Clinical Value of Patlak Ki Images Extracted From Dynamic 18F-FDG PET/CT For Evaluation of The Relationships Between Disease Activity and Clinical Events in Cardiac Sarcoidosis

Masatoyo Nakajo (toyo.nakajo@dolphin.ocn.ne.jp)
Kagoshima University, Graduate School of Medical and Dental Sciences

Satoko Ojima
Kagoshima University, Graduate School of Medical and Dental Sciences

Hirofumi Kawakami
GE Healthcare

Atsushi Tani
Kagoshima University, Graduate School of Medical and Dental Sciences

Akira Hirayama
GE Healthcare

Megumi Jinguji
Kagoshima University, Graduate School of Medical and Dental Sciences

Takuro Kubozono
Kagoshima University, Graduate School of Medical and Dental Sciences

Mitsuru Ohishi
Kagoshima University, Graduate School of Medical and Dental Sciences

Takashi Yoshiura
Kagoshima University, Graduate School of Medical and Dental Sciences

Original research

Keywords: Cardiac sarcoidosis, dynamic 18F-FDG-PET/CT, SUV static image, Patlak Ki image

DOI: https://doi.org/10.21203/rs.3.rs-49013/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Cardiac sarcoidosis (CS) has a poor prognosis because of frequent complication of atrioventricular block, ventricular tachycardia and congestive heart failure. Qualitative or quantitative \(^{18}\text{F}\)-FDG PET/CT has been used for diagnosing or assessing the disease activity of CS. However, the association between \(^{18}\text{F}\)-FDG myocardial uptake and clinical presentations in CS has not yet been clarified, and it is unknown if Patlak Ki images (Ki images) extracted from dynamic \(^{18}\text{F}\)-FDG-PET/CT are useful for evaluating the disease activity or clinical events in CS patients. In this context, this study was performed to investigate the usefulness of SUV and Patlak Ki images extracted from dynamic \(^{18}\text{F}\)-FDG-PET/CT for evaluating the risk of severe clinical events (SCEs) in CS.

Methods: The SUV and Ki myocardial images were generated from 30 dynamic \(^{18}\text{F}\)-FDG-PET/CT scans of 21 CS patients including those with cardiac dysfunction and arrhythmic events. SUV parameters and Ki parameters (Ki max, Ki mean, Ki volume) were measured for positive myocardial lesions. The Mann–Whitney U-test or Fisher’s exact test was used appropriately to assess differences between quantitative variables or compare categorical data. The association between each quantitative parameter and presence of SCEs was analyzed by logistic regression analysis.

Results: The SUV and Ki images both were rated as positive in 19 scans and negative in 11 scans with the same incidence of SCEs which were significantly higher in positive than negative scans [cardiac dysfunction: 78.9% (15/19) vs. 27.2% (3/11), \(p=0.009\); arrhythmic events: 65.5% (10/19) vs. 0% (0/11), \(p=0.004\)]. In 19 positive scans, neither SUV nor Ki parameters were significantly different between scans of patients with cardiac dysfunction (\(n=15\)) and those without (\(n=4\)) (\(p>0.05\), each), whereas the three Ki parameters were significantly higher in scans for patients with arrhythmic events (\(n=10\)) than in those without (\(n=9\)) (\(p<0.05\), each). Logistic regression analysis showed that the Ki volume alone was significantly associated with the risk of arrhythmic events (Odds ratio: 1.11, \(p=0.047\)).

Conclusion: Patlak Ki images may add value to SUV images for evaluating the risk of SCEs in CS patients.

Introduction

Sarcoidosis is a systemic granulomatous disease of unknown etiology. Clinical manifestations of cardiac involvement are estimated to occur in 5% of patients with sarcoidosis, but the prevalence at autopsy has ranged from 25–58% [1, 2]. Cardiac sarcoidosis (CS) has a poor prognosis because of frequent complication of atrioventricular block (AVB), ventricular tachycardia (VT) and congestive heart failure [3–5]. To prevent adverse outcomes, an accurate and early diagnosis is essential so that anti-inflammatory therapy can be initiated [6, 7].

Glucose metabolic activity can be shown by measuring \(^{18}\text{F}\)-fluorodeoxyglucose (\(^{18}\text{F}\)-FDG) uptake during positron emission tomography (PET)/computed tomography (CT) for not only oncological but also inflammatory disorders [8, 9]. Qualitative or quantitative \(^{18}\text{F}\)-FDG PET/CT has been used for diagnosing or assessing the disease activity of CS [10, 11]. However, the association between \(^{18}\text{F}\)-FDG myocardial uptake and clinical presentations in CS has not yet been clarified.

The Patlak slope, Ki, which represents the rate of \(^{18}\text{F}\)-FDG uptake is a quantitative index of \(^{18}\text{F}\)-FDG metabolism. Dynamic imaging is required to calculate the Ki, and an arterial input function must be measured and a lesion time-activity curve constructed [12, 13]. Although a good correlation has been reported between the standardized uptake value (SUV) and Ki, they are not equivalent [14]. The SUV measures the total activity in the lesion, and includes both metabolized \(^{18}\text{F}\)-FDG and unmetabolized \(^{18}\text{F}\)-FDG (unphosphorylated \(^{18}\text{F}\)-FDG) in the blood, intercellular spaces, and/or cells. Patlak analysis separates these two components, and the Patlak slope is determined only by metabolized \(^{18}\text{F}\)-FDG [15]. Thus, measurements of Ki might contribute to assessments of CS disease activity. However, to our knowledge, only one report has investigated dynamic \(^{18}\text{F}\)-FDG-PET/CT images for diagnosis of CS [16], and it is unknown if Patlak Ki images (Ki images) extracted from dynamic \(^{18}\text{F}\)-FDG-PET/CT are useful for evaluating the disease activity or clinical events in CS patients.

The study aim was to investigate the usefulness of SUV and Patlak Ki images for evaluating the risk of severe clinical events (SCEs) in CS patients.

Materials And Methods

Study design and patient selection

This retrospective study was approved by institutional review board, which waived the requirement for informed consent. From April 2019 to January 2020, \(^{18}\text{F}\)-FDG-PET/CT was performed in 24 consecutive patients for suspected CS or known CS, and their clinical records were reviewed to identify patients for analysis. The inclusion criterion was diagnosis of CS according to the Japanese Society of Sarcoidosis and Other Granulomatous Disorders guidelines [17]. Patients with a history or coexistence of other cardiac disorders were excluded.

Two patients were excluded because of hypertrophic cardiomyopathy and one for insufficient evidence of CS. Finally, 21 CS patients were enrolled (14 women and seven men; mean ± standard deviation [SD], age 61 years ± 11; age range, 37–76 years). Eight patients underwent \(^{18}\text{F}\)-FDG PET/CT scans before steroid treatment, and two of them underwent scans at the 6-months follow-up after initiation of steroid treatment. The remaining 13 patients
received steroid therapy, and seven of them underwent follow-up scans during the study period. Consequently, 21 patients had a total of 30 18F-FDG-PET/CT scans.

Imaging protocols

All patients were instructed to fast for 318 h before PET/CT, which resulted in a mean plasma glucose level of 107 mg/dl (range, 68–154 mg/dl) immediately before 18F-FDG intravenous injection.

All 18F-FDG PET/CT examinations were performed on a Discovery MI PET/CT (GE Healthcare, Milwaukee, WI). First, low-dose CT covering the entire heart was performed (slice thickness, 3.75 mm; pitch, 1.375 mm; 120 keV; auto mA [40–100 mA depending on patient body mass]; reconstructed matrix size, 512 × 512) with the transaxial and cranio-caudal field of view (FOV) of 70 cm and 20 cm that was used for attenuation correction of the PET images. Thereafter, 18F-FDG (227 MBq ± 28 [range, 179–286 MBq]) was injected, and dynamic PET (single-bed) images covering the same cranio-caudal FOV as that of the above CT were acquired with the following PET frames. The acquisition began at the injection, with scan times of 10s/frame for the first 2 min, 3 min/frame for the next one frame, and 5 min/frame thereafter for a total of 60 min.

Generation of the Patlak Ki and SUV static images

To determine the 18F-FDG kinetic parameters within the lesion, a linear approximation of the mathematical representation of the standard two-compartmental model with irreversible trapping was used according to Patlak analysis [12]. From $C_l (t_k)$, the 18F-FDG activity concentration in the lesion (Bq mL$^{-1}$) at a given time t_k after injection, the analytical solution of the two-compartmental model is given as:

$$C_l (t_k) = K_i \int_0^{t_k} C_p(t) dt + V_p C_p(t_k)$$

where $C_p(t_k)$ represents the 18F-FDG activity concentration in blood plasma at time t_k (Bq mL$^{-1}$) and V_p is the total blood distribution volume (i.e, the unmetabolized fraction of 18F-FDG in blood and interstitial volume).

The compartmental transfer rates, k_1 (from blood to cell), k_2 (from cell to blood), and k_3 (from 18F-FDG to 18F-FDG-6-phosphate), were used to calculate K_i, the net influx rate, as follows:

$$K_i = \frac{(k_1 \times k_3)}{(k_2 + k_3)}.$$

The transfer rate k_4 from 18F-FDG-6-phosphate to 18F-FDG is negligible because the Patlak analysis assumes unidirectional uptake of 18F-FDG ($k_4=0$). The K_i unit is ml/g/min.

In this study, the non-invasive plasma arterial input function estimation technique using a Patlak graphical plot method was applied to calculate the K_i for generating the Ki images [12]. We characterized the input function by using blood time-activity curves derived from PET image. A region of interest was drawn in the ascending aorta to determine the arterial input function, and the Patlak analysis was performed over the period from 10 to 60 min after injection during a steady state. The data were reconstructed by using a matrix size of 128 × 128 with a Bayesian penalized likelihood (BPL) reconstruction algorithm [18] (with point spread function incorporated as a default setting (Q.Clear, GE Healthcare, Milwaukee, WI) with a beta value (penalization factor) of 700 and transaxial FOV of 50 cm as the Ki image.

The PET frames acquired 53–60 mins after 18F-FDG injection were corrected for attenuation by using the CT data, and these attenuation corrected images were reconstructed by using a matrix size of 128 × 128 with BPL reconstruction algorithm with a beta value of 350 and transaxial FOV of 50 cm as the static SUV image (SUV image).

Image analysis

Two nuclear medicine radiologists, who were aware of the study purpose but blinded to clinical information, interpreted the SUV and Ki images together to reach in a consensus. First, the radiologists visually scored the 18F-FDG myocardial uptake by using a five-point scale for each SUV image as follows, 0, no visible uptake; 1, 18F-FDG uptake lower than; 2, similar to; 3, somewhat higher than; and 4, noticeably higher than hepatic uptake [19]. To determine the disease activity of CS, scores of 0–1 and 2–4 were assigned as negative and positive, respectively. Thereafter, they visually assessed each Ki image as negative (myocardial visibility was lower than or similar to that of liver) or positive (myocardial visibility was higher than that of liver).

The following quantitative parameters were obtained in the interpreted positive (visible) myocardium; the maximum SUV (SUVmax), mean SUV (SUVmean), cardiac metabolic volume (CMV), and cardiac metabolic activity (CMA) for SUV images, and maximum and mean Ki values (Ki max and K imean) and Ki volume for Ki images. The third nuclear medicine radiologist set the volumes of interest (VOIs) separately for SUV images and Ki images. He placed the VOIs manually on a suitable reference fused axial image and then defined the cranio-caudal and mediolateral extent encompassing the entire positive myocardial lesion, excluding any avid extracardiac structures, to obtain SUVmax and Ki max. He next set a 40% threshold of SUVmax [20] or of Ki max to automatically delineate a VOI equal to or greater than the 40% threshold of SUVmax or Ki max to calculate the SUVmean, CMV, and CMA or Ki mean and Ki volume, respectively. The CMA was defined as the SUVmean × CMV. Workstations (Xeleris or Advantage Windows Workstation 4.5; GE Healthcare) calculated the SUVmax, SUVmean, CMV, CMA and the Ki max, Ki mean and Ki volumes automatically.
Ascertained of SCEs

Echocardiography was performed within 1 month of the 18F-FDG-PET/CT (mean ± SD, 6 days ± 8; range, −26 to +26 days), and the echocardiography report was used as the reference standard for cardiac function. Cardiac dysfunction was defined as a left ventricular ejection fraction (LVEF) <50% [21]. Patients were also assessed to determine if arrhythmic events, including sustained VT or AVB were presented within 1 month of the 18F-FDG-PET/CT (mean ± SD, 8 days ± 8; range, −24 to +31 days). AVB was characterized as either second- or third-degree AVB or trifascicular block documented on 12-lead or Holter echocardiography [21, 22].

Statistical analysis

The incidence of each SCE was compared between the positive and negative images by using Fisher’s exact test. Quantitative variables were compared between scans with and without SCEs by using the Mann–Whitney U test. The Spearman rank correlation was used to assess the relationship between two quantitative variables. Receiver operating characteristic (ROC) curve analysis was performed to examine the diagnostic performance of each parameter between the presence and absence of SCEs, and the Youden index was used to determine the best cutoff point for each parameter [23]. The statistical significance of differences between the areas under the ROC curves (AUCs) were analyzed by using the DeLong method [24]. The association between each parameter and presence of SCEs was analyzed by logistic regression analysis.

Data are presented as medians and interquartile ranges (IQRs). A value of \(p < 0.05 \) was considered to be indicative of statistical significance, and all \(P \) values were two-tailed. MedCalc Statistical Software (MedCalc Software Ltd, Acacialaan 22, 8400 Ostend, Belgium) was used for the statistical analyses.

Results

SCEs at 18F-FDG PET/CT scan

The median LVEF was 36.4% (IQR: 32.6–55.1%; range: 23.5–79.9%). Cardiac dysfunction and normal cardiac function were observed by obtaining 18 and 12 18F-FDG PET/CT scans, respectively. Of the 18 scans of patients with cardiac dysfunction, six and twelve were performed before treatment and under treatment, respectively. On the other hand, of the 12 scans of patients with normal cardiac function, two and 10 were performed before treatment and under treatment, respectively. Arrhythmic events were observed for 10 18F-FDG PET/CT scans, and seven and three scans were performed before treatment and under treatment, respectively. On the other hand, of 20 scans of patients without arrhythmic events, one and 19 were performed before treatment and under treatment, respectively.

Relationship between visual findings of SUV or Ki images and SCEs (Table 1)

The SUV and Ki images were both rated as positive in 19 scans and negative in 11 scans, respectively, and for both the median LVEF was significantly lower in the positive images than in the negative images (positive vs. negative: 32.9% vs. 56.3%, \(p = 0.001 \)). The rate of cardiac dysfunction was significantly higher in the positive images than in the negative images (positive vs. negative: 78.9% [15/19] vs. 27.2% [3/11], \(p = 0.009 \)). The arrhythmic events were only observed in the positive images, and the rate of arrhythmic events was significantly higher in the positive images than in the negative images (positive vs. negative: 65.5% [10/19] vs. 0% [0/11], \(p = 0.004 \)).

Correlations between quantitative parameters

Quantitative analyses were performed in each positive SUV or Ki image (n = 19). Significant positive correlations were observed between SUVmax and Ki max (\(p = 0.90, p < 0.001 \)), between SUVmean and Ki mean (\(p = 0.88, p < 0.001 \)) and between CMV and Ki volume (\(p = 0.66, p = 0.002 \)), respectively.

Relationship between SUV or Ki parameters and SCEs (Table 2)

No significant differences between the scans of patients with cardiac dysfunction (n = 15) and normal cardiac function (n = 4) in the SUVmax, SUVmean, and CMV were found (\(p > 0.05 \), each). The median CMA was higher in cardiac dysfunction than in normal cardiac function, but this difference was not significant (\(p = 0.057 \)). No significant correlations were observed between any of the SUV parameters and LVEF (SUVmax, \(p = 0.018, p = 0.94 \); SUVmean, \(p = 0.037, p = 0.88 \); CMV, \(p = 0.13, p = 0.60 \); CMA, \(p = 0.16, p = 0.52 \), respectively).

The median SUVmax was significantly higher in the presence of arrhythmic events (n = 10) than in the absence of arrhythmic events (n = 9) (\(p = 0.041 \)). The median SUVmax, CMA and CMV were higher in the presence of arrhythmic events than in the absence of arrhythmic events, but these differences were not significant (\(p = 0.060, 0.066, 0.060 \), respectively).

No significant differences in the Ki max, Ki mean and Ki volume between cardiac dysfunction and normal cardiac function were found (\(p > 0.05 \), each). No significant correlations were observed between each Ki parameter and LVEF (Ki max, \(p = 0.21, p = 0.39 \); Ki mean, \(p = 0.24 p = 0.32 \); Ki volume, \(p = 0.16, p = 0.52 \).

All three Ki parameters were significantly higher in the presence of arrhythmic events than in the absence of arrhythmic events (Ki max, 222.0 × 10^{-3} ml/g/min vs. 106.2 × 10^{-3} ml/g/min, \(p = 0.041 \); Ki mean, 146.4 × 10^{-3} ml/g/min vs. 55.2 × 10^{-3} ml/g/min, \(p = 0.038 \); Ki volume, 79.5 cm³ vs. 14.6 cm³, \(p = 0.003 \), respectively).

Parameters for assessing the risk of SCEs (Tables 3 and 4)

The AUCs for the ability to assess the risk of the cardiac dysfunction were 0.80 for CMV (\(p = 0.031 \)) and 0.82 for CMA (\(p = 0.020 \)) (Table 3). The logistic analysis revealed that no parameters were significantly associated with cardiac dysfunction (\(p > 0.05 \), each) (Table 4).
The AUCs for the ability to assess the risk of arrhythmic events were 0.76 for SUVmax ($p = 0.034$), 0.78 for SUVmean ($p = 0.018$), 0.75 for CMV ($p = 0.031$), 0.76 for CMA ($p = 0.034$), 0.78 for Ki max ($p = 0.014$), 0.79 for Ki mean ($p = 0.009$) and 0.90 for Ki volume ($p < 0.001$) (Table 3). The specificity was 100% for all parameters. The sensitivity ranged from 50.0% (SUVmax, CMV, CMA) to 90.0% (Ki volume), and the accuracy ranged from 73.7% (SUVmax, CMV, CMA) to 94.7% (Ki volume) (Table 3). No significant differences in AUC were found among any of the parameters ($p > 0.05$, each). The logistic analysis revealed that Ki volume was the only parameter significantly associated with arrhythmic events (Odds ratio: 1.11, 95% confidence interval: $1.01–1.23$, $p = 0.047$) (Table 4).

The SUV and Ki images of the representative positive and negative scans of CS were shown in Figs. 1–3.

Discussion

SUV images for evaluating the risk of SCEs

Previous studies have reported that 18F-FDG SUV images have been important in the assessment of CS [10, 11]. A recent meta-analysis reported a sensitivity of 89% and specificity of 78% for detection of CS on 18F-FDG SUV images [25]. The relationships between 67Ga scintigraphy or 18F-FDG SUV images and clinical events in CS patients have been reported previously [26–28]. Banba et al. [26] performed 67Ga scintigraphy in 15 CS patients, and gallium uptake has been documented in 80% of AVB patients. McArdle et al. [27] examined the degree of 18F-FDG myocardial uptake assessed by SUV parameters, and higher SUVmax and SUVmean were observed in CS patients with VT than in those with AVB or who were clinically silent. Ahmadian et al. [28] reported that CMA calculated by the SUV threshold using the 1.5 LV blood pool SUVmax was significantly higher in CS patients with an EF < 50% than in those with an EF > 50%, but SUVmax was not significantly different between them when only 18F-FDG positive cases were analyzed.

In our study, the rate of cardiac dysfunction or arrhythmic events was significantly higher in the visually analyzed positive SUV images than in the negative images, suggesting that visual assessment of SUV images might be useful for evaluating the risk of SCEs. On the other hand, in quantitative analyses of the SUV positive scans, although each parameter was higher in the presence of cardiac dysfunction than in its absence and higher in the presence of arrhythmic events than in their absence, the difference was only significant for the SUVmean for arrhythmic events ($p = 0.041$). The discrepancy among the study results of SUV parameters for evaluating the clinical events may be because of the differences in the analysis methods. We performed the quantitative analyses only for visual 18F-FDG positive scans and chose an SUVmax threshold of 40% for CMV delineation, as was performed in a previous report [20].

Ki images for evaluating the risk of SCEs

Dynamic PET imaging has been used in oncology for characterizing the kinetic FDG model [29, 30]. Wang et al. [29] reported a significant difference in both the SUVmax and Ki between benign and malignant pulmonary lesions with a high significant correlation between SUVmax and Ki and stated that parametric Ki images were useful for distinguishing malignant lesions from normal tissue.

We found only one study that used dynamic 18F-FDG-PET/CT images to diagnose CS [16], and the researchers reported that heterogeneous myocardial glucose metabolism assessed by using a normalized coefficient of variation of the Ki could be useful for diagnosis of CS. However, no study has examined the relationship between Ki images and clinical events in CS patients.

In our study, on visual analyses of Ki images, the rate of cardiac dysfunction or arrhythmic events was significantly higher in the positive Ki scans than in the negative Ki scans, suggesting that the visual assessment of Ki images might be useful for evaluating the risk of SCEs.

On quantitative analyses of Ki positive scans, although none of the Ki parameter were significantly different between cardiac dysfunction and normal cardiac function, they were significantly higher with the arrhythmic events than without them. Moreover, Ki volume alone was significantly associated with arrhythmic events, suggesting that Ki volume might be the most useful parameter for evaluating the risk of arrhythmic events. Despite the significant correlations between SUV and Ki parameters, there were discrepancies in the results of these parameters concerning the association with clinical events in CS. Thus, Ki images may have the potential to provide additional value to the SUV images for evaluation of the clinical events in CS patients.

There were some study limitations that should be considered when interpreting our results. First, this was a retrospective study with a small sample. Therefore, a prospective study with a large sample is needed to confirm the validity of the present findings. Second, the different treatment statuses at the time of the dynamic 18F-FDG-PET/CT scans could have affected the positivity of the SUV and Ki images, which may have led to biased quantitative analysis. Third, we did not compare other useful imaging techniques, such as cardiac magnetic resonance imaging (MRI) or myocardial perfusion imaging with SUV or Ki images because only a minority of patients underwent cardiac MRI ($n = 6$) or myocardial perfusion imaging ($n = 2$). Finally, in the absence of guidelines on optimal reconstruction parameters for Ki images, we used different beta values of 350 and 700 for reconstruction of the SUV and Ki images, respectively. Further investigations of optimal reconstruction protocols for Ki imaging are warranted.

Conclusion

Patlak Ki images may add value to SUV images for evaluating the risk of SCEs in CS patients.

Abbreviations

AUC: Areas under the ROC curve; AVB: Atrioventricular block; BPL: Bayesian penalized likelihood; CMA: Cardiac metabolic activity; CMV: Cardiac metabolic volume; CS: Cardiac sarcoidosis; CT: Computed tomography; 18F-FDG: 18F-fluorodeoxyglucose; FOV: Field of view; IQR: Interquartile ranges; LVEF: Left
Declarations

Acknowledgements
Not applicable.

Authors' contribution
MN and AT contributed to the conception and design of the study. MN, SO, AT, MJ, TK and MO contributed to acquiring and interpreting data. HK and AH contributed to the technical support for generating the Patlak Ki image. MN and TY contributed to drafting of the manuscript together. All authors have read and approved the final manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding
This research was financially supported by a grant from the Japan Society for the Promotion of Science (KAKEN-HI, Grant number 19K08178). The Kagoshima University Department of Radiology receives the technical support from GE Healthcare Japan.

Ethical approval
All procedures performed in studies involving human participants were performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict interest except employment by GE Healthcare Japan (Hirofumi Kawakami and Akira Hirayama).

Authors details
1Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
2Department of Cardiovascular Medicine and Hypertension, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
3Research and Development Department, GE Healthcare Japan, 4-7-127 Asahigaoka-Hinoshi, Tokyo 191-8503, Japan.

References
1. Hulten E, Aslam S, Osborne M, Abbasi S, Bittencourt MS, Blankstein R. Cardiac sarcoidosis: state of the art review. Cardiovasc Diagn Ther. 2016;6:50–63.
2. Doughan AR, Williams BR. Cardiac sarcoidosis Heart. 2006;92:282–8.
3. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.
4. Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med. 1977;63:86–108.
5. Matsui Y, Iwai K, Tachibana T, Fruie T, Shigematsu N, Izumi T, et al. Clinicopathological study of fatal myocardial sarcoidosis. Ann N Y Acad Sci. 1976;278:455–69.
6. Mehta D, Lubitz SA, Frankel Z, Wnislvesky JP, Einstein AJ, Goldman M, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest. 2008;133:1426–35.
7. Gideon NM, Mannino DM. Sarcoidosis mortality in the United States, 1979–1991: an analysis of multiple-cause mortality data. Am J Med. 1996;100:423–7.
8. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: Current applications and future directions. Radiology. 2006;238:405–22.
9. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol. 2015;70:787–800.

10. Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2010;3:1219–28.

11. Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, Satoh K, et al. Comparative evaluation of 18F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med. 2006;47:1571–6.

12. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.

13. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90.

14. Freedman NM, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Mol Imaging. 2003;30:46–53.

15. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.

16. Lebasnier A, Legallois D, Bienvenu B, Bergot E, Desmonts C, Zalcman G, et al. Diagnostic value of quantitative assessment of cardiac 18F-fluorodeoxyglucose uptake in suspected cardiac sarcoidosis. Ann Nucl Med. 2018;32:319–27.

17. Terasaki F, Azuma A, Anzai T, Ishizaka N, Ishida Y, Isobe M, et al. JCS 2016 Guideline on Diagnosis and Treatment of Cardiac Sarcoidosis - Digest Version. Circ J. 2019;83:2329–88.

18. Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, et al. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol. 2015;60:5733–51.

19. Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4:1.

20. Muser D, Santangeli P, Castro SA, Liang JJ, Enríquez A, Werner TJ, et al. Prognostic role of serial quantitative evaluation of 18F-fluorodeoxyglucose uptake by PET/CT in patients with cardiac sarcoidosis presenting with ventricular tachycardia. Eur J Nucl Med Mol Imaging. 2018;45:1394–404.

21. Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015;131:624–32.

22. Sinagra G, Anzini M, Pereira NL, Bussani R, Finocchiaro G, Bartuneck J, et al. Myocarditis in Clinical Practice. Mayo Clin Proc. 2016;91:1256-66.

23. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

24. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–45.

25. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.

26. Banba K, Kusano KF, Nakamura K, Morita H, Ogawa A, Ohtsuka F, et al. Relationship between arrhythmogenesis and disease activity in cardiac sarcoidosis. Heart Rhythm. 2007;4:1292–9.

27. Mc Ardle BA, Birnie DH, Klein R, de Kemp RA, Leung E, Renaud J, et al. Is there an association between clinical presentation and the location and extent of myocardial involvement of cardiac sarcoidosis as assessed by 18F-fluorodeoxyglucose positron emission tomography? Circ Cardiovasc Imaging. 2013;6:617–26.

28. Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging. 2012;12:283–9.

Tables

Table 1 Relationship between visual SUV or Ki myocardial findings and clinical events in 30 18F-FDG PET/CT scans of 21 patients with cardiac sarcoidosis
Table 2 Relationships between quantitative SUV or Ki parameters and clinical events in 19\(^{18}\)F-FDG positive myocardia patients

Index	Cardiac function	Arhythmic events												
	Normal (n=4)	Dysfunction (n=15)		Absence (n=9)	Presence (n=10)									
	Median	IQR	Range	p value										
SUVmax	3.91	2.68-6.03	2.47-7.12	3.99	3.08-7.52	2.91-11.69	0.37	3.15	2.97-4.23	2.89-5.82	6.18	3.54-8.51	2.47-11.69	0.060
SUVmean	2.71	2.46-3.70	2.29-4.60	3.08	2.68-4.12	2.58-6.84	0.32	2.69	2.61-3.06	2.58-3.37	3.87	2.73-4.65	2.29-6.84	0.041
CMV	8.15	3.50-33.15	2.4-54.6	41.8	11.15-132.8	5.6-233.0	0.072	14.0	7.63-29.3	4.6-82.7	101.3	11.7-161.0	2.4-233.0	0.066
CMA	19.4	11.5-89.6	11.0-152.3	114.1	29.7-655.4	15.1-1169.7	0.057	37.2	19.8-92.9	12.1-267.8	330.5	27.2-930.2	11.0-1169.7	0.060
Ki max (x10\(^{-3}\))\(^{*}\)	139.8	96.0-206.7	82.2-243.6	111.0	90.3-302.1	79.2-549.6	0.92	106.2	82.2-125.7	79.2-170.4	222.0	99.0-382.8	88.2-549.6	0.041
Ki mean (x10\(^{-3}\))\(^{*}\)	73.5	54.0-135.3	47.4-184.2	63.6	52.4-177.0	42.0-333.0	1.00	55.2	45.5-69.3	42.0-87.0	146.4	54.0-227.4	47.4-333.0	0.038
Ki volume\(^{†}\)	15.1	8.45-44.3	2.3-73.3	41.6	15.03-90.08	5.7-108.0	0.23	14.6	11.4-19.2	5.7-25.9	79.5	41.7-105.0	2.3-108.0	0.003

IQR interquartile range, CMV (cm\(^3\)) cardiac metabolic volume, CMA cardiac metabolic activity

\(^{*}\) The unit of Ki max and Ki mean are ml/g/min.

\(^{†}\) The unit of Ki volume was cm\(^3\).

Table 3 Ability of SUV and Ki parameters to discriminate between the presence and absence of severe clinical events

Index	Cardiac function	Arrhythmic events				
	Positive	Negative	p value	Absence	Presence	p value
LVEF	Median	32.9%	56.3%	0.001		
IQR	30.38-43.75%	40.05-70.95%				
Range	23.5-58.8%	35.0-56.3%				

LVEF left ventricular ejection fraction, LV left ventricular, IQR interquartile range
Index	Cardiac dysfunction	Arhythmic events											
	Cutoff value	Sensitivity	Specificity	Accuracy	AUC	p value	Cutoff value	Sensitivity	Specificity	Accuracy	AUC	p value	
SUVmax	>2.89	80.0 (12/15)	50.0 (2/4)	73.7 (14/19)	51.9-95.7	0.67	0.42-0.86	>5.82	50 (5/10)	100 (9/9)	73.7 (14/19)	0.76	0.034
		6.8-93.2	48.8-90.9					18.7-81.3	66.4-100		48.8-90.9		
		51.9-95.7						*					
SUVmean	>2.62	86.7 (13/15)	50.0 (2/4)	78.9 (15/19)	59.5-98.3	0.67	0.42-0.86	>3.37	60 (6/10)	100 (9/9)	78.9 (15/19)	0.78	0.018
		6.8-93.2	54.4-93.9					26.2-87.8	66.4-100		54.4-93.9		
		51.9-95.7						*					
CMV	>4.6	100 (15/15)	50.0 (2/4)	89.5 (17/19)	78.2-100	0.80	0.56-0.95	>82.7	50 (5/10)	100 (9/9)	73.7 (14/19)	0.75	0.031
		6.8-93.2	66.9-98.7					18.7-81.3	66.4-100		48.8-90.9		
CMA	>26.8	80.0 (12/15)	75.0 (3/4)	78.9 (15/19)	51.9-95.7	0.82	0.58-0.95	>268.8	50 (5/10)	100 (9/9)	73.7 (14/19)	0.76	0.034
		6.8-93.2	54.4-93.9					18.7-81.3	66.4-100		48.8-90.9		
Ki max†	>243.6 x10⁻³	26.7 (4/15)	100 (4/4)	42.1 (8/19)	7.8-55.1	0.52	0.28-0.75	>170.4 x10⁻³	60 (6/10)	100 (9/9)	78.9 (15/19)	0.78	0.014
		39.8-100	20.2-66.5					26.2-87.8	66.4-100		54.4-93.9		
Ki mean†	>184.2 x10⁻³	26.7 (4/15)	100 (4/4)	42.1 (8/19)	7.8-55.1	0.50	0.27-0.73	>87.0 x10⁻³	60 (6/10)	100 (9/9)	78.9 (15/19)	0.79	0.009
		39.8-100	20.2-66.5					26.2-87.8	66.4-100		54.4-93.9		
Ki volume‡	>15.6	73.3 (11/15)	75.0 (3/4)	73.7 (14/19)	44.9-92.2	0.70	0.45-0.89	>25.9	90 (9/10)	100 (9/9)	94.7 (18/19)	0.90	<0.001
		19.4-99.4	48.8-90.9					55.5-99.7	66.4-100		74.0-99.9		

*95% confidence interval
† The unit of Ki max and Ki mean are ml/g/min.
‡ The unit of Ki volume was cm³.

Table 4. Logistic analysis for association between each parameter and presence of severe clinical events.

CMV (cm³) cardiac metabolic volume, CMA cardiac metabolic activity, AUC areas under the receiver operating characteristic curve.
Index	Cardiac dysfunction	Arhythmic events						
	χ^2	Odds ratio	95% CI	p value	χ^2	Odds ratio	95% CI	p value
SUVmax	0.48	1.20	0.72-1.98	0.49	3.31	1.81	0.95-3.44	0.069
SUVmean	0.47	1.59	0.42-6.06	0.50	3.13	5.26	0.84-33.13	0.077
CMV	1.30	1.03	0.98-1.07	0.25	3.44	1.02	0.99-1.05	0.064
CMA	0.91	1.01	0.99-1.02	0.34	2.34	1.01	0.99-1.01	0.13
Ki max	0.40	1.00	0.99-1.01	0.53	2.84	1.02	0.99-1.04	0.092
Ki mean	0.21	1.00	0.99-1.02	0.65	2.35	1.03	0.99-1.08	0.13
Ki volume	1.09	1.02	0.98-1.06	0.30	3.95	1.11	1.01-1.23	0.047

CMV: cardiac metabolic volume, CMA: cardiac metabolic activity, CI: confidence interval.

Figures

Figure 1

A 70-year-old female patient with CS who showed VT and cardiac dysfunction (EF: 40.0 %) before treatment. The SUV images [maximum intensity projection (MIP) (a), transaxial (b), coronal (c), and sagittal (d)] and Ki images [MIP (e), transaxial (f), coronal (g), and sagittal (h)] both show the positive myocardium for which the VOIs were automatically determined. The SUV (SUVmax: 8.51 g/ml, SUVmean: 4.36 g/ml, CMV: 229.0 cm3, CMA: 998.4 g) and Ki parameters (Ki max: 382.8 x 10^{-3} ml/g/min, Ki mean: 227.4 x 10^{-3} ml/g/min, Ki volume: 108.0 cm3) were all positive for the risk of arrhythmic events according to each threshold criterion.
Figure 2

A 68-year-old male patient with CS who showed VT and cardiac dysfunction (EF: 25.3%) under steroid treatment (prednisolone, 10 mg daily). The SUV images [MIP (a), transaxial (b), coronal (c), and sagittal (d)] and Ki images [MIP (e), transaxial (f), coronal (g), and sagittal (h)] both show the positive myocardium for which the VOIs were automatically determined. The Ki volume (34.7 cm³) was the only parameter positive for the risk of arrhythmic events according to each threshold criterion.

Figure 3

A 69-year-old female patient with CS who showed no arrhythmic events with normal cardiac function (EF: 70%) under steroid treatment (prednisolone, 10 mg daily). The SUV images [MIP (a), transaxial (b), coronal (c), and sagittal (d)] and Ki images [MIP (e), transaxial (f), coronal (g), and sagittal (h)] both show the negative myocardium.