APNN-TC: Accelerating Arbitrary Precision Neural Network on Ampere GPU Tensor Cores

Boyuan Feng*, Yuke Wang*, Tong Geng, Ang Li, Yufei Ding.

* indicates equal contribution
Motivation

Quantized Neural networks
• Low cost (e.g., memory & computation)
• Arbitrary precision (e.g., int2, int3)

GPU Hardware
• Suitable for NN computation, especially with Tensor Cores
• Only support a limited set of precisions (e.g., int1, int4)
Key Ideas

• Support arbitrary precision neural networks with the limited precisions on Tensor Cores
 • Utilize bit-level operations (e.g., XOR and AND)
Challenges

• Lack of mathematical emulation design
 • For supporting multiplication and addition in quantized NNs with only bit-level operations
 • For supporting diverse input data (e.g., -1/+1 or 0/1)

• Lack of efficient implementation for arbitrary precision NN layers
 • Need to exploit data locality in our emulation workload
 • Need specialized bit operations and data organization to avoid uncoalesced memory access

• Lack of efficient NN framework designs
 • To exploit data reuse opportunity across NN layers (e.g., location of quantization layer)
Overview of APNN-TC

APNN-TC

AP-BIT Emulation Design (§3)
- AP-BIT Operation Template
- Data-Adaptive Operator Selection

AP-Layer Design (§4)

- APMM (§4.1)
 - Batch-based Double Caching
 - Memory-efficient Bit Compression

- AP-Conv (§4.2)
 - Channel-major Data Organization
 - Input-Aware Padding Design

Performance Analysis (§4.3)

AP-NN Design (§5)
- Minimal-traffic Dataflow
- Semantic-aware Kernel Fusion
AP-Bit Emulation Design

- AP-Bit Operation Template Design

Cost Analysis (p-bit W and q-bit X of shape n×n)
- Bit decomposition: $O((p+q)n^2)$ [Negligible]
- TC computation: $O(pqn^3)$
- Bit combination: $O(pqn^2)$ [Negligible]
AP-Bit Emulation Design

- Data Adaptive Operator Selection

Problem:
- Bit-0 and bit-1 may encode diverse values
- 1-bit weight matrix may encode -1 and 1, instead of 0 and 1
 - I.e., bit-0 -> -1, bit-1 -> 1
- Naïvely utilizing AND bit operation leads to erroneous computation results

Our design:
- Adaptively select operator based on data encoding information

Case-I:
- When both W and X encode 0 and 1
- Use logical AND operation
- Example:
 - W = [0, 1], X = [1, 1]
 - WX = popc(AND([0, 1], [1, 1]))
 - = popc([0, 1]) = 1

Case-II:
- When both W and X encode -1 and 1
- Use logical XOR operation
- Example:
 - W = [-1, 1], X = [1, 1]
 - WX = n – 2*popc(XOR([0, 1], [1, 1]))
 - = n – 2*popc([0, 1]) = 1

Case-III:
- When W encodes -1 and +1, X encodes 0 and 1
 1) first transform W into a vector with 0/1
 2) Compute with logical AND operation
 3) Recover the value WX with linear transformation
- Example:
 - W = [-1,1], X = [1,0]
 - W’ = (W+[1,1])/2 = [0,1]
 - WX = 2W’X – [1,1]X = -1
Arbitrary Precision Layer Design

• Arbitrary-Precision Matrix Multiplication (APMM)
Arbitrary Precision Layer Design

- Arbitrary-Precision Convolution (APConv)
Arbitrary Precision Layer Design

• Input-aware Padding Design

Problem:
• Bit-0 and bit-1 may encode diverse values
 • E.g., weight W encodes -1 and 1 with 0 and 1
 • Cannot naively padding 0 since 0 represents -1

Solution:
• Case-I: both weight and feature encode 0/1
 • Simply pad 0 for features
• Case-II: both weight and feature encode -1/1
 • Pad 1 for features
 • Use an extra counter to track the number of weight 0’s outside the input image frame
• Case-III: weight encodes -1/1 and feature encodes 0/1
 • Pad 0 for features
Arbitrary Precision Layer Design

• Performance Analysis

Performance Model:
• Consider thread-level parallelism (TLP) and compute intensity (CI)
• Given:
 • a p-bit weight matrix of shape $M \times K$
 • a q-bit feature matrix of shape $K \times N$
 • matrix tiling size $b_m \times b_n$
• We have:

\[
TLP = \frac{pM \times qN}{b_m \times b_n}
\]
\[
CI = \frac{2 \times b_m \times b_n}{b_m + b_n}
\]

Auto-tuning:
• A heuristic algorithm to find the design with largest CI while maintaining TLP
Arbitrary Precision Neural Network Design

Key insights:

• Given 32-bit output from Tensor Cores, we quantize the TC computation results before writing to global memory

• Fuse APMM/APConv with following quantization, BN, pooling and ReLU kernels to minimize global memory access

• For scalar operations (e.g., ReLU), reduce shared memory access by directly reusing values in registers
Evaluation

• APMM Performance
Evaluation: APNN Inference

- APNN Inference Performance

Schemes	ImageNet-AlexNet	ImageNet-VGG	ImageNet-ResNet18			
	8 Latency	Throughput	8 Latency	Throughput	8 Latency	Throughput
CUTLASS-Single	25.22ms	3.29×10²fps	116.84ms	6.85×10¹fps	24.02ms	5.22×10²fps
CUTLASS-Half-TC	14.37ms	6.21×10²fps	31.42ms	2.79×10²fps	12.52ms	1.13×10³fps
CUTLASS-INT8-TC	3.78ms	2.40×10³fps	23.53ms	3.51×10²fps	6.6ms	3.13×10³fps
BNN	0.69ms	1.37×10⁴fps	2.17ms	3.91×10³fps	0.68ms	1.89×10⁴fps
APNN-w1a2	2.87ms	3.79×10³fps	7.50ms	1.07×10³fps	3.66ms	4.37×10³fps
Evaluation

- Overhead from bit combination and bit decomposition
Evaluation

• Speedup from Kernel Fusion
Questions?

The project is open-sourced at:

https://github.com/BoyuanFeng/APNN-TC