Deeply Virtual Compton Scattering Measurement off Bound Protons in $^4$He

M. Hattawy

- Physics Motivations
- Recent Results.
- Future Measurements.

CLAS Collaboration Meeting, Nov 13th-16th, 2018
Exploring the Hadron Structure

Most of what we know today about hadrons’ structure has come from the electromagnetic probes which give access to measure structure functions that quantify the properties of partons in hadrons.

- **Form Factors (FFs)**
  → Provide the charge and magnetization distributions inside a hadron.
  → Accessible via Elastic Scattering (ES).

\[
\left( \frac{d\sigma}{d\Omega} \right)_{\text{exp}} = \left( \frac{d\sigma}{d\Omega} \right)_{\text{Moti}} \frac{E'}{E} \left( G_E^2(Q^2) + \tau G_M^2(Q^2) \frac{1 + \tau}{1 - \tau} + 2\tau G_M^2(Q^2) \tan^2\left( \frac{\theta_e}{2} \right) \right)
\]

- **Parton Distribution Functions (PDFs)**
  → Provide partons longitudinal momentum distributions
  → Measurable via Deep Inelastic Scattering (DIS).

  - For nucleons, the unpolarized DIS cross section is parametrized by two PDFs: \(F_{1,2}(x)\), with \(F_1(x) = \frac{1}{2} \sum_a e_q^2 f_q(x)\) and \(F_2(x) = x \sum_a e_q^2 f_q(x)\).

All seems well and working, until ...
EMC Effect

EMC effect: the modification of the PDF $F_2$ as a function of the longitudinal momentum fraction $x$ [0.3, 0.75] carried by the parton.

- Precise measurements at CERN, SLAC and JLab
  → Links with the nuclear properties, i.e. mass & density

- The origin of the EMC effect is still not fully understood, but possible explanations:
  → Modifications of the nucleons themselves
  → Effect of non-nucleonic degrees of freedom, e.g. pions exchange
  → Modifications from multi-nucleon effects (binding, N-N correlations, etc...)

Clear explanations may arise from measuring the nuclear modifications via measuring the Generalized Parton Distributions.
Generalized Parton Distributions

- Contain information on:
  → Correlation between quarks and anti-quarks
  → Correlation between \textit{longitudinal momentum} and \textit{transverse spatial} position of partons

- Can be accessed via hard exclusive processes such as deeply virtual Compton scattering (DVCS):

  \[ x_B \approx \frac{1}{2 - x_B} \]
  \[ t = \frac{Q^2}{2p.q} \]

  * At leading order in \(1/Q^2\) (\textit{twist-2}) and in the coupling constant of QCD (\(\alpha_s\)).

\[ \delta z_\perp \sim \frac{1}{Q} \]

- Experimentally, the measured photon-electroproduction cross section (ep \(\rightarrow\) ep\(\gamma\)) is:

\[ d\sigma \propto |\tau_{BH}|^2 + (\tau_{DVCS}^*\tau_{BH} + \tau_{BH}^*\tau_{DVCS}) + |\tau_{DVCS}|^2 \]

- The DVCS signal is enhanced by the interference with BH.
Two DVCS channels are accessible with nuclear targets:

◊ **Coherent DVCS:** $e^- A \rightarrow e^- A \gamma$
  → Study the partonic structure of the nucleus.
  → One chiral-even GPD ($H_A(x, \xi, t)$) is needed to parametrize the structure of the spinless nuclei ($^4$He, $^{12}$C, $^{16}$O, ...).

◊ **Incoherent DVCS:** $e^- A \rightarrow e^- N \gamma \ X$
  → The nucleus breaks and the DVCS takes place on a nucleon.
  → Study the partonic structure of the bound nucleons (4 chiral-even GPDs are needed to parametrize their structure).

DVCS off Nuclei
The four-fold cross section for the process $e^- N \rightarrow e^- N \gamma$:

$$\frac{d\sigma}{dx_B dy d|\Delta|^2 d\phi} = \frac{\alpha^3 x_B y}{16 \pi^2 Q^2 \sqrt{1 + \epsilon^2}} \frac{|\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + I}{\epsilon^6}$$

The BH term $|\mathcal{T}_{BH}|^2$, squared DVCS amplitude $|\mathcal{T}_{DVCS}|^2$, and interference term $I$ read

$$|\mathcal{T}_{BH}|^2 = \frac{e^6}{x_B y^2 (1 + \epsilon^2)^2 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^{BH} + \sum_{n=1}^{2} c_n^{BH} \cos(n\phi) + s_1^{BH} \sin(\phi) \right\},$$

$$|\mathcal{T}_{DVCS}|^2 = \frac{e^6}{y^2 Q^2} \left\{ c_0^{DVCS} + \sum_{n=1}^{2} [c_n^{DVCS} \cos(n\phi) + s_n^{DVCS} \sin(n\phi)] \right\},$$

$$I = \frac{\pm \epsilon^6}{x_B y^3 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^I + \sum_{n=1}^{3} [c_n^I \cos(n\phi) + s_n^I \sin(n\phi)] \right\}.$$

Beam-spin asymmetry ($A_{LU}(\phi)$) : (+/- beam helicity)

$$A_{LU} = \frac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

$$A_{LU}^{\sin\phi} \propto \text{Im}(F_1 \mathcal{H} - \frac{t}{4M^2} F_2 \mathcal{E} + \frac{x_B}{2} (F_1 + F_2) \tilde{\mathcal{H}})$$
Proton Tomography via DVCS

- Local fit of all the JLab data
  - Jlab Hall A (σ, Δσ)
  - CLAS (σ, Δσ, ITSA, DSA)

- Enough coverage to explore the t and $x_B (\rightarrow \xi)$ dependence of $H_{lm}$.

- Obtaining the tomography of the proton
  - Represented is the mean square charge radius of the proton for slices of x.

- The nucleon size is shrinking with x.

[R. Dupré et al. Phys.Rev. D95 (2017) no.1, 011501]
Theoretical Predictions of the EMC in $^4$He

**On-shell calculations:**

1. **Impulse approximation**
   \[
   \text{GPD}^{^4\text{He}}(x, \xi, t) = \sum (\text{free p and n GPDs}) \ast \text{F}_{^4\text{He}}(t)
   \]

2. **Medium modifications:**
   \[
   H^q/p^* (x, \xi, t, Q^2) = \frac{F^p^* (t)}{F^p (t)} H^q (x, \xi, t, Q^2),
   \]

**Off-shell calculations:**

- $t = 0.0 \text{ GeV}^2$
- $t = 0.095 \text{ GeV}^2$
- $t = 0.329 \text{ GeV}^2$

Nucleus = **bound nucleons**
+ **nuclear binding effects**

\[
H^A (x, \xi, t) = \sum \int \frac{d^2p_1 dY}{2(2\pi)^3} \frac{1}{A-Y} A^p (P^2, P^2)
\]

\[
\times \sqrt{\frac{Y-\xi}{Y}} \left[ H_{\text{OFF}}^{N} \left( \frac{x}{Y}, \frac{\xi}{Y}, P^2, t \right) - \frac{1}{41-\xi/Y} E_{\text{OFF}}^{N} \left( \frac{x}{Y}, \frac{\xi}{Y}, P^2, t \right) \right]
\]

\[
e(\text{He}, e', \gamma \text{pX})
\]

---

[V. Guzey, A. W. Thomas, K. Tsushima, PRC 79 (2009) 055205]

[S. Liuti, K. Taneja, PRC 72 (2005) 034902]
CLAS - E08-024 Experimental Setup

\[ e^{-} {}^{4}\text{He} \rightarrow e^{-} (^{4}\text{He}/pX) \gamma \]

Beam polarization \( (P_B) = 83\% \)

- **CLAS:**
  → Superconducting Torus magnet.
  → 6 independent sectors:
    → DCs track charged particles.
    → CCs separate \( e^-/\pi^- \).
    → TOF Counters identify hadrons.
    → ECs detect \( \gamma, e^- \) and \( n \) \([8^\circ,45^\circ]\).

- **IC:** Improves \( \gamma \) detection acceptance \([4^\circ,14^\circ]\).

- **RTPC:** Detects low energy nuclear recoils.

- **Solenoid:**
  - Shields the detectors from Møller electrons.
  - Enables tracking in the RTPC.

- **Target:** \(^4\text{He} \) gas \( @ \) 6 atm, 293 K
Incoherent DVCS Selection & Asymmetries

1. We select events which have:
   ◊ Events with:
     - Only one good electron in CLAS
     - At least one high-energy photon ($E_\gamma > 2$ GeV)
     - Only one proton in CLAS.
   ◊ $Q^2 > 1$ GeV$^2$ and $W > 2$ GeV/c$^2$
   ◊ Exclusivity cuts (3 sigmas).

2. $\pi^0$ background subtraction (contaminations $\sim 8 - 11\%$)

3. Beam-spin asymmetry:

   $$ A_{LU} = \frac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-} $$

   $$ A_{LU} \propto \alpha(\phi)\{F_1 H + \xi(F_1 + F_2) \tilde{H} + \kappa F_2 E\} $$

   - 2D bins due to limited statistics
   - Fits in the form: $\frac{\alpha \sin(\phi)}{1 + \beta \cos(\phi)}$

[S. Liuti and K. Taneja. PRC 72 (2005) 032201]
Generalized EMC Ratio

◊ We comparing our measured incoherent asymmetries to the asymmetries measured in CLAS DVCS experiment on free proton

→ Incoherent/proton is suppressed compared to both the PWIA and the nuclear spectral function calculations.

[S. Liuti and K. Taneja. PRC 72 (2005) 032201]
[V. Guezy et al., PRC 78 (2008) 025211]
CLAS12-ALERT Program

- **CLAS–E08-024 experiment:**
  - 2D binning due to limited statistics
  - Limited phase-space.

- **CLAS12 experimental apparatus:**
  - High luminosity & large acceptance.
  - Measurements of deeply virtual exclusive, semi-inclusive, and inclusive processes.

- **We proposed to measure with CLAS12:**
  - Partonic Structure of Light Nuclei.
  - Tagged EMC Measurements on Light Nuclei.
  - Spectator-Tagged DVCS Off Light Nuclei.
  - Other Physics Opportunities.

- **The momentum threshold of the CLAS12 inner tracker is too high to be used for our measurements.**

- **Proposed experimental setup:**
  - CLAS12 forward detectors.
  - A Low Energy Recoil Tracker (ALERT) in place of CLAS12 Central detector (SVT & MVT).

- **CLAS12-ALERT setup will allow higher statistics and wider kinematical coverage.**
**Partonic Structure of Light Nuclei (PR12-17-012)**

- Map the fundamental structure of nuclei within the GPD framework
- Compare the quark and gluon 3D structure of the Helium nucleus

### e $^4$He$\rightarrow$e$'$ $^4$He$'$γ:
- Fully model independent extraction of $H_A$ CFF from fitting the BSA.
- Fourier transform of $\text{Im}(H_A)$ at $\xi=0$ gives probability density of quarks as function of $x$ and impact parameter.

$$\rho(x, 0, b_\perp) = \int_0^\infty J_0(b\sqrt{t}) H_A(x, 0, t) \frac{\sqrt{t}}{2\pi} d\sqrt{t}$$

### e $^4$He$\rightarrow$e$'$ $^4$He$'$φ:
- Detect recoil $^4$He, e, and K$^+$ (missing K$^-$)
- The longitudinal cross-section will be extracted from the angular distribution of the kaon decay in the phi helicity frame.
- Gluon density extraction:

$$\rho_g(x, 0, b_\perp) \rightarrow \int_0^\infty J_0(b\sqrt{t}) \frac{d\sigma_L}{dt} \frac{\sqrt{t}}{2\pi} d\sqrt{t}$$

**Requested PAC days:** 20 days at $3\times 10^{34}$ cm$^{-2}$s$^{-1}$ + 10 days at $6\times 10^{34}$ cm$^{-2}$s$^{-1}$ + (5 Com.)
Tagged EMC Measurements (PR12-17-012A)

DIS, with tagged spectator, provides access to new variables and explore links between EMC effect and intranuclear dynamics

- **Tagged DIS provides test for:**
  - FSI models over wide momentum and angle ranges.
  - EMC effect models: $x/Q^2$ scaling.
  - $d/u$ ratio changes in nuclear medium.

- **Comparing D to $^4$He is particularly interesting:**
  - It conserves the nucleus isospin symmetry.
  - $^4$He is a light nuclei with a sizable EMC effect.
  - The two rescaling effects are cleanly separated by the comparison between the two nuclei.
  - They complement each other in spectator momentum coverage.

- **40 (+5) PAC days**
  - 20 on $^4$He ($3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$).
  - 20 on D $3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.)
Spectator-Tagged DVCS On Light Nuclei (PR12-17-012B)

- Probe connection between partonic and nucleonic interpretations via DVCS
- Partonic interpretation and in-medium hadron tomography of nucleons
- Study of Off-Forward EMC effect in incoherent DVCS

♦ **Bound-p DVCS:**
  - Fully detected ep$^3$H final state, provides unique opportunity to study FSI, test PWIA, identify kinematics with small/large FSI.

♦ **Bound neutron in $^4$He/quasi-free in $^2$H:**
  - e$^3$He(n) / ep(n) final states (p detection down to ~70 MeV, $^3$He to ~120 MeV).
  - Six-dimensional binning ($Q^2, x_B, t, \phi, p_s, \theta_s$).

♦ **No additional PAC days**
The three main proposals of the ALERT run group is only a fraction of the physics that can be achieved by successfully analyzing the ALERT run group data.

- **π⁰ production off ⁴He**
  - Coherent and incoherent production.
  - Measure BSA, leading to chiral-odd CFFs.
  - Also as a DVCS background.

- **Coherent DVCS off D**
  - Access to new GPDs, H₃, with relationships to deuteron charge form factors.

- **Coherent DVMP off D**
  - π⁰, φ, ω and ρ mesons.

- **Semi-inclusive reaction p(e,eʾp)X**
  - Study the π⁰ cloud of the proton.

- **D(e, eʾppₛ )X**
  - Study the π⁻ cloud of the neutron.

- **More Physics:**
  - Helium GPDs beyond the DVCS at leading order and leading twist.
  - Tagged nuclear form factors measurements.
  - The role of Δs in short-range correlations.
  - The role of the final state interaction in hadronization and medium modified fragmentation functions.
  - The medium modification of the transverse momentum dependent parton distributions.
  - ... and more
Several decades of elastic and DIS experiments on hadrons have provided one-dimensional views of hadrons’ structure.

We are now exploring the 3D structure of nucleons within the GPD framework
→ Fifteen years of successful experiments at JLab.
→ Accumulated a wide array of proton data.
→ The first tomography was extracted.

The first exclusive measurement of DVCS off $^4$He:
→ The bound proton has shown a different trend in the asymmetries compared to the free one indicating the medium modifications of the GPDs and opening up new opportunities to study the EMC effect.
→ We extracted EMC ratios and compared them to theoretical predictions.

CLAS12-ALERT will provide wider kinematical coverage and better statistics that will:
→ Allow performing $^4$He tomography in terms of quarks and gluons.
→ Allow comparing the gluon radius to the charge radius.
→ Use tagging methods to study EMC effect via DIS measurements.
→ Use Tagged-DVCS techniques to study in-medium nucleon interpretations.
→ Reinforce EIC physics program by proving their usefulness in the valence region.
Coherent $A_{LU}$ and CFFs

$A_{LU}^{4He}(90^\circ)$

$Q^2 [GeV^2]$ $x_B$ $-t [GeV^2]$

$A_{LU}$

Same $A_{LU}$ sign as HERMES.

Asymmetries are in agreement with the available models.

The first ever experimental extraction of the real and the imaginary parts of the $^4$He CFF. Compatible with the calculations.

More precise extraction of Im($H_A$).

CLAS-EG6: M. Hattawy et al., Phys. Rev. Lett. 119, 202004 (2017)
Convolution-Dual: V. Guzey, PRC 78, 025211 (2008).
Convolution-VGG: M. Guidal, M. V. Polyakov, A. V. Radyushkin and M. Vanderhaeghen, PRD 72, 054013 (2005).
Off-shell model: J. O. Gonzalez-Hernandez, S. Liuti, G. R. Goldstein and K. Kathuria, PRC 88, no. 6, 065206 (2013)
1. We select events which have:

◊ Events with:
  - Only one good electron in CLAS
  - At least one high-energy photon \((E_\gamma > 2 \text{ GeV})\)
  - Only one proton in CLAS.

◊ \(Q^2 > 1 \text{ GeV}^2\)

◊ Exclusivity cuts (3 sigmas).

- In Black, incoherent events before all exclusivity cuts.
- In shaded gray, incoherent DVCS events which pass all the other exclusivity cuts except the one on the quantity itself.

2. \(\pi^0\) background subtraction based on data and simulation (contaminations ~ 8 - 11%)
Incoherent Beam-Spin Asymmetry Fitting

\[ A_{LU} = \frac{d^4 \sigma^+ - d^4 \sigma^-}{d^4 \sigma^+ + d^4 \sigma^-} = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-} \]

\[ A_{LU} \propto \alpha(\phi)\{F_1 H + \xi (F_1 + F_2) \bar{H} + \kappa F_2 E\} \]

- 2D bins due to limited statistics
- Systematic uncertainties (~10%) dominated by exclusivity cuts (~6%) and large phi binning (~7%)
- Fits in the form: \[ \frac{\alpha \sin(\phi)}{1 + \beta \cos(\phi)} \]

**bins in t’:** smeared due to radiative effects
**bins in t:** smeared due to Fermi motion
Fermi Motion Effect on the Incoherent Channel

- Typically $t = t'$
- $t$ suffers from Fermi motion
- $t'$ suffers from radiative effects

Evaluate the size radiative effects from free proton DVCS data (E1-DVCS1&2)

Corrections for radiative effects
Fermi Motion Effect on the Incoherent Channel

- Induced systematic uncertainties based on free proton data

- EG6 incoherent DVCS $A_{LU} @ \varphi = 90^\circ$
Free Proton $A_{LU}$ Fitting

$(Q^2 = 1.16, \, x_B = 0.13)$

$(Q^2 = 1.36, \, x_B = 0.17)$

$(Q^2 = 1.56, \, x_B = 0.16)$

$(Q^2 = 1.70, \, x_B = 0.25)$

$(Q^2 = 1.95, \, x_B = 0.25)$

$(Q^2 = 2.20, \, x_B = 0.25)$

$(Q^2 = 2.01, \, x_B = 0.34)$

$(Q^2 = 2.33, \, x_B = 0.35)$

$(Q^2 = 2.59, \, x_B = 0.35)$
**ALERT Detector**

- **Cylindrical target:**
  - 30 cm long
  - 6 mm outer radius.
  - Target at 3 atm pressure.
  - 25μm target wall (Kapton).

- **A clear space filled with helium**
  to reduce secondary scattering from the high rate Moller electrons ($R_{\text{out}} = 30$ mm).

- **Hyperbolic drift chamber (32 mm $< R < 85$ mm):**
  - Will detect the trajectory of the low energy nuclear recoils.
  - 8 circular layers of 2mm hexagonal cells.
  - 10° stereo-angle to give z-resolution.
  - Total of 2600 wires, < 600 kg tension.
  - Maximum drift time ~ 250 ns, will be included in the trigger.

- **Two rings of plastic scintillators (Total thickness of 20 mm, SIPMs directly attached):**
  - TOF (< 150 ps resolution) and deposited energy measurements.

  → **Separate protons, deuterium, tritium, alpha, $^3$He**