SYMMETRIES OF QUANTUM LAX EQUATIONS FOR THE PAINLEVÉ EQUATIONS

HAJIME NAGOYA AND YASUHIKO YAMADA

ABSTRACT. The Painlevé equations can be written as Hamiltonian systems with affine Weyl group symmetries. A canonical quantization of the Painlevé equations preserving the affine Weyl group symmetries has been studied. While, the Painlevé equations are isomonodromic equations for certain second-order linear differential equations. In this paper, we introduce a canonical quantization of Lax equations for the Painlevé equations and construct symmetries of the quantum Lax equations. We also show that our quantum Lax equations are derived from Virasoro conformal field theory.

Mathematics Subject Classifications (2010): 17B80, 33C70, 34M55, 81R12, 81T40
Keywords: Affine Weyl groups, Painlevé equations, Lax equations, conformal field theory

1. Introduction

It is known that the Painlevé equations are Hamiltonian systems and, except for the first one, admit the affine Weyl group actions, as Bäcklund transformations [19]. For example, the second Painlevé equation $P_{II}(\alpha)$ ($\alpha \in \mathbb{C}$) is the Hamiltonian system:

$$\frac{dq}{dt} = \frac{\partial H_{II}}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H_{II}}{\partial q},$$

where

$$H_{II}(q,p,t,\alpha) = \frac{p^2}{2} - \left(q^2 + \frac{t}{2}\right)p - \alpha q.$$

Let (q, p) be a solution to $P_{II}(\alpha)$. Then, birational canonical transformations defined by

$$s(q,p) = (q + \frac{\alpha}{p}, p),$$
$$\pi(q,p) = (-q, -p + 2q^2 + t),$$

give solutions to $P_{II}(-\alpha)$, $P_{II}(1-\alpha)$, respectively. The Bäcklund transformation group generated by s, π is equivalent to the extended affine Weyl group of type $A_{1}^{(1)}$.

Since the Painlevé equations are Hamiltonian systems, their quantization can be considered naturally. A canonical quantization of the Painlevé equations preserving the affine Weyl group actions have been studied [12], [16], [17] (see also [7], [13], [14]). For example, the quantum second Painlevé equation QP_{II} can be written as the time-dependent Schrödinger equation:

$$\kappa \frac{\partial}{\partial t} \Psi(t,x) = H_{II}\left(x, \frac{\partial}{\partial x}, t, \alpha\right) \Psi(t,x).$$
\[
\left(\frac{1}{2} \left(\frac{\partial}{\partial x} \right)^2 - x \frac{\partial}{\partial x} x - \frac{t}{2} \frac{\partial}{\partial x} - \alpha x \right) \Psi(t, x).
\]

Bäcklund transformations of QP$_{II}$ are realized by the Euler transformation (or the Riemann-Liouville integral) and a gauge transformation. Let \(\Psi(t, x) \) be a solution to QP$_{II}(\alpha)$. Then, transformations of a solution \(\Psi(t, x) \) defined by

\[
s(\Psi(t, x)) = \int_{\Delta} (x - u)^{\alpha-1} \Psi(t, u) du,
\]

\[
\pi(\Psi(t, x)) = \exp\left(\frac{2}{3}x^3 + xt\right) \Psi(t, -x),
\]

with an appropriate cycle \(\Delta \), are solutions to QP$_{II}(-\alpha)$, QP$_{II}(-\kappa - \alpha)$, respectively. Similarly, the affine Weyl group symmetries for the quantum Painlevé equations QP$_{III}$- QP$_{VI}$ were realized by using gauge transformations and the Laplace transformation \cite{17}. In both the classical and quantum cases, the affine Weyl group symmetries play an important role to study special solutions to the systems.

On the other hand, the Painlevé equations describe the isomonodromic deformation for certain second-order linear differential equations \cite{6}. Since this fact is crucial for the Painlevé equations, it will be important to study its quantization. In the present paper, we introduce quantum Lax equations\cite{19} and study their symmetries. In doing this, a useful fact is that the classical Lax equation can be written concisely in terms of the quantum and classical Hamiltonians. For example, the Lax equation for the second Painlevé equation P$_{II}(\alpha + 1)$ can be written as

\[
\left(H_{II}(x, \frac{\partial}{\partial x}, t, \alpha) - H_{II}(q, p, t, \alpha + 1) - \frac{1}{2(x - q)} \left(\frac{\partial}{\partial x} - p \right) \right) y(x) = 0,
\]

and a natural quantization of this gives the following quantum Lax equation:

\[
\left(H_{II}(x, \epsilon_1 \frac{\partial}{\partial x}, t, \alpha) - H_{II}(q, \epsilon_2 \frac{\partial}{\partial q}, t, \alpha + \epsilon_1 - \epsilon_2) - \frac{\epsilon_1 - \epsilon_2}{2(x - q)} \left(\epsilon_1 \frac{\partial}{\partial x} - \epsilon_2 \frac{\partial}{\partial q} \right) \right) \Phi(x, q) = 0.
\]

The symmetry of these quantum Lax equations can be derived by using the symmetry properties of the quantum Hamiltonians studied in \cite{17}. Taking the classical limit of the quantum Lax equations as \(\epsilon_2 \to 0 \) with \(\epsilon_2 \partial / \partial q \to p \), we recover the classical Lax equations and symmetries of them. On realization of symmetries of the classical Lax equations, see \cite{23}, \cite{9} and references therein, for example. We also derive the quantum Lax equations from Virasoro conformal field theory with two null fields at \(x \) and \(q \). Note that the quantum Painlevé equations are derived from the conformal field theory with one null field \cite{3}, \cite{16}, \cite{2}.

Similarly in the case of the quantum Painlevé equations \cite{17}, symmetries constructed in this paper generate solutions to the quantum Lax equations. We shall investigate solutions to the quantum Lax equations in the forthcoming paper.

The remainder of this paper is organized as follows. In section 2, we introduce quantum Lax equations for the Painlevé equations. After recalling symmetries of the quantum Painlevé

1 We call the linear differential equations (the Lax auxiliary linear problems) simply as Lax equations.
equations, we define transformations and show that those are Bäcklund transformations for the quantum Lax equations. In section 3, we derive quantum Lax equations introduced in section 2 from Virasoro conformal field theory. In appendix, we summarize the known results for the classical case.

Remark 1.1. It is known that the quantum Painlevé equations with \(\kappa = 1 \) have a relation to corresponding classical Lax equations \([22], [18], [25]\). More precisely, the wave functions of the classical Lax equations multiplied by the tau functions of the Painlevé equations are solutions to the quantum Painlevé equations with \(\kappa = 1 \). This means that the classical Lax equations are related to the conformal field theory with the central charge \(c = 1 \). In \([4]\), the tau function of the classical sixth Painlevé equation is interpreted as a four points correlation function in the conformal field theory with \(c = 1 \).

2. **Symmetry**

In this section, we introduce the quantum Lax equations for the Painlevé equations and describe symmetries of them. In order to construct Bäcklund transformations of the quantum Lax equations, we use Bäcklund transformations of the quantum Painlevé equations.

2.1. **P\(_{VI}\) case.** Let \(\mathcal{K} \) be the skew field over \(\mathbb{C} \) defined by the generators \(x, y, q, p, t, d, \alpha_i \) (\(0 \leq i \leq 4 \)), \(\epsilon_1, \epsilon_2 \), and the commutation relations

\[
[y, x] = \epsilon_1, \quad [p, q] = \epsilon_2, \quad [d, t] = 1,
\]

and the other commutation relations are zero, and a relation \(\alpha_0 + \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 = -\epsilon_1 + \epsilon_2 \).

Let \(H_{VI}^x(\alpha) \) (\(\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4) \)) be the Hamiltonian for the quantum sixth Painlevé equation defined by

\[
H_{VI}^x(\alpha) = x(x-1)(x-t) \left(y - \frac{\alpha_4 - \epsilon_1}{x} - \frac{\alpha_3 - \epsilon_1}{x-1} - \frac{\alpha_0 - \epsilon_2}{x-t} \right) y + (\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \epsilon_1) x.
\]

Let \(H_{VI}^q(\alpha) \) be defined by replacing \(x, y, \epsilon_1, \epsilon_2 \) in \(H_{VI}^x(\alpha) \) with \(q, p, \epsilon_2, \epsilon_1 \), respectively.

Let us introduce the quantum Lax operators \(L_{VI}(\alpha) \) and \(B_{VI}(\alpha) \) for the sixth Painlevé equation defined by

\[
L_{VI}(\alpha) = H_{VI}^x(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4) - H_{VI}^q(\alpha_0, \alpha_1, \alpha_2 + \kappa, \alpha_3, \alpha_4) - \frac{\kappa}{x-q} (x(x-1)(q-t)y - q(q-1)(x-t)p),
\]

\[
B_{VI}(\alpha) = \epsilon_2 H_{VI}^x(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4) - \epsilon_1 H_{VI}^q(\alpha_0, \alpha_1, \alpha_2 + \kappa, \alpha_3, \alpha_4) - \kappa \epsilon_1 \epsilon_2 (t - 1) d.
\]

Here \(\kappa = \epsilon_1 - \epsilon_2 \). We use this notation throughout the paper.

Let us recall the extended affine Weyl group \(\tilde{W}(D_4^{(1)}) \) symmetry of the quantum sixth Painlevé equation. Here, \(\tilde{W}(D_4^{(1)}) = W(D_4^{(1)}) \rtimes G \), where \(W(D_4^{(1)}) = \langle s_0, s_1, s_2, s_3, s_4 \rangle \) is the affine Weyl group of type \(D_4^{(1)} \) and \(G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle \) is the automorphism group of the Dynkin diagram of type \(D_4^{(1)} \).
Definition 2.1 (cf. [14]). Let the automorphisms s^q for $s \in \{s_0, s_1, s_2, s_3, s_4, \sigma_1, \sigma_2, \sigma_3\}$ on \mathcal{K} be defined by the following table:

z	α_0	α_1	α_2	α_3	α_4	q	p	t	d
$s_0^q(z)$	$-\alpha_0$	α_1	$\alpha_2 + \alpha_0$	α_3	α_4	q	$p - \frac{\alpha_0}{q-t}$	t	$d + \frac{\alpha_0 q}{q-t}$
$s_1^q(z)$	α_0	$-\alpha_1$	$\alpha_2 + \alpha_1$	α_3	α_4	q	p	t	d
$s_2^q(z)$	$\alpha_0 + \alpha_2$	$\alpha_1 + \alpha_2$	$-\alpha_2$	$\alpha_3 + \alpha_2$	$\alpha_4 + \alpha_2$	$q + \frac{\alpha_2 p}{q}$	p	t	d
$s_3^q(z)$	α_0	α_1	$\alpha_2 + \alpha_3$	$-\alpha_3$	α_4	q	$p - \frac{\alpha_1}{q-1}$	t	d
$s_4^q(z)$	α_0	α_1	$\alpha_2 + \alpha_4$	α_3	$-\alpha_4$	q	$p - \frac{\alpha_2}{q}$	t	d
$\sigma_1^q(z)$	α_0	α_1	α_2	α_4	α_3	$1 - q$	$-p$	$1 - t$	$-d$
$\sigma_2^q(z)$	α_0	α_4	α_2	α_3	α_1	$\frac{1}{q}$	$-q(p + \alpha_2)$	$\frac{1}{t}$	$-t^2 d$
$\sigma_3^q(z)$	α_4	α_1	α_2	α_3	α_0	$\frac{1-q}{t-1}$	$-(t-1)p$	$\frac{1}{t-1}$	$(1-t)(q-1)p$

Let $s_i (0 \leq i \leq 4)$ be the automorphisms on \mathcal{K} defined by $s_i(\alpha_j) = s^q_i(\alpha_j)$ for $j = 0, \ldots, 4$, and $s_i(f) = f$, for $f = x, y, q, p, t, d$, and let $\sigma_i (1 \leq i \leq 3)$ be the automorphisms on \mathcal{K} defined by $\sigma_i(\alpha_j) = \sigma^q_i(\alpha_j)$ for $j = 0, \ldots, 4$, and $\sigma_i(f) = f$ for $f = x, y, q, p, t, d$.

The automorphisms s^q for $s \in \{s_0, s_1, s_2, s_3, s_4, \sigma_1, \sigma_2, \sigma_3\}$ are expressed as compositions of transformations s for parameters and transformations R^q_i for variables, that is, $s^q = s \circ R^q_i$ (Theorem 2.4 [17]). The automorphism R^q_i is a Bäcklund transformation for the quantum sixth Painlevé equation, which transforms a solution with the parameter α to a solution with the parameter $s(\alpha)$. As for birational actions of the Weyl group of any symmetrizable generalized Cartan matrix, see [10] and reference therein.

Let L_x, L_q be the Laplace transformations on \mathcal{K} with respect to x, q, respectively, defined by
\[L_x(y) = x, \quad L_q(x) = -y, \quad L_q(p) = q, \quad L_q(q) = -p. \]

Let $\text{Ad}((x-c)^{\beta/e_1})$ for $(c \in \mathbb{C}, \beta \in \mathbb{C})$ be the gauge transformations on \mathcal{K} defined by
\[\text{Ad}((x-c)^{\beta}) (y) = y - \frac{\beta}{x-c}. \]

Let $\text{Ad}((x-t)^{\beta/e_1})$ for $(\beta \in \mathbb{C})$ be the gauge transformations on \mathcal{K} defined by
\[\text{Ad}((x-t)^{\beta/e_1}) (y) = y - \frac{\beta}{x-t}, \quad \text{Ad}((x-t)^{\beta/e_1}) (d) = d + \frac{\beta}{e_1} \frac{1}{x-t}. \]

Here, we have omitted to write the transformation on the variables if it acts identically. The automorphisms $\text{Ad}((q-c)^{\beta/e_1})$, $\text{Ad}((q-t)^{\beta/e_1})$ are defined in the same way above.

Definition 2.2 (cf. [17]). Let the automorphisms $R^x_i(\alpha_i) (i = 0, 1, 2, 3, 4)$ and $R_{\sigma_i}(i = 1, 3)$, $R^x_{\sigma_2}(\alpha_2)$ on \mathcal{K} be defined by
\[R^x_{\sigma_0}(\alpha_0) = \text{Ad}((x-t)^{\frac{\alpha_0}{e_1}}), \quad R^x_{\sigma_1}(\alpha_1) = \text{id}, \quad R^x_{\sigma_2}(\alpha_2) = L_x^{-1} \circ \text{Ad}((x^{-1})^{\frac{\alpha_0}{e_1}}) \circ L_x, \]
\[R^x_{\sigma_3}(\alpha_3) = \text{Ad}((x-1)^{-\frac{\alpha_0}{e_1}}), \quad R^x_{\sigma_4}(\alpha_4) = \text{Ad}(x^{\frac{\alpha_0}{e_1}}), \]
\[R^x_{\sigma_1}(\alpha_1) = \text{id}, \quad R^x_{\sigma_2}(\alpha_2) = L_x^{-1} \circ \text{Ad}((x^{-1})^{\frac{\alpha_0}{e_1}}) \circ L_x, \]
\[R^x_{\sigma_3}(\alpha_3) = \text{Ad}((x-1)^{-\frac{\alpha_0}{e_1}}), \quad R^x_{\sigma_4}(\alpha_4) = \text{Ad}(x^{\frac{\alpha_0}{e_1}}), \]
\[R_{\sigma_1} = (x \mapsto 1 - x, q \mapsto 1 - q, t \mapsto 1 - t), \quad R_{\sigma_2}^x(\alpha_2) = R_{s_4}^x(\alpha_2 + \epsilon_1) \circ \left(x \mapsto \frac{1}{x}, q \mapsto \frac{1}{q}, t \mapsto \frac{1}{t} \right), \]
\[R_{\sigma_3} = \left(x \mapsto \frac{t - x}{t - 1}, q \mapsto \frac{t - q}{t - 1}, t \mapsto \frac{t}{t - 1} \right). \]

Here, \((x \mapsto f(x, t), t \mapsto g(x, t))\) stands for a transformation of variables. The automorphisms \(R_{\sigma_i}^q(\alpha_i)\) \((i = 0, 1, 2, 3, 4)\), \(R_{\sigma_2}^x(\alpha_2)\) are defined by replacing \(x, \epsilon_1\) in \(R_{s_4}^x(\alpha_i), R_{\sigma_2}^x(\alpha_2)\) with \(q, \epsilon_2\), respectively.

Proposition 2.3 ([14]). The automorphisms \(R_{\sigma_i}^q(\alpha_i)\) \((i = 0, 1, 2, 3, 4)\), \(R_{\sigma_i}(\alpha_i)\) \((i = 1, 3)\), \(R_{\sigma_2}^x(\alpha_2)\) preserve the Hamiltonian \(H_{V_1}^x(\alpha)\) in the following sense:

\[R_{\sigma_i}^q(\alpha_i)(H_{V_1}^x(\alpha)) = H_{V_1}^x(s_i(\alpha)) + C_{s_i}, \quad R_{\sigma_i}(H_{V_1}^x(\alpha)) = -H_{V_1}^x(\sigma_1(\alpha)) + C_{\sigma_1}, \]
\[R_{\sigma_2}^x(\alpha_2)(H_{V_1}^x(\alpha)) = \frac{1}{t}H_{V_1}^x(\sigma_2(\alpha)) + C_{\sigma_2}, \quad R_{\sigma_3}(H_{V_1}^x(\alpha)) = \frac{1}{1 - t}H_{V_1}^x(\sigma_3(\alpha)) + C_{\sigma_3}, \]

where

\[C_{s_0} = a_0 \left(4 - \epsilon_1 + \kappa x + \kappa \frac{x(x - 1)}{t - x} \right), \]
\[C_{s_1} = 0, \]
\[C_{s_2} = \alpha_2(\alpha_3 + \alpha_1 + \alpha_2 + \epsilon_1 + (\alpha_0 + \alpha_1 + \alpha_2 + \epsilon_1 + \kappa)t), \]
\[C_{s_3} = \alpha_3((\alpha_4 - \epsilon_1)t - \kappa x), \]
\[C_{s_4} = \alpha_4(\alpha_0 - \epsilon_2 + (\alpha_3 - \epsilon_1)t), \]
\[C_{\sigma_1} = (\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \epsilon_1), \]
\[C_{\sigma_2} = \frac{1}{t}(\alpha_2 + \epsilon_1)(\alpha_0 + \alpha_1 + \alpha_2 + \kappa + t(\alpha_1 + \alpha_2 + \alpha_3), \]
\[C_{\sigma_3} = \frac{t}{t - 1}((\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \epsilon_1) - \kappa(x - 1)y). \]

By definition, the automorphisms \(R_{\sigma_i}^q(\alpha_i)\) \((i = 0, 1, 2, 3, 4)\) and \(R_{\sigma_i}(\alpha_i)\) \((i = 1, 3)\), \(R_{\sigma_2}^x(\alpha_2)\) act the Hamiltonian \(H_{V_1}^q(\alpha)\) in the same way above.

Let \(D(\alpha_2)\) be defined by

\[D(\alpha_2) = yp + \frac{\alpha_2 + \epsilon_1}{x - q}y + \frac{\alpha_2 + \epsilon_1}{q - x}p. \tag{2.3} \]

We use this notation throughout the paper.

Definition 2.4. Let the automorphisms \(R_{\sigma_i}(\alpha_i)\) \((i = 0, 1, 3, 4)\), \(R_{\sigma_2}, T_{s_0s_1s_3s_4s_2}\) and \(S\) on \(\mathcal{K}\) be defined by

\[R_{\sigma_i} = R_{s_4}^x(\alpha_i)R_{s_4}^q(\alpha_i), \quad R_{\sigma_2} = R_{s_4}^x(\alpha_2 + \epsilon_1)R_{s_2}^x, \]
\[T_{s_0s_1s_3s_4s_2} = R_{s_2}^x(-\alpha_2 - \kappa)R_{s_0}^x(\alpha_0)R_{s_1}^x(\alpha_1)R_{s_3}^x(\alpha_3)R_{s_4}^x(\alpha_4)R_{s_0}^q(\alpha_0)R_{s_1}^q(\alpha_1)R_{s_3}^q(\alpha_3)R_{s_4}^q(\alpha_4)(\alpha_2 + \kappa), \]
\[S = \text{Ad}(D(\alpha_2)^{-1})R_{s_2}^x(\alpha_2)R_{s_2}^q(\alpha_2 + \kappa), \]

where \(\tilde{\alpha}_i = -s_0s_1s_3s_4s_2(\alpha_0) = \alpha_i + \alpha_2 + \kappa\) for \(i = 0, 1, 3, 4\).
These automorphisms $R_{s_i} \ (i = 0, 1, 3, 4)$, R_{s_2} and $T_{s_0 s_1 s_3 s_4 s_2}$ are naturally given by looking at the change of parameters when the automorphisms $R_{s_i}^k(\alpha_i)$, $R_{s_2}^h(\alpha_i)$ act the quantum Lax operators.

Theorem 2.5. The automorphisms $R_{s_i} \ (i = 0, 1, 3, 4)$, $T_{s_0 s_1 s_3 s_4 s_2}$ and S act the quantum Lax operators $L_{V_1}(\alpha)$ and $B_{V_1}(\alpha)$ as follows.

For $s \in \{s_0, s_1, s_3, s_4, \sigma_1, \sigma_2, \sigma_3\}$,

$$R_s \left(L_{V_1}(\alpha), B_{V_1}(\alpha)\right) = c_s \left(L_{V_1}(s(\alpha)), B_{V_1}(s(\alpha)) + f_s\right),$$

where

$$c_s = 1 \ (i = 0, 1, 3, 4), \quad c_{\sigma_1} = -1, \quad c_{\sigma_2} = \frac{1}{t}, \quad c_{\sigma_3} = \frac{1}{1-t},$$

and

$$f_{s_0} = -\kappa \alpha_0 (\alpha_4 + (t-1)(\epsilon_1 + \epsilon_2)),
\quad f_{s_1} = 0,
\quad f_{s_3} = -\kappa \alpha_3 \alpha_4 t,
\quad f_{s_4} = -\kappa \alpha_4 (\alpha_0 - \epsilon_1 - \epsilon_2 + \alpha_3 t),
\quad f_{\sigma_1} = \kappa(\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \epsilon_1),
\quad f_{\sigma_2} = -\kappa(\alpha_2 + \epsilon_1)(\alpha_0 + \alpha_1 + \alpha_2 - \epsilon_2 + (\alpha_1 + \alpha_2 + \alpha_3 + \epsilon_1)t),
\quad f_{\sigma_3} = \kappa(\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \epsilon_1)t.$$

For the automorphism $T_{s_0 s_1 s_3 s_4 s_2}$,

$$l_{\tau_{s_0 s_1 s_3 s_4 s_2}} T_{s_0 s_1 s_3 s_4 s_2} \left((x-q)L_{V_1}(\alpha) \right) = (x-q)L_{V_1} \left(s_0 s_1 s_3 s_4 s_2(\alpha) \right), \quad (2.4)$$

$$T_{s_0 s_1 s_3 s_4 s_2} \left(B_{V_1}(\alpha) \right) = B_{V_1} \left(s_0 s_1 s_3 s_4 s_2(\alpha) \right) + f_{\tau_{s_0 s_1 s_3 s_4 s_2}},$$

where

$$f_{\tau_{s_0 s_1 s_3 s_4 s_2}} = -\kappa (\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_0 t) + (\alpha_2 + \kappa)(\alpha_1 + \alpha_2 + \epsilon_1)t,$$

and $l_{\tau_{s_0 s_1 s_3 s_4 s_2}}$ is some element in \mathcal{K} whose explicit form is given in the proof.

For the automorphism S, \[yp \left(R_{s_2}^k(\alpha_2)R_{s_2}^h(\alpha_2 + \kappa) \left((x-q)L_{V_1}(\alpha) \right) \right) D(\alpha_2) \]

$$= ((x-q)yp + (\alpha_2 + \kappa - \epsilon_2)y + (\epsilon_1 - \alpha_2)p) \left(D(\alpha_2) - \frac{(\alpha_2 + \epsilon_1)(\epsilon_1 + \epsilon_2)}{(x-q)^2} \right) L_{V_1}(\tilde{\alpha}_0, \tilde{\alpha}_1, -\alpha_2 - 2\epsilon_1, \tilde{\alpha}_3, \tilde{\alpha}_4),$$

$$S \left(B_{V_1}(\alpha) + f_\tilde{\alpha} \right) = B_{V_1}(\tilde{\alpha}_0, \tilde{\alpha}_1, -\alpha_2 - 2\epsilon_1, \tilde{\alpha}_3, \tilde{\alpha}_4) - D(\alpha_2) - \frac{2(\alpha_2 + \epsilon_1)\epsilon_1 \epsilon_2}{(x-q)^2} L_{V_1}(\tilde{\alpha}_0, \tilde{\alpha}_1, -\alpha_2 - 2\epsilon_1, \tilde{\alpha}_3, \tilde{\alpha}_4),$$

where $\tilde{\alpha}_i = \alpha_i + \alpha_2 + \epsilon_1 (i = 0, 1, 3, 4)$ and

$$f_\tilde{\alpha} = \kappa(\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \alpha_3 + \epsilon_1 + (\alpha_0 + \alpha_1 + \alpha_2 - \epsilon_2)t).$$
Proof: A proof follows from direct computation. As an example, we compute (2.4) whose precise form is

\[(x - q)p - \alpha_2 - \kappa)yR^s_{s_2}(-\alpha_2 - \kappa)R^s_{s_0}(\alpha_0)R^s_{s_3}R^s_{s_4}(\alpha_4) ((x - q)L_{VI}(\alpha)) \]

\[= (x - q)y + \alpha_2 + \kappa)pR^s_{s_2}(-\alpha_2 - \kappa)R^q_{s_0}(-\bar{\alpha}_0)R^s_{s_3}(-\bar{\alpha}_3)R^s_{s_4}(-\bar{\alpha}_4) ((x - q)L_{VI}(s_0s_1s_3s_4s_2(\alpha)) = 0. \]

(2.5)

From Proposition 2.3 and above, we have

\[R^s_{s_0}(\alpha_3)R^s_{s_3}(\alpha_3)R^s_{s_4}(\alpha_0) \left(H^s_{VI}(\alpha) - \frac{\kappa}{x - q}x(x - 1)(q - t)y \right) \]

\[= H^s_{VI}(s_0s_1s_3s_4(\alpha)) - \epsilon_1(\alpha_4 + \alpha_3)t + \alpha_4 + \alpha_0) \]

\[- \frac{\kappa}{x - q} (x(x - 1)(q - t)y + \alpha_4t + (\alpha_4(q - t - 1) + \alpha_3(q - t) + \alpha_0(q - 1))x). \]

From Proposition 2.3 and above, we have

\[R^s_{s_2}(-\alpha_2 - \kappa)R^s_{s_0}(\alpha_0)R^s_{s_3}(\alpha_3)R^s_{s_4}(\alpha_4) ((x - q)H^s_{VI}(\alpha) - \kappa x(x - 1)(q - t)y) \]

\[= (x - q)(H^s_{VI}(s_0s_1s_3s_4s_2(\alpha)) + A_1) \]

\[- \kappa((q - t)(x(x - 1)y + (\alpha_2 + \kappa)(2x - 1))) + \alpha_4t + B_1x) \]

\[+ \frac{\alpha_2 + \kappa}{y} (H^s_{VI}(s_0s_1s_3s_4s_2(\alpha)) + A_1 - \kappa(\alpha_2 - \epsilon_2)(q - t) - \kappa B_1), \]

(2.6)

where

\[A_1 = -\epsilon_1((\alpha_4 + \alpha_3)t + \alpha_4 + \alpha_0) + (\alpha_2 + \kappa)(\alpha_3 + \alpha_1 + \alpha_2 + \epsilon_2 + (\alpha_0 + \alpha_1 + \alpha_2 + \epsilon_1)t), \]

\[B_1 = \alpha_3(q - t - 1) + \alpha_3(q - t) + \alpha_0(q - 1). \]

In a similar way, we have

\[R^q_{s_2}(-\alpha_2 - \kappa)R^q_{s_0}(-\bar{\alpha}_0)R^q_{s_3}(-\bar{\alpha}_3)R^q_{s_4}(-\bar{\alpha}_4) ((x - q)H^q_{VI}(s_0s_1s_3s_4s_2(\alpha)) - \kappa q(q - 1)(x - t)p) \]

\[= (x - q)(H^q_{VI}(\alpha_0, \alpha_1, \alpha_2 + \kappa, \alpha_3, \alpha_4) + A_2) \]

\[- \kappa((x - t)(q(q - 1)p + \alpha_2 + \kappa)(2q - 1))) - (\alpha_4 + \alpha_2 + \kappa)t - B_2q) \]

\[- \frac{\alpha_2 + \kappa}{p} (H^q_{VI}(\alpha_0, \alpha_1, \alpha_2 + \kappa, \alpha_3, \alpha_4) + A_2 + \kappa(\alpha_2 + \kappa - \epsilon_2)(x - t) - \kappa B_2), \]

(2.7)

where

\[A_2 = -\epsilon_2((\alpha_3 + \alpha_1 - \kappa + (\alpha_0 + \alpha_1 - \kappa)t - (\alpha_2 + \kappa)(\alpha_3 + \alpha_1 + \alpha_2 + \epsilon_1 + (\alpha_0 + \alpha_1 + \alpha_2 + \epsilon_2)t), \]

\[B_2 = \alpha_1(t + 1 - x) + \alpha_0t + \alpha_3 + \alpha_2x + \kappa(2x + t + 1). \]

We substitute (2.6) and (2.7) into the left hand side of (2.5) and then we compute it directly by using the commutation relations. After straightforward calculations, we obtain the relation (2.5).
2.2. \(P_V \) case. Let \(K \) be the skew field over \(\mathbb{C} \) defined by the generators \(x, y, q, p, t, d, \alpha_i \) (\(0 \leq i \leq 3 \)), \(\epsilon_1, \epsilon_2 \), and the commutation relations:

\[
[y, x] = \epsilon_1, \quad [p, q] = \epsilon_2, \quad [d, t] = 1,
\]

and the other commutation relations are zero, and a relation \(\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 = -\epsilon_1 + \epsilon_2 \).

Let \(H_V^\alpha(\alpha) \) (\(\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3) \)) be the Hamiltonian for the quantum fifth Painlevé equation defined by

\[
H_V^\alpha(\alpha) = (x - 1)(y + t)xy - (\alpha_1 + \alpha_3 - \epsilon_1)xy + \alpha_1 y + (\alpha_2 + \epsilon_1)tx.
\]

Let \(H_V^q(\alpha) \) be defined by replacing \(x, y, \epsilon_1 \) in \(H_V^\alpha(\alpha) \) with \(q, p, \epsilon_2 \), respectively.

Let us introduce the quantum Lax operators \(L_V(\alpha) \) and \(B_V(\alpha) \) for the fifth Painlevé equation defined by

\[
L_V(\alpha) = H_V^\alpha(\alpha_0, \alpha_1, \alpha_2, \alpha_3) - H_V^q(\alpha_0 + \kappa, \alpha_1, \alpha_2 + \kappa, \alpha_3) - \frac{\kappa}{x - q}(x(x - 1)y - q(q - 1)p),
\]

\[
B_V(\alpha) = \epsilon_2 H_V^\alpha(\alpha_0, \alpha_1, \alpha_2, \alpha_3) - \epsilon_1 H_V^q(\alpha_0 + \kappa, \alpha_1, \alpha_2 + \kappa, \alpha_3) - \kappa \epsilon_1 \epsilon_2 dt.
\]

Let us recall the extended affine Weyl group \(\tilde{W}(A_3^{(1)}) \) symmetry of the quantum fifth Painlevé equation. Here, \(\tilde{W}(A_3^{(1)}) = W(A_3^{(1)}) \rtimes G \), where \(W(A_3^{(1)}) = \langle s_0, s_1, s_2, s_3 \rangle \) is the affine Weyl group of type \(A_3^{(1)} \) and \(G = \langle \pi, \sigma \rangle \) is the automorphism group of the Dynkin diagram of type \(A_3^{(1)} \).

Definition 2.6 (cf. [12]). Let the automorphisms \(s^g \) for \(s \in \{s_0, s_1, s_2, s_3, \pi, \sigma\} \) on \(K \) be defined by the following table:

\(z \)	\(\alpha_0 \)	\(\alpha_1 \)	\(\alpha_2 \)	\(\alpha_3 \)	\(q \)	\(p \)	\(t \)	\(d \)
\(s_0^g(z) \)	\(-\alpha_0 \)	\(\alpha_1 + \alpha_0 \)	\(\alpha_2 \)	\(\alpha_3 + \alpha_0 \)	\(q + \frac{\alpha_0}{p + t} \)	\(p \)	\(t \)	\(d - \frac{\alpha_0 \epsilon_2}{p + t} \)
\(s_1^g(z) \)	\(\alpha_0 + \alpha_1 \)	\(-\alpha_1 \)	\(\alpha_2 + \alpha_1 \)	\(\alpha_3 \)	\(q \)	\(p - \frac{\alpha_1}{q} \)	\(t \)	\(d \)
\(s_2^g(z) \)	\(\alpha_0 \)	\(\alpha_1 + \alpha_2 \)	\(-\alpha_2 \)	\(\alpha_3 + \alpha_2 \)	\(q + \frac{\alpha_2}{p} \)	\(p \)	\(t \)	\(d \)
\(s_3^g(z) \)	\(\alpha_0 + \alpha_3 \)	\(\alpha_1 \)	\(\alpha_2 + \alpha_3 \)	\(-\alpha_3 \)	\(q \)	\(p - \frac{\alpha_3}{q} \)	\(t \)	\(d \)
\(\pi^g(z) \)	\(\alpha_1 \)	\(\alpha_2 \)	\(\alpha_3 \)	\(\alpha_0 \)	\(-\frac{p}{t} \)	\(t(q - 1) \)	\(t \)	\(d + \frac{1 - q}{\epsilon_2} p \)
\(\sigma^g(z) \)	\(\alpha_2 \)	\(\alpha_1 \)	\(\alpha_0 \)	\(\alpha_3 \)	\(q \)	\(p + t \)	\(-t \)	\(-d - q/\epsilon_2 \)

Definition 2.7. Let the automorphisms \(R_x^s(\alpha_i) \) (\(i = 0, 1, 2, 3 \)), \(R_y^s \), \(R_{\sigma} \) on \(K \) be defined by

\[
R_x^s(\alpha_i) = L_x^{-1} \circ \text{Ad}\left((x + t)\frac{a_i}{q^i}\right) \circ L_x, \quad R_y^s(\alpha_i) = \text{Ad}\left(x^{-\frac{a_i}{q^i}}\right),
\]

\[
R_x^s(\alpha_2) = L_x^{-1} \circ \text{Ad}\left(x^{-\frac{a_2}{q^2}}\right) \circ L_x, \quad R_y^s(\alpha_3) = \text{Ad}\left((x - 1)\frac{a_3}{q^3}\right),
\]

\[
R_x^s = (x \mapsto t(x - 1)) \circ L_x, \quad R_{\sigma} = (t \mapsto -t) \circ \text{Ad}\left(\exp\left(\frac{xt}{\epsilon_1}\right)\right) \circ \text{Ad}\left(\exp\left(\frac{qt}{\epsilon_2}\right)\right).
\]

The automorphisms \(R_x^q(\alpha_i) \) (\(i = 0, 1, 2, 3 \)), \(R_y^q \) are defined by replacing \(x, \epsilon_1 \) in \(R_x^s(\alpha_i) \), \(R_x^s \) with \(q, \epsilon_2 \), respectively.
Proposition 2.8 ([12], [17]). The automorphisms \(R^i_{\alpha_i} (i = 0, 1, 2, 3) \), \(R^\sigma_{\pi} \), \(R^\sigma \) preserve the Hamiltonian \(H^\lambda_V(\alpha) \) in the following sense.

\[
R^i_{\alpha_i} (H^\lambda_V(\alpha)) = H^\lambda_V(s_i(\alpha)) + C_{s_i}, \\
R^\sigma_{\pi} (H^\lambda_V(\alpha)) = H^\lambda_V(\pi^{-1}(\alpha)) + C_{\pi}, \\
R^\sigma (H^\lambda_V(\alpha)) = H^\lambda_V(\sigma(\alpha)) + C_{\sigma},
\]

where

\[
C_{s_0} = -\alpha_0(\alpha_2 + 2\epsilon_1 - \epsilon_2 + \kappa \alpha_0 \frac{1}{y + t}), \\
C_{s_1} = -\alpha_1(\alpha_3 + t - \epsilon_1), \\
C_{s_2} = -\alpha_2(\alpha_0 + 2\epsilon_1 - \epsilon_2 + t), \\
C_{s_3} = -\alpha_3(\alpha_1 - \epsilon_1), \\
C_{\pi} = \alpha_2\epsilon_1 + \alpha_1(\epsilon_1 - t) - \kappa\epsilon_1(x - 1), \\
C_{\sigma} = (\alpha_1 - \epsilon_1 + \kappa\epsilon_1)t.
\]

By definition, the automorphisms \(R^i_{\alpha_i} (i = 0, 1, 2, 3) \), \(R^\sigma_{\pi} \) and \(R^\sigma \) act the Hamiltonian \(H^\lambda_V(\alpha) \) in the same way above.

Definition 2.9. Let the automorphisms \(R_{s_i} \) \((i = 1, 3)\), \(R_{\pi} \), \(T_{s_1 s_2 s_3} \), \(T_{s_1 s_2 s_3 \pi^{-1}} \), \(S \) on \(\mathcal{K} \) be defined by

\[
R_{s_i} = R^i_{\alpha_i} R_{s_i}^0(\alpha_i), \quad R_{\pi} = R^0_{\pi} R^\pi_{\pi} R^\pi_{\pi}, \\
T_{s_1 s_2 s_3} = R^i_{\alpha_i} (-\alpha_2 - \kappa) R^i_{\alpha_i} (\alpha_3) R^i_{\alpha_2} (\alpha_2 + \kappa), \\
T_{s_1 s_2 s_3 \pi^{-1}} = R^i_{\alpha_i} R^i_{\alpha_3} (s_1 s_2 (\alpha_3)) R^i_{\alpha_2} (s_1 (\alpha_2)) R^i_{\alpha_1} (-\alpha_1 + \kappa) R^i_{\alpha_2} (-s_1 (\alpha_2)) R^i_{\alpha_3} (-s_2 s_3 (\alpha_3)) (R^\pi_{r_\sigma})^{-1}, \\
S = \text{Ad}(D'(\alpha_2)^{-1})R^i_{s_i} (\alpha_2) R^i_{s_i} (\alpha_2 + \kappa),
\]

where \(\alpha_i = -\sigma s_1 s_2 s_3 (\alpha_i) = \alpha_1 + \alpha_2 + \kappa \) for \(i = 1, 3 \), and \(D'(\alpha_2) \) is given in (2.3).

Theorem 2.10. The automorphisms \(R_{s_i} \) \((i = 1, 3)\), \(R_{\sigma} \), \(R^2_{\pi} \), \(T_{s_1 s_2 s_3} \), \(T_{s_1 s_2 s_3 \pi^{-1}} \) and \(S \) act the quantum Lax operators \(L_V(\alpha) \) and \(B_V(\alpha) \) as follows.

For the automorphisms \(R_{s} \) \((s \in \{s_1, s_3, \sigma\})\),

\[
R_s (L_V(\alpha), B_V(\alpha)) = (L_V(s(\alpha)), B_V(s(\alpha)) + f_s),
\]

where

\[
f_{s_1} = \kappa \alpha_1 (\alpha_3 + t), \quad f_{s_3} = \kappa \alpha_1 \alpha_3, \quad f_{\sigma} = -\kappa \alpha_1 t.
\]

For the automorphism \(R^2_{\pi} \),

\[
R^2_{\pi} ((x - q)L_V(\alpha), B_V(\alpha)) = \left((q - x)L_V(\pi^2(\alpha)), B_V(\pi^2(\alpha)) - \kappa(\alpha_2 + \alpha_3 + \kappa)t \right).
\]

For the automorphisms \(T_r \) \((r \in \{\sigma s_1 s_2 s_3, s_1 s_2 s_3 \pi^{-1}\})\),

\[
l_T \cdot T_r ((x - q)L_V(\alpha)) = (x - q)L_V(r(\alpha)), \quad (2.8) \\
T_r (B_V(\alpha)) = B_V(r(\alpha)) + f_r,
\]
where
\[f_{T_{s_1 s_2}} = \kappa(\alpha_2 - \kappa)(\alpha_0 - t), \quad f_{T_{s_1 s_2 s_3}} = 0, \]
and \(l_{T_{s_1 s_2}}, l_{T_{s_1 s_2 s_3}} \) are some elements in \(\mathcal{K} \) whose explicit forms are given in the proof.

For the automorphism \(S \),
\[
yp \left(R_{s_2}^x(\alpha_2) R_{s_2}^q(\alpha_2 + \kappa) ((x - q)L_V(\alpha)) \right) D(\alpha_2) = ((x - q)y + (\alpha_2 + \kappa - \epsilon_2)y + (\epsilon_1 - \alpha_2)p) \left(D(\alpha_2) - \frac{(\alpha_2 + \epsilon_1)(\epsilon_1 + \epsilon_2)}{(x - q)^2} \right) L_V(\alpha_0, \tilde{\alpha}_1, -\alpha_2 - 2\epsilon_1, \tilde{\alpha}_3),
\]
\[
S (B_V(\alpha) + f_S) = B_V(\alpha, \tilde{\alpha}_1, -\alpha_2 - 2\epsilon_1, \tilde{\alpha}_3) - D(\alpha_2)^{-1} \frac{2(\alpha_2 + \epsilon_1)\epsilon_1\epsilon_2}{(x - q)^2} L_V(\alpha_0, \tilde{\alpha}_1, -\alpha_2 - 2\epsilon_1, \tilde{\alpha}_3),
\]
where \(\tilde{\alpha}_i = \alpha_i + \alpha_2 + \epsilon_1 \) (i = 1, 3) and
\[
f_S = \kappa(\alpha_2 + \epsilon_1)(\alpha_1 + \alpha_2 + \alpha_3 + \epsilon_1 + t).
\]

Proof. For the cases of the automorphisms \(T_r \) (\(r \in \{\sigma s_1 s_2, s_1 s_2 s_3\} \) acting \(L_V(\alpha) \), we show that
\[
((x - q)p - \alpha_2 - \kappa) y R_{s_2}^x(-\alpha_2 - \kappa) R_{s_1}^x(\alpha_1) R_{s_3}^x(\alpha_3) \text{Ad} \left(\exp \left(-\frac{qf}{\epsilon_1} \right) \right) \left((x - q)L_V(\alpha) \right)
\]
\[
= ((x - q)y + \alpha_2 + \kappa) p R_{s_2}^2(-\alpha_2 - \kappa) R_{s_1}^q(\tilde{\alpha}_1) R_{s_3}^q(\tilde{\alpha}_3)
\]
\[
\circ (t \mapsto -t) \text{Ad} \left(\exp \left(-\frac{qt}{\epsilon_2} \right) \right) \left((x - q)L_V(\alpha_0, s_1 s_2, s_3) \right), \tag{2.9}
\]
\[
AR^x_3 \left((x - 1) R_{s_3}^x(s_1 s_2(\alpha_3)) \left(y R_{s_2}^x(s_1(\alpha_2)) R_{s_1}^x(\alpha_1) (x - q) L_V(\alpha) \right) \right)
\]
\[
= BR^y_3 \left((q - 1) R_{s_3}^q(s_1 s_2(\alpha_3)) \left(p R_{s_2}^q(s_1(\alpha_2)) R_{s_1}^q(\alpha_1 - \kappa) (x - q) L_V(s_1 s_2 s_3 \pi^{-1}(\alpha)) \right) \right), \tag{2.10}
\]
which are the explicit forms of (2.8). Here \(A, B \) are elements in \(\mathcal{K} \) such that
\[
A = a_{0,3}p^3 - \frac{q - 1}{x - 1}yp^2 + a_{0,2}p^2 + (\alpha_3 - \epsilon_2 + t(1 - q)(1 + x))yp + a_{1,0}y + a_{0,1}p + a_{0,0},
\]
\[
B = y^3 + b_{2,1}y^2p + b_{2,0}y^2 + b_{1,1}yp + b_{1,0}y + b_{0,1}p + b_{0,0}.
\]

where \(a_{i,j}, b_{i,j} \) are rational functions of \(x, q, t, \alpha_i \) (\(i = 1, 2, 3 \), \(\epsilon_1, \epsilon_2 \)). We omit the proofs of (2.9), (2.10), since they are similar to that of Theorem 2.5.

Proofs of the other cases follow from direct computations by using Proposition 2.8. \(\square \)

Actions involving \(R_{s_0}^x(\alpha_0), R_{s_0}^q(\alpha_0) \) on the quantum Lax operators can be obtained from Theorem 2.10 because of the relations
\[
R_{\sigma} R_{s_0}^x(\alpha_2) R_{\sigma} = R_{s_2}^x(\alpha_2), \quad R_{\sigma} R_{s_0}^q(\alpha_2) R_{\sigma} = R_{s_2}^q(\alpha_2).
\]
2.3. P\textsubscript{IV} case. Let \(\mathcal{K} \) be the skew field over \(\mathbb{C} \) defined by the generators \(x, y, q, p, t, d, \alpha \) \((0 \leq i \leq 2), \epsilon_1, \epsilon_2, \) and the commutation relations:
\[
[y, x] = \epsilon_1, \quad [p, q] = \epsilon_2, \quad [d, t] = 1,
\]
and the other commutation relations are zero, and a relation \(\alpha_0 + \alpha_1 + \alpha_2 = -\epsilon_1 + \epsilon_2. \)
Let \(H_{\text{IV}}^x(\alpha) \) \((\alpha = (\alpha_0, \alpha_1, \alpha_2)) \) be the Hamiltonian for the quantum fourth Painlevé equation defined by
\[
H_{\text{IV}}^x(\alpha) = xy - xy - txy - \alpha_2 x - \alpha_1 y.
\]
Let \(H_{\text{IV}}^q(\alpha) \) be defined by replacing \(x, y, \epsilon_1, \epsilon_2 \) in \(H_{\text{IV}}^x(\alpha) \) with \(q, p, \epsilon_2, \epsilon_1 \), respectively.

Let us introduce the quantum Lax operators \(L_{\text{IV}}(\alpha) \) and \(B_{\text{IV}}(\alpha) \) for the fourth Painlevé equation defined by
\[
L_{\text{IV}}(\alpha) = H_{\text{IV}}^x(\alpha_0, \alpha_1, \alpha_2) - H_{\text{IV}}^q(\alpha_0 + \kappa, \alpha_1, \alpha_2 + \kappa) - \frac{\kappa}{x - q}(xy - qp),
\]
\[
B_{\text{IV}}(\alpha) = \epsilon_2 H_{\text{IV}}^x(\alpha_0, \alpha_1, \alpha_2) - \epsilon_1 H_{\text{IV}}^q(\alpha_0 + \kappa, \alpha_1, \alpha_2 + \kappa) - \kappa \epsilon_1 \epsilon_2 d.
\]

Let us recall the extended affine Weyl group \(\tilde{W}(A_{2}^{(1)}) \) symmetry of the quantum fourth Painlevé equation. Here, \(\tilde{W}(A_{2}^{(1)}) = W(A_{2}^{(1)}) \rtimes G, \) where \(W(A_{2}^{(1)}) = \langle s_0, s_1, s_2 \rangle \) is the affine Weyl group of type \(A_{2}^{(1)} \) and \(G = \langle \pi, \sigma \rangle \) is the automorphism group of the Dynkin diagram of type \(A_{2}^{(1)} \).

Definition 2.11 (cf. [12]). Let the automorphisms \(s^z \) for \(z \in \{s_0, s_1, s_2, \pi, \sigma \} \) on \(\mathcal{K} \) be defined by the following table:

\(\sigma \)	\(\alpha_0 \)	\(\alpha_1 \)	\(\alpha_2 \)	\(q \)	\(p \)	\(t \)	\(d \)
\(s_0^z(z) \)	\(-\alpha_0 \)	\(\alpha_1 + \alpha_0 \)	\(\alpha_2 + \alpha_0 \)	\(q + \frac{\alpha_0}{p-q} \)	\(p + \frac{\alpha_0}{p-q} \)	\(t \)	\(d + \frac{\alpha_0}{p-q} \)
\(s_1^z(z) \)	\(\alpha_0 + \alpha_1 \)	\(-\alpha_1 \)	\(\alpha_2 + \alpha_1 \)	\(q \)	\(p - \frac{\alpha_1}{q} \)	\(t \)	\(d \)
\(s_2^z(z) \)	\(\alpha_0 + \alpha_2 \)	\(\alpha_1 + \alpha_2 \)	\(-\alpha_2 \)	\(q + \frac{\alpha_2}{p} \)	\(p \)	\(t \)	\(d \)
\(\pi^z(z) \)	\(\alpha_1 \)	\(\alpha_2 \)	\(\alpha_0 \)	\(-p \)	\(-p + q + t \)	\(\sqrt{-1}t \)	\(\sqrt{-1}(-d + \frac{q}{\epsilon_2}) \)
\(\sigma^z(z) \)	\(\alpha_2 \)	\(\alpha_1 \)	\(\alpha_0 \)	\(\sqrt{-1}q \)	\(\sqrt{-1}(p - q - t) \)	\(\sqrt{-1}t \)	\(\sqrt{-1}(-d + \frac{q}{\epsilon_2}) \)

Definition 2.12 (cf. [17]). Let the automorphisms \(R_{\pi}^z(\alpha) \) \((i = 0, 1, 2), R_{\pi}^x, R_{\sigma} \) on \(\mathcal{K} \) be defined by
\[
R_{s_0}^x(\alpha_0) = \text{Ad} \left(\exp \left(\frac{x^2 + xt}{2} \right) \frac{1}{\epsilon_1} \right) \circ \mathcal{L}_s^{-1} \circ \text{Ad} \left(x^{-\frac{\alpha_0}{q}} \right) \circ \mathcal{L}_x \circ \text{Ad} \left(\exp \left(\frac{x^2 - xt}{2} \right) \frac{1}{\epsilon_1} \right),
\]
\[
R_{s_1}^x(\alpha_1) = \text{Ad} \left(x^{-\frac{\alpha_1}{q}} \right), \quad R_{s_2}^x(\alpha_2) = \mathcal{L}_s^{-1} \circ \text{Ad} \left(x^{-\frac{\alpha_2}{q}} \right) \circ \mathcal{L}_s,
\]
\[
R_{\pi}^x = \mathcal{L}_x \circ \text{Ad} \left(\exp \left(\frac{-x^2}{2} - xt \right) \frac{1}{\epsilon_1} \right),
\]
\[
R_{\sigma} = \left(x \mapsto \sqrt{-1}x, q \mapsto \sqrt{-1}q, t \mapsto \sqrt{-1}t \right) \circ \text{Ad} \left(\exp \left(\frac{-x^2}{2} - xt \right) \frac{1}{\epsilon_1} \right) \circ \text{Ad} \left(\exp \left(\frac{-q^2}{2} - qt \right) \frac{1}{\epsilon_2} \right).
\]

The automorphisms \(R_{s_i}^q(\alpha) \) \((i = 0, 1, 2), R_{s_i}^q \) are defined by replacing \(x, \epsilon_1 \) in \(R_{s_i}^x(\alpha) \), \(R_{\pi}^x \) with \(q, \epsilon_2 \), respectively.
Proposition 2.13 ([12], [17]). The automorphisms $R_i^x(\alpha_i)$ ($i = 0, 1, 2$), R^π_π, R_σ preserve the Hamiltonian $H_i^x(\alpha)$ in the following sense.

$$R_i^x(\alpha_i)(H_i^x(\alpha)) = H_i^x(s_i(\alpha)) + C_{s_i},$$

$$R_i^q(H_i^q(\alpha)) = H_i^q(\pi^{-1}(\alpha)) + C_\pi, \quad R_\sigma(H_i^x(\alpha)) = -\sqrt{-1}H_i^x(\sigma(\alpha)) + C_\sigma,$$

where

$$C_{s_0} = -\frac{\kappa\alpha_0}{y - x - t}, \quad C_{s_1} = -\alpha_1 t, \quad C_{s_2} = \alpha_2 t,$$

$$C_\pi = -\alpha_1 t - \kappa y, \quad C_\sigma = -\sqrt{-1}(\alpha_1 - \epsilon_1 t - \kappa x).$$

By definition, the automorphisms $R_i^q(\alpha_i)$ ($i = 0, 1, 2$), R^π_π and R_σ act the Hamiltonian $H_i^q(\alpha)$ in the same way above.

Definition 2.14. Let the automorphisms R_{s_1}, $T_{\sigma s_1 s_2}$, $T_{s_1 s_2 \pi^{-1}}$, S on \mathcal{K} be defined by

$$R_{s_1} = R_i^x(\alpha_1)R_i^q(\alpha_1),$$

$$T_{\sigma s_1 s_2} = R_i^x(-\alpha_2 - \kappa)R_i^x(\alpha_1)R_\sigma s_1 s_2(\alpha_1))R_i^q(\alpha_2 + \kappa),$$

$$T_{s_1 s_2 \pi^{-1}} = R_i^x R_i^q(\alpha_1 + \alpha_2)R_i^x(\alpha_1)R_i^q(-\alpha_1 + \kappa)R_i^q(\alpha_0 + \kappa)(R^q_\pi)^{-1},$$

$$S = \text{Ad}(D(\alpha_2)^{-1})R_i^q(\alpha_2)R_i^q(\alpha_2 + \kappa).$$

Theorem 2.15. The automorphisms R_{s_1}, R_σ, $T_{\sigma s_1 s_2}$, $T_{s_1 s_2 \pi^{-1}}$ and S act the quantum Lax operators $L_{IV}(\alpha)$ and $B_{IV}(\alpha)$ as follows.

For the automorphisms R_s ($s \in \{s_1, \sigma\}$),

$$R_s(L_{IV}(\alpha), B_{IV}(\alpha)) = c_s(L_{IV}(s(\alpha)), B_{IV}(s(\alpha)) + f_s),$$

where

$$c_{s_1} = 1, \quad c_\sigma = -\sqrt{-1}, \quad f_{s_1} = \kappa\alpha_1 t, \quad f_\sigma = -\kappa\alpha_1 t.$$

For the automorphism T_r ($r \in \{\sigma s_1 s_2, s_1 s_2 \pi^{-1}\}$),

$$l_T, l_T((x - q)L_{IV}(\alpha)) = (x - q)L_{IV}(r(\alpha)),$$

$$T_r(B_{IV}(\alpha)) = -\sqrt{-1}B_{IV}(r(\alpha)) + f_T,$$

where

$$f_{r s_1 s_2} = -\kappa(\alpha_2 + \kappa)t, \quad f_{r s_1 s_2 \pi^{-1}} = 0,$$

and $l_{T s_1 s_2}, l_{T s_1 s_2 \pi^{-1}}$ are some elements in \mathcal{K} whose explicit forms are given in the proof.

For the automorphism S,

$$y p \left(R^x_\pi(\alpha_2)R^q_\pi(\alpha_2 + \kappa)((x - q)L_{IV}(\alpha)) \right) D(\alpha_2)$$

$$= ((x - q)y p + (\alpha_2 + \kappa - \epsilon_2)y + (\epsilon_1 - \alpha_2)p) \left(D(\alpha_2) - \frac{(\alpha_2 + \epsilon_1)(\epsilon_1 + \epsilon_2)}{(x - q)^2} \right) L_{IV}(\alpha_0, \alpha_1, -\alpha_2 - 2\epsilon_1),$$

$$S(B_{IV}(\alpha) + f_3) = B_{IV}(\alpha_0, \alpha_1, -\alpha_2 - 2\epsilon_1) - D(\alpha_2)^{-1} \frac{2(\alpha_2 + \epsilon_1)\epsilon_1 \epsilon_2}{(x - q)^2} L_{IV}(\alpha_0, \alpha_1, -\alpha_2 - 2\epsilon_1),$$

12
Let defined by (2.12), (2.13), since they are similar to that of Theorem 2.5.

\[f_S = \kappa(a_2 + \epsilon_1)t. \]

Proof. For the cases of the automorphisms \(T_r (r \in \{s_1s_2, s_1s_2^{-1}\} \) acting \(L_{IV}(\alpha) \), we show that

\[
((x-q)p - \alpha_2 - \kappa)yR^x_{s_2}(-\alpha_2 - \kappa)R^x_{s_1}(\alpha_1)\text{Ad}\left(\exp\left(-\frac{x^2}{2} - xt\right)\frac{1}{\epsilon_1}\right)((x-q)L_{IV}(\alpha))
\]

\[
= ((x-q)y + \alpha_2 + \kappa)pR^2_{s_2}(-\alpha_2 - \kappa)R^2_{s_1}(\sigma s_1s_2(\alpha_1))
\]

\[
o \left(x \mapsto \sqrt{-1}x, q \mapsto \sqrt{-1}q, t \mapsto \sqrt{-1}t\right)\text{Ad}\left(\exp\left(-\frac{q^2}{2} - qt\right)\frac{1}{\epsilon_2}\right)((x-q)L_{IV}(\sigma s_1s_2(\alpha))),
\]

(2.12)

\[
AR^x_{\pi}\left(yR^x_{s_2}(s_1(\alpha_2))R^x_{s_1}(\alpha_1)((x-q)L_{IV}(\alpha))\right)
\]

\[
= BR^2_{\pi}\left(pR^q_{s_2}(s_1(\alpha_2))R^q_{s_1}(\alpha_1 - \kappa)((x-q)L_{IV}(s_1s_2^{-1}(\alpha)))\right),
\]

(2.13)

which is the explicit form of (2.11). Here \(A, B \) are elements in \(K \) such that

\[
A = a_{0,3}p^3 - yp^2 + a_{0,2}p^2 + (q - x + t)yp + (\alpha_1 + \alpha_2 + (q + t)x)y + a_{0,1}p + a_{0,0},
\]

\[
B = b_{3,0}y^3 + b_{2,1}y^2p + b_{2,0}y^2 + b_{1,1}yp + b_{1,0}y + b_{0,1}p + b_{0,0},
\]

where \(a_{i,j}, b_{i,j} \) are rational functions of \(x, q, t, \alpha_i (i = 1, 2, 3), \epsilon_1, \epsilon_2 \). We omit the proofs of (2.12), (2.13), since they are similar to that of Theorem 2.5.

Proofs of the other cases follow from direct computations by using Proposition 2.13. \(\square \)

Actions involving \(R^x_{s_0}(\alpha_0), R^q_{s_0}(\alpha_0) \) on the quantum Lax operators can be obtained from Theorem 2.15 because of the relations

\[
(R_{\sigma})^{-1}R^x_{s_0}(\alpha_2)R_{\sigma} = R^x_{s_2}(\alpha_2), \quad (R_{\sigma})^{-1}R^q_{s_0}(\alpha_2)R_{\sigma} = R^q_{s_2}(\alpha_2).
\]

2.4. \(P_{III} \) case. Let \(K \) be the skew field over \(\mathbb{C} \) defined by the generators \(x, y, q, p, t, d, \alpha_i (0 \leq i \leq 2), \epsilon_1, \epsilon_2 \), and the commutation relations:

\[
[y, x] = \epsilon_1, \quad [p, q] = \epsilon_2, \quad [d, t] = 1,
\]

and the other commutation relations are zero, and a relation \(\alpha_0 + 2\alpha_1 + \alpha_2 = -\epsilon_1 + \epsilon_2 \).

Let \(H_{P_{III}}^{x}(\alpha) = (\alpha_0, \alpha_1, \alpha_2) \) be the Hamiltonian for the quantum third Painlevé equation defined by

\[
H_{P_{III}}^{x}(\alpha) = xyxy - xyx + (\alpha_0 + \alpha_2 + \epsilon_1)xy - \alpha_2x + ty.
\]

Let \(H_{P_{III}}^{y}(\alpha) \) be defined by replacing \(x, y, \epsilon_1, \epsilon_2 \) in \(H_{P_{III}}^{x}(\alpha) \) with \(q, p, \epsilon_2, \epsilon_1 \), respectively.

Let us introduce the quantum Lax operators \(L_{P_{III}}(\alpha) \) and \(B_{P_{III}}(\alpha) \) for the third Painlevé equation defined by

\[
L_{P_{III}}(\alpha) = H_{P_{III}}^{x}(\alpha_0, \alpha_1, \alpha_2) - H_{P_{III}}^{y}(\alpha_0 + \kappa, \alpha_1, \alpha_2 + \kappa) - \frac{\kappa q}{x - q}(y - p),
\]

\[
B_{P_{III}}(\alpha) = \epsilon_2H_{P_{III}}^{x}(\alpha_0, \alpha_1, \alpha_2) - \epsilon_1H_{P_{III}}^{y}(\alpha_0 + \kappa, \alpha_1, \alpha_2 + \kappa) - \kappa \epsilon_1 \epsilon_2 td.
\]

13
Let us recall the extended affine Weyl group $\tilde{W}(C_2^{(1)})$ symmetry of the quantum third Painlevé equation. Here, $\tilde{W}(C_2^{(1)}) = W(C_2^{(1)}) \rtimes G$, where $W(C_2^{(1)}) = \langle s_0, s_1, s_2 \rangle$ is the affine Weyl group of type $C_2^{(1)}$, and $G = \langle \sigma \rangle$ is the automorphism group of the Dynkin diagram of type $C_2^{(1)}$.

Definition 2.16 (cf. [13], [7]). Let the automorphisms s^q for $s \in \{s_0, s_1, s_2, \sigma\}$ on \mathcal{K} be defined by the following table:

z	α_0	α_1	α_2	q	p	z	d
$s_0^q(z)$	$-\alpha_0$	$\alpha_1 + \alpha_0$	α_2	$q + \frac{\alpha_0}{p-1}$	p	t	d
$s_1^q(z)$	$\alpha_0 + 2\alpha_1$	$-\alpha_1$	$\alpha_2 + 2\alpha_1$	q	$p - \frac{\alpha_1}{q} + \frac{1}{q^2}$	$-t$	$-d + \frac{1}{\epsilon_2q}$
$s_2^q(z)$	α_0	$\alpha_1 + \alpha_2$	$-\alpha_2$	$q + \frac{\alpha_2}{p}$	p	t	d
$\sigma^q(z)$	α_2	α_1	α_0	$-q$	$1 - p$	$-t$	$-d$

Definition 2.17 (cf. [17]). Let the automorphisms $R^x_{s_i}(\alpha_i)$ $(i = 0, 1, 2)$, R_σ on \mathcal{K} be defined by

\[
R^x_{s_0}(\alpha_0) = L^{-1}_x \circ \text{Ad} \left((x - 1) \frac{\alpha_0}{\epsilon_1} \right) \circ L_x, \\
R^x_{s_1}(\alpha_1) = (t \mapsto -t) \circ \text{Ad} \left(\exp \left(-\frac{t}{\epsilon_1x} \right) \right), \\
R^x_{s_2}(\alpha_2) = L^{-1}_x \circ \text{Ad} \left(x \frac{\alpha_2}{\epsilon_1} \right) \circ L_x, \\
R_\sigma = (x \mapsto -x, q \mapsto -q, t \mapsto -t) \circ \text{Ad} \left(\exp \left(\frac{-x}{\epsilon_1} \right) \right) \circ \text{Ad} \left(\exp \left(-\frac{q}{\epsilon_2} \right) \right).
\]

The automorphisms $R^q_{s_i}(\alpha_i)$ $(i = 0, 1, 2)$ are defined by replacing x, ϵ_1 in $R^x_{s_i}(\alpha_i)$, with q, ϵ_2, respectively.

Proposition 2.18 ([17]). The automorphisms $R^x_{s_i}(\alpha_i)$ $(i = 0, 1, 2)$, R_σ preserve the Hamiltonian $H^x_\text{III}(\alpha)$ in the following sense.

\[
R^x_{s_i}(\alpha_i) (H^x_\text{III}(\alpha)) = H^x_\text{III}(s_i(\alpha)) + C_s, \\
R_\sigma (H^x_\text{III}(\alpha)) = H^x_\text{III}(\sigma(\alpha)) + C_\sigma,
\]

where

\[
C_{s_0} = -(\alpha_0 + \epsilon_1)(\alpha_2 + \epsilon_1), \quad C_{s_1} = 2\alpha_1\epsilon_2 - t - \frac{kt}{x}, \quad C_{s_2} = -\alpha_2(\alpha_0 + \epsilon_1), \quad C_\sigma = kt.
\]

By definition, the automorphisms $R^q_{s_i}(\alpha_i)$ $(i = 0, 1, 2)$ and R_σ act the Hamiltonian $H^q_\text{III}(\alpha)$ in the same way above.

Definition 2.19. Let the automorphisms R_{s_1}, $T_{s_1s_2}$, S on \mathcal{K} be defined by

\[
R_{s_1} = R^x_{s_1}(\alpha_1)R^q_{s_1}(\alpha_1), \\
T_{s_1s_2} = R^x_{s_2}(-\alpha_2 - \kappa)R^q_{s_1}(\alpha_1)R_\sigma(t \mapsto t)R^q_{s_2}(-\sigma s_1s_2(\alpha_1))R^q_{s_2}(\alpha_2 + \kappa), \\
S = \text{Ad}(D(\alpha_2)^{-1})R^x_{s_2}(\alpha_2)R^q_{s_2}(\alpha_2 + \kappa).
\]
Theorem 2.20. The automorphisms R_{s_1}, R_{s_2}, $T_{s_1s_2}$ and S act the quantum Lax operators $L_{s_1}(\alpha)$ and $B_{s_1}(\alpha)$ as follows.

For the automorphisms R_s ($s \in \{s_1, s_2\}$),

$$R_s(L_{s_1}(\alpha), B_{s_1}(\alpha)) = (L_{s_1}(s(\alpha)), B_{s_1}(s(\alpha)) + f_s),$$

where

$$f_{s_1} = \kappa (t - 2\alpha_1(\epsilon_1 + \epsilon_2)), \quad f_{s_2} = \kappa t.$$

For the automorphism $T_{s_1s_2}$,

$$l_{T_{s_1s_2}} T_{s_1s_2}((x - q) L_{s_1}(\alpha)) = (x - q) L_{s_1}(s_1s_2(\alpha)), \quad (2.14)$$

$$T_{s_1s_2}(B_{s_1}(\alpha)) = B_{s_1}(s_1s_2(\alpha)) + f_{T_{s_1s_2}},$$

where

$$f_{T_{s_1s_2}} = \kappa \alpha_0(\alpha_2 + 2\epsilon_1).$$

and $l_{T_{s_1s_2}}$ is some element in \mathcal{K} whose explicit form is given in the proof.

For the automorphism S,

$$yp\left(R^s_{s_2}(\alpha_2) R^q_{s_2}(\alpha_2 + \kappa)((x - q) L_{s_1}(\alpha))\right) D(\alpha_2)$$

$$= ((x - q) yp + (\alpha_2 + \kappa - \epsilon_2)y + (\epsilon_1 - \alpha_2)p) \left(D(\alpha_2) - \frac{(\alpha_2 + \epsilon_2)(\epsilon_1 + \epsilon_2)}{(x - q)^2} L_{s_1}(\alpha_0, \alpha_1, -\alpha_2 - 2\epsilon_1), \right.$$

$$S \left(B_{s_1}(\alpha) + f_S\right) = B_{s_1}(\alpha_0, \alpha_1, -\alpha_2 - 2\epsilon_1) - D(\alpha_2) \frac{2(\alpha_2 + \epsilon_1)\epsilon_2}{(x - q)^2} L_{s_1}(\alpha_0, \alpha_1, -\alpha_2 - 2\epsilon_1),$$

where $\alpha_1 = \alpha_1 + \alpha_2 + \epsilon_1$ and

$$f_S = -\kappa (\alpha_0 + \epsilon_1)(\alpha_2 + \epsilon_1).$$

Proof. For the cases of the automorphisms $T_{s_1s_2}$ acting $L_{s_1}(\alpha)$, we show that

$$((x - q)p - \alpha_2 - \kappa) y R^s_{s_2}(-\alpha_2 - \kappa) R^q_{s_1}(\alpha_1) \text{Ad} \left(\exp\left(-\frac{t}{x - \alpha_1}\frac{1}{\epsilon_1} x^{-\frac{2\epsilon_1}{\alpha_1}}\right)\right)((x - q) L_{s_1}(\alpha))$$

$$= -((x - q)y + \alpha_2 + \kappa) p R^q_{s_2}(-\alpha_2 - \kappa) R^q_{s_1}(s_1s_2(\alpha_1))$$

$$\circ (x \mapsto -x, q \mapsto -q) \text{Ad} \left(\exp\left(-\frac{t}{q - \alpha_2}\frac{1}{\epsilon_2} q^{-\frac{2\epsilon_2}{\alpha_2}}\right)\right)((x - q) L_{s_1}(s_1s_2(\alpha))), \quad (2.15)$$

which is the explicit form of (2.14). We omit the proofs of (2.15), since they are similar to that of Theorem 2.5.

Proofs of the other cases follow from direct computations by using Proposition 2.18. □

Actions involving $R^x_{s_0}(\alpha_0)$, $R^q_{s_0}(\alpha_0)$ on the quantum Lax operators can be obtained from Theorem 2.20 because of the relations

$$R_{s_1} R^x_{s_0}(\alpha_2) R_{s_1} = R^x_{s_2}(\alpha_2), \quad R_{s_1} R^q_{s_0}(\alpha_2) R_{s_1} = R^q_{s_2}(\alpha_2).$$
2.5. $\mathbb{P}_{\mathcal{K}}^D$ case. Let \mathcal{K} be the skew field over \mathbb{C} defined by the generators $x, y, q, p, t, d, \alpha_0, \alpha_1, \epsilon_1, \epsilon_2$, and the commutation relations:

$$[y, x] = \epsilon_1, \quad [p, q] = \epsilon_2, \quad [d, t] = 1,$$

and the other commutation relations are zero, and a relation $\alpha_0 + \alpha_1 = -\epsilon_1 + \epsilon_2$.

Let $H_{\mathcal{K}}^{D_7,x}(\alpha) (\alpha = (\alpha_0, \alpha_1))$ be the Hamiltonian for the quantum third Painlevé equation of type D_7 defined by

$$H_{\mathcal{K}}^{D_7,x}(\alpha) = xyxy + (-\alpha_0 + \epsilon_2)xy + ty + x.$$

Let $H_{\mathcal{K}}^{D_7,q}(\alpha)$ be defined by replacing $x, y, \epsilon_1, \epsilon_2$ in $H_{\mathcal{K}}^{D_7,x}(\alpha)$ with $q, p, \epsilon_2, \epsilon_1$, respectively.

Let us introduce the quantum Lax operators $L_{\mathcal{K}}^{D_7}(\alpha)$ and $B_{\mathcal{K}}^{D_7}(\alpha)$ for the third Painlevé equation of type D_7 defined by

$$L_{\mathcal{K}}^{D_7}(\alpha) = H_{\mathcal{K}}^{D_7,x}(\alpha_0, \alpha_1) - H_{\mathcal{K}}^{D_7,q}(\alpha_0, \alpha_1 + 2\kappa) - \frac{\kappa \epsilon_1}{x - q}(y - p),$$

$$B_{\mathcal{K}}^{D_7}(\alpha) = \epsilon_1 H_{\mathcal{K}}^{D_7,q}(\alpha_0, \alpha_1 + 2\kappa) - \kappa \epsilon_1 \epsilon_2 td.$$

We introduce the extended affine Weyl group $\bar{W}(A_1^{(1)})$ symmetry of the quantum third Painlevé equation of type D_7. Here, $\bar{W}(A_1^{(1)}) = W(A_1^{(1)}) \rtimes G$, where $W(A_1^{(1)}) = \langle s_0, s_1 \rangle$ is the affine Weyl group of type $A_1^{(1)}$ and $G = \langle \pi \rangle$ is the automorphism group of the Dynkin diagram of type $A_1^{(1)}$.

Definition 2.21. Let the automorphisms s^i for $s \in \{s_0, s_1, \pi\}$ on \mathcal{K} be defined by the following table:

z	α_0	α_1	q	p	t	d
$s_0^i(z)$	$-\alpha_0$	$\alpha_1 + 2\alpha_0$	q	$p - \frac{\alpha_0}{q} + \frac{1}{q}$	$-t$	$-d + \frac{1}{\epsilon_2 \epsilon_1}$
$s_1^i(z)$	$\alpha_0 + 2\alpha_1$	$-\alpha_1$	$-q - \frac{\alpha_1}{p} + \frac{1}{p}$	$-p$	$-t$	$-d$
$\pi^i(z)$	α_1	α_0	tp	$-\frac{q}{t}$	$-t$	$-d - \frac{\alpha_0}{\epsilon_2 \epsilon_1}$

Definition 2.22. Let the automorphisms $R_{s_i}^x(\alpha_i)$ ($i = 0, 1$), R_{π}^x on \mathcal{K} be defined by

$$R_{s_0}^x(\alpha_0) = (t \mapsto -t) \circ \text{Ad} \left(\exp \left(-t \frac{\alpha_0}{\epsilon_1 x} x^{\frac{-\alpha_0}{\epsilon_1}} \right) \right),$$

$$R_{\pi}^x = \left(x \mapsto -x, t \mapsto -t \right) \circ \mathcal{L}_x,$$

$$R_{s_1}^x(\alpha_1) = R_{\pi}^x \circ R_{s_0}^x(\alpha_1) \circ R_{\pi}^x.$$

The automorphisms $R_{s_i}^q(\alpha_i)$ ($i = 0, 1$) and R_{π}^q are defined by replacing x, ϵ_1 in $R_{s_i}^x(\alpha_i)$, R_{π}^x with q, ϵ_2, respectively.

Proposition 2.23. The automorphisms $R_{s_0}^x(\alpha_0)$, R_{π} preserve the Hamiltonian $H_{\mathcal{K}}^{D_7,x}(\alpha)$ in the following sense.

$$R_{s_0}^x(\alpha_0) \left(H_{\mathcal{K}}^{D_7,x}(\alpha) \right) = H_{\mathcal{K}}^{D_7,x}(s_0(\alpha)) + C_{s_0},$$

$$R_{\pi} \left(H_{\mathcal{K}}^{D_7,x}(\alpha) \right) = H_{\mathcal{K}}^{D_7,x}(\pi(\alpha)) + C_{\pi}.$$
where
\[C_{s_0} = \epsilon_2 \alpha_0 - \frac{k_1}{\chi}, \quad C_\pi = -\epsilon_1 \alpha_1 + \kappa xy. \]

By definition, the automorphisms \(R^q_{s_0}(\alpha_0) \) and \(R_\pi \) act the Hamiltonian \(H^{D_7}_{\text{III}}(\alpha) \) in the same way above.

Definition 2.24. Let the automorphisms \(R_{s_0}, T_{s_0\pi}, S \) on \(\mathcal{K} \) be defined by
\[
R_{s_0} = R^q_{s_0}(\alpha_0)R^q_{s_0}(\alpha_0),
\]
\[
T_{s_0\pi} = R^q_{s_0}(-\alpha_0 + \kappa)(R^q_\pi)^{-1}R^q_{s_0}(\alpha_0),
\]
\[
S = \text{Ad}(D_{\text{III}})^{-1}R^q_{s_0}R^q_{s_0}(\alpha_0),
\]
where
\[
D_{\text{III}} = \frac{x}{x - q} y + \frac{q}{q - x} p.
\]

Theorem 2.25. The automorphisms \(R_{s_0}, T_{s_0\pi} \) and \(S \) act the quantum Lax operators \(L^{D_7}_{\text{III}}(\alpha) \) and \(B^{D_7}_{\text{III}}(\alpha) \) as follows.

For the automorphisms \(R_{s_0} \),
\[
R_{s_0} \left(L^{D_7}_{\text{III}}(\alpha), B^{D_7}_{\text{III}}(\alpha) \right) = \left(L^{D_7}_{\text{III}}(s_0(\alpha)), B^{D_7}_{\text{III}}(s_0(\alpha)) - \kappa \alpha_0(\epsilon_1 + \epsilon_2) \right).
\]

For the automorphism \(T_{s_0\pi} \),
\[
l_{T_{s_0\pi}} \left(T_{s_0\pi}(x - q)L^{D_7}_{\text{III}}(\alpha) \right) = (x - q)L^{D_7}_{\text{III}}(s_0\pi(\alpha)), \quad (2.16)
\]
\[
l_{T_{s_0\pi}} \left(B^{D_7}_{\text{III}}(\alpha) \right) = B^{D_7}_{\text{III}}(s_0\pi(\alpha)) + (\alpha_0 - \epsilon_1)\kappa^2,
\]
where \(l_{T_{s_0\pi}} \) is some element in \(\mathcal{K} \) whose explicit form is given in the proof.

For the automorphism \(S \),
\[
\left(R^q_{s_0}(\alpha_0)(x - q)L^{D_7}_{\text{III}}(\alpha) \right) D_{\text{III}}
\]
\[
= \left(\frac{1}{x - q} \left(x + \frac{\epsilon_2}{q - x} - tp \right) \left(\epsilon_1 q + \epsilon_2 x \right) + \frac{\kappa x}{x - q} \right) L^{D_7}_{\text{III}}(\alpha_0 + \epsilon_1, \alpha_1 - \epsilon_1),
\]
\[
S \left(B^{D_7}_{\text{III}}(\alpha) \right) = \left(\frac{x}{x - q} y + \frac{q}{q - x} p \right) B^{D_7}_{\text{III}}(\alpha_0 + \epsilon_1, \alpha_1 - \epsilon_1) - \epsilon_1 \epsilon_2 D_{\text{III}}\left(\frac{x + q}{(x - q)^2} L^{D_7}_{\text{III}}(\alpha_0 + \epsilon_1, \alpha_1 - \epsilon_1). \right)
\]

Proof. For the cases of the automorphisms \(T_{s_0\pi} \) acting \(L^{D_7}_{\text{III}}(\alpha) \), we show that
\[
(-tp + x) R^q_x R^q_{s_0}(\alpha_0) ((x - q)L^{D_7}_{\text{III}}(\alpha))
\]
\[
= - (ty - q) R^q_x R^q_{s_0}(\alpha_0 - k) ((x - q)L^{D_7}_{\text{III}}(s_0\pi(\alpha))), \quad (2.17)
\]
which is the explicit form of (2.16). We omit the proofs of (2.17), since they are similar to that of Theorem 2.25.

Proofs of the other cases follow from direct computations by using Proposition 2.23.

Actions involving \(R^q_{s_1}(\alpha_1), R^q_{s_1}(\alpha_1) \) on the quantum Lax operators can be obtained from Theorem 2.25 because of the definitions of \(R^q_{s_1}(\alpha_1), R^q_{s_1}(\alpha_1) \).
Proposition 2.28. The automorphisms \(R^\alpha_i(\alpha) \) \((i = 0, 1)\), \(R_\pi \) preserve the Hamiltonian \(H^\alpha_\Pi(\alpha) \) in the following sense:

\[
R^\alpha_i(\alpha) \left(H^\alpha_\Pi(\alpha) \right) = H^\alpha_\Pi(s_i(\alpha)) + C_{s_i},
\]

\[
R_\pi \left(H^\alpha_\Pi(\alpha) \right) = H^\alpha_\Pi(\pi(\alpha)) + C_\pi,
\]

where \(C_{s_i} \) and \(C_\pi \) are constants.

\[\square \]
where

\[C_{s_0} = -\frac{\kappa_0}{f}, \quad C_{s_1} = 0, \quad C_\pi = -\kappa. \]

By definition, the automorphisms \(R^q_{s_i}(\alpha_i) \) \((i = 0, 1) \) and \(R_\pi \) act the Hamiltonian \(H^q_\Pi(\alpha) \) in the same way above.

Definition 2.29. Let the automorphisms \(T_{\pi s_1}, S \) on \(\mathcal{K} \) be defined by

\[
T_{\pi s_1} = R^q_{s_1}(-\alpha_1 - \kappa)R_\pi R^q_{s_1}(\alpha_1 + \kappa),
\]

\[
S = \text{Ad}(D(\alpha_1)^{-1})R^q_{s_1}(\alpha_1)R^q_{s_1}(\alpha_1 + \kappa).
\]

Theorem 2.30. The automorphisms \(R_\pi, T_{\pi s_1} \) and \(S \) act the quantum Lax operators \(L_\Pi(\alpha) \) and \(B_\Pi(\alpha) \) as follows.

For the automorphism \(R_\pi \),

\[
R_\pi(L_\Pi(\alpha), B_\Pi(\alpha)) = (L_\Pi(\pi(\alpha)), B_\Pi(\pi(\alpha))) .
\]

For the automorphism \(T_{\pi s_1} \),

\[
l_{T_{\pi s_1}}T_{\pi s_1}((x - q)L_\Pi(\alpha)) = (q - x)L_\Pi(\pi s_1(\alpha)), \quad \text{(2.18)}
\]

\[
T_{\pi s_1}(B_\Pi(\alpha)) = B_\Pi(\pi s_1(\alpha)),
\]

where \(l_{T_{\pi s_1}} \) is some element in \(\mathcal{K} \) whose explicit form is given in the proof.

For the automorphism \(S \),

\[
y_p \left(R^q_{s_1}(\alpha_1)R^q_{s_1}(\alpha_1 + \kappa)((x - q)L_\Pi(\alpha)) \right) D(\alpha_1)
\]

\[
= ((x - q)y_p + (\alpha_1 + \kappa - \epsilon_2)y + (\epsilon_1 - \alpha_1)p) \left(D(\alpha_1) - \frac{(\alpha_1 + \epsilon_1)(\epsilon_1 + \epsilon_2)}{(x - q)^2} \right) L_\Pi(\alpha_1 + \epsilon_1 + \epsilon_2, -\alpha_1 - 2\epsilon_1),
\]

\[
S(B_\Pi(\alpha)) = B_\Pi(\alpha_1 + \epsilon_1 + \epsilon_2, -\alpha_1 - 2\epsilon_1) - D(\alpha_1)^{-1} \frac{2(\alpha_1 + \epsilon_1)\epsilon_1\epsilon_2}{(x - q)^2} L_\Pi(\alpha_1 + \epsilon_1 + \epsilon_2, -\alpha_1 - 2\epsilon_1).
\]

Proof. For the cases of the automorphisms \(T_{\pi s_1} \) acting \(L_\Pi(\alpha) \), we show that

\[
((x - q)p - \alpha_2 - \kappa) y R^q_{s_1}(-\alpha_1 - \kappa) \text{Ad} \left(\exp \left(-\frac{2}{3}x^3 - xt \right) \frac{1}{\epsilon_1} \right) ((x - q)L_\Pi(\alpha))
\]

\[
= -((x - q)y + \alpha_2 + \kappa) p R^q_{s_1}(-\alpha_1 - \kappa)
\]

\[
\circ (x \mapsto -x, q \mapsto -q) \text{ Ad} \left(\exp \left(-\frac{2}{3}q^3 - qt \right) \frac{1}{\epsilon_2} \right) ((x - q)L_\Pi(\pi s_1(\alpha)), \quad \text{(2.19)}
\]

which is the explicit form of (2.18). We omit the proofs of (2.19), since they are similar to that of Theorem 2.5.

Proofs of the other cases follow from direct computations by using Proposition 2.28. \(\square \)

Actions involving \(R^x_{s_0}(\alpha_0), R^q_{s_0}(\alpha_0) \) on the quantum Lax operators can be obtained from Theorem 2.30 because of the definitions of \(R^x_{s_0}(\alpha_0), R^q_{s_0}(\alpha_0) \).
3. Derivation of the Quantum Lax Pair from CFT

In this section, we derive the quantum Lax operators \(L_j \) and \(B_j \) \((j = I, \ldots, VI)\) from Virasoro conformal field theory. Note that the quantum Lax operators \(L_j \) and \(B_j \) introduced in section 2 are linear combinations of \(L_j \) and \(B_j \) in this section, up to gauge transformations, and the parameters \(a_i \) in section 2 are also linear combinations of \(a_i \) in this section (see Remark 3.1).

The central charge \(c \) and conformal dimension \((L_0\text{-eigen value}) h\) of the Virasoro algebra \([L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}\) are parameterized as [1]

\[
c = 1 + 6\left(\frac{\epsilon_1 + \epsilon_2}{\epsilon_1 \epsilon_2}\right)^2, \quad h(\alpha) = \frac{c}{2}\left(\frac{\epsilon_1 + \epsilon_2 - \frac{c}{2}}{\epsilon_1 \epsilon_2}\right).
\]

Following [15], we introduce the \(k \)-th confluent operator \(\Phi^{[k]}(z) \), depending on parameters \(u_0, \ldots, u_k \) as

\[
\Phi^{[k]}(z) = \exp\left\{u_0\varphi(z) + \frac{u_1}{1!}\varphi'(z) + \cdots + \frac{u_k}{k!}\varphi^{(k)}(z)\right\},
\]

where \(\varphi(z) \) is a free boson such that \(\varphi(z)\varphi(w) = \log(z-w) + \text{regular} \). \(\Phi^{[0]} \) corresponds to the usual primary field. The OPEs of \(\Phi^{[k]} \) with \(J(z) = \varphi'(z) \) and \(T(z) = \frac{1}{2}J(z)^2 + \rho J'(z) \) are

\[
J(z)\Phi^{[k]}(w) = \sum_n J^{(w)}(z-w)^{-n-1}\Phi^{[k]}(w) = \left\{\frac{u_k}{(z-w)^{k+1}} + \frac{u_{k-1}}{(z-w)^k} + \cdots \right\}\Phi^{[k]}(w),
\]

\[
J(z)\Phi^{[k]}(\infty) = \sum_n J^{(\infty)}z^{-n-1}\Phi^{[k]}(\infty) = \left\{u_kz^{-k} + u_{k-1}z^{-k+1} + \cdots \right\}\Phi^{[k]}(\infty),
\]

\[
T(z)\Phi^{[k]}(w) = \sum_n L^{(w)}(z-w)^{-n-2}\Phi^{[k]}(w) = \left\{\frac{u_k^2}{2(z-w)^{2k+2}} + \frac{u_{k-1}u_k}{(z-w)^{2k+1}} + \cdots \right\}\Phi^{[k]}(w),
\]

\[
T(z)\Phi^{[k]}(\infty) = \sum_n L^{(\infty)}z^{-n-2}\Phi^{[k]}(\infty) = \left\{\frac{u_k^2}{2}z^{-2k-2} + u_ku_{k-1}z^{-2k-3} + \cdots \right\}\Phi^{[k]}(\infty).
\]

More explicitly, in case of \(k = 3 \) for instance, we have

\[
T(z)\Phi^{[k]}_{u_0,\ldots,u_3}(\infty) = \left\{\frac{u_3^2}{2}z^4 + u_3u_2z^3 + \left(\frac{u_2^2}{2} + u_3u_1\right)z^2 + (u_2u_1 + u_3u_0 + 2\rho u_3)z \\
+ \left(\frac{u_2^2}{2} + u_2u_0 + u_3\frac{\partial}{\partial u_1} + \rho u_2\right) + (u_1u_0 + u_2\frac{\partial}{\partial u_1} + u_3\frac{\partial}{\partial u_2})z^{-1} + \cdots \right\}\Phi^{[k]}(\infty).
\]

3.1. \(\text{P}_{VI} \) case. Let \(\Psi^\text{CFT}_{VI}(q, x, t) \) be a correlation function on \(\mathbb{P}^1 \) defined as

\[
\Psi^\text{CFT}_{VI} = \langle O_{VI} \rangle, \quad O_{VI} = \Phi_{h_0}(0)\Phi_{h_1}(1)\Phi_{h_2}(t)\Phi_{h_3}(\infty)\Phi_{h_4}(q)\Phi_{h_5}(x),
\]

where \(\Phi_{h_i} \) is the primary field of dimension \(h_i = h(a_i) \), \((i = 0, 1, t, \infty, q, x)\). We put \(a_q = -\epsilon_1 \) and \(a_t = -\epsilon_2 \), then we have the null field constraints

\[
L_{-2}^{(q)}/\Phi_{h_4}(q), \quad L_{-2}^{(x)}\Phi_{h_5}(x) = -\epsilon_1\frac{\partial^2}{\epsilon_2 \partial x^2}\Phi_{h_5}(x).
\]

\(^2 \)We apply these specializations also for \(J = \Pi, \cdots, V \) cases below.
3.2. P.V. Remark 3.1. Denote by \hat{L}_{V1} and \hat{B}_{V1} the quantum Lax operators defined by (2.1) and (2.2), respectively. The quantum Lax operators \hat{L}_{V1} and \hat{B}_{V1} are expressed in terms of L_{V1} and B_{V1} from Virasoro conformal field theory as follows:

$$\hat{L}_{V1} = -L_{V1},$$

$$\hat{B}_{V1} = -\varepsilon_2 L_{V1} + (\varepsilon_1 - \varepsilon_2)(q-t)B_{V1} + b,$$

where

$$y = \varepsilon_1 \partial_x, \quad p = \varepsilon_2 \partial_q, \quad d = \partial_t,$$

$$\begin{pmatrix}
\alpha_0 \\
\alpha_1 \\
\alpha_3 \\
\alpha_4
\end{pmatrix} = \begin{pmatrix}
-a_t \\
-a_{\infty} \\
-a_1 \\
-a_0
\end{pmatrix} + (\varepsilon_1 + \varepsilon_2) \begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix},$$

and $b = (\varepsilon_1 - \varepsilon_2)(a_0t + a_1t - a_0)a_t/2 - Ct)$ can be removed by some gauge transformation.

3.2. P.V. case. Operators: $O_V = \Phi_{h_q}^{(0)}(0)\Phi_{h_q}(1)\Phi_V(\infty)\Phi_{h_q}^{(0)}(q)\Phi_{h_q}(x)$, where $\Phi_V \in \{\Phi^{(1)}\}$ such as

$$T(z)\Phi_V(\infty) = \frac{-t^2}{4\varepsilon_1\varepsilon_2} + \frac{t(\varepsilon_1 + \varepsilon_2 + 2a_2 - a_0 - a_1)}{2\varepsilon_1\varepsilon_2} z^{-1} + t \frac{\partial}{\partial t} z^{-2} + \cdots \Phi_V(\infty). \quad (3.6)$$

Vector fields: $\xi_{L_V}(z) = \frac{z^{(1)}(z-\varepsilon_1)}{(z-q)(z-\varepsilon_2)}$, $\xi_{B_V}(z) = \frac{z^{(1)}(z-\varepsilon_1)}{z-q}$. Gauge factor: $f_V(z) = z^{\alpha_0}(z-1)^{\alpha_1} e^{\varepsilon_2}$.

$$L_V = -(x-1)x \left[\frac{d_0 - \varepsilon_2}{x} + \frac{a_1 - \varepsilon_2}{x-1} + \frac{\varepsilon_2 - \varepsilon_1}{x-q} + t \varepsilon_1 \partial_x - (q-1)q \left[\frac{d_0 - \varepsilon_2}{q} + \frac{a_1 - \varepsilon_1}{q-1} + \frac{\varepsilon_2 - \varepsilon_1}{q-x} + t \varepsilon_2 \partial_q \right] \right]$$
\[-ta_2(q - x) + (x - 1)x\epsilon_1^2\partial_x^2 - (q - 1)q\epsilon_2^2\partial_q^2,\]

\[B_V = (q - 1)q\left(\frac{\epsilon_1 - a_0}{q} + \frac{\epsilon_1 - a_1}{q - 1} + \frac{\epsilon_2}{q - x} - t\right)\epsilon_2\partial_q - t\epsilon_1\epsilon_2\partial_t - \frac{(x - 1)x}{q - x}\epsilon_1\epsilon_2\partial_x - (q - 1)q\epsilon_2^2\partial_q^2 + \frac{1}{2}(a_0 - a_1 + \epsilon_1 + \epsilon_2)(a_0 - a_1 + 3\epsilon_1 + 3\epsilon_2)\right].\]

3.3. \(P_{IV} \) case. Operators: \(O_{IV} = \Phi_{h_0}(0)\Phi_{V_1}(\infty)\Phi_{h_1}(q)\Phi_{h_1}(x) \), where \(\Phi_{V_1} \in \{ \Phi^{[2]} \} \) such as

\[T(z)\Phi_{V_1}(\infty) = \left\{ -\frac{1}{16\epsilon_1\epsilon_2}\frac{z^2}{z} + \frac{-t}{4\epsilon_1\epsilon_2} + \frac{-t^2 + 2a_1 - a_0}{4\epsilon_1\epsilon_2} + \frac{1}{2}\partial_zz^{-1} + \cdots \right\}\Phi_{V_1}(\infty), \quad (3.7)\]

Vector fields: \(\xi_{L_{IV}}(z) = \frac{t}{(z-q)(x-z)} \), \(\xi_{B_{IV}}(z) = \frac{x}{z-q} \). Gauge factor: \(\hat{f}_{V_1}(z) = z^{a_0}e^{-t\epsilon_2z^2/4} \).

\[L_{IV} = x\left(\frac{a_0 - \epsilon_2}{x} + \frac{\epsilon_2 - \epsilon_1}{q} - t - \frac{x}{2}\right)\epsilon_1\partial_x - q\left(\frac{a_0 - \epsilon_1}{q} + \frac{\epsilon_1 - \epsilon_2}{q - x} - \frac{t}{2}\right)\epsilon_2\partial_q + x\epsilon_1^2\partial_x^2 - q\epsilon_2^2\partial_q^2 + \frac{1}{2}a_1(q - x),\]

\[B_{IV} = q\left(\frac{\epsilon_1 - a_0}{q} + \frac{\epsilon_2}{q - x} + \frac{\epsilon_1 - \epsilon_2}{q} + t\right)\epsilon_2\partial_q + \frac{1}{2}\left(t(a_0 - \epsilon_1 - \epsilon_2) + a_1q\right) - \frac{1}{2}\epsilon_1\epsilon_2\partial_t - \frac{x - \epsilon_1\epsilon_2\partial_x - q\epsilon_2^2\partial_q^2}{q - x}.\]

3.4. \(P_{III} \) case. Operators: \(O_{III} = \Phi_{III}(0)\Phi_{III}(\infty)\Phi_{h_1}(q)\Phi_{h_1}(x) \), where \(\Phi_{III}(0), \Phi_{III}(\infty) \in \{ \Phi^{[1]} \} \) such as

\[T(z)\Phi_{III}(0) = \left\{ -\frac{t^2}{4\epsilon_1\epsilon_2}\frac{z^2}{z} - \frac{t(2\epsilon_1 + 2\epsilon_2 - a_0)}{2\epsilon_1\epsilon_2} + t\partial_zz^{-2} + \cdots \right\}\Phi_{III}(0),\]

\[T(z)\Phi_{III}(\infty) = \left\{ -\frac{1}{4\epsilon_1\epsilon_2} + \frac{-\epsilon_1 - \epsilon_2 - 2a_1 + a_0}{2\epsilon_1\epsilon_2} + \frac{1}{2}\partial_zz^{-1} + \cdots \right\}\Phi_{III}(\infty).\]

Vector fields: \(\xi_{L_{III}}(z) = \frac{t}{(z-q)(x-z)} \), \(\xi_{B_{III}}(z) = \frac{x}{z-q} \). Gauge factor: \(\hat{f}_{III}(z) = z^{a_0}e^{t\epsilon_2z^2/2}. \)

\[L_{III} = -q\left(\frac{a_0 - 2\epsilon_1}{q} + \frac{t}{q^2} + \frac{\epsilon_1 - \epsilon_2}{q - x} - 1\right)\epsilon_2\partial_q + x\frac{a_0 - 2\epsilon_2}{x} + \frac{\epsilon_2 - \epsilon_1}{x - q} + \frac{t}{x^2} - 1\right)\epsilon_1\partial_x - q^2\epsilon_2^2\partial_q^2 + x^2\epsilon_1^2\partial_x^2 + a_1(q - x),\]

\[B_{III} = -q^2\left(\frac{a_0 - \epsilon_1}{q} + \frac{t}{q^2} - \frac{\epsilon_2}{q - x} - 1\right)\epsilon_2\partial_q + \left\{\frac{1}{4}a_0(-a_0 + 2\epsilon_1 + 2\epsilon_2) + a_1q + t\right\} - q^2\epsilon_2^2\partial_q^2 - \frac{qx}{q - x}\epsilon_1\epsilon_2\partial_x - t\epsilon_1\epsilon_2\partial_t.\]

3.5. \(P_{II} \) case. Operators: \(O_{II} = \Phi_{II}(\infty)\Phi_{h_1}(q)\Phi_{h_1}(x) \), where \(\Phi_{II} \in \{ \Phi^{[3]} \} \) such that

\[T(z)\Phi_{II}(\infty) = \left\{ -\frac{1}{e_1^2\epsilon_2}\frac{z^2}{z} + \frac{-t}{16\epsilon_1\epsilon_2} + \frac{-2a - \epsilon_1 + \epsilon_2}{e_1\epsilon_2} + \frac{2a + \epsilon_1 - \epsilon_2}{e_1\epsilon_2} + \frac{t}{z} + \frac{1}{2}\partial_zz^{-1} + \cdots \right\}\Phi_{II}(\infty). \quad (3.8)\]

Vector fields: \(\xi_{L_{II}}(z) = \frac{t}{(z-q)(x-z)} \), \(\xi_{B_{II}}(z) = \frac{x}{z-q} \). Gauge factor: \(\hat{f}_{II}(z) = e^{-t\epsilon_2z^2/2}. \)

\[L_{II} = 2(a + \epsilon_1)(q - x) + \left(2q^2 + t + \frac{\epsilon_2 - \epsilon_1}{q - x}\right)\epsilon_2\partial_q - \left(2x^2 + t + \frac{\epsilon_1 - \epsilon_2}{x - q}\right)\epsilon_1\partial_x + \epsilon_1^2\partial_x^2 - \epsilon_2^2\partial_q^2,\]

\[\boxed{3.3.}\]
\[B_{\parallel} = 2(a + \epsilon_1)q + \left(2q^2 + t + \frac{\epsilon_2}{q - x}\right)\epsilon_2 \partial_x q - 2\epsilon_1 \epsilon_2 \partial_t - \frac{\epsilon_2}{q - x} \epsilon_1 \partial_x - \epsilon_2 \partial_q^2. \]

3.6. \(P_1 \) case. Operators: \(O_1 = \Phi_1(\infty)\Phi_{h_1}(q)\Phi_{h_1}(x) \), where \(\Phi_1 \) is a degenerate case of \(\Phi^{[3]} \) such that

\[
T(z)\Phi_1(\infty) = \left\{-\frac{4}{\epsilon_1\epsilon_2}z^3 + \frac{2t}{\epsilon_1\epsilon_2}z^2 + 2\partial_t + \cdots\right\}\Phi_1(\infty). \tag{3.9}
\]

Vector fields: \(\xi_{L_1}(z) = \frac{1}{2(2\epsilon_1 q)} \), \(\xi_{B_1}(z) = \frac{1}{\epsilon_2} \), Gauge factor: \(f_1(z) = 1 \).

\[
L_1 = (4q^3 + 2qt - 4\epsilon_1 - 2) - \frac{\epsilon_1 - \epsilon_2}{q - x} \epsilon_1 \partial_x + \frac{\epsilon_2 - \epsilon_1}{x - q} \epsilon_2 \partial_q + \epsilon_1 \epsilon_2 \partial_x^2 - \epsilon_2 \partial_q^2,
\]
\[
B_1 = (4q^3 + 2qt) - \frac{1}{q - x} \epsilon_2 \partial_q^2 - \frac{1}{q - x} \epsilon_1 \epsilon_2 \partial_x - \epsilon_2 \partial_q^2 - 2\epsilon_1 \epsilon_2 \partial_t.
\]

3.7. \(P_{III} (D_7) \) case. Operators: \(O_{III}^{(D_7)} = \Phi_{III}^{(D_7)}(0)\Phi_{III}^{(D_7)}(\infty)\Phi_{h_1}(q)\Phi_{h_1}(x) \),

\[
T(z)\Phi_{III}^{(D_7)}(0) = \left\{\frac{-t^2}{4\epsilon_1\epsilon_2}z^{-3} + \frac{t(2\epsilon_1 + \epsilon_2 - a_0)}{2\epsilon_1\epsilon_2}z^{-3} + t\partial_z z^{-2} + \cdots\right\}\Phi_{III}^{(D_7)}(0),
\]
\[
T(z)\Phi_{III}^{(D_7)}(\infty) = \left\{\frac{1}{\epsilon_1\epsilon_2}z^{-1} + \cdots\right\}\Phi_{III}^{(D_7)}(\infty).
\]

Vector fields: \(\xi_{L_{III}}^{(D_7)}(z) = \frac{z^2}{(z-q)(z-x)} \), \(\xi_{B_{III}}^{(D_7)}(z) = \frac{z}{z-q} \), Gauge factor: \(f_{III}^{(D_7)}(z) = e^{-t/(2z)} e^{\epsilon_1}. \)

\[
L_{III}^{(D_7)} = \left\{q(2\epsilon_1 - a_0) - \frac{q^2(\epsilon_1 - \epsilon_2)}{q - x} - t\right\} \epsilon_2 \partial_q + \left\{x(a_0 - 2\epsilon_2) + \frac{x^2(\epsilon_1 - \epsilon_2)}{q - x} + t\right\} \epsilon_1 \partial_x - \frac{q^2 \epsilon_2^2 \partial_q^2}{2q} + \frac{(q - x)(2q + t\epsilon_2)}{q - x} + x^2 \epsilon_1 \partial_x^2,
\]
\[
B_{III}^{(D_7)} = \left\{a_0 q + \frac{q^2 \epsilon_2}{q - x} + q \epsilon_1 - t\right\} \epsilon_2 \partial_q + \left\{\frac{1}{4}a_0(-a_0 + 2\epsilon_1 + 2\epsilon_2) + \frac{t\epsilon_2}{2q} \right\} - \frac{q^2 \epsilon_2^2 \partial_q^2}{q - x} + t\epsilon_1 \epsilon_2 \partial_t - \frac{q^2 \epsilon_2^2 \partial_q^2}{q - x} \epsilon_1 \epsilon_2 \partial_x.
\]

3.8. \(P_{III} (D_8) \) case. Operators: \(O_{III}^{(D_8)} = \Phi_{III}^{(D_8)}(0)\Phi_{III}^{(D_8)}(\infty)\Phi_{h_1}(q)\Phi_{h_1}(x) \),

\[
T(z)\Phi_{III}^{(D_8)}(0) = \left\{\frac{t}{\epsilon_1\epsilon_2}z^{-3} + t\partial_z z^{-2} + \cdots\right\}\Phi_{III}^{(D_8)}(0),
\]
\[
T(z)\Phi_{III}^{(D_8)}(\infty) = \left\{\frac{1}{\epsilon_1\epsilon_2}z^{-1} + \cdots\right\}\Phi_{III}^{(D_8)}(\infty).
\]

Vector fields: \(\xi_{L_{III}}^{(D_8)}(z) = \frac{z^2}{(z-q)(z-x)} \), \(\xi_{B_{III}}^{(D_8)}(z) = \frac{z}{z-q} \), Gauge factor: \(f_{III}^{(D_8)}(z) = z^{\epsilon_1+\epsilon_2}. \)

\[
L_{III}^{(D_8)} = -\frac{qx(\epsilon_1 - \epsilon_2)}{q - x} \epsilon_2 \partial_q - q^2 \epsilon_2^2 \partial_q^2 + \frac{(q - x)(t - qx)}{qx} + x^2 \epsilon_1 \partial_x^2 + \frac{qx(\epsilon_1 - \epsilon_2)}{q - x} \epsilon_1 \partial_x,
\]
\[
B_{III}^{(D_8)} = -q^2 \epsilon_2^2 \partial_q^2 + \left\{\frac{(\epsilon_1 + \epsilon_2)^2}{4} - q - \frac{t}{q}\right\} - t\epsilon_1 \epsilon_2 \partial_t - \frac{q^2 x}{q - x} \epsilon_1 \epsilon_2 \partial_x + \frac{qx}{q - x} \epsilon_2^2 \partial_q.
\]
Remark 3.2. It is known that the classical limit of the Knizhnik-Zamolodchikov equations are the Schlesinger equations [21], [5]. Similarly, all the above operators \(L_J, B_J \) from Virasoro conformal field theory give the Lax pair for the classical Painlevé equations \(P_J \) (see Appendix A) under the limit \(\varepsilon_2 \to 0 \) with \(\varepsilon_2 \partial_q \to p \), up to a gauge factor independent of \(z \). See [11], [24] for the more detail.

Remark 3.3. In a similar way, one can derive the Lax pair for quantum Garnier system of \(N \)-variables, by inserting \(N \)-primary fields \(\Phi_{-\varepsilon_i(q_i)} \) (\(i = 1, \ldots, N \)).

Remark 3.4. The confluent/degeneration scheme of the Painlevé equation is summarized by the following diagram

\[
\begin{array}{l}
\text{P}_{VI}(1, 1, 1, 1) \to \text{P}_{V}(2, 1, 1) \to \text{P}_{III}(2, 2) \to \text{P}_{III}^{D_1}(2, \frac{3}{2}) \to \text{P}_{III}^{D_2}(\frac{3}{2}, \frac{3}{2}) \\
\text{P}_{IV}(3, 1) \to \text{P}_{II}(4) \to \text{P}_{I}(\frac{3}{2})
\end{array}
\]

(3.10)

where the numbers \((i_1, i_2, \cdots)\) represent the ‘Poincaré rank +1’ of the singularities. The cases \(\text{P}_{III}^{D_1}(2, \frac{3}{2}) \), \(\text{P}_{III}^{D_2}(\frac{3}{2}, \frac{3}{2}) \) are degenerate case of \(\text{P}_{III} \) and studied systematically in [20]. In view of the 4d \(N = 2 \) gauge theory, the series \((1, 1, 1, 1) \to (2, 1, 1) \to (2, 2) \to (2, \frac{3}{2}) \to (\frac{3}{2}, \frac{3}{2})\) correspond to the \(SU(2) \) gauge theories with \(N_f = 4, 3, 2, 1, 0 \), and the series \((3, 1) \to (4) \to (\frac{3}{2})\) corresponds to the AD theories [8].

Appendix A. Classical cases

A.1. Data for the classical Painlevé equations. [19], [20]

\(P_1 : H_1 = \frac{p^2}{2} - 2q^3 - tq, \)

\(L_1 = \left\{ -4x^3 - 2tx - 2H_1 + \frac{p}{x - q} \right\} - \frac{1}{x - q} \partial_x + \partial_x^2, \)

\(B_1 = \partial_t - \frac{1}{2(x - q)} \partial_x + \frac{p}{2(x - q)}, \)

\(P_{II} : H_{II} = \frac{p^2}{2} - \left\{ q^2 + \frac{t}{2} \right\} p - a_1 q, \)

\(L_{II} = \left\{ \frac{p}{x - q} - 2H_{II} - 2a_1 x \right\} - \left\{ 2x^2 + t + \frac{1}{x - q} \right\} \partial_x + \partial_x^2, \)

\(B_{II} = \partial_t - \frac{1}{2(x - q)} \partial_x + \frac{p}{2(x - q)}, \)

\(s_1 = \{ a_1 \mapsto -a_1, q \mapsto q + a_1/p \}, \)

\(\pi = \{ a_1 \mapsto 1 - a_1, q \mapsto -q, p \mapsto -p + 2q^2 + t \}. \)

\(P_{III} : H_{III} = \frac{1}{t} \left\{ p^2 q^2 - (q^2 + a_1 q - t)p - a_0 q \right\}, \)

\(L_{III} = \left\{ -\frac{a_0}{x} + \frac{pq}{x(x - q)} - \frac{tH_{III}}{x^2} \right\} + \left\{ \frac{1 - a_1}{x} - \frac{1}{x - q} + \frac{t}{x^2} - 1 \right\} \partial_x + \partial_x^2, \)
\[B_{III} = \partial_t - \frac{xq}{t(x - q)} \partial_x + \frac{pq^2}{t(x - q)} , \]
\[s_0 = \{a_0 \mapsto -a_0, a_1 \mapsto a_1 + 2a_0, q \mapsto q + a_0/p\} , \]
\[s_1 = \{a_0 \mapsto 1 + a_0 + a_1, a_1 \mapsto -2 - a_1, p \mapsto p - (a_1 + 1)/q + t/q^2, t \mapsto -t\} , \]
\[s_2 = \{a_1 \mapsto -2a_0 - a_1, q \mapsto q - (a_0 + a_1)/(p - 1)\} . \]

\[P_{III}^{(D_5)} : H_{III}^{(D_5)} = \frac{1}{t}(p^2q^2 + q + pt + a_1pq) , \]
\[L_{III} = \left\{ \frac{1-p}{x} + \frac{p}{x-q} - \frac{tH_{III}^{(D_5)}}{x^2} \right\} + \left\{ a_1 + \frac{1}{x} - \frac{1}{x-q} + \frac{x}{x^2} \right\} \partial_x + \partial_x^2 , \]
\[B_{III} = \partial_t - \frac{xq}{t(x - q)} \partial_x + \frac{pq^2}{t(x - q)} . \]

\[\pi = \{\partial_t \mapsto \partial_x, \partial_x \mapsto 1, \partial_x^2 \mapsto 0\} . \]

\[P_{IV}^{(D_5)} : H_{IV}^{(D_5)} = \frac{1}{t}(p^2q^2 + pq + q + t) , \]
\[L_{IV}^{(D_5)} = \left\{ \frac{1-p}{x} + \frac{p}{x-q} - \frac{tH_{IV}^{(D_5)}}{x^2} + \frac{t}{x^3} \right\} + \left\{ \frac{2}{x} - \frac{1}{x-q} \right\} \partial_x + \partial_x^2 , \]
\[B_{IV}^{(D_5)} = \partial_t - \frac{xq}{t(x - q)} \partial_x + \frac{pq^2}{t(x - q)} , \]
\[\pi = \{q \mapsto t/q, p \mapsto -q(2qp + 1)/(2t)\} . \]

\[P_{IV} : H_{IV} = qp \bar{f} - a_1p - a_2q, \quad \bar{f} = p - q - t, \]
\[L_{IV} = \left\{ -a_2 - \frac{H_{IV}}{x} + \frac{pq}{x(x-q)} \right\} + \left\{ 1 - \frac{a_1}{x} - t - x - \frac{1}{x-q} \right\} \partial_x + \partial_x^2 , \]
\[B_{IV} = \partial_t - \frac{x}{x-q} \partial_x + \frac{pq}{x(x-q)} , \]
\[s_0 = \{p \mapsto p + (1 - a_1 - a_2)/f, q \mapsto q + (1 - a_1 - a_2)/f, a_1 \mapsto 1 - a_2, a_2 \mapsto 1 - a_1\} , \]
\[s_1 = \{p \mapsto p - a_1/q, a_1 \mapsto -a_1, a_2 \mapsto a_1 + a_2\} , \]
\[s_2 = \{q \mapsto q + a_2/p, a_1 \mapsto a_1 + a_2, a_2 \mapsto -a_2\} , \]
\[\pi = \{p \mapsto -f, q \mapsto -p, a_1 \mapsto a_2, a_2 \mapsto 1 - a_1 - a_2\} . \]

\[P_{V} : H_{V} = \frac{1}{t} \left\{ (q - 1)q(p + t)p + (a_1 - (a_1 + a_3)q)p + a_2qt \right\} , \]
\[L_{V} = \left\{ \frac{-tH_{V}}{(x-1)x(x-q)} + \frac{a_2t}{(x-1)x} \right\} + \left\{ 1 - \frac{a_1}{x} + t + \frac{1-a_3}{x-1} - \frac{1}{x-q} \right\} \partial_x + \partial_x^2 , \]
\[B_{V} = \partial_t - \frac{(x-1)x}{t(x-q)} \partial_x + \frac{pq-1}{t(x-q)} , \]
\[\pi = \{\partial_t \mapsto \partial_x, \partial_x \mapsto 0\} . \]
Proposition A.1. If \(L_jy(x) = 0 \) then \(\ell w(L_j)\tilde{y} = 0 \), where

\[
\tilde{y} = (\partial_x)^{2-a_1}y, \quad w = \pi s_1 \pi, \quad \ell = \partial_x + \frac{1 - a_1}{x - q} + \frac{1}{x - w(q)}, \quad (\text{for } J = \Pi)
\]

\[
\tilde{y} = (\partial_x)^{2-a_1} e^{\frac{x}{\pi}}y, \quad w = \pi s_1 \pi s_1, \quad \ell = \partial_x^2 - \left(\frac{1 - a_1}{s_1(q)} \right) \partial_x - \frac{p}{x - q} + \frac{p + 1}{x + s_1(q)}, \quad (\text{for } J = \Pi^D)
\]

\[
\tilde{y} = (\partial_x)^{2-a_0}y, \quad w = s_1 s_2 s_1 s_0, \quad \ell = \partial_x + 2 \frac{1 - a_0}{x - q} + \frac{1}{x - w(q)}, \quad (\text{for } J = \Pi)
\]

\[
\tilde{y} = (\partial_x)^{2-a_2}y, \quad w = s_1 s_0 s_1, \quad \ell = \partial_x + \frac{1}{x} + \frac{1 - a_2}{x - q} + \frac{1}{x - w(q)}, \quad (\text{for } J = \Pi)
\]

\[
\tilde{y} = (\partial_x)^{2-a_2}y, \quad w = s_3 s_0 s_1 s_0 s_3, \quad \ell = \partial_x + \frac{1}{x} + \frac{1 - a_2}{x - 1} + \frac{1}{x - q} + \frac{1}{x - w(q)}, \quad (\text{for } J = V)
\]

A.2. Symmetry of the classical Lax operator. [9], [23]
\[\hat{y} = (\partial_x)^2 \gamma, \quad w = s_4 s_3 s_1 s_0 s_2 s_4 s_3 s_1 s_0, \quad \ell = \partial_x + \frac{1}{x} + \frac{1}{x-1} + \frac{1}{x-t} + \frac{1-a_2}{x-q} + \frac{1}{x-w(q)}. \] (for J = VI)

Proposition A.2. If \(L_j \gamma(x) = 0 \) then \(w(L_j) \hat{y} = 0 \), where

\[\hat{y} = (a_1 y + (x - q - a_1/p)y_x)/(x - q), \quad w = s_1 s_3 s_1, \quad \text{(for J = II)} \]
\[\hat{y} = (xy_x - qpy)/(x - q), \quad w = s_1 s_3, \quad \text{(for J = III)} \]
\[\hat{y} = (a_0 y + (x - q - a_0/p)y_x)/(x - q), \quad w = s_1 s_3 s_1, \quad \text{(for J = III)} \]
\[\hat{y} = (a_2 y + (x - q - a_2/p)y_x)/(x - q), \quad w = s_1 s_0 s_1 s_2, \quad \text{(for J = IV)} \]
\[\hat{y} = (a_2 y + (x - q - a_2/p)y_x)/(x - q), \quad w = s_3 s_0 s_1 s_0 s_3 s_2, \quad \text{(for J = V)} \]
\[\hat{y} = (a_2 y + (x - q - a_2/p)y_x)/(x - q), \quad w = s_4 s_3 s_1 s_0 s_2 s_4 s_3 s_1 s_0 s_2, \quad \text{(for J = VI)} \]

Acknowledgements This work was partially supported by JSPS Grant-in-Aid for Scientific Research 21340036 and Grant-in-Aid for JSPS Fellows 22-2255.

References

[1] L. F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, *Lett. Math. Phys.* 91 (2010) 167–197, [arXiv:0906.3219](https://arxiv.org/abs/0906.3219).
[2] H. Awata, H. Fuji, H. Kanno, M. Manabe, and Y. Yamada, Localization with a Surface Operator, Irregular Conformal Blocks and Open Topological String, *Adv. Theor. Math. Phys.* 16 no.3 (2012), [arXiv:1008.0574](https://arxiv.org/abs/1008.0574).
[3] A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, *Nucl. Phys.* B241, (1984), 333-380.
[4] O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, [arXiv:1207.0787](https://arxiv.org/abs/1207.0787).
[5] J. Harnad, Quantum isomonodromic deformations and the Knizhnik-Zamolodchikov equations. Symmetries and integrability of difference equations (Estérel, PQ, 1994), 155–161, CRM Proc. Lecture Notes, 9, *Amer. Math. Soc.*, Providence, RI, 1996.
[6] M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary dierential equations with rational coecients. II, *Phys. 2D* (1981), 407–448.
[7] M. Jimbo, H. Nagoya and J. Sun, Remarks on the confluent KZ equation for sl_2 and quantum Painlevé equations, *J. Phys. A: Math. Theor.* 41 (2008) 14pp.
[8] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Cubic Pencils and Painlevé Hamiltonians, *Funkcialaj Ekvacioj* 48 (2005) 147–160, [arXiv:nlin/0403009](https://arxiv.org/abs/nlin/0403009).
[9] H. Kawakami, Generalized Okubo Systems and the Middle Convolution, *Int. Math. Res. Notices* 17 (2010) 3394–3421.
[10] G. Kuroki, Regularity of quantum \(\tau \)-functions generated by quantum birational Weyl group actions, [arXiv:1206.3419](https://arxiv.org/abs/1206.3419).
[11] N. A. Nekrasov and S. L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, [arXiv:0908.4052](https://arxiv.org/abs/0908.4052).
[12] H. Nagoya, Quantum Painlevé Systems of Type A_{(1)}^1, *Int. J. Math.* 15 (2004), 1007–1031.
[13] H. Nagoya, B. Grammaticos and A. Ramani, Quantum Painlevé equations: from continuous to discrete and back, *Regular and Chaotic Dynamics* 13 (2008), no. 5, 417–423.
[14] H. Nagoya, A quantization of the sixth Painlevé equation, Noncommutativity and singularities, *Adv. Stud. Pure Math.* **55** (2009) 291–298

[15] H. Nagoya and J. Sun, Confluent primary fields in the conformal field theory, *J. Phys. A: Math. Theor.* **43** 465203 (2010), [arXiv:1002.2598]

[16] H. Nagoya, Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations, *J. Math. Phys.* **52** (2011) 16pp

[17] H. Nagoya, Realizations of affine Weyl group symmetries on the quantum Painlevé equations by fractional calculus, *Lett. Math. Phys.* **102**, no. 3, (2012), 297–321

[18] D. P. Novikov, The 2×2 matrix Schlesinger system and the Belavin-Polyakov-Zamolodchikov system, *Theor. Math. Phys.* **161** (2) (2009), 1485–1496

[19] K. Okamoto, Studies on the Painlevé equations, I: *Ann. Math. Pura. Appl.* (4) **146** (1987),337–381; II: *Jap. J. Math.* **13** (1987), no. 1, 47–76; III: *Math. Ann.* **275** (1986), no. 2, 221–255; IV: *Funkcial. Ekvac.* **30** (1987), no. 2-3, 305–332

[20] Y. Ohyama, H. Kawamuko, H. Sakai and K. Okamoto, Studies on the Painlevé equations, V: *J. Math. Sci. Univ. Tokyo* **13** (2006), 145–204

[21] N. Reshetikhin, The Knizhnik-Zamolodchikov system as a deformation of the isomonodromy probdfn, *Lett. Math. Phys.* **26** (1992), 167–177

[22] B. I. Suleimanov, The Hamiltonian structure of Painlevé equations and the method of isomonodromic deformations, *Differential Equations* **30** 726–732 (1994)

[23] K. Takemura, Integral representation of solutions to Fuchsian system and Heun’s equation, *J. Math. Anal. Appl.* **342** (2008) 52–69, [arXiv:0705.3358]

[24] J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I, *Adv. Theor. Math. Phys.* **15** no. 2 (2011) 471–564, [arXiv:1005.2846]

[25] A. Zabrodin and A. Zotov, Quantum Painlevé-Calogero Correspondence for Painlevé VI, *J. Math. Phys.* **53** (2012) 19pp, [arXiv:1107.5672]

Department of Mathematics, Kobe University, Kobe 657-8501, Japan, Research Fellow of the Japan Society for the Promotion of Science

E-mail address: nagoya@math.kobe-u.ac.jp

Department of Mathematics, Kobe University, Kobe 657-8501, Japan

E-mail address: yamaday@math.kobe-u.ac.jp