A NOTE ON THE PICARD NUMBER OF SINGULAR FANO 3-FOLDS

GLORIA DELLA NOCE

ABSTRACT. Using a construction due to C. Casagrande and further developed by the author in [DN12], we prove that the Picard number of a non-smooth Fano 3-fold with isolated factorial canonical singularities, is at most 6.

INTRODUCTION

Let X be a Fano 3-fold. If X is smooth, we know from the classification results in [MM81], that its Picard number ρ_X is at most 10. Moreover, if $\rho_X \geq 6$, then X is isomorphic to a product $S \times \mathbb{P}^1$, where S is a smooth Del Pezzo surface.

If X is singular, bounds for ρ_X are known only in particular cases. If X is toric and has canonical singularities, then $\rho_X \leq 5$ ([Bat82] and [WW82]). If X has Gorenstein terminal singularities, then $\rho_X \leq 10$, because X has a smoothing which preserves ρ_X (see [Nam97, Theorem 11] and [JR11, Theorem 1.4]). If, instead, X has Gorenstein canonical singularities, it does not admit, in general, a smooth deformation (see [Pro05, Example 1.4] for an example). In this setting, the following holds.

Theorem 0.1. [DN12, Theorem 1.3] Let X be a 3-dimensional \mathbb{Q}-factorial Gorenstein Fano variety with isolated canonical singularities. Then $\rho_X \leq 10$.

The proof of this theorem uses a construction introduced by C. Casagrande in [Cas12], and relies on the result of [BCHM10] that Fano varieties are Mori dream spaces (see [HK00] for the definition).

In this paper, using the same construction, we show that the bound given by Theorem 0.1 can be improved if X is actually singular and its singularities are also factorial. Our result is the following.

Theorem 0.2. Let X be a non-smooth factorial Fano 3-fold with isolated canonical singularities. Then $\rho_X \leq 6$.

In the first section of this paper, we recall some preliminary results from [DN12]; the second section contains the proof of Theorem 0.2 and an observation concerning the case $\rho_X = 6$.

Notation and terminology

We work over the field of complex number.

Let X be a normal variety. We call X Fano if $-K_X$ has a multiple which is an ample Cartier divisor. We denote by X_{reg} the non-singular locus of X. We say that X is \mathbb{Q}-factorial if every Weil divisor is \mathbb{Q}-Cartier, i.e. it admits a multiple which is Cartier. We call X factorial if all its local rings are UFD; by [Har77, II, Proposition 6.11], this implies that every Weil divisor of

This work has been partially supported by PRIN 2009 “Moduli, strutture geometriche e loro applicazioni”.

1
X is Cartier. We refer the reader to [KM98] for the definition and properties of terminal and canonical singularities. If X has canonical singularities, it is called Gorenstein if its canonical divisor K_X is a Cartier divisor.

We denote with $\mathcal{N}_1(X)$ (resp. $\mathcal{N}^1(X)$) the vector space of one-cycles (resp. \mathbb{Q}-Cartier divisors) with real coefficients, modulo the relation of numerical equivalence. The dimension of these two real vector spaces is, by definition, the Picard number of X, and is denoted by ρ_X. We denote by $[C]$ (resp. $[D]$) the numerical equivalence class of a one-cycle (resp. a \mathbb{Q}-Cartier divisor).

Given $[D] \in \mathcal{N}^1(X)$, we set $D^\perp := \{ \gamma \in \mathcal{N}_1(X) | D \cdot \gamma = 0 \}$, where \cdot denotes the intersection product. We define $\text{NE}(X) \subset \mathcal{N}_1(X)$ as the convex cone generated by classes of effective curves and $\text{NE}(X)$ is its closure. An extremal ray R of X is a one-dimensional face of $\text{NE}(X)$. We denote by Locus(R) the subset of X given by the union of curves whose class belongs to R.

A contraction of X is a projective surjective morphism with connected fibers $\varphi : X \to Y$ onto a projective normal variety Y. It induces a linear map $\varphi_* : \mathcal{N}_1(X) \to \mathcal{N}_1(Y)$ given by the push-forward of one-cycles. We set $\text{NE}(\varphi) := \text{NE}(X) \cap \text{ker}(\varphi_*)$. We say that φ is K_X-negative if $K_X \cdot \gamma < 0$ for every $\gamma \in \text{NE}(\varphi)$.

The exceptional locus of φ is the locus where φ is not an isomorphism; we denote it by $\text{Exc}(\varphi)$. We say that φ is of fiber type if $\dim(X) > \dim(Y)$, otherwise φ is birational. We say that φ is elementary if $\dim(\ker(\varphi_*)) = 1$. In this case $\text{NE}(\varphi)$ is an extremal ray of $\text{NE}(X)$; we say that φ (or $\text{NE}(\varphi)$) is divisorial if $\text{Exc}(\varphi)$ is a prime divisor of X and it is small if its codimension is greater than 1.

An elementary contraction from a 3-fold X is called of type $(2, 1)$ if φ is K_X-negative, birational, $\dim(\text{Exc}(\varphi)) = 2$ and $\dim(\varphi(\text{Exc}(\varphi))) = 1$.

If $D \subset X$ is a Weil divisor and $i : D \to X$ is the inclusion map, we set $\mathcal{N}_1(D, X) := i_* \mathcal{N}_1(D) \subseteq \mathcal{N}_1(X)$.

1. Preliminaries

In the following statement, we collect some results from [DN12]. For the reader’s convenience, we recall here the main steps of their proof. We refer the reader to [DN12] Theorem 2.2] for the properties of contractions of type $(2, 1)$ defined on mildly singular 3-folds.

Lemma 1.1. [DN12 Theorem 1.2 and its proof - Remark 5.2] Let X be a \mathbb{Q}-factorial Gorenstein Fano 3-fold with isolated canonical singularities. Suppose $\rho_X \geq 6$. Then there exist morphisms

$$
\psi : X \to \mathbb{P}^1 \text{ and } \xi : X \to S,
$$

where S is a normal surface with $\rho_S = \rho_X - 1$, and the morphism

$$
\pi := (\xi, \psi) : X \to S \times \mathbb{P}^1
$$

is finite.

Moreover there exist extremal rays R_0, \ldots, R_m ($m \geq 3$) in $\text{NE}(X)$ such that:

- each R_i is of type $(2, 1)$;
- $\text{NE}(\psi) = R_0 + \cdots + R_m$;
- for $i = 0, \ldots, m$, set $E_i = \text{Locus } R_i$ and $Q = \text{NE}(\xi)$. Then

$$
\psi(E_i) = \mathbb{P}^1, \quad \mathcal{N}_1(E_i, X) = \mathbb{R} R_i \oplus \mathbb{R} Q \quad \text{and} \quad Q \subseteq \bigcap_{i=0}^m E_i^\perp;
$$
• ψ factors as $X \xrightarrow{\sigma} \tilde{X} \rightarrow \mathbb{P}^1$, where σ is birational, \tilde{X} is a Fano 3-fold with canonical isolated singularities, $\text{NE}(\sigma) = R_1 + \cdots + R_s$, with $m \geq s \in \{\rho_X - 2, \rho_X - 3\}$ and $\sigma(E_1), \ldots, \sigma(E_s) \subset \tilde{X}$ are pairwise disjoint.

Proof. By [DN12] Remark 5.2, the assumption $\rho_X \geq 6$ implies that all the assumptions of [DN12] Theorem 1.2 are satisfied, from which the existence of the finite morphism π. The properties of its projections ψ and ξ follow by their construction, that we briefly recall. All the details can be found in the proof of [DN12] Theorem 1.2.

By [DN12] Proposition 3.5, there exists an extremal ray $R_0 \subset \text{NE}(X)$ of type $(2,1)$. Set $E_0 = \text{Locus}(R_0)$; we have $\dim N_1(E_0, X) = 2$. As in [DN12] Lemma 3.1, we may find a Mori program

\[X = X_0 \xrightarrow{\sigma_0} X_1 \longrightarrow \cdots \longrightarrow X_{k-1} \xrightarrow{\sigma_{k-1}} X_k \xrightarrow{\varphi} Y \]

where X_1, \ldots, X_k are \mathbb{Q}-factorial 3-folds with canonical singularities and, for each $i = 0, \ldots, k-1$, there exists a K_{X_i}-negative extremal ray $Q_i \subset \text{NE}(X_i)$ such that σ_i is either its contraction, if Q_i is divisorial, or its flip, if it is small. Moreover, if $(E_0)_i \subset X_i$ is the transform of E_0 and $(E_0)_{i_0} := E_0$, then $(E_0)_i : Q_i > 0$. Finally, φ is a fiber type contraction to a \mathbb{Q}-factorial normal variety Y.

Let us set

\[\{i_1, \ldots, i_s\} := \{i \in \{0, \ldots, k-1\} | \text{codim} N_1(D_{i+1}, X_{i+1}) = \text{codim} N_1(D_i, X_i) - 1\}. \]

Then, by [DN12] Lemma 3.3, $s \in \{\rho_X - 2, \rho_X - 3\}$ (in particular $s \geq 3$); moreover, for every $j \in \{1, \ldots, s\}$, Q_{i_j} is a divisorial ray, σ_{i_j} is a birational contraction of type $(2,1)$ and, if $E_j \subset X$ is the transform of the exceptional divisors of the contraction σ_{i_j} as above, then E_1, \ldots, E_s are pairwise disjoint.

Since $s \geq 3$, [DN12] Proposition 3.5 assures that, for each $j = 1, \ldots, s$, there exists an extremal ray $R_j \subset \text{NE}(X)$ of type $(2,1)$ such that $E_j = \text{Locus}(R_j)$. The divisor $-K_X + E_1 + \cdots + E_s$ comes out to be nef, and its associated contraction $\sigma : X \to \tilde{X}$ verifies

\[\ker(\sigma_s) = \mathbb{R}R_1 + \cdots + \mathbb{R}R_s \quad \text{and} \quad \text{Exc}(\sigma) = E_1 \cup \cdots \cup E_s. \]

It is thus possible to look at σ a part of a Mori program as in (1.1), and to find a fiber type contraction $\varphi : \tilde{X} \to Y$ giving rise to a morphism $\psi := \varphi \circ \sigma : X \to Y$ as in the statement. In particular, we have $\text{NE}(\psi) = R_0 + \cdots + R_m$, where $m \geq s$ and R_{s+1}, \ldots, R_m are extremal rays of type $(2,1)$. We notice that, since $\dim(X) = 3$, we have $Y \cong \mathbb{P}^1$ by [DN12] Remark 4.2.

The second projection ξ arises as the contraction associated to a certain nef divisor defined as a combination of the prime divisors E_0, \ldots, E_m constructed above (recall that $E_i = \text{Locus}(R_i)$ for $i = 0, \ldots, m$). It is an elementary contraction and the one-dimensional subspace generated by $\text{NE}(\xi)$ belongs to $N_1(E_i, X)$ for every $i = 0, \ldots, m$. \(\square \)

2. **Theorem 0.2**

Proof of Theorem 0.2. Let us prove that, if $\rho_X \geq 7$, then the morphism $\pi : X \to S \times \mathbb{P}^1$ given by Lemma 1.1 is an isomorphism. This will give a contradiction with our assumptions on the singularities of X, since $S \times \mathbb{P}^1$ is smooth or has one-dimensional singular locus.

We are in the setting of Lemma 1.1 let us keep its notations. By [AW97] Corollary 1.9 and Theorem 4.1(2)], the general fiber of ξ is a smooth rational curve, and the other fibers have
at most two irreducible components (that might coincide) whose whose reduced structures are isomorphic to \(\mathbb{P}^1\).

Our assumptions imply that \(S\) is factorial: if \(C \subset S\) is a Weil divisor, its counterimage \(D := \xi^{-1}(C) \subset X\) is a Cartier divisor, because \(X\) is factorial. Moreover \(D \cdot Q = 0\) (where \(Q = \text{NE}(\xi)\)), because \(D\) is disjoint from the general fiber of \(\xi\). Then \(D = \xi^*(C')\) for a certain Cartier divisor \(C'\) on \(S\). But then \(C = C'\) is Cartier.

Fix \(i = 0, \ldots, m\); let \(\varphi_i : X \to Y_i\) be the contraction of \(R_i\) and set \(G_i := \varphi_i(E_i) \subset Y_i\), \(T_i := \xi(E_i) \subset S\):

\[
\begin{array}{ccc}
\varphi_i|E_i & \longrightarrow & E_i \\
\downarrow & & \downarrow \\
G_i & \longrightarrow & T_i.
\end{array}
\]

Notice that \(T_i \subset S\) is a curve. Indeed, by Lemma 1.1 \(E_i \cdot Q = 0\), which implies that \(T_i \subset S\) is a (Cartier) divisor and \(E_i = \xi^*(T_i)\).

Let \(f_i\) be the general fiber of \(\varphi_i\). Since \(f_i\) is a smooth rational curve which dominates \(T_i\), \(T_i\) is a (possibly singular) rational curve. The same conclusion holds for \(G_i\), which is dominated by any smooth curve contained in a fiber of \(\xi\) over \(T_i\).

We have

\[-1 = E_i \cdot f_i = \xi^*(T_i) \cdot f_i = T_i^2 \cdot \deg(\xi|f_i),\]

from which \(-T_i^2 = \deg(\xi|f_i) = 1\). Then the general fiber \(g\) of \(\xi\) over \(T_i\) is a smooth rational curve. Indeed, \(g\) has no embedded points, and if, by contradiction, the 1-cycle associated to \(g\) is of the type \(C_1 + C_2\), then \(g\) would intersect \(f_i\) in at least two (distinct or coincident) points.

This is impossible because \(g\) is general and \(\deg(\xi|f_i) = 1\).

Then \(E_i\) is smooth along the general fibers of both \(\varphi_i\) and \(\xi\); we deduce that \(E_i\) is smooth in codimension one. Moreover \(E_i\) is a Cohen-Macaulay variety, because \(X\) is factorial. Then, by Serre’s criterion, \(E_i\) is normal. Then the finite morphism \((\xi|E_i, \varphi_i|E_i) : E_i \to T_i \times G_i\), which has degree one, factors through the normalization of the target: there is a commutative diagram

\[
\begin{array}{ccc}
E_i & \longrightarrow & \mathbb{P}^1 \\
\downarrow & & \downarrow \\
T_i \times G_i.
\end{array}
\]

Since \(\tau\) is finite of degree one, by Zariski Main Theorem, it is an isomorphism. Thus \(E_i \cong \mathbb{P}^1 \times \mathbb{P}^1\), and \(\xi|E_i : E_i \to T_i \cong \mathbb{P}^1\) and \(\varphi_i|E_i : E_i \to G_i \cong \mathbb{P}^1\) are the projections. In particular, since both \(E_i\) and \(T_i\) are Cartier divisors, they are contained in the smooth loci of, respectively, \(X\) and \(S\).

We have

\[
(K_X - \xi^*(K_S)) \cdot f_i = (K_{E_i} - \xi_{E_i}^*(K_{T_i})) \cdot f_i = (\varphi_{i|E_i}^*(K_{G_i})) \cdot f_i = 0.
\]

Let \(F\) be a general fiber of \(\psi : X \to \mathbb{P}^1\). Then \(F\) is a smooth Del Pezzo surface and, by Lemma 1.1 \(\mathcal{N}_i(F) \subset \sum \mathbb{R}[f_i]\); thus \(K_X - \xi^*(K_S)\) is numerically trivial in \(F\). Moreover \(\zeta := \xi|F : F \to S\) is a finite morphism of degree \(d := \deg(\pi)\) and

\[
K_F = (K_X)|_F = (\xi^*(K_S))|_F = \zeta^* K_S;
\]
in particular \(\zeta \) is unramified in the open subset \(\xi^{-1}(S_{\text{reg}}) \), which contains \(E_i \cap F \) for every \(i = 0, \ldots, m \).

Set \(\tilde{F} := \sigma(F) \subset \tilde{X} \), where \(\sigma : X \to \tilde{X} \) is the birational contraction given by Lemma 1.1: then \(\tilde{F} \) is again a smooth Del Pezzo surface and \(\sigma|_F : F \to \tilde{F} \) is a contraction. For every \(i = 1, \ldots, s \), the intersection \(E_i \cap F \) is the union of \(d \) disjoint curves numerically equivalent to \(f_i \); in particular \(\sigma|_F \) realizes \(F \) as the blow-up of \(\tilde{F} \) along \(s \cdot d \) distinct points (where \(s = \rho_X - \rho_{\tilde{X}} \)). Then, recalling that \(s \geq \rho_X - 3 \) and \(\rho_X \geq 7 \), we get

\[
9 \geq \rho_F = \rho_{\tilde{F}} + s \cdot d \geq 1 + 4d,
\]

and then \(d \leq 2 \). Moreover, if \(d = 2 \), then \(\rho_F = 9 \) and, by 2.1,

\[
1 = K_{\tilde{F}}^2 = \zeta^*(K_S) \cdot K_F = 2(K_S)^2,
\]

which is impossible because \(S \) is factorial and thus \(K_S^2 \) is integral. Hence \(d = \deg(\zeta) = \deg(\pi) = 1 \) and the statement is proved.

The case \(\rho_X = 6 \) is more complicated to analyze. Indeed, though Lemma 1.1 still holds in that case, we are not able to conclude that \(\pi \) is an isomorphism and that, as a consequence, \(X \) is smooth.

Proposition 2.1. Let \(X \) be a factorial Fano 3-fold with isolated canonical singularities and with \(\rho_X = 6 \). If \(X \) is not smooth, there exists a finite morphism of degree 2

\[
\pi : X \to S \times \mathbb{P}^1,
\]

where \(S \) is a singular Del Pezzo surface with factorial canonical singularities, \(\rho_S = 5 \), \((K_S)^2 = 1 \). Moreover the ramification locus of \(\pi \) contains a surface \(R \) which dominates \(S \).

Proof. We argue as in the proof of Theorem 0.2 and we use the same notations. Since \(X \) is not smooth, the degree of \(\pi \) must be 2. Exactly as in the above case, we have

\[
(2.2) \quad K_F = (K_X)|_F = (\xi^*(K_S))|_F = (\xi^*K_S)|_F = \zeta^*K_S,
\]

and

\[
(2.3) \quad \rho_F = 10 - (K_F)^2 = 10 - 2(K_S)^2,
\]

so that \(\rho_F \) needs to be even. Since \(\rho_X = 6 \), we have \(s \in \{3, 4\} \), and then

\[
9 \geq \rho_F = \rho_{\tilde{F}} + 2s.
\]

Thus the only possibility is that \(\rho_{\tilde{F}} = 2 \) and \(\rho_F = 8 \). By (2.3), we get \((K_S)^2 = 1 \).

Let us call \(R \) the ramification divisor (possibly trivial) of \(\pi \). Let \(C \) be the general fiber of \(\xi \). Then \(C \cong \mathbb{P}^1 \) and \(\psi_C : \mathbb{P}^1 \to \mathbb{P}^1 \) is finite of degree 2. By Hurwitz’s formula we have \(R \cdot C = 2 \), and hence \(R \) is not trivial and it dominates \(S \).

Acknowledgments. This paper is part of my PhD thesis; I am deeply grateful to my advisor Cinzia Casagrande for her constant guidance.
References

[AW97] M. Andreatta and J. A. Wiśniewski, A view on contractions of higher dimensional varieties, Algebraic Geometry-Santa Cruz 1995, Proc. Symp. Pure Math., vol. 62, 1997, pp. 153–183.

[Bat82] V. V. Batyrev, Toric Fano threefolds (English translation), Math. USSR-Izv. 19 (1982), 13–25.

[BCHM10] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405–468.

[Cas12] C. Casagrande, On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér. 45 (2012), 363–403.

[DN12] G. Della Noce, On the Picard number of singular Fano varieties, preprint arXiv:1202.1154 (2012), to appear in Internat. Math. Res. Notices.

[Har77] R. Hartshorne, Algebraic Geometry, Springer, 1977.

[HK00] Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331–348.

[JR11] P. Jahnke and I. Radloff, Terminal Fano threefolds and their smoothing, Math. Zeitschrift 269 (2011), 1129–1136.

[KM98] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Univ. Press, 1998.

[MM81] S. Mori and S. Mukai, Classification on Fano 3-folds with $b_2 \geq 2$, Manuscr. Math. 36 (1981), 147–162, Erratum: 110 (2003), 407.

[Nam97] Y. Namikawa, Smoothing Fano 3-folds, J. Alg. Geom. 6 (1997), 307–324.

[Pro05] Y. G. Prokhorov, On the degree of Fano threefolds with canonical Gorenstein singularities (English translation), Sb. Math. 196 (2005), 77–114.

[WW82] K. Watanabe and M. Watanabe, The classification of Fano 3-folds with torus embeddings, Tokio J. Math. 5 (1982), 37–48.

Dipartimento di Matematica, Università di Pavia, via Ferrata, 1 27100 Pavia - Italy
E-mail address: gloria.dellanoce@unipv.it