RESEARCH ARTICLE

Parentage Confirmation of Korean Bred Pear Cultivars by Simple Sequence Repeat SSR Genotyping and S-Genotypes Analysis

Hoy-Taek Kim, Arif Hasan Khan Robin, Ill-Sup Nou*

Department of Horticulture, Sunchon National University, Suncheon 57922, Korea

ABSTRACT Identification and authentication of parentage are important for effective pear breeding. Within Korean pear cultivars discrepancies are often reported between parents and offspring in skin color of fruits and also in S-genotypes suggesting that reported parentage was often inappropriate. In Korea, the parentage of the most of pear cultivars was never confirmed at the molecular level. Simple sequence repeat (SSR) genotyping and S-genotype analysis are considered effective in identifying parents. In this study, parentage of nine Korean bred cultivars was confirmed using SSR genotyping and S-genotype analysis. A total of 53 SSR markers were used. Six different haplotype-specific endonucleases were used for restriction cleavage of S-genotypes. Most of the Korean red cultivars had six comparatively shorter S-RNase, \(S_1, S_2, S_3, S_4, S_5, \) or \(S_6 \) of 450 bp in length whereas the Japanese control cultivars had four other comparatively longer S-RNase. Out of nine pear cultivars only ‘Chuwhangbae’ and ‘Whangkeumbae’ had identical SSR genotypes and S-genotype with previously reported parents. For another cultivar, ‘Sujeonbae’, the parents were the mutants of reported parent, ‘Niitaka’. For four other cultivars, SSR and S-genotypes of offspring matched with only one reported parent ‘Niitaka’ but those of another parent did not match. For the two other pear cultivars ‘Soowhangbae’ and ‘Sooyoung’ none of reported parents were confirmed by SSR genotyping and S-genotype analysis. Historically, the parent ‘Niitaka’ was predominant in the Korean pear breeding programs because of its high yield potential and quality. The methods have been used in this study could be used to identify pear cultivars with diverse S-genotypes to eliminate any existing obscure parent-offspring relations.

Keywords Pears, SSR genotype, S-genotype, S-RNase

INTRODUCTION

Pear (\(Pyrus \) spp.) is one of the important fruit in the world that is cultivated in more than 50 countries. In Korea, some local pear cultivars such as, ‘Whangsilri’, ‘Cheongsilri’ (\(Pyrus ussuriensis \) var. \(ovoidea \) Rehder), ‘Cheongdangrori’, ‘Habsilri’ (\(P. ussuriensis \) var. \(viridis \) T.B. Lee) were being cultivated until the beginning of 19th century. Breeding of Korean pear cultivars (\(P. pyrifolia \) Nakai) was started in the late 1920s at the National Institute of Horticultural and Herbal Science (NIHHS) of Rural Development Administration (RDA) in South Korea. The breeding goals at that time were increasing fruit size and improving fruit quality that includes desirable pH, sugar content, flesh firmness and core ratio and also development of disease and pest resistance such as, black spot, scab and mite resistance (Shin et al. 2002). Besides those, utilization of self-compatibility phenomenon was an additional breeding objective aimed to develop labor-saving varieties (Shin et al. 2002). As a part of that extensive pear breeding efforts throughout the 19th century a total of 27 pear cultivars were released by NIHHS between 1969 and 2009 (Cho et al. 2012). A notable number of varieties including ‘Chuwhangbae’, ‘Whangkeumbae’, ‘Hanareum’, ‘Shincheon’, ‘Soowhangbae’, ‘Josengwhangkeum’, ‘Sunhwang’ and ‘Sooyoung’ were bred by using ‘Niitaka’ as one of the parent in those breeding programs. But the same parent ‘Niitaka’ was not used for some other cultivars such as ‘Chuwhangbae’ and ‘Soowhangbae’ (Kim et al. 1986; Hwang et al. 2002; 2005a; 2005b; Shin et al. 2007). Simple sequence repeat (SSR) genotyping in a few notable studies also confirmed that ‘Niitaka’ was not the parent of some pear cultivars as...
Parentage Confirmation of Korean Pear Cultivars

Previously reported (Sawamura et al. 2008; Kim and Nou 2016), other than variation in SSR genotyping of some pear cultivars, such as, ‘Housui’ (Machida et al. 1982; Ishimizu et al. 1998), ‘Kisui’ (Hiratsuka et al. 1998), ‘Tanzawa’ (Castillo et al. 2001), ‘Niitaka’ (Takasaki et al. 2004) and ‘Oharabeni’ (Kim et al. 2007) some of them had discrepancies from their reported parents in terms of skin type and S-genotypes. The registrant parents ‘Ri-14’ (S1S2S4) and ‘Yakumo’ (S1S2S4 and/or S3S4) of ‘Housui’ had smooth skin and a different genetic makeup for self-incompatibility compared to their offspring ‘Housui’ (Machida et al. 1982; Ishimizu et al. 1998). Kimura et al. (2003) analyzed the parentage of 14 pear cultivars by using 20 SSR markers and confirmed that ‘Ri-14’ and ‘Yakumo’ were not the parents of ‘Housui’. The parents of ‘Housui’ were ‘Kousui’ (female parent) and ‘Hiratsuka 1 gou’ (synonym ‘I-33’, male parent) as reported by Sawamura et al. (2004) after SSR genotyping. Furthermore, in a separate study parentage of 55 Japanese pear cultivars was identified by using S-RNase allele and 18 SSR markers (Sawamura et al. 2008). The study by Sawamura et al. (2008) thus identified discrepancy of SSR-genotypes between 10 hybrid cultivars (‘Kisui’, ‘Tanzawa’, ‘Niitaka’, ‘Seiryu’, ‘Akemizu’, ‘Atago’, ‘Echigonishiki’, ‘Ishiiwase’, ‘Shusui’, and ‘Yachiyo’) and their previously reported parents and suggested that these hybrid cultivars have new candidate parents. However, identifying the parent-offspring relationships of pear cultivars is very important to improve breeding efficiencies.

Polymorphism exists in S-genotypes at the S-RNase locus that controls self-incompatibility was previously utilized for the identification of Japanese and Korean bred pear cultivars (Ishimizu et al. 1999; Kim et al. 2002; 2007). In addition, DNA marker based profiling techniques could be also utilized for identifying the parents of pear cultivars. Teng et al. (2002) used random amplified polymorphic DNA markers to classify 118 Asian pear cultivars. Monte-Corvo et al. (2001) reported that inter-simple sequence repeat was effective for identifying parents of P. communis L. cultivars of European origin. Kim et al. (2012) analyzed 80 pear cultivars among them 64 were Japanese (P. pyrifolia), 10 were Chinese (P. ussuriensis) and six were European in origin based on their BRIP markers associated DNA profiling. The authors were able to differentiate cultivar ‘Housui’ from the other Japanese pear cultivars. A large number of SSR markers have been developed in the last two decades from genomic DNAs and ESTs in Japanese and European pears (Yamamoto et al. 2002; 2004; Fernandez-Fernandez et al. 2006; Nishitani et al. 2009). The use of these SSR markers has allowed DNA profiling, parentage analysis, and evaluation of genetic diversity in pear cultivars. To discern the real parent-offspring relationship, some apple cultivars were investigated with S-RNase analysis and SSR markers and revealed their true parentage (Kitahara et al. 2005; Moriya et al. 2011).

In Korea, Cho et al. (2012) used 19 sequence-characterized amplified region (SCAR) markers and nine SCAR markers to distinguish 39 pear cultivars (25 Korean pear cultivars and 14 Japanese pear cultivars). Recently, the SNPs, InDels, and SSRs detected between two cultivars ‘Whangkeumbae’ and ‘Minibae’ by using NGS data have been mapped to the reference genome of the Chinese pear ‘Suli’ (P. bretschneideri) (Oh et al. 2015). The number of total SSRs for ‘Whangkeumbae’ and ‘Minibae’ was 75,000 among them 1,200 were found polymorphic. Despite availability of sufficient techniques and markers, to date the parent-offspring relationship of Korean bred pear has not been analyzed. In this study, the nine Korean bred pear cultivars were analyzed using the S-genotypes with S-RNase analysis and SSR genotypes with 53 SSR markers to confirm their parent-offspring relationship.

MATERIALS AND METHODS

Plant materials, candidate parent selection and isolation of DNA

The nine Korean bred pear cultivars were collected at the NIHHS (Cho et al. 2012; Table 1). SSR genotyping data of 98 pear cultivars were obtained from the literature (Yamamoto et al. 2002; 2004; 2006; 2007; Kimura et al. 2003; Sawamura et al. 2004; Sawamura et al. 2008; submitted manuscript). Candidate parents were selected using MARCO software with 53 SSR markers information. All candidate parents were of Japanese origin. Twelve candidate parent-pear cultivars were collected at the National Institute of Fruit Tree Science (Ibaraki, Japan).
Table 1. The 9 Korean bred pear cultivars and 12 Japanese candidate pear parent cultivars used in this experiment.

Cultivar (synonym)	Registrant parents	Origin
Chuwhangbae	Imamuraaki (S^6S^6)×Nijisseki (S^4S^4)	Korea
Whangkeumbae	Niitaka (S^3S^3)×Nijisseki (S^4S^4)	Korea
Hanareum	Niitaka (S^3S^3)×Chuwhangbae (S^4S^4)	Korea
Shincheon	Niitaka (S^3S^3)×Chuwhangbae (S^4S^4)	Korea
Soohwangbae	Chojuro (S^5S^5)×Kimitsukawase (S^3S^3)	Korea
Sooyoung	Niitaka (S^3S^3)×Okusankichi (S^5S^5)	Korea
Sunhwang	Niitaka (S^3S^3)×Shinko (S^5S^5)	Korea
Sujeongbae	Niitaka (S^3S^3)×Soohwangbae (S^4S^4)	Korea
Kikusui	Nijisseiki (S^4S^4)×Kimitsukawase (S^3S^3)	Japan
Imamuraaki	Breeding process is unknown	Japan
Nijisseki	Discovered in 1888, named in 1904	Japan
Niitaka	Amanogawa (S^3S^3)×Chojuro (S^5S^5)	Japan
Chojuro	Sown in 1889, fruited in 1893	Japan
Kimitsukawase	Shinko os Doitsu (S^3S^3)	Japan
Okusankichi	Sown in 1840-1850	Japan
Tama	Gion (S^3S^3)×Kosui (S^3S^3)	Japan
Chojuro	Asahi (S^3S^3)×Kimitsukawase (S^3S^3)	Japan
Shinsui	Kikusui (S^3S^3)×Kimitsukawase (S^3S^3)	Japan
Shinko	Nijisseiki (S^3S^3)×Amanokawa (S^3S^3)	Japan
Ichiharawase	Discovered in 1892 or 1893	Japan
Kinchaku	Breeding process is unknown, local cultivar	Japan

(Sawamura et al. 2008; Table 1). Genomic DNA was extracted from young leaves by using a Genomic tip 20/G (Qiagen, Germany) using the method previously followed by Yamamoto et al. (2006). The extracted genomic DNA was used for SSR analysis and polymerase chain reaction (PCR)-cleaved amplified polymorphic sequences analysis of S-RNases.

Data analysis and SSR genotyping by SSR markers

A total of 53 SSR markers were selected from 96 SSR markers developed for apple and pear (Yamamoto et al. 2002; 2004; 2006; 2007). PCR amplification was performed according Yamamoto et al. (2002) except that the forward primers labeled with a fluorescent dye. The PCR products were separated by electrophoresis on a POP-4 polymer and detected using a Genetic Analyzer 3100 (PE Applied Biosystems, DriveFoster City, CA, USA). The size of amplified bands was scored using an internal DNA standard (GeneScan-400HD ROX; PE Applied Biosystems) with GeneScan software (PE Applied Biosystems). The parent-offspring relationships of Korean bred pear cultivars were analyzed by comparing the SSR alleles in each cultivars with registrant parents using the MARCO software (Fujii et al. unpublished as cited by Shoda et al. 2012). Furthermore, to identify minimal number of marker subsets, MinimalMarker software (Fujii et al. 2007) was used because that was necessary to distinguish all of the cultivars to find out identical genotypes of the 21 cultivars generated by the 53 SSR markers.

S-RNase genotyping by PCR-restriction fragment length polymorphism (RFLP) analysis

PCR amplification was performed using the S-RNase-specific primers, FTQYQ (TTTACGCAATATCAG) and PSpri (DKWCSCRCAGWGCCATGTTT), which were designed from S-RNase high homology region of pear and amplified S^1 to S^9-RNase and S^9-Rase, as described by Kim et al. (2007). The amplified S-RNase fragments were checked and digested with the haplotype-specific restriction enzymes SfiI (S^1), PpuMI (S^3 and S^5), NdeI (S^4), AlwNI (S^5), and BsrBI (S^9) to determine their size after agarose gel electrophoresis as described by Kim et al. (2002).
RESULTS

Determination of candidate parent of Korean pear cultivars by using SSR genotyping

SSR genotyping based on 53 SSR markers revealed the parentage of nine Korean bred pear cultivars (Table 2). The SSR genotypes of ‘Chuwhangbae’ (‘Imamuraaki’ × ‘Nijisseiki’) and ‘Whangkeumbae’ (‘Nijisseiki’ × ‘Niitaka’) were confirmed and matched with the registrand parents SSR genotypes by all SSR markers (Table 2). We confirmed that one SSR allele each from ‘Hannareum’, ‘Shinchon’, ‘Josaengwhangkum’ and ‘Sunhwang’ was inherited from registrand parent ‘Niitaka’, i.e., those 4 pear cultivars had one identical SSR allele of ‘Niitaka’ (Table 2). But they did not have identical SSR alleles with another registrand parent. In addition, two cultivars ‘Soowhangbae’ and ‘Sooyoung’ had different SSR alleles that were not matched with parents (Table 2). Therefore, we concluded that two pear cultivars ‘Chuwhangbae’ and ‘Whangkeumbae’ were bred from a breeding program between registrand parent, but other six pear cultivars were bred from a cross between other non-reported parents. Also, the SSR genotype of ‘Sujeongbae’ being a mutant of ‘Niitaka’ was identical with ‘Niitaka’ (data not shown).

The 53 SSR alleles of five pear cultivars were inherited from SSR alleles of each parent. The candidate parents of ‘Hannareum’ were ‘Niitaka’ and ‘Tama’; those of ‘Shinchon’ were ‘Niitaka’ and ‘Chouju’; those of ‘Sunhwang’ were ‘Niitaka’ and ‘Shinsui’, and those of ‘Soowhangbae’ were ‘Niitaka’ and ‘Nijisseiki’ (Table 3). The cultivar ‘Josaengwhangkum’ was the offspring of ‘Niitaka’ and ‘Nijisseiki’ similar to ‘Whangkeumbae’ although ‘Shinko’ was the reported parent instead of ‘Nijisseiki’ (Table 3). Therefore we suggested that the pear cultivars developed between 1966 and 1986, ‘Soowhangbae’, ‘Josaengwhangkum’ and ‘Whangkeumbae’ were the selected offspring of a cross between ‘Niitaka’ and ‘Nijisseiki’. The cultivar ‘Okusankichi’ was identified as one candidate parent of ‘Sooyoung’ (Table 3). The cultivar ‘Niitaka’ was another reported parent of ‘Sooyoung’ (Table 3). However out 53 SSR alleles not even one allele of ‘Sooyoung’ matched to ‘Niitaka’. Thus the second parent of cultivar ‘Sooyoung’ remain obscure.

S-genotyping by S-RNase PCR-RFLP analysis

The S-genotypes of following five Korean pear cultivars: ‘Sujeongbae’, ‘Hannareum’, ‘Shinchon’, ‘Sooyoung’ and ‘Josaengwhangkum’ were identified by S-RNase PCR-RFLP analysis in this study. The S-genotypes of remaining four cultivars in Table 1 were studied by Kim et al. (2002). The S-RNase PCR analysis amplified S-locus of 11 pear cultivars including six control pear cultivars of Japanese origin and five Korean cultivars. S-genotyping identified nine different types of S-locus from S^1 to S^9 and S^0-RNase (Fig. 1). S^1, S^3, S^4, S^5, S^6 or S^7-RNase were about 450 bp in length, S^8-RNase was 500 bp in length, S^9-RNase was 1,065 bp length and S^0-RNase were 1,414 bp and 1,374 bp in length respectively. The Japanese control pear cultivars had all S-RNase whereas four Korean cultivars (except ‘Sujeongbae’) had only the shortest S^1, S^3, S^4, S^5, S^9 or S^0-RNase of 450 bp length. The cultivar ‘Sujeongbae’ had S^0-RNase in addition to other six types of S-RNase present in four other Korean cultivars (Fig. 1). For the determination of S-genotype, the S-RNase PCR fragments of 5 Korean pear cultivars were digested with S-allele specific enzymes (PpuMI; S^3- and S^9-allele specific, AlwNI; S^6-allele specific, BsrBI; S^3-allele specific, NdeI; S^9-allele specific and ScaI; S1-allele specific) (Fig. 2). The S-RNase PCR fragments of ‘Sujeongbae’ were digested with PpuMI (S^3- and S^9-allele specific) and BsrBI (S^9-allele specific), but was not digested with AlwNI (S^6-allele specific) (Fig. 2A). Thus, the S-genotype of ‘Sujeongbae’ was determined as S^3/S^9. The S-genotype of ‘Sujeongbae’ corresponded with the S-genotype of ‘Niitkata’ (S^3/S^9) because the ‘Sujeongbae’ is a mutant of ‘Niitkata’ (Fig. 2). The S-RNase PCR fragments of ‘Hannareum’ and ‘Josaengwhangkum’ were digested with S^3- and S^9-allele specific enzymes (Fig. 2B, C). The S-genotypes of ‘Hannareum’ and ‘Josaengwhangkum’ were identical, S^3/S^9 (Fig. 2). The S-RNase PCR fragments of ‘Shinchon’ were digested with S^3- and S^9-allele specific endonucleases. The S^9-allele specific endonuclease was unable to digest the S-RNase PCR fragments of ‘Shinchon’ (Fig. 2D). Thus, the S-genotype of ‘Shinchon’ was determined as S^3/S^9 that was not corresponded with the S-genotype of registrand parents ‘Niitaka’ (S^3/S^9) and ‘Chuwhangbae’ (S^9/S^9). The
Errors²	Parent/Offspring	Cultivar	SSR markers³												
			TsuENH003	CN444636	TsuENH045	CH001b0	NH023a	NB113a	TsuENH074	BGA35	NH011b	CH02h11a	CH02c02b	CH03a09	NB103a
0	Parent	Imamuraaki	FF	BG	BD	DF	BC	DH	AB	EE	FG	AC	BI	AC	DD
0	Parent	Nijiiseiki	GG	AE	DD	DF	CJ	CC	CC	EE	DE	BE	BF	AC	BB
0	Offspring	Chawhangbae	FG	BE	BD	DF	CC	CD	AC	EE	DF	AE	BB	AA	BD
0	Parent	Nijiiseiki	GG	AE	DD	DF	CJ	CC	CC	EE	DE	BE	BF	AC	BB
0	Parent	Niitaka	FG	AB	BE	AD	CG	DE	AD	EE	EF	AB	BG	AB	BD
0	Offspring	Whangleumhabe	GG	AE	DE	AD	GJ	CD	AC	EE	EE	BB	BB	BC	BB
0	Parent	Niitaka	FG	AB	BE	AD	CG	DE	AD	EE	EF	AB	BG	AB	BD
0	Parent	Chawhangbae	FG	BE	BD	DF	CC	CD	AC	EE	DF	AE	BB	AA	BD
11	Offspring	Hanareum	GG	BE	BD	DD	CC	CD	AC	EE	EF	AD	BG	BC	BD
0	Parent	Niitaka	FG	AB	BE	AD	CG	DE	AD	EE	EF	AB	BG	AB	BD
12	Parent	Chawhangbae	FG	BE	BD	DF	CC	CD	AC	EE	DF	AE	BB	AA	BD
22	Offspring	Shincheon	FG	AE	EE	AF	CG	CE	CD	EE	EF	BB	BB	AA	BF
0	Parent	Niitaka	FG	AB	BE	AD	CG	DE	AD	EE	EF	AB	BG	AB	BD
17	Parent	Shinko	FG	BE	DD	DF	CC	CD	AC	EE	DF	AE	BB	AC	BD
20	Offspring	Josaengwhangkum	GG	AE	DE	DD	CG	CE	CD	EE	EE	BB	FG	AA	BB
0	Parent	Niitaka	FG	AB	BE	AD	CG	DE	AD	EE	EF	AB	BG	AB	BD
20	Parent	Okunamichi	EF	BE	DD	DF	CC	DE	AE	AE	FF	AC	BF	CC	DE
28	Offspring	Sunhwang	GG	BE	BE	DF	GG	GE	CD	AE	EE	BB	BB	AA	DF
10	Parent	Chojuo	BC	AD	BD	AA	AD	CC	CD	AB	BC	BE	AA	AB	AC
18	Parent	Kimitsuakwase	CC	AD	BD	AD	AC	CD	CB	AB	AA	AC	BE	BE	BE
34	Offspring	Soowhangbae	BC	AB	BC	CD	BB	AC	CD	BB	BB	AE	AA	AC	AC
12	Parent	Niitaka	FG	AB	BE	AD	CG	DE	AD	EE	EF	AB	BG	AB	BD
13	Parent	Soowhangbae	FG	AB	BD	DF	CC	CD	EE	DF	AE	BB	AC	BD	BD
29	Offspring	Sooyoung	EF	BB	AD	CF	BC	DE	AD	EE	AF	AA	BB	AC	DD

²Numbers of the not matched simple sequence repeat (SSR) alleles among the parent and offspring by the MARCO software. Letters A to J was generated by the MARCO software correspond to each SSR fragment.

³Different SSR alleles among the parent and offspring were indicated by shaded box.
Table 2. Continued.

Parent Offspring	Cultivar	SSR markers
Parent Imamuraaki	AA	BB BC CG CD
Parent Nijiiroki	AC	AB BC GH AC
Offspring Chuwangbae	AC	AB BC GH CD
Parent Nijiiroki	AC	AB BC GH AC
Offspring Whangkeumbae	AA	BB AC CE CD
Parent Nijiiroki	AA	BB AC CE CD
Offspring Chuwhangbae	AC	AB BC GH CD
Parent Nijiiroki	AC	AB BC GH AC
Offspring Hanareum	AA	BB BC CG DD
Parent Nijiiroki	AA	BB AC CE CD
Offspring Shincheon	AA	BB AB EG CD
Parent Nijiiroki	AA	BB AC CE CD
Offspring Hwangwhangkum	AA	BB AB AC CC
Parent Nijiiroki	AA	BB AC CE CD
Offspring Okusanraki	AA	BB CC DG CE
Parent Nijiiroki	AA	BB AC CE DD
Offspring Chojuro	AA	BB AA DH BC
Parent Kimitakawase	AA	BB AC BH BC
Offspring Soowhangbae	AB	BB AC DF AB
Parent Nijiiroki	AA	BB AC CE CD
Offspring Sooyoung	AA	AB AC DF CE
Table 2. Continued.

Parent/Offspring	Cultivar	SSR markers[^1]													
		CH104h02	TsuEN1H032	NH105a	CH104d08	NH1207a	CH104g04	CH105d11	NH104a	CH104d02	NH1009b	NH120a	NH1004a	CH104c07	TsuEN1H032
Parent Imamuraaki	AB	AA	DH	AA	AB	BG	DE	CE	DI	AC	GK	AJ	BD	AG	
Parent Nijinshiki	CD	BC	BB	AC	BB	BB	DD	EE	DD	EE	AJ	EI	AB	AG	
Offspring Choongwhangbae	BD	AC	BD	AA	AB	BB	DD	EE	DD	EE	AJ	EI	AB	AG	
Parent Nijinshiki	CD	BC	BB	AC	BB	BB	DD	EE	DD	EE	AJ	EI	AB	AG	
Offspring Whangkeunbae	DD	CC	BD	AC	BB	BB	DD	CE	DI	EE	JK	EI	AD	AA	
Parent Nijinshiki	CD	AC	DF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH	
Offspring Hanareum	DD	AC	DF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	GH	
Parent Nijinshiki	CD	AC	DF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH	
Parent Choongwhangbae	BD	AC	BD	AA	AB	BG	DE	CE	DI	AE	JK	EI	BB	GG	
Parent Nijinshiki	CD	AC	DF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH	
Offspring Shinko	AC	AC	BA	BB	AB	BG	DE	DE	DI	BK	EI	AD	GH		
Parent Nijinshiki	CD	AC	DF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH	
Offspring Sooyoung	BD	AA	AE	AA	CD	CE	DD	AA	BG	AE	BC	GG	AA	AG	

[^1]: The SSR markers are represented by one-letter codes corresponding to specific DNA sequences.
Table 2. Continued.

Parent/Offspring	Cultivar	SSR markers^a
Parent	Imamuraaki	CC BC DE CD BE GG BE DG BB CD BC BC BD
Offspring	Chuwangbae	CC AC DF CC EF GI DE EG AB DE BG CD BC BC BD
Parent	Nijimeki	CC AA FF CC CF BI DE DE DE BG DD BG BH CG
Offspring	Whangkeumnae	CC AB EF CE BE EF GI DE DE DE FG AD BB BB EG
Parent	Nijimeki	CC AB EF CE BE EF GI AB DE DE BC AC BE BF BE
Offspring	Nijimeki	CC AC DF CC EF GI DE EG BG CD BC BC CD
Parent	Chuwangbae	CC AA FF DE BD BE AA EE BB AD BB BB EE
Offspring	Hanareum	CC AC DF CC EF GI DE EG BG CD BC BC CD
Parent	Nijimeki	CC AB EF CE BE EG AB DE DE BF AC BE BF BE
Offspring	Shincheon	CC AB EF CD DE GH BE DE EF AC AB AB EG
Parent	Nijimeki	CC AB EF CE BE EF GI AB DE BF AC BE BF BE
Offspring	Shincheon	CC AB EF CE BC BE AD DE BF CD BG BH BG
Parent	Josaengwhangkum	CC AB EF CE BC BE AD DE BF CD BG BH BG
Offspring	Niitaka	CC AA FF DE BD EI BD DD EF AC BE BF EE
Parent	Oktusankichi	BC AC CF CD DE GH DE DE FG CD AD AD BC
Offspring	Sanhwang	CE AA FF DE BD EI BD DD EF AC BE BF EE
Parent	Kimisakawai	CE AA EE BB CC AA BC CC BD AC AB AB BC
Offspring	Soowhangbae	CC AA EE CC AB AB AD CC AD AC BB BG BF
Parent	Nijimeki	CC AB EF CE BE EG AB DE DE BF AC BE BF BE
Offspring	Soowhangbae	CC AA FF EE BC BE AE EE BG AD BB BH BG
Offspring	Sooyoung	AC BC AC CC BE GH AE CE BF AC AD AD AC
Table 3. SSR genotyping analysis of candidate parents and 7 Korean bred pear cultivars by the 53 SSR markers and the MARCO software.

Errors^z	Parent/Offspring	Cultivar	SSR markers^y
0 Parent Tama	Tama	GG EE DD DD DD CJ CC CC CC EE DE DE BD BF AC BB	
0 Parent Niitaka	Niitaka	FG AB BE AD CG DE AD EE EE EF AB BG AB BD	
0 Offspring Hanareum	Hanareum	GG BE BD DD CC CD AC EE EF AD BG BC BD	
0 Parent Chouju	Chouju	GG EE BE AF BG CE CD EE DE BD BB AC BF	
0 Parent Niitaka	Niitaka	FG AB BE AD CG DE EE EF AB BG AB BD	
0 Offspring Shinseiki	Shinseiki	FG AE EE AF CG CE CD EE EF BB BB AA BF	
0 Parent Niitaka	Niitaka	FG AB BE AD CG DE AD EE EF AB BG AB BD	
0 Offspring Soowhangbae	Soowhangbae	FG AB BD DF CC CE CD EE EF DE AE BB AC BD	
0 Parent Niitaka	Niitaka	FG AB BE AD CG DE AD EE EF AB BG AB BD	
0 Offspring Josaengwhangkum	Josaengwhangkum	GG AE DE DD CG CE CD EE EE BB FG AA BB	
0 Parent Shinseiki	Shinseiki	GG CE DE DF GG CH CC CE AD EE EF AB BG AB BD	
0 Parent Niitaka	Niitaka	FG AB BE AD CG DE AD EE EF AB BG AB BD	
0 Offspring Sunhwang	Sunhwang	GG BC BE DF GG CE CD AE EE BB BB AA DF	
1 Parent Okusanoki	Okusanoki	EF BE DD DF CC DE AE AE FF AC BF CC DE	
12 Parent Niitaka	Niitaka	FG AB BE AD CG DE AD EE EF AB BG AB BD	
20 Offspring Sooyoung	Sooyoung	EF BB AD EF BB BB BB AB AC BD	

^z Numbers of the not matched simple sequence repeat (SSR) alleles among the parent and offspring by the MARCO software. Letters A to J was generated by the MARCO software correspond to each SSR fragment.

^yDifferent SSR alleles among the parent and offspring were indicated by shaded box.
Table 3. Continued.

Parent/Offspring	Cultivar	SSR markers¹⁾													
Parent		CH04h02	TsaENH083	NH105a	CH04d08	NH127a	CH04g04	CH05111	NH104a	CH04h02	NH109b	NH120a	NH104a	CH04c07	TsaENH032
Tama		DD	AC	BF	CD	BB	BB	DD	CE	DI	EE	AF	EE	BG	AG
Niitaka		CD	AC	DF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH
Hanareum		DD	AC	BF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH
Chouju		DD	AC	BB	AC	BC	BB	DD	CE	DI	AE	AK	AE	BF	EG
Niitaka		CD	AC	DF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH
Shincheon		CD	AC	BF	AD	BD	BC	CD	CD	FI	CE	BK	EI	DE	AH
P a r e n t															
Niitaka															
Hanareum															
Chouju															
Shincheon															
Nijisseiki															
Soowhangbae															
D a d d i n g															
Parent/Offspring	Cultivar	CH05d03	TsaENH093	CH02e12	NH204a	IPPN17	NH205a	CH02c09	TsaENH1035	NH107b	NH107c	NH105a	TsaENH1033	NH125a	NH108b
Tama		CH	AA	FF	DE	CD	BB	AA	EE	BG	DD	BB	BB	EE	
Niitaka		CG	AB	EF	CE	BE	EE	AB	DE	BF	AC	BE	BF	BE	
Hanareum		CC	AA	FF	DE	BD	BE	AA	EE	BB	AD	BB	BB	EE	
Chouju		CD	AA	FF	DF	DD	BH	BE	EE	BE	AA	AE	AF	EG	
Niitaka		CG	AB	EF	CE	BE	EE	AB	DE	BF	AC	BE	BF	BE	
Shincheon		CD	AB	EF	CD	DE	GH	BE	DE	EF	AC	AB	AB	EG	
Nijisseiki		CE	AA	FF	CE	CF	BF	DE	DE	BG	DD	BG	BH	CG	
Niitaka		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Soowhangbae		CC	AA	FF	EE	BC	BE	AE	EE	BG	AD	BB	BH	BG	
Nijisseiki		CE	AA	FF	CE	CF	BF	DE	DE	BG	DD	BG	BH	CG	
Niitaka		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Nijisseki		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Shincheon		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Okusanikichi		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Josaengwhangkum		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Shinsui		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Okusanikichi		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	
Sooyoung		CG	AB	EF	CE	BE	EG	AB	DE	BF	AC	BE	BF	BE	

¹⁾ SSR markers: CH04h02, TsaENH083, NH105a, CH04d08, NH127a, CH04g04, CH05111, NH104a, CH04h02, NH109b, NH120a, NH104a, CH04c07, TsaENH032.
Fig. 1. S-RNase polymerase chain reaction analysis of 6 Japanese pear cultivars of known S-genotypes and 5 Korean bred pear cultivars by using the FTQQYG-Fam and PsprI primers. Lane 1: Ichiharawase (S₁S₈), lane 2: Nijisseiki (S₂S₄), lane 3: Niitaka (S₁S₈), lane 4: Okusankichi (S₁S₈), lane 5: Imamuraaki (S₁S₈), lane 6: Kinchaku (S₁S₈), lane 7: Sujeongbae, lane 8: Hannareum, lane 9: Shincheon, lane 10: Sooyoung, lane 11: Josaengwhangkum, and M: 100 bp DNA Ladder.

Fig. 2. S-genotypes analysis of five Korean bred pear cultivars by polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis. The S-RNase PCR fragments were digested with S-allele-specific restriction enzymes; a: PpuMI (S₁ and S₈), b: AlwNI (S₁), c: BstBI (S₈), d: NdeI (S₈), e: SfcI (S₁). The digested fragments are indicated by arrows.

digested S-RNase fragments with PpuMI and AlwNI of ‘Sooyoung’ were identical and that was only S₈-RNase (Fig. 2). Thus, the only one S-RNase PCR product of ‘Sooyoung’ was identified; the other S-RNase PCR product was not amplified. Therefore the S-genotype of ‘Sooyoung’ was S₁(S₈S₈). The predicted S-genotype of ‘Sooyoung’ matched neither with registrant parent ‘Niitaka’ (S₁S₁) nor with ‘Soowhangbae’ (S₁S₈).

DISCUSSION

In this study, we confirmed the parents of nine Korean pear cultivars by using the 53 SSR markers and S-RNase
based PCR-RFLP analysis. The SSR and S-genotypes of ‘Chuwhangbae’, ‘Whangkeumbae’ and ‘Sujeongbae’ matched with registrant parents; ‘Imamuraaki’×‘Nijisseiki’, ‘Nijisseiki’×‘Niitaka’ and mutant of ‘Niitaka’, respectively (Table 4). However, the SSR genotypes of ‘Hannareum’ (S3S4) and ‘Josaengwhangkum’ (S3S5) did not matched with the SSR genotypes of registrant parents, but those matched with SSR genotypes of the new candidate parents (‘Niitaka’(S3S6)×‘Tama’(S3S4) for ‘Hannareum’ and ‘Niitaka’(S3S6)×‘Nijisseiki’ (S3S5) for ‘Josaengwhangkum’. Thus our results confirmed that at least one parent of those cultivars was wrongly reported earlier (Table 4).

The S-genotypes of ‘Soowhangbae’ and ‘Sunhwang’ were determined as S3S4 and S3S5 respectively by Kim et al. (2002). However, the authors were unable to confirm the parentage of these two Korean pear cultivars at that time. In this study, the SSR genotypes of two pear cultivars and their registrant parents were found different. Our results suggested that ‘Nijisseiki’×‘Niitaka’ and ‘Niitaka’×‘Shinsui’ were the candidate parents of ‘Soowhangbae’ and ‘Sunhwang’ respectively (Table 4). The S3S4 genotype of ‘Soowhangbae’ could not be obtained from registrant parent ‘Chouju’ (S2S3)×‘Kimitsukawase’ (S4S5), but that could be obtained from the new candidate parents ‘Nijisseiki’ (S2S4)×‘Niitaka’ (S3S6) (Table 4). ‘Shincheon’ and ‘Sooyoung’ were also different from their registrant parents by their SSR genotyping and S-genotyping. ‘Shincheon’ (S3S5) might be originated from the following candidate parent combination: ‘Niitaka’ (S3S6)×‘Chouju’ (S3S5) but the candidate parent of ‘Sooyoung’ was not possible to determine by comparing SSR genotypes of 96 Japanese pear cultivars. Therefore, it could be suggested that ‘Sooyoung’ was possibly a bred of a Korean local cultivars and was not probably a bred of any Japanese pear cultivars (Table 4).

The three Korean pear cultivars namely, ‘Whangkeumbae’, ‘Soowhangbae’ and ‘Josaengwhangkum’ were bred by crossing between ‘Niitaka’×‘Nijisseiki’ as these three cultivars had identical (S3S5) S-genotypes even though fruit characters of those three were different (http://www.niish.go.kr/search/search.asp). Seven out of nine Korean bred pear cultivars namely ‘Whangkeumbae’, ‘Hannareum’, ‘Shincheon’, ‘Soowhangbae’, ‘Josengwhangkum’ and ‘Sunhwang’ were bred using ‘Niitaka’ as a parent probably because ‘Niitaka’ had very high yield potential, producing large fruit with an attractive appearance and good storability (Saito 2016).

In conclusion, we have used 53 reliable SSR markers this study, which were found substantial to determine pear parentage, and the use of S-RNase genes associated PCR-RFLP systems led us towards a reliable determination of S-genotypes. This methods and approaches have been used in this study could be successfully utilized in identifying cultivars with highly diverse S-genotypes and also in identifying obscure relationships between parents and progenies of pear and apple.

Table 4. S-genotypes relationship among the 9 Korean pear cultivars and their parents.

Cultivars	Registrant parents	SSR genotyping	Candidate parents	S-genotype
Sujeongbae	Mutant of Niitaka	S3S5	Niitaka	S3S6
Chuwhangbae²	Imamuraaki (S3S4)	O	Niitaka	S3S6
Whangkeumbae²	Niitaka (S3S6)×Nijisseiki (S3S5)	O	Niitaka (S3S6)×Nijisseiki (S3S5)	S3S6
Hannareum	Niitaka (S3S6)×Chuwhangbae (S3S5)	X	Niitaka (S3S6)×Tama (S3S6)	S3S6
Shincheon	Niitaka (S3S6)×Chuwhangbae (S3S5)	X	Niitaka (S3S6)×Chouju (S3S5)	S3S6
Soowhangbae³	Chouju (S3S4)×Kimitsukawase (S3S5)	X	Niitaka (S3S6)×Nijisseiki (S3S4)	S3S5
Josaengwhangkum	Niitaka (S3S6)×Shinko (S3S5)	X	Niitaka (S3S6)×Nijisseiki (S3S4)	S3S6
Sunhwang³	Niitaka (S3S6)×Okusankichi (S3S5)	X	Niitaka (S3S6)×Shinsui (S3S5)	S3S6
Sooyoung³	Niitaka (S3S6)×Soowhangbae (S3S5)	X	Niitaka (S3S6)×Okusankichi (S3S5)	S3S5

²O is matched the simple sequence repeat (SSR) genotypes among the registrant parents and cultivar, X is not matched the SSR genotypes among the registrant parents and cultivar.

³S-genotypes were previously determined by Kim et al. (2002).
ACKNOWLEDGEMENTS

We thank Yoon-Kyeong Kim in Pear Research Station, National Institute of Horticultural & Herbal Science for plant materials of Korean bred pear cultivars. This research was supported by Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-4-SB110) Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), RDA and Korea Forest Service (KFS).

REFERENCES

Castillo C, Takasaki T, Saito T, Yoshimura Y, Norioka S, Nakanishi T. 2001. Reconsideration of S-genotype assignments and discovery of a new allele based on S-RNase PCR-RFLP in Japanese pear cultivars. Breed. Sci. 51: 5-11.

Cho KH, Shin IS, Kim SH, Kim JH, Kim DH, Shin YU, et al. 2012. Identification of Korean pear cultivars using combinations of SCAR markers. Hort. Environ. Biotechnol. 53: 228-236.

Fernandez-Fernandez F, Harvey NG, James CM. 2006. Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol. Ecol. Notes 6: 1039-1041.

Fujii H, Ogata T, Shimada T, Endo T, Shimizu T, Omura M. 2007. Development of a novel algorithm and the computer program for the identification of minimal marker sets of discriminating DNA markers for efficient cultivar identification. Proc. of the Plant & Animal Genomes XV Conference. International Plant & Animal Genome, San Diego, CA. p.883.

Hiratsuka S, Kubo T, Okada Y. 1998. Estimation of self-incompatibility genotype in Japanese pear cultivars by stylar protein analysis. J. Jpn. Soc. Hort. Sci. 67: 491-496.

Hwang HS, Kim WC, Shin IS, Cho HM, Shin YU, Lee DK, et al. 2005a. Breeding of a new yellow green pear cultivar ‘Josengwangkeum’ (Pyrus pyrifolia Nakai) with high quality for summer season. Korean J. Hort. Sci. Technol. 23: 56-59.

Hwang HS, Shin IS, Kim WC, Cho HM, Shin YU, Hwang JH. 2002. Breeding of the new early season pear cultivar Shincheon. Acta Hort. 587: 299-320.

Hwang HS, Shin IS, Kim WC, Shin YU, Hwang JH, Hong SS. 2005b. Breeding of pear (Pyrus pyrifolia Nakai) cv. Hanareum characterized by early maturity and superior fruit quality. Korean J. Hort. Sci. Technol. 23: 60-63.

Ishimizu T, Inoue K, Shimonaka M, Saito T, Terai O, Norioka S. 1999. PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor. Appl. Genet. 98: 961-967.

Ishimizu T, Norioka S, Nakanishi T, Sakiyama F. 1998. S-genotype of Japanese pear ‘Hosui’. J. Jpn. Soc. Hort. Sci. 67: 35-38.

Kim H, Kakui H, Koba T, Hirata Y, Sassa H. 2007. Cloning of a new S-RNase and development of a PCR-RFLP system for the determination of the S-genotypes of Japanese pear. Breed. Sci. 57: 159-164.

Kim H, Nou I. 2016. Confirmation of parentage of the pear cultivar ‘Nittaka’ (Pyrus pyrifolia) based on self-incompatibility haplotypes and genotyping with SSR markers. Korean J. Hort. Sci. Technol. (in press).

Kim H, Terakami S, Nishitani C, Kurita K, Kanamori H, Katayose Y, et al. 2012. Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breed. Sci. 62: 53-62.

Kim HT, Hirata Y, Nou IS. 2002. Determination of S-genotypes of pear (Pyrus pyrifolia) cultivars by S-RNase sequencing and PCR-RFLP analyses. Mol. Cells 13: 444-451.

Kim YS, Hong KH, Kim JB, Yiem MS, Lee UJ, Kim WC, et al. 1986. A new late-season pear cultivar, ‘Chuwhangbae’. Res. Rpt. RDA (Hort.). 28: 57-61.

Kimura T, Sawamura Y, Kotobuki K, Matsuta N, Hayashi T, Ban Y, et al. 2003. Parentage analysis in pear cultivars characterized by SSR marker. J. Jpn. Soc. Hort. Sci. 72: 182-189.

Kitahara K, Matsumoto S, Yamamoto T, Soejima J, Kimura T, Komatsu H, et al. 2005. Parent identification of eight apple cultivars by S-RNase analysis and simple sequence repeat markers. HortScience 40: 314-317.

Machida Y, Sato Y, Kozaki I, Seiki K. 1982. S-genotypes of several cultivars of Japanese pear and the question of the parents of ‘Hosui’ (in Japanese). J. Jpn. Soc. Hort. Sci. 51(Suppl. 2): 58-59.

Monte-Corvo L, Goulão L, Oliveira C. 2001. ISSR analysis of cultivars of pear and suitability of molecular markers for
clone discrimination. J. Am. Soc. Hort. Sci. 126: 517-522.

Moriya S, Iwanami H, Okada K, Yamamoto T, Abe K. 2011. A practical method for apple cultivar identification and parent–offspring analysis using simple sequence repeat markers. Euphytica 177: 135-150.

Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T. 2009. Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed. Sci. 59: 391-400.

Oh Y, Kim YK, Kim D. 2015. Current status of knowledge and research perspectives in Korean pear genomics. Plant Breed. Biotech. 3: 323-332.

Saito T. 2016. Advances in Japanese pear breeding in Japan. Breed. Sci. 66: 46-59.

Sawamura Y, Saito T, Takada N, Yamamoto T, Kimura T, Hayashi T, et al. 2004. Identification of parentage of Japanese pear ‘Housui’. J. Jpn. Soc. Hort. Sci. 73: 511-518.

Sawamura Y, Takada N, Yamamoto T, Saito T, Kimura T, Kotobuki K. 2008. Identification of parent-offspring relationships in 55 Japanese pear cultivars using S-RNase allele and SSR markers. J. Jpn. Soc. Hort. Sci. 77: 364-373.

Shin IS, Hwang HS, Shin YU, Kim WC. 2007. ‘Sooyoung’: a mid-season pear (Pyrus pyrifolia Nakai) cultivar with high soluble solids and medium size. J. Am. Pomol. Soc. 61: 170-173.

Shin IS, Kim WC, Hwang HS, Shin YU. 2002. Achievements of pear breeding in Korea. Acta Hort. 596: 247-250.

Shoda M, Urasaki N, Sakiyama S, Terakami S, Hosaka F, Shigeta N, et al. 2012. DNA profiling of pineapple cultivars in Japan discriminated by SSR markers. Breed. Sci. 62: 352-359.

Takasaki T, Okada K, Castillo C, Moriya Y, Saito T, Sawamura Y, et al. 2004. Sequence of the S9-RNase cDNA and PCR-RFLP system for discriminating S9- to S9-allele in Japanese pear. Euphytica 135: 157-167.

Teng Y, Tanabe K, Tamura F, Itai A. 2002. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J. Am. Soc. Hort. Sci. 127: 262-270.

Yamamoto T, Kimura T, Hayashi T, Ban Y. 2006. DNA profiling of fresh and processed fruits in pear. Breed. Sci. 56: 165-171.

Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N. 2002. Development of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol. Ecol. Notes 2: 14-16.

Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T. 2004. Identification of quince varieties using SSR markers developed from pear and apple. Breed. Sci. 54: 239-244.

Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, et al. 2007. Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed. Sci. 57: 321-329.