all inclusion criteria. Thirty-four (64.2%) patients underwent BFOAR without overcorrection (age at surgery 9.2 ± 2.9 months, follow-up 5.6 ± 0.9 years) and 19 (35.8%) of patients underwent BFOAR with overcorrection (age at surgery 10.3 ± 4.2 months, follow-up 5.4 ± 0.7 years). There was no significant difference between the age at surgery ($P = 0.25$) and length of follow-up ($P = 0.41$) between the cohorts. At follow-up for the cohort without overcorrection, 20 patients (58.8%) were classified as Whitaker class I, 5 patients (14.7%) as class II, 9 (26.5%) as class III. For the overcorrected cohort, 8 patients (42.1%) were classified as Whitaker class I, 10 patients (52.6%) as class II, 1 patient (5.3%) as class III. There were no Whitaker class IV results at the 4- to 7-year follow-up length in either cohort. On bivariate analysis, overcorrection was associated with significant differences in Whitaker class distribution at follow-up ($P = 0.008$). Neither length of follow-up, age at intervention, nor technique was a significant predictor of Whitaker class, visible irregularities, temporal hollowing, lateral orbital retrusion, or frontal bone irregularities at the 0.05 significance level.

CONCLUSION: Despite a more aggressive attempt to “overcorrect” the metopic deformity in infancy with BFOAR, we have seen similar deterioration of results over time, with a significant proportion of patients developing bitemporal narrowing and temporal hollowing in moderate term follow-up. Though this represents a small cohort of patients, these data are important for surgeons and families alike, as it potentially signals a significant need for secondary aesthetic revisions in the teen years.

The Utility of Dermal Wound Matrices Compared With Local-Tissue Rearrangement and Free-Tissue Transfer for Scalp Wounds: A Multidisciplinary Dual Matched-Pair Analysis

Presenter: Sammy Othman, BA

Co-Authors: Said Azoury, MD; Sameer Shakir, MD; John P. Fischer, MD, MPH; Stephen Kovach, MD

Affiliation: University of Pennsylvania, Philadelphia, PA

BACKGROUND: Scalp reconstruction can pose significant challenges due to a lack of native tissue mobility and/or tissue damage secondary to radiation. Local tissue rearrangement (LTR), free-tissue transfer (FTT), and Bilayer Wound Matrix (BWM) (Integra; Integra LifeSciences, Princeton, NJ) are frequently employed for wound coverage of the scalp. We present the first comparative study to evaluate the optimal treatment modality.

METHODS: A retrospective chart review was conducted from January 2008 to June 2019 encompassing all patients requiring soft-tissue reconstruction (BWM, LTR, and FTT) to scalp wounds. Patients were matched into each group based upon patient age, wound defect size, and wound age. Patient demographics, comorbidities, wound characteristics, and postoperative healing outcomes were all recorded. Outcomes including 90-day exposure rates, reoperative rates, hospital length of stay, operative times, and wound complications were examined and compared between the modalities.

RESULTS: A total of 361 patients undergoing scalp soft-tissue reconstruction with either FTT, LTR, or BWM were identified. Following patient matching, 126 patients were deemed appropriate for inclusion in the LTR/BWM cohort, whereas 56 were examined in the FTT/BWM groups. The mean defect size of the LTR/BWM group was 45 cm². LTR provided significantly better wound coverage at 90 days (95.2%), compared with BWM (84.1%) ($P = 0.040$), although reoperative rates (7.9% versus 15.9%) did not differ significantly ($P = 0.271$). The total mean defect size in the FTT/BWM groups was 129.1 cm². Wound coverage success rates at 90 days were similar for the FTT group (92.9%) compared with the BWM group (96.4%) ($P = 1.00$). Reoperative rates (14.3% FTT, 3.6% BWM) were also not significantly different ($P = 0.352$). However, operative time for FTT patients was significantly greater (389.9 minutes) compared with BWM patients (87.2 minutes) ($P < 0.001$), as well as mean hospital length of stay (5.5 versus 1.2 days, respectively, $P < 0.001$).

CONCLUSIONS: LTR is a more durable option for moderately size wounds when compared with BWM. BWM may be as efficacious as FTT for wound coverage of uncomplicated larger defects and may be more cost-efficient, given the obvious greater technical difficulty, operative time, and length of stay associated with FTT.

Postoperative Complications Associated With Choice of Reconstruction in Head and Neck Cancer: An Outcome Analysis From the American College of Surgeons-National Surgical Quality Improvement Database