Introduction

Microbial contamination poses a major threat to human health. Many diseases spread due to the bacterial infections, which cause significant economic and personal losses [1]. Hence, antimicrobial modification of surfaces to prevent growth of detrimental microorganism is highly desired. In biomedical devices such as catheters, prosthetics and implants, surface microbial invasion can result in serious infection and device failure [2]. Surface-centered infections also implicated in food spoilage, spread of foodborne disease and biofouling of materials [3]. Hence, there is significant interest in the development of antimicrobial materials and surfaces for applications in the health and biomedical device industry, food industry and personal hygiene industry. Incorporation of antimicrobial agents directly into polymers [4-6] have gained priority in research [7] due to unique properties such as strong antibacterial activity at low concentrations [8], stable in extreme conditions [9], non-toxic [10], and some of them even contain mineral elements essential to the human body [9]. Various metal and metal oxides such as silver (Ag), gold (Au), copper (Cu), titanium dioxide (TiO$_2$), and zinc oxide (ZnO) has been incorporated in polymeric materials [11,12].

Among them TiO$_2$ has been one of the most versatile antimicrobial agents due to its excellent photocatalytic antimicrobial activity over a broad spectrum of microorganism. The antimicrobial properties of TiO$_2$ are attributed to the high redox potential of ROS generated by the photo-excitation. Chawengkijwanich and Hayata, [13] developed TiO$_2$ powder-coated packaging film and...
verified its ability to reduce E. coli contamination on food surface. TiO$_2$ nanoparticles were reported to kill viruses including hepatitis B virus [14] and herpes simplex virus [15]. Recently, Ramesh and co-workers [16] reported the potential application of TiO$_2$ photocatalyst in the food sector. The U.S. FDA has approved the use of TiO$_2$ in human food, drugs, cosmetics and food contact materials [17]. Zinc oxide (ZnO) is frequently considered as an alternative to TiO$_2$ for photocatalytic applications [18]. Currently, it is listed as one of five zinc compounds that is generally recognized as safe (GRAS) by the U.S. FDA [17]. Wang et al. [19] reported ZnO nanoparticles exhibit strong antibacterial property over a broad range of microorganism. Azam and co-workers [20] found that ZnO has the highest bactericidal activity against both Gram-negative (E. coli and P. aeruginosa) and Gram-positive (S. aureus and B. subtilis) bacteria compared to CuO and Fe$_2$O$_3$ nanoparticles. Nevertheless, the potential of single phase TiO$_2$ and ZnO to achieve complete inactivation is hindered due to high recombination of electron and holes. Besides, the incorporation of these particles in polymer matrix further reduce the water uptake, ion and ROS migration thus reduce their inactivation capacity.

Attempt has been made to combined TiO$_2$ and ZnO particles to improve its individual antimicrobial property. These particles would gallop the properties of both of the nanoparticles simultaneously while retaining their individual characteristics. There have been multiple reports of these coupled oxides which perform dually well when combined than in their individual states [21-23]. However, most of the literatures concerning only on coupled oxides nanoparticles and not polymer nanocomposites. In our previous work, bacteriostatic activity of LLDPE nanocomposite embedded with sol–gel synthesized TiO$_2$/ZnO coupled oxides with various ratios at 5wt.% has been reported [24]. However, the effect of various percentage of best performed catalyst 3ZT was not addressed in the reported work. Besides total inactivation of S. aureus was not achieved. Therefore, in this work structural aspects, metal ion and ROS release of LLDPE nanocomposites with various percentage (1, 3, 7, 10 wt.%) 3ZT and prolonged incubation time for complete inactivation of Gram-positive; Staphylococcus aureus (S. aureus) and Gram-negative; Escherichia coli (E. coli) is performed. The structural and functional relationship and the resultant outcomes of this work have the potential benefits to design antimicrobial polymer nanocomposites that function under visible light to reduce disease transfer via biomedical devices.

Experimental

Materials

The chemicals used in this study were Titanium (IV) isopropoxide (97% supplied by Sigma Aldrich), Zinc acetate dehydrate (98%, supplied by Sigma Aldrich), Deionized water, Methylene Blue (Merck), Ethanol (95%, supplied by Biotech Lab Supplies) and 1,2-dichlorobenzene (Merck). LLDPE pellets were obtained from Lotte Chemical Titan (M) Sdn. Bhd. (Kuala Lumpur, Malaysia). All the chemicals and materials mentioned were used as purchased without further purification.

Preparation of 3ZT Coupled Oxide

In this study, sol-gel process was carried out to synthesis the 3ZT coupled oxide of 1:3 molar ratio of TiO$_2$ and ZnO. The ZnO nanoparticles were prepared as follows. ZnO sol was prepared by adding 0.114 mole Zinc acetate dehydrate (ZAD) into ethanol. The solution was stirred for 5 min in heated (70 °C) water bath to obtain the precursor solution. Next, continuous stirring for 5 h were carried out until transparent solution is obtained. Then, deionized water was added drop wise and stirred for 10 min. On the other hand, the TiO$_2$ nanoparticles were prepared by dissolving Titanium Isopropoxide (TTIP) in ethanol with the volume ratio of 1:4 and stirred for 30 min. Then, deionised water was added dropwise and stirred for 3 h. After TiO$_2$ and ZnO sols are synthesized separately, the sols are mixed to different (TiO$_2$: ZnO) molar ratio and stirred continuously for 1h. The milky white suspension was centrifuged, washed with ethanol until white sediment was observed. The resultant sediment was oven dried overnight at 80 °C. The dried white precipitate was pulverized with pestle and mortar and calcined in air at 500 °C for 2h.

Preparation of LLDPE Nanocomposite

The LLDPE nanocomposites denoted as LLDPE/3ZT/1, LLDPE/3ZT/5, LLDPE/3ZT/7 and LLDPE/3ZT/10 were prepared from the mixture containing 1 g of LLDPE matrix and 1.5, 7 and 10 wt% of 3ZT coupled oxide. Each mixture was prepared separately. 1 g LLDPE pellets were dissolved into 15 ml of 1,2-dichlorobenzene at 70 °C under continuous stirring for 10 min. While 1 wt% of coupled oxide were added into 10 ml of 1,2-dichlorobenzene and sonicated for 3 min. After the LLDPE pellets were completely dissolved by 1,2-dichlorobenzene, the coupled oxide solution was added drop wisely into the polymer melt and stirred for 1 min. Finally, the mixture solution was poured into 90 mm diameter petri dish and oven dried at 80 °C for 18 h. Then, the mixture was allowed to continuous stir for 1 min to allow homogeneous mixing. The solution mixture was then poured into a 90 mm diameter petri dish and allowed to oven dry for 18 h [25,26]. The procedure was repeated for the rest of wt.% of 3ZT coupled oxide.

Characterization

The melting temperature (T$_m$) and the enthalpy of fusion (ΔH$_f$) were determined using differential scanning calorimetry (DSC, Mettler Toledo). Each nano-composite with ~15 – 20 mg was weighed and scanned from room temperature to 200 °C at a heating rate of 20 °C/min in an inert nitrogen (N$_2$) atmosphere (N$_2$, flow rate of 50 ml/min). The relative crystallinity was calculated from the enthalpy value (ΔH$_f$); the parameter value for 100% crystalline LLDPE was 276 J/g [27]. The relative crystallinity was calculated based on the following equation [28].
Different weight percentage of 3ZT coupled oxide was assessed against S. aureus (ATCC 25923) and E. coli (ATCC 25922) using the standard test method ASTM E 2149-01 (ASTM Designation E 2149-01). Briefly, bacterial inoculum was prepared in sterile nutrient broth (Luria-Bertani) and left overnight at 37°C, 115rpm. Then, the bacterial inoculum was diluted using a sterile buffer solution (0.3mM KH₂PO₄) until the solution adjusted to 0.28 ± 0.02 for E. coli and S. aureus at 475 nm which corresponds to 1.5-3.0 x 10⁵ CFUs/mL. A LLDPE nanocomposite thin film with a 2.7 x 2.7 cm² was placed in a conical flask comprising 50 mL sterile buffer solution and 0.1 mL of both inoculums (S. aureus and E. coli) was added after being maintained to a strain concentration of 1.5-3.0 x 10⁵ CFUs/mL as the working bacterial dilution. The conical flasks were shaken (115 rpm) for 1, 6, 12, and 24 h at 37 °C using a mechanical shaker under visible light.

After incubation time of 1 h, 100 µL aliquots of appropriate dilution were placed in LB agar and incubated for 24 h at 37°C Later, the colony forming unit (CFU) of each plate were determined. Colonies were counted and compared to those on control plates to measure changes in the cell growth inhibition. The bare LLDPE nanocomposite and bacterial inoculum only served as control. The percentage of bacteria reduction (R %) was calculated using the following equation:

\[R\% = \frac{A - B}{A} \times 100 \]

where \(R \) is antibacterial rate (%), \(A \) are the average number of colony of treated sample (CFU/sample) at specified contact time. Later, the colony forming unit (CFU) of each plate were determined. Colonies were counted and compared to those on control plates to measure changes in the cell growth inhibition. The bare LLDPE nanocomposite and bacterial inoculum only served as control. The percentage of bacteria reduction (R %) was calculated using the following equation:

\[R\% = \frac{A - B}{A} \times 100 \]

where \(R \) is antibacterial rate (%), \(A \) are the average number of colony of treated sample (CFU/sample) and \(B \) are the average number of colony of blank sample (CFU/sample) at specified contact time.

Results and Discussion

Differential scanning calorimetry (DSC) is one of the most important techniques of thermal analysis for studying the crystallization characteristics of polymeric materials and composites. DSC data for bare LLDPE and LLDPE nanocomposites with 1 - 10 wt.% 3ZT coupled oxide including melting point, crystallization temperature, heat of melting and percentage of crystallinity are summarized in Table 1. From Table 1, insignificant changes in the \(T_m \) and \(T_g \) of the LLDPE and its nanocomposites suggest the wet casting method does not alter the melting behavior of the LLDPE nanocomposites. However, it can be seen from (Table 1) that the crystallinity of the LLDPE decreased by 6.5% with maximum of 7 to 10 wt% addition of coupled oxide. This behavior indicates that 3ZT coupled oxides with high degree of crystallinity inhibits spherulitic growth and does not co-crystallize with LLDPE to form crystalline LLDPE structure. Therefore, the degree of crystallinity for LLDPE nanocomposites was relatively lower than bare LLDPE, hence contributing to more amorphous region for water uptake to initiate photocatalytic reaction of 3ZT for microbes' inactivation.
The FTIR spectra of 3ZT coupled oxide, bare LLDPE and LLDPE nanocomposites with 1–10 wt.% 3ZT coupled oxide are shown in Figure 1. The FTIR spectrum of 3ZT coupled oxide Figure shows a broad and intense peak at 3407.86 cm\(^{-1}\) corresponded to the hydroxyl groups of chemisorbed water molecules on the samples [29]. The peak at 2328.66 cm\(^{-1}\) results from the adsorbed H\(_2\)O molecules [30]. Besides, a physisorbed water molecule was present indicated by the peak at 1642.27 cm\(^{-1}\). Meanwhile, Zn-0 stretching of ZnO is visible at 609.69 cm\(^{-1}\). For bare LLDPE, representative band of polyethylene were observed in the regions of 3500 – 2800 cm\(^{-1}\), 1700 – 1000 cm\(^{-1}\) and 750 – 650 cm\(^{-1}\). The strong peak at 2907.04 cm\(^{-1}\) and 2842.87 cm\(^{-1}\) is attributable to the C-H stretching vibrations of CH\(_2\) and CH groups [31]. Another band at 1656.76 cm\(^{-1}\) was related to CH\(_2\) bonding deformation. The weak band at 1376.62 cm\(^{-1}\) was assigned to CH\(_3\) symmetric deformation and a medium band at 722.5 cm\(^{-1}\) was attributed to the rocking deformation. In the LLDPE nanocomposites, all the characteristics peak of bare LLDPE were retained except for a band at 1642.27 cm\(^{-1}\) and 3403.15 cm\(^{-1}\) associated with OH vibration of adsorbed water and OH bending vibration that originated from the 3ZT coupled oxide characteristic.

However, compare to 3ZT coupled oxide spectrum, the intensity of these bands possesses lower intensity due to the evaporation of adsorbed water during nanocomposites preparation. The preservation of LLDPE characteristics in LLDPE nanocomposites indicate that the chemical structures were preserved without forming appreciable chemical bonding between LLDPE and 3ZT coupled oxide (Figure 1).

In order to evaluate the ROS release from the LLDPE nanocomposites with different weight percentage, photodegradation of MB was performed and the results are shown in Figure 2. The photo-degradation of MB under visible light respond by LLDPE nanocomposite that contains 1, 3, 7 and 10 wt.% 3ZT are 90%, 96%, 100% and 100%, respectively. The results show pronounced improvement in the MB degradation with increasing 3ZT content, corresponding significant ROS release from LLDPE nanocomposites within 4 h. The degradation rate of MB aqueous solutions containing LLDPE nanocomposites with different weight percent is shown in Figure 3 and the results indicates the performance follow the pseudo-first-order kinetics with respect to the concentration of dye in bulk solution (C):

\[
\frac{dc}{dt} = k_{\text{app}}C
\]

Integration of that equation (with the same restriction of C = C\(_0\) at t = 0, with C\(_0\) being the initial concentration in the bulk solution after dark adsorption and t the reaction time) will lead to the expected relation: In

\[
\frac{C}{C_0} = k_{\text{app}}t
\]

in which \(k_{\text{app}}\) is the apparent pseudo-first-order rate constant and is affected by MB concentration. The value of \(k_{\text{app}}\) can be obtained directly from the regression analysis of the linear curve in the plot. It can be clearly observed that LLDPE/3ZT/7 nanocomposite showed the highest photocatalytic activity with a corresponding \(k_{\text{app}}\) value of 1.8 x 10\(^{-4}\) h\(^{-1}\), followed by LLDPE/3ZT/10, LLDPE/3ZT/3 and LLDPE/3ZT/1 with a \(k_{\text{app}}\) value of 1.4 x 10\(^{-4}\), 0.9 x 10\(^{-4}\) and 0.2 x 10\(^{-4}\) h\(^{-1}\), respectively. The fast photodegradation rate of 7 and 10 wt.% of 3ZT in LLDPE polymer nanocomposites under visible light was one of the best results achieved compared to other reported work [32]. This is attributed to the heterojunction formation of ZnO/TiO\(_2\) coupled oxides (Figure 4) that increase the recombination resistance and lifetime of photogenerated carriers, which is resulted from the charge separation. HRTEM image shown in Figure 4a verify the heterojunction formation within 3ZT coupled oxides. As seen, there are two lattice fringes with interplanar spacing of 0.58 nm (Figure 4b) and 0.56 nm (Figure 4c) associated with two different crystal structures. XRD diffraction patent in Figure 4d reveals the lattice fringes with interplanar spacing of 0.52 nm corresponding to hexagonal ZnO crystals while 0.58 corresponding to the of cubic-Zn\(_{1-x}\)Ti\(_x\)O\(_2\).

ROS scavenger addition experiments provide information on a variety of reactive candidate that dominate MB photodegradation. This results also provide insights on the reactive candidates that are liable for microbe inactivation. Acetonitrile (ACN), methanol (MeOH) and benzoquinone (BQ) were used as scavengers for hydroxyl radicals, photo-generated holes and superoxide anion radicals, respectively. As seen in Figure 5, a positive correlation was found between MB degradation and wt% of 3ZT coupled oxide. With the addition of the scavengers, the photo-degradation of MB

Table 1: The percent crystallinity, Xc of bare LLDPE and LLDPE nanocomposites with 1 to 10 wt.% 3ZT coupled oxide.

Sample	T\(_1\) (°C)	T\(_\infty\) (°C)	H\(_c\) (J/g)	\(\Delta H_m\) (J/g)	Percent crystallinity, Xc (%)
LLDPE	36.5	106.7	52.53	276	19.03
LLDPE/3ZT/1	36.5	106.5	20.12	276	14.04
LLDPE/3ZT/3	36.5	106.7	17.03	276	14.37
LLDPE/3ZT/7	36.5	106.5	15.67	276	12.59
LLDPE/3ZT/10	36.5	106.5	13.58	276	12.46
decelerated drastically with wt% of catalyst, which means more hydroxyl radicals, photogenerated holes and superoxide anion radicals are produced and active during the degradation process. Upon the introduction of ACN, the photodegradation efficiency of LLDPE with 1wt% to 10wt% 3ZT are decelerated drastically by 32% to 75%, respectively (Table 2).

Table 2: •OH, radical scavenging activity, O₂•- radical scavenging activity and h⁺ scavenging activity of LLDPE nanocomposites.

Sample	OH, radical scavenging activity (%)	O₂•- radical scavenging activity (%)	h⁺ scavenging activity (%)
LLDPE/3ZT/1	32	12	24
LLDPE/3ZT/3	51	21	41
LLDPE/3ZT/7	75	12	42
LLDPE/3ZT/10	75	15	45

Figure 1: FTIR spectra of samples (a) 3ZT coupled oxide (b) LLDPE, (c) LLDPE/3ZT/1, (d) LLDPE/3ZT/3, (e) LLDPE/3ZT/7 and (f) LLDPE/3ZT/10.

Figure 2: Photodegradation of MB by LLDPE nanocomposites under sunlight irradiation for 4 h.

Figure 3: Kinetics of MB photo-degradation (linear transform ln(C₀/C) versus t in photocatalytic experiments using LLDPE with different weight percent.
Cite this article: Saharudin K A, Sreekantan S, Basiron N, Mydin R B S, Harun N H et al. 3ZnO/TiO$_2$ Coupled Oxides LLDPE Nanocomposite: Effect of Various Weight Percent of Sol-gel Synthesized Catalyst on Structural and Bacteriostatic Activity Against S. Aureus and E. Coli. BJSTR MS.ID.001681. DOI: 10.26717/BJSTR.2018.08.001681.

The results reveal that ‘OH is the main reactive species of LLDPE Nano-nanocomposites. When BQ is added to the reaction, the photodegradation of MB for LLDPE with 1 to 10wt% changed by 12% to 15%, respectively, indicating minimum contribution of O$_2$•¯ in LLDPE nanocomposites as compared other reactive candidates towards photodegradation. When MeOH is added, the degradation of all samples is reduced by 24% to 45%, demonstrating another apparent reactive species, h$^+$ contribution in photocatalytic reaction. Overall, the photocatalytic results confirm bacteriostatic effect of all LLDPE nanocomposites are primarily driven by three reactive species in a sequence of ‘OH > h$^+$ > O$_2$•¯. Besides ROS, the interaction of Zn ion released from coupled oxide with bacteria during incubation period will cause cell membrane destructions [33]. Therefore, the Zn ion released from LLDPE composites is analyzed by measuring the dynamic zinc ion by ICP method and displayed in Figure 6. The results show the total concentration of Zn$^{2+}$ release for 12 to 96 h LLDPE nanocomposites immersion at interval of 12h in deionized water. The Zn$^{2+}$ release increases linearly when the weight percentage of 3ZT coupled oxide is increased from 1 – 10 wt.%.
This behavior is attributed to the ease of water absorption via amorphous region of the LLDPE nanocomposites matrix that has low degree of crystallinity (12-14 %). In this report, LLDPE nanocomposite with 10wt% release a greater amount of Zn\(^{2+}\), thus more ions may attack on the teichoic acid on the peptidoglycan layer of Gram positive bacteria and lipopolysaccharides of the Gram-negative bacteria. Attachment of this ion to outer cell wall of bacteria, may cause disruption of the membrane and consequently lead to damage and leakage problems. The antibacterial effect of LLDPE nanocomposites against S. aureus and E. coli was verified by bacterial reduction according to ASTM E2149. The percentage bacterial reduction (R\%) and numbers of CFU/mL for each sample are presented in Figure 7. According to the standard National Committee for Clinical Laboratory Standards (NCLLS) [34], bactericidal activity is defined when a reduction ≥ 99.9% of the total count of CFU/mL. Whereas, bacteriostatic activity is defined when a reduction between 90% and 99.9% of the total bacteria count (CFU/mL) [35].

Figure 7 shows S. aureus cells reduction as a function of time and wt%. As seen, after 12 h, LLDPE nanocomposites inactivate S. aureus to some extents. When the incubation time is further extended to 48 h, the inactivation is very high, irrespective of wt% of 3ZT. A 99% reduction of S. aureus is attained by LLDPE nanocomposite with 1wt%, presenting enhanced bactericidal effect. This result indicates time of irradiation is an important factor as compare to wt% for high inactivation of S. aureus. Nevertheless, the complete 100% inactivation is achieved with LLDPE nanocomposite with 7 and 10wt% 3ZT after 72h of visible light irradiation.

Figure 7b shows represent reduction of E. coli cells using a similar set of experiment. As seen, E. coli was not susceptible to photocatalytic killing as compared to S. aureus for the first 12 h. Nonetheless, when the irradiation time was prolonging to 48 h, 99% of E. coli was eradicated by all the LLDPE nanocomposites. The bactericidal effect was more pronounced with 100% inactivation when the weight percentage of 3ZT in LLDPE nanocomposite was increased 7 and 10 wt%.

The pronounced bactericidal activity of LDPE nanocomposites with different wt% is affected by several factors such as ROS.
release, metal ion release, matrix crystallinity, polarity, and reduced recombination of electron and holes. First of all, the complete inactivation of *S. aureus* and *E. coli* under visible light is achieved in this work because of the heterojunction formation that has significantly improved interfacial structure to facilitate better charge transfer, retain effective charge separation and extend the visible light respond. Besides, the scavenger analysis indicates the bactericidal effect of LLDPE nanocomposites on *S. aureus* and *E. coli* are driven by ‘OH radicals and h⁺ rather than O₂⁻. It has been reported that among ROS, ‘OH radicals possess high oxidation potential which attach the bacteria cell more effectively [36] and this might be one of the reasons for pronounced bactericidal activity in the LLDPE nanocomposites incorporated with 3ZT coupled oxides.

The fact that Zn ion concentration is low < 0.2 ppm in the beginning, it indicates *S. aureus* inactivation are dominated by the generation of ‘OH radicals and h⁺. The inclusion of oxidative stress through the interaction of ‘OH radicals and h⁺ with proteins, DNA, and lipids is likely to inactivate the *S. aureus*. There was no prominent *E. coli* inactivation in LLDPE nanocomposites with low wt% 3ZT for first 12 to 24h. However, as subsequent irradiation time and wt% of 3ZT increased, the Zn ion release were prominent thus accelerate the inactivation of *E. coli*. These results suggest that *E. coli* is found to be more susceptible towards Zn ion. Besides, *E. coli* with a negative surface charge has strong affinity towards the positively charged Zn ion, thus accumulate in cell and disrupt cellular activity and cause cell death.

Apart from that, a superior bacteriostatic effect was found in LLDPE nanocomposite with high percentage of 3ZT (7 and 10wt%) and the reason is due to the relatively low crystallinity and high polarity induced by the hydrophilic characteristic of 3ZT coupled oxides in LLDPE nanocomposite. Such characteristic expedite water uptake through LLDPE matrix, hence promotes high photocatalytic activity to release reactive species as well as Zn ion migration. From the above observation, the mechanism for the *S. aureus* and *E. coli* inactivation of LLDPE nanocomposites with different weight percentage of 3ZT is illustrated in Figure 8.

![Figure 8: Antimicrobial mechanism of LLDPE/3ZT nanocomposites against *S. aureus* and *E. coli*. ROS generation, DNA binding and enzyme inhibition by Zn⁺ taking place at the cellular level leading to cell death. (a) shows low amount of ROS and Zn⁺ production by LLDPE ≤ 7wt% 3ZT, (b) shows massive production of ROS and Zn⁺ by LLDPE ≥7wt% 3ZT, leading to fast killing.](image-url)
Conclusion

From the above observation, it is found that the incorporation of 3ZT into LLDPE exhibit good inactivation of S. aureus and E. coli under visible light. With increasing weight percent of 3ZT, the ‘OH radical formed increased and enhance the photocatalytic inactivation of S. aureus. The pronounce E. coli inactivation characteristic with high weight percent of 3ZT and longer incubation time show ZnO play a major role for inactivation of E. coli. Other factor such as low degree of crystallinity, high charge carrier separation induced by hetero-junction formation also play an important role to inactivation of S. aureus and E. coli.

Acknowledgement

The authors are thankful to the Ministry of Education (MOE) Malaysia for funding this work under Transdisciplinary Research Grant Scheme (TRGS) grant no. 6769002. The authors are very much grateful to Universiti Sains Malaysia (USM) for providing the necessary facilities to carry out the research work.

References

1. W Blackburn C, McClure PJ (2009) Foodborne pathogens: hazards, risk analysis and control. Elsevier.
2. Guan Y, Xiao H, Sullivan H, Zheng A (2007) Antimicrobial-modified sulfite pulps prepared by in situ copolymerization. Carbohydrate polymers 69: 688-696.
3. Thome J, Holländer A, Jaeger W, Trick I, Oehr C (2003) Ultrathin antibacterial polymer monomcoatings on polymer surfaces. Surface and Coatings Technology 174: 584-587.
4. Perez-Perez C, Regaldo-González C, Rodríguez-Rodríguez C, Barbosa-Rodríguez J (2006) Vilsmeier-Ortega F. Incorporation of antimicrobial agents in food packaging films and coatings. Advances in agricultural and food biotechnology 37: 2.
5. Zhang H, Hortal M, Jordá E, Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Crystallinity and Morphology of Polymer Blends of Polyamide-6/Polyethylene Tereftalate. Journal of Applied Polymer Science 124: 3264-3275.
6. Emamifar A, Mohamadizadeh M (2015) Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food technology and biotechnology 53: 488.
7. Jašková V, Hochmannová L, Vytášová J (2013) TiO2 and ZnO nanoparticles in photocatalytic and hygienic coatings. International journal of photography.
8. Khan ST, Al-Khedhairy AA, Musarrat J (2015) ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. Journal of Nanoparticle Research 17: 276.
9. Yañez D, Guerrero S, Lieberwirth I, Ulloa MT, Gomez T (2015) Photocatalytic inhibition of bacteria by TiO2 nanotubes-doped polyethylene composites. Applied Catalysis A General 489: 255-261.
10. Prasanna K, Saibaja R (2012) Blends of LDPE/echitosan using epoxy-functionalized LDPE as compatibilizer. Journal of Applied Polymer Science 124: 3264-3275.
11. Llorens A, Lloret F, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology 24: 19-29.
12. Chawengkijwanich C, Hayata Y (2008) Development of TiO2-powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International journal of food microbiology 123: 288-292.
13. Zan L, Fu W, Peng T, Gong Zk (2007) Photocatalysis effect of nanometer TiO2, and TiO2-coated ceramic plate on Hepatitis B virus. Journal of Photochemistry and Photobiology B: Biology 86: 165-169.
14. Hajkova P, Spanelka P, Horskyj J, Horska I, Kolouch A (2007) Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Processes and Polymers pp. 4.
15. Ramesh T, Nayak B, Amirbahman A, Tripp CP, Mukhopadhyay S (2016) Application of ultraviolet light assisted titanian dioxide photocatalysis for food safety: A review. Innovative Food Science & Emerging Technologies 38: 105-115.
16. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antibacterial activity of metal oxide nanoparticles against Gram-negative and Gram-positive bacteria: a comparative study. International journal of nanomade 7: 6003.
17. Senghetti JN, Dharmadhikari PP, Choutre RS, Fatema B, Lad V, (2013) Microwave assisted nano (ZnO–TiO2) catalysed synthesis of some new 4, 5, 6, 7-tetrahydro-6-(5-substituted-1, 3, 4-oxadiazol-2-yl) methyl thieno [2, 3-c] pyridine as antimicrobial agents. Bioorganic & medicinal chemistry letters 23: 2250-2253.
18. Khan ST, Al-Khedhairy AA, Musarrat J (2015) ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. Journal of Nanoparticle Research 17: 276.
of photocatalytic activity under different wavelengths of light irradiation. Journal of Materials Science: Materials in Electronics 26: 377-384.

31. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Effect of functionalized graphene on the physical properties of linear low-density polyethylene nanocomposites. Polymer Testing 31: 31-8.

32. Kong H, Song J, Jang J (2010) Photocatalytic antibacterial capabilities of TiO\(_2\)-biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environmental science & technology 44: 5672-5676.

33. Pasquet J, Chevalier Y, Pelletier J, Gouval E, Bouvier D, Bolzinger MA (2014) The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 457: 263-274.

34. Barry AL, Craig WA, Nadler H, Reller LB, Sanders CC, Swenson JM. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. NCCLS document M26-A 1999: 19.

35. Pankey G, Sabath L (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clinical infectious diseases 38: 864-870.

36. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organization Journal 5: 9.