Updates and Current Perspectives of Psychiatric Assessments after Traumatic Brain Injury: A Systematic Review

Ana Luiza Zaninotto1,2*, Jessica Elias Vicentini3, Felipe Fregni1, Priscila Aparecida Rodrigues2, Cibele Botelho2, Mara Cristina Souza de Lucia4 and Wellingson Silva Paiva2

1 Laboratory of Neuromodulation, Center for Clinical Research Learning, Harvard Medical School (HMS), Charlestown, MA, USA, 2 Department of Neurology, School of Medicine, University São Paulo (USP-SP), São Paulo, Brazil, 3 Department of Neurology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil, 4 Division of Psychology, School of Medicine, University São Paulo (USP-SP), São Paulo, Brazil

Neuropsychological and psychiatric disorders represent a major concern and cause of disabilities after the trauma, contributing to worse recovery after traumatic brain injury (TBI). However, the lack of well-defined parameters to evaluate patient's psychiatric disorders leads to a wide range of diagnoses and symptoms. The aim of this study was to perform a review of literature in order to gather data of the most common scales and inventories used to assess and diagnose depression, anxiety, and posttraumatic stress disorder (PTSD) after TBI. We conducted a literature search via MEDLINE, PubMed, and Web of Science. We included reviews, systematic reviews, and meta-analysis studies, and we used the following keywords: “traumatic brain injury OR TBI,” “depression OR depressive disorder,” “anxiety,” and “posttraumatic stress disorder OR PTSD.” From 610 titles, a total of 68 systematic reviews or meta-analysis were included in the section “Results” of this review: depression (n = 32), anxiety (n = 9), and PTSD (n = 27). Depression after TBI is a more established condition, with more homogeneous studies. Anxiety and PTSD disorders have been studied in a heterogeneous way, usually as comorbidity with other psychiatric disorders. Some scales and inventories designed for the general community may not be appropriate for patients with TBI.

Keywords: traumatic brain injury, psychiatry, depression, anxiety, posttraumatic stress disorder, assessment, scales, inventory reporting, questionnaires

INTRODUCTION

Globally, traumatic injuries are responsible for more than five million deaths annually, and traumatic brain injury (TBI) is one of the leading causes of disabilities and death. It is estimated that 1.7 million cases of TBI occur each year in the United States (USA), resulting in 52,000 deaths (1). Therefore, TBI represents around one-third (30.5%) of all injury-related deaths in the USA (1). Traumatic brain injury usually results in brain disorders, leading to a heterogeneous spectrum of morbidities, ranging from transitory disturbances to permanent symptoms (2–6). Cognitive and psychiatric disorders are the common causes of disabilities and may cause difficulties in recovery after TBI (7–10). In diffuse axonal injury, disruption of the neural circuitry between the prefrontal
cortex and limbic system (11, 12) can result in mood disorders arising even weeks or months after the initial injury (13).

Gordon et al. (14) reviewed rehabilitation in TBI and highlighted the need for a better understanding of the dynamics of recovery. They argue that only a few studies used measures accepted as “gold standards” (14). In 2010, the National Institute of Neurological Disorders and Stroke (NINDS) Common Data Elements (CDE) was created to develop data standards for clinical research in patients with TBI (15). However, even with the proposal of some guidelines, psychiatric functions are still being assessed in a heterogeneous manner (16, 17). Therefore, the aim of this study is to summarize the literature, including reviews, systematic reviews, and meta-analyses, regarding the scales and inventories most commonly used to diagnose and evaluate depression, anxiety, and posttraumatic stress disorder (PTSD) in patients with TBI. To assess a large number of published articles, we used an original method in order to have a global view of the instruments used in diagnosis over the years.

METHODS

We conducted a literature search via online databases including MEDLINE, PubMed, and Web of Science. We included reviews, systematic reviews, and meta-analysis studies. In our search, we used the following keywords: “traumatic brain injury OR TBI,” “depression OR depressive disorder,” “anxiety,” and “post-traumatic stress disorder OR PTSD.” Abstracts and full text were carefully read, and studies were included in our review if they fulfilled the following inclusion criteria: (a) description/citation of the scale, questionnaire, or inventory used, (b) published in a peer-reviewed journal, (c) description of quantitative assessment for diagnosis, (d) full text written in English, and (e) adult participants. We selected studies published up to February 2016. Searching and data analysis were performed by Ana Luiza Zaninotto and Jessica Elias Vicentini, both of whom have experience with mental health intervention and clinical research in TBI. All reviews and full text were read by the two reviewers and were included if they met the above-mentioned inclusion criteria. This selection method follows previous literature (18).

RESULTS

We reviewed 610 titles and abstracts and selected studies according to our inclusion and exclusion criteria. Of those, 362 studies were excluded, of which 248 were reviewed entirely (full text). Sixty-nine studies were included in the review focusing on one or more aspects of the following three topics of interest: (a) depression (n = 32), (b) anxiety (n = 9), and (c) PTSD (n = 27). Of the 68 studies, 11 studies had overlapping topics of interest, since they met criteria for more than one psychiatric disorder (17–27). The abstracts and full text that did not meet the inclusion criteria were excluded from the review (n = 541). The main reasons for exclusion were that the studies did not report the instruments used to assess the psychiatric disorders and/or the psychiatric assessment was not the center of the study (n = 447). The remaining excluded articles (n = 94) were either not related to TBI samples, focused on the neurological basis of the psychiatric disease, discussed pharmacological interventions, or did not focus on psychiatric disorders (depression, anxiety, or PTSD).

Each step of the search and review process is detailed in a flow diagram (Figure 1), based on the PRISMA work group (28).

In Table 1, we present studies (n = 31) that assessed depressive symptoms or diagnosed depression following TBI. Five of these were meta-analyses. Seven studies analyzed assessments of depression related to TBI in veterans, military personnel, or war-related injuries. We observed that the Beck Depression Inventory (BDI) was presented in all the studies, followed by Structured Clinical Interview for DSM (SCID) and Diagnostic and Statistical Manual (DSM) diagnosis criteria. For TBI populations, the BDI, Symptoms Checklist (SCL), and Center for Epidemiologic Studies-Depression Scale (CES-D) were the most cited self-reported scales. For diagnosis of depression, DSM criteria were the most commonly used, followed by International Classification of Diseases (ICD). The most commonly used instrument was the Hamilton Depression Rating Scale (HAM-D). Table 2 shows different instruments were cited to assess depression.

Table 3 shows the nine studies that assessed anxiety disorders after TBI. Eight of these studies overlapped with other psychiatric conditions. Just one review focused on the anxiety sequelae after TBI (99). The Hospital Anxiety and Depressive Symptoms Scale (HADS) was the most cited instrument to assess anxiety, followed by State-Trait Anxiety Inventory (STAI). The DSM criteria were most commonly used to diagnose anxiety. Table 4 shows the instruments cited in the anxiety reviews that were analyzed.

In our search, we found 26 reviews and meta-analyses related to PTSD and TBI. We identified two types of studies, one focusing on military veterans or war-related TBI (n = 13), and another focusing on a non-specific TBI population (n = 13) (Table 5). Table 6 shows a summary of the scales and inventories used to assess PTSD in TBI populations. The PTSD Checklist (PCL) is most commonly used to assess PTSD in veteran and military samples, followed by the Clinician-Administered PTSD Scale (CAPS). PTSD Checklist – Military version (PCL-M) and PTSD Checklist – Civilian version (PCL-C) were the most cited self-reported scales. DSM criteria were used to diagnose PTSD, while ICD was not cited in any of the studies we analyzed.

DISCUSSION

Depression
Major depression and dysthymia are frequently diagnosed using structured clinical interviews meeting DSM or ICD criteria. Depression often occurs in the first year after TBI (12). Estimates for posttraumatic depression range from 6 to 77% (151, 152), depending on diagnostic criteria, assessment methods, and timing post-trauma (22, 23, 152). Concomitant brain injury is a strong predictor of depression after TBI (13). In addition, poor mental health after TBI involves several factors, including young age at the time of injury, short duration between the injury and assessment, pain, lower levels of social support (153), and lack of hope (40). For those patients, consequences of depression include greater interpersonal difficulties, higher rates of unemployment (152), increased rates of distress, and problems with rehabilitation (154).
Some studies focus on specific TBI populations including the elderly, women, and veterans. Menzel (38) reviewed depression in the elderly after TBI, but the author found only one original study (104), leading to inconclusive findings. In their study, Levin et al. (104) assessed depressive symptoms by the Geriatric Depression Scale (GDS). Since this scale has been designed and standardized for geriatric populations with no history of TBI, there is a potential risk of overlapping the symptoms of TBI and depression. In addition, GDS cannot be used as a criterion for diagnostic assessment.

Seven studies addressed combat veterans with sustained TBI (18, 19, 22, 23, 31, 33, 36). They reported limited evidence that deficits and symptoms are distinct between veterans with or without a history of mild TBI (mTBI). O’Neil et al. (23) also highlighted a study (155) that showed an increased risk of suicide post-TBI compared to the non-TBI population. As we reported before, the BDI was the most cited inventory used in this sample. It contains 21 symptoms correlated with self-reported depression. The newer version of the BDI, the Beck Depression Inventory II (BDI-II), produced scores two points higher when compared to the oldest version for psychiatric outpatients (49). For this reason, comparisons between studies need to be carefully done.

One study addressed the literature focusing on women with TBI, comorbidity with depression, and hopelessness (40). The study analyzed symptoms both qualitatively and quantitatively. They concluded that mental health seems to deteriorate after TBI. Social isolation is of particular concern as a consequence of poor emotional functioning in these patients. In their study, the authors also reported on sex-based differences and limited data on the incidence of sex-specific depression.

Osborn et al. (17) showed the prevalence of major depression disorder (MDD) and dysthymia ranged from 14% using International Classification o Diseases (ICD-10) criteria to 43% using DSM-III criteria. For self-reported scales, the range of depression was between 16 and 33%. They found higher prevalence rates of depression using NFI than SCID-I, Schedules for Clinical Assessment in Neuropsychiatry (SCAN), or Mini-International Neuropsychiatric Interview (MINI). The occurrence of MDD and dysthymia appears to rise in the first 5 years after brain injury (from 21 to 43%). However, the majority of the studies used mixed TBI severity samples and did not report separate outcomes for these subgroups (17). Still, the HAM-D is wildly used to diagnose MDD in patients with TBI.

It is appropriate to use the standard diagnostic criteria for depression when evaluating persons with TBI. The CDE recommends scales and inventories to assess symptoms of depression in adults with TBI (15): the BDI-II, Brief Symptom Inventory-18 (BSI-18), CES-D, and Patient Health Questionnaire-9-Item (PHQ-9).

FIGURE 1 | Flow diagram.
Reference	Study design	Study population	Number of analyzed studies/total of studies	Instruments
Adamson et al. (29)	Meta-analysis	Neurologic patients	(3/26)	BDI, HADS
Barker-Collo et al. (30)	Meta-analysis	TBI	13	BDI, BDI-II, CES-D, HAM-D, LSSAD, SCL-90-R
Capehart and Bass (19)	Review	Veterans with TBI and PTSD	N/A	HAM-D, BDI
Cooper et al. (31)	Systematic review	Military veterans with mTBI	(4/19)	BDI, BDI-II
Crisp (32)	Systematic review	MDD, SCI, TBI, CBP, MiCO	(8/54)	BDI, GHQ, CES-D, HAM-D, SCL-90-R
Daggett et al. (33)	Systematic review	Combat veterans who had sustained TBI	(3/17)	BDI, CES-D, CPRS, SCI, VAS-D
Fann et al. (34)	Systematic review	TBI	26	BDI, BDI-II, BPRS, DSM-III-R, HADS, HAM-D, MADRS, PHQ-9, SCL-90-R
Fleming et al. (35)	Review	TBI	(9/N/A)	BDI, DSM-IV, HAM-D, NFI, SCL-90-R
Garrels et al. (23)	Systematic review	ABI	(6/7)	BDI, HADS, HAM-D, SCI-I
Gordon et al. (14)	Systematic review	TBI	N/A	BDI, BDI-II, DSM-IV, CES-D, MCMII, MMPI II, NFI, SCL-90-R, SCI
Halbauer et al. (36)	Review	War-related mild to moderate TBI	N/A	BDI, DSM-III, DSM-III-R, DSM-IV-TR, NFI
Hesdorffer et al. (37)	Systematic review	TBI	(4/N/A)	ICD-9-CM; DIS; PSE, SCI
Kim et al. (21)	Systematic review	TBI	(15/66)	BDI, BDI-II, SCI, DSM III, DSM-III-R, DSM-IV, CES-D, NFI, NIMH-DIS, mNIMH-DIS, SCI-I, Wimbledon-SRS
Matarazzo et al. (18)	Systematic review	Veterans with TBI	3	BDI-II, SCI
Menzel (38)	Systematic review	TBI in elderly	1	GDS
Nowrangia et al. (39)	Review	TBI with suicidal risk	N/A	BDI, HAM-D, SCI
O’Neil et al. (22)	Systematic review	Veterans/military population with mTBI	(8/31)	BDI-II, IV, HADS, SCI-I
O’Neil et al. (23)	Systematic review	Veterans/military population with mTBI	(8/31)	BDI-II, IV, HADS, SCI-I
Osborn et al. (17)	Meta-analysis	Closed TBI	93	BDI-II, BDICES-D, CID, CIS, DIS, DSM-III, DSM-IV, GDS, HADS, ICD-10, LSSAD, MADRS, MINI, SCAN, SCID, PSE, PHQ-9, SCI, SADSL, SCI, ZSDS
Oyesanya and Ward (40)	Systematic review	Woman with TBI	12	BDI-II, Adaptation of BRFSS, CES-D, HADS, DSM-IV
Panayiotou et al. (24)	Meta-analysis	mTBI	(9/11)	BDI, CES-D, HAM-D, NBP, POMS, SCL-90, SCL-90-R, ZSDS
Rogers and Read (25)	Systematic review	TBI	(13/N/A)	CES-D, CID, C-9-CM, DSM-III, DSM-IV, DIS, HAM-D, MMPI, NFI, PSE, PTSD-1, SCAN, SCL-90-R, ZSDS
Rosenthal et al. (41)	Systematic review	TBI	30	BDI, BPRS, CAQ, DSM-III, DSM-III-R, LSSAD, HSC, HAM-D, MMPI, NIMH-DIS, PAQL, PAI, PSE, POMS, SCL-90-R, ZSDS
Sherer et al. (42)	Systematic review	TBI	23	BDI, HADS, NEO-PI-R, Wimbledon-SRS
Simpson and Tate (43)	Review	TBI	19	BDI, BHS, DSM-III-R, PSE
Soo and Tate (26)	Systematic review	mTBI	3	BDI, SCI-90-R
Stalder-Luthy et al. (44)	Meta-analysis	ABI	13	BDI, BDI-II, CIQ, CES-D, CSA, DASS-21, DDS, ERS, GAS, GSI, HADS, MHLC, POMS, PSS, PHQ-9, RSE, SCL-90, SIP, TSK
Steel et al. (45)	Systematic review	Traumatic injury	N/A	BDI, BDI-18, CES-D, DIS, HAM-D, SCID, SCI, SCI-90-R, ZSDS
Vahle et al. (46)	Review	People with disabilities	(7/N/A)	BDI, BSI, CES-D, DAEL, MEDS, TBI, ZSDS
van Velzen et al. (47)	Systematic review	Traumatic and non-traumatic ABI	22	BDI, NFI, SCI
Warden et al. (27)	Systematic review	TBI	(7/14)	BDI, HAM-D, DSM-IV

Abbreviations:
- ABI: acquired brain injury
- BDI: Beck Depression Inventory
- BDI-II: Beck Depression Inventory 2nd edition
- BDI: Beck Depression Inventory
- BHS: Beck Hopelessness Scale
- BPRS: Brief Psychiatric Rating Scale
- BRFSS: Behavioral Risk Factor Surveillance System
- BSI: Brief Symptom Inventory
- BRFSS: Behavioral Risk Factor Surveillance System
- BSI-18: Brief Symptom Inventory-18
- CAQ: Clinical Analysis Questionnaire
- CBP: chronic back pain
- CES-D: Center for epidemiological studies
- CID: Composite International Diagnostic Interview
- CIS: Clinical Interview Schedule
- CPRS: Comprehensive Psychopathological Rating Scale
- DACL: Depression Adjective Checklist
- DASS-1: Depression Anxiety Stress Scale
- DIS: Diagnostic Interview Schedule
- DIS: Depression Intensity Scale Circles
- DSM-III: Diagnostic and Statistical Manual 3rd edition
- DSM-IV: Diagnostic and Statistical Manual 4th edition
- GAS: General Health Questionnaire
- HADS: Hospital Anxiety and Depression Scale
- HAM-D: Hamilton Depression Rating Scale
- HSCL: Hopkins Symptom Checklist
- ICD: International Classification of Diseases
- ICD-9: International Classification of Diseases 9th revision
- LSSAD: Leeds Scale for the self-assessment of Anxiety and Depression
- MADRS: Montgomery–Asberg Depression Rating Scale
- MCMII: Million Clinical Multiaxial Inventory
- MMPI: Minnesota Multiphasic Personality Inventory
- MMPI-2: Minnesota Multiphasic Personality Inventory 2
- NFI: Neurobehavioral Functioning Inventory
- NIMH-DIS: NIMH's Diagnostic Interview Schedule
- PACL: Personality Adjective Checklist
- PAI: Portland Adaptability Inventory
- PHQ: Patient Health Questionnaire
- POMS: Profile of Mood State
- PTSD: Post-traumatic Stress Disorder
- PSE: Present State Examination
- SADS-L: Schedule for Affective Disorders and Schizophrenia
- SCAN: Schedules Clinical Assessment in Neuropsychiatry
- SCI: spinal cord injury
- SCID: Structured Clinical Interview for DSM
- SCL-90-R: Symptoms Checklist 90-Revised
- TBI: Traumatic brain injury
Anxiety

Anxiety disorders are frequently comorbid after TBI; there is a complex and multifaceted relationship, considering that premorbid anxiety is a predictor of the development of depression and anxiety disorders post-TBI (156).
The results showed that approximately 11% of the patients were diagnosed with GAD after TBI, ranging from 2 to 28%. Taking into consideration the type of instrument used, the diagnostic scale ICD-10 was related to a lower prevalence rate (2%) of GAD after TBI, whereas the DSM-III-R was related to a higher prevalence (19%) of GAD (17). For interview schedules, SCAN showed a lower prevalence of GAD (2%), while the Schedule for Affective Disorders and Schizophrenia (SADS) showed a higher prevalence (28%) (17). The authors report differences in anxiety rates depending on the stages of TBI recovery. Thus, the timing of assessment may impact the number and severity of the symptoms, leading to bias in the results (158). The meta-analysis also

TABLE 3 | Characteristics of the studies and the scales and inventories used to assess anxiety disorder after TBI.

Reference	Study design	Study population	Number of analyzed studies/total of studies	Instruments
Garrels et al. (20)	Systematic review	ABI (TBI = 4)	(3/7)	HADS, HAM-A, NRS, STAI
Moore et al. (99)	Review	mTBI	N/A	BAI, MMPI, MCMI-III, STAI
O'Neil et al. (22)	Systematic review	Veterans/military with mTBI	(6/31)	HADS, NRI
O'Neil et al. (23)	Systematic review	Veterans/military with mTBI	(6/31)	HADS, NRI
Osborn et al. (17)	Meta-analysis	Closed TBI	41	BAI, HADS, DSM-IV, DSM-III-R, DSM-IV, ICD-10, LSSAD, MINI, SCID-I, SCAN, SADS-L, STAI
Panayiotou et al. (24)	Meta-analysis	mTBI	(5/11)	BAI, CAPS, GHQ, HTQ, IES, POMS, SCL-90-R
Rogers and Read (25)	Review	TBI	N/A	BAI, BAI, DES, DIS, DSM-III, MMPI, PCSSC, DSM-IV, SCAN, SCL-90-R
Soo and Tate (26)	Systematic review	mTBI	3	BAI, IES, SCL-90-R, STAI-S
Warden et al. (27)	Systematic review	TBI	(1/14)	Y-BOCS

Abbreviations:
- ABI, acquired brain injury; mTBI, mild traumatic brain injury.
- Scales: BAI, Beck Anxiety Inventory; BEC, Behavior Evaluation Checklist; BSQ, Body Sensations Questionnaire; DES, Dissociative Experience Scale; DIS, Diagnostic Interview Schedule; DSM-III; Diagnostic and Statistic Manual 3rd edition; DSM-IV; Diagnostic and Statistic Manual 4th edition; GHQ, General Health Questionnaire; HADS, Hospital Anxiety and Depression Scale; HAM-A, Hamilton Anxiety Scale; HTQ, Harvard Trauma Questionnaire; ICD-10, International Classification of Diseases; IES, Impact of Events Scale; LSSAD, Leeds Scale for the Self-Assessment of Anxiety and Depression; MCMI, Millon Clinical Multiaxial Inventory; MINI, Mini-International Neuropsychiatric Interview; MMPI, Minnesota Multiphasic Personality Inventory; NRS, Neurobehavioral Rating Scale; NSI, Neurobehavioral Symptom Inventory; PCSSC, Post-Concussion Syndrome Symptom Checklist; POMS, Profile of Mood State; PTSD-I, PTSD Interview; SADS, Schedule for Affective Disorders and Schizophrenia; SCAN, Schedules for Clinical Assessment in Neuropsychiatry; SCID-I, Structured Clinical Interview; SCL-90R, Symptoms Checklist, 90R; STAI, State-Trait Anxiety Inventory; Y-BOCS, Yale–Brown Obsessive Compulsive Scale.

TABLE 4 | Scales and inventories used to assess anxiety disorder after TBI.

Name of the scale	Abbreviation	Clinical utility
Beck Anxiety Inventory (50)	BAI	Interview schedule
Diagnostic Interview Schedule (65)	DIS	Interview schedule
Diagnostic and Statistic Manual 3rd edition [DSM-III (63)]	DSM-III	Diagnose
Diagnostic and Statistic Manual 3rd edition-revised [DSM-III-R (100)]	DSM-III-R	Diagnose
Diagnostic and Statistic Manual 4th edition [DSM-IV (64)]	DSM-IV	Diagnose
General Health Questionnaire (66)	GHQ	Interview schedule
Hamilton Anxiety Scale (68)	HAM-A	Diagnose
Hospital Anxiety and Depression Scale (70)	HADS	Interview schedule
Impact of Events Scale (101)	IES	Interview schedule
International Classification of Disease (102)	ICD-10	Diagnose
Leeds Scale for the Self-Assessment of Anxiety and Depression (103)	LSSAD	Interview schedule
Millon Clinical Multiaxial Inventory 3rd edition (76)	MMPI	Interview schedule
Mini-International Neuropsychiatric Interview (77)	MINI	Interview schedule
Minnesota Multiphasic Personality Inventory (79)	MMPI	Interview schedule
Neurobehavioral Rating Scale-Revised (104)	NRS-R	Interview schedule
Profile of Mood State (88)	POMS	Interview schedule
Schedule for Affective Disorders and Schizophrenia (89)	SADS	Interview schedule
Schedules for Clinical Assessment in Neuropsychiatry (90)	SCAN	Interview schedule
State-Trait Anxiety Inventory (91)	STAI	Interview schedule
Structured Clinical Interview (105)	SCID-I	Diagnose
Symptoms Checklist – 90R (106)	SCL-90R	Interview schedule
Yale–Brown Obsessive Compulsive Scale (107)	Y-BOCS	Interview schedule
showed a non-significant increase in the number of anxiety cases in the first 5 years post-trauma (17).

Two anxiety scales are suggested by the CDE for TBI populations: the Kiddie-Schedule for Affective Disorders and Schizophrenia (K-SADS) and Neuropsychiatric Rating Schedule (NRS). Interestingly, these scales were not extensively reported in this review, and the NRS was not reported in any of them.

The authors also recommend assessing substance abuse as a comorbidity of psychiatric conditions, especially in anxiety disorders (22, 24). The CDE suggests some questionnaires for this purpose: the Substance Abuse Questions from the TBI Model Systems Database, Alcohol Use Disorders Identification Test: self-reported version (AUDIT), and Alcohol, Smoking, and Substance Use Involvement Screening Test (ASSIST).

Posttraumatic Stress Disorder

Posttraumatic stress disorder and GAD showed high prevalence after TBI and were both classified as anxiety disorders. In 2013, the DSM-5 classified PTSD as a trauma-stressor-related disorder, rather than an anxiety disorder. For this reason, we classified PTSD and anxiety disorders as separate psychiatric conditions.

In TBI patients, PTSD is usually related to a severe accident or injury, violent assault, domestic violence, war, or disaster (Criterion A – DSM-5). Prevalence rates of PTSD after TBI range from 3 to 59% (159, 160), while 43.9% of soldiers who reported loss of consciousness post-TBI met the criteria for PTSD (161). Our findings support previous results in which the heterogeneous range of diagnoses is due to the differences in assessment methods and methodologies of the original studies (111).
Depression, anxiety, and PTSD are usually comorbid conditions following TBI and may facilitate the persistence of its effects (162). Gill et al. (4) showed that psychological well-being is not predictive of the development of PTSD, but evidence suggests that individuals who have a history of psychological difficulties are at greater risk of developing PTSD after TBI.

Posttraumatic stress disorder is one of the most common mental health disorders affecting approximately 15% of veterans with no history of TBI. Nevertheless, the diagnosis rates of PTSD range from 33 to 65% in veterans with a history of TBI (163, 164). For this sample, the PCL is broadly used. The PCL-M and CAPS are the interview schedules most commonly used to assess PTSD in veterans and are recommended by the CDE (15). CAPS is considered the “gold standard” instrument for diagnosing and measuring the severity of PTSD, and it has been used with a variety of traumatized populations, including TBI (109, 165).

There are different versions available, including CAPS to assess past-week, past-month, and lifetime symptoms. The PCL is a 17-item self-reported measure of PTSD symptoms and requires less time to complete than CAPS, which consists of a 30-item self-reported questionnaire. PCL is highly correlated with CAPS ($r = 0.93$), and it has favorable diagnostic efficiency (>0.70) and...
robust psychometric properties (165). For civilians with TBI, the PCL and CAPS are the most commonly used instruments to assess PTSD. However, the PCL-C and PTSD Checklist – Stressor specific (PCL-S) are preferable.

Overall, psychological variables, worsening general health, chronic pain, and somatic symptoms are associated with PTSD, especially in moderate to severe TBI. Comorbidities, such as PTSD and TBI, may unfavorably affect individuals more than suffering from any disorder alone (166). Some factors suggest how individuals with TBI might be more likely to develop PTSD. Somatic conditions and psychiatric disorders, such as PTSD, seem to perpetuate the illness condition in a loop (167). Those somatic conditions may present not only as risk factors but may also contribute to the persistence of other disorders, such as PTSD (4). This highlights the importance of therapy and rehabilitation for PTSD after TBI.

Brain Function and Mental Health Post-TBI

Symptoms of anxiety, depression, and irritability often occur after TBI and affect mood centers, including the hippocampus, amygdala, and prefrontal regions of the brain (168). Psychological factors are potential contributors to poor recovery after mTBI (8). Since TBI etiologies are diverse, understanding the role of the neurobiological basis for behavioral dysfunctions can be complex. The neuroanatomical location of the head injury can play a role in the development of depression (45, 169). However, only a small portion of patients may sustain damage to the particular location and with a severity level necessary to produce a psychiatric syndrome while preserving adequate cognitive function; thus, a biological gradient can be very difficult to detect (25). Premorbid factors associated with psychiatric disorders are inconclusive. Family history of psychiatric disorders seems to be a predictor of depression (169) or PTSD in individuals who have experienced TBI (45). In addition, females have a higher risk of developing acute PTSD after motor vehicle accidents (170). However, some authors did not find this association in premorbid psychiatric illness with the development of PTSD (171).

Acquired brain lesions, especially those involving the prefrontal cortex may have a prominent role in developing and maintaining executive functions. These functions encompass a set of skills that allow for people’s adjustment and adaptation in the face of new situations and daily operation. Therefore, changes in executive functions are among the most common consequences resulting from TBI (172, 173). Depressive symptoms can also affect cognitive processes, inhibiting a patient’s ability to return to daily activities over the short-term. Prefrontal cortex disruption may result in impulsive behaviors and a higher risk of substance use disorders (174). Thus, there is evidence that TBI may increase the risk of drug or alcohol abuse in persons without a history of substance abuse before the injury, especially if the damage involves the orbitofrontal cortex (175). In our review, only short reports attempted to find associations between mental health and substance abuse. Hesdorffer et al. (37) reported that changes in drug and alcohol use usually preceded the occurrence of TBI, increasing the risk of head injury. One important point is that many of the studies analyzed in the reviews used current alcohol or substance abuse as exclusion criteria, possibly camouflaging their frequency of occurrence.

Perspectives and Future Research

Considering the high incidence of TBI in the elderly (140–200 per 100,000 per year) and the relatively high prevalence of depression following TBI, it is reasonable to address the question of depression in the elderly following TBI (38). There is a gap in the literature addressing the evaluation and monitoring of elderly TBI patients.

One limitation related to veterans and military populations is that most of the analyzed data are from medical registries and clinical databases. It is necessary to have larger cohort studies, and it is also necessary to use standard methodology for the assessment of veterans and military populations.

Even in systematic reviews and meta-analyses, attrition bias may occur, as some studies showed that individuals who did not complete studies generally had more severe TBI (176–179) or, conversely, had less severe TBI (180). In addition, some studies did not control for confounding variables, such as the severity of trauma or the period post-TBI, reducing the generalizability of some results.

Many studies utilized self-report or semi-structured interviews for diagnosis. These results can lead to bias in the reported frequency of depressive disorder in this population. Self-report scales may not be reliable as patients with TBI may be unaware of their disabilities, and lack of awareness may lead to an underdiagnosis of psychiatric disorders (25). Another important variable relates to the recruitment of study participants. Outpatient and inpatient populations tend to vary in the intensity of their symptoms, particularly in the acute stage of trauma, when patients are often confused and disoriented. Many reviews analyzed mixed samples of trauma severity and different recruitment settings (17). Moreover, the majority of the instruments require that patients report their symptoms over the previous 2 weeks, and patients may have difficulty answering such questions or giving reliable responses, particularly in the acute stages of trauma.

Another important issue is the analysis of premorbid psychiatric conditions, a factor that may bias results. Finally, as we are reporting on specific information from selected reviews in the field, there is the risk of publication bias.

CONCLUSION

There is significant variability in the types of assessments used in the evaluation of psychiatric disorders after TBI, and consequently, there is also variability in the reported prevalence of such disorders. We analyzed meta-analyses and systematic reviews focusing on the most prevalent psychiatric conditions, and we observed a heterogeneous pattern related to their assessment and diagnosis in TBI populations. Depression after TBI is a well-established condition with homogeneous studies. Anxiety and PTSD disorders have been studied in a heterogeneous way, usually comorbid with other psychiatric disorders. The variability of clinical findings raises the importance of the instruments used.
to assess these patients. Finally, some scales and inventories designed for the general community may not be appropriate for patients with TBI (152).

AUTHOR CONTRIBUTIONS

AZ – had the idea of the review, organized the search method, and wrote the manuscript. JV – helped to write the manuscript and did the tables. FF – reviewed the manuscript and helped the elaboration of the manuscript. PR – helped to write the manuscript. CB – helped on the tables review. ML – helped to review the manuscript. WP – reviewed the manuscript.

REFERENCES

1. Faul M, Xu L, Wald MM, Coronado V, Dellinger AM. Traumatic brain injury in the United States: national estimates of prevalence and incidence, 2002-2006. *Injury Prev* (2010) 16:A268–268. doi:10.1136/iap.2010.029951
2. Nitrini R, Bachesi LA. *A Neurologia que todo o Médico Deve Saber*. 2 ed. São Paulo: Editora Atheneu (2003) 503 p.
3. De Souza CAC. *Neuropsiquiatria dos traumatismos cranienefacícios*. Revinter: Rio de Janeiro (2003).
4. Gill J, Lee H, Barr T, Baxter T, Heinzelmann M, Rak H, et al. Lower health related quality of life in US military personnel is associated with service-related disorders and inflammation. *Psychiatry Res* (2014) 216(1):116–22. doi:10.1016/j.psychres.2014.01.046
5. Menon DK, Schwab K, Wright DW, Maas AI. Position statement: definition of traumatic brain injury. *Arch Phys Med Rehabil* (2010) 91(11):1637–40. doi:10.1016/j.apmr.2010.05.017
6. Nitrini R, Bachesi LA. *A neurologia que todo médico deve saber*. Maltese (1991).
7. Arciniegas DB, Wortzel HS. Emotional and behavioral dyscontrol after traumatic brain injury. *Psychiatr Clin North America* (2014) 37(1):31–53. doi:10.1016/j.psc.2013.12.001
8. Ponsford J, Cameron P, Fitzgerald M, Grant M, Mikocka-Walus A. Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. *J Neurotrauma* (2011) 28(6):937–46. doi:10.1089/neu.2010.1516
9. Ponsford JL, Downing MG, Olover J, Ponsford M, Acher R, Carty M, et al. Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. *J Neurovi* (2014) 31(1):64–77. doi:10.1089/neu.2013.2997
10. Riggio S. Traumatic brain injury and its neurobehavioral sequelae. *Psychiatric Clin North America* (2010) 33(4):807–19. doi:10.1016/j.psc.2010.08.004
11. Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. *J Neurosurg* (2005) 103(2):298–303. doi:10.3171/2005.10.2298
12. Silver JM, McAllister TW, Arciniegas DB. Depression and cognitive complaints following mild traumatic brain injury. *Am J Psychiatry* (2009) 166(6):653–61. doi:10.1176/appi.ajp.2009.08111766
13. Jorge RE, Starkstein SE. Pathophysiologic aspects of major depression following traumatic brain injury. *J Head Trauma Rehabil* (2005) 20(6):475–87. doi:10.1097/00011199-200511000-00001
14. Gordon WA, Zafonte R, Ciccone K, Cantor J, Brown M, Lombard L, et al. Traumatic brain injury rehabilitation – state of the science. *Am J Phys Med Rehabil* (2006) 85(4):343–82. doi:10.1097/01.aph.0000201206.0154a.61
15. Maas AI, Harrison-Felix CL, Menon D, Adelson PD, Balkin T, Bullock R, et al. Common data elements for traumatic brain injury: recommendations from the interagency working group on demographics and clinical assessment. *Arch Phys Med Rehabil* (2010) 91(11):1641–9. doi:10.1016/j.apmr.2010.07.232
16. Fulton J, Calhoun PS, Wagner HR, Schry AR, Hair LP, Feeling N, et al. The prevalence of posttraumatic stress disorder in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans: a meta-analysis. *J Anxiety Disord* (2015) 31:98–107. doi:10.1016/j.janxdis.2015.02.003
17. Osborn AJ, Mathias JL, Fairweather-Schmidt AK. Depression following adult, non-penetrating traumatic brain injury: a meta-analysis examining methodological variables and sample characteristics. *Neurosci Biobehav Rev* (2014) 47:1–15. doi:10.1016/j.neubiorev.2014.07.007
18. Matarazzo BB, Wortzel HS, Holliman BAD, Brenner LA. Evidence-based intervention strategies for veterans and military personnel with traumatic brain injury and co-morbid mental health conditions: a systematic review. *Brain Impairment* (2013) 14(1):42–50. doi:10.1017/Brimpl.2013.4
19. Capelhart B, Bass D. Review: managing posttraumatic stress disorder in combat veterans with comorbid traumatic brain injury. *J Rehabil Res Dev* (2012) 49(5):789–812. doi:10.1682/jrnl.2011.010185
20. Garrelts SF, Donker-Cools B, Wind H, Frings-Dresen MHW. Return-to-work in patients with acquired brain injury and psychiatric disorders as a consolation: a systematic review. *Brain Injury* (2015) 29(5):550–7. doi:10.3109/02699052.2014.995227
21. Kim E, Lauterbach EC, Reeve A, Arciniegas DB, Coburn KL, Mendez MF, et al. Neuropsychiatric complications of traumatic brain injury: a critical review of the literature (A report by the ANPA Committee on Research). *J Neuropsychiatr Clin Neurosci* (2007) 19(2):106–27. doi:10.1176/appi.neuropsych.19.2.106
22. O’Neil M, Carlson K, Storzbach D, Brenner L, Freeman M, Quinones A, et al. A systematic review of consequences of mild traumatic brain injury in veterans and members of the military. *Arch Clin Neuropsychol* (2013) 28(6):606–606.
23. O’Neil ME, Carlson KF, Storzbach D, Brenner L, Freeman M, Quinones AR, et al. Factors associated with mild traumatic brain injury in veterans and military personnel: a systematic review. *Int Neuropsychol Soc* (2014) 20(3):249–61. doi:10.1176/ins.2013.010146
24. Panayiotou A, Jackson M, Crowe SE. A meta-analytic review of the emotional symptoms associated with mild traumatic brain injury. *J Clin Exp Neuropsychol* (2010) 32(5):463–73. doi:10.1080/13803390903164371
25. Rogers JM, Read CA. Psychiatric comorbidity following traumatic brain injury. *Brain Inf* (2007) 21(13–14):1321–33. doi:10.1080/2096900701765700
26. Soo C, Tate R. Psychological treatment for anxiety in people with traumatic brain injury. *Cochrane Database Syst Rev* (2007) 18(3):CD005239. doi:10.1002/14651858.CD005239.pub2
27. Warden DL, Gordon B, McAllister TW, Silver JM, Barth JT, Bruns J, et al. Guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury. *J Neurotrauma* (2006) 23(10):1468–501. doi:10.1089/neu.2006.23.1468
28. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *Ann Intern Med* (2009) 151(4):W65–94. doi:10.7326/0003-4819-151-4-200908180-00136
29. Adamson BC, Ensari I, Motl RW. Effect of exercise on depressive symptoms in adults with neurologic disorders: a systematic review and meta-analysis. *Arch Phys Med Rehabil* (2015) 96(7):1329–38. doi:10.1016/j.apmr.2015.01.005
30. Barker-Collo S, Starkey N, Theadom A. Treatment for depression following mild traumatic brain injury in adults: a meta-analysis. *Brain Injury* (2013) 27(10):1124–33. doi:10.3109/02699052.2013.801513
31. Cooper DB, Bunner AE, Kennedy JE, Baldwin V, Tate DF, Eapen BC, et al. Treatment of persistent post-concussive symptoms after mild traumatic brain injury: a systematic review of cognitive rehabilitation and behavioral health interventions in military service members and veterans. *Brain Imaging Behav* (2015) 9(3):403–20. doi:10.1007/s11682-015-9440-2

FUNDING

We thank the National Council of Technological and Scientific Development, process number: 201809/2014-1 for the PhD scholarship.
32. Crisp R. Depression and occupational disability in five diagnostic groups: a review of recent research. *Disabil Rehabil* (2007) 29(4):267–79. doi:10.1080/09639763600832676.

33. Daggett V, Bakas T, Habermann B. A review of health-related quality of life in adult traumatic brain injury survivors in the context of combat veterans. *J Neurosci Nurs* (2009) 41(2):59–71. doi:10.1097/JNN.0b013e3181927133.

34. Fann JR, Hart T, Schomer KG. Treatment for depression after traumatic brain injury: a systematic review. *J Neurotrauma* (2009) 26(12):2383–402. doi:10.1089/neu.2009.1091.

35. Fleminger S, Oliver DL, Williams WH, Evans J. The neuropsychiatry of depression after brain injury. *Neuropsychol Rehabil* (2003) 13(1–2):65–87. doi:10.1080/096020102102000354.

36. Halbauer JD, Ashford JW, Zeitzer JM, Adamson MM, Lew HL, Yesavage JA. Neuropsychiatric diagnosis and management of chronic sequelae of war-related mild to moderate traumatic brain injury. *J Rehabil Res Dev* (2009) 46(7):757–95. doi:10.1007/s10972-008-0119.

37. Hesdorffer DC, Rauch SL, Tamminga CA. Long-term psychiatric outcomes following traumatic brain injury: a review of the literature. *J Head Trauma Rehabil* (2009) 24(6):452–9. doi:10.1097/HTR.0b013e3181c1313d.

38. Menzel JC. Depression in the elderly after traumatic brain injury: a systematic review. *Brain Inj* (2008) 22(5):375–80. doi:10.3109/02699050802001492.

39. Nowrangi MA, Korte KB, Rao VA. A perspectives approach to suicide after traumatic brain injury: case and review. *Psychosomatics* (2014) 55(3):40–7. doi:10.1176/appi.ps.2013.1311006.

40. Oyssanya TO, Ward EC. Mental health in women with traumatic brain injury: a systematic review on depression and hope. *Health Care Women Int* (2016) 37(1):45–74. doi:10.1080/07393332.2015.1005307.

41. Rosenthal M, Christensen BK, Ross TP. Depression following traumatic brain injury. *Arch Phys Med Rehabil* (1998) 79(1):90–103. doi:10.1016/S0003-9993(98)00215-5.

42. Sherer M, Davis LC, Sander AM, Caroselli JS, Clark AN, Pastorek NJ. Prognostic importance of self-reported traits/problems/strengths and environmental barriers/facilitators for predicting participation outcomes in persons with traumatic brain injury: a systematic review. *Arch Phys Med Rehabil* (2014) 95(6):1162–73. doi:10.1016/j.apmr.2014.02.006.

43. Simpson G, Tate R. Suicidality in people surviving a traumatic brain injury: prevalence, risk factors and implications for clinical management. *Brain Inj* (2007) 21(13–14):1335–51. doi:10.1080/02699050701785542.

44. Stalder-Luthy S, Nitschker S, Hofer H, Frischknecht E, Znoj J, Barth J. The neuropsychiatry of depression after brain injury. *Arch Phys Med Rehabil* (2007) 88(1):36–45. doi:10.1016/j.apmr.2006.12.013.

45. Van Zanen TM, de Bruijn LJ, de Vries J, Reijnders LMH, van der Ploeg T, van den Broek J. Cognitive changes after traumatic brain injury: a systematic review. *Int J Geriatr Psychiatry* (2014) 29(4):267–79. doi:10.1002/gps.4077.

46. Verhaagen T, Buntinx F, van der Meijden D, Vermeulen M, Bulten J. Depression in the elderly after traumatic brain injury: a systematic review. *Neuropsychiatr Dis Treat* (2015) 11:1993–6. doi:10.2147/NDT.S62148.

47. Zaninotto MT, Garcia J, Ayres K, Varela J. Depression in the elderly after traumatic brain injury: a systematic review. *Acta Neuropsychiatr* (2009) 21(13–14):1335–51. doi:10.1080/02699050701785542.

48. Zaninotto MT, Ayres K, Varela J. Depression in the elderly after traumatic brain injury: a systematic review. *Neuropsychiatr Dis Treat* (2015) 11:1993–6. doi:10.2147/NDT.S62148.

49. Zaninotto MT, Garcia J, Ayres K, Varela J. Depression in the elderly after traumatic brain injury: a systematic review. *Neuropsychiatr Dis Treat* (2015) 11:1993–6. doi:10.2147/NDT.S62148.
100. American Psychiatric Association. DSM-III-Diagnostic and Statistical Manual of Mental Disorders. 3rd Revised ed. American Psychiatric Association: Washington, DC (1987).

101. Horowitz M, Wilner N, Alvarez W. Impact of event scale – measure of subjective stress. Psychosom Med (1979) 41(3):209–18. doi:10.1097/00004642-197905000-00004

102. The World Health Organization. The ICD-10 classification of mental and behavioural disorders – diagnostic criteria for research. Geneva: WHO (1993).

103. Bedford A. Manual of the Leeds scales for the self-assessment of anxiety and depression – Snath, RP, Bridge, GWK, Hamilton, M. Br J Soc Clin Psychol (1979) 18:445–5.

104. Levin HS, Goldstein FC, MacKenzie EJ. Depression as a secondary condition following mild and moderate traumatic brain injury. Clin Neuropsychology (1997) 23(3):207–15.

105. First MB, Spitz RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I Disorders – Patient Edition (SCID I/P, Version 2.0). New York, NY: Biometrics Research Department (1995).

106. Derogatis LR, Saviot KL. The SCL-90-R and brief symptom inventory (BSI) in primary care. Handbook of Psychological Assessment in Primary Care Settings. Mahwah: Lawrence Erlbaum Assoc Publ Ed. (2000). p. 297–334.

107. Goodman WK, Price LH, Rasmussen SA, Mazure C, Delgado P, Heninger GR, et al. The yale-brown obsessive compulsive scale 2. Validity. Arch Gen Psychiatry (1989) 46(11):1012–6.

108. Betthauser LM, Bahraini N, Krendel MH, Brenner LA. Self-reports measures to identify post traumatic stress disorder and/or mild traumatic brain injury and associated symptoms in military veterans of operation enduring freedom (OEF)/Operation Iraqi Freedom (OIF). Neuropsychol Rev (2012) 22(1):35–53. doi:10.1007/s11065-012-9191-4

109. Brady KT, Turk P, Buck SE, Saladin ME, Waldrop AE, Myrick H. Combat post-traumatic stress disorder, substance use disorders, and traumatic brain injury. J Addict Med (2009) 3(4):179–88. doi:10.1097/ADM.0b013e3181aa244f

110. Carlson K, Kehle S, Meis L, Greer N, MacDonald R, Rutks I, et al. The Assessment and Treatment of Individuals with History of Traumatic Brain Injury and Post-Traumatic Stress Disorder: A Systematic Review of the Evidence [Internet]. Washington, DC: Department of Veterans Affairs (US) (2009).

111. Carlson KE, Kehle SM, Meis LA, Greer N, MacDonald R, Rutks I, et al. Prevalence, assessment, and treatment of mild traumatic brain injury and posttraumatic stress disorder: a systematic review of the evidence. J Head Trauma Rehabil (2011) 26(6):137–151. doi:10.1097/HTR.0b013e31827c95a8

112. Harvey AG, Brewin CR, Jones C, Kopolman MD. Coexistence of post-traumatic stress disorder and traumatic brain injury: towards a resolution of the paradox. J Int Neuropsychol Soc (2003) 9(4):663–76. doi:10.1017/S1355617003490069

113. Karr JE, Areshenkoff CN, Duggan EC, Garcia-Barrera MA. Blast-related mild traumatic brain injury: a Bayesian random-effects meta-analysis on the cognitive outcomes of concussion among military personnel. Neuropsychol Rev (2014) 24(4):428–44. doi:10.1007/s11065-014-9271-8

114. Kennedy JE, Jaffe MS, Leskin GA, Stokes JW, Leal FO, Fitzpatrick PJ. Post-traumatic stress disorder and posttraumatic stress disorder-like symptoms and mild traumatic brain injury. J Rehabil Res Dev (2007) 44(7):895–919. doi:10.1682/JRRD.2006.12.0166

115. McMillan TM, Williams WH, Bryant R. Post-traumatic stress disorder and traumatic brain injury: a review of causal mechanisms, assessment, and treatment. Neuropsychol Rehabil (2003) 13(1–2):149–64. doi:10.1080/0960201032000440053

116. Rice TR, Sher L. Suicidal behavior in war veterans. Expert Rev Neurother (2012) 12(5):611–24. doi:10.1586/ern.12.31

117. Tanev KS, Pentel KZ, Kredlow MA, Charney ME. PTSD and TBI co-morbidity: scope, clinical presentation and treatment options. Brain Inf (2014) 28(3):261–70. doi:10.3109/026990507201387382

118. Trachtman JN. Post-traumatic stress disorder and vision. Optometry (2010) 81(5):240–52. doi:10.1016/j.optom.2009.07.017

119. Wall PLH. Posttraumatic stress disorder and traumatic brain injury in current military populations: a critical analysis. J Am Psychiat Nurses Assoc (2012) 18(5):278–98. doi:10.1097/JNP.0b013e3182656765

120. Dinardo PA, Obrien GT, Barlow DH, Waddell MT, Blanchard EB. Reliability of DSM-III anxiety disorder categories using a new structured interview. Arch Gen Psychiatry (1983) 40(10):1670–4. doi:10.1001/archpsyc.1983.01900090043005

121. Vreven DL, Gudanowski DM, King LA, King DW. The civilian version of the Mississippi PTSD Scale – a psychometric evaluation. J Trauma Stress (1995) 8(1):91–109. doi:10.1097/00004642-199501000-00004
Weathers LW, Huska K. PTSD Checklist Civilian Version (PCL) PCL-M for DSM-IV (11/1/94) National Center for PTSD – Behavioral Science Division. Boston Veterans Affairs Medical Center (1994).

Weathers FW, Litz BT, Huska JA, Keane TM. PCL-S for DSM-IV (11/1/94) National Center for PTSD – Behavioral Science Division. (1994).

Watson CG, Juba MP, Manifold V, Kucala T, Anderson PE. The PTSD interview: rationale, description, reliability, and concurrent validity of a DSM-III based technique. J Clin Psychol (1991) 47:179–88. doi:10.1002/1097-4679(199103)47:2<179::AID-JCLP2270470202>3.0.CO;2-P

Hovens JE, Vanderploeg HM, Bramsen L, Klaarenbeek MTA, Schreuder JN, Rivero VV. The development of the self-rating inventory for posttraumatic stress disorder. Acta Psychiatr Scand (1994) 90(3):172–83. doi:10.1111/1600-0449.1994b01574.x

Solomon Z, Benbenishty R, Niria Y, Abramowitz M, Ginzburg K, Ohry A. Assessment of PTSD – validation of the revised PTSD inventory. Isr J Psychiatry Relat Sci (1993) 30(2):110–5.

Hendrix CC, Anelli LM, Gibbs JP, Fournier DG. Validation of the Purdue Posttraumatic Stress Scale on a sample of Vietnam veterans. J Trauma Stress (1994) 7(2):311–8. doi:10.1023/A:1029607211

Davidson JRT, Kudler HR, Smith RD. Assessment and Pharmacotherapy of Posttraumatic Stress Disorder. Washington, DC: American Psychiatric Press (1990).

Briere J. Trauma Symptom Inventory Professional Manual. Odessa: Psychological Assessment Resources (1995).

Allderfer BS, Arciniegas DB, Silver JM. Treatment of depression following traumatic brain injury. J Head Trauma Rehabil (2005) 20(6):544–62. doi:10.1097/00005119-200511000-00006

Seel KT, Kreutzer JS. Depression assessment after traumatic brain injury: an empirically based classification method. Arch Phys Med Rehabil (2003) 84(11):1621–8. doi:10.1016/s0003-9993(03)00027-3

Ouellet MC, Morin CM, Lavoie A. Volunteer work and psychological health following traumatic brain injury. J Head Trauma Rehabil (2009) 24(4):262–71. doi:10.1097/HTR.0b013e3181a66b73

Rapport MJ, Kass A, Feinstein A. The impact of major depression on outcome following mild-to-moderate traumatic brain injury in older adults. J Affect Disord (2006) 92(2–3):273–6. doi:10.1016/j.jad.2006.05.022

Barnes SM, Walter KH, Chard KM. Does a history of mild traumatic brain injury increase suicide risk in veterans with PTSD? Rehabil Psychol (2012) 57(1):18–26. doi:10.1037/a0027007

Whelan-Goodinson R, Ponsford JL, Schonberger M, Johnston L. Predictors of psychiatric disorders following traumatic brain injury. J Head Trauma Rehabil (2010) 25(5):520–9. doi:10.1097/HTR.0b013e3181c88fe7

Zgaljardic DJ, Seale GS, Schaefer LA, Temple RO, Foreman J, Elliott TR. Psychiatric disease and depression: An examination of psychiatric disorder and depression following traumatic brain injury. J Neurotrauma (2015) 32(23):1911–25. doi:10.1089/neu.2014.3569

Jove J, Robinson RG, Arndt S. Are there symptoms that are specific for depressed mood in patients with traumatic brain injury. J Neurol Ment Dis (1993) 181(2):91–9. doi:10.1007/bf02500000-00004

O’Donnell ML, Creamer M, Bryant RA, Schnyder U, Shalev A. Posttraumatic disorders following injury: an empirical and methodological review. Clin Psychol Rev (2003) 23(4):587–603. doi:10.1016/s0272-7358(03)00036-9

Sumpter RE, McMillan TM. Misdiagnosis of post-traumatic stress disorder following severe traumatic brain injury. Br J Psychiatry (2005) 186:423–6. doi:10.1192/bjp.186.5.423

Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in US Soldiers returning from Iraq. N Engl J Med (2008) 358(5):453–63. doi:10.1056/NEJMoa072972

O’Donnell ML, Creamer M, Patterson P, Atkin C. Psychiatric morbidity following injury. Am J Psychiatry (2004) 161(3):507–14. doi:10.1176/appi.ajp.161.3.507

Ommaya AK, Salazar AM, Dannenberg AL, Chervinsky AR, Schwab K. Outcome after traumatic brain injury in the US military medical system. J Trauma-Injury Infect Crit Care (1996) 41(6):972–5. doi:10.1097/00005373-199612000-00005

Pietrzak RH, Johnson DC, Goldstein MB, Malley JC, Southwick SM. Posttraumatic stress disorder mediates the relationship between mild traumatic brain injury and health and psychosocial functioning in veterans
of operations enduring freedom and Iraqi freedom. J Nerv Ment Dis (2009) 197(10):748–53. doi:10.1097/NMD.0b013e3181b97a75

165. Weathers FW, Keane TM, Davidson JRT. Clinician-administered PTSD scale: a review of the first ten years of research. Depress Anxiety (2001) 13(3):132–36. doi:10.1002/da.1029

166. Polusny MA, Kehle SM, Nelson NW, Erbes CR, Arbisi PA, Thuras P. Longitudinal effects of mild traumatic brain injury and posttraumatic stress disorder comorbidity on postdeployment outcomes in national guard soldiers deployed to Iraq. Arch Gen Psychiatry (2011) 68(1):79–89. doi:10.1001/archgenpsychiatry.2010.172

167. Sharp TJ, Harvey AG. Chronic pain and posttraumatic stress disorder: mutual maintenance? Clin Psychol Rev (2001) 21(6):857–77. doi:10.1016/s0272-7358(00)00071-4

168. Harmon KG, Drezner J, Gammons M, Guskeiwicz K, Halstead M, Herring S, et al. American medical society for sports medicine position statement: concussion in sport. Clin J Sport Med (2013) 23(1):1–18. doi:10.1097/JSM.0b013e31827f5f93

169. Biver F, Goldman S, Delvenne V, Luxen A, Demaertelaer V, Hubain P, et al. Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry (1994) 36(6):381–8. doi:10.1016/0006-3223(94)91213-0

170. Ursano RJ, Fullerton CS, Epstein RS, Crowley B, Kao TC, Vance K, et al. Acute and chronic posttraumatic stress disorder in motor vehicle accident victims. Am J Psychiatry (1999) 156(4):589–95.

171. Kupchik M, Strous RD, Erez R, Gonen N, Weizman A, Spivak B. Demographic and clinical characteristics of motor vehicle accident victims in the community general health outpatient clinic: a comparison of PTSD and non-PTSD subjects. Depress Anxiety (2007) 24(4):244–50. doi:10.1002/da.20189

172. Donders J, Levitt T. Criterion validity of the neuropsychological assessment battery after traumatic brain injury. Arch Clin Neuropsy chol (2012) 27(4):440–5. doi:10.1093/arclin/acn043

173. Merkley TL, Larson MJ, Bigler ED, Good DA, Perlstein WM. Structural and functional changes of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills. J Int Neuropsychol Soc (2013) 19(8):899–910. doi:10.1017/s135561771300074x

174. Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry (2003) 160(6):1041–52. doi:10.1176/appi.ajp.160.6.1041

175. Bjork JM, Grant SJ. Does traumatic brain injury increase risk for substance abuse? J Neurotrauma (2009) 26(7):1077–82. doi:10.1089/neu.2008.0849

176. Bryant RA. Disentangling mild traumatic brain injury and stress reactions. N Engl J Med (2008) 358(5):525–7. doi:10.1056/NEJMe078235

177. Bryant RA, Maroszegy JE, Crooks J, Baguley I, Gurka J. Coping style and post-traumatic stress disorder following severe traumatic brain injury. Brain Injury (2000) 14(2):175–80. doi:10.1080/026990500120826

178. Bryant RA, Maroszegy JE, Crooks J, Baguley IJ, Gurka JA. Interaction of posttraumatic stress disorder and chronic pain following traumatic brain injury. J Head Trauma Rehabil (1999) 14(6):588–94. doi:10.1097/00001199-199912000-00007

179. Bryant RA, Maroszegy JE, Crooks J, Baguley IJ, Gurka JA. Posttraumatic stress disorder and psychosocial functioning after severe traumatic brain injury. J Nerv Ment Dis (2001) 189(2):109–13. doi:10.1097/00005053-200102000-00006

180. Turnbull SJ, Campbell EA, Swann IJ. Post-traumatic stress disorder symptoms following a head injury: does amnesia for the event influence the development of symptoms? Brain Inj (2001) 15(9):775–85. doi:10.1080/02699050110034334

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Zaninotto, Vicentini, Fregni, Rodrigues, Botelho, de Lucia and Paiva. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.