Finite burden in multivalued algebraically closed fields

Will Johnson

May 14, 2019

Abstract

We prove that an expansion of an algebraically closed field by n arbitrary valuation rings is NTP_2, and in fact has finite burden. It fails to be NIP, however, unless the valuation rings form a chain. Moreover, the incomplete theory of algebraically closed fields with n valuation rings is decidable.

1 Introduction

Fix an integer n. Consider the theory $ACv^n F$ of 1-sorted structures $(K, +, \cdot, O_1, \ldots, O_n)$, where $(K, +, \cdot) \models ACF$ and each O_i is (a unary predicate for) a valuation ring on K.

Our main results are as follows:

1. The (incomplete) theory $ACv^n F$ is decidable: there is an algorithm which inputs φ and outputs whether $ACv^n F \vdash \varphi$.

2. If $M \models T$, then M has finite burden, hence is strong, NTP_2.

3. If $M \models T$, then M is NIP if and only if the valuation rings are pairwise comparable.

Chapter 11 of [2] considered the more restrictive class of structures in which the O_i are non-trivial and independent. The resulting theory turns out to be the model companion of the theory of fields with n valuation rings. In this paper, we generalize the results of [2] by eliminating the assumptions of independence and non-triviality.

Rather than working directly with models of $ACv^n F$, it is more convenient to work with certain definitional expansions which are better behaved—for example, they are model complete. We briefly summarize the situation.

By a finite tree, we shall mean a finite poset (P, \leq) containing a minimal element \bot, such that every interval $[\bot, p]$ is a chain. A branch of P is a subposet of the form $\{x \in P : x \geq a\}$ where a is a minimal element of $P \setminus \{\bot\}$. The tree P can be written as a disjoint union

$$P = \{\bot\} \cup P_1 \cup \cdots \cup P_n$$

where P_1, \ldots, P_n are the distinct branches of P. Each branch P_i is itself a finite tree.
To any finite tree P, we shall associate a theory T_P. A model of T_P is an algebraically closed field $(K,+,\cdot,\mathcal{O}_p : p \in P)$ with a valuation ring \mathcal{O}_p for each $p \in P$, satisfying some axioms. The important properties are

1. If P_1, \ldots, P_n are the branches of P, then a model of T_P is essentially an algebraically closed field K with n independent non-trivial valuations $\mathcal{O}_1, \ldots, \mathcal{O}_n$, and a T_{P_i}-structure on the residue field of \mathcal{O}_i.

2. Every algebraically closed multivalued field $(K,+,\cdot,\mathcal{O}_1, \ldots, \mathcal{O}_n)$ admits a definitional expansion to a model of T_P, essentially by adding unary predicates for the joins $\mathcal{O}_i \cdot \mathcal{O}_j$.

The first point allows us to mimic the arguments used in the case of independent valuations. The second point relates the theories T_P and $ACv^n F$.

The paper is outlined as follows. In §2 we consider the general setting of multi-valued fields with residue structure, and derive a relative model completeness result in the case of independent non-trivial valuations. Essentially, we prove the following: if T_1, \ldots, T_n are model-complete theories expanding ACF, then model completeness holds in the theory of algebraically closed fields with n independent non-trivial valuation rings $\mathcal{O}_1, \ldots, \mathcal{O}_n$ with T_i-structure on the residue field of \mathcal{O}_i. See Lemma 2.7.

In §3 we introduce the aforementioned theory T_P and apply the results of §2 to prove that T_P is model complete. Moreover, we show that T_P is the model companion of a simpler theory T^0_P. (Models of T^0_P are exactly the subfields of models of T_P.)

In §5 we prove that T^0_P has the amalgamation property over algebraically closed bases. From this, we deduce several consequences, such as the usual criterion for elementary equivalence: two models M_1, M_2 of T_P are elementarily equivalent iff the substructures $\text{Abs}(M_1)$ and $\text{Abs}(M_2)$ are isomorphic. This in turn yields decidability of T_P. The proof of amalgamation in T^0_P relies on an amalgamation lemma in $ACVF$, which we prove in §4. The lemma says that when amalgamating valued fields, we have complete freedom in how we amalgamate the residue fields.

The rest of the paper is devoted to the classification-theoretic dividing lines NTP_2 and NIP. In §7 we define a canonical Keisler measure on the set of complete types extending any quantifier-free type. More precisely, given any model $K \models T^0_P$, we define a Keisler measure on the space of completions of $T_P \cup \text{diag}(K)$. (This is a variant of the Keisler measure defined in §11.4 of [2].) Some of the key properties of the Keisler measure rely on an analysis in §6 of extensions of nested valuation rings in certain diagrams of fields. The analysis is notationally confusing, but not deep.

In §9 we verify that models of T_P have finite burden, using a minor lemma proven in §8. In §10 we turn to the matter of NIP, reviewing the argument from [2] §11.5.1 that algebraically closed fields with independent valuations cannot be NIP. We conclude in §11 by discussing different directions in which the results can probably be generalized.
1.1 Notation

We will generally use the letter \mathcal{O} for valuation rings, \mathfrak{m} for their maximal ideals, and lowercase roman letters (such as k, ℓ) for residue fields.

If K is a valued field with valuation ring \mathcal{O}, we let $\text{res}\mathcal{O}$ denote the residue field. We also write $\text{res}K$ for the residue field, if \mathcal{O} is clear from context. We will also use $\text{res}(x)$ to denote the residue of x.

When multiple valuation rings $\mathcal{O}_1, \ldots, \mathcal{O}_n$ are in play, we will use subscripts to indicate which residue map we are talking about: $\text{res}_i(x)$ denotes the residue of x in the ith residue field $k_i = \text{res} \mathcal{O}_i$.

If $\mathcal{O}_1 \subseteq \mathcal{O}$ are two valuation rings on a field K, we let $\mathcal{O}_1 \div \mathcal{O}$ denote the unique valuation ring on $\text{res} \mathcal{O}$ whose composition with \mathcal{O} is \mathcal{O}_1.

Two non-trivial valuation rings $\mathcal{O}_1, \mathcal{O}_2$ are independent if they induce distinct topologies. An equivalent condition is that $\mathcal{O}_1 \cdot \mathcal{O}_2 = K$. Here, $\mathcal{O}_1 \cdot \mathcal{O}_2$ denotes the join—the smallest valuation ring on K containing both \mathcal{O}_1 and \mathcal{O}_2. It happens to agree with the setwise product

$$\mathcal{O}_1 \cdot \mathcal{O}_2 = \{x \cdot y : x \in \mathcal{O}_1 \text{ and } y \in \mathcal{O}_2\}.$$

We let $\text{Val}(K)$ denote the poset of all valuation rings on K. If $\mathcal{O} \in \text{Val}(K)$, we let $\text{Val}(K|\mathcal{O})$ denote the subset

$$\text{Val}(K|\mathcal{O}) := \{\mathcal{O} \in \text{Val}(K) : \mathcal{O} \subseteq \mathcal{O}\}.$$

The poset $\text{Val}(K|\mathcal{O})$ is canonically isomorphic to $\text{Val}(\text{res} \mathcal{O})$ via the map

$$\text{Val}(K|\mathcal{O}) \to \text{Val}(\text{res} \mathcal{O})$$

$$\mathcal{O}' \mapsto \mathcal{O}' \div \mathcal{O}.$$

2 Multi-valued fields with residue structure

If X is a set and $\mathcal{T}_1, \ldots, \mathcal{T}_n$ are topologies on X, we say that $\mathcal{T}_1, \ldots, \mathcal{T}_n$ are jointly independent if the diagonal embedding

$$X \hookrightarrow (X, \mathcal{T}_1) \times \cdots \times (X, \mathcal{T}_n)$$

has dense image. In other words, if U_i is a non-empty \mathcal{T}_i-open for each i, then $\bigcap_{i=1}^n U_i$ is non-empty.

Fact 2.1. Let K be an algebraically closed field. Let $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be pairwise independent non-trivial valuation rings on K. Let $V \subseteq \mathbb{A}^n_K$ be an irreducible affine variety. Then the metric topologies on V are jointly independent.

This should be a classical result, but I had trouble finding the original reference; a later proof is in [2] Theorem 11.3.1.

Lemma 2.2. Let $(K, \mathcal{O}) \leq (K', \mathcal{O}')$ be an extension of models of ACVF. Let $k \leq k'$ be the corresponding residue field extension. Then any K-definable subset of $(k')^n$ is quantifier-free k-definable in the pure ring structure on k'.
Proof. This follows from the 3-sorted quantifier elimination in ACVF. We shall also see another proof later (Remark 4.9).

Corollary 2.3. Let \((K, O) \leq (K', O')\) be an extension of models of ACVF, and \(k \leq k'\) be the residue field extension. Let \(V \subseteq \mathbb{A}^{n+m}\) be a quasi-affine variety over \(K\). There is a quantifier-free formula \(R(\vec{\xi})\) in the language of rings over \(k\) such that

\[
R(K) = \{\text{res}(\vec{x}) : (\vec{x}, \vec{y}) \in V(K)\}
\]

\[
R(K') = \{\text{res}(\vec{x}) : (\vec{x}, \vec{y}) \in V(K')\}
\]

where \(\vec{x}, \vec{\xi}\) are \(n\)-tuples, \(\vec{y}\) is an \(m\)-tuple, and \(\text{res}(\vec{x})\) is understood componentwise.

Proof. This follows from Lemma 2.2; the same formula \(R\) works for both \((K, O)\) and \((K', O')\) by model completeness of ACVF.

In this section, we shall always consider \(n\)-fold multivalued fields in the \((n + 1)\)-sorted language \((K, k_1, \ldots, k_n)\) with

- Field structure on each \(K\) and \(k_i\).
- Unary predicates \(O_1, \ldots, O_n\) for the valuation rings.
- Partial maps \(\text{res}_i : K \twoheadrightarrow k_i\).

Remark 2.4. Let \((K, k_1, \ldots, k_n)\) be an \(n\)-fold multivalued field, and let \((K', k'_1, \ldots, k'_n)\) be an extension. Suppose \(K\) is e.c. in \(K'\).

1. If \(K'\) is an algebraically closed field, then \(K\) is an algebraically closed field.
2. If \(O'_i\) is non-trivial, then \(O_i\) is non-trivial.
3. If \(O'_i\) and \(O'_j\) are independent, then \(O_i\) and \(O_j\) are independent.

Proof. 1. If \(K'\) is algebraically closed and \(K\) is not, take a monic polynomial \(P(X) \in K[X]\) without a solution in \(K\). Then

\[
\exists x : P(x) = 0
\]

holds in \(K'\), but not in \(K\), contrary to existential closedness.

2. Suppose \(O'_i\) is non-trivial but \(O_i\) is trivial. Then

\[
\exists x : x \notin O_i
\]

holds in \(K'\) but not in \(K\).
3. Suppose, say, \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) fail to be independent. Then \(\mathcal{O}_0 = \mathcal{O}_1 \cdot \mathcal{O}_2 \) is a non-trivial valuation ring. Let \(m_i \) denote the maximal ideal of \(\mathcal{O}_i \). Then

\[
\begin{align*}
\mathfrak{m}_0 &\subset \mathfrak{m}_1 \subset \mathcal{O}_1 \subset \mathcal{O}_0, \\
\mathfrak{m}_0 &\subset \mathfrak{m}_2 \subset \mathcal{O}_2 \subset \mathcal{O}_0.
\end{align*}
\]

Because \(\mathcal{O}_0 \) is non-trivial, there is some non-zero \(\varepsilon \in \mathfrak{m}_0 \). Then

\[
\varepsilon \mathcal{O}_1 \subseteq \varepsilon \mathcal{O}_0 \subseteq \mathfrak{m}_0
\]

\[
\varepsilon \mathcal{O}_2 \subseteq \varepsilon \mathcal{O}_0 \subseteq \mathfrak{m}_0.
\]

So the existential statement

\[
\exists x, y : x \in \mathcal{O}_1 \land y \in \mathcal{O}_2 \land 1 + \varepsilon x = \varepsilon y
\]

is false in \(K \), as \(\mathfrak{m}_0 \) and \(1 + \mathfrak{m}_0 \) are disjoint. On the other hand, this existential statement is true in \(K' \) by approximation (Fact 2.1) on the line \(\{(x, y) : 1 + \varepsilon x = \varepsilon y\} \).

\[\square\]

Lemma 2.5. Let \((K, \mathcal{O}_1, \ldots, \mathcal{O}_n)\) be a field with \(n \) valuations. Then we can embed \((K, \mathcal{O}_1, \ldots, \mathcal{O}_n)\) into a larger \(n \)-valued field \((K', \mathcal{O}'_1, \ldots, \mathcal{O}'_n)\) such that

1. \(K' \) is algebraically closed.
2. Each \(\mathcal{O}'_i \) is non-trivial.
3. The \(\mathcal{O}'_i \) are pairwise independent.

Proof. The class of \(n \)-fold multivalued fields is an \(\forall \exists \)-elementary class, so we may assume \((K, \mathcal{O}_1, \ldots, \mathcal{O}_n)\) is e.c. among fields with \(n \)-valuations. We claim that \(K \) has the desired properties of \(K' \). By Remark 2.4 it suffices to produce extensions of \(K \) having each of the properties separately.

1. By the Chevalley Extension Theorem (\(\square \) Theorem 3.1.1), we can extend each \(\mathcal{O}_i \) to a valuation ring \(\mathcal{O}'_i \) on \(K^{alg} \). Then \((K^{alg}, \mathcal{O}'_1, \ldots, \mathcal{O}'_n)\) is an extension in which \(K' \) is algebraically closed.

2. Suppose, say, \(\mathcal{O}_1 \) is trivial. Let \(K((T)) \) be the Laurent field extension, and let \(\mathcal{O}'_1 \) be the discrete valuation ring \(K[[T]] \). Then \(\mathcal{O}'_1 \) extends the trivial valuation \(\mathcal{O}_1 \) on \(K \). For \(i \neq 1 \), let \(\mathcal{O}'_i \) be an arbitrary extension of \(\mathcal{O}_i \) to \(K((T)) \). Then \((K((T)), \mathcal{O}'_1, \ldots, \mathcal{O}'_n)\) is an extension in which \(\mathcal{O}'_i \) is non-trivial.

3. Suppose, say, \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) fail to be independent. Let \(\mathcal{O}'_1 \) be the valuation on \(K(T) \) obtained by composing the \(T \)-adic valuation with \(\mathcal{O}_1 \). Let \(\mathcal{O}'_2 \) be the valuation on \(K(T) \) obtained by composing the \((T + 1)\)-adic valuation with \(\mathcal{O}_2 \). Then \(\mathcal{O}'_i \) extends \(\mathcal{O}_i \) for \(i = 1, 2 \), and \(\mathcal{O}'_1 \) is independent from \(\mathcal{O}'_2 \), because the \(T \)-adic and \((T + 1)\)-adic valuations on \(K(T) \) are independent. For \(i \neq 1, 2 \) choose \(\mathcal{O}'_i \) to be an arbitrary extension of \(\mathcal{O}_i \).
Remark 2.6. If T is a model complete theory and $M \preceq N \models T$, then M is not e.c. in N unless $M \models T$.

Proof. Suppose M is e.c. in N. We claim that $M \preceq N$ by the Tarski-Vaught test. Let $X \subseteq N$ be a non-empty M-definable set in the structure N. By model completeness, $X = \pi(Y)$ where $\pi : N^n \to N$ is a coordinate projection and $Y \subseteq N^n$ is quantifier-free definable over M. Non-emptiness of X implies non-emptiness of Y. As M is e.c. in N, the set $Y \cap M^n$ is non-empty. Therefore $\pi(Y \cap M^n) \subseteq X \cap M$ is non-empty.

Lemma 2.7. Let T_1, \ldots, T_n be model-complete expansions of ACF. Let T be the theory of $(n+1)$-sorted structures (K, k_1, \ldots, k_n) with field structure on K, residue maps $\text{res}_i : K \rightsquigarrow k_i$ for each i, and with $(T_i)_\forall$ structure on each k_i. Then (K, k_1, \ldots, k_n) is existentially closed if and only if

1. $K = K^{alg}$,
2. each valuation ring \mathcal{O}_i is non-trivial
3. the valuation rings \mathcal{O}_i are pairwise independent, and
4. each k_i is a model of T_i.

In particular, T has a model companion.

Proof. We first show the necessity of the listed conditions. Suppose (K, k_1, \ldots, k_n) is existentially closed. By Lemma 2.5 we can embed (K, k_1, \ldots, k_n) into a larger multivalued field (K', k'_1, \ldots, k'_n), without residue structure, such that K' is algebraically closed, each \mathcal{O}_i' is non-trivial, and the \mathcal{O}_i' are pairwise independent.

We can take (K', \ldots) to be highly saturated. Then k'_i is an algebraically closed field of high transcendence degree over k. As $k_i \models (T_i)_\forall$ we can find a T_i-structure on k'_i extending the $(T_i)_\forall$-structure on k_i. This endows (K', k'_1, \ldots, k'_n) with a T-structure, such that $k'_i \models T_i$.

Now (K, k_1, \ldots, k_n) is existentially closed in the extension (K', k'_1, \ldots, k'_n). Then k_i is e.c. in k'_i, so $k_i \models T_i$ by Remark 2.6. Similarly, by Remark 2.3 the \mathcal{O}_i are non-trivial and independent, and $K = K^{alg}$. Thus (K, k_1, \ldots, k_n) must satisfy the listed conditions if it is existentially closed.

Next, suppose that (K, k_1, \ldots, k_n) satisfies all the listed conditions. Let (K', k'_1, \ldots, k'_n) be an extension; we must show that K is e.c. in K'. Enlarging K', we may assume that K' is e.c., hence satisfies the listed conditions. Suppose we are given some existential formula over K which is true in K'; we must show it is true in K. By adding dummy variables, we
reduce to an existential formula of the form

$$\exists \vec{x}_1, \ldots, \vec{x}_n, \vec{y}, \vec{\xi}_1, \ldots, \vec{\xi}_n : R_0(\vec{x}_1, \ldots, \vec{x}_n, \vec{y})$$

$$\land \bigwedge_{i=1}^{n} \left(\text{res}_i(\vec{x}_i) = \vec{\xi}_n \right)$$

$$\land \bigwedge_{i=1}^{n} R_i(\vec{\xi}_i),$$

where

- $\vec{x}_1, \ldots, \vec{x}_n, \vec{y}$ are tuples from the big field sort
- $\vec{\xi}_i$ is a tuple from the ith residue field sort,
- $\text{res}_i(-)$ acts on vectors componentwise
- R_0 is a quantifier-free formula over K in the pure field language
- R_i is a quantifier-free formula over k_i in the language of T_i.

The relation R_0 can be written as a disjunction of conjunctions; we may restrict to one of the conjunctions, reducing to the case where the existential formula has the form

$$\exists \vec{x}_1, \ldots, \vec{x}_n, \vec{y}, \vec{\xi}_1, \ldots, \vec{\xi}_n : \bigwedge_{j=1}^{m} (P_j(\vec{x}_1, \ldots, \vec{x}_n, \vec{y}) = 0)$$

$$\land (Q(\vec{x}_1, \ldots, \vec{x}_n, \vec{y}) \neq 0)$$

$$\land \bigwedge_{i=1}^{n} \left(\text{res}_i(\vec{x}_i) = \vec{\xi}_n \right)$$

$$\land \bigwedge_{i=1}^{n} R_i(\vec{\xi}_i),$$

where the P_i and Q are polynomials over K.

Fix some tuple $(\vec{a}_1', \ldots, \vec{a}_n', \vec{b}', \vec{\alpha}_1', \ldots, \vec{\alpha}_n')$ in the big model K' witnessing the existential statement. Adding more P_i, we may assume that the P_i cut out an irreducible affine variety V over K, namely the locus of $(\vec{a}_1', \ldots, \vec{a}_n', \vec{b}')$ over K. Let $V \setminus W$ be the Zariski open subset of V cut out by $Q \neq 0$.

By Corollary 2.3 we can find quantifier-free L_{rings} formulas $R'_i(\vec{\xi}_i)$ such that in both K and K',

$$R'_i(\vec{\xi}_i) \iff \exists (\vec{x}_1, \ldots, \vec{x}_n, \vec{y}) \in V \setminus W : \text{res}(\vec{x}_i) = \vec{\xi}_i.$$

In particular, $R'_i(\vec{a}_i')$ holds. Replacing $R_i(\vec{\xi}_i)$ with $R_i(\vec{\xi}_i) \land R'_i(\vec{\xi}_i)$, we may assume that

$$R_i(\vec{\xi}_i) \implies \exists (\vec{x}_1, \ldots, \vec{x}_n, \vec{y}) \in V \setminus W : \text{res}(\vec{x}_i) = \vec{\xi}_i. \quad (1)$$
Each residue field \(k_i \) is a model of \(T_i \), hence existentially closed in \(k'_i \). Therefore we can find \(\bar{\alpha}_1, \ldots, \bar{\alpha}_n \) in \(k_1, \ldots, k_n \) such that \(R_i(\bar{\alpha}_i) \) holds. Let \(X_i \) be

\[
X_i := \{(\vec{x}_1, \ldots, \vec{x}_n, \vec{y}) \in V(K) : \text{res}_i(\vec{x}_i) = \bar{\alpha}_i\}.
\]

Each \(X_i \setminus W \) is non-empty by (1) and choice of \(\bar{\alpha}_i \). Moreover, each \(X_i \setminus W \) is an \(\mathcal{O}_1 \)-adically open subset of \(V(K) \). By independence, the intersection \(\bigcap_i (X_i \setminus W) \) is non-empty. Let \((\vec{a}_1, \ldots, \vec{a}_n, \vec{b}) \) be a point in the intersection. Then

1. \((\vec{a}_1, \ldots, \vec{a}_n, \vec{b}) \) lies on \(V(K) \setminus W \).
2. \(\text{res}_i(\vec{a}_i) = \bar{\alpha}_i \) because \((\vec{a}_1, \ldots, \vec{a}_n, \vec{b}) \in X_i \).
3. \(R_i(\bar{\alpha}_i) \) holds for each \(i \), by choice of \(\bar{\alpha}_i \).

Therefore, the existential statement holds in \(K \), witnessed by \((\vec{a}_1, \ldots, \vec{a}_n, \vec{b}, \bar{\alpha}_1, \ldots, \bar{\alpha}_n) \). So \(K \) is existentially closed. \(\square \)

3 The theories \(T_P \) and \(T^0_P \)

Definition 3.1. A tree is a \(\land \)-semilattice \(P \) with bottom element \(\bot \) such that for every \(x \in P \), the interval \([\bot, x] \) is totally ordered. A homomorphism of trees is a \(\land \)-semilattice homomorphism mapping \(\bot \) to \(\bot \).

The set \(\text{Val}(K) \) of valuation rings on a field \(K \) is naturally a tree, after reversing the order. The join operation is

\[
\mathcal{O}_1 \lor \mathcal{O}_2 = \mathcal{O}_1 \cdot \mathcal{O}_2.
\]

Fix a finite tree \(P \).

Definition 3.2. The theory \(T_P \) is the theory of algebraically closed fields \(K \) with injective tree homomorphisms

\[
P \leftrightarrow \text{Val}(K)^{op}
\]

\[
p \mapsto \mathcal{O}_p.
\]

In other words, a model of \(T_P \) is a structure \((K, \mathcal{O}_p : p \in P) \) where

- \(K \) is an algebraically closed field.
- \(\mathcal{O}_p \) is a valuation ring for each \(p \in P \).
- If \(p < p' \), then \(\mathcal{O}_p \supseteq \mathcal{O}_{p'} \).
- \(\mathcal{O}_\bot = K \).
• For any \(p, p' \in P \)
\[
\mathcal{O}_{p \wedge p'} = \mathcal{O}_p \cdot \mathcal{O}_{p'}.
\]

Example 3.3. Let \(P \) be the flat tree \(\{1, \ldots, n, \bot\} \) in which
\[
a \wedge b = \begin{cases}
\bot & \text{if } a \neq b \\
 a & \text{if } a = b.
\end{cases}
\]
Then a model of \(T_P \) is essentially a structure \((K, \mathcal{O}_1, \ldots, \mathcal{O}_n)\) where \(K \) is an algebraically closed field and the \(\mathcal{O}_i \) are pairwise independent non-trivial valuation rings.

Example 3.4. Let \(K \) be an algebraically closed field and let \(\mathcal{O}_1, \ldots, \mathcal{O}_n \) be finitely many arbitrary valuation rings on \(K \). Let \(P \) be the (finite) sub-\(\wedge \)-semilattice of \(\text{Val}(K)^{op} \) generated by \(\{\mathcal{O}_1, \ldots, \mathcal{O}_n, K\} \). Then \(P \) is a tree, and \((K, \mathcal{O}_1, \ldots, \mathcal{O}_n)\) is bi-interpretable with the model \((K, \mathcal{O}_p : p \in P) \models T_P\), where \(p \mapsto \mathcal{O}_p \) is the tautological map.

Definition 3.5. Let \(P \) be a finite tree. Let \(T^0_P \) be the theory whose models are structures \((K, \mathcal{O}_p : p \in P)\) where \(K \) is a field and
\[
p \mapsto \mathcal{O}_p
\]
is a weakly order-preserving map \(P \to \text{Val}(K)^{op} \) sending \(\bot \) to \(K \).
In other words, a model of \(T^0_P \) is a structure \((K, \mathcal{O}_p : p \in P)\) where

- \(K \) is a field (not necessarily algebraically closed).
- \(\mathcal{O}_p \) is a valuation ring for each \(p \in P \).
- If \(p < p' \), then \(\mathcal{O}_p \supseteq \mathcal{O}_{p'} \) (but the inclusion needn’t be strict).
- \(\mathcal{O}_\bot = K \).

Note that for any \(p, p' \in P \),
\[
\mathcal{O}_{p \wedge p'} \supseteq \mathcal{O}_p \cdot \mathcal{O}_{p'}
\]
but equality needn’t hold.

Example 3.6. If \(P \) is the tree of Example 3.3, then a model of \(T^0_P \) is a field \(K \) with \(n \) valuation rings on it.

Theorem 3.7. \(T_P \) is the model companion of \(T^0_P \).

Proof. Let \(a_1, \ldots, a_n \) enumerate the minimal elements of \(P \setminus \{\bot\} \). Let \(P_i \) be the subposet \(\{x \in P : x \geq a_i\} \). Note that \(P_i \) is a finite tree with bottom element \(a_i \). By induction, \(T^0_{P_i} \) is the model companion of \(T_{P_i} \). Let \(T \) be the theory of \((n+1)\)-sorted structures \((K, k_1, \ldots, k_n)\) with field structure on \(K \), residue maps \(\text{res}_i : K \hookrightarrow k_i \) for each \(i \), and with \(T^0_{P_i} \)-structure on each \(k_i \).

Given a model \((K, k_1, \ldots, k_n)\) of \(T \), we get a model \((K, \mathcal{O}_p^K : p \in P)\) of \(T^0_P \) by defining
• \mathcal{O}_\perp to be K.

• \mathcal{O}_p to be the composition of $K \twoheadrightarrow k_i$ with $\mathcal{O}_p^{k_i}$, if $p \geq a_i$.

This gives an equivalence of categories from the category of models of T (with morphisms the embeddings) to the category of of models of T^0_P (with morphisms the embeddings). Moreover, this equivalence of categories sends elementary embeddings to elementary embeddings in both directions.

By Lemma 2.7, T has a model companion T' whose models are characterized by the following additional axioms:

1. K is algebraically closed.

2. Each valuation ring \mathcal{O}_i is non-trivial.

3. The valuation rings \mathcal{O}_i are pairwise independent.

4. Each residue field k_i is a model of T_P.

Under the equivalence of categories, models of T' correspond to models of T_P. Therefore, T_P is the model companion of T^0_P. \hfill \Box

4 Controlled amalgamation in ACVF

Definition 4.1. A ring homomorphism $f: R \to K$ to a field K is dominant if K is generated as a field by $\text{Im}(f)$.

For a fixed ring R, dominant morphisms out of R are classified up to equivalence by prime ideals of R.

By the category of fields we mean the full subcategory of the category of rings. Note that homomorphisms are embeddings.

Definition 4.2. Let

\[
\begin{array}{ccc}
F & \rightarrow & K_1 \\
\downarrow & & \downarrow \\
K_2 & \rightarrow & L
\end{array}
\]

be a diagram in the category of fields.

• An amalgamation of K_1 and K_2 over F is a diagram

\[
\begin{array}{ccc}
F & \rightarrow & K_1 \\
\downarrow & & \downarrow \\
K_2 & \rightarrow & L
\end{array}
\]

extending the given diagram. When the maps $K_i \to L$ are clear, one says that L is an amalgamation of K_1 and K_2 over F. 10
• Two amalgamations L and L' are equivalent if there is an isomorphism $L \to L'$ such that

\[
\begin{array}{c}
K_1 \\
\downarrow \ \\
L \\
\downarrow \ \\
K_2
\end{array}
\longrightarrow
\begin{array}{c}
L' \\
\downarrow \ \\
K_2
\end{array}
\]

commutes.

• An amalgamation L is reduced if L is the compositum $K'_1 K'_2$, where K'_i is the image of $K_i \to L$. Equivalently, L is reduced if the morphism

$$K_1 \otimes_F K_2 \to L$$

is dominant.

• The reduction of an amalgamation L is the subfield $K'_1 K'_2$ of L, where K'_i is the image of $K_i \to L$.

• An amalgamation type is an equivalence class of reduced amalgamations, or equivalently, a prime ideal in $K_1 \otimes_F K_2$.

• The amalgamation type of an amalgamation L is the equivalence class of the reduction, or equivalently, $\ker K_1 \otimes_F K_2 \to L$.

• If $K_1 \otimes_F K_2$ is a domain, the independent amalgamation type is the amalgamation type corresponding to the zero ideal $(0) \leq K_1 \otimes_F K_2$, and an independent amalgamation is one of independent type.

Lemma 4.3. Let

\[
\begin{array}{c}
K_0 \\
\downarrow \ \\
K_2
\end{array}
\longrightarrow
\begin{array}{c}
K_1
\end{array}
\]

be a diagram of embeddings of valued fields (K_i, \mathcal{O}_i). Then the natural ring homomorphism

$$\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2 \to K_1 \otimes_{K_0} K_2$$

is injective.

Proof. Because \mathcal{O}_1 is torsionless as an \mathcal{O}_0-module, it is flat. Therefore, the natural map

$$\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2 \to \mathcal{O}_1 \otimes_{\mathcal{O}_0} K_2$$

is an injection. Similarly, K_2 is a flat \mathcal{O}_0-module, so

$$\mathcal{O}_1 \otimes_{\mathcal{O}_0} K_2 \to K_1 \otimes_{\mathcal{O}_0} K_2$$

is also injective.
is injective. Finally, the map

\[K_1 \otimes_{O_0} K_2 \to K_1 \otimes_{K_0} K_2 \]

is an isomorphism because \(O_0 \to K_0 \) is a (category-theoretic) epimorphism and tensor products are pushouts in the category of rings.

Remark 4.4. If \(f : A \hookrightarrow B \) is an injective homomorphism of rings, then every minimal prime of \(A \) extends to a prime of \(B \). Indeed, if \(\mathfrak{p} \) is a minimal prime of \(A \), let \(S = A \setminus \mathfrak{p} \). Injectivity of \(f \) implies that \(f(S) \) is a multiplicative subset of \(B \) not containing zero, so the localization \(f(S)^{-1}B \) is non-trivial. Any prime ideal of \(f(S)^{-1}B \) pulls back to a prime in \(A \) contained in \(\mathfrak{p} \), hence equal to \(\mathfrak{p} \) by minimality.

Remark 4.5. The category of valued fields and embeddings is equivalent to the category of valuation rings and injective local homomorphisms (i.e., injective ring homomorphisms \(f : O_1 \to O_2 \) such that \(f^{-1}(m_2) = m_1 \)).

Lemma 4.6. Let

\[
\begin{array}{ccc}
K_0 & \longrightarrow & K_1 \\
\downarrow & & \downarrow \\
K_2 & \longrightarrow & L
\end{array}
\]

be a diagram of embeddings of valued fields. Let \(O_i \) and \(k_i \) be the valuation ring and residue field of \(K_i \). Given any amalgamation type \(\tau \) of \(k_1 \) and \(k_2 \) over \(k_0 \), there exists an amalgamation of valued fields:

\[
\begin{array}{ccc}
K_0 & \longrightarrow & K_1 \\
\downarrow & & \downarrow \\
K_2 & \longrightarrow & L
\end{array}
\]

such that

1. If \(\ell \) denotes the residue field of \(L \), then the amalgamation type of \(\ell \) over \(k_1 \) and \(k_2 \) is \(\tau \).
2. If \(K_1 \otimes_{K_0} K_2 \) is a domain, then \(L \) is an independent amalgamation.
3. \(L \) is a reduced amalgamation of \(K_1 \) and \(K_2 \).

Proof. Requirement (3) is trivial to arrange, by replacing \(L \) with its subfield generated by \(K_1 \) and \(K_2 \). So we will forget requirement (3).

Let \(\mathfrak{n} \) be the prime ideal of \(k_1 \otimes_{k_0} k_2 \) associated to the amalgamation type \(\tau \). Let \(\mathfrak{p}_1 \) be the pullback of \(\mathfrak{n} \) under the surjective ring homomorphism

\[O_1 \otimes_{O_0} O_2 \to k_1 \otimes_{k_0} k_2. \]
Consider the commutative diagram of sets for \(i = 1, 2 \):

\[
\begin{array}{ccc}
\text{Spec } k_i & \longrightarrow & \text{Spec } k_i \otimes_{k_0} k_2 \\
\downarrow & & \downarrow \\
\text{Spec } O_i & \longrightarrow & \text{Spec } O_1 \otimes_{O_0} O_2.
\end{array}
\]

There is only one point in the top left set, and it maps to the maximal ideal \(m_i \in \text{Spec } O_i \). Since \(p_1 \) comes from \(n \) in the top left, the restriction of \(p_1 \) to \(O_i \) must be \(m_i \).

Now let \(p_0 \) be some minimal prime in \(O_1 \otimes_{O_0} O_2 \), chosen to lie below \(p_1 \). Consider the commutative diagram

\[
\begin{array}{ccc}
\text{Spec } K_i & \longrightarrow & \text{Spec } K_1 \otimes_{K_0} K_2 \\
\downarrow & & \downarrow \\
\text{Spec } O_i & \longrightarrow & \text{Spec } O_1 \otimes_{O_0} O_2.
\end{array}
\]

By Lemma 4.3 and Remark 4.4, \(p_0 \) comes from an element of the top right corner. Again, \(\text{Spec } K_i \) has only one point and it maps to the zero ideal in \(\text{Spec } O_i \), so the restriction of \(p_0 \) to \(O_i \) must then be the zero ideal.

By the Chevalley Extension Theorem ([1] Theorem 3.1.1) there is a valuation ring \((O_3, m_3)\) and a homomorphism

\[O_1 \otimes_{O_0} O_2 \rightarrow O_3 \]

under which \(m_3 \) and \((0)\) pull back to \(p_1 \) and \(p_0 \), respectively. This yields a diagram

\[
\begin{array}{ccc}
O_0 & \longrightarrow & O_1 \\
\uparrow & & \uparrow \\
O_2 & \longrightarrow & O_3
\end{array}
\]

Under the composition

\[O_1 \rightarrow O_1 \otimes_{O_0} O_2 \rightarrow O_3, \]

the prime ideals \(m_3 \) and \((0)\) pull back to \(p_1 \) and \(p_0 \), and then to \(m_1 \) and \((0)\), respectively. It follows that \(O_1 \rightarrow O_3 \) is an injective local homomorphism. The same holds for \(O_2 \rightarrow O_3 \) similarly. By Remark 4.5 we get a diagram of valued fields

\[
\begin{array}{ccc}
K_0 & \longrightarrow & K_1 \\
\downarrow & & \downarrow \\
K_2 & \longrightarrow & L
\end{array}
\]

From the induced diagram

\[
\begin{array}{ccc}
O_1 \otimes_{O_0} O_2 & \longrightarrow & k_1 \otimes_{k_0} k_2 \\
\downarrow & & \downarrow \\
O_3 & \longrightarrow & \ell
\end{array}
\]

13
we see that the kernel of $k_1 \otimes_{k_0} k_2 \to \ell$ pulls back to p_1 on $\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2$. So $\ker k_1 \otimes_{k_0} k_2 \to \ell$ and n have the same image under the injection $\text{Spec } k_1 \otimes_{k_0} k_2 \hookrightarrow \text{Spec } \mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2$. Therefore, the kernel equals n, so the amalgamation type of ℓ is τ as desired.

Finally, suppose that $K_1 \otimes_{K_0} K_2$ is a domain. By Lemma 4.3, the map $\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2 \to K_1 \otimes_{K_0} K_2$ is injective, so $\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2$ is a domain. The minimal prime p_0 must then be the zero ideal (0). Now, in the diagram

\[
\begin{array}{c}
\mathcal{O}_0 \\
\downarrow \\
\mathcal{O}_2 \\
\downarrow \\
\mathcal{O}_3
\end{array}
\quad
\begin{array}{c}
\rightarrow \\
\downarrow \\
\rightarrow \\
\downarrow \\
\rightarrow \\
\downarrow
\end{array}
\begin{array}{c}
\mathcal{O}_1 \\
\downarrow \\
\mathcal{O}_2 \\
\downarrow \\
\mathcal{O}_3
\end{array}
\quad
\begin{array}{c}
\rightarrow \\
\downarrow \\
\rightarrow \\
\downarrow \\
\rightarrow \\
\downarrow
\end{array}
\begin{array}{c}
K_0 \\
\downarrow \\
K_1 \\
\downarrow \\
K_2 \\
\downarrow
\end{array}
\quad
\begin{array}{c}
\rightarrow \\
\downarrow \\
\rightarrow \\
\downarrow \\
\rightarrow \\
\downarrow
\end{array}
\begin{array}{c}
K_1 \otimes_{K_0} K_2
\end{array}
\]

every ring is a domain, and moreover every morphism is an injection:

- The maps $\mathcal{O}_i \to K_i$ are injections by definition.
- The map $\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2 \to K_1 \otimes_{K_0} K_2$ is an injection by Lemma 4.3.
- The maps out of K_0, K_1, K_2 are injections because the K_i are fields.
- The maps $\mathcal{O}_i \to \mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2$ are injective because the diagram commutes, and the other path from \mathcal{O}_i to $K_1 \otimes_{K_0} K_2$ is made of injections.
- The map $\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2 \to \mathcal{O}_3$ is injective because the pullback of (0) under this map was $p_0 = (0)$, by choice of \mathcal{O}_3.

Therefore, the above diagram belongs to the category of domains and embeddings. Applying
the functor $\text{Frac}(\cdot)$ yields the diagram

$$
\begin{array}{c}
K_0 \longrightarrow K_1 \\
\downarrow \quad \downarrow \\
K_0 \quad \quad \text{Frac}(\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2) \\
\downarrow \quad \downarrow \\
K_2 \longrightarrow \text{Frac}(K_1 \otimes_{K_0} K_2) \\
\end{array}
$$

This diagram contains three amalgamations of K_1 and K_2 over K_0, namely L, $\text{Frac}(\mathcal{O}_1 \otimes_{\mathcal{O}_0} \mathcal{O}_2)$ and $\text{Frac}(K_1 \otimes_{K_0} K_2)$. Moreover, the diagram shows that they have the same amalgamation type. By definition, $\text{Frac}(K_1 \otimes_{K_0} K_2)$ has the independent amalgamation type. Thus L is also an independent amalgamation.

Remark 4.7. Lemma 4.6 can be used to prove quantifier elimination in ACVF. The Lemma implies that the class of valued fields has the amalgamation property. By abstract nonsense, it only remains to prove that models of ACVF are 1-e.c., in other words,

$$M_1 \models \exists x : \varphi(x; \vec{b}) \implies M_2 \models \exists x : \varphi(x; \vec{b})$$

for any extension $M_1 \leq M_2$ of models, tuple \vec{b} from M_1, and quantifier-free formula $\varphi(x; \vec{y})$ with x a singleton. The 1-e.c. property can be verified in a straightforward fashion from the swiss cheese decomposition of quantifier-free definable sets.

Remark 4.8. Lemma 4.6 implies amalgamation for the class of two-sorted structures (K, k) where K is a valued field and k is an extension of the residue field. Indeed, suppose we are given a diagram

$$
\begin{array}{c}
(K_0, k_0) \longrightarrow (K_1, k_1) \\
\downarrow \\
(K_2, k_2) \\
\end{array}
$$

of embeddings of such structures. First, amalgamate k_1 and k_2 over k_0 into a monster model \mathcal{M} of ACF:
This induces an amalgamation of the residue fields:

\[
\begin{array}{c}
\text{res } K_0 \rightarrow \text{res } K_1 \\
\downarrow \quad \downarrow \\
\text{res } K_2 \rightarrow \mathbb{M}.
\end{array}
\]

(2)

By Lemma 4.6 one can then amalgamate the valued fields

\[
\begin{array}{c}
K_0 \rightarrow K_1 \\
\downarrow \quad \downarrow \\
K_2 \rightarrow L
\end{array}
\]

in such a way that

\[
\begin{array}{c}
\text{res } K_0 \rightarrow \text{res } K_1 \\
\downarrow \quad \downarrow \\
\text{res } K_2 \rightarrow \text{res } L
\end{array}
\]

has the same amalgamation type as (2). Because the amalgamation types agree, there is an embedding of \(\text{res } L \) into \(\mathbb{M} \) such that the diagram commutes:

\[
\begin{array}{c}
\text{res } K_0 \rightarrow \text{res } K_1 \\
\downarrow \quad \downarrow \\
\text{res } K_2 \rightarrow \text{res } L \\
\downarrow \quad \downarrow \\
k_0 \rightarrow k_1 \\
\downarrow \quad \downarrow \\
k_2 \rightarrow \mathbb{M}.
\end{array}
\]

The embedding of \(\text{res } L \) into \(\mathbb{M} \) yields a structure \((L, \mathbb{M})\) and the above diagram means that

\[
\begin{array}{c}
(K_0, k_0) \rightarrow (K_1, k_1) \\
\downarrow \quad \downarrow \\
(K_2, k_2) \rightarrow (L, \mathbb{M})
\end{array}
\]

commutes.

Remark 4.9. Amalgamation for the 2-sorted structures \((K, k)\) implies a sort of quantifier elimination for 2-sorted ACVF. Specifically, if \((K, k)\) is one of these two-sorted structures (possible with \(k\) strictly greater than \(\text{res } K\)) then any two embeddings of \((K, k)\) into a model of ACVF have the same type. This implies Lemma 2.2.
Lemma 4.10. Let $K_0 = K_0^{alg}$ and let

\[
\begin{array}{ccc}
K_0 & \longrightarrow & K_1 \\
\downarrow & & \downarrow \\
K_2 & \longrightarrow & K_3
\end{array}
\]

be an independent amalgamation of fields. Let $\mathcal{O}_1, \mathcal{O}_2$ be valuation rings on K_1, K_2 having the same restriction \mathcal{O}_0 to K_0. Then there is a valuation ring \mathcal{O}_3 on K_3 extending \mathcal{O}_1 and \mathcal{O}_2 such that the induced amalgamation of residue fields

\[
\begin{array}{ccc}
k_0 & \longrightarrow & k_1 \\
\downarrow & & \downarrow \\
k_2 & \longrightarrow & k_3
\end{array}
\]

is independent.

Proof. Because K_0 is algebraically closed, so is k_0. Therefore, $k_1 \otimes_{k_0} k_2$ is a domain, so it makes sense to talk about the independent amalgamation type on the residue fields. By Lemma 4.6 there is some amalgamation of valued fields

\[
\begin{array}{ccc}
K_0 & \longrightarrow & K_1 \\
\downarrow & & \downarrow \\
K_2 & \longrightarrow & L
\end{array}
\]

such that

- L is an independent amalgamation of K_1 and K_2 over K_0.
- $\text{res} L$ is an independent amalgamation of k_1 and k_2 over k_0.
- L is a reduced amalgamation of K_1 and K_2 over K_0.

By assumption, K_3 also has the independent amalgamation type, so its reduction is isomorphic to L. Therefore, there is an embedding of L into K_3 such that the following diagram of pure fields commutes:
Let \mathcal{O}_3 be any valuation ring on K_3 extending the valuation ring on L. Then the above diagram becomes a diagram of valued fields. Moreover, the induced diagram of residue fields looks like

$$
\begin{array}{c}
\xymatrix{
k_0 \ar[r] & k_1 \ar[d] & \\
k_2 \ar[r] & \text{res } L & \\
\text{res } K_3
}\end{array}
$$

Thus the amalgamation type of res K_3 over k_1 and k_2 is the same as res L, namely the independent type.

Recall that $\text{Val}(K)$ denotes the poset of valuation rings on K, and $\text{Val}(K|\mathcal{O})$ denotes the subposet of valuation rings below a given $\mathcal{O} \in \text{Val}(K)$. If $\mathcal{O}' \in \text{Val}(K|\mathcal{O})$, then $\mathcal{O}' \div \mathcal{O}$ denotes the valuation ring on res \mathcal{O} whose composition with \mathcal{O} is \mathcal{O}'.

Remark 4.11.

1. If L/K is an extension of fields, there is a restriction map

$$\text{Val}(L) \to \text{Val}(K)$$

$$\mathcal{O} \mapsto \mathcal{O} \cap K$$

2. If L/K is an extension of fields, if \mathcal{O}_L is a valuation ring on L, and if $\mathcal{O}_K = \mathcal{O}_L \cap K$ is the restriction to K, then there is a restriction map $\text{Val}(L|\mathcal{O}_L) \to \text{Val}(K|\mathcal{O}_K)$. Moreover, the diagram commutes

$$
\begin{array}{c}
\xymatrix{
\text{Val}(L|\mathcal{O}_L) \ar[r] & \text{Val}(K|\mathcal{O}_K) \ar[d] \\
\text{Val}(L) & \text{Val}(K) \ar[l]
}\end{array}
$$

where the vertical maps are inclusions.

3. If K is a valued field and \mathcal{O}_K is a valuation ring on K with residue field $k = \text{res } \mathcal{O}_K$, then there is a bijection

$$\text{Val}(K|\mathcal{O}_K) \to \text{Val}(k)$$

$$\mathcal{O} \mapsto \mathcal{O} \div \mathcal{O}_K.$$

4. If L/K is an extension of fields, if \mathcal{O}_L is a valuation ring on L, if $\mathcal{O}_K = \mathcal{O}_L \cap K$ is the restriction to K, and if $\ell \to k$ is the residue field embedding $\text{res } \mathcal{O}_L \to \text{res } \mathcal{O}_K$, then
the diagram

\[
\begin{array}{c}
\text{Val}(L|O_L) \twoheadrightarrow \text{Val}(K|O_K) \\
\text{Val}(\ell) \twoheadrightarrow \text{Val}(k)
\end{array}
\]

commutes, where the vertical maps are the bijections of \([3]\) and the horizontal maps are the restriction maps of \([2]\).

Lemma 4.12. Let

\[
(F, O_F) \twoheadrightarrow (K_1, O_{K_1}) \\
(K_2, O_{K_2}) \twoheadrightarrow (L, O_L)
\]

be a diagram of valued fields. Suppose \(F\) is algebraically closed and \(\text{res } O_L\) is an independent amalgamation of \(\text{res } O_{K_1}\) and \(\text{res } O_{K_2}\) over \(\text{res } O_F\). Given \(O'_F \subseteq O_F, O'_{K_1} \subseteq O_{K_1}\), and \(O'_{K_2} \subseteq O_{K_2}\) such that \(O'_{K_1}\) and \(O'_{K_2}\) restrict to \(O'_F\), there is some \(O'_L \subseteq O_L\) extending \(O'_{K_1}\) and \(O'_{K_2}\) such that \(\text{res } O'_L\) is an independent amalgamation of \(\text{res } O'_{K_1}\) and \(\text{res } O'_{K_2}\) over \(\text{res } O'_F\).

Proof. This follows from Remark 4.11.4 and Lemma 4.10. Specifically, Remark 4.11.4 shows the commutativity of the diagram

\[
\begin{array}{c}
\text{Val}(F|O_F) \twoheadrightarrow \text{Val}(K_1|O_{K_1}) \\
\text{Val}(K_2|O_{K_2}) \twoheadrightarrow \text{Val}(L|O_L) \\
\text{Val}(\text{res } O_F) \twoheadrightarrow \text{Val}(\text{res } O_{K_1}) \\
\text{Val}(\text{res } O_{K_2}) \twoheadrightarrow \text{Val}(\text{res } O_L)
\end{array}
\]

where the vertical maps are bijections. The problem we need to solve is on the upper plane, but the diagram allows us to move the problem to the lower plane. One concludes by applying Lemma 4.10 to the diagram

\[
\begin{array}{c}
\text{res } O_F \twoheadrightarrow \text{res } O_{K_1} \\
\text{res } O_{K_2} \twoheadrightarrow \text{res } O_L.
\end{array}
\]

\[
\square
\]
5 Amalgamation in T_P

Proposition 5.1. Let P be a finite tree. Let

$$
\begin{array}{c}
K_0 \\
| \\
K_2
\end{array}
\begin{array}{c}
\to
\\
\to
\\
\to
\end{array}
\begin{array}{c}
K_1
\end{array}
$$

be a diagram of embeddings of models of T^0_P, with $K_0 = K^\text{alg}_0$. Then the diagram can be completed to a diagram

$$
\begin{array}{c}
K_0 \\
\to
\\
K_2
\end{array}
\begin{array}{c}
\to
\\
\to
\\
\to
\end{array}
\begin{array}{c}
K_1 \\
K_3
\end{array}
$$

of embeddings of models of T^0_P. Furthermore, K_3 can be chosen to be an independent amalgamation of K_1 and K_2.

Proof. Let $K_3 = \text{Frac}(K_1 \otimes_{K_0} K_2)$. Let O^p_i and k^p_i denote the pth valuation ring and residue field on K_i. One chooses O^p_3 on K_3 by upwards recursion on p, ensuring that $\text{res } O^p_3$ is an independent amalgamation of $\text{res } O^p_1$ and $\text{res } O^p_2$ over $\text{res } O^p_0$ at each step. This is possible by Lemma 4.12.

Corollary 5.2. In T_P, field-theoretic algebraic closure agrees with model-theoretic algebraic closure.

Proof. Suppose $M \models T_P$ and $K = K^\text{alg} \leq M$. Suppose $a \in \text{acl}(K)$. We claim $a \in K$. Take a second copy M' of M, amalgamated with M independently over K inside a third model $M'' \models T_P$. By model completeness, $M' \preceq M'' \succeq M$. Let X be the K-definable finite set of conjugates of a. Then $a \in X(M) = X(M'') = X(M')$, so $a \in M \cap M'$. In the ACF reduct,

$$
M' \downarrow_K M \implies a \downarrow_K a \implies a \in \text{acl}(K) \implies a \in K.
$$

Corollary 5.3. Let M_1, M_2 be two models of T_P, let K_i be an algebraically closed subfield of M_i, and $f : K_1 \to K_2$ be an isomorphism of T^0_P-structures. Then f is a partial elementary map.

Proof. Amalgamate M_1 and M_2 over K and use model completeness of T_P.

Definition 5.4. If P is a finite tree, then T^alg_P is T^0_P plus the axiom that $K \models ACF$.

So $T^0_P \models T^\text{alg}_P \models T_P$.

Corollary 5.5. T_P is the model completion of T^alg_P.

20
Corollary 5.6. Let M, M' be two models of T_P. Then $M \equiv M'$ if and only if $\text{Abs}(M) \cong \text{Abs}(M')$, where $\text{Abs}(M)$ denotes the substructure of “absolute numbers,” i.e., elements algebraic over the prime field.

The only valuation ring on \mathbb{F}_p^{alg} is the trivial one, because $(\mathbb{F}_p^{alg})^\times$ is torsion. Therefore,

Corollary 5.7. If $M, M' \models T_P$ and $\text{char}(M) = \text{char}(M') > 0$, then $M \equiv M'$.

Corollary 5.8. Let K be a model of T^0_P, let $\varphi(\bar{x})$ be a sentence in the language of T_P, and let \bar{a} be a tuple from K. There is a finite normal extension L/K such that for $M \models T_P$ extending K, whether or not $\varphi(\bar{a})$ holds in M is determined by the induced T^0_P structure on (the copy of) L in M.

Corollary 5.9. The (incomplete) theory T_P is decidable: there is an algorithm which takes a sentence φ and determines whether $T_P \models \varphi$.

Proof. As T_P is c.e., it suffices to show that the set of sentences consistent with T_P is c.e.

Let χ be a function from P to $\{0, 2, 3, 5, 7, \ldots\}$ satisfying the requirement that $\chi(x) = p \implies \chi(y) = p$ for $x \leq y \in P$ and $p \neq 0$. For any such χ, let $T_{P,\chi}$ be T_P plus axioms asserting that $\text{char}(\text{res}\mathcal{O}_x) = \chi(x)$ for all $x \in P$. Define $T^0_{P,\chi}$ similarly. Each $T_{P,\chi}$ is consistent, so it suffices to show that the set of sentences consistent with $T_{P,\chi}$ is c.e., uniformly in χ.

When $\chi(\bot) > 0$, the theory $T_{P,\chi}$ is complete by Corollary 5.7 and therefore decidable. So assume $\chi(\bot) = 0$.

Let a_1, \ldots, a_n enumerate the minimal $a \in P$ such that $\chi(a) > 0$, and let $p_i = \chi(a_i)$.

Claim 5.10. Let M_1, M_2 be two models of $T^0_{P,\chi}$, algebraic over the prime field. Let $f : M_1 \to M_2$ be an isomorphism of the underlying fields. Then f is an isomorphism of $T^0_{P,\chi}$-structures if and only if f sends $\mathcal{O}_{a_i}^{M_1}$ to $\mathcal{O}_{a_i}^{M_2}$ for $i = 1, \ldots, n$.

Proof. Without loss of generality, M_1 and M_2 have the same underlying field K and f is the identity map $id_K : K \to K$. The “only if” direction is clear. For the “if” direction, note that the non-trivial valuation rings on K are pairwise incomparable and mixed characteristic, because K is algebraic over the prime field. Therefore, \mathcal{O}_a must be trivial when $\chi(a) = 0$, and \mathcal{O}_a must equal \mathcal{O}_{a_i} when $a \geq a_i$. So the \mathcal{O}_{a_i} determine the other valuation rings. □

Let Ψ be the set of sentences of the form

$$\exists x : Q(x) = 0 \land R_1(x) \land \cdots \land R_n(x),$$

where $Q(X) \in \mathbb{Q}[X]$ is a monic irreducible polynomial, $R_i(x)$ is a quantifier-free predicate only involving the a_ith valuation ring, and $ACVF_{\mathbb{F}_p} \models \exists x : Q(x) = 0 \land R_i(x)$. The set Ψ is c.e., because the set of monic irreducible polynomials is c.e.

Claim 5.11. A sentence φ is consistent with $T_{P,\chi}$ if and only if $T_{P,\chi} \cup \{\psi\} \models \varphi$ for some $\psi \in \Psi$.

21
Proof. For the “if” direction, we only need to show that the sentences
\[\psi := (\exists x : Q(x) = 0 \land R_1(x) \land \cdots \land R_n(x)) \]
are consistent with \(T_{P,\chi} \). Fix a copy of \(Q_{\text{alg}} \) and a root \(\alpha \) of \(Q(X) \). For each \(i \), we can find a valuation ring \(O_i \) on \(Q_{\text{alg}} \) of mixed characteristic \((0, p_i)\), such that
\[(Q_{\text{alg}}, O_i) \models R_i(\alpha). \]
Indeed, first choose an arbitrary valuation ring \(O' \) of mixed characteristic \((0, p_i)\), use the assumption on \(R_i \) to find \(\alpha' \in Q_{\text{alg}} \) such that
\[(Q_{\text{alg}}, O') \models Q(\alpha') = 0 \land R_i(\alpha'), \]
and then move \(\alpha' \) and \(O' \) to \(\alpha \) and \(O_i \) by an automorphism in \(\text{Gal}(\mathbb{Q}) \). Now
\[(Q_{\text{alg}}, O_1, \ldots, O_n) \models \exists x : Q(x) = 0 \land R_1(x) \land \cdots \land R_n(x), \]
witnessed by \(\alpha \). Expand \((Q_{\text{alg}}, O_1, \ldots, O_n) \) to a model of \(T_{P,\chi}^0 \) as in the proof of Claim 5.10 and then extend to a model \(M \models T_{P,\chi} \). Then \(M \models \psi \).

Conversely, suppose that \(\phi \) holds in some model \(M \models T_{P,\chi} \). By Corollary 5.8 there is a subfield \(L \leq M \) such that \([L : \mathbb{Q}] < \infty \) and \(T_{P,\chi} \cup \text{diag}(L) \models \phi \). Let \(\alpha \) be a generator of \(L = \mathbb{Q}(\alpha) \). Then
\[T_{P,\chi} \cup \text{qftp}(\alpha/\emptyset) \models \psi. \]
Let \(\text{qftp}_i(\alpha/\emptyset) \) be the quantifier-free type in the reduct \((M, O_{a_i})\). Then
\[T_{P,\chi} \cup \bigcup_{i=1}^{n} \text{qftp}_i(\alpha/\emptyset) \models \text{qftp}(\alpha/\emptyset) \]
essentially by Claim 5.10. By compactness and the lemma on constants, there are quantifier-free formulas \(R_i(x) \in \text{qftp}_i(\alpha/\emptyset) \) such that
\[T_{P,\chi} \cup \{ \exists x : R_1(x) \land \cdots \land R_n(x) \} \models \varphi. \]
Let \(Q(X) \) be the minimal polynomial of \(\alpha \) over \(\mathbb{Q} \) and let \(\psi \) be the sentence
\[\exists x : Q(x) = 0 \land R_1(x) \land \cdots \land R_n(x). \]
Then \(T_{P,\chi} \cup \{ \psi \} \models \varphi \) a fortiori. Moreover, for any \(i \)
\[M \models \exists x : Q(x) = 0 \land R_i(x), \]
witnessed by \(\alpha \). So the formula \(\exists x : Q(x) = 0 \land R_i(x) \) is consistent with \(\text{ACVF}_{0,p_i} \). But \(\text{ACVF}_{0,p_i} \) is complete, so \(\text{ACVF}_{0,p_i} \models \exists x : Q(x) = 0 \land R_i(x) \). Therefore \(\psi \in \Psi. \qed
Given the claim, it follows that the set of sentences consistent with $T_{P, \chi}$ is c.e., uniformly in χ. Taking the union over all χ, the set of sentences consistent with T_P is c.e. The set of consequences of T_P is trivially c.e., and so the theory is decidable.

Using Example 3.4, we deduce

Corollary 5.12. Let $ACv^n F$ be the theory of algebraically closed fields with n valuation rings (as unary predicates). Then the incomplete theory $ACv^n F$ is decidable.

Proof. The only thing to check here is that we can bound the size of P from the number n of given valuations O_1, \ldots, O_n. On account of the tree structure, every valuation in P is of the form $O_i \cdot O_j$ (or K), so there are certainly no more than $n^2 + 1$ elements in P.

6 Normal and relatively closed extensions

Definition 6.1. Fix a diagram

\[F \rightarrow K_1 \]

\[K_2 \]

in the category of fields. A reduced amalgamation

\[F \rightarrow K_1 \]

\[K_2 \rightarrow L \]

is cozy if the maps $K_i \rightarrow L$ are isomorphisms. An amalgamation type is cozy if a representative reduced amalgamation is cozy.

Remark 6.2. The following are equivalent:

- Every amalgamation type of K_1 and K_2 over F is cozy.
- K_1 and K_2 are (algebraic) normal extensions of F, isomorphic to each other over F.

Lemma 6.3. Let L/K be a normal (algebraic) extension, and O be a valuation ring on K.

1. $Aut(L/K)$ acts transitively on the set of extensions of O to L.
2. If O' is any extension of O to L, then the residue field extension is a normal extension.
3. The residue field extension does not depend on O' in the following sense: if O' and O'' are two extensions of O to L, then $res O'$ and $res O''$ are isomorphic over $res O$.
Proof. Let \(O_1 \) and \(O_2 \) be two (not necessarily distinct) extensions of \(O \) to \(L \). By Remark 6.2 it suffices to show that \(O_1 \) and \(O_2 \) are in the same orbit of \(\text{Aut}(L/K) \) and that every amalgamation type of \(\text{res} O_1 \) and \(\text{res} O_2 \) over \(\text{res} O \) is cozy. Given any amalgamation type \(\tau \), by Lemma 4.6 there is an amalgamation of valued fields

\[
(K, O) \rightarrow (L, O_1) \rightarrow (L, O_2) \rightarrow (L', O')
\]

such that

- \(L' \) is a reduced amalgamation of \(L \) and \(L \) over \(K \)
- \(\text{res} O' \) is an amalgamation of \(\text{res} O_1 \) and \(\text{res} O_2 \) over \(\text{res} O \), of type \(\tau \).

Then \(L' \) is a cozy amalgamation of \(L \) and \(L \) over \(K \), by normality of \(L/K \), Remark 6.2 and the fact that \(L' \) is a reduced amalgamation. If \(\sigma \) is the induced isomorphism \(L \rightarrowtail L'
ightarrowtail L \), then \(\sigma \in \text{Aut}(L/K) \) and \(\sigma(O_1) = O_2 \), proving transitivity. Moreover, the fact that \(L' \) is a cozy amalgamation of \(L \) and \(L \) over \(K \) implies the same thing for the residue fields: \(\text{res} O' \) is a (reduced) cozy amalgamation of \(\text{res} O_1 \) and \(\text{res} O_2 \) over \(\text{res} O \). Therefore \(\tau \) is cozy, completing the proof.

Definition 6.4. If \(L/K \) is a finite normal extension and \(O \) is a valuation ring on \(K \), we let \(n_{O, L/K} \) denote the (finite) number of extensions of \(O \) to \(L \).

Note that \(n_{O, L/K} \) depends only on the isomorphism type of \(L \) over \(K \): if \(L'/K \) is an isomorphic extension, then \(n_{O, L'/K} = n_{O, L/K} \).

Recall that if \(L/K \) is a finite (algebraic) extension of valued fields, then the residue field extension is also finite, of degree no greater than \([L : K] \), because one can lift a basis of \(\text{res} L \) over \(\text{res} K \) to a \(K \)-linearly independent set in \(L \).

Lemma 6.5. Let

\[
\begin{array}{ccl}
L_1 & \rightarrow & L_2 \\
K_1 & \leftarrow & K_2
\end{array}
\]

be a diagram of fields, in which \(L_2/L_1 \) and \(K_2/K_1 \) are finite normal extensions. Suppose \(K_1 \) is relatively algebraically closed in \(L_1 \). Let \(O_{L_1}, O_{K_1}, \) and \(O_{K_2} \) be valuation rings on \(L_1, K_1, \) and \(K_2 \), respectively. Suppose \(O_{K_1} \) is the restriction of \(O_{L_1} \) and \(O_{K_2} \). Then, the set of valuation rings \(O_{L_2} \) on \(L_2 \) extending both \(O_{L_1} \) and \(O_{K_2} \) is non-empty, and has size exactly

\[
\frac{n_{O_{L_2}, L_2/L_1}}{n_{O_{K_1}, K_2/K_1}}
\]
Proof. We claim that the restriction map $\rho : \text{Aut}(L_2/L_1) \to \text{Aut}(K_2/K_1)$ is surjective. Assume otherwise, and embed L_2 into a monster model M of ACF. By elimination of imaginaries and the model-theoretic Galois correspondence, non-surjectivity implies there is $x \in \text{dcl}(K_2) \cap \text{dcl}(L_1) \setminus \text{dcl}(K_1)$. Definable closure in ACF corresponds to perfect closure. Thus, after replacing x with x^{p^k}, we may assume $x \in K_2 \cap L_1$. Then $K_2 \cap L_1 \setminus K_1$ is non-empty, contradicting relative algebraic closure of K_1 in L_1.

Thus $\rho : \text{Aut}(L_2/L_1) \to \text{Aut}(K_2/K_1)$ is surjective. Let V_L be the set of valuation rings on L_2 extending O_{L_1} and V_K be the set of valuation rings on K_2 extending O_{K_1}. Both these sets are finite. By Lemma 6.3, $\text{Aut}(L_2/L_1)$ acts transitively on V_L and $\text{Aut}(K_2/K_1)$ acts transitively on V_K. The restriction map $V_L \to V_K$ is compatible with the action, in the sense that if $O \in V_L$ and $\sigma \in \text{Aut}(L_2/L_1)$, then

$$(\sigma \cdot O)) \cap K_2 = (\sigma|K_2) \cdot (O \cap K_2).$$

In particular, if we view V_K as an $\text{Aut}(L_2/L_1)$-set via the homomorphism $\rho : \text{Aut}(L_2/L_1) \to \text{Aut}(K_2/K_1)$, then the restriction $V_L \to V_K$ is a homomorphism of $\text{Aut}(L_2/L_1)$-sets. Then V_K is a transitive $\text{Aut}(L_2/L_1)$ by surjectivity of ρ. Because both V_L and V_K are transitive $\text{Aut}(L_2/L_1)$-sets, every fiber of the map $V_L \to V_K$ has the same cardinality. This cardinality must be

$$\frac{|V_L|}{|V_K|} = \frac{n_{O_{L_1},L_2/L_1}}{n_{O_{K_1},K_2/K_1}}$$

\[\square\]

Lemma 6.6. Let L/K be a finite normal extension. Let $O_K \supset O'_K$ be two valuation rings on K. There is an integer $n_{O_K,O'_K,L/K}$ such that for any O_L on L extending O_K, the set S of $O'_L \in \text{Val}(L|O_L)$ extending O'_K has size exactly $n_{O_K,O'_K,L/K}$.

Furthermore, for any O_L, we have

$$n_{O_K,O'_K,L/K} = n_{O_K,O'_K,L/K} \cdot n_{O_L,O_K}.$$

Proof. Let k be the residue field of O_K. Given O_L, let ℓ be $\text{res} O_L$. By Lemma 6.3, the isomorphism type of ℓ over k does not depend on O_L. Let $n_{O_K,O'_K,L/K}$ be $n_{O_K,O'_K,L/K}$; this depends only on the isomorphism type of ℓ over k, hence is independent of O_L.

By Remark 4.11.4 there is a diagram

$$\text{Val}(L|O_L) \xrightarrow{\sim} \text{Val}(\ell) \xrightarrow{\sim} \text{Val}(K|O_K)$$

with horizontal maps the isomorphisms

$$O \mapsto O \div O_L$$

$$O \mapsto O \div O_K$$

\[1\]Here, $\text{Aut}(-/-)$ denotes automorphisms of pure fields, not valued fields.
respectively.

The set \(S \) is the fiber of the left vertical map over \(\mathcal{O}_K' \). Via the horizontal isomorphisms, this is in bijection with the set of valuations on \(\ell \) extending \(\mathcal{O}_K' \div \mathcal{O}_K \). By definition, this set has size \(n_{\mathcal{O}_K' \div \mathcal{O}_K, \ell/k} \), the value we chose for \(n_{\mathcal{O}_K, \mathcal{O}_K', L/K} \).

\[\square \]

Lemma 6.7. Let

\[
\begin{array}{ccc}
L_1 &
\rightarrow & L_2 \\
\uparrow & & \uparrow \\
K_1 & \rightarrow & K_2
\end{array}
\]

be a diagram of fields, in which \(L_2/L_1 \) and \(K_2/K_1 \) are finite normal extensions. Let \(\mathcal{O}_{L_2} \) be a valuation ring on \(L_2 \) and let \(\mathcal{O}_{L_1}, \mathcal{O}_{K_2}, \mathcal{O}_{K_1} \) be the restrictions to \(L_1, K_2, \) and \(K_1 \), respectively. Suppose that \(\text{res} \mathcal{O}_{K_1} \) is relatively algebraically closed in \(\text{res} \mathcal{O}_{L_1} \). Let \(\mathcal{O}_{L_1}', \mathcal{O}_{K_1}', \) and \(\mathcal{O}_{K_2}' \) be valuation rings on \(L_1, K_1, \) and \(K_2, \) respectively, such that

\begin{itemize}
 \item \(\mathcal{O}_{L_1}' \subseteq \mathcal{O}_{L_1}, \mathcal{O}_{K_1}' \subseteq \mathcal{O}_{K_1}, \) and \(\mathcal{O}_{K_2}' \subseteq \mathcal{O}_{K_2}. \)
 \item \(\mathcal{O}_{K_1}' \) is the restriction of both \(\mathcal{O}_{L_1}' \) and \(\mathcal{O}_{K_2}' \) to \(K_1. \)
\end{itemize}

Let \(S \) be the set of valuation rings \(\mathcal{O}_{L_2}' \) on \(L_2 \) such that

\begin{itemize}
 \item \(\mathcal{O}_{L_2}' \subseteq \mathcal{O}_{L_2}. \)
 \item \(\mathcal{O}_{L_2}' \) extends both \(\mathcal{O}_{L_1}' \) and \(\mathcal{O}_{K_2}'. \)
\end{itemize}

Then \(S \) is non-empty and has cardinality exactly

\[
\frac{n_{\mathcal{O}_{L_1}, \mathcal{O}_{L_1}', L_2/L_1}}{n_{\mathcal{O}_{K_1}, \mathcal{O}_{K_1}', K_2/K_1}}
\]

where the \(n \) are as in Lemma 6.6.

Proof. Let \(\ell_i \) and \(k_i \) denote the residue fields of \(\mathcal{O}_{L_i} \) and \(\mathcal{O}_{K_i}, \) respectively. By Remark 6.1.1.14 there is a commutative diagram

\[
\begin{array}{ccccccc}
\text{Val}(L_1|\mathcal{O}_{L_1}) & \rightarrow & \text{Val}(L_2|\mathcal{O}_{L_2}) \\
\downarrow & & \downarrow \\
\text{Val}(K_1|\mathcal{O}_{K_1}) & \rightarrow & \text{Val}(K_2|\mathcal{O}_{K_2}) \\
\text{Val}(\ell_1) & \rightarrow & \text{Val}(\ell_2) \\
\downarrow & & \downarrow \\
\text{Val}(k_1) & \rightarrow & \text{Val}(k_2)
\end{array}
\]
with vertical maps bijections. Under the bijection $\text{Val}(L_2|\mathcal{O}_{L_2}) \rightarrow \text{Val}(\ell_2)$, the set \mathcal{S} corresponds to the set of \mathcal{O} on ℓ_2 restricting to $\mathcal{O}^\prime_{K_2} \div \mathcal{O}_{K_2}$ and $\mathcal{O}^\prime_{L_1} \div \mathcal{O}_{L_1}$. Now, by the commutative diagram, the fact that $\mathcal{O}^\prime_{K_2}$ and $\mathcal{O}^\prime_{L_1}$ both restrict to $\mathcal{O}^\prime_{K_1}$ implies that $\mathcal{O}^\prime_{K_2} \div \mathcal{O}_{K_2}$ and $\mathcal{O}^\prime_{L_1} \div \mathcal{O}_{L_1}$ restrict to $\mathcal{O}^\prime_{K_1} \div \mathcal{O}_{K_1}$. By assumption, k_1 is relatively algebraically closed in ℓ_1, so by Lemma 6.5

$$|\mathcal{S}| = \frac{n_{\mathcal{O}_{K_2}^\prime \div \mathcal{O}_{L_2}, \ell_2/\ell_1}}{n_{\mathcal{O}_{K_1}^\prime \div \mathcal{O}_{K_1}, k_1/k_2}}.$$

By Lemma 6.6

$$\frac{n_{\mathcal{O}_{L_2}^\prime \div \mathcal{O}_{L_1}, \ell_2/\ell_1}}{n_{\mathcal{O}_{K_1}^\prime \div \mathcal{O}_{K_1}, k_2/k_1}} = \frac{n_{\mathcal{O}_{L_1}^\prime \div \mathcal{O}_{L_1}, \ell_2/\ell_1}}{n_{\mathcal{O}_{K_1}^\prime \div \mathcal{O}_{K_1}, k_2/k_1}}.
$$

Definition 6.8. Let P be a finite poset.

1. Write $x \triangleright y$ if $x > y$ and there is no z such that $x > z > y$.

2. A choice system on P is a collection of sets \mathcal{S}_x for $x \in P$ and relations $\mathcal{R}_{x,y} \subseteq \mathcal{S}_x \times \mathcal{S}_y$ for $x \triangleright y$.

3. Given a choice system on P and a downwards closed subset $P' \subseteq P$, a partial choice on P' is a function f on P' such that

$$\forall x \in P' : f(x) \in \mathcal{S}_x$$

$$\forall x \in P' \forall y < x : f(x) \mathcal{R}_{x,y} f(y).$$

We write $\Gamma(P')$ for the collection of partial choices on P'.

4. A choice system on P is smooth at x if there is a finite positive cardinal n such that for any downward closed set $P' \subseteq P$ containing x as a maximal element, every fiber of the restriction map

$$\Gamma(P') \rightarrow \Gamma(P' \setminus \{x\})$$

has size n.

Remark 6.9. Fix a choice system on a finite poset P, and let P' be a downward closed subset of P. If the choice system is smooth at every $x \in P \setminus P'$, then every fiber of the restriction map

$$\Gamma(P) \rightarrow \Gamma(P')$$

has size n, for some finite positive n.

Theorem 6.10. Fix a finite tree P. Let L/K be an extension of models of T^0_p. Suppose that for every $p \in P$, the pth residue field extension $\text{res} \mathcal{O}_p^L / \text{res} \mathcal{O}_p^K$ is relatively algebraically closed. Suppose we are given a diagram of pure fields

$$L \rightarrow L'$$

$$\text{K} \rightarrow \text{K'}$$

27
where L'/L and K'/K are finite normal extensions. Let S_L and S_K be the set of extensions of the T^0_P-structures to L' and K', respectively. Then

1. The sets S_L and S_K are finite.
2. The restriction map $S_L \rightarrow S_K$ is surjective.
3. Every fiber of this restriction map has the same size.

Proof. Let Q be the poset product of P and the two-element total order $\{0, 1\}$. Note that all the relations $x \triangleright y$ in Q are of the following forms:

- $(x, 1) \triangleright (x, 0)$.
- $(x, i) \triangleright (y, i)$ where $i \in \{0, 1\}$ and y is the “parent” of x in the tree P, i.e., $x \triangleright y$.

We build a choice system on Q as follows:

- $S_{(x,0)}$ is the set of extensions (trivial if $x = \bot$) of O^K_x to K'.
- $S_{(x,1)}$ is the set of extensions (trivial if $x = \bot$) of O^L_x to L'.
- If $O^L_x \in S_{(x,1)}$ and $O^K_x \in S_{(x,0)}$, then $O^L_x \mathcal{R} O^K_x$ holds iff O^L_x extends O^K_x.
- If y is the parent of x in P, if $O^K_y \in S_{(y,0)}$, and $O^K_x \in S_{(x,0)}$, then $O^K_y \mathcal{R} O^K_x$ holds iff $O^K_x \subseteq O^K_y$.
- If y is the parent of x in P, if $O^L_y \in S_{(y,0)}$, and $O^L_x \in S_{(x,0)}$, then $O^L_y \mathcal{R} O^L_x$ holds iff $O^L_y \subseteq O^L_x$.

If $Q' = P \times \{0\}$, then a partial choice function on Q' is an extension of the T^0_P-structure from K to K', and a partial choice function on Q is an extension of the T^0_P-structure from L to L'. So it suffices to show that the choice system is smooth at every point (x, i).

The case where $x = \bot$ is easy, so assume $x > \bot$. Let y be the “parent” of x. If $i = 0$, smoothness at $(x, 0)$ follows by Lemma 6.6. Indeed, the number of valid choices for O^K_x consistent with O^K_y and O^K_x is exactly $n_{O^K_y, O^K_x, K'/K}$, which does not depend on the choices.

Likewise, the case $i = 1$ follows by Lemma 6.7 the number of valid choices for O^L_x consistent with O^L_y, O^K_x, and O^L_x is exactly

\[
\frac{n_{O^L_y, O^L_x, L'/L}}{n_{O^K_y, O^K_x, K'/K}}
\]

Again, this does not depend on the choices so far. \qed
7 Probable truth

Theorem 7.1. There is a unique way to assign a probability $\mathbb{P}(\varphi(\bar{a})|K)$ to every model $K \models T^0_P$, tuple \bar{a} from K, and formula $\varphi(\bar{a})$ in the language of T_P, satisfying the following properties:

1. $\mathbb{P}(\varphi(\bar{a})|K)$ is a rational number in $[0, 1]$.
2. $\mathbb{P}(\neg \varphi(\bar{a})|K) = 1 - \mathbb{P}(\varphi(\bar{a})|K)$.
3. $\mathbb{P}(\varphi(\bar{a})|K) + \mathbb{P}(\psi(\bar{b})|K) = \mathbb{P}(\varphi(\bar{a}) \lor \psi(\bar{b})|K) + \mathbb{P}(\varphi(\bar{a}) \land \psi(\bar{b})|K)$.
4. $\mathbb{P}(\varphi(\bar{a})|K) > 0$ if and only if $M \models \varphi(\bar{a})$ for at least one T_P-model $M \geq K$.
5. $\mathbb{P}(\varphi(\bar{a})|K) = 1$ if and only if $M \models \varphi(\bar{a})$ for every T_P-model $M \geq K$.
6. If L/K is a finite normal extension of pure fields, and L_1, \ldots, L_n enumerate the T^0_P-structures on L extending the given structure on K, then $\mathbb{P}(\varphi(\bar{a})|K)$ is the average of $\mathbb{P}(\varphi(\bar{a})|L_i)$.
7. If $f : K_1 \rightarrow K_2$ is an isomorphism of T^0_P-models, and $f(\bar{a}_1) = \bar{a}_2$, then $\mathbb{P}(\varphi(\bar{a}_1)|K_1) = \mathbb{P}(\varphi(\bar{a}_2)|K_2)$.

Conditions (1-5) say, among other things, that $\mathbb{P}(-|K)$ defines a Keisler measure on the type space of embeddings of K into models of T_P.

Proof. Let $\mathbb{P}'(-)$ be the partial function defined as follows:

1. $\mathbb{P}'(\varphi(\bar{a})|K) = 1$ if $M \models \varphi(\bar{a})$ for every T_P-model $M \geq K$.
2. $\mathbb{P}'(\varphi(\bar{a})|K) = 0$ if $M \models \neg \varphi(\bar{a})$ for every T_P-model $M \geq K$.
3. $\mathbb{P}'(\varphi(\bar{a})|K)$ is undefined otherwise.

Conditions (1) and (5) imply that $\mathbb{P}(-)$ must equal $\mathbb{P}'(-)$ when the latter is defined.

Given K and $\varphi(\bar{a})$, by Corollary 5.8 there is a finite normal extension L/K such that for any T_P-model $M \geq K$, the truth of $M \models \varphi(\bar{a})$ is determined by the T^0_P-structure induced on L. Let L_1, \ldots, L_n be an enumeration of the distinct extensions of the T^0_P-structure from K to L. Thus $\mathbb{P}'(\varphi(\bar{a})|L_i)$ is defined for $i = 1, \ldots, n$. Then uniqueness of $\mathbb{P}(-)$ is clear: we must set

$$\mathbb{P}(\varphi(\bar{a})|K) := \frac{\sum_{i=1}^{n} \mathbb{P}'(\varphi(\bar{a})|L_i)}{n}.$$

It remains to show that this is well-defined and satisfies the required properties.
Let L' be another finite normal extension of K which determines the truth of $\varphi(\bar{a})$. We claim that L and L' yield the same value of $P(\varphi(\bar{a})|K)$. By relating L to LL' and L' to LL', we reduce to the case where $L' \geq L$. Applying Theorem 6.10 to the diagram

\[
\begin{array}{c}
K \\
\downarrow \\
L' \\
\downarrow \\
K \\
\end{array}
\]

there is an integer m such that every L_i has exactly m extensions $L'_{i,1}, \ldots, L'_{i,m}$ to a T_P^0-structure on L'. Then $\{L'_{i,j}\}_{1 \leq i \leq n, 1 \leq j \leq m}$ is an enumeration of the distinct nm-many T_P-structures on L' extending the given structure on K. Moreover, every T_P-model extending $L'_{i,j}$ is a T_P-model extending L_i, so $P'(\varphi(\bar{a})|L'_{i,j}) = P'(\varphi(\bar{a})|L_i)$. Thus

\[
\sum_{i=1}^n \sum_{j=1}^m P'(\varphi(\bar{a})|L'_{i,j}) = \sum_{i=1}^n P'(\varphi(\bar{a})|L_i)
\]

So the definition of $P(\varphi(\bar{a})|K)$ using L' agrees with that using L, and $P(\varphi(\bar{a})|K)$ is well-defined.

Condition (1) is clear, because we defined $P(\varphi(\bar{a})|K)$ as an average of finitely many 0’s and 1’s. For Conditions (2)-(5), choose L large enough that $P'(\varphi(\bar{a})|L_i)$ and $P'(\psi(\bar{b})|L_i)$ are well-defined for all i. Then

\[
P'(\neg \varphi(\bar{a})|L_i) = 1 - P'(\varphi(\bar{a})|L_i)
\]

\[
P'(\varphi(\bar{a}) \lor \psi(\bar{b})|L_i) = \max(P'(\varphi(\bar{a})|L_i), P'(\psi(\bar{b})|L_i))
\]

\[
P'(\varphi(\bar{a}) \land \psi(\bar{b})|L_i) = \min(P'(\varphi(\bar{a})|L_i), P'(\psi(\bar{b})|L_i))
\]

for all i—in particular the left hand sides are well-defined. The desired equations then follow by averaging

\[
P'(\neg \varphi(\bar{a})|L_i) = 1 - P'(\varphi(\bar{a})|L_i)
\]

\[
P'(\varphi(\bar{a})|L_i) + P'(\psi(\bar{b})|L_i) = P'(\varphi(\bar{a}) \lor \psi(\bar{b})|L_i) + P'(\varphi(\bar{a}) \land \psi(\bar{b})|L_i)
\]

over $i = 1, \ldots, n$.

For (4), note that $P(\varphi(\bar{a})|K) > 0$ if and only if $P'(\varphi(\bar{a})|L_i) = 1$ for at least one i. If this holds, then extending L_i to a T_P-model M, we obtain a T_P-model M extending K in which $\varphi(\bar{a})$ holds. Conversely, if $P'(\varphi(\bar{a})|L_i) = 0$ for all i, and M is any T_P-model extending K, then M extends some L_i, and so $M \models \neg \varphi(\bar{a})$.

Thus (4) holds. Condition (5) follows from (1) and (2).

Next consider the situation of (6). We can find a normal extension L' of K such that $L' \geq L$ and $P'(\varphi(\bar{a})|L')$ is defined for any extension of the T_P^0-structure to L'. As before, by an application of Theorem 6.10 we know that there is an integer m such that every L_i has exactly m extensions $L'_{i,1}, \ldots, L'_{i,m}$ to a T_P^0-structure on L'. Then

\[
\frac{\sum_{i=1}^n P'(\varphi(\bar{a})|L_i)}{n} = \frac{\sum_{i=1}^n \sum_{j=1}^m P'(\varphi(\bar{a})|L'_{i,j})}{nm} = \frac{\sum_{i=1}^n \sum_{j=1}^m P'(\varphi(\bar{a})|L'_{i,j})}{nm} = P(\varphi(\bar{a})|K).
\]
Thus (6) holds. Finally, (7) is clear from the definition.

Proposition 7.2. Let L/K be an extension of models of T_p^0 with the following property: for every $p \in P$, the residue field extension $\text{res} \mathcal{O}_p^L/\text{res} \mathcal{O}_p^K$ is relatively algebraically closed. Then for any formula $\varphi(\bar{a})$ with parameters \bar{a} from K, we have

$$\mathbb{P}(\varphi(\bar{a})|L) = \mathbb{P}(\varphi(\bar{a})|K).$$

Proof. As in the proof of Theorem 7.1, let $\mathbb{P}'(\varphi|K)$ be 0, 1, or undefined, depending on whether φ holds in none, all, or some of the models of T_P extending K. Using Corollary 5.8, choose a finite normal extension K' of K such that $\mathbb{P}'(\varphi(\bar{a})|K')$ is defined for every T_p^0-structure on K' extending the given structure on K. Let $L' = LK'$. Let K_1', \ldots, K_n' enumerate the T_p^0-structures on K' extending K. By Theorem 6.10, there is an integer m such that for every K_i', there are exactly m-many T_p^0-structures $L_{i,1}', \ldots, L_{i,m}'$ on L' extending K_i' and L. Note that $\{L_{i,j}'\}_{1 \leq i \leq n, 1 \leq j \leq m}$ is an exhaustive listing of the distinct T_p^0-structures on L' extending L.

For any i, j, note that $\mathbb{P}'(\varphi(\bar{a})|L_{i,j}')$ is defined and equals $\mathbb{P}'(\varphi(\bar{a})|K_i')$. Indeed, if M is a model of T_P extending $L_{i,j}'$, then M is a model of T_P extending K_i', so whether $M \models \varphi(\bar{a})$ must agree with $\mathbb{P}'(\varphi(\bar{a})|K_i')$. So

$$\mathbb{P}'(\varphi(\bar{a})|L_{i,j}') = \mathbb{P}'(\varphi(\bar{a})|K_i').$$

Averaging over all i and j immediately implies

$$\mathbb{P}(\varphi(\bar{a})|L) = \mathbb{P}(\varphi(\bar{a})|K).$$

\[\square\]

8 Indiscernible sequences and relative closure

Lemma 8.1. Let M be a valued field that is a monster model of either ACVF or ACF with the trivial valuation. Let a be a tuple and let

$$\ldots, b_{-1}^- b_0^- b_1^-, \ldots, \ldots, b_{-1}^- b_0^+ b_1^+, \ldots, b_{-1}^+ b_0^+ b_1^+, \ldots$$

be an a-indiscernible sequence of tuples, of length $3 \times \mathbb{Z}$. For $S \subseteq \mathbb{Z}$ let b_S denote $\{b_i : i \in S\}$ and similarly for b_S^+ and b_S^-. Let K_i and L be the algebraically closed subfields of M generated by b_S^+, b_S^-, and b_S^+, respectively. Abusing notation slightly, let $K_i(a)$ and $L(a)$ denote the perfect subfields of M generated by aK_i and aL, respectively. Then the residue field of $K_i(a)$ is relatively algebraically closed in the residue field of $L(a)$.
Proof. Without loss of generality, \(i = 0 \). Let \(k \) be the residue field of \(K_0(a) \) and \(\ell \) be the residue field of \(L(a) \). Take \(\alpha \in \ell \cap k^{alg} \setminus k \). Let \(S \) be the set of roots of the minimal polynomial of \(\alpha \) over \(k \). This is a \(K_0(a) \)-definable finite set, so it is \(F(a) \)-definable where \(F = acl(b_S^{-}b_S^{+}b_S^\ell) \), for some finite \(S \subseteq \mathbb{Z} \). Because \(\alpha \in \ell \), we can write \(\alpha \) as

\[
\alpha = \text{res} \frac{P(a,c)}{Q(a,c)}
\]

where \(P, Q \) are polynomials with integral coefficients and \(c \) is a tuple from \(L = acl(b_S^{-}b_S^{+}b_S^\ell) \). Increasing \(S \), we may assume \(c \in acl(b_S^{-}b_S^{+}b_S^\ell) \) and \(0 \in S \). Let

\[
i_1 < \cdots < i_n < 0 < j_1 < \cdots < j_m
\]

be the elements of \(S \) in order. Note that the two sequences

\[
b_{j_m+1}, b_{j_m+2}, \ldots, b_{-3}, b_{-2}, b_{-1} \\
b_{1}, b_{2}, b_{3}, \ldots, b_{i_{n-2}}, b_{i_{n-1}}
\]

are mutually indiscernible over \(ab_S^{-}b_S^{+}b_S^\ell \), hence over \(F(a)^{alg} \). Choose \(i'_1 < \cdots < i'_n \) greater than \(j_{m} \) and \(j'_1 < \cdots < j'_m \) less than \(i_1 \). Then

\[
b_{i_1} \cdots b_{i_n} b_{j_1} \cdots b_{j_m} = T(a)^{alg} b_{i'_{1}} \cdots b_{i'_{n}} b_{j'_{1}} \cdots b_{j'_{m}}
\]

by the mutual indiscernibility. Let \(\sigma \in \text{Aut}(M/F(a)^{alg}) \) be an automorphism moving the left hand side to the right hand side. Then

\[
\sigma(b_S^{-}b_S^{+}b_S^\ell) = b_S^{-} b_{i'_{1}}^{-} \cdots b_{i'_{n}}^{-} b_{j'_{1}}^{+} \cdots b_{j'_{m}}^{+}
\]

and so

\[
\sigma(c) \in acl(b_S^{-} b_{i'_{1}}^{-} \cdots b_{i'_{n}}^{-} b_{j'_{1}}^{+} \cdots b_{j'_{m}}^{+}) \subseteq acl(b_S^{-} b_S^{+})
\]

so \(\sigma(c) \) is a tuple from \(K_0 \). Thus \(\sigma(\alpha) \) is a residue from \(K_0(a) \). Now \(\sigma \) fixes \(S \) setwise, so \(S \) intersects \(k \), a contradiction. \(\square \)

9 Finite burden

Theorem 9.1. Let \(N \) be the number of “leaves” in \(P \), i.e., maximal elements. Then \(T_P \) has burden no more than \(2N \).

Proof. Otherwise, take a mutually indiscernible inp-pattern with \(3 \times \mathbb{Z} \) columns and \(2N + 1 \) rows. Let the \(i \)th row be

\[
\ldots, \varphi_i(x; b_{i_{-1}}^{-}), \varphi_i(x; b_{i_{0}}^{-}), \varphi_i(x; b_{i_{1}}^{-}), \ldots, \\
\ldots, \varphi_i(x; b_{i_{-1}}^{-}), \varphi_i(x; b_{i_{0}}^{+}), \varphi_i(x; b_{i_{1}}^{+}), \ldots,
\]

\[
\ldots, \varphi_i(x; b_{i_{-1}}^{+}), \varphi_i(x; b_{i_{0}}^{+}), \varphi_i(x; b_{i_{1}}^{+}), \ldots
\]

Let \(B^{\pm}_i \) denote the set \(\{ \ldots, b_{i_{-1}}^{\pm}, b_{i_{0}}^{\pm}, b_{i_{1}}^{\pm}, \ldots \} \).

\(^2\)In general, indiscernibility over \(A \) is the same thing as indiscernibility over \(acl(A) \).

\(^3\)The argument could probably be improved to get \(N \) rather than \(2N \).
Claim 9.2. There is a mutually indiscernible array \(c_{i,j} \) of infinite tuples, such that \(c_{i,j} \) is an enumeration of \(\text{acl}(b_{i,j}B_i^+B_i^-) \).

Proof. Let \(Q = \bigcup_i (B_i^+ \cup B_i^-) \). Note that the \(b_{i,j} \) form a mutually indiscernible array over \(Q \). Take \(\hat{c}_{i,0} \) to be an enumeration of \(\text{acl}(b_{i,0}B_i^+B_i^-) \) and choose \(\hat{c}_{i,j} \) so that \(\hat{c}_{i,0}b_{i,0} \) has the same type as \(\hat{c}_{i,j}b_{i,j} \) over \(Q \). Let \(\{e_{i,j}d_{i,j}\} \) be a mutually indiscernible array over \(Q \) extracted from \(\{\hat{c}_{i,j}b_{i,j}\} \). As \(b_{i,j} \) was already mutually indiscernible over \(Q \), the array \(\{d_{i,j}\} \) has the same type as \(\{b_{i,j}\} \) over \(Q \). Choose \(\sigma \in \text{Aut}(M/Q) \) such that \(\sigma(d_{i,j}) = b_{i,j} \), and set \(\tilde{c}_{i,j} = \sigma(e_{i,j}) \).

Then the \(\{\tilde{c}_{i,j}\} \) are mutually \(Q \)-indiscernible because \(\{e_{i,j}\} \) are.

Because \(\text{tp}(\hat{c}_{i,j}b_{i,j}/Q) = \text{tp}(\hat{c}_{i,0}b_{i,0}/Q) \) for all \(j \), the same holds for the extracted array: \(\text{tp}(e_{i,j}d_{i,j}/Q) = \text{tp}(\hat{c}_{i,0}b_{i,0}/Q) \) for all \(i,j \). Therefore

\[
\tilde{c}_{i,j}b_{i,j} \equiv_Q e_{i,j}d_{i,j} \equiv_Q \hat{c}_{i,0}b_{i,0}.
\]

By choice of \(\hat{c}_{i,0} \), it follows that \(\tilde{c}_{i,j} \) is an enumeration of \(\text{acl}(b_{i,j}B_i^+B_i^-) \). \(\square\)

Fix some element \(a \) such that \(\varphi_i(a; b_{i,0}) \) holds for all \(i \).

For each \(p \in P \), consider the reduct of \(M \) to \((K, O_q : q \leq p) \). This reduct is a model of the theory of algebraically closed fields with \((\left\lfloor \perp, p \right\rfloor - 1) \)-many comparable valuations. This theory is an expansion of \(\text{ACVF} \) by externally definable sets (in the value group), so it has dp-rank 1.

Recall that \(N \) is the number of minimal elements in \(P \). By Lemma 4.1 in [3], we can drop no more than \(2N \) rows and arrange that

- Each row

 \(\ldots, b_{i,0}^-; b_{i,0}; b_{i,0}^+; \ldots \)

 is \(a \)-indiscernible in every reduct \((M, O_p) \).

- Each row

 \(\ldots, c_{i,-1}; c_{i,0}; c_{i,1}; \ldots \)

 is \(a \)-indiscernible in every reduct \((M, O_p) \).

Since we started with \(2N + 1 \) rows, at least one row remains. Focus on this one row, and drop the subscript \(i \)'s. We now have the following configuration:

1. The sequence

 \(\ldots, b_{-1}^-, b_0^-, b_1^-, \ldots, \)

 \(\ldots, b_{-1}, b_0, b_1, \ldots, \)

 \(\ldots, b_{1}^+, b_0^+, b_1^+, \ldots \)

 is \(a \)-indiscernible in every reduct \((M, O_p) \).

2. The sequence

 \(\ldots, c_{-1}, c_0, c_1, \ldots \)

 is \(a \)-indiscernible in every reduct \((M, O_p) \).
3. Each c_i is an enumeration of $\text{acl}(b_Z^+b_Z^-)$.

4. The set of formulas
 $\ldots, \varphi(x; b_{-1}), \varphi(x; b_0), \varphi(x; b_1), \ldots$

 is k-inconsistent.

5. $\varphi(a; b_0)$ holds.

As in Lemma 8.1 let K_i and L be the algebraically closed subfields of M generated by $b_Z^+b_Z^-$, and $b_Z^+b_Z^-$; and let $K_i(a)$ and $L(a)$ denote the perfect closures when a is thrown in. Note that c_i is an enumeration of K_i. For any $p \in P$, the pth residue field of $K_i(a)$ is relatively algebraically closed in $L(a)$ by Lemma 8.1 Then by Proposition 7.2

$$\mathbb{P}(\varphi(a; b_i)|K_i(a)) = \mathbb{P}(\varphi(a; b_i)|L(a)).$$

Now for any i, j, there is an isomorphism of multi-valued fields from $K_i(a)$ to $K_j(a)$ sending a to itself and c_i to c_j. This holds because $c_i \equiv_a c_j$ in each reduct (M, O_p). It follows that

$$\mathbb{P}(\varphi(a; b_i)|L(a)) = \mathbb{P}(\varphi(a; b_0)|K_0(a)) > 0$$

for all i, where the inequality holds because $M \models \varphi(a; b_0)$.

Now take N so large that $N \cdot \mathbb{P}(\varphi(a; b_0)|K_0(a)) > k$. Then

$$\mathbb{P}(\varphi(a; b_1)|L(a)) + \mathbb{P}(\varphi(a; b_2)|L(a)) + \cdots + \mathbb{P}(\varphi(a; b_N)|L(a)) > k$$

so by a simple probabilistic argument it follows that there is some small $M \models T_P$ extending $L(a)$ such that

$$|\{i \in \{1, \ldots, N\} : M \models \varphi(a; b_i)\}| \geq k + 1.$$

Since L is algebraically closed, we can find some embedding of M into M over L. Let a' be the image of this embedding. By model completeness,

$$M \models \varphi(a; b_i) \iff M \models \varphi(a'; b_i).$$

So $\varphi'(a'; b_i)$ holds for at least $k + 1$ values of i, contradicting k-inconsistency. \hfill \Box

By Example 3.4

Corollary 9.3. If (K, O_1, \ldots, O_n) is an algebraically closed field expanded with n valuation rings, the resulting structure has finite burden.
10 NIP, or lack thereof

Lemma 10.1. Let \((K, \mathcal{O}_1, \mathcal{O}_2)\) be an algebraically closed field with two independent non-trivial valuation rings. Then \((K, \mathcal{O}_1, \mathcal{O}_2)\) is not NIP, i.e., \((K, \mathcal{O}_1, \mathcal{O}_2)\) has the independence property.

Proof. Let \(p\) be a prime distinct from the characteristics of \(K\), \(\text{res} \mathcal{O}_1\), and \(\text{res} \mathcal{O}_2\). Let \(\omega \in K\) be a primitive \(p\)th root of unity. Abusing notation, we also let \(\omega\) denote its residues in \(\text{res} \mathcal{O}_1\) and \(\text{res} \mathcal{O}_2\). Let \(m_i\) denote the maximal ideal of \(\mathcal{O}_i\). For \(k \in \mathbb{Z}/p\mathbb{Z}\), let \(U_k\) and \(V_k\) denote \(\omega^k + m_1\) and \(\omega^k + m_2\). Note that the \(U_k\) are pairwise disjoint and their union is the set of \(x\) such that \(x^p \in U_0\). Similarly, the \(V_k\) are pairwise disjoint and their union is the set of \(x\) such that \(x^p \in V_0\).

Let \(W\) be the definable set \(\{x^p : x \in U_0 \cap V_0\}\). We claim that the relation
\[
\varphi(x; y) \iff x + y \in W
\]
has the independence property. Let \(\epsilon_1, \ldots, \epsilon_n\) be \(n\) distinct elements in \(m_1 \cap m_2\). Consider the affine variety \(C\) in \(n + 1\) variables \((x_1, \ldots, x_n, y)\) cut out by the equations
\[
x_i^p = y + \epsilon_i
\]

Claim 10.2. \(C\) is irreducible.

Proof. It suffices to show that the ring
\[
K[X_1, \ldots, X_n, Y]/(X_1^p - Y - \epsilon_1, X_2^p - Y - \epsilon_2, \ldots, X_n^p - Y - \epsilon_n)
\]
is an integral domain. This follows from the more general property: if \(R\) is a unique factorization domain, if \(F = \text{Frac}(R)\), if \(p \in \mathbb{N}\) is a prime distinct from \(\text{char}(F)\), if \(R\) contains a primitive \(p\)th root of unity, and if \(q_1, \ldots, q_n\) are elements of \(R\) generating distinct prime ideals, then \(S := R[X_1, \ldots, X_n]/(X_1^p - q_1, \ldots, X_n^p - q_n)\) is an integral domain. First note that \(S\) is a free \(R\)-module with basis the monomials \(X_1^{s_1} \cdots X_n^{s_n}\) with \(0 \leq s_i < p\). Therefore \(S\) injects into
\[
S' := S \otimes_R F = F[X_1, \ldots, X_n]/(X_1^p - q_1, \ldots, X_n^p - q_n).
\]
Let \(L\) be the Galois extension of \(F\) obtained by adding \(p\)th roots to \(q_1, \ldots, q_n\); this is Galois because \(R\) has the primitive \(p\)th roots of unity. Then \(S'\) and \(L\) are finite \(F\)-algebras, and there is a surjection \(S' \to L\). It suffices to show that \(\dim_F S' = [L : F]\). There is an injection \(\text{Gal}(L/F) \to (\mathbb{Z}/p\mathbb{Z})^n\) determined by the faithful action of \(\text{Gal}(L/F)\) on the \(p\)th roots of the \(q_i\). If this injection fails to be onto, we can find a nonzero vector \((s_1, \ldots, s_n) \in (\mathbb{Z}/p\mathbb{Z})^n\) complementary to the image. Then \(\text{Gal}(L/F)\) fixes \(t = \prod_{i=1}^n q_i^{s_i/p}\), so \(t \in F\). But then
\[
t^p = \prod_{i=1}^n q_i^{s_i}
\]
is a \(p\)th power in \(F\), contradicting unique factorization in \(R\), as the \(s_i\) are not all congruent to 0 modulo \(p\).
Unwinding, it follows that the image of \(\text{Gal}(L/F) \to (\mathbb{Z}/p\mathbb{Z})^n \) is all of \((\mathbb{Z}/p\mathbb{Z})^n\), so \(\text{Gal}(L/F) \) has size at least \(p^n \), so \([L:F] \geq p^n = \dim_F S'\), so \(S' \to L \) is an isomorphism, so \(S' \) is a field, so \(S \) is an integral domain. \(\square \)

For any function \(\eta : [n] \to [p] \), let \(U_\eta \) be the set of \((\vec{x},y) \in C\) such that \(x_i \in U_{\eta(i)} \) for every \(i \).

Claim 10.3. For any \(\eta \), the set \(U_\eta \) is non-empty.

Proof. Take arbitrary \(y \in 1 + m_1 \cap m_2 \). It suffices to prove that for any \(i, k \), there is an \(x_i \in U_k \) such that \(x_i^p = y + \epsilon_i \). Because \(K \) is algebraically closed, \(y \) has at least one \(p \)th root \(z \). One checks that \(z \in U_k^\prime \) for some \(k' \). Multiplying by \(\omega^{k-k'} \) yields a \(p \)th root in \(U_k^\prime \). \(\square \)

Similarly, define \(V_\eta \) to be the set of \((\vec{x},y) \in C\) such that \(x_i \in V_{\eta(i)} \) for every \(i \). Then \(V_\eta \) is likewise non-empty. Note that \(U_\eta \) and \(V_\eta \) are open subsets of \(C \) with respect to the topologies induced by \(O_1 \) and \(O_2 \), respectively. By Fact 2.1 and Claim 10.2 above, it follows that \(U_\eta \cap V_{\eta'} \neq \emptyset \) for any \(\eta, \eta' \). Now given \(S \subseteq \{1, \ldots, n\} \), choose \(\eta, \eta' \) such that \(S = \{i : \eta(i) = \eta'(i)\} \) and choose \((\vec{x},y) \in U_\eta \cap V_{\eta'}\).

Claim 10.4. For any \(i \),

\[
y + \epsilon_i \in W \iff \eta(i) = \eta'(i) \iff i \in S.
\]

Proof. First suppose \(\eta(i) = \eta'(i) = k \). Then \(x_i \in U_k \cap V_k \), so \(\omega^{-k}x_i \in U_0 \cap V_0 \). Thus \(y + \epsilon_i \) is the \(p \)th power of an element of \(U_0 \cap V_0 \), namely \(\omega^{-k}x_i \). So \(y + \epsilon_i \in W \) by definition of \(W \).

Conversely, suppose \(y + \epsilon_i \in W \). Then there is some \(z \in U_0 \cap V_0 \) such that \(z^p = y + \epsilon_i = (x_i)^p \). So \(x_i = \omega^k z \) for some \(k \in \mathbb{Z}/p\mathbb{Z} \). Then \(x_i \in U_k \cap V_k \), so \(\eta(i) = k = \eta'(i) \). \(\square \)

This last claim immediately implies that the relation

\[
\varphi(x; y) \iff x + y \in W
\]

has the independence property. \(\square \)

Theorem 10.5. A model \(K \models T_P \) is NIP if and only if \(P \) is totally ordered.

Proof. First suppose \(P \) is not totally ordered. Take two incomparable elements \(p_1, p_2 \) and let \(p_0 = p_1 \land p_2 \). Then \(O_{p_0}^K \) is the join of \(O_{p_1}^K \) and \(O_{p_2}^K \). It follows that

\[
O_{p_1}^K \div O_{p_0}^K, \quad O_{p_2}^K \div O_{p_0}^K
\]

are two independent non-trivial valuations on \(\text{res} O_{p_0}^K \). These valuation rings and the field \(O_{p_0}^K \) are interpretable, so \(K \) interprets an algebraically closed field with two independent valuations, and therefore fails NIP by the Lemma.
Conversely, suppose P is totally ordered. Let \top be the greatest element of P. Then every \mathcal{O}_p is a coarsening of \mathcal{O}_\top. Let Γ be the value group of \mathcal{O}_\top. The two-sorted structure $(K, \mathcal{O}_\top, \Gamma)$ is bi-interpretable with the C-minimal theory ACVF, hence NIP. Every convex subgroup of Γ is externally definable. Therefore, in the Shelah expansion of $(K, \mathcal{O}_0, \Gamma)$, every convex subgroup of Γ is definable, and every coarsening of \mathcal{O}_\top is definable. Consequently, the original structure $(K, \mathcal{O}_p : p \in P)$ is interpretable in the (NIP) Shelah expansion of $(K, \mathcal{O}_\top, \Gamma)$.

\[\square \]

Corollary 10.6. A structure $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with $K = K^{alg}$ is NIP iff the \mathcal{O}_i are pairwise comparable.

11 Open questions

From here, there are several evident directions for potential generalization.

11.1 Improving the bound on burden

If P is a tree with n leaves, we have shown that T_P has burden at most $2n$. This is probably suboptimal; the correct value should be n.

11.2 Multi-valued fields with residue structure

If the T_i in Lemma 2.7 have finite burden, must the model companion then have finite burden? If so, this would give a more direct proof that T_P has finite burden.

11.3 Forking and dividing

Can we characterize forking in the theory T_P? Does forking equal dividing? In the case where $P = \{\bot, 1, \ldots, n\}$, i.e., the case of n independent non-trivial valuations, forking was characterized in [2] §11.6. Specifically, $A \downarrow B C$ holds in the structure $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ if and only if $A \downarrow B C$ holds in each ACVF reduct (K, \mathcal{O}_i). Moreover, forking equals dividing. It would be natural to generalize these results to the non-independent setting.

11.4 Real closed and p-adically closed fields

Chapter 11 of [2] also considered the setting of $(K, \mathcal{O}_1, \ldots, \mathcal{O}_n)$, where K is real closed or p-adically closed and the \mathcal{O}_i are independent non-trivial valuation rings, independent from the canonical topology on K. Under these assumptions, the structure has finite burden. It seems that one should be able to drop these independence assumptions. For example, the theory of real closed fields $(K, +, \cdot, \mathcal{O}_1, \ldots, \mathcal{O}_n)$ with n valuation rings ought to have finite burden and be decidable.

The appropriate analogue of T_P should be the following. Let P be a non-trivial finite tree and ρ be a distinguished leaf (maximal element). Define $T_{(P,\rho)}^R$ recursively as follows.
Let P_1, \ldots, P_n be the branches of P; without loss of generality P_1 is the branch containing ρ.

- If $P_1 = \{\rho\}$, then a model of $T_{(P,\rho)}^R$ should consist of
 1. A real closed field K.
 2. Non-trivial valuation rings O_2, \ldots, O_n on K, independent from each other and from the order topology on K. (This implies that each $\text{res}O_i$ is algebraically closed.)
 3. A T_{P_1} structure on each $\text{res}O_i$.

- If P_1 is non-trivial, then a model of $T_{(P,\rho)}^R$ should consist of
 1. A real closed field K.
 2. Non-trivial independent valuation rings O_1, \ldots, O_n, where $(K,O_1) \models \text{RCVF}$, i.e., O_1 is a convex subgroup. (This ensures that $\text{res}O_1$ is real closed and $\text{res}O_i$ is algebraically closed for $i > 1$.)
 3. A $T_{(P_1,\rho)}^R$-structure on $\text{res}O_1$.
 4. A T_{P_1}-structure on $\text{res}O_i$ for $i > 1$.

Something similar should work for p-adically closed fields.

11.5 Bounded PRC and PpC fields

Let $T_{n,m}$ be the theory of existentially closed fields with n valuations and m orderings. In Chapter 11 of [2], the theory $T_{n,m}$ was shown to have finite burden. The case $T_{n,1}$ is the aforementioned real closed field with n independent valuations.

The case $T_{0,m}$ of m orderings and no valuations is a special case of a theorem of Montenegro. Recall that a field K is bounded if it has finitely many Galois extensions of degree d, for every d. In her dissertation [3], Montenegro proved that bounded pseudo real closed (PRC) fields have finite burden. The models of $T_{0,m}$ turn out to be a subset of the bounded PRC fields.

A model of $T_{n,m}$ is probably equivalent to a model of $T_{0,m}$ with n independent valuation rings, independent from the order topologies. More generally, there is work in progress by Montenegro and Rideau-Kikuchi which should show that if K is a bounded pseudo-real closed field, and O_1, \ldots, O_n are n independent valuations on K, independent from all the orderings, then (K,O_1, \ldots, O_n) has finite burden.

It would be natural to ask whether the independence assumption can be dropped: given a bounded PRC field K and finitely many arbitrary valuation rings O_1, \ldots, O_n, does the resulting structure (K,O_1, \ldots, O_n) have finite burden?

More generally, one can replace “PRC” with “pseudo p-adically closed”, or a mixture of the two, and the above discussion goes through (including the citations).
11.6 Dp-minimal fields

After [sic] \cite{3} and \cite{2} §11 were completed, dp-minimal fields were completely classified (\cite{2} §9). In the preceding discussions, can we replace RCF and pCF with other dp-minimal theories of fields? For example,

Conjecture 11.1. If K is a dp-minimal pure field and O_1, \ldots, O_n are valuation rings on K, then (K, O_1, \ldots, O_n) has finite burden.

Recall that, up to elementary equivalence, dp-minimal fields come in three types:

1. Hahn series $F((T^\Gamma))$ where F is a local field of characteristic 0 (\mathbb{R}, \mathbb{Q}_p, or a finite extension), and where Γ is a dp-minimal ordered abelian group. Examples:
 \[
 \mathbb{R}, \mathbb{C}, \mathbb{Q}_p, \mathbb{C}((T)), \mathbb{Q}_p(\sqrt{-1}), \mathbb{Q}_p((T))
 \]

2. Hahn series $F_{\text{alg}}(\mathbb{F}_p((T^\Gamma)))$, where Γ is a p-divisible dp-minimal ordered abelian group.

3. The mixed characteristic analogue of (2).

Conjecture 11.1 seems likely when K is of type (1); for types (2-3) positive characteristic may cause additional problems.

There may be some analogue of PRC and PpC for other dp-minimal complete theories of fields. One could then generalize Conjecture 11.1 to the bounded pseudo dp-minimal setting.

Also, in the dp-minimal case, Conjecture 11.1 seems plausible even when K is a dp-minimal expansion of a field, because of the known compatibility between definable sets and the canonical topology.

11.7 Fields of finite dp-rank or finite burden

Since we are stepping outside inp-minimality, we may as well conjecture

Conjecture 11.2. If K is a field of finite dp-rank, and O_1, \ldots, O_n are valuation rings on K, then (K, O_1, \ldots, O_n) has finite burden.

This is probably intractable until dp-finite fields are classified.

Assuming one can complete the analogy

real closed : pseudo real closed :: dp-finite : ?

then one would also hope for an analogue of Conjecture 11.2 in the “bounded pseudo dp-finite” setting, though “bounded” needs to be changed (dp-finite fields themselves need not be bounded!).

While we are here, we may as well make a very general conjecture:

Conjecture 11.3. If K is a field of finite burden, possibly with extra structure, and O is a valuation ring on K, then (K, O) has finite burden.

There is no real approach to proving this, short of classifying the fields of finite burden.
11.8 Acknowledgments

An earlier version of these results was presented at the conference “Model Theory of Valued Fields” at IHP in March 2018. The author would like to thank the organizers for the invitation, which provided motivation to prove these new results.

The author would also like to thank Silvain Rideau-Kikuchi for helpful discussions which provided encouragement to write up the results.

This material is based upon work supported by the National Science Foundation under Awards No. DGE-1106400 and DMS-1803120. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

References

[1] Antonio J. Engler and Alexander Prestel. Valued Fields. Springer, 2005.

[2] Will Johnson. Fun with Fields. PhD thesis, University of California, Berkeley, 2016. Available at https://math.berkeley.edu/~willij/drafts/will-thesis.pdf.

[3] Itay Kaplan, Alf Onshuus, and Alexander Usvyatsov. Additivity of the dp-rank. Trans. Amer. Math. Soc., 365(11):5783–5804, November 2013.

[4] Samaria Montenegro-Guzmán. Théorie des modèles des corps pseudo-réels clos et pseudo-p-adiquement clos. PhD thesis, Université Paris Diderot, 2015.