Peristaltic MHD Convective flow of Walter’s-B Fluid through a Biddable walled channel with Slip Effect

M.Veera Krishna¹ and B.V.Swanalathamma²

¹Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh 518007, India
²Department of Science and Humanities, JB institute of Engineering & Technology, Moinabad, Hyderabad, Telangana-500075, India

E-mail: veerakrishna_maths@yahoo.com; bareddy_swarna@yahoo.co.in

Abstract. The combined effects on peristaltic MHD Convective flow of an electrically conducting Walters-B fluid through a biddable walled channel have been studied. Using small wave number move towards, the nonlinear model differential equations are obtained and tackled analytically by regular perturbation method. Expressions for the stream function, velocity, temperature, skin-friction coefficient and heat transfer coefficient are constructed. Pertinent results are presented graphically and discussed quantitatively. It is found that the velocity distribution depresses while the fluid temperature rises with an increase in Hartmann number. The trapping phenomenon is observed and the size of trapped bolus increases with an increase in Hartmann number.

Keywords: Thermal radiation; MHD; Peristalsis; Walter-B fluid; compliant walls; Slip conditions; Heat generation.

1. Introduction

Peristalsis is a radially symmetrical contraction and relaxation of muscles that propagates in a wave down a tube, in an anterograde direction. Peristaltic transport is a form of material transport included by a progressive wave of contraction or expansion along the length of distensible tube mixing and transporting the fluid in the direction of the wave propagation. This kind of phenomenon is termed as peristaltic. It plays an indispensable role in transporting many physiological fluids in the body under various situations as urine transport from kidney to bladder, the movement of chyme in the gastrointestinal tracts, transport of spermatozoa in the ductus efferent's of the male reproductive tract, movement of ovum in the fallopian tubes, swallowing of food through esophagus and the vasomation of small blood vessels many modern mechanical devices have been designed on the principle of peristaltic pumping to transport the fluids without internal moving parts, for example the blood pump in the heart-lung machine and peristaltic transport of naxious fluid in nuclear industry. The mechanism of peristaltic transport has attracted the attention of many investigators since its investigation by Latham [13], Burns and pareks[2], shapero et all.[22], Fung and yih [3], Takabatake and Ayukawa [25], Akram and Nedeem [1], mekheimer and Elkot [16], Mekheimor and al –arabi[15], mekheimer[14], Nadeamand akbar [19], Kothandapaniet al.[10], of peristaltic flow for different fluids have been reported under various conditions with reference to
physiological and mechanical situations. Most of these investigations are confined to the peristaltic flow only in a symmetric channel or tube. Consideration of wall properties in peristalsis is of special value in study of blood flow in arteries and veins, urine flow in the urethras and air flow in the lungs. Peristaltic motion in a compliant wall channel has also been investigated by some researchers. Radhakrishnamacharya and Srinivasulu [20] analyzed the influence of wall properties on peristaltic motion of Newtonian fluid with heat transfer. Peristaltic motion of micro polar fluid in circular cylindrical tubes with wall properties is discussed by muth et al [17], Hayat et al.[5, 6] examined the MHD peristaltic flow of Jeffery and Johnson – Segalman fluids with compliant walls.srinivas and kothandapani [23] analyzed the heat and mass transfer effects on MHD peristaltic flow of Newtonian fluid in a porous channel with compliant walls. Riaz et al.[21] investigated the peristaltic motion of prandtl fluid in rectangular duct with wall properties. Recently, peristaltic flow of burgers fluid in compliant walls channel was investigated by Javed et al.[9]. Peristaltic flow with compliant walls and hall current was studied by gad [4]. Very recently, the combined influence of heat and mass transfer on the peristaltic motion of pseudoplastic fluid with wall properties was analytically explored by Hina et al.[7]. Slip effects on the peristaltic flow of egying- powell fluid with wall properties were examined by Hina [8]. Amongst the many suggested models, walters [26] has developed a physically accurate mathematical model for the rheological equation of state of a viscoelastic fluid with short memory. This model has been proven to capture the characteristic of actual viscoelastic polymer solutions, hydrocarbons, paints and other chemical engineering fluids. The walters-B fluid model generates highly non-linear flow equations which have order higher than that of the Navier-stokes equations. It also in corporates elastic properties of the fluid which are important in extensional behavior of polymers. Peristalsis of Walters-B fluid with wall properties has never been addressed previously, Thus margian javed et al.[18] is undertaking to fill this void by incorporating velocity slip and temperature jump conditions. Recently, Krishna and Swarnalathamma [27] discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Swarnalathamma and Krishna [28] discussed the theoretical and computational study of peristaltic hemodynamic flow of couple stress fluids through a porous medium under the influence of magnetic field with wall slip condition. Krishna and M.G.Reddy [29] discussed MHD free convective rotating flow of visco-elastic fluid past an infinite vertical oscillating plate. Krishna and G.S.Reddy [30] discussed unsteady MHD convective flow of second grade fluid through a porous medium in a Rotating parallel plate channel with temperature dependent source. In view of the above facts, in this paper, we examine the combined effects of magnetic field, thermal radiation, heat source, velocity slip and thermal jump on peristaltic transport of an electrically conducting Walters-B fluid through a biddable walled channel.

2. Formulation and Solution of the Problem

We have considered the unsteady peristaltic transport of an incompressible viscous electrically conducting and radiating of Walters-B fluid in a channel of width 2d (see Fig.1.). The channel walls are of biddable nature. The temperatures of the lower and upper walls of the channel are maintained at T_0 and T_1 respectively. The geometry of the wall is

$$y = \pm d + a \sin \left(\frac{2\pi}{\lambda} (x - ct) \right),$$

Where, λ is the wavelength, c is the wave speed, a is the wave amplitude and x and y are the Cartesian coordinates with x measured in the direction of the wave propagation and y measured in the direction normal to the mean position of the channel walls.
Fig. 1. Physical Configuration of the problem.

The peristaltic MHD Convective flow of an electrically conducting Walter’s-B fluid through a biddable walled channel is governed by the Walter’s B fluid model and is described as

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

(2)

\[
\rho \left(\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) u = -\frac{\partial p}{\partial x} + \frac{\partial S_u}{\partial x} + \frac{\partial S_v}{\partial y} - \sigma B_0 u,
\]

(3)

The \(y\) component of momentum equation:

\[
\rho \left(\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) v = -\frac{\partial p}{\partial y} + \frac{\partial S_u}{\partial y} + \frac{\partial S_v}{\partial y},
\]

(4)

where

\[
S_{xx} = 4\eta_f \frac{\partial u}{\partial x} - 2\kappa_o \left[2 \frac{\partial^2 u}{\partial x \partial t} + 2 \left(u \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} \right) - 4 \left(\frac{\partial u}{\partial x} \right)^2 \right],
\]

(5)

\[
S_{xy} = 2\eta_f \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 - 2\kappa_o \left[2 \frac{\partial^2 u}{\partial y \partial t} + \frac{\partial^2 v}{\partial y^2} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} + \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 v}{\partial x \partial y} \right) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} \right],
\]

(6)

\[
S_{yy} = 4\eta_f \frac{\partial v}{\partial y} - 2\kappa_o \left[2 \frac{\partial^2 v}{\partial y \partial t} + 2 \left(u \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 v}{\partial y^2} \right) - 4 \left(\frac{\partial v}{\partial y} \right)^2 \right],
\]

(7)

The energy balance equation is

\[
\rho C_p \left(\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) T = \xi \nabla^2 T + \Phi \frac{\partial q}{\partial y} + Q_e,
\]

(8)
Where, \(\Phi = S_{xx} \frac{\partial u}{\partial x} + S_{xy} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + S_{yy} \frac{\partial v}{\partial y}, \) \((9) \)

The equation governing the motion of flexible wall is expressed as

\[L(\eta) = p - p_o, \] \((10) \)

where \(p_o \) is pressure on the outside surface of the wall and \(f \) is an operator which represents the motion of stretched membrane with viscous damping forces such that

\[L = -T \frac{\partial^2}{\partial x^2} + m \frac{\partial^2}{\partial t^2} + d_i \frac{\partial}{\partial t}, \] \((11) \)

in which \(T \) is the elastic tension in the membrane, \(m \) is the mass per unit area and \(d_i \) is the coefficient of damping. For simplicity we assume that \(p_o \) is zero. The continuity of stress at \(y = \pm \eta(x,t) \) demands that the pressure exerted by the walls on the fluid is equal and opposite to the pressure exerted by the fluid on the walls. Further the deformation condition suggests that the transverse displacements of the walls are equal to the corresponding \(y \)-displacements of the fluid at the instantaneous positions of the interfaces. Combining the continuity of stress and condition of deformation the no-separation condition at the boundaries are

\[\frac{\partial}{\partial x} L(\eta) = \frac{\partial p}{\partial x} + \frac{\partial S_{xy}}{\partial x} + \rho \left(\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) u, \text{ at } y = \pm \eta(x,t). \] \((12) \)

Such type of boundary condition is not restricted to the present problem. In fact it is also employed in other applications such as finishing of painted walls, frictional drag reduction on the hulls of ships and submarines etc. The radiative heat flux in the \(x \)-direction is considered as negligible compared to \(y \)-direction. By using Rosseland approximation for thermal radiation, the radiative heat flux \(q_r \) is specified by

\[q_r = -\frac{16\sigma^* T_o^4}{3K^*} \frac{\partial T}{\partial y}, \] \((13) \)

where \(\sigma^* \) and \(k^* \) are the Stefan – Boltzmann constant and mean absorption coefficient respectively. The velocity and thermal slip conditions are

\[u \pm \beta_1 S_{xy} = 0 \quad \text{at } y = \pm \eta(x,t) = \pm \left[d + a \sin \left(\frac{2\pi}{\lambda} (x - ct) \right) \right], \] \((14) \)

\[T \pm \beta_2 \frac{\partial T}{\partial y} = \left\{ \begin{array}{ll} T_i & \text{at } y = \pm \eta \\ T_o & \end{array} \right. \] \((15) \)

Here \(u \) and \(v \) are the velocity components in the \(x \) and \(y \) directions respectively and \(\rho, t, p, \eta_o, K_o, \xi, T, Q_o \) and \(k^* \) are the fluid density, the time, the pressure, the limiting viscosity at small shear rates, the short memory coefficient, the specific heat, the thermal conductivity, the temperature , the dimensional heat absorption coefficient and the thermal conductivity respectively, \(\beta_1 \) is the velocity slip parameter and \(\beta_2 \) is the thermal slip parameter. Let

\[u = \frac{\partial \psi}{\partial y} \text{ and } v = \frac{\partial \psi}{\partial x}. \] \((16) \)

We introduce the following dimensionless parameters and variables;

\[x^* = \frac{x}{\lambda}, y^* = \frac{y}{\delta}, \psi^* = \frac{\psi}{\delta t}, t^* = \frac{t}{\delta}, \eta^* = \frac{\eta}{\delta}, \beta = \frac{\beta_1}{\delta}, \frac{\beta_2}{\delta}, \delta = \frac{d}{\lambda}, e = \frac{a}{\delta}, \nu^* = \frac{d \rho}{\eta_0 c \delta}, \text{Re} = \frac{cd}{\nu}, \kappa = \frac{k^* c}{\eta_0 d}, \]

\[E_1 = \frac{c^2}{\eta_o c}, E_2 = \frac{m \rho c^3}{\lambda^3 \eta_o}, E_3 = \frac{c d^3}{\lambda^3 \eta_o}, \beta_1 = \frac{\beta_1}{\delta}, \beta_2 = \frac{\beta_2}{\delta}, \Phi = \frac{d^2}{\eta_0 c^2}, \Phi^* = \frac{d^2}{\eta_0 c^2}, \text{Pr} = \frac{\eta_0 C_p}{\nu}, E = \frac{c^2}{C_p (T_o - T_i)}, \]
\[
\begin{align*}
\theta &= \frac{T - T_o}{T_1 - T_o}, \quad M = \sqrt{\frac{\alpha B_d}{\eta}}, \quad \beta = \frac{Q_d}{\dot{\psi} (T_1 - T_o)}, \quad Rd = \frac{16 \sigma T_1^3}{3 k^2 \dot{\psi}} \quad \text{(17)}
\end{align*}
\]

and dropping the asterisk for brevity, Eq. (2) is automatically satisfied and Eqs. (3) - (9) together with boundary conditions (14) and (15) with the help of (10) - (13), (16) and (17) take the form below:

\[
\begin{align*}
\Re \delta (\psi_{yy} + \psi_{xy} - \psi_{yy}) &= -\frac{\partial p}{\partial x} - M^2 \frac{\partial^2 \psi}{\partial y^2} + \delta S_{x,y} + S_{y,y} \quad \text{(18)}
\end{align*}
\]

\[
\begin{align*}
\Re \delta (\psi_{xy} + \psi_{yy} - \psi_{xy}) &= -\frac{\partial p}{\partial y} + \delta^2 S_{x,y} + \delta S_{y,y} \quad \text{(19)}
\end{align*}
\]

Where,

\[
S_{x,x} = 4 \delta \psi_{xy} - 2 \kappa^2 \left[2 \psi_{yy} + 2 \left(\psi_{xy} - \psi_{yy} \right) \right]
\]

\[
S_{x,y} = 2 \left(\psi_{xy} - \delta \psi_{xx} \right) - 2 \kappa^2 \left[\delta \psi_{xx} - \delta \psi_{yy} + \delta \psi_{xy} - \delta \psi_{yy} \right] - 2 \psi_{yy}
\]

\[
S_{y,y} = -4 \delta \psi_{xy} - 2 \kappa^2 \left[\delta \left(-2 \psi_{xy} - 2 \psi_{xy} + 2 \psi_{yy} \right) - 2 \psi_{yy} \right]
\]

\[
\Pr \Re \delta \left(\frac{\partial \theta}{\partial x} + \psi_y \frac{\partial \theta}{\partial y} - \psi_x \frac{\partial \theta}{\partial x} \right) = \left(\frac{\partial \theta}{\partial x} + \delta \frac{\partial^2 \theta}{\partial x^2} + \delta \frac{\partial^2 \theta}{\partial y^2} \right) + Br \Phi + \beta + Rd \frac{\partial^2 \theta}{\partial y^2} \quad \text{(23)}
\]

\[
\Phi = \delta S_{x,y} \psi_{xy} + S_{y,y} (\psi_{yy} - \delta^2 \psi_{xx}) - \delta \psi_{xy} S_{y,y} \quad \text{(24)}
\]

The associated boundary conditions are:

\[
\psi_y \pm \beta \delta \psi_{xy} = 0, \quad \text{at} \quad y = \pm \eta = \pm \left[1 + \varepsilon \sin 2\pi (x - t) \right] \quad \text{(25)}
\]

\[
\frac{\partial \theta}{\partial x} = \delta S_{x,x} + S_{y,y} - \Re \delta \left[\psi_x + \psi_y \psi_{xy} - \psi_{yy} \right] - M^2 \frac{\partial^2 \psi}{\partial y^2}
\quad \text{at} \quad y = \pm \eta \quad \text{(26)}
\]

\[
\theta \pm \beta \varepsilon \theta_y = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \text{at} \quad y = \pm \eta \quad \text{(27)}
\]

Where, \(\psi \) is a stream function, \(M \) is the Hartmann number, \(Pr \) is the Prandtl number, \(Br \) (\(= Pr \ E \)) is the Brinkman number, \(E \) is the Eckert number, \(\delta \) is the wave number, \(Re \) is the Reynolds number, \(Rd \) is the Radiation parameter, \(\beta \) is the heat generation parameter, \(E_1, E_2 \) and \(E_3 \) are the non-dimensional compliant wall parameters. In order to obtain the analytical solution of above mentioned problem, an effort has been made by employing power series expansion in the small parameter \(\delta \). This solution should be valid for any arbitrary set of values of all parameters used in mathematical model. Major equations governing the perturbation solution method are as follows:
\[\psi = \psi_0 + \delta \psi_1 + ..., \]
\[\theta = \theta_0 + \delta \theta_1 + ..., \]
\[S_{xx} = S_{xx0} + \delta S_{xx1} + ..., \]
\[S_{xy} = S_{xy0} + \delta S_{xy1} + ..., \]
\[S_{yy} = S_{yy0} + \delta S_{yy1} + ..., \]
\[Z = Z_0 + \delta Z_1 + ..., \]

(28)
(29)
(30)
(31)
(32)
(33)

Also we find the analytical expressions for the skin friction coefficient and the coefficient of heat transfer in terms of Nusselt number.

3. Results and Discussion

The present investigation is to analyze the heat transfer and MHD effects on the peristaltic flow of Walters-B fluid in a compliant wall channel with thermal radiation and heat generation. The simplified equations are then solved using a regular perturbation method. Graphical results are presented for velocity, temperature, skin friction coefficient and heat transfer coefficient. The numerical results of the analytical expressions obtained for the fluid velocity and temperature are displayed graphically in Figs. (2 – 11) and discussed quantitatively. The table 1 represents the skin friction and Nusselt number with reference to different parameters. The following parameter values are utilized for numerical computations: \(E_1 = 1, E_2 = 0.4, E_3 = 0.5, Re = 1, x = 0.5, t = 0.8, M = 3, \beta = 0.8, Br = 1, Pr = 0.7, \beta_1 = 0.1, \beta_2 = 0.01, \epsilon = 0.01, \kappa = 2, \delta = 0.01. \)

Fig.2. depicts that the velocity reduces as \(M \) increases because of the Lorentz force associated with the applied magnetic field along the transverse direction which opposes the flow. Fig.3. reveals that the velocity depresses with increase of \(\beta_1 \) due to wall slip. Fig.4. shows the behavior of compliant wall parameters \(E_1 \), \(E_2 \) and \(E_3 \) on the fluid velocity. It is found that the velocity diminishes with an increase in wall damping coefficient \(E_3 \). This parameter has oscillatory resistance to the flow that’s why velocity decreases with wall damping coefficient \(E_3 \). The velocity is increasing function of \(E_1 \) and \(E_2 \) physically means that the wall elastance assists the flow. Also the velocity profile is parabolic for fixed values of the parameter and its magnitude is maximum near the center of the channel. The effect of various physical parameters on the temperature is shown in Figs. 5 – 8. The nature of temperature is parabolic through all figures. In Figs. 5 and 6 we observed that the fluid temperature rises with an increase in Hartmann number \(M \) and the thermal slip parameter \(\beta_2 \). It may also be noted from Fig. 6 that for any values of \(\beta_2 \), temperature increases with the height of the channel after attaining its maximum, it decreases. An increase in thermal radiation \(Rd \) absorption decreases the fluid temperature as shown in Fig.7. Fig.8. emphasizes that as heat generates during blood flow in arterioles, there is a significant increase in thickness of boundary layer as heat generation parameter \(\beta \) enhances. Thereby the temperature of the boundary layer increased by appreciable extend. Comparison of a special case of our present study (i.e. \(Rd = 0, M = 0, \beta = 0 \)) with that of recent results presented by Javed et al. (2016) is presented in Fig.9 and an excellent agreement is observed.

Trapping is an important phenomenon in peristaltic motion. Generally the shape of streamlines shows the effect of boundary wall on the flow pattern. Interestingly, the streamlines split to form recirculating closed streamlines called bolus within the channel. Figs. 10 and 11 revealed that that the size of trapped bolus increases with a rise in the intensity of magnetic field \(M \). The effect of various physical parameters on the skin-friction coefficient is shown in Table 1. Stress increases with increasing \(Br, M \) and \(Rd \) and reduces with increasing \(Pr, \beta_2 \) and \(\delta \). Like wise, the effects of thermophysical parameters on heat transfer coefficient. Heat transfer coefficient has oscillatory behavior which is expected in view of peristalsis and compliant wall effects. Nu enhances with \(Br \) and \(\delta \) reduces with \(Pr \).
Figure 2. The velocity profile for u against M.

Figure 3. The velocity profile for u against β_1.

Figure 4. The velocity profile for u against E_1, E_2, and E_3.

Figure 5. The temperature profile against M.

Figure 6. The temperature profile against β_2.

Figure 7. The temperature profile against Rd.
Figure 8. The temperature profile against β.

Figure 9. Comparison results with Javed et al. [18]

Figure 10. The Stream lines for $M = 3$.

Figure 11. The Stream lines for $M = 4$.

Table 1: The shear stresses and Nusselt number

Br	M	Pr	δ	Rd	β_2	τ	Nu
0.8	0.5	0.71	0.01	1	0.1	0.852214	0.588795
1						0.955855	0.658854
1.5						1.528956	0.788549
	1					1.522487	0.855280
	2					2.145521	0.945286
	3					0.522489	0.225262
	7					0.200145	0.141122
			0.02			0.142552	0.988569
			0.03			0.002551	1.478742
	2					2.558547	0.255478
	3					3.225546	0.046558
			0.2			0.585547	0.255479
			0.3			0.336325	0.050254
4. Conclusions

This study examines the influence of thermal radiation absorption on the peristaltic flow of hydromagnetic Walter-B fluid flow with heat transfer through a compliant walled channel. The analytical solution has been evaluated using regular perturbation method. The expressions for velocity, temperature, skin-friction coefficient, heat transfer coefficient and stream function have been discussed graphically. The following observations have been found:

1. The velocity field diminishes with an increase in M and β_1.
2. The fluid temperature rises with an increase M and β but decreases with R_d.
3. The absolute value of skin friction coefficient increases with an increase in M.
4. The heat transfer coefficient increases with an increase M and R_d, while the opposite trend is observed with an increase in β.
5. Size of trapped bolus increases with an increase in Hartmann number M.

References

[1]. Akram, S., Nadeem, S. (2013), Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an a symmetric channel closed form solutions. J. Magn. Magn. Mater. 328, 11-20.
[2]. Burns, J.C., Pareks, J., (1967), peristaltic motion. J. Fluid Mech. 29, 731-743.
[3]. Fung., Y. C., Yih, C. S., (1968), Peristaltic transport. J. App. Mech.35, 669-675.
[4]. Gad, N. S., (2014), Effects of hall currents on peristaltic transport with compliant walls. Appl. Math. Comput. 235, 546- 554.
[5]. Hayat, T., Javed, M., Ali, N., (2008), MHD Peristaltic transport of Jeffery fluid in a channel with compliant walls and porous space. Transp. Porous Med. 74, 259-274.
[6]. Hayat, T., Javed, M., Asghar, S., (2008), MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls. Phys. Lett. A. 372, 5026-5036.
[7]. Hina, S., Mustafa, M., Hayat, T., Alotaibi, N.D., (2015), on peristaltic motion of Pseudo plastic fluid in a curved channel with heat / mass transfer and wall properties, Appl. Math comput. 263, 378-391.
[8]. Hina, S., (2016) MHD Peristaltic transport of Eyring- Powell fluid with heat / mass transfer, wall properties and slip conditions, J. Magn. Magn, Mater. 404,148-158.
[9]. Javed, M., Hayat, T., Alsaedi, A., (2014) Peristaltic flow of Burgers fluid with compliant walls and heat transfer Appl. Math. Comput. 244, 654-671.
[10]. Kothandapani, M., Prakash, J. (2015), Effects of thermal radiation and chemical reactions on peristaltic flow of a Newtonian nano fluid under inclined magnetic field in a generalized vertical channel using homotopy perturbation method, Asia- Pacif. J. Chem. Eng. 10, 259-272.
[11]. Kothandapani, M., prakash, J. (2015), Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nano fluid in a tapered a symmetric channel. Int. J. Heat Mass trans. 81, 234-245.
[12]. Kothandapani, M., prakash, J., Pushparaj, V., (2015), Effects of Heat transfer, magnetic field and space porosity on peristaltic flow of a Newtonian fluid
[13]. Latham, T. W., (1966), fluid motion in peristaltic pump (M. S. Thesis). MIII, Cambridge, Mass.
[14]. Mekheimer, Kh. S., (2003), Non-linear peristaltic transport of magneto-hydrodynamic flow in an inclined planar channel. Arab. J. Sci. Eng. 28, 183-201.
[15]. Mekheimer, Kh. S., Al-Arabi, T. H., (2003), Non- linear peristaltic transport of MHD flow through a porous medium. IJMMS26, 1663-1682.
[16]. Mekheimer, Kh. S., Elkot, M. A. (2008), The micro polar fluid model for blood flow through a tapered artery with a stenosis, Acta Mech. Sin, 24, 673-644.

[17]. Muthu, P., Kumar, B. V. R., Chandra, P., (2008), Peristaltic motion of micro polar fluid in circular cylindrical tubes, Effect of wall properties, Appl. Math. Model. 32, 2019-2033.

[18]. Javed, M., Hayat, T., Mustafa, M., Ahmed, B., (2016), Velocity and thermal slip effects on peristaltic motion of Walters B fluid, International. Journal of heat and mass transfer. 96, 210-217.

[19]. Nadeem, S., Akbar, N. S., (2010), Peristaltic flow of sisko fluid in a uniform inclined tube. Acta Mech. Sin. 26, 675-683.

[20]. Radhakrishnamacharya, G., Srinivasulu, C., (2007), Influence of wall properties on peristaltic transport with heat transfer, C. R. Mec. 335,369-373.

[21]. Riaz, A., Nadeem, S., Ellahi, R., Akbar, N. S., (2014), The influence of wall flexibility on unsteady peristaltic flow of prandtl fluid in a three dimensional rectangular duct, Appl. Math. Comput. 241, 389-400.

[22]. Shapiro, A. H., Jaffrin, M.Y., Weinberg, S. L., (1969), peristaltic pumping with long wave lengths at low Reynolds number. J. Fluid Mech. 37, 799-825.

[23]. Srinivas, S., Kothandapani, M., (2009), the influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls, Appl. Math. Comput. 213, 197-208.

[24]. Srivasteva, L. M., Srivastiva, V. P., Sinha, S. N., (1983), Peristaltic transport of a physiological fluid part –K fluid in non geometry-Biorheology 20, 153-166.

[25]. Takabatake, S., Ayukawa, K., (1982), Numerical study of two – dimensional Sional peristaltic flows J. fluid Mech. 12, 439-456.

[26]. Walters, K., (1962), Non-Newtonian effects in some elastic-viscous liquids whose behavior linear equations of state. Quart. J. Mech. Appl. Math. 15, 63-76.

[27]. VeeraKrishna.M and B.V.Swarnalathamma (2016) Convective Heat and Mass Transfer on MHD Peristaltic Flow of Williamson Fluid with the Effect of Inclined Magnetic Field,” AIP Conference Proceedings 1728:020461 doi: http://dx.doi.org/10.1063/1.4946512

[28]. Swarnalathamma. B. V. and M. Veera Krishna (2016) Peristaltic hemodynamic flow of couple stress fluid through a porous medium under the influence of magnetic field with slip effect AIP Conference Proceedings 1728:020603 doi: http://dx.doi.org/10.1063/1.4946654

[29]. VeeraKrishna.M and M.Gangadhark Reddy (2016) MHD free convective rotating flow of Visco-elastic fluid past an infinite vertical oscillating porous plate with chemical reaction IOP Conf. Series: Materials Science and Engineering 149:012217 doi: http://dx.doi.org/10.1088/1757-899X/149/1/012217.

[30]. VeeraKrishna/M and G.Subba Reddy (2016) Unsteady MHD convective flow of Second grade fluid through a porous medium in a Rotating parallel plate channel with temperature dependent source IOP Conf. Series: Materials Science and Engineering, 149:012216 doi: http://dx.doi.org/10.1088/1757-899X/149/1/012216.