Diabetes diagnosis and management among insured adults across metropolitan areas in the U.S.

Wenya Yang⁎, Timothy M. Dallb, Eleonora Tana, Erin Byrnec, William Iacobuccib, Ritashree Chakrabartib, F. Ellen Lohd

⁎Corresponding author.

E-mail addresses: grace.yang@lewin.com (W. Yang), tim.dall@ihsmarkit.com (T.M. Dall), eleonora.tan@lewin.com (E. Tan), ebyr@novonordisk.com (E. Byrne), william.iacobucci@ihsmarkit.com (W. Iacobucci), ritashree.chakrabarti@ihsmarkit.com (R. Chakrabarti), fenghua.loh@touro.edu (F. Ellen Loh).

https://doi.org/10.1016/j.pmedr.2018.03.014
Received 6 December 2016; Received in revised form 15 March 2018; Accepted 28 March 2018
Available online 28 March 2018

1. Introduction

Diabetes is a major epidemic in the United States, yet many people with diabetes are undiagnosed, uninsured, or have suboptimal health or adherence outcomes (Centers for Disease Control and Prevention, 2014a, 2014b; Dall et al., 2016). Detection, insurance coverage and quality of care for people with diabetes were anticipated to improve with implementation of the Affordable Care Act (ACA), new U.S. Preventive Services Task Force guidelines around screening and treatment, and evolving standards of care (US Preventive Services Task Force, 2015; American Diabetes Association, 2017). The diabetes-related implications of changes in policy and treatment guidelines may take years to become apparent, but evaluating their impact over time requires baseline diabetes metrics for comparison.

Select metrics of diabetes detection and management have been calculated for 2012 at the state and national levels (Dall et al., 2016; Centers for Disease Control and Prevention, 2014a, 2014b). In 2012, 8.1 million adults were unaware they had diabetes (CDC, 2014a) and another 4.9 million with diagnosed diabetes lacked medical insurance (Dall et al., 2016). About 92% of insured adults with type 2 diabetes in 2012, the proportion receiving diabetes medications ranged from 83% in Oklahoma City, Oklahoma, to 65% in West Palm Beach, Florida. The proportion of treated patients with medical claims indicating poorly controlled diabetes was lowest in Minneapolis, Minnesota (36%) and highest in Texas metropolitan areas of Austin (51%), San Antonio (51%), and Houston (50%).

Estimates of diabetes detection and management across metropolitan areas often differ from state and national estimates. Local metrics of diabetes management can be helpful for tracking improvements in communities over time.
information is based primarily on self-reported information collected through telephone surveys (CDC, 2014b). This study extends previously published national and state analyses (Dall et al., 2016) to construct diabetes detection and management metrics for the 50 largest metropolitan areas where over half the nation’s population with diabetes resided in 2012. The claims analysis focused on the diagnosed type 2 population with medical insurance. Such information provides local baseline metrics to track progress over time in diagnosing and treating people with type 2 diabetes.

2. Methods

Our approach to calculate type 2 prevalence, detection and treatment outcomes by metropolitan area is similar to the approach we used to model national and state metrics (American Diabetes Association, 2013; Dall et al., 2014a, 2014b, 2016). We first estimated the size of the adult population in each metropolitan area by age group (20–34, 35–44, 45–54, 55–59, 60–64, 65–70, and over 70 years), sex, and insurance type (private, Medicare, Medicaid, uninsured). We used survey data to estimate the prevalence of diagnosed and undiagnosed diabetes for each segment of the population (by demographic and insurance type), and used medical and pharmaceutical claims to estimate the proportion of diabetes patients with type 2 and the prevalence of treatment outcomes within each segment. We aggregated results across demographic groups to provide metropolitan-level statistics.

The metropolitan areas modeled are officially designated Metropolitan Statistical Areas (MSAs), with three exceptions: (1) New York-Newark-Jersey City, NY-NJ-PA MSA was split into the New York population and the Northern New Jersey metropolitan designation, (2) Orange County, California was carved out of the Los Angeles-Long Beach-Anaheim, California MSA and reported separately, and (3) West Palm Beach was reported separately from Miami-Fort Lauderdale, Florida (whereas the official designation of this metropolitan statistical area is Miami-Fort Lauderdale-West Palm Beach).

This study used secondary data sources and received an exemption from the New England Institutional Review Board.

2.1. Data sources and selection and exclusion criteria

To construct the population file for each MSA we started with data on population size by 5-year age group, sex and race/ethnicity (non-Hispanic white, non-Hispanic black, non-Hispanic other, Hispanic) from the 2012 U.S. Census Bureau Annual County Estimates Population file linked to each MSA (U.S. Census Bureau, 2015a, 2015b). To construct a person-level file for each MSA, we used random selection with replacement from the 2012 American Community Survey (ACS, n = 2,375,715) to draw a sample of people living in a metropolitan area where the number of records drawn reflected the size of each demographic strata defined by 5-year age group, sex, and race/ethnicity among the ACS participants in each state. From the ACS data, we obtained information on household income, medical insurance status, and whether the person resides in the community or in a nursing home. Each person in the constructed population who resides in the community was then matched with a similar person from the 2011 and 2012 Behavioral Risk Factor Surveillance System (BRFSS, n = 982,154) using random sampling with replacement to match by age group, sex, family income level (8 levels), insurance status, metropolitan residency status, and state. For individuals in the ACS file who reside in a nursing home we used random sampling with replacement to match each ACS person with a nursing home resident in the 2004 National Nursing Home Survey (NNHS, n = 13,507) of similar age, sex, and race/ethnicity.

The resulting population file for each MSA contained a representative sample of the population complete with diagnosed diabetes prevalence; demographics; previous diagnosis or history of asthma, arthritis, heart attack, stroke, cancer, hypertension, high cholesterol, and cardiovascular disease; current smoker; body weight defined by body mass index (National Institutes of Health, 2000)—normal (BMI < 25), overweight (25 ≤ BMI < 30), or obese (30 ≤ BMI); and insurance type (Medicare, Medicaid, commercially insured, uninsured). Diagnosed diabetes prevalence, presence or history of the other chronic diseases modeled, and body weight information for the community-based population was self-reported in BRFSS. For the nursing home population, disease status and body weight information came from clinical diagnosis in NNHS. This information allowed us to estimate the prevalence of diagnosed diabetes by insurance type within each MSA.

Estimated prevalence of undiagnosed diabetes for each MSA was constructed by applying a regression-based predictive model (described later) to each person in the representative population sample. This predictive model was estimated using the 2005–2012 files of the National Health and Nutrition Examination Survey (NHANES) for adults without a previous diagnosis of diabetes and who did not use insulin. NHANES is a nationally representative sample of the non-institutionalized population. Approximately one third of NHANES adults were randomly chosen to undergo laboratory tests—including hemoglobin A1c (A1c) and fasting plasma glucose testing (FPG) that we used to determine diabetes, prediabetes, or normal glucose status. The sample analyzed excluded pregnant women (n = 463) and consisted of adults with previously undiagnosed diabetes (n = 1209), prediabetes (n = 7190), or normal glucose levels (n = 10,719).

Diabetes treatment outcomes were calculated using medical and pharmacy claims data for each population strata (e.g. insurance type, age group, and sex), and were multiplied with the population size in the corresponding strata from the constructed population file for each MSA. Medical claims for commercially insured adults in each MSA came from the 2011–2012 OptumInsight de-identified Normative Health Information database (dNHI, n = 29,948,496), for the Medicare population from the 2011 Medicare 5% sample (n = 2,805,812), and for the Medicaid population using the Centers for Medicare and Medicaid Services (CMS) 2008 Mini-Max file (n = 3,095,634). The dNHI database used medical and medication claims and membership data from January 2011 through December 2012, and the file contains longitudinally-linked and statistically-identified individual-level data from UnitedHealth Group and non-UnitedHealth Group sources. The Medicare 5% sample contains medical and prescription claims. Mini-Max is a 5% sample of the Medicaid Analytic eXtract data—a set of person-level data files on Medicaid eligibility, service utilization, and payments for > 60 million Medicaid enrollees extracted from the Medicaid Statistical Information System.

Patients analyzed in each of these databases were continuously enrolled in a fee-for-service coverage type plan with no more than one gap in enrollment of up to 45 days during the measurement year for the commercially insured population, and were enrolled for all 12 months for the Medicare and Medicaid populations.

2.2. Definitions of key outcomes

Key outcomes modeled include: undiagnosed diabetes, type 2 diabetes, receiving medication for diabetes, and poorly controlled diabetes.

2.2.1. Undiagnosed diabetes patients

Patients in NHANES with blood glucose levels indicating diabetes but who had not previously been diagnosed by a health provider and were not taking insulin or oral anti-diabetic medication. Similar to the approach used by CDC (2017), we identified NHANES participants with undiagnosed diabetes as those with FPG ≥ 126 or A1c ≥ 6.5. A limitation of NHANES is no follow-up confirmatory test is available, which introduces false positives and negatives. The predictive model applied to the metropolitan population files to estimate undiagnosed diabetes prevalence has been described elsewhere (Dall et al., 2014a, 2014b, 2016). This model used logistic regression with diagnosis status as the
dependent variable. Explanatory variables consisted of demographics; presence of diseases included in the constructed population files (e.g., hypertension, cardiovascular disease); overweight, obesity and current smoking status; and household income and insurance status.

2.2.2. Type 2 diabetes
Within the three medical claims databases, we identified patients with diabetes if the patient had at least one emergency department visit or hospitalization or two ambulatory visits (30 days apart) with diabetes diagnosis (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] diagnosis code of 250.xx) submitted during the year, or whether the patient used insulin or other diabetes-related medications. Sample inclusion and exclusion criteria, as well as the algorithm for distinguishing whether a patient had type 1 or type 2 diabetes based on medications taken and diagnosis codes, are described in detail elsewhere (Dall et al., 2016). The constructed analytic sample only included patients with diagnosed type 2 diabetes and excluded people younger than 18 and adults who had evidence of gestational diabetes or a pregnancy.

2.2.3. Medically treated diabetes
We analyzed pharmacy claims to identify patients receiving treatment for their diabetes. Diabetes treatment was defined as having any pharmacy claims for insulin, non-insulin injectables, or oral anti-diabetic agents. National Drug Code therapeutic classes were used to identify the medication (Dall et al., 2016).

2.2.4. Poor control status
Whether a person's diabetes is under control is generally determined by blood glucose levels (ADA, 2017; Christophi et al., 2012), but lab results with A1c values were available only for a subset of the commercially insured patients in the dNHI database and were unavailable for the Medicare and Medicaid populations. To consistently identify patients with poorly controlled diabetes we used ICD-9 diagnosis codes of 250.x2 and 250.x3 in any claim. For discussion, we refer to poorly controlled status for anyone with an ICD-9 code indicating uncontrolled diabetes at some point during the year, and “controlled” status was determined by the lack of a code indicating “uncontrolled” status.

3. Results

3.1. Diabetes prevalence
Diabetes metrics for each MSA are presented in Tables 1 and 2 (levels) and Table 3 (percentages), with confidence intervals in Appendix Tables 1a–3a, respectively. Half (53%) of U.S. adults resided in these MSAs, including 51% of diabetes patients and 55% of adults with undiagnosed diabetes cases (Table 1). New York City had the largest number of adults with diabetes (1.2 million), while Los Angeles had the largest number with undiagnosed diabetes (366,200) and the largest number with diagnosed diabetes who lacked medical insurance (131,900) (Table 1).

Among diabetes patients analyzed, 29% were undiagnosed; among diagnosed patients 17% were uninsured; among insured patients 92% had type 2 diabetes (Table 3). Los Angeles had the largest share of adults with undiagnosed diabetes (37%) as opposed to the lowest share in Cleveland Cincinnati, and Nashville (24%). A significant share of diagnosed diabetes patients lacked medical insurance, being the highest in three Texas MSAs (San Antonio [25%], Houston [25%], and Austin [24%]) and lowest in Boston (9%) and New York (10%). San Antonio had the highest share of insured, diagnosed patients that had type 2 diabetes (96%) in contrast to 88% in the Denver MSA.

3.2. Medication use and diabetes control
Among the insured population with type 2 diabetes, 76% had medication claims for antidiabetic agents—ranging from 83% in Oklahoma City to 65% in West Palm Beach (Table 3). Among those patients receiving medication, nationally 44% had medical claims indicating poorly controlled diabetes with local estimates lowest in Minneapolis (36%). MSAs in Texas ranked among the highest for patients with medical claims indicating uncontrolled diabetes—including Austin (51%), San Antonio (51%), Houston (50%), and Dallas-Fort Worth (47%).

4. Discussion
This study illustrates geographic variation in measures of diabetes prevalence, detection and management in 2012 and serves the following purposes: (1) providing a pre-ACA baseline to track outcomes over time, (2) providing communities with a comparison to state and national benchmarks, and (3) identifying communities performing well that could be used to identify best practices.

There is little published information at the metropolitan level for comparison to our findings. At the national level our results are similar to other estimates for the percentage of diagnosed diabetes that are type 2 and prevalence of undiagnosed diabetes. Our estimates of medication use based on claims data are lower than estimates based on self-reported data (CDC, 2013), while our estimates of patients receiving annual A1c testing and having their diabetes under control are similar to estimates based on electronic medical records (Courtemanche et al., 2013).

Geographic variation in diabetes care has been previously noted, but even with controlling for demographics, the source of the variation remains unclear (Egede et al., 2011a, 2011b; Ford et al., 2005; Lynch et al., 2015). Areas for future research include: (1) Understanding how expanded medical insurance coverage under the Affordable Care Act has helped close one gap to receiving treatment (i.e., high rates of uninsured people with diabetes); and (2) How new and expanded guidelines for screening asymptomatic adults for prediabetes and diabetes might help close another gap (i.e., high prevalence of undiagnosed diabetes).

4.1. Study strengths and limitations
The strengths of this study are use of large medical claims files covering the commercially insured, Medicare, and Medicaid populations to provide insight on treatment patterns, prevalence of diabetes-related complications, and health care expenditures. This analysis of medical claims provides a nice comparison to diabetes treatment and management statistics based on self-reported survey data collected through telephone survey (BRFSS) and suggests that self-reported data might overstate the proportion of patients receiving treatment for their diabetes.

Data limitations include the following:

- Claims data based case identification algorithms for type 2 diabetes may not be completely accurate. Algorithms that use a combination of both physician claims data and hospital discharge data have a sensitivity ranging from 57% to 95.6%, specificity ranging from 88% to 98.5%, positive predictive values ranging from 54% to 80%, and negative predictive values ranging from 98% to 99.6% (Khokhar et al., 2016). However, it has also been shown that more involved algorithms similar to ours that use a combination of physician claims, facility claims, and prescription drug claims and have multiple rules to differentiate type 1 from type 2 diabetes do have higher sensitivities (97% [95% CI 87–100]) for identifying type 1 diabetes and 93% [85–98] for type 2 diabetes (Klompas et al., 2013).

- For some MSAs, the medical claims sample was small for some demographic groups (in particular the age 20–34 population where diabetes prevalence is low). When the sample size fell below 30
Table 1

Metropolitan area	Total diabetes	# undiagnosed diabetes	Diagnosed	# uninsured	# insured
New York-Newark-Jersey City, NY-NJ-PA (excluding Northern NJ)	1,238,100	361,300	89,800	787,000	
Los Angeles-Long Beach-Anaheim, CA (excluding Orange County)	997,900	366,200	131,900	499,800	
Chicago-Naperville-Evanston, IL-IN-WI	869,300	252,700	115,100	501,500	
Northern NJ	644,400	189,200	59,400	395,800	
Dallas-Fort Worth-Arlington, TX	574,400	161,400	94,900	318,100	
Houston-The Woodlands-Sugar Land, TX	560,600	155,500	100,800	364,300	
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	560,000	155,500	48,700	355,800	
Miami-Fort Lauderdale, FL (excluding West Palm Beach, FL)	544,500	181,500	83,900	279,100	
Washington-Arlington-Alexandria, DC-VA-MD-WV	530,400	153,100	60,400	316,900	
Atlanta-Sandy Springs-Roswell, GA	491,800	113,800	25,300	258,400	
Detroit-Warren-Dearborn, MI	439,900	114,900	46,800	278,200	
San Francisco-Oakland-Hayward, CA	411,500	129,900	43,600	238,000	
Boston-Cambridge-Newton, MA-NH	397,500	113,800	25,300	258,400	
Phoenix-Mesa-Scottsdale, AZ	379,400	108,800	39,900	230,700	
Riverside-San Bernardino-Ontario, CA	359,900	111,500	50,600	197,800	
Orange County, CA	301,500	82,200	31,200	170,300	
St. Louis, MO-IL	298,100	86,800	34,300	164,600	
St. Louis, MO-IL	298,100	86,800	34,300	164,600	
Orange County, CA	268,600	87,200	26,300	155,100	
San Diego-Carlsbad, CA	261,500	83,100	31,200	170,300	
Orange County, CA	261,500	83,100	31,200	170,300	
Riverside-San Bernardino-Ontario, CA	261,500	83,100	31,200	170,300	
San Francisco-Oakland-Hayward, CA	242,300	77,000	18,000	147,300	
San Diego-Carlsbad, CA	242,300	77,000	18,000	147,300	
Philadelphia, PA	229,700	63,300	17,800	148,600	
Cleveland-Elyria, OH	228,900	54,900	25,200	148,800	
San Antonio-New Braunfels, TX	225,600	60,500	41,400	123,700	
Orlando-Kissimmee-Sanford, FL	212,600	59,400	32,200	121,000	
Charlotte-Concord-Gastonia, NC-SC	211,800	55,500	33,300	123,000	
Cincinnati, OH-KY-IN	209,200	50,600	25,700	132,900	
Kansas City, MO-KS	189,200	49,300	24,500	115,400	
Denver-Aurora-Lakewood, CO	189,200	49,300	24,500	115,400	
Portland-Vancouver-Hillsboro-OR-WA	186,500	55,800	20,400	112,300	
Sacramento-Roseville-Orden-Arcade, CA	180,300	56,900	19,000	104,400	
Columbus, OH	179,600	44,500	21,000	114,100	
Indianapolis-Carmel-Anderson, IN	175,800	45,900	24,200	105,700	
Nashville-Davidson-Murfreesboro-Franklin, TN	170,400	41,000	26,500	102,900	
Virginia Beach-Norfolk-Newport News, VA-NC	167,400	43,000	22,600	101,800	
Las Vegas-Henderson-Paradise, NV	166,700	54,700	19,300	92,700	
West Palm Beach, FL	158,700	46,000	14,600	98,100	
Austin-Round Rock, TX	148,800	43,100	25,000	80,700	
Memphis, TN-MS-AR	142,600	35,000	23,900	83,700	
Providence-Warwick, RI-MA	139,100	39,800	11,900	87,400	
Milwaukee-Waukesha-West Allis, WI	135,600	38,800	12,400	84,400	
Jacksonville, FL	132,200	35,400	19,200	77,600	
Oklahoma City, OK	129,100	32,300	21,500	75,300	
Richmond, VA	125,500	32,000	16,500	77,000	
Hartford-West Hartford-East Hartford, CT	103,100	31,500	7900	63,700	
Raleigh, NC	102,800	27,400	16,800	56,600	
New Haven-Milford, CT	73,400	22,600	5600	45,200	
Salt Lake City, UT	73,000	22,500	7300	43,200	
Southern NJ	50,200	14,700	4300	31,200	
Total (50 metro areas)	15,344,100	4,466,400	1,829,500	9,048,200	
Relative to national totals	51%	55%	49%	49%	

Note: highest and lowest MSA estimates are bolded.

adults for a particular demographic group, we then used information for that same demographic group at the next higher level of aggregation. For example, if the sample size for percent of diagnosed patients who were type 2 (versus type 1) was below 30 for a particular MSA, then we used the corresponding percentage at the state level for that demographic group. If the state sample size was below 30, then we used the corresponding percentage at the national level for that demographic group. Metropolitan-level estimates, therefore, were a combination of metropolitan, state and national metrics. This approach provides stability to estimates, but also biases the estimates toward the state and national averages.

- The medical claims analysis only includes insured patients in fee-for-service plans—as medical claims are often incomplete for patients not in a managed care network, but this would unlikely affect diabetes detection, treatment and control.
- Uncontrolled status was based on ICD-9 diagnosis codes and not by independent lab results. For validation, we analyzed the subset of commercially insured patients with type 2 diabetes for which we had both ICD-9 and A1c information. We found a significant and positive correlation between ICD-9 and A1c-based case identification measures (Spearman rank correlation coefficient of 0.22 [P < 0.001] for A1c > 9%). Patients who are sicker will tend to have more touch points with the health care system and thus generate more medical claims, so there is a higher likelihood that they might be categorized as uncontrolled diabetes. However, even with this limitation, ICD-9 diagnosis code-based definition for uncontrolled diabetes is still a valid and unbiased measure to be
compared across geographic locations, especially if we have no reason to believe that physicians in different MSAs will have different tendency to use these diagnosis codes. Prior to the implementation of the ICD-10 system, Agency for Healthcare Research and Quality (AHRQ) diabetes quality measures included a measure on “uncontrolled diabetes admission rate” that also used ICD-9 codes to compare the quality of diabetes care across managed health plans (AHRQ, 2013).

Medical claims data were unavailable for care veterans receive through the Veterans Health Administration and for patients in programs such as the Indian Health Service. For these government-sponsored programs adults age 65 or older are counted under Medicare, and adults under age 65 are counted under Medicaid.

5. Conclusion

This study used published information on the population and health characteristics of the population in the 50 largest metropolitan areas in the U.S. combined with analysis of medical claims files to estimate key metrics tracking access to care and treatment outcomes for people with diabetes (with the focus on type 2 diabetes). The study highlights that key diabetes prevalence and management metrics vary by MSA and can differ substantially from the national averages. Such information helps increase awareness of the areas where improvements can be made to inform strategies to improve diabetes screening and treatment, and tracked over time can help inform population health management strategies.

Table 2
Diabetes T2 DM population, treatment status, and diabetes control (ranked by diabetes cases): adults age 20+, 2012.

Metropolitan area	Type 2	# untreated with Rx	# treated	# poorly controlled	# controlled
New York-Newark-Jersey City, NY-NJ-PA (excluding Northern NJ)	215,500	512,700	223,800	288,900	
Los Angeles-Long Beach-Anaheim, CA (excluding Orange County)	114,300	354,900	154,300	200,600	
Chicago-Naperville-Elgin, IL-IN-WI	103,800	361,900	158,400	203,500	
Northern NJ	105,900	256,100	114,500	141,600	
Dallas-Fort Worth-Arlington, TX	59,300	236,400	116,200	126,200	
Houston-The Woodlands-Sugar Land, TX	61,500	222,800	111,400	111,400	
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	84,200	239,800	97,900	141,900	
Miami-Fort Lauderdale, FL (excluding West Palm Beach, FL)	69,700	185,100	91,200	93,900	
Washington-Arlington-Alexandria, DC-VA-MD-WV	66,200	223,600	105,700	117,900	
Atlanta-Sandy Springs-Roswell, GA	58,600	206,700	95,000	111,700	
Detroit-Warren-Dearborn, MI	79,000	181,600	82,900	98,700	
San Francisco-Oakland-Hayward, CA	51,500	168,200	72,600	95,600	
Boston-Cambridge-Newton, MA-NH	55,700	181,800	73,800	108,000	
Phoenix-Mesa-Scottsdale, AZ	70,600	143,300	66,100	77,200	
Riverside-San Bernardino-Ontario, CA	38,700	143,800	65,600	78,200	
Tampa-St. Petersburg-Clearwater, FL	43,400	124,700	58,000	66,700	
Providence-Warwick-Providence, RI-MA	34,800	129,700	53,800	75,900	
St. Louis, MO-IL	33,600	120,900	55,300	65,600	
Orange County, CA	33,800	109,500	47,700	61,800	
San Diego-Carlsbad, CA	30,000	105,400	40,800	64,600	
Baltimore-Columbia-Towson, MD	37,900	116,600	55,600	61,000	
Minneapolis-St. Paul-Bloomington, MN-MN	29,500	103,500	37,100	66,400	
Pittsburgh, PA	33,500	104,500	43,200	61,300	
Cleveland-Elyria, OH	32,000	104,900	45,500	59,400	
San Antonio-New Braunfels, TX	25,700	92,600	47,000	45,600	
Orlando-Kissimmee-Sanford, FL	29,900	83,100	38,100	45,000	
Charlotte-Concord-Gastonia, NC-SC	25,400	89,700	36,500	53,200	
Cincinnati, OH-KY-IN	28,700	93,600	37,600	56,000	
Kansas City, MO-KS	23,200	83,800	34,400	49,400	
Denver-Aurora-Lakewood, CO	21,200	73,800	32,800	41,000	
Portland-Vancouver-Hillsboro, OR-WA	22,400	80,600	32,700	47,900	
Sacramento-Roseville-Arden-Arcade, CA	21,400	75,800	32,900	42,900	
Columbus, OH	22,100	83,100	39,300	43,800	
Indianapolis-Carmel-Anderson, IN	19,300	77,200	34,000	43,200	
Nashville-Davidson-Murfreesboro-Franklin, TN	18,900	76,000	35,700	40,300	
Virginia Beach-Norfolk-Newport News, VA-NC	20,600	74,000	33,700	40,300	
Las Vegas-Henderson-Paradise, NV	21,300	66,100	31,400	34,700	
West Palm Beach, FL	31,000	57,500	26,500	31,000	
Austin-Round Rock, TX	14,800	60,600	31,100	29,500	
Memphis, TN-MEM-AR	15,900	63,000	31,400	31,600	
Providence-Warwick, RI-MA	18,100	62,000	26,000	36,000	
Milwaukee-Waukesha-West Allis, WI	19,000	59,900	24,300	35,600	
Jacksonville, FL	17,900	54,500	24,000	30,500	
Oklahoma City, OK	12,200	58,400	23,700	34,700	
Richmond, VA	16,600	54,100	23,900	30,200	
Hartford-West Hartford-East Hartford, CT	14,000	45,000	19,800	25,200	
Raleigh, NC	11,100	42,900	19,400	23,500	
New Haven-Milford, CT	11,000	30,600	12,900	17,700	
Salt Lake City, UT	8000	30,600	11,600	19,000	
Southern NJ	8300	20,400	9100	11,300	
Total (50 metro areas)	2,041,000	6,327,300	2,810,200	3,517,100	
Relative to national totals	52%	49%	51%	47%	

Note: highest and lowest MSA estimates are bolded.
Table 3
Diabetes population percentage metrics (ranked by diabetes cases), 2012.

Metropolitan area	Diabetes cases undiagnosed	Diagnosed diabetes				
	Uninsured	Insured	Type 2 diabetes	Treated with Rx	Treated	Uncontrolled
New York-Newark-Jersey City, NY-NJ-PA (excluding Northern NJ)	29	10	93	70	44	
Los Angeles-Long Beach-Anaheim, CA (excluding Orange County)	37	21	94	76	43	
Chicago-Naperville-Elgin, IL-IN-WI	29	19	93	78	44	
Northern NJ	29	13	91	71	45	
Dallas-Fort Worth-Arlington, TX	28	23	93	80	47	
Houston-The Woodlands-Sugar Land, TX	28	25	93	78	50	
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	28	12	91	74	41	
Miami-Fort Lauderdale, FL (excluding West Palm Beach, FL)	33	23	91	73	49	
Washington-Arlington-Alexandria, DC-VA-MD-WV	29	16	91	77	47	
Atlanta-Sandy Springs-Roswell, GA	27	21	93	78	46	
Detroit-Warren-Dearborn, MI	26	14	94	70	46	
San Francisco-Oakland-Hayward, CA	32	15	92	77	43	
Boston-Cambridge-Newton, MA-NH	29	9	92	77	41	
Phoenix-Mesa-Scottsdale, AZ	29	15	93	67	46	
Riverside-San Bernardino-Ontario, CA	31	20	92	79	46	
Tampa-St. Petersburg-Clearwater, FL	27	18	94	74	47	
Seattle-Tacoma-Bellevue, WA	30	15	92	79	41	
St. Louis, MO-IL	26	17	93	78	46	
Orange County, CA	32	14	92	76	44	
San Diego-Carlsbad, CA	32	18	92	78	39	
Baltimore-Columbia-Towson, MD	28	11	93	75	48	
Minneapolis-St. Paul-Bloomington, MN-WI	32	11	90	78	36	
Pittsburgh, PA	28	11	93	76	41	
Cleveland-Elyria, OH	24	14	92	77	43	
San Antonio-New Braunfels, TX	27	25	96	78	51	
Orlando-Kissimmee-Sanford, FL	28	21	93	74	46	
Charlotte-Concord-Gastonia, NC-SC	26	21	94	78	41	
Cincinnati, OH-KY-IN	24	16	92	77	40	
Kansas City, MO-KS	26	18	93	78	41	
Denver-Aurora-Lakewood, CO	32	16	88	78	44	
Portland-Vancouver-Hillsboro, OR-WA	30	15	92	78	41	
Sacramento-Roseville-Arden-Arcade, CA	32	15	93	78	43	
Columbus, OH	25	16	92	79	47	
Indianapolis-Carmel-Anderson, IN	26	19	91	80	44	
Nashville-Davidson-Murfreesboro-Franklin, TN	24	20	92	80	47	
Virginia Beach-Norfolk-Newport News, VA-NC	28	18	93	76	46	
Las Vegas-Henderson-Paradise, NV	33	17	94	76	48	
West Palm Beach, FL	29	13	90	65	46	
Austin-Round Rock, TX	29	24	93	80	51	
Memphis, TN-MS-AR	25	22	94	80	50	
Providence-Warwick, RI-MA	29	12	92	77	42	
Milwaukee-Waukesha-West Allis, WI	29	13	93	76	41	
Jacksonville, FL	27	20	93	75	44	
Oklahoma City, OK	25	22	94	83	41	
Richmond, VA	25	18	92	77	44	
Hartford-West Hartford-East Hartford, CT	31	11	93	76	44	
Raleigh, NC	27	22	92	79	45	
New Haven-Milford, CT	31	11	92	74	42	
Salt Lake City, UT	31	14	89	79	38	
Southern NJ	29	12	92	71	45	
Total (50 metro areas)	29	17	92	76	44	

Note: highest and lowest MSA estimates are bolded.

Funding
Funding for this study was provided by Novo Nordisk Inc. Study co-author Erin Byrne (EB) is employed by Novo Nordisk Inc. and provided critical review and revision of the manuscript.

Conflict of interest
The authors report the following competing interests: WY, TMD, ET, WI, RC, and FEL provide paid consulting services to pharmaceutical companies and other Life Sciences organizations. EB is employed by Novo Nordisk Inc.

Acknowledgments
Appreciation is expressed to Jerry Franz, who commented on earlier versions of this paper.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pmedr.2018.03.014.

References

Agency for Healthcare Research and Quality, 2013. Uncontrolled diabetes admission rate technical specifications. Retrieved from. https://www.qualityindicators.ahrq.gov/Downloads/Modules/PQI/V45/TechnicalSpecs/PQ%202014%20Uncontrolled%20Diabetes%20Admission%20Rate.pdf.

American Diabetes Association, 2013. Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36 (4), 1033–1046. Retrieved from. http://care.diabetesjournals.org/content/diabetesearly/early/2013/03/05/dc12-2625.full.pdf (Apr).

American Diabetes Association, 2017. Standards of medical care in diabetes-2017. Diabetes Care 40, S1–S142. Retrieved from. http://care.diabetesjournals.org/content/diabetes/nov/2016/12/15/40.Supplement_1.DC1/DC_40_S1_final.pdf.

Centers for Disease Control and Prevention, 2013. Age-adjusted percentage of adults with diabetes using diabetes medication, by type of medication, United States, 1997–2011. Retrieved from. http://www.cdc.gov/diabetes/statistics/meduse/

tenomenclations for diabetes in ICD-9-coded and ICD-10-coded data in adult populations. Diabetes Care 36 (4), 914–921.

Lynch, C.P., Gebregziabher, M., Axon, R.N., Hunt, K.E., Payne, E., Egede, L.E., 2015. Geographic and racial/ethnic variations in patterns of multimorbidity burden in patients with type 2 diabetes. J. Gen. Intern. Med. 30, 25–32.

National Institutes of Health, 2000. The practical guide: identification, evaluation, and treatment of overweight and obesity in adults. Retrieved from. https://www.nhlbi.nih.gov/files/docs/guidelines/prctgd_c.pdf.

U.S. Census Bureau, 2015a. Annual county resident population estimates by age, sex, race, and hispanic origin: April 1, 2010 to July 1, 2012. Retrieved from. https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.

U.S. Census Bureau, 2015b. Core based statistical areas (CBSAs) and combined statistical areas (CSAs). Retrieved from. https://www.census.gov/gene/reference/gtc/gtc CBSAs.html.

US Preventive Services Task Force, 2015. Abnormal blood glucose and type 2 diabetes mellitus: screening. Retrieved from. https://www.uspreventiveservicestaskforce.org/BrowseRec/Index/browse-recommendations.