Feasibility of Laparoscopic Surgery for Intussusception in Pediatric Patients and Risk of Bowel Resection

Eun Ju Song, M.D., So Hyun Nam, M.D., Ph.D.
Department of Surgery, Dong-A University College of Medicine, Dong-A Medical Center, Busan, Korea

Purpose: Intussusception is a common cause of intestinal obstruction in children. While most patients can be treated by enema reduction, about 20% require surgery. We investigated the usefulness and feasibility of laparoscopic surgery and the intraoperative risk of bowel resection.

Methods: We retrospectively reviewed pediatric patients who underwent surgery for intussusception from 2010 to 2017. We collected data for age, gender, body weight, associated symptoms, duration of symptoms, white blood cell count, operating time, and postoperative complications.

Results: Of 155 patients, 37 (23.8%) underwent surgery due to enema reduction failure in 29 (78.3%), recurrence in 6 (16.3%), a suspicious lead point in 1, and suspicious ischemic change observed on ultrasonography in 1. The mean age was 26.8±18.9 months (range, 3.5~76.7 months), and the mean body weight was 12.9±3.9 kg (range, 5.4~22.2 kg). Laparoscopic surgery was successful in 29 patients (78.4%), and 7 (18.9%) needed bowel resection and anastomosis. The mean operating time was 56.7±32.8 min. A lead point was found in 3 patients in the bowel resection group (p=0.005); in addition, the operating time and hospital stay were longer in this group. There were no intra- or postoperative complications.

Conclusion: Laparoscopic surgery was successful in 78.4% of the patients with a short hospital stay and early oral intake. The only predictive factor for bowel resection was the presence of a lead point. Laparoscopic surgery may be an optimal treatment intervention for children with intussusception, except for those who show initial peritonitis.

Keywords: Intussusception, Laparoscopy, Small intestine

INTRODUCTION

Intussusception is a common cause of intestinal obstruction in children, and over 56/100,000 cases have been reported.1-3 Intussusception occurs when a segment of the intestine folds like a telescope, with one segment slipping into another. The major cause of intussusception is idiopathic and may be related to the hypertrophy of Peyer's patches after a viral infection.4 Around 10% of the patients have a lead point, such as Meckel's diverticulum, polyps, duplication cysts, heterotopic pancreas, lymphoma, Peutz-Jeghers syndrome, or Henoch–Schönlein purpura.5,6

Currently, the standard treatment for intussusception is enema reduction using air, barium, saline, and other such agents. Following the work of Ravitch and McCune, success rates of 79~90% have been reported.7 Nevertheless, about 20% of the patients require surgery due to failure of reduction, clinical signs (peritonitis, shock/sepsis, and pneumoperitoneum), or the

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
presence of a lead point.3,5,6 Traditionally, manual reduction
during laparotomy was performed; laparoscopic procedure
was attempted in the late 1990s. However, despite advanced
minimally invasive surgery (MIS) technology, the reported
success rate of the laparoscopic procedure is less than 50%.8
This has impeded the widespread implementation of MIS, and
its value in intussusception treatment remains a matter of de-
bate. Since 2010, laparoscopic surgery has been the first choice
of treatment for children with intussusception in our institu-
tion. The aims of this study were to investigate the usefulness
and feasibility of laparoscopic surgery and the risk of bowel
resection during laparoscopic reduction of intussusception.

\textbf{MATERIALS AND METHODS}

\textbf{Inclusion}

We retrospectively reviewed pediatric patients who under-
went surgery for intussusception in Haeundae Paik Hospital
and Dong-A University Hospital from April 2010 to December
2017. After diagnosis, enema reduction using air or barium
was attempted initially, except in the patients who showed
peritoneal irritation, which required an emergent operation.
Enema reduction was performed by a skilled radiologist, with
pressure not exceeding 100~120 mmHg. After successful re-
duction, the patients were hospitalized for more than 1 day.
However, surgical intervention was indicated in cases when
enema reduction was impossible, a suspicious lead point was
present, or intussusception recurred more than 3 times.

\textbf{Operative procedure}

We performed laparoscopy using 3 trocars (usually, one of
5mm umbilical trocars with two 3–mm trocars; 5–mm tro-
cars if the patients were older than 5 years). The trocars were
placed in the umbilicus, the left lower quadrant, and the su-
prapubic area. The intra-abdominal pressure was kept below
10 mmHg. After identifying the intussusception lesion, we re-
duced the intussusception using 2 atraumatic intestinal clamps
and examined the proximal small bowel to look for a possible
lead point. If it was impossible to reduce or we found a suspi-
cious lead point or bowel injury, the procedure was changed to
laparotomy. Usually, we extended the incision of the umbilicus
in a semicircle and performed either intussusception reduction
or bowel resection and anastomosis (Fig. 1).

\textbf{Data analysis and statistics}

Data was collected for age, gender, body weight, associated
symptoms, duration of symptoms, white blood cell count, op-
erating time, and postoperative complications. This study was
approved by the local institutional review board. To determine
the risk factors for bowel resection, we analyzed categorical
variables using the Chi–square test and Fischer’s exact test
using IBM SPSS Statistics software (version 20 for Windows;
SPSS Inc., Chicago, IL). Continuous variables were compared
using the two–tailed \(t \)-test for normally distributed variables.
A \(p \) value <0.05 was considered significant.

\textbf{RESULTS}

\textbf{Analysis of the study group}

During the study, intussusception was confirmed in 155
patients, and reduction was attempted 195 times. Of the 155
patients, 37 (23.8%; 24 male and 13 female) underwent surgery
due to enema reduction failure in 29 (78.3%), recurrence in 6
(16.3%), a suspicious lead point in 1, and a suspicious ischemic
change observed on ultrasonography in 1. Twelve patients
(32.4%) were transferred for operation due to failure of re-
duction. For the stable patients, we attempted another trial of
air reduction, but they ultimately underwent the surgery. The
mean age was 26.8±18.9 months (range, 3.5~76.7 months), and
the mean body weight was 12.9±3.9 kg (range, 5.4~22.2 kg).

All patients except 8 (78.4%) underwent successful laparo-
scopic surgery; however, 7 (18.9%) needed bowel resection and
anastomosis. The type of intussusception was ileocolic in 29
patients (78.4%) and ileocecal in 8 (21.6%).

The causes of conversion were irreducible intussusception
in 4 patients, a lead point in 3, and a small bowel injury to the

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{fig1.jpg}
 \caption{Conversion to laparotomy for irreducible intussusception through umbilical incision.}
\end{figure}
muscle layer during reduction in 1. As shown in Figure 1, we pulled out the bowel through an umbilical incision and performed manual reduction or bowel resection. After surgery, the umbilical scar was not visible (Fig. 2).

Associated symptoms were irritability or abdominal pain (n=27: 73%), vomiting (n=22: 59.4%), hematochezia (n=11: 29.7%), and fever (n=6: 16.2%). The duration of symptoms was variable: 15 patients showed symptoms for up to 24 h, 8 between 24 and 48 h, 6 between 48 and 72 h, and 8 visited the hospital over the course of 3 days after symptom onset. The mean white blood cell count (per mm3) was 12,094.4±4,576.1 (range, 1,110~21,870). The mean operating time was 56.7±32.8 min (range, 17~180 min), and lead points were found in 3 patients: heterotopic pancreas, angiodysplasia, and Meckel’s diverticulum. Oral intake started from the day after surgery, except in those patients who underwent intestinal resection: they started oral intake after flatus. There were no intra- or postoperative complications. The mean hospital stay was 5.4±1.89 days (range, 3~10 days) (Table 1). The mean follow-up period was 96.6±68.4 months (range, 3.5~215.9 months). One patient had a recurrence after surgery and was treated with air reduction.

Analysis of the bowel resection group

The mean age of these 7 patients was 14.8±15.9 months (range, 3.5~41.5 months), of which 4 (57.1%) were younger than 6 months and 2 were older than 34 months. The duration of symptoms was not longer than that of the reduction group. Abdominal pain or irritability was common in the reduction group and vomiting or hematochezia was common in the bowel resection group.

Table 1. The comparison between reduction and bowel resection group

Variables	Total (n=37)	Lap-reduction (n=30)	Bowel resection (n=7)	p value
Gender (Male:Female)	24:13	20:10	4:3	0.678
Age (months), mean (SD)	26.8±18.9	29.6±18.6	14.8±15.9	0.061
Body weight (Kg), mean (SD)	12.9±3.9	13.5±3.6	10.7±4.8	0.091
Duration of symptoms				0.676
<24 hours	15	13	2	
24~48 hours	8	6	2	
48~72 hours	6	4	2	
>72 hours	8	7	1	
Vomiting (No, %)	22 (59.4%)	16 (53.3%)	6 (85.7%)	0.204
Hematochezia (No, %)	11 (29.7%)	7 (23.3%)	4 (57.1%)	0.163
Fever (No, %)	6 (16.2%)	6 (20%)	0	0.571
Abdominal pain (No, %)	27 (73%)	25 (83.3%)	2 (28.5%)	0.009
Leading point (No, %)	3 (8.1%)	0	3 (42.8%)	0.005
Operation time (min), mean (SD)	56.7±32.8	43.8±12.1	112±36.8	0.003
Hospital day (days), mean (SD)	5.4±1.9	4.8±1.4	8.1±1.1	<0.001
White blood cell count (per mm3), mean (SD)	12,094.4±4,576.1	11,762.4±4,685.7	13,470.4±4,117.7	0.383

All values are number (%).
bowel resection group, but the difference was not significant. A lead point was present in the bowel resection group only (p=0.005). The operating time (43.8±12.1 vs. 112±36.8 min, p=0.003) and mean hospital stay (4.8±1.4 vs. 8.1±1.1 days, p<0.001) were longer in the bowel resection group. The white blood cell count (per mm3) showed no significant difference between the 2 groups (Table 1).

DISCUSSION

Surgical treatment of intussusception is primarily required for patients when enema reduction fails and peritoneal irritation signs are present. The known predictive factors for surgical treatment include age, duration of symptoms, length of the intussusception, and the presence of a lead point. Fallon et al. reported that the use of hydrostatic enemas for reduction, failure of initial enema reduction, hematochezia, age <1 year, or symptoms for >48 h were associated with the need for surgery. They also found that 26% of the patients required operative management, despite several trials of enema reduction. Multiple enema reduction attempts succeeded only in 8% of the patients, and the success rate decreased after each attempt. Ultrasound findings, including a definable lead point, free or inter-loop fluid, and bowel wall thickening, were predictive factors for surgery. Savoie et al. reported a success rate of 79% with enema reduction in 7,412 patients. However, it was unsuccessful in the older age group because of the presence of a pathologic lead point. Bratton et al. found that patients who were treated at a children's hospital were less likely to undergo surgery compared with those treated at a non–children's hospitals. Overall, despite aggressive enema reduction, about 20% of the intussusception cases require surgical intervention. In these cases, we need to find the best cure for the children.

In various surgeries, MIS has offered many benefits, such as a short hospital stay, less pain, and excellent cosmetic results. Despite technical improvements and accumulation of experience in MIS, laparoscopic surgery is not considered a first-choice treatment for intussusception. Although Schier reported success in 4 out of 7 cases in 1997, Hay et al. reported a 70% success rate, and Van der Laan et al. reported a 30% success rate in 2001. The application of laparoscopic surgery for the treatment of intussusception has been delayed compared to that of the other procedures. Better success rates began to be reported only in the late 2000s.

In our experience, reduction using an atrumatic bowel grasper is always challenging. Manual reduction of a tight intussusception is also difficult during laparotomy, as it requires increased traction strength, which can cause intestinal tearing or perforation. In contrast, MIS has a significant limitation with regard to tactile sensation and strength delivered, which we believe is the reason for the low success rates in the early period and why many surgeons do not consider it a first choice.

In the present study, surgical treatment was required in 23.8% of the patients, and MIS was successful in 78.4% of the patients. Similar results have been reported in recent studies. The patients in this study underwent reduction 1,97 times (mean) before surgery, and a lead point was found in 8.1% of the patients. Wei et al. reported a 13% conversion rate from laparoscopic procedure to laparotomy, which was more common in cases with a long intussusception. Bonnard et al. reported that the risk factors for conversion to laparotomy were directly related to delayed diagnosis (1.6 vs. 3.1 days), symptomatic peritonitis, and the presence of a pathologic lead point. While the bowel resection group in that study tended to be younger than the reduction group, we did not find a significant difference in this study. The youngest patient was 3.5 months old, and 3 patients were 5 months old. Park et al. reported that infants aged less than 5 months may present with nonspecific gastrointestinal symptoms without hematochezia, which can delay diagnosis. However, this was not the case in our study. Unexpectedly, the duration of symptoms was less than 24 h in 40% of patients. Only pathologic lead point was a risk factor for bowel resection in this study, which is consistent with the findings in recent reports. Overall, we believe that laparoscopic surgery is worth attempting in patients who have had symptoms for more than 48 h and who do not show peritonitis.

In previous studies comparing MIS and laparotomy, there was a statistically significant decrease in the duration of the hospital stay and analgesic requirements in MIS group. When Wei et al. compared a laparoscopy group and a laparotomy group, the operating time was longer in the laparoscopy group, but the time to oral intake and hospital stay were significantly shorter compared with the laparotomy group. In the present study, we did not perform a comparison with laparotomy. However, the fact that a patient who underwent laparoscopic procedure can eat the day after the operation is a clear advantage of laparoscopic surgery over laparotomy.

MIS is advantageous for patients who show spontaneous intussusception reduction after a failed enema reduction. Approximately 10~13% of such cases were found after general anesthesia, the associated smooth muscle relaxation may be a possible cause. In this study, we also observed 10.8% cases of spontaneous reduction. In these cases, laparoscopic procedure with a small incision may be beneficial.

The reported recurrence rates are 5%~13% after nonsurgical treatment for intussusception and 1%~3% after surgery. Cheung et al. reported recurrence in 1 of 15 patients (6.6%), and Kia et al. reported recurrence in 1 of 16 patients (6.25%).
In this study, we observed recurrence in 1 patient (5.4%). However, we did not compare the recurrence rate between laparoscopic procedure and laparotomy, and further investigation is necessary.

This study had several limitations. Many patients were referred for surgery in a tertiary children’s hospital, and the incidence of surgery was calculated to be higher than it actually was. Moreover, since the number of cases was insufficient to compare the bowel resection and reduction groups, the predictive factors for the bowel resection group were not evident. Nevertheless, this was a meaningful study by a single pediatric surgeon who has many years of experience in MIS.

Laparoscopic surgery for the treatment of intussusception was successful in 78.4% of the patients, and the single predictive factor for bowel resection was the presence of a lead point. Laparoscopic surgery proved to be safe and had excellent cosmetic results with a short hospital stay and early time to oral intake. Excluding patients with peritonitis symptoms or severe abdominal distension with ileus, laparoscopic surgery can be considered a first-choice option for intussusception. In cases of irreducible intussusception, bowel or mesentery injury requiring repair, or the presence of lead points, we should not hesitate to convert to laparotomy.

ACKNOWLEDGMENTS

This work was supported by the Dong–A University research fund.

REFERENCES

1) Parashar UD, Holman RC, Cummings KC, et al. Trends in intussusception-associated hospitalizations and deaths among US infants. Pediatrics 2000;106:1413–1421.
2) Seifarth FG, Ryan ML, Triana J, Knight CG. Diagnosis and laparoscopic treatment of ileoileal intussusception secondary to heterotopic pancreas in an infant: case report and review of the literature. J Pediatr Surg 2011;46:e33–e36.
3) Fallon SC, Lopez ME, Zhang W, et al. Risk factors for surgery in pediatric intussusception in the era of pneumatic reduction. J Pediatr Surg 2013;48:1032–1036.
4) Arbizu RA, Aljomah G, Kozelski R, Baker SS, Baker RD. Intussusception associated with adenovirus. J Pediatr Gastroenterol Nutr 2014;59:e41.
5) Savoie KB, Thomas F, Noyer SS, Langham MR, Jr., Huang EY. Age at presentation and management of pediatric intussusception: A Pediatric Health Information System database study. Surgery 2017;161:995–1003.
6) Ha H, Cho J, Park J. Risk Factors Associated with the Need for Operative Treatment of Intussusception in Children. J Korean As-soc Pediatr Surg 2014;20:17–22.
7) Ravitch MM, McCune RM, Jr. Reduction of Intussusception by Barium Enema: A Clinical and Experimental Study. Ann Surg 1948;128:904–917.
8) van der Laan M, Bax NM, van der Zee DC, Ure BM. The role of laparoscopy in the management of childhood intussusception. Surg Endosc 2001;15:373–376.
9) Bratton SL, Haberkern CM, Walhausen JH, Sawin RS, Allison JW. Intussusception: hospital size and risk of surgery. Pediatrics 2001;107:299–303.
10) Kia KF, Mony VK, Drognowski RA, et al. Laparoscopic vs open surgical approach for intussusception requiring operative intervention. J Pediatr Surg 2005;40:281–284.
11) Schier F. Experience with laparoscopy in the treatment of intussusception. J Pediatr Surg 1997;32:1713–1714.
12) Hay SA, Kabesh AA, Soliman HA, Abdelrahman AH. Idiopathic intussusception: the role of laparoscopy. J Pediatr Surg 1999;34:577–578.
13) Fraser JD, Aguayo P, Ho B, et al. Laparoscopic management of intussusception in pediatric patients. J Laparoendosc Adv Surg Tech A 2009;19:563–565.
14) Bonnard A, Demarche M, Dimitriu C, et al. Indications for laparoscopy in the management of intussusception: A multicenter retrospective study conducted by the French Study Group for Pediatric Laparoscopy (GECI). J Pediatr Surg 2008;43:1249–1253.
15) Burjonrappa SC. Laparoscopic reduction of intussusception: an evolving therapeutic option. JSLS 2007;11:235–237.
16) Apelt N, Featherstone N, Giuliani S. Laparoscopic treatment of intussusception in children: a systematic review. J Pediatr Surg 2013;48:1789–1793.
17) Wei CH, Fu YW, Wang NL, Du YC, Sheu JC. Laparoscopy versus open surgery for idiopathic intussusception in children. Surg Endosc 2015;29:668–672.
18) Houben CH, Feng XN, Tang SH, Chan EK, Lee KH. What is the role of laparoscopic surgery in intussusception? ANZ J Surg 2016;86:504–508.
19) Ntoulia A, Tharakan SJ, Reid JR, Mahboubi S. Failed Intussusception Reduction in Children: Correlation Between Radiologic, Surgical, and Pathologic Findings. AJR Am J Roentgenol 2015;207:424–433.
20) Park BC, Kim SY, Jung SJ. A Comparative Analysis of Clinical Features and Treatment Outcomes of Intussusception according to Age Distribution. Korean J Pediatr Gastroenterol Nutr 2005;8:150–156.
21) Cheung ST, Lee KH, Yeung TH, et al. Minimally invasive approach in the management of childhood intussusception. ANZ J Surg 2007;77:778–781.
22) Bailey KA, Wales PW, Gerstle JT. Laparoscopic versus open re-duction of intussusception in children: a single-institution com-parative experience. J Pediatr Surg 2007;42:845–848.
23) Almaramhy HH. Laparoscopic reduction of intussusception in children: role in primary and revisional reduction after failed non-surgical therapies. Int J Health Sci (Qassim) 2011;5:71–78.

24) Ein HE, Daneman A. Intussusception. In: Grosfeld JL, O’Neill JA, Coran AG, Fonkalsrud EW, editors. Pediatric surgery. 6th ed. Philadelphia: Mosby Elsevier; 2006. p.1313–1341.

25) Kornecki A, Daneman A, Navarro O, Connolly B, Manson D, Alton DJ. Spontaneous reduction of intussusception: clinical spectrum, management and outcome. Pediatr Radiol 2000;30:58–63.