Nuclear-size effects
and a numerical approach to the Dirac equation

Bob Holdom
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S1A7

Roman Koniuk
Department of Physics, York University, Toronto, Ontario, Canada M3J1P3

Due to some current interest in this subject we have produced this note. There is no claim to anything new, except possibly to show that a direct numerical approach is quite simple and instructive. For comparison purposes we include a section on the Coulomb Klein-Gordon equation.

I. REVIEW OF DIRAC EQUATION AND PERTURBATION THEORY

The problem of a single electron in a central field is thoroughly discussed in Bjorken and Drell [1]. We also adopt some notation from [2]. The Hamiltonian

\[H \psi = [\alpha \cdot \mathbf{p} + \beta m + V(r)]\psi = E\psi \]

(1)

commutes with the total angular momentum

\[J = L + S = \mathbf{r} \times \mathbf{p} + \frac{\sigma}{2}. \]

(2)

The four-component spinor \(\psi \) is constructed to be a simultaneous eigenfunction of \(H, J^2 \) and \(J_z \). It is convenient to write the general solution for a given \(j, m \) as

\[\psi_{jm} = \begin{pmatrix} f(r) \\ \frac{r}{\kappa} \chi_{jm} \end{pmatrix}, \quad g(r) = \begin{pmatrix} -i \chi_{jm} \\ r \sigma \cdot \hat{r} \chi_{jm} \end{pmatrix}. \]

(3)

The parity \((\pm)\) refers to solutions with \(j = l \pm \frac{1}{2} \) where \(j \geq \frac{1}{2} \). The two-component spinors \(\chi^{(\pm)} \) are eigenstates of an auxiliary operator \(\hat{K} = -(1 + \sigma \cdot \mathbf{L}) \) such that \(K\chi = \kappa\chi \) with \(\kappa = \mp(j + \frac{1}{2}) \) for \(j = l \pm \frac{1}{2} \). With this notation the Dirac equation can be reduced to the following radial equations,

\[\frac{df(r)}{dr} + \frac{\kappa}{r} f(r) - (E + m - V(r))g(r) = 0, \]
\[
\frac{dg(r)}{dr} - \frac{\kappa}{r} g(r) + (E - m - V(r)) f(r) = 0.
\] (4)

For the point charge potential \(V(r) = -\alpha/r \) the solutions are known. The energy eigenvalues are
\[
E_n = m \left[1 + \left(\frac{\alpha}{n - (j + \frac{1}{2}) + \sqrt{(j + \frac{1}{2})^2 - \alpha^2}} \right)^2 \right]^{-1/2}
\] (5)

where \(n \) is a positive integer and the angular momentum eigenvalues \(j \) range from \(\frac{1}{2} \) to \(j + \frac{1}{2} \leq n \). The ground-state has \(l = 0 \) which implies \(j = \frac{1}{2} \) and \(\kappa = -1 \), and \(n = 1 \) which implies the solution has zero nodes. Its energy is \(E = m \gamma \) where \(\gamma = \sqrt{1 - \alpha^2} \) and the corresponding solution is
\[
f(r) = (2m \alpha)^{3/2} \sqrt{\frac{1 + \gamma}{2 \Gamma(1 + 2 \gamma)}} (2m \alpha r)^{-\gamma - 1} e^{-\alpha r},
\]
\[
g(r) = \left(\frac{1 - \gamma}{\alpha} \right) f(r) r.
\] (6)

For this case \(\chi_{\frac{1}{2} m}^\pm \rightarrow \chi^m/\sqrt{4\pi} \) where the \(\chi^m \) is the usual up or down two-component spinor for \(m = \pm \frac{1}{2} \). Also note that there is another solution to the equations where \(f(r)/r \sim r^{-\gamma - 1} \) as \(r \rightarrow 0 \) rather than the \(r^{\gamma - 1} \) behavior in (6). But that solution is not normalizable.

We next consider the effect that the finite nuclear size has on the energy of the \(l = 0 \) states for any \(n \geq 1 \). Friar [2] obtained this in perturbation theory for a general nuclear charge distribution, and we summarize these results in the Appendix. He also considered various examples; here we focus on the uniformly charged sphere. Friar expresses the shift in energy due to the finite size as
\[
\Delta E = -\frac{(Z\alpha)^2 \mu}{2} \delta_B,
\] (7)

where \(\mu \) is the reduced mass \(Z \) is the nuclear charge. He then obtains
\[
\delta_B = \frac{\xi^2}{n^3} \sum_{i=0}^{2} \delta_i \xi^i + \frac{\delta \xi^2}{n^3} \Delta_R^R
\] (8)

where \(\xi = Z\alpha \mu R \), \(\delta = (Z\alpha)^2 \) and the \(\delta_i \) are
\[
\delta_0 = -\frac{4}{5}
\]
(9)
\[
\delta_1 = \frac{64}{63}
\]
(10)
\[
\delta_2 = -\frac{56954}{225225} + \frac{8}{25n} - \frac{2}{35n^2} - \frac{8}{25} \left(\psi(n) + 2\gamma + \log \left(\frac{2\xi}{n} \right) \right)
\]
(11)
\[
\Delta_R^R = \frac{4}{5} (\psi(n) + \log(2\xi/n) + 2\gamma) - \frac{4}{5n} + \frac{9}{5n^2} - \frac{45394}{17325}.
\] (12)

We shall stay in the infinite nuclear mass limit where the reduced mass \(\mu \) can be replaced by \(m \).
To get some sense of the relative size of the various perturbative contributions to ΔE we give some numerical values in Table I. We consider the electron and muon masses for m and two choices of the proton charge radius r_p.

perturbative order	electron (0.84)	muon (0.84)	electron (0.88)	muon (0.88)
1st	-4.57105×10^{-6}	-40.408	-5.01675×10^{-6}	-44.348
2nd	1.18951×10^{-10}	0.217422	1.36766×10^{-10}	0.249985
3rd	7.33785×10^{-15}	0.00122601	8.79555×10^{-15}	0.00146049
relativistic	-2.8115×10^{-9}	-0.0133812	-3.07321×10^{-9}	-0.0145761
total correction	-4.57374×10^{-6}	-40.2027	-5.01969×10^{-6}	-44.1112

TABLE I. Contributions to ΔE in meV with $Z = n = 1$ and for $r_p = 0.84$ and 0.88.

We may also comment on the $r = 0$ boundary condition for the finite size charge where the potential is no longer singular. Now the two apparent $\ell = 0$ solutions behave like $f(r)/r \sim \text{constant}$ or $1/r$ respectively as $r \to 0$. Both are normalizable but the second one has another problem. As can be seen in the following section, $f(r)/r$ satisfies an equation with terms that correspond to the radial laplacian. But a laplacian acting on a $1/r$ wave function produces a δ-function. This means that this apparent second solution is in fact not a solution.

II. NUMERICAL APPROACH USING MAPLE

We need an environment where a differential equation can be solved to high precision and where this equation can involve a piecewise defined function. Maple is such an environment, and here we will make our approach explicit by giving the Maple code.

```maple
Digits := 20:
st1 := method = ck45, abserr = 10^(-15), relerr = 10^(-15), maxfun = 100000:
```

The radius a of a uniformly charged sphere in $1/\text{MeV}$ based on $r_p \approx 0.88$ fm is given.

```maple
l1 := {a = .88*sqrt(5./3.)/197.3, alpha = 1/137.035999}:
mmu := 105.65837: me := .51099894:
```

We want to compare to the Friar result for the energy shift due to the finite size effect. This is his result for the $n = 1$ ground state with $Z = 1$.
Here are these shifts for the muon and the electron in MeV.

```plaintext
> subs(m = mmu, l1, EB): q1 := evalf(%);
q1 := 0.000000044123175857857733137
> subs(m = me, l1, EB): q2 := evalf(%);
q2 := 5.0210593674052689345 × 10^{-15}
```

The following ratio then gives the residual mass dependence of these shifts beyond the trivial m^3 dependence.

```plaintext
> q1/q2*(me/mmu)^3;
0.99407622263401855408
```

We want to obtain this same ratio by numerically solving the Dirac equation. We consider the point charge potential,

```plaintext
> V1 := (alpha, a, r) -> -alpha/r ;
V1 := (α, a, r) ↦ −α/r
```

and the potential for the uniformly charge sphere with radius a.

```plaintext
> V2 := (alpha, a, r) -> piecewise(r < a, (1/2)*alpha*(r^2/a^2-3)/a, -alpha/r);
V2 := (α, a, r) ↦ \begin{cases} 
1/2 \frac{α}{a} \left( \frac{r^2}{a^2} - 3 \right) & r < a \\
- \frac{α}{r} & \text{otherwise}
\end{cases}

> plot(V2(1, 1, r), r = 0 .. 5);
```
The Dirac equation for the ground state reduces to following equations for $f(r)$ and $g(r)$. (Maple will interpret these expressions as equations.)

> $e1:=\text{diff}(f(r), r)-f(r)/r-(E+m-V(\alpha, a, r))*g(r)$;
>
> $e2:=\text{diff}(g(r), r)+g(r)/r+(E-m-V(\alpha, a, r))*f(r)$;

We convert these into a second order equation.

> $\text{isolate}(e1, g(r))$;
> $\text{subs}(%, e2)$;
> $\text{numer}(%)$;
> $e3:=\text{simplify}(%/r)$;

Then for the point charge the equation is

> $e4:=\text{subs}(V = V1, e3)$;

We check the exact solution and the corresponding energy.

> $f(r) = r^\sqrt{-\alpha^2+1}\exp(-m\alpha r)$, $E = m\sqrt{-\alpha^2+1}$;
> $\text{subs}(%, e4)$: $\text{simplify}(%)$;

For the uniformly charge sphere the equation to solve is the following.
> e5 := subs(V = V2, e3):

Since Maple can handle piecewise functions there is no need to do matching across the boundary \(r = a \). So we numerically integrate this equation from the origin with boundary conditions \(f(0) = 0 \) and \(D(f)(0) = 1 \). We are not interested in the normalization of \(f(r) \). We adjust \(E \) via the shooting method to obtain the zero nodes solution with \(f(\infty) = 0 \). For the electron case:

\[
> Ee := 0.5109853341259963716:
> \]

\[
> ip := 0: ic := \{f(ip) = ip, (D(f))(ip) = 1\}:
> \]

\[
> eq := \{subs(m = me, l1, E = Ee, e5)\}:
> \]

\[
> s1 := dsolve(eq union ic, \{f(r)\}, type = numeric, st1):
> \]

\[
> odeplot(s1, [r, f(r)], ip .. 9000);
> \]

For the muon:

\[
> Emu := 105.655556781007189:
> \]

\[
> ip := 0: ic := \{f(ip) = ip, (D(f))(ip) = 1\}:
> \]

\[
> eq := \{subs(m = mmu, l1, E = Emu, e5)\}:
> \]

\[
> s1 := dsolve(eq union ic, \{f(r)\}, type = numeric, st1):
> \]

\[
> odeplot(s1, [r, f(r)], ip .. 38);
> \]
We need to compare these energies to the exact energies for the point charge case.

\[q_3 := \text{subs}(m = \text{mmu}, l_1, m*\text{sqr}(-\alpha^2+1)) \]
\[q_3 := 105.65555673688407403 \]

\[q_4 := \text{subs}(m = \text{me}, l_1, m*\text{sqr}(-\alpha^2+1)) \]
\[q_4 := 0.51098533412599135054 \]

The differences in these respective energies give the energy shifts due to the finite size effect.

\[q_5 := E_{\mu} - q_3 \]
\[q_5 := 0.000000044123114970000000000 \]

\[q_6 := E_{e} - q_4 \]
\[q_6 := 5.02106000000000000 \times 10^{-15} \]

The ratio of these shifts can be compared to the Friar result above. The difference is in the 6th digit, which corresponds to about the accuracy we have gone.

\[\frac{q_5}{q_6} \times (\text{me}/\text{mmu})^3 \]
\[0.99407472561492135455 \]

As a test of our numerical integration we can obtain \(f(r) \) for the point charge case. The point charge equation is \(e_4 \), but Maple finds this too singular to integrate from zero. Therefore we obtain a series expansion around zero and then use that to set initial conditions slightly away from zero. We use the series solution that behaves like \(r^{\sqrt{-\alpha^2+1}} \) near the origin rather than the one that behaves like \(r^{-\sqrt{-\alpha^2+1}} \).

\[\text{Order} := 4: \]
\[\text{dsolve}(e_4, \{f(r)\}, \text{series}) : \]
\[\text{subs}(_\text{C1} = 0, _\text{C2} = 1, \%) : \]
\[e_6 := \text{convert}(_\text{rhs}(%), \text{polynom}) : \]

There is no shooting needed here since we know \(E \). Using \(E = q_4 \) for the electron:

\[\text{l2 := E = q_4: \ ip := 10^{-5}:} \]
\[\text{subs}(m = \text{me}, l_1, l_2, e_6): \]
\[\text{ic := \{f(ip) = subs(r = ip, \%), (D(f))(ip) = subs(r = ip, \text{diff}(\%, r))\}}: \]
\[\text{eq := \{subs(m = me, l_1, l_2, e_4)\} :} \]
\[\text{s1 := dsolve(eq union ic, \{f(r)\}, \text{type = numeric, st1}) :} \]
\[\text{odeplot(s1, [[r, f(r)]]}, \]
\[[r, \text{subs}(m = \text{me}, l_1, r^{\text{sqr}(-\alpha^2+1)}*\exp(-m*\alpha*r))], \]
\[\text{ip .. 9000};]
We have plotted the resulting numerical \(f(r) \) along with the exact result and the agreement is excellent. The same works for the muon.

\[
\begin{align*}
12 &: E = q_3: \quad i_p := 10^{-5}; \\
& subs(m = mmu, l1, 12, e6); \\
& ic := \{f(i_p) = subs(r = i_p, \%), (D(f))(i_p) = subs(r = i_p, \text{diff}(\%, r))\}; \\
& eq := \{subs(m = mmu, l1, l2, e4)\}; \\
& s1 := dsolve(eq \cup ic, \{f(r)\}, \text{type} = \text{numeric}, \text{st1}); \\
& odeplot(s1, [[r, f(r)], [r, subs(m = mmu, l1, r^sqrt(-alpha^2+1)*exp(-m*alpha*r))]], i_p .. 38);
\end{align*}
\]

By using the point charge case as a check we could increase the accuracy of the calculations and push the result for the residual mass dependence beyond 6 digits. But already we see that Friar’s perturbative calculations are very accurate.
III. NUCLEAR-SIZE EFFECT AND THE COULOMB KLEIN-GORDON EQUATION

Due to some current misconceptions, we present an extended aside on the application of first-order perturbation theory to the nuclear-size effect within the Coulomb Klein-Gordon equation.

The stationary Klein-Gordon Coulomb equation can be written as

\[\nabla^2 + U(r) + k^2 \psi = 0 \]

where \(k^2 = \omega^2 - m^2 \) and \(U(r) = 2\omega A_0 - A_0^2 = -\frac{2\omega\alpha}{r} - \frac{\alpha^2}{r^2} \)

The energy eigenvalues for the Klein-Gordon Coulomb equation are

\[\omega_{nl} = \frac{m}{\sqrt{1 + \alpha^2 (n - l + 1/2 + \sqrt{(l + 1/2)^2 - \alpha^2})^2}} \]

A solution to the radial \(l = 0 \) equation is \(W(\lambda, \mu, \beta r)/r \) where \(W(\lambda, \mu, \beta r) \) is the Whittaker function and \(\lambda = \alpha \omega / \sqrt{m^2 - \omega^2} \), \(\mu = \sqrt{1/4 - \alpha^2} \), \(\beta = 2\sqrt{m^2 - \omega^2} \)

We can rewrite the Klein Gordon equation as a Schrödinger-type equation with \(V(r) = -\alpha/r \)

\[\left[-\frac{\nabla^2}{2m} + \tilde{U}(r) \right] \psi = \epsilon \psi \]

where \(\epsilon = \omega - m, \omega + m \approx 2m \) and \(\tilde{U}(r) = -\frac{\alpha}{r} - \frac{\alpha^2}{2mr^2} = V(r) - \frac{V^2(r)}{2m} \)

We will now change the short-range potential to \(V_{\text{core}}(r) \) and assume it is produced by a spherical charge of radius \(a \). Thus

\[V_{\text{core}}(r) = \frac{\alpha}{2a} \left[\left(\frac{r}{a} \right)^2 - 3 \right] \]

The perturbation is therefore

\[\tilde{U}(r)_{\text{pert}} = V_{\text{core}} - \frac{V_{\text{core}}^2(r)}{2m} - V(r) + \frac{V^2(r)}{2m} \]
The first-order perturbative correction is given by

$$\Delta E_1 = N^2 \int_0^a \tilde{U}_{\text{pert}}(r)W(\lambda, \mu, \beta r)^2 \, dr \tag{21}$$

where N is a normalization constant.

This integral can be done exactly but yields an extremely long expression. By expanding out the resulting Gamma functions $\Gamma(s)$, and incomplete Gamma functions $\Gamma(s, x)$, and keeping only the leading terms, an excellent approximation $\Delta E_1^a \approx \Delta E_1$ is obtained:

$$\Delta E_1^a = \frac{am^2 \alpha^4}{29400} \times \left[48\alpha(630 + (4807 - 1260\gamma)\alpha^2) \\
+ 49 am \left(240 + (1201 - 480\gamma)\alpha^2 \right) \\
+ 560 \alpha^2 \log(2am\alpha)(7am(5am\alpha - 6) - 108\alpha) \right] \tag{22}$$

The dominant two terms in this expression are $\Delta E_1^a \approx 36/35 am^2 \alpha^5 + 2/5 a^2 m^3 \alpha^4$ (c.f. Dirac $2/5 a^2 m^3 \alpha^4$. Note that the first term dominates in the electron case and that the second term dominates in the muon case.)

Note that if one doesn’t assume that $\omega + m \approx 2m$, but writes

$$\tilde{U}(r)_{\text{pert}} = \frac{\omega}{m} V_{\text{core}} - \frac{V_{\text{core}}^2(r)}{2m} - \frac{\omega}{m} V(r) + \frac{V^2(r)}{2m} \tag{23}$$

one obtains an additional higher-order effect of

$$\delta \Delta E_1^a = -\frac{1}{5} a^2 \alpha^6 m^3 \tag{24}$$

i.e.

$$\Delta E_1^a = \frac{am^2 \alpha^4}{29400} \times \left[48\alpha(630 + (4807 - 1260\gamma)\alpha^2) \\
+ 49 am \left(240 + (1081 - 480\gamma)\alpha^2 \right) \\
+ 560 \alpha^2 \log(2am\alpha)(7am(5am\alpha - 6) - 108\alpha) \right] \tag{25}$$

Appendix A: Nuclear-size corrections for a general charge distribution

Friar[2] finds

$$\Delta E_n = \frac{2\pi}{3} |\phi_n(0)|^2 Z\alpha \left(\langle r^2 \rangle - \frac{Z\alpha\mu}{2} \langle r^3 \rangle_{(2)} + (Z\alpha)^2 F_{\text{REL}} + (Z\alpha\mu)^2 F_{\text{NR}} \right) \tag{A1}$$

where

$$\langle r^p \rangle_{(2)} = \int d^3 s \, d^3 r \, \rho(r)\rho(s)|\mathbf{r} - \mathbf{s}|^p \tag{A2}$$
\[F_{\text{REL}} = -\langle r^2 \rangle (\log(\beta r)) + \psi(n) + 2\gamma - 2 - \frac{\langle r^3 \rangle (1/r)}{3} + I_2^{\text{REL}} + I_3^{\text{REL}} \]

(A3)

\[F_{\text{NR}} = \frac{\langle r^4 \rangle}{10} + \frac{2}{3} \langle r^2 \rangle \langle r^2 \log(\beta r) \rangle + \frac{2}{3} \langle r^2 \rangle^2 (\psi(1) + 2\gamma - \frac{7}{3}) + \langle r^3 \rangle + \langle r^5 \rangle (1/r) + I_2^{\text{NR}} + I_3^{\text{NR}} \]

(A4)

\[I_2 = \int d^3 s \rho(s) \int d^3 t \rho(t) J^{(2)}(s, t) \Theta(s-t) \]

(A5)

\[I_3 = \int d^3 u \rho(u) \int d^3 t \rho(t) \int d^3 s \rho(s) J^{(3)}(s, t, u) \Theta(u-t) \Theta(t-s) + \text{sym.} \]

(A6)

\[J^{(2)}_{\text{REL}}(s, t) = -(t^2 + s^2) \ln(s/t) - \frac{t^3}{3s} + \frac{s^3 - t^2}{3} \]

(A7)

\[J^{(3)}_{\text{REL}}(s, t, u) = -\frac{s^2}{3} \ln(s/t) - \frac{s^4}{45tu} + \frac{s^3}{9} \left(\frac{1}{u} + \frac{1}{t} \right) + \frac{s^2 t^2}{36u^2} - \frac{2s^2 t}{9u} + \frac{s^2}{9} \]

(A8)

\[J^{(2)}_{\text{NR}}(s, t) = \frac{t^5}{9s} - \frac{s^5}{9t} + t^3s - s^3t + \frac{(s^4 - t^4)}{2} + \frac{2s^2 t^2}{3} \ln(s/t) \]

(A9)

\[J^{(3)}_{\text{NR}}(s, t, u) = \frac{2s^2 t u}{3} + \frac{s^4 u}{15t} - \frac{s^3 u}{3} + \frac{2s^2 t^3}{27u} + \frac{s^4 t}{15u} + \frac{8s^6}{945tu} - \frac{s^5}{27u} - \frac{2s^2 t^2 \ln(t/u)}{9} + \frac{2s^2 t^2}{27} - \frac{s^4 t}{3} - \frac{s^5}{27t} + \frac{s^4}{6} \]

(A10)

\[|\phi_n(0)|^2 \equiv (Z\alpha \mu)^3 / \pi n^3, \beta = 2Z\alpha \mu / n, \psi(n) \text{ is the digamma function and } \gamma \text{ is Euler's constant.} \]

For completeness we give the correction due to recoil when keeping a finite nuclear mass.

\[\Delta E_R = -\frac{(Z\alpha)^4 \mu^2}{8m_N} - \frac{(Z\alpha)^5 \mu^3}{8m_N} \langle r \rangle_{(2)} + \Delta E_{RB}^{\text{non-B}}. \]

(A11)

\[\langle r \rangle_{(2)} = \frac{36}{35} R \text{ for the uniform sphere. } \Delta E_{RB}^{\text{non-B}}, \text{ the "non-Breit" finite size correction of order } (Z\alpha)^5, \text{ is expected to be small.} \]

[1] J. D. Bjorken and S. D. Drell, “Relativistic quantum mechanics,” McGraw-Hill, New York, 1964, ISBN-0070054932.

[2] J. L. Friar, Annals Phys. 122, 151 (1979).