SHORT COMMUNICATION

Genetic variability at αs2-casein gene in Girgentana dairy goat breed

Marisa Palmeri, Salvatore Mastrangelo, Maria T. Sardina, Baldassare Portolano
Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Italy

Abstract

Casein genes are highly polymorphic and the high degree of variability has qualitative and quantitative effects on milk composition thereby affecting chemical, physical and technological properties of goat milk. The aim of this work was to evaluate the genetic polymorphisms of the αs2-casein (CSN1S2) gene in the endangered Girgentana dairy goat breed in order to assess the genotypes distribution, as it is known genotype influences technological and nutritional milk properties. The study was performed on 207 sample of Girgentana goat breed, analysed with different PCR protocols. The most frequent alleles was A (0.722), followed by F (0.225), C (0.051) and E (0.002) while B, D and 0 alleles were not found. Genotypes detected were AA (0.512), AF (0.338), AC (0.082), FF (0.043), CF (0.020) and EF (0.005). Our results suggested that Girgentana goat breed could be used for the production of milk with high fat and protein content and with optimal technological ability, suitable for cheese making.

Materials and methods

A total of 207 samples of Girgentana goat breed, all females enrolled in the herd book were randomly collected in 10 flocks located in different areas of Sicily. The number of animals sampled per flock ranged from 15 to 25 individuals.

From each animal about 10 mL of blood were collected from the jugular vein, using vacuum tubes containing EDTA as anticoagulant. Genomic DNA was extracted from buffy coats of nucleated cells using a salting out method (Miller et al., 1988). After checking the quantity and quality of the DNA using NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), samples were diluted to a final concentration of 50 ng/µL in ultrapure water and stored at 4°C until use.

The CSN1S2 B and C alleles were characterized by Allele Specific-PCR (Vacca et al., 2009b). Since primer pair used in Allele Specific-PCR did not discriminate C and E alleles, C allele was assigned after CSN1S2 E allele identification which was obtained using primer pair by Chessa et al. (2008) and restriction enzyme by Lagonigro et al. (2001). The D, 0, and F alleles were detected using PCR-restriction fragment length polymorphism protocol by Ramunno et al. (2001a). CSN1S2 A allele was assigned by exclusion after genotyping for all other alleles has been carried out and presence or absence of heterozygous conditions was detected. Primers sequences and annealing temperature are shown in Table 1.

All PCR and digestion products were analysed by electrophoresis on agarose gel stained with ethidium bromide.

The obtained data were used to calculate genotype and allele frequencies and Hardy-Weinberg equilibrium probability test (with default parameters) using GENEPOP version 4.0.11 (Rousset, 2008). Expected (He) and Observed (Ho) heterozygosity were calculated using GENEPOP version 4.0.11 (Rousset, 2008). Expected (He) and Observed (Ho) heterozygosity were calculated using GENEPOP version 4.0.11 (Rousset, 2008). Expected (He) and Observed (Ho) heterozygosity were calculated using GENEPOP version 4.0.11 (Rousset, 2008). Expected (He) and Observed (Ho) heterozygosity were calculated using GENEPOP version 4.0.11 (Rousset, 2008). The genotype and allele frequencies at CSN1S2 locus are reported in Table 2. The most frequent allele was A (0.722), followed by F (0.225), C (0.051) and E (0.002). Alleles B, D

Results and discussion

The genotype and allele frequencies at CSN1S2 locus are reported in Table 2. The most frequent allele was A (0.722), followed by F (0.225), C (0.051) and E (0.002). Alleles B, D...
and 0 were not found in the analysed Girgentana goat individuals. Six genotypes were detected and the only alleles found in homozygous condition were A and F, whereas the others were found in heterozygous condition (Table 2). The most common genotype was AA (0.517) followed by AF (0.335) and AC (0.081).

Genotype influences the rate of CSNIS2 in goat milk compared to the total casein content, in fact, in presence of CSNIS2 strong or intermediate genotypes, this protein fraction represent 16% of total casein content. On the other hand, CSNIS2 genotypes 0/not 0 are associated with a reduction of up to 9% which results in the total absence of this protein in milk with CSNIS2 00 genotype (Marletta et al., 2002).

Our results are in agreement with those reported for Girgentana goat breed by Marletta et al. (2004, 2005), who reported the absence of B, D, and 0 alleles in this breed. Alleles D and 0 were also absent in some local goat breeds reared in Italy (Sacchi et al., 2005; Vacca et al., 2005) and in Egyptian goat population (Othman and Ahmed, 2006). Moreover, we detected CSNIS2 E allele that was not reported in the study of Marletta et al. (2004).

According to our results, a study performed on casein loci in four Sicilian dairy goat breeds, Gigli et al. (2008) found that A and F were the most frequent alleles (0.547 and 0.287, respectively). In contrast with our results, they reported the presence of the B and D alleles in Girgentana goat breeds, and of E allele in all breeds except Girgentana one. Moreover, allele frequencies at CSNIS2 locus in Girgentana and Argentata dell’Etna Sicilian goat breeds were A=F>C (Marletta et al., 2004) that differ from Tunisian native goats (A=C>F) as reported by Vacca et al. (2009).

Girgentana goat breed was in Hardy-Weinberg equilibrium at this locus (P>0.05).

Name	Direction	Sequence	Ta, °C	Reference
BIZ	Forward	5’-CTATCACGATCTAGTAC-3’	53	Vacca et al. (2009b)
B1Y	Reverse	5’-CTCTGGGCAACTTT-3’	53	Vacca et al. (2009a)
B1X	Reverse	5’-CTCTGGGCAACTTT-3’	53	Vacca et al. (2009a)
C2Z	Forward	5’-CTGGAAGAAAAGATCATC-3’	53	Vacca et al. (2009b)
C2X	Reverse	5’-CTGGAAGAAAAGATCATC-3’	53	Vacca et al. (2009b)
C2Y	Reverse	5’-CTGGAAGAAAAGATCATC-3’	53	Vacca et al. (2009b)
CASDf	Forward	5’-CTGGTAATCTGCTGATT-3’	51	Ramunno et al. (2001a)
CASDr	Reverse	5’-CTGGTAATCTGCTGATT-3’	51	Ramunno et al. (2001a)
C16 Fw	Forward	5’-CTGTGGTGATACATGTTAT-3’	56	Chessa et al. (2008)
E16 Fv	Reverse	5’-CTCTTTTAATACAAAAAGACATTT-3’	56	Chessa et al. (2008)
CASFf	Forward	5’-CTCTGGGCAACTTT-3’	53	Ramunno et al. (2001a)
CASFr	Reverse	5’-CTGTTTGGTATCATTTAGAATTTAT-3’	56	Ramunno et al. (2001a)

Table 2. Genotype and allele frequencies at locus in Girgentana goat breed.

Genotype	N.	Frequency	Allele	Frequency
AA	106	0.512	A	0.722
AC	17	0.082	C	0.051
AF	70	0.335	E	0.002
CF	4	0.020	F	0.225
EF	1	0.005		
FF	9	0.043		

N, number of individuals.

Considering the heterozygosity values obtained by Marletta et al. (2004), it is possible to note that our results for He value are in agreement with those reported for Girgentana goat breed (He 0.403 vs 0.423), and that our Ho value is higher (Ho 0.440 vs 0.316) than that reported by these authors. Results of our study demonstrate that our samples showed a major genetic variability in terms of number of allele (3 vs 4) at this locus compared with results obtained by Marletta et al. (2004). However, our results showed lower genetic variability of Girgentana goat breed compared with that reported by the same authors for Argentata dell’Etna goat breed (He=0.661).

Conclusions

The results of our study showed the absence of intermediate and null alleles in Girgentana goat breed as previously reported in other studies (Marletta et al., 2004; Gigli et al., 2008), therefore, these results can be considered as an upgrade of previous ones. This feature indicates that Girgentana goat breed could be used for the production of milk with high fat and protein content and with optimal technological ability, suitable for cheese making (Ramunno et al., 2007). Moreover, considering that CSNIS2 locus is closely linked to CSNIS1, CSN2 and CSN3 loci and alleles at these loci are inherited together as haplotype (Hayes et al., 1993; Rijnkels, 2002) further studies are required to determine the relationship between alleles at CSNIS2 locus and at the three other casein loci.

References

AIA, 2011. Controlli della produttività del latte in Italia. Statistiche ufficiali. Available from: http://bollettino.aia.it/bollettino/Doc/RS_NoteIT.pdf

ASSONAPA, 2012. Consistenza razze caprine. Available from: http://www.assonapa.it/consistenze.html

Belkhir, K., Borsa, P., Chikhi, L., Raaufaste, N., Bonhomme, F., 1996-2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions. Université de Montpellier II ed., Montpellier, France. Available from: http://kimura.univ-montp2.fr/genetix

Boulander, A., Grosclaude, F., Mahé, M.E., 1984. Polymorphisme des caséines αs1 et αs2 de la chèvre (Capra hircus). Genet. Sel.
Bouniol, C., Brignon, G., Mahé, M.F., Printz, C., 1994. Biochemical and genetic analysis of variant C of caprine αs2-casein (Capra hircus). Anim. Genet. 25:173-177.

Chessa, S., Rignanese, D., Chiatti, F., Radeghieri, A., Gigliotti, C., Caroli, A., 2008. Technical note: simultaneous identification of CSN1S2 A, B, C, and E alleles in goat by polymerase chain reaction-single strand conformation polymorphism. J. Dairy Sci. 91:1214-1217.

Erhardt, G., Jäger, S., Budelli, E., Caroli, A., 2002. Genetic polymorphism of goat αs2-casein (CSN1S2) and evidence for a further allele. Milchwissenschaft 57:137-140.

Gigli, I., Maizon, D.O., Riggio, V., Sardina, M.T., Portolano, B., 2008. Short communication: casein haplotype variability in Sicilian dairy goat breeds. J. Dairy Sci. 91:3687-3692.

Hayes, H., Petit, E., Bouniol, C., Popescu, P., 1993. Localization of the alpha-s2-casein gene (CASAS2) to the homologous cattle, sheep and goat chromosome 4 by in situ hybridization. Cytogenet. Cell Genet. 64:281-285.

Marletta, D., Bordonaro, S., Galliano, F., Cunsolo, V., Saletti, R., Pastore, N., D’Urso, G., 2002. Identification of CSN1S20 allele in a Sicilian goat breed and characterization of αs2-casein fraction by HPLC/ESI-MS. pp 9-32 in Proc. 7th World Congr. Genet. Appl. Livest. Prod., Montpellier, France.

Marletta, D., Bordonaro, S., Guastella, A.M., Criscione, A., D’Urso, G., 2005. Genetic polymorphism of the calcium sensitive caseins in sicilian Girgentana and Argentata dell’Etna goat breeds. Small Ruminant Res. 57:133-139.

Marletta, D., Bordonaro, S., Guastella, A.M., D’Urso, G., 2004. Genetic polymorphism at CSN1S2 locus in two endangered sicilian goat breeds. J. Anim. Breed. Genet. 121: 52-56.

Marletta, D., Criscione, A., Bordonaro, S., Guastella, A.M., D’Urso, G., 2007. Casein polymorphism in goat’s milk. Lait 87:491-504.

Martin, P., Szymanowska, M., Zwierzchowski, L., Leroux, C., 2002. The impact of genetic polymorphisms on protein composition of ruminant milks. Reprod. Nutr. Dev. 42:433-459.

Miller, S.A., Dykes, D.D., Polesky, H.F., 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16:1215.

Othman, O.E., Ahmed, S., 2006. Analysis of genetic polymorphism in the Egyptian goat CSN1S2 using polymerase chain reaction. J. Biol. Sci. 6:238-241.

Rando, A., Ramunno, L., Masina, P., 2000. Mutations in casein gene family. J. Mammary Gland. Biol. Neoplasia 7:327-345.

Rijnkels, M., 2002. Multispecies comparison of the casein gene loci and evolution of casein gene family. J. Mammary Gland. Biol. Neoplasia 7:327-345.

Sacchi, P., Chessa, S., Budelli, E., Bolla, P., Ceriotti, G., Soglia, D., Rasero, R., Cauvin, E., Caroli, A., 2005. Casein haplotype structure in five Italian goat breeds. J. Dairy Sci. 88:1561-1568.

Vacca, G.M., Dettori, M.L., Sanna, M., Porqueddu, M., Carcangiu, V., 2005. Polymorphism of the CSN1S1, CSN1S2 and CSN2 genes in Sarda bucks. Page 130 in Proc. 16th Nat. Congr. ASPA, Torino, Italy. Ital. J. Anim. Sci. 4(Suppl.2):130 (abstr.).

Vacca, G.M., Ouled Ahmed Ben Ali, H., Carcangiu, V., Pazzola, M., Dettori, M.L., 2009a. Genetic structure of the casein gene cluster in the Tunisian native goat breed. Small Ruminant Res. 87:33-38.

Vacca, G.M., Ouled Ahmed Ben Ali, H., Pazzola, M., Sanna, M., Dettori, M.L., Carcangiu, V., 2009b. An investigation on allele frequency at CSN1S2 locus and its relationship with milk parameters in the Sarda goat. J. Anim. Feed Sci. 18:628-637.