Digitale Lernprogramme – Konkurrenz für das Mikroskop?

Zusammenfassung

Die Entwicklung digitaler Medien wuchs in jüngster Zeit beträchtlich an, was mitunter als Ursache für deren wachsende Nutzung in der universitären Lehre anzusehen ist. Zutreffend ist dies insbesondere auch im Bereich der Anatomie und Histologie, welche Bestandteile des Studiums für Ärzte und Zahnärzte in den ersten zwei Studienjahren darstellen. Moderne digitale Technologien erlauben es eine leistungsfähige, bezahlbare und begriﬄbare Verbreitung histologischer Bilder in hoher Qualität zu gewährleisten. Die Mikroskopie hängt fast ausschließlich von Bildern ab. Seit 20 Jahren werden somit stetig neue virtuelle Lernprogramme auch für die Histologie entwickelt. Entsprechende Entwicklungen haben dadurch die Lernmethoden der Studenten zum Wissenserwerb und zur Prüfungsvorbereitung beeinﬂusst. Die Lehre sollte Seminare, Vorlesungen und Laborarbeiten dementsprechend anpassen. Als einen ersten Schritt wurde eine Sammlung digitaler mikroskopisch-histologischer Bilder für die Studenten an der FSU Jena zur Verfügung gestellt. Das Ziel dieser Studie ist es den Stellenwert des konventionellen Lichtmikroskops im derzeitigen Selbststudium der Studenten der Human- und Zahnmedizin im Vergleich zu digitalen Medien herauszufinden. Dazu wurde eine Umfrage unter 172 Human- und Zahnmedizinstudenten an der Friedrich-Schiller-Universität Jena durchgeführt. Die Ergebnisse lassen einen deutlichen Unterschied mit 51% Nutzung neuer Medien gegenüber früheren ähnlichen Studien mit 5% Nutzung [1] erkennen. Es zeigt, dass digitale Medien wie Internet und CD- oder computergestützte Lernprogramme sich beim Selbststudium der Studenten der Human- und Zahnmedizin als ein Konkurrenzsystem zum klassischen Lichtmikroskop entwickelten.

Schlüsselwörter: Histologie, Neue Medien, Mikroskop, Lehre, Selbststudium

Einleitung

In einem Zeitalter, welches gezeichnet ist von dem alltäglichen Einsatz digitaler Medien, wird auch die Verwendung solcher Arbeitsmittel zunehmend in der Lehre an Hochschulen gefordert. Bereits seit Mitte der 90er Jahre wird von der Hochschulrektorenkonferenz dieses Thema immer wieder bearbeitet. Ein entsprechendes Statement verdeutlicht, dass heutzutage „die nachhaltige Etablierung von E-Learning und der Aufbau von Medienkompetenz bei Lehrenden und Studierenden eine zentrale Rolle“ spielt [3]. Das Bild universitärer Vermittlung von Wissen ist seit einigen Jahren im Wandel. Besonders in den stark visuell geprägten Fachbereichen, wozu auch die mikroskopische Anatomie sowie die Histopathologie für angehende Ärzte bzw. Zahnärzte zählen, wird seit einigen Jahren die Lehre durch neue Medien erweitert. Lernprogramme, die online verfügbar bzw. auf CD-ROM erhältlich sind, spielen dabei eine nicht unwichtige Rolle wie eine Untersuchung an der Universität Jena aufzeigte [8].

Funktion der zytologisch/ histologisch-mikroskopischen Lehre in medizinischen Studiengängen

Die Zytologie ist die Lehre von Zellen und deren Strukturen, die Histologie versteht sich als Lehre der biologischen Gewebe. Diese „entsprechen einer mittleren Organisations Ebene des Körpers und sind dem Studium mit dem Mikroskop besonders gut zugänglich“ [10]. Die universitäre Vermittlung dieser Gewebelerehre umfasst Kenntnisse der Färbemethoden, die Herstellung von Gewebeproben sowie die Untersuchung und Beurteilung dieser im Mikroskop. Zusammen mit der mikroskopischen Anatomie hat die Histologie „eine praktisch-diagnostische Seite; sie vermittelt die Kenntnisse der normalen, gesunden mikroskopischen Struktur der Organe, um krankhafte Veränderungen zu erkennen und möglichst auch zu verstehen.“ [10].

Peter Schmidt

1 Friedrich-Schiller-Universität
Jena, Fachschaftsrat
Zahnmedizin, Jena,
Deutschland
Lehrkonzept an der FSU Jena

An der Universität Jena vertritt das Institut der Anatomie II den Lehrauftrag in den Bereichen Zytologie, Histologie und mikroskopische Anatomie. Dabei wurde neben dem aktiven Mikroskopieren der vorhandenen Präparatesammlung auf die Wissensvermittlung von Färbetechniken und das Erlernen eigenständiger Mikroskopieren am Lichtmikroskop Wert gelegt. Das Herstellen eigener histologischer Präparate ist aufgrund der großen Studentenzahlen sowie Änderungen in der Approbationsordnung für Ärzte (ÄApprO 2005) und den entsprechenden Anpassungen der Studienordnungen der FSU Jena im Rahmen der Ausbildung nicht mehr möglich. Ursächlich dafür sind vor allem finanzielle Einschränkungen, die folgend auch zur Reduzierung von Semesterwochenstunden und Lehrkräften führten. Dennoch wird die Histologie innerhalb von drei Semestern (Allgemeine, Spezielle, Sinnes- und Neuropsychologische Histologie) durch Vorlesungen und einen begleitenden praktischen Mikroskopierkurs im speziell dafür konzipierten Saal gelehrt. An der Universität Jena besteht die in Deutschland einzigartige Situation, dass Medizin- und Zahnmedizinstudenten/-innen einen festen eigenen Mikroskopierplatz mit Mikroskop und kompletter Präparatesammlung für die gesamte vorklinische Ausbildung erhalten. Jeder Studierende erhält für drei Semester gegen Kaution einen eigenen Schlüssel für seinen Platz. Damit kann dieser ein Mikroskop und die Sammlung zuzüglich der regulären verpflichtenden Kurszeit von 2 Semesterwochenstunden während der Öffnungszeiten des Histologischen Saals für das Selbststudium nutzen. Der Einsatz neuer Medien wurde in Form eines Lernprogrammes namens „Histolnteraktiv“ verwirklicht. Das Programm wurde durch Eigeninitiative zweier ehemaliger Medizinstudenten der FSU Jena entwickelt [7]. Das Programm stellt ein Lehrsmedium von Studenten für Studenten dar und trug als offizielles Lehrmittel zur Bereiche rung der Ausbildung bei. Es handelt sich dabei um eine Mischform aus einem Präsentations- und tutoriellem Programm, welches sich inhaltlich an den Kursen der histologischen Lehre bis zum Wintersemester 2011/12 orientiert hat. Dieses war nicht im Internet frei zugänglich, sondern wurde per CD-ROM oder USB-Stick von Jahrgang zu Jahrgang weitergeben. Dabei wurden die Studenten meist durch andere Studenten auf das Lernprogramm aufmerksam, wie die Ergebnisse einer Studentenbefragung aufzeigen (siehe Abbildung 1).

Abbildung 1: Zugänglichkeitswege zum Lernprogramm „Histolnteraktiv“

Methoden

Mit Hilfe einer Umfrage, welche die Studenten entweder per Papierfragebogen oder digitaler Word-Datei ausfüllen konnten, erfassten wir die Meinungen der Studierenden der FSU Jena. Die Fragebögen wurden unter Studenten des 2. und 3. Studienjahres am Ende eines histologischen Kurses auf Basis der freiwilligen Teilnahme verteilt. Ebenso erfolgte über die Fachschaft der Versand der digitalen Fragebögen an die Studenten. Nach einem kurzen Einstieg und der Erfassung allgemeiner statistischer Werte befasste sich die erste Abschnitt des Fragebogens grundsätzlich mit der Einordnung und Nutzung neuer Medien. Ferner wurden Fragen zur aktuellen Lehrtatuation an der Anatomie II der FSU Jena gestellt. Die beiden großen Themenschwerpunkte bezogen sich auf die Präsenzlehre und das Lehrprogramm „Histolnteraktiv“. An der Umfrage unter den Studenten der FSU Jena beteiligten sich 148 Vorkliniker und 24 Kliniker im Alter zwischen 19 bis 43 Jahren (M=22,2 Jahre). Drei Personen gaben ihr Alter nicht an. Die Geschlechterverteilung belief sich auf 50 männliche und 120 weibliche Teilnehmer. Zwei Personen machten dazu keine Angabe. Mit Blick auf die Stu dienrichtung stellen die Humanmediziner mit 72% der Befragten den größeren Anteil im Vergleich zu 28% Zahnmedizinern (siehe Tabelle 1 und 2).
Hypothesen

1. Das Lernen im Selbststudium der Studenten ist geprägt von der regelmäßigen Nutzung der Printmedien, dem Mikroskop und dem Lernprogramm. Audiodateien, Internet, Videos und Filme sowie selbstgefertigte Zeichnungen besitzen einen sekundären Charakter.

2. Das Mikroskop wird im Selbststudium von Zahnmedizinstudenten regelmäßiger und häufiger genutzt als von Humanmedizinstudenten.

Ergebnisse

Bei der Untersuchung der regelmäßigen Nutzung von Medien im Selbststudium nutzen Studenten der Human- und Zahnmedizin an der FSU Jena zu 31% Printmedien, gefolgt von Internet (26%) und Lernprogrammen mit 25%. Das Mikroskop als Medium wird nur von 5% der Studenten regelmäßig genutzt. Audiodateien, Videos und Filme sowie selbstgefertigte Zeichnungen machen gemeinsam einen Anteil von 13% aus (siehe Abbildung 2).
Auswertung

Die Hypothesen konnten mithilfe der Umfrage teilweise bestätigt werden. So wird ersichtlich, dass Printmedien und Lernprogramme regelmäßig von Studenten genutzt werden (insgesamt 56%). Ebenso war der Nutzungsumfang von Audiodateien, Videos, Filmen und selbstgezeichneten Zeichnungen (insgesamt nur 13%) geringfügig. Das Nutzungsverhalten der Studenten in Bezug auf das Mikroskop und das Internet ist hingegen als unerwartet anzusehen. Mikroskope werden trotz Verfügbarkeit nur noch von 5% der Studenten regelmäßig genutzt, während neue Medien, wie Lernprogramme und Internet, bei 51% der Befragten als Lernmedium deutslichen Zuspruch besitzen. Verglichen mit früheren Studien wird ein deutlicher Wandel erkennbar, weil in diesen Studien nur 5% [1] bzw. 6% [6] Lernprogramme nutzten. Damals „[…] zeigte sich, dass nur ein kleiner Teil der Studenten Lernprogramme auf CD-ROM oder im Internet kennt. Die Nutzung dieser Programme bleibt zudem hinter deren Kenntnis zurück [...].“ [8]. Auch im selbstständigen Nutzungsverhalten der Befragten spiegelt sich wider, dass die neuen Medien wie z.B. das Lernprogramm „HistoInteraktiv“ einen festen Bestandteil während der Lernphasen einnehmen. So gaben 67 Befragte an, das Lernprogramm „oft“ und 65 Befragte sogar „sehr oft“ während der Lernphasen zu nutzen. Das entspricht 78% aller befragten Studenten. Lediglich insgesamt 38 Studenten nutzen das Programm „manchmal“, „selten“ oder „nie“ (siehe Abbildung 5). Mit Blick auf die Nutzungsdauer wird erkennlich, dass es sich dabei vorrangig um längere Nutzungsphasen handelt. Der Großteil der Studenten nutzt das interaktive Programm ca. 30 Minuten (42%), wobei 25% ca. eine Stunde und sogar 33% mehr als eine Stunde am Stück mit dem Programm lernen (siehe Abbildung 6).

Diskussion

Durch meine Tätigkeit als Tutor im histologischen Kurs ist mir eine Entwicklung des Lernens aufgefallen, die einzig durch die digitalen Möglichkeiten des 21. Jahrhunderts aufkommen konnten. Die Studenten kehren sich im Kurs vom Medium Mikroskop ab. Dies wird auch in der o. g. Auswertung zur Nutzung der Medien im Selbststudium deutlich. Die letzte praktische Tätigkeit der Studenten, das eigenständige Mikroskopieren am Lichtmi-
Kroskóp, wird zunehmend durch digital-virtuelles Zoomen auf Handys, iPads, Netbooks und Ähnlichem ersetzt. Ich möchte zur Diskussion stellen, ob man diese Art von Auseinandersetzung mit histologischen Präparaten noch als Mikroskopieren bezeichnen darf? Das Mikroskop scheint dem Vorteil der digitalen Lernprogramme vom „zeit- und ortsunabhängigen Lernen“ [5] zum Opfer zu fallen. Die hohe Flexibilität und zunehmende Individualität bietet den Studenten die Chance, sich noch stärker selbst zu verwirklichen und zu organisieren. Außerdem ist die Qualität der digitalen Jenaer Präparate-Sammlung inzwischen durch stufenloses Zoom und riesige Bilddateien der Auflösungsqualität der studentischen Kursmikroskope schon deutlich überlegen. Aber vermittelt das digitale Konkurrenzprogramm adäquat auch die Basisfähigkeiten der Beleuchtungseinstellung nach Köhler, regulierten Vergrößerns und bewussten Hinterfragens der Präparate?

Diese Fertigkeiten werden verloren gehen, weil den Studenten bereits alles vorgelegt wird. Das Mikroskop als Werkzeug der Wissenschaft und Instrument der Diagnosefindung kann sich nicht mehr massenkompatibel behaupten. Das Studium der Human- und Zahnmedizin ist inhaltlich vollgepackt und Lernen am Mikroskop Zeit kostet. Allerdings gehört das Mikroskopieren zu den allgemeinen Grundfähigkeiten eines Medizinstudenten. Es ist weiterhin Voraussetzung für die Ausbildung im Fach Histopathologie, das im klinischen Abschnitt des Studiums wichtig wird. Wenn diese Fertigkeiten klinisch relevant sein sollen, können sie nicht virtuell verinnerlicht werden. Das Erlernen mikroskopischer Methoden wird sich folglich in den klinischen Studienabschnitt verschieben und dort Kurszeiten benötigen. Andererseits zeigt eine Studie der Universität Ulm, dass mit einem interaktiv aufgebauten Programm dennoch die individuellen Bedürfnisse der Studenten erfüllt werden können. Ihrer Ansicht nach sind Lernprogramme als Möglichkeit zu verstehen, soziale Interaktionen unter Lernenden zu fördern, ohne dabei die praktischen Fähigkeiten der Studenten zu missachten [9]. Ein wesentlicher Aspekt der medizinischen Lehre wird allerdings durch diese Art von Lernen ausgeblednet – die Interaktion mit einem ehemals lebenden Gewebe. Durch ausschließliches Lernen am digitalisierten Bild entsteht ein Verlust am „Echten“ sowie dem Erkennen seiner Variabilität.

Schlussfolgerung

Erkennbar ist, dass in den letzten 10 Jahren sich die Nutzung neuer Medien durch die Medizinstudenten an der FSU Jena stark geändert hat. Digitale Lernprogramme aber auch das Internet haben sich als feste Lernmedien etabliert. Gleichzeitig ist ein Rückgang des Nutzungsumfangs vom klassischen Lichtmikroskop zu verzeichnen. Der ursprüngliche Gedanke, durch virtuelle digitale Präparatekästen und Lernprogramme die Mikroskopie zu ergänzen, ist zu diskutieren. Aus Ergänzung könnte zeitnah Ersatz werden. Die weitere Entwicklung, dass sich das virtuelle Mikroskop als Konkurrenzsystem gegenüber dem Mikroskopieren mit Präparat etabliert, könnte durch andere wissenschaftliche Studien untermauert werden.

Anmerkung

Veröffentlichung unterstützt durch: Fachschaftsrat Zahnmedizin FSU Jena Bachstraße 2 07743 Jena

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Frey P. Papier oder PC? Die Neuen Medien auf dem Prüfstand: Eine Umfrage bei 281 Medizinstudierenden. Z Hochschuldidaktik. 2000;24:1-5
2. Hertel K, Hoff HJ. Histologie und Zytologie Eine kurze Erläuterung zu den Präparaten, Material zum Medizinstudium an der FSU Jena. Jena: Petriverlag; 1998.
3. HRK. Leitfaden für Hochschulstrategien zur Informations- und Kommunikationsstruktur. Beitr Hochschulpol. 2006;4:9.
4. Klimm W. Kariologie. Ein Leitfaden für Studierende und Zahnärzte. In: Reitemeier B, Schwenzer N, Ehrenfeld M (Hrsg). Einführung in die Zahnmedizin. Stuttgart, New York: Thieme; 2006. S.165
5. Kreidl C, Dittler U. E-Learning: Wieso eigentlich? Gründe für die Einführung von E-Learning an Hochschulen im Rückblick. In: Dittler U, Krameritsch J, Nistor N, Schwarz C, Thillosen A (Hrsg). E-Learning: Eine Zwischenbilanz Kritischer Rückblick als Basis eines Aufbruchs. Münster: Waxmann; 2009. S.264
6. Middendorff E. Computernutzung und Neue Medien im Studium, Ergebnisse der 16. Sozialerhebung des Deutschen Studentenwerkes durchgeführt Hochschul-Informations-System (HIS). Bonn: Bundesministerium für Bildung und Forschung; 2002. Zugänglich unter/available from: http://www.sozialerhebung.de/archiv/soz_16_sonder
7. Römhild R, Bojaziglu A. Histo interaktiv, ein digitales Lernsystem für die mikroskopische Anatomie, CD-Rom- Eigentum. Jena: Petriverlag; 2002.
8. Rosendahl J. Multimediales Lernen in der medizinischen Ausbildung: Möglichkeiten, Nutzung, Grenzen. Jena: Petriverlag; 2003. S.31
9. Schmidt C, Reinehr M, Leucht O, Behrendt N, Geiler S, Britsch S. MyMICrOScope: intelligent virtual microscopy in a blended learning model at Ulm University. Ann Anat. 2011;193(5):395-402. DOI: 10.1016/j.aanat.2011.04.009
10. Welsch U. Lehrbuch der Histologie, 2. Auflage. München: Urban & Fischer/Elsevier; 2006. S.1-2

Korrespondenzadresse:

Peter Schmidt
Friedrich-Schiller-Universität Jena, Fachschaftsrat Zahnmedizin, Bachstraße 2, 07743 Jena, Deutschland schmidt.peter@uni-jena.de
Digital learning programs - competition for the classical microscope?

Abstract

The development of digital media has been impressive in recent years which is also among the reason for their increasing use in academic teaching.
This is especially true for teaching Anatomy and Histology in the first two years in medical and dental curricula. Modern digital technologies allow for efficient, affordable and easily accessible distribution of histological images in high quality. Microscopy depends almost exclusively on such images. Since 20 years numerous digital teaching systems have been developed for this purpose. Respective developments have changed the ways students acquire knowledge and prepare for exams. Teaching staff should adapt lectures, seminars and labs accordingly. As a first step, a collection of high resolution digital microscopic slides was made available for students at the Friedrich-Schiller-University in Jena. The aim of the present study was to evaluate the importance of conventional light microscopy and related technologies in current and future medical and dental education aswell. A survey was done among 172 medical and dental students at the Friedrich-Schiller-University Jena. 51% of students use now frequently new digital media for learning histology in contrast to 5% in the year 2000 [1]. Digital media including Internet, CD-based learning combined with social networks successfully compete with classical light microscopy.

Keywords: histology, new media, microscopy, education, self study

Introduction

Requests for the application of digital media for academic training purposes at universities are currently increasing, due to the increasing importance of those media in general. Since the middle of the 1990s the german Conference of University Rectors has been consistently pursuing this issue. The statement that “issues referring to the sustainable establishment of E-learning and the development of media literacy are essential for both students and lecturers.” [3] illustrates the importance of this issue. In the last few years the concept of academic knowledge transfer has been changing. Areas of study which are highly visually shaped such as microscopic anatomy and histopathology lessons are particularly enhanced by new digital media. Tutorial programs, available online or on disk, have become increasingly more important, as has been shown by a study at the University of Jena [8].

The role of cytological/ histological microscope training in medical education

Cytology is the study of cells and their structures whereas histology deals with the study of the microscopic anatomy of cells and tissues of plants and animals. Both cells and tissues are best visualised by microscopic techniques. These are comprise a „medium organisational level of the body and are particularly accessible to study by microscope“ [10]. Academic training transfers histological skills such as staining methods, preparation of tissue samples as well as their examination and diagnosis under a microscope. In combination with microscopic anatomy, histology imparts knowledge about the normal healthy microscopic structure of internal organs in order to recognize pathological changes and diseased tissues and understand their causes [10].

Educational concept at Jena University

The Institute of Anatomy offers lectures and courses in cytology, histology and microscopic anatomy at the University of Jena. In addition to microscope applications using the Institute’s considerable collection of cytological
and histological preparations, importance is attached to staining techniques and correct handling of the light microscopes. However, due to changes of the regulations for the licensing of medical doctors (ÄpprO 2005) and corresponding changes to the University of Jena study guidelines, students no longer have the opportunity to create their histological preparations by themselves. This is mostly due to financial cutbacks, thus reducing the teaching resources for training and semester periods per week. Nevertheless, histology is taught within three semesters through lectures and a microscopic course diligently supported in a purpose-built room. Uniquely in Germany, the University of Jena offers each student of medicine and dentistry their own microscopy units and a complete collection of cytological and histological preparations for their entire preclinical education. Leaving a deposit the students receive a key for their microscope workplace. Thus students receive the opportunity to practise with the microscope and are provided with preparations in addition to their regular cytological and histological practical courses.

The application of digital media for training was first realised by an e-learning program named "HistoInteraktiv". This e-learning program was developed on the initiative of two former students from the University of Jena medical school [7]. The program represents training material for students developed by students themselves and has significantly enhanced practical histological training since its implementation, although it is not an official training resource. "HistoInteraktiv" is composed of a presentation part and a tutorial part and comprises the histological lectures and courses up to the winter term 2011/12. These lectures and courses were not available online, but were shared by students via CD or USB stick. Nevertheless, by sharing the contents of lectures and courses this way, students gradually became aware of the e-learning program "HistoInteraktiv" (see figure 1).

Starting with the winter term 2011/12, the schedule and contents of the histology course have been adapted and updated, which has also led to a new and official e-learning program taking the form of a virtual microscope. The new program comprises the preparations of the University of Jena Institute of Anatomy II and is accessible via any web-enabled device such as smartphones under http://www.anatomie2.uniklinikum-jena.de/Studium/VirtuellerHistokasten.html, using a login name and a password. Due to copyright issues, the access is restricted to a certain scope of persons. In order to comply with copyright issues, access codes for students were issued by the Institute. The virtual "Jena Histokasten" may become available in the near future as a smartphone app.

Generally the above described initiative aims to continue restructuring the basic training concepts in microscopy and histology.

In this study we analyse how histological-microscopic education is delivered at specific German universities and to which extent new media is integrated. The study is based on a survey concerning the microscopic-histological training at the University of Jena.

Methods

Students' opinions were assessed by a voluntary questionnaire, either in paper form or digital. These questionnaires were dispersed among second- and third-year students at the end of a histology course. Furthermore the digital questionnaires were distributed by the students council.

In addition to some statistical values at the beginning, the first part of the form comprises general questions about the use and approval of new media in training. Further questions related to the current teaching situation at the Institute of Anatomy II.

Two main foci of the survey were the presence study, meaning to be physically present in the lecture hall or trainings hall, and the e-learning program "HistolInteraktiv".

In all 172 students, 148 pre-clinics and 24 clinicians, aged between 19 to 44 years (mean=22.2 years) completed this survey. Three students did not give their ages. Fifty percent of the participating students were male, 120 were female, two did not give their sex. Finally, 72% of those interviewed were medical students compared to 28% students of dentistry (see table 1 and 2).

Table 2: Attendees distribution concerning of study year and university course

Attendants	2-year students	3-year students
Medicine	100 (58%)	24 (14%)
Dentistry	44 (26%)	4 (2%)

Hypotheses

1. Independent study is characterised by regular use of printed media, the microscope and of the e-learning program "HistolInteraktiv". The internet, videos, movies and audio files are secondary.

2. Students of dentistry use the microscope more regularly and intensively than medical students do.
Table 1: Overview of the attendants at the student survey of the University of Jena

Total number	Paper questionnaire	Digital questionnaire	
Attendant:	172	151 (88%)	21 (12%)

Sex:
- Male: 50 (29%) 46 (92%) 4 (8%)
- Female: 120 (70%) 103 (86%) 17 (14%)
- no statement: 2 (1%) 2 (100%) -

university course:
- Medicine: 124 (72%) 103 (83%) 21 (17%)
- Dentistry: 48 (28%) 48 (100%) -

Study year:
- 2-year students: 142 (83%) 136 (96%) 6 (4%)
- 3-year students: 30 (17%) 15 (50%) 15 (50%)

Results

Analysing the outcome of the survey interviewing students of medicine and dentistry at the University of Jena the following became evident: 31% use printed media such as books or journals for independent study, followed by 26% reverting to the internet, whereas the e-learning program is employed by 25%. Only about 5% of the students regularly use the microscope for independent study. Audio files, videos, movies as well as self-made drawings together represent a fraction of 13% (see figure 2).

Analyses

The presented results partly support the above formulated hypotheses. Printed media and learning programs are...
widely used by students for independent study (in total by 56%). On the other hand, audio files, videos, movies and self-made drawings have only secondary importance for independent study (about 13%). Surprising and interesting were the results concerning the use of microscopes and internet for independent study. Although microscopes are constantly available to students only 5% revert to them for independent study, whereas learning programs and internet are very popular for 51% of the interviewed students. Compared to earlier studies a clear difference became evident, because e-learning programs were used in this studies only 5% [1] or 6% [6]. At that time “only a small number of students knew about learning programs on disk or online. Furthermore, the use of these programs usually remained behind their contents (...)” [8]. Also for independent study new media such as the e-learning program "HistoInteraktiv" have gained increasingly more importance and have become an inherent part during intensive learning phases. That is reflected by 67 of 172 interviewed students who declared they revert frequently to this program, additionally 65 students use it very often. That adds up to 78% of students working regularly with "HistoInteraktiv". Only 38 Students declared using this program "sometimes", "rarely" or "never" (see figure 5).

Analysing the use of the light microscope in more detail it turned out that medical students and dentistry students use it differently. Students of dentistry normally use it more regularly (14%) than medical students (9%). Most of the interviewees (48%) stated that they used light microscopes only rarely, mostly during the preparation of attestations and examinations. That reflects the above described minor significance of the light microscope compared to other learning media.

The more frequent use of the light microscope by students of dentistry might be based on the peculiarities of their job profile, which requires from the beginning a precise coordination of hands and eyes as well as the literally enquiring eye [4]. Additionally, dentistry students have to complete a longer pre-clinical study of five semesters, which might leave them more time for more intensive work with the light microscope.

Discussion

During my work as a tutor in the histological course I have noticed a development in the learning process of students, which in my opinion could only have appeared on account of the new digital opportunities of the 21st century. Students are turning away from classical work with the light microscope, as shown the above presented survey. The students’ last remaining “hands-on” exercise, the work with the microscope, is increasingly replaced by digital-virtual zooming and cell phones, iPads, Netbooks and similar electronic devices.

I dare to ask, whether this method of involvement with histological preparations might still be termed "to microscope"?

The light microscope will apparently be replaced by the advantages of digital learning programs, to revert to independently in time and space [5]. This high level of flexibility and increasing individuality offers students the chance to fulfill and to organise themself. Furthermore, the digital quality of the Jena preparation collection already outmatches the resolution quality of the light microscopes due to continuous zooming and huge image files. However, does the digital competition also deliver the ability to adjust the lighting according to Köhler, to augment in a modulated way, and to consciously examine the preparation, as the microscope does? I am afraid these abilities will get lost as students are presented with everything ready. To microscope as a scientific tool and a diagnostic instrument is going to become outdated. The study of human medicine and dentistry is packed with subjects and working with a microscope takes a lot of time. However, to microscope correctly is one of the basics a student of medicine or dentistry should be able to perform. The correct use of the microscope is a prerequisite for the course of histopathology, what starts in the clinical education part of the student’s study. If these abilities are going to become clinically significant, one cannot adopt them only virtually, without any practical experience. That means if students don’t learn to use a...
light microscope properly in the pre-clinical part of their study, course time must be taken in their clinical phase. On the other hand, a study at Ulm University has demonstrated that interactive programs are useful to achieve the individual requirements of students. Learning programs represent a possibility to advance social interactions among learners, without neglecting practical skills [9]. Nevertheless, an essential aspect of medical practice is ignored by this new kind of learning – the interaction with a formerly living tissue. By exclusively using digital media there will be a loss of reality as well as the ability to recognise and detect the variability of it.

Conclusion

It has become evident that during the last decade the use of new media among students of medicine and dentistry has changed considerably at the University of Jena. Digital learning programs as well as the internet have achieved a high level of acceptance. In the same time a decrease in the use of the classical light microscope has been observed. The original intention to complement the light microscope with digital tissue slide boxes and e-learning programs should be discussed, because actually the microscope is under threat of complete obsolescence. The process of replacing the classical light microscope with other media for learning may be confirmed by additional studies in the future.

Note

Publication supported by: Fachschaftsrat Zahnmedizin FSU Jena Bachstraße 2 07743 Jena

Competing interests

The authors declare that they have no competing interests.

References

1. Frey P. Papier oder PC? Die Neuen Medien auf dem Prüfstand: Eine Umfrage bei 281 Medizinstudierenden. Z Hochschuldidaktik. 2000;24:1-5
2. Hertel K, Hoff HJ. Histologie und Zytologie Eine kurze Erläuterung zu den Präparaten, Material zum Medizinstudium an der FSU Jena. Jena: Petrierverlag; 1996.
3. HRK. Leitfaden für Hochschulstrategien zur Informations-und Kommunikationsstruktur. Beitr Hochschulpol. 2006;4:9.
4. Klimm W. Kariologie. Ein Leitfaden für Studierende und Zahnärzte. In: Reitemeier B, Schwenzer N, Ehrenfeld M (Hrsg). Einführung in die Zahnmedizin. Stuttgart, New York: Thieme; 2006. S.165
5. Kreidl C, Dittler U. E-Learning: Wieso eigentlich? Gründe für die Einführung von E-Learning an Hochschulen im Rückblick. In: Dittler U, Krameritsch J, Nistor N, Schwarz C, Thilosen A (Hrsg). E-Learning: Eine Zwischenbilanz Kritischer Rückblick als Basis eines Aufbruchs. Münster: Waxmann; 2009. S.264
6. Middendorf E. Computernetzunung und Neue Medien im Studium, Ergebnisse der 16. Sozialerhebung des Deutschen Studentenwerkes durchgeführt Hochschul-Informationssystem (HIS). Bonn: Bundesministerium für Bildung und Forschung; 2002. Zugänglich unter/available from: http://www.sozialerhebung.de/archiv/soz_16_sonder
7. Römhild R, Bojaziğlu A. Histo interaktiv, ein digitales Lernsystem für die mikroskopische Anatomie, CD-Rom- Eigentum. Jena: Petrierverlag; 2002.
8. Rosendał J. Multimediales Lernen in der medizinischen Ausbildung: Möglichkeiten, Nutzung, Grenzen. Jena: Petrierverlag; 2003. S.31
9. Schmidt C, Reinehr M, Leucht O, Behrendt N, Geiler S, Britsch S. MyMICROscope: intelligenter virtueller Mikroskop in einer blended learning model at Ulm University. Ann Anat. 2011;193(5):395-402. DOI: 10.1016/j.aanat.2011.04.009
10. Welsch U. Lehrbuch der Histologie, 2. Auflage. München: Urban & Fischer/Elsevier; 2006. S.1-2

Corresponding author:

Peter Schmidt
Friedrich-Schiller-University Jena, Student representatives Dentistry, Bachstraße 2, 07743 Jena, Germany
schmidt.peter@uni-jena.de

Please cite as
Schmidt P. Digitale Lernprogramme – Konkurrenz für das Mikroskop? GMS Z Med Ausbild. 2013;30(1):Doc8. DOI: 10.3205/zma000851, URN: urn:nbn:de:0183-zma0008518

This article is freely available from http://www.ejms.de/en/journals/zma/2013-30/zma000851.shtml

Received: 2012-06-28
Revised: 2012-11-29
Accepted: 2012-12-20
Published: 2013-02-21

Copyright ©2013 Schmidt. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.