SORPTION PROPERTIES OF WOOD IMPREGNATED WITH THE FIRE RETARDANT BURNBLOCK
SORPCIJSKE LASTNOSTI LESA, IMPREGNIRANEGA Z OGNJEZADRŽEVALNIM SREDSTVOM BURNBLOCK

Miha Humar1*, Boštjan Lesar1, Davor Kržišnik1

Abstract: The sorption properties of wood have a characteristic influence on some of its properties, such as the mechanical properties and susceptibility to fungal decay. Moist wood is more susceptible to fungal decay, and wood is often impregnated in order to protect it from fungal decomposition, photodegradation or fire. In particular, inorganic salts affect the sorption properties of wood. For this purpose, the sorption properties of Norway spruce wood impregnated with Burnblock refractory (uptake 38 kg/m³) were investigated. The microscopic analysis confirmed the presence of crystals of this in the cell lumina of wood tissue. Sorption properties were determined using an instrument capable of dynamic vapour sorption (DVS) assessment. DVS analysis confirmed that the sorption properties of impregnated spruce wood are comparable to those of non-impregnated spruce wood. However, the higher hysteresis at higher relative humidity is probably due to the presence of crystals in the cell lumina.

Keywords: fire retardants, Burnblock, wood, sorption properties, laser confocal microscopy

1 INTRODUCTION

Wood is hygroscopic due to its specific chemical composition and large internal surface area. Therefore, the moisture content of wood oscillates depending on the varying climatic conditions. Under stable conditions, wood reaches hygroscopic equilibrium or equilibrium moisture content (EMC). The interactions between wood and water have been studied scientifically for more than a century (Engelund et al., 2013). The moisture content of wood has a significant effect on some relevant properties, especially the mechanical properties (Gerhards, 1982) and service life of wood used outdoors (Meyer et al., 2016). Fungi can decompose wood if the moisture content is above a certain limit. The moisture content of wood must be high enough to promote the flow path for the reaction products of the enzymes, but low enough to prevent waterlogging. A wide variety of data on this is available in the literature. In the first set of data, it is indicated that the MC limits for fungal decay de-
Sorpcijske lastnosti lesa, impregniranega z ognejzadrževalnim sredstvom Burnblock

Sorption properties of wood can be affected by various treatment processes, like the use of wood biocides and fire retardants. Wood impregnated with various inorganic salts is usually more hygroscopic than untreated wood, especially at high RH. The increase in EMC of such wood depends on the chemicals used, retention, and wood species (White & Dietenberger, 2010). The EMC of impregnated wood and the effects of preservative retention on the equilibrium point are still unknown. High EMC is problematic because it promotes leaching of active ingredients, corrosion of metals, and the creation of favourable conditions for the growth of fungi and especially moulds, and presents difficulties in surface treatment and gluing of moist wood (Lesar et al., 2009). In this study, the sorption properties of wood impregnated with the fire retardant Burnblock were investigated throughout the hygroscopic range during the adsorption and desorption process.

2 MATERIAL AND METHODS

The analysis was carried out on wood treated with fire-retardant, and specifically on Norway spruce (Picea abies (L.) Karst.) planks treated with Burnblock (Burnblock, København, Denmark) in a commercial impregnation plant using the full cell impregnation method. Five planks were delivered. The cross-section of the planks was approximately 23 mm × 100 mm and length 200 mm. The retention of Burnblock was 38 kg/m³. Burnblock is made
of ingredients that can be found in nature and are considered environmentally friendly. Treated wood is biodegradable and has no adverse environmental effects (Medved et al., 2019). Five parallel samples were conditioned at laboratory conditions (21 °C; RH 65%), then measured and weighted. The nominal density of the wood was then calculated.

Microscopic analysis was performed on cross-sections of the treated wood. The outer 6 mm of the wood that was fully impregnated with the fire retardant was analysed. Microscopic analysis was performed using a confocal laser scanning microscope (Olympus OLS50-BSW, Tokyo, Japan) and a digital microscope (Olympus DSX1000, Tokyo, Japan). The surface was planed with a stainless steel blade. The MC of the wood was approximately 12%.

Dynamic water vapour sorption of treated and native (i.e., reference, non-treated) samples was performed using a gravimetric dynamic sorption analyser (DVS Intrinsic, Surface Measurement Systems Ltd., London, UK). Samples were ground and homogenised into fractions smaller than 1 mm prior to analysis using a SM 2000 mill (Retsch GmbH, Haan, Germany) and a perforated sieve with a perforation of 1 mm (Conidur®). The ground samples were conditioned at 20 °C and 1 ± 1% RH. A small amount of the ground sample (≈400 mg) was used. The measurement was performed at a constant temperature of 25 ± 0.2 °C. A total of two sorption and desorption cycles were measured from 0% RH to 95% RH, and vice versa.

3 RESULTS AND DISCUSSION
3 REZULTATI IN RAZPRAVA

The cross-sections of the wood planks indicate the typical structure of Norway spruce wood. The annual rings are about 2 mm to 3 mm wide (Figure 1). The anatomical structure (Figure 2) shows the gradual transition between earlywood and latewood cells. The respective resin canals are bordered by 8 to 12 or more thick-walled epithelial cells (Wagenführ, 2014). The density of the air-dry planks examined was 420 kg/m³ (st. dev. 17 kg/m³). This is in line with the data in the literature (Gryc et al., 2011; Humar, 2013).

As seen from microscopic analysis (Figure 3, Figure 4), Burnblock crystals are seen in the cell lumina. The presence of the crystals was confirmed using two independent microscopy techniques, confocal laser scanning microscopy and digital microscopy. The presence of the crystals in the cell lumina is not surprising, as the retention of Burnblock and other fire-retardants is higher than the retention of wood preservatives. For example, the retention of typical copper-ethanol wood preservatives is about 20 kg/m³ (Nordic Wood Preservation Council 2021) (for in-ground use), while the retention of classical CCA barely reaches 12 kg/m³ (Willeitner, 2001). The crystals in the cell lumina are rather significant. It can be assumed that they were at least partially damaged during cutting.

In the graphs (Figure 5), the sorption curves of the untreated and treated spruce wood are plotted. As can be seen, both the untreated and
Burnblock-treated wood show typical sorption isotherms of type II. The differences between the EMC at 95% RH of untreated and treated wood are negligible. For example, in the first sorption cycle, the EMC of untreated spruce wood (23.09%) is slightly higher than the EMC of Burnblock-treated spruce wood (22.76%).

Figure 2. Annual ring of spruce wood plank
Figure 3. Cell lumina of all cells are filled with crystals of the fire retardant Burnblock. Microscopy was performed with a digital microscope. Colours are not always representative.

Figure 4. Cell lumina filled with crystals of the fire retardant Burnblock. The image was obtained with confocal scanning laser microscope (field of view 128 µm × 128 µm). Colours are not always representative.
Humar, M., Lesar, B., & Kržišnik, D.: Sorption properties of wood impregnated with the fire retardant Burnblock

wood (22.79%). However, in the second sorption cycle, the EMC of Burnblock-treated wood was slightly higher (23.70%) than that of untreated spruce wood (22.47%). Normally, the second EMC at 95% RH for lignocellulosic materials is lower than the first (Glass et al., 2018), but in this case it was slightly higher for the Burnblock-treated sample. As DVS analysis was performed in controlled conditions it enables a reliable comparison, but statistical analysis was not performed due to low number of measurements (Glass et al., 2018).

The interpretation of the sorption curves is that the surfaces of the analysed wood samples are more polar than water molecules, and therefore

![Sorption curves](image)

Figure 5. Results of the sorption analysis of the (A) reference Norway spruce wood (PiAb), (B) Burnblock-impregnated Norway spruce wood (BB) in two sorption and desorption cycles. In graph (C), hysteresis is plotted. In contrast, in graph (D) differences in equilibrium wood moisture content between treated and untreated spruce in the first and second sorption cycles are presented. Negative values indicate that the MC of treated wood was lower than that of untreated wood.

Slika 5. Rezultati sorpcijske analize (A) referenčne smrekovine (PiAb), (B) smrekovine, impregnirane z ognjezadrževalnim sredstvom Burnblock v dveh sorpcijskih in desorpcijskih ciklih. Slika C prikazuje histerezo, slika D pa razliko v vlažnosti med impregnirano in neimpregnirano smrekovino v prvem in drugem sorpcijskem ciklu. Negativne vrednosti nakazujejo, da je bila vlažnost impregniranega lesa nižja od vlažnosti neimpregniranega lesa.
show increased water uptake at low RH (0 to 10%). Once a single (mono-)layer of water has formed, additional adsorption increasingly resembles the condensation of water. At high RH, i.e. above 70%, adsorption is enhanced due to the presence of tiny surface pores (mesopores, with pore diameters of 2 to 50 nm). These attract water molecules on more than one side, i.e. by capillary condensation. This leads to hysteresis in this humidity region caused by the reluctant release of the adsorbed water (Mangel, 2000).

As the hysteresis between the sorption and desorption curves for Burnblock-treated wood increases at the higher sorption range (Figure 5), this indicates that there are more condensation sites present in the Burnblock-treated wood than in the reference spruce wood. This can be ascribed to the presence of crystals in cell lumina, as clearly seen from microscopic analysis (Figure 4).

4 CONCLUSIONS

The sorption properties of Burnblock-treated wood are comparable to those of untreated wood, while the moisture content of Burnblock-treated wood is comparable to that of untreated Norway spruce. The only difference can be found in the hysteresis between the sorption and desorption curves at higher relative humidities. This can be ascribed to the presence of the crystals in cell lumina, as clearly seen from microscopic analysis (Figure 4).

5 SUMMARY

Sorpcijske lastnosti lesa imajo značilen vpliv na nekatere lastnosti lesa. V največji meri vplivajo na mehanske lastnosti in dovzetnost lesa na glivni razkroj. Vlaješnijši les je bolj dovzeten za glivni razkroj. Meiina vrednost za glivni razkroj je tri do pet odstotnih točk pod točko nasičenja celičnih sten. Po drugi strani dovzetnost lesa na pojav gliv plesni in gliv modrnik pogosto opišemo s kritično relativno zračno vlažnostjo, pri kateri se pojavijo plesni. Za večino lesnih vrst ta meja znaša okoli 75 %. V prime-
Humar, M., Lesar, B., & Kržišnik, D.: Sorption properties of wood impregnated with the fire retardant Burnblock

REFERENCES

Blahovec, J., & Yanniotis, S. (2008). Gab generalized equation for sorption phenomena. Food and Bioprocess Technology, 1(1), 82–90. DOI: https://doi.org/10.1007/s11947-007-0012-3

Engelund, E. T., Thygesen, L. G., Svensson, S., & Hill, C. A. S. (2013). A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 47(1), 141–161. DOI: https://doi.org/10.1007/s00226-012-0514-7

Gerhards, C. C. (1982). Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects. Wood and Fiber, 14(1), 4–36.

Glass, S. V., Boardman, C. R., Thybring, E. E., & Zelinka, S. L. (2018). Quantifying and reducing errors in equilibrium moisture content measurements with dynamic vapor sorption (DVS) experiments. Wood Science and Technology, 52(4), 909–927. DOI: https://doi.org/10.1007/s00226-018-1007-0

Gryc, V., Vavrčík, H., & Horn, K. (2011). Density of juvenile and mature wood of selected coniferous species. Journal of Forest Science, 57(3), 123–130. DOI: https://doi.org/10.17221/18/2010-jfs

Hartley, I. D., Kamke, F. A., & Peemoeller, H. (1992). Cluster theory for water sorption in wood. Wood Science and Technology, 26(2), 83–99. DOI: https://doi.org/10.1007/BF00194465

Humar, M. (2013). Influence of Norway spruce and European larch heartwood ring-width on extractive content and durability. Drvna Industrija, 64(2). DOI: https://doi.org/10.5552/drind.2013.1244

Isaksson, T., Thelandersson, S., Ekstrand-Tobin, A., & Johansson, P. (2010). Critical conditions for onset of mould growth under varying climate conditions. Building and Environment, 45(7), 1712–1721. DOI: https://doi.org/10.1016/j.buildenv.2010.01.023

Khali, D. P., & Rawat, S. P. S. (2000). Clustering of water molecules during adsorption of water in brown rot decayed and undecayed wood blocks of Pinus sylvestris. Holz Als Roh–Und Werkstoff, 58(5), 340–341. DOI: https://doi.org/10.1007/s001070050441

Lesar, B., Gorišek, Ž., & Humar, M. (2009). Sorption properties of wood impregnated with boron compounds, sodium chloride and glucose. Drying Technology, 27(1). DOI: https://doi.org/10.1080/07373930802565947

Mangel, A. (2000). Identifying physical and chemical phenomena with gravimetric water sorption analysis. Journal of Thermal Analysis and Calorimetry, 62(2), 529–537. DOI: https://doi.org/10.1023/A:1010183407622

Medved, S., Jones, D., Faellled, P., Pirs, D., Humar, M., & Lesar, B. (2019). Investigation of fire-retardant additive on particleboard properties. Proceedings of the International Panel Products Symposium 2019, 141–148.

Meyer, L., Brischke, C., Treu, A., & Larsson-Brelid, P. (2016). Critical moisture conditions for fungal decay of modified wood by basidiomycetes as detected by pile tests. Holzforschung, 70(4), 331–339. DOI: https://doi.org/10.1515/hf-2015-0046

Mitchell, P. H. (2018). Calculating the equilibrium moisture content for wood based on humidity measurements. BioResources, 13(1), 171–175. DOI: https://doi.org/10.15376/biores.13.1.171-175

Nordic Wood Preservation Council. (2021). List no 99.

Schmidt, O. (2006). Wood and tree fungi: Biology, damage, protection, and use. In Wood and Tree Fungi: Biology, Damage, Protection, and Use. Springer-Verlag Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-32139-X

Wagenführ, R. (2014). Holzatlas. 4th Edition. In IAWA Journal. Fachbuchverlag.

White, R. H., & Dietenberger, M. A. (2010). Fire safety of wood construction. In Wood Handbook–Wood as an engineering material (pp. 1–22). U.S.D.A. Forest service, Forest products Laboratory. http://www.fpl.fs.fed.us/documnts/fplgr/fplgr113/fplgr113.htm

Willeitner, H. (2001). Current national approaches to defining retenions in use. COST E22.

Willems, W. (2018). Hygroscopic wood moisture: single and dimerized water molecules at hydroxyl-pair sites? Wood Science and Technology, 52(3), 777–791. DOI: https://doi.org/10.1007/s00226-018-0996-x
Humar, M., Lesar, B., & Kržišnik, D.: Sorpcijske lastnosti lesa, impregniranega z ognjezadrževalnim sredstvom Burnblock