EXTREMELY WEAK INTERPOLATION IN H^∞

ANDREAS HARTMANN

ABSTRACT. Given a sequence of points in the unit disk, a well known result due to Carleson states that if given any point of the sequence it is possible to interpolate the value one in that point and zero in all the other points of the sequence, with uniform control of the norm in the Hardy space of bounded analytic functions on the disk, then the sequence is an interpolating sequence (i.e. every bounded sequence of values can be interpolated by functions in the Hardy space). It turns out that such a result holds in other spaces. In this short note we would like to show that for a given sequence it is sufficient to find just one function interpolating suitably zeros and ones to deduce interpolation in the Hardy space.

1. INTRODUCTION

The Hardy space H^∞ of bounded analytic functions on \mathbb{D} is equipped with the usual norm $\|f\|_\infty = \sup_{z \in \mathbb{D}} |f(z)|$. A sequence $\Lambda = \{\lambda_n\} \subset \mathbb{D}$ of points in the unit disk is called interpolating for H^∞, noted $\Lambda \in \text{Int}_{H^\infty}$, if every bounded sequence of values $v = (v_n) \in l^\infty$ can be interpolated by a function in H^∞. Clearly, for $f \in H^\infty$, the sequence $(f(\lambda_n))$ is bounded. Hence

$$\Lambda \in \text{Int}_{H^\infty} \iff H^\infty |\Lambda = l^\infty$$

(we identify the trace space with a sequence space). The sequence Λ is said to satisfy the Blaschke condition if $\sum_n (1 - |\lambda_n|) < \infty$. In that case, the Blaschke product $B = \prod_n b_{\lambda_n}$, where $b_{\lambda}(z) = |\lambda| \frac{z - \lambda}{1 - \bar{\lambda}z}$ is the normalized Möbius transform ($\lambda \in \mathbb{D}$), converges uniformly on every compact set of \mathbb{D} to a function in H^∞ with boundary values $|B| = 1$ a.e. on \mathbb{T}. Carleson proved (see [Ca58]) that

$$\Lambda \in \text{Int}_{H^\infty} \iff \inf_n |B_n(\lambda_n)| = \delta > 0,$$

where $B_n = \prod_{k \neq n} b_{\lambda_k}$. The latter condition will be termed Carleson condition, and we shall write $\Lambda \in (C)$ when Λ satisfies this condition. Carleson’s result can be reformulated using the notion of weak interpolation.

Definition 1.1. A sequence Λ of points in \mathbb{D} is called a weak interpolating sequence in H^∞, noted $\Lambda \in \text{Int}_{w} H^\infty$, if for every $n \in \mathbb{N}$ there exists a function $\varphi_n \in H^\infty$ such that

- for every $n \in \mathbb{N}$, $\varphi_n(\lambda_k) = \delta_{nk},$
- $\sup_n \|\varphi_n\|_\infty < \infty.$
Now, when $\Lambda \in (C)$, setting $\varphi_n = B_n/B_n(\lambda_n)$ we obtain a family of functions satisfying the conditions of the definition. Hence $\Lambda \in \text{Int}_w H^\infty$. And from Carleson’s theorem we get $\Lambda \in \text{Int} H^\infty \iff \Lambda \in \text{Int}_w H^\infty$.

With suitable definitions of interpolating and weak interpolating sequences, such a result has been shown to be true in Hardy spaces H^p (see [ShHSh] for $1 \leq p < \infty$ and [Ka63] for $0 < p < 1$) as well as in Bergman spaces (see [SchS98]) and in certain Paley-Wiener and Fock spaces (see [SchS00]).

One also encounters the notion of “dual boundedness” for such sequences (see [Am08]), and in a suitable context it is related to so-called uniform minimality of sequences of reproducing kernels (see e.g. [Nik02, Chapter C3] for some general facts).

Using a theorem by Hoffmann we want to show here that given a separated sequence Λ, then there is a splitting of $\Lambda = \Lambda_0 \cup \Lambda_1$ such that if there exists just one function $f \in H^\infty$ vanishing on Λ_0 and being 1 on Λ_1, then the sequence is interpolating in H^∞.

The author does not claim that such a result is anyhow useful to test whether a sequence is interpolating or not, but that it might be of some theoretical interest.

2. THE RESULT

Let us begin by recalling Hoffman’s result (which can e.g. be found in Garnett’s book, [Gar81]):

Theorem 2.1 (Hoffman). For $0 < \delta < 1$, there are constants $a = a(\delta)$ and $b = b(\delta)$ such that the Blaschke product $B(z)$ with zero set Λ has a nontrivial factorization $B = B_0B_1$ and

$$a|B_0(z)|^{1/b} \leq |B_1(z)| \leq \frac{1}{a}|B_0(z)|^b$$

for every $z \in \mathbb{D} \setminus \bigcup_{\lambda \in \Lambda} D(\lambda, \delta)$, where $D(\lambda, \delta) = \{ z \in \mathbb{D} : |b_\lambda(z)| < \delta \}$ is the pseudohyperbolic disk.

In view of this theorem, given any Blaschke sequence of points Λ in the disk and a constant $\delta \in (0, 1)$, we will set Λ_0 to be the zero set of B_0 and Λ_1 to be the zero set of B_1 where $B = B_0B_1$ is a Hoffman factorization of B. We will refer to $\Lambda = \Lambda_0 \cup \Lambda_1$ as a δ-Hoffman decomposition of Λ.

Recall that a sequence Λ is separated if there exists a constant $\delta_0 > 0$ such that for every $\lambda, \mu \in \Lambda$, $\lambda \neq \mu$, $|b_\lambda(\mu)| \geq \delta_0$. For such a sequence, we will call a corresponding Hoffman decomposition a Hoffman decomposition associated with $\delta = \delta_0/2$.

Theorem 2.2. A separated sequence Λ in the unit disk with corresponding Hoffman decomposition $\Lambda = \Lambda_0 \cup \Lambda_1$ is interpolating for H^∞ if and only if there exists a function $f \in H^\infty$ such that $f|\Lambda_0 = 0$ and $f|\Lambda_1 = 1$.

The condition is clearly necessary.

Proof of Theorem. Preliminary observation: by factorization in H^∞ (see e.g. [Gar81]), we have $f = B_0F$ where F is a bounded analytic functions (that could contain inner factors). Then for every $\mu \in \Lambda_1$

$$1 = f(\mu) = |B_0(\mu)||F(\mu)| \leq c|B_0(\mu)|$$
which shows that

\[|B_0(\mu)| \geq \eta := 1/c. \]

Replacing \(f \) by \(g = 1 - f \) we obtain a function vanishing now on \(\Lambda_1 \) and being 1 on \(\Lambda_0 \). And the same argument as before shows that for \(\mu \in \Lambda_0 \)

\[|B_1(\mu)| \geq \eta \]

(let us agree to use the same \(\eta \) here).

Pick now \(\mu \in \Lambda_1 \). Then

\[|B_0(\mu)| \geq \eta. \]

We have to check whether such an estimate holds also for the second piece. Now, let \(z \in \partial D(\mu, \delta) \) (note that \(\delta = \delta_0/2 \), where \(\delta_0 \) is the separation constant of \(\Lambda \), so that this disk is far from the other points of \(\Lambda \)). Then by Hoffman’s theorem

\[|B_{\Lambda_1}(z)| \geq a|B_0(z)|^{1/b} \]

Hence

\[|B_{\Lambda_1 \setminus \{\mu\}}(z)||b_\mu(z)| \geq a|B_0(z)|^{1/b} \]

and

\[|B_{\Lambda_1 \setminus \{\mu\}}(z)| \geq \frac{a}{\delta}|B_0(z)|^{1/b} \]

Now \(B_{\Lambda_1 \setminus \{\mu\}} \) and \(B_0 \) do not vanish in \(D(\mu, \delta) \). We thus can take powers of \(B_0 \) and divide through getting a function \(B_{\Lambda_1 \setminus \{\mu\}}/B_0^{1/b} \) not vanishing in \(D(\mu, \delta) \). By the minimum modulus principle we obtain

\[\left| \frac{B_{\Lambda_1 \setminus \{\mu\}}(z)}{B_0^{1/b}(z)} \right| \geq \frac{a}{\delta} \]

for every \(z \in D(\mu, \delta) \) and especially in \(z = \mu \) so that

\[|B_{\Lambda_1 \setminus \{\mu\}}(\mu)| \geq \frac{a}{\delta} \eta^{1/b}. \]

Hence

\[|B_{\Lambda_1 \setminus \{\mu\}}(\mu)| = |B_0(\mu)||B_{\Lambda_1 \setminus \{\mu\}}(\mu)| \geq \frac{a}{\delta} \eta^{1+1/b}. \]

By the preliminary observation above, the same argument can be carried through when \(\mu \in \Lambda_0 \), so that for every \(\mu \in \Lambda \) we get

\[|B_{\Lambda \setminus \{\mu\}}(\mu)| \geq c \]

for some suitable \(c > 0 \). Hence \(\Lambda \in (C) \) and we are done. ■

Remark 2.3. 1) It is clear from the proof that it is sufficient that there is an \(\eta > 0 \) with

\[\inf_{\mu \in \Lambda_1} |B_0(\mu)| \geq \eta \quad \text{and} \quad \inf_{\mu \in \Lambda_0} |B_1(\mu)| \geq \eta \]

(2.1)

This means that in terms of Blaschke products, we need two functions instead of the sole function \(f \) (which is of course not unique) as stated in the theorem. One could raise the question whether it would be sufficient to have only one of the conditions in (2.1) (the condition is clearly necessary). Suppose we had the first condition

\[\inf_{\mu \in \Lambda_1} |B_0(\mu)| \geq \eta \]
Then in order to obtain the condition of the theorem, we would need to multiply B_0 by a function $F \in H^\infty$ such that $(B_0F)(\mu) = 1$ for every $\mu \in \Lambda_1$. In other words, we need that $B_0 + B_1H^\infty$ is invertible in the quotient algebra H^∞ / B_1H^∞ under the condition that $0 < \eta \leq |B_0(\mu)| \leq 1$. This is possible when Λ_1 is a finite union of interpolating sequences in H^∞ (which in our case boils down to interpolating sequences since we have somewhere assumed that Λ, and hence Λ_1, is separated). See for example [Har96] for this, but it can also be deduced from Vasyunin’s earlier characterization of the trace of H^∞ on finite union of interpolating sequences (see [Vas84]).

We do not know the general answer to this invertibility problem when Λ_1 is not assumed to be a finite union of interpolating sequences.

2) Another question that could be raised is whether in Theorem 2.2 the assumption of being separated can be abandoned. At least Hoffman’s theorem does not allow us to deduce that the sequence is separated. As an example, one could have a union of two interpolating sequence the elements of which come arbitrarily close to each other. Write $\Lambda = \bigcup_n \sigma_n$ where σ_n contains two close points of Λ one of which is of the first interpolating sequence and the other one from the second interpolating sequence. Let Λ_0 be the union of the even indexed σ_n’s and Λ_1 the odd indexed σ_n’s we obtain a Hoffman decomposition for which we can find f as in the theorem, but Λ is not interpolating.

REFERENCES

[Am08] E. Amar, On linear extension for interpolating sequences, Studia Math 186 (2008), no. 3, 251–265.
[Ca58] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.
[Gar81] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[Har99] A. Hartmann, Free interpolation in Hardy-Orlicz spaces, Studia Math. 135 (1999), no. 2, 179–190.
[Har96] Interpolation libre et caractérisation des traces de fonctions holomorphes sur les réunions finies de suites de Carleson, PhD, July 1996, Bordeaux.
[Ka63] V. Kabaila, Interpolation sequences for the H_p classes in the case $p < 1$, Litovsk. Mat. Sb. 3 (1963), no. 1, 141–147.
[Nik02] N. K. Nikolski [Nikol’skii], Operators, functions, and systems: an easy reading. Vol. 1, Hardy, Hankel, and Toeplitz; Vol.2, Model Operators and Systems, Mathematical Surveys and Monographs, 92 and 93. American Mathematical Society, Providence, RI, 2002.
[ShHSh] H. S. Shapiro & A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math., 83 (1961), 513–532.
[SchS98] A.P. Schuster & K. Seip, A Carleson-type condition for interpolation in Bergman spaces, J. Reine Angew. Math. 497 (1998), 223–233.
[SchS00] A.P. Schuster & K. Seip. Weak conditions for interpolation in holomorphic spaces, Publ. Mat. 44 (2000), no. 1, 277–293
[Vas84] V.I. Vasyunin, Traces of bounded analytic functions on finite unions of Carleson sets, J. Sov. Math., 27, 1984, issue 1, pp. 2448–2450.

Equipe d’Analyse, Institut de Mathématiques de Bordeaux, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France

E-mail address: hartmann@math.u-bordeaux.fr