D-optimal $2 \times 2 \times s_3 \times s_4$ saturated factorial designs

St. A. Chatzopoulos1* and F. Kolyva-Machrea1

Abstract: In this paper, Resolution III saturated $s_1 \times s_2 \times s_3 \times s_4$, $s_4 \geq s_3 \geq s_2 \geq s_1 \geq 2$ factorial designs and specially the cases $2^2 \times (s - k) \times s$, $s - k \geq 2, k = 0, 1$ are studied, in order to obtain D-optimal plans.

Subjects: Science; Mathematics & Statistics; Statistics & Probability; Statistics; Mathematical Statistics; Statistical Computing; Statistical Theory & Methods

Keywords: D-optimal designs; saturated designs; design matrix

AMS subject classifications: Primary 62K05; 62K15; Secondary 11C20; 62J05

1. Introduction

Saturated factorial plans is a very interesting issue in theory of experimental designs, since the reduced number of observations is very useful in practice especially in screening experiments, where are used to determine which of many factors affects the measure of pertinent quality characteristics. In saturated designs the number of observation is equal to the number of parameters, so all degrees of freedom are consumed by the estimation of parameters, leaving no degrees of freedom for error variance estimation. The purpose of this paper is to give saturated resolution III designs, minimizing the generalized variance of the main effects and the general mean, that is, D-optimal designs. In recent years, there has been a considerable interest in optimal saturated main effect designs with two or three factors. Mukerjee et al. (1986) and Kraft (1990) showed all two-factor designs are equivalent with respect to D-optimality criterion. Later Mukerjee and Sinha (1990)
considered, for the two-factor case, the optimality results on almost saturated main effect designs. Pesotan and Raktoe (1988) worked also in the special case for s^2 factorials and a subclass of s^3 factorials.

Chatzopoulos and Mukerjee (1993) were the first who attempted to extend the two factor results to three factors. They consider $2 \times s_1 \times s_2 \times s_3 \geq 2$, $s_1 \geq s_2$ factorial to derive D-optimal saturated main effect designs. Later Chatzopoulos and Narasimhan (2002), using techniques from Graph Theory and Combinatorics, claimed that the upper bound of the determinant of the saturated $3 \times s_1 \times s_2$, $s_1 \geq 3$, $s_2 \geq s_3$ factorials when s_3 is odd. Chatzopoulos and Kolyva-Machera (2006) extend the results concerning D-optimal saturated main effect designs for $2 \times s_1 \times s_2 \times s_3 \geq 3$, $s_1 \geq s_2$ designs. In this paper, we study the D-optimality for saturated $s_1 \times s_2 \times s_3 \times s_4$ factorials. Moreover, we give the upper bound of the determinant for the $2^k \times (s-k) \times s$, $s-k \geq 2$, $k = 0, 1, 2$ saturated designs and the corresponding design, which attains this bound. The paper is organized as follows. Some notations and preliminaries are first presented in Section 2. Section 3 deals with the main results of this paper.

2. Notations and preliminaries

In this paper, we follow the same notations as in Chatzopoulos and Kolyva-Machera (2006) adapted for four factors. Let us consider the setup of an $s_1 \times s_2 \times s_3 \times s_4 \geq 3 \geq s_2 \geq s_1 \geq 2$ saturated factorial experiment, involving four factors F_1, F_2, F_3 and F_4 appearing at s_1, s_2, s_3 and s_4 levels, respectively, with $N = s_1 + s_2 + s_3 + s_4 - 3$ runs. For $1 \leq i \leq 4$ let the levels of F_i be denoted by r_i and coded as $0, 1, \ldots, s_i - 1$. Our interest is to find D-optimal resolution III designs. There are altogether $s_1s_2s_3s_4$ treatment combinations denoted by $r_1r_2r_3r_4$, that will hereafter be assumed to be lexicographically ordered.

Let, for $1 \leq i \leq 4$, 1 be the $s_i \times 1$ vector with each element unity, I_i the identity matrix of order s_i, \otimes denotes the Kronecker product of matrices and P_i be an $(s_i - 1) \times s_i$ matrix such that $(s_i^{-1/2}1, P_i)'$ is orthogonal (A' is the transpose of matrix A). The usual fixed effect model under the absence of interactions is $Y = W\beta + \epsilon$, where Y is the response vector of the experiment, ϵ is the vector of uncorrelated random errors with zero mean and the same variance σ^2 and β is the vector of unknown parameters, is considered. In our case $\beta = (\mu, \beta_1, \beta_2, \beta_3, \beta_4)'$, where μ is the unknown general mean and the elements of the $(s_1 - 1) \times 1$ vectors β_i are unknown contrasts representing a full set of mutually orthogonal contrasts belonging to the main effects F_i and $W = [1] \otimes 1 \otimes 1 \otimes 1_4, W_1, W_2, W_3, W_4], \text{ where } W_1 = P_4' \otimes 1_2 \otimes 1_3 \otimes 1_4, W_2 = 1_1 \otimes P_2' \otimes 1_3 \otimes 1_4, W_3 = 1_1 \otimes 1_2 \otimes P_3' \otimes 1_4$ and $W_4 = 1_1 \otimes 1_2 \otimes 1_3 \otimes P_4'$. It is easy to see that the D-optimal design does not depend on the choice of $P_i, 1 \leq i \leq 4$.

Following Mukerjee and Sinha (1990) let $X_0 = [1_1 \otimes 1_2 \otimes 1_3 \otimes 1_4, X_1, X_2, X_3, X_4], \text{ where }$ $X_1 = I_1 \otimes 1_2 \otimes 1_3 \otimes 1_4$, $X_2 = 1_1 \otimes I_2 \otimes 1_3 \otimes 1_4$, $X_3 = 1_1 \otimes 1_2 \otimes I_3 \otimes 1_4$ and $X_4 = 1_1 \otimes 1_2 \otimes 1_3 \otimes I_4$. We denote $X_i^{(1)}, i = 1, 2, 3$ the matrices obtained by deleting the first column of X_i in $1, 2, 3$. Consider the $u \times (s_1 + s_2 + s_3 + s_4 - 3)$ matrix U, which is a submatrix of X_0 given by $U = [X_1^{(1)}, X_2^{(1)}, X_3^{(1)}, X_4^{(1)}]$ which has full column rank. The u rows of matrix U like those of W_i correspond to the lexicographically ordered treatment combinations. Moreover the columns of U span those of X_0 and hence those of W_i, which also has full column rank.

Hence, one may obtain $W = UH$, where matrix H is a nonsingular matrix of order $s_1 + s_2 + s_3 + s_4 - 3$. For any design d in the class D of the saturated resolution III designs with $N = s_1 + s_2 + s_3 + s_4 - 3$ runs, the design matrix is $W_d = U_d' H$, where U_d is a square matrix of order $s_1 + s_2 + s_3 + s_4 - 3$ such that for $1 \leq j \leq s_1 + s_2 + s_3 + s_4 - 3$ if the j-th run in d is given by the treatment combination $r_1r_2r_3r_4$, then the j-th row of U_d is the row of U corresponding to the treatment combination $r_1r_2r_3r_4$. A design d is said to be D-optimal in the class D, if it maximizes the
quantity $|\text{det}(W_d'W_d)|$. Since matrix H is nonsingular a design is D-optimal if it maximizes the quantity $|\text{det}(U_d)|$, where:

$$U_d = [Z_1^{(1)}, Z_2^{(1)}, Z_3^{(1)}, Z_4].$$

(1)

The matrices $Z_i^{(1)}, 1 \leq i \leq 3$ and Z_4 are obtained from the matrices $X_i^{(1)}$ and X_i in a similar way, as U_d is obtained from U.

Definition 2.1 For $1 \leq i \leq 3$, if the i-th factor enters the experiment at level 0 then the corresponding row of the matrix $Z_i^{(1)}$ is a row vector with $s_i - 1$ elements zero. On the other hand if the i-th factor enters the experiment at level p, $1 \leq p \leq (s_i - 1)$, then the corresponding row of the matrix $Z_i^{(1)}$ equals the p-th row of the identity matrix of order $(s_i - 1)$. Similarly, if the fourth factor enters the experiment at level p, $0 \leq p \leq s_4 - 1$, then the corresponding row of the matrix Z_4 equals to the $(p + 1)$-th row of the identity matrix I_{s_4}. Let n_j^p, $0 \leq p \leq (s_j - 1)$, denote the number of these rows. It holds that

$$N = \sum_{p=0}^{(s_i-1)} n_j^p, \quad i = 1, 2, 3, 4.$$

Definition 2.2 For $1 \leq i \neq j \leq 4$ and $0 \leq p \leq (s_i - 1)$, $0 \leq q \leq (s_j - 1)$, let n_j^{pq} denote the number of runs where the i-th factor appears at level p and the j-th factor appears at level q. It holds that

$$n_j^p = \sum_{q=0}^{(s_j-1)} n_j^{pq}, \quad \text{for } j = 1, 2, 3, 4, \quad j \neq i,$$

$$n_i^q = \sum_{p=0}^{(s_i-1)} n_i^{pq}, \quad \text{for } i = 1, 2, 3, 4, \quad i \neq j,$$

$$N = \sum_{p=0}^{(s_i-1)} \sum_{q=0}^{(s_q-1)} n_j^{pq}, \quad \text{for } 1 \leq i \neq j \leq 4.$$

Definition 2.3 For $1 \leq i \neq j \neq k \leq 4$ and $0 \leq p \leq (s_i - 1)$, $0 \leq q \leq (s_j - 1)$, $0 \leq r \leq (s_k - 1)$, let n_j^{pqr} denote the number of runs where the i-th factor appears at level p, the j-th factor appears at level q and the k-th factor appears at level r. It holds that

$$n_j^{pq} = \sum_{r=0}^{(s_r-1)} n_j^{pqr}, \quad \text{for } k = 1, 2, 3, 4, \quad i \neq k \neq j \neq i,$$

$$n_k^{pq} = \sum_{q=0}^{(s_q-1)} n_k^{pqr}, \quad \text{for } j = 1, 2, 3, 4, \quad k \neq j \neq i \neq k,$$

$$n_k^{pq} = \sum_{p=0}^{(s_p-1)} n_k^{pqr}, \quad \text{for } i = 1, 2, 3, 4, \quad j \neq i \neq k \neq j,$$

$$N = \sum_{p=0}^{(s_i-1)} \sum_{q=0}^{(s_q-1)} \sum_{r=0}^{(s_r-1)} n_j^{pqr}, \quad \text{for } 1 \leq i \neq j \neq k \neq i \leq 4.$$

Remark 2.1 It holds that $n_j^p \geq 1, 1 \leq i \leq 4, 0 \leq p \leq (s_i - 1)$, since the design matrix of a saturated design has full column rank.

Remark 2.2 By the choice of the labels for the levels one can always assume, without loss of generality (w.l.g), that $n_j^p = \max(n_j^p, 0 \leq p \leq s_i - 1, 1 \leq i \leq 4)$.

The following lemmas are crucial for the main results of our paper and can be founded in Chatterjee and Mukerjee (1993) and Chatzopoulos and Kolyva-Machera (2006).
Lemma 2.1 Consider the saturated $s_1 \times s_2$ design d, $s_2 \geq s_1 \geq 2$, with $N = s_1 + s_2 - 1$ runs and corresponding matrix X_d. It holds that

$$|\text{det}(X_d)| = 1.$$ \hfill (2)

Proof See Chatterjee and Mukerjee (1993).

Lemma 2.2 Consider the saturated $2 \times s_2 \times s_3$ designs $d^{(3)}$, $s_3 \geq s_2 \geq 2$, with $N = s_2 + s_3$ runs and corresponding matrix $U_d^{(3)}$. It holds that

$$|\text{det}(U_d^{(3)})| \leq s_2.$$ \hfill (3)

Proof See Chatterjee and Mukerjee (1993).

Lemma 2.3 Consider the saturated $s_1 \times s_2 \times s_3 \times \ldots \times s_k$ design d. If $s_1 \geq 2$ and $n_1^p = 1$ for some $0 \leq p \leq s_1 - 1$ then $|\text{det}(U_d)| = |\text{det}(U_d')|$, where d' is a saturated $s_1 \times s_2 \times \ldots \times (s_1 - 1) \times \ldots \times s_k$ design.

Proof See Chatzopoulos and Kolyva-Machera (2006), lemma 2.1.

Corollary 2.1 Consider the saturated $s_1 \times s_2 \times s_3 \times s_4$ design d with $N = s_1 + s_2 + s_3 + s_4 - 3$ runs. If $w = s_4 - (s_1 + s_2 + s_3 - 3) \neq 0$, then using the pigeonhole principle we can easily verify that $n_w^k = 1$, for some $0 \leq p \leq s_1 - 1$ at least w times. Applying w times, lemma 2.3, we get $|\text{det}(U_d)| = |\text{det}(U_d')|$, where d' is a saturated $s_1 \times s_2 \times s_3 \times (s_1 + s_2 + s_3 - 3)$ design.

Remark 2.3 For $s_1 = s_2 = 2$ we have to study only the cases where $0 \leq s_1 - s_3 \leq 1$, that is the cases $2^2 \times s^2$, $s \geq 2$ and $2^3 \times (s - 1) \times s$, $s \geq 3$.

Lemma 2.4 Let d be a saturated $s_1 \times s_2 \times s_3 \times s_4 \times s_5$ design. If $|\text{det}(U_d)| = \prod_{i=1}^{p-1} n_i^p$ and $n_0^0 \geq n_1^1 \geq \ldots \geq n_i^{(s_1-1)} \geq n_i^0 - 1$, $i = 1, 2, 3$, then d is D-optimal.

Proof See Chatzopoulos and Kolyva-Machera (2006), theorem 2.1.

3. Main results

Lemma 3.1 The determinant of the matrix $U_d = (Z_1^{(1)}, Z_2^{(1)}, Z_3^{(1)}, Z_4)$ given in (1), which corresponds to a $s_1 \times s_2 \times s_3 \times s_4 \times s_5 \geq s_2 \geq s_3 \geq s_4 \geq s_5 \geq 2$ saturated factorial design d is left invariant by interchanging the levels of the factors.

Proof For the fourth factor, we can interchange the columns which correspond to two levels and the proof is obvious. Similarly, for the nonzero levels of the first, second and the third factor, interchanging the columns p and q, the levels $(p-1)$ and $(q-1)$ are interchanged. Moreover, for the first (or second or third) factor, adding all the columns of matrix $Z_1^{(1)}$ (or $Z_2^{(1)}$ or $Z_3^{(1)}$) to the column which corresponds to level p, subtracting the sum of all columns of matrix Z_4 and multiplying the resulting column by (-1) the levels 0 and p are interchanged.

Lemma 3.2 Let d be a $s_1 \times s_2 \times s_3 \times s_4 \times s_5 \geq s_2 \geq s_3 \geq s_4 \geq s_5 \geq 2$ saturated factorial design with corresponding matrix $U_d = (Z_1^{(1)}, Z_2^{(1)}, Z_3^{(1)}, Z_4)$ as given in (1). Let $n_{w1}^{i,j,k} = w > 1$ for some $1 \leq i, j, k \leq 4$ and some $0 \leq p < s_1 - 1$, $0 \leq q < s_2 - 1$, $0 \leq r < s_3 - 1$. Then

$$|\text{det}(U_d)| = \begin{cases} |\text{det}(U_d^{(123)})| & \text{for } (i,j,k) = (1,2,3), \\ |\text{det}(U_d^{(124)})| & \text{for } (i,j,k) = (1,2,4), \\ |\text{det}(U_d^{(134)})| & \text{for } (i,j,k) = (1,3,4), \\ |\text{det}(U_d^{(234)})| & \text{for } (i,j,k) = (2,3,4), \end{cases}$$
where $d^{123}_1 \times d^{126}_1, d^{134}_1 \times d^{234}_1$ is $s_1 \times s_1 \times s_1 \times (s_1 - w + 1)$, $s_1 \times s_1 \times s_1 \times (s_1 - w + 1) \times s_1 \times s_1 \times w$, $s_1 \times (s_1 - w + 1) \times s_1 \times s_1 \times s_1 \times s_1 \times w$, saturated factorial design, respectively.

Proof Let us assume that $n_{123}^{0p} = w > 1, 0 < p < s_1 - 1, 0 < q < s_2 - 1, 0 < r < s_3 - 1$, which means that the saturated design $s_1 \times s_1 \times s_1 \times s_1 \times s_1 \times s_1 \times s_1$ contains the runs $pqrx, pqrx, \ldots, pqrx$, By subtracting the row corresponding to run $pqrx$, from the other rows which correspond to runs $pqrx, \ldots, pqrx$, adding the columns corresponding to levels x_1, \ldots, x_w to the column corresponding to level x_i and expanding det(U_d) along the $(w - 1)$ rows which contain levels x_1, \ldots, x_w we get $|\det(U_d)| = |\det(U_d_{\ell})|$, where d^{123}_1 is $s_1 \times s_1 \times s_1 \times (s_4 - w + 1)$ saturated design. The proof is similar for $n_{124}^{0p} = w, n_{134}^{0p} = w$ and $n_{234}^{0p} = w$. □

3.1. D-optimality of $2^2 \times (s - 1) \times s$ saturated designs

Lemma 3.3 Consider the saturated $2^2 \times (s - 1) \times s$ design d with $N = 2s$ runs and corresponding matrix U_d as given in (1). For the D-optimal design it holds that:

$$n_i^0 = s_i, \quad i = 1, 2, \quad p = 0, 1.$$
$$n_i^0 = n_i^1 = 3, \quad n_i^p = 2, \quad 2 \leq p \leq (s - 2).$$
$$n_i^p = 2, \quad 0 \leq p \leq (s - 1).$$

Proof Expanding $\det(U_d)$ along its first column, we have that $|\det(U_d)| = \sum_{i=1}^{n_i^1} |\det(U_{d^{(1)})}|$, where $d^{(1)}_i = i = 1, 2, \ldots , n_i^1$ are $2 \times (s - 1) \times s$ saturated designs with corresponding matrices $U_d^{(1)}$. Let $|\det(U_d)| = \max (|\det(U_{d^{(1)})})$, $i = 1, 2, \ldots, n_i^1$. Then

$$|\det(U_d)| \leq n_i^1 |\det(U_{d^{(1)})}).$$

(4)

From lemma 3.1, by interchanging the levels 0 and 1 of the first factor, it also holds

$$|\det(U_d)| \leq n_i^1 |\det(U_{d^{(1)})}).$$

(5)

From (4)-(5), we get $|\det(U_d)| \leq \frac{n_i^1 n_i^1}{n_i^1} |\det(U_{d^{(1)})}| = s|\det(U_{d^{(1)})}|$. According to lemma 2.4, in order to find the D-optimal design d', it must hold that $n_i^0 \geq n_i^1 \ldots \geq n_i^{(1)} \geq n_i^{(1)} - 1, i = 2, 3, 4$, which implies $n_i^0 = n_i^1 = s, n_i^0 = n_i^1 = 3, n_i^p = 2, 2 \leq p \leq (s - 2), n_i^p = 2, 0 \leq p \leq (s - 1)$. Expanding $\det(U_d)$ along its second column, and following the same procedure we get $n_i^0 = n_i^1 = s$. □

Lemma 3.4 Consider the saturated $2^2 \times (s - 1) \times s$ design d with $N = 2s$ runs and corresponding matrix U_d as given in (1). For the D-optimal design it holds that:

$$n_i^{0q} = n_i^{1q} = 1, \quad i = 1, 2, \quad 0 \leq q \leq (s - 1).$$

Proof Suppose, w.l.o.g, that $n_i^{0q} = 2$ for some $0 \leq p \leq (s - 1)$. Then from the pigeonhole principle, we get $n_i^{0q} = 2$ for some $q, 0 \leq p \neq q \leq (s - 1)$. From lemmas 3.1 and 3.2, we may assume that in a design d the following treatment combinations exist: $000_c, 01_c, 0_c, 11_c, 10_c, 1_c, 00_c, 10_c$. Consider now matrix U_p, which corresponds to the design d, as given in (1). Subtract the row corresponding to the treatment combination 000_c from the row corresponding to the treatment combination 01_c. The row corresponding to the treatment combination 01_c is now $r = (0, 1, 0, \ldots, 0, 1, 0, \ldots, 0, 0, \ldots, 0)$, where the second ace is at the $(j + 2)$-th column of r, that is at the j-th column of $Z^{(1)}$. Then, subtract the row r from the row corresponding to the treatment combination 11_c, which corresponds to r_c to the column of $Z^{(1)}$ which corresponds to r_c. Consequently, treatment combination 010_c is now in the position of treatment combination 110_c. Add the row corresponding to the treatment combination 000_c to row r. The resulting row corresponds to the treatment combination 01_c. Hence, the design d contains the treatment combinations $000_c, 01_c, 0_c, 11_c, 10_c, 1_c, 00_c, 10_c$, which implies $n_i^{0q} = 2$. Then, proceeding as in lemma 3.2, we have that $|\det(U_d)| = |\det(U_{d^{(1)})}|$.

Page 5 of 13
where \(d_2 \) is \(2 \times 2 \times (s - 2) \times (s - 1) \) saturated design.

\[\square \]

Corollary 3.1 For the D-optimal saturated \(2^2 \times (s - 1) \times s \) design \(d \) with \(N = 2s \) runs, if there exists the treatment combination \(00r_3r_4 \) \((01r_3r_4) \) then there exists the treatment combination \(11r_3r_4 \) \((10r_3r_4) \).

Lemma 3.5 Consider the saturated \(2^2 \times (s - 1) \times s \) design \(d \) with \(N = 2s \) runs and corresponding matrix \(U_d \) as given in (1). For the D-optimal design it holds that:

\[n_{pq}^i = \frac{s}{2}, \quad 0 \leq p \leq 1, \quad 2 \leq q \leq (s - 2). \]

Proof The proof is similar as in lemma 3.4. \[\square \]

Corollary 3.2 Let us now consider the saturated \(2^2 \times (s - 1) \times s \) design \(d \) with \(N = 2s \) runs. Then, from lemma 3.4 and using the pigeonhole principle, we get:

\[n_{pq}^i = 1, \quad 0 \leq p, q \leq (s - 1), \]
\[n_{pq}^i = 2, \quad 1 \leq i \leq 2, \quad 0 \leq p \leq 1, \quad 0 \leq q \leq 1.\]

Corollary 3.3 For the D-optimal saturated \(2^2 \times (s - 1) \times s \) design \(d \) with \(N = 2s \) runs it holds that:

\[n_{pq}^i = \frac{s}{2} \text{ if } s \equiv 0 \text{ mod } 2, \quad 0 \leq p, q \leq 1, \]
\[n_{pq}^i = n_{iq}^1 = \frac{s+1}{2} \quad \text{and} \quad n_{pq}^i = n_{ip}^1 = \frac{s-1}{2} \quad \text{or} \quad n_{ip}^1 = \frac{s+3}{2} \quad \text{if } s \equiv 1 \text{ mod } 2. \]

Lemma 3.6 Consider the saturated \(2^2 \times (s - 1) \times s \) design \(d \) with \(N = 2s \) runs and corresponding matrix \(U_d \) as given in (1). For the D-optimal design it holds that:

\[n_{123} = n_{120} = n_{123} = n_{123} = n_{123} = 1. \]

Proof From lemma 3.3, we have \(n_{0}^i = 3, p = 0, 1 \) and from lemma 3.2 and corollary 3.2 the D-optimal design includes one of the following sets of treatment combinations: \((00r_3, 01r_3, 11r_3) \) or \((00r_4, 01r_4, 10r_4) \) or \((00r_4, 10r_4, 11r_4) \) or \((11r_4, 01r_4, 10r_4) \). Applying lemma 3.1, we can always choose, w.l.g. the treatment combination \(000r_3, 010r_4, 110r_4 \). This choice, using pigeonhole principle, implies the existence of the treatment combinations \(001r_3, 111r_4, 101r_4 \) and the proof of (6) is obvious. \[\square \]

Theorem 3.1 Consider the saturated \(2^2 \times (s - 1) \times s \) design \(d \) with \(N = 2s \) runs and corresponding matrix \(U_d \) as given in (1). It holds that:

\[|\det(U_d)| \leq \begin{cases} \frac{s^2}{2} & \text{if } s \equiv 0 \text{ mod } 2, \\ \frac{s^2 + 1}{2} & \text{if } s \equiv 1 \text{ mod } 2. \end{cases} \]

Proof Let \(u = n_{12}^0 = n_{12}^1 \). So, from corollary 3.3, we have \(u = s \) if \(s \equiv 0 \text{ mod } 2 \) or \(u = (s + 1) \) \(s \equiv 1 \text{ mod } 2. \) Moreover, from lemmas 3.1-3.6 and corollaries 3.1-3.2, w.l.g., the D-optimal saturated design \(2^2 \times (s - 1) \times s \) can be written as:
Let \(\mathbf{u} \) be a \(1 \times k \) vector with all elements equal to zero, \(\mathbf{I}_k \) be the identity matrix of order \(k \). For \(m < k \), it can be easily seen that:

\[
\mathbf{I}_k = \begin{pmatrix}
\mathbf{e}_1 & \mathbf{0}_{1 \times (k-m)} \\
\mathbf{e}_2 & \mathbf{0}_{1 \times (k-m)} \\
\vdots & \vdots \\
\mathbf{e}_m & \mathbf{0}_{1 \times (k-m)} \\
\mathbf{0}_{1 \times m} & \mathbf{e}_{k-m} \\
\end{pmatrix} = \begin{pmatrix}
\mathbf{e}_1 & \mathbf{0}_{1 \times (k-m)} \\
\vdots & \vdots \\
\mathbf{e}_m & \mathbf{0}_{1 \times (k-m)} \\
\mathbf{0}_{1 \times m} & \mathbf{e}_{k-m} \\
\end{pmatrix}.
\]

Matrix \(\mathbf{U}_d \) as given in (1), can be written as:

\[
\mathbf{U}_d = \begin{pmatrix}
0 & 0 & \mathbf{0}_{1 \times (s-2)} & \mathbf{e}_{1s} \\
0 & 0 & \mathbf{e}_{1(s-2)} & \mathbf{e}_{2s} \\
\vdots & \vdots & \vdots & \vdots \\
0 & \mathbf{e}_{(u-1)(s-2)} & \mathbf{e}_{us} \\
1 & 1 & \mathbf{0}_{1 \times (s-2)} & \mathbf{e}_{2s} \\
1 & 1 & \mathbf{e}_{1(s-2)} & \mathbf{e}_{us} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \mathbf{e}_{(u-1)(s-2)} & \mathbf{e}_{1s} \\
0 & 0 & \mathbf{0}_{1 \times (s-2)} & \mathbf{e}_{(u+1)s} \\
0 & 1 & \mathbf{e}_{u(s-2)} & \mathbf{e}_{(u+2)s} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & \mathbf{e}_{(s-2)(s-2)} & \mathbf{e}_{ss} \\
1 & 0 & \mathbf{e}_{1(s-2)} & \mathbf{e}_{(u+2)s} \\
1 & 0 & \mathbf{e}_{u(s-2)} & \mathbf{e}_{ss} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 0 & \mathbf{e}_{(s-2)(s-2)} & \mathbf{e}_{(u+1)s} \\
\end{pmatrix}.
\]
Using relation (8), and after permutation of columns matrix U_d can be written as:

$$
U_d = \begin{pmatrix}
\begin{array}{ccc}
0_{1 \times (u-1)} & e_{1u} & 0 & 0 & 0_{1 \times (s-u-1)} & 0_{1 \times (s-u)} \\
0_{1 \times (u-1)} & e_{2u} & 0 & 0 & 0_{1 \times (s-u-1)} & 0_{1 \times (s-u)} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0_{1 \times (u-1)} & e_{uu} & 0 & 0 & 0_{1 \times (s-u-1)} & 0_{1 \times (s-u)} \\
\end{array}
\end{pmatrix}

Now subtract the $(2u)$-th column from the $(2u+1)$-th column and add the last $s-u$ columns to the $(2u+1)$-th column. Matrix U_d as given in (9), can be written as:

$$
U_d = \begin{pmatrix}
U_{d1} & 0_{2u \times (s-u)} \\
A & U_2
\end{pmatrix}

Matrix U_{d1} is the design matrix of the saturated $u \times u \times 2$ design d_1 with $N_1 = 2u$ runs. Matrix U_2 is not design matrix as its first column is $(2, \ldots, 2, 0, \ldots, 0)^T$, but $|\det(U_2)| = 2|\det(U_{d2})|$, where matrix U_{d2} is the design matrix of the saturated $2 \times (s-u) \times (s-u)$ design d_2 with $N_2 = 2(s-u)$ runs. Hence, $|\det(U_d)| = |\det(U_{d1})| |\det(U_2)| |\det(U_{d2})|$. From (3), we get $|\det(U_d)| \leq 2 \cdot u \cdot (s-u)$. Recalling that $u = s/2$ if $s \equiv 0 \text{ mod } 2$, or $u = (s+1)/2$ if $s \equiv 1 \text{ mod } 2$, we get that (7) holds.

Theorem 3.2 Let $u = (s_3+1)/2$ if $s \equiv 1 \text{ mod } 2$, or $u = s_3/2 + 1$ if $s \equiv 0 \text{ mod } 2$. The saturated $2^2 \times s_3 \times s_4$, $s_4 > s_3 \geq 2$ design d' with the following $N = s_3 + s_4 + 1$ treatment combinations $00i / (0 \leq i \leq u-1)$, $11(i+1)i' (0 \leq i \leq u-2)$, $10i' / (u \leq i \leq s_3-1)$, $010s_{p}$, $01i' / (u \leq i \leq s_3-1)$, $01s_3-1i' / (s_3+1 \leq i \leq s_4-1)$ is a D-optimal design in the class of all $2^2 \times s_3 \times s_4$, $s_4 > s_3 \geq 2$ saturated designs.

Proof The proof is obvious from lemma 2.3, lemmas 3.1-3.6 and theorem 3.1.

3.2. D-optimality of $2^2 \times s_2$ saturated designs

Lemma 3.7 Consider the saturated $2^2 \times s_2$ design d with $N = 2s + 1$ runs and corresponding matrix U_d as given in (1). For the D-optimal design, it holds that:

$$
n^0_0 = s + 1 \quad \text{and} \quad n^0_i = s, \quad \text{or} \quad n^1_i = s \quad \text{and} \quad n^1_i = s + 1, \quad i = 1,2.
$$

$$
n^0_0 = 3, \quad n^0_i = 2, \quad i = 3,4, \quad 1 \leq p \leq s - 1.
$$

Proof The proof is similar as lemma 3.3.
Corollary 3.4 For the saturated $2^2 \times s^2$ design d with $N = 2s + 1$ runs, from lemma 3.2 and using the pigeonhole principle we get:

\[n_{ij}^{pq} \leq s + 1, \quad 0 \leq p, q \leq 1, \]
\[n_{ij}^{pq} \leq 2, \quad 0 \leq p, q \leq s - 1, \]
\[n_{ij}^{pq} \leq 2, \quad 1 \leq i \leq 2, \quad 0 \leq p \leq 1, \quad 3 \leq j \leq 4, \quad 0 \leq q \leq s - 1. \]

Lemma 3.8 Consider the saturated $2^2 \times s^2$ design d with $N = 2s + 1$ runs and corresponding matrix U_d as given in (1). For the D-optimal design, it holds that:

\[n_{ij}^{pq} = n_{ij}^{1q} = 1, \quad i = 1, 2, \quad 1 \leq q \leq (s - 1). \] (10)

\[n_{ij}^{00} = 2, \quad \text{or} \quad n_{ij}^{10} = 2, \quad i = 1, 2, \quad 3 \leq j \leq 4. \] (11)

Proof For the proof of relation (10) see lemma 3.4. The proof of relation (11) is obvious, since \(n_i^j = s + 1 \) or \(n_i^j = s + 1 \).

Corollary 3.5 For the D-optimal saturated $2^2 \times s^2$ design d with $N = 2s + 1$ runs it holds that:

\[
\begin{align*}
 n_{12}^{00} &= n_{12}^{01} = n_{12}^{10} = \frac{1}{2} \quad \text{and} \quad n_{12}^{11} = \frac{s}{2} + 1 \quad \text{or} \\
 n_{12}^{00} &= n_{12}^{01} = n_{12}^{10} = \frac{1}{2} \quad \text{and} \quad n_{12}^{11} = \frac{s}{2} + 1 \quad \text{or} \\
 n_{12}^{00} &= n_{12}^{01} = n_{12}^{10} = \frac{1}{2} \quad \text{and} \quad n_{12}^{11} = \frac{s}{2} + 1 \quad \text{or} \\
 n_{12}^{01} &= n_{12}^{10} = n_{12}^{11} = \frac{1}{2} \quad \text{if } s \equiv 0 \mod 2.
\end{align*}
\]

\[
\begin{align*}
 n_{12}^{00} &= n_{12}^{01} = n_{12}^{10} = \frac{s+1}{2} \quad \text{and} \quad n_{12}^{11} = \frac{s+1}{2} \quad \text{or} \\
 n_{12}^{00} &= n_{12}^{01} = n_{12}^{10} = \frac{s+1}{2} \quad \text{and} \quad n_{12}^{11} = \frac{s+1}{2} \quad \text{or} \\
 n_{12}^{00} &= n_{12}^{01} = n_{12}^{10} = \frac{s+1}{2} \quad \text{and} \quad n_{12}^{11} = \frac{s+1}{2} \quad \text{or} \\
 n_{12}^{01} &= n_{12}^{10} = n_{12}^{11} = \frac{s+1}{2} \quad \text{if } s \equiv 1 \mod 2.
\end{align*}
\]

Theorem 3.3 Consider the saturated $2^2 \times s^2$ design d with $N = 2s + 1$ runs and corresponding matrix U_d as given in (1). It holds that:

\[|\det(U_d)| \leq \frac{s(s+1)}{2}. \] (12)

Proof If \(s \equiv 0 \mod 2 \), then \(u = s/2 = n_{12}^{00} = n_{12}^{01} = n_{12}^{10} \) and \(n_{12}^{11} = u + 1 \), while if \(s \equiv 1 \mod 2 \), then \(u = (s - 1)/2 = n_{12}^{00} \) and \(n_{12}^{01} = n_{12}^{10} = n_{12}^{11} = u + 1 \). From lemmas 3.7-3.8 and corollaries 3.4-3.5, the D-optimal saturated $2^2 \times s^2$ design, w.l.o.g., can be written as:
By interchanging the levels 0 and \((s - 1)\) of the 4-th factor, according to lemma 3.1, the determinant of the matrix \(U_d\) is left invariant. Hence the D-optimal saturated \(2^4 \times s^2\) design, w.l.g., can be written as:

\[
\begin{pmatrix}
1 & 0 & 0 & u - 1 \\
1 & 0 & 1 & s - 1 \\
1 & 0 & 2 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 0 & u - 1 & u - 2 \\
1 & 0 & u & 0 \\
0 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & u - 1 & u - 1 \\
0 & 1 & u & s - 1 \\
1 & 1 & 0 & u \\
1 & 1 & u + 1 & u + 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & s - 2 & s - 2 \\
1 & 1 & s - 1 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & u + 1 & u \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & s - 1 & s - 2
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 & u - 1 \\
1 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 0 & u - 1 & u - 2 \\
1 & 0 & u & s - 1 \\
0 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & u - 1 & u - 1 \\
0 & 1 & u & 0 \\
1 & 1 & 0 & u \\
1 & 1 & u + 1 & u + 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & s - 1 & s - 1 \\
0 & 0 & 0 & s - 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & u + 1 & u \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & s - 1 & s - 2
\end{pmatrix}
\]

By interchanging the levels 0 and \((s - 1)\) of the 4-th factor, according to lemma 3.1, the determinant of the matrix \(U_d\) is left invariant. Hence the D-optimal saturated \(2^4 \times s^2\) design, w.l.g., can be written as:

Matrix \(U_d\) as given in (1), can be written as:
Using relation (8), and after a suitable permutation of columns of the matrix U_d, in order to make the left bottom block of the matrix U_d a zero matrix, matrix U_d can be written as:

$$
U_d = \begin{pmatrix}
1 & 0 & 0_{1 \times (s-1)} & e_{us} \\
1 & 0 & e_{1(s-1)} & e_{1s} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 0 & e_{(u-1)(s-1)} & e_{(u-1)s} \\
1 & 0 & e_{u(s-1)} & e_{ss} \\
0 & 1 & e_{1(s-1)} & e_{2s} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & e_{(u-1)(s-1)} & e_{us} \\
0 & 1 & e_{u(s-1)} & e_{1s} \\
1 & 1 & 0_{1 \times (s-1)} & e_{(u+1)s} \\
1 & 1 & e_{(u+1)(s-1)} & e_{(u+2)s} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & e_{(s-1)(s-1)} & e_{ss} \\
0 & 0 & 0_{1 \times (s-1)} & e_{ss} \\
0 & 0 & e_{(u+1)(s-1)} & e_{(u+1)s} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & e_{(s-1)(s-1)} & e_{(s-1)s}
\end{pmatrix}.
$$

Analytically, the permutation is: the first u columns of matrix U_d are the first u columns of matrix $Z^{(1)}_1$, columns $(u + 1) - 2u$ of matrix U_d are the first u columns of matrix $Z^{(1)}_u$, $(2u + 1)$-th column of matrix U_d is matrix $Z^{(1)}_1$, $(2u + 2)$-th column of matrix U_d is matrix $Z^{(1)}_u$, while the remaining $(2s + 1) - (2u + 2)$ columns of matrix U_d are the rest columns of matrices $Z^{(1)}_3$ and $Z^{(1)}_u$.
Now subtract the $(2u + 2)$-th column from the $(2u + 1)$-th column. Then, matrix U_d is a block triangular matrix. It holds that $|\det(U_d)| = |\det(U_1)|\det(U_d/b)$, where matrix U_1 is a $(2u + 1)\times (2u + 1)$ matrix, which does not correspond to any design and matrix U_d/b is the design matrix of the saturated $2 \times (s - u) \times (s - u)$ design d_2 with $N_2 = 2(s - u)$ runs. From (3), we get $|\det(U_d/b)| \leq (s - u)$. Moreover, expanding $\det(U_1)$ along its last column we get that $|\det(U_1)| \leq \sum_{j=1}^{s-1} |\det(X_j)|$, where, after some manipulations, X_j correspond to two factor saturated designs e_j, with, according to lemma 2.1, $|\det(X_j)| = 1$. Hence, $|\det(U_d)| \leq (2u + 1)(s - u)$. Recalling that $u = s/2$ if $s \equiv 0 \mod 2$, or $u = (s - 1)/2$ if $s \equiv 1 \mod 2$, we get that (11) holds.

Theorem 3.4 Let $u = s/2$ if $s \equiv 0 \mod 2$, or $u = (s - 1)/2$ if $s \equiv 1 \mod 2$. The saturated $2^d \times s^2$, $s \geq 2$ design d' with the following $N = 2s + 1$ runs $100(u - 1)$, $101(s - 1)$, $10(i + 1)i$ $(1 \leq i \leq u - 2)$, $10u0$, $01ii$ $(1 \leq i \leq u - 1)$, $01u(s - 1)$, $11u$, $11ii$ $(u + 1 \leq i \leq s - 2)$, $11i(s - 1)0$, 0000, $00(i + 1)i$ $(u \leq i \leq s - 2)$, is a D-optimal design in the class of all $2^d \times s^2$, $s \geq 2$ saturated designs.

Proof From lemma 2.3, lemmas 3.1, 3.2, 3.7, 3.8 and theorem 3.3, the proof is obvious.

Acknowledgements
We would like to thank the referees and the journal editorial team for providing valuable advice that improved the quality of the original manuscript.

Funding
The authors received no direct funding for this research.

Author details
St. A. Chatzopoulos1
E-mail: cstavros@math.auth.gr
F. Kolyva-Machrea1
E-mail: fkolyva@math.auth.gr
1 Department of Mathematics, Aristotle University, Thessaloniki 54124, Greece.

Citation information
Cite this article as: D-optimal $2 \times 2 \times s3 \times s4$ saturated factorial designs, St. A. Chatzopoulos & F. Kolyva-Machrea, Cogent Mathematics & Statistics (2018), 5: 1458554.

References
Chatterjee, K., & Mukerjee, R. (1993). D-optimal saturated main effect plans for $2 \times s_1 \times s_2 \times s_3$ factorials. Journal of Combinatorics, Information & System Sciences, 18, 116–122.

Chatterjee, K., & Narasimhan, G. (2002). Graph theoretic techniques in D-optimal design problems. Journal of Statistical Planning and Inference, 102, 377–387.

Chatzopoulos, S. A., & Kolyva-Machrea, F. (2006). Some D-optimal saturated designs for $3 \times s_1 \times s_2$ factorial designs. Journal of Statistical Planning and Inference, 136, 2820–2830.

Karagiannis, V., & Mayssiadis, C. (2005). Construction of D-optimal $s_1 \times s_2 \times s_3$, factorial designs using graph theory. Metrika, 62, 283–307.

Karagiannis, V., & Mayssiadis, C. (2008). A graphical construction of the D-optimal saturated, $3 \times s^2$ main effect, factorial design. Journal of Statistical Planning and Inference, 138, 1679–1696.

Kraft, O. (1990). Some matrix representations occurring in two factor models. In R. R. Bohodur (Ed.), Probability, statistics and design of experiments (pp. 461–470). New Delhi: Wiley Eastern.

Mukerjee, R., Chatterjee, K., & Sen, M. (1986). D-optimality of a class of saturated main effect plans and allied results. Statistics, 17(3), 349–355.

Mukerjee, R., & Sinha, B. K. (1990). Almost saturated D-optimal main effect plans and allied results. Metrika, 37, 301–307.

Pesotan, H., & Raktoe, B. L. (1988). On invariance and randomization in factorial designs with applications to D-optimal main effect designs of the symmetrical factorial. Journal of Statistical Planning and Inference, 19, 283–298.
