Single-nucleotide polymorphisms of microRNA processing machinery genes are associated with risk for gastric cancer

Ying Xie
Yingnan Wang
Yuefei Zhao
Zhanjun Guo
Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China

Abstract: Recent studies demonstrate that microRNA-related single-nucleotide polymorphisms (miR-SNPs) are associated with the development of numerous human cancers. In this study, we investigated six miR-SNPs in microRNA processing machinery genes, including rs11077 of the XPO5 gene, rs14035 of the RAN gene, rs3742330 of the Dicer gene, rs9623117 of the TNRC6B gene, rs197412 of the GEMIN3 gene, and rs2740348 of the GEMIN4 gene, in gastric cancer patients and subsequently evaluated their potential roles in gastric cancer risk in a case control study. The results indicate that the C/C genotype of rs14035 from RAN, the A/A genotype of rs3742330 from Dicer, and the T/T genotype of rs9623117 from TNRC6B are significantly associated with gastric cancer risk. In conclusion, these miR-SNPs can be used as predictive biomarkers in gastric cancer.

Keywords: cancer risk, gastric cancer, miR-SNPs

Introduction

Gastric cancer (GC) is the fourth-most-common cancer and the second leading cause of cancer-related deaths worldwide, in addition, nearly two-thirds of GCs occur in developing regions. As a multifactorial disease, both environmental factors and genetic factors contribute to the etiology of this disease. Although much treatment progress has been achieved in recent years, the prognosis of GC remains poor due to the delay in diagnosis. MicroRNAs (miRNAs) are RNA molecules with lengths of ~22 nucleotides; they can act as posttranscriptional regulators in mRNA expression, and they regulate a variety of physiological and developmental processes, including the development and progression of numerous cancers. In GC, miRNAs can serve as biomarkers for both diagnosis and therapeutic targets.

In miRNA processing, long primary transcripts of miRNAs (pre-miRNAs) are synthesized by RNase II in the nucleus, and they are cut into an ~70 nt hairpin precursor by RNase III Drosha and by the double-stranded RNA-binding protein DiGeorge syndrome critical region 8 (DGCR8). These precursors are exported to the cytoplasm, are processed by exportin-5 (XPO5) and RAN-GTPase (RAN), and are further diced into ~22 nt miRNA duplexes by the RNase III Dicer gene, which cooperates with the transactivation response RNA-binding protein and the Argonaute protein family. MiRNA duplexes are then assembled into the miRNA-induced silencing complex (miRISC), which contains GEMIN3 and GEMIN4. The miRISC will select one strand as the mature miRNA, and it guides the mature miRNAs to their target mRNA sites. MiRNA-related single nucleotide polymorphisms (miR-SNPs), which are defined as single-nucleotide polymorphisms (SNPs) in miRNA genes at the miRNA binding site.
and in miRNA processing machinery, can modulate miRNA and target gene expression to influence cancer development, promote therapeutic efficacy, and affect a patient’s prognosis.23–26 The miRNA machinery genes are linked to the development, progression, and prognosis of several cancer types, including ovarian and colorectal cancers, melanoma, and T-cell lymphoma.27–30 However, the role of the miRNA processing machinery genes in GC remains uncertain.

In the present study, we genotyped six miR-SNPs in the miRNA processing machinery genes, including \textit{XPO5} (rs11077), \textit{RAN} (rs14035), \textit{Dicer} (rs3742330), \textit{TNRC6B} (rs9623117), \textit{GEMIN3} (rs197412), and \textit{GEMIN4} (rs2740348) in GC patients to evaluate the relationships of these genes with risk for development of GC.

Materials and methods

Sample collection and DNA extraction

Blood samples were collected from GC patients who underwent GC resection at the Department of General Surgery at the Fourth Hospital of Hebei Medical University from 2007–2008. Blood samples were also collected from normal controls without a history of any cancer. Genomic DNA was immediately extracted using the Wizard® Genomic DNA Purification Kit (Promega Corporation, Fitchburg, WI, USA) and was stored at \(-20^\circ\text{C}\). All procedures were supervised and approved by the Human Tissue Research Committee of the Fourth Hospital of Hebei Medical University. Written consent was obtained from all the patients and healthy controls enrolled in this study.

Genotyping of miR-SNPs

The miR-SNPs of the miRNA processing gene, including \textit{XPO5} (rs11077), \textit{RAN} (rs14035), \textit{Dicer} (rs3742330), \textit{TNRC6B} (rs9623117), \textit{GEMIN3} (rs197412), and \textit{GEMIN4} (rs2740348), according to the National Center for Biotechnology Information (NCBI) SNP database (http://www.ncbi.nlm.nih.gov/snp/), were genotyped using the polymerase chain reaction (PCR)–ligase detection reaction assay with the primers and probes listed in Table 1. PCR was performed with the PCR Master Mix Kit according to the manufacturer’s instructions (Promega, Madison, WI, USA). Ligation was performed using the different probes that were matched to the miR-SNPs, and the ligated products were separated using the ABI PRISM Genetic Analyzer 3730XL (Applied Biosystems, Foster City, CA, USA) to access the length differences of the ligated products.

Table 1 All the primers and probes used for genotyping of miR-SNPs

Gene	rs NCBI	Primer sequence	Probe sequence
XPO5	rs11077	F GAATCTGGTGCACCTGTAGGGA	S1 GTACCTCACAAGGCAGGCCTGGGA
		R GTGCCGTAGTTGACCTTGA	S2 TTTGTACCTCAAGGACCAGGGCTGGGC
			A3 AGTCTTTAGTCAACAATCCCCCTTT
RAN	rs14035	F GCACTTGCTCAAAAACTCTGA	S1 TTTTATAATCATGTATTTAATGTAACCC
		R TAACAGCAAGAATTCCCAACCTT	S2 TTTTTTTAGTATCTGTTTATTAGGAA
			A3 TCAACAGGAAGGGAATACGAGGTAGTT
GEMIN4	rs2740348	F TTGCTCTCGAGAAGAAGGGGA	S1 TTTTSTGGGAAGACCGGCCCCCTTCCGAC
		R GATCAGGGATGGCTGTCG	S2 TTTTTTTTTGGAGTTACCGGCCCCCTTCCGAG
			A3 AGCCACATTGGTGTTGGGCTGCCCTTT
TNRC6B	rs9623117	F TTTTCT GTTCTCCTCTATCTCAT	S1 TCTCCCTGTATTACTCTTAAGTAGTGC
		R CATTAGTTAGCACAACAGGT	S2 TTTTTCCCTGTTACCTTAAATGTTGT
			A3 CTCCCTCCCACTCCACCCCATCCT
GEMIN3	rs197412	F TAGAGAACCTGTGGAAATCA	S1 TTTTATGTTTTTGAGAAATAAGTTAC
		R GAAGAGGTCTTGAGCTGTA	S2 TTTTTGTGTTTGTGAGAAATAAGTTAT
			A3 TGAACAGAGACCTCCTGTTGGGACCTT
Dicer	rs3742330	F AAAGGTATCAAGGACCTGACAGTT	S1 TTTTCACTTCTTGAAAGGAGGATTAGA
		R CTGCAGAGGATCAGCTGGAATC	S2 TTTTTTTTTTTCTTAATCTTGAGAAAGGAGGATTAGG
			A3 SACCCTAACAGAGGACTTACCATTTTT

Notes: F: represents forward primer for PCR; R: represents reverse primer for PCR; S1 and S2 represent probes match to different allele of the SNP; S3 represents probes downstream of the SNP.

Abbreviations: NCBI, National Center for Biotechnology Information; PCR, polymerase chain reaction; SNP, single-nucleotide polymorphism.
Statistical analysis

The \(\chi^2 \) test was applied to analyze dichotomous variables, such as the presence or absence of an individual SNP in patients and healthy controls. The odds ratios and 95% confidence intervals (CI) were calculated using an unconditional logistic regression model. All of the statistical analyses were performed with the SPSS version 18.0 software package (IBM Corporation, Armonk, NY, USA). A \(P \)-value \(\leq 0.05 \) was considered statistically significant.

Results

A total of 137 GC patients and 142 healthy controls were included in this study. The clinical characteristics of the cases and controls are listed in Table 2. Six miR-SNPs were detected from the blood samples of the healthy controls and GC patients.

When individual SNPs were compared between GC patients and controls in terms of their distribution frequency, statistically significant increases for the C/C genotype of rs14035 in the \(RAN \) gene (95% CI: 1.601–14.925; \(P=0.002 \)), the T/T genotype of rs9623117 in the \(TNRC6B \) gene (95% CI: 0.03–0.608; \(P=0.003 \)), and the A/A genotype of rs3742330 in the \(Dicer \) gene (95% CI: 1.223–3.178; \(P=0.005 \)) were observed in GC patients. These results indicate that the carriers of these alleles are susceptible to GC (Table 3).

Discussion

The miR-SNPs in \(RAN \), \(Dicer \), and \(TNRC6B \) were associated with the carcinogenesis of GC in our analysis. To our knowledge, this is the first report to indicate that the SNP sites in the miRNA processing machinery genes have predictive value for determining the incidence of GC.

\(RAN \) is a member of the Ras superfamily of GTPases and is essential for the translocation of pre-miRNAs from the nucleus to the cytoplasm. \(XPO5 \) binds to pre-miRNA and \(RAN \)-GTPase in the nucleus (via the \(XPO5 \)–\(RAN \)-GTP–pre-miRNA heteroternary complex) to mediate the nuclear export of pre-miRNA in a \(RAN \)-GTP-dependent manner.\(^{31}\) Disruption of pre-miRNA nucleocytoplasmic transport would impair the production of mature miRNAs in cancer cells. The fact that \(RAN \) is overexpressed in some cancer cell lines, including colon cancer, implies its role in tumor transformation; moreover, \(RAN \) was reported to suppress the activation of C-Jun-NH\(_2\)-kinase and inhibit the apoptosis induced by an anticancer drug.\(^{32,33}\) The rs14035 located in \(RAN \) might alter \(RAN \) expression, so as to initiate carcinogenesis by modulating the production of mature miRNAs.

\(Dicer \) was also implicated in the oncogenic process of several cancers, but the data were controversial; downregulated \(Dicer \) expression has been identified in lung cancer, ovarian cancer, nasopharyngeal cancers, breast cancer, and esophageal cancer, whereas upregulated \(Dicer \) expression was found in lung adenocarcinoma, colorectal cancer, and primary cutaneous T-cell lymphomas.\(^{27,34–40}\) The mechanism underlying how the rs3742330 SNP modified the GC risk remains unclear; the location of this SNP in the 3'-untranslated region of \(Dicer \) might potentially influence the stability and expression of the gene.

\(TNRC6B \) (or KIAA1093), localized on the mRNA-degrading cytoplasmic P bodies, is one of the three Argonaute-interacting protein paralogs in vertebrates. They assist in the formation of miRNA ribonucleoparticles or miRISCs, so as to mediate miRNA-guided mRNA cleavage.\(^{16,41–44}\) The T/T genotype of rs9623117 in \(TNRC6B \) has been found to be associated with prostate cancer risk. Alterations in \(TNRC6B \) gene expression due to genetic variations

Table 2 Clinical characteristics in patients with gastric cancer and controls

Characteristic	Case	Control	\(P \)-value
Sex			
Male	99	103	0.959
Female	38	39	
Age (years)			0.598
\(\leq 60 \)	68	66	
\(>60 \)	69	76	
Clinical stage			
I + II	47	90	
III + IV	90		
Size of tumor (diameter)			
\(\leq 5 \) cm	73		
\(>5 \) cm	64		
Degree of differentiation			
Highly + moderately	88		
Poorly + undifferentiated	49		
Intravascular tumor emboli			
No	100		
Yes	37		
Tumor location			
Upper third	49		
Middle third	43		
Lower third	45		
Lymph node metastasis			
N0	42		
N1	31		
N2	31		
N3	33		
Postoperative chemotherapy			
No	64		
Yes	73		
of rs9623117 might perturb the levels of miRNA species normally under its control, thus contributing to carcinogenesis.45

The frequency distribution of these six SNPs and the patients’ clinical characteristics (including their sex, age, and tumor stage) do not appear to be associated, as determined by our analysis (data not shown). These six miR-SNPs were analyzed for their relationship with postoperative survival in 95 patients for whom 3-year follow-up data were available. It was found that rs2740348 showed a marginally statistically significant association with survival (P = 0.06; our unpublished data). These findings should be validated with a larger sample size.

Although the results of this study require further validation among a larger GC cohort, as well as in laboratory-based functional studies, our data are encouraging because they demonstrate that miR-SNPs can be used to predict the risk for developing GC.

Acknowledgment
This work was supported by the Key basic research program of Hebei (14967713D).

Author contributions
All authors made substantial contributions to data generation and analysis, drafting or critical revision of the manuscript, and approval for the final version to be published.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer. 2001;37 Suppl 8:S4–S66.
2. Parkin DM. International variation. Oncogene. 2004;23(38):6329–6340.
3. Stadtfänder CT, Waterbor JW. Molecular epidemiology, pathogenesis and prevention of gastric cancer. Carcinogenesis. 1999;20(12):2195–2208.
4. Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12(3):354–362.
5. Forman D, Burley VI. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol. 2006;20(4):633–649.
6. Xia J, Guo X, Yan J, Deng K. The role of miR-148A in gastric cancer. J Cancer Res Clin Oncol. 2014;140(9):1451–1456.
7. Wang C, Guo Z, Wu C, Li Y, Kang S. A polymorphism at the miR-502 binding site in the 3’ untranslated region of the SET8 gene is associated with the risk of epithelial ovarian cancer. Cancer Genet. 2012;205(7–8):373–376.
8. Guo Z, Wang H, Li Y, Li B, Li C, Ding C. A microRNA-related single nucleotide polymorphism of the XPO5 gene is associated with survival of small cell lung cancer patients. Biomed Rep. 2013;1(4):545–548.
9. Li R, Zhang L, Jia L, et al. MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma. PLoS One. 2014;9(4):e94855.
10. Parlayan C, Ikeda S, Sato N, Sawabe M, Muramatsu M, Arai T. The role of miR-502a in gastric cancer cells by targeting the tumour suppressor MXD1. PLoS Genet. 2013;9(3):e1003143.
11. Peng Y, Liu YM, Li LC, Wang LL, Wu XL. MicroRNA-338 inhibits growth, invasion and metastasis of gastric cancer by targeting NRPI expression. PLoS One. 2014;9(4):e94422.
12. Wojcicka A, de la Chapelle A, Jazdzewski K. MicroRNA-related sequence variations in human cancers. Hum Genet. 2014;133(4):463–469.
13. Xie Y, Diao L, Zhang L, Liu C, Xu Z, Liu S. A miR-SNP of the KRT81 gene is associated with the prognosis of non-Hodgkin’s lymphoma. Gene. 2014;539(2):198–202.
14. Tie J, Pan Y, Zhao L, et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robol receptor. PLoS Genet. 2010;6(3):e1000879.
15. Guo B, Li J, Liu L, et al. Dysregulation of miRNAs and their potential as biomarkers for the diagnosis of gastric cancer. Biomed Rep. 2013;1(6):907–912.
16. Chu D, Zhao Z, Li Y, et al. Increased microRNA-630 expression in gastric cancer is associated with poor overall survival. PLoS One. 2014;9(3):e90526.
17. Wu Q, Yang Z, An Y, et al. MiR-19a/b modulate the metastasis of gastric cancer cells by targeting the tumour suppressor MXD1. Cell Death Dis. 2014;5:e1144.
18. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419.
19. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–3016.
30. Valencak J, Schmid K, Trautinger F, et al. High expression of Dicer reveals a negative prognostic influence in certain subtypes of primary cutaneous T cell lymphomas. J Dermatol Sci. 2011;64(3):185–190.
31. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–98.
32. Woo IS, Jang HS, Eun SY, et al. Ran suppresses paclitaxel-induced apoptosis in human glioblastoma cells. Apoptosis. 2008;13(10):1223–1231.
33. Honma K, Takemasa I, Matoba R, et al. Screening of potential molecular targets for colorectal cancer therapy. Int J Gen Med. 2009;2:243–257.
34. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12(12):580–587.
35. Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96(2):111–115.
36. Sugito N, Ishiguro H, Kuwabara Y, et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res. 2006;12(24):7322–7328.
37. Grelier G, Voirin N, Ay AS, et al. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer. 2009;101(4):673–683.
38. Guo X, Liao Q, Chen P, et al. The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 2012;138(1):49–56.
39. Chiosea S, Jelezcova E, Chandran U, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res. 2007;67(5):2345–2350.
40. Faber C, Horst D, Hlubeck F, Kirchner T. Overexpression of Dicer predicts poor survival in colorectal cancer. Eur J Cancer. 2011;47(9):1414–1419.
41. Caudy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 2002;16(19):2491–2496.
42. Meister G, Landthaler M, Peters L, et al. Identification of novel argonaute-associated proteins. Curr Biol. 2005;15(23):2149–2155.
43. Chu CY, Rana TM. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 2006;4(7):e210.
44. Baillat D, Shiekhattar R. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol. 2009;29(15):4144–4155.
45. Sun J, Zheng SL, Wiklund F, et al. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res. 2009;69(1):10–15.