Association between trichomoniasis and prostate and bladder diseases: a population-based case–control study

Hung-Yi Yang¹, Ruei-Yu Su¹, Chi-Hsiang Chung²,³, Kuo-Yang Huang⁴, Hsin-An Lin⁵, Jui-Yang Wang⁶, Chien-Chou Chen⁷, Wu-Chien Chien²,⁸,⁹ & Hsin-Chung Lin¹,⁴

Trichomonas vaginalis infection is one of the most widespread sexually transmitted infections in the world. There are approximately 276 million cases worldwide. Most men remain undiagnosed and untreated because they are asymptomatic. The chronic inflammation induced by persistent infection may increase the risk of developing genitourinary cancers. In this study, we aimed to investigate the association between trichomoniasis and benign prostate hyperplasia (BPH), prostate cancer (PCa), and bladder cancer (BC) in Taiwan. We designed a case–control study by using the database of the National Health Insurance program in Taiwan. We used the International Classification of Diseases, 9th Revision classifications to classify all the medical conditions in the case and control groups. All odds ratios (ORs) and 95% confidence intervals (CIs) were analyzed using multivariable logistic regression to adjust for all comorbidities and variables. From 2000 to 2015, we enrolled a total of 62,544 individuals as the case group and 187,632 as the control group. Trichomoniasis exposure had a significant association with BPH and PCa (adjusted OR: BPH = 2.685, 95% CI = 1.233–4.286, \(P = 0.013 \); PCa = 5.801, 95% CI = 1.296–26.035, \(P = 0.016 \)). The relative risk was much higher if patients had both trichomoniasis and depression (adjusted OR = 7.682, 95% CI = 5.730–9.451, \(P < 0.001 \)). Men with trichomoniasis had a significantly higher risk of developing BPH and PCa than those without. Healthcare professionals should not only pay more attention to disease treatment, but also to public health education.

Abbreviations

AOR Adjusted odds ratio
AR Androgen receptor
BC Bladder cancer
BMI Body mass index
BPH Benign prostate hyperplasia
CCL2 Chemokine ligand 2
CI Confidence interval
COPD Chronic obstructive pulmonary disease

¹Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. ²School of Public Health, National Defense Medical Center, Taipei, Taiwan. ³Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan. ⁴Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan. ⁵Division of Infection, Department of Medicine, Tri-Service General Hospital SongShan Branch, National Defense Medical Center, Taipei, Taiwan. ⁶Department of Family Medicine, Tri-Service General Hospital SongShan Branch, National Defense Medical Center, Taipei, Taiwan. ⁷Division of Nephrology, Department of Medicine, Tri-Service General Hospital SongShan Branch, National Defense Medical Center, Taipei, Taiwan. ⁸Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. ⁹Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. *Email: chienwu@ndmctsgh.edu.tw; hsinchunglin@gmail.com
Benign prostate hyperplasia (BPH), prostate cancer (PCa), and bladder cancer (BC) are common diseases in the elderly male population. The pathological mechanism of these diseases is not yet fully understood. Inflammation of the prostate, which can cause proliferation of epithelium and stroma, is considered to be related to both BPH and PCa. In addition, urinary tract infection (UTI) is significantly associated with genitourinary cancers (GUC), including kidney, prostate, and bladder cancers. *Trichomonas vaginalis* infection is one of the most common sexually transmitted infections (STIs), accounting for approximately 276.4 million new cases annually. Because most male patients are asymptomatic and remain undiagnosed and untreated, persistent infection may cause chronic inflammation, which may increase the risk of GUC. There is a lack of research into the relationship between *T. vaginalis* infection and BC; however, some studies have mentioned that *T. vaginalis* infection may induce proliferation of prostatic epithelial cells and stromal cells. Some in vitro studies showed that PCa may be associated with the up-regulation of the expression of genes that can control cell apoptosis or be overexpressed as a proto-oncogene. The study from Vienna General Hospital discovered that 29/86 (33.7%) patients with BPH were positive for *T. vaginalis* on polymerase chain reaction (PCR) testing. The Health Professionals Follow-up Study (HPFS) demonstrated that *T. vaginalis* seropositivity had a positive correlation with PCa risk. However, conflicting results have also been reported. Miguelle et al. demonstrated that there was no significant association between *T. vaginalis* infection and PCa in Caucasian or African-American groups. Another multicenter study in the USA revealed that patients with a history of STIs and positive STI serologies demonstrated no association with BPH. In addition, there is still a lack of related literature regarding BC and Asian male populations. Thus, this study aimed to examine the association between *T. vaginalis* infection and BPH, BC, or PCa.

Materials and methods

Data source. We designed a population-based nationwide nested case–control study and obtained inpatient and outpatient files from Taiwan's National Health Insurance Research Database (NHIRD). The data were collected from the Longitudinal Health Insurance Database 2005 (LHID2005), a part of NHIRD. We randomly selected approximately 2,000,000 people among the total population. All personal information was encrypted by National Health Research Institutes before release.

Ethical approval. Our study was approved by the Institutional Review Board of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (TSGHIRB No.: B-109-31). All stages of the study were carried out in accordance with relevant guidelines and regulations. Because the patient identifiers were encrypted before their data were used for research purposes to protect confidentiality, the requirement for written informed consent from patients for data linkage was waived by Institutional Review Board of Tri-Service General Hospital, National Defense Medical Center, Taipei.

Identification of the case and control groups. We selected patients from 2000 to 2015 who had been diagnosed with BPH, PCa, or BC based on the International Classification of Diseases, 9th Revision. Clinical Modification (ICD-9-CM) codes as the case group (Table S1). We defined the date of the first disease diagnosis as the index date. We also used ICD-9-CM codes to identify patients with *T. vaginalis* infection (Table S1). In contrast, the control groups were patients without BPH, PCa, or BC. Among all patients in the case and control groups, we not only selected patients in a 1:3 case:control ratio, matching based on age and index date, but also excluded (1) women and patients of unknown sex, (2) patient’s aged less than 18 years, and (3) those last diagnosed with trichomoniasis within 1 year before the index date (Fig. 1). The matching method was taken propensity score matching, wherein match tolerance was set at 0.15. The propensity score matching was set as propensity score matching, wherein match tolerance was set at 0.15. The propensity score matching was set as
Covariates for analysis. The covariates in our study included age group (18–44, 45–64, ≥ 65 years), four seasons (spring, summer, autumn and winter), with or without diagnosis of depression, geographical area of residence (north, center, south, east and outlying islands of Taiwan), urbanization level of residence (levels 1 to 4), levels of hospitals as medical centers, regional and local hospitals, and monthly income (in New Taiwan Dollars [NT$]; < 18,000, 18,000–34,999, ≥ 35,000). The urbanization level of residence was defined according to the population, along with various indicators of the level of political, economic, cultural, and metropolitan development. Level 1 was defined as a population of > 1,250,000, and a specific designation as political, economic, cultural, and metropolitan development. Level 2 was defined as a population between 500,000 and 1,249,999, and as playing an important role in the political system, economy, and culture. Urbanization levels 3 and 4 were defined as a population between 149,999 and 499,999, respectively.

Statistical analysis. The statistical analyses were performed using SPSS version 22.0 (IBM Corp, Armonk, NY, USA). A P-value < 0.05 was considered significant. The Chi-squared or Fisher exact test was used to evaluate distributions between the case and control groups. Continuous variables were evaluated using the t test. Unconditional multiple logistic regression analyses were performed to evaluate the risks of BPH, PCa, and BC associated with trichomoniasis after adjusting for age, insurance premium, comorbidities, season, urbanization, and level of care. Adjusted models with significant covariates were constructed using background selection with the likelihood ratio test.

Figure 1. The flowchart of the study design (nested case–control study) from National Health Insurance Research Database in Taiwan.
Results

Demographic characteristics of the study population. Table 1 demonstrates the population distribution of different characteristics for 62,544 cases and 187,632 controls from 2000 to 2015. There were no significant differences in age between groups after matching. The proportion with trichomoniasis in the case group was 0.02% (14/62,544), while it was 0.01% (14/187,632) in the control group ($P<0.001$).

Variable evaluation in the multiple logistic regression. We present the results of the multivariable logistic regression analyses in Table 2. Patients with trichomoniasis had a significantly higher risk of BPH, PCa, or BC (adjusted odds ratio [AOR] = 2.999, 95% confidence interval [CI] = 1.426–5.301, $P=0.002$). There was also a significantly higher risk for patients with depression (AOR = 3.124, 95% CI = 1.808–4.838, $P<0.001$). The opposite result was noted in patients with middle or high insurance premiums (insurance premium NT$18,000–34,999: AOR = 0.745, 95% CI = 0.688–0.799, $P<0.001$; insurance premium > NT$35,000: AOR = 0.836, 95% CI = 0.701–0.979, $P=0.019$). Patients diagnosed in summer, autumn, or winter also had significantly lower risk than the control group (summer: AOR = 0.938, 95% CI = 0.902–0.953, $P<0.001$; autumn: AOR = 0.790, 95% CI = 0.758–0.805, $P<0.001$; winter: AOR = 0.862, 95% CI = 0.824–0.878, $P<0.001$). Patients who lived in areas with a higher urbanization level had a significantly higher risk of BPH, PCa, or BC (urbanization level

BPH/prostate cancer, bladder cancer Variables	Total	Without	With	
Total	250,176	62,544	187,632	
Trichomoniasis				
Without	250,148	99.99	62,530	
With	28	0.01	14	
Age (years)	73.15 ± 11.41	73.21 ± 10.65	73.13 ± 11.65	$P=0.129$
Age group (years)				
18–44	2664	1.06	666	
45–64	50,292	20.10	12,573	
≥ 65	197,220	78.83	49,305	
Insurance premium (NT$)				
< 18,000	245,698	98.21	61,654	
18,000–34,999	3654	1.46	712	
≥ 35,000	824	0.33	178	
Depression				
Without	217,896	87.10	50,509	
With	32,280	12.90	12,035	
CCI_R	1.74 ± 2.96	1.71 ± 2.77	1.75 ± 3.03	$P<0.001$
Season				
Spring (Mar–May)	56,893	22.74	15,495	
Summer (Jun–Aug)	60,567	24.21	15,709	
Autumn (Sep–Nov)	72,621	29.03	16,666	
Winter (Dec–Feb)	60,095	24.02	14,674	
Location				
Northern Taiwan	99,711	39.86	26,475	
Central Taiwan	71,555	28.60	16,878	
Southern Taiwan	63,001	25.42	14,985	
Eastern Taiwan	14,366	5.74	3957	
Outlying islands	943	0.38	249	
Urbanization level				
1 (Highest)	75,256	30.08	18,936	
2	113,122	45.22	29,293	
3	17,865	7.14	4119	
4 (Lowest)	43,933	17.56	10,196	
Level of care				
Hospital center	89,122	35.62	23,060	
Regional hospital	115,596	46.21	26,602	
Local hospital	45,458	18.17	12,882	

Table 1. Characteristics of the study group. P: Chi-square/Fisher exact test on categorical variables and t test on continue variables.

Risk of BPH/PCa and BC in the trichomoniasis group stratified by covariates. The risk of BPH, PCa, or BC stratified based on variables using multivariable logistic regression is shown in Table 3. Patients with trichomoniasis had a 2.999 times higher risk of BPH, PCa, or BC than the control group (AOR = 2.999, 95% CI = 1.426–5.301). In the case of trichomoniasis, there were significantly higher risks of BPH, PCa, or BC in patients aged > 65 years old, with lower insurance premiums, with/without depression, first diagnosed in winter, urbanization level 2, and first diagnosed in a local hospital (age > 65 years: AOR = 3.685, 95% CI = 1.704–8.015; insurance premium < NT$18,000: AOR = 2.999, 95% CI = 1.426–5.301; with depression: AOR = 3.104, 95% CI = 1.704–5.301; without depression: AOR = 2.545, 95% CI = 1.138–4.289; first diagnosed in winter: AOR = 4.806, 95% CI = 1.104–19.675; urbanization level 2: AOR = 3.284, 95% CI = 1.057–10.978; first diagnosed in local hospital: AOR = 15.121, 95% CI = 1.762–118.976).

Risk of BPH/PCa and BC in subgroup with T. vaginalis exposure and the joint effect. Table 4 presents the T. vaginalis exposure ratio in each subgroup of BPH/PCa and BC. T. vaginalis exposure is significantly associated with a higher risk of BPH and PCa (BPH: AOR = 2.685, 95% CI = 1.233–4.286, P = 0.013;
AOR = 5.801, 95% CI = 1.296–26.035, \(P = 0.016 \), but has no significant association with BC (AOR = 4.012, 95% CI = 0.524–31.145, \(P = 0.151 \)). In addition, patients with both depression and \textit{T. vaginalis} exposure had a significantly higher risk of developing BPH, PCa, or BC in comparison with other groups with only one condition or without them (AOR = 7.682, 95% CI = 5.730–9.451, \(P < 0.001 \) (Table 5, Fig. 2).

Discussion

We designed this case–control study based on nationwide data from Taiwan NHIRD. We found that \textit{T. vaginalis} infection was significantly associated with BPH and PCa in a male population. Therefore, \textit{T. vaginalis} could be a pathogen that induces BPH and PCa. However, there was no significant association between trichomoniasis and BC. Furthermore, patients with both trichomoniasis and depression had 7.682 times higher risk of developing BPH, PCa, or BC. This result suggests that the joint effect of trichomoniasis and depression could increase the risk of BPH, PCa, or BC.

Table 3.

BPH/prostate, bladder cancer Stratified	With Trichomoniasis exposure	Population	%	Without Trichomoniasis exposure	Population	%	Adjusted OR	95%CI	95%CI	\(P \)
Total	14	62,544	0.022	14	187,632	0.007	2.999	1.426	5.301	0.002
Age group (years)										
18–44	0	666	0.000	0	1998	0.000	-	-	-	-
45–64	0	12,573	0.000	2	37,719	0.005	0.000	-	-	0.999
≥65	14	49,305	0.028	12	147,915	0.008	3.685	1.704	8.015	0.001
Insurance premium (NT$)										
<18,000	14	61,654	0.023	14	184,044	0.008	2.999	1.426	5.301	0.002
18,000–34,999	0	712	0.000	0	2942	0.000	-	-	-	-
≥35,000	0	178	0.000	0	646	0.000	-	-	-	-
Depression										
Without	4	50,509	0.008	7	167,387	0.004	2.545	1.138	4.289	<0.001
With	10	12,035	0.083	7	20,245	0.035	3.104	1.704	5.972	<0.001
Season										
Spring	3	15,495	0.019	1	41,398	0.002	7.745	0.671	70.986	0.175
Summer	2	15,709	0.013	4	44,858	0.009	1.301	0.104	5.258	0.603
Autumn	4	16,666	0.024	6	55,955	0.011	2.197	0.482	4.894	0.224
Winter	5	14,674	0.034	3	45,421	0.007	4.806	1.104	19.675	0.033
Urbanization level										
1 (Highest)	2	18,936	0.011	2	56,320	0.004	3.199	0.453	22.845	0.241
2	6	29,293	0.020	6	83,829	0.007	3.284	1.057	10.978	0.035
3	1	4119	0.024	1	13,746	0.007	3.351	0.210	53.777	0.382
4 (Lowest)	5	10,196	0.049	5	33,737	0.015	3.086	0.889	10.801	0.077
Level of care										
Hospital center	1	23,060	0.004	3	66,062	0.005	0.965	0.094	9.301	0.886
Regional hospital	7	26,602	0.026	10	88,994	0.011	2.301	0.846	6.127	0.071
Local hospital	6	12,882	0.047	1	32,576	0.003	15.121	1.782	118.976	0.008

Table 4.

BPH/prostate, bladder cancer subgroup	Trichomoniasis exposure	Population	%	Adjusted OR	95%CI	95%CI	\(P \)
Without	14	187,632	0.007	Reference			
With	14	62,544	0.022	2.999	1.426	5.301	0.002
BPH/prostate cancer	15	59,325	0.022	2.995	1.422	4.389	0.003
PCa	11	51,482	0.021	2.685	1.233	4.286	0.013
Prostate cancer	2	6254	0.032	5.801	1.296	26.035	0.016
Bladder cancer	1	3873	0.026	4.012	0.524	31.445	0.151

AOR = 5.801, 95% CI = 1.296–26.035, \(P = 0.016 \), but has no significant association with BC (AOR = 4.012, 95% CI = 0.524–31.145, \(P = 0.151 \)). In addition, patients with both depression and \textit{T. vaginalis} exposure had a significantly higher risk of developing BPH, PCa, or BC in comparison with other groups with only one condition or without them (AOR = 7.682, 95% CI = 5.730–9.451, \(P < 0.001 \) (Table 5, Fig. 2).
The mechanism of \textit{T. vaginalis} inducing BPH and PCa still remains unclear. Several studies have demonstrated different possible mechanisms. In women, \textit{T. vaginalis} induces pro-inflammatory cytokine production, including interleukin-6 (IL-6), interleukin-8 (IL-8), and chemokine ligand 2 (CCL2), while attaching to vaginal epithelial cells14. A similar inflammatory reaction was also noted in \textit{T. vaginalis}-infected prostatic epithelial cells in some in vitro studies5,6. Repeated cell damage and repair in chronic inflammation is likely to play an important role in inducing BPH15. Furthermore, the alteration in cytokine expression during chronic inflammation may have effects on cell growth and proliferation of the prostate epithelium and stroma in BPH15. The activated mast cells stimulated by \textit{T. vaginalis}-infected prostatic epithelial cells can initiate IL-8 and CCL2 expression5. IL-8 could be a predictive marker for BPH16. Some in vitro studies demonstrated that IL-8 can stimulate fibroblast growth factor 2 (FGF-2), which causes the mitosis of prostate stromal cells17. IL-8 could also cause cyclin D1 expression to promote stromal cells proliferation18. In addition, CCL2, secreted by the prostatic stroma fibroblast, could promote both BPH and PCa progression5.

\textit{T. vaginalis} possibly induces carcinogenesis of the prostate. The infected prostatic epithelial cells produce IL-6 in chronic inflammation19. In early studies, an elevated serum IL-6 level was noted in patients with advanced PCa20. The positive correlation between IL-6 receptor expression and cell proliferation has been reported21. IL-6 also induces epithelial–mesenchymal transition (EMT) in breast cancer growth and metastasis22, and the same reaction may also occur in prostatic epithelial cells23. In addition, more than one study has demonstrated that IL-6 could enhance androgen receptor (AR) activity and AR gene expression24, which is also related to prostate cancer growth. Twu et al. demonstrated that \textit{T. vaginalis} macrophage migration inhibitory factor (TvMIF) plays an important role in inducing PCa7. There are already studies that have proven that higher human macrophage migration inhibitory factor (HuMIF) levels are present in several cancers, including PCa25. The structure of TvMIF is similar to that of HuMIF, which might explain why TvMIF also has the ability to promote cell proliferation, sustain inflammation, and stimulate the growth of prostate cancer cells7.

In previous studies, \textit{T. vaginalis} could play an important role as a carcinogen of female cervical cancer26,27. However, there is no consensus regarding the relationship between trichomoniasis and cervical cancer28. Likewise, the role of \textit{T. vaginalis} in the development of PCa is still controversial. Zhu et al. demonstrated that there was a negative association between PCa and trichomoniasis29. Instead, they discovered culture supernatant of \textit{T. vaginalis} not only inhibited growth but also induced apoptosis of prostate cancer cell. \textit{T. vaginalis} could enhance anti-proliferative molecules and decrease the expression of anti-apoptotic molecule29. The \textit{T. vaginalis} adhesion protein could induce T helper 2 cell cytokines reaction to stimulate the productions of specific antibody30. This enhancement of the immune response might suppress the cancer cell activity31. Moreover, another further study

Trichomoniasis	Depression	n	Adjusted OR	95% CI	95% CI	P
Without	Without	167,387	Reference			
With	Without	50,509	2.975	1.429	3.608	< 0.001
Without	With	20,245	3.014	1.586	4.297	< 0.001
With	With	12,035	7.682	5.730	9.451	< 0.001

Table 5. Risk of BPH/prostate cancer or bladder cancer stratified by trichomoniasis and depression status using logistic regression. \textit{Adjusted OR} adjusted odds ratio (adjusted for variables listed in Table 2), \textit{CI} confidence interval.
also showed that *T. vaginalis* seropositivity does not raise mortality risk in men with PCa. The inflammatory response caused by *T. vaginalis* might not have influence in the development and progression of PCa. However, the detail mechanism of immune response between *T. vaginalis* and prostate epithelial cell still remained unclear, further investigations are necessary.

There were still a lack of studies to prove that trichomoniasis is associated with BC. We still included BC patients in our study because the inflammatory cytokines found in trichomoniasis, including IL-6 and IL-8, are also associated with a higher risk of developing BC and some parasites, such as *Schistosoma haematobium*, can induce BC. However, our study shows no significant association between *T. vaginalis* infection and BC probably because of limited sample.

We added depression as one of the comorbidities in our study due to another previous nationwide population-based cohort study in Taiwan which showed that patients with trichomoniasis had higher risks for developing an individual psychiatric disorder, including depression, anxiety, bipolar disorder, schizophrenia and substance abuse. Our study results demonstrate that except for depression, no comorbidities had a significant association with BPH, PCa, or BC. The joint effect of trichomoniasis and depression increased the risk by 7.682 times that of the control group. A recent study showed that depression is associated with decreased immunity. Moreover, depression can also cause cytokine dysregulation and increased serum IL-6 concentration, which might enhance carcinogenesis after *T. vaginalis* infection.

Although this study was a large-scale population-based nationwide design with long-term monitoring from 2000 to 2015, there are still several limitations. First, the NHIRD does not contain detailed information regarding the symptom severity of BPH, the histological and TNM classification of PCa and BC, serum sex hormone concentrations, Prostate-Specific Antigen (PSA) levels, *T. vaginalis* antibody test, family history, or personal history such as sexual exposure, physical activity, alcohol consumption or tobacco smoking. Second, we did not include body mass index (BMI) as one of our variables. Obesity is one of the risk factors for BPH and PCa, which might affect their association with trichomoniasis. Third, our study might underestimate the exact number of patients with trichomoniasis. Most male patients would not seek treatment due to being asymptomatic, and ineffective screening protocols because of the lack of public health awareness could also lead to possible *T. vaginalis* infection being neglected. Another reason that caused underestimation of our case group is that the antibody tests of *T. vaginalis* were not performed popularly during diagnosis and mostly were female patients. It is possible that *T. vaginalis* was substantially undercoded and underrepresented in the study population. Fourth, the number of cases of BC might be too small to be significant and the tracking time might not be sufficient for disease monitoring. Trichomoniasis can be a chronic infection. The outcomes in the study might present later in life, so in some men trichomonas exposure may happen a few years before these outcomes appear or many decades prior to diagnosis. Fifth, the outcome of each case was defined as the first code for BPH, PCa, or BC. This assumes that there is a common pathway between trichomoniasis and these 3 separate diseases. However, this approach method could also ignore these outcomes as comorbidities. For example, patients with PCa or BC could also have BPH or other urinary symptoms. It is possible that many PCa or BC outcomes were ignored if BPH was coded first. This might be another reason that our study samples were underestimated. Sixth, our study was designed as an observational case–control study, so the causation cannot be detected. We hope that in the future more research will support our thesis.

Conclusion

Male patients with *T. vaginalis* infection have an increased risk of developing BPH and PCa, especially in trichomoniasis patients with comorbid depression. Due to the lack of awareness of this pathogen, clinicians should not only treat patients who are already diagnosed but should also pay more attention to groups with higher trichomoniasis exposure risk.

Data availability

Data supporting the conclusions of this article are included within the article and its additional files. The datasets used and/or analyzed during the present study will be made available by the corresponding author upon reasonable request.

Received: 13 October 2021; Accepted: 31 August 2022
Published online: 13 September 2022

References

1. St Sauver, J. L. & Jacobsen, S. J. Inflammatory mechanisms associated with prostatic inflammation and lower urinary tract symptoms. *Curr. Prostate Rep.* 6, 67–73 (2008).
2. Orsted, D. D. & Bojesen, S. E. The link between benign prostate hyperplasia and prostate cancer. *Nat. Rev. Urol.* 10, 49–54 (2013).
3. Huang, C. H. et al. Risk of cancer after lower urinary tract infection: A population-based cohort study. *Int. J. Environ. Res. Public Health* 16, 390 (2019).
4. World Health Organization. *Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections—2008* (WHO, 2012).
5. Huang, C. H. et al. Proliferation of prostate stromal cell induced by benign prostatic hyperplasia epithelial cell stimulated with *Trichomonas vaginalis* via crosstalk with mast cell. *Prostate* 76, 1431–1444 (2016).
6. Kim, J. H. et al. Inflammatory responses in a benign prostatic hyperplasia epithelial cell line (BPH) infected with *Trichomonas vaginalis*. *Korean J. Parasitol.* 54, 123–132 (2016).
7. Kim, J. H. et al. *Trichomonas vaginalis* homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. *Proc. Natl. Acad. Sci. U.S.A.* 111, 8179–8184 (2014).
8. Sutcliffe, S., Neace, C., Magnuson, N. S., Reeves, B. & Alderete, J. F. *Trichomonosis*, a common curable STI, and prostate carcinogenesis—A proposed molecular mechanism. *PLoS Pathog.* 8, e1002801 (2012).
9. Mitteregger, D. et al. High detection rate of *Trichomonas vaginalis* in benign hyperplastic prostatic tissue. *Med. Microbiol. Immunol.* **201**, 113–116 (2012).

10. Sutcliffe, S. et al. Plasma antibodies against *Trichomonas vaginalis* and subsequent risk of prostate cancer. *Cancer Epidemiol. Biomark. Prev.* **15**, 939–945 (2006).

11. Marous, M. et al. *Trichomonas vaginalis* infection and risk of prostate cancer: Associations by disease aggressiveness and race/ethnicity in the PLCO trial. *Cancer Causes Control* **28**, 889–898 (2017).

12. Breyer, B. N. et al. Sexually transmitted infections, benign prostatic hyperplasia and lower urinary tract symptom-related outcomes: Results from the prostate, lung, colorectal and ovarian cancer screening trial. *BJU Int.* **117**, 145–154 (2016).

13. Lin, C. L., Liu, T. C., Wang, Y. N., Chung, C. H. & Chien, W. C. The association between sleep disorders and the risk of colorectal cancer in patients: A population-based nested case–control study. *In Vivo* **33**, 573–579 (2019).

14. Han, I. H., Park, S. J., Ahn, M. H. & Ryu, J. S. Involvement of mast cells in inflammation induced by *Trichomonas vaginalis* via crosstalk with vaginal epithelial cells. *Parasite Immunol.* **34**, 8–14 (2012).

15. Schauer, I. G. & Bowley, D. R. The functional role of reactive stroma in benign prostatic hyperplasia. *Differentiation* **82**, 200–210 (2011).

16. Penna, G. et al. Seminal plasma cytokines and chemokines in prostate inflammation: Interleukin 8 as a predictive biomarker in chronic prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia. *Eur. Urol.* **51**, 324–333 (2007) (discussion 533).

17. Giri, D. & Ittmann, M. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. *Am. J. Pathol.* **159**, 139–147 (2001).

18. MacManus, C. F. et al. Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. *Mol. Cancer Res.* **5**, 737–748 (2007).

19. Han, I. H., Kim, J. H., Kim, S. S., Ahn, M. H. & Ryu, J. S. Signalling pathways associated with IL-6 production and epithelial–mesenchymal transition induction in prostate epithelial cells stimulated with *Trichomonas vaginalis*. *Parasite Immunol.* **38**, 678–687 (2016).

20. Adler, H. L. et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. *J. Urol.* **161**, 182–187 (1999).

21. Giri, D., Ozen, M. & Ittmann, M. Interleukin-6 is an autocrine growth factor in human prostate cancer. *Am. J. Pathol.* **159**, 2159–2165 (2001).

22. Sullivan, N. J. et al. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. *Oncogene* **28**, 2940–2947 (2009).

23. Rojas, A. et al. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. *Oncogene* **30**, 2345–2355 (2011).

24. Lee, S. O. et al. Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. *Clin. Cancer Res.* **9**, 370–376 (2003).

25. Hussain, F. et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. *Mol. Cancer Ther.* **12**, 1223–1234 (2013).

26. Zhang, Z. F. et al. *Trichomonas vaginalis* and cervical cancer. A prospective study in China. *Ann. Epiciemiol.* **5**(4), 325–332 (1995).

27. Feng, R. M. et al. Risk of high-risk human papillomavirus infection and cervical precancerous lesions with past or current *Tricho monas* infection: A pooled analysis of 25,054 women in rural China. *J. Clin. Virol.* **99–100**, 84–90 (2018).

28. Zhu, Z. et al. *Trichomonas Vaginalis* inhibits HeLa cell growth through modulation of critical molecules for cell proliferation and apoptosis. *Anticancer Res.* **38**(9), 5079–5086 (2018).

29. Zhu, Z. et al. *Trichomonas vaginalis*: A possible foe to prostate cancer. *Med. Oncol.* **33**, 115 (2016).

30. Zhang, Z. et al. The molecular characterization and immunity identification of *trichomonas vaginalis* adhesion protein 33 (AP33). *Front. Microbiol.* **11**, 1433 (2020).

31. Zhao, K. S., Mancini, C. & Doria, G. Enhancement of the immune response in mice by *Astragalus membranaceus* root extracts. *Immunopharmacology* **20**(3), 225–233 (1990).

32. Tsang, S. H. et al. Association between *Trichomonas vaginalis* and prostate cancer mortality. *Int. J. Cancer* **144**(10), 2377–2380 (2019).

33. Chen, M. F., Lin, P. Y., Wu, C. F., Chen, W. C. & Wu, C. T. IL-6 expression regulates tumorigenicity and correlates with prognosis in bladder cancer. *PLoS One* **8**, e61901 (2013).

34. Inoue, K. et al. Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. *Cancer Res.* **60**, 2290–2299 (2000).

35. Lin, H. C. et al. Infection with *Trichomonas vaginalis* increases the risk of psychiatric disorders in women: A nationwide population-based cohort study. *Parasit. Vectors* **12**(1), 88 (2019).

36. Glaser, R. et al. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. *Arch. Gen. Psychiatry* **60**, 1009–1014 (2003).

37. Allott, E. H., Masko, E. M. & Freedland, S. J. Obesity and prostate cancer: Weighing the evidence. *Eur. Urol.* **63**, 800–809 (2013).

38. Roth, A. M. et al. Changing sexually transmitted infection screening protocol will result in improved case finding for *Trichomonas vaginalis* among high-risk female populations. *Sex. Transm. Dis.* **38**, 398–400 (2011).

39. Petrin, D., Delgaty, K., Bhatt, R. & Garber, G. Clinical and microbiological aspects of *Trichomonas vaginalis*. *Clin. Microbiol. Rev.* **11**, 300–317 (1998).

Acknowledgements

We would like to thank the National Defense Medical Center team for support.

Author contributions

H.C.L., H.Y.Y. and C.C.C. conceived the idea and wrote the first draft manuscript. R.Y.S. and K.Y.H. contributed to the manuscript. W.C.C., H.A.L., J.Y.W., and C.H.C. research data collection and statistical analyses. All authors read and approved the final manuscript.

Funding

This work was supported by Tri-Service General Hospital Songshan Branch, Taiwan (TSGH-SS_E_111006) to JYW, (TSGH-SS_A_111001) to HAL, (TSGH-SS_E_111005) to CCC, Ministry of National Defense-Medical Affairs Bureau, Taiwan (MND-MAB-D-111140) to HCL, and Tri-Service General Hospital, Taiwan (TSGH-E-111224) to HCL, (TSGH-B-111018) to WCC.

Competing interests

The authors declare no competing interests.
Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-19561-2.

Correspondence and requests for materials should be addressed to W.-C.C. or H.-C.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022