Meat-cooking mutagens and risk of renal cell carcinoma

CR Daniel*,1, KL Schwartz2,4, JS Colt1, LM Dong1, JJ Ruterbusch2, MP Purdue1, AJ Cross1, N Rothman1, FG Davis3, S Wacholder1, B1 Graubard1, WH Chow1 and R Sinha1

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 6120 Executive Boulevard, Rockville, MD 20852, USA; 2Karmanos Cancer Institute, Wayne State University, 110 East Warren, Detroit, MI 48201, USA; 3Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois, 877 SOHO/MIC 923, 1603 West Taylor Street, Chicago, IL 60612, USA; 4Department of Family Medicine and Public Health Sciences, Wayne State University, 110 East Warren, Detroit, MI 48201, USA

BACKGROUND: High-temperature cooked meat contains two families of carcinogens, heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs). Given the kidneys’ role in metabolism and urinary excretion of these compounds, we investigated meat-derived mutagens, as well as meat intake and cooking methods, in a population-based case–control study conducted in metropolitan Detroit and Chicago.

METHODS: Newly diagnosed, histologically confirmed adenocarcinoma of the renal parenchyma (renal cell carcinoma (RCC)) cases (n = 1192) were frequency matched on age, sex, and race to controls (n = 1175). The interviewer-administered Diet History Questionnaire (DHQ) included queries for meat-cooking methods and doneness with photographic aids. Levels of meat mutagens were estimated using the DHQ in conjunction with the CHARRED database.

RESULTS: The risk of RCC increased with intake of barbecued meat (P trend = 0.04) and the PAH, benzo(a)pyrene (BaP) (multivariable-adjusted odds ratio and 95% confidence interval, highest vs lowest quartile: 1.50 (1.14, 1.95), P trend = 0.001). With increasing BaP intake, the risk of RCC was more than twofold in African Americans and current smokers (P interaction <0.05). We found no association for HCAs or overall meat intake.

CONCLUSION: BaP intake, a PAH in barbecued meat, was positively associated with RCC. These biologically plausible findings advocate further epidemiological investigation into dietary intake of BaP and risk of RCC.

British Journal of Cancer (2011) 105, 1096–1104. doi:10.1038/bjc.2011.343 www.bjcancer.com

© 2011 Cancer Research UK

Keywords: benzo(a)pyrene; heterocyclic amines; meat intake; African Americans; smoking; kidney cancer

Renal cell carcinoma (RCC), the most common kidney neoplasm in adults, originates in the lining of the proximal convoluted tubule, where glucose, amino acids, uric acid, and inorganic salts are reabsorbed into the filtrate (Barjorin, 2007). Renal cell carcinoma is more common in men than women, and the rates remain higher in African Americans (Chow et al, 2010; Jamal et al, 2010). Despite associations with diet-related chronic conditions, such as obesity, hypertension, and diabetes, dietary risk factors for RCC are not well established (World Cancer Research Fund/American Institute for Cancer Research, 2007; Chow et al, 2010).

Intake of fruits and vegetables may lower RCC risk (Rashidkhani et al, 2005; Lee et al, 2006), whereas high meat intake may increase risk (Faramawi et al, 2007; Aune et al, 2009; Dolwick Grieb et al, 2009), but the epidemiological evidence for various aspects of diet is largely inconsistent.

Cooking of meat at high temperatures may result in the formation and ingestion of carcinogenic compounds, including heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) (Rothman et al, 1993; Phillips, 1999; Sinha and Norat, 2002). Heterocyclic amines, the pyrolysis products of amino acids and creatine/creatinine, are formed in the meat’s fatty juices upon direct contact with a high-heat cooking surface, such as during pan-frying (Sinha et al, 1998). Meat cooked above an open flame or embers, as with barbecuing or grilling, contains the highest levels of PAHs in the smoke formed as the meat’s fatty juices drip onto the heat source (Kazerouni et al, 2001).

Dietary intake of HCAs and benzo(a)pyrene (BaP), a PAH found in the diet (Rothman et al, 1993; Kazerouni et al, 2001), have been linked to tumour formation at multiple organ sites in animal feeding studies (Nagao and Sugimura, 1993; Sinha and Norat, 2002). These compounds have also been associated with cancers of the colorectum (Sinha et al, 2005b; Cross et al, 2010), lung (Lam et al, 2009; Tasevska et al, 2009), pancreas (Anderson et al, 2005; Stolzenberg-Solomon et al, 2007), prostate (Cross et al, 2005), and breast (Sinha et al, 2000) in several large epidemiological investigations; however, results across studies and cancer sites are not consistent (Alaejos et al, 2008; Mignone et al, 2009; Tasevska et al, 2010; Wu et al, 2010). Despite the kidneys’ role in metabolism and urinary excretion of these compounds (Turteltaub et al, 1997; Peters et al, 2004), human investigations of meat mutagens and kidney cancer are sparse and limited by small numbers of cases (Lindblad et al, 1997; De Stefani et al, 1998; Augustsson et al, 1999), narrow range of intake (Augustsson et al, 1999), and/or lack of comprehensive assessments of cooking methods and doneness to calculate the levels of potential meat-cooking carcinogens (Wolk et al, 1996; Lindblad et al, 1997).
investigated intake of meat and meat-related mutagens in relation to RCC in a large, population-based case–control study of US men and women who completed a Diet History Questionnaire (DHQ) with a meat-cooking module. We also examined whether these associations varied by race, gender, or smoking status.

MATERIALS AND METHODS

The Kidney Cancer Study (United States), a population-based case–control study conducted in metropolitan Detroit and Chicago, is described elsewhere (Karami et al, 2010). Briefly, Caucasian (CA) and African American (AA) men and women between 20 and 79 years of age were eligible for the study. Cases were comprised of newly diagnosed, histologically confirmed adenocarcinoma of the renal parenchyma (RCC (ICD-O2-C64.9)). Cases were ascertained through the Metropolitan Detroit Cancer Surveillance System (Surveillance Epidemiology and End Results (SEER) program member) between February 2002 and July 2006 (CAs) or January 2007 (AAs), and through review of pathology reports for cases diagnosed in 2003 at Cook County, Chicago Hospitals. Community controls were selected from the Department of Motor Vehicle (DMV) identification records (aged 20 – 64 years) and Medicare beneficiary files (aged 65 years and older), and frequency-matched to cases on age (at 5-year intervals), sex, race, and centre. The sampling strategy employed to increase the number of AA participants, as well as recruitment and participation rates, is described in detail elsewhere (DiGaetano et al, 2003; Karami et al, 2010; Li et al, 2011). Briefly, of the 1918 cases identified and 2718 presumed eligible controls, 341 cases and 449 controls could not be located. Of the 1571 cases we sought to enrol, 1217 cases (77.5%) entered the study (221 declined participation and 133 were not interviewed owing to serious illness, impairment, or failure to respond to multiple contact attempts). Of the 2269 controls we attempted to recruit, 677 declined participation and 357 were unable to be interviewed; thus, 54.4% (1235 controls) participated.

Trained staff administered an in-home, computer-assisted interview to elicit information from participants on demographics, use of tobacco and alcohol, diet (described in detail below), height and weight history, family history of cancer, and medical history. All participants provided written informed consent and study centres were approved by their respective human subjects review boards.

Participants were excluded from the present diet analysis if they did not complete the DHQ (8 cases, 11 controls); reported extreme or implausible values for total non-alcohol energy intake (apparent outliers in the top and bottom 1% of the control distribution: <600 kcal or >6000 kcal; 19 cases, 18 controls); or if the interviewer noted issues with the participant’s cognitive recall and/or conflicting responses to repetitive sequences (15 cases, 14 controls). This resulted in a final sample of 1175 cases and 1192 controls.

Dietary assessment

The modified DHQ collected information on usual adult diet 2 years before the reference date (date of diagnosis for cases or date of sample selection for controls) (Mares-Perlman et al, 1993; Willett, 1998; Subar et al, 2001). The DHQ was interviewer-administered and queried the frequency of intake of a wide range of foods (cereals and grains, fruits, vegetables, legumes, meats, dairy, desserts, fast foods), beverages (water, non-alcoholic, and alcoholic), and vitamin supplements. Each section included additional questions to collect details on the way the food was usually consumed (e.g., raw, cooked, canned, or pickled vegetables; chicken with or without skin; fried, baked, or mashed potatoes) and items typically added to food (e.g., milk or sugar to coffee or cereal, fat or meat used to cook or flavour greens, salad dressing, gravy, butter, syrup). For beverages, the number of glasses or cans was recorded. However, to decrease respondent burden and the potential for error, standard portion sizes were used to derive gram values for food items (Subar et al, 2000).

The following meat, poultry, and fish items were queried and mutually exclusive variables created: processed meat (red processed: bacon, sausage, ham hocks/smoked pork added to greens; and mixed processed: deli meat/cold cuts, hot dogs); red meat, not processed (beef: hamburger, ground beef/beef stew, roast beef/pot roast, beef steak; and pork: ham/ham-steak, pork chops, pork roast, pork/beef ribs); and white meat (poultry: chicken, turkey, fried chicken, ground chicken/turkey; and fish: canned/smoked/salted fish, fresh fish/seafood, fried fish). Standard fractions of meat components of mixed dishes such as pizza, pasta, and chilli/stew (USDA, 2008) were also included as a ‘red meat mix’ variable.

The meat portion of the DHQ included a meat-cooking module (Cantwell et al, 2004; Sinha et al, 2005a) with corresponding queries for cooking method (grilled or barbecued, baked or roasted, oven-broiled, breaded and fried, pan-fried without bread, boiled or stewed, microwaved, brown n’ serve, other, don’t know). Photographic models were used to help participants select a level of doneness (inside and outside) on an incremental scale (rare, medium, medium-well, well, very-well done) (Sinha and Rothman, 1997; Anderson et al, 2005). Frequency of meat intake, usual cooking method, and level of doneness were linked to the ‘computerized HCA resource for research in epidemiology of disease’ (CHARRED, http://charred.cancer.gov/) database of measured mutagenicity in cooked meats to estimate values (ng per day) of three HCs (2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx)), and one PAH (BaP) using an exposure index described in detail elsewhere (Kazerouni et al, 2001; Sinha et al, 2005a). Correlation coefficients between the DHQ with meat-cooking module and multiple food diaries ranged from 0.31 to 0.46 for chicken, red, and grilled meat intake; and ranged from 0.36 to 0.60 for meat-mutagen intake (Cantwell et al, 2004).

Statistical analysis

A set of sample weights were developed to reduce the potential for bias arising from differential sampling rates for controls and cases, from survey non-response, and from deficiencies in coverage of the population at-risk by the DMV and Medicare files used to select controls (Li et al, 2011). Sample weights for controls also included a post-stratification adjustment, so that the weighted distribution of controls across the matching variables exactly matched the weighted distribution of cases. In addition to being consistent with the objectives of the frequency matching, the post-stratification adjustment reduces the variability of the weights compared to not using this adjustment (Li et al, 2011).

Foods and nutrients were standardised (g per 1000 kcal) for total energy intake, excluding energy from alcohol (non-alcohol energy intake). Continuous exposure variables were categorised into quartiles based on the distributions among controls, with the referent group comprised of individuals in the lowest category of intake. If a variable had a large proportion (e.g., two-thirds to three-quarters) of zero values, then categories were created by setting all zero values to the referent group and categorising the non-zero values into tertiles (as shown in Table 3 for barbecued and broiled meat). To evaluate a wider range of intake and potentially skewed distributions for the meat mutagens (Augustsson et al, 1999; Sinha, 2002), we additionally investigated associations across deciles for BaP, DiMeIQx, MeIQx, and PhIP.

We estimated the risk of developing RCC by deriving adjusted odds ratios (ORs) and 95% confidence intervals (CIs) from unconditional logistic regression models using post-stratified
Table 1 Dietary characteristics of participants: (a) The Kidney Cancer Study (United States), 2003–2007; (b) all combined and by race

Characteristic	Cases (N = 1192)	Controls (N = 1175)		
	N\(^a\)	%\(^b\)	N\(^a\)	%\(^b\)
(a) Age group (years)				
20–44	143	10.6	171	10.4
45–54	279	21.8	265	21.9
55–64	360	29.5	642	54.9
65–74	288	26.7	313	27.0
75+	105	11.5	101	8.8
Male	697	62.0	661	61.1
Study center				
Chicago	194	16.9	188	16.3
Detroit	981	83.1	1004	83.7
Education				
Less than high school	189	15.7	180	15.2
High school graduate	405	34.5	379	32.2
Some college (1–3 years)	316	26.7	351	29.8
College graduate	265	22.8	320	27.3
Smoking status				
Never	417	35.3	458	39.0
Occasional	53	4.7	52	4.4
Regular, former	398	34.8	432	36.8
Regular, current	307	26.2	250	21.4
Body mass index (kg m\(^{-2}\))				
<25	234	19.4	352	28.8
25–30	420	36.9	481	42.0
30–35	298	25.2	210	18.0
35+	216	17.6	142	12.0
History of hypertension	666	57.5	486	40.3
Family history of cancer\(^c\)				
None	499	42.5	545	45.7
Cancer of the kidney	50	4.3	23	2.0
Other cancer	616	52.4	614	55.5

Dietary intake, daily\(^d\)	Mean\(^b\)	s.e.\(^b\)	Mean\(^b\)	s.e.\(^b\)	Mean\(^b\)	s.e.\(^b\)	Mean\(^b\)	s.e.\(^b\)
(b) Total energy intake (kcal)	2375	25.5	2330	26.0	2288	25.8	2261	27.1
Total meat	72.6	0.8	71.2	0.8	71.0	0.9	71.7	0.9
White meat	30.1	0.6	31.2	0.6	28.0	0.6	29.3	0.7
Poultry	19.5	0.5	20.2	0.5	17.9	0.5	18.9	0.6
Fish	10.6	0.3	11.0	0.3	10.2	0.3	10.4	0.3
Red meat	42.6	0.6	40.8	0.6	43.0	0.7	41.8	0.7
Not processed	28.5	0.5	27.4	0.5	29.8	0.5	28.7	0.6
Processed	13.9	0.2	13.4	0.3	13.3	0.3	13.1	0.4
Barbecued meat	5.2	0.3	4.7	0.2	6.3	0.4	5.5	0.2
Pan-fried meat	6.5	0.2	6.2	0.3	5.2	0.2	4.9	0.3
Broiled meat	3.0	0.2	3.3	0.2	3.2	0.2	3.3	0.3
BaP (ng)	31.1	1.8	25.9	1.4	34.3	2.4	29.0	1.8
DiMeIQx (ng)	2.1	0.1	1.9	0.1	1.8	0.1	1.6	0.1
MeIQx (ng)	39.3	1.4	34.5	1.1	34.1	1.5	29.4	1.3
PhIP (ng)	123.6	6.0	104.4	4.8	105.5	6.6	89.5	4.4
Alcohol (g)	234.7	14.4	195.6	13.3	217.6	16.2	190.3	15.1
Fruit and vegetables, MPED\(^e\)	1.4	0.1	1.5	0.01	1.4	0.02	1.5	0.02

Abbreviations: BaP = benzo(a)pyrene; DiMeIQx = 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline; MPED = MyPyramid Equivalent Database value; PhIP = 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. \(^a\)Unweighted frequency, excludes missing/unknown/don’t know/other. \(^b\)Incorporates post-stratified weights. \(^c\)First-degree relative ever diagnosed. \(^d\)Standardised for total non-alcohol energy intake; presented as g per 1000 kcal, unless otherwise stated. \(^e\)MyPyramid food group, ounce equivalents per day, per 1000 kcal.
weights. Jackknife replicate weights were created to estimate standard errors (Rust and Rao, 1996). Model covariates (categories defined in Table 1) included study site, age group, self-reported race, sex, education, smoking history as of 2 years before interview, body mass index (BMI, based on height at interview and weight 5 years before interview), history of cancer among first-degree relatives, diagnosis of hypertension 2 or more years before the reference date (self-reported), fruit and vegetable intake (MyPyramid equivalents (Friday and Bowman, 2006); modelled in quartiles), and alcohol intake (quartiles). All models included a continuous covariate for non-alcohol energy intake and were additionally adjusted for other meat variables (e.g., red meat intake adjusted for white meat intake, barbecued meat intake adjusted for intake of meat cooked by other methods, and so on). We also considered potential confounding by other dietary factors, including whole grains and fats, mutual adjustment for meat mutagens (e.g., BaP adjusted for HCAs), as well as energy adjustment, including alcohol intake. We also conducted an unweighted analysis (i.e., not weighting by the post-stratified sample weights) using standard logistic regression procedures, but none of these modifications produced results dissimilar to those presented (data not shown). Tests for trend were performed by creating a continuous variable from the median value for intake in controls within each quartile.

We evaluated effect modification by smoking status, gender, race, BMI, and history of hypertension, by including product terms of the levels of dietary intake (quartiles) and the levels of the factor (i.e., 2 for race and 3 for smoking) in the multiple logistic regression model and testing for the joint significance of the additional terms using the Wald χ^2 test that is appropriate for weighted data (Korn and Graubard, 1999). Statistical tests were determined to be significant at a two-sided $P<0.05$. All analyses were conducted with the SAS software version 9.2 (SAS Institute Inc., Cary, NC, USA) using procedures appropriate for sample-weighted data (SAS Institute, 2008).

RESULTS

Cases tended to be less educated than controls, and they were more likely to be obese, to have a history of hypertension, and to be a current smoker (Table 1). Distributions of demographic and lifestyle characteristics were similar by race (shown in Karami et al, 2010). Intake of red meat, barbecued meat, BaP, and alcohol were significantly higher in cases compared to controls, whereas poultry intake was significantly lower (all $P_{\text{diff}} <0.01$; P-values not shown). By race, MelQx was significantly higher in CA cases compared to CA controls, whereas alcohol, red, and processed meat intake was significantly higher in AA cases compared to AA controls.

Correlations between the mutually exclusive meat-related exposures investigated in the analysis are presented in Table 2. BaP was positively correlated with non-processed red meat ($r=0.47$) and barbecued meat ($r=0.73$) intake, whereas HCAs (DiMeIQx, MelQx, and PhIP) were more strongly correlated with pan-fried meat intake ($r=0.55 – 0.77$). In this study population, majority of the BaP and HCA intake (70–90%) came from red meat sources, as compared to white meat sources (data not shown).

In multivariable-adjusted models (Table 3), we found a statistically significant excess risk of RCC for those in the highest, compared to the lowest, intake quartile of barbecued meat and BaP. When mutually adjusted for intake of the HCAs (data not shown), the OR and 95% CI for highest to lowest quartile of BaP intake was 1.84 (1.37, 2.49). Conversely, high intake of broiled meat, when adjusted for confounders and intake of meat cooked by other methods, was associated with lower risk of RCC. We found no association for pan-fried meat, or for baked, microwaved, and stewed meat (data not shown). Nor did we find associations for any of the HCAs. In addition to the null findings for total, red, and white meat, we found no association for intake of fish (or subgroups of fresh, fried, or canned/salted/smoked), poultry, processed, or fresh red meat (data not shown). Although much of the white meat intake in this population was cooked by methods that do not generate BaP or HCAs (e.g., baking or roasting; see Supplementary Table S1), we observed similar associations for meat mutagens from red vs white meat sources when comparing equivalent levels of intake (OR and 95% CI, per 5 ng per day of BaP intake: 1.01 (1.00 – 1.02) and 1.02 (0.99 – 1.05) from red and white meat, respectively). We found a suggestive positive association for ’smoke-cured red meat’ (sum of bacon, sausage, and pork added to greens), a proxy for processed meats with higher BaP content (Kazerooni et al, 2001; Lee and Shim, 2007; Reinik et al, 2007): covariate-adjusted OR and 95% CI for highest vs lowest quartile (1.24 (0.95, 1.62), data not shown).

We found a statistically significant interaction by race (Table 4) for BaP ($P_{\text{BaP} \times \text{race}} = 0.03$), as well as for broiled meat intake ($P_{\text{broil} \times \text{race}} = 0.03$). For broiled meat, we observed an inverse association for the highest vs lowest quartile of intake among AAs (OR and 95% CI: 0.55 (0.35, 0.85)). Among CA participants, the association with broiled meat was attenuated (OR = 0.84, 95% CI = 0.62 – 1.15). In AAs, we observed a significant increase in RCC risk for both the third (1.77 (1.10, 2.83)) and fourth (2.00 (1.15, 3.47)) quartile of BaP intake, respectively. In CAs, an increase in risk (1.42 (1.04, 1.93)) was only detectable in the fourth quartile (median intake, 61 ng per day).

Table 2 Correlationsa between meat-related exposures in controls, The Kidney Cancer Study (United States), 2003–2007

Heterocyclic amines	Cooking method	Meat type								
DiMeIQx	MelQx	PhIP	Barbecue	Pan-fry	Broil	Other	Red, npb	White	Process	
BaP	NS	0.21	0.38	0.73	0.08	−0.11	0.08	0.47	0.22	0.18
DiMeIQx	0.80	0.45	0.57	0.11	0.55	NS	NS	0.38	0.11	0.17
MelQx	0.13	0.77	NS	NS	0.54	0.22	0.36	0.37	0.29	0.23
PhIP	0.25	0.55	0.09	NS	0.38	0.13	0.08	0.45	0.28	0.41
Barbecue	−0.06	−0.14	NS	0.45	0.28	0.41	0.21	0.13	NS	
Pan-fry	NS	NS	NS	0.27	0.33	0.44	0.28			
Broil	NS	NS	NS	0.28	0.44					
Other	Red, npb	White	Process	0.28						

Abbreviations: BaP = benzo(a)pyrene; DiMeIQx = 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline; MelQx = 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline; PhIP = 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. *Only statistically significant Pearson’s correlation is shown ($P<0.05$); otherwise, indicated as not significant (NS). bRed meat, not including processed; all processed meat assumed to be red; thus, white meat does not include processed.
Meat mutagens and risk of renal cell carcinoma
CR Daniel et al

Dietary intake	Cases	Controls	Median	ORt	95% CI	P_trend
Total meat a						
Q1	306	298	45.7	1.00		
Q2	278	298	62.8	0.89	0.69, 1.16	0.001
Q3	297	298	78.9	0.97	0.75, 1.25	0.20
Q4	300	298	100.9	0.96	0.73, 1.26	0.91
Red meat a						
Q1	230	298	11.7	1.00		
Q2	281	298	20.4	1.03	0.78, 1.36	0.02
Q3	300	298	28.8	0.99	0.76, 1.30	0.31
Q4	364	298	42.0	1.11	0.83, 1.48	0.51
White meat a						
Q1	310	298	13.5	1.00		
Q2	349	298	18.1	1.11	0.93, 1.33	0.15
Q3	269	298	34.8	1.16	0.87, 1.56	0.02
Q4	247	298	42.0	1.11	0.87, 1.42	0.77
Intake of meat cooked by different methods						
Barbecued meat						
Q1	591	682	0	1.00		
Q2	164	168	2.7	1.09	0.81, 1.48	0.29
Q3	206	169	6.4	1.31	1.00, 1.72	0.03
Q4	214	173	16.7	1.35	1.01, 1.79	0.03
Pan-fried meat a						
Q1	258	298	0.3	1.00		
Q2	313	298	2.1	1.12	0.88, 1.43	0.16
Q3	333	298	6.0	1.32	1.03, 1.68	0.03
Q4	271	298	15.6	1.05	0.80, 1.38	0.96
Broiled meat a						
Q1	520	472	0	1.00		
Q2	124	124	0.7	1.01	0.73, 1.41	0.16
Q3	291	298	2.2	0.85	0.67, 1.07	0.46
Q4	240	298	7.6	0.75	0.59, 0.96	0.03
PAH intake from meat						
BaP (ng per day)						
Q1	246	298	1.5	1.00		
Q2	251	298	4.3	1.06	0.80, 1.42	0.03
Q3	291	298	11.3	1.13	0.86, 1.49	0.03
Q4	387	298	58.3	1.50	1.14, 1.95	0.001
HCA intake from meat						
DiMeIQx (ng per day)						
Q1	286	298	0	1.00		
Q2	296	298	0.5	0.87	0.67, 1.13	0.13
Q3	277	298	1.3	0.82	0.56, 1.12	0.14
Q4	316	298	3.9	0.94	0.69, 1.27	0.81
MeIQx (ng per day)						
Q1	281	298	6.2	1.00		
Q2	291	298	16.7	1.03	0.80, 1.32	0.001
Q3	281	298	32.7	1.04	0.79, 1.37	0.001
Q4	322	298	73.3	1.11	0.80, 1.55	0.39
PhIP (ng per day)						
Q1	270	298	3.7	1.00		
Q2	289	298	23.0	0.95	0.70, 1.27	0.001
Q3	309	298	73.2	0.91	0.67, 1.25	0.001
Q4	308	298	249.9	0.92	0.68, 1.26	0.088

Abbreviations: BaP = benzo(a)pyrene; BMI = body mass index; CI = confidence interval; DiMeIQx = 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline; HCA = heterocyclic amine; OR = odds ratio; PAH = polycyclic aromatic hydrocarbon; PhIP = 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; Q = quartile. a Daily dietary intake adjusted for total non-alcohol energy intake; presented as g per 1000 kcal, unless otherwise specified; red and white meat do not include processed. b Median intake value for each Q based on distribution among all study controls. c Models adjusted for age, race, sex, education, smoking status, BMI, history of hypertension, family history of cancer, intake of alcohol, intake of fruit and vegetables, total non-alcohol energy intake, and other meat intake and/or cooking method effects.

The association between BaP and RCC also differed by smoking status (Table S: P_BaP × smoke = 0.02). In the third and fourth quartile of intake (median, 12 and 53 ng per day, respectively), the risk of RCC associated with BaP more than doubled in current-regular smokers. The corresponding risk among never smokers was 1.47 (0.93, 2.31) in the highest, compared to lowest, quartile. We found no evidence of effect modification by smoking status for any of the HCA intake. Nevertheless, few epidemiological studies of kidney cancer have evaluated dietary intake of these carcinogenic compounds (De Stefani et al, 1998; Augustsson et al, 1999) and we are the first to report an association for dietary intake of BaP and risk of RCC, as well as differential associations by race and smoking status. In previous epidemiological studies, BaP intake from high-temperature cooked meat has been associated with cancers of the colorectum (Gunter et al, 2004; Anderson et al, 2005), pancreas (Anderson et al, 2005; Li et al, 2007), and lung (Lam et al, 2009). A small case–control study in Uruguay reported that barbecued meat and HCA intakes were associated with a significant increased risk of RCC (De Stefani et al, 1998). A larger, multicentre, international case–control study of RCC (Wolk et al, 1996) reported similar findings for ‘well done or charred’ usual degree of meat doneness (proxy for HCAs and/or PAHs). Two case–control studies (Wolk et al, 1996; Lindblad et al, 1997) reported a positive association for meat that was fried or sautéed, a general proxy for HCAs. Similar to our null results for pan-fried meat and HCAs, a Swedish population-based case–control study also found no association between HCAs and kidney cancer, but postulated that this may be due to low exposure or narrow range of intake (Augustsson et al, 1999). We examined more extreme levels (10th and 90th percentiles) of HCA intake and still did not find an association.

Racial differences in cooking practices, such as a well-done meat preference and thus greater exposure to HCAs among AA, have been documented (Bogen and Keating, 2001; Keating and Bogen, 2004). Although in our population AAs consumed greater amounts of pan-fried meat and HCAs than CA participants, we found no association with risk of RCC in either race. Differential findings for BaP by race do not appear to be explained by differences in overall
intake, but we cannot rule out the possibility of residual confounding by other divergent risk factors in AA and CA participants. There is some evidence that genetic mutations in the CYP1A1 gene are more common in AAs (Crofts et al., 1993; Nock et al., 2007), whose product, aromatic hydrocarbon hydroxylase, catalyses the first step in the conversion of BaP to a DNA-binding carcinogen. Additional research in diverse populations is needed to clarify these findings.

Table 4 ORs and 95% CIs for renal cell carcinoma and meat-cooking methods, stratified by race, The Kidney Cancer Study (United States), 2003–2007

Dietary intake	Caucasians						African Americans							
Intake of meat cooked by different methods														
Barbecued meat	Cases	Controls	Median	OR	95% CI	\(P_{\text{trend}} \)	Cases	Controls	Median	OR	95% CI	\(P_{\text{trend}} \)		
Q1	355	317	0	1.00	(0.77, 1.98)	1.01	(0.63, 1.72)	0.93, 2.31	1.47	0.12	0.006			
Q2	122	114	2.8	1.05	0.74, 1.49	42	54	2.5	1.34	0.78, 2.33	0.84, 3.87	1.95	2.63	
Q3	167	130	6.4	1.29	0.95, 1.74	39	39	5.9	1.62	0.94, 2.78	0.81, 2.05	1.26	0.004	
Q4	196	142	16.8	1.44	1.05, 1.97	18	31	16.3	0.92	0.48, 1.78	0.81, 2.05	1.05	0.02	
Pan-fried meat														
Q1	210	217	0.4	1.00	(0.77, 1.98)	48	81	0.1	1.00	(0.63, 1.72)	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87
Q2	266	213	2.1	1.21	0.92, 1.58	47	85	2.2	0.89	0.47, 1.69	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87
Q3	231	166	5.6	1.40	1.05, 1.88	102	132	6.7	1.24	0.77, 2.00	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87
Q4	133	107	14.7	1.77	1.58, 1.97	138	191	16.7	1.05	0.65, 1.72	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87
Broiled meat														
Q1	368	282	0	1.00	(0.77, 1.98)	152	190	0	1.00	(0.63, 1.72)	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87
Q2	81	66	0.7	0.97	0.64, 1.46	43	58	0.6	1.08	0.47, 2.33	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87
Q3	210	180	2.3	0.85	0.64, 1.13	81	118	2.2	0.89	0.58, 1.37	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87
Q4	181	175	8.0	0.84	0.62, 1.15	59	123	7.3	0.55	0.35, 0.85	0.81, 1.87	0.84, 3.87	0.84, 3.87	0.84, 3.87

PAH intake from meat

- **BaP (ng per day)**
 - Q1: 1.5 (0.77, 1.98)
 - Q2: 4.2 (0.63, 1.72)
 - Q3: 11.1 (0.93, 2.31)
 - Q4: 15.6 (1.05, 1.97)

HCA intake from meat

- **DiMeIQx (ng per day)**
 - Q1: 0.03 (0.77, 1.98)
 - Q2: 0.5 (0.63, 1.72)
 - Q3: 1.2 (0.93, 2.31)
 - Q4: 2.1 (1.05, 1.97)

- **MeIQx (ng per day)**
 - Q1: 8.6 (0.77, 1.98)
 - Q2: 16.5 (0.63, 1.72)
 - Q3: 32.7 (0.93, 2.31)
 - Q4: 58.4 (1.05, 1.97)

- **PhIP (ng per day)**
 - Q1: 4.2 (0.77, 1.98)
 - Q2: 8.6 (0.63, 1.72)
 - Q3: 16.5 (0.93, 2.31)
 - Q4: 32.7 (1.05, 1.97)

Abbreviations: BaP = benzo(a)pyrene; BMI = body mass index; CI = confidence interval; DiMeIQx = di(2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline); HCA = heterocyclic amine; OR = odds ratio; PAH = polycyclic aromatic hydrocarbon; PhIP = 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; Q = quartile. Daily dietary intake adjusted for total non-alcohol energy intake; presented as g per 1000 kcal, unless otherwise specified. **Models adjusted for age, race, sex, education, smoking status, BMI, history of hypertension, family history of cancer, intake of alcohol, intake of fruit and vegetables, total non-alcohol energy intake, and other meat intake and/or cooking method offset.**

Table 5 ORs and 95% CIs for renal cell carcinoma and BaP intake, stratified by smoking status, The Kidney Cancer Study (United States), 2003–2007

| ORb | 1.00 | 1.24 | 1.01 | 1.47 | 0.12 | 1.00 | 1.28 | 1.95 | 2.63 | 0.006 |
| 95% CI | (0.77, 1.98) | (0.63, 1.72) | (0.93, 2.31) | 0.006 |

Cases/controls

- Q1: 93/116
- Q2: 95/96
- Q3: 102/125
- Q4: 127/121

Median (ng per day)

- Q1: 1.5
- Q2: 4.2
- Q3: 11.1
- Q4: 15.6

Abbreviations: BaP = benzo(a)pyrene; CI = confidence interval; OR = odds ratio; Q = quartile. **Significant interaction \(P_{\text{BaP \& race}} = 0.03.** Estimates adjusted for age, race, sex, education, smoking status, BMI, history of hypertension, family history of cancer, intake of alcohol, intake of fruit and vegetables, and total non-alcohol energy intake. **Significant interaction \(P_{\text{BaP \& race}} = 0.05.**

intake, but we cannot rule out the possibility of residual confounding by other divergent risk factors in AA and CA participants. There is some evidence that genetic mutations in the CYP1A1 gene are more common in AAs (Crofts et al., 1993; Nock et al., 2007), whose product, aromatic hydrocarbon hydroxylase, catalyses the first step in the conversion of BaP to a DNA-binding carcinogen. Additional research in diverse populations is needed to clarify these findings.
In addition to dietary sources (Rothman et al., 1993; Kazerouni et al., 2001), inhalation of cigarette smoke, air pollution, and occupational exposures to combustion by-products may also contribute to BaP exposure (Butler et al., 1993; Alexandrov et al., 2010; Golka et al., 2004). As cigarette smoke contains BaP (Ding et al., 2005) and smoking is a known risk factor for kidney cancer (Chow et al., 2010), we also investigated whether smoking status modified the association between RCC and dietary intake of BaP from cooked meat. We found more pronounced risk at lower levels of intake among current-regular smokers compared to never-smokers. The effect of smoking may be additive, that is, BaP in cigarette smoke plus dietary intake from meat results in higher overall BaP exposure and thus higher risk, and/or smoking may increase the formation of DNA adducts through Upregulated conversion of BaP to benzo(a)pyrene-7,8-diol-9,10-epoxide via cytochrome P450 enzymes (Rubin, 2001; Alexandrov et al., 2010).

In the general non-smoking population without substantial exposure to occupational hazards and severe pollution, the diet is likely to be the largest source of BaP exposure (i.e., approximately 70–96% of total exposure in non-smokers) (Lioy and Greenberg, 1990; Menzie et al., 1992; Butler et al., 1993).

Consistent with the current epidemiological literature for meat and RCC (Lee et al., 2008; Alexander and Cushing, 2009), we found no association for total meat or any individual meat types across our study population; thus, it appears that the cooking method, rather than overall meat intake, may be important. Oven-broiling generally results in the formation of little or no meat-cooking compounds (Kazerouni et al., 2001; Sinha, 2002), and in our population was associated with lower risk of RCC in AAs, as well as inversely correlated with barbecued meat intake. In a similar investigation of meat-cooking exposures and colorectal neoplasia, broiled meat intake appeared protective, whereas intake of barbecued meat and BaP was associated with higher risk (Gunter et al., 2005). In our study, intake of ‘smoke-cured’ meat, which is expected to contribute to BaP intake (Garcia Falcon et al., 1999; Kazerouni et al., 2001; Lee and Shim, 2007; Reinik et al., 2007), also showed a suggestive positive association with RCC. Red and processed meat may also be a source of N-nitroso compounds (Joosen et al., 2009), which have been shown to induce renal tumours in rodent models (Hard, 1998). Detailed analyses of these compounds, which are also found in plant foods and drinking water, are ongoing.

The interviewer-administered DHQ with meat-cooking module (Cantwell et al., 2004; Sinha et al., 2005a) was a strength of our study. Although we cannot rule out the possibility of measurement error, photographic aids were used in this study to help the participant select a level of doneness on an incremental scale. Other studies have asked participants to recall the usual appearance of cooked meat without a visual or objective reference and/or did not measure BaP. Additional strengths of our study include a wide range of intake (possibly due to the diversity of our sample), histologically confirmed RCC cases, a relatively large sample size, and adjustment for a multitude of potential confounders, including self-reported history of hypertension, BMI, and smoking status. On the other hand, data collection in this study was based entirely on self-report, and thus subject to recall bias, interviewer bias, differential reporting among cases and controls, and/or non-differential misclassification. However, given the lack of well-established dietary risk factors for RCC and the use of computer-based, structured questionnaires by trained interviewers, it is unlikely that differential recall or interviewer bias had a strong impact on our findings. We did not have the means to calculate relevant BaP intake from other foods for this population; thus, we might have underestimated and/or misclassified categories of BaP from diet in both cases and controls. Other limitations of population-based studies also apply, including selection and non-response bias, which may affect the internal and external validity of our findings. The creation of sample weights using demographic data from both respondents and non-respondents and use of weighted analytic procedures aims to reduce biases arising from low response rates among controls and differential non-response among subgroups (age, sex, race, residence) (Li et al., 2011). We cannot rule out the possibility of chance findings due to multiple comparisons. Statistically significant findings close to the nominal level (α = 0.05) should be viewed with caution.

BaP, a PAH found in barbecued meat, was associated with higher risk of RCC. Beyond in vivo and animal experimental evidence, findings from occupational and environmental health studies for PAHs and cancer risk (Butler et al., 1993; Mandel et al., 1995; Pesch et al., 2000; Spinelli et al., 2006) combined with epidemiological findings for dietary BaP from meat and other cancers (Anderson et al., 2005; Sinha et al., 2005b) lend further plausibility to our results. Our findings will require replication in future studies, particularly in diet and cancer studies of prospective design with adequate assessment of meat-cooking methods. In light of our varied findings by race and smoking status, it would be useful to integrate urinary biomarkers of BaP and other PAH metabolites (Peters et al., 2004; Campo et al., 2009; Hecht et al., 2010) into aetiological studies of RCC.

ACKNOWLEDGEMENTS

We would like to thank Gloria Gridley, formerly of NCI’s Division of Cancer Epidemiology and Genetics, for her substantial contributions to the design of the dietary questionnaire and development of the nutrient variables, and Adam Risch of Information Management Services Inc. for his technical support in computing the dietary nutrient variables. We wish to express our deep gratitude to the residents of Chicago and Detroit who participated in this study. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Adamson RH, Snyderwine EG, Thorgeirsson UP, Schut HA, Turesky RJ, Thorgeirsson SS, Takayama S, Sugimura T (1990) Metabolic processing and carcinogenicity of heterocyclic amines in nonhuman primates. *Princess Takamatsu Symp* 21: 289–301

Alaejos MS, Gonzalez V, Alonso AM (2008) Exposure to heterocyclic aromatic amines from the consumption of cooked red meat and its effect on human cancer risk: a review. *Food Addit Contam Part A* 25: 2 – 24

Alexander DD, Cushing CA (2009) Quantitative assessment of red meat or processed meat consumption and kidney cancer. *Cancer Detect Prev* 32: 340 – 351

Alexanderov K, Rojas M, Satarug S (2010) The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. *Toxicol Lett* 198: 63 – 68

Anderson KE, Kadlubar FF, Kulldorff M, Harnack L, Gross M, Lang NP, Barber C, Rothman N, Sinha R (2005) Dietary intake of heterocyclic amines and benzo(a)pyrene: associations with pancreatic cancer. *Cancer Epidemiol Biomarkers Prev* 14: 2261 – 2265

Augustsson K, Skog K, Jagerstad M, Dickman PW, Steinbeck G (1999) Dietary heterocyclic amines and cancer of the colon, rectum, bladder, and kidney: a population-based study. *Lancet* 353: 703 – 707

Dietary heterocyclic amines and cancer of the colon, rectum, bladder, and kidney: a population-based study. *Lancet* 353: 703 – 707

...
Meat mutagens and risk of renal cell carcinoma

CR Daniel et al

Rashidkhani B, Lindblad P, Wolk A (2005) Fruits, vegetables and risk of renal cell carcinoma: a prospective study of Swedish women. Int J Cancer 115: 451 – 455

Reinik M, Tamme T, Roasto M, Juukam K, Tenno T, Kiis A (2007) Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and the general population in Estonia. Food Addit Contam 24: 429 – 437

Rothman N, Poirier MC, Haas RA, Correa-Villaseñor A, Ford P, Hansen JA, O'Toole T, Strickland PT (1993) Association of PAH – DNA adducts in peripheral white blood cells with dietary exposure to polycyclic hydrocarbons. Environ Health Perspect 99: 265 – 267

Rubin H (2001) Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22: 1903 – 1930

Rust RF, Rao JN (1996) Variance estimation for complex surveys using replication techniques. Stat Methods Med Res 5: 283 – 310

SAS Institute (2008) What’s New in SAS 9.2. SAS Institute Inc.: Cary, NC

Shimada T, Sugie A, Shindo M, Nakajima T, Azuma E, Hashimoto M, Inoue M, Kikusui T, Ishihara J, Uchida F, et al (2004) Metabolic activation of benzo[a]pyrene in human lung tissue. Cancer Epidemiol Biomarkers Prev 13: 1603 – 1611

Sinha R, Cross AJ, Curtin J, Zimmerman T, McNutt S, Risch A, Holden J (2005a) Development of a food frequency questionnaire module and databases for compounds in cooked and processed meats. Mol Nutr Food Res 49: 648 – 655

Sinha R, Gustafson DR, Kulldorff M, Wen WQ, Cerhan JR, Zheng W (2000) 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen in high-temperature-cooked meat, and breast cancer risk. J Natl Cancer Inst 92: 1352 – 1354

Sinha R, Kulldorff M, Gunter MJ, Strickland P, Rothman N (2005b) Dietary benzo[a]pyrene intake and risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev 14: 2030 – 2034

Sinha R, Norat T (2002) Meat cooking and cancer risk. IARC Sci Publ 156: 181 – 186

Sinha R, Rothman N (1997) Exposure assessment of heterocyclic amines (HCAs) in epidemiologic studies. Mutat Res 376: 195 – 202

Sinha R, Rothman N, Salmon CP, Knize MG, Brown ED, Swanson CA, Rhodes D, Rossi S, Felton JS, Levander OA (1998) Heterocyclic amine content in beef cooked by different methods to varying degrees of doneness and gravy made from meat drippings. Food Chem Toxicol 36: 279 – 287

Spinelli JJ, Demers PA, Le ND, Friesen MD, Lorenzi MF, Fang R, Gallagher RP (2006) Cancer risk in aluminum reduction plant workers (Canada). Cancer Causes Control 17: 939 – 948

Stolzenberg-Solomon RZ, Cross AJ, Silverman DT, Schairer C, Thompson FE, Kipnis V, Subar AF, Hollenbeck A, Schatzkin A, Sinha R (2007) Meat and meat-mutagen intake and pancreatic cancer risk in the NIH-AARP cohort. Cancer Epidemiol Biomarkers Prev 16: 2664 – 2675

Subar AF, Midhune D, Kulldorff M, Brown CC, Thompson FE, Kipnis V, Schatzkin A (2000) Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am J Epidemiol 152: 279 – 286

Subar AF, Thompson FE, Kipnis V, Midhune D, Hurwitz P, McNutt S, McIntosh A, Rosenfeld S (2001) Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol 154: 1089 – 1099

Tasevska N, Cross AJ, Dodd KW, Ziegler RG, Caporaso NE, Sinha R, Team PP (2010) No effect of meat, meat cooking preferences, meat mutagens or heme iron on lung cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Int J Cancer 128: 402 – 411

Tasevska N, Sinha R, Kipnis V, Subar AF, Leitzmann MF, Hollenbeck AR, Caporaso NE, Schatzkin A, Cross AJ (2009) A prospective study of meat, cooking methods, meat mutagens, heme iron, and lung cancer risks. Am J Clin Nutr 89: 1884 – 1894

Thorgeirsson SS, Davis CD, Schut HA, Adamson RH, Snyderwine EG (1995) Possible relationship between tissue distribution of DNA adducts and genotoxicity of food-derived heterocyclic amines. Princess Takamatsu Symp 23: 85 – 92

Turtenlaub KW, Mauthe RJ, Dingley KH, Vogel JS, Frantz CE, Garner RC, Shen N (1997) MelQx – DNA adduct formation in rodent and human tissues at low doses. Mutat Res/Fundam Mol Mech Mutagen 376: 243 – 252

USDHHS (2008) Food and Nutrient Database for Dietary Studies, 3.0. US Department of Agriculture, Agricultural Research Service, Food Surveys Research Group: Beltsville, MD

Willett WC (ed) (1998) Recall of remote diet (Chapter 7). In Nutritional Epidemiology, pp 149 – 166. Oxford University Press: New York.

Wolk A, Gridley G, Niwa S, Lindblad P, McCreddie M, Mellemgaard A, Mandel JS, Wahrendorf J, McLaughlin JK, Adami HO (1996) International renal cell cancer study. VII. Role of diet. Int J Cancer 65: 67 – 73

World Cancer Research Fund/American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. AICR: Washington, DC

Wu K, Sinha R, Holmes MD, Giovannucci E, Willett W, Cho E (2010) Meat mutagens and breast cancer in postmenopausal women – a cohort analysis. Cancer Epidemiol Biomarkers Prev 19: 1301 – 1310

This work is published under the standard license to publish article. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.