Therapeutic Potential of Rubber Latex: A Review

Malini Devi Raman Ramarao¹, Ong Ming Thong¹, Sunderasan Elumalai²

ABSTRACT

Exploration of the constituents of rubber for medicinal application is very limited due to the concern of allergenicity. However, the recent discovery of the ability of latex sera to exert specific antiproliferative activity against cancer-origin cell lines has paved a light of utilising rubber latex as therapeutics. Rubber latex and its seed oil show many potentials in various biological activities such as antifungal, antioxidant, anti-melanogenesis as well as a biomaterial in relation to angiogenesis. This review describes the current scientifically reported progress on the potential use of rubber in the field of medical research plus positive side concerning latex allergenicity.

Key words: Allergen, Hevea brasiliensis, Natural rubber latex.

Hevea brasiliensis is well-known to produce raw material in the form of rubberwood and latex which has been exploited significantly in downstream of rubber-based industries (Lee and Wendy, 2017). The latex is easily collected by tapping the trunk before coagulated and processed into cured rubber. The harvest is then exported under five products sectors namely tyres & inner tube, footwear, latex products, industrial rubber goods and general rubber goods (Fig 1) with a value of RM11,297.16 million in 2018 (Malaysian Rubber Board, 2018).

The rubber tree is categorized under genus Hevea and family of Euphorbiaceae. Commonly, this tree referred to as ‘sharinga tree’, ‘jebe’, ‘seringueira’, ‘seringueira-rosada’, seringueira-verdadeira in Spanish meanwhile the Italian call it as ‘della gomma’. In Malaysian, it is typically called ‘pokok getah’ (Florence and Fashorant, 2018). Under this genus, only H. brasiliensis, H. guianensis, and H. benthamiana can produce usable rubber as other species have a too high ratio of resin to rubber (Mekonnen, 2015; Florence and Fashorant, 2018). Out of the three, only H. brasiliensis are planted commercially (Florence and Fashorant, 2018). It originates from South America and later introduced to Asian countries during British rule (Hagan et al., 2005). In Malaysia, rubber tree was planted after Sir Henry Wickam brought rubber seed from Brazil in 1876 through Kew garden (Dijkman, 1951).

Despite being of important economic player, surprisingly rubber latex has no reference of use in folk medicine (Duke and Wain, 1981). In the healthcare sector, latex use is limited to the production of the condom, gloves, urinary catheters, dental dams and breathing bags for anaesthesia (Rubio, 2006). Exploration of the medicinal property of rubber is hardly discussed, thus this review compiles researcher’s approaches exploring the biological potential of rubber in addition to discernments on latex allergenicity.

Physicochemical composition of rubber

The proximate analysis shows rubber seed contains iron, calcium and phosphorus as high as 6.2, 109 and 429 mg/100 g, respectively. In addition, it has a total energy value of 702 kcal/100 g (2,948 kJ/100 g) with the total fat content of 48% (Selle et al., 1983). The seed has a moisture content of 3.99%, the protein content of 17.41 g/100 g, the fat content of 48% (Selle et al., 1983). Cyanogenetic glucoside was found as high as 186mg/kg in fresh rubber seed (Eka et al., 2016). However, due to the presence of a high concentration of hydrogen cyanide and cyanogenetic glucoside (Eka et al., 2010; Lee and Wendy, 2017), its utilization as feed creates apprehension.

How to cite this article: Malini Devi, R.R., Ong, M.T. and Sundarasan, E. (2021). Therapeutic Potential of Rubber Latex: A Review. Agricultural Reviews. 42(1): 99-104. DOI: 10.18805/ag.R-138.

1Institute for Research in Molecular Medicine (INFORMM), University Sains, Malaysia, 11800 USM, Pulau Pinang, Malaysia.
2Rubber Research Institute of Malaysia, Malaysian Rubber Board, P.O. Box 10150, Kuala Lumpur, Malaysia.

How to cite this article: Malini Devi, R.R., Ong, M.T. and Sundarasan, E. (2021). Therapeutic Potential of Rubber Latex: A Review. Agricultural Reviews. 42(1): 99-104. DOI: 10.18805/ag.R-138.
the poisonous effect can be eradicated through boiling (Reed, 1976), by roasting at 350°C for 15 minutes (Lee and Wendy, 2017) and also by storing the seeds in dark condition for a minimum period of four months (Fuller, 1988). Indians in the Amazon Valley of South America consumed boiled rubber seed and no adverse effect was reported (Njwe et al., 1988).

H. brasiliensis has been classified as tanniniferous plant due to the high content of tannin in the leaves. It was found that withering of rubber leaves could lower total tannin content yet simultaneously increased content of condensed tannin. Consequently, it was concluded that fresh rubber leaves also could be a source of herbal medicine for ruminants i.e goats (Wigati et al., 2014).

Pharmacology of rubber

Antifungal effect

Latex C-serum was shown to exert specific antifungal activity against *Aspergillus niger* while latex B-serum expressed anti-*Candida albicans* activity (Daruliza et al., 2011; Daruliza et al., 2011). The growth of *Trichosporon cutaneum* and *Cryptococcus neoformans* were inhibited with MIC value of 40.615µg/mL and 56.078 µg/mL respectively (Giordani et al., 2002). FTIR analysis has revealed the presence of abundant proteins in C-serum like hevein which were thought to be responsible for plant defence against fungus (Havanapan et al., 2016; Kerche-Silva et al., 2017).

Anti-melanogenesis

The ability of rubber seed oil to inhibit production of melanin was investigated in B16-F10 melanoma cells and it was demonstrated that inhibition of melanogenesis does take place in concentration-dependent manner. Melanin content, tyrosinase and TRP-2 activity were significantly reduced compared to positive control and this outcome was also correlated with oleic and linoleic acid which accelerates the ubiquitin-proteasome pathway. Consequently, the activity of melanogenic enzyme will decline leading to decreased pigment production. This founding creates another approach to employ rubber seed oil as functional raw material in cosmetic products (Chaikul et al., 2017).

Antiparasitic and insecticidal effects

Based on the World Agroforestry Centre, the oil extracted from the rubber seed is an effective treatment against lice and houseflies. The extracted oil was also used to produce illumination (Brücher, 2012). Besides, a mixture of fresh latex and castor oil can be utilized as vermifuge which kills intestinal worms (Rubio, 2006).

Antioxidant effect

Antioxidant property of latex C-serum has been assessed and it was reported that the serum was able to scavenge hydroxyl, hydrogen peroxide and nitric oxide radicals in a dose-dependent manner and its activity resembled that of ascorbic acid (Kerche-Silva et al., 2017). This scavenging activity can be correlated to naturally present antioxidants in rubber latex namely thiols, ascorbate, γ-tocotrienol, phytosterols, phospholipids, phenols, betaines, proteins and amino acids (Musigamart et al., 2014; Zhang et al., 2017). Rubber seed also exhibited a good antioxidant potential by scavenging DPPH radical and ABTS cationic radical (Lourith et al., 2014). This property was further proven when the oil exhibited a higher cellular protective effect in 3T3-L1 cell line compared to hydrogen peroxide-treated group. The cell viability was found to have no significant difference in between untreated, ascorbic acid-treated group and rubber seed oil treated group. Presence of abundant unsaturated fatty acids especially oleic acid and linoleic acid in rubber seed oil are said to be the responsible factor for its antioxidant activity (Chaikul et al., 2017).

Angiogenesis

Angiogenic and wound healing property of rubber latex were investigated using the chick chorioallantoic membrane assay (CAM) and rabbit ear dermal ulcer model respectively. The result indicated that latex could induce vascularization. Moreover, the latex was found to stimulate neovascularization and tissue growth without provoking rejection from the host. Subsequently, the latex was regarded as a potential biomaterial being able to accelerate wound healing in addition to enhance vascular permeability (Balabanian et al., 2006; Ereno et al., 2010; Mendonça et al., 2010; Mrue et al., 2004). A clinical trial conducted on 107 patients suffering...
from chronic otitis media, whereby transitory latex was employed to underlay tympanoplasty, revealed that transitory latex had good biocompatibility with tissue of human tympanic membrane and was able to induce greater graft vascularization compared to sylastic® implants. It was also reported that no sign of toxicity or allergy manifestation occurred during the trial (Araujo et al., 2012).

Histological analysis has shown that latex biomembrane was able to produce satisfactory recovery of 60% compared to 20% satisfactory recovery in the control group when natural latex biomembrane with 0.1% polysilane was utilized in conjunctival reconstruction in adult New Zealand rabbits. In addition, an average number of vessels per optical field in surgical wound eye with biomembranes was double that of the control group, suggesting that conjunctival scarring and neoangiogenesis can be promoted by the biomembrane (Pinho et al., 2004).

As latex has been shown to be a biomaterial with strong angiogenic property, it has been commercialized as a band-aid curative (BIOCURE®) in over 60 countries around the world for the treatment of ulcers in diabetic patients (Frade et al., 2004; Kerche-Silva et al., 2016) and also in pressure ulcers (Frade et al., 2006). The latex was proposed as drug delivery system whereby the membrane polymerized at room temperature (27°C) was shown to release 66% of its BSA content for up to 18 days (Herculano et al., 2009). Other research groups utilize latex as a carrier to deliver nanoparticles, drug and plant extract to various biological targets (Azevedo Borges et al., 2014; Barros et al., 2015; Dias Murbach et al., 2014; Guidelli et al., 2013; Herculano et al., 2011, 2010; Miranda et al., 2018; Suksaeree et al., 2012). For instance, the latex was integrated into a bidevice which would release S. marginata extract for chronic wounds healing (Barros et al., 2018).

Cytotoxicity studies

The possibility of using rubber latex as a potential anti-cancer agent was first suggested by Ong and co-workers in 2009. It was discovered that B- and C- sera of rubber latex have selectively reduced the growth of cancer-origin cell line (Hela) after being treated for 48 hours with 8-10 ng/ml of rubber latex extract (Ong et al., 2009). In addition, it was found that latex B- and C- sera exhibited low toxicity level in brine shrimp lethality test (BSLT), with LC50 of 461.0 mg/mL and 98.4mg/mL respectively (Daruliza et al., 2011).

Further subfractionation was conducted whereby both B- and C- sera were processed via two different methods namely dialysis and boiling. This generates different subfractions which were B-serum precipitate (BBP), boiled B-serum supernatant (BBS), boiled C-serum precipitate (BCP), boiled C-serum supernatant (BCS), dialysed B-serum precipitate (DBP), dialysed B-serum supernatant (DBS), dialysed C-serum precipitate (DCP) and dialysed C-serum supernatant (DCS) fractions.

It was reported that both latex B- and C- sera were able to elicit specific anti-proliferative activity towards cancer-origin cell lines without affecting the growth of non-cancer-origin cell lines (Havanapan et al., 2016; Kerche-Silva et al., 2017; Sunderasan et al., 2014, 2013). Whole B-serum and its dialyzed fraction DBP were found to be able to eradicate growth of breast cancer-origin cell line i.e. MDA –MB-231 with LC50 of 85.9 μg/mL and 5.4 μg/mL respectively. On the other hand, latex C-serum and its dialyzed fractions, DCP and DCS, were found to reduce the growth of liver cancer-origin cell line HepG2 with LC50 of 889ng/mL, 280 ng/mL and 2 ng/mL respectively (Lam et al., 2012; Sunderasan et al., 2013). According to the National Cancer Institute (NCI), standard IC50 values for the substantial anticancer activity should be less than 30 μg/mL in crude extract and this value was determined based on pre-screening results for antitumor agents by treating plant crude extracts against a panel consisting of 60 cancer cell lines (Suffness, 1990). Hence, rubber latex subfraction is suitable for further screening to elucidate its anti-cancer potential.

DNA laddering assay and qRT-PCR analysis have subsequently revealed that cell death induced by latex C- serum was not via the classical apoptosis death signalling pathway (Lam et al., 2012; Sunderasan et al., 2014). This was further validated through Annexin V and propidium iodide labelling of the C-serum treated HepG2, MCF-7 and MDA-MB231 cell lines. Cell cycle analysis using BrdU incorporation showed the treated cells were arrested in the G0/G1 phase compared to the non-treated cells. Later, the cell death mechanism triggered by DCS- and DCP- treated cells was confirmed to be autoschizis and was visualized using SEM and TEM analysis (Sunderasan et al., 2014). As the cellular mechanisms of autoschizis are still not completely defined now, latex C-serum might serve as a biological model to further unlock the cell death mechanisms.

Recently, cell viability guided fractionation of C-serum was performed and it was found that the antiproliferative activity of DCS-F2 and DCS-F3 might due to abundant presence of proteins which include malate dehydrogenase, protease inhibitors, latex cystatin, nucleoside diphosphate kinases and fructose biphosphate aldolase (Lam et al., 2015). In vivo studies would be necessary to elucidate the potential of rubber latex sera as an agent in cancer treatment.

Another research group isolated nine compounds from the shell of rubber seed and performed MTT cytotoxicity assay. It was found that only buddlenol A cause growth inhibition with an IC50 value of 20.6 μmol/L against B16 melanoma, a murine tumor cell line used as a model for human skin cancers. Out of the nine isolated compounds, isoaamericanolA, americanol, buddlenolA, balanonin and erythro-Guaiacylglycerol-B-O-4-dehydrodisinapinyl ether were found to elicit inhibition towards human leukocyte elastase with IC50 values of 45.5, 57.6, 115, 168 and 171 μmol/L, respectively (Ren et al., 2012).

Positivity of latex allergenicity

Latex allergenicity is the hottest topic in allergy research and it has been found that fifty-six polypeptides derived from
the latex of *H. brasiliensis* are associated with Ig-E mediated immune response (Brehler and Küttting, 2001). However, apart from causing an allergic reaction to the host, latex allergen is also able to function in a positive manner. For instance, Hev b 13, an allergenic esterase of latex, was shown to possess anti-inflammatory activity by increasing the release of anti-inflammatory cytokines by immune cells and subsequently inhibit the action of pro-inflammatory cytokines to overcome autoimmune response. Specifically, Hev b 13 was found to stimulate the production of IL-10 and TGF-β in a human mononuclear cell with aid of phytohemagglutinin in arthritis and colitis-induced mice. Concurrently, it was demonstrated that TNF-α, IL-1β and IL-6 productions were inhibited (L. D. B. Teixeira et al., 2012; L. de B. Teixeira et al., 2012). The ability of Hev b 13 as an anti-inflammatory agent was further proven in rats with experimentally-induced acute sepsis where it caused a significant decline in total and differential leukocytes as well as suppression of TNF-α and IL-6 production, associated with the increase in IL-10 and IL-4 in plasma and lung tissue (Araújo et al., 2017).

Measurement of concentrations of specific allergenic proteins or polypeptides is essential to evaluate the allergenic potential of medical devices made of latex (Palosuo et al., 2007). Four major allergens have been identified (Hev b 1, 3, 5 and 6.02) and these allergens clinically represent total allergenicity of latex (Czuppon et al., 1993; Alenius et al., 1996; Akasawa et al., 1996; Palosuo et al., 2002; Sutherland et al., 2002). These allergens can be set as a platform for diagnostic purpose before rubber-based products being marketed. Identification of these four clinically relevant latex allergens can be done by a skin prick test (SPT)-validated IgE ELISA inhibition (Palosuo et al., 1998) and the present capture EIA allergen sum test. Presently, investigation towards the application of latex in medical devices with zero allergenicity is in focus. A good example would be the preparation of hydrogel from deproteinized natural rubber latex (DNRL) with gelatinized starch as wound dressing (Kleawkla, 2018).

CONCLUSION

In sum, the contribution of rubber in the medicinal field appears to be promising. Currently, it has been shown that it has high potential to be applied majorly in cancer treatment and in cosmetic science. The content of allergen in rubber latex was a concern previously, however with current advanced technology, the issue of latex allergenicity can be eradicated and/or modified for use in medical treatment. Similarly, a better scientific approach should be taken to eradicate hydrogen cyanide and cyanogenetic glucoside for complete utilization of other beneficial components found in the rubber seed.

Conflict of interest
The authors declare there is no conflict of interest.

ACKNOWLEDGEMENT

This study was supported by the Malaysia Ministry of Higher Education under Fundamental Research Grant Scheme (FRGS) (203/CIPPM/6711378) and the Malaysian Rubber Board.

REFERENCES

Akasawa, A. et al. (1996). A novel acidic allergen, Hev b 5, in latex Purification, cloning and characterization. J. Biol. Chem. 271: 25389-25393.

Alenius, H. et al. (1996). The main IgE-binding epitope of a major latex allergen, prohevein, is present in its N-terminal 43-amino acid fragment, hevein. J. Immunol. 156: 1618-1625.

Araújo, L.A. et al. (2017). Protein from *Hevea brasiliensis* “Hev b 13” latex attenuates systemic inflammatory response and lung lesions in rats with sepsis. Brazilian J. Biol. 78(2): 271-280.

Araújo, M.M. et al. (2012). Anatomical and functional evaluation of tympanoplasty using a transitory natural latex biomembrane implant from the rubber tree *Hevea brasiliensis*. Acta Cir. Bras. 27: 566-571.

Azevedo Borges, F. et al. (2014). Natural rubber latex: study of a novel carrier for *Casearia sylvestris* Swartz delivery. International Scholarly Research Notices, vol. 2014, 5 pages. https://doi.org/10.1155/2014/241297.

Balabanian, C.A.C.A. et al. (2006). Biocompatibility of natural latex implanted into dental alveolus of rats. J. Oral Sci. 48: 201-205.

Barros, N.R. de et al. (2015). Diclofenac potassium transdermal patches using natural rubber latex biomembranes as carrier. J. Mater. https://doi.org/10.1155/2015/807948.

Barros, N.R. de et al. (2018). Natural rubber latex biodevice as controlled release system for chronic wounds healing. Biomed. Phys. Eng. Express.

Brehler, R. and Küttting, B. (2001). Natural rubber latex allergy: a problem of interdisciplinary concern in medicine. Arch. Intern. Med. 161: 1057-1064.

Brücher, H. (2012). Useful Plants Of Neotropical Origin and their Wild Relatives. Springer Science and Business Media.

Chaikul, P. et al. (2017). Antimelanogenesis and cellular antioxidant activities of rubber (*Hevea brasiliensis*) seed oil for cosmetics. Ind. Crops Prod. 108: 56-62.

Czuppon, A.B. et al. (1993). The rubber elongation factor of rubber trees (*Hevea brasiliensis*) is the major allergen in latex. J. Allergy Clin. Immunol. 92: 690-697.

Daruliza, K.M.A. et al. (2011). Anti- *Candida albicans* activity and brine shrimp lethality test of *Hevea brasiliensis* latex B-serum. Eur. Rev. Med. Pharmacol. Sci. 15: 1163-1171.

Daruliza, K.M.A. et al. (2011). Anti-fungal effect of *Hevea brasiliensis* latex C-serum on *Aspergillus niger*. Eur. Rev. Med. Pharmacol. Sci. 15: 1027-1033.

Dias Murbach, H. et al. (2014). Ciprofloxacin release using natural rubber latex membranes as carrier. Int. J. Biomater., Hindawi Publishing Corporation, https://doi.org/10.1155/2014/157952.

Dijkman, M.J. (1951). *Hevea*: thirty years of research in the Far East The Chronica Botanica co, Waltham, mass: USA: 348p.
Duke, J.A. and Wain, K.K. (1981). Medicinal Plants of the World. 3 vol. Computer index with more than 85,000 entries. Plants Genetics and Germplasm Institute. Agric. Res. Serv. Beltsville, Maryl.

Eka, H.D. et al. (2010). Potential use of Malaysian rubber (Hevea brasiliensis) seed as food, feed and biofuel. Int. Food Res. J. 17: 527-534.

Ereno, C. et al. (2010). Latex use as an occlusive membrane for guided bone regeneration. J. Biomed. Mater. Res. Part A, 95: 932-939.

Florence, U. and Fashorant, E.L. (2018). Corynespora leaf fall of Hevea brasiliensis: Challenges and prospect. 13: 209-2103.

Frate, M.A.C. et al. (2006). A natural biomembrane as a new proposal for the treatment of pressure ulcers. Med Cutânea Ibero-Latino-Americana. 34: 133-138.

Frate, M.A.C. et al. (2004). Management of diabetic skin wounds with a natural latex biomembrane. Med. Cutan. Iber. Lat. Am. 32: 157-162.

Fuller, M.F. (1988). Nutrition and Feeding. In: Seminar Pig Production in Tropical and Subtropical Regions. pp. 28-84.

Giordani, R. et al. (2002). Antifungal effect of Hevea brasiliensis latex with various fungi. Its synergistic action with amphotericin B against Candida albicans. Mycoses. 45: 476-481.

Guidelli, É.J. et al. (2013). Silver nanoparticles delivery system based on natural rubber latex membranes. J. Nanoparticle Res. 15: 1536.

Hagan, James et al. (2005). The British and rubber in Malaya. c 1890-1940. 143-150.

Havanapan, P. et al. (2016). Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). J. Proteomics. 131: 82-92.

Herculano, R.D. et al. (2010). Metronidazole release using natural rubber latex as matrix. Mater. Res. 13: 57-61.

Herculano, R.D. et al. (2009). Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater. Res. 12: 253-256.

Herculano, R.D. et al. (2011). On the release of metronidazole from natural rubber latex membranes. Mater. Sci. Eng. C. 31: 272-275.

Kerche-Silva et al. (2017). Free-radical scavenging properties and cytotoxic activity evaluation of latex C-serum from Hevea brasiliensis RRIM 600. Free Radicals Antioxidants. 7(1): 107-114.

Kerche-Silva, L.E. et al. (2018). Natural Rubber Latex Biomaterials in Bone Regenerative Medicine. In: Biomaterials in Regenerative Medicine. InTech.

Kleawkla, A. (2018) Effect of crosslinking agent and starch contents on hydrogel from deproteinized natural rubber latex and starch. SNRU J. Sci. Technol. 10: 13-18.

Lam, K.L. et al. (2012). Latex C-serum from Hevea brasiliensis induces non-apoptotic cell death in hepatocellular carcinoma cell line (HepG2). Cell Prolif. 45: 577-585.

Lam, K.L. et al. (2015). Proteins of dialysed c-serum supernatant sub-fractions elicit anti-proliferative activity on human cancer-origin cells. J. Rubb. Res. 18: 49-59.

Lee, S.W. and Wendy, W. (2017). Malaysian rubber (Hevea brasiliensis) seed as alternative protein source for red hybrid tilapia, Oreochromis sp., farming. Aquac. Aquarium. Conserv. Legis. 10: 32-37.

Lourith, N. et al. (2014). Para rubber seed oil: new promising unconventional oil for cosmetics. J. Oleo Sci. 63: 709-716.

Malaysian Rubber Board. M. (2018). Natural Rubber Statistic 2018.

Mekonnen, A. (2015). The West and China in Africa: Civilization without Justice Wipf and Stock Publishers.

Mendonga, R.J. et al. (2010). Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phyther. Res. 24: 764-768.

Miranda, M.C.R. et al. (2018). Evaluation of peptides release using a natural rubber latex biomembrane as a carrier. Amino Acids. 50(5): 503-511.

Mrue, F. et al. (2004). Evaluation of the biocompatibility of a new biomembrane. Mater. Res. 7: 277-283.

Musigamart, N. et al. (2014). A rapid quantitative analysis of native antioxidants in natural rubber (Hevea brasiliensis) during maturation. In: Advanced Materials Research. Trans. Tech. Publ. pp. 410-414.

Njwe, R.M. et al. (1988). Potential of rubber seed as protein concentrate supplement for dwarf sheep of Cameroon. In: Utilization of Research Results on Forage and Agricultural By-product Materials as Animal Feed Resources in Africa. Proceedings of the first joint workshop held in Lilongwe, Malawi. pp. 5-9.

Ong, M.T. et al. (2009). Susceptibility of HeLa (Cancer-origin) cells to a Sub-fraction of latex B-serum. J. Rubb. Res. 12: 117-124.

Palosuo, T. et al. (2007). Latex allergy: the sum quantity of four major allergens shows the allergenic potential of medical gloves. Allergy. 62: 781-786.

Palosuo, T. et al. (1998). Measurement of natural rubber latex allergen levels in medical gloves by allergen ELISA inhibition, RAST inhibition and skin prick test. Allergy. 53: 59-67.

Palosuo, T. et al. (2002). Quantitation of latex allergens. Methods. 27: 52-58.

Pinho, E.C.C.M. de et al. (2004). Experimental use of latex biomembrane in conjunctival reconstruction. Arq. Bras. Oftalmol. 67: 27-32.

Reed, C.F. (1976). Information summaries on 1000 economic Acids. 50(5): 503-511.

Ren, F. et al. (2012). Chemical constituents of the seed shell of Hevea brasiliensis. Chinese J. New Drugs. 21(19): 2311-2315.

Rubio, M.S. (2008). Hevea brasiliensis Muell. Arg.: Ethnobotanic and/or ethnomedical uses and latex industrial application.

Selle, C.M. et al. (1983). Evaluation of chemical and nutritional characteristics of the seed of the rubber tree (Hevea brasiliensis). Arch. Latinoam. Nutr. 33: 884-901.

Suffness, M. (1990). Assays related to cancer drug discovery. Methods Plant Biochem. Assays Bioactivity. 71-133.

Suksaeree, J. et al. (2012). Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. Chem. Eng. Res. Des. 90: 906-914.
Sunderasan, E. et al. (2014). Anti-proliferative activity of natural rubber latex sera on human cancer cell lines. World Anti-Cancer Congress and Exhibition, Universiti Sains Malaysia, Penang, Malaysia.

Sunderasan, E. et al. (2013). Cell viability assay guided fractionation of natural rubber latex sera. J. Rubber Res. 16: 3.

Sutherland, M.F. et al. (2002). Specific monoclonal antibodies and human immunoglobulin E show that Hev b 5 is an abundant allergen in high protein powdered latex gloves. Clin. Exp. Allergy. 32: 583-589.

Teixeira, L. de B. et al. (2012). Oral treatment with Hev b 13 ameliorates experimental colitis in mice. Clin. Exp. Immunol. 169: 27-32.

Teixeira, L.D.B. et al. (2012). Oral treatment with Hev b 13 prevents experimental arthritis in mice. Clin. Exp. Immunol. 168: 285-290.

Udo, M.D. et al. (2016). Effects of processing on the nutrient composition of rubber seed meal. J. Saudi Soc. Agric. Sci. 17(3): 297-301.

Wigati, S. et al. (2014). Analysis of rubber leaf (Hevea brasiliensis) potency as herbal nutrition for goats. Proc. 16th AAAP Anim. Sci. Congress. 2: 497-500.

Zhang, Y. et al. (2017). Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness. Tree Physiol. 37: 261-269.