Cytotoxic *Escherichia coli* strains encoding colibactin, cytotoxic necrotizing factor, and cytolethal distending toxin colonize laboratory common marmosets (*Callithrix jacchus*)

Colleen S. McCoy¹, Anthony J. Mannion¹, Yan Feng¹, Carolyn M. Madden¹, Stephen C. Artim¹,², Gina G. Au¹, Mikayla Dolan¹, Jennifer L. Haupt¹, Monika A. Burns¹, Alexander Sheh¹ & James G. Fox¹

Cyclomodulins are virulence factors that modulate cellular differentiation, apoptosis, and proliferation. These include colibactin (pks), cytotoxic necrotizing factor (cnf), and cytolethal distending toxin (cdt). Pathogenic pks+, cnf+, and cdt+ *E. coli* strains are associated with inflammatory bowel disease (IBD) and colorectal cancer in humans and animals. Captive marmosets are frequently afflicted with IBD-like disease, and its association with cyclomodulins is unknown. Cyclomodulin-encoding *E. coli* rectal isolates were characterized using PCR-based assays in healthy and clinically affected marmosets originating from three different captive sources. 139 *E. coli* isolates were cultured from 122 of 143 marmosets. The pks gene was detected in 56 isolates (40%), cnf in 47 isolates (34%), and cdt in 1 isolate (0.7%). The prevalences of pks+ and cnf+ *E. coli* isolates were significantly different between the three marmoset colonies. 98% of cyclomodulin-positive *E. coli* belonged to phylogenetic group B2. Representative isolates demonstrated cyclomodulin cytotoxicity, and serotyping and whole genome sequencing were consistent with pathogenic *E. coli* strains. However, the presence of pks+, cnf+, or cdt+ *E. coli* did not correlate with clinical gastrointestinal disease in marmosets. Cyclomodulin-encoding *E. coli* colonize laboratory common marmosets in a manner dependent on the source, potentially impacting reproducibility in marmoset models.

Escherichia coli is a ubiquitous and diverse species of Gram-negative, facultatively anaerobic bacilli in the family *Enterobacteriaceae*. Most strains of *E. coli* are commensals within the gastrointestinal tract of animals. However, pathogenic *E. coli* strains cause a variety of intestinal and extraintestinal infections ranging in severity from self-limiting to lethal¹. These strains are classically categorized into pathotypes, including enteropathogenic *E. coli* (EPEC), uropathogenic *E. coli* (UPEC), meningitis-associated *E. coli* (MNEC), and others. Each pathotype represents a collection of strains with similar virulence factors conferring the ability to cause similar pathology².

Cyclomodulins are a heterogeneous class of virulence factors that alter the eukaryotic cell cycle to promote bacterial invasion and host colonization. These actions induce genetic instability that may lead to the development of cancer. Cyclomodulins that are found in *E. coli* include colibactin, cytotoxic necrotizing factor (CNF), cytolethal distending toxin (CDT), cycle inhibiting factor, shiga toxin, and subtilase toxin³.

Colibactin is a genotoxic secondary metabolite produced by *Enterobacteriaceae* species harboring the polypeptide synthase (pks) genomic island. Colibactin from *E. coli* alkylates adenine, causing DNA interstrand crosslinks and double strand breaks, leading to cell cycle arrest and senescence in vitro, as well as increased virulence in extraintestinal infections and tumor development in vivo⁴–⁶. The presence of pks+ *E. coli* is associated with

¹Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. ²Present address: Merck Research Laboratories, Merck, South San Francisco, CA 94080, USA. *email: jgfox@mit.edu
inflammatory bowel disease (IBD) and colorectal cancer, and was recently shown to cause a unique mutational signature that is enriched within a subset of human cancers. The highly reactive and unstable cyclopropane warheads of colibactin are activated during secretion to prevent autotoxicity to the bacteria; therefore, toxicity in vitro requires direct contact of cells with live bacteria. Effects on cells in vitro include megalocytosis, phosphorylated γ-H2AX foci, and G2 cell-cycle arrest.

Cytotoxic necrotizing factor (CNF) is a family of AB toxins produced by UPEC strains that cause cytoskeletal changes resulting in macropinocytosis of bacteria into the host cell as well as G2 cell cycle arrest. These actions impair epithelial turnover and favor E. coli colonization. Consistent with these mechanisms, many cell lines treated with sonicates of cnf+ E. coli exhibit multinucleation and ruffled cell borders. CNF1 can also induce epithelial to mesenchymal transition in vitro, and thus may increase the risk of cancer. Three CNF types are described in E. coli, however, CNF2 and CNF3 are not frequently detected.

UPEC strains also produce hemolysin, a membrane pore-forming toxin. The cnf1 gene, when present, is always encoded on the hlyCABD operon and is co-transcribed with hemolysin. However, hlyCABD can exist without cnf1. Hemolysin is produced as either a free form or an outer membrane vesicle (OMV)-associated form. The free form irreversibly inserts into cell membranes of erythrocytes and epithelial cells, where depending on concentration it causes ion imbalance, structural changes, and cell lysis. The OMV-associated form is internalized by epithelial cells, where it targets mitochondria and triggers caspase-9-mediated apoptosis.

Cytotoxic lethal distending toxin (CDT) is an AB2-type toxin produced by several pathogenic Gram-negative bacteria which causes DNA damage and cell cycle arrest. The catalytic subunit CdtB is highly conserved between species and causes single and double-strand DNA breaks via DNase I-like activity. This triggers the DNA damage response via ATM kinase, leading to both G2/M and G1/S cell cycle arrest. CDT increases bacterial gut colonization, promotes pro-inflammatory responses, and dysregulates the immune response. Treatment of HeLa cells with CDT in vitro requires direct contact of cells with live bacteria. Effects on cells in vitro include megalocytosis, phosphorylated γ-H2AX foci, and G2 cell cycle arrest.

The common marmoset (Callithrix jacchus) is a nonhuman primate species that is increasingly used in a variety of biomedical research fields including neuroscience, toxicology, infectious disease, immunology, reproduction, obesity, and aging. Common marmosets in captivity are frequently afflicted with IBD-like disease, which is often diagnosed post-mortem as chronic lymphocytic enteritis (CLE) and the etiology and pathogenesis of which are presently unknown. The potential role of cyclomodulin-encoding enteropathogenic E. coli in the pathogenesis of IBD-like disease of marmosets has not previously been investigated, although E. coli has previously been associated with G1 disease in marmosets.

Most captive marmoset colonies are not specific pathogen free (SPF), and none exclude E. coli. As such, the prevalence of cyclomodulin-encoding E. coli in laboratory marmosets is currently unknown. We hypothesized that common marmosets, similar to laboratory rodents and other laboratory nonhuman primates, are colonized by cyclomodulin-encoding E. coli, and the prevalence of pks+, cnf+, and cdt+ E. coli in our population would vary significantly depending on the colony of origin, as has been demonstrated in laboratory rats.

In addition, we hypothesized that pks+, cnf+, and cdt+ E. coli are present in animals afflicted with gastrointestinal disease with greater frequency than in clinically normal animals. Additionally, colonization of marmosets by cyclomodulin-encoding E. coli might be expected to induce physiological variability between animals in a study, potentially impacting reproducibility.

Results

Microbiologic characterization of marmoset E. coli isolates. In total, 139 E. coli strains were isolated from 122 of the 143 marmosets sampled in all three colonies (Supplementary Table S1). In Colony A, 31 strains of E. coli were isolated from 26 of the 33 animals. In Colony B, 33 strains of E. coli were isolated from 32 of the 33 animals. In Colony C, 75 strains of E. coli were isolated from 64 of the 77 animals. Eight E. coli isolates originating from Colony C demonstrated hemolytic activity when cultured on blood agar plates. Some animals harbored multiple E. coli isolates as determined by distinct colony morphology and biochemical characterization by API testing. Of the 139 total E. coli isolates, 54 were API code 5144572, and 51 isolates were API code 5144552, constituting the majority of isolates present in all three marmoset colonies. The major metabolic difference between these codes is that strains with API code 5144552 ferment sucrose, whereas those with 5144572 did not. Other API codes represented were 5044552, 5144172, 7144552, 7145552, 5044572, 5144573, 1044552, 5144551, and 7144571 (Supplementary Figure S1). There were significant associations between marmoset colony of origin and E. coli strain-linked biochemical characteristics, including the presence of ornithine decarboxylase (p < 0.001), butylene glycol pathway (p = 0.01), sucrose fermentation (p < 0.001), and amygdalin fermentation (p < 0.05) (Supplementary Figure S1).

Phylogenetic distribution of marmoset E. coli isolates. Phylogenetic group was determined according to the specific gel electrophoresis banding pattern resulting from multiplex PCR amplification of genes svg, chuA, yjaA, uidA, and TspE4.C2 (Fig. 1a). Isolates in phylogroup A were positive for yjaA and uidA, phylogroup B1 were positive for uidA, and phylogroup B2 were positive for chuA, yjaA, uidA, and TspE4.C2. Out of 135 total isolates tested, 21 were in phylogroup A (16%), 54 were in phylogroup B1 (40%), and 60 were in phylogroup B2 (44%) (Fig. 1b). In marmoset colony A, 1 of the 31 isolates was phylogroup A, 12 were phylogroup B1, and 18 were phylogroup B2. In marmoset colony B, 20 of the 33 isolates were phylogroup A, 5 were in phylogroup B1, and 8 were in phylogroup B2. In marmoset colony C, 37 of the 71 isolates were in phylogroup B1, 34 were in phylogroup B2, whereas none of the isolates in marmoset colony C were in phylogroup A. The distribution of E. coli phylogroups was significantly different in marmoset colony C compared to E. coli isolates from the other two colonies (p < 0.001). Phylogenetic group correlated strongly with genotype, in that all phylogroup A isolates, and all but one of the phylogroup B1 isolates, were negative for pks, cnf, and hlyA. Of the 60 phylogroup B2 isolates,
54 were cyclomodulin-positive. All 6 phylogroup B2 isolates that were pks-/-cnf- were cultured from marmoset colony B.

Distribution of marmoset E. coli isolates encoding cyclomodulins. All E. coli isolates were tested by PCR for cyclomodulin genes with primers for the clbQ gene of the pks island (Fig. 2a), with multiplex primers to amplify both chromosomal and plasmid cnf genes (Fig. 2b), and with multiplex primers to amplify all known...
variants of cdtB genes (Fig. 2c). Of the 139 E. coli isolates, 56 were positive for pks (40.3%), 47 were positive for cnf (33.8%), and 1 was positive for cdt (0.7%) (Supplementary Table S2). All 47 cnf+ isolates were also pks+. Of the 9 pks+/cnf− isolates, one was cdt+. (Fig. 2d) The single animal with cdt+ E. coli had a similar pks+/cnf−/cdt+ E. coli isolate simultaneously cultured from a nasal swab taken as a diagnostic sample, and the PCR bands from both isolates are depicted in Fig. 2c. The cdtB amplicons sequenced from both E. coli isolates from this animal aligned with 98% identity to the gene for CDT Type IV subunit B found in E. coli strain NCTC 8196. The remaining 83 isolates were negative for all three cyclomodulin genes tested. From marmoset colony A, 17 of the 31 E. coli isolates were pks+, and all of the 33 isolates were cnf−. In marmoset colony B, 2 of the 33 E. coli isolates were pks+, and all of the 33 isolates were cnf−. In marmoset colony C, 36 of the 75 E. coli isolates were pks+, and 6 of those were also cnf−. The remaining 39 E. coli isolates from marmoset colony C were pks−/cnf−. The prevalence of both pks and cnf were significantly lower in colony B compared to the other two marmoset colonies (p < 0.001).

Captive marmosets are maintained in cohoused family units, which may influence transmission of E. coli within colonies. Therefore, we evaluated if E. coli strains differed between family lines in each colony. The two largest extended family lines (Family 1 and Family 2) in Colony C consisted of cohoused parents, adult offspring that were previously cohoused with the parents, and unrelated mates cohoused with the offspring. These two families were found to have a significantly higher proportion of pks+/cnf− E. coli isolates (24% prevalence) than the rest of Colony C (0% prevalence) (p < 0.001) (Supplementary Figure S2). Similar pks+/cnf− E. coli isolates had been cultured from these animals over the previous two years (Supplementary Figure S2). The cyclomodulin prevalence in E. coli isolates from other large families were not significantly different from E. coli isolates in their colonies of origin.

To determine if marmosets are stably colonized over time with cyclomodulin-encoding E. coli, we analyzed data from animals which had been sampled multiple times over the course of two years. Interestingly, of the 51 animals that had been sampled 12 and 24 months previously, 5 consistently had pks+/cnf+/cdt− E. coli, 6 consistently had pks+/cnf−/cdt− E. coli, and an additional 20 marmosets consistently had pks−/cnf−/cdt− E. coli isolated from rectal swabs (Supplementary Figure S2).

Identification of mutant hemolysin gene. Cytotoxic necrotizing factor, when present, is always encoded on the same operon with hemolysin, though it is common for an isolate to encode hemolysin without CNF15. Therefore, it was surprising when 45 of the 47 cnf+ E. coli isolates did not demonstrate hemolytic activity when cultured on blood agar. The presence of hemolysin was tested by PCR in 136 E. coli isolates by amplification of the gene hlyA (Supplementary Figure S3). The hlyA PCR product size was 584 bp, which was produced from all eight hemolytic isolates. The sequence of this amplicon demonstrated 100% identity with the hemolysin A gene from 16 different E. coli reference isolates, including UT189. Forty-two out of 136 marmoset E. coli isolates produced a 1665 bp amplicon, all of which were non-hemolytic and cnf+. The hlyA gene in these longer amplicons was disrupted by an IS481-like element ISKpn28 family transposase, an insertional sequence previously found in Klebsiella pneumoniae isolates46. The mutant hemolysin was thus designated hlyA::ISKpn28. All three marmoset colonies had significantly different prevalence of wildtype and mutant hemolysin genes, with Colony A having proportionally more E. coli isolates with hlyA::ISKpn28, all Colony B isolates being negative for both wildtype and mutant hemolysin, and all wildtype hlyA+ isolates originating from Colony C (p < 0.01) (Supplementary Figure S3).

Clinical correlates. Medical records were evaluated for temporal correlations of GI clinical signs from animals which had cultured pks+, cnf+, or cdt+E. coli isolates. Of 122 animals from which E. coli was cultured, 96 had no history of GI disease, 18 had a history of clinical GI disease but were asymptomatic at the time of sample collection, 5 had IBD-like disease, and 3 were previously diagnosed with duodenal ulcers. There were no significant associations of gastrointestinal disease with the presence or absence of cyclomodulin-encoding E. coli overall, or when sorted by colony (Fig. 3).
In vitro cytotoxicity of *E. coli* isolates from marmosets. Cell culture assays were performed to demonstrate cytotoxicity of nine selected representative *E. coli* isolates (S1-S9) to HeLa cells. To detect colibactin activity, cells must be exposed to live bacteria to allow for precolibactin transport into the bacterial periplasmic space, followed by maturation\(^{31}\). Conversely, CDT and CNF cytotoxicity are only detectable using sonicate or supernatant preparations\(^2\). Live *pks*+ *E. coli* isolates S1-S6 induced megalocytic cytotoxicity in HeLa cells in a manner corresponding to multiplicity of infection, indicating contact-dependent colibactin activity (Supplementary Figure S4). HeLa cells treated with sonicate from *cnf*+ *E. coli* isolates S1-S3 displayed multinucleation and megalocytic cytotoxicity in a dose-dependent manner (Supplementary Figure S4). HeLa cells treated with sonicate from the *cdt*+ *E. coli* isolate S6 displayed megalocytosis and multinucleation in a dose-dependent manner (Supplementary Figure S4). These phenotypes were not observed in HeLa cells treated with live *pks*+ *E. coli* isolates S7, S8, and S9, or with the sonicates of *cnf*− or *cdt*− isolates S4, S5, S7, S8, and S9.

Serotyping. Nine representative *E. coli* isolates (S1-S9) from all three colonies were sent to the *E. coli* Reference Center at Pennsylvania State University for serotyping and further virulence factor profiling (Table 1). Three of the isolates were O6:H+, all of which were in phylogenetic group B2 and *pks*+, but otherwise differed by genotype and source colony. Two of the isolates were O2:H14, both of which were in phylogenetic group B2 and encoded *pks* and *cnf*, and the mutant hemolysin gene, but each isolate originated from a different colony. The remaining *pks*+ isolate was *cdt*+, serotype O7:H7, and was in phylogenetic group B2. The three remaining isolates represented all three marmoset colonies and were negative for all tested virulence factors. The isolate from marmoset colony A was serotype O128:H2 and phylogroup B1. The isolate from marmoset colony B was serotype O26:H32 and phylogenetic group B2, which was unusual for a *pks*+ *E. coli* isolate. The isolate from marmoset colony C was serotype O139:H19 and phylogroup B1. This isolate tested positive for *cnf1* by PCR at the *E. coli* Reference Center at Pennsylvania State University, which conflicted with our negative PCR result as well as with later genome sequencing results. None of the nine *E. coli* isolates serotyped were positive for *elt*, *estA*, *estB*, *stx1*, *stx2*, *eae*, or *cnf2*.

Draft genome sequencing and comparative analysis. Whole genome sequences of five representative *E. coli* isolates (S1, S3, S4, S5, and S8) were evaluated for the presence of known virulence factor genes and for comparative analysis with other cyclomodulin-encoding *E. coli* from humans, rhesus macaques, and laboratory rodents. The genome sizes, GC contents, protein-coding sequences and RNA genes of the representative marmoset *E. coli* isolates were comparable to those of *pks*+ *E. coli* strains IHE3034 and NC101, as well as *cnf*+ *E. coli* strain UTI89 (Table 2). Gene sequences homologous to the *pks* island found in IHE3034 and NC101 were present in marmoset *E. coli* isolates S1, S3, S4, and S5, as predicted by the results of PCR and in vitro cytotoxicity assays. Syntenic alignments were confirmed for the *pks* island in all four predicted marmoset *E. coli* isolates with *E. coli* strains IHE3034 and NC101. (Supplementary Figure S5) Isolate S4 was found to have a putative hybrid gene for *clbf-K*, similar to a gene sequence found previously in *E. coli* isolates from laboratory and pet rats.\(^{26,33}\)

Gene sequences homologous to the _hlyCABD-cnf1_ operon present in UTI89 were detected in marmoset isolates S1 and S3, as predicted by the results of PCR and in vitro cytotoxicity assays. Syntenic alignments were confirmed for the _hlyCABD-cnf1_ operon in all predicted marmoset _hlyA+ E. coli_ isolates with _E. coli_ strain UTI89 (Supplementary Figure S5). Isolate S1 contained a 1081 bp insertion in the _hlyA_ gene sequence as predicted by PCR and amplicon sequencing. Isolate S4 encoded all four hemolysin genes, but not the _cnf1_ gene sequence, consistent with PCR results, in vitro cytotoxicity in HeLa cells, and hemolytic phenotype.

Additional virulence factor genes were detected in the marmoset _E. coli_ isolates (Table 2), including serine protease autotransporters of *Enterobacteriaceae* (SPATEs) (*pic*, *vat*), survival and immune evasion factors (*gad*, *iss*), iron acquisition (*iroN*), adherence (*lpfA*, *sfaS*), and synthesis and secretion genes for bacteriocins (*cwa*, *cma*, *mcmA*, *mchB*, *mchC*, *mchP*). All five marmoset *E. coli* isolates encoded the _mdfA_ gene, a broad-spectrum multidrug efflux pump that contributes to antibiotic resistance. Sequences for other cyclomodulins *cnf2*, _cdtABC_ and

Strain	Marmoset colony	Cyclomodulin genotype	hlyA	Phylo-group	Serotype	elt	estA	estB	stx1	stx2	eae	cnf1	cnf2
S1	C	*pks*+/*cnf*+/*cdt*	Mutant	B2	O2:H14								+
S2	A	*pks*+/*cnf*+/*cdt*	Mutant	B2	O2:H14								+
S3	C	*pks*+/*cnf*+/*cdt*	+	B2	O6:H+								+
S4	C	*pks*+/*cnf*+/*cdt*	+	B2	O6:H+								+
S5	B	*pks*+/*cnf*+/*cdt*	+	B2	O6:H+								+
S6	A	*pks*+/*cnf*+/*cdt*	+	B2	O7:H7								+
S7	B	*pks*+/*cnf*+/*cdt*	+	B2	O26:H32								+
S8	C	*pks*+/*cnf*+/*cdt*		B1	O139:H19								+
S9	A	*pks*+/*cnf*+/*cdt*		B1	O128:H2								+

Table 1. Serotype and virulence factor profiling results of representative *E. coli* isolates from marmosets. Assays were conducted by *E. coli* Reference Center at The Pennsylvania State University. S8 had conflicting results on *cnf1* between our primers and Penn State’s primers. *elt*, heat-labile enterotoxin; *estA*, heat-stable enterotoxin A; *estB*, heat-stable enterotoxin B; *stx1*, Shiga-type toxin 1; *stx2*, Shiga-type toxin 2; *cnf1*, cytotoxic necrotizing factor 1; *cnf2*, cytotoxic necrotizing factor 2; *eae*, intimin gamma.
Table 2. Novel marmoset *E. coli* genomes have similar statistics as pathogenic, *pkb*-encoding *E. coli* strains IHE3034 and NC101, and *cnf*-encoding uropathogenic *E. coli* strain UTI89. Virulence factor genes for toxins, survival factors, and adhesins, as well as antibiotic resistance genes, were identified in the marmoset *E. coli* genomes. * Gene names: *pkb*, polyketide synthetase (colibactin); *cnf1*, cytotoxic necrotizing factor; *pic*, serine protease autotransporters of *Enterobacteriaceae* (SPATEs); *vat*, vacuolating autotransporter toxin; *gad*, glutamate decarboxylase; *iss*, increased serum survival; *iroN*, enterobactin siderophore receptor protein; *lpfA*, long polar fimbriae; *sfaS*, S-fimbriae minor subunit; *cba*, colicin B; *cma*, colicin M; *mchA*, microcin A; *mchB*, microcin H47 biosynthesis protein; *mchC*, microcin H47 biosynthesis protein; *mchF*, ATP-binding cassette transporter protein for microcin H47; *mdfA*, multidrug efflux pump; *cdtABC*, cytolethal distending toxin subunits A, B, and C; *senB*, enterotoxin TieB protein.

cif, were not detected. Genes for virulence factors *elt*, *estA*, *estB*, *stx1*, *stx2*, and *eae* were not detected, consistent with previous PCR results. Several isolates (S1, S3, S4, and S5) had similar virulence factor profiles to nero-
toxicogenic (NTEC) and uropathogenic (UPEC) strains of *E. coli*, including CNF1, *α*-Hemolysin (*α*Hly), fimbrial adhesins (*Sfa*S), increased serum survival (ISS), and siderophore receptors (*IroN*). Similar Genome Finder showed isolates S3, S4 and S5 closely matched UPEC strains that caused urinary tract infections and bacteremia in humans and animals worldwide. Isolate S1 was similar to antibiotic resistant strains from human feces, and S8 showed similarity to potential foodborne contaminants. Similar genome descriptions and references are listed in Supplementary Table S3.

Discussion

Escherichia coli is normally a commensal organism colonizing the lower GI tract of common marmosets. However, certain strains of *E. coli* encode virulence factors which can cause disease. Enteropathogenic *E. coli* (EPEC) has previously been implicated in diarrhea, hemorrhagic typhlocolitis, and ileitis in laboratory marmosets. Marmoset EPEC strains demonstrated similarities in virulence factors, pathogenic properties, and genomic features to human strains, indicating they are likely equivalent pathotypes and possibly capable of zoonotic transmission. Additionally, marmosets have been experimentally infected with uropathogenic *E. coli* (UPEC) which caused lower urinary tract infection and pyelonephritis. However, the prevalence and pathogenicity of cyclomodulin-encoding *E. coli* in laboratory common marmosets is not currently known.

Because of the diversity and ubiquity of *E. coli*, it can be challenging to determine whether an isolated strain is pathogenic. This determination is made based on the source, biotype, serotype, phylogenetic background, virulence factor profile, and demonstration of virulence properties using in vitro and in vivo models. Biotyping is commonly used to phenotypically differentiate unique *E. coli* isolates by characterization of the biochemical metabolism profile. Many marmosets were shown to be colonized by multiple unique *E. coli* isolates by this method. Phylogenetic typing is a simple method using multiplex PCR to assign an isolate into one of five phylo-
groups, which significantly correspond with the isolate's pathogenicity. This makes it feasible for use on a large scale to screen for potentially pathogenic *E. coli* in a given population. Pathogenic *E. coli* strains typically belong to phylogroups B2 or D, whereas those in phylogroups A and B1 are usually considered commensals. Ninety-eight percent of the cyclomodulin-encoding *E. coli* isolated from laboratory marmosets belong to pathogenic group B2, which is consistent with strains isolated from humans and other species. The distribution of phylogroups was significantly different in Colony B, which had 61% prevalence of the non-pathogenic phylogroup A, whereas the prevalence of phylogroup A in Colony A was only 3%, and it was not isolated in Colony A.
C. Potentially pathogenic *E. coli* classified in phylogroup B2 had a 44% prevalence overall, and was associated with the presence of virulence factor genes *pks*, *cnf* and *hlyA*, especially in Colonies A and C. Marmoset colony B had a significantly lower prevalence of *pks* (6%) and *cnf* (0%) *E. coli* isolates than the other two colonies.

Overall, 40% of the laboratory marmoset *E. coli* isolates were *pks*+; this is similar to the prevalence of *pks*+ *E. coli* in laboratory macaques (30.1%).26 Prevalence of *pks*+ *E. coli* in healthy humans ranged from 4.3 to 22%.39 The majority (84%) of *pks*+ *E. coli* isolates from marmosets were also *cnf*+, and all *cnf*+ *E. coli* isolates were also *pks*+. Double-positive isolates (*pks*/+*cnf*+) have been characterized from both healthy humans and patients with urosepsis, in contrast to surveys in humans and macaques where *cnf* is occasionally present in *pks*− isolates.26,39 Nearly 34% of the marmoset *E. coli* isolates were *cnf*+, similar to what has been found previously in other laboratory nonhuman primates (20.9%).38 In contrast, a similar survey of *cnf*+ *E. coli* in healthy humans showed a prevalence of only 2%.38

Only one *E. coli* isolate was *cdt*+ (0.7% prevalence). Other surveys have not found *cdt*+ *E. coli* in human patients with diverticulosis, nor in macaques.6,12

Previous studies have shown an association between *cnf* and hemolysis, which is consistent with the proximity of the *cnf* gene to the hemolysin gene. Interestingly, 96% of the *cnf*+ isolates from marmosets did not demonstrate hemolysis due to an insertion event in the *hlyA* gene. Strains of *E. coli* with a similar deactivating insertion in the *hlyA* gene were previously isolated from laboratory rats from a specific vendor.6,12

HeLa cells infected with live bacteria of select *pks*+ *E. coli* isolates demonstrated megalocytosis, cytopathic morphology consistent with colibactin, and depending on the multiplicity of infection (MOI). In this assay, the cytopathic effect requires direct contact with live cells, presumably due to the instability of colibactin, which is matured upon secretion. Consistent with this known mechanism, HeLa cells treated with sonicates of *pks*/+*cnf*/−/− *E. coli* were indistinguishable from those treated with nonpathogenic K12 E. coli. HeLa cells treated with sonicates of select *cnf*+ *E. coli* isolates demonstrated megalocytosis, morphology consistent with cytotoxicity from CPE, in a manner dependent on the protein concentration of *cnf*+ *E. coli* sonicates. HeLa cells treated with the sonicate from S6, the single *cdt*+ *E. coli* isolate demonstrated cellular distension and multinucleation consistent with cytotoxicity from CDT and dependent on the protein concentration of the sonicate. Cells treated with cyclomodulin-negative *E. coli* strains were indistinguishable from those treated with nonpathogenic K12 strains. These results were consistent with findings from previous studies showing cytotoxic effects of *pks*+, *cnf*+ and *cdt*+ *E. coli* in vitro.11,26,28,29,33

Serotyping uses antibodies to characterize the O-polysaccharide antigens, flagellar H-antigens, and capsular K-antigens found on the surface of the bacteria. Certain serotypes are more frequently associated with specific pathotypes, such as EHEC O157:H7.42 Serotypes of select *E. coli* isolates from marmosets suggested the potential for frequent association with urinary tract infection (UTI) in humans and animals.43,44 Genome sequence analysis supports the potential of these isolates to cause UTI. Virulence factors associated with UPEC pathotype were found in isolates S1–S5, including S-fimbriae (sfaS), hemolysin (*hlyA*), *cnf*, iron uptake genes (*irvB*), and other colonization and survival factors (*pic*, *vat*).45 Whether these *E. coli* serotypes are associated with UTI in marmosets requires further study. *E. coli* in serogroups O26 and O128:H2 have been associated with enterohemorrhagic *E. coli* (EHEC) infections in humans and animals.45 However, these isolates (S7 and S9) tested negative by PCR for the EHEC virulence factors *stx1*, *stx2*, and *eae*, and in addition to being negative for *hlyA*, *pks*, and *cnf*, so they are unlikely to be pathogenic. Nonpathogenic O7:H7 *E. coli* negative for both *eae* and *stx* were isolated from laboratory rabbit fecal samples.45,46 Finally, O139 is commonly involved in edema disease in post-weaning pigs.46

Whole genome sequence analysis of select *E. coli* isolates raised an interesting question about genetic variants of *pks*. Isolate S4 had a putative hybrid gene for *clbf-K*. This hybrid gene contains approximately 90% of the *clbf* sequence, and 45% of the *clbk* sequence, when compared to the IHE3034 genome. The putative *clbf-K* hybrid gene is predicted to translate to a 2440-amino acid hybridized protein that contains two NPRS modules as well as an oxidase domain. Isolate S4 exhibited cytotoxicity to HeLa cells similar to other *pks*+ *E. coli* isolates tested (Supplementary Figure S4), suggesting the hybrid gene produces functional colibactin. Similar *clbf-K* hybrid genes were found in *E. coli* isolates from laboratory and pet rats; and these isolates caused cytotoxicity and DNA damage in HeLa cells following in vitro infection.38,39

The fact that differences in prevalence were detected years after animals were transferred from each colony of origin to MIT suggests that these *E. coli* strains can stably colonize marmosets over multiple years. This is supported by the fact that similar *E. coli* isolates were cultured from 60% of marmosets 12 and 24 months previously. Furthermore, the presence of similar *E. coli* isolates in animals that were born at the MIT facility suggests these strains are passed to infants from family members. This observation is further validated by the unique cyclomodulin gene distribution found in Families 1 and 2 from Colony C, where 24% of individuals carried *pks*+/− *cnf*− isolates of *E. coli* compared to 0% of the remainder of marmosets in Colony C.

Interestingly, 42/56 *pks*+ *E. coli* isolates harbored a hemolysin A gene with an inactivating insertion mutation (designated *hlyA*:ISKpn28). Thirty-four of the 42 *hlyA*:ISKpn28 strains had identical biochemical profiles (API code 5144552), and two representative strains were serotype O2:H14. The remaining 8 *hlyA*:ISKpn28 strains had identical biochemical profiles to each other (API code 7144552), and possessed arginine dihydrolase activity unlike the 34 *hlyA*:ISKpn28 isolates. All 42 of these isolates were only cultured from Colony A and C animals, suggesting there could be clonal transmission within and between the marmoset colonies. Future studies using whole genome sequencing will be required to confirm clonality as well as the need to evaluate the dynamics of *E. coli* transmission in marmoset colonies and family units.

Common marmosets in captivity are frequently afflicted with IBD-like disease in which the etiology and pathogenesis are presently unknown. In humans, cyclomodulin-encoding *E. coli* have been demonstrated in higher frequency in patients with colorectal cancer, familial adenomatous polyposis, and IBD than in healthy controls or in patients with other GI diseases.9,32,38. Although this study did not show an association between
cyclovomodulin-encoding *E. coli* and clinical GI disease in marmosets, it does not exclude their potential role in subclinical intestinal inflammation in marmosets. One limitation of this study is that the evolving nature of the clinical diagnosis of CLE in marmosets means that some of the animals in this study may have been in early subclinical stages of the disease. It is possible that some strains of *E. coli* present in the GI tract may not have been isolated from a rectal swab culture, although microbiome comparison of rectal swabs to feces in marmosets showed good agreement. Finally, the fact that *pks* is present in other *Enterobacteriaceae* species raises the possibility that colibactin-producing bacteria are more prevalent in this population than we detected by culture of fecal material for *E. coli* only. These issues can be addressed in future studies with improved antemortem diagnostics including markers of intestinal inflammation, as well as clinical correlations with metagenomic data.

This report is the first to characterize the presence of cyclovomodulin-encoding *E. coli* in marmosets. We have demonstrated that laboratony common marmosets can be colonized by cyclovomodulin-encoding *E. coli* and have further shown that the prevalence of these cyclovomodulin genes varies significantly depending on the source of the animal. Although we hypothesized that *pks*, *cnf* and *cdt* are present in animals clinically afflicted with gastrointestinal disease at greater frequency than in clinically normal animals, no such association was detected in this cohort of marmosets. However, *E. coli* encoding colibactin, CNF, and to a lesser extent CDT, colonizing laboratory common marmosets may influence clinical and subclinical disease or contribute to physiological variation between animals from different sources, thus potentially affecting reproducibility in this model.

Materials and methods

Animals. Common marmosets (*Callithrix jaccus*) were housed in an AAALAC-accredited institution. Studies were conducted on an animal use protocol approved by the Massachusetts Institute of Technology Committee on Animal Care, and all experiments were performed in accordance with relevant guidelines and regulations. Marmosets were socially housed in breeding pairs or small family groups unless a suitable mate was unavailable. Enclosures were enriched stainless steel and polycarbonate cages (inner dimensions 56 in. × 28 in. × 28 in.) in a housing room maintained at 23.3 ± 1.0 °C, with a relative humidity of 30% to 70% and a 12:12-h light:dark cycle. Diet consisted of extruded biscuits (Teklad New World Primate Diet 8794, Envigo, Madison, WI) soaked lightly in water, supplemented with canned diet (ZuPreem, Premium Nutritional Products, Shawnee, KS), washed fruits and vegetables, and various protein sources. Chlorinated reverse-osmosis-purified water was provided ad libitum. Marmosets were observed at least twice daily by veterinary staff, and individual health records were maintained. Marmosets originating from three different institutions were maintained in separate breeding colonies with strict biosecurity to minimize microbial contamination. Colony A came from a contract research organization in 2017. Colony B came from a commercial vendor in 2016. Colony C came from the New England Primate Center in 2014. Animals were seronegative for squirrel monkey cytomegalovirus, *Saimiriine herpesvirus 1*, *Saimiriine herpesvirus 2* and measles virus (VRL Laboratories, San Antonio, TX) on arrival to MIT. Semiannual health monitoring included sedated physical examinations, hematology, and surveillance for fecal pathogens.

Culture and isolation. Rectal swabs were collected during semiannual examinations from all marmosets over 6 months of age in 2018, and from a subset of animals in 2016 and 2017. Rectal swabs were enriched in Gram-negative broth (Becton Dickenson, Franklin Lakes, NJ) before streaked onto sheep blood agar plates (Remel, Lenexa, KS). Lactose-fermenting colonies were selected, then plated onto sheep blood agar plates (Remel) to determine hemolysis. All bacterial cultures were incubated overnight at 37 °C. Isolates phenotypically consistent with *E. coli* were biochemically characterized using API 20 E (Biomerieux, Marcy l’étoile, France).

DNA extraction and PCR amplification. *Escherichia coli* colonies were suspended in sterile phosphate buffered saline (PBS), boiled for 10 min, and centrifuged at 12,000g for 10 min. Supernatant was used for PCR analysis. Primers for *clfQ* were used to identify *pks* genes. Primers for *cnf1* and *cnf2*. Primers for all known variants of *cdtB* were used to detect *cdt*. Primers for *hlyA* were used to identify hemolysin genes. To determine the phylogenetic groups of isolates, multiplex PCR analysis was conducted using primers for *svg*, *chlaA*, *yjaA*, *uidA*, and *TspE4.C2*. Amplicons produced distinct banding patterns with gel electrophoresis, allowing for differentiation of phylogroups A, B1, B2, and D. The primers and annealing temperatures used are shown in Supplementary Table S4. Gels were stained with ethidium bromide and imaged using Syngene GeneSnap software. Gel images were edited for clarity. Unedited images of gels are shown in Supplementary Figure S6. Sanger sequencing (Quintara Biosciences, Cambridge, MA) of amplicons from select isolates was used to confirm sequence identity and to compare wildtype and mutant *hlyA* sequences.

Clinical associations. Medical records were evaluated for temporal correlations from animals which had gastrointestinal clinical signs with culture of cyclovomodulin-encoding *E. coli* isolates. Animals with more than three consecutive days of diarrhea were treated with oral enrofloxacin (5 mg/kg once daily for 5 days) and fecal samples were tested for GI pathogens. A presumptive diagnosis of IBD-like disease was made when an adult animal had bodyweight below 325 g and hypoalbuminemia below 3.5 g/dL with no identified infectious cause. These animals were maintained on oral budesonide (0.5–0.75 mg once daily) to manage clinical signs. In animals with repeated bouts of vomiting and inappetence coupled with weight loss, a presumptive diagnosis of duodenal ulceration was made by palpation of a cranial abdominal mass, and often confirmed with abdominal ultrasound. Many elements of this syndrome are similar to the duodenal dilation syndrome recently described. These animals were maintained on oral sucralfate (100–200 mg/kg once daily) to manage clinical signs. Animals with *E. coli* isolates collected in 2016 and 2017 were evaluated for stability of colonization by cyclovomodulin-encoding *E. coli* over time. Animal records were also evaluated for associations of familial relationships
with colonization by similar *E. coli* isolates based on biochemical analyses, phylogenetic groups, and virulence factor genotypes.

Cytotoxicity assays. *Escherichia coli* strains used as controls in the cytotoxicity assays included K12 (pks-/cnf1-/cdt1-), V27 (a pks+/cnf1-/cdt1+ control from the *E. coli* Reference Center at Penn State), NCI101 (a pks+/cnf1-/cdt1- mouse isolate generously gifted from Dr. Christian Jobin), and 1701240014 (a pks+/cnf1+/cdt1+ rat isolate). Nine *E. coli* isolates from clinically normal marmosets were selected for more detailed analysis, and designated S1 through S9. These isolates represented all three marmoset colonies and all cyclomodulin genotype combinations present, including pks+/cnf1+/cdt1-, pks+/cnf1-/cdt1-, pks+/cnf1-/cdt1-, pks+/cnf1-/cdt1-, and pks-/cnf1-/cdt1-. These isolates were submitted for serotyping, and five of these isolates were selected for whole genome sequencing. HeLa S3 cells (CCL2.2, ATCC, Manassas, VA) were cultured in Eagle minimal essential medium (EMEM, ATCC) containing 10% FCS (Sigma, St Louis, MO) and 1% antibiotic–antimycotic (Gibco, Gaithersburg, MD) at 37 °C with 5% CO₂. For both assays, 5,000 cells per well were seeded onto 96-well cell culture plates and incubated for 24 h (doubling time). Cells were then treated as described in the following sections. At the end of experiments, plates were stained with Diff-quick (Thermo Fisher Scientific, Waltham, MA). Cells were inspected and morphologic changes. Images were captured at 20× magnification with a Zeiss Axiovert-10 microscope (Jena, Germany) using Image Pro-Plus software version 7.0 (Media Cybernetics, Rockville, MD).

Cell culture assay for colibactin cytotoxicity. The assay was performed as described previously with modifications. Isolates of *E. coli* cultured overnight were incubated in LB broth for 2 h at 37 °C to reach logarithmic growth phase, then adjusted using OD600nm in 1% FCS EMEM to concentrations corresponding to multiplicities of infection (MOI) of 100, 25 and 5 bacteria per cell. After inoculation into 24-h non-confluent HeLa cultures, the 96-well plates were centrifuged at 200 g for 10 min to facilitate bacterial interaction, then incubated at 37 °C with 5% CO₂ for 4 h. Cells were washed with EMEM and then incubated in EMEM containing 10% FCS and 200 µg/mL gentamicin (Gibco) at 37 °C with 5% CO₂ for 72 h.

Cell culture assay for sonicate cytotoxicity. Overnight cultures of *E. coli* isolates were suspended in PBS and pelleted by centrifugation at 12,000 rpm for 10 min at 4 °C. The pellets were resuspended in 1.5 mL of PBS and sonicated on ice (amplitude: 35, power: 7 W) for a total of 5 min divided into 30-s intervals, with 60-s breaks between intervals to prevent overheating. Sonicated samples were centrifuged at 12,000 rpm for 10 min at 4 °C. Supernatants were collected and filter-sterilized through 0.2 µm filters. Total proteins were quantified using the BCA assay (Thermo Fisher Scientific), then 24-h non-confluent HeLa cultures were treated with crude bacterial sonicate (80, 140, or 220 µg/mL total protein) or PBS (40 µL) and incubated at 37 °C with 5% CO₂ for 72 h.

Serotyping. The nine representative *E. coli* isolates, S1–S9, were submitted to the *E. coli* Reference Center at The Pennsylvania State University for serotype testing, which included O and H typing as well as PCR analyses for heat-labile enterotoxin (elt), heat stable enterotoxins A and B (estA and estB), Shiga toxins 1 and 2 (stx1 and stx2), cytotoxic necrotizing factor 1 and 2 (cnf1 and cnf2), and intimin gamma (cde).

Draft genome sequencing and comparative analysis. Genomic DNA was isolated using the High Pure PCR Template Preparation Kit (Roche Molecular Biochemicals, Indianapolis, IN) following the manufacturer's protocol for bacterial cell samples. DNA libraries were prepared using the QIAseq FX DNA Library Kit (Qiagen, Valencia, CA) following the manufacturer's protocol for 500 bp fragments. DNA libraries were sequenced using 2 × 300 bp paired-end reads by Illumina MiSeq by the MIT BioMicro Center. Raw sequenced reads were decontaminated of adapter sequences and quality trimmed to a Phred quality score (Q) ≥ 10 using BBDuk from the BBMap package version 38.34 (http://sourceforge.net/projects/bbmap/). Decontaminated reads were then assembled into contigs with SPAdes followed by genome annotation with RAST, both services hosted by PATRIC®. Sequences encoding putative virulence factor and antibiotic-resistance genes were identified using PathogenFinder 1.1.35, VirulenceFinder 2.0.34, and ResFinder 3.2.35 using the 90% identity and 60% minimum length threshold parameters, as described previously. Syntenic relationships of *pks* genes and the hlyCABD-cnf1 operon between genomes were determined with SimpleSynteny v1.4, as described previously. The “Similar Genome Finder” tool, hosted by PATRIC®, was used to identify *E. coli* genomes that were related to the marmoset *E. coli* isolate genomes. Sequences have been deposited in GenBank under the following accession numbers JAADBC000000000, JAADBZ000000000, JAADCA000000000, JAADCC000000000, and JAADBY000000000 for isolates S1, S3, S4, S5, and S8, respectively (Table 2).

Statistical analysis. A webtool was used to calculate expected contingency tables and to perform 2-tailed Fisher exact tests to evaluate categorical data with small group sizes. Differences were determined between categories of virulence factor, phylogroup, and API code, among the three marmoset colonies and taking into account marmoset age, sex and health status. Statistical significance was set at a *P* value of less than 0.05.

Data availability. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References

1. Mainil, J. Escherichia coli virulence factors. Vet. Immunol. Immunopathol. 152, 2–12. https://doi.org/10.1016/j.vetimm.2012.09.032 (2013).
2. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140. https://doi.org/10.1038/nrmic ro818 (2004).
3. El-Aouar Filho, R. A. et al. Heterogeneous family of cyclomodulins: smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Front. Cell. Infect. Microbiol. 7, 208. https://doi.org/10.3389/fcimb.2017.00268 (2017).
4. Bousset-Grieß, N., et al. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. mbio 9, e02393–17 (2018).
5. Wilson, M. R., et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785. https://doi.org/10.1126/ science.aar7785 (2019).
6. Xue, M., et al. Structure elucidation of colibactin and its DNA cross-links. Science 365, eaax2685. https://doi.org/10.1126/science.aax2685 (2019).
7. Iyadurai, T. et al. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaysia Medical Centre, Malaysia. PLoS ONE 28, e0228217. https://doi.org/10.1371/journal.pone.0228217 (2020).
8. Pleugeuzieux-Manzano, C., et al. Mutational signature in colorectal cancer caused by genotoxin pks+ E. coli. Nature 580, 269–273. https://doi.org/10.1038/s41586-020-2080-8 (2020).
9. Polyukhov, C. et al. Genotoxin activity of colibactin in inflammatory diseases. Cell. Microbiol. 22, e13183. https://doi.org/10.1111/cmi.13183 (2020).
10. Knust, Z. & Schmidt, G. G. Escherichia coli. The human gut bacterial genotoxin colibactin alkylates DNA. Int. Microbiol. 10, 47–55 (2007).
11. Welch, R. A. Uropathogenic Escherichia coli-associated exotoxins. Microbiol. Spectr. 4, doi: https://doi.org/10.1128/microbiolspec.UTI-0011-2012 (2016).
12. Bielaszewska, M., Aldrick, T., Bauwens, A. & Karch, H. Hemolysin of enterohemorrhagic Escherichia coli: structure, transport, biological activity and putative role in virulence. Int. J. Med. Microbiol. 304, 521–529. https://doi.org/10.1016/j.ijmm.2014.05.005 (2014).
13. Smith, Y. C., Rasmussen, S. B., Grande, K. K., Conran, R. M. & O’Brien, A. D. Hemolysin of uropathogenic Escherichia coli is a virulence factor in urinary tract infections. J. Clin. Microbiol. 41, 1225–1234. https://doi.org/10.1128/JCM.41.3.1225-1234.2003 (2003).
14. Ge, Z., Schauer, D. B. & Fox, J. G. Cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell. Microbiol. 22, 135–143. https://doi.org/10.1111/cmi.13183 (2020).
15. Carvalho, V. M., Irino, K., Onuma, D. & Pestana de Castro, A. F. DNA damage arising from Escherichia coli encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Vet. Microbiol. 184, 135–143. https://doi.org/10.1016/j.vetmic.2012.09.032 (2012).
16. Kurnick, S. A., et al. Genotoxin activity of colibactin in inflammatory diseases. Cell. Microbiol. 22, 135–143. https://doi.org/10.1111/cmi.13183 (2020).
17. Fabri, A. et al. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell. Microbiol. 22, e13183. https://doi.org/10.1111/cmi.13183 (2020).
18. Parambeth, J. C., et al. Serum cobalamin and folate concentrations in common marmosets (Callithrix jacchus). J. Comp. Med. 59, 108506. https://doi.org/10.1016/j.jc m.2019.108506 (2020).
19. Fai, T., Delmas, J., Barnich, N., Bonnet, R. & Dalmasso, G. Cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell. Microbiol. 22, 135–143. https://doi.org/10.1111/cmi.13183 (2020).
20. Knust, Z. & Schmidt, G. G. Cytotoxic necrotizing factors (CNFs)—a growing toxin family. Toxins (Basel) 2, 116–127. https://doi.org/10.3390/toxins20110116 (2010).
21. Strack, K. A. et al. Induction of erythrocyte microvesicles by Escherichia coli alpha hemolysin. Biochem. J. 476, 3455–3473. https://doi.org/10.1042/BCJ20190546 (2019).
22. Ge, Z., Schauer, D. B. & Fox, J. G. In vivo virulence properties of bacterial cytotoxic–distending toxin. Cell. Microbiol. 10, 1599–1607. https://doi.org/10.1111/j.1462-5822.2008.01173.x (2008).
23. Marini, R. P., Fox, J. G., Wachtman, L. M., Mansfield, K. & Tardif, S. D. The Common Marmoset in Captivity and Biomedical Research, (Elsevier Science Publishing Co Inc, 2019).
24. Parambeth, J. C., et al. Serum cobalamin and folate concentrations in common marmosets (Callithrix jacchus). J. Comp. Med. 59, 108506. https://doi.org/10.1016/j.jcm.2019.108506 (2020).
25. Fabri, A. et al. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell. Microbiol. 22, e13183. https://doi.org/10.1111/cmi.13183 (2020).
26. Roche, H., Da Silva Teles, E. & Brito, E. Studies on experimental bacteremia and pyelonephritis in the marmoset (Callithrix jacchus). Proc. Soc. Exp. Biol. Med. 129, 506–509. https://doi.org/10.3181/00379727-129-33356 (1968).
36. Bidet, P. et al. Detection and identification by PCR of a highly virulent phylogenetic subgroup among extraintestinal pathogenic \textit{Escherichia coli} B2 strains. \textit{Appl. Environ. Microbiol.} \textit{73}, 2373–2377. https://doi.org/10.1128/AEM.02341-06 (2007).

37. Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont \textit{Escherichia coli} phylotyping method revisited: improvement of specificity and detection of new phylo-groups. \textit{Environ. Microbiol. Rep.} \textit{5}, 58–65. https://doi.org/10.1111/1758-2229.12019 (2013).

38. Dubois, D. et al. Cyclomodulins in urosepsis strains of \textit{Escherichia coli}. \textit{J. Clin. Microbiol.} \textit{48}, 2122–2129. https://doi.org/10.1128/jcm.02365-09 (2010).

39. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonial biofilms containing tumorigenic bacteria. \textit{Science} \textit{359}, 592–597. https://doi.org/10.1126/science.aah3648 (2018).

40. Raisch, J. et al. Colon cancer-associated B2 \textit{Escherichia coli} colonize gut mucosa and promote cell proliferation. \textit{World J. Gastroenterol.} \textit{20}, 6560–6572. https://doi.org/10.3748/wjg.v20.i21.6560 (2014).

41. Pratamico, P. M. et al. Advances in molecular serotyping and subtyping of \textit{Escherichia coli}. \textit{Front. Microbiol.} \textit{7}, 644. https://doi.org/10.3389/fmicb.2016.00644 (2016).

42. Cunha, M. P. V. et al. Pandemic extra-intestinal pathogenic \textit{Escherichia coli} (ExPEC) clonal group O6–B2-ST73 as a cause of avian colibacillosis in Brazil. \textit{PLoS ONE} \textit{12}, e0178970. https://doi.org/10.1371/journal.pone.0178970 (2017).

43. Delannoy, S. et al. The \textit{Escherichia coli} serogroup O1 and O2 lipopolysaccharides are encoded by multiple O-antigen gene clusters. \textit{Front. Cell. Infect. Microbiol.} \textit{7}, 30. https://doi.org/10.3389/fcimb.2017.00030 (2017).

44. Eichhorn, L. et al. Highly virulent non-O157 enterohemorrhagic \textit{Escherichia coli} (EHEC) serotypes reflect similar phylogenetic lineages, providing new insights into the evolution of EHEC. \textit{Appl. Environ. Microbiol.} \textit{81}, 7041–7047. https://doi.org/10.1128/AEM.01921-15 (2015).

45. Garcia, A. & Fox, J. G. The rabbit as a new reservoir host of enterohemorrhagic \textit{Escherichia coli}. \textit{Emerg. Infect. Dis.} \textit{9}, 1592–1597. https://doi.org/10.3291/eid0912.030223 (2003).

46. Do, K. H., Byun, J. W. & Lee, W. K. Prevalence of O-serogroups, virulence genes, and F18 antigenic variants in \textit{Escherichia coli} isolated from weaned piglets with diarrhea in Korea during 2008–2016. \textit{J. Vet. Sci.} \textit{20}, 43–50. https://doi.org/10.4142/jvs.2019.20.1.43 (2019).

47. Artim, S. C., Sheh, A., Burns, M. A. & Fox, J. G. Evaluating rectal swab collection method for gut microbiome analysis in the common marmoset (\textit{Callithrix jaccus}). \textit{PLoS ONE} \textit{14}, e0224950. https://doi.org/10.1371/journal.pone.0224950 (2019).

48. Clermont, O., Bonacorsi, S. & Bingen, E. Rapid and simple determination of the \textit{Escherichia coli} phylogenetic group. \textit{Appl. Environ. Microbiol.} \textit{66}, 4555–4558. https://doi.org/10.1128/aem.66.10.4555-4558.2000 (2000).

49. Baxter, V. K. et al. Serum albumin and body weight as biomarkers for the antemortem identification of bone and gastrointestinal disease in the common marmoset. \textit{PLoS ONE} \textit{8}, e62747. https://doi.org/10.1371/journal.pone.0062747 (2013).

50. Artim, S. C., Burns, M. A., Sheh, A., Fox, J. G. & Muthupalani, S. P139 A syndrome of duodenal ulceration with strictures in a colony of common marmosets (\textit{Callithrix jaccus}) [abstract]. In: Abstracts of Scientific Presentations 2019 AALAS National Meeting. \textit{J. Am. Assoc. Lab. Anim. Sci.} \textit{58}, 607–726. (2019).

51. Mineshige, T. et al. Novel gastrointestinal disease in common marmosets characterised by duodenal dilation: a clinical and pathological study. \textit{Sci. Rep.} \textit{10}, 3793. https://doi.org/10.1038/s41598-020-60398-4 (2020).

52. Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. \textit{Nucleic Acids Res.} \textit{45}, D355–D342. https://doi.org/10.1093/nar/gkw1017 (2017).

53. Cosentino, S., Larsen, M. V., Aarestrup, F. M. & Lund, O. PathogenFinder–distinguishing friend from foe using bacterial whole genome sequence data. \textit{PLoS ONE} \textit{8}, e77302. https://doi.org/10.1371/journal.pone.0077302 (2013).

54. Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic \textit{Escherichia coli}. \textit{J. Clin. Microbiol.} \textit{52}, 1501–1510. https://doi.org/10.1128/JCM.03617-13 (2014).

55. Zankari, E. et al. Identification of acquired antimicrobial resistance genes. \textit{J. Antimicrob. Chemother.} \textit{67}, 2640–2644. https://doi.org/10.1093/jac/dks261 (2012).

56. Veltri, D., Malapi-Wight, M. & Crouch, J. A. SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. \textit{Nucleic Acids Res.} \textit{44}, W41–W45. https://doi.org/10.1093/nar/gkw330 (2016).

57. Kirkman, T.W. Statistics to Use. \textit{http://www.physics.csbsju.edu/stats/} (1996) (Accessed 26 Mar 2019).

Acknowledgements

Research reported in this publication was supported by principal investigator James G. Fox’s grants from NIH T32 (RR07036) and P30 (P30ES02109), as well as a grant from the McGovern Institute at Massachusetts Institute of Technology. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the McGovern Institute.

Author contributions

Supervised the work: J.G.F. Conceived and designed the study: J.G.F., A.J.M., Y.F., and A.S. Performed the study: C.S.M., A.J.M., Y.F., C.M.M., S.C.A., J.L.H., M.A.B., G.G.A., and M.D. Analyzed the data: C.S.M. and A.J.M. Wrote and edited manuscript: C.S.M., A.J.M. and J.G.F. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-020-80000-1.

Correspondence and requests for materials should be addressed to J.G.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
