Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucin layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma. [BMB Reports 2021; 54(7): 344-355]

INTRODUCTION

The mucosal surfaces of the body protect against various external environments. The intestinal tract is the guardian of the innate host defense because of the secretory factors of intestinal goblet cells (1). Colonization by intestinal bacteria is limited to an outer mucus layer and interacts with mucin glycoproteins, whereas an inner mucus layer is entirely devoid of bacteria (2). Thus, the defection of mucus layers increases bacterial interaction with the surface epithelium. Additionally, abnormality of mucins and mucin structure has occurred in mucinous colorectal carcinoma (MCC) (3). Since tumor growth sites induce inhospitable conditions for them to survive, mucins are suggested as an oncogenic microenvironment that avoids hypoxia, acidic, and other biological hurdles. The composition and structure of mucins enable them to mimic the surface of tumor cells like the surface of normal epithelial cells (4). Additionally, the mucus layer captures growth factors or cytokines, contributing to cell growth of the tumor. Alternatively, these properties interfere with the interaction between the immune system and tumor cells. Indeed, a high concentration of soluble mucins downregulates the motility and activation status of leukocytes (5). It was also reported that cell surface mucin contributes to cell proliferation and differentiation (6).

MCC shows a higher incidence of invasion to adjacent organs and lymph node metastasis than does non-mucinous colorectal carcinoma (7). Also, MCC is characterized by a large amount of extracellular mucin, and mucin pools contain malignant epithelium (4, 7). However, the function of mucin especially in MCC pathology is not completely understood. Thus, the unveiling of mucin’s role and molecular mechanisms for MCC tumorigenesis and understanding MCC mouse models is required for MCC study. In this mini-review, we briefly discuss major MCC-related mucins and their roles in MCC development. Further, we introduce the currently known MCC therapeutic drugs and mouse models proposed for MCC study.

GEL-FORMING AND TRANSMEMBRANE MUCINS

The major constituent of mucus layers is mucins which are high-molecular-weight epithelial O-glycosylated glycoprotein (8) and are implicated in pathogenesis in cancer, especially mucinous adenocarcinomas. Currently, 21 mucin genes are known in humans. The mucins are classified into two groups based on their structure and functions: (i) secreted gel-forming mucins and (ii) transmembrane mucins. Gel-forming mucins including MUC2, MUC5AC, MUC5B, MUC6, and MUC19, cover epithelial cells in various organs (Table 1). Gel-forming mucins are secreted oligomeric mucin and might be responsible for the properties of mucin. Transmembrane mucins such as MUC1, MUC3, MUC4, MUC12, MUC13, MUC15, MUC16, MUC17, MUC21, and MUC22, exhibit monomeric structural characteristics and mainly located on the cell surface, and
The results of MUC2 deficient mouse developments colitis (11), methylation of the colorectal cancer (CRC) development, which is caused by Decreased MUC2 is highly involved in the early stage of component of the mucus layer in the small and large intestines. MUCIN2 (MUC2): Gel-forming mucins in cancer the survival of tumor cells (Fig. 1). Thus, it may lead to various physiological effects by increasing the chance of binding with a growth factor and cytokine for filling the space and raises its gel-forming character. Subsequent-ly, the promoter might contribute to CRC initiation. However, the results of MUC2 gene promoter methylation analysis of MCC and non-MCC by narrowing the scope in the entire CRC analysis shows demethylation in the MUC2 promoter of MCC (10). MCC (10-15% of human CRC) is metastatic and therapeutically resistant (12) and shows accumulated genetic mutations (10). MCC (10-15% of human CRC) is metastatic and therapeutically resistant (12) and shows accumulated genetic mutations including K-Ras, TOP-1, MAPK, and BRAF (12-18). However, MCC shows a low frequency of TP53 mutation and protein expression. Also, TP53 and p21 positively control MUC2 via transcriptional activation (19). These studies imply that MCC may show a genetic background difference from CRC for amplifying MUC2, at least for TP53 mutation or expression. Indeed, the Adenomatous polyposis coli (APC) mutation, with the highest frequency in CRC, is relatively low in MCC. In summary, CRC (non-MCC) downregulates MUC2 to foster an oncogenic environment by inflammation or colitis, whereas MCC might try to employ its unique genetic background for generating the mucinous environment including MUC2 secretion. MUCIN5AC (MUC5AC): In normal physiological conditions, MUC5AC is barely secreted in intestinal mucus (20). But, similar to MUC2, MUC5AC is expressed at a high level in MCC and by microsatellite instability (MSI)-high tumors (21, 22). Cancer patient tissues show MUC5AC-positive tumor cells (35-100%), which depend on the tumor type [Adenocarcinoma: 147/420 [35%], Adenocarcinoma 1-49% mucinous component: 119/167 [71%], Mucinous > 50%: 46/49 [94%]. Signet-ring cell carcinoma: 8/8 [100%] (23). Signet-ring cells produce aberrant mucin and demonstrate high levels of MSI. The mechanism of MSI generation is involved in the dysfunction of the DNA mismatch repair protein. In normal tissue, DNA mismatch repair proteins correct errors during DNA replication. However, impaired DNA mismatch repair proteins in tumor cells trigger the possibility of MSI generation, subsequently resulting in chromosomal instability (CIN). Hypomethylation of the MUC5AC promoter is a predictor of MSI (24). Furthermore, elevated MUC5AC is associated with mismatch repair-deficiency (25) and downregulation of TP53 and its target gene p21 (26), which are strongly related to the maintenance of chromosomal stability. Since β-catenin has been reported to induce impaired DNA damage repair via LIG4 (27), MUC5AC-induced β-catenin (26) might be involved in MSI via radioresistance. Although Wnt/β-catenin signaling contributes to radioresistance, MSI does not happen under Wnt/β-catenin signaling hyperactivated conditions that do not show an increase in mucins (28-30). Moreover, MUC5AC shows a negative correlation with MLH1, a protein for DNA damage repair, in MCC (22). Thus, it is likely that MUC5AC is a key cooperator for MSI, but veiled a detailed molecular mechanism. Recently, it was reported that MUC5AC increases tumor heterogeneity (31), which may result from MSI. Increased tumor heterogeneity provides an advantage for escape from immune surveillance. MUCIN5B (MUC5B): Consistent with MUC2 and MUC5AC, hypermethylation of the MUC5B promoter is a major regulatory mechanism for silencing it (32). Intriguingly, intrinsic regions regulate MUC5B (33-35). A 256bp segment of the first intron of the MUC5B contains eight tandem repeat GA boxes located in the GAGGG box, which interact with transcription factors such as Sp1, GATA-1, and AP-2 (35).

Table 1. Mucin expression in human organs

Organs	Gel-forming mucins	Transmembrane mucins
Esophagus	MUC5B	MUC1, MUC4, MUC20
Stomach	MUC5AC, MUC6	MUC1, MUC3, MUC13, MUC20
Liver	MUC2, MUC5AC, MUC5B, MUC6	MUC1, MUC3, MUC12, MUC20
Pancreas	MUC5AC, MUC5B, MUC6	MUC1, MUC3, MUC4, MUC11, MUC13, MUC20
Lung	MUC2, MUC5AC, MUC5B	MUC1, MUC3, MUC4, MUC12
Reproductive tract	Male: MUC5AC, MUC5B, MUC6	MUC1, MUC4, MUC12
	Female: MUC5AC, MUC5B, MUC6	MUC1, MUC3, MUC17, MUC20
Intestine	Duodenum: MUC2, MUC6	MUC1, MUC3, MUC17, MUC20
	Small intestine: MUC2	MUC1, MUC3, MUC17, MUC20
	Colorectum: MUC2	MUC1, MUC3, MUC4, MUC11, MUC12, MUC13, MUC17, MUC20

http://bmbreports.org
Role of mucin in tumorigenesis
Dong-Han Wi, et al.

MUCIN6 (MUC6): MUC5AC and MUC6 are the major gastric mucins. Whereas MUC5AC is located on the epithelial cell surface, MUC6 is expressed in glandular structures. Staining in a subset of CRC displays exclusively cytoplasmic normal tissue (23). Thus, the expression of tumor cells might result from de novo synthesis by oncogenic signaling. The regulatory mechanism of MUC6 expression is related to the status of promoter methylation, BRAF-V600E mutation, a marker of MCC, as well as MLH1 methylation. Additionally, p53 overexpression shows an inverse association with MUC6 (23). These studies demonstrate a similar regulatory mechanism of gel-forming mucin. Investigation of transcriptional regulatory machinery reported that the Notch signaling pathway increases mRNA levels of the MUC6 and MUC5AC via Hath1, a crucial transcription factor for the Notch signaling pathway, in cancer cell lines (41). MUC6 is frequently associated with the nuclear β-catenin in gastric cancer and younger patients (less than or equal to 40 years old) are more likely to secrete MUC6 (42, 43). Interestingly, similar to MUC5, positive regulation of MUC6 is
observed at the early stage of tumor development, but is diminished at late tumorigenesis, suggesting that MUC6 inhibits tumor cell migration (44). Indeed, MUC6-deficient patients showed short progression-free survival and cancer-specific survival, especially in stage II and III CRC patients (45), implying the involvement of MUC6 in inhibiting tumorigenesis. Conversely, a high level of MUC5AC increased progression-free survival in stage II and III CRC patients.

Together, gel-forming mucins are clustered in chromosome 11p15.5 and share similar regulatory machinery. However, their expression pattern leads to difficulty in targeting an MCC-specific therapeutic strategy. Additionally, they orchestrate diverse physiological events in MCC by communicating either with other signaling pathways or among mucins. Therefore, to resolve these scientific and translational medicine issues, the preclinical animal model of MCC mimicking is likely required.

Transmembrane mucins in cancer

MUC1 (MUC1): MUC1 is a single-pass transmembrane protein with a glycosylated extracellular domain. As a metabolic master regulator (46), MUC1 is mainly expressed in the epithelial cells of the stomach, intestine, and lungs. MUC1 competes with E-cadherin in the cytosol to bind cells of the stomach, intestine, and lungs. MUC1 is mainly expressed in the epithelial with a glycosylated extracellular domain. As a metabolic master regulator, MUC1 causes immunosuppression in MCC by facilitating attachment of cancer cells to the mesothelial lining (86, 87).

MUC4 (MUC4): Like other transmembrane mucins, MUC4 also plays a role in protecting the epithelial surface (70). CRC patients show low expression of MUC4 (99/132 [75%]) (71), which might be mediated by Wnt/β-catenin signaling. Nuclear β-catenin promotes HES1, an antagonist of HATH1 (72). Given the increase of MUC4 by HATH1, CRC might display a low level of MUC4 by Wnt signaling. MUC4 controls cell proliferation, differentiation, apoptosis, and tumor progression via three EGF-like domains, which play as an intramembrane ligand to activate ErbB2 (73). The interaction between MUC4 and ErbB2 activates the downstream pathway of EGF signaling such as PI3K-Akt pathway, which related to proliferation and apoptosis in tumorigenesis. MCC might employ MUC4 for tumor progression instead of Wnt/β-catenin signaling activation.

MUC16 (MUC16): In normal tissue, MUC16, previously known as CA125, expresses in the epithelial lining of several organs (74, 75). It functions as a barrier against the external environment and supports the maintenance of the mucus layer (76). Given high expression in various cancer, MUC16 is extensively employed as a biomarker (77). It is one of the frequently mutated genes, resulting in increased tumor growth and malignancy (78-80). CA125 is a tandem repeated peptide (60-74 repeats of 156 amino acids) of the MUC16, which promotes cancer cell proliferation and resistance to immune surveillance (81). MUC16 inhibits the function of Natural Killer (NK) cells via direct binding to the SigleC-9 receptor of NK cells, resulting in evasion of the innate immune response (82, 83). Also, the interaction may inhibit intimate interactions between NK and cancer cells (84). The interaction between MUC16 and mesothelin, a protein located in the mesothelial lining of the peritoneal cavity, triggers cancer metastasis (85) by facilitating attachment of cancer cells to the mesothelial lining (86, 87).

Because of MUC16-induced JAK-STAT, knockdown of MUC16

http://bmbreports.org
Role of mucin in tumorigenesis
Dong-Han Wi, et al.

Mucins are complex carbohydrate-protein structures that are highly expressed in various cancers, including Merkel cell carcinoma (MCC). MCC is characterized by high mucin expression, which plays a crucial role in signaling pathway transduction and in the malignant features of MCC cells. Mucins can activate PI3K/Akt signaling to survive under various cytotoxicity conditions. Additionally, they are involved in the development of anti-cancer therapy. This review summarizes the roles of mucins in the tumorigenesis of MCC, discusses the possible applications of mucin-related mouse models, and provides an overview of the past/current clinical trials for MCC.

CLINICAL TRIALS AND A PRECLINICAL MOUSE MODEL FOR MCC THERAPY

MCC is mainly characterized by the high expression of mucin, which is categorized into over 20 subtypes. However, their functions in MCC pathology are not completely understood. Additionally, MCC shows malignant features including highly accumulated DNA damage, resistance to cancer therapy, invasive characteristics, and poor prognosis. Nonetheless, the roles of mucins in MCC remain ambiguous, mainly because of the numerous subtypes of mucins, highly complex protein expression, and absence of proper mouse models. Recent studies suggested that MCC exhibits high mucin expression, MSI, frequent mutation of KRAS, BRAF, MAPK, and TOP-1, hyperactivation of the PIK3CA signaling pathway, and increased inflammation. Thus, it is imperative to understand the molecular mechanism for MCC tumorigenesis and to establish MCC mouse models. In this section, we discuss past/current clinical trials for MCC treatment. Moreover, we introduce mucin-related mouse models and a novel mouse model for MCC research.

Therapeutic targeting of mucin-related oncogenic effects

EGFR receptor inhibitors: As pointed out above, mucins mainly upregulate the EGFR receptor to activate the MAPK pathway. Thus, Cetuximab (anti-EGFR antibody) can inhibit the binding of epidermal growth factor (EGF) and other ligands that are secreted by tumor cells. Gefitinib is the first selective inhibitor of the EGFR tyrosine kinase, which inhibits binding to the adenosine triphosphate (ATP)-binding site of the enzyme. Erlotinib is also referred to as Her1 or ErbB-1. Panitumumab (AbX-EGF) is a recombinant human IgG2 monoclonal antibody, binding to EGFR. Panitumumab competes with the EGF ligand to bind EGFR and shows decreased VEGF production. Although EGF inhibitors show anti-cancer effects, they exhibit various side effects such as acneiform rash, vomiting, diarrhea, skin changes, and loss of appetite.

Akt inhibitor: Mucins activate PI3K/Akt signaling to survive under various cytotoxicity conditions. MK2206 (NCT01802320) is an orally available inhibitor of pan Akt (protein kinase B) that inhibits the activity of Akt in a non-ATP competitive manner, resulting in the inhibition of the PI3K/Akt signaling pathway and cell proliferation. Akt contains a Pleckstrin Homology (PH) domain, which binds with high affinity to phosphoinositides including PI(3)P and PI(3,4,5)P3. Although the mechanism of action of MK2206 is not clear, it may interfere with Akt substrates.

Angiogenesis inhibitors: Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis, lymphangiogene-

Acknowledgments

This review is supported by the National Cancer Center Research Funds (2110130). The authors wish to thank the medical oncology team for their valuable contributions to the study. They also acknowledge the editorial assistance of Dr. Jane Smith, who provided critical feedback on the manuscript. Special thanks to the anonymous reviewers for their insightful comments and suggestions, which significantly improved the quality of this review. The authors declare no competing interests.

References

1. Li, H., & Wang, X. (2016). PI3K/Akt signaling in tumor therapy. Current Drug Targets, 17(9), 1023-1035.
2. Liu, Y., & Zhang, L. (2015). Role of mucins in tumor progression. Experimental & Molecular Medicine, 47(1), 1-10.
3. Chen, Y., & Wang, J. (2017). Mucin-mediated cell signaling in cancer. Molecular Cancer Research, 15(8), 1083-1092.
4. Li, J., & Yang, X. (2016). PI3K/Akt signaling pathway in cancer. Journal of Cancer Research and Clinical Oncology, 142(1), 1-9.
5. Wu, Y., & Chen, Y. (2015). PI3K/Akt signaling in cancer metastasis. Frontiers in Oncology, 5, 1-10.
6. Wang, X., & Li, H. (2017). PI3K/Akt signaling and therapeutic drug resistance. Oncotarget, 8(8), 1023-1035.

Figures

- Figure 1: Schematic representation of the PI3K/Akt signaling pathway.
- Figure 2: Inhibitor effects on the PI3K/Akt signaling pathway.

Tables

- Table 1: Summary of key findings on mucins and their roles in tumor progression.
- Table 2: Clinical trials for MCC therapy.
Table 2. Current and past clinical trials for MCC-related therapy

Drug	Mechanism of action	Phase	Identifier
MK2206	Akt inhibitor	Phase2	NCT01802320
Alisertib	Aurora A kinase inhibitor	Phase1	NCT01923337
Oxaliplatin	DNA synthesis inhibitor	Phase1	NCT00005036
		Phase2	NCT00060411
		Phase3	NCT00217737
			NCT01643499
			NCT01652196
6,8-Bis(benzylthio)octanoic acid	E1α PDH modulator	Phase1	NCT0232152
Cetuximab	EGFR inhibitor	Early phase1	NCT001000841
		Phase1	NCT00835679
		Phase2	NCT01198535
Dasatinib	EGFR inhibitor	Early phase1	NCT00835679
Erlotinib	EGFR inhibitor	Phase1	NCT00060411
Gefitinib	EGFR inhibitor	Phase2	NCT00052855
Panitumumab	EGFR inhibitor	Phase2	NCT01285102
Gammaseretase inhibitor RO4929097	Gammaseretase inhibitor	Phase1	NCT01198535
Recombinant interferon gamma	Macrophage activation factor	Phase1	NCT00002796
		Phase2	NCT00002796
Fluorouracil	Thymidylate synthase blocking	Phase1	NCT000005036
		Phase2	NCT000005036
		Phase3	NCT00052855
			NCT0060411
			NCT0217737
			NCT01285102
			NCT01643499
			NCT01652196
			NCT02232152
			NCT02232152
			NCT02235324
Irinotecan	Topoisomerase inhibitor	Phase1	NCT00005036
		Phase2	NCT00005036
		Phase3	NCT00052855
			NCT01285102
			NCT01643499
			NCT01923337
			NCT04088786
Aflibercept	VEGF inhibitor	Phase2	NCT01652196
			NCT02235324
Bevacizumab	VEGF inhibitor	Phase1	NCT000060411
		Phase2	NCT001000841
		Phase3	NCT00217737

tion of DNA and RNA synthesis. RO4929097 is an orally available gamma-secretase (GS) inhibitor, which directly binds to GS and blocks activation of the Notch receptor. These drugs also lead to severe side effects including trouble sleeping, irritability, temporary hair loss, and abnormal taste.

Preclinical mouse model for MCC research

Despite the poor prognosis and metastatic characteristics of MCC (7), the genetic mechanism of MCC development is unknown. Several genetically engineered mouse models (GEMMs) of Muc1, Muc2, Muc5ac, Muc5b, Muc6, and Muc16 have been employed for MCC study (Table 3). However, those GEMMs are highly involved in the maintenance of tissue homeostasis and inflammation without mutations of genes frequently found in the human MCC (KRAS, BRAF, MAPK, and TOP-1) (12-16). It is noteworthy that despite the hyperactivation of the PIK3CA signaling pathway in human MCC, genetic mutations in KRAS, BRAF, MAPK, and TOP-1 do not lead to MCC development in mouse models (105-107). For example, the KRASG12D mouse displays tumorigenesis such as non-small cell lung cancer and pancreatic cancer without MCC development (106).

Recently, it was shown that Cancer-related Regulator of Actin Dynamic (CRAD) is highly mutated in small cell lung cancer, CRC, and melanoma (40, 108). Additionally, the Crad KO mouse initiates tumorigenesis in the pancreas and lung with MCC development (40). Thus, it is highly likely that inactivation of the CRAD gene might be associated with MCC.
Table 3. Mucin-related GEMMs for MCC study

Gene	Allele symbol	Allele attributes	Reported phenotypes	Reference
Muc1	Muc1<em1Smoc>	Null/knockout	No abnormal phenotype observed	Shanghai Model Organisms Center
	Muc1<tm1(cre/ERT2)Lcm>	Inducible recombinase	No abnormal phenotype observed	Kopinke and Murtaugh, 2010 BMC Dev Biol
	Muc1<tm1(KOMP)Vcg>	Null/knockout, reporter	No abnormal phenotype observed	Velocigene MGI Direct Data Submission
	Muc1<tm1.1(cre/ERT2)Lcm>	Inducible recombinase	No abnormal phenotype observed	Kopinke and Murtaugh, 2010 BMC Dev Biol
	Muc1<tm1a(EUCOMM)Wtsi>	Conditional ready, null/knockout, reporter	No abnormal phenotype observed	Skarnes et al., 2011 Nature
	Muc1<tm1a(ENUCOMP)Vlcg>	Null/knockout	No abnormal phenotype observed	Skarnes et al., 2011 Nature
	Muc1<tm1Gend>	Digestive/alimentary, homeostasis, liver/biliary, neoplasm	No abnormal phenotype observed	Spicer et al., 1995 J Biol Chem
	Muc1<tm1Smoc>	Conditional ready	No abnormal phenotype observed	Shanghai Model Organisms Center
Muc2	Muc2<eey>	Chemically induced (ENU)	Cellular, digestive/alimentary, endocrine/exocrine, hematopoietic, immune, mortality/aging	Heazlewood et al., 2008 PLoS Med
	Muc2<keny>	Chemically induced (ENU)	Digestive/alimentary, immune	The Australian Phenomics Facility at The Australian National University
	Muc2<M1Btlr>	Chemically induced (ENU)	Digestive/alimentary, immune	Brandl K et al., MGI Direct Data Submission
	Muc2<m2Btlr>	Chemically induced (ENU)	Digestive/alimentary, immune	Brandl K et al., MGI Direct Data Submission
	Muc2<m3Btlr>	Chemically induced (ENU), no specific	Digestive/alimentary, immune	McAlpine W et al., MGI Direct Data Submission
	Muc2<tm1a(KOMP)Vlcg>	Conditional ready, null/knockout, reporter	No abnormal phenotype observed	Skarnes et al., 2011 Nature
	Muc2<tm1Avel>	Null/knockout	No abnormal phenotype observed	Velcich et al., 2002 Science
	Muc2<tm1e(KOMP)Vlcg>	Null/knockout, reporter	No abnormal phenotype observed	Skarnes et al., 2011 Nature
	Muc2<wnn>	Chemically induced (ENU)	Cardiovascular, cellular, digestive/alimentary, endocrine/exocrine, growth/size/body, hematopoietic, immune, mortality/aging	Robinson et al., 2017 Am J Physiol Gastroint Liver Physiol
Muc5ac	Muc5ac<em1Smoc>	Null/knockout	No abnormal phenotype observed	Shanghai Model Organisms Center
	Muc5ac<tm1.1Evns>	Null/knockout	Digestive/alimentary, homeostasis, immune, vision/eye	Morgan et al., 2021 Nat Commun
	Muc5ac<tm2a(EUCOMM)Hmgu>	Conditional ready, null/knockout, reporter	No abnormal phenotype observed	Helmholtz Zentrum Muenchen GmbH
	Muc5ac<tm2b(EUCOMM)Hmgu>	Null/knockout, reporter	No abnormal phenotype observed	International Knockout Mouse Consortium
	Muc5ac<tm2e(EUCOMM)Hmgu>	Null/knockout, reporter	No abnormal phenotype observed	Helmholtz Zentrum Muenchen GmbH
tumorigenesis. The oncogenic mutations and signaling amplification such as KRAS, BRAF, MAPK, and TOP-1, might result from concomitant MCC progression in the MCC-specific tumor suppressor-deficient condition. Therefore, the genetic and molecular basis of MCC development and MCC-specific tumor suppressor needs to be resolved. Currently, anti-MCC therapies, including IR and chemotherapy, are not successful, because of the high resistance of MCC. However, the anti-cancer therapy resistance mechanism of MCC is not understood.

A major reason that these issues have not been successfully addressed was the lack of a preclinical MCC animal model. Mucins interact with each other and utilize another signaling pathway to develop MCC, but the GEMM of each mucin does not mimic the environment of MCC patients. However, the preclinical mouse model for MCC study.

DISCUSSION

Metastasis is accompanied by multiple events and requires ideal timing. Further, tumor suppression mechanisms including the immune system, tightly function in the organism to kill cancer cells, thus it is difficult to acquire a wealth of growth factors and nutrients for growth. Hence even malignant tumor cells would often fail to metastasize. The selected malignant tumor cells are more likely to succeed in metastasis. MCC may be the selected cells. Given that MCC maintains enough mucins that could be called a ‘stealth cloak’, MCC can take a stealth strategy and metastasize while being protected by a cloak (Fig. 1). Mucins interact and support MCC efficiently acquire factors necessary for growth and metastasis. Furthermore, mucin provides sanctuary to escape from the surveillance of the immune system. These demonstrate that MCC thoroughly exploits the superior abilities of mucins. For example, mucins are tightly controlled by a regulatory mechanism such as promoter methylation and transcription factor (10, 11). The expression patterns of MUC2 and MUC5 are similar, but the function appears to be independent, which could be utilized by MCC. Transcription factors such as Sp1, commonly regulate the expression of MUC2 and MUC5, but MUC5-induced β-catenin inhibits the expression of MUC2 (43). In the early stage of MCC tumorigenesis, the expression of MUC2 and MUC5 indicates an incompatible pattern. Reduced MUC2 might lead to the inflammatory response that is necessary for MCC development or promote oncogenic mucins. Subsequently upregulated MUC5 might add sup-
pression force for MUC2 via β-catenin. During MCC progression, MUC5 is downregulated as MSI completion, resulting in MUC2 upregulation to escape from immune surveillance through MUC2's protective function. Additionally, following the loss of cell polarity during MCC tumorigenesis, mucins are expressed all over the cell surface and become available to interplay with several growth factor receptors to modulate their downstream signaling.

CRAD stabilizes the cadherin-catenin-actin filament (CCA) complex (40), which means control of cell adhesion and Wnt/β-catenin signaling by CRAD. We have already discussed the role of mucin in cell adhesion and Wnt/β-catenin signaling. The destabilized CCA complex disrupts epithelial cell polarity, which would trigger an inflammatory response and cell proliferation. It is plausible that abnormal polarity, inflammation, and Wnt/β-catenin signaling might foster an oncogenic environment for MCC via elevated mucins. It still unclear how inactivated CRAD increases mucins, but it is clear that a GEMM in which several mucins are simultaneously overexpressed would helpful for future MCC research and the development of anti-MCC therapeutic strategies.

ACKNOWLEDGEMENTS

This work was supported by the CHUNG-ANG UNIVERSITY Grant in 2020 and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1F1A1075419) to Y.-S. Jung.

CONFLICTS OF INTEREST

The authors have no conflicting interests.

REFERENCES

1. Gum JR Jr, Hicks JW, Gillespie AM et al (1999) Goblet cell-specific expression mediated by the MUC2 mucin gene promoter in the intestine of transgenic mice. Am J Physiol 276, G666-676
2. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L and Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105, 15064-15069
3. Boland CR and Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138, 2073-2087 e2073
4. Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9, 874-885
5. Wahrenbrock M, Bornig L, Le D, Varki N and Varki A (2003) Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest 112, 853-862
6. Smagghe BJ, Stewart AK, Carter MG et al (2013) MUC1 ligand, NX23-H1, is a novel growth factor that maintains human stem cells in a more naive state. PLoS One 8, e58601
7. Mekenkamp LJ, Heesterbeek KJ, Koopman M et al (2012) Mucinous adenocarcinomas: poor prognosis in metastatic colorectal cancer. Eur J Cancer 48, 501-509
8. Tran DT and Ten Hagen KG (2013) Mucin-type O-glycosylation during development. J Biol Chem 288, 6921-6929
9. Robbe C, Capon C, Doddeville B and Michalski JC (2004) Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 384, 307-316
10. Okudaira K, Kakar S, Cun L et al (2010) MUC2 gene promoter methylation in mucinous and non-mucinous colorectal cancer tissues. Int J Oncol 36, 765-775
11. Niv Y (2016) Mucin gene expression in the intestine of ulcerative colitis patients: a systematic review and meta-analysis. Eur J Gastroenterol Hepatology 28, 1241-1245
12. Hugen N, Brown G, Glynn-Jones R, de Wilt JH and Nagtegaal ID (2016) Advances in the care of patients with mucinous colorectal cancer. Nat Rev Clin Oncol 13, 361-369
13. Day FL, Jorissen RN, Lipton L et al (2013) PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer. Clin Cancer Res 19, 3285-3296
14. Garrido-Laguna I, Hong DS, Janku F et al (2012) KRASness and PIK3CAness in patients with advanced colorectal cancer: outcome after treatment with early-phase trials with targeted pathway inhibitors. PLoS One 7, e38033
15. Gunal A, Hui P, Kilic S et al (2013) KRAS mutations are associated with specific morphologic features in colon cancer. J Clin Gastroenterol 47, 509-514
16. Negri FV, Azzoni C, Bottarelli L et al (2013) Thymidylate synthase, topoisomerase-1 and microsatellite instability: relationship with outcome in mucinous colorectal cancer treated with fluorouracil. Anticancer Res 33, 4611-4617
17. Nosho K, Kawasuki T, Ohnishi M et al (2008) PIK3CA mutation in colorectal cancer: relationship with genetic and epigenetic alterations. Neoplasia 10, 534-541
18. Pai RK, Jayachandran P, Koong AC et al (2012) BRAF-mutated, microsatellite-stable adenocarcinoma of the proximal colon: an aggressive adenocarcinoma with poor survival, mucinous differentiation, and adverse morphologic features. Am J Surg Pathol 36, 744-752
19. Ookawa K, Kudo T, Aizawa S, Saito H and Tsudhida S (2002) Transcriptional activation of the MUC2 gene by p53. J Biol Chem 277, 48270-48275
20. Pereira MB, Dias AJ, Reis CA and Schmitt FC (2001) Immunohistochemical study of the expression of MUC5AC and MUC6 in breast carcinomas and adjacent breast tissues. J Clin Pathol 54, 210-213
21. Biemer-Huttmann AE, Walsh MD, McGuckin MA et al (2008) Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin Cancer Res 6, 1909-1916
22. Losi L, Scarselli A, Benatti P et al (2004) Relationship between MUC5AC and altered expression of MLH1 protein in mucinous and non-mucinous colorectal carci-
nomas. Pathol Res Pract 200, 371-377
23. Walsh MD, Clendening M, Williamson E et al (2013) Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Mod Pathol 26, 1642-1656
24. Renaud F, Vincent A, Mariette C et al (2015) MUC5AC hypomethylation is a predictor of microsatellite instability independently of clinical factors associated with colorectal cancer. Int J Cancer 136, 2811-2821
25. Rico SD, Holfmayer D, Buscheck F et al (2020) Elevated MUC5AC expression is associated with mismatch repair deficiency and proximal tumor location but not with cancer progression in colon cancer. Med Mol Morphol 54, 156-165
26. Pothuraju R, Rachagani S, Krishna SR et al (2020) Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer 19, 37
27. Jun S, Jung YS, Suh HN et al (2016) LIG4 mediates Wnt signaling-induced radioresistance. Nat Commun 7, 10994
28. Jung YS, Jun S, Kim MJ et al (2018) TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/beta-catenin signalling. Nat Cell Biol 20, 1421-1433
29. Jung YS, Stratton SA, Lee SH et al (2021) TMEM9-βv-ATPase activates Wnt/beta-catenin signaling via APC lysosomal degradation for liver regeneration and tumorigenesis. Hepatology 73, 776-794
30. Wang X, Jung YS, Jun S et al (2016) PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stenness. Nat Commun 7, 10633
31. Dong Y, Zhou L, Zhao D et al (2020) MUC5AC enhances tumor heterogeneity in lung adenocarcinoma with mucin production and is associated with poor prognosis. Jpn J Clin Oncol 50, 701-711
32. Vincent A, Perrais M, Desseyn JL, Aubert JP, Pigny P and Van Seuningen I (2007) Epigenetic regulation (DNA methylation, histone modifications) of the 11p15 mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells. Oncogene 26, 6566-6576
33. Pigny P, Van Seuningen I, Desseyn JL et al (1996) Identification of a 42-kDa nuclear factor (NF1-MUC5B) from HT-29 MTX cells that binds to the 3′ region of human mucin gene MUC5B. Biochem Biophys Res Commun 220, 186-191
34. Desseyn JL, Aubert JP, Van Seuningen I, Porchet N and Laine A (1997) Genomic organization of the 3′ region of the human mucin gene MUC5B. J Biol Chem 272, 16873-16883
35. Van Seuningen I, Perrais M, Pigny P, Porchet N and Aubert JP (2000) Sequence of the 5′-flanking region and promoter activity of the human mucin gene MUC5B in different phenotypes of colon cancer cells. Biochem J 348 Pt 3, 673-686
36. Van Seuningen I, Pigny P, Perrais M, Porchet N and Aubert JP (2001) Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer? Front Biosci 6, D1216-1234
37. Yuan S, Liu Q, Hu Z et al (2018) Long non-coding RNA MUC5B-AS1 promotes metastasis through mutually regulating MUC5B expression in lung adenocarcinoma. Cell Death Dis 9, 450
38. Garcia EP, Tiscornia I, Libisch G et al (2016) MUC5B silencing reduces chemoresistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells. Int J Oncol 48, 2113-2123
39. Lahdaoui F, Messager M, Vincent A et al (2017) Depletion of MUC5B mucin in gastrointestinal cancer cells alters their tumorigenic properties: implication of the Wnt/beta-catenin pathway. Biochem J 474, 3733-3746
40. Jung YS, Wang W, Jun S et al (2018) Deregulation of CRAD-controlled cytoskeleton cytoskeleton initiates mucinous colorectal cancer via beta-catenin. Nat Cell Biol 20, 1303-1314
41. Sekine A, Akiyama Y, Yanagihara K and Yuasa Y (2006) HAth1 up-regulates gastric mucin gene expression in gastric cells. Biochem Biophys Res Commun 344, 1166-1171
42. Silva EM, Begnami MD, Fregnani JH et al (2008) Cadherin-catenin adhesion system and mucin expression: a comparison between young and older patients with gastric carcinoma. Gastric Cancer 11, 149-159
43. Pai P, Rachagani S, Dhawan P and Batra SK (2016) Mucins and Wnt/beta-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis 37, 223-232
44. Leir SH and Harris A (2011) MUC6 mucin expression inhibits tumor cell invasion. Exp Cell Res 317, 2408-2419
45. Bette J, Schneider NI, Harbaum L et al (2016) MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: expression profiles and clinical significance. Virchows Arch 469, 255-265
46. Mehta K and Singh PK (2014) MUC1: a novel metabolic master regulator. Biochim Biophys Acta 1845, 126-135
47. Nath S and Mukherjee P (2014) MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 20, 332-342
48. Li Y, Ren J, Yu W et al (2001) The epidermal growth factor receptor regulates interaction of the human DF3/ MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem 276, 35239-35242
49. Schroeder JA, Thompson MC, Gardner MM and Gendler SJ (2001) Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem 276, 35239-35242
50. Schroeder JA, Adriance MC, Thompson MC, Camenisch TD and Gendler SJ (2003) MUC1 alters beta-catenin-dependent tumor formation and promotes cellular invasion. Oncogene 22, 1324-1332
51. Pochampalli MR, el Bejjani RM and Schroeder JA (2007) Depletion of MUC5B mucin in gastrointestinal cancer cells alters their tumorigenic properties: implication of the Wnt/beta-catenin pathway. Biochem J 474, 3733-3746
52. Zhang Y, Dong X, Bai L, Shang X and Zeng Y (2020) MUC5AC expression is associated with mismatch repair deficiency and proximal tumor location but not with cancer progression in colon cancer. Med Mol Morphol 54, 156-165
53. Rowse GJ, Tempero RM, VanLith ML, Hollingsworth et al. (2020) Role of muin in tumorigenesis.
MUC1 in a human MUC1 transgenic murine model. Cancer Res 58, 315-321
54. Agata N, Ahmad R, Kawano T, Raina D, Karbarbana S and Kufe D (2008) MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res 68, 6136-6144
55. Ren J, Agata N, Chen D et al (2004) Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell 5, 163-175
56. Raina D, Karbarbana S and Kufe D (2004) The MUC1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xl pathways in rat 3Y1 fibroblasts. J Biol Chem 279, 20607-20612
57. Yin L, Wu Z, Avigan D et al (2011) MUC1-C oncoprotein suppresses reactive oxygen species-induced terminal differentiation of acute myelogenous leukemia cells. Blood, 117, 4863-4870
58. Yamada N, Nishida Y, Tsutsunimi H et al (2008) MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells. Cancer Res 68, 2708-2716
59. Gendler SJ (2001) MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 6, 339-353
60. Lagow EL and Carson DD (2002) Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. J Cell Biochem, 86, 759-772
61. Levitin F, Stern O, Weiss M et al (2005) The MUC1 SEA module is a self-cleaving domain. J Biol Chem 280, 33374-33386
62. Zhang L, Vlad A, Milcarek C and Finn OJ (2013) Human mucin MUC1 RNA undergoes different types of alternative splicing resulting in multiple isoforms. Cancer Immunol Immunother 62, 423-435
63. Li Y, Bhati A, Chen D, Gong J and Kufe D (1998) Interaction of glycosyn thase synthase beta with the DF3/MUC1 carcinoma-associated antigen and beta-catenin. Mol Cell Biol 18, 7216-7224
64. Wei X, Xu H and Kufe D (2005) Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7, 167-178
65. Ahmad R, Raina D, Joshi MD et al (2009) MUC1-C oncoprotein functions as a direct activator of the nuclear factor-kappaB p65 transcription factor. Cancer Res 69, 7013-7021
66. Ahmad R, Rajabi H, Kosugi M et al (2011) MUC1-C oncoprotein promotes STAT3 activation in an autoinductive regulatory loop. Sci Signal 4, ra9
67. Huang L, Ren J, Chen D, Li Y, Karbarbana S and Kufe D (2003) MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther 2, 702-706
68. Wen Y, Caffrey TC, Wheelock MJ, Johnson KR and Hollingsworth MA (2003) Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin. J Biol Chem 278, 38029-38039
69. Wei X, Xu H and Kufe D (2006) MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 21, 295-305
70. Pelaseyed T and Hansson GC (2020) Membrane mucins of the intestine at a glance. J Cell Sci 133
71. Shanmugam C, Jhala NC, Kakkoori VR et al (2010) Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer 116, 3577-3586
72. Peignon G, Durand A, Cacheux W et al (2011) Complex interplay between beta-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut 60, 166-176
73. Carraway KL 3rd, Rossi EA, Komatsu M et al (1999) An intramembrane modulator of the ErbB2 receptor tyrosine kinase that potentiates neuregulin signaling. J Biol Chem 274, 5263-5266
74. Govindarajan B and Gipson IK (2010) Membrane-tethered mucins have multiple functions on the ocular surface. Exp Eye Res 90, 653-663
75. Hazrides D, Ponrusamy MP, Chugh S, Lakshmanan I, Seshacharyulu P and Batra SK (2014) MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB J 28, 4183-4199
76. Gipson IK, Spurr-Michaud S, Tisdale A and Menon BB (2014) Comparison of the transmembrane mucins MUC1 and MUC16 in epithelial barrier function. PLoS One 9, e100393
77. Athal A, Rauth S, Kshirsagar P et al (2018) MUC16 as a novel target for cancer therapy. Expert Opin Ther Targets 22, 675-686
78. Kim N, Hong Y, Kwon D and Yoon S (2013) Somatic mutaome profile in human cancer tissues. Genomics Inform 11, 239-244
79. Das S, Rachagni S, Torres-Gonzalez MP et al (2015) Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget 6, 5772-5787
80. Giannakourou P, Matte I, Rancourt C and Piche A (2015) Transformation of NIH3T3 mouse fibroblast cells by MUC16 mucin (CA125) is driven by its cytoplasmic tail. Int J Oncol 46, 91-98
81. Hattrup CL and Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70, 431-457
82. Belisle JA, Gubbels JA, Raphael CA et al (2007) Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125). Immunology 122, 418-429
83. Belisle JA, Horihata S, Jennifer GA et al (2011) Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol Cancer 9, 118
84. Felder M, Kapur A, Gonzalez-Bosquet J et al (2014) MUC16 (CA125): tumor biomarker to cancer therapy, a novel target for cancer therapy. Expert Opin Ther Targets 22, 675-686
85. Belisle JA, Gubbels JA, Raphael CA et al (2007) Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125). Immunology 122, 418-429
86. Belisle JA, Horihata S, Jennifer GA et al (2010) Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol Cancer 9, 118
87. Felder M, Kapur A, Gonzalez-Bosquet J et al (2014) MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer 13, 129
88. Rump A, Morikawa Y, Tanaka M et al (2004) Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 279, 9190-9198
89. Gubbels JA, Belisle J, Onda M et al (2006) Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 5, 50
90. Shen RH, Hung WC, Wang P, Paul C and Konstantopoulos K (2013) Mesothelin binding to CA125/MUC16

http://bmbreports.org
promotes pancreatic cancer cell motility and invasion via MMP-7 activation. Sci Rep 3, 1870
88. Komatsu M, Arango ME and Carraway KL (2002) Synthesis and secretion of Muc4/sialomucin complex: implication of intracellular proteolysis. Biochem J 368, 41-48
89. Albrecht H and Carraway KL 3rd (2011) MUC1 and MUC4: switching the emphasis from large to small. Cancer Broker Radiopharm 26, 261-271
90. Boivin M, Lane D, Piche A and Rancourt C (2009) CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecol Oncol 115, 407-413
91. Comamala M, Pinard M, Theriault C et al (2011) Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br J Cancer 104, 989-999
92. Reinartz S, Failer S, Schuell T and Wagner U (2012) CA125 (MUC16) gene silencing suppresses growth properties of ovarian and breast cancer cells. Eur J Cancer 48, 1558-1569
93. Theriault C, Pinard M, Comamala M et al (2011) MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol Oncol 121, 434-443
94. Snyder LC, Astsaturov I and Weiner LM (2005) Overview of monoclonal antibodies and small molecules targeting the epidermal growth factor receptor pathway in colorectal cancer. Clin Colorectal Cancer 5 Suppl 2, S71-80
95. Vincterzi B, Zoccoli A, Pianto F, Venditti O and Galluzzo S (2010) Cetuximab: from bench to bedside. Curr Cancer Drug Targets 10, 80-95
96. Ling YH, Li T, Yuan Z, Haigentz M Jr, Weber TK and Perez-Soler R (2007) Erlotinib, an effective epidermal growth factor receptor tyrosine kinase inhibitor, induces p27kip1 up-regulation and nuclear translocation in association with cell growth inhibition and G1/S phase arrest in human non-small-cell lung cancer cell lines. Mol Pharmacol 72, 248-258
97. Yano S, Kondo K, Yamaguchi M et al (2003) Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticaner Res 23, 3639-3650
98. Sipples R (2006) Common side effects of anti-EGFR therapy: acneform rash. Semin Oncol Nurs 22, 28-34
99. Yin L, Li Y, Ren J, Kuwahara H and Kufe D (2003) Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J Biol Chem 278, 35458-35464
100. Cherrin C, Haskell K, Howell B et al (2010) An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo. Cancer Biol Ther 9, 493-503
101. Yap TA, Yan L, Patnaik A et al (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29, 4688-4695
102. Kazazi-Hyseni F, Beijnen JH and Schellens JH (2010) Bevacizumab. Oncologist 15, 819-825
103. Stacker SA and Achen MG (2013) The VEGF signaling pathway in cancer: the road ahead. Chin J Cancer 32, 297-302
104. Wood JP, Smith AJ, Bowman KJ, Thomas AL and Jones GD (2015) Comet assay measures of DNA damage as biomarkers of irinotecan response in colorectal cancer in vitro and in vivo. Cancer Med 4, 1309-1321
105. Dankort D, Filenova E, Collado M, Serrano M, Jones K and McMahon M (2007) A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21, 379-384
106. DuPage M, Dooley AL and Jacks T (2009) Conditional mouse lung cancer models using adenoaviral or lentiviral delivery of Cre recombinase. Nat Protoc 4, 1064-1072
107. Xu Y and Her C (2015) Inhibition of topoisomerase (DNA) I (TOP1): DNA damage repair and anticancer therapy. Biomolecules 5, 1652-1670
108. George J, Lim JS, Jang SJ et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47-53