Case Report

Recent decline in the use of invasive neurocritical care monitoring for traumatic brain injury: A case report

Ramsis F. Ghaly1,2,3, Armen Haroutanian1, Parnia Khamooshi1, Jessica Patricoski2, Kenneth D. Candido1,3, Nebojsa Nick Knezevic1,3

1Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, 2Ghaly Neurosurgical Associates, Aurora, 3Department of Anesthesiology, University of Illinois, Chicago, Illinois, United States.

E-mail: *Ramsis F. Ghaly - rfghaly@aol.com; Armen Haroutanian - armenh12@gmail.com; Parnia Khamooshi - parnia.khamooshi@gmail.com; Jessica Patricoski - j.a.patricoski@tcu.edu; Kenneth D. Candido - kdcandido1@gmail.com; Nebojsa Nick Knezevic - nick.knezevic@gmail.com

INTRODUCTION

Traumatic brain injury (TBI) causes significant morbidity and mortality in the United States; 1.7 million TBIs account for 275,000 hospitalizations and 52,000 deaths annually. Over the past few decades, patients with TBI were connected to various invasive hemodynamic and cerebral monitors including central venous pressure, pulmonary capillary wedge pressure, pulmonary artery catheter, electroencephalography, transcranial Doppler (TCD), ideal hemoglobin, brain tissue oxygen monitoring, and sensory evoked potentials. A recent meta-analysis study by Stein et al. confirmed that invasive treatments of TBI patients resulted in 12% decrease in mortality and 6% increase in favorable outcomes.

However, despite these “benefits,” many centers are failing to utilize continuous invasive hemodynamic and cerebral monitoring critical care settings to maximize recovery from TBI. Guidelines are now primarily comprised of review articles and evidence-based practices with a lack of published evidence with respect to the Brain Trauma Foundation (BTF) guidelines.

Keywords: Brain trauma foundation, Decline invasive monitoring, Intracranial pressure, Neurocritical monitoring, Traumatic brain injury
CASE DESCRIPTION

A 52-year-old Caucasian male sustained a TBI due to a motor vehicle accident. He had a Glasgow Coma Scale (GCS) of 13; his mean arterial pressure of 60 mmHg was maintained by a norepinephrine drip. When he developed a dilated left pupil with decerebrate posturing (GCS 5), he required intubation. The computed tomography (CT) showed a large left epidural hematoma (EDH) with a 2 cm midline shift warranting a craniotomy [Figures 1 and 2]. During the surgery, no intracranial pressure (ICP) monitor was placed.

Postoperatively, in the neurocritical invasive care unit, standard ASA monitoring included oxygen saturation (pulse oximeter), end-tidal CO$_2$ monitoring, standard electrocardiographic, arterial line monitoring of blood pressure (BP), and serial arterial blood gas assessments were performed.

The postoperative CT scans showed continued resolution of the EDH and improvement of the edema and midline shift (GCS of 6–7). However, at the end of the 2nd week, the patient expired due to complications of TBI (e.g., multiorgan failure). The main question is whether the use of an ICP monitor would have changed this patient’s course and outcome.

DISCUSSION

The BTF most recently cited three parameters for management guidelines; CPP, ICP, and jugular bulb monitoring of arteriovenous oxygen content difference [Table 1].[2]

ICP monitoring

The BTF recommends that “ICP should be monitored in all salvageable patients with a severe TBI and an abnormal CT scan.” Furthermore, ICP monitoring is indicated in patients with severe TBI with a normal CT scan if two or more of the following features are noted at admission: age over 40 years, unilateral or bilateral motor posturing, or systolic BP <90 mmHg. A meta-analysis study by Stein et al. showed 12% decrease in mortality and 6% increase in favorable outcomes in patients with ICP monitors.[6]

Jugular bulb venous saturation monitoring

The jugular venous oxygen saturation (SjvO2) is an indicator of both cerebral oxygenation and cerebral metabolism.

| Table 1: Updated monitoring recommendations for traumatic brain injury from the 4th edition Brain Trauma Foundation. |
Topic	Recommendation
Intracranial pressure monitoring	Level IIB
Management of severe TBI in patients using information from ICP monitoring is recommended to reduce in hospital and 2-week postinjury mortality	
Recommendation from the prior (third) edition is not supported by evidence meeting current standards[1]	
Cerebral perfusion pressure monitoring	Level IIB
Management of severe TBI patients using guideline-based recommendations for CPP monitoring is recommended to decrease 2-week mortality[1]	
Advanced cerebral monitoring	Level III
Jugular bulb monitoring of arteriovenous oxygen content difference may be considered to reduce mortality and improve outcomes at 3 and 6 months postinjury[4]	

Figure 1: Axial computed tomography scan showing midline shift.

Figure 2: Craniotomy incision.
There have been improvements in outcome by utilizing this method along with ICP/CPP monitoring in comparison with traditional methods alone.[6,7]

Brain tissue oxygen tension

Brain tissue oxygenation (Pti02) is a modality used to measure bedside focal brain oxygenation using a microcatheter inserted in the frontal white matter. Studies have demonstrated favorable outcomes in patients with combined ICP/CPP and Pti02-guided therapy.[3]

Microdialysis monitoring of extracellular glutamate

Several studies have implied a key role of glutamate, an excitatory amino acid, in the pathophysiology of a TBI.[3] One Class III study demonstrated that TBI patients whose glutamate levels normalize within 120 h of monitoring had lower mortality and better outcomes measured by the GCS at 6-month postinjury.[1]

Cerebral autoregulation monitoring with TCD

TCD measures systolic, mean, and diastolic cerebral blood flow (CBF) velocities and calculates the pulsatibility index from basal intracranial arteries and can be useful in patients with severe TBI to detect low CBF.

Analysis of invasive neuromonitoring techniques

The vicious cycle ensues in which the brain is left unmonitored due to evidence-based practices using outcome studies, despite articles demonstrating lack of randomization and hindsight bias (sicker patients were more likely to receive the invasive monitoring).[8] There is no ideal single monitor that improves outcomes; rather, a combination of monitoring and interpretation/integration of data will help optimize the patient care.

Shift away from invasive monitoring

Several ideas may be postulated regarding the possible causes of shifting away from invasive monitoring and the lack of global protocols: (1) defensive medicine; (2) cost-effectiveness; (3) lack of leadership; and (4) limited human resources. Why should a diagnostic test be limited to only addressing mortality reduction, and not toward the accurate detection of the diagnoses, and institution of optimal treatment? Certainly, as in this case, less monitoring does not lead to better outcomes.

CONCLUSION

For treating TBI, multidisciplinary efforts using multimodal approaches should be pursued.[4] Invasive hemodynamic combined with intracranial ICP monitoring together would likely optimize the approach to TBI.

Authors’ contributions

All authors have participated in the preparation of the manuscript and concur with the findings and results.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017;80:6-15.
2. Faul M, Wald MM, Rutland-Brown W, Sullivan EE, Sattin RW. Using a cost-benefit analysis to estimate outcomes of a clinical treatment guideline: Testing the brain trauma foundation guidelines for the treatment of severe traumatic brain injury. J Trauma 2007;63:1271-8.
3. Haddad SH, Arabi YM. Critical care management of severe traumatic brain injury in adults. Scand J Trauma Resusc Emerg Med 2012;20:12.
4. Lazaridis C, Robertson CS. The role of multimodal invasive monitoring in acute traumatic brain injury. Neurosurg Clin N Am 2016;27:509-17.
5. Roh D, Park S. Brain multimodality monitoring: Updated perspectives. Curr Neurol Neurosci Rep 2016;16:56.
6. Stein SC, Georgoff P, Meghan S, Mirza KL, El Falaky OM. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg 2010;112:1105-12.
7. Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondeguil O, Maloney-Wilensky E, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg 2005;103:805-11.
8. Stocchetti N, Le Roux P, Vespa P, Oddo M, Citerio G, Andrews PJ, et al. Clinical review: Neuromonitoring-an update. Crit Care 2013;17:201.
9. Stone JL, Ghaly RF, Hughes JR. Evoked potentials in head injury and states of increased intracranial pressure. J Clin Neurophysiol 1988;5:135-60.