REVIEW

Nature-derived compounds modulating Wnt/β-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases

G. Sferrazzab,\dagger, M. Cortia,\dagger, G. Brusottia, P. Pierimarchib, C. Temporinia, Annalucia Serafinob,*, Enrica Calleria,*

aDepartment of Drug Sciences, University of Pavia, Pavia 27100, Italy
bInstitute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy

Received 22 July 2019; received in revised form 8 November 2019; accepted 8 November 2019

Abstract The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson’s disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.

© 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Wnt/β-catenin signaling cascade is an evolutionarily conserved pathway. It has a crucial role in normal embryonic development, by orchestrating a wide range of process including limb, heart, or neural development, axis specification and gastrulation1-5. Moreover, Wnt pathway is one of the main players in the maintenance of adult tissue homeostasis by regulating cell proliferation, migration, differentiation, survival and adhesion, as well as renewal of stem cells6-10. Due to its pleiotropic and essential functions in controlling a great number of process during embryonic and adult life, dysregulation of the Wnt/β-catenin signaling is associated with many types of diseases, including cancer and neurodegenerative disorders11-14, fibrosis15,16, endocrine diseases17, and metabolic syndrome18. In view of this crucial role in the pathogenesis of such different kinds of diseases, in the last two decades, most of molecular components of the signaling have been proposed as innovative therapeutic targets1,12,14,19-21. Crucial molecules participating to the signaling seem also to possess a diagnostic/prognostic value in neoplastic diseases22-24, and this further increases the interest of the scientific world on this pathway. Not by chance, many research groups worldwide are engaged in expanding the knowledge on this pathway and its role in the onset and progression of various diseases. Moreover, several pharmaceutical and biotech companies invested, and are currently investing, considerable funds for developing innovative drugs targeting critical steps of this signaling, or for confirming the diagnostic value of molecules participating to the Wnt/β-catenin cascade. In the last decade, a great number of Wnt pathway targeting compounds, including small molecules and biologics, have been tested as novel therapeutic agents in both preclinical and clinical studies. Most of the studies analyzed the efficacy of these compounds in antitumor therapy14,25, since cancer has been the first disease in which a role of Wnt signaling has been demonstrated26 and, therefore, the knowledge in this field is greater than for other pathological conditions.

Herbal preparations have been used since ancient times as the main source of therapeutic principles for world populations. In the history of medicine, there are many remarkable examples of how the discovery of natural products deeply affected advances in biology and stimulated drug discovery and therapy. Nevertheless, the interest of pharmaceutical companies toward natural compounds, as potential candidates in the drug discovery process, showed a decline during the 1990s and early 2000s, due to the advent of high-throughput screening (HTS) and combinatorial chemistry27. In the last years, with advances of technologies that allow to screen natural products in HTS assays, the interest in plant-derived drugs has progressively increased and a “New Golden Age” for the drug discovery and development of new agents has been achieved28-30. The discovery of nature-derived compounds with strong anti-cancer activity contained in many foods leads also to design chemotherapy regimen combining these compounds with conventional chemotherapeutic agents. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest among the researchers as promising candidates for the development of chemopreventive or therapeutic drugs for cancer30-33.

In this review, we make an overview of the nature-derived compounds that are reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds. In addition, we briefly describe some of the preclinical studies that demonstrated, in \textit{in vitro} and \textit{in vivo} models of cancer, the effect of these nature-derived compounds on the signaling and some clinical trials just completed or that are ongoing, aiming to demonstrate the anti-tumor efficacy of natural agents targeting Wnt signaling components.

2. The Wnt/β-catenin signaling cascade: the current regulatory model

Wnts are secreted, cysteine-rich glycoproteins that act as ligands to promote receptor-mediated signal transduction pathways in both vertebrates and invertebrates35-39. During synthesis, Wnt proteins are modified by the attachment of an acyl group (palmitoleic acid) and this modification, brought about by the palmitoyl transferase Porcupine (membrane-bound O-acyltransferase family, MBOAT in Fig. 1), is crucial for Wnt secretion and for the binding to the Wnt receptor Frizzled (Fzd)12 (Fig. 1). Wnt signals are transduced in the canonical, or β-catenin-dependent, pathway and in other two non-canonical, or β-catenin-independent, pathways (Wnt/Ca2+ and the planar cell polarity signaling)35-37. The receptor Fzd is crucial for all Wnt signaling cascades, with the N-terminal Fzd cysteine rich domain (CRD) that acts as the Wnt binding domain35. In addition to the Fzd, the Wnt/β-catenin pathway needs the low-density lipoprotein receptor related proteins 5 and 6 (LRP5/6) as co-receptors39. The formation of a Wnt–Fzd–LRP6 complex is the trigger for the Wnt/β-catenin signaling cascade.

β-Catenin was originally recognized as a cadherin-associated protein participating to the cell–cell junctions40,41, but in the last two decades has got increasing interest as one of the most important mediators of the canonical Wnt pathway3,5,6,42, mainly due to the role of this signaling in tumorigenesis. A huge number of papers on this issue are available in literature, and here we summarize the key aspects of the Wnt/β-catenin signaling, and refer to other reviews and papers for more details on the molecular mechanism4,12,14,25,43-45. As illustrated in Fig. 1, following the current model, in the “Wnt-OFF” state, β-catenin exists in a cadherin-bound form that regulates cell–cell junctions; the excess of β-catenin that is not segregated on the cell membrane by cadherins, is rapidly phosphorylated by glycogen synthetase kinase-3β (GSK-3β) in the adenomatous polyposis coli (APC)/axin/GSK-3β destruction complex and is then degraded by the ubiquitin–proteosome pathway (Fig. 1). Conversely, in the “Wnt-ON” state, the binding of Wnt to the Fzd receptors and to the LRP5/LRP6 co-receptors inactivates the APC/axin/GSK-3β destruction complex and the results in β-catenin accumulation in the cytosol and its translocation into the nucleus. Nuclear β-catenin functions as a co-activator for TCF/LEF-mediated transcription and regulates the expression of Wnt target genes that regulates cell proliferation and survival, apoptosis, cell differentiation, cell motility and invasion, and resistance to chemotherapy. Indeed, in non-pathological conditions, β-catenin dynamically has multiple subcellular localizations, that include adherens junctions, where it participates to cell–cell contacts, the cytoplasm, where its levels are tightly controlled by the degradation at the destruction complex, and the nucleus, where it is engaged in transcriptional regulation and chromatin interactions46. This β-catenin dynamics is finely regulated by different factors, including growth
factors, prostaglandins, and E-cadherin levels, that play in concert to maintain a fine balancing between Wnt-OFF and Wnt-ON states. Due to the critical role of Wnt/β-catenin signaling in regulating opposite cell fates (survival vs. cell death, differentiation vs. proliferation, etc.), the preservation of this balance in the different tissues and organs is essential, since aberrant regulation of the signaling cascade and/or the inability of the organism to restore the right equilibrium might lead to the onset and progression of a wide range of diseases.

3. The Wnt/β-catenin pathway and cancer: therapeutic perspectives

In the two last decades, numerous studies demonstrated the key role of deregulation or constitutive activation of the Wnt/β-catenin pathway in tumor initiation, growth, metastasis and dormancy. This signaling is also involved in tumor immunity and cancer stem cell maintenance in different forms of human cancer, mainly solid tumors, including colorectal, gastric, esophageal, prostate, breast, thyroid, lung, ovarian cancer, and hepatocellular carcinoma. Therefore, many of the molecular components of the Wnt/β-catenin signaling have been proposed as innovative targets for cancer therapy. Furthermore, since the Wnt/β-catenin signaling is also involved in some chronic diseases associated with an increased risk of developing cancer, such as the inflammatory bowel diseases (Chron’s disease and ulcerative rectocolitis), and liver fibrosis, drug targeting this signaling has also been proposed for cancer prevention. The main therapeutic approaches that are currently explored involve the use of drugs targeted to molecules that participate in upstream events, such as Wnt ligands, Fzd receptors, LRP5/LRP6 co-receptors, Dishevelled and others, or drugs targeting downstream events such as β-catenin/TCF or β-catenin/CBP interactions.

Several modulators of the signaling have been developed for treatment of cancer and other β-catenin-related diseases, but, up today, none of them has been yet approved or incorporated into clinical practice. The main issue for Wnt antagonists, apart the common safety aspects that could halt the development of new drugs, is the target strategies. Some drugs developed to date display a mechanism of action that involves the targeting of upstream molecules of the pathway such as tankyrase or porcupine. However, these experimental drugs failed to demonstrate a clinical efficacy in neoplastic diseases in which mutations in APC and β-catenin genes have been found, such as colorectal cancer. Even if the direct targeting of β-catenin appears the most relevant pharmacological strategy for overcoming these mutations, β-catenin seems to be an undruggable target, due the absence of ligand binding pockets usually present in enzymes and receptors. These critical issues could be resolved based on the new scientific evidence about the crucial role of this pathway in the immunological response, since the Wnt/β-catenin signaling in immune cells is activated by extrinsic factors rather
than intrinsic mutations. This emerging role of the pathway is particularly noteworthy if seen in the context of the new golden age of immunotherapy in oncology. The advent of immune checkpoint inhibitors (ICI) is changing the clinical paradigm and the life expectancy, with significant results for progression-free survival and overall survival for patients affected by several cancer diseases such as melanoma and non-small cell lung cancer. Despite the clinical success of these therapies, only certain types of tumors respond to ICI and others such as breast, prostate, and colon are less sensitive. Therefore, there is a scientific and regulatory consensus that suggests the development of new research programs aiming to the optimization of the use of existing ICI in order to improve the clinical management of patients treated with these innovative medicines. Thus, the recent evidence, indicating that Wnt/β-catenin signaling plays an important role in the regulation of different tumors and their immune sensitivity, opens up new perspective in this field. Specifically, the dysregulation of this pathway seems to be deeply related to the biological function of several immune cells involved in antitumor immunity, immune evasion and exclusion mechanisms that are known to have a central role in non-responders or resistant patients treated with ICI. These findings suggest that the efficacy of cancer immunotherapy by ICI treatment could be significantly improved through a combined strategy with molecules targeting Wnt/β-catenin pathway. This assumption is sustained by data from in vitro and in vivo experiments, and from clinical studies that explored the efficacy of combined treatment with Wnt/β-catenin modulators and checkpoint inhibitors have been recently started.

In this context, natural compounds could represent an alternative and important source useful for increase the availability of molecules with different pharmacological properties able to potentially overcome some critical issues that characterize synthetic and biological molecules that have been developed to date. In particular, the large number of natural compounds known for acting on the Wnt/β-catenin pathway could be precious not only for developing more efficient and less toxic preventive/therapeutic drugs but also for potentiating the efficacy of the ICI treatment, in a combined strategy. To this purpose, a phase II clinical trial (trial number: NCT03192059) is recruiting patients with advanced and/ or refractory cervical cancer, endometrial carcinoma or uterine sarcoma in order to study the combination of vitamin D (as co-drug) and curcumin (as supplement) with an immunomodulatory cocktail that also includes the anti PD-L1 pembrolizumab (https://clinicaltrials.gov/ct2/show/NCT03192059).

4. Natural molecules targeting Wnt/β-catenin pathway

The key role Wnt/β-catenin signaling in the mechanism of cancer development and progression has led to a significant increase of researches aimed to discover new molecule able to modulate several pharmacological target of the pathway. In this context, a large variety of natural compounds has been demonstrated to inhibit or modulate molecules involved in upstream and downstream events of the Wnt/β-catenin pathway. The majority of these molecules are polyphenols, mainly flavonoids, but some terpenes and terpenoids are also included (Fig. 2). Almost all of these nature-derived compounds share the feature of having antioxidant and anti-inflammatory properties, and this could in part explain their effects on the Wnt/β-catenin signaling that is often dysregulated in condition of oxidative stress or inflammation. Conversely, up today, it has not been available to find common specificities in the chemical structures of these compounds that could be directly related to the effects on the pathway or whose direct interaction with specific targets participating to the Wnt/β-catenin signaling could be supposed. As reported in Table 1, these nature-derived molecules are “modulators” of the pathway rather than specific activators or inhibitors, as reported for other synthetic Wnt-targeting drugs. This means that they can act in one or in the other ways depending on the cell type and on the state of dysregulation that the signaling has in that specific disease. In other words, as modulators of the pathway, these nature-derived compounds are hypothetically able to preserve (when used in preventive strategies) or to restore (if used as therapeutics or adjuvants) the right equilibrium between Wnt ON and Wnt OFF, thus reinstating the signaling aberration that leads to the onset and progression of the diseases. Specifically, in the neoplastic disease, in which the Wnt/β-catenin pathway is generally, but not always, constitutively activated, these natural modulators act almost always as inhibitors. Conversely, in other diseases such as neurodegenerative disorders, in which the activation of the pathway has neuroprotective ability, they have beneficial effects by functioning as Wnt pathway activators.

As it concerns the use of these nature-derived compounds as a preventive and therapeutic strategy in neoplastic diseases, most of them are still in preclinical development and only three are already under clinical investigations. Therefore, in the following section we focus on the most significant natural compounds that demonstrated significant pharmacological properties in relevant model of neoplastic diseases (Table 1).

Methods used for the pharmacological screening of natural compounds described in this review include bioassay traditionally employed for the evaluation of anticancer potential of every kind of experimental drugs. Specifically, the most used screening systems are cell viability and proliferation assay, cell cycle analysis, wound healing and transwell migration assay. These methods are used to evaluate the potential cytotoxicity and anti-metastatic activity. Relating to the scope of this review, the evaluation of compounds that modulate the Wnt/β-catenin pathway was conducted through the following main techniques: Top/Fop Flash, Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot analyses. Top flash is a cell-based luciferase assay system that involves the use of cell lines that are transfected with TCF/LEF reporter for monitoring the activity of Wnt/β-catenin signaling pathway through the employment of known inhibitor and experimental compound(s). Instead, Fop flash uses mutant TCF-binding site which does not respond to the Wnt signal. These bioassays were used generally to monitor Wnt signaling pathway activity and to screen agonists or inhibitors.

4.1. Flavonoids

4.1.1. Genistein

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one) is the main isoflavone in soy (Glycine max) and was firstly extracted from Genista tinctoria L., a flowering plant of the family Fabaceae. It is considered a dietary phytoestrogen and the main
sources of this isoflavone are soybean and soybean products106,109. Many different extraction techniques were reported in literature as effective for the recovery of isoflavones from natural sources and ultrasound assisted extraction and Quick Easy Cheap Effective Rugged and Safe (QuEChERS) methodology were recently reported as good strategies with high recovery yield110. Genistein is one of the main secondary metabolites in soy-derived food and together with other isoflavones entities and dietary phytoestrogen, it is consumed in significant quantities worldwide111. Moreover, genistein has different biological interesting effects, such as anti-inflammatory and pro-apoptotic effects, modulation of steroidal hormone receptors and metabolic pathways. According to literature, genistein is also able to change the expression of variety of Wnt target genes leading to the induction

Figure 2 Molecular structures of nature-derived compounds that modulate the Wnt/\(\beta\)-catenin signaling.
Compound and chemical class	Effect on Wnt/β-catenin pathway	Stage of development	Ref.
Curcumin Polyphenols:	**Inhibits p-GSK3β, β-catenin, E-cadherin and N-catenin, cyclin D1 and the nuclear expression of dishevelled proteins. Prevents β-catenin/TCF DNA binding and transactivation.**	Phase I in metastatic colon cancer patients in combination with 5-fluorouracil (NCT02724202)	46,63–65
Curcuminoïds - Diaryl epiptanoides	**Inhibits the activity of Wnt-1 and its targets such as c-Myc and cyclin D1. Reduces the expression of Wnt-7α. Inhibits the effect of Dkk-1. Downregulates of TCF reporter activity. Reduces the expression of Wnt5α, Sfrp1, Sfrp2 and Sfrp5.**	Phase I in patients with suspected or documented colon cancer (NCT00256334)	3,31,46,63,66–71
Genistein Polyphenols:	**Inhibits of AKT phosphorylation and suppression of GSK-3β dephosphorylation. Promotes β-catenin phosphorylation. Suppresses β-catenin/TCF-driven transcription. Induces the overexpression of E-cadherin, reduces the activity of Wnt-1 and its targets such as c-Myc and cyclin D1.**	Preclinical: in vitro and in vivo	25,46,75,76
Flavonoids - Isoflavones	**Decreases the expression of β-catenin, c-Myc, MMP7 and Survivin. Downregulates WNT2 and upregulate AXIN2 in Colo16 cells and Myc-tagged TCF4 protein. Upregulates of WNT1**	Preclinical: in vitro and in vivo	33,46,68,77–79
Vitamin D Secosteroids	**Decreases the expression of β-catenin to TCF. Increases E-cadherin and DKK-1**	Observational clinical study in normal subjects and colorectal cancer patients (NCT00399607)	46,63–65
Quercetin Polyphenols:	**Inhibits the binding between β-catenin and TCF. Inhibits GSK-3β phosphorylation. Increases the expression of E-cadherin.**	Preclinical: in vitro and in vivo	46,80–82
Flavonoids - Flavonoids	**Downregulates the expression of p-GSK3β. Increases the expression of GSK3β and Reduces the level of β-catenin and its target genes. Inhibits the expression of β-catenin/TCF-4 receptor activity. Upregulates HBP1. Increases secreted frizzled-related protein expressions and E-cadherin.**	Preclinical: in vitro and in vivo	46,63–65
EGCG (epi-gallocatechin-3-	**Decreases the expression of Wnt5α, β-catenin and cyclin D1 and the nuclear expression of dishevelled proteins. Prevents β-catenin/TCF DNA binding and transactivation.**	Preclinical: in vitro and in vivo	83
gallate) Polyphenols:	**Induces the overexpression of E-cadherin, reduces the activity of Wnt-1 and its targets such as c-Myc and cyclin D1.**	Preclinical: in vitro and in vivo	83
Catekines	**Decreases the expression of Wnt5α/β-catenin and in an increase of E-cadherin**	Preclinical: in vitro and in vivo	83
Artemisinin Sesquiterpenes	**Inhibits the binding between β-catenin and TCF. Inhibits GSK-3β phosphorylation. Increases the expression of E-cadherin.**	Preclinical: in vitro and in vivo	83
Apiigenin Polyphenols:	**Inhibits β-catenin/TCF/LEF interaction. Increases of E-cadherin and decreases nuclear β-catenin, c-Myc, and cyclin D1**	Preclinical: in vitro and in vivo	83
Flavonoids - Flavones	**Reduces β-catenin mRNA and protein. Induces of DKK1 expression, reduces the expression of c-Myc Inhibits of microRNA-217 (negative regulator of DKK1)**	Preclinical: in vitro and in vivo	83
Baicalin Polyphenols:	**Suppresses Wnt co-receptor LRP6 expression. Reduces of β-catenin, cyclin D1 and c-Myc**	Preclinical: in vitro and in vivo	83
Flavonoids	**Reduces the expression at protein and mRNA levels of Wnt3α and β-catenin. Downregulates β-catenin intracellular levels and the expression of β-catenin/TCF-dependent genes, such as cyclin D1 and c-Myc.**	Preclinical: in vitro and in vivo	83
Silibinin Polyphenols:	**Downregulates β-catenin and TCF4 and its**	Preclinical: in vitro and in vivo	83
Flavonoids	**Decreases the expression of Wnt5α/β-catenin and in an increase of E-cadherin**	Preclinical: in vitro and in vivo	83
Galangin Polyphenols:	**Inhibits the activity of Wnt-1 and its targets such as c-Myc and cyclin D1.**	Preclinical: in vitro and in vivo	83
Flavonoids - Flavonols	**Decreases the expression of Wnt5α/β-catenin and in an increase of E-cadherin**	Preclinical: in vitro and in vivo	83
of cell-cycle arrest, apoptosis and/or inhibition of epithelial—mesenchymal transition (EMT) and metastasis. Indeed, genistein is a multitarget drug with several pharmacological activities including chemopreventive and anticancer efficacy in various type of tumors. It affects cell cycle, angiogenesis and inhibits metastasis. Differently from curcumin, genistein affects cell cycle, angiogenesis and modulates the interaction between β-catenin and LEF/TCF-2 leading to the downregulation of c-Myc, Brm-2 and Mif and its downstream targets.

Table 1 (continued)

Compound and chemical class	Effect on Wnt/β-catenin pathway	Stage of development	Ref.
Flavonoids	target genes such as cyclin D1 and MMP7. Reduces phosphorylation of GSK3-β and decreases β-catenin stabilization. Modulates the interaction between β-catenin and LEF/TCF-2 leading to the downregulation of c-Myc, Brm-2 and Mif and its downstream targets	Preclinical: in vitro	98–100
Luteol Triterpenoids	Reduces the nuclear expression of β-catenin and the formation of β-catenin/TCF4 complexes. Downregulates of the expression of GSK-3β, leading to the suppression of Akt1, PI3K, β-catenin, c-Myc and cyclin D1 mRNA expression and its downstream targets	Preclinical: in vitro	88,101
Kaempferol Polyphenols:	Inhibits β-catenin/TCF transcriptional activity	Preclinical: in vitro	63,102
Flavonoids - Flavonols	Inhibits β-catenin, c-Myc and cyclin E protein levels. Reduces activation AKT and GSK-3β phospho-inhibition. Induces a reduction in TCF/LEF reporter activity, β-catenin and cyclin D1.	Preclinical: in vitro	32,103
Lycopene Carotenoids	Suppresses β-catenin/TCF transcriptional activity	Preclinical: in vitro	104
Naringenin Polyphenols:	Decreases cytosolic and nuclear β-catenin and c-Myc	Preclinical: in vitro	105
Flavonoids - Flavanones	Decreases cytosolic and nuclear β-catenin by increasing its phosphorylation mediated by CK1α	Preclinical: in vitro	

Recent in vitro study on several renal cancer (RCC) cell lines and ex vivo analyses performed on tissues from 43 patients affected by clear renal cancer demonstrated that genistein induces apoptosis, inhibits proliferation and invasion through the down-regulation of TCF reporter activity and miR-1260b, that has known to be overexpressed in renal cancer tissues, affecting cancer aggressiveness. Its biological function was also strictly correlated with the β-catenin-dependent pathway in RCC cell lines. The study of Hirata et al. demonstrated that genistein inhibited Wnt-signaling by regulating miR-1260b expression in renal cancer cells.

In another in vivo study on colon cancer murine model, Zhang et al. demonstrated that genistein inhibited WNT target genes cyclin D1 and c-Myc and its signaling, reducing the expression of Wnt5a, Sfrp1, Sfrp2 and Sfrp5. Results obtained from this study suggested that genistein possesses protective role in the development of early colon neoplasia.

As previously reported, genistein has been extensively studied as drug for cancer prevention and treatment. Over the years, 29 clinical trials have been conducted (on ClinicalTrials.gov), and 1 of 29 aimed to correlate the effect of genistein with the inhibition of the Wnt/β-catenin pathway (NCT01985763). This study is a phase I/II clinical trial that was conducted hypothesizing that the combination of genistein with the standard of care might reduce chemotherapy resistance and improve response rates in patients. The study was designed in order to administrate genistein with FOLFOX or FOLFOX-Avastin in 13 patients with stage IV colon or rectal neoplasms. The trial was completed in 2018 but no results have been published to date.
Relating to the safety profile, conflicting results have been described in scientific literature. It has been reported the potential toxic effects of genistein on fertility and fetus development. Some studies demonstrated that genistein has a negative effect on ovarian differentiation, estrous cyclicity, and fertility in a rodent model. However, data from clinical trials for the determination of these potential critical issues about the use of genistein are still lacking.

4.1.2. Quercetin
Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) is a polyphenol compound widely diffused and a common phytochemical in human diet and can be found in nuts, tea, onions, apple and in plant sources. Quercetin can also be found in dietary supplements. Quercetin exhibits many beneficial activities for human health and in particular an abundant antioxidant activity due to free radicals scavenging leading to the protection of human DNA from oxidative damages. Moreover, epidemiological studies highlighted that quercetin shows anti-inflammatory, antitumor, antiviral, antiallergic, and anti- edematous activities, and may provide prevention from cardiovascular pathologies. Due to these multiple activities attributed to quercetin, in recent years its extraction and determination have acquired a growing interest. At date, the extraction of quercetin from natural sources can be achieved by some innovative and green techniques: molecular imprinted polymers (MIPs) were used for the recovery of this polyphenol from red wine and deep eutectic solvents (DESs)-based polymeric monolithic cartridges were applied for the extraction of quercetin from Gingko biloba, a China native large tree. Quercetin has also been detected in some traditional remedies such as in Saururus chinensis leaves used in Korean traditional medicine for the treatment of pain and other affections.

Quercetin has been considered a potential antitumor compound, based on the reported action on Wnt pathway, as described by in vitro and in vivo studies. Specifically, in vitro studies demonstrated that quercetin acts by inhibiting the binding between β-catenin and TCF in SW480 colorectal cancer cell line and in HEK293 cells transfected with constitutively active mutant β-catenin gene. The anticancer efficacy of quercetin was also confirmed in other cancer cell lines including leukemia and lymphoma cells, colon cancer, melanoma and hepatocarcinoma.

Recent studies also suggested a promising effect of quercetin in triple negative breast cancer (TNBC) both in vitro and in vivo models. Specifically, Srinivasan et al. have shown that the treatment of MDA-MB-231 and MDA-MB-468 cells with quercetin increases the expression of E-cadherin and downregulates vimentin levels in TNBC, both markers of mesenchymal-to-epithelial transition. This effect was mediated by the modulation of β-catenin and its target genes such as cyclin D1 and c-Myc. Similar effects have been reported by Sultan et al. in MDA-MB-231 and MDA-MB-157 TNBC cells and in a TNBC xenograft mouse model. The authors showed that quercetin induces apoptosis in TNBC cells by reducing the expression of different molecular markers including β-catenin. Moreover, the evaluation of anticancer activity of in vivo quercetin treatment in the TNBC model demonstrated the inhibition of tumor xenograft growth by 41.7% than the control group. These data support the potential use of this molecule for the treatment of TNBC. Despite quercetin is being evaluated in oncologic trials as anticancer drug, none of these clinical studies evaluated its effect on the Wnt/β-catenin signaling.

4.1.3. Apigenin
Apigenin (4',5,7-trihydroxyflavone) is a secondary metabolite from common plants, belonging to the flavone class of flavonoids. Apigenin can be found in many plants and food sources (parsley, celery, celeriac, cilantro and oregano) and even in Chinese traditional remedies (i.e., Scutellaria barbata D. Don) and it is particularly abundant in camomile flowers (Asteraceae). Throughout literature, several methods have been used for the extraction of apigenin including conventional techniques (i.e., maceration and heat reflux extraction) and more advanced ones (microwave assisted extraction and ultrasound assisted extraction). Among the more innovative techniques, supercritical carbon dioxide approach gained an increasing interest due to high effectiveness and less environmental impact compared to the other methods. Most recently, a green and highly efficient technique for the recovery of apigenin from a Chinese traditional plant was developed by Yang and Mei obtained by coupling ultrasound assisted extraction technology with supercritical fluid extraction. Apigenin is known as a flavonoid with many interesting beneficial biological actions including antioxidant, antimutagenic, anticarcinogenic, antiinflammatory, and antiproliferative. Due to its antitumor activity and low toxicity, apigenin has been widely researched and observed to suppress different human cancer both in vitro and in vivo studies and many molecular target have been described for apigenin in human cancer.

Apigenin was the first molecule belonging to the flavonoid class known to have an effect on Wnt pathway. This natural compound possesses anticancer capacity both in vitro and in vivo, by suppressing cell migration and invasion, and inducing apoptosis and cell cycle arrest. Its antitumor ability has been ascribed to the inhibition of β-catenin/TCF/LEF interaction, that suppresses the β-catenin nuclear entry and the expression of Wnt target genes in SW480 and HCT15 human colorectal cancer cells, and in U2OS and MG63 osteosarcoma cells. In vivo evidence suggested that apigenin significantly reduces tumor volumes and completely inhibits lymphonodal, liver and lung metastases in a transgenic mouse model of prostatic adenocarcinoma and these effects have been related to an increase of E-cadherin and a decrease of nuclear β-catenin, c-Myc, and cyclin D1.

4.1.4. Baicalin
Baicalin is a flavonoid compound found in roots of different species of the genus Scutellaria (S. laterifolia and S. galericulata), and in particular it is the active metabolite responsible for the biological action of Scutellaria baicalensis Georgi, a Chinese medicinal plant used to treat psoriasis. The more common techniques applied for the extraction and isolation of baicalin are heat reflux extraction (HRE), ultrasound-assisted extraction (UAE) supercritical fluid extraction (SFE). Moreover, other more sophisticated techniques were developed for the isolation and purification of baicalin, such as deep eutectic solvents, ultrahigh pressure technology and molecular imprinted polymers. Baicalin exhibits an anticancer activity toward many kinds of cancers, including ovarian, prostate, breast and pancreatic cancers, esophageal squamous cell carcinoma, as well as Burkitt lymphoma. The exact mechanism of action is not completely understood but it seems that it acts through multiple mechanisms involving the induction of apoptosis and the modulation of...
diffuse pathways also including the Wnt/β-catenin signaling. Jia et al. demonstrated that the treatment with baikalin of colon cancer DLD1 and HCT-116 cells inhibits their proliferation and induces apoptosis. This effect was mediated by the induction of DKK1 expression, a relevant antagonist of Wnt signaling pathway, thus reducing the expression of β-catenin and c-Myc. The authors also demonstrated that the mechanism of action of baikalin on these cells also involves the inhibition of microRNA-217, negative regulator of DKK1. Therefore, it was shown that baikalin induces apoptosis through the miR-217/DKK1-mediated inhibition of Wnt signaling pathway. Batcain was tested also on triple negative breast cancer cell line MDA-MB-231 and mouse mammary cancer cell line 4T1. The molecule did not affect cell viability but demonstrated a potential effect on migration and invasion in a dose dependently manner, and reverted epithelial-to-mesenchymal transition process by targeting β-catenin signaling. The same authors in an in vivo xenograft metastasis tumor model of 4T1 breast cancer cells also confirmed these results. Specifically, the compound reduced the number of liver and lung metastases through the downregulation of epithelial-to-mesenchymal transition markers and the inhibition of β-catenin in tumor tissues.

4.1.5. Silibinin
Silibinin is a polyphenol belonging to the flavoligan class. It is the major active compound in the extract of *Silybum marianum* (commonly named milk thistle plant) seeds, commonly used as a medicinal plant in CTM, is recently gaining interest in western societies for the treatment of liver diseases and diabetes. In nature, Silibinin exists in a mixture of two diastereomers, silibinin A and silibinin B in a ratio of 1:1. Typically, the extraction of this polyphenol, as also described in *European Pharmacopoeia*, is achieved by two solvent steps using *n*-hexane and methanol, respectively. This procedure is achieved by means of traditional Soxhlet apparatus and requires long time of processing. In order to reduce time of extraction and to improve the recovery of silibinin, many improved methodologies have been studied, such as the pressurized liquid extraction technique developed in a recent work. Silibinin has been traditionally used as nutritional supplement for hepatoprotection, but it has also demonstrated to exert anticancer activity in different *in vitro* and *in vivo* models of solid tumors such as skin, breast, lung, colon, bladder, prostate and kidney carcinomas. It has been reported that this effect is correlated with the modulation of Wnt/β-catenin pathway. Specifically, *in vitro* test showed that silibinin inhibited migration and invasiveness of PC3 prostate cancer cells through different mechanisms also including the increment of E-cadherin at cell membrane and the reduction of nuclear β-catenin. Silibinin-induced suppression of cell growth correlated to the inhibition of the Wnt/β-catenin signaling was also demonstrated in the human colorectal carcinoma cell line SW480 and in the xenograft model, where the compound inhibited tumor growth by decreasing the expression of β-catenin, cyclin D1, c-Myc. Another study demonstrated that silibinin acts as suppressor of the Wnt co-receptor LRP6 and that the antitumor activity is mediated by the inhibitory effect on Wnt/LRP6 signaling in prostate and breast cancer cells. The antitumor activity of silibinin was also confirmed *in vivo* in *Apcmin/+* transgenic mouse model of intestinal carcinogenesis. The natural compound prevented the polypl formation in small intestine and colon and this chemopreventive effect was mediated by the decrease of β-catenin levels and its transcriptional activity. Similar results were also obtained in other *in vivo* models of colon carcinogenesis.

4.1.6. Galangin
Galangin (4H-1-benzopyran-4-one,3,5,7-trihydroxy-2-phenyl or 3,5,7-trihydroxyflavone) is a polyphenol compound naturally occurring in plants of the genus *Alpinia* of the Zingiberaceae family (*Alpinia officinarum, A. galanga*). These herbs have been widely used as traditional remedies in different regions of the world like Asian and African countries, for the treatment of many diseases. Moreover, *A. officinarum* is reported as a safe food spice for non-medical usages. Extraction of bioactive compounds and in particular galangin from this genus has been purchased by the application of several techniques (i.e., Soxhlet extraction, maceration, ultrasonication, and soaking) and different solvents such as petroleum ether, ethyl acetate and water. Galangin has been suggested to have antimutagenic, antioxidant, and muscle contraction inhibitor properties. In recent years, scientific studies focused on the evaluation of its beneficial effects on animal models in terms of anticancer activity and vascular disorders treating. Galangin belongs to the class of flavonol and possesses anti-oxidant, anti-inflammatory and antitumor activities as demonstrated in a variety of *in vitro* and *in vivo* models. *In vitro* studies on the human oesophageal carcinoma cell lines Eca9706, TE-1, and EC109 showed that treatment with galangin resulted in cell growth inhibition, induction of apoptosis and cell cycle arrest. The molecular analysis revealed that galangin reduced the expression of Wnt3a and β-catenin at protein and mRNA levels. The antitumor efficacy was also confirmed in nude mice with xenograft tumors, where the treatment increased TUNEL positivity and the level of the onco-suppressor p53 and reduced the expression of Wnt3a and of the proliferation marker Ki-67. Other *in vitro* studies indicated that galangin is able to suppress the proliferation of colorectal and hepatocarcinoma cell lines due to the downregulation of β-catenin intracelluar levels and the transcription of β-catenin/TCF-dependent genes, such as cyclin D1 and c-Myc.

4.1.7. Fisetin
Fisetin (7,3',4'-flavon-3-ol) is a bioflavonoid occurring in plants. It is found in dietary sources like strawberries, apple, persimmons and onions and in many species of plants like Euclotyldenos and Fabaceae family (genus *Acacia*), among the others. As other polyphenols, fisetin shows many beneficial biological actions, for instance the ability to scavenge free radicals leading to a high antioxidant activity. Moreover, many different studies were performed to evaluate its anti-inflammatory and antiallergic activity and recently, this polyphenolic compound gained an increased interest because of its action as memory-enhancing agent in rodents. Like other flavonoids, fisetin possesses anti proliferative activity against different cancers and many reviews have been published focusing on this chemopreventive potential. The extraction of Fisetin from natural sources has been performed by applying acidic conditions (typically by HCl) and in some cases, an ultrasonic-assisted extraction was described. Scientific literature indicated that fisetin is a potent anticancer agent against different solid tumors such as lung, breast, colon and pancreatic cancer. It has been demonstrated that fisetin regulates Wnt signaling in colon cancer cell line HT-29 through the downregulation of β-catenin and TCF4 and its target genes such as cyclin D1 and matrix metalloproteinase 7. The modulation of Wnt pathway by fisetin was also demonstrated in *in vitro* and...
in vivo melanoma models97. Specifically, the in vitro study on 451Lu melanoma cells showed that fisetin induces a reduction of cell viability and G1 cell cycle arrest. This effect was correlated to the suppression of Wnt signaling and specifically to the decreased phosphorylation of GSK3-β associated with decreased β-catenin stabilization97. Fisetin also modulates the interaction between β-catenin and LEF/TCF-2 that resulted in the downregulation of the TCF target genes c-Myc, Brn-2 and microphthalmia-associated transcription factor (Miff). In the in vivo study, carried out on 451Lu-xenografted nude mice, fisetin induced the inhibition of tumor growth that is mediated by the inhibition of the β-catenin/Miff signaling97.

4.1.8. Kaempferol
Kaempferol (3,4',5,7-tetrahydroxyflavone), is a flavonol, a kind of flavonoids, contained in many dietary and plant sources (in Angiosperm family in particular), such as grapes, tomatoes, broccoli, tea, cabbage in Ginkgo biloba leaves and G. max among the others. Typically, the extraction of this flavonoid was achieved by using solvents (mainly polar solvents like methanol, ethanol and water) and different approaches were applied (from conventional solvent extraction to ultrasound and microwave assisted extraction). One very convenient extraction recently described for kaempferol was achieved by supercritical fluid technology as reported by Ortega and co-workers in 2018156. Being a flavonoid, kaempferol exhibits an abundant antioxidant activity by reducing superoxide ions and lowering the formation of reactive oxygen species. Kaempferol is also a promising anticancer agent by promoting inhibition of angiogenesis and apoptosis. Kaempferol additionally exerts many other health perspectives in terms of anti-diabetic, anti-inflammatory, antiangiogenic and anti-allergic activity97. It was demonstrated that this compound inhibits Wnt pathway in colorectal cancer cell lines SW480 and HEK293, through the suppression of the β-catenin/TCF transcriptional activity99. Qin et al.101 have shown that kaempferol has anti-proliferative and anti-invasive properties in retinoblastoma SO-RB50 cells. The effect was explained on the basis of the interaction with estrogen-related receptor α that induced the suppression of Wnt/β-catenin signaling101.

4.1.9. Naringenin
Naringenin (5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one) is a flavonoid belonging to the flavone subclass. Naringenin is known as one of the most ingested flavonone by people because of its vast distribution in Citrus genus. Indeed, it is the most abundant flavone in grapes, tangelo, blood orange, lemons, pomelo, and tangerines, and it is found in cherries grapefruit and cocoa158. Naringenin possesses broad biological beneficial effects for human health including antioxidant, anti-inflammatory, anti-diabetic, anti-proliferative and anticancer activity99. The extraction of naringenin has been performed by the techniques typically applied for other flavonoids and recently, a green and efficient extraction methodology based on ultrasound-assisted deep eutectic solvents extraction was developed160. As mentioned above, naringenin has demonstrated to have several pharmacological activities such as antioxidant, antitumor, anti-inflammatory, antiangiogenic and cardioprotective effects. These have been demonstrated in preclinical and in clinical trials. Scientific evidence on the activity that naringenin exerts on Wnt-β-catenin pathway has also been described. The natural compound demonstrated to suppress Wnt signaling in AGS human gastric cancer cells. Naringenin acts suppressing the TCF transcriptional activity in a concentration-dependent manner105.

4.2. Other polyphenols

4.2.1. Curcumin
Curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is a diarylheptanoid (curcuminoid) extracted from the rhizome of Curcuma longa L., a flowering plant of the ginger family (Zingiberaceae)161, cultivated in tropical and subtropical regions, such as Asia and Central America. C. longa L., also known with the common name of turmeric, is widely used in traditional medicines such as in Ayurvedica and Chinese traditional medicine (CTM). The extraction of curcuminoids, and in particular curcumin, from the rhizome of C. longa, firstly achieved in 1818 by Vogel and Pelletier162, has been vastly described in literature and many different approaches were applied153–165. Indeed, throughout literature many conventional techniques were reported as organic solvents extraction, steam distillation, hot and cold percolation, use of hydrotrope, and alkaline solution. In addition, several advanced techniques have been studied like supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction, and enzyme assisted extraction. Most recently, Patil and co-workers166 described an advanced three-phase partitioning and batch extraction as an innovative technique suitable for the extraction of curcuminoids from natural sources. C. longa is utilized also in culinary uses as yellow/orange spice, therefore, curcumin can be assumed for medical purposes if utilized in traditional herbal remedies or as dietary ingredient. Curcumin expresses interesting in vitro and in vivo biological activities such as anti-inflammatory, antioxidant and neuroprotective among the others. In addition, anticancer activity of curcumin was widely investigated84. The biological effect is mediated by the modulation of different pathways known to have a crucial role in pathological conditions, including the Wnt/β-catenin pathway. Curcumin acts on different critical molecular components of the signaling cascade, whose overexpression is involved in cancer initiation, progression and resistance. For example, in breast cancer cells curcumin induces cell proliferation arrest and apoptosis, also inhibiting their migration and invasion of through the inhibition GSK-3β, β-catenin and its nuclear localization, E-cadherin, and cyclin D185,170. Other studies demonstrated that curcumin inhibits β-catenin- p-GSK3β protein expression, cyclin D1 and c-Myc in non-small-cell lung cancer (NSCLC) and medulloblastoma cell lines and dramatically decreases proliferation and the epithelial—mesenchymal transition in SW620 human colon cancer cells, through different mechanisms including also the downregulation of the Wnt pathway171–173. Curcumin has also a promising antimutator activity when used to target cancer stem cells in colorectal, breast and lung cancer through a specific action on Wnt/β-catenin pathway and its target genes174–176.

A recent in vivo study in a mouse model of colon cancer demonstrated a new mechanism of regulation of Wnt/β-catenin pathway by curcumin, leading to an antimutator effect through the downregulation of β-catenin and TCF4. The authors demonstrated that the action of curcumin on the pathway was mediated by the downregulation of the microRNA (miR)-130a and miR-21. Specifically, the miR-130a was revealed as negative regulator of curcumin anticancer activity. In fact, the overexpression of miR-130a in SW480 cells abolished the curcumin-induced inhibition of cell proliferation as well as the downregulation of β-catenin, and this
suggests that curcumin regulates Wnt/β-catenin pathway by inhibiting miR-130a177. Another recent study conducted by Marjaneh et al.179 explored the efficacy of a novel formulation of phytochemical curcumin in combination with 5-FU in a mouse model of colitis-associated colon cancer by evaluating the expression of cyclinD1, beclin, E-cadherin, and p-GSK3α/β. Results showed that the association strongly reduces inflammation and tumor volume and number, through modulation of the Wnt pathway and E-cadherin.

The potent antiproliferative effect observed in in vitro and in vivo model of solid tumors of lung, breast, gastrointestinal tract and central nervous system has led to explore the pharmacological potential of curcumin also in clinical trials. In the last 10 years, 33 clinical studies have been conducted in order to evaluate the antitumor potential of curcumin in cancer patients180. Specifically, four of them have been designed in order to use curcumin for targeting the Wnt/β-catenin pathway in CRC. They are evaluating the safety and efficacy of curcumin in association with 5-FU and with irinotecan in two phase I studies as preoperative neoadjuvant standard radiation therapy and chemotherapy in a phase II study, and in combination with celecoxib in a phase III clinical trial. These studies are in ongoing and no results have been published to date181. Although a potential anticancer effect has been also demonstrated in patients, further studies are warranted to validate the use of curcumin as preventive and therapeutic treatment as monotherapy or in combination with standards of care. Curcumin and its derivatives have been considered safe as shown by the clinical trials conducted until now. The main side effects reported are mild and mainly affecting the gastrointestinal system182. As known, the bioavailability of curcumin is a critical issue that affect the antitumor efficacy in patients. New clinical development strategy aiming to define a better patient population through specific biomarkers is needed in order to optimize and potentially validate the use of curcumin as anticancer medicines.

4.2.2. Resveratrol
Resveratrol (3,5,4′-trihydroxy-trans-stilbene, 2) is a stilbene contained in a wide range of food sources such as grape, blueberries and peanuts. In particular, grape peel contains high quantities of resveratrol and its glycosides183. Resveratrol represents one of the most interesting natural bioactive compounds because of its high beneficial potential in health applications. Indeed, several in vitro and in vivo studies have highlighted the antioxidant, anti-inflamatory, cardioprotective, neuroprotective and antitumor actions185. Many efforts have been faced in the extraction of resveratrol and the recovery from grape peel remain challenging because of the poor solubility of this stilbene in water and in other common solvents typically used for solvent-based extraction. Many approaches have been applied and the optimum quantitative extraction of resveratrol from grape peel (after infection with powdery mildew) has been gained by using an aqueous solution of ethanol at 60 °C186 and other methods focused on the conversion of piceid (a resveratrol glucoside derivative) to resveratrol to improve the extraction yield by acid hydrolysis, heat application or enzyme treatment185–188. Recently, in order to achieve a more rapid and economic procedure, Averilla and co-workers189 described an innovative method combining enzymes and heat to improve the extraction recovery.

As mentioned, resveratrol is a potent antioxidant and anti-inflammatory agent that has been extensively studied during the last years. It has been demonstrated that resveratrol possesses antiproliferative and antimetastatic activity through the modulation of different mechanisms30,33,188. In particular, it has been demonstrated that resveratrol decreases the expression of β-catenin in the nucleus of colon cancer cells and this seems to be correlated to the downregulation of molecular regulators of β-catenin localization30,189. Very recently, Mineda et al.190 reported that resveratrol induces apoptosis and arrests cell proliferation in human uterine sarcoma cell line MES-SA through a dose-dependent downregulation of β-catenin and c-Myc. Geng et al.191 have also demonstrated that resveratrol was able to inhibit proliferation, migration and invasion of multiple myeloma cells (U266 and LP1) through a reduced expression of nuclear β-catenin, c-Myc, MMP7 and survivin. Other authors showed that resveratrol inhibits gastric cancer cell line MGC-803 through downregulation of the Wnt/β-catenin signaling pathway192. Specifically, the antitumor effect was mediated by the reduction of the expression of β-catenin, c-myc, and cyclin D1192.

Cilibrati et al.72 demonstrated that resveratrol inhibits proliferation and motility in glioma stem cells lines isolated from patients affected by glioblastoma multiforme. The efficacy of resveratrol in these models was strongly correlated with the upregulation of WNT1 and MYC183,193.

Resveratrol also inhibits proliferation of human osteosarcoma cells lines MG-63 and U2-OD by downregulating the expression of β-catenin184,195. After treatment with resveratrol, a down-regulation of Wnt/β-catenin pathway target genes, such as β-catenin, c-myc, cyclin D1, MMP-2 and MMP-9 was shown, while E-cadherin level increased185.

Resveratrol has also a promising effect on breast cancer stem-like (BSCS) cells isolated from MCF-7 and SUM159, and exhibited antitumor potential in a xenograft model of SUM159 cells in NOD SCID mice. Resveratrol inhibits the growth of tumors through different mechanisms including the reduction of the expression of β-catenin and cyclin D1 in both in vitro and in vivo models196.

It has been also demonstrated that resveratrol improves the efficacy of temozolomide by increasing the sensitization of glioma resistant to the drug, both in vitro and in vivo. through the inhibition of Wnt2 and β-catenin expressions197.

The antitumor effect of resveratrol has also been investigated in clinical trials. To date, 20 clinical studies were published on ClinicalTrials.gov. Two of 20 studies support the use of resveratrol as anticancer due to the effect of resveratrol on the Wnt/β-catenin pathway. A phase I clinical study (NCT00256334) was conducted on 11 patients with suspected or documented colon cancer. The primary outcome of the study was based on the investigation of the potential effect of resveratrol on Wnt signaling both in colon cancer and normal colonic mucosa. Results obtained from the study demonstrated that resveratrol was not able to inhibit Wnt pathway in colon cancer but showed a statistically significant inhibition of Wnt target gene, cyclinD1 and axin II, in normal colonic mucosa, suggesting a potential use of resveratrol as a preventative treatment for colon cancer197.

As it concerns the pharmacokinetic profile, recent clinical studies reported that resveratrol is rapidly absorbed after oral administration and is well tolerated with no adverse reactions reported185,198. However, resveratrol has low bioavailability due to rapid and extensive metabolism in the intestine and liver but new formulations effective for improving its absorption and bioavailability have been already developed186.

In any case, although numerous in vitro and in vivo studies and various clinical trials have been conducted up today, further clinical investigations are warranted in order to characterize the
potential use of Resveratrol as preventive or treatment strategy in cancer.

4.2.3. Epigallocatechin-3-gallate (EGCG)
Epigallocatechin-3-gallate ([(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl][3,4,5-trihydroxybenzoate, EGCG], a type of catechin, is the ester of epigallocatechin and gallic acid. EGCG is the most abundant catechin in tea (Camellia sinensis and C. assamica) and tea-based ready-to-drink beverage and can also be easily assumed with diet by the consumption of apples (apple skin), onions and hazelnuts and by the administration of dietary supplements. As all the other polyphenol compounds, EGCG has a strong antioxidant activity leading to an interesting beneficial potential for human health. Indeed, due to the anti-inflammation, anti-mutagenic and anti-viral activities, EGCG has a good potential for the prevention of chronic diseases like diabetes and cancer among the others. The extraction of this polyphenol was purchased by the application of always greener and more efficient techniques, such as ultrasound assisted extraction and deep eutectic solvents technology. EGCG is a potent antioxidant that has been extensively studied as treatment of several diseases including cancer as preventive or treatment strategies. In vitro and in vivo studies confirmed that this natural compound exerts its potential antitumoral action through different mechanism also including the modulation of the Wnt/β-catenin signaling. Studies on colorectal cancer stem cells demonstrated that EGCG suppresses the spheroid formation from the human colon cancer cells DLD-1 and SW480, by inducing apoptosis and inhibition of proliferation. Specifically, EGCG downregulated the expression of p-GSK3β, increased the expression of GSK3β and reduced the level of β-catenin and its target genes. The pharmacological activity of EGCG on cancer stem cells (CSCs) was also confirmed on lung cancer A549 and H1299 cells. EGCG reduced lung CSCs activity by inhibiting tumorsphere formation, decreasing lung CSCs markers, suppressing proliferation and inducing apoptosis. These effects were mediated by the downregulation of crucial molecules of the Wnt/β-catenin signaling including p-GSK3β. The EGCG antitumor activity mediated by an effect on the Wnt/β-catenin pathway was also confirmed in other cell lines such as gastric and colon cancer. Other studies showed that EGCG modulates the pathway by decreasing β-catenin levels and inhibiting the β-catenin/TCF reporter activity, and/or by inducing HBP-1, one of the specific transcriptional repressor of the signaling.

The anticancer potential of EGCG was also confirmed by in vivo experiments. The combined administration of EGCG with fish oil significantly reduced the number of tumors through the modulation of β-catenin in ApcMin/+ transgenic mouse model of intestinal carcinogenesis. Similar results were obtained in a mouse model of liver carcinogenesis where EGCG was used in combination with theaflavin. Specifically, in this mouse model, the EGCG/theaflavin association was able to reduce the expression of β-catenin and its phosphorylated form, increase secreted frizzled-related protein expressions and E-chaderin, and decrease the transcription of Wnt target genes such as cyclinD1 and cMyc.

4.2.4. Boehmenan
Boehmenan is a lignan from the Chinese medicinal plant Clematis armandii, named “Chuan-Mu-Tong” in Chinese Pharmacopoea used against inflammatory conditions. Lignans are fiber-associated polyphenols ubiquitous in human diet derived by phenylalanine found in plants and many common foods such as grains, nuts, seeds, legumes, vegetables, tea, coffee or wine. Lignans are associated with many beneficial biological effects in mammals including antioxidant and antitumor actions. Indeed, numerous studies have shown that boehmenan possesses potential cytotoxic effects against many cancer cell lines. In particular, boehmenan is able to reduce viability of colon cancer cells RKO, SW480, HCT116 through the decrease of cytosolic and nuclear β-catenin and c-Myc.

4.3. Terpenes and terpenoids

4.3.1. Artemisinin
Artemisinin (1R,4S,5R,8S,9R,12S,13R)-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.0,13]hexadecan-10-one) is an active sesquiterpene present in the extract of Artemisia annua (commonly called Qinghao), a medicinal plant included in the CTM for the treatment of fever and febrile illness. Artemisinin is widely known as an antimalaric agent and was firstly extracted using a reproducible procedure (a low-temperature procedure, followed by a separation of acid portion from neutral one) by Youyou Tu and collaborators in 1971. Due to its typical and unique peroxide-containing lactone structure and to the new biological properties ascribed, including antitumor and antiinfective activities, artemisinin has recently received increasing attention. But the extraction of artemisinin is actually very challenging, because of the low concentration contained in the plant sources and, to fulfill the world demand of these valuable compounds, no single method alone is reliable. Therefore, many efforts have been applied in order to improve the production rate of artemisinin by using both conventional and advanced approaches.

Even if artemisinin is used over the years as anti-malarial treatment, in the recent years there is an increasing interest on the anticancer properties of this drug and its semi-synthetic derivatives artesunate and dihydroartemisinin. In vitro and in vivo studies revealed that these three drugs possess antitumor and anti-metastatic activities even when used at very low concentrations. The exact mechanism that supports the use of artemisinin as neoplastic agent in not completely understood. However, scientific literature hypothesizes different possible mechanisms including the modulation of Wnt/β-catenin pathway. A recent study conducted by Tong et al., which evaluated the effects of artemisinin and its semi-synthetic derivatives in two different lung cancer cell lines, A549 (carcinoma in situ) and H1299 (adenocarcinoma from metastasis nodule) and in the A540 xenograft mice model, showed that these three drugs were able to inhibit cell proliferation, also significantly suppressing cell migration and invasion, and consistently reduce tumor volume and weight.

4.3.2. Lupeol
Lupeol is a natural bioactive pentacyclic lupine-like triterpenoid. It is found in several natural sources such as medicinal plants (Senegalia visco, Abronia villosa, Gossampinus malabarica, Spathanthes callosa, Ficus cordata, Albizia adianthifolia, Mimosa invisa, Klainedoxa gabonensis and Turraeanthus africanaus among the others) and dietary vegetables and fruits (mango pulp and peels). The extraction of lupeol has been performed by different methodologies, both conventional, such as maceration and Soxhlet, and more advanced techniques.
(sonication, microwave and high hydrostatic pressures). By the comparison of the recovery yields, the most suitable approach seems to be sonication-based extractions224,225. Lupeol exhibits many pharmacological activities such as antioxidant, anti-inflammatory, anti-hyperglycemic, anti-dyslipidemic and anti-mutagenic effects and exerts beneficial effects on different diseases, leading to the conclusion that this bioactive secondary metabolite is a multi-target agent with a promising pharmacological potential226-228. In particular, lupeol has selective antitumor potential on various human cancer cells. The anticancer activity of lupeol involves different mechanisms also including the suppression of Wnt/β-catenin signaling. A recent in vitro study conducted by Wang et al.98 explored the effect of lupeol on two colorectal cancer cell lines: SW480 and HCT116. In these cells, lupeol was able to inhibit proliferation and migration and to promote apoptosis, and these effects were correlated with the down-regulation of transcriptional activity and protein expression mediated by the Wnt/β-catenin signaling. Specifically, lupeol decreased expression of β-catenin and TCF4 protein and reduced mRNA and protein expression of the downstream targets c-Myc and cyclin D1. The authors suggested that it is possible that potential mechanism of action could be correlated with the reduction of nuclear β-catenin expression and β-catenin/TCF4 interaction, with subsequent suppression of the signaling99. Zhang et al.99 demonstrated that lupeol induced apoptosis in the hepatocellular carcinoma HCCLM3 cells in a time- and dose-dependent manner through different mechanisms including the decrease of GSK-3β phosphorilation in Ser9, with a concomitant suppression of Akt1, P38, β-catenin, c-Myc and cyclin D1 genes transcription99. That the anticancer effect of lupeol is mediated by the targeting of the Wnt/β-catenin signaling was also demonstrated in melanoma, in colorectal cancer and in prostate cancer cell lines100,226,227.

4.3.3. Lycopene

Lycopene is a frequently occurring natural compound of the carotenoids class. It is an highly unsaturated hydrocarbon (11 conjugated and 2 unconjugated double bonds) found in abundant quantity in red fruits and vegetables, including tomato, watermelon, pink grapefruit, apricots, pink guava, and papaya28 and it is responsible for the red color of these foods or plants. Lycopene exhibits important biological actions and its ability to suppress oxidation, inflammation, angiogenesis and cell migration and proliferation has been evaluated on different cell types228. Due to these activities, this compound was vastly studied for the treatment of different pathologies such as in the adjuvant therapy of diabetic neuropathy229 and in the prevention of age-related macular degeneration and proliferative vitreoretinopathy230. Lycopene was extracted firstly in 1910 and it was usually purchased by using organic solvents. At date many extraction techniques have been developed in order to improve the reaction rate232,233. Indeed, Briones-Labarca and co-workers234 have recently achieved an optimization of extraction yield of lycopene from tomato pulp by high hydrostatic pressure extraction (HHPE) technology.

Lycopene is a potent antioxidant and has antitumor activity in different type of solid cancers due to the modulation of Wnt/β-catenin signaling and others pathways. These functions are associated with an antiproliferative and pro-apoptotic effect in breast, colon, and prostate cancer cells235. In vitro studies on prostate cancer-derived stromal cells lycopene reduced Wnt/β-catenin signaling by affecting β-catenin nuclear localization. In normal prostate stromal cells treated with IGF-I, lycopene reduced the activation of AKT and the GSK3β phospho-inhibition102. The inhibition of Wnt/β-catenin signaling by lycopene was also confirmed in human breast cancer cell lines MCF-7 and MDA-MB-231. In these cellular models, the treatment with lycopene induced a reduction in TCF/LEF reporter activity, β-catenin and cyclin D1106.

4.3.4. Calotropin

Calotropin is a toxic cardenolide, a steroid with a 5-membered lactone ring found in many plant sources such as Asclepiadoideae family and Calotropis genus (\textit{C. procera} and \textit{C. gigantea}). Calotropin, together with other cardenolides, were studied and extracted from the leaves and latex of \textit{C. procera} by Seiber and colleagues237 using, as extractive solvent, ethanol 95%. As a cardenolide, calotropin is considered a cardioactive compound and possesses a specific inotropic, chronotropic, and dromotropic effects that are found in natural sources238. Moreover, calotropin exhibits significant cytotoxicity against several cancer cells, indeed, it inhibits the proliferation of colorectal cancer cells both in vitro and in vivo tests239. Calotropin seems to have a potent Wnt signaling inhibitory activity. It was demonstrated in several colon cancer cell lines that this natural compound caused a substantial decrease of β-catenin in the cytosol and nucleus through the increase of its CK1-mediated phosphorylation and subsequent degradation103.

4.4. Secosteroids

4.4.1. Vitamin D

Vitamin D is a lipophilic fat soluble vitamin produced in human body from sterols by the action of UV light on the skin, but it can be also obtained from dietary sources of both vegetal (in form of vitamin D\textsubscript{2} or ergocalciferol) and animal origin (in form of vitamin D\textsubscript{3} or cholecalciferol) and the primary sources include fatty fishes and fortified foods (milk)240,241. The two principal techniques for the extraction of vitamin D are liquid—liquid extraction and solid-phase extraction. On the other hand, other methods have been developed by combining different extractive procedures and adding derivatization steps in order to increase the recovery rate242. Vitamin D is related to many biological pathways and it is involved in bone health by promoting calcium absorption, regulation of gene expression, immunity, cardiovascular health and antioxidant regulation.

1α,25-dihydroxyvitamin D\textsubscript{3} [1,25(OH)\textsubscript{2}D\textsubscript{3}], the active metabolite of Vitamin D\textsubscript{3}, possesses antitumor activity as demonstrated by both in vitro and in vivo studies, as well as a protective ability in different neoplastic diseases, mainly colorectal cancer. It mediates the biological action mainly via the binding to the vitamin D receptor (VDR) The crosstalk between the VDR and Wnt/β-catenin signaling is known and mediates, at least in part and in certain models, the antitumor potential of 1α,25-dihydroxyvitamin D\textsubscript{3}95. The use of 1,25(OH)\textsubscript{2}D\textsubscript{3} as anticancer medicine is however hampered by its hypercalcemic effects at therapeutic doses, but several analogues that retain the antitumor actions without hypercalcemic effects are in developing77.

Several in vitro studies demonstrated that 1,25(OH)\textsubscript{2}D\textsubscript{3} inhibits the Wnt/β-catenin pathway in human colon cancer cells by three main mechanisms. First, it induces the interaction between VDR and β-catenin thus decreasing the binding of β-catenin to TCF. Second, it increases E-cadherin expression, leading the relocation of β-catenin from nucleus to plasma membrane275,276. Thirdly, 1,25(OH)\textsubscript{2}D\textsubscript{3} augments the expression of Dickkopf (DKK)-1, a Wnt signaling inhibitor277. These molecular events lead to the
inhibition of several β-catenin/TCF target genes such as c-MYC, TCF1, LEF1, AXIN2, PPARγ, and CD44 in human colon cancer cells76,244,245. The antitumor efficacy of 1,25(OH)2D3 in colon cancer, both in vitro and in vivo, was confirmed by others studies78–86,251, and similar results were also obtained in in vitro and in vivo models of breast cancer252,253 and in an ex vivo model of human uterine leiomyomas254.

The promising results obtained in the preclinical experimentation have led to the evaluation of the potential anticancer activity of vitamin D3 also in clinical trials. However, scientific evidence obtained to date are not yet completely persuasive75. A large number of studies in cancer patients are ongoing in different type of cancers, as recoverable in ClinicalTrials.gov, but there is only one clinical trial that specifically evaluated the effect of vitamin D, alone or in combination with calcium, on the Wnt/β-catenin signaling in cancer patients. It was a randomized double blind chemoprevention trial that assessed these effects in rectal mucosa biopsies from 104 participants at baseline and one-year after (Table 1). The results obtained from this trial showed that vitamin D, alone or in association with calcium, could modify APC, β-catenin, and E-cadherin expression in patients at risk for colorectal neoplasms, supporting the use of vitamin D as potential chemo-preventive treatment in colorectal cancers75,76.

The safety profile of vitamin D and its synthetic derivatives is well known, and hypercalcemia is the main adverse event recognized256. Despite the numerous clinical trials completed and ongoing, further large and well-designed clinical studies are needed in order to evaluate the potential use of vitamin D as anticancer medicines.

5. Conclusive remarks and future perspective

As widely discussed in this review, due to the crucial role recognized to the Wnt/β-catenin pathway in cancer initiation and progression, the possibility of targeting this signaling cascade is a great opportunity to develop more effective and anticancer drugs. However, some worries are lice when we consider the risks of targeting a pathway critical in tissue homeostasis and stem cell maintenance25. In general, the use of drugs inhibiting signal transduction pathways crucial for embryonic development, such as the Wnt/β-catenin pathway, could be a double-edged sword, since they can act like “molecular embodiments of Dr. Jekyll and Mr. Hyde”257. Under this point of view, the use of nature-derived molecules that are able to modulate the pathway might limit this risk. As modulators, they could successfully revert aberrant Wnt signaling in pathological situations without interfering with the critical role of this pathway in tissue homeostasis and repair.

The discovery of new promising drugs, specifically targeting upstream and downstream events of the signaling, more and more seems to be an attractive preventive and therapeutic strategy not only for cancer but also for many other types of diseases for whose dysregulation of the Wnt/β-catenin pathway an association has been demonstrated. In particular, dysregulation of this pathway has been recently proposed as a novel pathomechanism leading to neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and others78–86,254–262, and targeting the Wnt/β-catenin signaling has been suggested as new therapeutic opportunities for these brain diseases for which no cure is currently available14,263–265. Differently from the Wnt-targeting anticancer therapies, the knowledge about the role of Wnt/β-catenin signaling in neurodegenerative diseases is still in its infancy.

There are not clinical evidences available, but only data concerning some preclinical therapeutic approaches, performed on cellular and animal models14,258,264,265. Among the bioactive modulators of the Wnt/β-catenin pathway that are under preclinical investigation as possible therapeutics for neurodegenerative diseases, there are many natural-derived compounds that seem to promote neuronal differentiation and for which a neuroprotective ability has been demonstrated. These include curcumin266–268, resveratrol269,270, ginsengoids271,272, salidroside273, and others272,273. Until today the therapeutic potential of natural-derived compounds against neurodegenerative disorders has been hampered by their poor bioavailability and consequent scarce delivery to the brain, but innovative delivery systems that could enhance their neuroavailability and therefore their neuroprotective activity are in developing274, and this will reinforce their possible application as preventive and therapeutic strategy against such different kind of diseases.

During the last decade, several natural compounds have been identified as modulators of the Wnt/β-catenin signaling, and most of the study aimed to demonstrate the efficacy of these modulators as tumor preventive and/or therapeutic drugs. The recently discovered involvement of this pathway in the onset of other diseases, and in particular in neurodegenerative disorders, for which a disease-modifying therapy does not exist yet, has increased the attractiveness of these natural compounds, and is stimulating for enhancing their possible use as dietary supplements or drugs in preventive and/or therapeutic new strategies against such different kind of diseases.

Acknowledgments

The authors would like to thank Dr. Matilde Paggiolu for scientific secretariat support and Dr. Pamela Papa for administrative support.

Author contributions

G. Brusotti, Enrica Calleri and Annalucia Serafino conceived and designed the manuscript. G. Sferrazza, M. Corti, and Annalucia Serafino co-worked to the writing of the manuscript and figures. P. Pierimarchi, C. Temporini critically reviewed the manuscript.

Conflict of interests

The authors have no conflicts of interest to declare.

References

1. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20:781–810.
2. Croce JC, McClay DR. Evolution of the Wnt pathways. Methods Mol Biol 2008; 469:3–18.
3. Van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009; 136:3205–14.
4. Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 2010; 11:77–86.
5. Moon RT, Kohn AD, de Ferrari GV, Kaykas A. Wnt and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5:691–701.
6. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell 2012; 149:1192–205.
7. Verkaa F, Cadigan KM, van Amerongen R. Celebrating 30 years of Wnt signaling. Sci Signal 2012; 5:mr2.
8. Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. *Exp Cell Res* 2005;306:357–63.
9. Nemeth MJ, Mak KK, Yang Y, Bodine DM. Beta-catenin expression in the bone marrow microenvironment is required for long-term maintenance of primitive hematopoietic cells. *Stem Cells* 2009;27:1109–19.
10. Malhotra S, Kincaide PW. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. *Cell Stem Cell* 2009;4:27–36.
11. Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. *Life Sci* 2016;158:78–88.
12. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. *Cell* 2017;169:985–99.
13. Berwick DC, Harvey K. The importance of Wnt signaling for neurodegeneration in Parkinson’s disease. *Biochem Soc Trans* 2012;40:1123–8.
14. Serafino A, Sferrazza G, Colini Baldeschi A, Nicotera G, Andreola F, Pittaluga E, et al. Developing drugs that target the Wnt pathway: recent approaches in cancer and neurodegenerative diseases. *Expert Opin Drug Discov* 2017;12:169–86.
15. Tao H, Yang JJ, Shi KH, Li J. Wnt signaling pathway in cardiac fibrosis: new insights and directions. *Metabolism* 2016;65:30–40.
16. Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccili P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. *Am J Pathol* 2003;162:1495–502.
17. Schinner S, Willenberg HS, Schott M, Scherbaum WA. Pathophysiological aspects of Wnt-signaling in endocrine disease. *Eur J Endocrinol* 2009;160:731–7.
18. Schinner S. Wnt-signalling and the metabolic syndrome. *Horm Metab Res* 2009;41:159–63.
19. Anastas JN, Moon RT. Wnt signalling pathways as therapeutic targets in cancer. *Nat Rev Cancer* 2013;13:11–26.
20. Luu HH, Zhang R, Haydon RC, Rayburn E, Kang Q, Si W, et al. Wnt/beta-catenin signaling pathway as a novel cancer drug target. *Curr Cancer Drug Targets* 2004;4:653–71.
21. Huang P, Yan R, Zhang X, Wang L, Ke X, Qu Y. Activating Wnt/beta-catenin signaling pathway for disease therapy: challenges and opportunities. *Pharmacol Ther* 2019;196:79–90.
22. Serafino A, Moroni N, Zonfrillo M, Andreola F, Mercuri L, Nicotera G, et al. Wnt-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. *OncoTarget* 2014;5:978–92.
23. Morikawa T, Kuchiba A, Yamauchi M, Meyerhardt JA, Shima K, Nosho K, et al. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. *J Am Med Assoc* 2011;305:1685–94.
24. Morikawa T, Kuchiba A, Lochhead P, Nishihara R, Yamauchi M, Imamura Y, et al. Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with beta-catenin (CTNNB1) status. *Cancer Res* 2013;73:1600–10.
25. Kahn M. Can we safely target the wnt pathway?. *Nat Rev Drug Discov* 2014;13:513–32.
26. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. *Cell* 1982;31:99–109.
27. Amirkia V, Heinrich M. Natural products and drug discovery: a survey of stakeholders in industry and academia. *Front Pharmacol* 2015;6:237.
28. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. *Nat Rev Drug Discov* 2015;14:111–29.
29. Shen B. A new golden age of natural products drug discovery. *Cell* 2015;163:1297–300.
30. Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. *Carcinogenesis* 2012;33:483–91.
31. Sarkar FH, Li Y, Wang Z, Kong D. The role of nutraceuticals in the regulation of Wnt and hedgehog signaling in cancer. *Cancer Metastasis Rev* 2010;29:383–94.
32. Fuentes RG, Arai MA, Ishibashi M. Natural compounds with Wnt signaling modulatory activity. *Nat Prod Rep* 2015;32:1622–8.
33. Farahmand L, Darvishi B, Majidzadeh AK, Madjid Ansari A. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on Hedgehog and Wnt/beta-catenin signalling pathways. *Cell Prolif* 2017;50:1–12.
34. Niehrs C. The complex world of Wnt receptor signalling. *Nat Rev Mol Cell Biol* 2012;13:767–79.
35. Angers S, Moon RT. Proximal events in Wnt signal transduction. *Nat Rev Mol Cell Biol* 2009;10:468–77.
36. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. *Dev Cell* 2009;17:9–26.
37. Willert K, Nusse R. Wnt proteins. *Cold Spring Harb Perspect Biol* 2012;4:a007864.
38. Gomez-Orte E, Saenz-Narciso B, Moreno S, Cabello J. Multiple functions of the noncanonical Wnt pathway. *Trends Genet* 2013;29:545–53.
39. He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. *Development* 2004;131:1663–77.
40. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uromodulin associates with three independent proteins structurally related in different species. *EMBO J* 1989;8:1711–7.
41. Vestweber D, Kemler R. Some structural and functional aspects of the cell adhesion molecule uromodulin. *Cell Differ* 1984;15:269–73.
42. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. *Science* 2004;303:1483–7.
43. Fukushima S, Hsieh CM, Maekura K, Layne MD, Yet SF, Lee KH, et al. Akt participation in the Wnt signaling pathway through Dishevelled. *J Biol Chem* 2001;276:17479–83.
44. Serafino A, Moroni N, Psaila R, Zonfrillo M, Andreola F, Wannekens F, et al. Anti-proliferative effect of atrial natriuretic peptide on colorectal cancer cells: evidence for an Akt-mediated cross-talk between NHE-1 activity and wnt/beta-catenin signaling. *Biochim Biophys Acta* 2012;1822:1004–18.
45. Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, et al. A mechanism for Wnt coreceptor activation. *Mol Cell* 2004;13:149–56.
46. Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/beta-catenin signaling pathway in colorectal cancer. *Biomed Pharmacother* 2019;110:473–81.
47. Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. *J Carcinog* 2011;10:5.
48. Froede R, Brandt J, Wnt/beta-catenin signaling in cancer stemness and malignant behavior. *Curr Opin Cell Biol* 2007;19:150–8.
49. Monga SP. Beta-Catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. *Gastroenterology* 2015;148:1294–310.
50. Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. *OncoTarget* 2017;8:33972–89.
51. Wang JN, Li L, Li LY, Yan Q, Li J, Xu T. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. *Gene* 2018;674:57–69.
52. Nishikawa K, Osawa Y, Kimura K. Wnt/beta-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. *Int J Mol Sci* 2018;19.
53. Moparthi L, Koch S. Wnt signaling in intestinal inflammation. *Differential* 2019;108:24–32.
54. Wang B, Tian T, Kalland KH, Ke X, Qu Y. Targeting Wnt/beta-catenin signaling for cancer immunotherapy. *Trends Pharmacol Sci* 2018;39:648–58.
55. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. *Cell* 2017;168:707–23.
56. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. *Nature* 2015;523:231–5.
57. Matsuda A, Ishiguro K, Yan IK, Patel T. Extracellular vesicle-based therapeutic targeting of beta-catenin to modulate anticancer immune responses in hepatocellular cancer. *Hepatol Commun* 2019;3:525–41.

58. Osawa Y, Kojika E, Nishikawa K, Kimura M, Osakaya S, Miyauchi H, et al. Programmed cell death ligand 1 (PD-L1) blockade attenuates metastatic colon cancer growth in a CMF-response element-binding protein (CREBP)-binding protein (CBP)/beta-catenin inhibitor-treated mice. *Oncotarget* 2019;10:3013–26.

59. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF. Wnt/beta-catenin pathway activation correlates with immune exclusion across human cancers. *Clin Cancer Res* 2019;25:3074–83.

60. Ganesh S, Shui X, Craig KP, Park J, Wang W, Brown BD, et al. RNAi-mediated beta-catenin inhibition promotes T cell infiltration and antitumor activity in combination with immune checkpoint blockade. *Mol Ther* 2018;26:2567–79.

61. Galluzzi L, Spranger S, Fuchs E, Lopez-Soto A. Wnt signaling in cancer immunosurveillance. *Trends Cell Biol* 2019;29:44–65.

62. Hermel DJ, Sigal D. The emerging role of checkpoint inhibition in microsatellite stable colorectal cancer. *J Personalized Med* 2019;9:1–13.

63. Leow PC, Ong ZY, Ee P-LR. Natural compounds as antagonists of canonical Wnt/beta-catenin signaling. *Curr Chem Biol* 2010;4:49–63.

64. Willenbacher E, Khan SZ, Mujica SCA, Trapani D, Hussain S, Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA, Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Osawa Y, Kojika E, Nishikawa K, Kimura M, Osakaya S, Matsuda A, Ishiguro K, Yan IK, Patel T. Extracellular vesicle-based therapeutic targeting of beta-catenin to modulate anticancer immune responses in hepatocellular cancer. *Hepatol Commun* 2019;3:525–41.

65. Prasad CP, Rath G, Mathur S, Bhatnagar D, Rathan R. Potent growth suppressive activity of curcumin in human breast cancer cells: modulation of Wnt/beta-catenin signaling. *Chem Biol Interact* 2009;181:263–71.

66. Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA, Abreu JG. Flavonoids and Wnt/beta-catenin signaling: potential role in colorectal cancer therapies. *Int J Mol Sci* 2014;15:12094–106.

67. Li Y, Wang Z, Kong D, Li R, Sarkar SH, Sarkar FH. Regulation of Akt/FoxO3a/GSK-3beta/AR signaling network by isolavone in prostate cancer cells. *J Biol Chem* 2008;283:27707–16.

68. Park CH, Hahn ER, Lee JH, Jung KC, Yang CH. Inhibition of beta-catenin-mediated transactivation by flavanone in AGS gastric cancer cells. *Biochem Biophys Res Commun* 2005;331:1222–8.

69. Wagner J, Lehmann L. Estrogens modulate the gene expression of Wnt-7a in cultured endometrial adenocarcinoma cells. *Br J Cancer* 2013;108:2070–8.

70. Zhang Y, Li Q, Zhou D, Chen H, Genistein, a soya isoflavone, prevents azoxymethane-induced up-regulation of Wnt-beta-catenin signalling and reduces colon pre-neoplasia in rats. *Br J Nutr* 2013;109:33–42.

71. Cilibrari C, Riva G, Romano G, Cadamuro M, Bazzoni R, Butt A, et al. Resveratrol impairs glioma stem cells proliferation and motility by modulating the wnt signaling pathway. *PLoS One* 2017;12:e0169854.

72. Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, et al. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. *Cancer Manag Res* 2009;1:25–37.

73. Howells LM, Berry DP, Elliott PJ, Jacobson EW, Hoffmann E, Hegarty B, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases-safety, pharmacokinetics, and pharmacodynamics. *Cancer Prev Res* 2011;4:1419–25.

74. Larriba MJ, Gonzalez-Sancho JM, Barbachano A, Niell N, Ferrer-Mayorga G, Munoz A. Vitamin D is a multilevel repressor of Wnt/beta-catenin signaling in cancer cells. *Cancers* 2013;5:1242–60.

75. Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. *J Cell Biol* 2001;154:369–87.

76. Pahlke G, Ngiewy M, Kern M, Jakobs S, Marko D, Eisenbrand G. Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. *J Agric Food Chem* 2006;54:7075–82.

77. Shinivasan A, Thangavel C, Liu Y, Shoyele S, Den RB, Selvakumar P, et al. Quercetin regulates beta-catenin signaling and reduces the migration of triple negative breast cancer. *Mol Carcinog* 2016;55:743–56.

78. Sultan AS, Khalil MIM, Sami BM, Alkuriji AF, Sadek O. Quercetin induces apoptosis in triple-negative breast cancer cells via inhibiting fatty acid synthase and beta-catenin. *Int J Clin Exp Pathol* 2017;10:156–72.

79. Chen Y, Wang XQ, Zhang Q, Zhu JY, Li Y, Xie CF, et al. (−)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/beta-catenin pathway. *Nutrients* 2017;9:1–11.

80. Dashwood WM, Orner GA, Dashwood RH. Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H2O2 at physiologically relevant EGCG concentrations. *Biochem Biophys Res Commun* 2002;296:584–8.

81. Sur S, Pal D, Mandal S, Roy A, Panda CK. Tea polyphenols epigallocatechin gallate and theflavin restrict mouse liver carcinogenesis through modulation of self-renewal Wnt and hedgehog pathways. *J Nutr Biochem* 2016;27:32–42.

82. Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu J, et al. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/beta-catenin signaling. *Oncotarget* 2016;7:31413–28.

83. Orzbe Y, Attar R, Romero MA, Alhwairini SS, Afshar B, Sabitaliyevich UY, et al. Apigenin as an effective anticancer natural product: spotlight on TRAIL, Wnt/beta-catenin, JAK-STAT pathways, and microRNAs. *J Cell Biochem* 2018;120:1060–7.

84. Xu M, Wang SS, Song Y, Yao H, Huang K, Zhu XJ. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/beta-catenin signaling pathway. *Oncology Letters* 2016;11:3075–80.

85. Lin CM, Chen HH, Lin CA, Wu HC, Sheu JJC, Chen HJ. Apigenin-induced lysosomal degradation of beta-catenin in Wnt/beta-catenin signaling. *Sci Rep* 2017;7:1–12.

86. Shukla S, MacLennan GT, Flask CA, Fu P, Mishra A, Resnick MI, et al. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. *Cancer Res* 2007;67:6925–32.

87. Park S, Choi J. Inhibition of beta-catenin/Tcf signaling by flavonoids. *J Cell Biochem* 2010;110:1376–85.

88. Jia Y, Chen L, Guo S, Li Y. Baicalin induced colon cancer cells apoptosis through miR-217/DKK1-mediated inhibition of Wnt signaling pathway. *Mol Biol Rep* 2019;46:1693–700.

89. Zhou T, Zhang A, Kuang G, Gong X, Jiang R, Lin D, et al. Baicalin inhibits the metastasis of highly aggressive breast cancer cells by reversing epithelial-to-mesenchymal transition by targeting beta-catenin signaling. *Oncof Rep* 2017;38:5359–607.

90. Lu W, Lin C, King TD, Chen H, Reynolds RC, Li Y. Silibinin inhibits Wnt/beta-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells. *Cell Signal* 2012;24:2291–6.

91. Rajamanickam S, Velmurrugan B, Kaur M, Singh RP, Agarwal R. Chemoprevention of intestinal tumorigenesis in APCmin/+ mice by silibinin. *Cancer Res* 2010;70:2368–78.

92. Ren K, Zhang W, Wu G, Ren J, Li H, Li Z, et al. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. *Biomed Pharmacother* 2016;84:1748–59.

93. Gwak J, Oh J, Cho M, Bae SK, Song IS, Liu KH, et al. Galangin suppresses the proliferation of beta-catenin response transcription-positive cancer cells by promoting adenomatous polyposis.
coli/axin/glycogen synthase kinase-3beta-independent beta-catenin degradation. *Mol Pharmacol* 2011;79:1014–22.
95. Suh Y, Afaq F, Johnson JJ, Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. *Carcinogenesis* 2009;30:300–7.
96. Gajos-Michniewicz A, Czyz M. Modulation of Wnt/beta-catenin pathway in melanoma by biologically active components derived from plants. *Fitoterapia* 2016;104:283–92.
97. Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/beta-catenin signaling and decreased Mif levels. *J Investig Dermatol* 2011;131:291–9.
98. Wang Y, Hong D, Qian Y, Tu X, Wang K, Yang X, et al. Lupeol inhibits growth and migration in two human colorectal cancer cell lines by suppression of Wnt/beta-catenin pathway. *Oncol Targets Ther* 2018;11:7987–99.
99. Zhang L, Tu Y, He W, Peng Y, Qiu Z. A novel mechanism of hepaticellular carcinoma cell apoptosis induced by lupeol via brain-derived neurotrophic factor inhibition and glycogen synthase kinase 3 beta reactivation. *Eur J Pharmacol* 2015;762:55–62.
100. Saleem M, Murtaza I, Tarapore RS, Suh Y, Adhami VM, Johnson JJ, et al. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling. *Carcinogenesis* 2009;30:808–17.
101. Qin B, Liu JW, Liu SW, Li BJ, Li BJ, Ren J. Kaempferol targets estrogen-related receptor alpha and inhibits cell proliferation and invasion in retinoblastoma via Wnt/beta-catenin signaling pathway. *Int J Clin Exp Med* 2016;9:21415–23.
102. Wertz K. Lycopene effects contributing to prostate health. *Nutr Cancer* 2009;61:775–83.
103. Lee JH, Park CH, Jung KC, Rhee HS, Yang CH. Negative regulation of beta-catenin/Tcf signaling by naringenin in AGS gastric cancer cell. *Biochem Biophys Res Commun* 2005;335:771–6.
104. Shono T, Ishikawa N, Toume K, Arai MA, Ahmed F, Sadhu SK, et al. Boehmenan, a lignan from *Hibiscus fischeri*, showed Wnt signal inhibitory activity. *Bioorg Med Chem Lett* 2015;25:2735–8.
105. Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Calotropin: a cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase I alpha in colon cancer cells. *ChemBiochem* 2014;15:872–8.
106. Zhang L, Yang X, Yang S, Zhang J. The Wnt/beta-catenin signaling pathway in the adult neurogenesis. *Eur J Neurosci* 2011;33:1–8.
107. Palomer-Avalos V, Grinán-Ferre C, Puigoriol-Illanola D, Camins A, Santelló C, Canudas AM, et al. Resveratrol protects SAMP8 brain under metabolic stress: focus on mitochondrial function and Wnt pathway. *Mol Neurobiol* 2017;54:1661–76.
108. Kitižová L, Dádková K, Kasperský J, Kasperský T, Isolofonova. *Molecules* 2019;24:E1076.
109. Kim YS, Choi KC, Hwang KA. Genistein suppressed epithelial–mesenchymal transition and migration efficiencies of BG-1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF-β signaling pathway. *Phytomedicine* 2015;22:993–9.
110. Benediti B, Di Carro M, Magi E. Phytosterooids in soy-based meat substitutes: comparison of different extraction methods for the subsequent analysis by liquid chromatography-tandem mass spectrometry. *J Mass Spectrom* 2015;53:862–70.
111. Hall JM, Powell HA, Rajic L, Korach KS. The role of dietary phytosterols and the nuclear receptor PPARgamma in adipogenesis: an in vitro study. *Environ Health Perspect* 2019;127:37007.
112. Tafrihi M, Nakhai Sistani R. E-Cadherin/beta-catenin complex: a target for anticancer and antimetastasis plants/plant-derived compounds. *Nutr Cancer* 2017;69:702–22.
113. Chae HS, Xu R, Won JY, Chin YW, Yim H. Molecular targets of genistein and its related flavonoids to exert anticancer effects. *Int J Mol Sci* 2019;20:1–18.
135. Moore OA, Gao Y, Chen AY, Brittain R, Chen YC. The extraction, anticancer effect, bioavailability, and nanotechnology of baicalin. J Nutr Med Diet Care 2016;2:1—12.

136. Wang H, Ma X, Cheng Q, Wang L, Zhang L. Deep eutectic solvent-based ultrahigh pressure extraction of baicalin from Scutellaria baicalensis Georgi. Molecules 2018;23:1—12.

137. Liu X, Zhang W, Chen Z. Preparation of a novel molecularly imprinted polymer for the highly selective extraction of baicalin. J Sep Sci 2015;38:4233—9.

138. Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalin and baicalein. Cancer Treat Rev 2009;35:57—68.

139. Dou J, Wang Z, Ma L, Peng B, Mao K, Li C, et al. Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget 2018;9:20089—102.

140. Wianowska D, Wisniewski M. Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. J Chromatogr Sci 2015;53:366—72.

141. Deep G, Gagar SC, Agarwal C, Agarwal R. Role of E-cadherin in antimigratory and antiinvasive efficacy of silybin in prostate cancer cells. Cancer Prev Res 2011;4:1222—32.

142. Kaur M, Velmuragan B, Tyagi A, Agarwal C, Singh RP, Agarwal R. Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of betacatenin-dependent signaling. Neoplasia 2010;12:415—24.

143. Sangeetha N, Aranganathan S, Panneerselvam J, Shanthi P, Rama G, Nalini N. Oral supplementation of silibinin prevents colon carcinogenesis in a long term preclinical model. Eur J Pharmacol 2010;643:93—100.

144. Sangeetha N, Viswanathan P, Balasubramanian T, Nalini N. Colon cancer chemopreventive efficacy of silybin through perturbation of xenobiotic metabolizing enzymes in experimental rats. Eur J Pharmacol 2012;674:430—8.

145. Abubakar IB, Malani I, Yahaya Y, Sule SM. A review on the ethnomedical uses, phytochemistry and pharmacology of Alpinia officinarum Hance. J Ethnopharmacol 2018;224:45—62.

146. Zeng QH, Lu CL, Zhang XW, Jiang JG. Isolation and identification of ingredients inducing cancer cell death from the seeds of Alpinia galanga, a Chinese spice. Food Funct 2015;6:431—43.

147. Basri AM, Taha H, Ahmad N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacogn Rev 2017;11:43—56.

148. Bacalini M, Basaran AA, Basaran N. Chapter 34—galangin as a plant phenolic and usage in health and disease. In: Watson RR, Preedy VR, editors. Polyphenols: prevention and treatment of human disease. 2nd ed. Boston: Academic Press; 2019. p. 433—8.

149. Chien ST, Shi MD, Lee YC, Te CC, Shih YW, Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int 2015;15:15.

150. Lee JJ, Lee JH, Yim NH, Han JH, Ma JY. Application of galangin, an active component of Alpinia officinarum Hance (Zingiberaceae), for use in drug-eluting stents. Sci Rep 2017;7:8207.

151. Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, et al. Fisetin and queretin: promising flavonoids with chemopreventive potential. Biomolecules 2019;9:1—22.

152. Horwitz RJ. Chapter 30—the allergic patient. In: Rakel D, editor. Integrative medicine. 4th ed. Amsterdam: Elsevier; 2018. 300—309.e2.

153. Kashyap D, Sharma A, Sak K, Tuli HS, Bhatta HS, Bishaye A. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci 2018;194:75—87.

154. Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary anti-oxidant for health promotion. Antioxidants Redox Signal 2013;19:151—62.

155. Valianou L, Karapanagiotis I, Chryssoulakis Y. Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography. Anal Bioanal Chem 2009;395:2175—89.

156. Cid-Ortega S, Monroy-Rivera JA. Extraction of Kaempferol and its glycosides using supercritical fluids from plant sources: a review. Food Technol Biotechnol 2018;56:480—93.

157. Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res 2019;33:265—73.

158. Ramos-Tovar E, Muriel P. Chapter 9—phytotherapy for the liver. In: Watson RR, Preedy VR, editors. Dietary interventions in liver disease. Boston: Academic Press; 2019. p. 101—21.

159. Salehi B, Fokou PVT, Shariﬁt-Rad M, Zucca F, Pezzani R, Martins N, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals 2019;12:11.

160. Meng Z, Zhao J, Duan H, Guan Y, Zhao L. Green and efﬁcient extraction of four bioactive ﬂavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. J Pharm Bioanal Anal 2018;161:246—53.

161. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa MC. Curcumin and health. Molecules 2016;21:1—22.

162. Vogel HA, Pelletier J. Curcumin—biological and medicinal properties. J Pharma 2018;1812:50.

163. Dandekar DV, Gaikar VG. Microwave assisted extraction of curcuminoids from Curcuma longa. Sep Sci Technol 2002;37:2669—90.

164. Kwon HL, Chung MS. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma longa L. Food Chem 2015;185:68—64.

165. Kimhett C, Wahyudiono, Kanda H, Goto M. Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide. In: AIP conference proceedings; 2017. Available from: https://doi.org/10.1063/1.4982318.

166. Patil SS, Bhasarkar S, Rathod VK. Extraction of curcuminoids from Curcuma longa: comparative study between batch extraction and novel three phase partitioning. Prep Biochem Technol Biotechnol 2019;49:407—18.

167. Kakhtiaie KR, Mirhosseini A, Aliabadi A, Mohammadi A, Mosavi MJ, Hafcheshmeh SM, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 2019;85—900.

168. Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience 2019;406:2—21.

169. Ferreira N, Saraiva MJ, Almeida MR. Uncovering the neuro-protective mechanisms of curcumin on transthyretin amyloidosis. Int J Mol Sci 2019;20:1—13.

170. Gallardo M, Calaf GM. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines. Int J Oncol 2016;49:1019—27.

171. Zhang Z, Chen H, Xu C, Song L, Huang L, Lai Y, et al. Curcumin inhibits tumor epithelialmesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells. Oncol Rep 2016;35:2615—23.

172. Wang YJ, Wang X, Wang XJ, Zheng BZ, Wang Y, Wang X, et al. Curcumin inhibits the growth via Wnt/beta-catenin pathway in non-small-cell lung cancer cells. Eur Rev Med Pharmacol Sci 2018;22:7492—9.

173. He M, Li Y, Zhang L, Li L, Shen Y, Lin L, et al. Curcumin suppresses cell proliferation through inhibition of the Wnt/beta-catenin signaling pathway in medulloblastoma. Oncol Rep 2014;32:173—80.

174. Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 2010;122:777—85.

175. Li X, Wang X, Xie C, Zhu J, Meng Y, Chen Y, et al. Sonic hedgehog and Wnt/beta-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs 2018;29:208—15.
Nature-derived compounds modulating Wnt/β-catenin pathway

176. Ramasamy TS, Ayob AZ, Myint HH, Thiagarajah S, Amini F. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. *Cancer Cell Int* 2015;15:96.

177. Dou H, Shen R, Tao J, Huang L, Shi H, Chen H, et al. Curcumin suppresses the colon cancer proliferation by inhibiting Wnt/beta-catenin pathways via miR-130a. *Front Pharmacol* 2017;8:877.

178. Zhu JY, Yang X, Chen Y, Jiang Y, Wang SJ, Li Y, et al. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/beta-catenin and sonic hedgehog pathways. *Phytother Res* 2017;31:680–8.

179. Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. *J Cell Physiology* 2018;233:6785–98.

180. Doello K, Ortiz R, Alvarez PJ, Melguizo C, Cabeza L, Prados J. Latest in vitro and in vivo assay, clinical trials and patents in cancer treatment using curcumin: a literature review. *Nutr Cancer* 2018;70:569–78.

181. Hewlings SJ, Kalaman DS. Curcumin: a review of its effects on human health. *Foods* 2017;6:1–11.

182. Averilla JN, Oh J, Wu Z, Liu KH, Jang CH, Kim HJ, et al. Improved extraction of resveratrol and antioxidant from grape peel using heat and enzymatic treatments. *J Sci Food Agric* 2019;99:4043–53.

183. Chimento A, De Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. *Int J Mol Sci* 2019;20:1–27.

184. Romero-Perez AI, Lamuela-Raventos RM, Andres-Lacueva C, de La Torre-Boromat MC. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powder mildew on the stilbene content. *J Agric Food Chem* 2001;49:210–5.

185. Vastano BC, Chen Y, Zhu N, Ho CT, Zhou Z, Rosen RT. Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum. *J Agric Food Chem* 2000;48:253–6.

186. Parshikov IA, Netrusov AI, Sutherland JB. Microbial transformation of antimalarial terpenoids. *Biotechnol Adv* 2012;30:1516–23.

187. Nicotra S, Cramerossa MR, Mucci A, Pagoni UM, Riva S, Forti L. Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by mycelial *Myceliophthora thermophila* and from *Trametes pubescens*. *Tetrahedron* 2004;60:595–600.

188. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. *Nat Rev Drug Discov* 2006;5:493–506.

189. Hope C, Planutiis K, Planutiene M, Moyer MP, Johal KS, Woo J, et al. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. *Mol Nutr Food Res* 2008;52 Suppl 1:LS2–61.

190. Mineda A, Nishimura M, Kagawa T, Takiguchi E, Kawakita T, Booth TD, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. *Cancer Res* 2010;70:9003–11.

191. Menezes Maciel Bindes M, Hespanhol Miranda Reis M, Luiz Cardoso V, Boffito DC. Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural co-agulants (chitosan and Moringa oleifera seeds). *Ultrasan Sonochem* 2019;51:111–9.

192. Sanliler N, Gokcen BA, Altug M. Tea consumption and disease correlations. *Trends Food Sci Technol* 2018;78:95–106.

193. Cao Q, Li J, Xia Y, Li W, Luo S, Ma C, et al. Green tea: a review of the green tea polyphenols and their biological activities. *Molecules* 2018;24:1–15.

194. Zhu J, Jiang Y, Yang X, Wang S, Xie C, Li X, et al. Wnt/beta-catenin pathway mediates (−)-epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. *Biochem Biophys Res Commun* 2017;482:15–21.

195. Yang C, Du W, Yang D. Inhibition of green tea polyphenol EGCG((−)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical Wnt/beta-catenin signaling pathway. *Int J Food Sci Nutr* 2016;67:818–27.

196. Oh S, Gwak J, Park S, Yang CS. Green tea polyphenol EGCG suppresses Wnt/beta-catenin signaling by promoting GSK-3beta- and PP2A-dependent beta-catenin phosphorylation/degradation. *Biofactors* 2014;40:586–95.

197. Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE, et al. Suppression of Wnt signaling by the green tea compound (−)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBPI. *J Biol Chem* 2006;281:10865–75.

198. Bose M, Hao X, Ju J, Huang A, Park S, Lambert JD, et al. Inhibition of tumorigenesis in *ApcMin/+* mice by a combination of (−)-epigallocatechin-3-gallate and fish oil. *J Agric Food Chem* 2007;55:7695–700.

199. Pan LL, Wang XL, Luo XL, Liu SY, Xu P, Hu JF, et al. Boehmena, a ligand from the Chinese medicinal plant *Clematis armandii*, inhibits A431 cell growth via blocking p70S6/S6 kinase pathway. *Integr Cancer Ther* 2017;16:351–9.

200. Yoder SC, Lancaster SM, Hullar MAJ, Lampe JW. Chapter 7—gut microbial metabolism of plant lignans: influence on human health. In: Tuohy K, Del Rio D, editors. *Diet-microbe interactions in the gut*. San Diego: Academic Press; 2015. p. 103–17.

201. Pathak S, Kesavan P, Banerjee A, Banerjee A, Celep GS, Bissi L, et al. Chapter 25—metabolism of dietary polyphenols by human gut microbiota and their health benefits. In: Watson RR, Preedy VR, Zibadi S, editors. *Polyphenols: mechanisms of action in human health and disease*. 2nd ed. Boston: Academic Press; 2018. p. 347–59.

202. Pan LL, Wang XL, Zhang QY, Luo XL, Xu P, Liu SY, et al. Boehmena, a ligand from the Chinese medicinal plant *Clematis armandii*, induces apoptosis in lung cancer cells through modulation of EGF-dependent pathways. *Phytomedicine* 2016;23:468–76.

203. McCarthy JS, Price RN. 40—antimalarial drugs. In: Bennett JE, Dolin R, Blaser MJ, editors. *Mandell, Douglas, and Bennett’s principles and practice of infectious diseases*. 8th ed. Philadelphia: Content Repository Only; 2015. 495–509.e5.
229. Bas'aran N, Bacanlı M, Bas'aran AA.
228. Ono M, Takeshima M, Nakano S.
227. Tarapore RS, Siddiqui IA, Adhami VM, Spiegelman VS, Mukhtar H.
225. Ramos-Hernandez JA, Calderon-Santoyo M, Navarro-Ocana A,
224. Ruiz-Montanez G, Ragazzo-Sanchez JA, Calderon-Santoyo M,
223. Parsaeimehr A, Martinez-Chapa SO, Parra-Saldívar R. Chapter
213. Tu Y. The discovery of artemisinin (qinghaosu) and gifts from Chi-
20 G. Sferrazza et al.
215. Pandey N, Pandey-Rai S. Updates on artemisinin: an insight to mode
217. Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH, et al. Dihy-
221. Tsai FS, Lin LW, Wu CR. Lupeol and its role in chronic diseases.
222. Mbaveng AT, Hamm R, Kuete V. 19 neoplastic diseases, Acta Pharmaceutica Sinica B, https://doi.org/10.1016/j.apsb.2019.12.019
J Chromatogr A
2015. p. 139
2013; Mechanism of the anticancer effect
2011; 315:577–66.
229. Bas'aran N, Bacanlı M, Bas'aran AA. onar-Ocana A, Barros-Castillo JC, Ragazzo-Sanchez JA. Use of emerging technol-
221. Tsai FS, Lin LW, Wu CR. Lupeol and its role in chronic diseases. Adv Exp Med Biol 2016;929:145–75.
220. Bhveneg AT, Hamm R, Kue A, V. 19–harmful and protective effects of terpenoids from African medicinal plants. In: Kue V, editor. Toxicological survey of African medicinal plants. Amsterdam: Elsevier; 2014. p. 557–76.
223. Parsaeimehr A, Martinez-Chapa SO, Parra-Saldívar R. Chapter 13—medicinal plants versus skin disorders: a survey from ancient to modern herbalism. In: Kon K, Rai M, editors. The microbiology of skin, soft tissue, bone and joint infections. Boston: Academic Press; 2017. p. 205–21.
224. Ruiz-Montanez G, Ragazzo-Sanchez JA, Calderon-Santoyo M, Velazquez-de la Cruz G, de Leon JA, Navarro-Ocana A. Evaluation of extraction methods for preparative scale obtention of mangiferin and lupeol from mango peels (Mangifera indica L.). Food Chem 2014;159:267–72.
225. Marones-Hernandez JA, Calderon-Santoyo M, Navarro-Ocana A, Barros-Castillo JC, Ragazzo-Sanchez JA. Use of emerging technologies in the extraction of lupeol, alpha-amyrin and beta-amyrin from sea grape (Coccoloba uvifera L.). J Food Sci Technol 2018;55: 2377–83.
226. Tarapore RS, Siddiqui IA, Saleem M, Adhami VM, Spiegelman VS, Mukhtar H. Specific targeting of Wnt/beta-catenin signaling in human melanoma cells by a dietary triterpene lupeol. Carcinogenesis 2010;31:1844–53.
227. Tarapore RS, Siddiqui IA, Adhami VM, Spiegelman VS, Mukhtar H. The dietary terpene lupeol targets colorectal cancer cells with constitutively active Wnt/beta-catenin signaling. Mol Nutr Food Res 2013;57:1950–8.
228. Ono M, Takeshima M, Nakano S. Mechanism of the anticancer effect of lycopene (tetraterpenoids). The Enzymes. Amsterdam: Elsevier; 2015. p. 139–66.
229. Başaran N, Bacanlı M, Başaran AA. Lycopenes as antioxidants in gastrointestinal diseases. Gastrointestinal Tissue. Amsterdam: Elsevier; 2017. p. 355–62.
230. Chan CH, Yusoff R, Ngo HC, Kung FW. Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 2011; 1218:6213–25.
231. Chan CM, Hung CF. Lycopene and retinal pigment epithelial cells: molecular aspects. Handbook of nutrition, diet and the eye. Amsterdam: Elsevier; 2014. p. 587–98.
232. Naviglio D, Pizzolongo F, Ferrara L, Aragon A, Santini A. Extraction of pure lycopene from industrial tomato by-products in water using a new high-pressure process. J Sci Food Agric 2008;88: 2414–20.
233. de Andrade Lima M, Kestekoglu I, Charalampopoulos D, Chatzifragkou A. Supercritical fluid extraction of carotenoids from vegetable waste matrices. Molecules 2019;24:466.
234. Briones-Labarca V, Giovagnoli-Vicuna C, Canas-Sarazua R. Opti-
mization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem 2019;278:751–9.
235. Park B, Lim JW, Kim H. Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/beta-catenin signaling and attenuates hyper-
proliferation in gastric epithelial cells. Nutr Res 2018;17:1–12.
236. Peet R, Mohapatra P, Das D, Satpathy SR, Choudhuri T, Wright MD et al. Lycopene synergistically enhances quinacrine ac-
tion to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 2013;34:277–86.
237. Alqahtani SN, Alkholy SO, Ferreira MP. Chapter 11—antidiabetic and anticcancer potential of native medicinal plants from Saudi Ara-
bia. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols in human health and disease. San Diego: Academic Press; 2014. p. 119–32.
238. Senthilkumaran S, Meenakshisundaram R, Thirumalaiakolundu subramanian P. Chapter 5—plant toxins and the heart. In: Ramachandran M, editor. Heart and toxins. Boston: Academic Press; 2015. p. 151–74.
239. Zhou L, Cui L, Guo Y, Zhang H, Wang P, Yi G, et al. Calotropin activates YAP through downregulation of LATS1 in colorectal cancer cells. Oncotargets Ther 2019;12:4047–54.
240. Combos GF, McClung JP. Chapter 7—vitamin D. In: Combs GF, McClung JP, editors. The vitamins. 5th ed. Boston: Academic Press; 2017. p. 161–206.
241. Engeling LR. Chapter 45—vitamin D. In: Engeling LR, editor. Textbook of veterinary physiological chemistry. 3rd ed. Boston: Ac-
ademic Press; 2015. p. 288–93.
242. Musteata ML, Musteata FM. Overview of extraction methods for analysis of vitamin D and its metabolites in biological samples. Bioanalysis 2011;3:1987–2002.
243. Aguilera O, Pena C, Garcia JM, Larriba MJ, Ordóñez-Moran P, Navarro D, et al. The Wnt antagonist DICKKOPF-1 gene is induced by Ialp1a,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 2007;28:1877–84.
244. Larriba MJ, Valle N, Palmer HG, Ordóñez-Moran P, Alvarez-Diaz S, Becker KF, et al. The inhibition of Wnt/beta-catenin signalling by Ialp1a,25-dihydroxyvitamin D3 is abrogated by snail1 in human colon cancer cells. Endocr Relat Cancer 2007;14:141–51.
245. Larriba MJ, Ordóñez-Moran P, Chicote I, Martín-Fernandez G, Puig I, Munoz A, et al. Vitamin D receptor deficiency enhances Wnt/beta-catenin signaling and tumor burden in colon cancer. PLoS One 2011;6:e23524.
246. Razak S, Afsar T, Almajwal A, Alam I, Jahan S. Growth inhibition and apoptosis in colorectal cancer cells induced by vitamin D-
nanoemulsion (NVD): involvement of wnt/beta-catenin and other signal transduction pathways. Cell Biosci 2019;9:15.
247. Sun H, Jiang C, Cong L, Wu N, Wang X, Hao M, et al. CYP24A1 inhibition facilitates the antiproliferative effect of 1,25(OH)2D3 through downregulation of the Wnt/beta-catenin pathway and methylation-mediated regulation of CYP24A1 in colorectal cancer cells. DNA Cell Biol 2018;37:742–9.
248. Pendas-Franco N, Garcia JM, Pena C, Valle N, Palmer HG, Heinamiemi M, et al. DICKKOPF-4 is induced by TCF/beta-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1alpha,25-
dihydroxyvitamin D3. Oncogene 2008;27:4467–77.
249. Beildeck ME, Islam M, Shah S, Welsh J, Byers SW. Control of TCF-
4 expression by VDR and vitamin D in the mouse mammary gland and colorectal cancer cell lines. PLoS One 2009;4: e7872.

Please cite this article as: Sferrazza G et al., Nature-derived compounds modulating Wnt/beta-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases, Acta Pharmaceutica Sinica B, https://doi.org/10.1016/apsb.2019.12.019
Nature-derived compounds modulating Wnt/β-catenin pathway

Meyer MB, Goetsch PD, Pike JW, VDR/RXR and TCF4/β-catenin cistromes in colon cancer and Wnt/beta-catenin signaling pathway in Wnt tumor response. Mol Endocrinol 2012;26:37–51.

Refaat B, El-Shemi AG, Kansara OA, Mohamed AM, Idris S, et al. Vitamin D enhances the tumouricidal effects of 5-fluorouracil through multopathway mechanisms in azoxymethane rat model of colon cancer. J Exp Clin Cancer Res 2015;34:71.

Zheng W, Duan B, Zhang Q, Ouyang L, Peng W, Qian F, et al. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/beta-catenin signaling. J Alzheimers Dis 2018;38:1–10.

Jeong Y, Swami S, Krishnan A V, Martin S, Horst RL, et al. Inhibition of mouse breast tumor-initiating cells by calcitriol and vitamin D. Mol Cancer Ther 2015;14:1951–61.

Corachan A, Ferrero H, Aguilar A, Garcia N, Monleon J, Faus A, et al. Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/beta-catenin pathway. Fertil Steril 2019;111:397–407.

Liu S, Barry EL, Baron JA, Rutherford RE, Seabrook ME, et al. Effects of supplemental calcium and vitamin D on the APC/beta-catenin pathway in the normal colorectal mucosa of colorectal adenoma patients. Mol Carcinog 2017;56:412–24.

Alshahrani F, Aljohani N, Vitamin D: deficiency, sufficiency and toxicity. Nutrients 2013;5:3605–16.

Meyer MB, Goetsch PD, Pike JW, VDR/RXR and TCF4/β-catenin cistromes in colon cancer and Wnt/beta-catenin signaling pathway in Wnt tumor response. Mol Endocrinol 2012;26:37–51.

Refaat B, El-Shemi AG, Kansara OA, Mohamed AM, Idris S, et al. Vitamin D enhances the tumouricidal effects of 5-fluorouracil through multopathway mechanisms in azoxymethane rat model of colon cancer. J Exp Clin Cancer Res 2015;34:71.

Zheng W, Duan B, Zhang Q, Ouyang L, Peng W, Qian F, et al. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/beta-catenin signaling. J Alzheimers Dis 2018;38:1–10.

Jeong Y, Swami S, Krishnan A V, Martin S, Horst RL, et al. Inhibition of mouse breast tumor-initiating cells by calcitriol and vitamin D. Mol Cancer Ther 2015;14:1951–61.

Corachan A, Ferrero H, Aguilar A, Garcia N, Monleon J, Faus A, et al. Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/beta-catenin pathway. Fertil Steril 2019;111:397–407.

Liu S, Barry EL, Baron JA, Rutherford RE, Seabrook ME, Bostick RM. Effects of supplemental calcium and vitamin D on the APC/beta-catenin pathway in the normal colorectal mucosa of colorectal adenoma patients. Mol Carcinog 2017;56:412–24.

Alshahrani F, Aljohani N, Vitamin D: deficiency, sufficiency and toxicity. Nutrients 2013;5:3605–16.