Rigid Differentially Closed Fields

David Marker*
Mathematics, Statistics, and Computer Science
University of Illinois Chicago

Abstract
Using ideas from geometric stability theory we construct differentially closed fields of characteristic 0 with no non-trivial automorphisms.

1 Introduction
Our goal is to construct countable differentially closed fields of characteristic 0 (DCF₀) with no nontrivial automorphisms. We refer to such fields as rigid. This answers a question posed by Russel Miller. I will say something about Miller’s motivation in my closing remarks. This may at first seem surprising. One often, naively, thinks of differentially closed fields should behave like algebraically closed fields where there are always many automorphisms. Also, differential closures of proper differential subfields always have non-trivial automorphisms. We sketch the proof of this using ideas from Shelah’s proof [19] of the uniqueness of prime models for ω-stable theories (see [11] §6.4 or [22] 9.2). This is a well-known construction.

Proposition 1.1 Let k be a differential field with differential closure K ⊃ k. Then there are non-trivial automorphisms of K/k.

Proof First note that if d ∈ Kⁿ and k⟨d⟩ is the differential field generated by d over k. Then K is a differential closure of k⟨d⟩. This follows from the fact that in an ω-stable theory M is prime over A ⊆ M if and only if M is atomic over A and there are no uncountable sets of indiscernibles (see [22] 9.2.1).

Let a ∈ K \ k. Since K is the differential closure of k, tp(a/k) is isolated by some formula φ(v) with parameters from k. If a is the only element of K satisfying φ, then a is in dcl(k) = k, a contradiction. Thus there is b ∈ K such that a ≠ b and φ(b).

Since a and b realize the same type over k there is L |= DCF₀ with k⟨b⟩ ⊆ L and σ : K → L an isomorphism such that σ|k is the identity and σ(a) = b.

*The author was partially supported by the Fields Institute for Research in the Mathematical Sciences
K is a differential closure of both $k\langle a \rangle$ and $k\langle b \rangle$. Thus L is a differential closure of $k\langle b \rangle$ and, by uniqueness of differential closures, there is an isomorphism $\tau : L \to K$ that is the identity on $k\langle b \rangle$. Then $\tau \circ \sigma$ is an automorphism of K sending a to b. \qed

Remarks

- This argument really shows that if T is an ω-stable theory, A is a definably closed substructure of a model of T that is not a model of T and \mathcal{M} is a prime model extension of A, then there is a non-trivial automorphism of \mathcal{M} fixing A pointwise.

- While this argument guarantees the existence of a non-trivial automorphism of K/k, it is possible that it is only one. If k is a model of Singer’s theory of closed ordered differential fields [21], then $k^{\text{diff}} = k(i)$ and complex conjugation is the only non-trivial automorphism of k^{diff}/k.

Omar León Sánchez pointed out that the construction of a rigid differentially closed fields gives the first known examples of differentially closed fields K such that $K \neq k(i)$ for any closed ordered differential field $k \subset K$.

- Proposition 1.1 tells us that the rigid differentially closed fields we construct are not the differential closure of any proper differential subfield.

Our construction of rigid differentially closed fields uses ideas from geometric stability theory and work on strongly minimal sets in differentially closed fields of Rosenlicht [18] and Hrushovski and Sokolović [9]. We describe the results we need in §2 and construct rigid differentially closed fields in §3. We begin §3 with a warm up constructing arbitrarily large rigid models and then give the more subtle construction of rigid countable models. We refer the reader to [17] for unexplained model theoretic concepts.

I am grateful to Russell Miller for bringing this question to my attention and to Zoé Chatzidakis, Jim Freitag, Omar León Sánchez and the referee for remarks on earlier drafts.

I am pleased to submit this paper in honor of Udi Hrushovski’s belated 60th birthday. The main result relies heavily on his work.

2 Preliminaries

We work in $K \models DCF$ a monster model of the theory of differentially closed fields of characteristic zero with a single derivation. The constant field C is $\{ x \in K : x' = 0 \}$. If k is a differential field and $X \subset K^n$ is definable over k, we let $X(k)$ denote the k-points of X, i.e., $X(k) = k^n \cap X$. Of course, by quantifier elimination, X is quantifier free definable over k.

Our main tool will be the strongly minimal sets known as Manin kernels of elliptic curves. Manin kernels arose in Manin’s proof [10] of the Mordell Conjecture for function fields in characteristic zero and were central to both Buium’s [2] and Hrushovski’s [8] proofs of the Mordell–Lang Conjecture for function fields in characteristic zero. The model theoretic importance of Manin
kernels was developed in the beautiful unpublished preprint of Hrushovski and
Sokolović [9]. Proofs of the results from [9] that we will need all appear in
Pillay’s survey [16] and [13] is another survey on the construction and some of
the basic properties of Manin kernels.

For \(a \in K \), let \(E_a \) be the elliptic curve \(Y^2 = X(X - 1)(X - a) \). Let \(E_a^\circ \) be
the minimal definable differential subgroup of \(E \). \(E_a^\circ \) is the closure of Tor(\(E_a \))
in the Kolchin topology.

Theorem 2.1 (Hrushovski–Sokolović)

i) If \(a' \neq 0 \), then \(E_a^\circ \) is a non-trivial
locally modular strongly minimal set.

ii) The Manin kernels \(E_a^\circ \) and \(E_b^\circ \) are non-orthogonal if and only if \(E_a \) and
\(E_b \) are isogenous. In particular, if \(a \) and \(b \) are algebraically independent over \(\mathbb{Q} \)
then \(E_a^\circ \) and \(E_b^\circ \) are orthogonal.

In particular, Manin kernels are orthogonal to the field of constants \(C = \{ x : x' = 0 \} \).

More generally, if \(A \) is a simple abelian variety that is not isomorphic to
an abelian variety defined over the constants we can construct a Manin kernel
\(A^\circ \) which is the Kolchin closure of the torsion of \(A \) and a minimal infinite
definable subgroup of \(A \). \(A^\circ \) is non-trivial locally modular strongly minimal
and Hrushovski and Sokolović also showed that if \(X \) is any non-trivial locally
modular strongly minimal subset of a differentially closed field, then \(X \not\perp A^\circ \)
for some abelian variety \(A \).

The other building blocks of our construction are strongly minimal sets intro-
duced by Rosenlicht [18] in his proof that the differential closure of a differential
field \(k \) need not be minimal.

Let \(f(X) = \frac{X}{1+X} \). For \(a \neq 0 \), let \(X_a = \{ x : x' = af(x), x \neq 0 \} \).

Theorem 2.2 (Rosenlicht)

i) If \(a \in k \) and \(x \in X_a \setminus k \), then \(C(k) = C(k(x)) \).

ii) Suppose \(k, K \) are differential fields, with \(C(K) \subseteq C(k)^{\text{alg}} \). Suppose
\(a, b \in k^\times \), \(x \in X_a(K) \), \(y \in X_b(K) \) and \(x \) and \(y \) are algebraically dependent
over \(k \), then \(x, y \) are algebraic over \(k \) or \(x = y \). In particular, if \(a \neq b \), then \(X_a \) and
\(X_b \) are orthogonal.

Part i) follows from Proposition 2 of [18] while ii) is a slight generalization of
Proposition 1 of [18] and Gramain [5]. These results appear as Theorems 6.12
and 6.2 of [12].

Corollary 2.3 Each \(X_a \) is a trivial strongly minimal set.

Proof By Theorem 2.2 i) \(X_a \) is orthogonal to the constants. If \(X_a \) were non-
trivial, then \(X_a \not\perp A^\circ \) the Manin kernel of a simple abelian variety. But if
\(x \in X_a \setminus k^{\text{alg}} \), then \(k(x) = k(x) \) is a transcendence degree 1 extension. While
by results of Buium [2], Manin kernels, or anything non-orthogonal to one, give
rise to extensions of transcendence degree at least 2. Thus \(X_a \) is trivial. \(\square \)
3 Constructing rigid differentially closed fields

Warm up

Proposition 3.1 There are arbitrarily large rigid differentially closed fields.

For this construction we only need Rosenlicht strongly minimal sets. Let κ be a cardinal with $\kappa = \aleph_\kappa$. We will construct a differentially closed field K of cardinality κ such that $|X_a(K)| \neq |X_b(K)|$ for each nonzero $a \neq b$, guaranteeing there is no automorphism sending $a \mapsto b$.

We build a chain of differentially closed fields $K_0 \subset K_1 \subset \cdots \subset K_\alpha \subset \cdots$ for $\alpha < \kappa$ such that $|K_\alpha| = \aleph_\alpha$. We simultaneous build $a_0, a_1, \ldots, a_\alpha, \ldots$ an injective enumeration of K^\times where $K = \bigcup K_\alpha$.

We construct K as follows.

i) $K_0 = \mathbb{Q}^{\text{diff}}$.

ii) Given K_α and $a_\alpha \in K_\alpha$. Build $K_{\alpha+1}$ by adding $\aleph_{\alpha+1}$ new independent elements of X_{a_α} and taking the differential closure.

iii) If α is a limit ordinal, let $K_\alpha = \bigcup_{\beta < \alpha} K_\beta$.

Since $X_{a_\alpha} \perp X_{a_\beta}$ for $\alpha < \beta$, adding new elements to X_{a_α} and taking the differential closure adds no new elements to X_{a_β}. Thus $X_{a_\alpha}(K) = X_{a_\alpha}(K_{\alpha+1})$. In particular $|X_{a_\alpha}(K)| = \aleph_{\alpha+1}$. Thus there is no automorphism of K with $a_\alpha \mapsto a_\beta$ for $\alpha \neq \beta$.

One might worry that we have contradicted Proposition 1.1. Let B_α be all of the independent realizations of X_{a_α} that we added at stage α. Then $K_\alpha = \mathbb{Q}(B_\alpha : \alpha < \kappa)$. But, if $b \in X_{a_\alpha}$, then $a_\alpha = b(b+1) \in \mathbb{Q}(b)$. Thus $k = K$.

The countable case

To construct a countable differentially closed field with no automorphisms we will need a more subtle mixture of Rosenlicht extensions with extensions of Manin kernels.

Suppose $b \notin C$. Let $\dim E_b^\alpha(k)$ be the number of independent realizations in k of the generic type of E_b^α over $\mathbb{Q}(b)$. Manin kernels are useful to us as they can have any countable dimension. We will build a countable $K \models DCF_0$ such that for each $a \neq 0$, there is a natural number $n_a = \max_{b \in X_a(K)} \dim E_b^\alpha(K)$ and such that $n_a \neq n_b$ for $a \neq b$. This will guarantee that there is no automorphism with $a \mapsto b$.

Freitag and Scanlon [4], and more generally, Casale, Freitag and Nagloo [3], have given constructions of trivial strongly minimal sets which can take on

\footnote{To build the desired enumeration—let a_0, a_1, \ldots be an injective enumeration of K_0 and, at stage $\alpha+1$, let $(a_\gamma : \omega_\alpha \leq \gamma < \omega_{\alpha+1})$ be an injective enumeration of $K_{\alpha+1} \setminus K_\alpha$.}
any countable dimension. Presumably these could be used in an alternative construction.

We will build $K_0 \subset K_1 \subset \cdots \subset K_n \subset \ldots$, a_0, a_1, \ldots an injective enumeration of $K^\times = \bigcup K_n^\times$ and $0 = n_0 < n_1 < \ldots$ a sequence of natural numbers such that:

1. $C(K_i) = C(K_0)$;
2. $X_{a_i}(K) = X_{a_i}(K_{i+1})$;
3. if $b \in X_{a_i}(K)$, then $E_b^g(K) = E_b^g(K_{i+1})$;
4. $n_{i+1} = \max_{b \in X_{a_i}(K)} \dim E_b^g$.

If we can do that we will have guaranteed that there are no automorphisms of K.

Let $K_0 = \mathbb{Q}^{\text{diff}}$. At stage s we choose a new $a_s \in K_s$. Let b_s be a element of X_{a_s} generic over K_s and let x be $n_s - 1 + 1$ independent realizations of the generic of $E_{b_s}^g$ over $K_s\langle b_s \rangle = K_s(b_s)$ and let $K_{s+1} = K_s\langle b_s, x \rangle^{\text{diff}}$.

By orthogonality considerations, it’s clear that conditions 1), 2) and 3) hold, as after stage $i + 1$ we only add realizations of types orthogonal to X_{a_i} and $E_{b_i}^g$, for $b \in X_{a_i}(K)$. To prove 4) we need to show that there is $n_s = \max_{d \in X_{a_s}} \dim E_d^g(K_{s+1})$. We have arranged things so that if there is a bound n_s then $n_s > n_{s-1}$.

We need two preliminary lemmas.

Lemma 3.2 If $b' \neq 0$, then $\dim E_{b'}^g(\mathbb{Q}(b)^{\text{diff}}) = 0$.

Proof Suppose $x \in E_{b'}^g(\mathbb{Q}(b)^{\text{diff}})$. All torsion points of E_b are in $\mathbb{Q}(b)_{\text{alg}}$, so we can suppose x is a non-torsion point. But x realizes an isolated type over $\mathbb{Q}(b)$. Let ψ isolate the type of x over $\mathbb{Q}(b)$. No torsion point can satisfy ψ. Thus by strong minimality ψ defines a finite set and $x \in \mathbb{Q}(b)_{\text{alg}}$. \hfill \square

Although we will not need it, we can say more in the special case that $\mathbb{Q}(b) = \mathbb{Q}(b)$, for example, if $b \in X_a$ for some $a \in \mathbb{Q}$. In this case Manin’s Theorem of the Kernel [10] implies that $E_b^g(\mathbb{Q}(b)^{\text{alg}}) = \text{Tor}(E_b)$, see [1] Corollary K.3.

Lemma 3.3 Suppose K is a differentially closed field, $b, d \in K$ and E_b and E_d are isogenous, then $\dim E_b^g(K) = \dim E_d^g(K)$.

\footnote{Building the enumeration takes a bit more bookkeeping in this case. Let $d_{0,0}, d_{0,1}, \ldots$ be an injective enumeration of K_0 and let $d_{i,0}, d_{i,1}, \ldots$ be an injective enumeration of $K_i \setminus K_{i-1}$. Start our enumeration of K by letting $a_0 = d_{0,0}$. Suppose we start stage i with the partial enumeration a_0, \ldots, a_M. Then for $j = 0, \ldots, i$, let $a_{M+j+1} = d(i, i - j)$.}
Let \(G \) be a graph with vertex set \(X \) and edge relation \(R \). Let \(\{\{u_i, v_i\} : i = 0, 1, \ldots\} \) be an enumeration of two element subsets of \(X \). We modify our construction such that at stage \(s \) we also add a generic element of \(E_{u_i,v_i}^s \) if and only if \((u_i, v_i) \in R \). We can still apply Lemma 3.4 and our construction will produce a rigid differentially closed field \(K \). From \(K \) we can recover the graph in an \(L_{\omega, \omega} \)-definable way. Thus non-isomorphic graphs will give rise to non-isomorphic rigid differentially closed fields.

\[\text{Theorem 3.5} \quad \text{There are } 2^{2^\omega} \text{ non-isomorphic countable rigid differentially closed fields. Each of these fields is not the differential closure of a proper differential subfield.} \]

Proof If \(E_d \) and \(E_b \) are isogenous, then \(d \) and \(b \) are interalgebraic over \(\mathbb{Q} \) and the isogeny \(f \) is defined over \(\mathbb{Q}(d)^{alg} = \mathbb{Q}(b)^{alg} \). Since \(f : \text{Tor}(E_d) \to \text{Tor}(E_b) \) is finite-to-one and the torsion is Kolchin dense in a Manin kernel, \(f : E_d^s \to E_b^s \) is finite-to-one. It follows that \(\dim E_d^s(K) = \dim E_b^s(K) \). □

The next lemma says that we have the necessary bounds.

\[\text{Lemma 3.4} \quad \text{Suppose } K \text{ is a differentially closed field constructed in a finite iteration } \mathbb{Q}^{diff} = k_0 \subset k_1 \subset \cdots \subset k_m = K \text{ where either } k_{i+1} = k_i(\langle a \rangle)^{\text{diff}} \text{ where } a \text{ realizes a trivial type over } k_i \text{ or } k_{i+1} = k_i(\langle x \rangle)^{\text{diff}} \text{ where } x_i \text{ are } n_i \text{ independent realizations of the generic type of a Manin kernel } E_b^s \text{ where } b_i \in k_i \text{ and } E_b^s \perp E_{b_j}^s \text{ for } i \neq j. \text{ If } d \in K \setminus C, \text{ then } \dim E_d^s(K) = n_i \text{ for some } i. \]

Proof We first argue that this is true for each \(E_{b_i}^s \). Define \(l_0 \leq l_1 \leq \cdots \leq l_t \) such that \(l_i = k_i(\langle b_i \rangle)^{\text{diff}} \). Note that \(l_t = k_t \).

By Lemma 3.2, \(\dim E_b^s(l_0) = 0 \). As we construct \(l_1, \ldots, l_t \) we are either doing nothing (if \(a_i \) or \(x_i \in l_{i-1} \)) or adding realizations of types orthogonal to \(E_b^s \). Thus \(\dim E_b^s(k_t) = 0 \) and \(\dim E_b^s(k_{t+1}) = n_t \). Since for \(i > t \) all \(a_i \) and \(x_i \) realize types orthogonal to \(E_b^s \), we may assume \(E_d^s \perp E_b^s \) for all \(i \). We claim that in this case \(\dim E_d^s(K) = 0 \). For \(i \leq m_i \), let \(l_i = k_i(\langle d \rangle)^{\text{diff}} \). By Lemma 3.2, \(\dim E_d^s(l_0) = 0 \). As we continue the construction, as above, at each stage we either do nothing or realize types that are orthogonal to \(E_d^s \). Thus we add no new elements of \(E_d^s \) and \(\dim E_d^s(K) = 0 \). □

We can interweave a many models construction. In [9] the authors noted that Manin kernels could be used to show that \(\text{DCF}_0 \) has eni-dop and concluded that there are \(2^{2^\omega} \) non-isomorphic countable differentially closed fields. An explicit version of this construction coding graphs into models is used in [15]. We can fold that coding into our construction of a rigid model.
Similarly, we could interweave graph coding steps in the proof of Proposition 3.1 and build 2^κ non-isomorphic rigid differentially closed fields of cardinality κ when $\kappa = \aleph_\kappa$.

4 Remarks and Questions

In [6] and [7] the authors introduce the notion of computable and Borel functors between classes of countable structures. For example, in Theorem 3.5, recovering the graph from the differentially closed field is a Borel functor from differentially closed fields to graphs. Miller wondered if there could be invertible functors between these classes. If there is an invertible functor F from graphs to differentially closed fields, then the authors show that the corresponding automorphism groups $\text{Aut}(G)$ and $\text{Aut}(F(G))$ would be isomorphic. Miller’s original idea was that, since there are rigid graphs, one could show there was no such functor by showing that there are no rigid differentially closed fields. While our construction shows that this idea does not work, never the less, one can show there is no such functor by looking at possible automorphism groups. It is easy to construct a countable graph with an automorphism of order $n > 2$. But no differentially closed field can have an automorphism of order $n > 2$. Suppose K is differentially closed and σ is an automorphism of order $n > 2$. Let F be the fixed field of σ. Then K/F is an algebraic extension of order $n > 2$. By the Artin–Schreier Theorem, this is impossible for K algebraically closed.

Question 1) Is there a differentially closed field K where $|\text{Aut}(K)| = 2$? If so, is the fixed field a model of CODF? More generally, if K is a real closed differential field and $K(i)$ is differentially closed, must K be a model of CODF?

Question 2) Are there rigid differentially closed fields of cardinality \aleph_1? The construction of such a model would require a new strategy. Perhaps it would help to assume the set theoretic principle \Diamond? Or the methods of [20].

References

[1] D. Bertrand and A. Pillay, A Lindemann–Weierstrass theorem for semiabelian varieties over function fields, J. Amer. Math. Soc. 23 (2010), no. 2, 491–533.

[2] A. Buium, Differential Algebra and Diophantine Geometry, Actualités Mathématiques, Hermann, Paris, 1994.

[3] G. Casale, J. Freitag and J. Nagloo, Ax–Lindemann-Weierstrass with derivatives and the genus 0 Fuchsian groups, Ann. of Math. (2) 192 (2020), no. 3, 721–765.

[4] J. Freitag and T. Scanlon, Strong minimality and the j-function, J. Eur. Math. Soc. 20 (2018), no. 1, 119–136.
[5] F. Gramain, Non-minimalité de la clôture différentielle II: la preuve de M. Rosenlicht, Study group on stable theories 3, 1980/1982, B. Poizat ed., 7 pp., Univ. Paris VII, 1983.

[6] M. Harrison-Trainor, A. Melnikov, R. Miller, Russell and A. Montalbán, Antonio Computable functors and effective interpretability, J. Symb. Log. 82 (2017), no. 1, 77–97.

[7] M. Harrison-Trainor, R. Miller, Russell and A. Montalbán, Borel functors and infinitary interpretations, J. Symb. Log. 83 (2018), no. 4, 1434–1456.

[8] E. Hrushovski, The Mordell–Lang conjecture for function fields. J. Amer. Math. Soc. 9 (1996), no. 3, 667–690.

[9] E. Hrushovski and Z. Sokolović, Minimal subsets of differentially closed fields, unpublished preprint, 1994.

[10] J. Manin, Proof of an analogue of Mordell’s conjecture for algebraic curves over function fields, Dokl. Akad. Nauk SSSR 152 1963 1061–1063.

[11] D. Marker, Model Theory: an Introduction, Graduate Texts in Mathematics, 217. Springer-Verlag, New York, 2002.

[12] D. Marker, Model theory of differential fields, in [14], 41–113.

[13] D. Marker, Manin kernels, Connections between model theory and algebraic and analytic geometry, Quad. Mat., 6, Dept. Math., Seconda Univ. Napoli, Caserta, 2000.

[14] D. Marker, M. Messmer and A. Pillay, Model Theory of Fields, second edition, Lecture Notes in Logic, 5. Association for Symbolic Logic, A K Peters, Ltd., Wellesley, MA, 2006.

[15] D. Marker and R. Miller, Turing degree spectra of differentially closed fields, J. Symb. Log. 82 (2017), no. 1, 1–25.

[16] A. Pillay, Differential algebraic groups and the number of countable differentially closed fields, in [14], 114–134.

[17] A. Pillay, Geometric Stability Theory, Oxford Logic Guides, 32. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996.

[18] M. Rosenlicht, The nonminimality of the differential closure, Pacific J. Math. 52 (1974), 529–537.

[19] S. Shelah, Differentially closed fields. Israel J. Math, 16 (1973), 314–328.

[20] S. Shelah, Models with second order properties. IV, A general method and eliminating diamonds, Ann. Pure Appl. Logic 25 (1983), no. 2, 183–212.
[21] M. Singer, The model theory of ordered differential fields, J. Symbolic Logic 43 (1978), no. 1, 82–91.

[22] K. Tent and M. Ziegler, A Course in Model Theory, Lecture Notes in Logic, 40. Association for Symbolic Logic, Cambridge University Press, Cambridge, 2012.