AN ASSESSMENT OF HEAVY METALS CONCENTRATION IN WATER AROUND QUARRIES AND BARITE MINE SITES IN PART OF CENTRAL CROSS RIVER STATE, SOUTHEASTERN NIGERIA.

OCHELEBE, I., KUDAMNYA, E. A. AND NKEBEM, G. E.

(Received 18 May 2020; Revision Accepted 3 September 2020)

ABSTRACT

The assessment of the level of heavy metal concentrations in water sources around quarries and barite mine sites in central Cross River State, Southeastern Nigeria, was carried out to evaluate the degree of contamination due to mining and quarrying activity in the area. The investigation involved the collection of twelve water samples from ponds, streams, river and boreholes around the area. The water samples were passed through 0.45 µm filter paper and preserved with a drop of 0.1M HNO₃ acid. The preserved samples were analyzed for their heavy metal (Ba, Cr, Cu, Fe, Mn, Pb and Zn) content, using inductively coupled plasma-mass spectrometry (ICP-MS). The results show that the average concentration of Ba, Cu, Mn, Pb and Zn were above WHO guideline value for drinking water quality, hence not suitable for drinking. The average concentration of the metals is in the order Ba>Mn>Cu>Fe>Pb>Zn>Cr.

Computed values of contamination index show that the samples from four locations were contaminated. Single factor pollution index computation indicates that the waters are not contaminated with Cr, but slightly polluted with Fe and Zn, moderately polluted with Ba and severely polluted with Cu, Mn and Pb. Further, Nemerow comprehensive pollution index indicates that samples from four locations were severely contaminated. The study revealed that the water sources around the barite mines had elevated level of heavy metal concentration compared to location around the quarries. It is recommended therefore, that the water be treated before use for drinking purpose.

KEYWORDS— heavy metals, contamination index, pollution index, barite mine, quarry.

INTRODUCTION

The central part of Cross River State in Nigeria is very rich in solid minerals, this has led to the proliferation of mining activity in the area by both organize and illegal miners. This surge is attributed to the Federal Government of Nigeria policy on the use of local raw materials. The occurrence and exploitation of these minerals is a potential threat to the water resources within the vicinity of the mines and adjoining area. Rock quarrying and barite mining generates huge quantity of rock and mine tailings. These mine wastes can increase the levels of heavy metals released into the environment. Oxidation and released metals from unprotected mine waste sites are sources of environmental contamination and risk (Adamu et al., 2014). In recent time’s heavy metals in soil and water is becoming an issue of concern at all levels, since these resources constitute a crucial component of our environment (Ochelebe et al., 2017).

Mining and release of heavy metals into the environment is a threat to human health because of its toxicity when their levels in drinking water exceeds the maximum admissible values set by international organizations such as World Health Organization. Elevated concentration of elements as a result of contamination can be measured in a number of ways. Hitherto, previous studies have employed the use of indices such as contamination index(CI) and pollution index(PI) (Yang et al., 2013; Adamu et al., 2014; Zhang et al., 2018).

Inhabitants within and around the study area mostly depend on water from existing rivers, streams and ponds for domestic purpose. To say the least, few people have access to well-designed and constructed boreholes provided by private owners and Cross River Basin Development Authority, an Agency of Federal Ministry of Water resources through their intervention programs. But this is not enough, so majority still depends on the not too-safe surface water sources such as streams, ponds and river for domestic use. The

Ochelebe, I., Department of Geology, University of Calabar, Calabar-Nigeria.

Kudamnya, E. A., Department of Geology, University of Calabar, Calabar-Nigeria.

Nkebem, G. E., Department of Geology, University of Calabar, Calabar-Nigeria.

© 2020 Bachudo Science co. Ltd. This work is licensed Under Creative Commons Attribution 4.0 international license.
Nigerian National Statistics Office reports that in 2001, 66.5% of Cross Riverians rely on water from ponds/streams for domestic purposes (FOS, 2003). The Multiple Indicator Cluster Survey report of 2011 shows that 49.3% of Cross Riverians used unimproved water sources for domestic purposes (NBS, 2013). Furthermore, findings of National Nutrition and Health Survey 2014, shows that 37.8% of households in Cross River State have access to improved drinking water sources (NBS, 2014), indicating that 62.2% of the population are exposed to unsafe water sources.

Geological, mineralogical and structural aspects of the rocks and barite occurrence have been investigated by previous authors (Ekwueme & Onyeagocha, 1986; Ekwume, 1995; Adamu, 2000, 2011; Egeh, et al., 2004; Oden, 2012). Adamu et al. (2014) assessed the contamination and health risk associated with abandoned barite mines in Cross River State generally, using streams and pond water. The hydrochemical assessment of pond and stream waters and trace and major element pollution of the sediments around some of the barite mines have been investigated (Adamuet al., 2013; Adamuet al., 2015). However, this study is on the environmental aspect, with emphasis on the effect of the quarry activities and barite mining on available water sources and the risk on human health. The objective is to appraise and update the level of heavy metal in both surface and groundwater sources within and around the quarries and mine sites and appraising the degree of contamination.

DESCRIPTION OF STUDY AREA

Six (6) communities namely: Obung, Ojor, Iwuru, Nkonemba, Ikot Okpors and Ibogo in Cross River State, Southeastern Nigeria, where mining is taking place were investigated. During sampling large scale quarrying of granite and granodiorite was going on in Obung, Ojor, Iwuru, Old Netim, Nkonemba and Ikot Okpors area, while barite mining on medium to small scale was going on in Ibogo area. Information from the community leaders revealed that modern quarrying activity in the area started around 1971 in Old Netim during the construction of the major highway in the area, and the latest is the Iwuru quarry that was established around 2012. While barite mining started around 2004 in Ibogo area.

The area lies within longitudes 8°00’ to 8°30’ E and latitudes 5°20’N to 5°45’N. It is accessed through a major road, the Calabar-Ikom highway and minor roads such as; Unyanga-I bunkpa road, Ayaba-Ikot Okpors road, Abini-Agwuagune roads, and various footpaths leading to sampling points. The area is drained majorly by Cross River and other smaller rivers and streams (Fig.1). Some of these streams are; Ikpaya, Ayibonong, Eyuma, Ageden, Ekpendu-Iwuru, Efajene and Ugbam streams. Most of the streams flow in the NE-SW direction. The relief of the area is undulating, with some minor hills and valleys. The mean annual rainfall in the area was reported to be about 2,300mm (CRBDA, 2008). With temperature ranging between 25°C and 35°C (Iloeje, 1991).

GEOLOGY

The study area is underlain by two major rock formations, the Oban Massif to the south and the Ikom-Mamfe Embayment to the north. The rocks of the southern part are mainly of igneous and metamorphic origin (granodiorites, phyllites, schists, gneisses, amphibolites, pegmatites, granites, tonalities, monazites, dolerites, and charnockites). The gneisses grade into schist which is intruded by granodiorite and pegmatite in some parts. A sharp contact exists between the schist and calcareous sandstone in the north-western part of the study area (Fig.1). Geochemical studies of the gneisses by Ekwume and Onyeagocha (1986) shows that they are metasediments of shale-greywacke. The granodiorite is the most extensive intrusive in the study area. The rocks are coarse-grained, non-foliated and have a sharp contact with the schist. Geochemical studies of the schists at Ikot-Ana show them to consist typically of metasediments, which have a composition characteristic of phyllites and semi-phyllites. The rock sequence of the Mamfe Embayment consists of sandstones and mudstones (Ekwume, 1995).
METHODOLOGY
A total of twelve (12) water samples consisting of four boreholes, four streams, three ponds and one river, were collected within and around locations of the barite mines and quarries sites (Fig. 1). Table 1 shows the locations and co-ordinates of the sampling points. Water samples were taken from mine ponds, streams and boreholes, and stored in 1 litre polythene bottles. Prior to the collection of water samples, the sample bottles were rinsed thoroughly with the water to be collected. During the collection of groundwater, the borehole was pumped for about 10 minutes to ensure stability, the water samples were then collected at the well head. The samples were pass through 0.45-µm membrane filter paper.

The samples were preserved with a drop of 0.1M HNO₃, to prevent precipitation of the metals from the water. The water samples were then stored in a cooler at 4°C and taken to the laboratory for the analysis of their trace element contents using inductively coupled plasma-mass spectrometry (ICP-MS) at Acme Laboratory Limited, Vancouver Canada.

Contamination index was computed to identify the enrichment of heavy metals with respect to the maximum admissible limit (MAL) standards (WHO, 2008). The contamination indexes for

Table 1: Location and Co-ordinates of sampling points.

Loc. ID	Area	Quarry type	Water Type	Co-ordinate	
				Longitude	Latitude
W1	Old Netim	Granite	Pond	E 008.37964°	N 05.36329°
W8	Iwuru	Granodiorite	Pond	E 008.15846°	N 05.42472°
W10	Igbogo	Barite mine	Pond	E 008.14136°	N 05.62878°
W2	Old Netim	Granite	Stream	E 008.37278°	N 05.37422°
W4	Obung	Granite	Stream	E 008.38682°	N 05.34129°
W6	Nkonemba	Granite	Stream	E 008.28652°	N 05.43504°
W11	Igbogo	Barite mine	Stream	E 008.12517°	N 05.60970°
W9	Ikot Okpok	Granodiorite	River	E 008.07167°	N 05.40575°
W3	Obung	Granite	Borehole	E 008.39580°	N 05.34685°
W5	Ojor	Granite	Borehole	E 008.27431°	N 05.40929°
W7	Iwuru	Granodiorite	Borehole	E 008.17486°	N 05.41894°
W12	Igbogo	Barite mine	Borehole	E 008.12000°	N 05.60372°

*W1-W9= water samples from quarry areas, W10-W12= water samples from barite mine area.
the potentially toxic elements (PTEs) in the water was calculated using Equation (1). The contamination index is classified as presented in Table 2.

\[C_a = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{M_{ai}}{S_{ai}} \right) \ldots \ldots 1 \]

Where;

- \(C_a \) is the contamination index of sample \(a \)
- \(M_{ai} \) is the concentration of metal \(i \) in sample \(a \)
- \(S_{ai} \) is the maximum admissible limit of metal \(i \) based on standard
- \(n \) is the total number of metals considered

In order to determine the degree of contribution of each metal to toxicity of the water in the area, the single factor index, Nemerow pollution index (Yang et al., 2013) was useful. The single-factor pollution index can weigh the pollution of single contamination and is applied to establish water quality parameters. The Nemerow comprehensive pollution index is widely applied to reflect the total pollution level and evaluate environmental quality (Zhang et al., 2018). The Nemerow pollution index is calculated using the following equations;

\[F_{ij} = \frac{C_{ij}}{S_{ij}} \ldots \ldots 2 \]

\[PI = \sqrt[1/2]{\left(F_{\text{max}}^2 + F_{\text{ave}}^2 \right)} \ldots \ldots 3 \]

Where;

- \(F_{ij} \) is the pollution index of the \(i \)th potentially toxic element in \(j \)
- \(C_{ij} \) is the concentration of the \(i \)th potentially toxic element in \(j \)
- \(S_{ij} \) is the required standard of the \(i \)th potentially toxic element in \(j \)
- \(PI \) is the Nemerow comprehensive pollution index
- \(F_{\text{max}} \) is the maximum single factor pollution index of all the potentially toxic element
- \(F_{\text{ave}} \) is the average single factor pollution index of all the potentially toxic element

Table 2: Classes of Contamination and Nemerow Pollution Indices
Contamination Index

Indices
Cl<1
1<Cl<5
Cl>5

RESULTS AND DISCUSSION

The result of the heavy metals concentration in the water samples collected and analyzed is presented in Table 3. The result shows that the pH ranged between 5.800 (W11) and 7.200 (W5 and W6), with an average value of 6.700. The concentration of Ba ranged between 0.010 mg/l (W2) and 13.800 mg/l (W10) with an average concentration of 1.990 mg/l. The concentration of Cr was below detection limit at locations W2, W3, W4 and W8, with the highest value of 0.030 mg/l (W12). The mean concentration of Cr computed was 0.005 mg/l. Also, Cu was below detection limit at locations W1, W2, W3, W7 and W8, while the highest value was 5.150 mg/l (W10), and an average concentration of 0.772 mg/l. Fe was below detection at locations W3, W2, W5, W7 and W10 and the highest value of 4.100 mg/l (W10). The mean value computed was 0.586 mg/l. The concentration of Mn was below detection at locations W1, W4, W5, W6, W8 and W9, while the highest value of 4.790 mg/l (W11) was recorded. The mean concentration of 1.110 mg/l was computed. Concentration values of Pb was below detection limit at locations W1, W2, W3, W4, W5, W6, W7, W8 and W9, while the highest value of 1.130 mg/l (W11) was recorded. The mean concentration value of 0.274 mg/l was obtained for Pb. The concentration of Zn was below detection at locations W1, W5, W8 and W9, and the highest value of 0.270 mg/l (W10) was obtained. However, a mean concentration of 0.079 mg/l was computed for Zn.

Generally, the mean concentration of the heavy metals in the area is in the order Ba>Mn>Cu>Fe>Pb>Zn>Cr. Comparison of these data within the different watersources reveals that the concentration of all the metals, except Cr and Zn, were higher in water sampled from the ponds. This conforms with the assertion by Adamu et al. (2014). Also, the concentration of all the heavy metals was higher in the samples collected around the barite mines as compared with those of the quarry sites.
Table 3: Results of heavy metal concentrations in water samples from the study area.

Loc.ID	Water Type	Ph	Ba (mg/l)	Cr (mg/l)	Cu (mg/l)	Fe (mg/l)	Mn (mg/l)	Pb (mg/l)	Zn (mg/l)
W1	Pond quarry	6.800	0.020	0.003	ND	0.018	ND	ND	ND
W8	Pond quarry	6.700	0.020	ND	ND	0.013	ND	ND	ND
W10	Pond barite	6.700	13.800	0.010	5.150	4.100	4.310	1.104	0.270
Mean		6.733	4.613	0.004	1.717	1.377	1.437	0.368	0.09
W2	Stream quarry	6.600	0.010	ND	ND	0.014	ND	ND	ND
W4	Stream quarry	7.200	0.020	ND	0.001	0.021	ND	ND	0.002
W6	Stream quarry	6.800	0.020	0.001	0.001	0.039	ND	ND	0.009
W9	River quarry	7.000	0.020	0.001	0.001	ND	ND	ND	ND
W11	Stream barite	5.800	5.600	0.010	1.760	1.800	4.790	1.130	0.210
Mean		6.680	1.134	0.002	0.353	0.372	0.983	0.226	0.045
W3	Borehole quarry	7.000	0.030	ND	ND	ND	0.011	ND	0.003
W5	Borehole quarry	7.200	0.070	ND	0.004	ND	ND	ND	ND
W7	Borehole quarry	6.700	0.200	0.002	ND	ND	0.021	ND	0.230
W12	Borehole barite	5.900	4.120	0.030	2.350	0.800	4.190	1.056	0.230
Mean		6.700	1.105	0.009	0.588	0.200	1.056	0.264	0.116

Summary of result

	Average around Quarries	Average around barite mines	Overall Mean	Minimum	Maximum	WHO
	6.89	6.167	6.700	5.800	7.200	6.5-8.0
	0.046	11.173	1.994	0.010	0.010	0.7
	0.001	0.017	0.005	0.005	0.005	0.050
	0.001	3.087	0.7720	0.005	0.005	0.050
	0.010	2.233	0.566	0.000	0.000	0.300
	0.005	4.430	1.111	0.000	0.000	0.300
	0.000	1.067	0.274	0.000	0.000	0.010
	0.027	0.237	0.079	0.000	0.000	0.050

* ND – Not detected

CONTAMINATION ASSESSMENT

The mean concentration levels of the various parameters analyzed, when compared with standard guidelines for drinking water quality by WHO (2008), show that mean concentrations of Ba, Cu, Mn and Pb obtained in all the water sources were higher (Table 3). It further reveals that concentration levels of Cr are higher in the boreholes, Fe is higher in streams, rivers and ponds. While Zn is higher in ponds and boreholes water. The result shows that the mean concentration of the metals around the quarry sites (W1 to W9) for all the water sources were found to lie within permissible limits for drinking water quality by WHO standard. This indicates that there is no noticeable effect of quarry activities on water quality at present. The locations around the barite mines (W10, W11 and W12), have concentration level higher than the permissible limits for drinking water quality. Water samples obtained and analyzed from the ponds had a higher concentration of heavy metals when compared to those from the boreholes and other surface water. This suggests that activities within and around the barite mines may have adversely affected water quality in the area. The consumption of water with concentration of these heavy metals above the permissible limit could lead to a wide range of health challenges such as gastrointestinal disorder, neurological disorder, defect in infant mental development and cancer (SON, 2015). Though no information on such health challenges were reported or documented in existing literatures as at the time of this study. However, communities within and around the study area may be at severe health risk by drinking from these water sources.

The contamination indices were computed and the contamination class for each location is presented in Table 4. Comparatively, values of CI >5 indicates high contamination, and these were obtained from locations W10, W11 and W12. These are related to anthropogenic activities and probably resulting from barite mining in the area. Location W7 which is outside the barite mines, had a CI value of 5.0 which indicate contamination, this could be as a result of the high concentration of Zn which contributed to the high index value (Table 5). Therefore, about 33% of the water samples analyzed from the entire study area were contaminated. Other locations such as; W1, W2, W3, W4, W5, W6, W8 and W9, have low average values indicating that they are not polluted with respect to the heavy metals.
Single factor pollution indices (F) and the Nemerow comprehensive pollution Indices (PI) are summarized in Table 5. The average F-values computed were ranked in the order as follows; Pb>Cu>Mn>Ba>Fe>Zn>Cr. It suggests that Pb, Cu and Mn contributes significantly to the contamination of the water in the area. The PI values however, indicates that locations W7, W10, W11 and W12 are severely contaminated while W1, W2, W3, W4, W5, W6, W8 and W9 are not contaminated. Again, the water sources around the barite mine areas showed high level of contamination compared to those around the quarry areas. This is an indication that barite mining has impacted the area more compared to quarrying.

Table 4: Results of Contamination Index of the heavy metals in the area

Location ID/ water type	Contamination index	Remark
W1/ Pond quarry	0.150	Not contaminated
W8/ Pond quarry	0.070	Not contaminated
W10/ Pond barite	266.750	Contaminated
W2/ Stream quarry	0.100	Not contaminated
W4/ Stream quarry	0.160	Not contaminated
W6/ Stream quarry	0.380	Not contaminated
W9/ river quarry	0.070	Not contaminated
W11/ Stream barite	182.570	Contaminated
W3/ Borehole quarry	0.140	Not contaminated
W5/ Borehole quarry	0.200	Not contaminated
W7/ Borehole quarry	5.000	Contaminated
W12/ Borehole barite	180.320	Contaminated

W10, W11 and W12 are severely contaminated while W1, W2, W3, W4, W5, W6, W8 and W9 are not contaminated. Again, the water sources around the barite mine areas showed high level of contamination compared to those around the quarry areas. This is an indication that barite mining has impacted the area more compared to quarrying.

Table 5: Results of single factor pollution index of metals and Nemerow pollution index of the water

Loc. ID/ water type	Ba	Cr	Cu	Fe	Mn	Pb	Zn	F_{ave}	F_{max}	PI	Remark
W1/ pond barite	0.030	0.060	0.000	0.060	0.000	0.000	0.000	0.021	0.060	0.045	Not contaminated
W8/ pond barite	0.030	0.000	0.000	0.040	0.000	0.000	0.000	0.010	0.043	0.031	Not contaminated
W10/ pond barite	19.710	0.200	103.000	13.670	14.370	110.400	5.400	38.117	110.400	82.587	Severely contaminated
W2/ stream barite	0.010	0.000	0.000	0.050	0.000	0.000	0.000	0.014	0.046	0.034	Not contaminated
W4/ stream barite	0.030	0.000	0.020	0.070	0.000	0.000	0.000	0.023	0.070	0.052	Not contaminated
W6/ stream barite	0.030	0.020	0.020	0.130	0.000	0.000	0.180	0.054	0.180	0.133	Not contaminated
W9/ stream barite	0.030	0.020	0.020	0.000	0.000	0.000	0.000	0.010	0.029	0.022	Not contaminated
W11/ stream barite	8.000	0.200	35.200	6.000	15.970	113.000	4.200	26.081	113.000	82.004	Severely contaminated
W3/ borehole barite	0.040	0.000	0.000	0.000	0.040	0.000	0.000	0.020	0.060	0.045	Not contaminated
W7/ borehole barite	0.290	0.040	0.000	0.000	0.070	0.000	4.600	0.714	4.600	3.292	Severely contaminated
W5/ borehole barite	0.100	0.080	0.020	0.000	0.000	0.000	0.000	0.029	0.100	0.074	Not contaminated
W12/borehole barite	5.890	0.600	47.000	2.670	13.970	105.600	4.600	25.760	105.600	76.860	Severely contaminated

Min: 0.010 0.000 0.000 0.000 15.970 0.000 0.000 0.010 0.029 0.022 -
Max: 19.710 0.600 103.000 | 13.670 | 0.000 | 113.000 | 5.400 | 38.117 | 113.000 | 82.587 -
Mean: 2.850 0.100 15.440 | 1.890 | 3.700 | 27.420 | 1.590 | 8.257 | 27.849 | 20.436 -
CONCLUSION

The investigation reveals that, the mean concentration of Ba, Cu, Mn, Pb and Zn in the watersources within the study area were above the recommended standard for drinking water quality, hence it is not suitable for human consumption. The results of the contamination Index showed that 33% of the samples were contaminated. The average single factor pollution index, F indicated that the waters are not contaminated with Cr, but slightly contaminated with Fe and Zn, moderately contaminated with Ba and severely contaminated with Cu, Mn and Pb. Furthermore, the Nemerow comprehensive pollution index, PI suggest that 67% of the water samples analyzed are not contaminated, while the remaining samples were severely contaminated. Generally, the areas around the barite mines showed elevated levels of heavy metal concentration compared to locations around the quarries, and the source of these metals may be attributed to the activities of barite mining in the area. It is recommended that water from surface and groundwater sources should be treated before drinking, to forestall health challenges associated with the consumption of water contaminated with these heavy metals.

REFERENCES

Adamu, C. I., 2000. Environmental Geochemical Studies of Arufu Pb–Zn–Ag Mining Districts, Northeastern Nigeria. University of Calabar, Nigeria (M.Sc. thesis).

Adamu, C. I., 2011. Geoenvironmental Studies of Barite Mines in Parts of Oban Massif and Mamfe Embayment, Southeastern Nigeria. University of Calabar, Nigeria (Ph.D. dissertation).

Adamu, C. I., Nganje, T. and Edet, A., 2013. Hydrochemical Assessment of pond and stream Water near abandoned barite mine sites in parts of Oban Massif and Mamfe Embayment, Southeastern Nigeria. Environ Earth Sci. DOI 10.1007/s12665-013-2757-5.

Adamu, C. I., Nganje, T. N. and Edet, A., 2014. Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environmental Nanotechnology Monitoring and Management. http://dx.doi.org/10.1016/j.enmm.2014.11.001

Adamu, C. I., Nganje, T. N. and Edet, A., 2015. Major and Trace Element pollution of Sediments associated with abandoned barite mines in parts of Oban Massif and Mamfe Embayment, Southeastern Nigeria. Journal of Geochemical Exploration. 151:1-33.

CRBDA 2008. Hydrogeological survey of lower Cross River Basin: Final Report. Cross River Basin Development Authority, Calabar, Nigeria. 158p.

Egeh, E.U., Ekwueme, B. N. and Akpeke, B., 2004. The appraisal of a proposed barite quarry in Akpet area, Cross River State, from resistivity investigation. Global Journal of Geological Science. 2 (2):171-175.

Ekwueme, B. N., 1995. Geochemistry of crystalline basement rocks in S. W. Ugep, Nigeria. Global Journal of Geological Sciences 1: 143-157.

Ekwueme, B. N. and Onyeagocha, A. C., 1986. Geochemistry of meta-sedimentary rocks of Uwet area, Oban massif, Southeastern Nigeria. Geol. Rundsch. 75 (2): 411-420.

FOS. 2003. Report of National Modular Child Labour Survey-Nigeria 2000/2001, Abuja; Federal Government of Nigeria.

Iloeje, N. P., 1991. A new geography of Nigeria. Lagos: Longman.

NBS. 2013. Main Report of Multiple Indicator Cluster Survey-Nigeria 2011, Abuja; Federal Republic of Nigeria.

NBS. 2014. Summary Findings of National Nutrition and Health Survey, 9th February to 5th May 2014 Nigeria. Abuja; Federal Government of Nigeria.

Ochelebe, I., Ekwere, A. S. and Ekwere, S. J., 2017. Environmental Implication of the Distribution of Heavy Metals in Soils and Water in Okpoma Area, Southeastern Nigeria. International Journal of Science and Engineering Investigations. 6(69):105-113.

Oden, M. I., 2012. Barite veins in the Benue Trough: field characteristics, the qualityissue and some tectonic implications. Environ. Nat. Res. 2 (2): 21–32.

SON., 2015. Nigerian Standard for Drinking Water Quality. Abuja, Standard Organization of Nigeria.

WHO., 2008. Guideline for Drinking-water Quality (3rd ed. Incorporating 1st and 2nd Agenda), Vol. 1. Recommendations. Geneva, pp. 668p.

Yang, C.L., Guo, R.P., Yue, Q.L., Zhou, K., Wu, Z.F., 2013. Environmental quality assessment and spatial pattern of potentially toxic elements in soils of Guangdong Province, China. Environ. Earth Sci. 70: 1903–1910.

Zhang, Q., Feng, M. and Hoa, X., 2018. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir. IOP Conf. series. Earth and Environmental Science. 128 012160.