Patients with multiple myeloma (MM) rarely present with central nervous system (CNS) involvement as a manifestation of extramedullary disease (EMD), a condition that is associated with poor prognosis. CNS relapse without evidence of systemic involvement is even rarer, and there is no standardized treatment because there are only few case reports. We present a 47-year-old female who was diagnosed with nonsecretory multiple myeloma (NSMM) 9 years previously. She had a complete remission after receiving aggressive therapies, including high-dose chemotherapy and autologous stem cell transplantation (ASCT). However, after 7 years of progression-free survival, she had CNS relapse without evidence of systemic involvement. We switched to a salvage regimen consisting of high-dose methotrexate with lenalidomide. She achieved rapid clinical improvement, with a reduction in cerebrospinal fluid plasmacytosis of more than 80%, and no notable side effects. Our description of this unique case of a patient with MM and isolated CNS relapse after ASCT provides a reference for physicians to provide more appropriate management of these patients. We also reviewed previously reported cases and summarized the outcomes of isolated CNS relapse after ASCT, and discuss the pathogenesis and possible treatment strategies for MM with isolated CNS relapse.

KEYWORDS
nonsecretory multiple myeloma, isolated central nervous system relapse, autologous stem cell transplantation, pathogenesis and treatment, case report
Introduction

Multiple myeloma (MM) is characterized by the monoclonal proliferation of plasma cells (PCs) in bone marrow (1). Despite the use of established treatments followed by autologous stem cell transplantation (ASCT) and improvements in patient outcomes during recent years, MM is still incurable (2). Relapse in most patients is characterized as a medullary monoclonal proliferation, and 3.4% to 35% of these patients present with extramedullary disease (EMD) (3). Central nervous system (CNS) involvement is a very rare aggressive presentation of EMD, and occurs in only about 1% of patients (4). CNS relapse without evidence of systemic involvement is even rarer, with only few case reports, and these patients face a very poor prognosis, with a median survival time less than 6 months (5).

The present study describes a female who had MM with isolated CNS relapse after ASCT, and faced a poor prognosis despite the use of aggressive therapy. There is no standard treatment for CNS localization of multiple myeloma (CNS-MM) (4, 6) due to the rarity of this presentation. Thus, we also conducted a literature review to summarize the outcomes of other MM patients who had isolated CNS relapse after ASCT and examined the pathogenesis and possible treatment strategies for this condition.

Case report

A 38-year-old female with lumbago was diagnosed with nonsecretory multiple myeloma (NSMM) in December 2012. At that time, bone marrow specimens indicated 74% infiltration of plasma cells, and flow cytometry analysis showed abnormal plasma cells, which were positive for CD38, CD56, CD138, and cytoplasmic light-chain. Serum immunofixation (IFE) showed no detectable monoclonal component, a blood examination showed no anemia or renal dysfunction, and the levels of lactate dehydrogenase (LDH) and β2 microglobulin (β2-MG) were normal. Whole body bone imaging showed diffuse abnormal signals in the ribs, spinal vertebrae, and ilium. These findings led to a diagnosis of NSMM, with stage I based on the International Staging System (ISS) and stage IIIA based on the Durie-Salmon (DS) staging system. The patient received 4 courses of bortezomib, dexamethasone, and thalidomide (VDT) and achieved a complete response (CR).

After a treatment-free period of 4 months, she presented again with low backache. Bone marrow flow cytometry indicated that 6.5% of the plasma cells were abnormal, indicative of medullary recurrence. She then received 8 courses of different chemotherapies: 4 courses of vincristine, doxorubicin, and dexamethasone (VAD); 3 courses of vincristine, dexamethasone, cyclophosphamide, and thalidomide (VDC); and 1 course of thalidomide, dexamethasone, cis-platin, doxorubicin, cyclophosphamide, and etoposide (DTPACE). After treatment, she achieved a partial response (PR) with regression of bone pain and 1% plasma cells in bone marrow.

In July 2014, she was given ASCT with preconditioning using semustine, busulphan, and etoposide (Me-CCNu + Bu + VP-16) and maintained a PR. However, 5 months after ASCT, she developed right-lower limb pain. Whole body bone imaging at that time showed a new focus in the right femoral region, and the bone marrow had 14% plasma cells with a normal level of the M protein based on immunofixation electrophoresis (IFE). Thus, melphalan and prednisolone (MP) therapy was initiated. There were no detectable myeloma cells in the bone marrow after 6 courses of this therapy. Thalidomide (100 mg orally) maintenance therapy was then administered for 2 years, and she had no further relapse.

In May 2022, she presented again and reported the sudden onset of dizziness, staggering gait, and loss of hearing. Physical examination revealed that she had clear poor hearing. The muscular strength tension of limbs was normal. Physiological reflexes were existent without any pathological ones. No enlargement of lymph nodes, liver, or spleen was found. Brain magnetic resonance imaging (MRI) showed cerebrosplinal meninges and auditory nerve thickening (Figure 1A). Positron emission tomography/computerized tomography (PET/CT) showed multiple cerebrosplinal meninges with increased 18F-flurodeoxyglucose metabolism, but no other site of disease involvement (Figures 1B, C). Further examination showed she had no abnormalities in the hemogram, M-protein level, renal function, LDH level, and β2-MG level. A bone marrow analysis showed no chromosomal abnormalities and no increased number of abnormal plasma cells. However, her cerebrosplinal fluid (CSF) was positive for plasma cells (Figure 2A), and a lumbar puncture showed the CSF had a protein content of 213.8 mg/dL (normal range: 20–40), glucose of 50 mg/dL (normal range: 50–60), and 42×10⁶ nucleated cells/L (normal range: 0–8×10⁶). These findings indicated that the relapse was localized to the CNS.

We advised high-dose methotrexate (HD-MTX) therapy with lenalidomide (25 mg orally). After one course of salvage therapy, she achieved rapid clinical improvement without any notable side effects, such as hematological toxicity or peripheral neuropathy. Furthermore, this treatment reduced the CSF plasmacytosis by more than 80% (Figure 2B). The timeline of the patient is summarized in Figure 3.

Discussion

ASCT after induction therapy is a common standard treatment for eligible MM patients because it can induce durable remission and improve long-term survival. Nonetheless, MM is still an incurable disease. Although most patients who experience relapse have proliferation of monoclonal plasma cells, mainly in the bone marrow, about
3.4% to 35% of these patients present with EMD (1, 3). CNS involvement is a specific presentation of extramedullary extraosseous, and occurs in only about 1% of patients (4). The median survival time of these patients is only 4 to 7 months, even when aggressive therapy is given (4, 7). CNS relapse without evidence of systemic involvement after ASCT is even rarer in patients who have MM, and there are only a few case reports in the literature.

Certain clinical factors are associated with increased risk of CNS-MM, including lambda subtype, elevated LDH, elevated β_2-MG, EMD, plasma cell leukemia, and chromosomal abnormalities (deletion of 17p or 13q) (4, 8, 9). We performed a comprehensive search of the literature and identified 14 cases (Tables 1, 2). Most of these patients had ISS stage III disease at diagnosis, but the myeloma subtype was variable. There were more patients with high LDH and β_2-MG levels than with normal levels. Only one patient had plasma cell leukemia. The median time from ASCT to CNS disease was 6 months (range: 2.5–84), and most patients died after developing CNS disease, with a
median survival post-CNS relapse of 6 months (range: 0.3–29). Cytogenetic results were available in 7 patients: 4 patients had 17p deletion (17p-), 2 patients had 1q21 amplification (1q21+), and 2 patients had translocation (4, 14). These cytogenetic abnormalities may be related to isolated CNS relapse after ASCT for MM. This is consistent with the observations from previous studies (4). One cohort study showed that deletion of chromosome 17p13.1 (p53) was present in 89% of the CNS-MM patients and associated with metastatic features of myeloma cells (20). Moreover, investigators found that amplification of 1q21 was associated with disease progression and poor prognosis in MM despite the use of novel regimens (21). Patients with 1q21+ showed a high incidence of aggressive features, including an unusually high CNS involvement incidence (11%) and early onset of CNS disease (22). Our patient, who had bone marrow expression of CD56 had no EMD or circulating plasma cells at baseline. Our patient differed from other previously described patients in that she had normal levels of LDH and β2-MG and no cytogenetic abnormalities. Because factors that apparently increase the risk for CNS involvement were not present in our patient, we examined the possible reasons why she developed such aggressive disease.

The mechanism leading to isolated CNS relapse post-ASCT is uncertain. One hypothesis is that malignant plasma cells are transmitted by blood or plasma cell precursors, and then spread in the cerebrospinal meninges. In the past decade, therapies using novel agents and ASCT have improved the progression-free survival of MM patients, and it seems likely that this has led to the appearance of new patterns of relapse. The downregulation of CD56 adhesion molecules after first-line therapy could allow MM cells to escape the bone marrow environment and establish distant plasma cell metastasis, including in the CNS (18). Patients with plasma cell leukemia have abnormal plasma cells in the circulating blood, and the presence of these circulating plasma cells increases the risk of hematogenous spread. This supports our first hypothesis that malignant plasma cells are transmitted in the blood, and then spread to the cerebrospinal meninges (23). A second hypothesis is that plasmacytoma infiltrated adjacent skull lytic lesions. These patients mainly have parenchymal infiltration, varying from 39% to 65% in some cohorts (5, 24). Finally, a series of reports showed that clonal heterogeneity could play a role in CNS-MM. In particular, high dose chemotherapy for ASCT might select for extramedullary drug-resistant clonal populations, thus leading to relapse without bone marrow

![FIGURE 2](image2.png)

FIGURE 2
Cerebrospinal fluid smear showed the presence of abnormal plasma cells (red arrows) before (A) and after (B) salvage therapy.

![FIGURE 3](image3.png)

FIGURE 3
Timeline of the patient’s diagnosis and treatments.
Patient No. (Reference)	1 (10)	2 (11)	3 (12)	4 (13)	5 (14)	6 (15)	7 (15)	8 (16)	
Age, years	39	55	32	58	29	49	66	66	
Gender	Male	Male	Female	Male	Male	Male	Male	Male	
Myeloma type	IgA-κ	IgG-κ	IgA-κ	IgA-κ	IgG-κ	IgG-λ	IgA-λ	IgG-κ	
Stage	DS	IIIB	IIIA	IIIB	IIIB	IIIA	IIIA	IIIB	
ISS	NA	NA	NA	NA	NA	+	+	–	
LDH	>ULN	>ULN	>ULN	NA	NA	NA	NA	NA	
β₂-MG	≤ULN	NA	>ULN	>ULN	>ULN	NA	NA	NA	
Cytogenetic abnormalities	NA	NA	NA	NA	NA	17p-, 1q21+	1q21+	NA	
Plasma cell leukemia	yes	no							
Treatments prior ASCT, n	5	3	4	6	4	4	4	4	
Time to relapse post-ASCT	3 months	3 months	10 weeks	7 years	6 months	9 months	6 months	8 months	
Parenchymal	yes	no	no	yes	yes	yes	yes	NA	
Treatment for CNS-MM	IT	BCNU/CY/IT/RT/ASCT	IT	IT/Dexa	CTAD/IT/RT	Surgery/RT	DPACE/RD/DVD	IT/RT	IT/RT/Dexa
Best response to CNS-MM treatment	PD	CR	PD	CR	SD	PR	CR	CR	
Survival post-CNS relapse	9 days	7 months	8 days	11 months	3 months	29 months	12 months	10 months	

Patient No. (Reference)

9 (16)	10 (17)	11 (8)	12 (18)	13 (19)	14 (current case)	
Age, years	40	58	56	62	46	38
Gender	Female	Male	Female	Female	Female	Female
Myeloma type	IgA-κ	IgG-κ	IgA-κ	IgG-λ	IgA-λ	nonsecretory
Stage	DS	IIIB	IIIB	IIIB	IIIB	IIIA
ISS	III	III	III	III	+	1
LDH	NA	>ULN	NA	sULN	NA	sULN
β₂-MG	NA	>ULN	NA	sULN	>ULN	≤ULN
Cytogenetic abnormalities	17p-, t (4;14)	17p-, t (4;14)	hyperdiploid karyotype	17p-	NA	None
Plasma cell leukemia	no	no	no	no	no	no
Treatments prior ASCT, n	3	4	3	4	2	12
High-dose therapy	NA	Mel	NA	Mel	Bu	

(Continued)
involvement (14, 25, 26). Our patient received first-line ASCT after aggressive therapy, and had none of the factors associated with risk for CNS involvement at baseline. After our patient achieved a 7-year progression-free survival, the selection of treatment modality is associated with a statistically significant survival benefit (9), hematologic toxicity is a potential concern, and CNS-MM is a systemic disease that can affect multiple organs and systems (28, 42). In addition, similar studies showed that one-third of lenalidomide-resistant patients still responded to pomalidomide, particularly those with chromosome 17p- and/or translocation (4, 14) (37, 38). Few proteasome inhibitors can penetrate the BBB, limiting their efficacy in patients with CNS-MM (27). Marizomib and carfilzomib are novel next-generation proteasome inhibitors that can pass through the BBB and may be effective in CNS-MM. For example, an animal study of radiolabeled marizomib reported that marizomib concentrations in CSF can reach 11% to 49% of the peak concentration in blood. Thus, these drugs may have good CSF activity against lymphoma and myeloma when there is CNS involvement (33–36). In addition, similar studies showed that one-third of lenalidomide-resistant patients still responded to pomalidomide, particularly those with MM with chromosome 17p- and/or translocation (4, 14) (37, 38).

Some studies examined the ability of monoclonal antibodies to improve the outcomes of patients with CNS-MM. Although the penetration of systemic daratumumab (anti-CD38 monoclonal antibody) into the CNS was limited, it produced durable responses in some case reports. It is possible that the BBB becomes more permeable in certain disease states, such as when there is disruption of the meninges (28, 42).

In addition to monoclonal antibodies, the recently developed B-cell maturation antigen, chimeric antigen receptor T cell (BCMA CAR-T) therapy is a novel treatment strategy for relapsed/refractory(R/R) CNS-involved MM. For example, Wang et al. identified the presence of BCMA CAR-T cells in CSF (43). The mechanisms responsible for the higher CD4/CD8 ratio in CSF than in peripheral blood may regulate the...
penetration of CD4+ and CD8+ CAR-T cells across the BBB and their proliferation in CSF to kill myeloma cells. Several studies investigated the effects of BCMA CAR-T cells on CNS-MM patients and reported remarkable clinical remissions (43, 44). Closer monitoring of patients may help in the early identification of CAR-T neurotoxicity, thus making immune effector cell-associated neurotoxicity syndrome (ICANS) more predictable and controllable (45). BCMA CAR-T therapy appears to be a safe and effective treatment for R/R CNS-MM, but the duration of remission is a remaining problem.

Although the optimal therapy for CNS-MM is uncertain because of the rarity of this condition, aggressive management is necessary. Examination of individualized combinations of chemotherapy, targeted drugs, monoclonal antibodies, CAR-T cells, and local therapy could lead to further improvements of outcomes.

Conclusion

Our study describes a case of CNS-MM following ASCT, with no evidence of systemic involvement. High dose methotrexate and lenalidomide (which can cross the BBB) produced a rapid response and effectively cleared myeloma cells from the CSF, but the duration of this remission must be addressed. Isolated CNS relapse after ASCT in MM is extremely rare. Even with novel therapies, the survival time after CNS-MM remains poor, and the optimal method for management of these patients is an open question because of the rarity of this condition. Further studies are required to identify factors associated with CNS relapse after ASCT and the underlying mechanism, and to determine improved methods of prophylaxis and management.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and approved by The Medical Ethics Committee of The Second Affiliated Hospital, College of Medicine, Zhejiang University. The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

Author contributions

XL, WW, and YL contributed to the design and conception of the study; XL and WW contributed to data collection; XL contributed to writing the initial drafting of the manuscript; XZ and YL reviewed and edited the original draft. All authors contributed to manuscript revision and read and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Characteristic	n	%
Gender		
Male	9	64
Female	5	36
Age, median years (range)	52 (29,66)	
Myeloma type		
IgA-k	3	21
IgA-κ	4	29
IgG-k	2	14
IgG-κ	4	29
Nonsecretory	1	7
Cytochemistry		
17p−	4	29
1q21+	2	14
t (4;14)	2	14
Not evaluated	7	
LDH		
>ULN	4	29
≤ULN	2	14
Not evaluated	8	
β2-MG		
>ULN	5	36
≤ULN	3	21
Not evaluated	6	
Plasma cell leukemia	1	7
Time to relapse post ASCT, median months (range)	6 (2.5,84)	
Treatment for CNS-MM		
Intrathecal	9	64
Radiotherapy	6	43
Proteasome inhibitors	3	21
Immunomodulatory drugs	6	43
Anti-CD38 monoclonal antibody	2	14
ASCT	1	7
Survival post CNS relapse, median months (range)	6 (0.3,29)	

ULN, upper limit of normal.

Table 2: Summary of multiple myeloma cases who had isolated CNS relapse after ASCT (n=14).
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med (2011) 364:1046–60. doi:10.1056/NEJMra1101442
2. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Primers (2017) 3:17046. doi:10.1038/nrdpp.2017.46
3. Gagelmann N, Eikema DJ, Iacobelli S, Koster L, Nahi H, Stoppa AM, et al. Impact of extramedullary disease in patient with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: A study from the chronic malignancies working party of the EBMT. Haematologica (2018) 103:890–7. doi:10.3324/haematol.2017.178434
4. Jurczyszyn A, Grzasko N, Gozzietti A, Crepjiel J, Cerase A, Hungria V, et al. Central nervous system involvement by cutaneous disease: A multi-institutional retrospective study of 172 patients in daily clinical practice. Am J Hematol (2016) 91:575–80. doi:10.1002/ajh.24351
5. Chen CL, Masih-Khan E, Jiang H, Rabea A, Cuerri-Gazdewich C, Jimenez-Zepeda VH, et al. Central nervous system involvement with multiple myeloma: Long-term survival can be achieved with radiation, intrathecal chemotherapy, and immunomodulatory agents. Br J Haematol (2013) 162:483–8. doi:10.1111/bjh.12414
6. Majd N, Wei X, Demopoulos A, Horrow M, Chari A. Characterization of central nervous system multiple myeloma in the era of novel therapies. Leuk Lymphoma (2016) 57:1799–13. doi:10.3109/10428194.2015.1122786
7. Abdallah AO, Attia S, Shahzad Z, Jameel M, Grazziutti M, Apewokin S, et al. Patterns of central nervous system involvement in relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leuk (2014) 14:241–4. doi:10.1016/j.clml.2014.01.004
8. Varga G, Mikula G, Gocsza L, Csukdy Z, Kollai S, Balazs G, et al. Multiple myeloma of the central nervous system: 13 cases and review of the literature. J Oncol (2018) 2018:3970169. doi:10.1155/2018/3970169
9. Nieuwenhuizen LH. Buesma DH. Central nervous system myelosatosis: Review of the literature. Eur J Haematol (2008) 80:1–9. doi:10.1111/j.1600-0609.2007.00956.x
10. Petersen SG, Aamyr G, Ginsing P. Cerebral and meningeal multiple myeloma after autologous stem cell transplantation. A case report and review of the literature. Am J Hematol (1999) 62:22–33. doi:10.1002/(SICI)1096-8652(19991226)62:2<22::AID-AJH5>3.0.CO;2-3
11. Veinstein A, Brazier A, Randriamalala E, Babin P, Preud’homme JL, Guilhot F, et al. Extramedullary relapse after autologous stem cell transplantation for multiple myeloma. report of two cases. Hematol Cell Ther (1997) 39:327–30. doi:10.1007/s00282-997-0327-6
12. Ushakaraya A, Youssef A, Bayle C, Vantelon JM, Muncn JK. Plasma cell meningitis after an autograft in a patient with multiple myeloma. Leuk Lymphoma (1999) 34:633–4. doi:10.3109/10428199909058496
13. Sehgal MD, Maguire J, Voss N, Woodhurst WR, Dalal BI, Shepherd JD. Intracerebral relapse following prolonged remission after autologous stem cell transplantation for multiple myeloma. Leuk Lymphoma (2002) 43:2399–403. doi:10.1080/104281902001000410125
14. Mittal A, Pushpam D, Kumar L. Isolated central nervous system relapse of multiple myeloma post autologous stem cell transplantation: A rare presentation. Leuk Res Rep (2020) 14:100207. doi:10.1016/j.leukresrep.2020.100207
15. Bergantin R, Bastos J, Soares MJ, Carvalho B, Soares P, Marques C, et al. Aggressive central nervous system relapse after autologous stem cell transplantation in multiple myeloma: Case reports and literature review. Case Rep Hematol (2020) 2020:8563098. doi:10.1155/2020/8563098
16. Gangatharan SA, Carney DA, Prince HM, Wolf MM, Januszewicz EH, Yelick BC, et al. Emergence of central nervous system myeloma in the era of novel therapies. Br J Haematol (2016) 170:1709. doi:10.1111/bjh.12414
17. Zeiser R, Deschler B, Bertz H, Finke J, Engelhardt M. Extramedullary vs medullary relapse after autologous or allogeneic hematopoietic stem cell transplantation (HSCT) in multiple myeloma (MM) and its correlation to clinical outcome. Bone Marrow Transplant (2004) 34:1057–65. doi:10.1038/sj.bmt.1704713
18. Egan PA, Elder PT, Deighan WI, O’Connor SJM, Alexander HD. Multiple myeloma with central nervous system relapse. Haematologica (2010) 95:1780–90. doi:10.3324/haematol.2009.248518
19. Elhasadi E, Murphy M, Hacking D, Farrar M. Durable treatment response of relapsing CNS plasmacytoma using intrathecal chemotherapy, radiotherapy, and daratumumab. Clin Case Rep (2018) 6:723–8. doi:10.1002/ccr3.1451
20. Tsang BW, Campbell BA, Goda JS, Kelsey CR, Kirosa YM, Parikh RR, et al. Radiotherapy for solitary plasmacytoma and multiple myeloma: Guidelines from the international lymphoma radiation oncology group. Int J Radiat Oncol Biol Phys (2018) 101:794–808. doi:10.1016/j.ijrobp.2018.05.009
21. Kautzmann G, Buerki RA, Lukas RV, Gondi V, Chmura S. Case report of bone marrow-sparing proton therapy craniospinal irradiation for central nervous system myelosatosis. Cureus (2017) 9:e1885. doi:10.7759/cureus.1885
22. Touzeau C, Moreau P. How I treat extramedullary myeloma. Blood (2016) 127:971–6. doi:10.1182/blood-2015-07-593553
23. Vicari P, Ribas C, Sampao M, Arantes AM, Yamamoto M, Filho JR, et al. Can thalidomide be effective to treat plasma cell leptomeningeval infiltration? Eur J Haematol (2003) 70:198–9. doi:10.1046/j.1017-0371.2003.00222.x
24. Blaz J, Fernandez de Larrea C, Rosillo L, Cibeira MT, Jimenez R, Powles R, et al. Soft-tissue plasmacytomas in multiple myeloma: Incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol (2011) 29:3805–12. doi:10.1200/JCO.2011.34.9290
25. Devoe CE, Li JY, Demopoulos AM. The successful treatment of a recurrent intracranial, dural-based plasmacytoma with lenalidomide. J Neurooncol (2014) 119:217–20. doi:10.1007/s11060-014-1435-5
26. Li Z, Qiu Y, Personett D, Huang P, Endeflad B, Katz J, et al. Pomalidomide shows significant therapeutic activity against CNS lymphoma with a major impact on the tumor microenvironment in murine models. PLoS One (2013) 8:e71754. doi:10.1371/journal.pone.0071754
36. Selene I, Jose J, Malik MN, Qureshi A, Anwer F. Presentation patterns and management strategies for central nervous system involvement in multiple myeloma: A systematic review of literature. *Blood* (2018) 132:1951. doi: 10.1182/blood-2018-99-109923

37. Leleu X, Karlin L, Macro M, Hulin C, Garderet L, Roussel M, et al. Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010-02 trial results. *Blood* (2015) 125:1411–7. doi: 10.1182/blood-2014-11-612069

38. Mussetti A, Dalto S, Montefusco V. Effective treatment of pomalidomide in central nervous system myelomatosis. *Leuk Lymphoma* (2013) 54:864–6. doi: 10.3109/10428194.2012.718343

39. Di K, Lloyd GK, Abraham V, MacLaren A, Burrows FJ, Desjardins A, et al. Marizomib activity as a single agent in malignant gliomas: Ability to cross the blood-brain barrier. *Neuro Oncol* (2016) 18:840–8. doi: 10.1093/neuonc/nov299

40. Badros A, Singh Z, Dhakal B, Kwok Y, MacLaren A, Richardson P, et al. Marizomib for central nervous system multiple myeloma. *Br J Haematol* (2017) 177:221–5. doi: 10.1111/bjh.14498

41. Espinoza R, Nolasco DB, Alejandro S, Nidia Z, Eduardo C, Candelaria M, et al. Report of 5 cases of extramedullary myeloma with central nervous system involvement treated with a combination of Carfilzomib/Thalidomide/Dexamethasone as a first line treatment at a single institution in Mexico. *Blood* (2016) 128:5704. doi: 10.1182/blood.V128.22.5704.5704

42. Zajec M, Frerichs KA, van Duijn MM, Nijhof IS, Stege CAM, Avet-Loiseau H, et al. Cerebrospinal fluid penetration of daratumumab in leptomeningeal multiple myeloma. *Hemasphere* (2020) 4:e413. doi: 10.1097/HS9.0000000000000413

43. Wang Y, Zu C, Teng X, Yang L, Zhang M, Hong R, et al. BCMA CAR-T therapy is safe and effective for Refractory/Relapsed multiple myeloma with central nervous system involvement. *J Immunother* (2022) 45:25–34. doi: 10.1097/CJI.0000000000000391

44. Wang Y, Wang L, Zeng Y, Hong R, Zu C, Yin ETS, et al. Successful BCMA CAR-T therapy for multiple myeloma with central nervous system involvement manifesting as cauda equina syndrome—a wandering road to remission. *Front Oncol* (2021) 11:755584. doi: 10.3389/fonc.2021.755584

45. Gust J, Hay K, Hsafi LA, Li D, Myerson D, Gonzalez-Caylar LF, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. *Cancer Discovery* (2017) 7:1404–19. doi: 10.1158/2159-8290.CD-17-0698