Taxonomic note on a rare fish infecting freshwater mould

Achlya ambisexualis Raper 1939 (Achlyaceae) isolated from Chandraprabha dam, Uttar Pradesh, India

MANISH KUMAR DUBEY, ANDLEEB ZEHRA, MUKESH MEENA* AND RAM SANMUKH UPADHYAY

Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University Varanasi - 221 005, Uttar Pradesh, India

*Centre for Transgenic Plant Development, Department of Biotechnology, Faculty of Science, Hamdard University New Delhi - 110 062, India

e-mail: mkmkdubey@gmail.com

ABSTRACT

Achlya spp. are oomycetous water moulds, responsible for freshwater fish diseases causing great economic losses. An *Achlya* sp. implicated in significant fungal infections of both live and dead fish as well as their eggs, has been isolated from the water and soil samples collected from Chandraprabha dam (Chandauli District, Uttar Pradesh, India) employing standard baiting method. Based on morphological characterisation, the strain was identified as *Achlya ambisexualis* Raper 1939 (Saprolegniales, Oomycetes). It is a dioecious species, characterised by the presence of an achlyoid type of spore dehiscence from both primary and secondary sporangia, differentiated by its oospheres predominantly maturing into eccentric oospores, generally 1-18 per oogonium and gemmae cylindrical in both antheridial and oogonial mycelia. In India, this species was recorded from a single collection in the past but lack proper description and illustrations. The present study describes and illustrates this species for the first time in India and hoped to be beneficial for ichthyopathologists and researchers as *A. ambisexualis* is known as a necrotroph or parasite of fishes and their eggs.

Keywords: *Achlya ambisexualis*, *Achlyaceae*, Chandraprabha dam, Oomycetes, Saprolegniasis, Stramenopiles, Taxonomy

Introduction

Achlya is an important genus of the family *Achlyaceae* (Saprolegniales, Oomycota), under phylum Stramenopiles (also called Heterokonta) (Dick, 2001; Johnson *et al.*, 2002; Beakes *et al.*, 2014). This genus is easily recognised by its profusely branched, coenocytic mycelium which gives rise to long, cylindrical and usually terminal zoosporangia that discharge their primary aplanospores from the sporangium to form a ball of spores (Johnson *et al.*, 2002). Apart from difference in a few morphological features, the genus mostly exhibits similar properties and living conditions as the genus *Saprolegnia*. These fungal-like organisms with a zoosporic stage are often referred to as oomycetes or “water moulds” that are phylogenetically distinct from true fungi and are closer to brown algae, diatoms and plants (Alexopoulos *et al.*, 1996; Guarro *et al.*, 1999; Baldauf *et al.*, 2000; Paul and Steciow, 2008). *Achlya* has approximately 50 valid species (Johnson *et al.*, 2002; El Androusse *et al.*, 2006; Paul and Steciow, 2008; Kirk *et al.*, 2008; Jesus *et al.*, 2015). The most included species in this genus probably are obligate saprotrophs which usually grow saprophytically serving simply as organic decomposers of animal and plant debris in freshwater and soil ecosystems worldwide (El-Hissy and Khalil, 1991; Czeczuga *et al.*, 2002; Kiziewicz and Nalepa, 2008; Mazurkiewicz-Zapałowicz *et al.*, 2008). However, under favourable conditions, *Achlya* spp. can be facultative parasites on various freshwater animals and their eggs and many members are responsible for economically important diseases affecting farmed and wild populations of aquatic animals. Several studies have reported *Achlya* species from infected *Channa striatus* (Kitancharoen *et al.*, 1995), tilapia fish and eggs (El-Sharouny and Badran, 1995; Hanjavanit *et al.*, 2013; Mortada *et al.*, 2013), salmonid eggs (Kitancharoen *et al.*, 1997; Kitancharoen and Hatai, 1998), *Oncorhynchus mykiss* eggs (Kales *et al.*, 2007; Shahbazian *et al.*, 2010), *Cyprinus carpio* eggs (Chukanhom and Hatai, 2004), *Ambystoma maculatum* (Gomez-Mestre *et al.*, 2006), *Oreochromis niloticus* (Panchai *et al.*, 2007; Hussein *et al.*, 2013; Panchai *et al.*, 2014; Panchai *et al.*, 2015; Panchai *et al.*, 2016), *Salmo trutta* eggs (Czeczuga *et al.*, 2005), *Pangasianodon gigas* (Abking *et al.*, 2012), *Mystus cavasius* and other species (Chauhan *et al.*, 2013), *Clarias gariepinus* (Hanjavanit *et al.*, 2012), *Tachysurus [Pelteobagrus] fulvidraco* eggs.
(Cao et al., 2013), Coregonus albula, Cottus poecilopus and S. trutta (Kiziewicz, 2004), eggs and fry of P. hypothalimus (Duc et al., 2016) and Mugil cephalus (Sosa et al., 2007).

Members of the genus Achlya cause saprolegniasis, an infectious fungal disease and are responsible for widespread devastating fish infections in aquaculture, fish farms, hobby fish tanks and endemic to all freshwater habitats around the world (Johnson et al., 2002; Willoughby, 2003). Thus, this disease causes serious losses in fish farms and hatcheries and is considered as one of the aquatic disease implicated in mass mortalities of cultured and wild fish in many countries (Singhal et al., 1987; Jeney and Jeney, 1995; Bruno and Wood, 1999). As such, they are responsible for major economic loss in aquaculture industry worldwide accounting for approximately 30% of the global fish production for consumption (Murray and Peeler 2005; van West 2006; Fregeneda-Grandes et al., 2007; Phillips et al., 2008). India is home to more than 10% of the global fish diversity and presently, ranks second in the world after China in total fish production. The estimated fish production of the country was 4.88 million t comprising 3.418 million t from marine fisheries and 1.3 million t from inland fisheries in the year 2014 (Ayyappan, 2014). In India, a variety of freshwater and marine ornamental fishes are available and fungal infection (Saprolegniasis) affecting them is very common. The most species within the genera Saprolegnia, Achlya and Aphanomyces of order Saproleniales are the major players which infect and cause diseases in fishes (Willoughby, 1994; Dick, 2001; Kales et al., 2007; Fuangsawat et al., 2011; Van denberg et al., 2013; Gozlan et al., 2014). Among these, Saprolegnia and Achlya were the most virulent parasites of freshwater fish in India (Sati, 1991). Therefore, investigations on members of these genera became topic of increasing interest, especially to those who focus on the identification and characterisation of pathogenic species in these genera.

During the aquatic fungal diversity survey of the Chandraprabha dam (Chandauli District, Uttar Pradesh, India), a distinct Achlya sp. was encountered, marked by presence of eccentric oospores and dioecious thalli. On further investigation, the identity of the species was determined to be Achlya ambisexualis Raper 1939, a known necrotroph or parasite of fishes, originally reported from only one collection made in Bengaluru, Karnataka, India (Nolard-Tintigner, 1973; 1974). To our knowledge, this Achlya sp. has not been reported since its original publication in India which lacks proper description and illustrations. Hence, the objective of this study was to contribute to the knowledge of Achlya spp. in India giving emphasis on taxonomical/morphological characteristics. The current study was undertaken on snake skin bait to evaluate this species using morphological characters and to develop a key for its identification.

Materials and methods

Isolation and identification

Parasitism of fish is of common occurrence in Chandraprabha dam, Chandauli District, Uttar Pradesh, India (24°55’59.9”N;83°10’47.6”E) especially during winter months. An aquatic fungal diversity survey was under taken in Chandraprabha dam during February 2015 to January 2016. Water and soil samples for fungal isolation were collected at random in separate sterile polyethylene bags and taken to the laboratory. The samples were processed by standard baiting technique using baited snake keratin (Seymour, 1970; Seymour and Fuller, 1987). Each sample was processed in triplicates, which were introduced in separate petri dishes and flooded with 40 ml of sterile deionised water. The baits were placed in triplicate culture dishes and incubated at 20°C for 7 days. The baits were periodically examined under a microscope for about a week and when growth was observed on the baits, the colonised baits were washed in sterile distilled water and transferred to peptone yeast extract glucose (PYG) agar supplemented with penicillin G and streptomycin sulfate (300 ppm each) to obtain an axenic culture and maintained at 25°C. After incubation and growth, the cultures were made unfungal by dissecting out a block of agar (5 mm in dia) from the advancing edge of the 5 day old colony and placing in a petri dish containing sterile distilled water. The baits were then placed near the agar block. In a few days when hyphae grew, baits became noticeable and they were transplanted onto new PYG agar plates and subcultured until pure cultures were obtained. The pure cultures were transferred to fresh PYG agar plates every month and preserved on autoclaved hemp seeds at 4-8°C for long time storage.

A distinct Achlya sp. that was encountered during the study was subjected to detailed investigations on morphological traits using their vegetative and reproductive characteristics on keratin baits under a light microscope. Identification of the isolate was done on the basis of vegetative organs (shape and size of the hyphae), asexual structures (shape and size of zoosporangium and spores, their formation, patterns of discharge and germination) and reproductive organs (production and structure of the oogonium, antheridium and oospores) using the monographs and descriptions of Johnson (1956), Seymour (1970), Muhsin et al. (1984), Willoughby (1994), Johnson et al. (2002), Vega-Ramirez et al. (2013) and other relevant taxonomic literatures containing original
descriptions of taxa. Observations and measurements were recorded and photographed with a light microscope (Dewinter microscope). Permanent mounts of the isolate was prepared by fixing in formalin-acetic-alcohol and mounting in lactophenol (Johnson, 1956; Willoughby, 1994). The isolate was deposited at the Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India with the accession no. 178.

Results and discussion

Description of the species

Achlya ambisexualis Raper, *Amer. J. Bot.*, 26: 639. 1939

(Fig. 1 a-f).

Morphology

The vegetative thallus consisted of coenocytic, stout and extensively dense mycelia (Fig. 1 a, b). The aseptate and hyaline hyphae emerged from the snake skin were single or catenulate stout or delicate, branched, straight, usually broadest about 10-14 μm wide and thick-walled at the base but become progressively narrow and thin walled towards the apices. The septa were formed in the hyphae only to delimit the reproductive organs, asexual sporangia or gemmae and sexual oogonia and antheridia. Gemmae abundant and cylindrical, arise from the hyphae either terminally or intercalary and usually with dense cytoplasmic contents, spherical, pyriform, occasionally irregular, single or catenulate, often germinating to produce sporangia or functioning as oogonia. Asexual reproduction by zoosporangia. Zoosporangia abundant, generally cylindrical or clavate or fusiform, renewed sympodially, 18-44 and 210-500 μm in dia, slightly curved, sometimes hyphoid to irregular, separated from the hypha by a septum. Spores monomorphic in both thalli; discharge and behaviour achlyoid; primary spore cysts 9-13 μm in dia with smooth walls and two subapical flagella; spore cluster persisting at exit orifice immediately upon emergence or disintegrating in part (Fig. 1c). Encysted spores globose and showed direct germination. Sexual reproduction by differentiated oogonia. Oogonia formed abundantly often single with 56-84 μm in dia, lateral or less commonly terminal or rarely intercalary, mostly spherical or obpyriform; oogonial wall smooth and slightly pitted; stalk short to long, slender, straight or curved, tapering towards the base and mostly unbranched with oogonial wall pitted under the region of antheridial cell attachment (Fig. 1d). Oospores always maturing, 1-18 in number,
usually 3-14 per oogonium, spherical, eccentric and generally filling it; germination not observed. Oospores 18-26 μm in dia. Antheridial branches always present, long and arising from one hypha (“male”) or exclusively clinically dichotomous origin; branched, irregular, long, diffuse and slender often wrapping or clamping around the oogonia, laterally appressed, persisting (Fig. 1e). Antheridial cells compound; tubular or clavate, branched or unbranched; persisting; attached in a digitate fashion or laterally/ apically encircling the oogonia; fertilization tubes not observed (Fig. 1f). Based on the above characteristics, the strain was identified as *A. ambisexualis*.

Material examined: Fungal strains isolated using snake skin as a preferred substrate, from water and soil of Chandraprabha dam, Chandauli District, Uttar Pradesh, India during February 2015 - January 2016 (Acc. No. 178).

Distribution: USA, Taiwan, Thailand, France, Iraq, China, South America, Africa, British Isles, India, Philippines, USSR, Mexico, Poland.

Remarks: The species is morphologically similar to its close relative *Achlya bisexualis* in general configuration of reproductive structures, although the oospheres nearly always mature into oospores that usually fill the oogonial cavity of the former and that of the latter the maturation is decidedly uncommon and seldom fully occupy the cavity. Similar to most species of *Achlya*, *A. ambisexualis* has been reported as a fish pathogen but many reports demonstrated that most strains were acting as saprotrophs. It grows commonly on organic debris in the soil as well as water bodies and has been isolated often from paddy soil. *A. ambisexualis* thus likely perform an active role in decomposition of cellulosic and keratinous substrates within the ecosystem. It is mostly recovered from soil samples in comparatively low temperature months.

During the present study, we investigated the naturally occurring *Achlya* sp. identified as *A. ambisexualis* based on morphological and reproductive characteristics. Although the pathogenicity of the isolate is still under investigation, there are numerous reports suggesting *A. ambisexualis* as etiologic agents of fish mycosis in India. The encouraging results of the present study, maximum occurrence of the species was recorded during winter months followed by summer and rainy season respectively. These findings are clearly in agreement with the reports of Dayal and Tandon (1962), Srivastava (1967), Manoharachary (1981) and Chauhan and Qureshi (2012) that high temperatures and rainy season are unfavourable for most of the aquatic fungi.

In India, association of *Achlya* spp. with diseased fishes have been reported by many workers (Bhargava et al., 1971; Srivastava and Srivastava, 1976; Srivastava and Srivastava, 1977a, b; Hasija and Batra, 1978; Srivastava, 1980; Sati and Khulbe, 1981; Khulbe and Sati, 1981; Srivastava et al., 1984; Sati, 1985; Khulbe et al., 1994; Devi and Rajanaika, 2010; Chauhan, 2012; Chauhan et al., 2012; Chauhan and Qureshi, 2012; Chauhan and Bankhe, 2013; Chauhan et al., 2013; Chauhan, 2014; Mustan et al., 2015). These investigations clearly indicate that *Achlya* is one of the most prevalent and frequent genera recorded in water bodies all over India. Only a few studies on *Achlya* were focused on the morphology and taxonomy. Identification of *Achlya* spp. is complex, difficult and sometimes confusing. However, several typical morphological characteristics involving asexual and sexual reproductive structures serve for classical *Achlya* identification. Many *Achlya* spp. are endemic to all freshwater habitats around the world and they cause saprolegniasis in fish. Thus studies on genus *Achlya* are of major environmental and economic importance due to their negative impact on aquaculture and aquatic ecosystems by parasitising fishes, amphibians and crustaceans (Srivastava and Srivastava, 1977a, b; El-Sharouny and Badran, 1995; Kitancharen et al., 1995; Kitancharen et al., 1997; Nejadiattari, 2000; Steciow, 2001; Czezucza et al., 2002; Mazurkiewicz-Zapałowicz et al., 2008; Hunjavanit et al., 2012). Taxonomy and phylogenetic relationships remain unresolved and suffer from many inconsistencies, which are the major obstacles to the widespread application of molecular barcoding to identify pathogenic strains with quarantine implications.

Studies in the field of zoosporic fungi is continuously going down as compared to higher fungi as far as the Indian scenario is concerned (Dubey et al., 2016). The present study attempted to bridge this gap. To assess the diversity and distribution pattern of this group, extensive surveys are required. The taxonomy of the water moulds is known to be difficult and the study of oomycetes in general has not received much attention in India. The encouraging results of the present study, emphasises that more efforts and surveys are needed for better understanding the members of the *Achlya*. Therefore, isolation of this taxon from multiple disparate...
geographic locations and habitats will further provide a better understanding of microhabitat, distribution, the frequency of occurrence or relative abundance as well as genetic divergence of the members from an ancient lineage.

The present study reported on occurrence of *A. ambisexualis*, for the second time in India, which is also the first record of the species on keratin bait. The results from the present study may contribute in knowledge of the occurrence and distribution of *A. ambisexualis* in India.

Acknowledgements

The authors are thankful to the Head, Department of Botany and Programme Coordinator, Centre of Advanced Study in Botany, Banaras Hindu University for providing necessary facilities and financial assistance. The authors gratefully acknowledge and express their appreciation to Carmen L. A. Pires Zottarelli, Nucleo de Pesquisa em Micologia, Sao Paulo, Brazil for suggestions and guidance.

References

Abking, N., Fuangswat, W. and Lawhavinit, O. 2012. *Achlya* spp. isolated from eggs of the Mekong giant catfish (*Pangasianodon gigas*, Chevey). *Proceedings of 47th Kasetsart University Annual Conference*, Veterinary medicine, Bangkok, p. 187-196.

Alexopoulos, C. J., Mims, C. W. and Blackwell, M. 1996. *Introductory mycology*. 4th edn. John Wiley, New York.

Ayyappan, S. 2014. National aquaculture sector overview, India. *National aquaculture sector overview fact sheets*. FAO Fisheries and Aquaculture Department, Rome. Updated 4 April 2014. http://www.fao.org/fishery/countrysector/naso_india/en (Accessed 5 February 2017)

Baldauf, S. L., Roger, A. J, Wenk-Siefert, I. and Doolittle, W. F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. *Science*, 290: 972-977.

Beakes, G. W., Honda, D. and Thines, M. 2014. Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota and Oomycota. In: McLaughlin, D. J. and Spatafora, J. W. (Eds.), *The mycota VIII Part A*. Springer-Verlag, Berlin, p. 39-97.

Bhargava, K. S., Swarup, K. and Singh, C. S. 1971. Fungi parasitic on certain freshwater fishes of Gorakhpur. *Indian Biologists*, 3: 65-69.

Bruno, D. W. and Wood, B. P. 1999. *Saprolegnia* and other oomycetes. In: Woo, P. T. K. and Bruno, D. W. (Eds.), *Fish diseases and disorders: Part III. Viral, bacterial and fungal infections*. CAB Publishing, Oxon, England, 896 pp.

Cao, H., Ou, R., He, S. and Yang, X. 2013. Identification of an *Achlya klebsiana* isolate as the causal agent of Saprolegniosis in eggs of yellow catfish (*Pelteobagrus fulvidraco*) and control with herbal extracts. *Isr. J. Aqua. Bamid.*, 65: 1-9.

Chauhan, R. 2012. Study on certain fungal diseases in culturable and non-culturable species of fishes of upper lake, Bhopal. *J. Chem. Bio. Phy. Sci.*, 2: 1810-1815.

Chauhan, R. 2014. Diversity of aquatic fungi of six water bodies of Bhopal in relation to its abiotic parameters. *Int. J. Green Herbal Chem.*, 3(2): 425-433.

Chauhan, R. and Bankhede, M. 2013. Studies on fungal population of Halali reservoir with respect to environmental conditions and its impact on fishes. *Proceedings of International conference on waste wealth and health*, 15 - 17 February, MPCST, Bhopal, p. 128-133.

Chauhan, R. and Qureshi, T. A. 2012. *Fungal infection of fishes*. Lap Lambert Academic Publishing, Germany, 174 pp.

Chauhan, R., Kaur, P. and Sharma, S. 2012. Pathogenicity of some species of *Achlya* and *Saprolegnia* on Indian major carps viz., *Catla catla*, *Cirrhinus mrigala* and *Labeo rohita*. *Sci. Comp. Sci. Engg. Technol.*, 1(3): 422-428.

Chauhan, R., Lone, R., Beigh, H. and Tabassum, G. 2013. Mycotic studies of some freshwater fishes with emphasis on *Achlya* spp. *Int. J. Res. Fish. Aquac.*, 3(4): 165-169.

Chukanhom, K. and Hatai, K. 2004. Freshwater oomycete isolated from eggs of the common carp (*Cyprinus carpio*) in Thailand. *Mycoscience*, 45: 42-48.

Czeczuga, B., Bartel, R., Kiziewicz, B., Godlewksa, A. and Muszynska, E. 2005. Zoosporic fungi growing on the eggs of sea trout (*Salmo trutta m. trutta L.*) in river water of varied trophicity. *Pol. J. Environ. Stud.*, 14(3): 295-303.

Czeczuga, B., Kiziewicz, B. and Danilkiewicz, Z. 2002. Zoosporic fungi growing on specimens of certain fish species recently introduced to Polish waters. *ACTA Ichthyol. Piscat.*, 32(2): 117-125.

Dayal, R. and Tandon, R. N. 1962. Ecological studies of some aquatic Phycomycetes - I. *Hydrobiologia*, 20: 121-127.

Devi, P. and Rajanaika 2010. A Study on fish pathogenic fungi and its periodicity in Tunga River of Karnataka (South India). *Rep. Opinion*, 2(8): 60-63.

Dick, M. W. 2001. *Straminipilous fungi*. Kluwer Academic Publishers, Dordrecht, 670 pp.

Dubey, M. K. and Upadhyay, R. S. 2013. Isolation and characterisation of some Indian Hyphochytriomycetes. *Int. Res. J. Biol. Sci.*, 2(6): 31-34.

Dubey, M. K., Zehra, A., Meena, M. and Upadhyay, R. S. 2016. Taxonomic notes on *Allomyces neomonomiformis* (Blastocladiaceae) isolated from Nanital Lake, Uttarakhand, India. *Vegetos*, 29(2): 1-7.

Duc, P. M., Thy, D. T. M., Trinh, N. T. M., Tuan, T. N. and Hatai, K. 2016. Water molds isolated from eggs and fry of striped catfish (*Pangasianodon hypophthalmus*) in the Mekong Delta of Viet Nam. *J. Fishsicom*, 10(1): 31-36.
El Androusse, A., El Aissami, A. and Paul, B. 2006. Achlya abortispora, a new oomycete isolated from water samples taken from a water reservoir in Morocco. *Curr. Microbiol.*, 53: 60-67.

El-Hissy, F. T. and Khalil, A. R. M. 1991. Distribution and seasonal occurrence of aquatic phycomycetes in water and submerged mud in El-Ibrahima canal (Upper Egypt). *Med. J. Islamic Acad. Sci.*, 4: 311-316.

El-Sharoumy, H. M. and Badran, R. A. M. 1995. Experimental transmission and pathogenicity of some zoosporic fungi to tilapia fish. *Mycopathologia*, 132: 95-103.

Fregeneda-Grandes, J. M., Rodriguez-Cadenas, F., Carbajal-Gonzalez, M. T. and Aller Gancedo, J. M. 2007. Antibody response of brown trout *Salmo trutta* injected with pathogenic *Saprolegnia parasitica* antigenic extracts. *Dis. Aquat. Org.*, 74(2): 107-111.

Fuangswat, W., Abking, N. and Lawhavinit, O. 2011. Sensitivity comparison of pathogenic aquatic fungal hyphae to sodium chloride, hydrogen peroxide, acetic acid and povidone iodine. *KasetSart J. (Natural Sci.),* 45: 84-89.

Gomez-Mestre, I., Touchon, J. C. and Warkentin, K. M. 2006. Amphibian embryo and parental defenses and a larval predator reduce egg mortality from water mold. *Ecology*, 87: 2570-2581.

Gozlau, R. E., Marshall, W., Lilje, O., Jessop, C., Gleason, F. H. and Andreou, D. 2014. Current ecological understanding of fungal-like pathogens of fish: what lies beneath? *Front. Microbiol.*, 5: 62.

Guarro, J., Gene, J. and Stchigel, A. 1999. Developments in fungal taxonomy. *Clin. Microbiol. Rev.*, 12: 454-500.

Hanjavanit, C., Panchai, K., Kitancharoen, N. and Hatai, K. 2013. The anti-oomycotic effects of sodium chloride and potassium permanganate and the toxicity of these compounds to tilapia (*Oreochromis niloticus*) eggs. *Afr. J. Microbiol. Res.*, 7(18): 1852-1857.

Hanjavanit, C., Rakmanee, C., Kitancharoen, K. and Hatai, K. 2012. Freshwater oomycete isolated from African catfish *Clarias gariepinus* eggs in Thailand. *Aquat. Sci.*, 60: 269-276.

Hasija, S. K. and Batra, S. 1978. The distribution of Achlya americana (Saprolegniales) in different aquatic habitat at Jalalpur, India. *Hydrobiology*, 61: 277-279.

Hussein, M. M. A., Hassan, W. H. and Mahmoud, M. A. 2013. Pathogenicity of Achlya proliferae and Saprolegnia diclina (Saprolegniales) associated with Saprolegniosis outbreaks in cultured Nile tilapia (*Oreochromis niloticus*). *World J. Fish Mar. Sci.*, 5(2): 188-193.

Jeney, Z. S. and Jeney, G. 1995. Recent achievements in studies on diseases of the common carp (*Cyprinus carpio L.*). *Aquaculture*, 129: 397-420.

Jesus, A. L., Marano, A. V., De Souza, J. I., James, T. Y., Jeronimol, G. H., Rocha, S. C. O., Gonçalves, D. R., Boro, M. C. and Pires-Zottarelli, C. L. A. 2015. Achlya catenulata sp. nov., a new Saprolegniales (Oomycetes, Straminipila) from Brazilian mangrove swamp. *Phytotaxa*, 212(3): 221-228.

Johnson, T. W. Jr. 1956. The genus Achlya: morphology and taxonomy. University of Michigan Press, Michigan.

Johnson, T. W. Jr., Seymour, R. L. and Padgett, D. E. 2002. Biology and systematics of Saprolegniaceae. University of North Carolina, Wilmington. http://dl.uncw.edu/digilib/biology/fungi/taxonomy%20and%20systematics/padgett%20book/ (Accessed 18 February 2017).

Kales, S. C., DeWitte-Orr, S. J., Bols, N. C. and Dixon, B. 2007. Response of the rainbow trout monocyte/macrophage cell line, RTS11 to the water molds *Achlya* and *Saprolegnia*. *Mol. Immunol.*, 44: 2303-2314.

Khulbe, R. D. and Satl, S. C. 1981. Studies on parasitic water molds of Kumaun Himalaya, host range of *Achlya americana* Humphrey in certain temperate fish. *Mykosen*, 24: 177-180.

Khulbe, R. D., Bisht, G. S. and Joshi, C. 1994. Epizootic infection due to *Achlya debaryana* in a catfish. *Mycoses*, 37: 61-63.

Kirk, P. M., Cannon, P. F., Minter, D. W. and Stalpers, J. A. 2008. *Dictionary of fungi*. CABI Bioscience, Wallingford, 771 pp.

Kitancharoen, N. and Hatai, K. 1998. Some biochemical characteristics of fungi isolated from salmonid eggs. *Mycoscience*, 39: 249-255.

Kitancharoen, N., Hatai, K., Ogihara, R. and Aye, D. N. N. 1995. A new record of *Achlya klebsiana* from snakehead, *Channa striatus*, with fungal infection in Myanmar. *Mycoscience*, 36: 235-238.

Kitancharoen, N., Hatai, K. and Yamamoto, A. 1997. Aquatic fungi developing on eggs of Salmonids. *J. Aquat. Anim. Health*, 9: 314-316.

Kiziewicz, B. 2004. Aquatic fungi growing on the muscle of vendace (*Coregonus albula* L.), alpine bullhead (*Cottus poecilopus* H.) and lake trout (*Salmo trutta lacustris* L.) from Lake Haneza (NE Poland). *Zool. Pol.*, 49(1-4): 85-95.

Kiziewicz, B. and Nalepa, T. F. 2008. Some fungi and water molds in waters of Lake Michigan with emphasis on those associated with the benthic amphipod *Diporeia* spp. *J. Great Lakes Res.*, 34: 774-780.

Manoharachary, C. 1981. The taxonomy and ecology of freshwater Phycomycetes from India. *Indian Rev. Life Sci.*, 1: 3-21.

Mastan, S. A., Begum, S. A., Ahmed, M. O. and Shamshad, S. 2015. Mycotic infection in some economically important freshwater fishes. *World J. Pharma Pharmaceutical Sci.*, 4(11): 1449-1456.

Mazurkiewicz-Zapalowicz, K., Silicki, A., Grajewski, J. and Wozniak, A. 2008. Studies on toxicity of selected Oomycetes. *Acta Mycol.*, 43(1): 13-19.
Manish Kumar Dubey et al.

Mortada, M. A., Hussein, Hassan, W. H. and Mahmoud, M. A. 2013. Pathogenicity of Achlya proligeroides and Saprolegnia diclina (Saprolegniaceae) associated with Saprolegniosis outbreaks in cultured Nile tilapia (Oreochromis niloticus). World J. Fish Mar. Sci., 5: 188-193.

Muhsin, T. M., Rattan, S. S. and Ismail, A. L. S. 1984. Aquatic fungi of Iraq: Species of Achlya. Sydowia, vol. XXXVII.

Murray, A. G. and Peeler, E. J. 2005. A framework for understanding the potential for emerging diseases in aquaculture. Prev. Vet. Med., 67(2-3): 223-235.

Nejadsattari, T. 2000. Occurrence and distribution of aquatic Saprolegniaceae in the north-west and south of Tehran. Iranian Int. J. Sci., 2: 91-98.

Nolard-Tintigner, N. 1973. Etude expérimentale sur l'épidémiologie et la pathogénie de la saprolegnioses chez Lebistes reticulatus Peters et Xiphophorus helleri Heckel. Acta. Zool. Pathol. Antverp., 57: 1-127.

Nolard-Tintigner, N. 1974. Contribution a l’étude de la saprolegnioses des poissons en region tropicale. Bulletin de l’Academie Royal de Belgique. Classe des Sciences de naturel medicine (New Series), 19: 1-58.

Panchai, K., Hanjavanit, C. and Kitacharoen, N. 2007. Characteristics of Achlya bissexualis isolated from eggs of Nile tilapia (Oreochromis niloticus). KKV Res. J., 1: 195-202.

Panchai, K., Hanjavanit, C. and Kitacharoen, N. 2005. Some morphological and biological characteristics of Achlya ambisexualis isolated from tilapia fry, Oreochromis niloticus Linn. Proceedings of the 31st Congress on Science and Technology of Thailand at Suranaree University of Technology, p. 18-20.

Panchai, K., Hanjavanit, C., Rujinanont, N., Wada, S., Kurata, O. and Hatai, K. 2014. Freshwater oomycete isolated from net cage cultures of Oreochromis niloticus with water mold infection in the Nam Phong River, Khon Kaen Province, Thailand. AACL Bioflux, 7: 529-542.

Panchai, K., Hanjavanit, C., Rujinanont, N., Wada, S., Kurata, O. and Hatai, K. 2015. Experimental pathogenicity of Achlya species from cultured Nile tilapia to Nile tilapia fry in Thailand. AACL Bioflux, 8: 70-81.

Panchai, K., Hanjavanit, C., Sangpradub, N. and Hatai, K. 2016. Anti-oomycetific effect of copper sulfate in vitro on Achlya spp. isolated from infected Nile tilapia (Oreochromis niloticus). AACL Bioflux, 9(2): 414-421.

Paul, B. and Steciow, M. M. 2008. Achlya spiralis, a new aquatic oomycete with bent oogonial stalks, isolated from the Burgundian region of France. FEMS Microbiol. Lett., 284: 120-125.

Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J. and van West, P. 2008. New insights into animal pathogenic oomycetes. Trends Microbiol., 16: 13-19.

Sati, S. C. 1985. Ability of Achlya prolifera Nees to parasitise certain cold water fish of India. Sci. Cult., 51: 389-390.

Sati, S. C. 1991. Aquatic fungi parasitic on temperate fishes of Kumaun Himalaya, India. Mycoses, 34(9-10): 437-41.

Sati, S. C. and Khulbe, R. D. 1981. A new host records for the fungal genus Achlya. Curr. Sci., 50: 313.

Seymour, R. L. 1970. The genus Saprolegnia. Cramer, Berlin.

Seymour, R. L. and Fuller, M. S. 1987. Collection and isolation of water moulds (Saprolegniaceae) from water and soil. In: Fuller, M. S. and Jaworski, A. (Eds.), Zoosporic fungi in teaching and research. Southeastern Publishing, Athens, p. 125-127.

Shahbazian, N., Ebrahimzadeh Mousavi, H. A., Soltani, M., Khosravi, A. R., Mirzargar, S. and Sharifpour, I. 2010. Fungal contamination in rainbow trout eggs in Kermanshah Province propagations with emphasis on Saprolegniaceae. Iranian J. Fish. Sci., 9(1): 151-160.

Srivastava, G. C. and Srivastava, R. C. 1977a. Host range of Achlya prolifera nees de Bary on certain freshwater teleosts. Mycopathologia, 61(1): 61-62.

Srivastava, G. C. and Srivastava, R. C. 1977b. Ability of Saprolegniaceous fungi to parasitise Colisa fasciatus Bl. Geobios, 4: 31-32.

Srivastava, G. C., Sinha, S. K. and Srivastava, S. K. 1984. Achlya klebsiana Pieters - A naturally occurring fish pathogen. Curr. Sci., 53(10): 927-928.

Srivastava, R. C. 1980. Fungal parasites of fresh water fishes of India. Aquaculture, 21: 387-392.

Singhal, R. N., Jeet, S. and Davies, R. W. 1987. Experimental transmission of Saprolegnia and Achlya to fish. Aquaculture, 64: 1-7.

Sosa, E. J., Landsberg, J. H., Kiyru, Y., Stephenson, C. M., Cody, T. T., Duckmen, A. K. and Wolfe, H. P. 2007. Pathogenicity studies with the fungi Aphanomyces invadans, Achlya bisexualis and Phialonemum dimorphosporum: Induction of skin ulcers in striped mullet. J. Aquatic Anim. Health, 19: 41-48.

Srivastava, G. C. 1967. Ecological studies on some aquatic fungi of Gorakhpur, India. Hydrobiologia, 302(2): 281-291.

Srivastava, G. C. and Srivastava, R. C. 1976. Ability of Achlya flagellate Coker parasitising certain freshwater fishes. Geobios, 3: 139-140.

Steciow, M. M. 2001. Achlya fugeiana, a new species from Tierra Del Fuego Province (Argentina). Mycologia, 93(6): 1195-1199.

Van denberg, A. H., Mclaggan, D., Dieguez-uribeondo, J. and van West, P. 2013. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biol. Rev., 33: 33-42.

van West, P. 2006. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist, 20(3): 99-104.
Taxonomic note on *Achlya ambisexualis*

Vega-Ramirez, M. T., Moreno-Lafont, M. C., Valenzuela-Garza, R., Cervantes-Olivares, R., Aller-Gancedo, J. M., Fregeneda-Grandes, J. M., Damas-Aguilar, J. L., Garcia-Flores, V. and Lopez-Santiago, R. 2013. New records of Saprolegniaceae isolated from rainbow trout, from their eggs and water in a fish farm from the State of Mexico. *Rev. Mex. Biodivers.*, 84: 637-649.

Willoughby, L. G. 1994. *Fungi and fish diseases*. Stirling, Pisces Press Publication. *Kasetsart J. (Nat. Sci.)*, 46: 91-97.

Willoughby, L. G. 2003. Diseases of freshwater fishes. In: Tsui, C. K. M. and Hyde, K. D. (Eds.), *Freshwater mycology*. Fungal Diversity Press, Hong Kong, p. 111-126.

Date of Receipt : 07.03.2017
Date of Acceptance : 10.12.2017