WHITE DWARF PERIOD TABLES
I. PULSATORS WITH HYDROGEN-DOMINATED ATMOSPHERES

ZS. BOGNÁR; Á. SÓDOR

Konkoly Observatory, MTA Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17, H–1121 Budapest
e-mail: bognar.zsofia@csfk.mta.hu

1 Introduction

The tradition of collecting and publishing the main photometric and physical parameters of pulsating white dwarf (WD) stars, together with their observed pulsation periods, amplitudes and their references, goes back to 1995. Bradley (1995) collected this information on the ZZ Ceti (or DAV), V777 Her (or DBV), interacting binary white dwarf (IBWD) stars, and also on the pulsating PG 1159-type (or DOV) and planetary nebula nucleus variable (PNNV) stars known at that time. Two updates followed this paper published in 1998 and 2000, respectively (Bradley 1998, 2000). After that time, online-only updates were presented for the white dwarf community in 2001\(^1\), in 2005\(^2\) and in 2010\(^3\). The last source lists the ZZ Ceti stars only (155 items).

In the meantime, dividing the hot (pre-)white dwarf pulsators into DOV and PNNV classes have become obsolete, and now the denomination GW Vir stars is used instead for all the post-AGB stars showing nonradial \(g\)-mode pulsations (Quirion et al. 2007). Nevertheless, new groups of pulsating white dwarfs have been discovered, like the extremely low-mass DA pulsators (ELM-DAVs), the hot DAV stars, the DQV stars and the pulsating, mixed-atmosphere, extremely low-mass white dwarf precursors (pre-ELM WD variables). ZZ Ceti variables in detached white dwarf plus main-sequence (MS) binaries have also become known. Considering the new groups, the newly discovered members of the ‘classical’ ZZ Ceti, V777 Her and GW Vir groups, and also the new observational results on the formerly known pulsators, the update of the white dwarf data tables is now appropriate.

In this paper, taking account of the relatively large number of white dwarf variables and the considerable observational information on them, we focus on their most populated subgroup, that is, on the variables with hydrogen-dominated atmospheres only. Thus, we collected the main stellar parameters and pulsational properties with references of the ‘classical’ ZZ Ceti stars, the ZZ Ceti variables in detached WD plus MS binaries, the ELM-DAV and hot DAV stars.

\(^1\)http://astro.if.ufrgs.br/wdtab.htm; by Kepler de Souza Oliveira Filho
\(^2\)http://whitedwarf.org/tables/; webpage of the White Dwarf Research Corporation
\(^3\)http://astro.if.ufrgs.br/zzceti.htm; by Kepler de Souza Oliveira Filho
2 Data collection and structure of the data tables

Table 1 lists the ZZ Ceti variables in detached white dwarf plus main-sequence binaries. This list of seven variables is based on the paper of Pyrzas et al. (2015).

Table 2 summarizes the observational results on the seven extremely low-mass DA pulsators presented in the papers of Hermes et al. (2012, 2013b,d); Bell et al. (2015b) and Kilic et al. (2015).

The hot DAV stars are listed in Table 3, a new group consisting of three members discovered by the work of Kurtz et al. (2008, 2013).

Finally, we list the members of the most populated subgroup of white dwarf pulsators with hydrogen atmospheres, the ‘classical’ ZZ Ceti stars, in Table 4. These objects can be treated as products of single-star evolution, in contrast to the ELM-DAV or ZZ Ceti stars in WD+MS binaries. We started the data collection with the 136 DAVs listed and refereed in the review paper of Fontaine & Brassard (2008). We then complemented this list with the ZZ Ceti stars reported by Stobie et al. (1997); Castanheira et al. (2010); Hermes et al. (2011); Sayres et al. (2012); Kepler et al. (2012); Castanheira et al. (2013); Hermes et al. (2013a); Greiss et al. (2014); Green et al. (2015); Gentile Fusillo et al. (2016); Greiss et al. (2016) and Bell et al. (2016). We closed the data collection with this last paper published on arxiv.org on 7th July, 2016. Altogether, 180 ZZ Ceti stars are listed in Table 4.

All tables follow the same structure specified below.

- Identifiers: the first column shows the star’s identifier in WD (J)HHMM±DDM(M) format, while the second column shows another identifier used in the literature or can be used to identify the object in the SIMBAD database (Wenger et al. 2000). The identifiers in parentheses are not recognized by SIMBAD, but used in the literature.

- Third and fourth columns: right ascension (RA) and declination (DEC) in the equatorial coordinate system (epoch J2000.0) from the SIMBAD database. The objects are arranged according to increasing right ascensions.

- Fifth and sixth columns: effective temperature (T_{eff}) and surface gravity (log g) values. In the case of ZZ Ceti stars in Table 4, most of the objects can be found either in the database of Giamninas et al. (2011) or Tremblay et al. (2011) with their spectroscopic atmospheric parameters determined by one-dimensional model atmospheres and by the use of the ML2/$\alpha=0.8$ version of the mixing-length theory. We corrected these T_{eff} and log g values according to the findings of Tremblay et al. (2013) based on radiation-hydrodynamics three-dimensional simulations of convective DA stellar atmospheres. We denoted the resulting values with G or T in superscript at the corresponding effective temperatures referring to the source of the original atmospheric parameters. In all the other cases, the source of the T_{eff} and log g values is the paper referred to in the last column, which is practically the paper reporting the discovery of the given pulsator.

- Seventh column: the V magnitude of the star in the SIMBAD database. If there is no such data in SIMBAD, we list its g magnitude, or, in absence of both V and g magnitudes, its brightness in B band.

- Eight and ninth (last) columns: pulsation period (in second) with Fourier amplitude (in milli-modulation amplitude, mma) values arranged according to increasing periods, and the corresponding references. We applied the

\[1 \text{mma} = 1/1.086 \text{mmag} = 0.1\% = 1 \text{ppt}\]
conversion to convert the amplitudes published if necessary.

Our data collection strategy was to use the NASA’s Astrophysics Data System (ADS) to search for publications referring to a given object and looked for papers publishing pulsation periods and their Fourier amplitudes. In some instances, only period values were presented. In such cases, we abstained from making estimates on the amplitudes by the Fourier spectra presented (if any), thus we listed the periods only.

We aimed at collecting linearly independent pulsation frequencies alone, thus, if a frequency was denoted as a combination term in the literature, we did not add it to the period list. Such cases are indicated in parentheses by the following remarks after the periods and amplitudes: ‘+C’ – there are additional linear combinations (including harmonics) reported; ‘+SH’ – additional subharmonics (∼ n/2f_i) present in the data. ‘+R’ denotes that frequency components, which may be results of rotational splitting are also detected. In addition, the ‘iR’ remark means that the period list contains rotationally split frequencies, while ‘iC?’ denotes that our list may contains combination terms.

3 What is new?

One of the most conspicuous improvements we made comparing to the previous versions of white dwarf data tables is the completion of the object list with newly discovered pulsators both in the formerly known group of classical ZZ Ceti stars and in the newly established groups of hydrogen-atmosphere white dwarf pulsators.

Another relevant improvement concerns the periods listed. The authors restricted to the presentation of one set of periods, or just a representative period range, per object in the previously published white dwarf data tables. In contrast, we attempted to collect all different period lists existing in the literature for an object, that is, observational results from different epochs. We also emphasize this choice with the title selection of our catalogue ‘White Dwarf Period Tables’ instead of the ‘White Dwarf Data Tables’ used previously. This also implies that we present the almost complete bibliography of the observations of hydrogen-atmosphere pulsating white dwarf stars starting from 1968.

The different periods observed at different epochs can be the result e.g. of the different lengths and qualities of the data sets analysed, however, especially in the case of the ZZ Ceti stars being close to the red edge of the instability domain, short time-scale variations in the amplitudes of the excited modes are common. That is, pulsation modes never seen can be excited to an observable level, while others can vanish from one observational run to another. Eventually, comparing the different sets of periods from different runs, it can result in a more complete set of pulsation periods, which is essential for detailed asteroseismic investigations.

Smaller, but also significant improvements that we checked and corrected the star identifiers if it was necessary, in order to publish at least one identifier per star which can be found in the SIMBAD database. In essence, this affected the Sloan Digital Sky Survey (SDSS) identifiers, where the use of the correct format, including all the necessary decimals is crucial. We also note that in many cases the WD (J)HHMM±DDM(M) identifiers used in the literature are not found in SIMBAD, thus, especially in the publication of a new discovery, we recommend the indication of another identifier existing in the database (if any), or at least the equatorial coordinates of the object to make the identification of the new pulsator clear and easy. At last, as we mentioned in Sect. 2, we revised and updated the effective temperature and surface gravity values of the classical ZZ Ceti stars.
Table 1: ZZ Ceti stars in detached white dwarf plus main-sequence binaries.

WD (SDSS)	Identifiers	Other RA (h m s)	DEC (° ′ ″)	Teff (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
0049-011	SDSS J005208.42-005134.7	00 52 08	-00 51 35	12300	8.46	18.3 (g)	1077.2/4.0; 1093.8/4.0	Pyrzas et al. (2015)
(J0111+000)	SDSS J011123.90+000935.2	01 11 24	+00 09 35	12320	7.50	18.4 (g)	366.5/9.1; 510.2/18.9; 583.2/16.3; 631.6/28.0; 883.6/15.9	Pyrzas et al. (2015)
0201+004	SDSS J020351.29+004025.0	02 03 51	+00 40 25	10790	8.17	19.4 (g)	398.8/11.9; 683.9/15.2; 957.0/38.5	Pyrzas et al. (2015)
(J0824+1723)	SDSS J082429.01+172345.4	08 24 29	+17 23 45	11430	8.21	18.3 (g)	513.9/9.2; 623.7/20.4; 807.2/13.9; 987.9/12.0	Pyrzas et al. (2015)
(1043+0603)	SDSS J104358.59+060320.9	10 43 59	+06 03 21	11170	8.19	18.7 (g)	164.9/6.6; 292.5/5.3; 324.7/28.8; 634.4/8.5	Pyrzas et al. (2015)
(J1117-1255)	SDSS J111710.53-125540.9	11 17 11	−12 55 41	11300	8.29	19.7 (g)	835.8/21.9	Pyrzas et al. (2015)
(J1136+0409)	SDSS J113655.18+040952.6	11 36 55	+04 09 53	11700	7.99	17.1	182.2/4.4; 276.5/8.3	Hermes et al. (2015)
Table 2: Extremely low-mass DA pulsators.

WD (SDSS)	Identifiers	Other	RA	DEC	T_{eff}	$\log g$	V	Period/Amplitude	References
(J1112+1117)	SDSS J111215.82+111745.0		11 12 16	+11 17 45	9 590	6.36	16.9	107.6/0.4; 134.3/0.4; 1792.9/4.5; 1884.6/4.7; 2258.5/7.5; 2539.7/6.8; 2855.7/3.6	Hermes et al. (2013d)
(J1518+0658)	SDSS J151826.68+065813.2		15 18 27	+06 58 13	9 900	6.80	17.6 (g)	1335.3/13.6; 1956.4/18.1; 2134.0/14.2; 2268.2/21.6; 2714.3/21.6; 2799.1/35.4; 3848.2/15.7	Hermes et al. (2013d)
(J1614+1912)	SDSS J161431.28+191219.4		16 14 31	+19 12 19	8 880	6.66	16.4 (g)	1184.1/3.2; 1262.7/5.9	Hermes et al. (2013b)
(J1618+3854)	SDSS J161831.69+385415.1		16 18 32	+38 54 15	9 140	6.83	19.7 (g)	2543.0/16.0; 4935.2/56.3; 6125.9/25.5	Bell et al. (2015b)
–	PSR J1738+0333		17 38 54	+03 33 11	9 130	6.55	21.3	1788.0/12.7; 2656.0/11.5; 3057.0/12.2	Kilic et al. (2015)
(J1840+6423)	SDSS J184037.78+642312.3		18 40 38	+64 23 12	9 100	6.22	18.9 (g)	1578.6/29.5; 2376.0/48.8; 4445.9/65.9	Hermes et al. (2012)
(J2228+3623)	SDSS J222859.93+362359.6		22 28 60	+36 24 00	7 870	6.03	16.9 (g)	3254.5/2.3; 4178.3/6.3; 6234.9/1.9	Hermes et al. (2013b)
Table 3: Hot DAV stars.

WD	Identifiers	RA (h m s)	DEC (° ′ ″)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
0101+145	SDSS J010415.99+144857.4	01 04 16	+14 48 57	29 980	7.38	18.8 (g)	159.0/4.0	Kurtz et al. (2008)
0232-097A	SDSS J023520.02-093456.3	02 35 20	−09 34 56	30 110	7.30	17.8 (g)	705.0/15.6	Kurtz et al. (2008)
1017-138		10 19 52	−14 07 34	32 600	7.80	14.6	624.0/1.0	Kurtz et al. (2013)
Table 4: List of ZZ Ceti stars.

WD	Identifiers	RA (h m s)	DEC (° ′ ″)	Teff (K)	log g (dex)	V (mag)	Period/Amplitude	References
(J0000-0046)	SDSS J000006.75-004651.0	00 00 07	-00 46 54	10 620 ¹	8.18	18.8 (g)	584.8/15.9; 601.4/9.0; 611.4/23.0	Castanheira et al. (2007)
(J0018+0031)	SDSS J001836.11+003151.1	00 18 36	00 31 53	11 530 ²	8.04	17.4 (g)	257.9/5.8	Mullally et al. (2005)
0016-258	MCT 0016-2553	00 18 45	-25 36 42	11 060 ²	8.06	16.1	1152.4/8.1	Gianninas et al. (2006)
–	HE 0031-5525	00 33 36	-55 08 39	11 480	7.65	15.7 (g)	274.9/1.5; 276.9/4.8; 329.5/2.5	Castanheira et al. (2006)
0036+312	G 132-12	00 39 04	31 31 37	12 480 ²	8.00	16.2	212.7/4.3	Gianninas et al. (2006)
0041+006	SDSS J004345.78+005549.9	00 43 46	00 55 50	12 130 ²	8.14	18.7 (g)	258.2/6.7	Castanheira et al. (2010)
(J0048+1521)	SDSS J004855.17+152148.7	00 48 55	15 21 49	11 280 ²	8.17	18.7 (g)	615.3/24.8	Mullally et al. (2005)
0059-008	SDSS J010207.17-003259.4	01 02 07	-00 33 00	10 850 ²	8.18	18.2	323.1/14.8; 333.2/8.6; 609.8/22.1; 636.4/8.7; 672.3/8.5; 698.4/18.3	Stobie et al. (2016)
(J0102-0032)	SDSS J012234.68+003025.8	01 22 35	00 30 26	11 050 ²	7.94	16.8 (g)	121.1/1.5; 200.8/1.3; 358.6/1.2	Castanheira et al. (2010)
0132-014	SDSS J013440.94-010902.3	01 34 41	-01 09 02	10 260 ²	7.82	18.1 (g)	1212.0/45.4	Gentile Fusillo et al. (2016)
WD	Identifiers	RA (h m s)	DEC (° ′ ′′)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude References	
-------	-------------	------------	--------------	---------------------	--------------	----------	-----------------------------	
0133-116	Ross 548	01 36 14	$-11 20 33$	12 300G	8.03	14.2	212.9; 273.0; \sim2–11mma	
							Lasker & Hesser (1971)	
				212.8/5.1; 213.1/8.6; 274.3/5.8;			Stover et al. (1977)	
				274.8/3.7 (iR)				
				212.8/4.8; 213.1/8.4; 274.3/5.3;			Stover et al. (1980)	
				274.8/3.7 (iR)				
				187.0/\sim1; 212.8/2.1; 213.1/3.3;			Kepler et al. (1995a)	
				274.3/2.2; 274.8/1.3; 320.0/\sim1;				
				333.0/\sim1				
				187.3/0.9; 212.8/4.1; 213.1/6.2;			Mukadam et al. (2003)	
				274.3; 274.8; 318.1/0.9;				
				333.6/0.6				
				187.3/0.9; 213.0/5.4; 274.5/3.5; 318.1/1.1; 333.6/1.3			Castanheira & Kepler (2009)	
				186.5/0.3; 186.7/0.4; 186.9/0.5; 212.8/4.4; 213.0/1.0; 213.1/6.6;				
				274.3/4.2; 274.5/0.7; 274.8/3.2; 317.0/0.4; 318.1/0.4; 319.2/0.4;			Mukadam et al. (2013)	
				333.6/0.6; 334.5/0.3; 335.3/0.3; 336.2/0.3				
				186.9/0.9; 212.8/4.1; 212.9/1.4; 213.1/6.6; 217.8/0.3; 274.3/4.3;			Giannicche et al. (2015)	
				274.5/1.2; 274.8/3.1; 318.1/0.7; 318.8/0.3; 333.6/0.6				
0145-221	MCT 0145-2211	01 47 22	$-21 56 51$	11 850G	8.15	14.9	462.2/25.0; 727.9/19.0; 823.2/17.0	
							Fontaine et al. (2003) (amplitudes: Mukadam et al. 2006)	
							Voss et al. (2007)	
	(HS 0210+3302)	02 13 06	33 16 10	11 920	7.39	15.8 (B)	189.4/4.7; 207.5/3.7	
(J0214-0823)	SDSS J021406.78-082318.4	02 14 07	$-08 23 18$	11 580G	7.86	17.9 (g)	263.5/7.1; 297.5/16.9; 347.1/8.3; 348.1/8.5	
0211-086							Mukadam et al. (2004)	
0235+069	HS 0235+0655	02 38 33	07 08 10	10 950	7.75	16.6 (B)	1283.7/4.2	
							Voss et al. (2007)	
Table 4: continued.

WD	Identifiers	Other	RA (h m s)	DEC (° ′ ″)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
–	SDSS J024922.35-010006.7	02 49 22	−01 00 07	11 030°C	8.19	18.9		1005.6/5.6; 1045.2/10.9	Castanheira et al. (2006)
0246+326	KUV 02464+3239	02 49 28	32 51 13	11 620°C	8.13	15.8		831.6	Fontaine et al. (2001)
								619.3/4.3; 777.6/6.0; 828.7/12.6; 866.2/10.3; 993.2/14.3; 1250.3/4.8	Bognár et al. (2009)
–	SDSS J030153.81+054020.0	03 01 54	05 40 20	11 470	8.09	18.1 (g)		300.8/24.9	Castanheira et al. (2010)
(J0303-0808)	SDSS J030325.22-080834.9	03 03 25	−08 08 35	11 260°C	8.40	18.8 (g)		707.0/4.1; 1128.0/3.5	Castanheira et al. (2007)
0300-086A								536.1/10.6; 587.1/10.1; 826.4/21.1	Mukadam et al. (2004)
(J0318+0030)	SDSS J031847.09+003029.9	03 18 47	00 30 30	11 150°C	8.18	17.8 (g)		536.1/11.1; 587.1/10.6; 695.0/8.9; 826.4/27.3; 844.9/15.3	Mukadam et al. (2006)
0316+003								969.0/21.8; 746.4/21.1	Gentile Fusillo et al. (2016)
(0332-0049)	SDSS J033236.61-004918.3	03 32 37	−00 49 18	10 940°C	8.05	18.2 (g)		767.5/15.1	Mukadam et al. (2004)
0330-010								402.0/4.1; 765.0/15.2; 938.4/6.7; 1143.7/7.4	Mukadam et al. (2006)
0341-459	BPM 31594	03 43 29	−45 49 04	11 500°C	8.05	15.0		314.0(?) 617.0	McGraw (1976)
								617.3 (+C,SH)	Odonoghue (1986)
								416.1(?)/5.0; 617.9/9–65 (+C,SH)	O’Donoghue et al. (1992)
0344+073	KUV 03442+0719	03 46 51	07 28 03	10 870°C	7.78	16.2 (B)		1384.9/7.6	Gianninas et al. (2006)
								428.7/5.0; 431.8/3.9; 908.6/4.5; 972.9/2.2; 976.0/5.1; 976.6/1.8; 1023.9/1.8; 1031.2/2.6; 1097.5/2.2; 1136.5/5.2; 1139.6/4.3; 1167.1/2.8; 1185.6/2.8; 1192.6/2.0; 1237.4/2.7; 1238.0/2.6; 1250.4/5.4; 1287.0/6.0; 1289.6/1.5; 1323.3/10.6; 1326.8/2.6; 1349.2/9.6; 1396.1/1.8; 1403.7/3.7; 1423.7/2.7; 1508.8/5.9; 1686.5/2.3; 1806.8/1.8; 2425.7/1.7; 2439.0/4.0; 2494.8/4.7 (+R,C)	Su et al. (2014a)
Table 4: continued.

WD	Identifiers	Other	RA (h m s)	DEC (° ′ ″)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
–	HE 0344-1207	03 47 09	11 58 09	11 470	8.28	17.0 (B)		392.9/21.1; 461.0/11.4; 762.2/18.9	Voss et al. (2007)
(J0349+1036)	SDSS J034939.35+103649.9	03 49 39	10 36 50	11 720	8.40	16.6 (g)		184.5/3.8	Castanheira et al. (2013)
0416+272	HL Tan 76	04 18 57	27 17 48	11 470G	7.92	14.1		747.4	Landolt (1968)
								626.0; 663.0; 746.0 (+C,SH)	Page (1972)
								494.2; 746.2 (+C)	Fitch (1973)
								359.0/8.1; 383.0/21.8; 450.0/7.3;	Dolez (1998)
								494.0/30.2; 541.0/40.5; 597.0/15.6;	
								657.0/11.2; 781.0/9.9; 796.0/9.7;	
								933.0/25.2; 1065.0/19.9 (iC?)	
								382.5/16.5; 493.2/7.1; 494.2/4.4;	Dolez et al. (2006)
								541.0/28.5; 541.8/8.1; 542.5/7.0;	
0417+361	G 38-29	04 20 17	36 16 27	11 160G	7.89	15.6		923.9; 1021.9 (+C)	McGraw & Robinson (1975)
								413.3/3.1; 432.4/3.6; 544.9/6.1;	Thompson et al. (2009)
								547.0/7.0; 548.9/4.8; 706.0/18.4;	
								799.2/6.0; 840.4/5.2; 900.0/10.6;	
								922.7/5.9; 945.4/12.3; 962.1/8.1;	
								963.6/4.6; 980.1/11.4; 989.7/10.0;	
								1002.2/7.1; 1016.2/5.8; 1081.8/5.0;	
								1086.8/3.9; 1089.4/5.2 (+C)	
0455+553	G 191-16	04 59 27	55 25 21	11 440G	8.04	16.0		588.2; 666.7; 882.6 (+C)	McGraw et al. (1981)
								892.9 (+C,SH)	Vauclair et al. (1989)
(0502+540)	LP 119-10	05 02 34	54 01 09	11 400	8.24	15.2		873.6/12.7	Green et al. (2015)
WD	Identifiers	RA (h m s)	DEC (° ′ ′′)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References	
-------------	-------------	------------	--------------	----------------------	---------------	-----------	------------------------	--	
0507+045	(HS 0507+0435)	05 10 14	04 38 55	12 010G	8.19	15.3	278.4/12.8; 355.1/22.0; 445.2/7.3; 558.7/19.0 (+C)	Jordan et al. (1998)	
	HS 0507+0434B						354.9/10.9; 355.4/4.7; 355.8/25.7; 444.6/12.6; 445.3/3.0; 446.1/14.7; 555.3/18.6; 556.6/6.3; 557.6/17.1; 743.4/8.4 (+C)	Handler & Romero-Colmenero (2001)	
							(also in Handler et al. 2002)		
				286.1/3.6; 354.9/6.8; 355.8/22.7; 444.8/13.6; 446.2/11.0; 557.7/18.7; 743.0/13.9 (+C;IR)	Kotak et al. (2002)				
				355.8/24.0; 446.2/13.9; 555.3/16.6; 743.4/7.6			354.9/15.8; 355.3/2.5; 355.8/12.6; 444.7/5.3; 445.3/2.8; 446.1/13.8; 555.3/14.3; 556.5/6.7; 557.8/15.0; 654.8/11.0; 655.9/5.8; 657.1/10.6; 695.6/17.4; 699.6/15.2; 746.1/13.0; 748.6/10.5; 750.3/10.9; 999.7/3.0 (+C;IR)	Fu et al. (2013)	
0517+307	GD 66	05 20 38	30 48 24	12 210G	8.10	15.6	197.0/6.0; 256.0/5.0; 273.0/20.0; 304.0/10.0	Dolez et al. (1983)	
							196.7; 271.4; 301.4; 810.4 (+C)	Fontaine et al. (1985)	
							197.2/1.8; 197.6/4.2; 198.1/2.7; 255.9/3.4; 256.2/2.5; 271.2/2.9; 271.7/16.7; 272.2/2.5; 302.8/11.3; 518.6/1.8; 523.3/2.3 (+C;IR)	Yeates et al. (2005)	
							197.4/5.4; 256.0/3.8; 271.7/17.0; 302.8/11.4 (+C)	Castanheira & Kepler (2009)	
0532-560	HE 0532-5605	05 33 07	56 03 53	11 510G	8.42	16.0	586.4; 688.8	Fontaine et al. (2003)	
							522.4/2.1; 563.7/2.5; 599.7/2.5; 686.1/5.5; 723.7/7.8; 753.8/4.8; 822.3/3.4; 881.7/2.9	Castanheira & Kepler (2009)	
(0702+440)	PM J0702+4406	07 02 59	44 06 54	11 000	8.29	15.1	1366.4/1.0	Green et al. (2015)	

Table 4: continued.
WD	Identifiers	RA (h m s)	DEC (° ′ ″)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
	(HS 0733+4119)	07 37 08	41 12 28	11 160	7.72	15.8	468.8/19.4; 656.2/38.7; 747.4/20.3	Voss et al. (2007)
	SDSS J073707.99+411227.6							
(J0756+2020)	SDSS J075617.54+202010.2	07 56 18	20 20 10	11 830↑	8.13	18.3	199.5/6.8	Mullally et al. (2005)
(J0815+4437)	SDSS J081531.75+443710.3	08 15 32	44 37 10	11 840↑	8.21	19.3	258.3/6.2; 313.9/9.3; 317.7/22.0; 511.5/7.3; 787.5/6.6	Mukadam et al. (2004)
(J0818+3131)	SDSS J081829.98+313153.0	08 18 29	31 31 53	11 820↑	8.13	17.4	202.3/3.3; 253.3/2.9	Mullally et al. (2005)
(0825+0329)	SDSS J082518.86+032927.8	08 25 19	03 29 28	12 120↑	8.15	17.5	303.0/3.8; 334.0/6.9; 481.0/4.5; 664.0/11–12; 704.0/6.0; 826.0/5.3	Kepler et al. (2005)
(J0825+4119)	SDSS J082547.00+411900.0	08 25 47	41 19 00	11 510↑	8.37	18.5	611.0/11.2; 653.4/17.1	Mukadam et al. (2004)
	SDSS J083203.98+142942.3 (EPIC 211596649)	08 32 04	14 29 42	11 230	7.94	18.9	not published yet	Bell et al.(2016)
0836+404	KUV 08368+4026	08 40 08	40 15 04	12 010↑	8.13	15.6	494.5/6.0; 618.0/17.4	Vauclair et al. (1997)
	SDSS J084054.14+145709.0 (EPIC 211629697)	08 40 54	14 57 09	10 570	7.92	18.3	487.0/1.6; 1095–1309 s	Bell et al.(2016)
(J0842+3707)	SDSS J084220.73+370701.7	08 42 21	37 07 02	11 620↑	7.88	18.8	309.3/17.9	Mukadam et al. (2004)
(0843+0431)	SDSS J084314.05+043131.6	08 43 14	04 31 32	11 220↑	8.09	17.8	373.0/10.4; 1049.0/11.4; 1085.0/7.4	Kepler et al. (2005)
(J0847+4510)	SDSS J084746.82+451006.3	08 47 47	45 10 06	11 690↑	8.12	18.3	201.0/7.3	Mukadam et al. (2004)
Table 4: continued.

WD	Identifiers	Other (h m s)	DEC ($^\circ$ $^\prime$ $^\prime\prime$)	\(T_{\text{eff}}\) (K)	\(\log g\) (dex)	\(V\) (mag)	Period/Amplitude (s/mma)	References
(0851+0605)	SDSS J085128.17+060551.1	08 51 28	06 05 51	11 300\(^\text{T}\)	8.05	16.8 (g)	123.4/3.0; 200.5/7.0	Mukadam et al. (2006)
	(J0853+0005)	08 53 26	00 05 14	11 950\(^\text{T}\)	8.15	18.2 (g)	326/22.4	Kepler et al. (2005)
(0850+002)	SDSS J085007.29+063540.9	08 55 07	06 35 41	10 970\(^\text{T}\)	8.22	17.2 (g)	264.4/4.0	Castanheira et al. (2007)
	(EPIC 211916160)							
	SDSS J090041.08+190714.3	09 00 41	19 07 14	11 690	8.09	17.6 (g)	433.0/15.0; 850.0/44.0	Castanheira et al. (2007)
	(EPIC 211926430)							
0858+363	GD 99	09 01 49	36 07 08	12 110\(^\text{T}\)	8.20	14.6		
								McGraw & Robinson (1976)
							223.9/2.6; 228.7/6.3; 1026.1/4.3; 1058.1/7.6	Bell et al. (2016)
(0906-0024)	SDSS J090624.26-002428.2	09 06 24	–00 24 28	11 260\(^\text{T}\)	8.07	17.7 (g)	486.0/11.9; 562.1/19.9; 756.4/22.2; 978.8/11.2	Mukadam et al. (2006)
(0911+0310)	SDSS J091118.42+031045.1	09 11 18	03 10 45	11 630\(^\text{T}\)	8.14	18.4 (g)	615.8/9.1; 769.4/26.1	Bell et al. (2016)
(0913+4036)	SDSS J091312.74+403628.7	09 13 13	40 36 29	11 850\(^\text{T}\)	8.09	17.6 (g)	203.9/3.8; 260.3/16.5; 288.7/12.4; 320.5/14.7	Mullally et al. (2005)
(0916+3855)	SDSS J091635.07+385546.2	09 16 35	38 55 46	11 320\(^\text{T}\)	8.04	16.6 (g)	238.1/10.8; 447.7/14.4; 485.1/32.9; 747.2/9.1	Castanheira et al. (2007)
(0917+0926)	SDSS J091731.00+092638.1	09 17 31	09 26 38	11 340\(^\text{T}\)	8.09	18.1 (g)	212.0/8.0; 259.0/10.2; 289.0/16.1	Kepler et al. (2005)
	EQ J0917+0926							
Identifiers	RA (h m s)	DEC (°′″′)	Teff (K)	log g (dex)	V (mag)	References		
-------------	------------	------------	----------	-------------	---------	------------		
(J0923+0120) 0920+015	09 23 30	01 20 20	11 190^T	8.38	18.3 (g)	Mukadam et al. (2004)		
			595.2/7.4					
			655.7/4.4; 668.9/3.5			Mukadam et al. (2006)		
			595.1/2.7; 1436.4/1.4; 2032.3;			Romero et al. (2013)		
(J0921+354)	09 24 15	35 16 51	12 420^G	8.12	15.5	Richer & Ulrych (1974)		
			216.0; 271.7; 307.7			McGraw & Robinson (1976)		
			215.2/23.9; 271.0/7.3; 304.4/8.1 (+C)			Kepler et al. (1982)		
			215.2/20.2; 270.5/5.6; 304.1/6.3 (+C)			Kepler et al. (1995c)		
			215.2/17.4; 270.5/6.1; 304.1/7.5 (+C)			Castanheira & Kepler (2008)		
(J0925+0509)	09 25 12	05 09 33	10 830^T	8.21	15.2 (g)	Castanheira et al. (2010)		
			1127.1/3.2; 1264.3/3.1					
			1159.0/2.7; 1341.0/4.0			Romero et al. (2013)		
(J0939+5609) 0936+563	09 39 45	56 09 40	11 690^T	8.29	18.7 (g)	Mukadam et al. (2004)		
			249.9/7.2					
			48.5/5.9(?); 249.9/7.2			Mukadam et al. (2006)		
(J0940+0052)	09 40 00	00 52 07	10 590^T	8.34	18.1 (g)	Castanheira et al. (2013)		
			255.0/17.1; 255.8/8.0					
(J0942+5733) 0938+577	09 42 13	57 33 43	11 360^T	8.12	17.4 (g)	Mukadam et al. (2004)		
			451.0/18.4; 550.5/12.3; 694.7/37.7			Mukadam et al. (2006)		
			273.0/9.0; 550.5/12.3; 694.7/37.7; 909.4/7.7					
(0949-0000) 0946+002	09 49 17	00 00 24	11 130^T	8.21	18.8 (g)	Mukadam et al. (2004)		
			213.3/6.0; 363.2/12.5; 364.0/7.3; 365.2/17.7; 516.6/16.2; 634.2/5.1; 711.6/6.0					
0951+132	09 53 45	12 58 30	12 010^G	8.05	16.5 (g)	Mukadam et al. (2004)		
			208.0/9.3; 258.6/3.6; 281.6/8.8			Mukadam et al. (2006)		
			208.0/9.4; 258.0/3.6; 282.2/9.0; 311.7/2.7					
0952+182	09 55 11	18 02 15	11 390^G	8.11	16.3 (g)	Mukadam et al. (2004)		
			853.8/3.9; 1159.7/4.8; 1466.0/4.5			Mukadam et al. (2006)		
			674.7/3.0; 790.0/2.9; 883.0/3.6;					

Table 4: continued.
WD	Identifiers	Other	RA (h m s)	DEC (° ′ ′′)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
(J0958+0130)	SDSS J095833.13+013049.3	09 58 33	01 30 49	11 730°	8.08	16.7 (g)		203.7/2.5; 264.4/4.7	Mukadam et al. (2004)
0955+017					121.2/1.6; 203.7/2.5; 264.4/4.7				
(J0959+0238)	SDSS J095936.96+023828.4	09 59 37	02 38 29	11 830°	8.06	18.5		194.7/7.2; 283.4/13.0	Castanheira et al. (2010)
(J1002+5818)	SDSS J100238.58+581835.9	10 02 39	58 18 36	11 440°	8.11	18.3 (g)		268.2/6.8; 304.6/5.3	Mullally et al. (2005)
(J1007+5245)	SDSS J100718.26+524519.8	10 07 18	52 45 20	11 390°	8.12	18.9 (g)		152.8/5.8; 258.8/11.0; 290.1/7.7; 323.1/10.4 (4C?)	Mullally et al. (2005)
1004+529									
(J1015+5954)	SDSS J101519.65+595430.5	10 15 20	59 54 31	11 440°	8.06	18.0 (g)		213.0/9.8; 292.4/8.5; 401.7/20.8; 453.7/15.8; 1116.5/12.6	Mulladam et al. (2004)
(J1015+0306)	SDSS J101548.01+030648.4	10 15 48	03 06 48	11 630°	8.12	15.7 (g)		194.7/5.8; 255.7/7.3; 270.0/8.4	Mulladam et al. (2004)
1013+033									
(J1039+4112)	HS 1039+4112	10 42 34	40 57 15	11 730°	8.12	16.1 (g)		837.3/26.0; 855.5/55.2 (+C)	Silvotti et al. (2005)
PB 520									
(J1047+335)	SDSS J104749.87+530759.1	10 54 50	53 07 59	10 960°	7.96	17.9 (g)		444.6/16.0; 869.1/37.4	Mullally et al. (2005)
(J1054+5307)	SDSS J105449.87+530759.1	10 54 50	53 07 59	10 960°	7.96	17.9 (g)		444.6/16.0; 869.1/37.4	Mullally et al. (2005)
1051+533B									
(J1056-0006)	SDSS J105612.32-000621.7	10 56 12	–0 06 22	11 130°	7.91	17.5 (g)		314.2/11.0; 474.4/22.9; 942.2/62.3	Mulladam et al. (2004)
(J1105-1613)	SDSS J110525.70-161328.3	11 05 26	–16 13 29	11 670°	8.23	17.5 (g)		192.7/12.1; 298.3/7.1	Castanheira et al. (2010)
(1106+0115)	SDSS J110623.40+011520.8	11 06 23	01 15 21	10 920°	7.90	18.4 (g)		842.0/9.4; 973.0/10.8	Kepler et al. (2005)
1103+015									
(1116+026)	GD 133	11 19 12	02 20 33	12 430°	8.10	14.6		115.9/1.5; 120.4/4.6; 146.9/1.1	Silvotti et al. (2006)

945.9/10.4; 1150.0/4.8; 1160.9/7.9
WD	Identifiers	RA	DEC	T_{eff}	log g	V	Period/Amplitude	References		
(J1122+0358)	SDSS J112221.10+035822.4	11 22 21	03 58 22	11 030T	7.91	18.2 (g)	859.0/34.3; 996.1/17.9	Mukadam et al. (2004)		
							740.1/10.0; 859.1/34.6; 996.1/17.3		Mukadam et al. (2006)	
(J1125+0345)	SDSS J112542.84+034506.3	11 25 43	03 45 06	11 600T	7.95	18.1 (g)	208.6/2.8; 265.5/7.2; 265.8/3.3	Mukadam et al. (2004)		
							208.6/2.8; 265.5/7.1; 265.8/3.3		Mukadam et al. (2006)	
							335.1/2.8			
1126-222	EC 11266-2217	11 29 12	–22 33 44	12 010G	8.08	16.2	215.7–218.3/3.7–8.1; 234.1/4.49;	Voss et al. (2006)		
							275.7–277.6/7.7–7.0; 386.4/4.0;			
							402.7/3.0			
(J1136-0136)	SDSS J113604.01-013658.1	11 36 04	–01 36 58	11 780T	8.05	17.8 (g)	260.8/2.5		Castanheira et al. (2010)	
1137+423	KUV 11370+4222	11 39 41	42 05 19	11 940G	8.17	16.5 (g)	257.2/5.8; 292.2/2.7; 462.9/3.5	Vaucclair et al. (1997)		
							139.0/2.6; 257.9/18.3; 280.8/2.7;		Su et al. (2014b)	
							293.8/3.0; 394.1/4.5; 398.1/2.5;			
							402.1/2.4; 462.8/8.4; 762.4/2.8;			
							811.8/2.5 (+C,iR)			
1149+057	PG 1149+057	11 51 54	05 28 40	11 060G	8.06	15.4	1023.5/10.5		Voss et al. (2006)	
1150-153	EC 11507-1519	11 53 15	–15 36 36	12 440G	8.20	16.0	249.6/7.7		Gianninas et al. (2006)	
							191.7/3.6; 249.4/4.7		Voss et al. (2007)	
(J1157+0553)	SDSS J115707.43+055303.6	11 57 07	05 53 04	11 040T	8.04	17.6 (g)	436.1/3.9; 458.7/4.2; 748.5/5.6;	Mukadam et al. (2004)		
							826.2/8.1; 918.9/15.9; 1056.2/5.8			
(J1200-0251)	SDSS J120054.55-025107.0	12 00 55	–02 51 07	11 970T	8.24	18.2 (g)	257.1/6.7; 271.3/13.1; 294.1/6.7;	Castanheira et al. (2013)		
							304.8/23.7			
1159+803	G 255-2	12 01 45	80 04 59	11 440G	8.14	16.0	384.6; 476.2; 689.7/36.0; 840.3/36.0	Vaucclair et al. (1981)		
							399; 461; 573; 608; 660; 681; 764; 810; 855; 906 (+R)		Fu et al. (2002)	
							568.5/6.6; 607.9/13.1; 681.2/24.9; 775.2/15.2; 819.7/11.3; 855.4/11.2; 898.6/9.4		Mukadam et al. (2006)	
WD	Identifiers	RA (h m s)	DEC (° ′ ″)	T_{eff} (K)	$\log g$ (dex)	V (mag)	Period/Amplitude (s/mma)	References		
---------------	------------------------------	------------	-------------	-----------------------	----------------	-----------	--------------------------	-----------------------------		
(1216+0922)	SDSS J121628.55+092246.4	12 16 29	09 22 46	11 240°F	8.25	18.6 (g)	568.5/16.5; 681.2/27.7; 773.4/12.7; 985.2/4.8	Mukadam et al. (2006)		
(J1218+0042)	1215+099	12 18 31	00 42 16	11 170°F	8.06	18.5 (g)	409.0/30.1; 570.0/24.6; 626.0/21.6; 823.0/45.2; 840.0/42.0; 967.0/20.5	Kepler et al. (2005)		
(1222-0243)	SDSS J122229.57-024332.5	12 22 30	-02 43 33	11 380°F	8.19	16.7 (g)	100.0/11.0; 152.0/5.1; 175.0/10.0; 258.0–259.0/8.2–16.0	Kepler et al. (2005)		
1236-095	BPM 37003	12 38 50	-49 48 00	11 620°F	8.69	14.0	198.0/7.3; 396.0/22.0		Kanaan et al. (1992)	
(1247+310)		∼ 12 47	∼ 31 00	12 110	8.43	17.2	600.0/4.0		Kanaan et al. (2000)	
(1250+041)	HS 1249+0426	12 52 15	04 10 43	12 160°F	8.21	16.0 (g)	512.0; 532.0; 548.0; 565.0; 582.0; 608.0; 615.0; 635.0; 649.0		Kanaan et al. (2000)	
(1255+0211)	SDSS J125535.41+021116.0	12 55 35	02 11 16	11 580°F	8.15	19.1 (g)	511.7; 531.1; 548.4; 564.1; 582.0; 600.7; 613.5; 635.1		Metcalfe et al. (2004)	
(1257+0124)	SDSS J125710.50+012422.9	12 57 11	01 24 23	11 490°F	8.30	18.7	511.7/0.7; 531.1/1.2; 548.4–549.2/0.8–1.1; 502.6/0.9; 565.5–565.9/0.5–1.2; 582.0/1.0; 600.7/0.9; 613.5/1.1; 633.2–633.5/1.1–1.3; 636.7–637.2/0.7–1.7; 660.8/0.5 (IR?)		Kanaan et al. (2005)	
(1258+013)	HE 1258+0123	13 01 11	01 07 40	11 420°F	8.02	16.3	812.0/16.4; 897.0/31.7; 1002.0/21.7			Kepler et al. (2005)
(1301+0107)							364.6/2.0		Green et al. (2015)	
(1301+0107)							288.9/7.6		Voss et al. (2006)	
(1301+0107)							905.8/46.7		Castanheira et al. (2006)	
(1301+0107)							377.8/6.6; 398.1/6.7; 466.3/8.9; 507.1/8.4; 644.5/21.9; 786.9/8.9; 946.3/10.5; 1070.5/7.9		Romero et al. (2013)	
(1301+0107)							439.2; 528.5; 744.6; 1092.1			Bergeron et al. (2004)
(1301+0107)							628.0/15.2; 882.0/17.6			Kepler et al. (2005)
WD	Identifiers	RA (h m s)	DEC (° ′ ′′)	T_{eff} (K)	$\log g$ (dex)	V (mag)	Period/Amplitude	References		
------------	--------------------	------------	--------------	-----------------------	----------------	-----------	------------------	--		
1307+354	GD 154	13 09 58	35 09 47	11 120G	8.07	15.3	439.2/9.8; 528.5/9.3; 628.0/15.2; 744.6/22.9; 881.5/17.6; 1092.1/14.1	Castanheira & Kepler (2009)		
							1186.1 (+C,SH)	Robinson et al. (1978)		
							402.5; 596.1; 597.2; 1125.1; 1129.5; 1133.4; 1271.4 (+C,iR)	Hürkal et al. (2005)		
							402.6/2.7; 1084.0/5.6; 1088.6/5.0; 1183.5/4.6; 1186.5/16.7; 1190.5/6.3; 1092.1/3.0 (+C,iR)	Pfeiffer et al. (1995)		
							(also in Pfeiffer et al. 1996)			
							1186.0/7.5; 1191.7/9.1; 1238.2/5.0; 1244.2/4.8 (+C,iR)	Paparó et al. (2013)		
(1310-0159)		13 10 08	-01 59 56	10 940T	7.76	17.7 (g)	280.0/6.6–9.2; 310.0/0.6; 349.6/17.6	Kepler et al. (2005)		
1307-017							8.07 17.1 (g)			
1321+013	SDSS J132350.28+010304.2	13 23 50	01 03 04	11 380T	8.45	18.5 (g)	495.4/4.1; 549.8/6.7; 590.1/7.1; 612.2/11.9; 636.4/4.8; 671.1/4.4; 698.6/4.3; 831.1/4.6; 884.2/4.1	Kepler et al. (2012)		
							432.5/5.1; 497.4/6.4; 525.0/3.6; 550.5/8.6; 564.6/18.3; 590.1/7.1; 603.6/8.3; 612.2/11.9; 636.4/4.8; 656.0/15.3; 675.4/6.4; 698.6/4.3; 731.6/5.2; 831.1/4.6; 884.2/4.1	Romero et al. (2013)		
(J1337+0104)		13 37 14	01 04 44	11 460T	8.64	18.6 (g)	715.0/10.0	Kepler et al. (2005)		
1334+013							8.02 16.0 982.0/5.2; 1177.0/6.2	Voss et al. (2006)		
(J1338-0023)	SDSS J133831.74-002328.0	13 38 32	00 23 28	11 900T	8.07	17.1 (g)	119.7/1.8; 196.9/4.0	Castanheira et al. (2010)		
1335-001							118.7/1.8; 196.9/4.0			
	(EPIC 229227292)	13 42 12	-07 35 40	11 190	8.02	16.7 (Kp)	289.3; 370.7; 514.1; 800–1250 s	Bell et al. (2016)		
1342-237	EC 13429-2342	13 45 46	-23 57 10	11 000G	8.02	16.0	982.0/5.2; 1177.0/6.2	Voss et al. (2006)		
(J1345-0055)	SDSS J134550.93-005536.5	13 45 51	-00 55 36	11 760T	8.10	16.7 (g)	195.2/5.5; 195.5/3.9; 254.4/2.4 (IR?)	Mukadam et al. (2004)		
WD	Identifiers	RA (h m s)	DEC ($^\circ$ $'$ $''$)	T_{eff} (K)	$\log g$ (dex)	V (mag)	Period/Amplitude (s/mma)	References		
-----------	------------------	------------	--------------------------	-----------------------	----------------	----------	--------------------------	--		
1349+552	LP 133-144	13 51 20	54 57 43	12 150$^{+}$7.97	15.7	(g)	209.2; 304.5; 306.9; 327.3	Bergeron et al. (2004)		
				140.5/0.7; 179.4/0.7; 179.5/0.4; 179.7/0.5; 209.0/1.2; 209.2/11.8; 209.4/1.1; 270.4/2.2; 270.6/3.8; 270.9/3.7; 305.6/3.3; 305.9/4.2; 306.2/1.3; 327.3/3.0 (+C,iR)						
1350+656	G 238-53	13 52 11	65 24 57	12 130$^{+}$7.97	15.5		206.0	Fontaine & Wesemael (1984)		
				122.2/2.0	179.5/1.5; 173.3/1.1; 198.3/6.0; 291.6/2.2; 322.9/1.9					
(J1354+0108)	SDSS J135459.89+010819.3	13 55 00	01 08 19	11 650$^{+}$8.03	16.4	(g)	127.8/1.5; 173.3/1.1; 198.3/6.0; 291.6/2.2; 322.9/1.9			
1352+013				324.0/21.8	399.0/13.0; 530.0/15.0; 610.0/57.0; 724.0/21.0; 937.0/11.0 (+C)					
(J1355+5454)	SDSS J135531.03+545404.5	13 55 31	54 54 05	11 480$^{+}$7.93	18.6	(g)	399.2/7.4; 529.8/13.4; 608.6/7.6; 612.1/36.4; 615.8/11.4; 673.8/2.8; 678.9/6.1; 683.0/3.5; 715.2/11.8; 716.9/7.9; 722.1/44.1; 723.6/10.4; 727.0/5.1; 728.9/9.9; 760.8/43.2; 771.8/9.4; 775.6/5.8; 882.7/3.1; 1217.6/7.7 (+C,iR)			
1401-147	EC 14012-1446	14 03 57	-15 01 11	12 020$^{+}$8.18	15.7		398.9/12.1; 530.1/16.7; 610.4/54.3; 678.6/7.6; 722.9/22.9; 769.1/51.7; 882.7/2.9; 937.2/11.0; 1217.4/7.5			
				350.1/2.0; 398.7/2.1; 399.2/12.7; 433.9/4.7; 528.8/3.8; 529.8/20.7; 530.9/1.5; 537.6/6.4; 563.4/7.2; 612.0/25.7; 615.8/3.1; 645.9/7.9; 657.2/2.2; 705.0/1.2; 805.5/1.2; 865.1/1.9; 905.6/2.2; 979.3/1.7; 1069.1/2.7 (+C,iR)						
				821.3; 935.4; 964.7; 1035.4; 1104.2; 1136.5; 1163.2; 1219.8; 1298.9; 1332.9; 1384.9; 1418.4; 2004–2008						
Table 4: continued.

WD	Identifiers	RA (h m s)	DEC (° ′ ″)	T\textsubscript{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
(1408+0445)	SDSS J140859.46+044554.7	14 08 59	04 45 55	10 920T	7.99	17.9	g	
1406+050								
(J1417+0058)	SDSS J141708.81+005827.2	14 17 09	00 58 27	11 000T	8.01	18.0	g	
1414+012								
1422+095	GD 165	14 24 39	09 17 14	12 220G	8.11	14.3		
(1429-037)	HE 1429-0343	14 32 03	-03 56 38	11 290G	8.00	15.8		
1425-811	L 19-2	14 33 08	-81 20 15	12 070G	8.13	13.0		
								113.6; 192.4
								McGraw (1977)
								Odonoghue & Warner (1982)
								Silvotti et al. (2005)
WD/Other	Identifiers	RA (h m s)	DEC ($^\circ$ $^\prime$ $^\prime\prime$)	Teff (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
----------	-------------	------------	---------------------------------	----------	------------	--------	--------------------------	------------
(J1443+0134)	SDSS J144330.93+013405.8	14 43 31	01 34 06	10 450T	7.85	18.7 (g)	968.9/7.5; 1085.0/5.2	Yeates et al. (2005)
(J1502-0001)	SDSS J150207.02-000147.1	15 02 07	−00 01 47	11 090T	7.75	18.7 (g)	313.6/13.1; 418.2/14.9; 581.9/11.1; 629.5/32.6; 687.5/12.0	Mukadam et al. (2004)
(J1524-0030)	SDSS J152403.25-003022.9	15 24 03	−00 30 23	–	–	15.8 (g)	434.0/47.8; 873.2/111.5	Mukadam et al. (2004)
1526+558	HS 1531+7436	15 28 09	55 39 15	10 860G	7.73	17.1 (B)	648.9/36.8	Green et al. (2015)
–	–	15 30 35	74 26 04	13 270G	8.49	16.4	112.5/4.2	Voss et al. (2006)
(J1533-0206)	SDSS J153332.96-020655.7	15 33 33	−02 06 56	11 390T	8.04	16.4 (g)	257.8/4.3; 260.6/5.3	Castanheira et al. (2006)
1541+650	PG 1541+650	15 41 45	64 53 53	11 560G	8.12	15.6 (g)	467.0/3.0; 564.0/15.0; 689.0/45.0; 757.0/14.0 (+C)	Vauclair et al. (2000)
1559+369	Ross 808	16 01 23	36 48 35	11 120G	7.98	14.4	833.0	McGraw & Robinson (1976)
–	–	15 30 35	74 26 04	13 270G	8.49	16.4	112.5/4.2	Voss et al. (2006)
(J1533-0206)	SDSS J153332.96-020655.7	15 33 33	−02 06 56	11 390T	8.04	16.4 (g)	257.8/4.3; 260.6/5.3	Castanheira et al. (2006)
1541+650	PG 1541+650	15 41 45	64 53 53	11 560G	8.12	15.6 (g)	467.0/3.0; 564.0/15.0; 689.0/45.0; 757.0/14.0 (+C)	Vauclair et al. (2000)
1559+369	Ross 808	16 01 23	36 48 35	11 120G	7.98	14.4	833.0	McGraw & Robinson (1976)
Table 4: continued.

Identifiers	RA (h m s)	DEC (° ′ ″)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References		
WD	Other	Other							
1607+205		– 16 09 44	20 23 11	11 140G	7.81	17.4	1928.5/1.8	Green et al. (2015)	
(J1612+0830)	SDSS J161218.08+083028.1	16 12 18	08 30 28	12 030	8.46	17.8 (g)	115.2/5.1; 117.2/4.1	Castanheira et al. (2013)	
(J1617+4324)	SDSS J161737.63+432443.8	16 17 38	43 24 44	11 070T	8.07	18.4 (g)	626.3/24.1; 889.6/36.6	Mukadam et al. (2004)	
(J1618-0023)	SDSS J161837.25-002302.7	16 18 37	– 00 23 03	10 860	8.16	19.3 (g)	644.0/5.4	Castanheira et al. (2006)	
1616-002									
–	HS 1625+1231	16 28 13	12 24 53	11 690G	8.06	16.1 (g)	385.2/17.0; 533.6/23.6; 862.9/48.9	Voss et al. (2006)	
(J1641+3521)	SDSS J164115.61+352140.6	16 41 16	35 21 41	11 230	8.43	19.1	809.3/27.3	Castanheira et al. (2006)	
1647+591	G 226-29	16 48 26	59 03 23	12 510G	8.35	12.2	109.1/3.0; 109.3/1.0; 109.5/3.0 (iR)	Kepler et al. (1983)	
							109.1/2.5; 109.3/1.1; 109.5/2.8 (iR)	Kepler et al. (1995b)	
(J1650+3010)	SDSS J165020.53+301021.2	16 50 21	30 10 21	10 830T	8.43	18.1 (g)	339.1/14.7	Castanheira et al. (2007)	
1659+662	GD 518	16 59 15	66 10 33	11 760G	8.97	16.5 (B)	440.2; 513.2; 583.7; 0.8–4.1mma	Hermes et al. (2013a)	
(J1700+3549)	SDSS J170055.38+354951.1	17 00 55	35 49 51	11 230T	7.94	17.3 (g)	450.5/19.3; 893.4/54.7; 955.3/20.4	Mukadam et al. (2004)	
							552.6/9.3; 893.4/54.3; 955.3/20.3; 1164.4/11.4	Mukadam et al. (2006)	
(J1711+6541)	SDSS J17113.01+654158.3	17 11 13	65 41 58	11 130T	8.47	16.9 (g)	606.3/5.2; 690.2/3.3; 1248.2/3.2	Mukadam et al. (2004)	
1711+657							234.0/1.2; 606.3/5.2; 690.2/3.3; 1248.2/3.2	Mukadam et al. (2006)	
							214.3/1.7; 561.5/3.0; 612.6/5.7;	Mukadam et al. (2006)	
WD	Identifiers	RA	DEC	T_{eff}	$\log g$	V	Period/Amplitude	References	
--------------	------------------	--------------	------	-----------------	----------	-----	------------------	-----------------------	
1714-547	BPM 24754	17 19 02	$-54 45 54$	10 840G	7.90	15.6	978.0–1176.0/22.6–6.1	Giovanni (1998)	
(J1724+5835)	SDSS J172428.42+583539.0	17 24 28	58 35 39	11 640F	7.88	17.6 (g)	189.2/3.2; 279.5/8.3; 337.9/5.9	Mukadam et al. (2004)	
(J1732+5905)	SDSS J173235.19+590533.4	17 32 35	59 05 33	10 770F	7.97	18.7 (g)	1122.4/10.2; 1248.4/22.5	Mukadam et al. (2004)	
	HS 1824+6000	18 24 44	60 02 00	11 520G	7.73	15.7 (B)	294.3/8.8; 384.4/3.3; 304.4/7.7; 329.6/13.6	Voss et al. (2006)	
								173.7; 224.7; 225.1; 286.1; 320.9; 363.5	
1855+338	G 207-9	18 57 30	33 57 25	12 080G	8.37	14.6	259.1; 292.0; 318.0; 557.4; 738.6 (iC?)	Robinson & McGraw (1976)	
								129.4/1.1; 196.1/1.3; 290.9/1.1; 291.9/11.0; 292.9/1.7; 305.2/0.4; 317.8/0.5; 595.7/2.2; 599.8/1.2; 623.8/1.2; 626.8/0.9 (+C,IR)	Bognár et al. (2016)
								283.8/17.8	Greiss et al. (2016)
								853.5/28.1	Greiss et al. (2016)
(J1916+3938)	KIC 4552982	19 16 44	39 38 50	11 130	8.34	17.7	823.9/3.8; 834.1/3.2; 934.5/3.6; 968.9/4.4; 1089.0/2.5; 1109.9/2.3; 1436.7/2.4	Hermes et al. (2011)	
								360.5/0.16; 361.6/0.16; 362.6/0.94; 788.2/0.05; 828.3/0.14; 866.1/0.16; 907.6/0.14; 950.5/0.16; 982.2/0.09; 1014.2/0.08; 1053.7/0.06; 1109.9/0.05; 1158.2/0.07; 1200.2/0.04; 1244.7/0.05; 1289.2/0.11; 1301.7/0.08; 1333.2/0.07; 1363.0/0.07; 1498.3/0.08 (IR)	Bell et al. (2015a)
								323.4/13.0	Greiss et al. (2016)
Table 4: continued.

WD	Identifiers	Other (h m s)	RA ($^\circ$)	DEC ($^\prime$)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
–	KIC 8293193	19 17 55	44 13 26	12 650	8.01	18.4 (g)		310.9/27.9	Greiss et al. (2016)
–	KIC 119111480	19 20 25	50 17 22	12 160	7.94	18.1 (g)		172.9; 173.0; 202.5; 202.6; 259.1; 259.3; 259.4; 290.6; 290.8; 291.0; 324.1; 324.3; 324.5; 0.9–21.8 (mna (+C,iR))	Greiss et al. (2014)
–	(KIC 4362927)	19 23 49	39 29 33	11 140	7.84	19.4 (g)		723.6/25.3	Greiss et al. (2016)
1935+276	G 185-32	19 37 14	27 43 19	12 470G	8.10	13.0		70.8; 141.4; 215.1 (iC,SH?)	McGraw et al. (1981)
								70.9/1.8; 72.5/1.2; 141.8/1.6; 215.7/2.7; 300.0/1.9; 301.3/1.9; 370.1/2.2; 560.0/1.7	Kepler et al. (2000)
								72.5/0.9; 72.9/0.4; 141.2/0.4; 141.9/1.4; 181.9/0.03; 212.8/0.5; 215.7/1.9; 264.2/0.5; 266.2/0.4; 299.8/1.0; 301.4/1.1; 370.2/1.6; 454.6/0.4; 537.6/0.6; 651.7/0.7 (+C,iR?)	Castanheira et al. (2004)
								72.6/0.7; 141.9/1.5; 215.7/1.9; 301.6/1.5; 370.2/1.3 (+C)	Thompson et al. (2004)
–	(KIC 9162396)	19 39 07	45 33 34	11 070	8.06	18.5 (g)		766.0/14.1	Greiss et al. (2016)
–	(KIC 7760212)	19 44 06	43 27 22	11 890	8.01	16.8 (g)		322.0/6.7	Greiss et al. (2016)
–	(KISJ1945+4455)	19 45 42	44 55 11	11 590	8.04	17.2 (g)		255.9/19.0	Greiss et al. (2016)
1950+250	GD 385	19 52 28	25 09 29	11 820G	8.07	15.1		178.9; 228.8; 254.3; 273.0; 386.4; 535.6; 648.9 (+C)	Fontaine et al. (1980)
								126.0/3.3; 172.0/4.3; 192.0/6.5; 252.0/17.4; 546.0/11.9; 691.5/17.4 (iC?)	Vauclair & Bonazzola (1981)
								128.1/3.7; 256.1/11.4; 256.3/10.9 (iR?)	Kepler (1984)
1959+059	GD 226	20 02 13	06 07 38	10 730G	8.06	16.4		1350.4/5.7	Voss et al. (2007)
Table 4: continued.

WD	Identifiers	Other	RA (h m s)	DEC (°′′′)	T$_{\text{eff}}$ (K)	log g (dex)	V (mag)	Period/Amplitude References	References
2102+233	J2128-0007	SDSS J212808.49-000750.8	21 28 08	00 07 51	11 420G 8.24 18.0	274.9/11.0; 289.0/9.7; 302.2/17.1	Castanheira et al. (2006)		
2132-079	(J2135-0743)	SDSS J213530.32-074330.7	21 35 30	07 43 31	10 900G 7.96 18.7	281.8/13.3; 299.9/22.9; 323.2/13.0; 510.6/16.8; 565.4/49.8	Castanheira et al. (2006)		
–	SDSS J214723.73-001358.4	21 47 24	00 13 58	11 990 7.92 19.1	–	199.8/3.9	Castanheira et al. (2010)		
2148+539	G 232-38	SDSS J214859.83-001358.4	21 48 59	00 13 58	11 990G 8.02 16.4	741.6; 984.0; 1147.4	Gianninas et al. (2005)		
2148-291	–	SDSS J215149.06-001358.4	21 48 29	00 13 58	11 990G 8.06 15.9	–	260.8/12.6	Gianninas et al. (2006)	
2151-077	SDSS J215354.11-073121.9	21 51 40	07 31 51	11 910G 8.27 18.7	–	210.2/5.6	Castanheira et al. (2006)		
–	SDSS J215628.26-004617.2	21 56 28	00 46 17	10 680G 8.01 18.3	1234.0/31.4; 1478.0/27.0	Gentile Fusillo et al. (2016)			
(J2159+1322)	SDSS J215905.52+132255.7	21 59 06	13 22 56	11 370G 8.69 18.9	683.7/11.7; 801.0/15.1	Mullally et al. (2005)			
(J2208+0654)	SDSS J220830.02+065448.7	22 08 30	06 54 49	11 100 8.49 17.9	668.1/4.1; 757.2/4.4	Castanheira et al. (2013)			
(J2209-0919)	SDSS J220915.84-091942.5	22 09 16	09 19 43	11 630G 8.30 18.4	447.9/10.8; 789.3/10.4; 894.7/43.9	Castanheira et al. (2010)			
(J2214-0025)	SDSS J221458.37-002511.7	22 14 58	00 25 12	11 650G 8.30 17.9	195.2/6.1; 255.2/13.1	Mullally et al. (2005)			
(J2231+1346)	SDSS J223135.71+134652.8	22 31 36	13 46 53	11 060G 7.89 18.7	382.4/14.6; 548.7/13.7; 619.7/18.9; 627.0/26.3; 707.5/17.1	Castanheira et al. (2006)			
–	SDSS J223726.86-004617.2	22 37 27	01 01 11	11 380G 7.97 18.9	392.3/44.7; 774.4/80.1	Gentile Fusillo et al. (2016)			
2254+126	GD 244	SDSS J2254+126	22 54 126	12 52 50	11 760G 8.09 15.6	307.0; 294.6; 256.3; 203.3 (+C)	Fontaine et al. (2001)		
–	SDSS J2254+126	22 54 126	12 52 50	11 760G 8.09 15.6	307.0; 294.6; 256.3; 203.3 (+C)	Fontaine et al. (2001)			
2303+242	PG 2303+242	SDSS J2303+242	23 03 242	24 32 08	11 500G 8.07 15.5	570.7/8.0; 623.4/15.0; 675.4/8.0; 794.5/56.0; 900.5/16.0 (+C,iR)	Vauclair et al. (1987)		
–	PG 2303+242	SDSS J2303+242	23 03 242	24 32 08	11 500G 8.07 15.5	570.7/8.0; 623.4/15.0; 675.4/8.0; 794.5/56.0; 900.5/16.0 (+C,iR)	Vauclair et al. (1987)		
Identifiers	RA (h m s)	DEC (° ′ ″)	T$_{\text{eff}}$ (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References		
-------------	-----------	-------------	----------------	-----------	---------	-------------------------	------------		
WD	Other								
2326+049	G 29-38	23 28 48	05 14 54	11 910G	8.17	13.0	McGraw & Robinson (1975)		
						612.9; 677.0; 824.7; 930.9; 1015.5 (+C)	Castanheira et al. (2006)		
						261.8/2.3; 221.3/2.1; 234.1/3.2; 261.8/2.3; 322.5/3.1; 390.7/2.8; 513.3/3.8; 807.9/3.8; 1241.2/3.1 (+C)	Pakštienė et al. (2011)		
- SDSS J230726.66-084700.3	23 07 27	-08 47 00	10 970T	8.21	18.9	617.0/12.5; 1212.2/25.6			
2336-079	GD 1212	23 38 51	-07 41 20	10 970G	8.03	13.3	Hermes et al. (2014)		
(J2334+0103)	SDSS J233458.71+010303.1	23 34 59	01 03 03	11 400	7.99	19.2 (g)	Gianninas et al. (2006)		
Table 4: continued.

WD	Identifiers	Other	RA (h m s)	DEC (° ′ ″)	T_{eff} (K)	log g (dex)	V (mag)	Period/Amplitude (s/mma)	References
2347+128	G 30-20	23 49 53	13 06 13	11 150G	8.01	16.1		1068.0/13.8	Mukadam et al. (2002)
(J2350-0054)	SDSS J235040.72-005430.9	23 50 41	−00 54 31	10 290T	8.14	18.1 (g)		273.3/6.2; 304.3/17.0; 391.1/7.5	Mukadam et al. (2004)
								206.7/3.2; 273.3/6.3; 304.3/17.0; 391.1/7.5	Mukadam et al. (2006)
2348-244	EC 23487-2424	23 51 22	−24 08 17	11 560G	8.09	15.5 (B)		804.5/19.3; 868.2/12.8; 989.3/11.0; 993.0/37.7 (+C)	Stobie et al. (1993)
								508.1/15.0; 878.8/34.0	Thompson et al. (2005)

Notes. (G) The effective temperature (T_{eff}) and surface gravity (log g) values are provided by Gianninas et al. (2011), and then corrected according to the results of Tremblay et al. (2013). (T) The effective temperature (T_{eff}) and surface gravity (log g) values are provided by Tremblay et al. (2011), and then corrected according to the results of Tremblay et al. (2013).
Acknowledgements: The financial support of the Hungarian National Research, Development and Innovation Office (NKFIH) grant K-115709 is acknowledged. Á.S. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA’s Astrophysics Data System Bibliographic Services.

References:

Bell, K. J., Hermes, J. J., Bischoff-Kim, A., et al., 2015a, *ApJ*, **809**, 14
Bell, K. J., Hermes, J. J., Montgomery, M. H., et al., 2016, *ArXiv e-prints*, [arXiv]1607.01392
Bell, K. J., Kepler, S. O., Montgomery, M. H., et al., 2015b, *Astronomical Society of the Pacific Conference Series*, **493**, 19th European Workshop on White Dwarfs, ed. P. Dufour, P. Bergeron, & G. Fontaine, p. 217
Bergeron, P., Fontaine, G., Billéres, M., Boudreault, S., & Green, E. M., 2004, *ApJ*, **600**, 404
Bergeron, P., Fontaine, G., Brassard, P., et al., 1993, *AJ*, **106**, 1987
Bergeron, P. & McGraw, J. T., 1990, *ApJ*, **352**, L45
Bognár, Zs., Paparó, M., Bradley, P. A., & Bischoff-Kim, A., 2009, *MNRAS*, **399**, 1954
Bognár, Zs., Paparó, M., Molnár, L., et al., 2016, *MNRAS*, **461**, 4059
Bognár, Zs., Paparó, M., Steininger, B., & Virághalmy, G., 2007, *Communications in Asteroseismology*, **150**, 251
Bradley, P. A., 1995, *Baltic Astronomy*, **4**, 536
Bradley, P. A., 1998, *Baltic Astronomy*, **7**, 355
Bradley, P. A., 2000, *Baltic Astronomy*, **9**, 485
Castanheira, B. G. & Kepler, S. O., 2008, *MNRAS*, **385**, 430
Castanheira, B. G. & Kepler, S. O., 2009, *MNRAS*, **396**, 1709
Castanheira, B. G., Kepler, S. O., Costa, A. F. M., et al., 2007, *A&AA*, **462**, 989
Castanheira, B. G., Kepler, S. O., Kleinman, S. J., Nitta, A., & Fraga, L., 2010, *MNRAS*, **405**, 2561
Castanheira, B. G., Kepler, S. O., Kleinman, S. J., Nitta, A., & Fraga, L., 2013, *MNRAS*, **430**, 50
Castanheira, B. G., Kepler, S. O., Moskalik, P., et al., 2004, *A&AA*, **413**, 623
Castanheira, B. G., Kepler, S. O., Mullally, F., et al., 2006, *A&AA*, **450**, 227
Chen, Y. H. & Li, Y., 2014, *MNRAS*, **443**, 3477
Dolez, N., 1998, *Baltic Astronomy*, **7**, 153
Dolez, N., Vauclair, G., & Chevreton, M., 1983, *A&AA*, **121**, L23
Dolez, N., Vauclair, G., Kleinman, S. J., et al., 2006, *A&AA*, **446**, 237
Dolez, N., Vauclair, G., Xiao-Bin, Z., Chevreton, M., & Handler, G., 1999, *Astronomical Society of the Pacific Conference Series*, **169**, 11th European Workshop on White Dwarfs, ed. S.-E. Solheim & E. G. Meistas, p. 129
Fitch, W. S., 1973, *ApJ*, **181**, L95
Fontaine, G., Bergeron, P., Billéres, M., & Charpinet, S., 2003, *ApJ*, **591**, 1184
Fontaine, G., Bergeron, P., Brassard, P., Billéres, M., & Charpinet, S., 2001, *ApJ*, **557**, 792
Fontaine, G. & Brassard, P., 2008, *PASP*, **120**, 1043
Fontaine, G., Lacombe, P., McGraw, J. T., et al., 1980, *ApJ*, **239**, 898
Fontaine, G. & Wesemael, F., 1984, *AJ*, **89**, 1728
Fontaine, G., Wesemael, F., Bergeron, P., et al., 1985, *ApJ*, **294**, 339
Fu, J.-N., Dolez, N., Vauclair, G., et al., 2013, *MNRAS*, **429**, 1585
Fu, J.-N., Vauclair, G., Dolez, N., Jiang, S.-Y., & Chevreton, M., 2002, Astronomical Society of the Pacific Conference Series, 259, IAU Colloq. 185: Radial and Non-radial Pulsations as Probes of Stellar Physics, ed. C. Aerts, T. R. Bedding, & J. Christensen-Dalsgaard, p. 378

Gentile Fusillo, N. P., Hermes, J. J., & Gansicke, B. T., 2016, MNRAS, 455, 2295

Gianninas, A., Bergeron, P., & Fontaine, G., 2005, ApJ, 631, 1100

Gianninas, A., Bergeron, P., & Fontaine, G., 2006, AJ, 132, 831

Gianninas, A., Bergeron, P., & Ruiz, M. T., 2011, ApJ, 743, 138

Giovannini, O., Kepler, S. O., Kanaan, A., Costa, A. F. M., & Koester, D., 1998, A&A, 329, L13

Green, E. M., Limoges, M.-M., Gianninas, A., et al., 2015, Astronomical Society of the Pacific Conference Series, 493, 19th European Workshop on White Dwarfs, ed. P. Dufour, P. Bergeron, & G. Fontaine, p. 237

Greiss, S., Gansicke, B. T., Hermes, J. J., et al., 2014, MNRAS, 438, 3086

Greiss, S., Hermes, J. J., Gansicke, B. T., et al., 2016, MNRAS, 457, 2855

Handler, G., Provencal, J. L., Lendl, M., Montgomery, M. H., & Beck, P. G., 2008a, Communications in Asteroseismology, 156, 18

Handler, G. & Romero-Colmenero, E., 2001, Astronomical Society of the Pacific Conference Series, 226, 12th European Workshop on White Dwarfs, ed. J. L. Provencal, H. L. Shipman, J. MacDonald, & S. Goodchild, p. 313

Handler, G., Romero-Colmenero, E., & Montgomery, M. H., 2002, MNRAS, 335, 399

Handler, G., Romero-Colmenero, E., Provencal, J. L., et al., 2008b, MNRAS, 388, 1444

Hermes, J. J., Charpinet, S., Barclay, T., et al., 2014, ApJ, 789, 85

Hermes, J. J., Gansicke, B. T., Bischoff-Kim, A., et al., 2015, MNRAS, 451, 1701

Hermes, J. J., Kepler, S. O., Castanheira, B. G., et al., 2013a, ApJ, 771, L2

Hermes, J. J., Montgomery, M. H., Gianninas, A., et al., 2013b, MNRAS, 436, 3573

Hermes, J. J., Montgomery, M. H., Mullally, F., Winget, D. E., & Bischoff-Kim, A., 2013c, ApJ, 766, 42

Hermes, J. J., Montgomery, M. H., Winget, D. E., et al., 2013d, ApJ, 765, 102

Hermes, J. J., Montgomery, M. H., Winget, D. E., et al., 2012, ApJ, 750, L28

Hermes, J. J., Mullally, F., Ostensen, R. H., et al., 2011, ApJ, 741, L16

Hesser, J. E., Lasker, B. M., & Neupert, H. E., 1976, ApJ, 209, 853

Hürkal, D. Ö., Handler, G., Steininger, B. A., & Reed, M. D., 2005, Astronomical Society of the Pacific Conference Series, 334, 14th European Workshop on White Dwarfs, ed. D. Koester & S. Moehler, p. 577

Jordan, S., Koester, D., Vauclair, G., et al., 1998, A&A, 330, 277

Kanaan, A., Kepler, S. O., Giovannini, O., & Diaz, M., 1992, ApJ, 390, L89

Kanaan, A., Kepler, S. O., Giovannini, O., et al., 1998, Baltic Astronomy, 7, 183

Kanaan, A., Nitta, A., Winget, D. E., et al., 2005, A&A, 432, 219

Kanaan, A., Nitta-Kleinman, A., Winget, D. E., et al., 2000, Baltic Astronomy, 9, 87

Kepler, S. O., 1984, ApJ, 278, 754

Kepler, S. O., Castanheira, B. G., Saraiva, M. F. O., et al., 2005, A&A, 442, 629

Kepler, S. O., Giovannini, O., Costa, A. F. M., et al., 1995a, Baltic Astronomy, 4, 238

Kepler, S. O., Giovannini, O., Wood, M. A., et al., 1995b, ApJ, 447, 874

Kepler, S. O., Nather, R. E., McGraw, J. T., & Robinson, E. L., 1982, ApJ, 254, 676

Kepler, S. O., Pelisoli, I., Pecanha, V., et al., 2012, ApJ, 757, 177

Kepler, S. O., Robinson, E. L., Koester, D., et al., 2000, Baltic Astronomy, 9, 59

Kepler, S. O., Robinson, E. L., & Nather, R. E., 1983, ApJ, 271, 744
Kepler, S. O., Winget, D. E., Nather, R. E., et al., 1995c, Baltic Astronomy, 4, 221
Kilic, M., Hermes, J. J., Gianninas, A., & Brown, W. R., 2015, MNRAS, 446, L26
Kleinman, S. J., 1995, Baltic Astronomy, 4, 270
Kleinman, S. J., Nather, R. E., Winget, D. E., et al., 1998, ApJ, 495, 424
Kotak, R., van Kerkwijk, M. H., & Clemens, J. C., 2002, A&A, 388, 219
Kurtz, D. W., Shibahashi, H., Dhillon, V. S., Marsh, T. R., & Littlefair, S. P., 2008, MNRAS, 389, 1771
Kurtz, D. W., Shibahashi, H., Dhillon, V. S., et al., 2013, MNRAS, 432, 1632
Landolt, A. U., 1968, ApJ, 153, 151
Lasker, B. M. & Hesser, J. E., 1971, ApJ, 163, L89
Li, C., Fu, J.-N., Vauclair, G., et al., 2015, MNRAS, 449, 3360
McGraw, J. T., 1976, ApJ, 210, L35
McGraw, J. T., 1977, ApJ, 214, L123
McGraw, J. T., Fontaine, G., Lacombe, P., et al., 1981, ApJ, 250, 349
McGraw, J. T. & Robinson, E. L., 1975, ApJ, 200, L89
McGraw, J. T. & Robinson, E. L., 1976, ApJ, 205, L155
Metcalf, T. S., Montgomery, M. H., & Kanaan, A., 2004, ApJ, 605, L133
Mukadam, A. S., Bischoff-Kim, A., Fraser, O., et al., 2013, ApJ, 771, 17
Mukadam, A. S., Kepler, S. O., Winget, D. E., & Bergeron, P., 2002, ApJ, 580, 429
Mukadam, A. S., Kepler, S. O., Winget, D. E., et al., 2003, Baltic Astronomy, 12, 71
Mukadam, A. S., Montgomery, M. H., Winget, D. E., Kepler, S. O., & Clemens, J. C., 2006, ApJ, 640, 956
Mukadam, A. S., Mullally, F., Nather, R. E., et al., 2004, ApJ, 607, 982
Mullally, F., Thompson, S. E., Castanheira, B. G., et al., 2005, ApJ, 625, 966
Mullally, F., Winget, D. E., Degennaro, S., et al., 2008, ApJ, 676, 573
Odonoghue, D., 1986, NATO Advanced Science Institutes (ASI) Series C, 169, ed. D. O. Gough, p. 467
O’Donoghue, D., Warner, B., & Cropper, M., 1992, MNRAS, 258, 415
Odonoghue, D. E. & Warner, B., 1982, MNRAS, 200, 563
Page, C. G., 1972, MNRAS, 159, 25
Pakštienė, E., Solheim, J.-E., Handler, G., et al., 2011, MNRAS, 415, 1322
Paparó, M., Bognár, Zs., Plachy, E., Molnár, L., & Bradley, P. A., 2013, MNRAS, 432, 598
Patterson, J., Zuckerman, B., Becklin, E. E., Tholen, D. J., & Hawarden, T., 1991, ApJ, 374, 330
Pfeiffer, B., Vauclair, G., Dolez, N., et al., 1996, A&A, 314, 182
Pfeiffer, B., Vauclair, G., Dolez, N., et al., 1995, Baltic Astronomy, 4, 245
Provencal, J. L., Montgomery, M. H., Kanaan, A., et al., 2012, ApJ, 751, 91
Pyrzas, S., Gánsicke, B. T., Hermes, J. J., et al., 2015, MNRAS, 447, 691
Quirion, P.-O., Fontaine, G., & Brassard, P., 2007, ApJS, 171, 219
Richer, H. B. & Ulrych, T. J., 1974, ApJ, 192, 719
Robinson, E. L. & McGraw, J. T., 1976, ApJ, 207, L37
Robinson, E. L., Stover, R. J., Nather, R. E., & McGraw, J. T., 1978, ApJ, 220, 614
Romero, A. D., Córsico, A. H., Althaus, L. G., et al., 2012, MNRAS, 420, 1462
Romero, A. D., Kepler, S. O., Córsico, A. H., Althaus, L. G., & Fraga, L., 2013, ApJ, 779, 58
Sayres, C., Subasavage, J. P., Bergeron, P., et al., 2012, AJ, 143, 103
Silvotti, R., Pavlov, M., Fontaine, G., Marsh, T., & Dhillon, V., 2006, Mem. Soc. Astron. Italiana, 77, 486
Silvotti, R., Voss, B., Bruni, I., et al., 2005, A&A, 443, 195
Steinfadt, J. D. R., Bildsten, L., Ofek, E. O., & Kulkarni, S. R., 2008, PASP, 120, 1103
Stobie, R. S., Chen, A., O’Donoghue, D., & Kilkenny, D., 1993, MNRAS, 263, L13
Stobie, R. S., Kilkenny, D., Koen, C., & O’Donoghue, D., 1997, The Third Conference on Faint Blue Stars, ed. A. G. D. Philip, J. Liebert, R. Saffer, & D. S. Hayes, p. 497
Stobie, R. S., O’Donoghue, D., Ashley, R., et al., 1995, MNRAS, 272, L21
Stover, R. J., Nather, R. E., Robinson, E. L., Hesser, J. E., & Lasker, B. M., 1980, ApJ, 240, 865
Stover, R. J., Robinson, E. L., & Nather, R. E., 1977, PASP, 89, 912
Su, J., Li, Y., & Fu, J.-N., 2014a, New A, 33, 52
Su, J., Li, Y., Fu, J.-N., & Li, C., 2014b, MNRAS, 437, 2566
Thompson, S. E., Clemens, J. C., & Koester, D., 2005, Astronomical Society of the Pacific Conference Series, 334, 14th European Workshop on White Dwarfs, ed. D. Koester & S. Moehler, p. 471
Thompson, S. E., Clemens, J. C., van Kerkwijk, M. H., O’Brien, M. S., & Koester, D., 2004, ApJ, 610, 1001
Thompson, S. E., Provençal, J. L., Kanaan, A., et al., 2009, Journal of Physics Conference Series, 172, 012067
Tremblay, P.-E., Bergeron, P., & Gianninas, A., 2011, ApJ, 730, 128
Tremblay, P.-E., Ludwig, H.-G., Steffen, M., & Freytag, B., 2013, A&A, 559, A104
Vauclair, G., Belmonte, J. A., Pfeiffer, B., et al., 1992, A&A, 264, 547
Vauclair, G. & Bonazzola, S., 1981, ApJ, 246, 947
Vauclair, G., Dolez, N., & Chevreton, M., 1981, A&A, 103, L17
Vauclair, G., Dolez, N., & Chevreton, M., 1987, A&A, 175, L13
Vauclair, G., Dolez, N., Fu, J. N., & Chevreton, M., 1997, A&A, 322, 155
Vauclair, G., Dolez, N., Fu, J.-N., et al., 2000, Baltic Astronomy, 9, 133
Vauclair, G., Goupil, M. J., Baglin, A., Auvergne, M., & Chevreton, M., 1989, A&A, 215, L17
Voss, B., Koester, D., Ostensen, R., et al., 2006, A&A, 450, 1061
Voss, B., Koester, D., Ostensen, R., et al., 2007, Astronomical Society of the Pacific Conference Series, 372, 15th European Workshop on White Dwarfs, ed. R. Napiwotzki & M. R. Burleigh, p. 583
Wenger, M., Ochsenbein, F., Egret, D., et al., 2000, A&AS, 143, 9
Winget, D. E., Nather, R. E., Clemens, J. C., et al., 1990, ApJ, 357, 630
Yeates, C. M., Clemens, J. C., Thompson, S. E., & Mullally, F., 2005, ApJ, 635, 1239