RESOLUTION OF SINGULARITIES OF AN IDEALISTIC FILTRATION IN DIMENSION 3 AFTER BENITO-VILLAMAYOR

HIRAKU KAWANOUE AND KENJI MATSUKI

Abstract. We establish an algorithm for resolution of singularities of an idealistic filtration in dimension 3 (at the local level) in positive characteristic, incorporating the method recently developed by Benito-Villamayor into our framework. Although (a global version of) our algorithm only implies embedded resolution of surfaces in the smooth ambient space of dimension 3, a classical result known before, we introduce some new invariant which effectively measures how much singularities are improved in the process of our algorithm and which strictly drops after each blow up. This is in contrast to the well-known Abhyankar-Moh pathology of the increase of the residual order under blow up and the phenomenon of the “Kangaroo” points observed by Hauser.

1. Outline of the paper

The goals of this paper are two-fold. The first goal is to present the general mechanism of resolution of singularities (at the local level) in the framework of the Idealistic Filtration Program in positive characteristic. The classical algorithm in
characteristic zero works by induction on dimension based upon the notion of a hypersurface of maximal contact. Our algorithm in positive characteristic works by induction on the invariant “σ” based upon the notion of a leading generator system (cf. [13]). Roughly speaking, the general mechanism splits into two parts; the first part is to reduce the problem in the general case to the one in the so-called “monomial case”, and the second part is to solve the problem in the monomial case. The first part of the general mechanism works in arbitrary dimension. The second part is quite subtle and difficult in positive characteristic, while it is easy in characteristic zero. The second goal is to establish the algorithm in dimension 3, by actually solving the problem of resolution of singularities in the monomial case. We incorporate the method recently developed by Benito-Villamayor [4] into our framework. We introduce some new invariant, which effectively measures how the singularities are improved in the process of our algorithm and which strictly drops after each blow up. This is in clear contrast to the well-known Abhyankar-Moh pathology of the increase of the residual order (cf. [14]) and the phenomenon of the “Kangaroo” points observed by Hauser (cf. [11]), and others. We note that the algorithm by Benito-Villamayor (cf. [2][3][4]), which works by induction on dimension based upon the notion of a generic projection, is different from our algorithm, and that even the setting of the monomial case is different from ours by definition. It is something of a surprise that we can share the “same” method when our and their approaches are different. Establishing the algorithm in dimension 4 or above remains as an open problem.

We remark that (a global version, which will be published elsewhere, of) our algorithm in dimension 3 only yields embedded resolution of surfaces in a non-singular ambient 3-fold. This is a classical result known for more than 50 years since the time of Abhyankar, Hironaka and others (cf. [1][8][10][12]). The front line of research, thanks to the works of Abhyankar, Cossart-Piltant, and Cutkosky (cf. [1][5][6][7][8]), goes way beyond, establishing resolution of singularities of a 3-fold over any base field of positive characteristic. We believe, however, that the method of our paper should provide a first step toward the open problem of embedded resolution of singularities of 3-folds in a nonsingular ambient 4-fold in positive characteristic, and also in higher dimensional cases.

The outline of the paper goes as follows.

After §1, which describes the outline of the paper, we give an overview of the contents in §2. In §3, we present a quick review on the algorithm in characteristic zero. Our algorithm in positive characteristic is modeled upon the classical algorithm in characteristic zero. The review is given in such a way that the reader can see the similarities and differences between the two through an easy and accessible comparison. In §4, we present the general mechanism of our algorithm for resolution of singularities in positive characteristic. In §5, we present a solution to the problem of resolution of singularities in the monomial case in dimension 3, thus completing our algorithm as a whole in dimension 3.

We assume, throughout the entire paper, that the base field is an algebraically closed field \(k = \overline{k} \) of characteristic zero \(\text{char}(k) = 0 \) or positive characteristic \(\text{char}(k) = p > 0 \). Therefore, there is no danger in not distinguishing the two notions “smooth over \(k \)” and “regular” (meaning that every local ring of a variety is a regular local ring), and in using the word “nonsingular” as synonymous. In the case where the base field \(k \) is perfect, our algorithm over its algebraic closure \(\overline{k} \) is
invariant under the action of the Galois group \(\text{Gal}(\overline{k}/k) \) and hence descends to the algorithm over the original base field \(k \). The case where the base field is not perfect will be investigated elsewhere.

Acknowledgment We would like to express our hearty thanks to Profs. A. Benito and O. Villamayor for explaining their results to us with great patience. We owe §5 of this paper to their ideas, which inspired us to come up with further improvements. We would also like to thank Profs. R. Blanco, A. Bravo, S. Encinas, and Dr. M.L. García for their warm hospitality during our stay in Madrid, Spain, in May of 2011. The first author would like to thank Prof. Hauser in Vienna, Austria, and Dr. Bernd Schober in Regensburg, Germany. The conversation with them led to a crucial development of the paper. The second author would like to thank Prof. Y. Lee for the hospitality during his stay in Seoul, Korea, and Prof. Y. Kawamata at Tokyo University, Japan, for the consistent and warm encouragement. He would also like to thank Profs. D. Arapura, W. Heinzer, J. Lipman, T.T. Moh, B. Ulrich, J. Wlodarczyk at Purdue University in Indiana, U.S.A., for their advice and many invaluable comments. Our indebtedness to the people at RIMS in Kyoto, Japan, is more than a word could express. The deep appreciation goes to Profs. S. Mori and S. Mukai, who have been supporting us both mathematically and personally throughout our entire project toward resolution of singularities in positive characteristic. Prof. N. Nakayama’s help was essential for the completion of our paper. The first author is partially supported by the Grant-in-Aid for Young Scientists (B) and by the Sumitomo Foundation. The second author is partially supported by the NSA grant H98230-10-1-0172.

2. Overview

The problem of resolution of singularities in its simplest form is stated as follows:

Problem 1 (Resolution of singularities). *Given an algebraic variety \(X \) over \(k \), find a proper birational map \(X \leftarrow X \) from a nonsingular variety \(\tilde{X} \).*

The above problem is reduced to the following problem of embedded resolution of singularities, if our solution to the latter is functorial in the sense that it is stable under the pull-back by smooth morphisms.

Problem 2 (Embedded resolution of singularities). *Given an algebraic variety \(X \subset W \), embedded as a closed subvariety in a smooth ambient variety over \(k \), find a sequence

\[
(X \subset W) \quad \parallel \quad (X_0 \subset W_0) \leftarrow \cdots \leftarrow (X_i \subset W_i) \leftarrow (X_{i+1} \subset W_{i+1}) \cdots \leftarrow (X_l \subset W_l),
\]

where \(W_i \leftarrow W_{i+1} \) is a blow up with smooth center \(C_i \subset W_i \) which does not contain the strict transform \(X_i \) of \(X_0 \) in year \(i \), i.e., \(C_i \not\supset X_i \), such that the last strict transform \(X_l \) is nonsingular.*

Note that in the above formulation we do not require that the center is contained in the singular locus of the strict transform \(C_i \subset \text{Sing}(X_i) \) or even that the center is contained in the strict transform \(C_i \subset X_i \).

The implication

\[[\text{Solution to Problem 2 (in a functorial way)} \implies \text{Solution to Problem 1}]\]
can be seen as follows: Given an algebraic variety X, decompose it into the union of affine open subvarieties $X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$ with embeddings $X_{\lambda} \subset W_{\lambda} = A^{n_{\lambda}}$. Take embedded resolutions of singularities $(X_{\lambda} \subset W_{\lambda}) \leftarrow (\overline{X}_{\lambda} \subset \overline{W}_{\lambda})$. We have only to see that the \overline{X}_{λ}’s patch together by the functoriality to obtain resolution of singularities $X = \bigcup_{\lambda \in \Lambda} X_{\lambda} \leftarrow \tilde{X} = \bigcup_{\lambda \in \Lambda} \tilde{X}_{\lambda}$. For the detail of the proof, we refer the reader to [10].

We would like to use “induction” in order to solve the problem of embedded resolution of singularities. However, the inductive structure to approach Problem 2 is not clear as stated, at least not obvious. We will present in §3 the reformulation by Hironaka where in characteristic zero the inductive structure on dimension is more transparent and used classically, and in §4 another reformulation where in positive characteristic the inductive structure on the invariant “σ” emerges.

We give an overview of our paper in the following.

§3 is devoted to a quick review on the algorithm in characteristic zero.

In §3.1, we give the precise statement of the reformulation by Hironaka (following the terminology of Villamayor). In short, the reformulation turns the problem of embedded resolution of singularities into a game of reducing the order of an ideal I (more transparent and used classically, and in §4 another reformulation where in positive characteristic the inductive structure on the invariant “σ” emerges.

In this reformulation, the inductive structure of the problem can be stated, though naive, simply as follows: given $(W, (I, a), E)$, find another triplet of data $(H, (J, b), F)$ with dim $H = \text{dim } W - 1$ such that constructing resolution of singularities for $(W, (I, a), E)$ is equivalent to constructing one for $(H, (J, b), F)$, a property symbolically denoted by $(W, (I, a), E) \sim (H, (J, b), F)$.

In §3.2, we discuss the inductive structure of the algorithm on dimension in characteristic zero. It starts with the key inductive lemma. Given $(W, (I, a), E)$ assumed to be under a certain condition (\star), the lemma constructs $(H, (J, b), F)$ with dim $H = \text{dim } W - 1$ (locally around a fixed point $P \in W$) which satisfies one of the following two:

(i) The ideal J is a zero sheaf, i.e., $J \equiv 0$. In this case, we take the transformation with center $H = \text{Sing}(I, a)$

$$(W, (I, a), E) \leftarrow (\widetilde{W}, (\overline{I}, a), \overline{E}).$$
After the transformation, we have $\operatorname{Sing}(\bar{I}, a) = \emptyset$ and hence resolution of singularities is achieved.

(ii) The ideal \mathcal{J} is not a zero sheaf, i.e., $\mathcal{J} \neq 0$. In this case, we have

\[(W, (\mathcal{I}, a), E) \sim (H, (\mathcal{J}, b), F).\]

Therefore, by constructing resolution of singularities for $(H, (\mathcal{J}, b), F)$ by induction on dimension, we achieve resolution of singularities for $(W, (\mathcal{I}, a), E)$.

The hypersurface “H” in the key inductive lemma is called a \textit{hypersurface of maximal contact}.

There are three shortcomings to the above key inductive lemma when we look at the goal of establishing the algorithm in characteristic zero:

1. we have to assume condition $(*)$,
2. the construction is only local, and
3. the invariant “ord” may increase after transformation, even though our ultimate goal is to reduce the invariant “ord” to below the fixed level a.

In order to overcome these shortcomings, we introduce a pair of invariants (w, s) and its associated triplet of data $(W, (\mathcal{K}, \kappa), G)$, called the modification of the original triplet $(W, (\mathcal{I}, a), E)$. (We remark that, when we want to emphasize the dimension, we add the dimension to the pair of invariants as the first factor, making the pair into a triplet $(\dim W, w, s)$.) The pair has such a special feature that its maximal locus coincides with the singular locus of $(W, (\mathcal{K}, \kappa), G)$, i.e.,

\[\operatorname{MaxLocus}(w, s) = \operatorname{Sing}(\mathcal{K}, \kappa).\]

We observe also that the transformations of $(W, (\mathcal{K}, \kappa), G)$ induce those of $(W, (\mathcal{I}, a), E)$, and that even after transformations the special feature persists to hold. Since the value of the pair never increases after transformations, this means that resolution of singularities of $(W, (\mathcal{K}, \kappa), G)$ implies the decrease of the (maximum) value of the pair (w, s). Moreover, even though the original triplet $(W, (\mathcal{I}, a), E)$ may not satisfy condition $(*)$, the modified one $(W, (\mathcal{K}, \kappa), G)$ does. Using the key inductive lemma and by induction on dimension, therefore, we achieve resolution of singularities for $(W, (\mathcal{K}, \kappa), G)$ and hence achieve the decrease of the value of the pair (w, s).

Repeatedly decreasing the value of the pair (w, s) this way, we reach the case where $w = 0$. The condition $w = 0$ is equivalent to saying that the ideal is generated by some monomial of the defining equations of the components in the boundary. Thus we call the case where $w = 0$ the \textit{monomial case}.

Finally, we have only to construct resolution of singularities in the monomial case, which can be done easily in characteristic zero, in order to achieve resolution of singularities of the original triplet $(W, (\mathcal{I}, a), E)$.

The description of the inductive structure above is only local, and hence we have overcome shortcomings (1) and (3) only so far. The way we overcome shortcoming (2) is discussed in §3.5 via the strand of invariants woven in §3.3.

In §3.3, we present the inductive structure explained in §3.2 in terms of weaving the strand of invariants “$\text{inv}_{\text{classic}}$”. The strand “$\text{inv}_{\text{classic}}$” consists of the units of the form $(\dim H^j, w, s)$, the dimension of the hypersurface of maximal contact followed by the pair as in §1.1 computed from the triplet $(H^j, (\mathcal{J}^j, b^j), F^j)$ at the j-th stage, and ends either with $(\dim H^m, \infty)$ or with $(\dim H^m, 0)$ depending on whether the last triplet $(H^m, (\mathcal{J}^m, b^m), F^m)$ is in Case (i) of the key inductive
lemma or it is in the monomial case. That is to say, \(\text{inv}_{\text{classic}} \) takes the following form

\[
\text{inv}_{\text{classic}} = (\dim H^0 = W, w-\text{ord}^0, s^0)(\dim H^1, w-\text{ord}^1, s^1) \ldots \\
(\dim H^j, w-\text{ord}^j, s^j) \ldots (\dim H^{m-1}, w-\text{ord}^{m-1}, s^{m-1}) \\
(\dim H^m, w-\text{ord}^m = \infty \text{ or } 0).
\]

Note that we do not include the invariant \(s \) in the last unit.

Resolution of singularities for \((H^m, (J^m, b^m), F^m) \) can be achieved by the key inductive lemma Case (i) when \(w-\text{ord}^m = \infty \) or by resolution of singularities in the monomial case when \(w-\text{ord}^m = 0 \). This leads to the decrease of the value of \(\text{inv}_{\text{classic}} \). Showing that the value of \(\text{inv}_{\text{classic}} \) cannot decrease infinitely many times, we accomplish resolution of singularities for \((W, (I, a), E) \).

In §3.4, we describe how to construct resolution of singularities in the monomial case, the only remaining task to complete the algorithm. In characteristic zero, this can be done easily and purely from the combinatorial data obtained by looking at the monomial in consideration, manifested as the invariant \(\Gamma \).

The strand \(\text{inv}_{\text{classic}} \) a priori depends on the choice of the hypersurfaces of maximal contact we take in the process of weaving, and it is a priori only locally defined. However, the strand \(\text{inv}_{\text{classic}} \) is actually independent of the choice, and hence it is globally well-defined. This can be shown classically by the so-called Hironaka’s trick, or more recently by Włodarczyk’s “homogenization” or by the first author’s “differential saturation”. Therefore, the process of resolution of singularities, where we take the center of blow up to be the maximum locus of \(\text{inv}_{\text{classic}} \) (plus invariant \(\Gamma \) in the monomial case), is also globally well-defined. This is how we overcome shortcoming (2) of the key inductive lemma, achieving the globalization in §3.5.

This completes the overview of §3.

§4 is devoted to describing the general mechanism of our algorithm in positive characteristic, which is closely modeled upon the algorithm in characteristic zero explained in §3. (We remark that our algorithm is also valid in characteristic zero.)

In §4.1, we give the statement of another reformulation (of Problem 2), which allows us to present the inductive structure on the invariant \(\sigma \). We start from a triplet of data \((W, R, E) \), where we replace the pair \((I, a) \) in the classical triplet \((W, (I, a), E) \) with \(R \). Here \(R = \oplus_{a \in \mathbb{Z}_{\geq 0}} (I_a, a) \) represents an idealistic filtration of i.f.g. type (integrally and finitely generated type), i.e., a finitely generated graded (by the nonnegative integers) \(\mathcal{O}_W \)-algebra satisfying the condition \(\mathcal{O}_W = I_0 \supset I_1 \supset I_2 \supset \cdots \supset I_a \supset \cdots \) with the second factor \(a \) specifying the “level” of the ideal \(I_a \).

We define its singular locus to be \(\text{Sing}(R) := \{ P \in W \mid \text{ord}_{I_a}(P) \geq a \ \forall a \in \mathbb{Z}_{\geq 0} \} \).

Then we are required to find a sequence of transformations (see §4.1 for the precise definition of a transformation)

\[
(W, R, E) \\
\| \\
(W_0, R_0, E_0) \leftarrow \cdots \\
(W_i, R_i, E_i) \leftarrow (W_{i+1}, R_{i+1}, E_{i+1}) \\
\cdots \leftarrow (W_l, R_l, E_l)
\]
such that $\text{Sing}(\mathcal{R}_t, a) = \emptyset$. We call such a sequence resolution of singularities for (W, \mathcal{R}, E). So far it is perfectly parallel to the story in characteristic zero, and there is nothing unique to positive characteristic. In fact, resolution of singularities for $(W, (T, a), E)$ is equivalent to resolution of singularities for (W, \mathcal{R}, E) where the idealistic filtration of i.f.g. type is given by the formula $\mathcal{R} = \oplus_{n \in \mathbb{Z}} (T^{[\frac{n}{2}]}, n)$.

In §4.2, we discuss the inductive structure of the algorithm on the invariant “σ” in positive characteristic. Here, unlike in characteristic zero, we have no key inductive lemma. In fact, the statement of the key inductive lemma fails to hold in positive characteristic as is demonstrated by an example due to R. Narasimhan. That is to say, there is no smooth Hypersurface of Maximal Contact (HMC for short) in general. However, we can still introduce the notion of a Leading Generator System (LGS for short), which should be considered as a collective substitute in positive characteristic for the notion of a hypersurface of maximal contact in characteristic zero. Our basic strategy is to follow the construction of the algorithm in characteristic zero, replacing an HMC (leading to the induction on dimension) with an LGS (leading to the induction on the invariant “σ”). The description of the new inductive structure goes as follows. We introduce a triplet of invariants $(\sigma, \bar{\mu}, s)$ and its associated triplet of data (W', \mathcal{R}', E'). (Unlike the classical case, the ambient space remains the same, i.e., actually we have $W' = W$.) The triplet of invariants has such a special feature that resolution of singularities of (W', \mathcal{R}', E') implies the decrease of its value. Moreover, unless $(\sigma, \bar{\mu}, s) = (\sigma, \infty, 0)$ or $(\sigma, 0, 0)$, we have either the value of σ decrease or the number of components in the boundary drop for (W', \mathcal{R}', E'), i.e., $(\sigma, \#E) > (\sigma', \#E')$. By induction on $(\sigma, \#E)$, therefore, we achieve resolution of singularities for (W', \mathcal{R}', E') and hence achieve the decrease of the value of the triplet $(\sigma, \bar{\mu}, s)$. Repeatedly decreasing the value of the triplet $(\sigma, \bar{\mu}, s)$, we reach the case where $(\sigma, \bar{\mu}, s) = (\sigma, \infty, 0)$ or $(\sigma, 0, 0)$. In the former case where $(\sigma, \bar{\mu}, s) = (\sigma, \infty, 0)$, we take the transformation with center being the singular locus of the idealistic filtration, which is guaranteed to be smooth by “Non-Singularity Principle” (cf. [13] and [14]). After the transformation, resolution of singularities is achieved. In the latter case where $(\sigma, \bar{\mu}, s) = (\sigma, 0, 0)$, we say we are in the monomial case, following the analogy to the one in characteristic zero.

Finally we have only to construct resolution of singularities in the monomial case in order to achieve resolution of singularities of the original triplet (W, \mathcal{R}, E). However, the problem of resolution of singularities in the monomial case in positive characteristic is quite subtle and very difficult. We only provide a solution in dimension 3 in §5.

In §4.3, we present the inductive structure explained in §4.2 in terms of weaving the strand of invariants “invnew”. The strand “invnew” consists of the units of the form $(\sigma^j, \bar{\mu}^j, s^j)$ computed from the triplet (W^j, \mathcal{R}', E^j) at the j-th stage, and ends either with $(\sigma^m, \infty, 0)$ or with $(\sigma^m, 0, 0)$. That is to say, “invnew” takes the following form

$$
\text{“inv}_{\text{new}} = (\sigma^0, \bar{\mu}^0, s^0)(\sigma^1, \bar{\mu}^1, s^1) \cdots (\sigma^j, \bar{\mu}^j, s^j) \cdots (\sigma^{m-1}, \bar{\mu}^{m-1}, s^{m-1}) (\sigma^m, \bar{\mu}^m = \infty \text{ or } 0, s^m = 0).
$$

Note that we do compute and include the invariant “s” in the last unit, in contrast to the weaving of “invclassic”.
Resolution of singularities of the last m-th triplet (W^m, R^m, E^m) can be achieved by taking the transformation with center $\text{Sing}(R^m)$ when $(\sigma^m, \mu^m, s^m) = (\sigma^m, \infty, 0)$ or by resolution of singularities in the monomial case when $(\sigma^m, \mu^m, s^m) = (\sigma^m, 0, 0)$. This leads to the decrease of the value of “inv\text{new}”. Showing that the value of “inv\text{new}” can not decrease infinitely many times, we accomplish resolution of singularities for (W, R, E).

There is one important remark to make. In §4.2 we do not claim that the maximum locus of the triplet $(\sigma, \tilde{\mu}, s)$ coincides with the singular locus $\text{Sing}(R')$ of the modified idealistic filtration, and in §4.3 we do not claim that the strand “inv\text{new}” is a global invariant whose maximum locus gives the globally well-defined center of blow up for the algorithm. In fact, “inv\text{new}” as presented is independent of the choice of the LGS we take in the process of weaving, just like “inv\text{classic}” is independent of the choice of the HMC we take in the process of weaving in characteristic zero. Nevertheless, the gap between $\text{MaxLocus}(\sigma, \tilde{\mu}, s)$ and $\text{Sing}(R')$ may occur when $\tilde{\mu} = 1$, and hence that the maximum locus of “inv\text{new}” does not provide the global center of blow up as it is. We can fix the situation by making certain adjustments to the strand, the description of which is rather technical. Therefore, in this short paper, we restrict ourselves to the local description, which, however, captures the essence of the inductive structure on the invariant “σ”.

In §4.4, we mention briefly the reason why resolution of singularities in the monomial case is difficult in positive characteristic, while it is easy in characteristic zero.

This completes the overview of §4.

§5 is devoted to the detailed discussion of resolution of singularities in the monomial case in dimension 3, incorporating the method recently developed by Benito-Villamayor into our framework with some improvements. In fact, we introduce some new invariant, which strictly drops after each blow up and hence effectively shows the termination of the procedure. This is the most subtle and difficult part of this paper.

The invariant τ represents the number of the elements in the LGS, which takes the value 0, 1, 2, 3 in dimension 3 and which never decreases under transformation. When $\tau = 0, 2, 3$, resolution of singularities in the monomial case is rather easy. Therefore, we focus our attention to the case where $\tau = 1$ in §5.

We are thus in the situation where (analytically) we have a unique element (h, p^e) in the LGS and where h is of the following form with respect to a regular system of parameters (x, y, z) at $P \in W$

$$h = z^{p^e} + a_1 z^{p^e} + \cdots + a_{p^e} \text{ with } a_i \in k[[x, y]]$$

satisfying

$$\text{ord}_P(a_i) > i \text{ for } i = 1, \cdots, p^e.$$

We also have a monomial of the defining equations x and y of the components of the boundary

$$(x^\alpha y^\beta, n) \in R$$

such that every element $(f, a) \in R$ is divisible by $(x^{\tilde{\alpha}} y^{\tilde{\beta}})^a$ modulo h, since we are in the monomial case.
A naive idea for resolution of singularities in the monomial case may be stated as follows: Carry out the algorithm for resolution of singularities of \((x^\alpha y^\beta, n)\) on the hypersurface \(\{z = 0\}\).

A bad news is that the above naive idea does not work for the following reasons:

1. Even though the coefficients \(a_i\) for \(i = 1, \ldots, p^e - 1\) are under control in the sense that \(a_i\) is divisible by \((x^\alpha y^\beta)^i\), the constant term \(a_{pe}\) is not well controlled. This leads to the calamity that a candidate for the center determined by the naive idea may not even be contained in the singular locus.

2. The hypersurface \(\{z = 0\}\) may not be of maximal contact. That is to say, after a blow up, its strict transform may no longer “contact” the singular locus at all.

In §5.1, we introduce the process of “cleaning” in order to eliminate the “mess” described in the bad news above. The idea of “cleaning” can be seen already in the work of Abhyankar and Hironaka, in the definition of the “residual order”. Here we follow the process refined by Benito-Villamayor. After cleaning, the invariant

\[H(P) := \min \left\{ \frac{\text{ord}_P(a_{pe})}{p^e}, \mu(P) = \frac{\alpha + \beta}{n} \right\} \]

is independent of the choice of \(h\) or a regular system of parameters \((x, y, z)\). The invariant \(H\) is well-defined not only at a closed point \(P \in W\) but also at the generic point \(\xi_{\{x = 0\}}\) (resp. \(\xi_{\{y = 0\}}\)) of a component \(\{x = 0\}\) (resp. \(\{y = 0\}\)) of the boundary.

In §5.2, we give the description of the procedure of resolution of singularities, depending on the description of the singular locus. Since we are in the monomial case, we have \(\text{Sing}(R) \subset \{x = 0\} \cup \{y = 0\}\). The description of the singular locus restricted to \(\{x = 0\}\), locally around \(P\), is given as follows depending on the value of the invariant \(H\)

\[\text{Sing}(R) \cap \{x = 0\} = \begin{cases} \{z = x = 0\} & \text{if } H(\xi_{\{x = 0\}}) \geq 1 \\ P & \text{if } H(\xi_{\{x = 0\}}) < 1. \end{cases} \]

That is to say, by looking at the invariant \(H\), we can tell if the singular locus has dimension 1, where it is a nonsingular curve, or has dimension zero, where it is an isolated point. We have a similar description of the singular locus restricted to \(\{y = 0\}\).

The procedure goes as follows:

Step 1. Check if \(\dim \text{Sing}(R) = 1\). If yes, then blow up the 1-dimensional components one by one. Since the invariant \(H\) strictly deceases for the component of the boundary involved in the blow up, this step comes to an end after finitely many times with the dimension of the singular locus dropping to 0.

Step 2. Once \(\dim \text{Sing}(R) = 0\), blow up the isolated points in the singular locus.

Step 3. Go back to Step 1.

Repeat these steps.

§5.3 is devoted to showing termination of the procedure described in §5.2. We closely follow the beautiful and delicate argument recently developed by Benito-Villamayor, which analyzes the behavior of the monomial, the invariant \(H\), and the newton polygon of the constant term \(a_{pe}\) under blow ups. Their argument is an extension of the classical ideas of Abhyankar and Hironaka, but highly refined.
taking into consideration the condition that we are in the monomial case. Benito- Villamayor also uses “a proof by contradiction” in some part of their argument, assuming the existence of an infinite sequence of the procedure and then deriving a contradiction. Therefore, their argument is not effective. They also use some “stratification” of the configuration of the boundary divisors. We introduce some new and explicit invariant, which makes the termination argument effective and which allows us to eliminate the use of “stratification” from our argument.

This completes the overview of §5, and hence the overview of the entire paper.

3. A QUICK REVIEW ON THE ALGORITHM IN CHARACTERISTIC ZERO

The goal of this section is to give a quick review on the algorithm in characteristic zero, upon which our algorithm in positive characteristic is closely modeled. For the overview of this section, we refer the reader to §2.

3.1. Reformulation of the problem by Hironaka. First, we present the reformulation of the problem by Hironaka. The form of the presentation we use here is due to Villamayor.

Problem 3 (Hironaka’s reformulation). Suppose we are given the triplet of data $(W, (I, a), E)$, where

- W : a nonsingular variety over k,
- (I, a) : a pair consisting of a nonzero coherent ideal sheaf I on W and a positive integer $a \in \mathbb{Z}_{>0}$,
- E : a simple normal crossing divisor on W.

We define its singular locus to be $\text{Sing}(I, a) := \{P \in W \mid \text{ord}_P(I) \geq a\}$.

Then construct a sequence of transformations

\[
\begin{align*}
(W, (I, a), E) & \quad \parallel \\
(W_0, (I_0, a), E_0) & \quad \leftarrow \cdots \leftarrow \\
(W_i, (I_i, a), E_i) & \quad \xrightarrow{\pi_{i+1}} (W_{i+1}, (I_{i+1}, a), E_{i+1})
\end{align*}
\]

such that $\text{Sing}(I_i, a) = \emptyset$.

We call such a sequence resolution of singularities for $(W, (I, a), E)$.

We note that the transformation

\[
(W_i, (I_i, a), E_i) \xrightarrow{\pi_{i+1}} (W_{i+1}, (I_{i+1}, a), E_{i+1})
\]

is required to satisfy the following conditions:

1. $W_i \xrightarrow{\pi_{i+1}} W_{i+1}$ is a blow up with smooth center $C_i \subset W_i$,
2. $C_i \subset \text{Sing}(I_i, a)$, and C_i is transversal to E_i (maybe contained in E_i),
3. $I_{i+1} = I(\pi_{i+1}^{-1}(C_i))^{-a} \cdot \pi_{i+1}^{-1}(I_i)O_{W_{i+1}}$,
4. $E_{i+1} = E_i \cup \pi_{i+1}^{-1}(C_i)$.

Lemma 1. A solution to Hironaka’s reformulation provides a solution to the problem of embedded resolution of singularities.
Proof. Given \(X \subset W \), set \((W, (\mathcal{I}, a), E) = (W, (\mathcal{I}_X, 1), \emptyset)\). Then \(\text{Sing}(\mathcal{I}_0, a) = \text{Sing}(\mathcal{I}_X, 1) = X = X_0 \). Take resolution of singularities for \((W, (\mathcal{I}, a), E)\). Observe that, if \(X_i \), the strict transform of \(X \) in year \(i \), is an irreducible component of \(\text{Sing}(\mathcal{I}, a) \) and if \(X_{j} \) is not an irreducible component of \(C_{i} \) in year \(i \) (as \(X_{j} \) has not been an irreducible component of \(C_{j} \) in year \(0 \leq j < i \)), then \(X_{i+1} \) is an irreducible component of \(\text{Sing}(\mathcal{I}_{i+1}, a) \) in year \((i+1)\). Since \(\text{Sing}(\mathcal{I}_i, a) = \emptyset \), we conclude that \(X_m \) must be an irreducible component of \(C_m \) for some \(m < l \). Since the center \(C_m \) is nonsingular by requirement, so is \(X_m \). Therefore, the truncation of the sequence up to year \(m \) provides a sequence for embedded resolution.

The inductive structure for solving Hironaka’s reformulation can be simply stated in the following naive form.

Naive Inductive Structure: Given a triplet \((W, (\mathcal{I}, a), E)\), find another triplet \((H, (\mathcal{J}, b), F)\) with \(\dim H = \dim W - 1 \) such that the problem of constructing resolution of singularities for \((W, (\mathcal{I}, a), E)\) is equivalent to constructing one for \((H, (\mathcal{J}, b), F)\), i.e.,

\[
(W, (\mathcal{I}, a), E) \underset{\text{equivalent}}{\sim} (H, (\mathcal{J}, b), F).
\]

As it is, the above inductive structure is too naive to hold in general. In §3.2, we first state the key inductive lemma, which realizes the naive inductive structure under a certain extra condition called \((\ast)\), and then discuss how to turn it into the real inductive structure, which works without the extra condition in general.

3.2. Inductive structure on dimension.

Lemma 2 (Key Inductive Lemma). Given \((W, (\mathcal{I}, a), E)\) and a closed point \(P \in \text{Sing}(\mathcal{I}, a) \), suppose that the following condition \((\ast)\) is satisfied:

\[
(\ast) \quad \begin{cases}
\text{ord}_P(\mathcal{I}) = a \\
E = \emptyset.
\end{cases}
\]

Then there exists \((H, (\mathcal{J}, b), F)\) with \(\dim H = \dim W - 1 \), in a neighborhood of \(P \), which satisfies one of the following:

(i) The ideal \(\mathcal{J} \) is a zero sheaf, i.e., \(\mathcal{J} \equiv 0 \). In this case, we take the transformation with center \(H = \text{Sing}(\mathcal{I}, a) \)

\[
(W, (\mathcal{I}, a), E) \leftarrow (\tilde{W}, (\mathcal{I}, a), \tilde{E}).
\]

After the transformation, we have \(\text{Sing}(\tilde{\mathcal{I}}, a) = \emptyset \) and hence we achieve resolution of singularities for \((W, (\mathcal{I}, a), E)\) (in a neighborhood of \(P \)).

(ii) The ideal \(\mathcal{J} \) is not a zero sheaf, i.e., \(\mathcal{J} \not\equiv 0 \). In this case, we have

\[
(W, (\mathcal{I}, a), E) \underset{\text{equivalent}}{\sim} (H, (\mathcal{J}, b), F).
\]

Therefore, constructing resolution of singularities for \((H, (\mathcal{J}, b), F)\) by induction on dimension, we achieve resolution of singularities for \((W, (\mathcal{I}, a), E)\) (in a neighborhood of \(P \)).

Proof. Take \(f \in \mathcal{I}_P \) such that \(\text{ord}_P(f) = a \). Then there exists a differential operator \(\delta \) of \(\deg \delta = a - 1 \) such that \(\text{ord}_P(\delta f) = 1 \). We note that this is exactly the place where we use the “in characteristic zero” condition.
We have only to set

\[
\begin{align*}
H &= \{ \delta f = 0 \}, \\
(J, b) &= (\text{Coeff}(I)|_H, a!), \\
F &= E|_H = \emptyset,
\end{align*}
\]

where the “coefficient ideal” \(\text{Coeff}(I) \) is defined by the formula

\[
\text{Coeff}(I) := a - 1 \sum_{i=0}^{a-1} \text{Diff}_i(I) \cdot a! - i
\]

with \(\text{Diff}_i(I) \) being the sheaf characterized at the stalk level for a point \(Q \in W \) by

\[
\text{Diff}_i(I)_Q = \{ \theta(g); g \in I_Q \text{ with } \theta \text{ a differential operator of } \deg(\theta) \leq i \}.
\]

We note that the condition \(E = \emptyset \) is only used to guarantee that \(H \) intersects \(E \) transversally. The condition on the boundary can be weakened and \(E \) can be non-empty, as long as we can find such \(H \) that is transversal to \(E \). We then call the condition \((\ast)\text{weakened}\).

\[\square\]

Remark 1. We remark that the statement of the key inductive lemma fails to hold in positive characteristic, as the following example by R. Narasimhan shows:

Consider \((W, (I, a), E)\) defined by

\[
\begin{align*}
W &= \mathbb{A}^4 = \text{Spec } k[x, y, z, w] \text{ with char}(k) = 2, \\
(I, a) &= ((f), 2) \text{ with } f = w^2 + x^3 y + y^3 z + z^7 x, \\
E &= \emptyset.
\end{align*}
\]

Then we have a curve \(C \), parametrized by \(t \), sitting inside of the singular locus

\[
C = \{ x = t^{15}, y = t^{10}, z = t^7, w = t^{32} \} \subset \text{Sing}(I, a).
\]

Observe that the curve \(C \) has full embedding dimension at the origin \(\emptyset \), i.e.,

embedding-dim\(C = 4 = \dim W.\)

Therefore, there exists no smooth hypersurface \(H \) which contains the singular locus \(\text{Sing}(I, a) \), and hence there exists no smooth hypersurface of maximal contact.

We list the shortcomings with the key inductive lemma toward establishing the algorithm for resolution of singularities for \((W, (I, a), E)\) in general.

List of shortcomings with the key inductive lemma

1. We have to assume condition \((\ast)\).
2. We construct \((H, (J, b), F)\) only locally.
3. The invariant “ord” may strictly increase under transformation, even though our ultimate goal is to reduce the invariant “ord” to below the fixed level \(a \).

Now we describe the mechanism which overcomes all of the shortcomings above in one stroke, turning the key inductive lemma into the real inductive structure in characteristic zero.

Mechanism to overcome the shortcomings in the list

Given \((W, (I, a), E)\) (Precisely speaking, the triplet sits in the middle of the sequence, say in year “i”, for resolution of singularities. However, we omit the
subscript "\()\), indicating the year for simplicity of the notation), we introduce a pair of invariants \((w\text{-ord}, s)\) and its associated triplet of data \((W, (\mathcal{K}, \kappa), G)\) called the modification of the original triplet. Together they form the following mechanism to overcome the shortcomings:

Outline of the mechanism

1. The maximum locus of the pair \((w\text{-ord}, s)\), which is an upper semi-continuous function, and the singular locus \(\text{Sing}(\mathcal{K}, \kappa)\) coincide, i.e.,
 \[
 \text{MaxLocus}(w\text{-ord}, s) = \text{Sing}(\mathcal{K}, \kappa).
 \]
 Moreover, the value of the pair \((w\text{-ord}, s)\) never increases and this relation persists even after transformations of \((W, (\mathcal{K}, \kappa), G)\). This means that resolution of singularities for \((W, (\mathcal{K}, \kappa), G)\) implies the decrease of the (maximum) value of the pair \((w\text{-ord}, s)\).

2. The triplet \((W, (\mathcal{K}, \kappa), G)\) satisfies \((\ast)\text{weakened}\), and hence we can apply the key inductive lemma. (We note that \(G = E_{\text{new}}\) may not be empty. However, we can still find a hypersurface of maximal contact \(H\) which is transversal to \(G = E_{\text{new}}\). Therefore, the triplet \((H, (\mathcal{J}, b), F)\) with \(F = G|_H\) works.)

3. By the key inductive lemma and by induction on dimension, we achieve resolution of singularities for \((W, (\mathcal{K}, \kappa), G)\), and hence achieve the strict decrease of the (maximum) value of the pair \((w\text{-ord}, s)\).

4. By repeating the above procedures (1), (2), (3), we reach the stage where \(w\text{-ord} = 0\), i.e., \(\mathcal{I} = \mathcal{O}_W\). This means that we are in the monomial case where the ideal \(\mathcal{I}\) is generated by some monomial of the defining equations of the components in \(E_{\text{young}} \subset E\).

5. Finally, construct resolution of singularities for the triplet in the monomial case, which can be done easily in characteristic zero.

We give the detailed and explicit description of the pair \((w\text{-ord}, s)\), the triplets \((W, (\mathcal{K}, \kappa), G)\) and \((H, (\mathcal{J}, b), F)\) in the following:

Description of the pair \((w\text{-ord}, s)\)

- **w\text{-ord}:** It is the so-called (normalized) weak order. It is the order of \(\mathcal{I}\) (divided by the level \(a\)), where \(\mathcal{I}\) is obtained from \(\mathcal{I}\) by dividing it as much as possible by the defining equations of the components in \(E_{\text{young}}\). The symbol \(E_{\text{young}}\) refers to the union of the exceptional divisors created after the process of resolution of singularities began.

- **s:** It is the number of the components in \(E_{\text{old}} = E \setminus E_{\text{new}}\). The symbol \(E_{\text{new}}\) refers to the union of the exceptional divisors created after the time when the current value of w\text{-ord} first started.
Description of the triplet \((W, (\mathcal{K}, \kappa), G)\)

\[
\begin{align*}
W & = W, \\
(\mathcal{K}, \kappa) & = \text{Bdry (Comp(}\mathcal{I}, a)) \\
\text{where} & \\
\text{Comp(}\mathcal{I}, a) & = \begin{cases}
\text{the transformation of the one in the previous year} & \text{if w-ord stays the same} \\
(\mathcal{I}^M + \mathcal{I}^t, M \cdot a) & \text{with } M = \text{w-ord} \cdot a \\
\text{if w-ord strictly decreases} &
\end{cases} \\
\text{and where} & \\
\text{Bdry (Comp(}\mathcal{I}, a)) & = \begin{cases}
\text{the transformation of the one in the previous year} & \text{if (w-ord, s) stays the same} \\
(\mathcal{C} + (\sum_{D \subseteq E_{\text{old}}} \mathcal{I}(D))^c, c) & \text{where } (\mathcal{C}, c) = \text{Comp(}\mathcal{I}, a), \\
\text{if (w-ord, s) strictly decreases} &
\end{cases} \\
G & = E \setminus E_{\text{old}} = E_{\text{new}}.
\end{align*}
\]

We note that we have \(E_{\text{new}} \subset E_{\text{young}}\) and that they may not be equal in general. We also note that, if the value of the pair \((\text{w-ord}, s)\) stays the same as in the previous year, then \((\mathcal{K}, \kappa)\) is the transformation of the one in the previous year. We remark that the symbols “Comp” and “Bdry” represent the “Companion” modification and the “Boundary” modification, respectively.

Description of the triplet \((H, (J, b), F)\)

Case: The value of the pair \((\text{w-ord}, s)\) stays the same as in the previous year. In this case, we simply take \((H, (J, b), F)\) to be the transformation of the one in the previous year under blow up.

Case: The value of the pair \((\text{w-ord}, s)\) strictly drops. In this case, we construct \((H, (J, b), F)\) as follows.

\[
\begin{align*}
H & = \{ \delta f = 0 \}, \\
(J, b) & = (\text{Coeff}(\mathcal{K})|_H, \kappa!), \\
F & = G|_H,
\end{align*}
\]

where we take \(f \in \mathcal{K}_P\) such that \(\text{ord}_P(f) = \kappa\) and a differential operator \(\delta\) of \(\text{deg} \delta = \kappa - 1\) such that \(\text{ord}_P(\delta f) = 1\).

This completes the discussion of the mechanism to achieve resolution of singularities for \((W, (\mathcal{I}, a), E)\) in general. We note, however, that we only overcome shortcomings (1) and (3) on the list, since the description so far is only local. We discuss in §3.5 how to overcome shortcoming (2) and how to globalize the procedure via the strand of invariants woven in the next section.

3.3. Weaving of the classical strand of invariants “inv\text{classic}”. In §3.3, we interpret the inductive structure explained in §3.2 in terms of weaving the strand of invariants “inv\text{classic}”, whose maximum locus (with respect to the lexicographical order, adding the invariant “\(\Gamma\)” in the monomial case) determines the center of blow up for the algorithm for resolution of singularities in characteristic zero.

We weave the strand of invariants “inv\text{classic}” consisting of the units of the form \((\dim H^j, \text{w-ord}^j, s^j)\) computed from the modifications \((H^j, (J^j, b^j), F^j)\) constructed simultaneously along the weaving process.

Weaving Process
We describe the weaving process inductively.

Suppose we have already woven the strands and constructed the modifications up to year $(i - 1)$.

Now we are in year i (looking at the neighborhood of a point $P_i \in W_i$).

We start with $(W_i, (\mathcal{L}_i, a), E_i) = (H_i^0, (\mathcal{J}_i^0, b_i^0), F_i^0)$, just renaming the transformation $(W_i, (\mathcal{L}_i, a), E_i)$ in year i of the resolution sequence as the 0-th stage modification $(H_i^0, (\mathcal{J}_i^0, b_i^0), F_i^0)$ in year i.

Suppose that we have already woven the strand up to the $(j - 1)$-th unit

$$(\text{inv}_{\text{classic}})_i^{\leq j - 1} = \left(\dim H_i^0, \text{w-ord}_i^0, s_i^0\right) \left(\dim H_i^1, \text{w-ord}_i^1, s_i^1\right) \cdots \left(\dim H_i^{i - 1}, \text{w-ord}_i^{i - 1}, s_i^{i - 1}\right)$$

and that we have also constructed the modifications up to the j-th one

$$(H_i^0, (\mathcal{J}_i^0, b_i^0), F_i^0), (H_i^1, (\mathcal{J}_i^1, b_i^1), F_i^1), \cdots, (H_i^{j - 1}, (\mathcal{J}_i^{j - 1}, b_i^{j - 1}), F_i^{j - 1}), (H_i^j, (\mathcal{J}_i^j, b_i^j), F_i^j).$$

Our task is to compute the j-th unit $(\dim H_i^j, \text{w-ord}_i^j, s_i^j)$ and construct the $(j + 1)$-th modification $(H_i^{j + 1}, (\mathcal{J}_i^{j + 1}, b_i^{j + 1}), F_i^{j + 1})$ (unless the weaving process is over at the j-th stage).

Computation of the j-th unit $(\dim H_i^j, \text{w-ord}_i^j, s_i^j)$

$\dim H_i^j$: We just remark that we insert this first factor in characteristic zero only to emphasize the role of the dimension, which corresponds to the role of the invariant σ in our algorithm in positive characteristic.

w-ord_i^j: We compute the second factor as follows.

$$\text{w-ord}_i^j = \begin{cases} \infty & \text{if } \mathcal{J}_i^j \equiv 0 \\ \text{ord} \left(\overline{\mathcal{J}_i^j}\right) / b_i^j & \text{if } \mathcal{J}_i^j \not\equiv 0, \end{cases}$$

where the ideal $\overline{\mathcal{J}_i^j}$ is obtained from \mathcal{J}_i^j by dividing the latter as much as possible by the defining ideals of the components in $(F_i^j)_{\text{young}}$, i.e.,

$$\overline{\mathcal{J}_i^j} = \left(\prod_{D \in (F_i^j)_{\text{young}}} \mathcal{I}(D)^{-\text{ord}_{\eta(D)}(\mathcal{J}_i^j)} \right) \cdot \mathcal{J}_i^j$$

where $\eta(D)$ is the generic point of D and where $(F_i^j)_{\text{young}} \cup \mathcal{J}_i^j$ is the union of the exceptional divisors created after the year when the value $(\text{inv}_{\text{classic}})_i^{\leq j - 1} (\dim H_i^j)$ first started.

We note that, if $\text{w-ord}_i^j = \infty$ or 0, we declare that the $(j = m)$-th unit is the last one, and we stop the weaving process at the m-th stage in year i.

s_i^j: It is the number of the components in $(F_i^j)_{\text{old}} = F_i^j \ \backslash \ (F_i^j)_{\text{new}}$, where

$$(F_i^j)_{\text{new}} \cup \mathcal{J}_i^j$$

is the union of the exceptional divisors created after the year when the value $(\text{inv}_{\text{classic}})_i^{\leq j - 1} (\dim H_i^j, \text{w-ord}_i^j)$ first started. We note that the third factor is not included if $\text{w-ord}_i^j = \infty$ or 0.

At the end, the weaving process of the strand comes to an end in a fixed year i, with $(\text{inv}_{\text{classic}})_i$ taking the following form

$$(\text{inv}_{\text{classic}})_i = (\dim H_i^0, \text{w-ord}_i^0, s_i^0) (\dim H_i^1, \text{w-ord}_i^1, s_i^1) \cdots (\dim H_i^m, \text{w-ord}_i^m, s_i^m) (\dim H_i^{m - 1}, \text{w-ord}_i^{m - 1}, s_i^{m - 1}).$$
Termination in the horizontal direction: We note that termination of the weaving process in the horizontal direction is a consequence of the fact that going from the \(j \)-th unit to the \((j + 1)\)-th unit we have \(\dim H^j_i > \dim H^{j+1}_i \) and that the dimension obviously satisfies the descending chain condition.

Construction of the \((j+1)\)-th modification \((H^{j+1}_i, (J^{j+1}_i, b^{j+1}_i), F^{j+1}_i) \)

We note that we construct the \((j + 1)\)-th modification only when \(\text{w-ord}^j_j \neq \infty \) or 0.

Case: \((\text{inv}_{\text{classic}})_i^{\leq j} = (\text{inv}_{\text{classic}})_i^{j-1} \).

In this case, we simply take \((H^{j+1}_i, (J^{j+1}_i, b^{j+1}_i), F^{j+1}_i) \) to be the transformation of \((H^{j+1}_{i-1}, (J^{j+1}_{i-1}, b^{j+1}_{i-1}), F^{j+1}_{i-1}) \) under the blow up.

Case: \((\text{inv}_{\text{classic}})_i^{\leq j} < (\text{inv}_{\text{classic}})_i^{j-1} \).

In this case, we follow the construction described in the mechanism discussed in §3.2. Starting from \((H^j_i, (J^j_i, b^j_i), F^j_i) \), we first construct \((H^j_i, (K^j_i, \kappa^j_i), G^j_i) \) where

\[
\begin{align*}
H^j_i & = H^j_i, \\
(K^j_i, \kappa^j_i) & = \text{Bdry} \left(\text{Comp}(J^j_i, b^j_i) \right)
\end{align*}
\]

where

\[
\text{Comp}(J^j_i, b^j_i) = \begin{cases}
\text{the transformation of } \text{Comp}(J^j_{i-1}, b^j_{i-1}) & \text{if } (\text{inv}_{\text{classic}})_i^{\leq j-1} (\dim H^j_i, \text{w-ord}^j_i) \\
& = (\text{inv}_{\text{classic}})_i^{\leq j-1} (\dim H^j_{i-1}, \text{w-ord}^j_{i-1}) \\
& \text{with } M^j_i + J^j_i \cdot b^j_i & \text{if } (\text{inv}_{\text{classic}})_i^{\leq j-1} (\dim H^j_i, \text{w-ord}^j_i) \\
& < (\text{inv}_{\text{classic}})_i^{\leq j-1} (\dim H^j_{i-1}, \text{w-ord}^j_{i-1})
\end{cases}
\]

and where

\[
\begin{align*}
\text{Bdry}(C, c) & = (C + \left(\sum_{D \subset (F^j_i)_{\text{old}}} \mathcal{I}(D) \right)^c), c) \\
G^j_i & = F^j_i \setminus (F^j_i)_{\text{old}} = (F^j_i)_{\text{new}}.
\end{align*}
\]

Then we construct \((H^{j+1}_i, (J^{j+1}_i, b^{j+1}_i), F^{j+1}_i) \) as follows.

\[
\begin{align*}
H^{j+1}_i & = \{ \delta f = 0 \}, \\
(J^{j+1}_i, b^{j+1}_i) & = (\text{Coeff}(K^j_i)|_{H^{j+1}_i}, (\kappa^j_i)!), \\
F^{j+1}_i & = G^j_i|_{H^{j+1}_i} = (F^j_i)_{\text{new}}|_{H^{j+1}_i},
\end{align*}
\]

where we take \(f \in \left(K^j_i\right)_P \) such that \(\text{ord}_{P_i}(f) = \kappa^j_i \) and a differential operator \(\delta \) of \(\text{deg} \delta = \kappa^j_i - 1 \) such that \(\text{ord}_{P_i}(\delta f) = 1 \).

Summary of the algorithm in \(\text{char}(k) = 0 \) in terms of \("\text{inv}_{\text{classic}}" \)

We start with \((W, (\mathcal{I}, a), E) = (W_0, (\mathcal{I}_0, a), E_0) \).
Suppose we have already constructed the resolution sequence up to year \(i \)

\[
(W, (\mathcal{I}, a), E) = (W_0, (\mathcal{I}_0, a), E_0) \leftarrow \cdots \leftarrow (W_i, (\mathcal{I}_i, a), E_i).
\]
We weave the strand of invariants in year i described as above

$$(\text{inv}_{\text{classic}})_i = (\dim H_0^i, w\text{-ord}_0^i, s_0^i)(\dim H_1^i, w\text{-ord}_1^i, s_1^i) \cdots (\dim H_{m-1}^i, w\text{-ord}_{m-1}^i, s_{m-1}^i)(\dim H_m^i, w\text{-ord}_m^i = \infty \text{ or } 0).$$

There are two cases:

Case: $w\text{-ord}_m^i = \infty$. In this case, we take the center of blow up in year i for the transformation to be the last hypersurface of maximal contact H_m^i.

Case: $w\text{-ord}_m^i = 0$. In this case, we follow the procedure specified for resolution of singularities in the monomial case.

Termination in the vertical direction: Since resolution of singularities for $(H_i^m, (J_i^m, b_i^m), F_i^m)$ implies the strict decrease of the value of $(\text{inv}_{\text{classic}})_{\leq m-1}$, we conclude that in some year i', the value of the strand strictly decreases, i.e.,

$$(\text{inv}_{\text{classic}})_i > (\text{inv}_{\text{classic}})_{i'}.$$

Now we claim that the value of the strand “$\text{inv}_{\text{classic}}$” can not decrease infinitely many times. In fact, suppose by induction we have shown that the value of $(\text{inv}_{\text{classic}})_{\leq t-1}$ can not decrease infinitely many times. Then after some year, the value of $(\text{inv}_{\text{classic}})_{\leq t-1}$ stabilizes. This in turn implies that the value b_t^i, the second factor of the pair in the t-th modification, stays the same, say b. Now the value of $w\text{-ord}_t^i$, having the fixed denominator b, can not decrease infinitely many times, and neither can the value s_t^i, being the nonnegative integer. Therefore, we conclude that the value of $(\text{inv}_{\text{classic}})_{\leq t}$ can not decrease infinitely many times. As the value of t increases, the value of the dimension decreases by one. Since obviously the value of the dimension satisfies the descending chain condition, the increase of the value of t stops after finitely many times. Finally, therefore, we conclude that the value of the strand “$\text{inv}_{\text{classic}}$” can not decrease infinitely many times.

Therefore, the algorithm terminates after finitely many years, achieving resolution of singularities for $(W, (I, a), E)$.

3.4. The monomial case in characteristic zero. The purpose of §3.4 is to discuss how to construct resolution of singularities for $(W, (I, a), E)$ which is in the monomial case. (Precisely speaking, the triplet sits in the middle of the sequence, say in year “i”, for resolution of singularities. However, we omit the subscript “$()_i$” indicating the year for simplicity of the notation.)

Recall that, in the monomial case, \mathcal{I} is a monomial of the ideals defining the components of $E_{\text{young}} = \bigcup_{t=1}^c D_t \subset E$ (See §3.3 for the definition of E_{young}), i.e.,

$$\mathcal{I} = \prod_{t=1}^c \mathcal{I}(D_t)^{c_t}.$$

Invariant “Γ”

Definition 1 (Invariant “Γ”). Let the situation be as above. We define the invariant $\Gamma = (\Gamma_1, \Gamma_2, \Gamma_3)$ at $P \in \text{Sing}(\mathcal{I}, a)$ in the following way:
After each transformation, with this addition, the value of "\(\Gamma\)" decreases, i.e.,
\[
\Gamma_1 = -\min \{ n \mid \exists t_1, \cdots, t_n \text{ s.t. } c_{t_1} + \cdots + c_{t_n} \geq a, P \in D_{t_1} \cap \cdots \cap D_{t_n} \},
\]
\[
\Gamma_2 = \max \{ (c_{t_1} + \cdots + c_{t_n})/a \mid c_{t_1} + \cdots + c_{t_n} \geq a, P \in D_{t_1} \cap \cdots \cap D_{t_n} \},
\]
\[
-1 = \Gamma_1 \}
\]
\[
\Gamma_3 = \max \{ ((t_1, \cdots, t_n) \mid t_1 < \cdots < t_n, c_{t_1} + \cdots + c_{t_n} \geq a, P \in D_{t_1} \cap \cdots \cap D_{t_n},
\]
\[
-1 = \Gamma_1, (c_{t_1} + \cdots + c_{t_n})/a = \Gamma_2 \}.
\]

It is immediate to see the following properties of the invariant "\(\Gamma\)".

1. The invariant \(\Gamma\) is an upper semi-continuous function.
2. The maximum locus \(\text{MaxLocus}(\Gamma)\) is nonsingular, since it is the intersection of some components in \(E_{\text{young}} \subset E\), a simple normal crossing divisor.

Procedure and its termination

Now take the transformation with center \(C = \text{MaxLocus}(\Gamma)\)
\[
(W, (I, a), E) \leftarrow (W', (I', a), E')
\]
where \(E' = E \cup \pi^{-1}(C)\) and \(E'_{\text{young}} = E_{\text{young}} \cup \pi^{-1}(C) = \cup_{t=1}^{r+1} D_t\) with \(D_{r+1} = \pi^{-1}(C)\). Then it is easy to see that \((W', (I', a), E')\) is again in the monomial case and that the invariant \(\Gamma\) strictly decreases, i.e.,
\[
\Gamma > \Gamma'.
\]

Since the value of \(\Gamma\) can not decrease infinitely many times, this procedure must terminate after finitely many years, achieving resolution of singularities for \((W, (I, a), E)\) in the monomial case.

Remark 2. We can add the invariant \(\Gamma\) as the third factor in the last unit of \((\text{inv}_{\text{classic}})_i\), if the last modification is in the monomial case. Then the strand \((\text{inv}_{\text{classic}})_i\) takes the following form
\[
(\text{inv}_{\text{classic}})_i = (\dim H^0, \text{w-ord}^0, s^0) (\dim H^1, \text{w-ord}^1, s^1) \cdots
\]
\[
(\dim H^2, \text{w-ord}^2, s^2) \cdots (\dim H^{m-1}, \text{w-ord}^{m-1}, s^{m-1})
\]
\[
\begin{cases}
\{ & (\dim H^m, \text{w-ord}_m = \infty), \text{ or } \\
\{ & (\dim H^m, \text{w-ord}_m = 0, \Gamma).
\end{cases}
\]

After each transformation, with this addition, the value of "\(\text{inv}_{\text{classic}}\)" strictly decreases, i.e.,
\[
(\text{inv}_{\text{classic}})_i > (\text{inv}_{\text{classic}})_{i+1}.
\]

This completes the discussion on how to construct resolution of singularities for \((W, (I, a), E)\) in the monomial case.

3.5 Globalization. The strand "\(\text{inv}_{\text{classic}}\)" a priori depends on the choice of the hypersurfaces of maximal contact we take in the process of weaving, and it is a priori only locally defined. However, the strand "\(\text{inv}_{\text{classic}}\)" is actually independent of the choice, and hence it is globally well-defined. This can be shown classically by the so-called Hironaka’s trick, or more recently by incorporating Wlodarczyk’s “homogenization” (cf.[16]) or the first author’s “differential saturation” (cf.[13]) in the construction of the modification. Therefore, the process of resolution of singularities, where we take the center of blow up to be the maximum locus of "\(\text{inv}_{\text{classic}}\)" (plus invariant “\(\Gamma\)" in the monomial case (cf. Remark 2)), is also globally well-defined. This is how we overcome shortcoming (2) of the key inductive lemma.

This finishes the quick review on the algorithm in characteristic zero.
4. **Our algorithm in positive characteristic**

The goal of this section is to discuss the general mechanism of our algorithm in positive characteristic, which is modeled closely upon the algorithm in characteristic zero reviewed in §3.

4.1. **Reformulation of the problem in our setting.** First, we present the reformulation of the problem in our setting.

Problem 4 (Reformulation in terms of an idealistic filtration (cf. [13][14])). Suppose we are given the triplet of data \((W, R, E)\), where

\[
\begin{align*}
W & : \text{a nonsingular variety over } k, \\
R & = \oplus_{a \in \mathbb{Z}_{>0}} (I_a, a) \text{ an idealistic filtration of i.f.g. type} \\
& \text{i.e. a finitely generated graded } \mathcal{O}_W\text{-algebra} \\
& \text{satisfying the condition} \\
\mathcal{O}_W = I_0 \supset I_1 \supset I_2 \cdots \supset I_a \supset \cdots \text{ with } I_1 \neq 0, \\
& \text{“a” in the second factor specifies} \\
& \text{the level of the ideal } I_a \text{ in the first factor,} \\
E & : \text{a simple normal crossing divisor on } W.
\end{align*}
\]

We define its singular locus to be

\[\text{Sing}(R) := \{P \in W \mid \text{ord}_P(I_a) \geq a \forall a \in \mathbb{Z}_{\geq 0}\}.\]

Then construct a sequence of transformations

\[
(W, R, E) \xrightarrow{\pi_{i+1}} (W_{i+1}, R_{i+1}, E_{i+1}) \xrightarrow{\pi_{i+1}} (W_{i+2}, R_{i+2}, E_{i+2}) \cdots
\]

such that \(\text{Sing}(R_i) = \emptyset\).

We call such a sequence resolution of singularities for \((W, R, E)\).

We note that the transformation

\[
(W_i, R_i, E_i) \xleftarrow{\pi_i} (W_{i+1}, R_{i+1}, E_{i+1})
\]

is required to satisfy the following conditions:

1. \(W_i \xrightarrow{\pi_{i+1}} W_{i+1}\) is a blow up with smooth center \(C_i \subset W_i\),
2. \(C_i \subset \text{Sing}(R_i)\), and \(C_i\) is transversal to \(E_i\) (maybe contained in \(E_i\)),
3. \(I_{a,i+1} = I((\pi_{i+1}^{-1}(C_i))^a \cdot \pi_{i+1}^{-1}(I_a) \mathcal{O}_{W_{i+1}}\) for \(a \in \mathbb{Z}_{\geq 0}\),
4. \(E_{i+1} = E_i \cup I_{i+1}^{-1}(C_i)\).

Remark 3 (Local version). Problem 4 is the “global” version of the problem of resolution of singularities for the triplet of data \((W, R, E)\). In the following, we formulate its local version: Starting from a closed point \(P \in W\) and its neighborhood, we have a sequence of closed points and their neighborhoods

\[P \in W = P_0 \in W_0 \leftarrow P_1 \in W_1 \leftarrow \cdots \leftarrow P_i \in W_i\]

in the resolution sequence. After we choose the center \(P_i \subset C_i \subset \text{Sing}(R_i) \subset W_i\) and take the transformation \(W_i \xrightarrow{\pi_i} W_{i+1}\) to extend the resolution sequence, the “devil” chooses a closed point \(P_{i+1} \in \pi_i^{-1}(P_i) \subset W_i\). Our task is to provide a
prescription on how to choose the center so that, no matter how the devil makes the choice, he can not come up with an infinite sequence where each closed point belongs to the singular locus $P_l \in \text{Sing}(R_l) \subset W_l$ forever. That is to say, the prescription should guarantee that we ultimately reach year $l-1$ so that, with the choice of center C_{l-1}, after the blow up we have $\pi_{l-1}^{-1}(P_{l-1}) \cap \text{Sing}(R_l) = \emptyset$.

Our algorithm discussed in this paper is exclusively for this local version of the problem of resolution of singularities for the triplet of data (W, R, E). The adjustments we have to make to our algorithm in order to deal with the global version will be published elsewhere.

The notion of “the differential saturation” $\mathcal{D}R$ (of an idealistic filtration \mathcal{R} of i.f.g. type) plays an important role in our algorithm.

Definition 2. Let \mathcal{R} be an idealistic filtration of i.f.g. type. We define its differential saturation $\mathcal{D}R$ (at the level of the stalk for a point $P \in W$) as follows: $$\mathcal{D}R_P := \{(\delta f, \max\{a - \deg \delta, 0\}) | (f, a) \in \mathcal{R}_P \text{ and } \delta \text{ is a diff. op. of } \deg \delta\}.$$

Remark 4.

1. It follows immediately from the generalized product rule (cf. [13]) that the differential saturation $\mathcal{D}R$ is again an idealistic filtration of i.f.g. type, and from the definition that it contains the original idealistic filtration of i.f.g. type, i.e., $\mathcal{R} \subset \mathcal{D}R$.

2. The problem of constructing resolution of singularities for (W, \mathcal{R}, E) is equivalent to the one for $(W, \mathcal{D}R, E)$, i.e., $$(W, \mathcal{R}, E) \sim_{\text{equivalent to}} (W, \mathcal{D}R, E).$$

4.2. Inductive structure on the invariant “σ”. The classical algorithm in characteristic zero works by induction on dimension, based upon the notion of a smooth hypersurface of maximal contact, as reviewed in §3. Narasimhan’s example (cf. Remark 1 in §3) tells us, however, that there is no hope of finding a smooth hypersurface of maximal contact in positive characteristic. The following proposition gives rise to the notion of “a leading generator system” (called an LGS for short), which we consider as a collective substitute in positive characteristic for the notion of a hypersurface of maximal contact (called an HMC for short) in characteristic zero. Our algorithm in positive characteristic works by induction on the invariant “σ”, based upon the notion of an LGS. Roughly speaking, introducing the notion of an LGS corresponds to considering singular hypersurfaces of maximal contact.

Definition of the invariant “σ”

Proposition 1 (cf. [13]). Let $\mathcal{R} = \oplus_{a \in \mathbb{Z}_{\geq 0}} (I_a, a)$ be an idealistic filtration of i.f.g. type. Assume that \mathcal{R} is differentially saturated, i.e., $\mathcal{R} = \mathcal{D}R$. Fix a closed point $P \in W$.

Consider the leading algebra $L_P(\mathcal{R})$

$$L_P(\mathcal{R}) := \oplus_{a \in \mathbb{Z}_{\geq 0}} \{f \mod m_P^{a+1} | (f, a) \in \mathcal{R}_P, f \in m_P^a\} \subset \oplus_{a \in \mathbb{Z}_{\geq 0}} m_P^a / m_P^{a+1}.$$

Then there exists a regular system of parameters $(x_1, \cdots, x_l, x_{l+1}, \cdots, x_d)$ at P such that the leading algebra takes the following form:

Case: char(k) = 0
$L_P(\mathcal{R}) = k[x_1, \cdots, x_l] \subset k[x_1, \cdots, x_l, x_{l+1}, \cdots, x_d] = \oplus_{a \in \mathbb{Z}_{\geq 0}} m_P^a / m_P^{a+1}$.
Moreover, we observe the following: if we take an element $(h_i, 1) \in \mathcal{R}_P$ with $h_i \equiv x_i \mod m_P^e$, then the hypersurface $\{h_i = 0\}$ is a hypersurface of maximal contact in the classical sense.

Case: char(k) = $p > 0$

$L_P(\mathcal{R}) = k[x_1^{e_1}^p, \ldots, x_t^{e_t}^p] \subset k[x_1, \ldots, x_t, x_{t+1}, \ldots, x_d] = \oplus_{a \in \mathbb{Z}_{\geq 0}} m_P^a/m_P^{a+1}$ for some $0 \leq e_1 \leq \cdots \leq e_t$.

Remark 5. The former case in the above proposition can be regarded as a special case of the latter case: char(k) = $p > 0$, by formally setting $p = \infty$ and $0 = e_1 = \cdots = e_t$, where all the x^{p^e}-terms with $e > 0$ become “invisible” as p goes to ∞.

Definition 3 (Leading Generator System (cf. [13] [14]). Let the situation be as in the proposition above. Take a subset $\mathcal{H} = \{(h_i, p^{e_i})\}_{i=1}^t$ with $h_i \equiv x_i^{p^{e_i}} \mod m_P^{e_i+1}$ for $i = 1, \ldots, t$.

We say that \mathcal{H} is a leading generator system for \mathcal{R} (called an LGS for short).

Definition 4 (Invariant “σ” and “τ” (cf. [13] [14])). Let the situation be as in the proposition above. Then the invariants σ and τ are defined by the following formulas

$$\sigma(P) := (a_n)_{n \in \mathbb{Z}_{\geq 0}} \text{ where } a_n = d - \# \{ e_i \mid e_i \leq n \}$$

where the value set of the invariant σ is given the lexicographical order, and

$$\tau(P) := \# \text{ of the elements in an LGS } \mathcal{H} = \# \mathcal{H} = t.$$

(We note that the invariants σ and τ are independent of the choice of a regular system of parameters or an LGS.) The moral here is that the more e_i’s we have at the lower level, the smaller the value of the invariant σ is and hence we consider the better the LGS \mathcal{H} is.

Basic strategy to establish our algorithm in positive characteristic: Follow the construction of the algorithm in char(k) = 0, replacing the notion of an HMC to use the induction on dimension by the notion of an LGS to use the induction on the invariant σ.
Mechanism of the inductive structure on the invariant σ

Given (W, R, E) (Precisely speaking, the triplet sits in the middle of the sequence, say in year “i”, for resolution of singularities. However, we omit the subscript “()$_i$” indicating the year for simplicity of the notation.), we introduce a triplet of invariants $(\sigma, \bar{\mu}, s)$ and its associated triplet of data (W', R', E'). Together they form the following mechanism to realize the inductive structure on the invariant σ (We note that there is no Key Inductive Lemma in our setting.):

Outline of the mechanism

1. **If $(\sigma, \bar{\mu}, s) = (\sigma, \infty, 0)$ or $(\sigma, 0, 0)$, then we do not construct the modification (W', R', E').**
 - In case $(\sigma, \bar{\mu}, s) = (\sigma, \infty, 0)$, we blow up with center $C = \text{Sing}(R)$. The nonsingularity of C is guaranteed by the Nonsingularity Principle (cf. [13] [14]), while the transversality of C to the boundary E is guaranteed by the invariant $s = 0$. After the blow up, the singular locus becomes empty, and resolution of singularities for (W, R, E) is accomplished.
 - In case $(\sigma, \bar{\mu}, s) = (\sigma, 0, 0)$, we are in the monomial case by definition, and go to Step (5).

2. **If $(\sigma, \bar{\mu}, s) \neq (\sigma, \infty, 0)$ or $(\sigma, 0, 0)$, then we construct the modification (W', R', E'). Resolution of singularities for (W', R', E') implies the decrease of the value of the triplet $(\sigma, \bar{\mu}, s)$.**

3. **Going from the original triplet (W, R, E) to (W', R', E'), we observe that either the invariant σ drops, or, while σ stays the same but the number of the components in the boundary drops, i.e., $(\sigma, \#E) \succ (\sigma', \#E')$.**

4. **By induction on the pair $(\sigma, \#E)$, we achieve resolution of singularities for (W', R', E'), and hence achieve the strict decrease of the value of the triplet $(\sigma, \bar{\mu}, s)$.** (The precise form of induction is manifested in the argument for termination in the vertical direction in §4.3.)

5. **By repeating the above procedure, we reach the stage where $(\sigma, \bar{\mu}, s) = (\sigma, \infty, 0)$ or $(\sigma, 0, 0)$. If $(\sigma, \bar{\mu}, s) = (\sigma, \infty, 0)$, then we go back to Step (0). If $(\sigma, \bar{\mu}, s) = (\sigma, 0, 0)$, then we are in the monomial case, and go to Step (5).**

Roughly speaking, in the monomial case in our setting, R is generated by the LGS and some monomial of the defining equations of the components in $E_{\text{young}} \subset E$.

Finally, construct resolution of singularities for the triplet of data in the monomial case, which is difficult in positive characteristic. For the moment, we can solve the problem of constructing resolution of singularities for the triplet in the monomial case only up to dimension 3.

Note that constructing a sequence for resolution of singularities by blowing up is referred to as “proceeding in the vertical direction” passing from one year to the next, while modifying (W, R, E) into (W', R', E') is referred to as “proceeding in the horizontal direction” staying in the same year.

Description of the triplet of invariants $(\sigma, \bar{\mu}, s)$

- **σ:** It is the invariant σ associated to the differential saturation \mathcal{DR} of the idealistic filtration of i.f.g. type R (cf. Definition 3 and Definition 4).
- **$\bar{\mu}$:** It is the (normalized) weak order modulo LGS of the idealistic filtration R, with respect to E_{young}. It is computed as follows: Let H be the LGS
chosen. Given \(f \in \mathcal{O}_{W,P} \), let \(f = \sum c_{f,B} H_B \) be its power series expansion with respect to the LGS (and its associated regular system of parameters) (cf. [14]). Then we define

\[
\mu_P(\mathcal{R}) = \inf \left\{ \frac{\text{ord}_P(c_{f,a})}{a} \mid (f, a) \in \mathcal{R}_P, a > 0 \right\}
\]

\[
\mu_{P,D}(\mathcal{R}) = \inf \left\{ \frac{\text{ord}_P(c_{f,a})}{a} \mid (f, a) \in \mathcal{R}_P, a > 0 \right\}
\]

where \(\xi_D \) is the generic point of a component \(D \) in \(E_{\text{young}} \). (For the definition of \(E_{\text{young}} \), see (iii) of the remark below.) Now we define the invariant \(\tilde{\mu} \) by the following formula

\[
\tilde{\mu} = \mu_P(\mathcal{R}) - \sum_{D \subset E_{\text{young}}} \mu_{P,D}(\mathcal{R}).
\]

It is straightforward to see via the coefficient lemma that \(\tilde{\mu} \) is independent of the choice of the LGS (and its associated regular system of parameters) and that \(\tilde{\mu} \) is a nonnegative rational number, since our idealistic filtration is of i.f.g. type (cf. [13][14]).

We make the following remarks on the technical but important points about the LGS (and its associated regular system of parameters), the idealistic filtration of i.f.g. type \(\mathcal{R} \), and \(E_{\text{young}} \subset E \) used in the computation above:

(i) The idealistic filtration of i.f.g. type \(\mathcal{R} \) used in the computation depends on the behavior of the invariant \(\sigma \).

Case: The value of \(\sigma \) remains the same as the one in the previous year. In this case, we keep \(\mathcal{R} \) as it is, which is the transformation of the one in the previous year, even though we compute the invariant \(\sigma \) using the differential saturation \(\mathcal{D} \mathcal{R} \). We take our LGS (a priori only in \(\mathcal{D} \mathcal{R} \)) to be the transformation of the one in the previous year, which hence sits inside of \(\mathcal{R} \).

Case: The value of \(\sigma \) is strictly less than the one in the previous year. In this case, we replace the original \(\mathcal{R} \) with its differential saturation. We take our LGS from this replaced \(\mathcal{R} \), which is differentially saturated, and compute \(\tilde{\mu} \) accordingly. We remark that, in this case, \(E_{\text{young}} = \emptyset \) and hence that \(\tilde{\mu} = \mu_P(\mathcal{R}) \).

We note that, in year 0, we also replace the original \(\mathcal{R} \) with its differential saturation (cf. Remark 4 (2)).

(ii) The LGS \(\mathcal{H} = \{ (h_i, p^{e_i}) \}_{i=1}^{t} \) and its associated regular system of parameters \(X = (x_1, \ldots, x_t, x_{t+1}, \ldots, x_d) \subset \mathcal{O}_{W,P} \) are taken in such a way that they satisfy the condition (\(\forall \)) consisting of the three requirements below:

- \(h_i \equiv x_i^{p^{e_i}} \mod m^{e_i+1} \) for \(i = 1, \ldots, t \)
- the idealistic filtration of i.f.g. type \(\mathcal{R}_P \) is \(\{ \frac{\partial^n}{\partial x_i^n} \mid n \in \mathbb{Z}_{\geq 0}, i = 1, \ldots, t \} \)-saturated, and
the defining equations for the components of E_{young}, which are transversal to the LGS, form a part of the regular system of parameters, i.e., $\{x_D \mid D \subset E_{\text{young}}\} \subset \{x_{t+1}, \ldots, x_d\}$.

The second requirement above allows us to use the coefficient lemma (cf. [14]) to conclude that, if $(f, a) \in \hat{R}_P$, then $(c_{f,B}, a - |B|) \in \hat{R}_P$ and in particular $(c_{f,0}, a) \in \hat{R}_P$ for the power series expansion $f = \sum c_{f,B}H^B$. We note that, in [14], the coefficient lemma was proved under the assumption that the idealistic filtration \hat{R}_P is D-saturated. However, the statement is still valid under the weaker assumption described as above by the same proof.

(iii) The symbol E_{young} refers to the union of the exceptional divisors created after the time when the current value of σ first started. Therefore, by construction, E_{young} is transversal to the LGS. We only use E_{young} in our algorithm, in contrast to the classical algorithm where we have to use both E_{young} and E_{new} (cf. §3).

- s: It is the number of the components in $E_{\text{aged}} = E \setminus E_{\text{young}}$.

Description of the triplet (W', R', E')

$$
\begin{align*}
W' &= W, \\
R' &= \text{Bdry (Comp}(R))
\end{align*}
$$

where

$$
\begin{align*}
\text{Comp}(R) &= \begin{cases}
\text{the transformation of the one in the previous year} \\
\text{if } (\sigma, \bar{\mu}) \text{ stays the same} \\
\text{see the construction below} \\
\text{if } (\sigma, \bar{\mu}) \text{ strictly decreases}
\end{cases} \\
\text{and where} \\
\text{Bdry (Comp}(R)) &= \begin{cases}
\text{the transformation of the one in the previous year} \\
\text{if } (\sigma, \bar{\mu}, s) \text{ stays the same} \\
G(\text{Comp}(R)) \cup \{(x_D, 1) \mid D \subset E_{\text{aged}}\} \\
\text{if } (\sigma, \bar{\mu}, s) \text{ strictly decreases}
\end{cases} \\
E' &= E_{\text{young}},
\end{align*}
$$

where $G(S)$ is the idealistic filtration of i.f.g. type generated by the set S, i.e., the smallest idealistic filtration of i.f.g. type containing S, and where x_D is the defining equation of a component $D \subset E_{\text{young}}$. We note that, if the value of the triplet $(\sigma, \bar{\mu}, s)$ stays the same as in the previous year, then (W', R', E') is the transformation of the one in the previous year. We remark that the symbols “Comp” and “Bdry” represent the “Companion” modification and the “Boundary” modification, respectively.

Construction of Comp(R)

We describe the construction of the companion modification $\text{Comp}(R)$, first at the analytic level, following closely the construction in the classical setting, and then at the algebraic level, showing that the companion modification at the analytic level “descends” to the one at the algebraic level, via the argument of “étale descent”.

- Construction at the analytic level
First, we take an LGS \mathcal{H} and its associated regular system of parameters X satisfying the condition (\triangledown).

We set

$$\mathcal{M}_X = \prod_{D \subset E_{\text{young}}} x_D^{\mu_{P,D}(\mathcal{R})}. $$

Recall that $\{x_D \mid D \subset E_{\text{young}}\} \subset X$.

Fix a common multiple $L \in \mathbb{Z}_{>0}$ of the denominators of $\tilde{\mu}, \mu_{P}(\mathcal{R})$, and $\{\mu_{P,D} \mid D \subset E_{\text{young}}\}$.

We consider the following notion of an idealistic filtration \mathcal{Q} in the generalized sense: $\mathcal{Q} = \oplus_{n \in \mathbb{Z}_{\geq 0}} (\mathcal{Q}_{\frac{n}{L}})$ is a graded $\widehat{O}_{W,P}$-algebra, where

- the grading is given by $\{\mathcal{Q}_{\frac{n}{L}} \mid n \in \mathbb{Z}_{\geq 0}\}$, and it is specified as the level in the second factor,
- $\mathcal{Q}_{\frac{n}{L}} \subset \widehat{O}_{W,P} \otimes_k k[[x_1, \ldots, x_d]][x_1^{\pm \frac{1}{L}}, \ldots, x_d^{\pm \frac{1}{L}}]$ is an $\widehat{O}_{W,P}$-submodule with the $\widehat{O}_{W,P}$-module structure induced by the left multiplication on $\widehat{O}_{W,P} \otimes_k k[[x_1, \ldots, x_d]][x_1^{\pm \frac{1}{L}}, \ldots, x_d^{\pm \frac{1}{L}}]$ (We emphasize that the tensor “\otimes” is over k.),
- satisfying the condition $\mathcal{Q}_{\frac{n}{L}} \supset \mathcal{Q}_{\frac{n+1}{L}} \supset \mathcal{Q}_{\frac{n+2}{L}} \supset \cdots$,
- the grading is given by the addition and multiplication on $\widehat{O}_{W,P} \otimes_k k[[x_1, \ldots, x_d]][x_1^{\pm \frac{1}{L}}, \ldots, x_d^{\pm \frac{1}{L}}]$, while the $\widehat{O}_{W,P}$-algebra structure is given by the left multiplication on the first factor of $\widehat{O}_{W,P} \otimes_k k[[x_1, \ldots, x_d]][x_1^{\pm \frac{1}{L}}, \ldots, x_d^{\pm \frac{1}{L}}]$,
- the differential operators act on the first factor, i.e., for a differential operator δ of deg δ and $q = (\sum f \otimes g, \frac{n}{L}) \in \mathcal{Q}$ with $f \in \widehat{O}_{W,P}$ and $g \in k[[x_1, \ldots, x_d]][x_1^{\pm \frac{1}{L}}, \ldots, x_d^{\pm \frac{1}{L}}]$,
- we have $\delta q = \left(\sum \delta f \otimes g, \max \left\{\frac{n}{L} - \deg \delta, 0\right\}\right)$.

We construct $\text{Comp}(\mathcal{R})_{\mathcal{H},X}$ in the following manner:

Step 1. We take the idealistic filtration \mathcal{Q}_1 in the generalized sense generated by $\{(f \otimes 1, a) \mid (f, a) \in \mathcal{R}_P\}$ and $\{(c_{f,o} \otimes (\mathcal{M}_X^{-1})^a, \tilde{\mu} \cdot a) \mid (f, a) \in \mathcal{R}_P\}$, i.e.,

$$\mathcal{Q}_1 = \mathcal{G} \left(\{(f \otimes 1, a) \mid (f, a) \in \mathcal{R}_P\} \cup \{(c_{f,o} \otimes (\mathcal{M}_X^{-1})^a, \tilde{\mu} \cdot a) \mid (f, a) \in \mathcal{R}_P\}\right),$$

where $c_{f,o}$ is the constant term of the power series expansion $f = \sum c_{f,B} H^B$ with respect to \mathcal{H} and X.

Step 2. We take the idealistic filtration \mathcal{Q}_2 in the generalized sense to be the $D_{E_{\text{young}}}$-saturation of the idealistic filtration \mathcal{Q}_1 in the generalized sense, i.e.,

$$\mathcal{Q}_2 = D_{E_{\text{young}}}(\mathcal{Q}_1),$$

where $D_{E_{\text{young}}}$ represents the logarithmic differentials with respect to the simple normal crossing divisor E_{young} (cf. [13]).

Step 3. We take the integral level part $\mathcal{P} = \text{ILP} (\mathcal{Q}_2)$ of the idealistic filtration \mathcal{Q}_2 in the generalized sense. That is to say, $\mathcal{P} = \oplus_{a \in \mathbb{Z}_{\geq 0}} (\mathcal{P}_a, a)$ is a graded $\widehat{O}_{W,P}$-algebra where, for $a \in \mathbb{Z}_{\geq 0}$, we set $\mathcal{P}_a = (\mathcal{Q}_2)_{\frac{n}{L}}$ with $a = \frac{n}{L}$.

Step 4. By taking the “round up” and contraction of \mathcal{P}, we obtain the usual idealistic filtration of i.f.g. type $\mathcal{C} = \oplus_{a \in \mathbb{Z}_{\geq 0}} (\mathcal{C}_a, a)$ where we set

$$\mathcal{C}_a = \text{RUC}(\mathcal{P}_a) \text{ for } a \in \mathbb{Z}_{\geq 0}. $$
Step 5. We set C level as above is independent of the choice of the LGS H_X system of parameters.

Lemma 3. The companion modification \mathcal{R} constructed at the analytic level as above is independent of the choice of the LGS \mathbb{H} and its associated regular system of parameters X satisfying the condition (\triangledown). That is to say, if \mathbb{H}' and X' are another LGS and its associated regular system of parameters satisfying the condition (\triangledown), then we have

$$\mathcal{C}_{\mathcal{R}}(\mathbb{H}, X) = \mathcal{C}_{\mathcal{R}}(\mathbb{H}', X').$$
We write, therefore,
\[
\text{Comp}(\mathcal{R}) = \text{Comp}(\mathcal{R})_{\mathbb{H}, X}
\]
omitting the reference to the LGS and its associated regular system of parameters used in the construction.

We call \(\text{Comp}(\mathcal{R})\) the companion modification at the analytic level.

Proof. We consider the following two cases.

Case: For any \(f, a \in \mathcal{R}_P\). Let \(f = \sum c_f,B H\) be the power series expansion of \(f\) with respect to \(\mathbb{H}\) and \(X\), with its constant term \(c_{f,0}\). We have \((c_{f,0} \otimes (\mathbb{M}^{-1}_X)^a, \bar{\mu} \cdot a)\) \(\in\) \(\mathcal{Q}_1\). Set \(g = c_{f,0}\) and \(h = f - c_{f,0}\). Let \(g = \sum c'_g,B H'B\) be the power series expansions of \(g\) and \(h\), respectively, with respect to \(\mathbb{H}'\) and \(X'\). Now we conclude, by the same argument applied to the case of an idealistic filtration in the generalized sense as in the proof of the coefficient lemma (cf. [14]), that
\[
(c'_{g,0} \otimes (\mathbb{M}^{-1}_X)^a, \bar{\mu} \cdot a) \in D_{E_{\text{young}}} (\mathcal{Q}_1) = \mathcal{Q}_2.
\]
On the other hand, the assumption of this case implies that \(c'_{h,0} = 0\) and hence that
\[
c'_{g,0} = c'_{g,0} + c'_{h,0} = c'_{g+h,0} = c'_{f,0},
\]
the constant term of the power series expansion \(f = \sum c'_f,B H'B\) with respect to \(\mathbb{H}'\) and \(X'\). Thus, we have
\[
(c'_{f,0} \otimes (\mathbb{M}^{-1}_X)^a, \bar{\mu} \cdot a) \in D_{E_{\text{young}}} (\mathcal{Q}_1) = \mathcal{Q}_2.
\]
This implies
\[
\text{Comp}(\mathcal{R})_{\mathbb{H}', X'} \subset C = \text{Comp}(\mathcal{R})_{\mathbb{H}, X}.
\]
(We note that the generators we choose in Step 1 of the construction for \(\text{Comp}(\mathcal{R})_{\mathbb{H}', X'}\) are of the form \((c'_{f,0} \otimes (\mathbb{M}^{-1}_X)^a, \bar{\mu} \cdot a)\) (not \(\otimes (\mathbb{M}^{-1}_X)^a\)), which are sitting inside of \(\mathcal{O}_{W,P} \otimes k[x_1, \ldots, x_d][x_1^{\pm 1}, \ldots, x_d^{\pm 1}]\) (not inside of \(\mathcal{O}_{W,P} \otimes k[[x_1, \ldots, x_d]][x_1^{\pm 1}, \ldots, x_d^{\pm 1}]\)).

However, these differences only contribute to the multiplication of units after Step 3 and Step 4, and hence do not matter for us to conclude the inclusion above.)

Case: \(X = X'\). In this case, we also claim \(\text{Comp}(\mathcal{R})_{\mathbb{H}, X} \subset \text{Comp}(\mathcal{R})_{\mathbb{H}, X'}\).

Take \((f, a) \in \mathcal{R}_P\). Let \(f = \sum c'_f,B H'\) be the power series expansion of \(f\) with respect to \(\mathbb{H}'\) and \(X'\), with its constant term \(c'_{f,0}\). By the coefficient lemma, we have \((c'_{f,0}, a) \in \mathcal{R}_P\). Set \(g' = c'_{f,0} \in \mathcal{O}_{W,P}\). Let \(g' = \sum c_{g', B} H'B\) be the power series expansion of \(g'\) with respect to \(H\) and \(X\) with its constant term \(c_{g', 0}\). Then the assumption of \(X = X'\) implies \(g' = c_{g', 0}\). Therefore, we conclude that
\[
(c'_{f,0} \otimes (\mathbb{M}^{-1}_X)^a, \bar{\mu} \cdot a) \in \left\{(c_{h, 0} \otimes (\mathbb{M}^{-1}_X)^a, \bar{\mu} \cdot a) \mid (h, a) \in \mathcal{R}_P\right\}
\]
and hence by Remark 6 that
\[\widehat{\text{Comp}}(\mathcal{R}_{H',X'}) \subset \mathcal{C}_{\text{an}} = \mathcal{C} = \widehat{\text{Comp}}(\mathcal{R}_{H,X}). \]

Observe that, given an LGS \(\mathbb{H} \) and its associated regular system of parameters \(X \) satisfying the condition \(\Diamond \), we can reach another LGS \(\mathbb{H}' \) and its associated regular system of parameters \(X' \) satisfying the condition \(\Diamond \) by a transformation described in the former case followed by another transformation described in the latter case. Therefore, by the above analysis, we have \(\widehat{\text{Comp}}(\mathcal{R}_{H',X'}) \subset \widehat{\text{Comp}}(\mathcal{R}_{H,X}). \) Reversing the role of \(\mathbb{H} \) and \(X \) with that of \(\mathbb{H}' \) and \(X' \), we then have \(\widehat{\text{Comp}}(\mathcal{R}_{H,X}) \subset \widehat{\text{Comp}}(\mathcal{R}_{H',X'}). \)

Finally we conclude \(\widehat{\text{Comp}}(\mathcal{R}_{H,X}) = \widehat{\text{Comp}}(\mathcal{R}_{H',X'}). \)

\(\Box \)

Construction at the algebraic level

Proposition 2. There exists an idealistic filtration of i.f.g. type \(\text{Comp}(\mathcal{R}) \) at the algebraic level such that its completion coincides with the companion modification \(\widehat{\text{Comp}}(\mathcal{R}) \) at the analytic level, i.e.,

\[\{ \text{Comp}(\mathcal{R}) \}^{\sim} = \widehat{\text{Comp}}(\mathcal{R}). \]

We call \(\text{Comp}(\mathcal{R}) \) the companion modification at the algebraic level.

Proof. Step 1. Descent to the Henselization level

We fist note that the ingredients that we used to construct the companion modification at the analytic level

(i) the LGS \(\mathbb{H} \) and its associated regular system of parameters \(X \) satisfying the condition \(\Diamond \),

(ii) the constant term \(c_{f,0} \) of the power series expansion \(f = \sum c_{f,B}H^B \) for \((f,a) \in \mathcal{R}_P \) with respect to \(\mathbb{H} \) and \(X \),

actually can be taken at the Henselization level (i.e., they can be taken from the Henselization \((O_{W,P})^b \) of \(O_{W,P} \)).

In fact, (i) at the Henselization level is a consequence of the classical Weierstrass Preparation Theorem and Weierstrass Division Theorem (cf. the proof of Proposition 4 (1)).

We see (ii) at the Henselization level as follows: Set \(R = O_{W,P}, R^b \) its Henselization, and \(\hat{R} \) its completion. By replacing \(R \) with some local ring of an étale cover of \(\text{Spec} \ R \), we may assume that the LGS \(\mathbb{H} \) and the regular system of parameters \(X \) satisfying the condition \(\Diamond \) are taken from \(R \). Set \(A = k[x_{t+1}, \ldots, x_d|x_{t+1}, \ldots, x_d], A^b \) its Henselization, and \(\hat{A} \) its completion. By looking at the power series expansion with respect to \(\mathbb{H} \) and its associated regular system of parameters \(X \) (cf. [14]), we have

\[\phi : \hat{R}/(h_1, \ldots, h_t) \rightarrow \sum_k \hat{A}X^k \]
where on the right hand side the subscript \(K = (k_1, \ldots, k_t, k_{t+1}, \ldots, k_d) \in \mathbb{Z}_{\geq 0}^d \) for the summation varies in the finite range
\[
\left\{ \begin{array}{l}
0 \leq k_i \leq p^e - 1 \quad \text{for} \quad i = 1, \ldots, t \\
k_i = 0 \quad \text{for} \quad i = t+1, \ldots, d.
\end{array} \right.
\]

Take an element \(f \in R \subset \hat{R} \). What we want to show is \(c_{f,0} \in R^h \).
It suffices to show
\[
(*) \quad \phi(f \mod (h_1, \ldots, h_t)) = c_{f,0} \in \sum_K A^h X^K.
\]
We take the coordinate ring \(S \) of an affine open neighborhood \(P \in \text{Spec } S \subset W \) such that \(f \in S \) and \(\mathbb{H}, X \subset S \). We denote by \(m_{S,P} \) the maximal ideal of \(S \) corresponding to the point \(P \). Note that the ideal \((h_1, \ldots, h_t, x_{t+1}, \ldots, x_d)R \) is \(m_{S,P}R = m_P = (x_1, \ldots, x_t, x_{t+1}, \ldots, x_d) \)-primary (in \(R \)). By shrinking \(\text{Spec } S \) if necessary, we may assume that the only prime ideal containing the ideal \((h_1, \ldots, h_t, x_{t+1}, \ldots, x_d) \) is \(m_{S,P} \).

We regard \(R, R^h, S, A, A^h \) as subrings of \(\hat{R} \), i.e., \(R, R^h, S, A, A^h \subset \hat{R} \), and we consider the subring \(SA^h \subset \hat{R} \) generated by \(S, A^h \subset \hat{R} \). By abuse of notation, we denote the image of the natural projection \(SA^h \subset \hat{R} \to \hat{R}/(h_1, \ldots, h_t) \) by \(SA^h/(h_1, \ldots, h_t) \).

We claim
\[
(**) \quad \phi(SA^h/(h_1, \ldots, h_t)) = \sum_K A^h X^K,
\]
which clearly implies the assertion (*)

In the following, we omit the isomorphism \(\phi \) from the left hand side in order to ease the notation. Therefore, the claim (**) is expressed as an equality
\[
SA^h/(h_1, \ldots, h_t) = \sum_K A^h X^K.
\]
Obviously, we have
\[
SA^h/(h_1, \ldots, h_t) \supset \sum_K A^h X^K.
\]
Our goal is to show the equality after taking \(\otimes_{A^h} \widehat{A} \), i.e.,
\[
\text{L.H.S.} = SA^h/(h_1, \ldots, h_t) \otimes_{A^h} \widehat{A} = \sum_K A^h X^K \otimes_{A^h} \widehat{A} = \text{R.H.S.},
\]
which, since \(\widehat{A} \) is faithfully flat over \(A^h \), implies the original equality above before taking \(\otimes_{A^h} \widehat{A} \), i.e., (**).

Analysis of R.H.S.

We have
\[
\text{R.H.S.} = \sum_K A^h X^K \otimes_{A^h} \widehat{A} = \sum_K \widehat{A} X^K.
\]

Analysis of L.H.S.

In order to analyze L.H.S., we look at the morphism \(\theta : \text{Spec} (SA^h/(h_1, \ldots, h_t)) \to \text{Spec} (A^h) \). Observe that \(\theta \) is quasi-finite, i.e.,
\begin{itemize}
 \item[(a)] it is of finite type, and
 \item[(b)] it has finite fibers.
\end{itemize}
The assertion (a) is immediate, since \(S \) is finitely generated over \(k \). In order to see the assertion (b), first look at the morphism \(\text{Spec}(SA/(h_1,\ldots,h_t)) \to \text{Spec}(A) \). The fiber of this morphism over the origin downstairs is the origin upstairs, since the ideal \((h_1,\ldots,h_t,x_{t+1},\ldots,x_d)\) is \((x_1,\ldots,x_t,x_{t+1},\ldots,x_d)\)-primary. Now since the dimension of the fiber is an upper semi-continuous function, we conclude that the morphism has finite fibers. From this it follows easily that the morphism \(\theta : \text{Spec}(SA/(h_1,\ldots,h_t)) \to \text{Spec}(A) \) has finite fibers.

Therefore, since \(A^h \) is Henselian, we conclude that the morphism \(\theta \) is finite, i.e., \(SA^h/(h_1,\ldots,h_t) \) is a finite \(A^h \)-module. This implies that \(SA^h/(h_1,\ldots,h_t) \otimes_{A^h} \hat{A} \) is the \((x_{t+1},\ldots,x_d)\)-adic completion of the \(A^h \)-module \(SA^h/(h_1,\ldots,h_t) \). The latter coincides with the \((h_1,\ldots,h_t,x_{t+1},\ldots,x_d)\)-adic completion of \(SA^h/(h_1,\ldots,h_t) \) viewed as an \(A^h \)-module. Since the ideal \((h_1,\ldots,h_t,x_{t+1},\ldots,x_d)\) is \((x_1,\ldots,x_t,x_{t+1},\ldots,x_d)\)-primary, the \((h_1,\ldots,h_t,x_{t+1},\ldots,x_d)\)-adic completion coincides with the \((x_1,\ldots,x_t,x_{t+1},\ldots,x_d)\)-adic completion. Observing the \((x_1,\ldots,x_t,x_{t+1},\ldots,x_d)\)-adic completion of \(SA^h \) is \(\hat{R} \), we see that the \((x_1,\ldots,x_t,x_{t+1},\ldots,x_d)\)-adic completion of \(SA^h/(h_1,\ldots,h_t) \) is \(\hat{R}/(h_1,\ldots,h_t) \). Summarizing and remembering the convention of expressing the isomorphism \(\phi \) as an equality, we conclude

\[
\text{L.H.S.} = SA^h/(h_1,\ldots,h_t) \otimes_{A^h} \hat{A} = \hat{R}/(h_1,\ldots,h_t) = \sum_K \hat{A}X^K.
\]

Therefore, we have

\[
\text{L.H.S.} = \sum_K \hat{A}X^K = \text{R.H.S.}.
\]

This completes the argument for Step 1.

Therefore, we conclude that, for each LGS \(\mathcal{H} \) and its associated regular system of parameters \(X \) satisfying the condition (\(\mathcal{V} \)), taken at the Henselization level, we have an idealistic filtration of i.f.g. type \(\text{Comp}(\mathcal{R})_{\mathcal{H},X} \) at the Henselization level (i.e., all the ideals are those of \((\mathcal{O}_{\mathcal{W},P})^h \)) such that \(\text{Comp}(\mathcal{R}) = \text{Comp}(\mathcal{R})_{\mathcal{H},X} = \{\text{Comp}(\mathcal{R})_{\mathcal{H},X}\} \).

Step 2. Descent to the algebraic level

Let \(U = \text{Spec} \mathcal{O}_{\mathcal{W},P} \). Noting that the Henselization is the direct limit of the local rings at the closed points over \(P \) on the étale covers of \(U \), we can take a collection of étale covers \(\pi_{\lambda} : U_{\lambda} \to U \) and idealistic filtrations of i.f.g. type \(\text{Comp}(\mathcal{R})_{\lambda} \) over \(U_{\lambda} \) such that, for \(Q \in \pi_{\lambda}^{-1}(P) \), we have \(\{\text{Comp}(\mathcal{R})_{\lambda,Q}\}^h = \text{Comp}(\mathcal{R})_{\mathcal{H},X} \) for some \(\mathcal{H} \) and \(X \) described as in Step 1. This implies

\[
\{\text{Comp}(\mathcal{R})_{\lambda,Q}\} = \{\text{Comp}(\mathcal{R})_{\lambda,Q}\}^h = \{\text{Comp}(\mathcal{R})_{\mathcal{H},X}\} = \text{Comp}(\mathcal{R})_{\mathcal{H},X} = \text{Comp}(\mathcal{R}).
\]

That is to say, the completion of \(\text{Comp}(\mathcal{R})_{\lambda} \) canonically coincides with the companion modification at the analytic level \(\text{Comp}(\mathcal{R}) \). This in turn implies that, over \(U_{\lambda} \cap U_{\mu} = U_{\lambda} \times_U U_{\mu} \), we have

\[
\text{Comp}(\mathcal{R})_{\lambda}|_{U_{\lambda} \cap U_{\mu}} \overset{\phi_{\lambda\mu}^*}{=} \text{Comp}(\mathcal{R})_{\mu}|_{U_{\lambda} \cap U_{\mu}}.
\]
and this identification $\hat{\phi}_{\lambda\mu}$ is canonical (and hence the collection of these identifications automatically satisfies the cocycle condition $\hat{\phi}_{\lambda\mu} \circ \hat{\phi}_{\mu\nu} = \hat{\phi}_{\lambda\nu}$). Now it is a consequence of the general étale descent argument (cf. [9]) that there exists an idealistic filtration of i.f.g. type $\text{Comp}(\mathcal{R})$ such that $\pi^*_\lambda(\text{Comp}(\mathcal{R})) = \text{Comp}(\mathcal{R})_\lambda$, and hence that $\{\text{Comp}(\mathcal{R})\}_\lambda = \text{Comp}(\mathcal{R})$.

This completes the proof of Proposition 2.

\[\square \]

Detailed discussion of the mechanism

Proposition 3. The value of the pair $(\sigma, \#E)$ strictly decreases as we proceed in the horizontal direction from (W, \mathcal{R}, E) to (W', \mathcal{R}', E'), i.e., we have

$$(\sigma, \#E) > (\sigma', \#E').$$

Proof. We analyze the assertion in the following two cases. Note that, since $\mathcal{R} \subset \mathcal{R}'$, we have $\sigma \geq \sigma'$ in both cases.

Case: $\bar{\mu} \neq 0$ or ∞. In this case, we claim $\sigma > \sigma'$. We take the LGS $\mathbb{H} = \{(h_i, \rho^i)\}_{i=1}^t$ and its associated regular system of parameters $X = (x_1, \ldots, x_t, x_{t+1}, \ldots, x_d)$ satisfying the condition (\bigcirc) as given in “Description of the triplet of invariant $(\sigma, \bar{\mu}, s)$”. Since \mathcal{R} is an idealistic filtration of i.f.g. type, there exists $(f, a) \in \mathcal{R}_P$ such that $\mu_P(\mathcal{R}) = \text{ord}_P((c_{f,0})_a)$, where $f = \sum c_{f,B}H^B$ is the power series expansion of f with respect to \mathbb{G} and X. Set $\hat{\mathbb{M}} = \prod_{D \in E_{\text{young}}} x_D^{P(D)}(\mathcal{R})$.

Subcase: $\mu_{P,D}(\mathcal{R}) \cdot a \in \mathbb{Z}_{\geq 0}$, $\forall D \subset E_{\text{young}}$. In this subcase, we have $\hat{\mathbb{M}}^a = \hat{\mathcal{O}}_{W,P}$ and $c_{f,0} \cdot (\mathbb{M}^{-1})^a = c_{f,0} \cdot (\mathbb{M}^{-1})^a \in \hat{\mathcal{O}}_{W,P}$ by definition. Moreover, by construction of the companion modification, we have $(c_{f,0} \cdot (\mathbb{M}^{-1})^a, \bar{\mu} \cdot a) \in \text{Comp}(\mathcal{R}) \subset \hat{\mathcal{R}}'.

Note that

$$(\bar{\mu} \cdot a) = \left(\mu_P(\mathcal{R}) - \sum_{D \in E_{\text{young}}} \mu_{P,D}(\mathcal{R}) \right) \cdot a = \text{ord}_P(c_{f,0} \cdot (\mathbb{M}^{-1})^a).$$

Note also that by the statement of the coefficient lemma we have

$$c_{f,0} = \sum_{K \in (\mathbb{Z}_{\geq 0})^d} b_{f,0,K} X^K$$

with $b_{f,0,K} \in k[[x_{t+1}, \ldots, x_d]]$ and with $K = (k_1, \ldots, k_t, k_{t+1}, \ldots, k_d)$ varying in the range satisfying the condition

$$\begin{cases}
0 \leq k_i \leq \rho^i - 1 & \text{for } i = 1, \ldots, t \\
0 = k_i & \text{for } i = t+1, \ldots, d.
\end{cases}$$

Therefore, we conclude

$$\text{In} (c_{f,0} \cdot (\mathbb{M}^{-1})^a) = c_{f,0} \cdot (\mathbb{M}^{-1})^a \mod m^{\bar{\mu} \cdot a + 1}$$

$$= \sum_{K \in (\mathbb{Z}_{\geq 0})^d} b_{f,0,K} X^K$$

with $b_{f,0,K} \in k[[x_{t+1}, \ldots, x_d]]$. Since $L_P(\mathcal{R}) = k[x_1^{\rho^1}, \ldots, x_t^{\rho^t}]$, we conclude

$$\text{In} (c_{f,0} \cdot (\mathbb{M}^{-1})^a) \notin L_P(\mathcal{R}),$$

\[\square \]
while by definition

\[\text{In} \left(c_{f,0} \cdot (M^{-1})^a \right) \in L_P(\tilde{R}') = L_P(R'). \]

Therefore, we conclude \(L_P(R) \subset L_P(\tilde{R}') \) and hence \(\sigma > \sigma' \).

Subcase: \(\mu_{P,D}(R) \cdot a \notin \mathbb{Z}_{\geq 0} \) for some \(D \in E_{\text{young}} \). In this case, take \(l \in \mathbb{Z}_{>0} \) such that

\[l \cdot \mu_{P,D}(R) \cdot a \in \mathbb{Z}_{\geq 0}, \quad \forall D \in E_{\text{young}}. \]

Then we have \((M^a)^l \in \mathcal{O}_{W,P} \) and \(\{ c_{f,0} \cdot (M^{-1})^a \}^l \in \mathcal{O}_{W,P} \) by definition. Moreover, by construction of the companion modification, we have \(\{ c_{f,0} \cdot (M^{-1})^a \}^l \cdot l \cdot a = \text{Comp}(R) \subset \tilde{R}' \). Note that

\[l \cdot \bar{\mu} \cdot a = l \cdot \left(\mu_P(R) - \sum_{D \in E_{\text{young}}} \mu_{P,D}(R) \right) \cdot a = \text{ord}_P \left(\{ c_{f,0} \cdot (M^{-1})^a \}^l \right). \]

Note also that, since \(\text{ord}_D(c_{f,0}) \geq \mu_{P,D}(R) \cdot a \) by definition, since \(\text{ord}_D(c_{f,0}) \in \mathbb{Z}_{\geq 0} \) and since \(\mu_{P,D}(R) \cdot a \notin \mathbb{Z}_{\geq 0} \) by the subcase assumption, we conclude

\[\text{ord}_D(c_{f,0}) > \mu_{P,D}(R) \cdot a. \]

This implies, \(\{ c_{f,0} \cdot (M^{-1})^a \}^l \) is divisible by \(x_D \), and hence so is

\[\text{In} \left(\{ c_{f,0} \cdot (M^{-1})^a \}^l \right) = \{ c_{f,0} \cdot (M^{-1})^a \}^l \mod m^l \bar{\mu}^a + 1. \]

Since \(L_P(R) = k[x_1^{e_1}, \ldots, x_d^{e_d}] \) and since \(x_D \in \{ x_{t+1}, \ldots, x_d \} \), we conclude

\[\text{In} \left(\{ c_{f,0} \cdot (M^{-1})^a \}^l \right) \notin L_P(R), \]

while by definition

\[\text{In} \left(\{ c_{f,0} \cdot (M^{-1})^a \}^l \right) \in L_P(\tilde{R}') = L_P(R'). \]

Therefore, we conclude \(L_P(R) \subset L_P(\tilde{R}') \) and hence \(\sigma > \sigma' \).

Case: \(\bar{\mu} = 0 \) or \(\infty \). In this case, we claim \((\sigma, \#E) > (\sigma', \#E') \). Observe \(s \neq 0 \). (If \(s = 0 \), then \((\sigma, \bar{\mu}, s) = (\sigma, 0, 0) \) or \((\sigma, \infty, 0) \), and hence we do not construct the modification \((W', R', \tilde{E}') \).) Therefore, by definition, there exists a divisor \(D \subset \operatorname{E}_{\operatorname{aged}} \) containing \(P \). Thus, we have \(\#E > \#(E \setminus \operatorname{E}_{\operatorname{aged}}) = \#E' \).

(Note that “\(\# \)” represents the number of the components passing through \(P \).)

\[\square \]

Proposition 4. Let \((W, R, E) \xrightarrow{\pi} (\tilde{W}, \tilde{R}, \tilde{E}) \) be the transformation in the sequence for resolution of singularities (i.e., \((W_i, R_i, E_i) \xrightarrow{\pi} (W_{i+1}, R_{i+1}, E_{i+1}) \) in the sequence described in Problem 4). Take a point \(\tilde{P} \in \pi^{-1}(P) \cap \operatorname{Sing}(\tilde{R}) \). Then the
value of the triplet \((\sigma, \tilde{\mu}, s)\) does not increase as we proceed in the vertical direction, i.e., we have
\[
(\sigma, \tilde{\mu}, s) \geq (\bar{\sigma}, \bar{\mu}, \bar{s}) \ (\text{i.e., } (\sigma_i, \tilde{\mu}_i, s_i) \geq (\sigma_{i+1}, \tilde{\mu}_{i+1}, s_{i+1}))
\]

More precisely, we have the following:

1. The invariant \(\sigma\) does not increase, i.e., \(\sigma \geq \bar{\sigma}\). When \(\sigma = \bar{\sigma}\), the transformation of the LGS for \(\hat{R}_P\) is an LGS for \(\hat{R}_p\). Moreover, the following property is preserved going from \((W, R, E)\) to \((\hat{W}, \hat{R}, \hat{E})\): We can choose an LGS \(\mathcal{H} = \{(h_i, p^e_i)\}_{i=1}^t \subset \hat{R}_P\) and a regular system of parameters \(X = (x_1, \ldots, x_t, x_{t+1}, \ldots, x_d)\), taken from \(\hat{O}_{W,P}\), satisfying the condition \((\triangleright)\) below:

 - \(h_i \equiv x_{\alpha_i}^p \mod m^{p_{\alpha_i}+1}\) for \(i = 1, \ldots, t\),
 - the idealistic filtration of i.f.g. type \(\hat{R}_P\) is \(\{\partial_{x_{\alpha_i}} \} | n \in \mathbb{Z}_{\geq 0}, i = 1, \ldots, t\}-saturated, and
 - the defining equations for the \(E_{\text{young}}\), which are transversal to the LGS, form a part of the regular system of parameters, i.e., \(\{x_D \mid D \subset E_{\text{young}}\} \subset \{x_{t+1}, \ldots, x_d\}\).

2. When \(\sigma = \bar{\sigma}\), the value of the invariant \(\tilde{\mu}\) does not increase, i.e., \((\sigma, \tilde{\mu}) \geq (\bar{\sigma}, \bar{\mu})\).

3. When \(\sigma = \bar{\sigma}\), the value of the invariant \(s\) does not increase, i.e., \(s \geq \bar{s}\).

Proof. (1) Since \(C \subset \text{Sing}(\hat{R})\) and since \(C\) is nonsingular, we conclude that there exists a regular system of parameters \((y_1, \ldots, y_r, y_{r+1}, \ldots, y_d) \subset \hat{O}_{W,P}\) such that

- \(C = \{y_1 = \cdots = y_r = 0\}\), and
- we have for \(i = 1, \ldots, t\)

 \[
 \begin{align*}
 h_i & \equiv x_{\alpha_i}^p \mod m^{p_{\alpha_i}+1}, \\
 x_i & \equiv \sum_{j=1}^{r} c_{i,j}y_j \mod m^2
 \end{align*}
 \]

 By replacing \((y_1, \ldots, y_r, y_{r+1}, \ldots, y_d)\) with some linear transformation and then by replacing \((x_1, \ldots, x_t, x_{t+1}, \ldots, x_d)\) with \((y_1, \ldots, y_r, y_{r+1}, \ldots, y_d)\), we may assume that we have a regular system of parameters \((x_1, \ldots, x_t, x_{t+1}, \ldots, x_d) \subset \hat{O}_{W,P}\) such that

- \(C = \{x_1 = \cdots = x_r = 0\}\) \((t \leq r)\), and
- \(h_i \equiv x_{\alpha_i}^p \mod m^{p_{\alpha_i}+1}\) for \(i = 1, \ldots, t\).

Observe that, if \(t = r\), then after the blow up, for any point \(\hat{P}\) over each \(x_i\)-chart \((i = 1, \ldots, t)\) we have \(\text{ord}_{\hat{P}}(\tilde{h}_i) = 0 < p_{\alpha_i}\) where \(\tilde{h}_i = h_i/x_{\alpha_i}^p\), and hence \(\pi^{-1}(P) \cap \text{Sing}(\hat{R}) = \emptyset\). Therefore, we may assume \(r > t\) and that our point \(\hat{P} \in \pi^{-1}(P) \cap \text{Sing}(\hat{R})\) is in the \(x_j\)-chart for some \((t < j \leq r)\) with the regular system of coordinates \((\tilde{x}_1, \ldots, \tilde{x}_t, \tilde{x}_{t+1}, \ldots, \tilde{x}_r, \tilde{x}_{r+1}, \ldots, \tilde{x}_d)\) where

\[
\begin{align*}
\tilde{x}_\alpha & = x_\alpha/x_j \quad \text{for } 1 \leq \alpha \leq r, \alpha \neq j \\
\tilde{x}_\alpha & = x_j \quad \text{for } \alpha = j, \\
\tilde{x}_\alpha & = x_\alpha \quad \text{for } r + 1 \leq \alpha \leq d.
\end{align*}
\]

(For the indices \(t + 1 \leq \alpha \leq r, \alpha \neq j\), we may have to replace \(x_\alpha\) with \(x_\alpha - c_\alpha x_j\) for some \(c_\alpha \in k\) if necessary.)
Now we look at the transformation $\tilde{h}_i = h_i/x_j^{p^{e_i}}$ of

$$h_i = \sum_{K=(k_1, \ldots, k_d) \in (\mathbb{Z}_{\geq 0})^d} c_{i,K}X^K \text{ with } c_{i,K} \in k$$

for $i = 1, \ldots, t$.

We compute

$$\tilde{h}_i = \frac{h_i}{x_j^{p^{e_i}}} = \sum_{K=(k_1, \ldots, k_d) \in (\mathbb{Z}_{\geq 0})^d} c_{i,K}X^K / x_j^{p^{e_i}} = \sum_{\tilde{K}=(\tilde{k}_1, \ldots, \tilde{k}_d) \in (\mathbb{Z}_{\geq 0})^d} \tilde{c}_{i,\tilde{K}}X^{\tilde{K}}$$

where

$$\begin{cases} \tilde{k}_\alpha &= k_\alpha & \text{for } \alpha \neq j \\ \tilde{k}_j &= \sum_{\alpha=1}^r k_\alpha - p^{e_i}. \end{cases}$$

Therefore, we have

$$\sum_{1 \leq \alpha \leq r, \alpha \neq j} k_\alpha \geq p^{e_i} \implies \deg_\chi(\tilde{X}^{\tilde{K}}) \geq \deg_\chi(X^K).$$

Therefore, the only terms $\tilde{X}^{\tilde{K}}$ with $\deg_\chi(\tilde{X}^{\tilde{K}}) = p^{e_i}$ that can possibly appear in \tilde{h}_i have to contain one of $\tilde{x}_j, \tilde{x}_{r+1}, \ldots, \tilde{x}_d$.

Looking at $\tilde{h}_1, \tilde{h}_2, \ldots, \tilde{h}_t$ in the ascending order, we conclude that

- either $\sigma > \tilde{\sigma}$,
- or $\sigma = \tilde{\sigma}$, and we have

$$\tilde{h}_i \equiv \tilde{x}_i^{p^{e_i}} + c_{i,j}x_j^{p^{e_i}} + \sum_{\alpha=r+1}^d c_{i,\alpha}x_\alpha^{p^{e_i}} \mod m^{p^{e_i}+1}$$

with $\{c_{i,j}, c_{i,r+1}, \ldots, c_{i,d}\} \subset k$ for $i = 1, \ldots, t$, and hence $\tilde{H} = \{(\tilde{h}_i, p^{e_i})\}_{i=1}^t$ is an LGS for \tilde{R}.

This completes the proof of the first part of (1).

Next we look at the “Moreover” part of (1).

We show the existence of such an LGS $\mathbb{H} = \{(h_i, p^{e_i})\}_{i=1}^t$ and its associated regular system of parameters $X = (x_1, \ldots, x_t, x_{t+1}, \ldots, x_d)$ satisfy the condition (\Diamond) by induction on the year.

When we are in the year when the value of σ first started (i.e., the value of σ is strictly less than the one in the previous year), we replace the original \mathcal{R} with its differential saturation (cf. the technical but important points in the description of the triplet of invariants $(\sigma, \tilde{\mu}, s)$ (i)). Thus we may assume \mathcal{R} is \mathcal{D}-saturated. Moreover, we have $E_{\text{young}} = \emptyset$. Therefore, we have only to take an LGS \mathbb{H} and X such that $h_i \equiv x_i^{p^{e_i}} \mod m^{p^{e_i}+1}$ for $i = 1, \ldots, t$. The remaining requirements in the condition (\Diamond) are then automatically satisfied.

Now we assume that in the current year we have such an LGS \mathbb{H} and its associated regular system of parameters X satisfying the condition (\Diamond). We show that, assuming $\sigma = \tilde{\sigma}$, even after the transformation we have such an LGS \tilde{H} and \tilde{X} that satisfy the condition (\Diamond).
Step 1. We modify our X so that the LGS \mathbb{H} and X are still associated, satisfy the condition (\heartsuit) as before, and now satisfy the extra condition that the center is defined by $C = \{x_1 = \cdots = x_r = 0\}$ ($r \geq t$).

(a) We take another regular system of parameters $Y = (y_1, \ldots, y_r, y_{t+1}, \ldots, y_d)$ such that the center is defined by $C = \{y_1 = \cdots = y_r = 0\}$. Note that, if $C \subset D$ for any component $D \subset E_{\text{young}}$, then we include x_D in Y. Note that such x_D is included in X.

Then since $C \subset \text{Sing}(\mathcal{R})$, we conclude that

$$x_i \equiv \sum_{j=1}^{r} c_{i,j} y_j \mod m^2 \text{ for some } c_{i,j} \in k \text{ for } i = 1, \ldots, t.$$

Therefore, by taking a suitable linear transformation among $\{y_1, \ldots, y_r\}$, we may assume

$$x_i \equiv y_i \mod m^2 \text{ for } i = 1, \ldots, t.$$

It is straightforward to see that, since \mathbb{H} and $X = (x_1, \ldots, x_t, x_{t+1}, \ldots, x_d)$ satisfy the condition (\heartsuit), so does \mathbb{H} and $(y_1, \ldots, y_r, x_{t+1}, \ldots, x_d)$. By replacing X with $(y_1, \ldots, y_r, x_{t+1}, \ldots, x_d)$, we may assume that \mathbb{H} and X satisfy the condition (\heartsuit), and $(x_1, \ldots, x_t, y_1, \ldots, y_r, y_{t+1}, \ldots, y_d)$ is a regular system of parameters with $C = \{x_1 = \cdots = x_t = y_{t+1} = \cdots = y_r = 0\}$.

(b) We look at $\{y_j \mid t+1 \leq j \leq r\}$. By applying the Weierstrass Division Theorem consecutively, we write

$$y_j = \sum_{i=1}^{t} q_{j,i} x_i + g(x_{t+1}, \ldots, x_d) \text{ for } j = t+1, \ldots, r$$

with $q_{j,i} \in \mathcal{O}_{W,P}$ and $g(x_{t+1}, \ldots, x_d) \in k[x_{t+1}, \ldots, x_d]$. Set

$$y_j' = y_j - \sum_{i=1}^{t} q_{j,i} x_i \text{ for } j = t+1, \ldots, r.$$

Choose $\{x_{r+1}, \ldots, x_d\} \subset \{x_{t+1}, \ldots, x_d\}$ (after renumbering of x_{t+1}, \ldots, x_d if necessary) such that $(x_1, \ldots, x_t, y_1', \ldots, y_r', x_{r+1}, \ldots, x_d)$ is a regular system of parameters. Now replace X with $(x_1, \ldots, x_t, y_1', \ldots, y_r', x_{r+1}, \ldots, x_d)$. Then it is straightforward to see that, since \mathbb{H} and the previous X satisfy the condition (\heartsuit), so do \mathbb{H} and the new X. Now by construction, the center C is defined by $C = \{x_1 = \cdots = x_r = 0\}$ ($r \geq t$).

Step 2. Analysis after blow up.

As in the proof of the first part, we may assume $r > t$ and that our point $\bar{P} \in \pi^{-1}(P) \cap \text{Sing}(\mathcal{R})$ is in the x_j-chart for some ($t < j \leq r$) with the regular system of coordinates $\bar{X} = (\bar{x}_1, \ldots, \bar{x}_t, \bar{x}_{t+1}, \ldots, \bar{x}_r, \bar{x}_{r+1}, \ldots, \bar{x}_d)$ where

$$\bar{x}_\alpha = x_\alpha / x_j \text{ for } 1 \leq \alpha \leq r, \alpha \neq j$$

$$\bar{x}_\alpha = x_j \text{ for } \alpha = j,$$

$$\bar{x}_\alpha = x_\alpha \text{ for } r+1 \leq \alpha \leq d.$$

(For the indices $t+1 \leq \alpha \leq r, \alpha \neq j$, we may have to replace x_α with $x_\alpha - c_\alpha x_j$ for some $c_\alpha \in k$ if necessary.)

It is straightforward to see that the above \bar{X} satisfies the following two conditions;
the idealistic filtration of i.f.g. type \widehat{R}_P, which is (the completion of) the transformation of \widehat{R}_P, is $\{d^{\alpha}_n \mid n \in \mathbb{Z}_{\geq 0}, i = 1, \ldots, t\}$-saturated, and

- the defining equations for the E_{young} form a part of the regular system of parameters, i.e., \{\(x_D \mid D \subset E_{\text{young}}\} \subset \{x_{t+1}, \ldots, x_d\}.

We have only to replace X with $(\bar{x}_1', \ldots, \bar{x}_i', \bar{x}_{i+1}, \ldots, \bar{x}_d)$ in order to satisfy the remaining condition

- $\bar{h}_i \equiv \bar{x}_i^{p_i} \mod \bar{m}^{p_i+1}$ for $i = 1, \ldots, t,$

while keeping the other two requirements as above, where

\[
\bar{x}_i' = \bar{x}_i + c_{i,j}^{1/p_i} \bar{x}_j + \sum_{a=r+1}^{d} c_{i,a}^{1/p_i} \bar{x}_a
\]

for $i = 1, \ldots, t$ (using the same notation as in the proof of the first part).

Then the LGS \bar{H} and \bar{X} satisfy the condition (\(\heartsuit\)).

This finishes the proof of “Moreover” part of (1).

(2) We use the same notation used in the proof of (1). We take an LGS \bar{H} and its associated regular system of parameters X, satisfying the condition (\(\heartsuit\)) and the extra condition that the center is defined by $C = \{x_1 = \cdots = x_r = 0\}$ (see Step 1 in the proof of “Moreover” part of (1)). When $\sigma = \bar{\sigma}$, we make the following two observations.

- The transformation \bar{H} is an LGS of \bar{R}.

- For $(f, a) \in \bar{R}_P$, let $\sum c_{f,B}H^B$ be the power series expansion of f with respect to \bar{H} and its associated regular system of parameters $(x_1, \ldots, x_i, x_{i+1}, \ldots, x_d)$, with the “constant term” being $c_{f,0}$. Look at its transformation (\bar{f}, a) with $\bar{f} = f/x_j^a$. The constant term $c_{\bar{f},0}$ of the transformation \bar{f} with respect to \bar{H} and its associated regular system of parameters $(\bar{x}_1', \ldots, \bar{x}_i', \bar{x}_{i+1}, \ldots, \bar{x}_d)$ is the transformation $\bar{c}_{\bar{f},0} = c_{f,0}/x_j^a$, where

\[
\bar{x}_i' = \bar{x}_i + c_{i,j}^{1/p_i} \bar{x}_j + \sum_{a=r+1}^{d} c_{i,a}^{1/p_i} \bar{x}_a
\]

for $i = 1, \ldots, t$.

Now the inequality $\bar{\mu} \geq \bar{\mu}$ follows from these two observations and the condition $C \subset \text{Sing}(\text{Comp}(\bar{R}))$ in our new setting by the same argument as the one used to show that the invariant w-ord does not increase under transformation in the classical setting.

(3) This follows immediately from the fact that the center C of blow up for the transformation π is nonsingular and transversal to the boundary E (hence to E_{aged}), and from the fact that, since $\sigma = \bar{\sigma}$, the aged part \bar{E}_{aged} of \bar{E} is the strict transform of E_{aged} by definition.

\[\square\]

4.3. Weaving of the new strand of invariants “inv_{new}”. In §4.3, we interpret the inductive structure explained in §4.2 in terms of weaving the new strand of invariants “inv_{new}”.

We weave the strand of invariants “inv\textsubscript{new}” consisting of the units of the form $(\sigma_j^1, \overline{\mu}_j^1, s_j^1)$, computed from the modifications (W_j^3, R_j^3, E_j^3) constructed simultaneously along the weaving process.

Weaving Process

We describe the weaving process inductively.

Suppose that we have already woven the strand up to the $(j-1)$-th stage.

Now we are in year i (looking at the neighborhood of a point $P_i \in W_i$).

We start with $(W_i, R_i, E_i) = (W_i^0, R_i^0, E_i^0)$, just renaming the transformation (W_i, R_i, E_i) in year i of the resolution sequence as the 0-th stage modification (W_i^0, R_i^0, E_i^0) in year i.

Suppose that we have already woven the strand up to the $(j-1)$-th unit

$$(\text{inv}_{\text{new}})_i^{\leq j-1} = (\sigma_i^0, \overline{\mu}_i^0, s_i^0)(\sigma_i^1, \overline{\mu}_i^1, s_i^1)\cdots(\sigma_i^{j-1}, \overline{\mu}_i^{j-1}, s_i^{j-1})$$

and we have also constructed the modifications up to the j-th one

$$(W_i^0, R_i^0, E_i^0), (W_i^1, R_i^1, E_i^1), \cdots, (W_i^{j-1}, R_i^{j-1}, E_i^{j-1}), (W_i^j, R_i^j, E_i^j).$$

Our task is to compute the j-th unit $(\sigma_j^1, \overline{\mu}_j^1, s_j^1)$ and construct the $(j+1)$-th modification $(W_i^{j+1}, R_i^{j+1}, E_i^{j+1})$ (unless the weaving process is over at the j-th stage).

Computation of the j-th unit $(\sigma_j^1, \overline{\mu}_j^1, s_j^1)$

σ_j^1: It is the invariant σ associated to the differential saturation $D R_i^j$ of the idealistic filtration of i.f.g. type R_i^j.

$\overline{\mu}_j^1$: It is the (normalized) weak order modulo LGS of the idealistic filtration of i.f.g. type R_i^j with respect to (E_i^j)\text{young}. (For the definition of (E_i^j)\text{young} ($\subset E_i^j$), see the description of the invariant s_j^1 below.

We note that

$$\left\{ \begin{array}{l}
\text{we keep } R_i^j \text{ as it is, which is the transformation of } R_i^{j-1}, \\
\text{if } (\text{inv}_{\text{new}})_i^{\leq j-1}(\sigma_j^1) = (\text{inv}_{\text{new}})_i^{\leq j-1}(\sigma_{j-1}^1), \\
\text{we replace the original } R_i^j \text{ with its differential saturation } D R_i^j \\
\text{if } (\text{inv}_{\text{new}})_i^{\leq j-1}(\sigma_j^1) < (\text{inv}_{\text{new}})_i^{\leq j-1}(\sigma_{j-1}^1).
\end{array} \right.$$

s_j^1: It is the number of the components in $(E_i^j)_{\text{aged}} = E_i^j \setminus (E_i^j)_{\text{young}}$, where $(E_i^j)_{\text{young}} (\subset E_i^j)$ is the union of the exceptional divisors created after the year when the value $(\text{inv}_{\text{new}})_i^{\leq j-1}(\sigma_j^1)$ first started. We note that the third factor is included even if $\overline{\mu}_j^1 = \infty$ or 0.

We note that, if $(\sigma_j^1, \overline{\mu}_j^1, s_j^1) = (\sigma_j^1, \infty, 0)$ or $(\sigma_j^1, 0, 0)$, then we declare that the $(j = m)$-th unit is the last one, and we stop the weaving process at the m-th stage in year i.

The weaving process of the strand comes to an end in a fixed year i, with the strand $(\text{inv}_{\text{new}})_i$ taking the following form

$$(\text{inv}_{\text{new}})_i = (\sigma_i^0, \overline{\mu}_i^0, s_i^0)(\sigma_i^1, \overline{\mu}_i^1, s_i^1)\cdots(\sigma_i^m, \overline{\mu}_i^m, s_i^m) = (\sigma_i^m, \infty, 0) \text{ or } (\sigma_i^m, 0, 0).$$
Termination in the horizontal direction: We note that termination of the weaving process in the horizontal direction is a consequence of the fact that going from the \(j \)-th unit to the \((j + 1)\)-th unit we have \((\sigma_i^j, \#E_i^j) > (\sigma_i^{j+1}, \#E_i^{j+1}) \) and that the value set of \((\sigma, \#E)\) satisfies the descending chain condition.

Construction of the \((j+1)\)-th modification \((W_i^{j+1}, R_i^{j+1}, E_i^{j+1})\)

We note that we construct the \((j + 1)\)-th modification only when \((\sigma_i^j, \mu_i^j, s_i^j) \neq (\sigma_i^{j+1}, \mu_i^{j+1}, s_i^{j+1}) \) or \((\sigma_i^j, 0, 0) \).

We follow the construction described in the mechanism discussed in §4.2. Starting from \((W_i^0, R_i^0, E_i^0)\), we construct \((W_i^{j+1}, R_i^{j+1}, E_i^{j+1})\) as below:

\[
\begin{align*}
W_i^{j+1} &= W_i^j, \\
R_i^{j+1} &= \text{Bdry} \left(\text{Comp}(R_i^j) \right)
\end{align*}
\]

where

\[
\text{Comp}(R_i^j) = \begin{cases}
\text{the transformation of } \text{Comp}(R_i^{j-1}) \\
\text{if } (\text{inv}_{\text{new}})_i^{j-1} (\sigma_i^j, \mu_i^j) = (\text{inv}_{\text{new}})_i^{j-1} (\sigma_i^{j-1}, \mu_i^{j-1}) \\
\text{see the construction in §4.2} \\
\text{if } (\text{inv}_{\text{new}})_i^{j-1} (\sigma_i^j, \mu_i^j) < (\text{inv}_{\text{new}})_i^{j-1} (\sigma_i^{j-1}, \mu_i^{j-1})
\end{cases}
\]

and where

\[
\text{Bdry}(\text{Comp}(R)) = \begin{cases}
\text{the transformation of } \text{Bdry}(\text{Comp}(R_i^{j-1})) \\
\text{if } (\text{inv}_{\text{new}})_i^{j} = (\text{inv}_{\text{new}})_i^{j-1} \\
\mathcal{G} \left(\text{Comp}(R_i^j) \cup \{ (x_D, 1) \mid D \subset (E_i^j)_{\text{aged}} \} \right) \\
\text{if } (\text{inv}_{\text{new}})_i^{j} < (\text{inv}_{\text{new}})_i^{j-1}
\end{cases}
\]

\[
E_i^{j+1} = (E_i^j)_{\text{young}} = E_i^j \setminus (E_i^j)_{\text{aged}}.
\]

We note that, if \((\text{inv}_{\text{new}})_i^{j} = (\text{inv}_{\text{new}})_i^{j-1} \), then \((W_i^{j+1}, R_i^{j+1}, E_i^{j+1})\) is the transformation of \((W_i^{j+1}, R_i^{j+1}, E_i^{j+1})\).

We also observe the following.

- The ambient space remains the same throughout a fixed year \(i \), i.e.,
 \[
 W_i = W_i^0 = W_i^1 = \cdots = W_i^j = W_i^{j+1} = \cdots = W_i^m = W_i^m.
 \]
 This is in clear contrast to the classical setting, where we take a consecutive sequence of the hypersurfaces of maximal contact
 \[
 W_i = H_i^0 \supset H_i^1 \supset \cdots \supset H_i^j \supset H_i^{j+1} \supset \cdots \supset H_i^m = H_i^m.
 \]
- The idealistic filtration of i.f.g. type gets enlarged under modification, i.e.,
 \[
 R_i = R_i^0 \subset R_i^1 \subset \cdots \subset R_i^j \subset R_i^{j+1} \cdots \subset R_i^{m-1} \subset R_i^m.
 \]
- The boundary divisor decreases (not necessarily strictly) under modification, i.e.,
 \[
 E_i = E_i^0 \supset E_i^1 \supset \cdots \supset E_i^j \supset E_i^{j+1} \supset \cdots \supset E_i^{m-1} \supset E_i^m.
 \]
Summary of our algorithm in char(k) = p > 0 in terms of “inv\textsubscript{new}”

We start with (W, R, E) = (W\textsubscript{0}, R\textsubscript{0}, E\textsubscript{0}).

Suppose we have already constructed the resolution sequence up to year i
\[(W, R, E) = (W\textsubscript{0}, R\textsubscript{0}, E\textsubscript{0}) \leftarrow \cdots \leftarrow (W\textsubscript{i}, R\textsubscript{i}, E\textsubscript{i}).\]

We weave the strand of invariants in year i described as above
\[
\text{inv}_{\text{new}}\textsubscript{i} = (\sigma\textsubscript{i}^0, \mu\textsubscript{i}^0, s\textsubscript{i}^0)(\sigma\textsubscript{i}^1, \mu\textsubscript{i}^1, s\textsubscript{i}^1) \cdots \]
\[
(\sigma\textsubscript{i}^j, \mu\textsubscript{i}^j, s\textsubscript{i}^j)(\sigma\textsubscript{i}^{m-1}, \mu\textsubscript{i}^{m-1}, s\textsubscript{i}^{m-1}) \]
\[
(\sigma\textsubscript{i}^m, \mu\textsubscript{i}^m, s\textsubscript{i}^m) = (\sigma\textsubscript{i}^m, \infty, 0) \text{ or } (\sigma\textsubscript{i}^m, 0, 0).
\]

There are two cases:

Case: $(\sigma\textsubscript{i}^m, \mu\textsubscript{i}^m, s\textsubscript{i}^m) = (\sigma\textsubscript{i}^m, \infty, 0)$. In this case, we take the center of blow up in year i for the transformation to be the singular locus of the last modification $(W\textsubscript{i}, R\textsubscript{i}, E\textsubscript{i}, s\textsubscript{i})$, i.e., Sing$(R\textsubscript{i})$, which is guaranteed to be nonsingular by the Nonsingularity Principle (cf. [14] and [13]). We note that Sing$(R\textsubscript{i}) \subset (\mathcal{D} \subset E\textsubscript{i})(E\textsubscript{i})_{\text{young}}D$ by construction of the boundary modifications, and that Sing$(R\textsubscript{i})$ is transversal to $(E\textsubscript{i})_{\text{young}}$. This implies that the center Sing$(R\textsubscript{i})$ is transversal to $E\textsubscript{i}$. After blow up, the singular locus of $(W\textsubscript{i}, R\textsubscript{i}, E\textsubscript{i}, s\textsubscript{i})$ disappears. Since resolution of singularities for $(W\textsubscript{i}, R\textsubscript{i}, E\textsubscript{i}, s\textsubscript{i})$ implies the strict decrease of the value of $(\text{inv}_{\text{new}})^{\leq m-1}$, we have $(\text{inv}_{\text{new}})^{\leq m-1} > (\text{inv}_{\text{new}})^{\leq m-1}$.

Case: $(\sigma\textsubscript{i}^m, \mu\textsubscript{i}^m, s\textsubscript{i}^m) = (\sigma\textsubscript{i}^m, 0, 0)$. In this case, by following the procedure specified for resolution of singularities in the monomial case, we either achieve resolution of singularities of the m-th modification, or we have the value of the invariant σ strictly decrease.

Termination in the vertical direction: Since the value of the strand “inv_{new}” never increases after each transformation in the resolution sequence, by looking at the conclusions of the two cases above at the end of the weaving process in the horizontal direction, we conclude that in some year i', the value of the strand strictly decreases, i.e.,
\[
(\text{inv}_{\text{new}})_{i} > (\text{inv}_{\text{new}})_{i'}.
\]

Now we claim that the value of the strand “inv_{new}” can not decrease infinitely many times. In fact, suppose by induction we have shown that the value of $(\text{inv}_{\text{new}})^{\leq t-1}$ can not decrease infinitely many times. Then after some year the value of $(\text{inv}_{\text{new}})^{\leq t-1}$ stabilizes. Since the value of the invariant σ satisfies the descending chain condition, after some year (say after year i_{t-1}), the value of $(\text{inv}_{\text{new}})^{\leq t-1}$ (σ^t) stabilizes. Therefore, after year i_{t-1}, we use the transformation of $R_{i_{t-1}}$ in order to compute the invariant $\tilde{\mu}$. (See (i) in the technical but important points in the computation of the invariant $\tilde{\mu}$.) This implies that the denominator of the invariant $\tilde{\mu}$ is bounded, and hence that the invariant $\tilde{\mu}$ can not decrease infinitely many times. Since the invariant s, being a nonnegative integer, can not decrease infinitely many times, we conclude that $(\text{inv}_{\text{new}})^{\leq t-1}(\sigma^t, \tilde{\mu}^t, s^t) = (\text{inv}_{\text{new}})^{\leq t}$ can not decrease infinitely many times.
For each t, let i_t be the time when the stabilization of $(\text{inv}_{\text{new}})^{\leq t}$ first starts, i.e.,
\[
\begin{align*}
(\text{inv}_{\text{new}})^{\leq t}_{i_{t-1}} & > (\text{inv}_{\text{new}})^{\leq t}_{i_t} \\
(\text{inv}_{\text{new}})^{\leq t}_{i_t} & = (\text{inv}_{\text{new}})^{\leq t}_{i_t} \text{ for } i \geq i_t.
\end{align*}
\]
Note that $\{i_t\}$ is a (not necessarily strictly) increasing sequence, i.e., $i_t \leq i_{t'}$ if $t \leq t'$. Let $\sigma_t = \sigma_{i_t}^t$ be the first factor of the t-th unit of $(\text{inv}_{\text{new}})^{\leq t}_{i_t}$. Note that $\{\sigma_t\}$ is a (not necessarily strictly) decreasing sequence. That is to say, we have $\sigma_t \geq \sigma_{t+1}$, which follows easily if we look at year i_{t+1} and see $\sigma_t = \sigma_{i_t}^t = \sigma_{i_{t+1}}^t \geq \sigma_{i_{t+1}}^{t+1} = \sigma_{t+1}$.

We claim that we have either $\sigma_t > \sigma_{t+1}$ or $\sigma_t = \sigma_{t+1} > \sigma_{t+2}$. This can be seen by the following reasoning.

- First look at the t-th unit in year i_t, and observe $(\sigma_t^t, \mu_t^t, s_t^t) \neq (\sigma_t^t, \infty, 0)$ or $(\sigma_t^t, 0, 0)$. In fact, if $(\sigma_t^t, \mu_t^t, s_t^t) = (\sigma_t^t, \infty, 0)$ or $(\sigma_t^t, 0, 0)$, then the weaving process is over at the t-th stage in year i_t. When $(\sigma_t^t, \mu_t^t, s_t^t) = (\sigma_t^t, \infty, 0)$, by the single blow up with center $\text{Sing}(\mathcal{R}_t^t)$, we accomplish resolution of singularities for $(W_t^t, \mathcal{R}_t^t, E_t^t)$. This, however, implies the strict decrease of $(\text{inv}_{\text{new}})^{\leq t-1}_{i_{t-1}}$, contradicting its stability after year $i_{t-1}(\leq i_t)$. If $(\sigma_t^t, \mu_t^t, s_t^t) = (\sigma_t^t, 0, 0)$, then by the process of resolution of singularities in the monomial case, either we accomplish resolution of singularities for $(W_t^t, \mathcal{R}_t^t, E_t^t)$ or the invariant σ^t strictly decreases some time after year i_t. In the former case, it would contradict the stability of $(\text{inv}_{\text{new}})^{\leq t-1}_{i_{t-1}}$ after year $i_{t-1}(\leq i_t)$. In the latter case, it would contradict the stability of $(\text{inv}_{\text{new}})^{\leq t}_{i_{t}}$ after year i_t.

- If $\mu_t^t \neq 0$ or ∞, then $\sigma_t^t > \sigma_{t+1}^t$. Since $\sigma_{t+1}^t \geq \sigma_{t+1}^{t+1}$, we conclude $\sigma_t^t > \sigma_{t+1}^{t+1} \geq \sigma_{t+1}^{t+1} = \sigma_{t+1}$.

- We consider the case where $\mu_t^t = 0$. By the first observation, we have $s_t^t \neq 0$ and the weaving process continues onto the $(t+1)$-th unit in year i_t. We have $\sigma_t^t \geq \sigma_{t+1}^{t+1}$.

Case: $\sigma_t^t > \sigma_{t+1}^{t+1}$. We have $\sigma_t = \sigma_t^t > \sigma_{t+1}^t \geq \sigma_{t+1}^{t+1} = \sigma_{t+1}$.

Case: $\sigma_t^t = \sigma_{t+1}^{t+1}$. Since year i_t is the time when the value of $(\text{inv}_{\text{new}})^{\leq t}_{i_{t}}$ first started, we have $(E_{i_t}^{t+1})_{\text{young}} = \emptyset$. The idealistic filtration of i.f.g. type $\mathcal{R}_{i_t}^{t+1} \supset \mathcal{R}_{i_t}^t$ contains a monomial of the defining equations of $(E_t^t)_{\text{young}}$. This implies $\mu_{i_t}^{t+1} \neq 0$ or ∞. We have $\sigma_{i_t}^{t+1} \geq \sigma_{i_t}^{t+1}$.

Subcase: $\sigma_{i_t}^{t+1} > \sigma_{i_t}^{t+2}$. We have $\sigma_t = \sigma_{i_t}^{t+1} > \sigma_{i_t}^{t+1} = \sigma_{t+1}$.

Subcase: $\sigma_{i_t}^{t+1} = \sigma_{i_t}^{t+1}$, since $\mu_{i_t}^{t+1} \neq \infty$, we have $\mu_{i_t}^{t+1} \neq \infty$.

Subcase: $\mu_{i_t}^{t+1} \neq 0$. We have $\sigma_{i_t}^{t+1} > \sigma_{i_t}^{t+2}$. This implies $\sigma_t = \sigma_{i_t}^{t+1} = \sigma_{i_t}^{t+1} > \sigma_{i_t}^{t+1} = \sigma_{t+2}$.

Subcase: $\mu_{i_t}^{t+1} = 0$. By the first observation, we have $\sigma_{i_t}^{t+1} \neq 0$. That is to say, there is a component D of $(E_{i_t}^{t+1})_{\text{aged}} = E_{i_t}^{t+1} = E_{i_t}^{t+1} \setminus (E_{i_t}^{t+1})_{\text{aged}} = (E_{i_t}^{t+1})_{\text{young}}$ passing through that point. $(E_{i_t}^{t+1})_{\text{young}}$ is the union of the exceptional divisors created after the year when the value of $(\text{inv}_{\text{new}})^{\leq t-1}_{i_{t-1}}(\sigma_{i_t}^{t+1}) = (\text{inv}_{\text{new}})^{\leq t-1}_{i_{t}}(\sigma_{i_t}^{t})$ first started. Therefore, D is transversal to the LGS of $\mathcal{R}_{i_t}^{t+1}$, which is the transformation of the LGS of $\mathcal{R}_{i_t}^t$ since $\sigma_t^t = \sigma_{i_t}^{t+1} = \sigma_{i_t}^{t+1}$. Since $\mathcal{R}_{i_t+1}^{t+2}$ contains $(x_D, 1)$, where x_D is
the defining equation of D, we conclude $\sigma_{t+1}^{i+1} > \sigma_{t+1}^{i+2}$. Therefore, we have
$$\sigma_t = \sigma_{t+1}^i = \sigma_{t+1}^{i+1} = \sigma_{t+1}^{i+2} = \sigma_{t+2}.$$

- We consider the case where $\mu_i^t = \infty$. By the first observation, we have $s_{t+1}^i \neq 0$ and the weaving process continues onto the $(i+1)$-th unit in year i_t. We have $\sigma_{t+1}^i \geq \sigma_{t+1}^i$.

Case: $\sigma_{t+1}^i > \sigma_{t+1}^i$. We have $\sigma_t = \sigma_{t+1}^i > \sigma_{t+1}^i \geq \sigma_{t+1}^i = \sigma_{t+1}$.

Case: $\sigma_{t+1}^i = \sigma_{t+1}^i$. Since year i_t is the time when the value of $(\text{inv}_{\text{new}})^{\leq t}_{i_t}$ first started, we have $(E_{t+1}^t)_{\text{aged}} = \emptyset$. This implies $\mu_i^{t+1} \neq 0$. If $\mu_i^{t+1} \neq \infty$, then we can carry the same argument as above ($\mu_i^t = 0$ & Case: $\sigma_{t+1}^i = \sigma_{t+1}^i$) to conclude that either $\sigma_t > \sigma_{t+1}$ or $\sigma_t = \sigma_{t+1} > \sigma_{t+2}$. Therefore, we have only to consider the case where $\mu_i^{t+1} = \infty$. We have $\sigma_{t+1}^i \geq \sigma_{t+1}^i$.

Subcase: $\sigma_{t+1}^i > \sigma_{t+1}^i$. We have $\sigma_t = \sigma_{t+1}^i = \sigma_{t+1}^i > \sigma_{t+1}^i = \sigma_{t+1}$.

Subcase: $\sigma_{t+1}^i = \sigma_{t+1}^i$. Since $\mu_i^{t+1} = \infty$, we have $\mu_i^{t+1} = \infty$. By the first observation, we have $s_{t+1}^i \neq 0$. That is to say, there is a component D of $(E_{t+1}^t)_{\text{aged}} = E_{t+1}^t = E_{t+1}^t - (E_{t+1}^t)_{\text{aged}} = (E_{t+1}^t)_{\text{young}}$ passing through that point. $(E_{t+1}^t)_{\text{young}}$ is the union of the exceptional divisors created after the year when the value of $(\text{inv}_{\text{new}})^{\leq t-1}_{i_{t+1}} (\sigma_{t+1}^i) = (\text{inv}_{\text{new}})^{\leq t-1}_{i_t} (\sigma_t)$ first started. Therefore, D is transversal to the LGS of \mathcal{R}_{t+1}^t, which is the transformation of the LGS of \mathcal{R}_t^t, since $\sigma_t = \sigma_{t+1}^i = \sigma_{t+1}^i$. Since \mathcal{R}_{t+1}^{t+2} contains $(x_D, 1)$, where x_D is the defining equation of D, we conclude $\sigma_{t+1}^i > \sigma_{t+1}^i$.

Therefore, we have $\sigma_t = \sigma_{t+1}^i = \sigma_{t+1}^i = \sigma_{t+1}^i > \sigma_{t+1}^i \geq \sigma_{t+1}^i = \sigma_{t+2}$.

This completes the reasoning for the claim that we have either $\sigma_t > \sigma_{t+1}$ or $\sigma_t = \sigma_{t+2}$.

Since the value of the invariant σ satisfies the descending chain condition, the increase of the value of t stops after finitely many times. Finally, therefore, we conclude that the value of the strand “inv_{new}” can not decrease infinitely many times.

Therefore, the algorithm terminates after finitely many years, achieving resolution of singularities for (W, \mathcal{R}, E).

4.4. **Brief discussion on the monomial case in positive characteristic.** Here in §4.4, we briefly discuss why the problem of resolution of singularities in positive characteristic is much more subtle and difficult than the one in characteristic zero.

Recall we say that the triplet (W, \mathcal{R}, E) is in the monomial case (at $P \in \text{Sing}(\mathcal{R}) \subset W$) in our setting if (and only if) the triplet of invariants takes the value $(\sigma, \bar{\mu}, s) = (\sigma, 0, 0)$. (Precisely speaking, the triplet (W, \mathcal{R}, E) sits in the middle of the sequence, say in year “i”, for resolution of singularities. However, we omit the subscript “(i)”, indicating the year for simplicity of the notation.)

The description of the monomial case at the analytic level is given below.

SITUATION

- The condition $\bar{\mu} = 0$ is interpreted as follows:
We can choose a regular system of parameters \((x_1, \ldots, x_t, x_{t+1}, \ldots, x_d)\), taken from \(O_{W,P}\), such that

1. the elements in the LGS \(\\mathbb{H} = \{(h_i, p^{e_i})\}_{i=1}^t\) are of the form
 \[h_i = x_i^{p^{e_i}} + \text{higher terms for } i = 1, \ldots, t, \]
 We sometimes call the higher terms in the above expression “the tail part”.
2. there is a monomial \(M = \prod_{D \subset E_{young}} x_D^{\alpha_D}\) of the defining equations \(x_D\) of the components \(D\) in \(E_{young}\) with
 \[(M, a) \in \hat{R}_P \text{ for some } a \in \mathbb{Z}_{>0}, \]
 where we have \(\{x_D \mid D \subset E_{young}\} \subset \{x_i \mid i = t + 1, \ldots, d\}\),
3. the idealistic filtration of i.f.g. type \(\hat{R}_P\) is \(\{x_i \mid i = 1, \ldots, t\}\)-saturated,

satisfying the following condition: for an arbitrary \((f, \lambda) \in \hat{R}_P\) with \(f = \sum c_B H_B\) being the power series expansion with respect to the LGS \(\mathbb{H}\) and the associated to the regular system of parameters \((x_1, \ldots, x_t, x_{t+1}, \ldots, x_d)\), we have \(M^{\lambda} \) dividing the constant term \(c_0\), i.e., \(M^{\lambda} | c_0\). Note that, using the coefficient lemma (cf. [14]), we see \((c_0, \lambda) \in \hat{R}_P\). We remark that, in [14], the coefficient lemma was proved under the assumption that the idealistic filtration \(\hat{R}_P\) is \(D\)-saturated. However, the statement is still valid under the weaker assumption as in (3) above by the same proof.

- The condition \(s = 0\) is of course equivalent to saying that there is no component of \(E_{aged}\) passing through \(P\).

\[\text{char}(k) = 0 \]

In fact, the above description of the monomial case is also valid when \(\text{char}(k) = 0\), with all the elements of the LGS concentrated at level 1, i.e., \(p^{e_i} = 1\) for \(i = 1, \ldots, t\). Moreover, we can replace \(x_i\) with \(h_i\) so that we have \(h_i = x_i\) for \(i = 1, \ldots, t\). Then there is NO “tail part”. In order to construct resolution of singularities for \((W, R, E)\), we have only to carry out the resolution process for \((V, (M, a)|_V, E|_V)\), which is the triplet in the monomeral case in the classical setting, where \(V = \{x_1 = \cdots = x_t = 0\}\) is a nonsingular subvariety inside of \(W\). Note that, since \(E_{aged} = 0\) (in a neighborhood of \(P\), because \(s = 0\)), the third factor \(E|_V\) is a simple normal crossing divisor on \(V\).

\[\text{char}(k) = p > 0 \]

In contrast to the case in \(\text{char}(k) = 0\), the elements in the LGS may not be concentrated at level 1 in general. Therefore, we usually have the tail parts for those \(h_i\)’s at higher levels in \(\text{char}(k) = p > 0\). The hypersurfaces defined by \(\{h_i = 0\}\) by those elements are singular hypersurfaces. Therefore, one is forced to analyze the monomial restricted to a singular subvariety (defined as the intersection of the singular hypersurfaces), or alternatively analyze the combination of the monomial together with the tail parts of those elements sticking to the original nonsingular ambient space. The latter is what we do in §5 of this paper in dimension 3.
In the simplest terms, NO or YES “tail part” is what makes the difference between the monomial case in $\text{char}(k) = 0$ and the one in $\text{char}(k) = p > 0$.

5. Detailed discussion on the monomial case in dimension 3

The purpose of §5 is to discuss how to construct resolution of singularities (at the local level) in the monomial case. We refer the reader to §4.4 for the precise description of the monomial case.

5.1. Case analysis according to the invariant “τ”.

In §5.1, we analyze the situation according to the value of the invariant τ.

Recall that the invariant τ is just the number of the elements in an LGS, and hence that, in dimension 3, it takes the value $\tau = 0, 1, 2, 3$.

It turns out that the analysis of the case $\tau = 0, 2, 3$ is rather easy. We devote §5.2, §5.3, §5.4 to the analysis of the most subtle and difficult case $\tau = 1$.

Case : $\tau = 0$

In this case, there is no element in an LGS. We conclude that for an arbitrary $(f, \lambda) \in \hat{R}_P$ the monomial M^{λ} divides $c_0 = f$. Therefore, we can carry out the same algorithm for resolution of singularities of the triplet $(W, (I, a), E) = (W, ((M), a), E)$ in the monomial case in the classical setting in characteristic zero, using the invariant Γ discussed in §3.4. (Note that in the middle of the process the invariant σ may drop. If that happens, then we are no longer in the monomial case. In that case, we go through the mechanism described in §4.2 with the reduced new value of σ to reach the new monomial case.)

Case : $\tau = 1$

This case will be thoroughly discussed in §5.2, §5.3, §5.4.

Case : $\tau = 2$

In this case, we can choose a regular system of parameters (x, y, z), taken from $\hat{O}_{W, P}$, such that

1. The two elements in the LGS $H = \{(h_1, p^{e_1}), (h_2, p^{e_2})\}$ are of the form

 \[
 \begin{align*}
 h_1 &= z^{p^{e_1}} + \text{higher terms} \\
 h_2 &= y^{p^{e_2}} + \text{higher terms},
 \end{align*}
 \]

2. There is a monomial $M = x^a$ of the defining equation x of the component $\{x = 0\} \subset E_{\text{young}}$ with

 $$(M, a) = (x^a, a) \in \hat{R}_P$$

 for some $a \in \mathbb{Z}_{>0}$.

3. The idealistic filtration \hat{R}_P is $\left\{\frac{\partial^n}{\partial z^n}, \frac{\partial^m}{\partial y^m} \mid n, m \in \mathbb{Z}_{\geq 0}\right\}$-saturated.

Then it is easy to see that $\text{Sing}(R) = P$ (in a neighborhood of P) and hence that the only possible transformation is the blow up with center P. After blow up, we see that the (possibly) non-empty singular locus lies only over the x-chart. We also see that the singular locus, if non-empty, consists of a single point $\tilde{P} \in \tilde{W}$ (in a neighborhood of the inverse image of P) with a regular system of parameters.
$(\bar{x}, \bar{y}, \bar{z}) = (x, y/x, z/x)$. The new LGS
\[\tilde{\mathbb{H}} = \{(h_1, p^{r_1}e_1), (h_2, p^{r_2}e_2)\} = \{(h_1/x^{p^{r_1}}, p^{r_1}), (h_2/x^{p^{r_2}}, p^{r_2})\} \]
are of the form
\[
\begin{align*}
\tilde{h}_1 &= (z')^{p^{r_1}} + \text{higher terms} \\
\tilde{h}_2 &= (y')^{p^{r_2}} + \text{higher terms}
\end{align*}
\]
where (cf. the proof of Proposition 4)
\[
\begin{align*}
\bar{z}' &= \bar{z} + c_z x^{1/p^{r_1}} \\
\bar{y}' &= \bar{y} + c_y y^{1/p^{r_2}}
\end{align*}
\]
for some $c_z, c_y \in k$ (in case the invariant σ does not decrease), and that we calculate the new monomial to be
\[(x^{\alpha - a}, a). \]
Since the power of x in the above monomial can not decrease infinitely many times, we achieve resolution of singularities after finitely many repetitions of this procedure. (Note that in the middle of the process the invariant σ may drop. If that happens, then we are no longer in the monomial case. In that case, we go through the mechanism described in §4.2 with the reduced new value of σ to reach the new monomial case.)

Case : $\tau = 3$

This case does not happen. In fact, suppose this case did happen. Then go back to the year i_{aged} when the current value of σ first started. Since the current value of τ is equal to 3, so is the value of τ back in year i_{aged}. Take the blow up with center $P_{i_{\text{aged}}}$, which is the image of P in year i_{aged}. Then it is immediate to see that there is no singular locus (in a neighborhood of the inverse image of $P_{i_{\text{aged}}}$) after blow up. This implies in turn that $\text{Sing}(R_{i_{\text{aged}}}) = P_{i_{\text{aged}}}$ (in a neighborhood of $P_{i_{\text{aged}}}$). The only possible transformation in the resolution sequence, therefore, is the blow up with center $P_{i_{\text{aged}}}$. After blow up, however, we already saw $\text{Sing}(R_{i_{\text{aged}}}) = \emptyset$ over $P_{i_{\text{aged}}}$. This is a contradiction, since $P_{i_{\text{aged}}+1}$, which is the image of P in year $i_{\text{aged}} + 1 $, should be included in $\text{Sing}(R_{i_{\text{aged}}+1})$. (Note that we have $i_{\text{aged}} < i$, since the value of $\tilde{\mu}$ is never zero when the new value of σ starts in year i_{aged} and since the current value of $\tilde{\mu}$ is zero being in the monomial case in year i.)

Focus on the case $\tau = 1$

In the following §§5.2, §§5.3, §§5.4, we focus on, and restrict ourselves to, the case $\tau = 1$. We carry out the computation of the invariants at the analytic (completion) level, even though the centers of blow ups are chosen at the algebraic level, and hence all the procedures in the algorithm are carried out at the algebraic level. We omit the symbol “()”, indicating that we are taking the completion of the object “()”, for simplicity of the notation in what follows.

We restate the **SITUATION** described in §4.4 in a slightly refined form in our particular case $\tau = 1$, for the sole purpose of fixing the notation for §§5.2, §§5.3, §§5.4.
We can choose a regular system of parameters \((x, y, z)\), taken from \(O_{W, p}\), such that

1. via the Weierstrass Preparation Theorem the unique element in the LGS
 \(H = \{(h, p^e)\}\) is of the form
 \[h = z^{p^e} + a_1 z^{p^e-1} + a_2 z^{p^e-2} + \cdots + a_{p^e-1} z + a_{p^e}\]
 with \(a_i \in k[[x, y]]\) and \(\text{ord}_p(a_i) > i\) for \(i = 1, \cdots, p^e\),

2. there is monomial \(M = x^\alpha y^\beta\) of the defining equation(s) of the component(s) \(H_x = \{x = 0\}\) (and possibly \(H_y = \{y = 0\}\) in \(E_{\text{young}}\) with
 \[(M, a) = (x^\alpha y^\beta, a) \in R_P,\]
 (We write \(M_u := x^\alpha y^\beta a\) and call \(M_u\) the usual monomial.)

3. the idealistic filtration \(R_P\) is \(\{\frac{\partial}{\partial z}^n | n \in \mathbb{Z}_{\geq 0}\}\)-saturated, satisfying the following condition: for an arbitrary \((f, \lambda) \in R_P\) with \(f = \sum c_{\lambda} h^b\) being the power series expansion with respect to the LGS \(H = \{h\}\) and the associated to the regular system of parameters \((x, y, z)\), we have \(M_u^\pm\) dividing the constant term \(c_0\), i.e., \(M_u^\pm|c_0\).

In particular, by looking at \(\frac{\partial}{\partial z}^n h\) for \(n = 1, \ldots, p^e - 1\), we see that the coefficient \(a_i\) is divisible by \((M_u)^i\) for \(i = 1, \cdots, p^e - 1\) (but maybe not for \(i = p^e\)). That is to say,

\[(M_u)^i|a_i\ i.e., x^{[\frac{i}{p^e}]} y^{[\frac{i}{p^e}]}|a_i\ for i = 1, \cdots, p^e - 1.\]

Throughout \$\S5.2, \S5.3, \S5.4\$, we are under [SITUATION] described as above.

5.2. “Cleaning” and the invariant “\(H\)” (in the case \(\tau = 1\)). The purpose of this section is to introduce the invariant “\(H\)” through the process of “cleaning”. We follow closely the argument developed by Benito-Villamayor \[4\], making some modifications to fit it into our own setting in the framework of the Idealistic Filtration Program.

Definition 5. We define the slope of \(h\) at \(P\) with respect to \((x, y, z)\) by the formula

\[
\text{Slope}_{h, (x, y, z)}(P) = \min \left\{ \frac{\text{ord}_P(a_{p})}{p^e}, \mu(P) \right\}.
\]

Remark 7.

(i) Since we are in the monomial case and hence \(\bar{\mu} = 0\) and since the monomial is \((M, a) = (x^\alpha y^\beta, a)\), we compute

\[
\mu(P) = \frac{\text{ord}_P(x^\alpha y^\beta)}{a} = \frac{\alpha + \beta}{a} = \text{ord}_P(M_u).
\]

(ii) We have a “very good” control over the coefficients \(a_i\) except for the constant term \(a_{p^e}\), in the sense that

\[(M_u)^i = (x^{\alpha/a} y^{\beta/a})^i|a_i\ for i = 1, \cdots, p^e - 1,\]

which implies

\[
\frac{\text{ord}_P(a_i)}{i} \geq \mu(P) \ for i = 1, \cdots, p^e - 1.
\]
Therefore, this control leads to the following observation
\[
\text{Slope}_{h,(x,y,z)}(P) = \min \left\{ \frac{\text{ord}_P(a_{p^r})}{p^r}, \mu(P) \right\} = \min \left\{ \frac{\text{ord}_i(a_i)}{p^i}, i = 1, \ldots, p^r, \mu(P) \right\}.
\]

Definition 6 (Well-adaptedness (cf. [4])). We say \(h\) is well-adapted at \(P\) with respect to \((x, y, z)\) if one of the following two conditions holds:

A. \(\text{Slope}_{h,(x,y,z)}(P) = \mu(P)\).

B. \(\text{Slope}_{h,(x,y,z)}(P) = \frac{\text{ord}_P(a_{p^r})}{p^r} < \mu(P)\) and the initial form \(\text{In}_P(a_{p^r})\) is not a \(p^r\)-th power.

Similarly, we say \(h\) is well-adapted at \(\xi_{H_x}\), where \(\xi_{H_x}\) is the generic point of the hypersurface \(H_x = \{x = 0\}\) if one of the following two conditions holds:

A. \(\text{Slope}_{h,(x,y,z)}(\xi_{H_x}) = \mu(\xi_{H_x}) = \alpha/a\).

B. \(\text{Slope}_{h,(x,y,z)}(\xi_{H_x}) = \frac{\text{ord}_{H_x}(a_{p^r})}{p^r} < \mu(\xi_{H_x})\) and the initial form \(\text{In}_{\xi_{H_x}}(a_{p^r})\) is not a \(p^r\)-th power.

The notion of \(h\) being well-adapted at \(\xi_{H_y}\), where \(\xi_{H_y}\) is the generic point of the hypersurface \(H_y = \{y = 0\}\), is defined in an identical manner.

Proposition 5.

1. There exist an element \(h \in \mathcal{O}_{W,P}\) in an LGS and a regular system of parameters \((x, y, z)\) such that \(h\) is well-adapted at \(P\), \(\xi_{H_x}\), and \(\xi_{H_y}\) simultaneously with respect to \((x, y, z)\). Note that we require the property that the idealistic filtration \(R_P\) is \(\mathcal{O}_W\)-saturated with respect to the regular system of parameters \((x, y, z)\) (cf. [SITUATION (9)]).

2. If \(h\) is well-adapted at \(* = P, \xi_{H_x}\) or \(\xi_{H_y}\) with respect to \((x, y, z)\), then \(\text{Slope}_{h,(x,y,z)}(*)\) is independent of the choice of \(h\) and \((x, y, z)\).

Proof. (1) We start with \(h\) and \((x, y, z)\) as given in [SITUATION].

Step 1. Modify \(h\) and \((x, y, z)\) to be well-adapted at \(P\).

Suppose we are in Case A or Case B as described in Definition 6. Then \(h\) is already well-adapted at \(P\) with respect to \((x, y, z)\) and there is no modification needed.

Therefore, we may assume that we are not in either Case A or Case B. That is to say, we have

\[
\text{Slope}_{h,(x,y,z)}(P) = \frac{\text{ord}_P(a_{p^r})}{p^r} < \mu(P), \quad \text{In}_P(a_{p^r}) = \frac{\text{ord}_P(a_{p^r})}{p^r} = \sum_{k+l=d} c_{kl}x^ky^l, \quad \text{with} \ d = \text{ord}_P(a_{p^r}), \quad \text{is a} \ p^r\text{-th power.}
\]

Take

\[
\left\{ \text{In}_P(a_{p^r}) \right\}^{1/p^r} \in k[[y]],
\]

and set

\[
z' = z + \left\{ \text{In}_P(a_{p^r}) \right\}^{1/p^r}, \quad \text{i.e.,} \ z = z' - \left\{ \text{In}_P(a_{p^r}) \right\}^{1/p^r}.
\]

Plug this into

\[
h = z^{p^r} + a_1 z^{p^r-1} + a_2 z^{p^r-2} + \cdots + a_{p^r-1} z + a_p.
\]
to obtain
\[h = z^{p^e} + a_1'z^{p^e-1} + a_2'z^{p^e-2} + \cdots + a_{p^e-1}'z' + a_{p^e}
\] with
\[a_i' \in k[[x,y]] \text{ for } i = 1, \ldots, p^e - 1, p^e. \]

Since for \(i = 1, \ldots, p^e - 1 \), we have (cf. Remark 7 (ii))
\[\frac{\text{ord}_P(a_i)}{p^e} \geq \mu(P) > \frac{\text{ord}_P(a_{p^e})}{p^e} = \text{ord}_P \left(\left\{ \text{In}_P(a_{p^e}) \right\}^{1/p^e} \right), \]
we conclude that \(a_{p^e}' \) is of the form
\[a_{p^e}' = a_{p^e} - \text{In}_P(a_{p^e}) + \text{higher terms} \]
and hence that
\[\frac{\text{ord}_P(a_{p^e}')}{{p^e}} > \frac{\text{ord}_P(a_{p^e})}{p^e}. \]

We go back to the starting point, replacing the original \(h \) and \((x, y, z)\) by \(h' \) and \((x', y', z') = (x, y, z')\), with strictly increased \(\text{ord}_P(a_{p^e}') \). Since \(\mu(P) < \infty \), we conclude that, after finitely many repetitions of this process, we have to come to the situation where we are in Case A or Case B, i.e., where \(h \) is well-adapted at \(P \) with respect to \((x, y, z)\).

Step 2. Modify \(h \) and \((x, y, z)\) further to be well-adapted at \(\xi_{H_z} \) without destroying the well-adaptedness at \(P \).

Take \(h \) which is well-adapted at \(P \) with respect to \((x, y, z)\), as obtained through Step 1.

Suppose we are in Case A or Case B as described in the second half of Definition 6. Then \(h \) is already well-adapted at \(\xi_{H_z} \) with respect to \((x, y, z)\) and there is no modification needed.

Therefore, we may assume that we are not in either Case A or Case B. That is to say, we have
\[\text{Slope}_{h, (x, y, z)}(\xi_{H_z}) = \frac{\text{ord}_{\xi_{H_z}}(a_{p^e})}{p^e} < \mu(\xi_{H_z}), \quad \text{and} \]
\[\text{In}_{\xi_{H_z}}(a_{p^e}) = x^r g(y), \text{ where } a_{p^e} = x^r \left\{ g(y) + x \cdot \omega(x, y) \right\}, r = \text{ord}_{\xi_{H_z}}(a_{p^e}), \]
is a \(p^e \)-th power.

Take
\[\left\{ \text{In}_{\xi_{H_z}}(a_{p^e}) \right\}^{1/p^e} \in k[[y]][x], \]
and set
\[z' = z + \left\{ \text{In}_{\xi_{H_z}}(a_{p^e}) \right\}^{1/p^e}, \text{i.e., } z = z' - \left\{ \text{In}_{\xi_{H_z}}(a_{p^e}) \right\}^{1/p^e}. \]

Then as in Step 1, we see
\[\frac{\text{ord}_{\xi_{H_z}}(a_{p^e}')}{p^e} > \frac{\text{ord}_{\xi_{H_z}}(a_{p^e})}{p^e}. \]

We go back to the starting point, replacing the original \(h \) and \((x, y, z)\) by \(h' \) and \((x', y', z') = (x, y, z')\), with strictly increased \(\frac{\text{ord}_{\xi_{H_z}}(a_{p^e}')}{p^e} \). Since \(\mu(\xi_{H_z}) < \infty \), we conclude that, after finitely many repetitions of this process, we have to come to the situation where we are in Case A or Case B, i.e., where \(h \) is well-adapted at \(\xi_{H_z} \) with respect to \((x, y, z)\).

The only issue here is to check, in the process, the property that \(h \) is well-adapted at \(P \) is preserved.
Case : \(\frac{\text{ord}_P(a_{p^e})}{p^e} \geq \mu(P) \).

In this case, we have
\[
\text{ord}_P \left(\left\{ \text{In}_{\xi_{H^x}}(a_{p^e}) \right\}^{1/p^e} \right) \geq \frac{\text{ord}_P(a_{p^e})}{p^e} \geq \mu(P)
\]
and, for \(i = 1, \ldots, p^e - 1 \), we have (cf. Remark 7 (ii))
\[
\frac{\text{ord}_P(a_i)}{p^e} \geq \mu(P).
\]
Therefore, we conclude that
\[
\frac{\text{ord}_P(a_{p^e}')}{p^e} \geq \mu(P),
\]
and hence that \(h' \) stays well-adapted at \(P \) with respect to \((x', y', z')\).

Case : \(\frac{\text{ord}_P(a_{p^e})}{p^e} < \mu(P) \).

In this case, we have
\[
\text{ord}_P \left(\left\{ \text{In}_{\xi_{H^x}}(a_{p^e}) \right\}^{1/p^e} \right) \geq \frac{\text{ord}_P(a_{p^e})}{p^e}
\]
and, for \(i = 1, \ldots, p^e - 1 \), we have (cf. Remark 7 (ii))
\[
\frac{\text{ord}_P(a_i)}{p^e} \geq \mu(P) > \frac{\text{ord}_P(a_{p^e})}{p^e}.
\]
Hence, since \(\text{In}_P(a_{p^e}) \) is not a \(p^e \)-th power and since the degree \(d = \text{ord}_p(a_{p^e}) \)-part of \(\text{In}_{\xi_{H^x}}(a_{p^e}) \) is a \(p^e \)-th power, we have
\[
\text{In}_P(a_{p^e}') = \text{In}_P(a_{p^e}) - \left\{ \text{the degree } d = \text{ord}_p(a_{p^e}) \text{-part of } \text{In}_{\xi_{H^x}}(a_{p^e}) \right\}
\]
Therefore, we conclude that
\[
\text{ord}_P(a_{p^e}') = \text{ord}_P(\text{In}_P(a_{p^e}')) = \text{ord}_P(\text{In}_P(a_{p^e})) = \text{ord}_P(a_{p^e}) < \mu(P)
\]
and \(\text{In}_P(a_{p^e}') \) is not a \(p^e \)-th power, and hence that \(h' \) stays well-adapted at \(P \) with respect to \((x', y', z')\).

Step 3. Modify \(h \) and \((x, y, z)\) still further to be well-adapted at \(\xi_{H^y} \) without destroying the well-adaptedness at \(P \) and \(\xi_{H^y} \).

The process of this step is almost identical to that of Step 2, and hence is left to the reader as an exercise.

We note that the requirement is met, since the original \((x, y, z)\) satisfies the property and since we only modify \(z \) by adding the elements in \(k[[x, y]] \) throughout the process.

This finishes the proof of (1).

(2) We only give a proof for the case where \(* = P \), since the proof for the case where \(* = \xi_{H^x} \) is identical.

Take \(h \) which is well-adapted at \(P \) with respect to \((x, y, z)\), with the property that the idealistic filtration \(\mathcal{R}_P \) is \(\left\{ \frac{\partial^{\mu}}{\partial z} \mid \mu \in \mathbb{Z}_{\geq 0} \right\} \)-saturated.

We set
\[
H(P) := \min \left\{ \max \left\{ \frac{\text{ord}_P(h|Z')}{p^e} \mid h', (x', y', z'), Z' = \{ z' = 0 \} \right\}, \mu(P) \right\}
\]
where, computing the above “max”, we let \(h' \) and \((x', y', z')\) vary among all such pairs consisting of the unique element in an LGS and a regular system of parameters that satisfy the condition

\[h' \equiv z^{p^e} \mod m_P^{e+1}. \]

It suffices to show

\[\text{Slope}_{h, (x, y, z)}(P) = H(P), \]

since the number \(H(P) \) is obviously independent of the choice of \(h \) and \((x, y, z)\).

Observe

\[\text{Slope}_{h, (x, y, z)}(P) = \min \left\{ \frac{\text{ord}_P(a_{p^e})}{p^e}, \mu(P) \right\} \leq H(P), \]

since

\[\frac{\text{ord}_P(h|Z)}{p^e} = \frac{\text{ord}_P(a_{p^e})}{p^e} \]

and since \(h \) and \((x, y, z)\) form such a pair consisting of the unique element in an LGS and a regular system of parameters that satisfy the condition \(h \equiv z^{p^e} \mod m_P^{e+1} \).

Now we prove the inequality in the opposite direction

\[\text{Slope}_{h, (x, y, z)}(P) = \min \left\{ \frac{\text{ord}_P(a_{p^e})}{p^e}, \mu(P) \right\} \geq H(P). \]

If \(\text{Slope}_{h, (x, y, z)}(P) = \mu(P) \), then the above inequality obviously holds. Therefore, we may assume that \(\text{Slope}_{h, (x, y, z)}(P) = \frac{\text{ord}_P(a_{p^e})}{p^e} < \mu(P) \) and that \(\text{In}_P(a_{p^e}) \) is not a \(p^e \)-th power.

Take an arbitrary pair \(h' \) and \((x', y', z')\) described as above.

We claim that

\[\frac{\text{ord}_P(h'|Z')}{p^e} = \frac{\text{ord}_P(h|Z)}{p^e} \leq \frac{\text{ord}_P(h|Z)}{p^e} = \frac{\text{ord}_P(a_{p^e})}{p^e} < \mu(P), \]

which implies the required inequality.

Let

\[h' = \sum_{b \geq 0} c_B H^B = \sum_{b \geq 0} c_B h^b \]

be the power series expansion of \(h' \) with respect to the LGS \(\mathbb{Y} = \{ h \} \) and \((x, y, z)\).

Since

\[h' \equiv z^{p^e} \equiv c \cdot z^{p^e} \mod m^{p^e+1} \]

for some \(c \in k^\times \), we conclude

\[h' = \sum_{b > 0} c_B h^b + c_0 = u \cdot h + c_0 \]

for some unit in \(\mathcal{O}_{W,P} \).

Moreover, by the coefficient lemma (cf. the remark at the end of (3) in §4.4), we have \((c_0, p^e) \in \mathcal{R}_P\). This implies that \((\mathbb{M}_u)^{p^e}|c_0\) and hence that

\[\frac{\text{ord}_P(c_0|Z)}{p^e} \geq \frac{\text{ord}_P(c_0)}{p^e} \geq \mu(P). \]

Therefore, it suffices to prove

\[\frac{\text{ord}_P(h'|Z')}{p^e} \leq \frac{\text{ord}_P(h|Z)}{p^e} \left(= \frac{\text{ord}_P(a_{p^e})}{p^e} < \mu(P) \right). \]

(Then \(\frac{\text{ord}_P(h|Z)}{p^e} = \frac{\text{ord}_P((u+|Z|)}{p^e} \leq \frac{\text{ord}_P((u+h+c_0))_{Z'}}{p^e} = \frac{\text{ord}_P(h'|Z|)}{p^e} \).
Now by the Weierstrass Preparation Theorem, we have
\[z' = v \cdot (z + w) \] for some unit \(v \in \mathcal{O}_W \) and \(w \in k[[x, y]] \).

Since \(\mathcal{Z}' = \{ z' = 0 \} = \{ z + w = 0 \} \), by replacing \(z' \) with \(z + w \), we may assume that \(z' \) is of the form
\[z' = z + w \] i.e., \(z = z' - w \) with \(w \in k[[x, y]] \).

Plug this into
\[h = z^{p^e} + a_1 z^{p^e - 1} + a_2 z^{p^e - 2} + \cdots + a_{p^e - 1} z + a_{p^e} \]
to obtain
\[h = z^{p^e} + a'_1 z^{p^e - 1} + a'_2 z^{p^e - 2} + \cdots + a'_{p^e - 1} z' + a'_{p^e} \]
with
\[a'_i \in k[[x, y]] \] for \(i = 1, \ldots, p^e - 1, p^e \)
where
\[a'_{p^e} = (-w)^{p^e} + a_1 (-w)^{p^e - 1} + a_2 (-w)^{p^e - 2} + \cdots + a_{p^e - 1} (-w) + a_{p^e} \].

Observe that, since (cf. (3) in SITUATION)
\[(M_u)^i | a_i \] for \(i = 1, \ldots, p^e - 1, p^e \),
we have
\[\frac{\text{ord}_P(a_i)}{i} \geq \text{ord}_P(M_u) = \mu(P) > \frac{\text{ord}_P(a_{p^e})}{p^e} \] for \(i = 1, \ldots, p^e - 1, p^e \).

Case : \(\text{ord}_P(w) > \frac{\text{ord}_P(a_{p^e})}{p^e} \). In this case, we have
\[\frac{\text{ord}_P(h|z)}{p^e} = \frac{\text{ord}_P(a'_{p^e})}{p^e} = \frac{\text{ord}_P(a_{p^e})}{p^e} = \frac{\text{ord}_P(h|z)}{p^e} \].

Case : \(\frac{\text{ord}_P(a_{p^e})}{p^e} \). In this case, since \(\text{In}_P(a_{p^e}) \) is not a \(p^e \)-th power, we observe that
\[\text{In}_P(a'_{p^e}) = \text{In}_P((-w)^{p^e}) - \text{In}_P(a_{p^e}) \neq 0 \]
and
\[\frac{\text{ord}_P(h|z')}{p^e} = \frac{\text{ord}_P(a'_{p^e})}{p^e} = \frac{\text{ord}_P(a_{p^e})}{p^e} = \frac{\text{ord}_P(h|z)}{p^e} \].

Case : \(\frac{\text{ord}_P(a_{p^e})}{p^e} \). In this case, we have
\[\frac{\text{ord}_P(h|z')}{p^e} = \frac{\text{ord}_P(a'_{p^e})}{p^e} = \frac{\text{ord}_P((-w)^{p^e})}{p^e} = \text{ord}_P(w) < \frac{\text{ord}_P(a_{p^e})}{p^e} = \frac{\text{ord}_P(h|z)}{p^e} \].

Therefore, in all the cases above, we have
\[\frac{\text{ord}_P(h|z')}{p^e} \leq \frac{\text{ord}_P(h|z)}{p^e} \].

This completes the proof of Proposition 5.
On the other hand, for Question 5, the invariant h is independent of the choice of h and (x,y,z).

Definition 7 (Invariant “H”). We define the invariant H by the following formula

$$H(*) := \text{Slope}_{h,(x,y,z)}(*)$$

where h is well-adapted at $* = P, \xi_{H_x}$, or ξ_{H_y} with respect to (x,y,z). By Proposition 5, the invariant H is independent of the choice of h and (x,y,z).

Definition 8 (the tight monomial). We define the tight monomial M_t by the formula

$$M_t = x^{h_x} y^{h_y} \text{ where } h_x = H(\xi_{H_x}), h_y = H(\xi_{H_y}).$$

Recall that the usual monomial M_u is defined by the formula

$$M_u = x^{\alpha/a} y^{\beta/a} \text{ where } \alpha/a = \mu(\xi_{H_x}), \beta/a = \mu(\xi_{H_y}).$$

Note that we have $M_t \mid M_u$, since $0 \leq h_x \leq \mu(\xi_{H_x})$ & $0 \leq h_y \leq \mu(\xi_{H_y})$ by definition.

5.3. Description of the procedure (in the case $\tau = 1$).

Analysis of the support Supp(R) at P

First we analyze the support Supp(R) of the idealistic filtration R of i.f.g. type at P.

Proposition 6. We have the following description of the support Supp(R) at P, denoted by Supp(R)$_P$, according to the values of $h_x = H(\xi_{H_x})$ and $h_y = H(\xi_{H_y})$:

$$\text{Supp}(R)_P = \begin{cases}
V(z,x) \cup V(z,y) & \text{if } h_x \geq 1 \text{ and } h_y \geq 1 \\
V(z,x) & \text{if } h_x \geq 1 \text{ and } h_y < 1 \\
V(z,y) & \text{if } h_x < 1 \text{ and } h_y \geq 1 \\
V(z,x,y) = P & \text{if } h_x < 1 \text{ and } h_y < 1,
\end{cases}$$

where “V” denotes the vanishing locus and where (x,y,z) is a regular system of parameters at P with respect to which h is well-adapted simultaneously at P, ξ_{H_x}, and ξ_{H_y}.

Proof. Note first that, since $(M,a) = (x^{\alpha} y^{\beta}, a) \in R_P$ with $a \in \mathbb{Z}_{>0}$, we have

$$\text{Supp}(R)_P \subset \{x = 0\} \cup \{y = 0\} = H_x \cup H_y.$$

Then the asserted description is a consequence of the following analysis of Supp(R)$_P \cap H_x$ (and that of Supp(R)$_P \cap H_y$, which is identical and hence omitted).

Case: $h_x \geq 1$.

In this case, we have:

- $(h,p^e) \in R_P$ with $h = z^{p^e} + a_1 z^{p^e - 1} + \cdots + a_{p^e - 1} z + a_{p^e}$ being well-adapted both at P and ξ_{H_x},
- $x \mid a_i$ for $i = 0, \ldots, p^e - 1$, since $\alpha/a \geq h_x \geq 1$ and since $M_a \mid a_i$ for $i = 0, \ldots, p^e - 1$,
- $x \mid a_{p^e}$, since $h_x \geq 1$,
- $h = 0$ on Supp(R)$_P$,

which imply:

- $z = 0$ on Supp(R)$_P \cap H_x$.

Therefore, we conclude

$$\text{Supp}(R)_P \cap H_x \subset V(z,x).$$

On the other hand, for $Q \in V(z,x)$, we have
\begin{itemize}
 \item \(\text{ord}_Q(a_i) \geq \text{ord}_Q((M_u)^i) \geq \alpha/a \cdot i \geq i \) for \(i = 0, \ldots, p^e - 1\), since \(M_u|a_i\) for \(i = 0, \ldots, p^e - 1\) and since \(\alpha/a \geq h_x \geq 1\),
 \item \(\text{ord}_Q(a_{p^e}) \geq h_x \cdot p^e \geq p^e\), since \(h_x \geq 1\),
\end{itemize}

which imply
\begin{itemize}
 \item \(\text{ord}_Q(h) \geq p^e\).
\end{itemize}

Therefore, for any \((f, \lambda) \in R_P\) with \(f = \sum c_i h^i\) being the power series expansion with respect to the LGS \(H = \{(h, p^e)\}\), we have
\[
 \text{ord}_Q(f) \geq \lambda
\]

since
\begin{itemize}
 \item \(\text{ord}_Q(c_i) \geq \text{ord}_Q((M_u)^{\lambda - p^e \cdot l}) \geq \alpha/a \cdot (\lambda - p^e \cdot l) \geq \lambda - p^e \cdot l\) for \(l\) with \(\lambda - p^e \cdot l \geq 0\), which follows from the coefficient lemma (cf. [14]. See also the remark at the end of SITUATION in §4.4.).
\end{itemize}

Therefore, we conclude
\[
 \text{Supp}(R)_P \cap H_x \supset V(z, x),
\]
and hence
\[
 \text{Supp}(R)_P \cap H_x = V(z, x).
\]

Case : 1 > h_x > 0.

In this case, we have
\begin{itemize}
 \item \((h, p^e) \in R_P\) with \(h = z^{p^e} + a_1 z^{p^e - 1} + \cdots + a_{p^e - 1} z + a_{p^e}\) being well-adapted both at \(P\) and \(\xi H_x\),
 \item \(x|a_i\) for \(i = 0, \ldots, p^e - 1\), since \(\alpha/a \geq h_x > 0\) and since \(M_u|a_i\) for \(i = 0, \ldots, p^e - 1\),
 \item \(x|a_{p^e}\), since \(h_x > 0\),
 \item \(h = 0\) on \(\text{Supp}(R)_P\),
\end{itemize}

which imply
\begin{itemize}
 \item \(z = 0\) on \(\text{Supp}(R)_P \cap H_x\).
\end{itemize}

On the other hand, we have \(1 > h_x = \frac{r}{p^e}\) where \(r = \text{ord}_{\xi H_x}(a_{p^e})\) by the case assumption, and hence
\[
 a_{p^e} = x^r \cdot \gamma(x, y)
\]

where \(\gamma(x, y)\) is not divisible by \(x\). Therefore, we conclude
\[
 \text{Supp}(R)_P \cap H_x \subset V(z, x) \cap \{\gamma(x, y) = 0\} = V(z, x, y),
\]
and hence
\[
 \text{Supp}(R)_P \cap H_x = V(z, x, y) = P.
\]

Case : h_x = 0.

Subcase: \(\alpha/a = \mu(\xi H_a) = 0\).

In this subcase, we have \(\beta/a = \mu(\xi H_y) \geq 1\). Therefore, we conclude
\[
 \text{Supp}(R)_P \cap H_x \subset V(z, x, y)
\]
and hence
\[
 \text{Supp}(R)_P \cap H_x = V(z, x, y) = P.
\]

Subcase: \(\alpha/a = \mu(\xi H_a) > 0\).
In this subcase, we have

- $x|a_i$ for $i = 0, \ldots, p^e - 1$, since $\alpha/a > 0$ and since $M_i|a_i$ for $i = 0, \ldots, p^e - 1$.

Set $a_{p^e} = g(y) + x \cdot \omega(x, y)$. Then $g(y) \neq 0$ and $g(y) = \text{In}_{H_x} (a_{p^e})$ is not a p^e-th power, since h is well-adapted at ξ_{H_x}. We also observe that, for $Q \in \text{Supp}(R) \cap H_x$, we have

$$p^e \leq \text{ord}_Q(h) \leq \text{ord}_Q(h|_{H_x}) = \text{ord}_Q(z_{p^e} + g(y)).$$

Therefore, there exists $e' < e$ such that

$$\frac{\partial^{p^e}}{\partial y^{p^e}}(z_{p^e} + g(y)) = \frac{\partial^{p^e}}{\partial y^{p^e}}g(y) \neq 0$$

and that

$$\text{ord}_Q \left(\frac{\partial^{p^e}}{\partial y^{p^e}}g(y) \right) \geq p^e - p^{e'} > 0.$$

This implies $y = 0$ at Q. Therefore, we conclude

$$\text{Supp}(R) \cap H_x \subset V(z, x, y),$$

and hence

$$\text{Supp}(R) \cap H_x = V(z, x, y) = P.$$

This completes the proof of Proposition 6.

\[\square\]

Description of the procedure for resolution of singularities

Now based upon the analysis of the support $\text{Supp}(R)_P$, we give the following (local) description of the procedure (around the point P) for resolution of singularities in the monomial case with $\tau = 1$:

Step 1. Check if $\dim \text{Sing}(R)_P = 1$. If yes, then blow up the 1-dimensional components one by one. If there are two 1-dimensional components meeting at P, then we blow up the one associated to the boundary divisor with bigger μ first. If the boundary divisors associated to the two 1-dimensional components have the same μ, then we blow up the one associated to the boundary divisor created later in the history first. Since the invariant μ strictly decreases under this procedure, this step comes to an end after finitely many times with the dimension of the singular locus dropping to 0.

Step 2. Once $\dim \text{Sing}(R) = 0$, blow up the isolated point in the singular locus.

Step 3. Go back to Step 1.

Repeat these steps.

(We note that, as long as the value of the invariant σ remains the same, we stay in the monomial case during the procedure above. We also note that in the middle of the procedure the invariant σ may drop. If that happens, we are no longer in the monomial case. In that case, we go through the mechanism described in §4.2 with the reduced new value of σ to reach the new monomial case.)

What remains to show is that the above procedure terminates after finitely many repetitions. This termination of the procedure is the main subject of §5.4.
5.4. Termination of the procedure (in the case $\tau = 1$).

Notion of a good/bad point (and of a good/bad hypersurface)

In order to analyze the termination of the procedure, we introduce the following notion of the point P being “good” or “bad” and the boundary divisor H_x (or H_y) being “good” or “bad”.

Definition 9 ("good/bad" point (cf. [4])). We say

\[
\begin{cases}
 P \text{ is a good point} & \iff H(P) = \mu(P) \\
 P \text{ is a bad point} & \iff H(P) < \mu(P).
\end{cases}
\]

Similarly, we say

\[
\begin{cases}
 H_x \text{ is a good hypersurface} & \iff H(\xi_{H_x}) = \mu(\xi_{H_x}) \\
 H_x \text{ is a bad hypersurface} & \iff H(\xi_{H_x}) < \mu(\xi_{H_x}),
\end{cases}
\]

where ξ_{H_x} is the generic point of the hypersurface H_x.

The notion of H_y being a good or bad hypersurface is defined in an identical manner.

Lemma 4. Let $W \leftarrow \widetilde{W}$ be the blow up with center P, E_P the exceptional divisor, \mathcal{R} the transformation of the idealistic filtration of i.f.g. type \mathcal{R}. Then

\[
\begin{cases}
 P \text{ is a good point} & \iff E_P \text{ is a good hypersurface} \\
 P \text{ is a bad point} & \iff E_P \text{ is a bad hypersurface}.
\end{cases}
\]

Proof. Take h and a regular system of parameters as described in [SITUATION]. We may further assume that h is well-adapted at P (cf. Proposition 5). Take a point $\tilde{P} \in \pi^{-1}(P) \cap \text{Supp}(\mathcal{R}) \subset \widetilde{W}$. Since the singular locus is empty over the z-chart, \tilde{P} should be either in the x-chart or in the y-chart. Say, \tilde{P} is in the x-chart with a regular system of parameters $(\tilde{x}, \tilde{y}, \tilde{z}) = (x, y/x - c, z/x)$ for some $c \in k$.

We also assume that the invariant σ stays the same, and hence that (\tilde{h}, p^c) is the unique element in the LGS at \tilde{P} where

\[
\tilde{h} = \pi^*(h)/x^{p^c} = \tilde{z}^{p^c} + \tilde{a}_1 \tilde{z}^{p^c-1} + \cdots + \tilde{a}_{p^c} \text{ with } \tilde{a}_i = \pi^*(a_i)/x^i \in k[[\tilde{x}, \tilde{y}]].
\]

We compute

\[
\text{Slope}_{\tilde{h}, (\tilde{x}, \tilde{y}, \tilde{z})}(\xi_{E_P}) = \min \left\{ \frac{\text{ord}_P(a_{p^c})}{p^c}, \mu(\xi_{E_P}) \right\} = \min \left\{ \frac{\text{ord}_P(a_{p^c})}{p^c} - 1, \mu(P) - 1 \right\} = \min \left\{ \frac{\text{ord}_P(a_{p^c})}{p^c}, \mu(P) \right\} - 1 = H(P) - 1.
\]

Case: P is a good point, i.e., $H(P) = \mu(P)$.

In this case, we have

\[
\text{Slope}_{\tilde{h}, (\tilde{x}, \tilde{y}, \tilde{z})}(\xi_{E_P}) = H(P) - 1 = \mu(P) - 1 = \mu(\xi_{E_P}).
\]

Therefore, we conclude that E_P is a good hypersurface (with \tilde{h} well-adapted and $H(\xi_{E_P}) = \mu(\xi_{E_P})$).

Case: P is a bad point, i.e., $H(P) < \mu(P)$.

In this case, we have

\[
\text{Slope}_{\tilde{h}, (\tilde{x}, \tilde{y}, \tilde{z})}(\xi_{E_P}) = H(P) - 1 < \mu(P) - 1 = \mu(\xi_{E_P}).
\]
Therefore, in order to see that E_p is a bad hypersurface, i.e., $H(\xi_{E_p}) < \mu(\xi_{E_p})$, we have only to show that \tilde{h} is well-adapted with respect to $(\tilde{x}, \tilde{y}, \tilde{z})$, i.e., $\text{In}_{\xi_{E_p}}(\tilde{a}_{p^e})$ is not a p^e-th power.

Set $a_{p^e} = \sum_{k+l \geq d} c_{kl} x^k y^l$ where $d = \text{ord}_P(a_{p^e})$. Then

$$\pi^*(a_{p^e}) = \sum_{k+l \geq d} c_{kl} x^{k+l} (y/x)^l$$

$$= x^d \left\{ \sum_{k+l = d} c_{kl} (y/x)^l + x \cdot \Omega(x, y/x) \right\}$$

$$= x^d \left\{ \phi(y/x) + x \cdot \Omega(x, y/x) \right\} \text{ where } \phi(T) = \sum_{k+l = d} c_{kl} T^l.$$

Hence, we have

$$\tilde{a}_{p^e} = \pi^*(a_{p^e})/x^{p^e}$$

$$= x^{d-p^e} \left\{ \phi(y/x - c + c) + x \cdot \Omega(x, y/x - c + c) \right\}$$

$$= \tilde{x}^{d-p^e} \left\{ \phi(y + c) + \tilde{x} \cdot \Omega(\tilde{x}, \tilde{y} + c) \right\}.$$

Therefore, we conclude

$$\text{In}_P(a_{p^e}) = \sum_{k+l = d} c_{kl} x^k y^l = x^d \phi(y/x) \text{ is a } p^e\text{-th power}$$

$$\iff p^e|d \text{ and } \phi(T) \text{ is a } p^e\text{-th power}$$

$$\iff \text{In}_{\xi_{E_p}}(\tilde{a}_{p^e}) = \tilde{x}^{d-p^e} \phi(y + c) \text{ is a } p^e\text{-th power.}$$

Now since P is a bad point in this case, $\text{In}_P(a_{p^e})$ is not a p^e-th power. Therefore, by the above equivalence, $\text{In}_{\xi_{E_p}}(\tilde{a}_{p^e})$ is not a p^e-th power, either.

This completes the proof of Lemma 4. \hfill \Box

Remark 8. (1) The above proof is slightly sloppy in the sense that, after blow up, we may end up having $\text{ord}_{\tilde{P}}(\tilde{a}_{p^e}) = p^e$ and $\text{In}_{\tilde{P}}(\tilde{a}_{p^e}) = c \tilde{x}^{p^e}$ for some $c \in k^\times$, even under the condition $\tilde{P} \in \pi^{-1}(P) \cap \text{Supp}(\tilde{R}) \subset \tilde{W}$ and the assumption that the invariant σ stays the same. Then we would have to replace $(\tilde{x}, \tilde{y}, \tilde{z})$ with $(\tilde{x}, \tilde{y}, \tilde{z}') = \tilde{z} + c^{1/p^e} \tilde{x}$ to guarantee condition (1) in \textbf{SITUATION}. Accordingly, we have to analyze \tilde{a}_{p^e}'. It is straightforward, however, to see that the same statement holds for \tilde{a}_{p^e}'. The details are left to the reader as an exercise.

(2) As will be clear in the presentation that follows, especially in the way we classify the configurations and we define the new invariant “\text{inv}_{\text{MON}}”, the focus of our proof centers around the analysis looking at whether the hypersurface of our concern is good/bad. The notion of a point being good/bad, though related to our analysis via Lemma 4, is somewhat auxiliary.

Configurations

Looking at the boundary divisor(s) in E_{young} at the point $P \in \text{Sing}(\tilde{R})$ and seeing whether they are good or bad, we come up with the following classification of the “configurations”. Note that the pictures depict the configurations in a 2-dimensional manner, taking the intersection with the hypersurface $Z = \{z = 0\}.$
1. The point P is only on one boundary divisor (in E_{young}), say H_x, which is good.

2. The point P is at the intersection of two boundary divisors (in E_{young}), both of which are good.

3. The point P is only on one boundary divisor (in E_{young}), say H_x, which is bad.

4. The point P is at the intersection of two boundary divisors (in E_{young}), one of which, say, H_x, is bad, the other, say H_y, good.
The point P is at the intersection of two boundary divisors (in E_{young}), say H_x and H_y, both of which are bad.

![Diagram showing the intersection of two boundary divisors H_x and H_y at point P, with P being bad.]

Basic strategy to show termination of the process

After the blow up $W \xrightarrow{\pi} \widetilde{W}$ specified by the procedure described in 5.3, we show that, at $\tilde{P} \in \pi^{-1}(P) \in \widetilde{W}$, one of the following holds:

- $\tilde{P} \notin \text{supp}(\tilde{R})$, i.e., $\text{supp}(\tilde{R}) = \emptyset$ in a neighborhood of \tilde{P},
- the invariant σ drops,
- or

we have $\text{inv}_{\text{MON}}(P) > \text{inv}_{\text{MON}}(\tilde{P})$, where “$\text{inv}_{\text{MON}}(P)$” is a new invariant, which we introduce below, attached to the point P in any one of the configurations ① through ⑤.

Since the invariant “inv_{MON}” can not decrease infinitely many times, the procedure described in §5.3 terminates either with $\tilde{P} \notin \text{supp}(\tilde{R})$ or with the drop of the invariant σ after finitely many repetitions.

Definition 10 (Invariant “inv_{MON}”). We define the invariant “$\text{inv}_{\text{MON}}(P)$” associated to the point P in each of the configurations ① through ⑤ (cf. Configurations) as follows (Note that “MON” is short for “MONOMIAL”):

\[
\text{inv}_{\text{MON}}(P) = \begin{cases}
(0, 0, \mu_x) & \text{in configuration ①}, \\
(0, 0, \min\{\mu_x, \mu_y\}, \max\{\mu_x, \mu_y\}) & \text{in configuration ②}, \\
(\rho_x, 0, \mu_x) & \text{in configuration ③}, \\
(\min\{\rho_x, \mu_x\}, \max\{\rho_x, \mu_x\}) & \text{in configuration ④}, \\
(\min\{\rho_x, \rho_y\}, \max\{\rho_x, \rho_y\}) & \text{in configuration ⑤},
\end{cases}
\]

where $\mu_x = \mu(\xi_{H_x}), \mu_y = \mu(\xi_{H_y})$ and the invariant ρ is defined as below to determine ρ_x, ρ_y.

Proposition 7. Let P be the point in configuration ③, ④, or ⑤, and let H_x be a bad boundary divisor (in E_{young}). Suppose h is well-adapted at ξ_{H_x} with respect to (x, y, z) (satisfying condition (3) in [SITUATION]). Write

\[a_p^e = x^r \{ g(y) + x \cdot \omega(x, y) \} \] where $r = \text{ord}_{\xi_{H_x}}(a_p^e)$.

Set

\[\rho_{h,(x,y,z),H_x}(P) = \frac{\text{res-ord}_{\xi_{H_x}}(\text{ord}_{\xi_{H_x}}(a_{p^e})) - \text{ord}_{\xi_{H_x}}(a_{p^e})}{p^{r-1}} \]

or

\[\rho_{h,(x,y,z),H_x}(P) = \frac{\text{res-ord}_{\xi_{H_x}}(x^r g(y)) - r}{p^{r-1}},\]
i.e.,

\[\rho_{h,(x,y,z),H_x}(P) = \begin{cases} \text{ord}_P (g(y))/p^e & \text{in case } r \not\equiv 0 \mod p^e \\ \text{res-ord}_P (g(y))/p^e & \text{in case } r \equiv 0 \mod p^e, \end{cases} \]

where \(\text{res-ord}_P \) is the smallest degree of the term which appears with nonzero coefficient and which is not a \(p^e \)-th power.

Then \(\rho_{h,(x,y,z),H_x}(P) \) is independent of the choice of \(h \) and \((x, y, z) \).

Proof. Note first that \(r = H(\xi_{H_x}) \cdot p^e \) is independent of the choice of \(h \) and \((x, y, z) \) by Proposition 5 (2).

We set

\[\rho_x = \max \left\{ \frac{\text{ord}_P \left(\left\{ h'|z' \cdot x'^{-r} \right\} |z' \cap H_{x'} \right) }{p^e} \mid \begin{array}{l} h', (x', y', z'), Z' = \{ z' = 0 \}, \\
H_{x'} = \{ x' = 0 \} = H_x \end{array} \right\}, \]

where, computing the above “max”, we let \(h' \) and \((x', y', z') \) vary among all such pairs consisting of the unique element and a regular system of parameters that satisfy the condition

\[\begin{cases} h' \equiv z'^p \mod m^{p+1}, \text{ and} \\
\text{ord}_{\xi_{H_x}}(h'|z') = \text{ord}_{\xi_{H_x}}(h'|z') = r. \end{cases} \]

It suffices to show that

\[\rho_{h,(x,y,z),H_x} = \rho_x, \]

as the number \(\rho_x \) is obviously independent of the choice of \(h \) and \((x, y, z) \).

Firstly we claim that the inequality

\[\rho_{h,(x,y,z),H_x} \leq \rho_x \]

holds. Note that \(h \) and \((x, y, z) \) form such a pair satisfying the above conditions, since \(h \) is well-adapted at \(\xi_{H_x} \) with respect to \((x, y, z) \).
Case : \(r \not\equiv 0 \mod p^e \).
In this case, we have
\[
\rho_{h,(x,y,z),H_x} = \frac{\ord_P(g(y))}{p^e} = \frac{\ord_P \left(\{(h|x)|x^{-r}\}_{x \in H_x} \right)}{p^e} \leq \rho_x
\]
by the definition of \(\rho_x \) above taking the maximum among all such pairs.

Case : \(r \equiv 0 \mod p^e \).
In this case, we modify \(z \) in the following way.
Set \(g(y) = \sum_{n \geq 0} b_n y^n \) with \(b_n \in k \). Consider \(x^r \left\{ \sum_{n < \ord_{\resord_p(g(y))}} b_n y^n \right\} \), which is a \(p^e \)-th power by the case assumption \(r \equiv 0 \mod p^e \) and by the definition of \(\resord_p(g(y)) \). That is to say, \(x^r \left\{ \sum_{n < \ord_{\resord_p(g(y))}} b_n y^n \right\} = w^{p^e} \) for some \(w \in k[x, y] \). Then set \(z' = z + w \), i.e., \(z = z' - w \).
Plug this into
\[
h = z^{p^e} + a_1 z^{p^e-1} + a_2 z^{p^e-2} + \cdots + a_{p^e-1} z + a_{p^e}
\]
to obtain
\[
h = z^{p^e} + a'_1 z^{p^e-1} + a'_2 z^{p^e-2} + \cdots + a'_{p^e-1} z' + a'_{p^e}
\]
with
\[
a'_i \in k[x, y] \text{ for } i = 1, \ldots, p^e - 1, p^e
\]
where
\[
a'_{p^e} = (-w)^{p^e} + a_1 (-w)^{p^e-1} + a_2 (-w)^{p^e-2} + \cdots + a_{p^e}.
\]
Observe that, since \(\text{(cf. (3) in SITUATION)} \)
\[
(M_u)^i | a_i \text{ for } i = 1, \ldots, p^e - 1,
\]
we have
\[
\frac{\ord_{\xi_{H_x}}(a_i)}{i} \geq \ord_{\xi_{H_x}}(M_u) = \mu(\xi_{H_x}) > \frac{\ord_{\xi_{H_x}}(a_{p^e})}{p^e} = \frac{r}{p^e} \text{ for } i = 1, \ldots, p^e - 1,
\]
where the second strict inequality follows from the assumption that \(H_x \) is a bad boundary divisor.

Hence, we observe that \(a'_{p^e} \) is of the following form
\[
a'_{p^e} = x^r \left\{ g'(y) + x \cdot \omega'(x, y) \right\}
\]
where
\[
g'(y) = g(y) - w^{p^e} \cdot x^{-r} = \sum_{n \geq \ord_{\resord_p(g(y))}} b_n y^n.
\]
Therefore, we conclude that
\[
\rho_{h,(x,y,z),H_x} = \frac{\resord_{\resord_p(g(y))}}{p^e} = \frac{\ord_P(g(y))}{p^e} = \frac{\ord_P \left(\{(h|x)|x^{-r}\}_{x \in H_x} \right)}{p^e} \leq \rho_x.
\]
Secondly we prove the inequality in the opposite direction
\[
\rho_{h,(x,y,z),H_x} \geq \rho_x
\]
holds.
Take an arbitrary pair of \(h' \) and \((x', y', z') \), described as in the definition of \(\rho_x \) computing the “max”.
We claim that
\[\rho_{h,(x,y,z),H_x} \geq \frac{\text{ord}_P \left(\left(\frac{h'_{|Z'}}{z'} \right) \cdot x^{-r} \right) \mid_{Z' \cap H_{x'}} }{p^e} \]
which implies the required inequality.

Let
\[h' = \sum c_B H^B = \sum_{b \in \mathbb{Z}_{>0}} c_b h^b \]
be the power series expansion of \(h' \) with respect to the LGS \(\mathbb{H} = \{ h \} \) and \((x,y,z) \).

Since
\[h' \equiv z^{p^e} \equiv c \cdot z^{p^e} \mod m^{p^e+1} \quad \text{for some } c \in k^\times, \]
we conclude
\[h' = \sum_{b \geq 0} c_b h^b + c_0 = u \cdot h + c_0 \quad \text{for some unit in } \mathcal{O}_{W,P}. \]

Moreover, by the coefficient lemma (cf. the remark at the end of (3) in §4.4), we have \((c_0, p^e) \in \mathcal{R}\). This implies that \((\mathbb{M}_u)^{p^e} | c_0\) and hence that \(\frac{\text{ord}_{\mathbb{H}(\mathbb{M}_u)^{p^e}}(c_0)}{p^e} \geq \mu(\xi_{H_x}) > \frac{1}{p^e}\). Hence we have
\[\left\{ (c_0 | Z') \cdot x^{-r} \right\} \mid_{Z' \cap H_{x'}} = \left\{ (c_0 | Z') \cdot x^{-r} \right\} \mid_{Z' \cap H_{x}} = 0, \]
which implies
\[\text{ord}_P \left(\left(\frac{h'_{|Z'}}{z'} \right) \cdot x^{-r} \right) \mid_{Z' \cap H_{x'}} \]
\[= \frac{\text{ord}_P \left(\left(\frac{h'_{|Z'}}{z'} \right) \cdot x^{-r} \right) \mid_{Z' \cap H_{x}} }{p^e} \]
Therefore, it suffices to prove
\[\rho_{h,(x,y,z),H_x} \geq \frac{\text{ord}_P \left(\left(\frac{h'_{|Z'}}{z'} \right) \cdot x^{-r} \right) \mid_{Z' \cap H_{x}} }{p^e}. \]

Now by the Weierstrass Preparation Theorem, we have
\[z' = v \cdot (z + w) \quad \text{for some unit } v \in \mathcal{O}_{W,P} \quad \text{and } w \in k[[x,y]]. \]

Since \(Z' = \{ z' = 0 \} = \{ z + w = 0 \} \), by replacing \(z' \) with \(z + w \), we may assume that \(z' \) is of the form
\[z' = z + w \quad \text{i.e., } z = z' - w \quad \text{with } w \in k[[x,y]]. \]

Plug this into
\[h = z^{p^e} + a_1 z^{p^e-1} + a_2 z^{p^e-2} + \cdots + a_{p^e-1} z + a_{p^e} \]
to obtain
\[h = z^{p^e} + a'_1 z^{p^e-1} + a'_2 z^{p^e-2} + \cdots + a'_{p^e-1} z' + a'_{p^e} \]
with
\[a'_i \in k[[x,y]] \quad \text{for } i = 1, \ldots, p^e - 1, p^e \]
where
\[a'_{p^e} = (-w)^{p^e} + a_1 (-w)^{p^e-1} + a_2 (-w)^{p^e-2} + \cdots + a_{p^e}. \]

Observe that, since (cf. (3) in §4.3)
\[(\mathbb{M}_u)^i | a_i \quad \text{for } i = 1, \ldots, p^e - 1, \]
we have
\[
\frac{\text{ord}_{\xi_{H_z}}(a_i)}{i} \geq \text{ord}_{\xi_{H_z}}(M_a) = \mu(\xi_{H_z}) > \frac{\text{ord}_{\xi_{H_z}}(a_{p^r})}{p^r} = \frac{r}{p^r} \text{ for } i = 1, \ldots, p^r - 1.
\]
We claim that
\[
\text{ord}_{\xi_{H_z}}(w) \geq \frac{r}{p^r}.
\]
In fact, suppose \(\text{ord}_{\xi_{H_z}}(w) < \frac{r}{p^r}\). Then using the above observation we would have
\[
\text{ord}_{\xi_{H_z}}(h|z') = \text{ord}_{\xi_{H_z}}(a'_{p^r}) = \text{ord}_{\xi_{H_z}}((-w)^{p^r}) < r.
\]
By the equation \(h' = u \cdot h + c_0\) and by the inequality \(\text{ord}_{\xi_{H_z}}(c_0|z') > r\), this would also imply
\[
\text{ord}_{\xi_{H_z}}(h'|z') = \text{ord}_{\xi_{H_z}}(h|z') < r,
\]
which is against the choice of \(h'\) and \((x', y', z')\) that we started with, regarding the definition of \(\rho_x\).

Now we are at the stage to finish the argument to prove the inequality
\[
\rho_{h,(x,y,z),H_z} \geq \frac{\text{ord}_P(\{(h|z') \cdot x^{-r}\})}{p^r} z' \cap H_z.
\]

Case : \(r \neq 0 \text{ mod } p^r\).
In this case, the claimed inequality \(\text{ord}_{\xi_{H_z}}(w) \geq \frac{r}{p^r}\) implies the strict inequality \(\text{ord}_{\xi_{H_z}}(w) > \frac{r}{p^r}\), since \(\text{ord}_{\xi_{H_z}}(w)\) is an integer. Together with the observation, we conclude that
\[
\text{In}_{\xi_{H_z}}(a'_{p^r}) = \text{In}_{\xi_{H_z}}(a_{p^r}) = x^r g(y),
\]
and hence that
\[
\rho_{h,(x,y,z),H_z} = \frac{\text{ord}_P(g(y))}{p^r} = \frac{\text{ord}_P(\{(h|z') \cdot x^{-r}\})}{p^r} z' \cap H_z.
\]

Case : \(r \equiv 0 \text{ mod } p^r\).
In this case, set
\[
w = x^{p^r} \{h(y) + x \cdot \theta(x, y)\} \text{ with } h(y) \in k[[y]], \theta(x, y) \in k[[x, y]].
\]
Together with the observation, we conclude that
\[
\text{In}_{\xi_{H_z}}(a'_{p^r}) = \text{In}_{\xi_{H_z}}(a_{p^r}) - x^r h(y)^{p^r} = x^r \left\{ g(y) - h(y)^{p^r} \right\},
\]
and hence that
\[
\rho_{h,(x,y,z),H_z} = \frac{\text{res-ord}_P(g(y))}{p^r} \geq \frac{\text{ord}_P(g(y) - h(y)^{p^r})}{p^r} = \frac{\text{ord}_P(\{(h|z') \cdot x^{-r}\})}{p^r} z' \cap H_z.
\]

This completes the proof of Proposition 7.

\[\Box\]

Definition 11 (Invariant “\(\rho\)”). *Let the situation be as described in Proposition 7. We define the invariant \(\rho\) of \(H_x\) at \(P\), denoted by \(\rho_x\), by the formula
\[
\rho_x = \rho_{h,(x,y,z),H_z}(P).
\]
Invariant \(\rho_y\) is defined in an identical manner, in case \(H_y\) is a bad boundary divisor (in \(E_{\text{young}}\)) passing through \(P\) in configuration \(\circ\).*
Study of the behavior of the invariants under blow up

Case: blow up with 1-dimensional center

Claim 1. Let \(W \xrightarrow{\rho} \widetilde{W} \) be the blow up with center being a 1-dimensional component \(C = V(z, x) \) of \(\text{Sing}(R) \) (cf. Proposition 6), and \(R \) the transformation of the idealistic filtration \(\mathcal{R} \) of i.f.g. type. Then there is possibly only one point \(\tilde{P} \in \text{Supp}(\mathcal{R}) \cap \pi^{-1}(P) \subset \widetilde{W} \), lying in the x-chart, with the regular system of parameters \((\tilde{x}, \tilde{y}, \tilde{z}) = (x, y, z/x)\). The behavior of the invariants under blow up is described as follows (in case the invariant \(\sigma \) does not drop):

\[
\begin{align*}
\mu_{\tilde{x}} &= \mu_x - 1 \\
\mu_{\tilde{y}} &= \mu_y \\
h_{\tilde{x}} &= h_x - 1 \\
h_{\tilde{y}} &= h_y \\
\rho_{\tilde{x}} &= \rho_x \quad \text{(in case \(H_x \) is bad)} \\
\rho_{\tilde{y}} &= \rho_y - 1 \quad \text{(in case \(H_y \) is bad)}
\end{align*}
\]

Proof. Write down

\[
h = z^{p^s} + a_1 z^{p^s-1} + a_2 z^{p^s-2} + \cdots + a_{p^s-1} z + a_{p^s}
\]

with

\[
a_i \in k[[x, y]] \text{ and } \text{ord}_P(a_i) > i \text{ for } i = 1, \ldots, p^s,
\]

as described in SITUATION. We may assume further that \(h \) is well-adapted at \(P, \xi_{H_x} \), and \(\xi_{H_y} \) simultaneously with respect to \((x, y, z)\) (cf. Proposition 5).

It is straightforward to see that, if a point \(\tilde{P} \in \pi^{-1}(P) \subset \widetilde{W} \) lies in the z-chart, then \(\text{ord}_P(h) < p^s \), where \(\tilde{h} = \frac{\pi^*(h)}{z} \), and hence \(\tilde{P} \notin \text{Supp}(\mathcal{R}) \). Therefore, there is possibly only one point \(\tilde{P} \in \text{Supp}(\mathcal{R}) \cap \pi^{-1}(P) \subset \widetilde{W} \), lying in the x-chart, with the regular system of parameters \((\tilde{x}, \tilde{y}, \tilde{z}) = (x, y, z/x)\).

With respect to this regular system of parameters, we compute the transform of the monomial \((x^\alpha y^\beta, a)\) to be \((\widetilde{x}^{\alpha - a} \widetilde{y}^\beta, a)\). Therefore, we conclude

\[
\begin{align*}
\mu_{\tilde{x}} &= \mu_x - 1, \\
\mu_{\tilde{y}} &= \mu_y.
\end{align*}
\]

Set

\[
a_{p^s} = x^r \{g(y) + x \cdot \omega(x, y)\}
\]

with

\[
r = \text{ord}_{\xi_{H_x}}(a_{p^s}) \text{ and } 0 \neq g(y) \in k[[y]], \omega(x, y) \in k[[x, y]].
\]

After blow up, we compute

\[
\tilde{h} = \frac{\pi^*(h)}{z} = \tilde{z}^{p^s} + \tilde{a}_1 \tilde{z}^{p^s-1} + \tilde{a}_2 \tilde{z}^{p^s-2} + \cdots + \tilde{a}_{p^s-1} \tilde{z} + \tilde{a}_{p^s}
\]

with

\[
\tilde{a}_i = \frac{\pi^*(a_i)}{x^i} \text{ for } i = 1, \ldots, p^s.
\]

In particular, we have

\[
\tilde{a}_{p^s} = \frac{\pi^*(a_{p^s})}{x^{p^s}} = x^{r-p^s} \{g(y) + x \cdot \omega(x, y)\} = \tilde{x}^{r-p^s} \{g(\tilde{y}) + \tilde{x} \cdot \omega(\tilde{x}, \tilde{y})\}.
\]
(Note that we have \(r \geq p^e \), since \(h_x = \frac{1}{p^e} \geq 1 \). (cf. Proposition 6)) Therefore, we compute

\[
\text{Slope}_{h,(\tilde{x},\tilde{y},\tilde{z})}(\xi H_x) = \min \left\{ \frac{\text{ord}_{h_x}(a_{p^e})}{p^e}, \mu(\xi H_x) \right\}
\]

\[
= \min \left\{ \frac{r}{p^e}, \mu \right\}
\]

\[
= \min \left\{ \frac{\text{ord}_{H_x}(a_{p^e})}{p^e} - 1, \mu_x - 1 \right\}
\]

\[
= \min \left\{ \frac{\text{ord}_{H_x}(a_{p^e})}{p^e}, \mu_x \right\} - 1
\]

\[
= \text{Slope}_{h,(x,y,z)}(\xi H_x) - 1.
\]

Hence, if \(\text{Slope}_{h,(x,y,z)}(\xi H_x) = \mu(\xi H_x) \), then \(\text{Slope}_{h,(\tilde{x},\tilde{y},\tilde{z})}(\xi H_x) = \mu(\xi H_x) - 1 = \mu(\xi H_x) \). If \(\text{Slope}_{h,(x,y,z)}(\xi H_x) < \mu(\xi H_x) \), then \(\text{Slope}_{h,(\tilde{x},\tilde{y},\tilde{z})}(\xi H_x) = \text{Slope}_{h,(x,y,z)}(\xi H_x) - 1 < \mu(\xi H_x) - 1 = \mu(\xi H_x) \) and \(\text{In}_{\xi H_x}(a_{p^e}) = \tilde{x}^{r-p^e} g(y) \) is not a \(p^e \)-th power, since \(\text{In}_{\xi H_x}(a_{p^e}) = x^r g(y) \) is not a \(p^e \)-th power.

Therefore, \(\tilde{h} \) is well-adapted at \(\xi H_x \) with respect to \((\tilde{x}, \tilde{y}, \tilde{z})\).

Therefore, we conclude

\[
h_{\tilde{z}} = \text{Slope}_{h,(\tilde{x},\tilde{y},\tilde{z})}(\xi H_x) = \text{Slope}_{h,(x,y,z)}(\xi H_x) - 1 = h_x - 1.
\]

In case \(H_x \) is bad, i.e., \(h_x < \mu_x \), so is \(H_{\tilde{z}} \) since \(h_{\tilde{z}} = h_x - 1 < \mu_x - 1 = \mu_{\tilde{z}} \).

Moreover, we compute

\[
\rho_{\tilde{z}} = \rho_{h,(\tilde{x},\tilde{y},\tilde{z}),H_x}(P) - \rho_x
\]

\[
= \begin{cases}
\text{ord}_P(g(y))/p^e & \text{in case } r - p^e \not\equiv 0 \mod p^e \\
\text{res-ord}_P(g(y))/p^e & \text{in case } r - p^e \equiv 0 \mod p^e
\end{cases}
\]

\[
= \begin{cases}
\text{ord}_P(g(y))/p^e & \text{in case } r \not\equiv 0 \mod p^e \\
\text{res-ord}_P(g(y))/p^e & \text{in case } r \equiv 0 \mod p^e
\end{cases}
\]

\[
= \rho_{h,(x,y,z),H_x}(P)
\]

\[
= \rho_x.
\]

In summary, we have

\[
\begin{cases}
h_{\tilde{z}} = h_x - 1, \\
\rho_{\tilde{z}} = \rho_x
\end{cases}
\]

The proof for the formulas

\[
\begin{cases}
h_{\tilde{y}} = h_y, \\
\rho_{\tilde{y}} = \rho_y - 1
\end{cases}
\]

is similar, and left to the reader as an exercise.

\[\square\]

Remark 9. The above proof is slightly sloppy in the sense that, after blow up, we may end up having \(\text{ord}_P(\tilde{a}_{p^e}) = p^e \) and \(\text{In}_P(\tilde{a}_{p^e}) = c\tilde{x}^{p^e} \) for some \(c \in k^x \), even under the condition \(P \in \pi^{-1}(P) \cap \text{Supp}(\bar{R}) \subset \bar{W} \) and the assumption that the invariant \(\sigma \) stays the same. Then we have to replace \((\tilde{x}, \tilde{y}, \tilde{z})\) with \((\tilde{x}, \tilde{y}, \tilde{z}' = \tilde{z} + c^{1/p^e} \tilde{x})\) to guarantee condition (1) in [SITUATION]. Accordingly, we have to analyze \(\tilde{a}_{p^e}'\). It is straightforward, however, to see that the same calculations hold with \(\tilde{a}_{p^e}'\). The details are left to the reader as an exercise.

Case: blow up with 0-dimensional center
Claim 2. Let \(W \xrightarrow{\pi} \tilde{W} \) be the blow up with a 0-dimensional center \(C = P = V(z,x,y) \in \text{Sing}(\mathcal{R}) \) (cf. Proposition 6), and \(\mathcal{R} \) the transformation of the idealistic filtration \(\mathcal{R} \) of i.f.g. type. Set \(Z = \{z = 0\} \). Then a point \(\tilde{P} \in \text{Supp}(\mathcal{R}) \cap \pi^{-1}(P) \subset \tilde{W} \) must be on the strict transform \(Z' \) of \(Z \), lying either in the \(x \)-chart or in the \(y \)-chart. Assume that the invariant \(\sigma \) stays the same, i.e., \(\sigma(P) = \sigma(\tilde{P}) \). We make the following three observations regarding the behavior of the invariants under blow up. (We denote the strict transforms of \(H_x \) and \(H_y \) by \(H'_x \) and \(H'_y \), the exceptional divisor by \(E_P \). Note that the pictures depict the configurations in a 2-dimensional manner, taking the intersection with the hypersurface \(Z \) before blow up and with its strict transform \(Z' \) after blow up.):

1. The point \(P \) is in case \(3 \), \(4 \) or \(5 \).
 1.1 Suppose \(h_x < 1 \). Look at the point \(\tilde{P} = E_P \cap H'_x \cap Z' \) in the \(y \)-chart with a regular system of parameters \((\tilde{x}, \tilde{y}, \tilde{z}) = (x/y, y, z/y)\). Then the hypersurface \(H'_x = H_x \) is bad, and we have
 \[\rho_x > \rho_{\tilde{x}}. \]
 1.2 Suppose \(P \) is bad, and hence \(E_P \) is also bad (cf. Lemma 4). Look at a point \(\tilde{P} \in (E_P \setminus H'_y) \cap Z' \) in the \(x \)-chart with a regular system of parameters \((\tilde{x} = e, \tilde{y}, \tilde{z}) = (x/y - c, y, z/y)\) for some \(c \in k \). Then we have
 \[\rho_x \geq \rho_e. \]

\[\begin{array}{cc}
H_x & H_y \\
\text{bad} & \text{}
\end{array} \]

\[\begin{array}{ccc}
P & \uparrow & E_P \\
\text{bad} & \text{bad}_{(1,2)}
\end{array} \]

(2) The point \(P \) is in case \(4 \). Suppose \(P \) is bad, and hence \(E_P \) is also bad (cf. Lemma 4). Look at a point \(\tilde{P} \in (E_P \setminus H'_y) \cap Z' \) with a regular system of parameters \((\tilde{x}, \tilde{y} = e, \tilde{z}) = (x/y - c, y, z/y)\) for some \(c \in k \). Then we have
\[
\mu_x > \rho_e.
\]
(3) The point P is in case 5. Suppose P is good. Then we have

$$\rho_x > \mu_y \text{ and } \rho_y > \mu_x.$$

Look at the point $\tilde{P} = E_P \cap H'_x \cap Z'$ in the y-chart with a regular system of parameters $(\tilde{x}, \tilde{y}, \tilde{z}) = (x/y, y, z/y)$. Since $\mu_\tilde{z} = \mu_x$, we have as a consequence

$$\rho_y > \mu_\tilde{z}.$$

We draw a similar conclusion looking at the point $E_P \cap H'_y \cap Z'$ in the x-chart.
Proof. (1) (1.1) Take
\[h = z^{p^r} + a_1 z^{p^{r-1}} + a_2 z^{p^{r-2}} + \cdots + a_{p^r-1} z + a_{p^r} \]
which is well-adapted at \(\xi_{H_z} \) with respect to \((x, y, z)\) (cf. Proposition 5). Set
\[a_{p^r} = x^r \{ g(y) + x \cdot \omega(x, y) \} . \]

Then we have
\[h_x = H(\xi_{H_z}) = \text{Slope}_{h_x(x, y, z)}(\xi_{H_z}) = \frac{\text{ord}_{\xi_{H_z}}(a_{p^r})}{p^e} = \frac{r}{p^r} < \mu(\xi_{H_z}) . \]

Since \(h_x < 1 \) by assumption, we have \(r < p^e \). We compute
\[
\begin{align*}
\tilde{a}_{p^r} &= \frac{a_{p^r}}{p^r} \\
&= \frac{h}{y^{p^r}} \left\{ g(\tilde{y}) + x \tilde{y} \cdot \omega(\tilde{x}, \tilde{y}) \right\} \\
&= \tilde{x} \left(g(\tilde{y}) + x \cdot \omega(\tilde{x}, \tilde{y}) \right) \\
&\quad \text{where } g(\tilde{y}) = \tilde{y}^{-p^r} \cdot g(\tilde{y}) \text{ and } \omega(\tilde{x}, \tilde{y}) = \tilde{y}^{-p^r+1} \cdot \omega(\tilde{x}, \tilde{y}).
\end{align*}
\]

We observe that \(\tilde{h} = \frac{h}{y^{p^r}} \) is well-adapted at \(\xi_{H_z} \) with respect to \((\tilde{x}, \tilde{y}, \tilde{z})\), since
\[
\text{Slope}_{\tilde{h}_{(x, y, z)}}(\xi_{H_z}) = \frac{r}{p^e} < \mu(\xi_{H_z}) = \mu(\xi_{H_z})
\]
and since
\[
\text{In}_{\xi_{H_z}}(\tilde{a}_{p^r}) = \tilde{x}^{-1} g(\tilde{y}) = \tilde{x}^{-1} \tilde{y}^{p^r} g(\tilde{y})
\]
is not a \(p^r \)-th power, a fact which follows easily from the fact that \(\text{In}_{\xi_{H_z}}(a_{p^r}) = x^r g(y) \) is not a \(p^e \)-th power. Therefore, we conclude that
\[
\rho_x = \rho_{h_{(x, y, z)}, H_z}(P) = \left\{ \begin{array}{ll}
\text{ord}_P(g(y))/p^e & \text{in case } r \equiv 0 \pmod{p^e} \\
\text{res-ord}_P(g(y))/p^e & \text{in case } r \equiv 0 \pmod{p^e}
\end{array} \right.
\]

(Not e that, even under the condition \(\tilde{P} \in \pi^{-1}(P) \cap \text{Supp}(\tilde{K}) \subset \tilde{W} \) and the assumption that the invariant \(\sigma \) stays the same, there is a possibility that we may end up having \(\text{ord}_{\tilde{P}}(\tilde{a}_{p^r}) = p^e \) and \(\text{In}_{\tilde{P}}(\tilde{a}_{p^r}) = c \tilde{y}^{p^r} \) for some \(c \in k^n \). In this case, we necessarily have \(r = 0 \).) Then we have to replace \((\tilde{x}, \tilde{y}, \tilde{z})\) with \((\tilde{x}, \tilde{y}, \tilde{z}' = \tilde{z} + c^{1/p^r} \tilde{y})\) to guarantee condition (1) in \(\text{SITUATION} \). Accordingly, we have to analyze \(a_{p^r}' \). It is straightforward, however, to see that the same calculations hold with \(a_{p^r}' \).

(1.2) Take
\[h = z^d + a_1 z^{d-1} + a_2 z^{d-2} + \cdots + a_{d-1} z + a_d \]
which is well-adapted at \(P \) and \(\xi_{H_z} \) simultaneously with respect to \((x, y, z)\) (cf. Proposition 5). Set
\[
\begin{align*}
a_{p^r} &= \sum_{k+l \geq d} c_{kl} x^k y^l + d = \text{ord}_P(a_{p^r}) > p^e \\
&= x^r \{ g(y) + x \cdot \omega(x, y) \} \quad \text{with } r = \text{ord}_{\xi_{H_z}}(a_{p^r}).
\end{align*}
\]
Then we compute
\[
\pi^*(a_{p^r}) = \sum_{k+l=d} c_{kl} x^{k+l}(y/x)^l
\]
and hence
\[
\tilde{a}_{p^r} = \pi^*(a_{p^r})/x^{p^r}
\]
\[
= x^{d-p^r} \{ \phi(y/x-c+c) + x \cdot \Omega(x,y/x-c+c) \}
\]
\[
= \tilde{x}^{d-p^r} \{ \phi(y+c) + \tilde{x} \cdot \tilde{\Omega}(\tilde{x}, \tilde{y}+c) \}
\]
Moreover, just as in the analysis of the “Case: \(P \) is a bad point” in Lemma 4, we see that \(h \) is well-adapted at \(\xi_{E_P} \) with respect to \((\tilde{x}, \tilde{y}, \tilde{z})\), since
\[
\text{Slope}_{\tilde{h}, (\tilde{x}, \tilde{y}, \tilde{z})}(\xi_{H_2}) = \frac{\text{ord}_{\xi_{H_2}}(\tilde{a}_{p^r})}{p^e} = \frac{d-p^r}{p^e} = \frac{\text{ord}_P(a_{p^r})}{p^e} - 1
\]
Since \(P \) is bad and since \(\text{In}_{\xi_{H_2}}(\tilde{a}_{p^r}) = \tilde{x}^{d-p^r} \phi(\tilde{y}+c) \) is not a \(p^e \)-th power, which is obvious if \(d \neq 0 \mod p^e \) and which follows from the fact \(\text{In}_P(a_{p^r}) = \sum_{k+l=d} c_{kl} x^{k+l} \) is not a \(p^e \)-th power and hence \(\phi(T) = \sum_{k+l=d} c_{kl} \Omega \), is not a \(p^e \)-th power if \(d \equiv 0 \mod p^e \).
Therefore, we conclude
\[
\rho_{\tilde{a}_{p^r}}(\tilde{h}, (\tilde{x}, \tilde{y}, \tilde{z}), H_2) = \begin{cases}
\text{ord}_{\tilde{y}}(\phi(\tilde{y}+c))/p^e & \text{in case } r \neq 0 \mod p^e \\
\text{res-ord}_{\tilde{y}}(\phi(\tilde{y}+c))/p^e & \text{in case } r \equiv 0 \mod p^e
\end{cases}
\]
That is to say, we have
\[
(\ast) \quad \rho_{\epsilon} \leq \text{deg} \phi(y)/p^e.
\]
On the other hand, set
\[
M = \begin{cases}
\text{ord}_{\tilde{y}}(g(y)) & \text{in case } r \neq 0 \mod p^e \\
\text{res-ord}_{\tilde{y}}(g(y)) & \text{in case } r \equiv 0 \mod p^e
\end{cases}
\]
Then we conclude, for all those \((k,l)\) with \(k+l = d \) and \(c_{kl} \neq 0 \), that we have
\[
\begin{cases}
k+l = d \leq r+M, \text{ and } \\
k \geq r
\end{cases}
\]
and hence that
\[
l = d-k \leq d-r \leq (r+M)-r = M.
\]
This implies
\[
(\ast\ast) \quad \text{deg} \phi(y) = \text{deg} \left(\sum_{k+l=d} c_{kl} y^l \right) \leq M.
\]
From the inequalities (\(\ast \)) and (\(\ast\ast \)), we finally conclude
\[
\rho_{\epsilon} = M/p^e \geq \text{deg} \phi(y)/p^e \geq \rho_{\epsilon}.
\]
(Note that, even under the condition \(\tilde{P} \in \pi^{-1}(P) \cap \text{Supp}(\tilde{R}) \subset \tilde{W} \) and the assumption that the invariant \(\sigma \) stays the same, there is a possibility that we may end up having \(\text{ord}_{\tilde{P}}(\tilde{a}_{p^r}) = p^e \) and \(\text{In}_{\tilde{P}}(\tilde{a}_{p^r}) = c\tilde{x}^{p^e} \) for some \(c \in k^\times \). (In this case, we necessarily have \(r = 0 \).) Then we have to replace \((\tilde{x}, \tilde{y}, \tilde{z}) \) with \((\tilde{x}, \tilde{y}, \tilde{z}') = \tilde{z} + c^{1/p^e} \tilde{x} \) to guarantee condition (1) in [SITUATION]. Accordingly, we have to
analyze \tilde{a}_p^ℓ. It is straightforward, however, to see that the same calculations hold with a_p^ℓ.

(2) Take
\[h = z^{p^r} + a_1 z^{p^{r-1}} + a_2 z^{p^{r-2}} + \cdots + a_{p^r-1} z + a_{p^r} \]
which is well-adapted at P and ξ_{H_y} simultaneously with respect to (x, y, z) (cf. Proposition 5). Set
\[a_p^\ell = \sum_{k+l \geq d} c_{kl} x^k y^l \text{ with } d = \text{ord}_P(a_p^\ell). \]
Then we see
\[\frac{d}{p^e} = \frac{\text{ord}_P(a_p^\ell)}{p^e} < \mu(P) \text{ & } \text{In}_P(a_p^\ell) \text{ is not a } p^e\text{-th power,} \]
since P is bad and since h is well-adapted at P with respect to (x, y, z). Then we conclude, for all those (k, l) with $k + l = d$ and $c_{kl} \neq 0$, that we have
\[\frac{\alpha + \beta}{a} = \mu(P) > \frac{d}{p^e} = \frac{k + l}{p^e} = \frac{k}{p^e} + \frac{l}{p^e} \geq \frac{k}{p^e} + \frac{\beta}{a}, \]
since
\[\frac{l}{p^e} \geq \frac{\text{ord}_{\xi_{H_y}}(a_p^\ell)}{p^e} \geq \mu(\xi_{H_y}) = \frac{\beta}{a}, \]
where the second inequality follows from the assumption that H_y is good and that h is well-adapted at ξ_{H_y} with respect to (x, y, z). Therefore, we conclude
\[\mu_x = \mu(\xi_{H_y}) = \frac{\alpha}{a} > \frac{k}{p^e}. \]

On the other hand, we compute
\[\pi^*(a_p^\ell) = \sum_{k+l \geq d} c_{kl}(x/y)^k y^{k+l} = y^l \{ \sum_{k+l \geq d} c_{kl}(x/y)^k y \cdot \Omega(x/y, y) \} = y^l \{ \varphi(x/y) + y \cdot \Omega(x/y, y) \} \text{ where } \varphi(T) = \sum_{k+l = d} c_{kl} T^k, \]
and hence
\[\tilde{a}_p^\ell = \pi^*(a_p^\ell)/y^{p^e} = y^{d-p^e} \{ \varphi(x/y - c + c) + y \cdot \Omega(x/y - c + c, y) \} = \tilde{y} y^{d-p^e} \{ \varphi(x + c) + \tilde{y} \cdot \Omega(x + c, \tilde{y}) \}. \]
Moreover, just as in the analysis of the “Case: P is a bad point” in Lemma 4, we see that \tilde{h} is well-adapted at $\xi_{\tilde{E}_P}$ with respect to $(\tilde{x}, \tilde{y}, \tilde{z})$, since
\[\text{Slope}_{\tilde{h}, (\tilde{x}, \tilde{y}, \tilde{z})}(\xi_{H_y}) = \frac{\text{ord}_{H_y}(\tilde{a}_p^\ell)}{p^e} = \frac{d-p^e}{p^e} = \frac{\text{ord}_P(a_p^\ell)}{p^e} - 1 \]
\[\text{since } \tilde{P} \text{ is bad } \mu(P) - 1 = \mu(\xi_{H_y}), \]
and since $\text{In}_{\xi_{H_y}}(a_p^\ell) = \tilde{y}^{d-p^e} \varphi(x + c)$ is not a p^e-th power, which is obvious if $d \not\equiv 0 \mod p^e$ and which follows from the fact $\text{In}_P(a_p^\ell) = \sum_{k+l = d} c_{kl} x^k y^l$ is not a p^e-th power and hence $\varphi(T) = \sum_{k+l = d} c_{kl} T^k$ is not a p^e-th power if $d \equiv 0 \mod p^e$.

Therefore, we conclude

\[
\rho_y = e = \rho_{h, (x, \tilde{y}, \tilde{z}), H_{\tilde{y}}} = \begin{cases} \\
\text{ord}_x (\varphi(x + c))/p^e & \text{in case } r \neq 0 \mod p^e \\
\text{res-ord}_{\tilde{z}}(\varphi(\tilde{z} + c))/p^e & \text{in case } r \equiv 0 \mod p^e \\
\leq \text{deg} \varphi(\tilde{y} + c)/p^e = \text{deg} \varphi(y)/p^e = \text{deg}(\sum_{k+l=d} c_k T^k)/p^e \\
< \frac{\alpha}{\tilde{a}} = \mu_x.
\end{cases}
\]

(Note that, even under the condition \(\tilde{P} \in \pi^{-1}(P) \cap \text{Supp}(\tilde{\mathcal{R}}) \subset \tilde{W} \) and the assumption that the invariant \(\sigma \) stays the same, there is a possibility that we may end up having \(\text{ord}_p(a_{\varphi^e}) = p^e \) and \(\text{In}_P(a_{\varphi^e}) = c_{\tilde{y}^e}p^e \) for some \(c \in k^\times \). In this case, we necessarily have \(r = 0 \).) Then we have to replace \((\tilde{x}, \tilde{y}, \tilde{z})\) with \((\tilde{x}, \tilde{y}, \tilde{z}' = \tilde{z} + c_{1/p^e}\tilde{y})\) to guarantee condition (1) in [SITUATION]. Accordingly, we have to analyze \(a_{\varphi^e}' \). It is straightforward, however, to see that the same calculations hold with \(a_{\varphi^e}' \).

(3) Take

\[
h = z^{p^e} + a_1 z^{p^e-1} + a_2 z^{p^e-2} + \cdots + a_{p^e-1} z + a_{p^e}
\]

which is well-adapted at \(P \) and \(\xi_{H_x} \) simultaneously with respect to \((x, y, z)\) (cf. Proposition 5).

Set

\[
a_{p^e} = x^e \{ g(y) + x \cdot \omega(x, y) \}.
\]

Set

\[
M = \begin{cases} \\
\text{ord}_P (g(y)) & \text{in case } r \neq 0 \mod p^e \\
\text{res-ord}_P(a_{p^e}) (g(y)) & \text{in case } r \equiv 0 \mod p^e
\end{cases}
\]

so that

\[
\rho_x = \rho_{h, (x, y, z), H_x}(P) = \frac{M}{p^e}.
\]

Now we compute

\[
\frac{r+M}{p^e} \geq \frac{\text{ord}_P(a_{\varphi^e})}{p^e} \geq \mu(P) = \frac{\alpha + \beta}{\tilde{a}} = \mu(\xi_{H_x}) + \frac{\beta}{\tilde{a}} \geq H(\xi_{H_x}) + \frac{\beta}{\tilde{a}} = \frac{\alpha}{p^e} + \frac{\beta}{\tilde{a}}.
\]

Therefore, we conclude

\[
\rho_x = \frac{M}{p^e} > \frac{\beta}{\tilde{a}} = \mu(\xi_{H_x}) = \mu_y.
\]

The proof for the inequality \(\rho_y > \mu_x \) is identical.

This completes the proof of Claim 2.

\[\square \]

Theorem 1. Let \(P \in \text{Supp}(\mathcal{R}) \subseteq W \) be a point in the monomial case as described in [SITUATION]. Let \(W \cup \tilde{\mathcal{W}} \) be the blow up with center \(C \) specified by the procedure described in §5.3, and \(\tilde{\mathcal{R}} \) the transformation of the idealistic filtration \(\mathcal{R} \) of i.f.g. type. Then at \(\tilde{P} \in \pi^{-1}(P) \in \tilde{W} \), one of the following holds:

- \(\tilde{P} \notin \text{supp}(\tilde{\mathcal{R}}) \), i.e., \(\text{supp}(\tilde{\mathcal{R}}) = \emptyset \) in a neighborhood of \(\tilde{P} \),
- the invariant \(\sigma \) drops,

or
Case : dim $C = 1$.
In this case, by Claim 1, it is easy to see that P and \tilde{P} are in the same configuration and
\[\text{inv}_{\text{MON}}(P) > \text{inv}_{\text{MON}}(\tilde{P}). \]

Case : dim $C = 0$, i.e., $C = P$.

1. P is in configuration (1) or (2).
 In this case, since $P \in \text{Sing}(R)$ is isolated, we see by Proposition 6 that $\mu_x = h_x < 1$ (and $\mu_y = h_y < 1$ in configuration (2)). This implies $\mu_e < \mu_x$ ($\mu_e < \min\{\mu_x, \mu_y\}$ in configuration (2)). Moreover, it is easy to see that P is necessarily a good point, hence E_P is also good, and that \tilde{P} is also in configuration (1) or (2). Now it is straightforward to see
\[\text{inv}_{\text{MON}}(P) > \text{inv}_{\text{MON}}(\tilde{P}). \]

2. P is in configuration (3).
 (i) $\tilde{P} = (E_P \setminus H'_x \cap Z')$ with E_P being bad (and hence \tilde{P} is in configuration (3)).

 In this case, we have $\rho_x \geq \rho_e$ by Claim 2 (1.2), while $\mu_x > \mu_x - 1 = \mu_e$. Therefore, we conclude
\[\text{inv}_{\text{MON}}(P) = (\rho_x, 0, \mu_x) > (\rho_e, 0, \mu_e) = \text{inv}_{\text{MON}}(\tilde{P}). \]

 (ii) $\tilde{P} = E_P \cap H'_x \cap Z'$ with E_P being good (and hence \tilde{P} is in configuration (4)).

 In this case, we have $\rho_x > \rho_e$ by Claim 2 (1.1). Therefore, we conclude
\[\text{inv}_{\text{MON}}(P) = (\rho_x, 0, \mu_x) > (\min\{\rho_e, \rho_x\}, \max\{\rho_x, \rho_x\}) = \text{inv}_{\text{MON}}(\tilde{P}). \]

 (iii) $\tilde{P} = E_P \cap H'_x \cap Z'$ with E_P being bad (and hence \tilde{P} is in configuration (5)).

 In this case, we have $\rho_x > \rho_e$ by Claim 2 (1.1). Therefore, we conclude
\[\text{inv}_{\text{MON}}(P) = (\rho_x, 0, \mu_x) > (\min\{\rho_{\tilde{x}}, \rho_{\tilde{y}}\}, \max\{\rho_{\tilde{x}}, \rho_{\tilde{y}}\}) = \text{inv}_{\text{MON}}(\tilde{P}). \]

3. P is in configuration (4).
 (i) $\tilde{P} = (E_P \setminus (H'_x \cup H'_y)) \cap Z'$ with E_P being bad (and hence \tilde{P} is in configuration (3)).

 In this case, we have $\rho_x \geq \rho_e$ and $\mu_x > \mu_e (\geq 0)$ by Claim 2 (1.2) and (2). Therefore, we conclude
\[\text{inv}_{\text{MON}}(P) = (\min\{\rho_{\tilde{x}}, \rho_{\tilde{y}}\}, \max\{\rho_{\tilde{x}}, \rho_{\tilde{y}}\}) > (\rho_e, 0, \mu_e) = \text{inv}_{\text{MON}}(\tilde{P}). \]
Remark 10. The invariant \(\text{inv}_{\text{MON}} \) is only used to show effectively the termination of the procedure, while the choice of center is dictated by the study of the dimension of the singular locus (cf. Proposition 6 and the description of the procedure in 5.3). Actually all the existing algorithms, including the one in [4], use the analysis of the dimension of the singular locus for the choice of the center.

It would be desirable to have an invariant, as we do in characteristic zero, which satisfies the following properties:

1. it is upper semi-continuous,
2. its maximum locus determines the nonsingular center of blow up for constructing the sequence of transformations for resolution of singularities, and
3. it strictly drops after each blow up (over the center).

Such an invariant would not only show the termination effectively but also dictate the choice of the center.
A detailed discussion of a “global” version of our algorithm, as well as the search for an invariant mentioned in Remark 10, will be published elsewhere.

References

[1] Shreeram S. Abhyankar. Resolution of singularities of embedded algebraic surfaces. Pure and Applied Mathematics, Vol. 24. Academic Press, New York, 1966.

[2] Angélica Benito and Orlando Villamayor U. Monoidal transforms and invariants of singularities in positive characteristic. preprint, http://arxiv.org/abs/1004.1803, 2010.

[3] Angélica Benito and Orlando Villamayor U. On elimination of variables in the study of singularities in positive characteristic. preprint, http://arxiv.org/abs/1103.3462, 2011.

[4] Angélica Benito and Orlando Villamayor U. Techniques for the study of singularities with applications to resolution of 2-dimensional schemes. preprint, http://arxiv.org/abs/1103.3464, 2011.

[5] Vincent Cossart and Olivier Piltant. Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings. J. Algebra, 320(3):1051–1082, 2008.

[6] Vincent Cossart and Olivier Piltant. Resolution of singularities of threefolds in positive characteristic. II. J. Algebra, 321(7):1836–1976, 2009.

[7] Vincent Cossart, Uwe Jannsen and Shuji Saito. Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes. preprint, http://arxiv.org/abs/0905.2191, 2009.

[8] Steven Dale Cutkosky. Resolution of singularities for 3-folds in positive characteristic. Amer. J. Math., 131(1):59–127, 2009.

[9] Eberhard Freitag and Reinhardt Kiehl. Étale cohomology and the Weil conjecture. 3. Folge · Band 13 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1987.

[10] Herwig Hauser. Excellent surfaces and their taut resolution. In Resolution of singularities (Obergurgl, 1997), volume 181 of Progr. Math., pages 341–373. Birkhäuser, Basel, 2000.

[11] Herwig Hauser. On the problem of resolution of singularities in positive characteristic (or: a proof we are still waiting for). Bull. Amer. Math. Soc. (N.S.), 47(1):1–30, 2010.

[12] Heisuke Hironaka. Desingularization of excellent surfaces. In Resolution of surface singularities, volume 1101 of Lecture Notes in Mathematics, pages 99–132. Springer-Verlag, Berlin, 1984. (Lectures at Bowdoin on 1967. Noted by B.M. Bennett).

[13] Hiraku Kawanoue. Toward resolution of singularities over a field of positive characteristic Part I. Foundation; the language of the idealistic filtration. Publ. Res. Inst. Math. Sci., 43(3):819–909, 2007.

[14] Hiraku Kawanoue and Kenji Matsuki. Toward resolution of singularities over a field of positive characteristic (the idealistic filtration program) Part II. Basic invariants associated to the idealistic filtration and their properties. Publ. Res. Inst. Math. Sci., 46(2):359–422, 2010.

[15] T. T. Moh. On a stability theorem for local uniformization in characteristic p. Publ. Res. Inst. Math. Sci., 23(6):965–973, 1987.

[16] Jarosław Włodarczyk. Simple Hironaka resolution in characteristic zero. J. Amer. Math. Soc., 18(4):779–822 (electronic), 2005.

Hiraku Kawanoue, Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, E-mail address: kawanoue@kurims.kyoto-u.ac.jp

Kenji Matsuki, Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, E-mail address: kmatsuki@math.purdue.edu