A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: impact beating spatters

Daniel Attinger
Yu Liu
Tyler Bybee
Kris De Brabanter

Follow this and additional works at: https://lib.dr.iastate.edu/csafe_conf

Part of the Forensic Science and Technology Commons
A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: impact beating spatters

Disciplines
Forensic Science and Technology

Comments
Posted with permission of CSAFE.
A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: Impact beating spatters

Daniel Attinger, Yu Liu, Tyler Bybee and Kris De Brabanter

CSAFE, Iowa State University, USA
Sharing data?

HIGH SPEED DIGITAL VIDEO ANALYSIS OF BLOODSTAIN PATTERN FORMATION FROM COMMON BLOODLETTING MECHANISMS

Project Report, MFRC Project No. 06-S-02

Terry L. Laber¹, Bart P. Epstein², Michael C. Taylor³
• Those MFRC videos have been shown in dozen of BPA classes
Measuring velocities with Particle Image Velocimetry (PIV)

W. Thielicke, E.J. Stamhuis, PIVlab-Time Resolved Digital Particle Image Velocimetry Tool for MATLAB (v 1.41), (2014), doi:http://dx.doi.org/10.6084/m9.figshare.1092508.

http://faculty.mccormick.northwestern.edu/richard-lueptow/images/fire-sprinkler.jpg

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicsstats.org
Characterization: Velocities measured on MFRC movies with PIV

Fig. 1. PIV results for experiment 7Aa1 are shown in panel (a), and for experiment 7Ab1 in panel (b). The red dashed line with circular data points represents the results from forward spatter, and the solid blue line with square data points is for backward spatter. The error bars are the standard deviations of the sets of data. Note that the data points are slightly offset from their corresponding time reckoned from the bullet impact moment in order to more easily distinguish the error bars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

P. M. Comiskey, A. L. Yarin, and D. Attinger, "High-Speed Video Analysis of Forward and Backward Spattered Blood Droplets," Forensic Science International, vol. 276, pp. 134-141, 2017.
Backspatter drops are like exploding stars

Rayleigh–Taylor instability breaks accelerated blood into drops when a heavier fluid (blood) is accelerated towards a lighter fluid (air).

Drop diameter \(d \approx \frac{\sqrt{r}}{V\theta} \sqrt{\frac{\sigma}{\rho}} \)

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org

P. M. Comiskey, A. L. Yarin, S. Kim, and D. Attinger, *Physical Review Fluids*, 2016.
A database of beating spatters
61 beating experiments
Large size: up to 1.4m x 1m (56’ x 40’)

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
High resolution: 600 DPI (42 μm per pixel)
Two reproducible and documented generation mechanisms
Impact velocity $1-10$ m/s
April 12 - 2017
Hockey Puck & Dowel Rig Experiment
Designed by: D. Attinger & J. Polansky
Performed by: J. Polansky
Label: HPT#17
Image Scale: 600 dpi (236.2 pixel/cm)

Environmental conditions:
- Room Temp=24.5 C ± 1 C
- Room Humidity=24.7 % ± 5 %

Blood Properties:
- Hematocrit=36% ± 0.5 %
- Blood Volume= 1 ml ± 0.1 ml
Documented geometry. Distance blood source and spatter from 30cm to 200m
A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: Impact beating spatters

Daniel Attinger a, Yu Liu b, Tyler Bybee b, Kris De Brabanter b, c

a Mechanical Engineering, Iowa State University, 50010 Ames, IA, USA
b Department of Computer Science, Iowa State University, 50010 Ames, IA, USA
c Department of Statistics, Iowa State University, 50010 Ames, IA, USA

Received 12 January 2018, Revised 18 February 2018, Accepted 26 February 2018, Available online 3 March 2018.

- Appendix A. Supplementary material Supplementary data (2zipfiles containing the bloodspatter data found in the online version) associated with this article is at http://dx.doi.org/10.1016/j.dib.2018.02.070.
Digital data can be easily processed.
Proportion

Stain diameter [mm]
Another gunshot dataset will be available soon

1-10 m/s
300-1000 m/s

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
Value of data

• new and original dataset
• experimental design and methods can be readily reproduced
• teaching
Print blood spatters for teaching and instructional purposes.

2017 BPA class
University of the West Indies,
Kingston, Jamaica

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
TOGETHER WE MOVE FORENSIC SCIENCES FORWARD

More than 60 researchers and national practitioners from across four universities and numerous research institutes work together to build strong scientific foundations that enhance forensic science and technology practices. We are statisticians, engineers, lawyers.

ALICIA L. CARRIQUIRY
DISTINGUISHED PROFESSOR, IOWA STATE UNIVERSITY | DIRECTOR OF CSAFE
Area of Expertise: Statistics, Boss

DANIEL ATTINGER
ASSOCIATE PROFESSOR, IOWA STATE UNIVERSITY
Area of Expertise: Fluid Dynamics

KRIS DE BRABANTER
ASSISTANT PROFESSOR, IOWA STATE UNIVERSITY
Area of Expertise: Non-parametric Statistics

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
A scientific statement
1. is reproducible
2. can be tested
3. has a known uncertainty or error rate
• Question: “How tall is the speaker?”

• Common answer: About 5’ 10”
• Question: “How tall is the speaker?”

• Expert answer: “178 +/-2cm, and I am correct 95% of the time when I make this statement using the method I use and given the object that I am measuring”
Region of origin

reconstructed

known

Spatter
2.

Siu et al. JFS 2017

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
Classification: beating vs shooting spatters
Conclusions

• We share 61 high-resolution beating spatters
• Freely and easily available for your teaching and research

Acknowledgements and bibliography:

• Iowa State University
• US Department of Justice
• National Institute of Standards (CSAFE)
• Yu Liu, Kris de Brabanter, Ricky Faflak, Prashant Agrawal

Contact:

DANIEL.ATTINGER@GMAIL.COM
ATTINGER@IASTATE.EDU

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
Publications cited in this presentation

D. Attinger, Y. Liu, T. Bybee, and K. De Brabanter, "A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: Impact beating spatters," *Data in Brief*, vol. 18, pp. 648-654, 2018.

D. Attinger, C. Moore, A. Donaldson, A. Jafari, and H. A. Stone, "Fluid dynamics topics in bloodstain pattern analysis: comparative review and research opportunities," *Forensic Sci Int*, vol. 231, pp. 375-96, 2013.

P. M. Comiskey, A. L. Yarin, and D. Attinger, "High-Speed Video Analysis of Forward and Backward Spattered Blood Droplets," *Forensic Science International*, vol. 276, pp. 134-141, 2017.

T. L. Laber, B. P. Epstein, and M. C. Taylor, "High speed digital video analysis of bloodstain pattern formation from common bloodletting mechanisms," IABPA News, pp. 4-12, 2008.

S. Siu, J. Pender, F. Springer, F. Tulleners, and W. Ristenpart, "Quantitative Differentiation of Bloodstain Patterns Resulting from Gunshot and Blunt Force Impacts," (in eng), J Forensic Sci, Feb 10 2017.

Contact:
ATTINGER@IASTATE.EDU