A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes

Sengottayan Senthil-Nathan*

Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India

Mosquitoes are a serious threat to the society, acting as vector to several dreadful diseases. Mosquito management programs profoundly depend on the routine of chemical insecticides that subsequently lead to the expansion of resistance midst the vectors, along with other problems such as environmental pollution, bio magnification, and adversely affecting the quality of public and animal health, worldwide. The worldwide risk of insect vector transmitted diseases, with their associated illness and mortality, emphasizes the need for effective mosquitocides. Hence there is an immediate necessity to develop new eco-friendly pesticides. As a result, numerous investigators have worked on the development of eco-friendly effective mosquitocidal compounds of plant origin. These products have a cumulative advantage of being cost-effective, environmentally benign, biodegradable, and safe to non-target organisms. This review aims at describing the current state of research on behavioral, physiological, and biochemical effects of plant derived compounds with larvicidal effects on mosquitoes. The mode of physiological and biochemical action of known compounds derived from various plant families as well as the potential of plant secondary metabolites, plant extracts, and also the essential oils (EO), as mosquitocidal agents are discussed. This review clearly indicates that the application of vegetal-based compounds as mosquito control proxies can serve as alternative biocontrol methods in mosquito management programs.

Keywords: biopesticide, vector, secondary metabolites, phytochemical, physiology, enzyme, toxicity

INTRODUCTION

Vector borne diseases account for more than seven million deaths annually (World Health Organization [WHO], 2017), among which mosquito borne diseases are the most threatening due to their wide spread occurrence, consequently featuring a higher frequency of disease transmission (Lounibos, 2002; Tyagi et al., 2015). Among different mosquito families, Culicidae is a large family...
(3,300 Service species-41 genera) comprising *Toxorhynchitinae*, *Anopheinae* (anophelines), and also *Culicinae* (culcines) sub-families (Service, 1996; Senthil-Nathan et al., 2005b). Among the 31 genera, *Anopheles*, *Culex*, and *Aedes* are the most detrimental. *Anopheles* species, are carriers of major life-threatening diseases (malaria and filariasis-transmitting agents, such as *Wuchereria bancrofti*, *Brugia malayi*, and *Brugia timori*) and also of a few arboviruses (Kalaivani et al., 2012; Benelli et al., 2018; Thanigaivel et al., 2019; Vasantha-Srinivasan et al., 2019).

The discovery of DDT’s insecticidal properties in late 1930s/beginning of 1940s and the following progress of organochlorine invention and organophosphate insecticides concealed biological pesticide merchandise-research since the responses to mosquito regulation were supposed to have remained established (Shaalan et al., 2005; Senthil-Nathan et al., 2006a,b). The ranges of many of the mosquito species were not limited and keep expanding, thereby up surging the rates of disease incidence. Until recently, the use of several of the earlier synthetic-insecticides, such as permethrin and malathion, along with other organophosphates in vector control programs has been partial. This is due to absence of unique-insecticides, expense of synthetic-insecticides, apprehension for ecological sustainability, damaging influence on human health, besides further non-target populations, their persistent nature, greater amount of “biological magnification” through ecosystem and also the development of insecticide resistance (Ghosh et al., 2012). The emergence of DDT resistance in *Aedes* species (*Ae. tritaeniorhynchus* and *Ae. sollicitans*) lead to numerous drawbacks in mosquito control programs (Brown, 1986). Several categories of Mosquitocides are being implemented in malaria control programs (BHC, organophosphorus, carbamate, and pyrethroid). The ability of mosquitoes to evade the insecticidal action of these synthetic compounds are attributed to the increase in the rate of synthesis of detoxifying enzymes such as monoxygenases (MFOs), glutathione-S-transferases (GST) and carboxy-cholinesterase (CCE). MFOs are often associated with metabolic resistance to pyrethroids, such as permethrin, while GSTs are usually associated with organochloride resistance such as DDT. Resistance to pyrethroids, organophosphates and carbamates, such as bendiocarb are incurred by the magnification of CCE activity (Hemingway and Ranson, 2000). Added insecticides, benzophenyl urea and the larvicide, *Bacillus thuringiensis israelensis* (Bti), have partial use against mosquitoes. Unpredicted natural or anthropogenic associated ecological variations that modify the original habitats severely affect the vector biology thereby positively influencing their existence and disease incidence, thus constraining the frame-work of mosquito control strategies.

BIOLOGICAL MANAGEMENT OF MOSQUITOES

Several phytochemicals from several plant families are identified with larvicidal activities against different mosquito species (*Table 1*). Plant extracts with their augmented phytochemical elements have a recognized potential as a substitute to conventional mosquito control agents (Sukumar et al., 1991; Tripathi et al., 2009; Tehri and Singh, 2015). The main strategy for mosquito control deals with the restriction of the vector population. As a promising biocontrol agent, the compounds from the plants of the family *Meliaceae* such as neem *Azadirachta indica* A. Juss (Senthil-Nathan et al., 2005b; Senthil-Nathan, 2013), Indian white cedar, *Dysoxylum malabaricum* Bedd. (Senthil-Nathan et al., 2006a), *D. beddomei* and chinaberry tree, *Melia azedarach* L. (Senthil-Nathan et al., 2006b) were effective against *An. stephensi* (Senthil-Nathan et al., 2008).

“Secondary metabolites” from *Eucalyptus tereticornis* Sm. (forest red gum, *Myrtaceae*) exhibited effective mosquitocidal activities against *An. stephensi* as reported by Senthil-Nathan (2007). Also, the crude metabolic extracts of *Acanthospermum hispidum* leaves were active against *An. stephensi*, *Ae. Aegypti*, as well as *Cx. quinquefasciatus* as reported by Vivekanandhan et al. (2018a,b). A study conducted on testing the mosquitocidal activity of *Justicia adhatoda* L. (*Acanthaceae*) leaf extracts revealed the potential of natural larvicidal agent against *Ae. Aegypti* (Thanigaivel et al., 2012, 2017a,b).

Besides secondary metabolites, essential oils (EOs) from plants were also recorded with effective mosquitocidal potentials. The EOs from the plants of *Lamiaceae* and *Zingiberaceae* were proved with bioactivity against *Ae. aegypti* (Kalaivani et al., 2012). The fern *Actiniopteris radiata* was tested with novel mosquitocidal activity against larvae of *Ae. aegypti* and *An. Stephensi* (Kamaraj et al., 2018). The seed oil extract of *Acacia nilotica* possessed robust larvicidal action against major mosquito vectors (Vivekanandhan et al., 2018a). A remarkable biological activity of EOs against Dengue vectors has been extensively reviewed by Chellappandian et al. (2017, 2018, 2019). Plant volatile oils were also conveyed with mosquitocidal potentials. As studied by Vasantha-Srinivasan et al. (2018), the crude volatile oil (CVO) from Piper beetle leaves possessed significant larvicidal, ovipositional, and repellency effects against *Ae. Aegypti*.

Derivatives of plants are enriched with active molecules with exceptional mosquitocidal properties and can be advanced as low cost environmentally friendly bio-pesticides. Many botanical extracts along with their chief constituents showed effective insect metabolism inhibition or stimulation of digestive enzymes (Senthil-Nathan et al., 2009; Napoléao et al., 2012; Senthil-Nathan, 2013). Unlike synthetic chemicals, previous literature on plant compounds doesn’t provide any indication for the emergence of resistance so far. This is most likely due to the blend of several bioactive compounds with different mechanisms of action and therefore it is difficult for mosquito vectors to develop resistance (Mulla and Su, 1999; Shaalan et al., 2005).

IMPACT OF PHYTOCHEMICALS ON THE PHYSIOLOGY OF MOSQUITO Larvae

As in general, plant secondary metabolites are evolved as protection mechanism against herbivory. When these toxic substances are encountered by the mosquitoes, a relatively unambiguous response is triggered that has a non-specific influence on a wide range of molecular targets such as...
Family and plant species	Major constituents	Mosquito species	References
Acanthaceae			
Andrographis paniculata	Andrographolide	Aedes aegypti	Edwin et al., 2016
Alangiaceae			
Alangium salvifolium	Asarinin, sesamin and (+)-xanthoxyloy-γ,γ-dimethylallylether, Hexadeccanoic acid, 1 hydroxymethyl-1,2-ethanediyl ester	Aedes aegypti	Thanigaivel et al., 2017a
Amaranthaceae			
Chenopodium ambrosioides	α-Terpineol	Aedes aegypti	Leyva et al., 2009b
Amaryllidaceae			
Alium macrostemon	Methyl propyl disulfide; mimethyl trisulfide	Aedes albopictus	Liu et al., 2014a
Alium monanthum	Dimethyl trisulfide; dimethyl tetrasulfide	Aedes aegypti	Moon, 2011
Anacardiaceae			
Pistacia terebinthus	α-Pinene; cyclopentane	Culex quinquefasciatus	Cetin et al., 2011
Spondias purpurea	Caryophyllene oxide and α-cadinol	Aedes aegypti	Lima et al., 2011
Annonaceae			
Cananga odorata	Benzyl acetate, linalool, methyl benzoate	Aedes aegypti	Vera et al., 2014
Guatteria blepharophylla	Caryophyllene oxide	Aedes aegypti	Aciole et al., 2011
Guatteria fríeana	β-Eudesmol	Aedes aegypti	Aciole et al., 2011
Guatteria hispida	β-Pinene and α-pinene	Aedes aegypti	Aciole et al., 2011
Rollinia leptopetala	Spathulenol	Aedes aegypti	Feitosa et al., 2009
Apiaceae			
Angelica purpuraeofolia	4’-Chloro-4,4-dimethyl-3-(1-imidazolyl)-valerophenone, 1-Dodecanol,	Aedes aegypti	Nagella et al., 2012
Anethum graveolens	Limonene, carvone	Aedes albopictus	Seo et al., 2015
Apium graveolens	R-+-Limonene	Aedes aegypti	Pitasawat et al., 2007
Bupleurum fruticosum	Limonene, carvone	Aedes albopictus	Seo et al., 2015
Carum carvi	Carvone	Aedes aegypti	Pitasawat et al., 2007
Conopodium capillifolium	α-Pinene; β-pinene	Culex pipiens	Evergetis et al., 2009
Coniandra sativum	Linalool, 2,6-octadien-1-ol, 3,7- dimethyl-, acetate, E-β-cymene, β-pinene, cuminaldehyde	Aedes aegypti	Evergetis et al., 2009
Cuminum cyminum	trans-Anethole, Limonene	Aedes aegypti	Seo et al., 2015
Daucus carota	Carotol	Aedes albopictus	Seo et al., 2015
Elaeoselinum asclepium	α-Pinene; sabinene	Aedes aegypti	Evergetis et al., 2009
Foeniculum vulgare	trans-Anethole, Limonene	Aedes aegypti	Rocha et al., 2015
Heracleum pastinacifolium	Octyl acetate, Hexyl	Aedes aegypti	Tabanca et al., 2012a
Ligusticum chuanxiong	octadecenoic acids	Aedes aegypti, Culex quinquefasciatus	Evergetis et al., 2009
Oenanthe pimpinelloides	γ-Terpine; α-cymene	Aedes aegypti	Pavela, 2015
Pomponia anisum	trans-anethole, α-Pinene; sabinene, β-phellandrene	Aedes aegypti	Pavela, 2016
Petroselinum crispum	β-phellandrene,myristicin, α & β-pinene, myrcene	Anopheles culicifacies	Evergetis et al., 2012
Pe. Sativum	Myristicin,1,8-cineole, 1,3,8-p-menthatriene	Aedes albopictus	Seo et al., 2015
Trachyspermum ammi	Thymol	Aedes albopictus	Pandey et al., 2009
Apocynaceae			
Cionura erecta L.	Edren-9-one, alpha cadinol, eugenol and alpha muurolene	Anopheles stephensi	Mozaffari et al., 2014
Araliaceae			
Dendropanax morbifera	γ-Elemene	Aedes aegypti	Chung et al., 2009
Aristolochiaceae			
Aristolochia indica	Aristolochic acid I and II	Aedes aegypti	Pradeepa et al., 2015
Asarum heterotropoides	Methyleugenol and safrole	Aedes aegypti	Perumalsamy et al., 2009

(Continued)
Family and plant species	Major constituents	Mosquito species	References
Asteraceae			
Achillea millefolium	Eucalyptol, β-pinene, borneol, sabine, camphene	Aedes albopictus	Conti et al., 2010
Artemisia absinthium	(Z)-β-ocimene, (E)-β-farnesene (Z)-en-yn-dicycloether	Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi	Govindarajan and Benelli, 2016
Ar. dracunculus	Hexanal, isovaleric acid, (Z)-3-hexenol, Hexadecanod	Anopheles stephensi	Pour et al., 2016
Artemisia vulgaris	Camphor, Linalool, terpenen-4-ol, a-and b-thujone, b-pinene	Aedes aegypti	Bora and Sharma, 2011
Ar. dracunculus	Hexadecanol		
Artemisia vulgaris	Myrcene, limonene, cineol	Aedes aegypti	Sujatha et al., 2013
Ar. dracunculus	Capillin	Aedes aegypti, Aedes albopictus	Bora and Sharma, 2011
Blumea densiflora	Borneol, germacrene D, β-caryophyllene, γ-terpinene, α-pinene	Anopheles anthropophagus	Zhu and Tian, 2011
Artemisia vulgaris	α-pinene	Aedes aegypti	Wu et al., 2010
Ar. dracunculus	Capillin	Aedes aegypti	Senthilkumar et al., 2008
Blumea densiflora	Piperitone	Aedes aegypti	Marques et al., 2011
Tagetes erecta	trans-Anethole	Aedes aegypti	Ruiz et al., 2011
Tagetes minuta	Methyl chavicol	Aedes aegypti	Vera et al., 2014
Tagetes patula	SE-octimone	Aedes aegypti	Ruiz et al., 2011
Chamaemelum nobile	α-pinene; Limonene and terp	Aedes aegypti	Dharmagadda et al., 2005
Bignoniaceae			
Cybistax antisyphilitica	quinone	Aedes aegypti	Rodrigues et al., 2005
Boraginaceae			
Auxemma glazioviana	α-Bisabolol, α-cadinol, and T-muurolool	Aedes aegypti	Costa et al., 2004
Cordia curassavica	Cordiaquinones J and K	Aedes aegypti	Ioset et al., 2000
Cordia leucomallodios	α-Pinene	Aedes aegypti	Santos et al., 2006
Cucurbitaceae			
Bryonopsis laciosa	Goniotothalamin	Culex pipiens	Kabir et al., 2003
Cupressaceae			
Callitris glaucothylla	Guaiol & citroenolic acid	Aedes aegypti	Shaalan et al., 2006
Chamaecyparis formosensis	Myrtenol	Aedes aegypti	Chung et al., 2006
Cryptomeria japonica	16-Kaurene and elemol	Aedes aegypti, Aedes albopictus	Cheng et al., 2012
Cunninghamia konishii	Cedrol, α-Pinene	Aedes aegypti	Cheng et al., 2013
Cupressus arizonic var. glabra	α-Pinene & epi-zonarene	Aedes aegypti	Ali et al., 2013
Cupressus arizonic var.	Limonene, umbellulone α-pinene	Anopheles stephensi	Sedlach et al., 2011
Cupressus benthamii	Limonene; umbellulone	Aedes albopictus	Giatropoulos et al., 2013
Cupressus macrocarpa	Sabinene; α-Pinene; terpenen-4-ol	Aedes albopictus	Giatropoulos et al., 2013
Cupressus sempervirens	α-Pinene; 3-3-carene	Aedes albopictus	Giatropoulos et al., 2013
Cupressus torulosa	α-Pinene; 3-3-carene	Aedes albopictus	Giatropoulos et al., 2013
Chamaecyparis formosensis	Myrtenol; myrtenal	Aedes aegypti, Aedes aegypti	Kuo et al., 2007
Chamaecyparis lawsoniana	Limonene; oplopanonyl acetate; beyerene	Aedes albopictus	Giatropoulos et al., 2013
Juniperus communis ssp.	α-Pinene; 3-3-carene	Culex pipiens	Vourlioti-Arapli, 2012
Hemisphaericus	α-Pinene; limonene	Culex pipiens	Vourlioti-Arapli, 2012

(Continued)
TABLE 1 | Continued

Family and plant species	Major constituents	Mosquito species	References
Juniperus drupacea	Sabinene; 4-methyl-1-1-methylethyl-3-cyclohexen-1-ol	Culex pipiens	Vourlioti-Arapi et al., 2012
Juniperus foetidissima	Myrcene; germacrene-D; α-Pinene	Culex pipiens	Vourlioti-Arapi et al., 2012
Juniperus oxycedrus L. ssp. oxycedrus	α-pinene	Culex pipiens	Vourlioti-Arapi et al., 2012
Juniperus oxycedrus L. subsp. Macrocarpa	α-Pinene; l-3-carene; β-phellandrene; α-terpinyl acetate	Aedes albopictus	Giatropoulos et al., 2013
Tetracnitis articulate	α-Pinene; bornyl acetate	Aedes albopictus	Giatropoulos et al., 2013
Dioncophyllaceae	dioncophylline A	Anopheles stephensi	François et al., 1996
Euphorbiaceae	Methyl eugenol	Aedes aegypti	Morais et al., 2006
Croton nepetaefolius	Ascaridole & p-Cymene	Aedes aegypti	Torres et al., 2008
Croton regelianus	E-anethole, p-anisaldehyde	Aedes aegypti	Morais et al., 2006
Fabaceae	β-caryophyllene	Anopheles darling, Aedes aegypti	Trindade et al., 2013
Hymenaea courbaril	α-Copaene, spathulanol	Aedes aegypti	Aguiar et al., 2010
Myroxylon pereirae	Benzyl benzoate	Aedes aegypti	Yenesew et al., 2003
Millettia dura	Rotenoids, deguelin and tephrosin caryophyllene oxide; phenol,4-3,7-dimethyl-3-ethenylocta-1,6-dienyl caryophyllene	Culex quinquefasciatus	Dua et al., 2013
Psoralea coryllifolia	Citronellol	Aedes aegypti	Benelli et al., 2017
Geraniaceae	Culex quinquefasciatus	Culex quinquefasciatus	Cavalcanti et al., 2004
Pelargonium graveolens	Nerul; geranial	Culex quinquefasciatus	Cavalcanti et al., 2004
Gramineae	α-Pinene	Aedes aegypti	Cetin et al., 2011
Cymbopogon citratus	Thymol	Culex pipiens	Govindarajan et al., 2013
Hypericaceae	Δ3-carene, 1,8-cineole, β-caryophyllene, bicyclogermacrene	Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus	Araújo et al., 2003
Lamiaceae	β-caryophyllene, bergamotene, and terpinolene	Aedes aegypti	Jaenson et al., 2006
Hyptis martusii	E-Methyl-cinnamate	Aedes aegypti	Kulkarni et al., 2013
Hyptis suaveolens	Carvone	Aedes aegypti	Kulkarni et al., 2013
Lavandula gibsoni	α-Terpinolen and thymol	Aedes aegypti, Anopheles stephensi	Kulkarni et al., 2013
Lavandula stoechas	Fenchone, 1,8-Cineole	Culex pipiens	Traboulsi et al., 2002
Lippia organoides	Carvacrol	Aedes aegypti	Mar et al., 2018
Mentha longifolia	Piperitone oxide oxid	Aedes aegypti	Paviola et al., 2014
M. microphylla	Piperitone, Pulegone, Piperitone oxide	Culex pipiens	Traboulsi et al., 2002
M. spicata	Carvone	Aedes aegypti	Govindarajan et al., 2012
Nepeta cataria	E.Z-Nepetalactone and Z,E-nepetalactone	Aedes aegypti	Zhu et al., 2006
Ocimum americanum	E-Methyl-cinnamate	Aedes aegypti	Cavalcanti et al., 2004
Ocimum basilicum	Linalool; methyl eugenol	Aedes aegypti	Govindarajan et al., 2013
Ocimum gratissimum	Eugenol	Aedes aegypti	Cavalcanti et al., 2004
Ocimum sanctum	Methyl eugenol	Culex pipiens	Gbolade and Lockwood, 2008
O. syringum	Carvacrol, Thymol	Aedes aegypti	Traboulsi et al., 2002
Penila frutescens	oleic, S-limonene, perillaldehyde	Aedes aegypti	Pohl et al., 2011
Plectranthus amboinicus	Carvacrol	Aedes aegypti	Lima et al., 2011
Plectranthus mollis	Pterpine oxid, fenichone	Aedes aegypti	Kulkarni et al., 2013
Pogostemon cablin	Patchouli alcohol, Seysahelene, α-bulhesene, Norpatchoulenol	Aedes aegypti	Lima-Santos et al., 2019
Pulegium vulgar	Pulegone, carvone	Aedes albopictus	Pavela, 2015

(Continued)
Family and plant species	Major constituents	Mosquito species	References
Rosmarinus officinalis	1,8-Cineole; camphor	Aedes aegypti	Giatropoulos et al., 2018
Satureja hortensis	γ-Terpinene; carvacrol	Culex pipiens	Pavela, 2009
Thymus capitatus (L.)	Thymol, alpha-Amyrin, Carvacrol + beta-	Aedes aegypti	Mansour et al., 2000
Hoffm. & Link	Caryophyllene	Culex pipiens	Pitarokili et al., 2011
Thymus leucospermus	p-Cymene	Culex pipiens	Pavela, 2009
Thymus saturoides	Thymol; borneol	Aedes albopictus	Pitarokili et al., 2011
Thymus teucrioides	p-Cymene; γ-terpinene; thymol	Aedes aegypti	Giatropoulos et al., 2018
Thymus vulgaris	p-Cymene, carvacrol, thymol	Culex pipiens	Niroumand et al., 2018
Vitex agnus castus	Trans-caryophyllene, 1,8 cineole	Aedes aegypti	Kannathasan et al., 2011
Vitex trifolia	Methyl-p-hydroxybenzoate	Aedes aegypti	

Lauraceae

Family and plant species	Major constituents	Mosquito species	References
Cinnamomum camphora	1,8-Cineole	Anopheles sinensis	Zhang et al., 2018
C. cassia	Cinnamaldehyde	Aedes aegypti	Zhu et al., 2006
C. impressicostatum	Benzyl benzoate and α-phellandrene	Aedes aegypti	Jantan et al., 2005
C. japonicum	Benzyl benzoate	Anopheles sinensis	Zhang et al., 2018
C. osmophloeum	Benzyl benzoate	Aedes aegypti	Jantan et al., 2005
C. pubescens	Benzyl benzoate	Aedes aegypti	Jantan et al., 2005
C. rhynochryx	Benzyl benzoate	Aedes aegypti	Jantan et al., 2005
C. scortechini	β-Phellandrene and linalool	Aedes aegypti	Jantan et al., 2005
C. sintoc	Safrole	Aedes aegypti	Jantan et al., 2005
C. subavenium	Eugenol	Anopheles sinensis	Zhang et al., 2018
Laurus nobilis	1,8-Cineole	Aedes aegypti	Jantan et al., 2005

Magnoliaceae

Family and plant species	Major constituents	Mosquito species	References
Magnolia salicifolia	Trans-anethole, Methyl eugenol, isomethyl eugenol, Costunolide, lactone and parthenolide	Aedes aegypti	Kelm et al., 1997

Malvaceae

Family and plant species	Major constituents	Mosquito species	References
Abutilon indicum	β-sitosterol	Aedes aegypti,	Rahuman et al., 2008a
Azadirachtin, salannin, deacetylgedunin, gedunin, 17-hydroxyazadiradione and deacetylnimbir			

Meliaceae

Family and plant species	Major constituents	Mosquito species	References
Azadirachta indica	Saponins	Anopheles stephensi,	Senthil-Nathan et al., 2005a
23-O-methylnimocinolide			
6α-O-acetyl-7-deacetylnimocinol	Culex quinquefasciatus	Aedes aegypti	Ansari et al., 2005
Nimocinolide; 7-O-deacetyl-23-O-methyl-7α-O-senecioylnimocinolide		Aedes aegypti	Siddiqui et al., 1999
desfurano-6α-hydroxyazadiradione			Banerji and Nigam, 1984
22,23-dihydroxynomocinol		Aedes aegypti	Naqvi, 1987
1a-acetyl-3α-propionylvilsin		Aedes aegypti	Siddiqui et al., 2002
Mellaetraolenone		Aedes aegypti	Siddiqui et al., 2003
azadirachtin, salannin, deacetylgedunin, gedunin, 17-hydroxyazadiradione and deacetylnimbir		Culex quinquefasciatus	Siddiqui et al., 2003

Dysoxylum malabaricum

Family and plant species	Major constituents	Mosquito species	References
D. beddomei	Caryophyllene epoxide	Aedes aegypti	Senthil-Nathan et al., 2009
	cis-Caryophyllene	Aedes aegypti	Senthil-Nathan et al., 2009

(Continued)
TABLE 1 | Continued

Family and plant species	Major constituents	Mosquito species	References
Guarea humaitensis	1α,7α,11β-triacetoxy-4α-carbomethoxy-	Aedes aegypti	Massebo et al., 2009
G. scabra	1β,2α-(2-methylpropanoyloxy)-14β,15β-epoxyhavanesin	Aedes aegypti	Koutsaviti et al., 2015
Turraea floribunda	1α,11β-diacetoxy-4α-carbomethoxy-7α-	Aedes aegypti	Lima et al., 2011
	hydroxy-12α-(2-methylpropanoyloxy)-15β-oxohavanesin; 1α-acetyl-3α-propionylhavanesin	Culex pipiens	Leyva et al., 2008
Turraea wakefieldii	11β,12α-diacetoxyneotecleanin	Aedes aegypti	Lucia et al., 2008
	11β,12α-diacetoxy-14β,15β-epoxyneotecleanin	Aedes aegypti	Lucia et al., 2008
Myrtaceae			
Eucalyptus benthamii	α-Pinene	Aedes aegypti	Lucia et al., 2012
E. botryoides	p-Cymene, α-eudesmol, and 1,8-cineol	Aedes aegypti	Lucia et al., 2012
E. camaldulensis	1,8-Cineol, p-cymene and β-phellandrene	Aedes aegypti	Lucia et al., 2008
E. citiodora	Citronellal; citronellol; α-humulene isopulegol	Aedes aegypti	Vera et al., 2014
E. dunnii	1,8-Cineol and γ-terpinene	Aedes aegypti	Lucia et al., 2008
E. fastigata	p-Cymene	Aedes aegypti	Lucia et al., 2012
E. globulus	1,8-Cineol	Aedes aegypti Anopheles arabiensis	Lucia et al., 2007
E. grandis	α-Pinene	Aedes aegypti	Lucia et al., 2008
E. Gunnii	1,8-Cineol and p-cymene	Aedes aegypti	Lucia et al., 2012
E. nobilis	1,8-Cineol	Aedes aegypti	Lucia et al., 2012
E. radiata	1,8-Cineol	Aedes aegypti	Lucia et al., 2012
E. robusta	α-Pinene	Aedes aegypti	Lucia et al., 2012
E. saligna	1,8-Cineol and p-cymene	Aedes aegypti	Lucia et al., 2008
E. tereticornis	β-Phellandrene and 1,8-cineol	Aedes aegypti	Lucia et al., 2008
E. urrophylla	1,8-Cineol	Aedes aegypti	Cheng et al., 2009b
E. melanadenia	1,8-Cineol	Aedes aegypti	Aguilera et al., 2003
Myrtus communis	1,8 Cineole, α-Pinene, Linalool	Culex quinquefasciatus	Traboulsi et al., 2002
M. disstiflora	Terpinen-4-ol	Aedes aegypti	Park et al., 2011
M. leucadendron	1,8-Cineol, α-pinene, and α-terpinol	Aedes aegypti	Leyva et al., 2008
M. Laurencia	Terpinem-4-ol and γ-terpinene	Aedes aegypti	Park et al., 2011
M. quinquenervia	1,8-Cineol and E-nerolidol	Aedes aegypti	Park et al., 2011
Pimenta dioica	Eugenol, linalool	Aedes aegypti	Perera et al., 2014
P. racemosa	Terpinem-4-ol and 1,8-cineol	Aedes aegypti	Aciole, 2009
P. guajava	1,8-Cineol and β-caryophyllene	Culex pipiens	Leyva et al., 2009a
	1,8-Cineol	Aedes aegypti	Lima et al., 2011
P. rotundatum	Eugenol	Aedes aegypti	Aguilera et al., 2003
Syzygium aromaticum	Eugenol	Aedes aegypti	Costa et al., 2005
Orchidaceae			
Vanilla fragrans	4-ethoxyxylthiophen, 4-butoxyxylthiophen, vanillin, 4-hydroxy-2-methoxynmaldehyde and 3,4-dihydroxyphenylacetic acid	Culex pipiens	Sun et al., 2001
Pinaceae			
Cupressus L.	limonene, α & β-pinene,	Aedes aegypti	Burfield, 2000
Juniperus L.	3-carene	Aedes aegypti	Burfield, 2000
Pinus brutia	α-Pinene and β-pinene	Aedes albopictus	Koutsaviti et al., 2015
P. halepensis	β-Caryophyllene	Aedes albopictus	Koutsaviti et al., 2015
P. kesiya	α-Pinene, β-pinene, myrcene and germacrene D.	Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi	Govindarajan et al., 2016
P. longifolia	L-terpinol	Culex quinquefasciatus, Anopheles culicifacies	Ansari et al., 2005
P. stankenwiczi	Germacrene D α-Pinene and β-pinene	Aedes albopictus	Koutsaviti et al., 2015
P. sylvestris	Eugenol 3, Cyclohexene-1-methanol, α-4-trimethyl	Aedes aegypti, Culex quinquefasciatus	Fayemivo et al., 2014
TABLE 1 | Continued

Family and plant species	Major constituents	Mosquito species	References
Piperaceae			
P. auritum	Safrole	Aedes aegypti	Leyva et al., 2009b
P. betle	Citronellal	Aedes aegypti	Wahyuni, 2012
P. capense	2,3-Dihydro-2-(4′-hydroxyphenyl)-3-methyl-5(E)-propenylbenzofuran (conocarpan), 2-(4′-hydroxy-3′-methylphenyl)-3-methyl-5(E)-propenylbenzofuran (eupomatenoid-5), 2-(4′-hydroxyphenyl)-3-methyl-5(E)-propenylbenzofuran (eupomatenoid-6), 2,3-dihydro-5-formyl-2-(4′-hydroxyphenyl)-3-methylbenzofuran (decurrenal), and 3,7,11,15-tetramethyl-2(E)-hexadecen-1-ol (trans-phytol)	Aedes aegypti	de Morais et al., 2007
P. gaudichaudianum	Caryophyllene oxide, β-selinene	Aedes aegypti	de Morais et al., 2007
P. hostmanianum	Asaricin and myristicin	Aedes aegypti	de Morais et al., 2007
P. humayanum	β-selinene, caryophyllene oxide	Aedes aegypti	de Morais et al., 2007
P. klotzschianum	1-Butyl-3,4-methylenedioxybenzene,	Aedes aegypti	do Nascimento et al., 2013
P. longum	limonene, and α-phellandrene	Culex pipiens	Lee, 2000
P. marginatum	Isoelemecin, apiole	Aedes aegypti	Autran et al., 2009
P. permucronatum	(E)-Asarone, patchouli alcohol	Aedes aegypti	de Morais et al., 2007
Plumbaginaceae			
Plumbago zeylanica	Plumbagin	Aedes aegypti	Pradeepa et al., 2016
Poaceae			
Cymbopogon citratus	Geranial	Aedes aegypti	Cavalcanti et al., 2004
Cymbopogon flexuosus	citral a-pinene	Aedes aegypti	Syed and Leal, 2008
Cymbopogon nardus	Geranial; neral	Aedes aegypti	Vera et al., 2014
Vetiveria zizanioides	Citronellal	Aedes aegypti	Carreño-Otero et al., 2018
Papilionaceae			
Neorautanenia mitis	Neotenone, neorautanone, pterocarpans neoduline, nepseudin,4-methoxyneoduline	Culex quinquefasciatus, Anopheles gambiae	Joseph et al., 2004
Rutaceae			
Chloroxylon swietenia	Heptacosanoic acid	Aedes aegypti, Culex quinquefasciatus	Balasubramani et al., 2015
Citrus aurantifolia	Geijerene, Limonene, Germacrene D	Aedes aegypti, Anopheles stephensi	Kiran et al., 2006

(Continued)
Family and plant species	Major constituents	Mosquito species	References
F. limonia	n-hexadecanoic acid	Culex quinquefasciatus	Rahuman et al., 2000
Ruta graveolens	Undecan-2-one	Aedes aegypti	Tabanca et al., 2012b
Swinglea glutinosa	β-Pinene; piperitenone; α-Pinene	Aedes aegypti	Vera et al., 2014
Todtalia asiatica	Linalool	Aedes aegypti	Nyahanga et al., 2010
Zanthonyx armatum	Linalool	Aedes aegypti	Tiwary et al., 2007
Z. avicennae	1,8-Cineole, Limonene, Methyl heptyl ketone	Aedes aegypti	Prasawat et al., 2007
Z. piperitum	Asarinin, sesamin and (+)-xanthoxyl-γ,γ-dimethylallylether	Aedes aegypti, Culex quinquefasciatus	Kim and Ahn, 2017
Z. monophyllum	Germacrene D-4-ol and α-Cadinol	Aedes albopictus, Culex quinquefasciatus, Anopheles stephensi	Pavela and Govindarajan, 2017
Santalaceae	α-santalol	Aedes aegypti, Culex pippens	Jones et al., 2007
Santalum album	Guaiol, elemol, and eudesmol	Anopheles stephensi,	Amer and Mehlhorn, 2006
Schisandraceae	Eugenol, α-Terpinyl acetate, Eucalypt, ol, (E)-anethole	Culex quinquefasciatus	Kimbaris et al., 2012
Caparia biflora L.	α-Humulene	Aedes aegypti	Souza et al., 2012
Stemodia mantima	β-Caryophyline and caryophyline oxide	Aedes aegypti	Arriga et al., 2007
Tiliaeae	N-Methyl-6b-(deca-1′,3′,5′-tri-enyl)-3b-methoxy-2bmethylpiperidine	Aedes aegypti	Bandara et al., 2000
Verbenaceae	β-amyrin and 12-oleanane 3β, 21β-diol,	Culex quinquefasciatus	Nikkon et al., 2010
Lantana camara	Bicyclogermacrene and E-caryophyline	Aedes aegypti	Costa et al., 2010
Lippia alba	Carvone; limonene	Aedes aegypti	Santiago et al., 2006
L. gracilis	Carvacrol	Aedes aegypti	Santiago et al., 2006
L. origanoides	Carvacrol; p-cymene	Aedes aegypti	Vera et al., 2014
L. javanica	Allopurinol, camphor, Limonene, α-terpeneol, verbenone	Aedes aegypti	Mwangi et al., 1992
L. microphylla	1,8-cineole, thymol, α-pinene	Aedes aegypti	Santiago et al., 2006
L. nodiflora	Camphor, p-cymene, γ-terpinene	Aedes aegypti	Santiago et al., 2006
L. sidoides	Thymol	Aedes aegypti	Costa et al., 2005
Zingiberaceae	β-Caryophyline and β-pinene	Aedes aegypti	Santos et al., 2012
Alpinia purpurata	1H-3a,7-Methanoazulene and curcumene	Aedes aegypti	Choochote et al., 2005
Curcuma aromatica	Turmerone, curcumene, and zingiberene	Aedes aegypti	Leyva et al., 2008
Curcuma longa	1,8-Cineol and p-cymene	Aedes aegypti	Prasawat et al., 2007
Curcuma zedoaria	Dodecanal	Aedes aegypti	Sakhanokho et al., 2013
Hedychium coccineum	1,8-Cineol and β-pinene	Aedes aegypti	Sakhanokho et al., 2013
Hedychium sp.	1,8-Cineol	Aedes aegypti	Sakhanokho et al., 2013
Kaempferia galanga	Ethyl trans-p-methoxyccinnamate	Aedes aegypti	Munda et al., 2018
Kaempferia galanga	Ethyl cinnamate	Aedes aegypti	Munda et al., 2018
Zingiber officinalis	4-Gingerol	Aedes aegypti, Culex quinquefasciatus	Rahuman et al., 2008b
Zingiber officinalis	6-Dehydrogingerdione	Aedes aegypti, Culex quinquefasciatus	Rahuman et al., 2008b
Zingiber officinalis	6-Dihydrogingerdione	Aedes aegypti, Culex quinquefasciatus	Rahuman et al., 2008b
Zingiber zerumbet	α-Humulene; zerumbone	Aedes aegypti	Sutthanont et al., 2010
proteins, nucleic-acids, bio-membranes, besides added cellular components. Consequently, the physiology is disrupted at numerous receptor sites, eventually causing an abnormality in the nervous system. Plant metabolites affect several vital physiological functions that include inhibition of “ACHE” as well as “GABA-gated” chloride channel, disruption of Na-K ion exchange besides constricting the cellular respiration. As a subsequent event, the alteration of these enzyme levels gives rise to several anomalies that include the obstruction of nerve cell membranes and octopamine receptors along with calcium channel blockage, resulting in hormonal imbalance, mitotic poisoning, and also modifications of the molecular basis of morphogenesis (Rattan, 2010).

Synthetic insecticides generally increase the level of detoxifying enzymes. Phytochemicals target the mentioned cellular mechanisms and potentially disturb their functions (Figure 1; Zibaee and Bandani, 2010; Zibaee, 2011; Kaur et al., 2014; Senthil-Nathan, 2015). Physiological effects of phytochemicals are discussed below.

IMPACT OF PHYTOCHEMICALS ON DETOXIFYING ENZYMES

The antioxidant and detoxification enzymes of mosquito vectors are vital in detoxification of reactive oxygen species (ROS) synthesized by the toxic chemicals (Rattan, 2010). Esterase and phosphatase of the mosquito vectors plays a key role in several physiological events (Koodalingam et al., 2014). Excessive usage of toxic chemicals on mosquito control caused insecticide resistance through sodium channel mutations, activation of detoxification enzymes, and upregulation of key genes and other regulatory components like MicroRNAs (miRNAs). The CYP450s, GSTs, SOD, and esterase gene families are recognized as the foremost four enzymes accountable for the metabolic-resistance of the insects (Hemingway et al., 2004). Generally, detoxifying enzymes are involved in digestion, reproduction, juvenile hormone metabolism, neuronal conduction, moultong, and more importantly detoxification of toxic chemicals (Koodalingam et al., 2014). Phosphatases are involved in tissue development, cellular differentiation, carbohydrate metabolisms, and synthesis of ATP (Koodalingam et al., 2014). Mainly these two major classes of detoxifying enzymes are considered for evaluating the impact of toxic chemicals on physiological or biochemical events of arthropod vectors.

Carboxyl-esterases (EC3.1.1.1) are non-specific omnipresent enzymes that are associated to the major “endogenous” functions in insects, which hydrolyze a different carboxylic-acid ester (Lija-Escaline et al., 2015). Generally, the metabolic pathway of these enzymes was targeted by the chemical pesticides, especially the fourth generation class of Pyrethroids, which acts on the voltage sensitive sodium channels and blocks the mosquito nervous system (Hong et al., 2014). Esterases can also target by sequestering the insecticide through rapid binding and slowly releasing the insecticide metabolites (Karunaratne et al., 1993). This latter type of resistance requires the presence of increased quantities of esterase due to the 1:1 stoichiometry of the reaction and decreases the metabolic breakdown time.

Plant extracts and their derivatives have been widely reported to decrease the levels of carboxylesterase (α- β-carboxylesterase) level in the *Ae. aegypti* larva (Koodalingam et al., 2014; Lija-Escaline et al., 2015). Besides exhibiting larvicidal activity *Aalgium salvipolium*, also substantially reduced the levels of α, β-carboxylesterase as well as superoxide dismutase (SOD) in *Ae. Aegypti* (Thangaiavel et al., 2017a). *Myrrh communiphora molmol* (oil and oleo-resin extract) instigated biochemical changes in *Cx. pipiens* that affected the cell proteins, as well as loss of enzyme activity (Massoud et al., 2001).

Higher rates of enzyme activities, such as SOD (Agra-Neto et al., 2014; Lija-Escaline et al., 2015) and physiological enzymes like esterase (Wheelock et al., 2005; Lija-Escaline et al., 2015), phosphatases (Walter and Schütt, 1974; Urich, 1994) are recorded with increasing developmental stages and these are considered responsible for increased pyrethroid resistance. The Mosquito vectors that established resistance to Temephos have been found to possess genes that insensitized ACHE on exposure to pesticides. Insects were also characterized by the over expression of varied forms of detoxifying enzymes (GST, SOD, and esterases) (Larson et al., 2010).

Glutathione-S-transferases are a class of detoxification enzymes considered to play a vital role in the existence of insects exposed to toxic metabolites. Increased GST activities are connected with the expression of metabolic resistance toward insecticides (Clark, 1990). GSTs can break down a broad range of substances; amplified GST activity is possibly as a response to an environmental stress. Generally, Cytochrome P450s (CYP450) displayed upregulation when induced by plant secondary metabolites in diverse insect pests especially against the vectors of human diseases (Caballero et al., 2008) and have members which are considered as major elements conferring resistance against insecticides (i.e., CYP2, CYP4, and CYP6) (Sun et al., 2001). The upregulation of GST enzymes usually at the exposure of a prominent dosage of plant compounds suggests the activity of a major detoxification process (Edwin et al., 2016). Consequently, the levels of GST expression may be used as a biomarker to detect the development of resistance (Iukic et al., 2007).

CYP450 group of enzyme family are also designated as key indicators of metabolic resistance besides susceptibility to insecticides (David et al., 2013). Many previous research outcomes proved alteration or inhibition in the expression of major detoxifying enzymes exposed to plant chemicals. Thangaiavel et al. (2017a) showed increase in the rate of GST activity in IV instar larvae of dengue mosquito exposed to methanolic leaf extract of *J. adhatoda* with their major derivative 3-hydroxy-2,3-dihydropyrrolo[2,1-b]quinazolin-9(1h) one (26.37%). Likewise, carboxylesterase activities differed significantly in *Ae. aegypti* post treatment with the leaf extracts of *P. nigrum* with their major derivatives thymol (20.77%) (Lija-Escaline et al., 2015). Correspondingly, the activity of major enzymes (esterases, GST, and CYP450) of dengue mosquito severely affected post treated with dynamic plant compound andrographolide derived from *Andrographis*
paniculata (Acanthaceae) at the maximum dosage of 12 ppm (Edwin et al., 2016). DDT resistance in the mosquito An. gambiae is correlated elevated glutathione transferase (GST) E2 activity (AgGSTE2) (Enayati et al., 2005). The DDT resistant An. gambiae evades the insecticidal activity by the dehydrochlorination of DDT to its non-insecticidal metabolite DDE. Muleya et al. (2008) reported that compounds -epiphyllocoumarin (Tral-1), knipholine anthrone, isofuranonaphthoquinones (Mr 13/2,
Mr13/4), and the polyprenylated benzophenone (GG1) were potent inhibitors of AgGSTE2.

Besides the botanical extracts, EO derived from the plants also have strong inhibition of detoxifying enzymes of arthropod vectors (Pavela, 2015). EO may provide substitute sources of vector control since they are enriched with diverse phyto-molecules with insecticidal properties (Cheng et al., 2013). Insecticide phytochemicals from EOs belong to terpenoids chiefly and Phenylpropanoids to a limited extent. In which, Terpenoids includes monoterpenes and sesquiterpenes as the major compositions of EOs (Chellappandian et al., 2018). Lee et al. (2003) specified that volatile and lipophilic monoterpenoids infiltrate insect body, where they afflict physiological processes, and hence their mode of action is hard to elucidate. Previous research of Vasantha-Srinivasan et al. (2017) showed that the CVO derived from Piper betle (L.) (Pb-CVO) showed upregulation in the level GST and CYP450 and down regulate the expression of Carboxylesterases activity against the field and laboratory strains of Ae. aegypti. Moreover, the above results also showed that the changes in the level of enzymes are steady in both field and laboratory strains compared to the chemical pesticides. Due to enriched chemical diversity and potential mosquitocidal activity, CVO have acquired greater interest from researchers looking for new besides natural replacements to chemical-pesticides in controlling medically challenging pests (Pavela, 2015). Correspondingly, EO constituent’s nootkatone and carvacrol from Alaskan yellow cedar tree inhibits 50% of acetylcholine esterase activity in Ae. aegypti compared to the carbaryl, a known acetylcholinesterase inhibitor (Anderson and Coats, 2012). The impact of major plant molecules against the mosquito larvicides was tabulated (Table 1). Hence, expression of these molecules on detoxifying and metabolic enzymes is considered an important biomarker to evaluate the mosquitocidal potential of bio-rational plant metabolites.

Pradeepa et al. (2014) have reported the antimalarial activities from the compound plumbagin, identified from the rhizome of Plumbago zeylanica against An. stephensi. Also, it was revealed that plumbagin constrains the vector AchE enzyme, An. stephensi in a dose dependent manner and also can be considered for controlling resistant vectors whose insecticide resistance is associated to an increased SOD activity (Pradeepa et al., 2016). The detection of SOD activity in the anal gills of An. stephensi larvae could be associated with their resistance provided against damaging oxygen products (Nivsarkar et al., 1991). The sensitivity of an insect to an insecticide can hence be increased by identifying certain compounds that can deactivate these enzymes (Larson et al., 2010).

IMPACT OF PHYTOCHEMICALS ON MIDGUT TISSUES

The midgut of the mosquito larvae is the chief interface of exterior environment and chip in major process like digestion, ion transport, absorption, and osmoregulation process (Bernick et al., 2008; Elumalai et al., 2016). Generally, gut region is the target of numerous insecticidal complexes and its integrity is dynamic for digestion and conferring of resistance against toxins (Stenfors Arnesen et al., 2008). With the insect midgut being the important site for synthesis of digestive enzymes, plant derived molecules primarily targets thee gut epithelium layer (EL) (Senthil-Nathan et al., 2008). This might be the significant cause for condensed metabolic rate in addition to a reduced enzyme activity (Selin-Rani et al., 2016). The peritrophic membrane (pM) gaurds the EL from the surrounding the gut lumen (GL) (Lija-Escaline et al., 2015). Phyto-chemicals are proven to exert a serious impact on the digestive epithelial cells and further decrease the growth rate of arthropods (Yu et al., 2015). Neira-Oviedo et al. (2008) stated that plant compounds flow into the gastric caeca and the malpighian tubules thereby affecting the midgut epithelium. For instance, extracts of M. azedarach have been reported to cause extensive harm on the EL and pM of filarial vector Cx. quinquefasciatus (Al-Mehmadi and Al-Khalaf, 2010). The pM may influence the growth and development of parasites vectors by creating a mechanical barrier to invasion by ookinetes (Rudin and Hecker, 1989). Plant extracts and their metabolites are crucial for the impairment of pest mid-gut epithelium (Rey et al., 1999). The compound cathechin isolated from Leucas aspera affects the mid-gut of the three mosquito larvae Ae. aegypti, An. stephensi, and Cx. quinquefasciatus (Elumalai et al., 2016). Previous photomicrographic study on the midgut tissues of the dengue mosquito (Field and laboratory strains of Ae. aegypti) treated with the CVO of P. betle displayed severe injuries to the GL and EL (Vasantha-Srinivasan et al., 2018). Correspondingly, leaf extracts of Aristolochia indica L. (Aristolochiaceae) and their derivatives aristolochic acid I and II showed severe damage on the midgut vacuolated gut epithelial columnar cells (epi), GL, and pM (Pradeepa et al., 2015). Likewise, methanolic leaf extracts of P. nigrum severely affected the midgut cellular organelles of Ae. aegypti at the minimal dosage of 10 ppm (Lija-Escaline et al., 2015). Similarly, Vasantha-Srinivasan et al. (2018) reported that P. betle CVO derived from P. betle at the sub-lethal dosage damage the pM, and major alteration in the alignment of EL and GL of dengue mosquito comparable to the control. Previous research on Andrographolide a major derivative of A. paniculata against dengue mosquito gut cells proved that there was an unembellished collapse in the mid-gut pM, in addition to a chief variation in the EL and GL alignment (Edwin et al., 2016), Selin-Rani et al. (2016) reported that the active plant molecules may damage the gut epithelium is the vital reason for concentrated metabolic rate and decrease in the enzyme-activity. Midgut cell damage is directly linked to the digestive and detoxifying enzymes dysregulation (Senthil-Nathan et al., 2008). This was also confirmed by histological studies of the mosquitoes that displayed midgut cell damage, post treatment with various botanical compounds (Yu et al., 2015). Further, treatment with plant compounds were also associated with altered protein (Fallatah, 2014) and biochemical profiles in mosquitoes (Senthilkumar et al., 2013).

Biochemical studies on Cx. pipipens exposed to Allium sativum, Citrus limon, and Bti were observed by Saeed et al. (2010). Results revealed that the use of plant oil extracts and Bti have great effect on total protein content of treated mosquito
larae. Fallatah (2010) reported the effect of water extract of fenugreek have high larvicidal effect against Cx. quinquefasciatus, causing noticeable effects on numerous body tissues together with the midgut and nervous system as well as total protein content. Aristolochic acids isolated from A. indica Linn, mainly affected the midgut EL and secondly the larval muscles and cells (Pradeepa et al., 2015). Similar results were also observed in mosquitoes treated with plant extracts (Costa et al., 2012). The orientation of the cytoplasmic protrusions of the apical surfaces of columnar cells toward the lumen suggests the secretion of apocrine and/or apoptosis.

Al-Mekhlafi (2018) reported the effect of Arum copticum (Apiaceae) extract against Culex pipiens larvae. Apart from exhibiting larvical activity, the extract was able to display cytopathological alterations of the midgut epithelium. EO and enriched fraction of Peumus boldus displayed larvicidal activity against Cu. Quinquefasciatus. The treated larvae displayed morphological changes in the midgut cells (de Castro et al., 2016). Velu et al. (2015) tested the peel extract of A. hypogaea against Ae. aegypti and Anopheles stephensi. The histopathological studies exposed midgut tissue damage and cuticle injury. Costa et al. (2012) reported similar aberrations in Ae. aegypti larvae (III instar) treated with Anmona coriacea extract. Ae. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae) displayed larvicidal and cytotoxic action with changes in the midgut epithelium and digestive cells by increasing the expression of autophagy genes (Costa et al., 2014, 2017). da Silva Costa et al. (2018) also reported that squamocin affected the osmoregulation and ion-regulation of Ae. aegypti larvae which resulted in a lethal effect caused by the development of a great vacuolization in the anal papillae wall.

The histopathological study of Ae. aegypti treated with methanol extract derived from seaweeds Sargassum binderi showed that larvae treated with seaweed extracts had cytopathological alteration of the midgut epithelium. The morphological observation revealed that the anal papillae and terminal spiracles of larvae were the common sites of aberrations (Yu et al., 2015). Phytochemicals (oleic, linoleic, linolenic, palmitic, and stearic acids) and their respective methyl esters were tested against fourth instar Cu. quinquefasciatus larvae. The compounds were found to affect its metabolism and the morphology of midgut along with their fat body (de Melo et al., 2018).

IMPACT OF PHYTOCHEMICALS ON THE INSECT BEHAVIOR

With the development of resistance by this time attained to almost all available chemicals, strategies integrating “plant derived” compounds to influence “semiochemical”-mediated behaviors by means of interruption of mosquito-olfactory sensory system have substantially developed (Muema et al., 2017). As a consequence, the physiological status related to the olfactory sensory system is disrupted. The phytochemicals will bind to these odorant chemoreceptors and subsequent flight orientations of the mosquitoes are hindered (Bohbot et al., 2010). Henceforth the physiological status for instance “circadian-regulated appetitive stimulus” or “gonotrophic status” that triggers olfaction in pursuit of nutritious sources, mates and oviposition sites are disturbed. Plant-based semiochemicals can be exploited to lure the mosquitoes to an insecticide trap, thereby forming an integral part of an integrated vector control programme (Kamala-Jayanthi et al., 2015). Rice volatiles on evaluation with BioGent (BG) sentinel traps elicited antennal responses that stimulated long range oviposition site seeking behavior. Also, p-cresol, from Bermuda grass hay infusion was reported with avoidance response to gravid An. Gambiae (Eneh et al., 2016).

FUTURE PERSPECTIVES

Higher rates of anthropogenic activities that are expected to expand with the population increase will increase the incidence of vector borne diseases. Additionally, the development of resistance among the vector population against the synthetic chemical insecticides along with their persistence in the environment and toxicity for non-target organisms are reducing the efficiencies of vector management practices globally. Hence novel plant-based compounds that are safe and effective are being focused for the development of improved management of vectors.

The research has now moved on from the isolation of bioactive compounds with anti-vector potentials to formulate novel application methods. Apart from the direct application of plant metabolites in vector control, nanoparticles (NPs) synthesized from plants using green technology are emerging as a new trend. Nanotechnology is presently “revolutionizing” the manufacture of commercial pesticides. Production of green NPs and nanoencapsulation compounds upsurges the permanence of EOs through “slow-release” phenomenon deliberating sustained fortification against mosquito bites. As reported by Jinu et al. (2018), silver nanoparticles (AgNPs) from Cleistanthus collinus Karra and Stychnos nux-vomica Linn nux-vomica presented highest larvicidal activity against A. stephensi and A. aegypti. Murugan et al. (2018a,b) proved the efficacy of zinc oxide NPs fabricated using the brown macroalga Sargassum wightii Greville ex J. Agardh. against An. stephensi. In another study reported by Murugan et al. (2018b), Poly (Styrene Sulfonate)/Poly (allylamine hydrochloride) encapsulation of TiO₂ NPs were found to enhance their toxicity against mosquito vectors of Zika virus.

CONCLUSION

Mosquito vector borne diseases are a major human health problem in all countries. There has been an alteration toward plant-based insecticides to overcome the problems related with the use of synthetic mixtures in mosquito control programme. Botanicals can be used as mosquitocides for killing both larvae and adult mosquitoes. However, only very few botanicals have moved from laboratory to the field use, which may be due to the light and heat variability of phytochemicals compared to synthetic insecticides. Further these botanicals have been widely explored, but only a comparatively small number of patents have
been filed with the persistence of regulating the formulations for use against mosquito species in the field level.

Although the activity of phytochemicals are generally attributed to some specific compounds, but there is increasing evidence that the combination of botanicals and biocides will result in an increased bioactivity compared to single phytochemicals (Senthil-Nathan et al., 2005a; Senthil-Nathan and Kalaivani, 2005, 2006).

At present, botanical insecticides make <1% of the world’s pesticide market (Sola et al., 2014). Isolation of active principles and synthesis of secondary metabolites of botanicals against mosquito threat are very important for the management of vector borne diseases. The positive results of initial studies on larvicidal potential of botanicals encourage further interest to investigate the bioactive compounds. Identifying botanical insecticides that are effective as well as appropriate and adaptive to overcome ecological hazards, biodegradable, and have a broad spectrum of larvicidal properties will work as a new defense in the arsenal of insecticides and it may act as an appropriate alternative product to fight against vector-borne diseases.

Thus, the present review collects important information on plant extracts along with their active molecules as agents affecting the physiology and behavior of medically threatening mosquito vectors. Now collective efforts are needed to take advantage of the accumulated knowledge on phytochemical action on mosquitoes in order to integrate their application in integrated pest management programs.

AUTHOR CONTRIBUTIONS

SS-N collected all the information and wrote the review.

ACKNOWLEDGMENTS

I am very grateful to Dr. Sylvia Anton for her thorough and constructive review and suggestion on the first draft of the manuscript.

REFERENCES

Aciole, S. D., Piccoli, C. F., Costa, E. V., Navarro-Silva, M. A., Marques, F. A., Sales Maia, B. H., et al. (2011). Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Rev. Colomb. Entomol. 37, 262–268.

Aciole, S. D. G. (2009). Avaliação da Actividade Inseticida Dos Óleos Esensiais Nas Plantas Amazônicas Annonaceae, Boraginaceae e de Mata Atlântica Myrtaceae como Alternativa De Controle às Larvas de Aedes aegypti (Linnæus, 1762) (Diptera: Culicidae). Doctoral dissertation, Universidade de lisboa, Lisbon.

Agra-Neto, A. C., Napoleão, T. H., Pontual, E. V., Santos, N. D. L., Luz, L. A., Oliveira, C. M. F., et al. (2014). Effect of moringa oleifera lecits in survival and enzyme activities of Aedes aegypti larval susceptible and resistant to organophosphate. Parasitol. Res. 113, 175–184. doi: 10.1007/s00436-013-3640-8

Aguir, J. C. D., Santiago, G. M., Lavor, P. L., Veras, H. N., Ferreira, Y. S., Lima, M. A., et al. (2010). Chemical constituents and larvicidal activity of hymenaea courbaril fruit peel. Nat. Prod. Comma. 5, 1977–1980.

Aguilera, L., Navarro, A., Tacoronte, J. E., Leyva, M., and Marquetti, M. C. (2003). Efeito letal de myrtaceas cubanas sobre Aedes aegypti (Diptera: Culicidae). Rev. Cub. Med. Trop. 55, 100–104.

Albuquerque, M. R. J. R., Costa, S. M. O., Bandeira, P. N., Santiago, G. M. P., Andrade-Neto, M., Silveira, E. R., et al. (2007). Nematicidal and larvicidal activities of the essential oils from aerial parts of Pectis oligocephala and Pectis apodeocphala Baker. An. Acad. Bras. Ciênc. 79, 209–213. doi: 10.1590/S0001-37652007000200003

Albuquerque, M. R. J. R., Silveira, E. R., De, A., Uchôa, D. E., Lemos, T. L. G., Souza, E. B., et al. (2004). Chemical composition and larvicidal activity of the essential oils from Eupatorium betonicaeforme (DC) Baker (Asteraceae). J. Agric. Food Chem. 52, 6708–6711. doi: 10.1021/jf0335281

Ali, A., Tabanca, N., Demirci, B., Baser, K. H. C., Ellis, J., Gray, S., et al. (2013). Composition, mosquito larvicidal, biting deterrent and antifungal activity of essential oils of different plant parts of Cuppressus arizonica var. glabrata (‘Carolina Saphure’). Nat. Prod. Commun. 8, 257–260. doi: 10.1177/1934578X1308080323

Al-Mehmadi, R. M., and Al-Khalaf, A. A. (2010). Larvicidal and histological effects of melia azedarach extract on Culex quinquefasciatus say larvae (Diptera: Culicidae). J. King Saud. Univ. Sci. 22, 77–85. doi: 10.1016/j.jksus.2010.02.004

Al-Mekhlafi, F. A. (2018). Larvicidal, ovicidal activities and histopathological alterations induced by Carum coticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J. Biol. Sci. 25, 52–56. doi: 10.1016/j.sjbs.2017.02.010

Amer, A., and Mehlhorn, H. (2006). Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol. Res. 99:478. doi: 10.1007/s00436-006-0184-1

Anderson, J. A., and Coats, J. R. (2012). Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic. Biochem. Physiol. 102, 124–128. doi: 10.1016/j.pestbp.2011.12.002

Ansari, M., Mittal, P., Razdan, R., and Sreehari, U. (2005). Larvicidal and mosquito repellent activities of pine (pinus longifolia, family: pinaceae) oil. J. Vector Borne Dis. 42:95.

Araújo, E. C., Silveira, E. R., Lima, M. A. S., Neto, M. A., de Andrade, I. L., Lima, M. A. A., et al. (2003). Insecticidal activity and chemical composition of volatile oils from hyptis maritima Benth. J. Agri. Food Chem. 51, 3760–3762. doi: 10.1021/jf021074s

Arriaga, A. M., Rodrigues, F. E., Lemos, T. L., de Oliveira, M. D. C., Lima, J. Q., Santiago, G. M., et al. (2007). Composition and larvicidal activity of essential oil from stemodia maritima L. Nat. Prod. Commun. 2, 1237–1239.

Autran, E., Neves, I., Da Silva, C., Santos, G., Da Câmara, C., and Navarro, D. (2009). Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper margaritum Jacq (Piperaceae). Biore. Technol. 100, 2284–2288. doi: 10.1016/j.biortech.2008.10.055

Balasubramani, G., Ramakumar, R., Krishnaveni, N., Sowmiya, R., Deepak, P., Arul, D., et al. (2015). GC–MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. J. Photochem. Photobiol B: Biol. 148, 1–8. doi: 10.1016/j.jphotobiol.2015.03.016

Bandara, K. P., Kumar, V., Jacobsson, U., and Molleyns, L.-P. (2000). Insecticidal piperidine alkaloid from Microcos paniculata stem bark. Phytochemistry 54, 29–32. doi: 10.1016/S0031-9422(00)0025-X

Banerji, B., and Nigam, S. (1984). Wood constituents of meliaceae: a review. Fitototerapia 55, 3–36.

Baraza, L. D., Joseph, C. C., Munissi, J. J. E., Nkunya, M. H. H., Arnold, N., Porzel, A., et al. (2008). Antifungal rosane diterpenes and other constituents of Hugonia castaneofolia. Phytochemistry 69, 200–205. doi: 10.1016/j.phytochemistry.2007.06.021

Benelli, G., Pavela, R., Canale, A., Cianfaglione, K., Ciascetti, G., Conti, F., et al. (2017). Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: synergistic and antagonistic effects. Parasitol. Inter. 66, 166–171. doi: 10.1016/j.parint.2017.01.012

Benelli, G., Pavela, R., Petrelli, R., Cappellacci, L., Canale, A., Senthil-Nathan, S., et al. (2018). Not just popular spices’ essential oils from Cuminum cyminum and...
Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. *Indus. Crop. Prod.* 124, 236–243. doi: 10.1016/j.indcrop.2018.07.048

Bemrick, E. P., Moffett, S. B., and Moffett, D. F. (2008). Ultrastructure and morphology of midgut visceral muscle in early pupal *Aedes aegypti* mosquitoites. *Tissue Cell* 40, 127–141. doi: 10.1016/j.tice.2007.11.001

Bohbott, J. D., Lu, T., and Zwiebel, L. J. (2010). Molecular Regulation of Olfaction In Mosquitoes. *Olfaction in Vector-Host Interactions*. Wageningen: Wageningen Academic Publishers, 17–38.

Bora, K. S., and Sharma, A. (2011). The genus Artemisia: a comprehensive review. *Pharm. Biol.* 49, 101–109. doi: 10.3109/13880209.2010.497815

Borah, R., Saikia, K., Talukdar, A. K., and Kalita, M. C. (2012). Chemical composition and biological activity of the leaf essential oil of *Zanthoxylum oxyphyllum*. *Planta Med.* 78:100. doi: 10.1055/s-0032-1307608

Brown, A. W. (1986). Insecticide resistance in mosquitoes: a pragmatic review. *J. Amer. Mosq. Control Assoc.* 2, 123–140.

Burfield, T. (2000). Safety of essential oils. *Inter. J. Arom.*

Cheng, S. S., Huang, C. G., Chen, Y. J., Yu, J. J., Chen, W. J., and Chang, S. T. (2004). Chemical composition and mosquito larvicidal activity of essential oils from leaves of different *Cinnamomum osmophloeum* provenances. *J. Agri. Food Chem.* 52, 4395–4400. doi: 10.1021/jf0497152

Choochothe, W., Chaiyasit, D., Kanjanapothi, D., Rattanachampichai, E., Jitpakdi, A., Tuetsun, B., et al. (2005). Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from *Curcuma aromatica* against *Aedes aegypti* (Diptera: Culicidae). *J. Vector Biol.* 30, 302–309.

Chung, I. M., Seo, S. H., Kang, E. Y., Park, S. D., Park, W. H., and Moon, H. I. (2009). Chemical composition and larvicidal effects of essential oil of *Dendropanus morbifera* against *Aedes aegypti*. *Biotech. Syst. Ecol.* 37, 473–473. doi: 10.1007/s10060.006.004

Clark, A. G. (1990). “The gluthathione S-transferases and resistance to insecticides,” in *Gluthathione S-transferases and Drug Resistance*, eds J. D. Hayes, C. B. Pickett, and T. J. Mantle, (London: Taylor and Francis), 369–378.

Conti, B., Canale, A., Bertoli, A., Gozzi, F., and Pistelli, L. (2010). Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito *Aedes albopictus* (Diptera: Culicidae). *Parasitol. Res.* 107, 1455–1461. doi: 10.1007/s00436-010-1818-4

Costa, J. G., Pessoa, O. D., Menezes, E. A., Santiago, G. M., and Lemos, T. L. (2004). Composition and larvicidal activity of essential oils from heartwood of *Auxemma glazioviana* tauba (Boraginaceae). *Flav. Frag. J.* 15, 529–531. doi: 10.1002/ffl.1332

Costa, J. G. M., Rodrigues, F. F. G., Angelico, E. C., Silva, M. R., Mota, M. L., Santos, N. K. A., et al. (2005). Estudo quimico-biológico dos óleos essenciais de hyptis martiusi, lippia sidoides e *Syzygium aromaticum* frente às larvas do *Aedes aegypti*. *Rev. Bras. Farmacogn.* 15, 304–309.

Costa, J. G. M., Rodrigues, F. F. G., Sousa, E. O., Junior, D. M. S., Campos, A. R., Coutinho, H. D. M., et al. (2010). Composition and larvicidal activity of the essential oils of *Lantana camara* and *Lantana montevidensis*. *Chem. Nat. Comp.* 46, 313–315. doi: 10.1007/s10600-010-9601-x

Costa, M. S., Cosmosso, J., Pereira, M., Sant’Ana, A., Lima, M., Zununcio, J., et al. (2014). Larvicidal and cytotoxic potential of squamocin on the midgut of *Aedes aegypti* (Diptera: Culicidae). *Toxins* 6, 1169–1176. doi: 10.3390/toxins6041169

Costa, M. S., Pinheiro, D. O., Serrão, J. E., and Pereira, M. J. B. (2012). Morphological changes in the midgut of *Aedes aegypti* L. (Diptera: Culicidae) larvae following exposure to an *Annona coriacea* (Magnoliolae-Annonaceae) extract. *Neotrop. Entomol.* 41, 311–314. doi: 10.1590/S1374-0120-050-z

Costa, M. S., Santanna, E. A., Oliveira, L. L., Zununcio, J. C., and Serrão, J. E. (2017). Toxicity of squamocin on *Aedes aegypti* larvae, its predators and human cells. *Pestic. Manag. Sci.* 73, 636–640. doi: 10.1002/ps.4350

da Silva Costa, M., de Paula, S. O., Martins, G. F., Zununcio, J. C., Santanna, A. E. G., and Serrão, J. E. (2018). Modes of action of squamocin in the anal papillae of *Aedes aegypti* (Diptera: Culicidae) larvae. *Physiol. Mol. Plant Pathol.* 101, 172–177. doi: 10.1016/j.pmpp.2017.04.001

David, J. P., Ismail, H. M., Chandor-Proust, A., and Paine, M. J. I. (2013). Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. *Philos Trans. R Soc Lond B Biol Sci.* 368. doi: 10.1098/rstb.2012.0429

de Castro, D. S. B., da Silva, D. B., Tibúrcio, J. D., Sobral, M. E. G., Ferraz, V., Taranto, A. G., et al. (2016). Larvicidal activity of essential oil of *Peumus boldus* Molina and its ascaridole-enriched fraction against *Culex quinquefasciatus*. *Exp. Parasitol.* 171, 84–90. doi: 10.1016/j.exppara.2016.10.008

de Melo, A. R., Garcia, I. J., Serrão, J. E., Santos, H. L., dos Santos Lima, L. A. R., and Alves, S. N. (2018). Toxicity of different fatty acids and methyl esters on *Culex quinquefasciatus* larvae. *Ecotoxicol. Environ. Saf.* 154, 1–5. doi: 10.1016/j.ecoenv.2018.02.009

de Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., Dos Anjos Júnior, J. F., Ferreira, S. A., et al. (2007). Chemical composition and larvicidal activity of essential oils from *Piper rhoifolium* species. *Biochem. Syst. Ecol.* 35, 670–675. doi: 10.1016/j.bse.2007.05.002

Dharmagadda, V. S. S., Naik, S. N., Mittal, P. K., and Vasudevan, P. (2005). Larvicidal activity of *Tagetes patula* essential oil against three mosquito species. *Toxins* 6, 1169–1176. doi: 10.3390/toxins6041169
Dua, V. K., Kumar, A., Pandey, A. C., and Kumar, S. (2013). Insecticidal and genotoxic activity of Porospora corylifolia Linn (Fabaceae) against Culex quinquefasciatus Say, 1823. Parasit. Vectors 6:30. doi: 10.1186/1756-3305-6-30

Edwin, E.-S., Vasantha-Subravan, P., Senthil-Nathan, S., Thanigaivel, A., Ponsankar, A., Pradeepa, V., et al. (2016). Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop. 163, 167–178. doi: 10.1016/j.actatropica.2016.07.009

Elumalai, D., Kaleema, P. K., Ashok, K., Suresh, A., and Hemavathi, M. (2016). Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Eng. Agric. Environ. Food 9, 1–8. doi: 10.1016/j.eaef.2015.08.002

Enayati, A. A., Ranson, H., and Hemingway, J. (2005). Mini review: Trigonella foenum-graceum sensu stricto avoid ovipositing in Bermuda grass hay infusion and it’s volatiles in two choice egg-count bioassays. Malaria J. 15:276. doi: 10.1186/s12936-016-1330-6

Evergetis, E., Michaelakis, A., and Haroutounian, S. A. (2016). Artemisia absinthium-borne compounds and novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasit. Vectors 11, 4649–4661. doi: 10.1186/s13071-016-2527-1

Govindarajan, M., Rajeswary, M., and Benelli, G. (2016). Chemical composition, toxicity and non-target effects of Pinus kestya essential oil: an eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol. Environ. Saf. 129, 85–90. doi: 10.1016/j.ecoenv.2016.03.007

Govindarajan, M., Sivakumar, R., Rajeswari, M., and Yogalakshmi, K. (2012). Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol. Res. 110, 2023–2032. doi: 10.1007/s00436-011-2731-7

Govindarajan, M., Sivakumar, R., Rajeswary, M., and Veerakumar, K. (2013). Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus benth. Against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasit. Res. 112, 3713–3721. doi: 10.1007/s00436-013-3557-2

Hemingway, J., Hawkes, N., Mccarroll, L., and Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect. Biochem. Mol. Biol. 34, 653–665. doi: 10.1016/j.ibmb.2004.03.018

Hemingway, J., and Ranson, H. (2000). Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391. doi: 10.1146/annurev.ento.45.1.371

Heuskin, S., Godin, B., Leroy, P., Capella, Q., Washetty, J. P., Verheggen, F., et al. (2009). Fast gas chromatography characterisation of purified semiochemicals from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepeta cataria L. (Lamiaceae). J. Chromatogr. A 1216, 2768–2775. doi: 10.1016/j.chroma.2008.09.109

Hong, S., Guo, Q., Wang, W., Hu, S., Fang, F., Ly, Y., et al. (2014). Identification of differentially expressed micro RNAs in Culex pipiens and their potential roles in pyrethroid resistance. Insect. Biochem. Mol. Biol. 55, 39–50. doi: 10.1016/j.ibmb.2014.10.007

Ioset, J., Marston, A., Gupta, M. P., and Hostettmann, K. (2000). Antifungal and larvicidal cordiaquinones from the roots of Cordia curasavica. Phytochem. 53, 613–617. doi: 10.1016/S0031-9422(99)00604-4

Jaenson, T. G., Pålsson, K., and Borg-Karlson, A. K. (2006). Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J. Med. Entomol. 43, 113–119. doi: 10.1093/jmedent/43.1.113

Jantan, I. B., Y alvema, M. F., Ahmad, N. W., and Jamal, J. A. (2005). Insecticidal activities of the leaf oils of eight Cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm. Biol. 43, 526–532. doi: 10.1080/1388020050227771

Jayaprakasha, G., Singh, R., Pereira, J., and Sakariah, K. (1997). Limonoids from Citrus reticulata and their moult inhibiting activity in mosquito Culex quinquefasciatus larvae. Phytochemistry 44, 834–846. doi: 10.1016/S0031-9422(96)00589-4

Jinu, U., Rajakumaran, S., Senthil-Nathan, S., Geetha, N., and Venkatachalam, P. (2018). Potential larvicidal activity of silver nanohybrids synthesized using leaf extracts of Cleistanthus collinus (Roxb.) Benth. ex Hook. f. and Strychnos nux-vomica L. nux-vomica against dengue, Chikungunya and Zika vectors. Physiol. Mol. Plant Pathol. 101, 163–171. doi: 10.1016/j.pmpp.2017.05.003

Jones, G., Smith, J., and Watson, K. (2007). “Bioactive properties of native Australian medicinal plants,” in Advances in Medicinal Plant Research, eds S. N. Acharya and J. Thomas (Thiruvananthapuram: Research Signpost), 257–286.

Joseph, C. C., Ndoile, M. M., Malima, R. C., and Nkunya, M. H. H. (2004). Larvicidal and mosquitocidal extracts, a coumarin, isoflavonoids and their moult inhibiting activity in mosquito Aedes albopictus. Parasitol. Res. 94, 22(96)00589-4

Kalai, K., Hamed, M., and Mosaddik, M. (2003). Gmothoalamin–a potent mosquito larvicide from Bryonopsis laciniosa L. J. Appl. Entomol. 127, 112–115. doi: 10.1046/j.1439-0418.2003.00716.x

Kalavani, K., Senthil-Nathan, S., and Murugesan, A. G. (2012). Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol. Res. 110, 1261–1268. doi: 10.1007/s00436-011-2623-x

Komala-Jayanthi, P. D., Aurade, R. M., Kempjar, V., Chakravarty, A. K., and Verghese, A. (2015). “Glimpses of semi-chemical research applications in Indian horticulture: present status and future perspectives,” in New Horizons
in Insect Science: Towards Sustainable Pest Management, ed. A. Chakravarty, (New Delhi: Springer), 239–257. doi: 10.1007/978-81-322-2089-3_22
Kamaraj, C., Deepak, P., Balasubramani, G., Karthi, S., Arul, D., Aiswarya, D., et al. (2018). Target and non-target toxicity of fern extracts against mosquito vectors and beneficial aquatic organisms. *Ecotoxicol. Environ. Saf.* 161, 221–230. doi: 10.1016/j.ecoven.2018.05.062
Kannathasan, K., Senthilkumar, A., and Venkatesalu, V. (2011). Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of *Vitex trifolia* Linn. *Acta Trop.* 120, 115–118. doi: 10.1016/j.actatropica.2011.07.001
Karunarathne, S. H. P. P., Jayawardena, K. G. I., Hemingway, J., and Ketterman, A. J. (2012). *Frontiers in Physiology* www.frontiersin.org
Kiran, S. R., Bhavani, K., Devi, P. S., Rao, B. R., and Reddy, K. J. (2006). Mosquito larvicidal activity of pipernonaline, a piperidine from *Pimpinella anisum* L. *J. Ethnopharmacol.* 107, 2481–2484. doi: 10.1016/j.biortech.2005.10.003
Kulkarni, R. R., Pawar, P. V., Joseph, M. P., Akulwad, A. K., Sen, A., and Joshi, P. D. (2011). Chemical composition and larvicidal activity against *Aedes aegypti* larvae of *Chloroxylon swietenia* (L.) (Diptera: Culicidae). *Rev. Bioméd.* 14, 19, 2019.
Kamaraj, C., De Almeida, R. R., et al. (2011). Larvicidal activity of *Tagetes erecta* against *Aedes aegypti* (L.). *J. Am. Mosq. Control Assoc.* 27, 156–158. doi: 10.2987/105:769.19
Karunaratne, S. H. P. P., Jayawardena, K. G. I., Hemingway, J., and Ketterman, A. J. (2012). *Bioactivity of Dianthus caryophyllus*, *Piper nigrum* and *Zanthoxylum piperitum* Composition and larvicidal activity of leaves and stem essential oils of *Zanthoxylum avicennae* essential oil and its larvicidal activity on *Aedes albopictus Skuse*. *J. Pharm. Pharmacol.* 47, 33–66. doi: 10.1146/annurev.ento.47.091201.145206
Lucia, A., Juan, L. W., Zerba, E. N., Harrand, L., Marcó, M., and Masuh, H. M. (2012). Validation of models to estimate the fumigant and larvicidal activity of *Eucalyptus* essential oils against *Aedes aegypti* (Diptera: Culicidae). *Parasitol. Res.* 110, 1675–1686. doi: 10.1007/s00436-013-3173-6
Kiran, S. R., Khavan, K., Devi, P. S., Rao, B. R., and Reddy, K. J. (2006). Composition and larvicidal activity of leaves and stem essential oils of *Chloroxylon swietenia* DC against *Aedes aegypti* and *Anopheles stephensi* (Linn). *Bioreour. Technol.* 97, 2481–2484. doi: 10.1016/j.biortech.2005.10.003
Koolalingam, A., Deepalakshmi, R., Ammu, M., and Rajalakshmi, A. (2014). Effects of neemazal on marker enzymes and hemocyte phagocytic activity of larvae and pupae of the vector mosquito *Aedes aegypti*. *J. Asia Pac. Entomol.* 17, 175–181. doi: 10.1016/j.aspen.2013.12.007
Koutsaviti, K., Giatropoulos, A., Papachristos, D., Michaelakis, A., and Tzakou, O. (2015). Greek Pinus essential oils: larvicidal activity and repellency against *Aedes albopictus* (Diptera: Culicidae). *Parasitol. Res.* 114, 583–592. doi: 10.1007/s00436-014-4220-2
Kulkarni, R. R., Pawar, P. V., Joseph, M. P., Akulwad, A. K., Sen, A., and Joshi, S. P. (2013). Lavandula gibsoni and *Plctranthus mollis* essential oils: chemical analysis and insect control activities against *Aedes aegypti*, *Anopheles* *syphefthinus* and *Culex quinquefasciatus*. *J. Pestic. Sci.* 86, 713–718. doi: 10.1016/j.toxicon.2013.01.050-2
Kuo, P. M., Chu, F. H., Chang, S. T., Hsiao, W. F., and Wang, S. Y. (2007). Insecticidal activity of essential oil from *Chamomycopsis formosanum* matsun. *Holzforschung* 61, 595–599. doi: 10.1515/HF.2007.087
Larson, M. J., Baldwin, S. A., Good, D. A., and Fair, J. E. (2010). Temporal stability of the error-related negativity (ERN) and post-error positivity (Pe): the role of number of trials. *Psychophysiology* 47, 1167–1171. doi: 10.1111/j.1469-8986.2010.01022.x
Lee, J., Iwai, T., Yokota, T., and Yamashita, M. (2003). Temporally and spatially selective loss of Rec protein from meiotic chromosomes during mammalian meiosis. *J. Cell. Sci.* 116, 2781–2790. doi: 10.1242/jcs.00495
Lee, S. E. (2000). Mosquito larvicidal activity of piperine, a piperidine alkaloid derived from long pepper *Piper longum*. *J. Am. Mosq. Control Assoc.* 16, 245–247.
Leyva, M., Del Carmen Marquetti, M., Taconorte, J. E., Scull, R., Tiomno, O., Mesa, A., et al. (2009b). Larvicidal activity of plant essential oils *Aedes aegypti* (L.) (Diptera: Culicidae). *Rev. Biomed.* 20, 5–13. doi: 10.32776/revbiomed.v2015.529
Munda, S., Saikia, P., and Lal, M. (2018). Chemical composition and biological activity of essential oils from stems of Allium monanthum maxim. against Aedes aegypti. J. Enzyme Inhib. Med. Chem. 23, 391–399. doi: 10.1007/s10876-017-1300-3

Murugan, K., Roni, M., Panneerselvam, C., Suresh, U., Rajaganesh, R., Aruliah, G., and Door, M. (2013). Antimalarial activity of Myrtaceous essential oil of Cinnamomum salalense leaves against C. falciparum. J. Enzyme Inhib. Med. Chem. 28, 427–435. doi: 10.1007/s10876-012-9925-5

Ndung’u, M., Hassanali, A., Lwande, W., Hooper, A. M., Tayman, R., Addae-Mensah, I., Muriuki, G., Munavu, R., and Lwande, W. A. (2016). Plant essential oils and their components against Plasmodium falciparum. Parasitol. Res. 115, 2553–2565. doi: 10.1007/s00436-015-4348-7

Nikken, F., Salam, K. A., Yeasmin, T., Mosaddik, A., Khonkhar, P., and Haque, M. E. (2010). Mosquitocidal triterpenes from the stem of Duranta repens. Pharm. Biol. 48, 264–268. doi: 10.3109/13880200903965760

Niroumand, M. C., Heydarpour, F., and Farzaei, M. H. (2018). Pharmacological and therapeutic effects of Vitis agnus-castus L.: A review. Pharmac. Rev. 62, 2017. doi: 10.1016/j.phrev.2014.10.003

Niswarker, M., Kumar, G.-P., Laloraya, M., and Laloraya, M.-M. (1991). Superoxide dismutase in the anal gills of the mosquito larvae of Aedes aegypti: its inhibition by alpha-terthienyl. Arch. Insect. Biochem. Physiol. 4, 249–255. doi: 10.1002/arch.940160404

Nyahanga, T., Jondika, J. I., Manguro, L. O. A., and Orwa, J. A. (2010). Chemical composition, antiplasmodial, larvicidal and antimalarial activities of essential oils of Toddalia asiatica leaves and fruits. Int. J. Ess. Oil Ther. 4, 54–58.

Pandey, S., Pradhan, S., and Tripathi, A. (2009). Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) sprague seeds against Anopheles stephensi. Parasitol. Res. 105, 507–512. doi: 10.1007/s00436-009-1249-6

Park, H.-M., Kim, J., Chang, K.-S., Kim, B.-S., Yang, Y.-J., Kim, G.-H., et al. (2011). Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aequous residue. J. Med. Entomol. 48, 405–410. doi: 10.1634/ME10108

Patra, R., Mansuriya, M., and Patil, P. (2012). Phytochemical and pharmacological review on Laurus nobilis. Inter. J. Pharm. Chem. Sci. 1, 595–602.

Pavela, R. (2009). Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Indus. Crop. Prod. 30, 311–315. doi: 10.1016/j.indcrop.2009.06.005

Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind. Crops Prod. 76, 174–187. doi: 10.1016/j.indcrop.2015.06.050

Pavela, R., and Govindarajan, M. (2017). The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J. Pest Sci. 90, 369–378. doi: 10.1007/s10340-016-0763-6

Pavela, R., Kaffkova, K., and Kumsta, M. (2014). Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus say (Diptera: Culicidae). Plant Prot. Sci. 50, 36–41. doi: 10.17221/48/2013-PSS

Pereira, A. S. L., Pereira, A. C. G. S., Sobrinho, L., Palma, O., Cantanhe, E. D. K. P., and Siqueira, L. F. S. (2014). Antimicrobial activity in fighting mosquito larvae Aedes aegypti: homogenization of essential oils of linalool and eugenol. Educ. Quim. 25, 446–449.

Perunalmsamy, H., Kim, N. J., and Ahn, Y. J. (2009). Larvicidal activity of compounds isolated from asarum heterotropoides against Culex pipiens pullens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J. Med. Entomol. 46, 1420–1423. doi: 10.1603/0336.0466.024

Pitarokil, D., Michaelakis, A., Koliopoulos, G., Giatropoulos, A., and Tzakou, O. (2011). Chemical composition, larvicidal evaluation, and adult repellency of endemic greek thymus essential oils against the mosquito vector of West Nile virus. Parasitol. Res. 109, 425–430. doi: 10.1007/s00436-011-2271-1

Pitasawat, B., Champakaew, D., Choochote, W., Jitpakdi, A., Chaithong, U., Park, H.-M., Kim, J., Chang, K.-S., Kim, B.-S., Yang, Y.-J., Kim, G.-H., et al. (2011). Larvicidal activity of Myrtaceous essential oil of Laurus nobilis against Culex quinquefasciatus Say (Diptera: Culicidae). Immunopharmacol. Immunotoxicol. 34, 205–209. doi: 10.3109/13880200903192553

Pitel, A. M., Lopes, N. P., Gama, R. A., Tadei, W. P., and De Andreo Neto, F. V. (2011). Patent literature on mosquito repellent inventions which contain plant essential oils - a review. Planta Med. 77, 598–617. doi: 10.1055/s-0030-1270723

Pour, H. T., Shayeghi, M., Vat, H., and Abai, M. R. (2016). Study on larvicidal effects of essential oils of three Iranian native plants against larvae Anopheles stephensi (Liston). Vector Biol. J. 1:2.

Pradeepa, V., Sathish-Narayan, S., Kirubakaran, S. A., and Senthil-Nathan, S. (2014). Antimalarial efficacy of dynamic compound of plumbagin chemical constituent from Plumbago zeylanica Linn (Plumbaginaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 113, 3105–3109. doi: 10.1007/s00436-014-4015-5

Pradeepa, V., Sathish-Narayan, S., Kirubakaran, S. A., Thangaiavel, A., and Senthil-Nathan, S. (2015). Toxicity of aristolochic acids isolated from Aristolochia indica Linn (Aristolochiaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 114, 3105–3109. doi: 10.1007/s00436-014-4348-7

Rahuman, A. A., Gopalakrishnan, G., Ghose, B. S., Arumugam, S., and Himalayan, B. (2000). Effect of Feronia limonia on mosquito larvae. Fitotherapia 71, 533–555. doi: 10.1016/S0367-326X(00)00164-7
Senthil-Nathan, S. (2013). Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 4:539. doi: 10.3389/fphys.2013.00539

Senthil-Nathan, S. (2015). “A review of biopesticides and their mode of action against insect pests,” in Environmental Sustainability, ed. G. Sridevi, (Berlin: Springer).

Senthil-Nathan, S., Choi, M. Y., Paik, C. H., Seo, H. Y., and Kalavani, K. (2009). Toxicity and physiological effects of neem pesticides applied to rice on the Nilaparvata lugens Stål, the brown planthopper. Ecotox. Environ. Saf. 72, 1707–1713. doi: 10.1016/j.ecoenv.2009.04.024

Senthil-Nathan, S., Hisham, A., and Jayakumar, G. (2008). Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum spp. (Melaceae). Fitoterapia 76, 106–111. doi: 10.1078/00041772076290

Senthil-Nathan, S., and Kalavani, K. (2005). Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura larvae (Lepidoptera: Noctuidae). Biol. Control 34, 93–98. doi: 10.1016/j.biolcontrol.2005.03.001

Senthil-Nathan, S., and Kalavani, K. (2006). Combined effects of azadirachtin and nucleopolyhedrovirus (SplitNPV) on Spodoptera litura larvae. Biol. Control 39, 96–104. doi: 10.1016/j.biolcontrol.2006.06.013

Senthil-Nathan, S., Kalavani, K., and Chung, P. G. (2005a). The effects of azadirachtin and nucleopolyhedrovirus on midgut enzymatic profile of Spodoptera litura Fab. (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 83, 46–57. doi: 10.1016/j.pestbp.2005.03.009

Senthil-Nathan, S., Kalavani, K., and Murugan, K. (2005b). Effects of neem limonoids on the malaria vector Anopheles stephensi liston (Diptera: Culicidae). Acta Trop. 96, 47–55. doi: 10.1016/j.actatropica.2005.07.002

Senthil-Nathan, S., Kalavani, S., and Sehoon, K. (2006a). Effects of Dysoxylum malabaricum Bedd (Meliaceae) extract on the malarial vector Anopheles stephensi liston (Diptera: Culicidae). Bioresour. Technol. 97, 2077–2083. doi: 10.1016/j.biortech.2005.09.034

Senthil-Nathan, S., Savitha, G., George, D. K., Narmadha, A., Suganya, L., and Chung, P. G. (2006b). Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi liston. Bioresour. Technol. 97, 1214–1221. doi: 10.1016/j.biortech.2005.05.019

Senthil-Nathan, S., Kalaivani, K., and Mansour, A. H. (2006). Efficacy of botanical extracts from Callitris glaucophylla against Aedes aegypti and Culex anulirostris mosquitoes. Trop. Biomed. 23, 180–185.

Shunying, Z., Yang, Y., Huadong, Y., Yue, Y., and Guolin, Z. (2005). Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J. Ethnopharmacol. 96, 151–158. doi: 10.1016/j.jep.2004.08.031

Siddiqui, B. S., Afshan, F., Afshan, F., Gihasuddin, S. F., Naqi, S. N. U. H., Tariq, R. M., et al. (1999). New insect-growth-regulator meliacin butenolides from the leaves of Azadirachta indica A. Juss. J. Chem. Soc. Perkin Trans. 1, 2367–2370. doi: 10.1039/A902326G

Siddiqui, B. S., Afshan, F., Faizi, S., Naem-Ul-Hassan Naqi, S., and Tariq, R. M. (2002). New triterpenoids from Azadirachta indica and their insecticidal activity. J. Nat. Prod. 65, 1216–1218. doi: 10.1021/jn0105477

Siddiqui, B. S., Afshan, F., Gulzar, T., Sultana, R., Naqi, S. N. H., and Tariq, R. M. (2003). Tetracyclic triterpenoids from the leaves of Azadirachta indica and their insecticidal activities. Chem. Pharm. Bull. 51, 415–417. doi: 10.1248/cpb.51.415

Sola, R., Moumi, B. M., Ogendo, J. O., Mponda, O., Kamazala, J. F., Nyirenda, S., et al. (2014). Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: making a case for plant-based pesticidal products. Food Secur. 6, 369–384. doi: 10.1007/s12571-014-0343-7
Souza, L. G. D. S., Almeida, M. C. S., Monte, F. J. Q., Santiago, G. M. P., Braz-Filho, R., Lemos, T. L. G., et al. (2012). Chemical constituents of Capraria bifora (Scrophulariaceae) and larvicidal activity of essential oil. Quim. Nova 35, 2258–2262. doi: 10.1590/S0100-4042201200110032

Stenfors Arnesen, L. P., Fagerlund, A., and Granum, P. E. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–606. doi: 10.1111/j.1574-6976.2008.00812.x

Sujatha, G., Kumari, R., and Bollipo, D. (2013). Composition and larvicidal activity of Artemisia vulgaris L. stem essential oil against Aedes aegypti. J. Biol. Sci. 147, 1–5.

Sukumar, K., Perich, M. J., and Boobar, L. R. (1991). Botanical derivatives in mosquito control: A review. J. Am. Mosq. Control Assoc. 7, 210–237.

Sun, R., Sacalis, J. N., Chin, C.-K., and Still, C. C. (2001). Bioactive aromatic compounds from leaves and stems of Vanilla fragrans. J. Agric. Food Chem. 49, 5161–5164. doi: 10.1021/jf001425k

Suthanont, N., Choochote, W., Tuetun, B., Junkum, A., Jitpakdi, A., Chaithong, U., et al. (2019). Toxic effect of essential oil and its compounds derived from essential oil against the pyrethroid-susceptible and-resistant strains of Aedes aegypti (Diptera: Culicidae). J. Vector Ecol. 35, 106–115. doi: 10.1111/j.1233-7453.1948-7134.2010.00066.x

Syed, Z., and Leal, W. S. (2008). Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl. Acad. Sci. U.S.A. 105, 13598–13603. doi: 10.1073/pnas.0805312105

Tabanca, N., Demirici, B., Kiyant, H. T., Ali, A., Bernier, U. R., Wedge, D. E., et al. (2012a). Repellent and larvicidal activity of Ruta graveolens essential oil and its major individual constituents against Aedes aegypti. Plant Med. 78:90. doi: 10.1055/s-0032-1307598

Tabanca, N., Özge, G., Ali, A., Duran, A., Hamzaoull, E., Başer, K. H. C., et al. (2012b). Chemical composition of Heracleum pastinacifolium subsp. transcaucasicum and subsp. incanum essential oils, and their biting deterrent and larvicidal activity against Aedes aegypti. Planta Med. 78:89. doi: 10.1055/s-0032-1307597

Tehri, K., and Singh, N. (2015). The role of botanists as green pesticides in integrated mosquito management-A review. Int. J. Mosq. Res. 2, 18–23.

Thanigaiavel, A., Chandrasekaran, R., Revathi, K., Nisha, S., Sathish-Narayanan, S., Kirubakaran, S. A., et al. (2012). Larvicidal efficacy of Adhatoda vasica (L.) Nees against the bancroftian filariasis vector Culex quinquefasciatus (Linn.). Proc. Natl Acad. Sci. U.S.A. 105, 13598–13603. doi: 10.1073/pnas.0805312105

Vasanth-Srinivasan, P., Thanigaiavel, A., Senthil-Nathan, S., Selin-Rani, S., et al. (2017). Larvicidal, pupicidal and adult smoke toxic effects of Arachis hypogaea leaf crude extracts and its larvicidal activity against malaria and dengue vectors. Environ. Sci. Pollut. Res. 22, 17769–17779. doi: 10.1007/s11356-015-4919-3

Vasanth-Srinivasan, P., Thangaiavel, A., Edwin, E. S., Selin-Rani, S., et al. (2017). Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Exotoxicol. Environ. Saf. 139, 439–446. doi: 10.1016/j.ecoenv.2017.01.026

Wichananthan, P., Thanigaiavel, A., Edwin, E. S., Ponsankar, A., Senthil-Nathan, S., Selin-Rani, S., et al. (2018). Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against aquatic insects. Environ. Sci. Pollut. Res. 25, 10434–10446. doi: 10.1007/s11356-017-9714-x

Wibulswas, A., Fanel, A., Hemalatha, P., Janaki, A., Babu, M., Hemavathi, M., et al. (2015). Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ. Sci. Pol. Rev. 22, 17769–17779. doi: 10.1007/s11356-015-4919-3

Wu, L.-Y., Gao, H.-Z., Wang, X.-L., Ye, J.-H., Lu, J.-L., and Liang, Y.-R. (2010). Annex 1. Global Burden of Major Vector-Borne Diseases, as of March 2017. World Health Organization [WHO] (2017). Annex 1. Global Burden of Major Vector-Borne Diseases, as of March 2017. Geneva: WHO.

Wu, L.-Y., Gao, H.-Z., Wang, X.-L., Ye, J.-H., Lu, J.-L., and Liang, Y.-R. (2010). Analysis of chemical composition of Chrysanthemum indicum and its major individual constituents against Aedes aegypti mosquito vectors. J. Agric. Food Chem. 58, 10166–10171. doi: 10.1021/jf100791f

Yenenes, E., Derese, S., Midwo, J. O., Heydenreich, M., and Peter, M. G. (2003). Effect of rotenoids from the seeds of Millelita dura on larvae of Aedes aegypti. Pestic. Manag. Sci. 59, 1159–1161. doi: 10.1002/pms.740

Yu, C. H., Dong, Y. K., Zhou, Z. P., Wu, C., Zhao, F. Z., Sachs, M. S., et al. (2015). Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59, 744–754. doi: 10.1016/j.molcel.2015.07.018
Zhang, J., Huang, T., Zhang, J., Shi, Z., and He, Z. (2018). Chemical composition of leaf essential oils of four *Cinnamomum* species and their larvicidal activity against *Anopheles sinensis* (Diptera: Culicidae). *J. Essen. Oil Bear. Plants* 21, 1284–1294. doi: 10.1080/0972060X.2018.1552205

Zhu, J., Zeng, X., Liu, T., Qian, K., Han, Y., Xue, S., et al. (2006). Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. *J. Am. Mosq. Control Assoc.* 22, 515–522. doi: 10.2987/8756-971x(2006)22\%5B515:aralao\%5D2.0.co;2

Zhu, L., and Tian, Y. (2011). Chemical composition and larvicidal activity of *Blumea densiflora* essential oils against *Anopheles anthropophagus*: a malarial vector mosquito. *Parasitol. Res.* 109, 1417–1422. doi: 10.1007/s00436-011-2388-2

Zibaee, A. (2011). "Botanical insecticides and their effects on insect biochemistry and immunity," in *Pesticides in the Modern World - Pests Control and Pesticides Exposure and Toxicity Assessment*, ed. M. Stoytcheva, (London: IntechOpen), doi: 10.5772/16550

Zibaee, A., and Bandani, A. R. (2010). Effects of *Artemisia annua* L. (Asteraceae) on digestive enzymes profiles and cellular immune reactions of sunn pest, *Eurygaster integriceps* (Heteroptera: Scutellaridae), against *Beauvaria bassiana*. *Bull. Entomol. Res.* 100, 185–196. doi: 10.1017/S000748530999014

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Senthil-Nathan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.