Title: Exploring of bacterial blight resistance in landraces, mining of resistant gene(s) and genetic divergence of resistant germplasm through molecular markers and quantitative traits.

Running title: Exploring bacterial blight resistance, gene mining and diversity analysis of landraces.

Touhidur Rahman Anika, Sheikh Arafat Islam Nihada, Md. Al-Imran Hasana, Mohammad Ahasan Hossaina, Md. Mamunur Rashidb, Mohammad Ashik Iqbal Khana, Mohammad Abdul Latifa*.

aPlant Pathology Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh.

bPlant Pathology Division, Bangladesh Rice Research Institute, Regional Station, Cumilla, Bangladesh

*Corresponding author: alatif1965@yahoo.com (MAL)
Abstract

Bacterial blight, one of the oldest and severe diseases of rice poses a major threat towards global rice production and food security. Thereafter, sustainable management of this disease has given paramount importance globally. In the current study, we explored 792 landraces to evaluate their disease reaction status against three highly virulent strains (BXo69, BXo87 and BXo93) of Xanthomonas oryzae pv. oryzae (Xoo). Subsequently, we intended to identify the possible candidate resistant (R) genes responsible for the resistant reaction using six STS markers correspond to Xa4, xa5, Xa7, xa13, Xa21 and Xa23 genes and finally, we evaluated morphological and molecular diversity of the potential bacterial blight resistant germplasm using quantitative traits and ISSR markers. Based on pathogenicity test, a single germplasm was found as highly resistant while, 33 germplasm were resistant and 40 were moderately resistant. Further molecular study on these 74 germplasm divulged that 41 germplasm carried Xa4 gene, 15 carried xa5 gene, 62 carried Xa7 gene, 33 carried xa13 gene, and 19 carried Xa23 gene. Only a single germplasm consisted of Xa21 gene. Interestingly, we found a wide range of gene combinations ranged from 2 to 4 genes among the germplasm resistant to bacterial blight and G3 genotype (Acc. No. 4216; highly resistant) having Xa4, Xa7, xa13, Xa21 and G43 genotype (Acc. No. 1523; resistant) having Xa4, xa5, xa13 and Xa23 gene combination being the most effective against all the Xoo strains. Nonetheless, UPGMA dendrogram and heatmap analysis based on quantitative traits identified two important clusters viz. cluster-III and cluster-VIII with multiple desired traits. However, genetic similarity based on ISSR marker data pointed out 3 germplasm, namely, G20 (Acc. No. 4004; contained Xa4, Xa7, xa13 genes), G17 (Acc. No. 3981; contained Xa7, xa13 genes) and G6 (Acc. No. 991; contained Xa4, Xa7, xa13, Xa23 genes) having comparatively lower genetic similarity (0.30, 0.37 and 0.38, respectively) with elite variety
BRRI dhan28. Notably, Mantle test of molecular and morphological data indicated that there was a positive correlation ($r = 0.113$) between them. The outcome of this study would enrich and diversify the rice gene pool and would be useful for the development of durable bacterial blight resistant varieties.

Introduction

Rice, a monocot cereal grain, is considered as primary energy source for more than 3.9 billion people around the world. Annually more than hundred countries across the globe produce over 755 million tons of rice in roughly 162 million hectares of land [1]. Whereas Bangladesh, the fourth largest rice producing country annually produces about 54.64 million tons of rice, feeding its 135 million people whose half of total protein intake and two-third of overall calorie input come from rice [2]. However, worldwide rice production and hence food security has been threatened by a number of diseases of viral, bacterial and fungal origin. At present out of 70 known diseases of rice only 11 are of bacterial origin [3]. Among these diseases, bacterial blight (BB) is considered as one of the oldest and fourth major known diseases of rice [4,5]. High pathogenicity of bacterial blight pathogen gives it paramount importance globally and considered as a major hindrance towards acquiring sustainable rice productivity.

Xanthomonas oryzae pv. *oryzae*, a gram-negative bacterium, is responsible for BB disease. Though it was first reported in Fukuoka, Kyushu, Japan in 1884, it became widespread in Southeast Asia during 1960s after the introduction of high-yielding varieties [6,7]. As one of the major devastating rice diseases, bacterial blight can lead up to 50% rice yield loss [8], which leads to 16% of crop yield loss globally [9]. In Bangladesh yield loss due to bacterial blight ranges from 5.8 to 30.4% depending on growth stage, variety and environmental conditions [10].
Sustainable management of rice bacterial blight disease has been a major global concern. Deployment of cultivar with resistant gene(s) would be an environmentally safe, economic and effective approach to control bacterial blight disease and curtail yield loss [11,12]. So far, around 45 resistance (R) genes against BB have been identified in diverse rice sources [13]. Nevertheless, only 11 of these R genes (Xa1, Xa3/Xa26, Xa4, xa5, xa13, Xa21, Xa23, Xa25, Xa27 and Xa41) have been cloned and functionally assessed. Based on the proteins encoded by the cloned-R genes and mode of action they are further classified into four groups: RLK (Receptor-like kinase) genes (Xa4, Xa21 and Xa3/Xa26), SWEET (Sugar will eventually be exported transporter) genes (xa13, xa25 and xa41), executor genes (Xa10, Xa23 and Xa27) and other types of genes (Xa1 and xa5) [11]. All these cloned R genes and some of the un-cloned R genes, like Xa7, are widely utilized in rice breeding programs especially focused on pyramiding of multiple resistant genes to develop bacterial blight resistant rice varieties. However, wild rice species and germplasm collections are widely considered as a rich reservoir of valuable genes and so, exploring germplasm collection in search of resistant cultivar has become a major focus of the researchers [14–17]. Nonetheless, epistasis and masking of gene effect rendered the conventional approach ineffective in identifying cultivars carrying multiple disease resistant genes [18]. Alternatively, molecular approach is widely accepted and utilized as a highly reliable and efficient method in identifying resistant genes [12,19,20]. Interestingly, in a recent pathotype profiling study conducted on 118 Xoo isolates of Bangladesh, we identified xa5, xa8, xa13, Xa21 and Xa23 genes as the most effective R genes against diverse Xoo strains [21]. In line with our previous finding, we aimed to identify five cloned R genes viz. Xa4, xa5, xa13, Xa21, Xa23 and one un-cloned but widely utilized R gene, Xa7, from a local germplasm collection of Bangladesh using STS markers.
On the other hand, knowledge of genetic diversity of germplasm collection helps to attain durable selection gain while, plays a major role in parent identification and thus increases the likelihood of crop improvement [22–24]. Then again, molecular markers play a leading role in genetic diversity study. A wide range of PCR (Polymerase Chain Reaction) based molecular markers like, simple sequence repeat (SSR), inter-simple sequence repeat (ISSR), restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), sequence-related amplified polymorphism (SRAP) are currently being deployed for genetic diversity assessment [25,26]. Among them dominant marker ISSRs, developed by [27], are simple, fast, cost effective, highly reproducible and are widely utilize molecular marker for genetic diversity assessment in plants [28–31]. Nevertheless, rice cultivars are often classified based on quantitative traits. So, by combining molecular and morphological approach will be a more comprehensive strategy to assess genetic divergence and to ensure a precise genotype documentation along with parental line selection for breeding programs.

In the current study, we explored 792 landraces of Bangladesh through molecular and morphological approaches with an objective to identify bacterial blight resistant germplasm and evaluate genetic diversity among them to enrich and diversify the rice gene pool for future breeding programs. The outcome of this study will be useful for research on rice and rice improvement programs.

Materials and Methods

Collection of germplasm and experimental design

A total of 792 germplasm (S1 Table) along with six bacterial blight resistant R gene containing monogenic lines viz., IRBB4 (Xa4), IRBB5 (xa5), IRBB7 (Xa7), IRBB13 (xa13), IRBB21
(Xa21), IRBB23 (Xa23), one susceptible line IR24, one pyramided resistant line IRBB60 (Xa4, xa5, xa13 and Xa21) and one elite variety BRRI dhan28 were collected from Genetic resource and seed division (GRSD), Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh and International Rice Research Institute (IRRI), Philippines. All 792 germplasm were Bangladeshi landraces. In order to evaluate bacterial blight resistance, seeds of all germplasm along with the BRRI dhan28 and IRBB60 were sown in a seedling nursery. Twenty-one days old seedling were transplanted to the experimental field of Plant Pathology Division, BRRI, Gazipur (Longitude: 23.9903° N, Latitude: 90.3996° E) following randomized complete block design (RCBD) with three replications.

Inoculum preparation and pathogenicity test

Three major highly virulent strains of *Xanthomonas oryzae* pv. *oryzae* viz., BXo69, BXo87 and BXo93 [21] were collected from Plant Pathology Division, BRRI, Gazipur and used for pathogenicity test. Bacterial (*Xoo*) inoculums were grown on peptone sucrose agar (PSA) medium at 28°C for 48 hours. The inoculum was diluted with distilled water and the absorbance was adjusted to approximately OD$_{600}$ = 1. This value corresponds to the concentration of about 3.3×108 colony forming units per milliliter (CFU/mL), which normally provides optimum *Xoo* infection in the host.

Rice plants were inoculated at maximum tillering stage by following leaf clipping method [32]. After inoculation plants were monitored in every 24-h interval to note disease appearance. The disease severity data (Lesion length) were recorded at 14 days of inoculation from 10 leaves of each entry. On the basis of disease severity, entries were classified as highly resistant <1 cm (Score 0), resistant 1.1-3 cm (Score 1), moderately resistant 3.1-5 cm (Score 3), moderately susceptible 5.1-10 cm (Score 5), susceptible 10.1-15 cm (Score 7) and highly susceptible >15 cm
The lesion length covering the whole infected region of the leaf was measured with a scale. For our further study of resistant gene detection and genetic diversity analysis, we selected highly resistant to moderately resistant (Score 0-3) 74 germplasm based on the pathogenicity test.

DNA extraction and PCR amplification

Fresh, young leaves were collected and stored in 1.5 mL microcentrifuge tubes at -20°C. DNA extraction was carried out following modified CTAB (hexadecyltrimethylammonium bromide) method [34]. Extracted DNA pellets were dissolved in 100μl of 1X TE (Tris EDTA) buffer. DNA quality and concentration were checked using NanoDrop spectrophotometer (Jenova Nano, UK). Finally, the working DNA solution was prepared by diluting stock solution to 25-30 ng/μl DNA concentration using 1X TE buffer and stored at 4°C.

Polymerase chain reaction (PCR) were performed to identify resistance gene(s) and determine genetic diversity among the selected germplasm. For the detection of bacterial blight resistant gene(s) six co-segregating STS markers tightly linked to *Xa4, xa5, Xa7, xa13, Xa21, Xa23* genes were used (Table 1). On the contrary, genetic diversity of the selected germplasm were determined using ISSR marker. A total of 22 ISSR markers were taken for polymorphism study and finally 17 markers were selected based on their unambiguous reproducible polymorphic band generation capability for genetic diversity analysis. PCR reaction mixture was formulated using 5 μl GoTaq G2 green PCR master-mix (Promega, USA), 1 μl primer (forward and revers, 0.5 μl each), 2 μl ddH₂O and 2 μl genomic DNA solution. The PCR program involved: 4-minute initial denaturation step at 94°C, 35 cycles of denaturation at 94°C for 30 second, annealing at 45°C to 58°C for 30 second and elongation at 72°C for 1 minute to 1 minute 40 second, followed by a final elongation phase at 72°C for 7 minutes.
Table 1: List of primers used for resistant detection with their sequence, annealing temperature and expected product size.

Gene	Marker	Sequence	Annealing temperature	Product size	Reference
Xa4	MP1	F: ATCGATCGATCTTCACGAGG	50℃	120bp, 150bp	[35]
	MP2	R: TCGTATAAAAAGGCATTCGGG			
xA5	xa5-multiplex	S-F: GTCTGGAATTGGCTCGGTTCG	55℃	180bp, 310bp, 410bp	[36,37]
		S-R: TGGTAAAGTAGATACCTTATCAAACTGGA			
		R-F: AGCTCGCCATTCAAGTTCTTGAG			
		R-R: TGACTTGGTTCTCACAAGGCTT			
Xa7	M5	F: CTGGATAACGGAACCTTCTAAAC	58℃	294bp, 1170bp	[38]
		R: AGAGAAACCTTCCTCCCTCAGTG			
xA13	xa13-prom	F: GGCCATGGGCTCAGTGTATT	55℃	250bp, 560bp	[39]
		R: GAGCTCCAGCTCCTCAAAATG			
Xa21	pTA248	F: AGACGCCGGAAGGGTGTTCCCCCGGA	55℃	750bp, 1000bp	[40]
		R: AGACGCCGGAATCTCGAAAGATGAAA			
Xa23	03STS	F: CTCGGTTTCCCTGTCCTCAG	55℃	1200bp, 1350bp	[41,42]
		R: GACTTGGCTGCTTTCCAGC			

The PCR product of Xa4 and xA5 was resolved in 2.5% agarose gel while, the PCR product of Xa7, xa13, Xa21, Xa23 were resolved in 1.5% agarose gel using 1X TBE buffer at 90 V-120 minutes. Monogenic resistant line of the respective gene was used as resistant check and IR24 was used as susceptible check for identification of the resistant genes. On the other hand, PCR product of all ISSR markers were resolved in 10% (w/v) polyacrylamide gel in 1X TBE at 90 V-70 min. For visualization of the resolved DNA band all gels were stained with ethidium bromide (10 μg/mL) solution and finally visualized under transilluminator (UVP GelSolo).

Characterization of the quantitative traits

Quantitative traits of the 74 bacterial blight resistant germplasm were also evaluated. Twenty-five days old seedlings were transplanted following RCB design with three replications in the experimental field of Plant Pathology Division, BRRI, Gazipur with a spacing of 20cm × 20cm. Quantitative trait data such as, days to 50% flowering, days to maturity, plant height (cm),
number of tiller hill$^{-1}$, number of effective tiller hill$^{-1}$, panicle length (cm), spikelet panicle$^{-1}$, filled spikelet panicle$^{-1}$, unfilled spikelet panicle$^{-1}$ and 1000 grain weight (g) were documented with three replications.

Data analysis

ISSR band profile of each marker was scored using binary system where, score 1 indicated presence and score 0 indicated absence of a band. A UPGMA dendrogram was constructed using Jaccard’s similarity coefficient using NTSYS-pc version 2.21q software and two dimensional PCA (Principle component analysis) scattered plot was constructed using R-4.1.0 software. Polymorphic information content (PIC) value of the markers was calculated following the formula of [43] while, resolving power (RP) of each ISSR marker was calculated using the method proposed by [44].

For quantitative trait data, analysis of variance (ANOVA) and mean comparison test (LSD) were performed using Statistix 10 software. NTSYS-pc version 2.21q software was used to construct Euclidean distance based UPGMA dendrogram while two dimensional PCA scattered plot, correlogram based on Pearson’s correlation among the quantitative traits and a heatmap based on trait mean values of different clusters of UPGMA dendrogram were constructed using R-4.1.0 software. Mantel test was performed using NTSYS-pc version 2.21q software to find correlation between molecular and morphological data matrix.

Results

Identification of bacterial blight resistant germplasm

Based on disease reaction pattern of 792 germplasm against the three virulent strains of *Xoo*, only one germplasm was found highly resistant (score 0), 33 germplasm were resistant (score 1)
and 40 germplasm were found moderately resistant (score 3) against three virulent strains (Fig 1). Rest of the germplasm showed moderately susceptible to highly susceptible disease reaction (S1 Table). IRBB60 showed highly resistant score (0) while BRRI dhan28 showed highly susceptible reaction (score 9).

Fig 1. Plants with different lesion length caused by *Xanthomonas oryzae* pv. *oryzae* and their resistance status

Identification of the resistant genes

MP1-2 (Xa4 gene linked) primer detected 41 germplasm (55.41%) as Xa4 positive and 33 germplasm (44.59%) as Xa4 negative (Fig 2A). On the other hand, xa5-multiplex primer (xa5 linked) identified 15 germplasm (20.27%) harboring xa5 allele while, 59 germplasm (79.73%) were found negative (Fig 2B). Nonetheless, M5 primer (Xa7 gene linked) distinguished 62 germplasm (83.78%) as Xa7 positive while, the rest 12 (16.22%) were found negative (Fig 2C). Nevertheless, xa13-prom primer (xa13 gene linked) detected 33 germplasm (44.59%) to carry xa13 (recessive) allele while, 41 germplasm (55.41%) to carry Xa13 (dominant) allele (Fig 2D). Notably, pTA248 primer (Xa21 gene linked) dug out only a single germplasm (G3, Acc no.4216) carrying Xa21 gene (Fig 2E) and finally, 03STS primer (Xa23 gene linked) detected 19 germplasm (25.68%) as Xa23 positive and 55 germplasm (74.32%) as Xa23 negative (Fig 2F). A summary of the disease reaction score with gene identification of the 74 potential germplasm are shown in Fig 3 and S2 Table. Interestingly, most of the resistant germplasm were found to carry multiple genes of different combinations. Among the germplasm, 10 germplasm consisted of 4 genes, 15 germplasm consisted of 3 genes and 38 germplasm consisted of 2 genes of various combinations (Fig 4). Particularly, germplasm G3 (Acc. No. 4216; having Xa4, Xa7, xa13 and Xa21) was only highly resistant germplasm among the 792 germplasm in the pathogenicity test.
Notable, rest of the 4 to 3 genes carrying germplasm were found resistant and germplasm carrying 2 genes were found resistant to moderately resistant in the pathogenicity test. Germplasm with a single R gene were found moderately resistant. Markedly, germplasm G43 (Acc. No. 1523) was found to carry three of the R genes (xa5, xa13 and Xa23) effective against diverse virulent Xoo strains of Bangladesh, along with Xa4 gene.

Fig 2. Partial gel picture of, (A) M1-2 primer (Xa4 gene linked), (B) xa5 multiplex primer (xa5 gene linked), (C) M5 primer (Xa7 gene linked), (D) xa13-prom primer (xa13 gene linked), (E) pTA248 primer (Xa21 gene linked), (F) 03STS primer (Xa23 gene linked), resolved in 1.5-2% agarose gel. Here, C1- susceptible check IR24 and C2- IRBB4, C3- IRBB5, C4- IRBB7, C5- IRBB13, C6- IRBB21 and C7- IRBB23. L1 corresponds to 100bp DNA ladder and L2 corresponds to 1kb DNA ladder. G1 to G33 represents first 33 germplasm out of 74 potential germplasm identified based on the disease reaction against three Xoo strains.

Fig 3. Color map representing disease reaction (DR) status of 74 germplasm against three Xoo strains and the resistant gene(s) contained by them. Green color indicated presence of a gene while red color indicated absence of a gene. Presence or absence of a gene is confirmed by STS marker analysis of the respected gene.

Fig 4. Different gene combinations recorded in the 74 selected germplasm and their resistant status in pathogenicity test. Each colored cell in a bar represents a different gene combination. Number inside the cell represents the frequency of that gene combination among 74 germplasm. Here, HR- highly resistant, R-resistant, MR-moderately resistant.

Genetic diversity of resistant germplasm based on molecular markers

Seventeen ISSR markers generated a total of 140 definite bands, out of which 105 bands (75%) were found polymorphic. The average number of polymorphic bands per loci were 6.8. The PIC value ranged from 0.16 to 0.49 with an average of 0.31 while the resolving power of the markers ranged from 0.20 to 0.89 with an average of 0.44 (Table 2). Partial DNA profile of some ISSR markers presented in Fig 5.

Table 2: List of ISSR markers with their sequence, annealing temperature, number of polymorphic bands, PIC value and RP value.
Marker^(a)	Sequence	Annealing temperature	Polymorphic band	PIC	RP
UBC807	(AG)₈ T	45°C	4	0.26	0.34
UBC808	(AG)₈ C	45°C	8	0.21	0.26
UBC809	(AG)₈ G	45°C	7	0.31	0.46
UBC810	(GA)₈ T	45°C	11	0.22	0.28
UBC836	(AG)₈ YA	45°C	6	0.16	0.24
UBC840	(GA)₈ YT	45°C	2	0.49	0.89
UBC848	(CA)₉RG	50°C	2	0.30	0.41
UBC853	(TC)₈RT	45°C	9	0.27	0.39
UBC855	(AC)₈YT	50°C	5	0.30	0.41
UBC857	(AC)₈YG	50°C	3	0.46	0.40
UBC884	HBH(AG)₇	45°C	4	0.38	0.53
UBC885	BHB(GA)₇	45°C	6	0.41	0.66
UBC886	VDV(CT)₇	45°C	4	0.32	0.46
UBC888	BDB(CA)₇	50°C	4	0.36	0.55
UBC889	DBD(AC)₇	50°C	13	0.34	0.51
UBC890	VHV(GT)₇	50°C	11	0.36	0.53
UBC891	HVH(TG)₇	50°C	6	0.18	0.20
Total	----	----	105		

Note: (a) UBC primer set 9, University of British Columbia. PIC: Polymorphic Information Content, RP: Resolving Power.

Fig 5. Partial gel picture of three ISSR markers, (a) ISSR808, (b) ISSR809, (c) ISSR810, resolved in 10% polyacrylamide gel. G1 to G33 represents first 33 germplasm out of 74 potential germplasm identified based on the disease reaction against three *Xoo* strains. L corresponds to 100bp DNA ladder.

UPGMA dendrogram, based on the binary data of ISSR markers grouped the 74 landraces, IRBB60 and BRRI dhan28 into 20 groups at the coefficient value of 0.135 where, Jaccard’s coefficient value ranged from 0 to 0.525 (Fig 6). Out of 20 clusters, cluster-V (25 germplasm), cluster-X (11 germplasm), cluster-IV (10 germplasm), cluster-XVI (6 germplasm), cluster-IX (4 germplasm), cluster-XV (3 germplasm) and cluster-XVII (3 germplasm) were the larger clusters while, rest of the 12 clusters comprised of only one to two germplasm. Conversely, two-dimensional scattered plot generated from PCA analysis generated 16 major clusters (Fig 7).
where, cluster-I contained the highest 28 germplasm followed by cluster-XI (11 germplasm),
cluster-XIV (11 germplasm), cluster-XV (5 germplasm), cluster-XVI (5 germplasm), cluster-XII
(4 germplasm) and cluster-IV (3 germplasm). The remaining clusters contained only one
germplasm. Notably, both UPGMA dendrogram, PCA analysis pointed that some germplasm
such as, G6, G15, G18, G25, G34, G49, G64 and G76 preferred to remain in a single group.
However, according to the PCA analysis, 71.14% variability was explained by first five
components where they individually accounted for 31.84%, 16.76%, 9.21%, 7.88% and 5.45 %
varyability.

Fig 6. UPGMA dendrogram of 76 genotypes constructed from ISSR marker data based on
Jaccard’s coefficient. Here, G1 to G74 represents 74 potential germplasm identified based on the
disease reaction against 3 *Xoo* strains while G75 represents BRRI dhan28 and G76 represents
IRBB60.

Fig 7. Two dimensional PCA scattered plot constructed from ISSR marker data grouping 76
genotypes into different clusters. Each different colored ellipse represents a different cluster.
Here, G1 to G74 represents 74 potential germplasm identified based on the disease reaction
against 3 *Xoo* strains while G75 represents BRRI dhan28 and G76 represents IRBB60.

Based on Jaccard’s similarity matrix highest genetic similarity existed between the germplasm
G45-G46 (0.92) followed by, G65- G66 (0.91) and G9-G8 (0.90) (S3 Table). Contrariwise,
lowest genetic similarity was found between G15-G76 (0.1) followed by G18-G76 (0.15), G4-
G76 (0.25), G72-G15 (0.26), G38-G76 (0.27), G74-G76 (0.27), G12-G76 (0.28), G64-G76
(0.28), G4-G54 (0.28), G63-G76 (0.29), G4-G53 (0.29), G53-G54 (0.29). On the other hand, our
bacterial blight susceptible elite variety BRRI dhan28 showed highest genetic similarity with
germplasm G61 (Acc. No. 3101; similarity value 71) and lowest genetic similarity with
germplasm G20 (Acc. No. 4004; similarity value 0.3) followed by G17 (Acc. No. 3981;
similarity value 0.37) and G6 (Acc. No. 991; similarity value 0.38).
Morphological variability among the germplasm

Analysis of variance (Table 3) revealed that all the selected germplasm had highly significant variability \((p \leq 0.01)\) in terms of 10 quantitative traits (S4 Table). Pearson’s correlation among the quantitative traits indicated that there was a significant positive correlation between number of tiller hill\(^{-1}\) and number of effective tiller hill\(^{-1}\) \((0.96)\), days to maturity and days to flowering \((1.0)\), filled spikelet panicle\(^{-1}\) and spikelet panicle\(^{-1}\) \((0.53)\), unfilled spikelet panicle\(^{-1}\) and spikelet panicle\(^{-1}\) \((0.69)\) (Fig 8). On the contrary, a significant negative correlation was observed between panicle length and number of tiller hill\(^{-1}\) \((-0.29)\), panicle length and number of effective tiller hill\(^{-1}\), unfilled spikelet panicle\(^{-1}\) and filled spikelet panicle\(^{-1}\) \((-0.24)\), 1000 grains weight and unfilled spikelet panicle\(^{-1}\) \((-0.24)\).

Table 3: Mean squares values from analysis of variance for 10 quantitative traits among 74 rice germplasm with two check varieties.

Var.	DF	PH	NTH	NETH	DF	DM	PL	SP	FSP	USP	GW
Rep.	2	9.05	13.27	10.47	9.16	1.20	3.70	109.82	169.51	120.69	1.86
Germ.	75	1250.54	38.26	36.86	75.56	74.88	18.29	1232.13	719.58	943.56	25.0
		**	**	**	**	**	**	**	**	**	**
Error	150	70.90	7.58	7.42	0.86	1.86	0.45	255.08	135.37	148.96	0.13

* \(P \leq 0.05\), ** \(P \leq 0.01\), Var.- Variable, Rep.- Replication, Germ.- Germplasm, PH- Plant height, NTH- Number of tiller hill\(^{-1}\), NETH- Number of effective tiller hill\(^{-1}\), DF- Days to flowering, DM- Days to maturity, PL- Panicle length, SP- Grains panicle\(^{-1}\), FGP- Filled spikelet Panicle\(^{-1}\), UGP- Unfilled spikelet Panicle\(^{-1}\), GW- 1000 Grain weight.

Fig 8. Correlogram presenting Pearson’s correlation between the quantitative traits. Red color represents positive correlation and violet color represents negative correlation. Here, PH- Plant height, NTH- Number of tiller hill\(^{-1}\), NETH- Number of effective tiller hill\(^{-1}\), DF- Days to flowering, DM- Days to maturity, PL- Panicle length, SP- Spikelet panicle\(^{-1}\), FSP- Filled spikelet panicle\(^{-1}\), USP- Unfilled spikelet panicle\(^{-1}\), GW- 1000 Grain weight. * \(P \leq 0.05\), ** \(P \leq 0.01\).

Next, the UPGMA dendrogram based on Euclidean distance grouped the 74 germplasm into 8 different clusters where, cluster-V contained highest 18 germplasm followed by cluster-II (15 germplasm), cluster-VIII (9 germplasm), cluster-IV (8 germplasm), cluster-I, -III and -VII (7
germplasm) and finally cluster-VI (5 germplasm) (Fig 9). This clustering pattern was further supported by two-dimensional scattered plot from PCA analysis (Fig 10). In the PCA analysis 10 clusters were found, where 13 germplasm grouped into cluster-III and cluster-IV followed by cluster-I (10 germplasm), cluster-V and cluster-IX (9 germplasm), cluster-VIII (7 germplasm), cluster-II and cluster-VII (5 germplasm), cluster-X (3 germplasm) and cluster-VI (2 germplasm). According to the PCA analysis, 94.049% variability was observed due to first three component where they individually accounted for 43.294%, 30.13% and 20.625% variability.

Fig 9. UPGMA dendrogram of 76 genotypes constructed from quantitative traits data based on Euclidean distance matrix. Here, G1 to G74 represents 74 potential germplasm identified based on the disease reaction against three *Xoo* strains while G75 represents BRRI dhan28 and G76 represents IRBB60.

Fig 10. Two dimensional PCA scattered plot constructed from quantitative traits data grouping 76 genotypes into different clusters. Each different colored ellipse represents a different cluster. Here, G1 to G74 represents 74 potential germplasm identified based on the disease reaction against three *Xoo* strains while G75 represents BRRI dhan28 and G76 represents IRBB60.

The clustered germplasm from UPGMA dendrogram showed a variable mean performance in respect to quantitative traits. However, none of the clusters was found to have all the desired traits in respect to mean values (Fig 11). Notably, germplasm from Cluster-I had the highest mean value in respect to plant height, number of effective tiller hill$^{-1}$ and filled spikelet panicle$^{-1}$, while germplasm from cluster-II were recorded to have the lowest mean value in case of total tiller hill$^{-1}$, effective tillers hill$^{-1}$, days to flowering, days to maturity and unfilled spikelet panicle$^{-1}$. However, the highest panicle length, unfilled spirelet panicle$^{-1}$ along with the lowest 1000 grains weight in respect to mean performance were recorded in the germplasm from cluster-V. Nonetheless, the lowest mean plant height with the highest number of total tiller hill$^{-1}$ were recorded in the germplasm from cluster-VIII.
Fig 11. Heatmap showing quantitative trait performance in respect to mean value of different clustered germplasm grouped based on the UPGMA dendrogram constructed using morphological trait data. Blue color represents lower value while red color represents higher value. Here, PH- Plant height, NTH- Number of tiller hill$^{-1}$, NETH- Number of effective tiller hill$^{-1}$, DF- Days to flowering, DM- to maturity, PL- Panicle length, SP- Spikelet panicle$^{-1}$, FGP- Filled spikelet panicle$^{-1}$, UGP-Unfilled spikelet Panicle$^{-1}$, GW- 1000 Grain weight.

Mantel test was performed to find correlation between molecular and morphological data matrix (Fig 12). Our findings suggested that a positive but non-significant correlation (Matrix correlation r= 0.113) existed between molecular and morphological variability data.

Fig 12. Pairwise relationship between Nei and Euclidean distance (r = 0.113) for 76 genotypes used in the diversity study. Nei distance was constructed based on ISSR marker data while Euclidean distance was constructed based on quantitative trait data.

Discussion

Despite the severity of the virulence character of rice bacterial blight disease and regardless of the fact that host plant resistance is the best sustainable strategy to counter this age-old threat to rice production, no resistant variety so far has been developed in the country. However, a successful breeding program designed to develop resistant genotypes is largely influenced by the gene pool variations in the parental genotypes [45]. On the other hand, exploring genetic diversity of a collection of germplasm could enrich gene pool through introducing new gene(s) [24,46]. So, considering the importance of enrich and diversify the gene pool we explored a part of our landrace germplasm collection through morphological and molecular approaches.

Pathogenicity test exposed variant bacterial blight disease reaction among studied germplasm which may be an indication of the presence of divergent genes/alleles in the germplasm
collection. Nonetheless, vast majority of the germplasm were found moderately susceptible to highly susceptible with only a single highly resistant germplasm, which was a clear indication of high virulent status of the *Xoo* strains under the current study [14–17,47].

The STS markers utilized in the study were found highly efficient to identify the resistant genes. Dominant resistant gene *Xa4*, first reported by [48], functioned via cell wall-associated kinase synthesis and confers a race-specific but plant growth stage nonspecific resistance towards *Xoo* strains [49–51]. Moreover, [51] deciphered the role of *Xa4* gene in improving certain quantitative traits such as, plant height. This may shed light on the reason behind the wide utilization on the *Xa4* gene in the rice breeding programs. In the current study, we identified around 55.41% germplasm (41 out of 74) harboring *Xa4* gene. Similarly, high presence rate of *Xa4* gene among the germplasm were also reported by [12,15,52,53]. Subsequently, among the two recessive *R* genes (*xa5* and *xa13*) under the current query, *xa5* was first identified by [48] and typically found in the Aus-Boro varieties of Bangladesh [11]. Recessive *R* gene *xa5* confers a race-specific resistance against *Xoo* by encoding a TFII-λ subunit [54]. However, in our study, around 20.27% germplasm (15 out of 74) showed to have recessive *xa5* gene. Similar to our finding, 34.29% germplasm were found to carry *xa5* gene in India [14], 17.5% in Pakistan [53] and 29.62% in Nepal [16]. Alternatively, [15,17] did not find of any *xa5* gene in Thai or Malaysian germplasm, respectively. These results may indicate the predomination of *xa5* gene in the Indian subcontinent. Nonetheless, another recessive *R* gene *xa13* was first reported in a landrace (BJ1) derived from Indian subcontinent [55]. Similar to *Xa4* and *xa5*, *xa13* is also a race specific *R* gene [56]. Both of *xa13* (resistant) and *Xa13* (Susceptible) allele encodes clade-III SWEET (Sugar will eventually be exported transporter) protein which is responsible for sugar efflux into the apoplast region of plant from cytoplasm [57–59]. Mutation in the -69 to -86
position of *OsSWEET11* or *Xa13* plays the central role in recessive *xa13* mediated resistance to *Xoo* [60]. However, in our study we identified that about 44.59% germplasm (33 out of 74) possessed resistant *xa13* allele. Regrettably, in some previous researches led by [14,15,17] were not able to detect any *xa13* gene in the germplasm derived from India, Thailand and Malaysia, respectively.

The first cloned *R* gene *Xa21* was categorized as an LRR-RKL (Leucine-rich repeat receptor-like kinases) gene [61]. Although, *Xa21* showed broad-spectrum resistance against *Xoo*, its activity largely depends on the plant growth stage [62–65]. However, *Xa21* had been identified as an effective and durable *R* gene against *Xoo* strains in Bangladesh [21,66], India [67,68], Vietnam [69], as well as in Korea [70]. Despite of its high effectiveness, *Xa21* appeared to be a rare gene in terms of presence in the germplasm [12,14,16,17,53]. In our study we found only one germplasm carrying *Xa21* gene. Interestingly, germplasm G3 carrying *Xa21* gene was the only germplasm after pyramided line IRBB60 with a highly resistant (HR) response against all the *Xoo* strains. This observation again proved the high effectiveness of *Xa21* gene against diverse *Xoo* strains. On the other hand, newly cloned executor *R* gene *Xa23* was identified from *Oryza rufipogon* by [71] and has been well recognized for it’s a broad-spectrum resistance against *Xoo* by inducing hypersensitive response in rice at all growth stages [72,73]. The seven base pairs mutation in the promoter site is the secret behind its activation by a conserved TALE (transcription activator-like effector) element, *AvrXa23* encoded by *Xoo* strains [73,74]. Notably, in our study we identified 19 germplasm (25.68%) which carries resistant *Xa23* allele while, [12] did not find any resistant *Xa23* gene in Chinese cultivar.

Dominant but un-cloned *R* gene *Xa7* was first identified in DV85 rice cultivar and was reported to be predominate in Aus cultivars of Bangladesh [18,75,76]. Though it is not cloned yet, its
durable resistance and effectiveness in high temperature makes it a desirable target gene in modern breeding programs especially in tropical country like Bangladesh [49,77]. In the present study, we identified maximum 83.78% germplasm (62 out of 74) which carries Xa7 gene. These findings again indicated the predominance of Xa7 gene in Bangladeshi germplasm. In contrast, [76] reported of 59.50% germplasm carrying Xa7 gene in Pakistan, [15] reported of 11.61% germplasm carrying Xa7 gene in Thailand, [16] reported of 23.33% germplasm carrying Xa7 gene in Nepal and [12] reported only 4.91% germplasm carrying Xa7 gene in China, in their respective study.

It is widely accepted that a single resistant gene, despite of its resistance range, will eventually lose its durability as pathogens are more prone to mutations [18,78]. On the other hand, rice varieties carrying multiple resistance genes provide a more effective and durable resistance towards diverse Xoo strains and hence are best suited for long term and large-scale cultivation.

For example, [79] reported about xa5, xa13 and Xa21 gene combination providing superior resistance in Eastern India, [80] informed about Xa4, Xa7 and Xa21 gene combination showing higher resistance in Vietnam, [81] identified xa5, Xa21; xa33, xa5, xa33; xa5, Xa21; Xa21, xa33 gene combinations conferring wider and higher resistance in Myanmar and Thailand, [5] found that Xa4, xa5 and Xa21 pyramided line exert a durable and long term resistance than a single R gene in Korea while, [36] reported about Xa4 and Xa7 gene combination was durable against Xoo at high temperature and [82] conveyed that Xa4, xa5 and Xa21 gene combination was superior than any of the single R gene. Likewise, in the present study we also observed that germplasm with multiple genes typically confer higher resistance than germplasm with single gene. Notably, among the different gene combinations recorded in our study, Xa4, Xa7, xa13 and Xa21 gene combination was most effective. We believe, the germplasm with diverse gene
combinations, especially germplasm G3 \((Xa4, Xa7, xa13\) and \(Xa21\)) and G43 \((Xa4, xa5, xa13\) and \(Xa23\)), will play the role as harbinger in our future fight against \(Xoo\).

Considering the importance of diverse collection of rice germplasm in future breeding programs, determination of genetic divergence among the germplasm is indispensable. Moreover, genetic divergence revealed through morpho-molecular markers paves the way of the breeders in sustainable management of biotic stresses like, \(Xoo\). The average PIC and RP value of the ISSR markers observed in our study was moderate and analogous to the findings of [30,31,83]. The UPGMA dendrogram and two-dimensional scattered plot grouped the genotypes into 14 and 16 clusters, respectively. Both analyses showed almost similar clustering pattern and both were able to distinguish IRBB60 (G76), non-native to Bangladesh, from the rest of the germplasm. This was a clear indication of the effectiveness of the ISSR markers in resolving exotic germplasm collection. Moreover, genetic similarity matrix revealed that most of the germplasm had low genetic similarity with IRBB60, which further supported the effectiveness of the ISSR markers used in the experiment. Nonetheless, as the bacterial blight susceptible elite variety BRRI dhan28 had comparatively high genetic distance with germplasm G6 \((Xa4, Xa7, xa13, Xa23\) genes), G17 \((Xa7, xa13\) genes) and G20 \((Xa4, Xa7, xa13\) genes). Hybridization could be made between BRRI dhan28 and these three germplasms to develop bacterial blight resistant variety [23,34,84].

Variations in quantitative traits among the bacterial blight resistant genotypes were highly significant \((p \leq 0.01)\) as revealed by ANOVA analysis. This was an indication of the existence of wide inherited genetic variations among the germplasm. The UPGMA dendrogram based on quantitative data clustered the germplasm into 8 different clusters. Notably, in respect to the cluster mean values of quantitative traits we deduced that germplasm of the cluster-III had
superior quantitative traits such as the lowest days to flowering and days to maturity, moderate panicle length, decent rate of effective tiller formation, lowest unfilled spikelet panicle\(^{-1}\) and highest 1000 grain weight. On the other hand, low plant height is considered as one of the most desirable traits in modern breeding programs as it improves lodging resistance of the plants [85,86]. Considering this fact, lower plant height with higher tiller number hill\(^{-1}\) made the germplasm from cluster-VIII a good candidate for future breeding programs. Nonetheless, PCA and UPGMA clustering patterns were almost similar in the both methods with a few exception [29,86,87].

Conclusion

Pathogenicity test of 792 germplasm identified 74 potential germplasm conferring highly resistant to moderately resistant disease reaction against three highly virulent *Xoo* strains, *BXo69*, *BXo87* and *BXo93*. Further, molecular evaluation reveled that, the germplasm harbored 1 to 4 *R* genes of various combinations. Whereas, germplasm G3 carrying *Xa4*, *Xa7*, *xa13* and *Xa21* gene was the only germplasm showing highly resistant disease reaction against all three *Xoo* strains. Another germplasm G42 harbored 4 *R* genes (*Xa4*, *xa5*, *xa13* and *Xa23*) among which *xa5*, *xa13* and *Xa23* were some of the most effective *R* genes against *Xoo* strains from Bangladesh. This two germplasm could be recommended for future breeding programs to develop bacterial blight resistant superior varieties. Nevertheless, quantitative traits evaluation of the 74 selected germplasm identified two prominent clusters namely, cluster-III and cluster-VIII with multiple desired traits. Germplasm from these two clusters could also be recommended for future breeding programs. On the other hand, based on genetic distance gained from ISSR marker data, hybridization between elite variety BRRI dhan28 and germplasm G6/G17/G20 could also be a potential recommendation. Last but not the least, the outcome of this study would enrich and
diversify the rice gene pool and would be useful for the development of bacterial blight resistant
durable varieties.

Acknowledgements: The authors acknowledge Genetic resource and seed division (GRSD), Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh and International Rice
Research Institute (IRRI), Philippines for their cooperation in providing the seed samples.

Funding: This work was funded by NATP-2, PBRG, BLB sub-project (ID-091).

References

1. FAOSTAT. [cited 4 Jul 2021]. Available: http://www.fao.org/faostat/en/#data/QC/
visualize
2. BBS. Bangladesh Bureau of Statistics: Year book of agricultural statistics. Dhaka, BD:
Ministry of Planning, Government of the People’s Republic of Bangladesh. 2015.
Available: http://www.bbs.gov.bd
3. Saha S, Garg R, Biswas A, Rai AB. Bacterial diseases of rice: An overview. J Pure Appl
Microbiol. 2015;9: 725–736.
4. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10
plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology. 2012.
doi:10.1111/j.1364-3703.2012.00804.x
5. Jeung JU, Heu SG, Shin MS, Vera Cruz CM, Jena KK. Dynamics of Xanthomonas oryzae
pv. oryzae Populations in korea and their relationship to known bacterial blight resistance
genes. Phytopathology. 2006;96: 867–875. doi:10.1094/PHYTO-96-0867
6. Waller JM. Rice Diseases. By S. H. Ou Slough, UK: Commonwealth Agricultural
Bureaux (1985) 2nd ed., pp. 380. Exp Agric. 1987;23: 357–357.
doi:10.1017/s0014479700017245
7. Niño-liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars: model
pathogens of a model crop. Mol Plant Pathol. 2006;7: 303–324. doi:10.1111/j.1364-
3703.2006.00344.x
8. Liu W, Liu J, Triplett L, Leach JE, Wang G-L. Novel insights into rice innate immunity
against bacterial and fungal pathogens. Annu Rev Phytopathol. 2014;52: 213–241.
doi:10.1146/annurev-phyto-102313-045926
9. Oerke E-C. Crop losses to pests. J Agric Sci. 2006;144: 31–43. doi:10.1017/S0021859605005708
10. Ansari TH, Ahmed M, Akter S, Mian MS, Latif MA, Tomita M. Estimation of rice yield
loss using a simple linear regression model for bacterial blight disease. Bangladesh Rice J. 2020;23: 73–79. doi:10.3329/brj.v23i1.46083

11. Jiang N, Yan J, Liang Y, Shi Y, He Z, Wu Y, et al. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (*Xanthomonas oryzae*) in rice (*Oryza sativa L.*)—an updated review. Rice. 2020;13: 3. doi:10.1186/s12284-019-0358-y

12. Wang S, Liu W, Lu D, Lu Z, Wang X, Xue J, et al. Distribution of bacterial blight resistance genes in the main cultivars and application of *Xa23* in rice breeding. Front Plant Sci. 2020. doi:10.3389/fpls.2020.555228

13. Neelam K, Mahajan R, Gupta V, Bhatia D, Gill BK, Komal R, et al. High-resolution genetic mapping of a novel bacterial blight resistance gene *xa-45(t)* identified from *Oryza glaberrima* and transferred to *Oryza sativa*. Theor Appl Genet. 2020;133: 689–705. doi:10.1007/s00122-019-03501-2

14. Singh AK, Dharmraj E, Nayak R, Singh PK, Singh NK. Identification of bacterial leaf blight resistance genes in wild rice of eastern India. Turk J Botany. 2015;39: 1060–1066. doi:10.3906/bot-1504-8

15. Sombunjitt S, Sriwongchai T, Kuleung C, Hongtrakul V. Searching for and analysis of bacterial blight resistance genes from Thailand rice germplasm. Agric Nat Resour. 2017;51: 365–375. doi:10.1016/j.anres.2017.11.001

16. Acharya A, Adhikari NR, Amgain RB, Poudel A, Yadav R, Poudyal K. Identification of rice genotypes resistant to bacterial leaf blight disease using SSR Markers. J Inst Agric Anim Sci. 2018. doi:10.3126/jiaas.v35i1.22521

17. Hasan NA, Rafii MY, Rahim HA, Ahmad F, Ismail N. Identification of bacterial leaf blight resistance genes in Malaysian local rice varieties. Genet Mol Res. 2020;19. doi:10.4238/gmr18545

18. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, et al. Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach. Molecular Biology Reports. 2019. doi:10.1007/s11033-019-04584-2

19. Mubassir MHM, Nasiruddin KM, Shahin NH, Begum SN, Saha MK, Rashid AQMB. Morpho-molecular screening for bacterial leaf blight resistance in some rice lines and varieties. 2016;4: 146. doi:10.11648/J.JPS.20160406.13

20. Gavhane DB, Kulwal PL, Kumbhar SD, Jadhav AS, Sarawate CD. Cataloguing of blast resistance genes in landraces and breeding lines of rice from India. J Genet. 2019. doi:10.1007/s12041-019-1148-4

21. Rashid MM, Nihad SAI, Khan MAI, Haque A, Ara A, Ferdous T, et al. Pathotype profiling, distribution and virulence analysis of *Xanthomonas oryzae* pv. oryzae causing bacterial blight disease of rice in Bangladesh. J Phytopathol. 2021; jph.13000. doi:10.1111/jph.13000

22. Kwon SJ, Ha WG, Hwang HG, Yang SJ, Choi HC, Moon HP, et al. Relationship between heterosis and genetic divergence in 'Tongil'-type rice. Plant Breed. 2002. doi:10.1046/j.1439-0523.2002.00760.x
23. Mazid MS, Rafii MY, Hanafi MM, Rahim HA, Shabanimofrad M, Latif MA. Agromorphological characterization and assessment of variability, heritability, genetic advance and divergence in bacterial blight resistant rice genotypes. South African J Bot. 2013;86:15–22. doi:10.1016/j.sajb.2013.01.004

24. Islam MZ, Khalequzzaman M, Prince MFRK, Siddique MA, Rashid ESMH, Ahmed MSU, et al. Diversity and population structure of red rice germplasm in Bangladesh. PLoS One. 2018. doi:10.1371/journal.pone.0196096

25. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001. doi:10.1007/s001220100570

26. Costa R, Pereira G, Garrido I, Tavares-De-Sousa MM, Espinosa F. Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS One. 2016. doi:10.1371/journal.pone.0152972

27. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994. doi:10.1006/geno.1994.1151

28. Innark P, Ratanachan T, Khanobdee C, Samipak S, Jantasuriyarat C. Downy mildew resistant/susceptible cucumber germplasm (Cucumis sativus L.) genetic diversity assessment using ISSR markers. Crop Prot. 2014. doi:10.1016/j.cropro.2014.03.003

29. Malek MA, Rafii MY, Shahida Sharmin Afroz M, Nath UK, Mondal MMA. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. Sci World J. 2014. doi:10.1155/2014/968796

30. Moonsap P, Laksanavilat N, Sinumporn S, Tasanasuwan P, Kate-Ngam S, Jantasuriyarat C. Genetic diversity of Indo-China rice varieties using ISSR, SRAP and InDel markers. J Genet. 2019;98: 80. doi:10.1007/s12041-019-1123-0

31. Longya A, Talumphai S, Jantasuriyarat C. Morphological characterization and genetic diversity of rice blast fungus, Pyricularia oryzae, from Thailand using ISSR and SRAP markers. J Fungi. 2020;6: 38. doi:10.3390/jof6010038

32. Kauffman H, Reddy A, Hsieh S, Merca S. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep. 1973.

33. Junying Xu. Introgression of bacterial blight (BB) resistance genes Xa7 and Xa21 into popular restorer line and their hybrids by molecular marker-assisted backcross (MABC) selection scheme. AFRICAN J Biotechnol. 2012;11: 8225–8233. doi:10.5897/AJB12.341

34. Nihad S, Ara A, Rashid M, Hasan M, Khan M, Latif M. Genetic divergence of rice genotypes revealed by bacterial blight disease and morphological traits. Bangladesh Rice J. 2021. doi:10.3329/brj.v24i1.53241

35. Bojun M, Wenming W, Bin Z, Yongli Z, Lihuang Z, Wenxue Z. Studies of PCR marker for the rice bacterial blight resistance gene Xa-4. Hered. 1999;21: 9–12. Available: https://europepmc.org/article/cba/321459
36. Sundaram RM, Chatterjee S, Oliva R, Laha GS, Cruz CV, Leach JE, et al. Update on bacterial blight of rice: fourth international conference on bacterial blight. Rice. 2014;7:12. doi:10.1186/s12284-014-0012-7

37. Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR, Pandit E, et al. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice. 2015. doi:10.1186/s12284-015-0051-8

38. Porter BW, Chittoor JM, Yano M, Sasaki T, White FF. Development and mapping of markers linked to the rice bacterial blight resistance gene Xa7. Crop Sci. 2003. doi:10.2135/cropsci2003.1484

39. Hajira SK, Sundaram RM, Laha GS, Yugander A, Balachandran SM, Viraktamath BC, et al. A Single-tube, functional marker-based multiplex PCR assay for simultaneous detection of major bacterial blight resistance genes Xa21, xa13 and xa5 in rice. Rice Sci. 2016. doi:10.1016/j.rsci.2015.11.004

40. Ronald PC, Albano B, Tabien R, Abenes L, Wu K sheng, McCouch S, et al. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. MGG Mol Gen Genet. 1992. doi:10.1007/BF00279649

41. Fan Y, Chen X, Wang C, Zhu L, Zhang Q, Zhao K. Mapping the rice bacterial blight resistance gene Xa23 with RFLP markers and converting RFLP to STS marker. Acta Agron Sin. 2006;32: 931–935.

42. Wang C, Fan Y, Zheng C, Qin T, Zhang X, Zhao K. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23. Mol Genet Genomics. 2014;289: 745–753. doi:10.1007/s00438-014-0848-y

43. Serrote CML, Reiniger LRS, Silva KB, Rabaiolli SM dos S, Stefanel CM. Determining the Polymorphism Information Content of a molecular marker. Gene. 2020. doi:10.1016/j.gene.2019.144175

44. Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet. 1999. doi:10.1007/s001220051046

45. Rana MK, Bhat K V. A Comparison of AFLP and RAPD markers for genetic diversity and cultivar identification in cotton. J Plant Biochem Biotechnol. 2004;13: 19–24. doi:10.1007/BF03263185

46. Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TJ, Silitonga TS, McCouch SR. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet. 2007;114: 559–568. doi:10.1007/s00122-006-0457-1

47. Fred AK, Kiswara G, Yi G, Kim K-M. Screening rice cultivars for resistance to bacterial leaf blight. J Microbiol Biotechnol. 2016;26: 938–945. doi:10.4014/jmb.1510.10016

48. Petpisit V, Khush GS, Kauffman HE. Inheritance of resistance to bacterial blight in rice. Crop Sci. 1977;17: 551–554. doi:10.2135/cropsci1977.0011183x001700040018x

49. Webb KM, Garcia E, Vera Cruz CM, Leach JE. Influence of rice development on the
function of bacterial blight resistance genes. Eur J Plant Pathol. 2010;128: 399–407. doi:10.1007/s10658-010-9668-z

50. Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet. 2003;106: 683–687. doi:10.1007/s00122-002-1117-8

51. Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat Plants. 2017;3: 17009. doi:10.1038/nplants.2017.9

52. Arif M, Jaffar M, Babar M, Sheikh MA, Kousar S, Arif A, et al. Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. African J Biotechnol. 2008. doi:10.4314/ajb.v7i5.58471

53. Muhammad S, Tahira B, Hafiz UF, Zulqarnain H, Imad N, Abid M, et al. Molecular screening of rice (Oryza sativa L.) germplasm for Xa4, xa5 and Xa21 bacterial leaf blight (BLB) resistant genes using linked marker approach. African J Biotechnol. 2016;15: 2317–2324. doi:10.5897/AJB2016.15612

54. Iyer-Pascuzzi AS, McCouch SR. Recessive Resistance Genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Mol Plant-Microbe Interact. 2007;20: 731–739. doi:10.1094/MPMI-20-7-0731

55. Lore JS, Vikal Y, Hunjan MS, Goel RK, Bharaj TS, Raina GL. Genotypic and pathotypic diversity of xanthomonas oryzae pv. oryzae, the cause of bacterial blight of rice in punjab state of india. J Phytopathol. 2011. doi:10.1111/j.1439-0434.2011.01789.x

56. Antony G, Zhou J, Huang S, Li T, Liu B, White F, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell. 2010. doi:10.1105/tpc.110.078964

57. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010. doi:10.1038/nature09606

58. Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science (80-). 2012;335: 207–211. doi:10.1126/science.1213351

59. Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 2013;200: 808–819. doi:10.1111/nph.12411

60. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 2006. doi:10.1101/gad.1416306

61. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (80-). 1995. doi:10.1126/science.270.5243.1804
62. Sidhu GS. Dominance reversal of a bacterial blight resistance gene in some rice cultivars. Phytopathology. 1978;68: 461. doi:10.1094/Phyto-68-461

63. Wang G-L. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant-Microbe Interact. 1996;9: 850. doi:10.1094/MPMI-9-0850

64. Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, et al. Developmental control of Xa21-mediated disease resistance in rice. Plant J. 1999;20: 231–236. doi:10.1046/j.1365-313x.1999.00589.x

65. Perumalsamy S, Bharani M, Sudha M, Nagarajan P, Arul L, Saraswathi R, et al. Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed. 2010. doi:10.1111/j.1439-0523.2009.01705.x

66. Khan, M. A. I., Kabir, M. S., Monsur, M. A., Ali, M. A., & Mia MAT. Pathogenic diversity of Xanthomonas oryzae pv. oryzae in Bangladesh. Bangladesh J Plant Pathol. 2009;25: 1–6.

67. Sukhwinder-Singh, Sodhi M, Vikal Y, George MLC, Bala GS, Mangat GS, et al. DNA fingerprinting and virulence analysis of Xanthomonas oryzae pv. oryzae isolates from Punjab, northern India. Euphytica. 2003. doi:10.1023/A:1022329024651

68. Mishra D, Vishnupriya MR, Anil MG, Konda K, Raj Y, Sonti R V. Pathotype and genetic diversity amongst indian isolates of Xanthomonas oryzae pv. oryzae. PLoS One. 2013;8: e81996. doi:10.1371/journal.pone.0081996

69. Furuya N, Taura S, Goto T, Thuy BT, Ton PH, Tsuchiya K, et al. Diversity in virulence of Xanthomonas oryzae pv. oryzae from Northern Vietnam. Japan Agric Res Q JARQ. 2012;46: 329–338. doi:10.6090/jarq.46.329

70. Lee SW, Choi SH, Han SS, Lee DG, Lee BY. Distribution of Xanthomonas oryzae pv. oryzae strains virulent to Xa21 in Korea. Phytopathology. 1999. doi:10.1094/PHYTO.1999.89.10.928

71. Zhang Q, Lin SC, Zhao BY, Wang CL, Yang WC, Zhou YI, Li DY, Chen CB ZL. Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Rice Genet Newsl. 1998;15: 138.

72. Zhang Q, Wang CL, Zhao KJ, Zhao YL, Vera Cruz C, Zhu XD, et al. The effectiveness of advanced rice lines with new resistance gene Xa23 to rice bacterial blight. Rice Genet Newslett. 2001.

73. Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, et al. Xa23 is an executor r protein and confers broad-spectrum disease resistance in rice. Mol Plant. 2015;8: 290–302. doi:10.1016/j.molp.2014.10.010

74. Cui H, Wang C, Qin T, Xu F, Tang Y, Gao Y, et al. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern. PLoS One. 2017. doi:10.1371/journal.pone.0185925

75. Chen S, Huang Z, Zeng L, Yang J, Liu Q, Zhu X. High-resolution mapping and gene
prediction of *Xanthomonas Oryzae* pv. *oryzae* resistance gene *Xa7*. Mol Breed. 2008;22: 433–441. doi:10.1007/s11032-008-9187-1

76. Khan MW, Abbasi F, Rabbani MA, Sajid M. Identification of bacterial blight resistance gene *Xa7* in rice (*Oryzae sativa* L.) through STS marker. Int J Biosci. 2015;6: 318–324. doi:10.12692/ijb/6.2.318-324

77. Vera Cruz CM, Bai J, Oña I, Leung H, Nelson RJ, Mew TW, et al. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc Natl Acad Sci U S A. 2000. doi:10.1073/pnas.250271997

78. Kim S-M. Identification of novel recessive gene *xa44(t)* conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theor Appl Genet. 2018;131: 2733–2743. doi:10.1007/s00122-018-3187-2

79. Dokku P, Das KM, Rao GJN. Genetic enhancement of host plant-resistance of the Lalat cultivar of rice against bacterial blight employing marker-assisted selection. Biotechnol Lett. 2013;35: 1339–1348. doi:10.1007/s10529-013-1212-8

80. Du P Van, Loan LC. Improvement of the rice breeding in intensive cropping system in the Mekong Delta. 2007;20: 12–20.

81. Win KM, Korinsak S, Sirithunya P, Lanceras-Siangliw J, Jamboonsri W, Da T, et al. Marker assisted introgression of multiple genes for bacterial blight resistance into aromatic Myanmar rice MK-75. F Crop Res. 2013;154: 164–171. doi:10.1016/j.fcr.2013.08.002

82. Suh J-P, Jeung J-U, Noh T-H, Cho Y-C, Park S-H, Park H-S, et al. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice. 2013;6: 5. doi:10.1186/1939-8433-6-5

83. Kumar A, Mishra P, Singh SC, Sundaresan V. Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of *Justicia adhatoda* L., a medicinal plant. Plant Syst Evol. 2014;300: 1409–1420. doi:10.1007/s00606-013-0970-z

84. Anik TR, Rashid H, Haque MS. Screening and molecular analysis of some rice (*Oryza sativa* L.) genotypes for drought tolerance at seedling stage. J Anim Plant Sci. 2021;31. doi:10.36899/JAPS.2021.6.0384

85. Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci. 2002;99: 9043–9048. doi:10.1073/pnas.132266399

86. Ahmad F, Hanafi MM, Hakim MA, Rafii MY, Arolu IW, Abdullah SNA. Genetic divergence and heritability of 42 coloured upland rice genotypes (*Oryza sativa*) as revealed by microsatellites marker and agro-morphological traits. PLoS One. 2015. doi:10.1371/journal.pone.0138246

87. Ahmed MSU, Khalequzzaman M, Bashar MK, Shamsuddin AKM. Agro-Morphological, Physico-chemical and molecular characterization of rice germplasm with similar names of
Supporting information

S1 Table. List of 794 genotype used for pathogenicity study, their lesion length against three *Xoo* strains, disease reaction score and reaction result.

S2 Table. Disease reaction score, resistance status and STS marker amplification results of 74 potential germplasm.

S3 Table. Genetic similarity matrix based on Jaccard's method showing pairwise genetic similarity among the 76 genotypes.

S4 Table. Different quantitative traits data of 76 genotypes.
Fig 1.
Fig 2.
Fig 3.
Fig 8.
Fig 11.
Fig 12.