Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors

Antonio Di Bartolomeo1,2, Filippo Giubileo1,2, Salvatore Santandrea1,2, Francesco Romeo1,2, Roberta Citro1,2, Thomas Schroeder3 and Grzegorz Lupina3

1 Dipartimento di Fisica ‘E R Caianiello’ and Centro Interdipartimentale NANO-MATES, Università degli Studi di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy
2 CNR-SPIN Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy
3 IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

E-mail: antonio.dibartolomeo@fisica.unisa.it

Received 19 January 2011, in final form 14 March 2011
Published 20 May 2011
Online at stacks.iop.org/Nano/22/275702

Abstract
We discuss the origin of an additional dip other than the charge neutrality point observed in the transfer characteristics of graphene-based field-effect transistors with a Si/SiO\textsubscript{2} substrate used as the back-gate. The double dip is proved to arise from charge transfer between the graphene and the metal electrodes, while charge storage at the graphene/SiO\textsubscript{2} interface can make it more evident. Considering a different Fermi energy from the neutrality point along the channel and partial charge pinning at the contacts, we propose a model which explains all the features observed in the gate voltage loops. We finally show that the double dip enhanced hysteresis in the transfer characteristics can be exploited to realize graphene-based memory devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene field-effect transistors (GFETs) have attracted substantial interest for applicability to high-speed electronics and spintronics and have been extensively used to investigate the electronic transport properties of graphene. In such devices, an electric current is injected/extracted from metallic electrodes (source/drain) through a graphene channel whose conductance is modulated by the electric field from a back- or top-gate. The linear energy dispersion, with zero bandgap and a double-cone shape with intrinsic Fermi level at the vertex, gives symmetric valence and conduction bands; differently from most materials, current modulation by means of a gate in GFETs is possible even without a bandgap, due to the vanishing density of states at the vertex [1, 2].

Metal/graphene contacts have been shown to play a significant role in the electrical characteristics of the transistors, and various metals (Al, Au, Co, Pd, Pt, Ti, …) have been employed as electrodes. Transfer characteristics of GFETs, i.e. the drain-to-source current versus gate voltage, I_{DS}–V_{GS}, curves, typically display a symmetric V-shape, with a hole dominated conductance (p-branch) at lower V_{GS} and electron-type transport at more positive gate voltages (n-branch), separated by a valley corresponding to the charge neutrality condition (also known as the Dirac point) with equal electron and hole concentrations. This V-shape reflects the energy distribution of the density of states ($D(E) \propto |E|$), and a conductance dropping to zero at the Dirac point should be expected at low temperature; however, in actual devices, impurities and interaction with the surrounding dielectric introduce local fluctuations in the potential causing a finite density of states at the Dirac point; from the carrier viewpoint, these fluctuations result in localized puddles of electrons and holes which produce an appreciable conductance [3]. Noticeably asymmetric [4, 5] and/or anomalously distorted
p-branches [6–8] have been reported. The asymmetry between p- and n-branches was initially explained in terms of different cross sections of electron/hole scattering from charge impurities [9, 10], but more recently the metal/graphene interaction at the contacts has been considered as a key element [5, 11–14]. It has been found in particular that, even in the case of weak adhesion, as with Au, the metal electrodes cause the Fermi level E_F to shift from the conical point in graphene bands, resulting in doping of graphene either with electrons or with holes; the amount of doping can be deduced from the difference of the metal and graphene work functions ($\Phi_M - \Phi_G$) and from the potential step (ΔV) due to the metal/graphene chemical interaction ($E_F = \Phi_M - \Phi_G - \Delta V$) [11–14]. Depending on the polarity of carriers in the bulk of the graphene channel, charge transfer between metal and graphene leads to p–p, n–n or p–n junctions in the vicinity of the contacts which can cause asymmetry.

Nouchi et al [6, 7] have studied transfer characteristics in devices with ferromagnetic metal electrodes, reporting anomalously distorted p-branches, with a sort of additional minimum other than the Dirac point. They explain this effect by considering charge transfer from graphene to metal leads and assuming that the presence of an oxide layer spontaneously formed at the metal/graphene interface suppresses the charge-density pinning effect, i.e. favours the modulation of the charge-density of graphene at the metal electrodes by the gate voltage. A second conductance minimum to the left of the original Dirac point has also been very recently investigated by Chiu et al [15] for Ti-contacted graphene transistors in the high field regime. They showed that the original Dirac point stays unaffected, while the position of a second Dirac point caused by a drain stress depends on the back-gate voltage, and they argue that a positive charge is trapped at the graphene/oxide interface in the vicinity of the drain; such a charge induces the formation of a p–n junction in the drain region and accordingly they use a model based on a step-potential to account for the observed double Dirac point.

A double dip in the transfer characteristic has been also discussed by Barraza-Lopez et al [16] with a first-principles study of the conductance through graphene suspended between Al contacts. They show that the charge transfer at the leads and into the freestanding section gives rise to an electron–hole asymmetry in the conductance; more importantly they suggest that, for sufficiently long junctions, this charge transfer induces two conductance minima at the energies of the two Dirac points of the suspended and clamped regions, respectively.

In this paper we present measurements on Cr/Au-contacted long-channel (~10 μm) graphene transistors on Si/SiO2 substrate. We report the observation of hysteresis as well as double dips in the transfer characteristics, that, as far as we know, have never been reported before on GFETs with Cr/Au electrodes.

Charge trapped in the surrounding dielectric and in particular in silanol groups at the SiO2 surface is at the origin of the hysteresis; while, the gradient of carriers along the channel caused by electron transfer from the graphene to the Au/Cr contacts and the band shift induced by the back-gate voltage and the SiO2-trapped charge are proposed to account for the double dip feature. We show in particular that p–n junctions are spontaneously formed by charge transfer between the graphene and the electrodes and that a double Dirac point can be achieved when low-resistivity contacts are fabricated. We further clarify the role of charge stored at the SiO2 interface in the formation of the double dip and we propose partial charge pinning at the contacts to explain the current saturation observed at high back-gate voltages. Accordingly, a phenomenological modeling of experimental data is successfully implemented.

We finally show that the hysteresis, enhanced by a double dip, can conveniently be exploited to build graphene-based memory devices.

2. Device fabrication and measurement setup

Micron-scale graphene flakes were deposited by the Scotch-Tape method on 300 nm thick SiO2 thermally grown on top of a highly p-doped Si substrate. Natural graphite flakes (from NGS Naturgraphit GmbH) were repeatedly cleaved with adhesive tapes and then transferred to SiO2 substrates. The surface of the chip was inspected by optical microscopy to identify suitable few- and mono-layer graphene flakes according to the color contrast [17]. Single-layer graphene flakes were further confirmed by Raman spectroscopy [18]. Metal contacts of Cr/Au (5 nm/150 nm, with Cr as adhesion layer) were sputtered after electron beam lithography and structured by lift-off on selected single-layer graphene flakes. Soon after, some devices were covered by 250 nm thick polymethyl methacrylate (PMMA). PMMA was spin-coated on the whole chip and cross-linked, and thus made resistant to acetone etch, by exposure to 30 keV electrons at a dose of $3 \times 10^5 \mu C \text{cm}^{-2}$ on the device area.

Figures 1(a) and (b) show the layout and the SEM top view of a typical device before PMMA coverage, respectively. Figure 1(c) shows the Raman spectrum of the flake used as bulk channel with the G and 2D peaks typical of single-layer graphene. Single-layer graphene in a junction with a few layer graphene film (as in figure 1(b)) was preferred in the attempt to minimize the graphene doping due to interaction with the SiO2 substrate [19].

We performed three-terminal measurements, with the Si substrate as the back-gate and the metal electrodes as the source and drain. All the measurements were performed in air and at room temperature using an HP4140B semiconductor parameter analyzer. Back-gate voltage sweeps, in the interval (~80 V, 80 V), were performed at constant low drain bias (20 mV). Higher gate voltages were avoided to prevent oxide damage; indeed higher voltage stresses ($V_{GS} > 100$ V) were often observed to increase gate leakage until oxide breakdown.

3. Results and discussion

Figure 1(d) shows the transfer characteristic of the device. A minimum I_{DS}, i.e. a lower conductance, corresponding to the charge neutrality point, is observed at $V_{GS} \sim 60$ (45) V in an initial reverse (forward) V_{GS} sweep with an amplitude of 70 V; the low on/off ratio of about 5 is expected for a graphene
flake with low or zero bandgap. A positive charge neutrality point V_{GS}^* indicates that the graphene is unintentionally highly p-doped. We observed this behavior on all fabricated GFETs; indeed, the Dirac point was often located behind the sweeping upper limit of 80 V, especially for devices not covered by PMMA.

The formation of weak C–O bonds between graphene and SiO$_2$ has been proven [19, 20] to support p-type conductivity in graphene by transfer of charge from the carbon in graphene to the oxygen of the SiO$_2$. This increases the hole concentration and favors the formation of p-type conductivity at an unbiased gate, thus forward shifting the Dirac point. Moreover, molecules adsorbed on the surface of the channel or at the graphene/SiO$_2$ interface during the fabrication process, consisting mainly of hydrocarbons, carbon dioxide, oxygen and water, are known as a further cause of the forward shift of the charge neutrality point. Indeed, for H$_2$O [21], CO$_2$ and O$_2$ [22], it has been shown that there is an electron transfer from graphene to the adsorbed molecules, which results in p-doping for graphene. The use of PMMA as coverage of our devices prevents further adsorption and helps to maintain the neutrality point within the swept V_{GS} range. This enabled us to measure and study both the p- and part of the n-branch of the transfer characteristic.

A second important feature observed in the measured I_{DS}–V_{GS} curve of figure 1(d) is a clear hysteresis between the forward and reverse sweeps.

Several recent reports have shown a strong hysteretic behavior in the field-effect characteristics of Si/SiO$_2$ supported GFETs. In analogy to single-walled carbon-nanotube-based field-effect transistors [23, 24], gate hysteresis has been attributed mainly to charge trapping in silanol groups (Si–OH) with surface-bound H$_2$O molecules facilitating the process of charge transfer and trapping [25, 26]. Consequently the concentration, distribution and reactivity of the silanol groups of the underlying SiO$_2$ play a decisive role in the transfer characteristics of a GFET. A high concentration of silanol groups makes the SiO$_2$ surface hydrophilic (in general dipolar molecules can easily attach to SiOH), but special treatment can turn this surface hydrophobic; indeed, nearly hysteresis-free GFETs have been achieved on SiO$_2$/Si substrates covered by a thin hydrophobic self-assembled organic layer of HMDS solution (hexamethyldisilazane/acetone 1:1) [27]. Thermal annealing or vacuum pumping can also help to reduce hysteresis [14]. Nevertheless, we decided not to apply any treatment or annealing (other than the electrical one) to avoid the risk of introducing unwanted damage or stresses. Charges can be trapped in the PMMA as well; nevertheless, since the back-gate field is screened by the graphene layer, tunneling between the graphene channel and the top PMMA layer is suppressed with respect to tunneling between graphene and SiO$_2$ during V_{GS} sweeps.

In figure 2 we report the evolution of transfer characteristics for successive V_{GS} sweeps, acting as electrical...
annealing. Remarkably, figure 2(a) shows that the electrical cycles produce an increase of the current and the appearance of a double Dirac point, i.e. of two conductance minima. Further sweeps demonstrate the stabilization of the device (figure 2(b)). Swapping the drain and source has no effect. Two clear dips appear both in the reverse (where they are closer and less pronounced) and in the forward V_{GS} sweep. Figure 2(c) shows that a slower sweeping rate, which favors charge injection and trapping at the SiO$_2$ surface, widens the hysteresis loop.

The electrical stabilization, due to current self-annealing, is mainly the result of graphene–electrode interface modifications, which reduce and stabilize the contact resistance; we exclude bulk channel changes since the PMMA layer prevents removal of contaminants from its surface [8] that may vary its conductance. The contact resistivity [28], $\rho_C = RW \sim 5 \, \text{k} \Omega \, \mu\text{m}$ (W is the width of the channel), is on the low side of the range usually reported for Cr/Au-contacted GFETs ($2 \times 10^3 \, \Omega \, \mu\text{m} \leq \rho_C \leq 10^6 \, \Omega \, \mu\text{m}$) [29]; ρ_C is estimated at $V_{GS} = -80 \, \text{V}$ when the source-to-drain resistance is dominated by the contacts, the graphene bulk channel being at its maximum conductance. A further confirmation of the good contacts stems from the calculation of the mobility [30]. Despite the top coverage, which may affect the mobility [31], the contact resistivity cannot be increased; this means that the Fermi energy at the contacts can vary only within a limited range from the Fermi energy within the graphene double-cone at the metal contacts with respect to the bulk channel; the Fermi level alignment within the graphene double-cone at the contacts with respect to the bulk channel: the Fermi level within the band diagrams is shifted by the back-gate voltage and is influenced by the charge trapped at the SiO$_2$/graphene interface.

Due to different work functions (4.6 eV for Cr and 5.1 eV for Au and 4.5 eV for graphene [12]) electrons transfer from the graphene to the metal electrodes, thus forming a doping gradient from the contacts to the bulk channel. Underneath and close to the electrodes, the graphene is more p-doped than in the channel [11]. The doping of the graphene by the contacts is not limited to only underneath the metal electrodes but extends for 0.2–0.3 μm [34] or longer [35] in the inner channel, since the graphene, having zero density of states at the Dirac point, is not able to absorb all the transferred charge at the interface.

While charge-density pinning (i.e. gate uncontrollability of charge-density at the metal contacts) could occur at Au/graphene contacts [5, 13, 34], reactive materials have been proven to lead to charge depinning [7], especially when an oxide layer is formed at the graphene/metal interface. We assume here partial charge pinning with charge at the contacts controlled by the back-gate up to a certain limit, over which the charge cannot be increased; this means that the Fermi energy at the contacts can vary only within a limited range from the conical point of the graphene bands. This assumption can be seen as a consequence of the low contact resistance which makes the potential of the graphene at the contacts be anchored to the bias of source and drain; in such a case, the field of the back-gate is expected to affect mainly the carrier concentration in the bulk graphene channel. We will also show that the assumption of partial pinning leads to a good fit of the I_{DS}–V_{GS} curves on the whole V_{GS} range.

The effect of charge transfer at the contacts can be taken into account by shifting the energy band diagram (double-cone) of the graphene upward with respect to that in the bulk channel for unbiased V_{GS} (figure 3). The application of the back-gate voltage moves the Fermi level with respect to the double-cone, determining different conduction regions between source and drain. At $V_{GS} \geq 80 \, \text{V}$, n-type conduction takes place everywhere, thus giving a high conductance

![Figure 2](image-url)
respectively). Going to more negative local neutrality point in the channel and at the metal contacts, longer). Consequently, the n/n$^+$ at the contact regions (where graphene stays n-doped for i.e. a first Dirac point, is reached in the channel before that move away through contacts, so a charge neutrality condition, at the SiO$_2$/graphene interface, which, as already said, is at the origin of the leftward shift of the transfer characteristic during the following forward sweep, i.e. of the hysteresis. This trapped charge acts as a reduction of the overall p-doping and can be taken into account with a down-shift of the graphene bands (configuration 5). During the forward sweep the p-doping of the graphene is neutralized by attracting electrons from the contacts and a neutral condition is soon reached at the contacts, thus resulting in a first Dirac point (point 6 at V_{GS} \sim -18 V in figure 3(a)). Further increase of V_{GS} creates a second dip (at V_{GS} \sim 48 V) when neutrality is reached in the bulk channel (point 7). The second Dirac point happens at a V_{GS} value slightly below the one observed during the reverse sweep as an effect of the charge stored at the SiO$_2$/graphene interface; finally a low-conductance n/n$^+$ structure (point 8) is formed again. The ΔV_{GS} \sim 65 V separation between the two dips in the forward sweep is increased with respect to the previous ΔV_{GS} \sim 10 V since the downward band shift created by the SiO$_2$ trapped charge and the injection of electrons from the contacts greatly favors the appearance of a Dirac point in the contact regions. The position of this point, being related to the SiO$_2$ trapped charge, depends also on the maximum negative voltage applied during the previous reverse sweep. Indeed, figure 4 shows that the position of the additional Dirac point depends on the starting value of the back-gate voltage sweep.

Very importantly, our model predicts that, whatever the choice of the metal leads is, the extra Dirac point appears always in the p-branch of the transfer characteristic. Indeed, a second dip has been searched for but not found under n-type transport conditions also on Ti- or Co-contacted GFETs [7, 15]; this observation has been explained by considering that positive charges are much easier to inject into the SiO$_2$ trap centers than electrons [15].

Furthermore, since the transfer characteristic of a GFET roughly reflects the density of states, our finding can also be considered as a measurement of the overall density of state of an Au-contacted graphene sheet, that as calculated in [36] is expected to present a double minimum. While [36] provides a theoretical description of the conductance based on the non-equilibrium Green function method in the ballistic limit, in the following we numerically reproduce the double dip behavior of the density of state in the context of the diffusive transport regime.

![Figure 3](image.png)
dependence only modifies the constant factor A the two contact regions and divided the channel into three regions and taken the Fermi level at the contacts and in the bulk channel, we have ρ that in the expression λ (where A E transport equation in describing the diffusive dynamics of the proved by a numerical simulation exploiting the Boltzmann The validity of the proposed phenomenological model has been

4. Numerical simulation

The validity of the proposed phenomenological model has been proved by a numerical simulation exploiting the Boltzmann transport equation in describing the diffusive dynamics of the device. Considering that the Fermi energy E_F is linearly controlled by V_{GS}, and assuming that the charge stored at the SiO$_2$/graphene interface is uniformly distributed across the channel and its density ρ_0 is at most a second power of V_{GS} [23, 24], the total carrier density ρ along the graphene channel is, to a good approximation, a quadratic function of the Fermi energy. The dependence of ρ on E_F can be easily understood by considering that the energy dependence of the density of states of graphene is $D_{\rho}(E) \propto |E|$ and observing that in the expression $\rho = \rho_0 + A \sum_i \lambda f_i^\infty(D_i(E) f_i(E)) dE$ (where A is a constant, $f_i(E)$ is the Fermi function, and $\lambda = \pm 1$ for electrons and holes, respectively) the integral roughly shows a quadratic behavior on E_F whose temperature dependence only modifies the constant factor A.

Accordingly we have assumed an overall quadratic dependence of ρ on V_{GS}. The value of ρ so obtained has been used to calculate the graphene conductance g: $g \propto \frac{e^2}{h} \frac{\lambda}{E_F} \rho(E_F)$, with $v_F \approx 10^6$ m s$^{-1}$ the Fermi velocity and T the temperature [1]. To take into account the mismatch of the Fermi level at the contacts and in the bulk channel, we have divided the channel into three regions and taken $E_F = E_C$ at the two contact regions and $E_F = E_M$ in the bulk channel (with $|E_M| > |E_C|$ at equilibrium), and both E_C and E_M quadratic functions of V_{GS}. Finally, the conductances of the three regions have been combined in series: $G^{-1} = \sum_{i=1}^3 \frac{1}{|G_i|} + Z$ (we have also included a parasitic impedance Z originating from the contacts and leads).

In figure 4 we report experimental data for G–V_{GS} recorded in a whole V_{GS} loop starting at zero bias. The data (colored curves) are compared with the numerical simulation (black curves) resulting from our theoretical model. The dotted lines evidence the mismatch from the experimental data when no charge pinning is considered in the model; the introduction of an upper limit for $|E_C|$, i.e. the hypothesis of partial charge pinning, instead, well reproduces the measured G–V_{GS} behavior. An additional element pointing towards our interpretation is obtained from the consideration that the pinned value of $|E_C|$, as extracted from the experimental data, asymptotically reaches the difference between the gold and graphene work functions (i.e. $\Phi_{Au} - \Phi_G \approx 0.6$ eV). However, we notice that the double dip feature is reproduced independently from the pinning. Furthermore, from the fit of the starting curve ($V_{GS} = 0 \rightarrow 80$ V (orange online)) we swept a value $|E_C - E_M| \approx 0.5$ eV. This value, compared with the quoted $\Phi_{Au} - \Phi_G = 0.6$ eV, allows us to estimate an interface voltage step $\Delta V = 0.1$ eV [11].

We highlight that the presence of a double dip results in an effective widening of the hysteretic loop. The hysteresis observed in carbon-nanotubes-based transistors has been exploited to build memory devices [24, 37, 38]. Similarly, here, the two values of the current at a given gate voltage can be considered as the two logic levels (on and off state) of a memory device; positive or negative V_{GS} pulses can be used to switch between these two states to implement the write and erase operations. Figure 5 is a proof of the concept, where reading is performed at $V_{GS} = 0$ and ±80 V pulses are used for write and erase. The programming pulses are of course enormous for practical applications; nevertheless, with proper treatment of the SiO$_2$/Si or by ionic screening [39], it could be possible, in principle, to obtain transfer characteristics with the deeper dip around $V_{GS} = 0$ and accordingly considerably reduce the operating voltages. For practical technological applications, the same device could be implemented with a top-gate, thus leading to significantly lower write/erase voltages.
5. Conclusion

In conclusion, we have clarified the nature of the double dip often observed in the p-branch of the transfer characteristic of a GFET. We have shown that it is related to charge transfer between the graphene and the metal contact and that it is enhanced by the hysteresis provoked by charge storage at the graphene/SiO₂ interface. Elucidation of the origin of such an anomaly is of technological importance since the observed distortion indicates a deterioration of the gate voltage response of the device, i.e., a decrease in the field modulation of the channel conductance. Although a possible drawback of the device, i.e., a decrease in the field modulation of the channel conductance, we have also suggested that such a feature can be conveniently exploited to develop graphene-based memory devices.

Acknowledgments

We thank Professor P. Barbara, Dr. Y. Yang, Dr. A. K. Boyd and Dr. M. Rinzan for the logistic and technical support and fruitful discussions during the time spent on the fabrication and characterization of the devices at the Georgetown Nanoscience and Microtechnology Laboratory (GNuLab) of the Georgetown University, in Washington, DC. We acknowledge the financial support of the Italian MIUR with PRIN 2008NMRHJS.

References

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109–61
[2] Stallingga P, Roy V A L, Xu Z-X, Xiang H-F and Che C-M 2008 Metal-insulator–metal transistors Adv. Mater. 20 2120–4
[3] Adam S, Hwang E H, Galitski V M and Das Sarma S 2007 A self-consistent theory of graphene transport Proc. Natl. Acad. Sci. 104 18392–7
[4] Huang B, Stander N, Sulpizio J A and Goldhaber-Gordon D 2008 Evidence of the role of contacts on the observed electron–hole asymmetry in graphene Phys. Rev. B 78 121402
[5] Chen Z and Appenzeller J 2009 Gate modulation of graphene contacts–on the scaling of graphene FET 2009 Symp. on VLSI Technology Digest of Technical Paper pp 128–9
[6] Nouchi R, Shiraiishi M and Suzuki Y 2008 Transfer characteristics in graphene field effect transistors with Co contacts Appl. Phys. Lett. 93 152104
[7] Nouchi R and Tanigaki K 2010 Charge–density depinning at graphene contacts Appl. Phys. Lett. 96 253503
[8] Du X, Skachko I and Andrei E Y 2008 Towards ballistic transport in graphene Int. J. Mod. Phys. B 22 4579–88
[9] Novikov D S 2007 Numbers of donors and acceptors from transport measurements in graphene Appl. Phys. Lett. 91 102102
[10] Hwang E H, Adam S and Das Sarma S 2007 Carrier transport in two-dimensional graphene layers Phys. Rev. Lett. 98 186806
[11] Giovannetti G, Khomyakov P A, Brooks G, Karpan V M, van den Brink J and Kelly P J 2008 Doping graphene with metal contacts Phys. Rev. Lett. 101 026803
[12] Huang B, Sulpizio J A, Stander N, Todd K, Yang B and Goldhaber-Gordon D 2007 Transport measurements across a tunable potential barrier in graphene Phys. Rev. Lett. 98 236803
[13] Lee E J H, Balasubramanian K, Weitz R T, Burghard M and Kern K 2008 Contact and edge effect in graphene devices Nat. Nanotechnol. 3 486–90
[14] Khomyakov P A, Giovannetti G, Rusu P C, Brooks G, van den Brink J and Kelly P J 2009 First-principles study of the interaction and charge transfer between graphene and metals Phys. Rev. B 79 195425
[15] Chiu H-Y, Pereboinos V, Lin Y-M and Auvouris P 2010 Controllable p–n junction formation in monolayer graphene using electrostatic substrate engineering Nano Lett. 10 4634–9
[16] Burzaru-Lopez S, Vanovic M, Kindermann M and Chou M Y 2010 Effects of metallic contacts on electron transport through graphene Phys. Rev. Lett. 104 076807
[17] De Marco P, Nardone N, Del Vitto A, Alessandri M, Santucci S and Ottaviano L 2010 Rapid identification of graphene flakes: alumina does it better Nanotechnology 21 255703
[18] Ferrari A C et al 2006 Raman spectrum of graphene and graphene layers Phys. Rev. Lett. 97 187401
[19] Shi Y, Dong X, Chen P, Wang J and Li L-J 2009 Effective doping of single-layer graphene from underlying SiO₂ substrates Phys. Rev. B 79 115402
[20] Kang Y-J, Kang J and Chang K J 2008 Electronic structure of graphene and doping effect on SiO₂ Phys. Rev. B 78 115404
[21] Leenaerts O, Partoens B and Peeters P M 2008 Adsorption of H₂O, NH₃, CO, NO₂, and NO on graphene: a first-principles study Phys. Rev. B 77 125416
[22] Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B-L and Duan W 2008 Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor J. Phys. Chem. C 112 13442–6
[23] Lee J S, Ryu S, Yoo K, Choi I S, Yun W S and Kim J 2007 Origin of gate hysteresis in carbon nanotube field effect transistors J. Phys. Chem. C 111 12504–7
[24] Di Bartolomeo A, Rinzan M, Boyd A K, Yang Y, Guadagno L, Giubileo F and Barbara P 2010 Electrical properties and memory effects of field effect transistors from networks of single and double-walled carbon nanotubes Nanotechnology 21 115204
[25] Kohman T, von Klitzing K and Smet J H 2009 Four-terminal magneto-transport in graphene p–n junctions created by spatially selective doping Nano Lett. 9 1973–9
[26] Joshi P, Romeo E, Neal A T, Toutam V K and Di Bartolomeo A, Rinzan M, Boyd A K, Yang Y, Guadagno L, Giubileo F and Barbara P 2010 Electrical properties and memory effects of field effect transistors from networks of single and double-walled carbon nanotubes Nanotechnology 21 115204
[27] Loehman T, von Klitzing K and Smet J H 2009 Origin of gate hysteresis in carbon nanotube field effect transistors J. Phys. Chem. C 111 12504–7
[28] Joshi P, Romeo E, Neal A T, Toutam V K and Di Bartolomeo A, Rinzan M, Boyd A K, Yang Y, Guadagno L, Giubileo F and Barbara P 2010 Electrical properties and memory effects of field effect transistors from networks of single and double-walled carbon nanotubes Nanotechnology 21 115204
[29] Venuagopulu A, Colombo L and Vogel E M 2010 Contact resistance in few and multilayer graphene devices Appl. Phys. Lett. 96 013512
[30] Nagashio K, Ishimura T, Kita K and Toriumi A 2010 Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor Japan. J. Appl. Phys. 49 051304
[31] Nagashio K, Ishimura T, Kita K and Toriumi A 2009 Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance IEDM: IEEE Int. Electron Devices Mtg pp 565–8
[32] Lemme M C, Eichertmyer T J, Baus M, Szafrahn T, Bolten J, Schmidt M, Wahlbrink T and Kurz H 2008 Mobility in graphene double gate field effect transistors Solid-State Electron. 52 514–8
[32] Hummel C, Schwierz F, Hanish A and Pezoldt J 2010 Ambient and temperature dependent electric properties of backgate graphene transistors Phys. Status Solidi b 247 903–6

[33] Liao Z-M, Han B-H, Zhou Y-B and Yua D-P 2010 Hysteresis reversion in graphene field-effect transistors J. Chem. Phys. 133 044703

[34] Mueller T, Xia F, Freitag M, Tsang J and Avouris Ph 2009 Role of contacts in graphene transistors: a scanning photocurrent study Phys. Rev. B 79 245430

[35] Golizadeh-Majorad R and Dutta S 2009 Effect of contact induced states on minimum conductivity in graphene Phys. Rev. B 79 085410

[36] Low T, Hong S, Appenzeller J, Datta S and Lundstrom M S 2009 Conductance asymmetry of graphene p–n junction IEEE Trans. Electron Devices 56 1292–8

[37] Di Bartolomeo A, Yang Y, Rinzan M B M, Boyd A K and Barbara P 2010 Record endurance for single-walled carbon nanotube-based memory cell Nanoscale Res. Lett. 5 1852–5

[38] Di Bartolomeo A, Ruecker H, Schley P, Fox A, Lischke S and Na K-Y 2009 A single-poly EEPROM cell for embedded memory applications Solid-State Electron. 53 644–8

[39] Chen F, Xia J and Tao N 2009 Ionic screening of charged-impurity scattering in graphene Nano Lett. 9 1621–5