A Note on Singular Cardinals in Set Theory without Choice

Denis I. Saveliev

2007 August 11, Beijing

Partially supported by grant 06-01-00608-a of Russian Foundation for Basic Research
In this talk, I discuss how singular can cardinals be in absence of AC, the axiom of choice. I shall show that, contrasting with known negative consistency results (of Gitik and others), certain positive results are provable. At the end, I pose some problems.
Preliminaries
Definition. Given a set X, its *cardinal* number $|X|$ is the class of all sets of *the same size* that X, i.e., admitting a one-to-one map onto X.

Thus

$$|X| = |Y|$$

means “There is a bijection of X onto Y”.
Cardinals of nonempty sets are proper classes; so, we have a little technical obstacle:

How quantify cardinals?

In some happy cases we can represent them by sets:

If \(|X|\) is a well-ordered cardinal, i.e., meets the class of (von Neumann’s) ordinals, take the least such ordinal (an initial ordinal).

If \(|X|\) is a well-founded cardinal, i.e., meets the class of well-founded sets, take the lower level of the intersection (so-called Scott’s trick).
What is in general? The answer is

No matter

because instead of cardinals, we can say about
sets and bijections.

Thus

\[\varphi(|X|, |Y|, \ldots) \]

means \(\varphi(X', Y', \ldots) \) whenever \(|X| = |X'|, |Y| = |Y'|, \ldots \)
Notations:

The German letters

\[l, m, n, \ldots \]

denote arbitrary cardinals. The Greek letters

\[\lambda, \mu, \nu, \ldots \]

denote well-ordered ones (i.e., initial ordinals), while the Greek letters

\[\alpha, \beta, \gamma, \ldots \]

denote arbitrary ordinals.
Two basic relations on cardinals (dual in a sense):

\[|X| \leq |Y| \]

means “\(X\) is empty or there is an injection of \(X\) into \(Y\)”, and

\[|X| \leq^* |Y| \]

means “\(X\) is empty or there is a surjection of \(Y\) onto \(X\)”.

Equivalently,

\[|X| \leq |Y| \] means “There is a subset of \(Y\) of size \(|X|\)”,

\[|X| \leq^* |Y| \] means “\(X\) is empty or there is a partition of \(Y\) into \(|X|\) pieces”.
Clearly:

(i) Both \leq and \leq^* are reflexive and transitive.

(ii) \leq is antisymmetric (Dedekind; Bernstein), \leq^* is not necessarily.

(iii) \leq is stronger than \leq^*. Both relations coincide on well-ordered cardinals.
Two important functions on cardinals (Hartogs and Lindenbaum resp.):

\[\aleph(n) = \{ \alpha : |\alpha| \leq n \}, \]

\[\aleph^*(n) = \{ \alpha : |\alpha| \leq^* n \}. \]

Equivalently,

\[\aleph(n) \] is the least \(\alpha \) such that on a set of size \(n \) there is no well-ordering of length \(\alpha \),

\[\aleph^*(n) \] is the least \(\alpha \) such that on a set of size \(n \) there is no pre-well-ordering of length \(\alpha \).

Customarily, \(\nu^+ \) denotes \(\aleph(\nu) \) for \(\nu \) well-ordered.
Clearly:

(i) $\aleph(n)$ and $\aleph^*(n)$ are well-ordered cardinals.

(ii) $\aleph(n) \not< n$ and $\aleph^*(n) \not< n$.

It follows $\nu < \nu^+$ and so

$$\aleph_0 < \aleph_1 < \ldots < \aleph_\omega < \ldots < \aleph_{\omega_1} < \ldots$$

(where \aleph_α is αth iteration of \aleph starting from \aleph_0).

(iii) $\aleph(n) \leq \aleph^*(n)$, and both operations coincide on well-ordered cardinals. On other cardinals, the gap can be very large:

Example. Assume AD. Then $\aleph(2^{\aleph_0}) = \aleph_1$ while $\aleph^*(2^{\aleph_0})$ is a very large cardinal (customarily denoted Θ).
Results on Singularity
Notations:

\[\text{Cov}(l, m, n) \]
means “A set of size \(n \) can be covered by \(m \) sets of size \(l \)”.

\[\text{Cov}(< l, m, n) \] and \[\text{Cov}(\mathcal{L}, m, n) \] (where \(\mathcal{L} \) is a class of cardinals) have the appropriate meanings.

Definition. A cardinal \(n \) is *singular* iff \(\text{Cov}(< n, < n, n) \), and *regular* otherwise.
What is under AC?

Fact. Assume AC. Then \(\text{Cov}(l, m, n) \) implies \(n \leq l \cdot m \).

Corollary. Assume AC. Then all the successor alephs are regular.

Thus \(\neg \text{Cov}(\lambda, \lambda, \lambda^+) \) for all \(\lambda \geq \aleph_0 \).
What happens without AC?

Theorem (Feferman Lévy). \(\aleph_1 \) can be singular.

Thus \(\text{Cov}(\aleph_0, \aleph_0, \aleph_1) \) is consistent.

Moreover, under a large cardinal hypothesis, so can be all uncountable alephs:

Theorem (Gitik). *All uncountable alephs can be singular.*

Clearly, then \(\text{Cov}(<\lambda, \aleph_0, \lambda) \) for all \(\lambda \geq \aleph_0 \).
Remark. What is the consistency strength?

Without successive singular alephs:
The same as of ZFC.

With λ, λ^+ both singular:
Between 1 Woodin cardinal (Schindler improving Mitchell) and ω Woodin cardinals (Martin Steel Woodin).

So, in general case:
A proper class of Woodins.
Specker’s problem:

Is \(\text{Cov}(\mathfrak{N}_\alpha, \aleph_0, 2^{\aleph_\alpha}) \) consistent for all \(\alpha \) simultaneously?

Partial answer:

Theorem (Apter Gitik). Let \(A \subseteq \text{Ord} \) consist either

(i) of all successor ordinals; or

(ii) of all limit ordinals and all successor ordinals of form \(\alpha = 3n, 3n+1, \gamma+3n, \) or \(\gamma+3n+2, \) where \(\gamma \) is a limit ordinal.

Then

\[(\forall \alpha \in A) \text{Cov}(\mathfrak{N}_\alpha, \aleph_0, 2^{\aleph_\alpha}) \]

is consistent (modulo large cardinals).

(Really, their technique gives slightly more.)

In general, the problem remains open.
Question: *How singular* can cardinals be without AC? in the following sense: How small are \(l \leq n \) and \(m \leq n \) satisfying

(i) \(\text{Cov}(< l, < n, n) \)?

(ii) \(\text{Cov}(< n, < m, n) \)?

(iii) \(\text{Cov}(< l, < m, n) \)?

On (iii):
Specker’s problem is a partial case.

On (ii):
The answer is

As small as possible

since Gitik’s model satisfies \(\text{Cov}(< n, \aleph_0, n) \) for all (not only well-ordered) \(n \).
On (i):
For well-ordered n, the answer is

$l < n$ is impossible.

Theorem 1. $\text{Cov}(\lambda, m, \nu)$ implies $\nu \leq^* \lambda \cdot m$, and so

$$\nu^+ \leq \aleph^*(\lambda \cdot m).$$

Corollary. $\neg \text{Cov}(\lambda, \lambda, \lambda^+)$ for all $\lambda \geq \aleph_0$.

Since $\text{Cov}(\lambda, \lambda, \lambda^+)$ is consistent, the result is exact.

Remark. $\neg \text{Cov}(\aleph_0, \aleph_0, \aleph_2)$ is an old result of Jech. (I am indebted to Prof. Blass who informed me.) By Corollary, really $\neg \text{Cov}(\aleph_0, \aleph_1, \aleph_2)$.
Next question: Let Cov(l, m, n), is n estimated via l and m? (when n is not well-ordered). Without Foundation, the answer is

No

Even in the simplest case l = 2 and m = ℵ₀ such an estimation of n is not provable:

Theorem 2. *It is consistent that for any p there exists n ∉ p such that Cov(2, ℵ₀, n).*

The proof uses a generalization of permutation model technique to the case of a proper class of atoms. We use non-well-founded sets instead of atoms.
On the other hand, $\aleph(n)$ and $\aleph^*(n)$ are estimated via $\aleph(l)$, $\aleph^*(l)$, and $\aleph^*(m)$:

Theorem 3.
$\text{Cov}(L, m, n)$ implies

$$\aleph(n) \leq \aleph^*(\sup_{l \in L} \aleph(l) \cdot m)$$

and

$$\aleph^*(n) \leq \aleph^*(\sup_{l \in L} \aleph^*(l) \cdot m).$$

Corollary 1.
$\neg\text{Cov}(\lambda, \lambda, 2^\lambda)$ and $\neg\text{Cov}(n, 2^n, 2^{2n^2})$.

In particular:

$\neg\text{Cov}(\lambda, 2^\lambda, 2^{2^\lambda})$ and $\neg\text{Cov}(\beth_\alpha, \beth_{\alpha+1}, \beth_{\alpha+2})$.

Since $\text{Cov}(n, n, 2^n)$ is consistent, the result is near optimal.
Another corollary is that Specker’s request, even in a weaker form, gives the least possible evaluation of $\aleph^*(2^\lambda)$ (which is λ^{++}):

Corollary 2. $\text{Cov}(\lambda, \lambda^+, 2^\lambda)$ implies

$$\aleph^*(2^\lambda) = \aleph(2^\lambda) = \lambda^{++}.$$

So, if there exists a model which gives the positive answer to Specker’s problem, then in it, all the cardinals $\aleph^*(2^\lambda)$ have the least possible values.
As the last corollary, we provide a “pathology” when a set admits *neither* well-ordered covering (of arbitrary size) by sets of smaller size, *nor* covering of smaller size by well-orderable sets (of arbitrary size). Moreover, it can be the *real line*:

Corollary 3. Assume CH holds and Θ is limit. (E.g., assume AD.) Then for any well-ordered λ

\[\neg \text{Cov}(< 2^{\aleph_0}, \lambda, 2^{\aleph_0}) \quad \text{and} \quad \neg \text{Cov}(\lambda, < 2^{\aleph_0}, 2^{\aleph_0}). \]

(Here CH means “There is no m such that \(\aleph_0 < m < 2^{\aleph_0} \).”)
Problems
Problem 1. Is $\neg \text{Cov}(n, 2^n, 2^{2^n})$ true for all n?

That holds if $n = n^2$ (by Corollary 1 of Theorem 3).

Problem 2. Is $\neg \text{Cov}(\langle \mathcal{I}_\alpha, \mathcal{I}_\alpha, \mathcal{I}_{\alpha+1} \rangle)$ true for all α?

That near holds if α is successor (again by Corollary 1 of Theorem 3).

Problem 3. Is $\text{Cov}(n, \aleph_0, 2^{n^2})$ consistent for all n simultaneously?

This sharps Specker’s problem of course.

Problem 4. Can Theorem 2 be proved assuming Foundation? More generally, expand the Transfer Theorem (Jech Sohor) to the case of a proper class of atoms.
Problem 5. Is it true that on successor alephs the cofinality can behave anyhow, in the following sense: Let F be any function such that

$$F : \text{SuccOrd} \rightarrow \text{SuccOrd} \cup \{0\}$$

and F satisfies

(i) $F(\alpha) \leq \alpha$ and
(ii) $F(F(\alpha)) = F(\alpha)$

for all successor α. Is it consistent

$$\text{cf } \aleph_\alpha = \aleph_{F(\alpha)}$$

for all successor α?

Perhaps if F makes no successive cardinals singular, it is rather easy; otherwise very hard.
References
[1] Arthur W. Apter and Moti Gitik. Some results on Specker’s problem. Pacific Journal of Mathematics, 134, 2 (1988), 227–249.

[2] Solomon Feferman and Azriel Lévy. Independences results in set theory by Cohen’s method, II. Notices of the American Mathematical Society, 10 (1963), 593. Abstract.

[3] Moti Gitik. All uncountable cardinals can be singular. Israel Journal of Mathematics, 35, 1–2 (1980), 61–88.

[4] Moti Gitik. Regular cardinals in models of ZF. Transactions of the American Mathematical Society, 290, 1 (1985), 41–68.

[5] Donald A. Martin and John R. Steel. Projective determinacy. Proceedings of the National Academy of Sciences of U.S.A., 85, 18 (1988), 6582–6586.
[6] Donald A. Martin and John R. Steel. *A proof of projective determinacy*. Journal of the American Mathematical Society, 2, 1 (1989), 71–125.

[7] Ralf Dieter Schindler. *Successive weakly compact or singular cardinals*. Journal of Symbolic Logic, 64 (1999), 139–146.

[8] Ernst P. Specker. *Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom)*. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 3, 3 (1957), 173–210.

[9] W. Hugh Woodin. *Supercompact cardinals, sets of reals, and weakly homogeneous trees*. Proceedings of the National Academy of Sciences of U.S.A., 85, 18 (1988), 6587–6591.