A NEW MILKY WAY DWARF GALAXY IN URSA MAJOR

BETH WILLMAN,1 JULIANNE J. DALCANTON,2,3 DAVID MARTINEZ-DELGADO,4,5 ANDREW A. WEST,2 MICHAEL R. BLANTON,1 DAVID W. HOGG,1 J. C. BARENTINE,4 HOWARD J. BREWINGTON,6 MICHAEL HARVANEK,6 S. J. KLEINMAN,6 JUREK KRZESINSKI,6,7 DAN LONG,6 ERIC H. NEILSEN, JR.,8 ATSUKO NITTA,6 AND STEPHANIE A. SNEEDEN6

Received 2005 March 25; accepted 2005 May 11; published 2005 May 24

ABSTRACT

In this Letter, we report the discovery of a new dwarf satellite to the Milky Way, located at (α2000, δ2000) = (158°72', 51°92') in the constellation of Ursa Major. This object was detected as an overdensity of red, resolved stars in Sloan Digital Sky Survey data. The color-magnitude diagram of the Ursa Major dwarf looks remarkably similar to that of Sextans, the lowest surface brightness Milky Way companion known, but with approximately an order of magnitude fewer stars. Deeper follow-up imaging confirms that this object has an old and metal-poor stellar population and is ~100 kpc away. We roughly estimate $M_V = -6.75$ and $r_{1/2} = 250$ pc for this dwarf. Its luminosity is several times fainter than the faintest known Milky Way dwarf. However, its physical size is typical for dwarf spheroidal galaxies. Even though its absolute magnitude and size are presently quite uncertain, Ursa Major is likely the lowest luminosity and lowest surface brightness galaxy yet known.

Subject headings: galaxies: dwarf — Local Group

1. INTRODUCTION

A complete census and study of nearby dwarf galaxies are vital to our global understanding of galaxy formation. Dwarf galaxies are the most numerous type of galaxy in the universe and are thought to be the “building blocks” of larger galaxies. Milky Way (MW) dwarf galaxies are particularly interesting because they are close enough for the Hubble Space Telescope to resolve their stellar populations to magnitudes fainter than their main-sequence turnoffs. This enables us to make precise measurements of dwarf’s structural parameters, metallicities, and detailed star formation histories when coupled to wide-field ground-based imaging. MW dwarfs are also close enough for ground-based spectroscopy to measure the metallicities and velocities of individual stars.

The existence of dwarf galaxies fainter than those that are already known also holds promise to substantially improve our understanding of the “substructure problem.” Cold dark matter models predict more than an order of magnitude more low-mass dark matter halos than the number of dwarf galaxies observed around galaxies such as our own (Klypin et al. 1999; Moore et al. 1999). The fraction of low-mass halos that may host a luminous galaxy is reduced by baryonic physics such as reionization, feedback, and tidal effects. However, possible incompleteness in the census of MW dwarf galaxies at the faint end hinders our interpretation of such models, leaving open the possibility that they do not produce the true population (Willman et al. 2004).

To improve the completeness of the known Milky Way dwarf galaxy population, we have been conducting a search for Milky Way satellites in the Sloan Digital Sky Survey (SDSS; Willman et al. 2002). Careful analyses of resolved stars in both the SDSS and the Two Micron All Sky Survey have already resulted in the discovery of a new Milky Way companion (Willman et al. 2005) and a faint M31 dwarf satellite (Zucker et al. 2004), as well as large-scale stellar structures and dwarf galaxy remnants around the Milky Way (Newberg et al. 2002; Yanny et al. 2003; Ibata et al. 2003; Rocha-Pinto et al. 2003, 2004; Majewski et al. 2003; Martin et al. 2004). However, it has been more than 10 years since the discovery of the ninth Milky Way dwarf spheroidal galaxy (Ibata et al. 1994; but see evidence in Martin et al. 2004 and Martinez-Delgado et al. 2005 for a probable new Milky Way dwarf at low latitude). In this Letter, we report the discovery of the Ursa Major dwarf spheroidal (UMa dSph), the tenth dwarf spheroidal companion to the Milky Way.

2. DATA AND RESULTS

2.1. Sloan Digital Sky Survey Data

The SDSS (York et al. 2000) is a spectroscopic and photometric survey in five passbands (u, g, r, i, and z; Fukugita et al. 1996; Gunn et al. 1998; Smith et al. 2002) that has thus far imaged thousands of square degrees of the sky. Data are reduced with an automatic pipeline consisting of astrometry (Pier et al. 2003); source identification, deblending, and photometry (Lupton et al. 2001); photometricity determination (Hogg et al. 2001); calibration (Fukugita et al. 1996; Smith et al. 2002); and spectroscopic data processing (Stoughton et al. 2002).

The Ursa Major dSph was found as part of a systematic search for Milky Way companions. It was detected as an 8.5 σ fluctuation in the density of stars at $(α_{2000}, δ_{2000}) \sim (158°72', 51°92')$ with $19.0 < r < 20.5$ and having colors consistent with red giant branch stars. Although our search algorithm does not produce a perfectly Gaussian distribution of stellar surface densities, the detection thresholds are carefully set such that few spurious detections are expected. See Willman et al. (2002; B. Willman et al. 2005, in preparation) for a detailed discussion of the detection thresholds as well as of our automated search technique, detection limits, and the summarized survey results. The data relevant for
Fig. 1.—Left panel: Ursa Major CMD including all 172 stars within the 200 arcmin² area included in the detection, without a statistical subtraction of foreground stars. Middle panel: Field-subtracted CMD of UMa. The probable red giant branch of UMa is outlined. Right panel: Color-magnitude diagram of the Sextans dSph (\(\mu_v = 26.2, d = 86 \) kpc) without any field star subtraction. This CMD includes all stars within Sextans’ half-light radius and was created solely with SDSS data. The stellar locus of Sextans, empirically measured with the SDSS data, is overplotted. All three CMDs and the field subtraction were created solely with SDSS data.

Fig. 2.—Field-subtracted color-magnitude diagram of Ursa Major. The stellar locus of Sextans stars, empirically measured with SDSS data and projected to 100 kpc, is overplotted. Typical color errors as a function of magnitude are shown at the right.

Figure 1 shows color-magnitude diagrams (CMDs) created solely with SDSS data of the Ursa Major dSph (both before and after a statistical subtraction of field stars; left and middle panels, respectively) and the Sextans dSph (right panel). Sextans is an old and metal-poor ([Fe/H] = -2.1 ± 0.3; Lee et al. 2003) Milky Way dSph at a distance of 86 kpc. There are a total of 172 stars in the 200 arcmin² detection area plotted in the left panel, but only 50 remain after field subtraction. To perform the statistical subtraction, we first divided the field and source CMDs into discrete color-magnitude bins, each bin containing the same number of stars in the field CMD. The color-magnitude (CM) bins are large enough that the density of field stars can vary substantially within a bin. We thus subtract the appropriate (area-normalized) number of stars from each CM bin in the source CMD by (1) drawing a location from the density distribution of field stars within that bin and (2) removing the source star closest in color and magnitude to that location. Red giant branch stars are outlined in the middle panel, and the overdensity at \(r \sim 20.5 \), \(-0.1 < g - r < 0.5\), is a probable horizontal branch. We overplot the stellar locus of the Sextans dSph empirically derived from SDSS data on its own CMD.

A visual comparison of the Sextans and UMa CMDs shows that they are strikingly similar, including the details of their horizontal branch morphologies. The UMa dSph CMD has roughly an order of magnitude fewer stars than the Sextans CMD and thus must have a much lower surface brightness if it truly is an analogous object. This is remarkable given that Sextans is the lowest surface brightness Milky Way dwarf known, having \(\mu_v = 26.2 \) mag arcsec⁻² (Mateo 1998), and that the lowest surface brightness dwarf currently known has \(\mu_v = 26.8 \) mag arcsec⁻² (Zucker et al. 2004). We overplot the stellar locus of the Sextans dwarf projected to 100 kpc on Ursa Major’s CMD in Figure 2, to illustrate the similarity of their stellar populations. This similarity suggests that UMa stars have an [Fe/H] that is similar to that of Sextans stars.

2.2. Isaac Newton Telescope Data

To confirm the Ursa Major dwarf as a Sextans-like Milky Way companion, we obtained follow-up imaging with the 2.5 m wide-field camera on the Isaac Newton Telescope (INT) on 2005 March 6–8. Figure 3 shows a CMD in Harris B and Sloan r of stars in a 23′ × 12′ field around the center of UMa from a total of 5600 s of exposure time in B and 4800 s in r. The DAOPHOT II/ALLSTAR package (Stetson 1994) was used to obtain the photometry of the resolved stars. Sources with CHI < 2 and \(-0.4 < \text{SHARP} < 0.4\) are included in Figure 3. The magnitudes were calibrated by comparison to SDSS
Fig. 3.—CMD of stars in a 23′ × 12′ field around the center of Ursa Major, as observed in a total of 5600 s of exposure time in B and 4800 s in r. A theoretical isochrone of an [Fe/H] = −1.7, 13 Gyr old population is overplotted (Girardi et al. 2004).

data. Because SDSS does not resolve Sextans’ main-sequence turnoff, we instead overplot the theoretical isochrone of an [Fe/H] = −1.7, 13 Gyr old population (Girardi et al. 2004) projected to 100 kpc. We used the Smith et al. (2002) transformations to convert the Girardi isochrone in Sloan filters from g and r to B and r. The theoretical [Fe/H] of −1.7 is within the uncertainty (0.3 dex) and intrinsic spread (0.2 dex; Lee et al. 2003) in the [Fe/H] of Sextans’ stars. Although the close match of the theoretical isochrone to the UMa data again suggests that the [Fe/H] of the Ursa Major dwarf is \approx −2, the present analysis is not sufficient to determine its [Fe/H] more precisely. In addition to the sparse horizontal and red giant branch seen in the SDSS, a narrow subgiant branch becomes clear in these deeper data at 21.5 < B < 23.0 and $B - r \approx$ 0.9, confirming UMa as a new MW companion. A main-sequence turnoff (MSTO) also appears near $B \approx$ 24.5 and $B - r \approx$ 0.5. The horizontal branch and MSTO are separated by almost 4 mag in B, characteristic of an old stellar population. A distance to UMa of \approx100 kpc is necessary to match the apparent magnitudes of the horizontal branch and MSTO stars to those of an old, metal-poor stellar population. A detailed analysis of a substantial amount of data obtained at the INT and other telescopes will be presented in a subsequent paper.

2.3. Half-Light Radius $r_{1/2}$ and Absolute Magnitude M_V

The spatial distribution of red giant branch (RGB) stars outlined in Figure 1 supports the idea that UMa is a new nearby dwarf. Its RGB stellar distribution, shown in the left panel of Figure 4, is very similar in angular extent to the spatial distribution of Sextans’ RGB stars, shown in the right panel of Figure 4. Based on this distribution, the half-light radius of Ursa Major is \approx7.75 ($r_{1/2}$ \approx 100 pc, assuming a distance of 250 pc). This estimated half-light radius is very similar to that of Sextans, which has $r_{1/2}$ \approx 200 pc (Mateo 1998).

To estimate the absolute magnitude of UMa, we first sum the luminosities of stars in Figure 2 (assuming a distance of 100 kpc) to estimate its faintest possible absolute magnitude $M_{V, \text{faint}} = −4.6$. We then apply an approximate correction to this minimum luminosity by multiplying it by 2 to account for object stars outside the 200 arcmin2 detection area and then multiplying by 3 to account for stars that fall below the SDSS magnitude limit. These multiplicative factors are uncertain and were estimated by measuring the fraction of light coming from

Fig. 4.—Left panel: Spatial distribution of Ursa Major as traced by the red giant branch stars outlined in the middle panel of Fig. 1. The stellar overdensity appears to extend over nearly 0.25 deg2, and its half-light radius is approximately 7.75. Right panel: For comparison, the spatial distribution of stars in the Sextans dSph ($d = 86$ kpc) that fall in the same region of the color-magnitude diagram.
stars brighter than the horizontal branch in Sextans and Palomar 5 as observed by SDSS. This approximation yields $M_V \sim 30\,^\circ$ and $b = 160\,^\circ$, which is not proximate to any of the known MW dwarfs or globular clusters. UMa does appear to be located along the great circle possibly traced by the Magellanic Stream but is more distant (see Palma et al. 2002). UMa is also coincidentally located near the circle possibly traced by the Magellanic Stream but is more distant than all but one of the newly discovered extended star clusters around M31 (Huxor et al. 2004). UMa is also more distant than all but one of the MW globular clusters. We thus conclude that UMa is a new Milky Way dwarf spheroidal galaxy.

There is no clear connection between the UMa dwarf and any known object. The new galaxy is near $(l, b) = (160\,^\circ, 54\,^\circ)$, which is not proximate to any of the known MW dwarfs or globular clusters. UMa appears to be located along the great circle possibly traced by the Magellanic Stream but is more distant (see Palma et al. 2002). UMa is also coincidentally located only a few degrees away from SDSS J1049+5103, another recently discovered Milky Way companion (Willman et al. 2005). However, it is nearly a factor of 2 times farther away.

UMa was detected very close to our detection limits. Numerous other dwarfs with properties similar to or fainter than the Ursa Major dSph may thus exist around the Milky Way. Although no reliable extrapolation can be made from a single object, the fact that at least one new Milky Way dwarf was detected in $\sim4700\,^\circ^2$ of the sky suggests it is reasonable to expect that 8–9 additional dwarfs brighter than our detection limits still remain undiscovered over the entire sky. If true, that number would preclude models that do not predict the presence of many ultrafaint dwarfs. However, our survey only included sky at $|b| > 30$. In a scenario where Milky Way dwarfs are intrinsically biased to lie at high latitude (Zentner et al. 2005), we would extrapolate a smaller total number of dwarfs based on this single detection.

We are in the process of obtaining and analyzing deep, wide-field imaging of UMa. With these deeper data, we will obtain estimates of its age and metallicity, as well as measure its detailed spatial distribution to derive its surface brightness and scale size and to search for tidal features.

B. W. and J. J. D. were partially supported by the Alfred P. Sloan Foundation. M. R. B. and D. W. H. were partially supported by NASA (grant NAG5-11669) and NSF (grants PHY-0101738 and AST-0428465). We thank P. B. Stetson, D. Schlegel, and D. Finkbeiner for helpful conversations and software. We thank Helio Rocha-Pinto, the referee, for comments that improved the Letter.

The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are the University of Chicago, the US Department of Energy’s Fermi National Accelerator Laboratory, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Korean Scientist Group, Los Alamos National Laboratory, the Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for Astrophysics (MPA), New Mexico State University, the University of Pittsburgh, Princeton University, the US Naval Observatory, and the University of Washington. Funding for the project has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society.

REFERENCES

Abazajian, K., et al. 2004, AJ, 128, 502
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 174
Girardi, L., Grebel, E. K., Lindenstrauss, M., & Chiosi, C. 2004, A&A, 422, 205
Gunn, J. E., et al. 1998, AJ, 116, 3040
Harris, W. E. 1996, AJ, 112, 1487
Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J., & Gunn, J. E. 2001, AJ, 122, 2129
Huxor, A. P., Tanvir, N. R., Irwin, M. J., Ibata, R., Collett, J. L., Ferguson, A. M. N., Bridges, T., & Lewis, G. F. 2004, MNRAS, submitted (astro-ph/0412223)
Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Nature, 370, 194
Ibata, R. A., Irwin, M. J., Lewis, G. F., Ferguson, A. M. N., & Tanvir, N. 2003, MNRAS, 340, L21
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82
Lee, M. G., et al. 2000, AJ, 120, 1579
Lupton, R. H., Gunn, J. E., Ivezić, Z., Knapp, G. R., Kent, S., & Yasuda, N. 2001, in ASP Conf. Ser. 238, Astronomical Data Analysis Software and Systems X, ed. F. R. Harnden, Jr., F. A. Primini, & H. E. Payne (San Francisco: ASP), 269
Mateo, M. L. 1998, ARA&A, 36, 435
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJ, 524, L19
Newberg, H. J., et al. 2002, ApJ, 596, 245
Palma, C., Majewski, S. R., & Johnston, K. V. 2002, ApJ, 564, 736
Pier, J. R., Munn, J. A., Hindsley, R. B., Hennessy, G. S., Kent, S. M., Lupton, R. H., & Ivezić, Z. 2003, AJ, 125, 1559
Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., & Crane, J. D. 2003, ApJ, 594, L115
Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., Crane, J. D., & Patterson, R. J. 2004, ApJ, 615, 732
Stoughton, C., et al. 2002, AJ, 123, 2121
Stetson, P. B. 1994, PASP, 106, 250
Willman, B., Dalcanton, J., Ivezić, Z., Jackson, T., Lupton, R., Brinkmann, J., Hennessy, G., & Hindsley, R. 2002, AJ, 123, 485
Willman, B., Governato, F., Dalcanton, J. J., Reed, D., & Quinn, T. 2004, MNRAS, 353, 639
Willman, B., et al. 2005, AJ, 129, 2692
Yanny, B., et al. 2003, ApJ, 588, 824
York, D. G., et al. 2000, AJ, 120, 1579
Zucker, D. B., et al. 2004, ApJ, 612, L121
Zentner, A. R., Kravtsov, A. V., Gnedin, O. Y., & Klypin, A. A. 2005, ApJ, submitted (astro-ph/0502496)