A class of inequalities inducing new separability criteria for bipartite quantum systems

Paolo Aniello\(^1,2,3\) and Cosmo Lupo\(^1,2,4\)

\(^1\) Dipartimento di Scienze Fisiche dell’Università di Napoli ‘Federico II’, via Cintia I-80126 Napoli, Italy
\(^2\) INFN-Sezione di Napoli, via Cintia I-80126 Napoli, Italy
\(^3\) Facoltà di Scienze Biotecnologiche, Università di Napoli ‘Federico II’, Italy
\(^4\) Research Center for Quantum Information, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia

E-mail: aniello@na.infn.it and lupo@na.infn.it

Received 18 March 2008, in final form 4 July 2008
Published 28 July 2008
Online at stacks.iop.org/JPhysA/41/355303

Abstract

Inspired by the realignment or computable cross norm criterion, we present a new result about the characterization of quantum entanglement. Precisely, an interesting class of inequalities satisfied by all separable states of a bipartite quantum system is derived. These inequalities induce new separability criteria that generalize the realignment criterion.

PACS numbers: 03.67.-a, 03.67.Mn, 03.65.Db

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is a very peculiar and essential feature of quantum theory, as recognized since the early stages of development of the theory by Einstein, Podolsky and Rosen [1] and by Schrödinger [2, 3] (who introduced the German term ‘Verschränkung’ and translated it into English as ‘entanglement’). Recently, entanglement has been investigated with a renewed interest motivated by ideas and applications stemming from the field of quantum information science [4]. Indeed, nowadays quantum entanglement is regarded not only as a fundamental key for the interpretation of quantum mechanics but also as an important resource for quantum information, communication and computation tasks [5]. However, despite the great efforts made by the scientific community in the past few decades, there are still several open issues regarding the mathematical characterization of entangled quantum states: the study of bipartite entanglement is already a difficult, extensive and rapidly evolving subject, even in the case of quantum systems with a finite number of levels, and multipartite entanglement is still a rather obscure matter (see, for instance, the review papers [6, 7] and references therein).
the present paper, our discussion will be restricted to the case of bipartite systems with a finite number of levels.

According to the definition due to Werner [8], entangled (mixed) states differ from separable states since they cannot be prepared using only local operations and classical communication; hence, they may exhibit non-classical correlations. In mathematical terms, a mixed state $\hat{\rho}$ —a positive (trace class) operator of unit trace—in a composite Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ is called separable if it can be represented as a convex sum of product states (the sum converging with respect to the trace norm):

$$\hat{\rho} = \sum_i p_i \hat{\rho}_i^A \otimes \hat{\rho}_i^B,$$

with $p_i > 0$ and $\sum_i p_i = 1$; otherwise, $\hat{\rho}$ is said to be nonseparable or entangled. We remark that, if $\hat{\rho}$ is a separable state, decomposition (1)—a separability decomposition of the state $\hat{\rho}$—is in general not unique, and it can be assumed to be a finite sum if the Hilbert space \mathcal{H} is finite dimensional. The smallest number of terms in the sum (usually called cardinality of the separable state $\hat{\rho}$) is not larger than the squared dimension of the total Hilbert space of the system \mathcal{H} (see [9]).

Since quantum entanglement, as already mentioned, is a very important subject (also in view of its potential applications), separability criteria are extremely precious tools. As far as we know, separability criteria found so far fall into two classes: on one hand, criteria based on both necessary and sufficient conditions, but not practically implementable; on the other hand, criteria that are relatively easy to apply, but rely on only necessary, or only sufficient, conditions. Among necessary and sufficient criteria, we mention the ‘positive maps criterion’ [10], which leads to the ‘Peres–Horodecki criterion’ [10, 11] for 2×2 and 2×3 bipartite systems (in these special cases, we have an operational necessary and sufficient criterion) and the ‘contraction criterion’ [12]. Among necessary conditions for separability (or, equivalently, sufficient conditions for entanglement), it is worth mentioning the celebrated ‘PPT criterion’ [11] (which, in the special cases of 2×2 and 2×3 bipartite systems, is precisely the Peres–Horodecki necessary-sufficient criterion), the ‘reduction criterion’ [13, 14], the ‘majorization criterion’ [15], and the criterion that was proposed in [16] with the name of ‘realignment criterion’ (RC) and in [17] with the name of ‘computable cross norm criterion’, which will be central in the present paper.

In this paper, we reconsider the RC and, using essentially the same tools that allow us to prove this criterion, we obtain a new class of inequalities satisfied by all separable states of a bipartite quantum system. These inequalities potentially induce new separability criteria; i.e. a certain inequality produces a separability criterion if it makes sense to check it for a generic state and it is actually violated by some state. Every state that violates such an inequality is then nonseparable. Numerical calculations show that from the class of inequalities introduced in the present paper, one obtains, indeed, a wide new class of separability criteria. This class contains, in particular, the original RC and a powerful separability criterion which is the main result obtained in [18]. Other remarkable particular cases are given by the ‘enhancement by local filtering operations’ of the RC and of the criterion of [18]; see section 5. All the new criteria share with the RC the important property of being easily implementable, and one can check that at least some of them are independent of the original RC. In particular, it turns out—see section 5—that the criterion derived in [18] is stronger than the standard RC; i.e. all the entangled states that are detected by the RC are also detected by the criterion of [18], whereas there are entangled states that are detected by the latter criterion but not by the former one.
The paper is organized as follows. In section 2, the RC is reviewed starting from the Schmidt decomposition of pure states. In section 3, by an argument similar to the one that allows us to prove the RC, we derive the announced class of inequalities. As mentioned before, this class of inequalities induce new separability criteria; a few simple examples of entanglement detection are given in section 4. Finally, in section 5, conclusions are drawn.

2. From the Schmidt decomposition to the realignment criterion

The aim of the present section is to review some known facts about the realignment criterion (RC) for bipartite quantum systems. We will try, in particular, to highlight the relation between the Schmidt decomposition \[19\] of a bipartite (pure or mixed) state and the RC. This relation will be our starting point for establishing novel separability criteria related to the RC.

Let us consider a bipartite quantum system with carrier Hilbert space \(H = H_A \otimes H_B\), with \(H_A \cong \mathbb{C}^{N_A}\) and \(H_B \cong \mathbb{C}^{N_B}\), where we assume that \(2 \leq N_A, N_B < \infty\). We will fix in the ‘local Hilbert spaces’ \(H_A, H_B\) orthonormal bases \(\{|n\rangle\}_{n=1}^{N_A}\) and \(\{|\nu\rangle\}_{\nu=1}^{N_B}\), respectively (note that we use Latin indices for the subsystem \(A\) and Greek indices for the subsystem \(B\)). Then, a state vector \(|\psi\rangle \in H\) of the composite system can be written as

\[|\psi\rangle = \sum_{n,\nu} \psi_{n\nu} |n\rangle|\nu\rangle\]

(for notational conciseness, we will occasionally omit the tensor product symbol). It is clear that one can regard the components of the vector \(|\psi\rangle\) in the given basis as the entries of a \(N_A \times N_B\) matrix \(\psi\):

\[\psi \equiv [\psi_{n\nu}]\] \hspace{1cm} (2)

here, note that the Latin and the Greek indices play respectively the role of row and column indices of the matrix \(\psi\).

For instance, in the simplest case of a two-qubit system—i.e. \(H_A \cong H_B \cong \mathbb{C}^2\)—with a state vector

\[|\psi\rangle = \psi_{11}|11\rangle + \psi_{12}|12\rangle + \psi_{21}|21\rangle + \psi_{22}|22\rangle \in H_A \otimes H_B\]

(3)
is associated a 2 \(\times\) 2 matrix

\[\psi = \begin{bmatrix} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22} \end{bmatrix}\]. \hspace{1cm} (4)

As is well known, a Schmidt decomposition (non-uniquely determined) of the state vector \(|\psi\rangle\) comes from a singular value decomposition (SVD) \[20\] of the matrix of coefficients (2):

\[\psi = U\Delta V = \sum_{m,\mu} U_{m\mu} \Delta_{m\mu} V_{\mu\nu}\]

(5)

where \(U\) and \(V\) are respectively \(N_A \times N_A\) and \(N_B \times N_B\) unitary matrices, while \(\Delta\) is a \(N_A \times N_B\) matrix with non-negative real entries and, precisely, with the only non-vanishing entries along the principal diagonal. Setting \(d \equiv \min\{N_A, N_B\}\), one can choose the unitary matrices \(U, V\) in such a way that the diagonal entries \(\delta_1, \delta_2, \ldots, \delta_d\) of \(\Delta\)—the ‘singular values’ of \(\psi\)—are arranged in a non-increasing order: \(\delta_1 \geq \delta_2 \geq \cdots \geq \delta_d\) (we will always follow this convention for the singular values). The SVD (5) allows us to write the state vector \(|\psi\rangle\) in the Schmidt canonical form:

\[|\psi\rangle = \sum_{k=1}^r \delta_k |\phi_k^A\rangle|\phi_k^B\rangle, \hspace{1cm} r := \max\{k \in \{1, \ldots, d\} : \delta_k > 0\}\]

(6)
Hence, considering the SVD (5) of the matrix ψ, and using the mixed product property of the Kronecker product of matrices (in order to avoid confusion with the tensor product \otimes of the subsystems A and B) and by M^* the complex conjugate of a matrix M (rather than the adjoint, which will be denoted by M^\dagger)—the following relation holds:

$$\rho^R_{\psi} = \psi \otimes \psi^*.$$

Hence, considering the SVD (5) of the matrix ψ, and using the mixed product property of the Kronecker product of matrices, we obtain the following SVD of the realigned matrix:

$$\rho^R_{\psi} = U\Lambda V^*,$$

where $\Lambda = \Delta \otimes \Delta$, $V = V \otimes V^*$, and using the mixed product property of the Kronecker product of matrices (in order to avoid confusion with the tensor product \otimes of the subsystems A and B) and by M^* the complex conjugate of a matrix M (rather than the adjoint, which will be denoted by M^\dagger)—the following relation holds:

$$\rho^R_{\psi} = \psi \otimes \psi^*.$$

Hence, considering the SVD (5) of the matrix ψ, and using the mixed product property of the Kronecker product of matrices, we obtain the following SVD of the realigned matrix:

$$\rho^R_{\psi} = U\Lambda V^*,$$

where $\Lambda = \Delta \otimes \Delta$, $V = V \otimes V^*$, and using the mixed product property of the Kronecker product of matrices (in order to avoid confusion with the tensor product \otimes of the subsystems A and B) and by M^* the complex conjugate of a matrix M (rather than the adjoint, which will be denoted by M^\dagger)—the following relation holds:

$$\rho^R_{\psi} = \psi \otimes \psi^*.$$
The corresponding realigned matrix is

\[\rho^R_\psi = \frac{1}{d} \sum_{h,k} \delta_h \delta_k \mathbf{1} \]

hence, if the singular values of the matrix \(\rho_\psi \) are \(\{\lambda_{(h,k)}\} \), where \((hk) \leftrightarrow (h-1) + k \). Note that the rank of the realigned matrix \(\rho^R_\psi \) is given by \(R = \text{rank}(\Delta \otimes \Delta) = \text{rank}(\Delta)^2 = \text{rank}(\psi)^2 = r^2 \). Moreover, denoted by \(\|\cdot\|_\text{tr} \) the trace norm, we have that

\[
\|\rho^R_\psi\|_\text{tr} := \text{tr}(\|\rho^R_\psi\|) = \text{tr}(\|\rho^R_\psi\|^2)
\]

\[
= \sum_{h,k=1}^d \lambda_{(h,k)} = \sum_{h,k=1}^d \delta_h \delta_k = 1 + \sum_{h \neq k} \delta_h \delta_k;
\]

(14)

thus, inequality (15) is saturated if and only if the pure state \(\hat{\rho}_\psi \) is separable.

\[\|\rho^R_\psi\|_\text{tr} = 1 \iff \|\rho^R_\psi\| = 1 \iff \|\psi\| = 1 \iff \|\bar{\psi}\| = 1. \]

(16)

For example, in the case of a two-qubit system, the density matrix \(\rho_\psi \) associated with the state vector (3) has the following form:

\[
\rho_\psi = \begin{bmatrix}
\psi_{11} \psi_{11}^* & \psi_{11} \psi_{12}^* & \psi_{11} \psi_{21}^* & \psi_{11} \psi_{22}^* \\
\psi_{12} \psi_{11}^* & \psi_{12} \psi_{12}^* & \psi_{12} \psi_{21}^* & \psi_{12} \psi_{22}^* \\
\psi_{21} \psi_{11}^* & \psi_{21} \psi_{12}^* & \psi_{21} \psi_{21}^* & \psi_{21} \psi_{22}^* \\
\psi_{22} \psi_{11}^* & \psi_{22} \psi_{12}^* & \psi_{22} \psi_{21}^* & \psi_{22} \psi_{22}^*
\end{bmatrix}.
\]

(17)

The corresponding realigned matrix is

\[
\rho^R_\psi = \begin{bmatrix}
\psi_{11} \psi_{11}^* & \psi_{11} \psi_{12}^* & \psi_{11} \psi_{21}^* & \psi_{11} \psi_{22}^* \\
\psi_{12} \psi_{11}^* & \psi_{12} \psi_{12}^* & \psi_{12} \psi_{21}^* & \psi_{12} \psi_{22}^* \\
\psi_{21} \psi_{11}^* & \psi_{21} \psi_{12}^* & \psi_{21} \psi_{21}^* & \psi_{21} \psi_{22}^* \\
\psi_{22} \psi_{11}^* & \psi_{22} \psi_{12}^* & \psi_{22} \psi_{21}^* & \psi_{22} \psi_{22}^*
\end{bmatrix} \equiv \begin{bmatrix}
\psi_{11} & \psi_{12} \\
\psi_{21} & \psi_{22}
\end{bmatrix} \otimes \begin{bmatrix}
\psi_{11}^* & \psi_{12}^* \\
\psi_{21}^* & \psi_{22}^*
\end{bmatrix} = \psi \otimes \bar{\psi}^*.
\]

(18)

Hence, if the singular values of the matrix \(\psi \) are \((\delta_1, \delta_2) \), the realigned matrix (18) has singular values \((\delta_1^2) \geqslant \delta_1 \delta_2 = \delta_1^2 \geqslant \delta_2^2 \). If the Schmidt rank of the state vector \(|\psi\rangle \) is \(r \), then the rank of the realigned matrix \(\rho^R_\psi \) is \(R = r^2 \in \{1, 4\} \). If \(\hat{\rho}_\psi \) is a separable pure state, then \(\rho^R_\psi \) has only one non-vanishing singular value, i.e. \(\{\lambda_{(h,k)}\} = (1, 0, 0, 0) \) and \(R = 1 \); moreover, \(\|\rho^R_\psi\|_\text{tr} = 1 \). If, otherwise, \(\hat{\rho}_\psi \) is entangled, then \(R = 4 \) and \(\|\rho^R_\psi\|_\text{tr} > 1 \); in particular, for a maximally entangled pure state, we have \(\{\lambda_{(h,k)}\} = (1/2, 1/2, 1/2, 1/2) \) and \(\|\rho^R_\psi\|_\text{tr} = 2 \).

Having established a relation between the separability of pure states and the singular values of the associated realigned matrices, we now proceed to extend this relation to a generic density operator in \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \).

The first step is to observe that the association of a realigned matrix with a density operator is a straightforward generalization of the association introduced for pure states. Let \(\hat{\rho} \) be a density operator in \(\mathcal{H}_A \otimes \mathcal{H}_B \) \(\hat{\rho} \geqslant 0, \text{tr}(\hat{\rho}) = 1 \) and let \(\rho \) denote the corresponding density matrix with respect to the fixed product basis \(\{|n\rangle\} \in \mathcal{H}_A \otimes \mathcal{H}_B \):

\[
\rho = [\rho_{(m\mu)(n\nu)} = \langle m | (| \mu \rangle \hat{\rho} | n \rangle | n \rangle].
\]

(19)
where \((m\mu) \leftrightarrow N_A(m-1) + \mu\) and \((n\nu) \leftrightarrow N_B(n-1) + \nu\). Then, as above, one can associate a \(N^2_A \times N^2_B\) realigned matrix \(\rho^R\) with the \(N_A N_B \times N_A N_B\) density matrix \(\rho\) in the following way:

\[
\rho^R_{(mn)(\mu\nu)} := \rho_{(m\mu)(n\nu)}.
\]

(20)

It is clear that the association \(\hat{A} \mapsto A^R\) (relative to the fixed product basis in \(\mathcal{H}_A \otimes \mathcal{H}_B\)) is actually well defined for any linear operator \(\hat{A}\) in \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B\).

For example, in the case of a two-qubit system, with a density matrix \(\rho\) and one can consider the Schmidt decomposition of a density operator \(\hat{\rho}\) in \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B\), regarded as a vector of \(\mathcal{H} \otimes \mathcal{H}\) with the realigned matrix \(\rho\), then, we have that

\[
\rho \rightarrow \hat{\rho} \rightarrow \rho^R.
\]

Indeed, let us denote by \(\hat{\mathcal{H}}, \hat{\mathcal{H}}_A\) and \(\hat{\mathcal{H}}_B\) the Hilbert spaces of linear operators in \(\mathcal{H}, \mathcal{H}_A\) and \(\mathcal{H}_B\), respectively, endowed with the Hilbert–Schmidt (HS) scalar product (we are dealing with finite-dimensional vector spaces). Then, we have that

\[
\hat{\mathcal{H}} = \hat{\mathcal{H}}_A \otimes \hat{\mathcal{H}}_B,
\]

(23)

and one can consider the Schmidt decomposition of a density operator \(\hat{\rho} \in \hat{\mathcal{H}}\) with respect to the tensor product decomposition (23). To this aim, let us fix a product (orthonormal) basis in the Hilbert space \(\hat{\mathcal{H}} = \hat{\mathcal{H}}_A \otimes \hat{\mathcal{H}}_B\). It will be convenient to choose the basis formed by the partial isometries:

\[
\hat{e}_{(mn)(\mu\nu)} \equiv \langle m|n\rangle \otimes \langle \mu|\nu\rangle, \quad |m\rangle\langle n| \in \hat{\mathcal{H}}_A, \quad |\mu\rangle\langle \nu| \in \hat{\mathcal{H}}_B,
\]

(24)

with \(m, n = 1, \ldots, N_A, \mu, \nu = 1, \ldots, N_B\). At this point, we can write

\[
\hat{\rho} = \sum_{m,n,\mu,\nu} c_{(mn)(\mu\nu)} \hat{e}_{(mn)(\mu\nu)}^\dagger,
\]

(25)

where the coefficients of the expansion (25) are given by

\[
c_{(mn)(\mu\nu)} = \langle \hat{e}_{(mn)(\mu\nu)}^\dagger, \hat{\rho}\rangle_{\hat{\mathcal{H}}} = \text{tr}(\hat{e}_{(mn)(\mu\nu)}^\dagger \hat{\rho})
\]

\[
= \text{tr}(\hat{e}_{(mn)(\nu\mu)} \hat{\rho})
\]

\[
= \langle m| \hat{\rho} |n\rangle \langle \nu| \mu\rangle = \rho_{(m\mu)(n\nu)}.
\]

(26)

Hence, recalling relation (20), we conclude that the matrix of coefficients \(c_{(mn)(\mu\nu)}\) coincides with the realigned matrix \(\rho^R\). We have thus obtained the following.

Proposition 2. For any density operator \(\hat{\rho} \in \hat{\mathcal{H}}\), the Schmidt coefficients of \(\hat{\rho}\), with respect to the tensor product decomposition \(\hat{\mathcal{H}}_A \otimes \hat{\mathcal{H}}_B\) of \(\hat{\mathcal{H}}\), coincide with the singular values of the associated realigned matrix \(\rho^R\).

It this clear that this result extends to all operators in \(\mathcal{H}\): for any linear operator \(\hat{A}\) in \(\mathcal{H}_A \otimes \mathcal{H}_B\)—regarded as a vector of \(\mathcal{H}_A \otimes \mathcal{H}_B\)—the Schmidt coefficients of \(\hat{A}\) coincide with the singular values of the realigned matrix \(A^R\). This fact will be used in section 3.
The last step is to extend the characterization of separable pure states in terms of the singular values of the associated realigned matrices to all states. Using proposition 2, one easily gets the RC. The RC provides a necessary condition for the separability of bipartite quantum states, which is known to be independent of the PPT criterion [16]. The RC relies on the evaluation of the trace norm of the realigned matrix ρ^R, which is equal to the sum of the singular values of ρ^R. We stress that, if $\hat{\rho}$ is a mixed (i.e. non-pure) state, then the SVD $\rho^R = U\Lambda V$, with singular values $(\lambda_k)_{k=1,\ldots,d^2}$, does not present the simple Kronecker product structure as in (13).

In order to obtain the RC, we argue as follows. Denoted by $\|\cdot\|_R$ the trace norm, we have

$$\|\rho^R\|_R := \text{tr}((\rho^R)^d) = \text{tr}((\rho^R)_{\frac{d}{2}}) = \sum_{k=1}^{d^2} \lambda_k. \label{eq:27}$$

Now, in the special case of a simply separable state $\hat{\rho} = \hat{\rho}^A \otimes \hat{\rho}^B$, we have that the Schmidt coefficients of $\hat{\rho}$ (equivalently, the singular values of ρ^R) are given by

$$(\lambda_1 = \|\hat{\rho}^A \otimes \hat{\rho}^B\|_{R_A}, \lambda_2 = 0, \ldots, \lambda_{d^2} = 0), \label{eq:28}$$

where we denote by $\|\cdot\|_{R_A}$ (alternatively, by $\|\cdot\|_{R_A}$ and $\|\cdot\|_{R_B}$) the HS norm in $\hat{\mathcal{H}}_A$ (respectively, in $\hat{\mathcal{H}}_A$ and $\hat{\mathcal{H}}_B$). Observe that the following relation holds:

$$\|\hat{\rho}^A \otimes \hat{\rho}^B\|_{R_A} = \|\hat{\rho}^A\|_{R_A} \|\hat{\rho}^B\|_{R_B} = \sqrt{\text{tr}(\hat{\rho}^A)^2} \sqrt{\text{tr}(\hat{\rho}^B)^2}; \label{eq:29}$$

hence,

$$\|\hat{\rho}^A \otimes \hat{\rho}^B\|_{\mathcal{H}_A} \leq 1, \quad \text{and} \quad \|\hat{\rho}^A \otimes \hat{\rho}^B\|_{\mathcal{H}_A} = 1 \Leftrightarrow \hat{\rho}^A, \hat{\rho}^B \text{ are pure states.} \label{eq:30}$$

Therefore, the Schmidt coefficients of $\hat{\rho}$ are characterized by the relations

$$(\lambda_1 \leq 1, \lambda_2 = \cdots = \lambda_{d^2} = 0, \quad \text{and} \quad \lambda_1 = 1 \Leftrightarrow \hat{\rho}^A, \hat{\rho}^B \text{ are pure states.} \label{eq:31}$$

From these relations, recalling formula (27), we get the following.

Proposition 3. If $\hat{\rho} \in \hat{\mathcal{H}}_A \otimes \hat{\mathcal{H}}_B$ is a simply separable state—$\hat{\rho} = \hat{\rho}^A \otimes \hat{\rho}^B$, $\hat{\rho}^A \in \hat{\mathcal{H}}_A$, $\hat{\rho}^B \in \hat{\mathcal{H}}_B$—then the associated realigned matrix ρ^R satisfies

$$\|\rho^R\|_R = \sum_{k=1}^{d^2} \lambda_k = \lambda_1 \leq 1. \label{eq:32}$$

Inequality (32) is saturated if and only if the simply separable state $\hat{\rho}$ is pure:

$$\|\rho^R\|_R = 1 \Leftrightarrow \hat{\rho} = \hat{\rho}^2. \label{eq:33}$$

Since separable states are convex superpositions of simply separable states, we can exploit proposition 3 in order to obtain a separability criterion. To this aim, it will be convenient to introduce the following notations. Denoted by $\mathcal{M}(N_1, N_2)$ the vector space of $N_1 \times N_2$ complex-valued matrices, we define the linear application

$$\mathcal{R}: \hat{\mathcal{H}} \to \mathcal{M}(N_2^A, N_2^B), \quad \hat{A} \mapsto A^R. \label{eq:34}$$

At this point, given a density operator $\hat{\rho} \in \hat{\mathcal{H}}$—separable with respect to the tensor product decomposition $\hat{\mathcal{H}} = \mathcal{H}_A \otimes \mathcal{H}_B$, i.e.

$$\hat{\rho} = \sum_i p_i \hat{\rho}_i^A \otimes \hat{\rho}_i^B, \quad \hat{\rho}_i^A \in \hat{\mathcal{H}}_A, \quad \hat{\rho}_i^B \in \hat{\mathcal{H}}_B \quad (\text{finite convex superposition}) \label{eq:35}$$

...
with $p_i > 0$ and $\sum_i p_i = 1$—we can apply inequality (32) (for a simply separable state) and the triangle inequality:

$$\|RM(\hat{\rho})\|_{tr} = \left\| RM \left(\sum_i p_i \hat{\rho}^A_i \otimes \hat{\rho}^B_i \right) \right\|_{tr}$$

$$= \sum_i p_i \|RM(\hat{\rho}^A_i \otimes \hat{\rho}^B_i)\|_{tr} \quad \text{(linearity of RM)}$$

$$\leq \sum_i p_i \|RM(\hat{\rho}^A_i \otimes \hat{\rho}^B_i)\|_{tr} \quad \text{(triangle inequality)}$$

$$\leq \sum_i p_i = 1. \quad \text{(inequality (32))} \quad (36)$$

We have thus obtained the following result.

Theorem 1 (‘realignment criterion’). Let $\hat{\rho}$ be a state in $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. If $\hat{\rho}$ is separable, then the associated realigned matrix ρ^R (relative to any product orthonormal basis in $\mathcal{H}_A \otimes \mathcal{H}_B$) satisfies

$$\|\rho^R\|_{tr} = d^2 \sum_{k=1}^{d^2} \lambda_k \leq 1. \quad (37)$$

Inequality (37) is saturated if the separable state $\hat{\rho}$ is pure.

3. A class of inequalities inducing new separability criteria

In the present section, we will derive a class of inequalities satisfied by all separable states of a bipartite quantum system. As in the case of the RC, these inequalities can be exploited for detecting entanglement. We will use arguments similar to those adopted for deriving the standard RC, and we will keep the notations and the assumptions introduced in the preceding section. In particular, for any linear operator \hat{A} in \mathcal{H}, we will denote by $RM(\hat{A})$ the realigned matrix associated with \hat{A}, relative to an arbitrarily fixed product orthonormal basis in \mathcal{H} (also recall that $RM : \mathcal{H} \rightarrow \mathcal{M}(N_A^2, N_B^2)$ is a linear map). In view of the separability criteria introduced below, we also stress that the (easily computable) positive number $\|RM(\hat{A})\|_{tr}$ is equal to the trace norm of the matrix of coefficients of \hat{A}—regarded as a vector of $\mathcal{H}_A \otimes \mathcal{H}_B$—with respect to any product orthonormal basis in $\mathcal{H}_A \otimes \mathcal{H}_B$ (as we have seen, $RM(\hat{A})$ is the matrix of coefficients associated with a basis of the special type (24)). Moreover, it is also worth mentioning the fact that the map

$$\|RM(\cdot)\|_{tr} : \mathcal{H}_A \otimes \mathcal{H}_B \rightarrow \mathbb{R}^+ \quad (38)$$

is a norm (actually, it is a cross norm on $\mathcal{H}_A \otimes \mathcal{H}_B$; see [17]). In the following, we will denote by $\mathcal{D}(\mathcal{H})$ ($\mathcal{D}(\mathcal{H}_A),$ $\mathcal{D}(\mathcal{H}_B)$) the convex subset of \mathcal{H} (respectively, of $\mathcal{H}_A, \mathcal{H}_B$) consisting of all density operators in \mathcal{H} (respectively, in $\mathcal{H}_A, \mathcal{H}_B$).

Let $\hat{\rho} \in \mathcal{D}(\mathcal{H})$ be a separable state in the bipartite Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$, with a separability decomposition of the form

$$\hat{\rho} = \sum_i p_i \hat{\rho}^A_i \otimes \hat{\rho}^B_i \quad \text{(finite convex superposition),} \quad (39)$$

where

$$\sum_i p_i = 1, \quad \text{and} \quad p_i > 0, \forall i. \quad (40)$$
Let us denote by $\hat{\rho}_A, \hat{\rho}_B$ the marginals (reduced density operators) of $\hat{\rho}$, namely
\[
\hat{\rho}_A := \text{tr}_B(\hat{\rho}) = \sum_i p_i \hat{\rho}_i^A, \quad \hat{\rho}_B := \text{tr}_A(\hat{\rho}) = \sum_i p_i \hat{\rho}_i^B.
\]

Now, given $2n$ linear or antilinear (super-)operators
\[
\mathcal{E}_i^A : \mathcal{H}_A \to \mathcal{H}_A, \ldots, \mathcal{E}_n^A : \mathcal{H}_A \to \mathcal{H}_A, \quad \mathcal{E}_i^B : \mathcal{H}_B \to \mathcal{H}_B, \ldots, \mathcal{E}_n^B : \mathcal{H}_B \to \mathcal{H}_B,
\]
with $n \geq 1$—precisely, we require these operators to be jointly linear or antilinear, i.e. either all linear or all antilinear, in such a way that one can consistently define tensor products and sums—we will associate with $\hat{\rho}$ the linear operator $\hat{\rho}(\mathcal{E}^{A,B}_{i_1,\ldots,i_n}) : \mathcal{H} \to \mathcal{H}$ defined by
\[
\hat{\rho}(\mathcal{E}^{A,B}_{i_1,\ldots,i_n}) := n^{-1}(\mathcal{E}_1^A \otimes \mathcal{E}_1^B + \cdots + \mathcal{E}_n^A \otimes \mathcal{E}_n^B)(\hat{\rho}) + n^{-1} \left(\sum_{i \neq j} \mathcal{E}_i^A \otimes \mathcal{E}_j^B \right)(\hat{\rho}_A \otimes \hat{\rho}_B).
\]

Of course, $\hat{\rho}(\mathcal{E}^{A,B}_{i_1,\ldots,i_n})$ will not be, in general, a density operator. Note that the operator $\hat{\rho}(\mathcal{E}^{A,B}_{i_1,\ldots,i_n})$ is defined in terms of the explicitly known operators $\hat{\rho}_A, \hat{\rho}_B$, i.e. definition (43) does not involve the (in general) ‘unknown density operators’ that appear on the rhs of the separability decomposition (39). It is easy to check, however, that the following relation holds:
\[
\hat{\rho}(\mathcal{E}^{A,B}_{i_1,\ldots,i_n}) = \frac{1}{n} \sum_{i_1,\ldots,i_n} p_{i_1} \cdots p_{i_n} (\mathcal{E}_1^A(\hat{\rho}_1^A) + \cdots + \mathcal{E}_n^A(\hat{\rho}_n^A)) \otimes (\mathcal{E}_1^B(\hat{\rho}_1^B) + \cdots + \mathcal{E}_n^B(\hat{\rho}_n^B))
\]
\[
\equiv \frac{1}{n} \sum_{i_1,\ldots,i_n} p_{i_1} \cdots p_{i_n} (\mathcal{E}_1^A(\hat{\rho}_1^A) + \cdots + \mathcal{E}_n^A(\hat{\rho}_n^A)) \otimes (A \to B),
\]
where the symbol $A \to B$ denotes repetition of the preceding term with the substitution of the subsystem A with the subsystem B (all the rest remaining unchanged). For instance, in order to check relation (44), consider that
\[
\sum_{i_1,\ldots,i_n} p_{i_1} \cdots p_{i_n} \mathcal{E}_1^A(\hat{\rho}_1^A) \otimes \mathcal{E}_1^B(\hat{\rho}_1^B) = \sum_{i_1} p_{i_1} (\mathcal{E}_1^A(\hat{\rho}_1^A) \otimes \mathcal{E}_1^B(\hat{\rho}_1^B)) = (\mathcal{E}_1^A \otimes \mathcal{E}_1^B)(\hat{\rho}).
\]

where, since $p_i \in \mathbb{R}$, both linearity and antilinearity work without distinction. In particular, for $n = 1$, we have that $\hat{\rho}(\mathcal{E}^{A,B}_{i_1,\ldots,i_n}) := (\mathcal{E}_1^A \otimes \mathcal{E}_1^B)(\hat{\rho}) = \sum_i p_i (\mathcal{E}_i^A \otimes \mathcal{E}_i^B)(\hat{\rho}_A \otimes \hat{\rho}_B)$ and, for $n = 2$, we have
\[
\hat{\rho}(\mathcal{E}^{A,B}_{i_2,\ldots,i_n}) := \frac{1}{2} (\mathcal{E}_1^A \otimes \mathcal{E}_1^B + \mathcal{E}_2^A \otimes \mathcal{E}_2^B)(\hat{\rho}) + \frac{1}{2} (\mathcal{E}_1^A \otimes \mathcal{E}_2^B + \mathcal{E}_2^A \otimes \mathcal{E}_1^B)(\hat{\rho}_A \otimes \hat{\rho}_B)
\]
\[
\equiv \frac{1}{2} \sum_{i,j} p_i p_j (\mathcal{E}_1^A(\hat{\rho}_1^A) + \mathcal{E}_2^A(\hat{\rho}_2^A)) \otimes (\mathcal{E}_1^B(\hat{\rho}_1^B) + \mathcal{E}_2^B(\hat{\rho}_2^B)) \otimes (A \to B).
\]

At this point, in order to obtain the new class of inequalities announced above, we argue as follows. First of all, just for the sake of notational conciseness, we will consider in
\[5\] In the special case where the operators $\mathcal{E}_1^A, \mathcal{E}_1^B, \mathcal{E}_2^A, \mathcal{E}_2^B$ coincide with the identity and -1 times the identity, respectively, the operator $\hat{\rho}(\mathcal{E}^{A,B}_{i_2,\ldots,i_n})$ reduces to the expression $\hat{\rho} - \hat{\rho}_A \otimes \hat{\rho}_B$ which is central in the separability criterion obtained in [18], i.e. $\|\mathcal{E}(\hat{\rho} - \hat{\rho}_A \otimes \hat{\rho}_B)\|_\infty \leq \sqrt{(1 - \text{tr}(\hat{\rho}_2^B)) (1 - \text{tr}(\hat{\rho}_2^B))}$ for every separable state $\hat{\rho} \in \mathcal{D}(\mathcal{H})$. Also see corollary 2.
our derivation the operator \(\hat{\rho}(E_{1/2}^{A,B}) \) rather than the more general expression \(\hat{\rho}(E_{1,...,n}^{A,B}) \) (the extension of our argument to \(\hat{\rho}(E_{1,...,n}^{A,B}) \) is straightforward). Then, we observe that

\[
\|RM(\hat{\rho}(E_{1/2}^{A,B}))\|_u = \frac{1}{2} \left\| RM \left(\sum_{i,j} p_i p_j (E_i^A \rho_i^A + E_j^B \rho_j^B) \right) \right\|_u \\
= \frac{1}{2} \left\| \sum_{i,j} p_i p_j RM((E_i^A \rho_i^A + E_j^B \rho_j^B) \otimes (A \rightarrow B)) \right\|_u \\
\leq \frac{1}{2} \sum_{i,j} p_i p_j \left\| RM((E_i^A \rho_i^A + E_j^B \rho_j^B) \otimes (A \rightarrow B)) \right\|_u.
\]

where for obtaining the last line we have used the triangle inequality. Next, consider that the Schmidt coefficients of the operator \((E_i^A \rho_i^A + E_j^B \rho_j^B) \otimes (A \rightarrow B) \in \hat{\mathcal{H}} \) are given by

\[
(\lambda_1 = \| (E_1^A \rho_1^A + E_2^B \rho_2^B) \otimes (A \rightarrow B) \|_{\hat{\mathcal{H}}}, \lambda_2 = 0, \ldots, \lambda_d = 0),
\]

since the Schmidt decomposition of this operator consists of a single term. Hence, we have

\[
\|RM((E_i^A \rho_i^A + E_j^B \rho_j^B) \otimes (A \rightarrow B))\|_u = \| E_i^A \rho_i^A + E_j^B \rho_j^B \|_{\hat{\mathcal{H}}_A} \| E_i^A \rho_i^A + E_j^B \rho_j^B \|_{\hat{\mathcal{H}}_B} \\
= \left(\langle \rho_i^A, E_i^A \rangle_{\hat{\mathcal{H}}_A} + \langle \rho_j^B, E_j^B \rangle_{\hat{\mathcal{H}}_B} \right)^{1/2} (A \rightarrow B)^{1/2},
\]

where \(\langle \cdot, \cdot \rangle_{\hat{\mathcal{H}}_A} \) is the (Hilbert–Schmidt) scalar product in \(\mathcal{H}_A \). Thus, if we assume that, for some \(\epsilon^A, \epsilon^B \geq 0 \),

\[
\| E_i^A \rho_i^A \|_{\hat{\mathcal{H}}_A}^2 + \| E_j^B \rho_j^B \|_{\hat{\mathcal{H}}_B}^2 \leq 2\epsilon^A, \quad \| E_i^A \rho_i^A \|_{\hat{\mathcal{H}}_A}^2 + \| E_j^B \rho_j^B \|_{\hat{\mathcal{H}}_B}^2 \leq 2\epsilon^B
\]

\(\forall \rho_i^A, \rho_j^B \in \mathcal{D}(\mathcal{H}_A), \forall \sigma_i^A, \sigma_j^B \in \mathcal{D}(\mathcal{H}_B) \), we find the following estimate:

\[
\|RM((E_i^A \rho_i^A + E_j^B \rho_j^B) \otimes (A \rightarrow B))\|_u \leq \sqrt{\frac{1}{2} \left(\| E_i^A \rho_i^A \|_{\hat{\mathcal{H}}_A} + \| E_j^B \rho_j^B \|_{\hat{\mathcal{H}}_B} \right)^2} \| (A \rightarrow B)^{1/2}.
\]

Eventually, from inequalities (48) and (52), we get

\[
\|RM(\hat{\rho}(E_{1/2}^{A,B}))\|_u \leq \sum_{i,j} p_i p_j \left(\| E_i^A \rho_i^A \|_{\hat{\mathcal{H}}_A} + \left(\frac{1}{2} \| E_i^A \rho_i^A \|_{\hat{\mathcal{H}}_A} + \| E_j^B \rho_j^B \|_{\hat{\mathcal{H}}_B} \right) \right) \sqrt{(A \rightarrow B),}
\]

where the second inequality above follows from the Cauchy–Schwarz inequality. Therefore, for every separable state \(\hat{\rho} \in \mathcal{D}(\mathcal{H}) \), we have

\[
\|RM(\hat{\rho}(E_{1/2}^{A,B}))\|_u \leq \sqrt{\left(\epsilon^A + \frac{1}{2} \left(\| E_i^A \rho_i^A \|_{\hat{\mathcal{H}}_A} + \| E_j^B \rho_j^B \|_{\hat{\mathcal{H}}_B} \right) \right) \| (A \rightarrow B),}
\]

(54)
We note that if \(\hat{\phi} \) is a generic state in \(\mathcal{D}(\mathcal{H}) \) (i.e. separable or not), then one can define an operator \(\hat{\phi}(\mathcal{E}_{1,2}^A) \) precisely as has been done for the operator \(\hat{\rho}(\mathcal{E}_{1,2}^A) \) associated with a separable state \(\hat{\rho} \). Moreover, observe that we have
\[
0 \leq \frac{\|\text{RM}(\mathcal{E}_A^A(\hat{\phi}_A) + \mathcal{E}_A^B(\hat{\phi}_A)) \otimes (A \rightarrow B)\|_{\text{tr}}^2}{4} \\
\leq \left(\mathcal{E}_A^A + \frac{1}{2}(\mathcal{E}_A^A(\hat{\phi}_A), \mathcal{E}_A^B(\hat{\phi}_A))_{\mathcal{H}_A} + \text{c.c.} \right) \left(A \rightarrow B \right),
\]
where \(\hat{\phi}_A, \hat{\phi}_B \) are the marginals of \(\hat{\phi} \). Hence, it makes sense to check inequality (54) for a generic state (the square roots on the rhs of inequality (54) are well defined). This inequality may not be satisfied by some state which can then be detected as an entangled state.

Extending the above proof to the operator \(\hat{\rho}(\mathcal{E}_{1,...,n}^A) \), \(n \geq 1 \), associated with a separable state \(\hat{\rho} \in \mathcal{D}(\mathcal{H}) \), we obtain the following result.

Theorem 2 (‘generalized RC’). Let \(\hat{\rho} \) be a state in \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \) and
\[
\mathcal{E}_A^A : \mathcal{H}_A \rightarrow \mathcal{H}_A, \ldots, \mathcal{E}_A^n : \mathcal{H}_A \rightarrow \mathcal{H}_A, \quad \mathcal{E}_B^B : \mathcal{H}_B \rightarrow \mathcal{H}_B, \quad \mathcal{E}_B^B : \mathcal{H}_B \rightarrow \mathcal{H}_B,
\]
\(n \geq 1 \), jointly linear or antilinear operators such that, for some \(e^A, e^B \geq 0 \),
\[
\|\mathcal{E}_A^A(\hat{\rho}_A)\|_{\mathcal{H}_A}^2 + \cdots + \|\mathcal{E}_A^n(\hat{\rho}_A)\|_{\mathcal{H}_A}^2 \leq n e^A, \quad \|\mathcal{E}_B^B(\hat{\rho}_B)\|_{\mathcal{H}_B}^2 + \cdots + \|\mathcal{E}_B^n(\hat{\rho}_B)\|_{\mathcal{H}_B}^2 \leq n e^B.
\]
\(\forall \hat{\rho}_A, \ldots, \hat{\rho}_A, \hat{\rho}_B, \ldots, \hat{\rho}_B \in \mathcal{D}(\mathcal{H}_A), \hat{\sigma}_B, \ldots, \hat{\sigma}_B \in \mathcal{D}(\mathcal{H}_B), \) and consider the linear operator \(\hat{\rho}(\mathcal{E}_{1,...,n}^A) \) in \(\mathcal{H} \) defined by
\[
\hat{\rho}(\mathcal{E}_{1,...,n}^A) := n^{-1} \left(\sum_{k=1}^n \mathcal{E}_A^A \otimes \mathcal{E}_B^B(\hat{\rho}) + \sum_{k \neq l} \mathcal{E}_A^A \otimes \mathcal{E}_B^B(\hat{\rho}_A) \otimes \hat{\rho}_B \right),
\]
where \(\hat{\rho}_A \) and \(\hat{\rho}_B \) are the marginals of \(\hat{\rho} \), namely \(\hat{\rho}_A := \text{tr}_B(\hat{\rho}) \), \(\hat{\rho}_B := \text{tr}_A(\hat{\rho}) \). If the state \(\hat{\rho} \) is separable, then the following inequality holds:
\[
\|\text{RM}(\hat{\rho}(\mathcal{E}_{1,...,n}^A))\|_{\text{tr}} \leq \sqrt{e^A + \frac{1}{n} \sum_{k=1}^n \left((\mathcal{E}_A^A(\hat{\rho}_A), \mathcal{E}_A^A(\hat{\rho}_A))_{\mathcal{H}_A} + \text{c.c.} \right) \left(A \rightarrow B \right)}.
\]

It is obvious that, once chosen, the operators (56), inequality (59) is satisfied, in particular, if we set \(e^A = e^A \) and \(e^B = e^B \), where \(e^A \) is the positive number defined by
\[
e^A := \sup \left\{ n^{-1} \sum_{k=1}^n \|\mathcal{E}_A^A(\hat{\rho}_A)\|_{\mathcal{H}_A}^2 : \hat{\rho}_A, \ldots, \hat{\rho}_A \in \mathcal{D}(\mathcal{H}_A) \right\},
\]
and \(e^B \) is defined analogously.

The reason why we call theorem 2 ‘generalized RC’ is clear: for \(n = 1 \), and \(\mathcal{E}_A^A, \mathcal{E}_B^B \) coinciding with the identity (super-)operators (so that we can set \(e^A = e^B = 1 \)), we recover the RC; also see corollary 2. We stress that, since it makes sense (as already observed) to check inequality (59) for a generic state, theorem 2 induces, potentially, a whole new class of separability criteria. In this regard, it is easy to see that if one fixes a priori in the rhs of each of inequalities (57) arbitrary strictly positive numbers \(e^A \) and \(e^B \) e.g. if one sets \(e^A = e^B = 1 \) then the class of independent separability criteria induced by inequality (59) is not restricted by such a specific choice. A certain criterion—i.e. a certain set of operators
of the type (56) satisfying inequalities (57), and such that inequality (59) is violated by some entangled state—will be optimal if \(\varepsilon^A = \varepsilon^B \) and \(\varepsilon^B = \varepsilon^B \), with \(\varepsilon^A, \varepsilon^B \) defined as in (60); otherwise, one can obtain an optimal criterion by suitably rescaling the operators (provided that one is able to evaluate the numbers \(\varepsilon^A \) and \(\varepsilon^B \)).

Note that, since the HS norm of density operators is not larger than 1, condition (57) is satisfied if for the norm of the (super-)operators \(\{ \sigma^A_k, \sigma^B_k \}_{k=1,\ldots,n} \), the following inequalities hold:

\[
\sum_{k=1}^{n} \| \sigma^A_k \|_2^2 \leq n \varepsilon^A, \quad \sum_{k=1}^{n} \| \sigma^B_k \|_2^2 \leq n \varepsilon^B.
\]

in particular, if the norm of the operators \(\{ \sigma^A_k, \sigma^B_k \}_{k=1,\ldots,n} \) is not larger than \(\sqrt{\varepsilon^A} \) or \(\sqrt{\varepsilon^B} \), respectively. For instance, one can choose the operators \(\{ \sigma^A_k, \sigma^B_k \}_{k=1,\ldots,n} \) to be either (all) unitary or (all) antiunitary in such a way that inequality (59) is satisfied with \(\varepsilon^A = \varepsilon^B = 1 \).

Observe that condition (57) is also satisfied—with \(\varepsilon^A = \varepsilon^B = 1 \)—if the (super-)operators \(\{ \sigma^A_k, \sigma^B_k \}_{k=1,\ldots,n} \) are such that

\[
\| \sigma^A_k (\hat{\sigma}^A) \|_{\tilde{\mathcal{H}}_A} \leq 1, \quad \| \sigma^B_k (\hat{\sigma}^B) \|_{\tilde{\mathcal{H}}_B} \leq 1, \quad k = 1, \ldots, n, \tag{62}
\]

\(\forall \hat{\sigma}^A \in \mathcal{D}(\mathcal{H}_A), \forall \hat{\sigma}^B \in \mathcal{D}(\mathcal{H}_B) \). One can assume, in particular, that they are trace-norm-nonincreasing on positive operators (since the Hilbert-Schmidt norm is majorized by the trace norm), for instance, positive trace-preserving linear maps.

Another natural choice consists in taking linear or antilinear operators \(\{ \hat{X}^A_k, \hat{Y}^A_k \}_{k=1,\ldots,n} \) in \(\mathcal{H}_A \) and \(\{ \hat{X}^B_k, \hat{Y}^B_k \}_{k=1,\ldots,n} \) in \(\mathcal{H}_B \), and setting

\[
\sigma^A_k : \mathcal{H}_A \ni \hat{A} \mapsto \hat{X}^A_k \hat{A} \hat{Y}^A_k \in \mathcal{H}_A, \quad \sigma^B_k : \mathcal{H}_B \ni \hat{B} \mapsto \hat{X}^B_k \hat{B} \hat{Y}^B_k \in \mathcal{H}_B, \quad k = 1, \ldots, n; \tag{63}
\]

precisely, we need to fix the following constraint: the operators \(\{ \hat{X}^A_k, \hat{Y}^A_k, \hat{X}^B_k, \hat{Y}^B_k \}_{k=1,\ldots,n} \) must be linear or antilinear in such a way that the (super-)operators \(\{ \sigma^A_k, \sigma^B_k \}_{k=1,\ldots,n} \) are (well defined as operators in \(\tilde{\mathcal{H}}_A, \tilde{\mathcal{H}}_B \) and) jointly linear or antilinear. Hence, the operators \(\{ \hat{X}^A_k, \hat{Y}^A_k, \hat{X}^B_k, \hat{Y}^B_k \}_{k=1,\ldots,n} \) must be jointly linear or antilinear as well, i.e. either all linear (so that the corresponding super-operators \(\{ \sigma^A_k, \sigma^B_k \}_{k=1,\ldots,n} \) are linear) or all antilinear (in this case, the super-operators \(\{ \sigma^A_k, \sigma^B_k \}_{k=1,\ldots,n} \) are antilinear).

Suppose, then, that the operators \(\{ \hat{X}^A_k, \hat{Y}^A_k, \hat{X}^B_k, \hat{Y}^B_k \}_{k=1,\ldots,n} \) are jointly linear or antilinear. In this case, taking into account the fact that (due to a well-known relation between the standard operator norm \(\| \| \) and the HS norm)

\[
\| \hat{X}^A_k \hat{\sigma}^A \hat{Y}^A_k \|_{\tilde{\mathcal{H}}_A} \leq \| \hat{X}^A_k \|_2 \| \hat{\sigma}^A \|_{\tilde{\mathcal{H}}_A}, \quad \| \hat{X}^B_k \hat{\sigma}^B \hat{Y}^B_k \|_{\tilde{\mathcal{H}}_B} \leq \| \hat{X}^B_k \|_2 \| \hat{\sigma}^B \|_{\tilde{\mathcal{H}}_B}, \tag{64}
\]

k = 1, \ldots, n, for any \(\hat{\sigma}^A \in \mathcal{D}(\mathcal{H}_A) \) and \(\hat{\sigma}^B \in \mathcal{D}(\mathcal{H}_B) \)—where \(\| \hat{\sigma}^A \|_{\tilde{\mathcal{H}}_A} \leq \| \hat{\sigma}^A \|_{\tilde{\mathcal{H}}_A} = 1 \) and \(\| \hat{\sigma}^B \|_{\tilde{\mathcal{H}}_B} \leq 1 \)—from theorem 2, we obtain the following result.

Corollary 1. Let \(\hat{\rho} \) be a state in \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \) and

\[
\hat{X}^A_1, \hat{Y}^A_1, \ldots, \hat{X}^A_n, \hat{Y}^A_n : \mathcal{H}_A \rightarrow \mathcal{H}_A, \quad \hat{X}^B_1, \hat{Y}^B_1, \ldots, \hat{X}^B_n, \hat{Y}^B_n : \mathcal{H}_B \rightarrow \mathcal{H}_B, \tag{65}
\]

\(n \geq 1 \), jointly linear or antilinear operators such that

\[
\sum_{k=1}^{n} \| \hat{X}^A_k \|_2^2 \| \hat{Y}^A_k \|_2^2 \leq ne^A, \quad \sum_{k=1}^{n} \| \hat{X}^B_k \|_2^2 \| \hat{Y}^B_k \|_2^2 \leq ne^B, \tag{66}
\]
for some $\epsilon^A, \epsilon^B > 0$, and consider the linear operator $\hat{\rho}(\hat{X}^{A,B}_{1,\ldots,n}, \hat{Y}^{A,B}_{1,\ldots,n})$ in \mathcal{H} defined by

$$
\hat{\rho}(\hat{X}^{A,B}_{1,\ldots,n}, \hat{Y}^{A,B}_{1,\ldots,n}) := \frac{1}{n} \sum_{k=1}^{n} (\hat{X}^A_k \otimes \hat{X}^B_k) \rho(\hat{Y}^A_k \otimes \hat{Y}^B_k) + \frac{1}{n} \sum_{k \neq l} (\hat{X}^A_k \otimes \hat{X}^B_l) (\hat{\rho}_A \otimes \hat{\rho}_B)(\hat{Y}^A_k \otimes \hat{Y}^B_l),
$$

(67)

where $\hat{\rho}_A$ and $\hat{\rho}_B$ are the marginals of $\hat{\rho}$. If $\hat{\rho}$ is separable, then the following inequality holds:

$$
\|\text{RM}(\hat{\rho}(\hat{X}^{A,B}_{1,\ldots,n}, \hat{Y}^{A,B}_{1,\ldots,n}))\|_\infty \leq \sqrt{\left(\epsilon^A + \frac{1}{n} \sum_{k<l} \|((\hat{X}^A_k \hat{\rho}_A \hat{Y}^B_k, \hat{X}^A_l \hat{\rho}_A \hat{Y}^B_l)_{\hat{\rho}_A} + \text{c.c.})\|_1\right)}.
$$

(68)

In particular, we can set $n = 2$, and the operators $\{\hat{X}^A_{1,2}, \hat{Y}^A_{1,2}, \hat{Y}^B_{1,2}\}_{k=1,2}$ can be chosen to be unitary (hence, we can set $\epsilon^A = \epsilon^B = 1$). For the specific choice

$$
\hat{X}^A_1 = e^{i\alpha_1 \hat{A}}, \quad \hat{X}^A_2 = e^{i\beta_1 \hat{A}}, \quad \hat{X}^B_1 = e^{i\delta_1 \hat{B}}, \quad \hat{X}^B_2 = e^{i\delta_2 \hat{B}},
$$

(69)

$$
\hat{Y}^A_1 = e^{i\gamma_1 \hat{A}}, \quad \hat{Y}^A_2 = e^{i\gamma_2 \hat{A}}, \quad \hat{Y}^B_1 = e^{i\beta_2 \hat{B}}, \quad \hat{Y}^B_2 = e^{i\delta_2 \hat{B}},
$$

(70)

setting

$$
\alpha_1 + \beta_1 + \gamma_1 + \delta_1 = \omega
$$

(71)

and

$$
-\alpha_1 + \alpha_2 - \gamma_1 + \gamma_2 = \theta, \quad -\beta_1 + \beta_2 - \delta_1 + \delta_2 = \phi,
$$

(72)

so that we have

$$
\alpha_2 + \beta_2 + \gamma_2 + \delta_2 = \omega + \theta + \phi
$$

(73)

and

$$
\alpha_1 + \beta_2 + \gamma_1 + \delta_2 = \omega + \phi, \quad \alpha_2 + \beta_1 + \gamma_2 + \delta_1 = \omega + \theta,
$$

(74)

we find the following result.

Corollary 2. Let $\hat{\rho}$ be a state in $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. If $\hat{\rho}$ is separable, then the following inequality holds:

$$
\|\text{RM}\left(\frac{e^{i(\omega + e^{i(\alpha + \theta + \phi)}) \hat{\rho}} + e^{i(\alpha + \phi)} \hat{\rho}_A} {2} \right)_\infty \leq \sqrt{1 + \cos \theta \text{tr}(\hat{\rho}_A^2)} \sqrt{1 + \cos \phi \text{tr}(\hat{\rho}_B^2)},
$$

(75)

for any $\omega, \theta, \phi \in \mathbb{R}$, where $\hat{\rho}_A$ and $\hat{\rho}_B$ are the marginals of $\hat{\rho}$. In particular, for $\omega = 0$ and $\phi = -\theta$, we have that

$$
\|\text{RM}(\hat{\rho} + e^{i\phi} \hat{\rho}_A \otimes \hat{\rho}_B)\|_\infty \leq \sqrt{(1 + \cos \theta \text{tr}(\hat{\rho}_A^2))(1 + \cos \theta \text{tr}(\hat{\rho}_B^2))},
$$

(76)

for any $\theta \in [0, \pi]$, while, for $\omega = 0$ and $\phi = \theta$, we have that

$$
\|\text{RM}\left(\frac{1 + e^{i\phi}} {2} \right) \hat{\rho} + e^{i\phi} \hat{\rho}_A \otimes \hat{\rho}_B\|_\infty \leq \sqrt{(1 + \cos \theta \text{tr}(\hat{\rho}_A^2))(1 + \cos \theta \text{tr}(\hat{\rho}_B^2))},
$$

(77)

for any $\theta \in [0, 2\pi]$.

We remark that the presence of the parameter ω on the lhs of inequality (75) is trivial. However, it is convenient for deriving specific inequalities; for instance, setting $\omega = -\theta = -\phi$, we get

$$\|RM(\cos \theta \hat{\rho} + \hat{\rho}_R \otimes \hat{\rho}_B)\|_{tr} \leq \sqrt{\left(1 + \cos \theta \text{ tr} (\hat{\rho}_R^2)\right) \left(1 + \cos \theta \text{ tr} (\hat{\rho}_B^2)\right)} \quad \theta \in [0, \pi]. \quad (78)$$

Observe that, fixing the value $\theta = \pi/2$ in the family of inequalities (76), we again find the standard RC. For $\theta = \pi$, we recover the criterion derived in [18], where it is also shown that this separability criterion is actually stronger than the standard RC. Note that the same criterion can also be obtained, for instance, from the family of inequalities (77), or (78), again setting $\theta = \pi$.

4. Examples of entanglement detection

As already observed, theorem 2 allows us to obtain a new class of separability criteria for bipartite quantum systems. This class seems to be very large, and a wide range exploration of the entanglement detection by means of such criteria is beyond the scope of the present contribution. However, for the sake of illustration, we will consider some simple example of application of our results.

In particular, the subclass of inequalities (76) induces a simple subclass of criteria characterized by the parameter $\theta \in [0, \pi]$. Varying this parameter, one obtains a ‘continuous family of separability criteria’, which includes, as already observed, the RC ($\theta = \pi/2$) and, for $\theta = \pi$, a criterion recently proposed in [18]. Given a certain class of states, one can try to detect entanglement applying these criteria for different values of the parameter θ.

As an example, we have considered a one-parameter family of two-qutrit bound entangled states $\{\hat{\rho}(a)\}_{a \in [0,1]}$ presented in [9]. In a given local basis for the two-qutrit system, this family of states have the following matrix representation:

$$\rho(a) = \frac{1}{8a + 1} \begin{bmatrix}
a & 0 & 0 & 0 & a & 0 & 0 & a \\
0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
a & 0 & 0 & a & 0 & 0 & a & a \\
0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1+\sqrt{a}}{2} & 0 & \frac{1-\sqrt{a}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
a & 0 & 0 & 0 & a & a & 0 & \frac{1+\sqrt{a}}{2} \\
a & 0 & 0 & 0 & a & a & 0 & \frac{1-\sqrt{a}}{2}
\end{bmatrix}, \quad (79)$$

$0 \leq a \leq 1$. We have then considered a statistical mixture of this class of states with the maximally entangled state, hence obtaining the two-parameter family of states:

$$\hat{\rho}(a, p) = p \hat{\rho}(a) + \frac{1}{2} (1 - p) \mathbb{I}, \quad 0 \leq a \leq 1, \quad 0 \leq p \leq 1. \quad (80)$$

We have numerically checked inequalities (76) on this set of states. As shown in figure 1, depending on the value of the parameter θ, the new separability criteria can be stronger than the RC. The numerical calculations also indicate that, on the family of states that we have considered, the strongest criterion for the detection of entanglement is that corresponding to $\theta = \pi$.

One can consider another simple subclass of inequalities, namely the class associated with the following set of super-operators:

$$e^{\phi}_1 = e^{i\phi} J^A, \quad e^{\phi}_1 = e^{-i\phi} J^B, \quad e^{\phi}_2 = J^A, \quad e^{\phi}_2 = J^B, \quad \theta \in [0, \pi]. \quad (81)$$
where $\mathcal{F}^A: \hat{H}_A \rightarrow \hat{H}_A$, $\mathcal{F}^B: \hat{H}_B \rightarrow \hat{H}_B$ are the identity super-operators and $\mathcal{T}^B: \hat{H}_B \rightarrow \hat{H}_B$ is the transposition associated with a given orthonormal basis in \mathcal{H}_B (recall that transposition, different from taking the adjoint, is a basis-dependent map), one obtains the following family of inequalities:

$$
\|RM(\hat{\rho}(E_{1,2}^{A,B}))\|_{\infty} \leq \sqrt{(1 + \cos \theta \text{tr}(\hat{\rho}_A^2))(1 + \cos \theta \text{tr}(\hat{\rho}_B^T \hat{\rho}_B))},
$$

(82)

with

$$
\hat{\rho}(E_{1,2}^{A,B}) \equiv \frac{1}{2}(\hat{\rho}_B^T + \hat{\rho}) + \frac{1}{2}(e^{i\theta}\hat{\rho}_A \otimes \hat{\rho}_B + e^{-i\theta}\hat{\rho}_A \otimes \hat{\rho}_B^T),
$$

(83)

where $\hat{\rho}_B^T$ is the ‘transposed operator’ (i.e. $\hat{\rho}_B^T \equiv \mathcal{T}^B(\hat{\rho}_B)$) and $\hat{\rho}_B^T$ is the ‘partially transposed operator’ (i.e. $\hat{\rho}_B^T \equiv \mathcal{F}^A \otimes \mathcal{T}^B(\hat{\rho})$).

We have then considered the family of two-qubit states introduced in the second of papers [17]. In a given local basis for the two-qubit system, they are expressed by a matrix of the form

$$
\rho(t, s, r) = \frac{1}{2} \begin{pmatrix}
1 + r & 0 & 0 & t \\
0 & 0 & 0 & 0 \\
0 & 0 & s - r & 0 \\
t & 0 & 0 & 1 - s
\end{pmatrix}.
$$

(84)

For $r = s/2$, it is easy to show that these states are well defined in a domain containing the interval $t \in [0, 0.25]$, $s \in [0, 0.9]$. Moreover, the specified family of states are known to be separable if and only if $t = 0$. As an example, we have checked inequalities (76) and (82) (in this case, the transposition \mathcal{T}^B is that associated with the given local basis), for different values of the parameter θ, on the specified family of states, namely for $r = s/2$ with t, s belonging to the specified range $t \in [0, 0.25], s \in [0, 0.9]$. The corresponding plots are shown in figure 2.
5. Conclusions

In the present paper, we have introduced a class of inequalities for bipartite quantum systems that are satisfied by separable states and, hence, potentially induce new separability criteria. Each inequality corresponds to a choice of suitable linear or antilinear super-operators \(\{e_k^A\}_{k=1,...,n} \) and \(\{e_k^B\}_{k=1,...,n} \), respectively in the Hilbert–Schmidt spaces \(\tilde{\mathcal{H}}_A \) and \(\tilde{\mathcal{H}}_B \) associated with the ‘local subsystems’ \(A \) and \(B \) of the bipartite quantum system; see theorem 2. A simple subclass of inequalities are parametrized, in a natural way, by \(\theta \in [0, \pi] \); see inequality (76) in corollary 2. This subclass contains, in particular, the inequality at the base of the standard RC \((\theta = \pi/2) \) and an inequality \((\theta = \pi) \) inducing a separability criterion, which is the main result obtained in [18]. It turns out that the criterion corresponding to \(\theta = \pi \) is actually stronger than the RC. Indeed, it can be shown (see [18 proposition 1]) that any state violating the inequality of the RC also violates the inequality of [18]. Moreover, the example of the two-parameter class of states \(\{\hat{\rho}(a, \rho)\}_{a, \rho \in [0,1]} \) considered in section 4 (see (80)) shows that there are states that violate the latter inequality but not the inequality of the RC. The example mentioned implies that at least some of the separability criteria induced by the class of inequalities introduced here are independent of (i.e. neither weaker than nor equivalent to) the RC; consider, for instance, the criterion obtained setting \(\theta = 3\pi/4 \) in inequality (76) (see figure 1).

It is worth observing that another special subclass of inequalities is obtained setting \(n = 2 \) and

\[
\begin{align*}
\hat{X}_1^A &= \hat{F}_A, & \hat{Y}_1^A &= (\hat{F}_A)\hat{\iota}, & \hat{X}_1^B &= \hat{F}_B, & \hat{Y}_1^B &= (\hat{F}_B)\hat{\iota}, \\
\hat{X}_2^A &= e^{\imath \theta} \hat{F}_A, & \hat{Y}_2^A &= (\hat{F}_A)\hat{\iota}, & \hat{X}_2^B &= e^{-\imath \theta} \hat{F}_B, & \hat{Y}_2^B &= (\hat{F}_B)\hat{\iota}, & \theta &\in [0, \pi],
\end{align*}
\]

where \(\hat{F}_A: \mathcal{H}_A \to \mathcal{H}_A, \hat{F}_B: \mathcal{H}_B \to \mathcal{H}_B \) are linear operators such that \(\|\hat{F}_A\| \leq 1, \|\hat{F}_B\| \leq 1 \) (thus we can set \(e^A = e^B = 1 \)), in corollary 1. Hence, for every separable state \(\hat{\rho} \in \mathcal{D}(\mathcal{H}) \), we have

\[
\|R\hat{M}(\hat{F}_A \otimes \hat{F}_B \hat{\rho}(\hat{F}_A)\hat{\iota} \otimes (\hat{F}_B)\hat{\iota} + \cos \theta (\hat{F}_A \hat{\rho}_A(\hat{F}_A)\hat{\iota}) \otimes (\hat{F}_B \hat{\rho}_B(\hat{F}_B)\hat{\iota}))\|_{\mathcal{A}} \\
\leq \sqrt{(1 + \cos \theta \operatorname{tr}((\hat{F}_A \hat{\rho}_A(\hat{F}_A)\hat{\iota})^2)(1 + \cos \theta \operatorname{tr}((\hat{F}_B \hat{\rho}_B(\hat{F}_B)\hat{\iota})^2))}.
\]

Figure 2. The curves in the plot identify those elements of the family of states defined in (84) (with \(r = s/2, t \in [0, 0.25], s \in [0, 0.9] \)) for which inequality (76) (diagram (a)) and inequality (82) (diagram (b)) are saturated, in correspondence with three values of the parameter \(\theta \). The thin black line corresponds to \(\theta = 0 \), the thick light blue line to \(\theta = 3\pi/4 \) and the thick black line to \(\theta = \pi \). The inequalities are violated by the (entangled) states associated with the values of the parameters \(r, s \) lying in the region on the right with respect to the curves.
For a suitable choice of the operators \hat{F}^A, \hat{F}^B (‘local filtering operations’), inequality (87) gives the ‘local filtering enhancement’ of the separability criterion induced by inequality (76). In particular, for $\theta = \pi/2$, one obtains the ‘RC with local filtering’. In the case where $\text{dim}(\mathcal{H}_A) = \text{dim}(\mathcal{H}_B)$, this powerful separability criterion is equivalent to the ‘covariance matrix criterion under filtering’. See [24] and references therein. For $\theta = \pi$, we obtain the local filtering enhancement of the separability criterion introduced in [18].

We stress that the new separability criteria induced by the inequalities introduced in the present paper are, in principle, practically implementable, since they involve easily computable quantities related to the density matrix and its marginals. Future work will be devoted to provide further examples and results along the lines traced in the present contribution.

Acknowledgments

The authors wish to thank G Marmo for invaluable human and scientific support. CL acknowledges the support of the project CONQUEST, MRTN-CT-2003-505089. The main results of the paper were presented by one of the authors (PA) at the International Conference The Jubilee 40th Symposium on Mathematical Physics–Geometry & Quanta (25–28 June 2008, Torun, Poland). He wishes to thank the organizers for their very kind hospitality.

References

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1935 Naturwissenschaften 23 807, 823, 844
[3] Schrödinger E 1935 Proc. Camb. Phil. Soc. 31 555
[4] Schrödinger E 1936 Proc. Camb. Phil. Soc. 32 446
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] Bouwmeester D, Ekert A and Zeilinger A (eds) 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation and Quantum Computation (New York: Springer)
[7] Horodecki R, Horodecki P, Horodecki M and Horodecki R 2007 Quantum entanglement Preprint quant-ph/0702225
[8] Werner R F 1989 Phys. Rev. A 40 4277
[9] Horodecki P 1997 Phys. Lett. A 233 333
[10] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[11] Peres A 1996 Phys. Rev. Lett. 77 1413
[12] Horodecki M, Horodecki P and Horodecki R 2006 Open Syst. Inf. Dyn. 13 103
[13] Horodecki M and Horodecki P 1999 Phys. Rev. A 59 4206
[14] Cerf N J, Adami C and Gingrich R M 1999 Phys. Rev. A 60 898
[15] Nielsen M A and Kempe J 2001 Phys. Rev. Lett. 86 5184
[16] Chen K and Wu L A 2003 Quantum Inf. Comput. 3 193
[17] Rudolph O 2002 Further results on the cross norm criterion for separability Preprint quant-ph/0202121
[18] Zhang C J, Zhang Y S, Zhang S and Guo G C 2007 Entanglement detection beyond the cross-norm or realignment criterion Preprint arXiv:0709.3766
[19] Peres A 1993 Quantum Theory: Concepts and Methods (Dordrecht: Kluwer)
[20] Horn R A and Johnson C R 1991 Topics in Matrix Analysis (Cambridge: Cambridge University Press)
[21] Terhal B M and Horodecki P 2000 Phys. Rev. A 61 040301(R)
[22] Eisert J and Briegel J 2001 Phys. Rev. A 64 022306
[23] Lupo C, Aniello P and Scardicchio A 2008 Bipartite quantum systems: on the realignment criterion and beyond Preprint arXiv:0802.2019
[24] Gühne O, Hyllus P, Gittsovich O and Eisert J 2007 Phys. Rev. Lett. 99 130504