Supporting material for

Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta: An Amniote with Self-Repair Capabilities.

Valentin-Kahan et al., 2017.

De novo transcriptome assembly

Since no genome reference exists for T. scripta, a de novo assembly was carried out. Among the seven libraries sequenced in this study only that prepared using T. scripta RNA, isolated from a pool of three different tissues (liver, CNS, and muscle) was used in this phase of the analysis. Before assembling, sequencing reads obtained from this library (2x100 nt paired end, obtained with GAIIx) were quality filtered. Specifically, undetermined and low quality bases were trimmed out, and the resulting read fragments shorter than 70 nt were discarded. The read set thus obtained was subjected to further filtering in order to eliminate adapters and rRNA derived reads.

We tested 4 pipelines: Trans-abyss, Cap3 + Abyss, Oases and Trinity, aiming to determine which one performs better in our dataset, namely optimizing two parameters: the completeness of the reconstructed transcripts and the number of transcripts that are effectively recovered. The test was conducted as follows: a group of 62 full length T. scripta mRNAs (downloaded from GenBank which were obtained by Sanger sequencing from individually isolated mRNA molecules) was used as the gold standard. For each of the assemblers we measured the number of mRNA that were recovered and the % of completeness. A Q scores, which was defined as the weighted averaged of the quantity and quality of reconstructed mRNAs (Q=∑NiPi., where P is the proportion of the reference mRNA that is well reconstructed (i.e. completeness) and Ni is the number of mRNAs reconstructed at a Pi proportion, further details described in Greif et al, 2013). As shown in the figure presented below, Trinity was the assembler which performed the best. In effect, even if the combination of Abyss+CAP3 reconstructed a higher proportion of mRNAs, the completeness of its reconstruction are considerably lower than that of Trinity. In turn, Oases and Abyss(alone) clearly down-performed in comparison to the other two. This final assembly obtained by Trinity, and used for downstream analysis, consisted of 244912 contigs with a N50 of 1143 bp. The assembly was done using both paired-end and single reads (orphan pairs after filtering) as described by the developers of Trinity.

Orthology assignment

Identification of orthologs was performed using a strategy that combined an automatic detection step using the program fastortho (http://enews.paticrbc.org/fastortho/) after which we integrated other sources of information such inspection of phylogenetic trees and online web tools containing databases of vertebrate orthologous genes.

Valentin-Kahan et al., 2017
For fastortho program, the inputs were multifasta files containing all annotated genes (amino acid sequences) from each species. Fastortho uses blastp with a default e-value of 1e-5. From an initial group of homologous genes, fastortho attempts to distinguish between orthologs and paralogs using the Markov Cluster algorithm (MCL; Van Dongen 2000; http://micans.org/mcl/) in the same way as Orthomcl (Li, Stoeckert and Roos, Genome Res. 2003.). For powering the entries in the similarity matrix we used the default inflation value=1.5 (MCL, powers both the matrix and the individual entries).

The set of COGs (Clusters of Orthologous Groups) obtained by using fastortho was submitted to additional checks and refinements. First we addressed special situations; these are the cases of several genes that were missing in the genome of the turtle *Pelodiscus sinensis* that we suspected could be the result of incomplete genome assembly/annotation. This was done by searching for their presence in the genome of another turtle species (*Chelonia mydas*). The results of this study are presented in table S4a. Blastn, and tblastn were used to search in the genomes of *Gallus gallus* and *Anolis carolinensis*. Some genes we suspected their absence could also be attributed to incomplete assembly/annotation (for these two species we also used HCOP, see later).

We also checked in detail problematic COGs having inconsistencies and gene absences. The former refers to situations with higher or lower % of amino acid identity than what would be expected according to the phylogeny. For instance, turtles and human with significantly higher amino acid identity % than turtles and chicken. These "problematic" COGs, were analyzed by visual inspection of reciprocal hits in NCBI blastp and inspection of the phylogenetic tree built with the group of homologs (also examining the phylogenetic trees that are prebuilt in databases of homologs). In many cases the inconsistencies could be attributed to the fact that the annotation in one of the problematic species includes only a gene segment (having lower or higher conservation than the average of the gene). In other cases the inconsistencies were due to incorrect orthology assignment, and these were manually corrected. Other type of COGs considered "problematic" are those having gene absences. An important source of information for checking these latter COGs consisted in searching the presence of homologs in databases of orthologous genes. This search was done on the basis of standard gene symbols (gene names). For this purpose it was necessary, in some cases, to annotate the *C. picta* sequence since had no gene symbol associated to them. To conduct database searches we used HCOP (http://www.genenames.org/cgi-bin/hcop), which is a meta-database of orthologous genes. HCOP integrates data from different sources, including other databases of orthologs such as OrthoDB (http://www.orthodb.org/), OrthoMCL (http://orthomcl.org/orthomcl/), NCBI Homologene (https://www.ncbi.nlm.nih.gov/homologene), Ensembl, Phylomedb (http://phylomedb.org/) among others. HCOP also includes data from species specific databases (which contain manually curated information) such as Zebrafish (ZFIN http://zfin.org/), Xenopus (Xenbase, http://www.xenbase.org/), Chicken (Birdbase http://birdgenenames.org/), etc.

In a few cases there were conflicting results between the fastortho results (which in turn rely on blastp) obtained by us, and those indicated by HCOP. That is, our results indicated that a given gene was absent in a given species, nevertheless an ortholog to the gene in question was reported in the database. Whenever these contradictions appeared we proceeded as follows: the gene was marked as uncertain in figure 6 (violet) and table S4, and we also used psi-blast, a more sensitive homology search program, to look for it in the corresponding virtual proteome. Another source of data used to search for missing genes consisted in examining the genomes of other species that are comparatively close to the species where the gene is missing (such as *C. midas* for the case of *P. sinesis*, rats in the case of mice).

Valentin-Kahan et al., 2017
All the information concerning the conflicting evidence is detailed in table S4 for each problematic gene.
Figure SF1. RNAseq sequencing. A. Quality assessment of raw reads. Note the average lower base calling quality in the 3' region. B. Quality assessment of the same reads after filtering. Only bases with quality above 30 (1 error in 1000 bases) are kept for downstream analysis.
Figure SF2. *T. scripta* transcriptome assembly. A. Number of known genes assembled compared to the total (black bar) for 4 assembly methods: Trinity, Trinity + Cap3 (denoted as Cap3), Oases and Abyss. B. Gene coverage of assembled transcripts. C. Q score (coverage * number of genes assembled) of each assembly method. Denote despite having less coverage the transcripts assembled by this method, it founds the great number of known genes. Known sequences were downloaded from NCBI.
Figure SF3. Analysis of Unmapped reads on *C. picta* genome. A. Shows first hit of this reads to NCBI nr database. B. Shows potential origin of Unmapped reads. Genomic means reads mapping on non coding regions of any species.
Figure SF4 Workflow of the strategy used to identify, isolate and annotate the full length transcripts corresponding to divergent (as well as species specific) genes.
Figure SF5. Schematic representation of alignments between *T. scipta* reconstructed transcripts derived from unmapped reads (red), reconstructed transcripts from the whole transcriptome (i.e all reads) (black line) and *C. picta* CDS homologs (blue line) The prediction of the matching patterns between RNAseq derived contigs (from *T. scipta*) and the genomic sequences from *C. picta* are indicated. The three situations correspond to those shown in figure SF6.
Figure SF6. Alignments of actual sequences illustrative examples of the situations a, b and c depicted in figure SF5.

Figure SF6.1 gene FGF19

Query	Sbjct	
53	ATATTCTACATATTACTACTGAAAAAGCTAAATAATATCCTGTTCTGTAATGTTTCTT	112
	ATATTCTACATATTACTGAAAAAGCTAAATAATATCCTGTTCTGTAATGTTTCTT	60
113	TAAAACCATATTAAAGTCAAGTAGTTATTATTTCTGAAAACTGCGCCTCTC ACTGG	172
	TAAAACCATATTAAAGTCAAGTAGTTATTATTTCTGAAAACTGCGCCTCTC ACTGG	120
173	AGATATTTTAGAGGTGATTCCAAAGGGGTCATGCTGTCAGTTTTCAAGAGGTGAGGAA	232
	AGATATTTTAGAGGTGATTCCAAAGGGGTCATGCTGTCAGTTTTCAAGAGGTGAGGAA	180
233	TAGATCTGATTCCAAAAGTATGACTATAATCCCATATTCCACAAAAATCCATGACTCTAC	292
	TAGATCTGATTCCAAAAGTATGACTATAATCCCATATTCCACAAAAATCCATGACTCTAC	240
293	AGGCACGGGTGTTGATCATAGTAAGAAGTGAACAAATGGAAAGAAGTCTTTCCCTTTGAA	352
	AGGCACGGGTGTTGATCATAGTAAGAAGTGAACAAATGGAAAGAAGTCTTTCCCTTTGAA	300
353	TTGTGTCTTTTTGAGGCACTACTTAAGACACAGAGACTCCATATTTCCTTGTATTTATA	412
	TTGTGTCTTTTTGAGGCACTACTTAAGACACAGAGACTCCATATTTCCTTGTATTTATA	360
413	TACATTGTAGCGCGTCTGGCGATCTCTCTTCTTTCAAGGAGCAATCTTCTGTAGAATACCT	472
	TACATTGTAGCGCGTCTGGCGATCTCTCTTCTTTCAAGGAGCAATCTTCTGTAGAATACCT	420
473	GAGGAGTCCATGCACTCTTCGGTCATCTCCTCTTCAAGGACACTGGGACACTGGGACCC	532
	GAGGAGTCCATGCACTCTTCGGTCATCTCCTCTTCAAGGACACTGGGACACTGGGACCC	480
533	CTTGATCGCCACCGTGGCAACTGCCACCGCCCTGATTTCAGACGAC	579
	CTTGATCGCCACCGTGGCAACTGCCACCGCCCTGATTTCAGACGAC	527

Figure SF6.1 Example of non-divergent alignment between a T. scripta transcriptomic contig and a C. picta genome sequence (Fibroblast growth factor 19, FGF19). Identities = 527/527 (100%), Gaps = 0/527 (0%)

Valentin-Kahan et al., 2017
Figure SF6.2. Gene ANGPTL2

Query	Sbjct	Match
150	1	ACTGCAGCTATTGTCCTCCCTCCATGCTATAGCATGAGAATGTCATCTTAGAGTGCAGCAA
210	61	CTGAGCTGTTTTTTTCTATCAAGGAAAAAACATTAAAAAACATAGAAAGAAGATTAG
270	121	CAGAGCCTTAGGGTATTACCTTTTCTAAAGACAGTATCAAATGTATAAACTTTTCAAGTG
330	181	GCAGTCTAGCTACGTTCCTGCAGACACATCTGCTGACAGAGATGTCACAGTTCCCAT
390	241	GGATAAACGTGTTACATTTCATTGAATTACAGGAAAAAGAAAAATCCAAAAATAA
450	301	AAGGCAAAGGAAACAGATTTTATAAGGCTTCTTGGATGAAGAAAAATCCAAAAATAA
510	361	AGAATGATGAAAGGACAGCAAGATTTTCAAGGATTTTCAATGATCAGTGGGAGGACT
570	421	GCTAGCAAGACACAGGAATTTGGAAGCGAGTGACGGGACACAGAAAGGATTCACTATTAT
630	481	CTTGACAGGTCTAAGCAGGCAACGGCAGCTTCTATTAAACTTCTTATTGTA
690	541	CTCGCCAGAAAGTGCACAGGTCAGTCTTATTGGAATTTCAAGGAGGGCTGAGCTCTTCTTT
750	601	GAAACCCGAAATAAAACCCGAAATTGAACTCGCTTAAACAGAATCCATTCTAAAGCAAAAG
810	661	AGACAAATAGAAACTCTTCCAGCAACTGGGAGGAGGGATGTTGAATTTGATGAGGTT

Valentin-Kahan et al., 2017
Figure SF6.2. Gene ANGPTL2 (cont)

Query 870	AAACCTTTACGAAAAGAAAGTCGGAATATGAACTCTCGTGTCACACAACCTTTATATGCAG	929
Sbjct 721	AAACCTTTACGAAAAGAAAGTCGGAATATGAACTCTCGTGTCACACAACCTTTATATGCAG	780
Query 930	CTGCTACATGAAATTATTCGAAAACGAGACAATGCACTTTCCCCAGCTTTGAAAAT	989
Sbjct 781	CTGCTACATGAAATTATTCGAAAACGAGACAATGCACTTTCCCCAGCTTTGAAAAT	840
Query 990	AAGATATTGAAACAAACTGCTGATATGTTGCAACTTGCAAACAAATACAAGGACCTAGAG	1049
Sbjct 841	AAGATATTGAAACAAACTGCTGATATGTTGCAACTTGCAAACAAATACAAGGACCTAGAG	900
Query 1050	TACAAATATCAACATTTGTCGCAATTTGCACAATAACCAGTCTATAATTGACACGCTA	1109
Sbjct 901	TACAAATATCAACATTTGTCGCAATTTGCACAATAACCAGTCTATAATTGACACGCTA	960
Query 1110	GAAGAAATTTGTCAAAGGATCCTTCATTAACGCAATACCCACCTCCCCCAACCACCCT	1169
Sbjct 961	GAAGAAATTTGTCAAAGGATCCTTCATTAACGCAATACCCACCTCCCCCAACCACCCT	1020
Query 1170	AACAAGATGTATCAGCTCCTCCTACTTACATACATTTAACTCCGATTTAAATCAATAGCTACCAATGAG	1229
Sbjct 1021	AACAAGATGTATCAGCTCCTCCTACTTACATACATTTAACTCCGATTTAAATCAATAGCTACCAATGAG	1080
Query 1230	ATTCAAAGTGAATCTCTTTTAAAGGTCTTACCCACCTATCTACCCACCATGGACCAGTT	1289
Sbjct 1081	ATTCAAAGTGAATCTCTTTTAAAGGTCTTACCCACCTATCTACCCACCATGGACCAGTT	1140
Query 1290	ACTAGCAGTTCAACTCTTCCAACCTGATAAACCCTCTGGAGCTCTGACGCTCCTACAGGCA	1349
Sbjct 1141	ACTAGCAGTTCAACTCTTCCAACCTGATAAACCCTCTGGAGCTCTGACGCTCCTACAGGCA	1200
Query 1350	TTAGAGATGACGCACTTCCATCTCTCTGTGAAACTGAAATACAAATCAG	1409
Sbjct 1201	TTAGAGATGACGCACTTCCATCTCTCTGTGAAACTGAAATACAAATCAG	1260

Figure SF6.2 A: Example of alignment between *T. scripta* RNAseq contig and *C. picta* ANGPTL2 gene (Angiopoietin-related protein 2). Identity is 99%, therefore also in this case reads coming from *T. scripta* will map correctly on this *C. picta* genome.
Figure SF6.3. gene AADA

Query 400 AGATGGGAACCTATTGAA-ATTGGGAGGCAATTAATGAAGAGAGCCCTCCAAGTATCTCT 458
Sbjct 225 AGATGGGAACCTGT- GTGAATATTGGGAGGATTTGATGAAGAGAGCCCTCCAAGTACTCTG 283

Query 459 CCACAAAAAGGATCTCAAGGCTCTGACAGATAGATTGATGAGTGCACTCCAAC 518
Sbjct 344 ATCCTCACACTGCAAATTAGCTACAAGGCAAATTAGGATGAGATGCACTCCAAC 403

Query 519 ATCCCTCCCTGCAAATGGGATGATTGATGAGATGCACTCCAAC 578
Sbjct 344 ATCCTCACACTGCAAATTAGCTACAAGGCAAATTAGGATGAGATGCACTCCAAC 403

Query 579 GCAGCCAGAGAGGTGGCTCAAAGTGTTTGAGATGCTTATTAACCTGGAGAAGACATTTT 638
Sbjct 404 GCAGCCAGAGAGGTGGCTCAAAGTGTTTGAGATGCTTATTAACCTGGAGAAGACATTTT 463

Query 639 TTTTGAAGACCCAGCTCTAAGGCTCTGAGAGTGTAATTGATGTAATTGATGTAATTGTA 698
Sbjct 464 TTTTGGACGCACCTATCCTGCTAAGGCTCTGAGAGTGTAATTGATGTAATTGATGTAATTGTA 523

Query 699 TTATCAATGGCTCTACTGCAAGAGCTCTGAGAGTGTAATTGATGTAATTGATGTAATTGTA 758
Sbjct 524 TTATCAATGGCTCTACTGCAAGAGCTCTGAGAGTGTAATTGATGTAATTGATGTAATTGTA 583

Query 759 CCAGGTGGAACAGAGAAGGGCAAAAAAGGCTAAGAAACTCTTCCCAAGTATCCCTCTCTCAACA 818
Sbjct 584 CCAGATGGGACCCAGAGATGTCAGAAACAGCAACAAACAAC-T-TCCCCAA-TTCTCTGTAACA 640

Query 819 CCGTTCCAAAATGGTGGTAACTTCAATCTGGAACCTCAATATCGACTGCAAGAGAAGAAGA 878
Sbjct 641 CCGTTCCAAAATGGTGGTAACTTCAATCTGGAACCTCAATATCGACTGCAAGAGAAGAAGA 700

Query 879 TATACCACTTTGACAAGATGTTATGATTTCTTTAATATAAGAGATGATTCCATATTATTTTC 938
Sbjct 701 TATACCACTTTGACAAGATGTTATGATTTCTTTAATATAAGAGATGATTCCATATTATTTTC 760

Query 939 TTCAGGTTGGAAGACTAAGAGCAGCATCTCTTCTGTCATGATTGTGGTGATGTCAGTGA 998
Sbjct 761 TTCAGGTTGGAAGACTAAGAGCAGCATCTCTTCTGTCATGATTGTGGTGATGTCAGTGA 820

Query 999 TCAGATGTCGACCTTTTTCTAAAATATTATCTTCTGCTGATGATTGAGAGCTTTTTTAAACAG 1058
Sbjct 821 TCAGATGTCGACCTTTTTCTAAAATATTATCTTCTGCTGATGATTGAGAGCTTTTTTAAACAG 880

Query 1059 GCCCAAAAACTCTTATTGAGAAGGTATTCTCATATATGCAAGAT-TCAAGAT--AG--CC 1114

Valentin-Kahan et al., 2017
Sbjct	Query
881	GCCCCAAACCACCTATTGACAGGTTATTTGCTGATATACA-AGTCTCAACAATGCACACC
1115	AGCAGTTTCTACACAGATCTTAATGTCGAACTTCTCTTCAAAATGGGCAAAGAGGTTTT
940	AGCAGTTTCTACACAGCTTTATGATTGCAGCTTCTTCAGCAGATGCAATGCTTGCT
1175	CTGGGCACTTGATGAATGAATTTACGAGACCAGAGATGCAATGCTTGCA
1000	CTGGGCACTTGATGAATGAATTTACGAGACCAGAGATGCAATGCTTGCT
1177	CTGGGCACTTGATGAATGAATTTACGAGACCAGAGATGCAATGCTTGCT
1235	GCAAGCAGACAAATGTTAATGGGAATTTCGAATACCAGATGATTATGAAATGCT
1060	GCAAGCAGACAAATGTTAATGGGAATTTCGAATACCAGATGATTATGAAATGCT
1292	GCAAGCAGACAAATGTTAATGGGAATTTCGAATACCAGATGATTATGAAATGCT
1238	GCAAGCAGACAAATGTTAATGGGAATTTCGAATACCAGATGATTATGAAATGCT
1296	GCAAGCAGACAAATGTTAATGGGAATTTCGAATACCAGATGATTATGAAATGCT

Identities = 803/966 (83%), Gaps = 14/966 (1%)
Figure SF6.3. A Alignment between *T. scripta* contig and *C. picta* gene AADAT (kynurenine/alpha-aminoadipate aminotransferase). Example of moderately divergent sequence (This example corresponds to situation a in the schematic depiction of figure SF5). Note that the non-matching positions between the species are scattered along the sequences, therefore a substantial proportion of RNseq reads will fail to map onto the *C. picta* genomic sequence. This is shown in panel B that corresponds to screenshots of mapping between reads.
and *T. scripta* contig or *C. picta* gene. Note that few reads map to the genome CDS because of the divergence between species.

Figure SF6.4 A. Gene OAZ1

Query	7	TGTACGGC--AGAGTCTGGCCGCGGGGAAGCGGGGAGGTTCGGGGTTCGACCAGA	64
Sbjct	1	TGTACGGCAAGAGTCTGGCCGCGGGGAAGCGGGGAGGTTCGGGGTTCGACCAGA	60
Query	65	GCCGCGATGTGGAAATCTCTCTCAGCGATACCTCAACAGTCGTCTGCTGGCAGAG	124
Sbjct	61	GCCGCGATGTGGAAATCTCTCTCAGCGATACCTCAACAGTCGTCTGCTGGCAGAG	120
Query	125	AGAAAGAGGGAATAAAAGCACATCAACTCTAGCTGAGCTAGCTATGCGG	184
Sbjct	121	AGAAAGAGGGAATAAAAGCACATCAACTCTAGCTGAGCTAGCTATGCGG	180
Query	185	GCAGCAGCTAATCCCCAGGTTTATTCTAT	
Figure SF6.4 B. Gene OAZ1 Read mapping

RNAseq reads mapped onto the RNA contig (*T. scripta*). Gene OAZ1

Figure SF6.4. A Alignment between *T. scripta* RNAseq contig and *C. picta* gene OAZ1. This is an example of an alignment containing a divergent segment between the two species (but the sequences are conserved in the remaining parts of the gene). Specifically, the divergent region is located between bases 187 and 207 (red). RNAseq reads from *T. scripta* fail to map into this region as shown in panel B, the screenshot of the mapping presented above (black arrow) thus leading to a sub-estimation of expression level.

Valentin-Kahan et al., 2017
Figure SF7. MA-plot. Genes having significantly different abundance levels (FDR<0.1, FC>2) are indicated by red points.
Figure SF8. Heatmap of genes that are downregulated at 4 days post lesion
Figure SF9. Heatmap of genes that are upregulated at 4 days post lesion.