Bounds of Ideal Class Numbers of Real Quadratic Function Fields

WANG Kunpeng and ZHANG Xianke

Tsinghua University, Department of Mathematical Sciences, Beijing 100084, P. R. China
E-mail: kunpengwang@263.net, xianke@tsinghua.edu.cn
Fax: 086-010-62781785

Abstract. Theory of continued fractions of functions is used to give lower bound for class numbers \(h(D) \) of general real quadratic function fields \(K = k(\sqrt{D}) \) over \(k = \mathbb{F}_q(T) \). For five series of real quadratic function fields \(K \), the bounds of \(h(D) \) are given more explicitly, e.g., if \(D = F^2 + c \), then \(h(D) \geq \deg F/\deg P \); if \(D = (SG)^2 + cS \), then \(h(D) \geq \deg S/\deg P \); if \(D = (A^m + a)^2 + A \), then \(h(D) \geq \deg A/\deg P \), where \(P \) is irreducible polynomial splitting in \(K \), \(c \in \mathbb{F}_q \). In addition, three types of quadratic function fields \(K \) are found to have ideal class numbers bigger than one.

Keywords: quadratic function field, ideal class number, continued fraction of function

MR (2000) Subject Classification: 11R58; 11R29; 14H05.

China Library Classification: O156.2

I. Introduction and Main Results

Suppose that \(k = \mathbb{F}_q(T) \) is the rational function field in indeterminate (variable) \(T \) over \(\mathbb{F}_q \), the finite field with \(q \) elements (\(q \) is a power of odd prime number). Let \(R = \mathbb{F}_q[T] \) be the polynomial ring of \(T \) over \(\mathbb{F}_q \). Any finite algebraic extension \(K \) of \(k \) is said to be an (algebraic) function field. The integral closure of \(R \) in \(K \) is said to be the ring (domain) of integers of \(K \), and is denoted by \(\mathcal{O}_K \), which is a Dedekind domain. The fractional ideals of \(\mathcal{O}_K \) form a multiplication group \(\mathcal{I}_K \). Let \(\mathcal{P}_K \) denotes the principal ideals in \(\mathcal{I}_K \). Then the quotient group \(H(K) = \mathcal{I}_K/\mathcal{P}_K \) is said to be the ideal class group of \(K \). And \(h(K) = \#H(K) \) (the order of
$H(K)$) is said to be the ideal class number of K.

A quadratic extension of k could be expressed as $K = k(\sqrt{D})$, where $D \in R$ is a polynomial which is not a square (we could also assume D is square-free). If in addition D is monic with even degree, then $K = k(\sqrt{D})$ is said to be a real quadratic function field. For real quadratic number fields K, Mollin in 1987 obtained a lower bound of ideal class numbers $h(D) = h(K)$ by evaluating the fundamental unit (see [1]). Feng and Hu in [2] obtained a similar results for function fields; they also gave an explicit bound of $h(K)$ for $K = k(\sqrt{F^2 + c})$, where $c \in \mathbb{F}_q^\times$. There are also other works using continued fractions to study quadratic number fields(see [3-6]). We here give a theorem on lower bound of $h(K)$ for general real quadratic function fields K, and obtain explicit lower bound of $h(K)$ for six types of K including the fields $K = k(\sqrt{F^2 + c})$.

E. Artin in [7] began to use continued fractions to study quadratic function fields. In [8] we re-developed the theory of continued fractions of algebraic functions in an elementary and practicable way and studied some properties of them, which will be used here.

Suppose that D is a monic square-free polynomial with degree $2d$. By [8] we know \sqrt{D} has an expansion of (simple) continued fraction: $\sqrt{D} = [a_0, a_1, \cdots]$. Then $\alpha_i = [a_i, a_{i+1}, \cdots]$ is said to be the $i-$th complete quotient which could be expressed as

$$\alpha_i = (\sqrt{D} + P_i)/Q_i \quad (P_i, Q_i \in R),$$

and Q_i is said to be the $i-$th complete denominator. The fraction $p_i/q_i = [a_0, a_1, \cdots, a_i]$ is named the $i-$th convergent. There is a positive integer ℓ such that $a_{n+\ell} = a_n$ for any $1 \leq n \in \mathbb{Z}$ (The minimal ℓ having this property is called the period of the continued fraction). So the continued fraction could be written as

$$\sqrt{D} = [a_0, \underline{a_1, \cdots, a\ell}],$$

where the underline part denotes a period, and we have also $a_{\ell-i} = a_i$ for $0 < i < \ell$. Furthermore, there is a positive $v \in \mathbb{Z}$ such that $a_{n+v} = ca_n$ or $c^{-1}a_n$ for any $1 \leq n \in \mathbb{Z}$, where $c \in \mathbb{F}_q^\times$. The minimal v having this property is called the quasi-period (v is also the minimal integer(>1) such that $Q_v \in \mathbb{F}_q^\times$). We have $v = \ell/2$ or ℓ (see [8]).

Theorem 1. Suppose that $K = k(\sqrt{D})$ is a real quadratic function field, $\deg D = 2d$, and $P \in R$ is an irreducible polynomial splitting in K. Then the ideal class number $h(D)$ of K has a factor h_1 satisfying
\[h_1 = \deg Q_i / \deg P \quad (1 \leq i \leq v), \quad \text{or} \quad h_1 \geq d / \deg P. \]

In particular, we have
\[h(D) \geq \min_{0 < i < v} \{ \deg Q_i / \deg P , \ d / \deg P \}. \]

Theorem 2. Suppose that \(K = k(\sqrt{D}) \) is a real quadratic function field, \(D \in R \) is square-free with \(\deg D = 2d \), and \(P \in R \) is an irreducible polynomial splitting in \(K \). Then the ideal class number \(h(D) \) of \(K \) has the following lower bound:

1. If \(D = F^2 + c \), then \(h(D) \geq \deg F / \deg P \);
2. If \(D = (SG)^2 + cS \), then \(h(D) \geq \deg S / \deg P \).

where \(c \in F_q \), \(G \in R \) with \(\deg G \geq 1 \).

Theorem 3. Let \(D \in R \) be square-free polynomials as the followings, where \(a \in R - F_q \), \(A = 2a + 1 \) is monic, \(m \) is any positive integer. Assume \(P \) is an irreducible polynomial in \(R \) splitting in \(K = k(\sqrt{D}) \). Then the ideal class number \(h(D) \) of \(K \) has bound as the following:

1. If \(D = (A^m + a)^2 + A \), then \(h(D) \geq \deg A / \deg P \);
2. If \(D = (A^m - a)^2 + A \), then \(h(D) \geq \deg A / \deg P \);
3. If \(D = (A^m + a + 1)^2 - A \), then \(h(D) \geq \deg A / \deg P \);
4. If \(D = (A^m - a - 1)^2 - A \), then \(h(D) \geq \deg A / \deg P \).

Now it is easy to find fields \(K = k(\sqrt{D}) \) with class numbers \(h(D) > 1 \). In the following Corollaries 1-3, we assume \(P \in R \) is irreducible, \(c \in F_q \), and \((F/P) \) is the quadratic-residue symbol (i.e., \((F/P) = 1 \) or \(-1 \) according to \(F \) is a quadratic residue modulo \(P \) or not).

Corollary 1. Let \(D = (PG)^2 + c, \ \deg G \geq 2, \ (c/P) = 1 \), then \(h(D) \geq \deg (GP) / \deg P > 1 \).

Corollary 2. Let \(D = (SHP)^2 + cS, \ \deg (S) > \deg (P), \ (cS/P) = 1 \), then \(h(D) \geq \deg (S) / \deg P > 1 \).

Corollary 3. Let \(D \) be as in Theorem 3 with \(A = SP, \ \deg S \geq 2, \) then \(h(D) \geq \deg (SP) / \deg P > 1 \).

As an example of Corollary 2, we have
\[h \left(T(T^m + 1)^2 + (T^m + 1) \right) \geq m. \]

(i.e., we take \(P = T, \ S = (T^m + 1), \ H = 1, \ c = 1 \))

II. Lemmas and Proofs of Theorems

First, consider the expansion and property of continued fractions of \(\sqrt{D} \), where \(D \in R \) is a square-free monic polynomial with even degree \(\deg(D) = 2d \). By [8] we know there exist uniquely determined \(f, r \in R \) such that \(D = f^2 + r \), and \(f \) is monic, \(\deg f = d, \ \deg r < d \).

The following process produces the expansion of simple continued fraction \(\sqrt{D} = [a_0, a_1, \cdots] \):

1. Denote \(D = f^2 + r \) as above. Put \(a_0 = f \), then \(\sqrt{D} = a_0 + \sqrt{D} - a_0 \), thus \(\alpha_1 = 1/(\sqrt{D} - a_0) = (\sqrt{D} + a_0)/(D - a_0^2) = (\sqrt{D} + P_1)/Q_1 \), where \(P_1 = a_0, Q_1 = D - a_0^2 \).

2. Now \(\alpha_1 = (f + P_1 + \sqrt{D} - f)/Q_1 \). Assume \(f + P_1 = a_1Q_1 + r_1 \), \(\deg r_1 < \deg Q_1 \). Then \(\alpha_1 = a_1 + (\sqrt{D} - (f - r_1))/Q_1 \). Thus \(\alpha_2 = Q_1/(\sqrt{D} - (f - r_1)) = (\sqrt{D} + P_2)/Q_2 \), where \(P_2 = (f - r_1), \ Q_2 = (D - (f - r_1)^2)/Q_1 = (D - P_2^2)/Q_1 \). We see \(P_2 \in R \). Since \(P_2 = f - r_1 = a_1Q_1 - P_1 \), \(D - P_2^2 \equiv D - P_1^2 \equiv 0 \mod Q_1 \), thus \(Q_2 \in R \).

Proceed continually, we could obtain the simple continued fraction of \(\sqrt{D} \) (see [8]).

Lemma 1[8]. The Diophantine equation \(X^2 - DY^2 = G \) has a primary solution if and only if \(G = (-1)^i Q_i \) for some \(0 \leq i \leq \ell \), where \(Q_i \) is the \(i \)-th complete denominator of the continued fraction of \(\sqrt{D}, D \in R \) is a monic square-free polynomial with even degree, \(G \in R \) and \(\deg G < \frac{1}{2} \deg D \). (A solution \((X, Y)\) is primary if \((X, Y) = 1, \ X, Y \in R \).)

Proof of Theorem 1. Assume \((P) = \varwp^\ell\), where \(\varwp \neq \varwp^h \) are prime ideals of \(K \). Let \(h = h(D) \) be the ideal class number of \(K \), then \(\varwp^h \) is a principal ideal. Suppose that \(m \leq h \) is the minimal positive integer such that \(\varwp^m \) is principal, then \(m \) is a factor of \(h \). Since \(\{1, \ \sqrt{D}\} \) is an integral basis for \(K \), so we may assume \(\varwp^m = (U + V \sqrt{D}) \) with \(U, V \in R \). Taking norm on both sides, we obtain an equation of ideals of \(k : \ (U^2 - DV^2) = (P^m) \). So \(U^2 - DV^2 = eP^m \ (e \in \mathbb{F}_q^\times) \) since the unit group of \(k \) (or \(R \)) is just \(\mathbb{F}_q^\times \).

We assert that \(U \) and \(V \) must be relatively prime; otherwise, if \((U, V) = C \in R \) is not a constant, put \(U_1 = U/C, \ V_1 = V/C \), then \(\varwp^m = (U + V \sqrt{D}) = (C)(U_1 + V_1 \sqrt{D}) \), by the uniqueness of factorization of ideals, we must have \((U_1 + V_1 \sqrt{D}) = \varwp^n \) for some \(n < m \),
which contradicts to the minimal assumption of m.

Thus we know (U, V) is a primary solution of $X^2 - DY^2 = cP^m$. First assume $\deg P^m < d$, then by Lemma 1 we know that $cP^m = (-1)^iQ_i$, $\deg P^m = \deg Q_i$ for some i with $0 \leq i \leq \ell$. Thus we have $m = \deg Q_i/\deg P$ for some $0 \leq i \leq v$ by the definition of quasi-period v. Secondly, assume $\deg P^m \geq d$, then we have directly $m \geq d/\deg P$.

Proof of Theorem 2. (1) It is easy to get the expansion of simple continued fraction $\sqrt{D} = \sqrt{F^2 + c} = [F, 2F/c, 2F]$, and obtain the set of complete denominators: $(Q_0, Q_1, Q_2) = (1, c, 1)$. Thus by Theorem 1 we know that $h(D)$ has a positive factor h_1 satisfy $h_1 \geq d/\deg P$, so $h(D) \geq \deg F/\deg P$.

(2) Expand $\sqrt{D} = \sqrt{(SG)^2 + cS}$ as simple continued fraction: $\sqrt{D} = [SG, 2G/c, 2SG]$. Its period is $\ell = 2$, complete denominators are just $(Q_0, Q_1, Q_2) = (1, cS, 1)$. Thus by Theorem 1 we know $h(D) \geq \deg S/\deg P$ (Note that $d = \deg D \geq \deg S$ now).

Proof of Theorem 3. (1) The polynomial $D = (A^m + a)^2 + A$ in the theorem has good property which enables us to expand \sqrt{D} as a simple continued fraction $\sqrt{D} = [a_0, a_1, \cdots, a_t]$. By Theorem 1, we need only to know a quasi-period of the expansion, i.e., $[a_0, \cdots, a_v]$. It turns out that this quasi-period is quite long and demonstrates rules in three sections, so we will write down it in three sections and list a_n, P_n, Q_n $(0 \leq n \leq v)$. We need to distinguish four cases $m = 4t - 2, 4t - 1, 4t, 4t + 1$.

The first section $(n = 0, 1)$ and the second section $(2 \leq n \leq 4t + 1)$: $(1 \leq j \leq t)$

n	0	1	\cdots	$4j - 2$	$4j - 1$	$4j$	$4j + 1$	\cdots
P_n	0	$A^m + a$	\cdots	$A^m + a + 1$	$A^m - a - 1$	$A^m + a + 1$	$A^m - a - 1$	\cdots
Q_n	1	A	\cdots	$-2A^{m-2j+1}$	$-A^{2j}$	$2A^{m-2j}$	A^{2j+1}	\cdots
a_n	$A^m + a$	$2A^{m-1} + 1$	\cdots	$-A^{2j-1}$	$-2A^{m-2j}$	A^{2j}	$2A^{m-2j-1}$	\cdots

The third section is given in four cases according to m:

(i) For $m = 4t - 2$:

n	$4t + 2$	$4t + 3$
P_n	$A^m + a + 1$	$A^m + a$
Q_n	$-2A$	$-1/2$
a_n	$A^{m - 1/2}$	$-4A^{m - 4a}$

(ii) For $m = 4t - 1$:
(iii) For $m = 4t$:

n	$4t + 2$	$4t + 3$	$4t + 4$	$4t + 5$
P_n	$A^m + a + 1$	$A^m - a - 1$	$A^m + a + 1$	$A^m + a$
Q_n	$-2A^m - 2t - 1$	$-A^{2t + 2}$	$-A$	-1
a_n	$-A^{m-2}$	$-2A$	$-2A^{m-1} + 1$	$-2A^m - 2a$

(iv) For $m = 4t + 1$:

n	$4t + 2$	$4t + 3$	$4t + 4$	$4t + 5$
P_n	$A^m + a + 1$	$A^m - a - 1$	$A^m + a + 1$	$A^m + a$
Q_n	$-2A^m - 2t - 1$	$-A^{2t + 2}$	$2A$	$1/2$
a_n	$-A^{m-2}$	$-2A$	$-2A^{m-1} + 1$	$-2A^m - 2a$

(2) Similarly to (1), a quasi-period of the simple continued fraction of \sqrt{D} is given here.

The first and second sections are combined given as the following: $(1 \leq j \leq t)$

n	0	1	\cdots	$4j - 2$	$4j - 1$	$4j$	$4j + 1$	\cdots
P_n	0	$A^m - a$	\cdots	$A^m - a - 1$	$A^m + a + 1$	$A^m - a - 1$	$A^m + a + 1$	\cdots
Q_n	1	A	\cdots	$2A^m - 2j + 1$	$-A^{2j}$	$-2A^{m-2j}$	A^{2j+1}	\cdots
a_n	$A^m - a$	$2A^{m-1} - 1$	\cdots	A^{2j-1}	$-2A^{m-2j}$	$-A^{2j}$	$2A^{m-2j-1}$	\cdots

The third section is given in four cases:

(i) For $m = 4t - 2$:

n	$4t + 2$	$4t + 3$
P_n	$A^m - a - 1$	$A^m - a$
Q_n	$2A$	$1/2$
a_n	$A^{m-1} - 1$	$4A^m - 4a$

(ii) For $m = 4t - 1$:

n	$4t + 2$	$4t + 3$	$4t + 4$	$4t + 5$
P_n	$A^m - a - 1$	$A^m + a + 1$	$A^m - a - 1$	$A^m - a$
Q_n	$2A^m - 2t - 1$	$-A^{2t}$	$-2A^m - 2t$	$-1/2$
a_n	A^{m-2}	$-2A$	$-A^{m-1} + 1$	$-4A^m + 4a$

(iii) For $m = 4t$:

n	$4t + 2$	$4t + 3$
P_n	$A^m - a - 1$	$A^m - a$
Q_n	$2A$	$1/2$
a_n	$2A^{m-1} - 1$	$4A^m - 4a$

(iv) For $m = 4t + 1$:
The first and second sections are combined given as the following: (1)

\[
\begin{array}{c|ccccccc}
 n & 4t + 2 & 4t + 3 & 4t + 4 & 4t + 5 \\
 \hline
 P_n & A^m - a - 1 & A^m + a + 1 & A^m - a - 1 & A^m - a \\
 Q_n & 2A^{m-2t-1} & -A^{2t+2} & -2A & -1/2 \\
 a_n & A^{m-2} & -2A & -A^{m-1} + 1/2 & -4A^m + 4a \\
\end{array}
\]

(3) A quasi-period of the simple continued fraction of \(\sqrt{D} \) is given here in three sections similarly as in (1). The first and second sections of it are combined given as the following (1 \(\leq j \leq t \)):

\[
\begin{array}{c|ccccccc}
 n & 0 & \cdots & 4j - 2 & 4j - 1 & 4j & 4j + 1 \\
 \hline
 P_n & 0 & \cdots & A^m + a & A^m - a & A^m + a & A^m - a \\
 Q_n & 1 & -A & \cdots & -2A^{m-2j+1} & -A^{2j} & -2A^{m-2j} & -A^{2j+1} \\
 a_n & A^m + a + 1 & -2A^{m-1} & -1 \cdots & -2A^{2j-1} & -2A^{m-2j} & -A^{2j} & -2A^{m-2j-1} \\
\end{array}
\]

The third section is given in two cases.

(i) For \(m = 4t + 1 \) or \(m = 4t + 3 \):

\[
\begin{array}{c|ccccccc}
 n & 4t + 2 & 4t + 3 \\
 \hline
 P_n & A^m + a & A^m + a + 1 \\
 Q_n & -2A & 1/2 \\
 a_n & -A^{m-1} - 1/2 & 4A^m + 4a + 1 \\
\end{array}
\]

(ii) For \(m = 4t \) or \(m = 4t + 2 \):

\[
\begin{array}{c|ccccccc}
 n & 4t + 1 & 4t + 2 & 4t + 3 \\
 \hline
 P_n & A^m - a & A^m + a & A^m + a + 1 \\
 Q_n & -A^{2t+1} & -2A & -1/2 \\
 a_n & -2A & -A^{m-1} - 1/2 & -4A^m - 4a - 4 \\
\end{array}
\]

(4) We give a quasi-period of the simple continued fraction of \(\sqrt{D} \) similarly as in (1). The first and second section are combined given as the following: (1 \(\leq j \leq t \)):

\[
\begin{array}{c|ccccccc}
 n & 0 & \cdots & 4j - 2 & 4j - 1 & 4j & 4j + 1 \\
 \hline
 P_n & 0 & A^m - a - 1 & \cdots & A^m - a & A^m + a & A^m - a & A^m + a \\
 Q_n & 1 & -A & \cdots & 2A^{m-2j+1} & -A^{2j} & 2A^{m-2j} & -A^{m-2j-1} \\
 a_n & A^m - a - 1 & -2A^{m+1} & \cdots & A^{2j-1} & -2A^{m-2j} & A^{2j} & -2A^{m-2j-1} \\
\end{array}
\]

The third section is given in two cases.

(i) For \(m = 4t + 1 \) or \(m = 4t + 3 \):

\[
\begin{array}{c|ccccccc}
 n & 4t + 2 & 4t + 3 \\
 \hline
 P_n & A^m - a & A^m - a - 1 \\
 Q_n & 2A & -1/2 \\
 a_n & A^{m-1} - 1/2 & -4A^m + 4a + 4 \\
\end{array}
\]

(ii) For \(m = 4t \) or \(m = 4t + 2 \):
Consider the above simple continued fractions of \sqrt{D} for the four types of D, and check the complete denominators \(\{Q_n\} \) \((0 < n < v)\) in a quasi-period, we find that the complete denominator having the minimal degree is $\pm 2A$ in all the cases. Since $\text{deg} A < \frac{1}{2} \text{deg} D$, by Theorem 1 we know $h(D) \geq \text{deg} A / \text{deg} P$. This proves Theorem 3.

References

[1] R.A.Mollin, Lower bounds for class numbers of real quadratic and biquadratic fields, Proc. Amer. Math. Soc. 101 (1987) 439-444.

[2] FENG Keqin, HU Weiqun, On real quadratic function fields of Chowla type with ideal class number one, Proc. Amer. Math. Soc., 127 (1999), 1301-1307.

[3] JI Guangheng, LU Hongwen, Proof of class number formula by machine, Sci. in China, (A)28 (1998), 193-200.

[4] S. Louboutin, Continued fraction and real quadratic fields, J. Number Theory, 30 (1998), 167-176.

[5] LU Hongwen, Gauss’ conjectures on the quadratic number fields, Shanghai Sci. Tech. Pub., 1991.

[6] ZHANG Xianke, L. C. Washington, Ideal class-groups and there subgroups of real quadratic fields, Sci. in China, (A)27 (1997), 522-528.

[7] E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen I, II, Math. Z., 19 (1924), 153-206, 207-246.

[8] WANG Kunpeng, ZHANG Xianke, The continued fractions connected with quadratic function fields (to appear).