chinese, has great medicinal and dietary values since ancient times. The dried fruits of R. chingii have been widely used in traditional Chinese medicine (TCM) for the treatment of kidney enuresis and urinary frequency for centuries. According to current findings, R. chingii has been reported to contain a variety of chemical constituents, mostly triterpenoids, diterpenoids, flavonoids, and organic acids. These compounds have been demonstrated to be the major bioactive components responsible for pharmacological effects such as anticomplementary, anticancer, antioxidant, antimicrobial, and anti-inflammatory functions. Therefore, this review focused on the up-to-date published data of the literature about R. chingii and comprehensively summarized its phytochemistry, pharmacology, quality control, and toxicity to provide a beneficial support to its further investigations and applications in medicines and foods.

Keywords: Rubus chingii Hu, phytochemistry, pharmacology, toxicity, quality control

INTRODUCTION

The genus Rubus, belonging to the Rosaceae family, has edible and economically important fruits and is widely distributed throughout the Northern Hemisphere (Moreno-Medina et al., 2018). This genus consists of over 700 species, about 194 of which occur in China, including R. chingii, R. idaeus, R. rosifolius, R. parvifolius, and so on (Li et al., 2015). Among them, R. chingii is an important functional food with the fruits known as “Fu-Pen-Zi” in Chinese. It is mainly cultivated in East China, especially in Jiangxi province, Anhui province, Jiangsu province, Zhejiang province, and Fujian province. Due to its rich nutritional and medicinal value, R. chingii has been frequently used in traditional Chinese medicine (TCM) for centuries (Liu and Niu, 2014). The medical properties of R. chingii have been mentioned in many landmark Chinese medical monographs, such as “Compendium of Materia Medica,” “Bencao Mengquan,” “Leigong Paozhi Lun,” and “Qianjin Yi Fang.” According to the theory of traditional Chinese herbal medical science, R. chingii is commonly used as a tonic for the treatment of enuresis, kidney deficiency, impotence and spermaemia, frequency of micturition, spermatorrhea, and other illnesses (Xie et al., 2013a).

Since the universal uses of R. chingii in folk medicines, a great deal of studies concerning the chemical constituents and pharmacological activities of this medicinal plant have been carried out, which gave rise to numerous interesting and attractive results. Many in vitro and in vivo investigations have indicated that the extracts and the ingredients isolated from R. chingii possess abundant pharmacological effects, such as anticomplementary, anticancer, antioxidant, antimicrobial, anti-aging and anti-inflammatory activities (Shi, 2017). These marvelous biological functions of this herb can be attributed to the presence of a broad spectrum of phytochemical constituents including triterpenoids, diterpenoids, flavonoids, organic acids, and many other compounds.
Although some brief reviews about the chemical constituents and biological activities have been conducted, these papers were written in Chinese and not studied in a systematic manner. This paper strives for a comprehensive overview of the latest information on the phytochemistry, biological activities, quality control, as well as the toxicity of this herb. More importantly, the correlation between the biological properties and the existence of the bioactive chemical components responsible for the actions has also been discussed based on the published literatures. Finally, the major achievements and shortcomings, together with the possible tendency and perspective for future food and pharmacological research of this herb, have been put forward, too. We believe that this review will highlight the significance of *R. chingii* and indicate new research directions of this species.

PHYTOCHEMICAL CONSTITUENTS OF R. CHINGII

So far, more than 235 chemical constituents have been isolated and identified from *R. chingii* (Table 1). These compounds include 15 triterpenoids, 15 diterpenoids, 18 flavonoids, 7 alkaloids, 95 volatile compounds, 5 coumarins, 9 steroids, 56 organic acids, and 15 other compounds. Among them, triterpenoids and diterpenoids have been identified as the characteristic components.

Triterpenoids

Triterpenoids are the major chemical compounds present in *R. chingii*. They are mainly pentacyclic triterpenoids or thereof derivatives, with oleane-type and ursane-type skeletons (Figure 1). The first study of triterpenes identified in *R. chingii* dates back to the 1980s, when Masao et al. reported the isolation of a new diosphenol-type triterpene named fupenzic acid (1) (Hattori et al., 1988). In another work (Guo, 2005), the fruits of *R. chingii* were extracted with methanol. Further fractionation of the methanol extract led to the isolation of five oleane-type triterpene acids [oleanic acid (2), maslinic acid (3), arjunic acid (4), 2α, 3α, 19α-trihydroxyolean-12-en-28-oic-acid (5), and sericic acid (6)] together with four ursane-type triterpene acids [ursolic acid (7), 2α-hydroxyursolic acid (8), euscaphic acid (9), and hystaptic acid (10)]. Moreover, Cheng et al. found that the roots of this plant were rich in triterpenoids. They obtained three triterpenes acids, namely, ursolic acid (7), euscaphic acid (9), and hystaptic acid (10). From the 80% ethanol extract of the dried fruits of *R. chingii* yielded nigaichigoside F1 (14) and 2α, 19α-dihydroxy-3-oxo-12-ursen-28-oic acid (15) (Xiao et al., 2011).

Diterpenoids

Diterpenoids are also characterized as the representative ingredients of *R. chingii*. Currently, 15 diterpenoids (Figure 2), including 2 kaurane-type diterpenoids and 13 labdane-type diterpenoids, have been identified in *R. chingii*. Rubusoside (16) was the first diterpenoid isolated from the methanol extract of the leaves of *R. chingii* in 1981 (Tanaka et al., 1981), and subsequent investigations have led to the isolation of five additional labdane-type diterpene glucosides (Goshonoside-F1-F5, 17–21) (Tanaka et al., 1984). Furthermore, another two labdane-type diterpene glucosides, namely, goshonoside-F6 (22) and goshonoside-F7 (23), were reported to be obtained from both the leaves and fruits of *R. chingii* (Wang, 1991). In 2013, a new ent-labdane diterpene saponin, named goshonoside-G (24), was separated from the 70% ethanol extract of *R. chingii* unripe fruit, and its structure was determined based on NMR spectroscopic studies and mass spectrometry data (Sun et al., 2013b). Later, from the ethyl acetate extract of *R. chingii* fruit, Guo (2015) isolated five labdane-type diterpene glycosides that were elucidated as ent-Labda-8(17),13E-diene-3β, 15,18-triol (25), ent-Labda-8(17),13E-diene-3α, 15,18-triol (26), 15,18-di-O-β-D-glucopyranosyl-13(E)-ent-labda-7(8), 13(14)-diene-3β, 15,18-triol (27), 15,18-di-O-β-D-glucopyranosyl-13(E)-ent-labda-8(9), 13(14)-diene-3β, 15,18-triol (28), and 15-O-β-D-apiofuranosyl-(1→2)β-D-glucopyranosyl-18-O-β-D-glucopyranosyl-13(E)-ent-labda-8(9), 13(14)-diene-3β, 15,18-triol (29). More recently, Zhang et al. (2017b) found a kaurane-type diterpenoid called ent-16α, 17-dihydroxy-kauran-19-oic acid (30) from fruits of *R. chingii* by bio-guided isolation.

Flavonoids

Flavonoids, occurring naturally in dietary and medicinal plants (Azietaku et al., 2017), are important polyphenol constituents with various pharmacological effects (Cai et al., 2018). The main types of flavonoids found in *R. chingii* were kaempferol, quercetin, and their derivatives. To date, a total of 18 flavonoids have been reported mainly from the fruits of *R. chingii*. Guo et al. isolated six compounds: kaempferol (31), quercetin (32), tiloroside (33), astragaloside (34), quercetin-3-O-β-D-glucopyranosyl (35), and kaempferol-3-O-β-D-glucuronic acid methyl ester (36) (Guo, 2005). In the same year, Liu (2005) obtained kaempferol-7-O-a-L-rhamnoside (37) and 2’-O-Galloyl-hyperin (38). Then, by using a series of chromatographic and spectrum technologies, Cheng (2008) isolated and identified aromadedrin (39), quercitrin (40), hyperoside (41), and cis-tiloroside (42) in 2008. Furthermore, investigation of the 80% ethanol extract of the dried fruits of *R. chingii* yielded phlorizin (43) (Xiao et al., 2011). Lately, kaempferol-3-O-hexoside (44), quercetin-3-O-glucuronide (45), and kaempferol-3-O-glucuronide (46) were identified in the fruits of *R. chingii* by high-performance liquid chromatography (HPLC) coupled with linear ion trap-OrbiTrap hybrid mass spectrometer (Li et al., 2018). In addition, kaempferol-3-O-β-D-rutinoside (47) (He et al., 2013) and rutin (48) (Zhang et al., 2017a) were also found in this plant. Their structures are shown in Figure 3.

Alkaloids

Alkaloids represent a relatively small class of compounds in *R. chingii*. Only seven of this class of compounds have been isolated from *R. chingii* (Figure 4), with skeletons of the quinoline, isoquinoline, and indole types. In 2008, Chai (2008) reported that from the 95% and 50% ethanol extract of the fruits of *R. chingii*, three alkaloids were isolated and identified as 4-hydroxy-2-oxo-1,2,3,4-terahydroquinoline-4-carboxylic acid (49), methyl 1-oxo-1,2,3,4-terahydroquinoline-4-carboxylic acid (49), methyl 1-oxo-
TABLE 1 | Chemical constituents of *R. chingii*.

No.	Chemical component	Part	Molecular formula	References
1	Fupenzic acid	Fruit	C_{60}H_{76}O_{32}	Hattori et al., 1988
2	Oleic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
3	Maslinic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
4	Arjunic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
5	2x, 3x, 19α-trihydroxyolean-12-ene-28-oic-acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
6	Seric acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
7	Ursolic acid	Fruit, Root	C_{60}H_{76}O_{32}	Guo, 2005; Cheng, 2008
8	2α-hydroxysyringic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
9	Euscaphic acid	Fruit, Root	C_{60}H_{76}O_{32}	Guo, 2005; Cheng, 2008
10	Hypotactic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
11	11α-hydroxyeuscaphic acid	Root	C_{60}H_{76}O_{32}	Cheng, 2008
12	2α,19α,24-trihydroxyurs-12-ene-3-oxo-28-acid	Fruit	C_{60}H_{76}O_{32}	Chai, 2008
13	Tormentic acid	Fruit	C_{60}H_{76}O_{32}	Chai, 2008
14	Nigaihigoside F1	Fruit	C_{60}H_{76}O_{32}	Xiao et al., 2011
15	2α,15α-dihydroxy-3-oxo-12-ursen-28-oic acid	Fruit	C_{60}H_{76}O_{32}	Xiao et al., 2011
16	Rubusoside	Leaf	C_{60}H_{76}O_{32}	Tanaka et al., 1981
17	Goshonoside-F1	Leaf	C_{60}H_{76}O_{32}	Tanaka et al., 1981
18	Goshonoside-F2	Leaf	C_{60}H_{76}O_{32}	Tanaka et al., 1981
19	Goshonoside-F3	Leaf	C_{60}H_{76}O_{32}	Tanaka et al., 1981
20	Goshonoside-F4	Leaf	C_{60}H_{76}O_{32}	Tanaka et al., 1981
21	Goshonoside-F5	Leaf	C_{60}H_{76}O_{32}	Tanaka et al., 1981
22	Goshonoside-F6	Leaf, Fruit	C_{60}H_{76}O_{32}	Tanaka et al., 1981
23	Goshonoside-F7	Leaf, Fruit	C_{60}H_{76}O_{32}	Tanaka et al., 1981
24	Goshonoside-G	Fruit	C_{60}H_{76}O_{32}	Wang, 1991
25	ent-Labda-8(17),13E-diene-3β,15,18-triol	Fruit	C_{60}H_{76}O_{32}	Guo, 2015
26	ent-Labda-8(17),13E-diene-3α,15,18-triol	Fruit	C_{60}H_{76}O_{32}	Guo, 2015
27	15,18-Dt-μ-D-glucopyranosyl-13(Ε)-ent-labda-7(8),13(14)-diene-3β,15,18-triol	Fruit	C_{60}H_{76}O_{32}	Guo, 2015
28	15,18-Dt-μ-D-glucopyranosyl-13(Ε)-ent-labda-8(9),13(14)-diene-3β,15,18-triol	Fruit	C_{60}H_{76}O_{32}	Guo, 2015
29	15-O-μ-D-apiofuranosyl-(1→2)β-D-glucopyranosyl-18-O-μ-D-glucopyranosyl-13(Ε)-ent-labda-8(9),13(14)-diene-3β,15,18-triol	Fruit	C_{60}H_{76}O_{32}	Guo, 2015
30	ent-16α,17-dihydroxy-kauran-19-oic acid	Fruit	C_{60}H_{76}O_{32}	Zhang et al., 2017b
31	Kaempferol	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
32	Quercetin	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
33	Tiliroside	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
34	Astragalin	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
35	Quercetin-3-0-β-D-glucopyranoside	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
36	Kaempferol-3-0-β-D-glucuronic acid methyl ester	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
37	Kaempferol-7-0-α-L-rhamnoside	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
38	2*-O-Galloyl-hyperin	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
39	Aromadendrin	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
40	Quercitrin	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
41	Hyperoside	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
42	cis-Tiliroside	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
43	Phlorizin	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
44	Kaempferol-3-O-hexoside	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
45	Quercetin-3-O-glucuronicide	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
46	Kaempferol-3-glucuronicide	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
47	Kaempferol-3-O-β-D-rutinoside	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
48	Rutin	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
49	4-Hydroxy-2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
50	Methyl 1-oxo-1,2-dihydroquinoline-4-carboxylate	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
51	1-oxo-1,2-Dihydroquinoline-4-carboxylic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
52	Rubusine	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
53	Methyl (3-hydroxy-2-oxo-2,3-dihydropyridine-3-y1)-acetate	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
54	Methylxidinole-3-acetate	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
55	2-oxo-1,2-Dihydroquinoline-4-carboxylic acid	Fruit	C_{60}H_{76}O_{32}	Guo, 2005
TABLE 1 | Continued

No.	Chemical component	Part	Molecular formula	References
56	Vitamin E	Fruit	C_{20}H_{24}O_{2}	Zhang and Jiang, 2015
57	2,2,4-Trimethyl-pentane	Leaf, Fruit	C_{10}H_{18}	Han et al., 2014; Pi and Wu, 2003
58	2,2,3,3-Tetramethyl-butane	Leaf	C_{10}H_{18}	Han et al., 2014
59	1-Hydroxy-2-methyl-1-phenyl-3-pentanone	Leaf	C_{12}H_{20}O_{2}	Han et al., 2014
60	Linalyl acetate	Leaf, Fruit	C_{12}H_{20}O_{2}	Han et al., 2014; Zhang and Jiang, 2015
61	α-Terpinene	Leaf	C_{10}H_{18}	Han et al., 2014
62	α-Thujene	Leaf	C_{10}H_{18}	Han et al., 2014
63	2-Ethylhexyl acrylate	Leaf	C_{16}H_{20}O_{2}	Han et al., 2014
64	trans-Linalool oxide	Leaf, Fruit	C_{10}H_{18}O_{2}	Han et al., 2014; Zhang and Jiang, 2015
65	cis-Linalool oxide	Leaf, Fruit	C_{10}H_{18}O_{2}	Han et al., 2014; Zhang and Jiang, 2015
66	L-α-Terpineol	Leaf	C_{10}H_{18}O	Han et al., 2014
67	Nerdy acetate	Leaf	C_{10}H_{18}O_{2}	Han et al., 2014
68	cis-p-2-Menthien-1-ol	Leaf	C_{10}H_{18}O	Han et al., 2014
69	2-(2-Butoxyethoxy)-ethanol acetate	Leaf	C_{12}H_{20}O_{2}	Han et al., 2014
70	n-Tridecane	Leaf	C_{16}H_{34}	Han et al., 2014
71	5-Oxohexadecanoate methyl	Leaf	C_{16}H_{34}O_{2}	Han et al., 2014
72	1,4-Hydroxymethylenephenylethane	Leaf	C_{10}H_{18}O_{2}	Han et al., 2014
73	Terpineol-4	Leaf	C_{10}H_{18}O	Han et al., 2014; Zhang and Jiang, 2015
74	(E)-1,2,6,6-Trimethyl-1,3-cyclohexadien-1-yl-2-buten-1-one	Leaf	C_{10}H_{18}O	Han et al., 2014
75	trans-Caryophyllene	Leaf	C_{10}H_{18}	Han et al., 2014
76	Calarene	Leaf, Fruit	C_{10}H_{18}	Han et al., 2014; Zhang and Jiang, 2015
77	Coniferyl alcohol	Leaf	C_{16}H_{20}O_{2}	Han et al., 2014
78	1-(4,7,7-Trimethyl-3-bicyclo[4.1.0]hept-4-enyl)ethanone	Leaf	C_{16}H_{20}O_{2}	Han et al., 2014
79	trans-Dihydrocarvyl acetate	Leaf	C_{16}H_{20}O_{2}	Han et al., 2014
80	E-10-Pentadecenol	Leaf	C_{16}H_{20}O	Han et al., 2014
81	Dodecyl aldehyde	Leaf	C_{16}H_{20}O	Han et al., 2014
82	12-Methytridecane	Leaf	C_{16}H_{20}O	Han et al., 2014
83	3-Methoxyoctadecic acid-dimethyl ester	Leaf	C_{16}H_{20}O_{4}	Han et al., 2014
84	Dibutyl phthalate	Leaf	C_{16}H_{20}O	Han et al., 2014
85	Cedryl formate	Leaf	C_{16}H_{20}	Han et al., 2014
86	Phytol	Leaf	C_{16}H_{20}O	Han et al., 2014
87	3-Methyl-2-pentanone	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
88	2-Methoxyethyl acetate	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
89	3-Methyl-2-pentane	Fruit	C_{14}H_{18}	Pi and Wu, 2003
90	1,1-Dithioethane	Fruit	C_{16}H_{20}O	Pi and Wu, 2003
91	2,5-Dimethylfuran	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
92	2-Hexenal	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
93	Xylene	Fruit	C_{10}H_{18}	Pi and Wu, 2003
94	Ethylbenzene	Fruit	C_{10}H_{18}	Pi and Wu, 2003
95	Ethyl formate	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
96	2-Butanone	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
97	Isovaleraldehyde	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
98	Ethyl acetate	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
99	2-Methylpentane	Fruit	C_{10}H_{18}	Pi and Wu, 2003
100	2-Heptanal	Fruit	C_{10}H_{18}O	Pi and Wu, 2003
101	Hexadecanol	Fruit	C_{10}H_{18}	Pi and Wu, 2003
102	1-Hexene	Fruit	C_{10}H_{18}	Pi and Wu, 2003
103	1-Methyl-3-isopropylbenzene	Fruit	C_{10}H_{18}	Dian et al., 2005
104	1,2,3,5-Tetramethylbenzene	Fruit	C_{10}H_{18}	Dian et al., 2005
105	Durene	Fruit	C_{10}H_{18}	Dian et al., 2005
106	3-Ethylstyrone	Fruit	C_{10}H_{18}	Dian et al., 2005
107	2,4-Dimethylstyrone	Fruit	C_{10}H_{18}	Dian et al., 2005
108	2,6-Dimethylcyclohexanol	Fruit	C_{10}H_{18}	Dian et al., 2005
109	1-Hexadecanol	Fruit	C_{10}H_{18}O	Dian et al., 2005
110	Hexahydrofarnesyl acetone	Fruit	C_{10}H_{18}O	Dian et al., 2005
111	3-Hexadecanial	Fruit	C_{10}H_{18}O	Dian et al., 2005
112	14-Methyl-pentadecanoic acid, methyl ester	Fruit	C_{10}H_{18}O	Dian et al., 2005
TABLE 1 | Continued

No.	Chemical component	Part	Molecular formula	References
113	Ambrettolide	Fruit	C_{18}H_{32}O_{2}	Dian et al., 2005
114	Nonadecane	Fruit	C_{17}H_{32}O	Zhang and Jiang, 2015
115	2-Methylnonadecane	Fruit	C_{20}H_{42}	Zhang and Jiang, 2015
116	Eicosane	Fruit	C_{20}H_{42}	Zhang and Jiang, 2015
117	α-Pinene	Fruit	C_{10}H_{16}	Zhang and Jiang, 2015
118	Bicyclo[3.1.0]hexane, 4-methylene-1-\{1-methyl(ethyl)-	Fruit	C_{11}H_{22}O_{2}	Zhang and Jiang, 2015
119	Eucalyptol	Fruit	C_{14}H_{32}O_{2}	Zhang and Jiang, 2015
120	p-Cymene	Fruit	C_{10}H_{14}	Zhang and Jiang, 2015
121	trans-Sabinene hydrate	Fruit	C_{12}H_{26}O_{2}	Zhang and Jiang, 2015
122	y-Terpinene	Fruit	C_{10}H_{16}	Zhang and Jiang, 2015
123	Linalool	Fruit	C_{10}H_{20}	Zhang and Jiang, 2015
124	\(\beta\)-trans-Ocimene	Fruit	C_{12}H_{24}O	Zhang and Jiang, 2015
125	Methyl thymyl ether	Fruit	C_{11}H_{20}	Zhang and Jiang, 2015
126	\(\beta\)-Elemene	Fruit	C_{10}H_{18}	Zhang and Jiang, 2015
127	α-Cedrene	Fruit	C_{10}H_{18}	Zhang and Jiang, 2015
128	4,7,9-Megastigmatrien-3-one	Fruit	C_{14}H_{20}O_{2}	Zhang and Jiang, 2015
129	Tridecanic acid, methyl ester	Fruit	C_{14}H_{30}O_{2}	Zhang and Jiang, 2015
130	Linolenyl alcohol	Fruit	C_{18}H_{30}	Zhang and Jiang, 2015
131	Hexadeconic acid, ethyl ester	Fruit	C_{18}H_{30}O_{2}	Zhang and Jiang, 2015
132	9,12,15-Octadecatrienal	Fruit	C_{20}H_{40}	Zhang and Jiang, 2015
133	9,12-Octadecadienoic acid, methyl ester	Fruit	C_{18}H_{32}O_{2}	Zhang and Jiang, 2015
134	Octadecane, 2-methyl-	Fruit	C_{18}H_{32}O_{2}	Zhang and Jiang, 2015
135	(\(\alpha\),12\(\alpha\))-Methyl octadeca-9,12-dienoate	Fruit	C_{18}H_{34}O_{2}	Zhang and Jiang, 2015
136	Methyl linolenate	Fruit	C_{18}H_{34}O_{2}	Zhang and Jiang, 2015
137	Linoleic acid ethyl ester	Fruit	C_{18}H_{36}O_{2}	Zhang and Jiang, 2015
138	Ethyl linolenate	Fruit	C_{19}H_{36}O_{2}	Zhang and Jiang, 2015
139	(2\(\alpha\))\-3,7,11,15\-Tetramethyl-2-hexadecen-1-ol	Fruit	C_{20}H_{40}O_{2}	Zhang and Jiang, 2015
140	9-Octadecanamide, (\(Z\))-	Fruit	C_{20}H_{32}NO	Zhang and Jiang, 2015
141	Tetracosane	Fruit	C_{24}H_{40}	Zhang and Jiang, 2015
142	Heptacosane	Fruit	C_{26}H_{42}	Zhang and Jiang, 2015
143	9,12-Octadecadienoic acid (\(\alpha\),\(\alpha\))-2,3-bis (trimethylsiloxy)propylester	Fruit	C_{30}H_{58}O_{4}	Zhang and Jiang, 2015
144	Octacosane	Fruit	C_{28}H_{48}	Zhang and Jiang, 2015
145	Supraene	Fruit	C_{20}H_{40}	Zhang and Jiang, 2015
146	Nonacosane	Fruit	C_{30}H_{60}	Zhang and Jiang, 2015
147	\(\alpha\)-Tocopherol	Fruit	C_{32}H_{52}O_{2}	Zhang and Jiang, 2015
148	\(\beta\)-Tocopherol	Fruit	C_{32}H_{52}O_{2}	Zhang and Jiang, 2015
149	\(\gamma\)-Tocopherol	Fruit	C_{32}H_{52}O_{2}	Zhang and Jiang, 2015
150	Di-n-butyl phthalate	Fruit	C_{32}H_{62}O_{4}	Zhang and Jiang, 2015

COUMARINS

No.	Chemical component	Part	Molecular formula	References
151	Esculetin	Fruit	C_{16}H_{20}O_{2}	Liu, 2005
152	Eschelin	Fruit	C_{16}H_{20}O_{2}	Liu, 2005
153	Imperatorin	Fruit	C_{16}H_{20}O_{2}	Liu, 2005
154	Rubusin A	Fruit	C_{16}H_{20}O_{2}	Sun et al., 2011
155	Rubusin B	Fruit	C_{18}H_{20}O_{2}	Liang et al., 2015

STEROIDS

No.	Chemical component	Part	Molecular formula	References
156	\(\beta\)-Sitosterol	Fruit, Root	C_{28}H_{48}O	Guo, 2005; Cheng, 2008
157	Daucosterol	Fruit, Root	C_{28}H_{48}O	Guo, 2005; Cheng, 2008
158	Stigmaster-4-en-\(\delta\)-diol	Fruit	C_{28}H_{48}O	Guo, 2005
159	Stigmaster-5-en-3-ol,deate	Fruit	C_{28}H_{48}O	You, 2009
160	\(\beta\)-Stigmastone	Fruit	C_{28}H_{48}O	Xiao, 2011
161	7α-Hydroxy-\(\beta\)-sitosterol	Fruit	C_{28}H_{48}O	Du et al., 2014
162	Sitosterol palmitate	Fruit	C_{28}H_{48}O	Liu et al., 2014
163	Campesterol	Fruit	C_{28}H_{48}O	Zhang and Jiang, 2015
164	\(\gamma\)-Sitosterol	Fruit	C_{28}H_{48}O	Zhang and Jiang, 2015

ORGANIC ACIDS

Phenolic acids

No.	Chemical component	Part	Molecular formula	References
165	4-Hydroxybenzoic acid	Fruit	C_{4}H_{6}O_{2}	Cheng, 2008
166	Ellagic acid	Fruit	C_{14}H_{24}O_{6}	Cheng, 2008
167	Ethyl gallate	Fruit	C_{7}H_{12}O_{2}	Cheng, 2008
168	5-[3-Hydroxymethyl-5-(3-hydroxypropyl)-7-Methoxyl-2,3-dihydro-benzofuran-2-y]l-2-methoxy-phenol	Fruit	C_{30}H_{42}O_{10}	Guo, 2015
169	4-Hydroxy-3-methoxy benzoic acid	Fruit	C_{4}H_{6}O_{2}	You, 2009
170	Gallic acid	Fruit	C_{6}H_{6}O_{2}	Xie et al., 2005
No.	Chemical component	Part	Molecular formula	References
-----	--------------------	------	-------------------	------------
171	Resveratrol	Fruit	C_{13}H_{22}O_{6}	Lim et al., 2004
172	Methyl brevifolin-carboxylate	Fruit	C_{13}H_{22}O_{6}	Xiao et al., 2011
173	Liballinol	Fruit	C_{16}H_{24}O_{10}	You, 2009
174	4-Hydrobenzaldehyde	Fruit	C_{10}H_{14}O_{5}	Liu, 2005
175	Vanilla	Fruit	C_{17}H_{10}O_{6}	You, 2009
176	Raspberry ketone	Fruit	C_{18}H_{16}O_{12}	Zhang, 2014
177	Brevifolin carboxylic acid	Fruit	C_{19}H_{16}O_{10}	Chai et al., 2016
178	4-[3-Hydroxymethyl-5-(3-hydroxypropyl)-2,3-dihydrobenzofuran-2-yl]-2-methoxyphenol	Fruit	C_{20}H_{22}O_{14}	Guo, 2015
179	p-Coumaric acid	Fruit	C_{8}H_{6}O_{3}	Li et al., 2018
180	Ellagic acid hexuronide	Fruit	C_{18}H_{14}O_{12}	Li et al., 2018
181	Salicylic acid	Fruit	C_{6}H_{5}O_{2}	Du et al., 2014
182	4-{[(2S,3R)-3-(Hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenol}	Fruit	C_{20}H_{22}O_{14}	Chai, 2008
183	Ferulic acid	Fruit	C_{15}H_{16}O_{5}	Liu, 2005
184	4-Hydroxy-3-methoxybenzoic acid	Fruit	C_{18}H_{16}O_{12}	Xie et al., 2005
185	Vanillin	Fruit	C_{8}H_{6}O_{3}	You et al., 2009
186	4-Hydroxyphenylacetic acid	Fruit	C_{18}H_{16}O_{12}	Cheng, 2008
187	Hexacosyl p-coumarate	Fruit	C_{20}H_{22}O_{14}	Guo, 2015
Fatty acids				
188	Dotriacontanoic acid	Fruit	C_{20}H_{22}O_{14}	Xie et al., 2005
189	Hexadecanoic acid	Fruit	C_{16}H_{32}O_{2}	Han et al., 2013
190	Stearic acid	Fruit	C_{18}H_{36}O_{2}	Xie et al., 2005
191	Caproic acid	Fruit	C_{4}H_{8}O_{2}	Pi and Wu, 2003
192	n-Heptadecanoic acid	Fruit	C_{17}H_{36}O_{2}	Dian et al., 2005
193	Linoleic acid	Fruit	C_{18}H_{32}O_{2}	Zhang and Jiang, 2015
194	2-Hexadecanoic acid	Fruit	C_{18}H_{32}O_{2}	Liu et al., 2014
195	Caprylic acid	Fruit	C_{8}H_{10}O_{2}	Pi and Wu, 2003
196	n-Tetracosyl-p-coumarate	Fruit	C_{23}H_{32}O_{2}	Du et al., 2014
197	Octadecanoic acid	Fruit	C_{18}H_{32}O_{2}	Zhang and Jiang, 2015
198	9-Octadecynoic acid	Fruit	C_{19}H_{30}O_{2}	Zhang and Jiang, 2015
199	Oleic acid	Fruit	C_{18}H_{32}O_{2}	Dian et al., 2005
200	N-pentadecanoic acid	Fruit	C_{16}H_{30}O_{2}	Dian et al., 2005
201	a-Linolenic acid	Leaf, Fruit	C_{18}H_{28}O_{3}	Zhang and Jiang, 2015
202	Tetradecanoic acid	Leaf	C_{14}H_{28}O_{2}	Han et al., 2014
203	Undecanoic acid	Leaf	C_{11}H_{20}O_{2}	Han et al., 2014
204	trans-Traumatic acid	Leaf	C_{15}H_{24}O_{2}	Han et al., 2014
205	Dodecanoic acid	Leaf	C_{12}H_{22}O_{2}	Han et al., 2014
206	n-Hexacosylferulate	Fruit	C_{20}H_{32}O_{2}	Du et al., 2014
207	8,11,14-Eicosatrienoic acid	Fruit	C_{20}H_{30}O_{2}	Zhang and Jiang, 2015
Tannins				
208	Casuarinin	Fruit	C_{16}H_{32}O_{2}	Li et al., 2018
209	Casuarinins	Fruit	C_{16}H_{32}O_{2}	Li et al., 2018
210	Casuarinin	Fruit	C_{16}H_{32}O_{2}	Li et al., 2018
211	Pedunculagin	Fruit	C_{25}H_{32}O_{2}	Li et al., 2018
Others				
212	Oxalic acid	Fruit	C_{2}H_{4}O_{2}	Sun et al., 2013a
213	Tartaric acid	Fruit	C_{4}H_{6}O_{4}	Sun et al., 2013a
214	Acetic acid	Leaf	C_{2}H_{4}O_{2}	Han et al., 2014
215	Malic acid	Fruit	C_{4}H_{6}O_{4}	Sun et al., 2013a
216	Citric acid	Fruit	C_{4}H_{6}O_{7}	Sun et al., 2013a
217	2-Hydroxyquinoline-4-carboxylic acid	Fruit	C_{14}H_{14}O_{5}	Cheng, 2008
218	Shikimic acid	Fruit	C_{6}H_{8}O_{5}	Liu, 2005
219	Phthalic acid	Fruit	C_{8}H_{6}O_{4}	Zhang and Jiang, 2015
220	Mono-n-butyl phthalate	Fruit	C_{7}H_{12}O_{4}	Xie et al., 2013b
OTHER COMPOUNDS				
221	Di(2-ethylhexyl) phthalate	Fruit	C_{20}H_{42}O_{4}	Cheng, 2008
222	Ascorbic acid	Fruit	C_{6}H_{8}O_{6}	Sun et al., 2013a
223	Heptadecanoic acid, 14-methyl, methyl ester	Fruit	C_{21}H_{34}O_{2}	Zhang and Jiang, 2015
224	1-Hexacosanol	Fruit	C_{20}H_{40}O_{2}	You, 2009
225	Adenosine	Fruit	C_{10}H_{10}N_{6}O_{4}	Du et al., 2014
226	H-2-indenone,2,4,5,6,7a-hexahydro-3-(1-methylthyl)-7a-methyl	Fruit	C_{16}H_{32}O_{2}	You, 2009
227	Butyl dosocanoate	Fruit	C_{20}H_{20}O_{2}	Guo, 2005
228	Uridine	Fruit	C_{8}H_{20}O_{4}	Kong et al., 2011
TABLE 1 | Continued

No.	Chemical component	Part	Molecular formula	References
229	Methy-β-D-glucopyranoside	Fruit	C\(_{7}H_{14}O_{6}\)	Xiao et al., 2011
230	Pentacosanol	Fruit	C\(_{25}H_{52}O\)	Guo, 2005
231	Triacontanol	Fruit	C\(_{30}H_{62}O\)	Chai, 2008
232	Hentriacontane	Fruit	C\(_{31}H_{64}O\)	Guo et al., 2007
233	Guanosine	Fruit	C\(_{10}H_{13}N_{5}O_{5}\)	Kong et al., 2011
234	Glucose	Fruit	C\(_{6}H_{12}O\)	You, 2009
235	3,7-Dihydroxy-1,5-dinitrogen cyclooctane	Fruit	C\(_{6}H_{14}N_{2}O_{2}\)	Xie et al., 2013b

FIGURE 1 | Chemical structures of triterpenoids (1–15) isolated from *R. chingii*.

1. Triacylglycerol
2. Pentacosanol
3. Triacontanol
4. Hentriacontane
5. Guanosine
6. Glucose
7. 3,7-Dihydroxy-1,5-dinitrogen cyclooctane
FIGURE 2 | Chemical structures of diterpenoids (16–30) isolated from R. chingii.
FIGURE 3 | Chemical structures of flavonoids (31–48) isolated from R. chingii.
2-dihydroisoquinoline-4-carboxylate (50), and 1-oxo-1, 2-dihydroisoquinoline-4-carboxylic acid (51). In 2011, guiding with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, another four alkaloids, including rubusine (52), methyl (3-hydroxy-2-oxo-2,3-dihydroindol-3-yl)-acetate (53), methyldioxindole-3-acetate (54), and 2-oxo-1,2-dihydroquinoline-4-carboxylic acid (55), were isolated from the ethanol extract of the same plant part (Ding, 2011).

Volatile Constituents

Volatile compounds (Figure 5) comprise an important part of *R. chingii* (Pi and Wu, 2003; Dian et al., 2005; Han et al., 2014; Zhang and Jiang, 2015). Han et al. (2014) investigated the volatile constituents from the leaves of *R. chingii* by employing head-space gas chromatography–mass spectrometry (GC/MS) and identified 37 constituents, mainly including hexadecanoic acid (44.97%), tetradecanoic acid (10.88%), and acetic acid (4.13%). In another study conducted in 2015, a total of 58 volatile compounds were identified from the unripe fruits of *R. chingii* using GC/MS (Zhang and Jiang, 2015). According to their structures, these volatile compounds could be divided into eight chemical groups: saturated hydrocarbons (9 compounds), unsaturated hydrocarbons (10 compounds), alcohols (9 compounds), carbonyl compounds (2 compounds), esters (11 compounds), organic acids (7 compounds), oxides and epoxides (8 compounds), and others (2 compounds).

Coumarins

Coumarins are phenolic compounds characterized by a benzene ring attached to a pyrone ring. They have a fragrant smell and exist throughout the plant kingdom (Azietaku et al., 2017). To date, limited studies have been performed to investigate the coumarins in *R. chingii* and only five coumarins have been isolated, including two simple coumarins and three furocoumarins (Figure 6).

Liu (2005) isolated and identified esculetin (151), esculin (152), and imperatorin (153) from the 70% ethanol extract of the fruits of *R. chingii* by various chromatographic methods. You reported the isolation and structure elucidation of a new furocoumarins, 3,5,9-trihydroxy-7,8-dihydrocyclopenta[g]chromene-2,6-dione (154), which they named Fu-Pen-Zi-Su (You, 2009) or rubusin A (Sun et al., 2011), from the n-butanol extract of the fruits of *R. chingii*. Recently, phytochemical analysis of *R. chingii* afforded a new chromone called rubusin B (155), which was confirmed according to the 1D and 2D NMR data and MS data (Liang et al., 2015).

Steroids

Phytosterols are a class of physiologically active compounds extensively used in cosmetics, foods, and medicines. In *R. chingii*, steroids are relatively rare, and only nine steroidal metabolites have been reported and characterized (Figure 7). In 2005, three steroids, namely, β-sitosterol (156), daucosterol (157), and stigmast-4-ene-(3β,6α)-diol (158) (Guo, 2005), were found to exist in methanol extract of the fruits of *R. chingii*. Moreover, β-sitosterol (156) and daucosterol (157) were isolated from the roots of *R. chingii* by Cheng in 2008 (Cheng, 2008). In further studies, another steroid called stigmasterol-5-en-3-ol, oleate (159) was obtained from the methylene chloride extract of *R. chingii* fruit (You, 2009). Other steroidal compounds that were isolated from this plant were β-stigmasterol (160) (Xiao, 2011), 7α-hydroxy-β-sitosterol (161) (Du et al., 2014), and sitosterol palmitate (162) (Liu et al., 2014). In addition, campesterol (163) and γ-sitosterol (164) were tentatively elucidated by GC/MS (Zhang and Jiang, 2015).

Organic Acids

Organic acids are a class of carboxyl-group-containing compounds that could be found in numerous plants worldwide. *R. chingii* extracts contain a high percentage of organic acids.
FIGURE 5 | Chemical structures of volatile compounds (56–150) isolated from *R. chingii*.

FIGURE 6 | Chemical structures of coumarins (151–155) isolated from *R. chingii*.
A total of 56 organic acids, including 23 phenolic acids (165–187), 20 fatty acids (188–207), 4 tannins (208–211), and 9 other compounds (212–220) have been reported mainly from the fruits of *R. chingii* (Pi and Wu, 2003; Lim et al., 2004; Dian et al., 2005; Guo, 2005; Liu, 2005; Xie et al., 2005; Chai, 2008; Cheng, 2008; You, 2009; You et al., 2009; Xiao et al., 2011; Han et al., 2013; Sun et al., 2013a; Xie et al., 2013b; Du et al., 2014; Han et al., 2014; Liu et al., 2014; Zhang, 2014; Guo, 2015; Zhang and Jiang, 2015; Chai et al., 2016; Li et al., 2018). Detailed information of these organic acid compounds is shown in Table 1 (165–220) and Figure 8.

Other Compounds

In addition to these compounds mentioned above, a range of other compounds have also been isolated from *R. chingii*. Detailed information of these compounds is shown in Table 1 (221–235) and Figure 9 (Guo, 2005; Guo et al., 2007; Chai, 2008; Cheng, 2008; You, 2009; Kong et al., 2011; Xiao et al., 2011; Sun et al., 2013a; Xie et al., 2013b; Du et al., 2014; Zhang and Jiang, 2015).

PHARMACOLOGICAL ACTIVITIES OF R. CHINGII

As a well-known medicinal plant in TCM, the fruits and leaves of *R. chingii* are widely used for the treatment of various diseases. The major pharmacological properties such as anticomplementary, anticancer, antioxidant, antimicrobial, anti-inflammatory, anti-hypotensive, anti-aging, antithrombotic, antidiabetic, neuroprotective, and anti-osteoporosis activities of this herbaceous medicine are summarized in Table 2, and the details will be further discussed below.

Anticomplementary Activity

Several studies demonstrated that the extracts of *R. chingii* possess anticomplementary activity. Zhang and Jiang employed a complement fixation test to assess the *in vitro* anticomplementary activity of the essential oils from fruits of *R. chingii* by three different extraction methods [steam distillation extraction (SDE), soxhlet extraction (SE) with ethanol, and SE with ether]. The results showed that the essential oils obtained by SE-ether had the strongest...
FIGURE 8 | Chemical structures of organic acids (165–220) isolated from R. chingii.
The flavonoids and saponins extracted from *R. chingii* also showed noteworthy anticomplementary activities when compared to its polysaccharides and alkaloids. The hemolysis inhibition rates of the flavonoids and saponins were 96.49% and 90.82% (at the concentration of 0.8 mg/ml), respectively, which were even higher than heparin sodium (Zhang et al., 2015a).

Anticancer Activity

The antitumor effects of the various extracts of *R. chingii* have been extensively investigated through a large number of in vivo and in vitro experiments. Wang et al. (2011) found that the water extract of *R. chingii* could inhibit the activities of matrix metalloproteinases-13 with an IC₅₀ value (half maximal inhibitory concentration) of 0.04 μg/ml. The results suggested that this herbal medicine may be used for the treatment of cancer. Another study showed that the water extract of *R. chingii* gave rise to a dose-dependent antiproliferative effect on hepatocellular carcinoma cells with an IC₅₀ value of 80 μg/ml (Hu, 2014). Anticancer activity was also reported for the essential oils from the unripe fruits of *R. chingii* by in vitro MTT cytotoxicity assay against A549 cell lines. The results showed that the essential oils extracted by SDE exhibited stronger activity than SE-ethanol, which may be due to the extract obtained by SDE, which had a higher content of unsaturated fatty acids (Zhang and Jiang, 2015). An in vitro study showed that polyphenolic composition in the fruits of *R. chingii* could inhibit the proliferation and induce apoptosis of human bladder cancer T24 cells remarkably in a dose-dependent and time-response manner. The IC₅₀ values were 73.442, 55.294, and 26.686 μg/ml for 12, 24, and 36 h, respectively (Li et al., 2018). In a similar study, Zhang et al. (2015b) evaluated the anticancer activity of the polysaccharides from *R. chingii* via MTT assay and found that inhibitory activities on breast cancer cells’ MCF-7 and liver cancer cells’ Bel-7402 proliferation were also concentration- and time-dependent. From 70% ethanol extract of the fruits of *R. chingii*, Zhong et al. (2015) isolated three new labdane-type diterpene glycosides and in vitro tests of these compounds for anticancer activity showed that compound 29 possessed remarkable cytotoxic activity against A549 (human lung cancer cell line), with an IC₅₀ value of 1.81 μg/ml (2.32 μM). Furthermore, tiliroside, a representative flavonoid isolated from *R. chingii*, induced the apoptosis of A549 cells in a dose-dependent manner, with an IC₅₀ value of 113.41 ± 1.89 μg/ml (190.76 ± 3.18 μM) (Zhang et al., 2015a). In 2017, Zhang et al. (2017b) investigated the antiproliferative ingredients in the fruits of *R. chingii* by using bio-assay guided isolation, and found that tormentic acid possessed notable cytotoxicity activities against HepG-2, Bel-7402, A549, and MCF-7 cancer cell lines with the IC₅₀ values of 40.57, 54.22, 62.36, and 24.23 μg/ml, respectively. All these results described above suggest that *R. chingii* has an exact effect on prevention of cancer. However, a common mechanism about the exact cellular and molecular targets needs to be fully elucidated and the diversity of extracts makes data interpretation difficult.

Antimicrobial Activity

Antimicrobial activity, an important effect of *R. chingii*, had been comprehensively studied. A moderate antibacterial activity was evident for the flavonoids from *R. chingii* against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Penicillium with MIC (minimum inhibitory concentration) values of 0.04, 0.08, 0.16, and 0.64 mg/ml, respectively. However, it could not inhibit the growth of Saccharomyces cerevisiae, Rhizopus, and Mucor.

FIGURE 9 | Chemical structures of other compounds (221–235) isolated from *R. chingii*.
TABLE 2 | Reported biological activities in vitro and in vivo of R. chingii crude extracts and fractions.

Extract	Reported activity	References	
ANTICOMPLEMENTARY ACTIVITY	Essential oils extracted by SE-ether had the best anti-complementary activity; at 0.2 mg/mL, its hemolysis inhibition exceeded 60% (in vitro).	Zhang and Jiang, 2015	
Essential oils from fruits	Flavonoids and saponins showed noteworthy anti-complementary activities; at 0.8 mg/mL, their hemolysis inhibition rates were 96.49% and 90.82%, respectively (in vitro).	Zhang et al., 2015a	
Polysaccharides, flavonoids, saponins, and alkaloids from fruits			
Polyphenolic composition from fruits	Anticancer potentials against human bladder cancer T24 cells. The IC₅₀ values were 73.442 μg/mL, 55.294 μg/mL, and 26.686 μg/mL for 12, 24 h and 36 h, respectively (in vitro).	Li et al., 2018	
Polysaccharides from fruits and leaves	Polysaccharides from leaves showed significant inhibitory activities on breast cancer MCF-7 proliferation; at 2 mg/mL, its inhibition rate were 48.48 ± 0.55% and 66.30 ± 0.61% for 48 h and 72 h, respectively (in vitro).	Zhang et al., 2015b	
Labdane-type diterpene glycosides from fruits	Compound 29 possessed remarkable cytotoxic activity against human lung cancer cells A549, with an IC₅₀ value of 1.81 μg/mL (in vitro).	Zhong et al., 2015	
Flavonoids and saponins from fruits	Anticancer potentials against human lung cancer cells A549. The inhibition rates were 65% and 62% (200 μg/mL), respectively (in vitro).	Zhang et al., 2015a	
The ethyl acetate fraction from fruits	Antiproliferative potentials against HepG2-2, Bel-7402, A549, and MCF-7 cancer cell lines (in vitro).	Zhang et al., 2017b	
ANTIMICROBIAL ACTIVITY	Inhibited Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Penicillium with MIC values of 0.04 mg/mL, 0.08 mg/mL, 0.16 mg/mL, and 0.64 mg/mL, respectively (in vitro).	Zhu, 2012	
Flavonoids from fruits	In vitro antioxidant activity (DPPH assay) with an IC₅₀ values of 3.4 and 4.0 μg/mL, respectively.	Han et al., 2016	
70% ethanol extract from fruits	In vitro antioxidant activity (DPPH assay) with IC₅₀ values of 3.4 and 4.0 μg/mL, respectively.	Han et al., 2016	
ANTIOXIDANT ACTIVITY			
Glycoprotein from fruits	In vitro antioxidant activity; in vivo promote the activities of CAT, SOD and GSH-PX.	Tian et al., 2010	
Aqueous extract from fruits	Protected primary rat hepatocytes against (r-BHP)-induced rat hepatocytes by reversing cell viability loss, lactate dehydrogenase leakage and the associated glutathione depletion and lipid peroxidation (in vitro).	Yau et al., 2002	
The ethyl acetate and n-butanol fractions from fruits	Antioxidant activity (DPPH assay) with an IC₅₀ value of 33.912 μg/mL.	Ding, 2011	
Flavonoids from fruits	In vitro antioxidant activity (DPPH assay and ABTS assay).	Zeng, 2015	
Polysaccharides from fruits and leaves	In vitro antioxidant activity (DPPH assay). IC₅₀: 754.33 μg/mL (F-Ps); 671.39 μg/mL (L-Ps).	Zhang et al., 2015b	
Polyphenolic composition from fruits	In vitro antioxidant activity (DPPH assay) with an IC₅₀ value of 33.912 μg/mL.	Li et al., 2018	
95% ethanol extract from fruits	The ethyl acetate fraction and n-butanol fraction showed significant in vitro antioxidant activity (DPPH assay, reducing power assay and ORAC assay).	Zhang et al., 2017b	
Flavonoids from fruits	The total flavonoids displayed the best in vitro antioxidant effect (DPPH assay, reducing power assay and ORAC assay), which was very close to ascorbic acid.	Zhang et al., 2015a	
ANTI-INFLAMMATORY ACTIVITY	Anti-inflammatory potentials against LPS-stimulated macrophage RAW264.7 cells (in vitro).	Zhang et al., 2015c	
Ethyl acetate fraction from fruits	Anti-inflammatory potentials against LPS-stimulated murine macrophage RAW264.7 cells by decreasing NO production and increasing the TNF-α, iNOS and IL-6 gene expression (in vitro).	Zhang et al., 2015b	
Polysaccharides from fruits and leaves			
ANTITHROMBOTIC ACTIVITY	Significant antithrombotic activity was observed in in vitro and in vivo tests.	Han et al., 2012	
70% ethanol fraction from leaves			
NEUROPROTECTIVE ACTIVITY	Significant improvements in learning and memory were observed, especially in rats receiving the chloroform and ethylacetate fractions (in vivo).	Huang et al., 2013	
80% ethanol extract from fruits	The high dose water extract (24 g/kg) was found to exhibit the best anti-amnesic effects on scopolamine and sodium nitrite (NaNO₂)-induced amnestic models, while the crude drug showed the best anti-amnesic activity on 40% ethanol-induced amnestic models (in vivo).	Li et al., 2016a	
Different extracts from fruits	Water extract from fruits	Amelorlated H₂O₂-induced damages of bEnd.3 cells (in vitro).	Liu, 2018
HYPOLIPIDEMIC ACTIVITY	Water extract from leaves		
ANTIHYPOTENSIVE ACTIVITY	Ethanol extract from fruits		
TABLE 1	Reported biological activities in vitro and in vivo of R. chingii crude extracts and fractions.		

Extract	Reported activity	References	
Ethyl acetate fraction from fruits	In vitro antioxidant activity; in vivo promote the activities of CAT, SOD and GSH-PX.	Tian et al., 2010	
Aqueous extract from fruits	Protected primary rat hepatocytes against (r-BHP)-induced rat hepatocytes by reversing cell viability loss, lactate dehydrogenase leakage and the associated glutathione depletion and lipid peroxidation (in vitro).	Yau et al., 2002	
The ethyl acetate and n-butanol fractions from fruits	Antioxidant activity (DPPH assay) with an IC₅₀ values of 3.4 and 4.0 μg/mL, respectively.	Ding, 2011	
Flavonoids from fruits	In vitro antioxidant activity (DPPH assay and ABTS assay).	Zeng, 2015	
Polysaccharides from fruits and leaves	In vitro antioxidant activity (DPPH assay). IC₅₀: 754.33 μg/mL (F-Ps); 671.39 μg/mL (L-Ps).	Zhang et al., 2015b	
Polyphenolic composition from fruits	In vitro antioxidant activity (DPPH assay) with an IC₅₀ value of 33.912 μg/mL.	Li et al., 2018	
95% ethanol extract from fruits	The ethyl acetate fraction and n-butanol fraction showed significant in vitro antioxidant activity (DPPH assay, reducing power assay and ORAC assay).	Zhang et al., 2017b	
Flavonoids from fruits	The total flavonoids displayed the best in vitro antioxidant effect (DPPH assay, reducing power assay and ORAC assay), which was very close to ascorbic acid.	Zhang et al., 2015a	
ANTITHROMBOTIC ACTIVITY	Significant antithrombotic activity was observed in in vitro and in vivo tests.	Han et al., 2012	
70% ethanol fraction from leaves			
NEUROPROTECTIVE ACTIVITY	Significant improvements in learning and memory were observed, especially in rats receiving the chloroform and ethylacetate fractions (in vivo).	Huang et al., 2013	
80% ethanol extract from fruits	The high dose water extract (24 g/kg) was found to exhibit the best anti-amnesic effects on scopolamine and sodium nitrite (NaNO₂)-induced amnestic models, while the crude drug showed the best anti-amnesic activity on 40% ethanol-induced amnestic models (in vivo).	Li et al., 2016a	
Different extracts from fruits	Water extract from fruits	Amelorlated H₂O₂-induced damages of bEnd.3 cells (in vitro).	Liu, 2018
HYPOLIPIDEMIC ACTIVITY	Water extract from leaves		
ANTIHYPOTENSIVE ACTIVITY	Ethanol extract from fruits		
(Zhu, 2012). In addition, *R. chingii* extract combined with fluconazole displayed synergistic antifungal activity on fluconazole-resistant *Candida albicans* with an MIC₅₀ (the lowest concentration to inhibit 50% of fungal growth) value of 0.0625–16 μg/ml for fluconazole and 4.88–312.5 μg/ml for the 70% ethanol extract of *R. chingii* (Han et al., 2016).

Antioxidant Activity

Oxidative stress by free radicals is a significant event in the cell, which is associated with a wide range of human degenerative diseases (Bi et al., 2016). The glycoprotein from *R. chingii* showed significant *in vitro* antioxidant activity via free radical scavenging assay and reducing power assays. An in-depth *in vivo* study revealed that the glycoprotein could significantly increase the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in serum, liver, and brain tissues of rats, which also confirmed the strong reducing power of the glycoprotein (Tian et al., 2010). The aqueous extract of *R. chingii* has also been reported to reverse tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in rat hepatocytes by inhibiting lactate dehydrogenase leakage, lipid peroxidation, and the associated glutathione depletion (Yau et al., 2002). Moreover, among nine compounds isolated from the fruits of *R. chingii*, methyl (3-hydroxy-2-oxo-2,3-dihydroindol-3-yl)-acetate, vanillic acid, kaempferol, and tiliroside displayed antioxidative capacity. Their IC₅₀ values were 45.2, 34.9, 78.5, and 13.7 μM, respectively (ascorbic acid, 131.8 μM) (Ding, 2011). Zeng et al. studied the *in vitro* antioxidant capacities of the total flavonoid contents of *R. chingii* by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS) methods. The results showed that the total flavonoid content exhibited a significant correlation with antioxidant activity in the DPPH assay (r² = 0.758, p = 0.004) and the ABTS assay (r² = 0.788, p = 0.002) (Zeng et al., 2015). Zhang et al. (2015b) investigated the antioxidant effects of fruits of *R. chingii* using the DPPH assay, reducing power assay and oxygen radical absorbance capacity (ORAC) assay, and the results revealed that the ethyl acetate fraction and n-butanol fraction were found to be the most potent (Zhang et al., 2017b). The polysaccharides, flavonoids, saponins, and alkaloids extracted from *R. chingii* were also assessed for their antioxidant activity through the same methods. The results indicated that total flavonoids displayed the best antioxidant effect, which was very close to ascorbic acid (Zhang et al., 2015a). From the results mentioned above, we can conclude that the strong antioxidant activity of *R. chingii* might be predominantly related to the presence of the glycoproteins and phenolic compounds, especially flavonoids. Additionally, it is worthy to note that the *in vitro* experiments used to test total antioxidant are not specific and prone to interferences, which may give unreliable results. Therefore, further *in vivo* studies are needed to validate these results.

Anti-Inflammatory Activity

Sun et al. (2013b) extracted a new compound called goshonoside-G from the fruits of *R. chingii*. This compound possessed notable inhibitory effect on NO production in LPS-stimulated macrophage RAW264.7 cells with an IC₅₀ value of 54.98 μg/ml. In bio-assay guided fractionation of the ethanol extract of *R. chingii*, which provided the best anti-inflammatory effect, tiliroside, astragalin, hyperoside, quercitrin, and kaempferol 3-rutinoside were isolated. Among the flavonoid glycosides, tiliroside possessed the strongest inhibitory effect on NO production in LPS-stimulated macrophage RAW 264.7 cells with the inhibitory rate of 30.4% at a concentration of 100 μg/ml, which was very close to that of dexamethasone at a concentration of 50 μg/ml. Western blot and RT-PCR showed that the underlying mechanism of the suppression of inflammatory reactions by tiliroside may be due to its modulation of a signaling mitogen-activated protein kinase (MAPK) and pro-inflammatory cytokines activities (Zhang et al., 2015c). In addition, the polysaccharides from leaves and fruits induced a dose-dependent (2–400 μg/ml) inhibition of the nitric oxide (NO) production in murine macrophage RAW 264.7 cells through suppressing the TNF-α, iNOS, and IL-6 gene expression (Zhang et al., 2015b). Therefore, flavonoid glycosides and polysaccharides along with...
goshonoside-G of the plant could be considered as potential anti-inflammatory agents.

Antithrombotic Activity

The 70% ethanol fraction from an aqueous extract of *R. chingii* leaves was found to treat thrombosis through inhibiting the aggregation of blood platelets using activity tests carried out in vitro and in vivo. The bio-guided isolation of the extract yielded six compounds (salicylic acid, kaempferol, quercetin, tiliroside, quercetin 3-O-β-D-glucopyranoside, and kaempferol 3-O-β-D-glucopyranoside). Their anticoagulant activities were examined using plasma recalcification time (PRT) test. It is noteworthy that kaempferol, quercetin, and tiliroside obviously delayed PRT in blood at a concentration of 2 mg/ml, while salicylic acid, quercetin 3-O-β-D-glucopyranoside, and kaempferol 3-O-β-D-glucopyranoside demonstrated the weakest effect in the in vitro experiment (Han et al., 2012).

Neuroprotective Activity

Huang et al. investigated whether or not *R. chingii* was involved in attenuating learning and memory deficits on a classical model of Kidney Yang Deficiency Syndrome (KDS-Yang) in Alzheimer's disease rats induced by D-galactose combined with hydrocortisone. Morris water maze tests demonstrated significant improvements in learning and memory, especially in rats receiving the chloroform and ethylacetate fractions of *R. chingii* (Huang et al., 2013). The major mechanism may be that *R. chingii* could protect neurons in rat hippocampal CA1 region by increasing choline acetyltransferase (ChAT) activity but decreasing acetylcholinesterase (AChE) activity and Tau protein expression. The possible memory-enhancing effects of different extracts of *R. chingii* on amnesic rats induced by scopolamine, sodium nitrite, and 40% ethanol were also studied by assessing a Morris water maze test. The results showed that the high-dose water extract (24 g/kg) exhibited the best anti-amnesic effects on scopolamine and sodium nitrite (NaNO₂)-induced amnesia models, while the crude drug showed the best anti-amnesic activity on 40% ethanol-induced amnestic models (Li et al., 2016a). Moreover, Liu et al. (2018) demonstrated that the water extract of *R. chingii* could ameliorate H₂O₂-induced damages of brain microvascular endothelial cells (bEnd.3 cells) via regulating the expression of apoptosis-related proteins. In addition, two flavonoids (kaempferol and quercetin) isolated from *R. chingii* were investigated for neuroprotective activity. It was observed that at 80 μmol/L concentration, both compounds significantly inhibited the decrease of cell viability (MTT reduction), prevented membrane damage (LDH release), scavenged ROS formation, and attenuated the decrease of malondialdehyde (MDA) in H₂O₂-induced PC12 cells (Zhao et al., 2018). These abovementioned results of preclinical investigations show that *R. chingii* may be a promising herbal medicine to combat nerve injury.

Antidiabetic Activity and Hypolipidemic Activity

Xie et al. reported antihyperglycemic effects of raspberry ketone in the alloxan-induced diabetic rat model, which were beneficial for the treatment of diabetes. The study showed that raspberry ketone reduced the level of the blood glucose, protected the normal physiological function of pancreatic β cells, and stimulated insulin secretion by effectively inhibiting the oxidative stress (Xie et al., 2012). Another study showed that raspberry ketone could significantly promote glucose uptake in HepG2 cells by increasing the IRS-1 protein expression and decreasing SHP-1 mRNA gene expression (Xie et al., 2014).

The hypolipidemic activity of the leaves from *R. chingii* was evaluated in the hyperlipidemia rats induced by a high-fat diet and adults with hyperlipidemia. The results revealed that treatment with raspberry leaves exhibited significant hypolipidemic effect, indicated by reduced level of serum total cholesterol (TC) and triacylglycerols (TGs). Therefore, it suggested that raspberry leaves could be further explored as a therapy for the treatment of hyperlipidemia diseases (Fan et al., 2007).

Anti-Osteoporotic Activity

Liang et al. (2015) isolated a novel compound, rubusin B, and six known compounds from the fruits of *R. chingii*, and an in vitro study showed that rubusin B, kaempferol, rubusin A, and quercetin exhibited anti-osteoporotic activities with different characteristics. Quercetin and kaempferol had a direct stimulatory effect on alkaline phosphatase (ALP) activity and bone formation, while rubusin A and B could effectively attenuate osteoclastic resorption even at a very low concentration (0.01 ppm).

Antihypotensive Activity

Recently, it was shown that the ethanol extract of *R. chingii* could induce the endothelium-dependent vasodilatory effect in rats, via stimulation of the NO/guanylate cyclase/cGMP pathway and the Akt-eNOS pathway (Su et al., 2014).

Anti-Aging Activity

A novel glycoprotein isolated from *R. chingii* exhibited notable anti-aging effect in the D-galactose-induced aging mouse model by increasing the expression of anti-aging gene klotho and repairing the renal function (Zeng et al., 2018).

Other Pharmacological Effects

In addition to the bio-activities mentioned above, some other pharmacological effects of *R. chingii* and its constituents were also reported. Chen et al. (1995) demonstrated that *R. chingii* has mitogenic effects on spleen lymphocytes. They also found that *R. chingii* could regulate the hypothalamus–pituitary–sex gland axis (Chen et al., 1996). Li (2017) reported that *R. chingii* could protect retinal ganglion cells from H₂O₂-induced cell death by increasing the Bcl-2 protein expression and decreasing Bax protein expression.
TOXICITY

Limited data are available concerning the safety assessments of *R. chingii*. In an acute toxicity test, the dose of the water extract of *R. chingii* leaves used in mice was 20 g/kg/day, and it did not induce any toxicity sign or death in 2 weeks (Tang et al., 2007). The potential adverse effects of *R. chingii* leaves were also determined by a repeated dose oral toxicity study, which was conducted on Wistar rats administered for 90 days at oral dosages of 2.5, 5, and 10 g/kg. The researchers found no significant differences between groups in body weights, food consumption, blood biochemistry, organ weights, gross pathology, and histopathology. Further study indicated that *R. chingii* leaves had no mutagenic or genotoxic effect using the Ames test, bone marrow micronucleus test, and sperm aberration test (Tang et al., 2007). Based on the results described above, we can conclude that *R. chingii* leaves are not toxic and hence reliably safe for use for pharmacological purposes. However, more in-depth investigations are still needed to explore the toxicity of the fruits of *R. chingii* to human health.

QUALITY CONTROL

It is well known that the inherent quality of herb medicine may vary significantly in different geographical conditions and different harvest times (Zhang et al., 2018). In the Chinese Pharmacopoeia (2015), the contents of ellagic acid and kaempferol-3-O-rutinoside in *R. chingii* should not be less than 0.2% and 0.03%, respectively (Chinese Pharmacopoeia Commission, 2015). It is extensively accepted that the multiple components of TCM are responsible for their curative effects by exerting their synergistic effects on multiple targets and levels (Li et al., 2016b). Thus, relying only on the two components for quality control seems insufficient to determine the strengths and weaknesses of *R. chingii*. With the advancement of analytical tools, the multi-component determination has been extensively used for comprehensive quality assessment of *R. chingii*. A total of 21 compounds: tiliroside (Chai et al., 2009), kaempferol (Xie et al., 2015; Ping et al., 2016), gallic acid (Li and Tan, 2008), ellagic acid, quercetin-3-O-β-D-glucopyranoside, kaempferol-3-O-rutinoside, goshonoside-F5 (Han et al., 2013), rutin (Zhang et al., 2017a), hyperoside (Chen et al., 1996), astragalin (Zhong et al., 2014; Ma et al., 2017), quercetin (Cheng et al., 2012), malaminic acid, 2α-hydroxyursolic acid, oleanolic acid (Cao et al., 2017), ursolic acid, arjunolic acid, 2α,3α,19α-trihydroxy-12-olean-28-oic acid, euscaphic acid (Guo et al., 2005), adenosine, brevifolin carboxylic acid, and ethyl gallate (Chai et al., 2016), have been quantified by HPLC or CE by different research groups (Chen et al., 2006). The volatile constituents such as hexadecanoic acid, tetradecanoic acid, and acetic acid were detected by GC/MS (Han et al., 2014; Zhang and Jiang, 2015). In addition, a pharmacokinetic study was carried out to determine quercetin-3-O-β-D-glucopyranoside, kaempferol-3-O-rutinoside, and tiliroside in rat plasma after oral administration of *R. chingii* to rats (Zan et al., 2018). However, there is still no unified method for quality control and fingerprinting of *R. chingii*. The quantitative analysis of *R. chingii* is listed in Table 3.

CONCLUSION AND FUTURE PERSPECTIVES

R. chingii is a nutritious plant commonly used as a functional food and medicine in China. It has been applied in clinical practice successfully for centuries to tonify the kidney, control nocturnal emissions, and reduce urination (Han et al., 2012). Although chemical compositions and biological activities of this medical plant are well documented, more conclusive studies are still needed to fill certain specific gaps in *R. chingii* science.

Firstly, and particularly, it is noteworthy that most pharmacological studies on *R. chingii* have only been conducted in animal models, cell models, and other in vitro experiments. Therefore, comprehensive placebo-controlled and double-blind clinical trials should be undertaken in the future to provide remarkable evidence for these positive findings on the efficacy of *R. chingii*. Besides, some of the pharmacological studies were carried out at too high doses that could hardly be translated to clinical practice and more in-depth investigations are needed to standardize the best dosage for these claimed bioactivities of *R. chingii* in ethnomedicine. In addition, the exact mechanisms of many medicinal properties of this herb still remain vague to date; thus, additional studies to better identify the functions and molecular targets seem to be necessary.

Secondly, most pharmacological activities were measured using uncharacterized crude extracts of *R. chingii*, and this makes it hard to reproduce the results of these investigations and elucidate the link between activity and particular compounds. Additionally, most of these phytochemicals were isolated from the fruits, and the chemical composition of other parts of this plant was largely unknown. Therefore, in-depth phytochemical investigations of all parts of *R. chingii* based on bio-guided isolation strategies are still needed, which may lead to the expansion of existing therapeutic potential of this miracle herb.

Thirdly, toxicological studies are important to understand the safety profile of herbal drugs, but data on toxicological aspects of *R. chingii* remain unexplored. The only toxicological study about *R. chingii* was conducted in the leaf extract, which revealed its nontoxic nature. Hence, to ensure a full utilization of the medicinal resource, further relative systematic toxicity and safety evaluation studies were quite considerable and necessary, especially in fruit extract and other effective extracts, to meet the Western standards of evidence-based medicine.

Fourthly, pharmacokinetic studies involving *R. chingii* are very limited and only focus on a few biological active substances present in *R. chingii*, which do not fully reflect the pharmacokinetic properties of this herb medicine. Thus, further
investigations should be carried out to assess the absorption, distribution, metabolism, and excretion of the crude extracts of this plant in vivo. Additionally, metabolic studies of single isolated compounds in R. chingii should be strengthened, which could provide a scientific basis for clarifying the major metabolic route and action mechanism and defining the bio-active components responsible for the curative effects. Meanwhile, the identification of unknown metabolites may contribute to the drug discovery and development process.

Lastly, and importantly, because of the complex composition of TCM, quality control of TCM is a great challenge and has become a key factor to restrict its modernization process. Thus, setting up an effective and standardized quality control method of R. chingii is indispensable and emergent, which is

TABLE	Quantitative analysis for the quality control of R. chingii.		
Analytes	**Method**	**Results**	**References**
Tiliroside	HPLC	0.0700% to 0.0338% (contents).	Chai et al., 2009
Tiliroside, Kaempferol	HPLC	0.1769–0.5150 mg/g and 6.7–23.9 μg/g, respectively (contents).	Ping et al., 2016
Gallic acid	HPLC	5.24–104.8 μg/ml (linear range); 97.6% (average recovery).	Li and Tan, 2008
Ellagic acid, Quercetin-3-O-β-D-glucopyranoside, Kaempferol-3-O-rutinoside, Tiliroside, Kaempferol, Goshonoside-F5	HPLC-UV, HPLC-ELSD	0.078%–0.315%, 0.001%–0.015%, 0.006%–0.065%, 0.003%–0.046%, 0.001%–0.003%, 0%–0.127%, respectively (contents).	He et al., 2013
Ellagic acid, Rutin, Hyperoside, Quercetin-3-O-β-D-glucopyranoside, Kaempferol-3-O-rutinoside, Tiliroside	HPLC	0.0610%–0.4333%, 0.0008%–0.0024%, 0.0010%–0.0050%, 0.0011%–0.0077%, 0.0058%–0.0284%, 0.0231%–0.1025%, respectively (contents).	Zhang et al., 2017a
Astragalin, Tiliroside, Kaempferol	HPLC	38.24–91.04, 208.14–488.80, 205.68–1624.06, 22.44–84.72 μg/g, respectively (contents).	Ma et al., 2017
Kaempferol-3-O-rutinoside, Astragalin	HPLC	0.011–0.080 and 0.005–0.020 mg/g, respectively (contents).	Zhong et al., 2014
Rutin, Tiliroside, Quercetin	UPLC	0.0097–0.0500, 0.21–0.73, and 0.023–0.061 mg/g, respectively (contents).	Cheng et al., 2012
Maslinic acid, 2α-Hydroxyursolic acid, Oleanic acid	HPLC	0.032%–0.075%, 0.009%–0.053%, and 0.072%–2.087%, respectively (contents).	Cao et al., 2017
Kaempferol	HPLC	19.91 to 22.26 μg/g (contents).	Xie et al., 2015
Fingerprint	CE (Capillary electrophoresis)	A total of 15 common peaks were found in the HPLC fingerprints of R. chingii.	Chen et al., 2006
Oleanolic acid, Ursolic acid, Maslinic acid, 2α-Hydroxyursolic acid, Arjunic acid, 2α,3α,19α-Trihydroxy-12-Oleanen-28-oic acid, Euscaphic acid	GC/MS	This method is rapid, precise, and reproducible, and is useful for quantitative analysis of the triterpenes	Guo et al., 2005
Volatile constituents	GC/MS	A total of 37 constituents were identified from the leaves of R. chingii, mainly including hexadecanoic acid (44.97%), tetradecanoic acid (10.88%), and acetic acid (4.13%).	Han et al., 2014
Adenosine, Gallic acid, Brevifolin carboxylic acid, Ethyl gallate, Ellagic acid, Kaempferol-3-O-rutinoside, Astragalin, Tiliroside	UPLC	The contents of the eight components vary significantly in the fruits of R. chingii collected from different habitats. And only two compounds, namely, adenosine and ellagic acid, are determined in the ripe fruits of R. chingii.	Chai et al., 2016

Cheng et al., 2012 | Ma et al., 2017 | Zhang et al., 2017a | He et al., 2013 | Xie et al., 2015 | Chen et al., 2006 | Guo et al., 2005 | Han et al., 2014 | Chai et al., 2016 | Zhang and Jiang, 2015
crucial for ensuring the safety and efficacy of this medicinal product. In addition, good plant practice ought to be enforced to fulfill quantity and quality requirements for *R. chingii*.

AUTHOR CONTRIBUTIONS

GY and ZL searched the literature, collected the data, and drafted the manuscript. GY and WW contributed to analysis and manuscript preparation. YL and YZ helped check the chemical structures and formula. YS provided comments on the manuscript. All authors read and approved the final manuscript.

REFERENCES

Azietaku, J. T., Ma, H., Yu, X. A., Li, J., Oppong, M. B., Cao, J., et al. (2017). A review of the ethnopharmacology, phytochemistry and pharmacology of *Notopterygium incisum*. J. Ethnopharmacol. 202, 241–255. doi: 10.1016/j.jep.2017.03.022

Bi, W., Gao, Y., Shen, J., He, C., Liu, H., Peng, Y., et al. (2016). Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): a review. *J. Ethnopharmacol.* 189, 31–60. doi: 10.1016/j.jep.2016.04.021

Cai, Y. Q., Hu, J. H., Qin, J., Sun, T., and Li, X. L. (2018). Studies on the chemical constituents and quality standard of *Rubus chinensis* Hu. *Ph.D Thesis. Beijing, China: China Academy of Chinese Medical Science.*

Chen, K. H., Fang, J., Kuang, X. W., and Mo, Q. Z. (1996). Effects of the fruit of *Rubus chingii* Hu on hypothalamus–pituitary–sex gland axis in rats. *J. Anhui. Univ. Chin. Med.* 21, 560–562. doi: 10.1016/j.jep.2016.04.021

Han, B., Chen, J., Yu, Y. Q., Cao, Y. B., and Jiang, Y. Y. (2016). Antifungal activity of *Rubus chinensis* extract combined with fluconazole against fluconazole-resistant Candida albicans. *Microbiol. Immunol.* 60, 82–92. doi: 10.1111/1348-421L.12357

Hou, M., Gao, J. Y., and YANG, J. S. (2015). Analysis of volatile components of *Rubus chinensis* leaves by HPLC. *Chin. J. Exp. Trad. Med. Form.* 21, 560–562. doi: 10.1016/0031-9422(88)83061-9

Han, B., Chen, J., Yu, Y. Q., Cao, Y. B., and Jiang, Y. Y. (2016). Antifungal activity of *Rubus chinensis* extract combined with fluconazole against fluconazole-resistant Candida albicans. *Microbiol. Immunol.* 60, 82–92. doi: 10.1111/1348-421L.12357

Guo, Q. L. (2016). Studies on the chemical constituents and quality control standard of *Rutus chinensis* Hu. *Master’s Thesis. Nanchang, China: Jiangxi University of Chinese Medicine.*

Guo, Q. L. (2005). Studies on the chemical constituents of *Rutus chinensis* and inula capra. *Ph.D Thesis. Beijing, China: Peking Union Medical College.*

Han, B., Chen, J., Yu, Y. Q., Cao, Y. B., and Jiang, Y. Y. (2016). Antifungal activity of *Rubus chinensis* extract combined with fluconazole against fluconazole-resistant Candida albicans. *Microbiol. Immunol.* 60, 82–92. doi: 10.1111/1348-421L.12357

Han, B., Chen, J., Yu, Y. Q., Cao, Y. B., and Jiang, Y. Y. (2016). Antifungal activity of *Rubus chinensis* extract combined with fluconazole against fluconazole-resistant Candida albicans. *Microbiol. Immunol.* 60, 82–92. doi: 10.1111/1348-421L.12357

Hattori, M., Kuo, K. P., Shu, Y. Z., Tezuka, Y., Kikuchi, T., and Namba, T. (1988). A triterpene from the fruits of *Rubus chinensis*. *Phytochemistry* 27, 3975–3976. doi: 10.1016/0031-9422(88)83061-9

He, J. M., Sun, N., Wu, W. D., Fan, L. J., and Guo, M. L. (2013). Determination of ellagic acid, flavonoids and goshooside-F5 in *Rubi Fructus* by HPLC. *Chin. J. Chin. Med.* 38, 4351–4356. doi: 10.4268/cjcm20132431

Hu, Y. L. (2014). The research of the inhibition on hepatoma cell line SMMC-7721 by raspberry extract. Master’s Thesis. Jinan, China: Shandong University of Chinese Medicine.

Huang, L. P., Xiong, Y. J., Zhao, M. L., GONG, J. H., and XIE, Y. H. (2013). The impact of raspberry different extract parts on kidney-YANG deficiency AD rats’ learning and memory abilities. *Pharmacol. Chin. Chin. Med. Mater.* 29, 111–113. doi: 10.3943/j.cnki.zyyl.2013.04.018

Huang, L. P., Xiong, Y. J., Zhao, M. L., GONG, J. H., and XIE, Y. H. (2013). The impact of raspberry different extract parts on kidney-YANG deficiency AD rats’ learning and memory abilities. *Pharmacol. Chin. Chin. Med. Mater.* 29, 111–113. doi: 10.3943/j.cnki.zyyl.2013.04.018

Kong, D. P., Qian, D. W., Guo, S., and Duan, J. A. (2011). Determination of nucleosides compounds in nine tonic traditional Chinese medicines of fruit and seeds. *Chin. J. Exp. Trad. Med. Form.* 17, 98–101. doi: 10.3969/j.issn.1005-9903.2011.04.030

Li, G. (2017). Study on the protective effect of raspberry on retinal ganglion cells (RGCs). Master’s Thesis. Shenyang, China: Liaoning University of Traditional Chinese Medicine.

Li, J., Du, L. E., HE, Y. Y., Lü, L. Y., YANG, W. F., et al. (2015). Chemical constituents and biological activities of plants from the genus *Rubus*. *Chem. Biodivers.* 12, 1809–1847. doi: 10.1002/cbdv.201400307

Li, K., XIA, X. X., DING, Y. H., ZHOU, W. Y., XIE, B. S., CAI, J. B., et al. (2016a). Effect of different extract parts from *Rubus Fructus* on improving memory disorder in mice. *Chin. J. Exp. Trad. Med. Form.* 22, 142–147. doi: 10.13422/j.cnki. syfjx.20160210142

FUNDING

This study was supported by the Start-up fund from Beijing University of Chinese Medicine to YS (No. 1000061020044 and No. 1000041510052).

ACKNOWLEDGMENTS

We acknowledge Beijing University of Chinese Medicine for providing support and assistance for this review article.
Rubus chingii

Tang, X. Q., Liu, Y., Sun, F. Z., Zhao, Y., and Zeng, X. (2016b). Systematic analysis of absorbed anti-inflammatory constituents and metabolites of sarscanda galbain rat plasma using ultra-high-pressure liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry. PloS One 11, e0150063. doi: 10.1371/journal.pone.0150063

Li, W. Q., Gong, J. H., Wang, Y. L., Liu, W. Q., and Liu, M. X. (2014). Advance research on raspberry (Rubus chingii) Isolation and identification of chemical constituents from the active site of Rubus chingii Hu. Mod. Chin Med. 16, 372–373. doi: 10.31331/isbn.1673-4890.2014.05.006

Li, X. H. (2018). The effects of raspberry decoction on apoptosis of BEnd.3 cells induced by H2O2 and related clinical application. Master's Thesis. Nanjing, China: Nanjing University of Chinese Medicine.

Ma, Y. J., Bai, W. T., Zhu, X. F., Huang, L. P., and Xie, Y. H. (2017). Simultaneous determination of four flavonoids in Rubus chingii by HPLC. Chin. Trad. Patent Med. 39, 2097–2101. doi: 10.3969/j.issn.1001-1528.2017.10.023

Liu, W. Q., Gong, J. H., Wang, Y. X., Liu, B., Huang, L. P., and Xie, Y. H. (2014). Isolation and identification of chemical constituents from the active site of Rubus chingii Hu. Mod. Chin Med. 16, 372–373. doi: 10.31331/isbn.1673-4890.2014.05.006

Pi, H., and Wu, J. (2003). Phytochemistry and pharmacology of Rubus chingii Hu: A review. Stud. J. Trad. Chin. Med. 21, 2169–2174. doi: 10.13193/j.issn.2003.12.182.phil.108

Ping, Y. H., Li, C. L., and Xie, Y. H. (2016). Determination of tilurosido and kaempferol in Rubus chingii Hu. Food Res. Dev. 37, 139–141. doi: 10.3969/j.issn.1005-6521.2016.07.034

Shi, Y. F. (2017). Raspberry research progress of nutritional ingredients and pharmacological effects. ShanDong Chem. Ind. 46, 71–72. doi: 10.3969/j.issn.1008-021X.2017.06.025

Su, X. H., Duan, R., Sun, Y. Y., Wen, J. F., Kang, D. G., Lee, H. S., et al. (2014). Cardiovascular effects of ethanol extract of Rubus chingii Hu (Rosaceae) in rats: An in vivo and in vitro approach. J. Physiol. Pharmacol. 65, 417–424.

Sun, J. X., Zhu, H. X., and Xiao, D. G. (2013a). Determination of the contents of organic acids of raspberry. Mod. Food Sci. Techn. 29, 1374–1376. doi: 10.13982/j.issn.1673-9078.2013.06.040

Sun, N., Wang, Y., Liu, Y., Guo, M. L., and Yin, J. (2013b). A new ent-labданe diterpene saponin from the fruits of Rubus chingii. Chem. Nat. Comp. 49, 49–53. doi: 10.1007/s10570-010-9503-6

Sun, Z. L., Zhang, Y., Wan, A. H., Zhang, X. L., and Feng, J. (2011). A new active compound against kidney deficiency from the fruits of Rubus corehersifolius. J. Asian Nat. Prod. Res. 13, 68–74. doi: 10.1080/10288602.2010.541156

Tanaka, T., Kawamura, K., Kitahara, T., Kohda, H., and Tanaka, O. (1984). Ent-labdanotype diterpene glucosides from leaves of Rubus Phytochemistry. 23, 613–621. doi: 10.1016/S0031-9422(08)80393-3

Tanaka, T., Kohda, H., Tanaka, O., Chen, F. H., Chou, W. H., and Lee, J. L. (1981). Rubusoside (β-D-glucosyl ester of 13-O-β-D-glucosyl-steviol), a sweet principle of Rubus chingii Hu (Rosaceae). Agric. Biol. Chem. 45, 2165–2166. doi: 10.1271/bbb1961.45.2165

Tang, X. Q., Liu, Y., Sun, F. Z., Hu, H. X., Tian, H., Yang, W. X., et al. (2007). Toxicological evaluation of Hubei R. chinigHu. Carcin. Teratogen. Mat. 19, 395–398.

Tian, T., Duan, Y. F., and Niu, F. G. (2010). Antioxidant effect of raspberry glycoprotein. Food Sci. 31, 357–360.

Wang, G. Q. (1991). Study on the chemical components of Fupenzi. World Notes Agric. Biol. Chem. 55, 51–60. doi: 10.1016/S0002-1606(08)9918-3

Wang, Y. C., Li, F., and Tao, L. (2011). Inhibiting effect of Rubus chingii Hu extract on matrix metalloproteinase in vitro. Chin. J. Clin. Pharmacol. 27, 291–292. doi: 10.10080/1001-1224-4

Xiao, H. M. (2011). Studies on the chemical constituents from fruits of Rubus chingii. Master's Thesis. Hefei, China: Anhui University. doi: 10.1007/s10570-010-9546-4

Xiao, H. M., Zou, L. B., Li, S. P., Wang, K. J., and Li, N. (2011). Chemical constituents from dried fruits of Rubus chingii. Chin. J. Med. Chem. 21, 220–226.

Xie, X. M., Pang, X. B., and Li, X. T. (2012). Hypoglyiecic effect and mechanism of raspberry ketone on diabetic model mice. Chin. Pharm. J. 47, 1899–1904.

Xie, X. M., Pang, X. B., and Li, X. T. (2014). Effect of raspberry ketone on expression of SHP-1 and IRS-1 in insulin signaling pathway of HepG2 cells. Chin. Trad. Patent Med. 36, 1579–1583. doi: 10.3969/j.issn.1001-1528.2014.08.003

Xie, Y. H., Ding, Y. H., Lian, B., Bin, Y. U., and Fan, H. (2015). Quantitative determination of active ingredient kaempferol in Rubus chingii Hu. J. Jiangxi Univ. Trad. Chin. Med. 27, 77–78.

Xie, Y. H., Lian, B., Gong, J. H., Tu, L. D., Zhang, Y. T., and Huang, L. P. (2013a). Preparation of magnetic chitosan hyamine microspheres and separation of phenolic acids from Rubus chingii Hu. Adv. Mater. Res. 634–638, 1347–1351. doi: 10.4028/www.scientific.net/AMR.634-638.1347

Xie, Y. H., Xiao, M. J., and Liu, W. Q. (2005). Studies on the chemical constituents from Fructus Rubi. Zhong Yao Cai 28, 99–100. doi: 10.3321/j.issn:1001-4454.2005.02.012

Yau, M. T. (2009). The active components on kidney-yang deficient mice from the fruits of Rubus chingii. Master's Thesis. Shanghai, China: Second Military Medical University.

You, M. T., Li, Y. K., and Guo, M. L. (2009). Study on chemical constituents of methylene chloride extract of Rubus chingii. Acad. J. Second Mil. Med. Univ. 29, 1199–1202. doi: 10.3724/SP.J.1008.2009.01199

Zan, T., Liu, L. W., and Qu, L. B. (2018). Studies on the anti-aging activity of a glycoprotein isolated from Fupenzi (Rubus chingii Hu) by active tracking guidance. Medchemcomm 9, 729–736. doi: 10.1039/C8MD00240H
Zhang, T. T., Lu, C. L., Jiang, J. G., Wang, M., Wang, D. M., and Zhu, W. (2015b). Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of *Rubus chingii* Hu. *Carbohydr. Polym.* 130, 307–315. doi: 10.1016/j.carbpol.2015.05.012

Zhang, T. T., Wang, M., Yang, L., Jiang, I. G., Zhao, J. W., and Zhu, W. (2015c). Flavonoid glycosides from *Rubus chingii* Hu fruits display anti-inflammatory activity through suppressing MAPKs activation in macrophages. *J. Funct. Foods* 18, 235–243. doi: 10.1016/j.jff.2015.07.006

Zhang, X., Zhan, G., Jin, M., Zhang, H., Dang, J., Zhang, Y., et al. (2018). Botany, traditional use, phytochemistry, pharmacology, quality control, and authentication of *Radix Gentianae Macrophyllae*—a traditional medicine: A review. *Phytomedicine* 46, 142–163. doi: 10.1016/j.phymed.2018.04.020

Zhao, M. L., Yan, B., Liu, C., Hou, M., Xie, Y. H., and Huang, L. (2018). Different components of raspberry extracted by ethyl acetate could improve the impairments of PC12 induced by H2O2. *Pharmacol. Clin. Chin. Mater. Med.* 34, 58–62.

Zhong, R. J., Guo, Q., Zhou, G. P., and Fu, H. Z. (2014). RP-HPLC simultaneous determination of two main flavonoid glycoside components in *Rubus chingii* Hu. *Chin. J. Pharm. Anal.* 34, 971–974. doi: 10.16155/j.0254-1793.2014.06.018

Zhong, R. J., Guo, Q., Zhou, G. P., Fu, H. Z., and Wan, K. H. (2015). Three new labdane-type diterpene glycosides from fruits of *Rubus chingii* and their cytotoxic activities against five humav cell lines. *Fitoterapia* 102, 23–26. doi: 10.1016/j.fitote.2015.01.007

Zhu, H. X. (2012). Bacteriostasis activity of purified raspberry flavonoid. *Mod. Food Sci. Tech.* 28, 1484–1487. doi: 10.13982/j.mfst.1673-9078.2012.11.024

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Yu, Luo, Wang, Li, Zhou and Shi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.