ON HYPERBOLIC SETS OF POLYNOMIALS

GENADI LEVIN AND FELIKS PRZYTYcki

Abstract. Let f be an infinitely-renormalizable quadratic polynomial and J_∞ be the intersection of forward orbits of "small" Julia sets of its simple renormalizations. We prove that J_∞ contains no hyperbolic sets.

1. Introduction

Let f be a rational function of degree at least 2 considered as a dynamical systems $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ on the Riemann sphere $\hat{\mathbb{C}}$. An f-invariant compact set $X \subset \hat{\mathbb{C}}$ is said to be hyperbolic if $f: X \to X$ is uniformly expanding, i.e., for some $C > 0$ and $\lambda > 1$, $|D(f^m)(x)| \geq C\lambda^m$ for all $x \in X$ and all $m \geq 0$ (here D stands for the spherical derivative and f^m is m-iterate of f). In particular, any repelling periodic orbit of f is a hyperbolic set. The closure of all repelling periodic orbits of f is the Julia set $J(f)$ of f. Hyperbolic sets of f are contained in $J(f)$. Apart of repelling periodic orbits, f admits plenty of infinite (Cantor) hyperbolic sets [26]. Attracting periodic orbits (if any) along with their basins are contained in the complement $\hat{\mathbb{C}} \setminus J(f)$ (which is called the Fatou set of f). See e.g. [3] for an introduction to complex dynamics and [27] for a recent survey.

If $J(f)$ is a hyperbolic set by itself, i.e., $f: J(f) \to J(f)$ is uniformly expanding, then f is called a hyperbolic rational map. Equivalently, the Fatou set $\hat{\mathbb{C}} \setminus J(f)$ is not empty and consists of basins of attractions of attracting periodic orbits. Hyperbolic rational maps are analogous to Axiom A diffeomorphisms and their dynamics has been intensively studied and very well understood. The famous 'Density of Hyperbolicity Conjecture (DHC)' in holomorphic dynamics - sometimes also called the Fatou conjecture - asserts that any rational map (polynomial) can be approximated by hyperbolic rational maps (polynomials) of the same degree.

In what follows f (unless mentioned explicitly) is a quadratic polynomial $f_c(z) = z^2 + c$. The DHC (as well as a more general
MLC: Mandelbrot set Locally Connected) is widely open for the quadratic family \(f_c \), too (DHC for \(f_c \) as strongly believed accumulates in itself the essence of the general DHC). After a breakthrough work of Yoccoz [8] on the MLC, the only obstacle for proving DHC for quadratic polynomials are so-called infinitely-renormalizable ones, see [24].

Somewhat informally, a quadratic polynomial \(f_c \) with connected Julia set is called renormalizable if, for some topological disks \(U, V \) around the critical point 0 of \(f_c \) and for some \(p \geq 2 \) (called period of the renormalization), the restriction \(f_c^p : U \to V \) is conjugate to another quadratic polynomial \(f_{c'} \) with connected Julia set (see [6] for exact definitions and the theory of polynomial-like mappings). The map \(F := f_c^p : U \to V \) is then a renormalization of \(f_c \) and the set \(K(F) = \{ z \in U : F^n(z) \in U \text{ for all } n \geq 1 \} \) is a "small" (filled in) Julia set of \(f_c \). If \(f_{c'} \) is renormalizable by itself, then \(f_c \) is called twice renormalizable, etc. If \(f_c \) admits infinitely many renormalizations, it is called infinitely-renormalizable. Recall that the renormalization \(F \) is simple if any two sets \(f^i(K(F)), f^j(K(F)) \), \(0 \leq i < j \leq p − 1 \), are either disjoint or intersect each other at a unique point which does not separate either of them.

To state our main result - which is Theorem 1.1 - let \(f(z) = z^2 + c \) be infinitely renormalizable. Let \(1 = p_0 < p_1 < ... < p_n < ... \) be the sequence of consecutive periods of simple renormalizations of \(f \) and \(J_n \) denotes the "small" Julia set of the \(n \)-renormalization (where \(J_0 = J(f) \)). Then \(p_{n+1}/p_n \) is an integer, \(f^{p_n}(J_n) = J_n \), for any \(n \), and \(\{J_n\}_{n=1}^\infty \) is a strictly decreasing sequence of continua without interior, all containing 0. Let

\[
J_\infty = \cap_{n \geq 0} \cup_{j=0}^{p_n-1} f^j(J_n)
\]

be the intersection of orbits of the "small" Julia sets. \(J_\infty \) is a compact \(f \)-invariant set which contains the omega-limit set \(\omega(0) \) of 0. Each component of \(J_\infty \) is wandering, in particular, \(J_\infty \) contains no periodic orbits of \(f \). Note that a hyperbolic set in \(J_\infty \) (if existed) could not be repelling, that is any forward orbit of a point sufficiently close to this set must be in the set itself, since otherwise shadowing periodic orbits must be in \(J_\infty \).

Theorem 1.1. \(J_\infty \) contains no hyperbolic sets.

The conclusion of Theorem 1.1 would obviously hold provided

(1.1) \(J_\infty \) is totally disconnected.
(1.1) is true indeed for many classes of maps (including real ones) where it follows from ‘complex bounds’ [29] (meaning roughly that the sequence of renormalizations is compact) [15], [7], [21], [11], [12], [13]. See also [9], [10]. However, (1.1) breaks down in general: see [22], [28] for the existence of such maps and [16], [17], [18] (see also [5]) for explicit combinatorial conditions on \(f_c \) for (1.1) to fail. Yoccoz [31] posed a problem which seems to be equivalent to the following: find a necessary and sufficient condition on the combinatorics of \(f_c \) for (1.1) to hold. At present, the gap between known sufficient and necessary conditions is still very big.

Another well-known open problem is to give necessary and sufficient conditions so that the Julia set \(J(f) \) is locally-connected. For example, if (1.1) does not hold then \(J(f) \) is not locally-connected. Theorem 1.1 implies

Theorem 1.2. Let \(f(z) = z^2 + c \) and \(f \) has no irrational indifferent periodic orbits. Then \(J(f) \) is locally-connected at every point of any hyperbolic set \(X \) of \(f \). In particular, there are at least one and at most finitely many external rays landing at each \(x \in X \).

Remark 1.1. The case that \(f \) does have an irrational cycle seems to be open and requires a separate consideration, see [4] though. Note also that Theorem 1.2 removes the only restriction in Proposition 2.11 of [1] for degree 2 polynomials without irrational cycles.

Theorem 1.2 has been known for the following quadratic maps \(f \). If \(f \) has an attracting cycle, then \(f \) is hyperbolic and the whole \(J(f) \) is locally-connected. The same conclusion holds if \(f \) has a parabolic cycle [9]. The first part of Yoccoz’s result (see e.g., [8]) says that \(J(f) \) is locally-connected if \(f \) has no indifferent irrational cycles and at most finitely many times renormalizable. This allows us to reduce the proof of Theorem 1.2 to the case of \(f \) as in Theorem 1.1, hence, by the latter, to the case when \(X \) is disjoint from \(J_\infty \) in which case it is well-known that Yoccoz puzzle pieces shrink to each point of \(X \) [22], [19]. This shows that \(J(f) \) is locally connected at points of \(X \). The last claim follows then from [14], see also [30] and [19].

Acknowledgment. We thank Weixiao Shen for helpful comments.

2. Preliminaries

Here we collect, for further references, necessary notations and general facts which are either well-known [24], [23] or follow readily
from the known ones. Let \(f(z) = z^2 + c \) be infinitely renormalizable. We keep the notations of the Introduction.

(A). Let \(G \) be the Green function of the basin of infinity \(A(\infty) = \{ z | f^n(z) \to \infty, n \to \infty \} \) of \(f \) with the standard normalization at infinity \(G(z) = \ln|z| + O(1/|z|) \). The external ray \(R_t \) of argument \(t \in S^1 = \mathbb{R}/\mathbb{Z} \) is a gradient line to the level sets of \(G \) that has the (asymptotic) argument \(t \) at \(\infty \). \(G(z) \) is called the (Green) level of \(z \in A(\infty) \) and the unique \(t \) such that \(z \in R_t \) is called the (external) argument (or angle) of \(z \). A point \(z \in J(f) \) is accessible if there is an external ray \(R_t \) which lands at \(i.e. \), converges to \(z \). Then \(t \) is called an (external) argument (angle) of \(z \).

Let \(\sigma : S^1 \to S^1 \) be the doubling map \(\sigma(t) = 2t (mod 1) \). Then \(f(R_t) = R_{\sigma(t)} \).

(B). Given a small Julia set \(J_n \) containing 0, sets \(f^j(J_n) \) \(0 \leq j < p_n \) are called small Julia sets of level \(n \). Each \(f^j(J_n) \) contains \(p_{n+1}/p_n \geq 2 \) small Julia sets of level \(n+1 \). We have \(J_n = -J_n \). Since all renormalizations are simple, for \(j \neq 0 \), the symmetric companion \(-f^j(J_n) \) of \(f^j(J_n) \) can intersect the orbit \(\text{orb}(J_n) = \bigcup_{j=0}^{p_n-1} f^j(J_n) \) of \(J_n \) only at a single point which is periodic. On the other hand, since only finitely many external rays converge to each periodic point of \(f \), the set \(J_\infty \) contains no periodic points. In particular, each component \(K \) of \(J_\infty \) is wandering, i.e., \(f^i(K) \cap f^j(K) = \emptyset \) for all \(0 \leq i < j < \infty \). All this implies that \(\{ x, -x \} \subset J_\infty \) if and only if \(x \in K_0 := \cap_{n=1}^\infty J_n \).

Given \(x \in J_\infty \), for every \(n \), let \(j_n(x) \) be the unique \(j \in \{ 0, 1, \ldots, p_n-1 \} \) such that \(x \in f^j(x)(J_n) \). Let \(J_{x,n} = f^{j_n(x)}(J_n) \) be a small Julia set of level \(n \) containing \(x \) and \(K_x = \cap_{n \geq 0} J_{x,n} \), a component of \(J_\infty \) containing \(x \).

In particular, \(K_0 = \cap_{n \geq 0} J_n \) is the component of \(J_\infty \) containing 0 and \(K_c = \cap_{n=1}^\infty f(J_n) \), the component containing \(c \).

The map \(f : K_x \to K_f(x) \) is two-to-one if \(x \in K_0 \) and one-to-one otherwise. Moreover, for every \(y \in J_\infty \), \(f^{-1}(y) \cap J_\infty \) consists of two points if \(y \in K_c \) and consists of a single point otherwise.

(C). Given \(n \geq 0 \), the map \(f^{p_n} : f(J_n) \to f(J_n) \) has two fixed points: the separating fixed point \(\alpha_n \) (that is, \(f(J_n) \setminus \{ \alpha_n \} \) has at least two components) and the non-separating \(\beta_n \) (so that \(f(J_n) \setminus \beta_n \) has a single component).

For every \(n > 0 \), there are two rays \(R_{t_n} \) and \(R_{\tilde{t}_n} \) \(0 < t_n < \tilde{t}_n < 1 \) to the non-separating fixed point \(\beta_n \in f(J_n) \) of \(f^{p_n} \) such that the component \(\Omega_n \) of \(C \setminus (R_{t_n} \cup R_{\tilde{t}_n} \cup \beta_n) \) which does not contain 0 has two characteristic properties:
The rays \(R \) we denote \(U \). Introduce an (unbounded) domain \(Y \) to \(\Omega \). The lengths of the arcs \(S_{n,c} = \{ t : R_t \subset \Omega \} \) between \(t_n \) and \(t_n^\prime \).

Denote \(t_n' = t_n + \frac{t_n - t_n^\prime}{2p_n}, \quad \tilde{t}_n = \frac{t_n - t_n^\prime}{2p_n}. \)

The rays \(R_{t_n}, \ R_{\tilde{t}_n} \) land at a common point \(\beta_n' \in f^{-p_n}(\beta_n) \cap \Omega_n \). Introduce an (unbounded) domain \(U_n \) with the boundary to be two curves \(R_{t_n} \cup R_{\tilde{t}_n} \cup \beta_n \) and \(R_{t_n} \cup R_{\tilde{t}_n} \cup \beta_n' \). Then \(c \in U_n \) and \(f^{-n} : U_n \to \Omega_n \) is a two-to-one branched covering. Also, \(f(J_n) = \{ z : f^{kp_n}(z) \in \overline{U}_n, k = 0, 1, \ldots \} \).

We denote \(s_n = [t_n, t_n'] \cup [\tilde{t}_n, \tilde{t}_n^\prime] \).

D1. Given a compact set \(Y \subset J(f) \) denote by \(\prod (Y) \) (or simply \(Y \), if the map is fixed) the set of arguments of the external rays which have their limit sets in \(Y \). It follows from (C) that \(\tilde{K}_c = \bigcap_{n=1}^\infty \{ [t_n, t_n'] \cup [\tilde{t}_n, \tilde{t}_n] \} \), i.e., it is either a single-point set or a two-point set. Consider the latter case, i.e., \(\tilde{K}_c = \{ \tau_1, \tau_2 \} \). Let \(S_c \) be the shortest arc in \(S^1 \) with the end points \(\tau_1, \tau_2 \). It follows from (C):

1. \(S_c \) contains \(c \) and contains no the forward orbit of \(\beta_n \),
2. for every \(1 \leq j < p_n \) consider arguments (angles) of the the external rays which land at \(f^{-j}(\beta_n) \). The angles split \(S^1 \) into finitely many arcs. Then the length of any such arc is bigger than the length of the arc \(S_{n,c} = \{ t : R_t \subset \Omega \} \) between \(t_n \) and \(t_n^\prime \).
3. (unlinking) for each positive \(j \neq k \), one of the two arcs \(S^1 \setminus \{ \sigma^k(\tau_1), \sigma^k(\tau_2) \} \) contains both points \(\sigma^j(\tau_1), \sigma^j(\tau_2) \).

Now, since \(\tilde{K}_c \) contains at most two angles, \(\tilde{K}_c \) contains at most two different accessible points.

D2. Given \(\nu \in [0,1) \) there exists a unique minimal rotation set \(\Lambda_\nu \subset S^1 \) of \(\sigma : S^1 \to S^1 \) with the rotation number \(\nu \) \cite{2}. Recall that a closed subset \(\Lambda \) of \(S^1 \) is a rotation set of \(\sigma \) with the rotation number \(\nu \) if \(\sigma(\Lambda) \subset \Lambda \) and \(\sigma : \Lambda \to \Lambda \) extends to a map of \(S^1 \) which lifts to an orientation preserving continuous map \(F : \mathbb{R} \to \mathbb{R} \) with \(F - \text{Id} \) to be \(1 \)-periodic and the fractional part of the rotation number of \(F \) to be equal to \(\nu \). Then \(\nu \) is irrational if and only if \(\Lambda_\nu \) is infinite, in this case there is a unique closed semi-circle containing \(\Lambda_\nu \) so that the end points of this semi-circle belong to \(\Lambda_\nu \).
3. Accessibility

We define a telescope following essentially [25]. Given \(x \in J(f) \), \(r > 0 \), \(\delta > 0 \), \(k \in \mathbb{N} \) and \(\kappa \in (0, 1) \), an \((r, \kappa, \delta, k)\)-telescope at \(x \in J \) is collections of times \(0 = n_0 < n_1 < \ldots < n_k = n \) and disks \(B_l = B(f^{n_l}(x), r), l = 0, 1, \ldots, k \) such that, for every \(l > 0 \): (i) \(l/n_l > \kappa \), (ii) there is a univalent branch \(g_{n_l} : B(f^{n_l}(x), 2r) \to C \) of \(f^{-n_l} \) so that \(g_{n_l}(f^{n_l}(x)) = x \) and, for \(l = 1, \ldots, k, d(f^{n_l-1} \circ g_{n_l}(B_l), \partial B_l) > \delta \) (clearly, here \(f^{n_l-1} \circ g_{n_l} \) is a branch of \(f^{-n_l} \) that maps \(f^{n_l}(x) \) to \(f^{n_l-1}(x) \)). The trace of the telescope is a collection of sets \(B_{l,0} = g_{n_l}(B_l), l = 0, 1, \ldots, k \). We have: \(B_{k,0} \subset B_{k-1,0} \subset \ldots \subset B_{1,0} \subset B_{0,0} = B(x, r) \). By the first point of intersection of a ray \(R_t \), or an arc of \(R_t \), with a set \(E \) we mean a point of \(R_t \cap E \) with the minimal level (if it exists).

Theorem 3.1. [25] Given \(r > 0 \), \(\kappa \in (0, 1) \), \(\delta > 0 \) and \(C > 0 \) there exist \(M > 0 \), \(\tilde{l}, \bar{k} \in \mathbb{N} \) and \(K > 1 \) such that for every \((r, \kappa, \delta, k)\)-telescope the following hold. Let \(k > \bar{k} \). Let \(u_0 = u \) be any point at the boundary of \(B_k \) such that \(G(u) \geq C \). Then there are indexes \(1 \leq l_1 < l_2 < \ldots < l_j = k \) such that \(l_1 < \tilde{l}, l_{i+1} < Kl_i, i = 1, \ldots, j-1 \) as follows. Let \(u_k = g_{n_k}(u) \in \partial B_{k,0} \) and let \(\gamma_k \) be an infinite arc of an external ray through \(u_k \) between the pint \(u_k \) and \(\infty \). Let \(u_{k,k} = u_k \) and, for \(l = 1, \ldots, k-1 \), let \(u_{k,l} \) be the first point of intersection of \(\gamma_k \) with \(\partial B_{l,0} \). Then, for \(i = 1, \ldots, j \),

\[
G(u_{k,l_i}) > M2^{-n_l_i}.
\]

Applying Theorem 3.1 as in [25] we obtain the following statement. See also [1] for a direct proof of part (1).

Corollary 3.1. Let \(X \) be a hyperbolic set for \(f \). (1) To every point \(x \in X \) one can assign a non-empty set \(A_x \subset S^1 \) such that for every \(t \in A_x \), the external ray \(R_t \) lands at \(x \). (2) The set \(A = \{(x, t) : x \in X, t \in A_x \} \) is closed in \(C \times S^1 \). (3) Moreover, for each \(\mu > 0 \) there is \(C(\mu) > 0 \) such that for all \(x \in X \) and all \(t \in A_x \), the first intersection of \(R_t \) with \(\partial B(x, \mu) \) has the level at least \(C(\mu) \).

Proof. As \(f : X \to X \) is expanding, there exist \(\lambda > 1, \rho > 0 \) and \(j_0 \) such that, for every \(x \in X \) and every \(k > 0 \), there exists a (univalent) branch \(g_{k,x} : B(f^{k_j}(x), \rho) \to C \) of \(f^{-k_j} \) with \(g_{k,x}(f^{k_j}(x)) = x \) and \(|g'_{k,x}(y)/g_{k,x}(z)| < 2 \) for \(y, z \in B(f^{k_j}(x), \rho) \). Moreover, \(|g'_{k,x}(z)| < \lambda^{-k} \) for all \(k > 0 \) and \(x \in X \). Therefore, there are \(r > 0 \), \(\delta > 0 \) and \(\kappa = 1/j_0 \) such that for any \(k > 1 \), every point \(x \in X \) admits an \((r, \kappa, \delta, k)\)-telescope with \(n_k = k_j_0 \). In fact, \(n_i = i j_0 \) for \(i = 0, 1, \ldots, k \). Let \(B_{k,0}(x) \subset B_{k-1,0}(x) \subset \cdots \subset B_{1,0}(x) \subset B_{0,0}(x) \)
be the corresponding trace. Define $C_0 = \inf_{y \in J(\ell)} \max_{z \in B(x, r)} G(z)$. It is easy to see that $C_0 > 0$. For each $x \in X$ we choose a point $u(x) \in \partial B(x, r)$ such that $G(u(x)) \geq C_0$. By Theorem 3.1 there are \tilde{l} and \tilde{k} such that for each $k > \tilde{k}$ and each $x \in X$ the following hold. There are $1 \leq l_{1,k}(x) < l_{2,k}(x) < \cdots < l_{j_k, k}(x) = k$ such that $l_{i,k}(x) < \tilde{l}$, $l_{i+1,k}(x) < K l_{i,k}(x)$, $i = 1, \ldots, j_k - 1$. Let $\gamma_k(x)$ be an arc of an external ray between the point $u_k(x) = g_{k, x}(u(f^{k0_j}(x)))$ and ∞. Let $u_{k, l}(x)$ be the first intersection of $\gamma_k(x)$ with $\partial B_{l, 0}(x)$. Then, for $i = 1, \ldots, j_k - 1$,

$$G(u_{k, l_{i,k}}(x)) > M 2^{-l_{i,k}(x)j_0}.$$

For all $i = 1, \ldots, j_k - 1$,

$$i \leq l_{i,k}(x) < K^i \tilde{l}.$$

Denote by $t_k(x)$ the argument of an external ray that contains the arc $\gamma_k(x)$. It is enough to prove

Lemma 3.2. (i) If $(x_m)_{m>0} \subset X$, $x_m \to y$ and $t_{k_m}(x_m) \to \tau$ for some $k_m \to \infty$, then R_τ lands at y. (ii) Moreover, for each $\mu > 0$ there is $C(\mu) > 0$ such that for all pairs (y, τ) like this the first intersection of R_τ with $\partial B(y, \mu)$ has the level at least $C(\mu)$.

Indeed, assuming this lemma, we can define A_x as a (non-empty) set of angles t so that there are $x_m \in X$ and $k_m \to \infty$ with $x_m \to x$ and $t_{k_m}(x_j) \to t$. By (3.1) and (3.2) and since the level of the point $u_k(x)$ tends to zero as $k \to \infty$ uniformly in $x \in X$, we get that the ray R_t indeed lands at the point x. It is then an elementary exercise to check that the set A is closed. Claim (ii) implies obviously the part (3).

So, let’s prove Lemma 3.2 Let (y, t) be as in the lemma. Pick any $\mu \in (0, r)$. Fix l_0 so that $\lambda^{-l_0} r < \mu/2$ and let

$$C(\mu) = \frac{M}{2^{k^0_l} l_j}.$$

There is m_0 such that for all $m > m_0$ and all $l > l_0$, $B_{l_0, 0}(x_m) \subset B(y, \mu)$. Then for every $m > m_0$,

$$G(u_{k_m, l_{0,m}}(x_m)) > C(\mu).$$

Hence, for every $m > m_0$ the first intersection of $\gamma_{k_m}(x_m)$ with $B(y, \mu)$ has level at least $C(\mu)$. It follows, for any $0 < C < C(\mu)$, the sequence of arcs of the rays $R_{t_{k_m}(x_m)}$ between the levels C and $C(\mu)$ do not exit $B(y, \mu)$ for all $m > m_0$. As $C > 0$ can be chosen arbitrary small, Lemma 3.2 follows. □
4. A COMBINATORIAL PROPERTY

Let f be an infinitely-renormalizable quadratic polynomial. First, we prove the following combinatorial fact (a maximality property) about f.

Let $\omega(t)$ be the omega-limit set of $t \in S^1$ under $\sigma : t \mapsto 2t(mod1)$ and $\sigma(E) = \cup_{t \in E} w(t)$.

Lemma 4.1. (i) $\sigma^{-1}(\tilde{K}_c) \subset \omega(\tilde{K}_c)$

(ii) $\tilde{J}_\infty = \omega(\tilde{K}_c)$

Proof. (a) $\sigma : \tilde{J}_\infty \to \tilde{J}_\infty$ has no periodic points. On the other hand, for each $t \in S^1$, σ maps $\omega(t)$ onto itself. Hence, for each $t \in \tilde{J}_\infty$, the expanding map $\sigma : \omega(t) \to \omega(t)$ is not injective. It follows from (E), that then $\omega(t)\cap \tilde{K}_c \neq \emptyset$ for all $t \in \tilde{J}_\infty$.

(b) If \tilde{K}_c consists of a single angle τ_c, then (a) implies immediately that $\sigma^{-1}(\tau_c) \subset \omega(\tau_c)$ and we are done in this case.

(c) It remains to deal with a two-point set $\tilde{K}_c = \{\tau_1, \tau_2\}$. Let us assume the contrary, i.e., $\sigma^{-1}(\tau_1) \cup \sigma^{-1}(\tau_2)$ is not a subset of $\omega(\tilde{K}_c) = \omega(\tau_1) \cup \omega(\tau_2)$. Hence, by (a) and by the assumption, either $\sigma^{-1}(\tau_1)$ or $\sigma^{-1}(\tau_2)$ is a subset of each $\omega(\tau_i)$, $i = 1, 2$. Let, say, $\sigma^{-1}(\tau_1) \subset \omega(\tau_1) \cap \omega(\tau_2)$. By the assumption, there is $\tau \in \sigma^{-1}(\tau_2)$ such that $\tau \notin \omega(\{\tau_1, \tau_2\})$. Let L be a semi-circles $S^1 \setminus \sigma^{-1}(\tau_1)$ that contains τ. We claim that it is enough to show that for each p_n and some $j_n > 0$ the arc L contains $\sigma^{j_n p_n - 1}(\tau_1)$. Indeed, assume this is the case. Then, by (D1)3, Sect. 2, L must contain one of the arcs $S^1 \setminus \{\sigma^{j_n p_n - 1}(\tau_1), \sigma^{j_n p_n - 1}(\tau_2)\}$ and, by (D1)2, the lengths of all such arcs are uniformly away from 0. Hence, there is a subsequence $n_i \to \infty$ such that the sequences $\sigma^{j_n p_n - 1}(\tau_1)$ and $\sigma^{j_n p_n - 1}(\tau_2)$ converge to points a_1 and a_2 respectively, where $a_1 \neq a_2$ and $a_1, a_2 \in \overline{L}$. On the other hand, $a_1, a_2 \in \tilde{K}_0$. But, from the assumption, $\tilde{K}_0 \cap L = \sigma^{-1}(\tau_1)$. Therefore, $\{a_1, a_2\} = \sigma^{-1}(\tau_1)$. But then $\sigma^{j_n p_n}(\tau_1)$ and $\sigma^{j_n p_n}(\tau_2)$ converge to the same point τ_1 which is a contradiction with (D1)2_∞.

(d) To show that, for each n, the arc L contains a point $\sigma^{j_n p_n - 1}(\tau_1)$, for some $j_n > 0$, let us assume the contrary. So, we fix $n > 0$ and assume that $\{\sigma^{j p_n - 1}(\tau_1) : j > 0\} \subset L' := S^1 \setminus L$. Following the notations of (C), let $\Omega_n^0 = f^{-1}(\Omega_n)$. Then $J_n = \{z : f^{j_n p_n}(z) \in \Omega_n^0, n = 0, 1, \cdots\}$ and Ω_n^0 is bounded by two bi-infinite curves and two angular (open) "arcs at infinity" which are two components $S_{0,0}, S'_{0,0}$ of $\sigma^{-1}(S_{n,0})$. Now, define $\epsilon(t) = 0$ if $t \in S_{0,0}$ and $\epsilon(t) = 1$ if $t \in S'_{0,0}$. To every $t \in \tilde{J}_n$ such that $\sigma^{j_n p_n}(t) \notin \partial(S_{0,0} \cup S'_{0,0})$ for all
In particular, \(k > 0 \), we assign a point in \(S^1 \) as follows:

\[
\theta(t) = \sum_{j=0}^{\infty} \frac{\epsilon(\sigma^j p_n(t))}{2^{j+1}}.
\]

In particular, \(\theta_0 := \theta(\tau_1/2) \) and \(\theta_1 := \theta(\tau_1/2 + 1/2) = \theta_0 + 1/2 \) are well-defined. By the assumption, for all \(k > 0 \) the points \(\sigma^k(\theta_0) \) belong to the same semi-circle \(C_{\theta_0} \) of \(S^1 \) with the end points \(\theta_0 \) and \(\theta_1 \). It follows that the set \(\omega(\theta_0) \subset C_{\theta_0} \) is a rotation set of \(\sigma \). Let \(E \subset \omega(\theta_0) \) be such that \(\sigma : E \rightarrow E \) is minimal. As \(\tilde{J}_n \) contains no periodic points of \(\sigma^{p_n} \), \(E \) contains no periodic points of \(\sigma \), too. Hence, \(E \) is infinite. By [2], see also (D2), for every closed infinite minimal rotation set of \(\sigma \) there is a unique closed semi-circle containing it and in this case the end points of the semi-circle belong to the set. Thus \(\theta_0, \theta_1 \in E \). It follows that there are two sequences \(j_i, j_i' \rightarrow \infty \) so that \(\sigma^{j_i p_n}(\tau_1/2) \rightarrow \tau_1/2 \) and \(\sigma^{j_i' p_n}(\tau_1/2) \rightarrow \tau_1/2 + 1/2 \) inside of the same semi-circle bounded by \(\tau_1/2, \tau_1/2 + 1/2 \). But then \(\sigma^{j_i p_n}(\tau_1) \) and \(\sigma^{j_i' p_n}(\tau_1) \) both tend to \(\tau_1 \) from different sides, in a contradiction with (D1)1\(_\infty \). This completes the proof of part (i) of the statement. Let us prove (ii). Obviously, \(\omega(\tilde{K}_c) \subset \tilde{J}_\infty \). Let’s show the opposite. Following (B), for each \(t \in \tilde{J}_\infty \), either \(t \in \omega(\tilde{K}_c) \) or \(\sigma^k(t) \in \sigma^{-1}(\tilde{K}_c) \), for some \(k \geq 0 \). By (i), \(\sigma^{-1}(\tilde{K}_c) \subset \omega(\tilde{K}_c) \), hence, \(t \in \omega(\tilde{K}_c) \) in any case.

5. Proof of Theorem 1.1

1. Assume the contrary and let \(X \subset J_\infty \) be a compact \(f \)-invariant hyperbolic set. In particular, Corollary 3.1 applies.
2. Replacing \(X \) by its subset if necessary we can assume that \(f : X \rightarrow X \) is a minimal map.
3. \(0 \notin X \), hence, \(c \notin X \), too.
4. As \(J_\infty \) contains no cycles, \(X \) is an infinite set. If we assume that \(f : X \rightarrow X \) is one-to-one, then \(f : X \rightarrow X \) is an expanding homeomorphism of a compact set, therefore, \(X \) is finite, a contradiction.
5. Thus, \(f : X \rightarrow X \) is not one-to-one. Then, by (E), \(X_c := X \cap K_c \neq \emptyset \). On the other hand, by step 3, \(c \notin X_c \).
6. By (D), \(K_c \) consists of at most two arguments. As any point of \(X \) is accessible, the set \(K_c \) is also non-empty and \(X_c \) consists of either one or two different points. Let \(x_1 \in X_c \) and \(x_2 \in J(f) \) be any other point. Given \(r > 0 \) and \(n \), let \(W_n(x_1, r) \) be a component of \(B(x_1, r) \cap \Omega_n \) (see (C), Sect. 2 where \(\Omega_n \) is defined) that contains the point \(x_1 \). We use repeatedly the following
Claim 1. Given \(\hat{r} > 0 \) and \(\hat{C} > 0 \), there is \(\hat{n} \in \mathbb{N} \) as follows. For \(k = 1, 2 \), suppose that, for some angles \(\hat{t}_k \), the ray \(R_{i_k} \) lands at \(x_k \) and let \(z_k \) be the first intersection of \(R_{i_k} \) with \(\partial B(x_k, \hat{r}/2) \).

Assume: (a) \(G(z_k) > \hat{C} \) for \(k = 1, 2 \), (b) \(|x_1 - x_2| < \hat{r}/2 \), (c) one of the following holds: (i) \(t_n - \hat{t}_n \to 0 \) as \(n \to \infty \), or (ii) \(\hat{t}_1, \hat{t}_2 \) belong to a single component of \(s_n = [t_n, t'_n] \cup [\hat{t}_n, \hat{t}_n] \). Then \(x_2 \in W_n(x_1, \hat{r}) \) for each \(n > \hat{n} \).

Indeed, the length of each component of \(s_n \) goes to zero as \(n \to \infty \). Hence, as \(\hat{r} \) and \(\hat{C} \) are constants and \(n \) is big enough, condition (c) implies that a curve which consists of an arc of \(R_{i_k} \) from \(x_1 \) to \(z_1 \), then the shortest arc of the equipotential containing \(z_1 \) from \(z_1 \) to the first intersection \(u_2 \) with \(R_{i_3} \) and then back along \(R_{i_2} \) from \(u_2 \) to \(x_2 \) belongs to \(\Omega_n \) and \(B(x_1, \hat{r}) \) simultaneously.

7. Fix \(r > 0 \) small enough. Let \(a \in X_c \). By (E) and Steps 2, 3 and 5, \(f^{-1}(a) \) consists of two points which are both in \(X \). Let \(a_{-1} \) be one of them. Consider its (well-defined and unique) backward orbits in \(X \): \(a_{-m}, m = 1, \ldots \). Let \(a' \) be a limit point of the sequences \(a_{-p_n} \), i.e., \(a' = \lim_{i \to \infty} a_{-p_{n_i}} \). As \(a' \) belongs to \(K_c \) and \(X \) at the same time, hence, \(a' \in X_c \).

Claim 2. For all \(i \) large enough, \(a_{-p_{n_i}} \in W_{n_i}(a', r) \).

Indeed, by Corollary 3.1 there is a subsequence \((n'_i) \) of \((n_i) \) and a converging sequence \(t_i \in A_{a_{-p_{n'_i}}} \) such that \(t := \lim_{i \to \infty} t_i \) and \(t \in A_{a'} \). We have: \(t_i \in s_{n_i} \) for all \(i \). Then Claim 1 of Step 6 applies for each \(i \) big enough, with \(\hat{r} = r, \hat{C} = C(r/2), x_1 = a', x_2 = a_{-p_{n'_i}}, \hat{t}_1 = t, \hat{t}_2 = t_i \) and \(z_1, z_2 \) defined by this data as in Claim 1. Indeed, (a) holds by By Corollary 3.1(3) and (b) is obvious. Moreover, if (c) breaks down, since \(t_i \to t \), then \(t_i \) and \(t \) must lie at the same component of \(s_{n'_i} \).

By the conclusion of Claim 1, \(a_{-p_{n'_i}} \in W_{n'_i}(a', r) \) for each \(i \) big enough. Finally, as \(A_{a'} \) consists of at most two points (therefore, the sequence \((n_i) \) has at most two limit points), Claim 2 follows.

8. Consider the case \(X_c = \{ a \} \). Let \(f^{-1}(a) = \{ a_{-1}, a_{-1}^* \} \). As \(X_c = \{ a \} \), there is a subsequence \((n_i) \) such that back ward images \(a_{-p_{n_i}}, a_{-p_{n_i}}^* \) of \(a_{-1}, a_{-1}^* \) respectively tend to the same point \(a \). By Claim 2 Step 7, for each \(i \) large, \(a_{-p_{n_i}}, a_{-p_{n_i}}^* \in W_{n_i}(a, r) \). Therefore, the following two sets (which are preimages of \(W_{n_i}(a, r) \) by \(f^{p_{n_i}} \)): \(V_{n_i} := g_{p_{n_i}, a_{-(p_{n_i})}}(W_{n_i}(a, r)) \) and \(V_{n_i}^* := g_{p_{n_i}, a_{-(p_{n_i})}}^*(W_{n_i}(a, r)) \), are disjoint with their closures (because preimages of \(B(a, r) \) along points of \(X \) shrink exponentially) and both are contained in \(W_{n_i}(a, r) \).
Fix such \(n = n_i \). Then we get that, for every \(j > 0 \), \(2^j \) preimages of \(a \in J_{c,n} \) by the map \(f^{2^j n} : J_{c,n} \to J_{c,n} \) are contained in the (disjoint) closures of \(V_n \) and \(V_n^* \). As the set of all those preimages are dense in \(J_{c,n} \), we get a contradiction with the fact that \(J_{c,n} \) is a continuum.

9. Consider the remaining case \(X_c = \{ a, b \} \), \(a \neq b \). Note that then each point \(a \) and \(b \) is accessible by a single ray \(R_{t(a)} \) and \(R_{t(b)} \) respectively. Hence, any point \(u \) from the grand orbits of \(a \) and \(b \) is a landing point of precisely one ray \(R_{t_u} \). Let us prove that \(f^{-1}(X_c) \subset X \). Let \(f(w) = x \in X_c \). By Lemma 4.1 one can find \(y \in X_c \) and \(m_i \to \infty \) such that \(\sigma^{m_i}(t_y) \to t_w \) and \(f^{m_i}(y) \) tends to some point \(\tilde{w} \in X \). By Corollary 3.1, \(t_w \in A_{\tilde{w}} \). But \(\sigma(t_w) = t_x \), hence, \(f(\tilde{w}) = x \) and \(A_{\tilde{w}} = \{ t_w \} \). Thus \(w = \tilde{w} \in X \).

10. We have just proved that \(\{ a_{-1}, a_{-1}^* \} = f^{-1}(a) \subset X \) and \(\{ b_{-1}, b_{-1}^* \} = f^{-1}(b) \subset X \). Now, we repeat the consideration as in Step 8. The sequences \(a_{-(p_n)}, a_{-(p_n)}^*, b_{-(p_n)}, b_{-(p_n)}^* \) must have all their limit points in \(X_c \). As \(r > 0 \) is small enough, \(\overline{B(a,r)} \cap \overline{B(b,r)} = \emptyset \). By Claim 2 of Step 7, for each \(n \) large, all 4 points \(a_{-(p_n)}, a_{-(p_n)}^*, b_{-(p_n)}, b_{-(p_n)}^* \) are in \(W_n(a,r) \cup W_n(b,r) \). Fixing \(n \) large, for each disk \(B(x,r) \), \(x \in \{ a, b \} \), there are two univalent branches of \(f^{-p_n} \) which are defined in \(B(x,r) \) such that they map \(W_n(a,r) \cup W_n(b,r) \) inside \(W_n(a,r) \cup W_n(b,r) \). Hence, for every \(j > 0 \), \(4^j \) preimages of \(X_c \in J_{c,n} \) by the map \(f^{2^j n} : J_{c,n} \to J_{c,n} \) are contained in the (disjoint) closures of \(W_n(a,r) \) and \(W_n(b,r) \). As the set of all those preimages are dense in \(J_{c,n} \), we again get a contradiction with the fact that \(J_{c,n} \) is a continuum.

Remark 5.1. The combinatorial property for quadratic polynomials of Lemma 4.1 implies that if \(X \subset J_\infty \) is a minimal hyperbolic set then \(f^{-1}(X) \cap J_\infty = X \) provided \(f \) is quadratic, and this leads to a contradiction. Therefore, a small modification of the proof gives us the following claim for infinitely-renormalizable unicritical polynomial \(f(z) = z^d + c \) with any \(d \geq 2 \): \(J_\infty \) contains no hyperbolic sets \(X \) such that \(f : X \to X \) is minimal and \(f^{-1}(X) \cap J_\infty = X \).

6. Final remarks

A hyperbolic set of a rational map always carries an invariant measure with a positive Lyapunov exponent. Conjecturally, \(J_\infty \) as in Theorem 1.1 never carries such a measure. We cannot prove this conjecture in the full generality so far, but we can easily prove at least that \(F := f|_{J_\infty} \) is not "chaotic". Namely,
1. Every F-invariant probability measure μ has zero entropy, $h_\mu(F) = 0$.

2. Topological entropy of F is zero, $h_{\text{top}}(F) = 0$.

Proving it we can assume μ is ergodic due to Ergodic Decomposition Theorem, see e.g. [26, Theorem 2.8.11a]. Start by observing that, for every n and $0 \leq j < p_n$, $\mu(f^j(J_n)) = 1/p_n$, hence, μ has no atoms and $\mu(K) = 0$ for every component K of J_∞. Therefore, if $J'_\infty = J_\infty \setminus \cup_{n \in \mathbb{Z}} f^n(K_0)$ where K_0 is the component of J_∞ containing 0 (see (B) of Sect. [2]), then $F : J'_\infty \to J'_\infty$ is an automorphism. Suppose to the contrary that $h_\mu(F) > 0$. Then 1. follows from Rokhlin entropy formula, [26, Theorem 2.9.7], saying that $h_\mu(F) = \int \log \text{Jac}_\mu(F) d\mu$. Here Jac_μ is Jacobian with respect to μ, equal to 1 μ-a.e., since μ must be supported on $J'_\infty \subset J_\infty$ where F is an automorphism. A condition to be verified to apply Rokhlin formula is the existence of a one-sided countable generator of bounded entropy, proved to exist by Mañé, see e.g. [26, Lemma 11.3.2] and inclusion [26, (11.4.8)], due to positive Lyapunov exponent $\chi_\mu(F) := \int \log |F'| d\mu \geq \frac{1}{2} h_\mu(F) > 0$ (Ruelle’s inequality). Thus $h_\mu(F) > 0$ has led to a contradiction.

2. follows from 1. by variational principle $h_{\text{top}}(F) = \sup_\mu h_\mu(F)$. Compare item 4 in Section [5]. Here finiteness of X is replaced by zero entropy.

The same proof with obvious modifications holds for $f(z) = z^d + c$, $d \geq 2$.

REFERENCES

[1] Benini, A., Lyubich, M.: Repelling periodic points and landing rays for post-singularly bounded exponential maps. Ann. Inst. Fourier (Grenoble) 64 (2014), 4, 1493-1520.
[2] Bullett, S., Sentenac, P.: Ordered orbits of the shift, square roots, and the devil’s staircase. Math. Proc. Cambridge Philos. Soc. 115 (1994), 3, 451-481.
[3] Carleson, L., Gamelin, T.: Complex Dynamics. Springer-Verlag, 1993
[4] Cheraghi, D.: Typical orbits of quadratic polynomials with a neutral fixed point: Brjuno type. Comm. Math. Phys. 322 (2013), 3, 999-1035.
[5] Cheraghi, D., Shishikura, M.: Satellite renormalization of quadratic polynomials. https://arxiv.org/abs/1509.07843
[6] Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Super. (4) 18 (1985), no. 2, 287-343.
[7] Graczyk J, Świątek G.: Polynomial-like property for real polynomials. Topol. Proc. 21 (1996), 33-122.
[8] Hubbard, J.H.: Local connectivity of Julia sets and bifurcation coci: three theorems of J.-C. Yoccoz. In: "Topological Methods in Modern Mathematics." Houston, TX: Publish or Perish, 1993.
[9] Kozlovski, O., Shen, W., Van Strien, S.: Rigidity for real polynomials. Ann. Math. 165 (2007), no. 3, 749-841.
[10] Kozlovski, O., Shen, W., Van Strien, S.: Density of hyperbolicity in dimension one. Ann. Math. 166 (2007), no. 1, 145-182.
[11] Kahn, J.: A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics. https://arxiv.org/abs/math/0609045
[12] Kahn, J., Lyubich, M.: A priori bounds for some infinitely renormalizable quadratics. II. Decorations. Ann. Sci. Ec. Norm. Super. (4) 41 (2008), no. 1, 57-84.
[13] Kahn, J., Lyubich, M.: A priori bounds for some infinitely renormalizable quadratics. III. Molecules. Complex dynamics, 229-254, A K Peters, Wellesley, MA, 2009.
[14] Kiwi, J.: Rational laminations of complex polynomials. Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), 111-154, Contemp. Math., 269, Amer. Math. Soc., Providence, RI, 2001.
[15] Levin, G., Van Strien, S.: Local connectivity of the Julia set of real polynomials. Ann. Math.147, 471-541 (1998)
[16] Levin, G.: Multipliers of periodic orbits of quadratic polynomials and the parameter plane. Israel Journal of Mathematics 170 (2009), 285-315.
[17] Levin, G.: Rigidity and non-local connectivity of Julia sets of some quadratic polynomials. Comm. Math. Phys. 304 (2011), 2, 295-328.
[18] Levin, G.: Addendum to: Rigidity and non-local connectivity of Julia sets of some quadratic polynomials. Comm. Math. Phys. 325 (2014), 3, 1171-1178.
[19] Levin, G.: On backward stability of holomorphic dynamical systems. Fund. Math. 158 (1998), no. 2, 97-107.
[20] Levin, G., Przytycki, F., Shen, W.: The Lyapunov exponent of holomorphic maps. Invent. Math. 205 (2016), 363-382.
[21] Lyubich M., Yampolsky M.: Dynamics of quadratic polynomials: complex bounds for real maps. Ann. Inst. Fourier (Grenoble) 47 (1997), 1219-1255.
[22] Milnor, J.: Local connectivity of Julia sets: expository lectures. The Mandelbrot set, theme and variations, 67-116, London Math. Soc. Lecture Note Ser., 274, Cambridge Univ. Press, Cambridge, 2000.
[23] Milnor, J.: Periodic orbits, external rays and the Mandelbrot set: an expository account. "Geometrie Complex et Systemes Dynamiques". Colloque en l’honneur d’Adrien Douady (Orsay, 1995). Asterisque 261, 277-331 (2000).
[24] McMullen, C: Complex Dynamics and Renormalization. Annals of Mathematical Studies, 135. Princeton Univ. Press, Princeton, New Jersey, 1994.
[25] Przytycki, F.: Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps. Fund. Math. 144 (1994), no.3, 259-278
[26] Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods. Cambridge, 2010
[27] Rees, M.: One hundred years of complex dynamics. Proc. R. Soc. A 472 (2016)
[28] Sørensen, D.E.K.: Infinitely renormalizable quadratic polynomials with non-locally connected Julia set. J. Geom. Anal. 10 (2000), 169-208.
[29] Sullivan, D.: *Bounds, quadratic differentials and renormalization conjectures*. In: Mathematics into the Twenty-First Century, AMS Centennial Publications 2, Providence, RI: Amer. Math. Soc., 1991

[30] Thurston, W.: *On the combinatorics of iterated rational maps*. Princeton, NJ: Princeton University and IAS, 1985.

[31] Yoccoz, J.-Ch.: *Recent developments in dynamics*. Fields Medallists’ Lecture, Proc. Int. Congr. Math., 1994.

Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel

Email address: levin@math.huji.ac.il

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich St., 8, 00-956 Warsaw, Poland

Email address: feliksp@impan.pl