Unconventional Charge Density Wave Order in the Pnictide Superconductor Ba(Ni_{1-x}Co_{x})_{2}As_{2}
Sangjun Lee, Gilberto de la Peña, Stella X.-L. Sun, Matteo Mitrano, Yizhi Fang, Hoyoung Jang, Jun-Sik Lee, Chris Eckberg, Daniel Campbell, John Collini, Johnpierre Paglione, F. M. F. de Groot, and Peter Abbamonte
Phys. Rev. Lett. 122, 147601 — Published 12 April 2019
DOI: 10.1103/PhysRevLett.122.147601
Unconventional charge density wave order in the pnictide superconductor
Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$

Sangjun Lee,1,* Gilberto de la Peña,1 Stella X.-L. Sun,1 Matteo Mitrano,1 Yizhi Fang,1 Hoyoung Jang,2,3 Jun-Sik Lee,2 Chris Eckberg,4 Daniel Campbell,3 John Collini,4 Johnpierre Paglione,4 F. M. F. de Groot,5 and Peter Abbamonte1,†

1Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
2Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
3PALS XFEL Beamline Division, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
4Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
5Debye Institute of Nanomaterial Science, Utrecht University, 3584 CA Utrecht, The Netherlands

(Dated: March 21, 2019)

Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$ is a structural homologue of the pnictide high temperature superconductor, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, in which the Fe atoms are replaced by Ni. Superconductivity is highly suppressed in this system, reaching a maximum $T_c = 2.3$ K, compared to 24 K in its iron-based cousin, and the origin of this T_c suppression is not known. Using x-ray scattering, we show that Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$ exhibits a unidirectional charge density wave (CDW) at its triclinic phase transition. The CDW is incommensurate, exhibits a sizeable lattice distortion, and is accompanied by the appearance of a Fermi surface pockets in photoemission [B. Zhou, et al., Phys. Rev. B 83, 035110 (2011)], suggesting it forms by an unconventional mechanism. Co doping suppresses the CDW, paralleling the behavior of antiferromagnetism in iron-based superconductors. Our study demonstrates that pnictide superconductors can exhibit competing CDW order, which may be the origin of T_c suppression in this system.

The discovery of Fe-based superconductivity in 2008 [1] uncovered an entirely new and fascinating class of unconventional superconducting materials with transition temperatures rivaling those of the high-T_c cuprates [2]. A central but poorly understood feature of these materials concerns the importance of the magnetic Fe cation: Exchange of another transition metal for Fe either quenches superconductivity altogether or strongly suppresses it [3]. For example, the prototypical Fe-based superconductor, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, exhibits a maximum superconducting transition temperature, $T_c = 24$ K when $x = 0.07$ [2, 4, 5]. However, its Ni homologue, Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$, exhibits a maximum T_c of only 2.3 K [3, 6, 7]. Understanding why Ni substitution suppresses superconductivity is interesting in its own right and could shed light on the mechanism of superconductivity in Fe-based materials.

The parent material, BaNi$_2$As$_2$, has the same tetragonal $I4/mmm$ structure as BaFe$_2$As$_2$, and undergoes a phase transition to a triclinic $P1$ structure at $T_{tri} = 136$ K [7, 8]. This transition is analogous to the orthorhombic transition in iron-based superconductors [2, 4, 5], with the exception that no evidence for antiferromagnetism has yet been found in BaNi$_2$As$_2$ [9]. So the full nature of this triclinic phase is not yet established. Co doping reduces T_{tri} and leads to a superconducting dome closely resembling that in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, however with a greatly reduced T_c [7]. Co-doped Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$ is therefore an ideal system to study the properties and possible origins of T_c suppression in Ni-pnictide superconductors.

Here, using x-ray scattering, we show that Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$ exhibits robust, large-amplitude CDW order exhibiting the same interplay with superconductivity that antiferromagnetism does in iron-based superconductors. The CDW is incommensurate, unidirectional, and emerges in the vicinity of the triclinic transition temperature, T_{tri} [8]. At a lower temperature, T_L, the CDW exhibits a lock-in transition where it becomes commensurate. The CDW ordering temperature is suppressed by Co doping, leading to a phase diagram with the same dome structure as iron-based superconductors [2, 4, 5]. Our study shows that a competing CDW phase plays an analogous role in Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$ that antiferromagnetism does in iron-based materials, and may be the cause of T_c suppression in this system.

Single crystal x-ray measurements were carried out using a low-emittance, Xenocs GeniX 3D, Mo K_α (17.4 keV) microspot x-ray source with multilayer focusing optics, providing 2.5×10^7 photons/sec in a divergence of 5 mrad and beam spot of 130 µm. The sample was cooled by a closed-cycle cryostat employing Be domes as vacuum and radiation shields, providing wide angular access and a base temperature of 5 K. Sample motion was done with a Huber four-circle diffractometer supporting a Mar345 image plate detector in which each of 12 million pixels exhibits single-photon sensitivity. The instrument allows 3D mapping of momentum space with resolution varying from $\Delta q = 0.01$ Å$^{-1}$ to 0.08 Å$^{-1}$, depending on the direction of the momentum cut [10].

Single crystals of Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$ with $x = 0$, 0.071 ± 0.003, 0.082 ± 0.0019, and 0.118 ± 0.0051 were
grown using the Pb flux method described previously [7, 11]. The chemical compositions were determined by energy dispersive x-ray measurements on multiple regions of each sample [10]. X-ray rocking curves were resolution-limited for all samples, < 0.2°, indicating high crystallographic quality [10]. X-ray absorption spectroscopy measurements at the As L₁ edge, obtained in electron yield mode at beamline 13-3 at the Stanford Synchrotron Radiation Laboratory (SSRL), revealed changes in the As p density of states (Fig. 4(a) (inset)) similar to those observed in Ba(Fe₁₋ₓCoₓ)₂As₂ [12].

The tetragonal and triclinic phases of Ba(Ni₁₋ₓCoₓ)₂As₂ are characterized by distinct sets of x-ray Bragg reflections that index to their respective I4/mmm and P1 spacegroups [8, 10]. The triclinic unit cell used for this study is defined in Fig. 1(a) with refined lattice parameters in Table I [10]. Here, we use \((H, K, L)_{tet}\) and \((H, K, L)_{tri}\) to denote reciprocal space locations in terms of tetragonal and triclinic unit cells, respectively.

The evolution of the tetragonal-triclinic transition with Co doping is summarized in Fig. 1(b), (c). The reflections used for each comparison are unimportant and chosen out of convenience. Figure 1(b) shows line scans through \((0, 0, 14)_{tet}\) and \((0, 0, 7)_{tri}\) reflections for a \(x = 0\) crystal at a selection of temperatures. The \((0, 0, 14)_{tet}\) intensity decreases at \(T_{tri} = 136 \pm 1\ K\) and the \((0, 0, 7)_{tri}\) appears. After a narrow range of coexistence, \((0, 0, 14)_{tet}\) peak vanishes and the \((0, 0, 7)_{tri}\) grows rapidly. This observation validates previous claims that this transition is weakly first order [8].

The same comparisons for Co-doped samples show that the triclinic phase is suppressed to \(T_{tri} = 75 \pm 5\ K\) at \(x = 0.07\) (Fig. 1(c)) and \(T_{tri} = 74 \pm 2\ K\) at \(x = 0.08\) (Fig. S3(c) in the Supplemental Material [10]), respectively. The tetragonal phase does not vanish below \(T_{tri}\) at these compositions, however, but persists down to our base temperature of 5 K. Also, the development of the intensity of the triclinic Bragg reflection is more gradual in these crystals than in the \(x = 0\) case. These observations suggest that Co doping suppresses and broadens the tetragonal-to-triclinic transition and leads to an extended region of coexistence between tetragonal and triclinic phases. No structural phase transition was observed in the \(x = 0.12\) crystal (Fig. S3(d) [10]), which remained tetragonal down to 5 K. The behavior for all compositions studied is summarized in Fig. 4(b).
TABLE I. Structure parameters and transition temperatures of Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$. Tetragonal lattice parameters are measured at room temperature and triclinic parameters at 50 K.

x	Tetragonal structure	Triclinic structure								
	a (Å)	c (Å)	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	T_{tri} (K)	T_L (K)
0	4.142(4)	11.650(3)	4.21(3)	3.99(2)	6.31(1)	105.2(3)	108.6(2)	89.3(4)	136 ± 1	129 ± 1
0.07	4.123(4)	11.762(8)	4.15(2)	4.12(2)	6.50(9)	108.8(9)	108.9(9)	89.3(5)	75 ± 5	47.5 ± 7.5
0.08	4.127(4)	11.767(5)	4.14(2)	3.97(12)	6.44(2)	108.6(3)	108.3(8)	88.4(8)	74 ± 2	25 ± 5
0.12	4.114(6)	11.816(6)								

Our main result is the discovery of a CDW in Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$. X-ray measurements of the $x = 0$ crystal are summarized in Fig. 2(a)-(c) and Fig. 3(a), (d). While still in the tetragonal phase, as the temperature is lowered toward T_{tri}, a weak reflection with propagation vector $(0.28,0,0)_{\text{tet}}$ grows in intensity as the transition is approached. This reflection is visible in multiple Brillouin zones (Fig. 2(a)), identifying it as a coherent superstructure and not an errant reflection from another grain. This reflection is incommensurate, meaning its wave vector does not index to a simple rational fraction. Because this reflection occurs only below 150 K, and is not a property of the room temperature structure, we identify it as a CDW, the first observed in any pnictide superconductor.

Below T_{tri} the $(0.28,0,0)_{\text{tet}}$ reflection vanishes and is replaced by a much stronger CDW with incommensurate wave vector $(0.31,0,0)_{\text{tri}}$ (Fig. 2(b), (c)). Evidently the triclinic transition is associated with the formation of this CDW. Note that, despite the similar Miller indices, the vectors $(0.28,0,0)_{\text{tet}}$ and $(0.31,0,0)_{\text{tri}}$ are nearly 20° apart and reside in very different regions of momentum space (Fig. 2(c)). The wave vector of the CDW shifts as the temperature is lowered and pins to the commensurate value $(1/3,0,0)_{\text{tri}}$ at a lock-in transition $T_L = 129$ K (Fig. 3(a), (d)). Lock-in effects are an established consequence of lattice pinning in other CDW materials, suggesting pinning plays an important role in stabilization of this CDW phase [13–17].

The CDW distortion is of the same order of magnitude as that in Peierls materials. An estimate of its magnitude can be obtained by comparing the intensities of a few CDW satellites with their associated primary Bragg reflections [10]. From the integrated intensities of the $(−1.33,1,5)_{\text{tri}}$, $−1,1,5)_{\text{tri}}$, $−1,6.6,1,5)_{\text{tri}}$, and $−2,1,5)_{\text{tri}}$ reflections, we estimate the lattice distortion $\Delta \sim 0.14\AA$ (see Supplementary Material Section VI and Fig. 7 [10]). This distortion is of the same order...
as in Peierls materials TaS$_2$ and TaSe$_2$, which are 0.23 Å and 0.052 Å, respectively [14]. We emphasize that this is only an order-of-magnitude estimate, and should not be considered a quantitative determination of the size of the lattice distortion. However, it suggests the CDW in \(\text{BaNi}_2\text{As}_2 \) is likely driven at least in part by the electron-lattice interaction.

In Co-substituted samples, a CDW is no longer observed in the tetragonal phase. However, at \(x = 0.07 \) and \(x = 0.08 \) an incommensurate CDW still appears at the (reduced) triclinic transition \((\text{Fig. 3(b)-(c)})\). Both materials still exhibit lock-in transitions, at \(T_L = 47.5 \) K for \(x = 0.07 \) and \(T_L = 25 \) K for \(x = 0.08 \) (\text{Fig. 3(e)-(f)}). The commensurate CDW in both crystals has the same wave vector as the \(x = 0 \) compound. However, strangely, the CDW in the \(x = 0.07 \) sample is oriented in the \(K \) direction, with wave vector \((0,1/3,0)_{\text{tri}}\), while in \(x = 0 \) and \(0.08 \) it is along \(H \). We conclude that, although \(H \) and \(K \) directions are not equivalent in the triclinic phase, the anisotropy is too small to pin the direction of the CDW modulation, which is nevertheless unidirectional in all samples.

No CDW was observed in the \(x = 0.12 \) sample, which also exhibits no triclinic transition (Fig S4(d)). The CDW intensity and degree of commensurability for all samples are summarized in Fig. 4(c)-(d).

The overall picture that emerges is as follows (see the phase diagram in Fig. 5). The \(x = 0 \) compound develops weak, precursor CDW fluctuations with wave vector \((0.28,0,0)_{\text{tet}}\) in tetragonal phase upon cooling. These fluctuations are preempted at \(T_{\text{tri}} = 136 \) K by the first order, tetragonal-to-triclinic transition and the appearance of a strong, primary CDW with wave vector \((0.31,0,0)_{\text{tri}}\). Note that these two wave vectors are indexed in different unit cells and correspond to very different locations in momentum space (\text{Fig. 2(c)})). Upon further cooling the CDW shifts and pins to the commensurate value \((1/3,0,0)_{\text{tri}}\) at \(T_L = 129 \) K. Magnetic measurements show a drop in the susceptibility at \(T_{\text{tri}} \) (\text{Fig. 4(a)}), suggesting the spin configuration changes when the CDW forms, though neutron measurements have not detected antiferromagnetic order [9].

The CDW coincides with unusual changes in the electronic structure. Angle-resolved photoemission spectroscopy (ARPES) studies of \(\text{BaNi}_2\text{As}_2 \) \((x = 0)\) found that its \(\alpha \)-band shifts significantly with temperature and opens Fermi surface pockets below \(T_{\text{tri}} \) [18]. The CDW wave vector, \((1/3,0,0)_{\text{tri}}\), nests these hole-like \(\alpha \) pockets (\text{Fig. S9 [15]}), suggesting they may have some connection to the CDW formation. However, no energy gap is observed to open at \(T_{\text{tri}} \), and no evidence for band folding, which would be expected when translational symmetry is broken, is observed. We conclude that the observed CDW is unconventional in that it is connected to electronic structure changes but does not follow a traditional Fermi surface nesting paradigm [13].

Co doping suppresses the precursor fluctuations, reduces \(T_{\text{tri}} \), and broadens the triclinic transition, leading to an extended heterogeneous coexistence region of tetragonal and triclinic phases (\text{Fig. 1(b)-(c)} and \text{Fig. 4(b)}). This broadening suggests that disorder, perhaps from the Co dopants, plays an important role despite the high crystallographic quality of the crystals [10]. Surprisingly, disorder has less effect on the CDW itself. The lock-in temperature, \(T_L \), is reduced by Co doping (\text{Fig. 5}), but the CDW remains resolution-limited in all materials (\text{Fig. 3(d)-(f)}).

The observation of non-universal CDW orientation...
that the modulation runs along the H direction at $x = 0$ and 0.08, but along K at $x = 0.07$ (Fig. 3(a)-(c)) could indicate a large nematic susceptibility. While the triclinic distortion explicitly breaks rotational symmetry of the system below T_{tric}, recent elastoresistance measurements on BaNi$_2$As$_2$ show evidence for electronic nematic order which breaks rotational symmetry of the tetragonal phase above the triclinic transition [19]. This suggests the direction of the CDW may be determined by tiny extrinsic influences such as strains due to sample mounting.

In summary, we showed using x-ray scattering that the pnictide superconductor Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$ exhibits a unidirectional and incommensurate CDW. The CDW order which breaks rotational symmetry of the tetragonal pockets in photoemission, suggesting it forms by an unidirectional and incommensurate CDW. The CDW

![Diagram](image)

FIG. 5. Phase diagram of Ba(Ni$_{1-x}$Co$_x$)$_2$As$_2$. (green) Incommensurate CDW in the tetragonal phase. (dark purple) Triclinic phase exhibiting a commensurate CDW. (light purple) Heterogeneous region exhibiting coexisting tetragonal and triclinic phases as well as either an incommensurate CDW (IC-CDW) or a commensurate CDW (C-CDW). (beige) Superconducting phase, whose maximum T_c arises in a region of heterogeneous coexistence (data points taken from Ref. [7]).

This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences grant no. DE-FG02-06ER46285. Use of the SSRL was supported under DOE contract DE-AC02-76SF00515. Crystal growth was supported by Air Force Office of Scientific Research award No. FA9550-14-1-0332. P.A. and J.P. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS initiative through grants GBMF4542 and GBMF4419, respectively. M.M. acknowledges a Feodor Lynen Fellowship from the Alexander von Humboldt Foundation.

[1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
[2] J. Paglione and R. L. Greene, Nat. Phys. 6, 645 (2010).
[3] F. Zhang and H. fei Zhai, Cond. Mat. 2, 28 (2017).
[4] N. Ni, M. E. Tillman, J.-Q. Yan, A. Kracher, S. T. Hannahs, S. L. Budko, and P. C. Canfield, Phys. Rev. B 78, 214515 (2008).
[5] J. M. Tranquada, Physics 3, 41 (2010).
[6] T. Park, H. Lee, E. D. Bauer, J. D. Thompson, and F. Ronning, J. Physics: Conf. Ser. 200, 012155 (2010).
[7] C. Eckberg, L. Wang, H. Hodovanets, H. Kim, D. J. Campbell, P. Zavalij, P. Piccoli, and J. Paglione, Phys. Rev. B 97, 224505 (2018).
[8] A. S. Sefat, M. A. McGuire, R. Jin, B. C. Sales, D. Mandrus, F. Ronning, E. D. Bauer, and Y. Mozharivskyj, Phys. Rev. B 79, 094508 (2009).
[9] K. Kothapalli, F. Ronning, E. D. Bauer, A. J. Schultz, and H. Nakotte, J. Phys.: Cond. Mat. 251, 012010 (2010).
[10] See Supplemental Material [URL will be inserted by publisher] for experimental details, discussions on the distortion model, and additional figures, which includes Refs. [8, 18, 20-24].
[11] F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimczuk, R. Movshovich, and J. D. Thompson, J. Phys.: Condens. Matter 20, 342203 (2008).
[12] V. Balédent, F. Rullier-Albenque, D. Colson, J. M. Ablett, and J.-P. Rueff, Phys. Rev. Lett. 114, 177001 (2015).
[13] G. Grünner, Density Waves in Solids (Perseus, Cambridge, MA, 1994).
[14] K. Rossnagel, J. Phys.:Cond. Mat. 23, 213001 (2011).
[15] W. L. McMillan, Phys. Rev. B 14, 1496 (1976).
[16] D. E. Moncton, J. D. Aye, and F. J. DiSalvo, Phys. Rev. Lett. 34, 734 (1975).
[17] B. Sipos, A. F. Kusmartseva, A. Akrab, H. Berger, L. Forro, and E. Tutis, Nat. Mater. 7, 960 (2008).
[18] B. Zhou, M. Xu, Y. Zhang, G. Xu, C. He, L. X. Yang, F. Chen, B. P. Xie, X.-Y. Cui, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, X. Dai, and D. L. Feng, Phys. Rev. B 83, 035110 (2011).
[19] C. Eckberg, D. J. Campbell, T. Metz, J. Collini, H. Hodovanets, T. Drye, P. Zavalij, M. H. Christensen, R. M. Fernandes, S. Lee, P. Abbaumonte, J. Lynn, and J. Paglione, arXiv:1903.00986.
[20] J. R. Einstein, Journal of Applied Crystallography 7, 331 (1974).
[21] L. E. Alexander and G. S. Smith, Acta Crystallographica 15, 983 (1962).
[22] L. M. Gelato and E. Parthé, Journal of Applied Crystallography 20, 139 (1987).
[23] V. Balashov and H. D. Ursell, Acta Crystallographica 10, 582 (1957).
[24] K. Momma and F. Izumi, Journal of Applied Crystallography 5.
raphy 44, 1272 (2011).