INTRODUCTION
Microcystins (MCs) are hepatotoxins with cyclic peptides that contain seven amino acids bound to form cyclic structures containing seven amino acids (Arg4LeuUreaArg4LeuUrea). MCs are produced by many organisms, including cyanobacteria. MCs have been shown to inhibit serine/threonine protein phosphatases, which play a role in signal transduction pathways. The inhibition of these enzymes can lead to the activation of stress responses and the induction of DNA damage. The MC-LR (microcystin-leucine arginine) variant of MCs is the most common and is produced by a variety of cyanobacteria, including Anabaena, Nostoc, Planktothrix, and Microcystis. The MC-LR variant has been shown to bind to and inhibit the serine/threonine protein phosphatases, leading to the activation of the stress response and the induction of DNA damage.

METHODS
Culturing of Anabaena circinalis
Uni-algae of Anabaena sp. were obtained from University of Baghdad and take of 10 ml of isolate of A. circinalis in log phase which added to a flask contained 90 ml of BG11 media and incubated at 27±2°C with a photo period of 8 hrs darks: 16 hrs lights for 14 days, this flask that contained 100 ml growth of A. circinalis would transport to pools 15 L and harvested after 3-5 days at stationary phase (MC-LR was formed in this phase) and concentrated by centrifugation at 3000 rpm for 15 minutes and lyophilized by oven at 35°C for 48 hrs, repeated culturing of each species of Anabaena sp. 4 time to obtain large amount of biomass [10].

Extraction and purification of MC-LR
Animal ethical approval: All procedures performed in studies involving animal were in accordance with the Ethical Standards of the Institutional and/or National Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The A. circinalis cell were freeze-thaw, 3 times before extraction to disrupt the cell wall leads to easy release of MC from cell and lyophilized cell of 5 g from Anabaena sp. had been extracted 3 times by solvent mixture of water:methanol:1-butanol 7:5:20:5 for 1 hr then sonication by path sonicator for 2 hr and the extracts were centrifuged at 15,000 rpm for 30 minutes at 20°C, and the supernatant has been combined. The combined of supernatants would be air-dried at 35°C to remove methanol and 1-butanol and to concentrate to 3 ml and MCs
in each extract detected using ultraviolet (UV)-spectrophotometer at 238 nm [11].

The purification of toxins has been performed according to Tredici [11] above extract was loaded on glass column (2 cm x 15 cm) which contained silica gel (75-250 mesh), then the column washed by 120 ml of deionized water then followed by adding 20% of methanol and finally, the toxins had been eluted by adding 80% of methanol with flow rate 3 ml/minutes.

Analytical, purification and collection of MC-LR

The toxins fraction has been dissolved in absolute methanol specialized for preparative high-performance liquid chromatography (HPLC) and 0.25 ml was injected by microsyringe to HPLC (type Shimadzu at Ministry of Science and Technology in the Department of Laboratory of Water and Environmental Analysis Test) have the following characters C18-Octanoklo cudd column with 25 cm x 4.6 mm ID and mobile phase (Methanol:H2O) 20:80, flow rate (1 ml/minute) at wave length 238 nm and at 30°C of temperature [12]. The results compared with an absorbance and retention time of standard MC-LR was purchased from Sigma-Aldrich Company, then the peak of MC-LR was collected.

Experimental designs

The weight of male rats was 200±20 g purchased from Samarra province; the animals were handled following the guidelines in the Slovenian Law for Animal Health Protection and Instructions for Granting Permit for Animal Experimentation for Scientific Purposes. The rats were housed under controlled conditions of 12 hrs light/dark cycle, 50±5% humidity and 23±1°C, the animals were allowed for 1 week to acclimate and free access to food (pellet) and tap water. Number of rats for experimental were 40 individual, divide into two group, each group include 20 rats and subdividing into eight group, put in each groups six individuals of rats for acute and five individual for chronic exposures, the control group was intraperitoneal injected by distal water, and treatment groups were intraperitoneal injected to different concentration of MC-LR (3, 6, 9) µg/kg/day for 30 days as chronic exposure [13].

Antioxidants defense

Activity of SOD has been measured by autoxidation of pyrogallol according to Qiu et al. [14]. While CAT activities were determined according to the procedure of Marklund and Marklund [15] but activity of GSH was determined according to the method of Claiborne [16]. The acid soluble sulfhydryl groups form a yellow colored complex with dithio nitrobenzene.

Lipid peroxidation, ROS, and cytochrome P450 (Cyt P450)

Lipid peroxidation had been estimated by the assay of thiobarbituric acid for malondialdehyde (MDA) concentration according to Moreno et al. [17] and Aust [18]. Whereas ROS and Cyt P450 were determined according to ELISA kit of Elabscience, China.

DNA damage

Taken a small portion of liver tissue (50 mg) is serially washed and this piece of liver is placed in 2 ml microcentrifuge tube containing 1.5 ml of phosphate buffer solution then homogenization by homogenized (15-20 s) by pestle motor mixer, then added 40 µl of proteinase K lysis solution that consist of 2.5 M NaCl, 100 mM EDTA, 10 mM Tris-base, and 8 g NaOH, all dissolved and complete to 700 ml deionized water, then added 110 ml from 55 ml 1% Triton X to 55 ml 1% dimethyl superoxide after that complete the volume to 100 ml by deionized water and before use, chill at 4°C or on ice for at least 20 minutes and combine 7.5 µl with 75 µl low melting agarose and immediately spread the mix onto the clear part of a comet slide, then warm comet slide on a heating plate at 42-50°C before application to prevent permit evenly spreading of the agarose and prevent the formation of air bubbles, slides may be stored in lysis solution at 4°C for 60 minutes after that removing the lysis solution and replace by alkaline solution contain 6 g NaOH and 500 µl 0.5% Na2EDTA for 5-60 minutes at room temperature in dark, then removing slide from alkaline solution gently tap excess buffer from slide and washed by immersing in 1X TBE buffer for 5 minutes, after that, transferred slide from 1X TBE buffer to an horizontal electrophoresis apparatus and place slides on flat of gel tray and pour 1X TBE buffer until to cover the slides for 60 minutes vol 70, then very gently tap off excess TBE and added some drops of 70% ethanol on slides to remove the water, and stain the slides by etidium bromide then leave the slides for 24 hrs and view slide by fluorescence microscope [19] with modification by Singh et al. [20].

Statistical analysis

Data of present study were analyzed according to the system of Statistical Package for the Social Sciences (SPSS) version 20 to found means, least significant differences by ANOVA.

RESULTS

Extraction and purification of MC-LR

The extraction of A. circinalis has been extracted by water:methanol:butanol and partially purified by silica gel column, then analyzed by preparative HPLC to detect the present of MC-LR and concentration of toxin was determined by comparing peak area and retention time of analytical standard of MC-LR with peak area and retention time of extraction of Anabaena sp., the retention time of analytical standard of MC-LR was 9.55 minutes (Fig. 1): And it’s concentration was 10 µg/ml and A. circinalis retention time was 9.51 minutes (Fig. 2): And it’s concentration was 74.932 µg/ml, then highly purified and collected of MC-LR by preparative HPLC.

Biochemical markers

The statistical analysis shown significant differences in all biochemical marker among control and treatments at p<0.05, the SOD activity in liver tissue control was 2.2 U/mg. While the activity of SOD in treated liver tissue was 6.1, 32.8, and 12.4 U/mg in doses 3, 6, and 9 µg/kg body weight (b.w.) in liver tissue control (Table 1 and Fig. 3). CAT activity was 288.9 U/mg, whereas in treated liver, the activity of CAT was reached to 132 and 40.1 U/mg in doses 3 and 6 µg/kg b.w., respectively, while CAT activity in doses 9 µg/kg b.w. has been decreased to 24.7 U/mg as compared with control groups (Table 1 and Fig. 4): GSH activity in liver tissue was 78.5 µmol/ml, while GSH activity in liver tissue was decreased 68.8, 72.7, and 75.4 µmol/ml in doses 3, 6, and 9 µg/kg b.w. as compared with control (Table 1 and Fig. 5).

MDA concentration of control was 0.86 µmol/ml in liver, while the MDA concentration significantly increased in three doses 6.19, 9.45, and 13.6 µmol/ml in liver tissue (Table 1 and Fig. 6). Whereas, the ROS concentration reached in control to 14.9 µmol/ml in liver tissue while ROS concentration in three doses were 206, 299.8, and 394.9 µmol/ml in treated liver tissue (Table 1 and Fig. 7). The Cyt P450 concentration in control was 1013.5 p/ml in liver tissue, but its concentration in the treatment significantly decreased to 861 p/ml in dose 3 µg/kg, 614.8 p/ml in dose 6 µg/kg, and 434.4 p/ml in dose 9 µg/kg in treated liver tissue (Table 1 and Fig. 8).

DNA damage markers

The DNA damage markers were showed significant differences between control and treatments according to statistical analysis at p<0.05. The comet length scored highest levels in rats at dose 9 µg/kg b.w. that are 31.25 µm (Fig. 9). Whereas tail length was recorded the highest levels at dose 9 µg/kg b.w. that have reached to 97.42 µm (Fig. 9). While the highest levels that were observed in tail moments in rats was 85.07 µm at dose 9 µg/kg b.w. (Fig. 9). According to pictures were taken, the DNA damage can be classified into three class of damage that is Class 1: Low damage, Class 2: Medium damage, and Class 3: High damage in liver of rats (Fig. 10).
DISCUSSION

Extraction, separation, and purification of MC-LR

Cyanobacterial toxins are intracellular toxins that are released to medium by breaking Cyanobacterial cell or die so that Cyanobacteria was needed solvents for extraction Cyanotoxins. In this study, the solvent used in extraction of MC-LR was water:methanol:butanol (75:20:5) because of efficiencies of extraction of different structure variant of MC were increased with their hydrophobicity [21,22] shown that the polar extracts (water: methanol:butanol) have higher contents of MC because of MC polarity, therefore, MCs are soluble in water:methanol:butanol.

MCs variants require high resolution for separation and purification, which depends on the mobile phase composition and stationary phase that is used in analysis [12]. In this study, silica gel column was used and elution by 80% methanol to partial separation of MC and then highly purified and collected MC-LR from A. circinalis by PHPLC at 238 nm absorbance of MCs because of strong absorbance of MC at 238 nm enabling sensitive UV detection due to the main chromophore of the toxins can absorb at 238 nm is the conjugated diene in the adda residue [23].

Biochemical markers

The results of presents were showed that the SOD activities significantly increased with increasing dose of MC-LR. SOD plays essential role in converting superoxide anion radical produced in body to hydrogen peroxide [24]. This result agreed with study by Ścinska et al. [25] reported increased SOD activity induces by

Table 1: The biochemical markers in the liver of rat during chromic exposure period to MC-LR mean±SD

Biochemical markers	Control	3 µg/kg b.w.	6 µg/kg b.w.	6 µg/kg b.w.
SOD U/mg	2.2±0.043	6.1±1.033	23.75±3.782	12.35±1.132
CAT U/mg	28.8±2.453	132.48±21.760	40.08±1.320	24.72±3.672
GSH µmol/ml	78.46±3.440	68.7±5.401	72.6±10.234	75.4±12.675
MDA µmol/ml	0.86±0.001	6.19±0.532	9.45±0.895	13.6±1.086
ROS p/ml	14.85±0.456	206.34±17.120	298.85±22.136	393.57±11.289
Cyt p450 p/ml	1035.13±34.78	861±110.32	614.84±5.435	434.3±6.98

SOD: Superoxide dismutase, CAT: Catalase, GSH: Glutathione, MDA: Malondialdehyde, ROS: Reactive oxygen species, SD: Standard deviation, Cyt p450: Cytochrome p450, MC-LR: Microcystin-leucine arginine, b.w.: Body weight
Fig. 2: Chromatography of preparative high-performance liquid chromatography at absorbance 238 nm for *Anabaena circinalis*

Retention Time (min)	Area (mV.s)	Height (mV)	Area (%)	Height (%)	WSS (min)
1	3.660	196.419	2.6	3.0	0.11
2	3.900	440.865	7.6	7.6	0.13
3	4.320	1032.298	25.4	25.4	0.15
4	5.600	162.796	2.9	2.9	0.13
5	6.800	894.052	16.1	16.1	0.12
6	7.040	990.062	12.4	12.4	0.13
7	9.310	827.859	14.9	14.9	0.12
8	9.870	800.429	16.5	16.5	0.11
Total	5565.672	704.739	100.0	100.0	

Fig. 3: Superoxide dismutase activities in liver of rats after chronic exposure period by purified microcystin-leucine arginine

Fig. 4: Catalase activities in liver of rats after chronic exposure period by purified microcystin-leucine arginine

Fig. 5: Glutathione concentration in liver of rats after chronic exposure period by purified microcystin-leucine arginine

Fig. 6: Malondialdehyde concentration in liver of rats after chronic exposure period by purified microcystin-leucine arginine
MC-LR. In contrary with Harada [24] study demonstrated MC-LR can decrease the SOD activity and increase lipid peroxidation. While CAT activity significantly decreased with increasing concentration of MC-LR, CAT is localized in subcellular peroxisomes where convert hydrogen peroxide to water and molecular oxygen, CAT activity decreased may be due to either direct damage to structure of protein or increased the level of superoxide anion radical [26]. GSH which is the main compound in the intracellular redox status regulation and it's considered as essential cofactor in many metabolic reactions [27]. The results of this study, observed significant decrease of GSH in liver of rats may be due to a compensatory response induce by imbalance in the cell redox state as the result of excessive H_2O_2 production or may be related to its involvements in detoxification of deleterious effects of the increase free radical produce within cells [17,28,29]. Demonstrated that exposure of rats to MC-LR resulted in an increase of the endogenous antioxidant defense system together with an increase of lipid peroxidation in liver and in the kidney. The MDA and ROS concentration significantly elevated with increasing concentration of MC-LR due to MC-LR induced oxidative stress that occurs through an imbalances between the rate of production of ROS and the rate of removal of these ROS by antioxidants defense systems [30]. The studies that are reported the MC-LR ability to induce the ROS formation that lead to oxidative stress and lipid peroxidation in many organisms such as rats [16].

Cyt P450 belong to a superfamily of heme monooxygenase that is catalyzed oxidation of lipid, steroid hormones and numerous xenobiotic chemicals such as drug, carcinogen and environmental pollutants, and the Cyt P450 that are involved in metabolizing endogenous substance and biotransformation of MCs through converting from lipophilic into less toxic hydrophilic [31]. These results of presents study were showed in chronic period, the Cyt P450 concentration in liver of rats was significantly decreased due to Cyt P450 activity was changed can reflect the presence of MC-LR lead to alter the Cyt P450 expression or enzyme activity in various organism and Cyt P450 activity decreased via increasing the ROS formation [32-34]. The study reported by Zhang et al. [35] showed that MC-LR induced decreased the level of cytochrome b5 and Cyt P450 liver of rats during period. While in another study was showed that Cyt P450 activity change that induces by MC-LR in zebrafish and mice [36,37]. This study corresponding with [38] testing the adverse effect of purified MC on mouse liver have found that MC-LR is 30-100 times less toxic via oral ingestion than via intraperitoneal injection, also antioxidant such as SOD, CAT and ROS and MDA increased with increasing period of exposure, and concentration of MC-LR, while GSH and Cyt P450 decrease due to oxidative stress.

DNA damage

DNA damage occurred by MC-LR through the involvement of ROS that leads to oxidative stress, via mitochondrial permeability transition and cytoskeleton disruption DNA strand breaks and DNA oxidized bases products of free radical attack that are stimulating by MCs [39].

MC-LR had been induced DNA damage in liver cell in vivo and in vitro through the formation 8-oxo-dG, and DNA lesions are used as markers for oxidative DNA damage [40]. The DNA damage that induces by MC-LR can be related with apoptosis rather than with genotoxicity [41] while Lankoff [42] also demonstrate MC-LR induce DNA damage and genotoxicity through its ability to cause genetic instability in erythrocytes in bone marrow of mice injected 45 µg MCLR/kg bw for 24 hrs and MC-LR stimulate a 2-fold increase.
in the level of DNA damage in blood cell after 30 minutes of i.p. injection (37.5 µg MCLR/kg bw) of rats.

The results of present study had been showed, the parameters of comet assay were significantly different between treatment and control group, the highest values of comet length µm, tail length µm, and tail moment were recorded in liver of rats were recorded at dose 9 µg/kg bw as compared with control group, the statistical analysis appeared positive significant correlation between DNA damage markers and the dose of MC-LR, biochemical markers. The comet length was positively correlated with the level of DNA breakage in cell because the distribution of the comet was heterogeneous [19]. The highest value of the markers of DNA damage would be increased with increasing the toxicant dose this may be due to insufficient produce of antioxidant defense systems to scavenging the ROS that is generated by MCLR which lead to finding their way across nuclear membrane indicating DNA strand breakage [42-46].

REFERENCES

1. Amado LL, Monserrat JM. Oxidative stress generation by microcystins in aquatic animals: Why and how. Environ Int 2010;36(2):226-35.
2. Atencio L, Moreno I, Jos A, Pichardo S, Moyano R, Blanco A, et al. Dose-dependent antioxidant responses and pathological changes in tenca (Tinca tinca) after acute oral exposure to Microcystis under laboratory conditions. Toxicol 2008:37-48.
3. WHO. Blue-Green Algae in Inland Waters: Assessment and Control of Risks to Public Health. Geneva: World Health Organization (WHO) Document, Annex G; 1998.
4. Kumar M, Harvesting of valuable endo and exo-metabolites from cyanobacteria: A potential source. Asian Pharm Clin Res 2014;4:974-2441.
5. Naseri A, Karami M, Nadoushan MJ. Failing of information transmission by dorsal hippocampus due to microinjection of cholinic in rats cortical area 1. Asian Pharm Clin Res 2015:4;974-2441.
6. Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 2010;11(1):268-87.
7. Zegura B, Sedmak B, Filipic M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicol 2003;41(1):41-8.
8. Pinho GL, da Rosa CM, Maciel FE, Bianchini A, Yunes IS, Proença LA, et al. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotoxicol Environ Saf 2009;61(3):353-60.
9. Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 2001;42(8):656-66.
10. Bouaicha N, Maatouk I, Plessis MJ, Perin F. Genotoxic potential of microcystin-LR and nodularin in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Environ Toxicol 2005;20(3):341-7.
11. Tredici MR. Mass production of microalgae: Photobioreactors. In: Richmond A, editor. Handbook of Microalgae Culture: Biotechnology and Applied Phytology. Oxford: Blackwell Science; 2004.
12. Namkoshi M, Choi BW, Sun F, Rinchart KL, Evans WR, Carmichael WW. Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Chem Res Toxicol 1993;6(2):151-8.
13. Lawton LA, Edwards C. Purification of microcystis. J Chromatogr A 2001;912(2):191-209.
14. Qu T, Xie P, Liu Y, Li G, Xiong Q, Hao L, et al. The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rats. Toxicology 2009;257(1-2):86-94.
15. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974;47(3):417-24.
16. Claiborne A. Catalase activity. In: Greenland RA, editor. CRC Handbook of Methods for Oxygen Radical Research. Boca Raton, FL: CRC Press; 1985. p. 283-4.
17. Moreno I, Pichardo S, Jos A, Gómez-Amores L, Mate A, Vazquez CM, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicol 2005;45(4):395-402.
18. Aust SD. Lipid peroxidation. In: Greenland RA, editor. CRC Handbook of Methods for Oxygen Radical Research. Boca Raton, FL: CRC Press; 1985. p. 203-7.
19. Burris CA, Ashwood ER. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia, PA: W.B. Saunders Co.; 1999.
20. Singh NP, McCoy MT, Tice RR, Schneider EL. A single technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 1988;175(1):184-91.
21. Conners DE. Biomarkers of Oxidative Stress in Fresh Water Clam (Corbicula fluminea) as Mechanistic Tool to Evaluate the Impairment of Stream Ecosystem Health by Lawn Care Pesticides. PhD Thesis. USA: The University of Georgia; 2004.
22. Chen T, Cui J, Llanas Y, Xin X, Owen Young D, Chen C, et al. Identification of human liver mitochondrial aldehyde dehydrogenase as a potential target for microcystin-LR. Toxicology 2006;220(1):71-80.
23. da Silva CA, Oba JET, Ramdosh WA, Magalhães VC, Cestari MM, Oliveira Ribeiro CA, et al. First report about saxitoxins in freshwater fish Hoplias malabaricus through trophic succession. Toxicol 2011;57(1):141-7.
24. Harada KI. Chemistry and detection of microcystins. In: Watanabe MF, Harada KI, Carmichael WW, Fujiki H, editors. Toxic Microcystis. Boca Raton, FL, Chemical Rubber Company, CRC Press; 1996. p. 103-48.
25. Sinicska P, Bukowska B, Michalowicz J, Duda W. Damage of cell membrane and antioxidative system in human erythrocytes incubated with microcystin-LR in vitro. Toxicology 2006;47(4):387-97.
26. Mitrovic SM, Pflugmacher S, James KJ, Furey A. Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat Toxicol 2004;68(2):185-92.
27. Ozturk O, Gümus S. Changes in glucose-6-phosphate dehydrogenase, copper, zinc-superoxide dismutase and catalase activities, glutathione and its metabolizing enzymes, and lipid peroxidation in rat erythrocytes with age. Exp Gerontol 2004;39:211-6.
28. van Bladeren PJ. Glutathione conjugation as a bioactivation reaction. Chem Biol Interact 2000;129(1-2):61-76.
29. Campolo P, De Maria R, Caruso A, Accinelli R, Turaza F, Parolin M, et al. Blood glutathione as independent marker of lipid peroxidation in heart failure. Int J Cardiol 2007;117:45-50.
30. Li ZH, Zlabek V, Grabic R, Li P, Randak T. Modulation of glutathione-related antioxidant defense system of fish chronically treated by the fungicide propiconazole. Comp Biochem Physiol C Toxicol Pharmacol 2010;152(3):392-8.
31. Tripathy A. Oxidative stress, reactive oxygen species (ROS) and antioxidative defense system. Int J Curr Res Biosci Plant Biol 2016;3(10):79-89.
32. Carzenave J, Bisson V, Mde L, Pesce SF, Wunderlin DA. Differential detoxification and antioxidant response in diverse organs of Corvadoras paleatus experimentally exposed to microcystin-RR. Aquat Toxicol 2006;76(1):1-12.
33. Galal A, Souich PD. 21-aminosteroids prevent the down-regulation of hepatic cytochrome P450 and inflammation in cornsmouse rabbits. Br J Pharmacol 1999;128(2):374-9.
34. Moore MJ, Mitrofanov IV, Valenti SS, Volkov VV, Kurbskiy AV, et al. Microcystin-LR. Toxins (Basel) 2015;7(4):1102-15.
35. Brooks WP, Codd GA. Immunological and toxicological studies on Microcystis aeruginosa peptide toxin. Br Phycol J 2007;42:220-31.
36. Huddler A, Song W, O’Shea KE, Walsh PJ. Toxicogenomic evaluation of microcystin-LR treated with ultra sonic irradiation. Toxicol Appl Pharmacol 2007;220(3):357-64.
37. Fawell JK, Mitchell RE, Everett DJ, Hill RE. The toxicity of cyanobacterial toxins in the mouse: I microcystin-LR. Hum Exp Toxicol 1999;18(3):162-7.
38. Li X, Ma J, Fang Q, Li Y. Transcription alterations of microRNAs, cytochrome P450A1 and 3A65, and ABH and PXR in the liver of zebrafish exposed to crude microcystins. Toxicology 2013;73:17-22.
39. Zegura B, Volcic M, Lah TT, Filipic M. Different sensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDCC-A2) and lymphoblastoid (NC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage. Toxicon 2008;52(3):518-25.
40. Nong Q, Komatsu M, Izumo K. Involvement of reactive oxygen species in Microcystin-LR-induced cytogenotoxicity. Free Radic Res 2007;41(12):1326-37.
41. Lankoff A, Banasiuk A, Obe G. Effect of microcystin LR and cyanobacterial extract from polish reservoir of drinking water on cell
cycle progression, mitotic spindle, and apoptosis in CHO-K1 cells. Toxicol Appl Pharmacol 2004;189(3):204-13.
43. Dias E, Louro H, Pinto M, Santos T, Antunes S, Pereira P, et al. Genotoxicity of microcystin-LR in \textit{in vitro} and \textit{in vivo} experimental models. Biomed Res Int 2014;2014:949521.
44. Georg O, Amaeze NH, Soghanmu TO, Otitoloju AA. Biomarkers responses in \textit{Tympanotus fuscatus} Var. Radula (L) inhibiting an oil-impacted and fire-ravaged mangrove ecosystem, current advance in environmental science. Aman V King Sci Publ 2014;2:101-11.
45. Alodeani EA. Botulinum toxin Type A: An effective, safe and minimally invasive treatment option of axillary and palmar hyperhidrosis. Int J Pharm Pharm Sci 2016;7:975-1491.
46. Ramesh S, Dilipan E, Mayaly P. Effects of drugs against antioxidant and cytotoxic (HEp2 cell line) activity compounds from marine animals conusamadis venom (GMELIN, J.F, 1791). Int J Pharm Pharm Sci 2014;7:975-1491.