Behind the Skin: A Rare Case of Scurvy-Associated Megaloblastic Anemia

Albert Alhatem1 and Donghong Cai2

1Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA. 2Department of Pathology and Laboratory Medicine, Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA.

ABSTRACT: Scurvy, caused by vitamin C deficiency, is very rare nowadays in the developed world. Scattered cases are found in people with unusual eating habits, alcoholism, intestinal malabsorption, mental disorders, or elderly living alone. Because of its rarity, clinical presentations of scurvy, especially anemia and bleeding, are no longer well appreciated, and consequently extensive evaluation is commonly launched to pursue scurvy mimics, such as deep vein thrombosis, vasculitis, systemic coagulation disorders, and myelodysplasia. Herein, we describe the clinical manifestations and lab findings in a scurvy patient to raise awareness of this uncommon disease.

KEYWORDS: scurvy, vitamin C deficiency, megaloblastic anemia, follicular hyperkeratosis, perifollicular hemorrhage

Introduction

Scurvy, resulted from vitamin C deficiency, is a very rare disease in the United States nowadays. It is mostly found in people whose age, disability, or apathy lead to an inadequate dietary intake.1 Other risk factors include intestinal malabsorption and dialysis;2 infants whose intake includes only cow’s milk for the first year of life; development disorders including autism; eating disorders; certain individuals who have higher requirements of vitamin C including smokers; patients with type I diabetes, AIDS, iron overload disorders, renal failure requiring hemodialysis, or with diseases affecting the small intestine; diabetes, AIDS, iron overload disorders, renal failure requiring hemodialysis, or with diseases affecting the small intestine; residents in refugee camp; and children with iron overload due to medical conditions such as sickle cell disease or thalassemia or a history of bone marrow transplantation.3

The clinical presentation of scurvy includes follicular hyperkeratosis, skin and mucosal bleeding (petechiae, ecchymoses), and anemia in severe/prolonged patients. Due to its rarity, scurvy-associated anemia is no longer well recognized by clinicians, which, resulting in extensive evaluation/lab workup for other systemic illness, increases health care costs and potential morbidity. Here we documented an anemic patient associated with Scurvy from clinical presentation to lab findings.

Case Presentation

A 56-year-old white man was sent to the emergency room with shortness of breath, ankle swelling, and bruising on both legs. He described onset of skin rash about 1 year ago, and leg bruising 2 weeks ago. He felt fatigue recently and developed shortness of breath several days ago. He denied any trauma, frank bleeding from any source, previous or current medication usage. Regarding patient history, he admitted having used alcohol daily for the last 40 years and smokes 1 to 2 packs per day. He had poor gum with bad dentition requiring extraction, and poor diet habits for a long time. He denied anorexia, involuntary weight change, fever, or night sweats. Physical examination revealed extensive follicular hyperkeratosis, multiple ecchymoses on the inner thighs and multiple perifollicular petechiae on both legs. His heart rate, blood pressure, and body temperature all were within normal limits. His lab values were as follows: white blood cell (WBC) = 3.4 K/uL (low), red blood cell (RBC) = 1.9 millions/uL (low), hemoglobin (HGB) = 7.6 g/dL (low), hematocrit = 22.2% (low), mean cell volume = 116.8 fL (high), mean cell hemoglobin = 40 pg (high), red blood cell distribution width = 17.7% (high), platelets (PLT) = 133 K/uL (normal). Patient’s prothrombin time (PT), partial thromboplastin time (PTT), and fibrinogen were within normal limits. Peripheral blood smear showed macrocytes (Figure 1A), mild anisocytosis, and rare nucleated RBCs. WBCs showed normal maturation, with few metamyelocytes present. Few giant PLTs were identified. Level of serum vitamin C was 0 mg/dL, Ferritin = 720 ng/mL (normal), vitamin B12 = 317 pg/mL (normal), and folate = 4.3 ng/mL (normal).

Bone Marrow Biopsy

A bone marrow biopsy was performed. The biopsy showed hypercellular marrow for age (90%) with trilineage hematoopoiesis (Figure 1B). There was absolute erythroblast hyperplasia and megaloblastic change (Figure 1B and C). The number and morphology of megakaryocytes were within normal limits. The iron stain revealed abundant amount of iron storage (Figure 1D), and retic stain revealed no increase in reticulin fibers. The aspirate smear revealed that the erythroid lineage had marked hyperplasia, left shift, and megaloblastic change. Flow cytometry analysis showed no immunophenotypic evidence for abnormal myeloid maturation, an increase in blasts or lymphoproliferative disorder. Cytogenetics and fluore-
cence in situ hybridization for myelodysplastic syndrome panels were negative.

The patient was diagnosed as scurvy-associated anemia and was put on vitamin C therapy (500 mg, orally, twice a day), supplemented with multivitamin pills. Two weeks later, he reported back that his dyspnea was gone, skin discoloration disappeared, and his lab results showed HGB increased to 11.8 g/dL. The patient was continuing with oral vitamin C and multivitamin pills.

Discussion

Vitamin C (ascorbic acid) is an essential part of the well-being of HGB synthesis. Food that are high in vitamin C, include broccoli, brussels sprouts, and cauliflower, green and red peppers, spinach, cabbage, turnip greens, and other leafy greens, sweet and white potatoes, tomatoes and tomato juice, and winter squash. Vitamin C regulates iron metabolism and connective tissue remodeling via co-enzymatic activity of hydroxylation. A healthy adult maintains about 1500 mg Vitamin C in the body pool. When this pool drops below 350 mg, clinical symptoms, including follicular hyperkeratosis, perifollicular petechia, gum bleeding, and anemia start to appear. Scurvy-associated anemia can be microcytic, normocytic, or macrocytic. Diagnostically and therapeutically, the importance is self-evident to differentiate it from anemia of other etiologies. Table 1 summarizes the most important features of vitamin C, iron, folate, and vitamin B12 deficiency. All anemias present clinically with fatigue, shortness of breath, and muscle weakness. However, vitamin C deficiency has some unique changes such as follicular hyperkeratosis, coiled/corkscrew hairs, gingivitis, and perifollicular hemorrhage. Complete blood count and bone marrow biopsy are not that helpful to differentiate vitamin C deficiency from vitamin B12 or folate deficiency, in which all share similar features such as megaloblastic changes, but it is very helpful to differentiate it from other hematologic abnormalities such as myelodysplasia, anaplastic anemia, infectious or metastatic disorders. Due to bleeding tendency (petechia, ecchymosis, etc) for vitamin C deficiency, coagulation study for PT and activated PTT is also necessary to rule out coagulation-related disorders. Ultimately, serum level of vitamin C is the gold standard for making the diagnosis. Treatment-wise, patient should gradually recover within 1 week after the initiation of vitamin C intake.

The mechanism of the hematologic changes seen in vitamin C deficiency has been targeted in previous reports (Figure 2). It was long proposed that vitamin C is essential to folate and vitamin B12 metabolism. It is reported that vitamin C-only regimen could address the hematologic derangements in some case of megaloblastic anemia. In a cross-sectional study, plasma folate concentration was 25% higher in vitamin C supplement users comparing to the control group. In another study, taking vitamin C alone was associated with a significant increase in red-cell folate, serum folate concentrations, and homocysteine concentrations. In another cross-sectional study, it is found that some folate metabolism-associated gene expression was influenced by the combination of vitamin C and natural folate intakes. In-vitro experiments have demonstrated that vitamin C assisted the converting of 5-Methyltetrahydrofolic
Table 1. Comparison between patients with deficiency of vitamin C, iron, folate, or vitamin B12.

CATEGORY	VITAMIN C	IRON	FOLATE	VITAMIN B12
Clinical presentation	Dizziness	Headache, dizziness, or lightheadedness	Mouth and tongue sores	Nausea
	Mental confusion or forgetfulness	Infarction or soreness of tongue	Shortness of breath	Decreased appetite
	Shortness of breath	Unusual cravings for nonnutritive substances, such as ice, dirt, or starch.	Failure to thrive in infants	Weight loss
	Fatigue	Chest pain	Fatigue	Diarrhea
	Weight loss	Extreme fatigue	Weakness	Tachycardia
	Numbness or tingling in extremities	Pale skin	Lethargy	Failure to thrive in infants
	Muscle weakness	Brittle nails	Pale skin	Muscles weakness
	Unsteady movements			Numbness or tingling in extremities
	Follicular hyperkeratosis			Walking difficulty
	Perifollicular hemorrhages			Irritability
	Wounds heal poorly			

| CBC | Microcytic, normocytic, or macrocytic anemia. | Microcytic/hypochromic erythrocyte indices in conjunction with ovalocytes. Reticulocyte count is not appropriately elevated for the degree of anemia. The RBC distribution width is elevated. Mild thrombocytosis. | Macrocytic/normochromic anemia with oval macrocytes and disrupted erythrocytes. Pancytopenia and hypersegmented neutrophils. The RBC distribution width is elevated. Normal serum cobalamin and serum methylmalonic acid and increased homocysteine. | Macrocytic/normochromic anemia with oval macrocytes and disrupted erythrocytes. Pancytopenia and hypersegmented neutrophils. The RBC distribution width is elevated. Decreased serum cobalamin and increased serum methylmalonic acid and homocysteine. |

| Bone marrow | Normal or erythroid hyperplasia. | Not generally required. Expected findings | Hypercellular. Erythroid and granulocytic hyperplasia. Mitotic activity is abundant. Intramedullary cell death. Dominant myeloid abnormalities are giantism of bands and metamyelocytes and nuclear hypersegmentation and mature granulocytes. Large megakaryocytes. | Hypercellular. Erythroid and granulocytic hyperplasia. Mitotic activity is abundant. Intramedullary cell death. Dominant myeloid abnormalities are giantism of bands and metamyelocytes and nuclear hypersegmentation and mature granulocytes. Large megakaryocytes. |

| Potential mechanism | Inadequate intake | Inadequate intake (prematurity, adolescence) Pregnancy | Inadequate intake (pregnancy, lactation, malignancies) Excessive cooking destroys folate. | Inadequate intake Increase requirement Defective absorption Defective transport Vitamin B12 metabolism disorder. |

Differential diagnosis	Hematologic abnormalities	Thalassemia	Drug treatments	Drug treatments
	Medication side effects	Hemoglobin E	Reticulocytosis	Reticulocytosis
	Infections	Lead poisoning	Alcohol abuse	Alcohol abuse
	Ulcerative gingivitis	Anemia of chronic disease	Liver disease	Liver disease
	Collagen vascular disorder	Congenital sideroblastic anemia	Myelodysplasia	Myelodysplasia
	Deep venous thrombosis	Copper deficiency-associated anemia	HIV-1	HIV-1
	Vitamin deficiencies	Congenital ataxia		
	Trauma to the legs and joints			

Abbreviations: CBC, complete blood count; GI, gastrointestinal; RBC, red blood cell.

Acid into 5-Methyltetrahydrofolic acid, and therefore protected the reduced form of folates from oxidation (to maintain folate bioavailability). The recommended daily dose of vitamin C is controversial, varying from 75 to 200 mg/d for healthy adults to ensure tissue saturation between 60% to 100%. However, some authors argue that this amount is not enough to protect the fully reduced folates and suggest 500 mg/d vitamin C intake instead.

Conclusions
Due to its rarity in modern society, scurvy is usually not in the first line of differential diagnoses for anemia/bleeding patients. Skin manifestations, such as follicular hyperkeratosis and perifollicular hemorrhage, are relatively unique for scurvy-associated anemia/bleeding and should trigger the clinician to look into vitamin C deficiency. Morphologic examination of peripheral blood and bone marrow is largely not very useful to differentiate among
nutrition-related anemia (except iron deficiency anemia), but these examinations have pivotal value to rule out nondeficiency-related anemia, such as myelodysplasia, and aplastic anemia. Serum level of vitamin C is the gold standard for definite diagnosis, and supplement of vitamin C provides cure for the disease.

Author Contributions
Conception or design of the work (DC). Data collection (AA, DC). Data analysis and interpretation (AA, DC). Drafting the article (AA). Critical revision of the article (DC). Final approval of the version to be published (AA, DC).

ORCID iD
Albert Alhatem https://orcid.org/0000-0003-1826-6854

REFERENCES
1. Ma NS, Thompson C, Weston S. Brief report: scurvy as a manifestation of food selectivity in children with autism. *J Autism Dev Disord*. 2016;46:1464–1470.
2. Ververs M, Muriithi JW, Burton A, Burton JW, Lawi AO. Scurvy outbreak among south Sudanese adolescents and young men: Kakuma refugee camp, Kenya, 2017–2018. *MMWR Morb Mortal Wkly Rep*. 2019;68:72–75.
3. Golriz F, Donnelly LF, Devaraj S, Krishnamurthy R. Modern American scurvy: experience with vitamin C deficiency at a large children’s hospital. *Pediatr Radiol*. 2017;47:214–220.
4. Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: The National Academies Press, 2000.
5. Brown A. The anemia of scurvy. *Glasgow Med J*. 1951;32:95–109.
6. Mueller JF, Will JJ. Interrelationship of folic acid, vitamin B12 and ascorbic acid in patients with megaloblastic anemia. *Am J Clin Nutr*. 1955;3:30–44.
7. Will G, Murdoch WR. Megaloblastic anemia associated with adult scurvy. *Postgrad Med J*. 1960;36:502–504.
8. Cox EV, Meynell MJ, Northam BE, Cooke WT. The anemia of scurvy. *Am J Med*. 1967;42:220–227.
9. Ashiuth P, Oelbaum MH, Dawson DW. Scurvy megablastic anemia responding to ascorbic acid alone. *Br Med J*. 1967;4:402.
10. Jacob RA, Otradovec CL, Russell RM, et al. Vitamin C status and nutrient interactions in a healthy elderly population. *Am J Clin Nutr*. 1988;48:569–582.
11. Caffola A, Dragoni F, Girelli G, et al. Effect of folic acid and vitamin C supplementation on folate status and homocysteine level: a randomised controlled trial in Italian smoker-blood donors. *Atherosclerosis*. 2002;163:105–111.
12. Lucock MD, Priestnall M, Daskalakis I, Schorah CJ, Wild J, Levine MI. Non-enzymatic degradation and salvage of dietary folic acid: physicochemical factors likely to influence bioavailability. *Biochim Biophys Acta*. 1995;55:43–53.
13. Levine M, Conry-Cantilena C, Wang Y, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. *Proc Natl Acad Sci U S A*. 1996;93:3704–3709.
14. Olson JA, Hodges RE. Recommended dietary intakes (RDI) of vitamin C in humans. *Am J Clin Nutr*. 1987;45:693–703.
15. Carr AC, Pullar JM, Moran S, Vissers MC. Bioavailability of vitamin C from kiwifruit in non-smoking males: determination of “healthy” and “optimal” intakes. *J Nutr Sci*. 2012;2:1–14.
16. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. *Am J Clin Nutr*. 1999;69:1086–1107.
17. Levine M, Eck P. Vitamin C: working on the x-axis. *Am J Clin Nutr*. 2009;90:1121–1123.
18. Golding PH. Experimental folic acid deficiency in human subjects: what is the influence of vitamin C status on time taken to develop megaloblastic anaemia. *BMC Hematol*. 2018;18:13.