2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update
Jill Trewhella, Anthony P. Duff, Dominique Durand, Frank Gabel, J. Mitchell Guss, Wayne A. Hendrickson, Greg L. Hura, David A. Jacques, Nigel M. Kirby, Ann H. Kwan, Javier Pérez, Lois Pollack, Timothy M. Ryan, Andrej Sali, Dina Schneidman-Duhovny, Torsten Schwede, Dmitri I. Svergun, Masaaki Sugiyama, John A. Tainer, Patrice Vachette, John Westbrook and Andrew E. Whitten
Supporting Information

Table S1 Reporting template for tabulating essential SAS data acquisition, sample details, data analysis, modelling fitting and software used.

(a) Sample details

	Sample 1	Sample 2	Sample 3, etc.
Organism			
Source (Catalogue No. or reference)			
Description: sequence (including Uniprot ID + uncleaved tags), bound ligands/modifications, etc.			
Extinction coefficient ε (wavelength and units)			
Partial specific volume \bar{v} (cm3 g$^{-1}$)			
Mean solute and solvent scattering length densities and mean scattering contrast $\Delta \bar{\rho}$ (cm2)			
Molecular mass M from chemical composition (Da)			
For SEC-SAS, loading volume/concentration, (mg ml$^{-1}$)			
injection volume (µl), flow rate (ml min$^{-1}$)			
Concentration (range/values) measured and method			
Solvent composition and source			

(b) SAS data collection parameters

Source, instrument and description or reference			
Wavelength (Å)			
Beam geometry (size, sample-to-detector distance)			
q-measurement range (Å$^{-1}$ or nm$^{-1}$)			
Absolute scaling method			
Basis for normalization to constant counts			
Method for monitoring radiation damage, X-ray dose where relevant			
Exposure time, number of exposures			
Sample configuration including path length and flow rate where relevant			
Sample temperature (°C)			

(c) Software employed for SAS data reduction, analysis and interpretation

SAS data reduction to sample–solvent scattering, and extrapolation, merging, desmearing etc. as relevant			
Calculation of ε from sequence			
Calculation of $\Delta \bar{\rho}$ and \bar{v} values from chemical composition			
Basic analyses: Guinier, $P(r)$, scattering particle volume (e.g. Porod volume V_P or volume of correlation V_c)
Shape/bead modelling
Atomic structure modelling (homology, rigid body, ensemble)
Modelling of missing sequence from PDB files
Molecular graphics

(d) Structural parameters

Parameter	Sample 1	Sample 2	Sample 3, etc.
Guinier Analysis			
$I(0)$ (cm$^{-1}$)			
R_g (Å)			
q-range (Å$^{-1}$)			
Quality-of-fit parameter (with definition)			
M from $I(0)$ (ratio to expected value)			
$P(r)$ analysis			
$I(0)$ (cm$^{-1}$)			
R_g (Å)			
d_{max} (Å)			
q-range (Å$^{-1}$)			
Quality-of-fit parameter (with definition)			
M from $I(0)$ (ratio to expected value)			
Volume (e.g. V_P and/or V_c)			

(e) Shape modelling results (a complete panel for each method)

Parameter	Sample 1	Sample 2	Sample 3, etc.
q-range for fitting			
Symmetry/anisotropy assumptions			
Ambiguity measure(s) with definitions			
χ^2 value/range			
P value, any other quality-of-fit parameters			
Adjustable parameters in the model fit			
Model volume and/or M estimate			
Model precision/resolution			
For multiple phase shape models, R_g values and relative phase volumes			

(f) Atomistic modelling

Parameter	Sample 1	Sample 2	Sample 3, etc.
Method			
q-range for fitting			
Symmetry assumptions			
Any measures of model precision			
χ^2 value/range

P value, any other quality-of-fit parameters

Adjustable parameters in the model fit

Relevant output parameters (e.g. predicted R_g/d_{max} values, weights for multi-state models, etc.)

Domain/subunit coordinates and contacts, regions of presumed flexibility as appropriate

(g) Data and model deposition IDs	Sample 1	Sample 2	Sample 3 etc.
Supporting information, sup-4

Figure S1
A. Overlaid plots of $I(0)$ (filled symbols) and A_{280} (hollow symbols) as a function of time/measurement frame showing the good correspondence in peak shape that facilitates concentration estimates for a set of 1 second measurement frames. These plots are raw values and have not been corrected for the shortened pathlengths for the shear-flow cell of UV cell. B. $\log I(q) \times \log q$ plots showing the expected near zero slope at low-q expected for monodisperse scattering particles of similar size. C. Kratky plots for GI, BSA, and CaM. The rising Kratky plot for q values > 0.25 Å$^{-1}$ for BSA and CaM are indicative of flexibility in these proteins. Color key is as in main figures: GI (blue), CaM (black) and BSA (red).