THE GEMINI/HST CLUSTER PROJECT: STRUCTURAL AND PHOTOMETRIC PROPERTIES OF GALAXIES IN THREE $z = 0.28–0.89$ CLUSTERS

Kristin Chiboucas1, Jordi Barr2, Kathleen Flint3, Inger Jørgensen4, Maela Collobert2, and Roger Davies2

1Gemini Observatory, 670 N. A'ohoku Pl., Hilo, HI 96720, USA; kchibouc@gemini.edu, ijorgensen@gemini.edu
2Department of Astrophysics, University of Oxford, Keble Rd, Oxford OX1 3RH, UK; jordi.barr@nottingham.ac.uk, maela.collobert@gmail.com, rld@astro.ox.ac.uk
3National Postdoctoral Association, 1200 New York Avenue, NW, Suite 635, Washington, DC 20005, USA; kflint@nationalpostdoc.org

Received 2008 December 7; accepted 2009 August 25; published 2009 September 22

ABSTRACT

We present the data processing and analysis techniques we are using to determine the structural and photometric properties of galaxies in our Gemini/HST Galaxy Cluster Project sample. The goal of this study is to understand cluster galaxy evolution in terms of scaling relations and structural properties of cluster galaxies at redshifts 0.15 < z < 1.0. To derive parameters such as total magnitude, half-light radius, effective surface brightness, and Sersic n, we fit $r^{1/4}$ law and Sersic function two-dimensional surface brightness profiles to each of the galaxies in our sample. Using simulated galaxies, we test how the assumed profile affects the derived parameters and how the uncertainties affect our Fundamental Plane. We find that while fitting galaxies that have Sersic index $n < 4$ with $r^{1/4}$ law profiles systematically overestimates the galaxy radius and flux, the combination of profile parameters that enter the Fundamental Plane has uncertainties that are large. Average systematic offsets and associated random uncertainties in magnitude and log r_e for $n > 2$ galaxies fitted with $r^{1/4}$ law profiles are -0.1 ± 0.3 and 0.1 ± 0.2, respectively. The combination of effective radius and surface brightness, log $r_e - \beta \log (I)_e$, that enters the Fundamental Plane produces offsets smaller than -0.02 ± 0.10. This systematic error is insignificant and independent of galaxy magnitude or size. A catalog of photometry and surface brightness profile parameters is presented for three of the clusters in our sample, RX J0142.0+2131, RX J0152.7−1357, and RX J1226.9+3332 at redshifts 0.28, 0.83, and 0.89, respectively.

Key words: galaxies: clusters: individual (RX J0142.0+2131, RX J0152.7−1357, RX J1226.9+3332) – galaxies: fundamental parameters – methods: data analysis

Online-only material: color figures, machine-readable tables

1. INTRODUCTION

Theoretical hierarchical models of galaxy formation predict that numerous small halos, primordial dwarf galaxies, collapsed early on in the history of the universe. These merged to form ever larger halos with deeper potentials and greater baryonic mass accumulation. While these ΛCDM models are successful at explaining structure formation on large scales, the agreement with observations is worse on the level of galaxies (Conselice et al. 2007). Understanding the formation of primordial galaxies and how galaxies came to have the stellar populations, masses, and structural properties observed in the local universe is fundamental to our understanding of cosmology.

Generally, the physical processes a galaxy undergoes during its evolution depend primarily on only two factors: mass and environment. While mass may affect the galaxy’s structural and dynamical properties and star formation activity in predictable ways, the local environment of the galaxy is the source of complex evolutionary processes such as galaxy–galaxy merging, harassment, and stripping. Despite this, tight scaling relations of galaxy properties exist and must be reconciled with potentially different evolutionary paths. Such scaling relations include the Tully–Fisher relation between disk galaxy total magnitude and rotational velocity (Tully & Fisher 1977), the three-parameter Fundamental Plane (FP) relationship between early-type galaxy velocity dispersion, effective radius, and effective surface brightness (e.g., Dressler et al. 1987; Djorgovski & Davis 1987), the red sequence for early-type galaxies, and relationships between absorption line strengths and central velocity dispersion. How these tight relations evolve with redshift or vary with galaxy mass places strong constraints on galaxy formation and evolution models.

Observational studies of cluster galaxies have found that the most massive galaxies are composed mainly of old stellar populations, suggesting that massive early-type galaxies formed at redshifts >2 (e.g., Bower et al. 1992; Jørgensen et al. 1999; Trager et al. 2000; Blakeslee et al. 2003; Mei et al. 2006). There is little evidence for recent star formation in these quiescent galaxies. They form a red sequence with little scatter in a color–magnitude diagram (e.g., Sandage & Visvanathan 1978) and obey tight scaling relations in their kinematic and structural properties (e.g., Dressler et al. 1987; Jørgensen et al. 1996). These all suggest an early epoch of star formation in a homogeneously old galaxy population. Although massive galaxies exhibit pure passive evolution since $z \sim 2$ evolving only in luminosity and color as stellar populations age, observations have also shown that clusters and lower mass cluster galaxies continue to evolve at intermediate redshifts. The fraction of blue, star-forming galaxies increases with redshift (e.g., Butcher & Oemler 1984; Ellingson et al. 2001), while larger fractions of spiral to S0 galaxies are observed in clusters at intermediate redshifts (e.g., Dressler et al. 1997).

Meanwhile, hierarchical structure formation models predict that galaxies form from the collective mergers of smaller galaxies. These mergers are expected to continue with high frequency through intermediate redshifts (e.g., Baugh et al. 1996). Semianalytical models predict a characteristic mass a factor of three lower than that found at $z = 1$ (Poggianti 2004) with simulations underpredicting the numbers and mass densities of the most massive galaxies by a factor of over

271
100 (Conselice et al. 2007), all implying that massive galaxies undergo a faster buildup than predicted. Dynamical models also often show a greater range in early-type galaxy structure and kinematics than observed (de Zeeuw & Franx 1991).

In order to reconcile apparently contradictory observations with formation and evolution models, we must study galaxy populations over a wide range of redshifts and for a wide range in galaxy mass. Previous studies have tended to investigate large samples of galaxies within a single cluster or epoch (e.g., Fritz et al. 2005; Smith et al. 2004), or fewer galaxies over a range of redshifts (e.g., Treu et al. 2002), and often only the brightest, most massive galaxies. Through the Gemini/\textit{HST} Galaxy Cluster Project, we seek to better understand the processes driving cluster galaxy evolution by studying scaling relations as a function of mass and environment since $z = 1.0$, at a time when the universe was only half of its current age. We have therefore obtained data for a large sample of galaxies, which includes a sufficient number of galaxies at each redshift to accurately measure scaling relations and a sufficient number of redshifts to measure trends in the scaling relations as a function of redshift (Jørgensen et al. 2006, 2007). At each redshift our sample spans a wide range in galaxy luminosity in order to investigate the role of galaxy mass. To discriminate between evolutionary effects due to environment and due to galaxy mass, we have obtained a consistent radial coverage for each cluster.

In a previous paper, we have described the project and sample (Jørgensen et al. 2005). Our sample of galaxy clusters consists of 15 X-ray selected massive clusters with redshifts ranging from $0.15 < z < 1$. For each of the clusters in our sample, we have obtained Gemini/GMOS spectra for about 30 cluster members with a wide range of luminosities. The targeted objects are chosen independently of morphology since there is evidence that morphologies may continue to evolve even to the present epoch and we wish to avoid “progenitor bias” (van Dokkum & Franx 2001). From the spectra, we obtain redshifts, velocity dispersions, and line index measurements. Using \textit{HST} imaging data, we measure structural parameters and surface brightness profiles. With this large sample, we are studying scaling relations such as line index strengths and the FP as a function of redshift. Line index measurements probe chemical enrichment, providing insight into the star formation histories of the galaxies. The FP is examined in terms of mass and mass-to-light ratios (M/L's) in order to probe both assembly histories and luminosity evolution. We are using structural parameters for quantitative measurements of morphology to study morphological evolution. We have published the results on line index relations for RX J0152.7-1357 (Jørgensen et al. 2005) and RX J0142.0$+2131$ (Barr et al. 2005), and the FP for RX J0142.0$+2131$ (Barr et al. 2006), and RX J0152.7-1357 and RX J1226.9$+3332$ (Jørgensen et al. 2006, 2007).

The FP relates surface brightness, effective radius, and velocity dispersion in a tight and well-established relation (Dressler et al. 1987; Djorgovski & Davis 1987; Jørgensen et al. 1996):

\[
\log r_e = \alpha \log \sigma + \beta \log (L)_e + \gamma. \tag{1}
\]

It can also be described as a relation between M/L and σ or as

\[
\log (M/L) = \xi \log M + \gamma', \tag{2}
\]

which makes the FP a powerful tool to study the star formation and assembly history in early-type galaxies. A comparison of the FP for our high-redshift sample with that of low-redshift Coma cluster galaxies has revealed a number of interesting results.

The two $z \sim 0.85$ clusters exhibit a steeper slope than the low-redshift FP. We find this to be evidence for downsizing in which the lower mass galaxies have undergone more recent star formation and are overluminous compared with their low-z counterparts (Jørgensen et al. 2006, 2007). The FP for RX J0142.0$+2131$ at $z = 0.28$, while having the same slope as the low z sample, displays a greater scatter, possible evidence for the galaxies having undergone rapid bursts of star formation during a cluster merger at $z > 0.85$ (Barr et al. 2006).

Future papers will address the FP, line index scaling relations, and galaxy quantitative morphologies for all clusters in our sample in order to compare the star formation and assembly histories over a range of redshifts. Here we present the data reduction and analysis techniques we have used to measure structural and photometric parameters for three clusters in our sample: RX J0152.7-1357, RX J1226.9$+3332$, and RX J0142.0$+2131$.

RX J0152.7-1357 is a massive cluster at $z = 0.83$ originally discovered from \textit{ROSAT} data. \textit{XXM-Newton} and \textit{Chandra} observations later showed the cluster to consist of two subclumps in the early stages of merging (Jones et al. 2004; Maughan et al. 2003; Girardi et al. 2005). Much research has been done on this cluster, including recent studies of star formation rates (Homeier et al. 2005), morphology, and the color–magnitude diagram (Blakeslee et al. 2006). RX J1226.9$+3332$ is a massive cluster at $z = 0.89$ and also the most X-ray luminous cluster known at such a high redshift. It was discovered in the Wide Angle \textit{ROSAT} Pointed Survey (Ebeling et al. 2001) and exhibits a relaxed morphology. However, in a deep \textit{XXM-Newton} and \textit{Chandra} study of the X-ray mass analysis of this cluster, Maughan et al. (2007) find evidence for a recent or ongoing merger event. RX J0142.0$+2131$, at $z = 0.28$, was first identified as a massive cluster in both the Northern \textit{ROSAT} All-Sky Galaxy Cluster Survey (Böhringer et al. 2000) and the \textit{ROSAT} Extended Brightest Cluster Sample (Ebeling et al. 2000). Although it is a relatively poor cluster, it displays a large cluster velocity dispersion, yet shows no signs of substructure (Barr et al. 2005).

In this paper, we describe our measurements of the physical properties of the galaxies in our sample and analyze how uncertainties affect the derivation of the scaling relations and overall results of our study. In Sections 2 and 3 we describe our observations and our imaging data reduction process. The catalogs of photometric and structural parameters for RX J0152.7-1357, RX J1226.9$+3332$, and RX J0142.0$+2131$ are presented in Section 4. We discuss internal and external consistency of our results and implications on the measurements of the FP in Section 5. A summary is presented in Section 6. We assume $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, and $\Omega_\Lambda = 0.7$.

2. OBSERVATIONS

We have acquired ground-based imaging for the clusters in our sample using GMOS on the Gemini-North 8 m telescope. GMOS spectroscopy was obtained for 40–50 galaxies in each cluster field, 20–30 of which turned out to be cluster members. GMOS is described by Hook et al. (2004). The details of how the spectroscopic sample was chosen and the observations and reduction of these data are described elsewhere (I. Jørgensen et al. 2009, in preparation; Jørgensen et al. 2005; Barr et al. 2005). For each of our clusters we have obtained new ACS imaging or used archival \textit{HST} data to study the galaxy structural parameters with high-resolution data having FWHM $= 0''1$. Data for the three clusters described in this paper were obtained.
using the ACS Wide Field Channel. The ACS/WFC detector consists of two 2048 × 4096 chips separated by a gap of 2.5 arcsec with a mean pixel scale 0′′.049 and a 3′36 × 3′36 field of view (Sirianni et al. 2005).

For RX J0152.7−1357 (z = 0.83), we used archive data from Program ID 9290, which includes four mosaicked ACS fields observed in three filters each, F850LP, F775W, and F625W, corresponding to the z′, i′, and r′-bands in our GMOS data. Total exposure times for each field were 4800 s in the i′ band and 4750 s in the z′ and r′ bands. These data contain all 29 of our spectroscopic sample cluster member galaxies.

For RX J1226.9+3332 (z = 0.89), ACS archival data from Program ID 9033 included four fields in two bands each, F606W and F814W, the latter equivalent to the Cousins i-band. Exposure times were 8 × 500 s. These fields contain our original 25 sample galaxies used by Jorgensen et al. (2006, 2007) along with additional 87 galaxies from an extended sample.

We obtained data for RX J0142.0+2131 (z = 0.28) from Cycle 12 Program ID 9770 observed on UT 2003 November 1 and 2004 July 3. Two fields were imaged in a single band, F775W. The total exposure time for each position was 4420 s. Of the 30 spectroscopic sample cluster member galaxies, 28 were covered by these fields. See Table 1 for a summary of all the ACS data used in this paper.

3. DATA PROCESSING

3.1. HST/ACS Initial Processing and Photometry

The three clusters discussed in this paper were used to establish the data reduction pipeline. Although the data are distributed already processed from STScI, we chose to redo the reduction starting with the stacking of flattened images in order to achieve better cosmic ray removal. In some cases, we also wished to mask out large reflections or saturated stars before stacking the images. We used MULTIDRIZZLE v. 2.3, an STScI distributed PyRAF task\(^4\) (Koekemoer et al. 2002), which drizzles, distortion-correction, and stacks images all in one.

To obtain better relative shifts between separate exposures at each pointing, we initially ran MULTIDRIZZLE to generate a median combined image for each pointing along with individually drizzled images shifted to the reference frame of the first image in each set. The images at this point were aligned simply by using the header WCS. We then ran a subset of the Gemini IRAF package\(^5\) task IMCOADD, which first detects stars on the cosmic-ray-free median image using DAOPHOT. It then locates these stars on the individual drizzled images and measures any additional relative shifts. This step created a shift file suitable as input for MULTIDRIZZLE which was subsequently run a second time to create the final stacked, distortion corrected, cosmic-ray-cleaned image. A wrapper script was used to perform the necessary steps, which included an option to allow manual sky subtraction, for use when bright stars or reflections affected the image. We chose not to perform any resampling during the drizzle, and we used the default square drizzle kernel as no improvement was observed with other kernels.

MULTIDRIZZLE output includes weight and context images. Each pixel within the context image is encoded with information about which specific individual images were used during the combining operation for that pixel (i.e., were free from chip defects and CRs). We use the context image to generate a map that more generally contains information about the number of pixels that were combined to create each stacked pixel value. This is used to calculate more rigorously the sigma noise map for each ACS image taking into account the correlated noise produced by the drizzling (Casertano et al. 2000). The noise at each pixel is calculated as
\[\sigma^2 = F_A((RN \ast \sqrt{N_{\text{comb}}} / \text{gain}_{\text{eff}})^2 + (N / \text{gain}_{\text{eff}})) \]
where \(RN\) is the readnoise, \(N_{\text{comb}}\) is the number of pixels used in the drizzling, \(\text{gain}_{\text{eff}}\) is the effective gain at each pixel incorporating \(N_{\text{comb}}\), and \(N\) denotes the counts in that pixel. Note that \(F_A\) corrects for the correlated noise and comes from Appendix 6 of Casertano et al. (2000). It depends on the output pixel scale (in this case, the fractional size compared with the original) and the drop size for the drizzling. In our case, scale and pixfrac are both 1.0 since we do not drizzle to smaller scales. \(F_A\) is also dependent on the size of the area considered since correlated noise scales from single pixel noise differently than uncorrelated noise. We did not take this area correction into account here. Thus, our noise map may incorrectly estimate the true photometric errors. Although this would have an effect on the GALFIT error estimates on the individual parameters, we do not expect this to affect our results since we determine parameter measurement uncertainties independently through galaxy simulations (Section 5).

The weight image uses weighting based on exposure times. To improve the extraction of galaxies in later processing using SExtractor, we adjust this weight image using our \(n\)-pixel map described above to set a very low weight near image borders and in gap regions where few overlapping images produce greater noise.

The zero-point calibration in the AB system is provided by STScI for the ACS camera in each filter used (Sirianni et al. 2005). We correct the WCS in the header of the stacked images, which were in most cases off by a shift of about 2′ in R.A. and 1′′ in decl., by using the IRAF tasks CCMAP and CCFIND along with coordinates for these galaxies previously obtained from our GMOS images relative to the USNO catalog (Monet et al. 1998). Final coordinates are generally good to about 0′′/2 in both R.A. and decl.

3.2. SExtractor Object Detection and Photometry

We used SExtractor (Bertin & Arnouts 1996) v. 2.3.2 to detect all objects in the images having at least nine contiguous pixels greater than 2σ above the sky noise. The weight image described above was used to minimize the number of spurious noise detections predominantly found near image borders and, in some cases, chip gap regions of the combined dithered images. SExtractor was run in association matching mode to specifically recover our spectroscopic sample galaxies. It was then run a second time to detect all other galaxies in the field, using

\(^4\) STSDAS and PyRAF are products of the Space Telescope Science Institute, which is operated by AURA for NASA.

\(^5\) IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation. The Gemini IRAF package is distributed by Gemini Observatory, which is operated by AURA.

Table 1

Cluster	No. of Fields	Filter	Total \(t_{\text{exp}}\) (s)	Program ID
RX J0142.0+2131	2	F775W (i′)	4420	9770
RX J0152.7+1357	4	F625W (r′)	4750	9290
RX J1226.9+3332	4	F814W (f)	4000	9033
dual image mode in cases where fields had been observed in multiple bands. In this mode, we use the band closest to the i' band for the initial detection of the objects. After using the IRAF task imshift to precisely align images in other bands to the i'-band image, we run SExtractor to perform photometry in these other bands using the i'-band-determined apertures. This produces matched catalogs of objects in all bands.

After detecting all objects in a first pass through the data, SExtractor makes a second pass to deblend merged objects. We ran a number of tests to determine the best set of SExtractor deblending parameters, DEBLEND_NTHRESH (sets the number of deblending levels) and DEBLEND_MINCONT (minimum fraction of pixels a branch must have to be considered a separate object), which would correctly split and detect objects in our fields. Aperture check-images were used to determine whether objects had been detected correctly. For our spectroscopic sample galaxies, the best set was found to be DEBLEND_NTHRESH = 32 and DEBLEND_MINCONT = 0.01 as these parameters best recovered galaxies in their entirety without excess splitting while still correctly separating neighboring objects. While this worked for most program galaxies in all clusters, there were cases of galaxies with a lot of structure that were split too much, or galaxies with foreground stars that required greater deblending. For these galaxies we adjusted the DEBLEND_MINCONT slightly lower or higher as necessary until that individual galaxy was verified by eye to have been detected correctly. For the nonsample galaxies in the images, many consisting of late type, irregular galaxies, we used a compromise set of parameters of DEBLEND_NTHRESH = 16 and DEBLEND_MINCONT = 0.01. This minimized oversplitting while still separating most neighboring objects.

The SExtractor output, which we use primarily as input for more rigorous galaxy profile fitting, included various magnitude (and flux) determinations, fractional pixel centroids, object class, ellipticity, position angle, and various moment and size measurements. We take the parameter m_{best}, a combination of adapted aperture and corrected isophotal magnitudes, as the estimate for total magnitude. Measured parameters for objects detected multiple times in overlapping image frames were averaged together.

3.3. GALFIT Surface Photometry

To perform surface brightness profile fitting, we used GALFIT, a two-dimensional profile-fitting program written by Peng et al. (2002). GALFIT has the advantage over other similar profile-fitting codes because it simultaneously fits neighboring galaxies. This improves the fit for $r^{1/4}$ law galaxies that contain a significant amount of light in the outer wings of the profile (Häussler et al. 2007). GALFIT provides the user with a choice of analytic surface brightness profile functions with which to fit the galaxies including Sersic (Sersic 1968), de Vaucouleurs ($r^{1/4}$ law), exponential disk, bulge/disk deconvolution, and point-spread function (PSF).

The user must provide initial guesses for the profile parameters and a PSF template used to deconvolve the image PSF during fitting. We use the SExtractor output m_{best} for total magnitude, x, y, ellipticity, theta (corrected to GALFIT orientation), and flux radius (set within SExtractor to be an estimate of the half-light radius and converted to a_{eff} for GALFIT) as input for GALFIT. Tests were made using simulated galaxies to determine the most appropriate PSF model and size. See Section 5.1 for more details of this testing process. The chosen PSFs were created by first running Tiny Tim (Krist 1995) to generate raw distorted ACS model PSFs for a grid of locations spread uniformly over the two ACS chips. These were then added to a set of blank ACS images with the appropriate shifts and multidrizzled to produce PSFs combined in the same manner as the real data. These PSFs were re-extracted from the rectified frame as individual PSF templates for use with GALFIT. We use a one-time sampled 9" PSF for the GALFIT-fitting procedure.

We fit all galaxies with both $r^{1/4}$ law and Sersic (Sersic 1968) profiles. The Sersic profile has the form

$$\Sigma(r) = \Sigma_e \exp\left[-\kappa \left(\frac{r}{r_e}\right)^{1/n} - 1\right],$$

where r_e is the half-light radius, Σ is the surface brightness, and n is the Sersic index. κ is coupled to n to ensure that half of the total flux lies within r_e. The total flux can be calculated by integrating out to $r = \infty$:

$$F_{\text{tot}} = 2\pi r_e^2 \Sigma_e e^{\kappa} n k^{-2n} \Gamma(2n)q/R(c),$$

$$R(c) = \pi(c + 2)/(4\beta(1/c + 2), 1 + 1/(c + 2))),$$

(Peng 2001) where q is the axial ratio, b/a, c is the diskiness–boxiness parameter, and β is the Beta function. The advantage of fitting with a Sersic profile is that the exact form of the profile need not be known a priori since the index, n, can vary to fit the full range of possible galaxy profiles from $n = 1$ exponential disks to $n = 4$ ellipticals/spheroidal components.

Since ACS images are large, we used a wrapper script that first extracted a smaller panel for each galaxy from the image, with a panel size determined to be $\sim 25 \times r_e$ of the galaxy to be fitted, having a minimum size of 250 pixels and maximum of 1000 pixels on a side. Because light from the extended profiles of neighboring objects will influence the profile fitting of the primary galaxy, all galaxies within the panel were either fitted or masked. Masking was necessary to limit the number of galaxies fit and speed up the execution of the fitting. We therefore simply masked out all objects detected by SExtractor more than four magnitudes below the mean sample galaxy brightness. All other objects in the panel were fitted with Sersic profiles. These image sections were also checked by eye to ensure that no objects had been missed by SExtractor.

The wrapper script fits all cluster sample galaxies with both a Sersic and a de Vaucouleurs ($r^{1/4}$ law) profile. For each profile, we have a minimum of six free parameters, fitting for total magnitude, effective radius, ellipticity, position angle, and (x, y) position. In the case of the Sersic profile, the Sersic n was initially set at 1.5 and allowed to vary. After fits with both Sersic and $r^{1/4}$ law profiles were performed, any object best fit with $n > 3.0$ was refit with a Sersic profile using $n = 4.0$ along with the output from the $r^{1/4}$ fitting as initial guesses. All parameters were allowed to vary. We included this iteration because the initial guesses tended to influence the fit and SExtractor did not always produce the most accurate estimates for input. Neighbors were fit simultaneously with Sersic profiles while the sky value was held constant at the value provided by SExtractor. Best fits are determined by minimizing the χ^2 residual, adjusting all free parameters simultaneously.

Final parameters produced by GALFIT include total magnitude, effective radius, axial ratio, position angle, x and y centroids, Sersic n, and a χ^2 value of the fit, along with associated uncertainties for all the derived parameters. Output also consisted of a multiple extension image including the original panel, a model image, and the residuals from the fit. We display
Figure 1. Several examples of output images produced by GALFIT. These include, from top to bottom, the panel from the original image, a model image with the primary galaxy fit with an $r^{1/4}$ profile, and the residuals from the best fit. In every case, the primary galaxy being fitted is the central object. Galaxies are from RX J0152.7−1357: 737 (with Sersic fit $n = 3.71$), 643 ($n = 3.58$), 1567 ($n = 3.17$), 1385 ($n = 1.11$). Image sections are 5.2 arcsec across.

Table 2

Parameter	$z = 0.83$–0.89	$r^{1/4}$	$z = 0.28$	$r^{1/4}$
	Sersic Fit	Sersic	Sersic	Sersic
Magnitude	0.010	0.006	0.003	0.001
re	0.009	0.009	0.009	0.008
$\langle \mu \rangle_e$	0.040	0.025	0.013	0.008

Note. Uncertainties are similar for the two high-redshift clusters and are therefore combined in this table.

4. RESULTS

Our high-redshift cluster galaxies have half-light radii for our assumed cosmology ranging in size from ~ 0.8 to 35 kpc with magnitudes between $20.3 < i' < 23.7$. The full RX J0152.7−1357 spectroscopic sample includes 41 galaxies, 36 of which are contained within the ACS images. Structural parameters have been obtained for all 29 spectroscopically confirmed members. The RX J1226.9+3332 sample of 112 galaxies with measured parameters includes the original spectroscopic sample along with 63 galaxies having archival spectroscopy. A total of 54 galaxies in this full sample are members. The 28 galaxies in the RX J0142.0+2131 sample have magnitudes ranging from $16.9 < i' < 22.0$ and sizes $0.7 < r_e < 34$ kpc. In Tables 3–5, also available electronically, we provide the measured and derived photometric and structural parameters for these galaxies. Galaxies are sorted by right ascension and columns are as follows:

Column 1. Galaxy ID. This number comes from our original SExtractor detection in GMOS images. We use this number to identify the galaxies in all our publications.

Column 2. R.A. (J2000.0).

Column 3. Decl. (J2000.0).

Column 4. Number of measurements made from different images for each galaxy. Table entries are average values from all measurements.
Figure 2. Best $r^{1/4}$ law fits as in Figure 1. Galaxies are from RX J1226.9+3332. From left to right: 1025 (with Sersic fit $n = 6.96$), 529 ($n = 4.74$), and 563 ($n = 3.92$). Image sections are 11.8, 5.9, and 5.9 arcsec across, respectively.

Column 5. Total apparent magnitude derived from $r^{1/4}$ law profile fits. This is measured in the i' band for RX J0152.7−1357 and RX J0142.0+2131, and I band for RX J1226.9+3332. Magnitudes are uncorrected for reddening.

Column 6. log (r_e) from our $r^{1/4}$ law fits, with r_e in arcsec. We take the radius as the geometric mean of the semimajor and minor axes, $r = (a b)^{1/2}$.

Column 7. Mean surface brightness within the effective radius derived from total magnitude and r_e from our $r^{1/4}$ law fits, in mag arcsec$^{-2}$, using $\langle \mu \rangle_e = m_{\text{tot}} + 2.5 \log 2 \pi + 2.5 \log r_e^2$.

Column 8. Total magnitude from Sersic function fits, bands as in Column 5.

Column 9. log (r_e) from Sersic function fits, with r_e in arcsec.

Column 10. $\langle \mu \rangle_e$ derived from total magnitude and r_e from our Sersic function fits, in mag arcsec$^{-2}$.

Column 11. Best-fitting Sersic function parameter, n.

Column 12. Position angle, north through east.

Column 13. Ellipticity, derived from the fitted axial ratio.

Column 14. Cluster members are denoted by a “1,” nonmembers by “0.” Not every galaxy in our sample proved to be a cluster member, but all sample galaxies for which we were able to measure structural parameters are included in these tables. A blank entry indicates no redshift is available. These include galaxy ID 910, required fitting as a neighbor of galaxy ID 899, galaxy IDs 1009 and 1253, which had archive spectroscopy but with a too low signal-to-noise ratio (S/N) to derive a redshift, and galaxy ID 1254 for which we were unable to extract a redshift due to confusion with a second object in the slit.

5. DISCUSSION

5.1. Internal Consistency

Simulated galaxies are used to investigate sources of error in our pipeline and test the accuracy of the software used. GALFIT, for example, produces uncertainties for the output parameters that tend to be too low since these are strictly random uncertainties and do not take into account the fact that the profile we fit each galaxy with may not be an exact match to the true galaxy profile (Peng 2001). We therefore use the simulated galaxies to determine more realistic measurement uncertainties and to test how these uncertainties affect our FP measurements. The simulated galaxies are also used to test the effect of different PSF models and sizes for convolution in the galaxy profile fitting. In this section, we describe the methods used to simulate the galaxies, describe tests to determine the best PSF to use for the two-dimensional surface brightness profile fitting, and determine expected uncertainties in our galaxy parameter measurements.

5.1.1. Galaxy Simulations

To generate realistic galaxies, we used the structural parameters of 148 galaxies in our low-redshift Coma cluster comparison sample (Jørgensen & Franx 1994). We transformed the values of M_B to the filter and redshift of each cluster using stellar population models of Bruzual & Charlot (2003). For simulating galaxies at $z = 0.83$, we transform the M_B magnitudes of Coma
cluster galaxies to the observed i' band using

$$M_B = B_{\text{rest}} - DM(z).$$

(6)

$$B_{\text{rest}} = i' + 0.8026 - 0.4268(i' - z') - 0.0941(i' - z')^2,$$

(7)

(Jørgensen et al. 2005, 2007) and a mean empirical color, $(i' - z') = 0.8$, for our early-type galaxies at this redshift. For $z = 0.28$, we use

$$B_{\text{rest}} = i' + 0.4753 + 1.6421(r' - i') - 0.0253(r' - i')^2$$

(8)

(Barr et al. 2005) with a mean empirical color $(r' - i') = 0.5$. We do not include a separate simulation for $z = 0.89$ as those made for $z = 0.83$ are considered representative. We scale r_{eff} to the appropriate redshift within our assumed cosmology. To create a large sample of simulated galaxies we added a small amount of random scatter to the magnitudes, r_{eff}, and Coma galaxy axial ratios while randomly generating positions and position angles. The Sersic parameter, n, was allowed to vary randomly between 0.5 and 5.5, except for a few sets of simulations where values ranged between 3.5 and 4.5 in order to increase the total number of early-type galaxy simulations. The diskiness/boxiness of each galaxy was also allowed to vary randomly. Galaxies were added as perfect Sersic profiles, albeit with Poisson noise added to the galaxy images.

In order to simulate galaxies with multiple components, we also generated a set of bulge + disk galaxies. In these cases, bulges were created by modeling from the Coma galaxy structural properties. Disks were then added to the same position assuming disk-to-total light ratios ranging randomly from 0.25 to 0.65 with disk sizes ranging from $(1–1.4) \ r_{\text{eff(bulge)}}$. The inclination was varied from 0 to 90 degrees, uniformly in $\cos i$. As in Jørgensen & Franx (1994), we assign each component an intrinsic axial ratio: $b/a(\text{bulge}) = 0.7$ and $b/a(\text{disk}) = 0.15$. These values are chosen such that when transformed into observed values according to the inclination by

$$b/a_{\text{observed}} = \sqrt{1 - (1 - (b/a_{\text{intrinsic}})^2)(\cos i)^2}$$

(Sandage et al. 1970), they will display the same range of axial ratios found in real galaxies.

Simulated galaxies were added to real images using two different means. Galaxies were generated with ARTDATA by defining a Sersic profile and using the Coma based parameters. They were also created using GALFIT itself by turning off the fitting for all parameters thereby forcing GALFIT to output models of the input parameters. No differences were observed in the galaxies generated or in the results obtained from the two methods, but both were used to ensure that no bias was produced from the simulation method.

Before being added to images, simulated galaxies were first convolved with a PSF and noise was added to the galaxies with the IRAF task MKNOISE. PSFs were created using 4–6 unsaturated real stars having a high S/N using the routines in the IRAF package DAOPHOT. These were created for each ACS image that simulated galaxies were added to.

In order to measure realistic GALFIT parameter uncertainties we generated a total of over 2600 $z = 0.83$ and 2500 $z = 0.28$
simulated galaxies. So as to not increase the surface density of objects in the images and thereby affect recovery of the surface brightness profile parameters, not more than 50 were added at a time to the real cluster images. It is important to note that all simulated galaxies having both bulge + disk components. We do not simulate structure, such as arms, bars, double nuclei, shells, or twisted isophotes, all of which would effect the fitting. For the measurement of the cluster FPs, we have included only non-emission line, non-star-forming galaxies which we take to be the early types. However, at higher redshift, one might expect to find more late-type features in these non-star-forming galaxies. As a simple test of how added structure will affect single-profile model fits, we use the set of simulated galaxies having both bulge + disk components.
Galaxies span the full range of the high green squares RX J1226.9+3332, and red dots Coma sample galaxies. Black (A color version of this figure is available in the online journal.)

Figure 4. Face-on FP. Blue squares represent galaxies of RX J0152.7−1357, green squares RX J1226.9+3332, and red dots Coma sample galaxies. Black stars denote the location of our simulated galaxies in this FP. These simulated galaxies span the full range of the high z FP.

(A color version of this figure is available in the online journal.)

In Figure 4, we display a face-on view of the FP with our Coma cluster and high-redshift galaxies plotted. We overlay our high-redshift simulated galaxy sample. Expected velocity dispersions given the input r_e and $\langle \mu \rangle_e$ for each simulated galaxy were calculated using the FP equation for Coma, $\sigma = (\log r_e + 0.82 \log (I)_e + 0.443)/1.3$ (Jørgensen et al. 2006). It can be seen that our simulated galaxies span the same region of the FP as the real galaxies.

5.1.2. Choosing the Best PSF for Profile Fitting

In order to determine the most appropriate PSF to use for deconvolution during the surface brightness profile fitting, we use a subset of 700 simulated galaxies to test the recovery of parameters with GALFIT using several different PSF models and sizes. Images were run through our reduction pipeline starting with SExtractor object detection in order to provide initial guesses for the GALFIT profile fitting. We tested the GALFIT recovery using four different PSFs: the PSF based on real stars, a raw $3''$ Tiny Tim PSF generated for the appropriate location on the ACS chip, and $3''$ and $9''$ drizzled PSFs (see Section 3.3 for details). Galaxies were fitted with both Sersic and $r^{1/4}$ law profiles. The $r^{1/4}$ law fits show greater discrepancy from input values than Sersic function fits because galaxies were added with a Sersic parameter n that varied randomly between 1 and 4.5 for these tests.

In Table 6, we list the average differences and standard deviation between input and recovered magnitude, effective radius (in arcsec), and the combination of parameters that enter into the FP, $\log r_e - \beta \log (I)_e$, hereafter referred to as the Fundamental Plane parameter (FPP), where $(I)_e$ is the surface brightness within r_e in units of L_\odot pc$^{-2}$ and $\beta \sim -0.8$ (Jørgensen et al. 2006). The average difference between input and recovered values is nearly identical regardless of the PSF used. However, we do find that using the raw Tiny Tim PSF consistently provides the worst results. Using $9''$ drizzled PSFs showed very slight improvement over $3''$ drizzled PSFs and very similar results to the real PSFs. A test using a subsampled PSF showed no improvement in the output results. Due to the difficulties producing a real PSF from the few stars in our images, we therefore chose to use the model $9''$ drizzled PSF. In the event that the Tiny Tim modeled $9''$ drizzled PSF is not the best representation of the true PSF, we note that the differences in the FPP due to the PSF used are insignificantly small.

5.1.3. Structural Parameter Measurement Uncertainties

The full set of simulated galaxies was used to investigate realistic uncertainties in structural parameter measurements. Average offsets (recovered input values) and the associated rms scatter in these differences are provided in Tables 7 and 8. As with the PSF tests, simulated galaxies were recovered using the same methods as real galaxies. The $9''$ drizzled PSF described in the previous section is used for the surface brightness profile fitting of both real and simulated galaxies.

We compare the $r^{1/4}$ law recovered parameters from GALFIT with the input values for all simulated galaxies in Figure 5. We find small average systematic offsets and associated rms scatter from the true magnitude and $\log r_e$ (arcsec) of $\sim 0.2 \pm 0.4$ and 0.1 ± 0.2 for the high z sample. For the lower redshift set, we find offsets of -0.4 ± 0.4 and 0.3 ± 0.3, respectively. Average measurement offsets and rms scatter for the FPP are only -0.01 ± 0.06 and -0.04 ± 0.10 for the two samples.

This is for the full set of simulated galaxies including those that were created with exponential profiles ($n \sim 1$) but which were recovered with $n = 4$, $r^{1/4}$ law profiles. To obtain realistic uncertainties in our FP parameters, we must compare only the range of parameters from galaxies that went into constructing our FPs. We plot a histogram of the Sersic n values measured by GALFIT for our real galaxy samples in Figure 6.

Table 6

Parameter	PSF			
$\langle \Delta \log r_e \rangle_{1/4}$	Real	Raw TinyTim	Drizzled $3''$	Drizzled $9''$
$\langle \Delta \log r_e \rangle_{1/4}$	0.03 ± 0.09	0.05 ± 0.10	0.03 ± 0.10	0.02 ± 0.09
$\langle \Delta \log (I_e) \rangle_{1/4}$	0.01 ± 0.05	0.01 ± 0.04	0.01 ± 0.06	-0.01 ± 0.04
$\langle \Delta \mu_0 \rangle_{1/4}$	0.3 ± 0.3	0.3 ± 0.3	0.2 ± 0.3	0.2 ± 0.3
$\langle \Delta \mu_0 \rangle_{1/4}$	0.0 ± 0.2	-0.1 ± 0.1	-0.1 ± 0.1	-0.1 ± 0.1
$\langle \Delta \mu_0 \rangle_{1/4}$	0.0 ± 0.1	0.1 ± 0.1	0.0 ± 0.1	0.0 ± 0.1

Notes. Values listed are the average offset and standard deviation of the measurements.

* Empirical PSFs generated from real stars.
Figure 5. Left: $z = 0.83$ simulated galaxy set. Right: $z = 0.28$ set. From fits with $r^{1/4}$ law profiles, we display the difference in magnitude, r_e, $\langle \mu_e \rangle_a$, and the FP parameter $(\log r_e - \beta \log \langle I \rangle_e$, see the text) between input and recovered values. Points enclosed by triangles have neighbors within 1 r_e of the primary galaxy being fit. (A color version of this figure is available in the online journal.)

histogram displays only those galaxies used in our FP. Galaxies that were not included in our FP either had emission line spectra, log Mass < 10.3, or $n < 1.5$ (Jørgensen et al. 2006). We therefore repeat the comparison between input and recovered parameters in Figure 7 for galaxies created with $n > 2.0$ profiles. It can be seen from Table 7 that while magnitude and size errors have decreased, the systematic error and random uncertainty in the FPP of -0.01 ± 0.05 and -0.02 ± 0.10 for the two samples exhibit little change. The larger rms scatter for the lower redshift sample is primarily due to a few outliers with failed fits. In our real galaxy sample, all failed fits are flagged and refitted or left out of the FP measurement. We therefore consider this measurement uncertainty to be an upper limit.

Measurement errors are similar when fitting with a Sersic function, allowing n to vary. Systematic offsets are slightly lower for the magnitude and r_e measurements, but there is no significant improvement in the FPP over fits made with $r^{1/4}$ law profiles. In Figure 8, we display the error in recovered n as a function of input n. It is apparent that random error increases with increasing n. This is likely because fitting of $n = 1$ type galaxies tends to be more robust than $n = 4$ galaxies, where there is greater weight in the wings of the galaxy and fits are more easily affected by the sky values and near neighbors.

Because we expect the intrinsic value of n to affect the results for $r^{1/4}$ law fits, we plot the error in $r^{1/4}$ law recovered parameters as a function of input Sersic n in Figure 9. Fluxes and sizes are overestimated for intrinsically low n galaxies because the $r^{1/4}$ law profile imposes broader wings than the galaxy has. Magnitude and half-light radius are conversely underestimated at high $n (> 4)$. Because flux and size are highly correlated, the errors in the FPP are reduced, but can be as large as 0.05 for $n = 1$ exponential disk galaxies fitted incorrectly with a $r^{1/4}$ law profile. A linear fit to the offset from the true input values finds $\Delta \text{FPP} = 0.017 n - 0.067$.

We investigate other factors such as near neighbors that might affect the fits. Simulated galaxies with close neighbors within 1 r_e or within 1 arcsec display a greater deviation in the recovered versus input values for the FPP than those galaxies with a nearest neighbor at a distance greater than 2 arcsec. In Figure 10, we display the errors as a function of nearest-neighbor distance. Points enclosed by triangles have neighbors within 1 r_e. From the plot it is apparent that these points have a larger dispersion than those with more distant neighbors. The dispersion is three times as large for objects having neighbors within 2 arcsec as compared with those with nearest neighbors > 6 arcsec. We also test whether errors change as a function of r_e, magnitude, or surface brightness (Table 8). We do find that random errors in the FPP may increase slightly at fainter magnitudes and smaller sizes. We find no trend as a function of the input c parameter, a measure of the galaxy core’s intrinsic diskiness/boxiness.

Finally, we investigate how single-profile fits are affected by multiple component, bulge + disk, galaxies. Forcing a single $r^{1/4}$ law fit to a bulge embedded in a disk recovers a magnitude comparable with the sum of the two components and a half-light radius that is larger than for the bulge alone. When combined to form the FPP parameter, the average systematic offset from
Figure 6. Open histogram displaying the range of measured Sersic parameter n values found for our real galaxies in RX J0152.7−1357, RX J1226.9+3332, and RX J0142.0+2131 clusters. The solid histogram shows the Sersic n values for only those galaxies that we use to study the cluster FP.

Figure 7. Differences between input parameters and values recovered from $r^{1/4}$ law profile fitting, but for only those galaxies created with $n > 2$ Sersic profiles, within the range of the real galaxies used in the FP. Symbols are the same as in Figure 5. The results for the high-redshift sample are on the left and the lower-redshift sample are on the right. (A color version of this figure is available in the online journal.)

For both RX J0152.7−1367 and RX J1226.9+3332, a number of galaxies were observed multiple times in overlap regions from different telescope pointings. As one final test of our internal consistency, we compare the derived structural and photometric properties from these multiple measurements. In Figure 11, we compare the difference in derived FPP for both Sersic and $r^{1/4}$ law profile fits in pairs of images. Different
symbols denote different image pairs and the corresponding dashed lines show the average difference for each pair. Average differences for pairs range from (absolute value) 0.0007 to 0.015 with standard deviations of 0.002–0.015. These differences are generally smaller than GALFIT measurement uncertainties, and the scatter in these real measurement differences is smaller than the random uncertainties determined from simulated galaxies. We do not find any worrisome systematic trends between images; all differences between images are within expected measurement uncertainties.

5.2. External Consistency

Blakeslee et al. (2006) have used the same ACS data set as used in this paper to study the structural parameters and colors of 149 galaxies in RX J0152.7−1357. They also perform surface brightness profile fitting using GALFIT with a procedure very similar to ours. Images are processed in a similar manner, and like us, they fit all neighbors with $i_{F775W} < 25AB$ while masking objects fainter than this. Differences in methodology are few but three significant differences exist. While we use a 9′ Tiny Tim model PSF drizzled in the same manner as our data, they choose to use empirical PSFs from archival HST images. They also impose an upper limit for the fitted Sersic parameter, n, constraining the value to $n \leq 4$, whereas we applied no constraints. Because of the strong coupling between Sersic function parameters, this will cause differences in the measured values of both r_e and total magnitude for galaxies we find with $n > 4$. Finally, while we hold the sky value constant during the fitting at the SExtractor measured local value, they simultaneously fit for the sky value with GALFIT, except in cases where this led to poor fits.

We find a total of 26 objects in common, three of which have large discrepancies in magnitude. These were galaxies that were not well fit with single Sersic functions and which had late-type features evident in the residual images. Excluding these, we compare the measured Sersic surface brightness profile parameters of the remaining 23 galaxies with the values listed in the Blakeslee et al. catalog. We plot the differences in our measurements in a $\Delta \log r_e$ versus $\Delta \langle \mu \rangle_e$ plane (Figure 12). From a linear fit to these data points, we measure a magnitude zero-point shift of -0.025 between the two works from the offset in the intercept from zero. This is in the sense that we find objects to be on average 0.025 mag brighter. We find that large differences in measured surface brightness or size are correlated with large discrepancies in the recovered Sersic n parameter (see also Figure 9). Galaxies with measured n differing by less than 0.1 for the two groups are circled. Correcting for the zero-point shift we compare the difference in magnitudes, r_e, n, and the FPP. Results are listed in Table 9 and displayed in Figure 13.

The increasing difference in measured n at $n > 4$ is easily explained by the constraints Blakeslee et al. impose on the Sersic n. Blakeslee et al. chose not to use Tiny Tim models finding that analytical representations for the PSF overestimated fitted r_e values. However, with our 9′ model PSF, we find r_e values 2% smaller on average than their measurements. Average differences in total measured magnitude and effective radius are insignificantly small compared with the rms scatter. However, there appears to be a trend as a function of size and magnitude. We find brighter galaxies to be brighter than found by Blakeslee et al. and fainter galaxies to be fainter. Likewise, we measure larger sizes for larger galaxies and smaller sizes for smaller galaxies in comparison with Blakeslee et al. This can be attributed in part to different values recovered for the Sersic n parameter. In five cases where we find similar values

Figure 8. Difference in Sersic n recovered and input values for simulated galaxy profiles fit with Sersic functions.

(A color version of this figure is available in the online journal.)

Table 7

Profile Fitting Tests (Recovered Input Values)

Parameter	$z = 0.83$	$z = 0.28$	$z = 0.83$	$z = 0.28$
$\Delta \log r_e$	-0.19 ± 0.41	-0.38 ± 0.43	-0.08 ± 0.27	-0.12 ± 0.28
$\Delta \log r_e$	0.12 ± 0.24	0.25 ± 0.34	0.05 ± 0.17	0.09 ± 0.21
$\Delta \langle \mu \rangle_e$	0.43 ± 0.85	0.87 ± 1.41	0.18 ± 0.62	-0.32 ± 1.02
$\Delta \langle \mu \rangle_e$	-0.01 ± 0.06	-0.04 ± 0.10	-0.01 ± 0.05	-0.02 ± 0.10
$\Delta \langle \mu \rangle_e$	0.01 ± 0.30	-0.04 ± 0.46	0.02 ± 0.32	-0.04 ± 0.52
$\Delta \langle \mu \rangle_e$	-0.01 ± 0.19	0.02 ± 0.23	-0.01 ± 0.21	0.02 ± 0.23
$\Delta \langle \mu \rangle_e$	-0.06 ± 0.73	0.03 ± 1.10	-0.07 ± 0.81	0.03 ± 1.20
$\Delta \langle \mu \rangle_e$	0.00 ± 0.05	0.00 ± 0.09	0.01 ± 0.05	0.01 ± 0.10
$\Delta \langle \mu \rangle_e$	-0.2 ± 1.1	0.2 ± 1.7	-0.2 ± 1.3	0.2 ± 1.9
$\Delta \log r_e$	-0.56 ± 0.67	0.19 ± 0.24	0.37 ± 0.61	0.07 ± 0.09
$\Delta \log r_e$	0.19 ± 0.24	0.37 ± 0.61	0.07 ± 0.09	0.07 ± 0.09

Notes. $r^1/4$ refers to profile fits with $r^1/4$ law profiles, ser to Sersic profile fits, and BDr1/4 to objects generated with two components but fit with a single $r^1/4$ law profile. Errors listed are the rms scatter in the differences.

Table 8

$r^1/4$ Law Profile Fitting Tests (Recovered Input Values)

Parameter	Range 1	Range 2	Range 3
$d < 2''$	$2 < d < 6''$	$d > 6''$	
-0.01 ± 0.12	-0.00 ± 0.03	0.00 ± 0.04	
-0.00 ± 0.05	-0.01 ± 0.05	-0.01 ± 0.10	
$i' - 21$	$21 < i' < 22.5$	$i' > 22.5$	
0.00 ± 0.04	-0.00 ± 0.03	-0.01 ± 0.07	
$\langle \mu \rangle_e$	$20 < \langle \mu \rangle_e < 22.5$	$\langle \mu \rangle_e > 22.5$	
-0.00 ± 0.08	-0.01 ± 0.05	-0.00 ± 0.05	
within 0.1 for measured n, magnitude and size discrepancies are negligible regardless of size or magnitude. For 10 objects measured by Blakeslee et al. to have $n = 4.0$ due to their constraint on the Sersic index, and for which we find best Sersic function fits with $n > 4.0$, we compare the Blakeslee et al. results with our $r^{1/4}$ law ($n = 4.0$) fits. We find that the average offsets in magnitude and size are similar but the random scatter is nearly half that of the differences in Sersic measurements for these same galaxies. For large galaxies, in cases where we find $n > 4.0$, the covariance of Sersic function parameters generates fits with larger r_e than that found by Blakeslee et al. For small galaxies, which are more strongly affected by the choice of PSF, we speculate that our broad 9" PSF may be the cause of the smaller size measurements as compared with Blakeslee et al. Due to the coupling of Sersic function parameters, a smaller recovered size results in a fainter recovered magnitude. In Figure 12, we also show the parameter measurement errors in the $\Delta(\mu)_e - \Delta \log r_e$ plane for our $z = 0.83$ simulations fitted with an $r^{1/4}$ law profile. We find the same coupling of errors and an offset in magnitude of 0.018, similar to that found for the Blakeslee et al. comparison. Since we used PSFs generated from real stars to create the simulated galaxies and the 9" model PSF to fit the galaxies, this further suggests that the broad PSF may be the cause of the slight magnitude differences.

Because of the correlation between Sersic profile parameters, the FPP is insensitive to these small variations in size measurement. When taking into account the small magnitude zero-point differences, we find the differences between the Blakeslee

Table 9

Parameter	(This Work – Blakeslee et al.)a	(Subset Blakeslee et al. $n = 4$)b		
	Zero-point Shift Applied	No Shift	This Work: Sersic	$r^{1/4}$ Fits
Δm_{ser}	0.01 ± 0.08	−0.02 ± 0.08	−0.01 ± 0.09	0.01 ± 0.05
$\Delta \log r_e$	−0.01 ± 0.06	−0.01 ± 0.06	0.01 ± 0.07	−0.02 ± 0.03
$\Delta (\mu)_e$	−0.02 ± 0.21	−0.04 ± 0.21	0.04 ± 0.26	−0.07 ± 0.10
Δn	0.2 ± 0.4	0.2 ± 0.4		
ΔFPP_{ser}	0.00 ± 0.01	0.01 ± 0.01	−0.003 ± 0.014	0.006 ± 0.006

Notes.

a Comparison between 23 galaxies in common.

b Comparison between 10 galaxies for which we find best Sersic fits with $n > 4.0$ while Blakeslee et al. limit $n \leq 4.0$. We show the comparison with both our Sersic and $r^{1/4}$ law ($n = 4.0$) fits.
et al. and our FPP measurement to be completely negligible and smaller than the systematic error of 0.006 determined from galaxy simulations. The rms scatter in the differences between our measurements is a factor of 5 smaller than the uncertainty expected from the simulations. The systematic difference in the FPP measurement of 0.009 is larger when not including the zero-point shift, but is still much smaller than our expected random uncertainty of 0.05 determined from simulations.

5.3. Implications for FP Measurements

Although we have fit each galaxy with both Sersic and $r^{1/4}$ law functions, we use measurements of r_e and surface brightness from the $r^{1/4}$ law fits to derive the FP since the galaxies in our low-redshift comparison sample were originally fitted only with $r^{1/4}$ law profiles. Not all of our sample consists of pure $r^{1/4}$ law galaxies, and the Sersic function fits find a wide range of values for the Sersic parameter. However, only galaxies

![Figure 10](image1.png)

Figure 10. Differences in $r^{1/4}$ law profile recovered parameter values for $n > 2$ galaxies as a function of nearest-neighbor distance. Points enclosed by triangles have neighbors within 1 r_e. The average difference in recovered input values and standard deviation is provided for the ranges $d < 2$ arcsec, 2 arcsec $< d < 6$ arcsec, and $d > 6$ arcsec.

(A color version of this figure is available in the online journal.)

![Figure 12](image2.png)

Figure 12. Offset in magnitude calibration between this work and Blakeslee et al. (2006) (black). Galaxies with fitted Sersic n values differing by less than 0.1 are circled. Boxed points correspond to galaxies found by us to have best fit $n > 4.2$. The best straight line fit to these points is shown. In gray, differences between our simulated galaxy input and $r^{1/4}$ law recovered parameters.

(A color version of this figure is available in the online journal.)

![Figure 11](image3.png)

Figure 11. Comparison of the derived Fundamental Plane parameter for galaxies observed in multiple images. Plotted are the differences in repeat measurements from overlapping pairs of images for both RX J0152.7–1367 and RX J1226.9+3332. Average differences for each pair are shown by the dashed lines.

(A color version of this figure is available in the online journal.)
with \(n > 2 \) are used in our FP analysis (Jørgensen et al. 2006, 2007; Barr et al. 2006). In this section, we explore how galaxy parameter measurement uncertainties translate to FP measurement uncertainties and whether any systematic biases exist in our methodology that would affect the derivation of the FP.

A plot of magnitude and FPP differences between GALFIT Sersic and \(r^{1/4} \) law fits of real galaxies versus Sersic index, \(n \), shows very good agreement for \(n \sim 4 \) galaxies as expected (Figure 14). Many galaxies were best fit with \(n < 4 \) and, for these, the \(r^{1/4} \) law measured magnitude was as much as 1 mag brighter than that derived from the Sersic fits. Although output parameters from Sersic and \(r^{1/4} \) law fits often differed, a plot of the difference in magnitude and in surface brightness versus difference in \(\log r_e \) for the two fits shows the parameters to be strongly correlated and explains why differences in the FPP, although also correlated with Sersic \(n \), are smaller. Galaxies with best Sersic fit \(n > 2.0 \) are displayed as larger points, but note that even galaxies with low Sersic index follow the same linear relation. Indeed, the FPP is reasonably robust against the form of the profile used to fit the galaxies. This effect has been noted by Kelson et al. (2000), Trujillo et al. (2001), and Lucey (1997).

While the uncertainties in measured structural and photometric parameters may seem large in cases where \(n < 4.0 \) according to best Sersic function fits, the FPP has a much lower \(\sim 0.01 \) systematic error with 0.1 random uncertainty. We find that even when we fit a pure exponential disk (\(n = 1 \)) with an \(r^{1/4} \) law profile, the errors in the magnitude and \(r_e \) are large but the average error in the FPP is only 0.05.

In our study of the FP, we investigate whether the slope changes as a function of redshift. A change in slope would imply a change in \(M/L \) as a function of galaxy mass. It is therefore critical to ensure that our measurements are not biased as a function of magnitude or size. From our galaxy simulations we find some evidence for a slight increase of up to a factor of three in the scatter of the FPP at smaller sizes (\(< 1 \) arcsec)
and at fainter magnitudes ($i > 22.5$). However, this effect is small. More significantly, we find a strong correlation between the uncertainty in the FPP and the difference in measured versus intrinsic Sersic index n. Exponential disk galaxies with $n < 2$ fitted with $r^{1/4}$ law profiles have systematic offsets as large as the random uncertainty. If there is a trend in real galaxy magnitudes with index n, this could affect the FP slope measurement. In Figure 15, we display the measured Sersic index n versus SExtractor total magnitude for the galaxies in our RX J0152.7−1367 and RX J1226.9+3332 FP samples. For the most part, the points exhibit random scatter. There is a hint of a trend in that the faintest galaxies have a slightly lower average Sersic index n. The correlation coefficients for these two samples are small, only -0.31 and -0.14 for RX J0152.7−1367 and RX J1226.9+3332, respectively. Although this slight correlation coupled with the trend of increasing FPP measurement offset with decreasing n may affect the FP slope, this effect is much smaller than the random uncertainties in the FPP.

It is also important to ensure that our measurement uncertainties are insensitive to redshift. A redshift bias could be caused by, for example, GALFIT parameter measurement uncertainties being systematically different for objects with larger sizes or brighter magnitudes at low redshift as compared with smaller, fainter objects at high redshift. We do not find any evidence for this in our recovery of simulated galaxy parameters in simulations of the high ($z = 0.83$) and low ($z = 0.28$) redshift clusters. The average magnitude and effective radius measurement uncertainties are slightly larger for the low-redshift sample but scatter in the recovered values is about the same for both clusters. The FPP has an average offset of recovered values from input that is insignificant for both populations, and a random uncertainty that is larger for the lower redshift cluster due to a small number of outliers with particularly poor fits. In our real galaxy sample, all failed fits are flagged and refitted or left out of the FP measurement.

Through this simulated galaxy analysis, we have found a number of other factors that affect the galaxy’s structural parameter measurements. Near neighbors affect profile fits and based on simulations, we find that the highest surface brightness, most compact galaxies are affected the least. However, the only effect this has on lower surface brightness galaxies is to increase the random uncertainty by up to factor of four for only those few galaxies that have a neighbor within 1 arcsec or 1 r_e.

No systematic variation as a function of surface brightness is expected.

Although we cannot simulate galaxies with a full range of substructures, nor do we know the true distribution of such features in our real data, we estimate uncertainties for galaxies with more complex structures with bulge + disk simulations. We find a systematic offset of 0.07, much larger than the 0.01 for simulated galaxies generated with a single profile, with a slightly larger rms scatter of 0.10. With a large sample of galaxies exhibiting complex morphologies, we would expect measurements of the FP to be affected by the larger uncertainties. However, we check the goodness of all fits from residual images. Any features not modeled by the simple Sersic/$r^{1/4}$ law profile fits will show up in these images as imperfect subtraction from the galaxy model. For most of our galaxies, subtraction is good without any obvious sign of extra arms, twisted isophotes, low surface brightness disks, or any other structures. Galaxies with such features tend to be best fit with Sersic $n < 2.0$, and these objects are not included in our FP measurements.

In conclusion, we take final uncertainties in the FPP to be ~ 0.1 based on our simulations dominated by random uncertainties. We find no systematic offsets between recovered and input values for the FPP as a function of magnitude or half-light radius from our galaxy simulations. While we do find that uncertainties are affected by near neighbors or Sersic index n, we do not expect the shape or tilt of the FP to be affected by these uncertainties, unless for example all lower mass galaxies have exponential profiles, for which we see no evidence. We find that our measurement uncertainties should not vary with redshift unless, for example, higher-redshift galaxies contain more late-type morphological features. Although this is a possibility, we would expect to spot this in our residual fitting images. We therefore do not find any evidence for measurement uncertainties or systematic biases introduced by our data reduction methods to affect our derived FP as a function of redshift, galaxy size, or magnitude. We expect the measured tilts to be intrinsic values for each cluster.

6. SUMMARY

Using new and archival HST/ACS high-resolution images observed in the F775W or F814W bands, we have measured structural and photometric properties for galaxies in the RX J0142.0+2131, RX J0152.7−1367, and RX J1226.9+3332 clusters. These data are being used to investigate the Fundamental Plane as a function of redshift, mass, and environment as part of our Gemini/HST Galaxy Cluster Project aimed at understanding galaxy evolution. In this work, we have described our data processing and analysis methods, presented catalogs of parameters measured from two-dimensional surface brightness profile fitting, and discussed expected uncertainties in our measurements and in the quantities that go into the measurement of the FP.

We determine average uncertainties in measured parameters for $n > 2$ galaxies from galaxy simulation tests. We define systematic errors and random uncertainties as the mean and rms scatter in the difference between recovered and input simulation values. For measured total magnitudes, these are -0.1 ± 0.3 for $r^{1/4}$ law profiles. The average error in size, log r_e, is 0.1 ± 0.2. Random uncertainties are larger than any systematic offsets from
intrinsic values. Sersic profile fits do slightly better than $r^{1/4}$ law profiles in recovering the input values of the simulated galaxies with magnitude errors of $\sim 0.03 \pm 0.3$ and errors in $\log r_e$ of $\sim -0.02 \pm 0.2$. However, the rms scatter is similar for fits with either profile.

Due to the combination of parameters that enter the FP, $\log r_e + 0.4 \beta (1 + \frac{1}{I})$, we find structural and photometric uncertainties to have little effect on the FP measurement. We take final uncertainties in this FP parameter to be ~ 0.1, dominated by random error. We find no systematic offsets between recovered and input values for the FPP in our galaxy simulations as a function of magnitude or effective radius. While we do find that uncertainties are affected by near neighbors or Sersic index n, we do not expect this to significantly affect our results. We conclude that the methods used to derive the effective parameters r_e and $(\mu)_e$ do not introduce any significant bias in our FP measurements, or in the results presented for these three clusters by Jørgensen et al. (2006, 2007) and Barr et al. (2006).

The authors would like to express their gratitude to the STScI helpdesk for their quick responses to questions about and patches for MULTIDRIZZLE; Chien Peng for assistance with GALFIT; Kathleen Labrie for PyRAF installation help; Alexander Fritz for helpful comments on the manuscript; and the anonymous referee for many helpful suggestions for improving this paper. This work is based on observations made with the NASA/ESA Hubble Space Telescope. K.C., J.J., and K.F. acknowledge support from grant HST-GO-09770.01 from STScI. STScI is operated by AURA, Inc., under NASA contract NAS 5-26555. Supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America.

REFERENCES

Barr, J., Davies, R., Jørgensen, I., Bergmann, M., & Crampton, D. 2005, AJ, 130, 445
Barr, J., Jørgensen, I., Chiboucas, K., Davies, R., & Bergmann, M. 2006, ApJ, 649, L1
Baugh, C. M., Cole, S., & Frenk, C. S. 1996, MNRAS, 283, 1361
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Blakeslee, J. P., et al. 2003, ApJ, 596, L143
Blakeslee, J. P., et al. 2006, ApJ, 644, 30
Böhringer, H., et al. 2000, ApJS, 129, 435
Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Butcher, H., & Oemler, A., Jr. 1984, ApJ, 285, 426
Casertano, S., et al. 2000, AJ, 120, 2747
Conselice, C. J., et al. 2007, MNRAS, 381, 962
de Zeeuw, T., & Franx, M. 1991, ARA&A, 29, 239
Djorgovski, S., & Davis, M. 1987, ApJ, 313, 59
Dressler, A., Lynden Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R., & Wegner, G. 1987, ApJ, 313, 42
Dressler, A., et al. 1997, ApJ, 490, 577
Ebeling, H., Edge, A. C., Allen, S. W., Crawford, C. S., Fabian, A. C., & Huchra, J. P. 2000, MNRAS, 318, 333
Ebeling, H., Jones, L. R., Pálfy, B. W., Perlman, E., Scharf, C., & Horner, D. 2001, ApJ, 548, L23
Ellingson, E., Lin, H., Yee, H. K. C., & Carlberg, R. G. 2001, ApJ, 547, 609
Fritz, A., Ziegler, B. L., Bower, R. G., Smail, I., & Davies, R. L. 2005, MNRAS, 358, 233
Girardi, M., Demarco, R., Rosati, P., & Borgani, S. 2005, A&A, 442, 29
Häussler, B., et al. 2007, ApJS, 172, 615
Homeier, N. L., et al. 2005, ApJ, 621, 651
Hook, I. M., Jørgensen, I., Allington-Smith, J. R., Davies, R. L., Metcalfe, N., Murowinski, R. G., & Crampton, D. 2004, PASP, 116, 425
Jones, L. R., et al. 2004, in Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, ed. J. S. Mulchaey, A. Dressler, & A. Oemler (Pasadena, CA: Carnegie Obs.), 24
Jørgensen, I., Bergmann, M., Davies, R., Barr, J., & Crampton, D. 2005, AJ, 129, 1249
Jørgensen, I., Chiboucas, K., Flint, K., Bergmann, M., Barr, J., & Davies, R. 2006, ApJ, 639, L9
Jørgensen, I., Chiboucas, K., Flint, K., Bergmann, M., Barr, J., & Davies, R. 2007, ApJ, 654, L179
Jørgensen, I., & Franx, M. 1994, ApJ, 433, 553
Jørgensen, I., Franx, M., Hjorth, J., & van Dokkum, P. G. 1999, MNRAS, 308, 833
Jørgensen, I., Franx, M., & Kjaergaard, P. 1996, MNRAS, 280, 167
Kelson, D. D., Illingworth, G. D., van Dokkum, P. G., & Franx, M. 2000, ApJ, 531, 137
Koeckenoever, A. M., Fruchter, A. S., Hook, R. N., & Hack, W. 2002, in Proc. The 2002 HST Calibration Workshop: Hubble after the Installation of the ACS and the NICMOS Cooling System, ed. S. Arribas, A. Koeckenoever, & B. Whitmore (Baltimore, MD: Space Telescope Science Institute), 339
Krist, J. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco, CA: ASP), 349
Lucey, J. R. 1997, MNRAS, 289, 415
Maughan, B. J., Jones, C., Jones, L. R., & Van Speybroeck, L. 2007, ApJ, 659, 1125
Maughan, B. J., Jones, L. R., Ebeling, H., Perlman, E., Rosati, P., Frye, C., & Mullis, C. R. 2003, ApJ, 587, 589
Mei, S., et al. 2006, ApJ, 644, 759
Monet, D. B. A., et al. 1998, VizieR Online Data Catalog, 1252
Peng, C. Y. 2001, GALFIT Quick Start Guide
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266
Poggianti, B. 2004, in Proc. of Science, Baryons in Dark Matter Halos, ed. R. Dettmar, U. Klein, & P. Salucci (Trieste: SISSA), 104
Sandage, A., Freeman, K. C., & Stokes, N. R. 1970, ApJ, 160, 831
Sandage, A., & Visvanathan, N. 1978, ApJ, 225, 742
Sersic, J. L. 1968, Atlas de Galaxias Australes (Cordoba: Observatorio Astronomico)
Sirianni, M., et al. 2005, PASP, 117, 1049
Smith, R. J., et al. 2004, AJ, 128, 1558
Trager, S. C., Faber, S. M., Worthey, G., & González, J. J. 2000, AJ, 120, 165
Treu, T., Stiavelli, M., Casertano, S., Møller, P., & Bertin, G. 2002, ApJ, 564, L13
Trujillo, I. Graham, A. W., & Caon, N. 2001, MNRAS, 326, 869
Tully, R. B., & Fisher, J. R. 1977, A&A, 54, 661
van Dokkum, P. G., & Franx, M. 2001, ApJ, 553, 90