Abdominal Imaging
Abdominal Imaging

Dushyant V. Sahani, MD
Associate Professor of Radiology
Harvard Medical School;
Assistant Radiologist,
Abdominal Imaging & Interventional Radiology;
Director, CT Imaging Services
Massachusetts General Hospital
Boston, Massachusetts

Anthony E. Samir, MD, MPH
Assistant Professor of Radiology
Harvard Medical School;
Radiologist
Abdominal Imaging & Interventional Radiology;
Co-Director
MGH/MIT Center for Ultrasound Research & Translation;
Associate Director
Ultrasound Imaging Services
Massachusetts General Hospital
Boston, Massachusetts
With great fondness I dedicate this book to mentors, colleagues, and students for their contributions in my personal and professional life that made me worthy of editing this book, and to my family for their unconditional love, encouragement, and unwavering support.

DUSHYANT V. SAHANI

I dedicate this book to my wife, Susan, whose love and support make everything possible; to my son, Noah, whose curiosity brings me profound happiness; to my daughter, Sophie, whose loving smile makes me deeply grateful for all I have; and to my parents, Charlotte and Moshe, who sacrificed much so that I could achieve something meaningful.

ANTHONY E. SAMIR
Contributors

Nicole D. Horst, MD, MEng
Diagnostic Radiology
North Shore Medical Center
Commonwealth Radiology Associates
Salem, Massachusetts
Colon

Aoife Kilcoyne, MB BCh BAO, B Med Sc, MRCP(UK), FFR(RCSI)MB, BCh, MAO
Clinical Fellow, Diagnostic Radiology
Division of Abdominal Imaging and Intervention
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts
Computed Tomography, Positron Emission Tomography and Co-Registered PET/CT, Nontraumatic Acute Abdomen, Splenic Lesions

Naveen M. Kulkarni, MD, DNB
Clinical Fellow
Abdominal Imaging and Intervention
Massachusetts General Hospital
Boston, Massachusetts
Adrenal Mass, Prostate and Seminal Vesicles, Penis, Prostate and Scrotum, General Concepts

Colin J. McCarthy, MB, BAO, BCh, MRCSI, FFR(RCSI)
Division of Abdominal Imaging
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts
Kidneys and Urinary Tract, Focal Renal Lesions, Diffuse Renal Parenchymal Diseases, Ureters and Bladder, Urinary Tract Anomalies and Variants

Melissa Price, MD
Thoracic Imaging Fellow
Massachusetts General Hospital
Boston, Massachusetts
Pancreas

Rani S. Sewatkar, MD
Radiology Research Fellow
Radiology
Massachusetts General Hospital
Boston, Massachusetts
Peritoneum and Retroperitoneum, Abdominal Wall Hernias

Abraham C. Thomas, MD
Radiologist
Massachusetts General Hospital
Boston, Massachusetts
Esophagus and Stomach Imaging, Stomach Lesions, Gastric Function Imaging, Small Bowel

CONTRIBUTORS

Francesco Agnello, MD
Radiology Fellow
Dipartimento di Biopatologie Mediche—Sezione di Scienze Radiologiche
Università di Palermo
Palermo, Italy
Benign Focal Lesions; Malignant Focal Lesions

Diego A. Aguirre, MD
Associate Professor of Radiology
Imaging Department
Fundacion Santa Fe de Bogota, University Hospital
Bogota, Colombia
Neoplastic and Non-neoplastic Conditions of the Abdominal Wall, Abdominal Wall Hernias

Pritish Aher, MBBS, DMRD
Consultant Radiologist
Pune
Maharashtra, India
Fluoroscopic Study of the Abdomen and Fluoroscopic Contrast Media

Stephan W. Anderson, MD
Assistant Professor
Department of Radiology
Director of Body CT
Boston University Medical Center
Boston, Massachusetts
Acute Appendicitis; Hollow Viscus Perforation; Acute Gastrointestinal Bleeding
Arash Anvari, MD
Postdoctoral Research Fellow
Radiology
Massachusetts General Hospital
Boston, Massachusetts
Tissue Harmonic Imaging and Doppler Ultrasound Imaging

Ashwin Asrani, MD, MBBS
Clinical Fellow in Radiology
Harvard Medical School;
Clinical Assistant in Radiology
Massachusetts General Hospital
Boston, Massachusetts
Erectile Dysfunction; Penile Trauma and Miscellaneous Penile Lesions; Imaging of the Scrotum; Benign and Malignant Testicular Lesions

Surabhi Bajpai, MBBS, DMRD
Research Fellow
Radiology
Massachusetts General Hospital
Boston, Massachusetts
Dilated Bile Ducts; Gallbladder and Bile Duct Functional Imaging; Image-Guided Therapy

Arpan K. Banerjee, MBBS (LOND), FRCP, FRCR, FBIR
Hon Senior Clinical Lecturer, Birmingham Medical School;
Consultant Radiologist, Heart of England Foundation NHS Trust
Birmingham, England, United Kingdom;
Past President Radiology Section 2005-2007
Royal Society of Medicine
London, England, United Kingdom
Peritoneal Fluid Collections, Peritonitis, and Peritoneal Abscesses

William F. Bennett, MD
Associate Professor
Radiology
The Ohio State University Wexner Medical Center
Columbus, Ohio
Small Bowel Obstruction

Michael Blake, MB, BCh, BSc, MRCP, FRCR, FFR (RCSI)
Assistant Professor of Radiology
Harvard Medical School;
Assistant Radiologist
Massachusetts General Hospital
Boston, Massachusetts
Positron Emission Tomography and Computed Tomography: Theory and Instrumentation; Positron Emission Tomography and Positron Emission Tomography/Computed Tomography Clinical Applications; Enlarged Adrenal Glands; Adrenal Masses

Giuseppe Brancatelli, MD
Associate Professor of Radiology
Dipartimento di Biopatologie Mediche—Sezione di Scienze Radiologiche
Università di Palermo
Palermo, Italy
Benign Focal Lesions; Malignant Focal Lesions

Vito Cantisani, MD, PhD
Professor of Radiology
Instructor in Radiology
Department of Radiological Sciences
University Sapienza of Rome
Rome, Italy
Plain Radiography of the Abdomen

Giovanni Carbognin, MD
Department of Radiology
University Hospital
Verona, Italy
Imaging of the Pancreas

Onofrio Catalano, MD
Clinical Fellow
Harvard Medical School;
Clinical Fellow
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts
Hepatic Variants; Solid Pancreatic Masses; Cystic Lesions of the Pancreas

Luzeng Chen, MD
Associate Professor
Ultrasound Center
Peking University First Hospital
Beijing, China
Abdominal Ultrasound Imaging: Anatomy, Physics, Instrumentation, Technique

Michael Chew, MBBS, BA
Fellow in Abdominal and Interventional Imaging
Massachusetts General Hospital
Boston, Massachusetts
Dilated Bile Ducts

Aqeel Ahmad Chowdhry, MD
Staff Radiologist
Department of Radiology
Cleveland Clinic—South Pointe Hospital
Cleveland, Ohio
Non-neoplastic Conditions of the Peritoneum and Neoplastic Conditions of the Mesentery and Omentum

Garry Choy, MD, MS, MSc
Clinical Fellow
Department of Radiology
Harvard Medical School;
Clinical Fellow
Massachusetts General Hospital
Boston, Massachusetts
Principles of Magnetic Resonance Imaging Physics; Contrast Media and Contrast-Enhanced Magnetic Resonance Imaging; Advanced Magnetic Resonance Imaging Applications

Rivka R. Colen, MD
Radiology Resident
Massachusetts General Hospital
Boston, Massachusetts
Gastric Function Imaging: Technique and Applications; Imaging of the Scrotum; Benign and Malignant Testicular Lesions
Carmel Cronin, MD, MB, BCh, MRCPI, FFR (RCSI)
Radiology Fellow
Department of Abdominal Imaging and Interventional Radiology
Massachusetts General Hospital
Boston, Massachusetts
Benign Prostatic Hyperplasia; Benign and Malignant Focal Prostate Lesions; Seminal Vesicle Lesions

Ugo D’Ambrosio, MD
Resident
Department of Radiological Sciences
University Sapienza of Rome
Rome, Italy
Plain Radiography of the Abdomen

Mirko D’Onofrio, MD
Assistant Professor of Radiology
G.B. Rossi University
Hospital, University of Verona
Verona, Italy
Imaging of the Pancreas

Abraham H. Dachman, MD, FACR
Professor of Radiology
Director of Fellowship Programs
The University of Chicago Medical Center
Chicago, Illinois
Benign Neoplasms and Wall Thickening of the Small Bowel

Hemali Desai, MD
Research Fellow
Massachusetts General Hospital
Boston, Massachusetts;
Resident
Beth Israel Medical Center
Newark, New Jersey
Imaging of Chronic Pancreatitis

Manish Dhyani, MBBS
Instructor in Radiology
Massachusetts General Hospital,
Harvard Medical School
Boston, Massachusetts
Advanced Ultrasound Techniques: Liver Elastography, Contrast-Enhanced Ultrasonography, and Four-Dimensional Ultrasound; Benign, Malignant, and Cystic Focal Renal Lesions

Silvana C. Faria, MD, PhD
Assistant Professor
MD Anderson Cancer Center
Houston, Texas
Fatty Liver Disease; Hepatic Storage Disorders; Cirrhosis and Hepatitis; Cholestatic Hepatic Disorders

Todd Fibus, MD
Assistant Professor
Department of Radiology
VA Medical Center
Emory University School of Medicine
Atlanta, Georgia
Colon Imaging: Conventional Imaging and Computed Tomography

Efrén J. Flores, MD
Harvard Medical School
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts
Imaging of the Postoperative Bowel

Mark Frank, MD
Associate Professor of Radiology
Indiana University, School of Medicine
Indianapolis, Indiana
Non-neoplastic Conditions of the Peritoneum and Neoplastic Conditions of the Mesentery and Omentum

Karthik Ganesan, DNB
Radiologist, Liver Imaging Group
Department of Radiology
University of California San Diego
San Diego, California
Consultant Radiologist
Piramal Diagnostics and Jankharia Imaging
Mumbai, India
Hepatic Iron Overload

Alpa G. Garg, MD
Clinical Assistant
Massachusetts General Hospital
Boston, Massachusetts
Benign and Malignant Bladder Lesions

Arunas E. Gasparaitis, MD
Assistant Professor
Department of Radiology
University of Chicago
Director of Fluoroscopic Services
University of Chicago Medical Center
Chicago, Illinois
Benign Neoplasms and Wall Thickening of the Small Bowel; Malignant Neoplasms and Wall Thickening of the Small Bowel

Sukanya Ghosh, MBBS, MRCP, FRCR
St. Bartholomew and the Royal London Hospital
London, England, United Kingdom
Imaging of the Stomach and Duodenum
Joseph R. Grajo, MD
Assistant Professor of Radiology
Division of Abdominal Imaging
University of Florida College of Medicine
Gainesville, Florida

Advanced Ultrasound Techniques: Liver Elastography, Contrast-Enhanced Ultrasonography, and Four-Dimensional Ultrasound; Imaging of the Liver; Fatty Liver Disease; Hepatic Iron Overload; Hepatic Storage Disorders; Cirrhosis and Hepatitis; Hepatic Veno-occlusive Diseases; Cholestatic Hepatic Disorders; Hepatic Variants; Lymph Node Imaging Techniques and Clinical Role; Benign Prostatic Hyperplasia; Benign and Malignant Focal Prostate Lesions; Seminal Vesicle Lesions

Manuel F. Granja, MD
Research Fellow
Universidad de los Andes Medical School
Imaging Department
Fundacion Santa Fe de Bogota, University Hospital
Bogota, Colombia

Neoplastic and Non-neoplastic Conditions of the Abdominal Wall; Abdominal Wall Hernias

Rossella Graziani, MD
Radiologist
University Hospital
University of Verona
Verona, Italy

Imaging of the Pancreas

Peter F. Hahn, MD, PhD
Associate Professor of Radiology
Harvard Medical School;
Radiologist
Massachusetts General Hospital
Boston, Massachusetts

Dilated Bile Ducts

Robert Hanna, MD
Radiologist (Physician)
Department of Radiology
University of California San Diego
San Diego, California

Hepatic Iron Overload; Cirrhosis and Hepatitis

Donald Hawes, MD
Associate Professor of Radiology
Indiana University
School of Medicine
Indianapolis, Indiana

Non-neoplastic Conditions of the Peritoneum and Neoplastic Conditions of the Mesentery and Omentum

Koichi Hayano, MD, PhD
Assistant Professor
Department of Surgery
Chiba University Hospital
Chiba, Japan

Plain Radiography of the Abdomen; Fluoroscopic Study of the Abdomen and Fluoroscopic Contrast Media; Principles of Magnetic Resonance Imaging Physics; Contrast Media and Contrast-Enhanced Magnetic Resonance Imaging; Advanced Magnetic Resonance Imaging Applications; Esophageal Imaging

Nagaraj-Setty Holalkere, MD, DNB
Instructor, Department of Radiology
Boston Medical Center
Boston, Massachusetts

Enlarged Adrenal Glands, Adrenal Masses

Nicole D. Horst, MD, MEng
Diagnostic Radiology
North Shore Medical Center
Commonwealth Radiology Associates
Salem, Massachusetts

Colon Imaging: Conventional Imaging and Computed Tomography; Computed Tomographic Colonography, Inflammatory and Infectious Colonic Lesions; Colonic Vascular Lesions; Colon Cancer and Screening Strategies; Imaging of the Postoperative Bowel

Kedar Jambhekar, MD, DNB
Assistant Professor
Department of Radiology
University of Arkansas for Medical Sciences
Little Rock, Arkansas

Diffuse Renal Parenchymal Diseases; Renal Vascular Diseases

Bijal Jankharia, MBBS, DMRE, DMRD, DNB
Teacher and Consultant
Piramal Diagnostics
Jankharia Imaging
Mumbai, Maharashtra, India

Tissue Harmonic Imaging and Doppler Ultrasound Imaging

Sanjeeva P. Kalva, MD, MB, BS
Assistant Professor
Department of Radiology
Harvard Medical School;
Associate Director of Clinical Affairs
Division of Vascular Imaging & Intervention
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts

Acute and Chronic Small Bowel Ischemia
Contributors

Avinash Kambadakone, MBBS, MD, DNB, FRCR
Assistant Professor
Harvard Medical School;
Radiologist
Abdominal Imaging & Interventional Radiology,
Medical Director
Martha’s Vineyard Hospital Imaging
Massachusetts General Hospital
Boston, Massachusetts
Recent Advances; Diffuse Gallbladder Wall Thickening; Focal Gallbladder Wall Thickening; Lymph Node Imaging Techniques and Clinical Role

David P. Katz, MD
Assistant Professor
Department of Radiology
Baylor College of Medicine
Houston, Texas
Imaging of the Kidneys and Urinary Tract; Benign, Malignant, and Cystic Focal Renal Lesions

Keerthana Kesavarapu, BS
Department of Biology
Georgia Institute of Technology
Atlanta, Georgia
Colon Imaging: Conventional Imaging and Computed Tomography

Hansol Kim, MD
Resident
Department of Radiology
Brigham and Women’s Hospital
Boston, Massachusetts
Miscellaneous Pancreatitis; Diffuse Pancreatic Disease

Kyoung Won Kim, MD, PhD
Associate Professor
Department of Radiology
University of Ulsan College of Medicine;
Faculty Member
Department of Radiology
Asan Medical Center
Seoul, Republic of Korea
Focal Splenic Lesions; Diffuse Splenic Lesions

Min Ju Kim, MD
Radiology
National Cancer Center
Ilhaldong-gu, Goyang-si
Gyeonggi-do, Korea
Focal Splenic Lesions; Diffuse Splenic Lesions

Kirti Kulkarni, MD
Assistant Professor
Department of Radiology
University of Chicago
Chicago, Illinois
Malignant Neoplasms and Wall Thickening of the Small Bowel

Naveen M. Kulkarni, MD, DNB
Clinical Fellow
Abdominal Imaging and Intervention
Massachusetts General Hospital
Boston, Massachusetts
Fluoroscopic Study of the Abdomen and Fluoroscopic Contrast Media; Principles of Computed Tomography Physics, Instrumentation, and Radiation Safety; Colonic Vascular Lesions; Imaging of Chronic Pancreatitis; Enlarged Adrenal Glands; Adrenal Masses, Erectile Dysfunction; Penile Trauma and Miscellaneous Penile Lesions; Imaging of the Scrotum; Benign and Malignant Testicular Lesions; Imaging of Disorders of the Female Urethra; Imaging of Disorders of the Male Urethra; Response Evaluation Criteria in Solid Tumors, World Health Organization, and Other Response Criteria; Principles of CT Physics: Instrumentation and Radiation Safety

A. Nick Kurup, MD
Instructor
Department of Radiology
Mayo Clinic
College of Medicine
Rochester, Minnesota
Imaging of the Kidneys and Urinary Tract; Benign, Malignant, and Cystic Focal Renal Lesions

Somesh Lala, MBBS, DMRD, DNB
Teacher, Consultant Radiologist, and Sonologist
Piramal Diagnostics;
Consultant Radiologist and Sonologist
Midtown Diagnostics,
Jankharia Imaging
Mumbai, Maharashtra, India
Tissue Harmonic Imaging and Doppler Ultrasound Imaging

Chandana G. Lall, MD
Associate Professor of Clinical Radiology
Indiana University School of Medicine
Indianapolis, Indiana
Peritoneal Fluid Collections, Peritonitis and Peritoneal Abscess

Leslie K. Lee, BSc, MD
Clinical Fellow in Radiology
Massachusetts General Hospital
Boston, Massachusetts
Hepatic Storage Disorders; Cholestatic Hepatic Disorders; Hepatic Variants; Benign and Malignant Focal Prostate Lesions

Dipti K. Lenhart, MD
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts
Colon Cancer and Screening Strategies
Bob Liu, PhD
Physicist
Massachusetts General Hospital;
Assistant Professor in Radiology
Harvard Medical School
Boston, Massachusetts
Principles of Computed Tomography Physics, Instrumentation, and Radiation Safety

Xiaozhou Ma, MD
Research Fellow
Harvard Medical School
Fellow, 3D Imaging
Massachusetts General Hospital
Boston, Massachusetts
Tissue Harmonic Imaging and Doppler Ultrasound Imaging; Advanced Ultrasound Techniques: Liver Elastography, Contrast-Enhanced Ultrasonography; and Four-Dimensional Ultrasound

Michael Macari, MD
Vice Chair of Operations
Section Chief of Abdominal Imaging
New York University Langone School of Medicine
New York, New York
Inflammatory and Infectious Colonic Lesions

Riccardo Manfredi, MD
Associate Professor
Department of Diagnostic Imaging
University of Verona
Verona, Italy
Imaging of the Pancreas

Andrea Marcantonio, MD
Resident
Department of Radiological Sciences
University Sapienza of Rome
Rome, Italy
Plain Radiography of the Abdomen

Daniele Marin, MD
Associate Professor
Department of Radiology
Duke University
Durham, North Carolina
Benign Focal Lesions; Malignant Focal Lesions

Deepa Masrani, MD
Clinical Assistant Professor
Women’s Imaging
Upstate Medical University
State University of New York
Syracuse, New York
Erectile Dysfunction

Sameer M. Mazhar, MD
Fellow
Division of Gastroenterology
University of California San Diego
San Diego, California
Fatty Liver Disease; Hepatic Iron Overload; Hepatic Storage Disorders; Cirrhosis and Hepatitis; Hepatic Veno-occlusive Diseases; Cholestatic Hepatic Disorders

Vishakha Mazumdar, MBBS
Fellow
Radiology
Piramal Diagnostics
Jankharia Imaging
Mumbai, Maharashtra, India
Tissue Harmonic Imaging and Doppler Ultrasound Imaging

Colin J. McCarthy, MB, BAO, BCh, MRCSI, FFR(RCSI)
Division of Abdominal Imaging
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts
Imaging of the Kidneys and Urinary Tract; Diffuse Renal Parenchymal Diseases; Benign and Malignant Ureteral Strictures; Benign and Malignant Bladder Lesions; Urinary Tract Anomalies and Variants

Pardeep Mittal, MD
Assistant Professor
Department of Radiology
Emory University School of Medicine
Atlanta, Georgia
Colon Imaging: Conventional Imaging and Computed Tomography

Michael Moore, MB, BCh, FFR (RCSI)
Radiologist
Abdominal Imaging
Massachusetts General Hospital
Boston, Massachusetts;
Consultant Radiologist
Mercy University Hospital
Cork, Ireland
Positron Emission Tomography and Computed Tomography Technique and Instrumentation; Positron Emission Tomography and Positron Emission Tomography/Computed Tomography Clinical Applications

Giovanni Morana, MD
Director, Radiological Department
General Hospital
Treviso, Italy
Gallbladder and Bile Duct Functional Imaging

Ajaykumar Morani, MBBS, MD
Clinical Lecturer I, Body Imaging
Department of Radiology
University of Michigan
Ann Arbor, Michigan
Erectile Dysfunction; Penile Trauma and Miscellaneous Penile Lesions; Imaging of the Scrotum; Benign and Malignant Testicular Lesions
Massimiliano Motton, MD
Department of Radiology
G.B. Rossi Hospital Verona
Verona, Italy
Imaging of the Pancreas

Ozden Narin, MD
Research Fellow
Department of Radiology
Massachusetts General Hospital
Boston, Massachusetts
Colonic Vascular Lesions

Vamsidhar R. Narra, MD, MBA, FRCR, FCR
Professor of Radiology,
Chief, Abdominal Imaging Section,
Vice Chair, Clinical Imaging Informatics & New Business Development,
Chief of Radiology
Barnes Jewish West County Hospital
Mallinckrodt Institute of Radiology
Washington University—St. Louis
St. Louis, Missouri
Tumors of the Gallbladder; Intrahepatic Bile Duct Tumors; Extrahepatic Bile Duct Tumors

Aytekin Oto, MD
Professor of Radiology and Surgery
Section Chief, Abdominal Imaging
Department of Radiology
University of Chicago Medicine
Chicago, Illinois
Benign Neoplasms and Wall Thickening of the Small Bowel; Malignant Neoplasms and Wall Thickening of the Small Bowel

Tarun Pandey, MD, DNB, FRCR
Assistant Professor of Radiology
University of Arkansas for Medical Sciences
Little Rock, Arkansas
Diffuse Renal Parenchymal Diseases; Renal Vascular Diseases

Ralph C. Panek, MD
Staff Radiologist
Department of Radiology
St. Elizabeth's Hospital
Brighton, Massachusetts
Benign and Malignant Bladder Lesions

Heather M. Patton, MD
Assistant Clinical Professor of Medicine
Division of Gastroenterology
University of California—San Diego
San Diego, California
Fatty Liver Disease; Hepatic Iron Overload

Rodolfo F. Perini, MD
Fellow
Medical Oncology and Nuclear Medicine
Hospital of the University of Pennsylvania
Philadelphia, Pennsylvania
Imaging of the Kidneys and Urinary Tract

Michael R. Peterson, MD, PhD
Assistant Clinical Professor, Pathology
University of California San Diego
San Diego, California
Hepatic Iron Overload; Hepatic Storage Disorders; Cirrhosis and Hepatitis; Hepatic Veno-occlusive Diseases; Cholestatic Hepatic Disorders

Giuseppe Petralia, MD
Radiologist
Division of Radiology
European Institute of Oncology
Milan, Italy
Gallbladder and Bile Duct Functional Imaging

Niall Power, MRCPI, FRCR
Consultant Radiologist
Radiology Department
Royal London Hospital
London, England, United Kingdom
Imaging of the Stomach and Duodenum

Anand M. Prabhakar, MD
Clinical Fellow in Abdominal Imaging
Harvard Medical School
Massachusetts General Hospital
Boston, Massachusetts
Mucosal Diseases of the Stomach: Differentiating Benign from Malignant; Gastric Stromal Tumors

Hima B. Prabhakar, MD
Staff Radiologist
South Texas Radiology Group
San Antonio, Texas
Mucosal Diseases of the Stomach: Differentiating Benign from Malignant; Gastric Stromal Tumors; Gastric Outlet Obstruction

Priya D. Prabhakar, MD, MPH
Clinical Assistant Professor of Radiology
Department of Radiology
Jefferson Medical College; Staff Radiologist
Department of Radiology
Albert Einstein Medical Center
Philadelphia, Pennsylvania
Gastric Outlet Obstruction

Srinivasa R. Prasad, MD
Professor, Radiology Department
University of Texas
Health Science Center at San Antonio
San Antonio, Texas
Imaging of Disorders of the Female Urethra; Imaging of Disorders of the Male Urethra

Melissa Price, MD
Thoracic Imaging Fellow
Massachusetts General Hospital
Boston, Massachusetts
Imaging of the Pancreas; Solid Pancreatic Masses; Cystic Lesions of the Pancreas; Imaging of Acute Pancreatitis; Imaging of Chronic Pancreatitis
Richard T. Scuderi, MD, PhD
Fellow, Surgical Pathology
University of California San Diego
San Diego, California

Fatty Liver Disease

Melanie Seale, MBBS, FRANZCR
Radiologist
Medical Imaging Department
St Vincent's Hospital Melbourne
Fitzroy, Victoria, Australia

Urinary Tract Obstruction

Sunit Sebastian, MD
Assistant Professor, Department of Radiology
Chief, Division of Body Imaging
University of Mississippi Medical Center
Jackson, Mississippi

Colon Imaging: Conventional Imaging and Computed Tomography; Computed Tomographic Colonography

Rani S. Sewatkar, MD
Radiology Research Fellow
Radiology
Massachusetts General Hospital
Boston, Massachusetts

Peritoneal Fluid Collections, Peritonitis and Peritoneal Abscess; Non-neoplastic Conditions of the Peritoneum and Neoplastic Conditions of the Mesentery and Omentum

Hemendra Shah, MD, FACR
Professor of Radiology and Urology
University of Arkansas for Medical Sciences
Little Rock, Arkansas

Diffuse Renal Parenchymal Diseases; Renal Vascular Diseases

Shetal N. Shah, MD
Visiting Associate Professor of Radiology
Cleveland Clinic Lerner School of Medicine
Case Western Reserve University;
Co-Director
Center for PET and Molecular Imaging;
Staff, Cleveland Clinic
Imaging Institute
Cleveland, Ohio

Computed Tomography Contrast Media and Principles of Contrast Enhancement; Non-neoplastic Conditions of the Peritoneum and Neoplastic Conditions of the Mesentery and Omentum

Zarine K. Shah, MD, MBBS
Assistant Professor
Department of Radiology
Division of Abdominal Imaging
Ohio State University Medical Center
Columbus, Ohio

Small Bowel Obstruction

Anup Shetty, MD
Instructor of Radiology
Abdominal Imaging Section
Mallinckrodt Institute of Radiology
Washington University School of Medicine
St. Louis, Missouri

Tumors of the Gallbladder; Intrahepatic Bile Duct Tumors; Extrahepatic Bile Duct Tumors

Masoud Shiehmorteza, MD
Liver Imaging Group
Department of Radiology
University of California San Diego
San Diego, California

Cirrhosis and Hepatitis

Claude B. Sirlin, MD
Associate Professor
Liver Imaging Group
Department of Radiology
University of California San Diego
San Diego, California

Fatty Liver Disease; Hepatic Iron Overload; Hepatic Storage Disorders; Cirrhosis and Hepatitis; Hepatic Veno-occlusive Diseases; Cholestatic Hepatic Disorders

William Small, MD, PhD
Associate Professor
Director of Abdominal Imaging
Department of Radiology
Emory University School of Medicine
Emory University Hospital
Atlanta, Georgia

Colon Imaging: Conventional Imaging and Computed Tomography; Computed Tomographic Colonography

Jorge A. Soto, MD
Professor of Radiology
Boston University School of Medicine;
Vice Chairman
Department of Radiology
Boston Medical Center
Boston, Massachusetts

Ureteral and Kidney Stones; Acute Appendicitis; Hollow Viscus Perforation; Acute Gastrointestinal Bleeding

Lance L. Stein, MD
Center for Liver Disease and Transplantation
Columbia University, New York Presbyterian Hospital
New York, New York

Hepatic Storage Disorders

Venkateswar R. Surabhi, MD
Assistant Professor
Department of Radiology
University of Texas Health Science Center at Houston
Houston, Texas

Imaging of Disorders of the Female Urethra; Imaging of Disorders of the Male Urethra
Contributors

Marco Testoni, MD
Department of Radiology
G.B. Rossi Hospital Verona
Verona, Italy
Imaging of the Pancreas

Ashraf Thabet, MD
Clinical Fellow, Division of Abdominal Imaging and Intervention
Department of Radiology
Harvard Medical School
Massachusetts General Hospital
Boston, Massachusetts
Acute and Chronic Small Bowel Ischemia

Abraham C. Thomas, MD
Radiologist
Massachusetts General Hospital
Boston, Massachusetts
Imaging of the Stomach and Duodenum; Mucosal Diseases of the Stomach: Differentiating Benign from Malignant; Gastric Stromal Tumors; Gastric Outlet Obstruction; Gastric Function Imaging: Technique and Applications; Imaging the Small Bowel; Acute and Chronic Small Bowel Ischemia

Stephen Thomas, MD
Assistant Professor of Radiology
Department of Radiology
The University of Chicago Medical Center
Chicago, Illinois
Benign Neoplasms and Wall Thickening of the Small Bowel; Malignant Neoplasms and Wall Thickening of the Small Bowel

Ernesto Tomei, MD
Associate Professor
Department of Radiology
University Sapienza of Rome
Rome, Italy
Plain Radiography of the Abdomen

Richard Tsai, MD
Resident
Diagnostic Radiology
Mallinckrodt Institute of Radiology
Washington University
St. Louis, Missouri
Tumors of the Gallbladder; Intrahepatic Bile Duct Tumors; Extrahepatic Bile Duct Tumors

Michelle Udeshi, MD
Department of Radiology
Hospital of St. Raphael
New Haven, Connecticut;
Griffin Hospital
Derby, Connecticut
Imaging of the Kidneys and Urinary Tract; Benign, Malignant, and Cystic Focal Renal Lesions

Raul N. Uppot, MD
Assistant Professor
Department of Radiology
Harvard Medical School;
Interventional Radiologist
Division of Interventional Radiology
Massachusetts General Hospital
Boston, Massachusetts
Urinary Tract Anomalies and Variants; Image-Guided Therapy

Sujit Vaidya, MD
Barts and the London NHS Trust
London, England, United Kingdom
Imaging of the Stomach and Duodenum

Sanjaya Viswamitra, MD
Assistant Professor
Department of Radiology
University of Arkansas for Medical Sciences
Little Rock, Arkansas
Diffuse Renal Parenchymal Diseases; Renal Vascular Diseases

T. Gregory Walker, MD
Instructor of Radiology
Harvard Medical School;
Associate Radiologist
Massachusetts General Hospital
Boston, Massachusetts
Acute and Chronic Small Bowel Ischemia

Takeshi Yokoo, MD, PhD
Department of Radiology
University of California San Diego
San Diego, California
Fatty Liver Disease
In 2013, when Elsevier approached us to create an updated, revised, and shortened second edition of *Abdominal Imaging*, we had some concerns. Even though the book had been successful and well-received by many colleagues and friends, we both wondered whether there truly is a need for an abbreviated, but comprehensive text? And would we have the time to work on it, adding the myriad updates to do justice to our fast-moving specialty?

Fortunately, we have had the privilege of working with a fine team of outstanding associate editors, section editors, and new chapter authors. Joe Grajo, MD and Nicole Horst, MD, truly outstanding radiologists and clinical fellows in our department, did superb work editing, collating, and organizing the work of our section editors. Together with the initial authors of the many chapters in this book, Melissa Price, MD, Colin McCarthy, MD, Aiofe Kilcoyne, MD, Rani Sewatkar, MD, Koichi Hayano, MD, Surabhi Bajpayi, MD, Naveen Kulkarni, MD, Arash Anvari, Luzeng Chen, Manish Dhyani, and Abe Thomas, MD all did an outstanding job of editing and revising the many chapters that went into this book. New chapters were contributed by Arash Anvari, MD, Manish Dhyani, MD, Luzeng Chen, MD, Koichi Hayano, MD, Naveen Kulkarni, MD, and Surabhi Bajpayi, MD. We are truly proud to have worked with such an outstanding team.

The new edition has been extensively updated and contains new images and the latest information about new technologies in abdominal imaging. This new edition is available both in a print edition and as part of the online *Clinical Key*. This platform comprises an online tool with high yield content and numerous annotated images in an easy-to-use format specifically designed for rapid retrieval of clinically useful information.

Our objective in the Second Edition of *Abdominal Imaging* is the same as in the first: to provide you, the reader, with a reference that is both comprehensive and that incorporates features more typically found in handbooks—short, readable sentences, key fact boxes, summary tables, abbreviated reference lists, listings of important review articles, and, above all, a highly integrated knowledge base that allows readers to rapidly access key content from any Internet-connected computer anywhere in the world.

This text is necessarily the work of many people: The numerous chapter authors of the first edition, Associate Editors, Section Editors, and authors of the new chapters. To all of you—we are profoundly grateful for your work. Our efforts would not have been possible without the understanding and strong support of our families and colleagues. We have also been privileged to work with an outstanding team at Elsevier. Marybeth Thiel demonstrated patience and perseverance dealing with busy editors—with you the project would never have been completed. Robin Carter—thank you for inviting us to complete the second edition.

As with the first edition, editing this book has been a tremendous education. We’ve learned so many new and interesting information about our own subspecialty that we believe there is something exciting in these pages for everyone from the seasoned subspecialist to the busy generalist.
Technical Aspects

A plain abdominal radiograph must be read with a complete knowledge of the clinical situation. The patient's history and results of the physical examination and laboratory studies are always important to evaluate an acute abdomen, which may be caused by various different diseases. Obtaining plain films with the patient supine and erect that include the diaphragm is the classic approach. Because chest abnormalities may produce an acute abdomen, a chest posteroanterior radiograph is sometimes ordered.

The standard abdominal radiograph is a supine projection: x-rays are passed from front to back (anteroposterior projection) in a patient lying on his or her back (Figure 1-1). In some circumstances, an abdominal radiograph taken with the patient erect is requested; its advantage over a supine film is the visualization of air/fluid levels. A decubitus film (with the patient lying on his or her side) is also of use in certain situations, especially to visualize fluid levels in the large bowel.

It is important, as with any imaging technique, that the technical details of an abdominal radiograph are assessed. The date the film was taken and the name, age, and sex of the patient are all worth noting. This ensures you are reviewing the correct film with the correct clinical information, and it also may aid your interpretation. Unless the order is specifically labeled, the film is taken with the patient supine. The best way to appreciate normality is to look at as many films as possible, with an awareness of anatomy in mind. Although an abdominal radiograph is a plain radiograph, it has a radiation dose equivalent to 50 posteroanterior chest radiographs or 6 months of standard background radiation.

Pros and Cons

Many techniques may be used to acquire images of the abdomen, including ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI), but the plain abdominal radiograph is the technique that is most readily available in the emergency situation when a patient presents with acute abdominal pain.

Radiographs should never be requested without due consideration. They expend resources and expose the patient to ionizing radiation. They are an adjunct to a careful history and thorough physical examination.

The abdominal radiograph has the advantage of low cost. It is easy to perform and can be done on uncooperative patients, and, if correctly carried out and carefully interpreted, it can still be used with a dual purpose. It can be used to evaluate catheter placement; identify ingested, inhaled, or introduced foreign bodies or free air in patients with gastrointestinal perforation (conditions for which the examination is often diagnostic); or assess a condition of intestinal occlusion or an abdomen in the postoperative phase. It also can be of use in documenting the intestinal morphodynamics, the findings of which at the direct examination of the abdomen depend on both the cause of the acute pathologic process and the time when the examination is performed with respect to the onset of the insult. In addition, plain abdominal radiographs are an accessible, relatively inexpensive, convenient, and accurate method of detecting retained surgical needles. They can be used effectively to locate needles over 10 mm in length retained in the abdomen, with a sensitivity of 92% in this size range. In this scenario, plain abdominal radiographs should continue to be used after incorrect needle counts. It is also recommended that the requesting physician provide the radiologist the size of the lost needle. However, for missing needles of 10 mm or less in length, the utility of plain abdominal radiographs is more debatable.

Conversely, criticisms of requests for abdominal films often quote a low number of cases in which the diagnosis or management was changed by the radiographic findings. The diagnostic value is questionable, and very often there is no clear indication. In the majority of cases, the results are negative or nonspecific. In fact, as reported in a recent article by Kellow and colleagues, the results of abdominal radiography are neither sensitive nor specific. Flak and Rowley suggested that there are only two clinical entities in which sensitivity of abdominal radiography approaches 100%: free intraperitoneal air and, to a lesser extent, bowel obstruction. For the latter indication, a prospective trial conducted by Frager and associates determined that clinical and radiographic evaluation was never precise enough to provide the exact location or cause of small bowel obstruction. Furthermore, Taourel and coworkers demonstrated that not only is CT valuable in making a more accurate diagnosis but also that clinical treatment was correctly modified in 21% of patients because of the additional information provided by using CT. Therefore, abdominal radiography appears of limited value in the initial diagnosis of obstruction. For the indication of free air, the diagnosis is better made by evaluation of a chest radiograph obtained with the patient erect. In addition, only a few physicians are aware of the relatively high radiation dose of an abdominal film, which is equal to 50 chest radiographs.

Controversies

In the 1950s, gastrointestinal radiology consisted of plain abdominal films and single-contrast barium studies to assess gastrointestinal diseases. Today, the plain radiograph still may be the first step to evaluate acute abdominal diseases. However, with the advent of CT and ultrasonography, the importance of the plain abdominal film is decreasing. In past years, plain radiography was also used to help diagnose abdominal pathologic
processes such as stones in the kidney, gallbladder, or bladder. Plain radiography is now limited to emergency radiology in the acute abdomen. However, despite the undoubted advantages of the speed of examination, the multiplanar capabilities, and the objectivity of interpretation, CT subjects the patient to a higher dose of ionizing radiation. The role of plain radiography of the abdomen in the diagnosis of acute abdomen needs to be reconsidered. According to some authors, plain radiography should be performed only in patients for whom there are known advantages, such as in the case of suspected gastrointestinal perforation, intestinal occlusion, ingestion of or the search for foreign bodies, and assessment of the postoperative abdomen; in these cases, it is still the examination of choice, and only if it does not prove diagnostic should a CT examination be recommended. In addition to these situations, however, there is another indication: the ability of plain radiography to assess the evolution of intestinal morphodynamics, that is, the variations in the motility, shape, and position of the small bowel in acute pathologic conditions. Even though in the first instance assessing the cause or the precise site of the obstruction is advisable, differentiating at least a mechanical ileus from a paralytic ileus, and above all having an understanding of the seriousness and the extension of the cause and the time elapsed since its onset, can prove clinically more useful. Few comparisons of plain abdominal radiographs and CT scans exist in the literature. Siewert and associates reported on 91 admitted patients with acute abdominal pain who eventually received CT because of continuing symptoms or failure to respond to therapy. In this series, treatment was changed after CT in 25 patients (27%), but the authors did not state the relative contribution of the plain abdominal radiographs to the pre-CT diagnosis. In particular, the percentage of patients who had abnormal plain abdominal radiographs was not given. A retrospective review of 23 patients with proved mesenteric infarction compared plain abdominal radiographs with CTs and showed that 6 patients (26%) had abnormal plain abdominal radiographs only, 8 patients (35%) had abnormal CTs only, and in only 1 patient (4%) were both tests abnormal. Both studies were normal or nonspecific in 8 patients (35%). That 26% of patients had signs of an acute abdominal syndrome shown only on plain abdominal radiographs and not on CT is in sharp contradiction to our findings, in which the plain abdominal radiographs provided minimal additional information in 2 of 74 patients (3%) and at the cost of 33 (57%) potentially misleading false-negative results. There are several possible explanations. Mesenteric infarction may represent one of a series of specific syndromes that have either relatively low CT sensitivity, high plain abdominal radiograph sensitivity, or both. In the review just cited, no patients were diagnosed on plain abdominal radiographs, CT, or clinical course with this syndrome. Other possibilities include individual or institutional variations in radiologic interpretations or improvement in the interpretation of CTs for this and other syndromes over the past decade. The increased imaging capabilities of this newer technology would most likely make the test characteristics of the newer CT scanners even more favorable. Despite these limitations, for emergency department patients with acute abdominal, flank, or back pain, in whom a CT is likely to be obtained, a preliminary plain abdominal radiograph adds almost no additional information and is potentially misleading. Given the utilization of resources required for plain abdominal radiographs as well as the time delay to obtain them, some authors believe that patients in whom the clinical suspicion of significant intra-abdominal pathology is high should go directly to CT.

Normal Anatomy

As with any plain radiograph, only five main densities may be distinguished, four of which are natural: black for gas, white for calcified structures, gray representing a host of soft tissue, and a slightly darker gray for fat (because it absorbs slightly fewer x-rays). Metallic objects are seen as an intense bright white. The clarity of outlines of structures depends, therefore, on the differences among these densities. On the chest radiograph, this is easily shown by the contrast between lung and ribs as black air against the white calcium-containing bones. These differences are much less apparent on the abdominal radiograph because most structures are of similar density, mainly soft tissue. A systematic approach to plain abdominal radiographs will help avoid errors in interpretation. Interpretation of the abdominal radiograph depends on the assessment of the bowel gas pattern, solid organ outlines, a search for abnormal calcification, and a review of the skeleton. A search should be made for extraluminal gas. A bowel gas pattern distinguishing the colon from the small bowel may be difficult. The presence of solid feces and the distribution, caliber, and mucosal pattern of the bowel help in deciding whether a particular loop of bowel is stomach, small intestine, or colon. The presence of solid feces indicates the large bowel, which also may be recognized by the incomplete haustral band crossing the colonic gas shadow. Haustra are usually present in the ascending and transverse colon but may be absent from the splenic flexure and descending colon. The valvulae conniventes of the small bowel are closer together and cross the width of the bowel. The distal ileum when dilated can appear smooth, which makes differentiation more difficult. The small bowel when obstructed is generally centrally positioned with numerous loops of tighter curvature than the large bowel. Maximal small bowel caliber is 3.5 cm in the jejunum and
Pneumoperitoneum.

Gas in the right upper quadrant within the biliary tree is a “normal” finding after sphincterotomy or biliary surgery, but it can indicate the presence of a fistula between the biliary tree and the gut. One must beware of gas in the portal vein, because this can look very similar to biliary air. Gas in the portal vein is always pathologic and frequently fatal. It occurs in ischemic states, such as toxic megacolon, and it may be accompanied by gas within the bowel wall (intramural gas) (Box 1-1).

Calcification

Calcium is visible in a variety of structures, both normal and abnormal, and becomes more common with advancing age. Calcification should be identified and anatomically located. In some locations (e.g., vascular calcification), it is common and benign. Vascular calcification may be seen within the aorta, in the splenic artery in the left upper quadrant, or in the pelvis. Abdominal aortic aneurysms are usually below the second lumbar vertebra. Calcification can make them obvious and can.

Box 1-1 Areas to Search for Abnormal Extraluminal Gas

- Under the diaphragm
- In the biliary system
- Within the bowel wall

2.5 cm in the ileum. Maximal caliber of the transverse colon on plain films is taken to be 5.5 cm in diameter, and the maximal cecal diameter is 9 cm. Solid organs, the liver edge, renal outlines, and the splenic tip may all be demonstrated.

Intraluminal Gas

One should begin by looking at the amount and distribution of gas in the bowels (intraluminal gas). There is considerable normal variation in the distribution of bowel gas (Figure 1-2). On the abdominal radiograph taken with the patient erect, the gastric gas bubble in the left upper quadrant of the film is a normal finding. Gas is also normally seen within the large bowel, most notably the transverse colon and rectum. Small and large bowel also can be distinguished, most easily when dilated, by their different mucosal markings. Small bowel has valvulae conniventes that traverse the full width of the bowel; large bowel has haustra that cross only part of the bowel wall. These features are important in the next part of this series, which considers abnormal intraluminal gas. Occasionally, fluid levels in the small bowel are a normal finding. Fecal matter in the bowel gives a “mottled” appearance. This is seen as a mixture of gray densities representing a gas/liquid/solid mixture.

Extraluminal Gas

Gas outside the bowel lumen is invariably abnormal (Figure 1-3). The largest volume of gas one might see is likely to be under the right diaphragm; this occurs after a viscus has been perforated. This gas within the peritoneal cavity is termed pneumoperitoneum.

Figure 1-2 Diverticulitis and peridiverticulitis. There is no evidence of bowel distention at the level of either the colon or the small bowel. It is possible to see a mild air dilation of the small bowel. The cecum seems to be mediially moved (arrow).

Figure 1-3 Mesenteric ischemia and spleen infarction. Abdominal radiograph shows a colonic dilation (arrow) that is especially marked at distal segments. Furthermore, extracolonic air collections are visible at the spleen level (arrowhead) in the upper left quadrant. Bowel dilation is evident without the finding of bowel obstruction.
give a rough indication of the internal diameter. Abdominal ultrasonography is required for accurate assessment and to determine the need for surgery or follow-up. Uterine fibroids can become calcified.

Calcified renal tract stones should be looked for around the renal outlines and down the line of the ureters. More rarely, calcified gallstones are seen in the right upper quadrant or a calcified (porcelain) gallbladder is present. The pancreas lies at the level of the T9 to T12 vertebrae. Calcification occurs in chronic pancreatitis and may show the whole outline of the gland.

In the pelvic region, bladder calculi may occasionally be seen. Bladder stones are usually quite large and often multiple. Calcification of a bladder tumor also may occur. Schistosomiasis may produce calcification of the bladder wall.

Other causes of pelvic calcification include phleboliths, calcified fibroids, and, rarely, calcification in ovarian dermoids, which may also contain teeth and hair.

SOFT TISSUES AND BONE

A review of the soft tissues entails evaluating the outlines of the major abdominal organs. Observing these structures is made easier by the fatty rim (peritoneal fat lines) surrounding them. In fact, the loss of these fat planes may indicate an ongoing pathologic process, such as peritonitis.

The liver is seen in the right upper quadrant and extends downward a variable distance. The tip of the right lobe may be seen extending below the right kidney; this is a normal variant called Riedel’s lobe. The spleen may be visualized (especially in thin individuals) even when of normal size. It enlarges inferiorly and toward the left lower quadrant. It is often possible to identify both kidneys and the psoas shadows within the retroperitoneum. The kidneys are lateral to the midline in the region of the T12 to L2 vertebrae. (Note: A useful way to identify vertebral fractures is that the lowest one to give off a rib is T12 and thus can serve as a reference point.)

Soft tissue masses or abscess can sometimes be identified on plain films. An abscess generally has a rather heterogeneous density because of the presence of gas and necrotic tissue. Mass lesions are of soft tissue density and will displace bowel gas shadows.

The assessment of bones entails evaluating the spine and pelvis for evidence of a bony pathologic process. Osteoarthritis frequently affects the vertebral bodies, as well as the femoral and the acetabular components of the hip joint. Paget’s disease may be identified commonly along the iliopectineal lines of the pelvis. The bone survey should also include a check for fractures, especially subtle femoral neck fractures in elderly persons. The spine and pelvis are also common locations for metastatic deposits. In the spine, this is classically seen as “the absent pedicle.”

ARTIFACTS

“Human-made” structures should be correctly identified. These may be iatrogenic (put there by health care professionals), accidental (put there by the patient or another person), or projectional (lying in front of or behind the abdomen but spuriously projected within it on the abdominal radiograph). Examples of iatrogenic structures would be surgical clips, an intrauterine contraceptive device, a renal or biliary stent, an endoluminal aortic stent, or an inferior vena cava filter. Accidental findings include bullets or an object in the rectum. Projectional findings include pajama buttons, coins in pockets, or body piercings.

Pathologic Findings

Abdominal radiographs obtained with the patient erect are requested to look for fluid levels in obstruction or ileus. Air under the diaphragm may be seen in an erect film if the bowel has been perforated, although a chest radiograph is more commonly obtained to look for that sign (Figure 1-4). An abdominal radiograph is of no value in hematemesis. Avoiding obtaining erect films when unnecessary and avoiding plain films for hematemesis will reduce the level of radiation exposure.

RENAL COLIC

If a patient presents with groin pain, the possibility of renal colic is high; therefore, a kidney/ureter/bladder (KUB) view is requested. Approximately 90% of renal stones are radiopaque. Uric acid stones may be missed. False-positive findings may occur from phleboliths, which are most common in the pelvic veins, and false-negative findings occur from small stones. On the right, calcification may represent gallstones but only a minority of gallstones are radiopaque. The presence of gallstones does not confirm biliary colic as the cause of pain because
INTESTINAL OBSTRUCTION

Erect and supine films are used to confirm the diagnosis. Obstruction of the small bowel shows a ladder-like series of small bowel loops, but this also occurs with an obstruction of the proximal colon. Fluid levels in the bowel can be seen in upright views. Distended loops may be absent if obstruction is at the upper jejunum. Obstruction of the large bowel is more gradual in onset than small bowel obstruction. The colon is in the more peripheral part of the film, and distention may be very marked. Fluid levels also will be seen in paralytic ileus when bowel sounds will be reduced or absent rather than loud and tinkling as in obstruction. In an erect film, a fluid level in the stomach is normal, as may be a level in the cecum. Multiple fluid levels and distention of the bowel are abnormal.

PERFORATION OF THE INTESTINE

If the bowel has been perforated and a significant amount of gas has been released, it will show as a translucency under the diaphragm on an erect film. Gas will also be found under the diaphragm for some time after laparotomy or laparoscopy.

APPENDICITIS

An appendicolith may be apparent in an inflamed appendix in 15% of cases, but as a diagnostic point in the management of appendicitis the plain radiograph is of very limited value, although it may be of value in infants.

INTUSSUSCEPTION

Intussusception occurs in adults and children. A plain abdominal radiograph may show some characteristic gas patterns. A sensitivity and specificity of 90% adds to this rather difficult diagnosis, but ultrasonography is vastly superior.

BODY PACKERS

An increasing problem occurs with people who swallow drugs, usually in condoms, to evade detection. There may be signs that the drugs are leaking, but the carrier is unwilling to disclose the fact for fear of a long prison term, even at risk to life. A plain abdominal radiograph will show 90% of cases, but there will be false-positive findings in 3%. Therefore, a positive result is likely to be true but a negative result does not exclude the clinical suspicion adequately and an ultrasound examination may be considered (Boxes 1-2 and 1-3).

Pathophysiology

SMALL BOWEL

The small bowel contains a small amount to no gas in normal individuals, so it is not visible on a plain film. The presence of more gas than normal should be viewed with suspicion and interpreted in the proper clinical setting. Some clinical situations, such as indigestion or viral enteritis, show an increase of intestinal gas, usually without air/fluid levels; these are self-limiting diseases, and usually they do not need diagnostic efforts.

Intestinal obstruction is a common radiographic finding in an emergency department. Distended intestinal loops with air/fluid levels with scarcely visible colonic gas are among the most commonly seen features of small bowel obstruction; the clinical history of the patient may be the key to the diagnosis in the case of suspected postoperative adhesions, Crohn’s disease, or a known tumor. In some cases, however, depending on the gas and fluid distribution it is not impossible to have a near-normal plain film with a true obstruction. On the other hand, diffuse peritoneal metastasis may produce air/fluid levels without obstruction. The level of the intestinal obstruction may be, in some cases, understood; however, in prestenotic loops the fluid may be abundant and gas not visible so that only proximal loops are distended by gas. Again, fluid-filled intestinal loops showing the cause of obstruction either of the bowel wall or extraintestinal are often easily seen at CT. The diagnosis of strangulation requires expertise because the intramural gas and a rigid loop are well-known features but not so commonly seen. It should be remembered that the shape of valvulae conniventes is also generally preserved in severe distention so that they can be used to differentiate small intestinal disease from colonic disease.

The adhesions are not directly seen, but a transition zone (dilatation of the bowel followed by a collapsed loop) without any other visible cause of obstruction may lead to the diagnosis in a patient with a history of surgery.

CT performed after a plain abdominal film can be obtained without oral contrast administration, but intravenous administration of a contrast agent usually cannot be avoided in these often severely ill patients.

A set of CT criteria that may help surgeons decide if a patient needs surgery for small bowel obstruction has been implemented. Although plain radiography can be used with good results by experienced surgeons, CT has been reported to have 100% sensitivity in complete obstruction. Daneshmand and colleagues compared CT to plain radiography and found a sensitivity and specificity of 75% and 53% for plain film, respectively, and 92% and 71% for CT; they suggest that CT can be used as the primary diagnostic tool for small bowel obstruction. The approach to evaluate patients with small bowel

BOX 1-2 KEY TO DENSITIES IN ABDOMINAL RADIOGRAPHS

- Black—gas
- White—calcified structures
- Gray—soft tissues
- Darker gray—fat
- Intense white—metallic objects

BOX 1-3 RADIOGRAPHIC REVIEW POINTS

- Technical specifics of the radiograph
- Amount and distribution of gas
- Extraluminal gas
- Calcification
- Soft tissue outlines and bony structures
- Iatrogenic, accidental, and incidental objects
The clinical situation of the patient may be enough, in some cases, to make the diagnosis. If the diagnosis is not clear, CT is mandatory.

Ischemic bowel disease produces many different abnormalities on a plain radiograph, ranging from intestinal distention to a gasless abdomen. "Thumbprinting" is a famous, but not so specific, feature of intestinal ischemia. A linear shadow of gas within the bowel wall is difficult to detect on a plain film; when visible, it indicates a poor prognosis.

Toxic megacolon may be a lethal complication of ulcerative colitis. A plain film shows a dilatation of the transverse colon greater than 6 to 8 cm with loss of haustra. The loss of a haustral pattern is important to distinguish a patient with an obstruction of the distal colon from a patient with colitis, in which a haustral pattern is usually lost, even with mild disease. Small bowel distention, often with air/fluid levels, may be seen in a subgroup of patients with severe ulcerative colitis at higher risk for both toxic megacolon and multiple organ dysfunction syndrome. The poor response to therapy and the persistence of gastrointestinal distention are monitored with plain radiography, which is important to evaluate patients who need colectomy.28

COLON

Because of the presence of haustra, feces, and gas, understanding diseases of the colon is apparently easier than recognizing diseases of the small bowel on a plain radiograph. An obstruction of the sigmoid colon shows the transition from a dilated to a nondilated colon, and it is not difficult to recognize. On the other hand, an obstruction of the ascending colon may be similar, in some cases, to an obstruction of the last ileal loop. Colonic obstruction producing a severe cecal dilatation greater than 10 to 11 cm is an indication for immediate surgery, to avoid perforation. In elderly constipated patients, a sigmoid volvulus is among the possible causes of obstruction; the dilated sigmoid that is seen as a “kidney bean” also may mimic an abdominal mass. Cecal volvulus, seen in younger patients, produces distention of the cecum (Figure 1-5). In both cases, CT can provide crucial information.

Severe clinical situations such as perirectal or perisigmoidal abscesses or a carcinoma infiltrating bowel wall without obstruction may have a completely normal appearance on a plain film (Figure 1-6); these situations are easily seen on CT.

Distention of the colon, often accompanied with diffuse distention of the small bowel without mechanical obstruction, is the feature of paralytic or adynamic ileus. The intestinal distention may be limited to some part of the intestine so that it may be difficult to distinguish mechanical from paralytic ileus.

The clinical situation of the patient may be enough, in some cases, to make the diagnosis. If the diagnosis is not clear, CT is mandatory.

Ischemic bowel disease produces many different abnormalities on a plain radiograph, ranging from intestinal distention to a gasless abdomen. "Thumbprinting" is a famous, but not so specific, feature of intestinal ischemia. A linear shadow of gas within the bowel wall is difficult to detect on a plain film; when visible, it indicates a poor prognosis.

Toxic megacolon may be a lethal complication of ulcerative colitis. A plain film shows a dilatation of the transverse colon greater than 6 to 8 cm with loss of haustra. The loss of a haustral pattern is important to distinguish a patient with an obstruction of the distal colon from a patient with colitis, in which a haustral pattern is usually lost, even with mild disease. Small bowel distention, often with air/fluid levels, may be seen in a subgroup of patients with severe ulcerative colitis at higher risk for both toxic megacolon and multiple organ dysfunction syndrome. The poor response to therapy and the persistence of gastrointestinal distention are monitored with plain radiography, which is important to evaluate patients who need colectomy.28

MISCELLANEOUS FINDINGS

Free intraperitoneal or subphrenic air is commonly seen in postoperative patients, and the only thing to do is wait for its resorption. A deep intestinal or colonic biopsy also can produce, as a rare complication, free or subphrenic air collection. Perforation of a duodenal ulcer or perforation of a diverticulum...
of the colon are not as common causes of extraintestinal air collections. Cholecystitis, pancreatitis, and other causes of acute abdomen in which a collection of air or fluid may be misleading should now be assessed by ultrasonography or CT. Fecaloma is easy to detect on a plain film; however, a digital exploration of the rectum is preferred to diagnose this lesion.

Key Points

- The history, physical examination, and laboratory findings are always important to evaluate an acute abdomen, which may be caused by a number of different diseases.
- Plain radiography should be performed as an initial imaging modality in patients for whom there are known advantages, such as those with suspected gastrointestinal perforation, intestinal occlusion, and ingestion of or in a search for foreign bodies, and in the assessment of the postoperative abdomen to detect retained needles. In addition, another indication is the ability of plain radiography to assess the evolution of intestinal pathologic conditions.
- The lack of positive findings on abdominal radiography is falsely reassuring in nontrauma emergency department patients.
- Further imaging is often required to better characterize abnormalities identified at abdominal radiography.

SUGGESTED READINGS

Anonymous: Best evidence topic reports: role of plain abdominal radiograph in the diagnosis of intussusception. Emerg Med J 25:106–107, 2008.

Brazaitis MP, Dachman AH: The radiologic evaluation of acute abdominal pain of intestinal origin: a clinical approach. Med Clin North Am 77:939–961, 1993.

Burkill G, Bell J, Healy J: Small bowel obstruction: the role of computed tomography in its diagnosis and management with reference to other imaging modalities. Eur Radiol 11:1405–1422, 2001.

Gupta H, Dupuy DE: Advances in imaging of the acute abdomen. Surg Clin North Am 77:1245–1263, 1997.

Hayes R: Abdominal pain: general imaging strategies. Eur Radiol 14(Suppl 4):L123–L137, 2004.

Kidmas AY, Ekedewie JI, Sule AZ, et al: A review of the radiological diagnosis of small bowel obstruction using various imaging modalities. Niger Postgrad Med J 12:33–36, 2005.

Reuchlin-Vroklage LM, Bierring-Zaenstra S, Bennett MA, et al: Diagnostic value of abdominal radiography in constipated children: a systematic review. Arch Pediatr Adolesc Med 159:671–678, 2005.

Rossiter MH: Plain film radiologic examination of the abdomen. Crit Care Clin 10:277–296, 1994.

REFERENCES

1. Levine MS: Plain film diagnosis of the acute abdomen. Emerg Med North Am 3:541–562, 1985.
2. Baker SR: The abdominal plain film: what will it be the role in the future? Radiol Clin North Am 31:1335–1344, 1993.
3. Grassi R, Di Mizio R, Pinto A, et al: Semiosiatica radiografica dell’addome acuto all’esame radiologico diretto: ileo rilievo spastico, ileo rilievo ipotonico, ileo meccanico ed ileo paralitico. Radiol Med 108:56–70, 2004.
4. Pontrandrea S, Coakley FV, Yeh BM: Accuracy of plain abdominal radiographs in the detection of retained surgical needles in the peritoneal cavity. Ann Surg 247:8–12, 2008.
5. Kellow JS, MacInnes M, Kurzenwójczyk D, et al: The role of abdominal radiography in the evaluation of the non-trauma emergency patient. Radiology 248:887–893, 2008.
6. Flak B, Rowley VA: Acute abdomen: plain film utilization and analysis. Can Assoc Radiol J 44:423–428, 1993.
7. Frager DH, Baer JW, Rotpashel A, et al: Distinction between postoperative ileus and mechanical small-bowel obstruction: value of CT compared with clinical and other radiographic findings. AJR Am J Roentgenol 164:891–894, 1995.
8. Taourel P, Pradel J, Fabre JM, et al: Role of CT in the acute non-traumatic abdomen. Semin Ultrasound CT MR 16:151–164, 1995.
9. McCook TA, Ravin CE, Rice RP: Abdominal radiography in the emergency department: a prospective analysis. Ann Emerg Med 11:7–8, 1982.

Document téléchargé de ClinicalKey.fr par Faculté de Médecine de Tunis août 27, 2016. Pour un usage personnel seulement. Aucune autre utilisation n’est autorisée. Copyright ©2016. Elsevier Inc. Tous droits réservés.
Fluoroscopy is a type of imaging technique in which real-time movements of body organs and radiopaque contrast material are visualized. During a fluoroscopic examination, the operator or radiologist controls the functions of radiography equipment and x-ray tubes for real-time imaging of the patient. In abdominal imaging, fluoroscopy has a role in the diagnosis of various clinical conditions with gastrointestinal studies, postoperative studies, genitourinary studies, and more.

Technical Aspects

FLUOROSCOPY

History

Early fluoroscopes had an x-ray tube and fluorescent screen made of barium platinocyanide. Gradually, the screens were replaced by cadmium tungstate and then zinc-cadmium sulfide, which produced a yellow-green emission.1

Fluoroscopy has evolved from the early days of images on a fluoroscopic screen of poor quality, a dark radiography room, and eye adaptation with red goggles to improved images with image intensifiers, video-recorders, and a variety of C-arm machines. Currently, it is available in many different configurations for use in various clinical applications. With technologic advancements in hardware and image processing, fluoroscopy has gained substantially both qualitatively and quantitatively. The introduction of flat-panel detectors, high-quality image intensifiers with video-recording capabilities, state-of-the-art C-arm design, and digital units has revolutionized the field of fluoroscopic imaging.2,3 The superior spatial and contrast resolution combined with faster image reconstruction and reduced radiation along with a variety of safe and effective contrast media has empowered fluoroscopy with advanced capabilities in the diagnostics and interventional realm. A variety of fluoroscopic units are now commercially available, and the components of basic fluoroscopic equipment are shown in Figure 2-1. The main uses of fluoroscopy are listed in Box 2-1.

Patient Preparation

It is important to have the patient empty his or her stomach to increase the sensitivity of the fluoroscopy examination, because food and food residue can mimic disease. Informed consent is required, and any medical history such as heart disease, asthma, allergy, thyrotoxicosis, and hypersensitivity to drugs should be elicited. Also important to consider: What medications (e.g., insulin) is the patient using? Is the patient pregnant or breastfeeding? Has there been a recent diagnosis of small bowel obstruction or perforation and, if so, what were the surgical details?

Patients scheduled for a double-contrast barium enema must adhere to a clear liquid diet for 24 hours before the procedure. Laxatives may be prescribed to ensure thorough bowel cleansing, and on the morning of the examination a bisacodyl suppository is given per rectum.

However, in the acute/emergency or postoperative setting, patient preparation is usually optional. Moreover, in this setting, iodinated contrast media are preferred over barium sulfate because the latter might interfere with a surgical procedure and any extraluminal collection of barium may create confusion with a diagnosis on subsequent examinations.3-5 A medical history of severe hypersensitivity to iodinated contrast media or certain medications should be obtained if the procedure requires its use.

FLUOROSCOPIC EXAMINATIONS

Fluoroscopic examinations are of two types: single-contrast studies and double-contrast studies (Box 2-2). Single-contrast studies are performed either with barium or with iodinated contrast media.6,7 For double-contrast media, air or carbon dioxide is used (Figure 2-2).8,9

Gastrointestinal Fluoroscopic Procedures

• Stomal examinations, enema through ileostomy or colostomy for patency, recurrence of disease, and leak
• Feeding tube studies
• Oral cholecystogram and T-tube cholangiogram
• Hydrostatic reduction of pediatric abdominal emergencies such as intussusceptions and sigmoid volvulus

Genitourinary Fluoroscopic Procedures

• Cystography for evaluation of urinary bladder and vesicoureteric reflux
• Voiding cystourethrography for visualization of urethra
• Retrograde urethrography for anterior urethra
• Hysterosalpingogram for uterus and fallopian tubes

Interventional Procedures

• Placement of vascular catheter and stents
• Percutaneous biliary drainage procedures
• Urologic procedures: Retrograde pyelography, percutaneous nephrostomies, and suprapubic cystotomies

Other Examinations

• Sinogram
• Fistulogram
Fluoroscopic Contrast Agents

Fluoroscopic contrast agents are compounds that enable improved visualization of internal luminal structures, spaces, and tracts and also delineate tubes and catheters on fluoroscopy or radiography (Figure 2-3).

Fluoroscopic contrast agents can be divided into two types: positive contrast and negative contrast. A positive contrast medium absorbs x-rays more strongly than the surrounding tissue or organ being examined and appears radiopaque. A negative contrast medium absorbs x-rays less strongly and hence appears radiolucent. Positive contrast media are barium and iodine compounds (Figures 2-4 and 2-5). Negative contrast media can be obtained by air or carbon dioxide (Figure 2-6).10,11

BARIUM

The higher the concentration of the barium sulfate suspension, the thinner are the layers that can be identified in the radiograph. The more viscous is the suspension, the better is the

BOX 2-1 MAIN USES OF FLUOROSCOPY

- Gastrointestinal imaging
- Genitourinary imaging
- Angiography
- Other:
 - Intraoperative
 - Foreign-body removal
 - Musculoskeletal

BOX 2-2 SINGLE-CONTRAST VERSUS DOUBLE-CONTRAST STUDIES

SINGLE-CONTRAST STUDIES

- Precise control of barium column
- Easier identification of filling defects
- In suspected perforation, single contrast with water-soluble medium preferred
- Can be used to evaluate mechanical problems (e.g., obstruction, fistula)
- Optimal for patients unable to swallow gas-forming tablets

DOUBLE-CONTRAST STUDIES

- Thick barium coats lumen, and effervescent tablets ingested to distend lumen with air
- Produced see-through effect with better assessment of mucosal details
- Better distention and separation of the bowel loops
- Better detection of small mucosal lesions, polyps, ulcers

Figure 2-1 Schematic diagram of fluoroscopic imaging system.

Figure 2-2 Spot radiograph of the mid-transverse colon obtained during single-contrast (A) and double-contrast (B) barium enema. The mucosal details are well seen on the double-contrast study.
ability to delineate fine mucosal surface details with reasonable flow rate and resistance to flocculation. 3,4,8

WATER-SOLUBLE CONTRAST AGENTS

Water-soluble contrast agents can be divided into ionic or non-ionic agents or, depending on the osmolarity, as high- and low-osmolar agents (see Figures 2-3 and 2-8). Ionic contrast media have higher osmolarity and more side effects. Nonionic contrast media have lower osmolarity and tend to have fewer side effects. 10,11 Water-soluble organic iodine compounds are used in certain circumstances in which barium is contraindicated—for instance, in suspected perforation of gut into the free peritoneal
Fluoroscopic Study of the Abdomen and Fluoroscopic Contrast Media

Figure 2-7 Different barium sulfate preparations for gastrointestinal study.

Figure 2-8 Water-soluble contrast agents.

Table 2-1 Barium Formulations for Gastrointestinal Tract Radiography

Gastrointestinal Tract Study	Barium Formulations (%)
Barium swallow	Single contrast: 50-100 w/v
Upper gastrointestinal tract (stomach and duodenum)	Single contrast: 35-80 w/v Double contrast: 250 w/v
Small bowel follow-through	40-60 w/v
Enteroclysis	50-95 w/v
Retrograde ileography	20-25 w/v
Barium enema	Single contrast: 12-25 w/v Double contrast: 60-120 w/v (80 commonly used)

w/v, Weight/volume.

cavity, in postoperative cases to look for a leak, or when the risk for aspiration into the lung is high. Barium leakage into the peritoneal cavity can lead to formation of granuloma, and aspiration into the lung can lead to pneumonitis or pulmonary edema.1,8

In general, to achieve good radiographic opacification of the gastrointestinal tract it is recommended that 60% or higher solutions of ionic contrast agents be used. Although ionic contrast agents stimulate intestinal peristalsis and result in more rapid visualization of distal small bowel loops as compared with barium preparations, this effect is quickly nullified by the dilution effect in the bowel secondary to hyperosmolarity of these agents.10-12 Ideally, one of the nonionic contrast agents should be used when indicated for evaluation of gastrointestinal tract. Iodinated contrast agents such as diatrizoate meglumine preparations (Gastrografin and Hypaque) are commercially available for oral use (Figure 2-9). For genitourinary fluoroscopic procedures, iodine contrast agents such as Renografin and Cystografin are preferred over nonionic contrast agents in most institutions owing to the lower cost.

GASTROGRAFIN
Gastrografin (diatrizoate meglumine and diatrizoate sodium) is a commercially available oral contrast medium for opacification of gastrointestinal tract. This preparation is particularly indicated when use of a more viscous agent such as barium sulfate, which is not water soluble, is not feasible, or is potentially dangerous.

Oral Administration
Adult oral dosage usually ranges from 30 to 90 mL (11 to 33 g iodine), depending on the type of the examination and the size of the patient. For infants and children younger than 5 years of age, 30 mL (11 g iodine) is usually adequate; for children 5 to 10 years of age, the suggested dose is 60 mL (22 g iodine). These pediatric doses may be diluted 1:1, if desired, with water, carbonated beverage, milk, or mineral oil. For very young (<10 kg) and debilitated children, the dose should be diluted as 1 part Gastrografin in 3 parts water.

Enemas or Enterostomy Instillations
Gastrografin should be diluted when it is used for enemas and enterostomy instillations. When used as an enema, the suggested dilution for adults is 240 mL (88 g iodine) in 1000 mL.
of tap water. For children younger than 5 years of age, a 1:5 dilution in tap water is suggested; for children older than 5 years of age, 90 mL (33 g iodine) in 500 mL of tap water is a suitable dilution.

Oral Gastrografin Indications

Indications for oral use of Gastrografin include the following:
- Cystic fibrosis and subacute intestinal obstruction, because risk for obstruction in the small bowel is greater with barium
- Intestinal perforation
- Suspected tracheoesophageal fistula and pyloric stenosis, to avoid barium aspiration
- Recent rectal biopsy, recent surgery, to visualize postoperative leak, or to visualize ileostomy or colostomy loops
- Infants and neonates with suspected intestinal obstruction, necrotizing enterocolitis, unexplained pneumoperitoneum, gasless abdomen, other bowel perforation, esophageal perforation, or postoperative anastomosis

For genitourinary evaluation, the ionic contrast agents are preferred over the nonionic agents owing to the cost factor. However, in patients with a previous history of allergic reactions, nonionic agents are preferred. The dose and dilution depend on the investigation and body part examined.

EQUIPMENT FACTORS

Equipment factors include the following:
- Source-to-image distance
- Fluoroscopic kilovoltage peak
- Fluoroscopic milliamperere
- Focal spot
- Field of view
- Grid use
- Fluoroscopic acquisition mode
- Dose rate selection
- Video frame rate

PATIENT FACTORS

Patient factors are listed in Box 2-3.

SIDE EFFECTS

Barium

The side effects of barium include the following:
- Bloating
- Constipation (severe or continuing)

SUGGESTED READINGS

Gelfand DW, Ott DJ, Chen YM: Optimizing single- and double-contrast colon examinations. *Crit Rev Diagn Imaging* 27:167–201, 1987.

Maglinte DD, Romano S, Lappas JC: Air (CO2) double-contrast barium enteroclysis. *Radiology* 252:633–641, 2009.

Nolan DJ: Barium examination of the small intestine. *Br J Hosp Med* 6:136–141, 1994.

Op den Orth J: Use of barium in evaluation of disorders of upper gastrointestinal tract: current status. *Radiology* 173:601–608, 1989.

Rubesin SE, Maglinte DD: Double-contrast barium enema technique. *Radiol Clin North Am* 41:365–376, 2003.

Schueler BA: The AAPM/RSNA physics tutorial for residents: general overview of fluoroscopic imaging. *Radiographics* 20:1115–1126, 2000.
REFERENCES

1. Cowen AR, Davies AG, Sivananthan MU: The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography. Clin Radiol 63:1073–1085, 2008.
2. Schueler BA: The AAPM/RSNA physics tutorial for residents: general overview of fluoroscopic imaging. Radiographics 20:1115–1126, 2000.
3. Op den Orth JO: Use of barium in evaluation of disorders of upper gastrointestinal tract: current status. Radiology 173:601–608, 1989.
4. Nolan DJ: Barium examination of the small intestine. Br J Hosp Med 6:136–141, 1994.
5. Tanomkiat W, Galassi W: Barium sulfate as contrast medium for evaluation of postoperative anastomotic leaks. Acta Radiol 41:482–485, 2000.
6. Gottesman L, Zevon SJ, Brabbee GW, et al: The use of water soluble contrast enemas in the diagnosis of acute lower left quadrant peritonitis. Dis Colon Rectum 27:84–88, 1984.
7. Stollman N, Raskin JB: Diverticular disease of the colon. Lancet 363:631–639, 2004.
8. Rubesin SE, Maglinte DD: Double-contrast barium enema technique. Radiol Clin North Am 41:365–376, 2003.
9. Gelfand DW, Ott DJ, Chen YM: Optimizing single- and double- contrast colon examinations. Crit Rev Diagn Imaging 27:167–201, 1987.
10. Jobling JC: Air versus carbon dioxide insufflation in double contrast barium enemas: the role of active gaseous drainage. Br J Radiol 69:89–90, 1996.
11. Ott DJ, Gelfand DW: Gastrointestinal contrast agents: indications, uses, and risks. JAMA 249:2380–2384, 1983.
12. Rubin JD, Cohan RH: Iodinated radiographic contrast media: comparison of low-osmolar with conventional ionic agents [corrected]. Curr Opin Radiol 3:637–645, 1991.
13. Kory LA, Epstein BS: The oral use of iodinated water-soluble contrast agents for visualizing the proximal colon when barium enema examination reveals complete obstruction. Am J Roentgenol Radium Ther Nucl Med 115:355–359, 1972.
Abdominal Ultrasound Imaging: Anatomy, Physics, Instrumentation, and Technique

LUZENG CHEN

SAFETY
The American Institute of Ultrasound in Medicine has addressed ultrasound safety and bioeffects, as follows: “No independently confirmed adverse effects caused by exposure from present diagnostic ultrasound instruments have been reported in human patients in the absence of contrast agents.” Biological effects (such as localized pulmonary bleeding) have been reported in mammalian systems at diagnostically relevant exposures, but the clinical significance of such effects is not known. Ultrasound should be used by qualified health professionals to provide medical benefit to the patient. Ultrasound exposures during examinations should be as low as reasonably achievable.

INSTRUMENTATION
A diagnostic ultrasound machine is commonly composed of a transducer (probe) and main body. An electronic transducer is composed of a large number of piezoelectric materials. Ultrasound is produced from piezoelectric material that vibrates in response to the application of electrical energy. Piezoelectric material can be arranged on a plane (linear transducer) or a curved surface (curved transducer). Linear high-frequency transducers are typically used for superficial tissue imaging—for example, appendix, abdominal wall, and scrotum. Low-frequency curved array transducers are typically used for abdominal and obstetric/gynecologic imaging, in which the curvature of the array and penetration depth facilitate large field of view imaging.

When ultrasound travels through tissues, reflection, refraction, and scatter will occur when ultrasound waves meet an acoustic interface. The greater the acoustic impedance difference between two sides of the interface, the greater is the ultrasound energy that will be reflected.

The relationship among frequency (f), velocity (c), and wavelength (λ) is λ = c/f. The higher the frequency, the shorter is the wavelength. In theory, the distance that can be measured by ultrasound is ½λ. The shorter the wavelength, the better the resolution will be. With the wavelength shortened, attenuation will be greater. So a low-frequency probe should generally be selected to examine the deep organs of the abdomen (e.g., liver, kidney, pancreas), and high-frequency probes should be selected to examine superficial tissues (e.g., abdominal wall, appendix) (Figures 3-1 and 3-2).

The velocity of ultrasound is affected by the density and elasticity of the material it traverses; as a result, ultrasound travels at varying velocities through different tissues. Current commercially available ultrasound machines cannot determine which tissues underlie the transducer and instead assume an average tissue velocity of 1540 m/s in their image reconstruction algorithms. The value is obtained from averaging the velocity in normal soft tissue (Figure 3-3).

General Abdominal Ultrasonography
Ultrasoundography is low in cost, noninvasive, and highly portable, and it allows real-time imaging in multiple operator-controlled planes. As a result, it is the most widely used cross-sectional imaging modality worldwide. The principal challenge with ultrasonography is greater user-dependence than computed tomography (CT) or magnetic resonance imaging (MRI).

Basic Physics
DEFINITION
Humans can hear sound that vibrates from 20 Hertz (Hz) to 20,000 Hz. Ultrasound is the term given to describe sound at frequencies above 20,000 Hz, beyond the range of human hearing. Frequencies of 3 to 7 megahertz (MHz) are commonly used for abdominal ultrasound.

PROPERTIES OF ULTRASOUND
Ultrasound waves propagate as longitudinal waves in soft tissues. Acoustic impedance is an intrinsic physical property of a medium as defined by the density of the medium multiplied by the velocity of ultrasound wave propagation in the medium. Acoustic interfaces exist between materials that have different acoustic impedances. Reflection, refraction, and scatter occur when ultrasound waves meet an acoustic interface. The greater the acoustic impedance difference between two sides of the interface, the greater is the ultrasound energy that will be reflected.

The relationship among frequency (f), velocity (c), and wavelength (λ) is λ = c/f. The higher the frequency, the shorter is the wavelength. In theory, the distance that can be measured by ultrasound is ½λ. The shorter the wavelength, the better the resolution will be. With the wavelength shortened, attenuation will be greater. So a low-frequency probe should generally be selected to examine the deep organs of the abdomen (e.g., liver, kidney, pancreas), and high-frequency probes should be selected to examine superficial tissues (e.g., abdominal wall, appendix) (Figures 3-1 and 3-2).

The velocity of ultrasound is affected by the density and elasticity of the material it traverses; as a result, ultrasound travels at varying velocities through different tissues. Current commercially available ultrasound machines cannot determine which tissues underlie the transducer and instead assume an average tissue velocity of 1540 m/s in their image reconstruction algorithms. The value is obtained from averaging the velocity in normal soft tissue (Figure 3-3).
and transducer. A basic glossary of ultrasound terms is listed in Table 3-1.

EQUIPMENT
An ultrasound machine capable of real-time imaging should be used to examine the abdominal organs. The equipment should be adjusted to obtain acceptable resolution. For adults, a curved probe with frequencies between 2 and 5 MHz is most commonly used. A linear probe with frequencies between 5 and 7 MHz is most commonly used when the abdominal wall and appendix are examined. Image quality should be optimized while keeping total ultrasound energy exposure as low as reasonably achievable.

PREPARATION FOR EXAMINATION
The patient should not eat or drink for 8 hours before the abdominal ultrasound. If fluid is essential to prevent dehydration or take medicine, only water should be given. When the bladder needs to be examined, 400 to 600 mL water should be taken orally 2 hours before examination to ensure there is

Figure 3-1 Gastric cancer. Gastric mural thickening demonstrated by 3.5-MHz curved probe.

Figure 3-2 In the same patient, gastric mural thickening (white arrow) and normal gastric wall (black arrow) were demonstrated with greater spatial resolution using a 7.0-MHz linear probe.

Figure 3-3 Velocity of ultrasound in different tissues.
enough urine in the bladder. Emergency ultrasonography can be performed at any time, but the image quality may be affected by air in stomach and bowel.

Normal Ultrasound Image

LIVER
The normal liver parenchyma appears homogeneous, interrupted by the portal vein, hepatic vein, and their branches. The echogenicity of the liver should be compared with that of the right kidney. The liver can be similar or more echogenic than normal kidney. The hepatic veins, the main portal vein, and the right and left branches of the portal vein should be seen clearly (Figure 3-4).

GALLBLADDER AND BILE DUCT
On the longitudinal scan, the gallbladder will appear as an anechoic, pear-shaped structure. It is variable in position, size, and shape, but the normal gallbladder is seldom more than 40 mm wide. The thickness of normal gallbladder wall is no more the 3 mm (Figure 3-5). The intrahepatic bile ducts usually are located above the corresponding portal branches. The common bile duct (CBD) is located anterior the portal vein. The normal diameter of the CBD is less than 6 mm. Ultrasonography has limited capacity to detect small lesions within the distal CBD. Sometimes, tiny stones in the CBD can be detected (Figure 3-6).

PANCREAS
The pancreas has approximately the same echogenicity as the adjacent liver and should appear homogeneous. However, pancreatic echogenicity increases with age. The contour of the normal pancreas is smooth. The shape and the size of the pancreas are variable. The diameter of the pancreatic duct should not exceed 2 mm. The tail of pancreas is often difficult to demonstrate, because of gas in the stomach and bowel. If there is no clinical contraindication, it may be helpful to give the patient 300 to 500 mL water to drink when scanning the pancreas (Figure 3-7). The pancreatic tail also occasionally can be demonstrated through the spleen (Figure 3-8).
PART 1 Imaging Techniques

SPLEEN

The spleen should show a uniform homogeneous echo pattern. It is slightly less echogenic than the liver. The length of the normal spleen is no more than 12 cm, and the thickness is no more than 4 cm (Figure 3-9).

KIDNEY AND ADRENAL GLAND

The renal capsule appears as a bright, smooth, echogenic line around the kidney. The cortex is less echogenic than the liver but more echogenic than the adjacent renal pyramids. The renal pyramids are poorly defined hyperechoic areas in the medulla of the kidney. The central echo complex (the renal sinus) is hyperechoic relative to renal parenchyma. The renal arteries and veins are readily seen at the renal hilus and around the aorta. Like other visceral arteries, the renal artery has high diastolic blood flow (Figures 3-10 and 3-11).

The adrenals are located above and medial to the kidneys. Except in infants, the adrenal glands are not easily visible with ultrasound (Figure 3-12).
URETERS, BLADDER AND PROSTATE

The normal ureters are usually not readily visible, but can be demonstrated when distended (Figure 3-13). The bladder should be evaluated while distended with urine, because bladder tumors may not be detected in an empty bladder. The full urinary bladder appears as a large, rounded, anechoic area arising from the pelvis. The thickness of the bladder wall will vary with the degree of distention. When distended, the normal bladder wall is less than 4 mm thick (Figure 3-14).

The prostate can be divided into four glandular zones: the peripheral zone, transitional zone, central zone, and periurethral glandular area. It is difficult to identify these zones with transabdominal sonography. Transrectal ultrasound can delineate the prostate zonal anatomy and is useful for guiding prostate biopsy (Figure 3-15).

SCROTUM

The normal testes are oval, homogeneous, and hyperechoic. Often a small amount of physiologic fluid is present within the scrotum around the testes. The epididymis lies on the inferior