Asymmetric 1,4-functionalization of 1,3-enynes via dual photoredox and chromium catalysis

The merger of photoredox and transition-metal catalysis has evolved as a robust platform in organic synthesis over the past decade. The stereoselective 1,4-functionalization of 1,3-enynes, a prevalent synthon in synthetic chemistry, could afford valuable chiral allene derivatives. However, tremendous efforts have been focused on the ionic reaction pathway. The radical-involved asymmetric 1,4-functionalization of 1,3-enynes remains a prominent challenge. Herein, we describe the asymmetric three-component 1,4-dialkylation of 1,3-enynes via dual photoredox and chromium catalysis to provide chiral allenols. This method features readily available starting materials, broad substrate scope, good functional group compatibility, high regioselectivity, and simultaneous control of axial and central chiralities. Mechanistic studies suggest that this reaction proceeds through a radical-involved redox-neutral pathway.

1,3-Enynes serve as a class of fundamental building blocks with diverse reactivity patterns, including 1,2-, 3,4-, and 1,4-functionalization. Particularly, the asymmetric 1,4-functionalization of 1,3-enynes provides quick access to chiral allenes, which not only widely occur in natural products and pharmaceuticals but also represent one of the most versatile building blocks for the synthesis of complex molecules. Various transition-metal complexes (TM = Pd, Cu, Rh, Sc, etc.) have proved to be able to achieve the asymmetric 1,4-functionalization of 1,3-enynes, involving hydrosilylation, hydroborylation, hydroamination, hydrocarbonization, dicarbonization, etc. These transformations generally proceeded via an ionic pathway with allenyl or homoallenyl metal intermediates and mainly formed only one axial chirality (Fig. 1a). On the other hand, the radical 1,4-functionalization of 1,3-enynes via allenyl or propargylic radicals has attracted much attention recently, but only limited success has been achieved in their asymmetric versions. In 2020, the Bao and Zhang groups, and Liu group independently reported the elegant Cu-catalyzed enantioselective synthesis of chiral allenes via the radical 1,4-dicarbonization of 1,3-enynes. Compared to the ionic pathway, these radical reactions could proceed under mild conditions and afford densely functionalized complexes via a multicomponent manner, which expanded the chemical space for the functionalization of 1,3-enynes. Thus, further exploration of new reaction patterns involving radicals could facilitate efficient access to valuable chiral allenes.

The Nozaki–Hiyama–Kishi reaction is one of the most reliable C–C bond construction approaches with various applications in synthesis chemistry. However, conventional NHK reactions are generally limited to reductive processes, and stoichiometric amounts of metal reductants and strong Lewis acids (e.g., chlorosilanes and Schwartz’s reagent) must be employed to turn over the chromium catalytic cycle. Recent breakthroughs in dual photoredox and chromium catalysis have enabled redox-neutral NHK reactions. However, the photocatalytic transformations are limited to asymmetric allylations, reported by the Glorius group and Kanai group. To the best of our knowledge, the asymmetric radical 1,4-functionalization of 1,3-enynes via merging photoredox and Cr catalysis remains underdeveloped.

As our ongoing efforts in Cr-catalyzed radical-involved reactions, we anticipate that the propargyl radical, which is in equilibrium with the allenyl radical, could be captured by a chiral chromium complex, and subsequent nucleophilic addition to the aldehyde affords the enantioenriched products (Fig. 1a, bottom). To achieve this goal, several challenges have to be addressed: (1) the regioselectivity control of 1,4-functionalization versus

1Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310024 Zhejiang Province, China. 2Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024 Zhejiang Province, China. 3These authors contributed equally: Feng-Hua Zhang, Xiaochong Guo. e-mail: wangzhaobin@westlake.edu.cn
1,2-functionalization; (2) the proper choice of radical precursors and photocatalysts to maintain the catalytic cycle; (3) the inhibition of quickly occurring side reactions from reactive radical intermediates or organochromium complexes.

Herein, we describe the three-component asymmetric radical 1,4-functionalization of 1,3-enynes by merging photoredox and chromium catalysis (Fig. 1b). This reaction proceeds efficiently in a redox-neutral manner without an external reductant. And two C–C bonds are simultaneously constructed to provide chiral \(\alpha \)-allenols with both a stereogenic center and a stereogenic axis, which serve as essential building blocks in total synthesis (Fig. 2) \(^5\). Furthermore, the application of versatile and readily accessible materials, including 1,3-enyne, aldehyde, radical precursors, endow the reaction with significant advantages in practical utility.

Results

Reaction optimization

With the idea in mind, we initially explored the three-component reaction of benzaldehyde, 1,3-enyne \(\textbf{1} \), and DHP ester \(\textbf{2} \) (Table 1). After detailed investigations of a series of reaction parameters, we determined that the merger of a chiral chromium/cyano-bisoxazoline \((5, R)\)-\(\textbf{L1} \) and a photocatalyst 4-CzIPN could achieve the chemoselective allenylation reaction in good yield and high diastereoselectivity and enantioselectivity under visible-light irradiation (entry 1). Control experiments establish that \(\text{CrCl}_2 \), 4-CzIPN, and light are critical for this allenylation reaction under these conditions (entries 2–4). A slight decrease in enantioselectivity was detected when using a similar anionic ligand \(\textbf{L2} \) (entry 5). Other chiral nitrogen-containing ligands are not effective for this reaction under similar conditions (entries 6–10). In the case of \(\textbf{L6} \), the homopropargylic alcohol was isolated in 1:3 ratio vs the allenol (entry 9). The reaction also performed well in DME, CH\(_3\)CN, or EtOAc, furnishing the desired chiral allenol only with a slight decrease in yield and dr (entries 11–13). The photocatalyst [Ir(df(CF\(_3\))ppy)\(_2\)(dtbbpy)]PF\(_6\) also led to the allenol but with a slight erosion in d.r. and ee (entry 14). Decreasing the catalyst loading to 5 mol% \(\text{CrCl}_2 \) and 6 mol% \((5,R)\)-\(\textbf{L1} \) led to a drop in yield (entry 15). When increasing the concentration from 0.05 M to 0.1 M, the d.r. decreased from 20:1 to 12:1 (entry 16). And the yield or dr of the allenylation product was only modestly diminished, if 1.2 equivalent of 1,3-enyne \(\textbf{1} \) and DHP ester \(\textbf{2} \) are used (entries 17&18). However, adding 1.0 equivalent water to the reaction mixture inhibits the formation of \(\alpha \)-allenol \(\textbf{3} \) (entry 19). The addition of 1.0 mL air to the reaction vessel has a deleterious effect (entry 20). These results indicated that the reaction was sensitive to moisture and air, probably due to the involvement of unstable alkyl chromium complexes.

![Fig. 1](https://doi.org/10.1038/s41467-022-32614-4)
that chiral amino alcohols are prevalent synthons in pharmaceuticals and natural products. We are delighted to discover that the stereochemistry of the allenylation products of chiral aldehydes, predominantly determines the stereochemistry of the allenylation products.

The chiral chromium catalyst, rather than existing stereochemically, plays a crucial role in the transformation. A variety of functional groups are compatible with this method, including aryl halides (e.g., fluoride, chloride, bromide), boronate, methoxy, thioether, amide, carboxylate ester, CF₃, furan, thiophene, benzofuran and N-alkylated carbazole. To our delight, heteroaromatic aldehydes, with N, O, or S heteroaromatic rings are widespread in pharmaceuticals and natural products. However, the reactivity of N-heteroaromatic aldehydes is rarely demonstrated in previous NHK reactions. As disclosed in recent studies, they generally led to poor yields, including our stereoconvergent allenylation reaction. Aliphatic aldehydes, substituted with diverse primary or secondary alkyl chains, participated efficiently in this 1,4-functionalization of 1,3-enynes. Moderate diastereoselectivities (5:1 dr to 10:1 dr) were generally observed in the cases of primary alkyl aldehydes, whereas excellent stereoselectivities (≥20:1 d.r., >85% ee) were occasionally achieved with secondary alkyl aldehydes and DHP ester. It is noteworthy that the current optimal condition does apply to 1,3-enynes bearing substituents on the C=C bond construction via photoredox catalysis. Moreover, organotrifluoroborates also prove to be suitable radical precursors for C–C bond construction via photoredox catalysis. In this context, we applied them as radical precursors to our newly developed method. After further evaluation of different reaction parameters, we determined an optimal condition with the acridine tetrafluoroborate and 2,6-dimethylpyridine hydrochloride as the photocatalyst and regents that are often problematic for other trivalent organoborons.

Product transformations were performed to demonstrate the synthetic utility of our newly developed method. Chiral α-allenols served as suitable building blocks in the synthesis of enantioenriched dihydrofurans. The desilylation reaction of dihydrofurans proceeded smoothly, affording the chiral α-allenol with high diastereoselectivity. The stereoselective electrophilic cyclization of α-allenol furnished the desired allenol in moderate yield (42%, >20:1 d.r., >85% ee), accompanied by 28% direct alkylation product in 7% yield. These results indicate that the single electron reduction of the primary alkyl radical by CF₃L could compete with its addition to 1,3-enynes, and the stability seems to vary from silyl, alkyl to aryl groups, all reacted smoothly with aryl or alkyl aldehydes and DHP ester to furnish the chiral products efficiently. The use of trisopropyl(3-methylbut-3-en-1-yn-1-yl) silane gave the propargylation product predominantly with poor diastereoselectivity.

Nature Communications | (2022) 13:5036
https://doi.org/10.1038/s41467-022-32614-4

Synthetic application
Product transformations were performed to demonstrate the synthetic utility of our newly developed method. Chiral α-allenols serve as suitable building blocks in the synthesis of enantioenriched dihydrofurans. The desilylation reaction of dihydrofurans proceeded smoothly, affording the chiral α-allenol with high diastereoselectivity. The stereoselective electrophilic cyclization of α-allenol furnished 2,5-dihydrofurans and 75 with good efficiency in axial-to-central chirality transfer.

Fig. 2 The importance of chiral allenols. Bn benzyl, TBS tert-butylidimethylsilyl, Me methyl, TIPS triisopropylsilyl, Et ethyl, Tol p-methylphenyl, t-Bu tert-butyl, Boc tert-butoxycarbonyl.

Substrate scope
We next explored the aldehyde scope (Fig. 3). Gratifyingly, a broad array of aromatic and aliphatic aldehydes serve as effective reaction partners, affording the chiral α-allenols in high yields, good diastereoselectivities, and enantioselectivities with 56. We were delighted to observe that the chiral aldehydes, predominantly determines the stereochemistry of the allenylation products.

On a gram scale (1.10 g product), the 1,4-functionalization of 1,3-enyne to product proceeded in 77% yield and 94% ee. A variety of functional groups are compatible with this method, including aryl halides (e.g., fluoride, chloride, bromide), boronate, methoxy, thioether, amide, carboxylate ester, CF₃, furan, thiophene, benzofuran and N-alkylated carbazole. To our delight, heteroaromatic aldehydes, with N, O, or S heteroaromatic rings are widespread in pharmaceuticals and natural products. However, the current optimal condition does apply to 1,3-enynes bearing substituents on the C=C bond construction via photoredox catalysis. Moreover, organotrifluoroborates also prove to be suitable radical precursors for C–C bond construction via photoredox catalysis. In this context, we applied them as radical precursors to our newly developed method. After further evaluation of different reaction parameters, we determined an optimal condition with the acridine tetrafluoroborate and 2,6-dimethylpyridine hydrochloride as the photocatalyst and regents that are often problematic for other trivalent organoborons.

Product transformations were performed to demonstrate the synthetic utility of our newly developed method. Chiral α-allenols serve as suitable building blocks in the synthesis of enantioenriched dihydrofurans. The desilylation reaction of dihydrofurans proceeded smoothly, affording the chiral α-allenol with high diastereoselectivity. The stereoselective electrophilic cyclization of α-allenol furnished 2,5-dihydrofurans and 75 with good efficiency in axial-to-central chirality transfer.
Table 1 | Effect of reaction parameters

Entry	Variation from “standard conditions”	Yield\(^{a}\) [%]	dr\(^{b}\)	ee\(^{c}\) [%]
1	None	>95	20:1	94
2	Without CrCl\(_2\)	<2	-	-
3	Without 4-CzIPN	<2	-	-
4	Without blue LED	<2	-	-
5	L\(_2\), instead of (S,R)-L\(_1\)	>95	20:1	92
6	L\(_3\), instead of (S,R)-L\(_1\)	84	3:1:1	47
7	L\(_4\), instead of (S,R)-L\(_1\)	68	1.6:1	19
8	L\(_5\), instead of (S,R)-L\(_1\)	52	5.5:1	34
9\(^{d}\)	L\(_6\), instead of (S,R)-L\(_1\)	71	1.8:1	46
10	L\(_7\), instead of (S,R)-L\(_1\)	79	2.8:1	93
11	DME, instead of THF	72	10:1	94
12	MeCN, instead of THF	85	20:1	95
13	EtOAc, instead of THF	>95	20:1	94
14	[Ir(\(dF(CF\(_3\))ppy\)_2(dbpy))]PF\(_6\), instead of 4-CzIPN	>95	11:1	88
15	5 mol% CrCl\(_2\), 6 mol% (S,R)-L\(_1\)	74	20:1	94
16	0.1 M, instead of 0.05 M, in THF	>95	12:1	93
17	1.2, instead of 1.5, equiv 1 and 2	80	20:1	94
18	1.2, instead of 1.5, equiv 1	90	18:1	93
19	1.0 equiv H\(_2\)O was added	<2	-	-
20	1 mL air (added via syringe)	55	14:1	87

\(^{a}\)Yields were determined via \(^{1}\)H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.

\(^{b}\)Dr's were determined via \(^{1}\)H NMR analysis of the crude product.

\(^{c}\)Ee was determined via HPLC analysis.

\(^{d}\)Homopropargylic alcohol by-product was observed in 1:3 ratio vs the allenol 3.
Mechanistic observations

A series of conventional experiments were conducted to provide insights into the reaction mechanism (Fig. 6a–c). The addition of 2 equiv of an allyl sulfone under the standard condition led to an adduct 76 in 42% yield, with a trace amount of desired product 3, which suggested that the reaction might involve the formation of cyclohexyl radical from the DHP ester (Fig. 6a). According to a reported method,[5] the quantum yield of this model reaction was determined to be 0.35. Moreover, the direct correlation between photolysis and product formation is demonstrated by an interval light-dark reaction (Fig. 6b). These results indicate that the radical 1,4-functionalization process undergoes a photoredox, instead of a radical-chain, pathway. As shown in Fig. 6c, the Stern–Volmer luminescence quenching studies proved that the DHP ester, rather than the 1,3-enyne, quenches the excited-state photocatalyst 4-CzIPN, suggesting a reductive quenching pathway.
According to our observations and previous reports, a putative mechanism is proposed in Fig. 6d with the model reaction as an example. The excited-state photocatalyst PC* (E_{1/2}^* = 1.35 V vs. SCE in MeCN) is reductively quenched by the DHP ester 2 (E_{1/2} = 1.10 V vs. SCE in MeCN), generating the reduced photocatalyst PC and the radical cation A. The rapid fragmentation of intermediate A affords the isopropyl radical and the pyridinium B. The isopropyl radical could either reversibly add to the low valent Cr/L1 to yield a allenol product, and the minor regioisomer refers to the propargylation product from the 1,2-functionalization. TMS trimethylsilyl, TES triethylsilyl.

Fig. 4 | The scope of DHP esters and 1,3-enynes in the 1,4-functionalization of 1,3-enynes. 4-((tert-butyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarbonitrile was used as radical precursor. 3.0 equiv of corresponding 1,3-enyne were used. The yield is for allenol product, and the minor regioisomer refers to the propargylation product from the 1,2-functionalization. TMS trimethylsilyl, TES triethylsilyl.
generate an off-cycle alkyl CrIII/L1 complex, or add to the terminus of 1,3-enyne 1 to forge the propargyl radical C, which is in equilibrium with the allenyl radical C'. The radical capture by CrII/L1 leads to two equilibrated species, the propargyl chromium D and allenyl chromium D'. Subsequent nucleophilic attack to benzaldehyde is proposed via a six-member cyclic manner, affording intermediate E. We believe that the isomerization between intermediates D and D' is faster than the subsequent nucleophilic addition to aldehydes. So the regioselectivity might be determined in the nucleophilic carbonyl addition step via a possible Zimmerman-Traxler transition state. As observed in the scope study, the steric hindrance of the acetylenic substituents of 1,3-enynes is critical for the high regioselectivity, which favors the allenylation product formation from the propargyl Cr D, instead of the allenyl D'. The dissociation of the O–Cr bond in E by the pyridinium B, provides chiral allenol 3. Finally, the CrIII/L1 is reduced to CrII/L1 ($E_{1/2} = -0.65$ V vs. SCE in H$_2$O, $E_{1/2} = -0.51$ V vs. SCE in DMF) by the reduced photocatalyst PC (PC/PC$^-$) = -1.21 V vs. SCE in MeCN), which closes the catalytic cycle.

In conclusion, we described a three-component asymmetric radical 1,4-functionalization of 1,3-enynes via dual photoredox and chromium catalysis. The key to success is using DHP esters under photoredox conditions, thus obviating stoichiometric amounts of metal reductants and dissociation reagents in conventional catalytic NHK reactions. The present method exhibits broad substrate scope with good functional group compatibility, providing efficient access to valuable chiral α-allenols from the readily available starting material. Given the importance of allenols and the growing interest in metallo-photoredox catalysis, we anticipate that our protocol will find broad utility in organic synthesis and facilitate the current endeavors to develop dual catalytic systems.

Fig. 5 | Exploration of other radical precursors and representative synthetic applications. a RBF$_3$K as the radical precursor. b Redox-active ester as the radical precursor. c Desilylation and cyclization. NBS N-bromosuccinimide.
Methods
General procedure for radical 1,4-functionalization of 1,3-enynes with aldehydes and DHP esters
In a nitrogen-filled glovebox, an oven-dried 20 mL vial with a magnetic stir bar, were charged with the CrCl₂ (5.0 mg, 0.04 mmol, 10 mol%) and (S,R)-L₁ (23.2 mg, 0.048 mmol, 12 mol%). Then 8.0 mL THF was added via syringe. The vial was closed with a PTFE septum cap and then stirred at room temperature for 2 hours. Next, to the prepared catalyst solution were added the 1,3-enynes (0.6 mmol, 1.5 equiv), the aldehydes (0.4 mmol, 1.0 equiv), the DHP esters (0.6 mmol, 1.5 equiv), and photocatalyst 4-CzIPN (6.4 mg, 0.008 mmol, 2 mol%) sequentially. Then the vial was closed with a PTFE septum cap and taken out of the glovebox. The reaction was irradiated with two 20 W 160-440 nm LED for 12 h (tube 5 cm away from lights, fans for cooling, 30–35 °C). After that, the reaction mixture was concentrated and run through a...
short silica gel pad with hexanes/EtOAc (3:1) as the eluent. Then the solvent was removed under the reduced pressure. The diastereoselectivity was determined via 1H NMR analysis of the crude reaction mixture. The residue was purified by flash chromatography to provide the desired product, and the ee was determined via HPLC/SFC analysis.

Data availability

The data relating to the materials and methods, experimental procedures, HPLC/SFC spectra, mechanism research, and NMR spectra are available in the Supplementary Information. The crystallographic data for compounds 12 and 42 are available free of charge from the CCDC under reference numbers 2130059 and 2130062. All other data are available from the authors upon request.

References

1. Aubert, C., Buisine, O. & Malacria, M. The behavior of 1,n-enynes in the presence of transition metals. Chem. Rev. **102**, 813–834 (2002).

2. Holmes, M., Schwartz, L. A. & Krische, M. J. Intermolecular metal-catalyzed reductive coupling of dienes, allenes, and enynes with carbonyl compounds and imines. Chem. Rev. **118**, 6026–6052 (2018).

3. Fu, L., Greffies, S., Chen, P. & Liu, G. Recent advances and perspectives in transition metal-catalyzed 1,4-functionalizations of unactivated 1,3-enynes for the synthesis of allenes. Chin. J. Chem. **30**, 91–100 (2019).

4. Dherbassy, Q. et al. Copper-catalyzed functionalization of enynes. Chem. Sci. **11**, 11380–11393 (2020).

5. Hoffmann-Röder, A. & Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. **43**, 1196–1216 (2004).

6. Yu, S. & Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed. **51**, 3074–3112 (2012).

7. Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev. **105**, 2829–2872 (2005).

8. Campoelo, D., Gastaldi, S., Roussel, C., Bertrand, M. P. & Nechab, M. Axial-to-central chirality transfer in cyclization processes. Chem. Soc. Rev. **42**, 8434–8466 (2013).

9. Han, J. W., Tokunaga, N. & Hayashi, T. Palladium-catalyzed asymmetric hydroisodiolysis of 4-substituted 1-buten-3-yne. Catalytic asymmetric synthesis of axially chiral allenyllsilanes. J. Am. Chem. Soc. **123**, 12915–12916 (2001).

10. Wang, M. et al. Synthesis of highly substituted racemic and enantioenriched allenyllsilanes via copper-catalyzed hydroisodiolysis of (Z)-2-alken-4-ynoates with silylboronate. J. Am. Chem. Soc. **137**, 14830–14833 (2015).

11. Huang, Y., Del Pozo, J., Torker, S. & Hoveyda, A. H. Enantioselective synthesis of trisubstituted allenyl-B(pin) compounds by phosphine-Cu-catalyzed 1,3-enzyme hydroboration. Insights regarding stereochemical integrity of Cu-allenyl intermediates. J. Am. Chem. Soc. **140**, 2643–2655 (2018).

12. Adamson, N. J., Jeddi, H. & Malcolmson, S. J. Preparation of chiral allenes through Pd-catalyzed intermolecular hydroamination of conjugated enynes: enantioselective synthesis enabled by catalyst design. J. Am. Chem. Soc. **141**, 8574–8583 (2019).

13. Yao, Q. et al. Efficient synthesis of chiral trisubstituted 1,2-allenyl ketones by catalytic asymmetric conjugate addition of malonic esters to enynes. Angew. Chem. Int. Ed. **55**, 1859–1863 (2016).

14. Yang, S. Q., Wang, Y. F., Zhao, W. C., Lin, G. Q. & He, Z. T. Stereodivergent synthesis of tertiary fluoro-tethered allenes via copper and palladium dual catalysis. J. Am. Chem. Soc. **143**, 7285–7291 (2021).

15. Nishimura, T., Makino, H., Nagaoa, M. & Hayashi, T. Rhodium-catalyzed enantioselective 1,6-addition of aryloboronic acids to enynamides: asymmetric synthesis of axially chiral allenyllsilanes. J. Am. Chem. Soc. **132**, 12865–12867 (2010).

16. Law, C., Kativhu, E., Wang, J. & Morken, J. P. Diastereo- and enantioselective 1,4-difunctionalization of borylenynes by catalytic conjunctive cross-coupling. Angew. Chem. Int. Ed. **59**, 10311–10315 (2020).

17. Bayeh-Romero, L. & Buchwald, S. L. Copper hydride catalyzed enantioselective synthesis of axially chiral 1,3-disubstituted allenes. J. Am. Chem. Soc. **141**, 13788–13794 (2019).

18. Liao, Y. et al. Enantioselective synthesis of multisubstituted allenes by cooperative Cu/Pd-catalyzed 1,4-arylation of 1,3-enynes. Angew. Chem. Int. Ed. **59**, 1176–1180 (2020).

19. Qian, H., Yu, X., Zhang, J. & Sun, J. Organocatalytic enantioselective synthesis of 2,3-allenoates by intermolecular addition of nitroalkanes to activated enynes. J. Am. Chem. Soc. **135**, 18020–18023 (2013).

20. Wang, F. et al. Divergent synthesis of CF3-substituted allenyll nitrites by ligand-controlled radical 1,2- and 1,4-addition to 1,3-enynes. Angew. Chem. Int. Ed. **57**, 7140–7145 (2018).

21. Zhang, K.-F. et al. Nickel-catalyzed carbofluoroalkylation of 1,3-enynes to access structurally diverse fluoroalkylated allenes. Angew. Chem. Int. Ed. **58**, 5069–5074 (2019).

22. Zhu, X. et al. Copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes with alkyl dicyan peroxides and N-fluorobenzensulfonyl fluoride. J. Org. Chem. **84**, 5848–5859 (2019).

23. Song, Y., Fu, C. & Ma, S. Copper-catalyzed syntheses of multiple functionalized allenes via three-component reaction of enynes. ACS Catal. **11**, 10007–10013 (2021).

24. Chen, Y., Wang, J. & Lu, Y. Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes via copper/photo-redox dual catalysis. Chem. Sci. **12**, 11316–11321 (2021).

25. Wang, L., Ma, R., Sun, J., Zheng, G. & Zhang, Q. NHClive visible light-mediated photoredox co-catalyzed 1,4-sulfonylalaclylation of 1,3-enynes for tetrasubstituted allenyll ketones. Chem. Sci. **13**, 3169-3175 (2022).

26. Chen, L. et al. 1,4-Alkylcarbonylation of 1,3-enynes to access tetrasubstituted allenyll ketones via an NHClive-catalyzed radical relay. ACS Catal. **11**, 13363–13373 (2021).

27. Chen, Y., Zhu, K., Huang, Q. & Lu, Y. Regiodivergent sulfonfylarylation of 1,3-enynes via nickel/photoredox dual catalysis. Chem. Sci. **12**, 13564–13571 (2021).

28. Liu, Y.-Q. et al. Radical acylalkylation of 1,3-enynes to access allenyll ketones via N-heterocyclic carbene organocatalysis. J. Org. Chem. **87**, 5229–5241 (2022).

29. Li, C. et al. Selective 1,4-aryl sulfonation of 1,3-enynes via photoredox/nickel dual catalysis. Org. Chem. Front. **9**, 788–794 (2022).

30. Zeng, Y. et al. Copper-catalyzed enantioselective radical 1,4-difunctionalization of 1,3-enynes. J. Am. Chem. Soc. **142**, 18014–18020 (2021).

31. Dong, X. Y. et al. Copper-catalyzed asymmetric coupling of allenyll radicals with terminal alkynes to access tetrasubstituted allenes. Angew. Chem. Int. Ed. **60**, 2160–2164 (2021).

32. Okude, Y., Hirano, S., Hayama, T. & Nozaki, H. Grignard-type carboxyl addition of allyl halides by means of chromous salt. A chemospecific synthesis of homoallyl alkoxides. J. Am. Chem. Soc. **99**, 3179–3181 (1977).

33. Fürstner, A. Carbon–carbon bond formations involving organochromium(III) reagents. Chem. Rev. **99**, 991–1046 (1999).
56. Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry, Analysis and Function of Amino Acids and Peptides (John Wiley & Sons, 2013).

57. Ager, D. J., Prakash, I. & Schaad, D. R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 96, 835–876 (1996).

58. Molander, G. A. & Ellis, N. Organotrifluoroborates: protected boronic acids that expand the versatility of the Suzuki coupling reaction. Acc. Chem. Res. 40, 275–286 (2007).

59. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetallation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

60. Yasu, Y., Koike, T. & Akita, M. Visible light-induced selective generation of radicals from organoborates by photoredox catalysis. Adv. Synth. Catal. 354, 3414–3420 (2012).

61. Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

62. Parida, S. K. et al. Single electron transfer-induced redox processes involving N-(Acryloyl)phthalimides. ACS Catal. 11, 1640–1683 (2021).

63. Ma, S. Transition metal-catalyzed/mediated reaction of allenes with a nucleophilic functionality connected to the α-carbon atom. Acc. Chem. Res. 36, 701–712 (2003).

64. Cirmesia, M. A. & Yoon, T. F. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 6, 5426–5434 (2015).

65. Luo, J. & Zhang, J. Donor-acceptor fluorophores for visible-light-promoted organic synthesis: photoredox/Ni dual catalytic C(sp3)–C(sp2) cross-coupling. ACS Catal. 6, 873–877 (2016).

66. Cheng, J.-P. et al. Heterolytic and homolytic N–H bond dissociation energies of 4-substituted hantzsch 2,6-dimethyl-1,4-dihydropyridines and the effect of one-electron transfer on the N–H bond activation. J. Org. Chem. 65, 3853–3857 (2000).

67. MacLeod, K. C., Conway, J. L., Patrick, B. O. & Smith, K. M. Exploring chromium(III)-alkyl bond homolysis with CpCr[(ArNCMe)2CH]R complexes. J. Am. Chem. Soc. 132, 17325–17334 (2010).

68. Inoue, M. & Nakada, M. Studies into asymmetric catalysis of the Nozaki–Hiyama–Kishi reaction. Angew. Chem. Int. Ed. 45, 252–255 (2005).

Acknowledgements
We are grateful for financial support from the National Natural Science Foundation of China (22171231, Z.W.), the China Postdoctoral Science Foundation (2021M692878, F.-H.Z.), and Zhejiang Leading Innovative and Entrepreneur Team Introduction Program (2020R01004). We thank Instrumentation and Service Center for Molecular Science and Physical Sciences at Westlake University for the assistance in measurement/data interpretation. We thank Dr. Xiaohuo Shi, Dr. Yijuan Chen, Dr. Zhong Chen, and Dr. Danyu Gu from Instrumentation and Service Center for Molecular Sciences at Westlake University for assistance in mechanistic study.

Author contributions
F.-H.Z. and X.G. contributed equally to this work. F.-H.Z. and Z.W. conceived this work; F.-H.Z., X.G., and X.Z. designed and conducted all the experiments; F.-H.Z. and Z.W. wrote the manuscript.

Competing interests
The authors declare no competing interest.
Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-32614-4.

Correspondence and requests for materials should be addressed to Zhaobin Wang.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022