Entropy, Information Matrix and order statistics of Multivariate Pareto, Burr and related distributions

Gholamhossein Yari 1,2
1 Iran University of Science and Technology, Narmak, Tehran 16844, Iran.

Ali Mohammad-Djafari 2
2 Laboratoire des Signaux et Systèmes (CNRS, SUPÉLEC, UPS), Supélec, Plateau de Moulon, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France.

September 18, 2018

Abstract

In this paper we derive the exact analytical expressions for the information and covariance matrices of the multivariate Burr and related distributions. These distributions arise as tractable parametric models in reliability, actuarial science, economics, finance and telecommunications. We show that all the calculations can be obtained from one main moment multi dimensional integral whose expression is obtained through some particular change of variables.

keywords: Gamma and Beta functions; Polygamma functions ; Information matrix; Covariance matrix; Multivariate Burr models.
1 Introduction

In this paper the exact form of Fisher information matrix for multivariate Pareto (IV) and related distributions is determined. It is well-known that the information matrix is a valuable tool for derivation of covariance matrix in the asymptotic distribution of maximum likelihood estimations (MLE). In the univariate case of the above distributions, the Fisher information matrix is found by Brazauskas [4]. As discussed in Serfling [16], section 4, under suitable regularity conditions, the determinant of the asymptotic covariance matrix of (MLE) reaches an optimal lower bound for the volume of the spread ellipsoid of joint estimators. In the univariate case of the Pareto (IV), this optimality property of (MLE) is widely used in the robustness versus efficiency studies as a quantitative benchmark for efficiency considerations (Brazauskas and Serfling [6, 5], Brazauskas [3], Hampel et al [9], Huber [10], Klugman [14], Kimber [13, 12] and Lehmann [15], Chapter 5). These distributions are suitable for situations involving relatively high probability in the upper tails. More specifically, such models have been formulated in the context of actuarial science, reliability, economics, finance and teletrafic. These models arise whenever we need to infer the distributions of variables such as sizes of insurance claims, sizes of firms, income in a population of people, stock price fluctuations and length of telephone calls. For a broad discussion of Pareto models and diverse applications see Arnold [2], Johnson, Kotz and Balakrishnan [11], Chapter 19. Gomes, Selman and Crato [8] have recently discovered Pareto (IV) tail behavior in the cost distributions of combinatorial search algorithms.

This paper is organized as follows: Multivariate Pareto and Burr distribution are introduced and presented in section 2. Elements of the information and covariance matrix for multivariate Pareto (IV) distribution is derived in section 3. Elements of the information matrices for Multivariate Burr, Pareto (III), and Pareto (II) distributions are derived in section 4. Conclusion is presented in section 5. Derivation of first and second derivatives of the log density and the main moment integral calculation are given in Appendices A and B.
2 Multivariate Pareto and Burr distributions

As discussed in Arnold [2] Chapter 3, a hierarchy of Pareto distribution is established by starting with the classical Pareto (I) distribution and subsequently introducing additional parameters related to location, scale, shape and inequality (Gini index). Such an approach leads to a very general family of distributions, called the Pareto (IV) family, with the cumulative distribution function

\[F_X(x) = 1 - \left(1 + \left(\frac{x - \mu}{\theta}\right)^{\frac{1}{\gamma}}\right)^{-\alpha}, \quad x > \mu, \quad (1) \]

where \(-\infty < \mu < +\infty\) is the location parameter, \(\theta > 0\) is the scale parameter, \(\gamma > 0\) is the inequality parameter and \(\alpha > 0\) is the shape parameter which characterizes the tail of the distribution. We note this distribution by Pareto (IV) \((\mu, \theta, \gamma, \alpha)\). Parameter \(\gamma\) is called the inequality parameter because of its interpretation in the economics context. That is, if we choose \(\alpha = 1\) and \(\mu = 0\) in expression (1), the parameter \((\gamma \leq 1)\) is precisely the Gini index of inequality. For the Pareto (IV) \((\mu, \theta, \gamma, \alpha)\) distribution, we have the density function

\[f_X(x) = \frac{\alpha (x - \mu)^{\frac{1}{\gamma} - 1}}{\theta \gamma \left(1 + \left(\frac{x - \mu}{\theta}\right)^{\frac{1}{\gamma}}\right)^{\alpha+1}}, \quad x > \mu. \quad (2) \]

The density of the \(n\)-dimensional Pareto (IV) distribution is

\[f_n(\mathbf{x}) = \left(1 + \sum_{j=1}^{n} \left(\frac{x_j - \mu_j}{\theta_j}\right)^{\frac{1}{\gamma_j}}\right)^{-(\alpha+n)} \prod_{i=1}^{n} \frac{\alpha + i - 1}{\theta_i \gamma_i} \left(\frac{x_i - \mu_i}{\theta_i}\right)^{\frac{1}{\gamma_i} - 1}, \quad x_i > \mu_i, \quad (3) \]

where \(\mathbf{x} = [x_1, \cdots, x_n], x_i > \mu_i, \alpha > 0, \gamma_i > 0, \theta_i > 0\) for \(i = 1, \cdots, n\). One of the main properties of this distribution is that, the joint density of any subset of the components of a Pareto random vector is again of the form (3) [2].

The \(n\)-dimensional Burr distribution has the density

\[f_n(\mathbf{x}) = \left(1 + \sum_{j=1}^{n} \left(\frac{x_j - \mu_j}{\theta_j}\right)^{c_j}\right)^{-(\alpha+n)} \prod_{i=1}^{n} \frac{(\alpha + i - 1)c_i}{\theta_i} \left(\frac{x_i - \mu_i}{\theta_i}\right)^{c_i - 1}, \quad x_i > \mu_i, \quad (4) \]

where \(x_i > \mu_i, \alpha > 0, c_i > 0, \theta_i > 0\) for \(i = 1, \cdots, n\). We note that the multivariate Burr distribution is equivalent to the multivariate Pareto distribution with \(\frac{1}{\gamma_i} = c_i\).
3 Information Matrix for Multivariate Pareto (IV)

Suppose X is a random vector with the probability density function $f_\Theta(.)$ where $\Theta = (\theta_1, \theta_2, ..., \theta_K)$. The information matrix $I(\Theta)$ is the $K \times K$ matrix with elements

$$I_{ij}(\Theta) = -E_\Theta \left[\frac{\partial^2 \ln f_\Theta(X)}{\partial \theta_i \partial \theta_j} \right], \quad i, j = 1, \cdots, K.$$

(5)

For the multivariate Pareto (IV), we have $\Theta = (\mu_1, ..., \mu_n, \theta_1, ..., \theta_n, \gamma_1, ..., \gamma_n, \alpha)$. In order to make the multivariate Pareto (IV) distribution a regular family (in terms of maximum likelihood estimation), we assume that μ is known and, without loss of generality, equal to 0. In this case information matrix is $(2n + 1) \times (2n + 1)$. Thus, further treatment is based on the following multivariate density function

$$f_n(x) = \left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)} \prod_{i=1}^{n} \frac{\alpha + i - 1}{\theta_i \gamma_i} \left(\frac{x_i}{\theta_i} \right)^{\frac{1}{\gamma_i} - 1}, \quad x_i > 0.$$

(6)

The log-density is:

$$\ln f_n(x) = \sum_{i=1}^{n} \left[\ln(\alpha + i - 1) - \ln \theta_i + \left(\frac{1}{\gamma_i} - 1 \right) \ln \left(\frac{x_i}{\theta_i} \right) - \ln \gamma_i \right] - (\alpha + n) \ln \left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right).$$

(7)

Since the information matrix $I(\Theta)$ is symmetric it is enough to find elements $I_{ij}(\Theta)$, where $1 \leq i \leq j \leq 2n + 1$. The required first and second partial derivatives of the above expression are given in the Appendix A. Looking at these expressions, we see that to determine the expression of the information matrix and score functions, we need to find the expressions of:

$$E \left[\ln \left(1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right) \right], \quad E \left[\left(\frac{X_i}{\theta_i} \right)^{\frac{\gamma_i}{\gamma_i}} \right], \quad E \left[\left(\frac{X_i}{\theta_i} \right)^{\frac{1}{\gamma_i}} \right],$$

$$E \left[\ln \left(\frac{X_i}{\theta_i} \right) \right], \quad E \left[\left(\frac{X_i}{\theta_i} \right)^{\frac{\gamma_i}{\gamma_i}} \ln \left(\frac{X_i}{\theta_i} \right) \right], \quad E \left[\frac{\left(\frac{X_i}{\theta_i} \right)^{\frac{1}{\gamma_i}}}{1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j} \right)^{\frac{1}{\gamma_j}}} \right].$$

4
and the general terms
\[
E \left[\frac{(X_l \theta_l)^{n_1}}{n_1!} \left(\frac{X_k \theta_k}{\gamma_k} \right)^{n_2} \ln(n_4 \theta_k) \ln(n_3 \theta_k) \right], \quad (n_1, n_2 > -1) \in \mathbb{R}, n_3, n_4 \in \mathbb{N}^+ \text{ and } n_5 \in \mathbb{R}^+.
\]

3.1 Main strategy to obtain expressions of the expectations

Derivation of these expressions are based on the following strategy: first, we derive an analytical expression for the following integral
\[
E \left[\prod_{i=1}^{n} \left(\frac{X_i}{\theta_i} \right)^{r_i / n_i} \right] = \int_0^{+\infty} \cdots \int_0^{+\infty} \prod_{i=1}^{n} \left(\frac{x_i}{\theta_i} \right)^{r_i / n_i} f_n(x) \, dx,
\]
and then, we show that all the other expressions can be found easily from it. We consider this derivation as one of the main contributions of this work. This derivation is given in the Appendix B. The result is the following:
\[
E \left[\prod_{i=1}^{n} \left(\frac{X_i}{\theta_i} \right)^{r_i / n_i} \right] = \int_0^{+\infty} \cdots \int_0^{+\infty} \prod_{i=1}^{n} \left(\frac{x_i}{\theta_i} \right)^{r_i / n_i} f_n(x) \, dx = \frac{\Gamma(\alpha - \sum_{i=1}^{n} r_i) \prod_{i=1}^{n} \Gamma(r_i + 1)}{\Gamma(\alpha)} \prod_{i=1}^{n} \Gamma(r_i),
\]
where \(\Gamma \) is the usual Gamma function,
\[
\Gamma_{r_l r_k} (\alpha - \sum_{i=1}^{n} r_i) = \frac{\partial^2 \Gamma(\alpha - \sum_{i=1}^{n} r_i)}{\partial r_l \partial r_k}, \quad 1 \leq l, k \leq n,
\]
and integers \(n, m \geq 0 \) (Abramowitz and Stegun [1]). Specifically, we use digamma \(\Psi(z) = \Psi^{(0)}(z) \), trigamma \(\Psi'(z) \) and \(\Psi_{r_l r_k}(z) \) functions. To confirm the regularity of \(\ln f_n(x) \) and evaluation the expected Fisher information matrix, we take expectations of first and second order partial derivatives of \(f_n(x) \). All the other expressions can be derived from this main
result. Taking of derivative with respect to \(\alpha \), from the both sides of the relation

\[
1 = \int_0^{+\infty} f_n(x) \, dx,
\]
leads to

\[
E \left[\ln \left(1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right) \right] = \sum_{i=1}^{n} \frac{1}{\alpha + i - 1}. \tag{10}
\]

From relation (9), for a pair of \((l, k)\) we have

\[
\varphi(r_l, r_k) = E \left[\left(\frac{X_l}{\theta_l} \right)^{\frac{r_l}{\gamma_l}} \left(\frac{X_k}{\theta_k} \right)^{\frac{r_k}{\gamma_k}} \right] = \frac{\Gamma(\alpha - r_l - r_k)\Gamma(r_l + 1)\Gamma(r_k + 1)}{\Gamma(\alpha)}, \tag{11}
\]
and

\[
\frac{\partial^{n_3+n_4}}{\partial r_l^{n_3} \partial r_k^{n_4}} \varphi(r_l = n_1, r_k = n_2) = E \left[\left(\frac{X_l}{\theta_l} \right)^{\frac{n_1}{\gamma_l}} \left(\frac{X_k}{\theta_k} \right)^{\frac{n_2}{\gamma_k}} \ln^{n_3} \left(\frac{X_k}{\theta_k} \right) \ln^{n_3} \left(\frac{X_l}{\theta_l} \right) \right]. \tag{12}
\]

From relation (11), at \(r_k = 0 \) we obtain

\[
E \left[\left(\frac{X_l}{\theta_l} \right)^{\frac{r_l}{\gamma_l}} \right] = \frac{\Gamma(\alpha - r_l)\Gamma(r_l + 1)}{\Gamma(\alpha)}, \tag{13}
\]
and evaluating this expectation at \(r_l = 1 \), we obtain

\[
E \left[\left(\frac{X_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \right] = \frac{1}{\alpha - 1}. \tag{14}
\]

Writing the expression of the expectation

\[
E \left[\left(\frac{X_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \right] = \frac{\alpha}{\alpha + n} E_{\alpha + 1} \left[\left(\frac{X_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \right]. \tag{15}
\]

6
Using (14) with α replaced by $\alpha + 1$, we now obtain an expression for the last expectation as

$$E_{\alpha}\left[\frac{\left(\frac{X_i}{\theta_l}\right)^{\frac{1}{\gamma_l}}}{\left(1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j}\right)^{\frac{1}{\gamma_j}}\right)}\right] = \frac{1}{\alpha + n}. $$

Differentiating (13) with respect to r_l, and replacing for $r_l = 0$ and $r_l = 1$, we obtain the following relations:

$$E\left[\ln\left(\frac{X_i}{\theta_l}\right)\right] = \gamma_l \left[\Gamma'(1) - \Psi(\alpha)\right], \quad \text{(16)}$$

$$E\left[\left(\frac{X_i}{\theta_l}\right)^{\frac{1}{\gamma_l}} \ln\left(\frac{X_i}{\theta_l}\right)\right] = \gamma_l \left[\Gamma'(2) - \Psi(\alpha - 1)\right], \quad \text{(17)}$$

and

$$E_{\alpha}\left[\frac{\left(\frac{X_i}{\theta_l}\right)^{\frac{1}{\gamma_l}} \ln\left(\frac{X_i}{\theta_l}\right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j}\right)^{\frac{1}{\gamma_j}}\right)}\right] = \frac{\alpha}{\alpha + n} E_{\alpha+1}\left[\left(\frac{X_i}{\theta_l}\right)^{\frac{1}{\gamma_l}} \ln\left(\frac{X_i}{\theta_l}\right)\right]. \quad \text{(18)}$$

3.2 Expectations of the score functions

The expectations of the first three partial derivations of the first order follow immediately from the corresponding results for their three corresponding parameters and we obtain:

$$E\left[\frac{\partial \ln f_n(X)}{\partial \alpha}\right] = \frac{n}{\alpha + 1} - E\left[\ln\left(1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j}\right)^{\frac{1}{\gamma_j}}\right)\right] = 0,$$

$$E\left[\frac{\partial \ln f_n(X)}{\partial \theta_l}\right] = -\frac{1}{\theta_l \gamma_l} + \left(\frac{\alpha + n}{\theta_l \gamma_l}\right) E\left[\frac{\left(\frac{X_i}{\theta_l}\right)^{\frac{1}{\gamma_l}}}{\left(1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j}\right)^{\frac{1}{\gamma_j}}\right)}\right] = 0,$$

$$E\left[\frac{\partial \ln f_n(X)}{\partial \gamma_l}\right] = -\frac{1}{\gamma_l} - \frac{1}{\gamma_l^2} E\left[\ln\left(\frac{X_i}{\theta_l}\right)\right] + \left(\frac{\alpha + n}{\gamma_l^2}\right) E\left[\frac{\left(\frac{X_i}{\theta_l}\right)^{\frac{1}{\gamma_l}} \ln\left(\frac{X_i}{\theta_l}\right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{X_j}{\theta_j}\right)^{\frac{1}{\gamma_j}}\right)}\right] = 0.$$
3.3 The expected Fisher information matrix

Main strategy is again based on the integral (9) which is presented in the Appendix B. However, derivation of the following expressions can be obtained mechanically but after some tedious algebraic simplifications:

\[I_x(\alpha) = \sum_{i=1}^{n} \frac{1}{(\alpha + i - 1)^2}, \]

\[I_x(\theta_l, \alpha) = -\frac{1}{\theta_l \gamma_l (\alpha + n)}, \]

\[I_x(\gamma_l, \alpha) = -\frac{1}{\gamma_l (\alpha + n)} [\Gamma'(2) - \Psi(\alpha)], \quad l = 1, \ldots, n, \]

\[I_x(\theta_l) = \frac{\alpha + n - 1}{\theta_l^2 \gamma_l^2 (\alpha + n + 1)}, \quad l = 1, \ldots, n, \]

\[I_x(\gamma_l) = \frac{\alpha + n - 1}{\gamma_l^2 (\alpha + n + 1)} \left[\frac{\Gamma''(\alpha)}{\Gamma(\alpha)} + \Gamma''(1) + 1 \right] \]

\[+ \frac{2(\alpha + n - 2)}{\gamma_l^2 (\alpha + n + 1)} [\Gamma'(1) - \Psi(\alpha)] \]

\[- \frac{2(\alpha + n - 1)}{\gamma_l^2 (\alpha + n + 1)} [\Gamma'(1) \Psi(\alpha)], \quad l = 1, \ldots, n, \]

\[I_x(\theta_l, \theta_k) = -\frac{1}{\theta_l \gamma_l \theta_k (\alpha + n + 1)}, \quad k \neq l, \]

\[I_x(\gamma_l, \gamma_k) = \frac{-1}{\gamma_l \gamma_k (\alpha + n + 1)} \left[(\Gamma'(2))^2 - \Gamma'(2) (\Psi_{r_l}(\alpha) + \Psi_{r_k}(\alpha)) + \Psi_{r_l r_k}(\alpha) \right], \quad k \neq l, \]

\[I_x(\theta_l, \gamma_k) = -\frac{1}{\theta_l \gamma_l \gamma_k (\alpha + n + 1)} [\Gamma'(2) - \Psi_{r_k}(\alpha)], \quad k \neq l, \]

\[I_x(\theta_l, \gamma_l) = \frac{\alpha + n - 1}{\theta_l^2 \gamma_l^2 (\alpha + n + 1)} [\Gamma'(2) - \Psi(\alpha)] - \frac{1}{\theta_l \gamma_l^2 (\alpha + n + 1)} \]

Thus the information matrix, \(I_{\text{MP(IV)}}(\Theta) \), for the multivariate Pareto (IV) \((0, \theta, \gamma, \alpha)\) distribution is

\[I_{\text{MP(IV)}}(\Theta) = \begin{bmatrix}
I(\theta_l, \theta_k) & I(\theta_l, \gamma_k) & I(\theta_l, \alpha) \\
I(\theta_l, \gamma_k) & I(\gamma_l, \gamma_k) & I(\gamma_l, \alpha) \\
I(\theta_l, \alpha) & I(\gamma_l, \alpha) & I(\alpha)
\end{bmatrix}. \]
3.4 Covariance matrix for multivariate Pareto (IV)

Since the joint density of any subset of the components of a Pareto (IV) random vector is again a multivariate Pareto (IV), Arnold [2], we can calculate the expectation

\[
E \left[\left(\frac{X_l - \mu_l}{\theta_l} \right)^{m_l} \left(\frac{X_k - \mu_k}{\theta_k} \right)^{m_k} \right] = \\
\int_0^\infty \int_0^\infty \left(\frac{x_l - \mu_l}{\theta_l} \right)^{m_l} \left(\frac{x_k - \mu_k}{\theta_k} \right)^{m_k} f_{X_l,X_k}(x_l, x_k) \, dx_l \, dx_k = \\
\frac{\Gamma(\alpha - m_l \gamma_l - m_k \gamma_k)\Gamma(m_l \gamma_l + 1)\Gamma(m_k \gamma_k + 1)}{\Gamma(\alpha)},
\]

\[m_l, m_k \in \mathbb{R}, \quad m_l \gamma_l, m_k \gamma_k > -1, \quad \alpha - m_l \gamma_l - m_k \gamma_k > 0. \tag{29}\]

Evaluating this expectation at \((m_l = 1, m_k = 0), (m_l = 0, m_k = 1)\) and \((m_l = 1, m_k = 1)\), we obtain

\[
E \left[X_l \right] = \mu_l + \frac{\theta_l}{\Gamma(\alpha)} \Gamma(\alpha - \gamma_l) \Gamma(\gamma_l + 1), \quad \gamma_l < \alpha, \quad \gamma_l > -1, \tag{30}\]

\[
E \left[X_k \right] = \mu_k + \frac{\theta_k}{\Gamma(\alpha)} \Gamma(\alpha - \gamma_k) \Gamma(\gamma_k + 1), \quad \gamma_k < \alpha, \quad \gamma_k > -1, \tag{31}\]

\[
E \left[X_l X_k \right] = \mu_k E \left[X_l \right] + \mu_l E \left[X_k \right] - \mu_l \mu_k \\
\quad + \frac{\theta_l \theta_k}{\Gamma(\alpha)} \Gamma(\alpha - \gamma_l - \gamma_k) \Gamma(\gamma_l + 1) \Gamma(\gamma_k + 1), \quad \gamma_l + \gamma_k < \alpha, \tag{32}\]

\[
E \left[X_l^m \right] = \frac{\theta_l^m}{\Gamma(\alpha)} \Gamma(\alpha - m_l \gamma_l) \Gamma(m_l \gamma_l + 1), \quad \gamma_l m_l < \alpha, \tag{33}\]

\[
\sigma^2_{X_l} = \frac{\theta_l^2}{\Gamma^2(\alpha)} \left[\Gamma(\alpha - 2\gamma_l) \Gamma(2\gamma_l + 1) \Gamma(\alpha) - \Gamma^2(\gamma_l + 1) \Gamma^2(\alpha - \gamma_l) \right], \quad 2\gamma_l < \alpha, \tag{34}\]

\[
\text{Cov} \left[X, Y \right] = \frac{\theta_l \theta_k (\gamma_l + 1) \Gamma(\gamma_k + 1)}{\Gamma^2(\alpha)} \left[\Gamma(\alpha - \gamma_l - \gamma_k) \Gamma(\alpha) \right. \\
\quad - \Gamma(\alpha - \gamma_k) \Gamma(\alpha - \gamma_l)], \\
\quad 1 \leq l \leq k \leq n, \quad k = 2, \ldots, n. \tag{35}\]
4 Special Cases

4.1 Burr(θ, γ, α) distribution

The Burr family of distributions is also sufficiently flexible and enjoy long popularity in the actuarial science literature (Daykin, Pentikäinen, and Pesonen [7] and Klugman, Panjer, and Willmot [14]). However, this family can be treated as a special case of Pareto (IV): Burr (θ, γ, α) = Pareto (IV) ($0, \theta, \frac{1}{\gamma}, \alpha$) (Klugman, Panjer, and Willmot [14], p. 574).

Since the Burr distribution is a reparametrization of Pareto (IV) ($0, \theta, \gamma, \alpha$), it follows from Lehmann (8), Section 2.7, that its information matrix $I_B(\Theta)$ can be derived from $I_{P(IV)}(\Theta)$ by $JI_{P(IV)}(\Theta)J'$, where J is the Jacobian matrix of the transformation of variables. Thus, the information matrix of multivariate Burr distribution, $I_{MB}(\Theta)$ is then given by $JI_{MP(IV)}(\Theta)J'$, where

$$J = \begin{bmatrix}
I & 0 & 1 \\
0 & I\gamma^2 & 0 \\
1 & 0 & 1
\end{bmatrix}$$

(36)

which is obtained by noting that J is the Jacobian matrix of the transformation (θ, γ, α) → ($\theta, \frac{1}{\gamma}, \alpha$).

4.2 Pareto (III) ($0, \theta, \gamma$) distribution

This is a special case of Pareto (IV) with $\alpha = 1$. Therefore, last row and last column of $I_{MP(IV)}(\Theta)$ vanish (these represent information about parameter α) and we obtain

$$I_{MP(III)}(\Theta) = \begin{bmatrix}
I(\theta_t; \theta_k) & I(\theta_t; \gamma_k) \\
I(\theta_t; \gamma_k) & I(\gamma_t; \gamma_k)
\end{bmatrix},$$

(37)

where we have to substitute $\alpha = 1$ in all the remaining expressions.
4.3 Pareto (II) \((0, \theta, \alpha)\) distribution

This is a special case of Pareto (IV) with \(\gamma = 1\). Therefore \(I(\theta_l, \gamma_k), I(\gamma_l, \gamma_k)\) and \(I(\gamma_l, \alpha)\) in \(I_{\text{MP(IV)}}(\Theta)\) vanish and we obtain

\[
I_{\text{MP(II)}}(\Theta) = \begin{bmatrix}
I(\theta_l, \theta_k) & I(\theta_l, \alpha) \\
I(\gamma_l, \alpha) & I(\alpha)
\end{bmatrix},
\]

(38)

where we have to substitute \(\gamma = 1\) in all the remaining expressions.

5 Conclusion

In this paper we obtained the exact form of Fisher information and covariance matrix for multivariate Pareto (IV) distribution. We showed that all the calculations can be obtained from one main moment multi dimensional integral which has been considered and whose expression is obtained through some particular change of variables. A short method of obtaining some of the expectations as a function of \(\alpha\) is used. To confirm the regularity of the \(\ln f_n(x)\), we showed that the expectations of the score functions are equal to 0. Information matrices of multivariate Burr, Pareto (III) and Pareto (II) distributions are derived as special cases of multivariate Pareto (IV) distribution.
A Expressions of the derivatives

In this Appendix, we give detailed expressions of all the first and second derivatives of \(\ln f_n(x) \) which are needed for obtaining the expression of the information matrix:

\[
\frac{\partial \ln f_n(x)}{\partial \alpha} = \sum_{i=1}^{n} \frac{1}{\alpha + i - 1} - \ln \left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right), \tag{1}
\]

\[
\frac{\partial \ln f_n(x)}{\partial \theta_l} = -\frac{1}{\theta_l \gamma_l} + \left(\frac{\alpha + n}{\theta_l \gamma_l} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)}, \quad l = 1, \ldots, n, \tag{2}
\]

\[
\frac{\partial \ln f_n(x)}{\partial \gamma_l} = -\frac{1}{\gamma_l} \ln \left(\frac{x_l}{\theta_l} \right) + \left(\frac{\alpha + n}{\gamma_l^2} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)}, \quad l = 1, \ldots, n, \tag{3}
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \alpha^2} = -\sum_{i=1}^{n} \frac{1}{(\alpha + i - 1)^2}, \tag{4}
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \theta_k \partial \alpha} = \left(\frac{1}{\theta_k \gamma_k} \right) \frac{\left(\frac{x_k}{\theta_k} \right)^{\frac{1}{\gamma_k}} \ln \left(\frac{x_k}{\theta_k} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)}, \quad k = 1, \ldots, n, \tag{5}
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \gamma_k \partial \alpha} = \left(\frac{1}{\gamma_k^2} \right) \frac{\left(\frac{x_k}{\theta_k} \right)^{\frac{1}{\gamma_k}} \ln \left(\frac{x_k}{\theta_k} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)}, \quad k = 1, \ldots, n, \tag{6}
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \theta_l^2} = \frac{1}{\theta_l^2 \gamma_l} - \left(\frac{\alpha + n}{\theta_l \gamma_l} \right) \left(1 + \frac{1}{\gamma_l} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}}}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)} + \left(\frac{\alpha + n}{\gamma_l^2} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}}}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^2}, \quad l = 1, \ldots, n, \tag{7}
\]
\[
\frac{\partial^2 \ln f_n(x)}{\partial \gamma^2} = \frac{1}{\gamma_l^2} + \frac{2}{\gamma^3} \ln \left(\frac{x_l}{\theta_l} \right) - 2 \left(\frac{\alpha + n}{\gamma_l^3} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)} \\
- \left(\frac{\alpha + n}{\gamma_l^3} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \ln^2 \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^2} \\
+ \left(\frac{\alpha + n}{\gamma_l^3} \right) \left(\frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)} \right)^2, \quad l = 1, \ldots, n, \quad (8)
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \theta_k \partial \theta_l} = \left(\frac{\alpha + n}{\gamma_l \gamma_k \theta_l \theta_k} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \left(\frac{x_k}{\theta_k} \right)^{\frac{1}{\gamma_k}} \ln \left(\frac{x_k}{\theta_k} \right) \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^2}, \quad k \neq l, \quad (9)
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \gamma_k \partial \gamma_l} = \left(\frac{\alpha + n}{\gamma_l \gamma_k \gamma_k^2} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \left(\frac{x_k}{\theta_k} \right)^{\frac{1}{\gamma_k}} \ln \left(\frac{x_k}{\theta_k} \right) \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^2}, \quad k \neq l, \quad (10)
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \gamma_k \partial \theta_l} = \left(\frac{\alpha + n}{\gamma_l \gamma_k \gamma_k^2} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \left(\frac{x_k}{\theta_k} \right)^{\frac{1}{\gamma_k}} \ln \left(\frac{x_k}{\theta_k} \right) \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^2}, \quad k \neq l, \quad (11)
\]

\[
\frac{\partial^2 \ln f_n(x)}{\partial \gamma_k \partial \theta_l} = \frac{1}{\theta_l \gamma_l^2} - \left(\frac{\alpha + n}{\theta_l \gamma_l^2} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}}}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)} \\
- \left(\frac{\alpha + n}{\theta_l \gamma_l^3} \right) \frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}} \ln \left(\frac{x_l}{\theta_l} \right)}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)} \\
+ \left(\frac{\alpha + n}{\theta_l \gamma_l^3} \right) \left(\frac{\left(\frac{x_l}{\theta_l} \right)^{\frac{1}{\gamma_l}}}{\left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)} \right)^2 \ln \left(\frac{x_l}{\theta_l} \right), \quad k \neq l. \quad (12)
\]
B Expression of the main integral

This Appendix gives one of the main results of this paper which is the derivation of the expression of the following integral

\[E\left[\prod_{i=1}^{n} \left(\frac{X_i}{\theta_i} \right)^\gamma \right] = \int_0^{\infty} \cdots \int_0^{\infty} \prod_{i=1}^{n} \left(\frac{x_i}{\theta_i} \right)^\gamma f_n(x) \, dx, \tag{1} \]

where, \(f_n(x) \) is the multivariate Pareto (IV) density function \([3]\). This derivation is done in the following steps:

First consider the following one dimensional integral:

\[
C_1 = \int_0^{\infty} \frac{\alpha}{\theta_1 \gamma_1} \left(\frac{x_1}{\theta_1} \right)^{\frac{\gamma_1}{\gamma_1}} \left(\frac{x_1}{\theta_1} \right)^{\frac{1}{\gamma_1}-1} \left(1 + \sum_{j=1}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)} \, dx_1
\]

\[
= \int_0^{\infty} \frac{\alpha}{\theta_1 \gamma_1} \left(\frac{x_1}{\theta_1} \right)^{\frac{1}{\gamma_1}} \left(\frac{x_1}{\theta_1} \right)^{\frac{1}{\gamma_1}-1} \left(1 + \sum_{j=2}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)} \left(1 + \frac{\left(\frac{x_1}{\theta_1} \right)^{\frac{1}{\gamma_1}}}{1 + \sum_{j=2}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}}} \right)^{-(\alpha+n)} \, dx_1.
\]

Note that, going from first line to second line is just a factorizing and rewriting the last term of the integral. After many reflections on the links between Pareto (IV) and Burr families and Gamma and Beta functions, we found that the following change of variable

\[
\left(1 + \frac{\left(\frac{x_1}{\theta_1} \right)^{\frac{1}{\gamma_1}}}{1 + \sum_{j=2}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}}} \right) = \frac{1}{1-t}, \quad 0 < t < 1,
\](2)

simplifies this integral and guides us to the following result

\[
C_1 = \frac{\alpha \Gamma(r_1 + 1) \Gamma(\alpha + n - r_1 - 1)}{\Gamma(\alpha + n)} \left(1 + \sum_{j=2}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)+r_1+1}.
\](3)

Then we consider the following similar expression:

\[
C_2 = \int_0^{\infty} \frac{\alpha (\alpha + 1) \Gamma(r_1 + 1) \Gamma(\alpha + n - r_1 - 1)}{\theta_2 \gamma_2} \left(\frac{x_2}{\theta_2} \right)^{\frac{\gamma_2}{\gamma_2}} \left(\frac{x_2}{\theta_2} \right)^{\frac{1}{\gamma_2}-1} \left(1 + \sum_{j=2}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)+r_1+1}.
\]
\[
\left(\frac{x_2}{\theta_2} \right)^{\frac{1}{\gamma_2} - 1} \left(1 + \sum_{j=2}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)+r_1+1} \int_{0}^{+\infty} \frac{\alpha(\alpha + 1) \Gamma(r_1 + 1)\Gamma(\alpha + n - r_1 - 1)}{\Gamma(\alpha + n)} \left(\frac{x_2}{\theta_2} \right)^{\frac{1}{\gamma_2} - 1} \left(1 + \sum_{j=2}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)+r_1+1} dx_2,
\]

and again using the following change of variable:

\[
\left(1 + \sum_{j=3}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right) = \frac{1}{1 - t},
\]

we obtain:

\[
C_2 = \frac{\alpha(\alpha + 1)\Gamma(r_1 + 1)\Gamma(r_2 + 1)\Gamma(\alpha + n - r_1 - r_2 - 2)}{\Gamma(\alpha + n)} \left(1 + \sum_{j=3}^{n} \left(\frac{x_j}{\theta_j} \right)^{\frac{1}{\gamma_j}} \right)^{-(\alpha+n)+r_1+r_2+2}.
\]

Continuing this method, finally, we obtain the general expression:

\[
C_n = E \left[\prod_{i=1}^{n} \left(\frac{X_i}{\theta_i} \right)^{\frac{r_i}{\gamma_i}} \right] = \frac{\Gamma(\alpha - \sum_{i=1}^{n} r_i) \prod_{i=1}^{n} \Gamma(r_i + 1)}{\Gamma(\alpha)} \sum_{i=1}^{n} r_i < \alpha, \quad r_i > -1.
\]

We may note that to simplify the lecture of the paper we did not give all the details of these calculations.
References

[1] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions. National Bureau of Standards*, Applied Mathematics Series (1972), no. 55.

[2] B. C. Arnold, *Pareto distributions*, International Cooperative Publishing House, Fairland, Maryland, 1983.

[3] V. Brazauskas, *Fisher information matrix for the Feller-Pareto distribution*, Statist. Probab. Lett. **59** (2002), no. 2, 159–167.

[4] , *Information matrix for Pareto (IV), Burr, and related distributions*, Comm. Statist. Theory and Methods **32** (2003), no. 2, 315–325.

[5] V. Brazauskas and R. Serfling, *Robust and efficient estimation of the tail index of a single-parameter Pareto distribution*, North American Actuarial Journal **4** (2000), no. 4, 12–27.

[6] , *Robust estimation of tail parameters for two-parameter Pareto and exponential models via generalized quantile statistics*, Extremes **3** (2001), no. (3), 231–249.

[7] C. D. Daykin, T. Pentikäinen, and M. Pesonen, *Practical risk theory for actuaries*, Chapman and Hall, London, 1994.

[8] C. P. Gomes, B. Selman, and N. Crato, *Heavy-tailed distributions in combinatorial search*, In Principles and Practice of Constraint Programming CP-97 and Smolka, G. Ed. Lecture Notes in Computer Science **1330** (1997), 121–135.

[9] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, *Robust statistics: The approach based on influence functions*, Wiley, New York, 1986.

[10] P. J. Huber, *Robust statistics*, Wiley, New York, 1981.

[11] N. L. Johnson, S. Kotz, and N. Balakrishnan, *Continuous univariate distributions, 2nd edition*, vol. 1, Wiley, New York, 1994.
[12] A. C. Kimber, *Comparision of some robust estimators of scale in gamma samples with known shape.*, Journal of Statistical Computation and Simulation 18 (1983), 273–286.

[13] -----, *Trimming in gamma samples*, Applied Statistics 32 (1983), no. 1, 7–14.

[14] S. A. Klugman, H. H. Panjer, and G. E. Willmot, *Loss models: From data to decisions*, Wiley, New York, 1998.

[15] E. L. Lehmann, *Theory of point estimation*, Wiley, New York, 1983.

[16] R. J. Serfling, *Approximation theorems of mathematical statistics*, Wiley, New York, 1980.