An existential \emptyset-definition of $\mathbb{F}_q[[t]]$ in $\mathbb{F}_q((t))$

Will Anscombe and Jochen Koenigsmann

Abstract

We show that the valuation ring $\mathbb{F}_q[[t]]$ in the local field $\mathbb{F}_q((t))$ is existentially definable in the language of rings with no parameters. The method is to use the definition of the henselian topology following the work of Prestel-Ziegler to give an $\exists\mathbb{F}_q$-definable bounded neighbourhood of 0. Then we ‘tweak’ this set by subtracting, taking roots, and applying Hensel’s Lemma in order to find an $\exists\mathbb{F}_q$-definable subset of $\mathbb{F}_q[[t]]$ which contains $t\mathbb{F}_q[[t]]$. Finally, we use the fact that \mathbb{F}_q is defined by the formula $x^q - x = 0$ to extend the definition to the whole of $\mathbb{F}_q[[t]]$ and to rid the definition of parameters.

Several extensions of the theorem are obtained, notably an $\exists\emptyset$-definition of the valuation ring of a non-trivial valuation with divisible value group.

1 Introduction

This paper deals with questions of definability in power series fields. Unless stated otherwise, all definitions will be in the language L_{ring} of rings. Let $q = p^k$ be a power of a prime and let $\mathbb{F}_q((t))$ be the field of formal power series over the finite field \mathbb{F}_q; sometimes this is called the field of Laurent series over \mathbb{F}_q. The ring $\mathbb{F}_q[[t]]$ of formal power series is the valuation ring of the t-adic valuation on $\mathbb{F}_q((t))$.

In section 2 of this paper we prove the following theorem.

Theorem 1.1. $\mathbb{F}_q[[t]]$ is existentially definable in $\mathbb{F}_q((t))$ using no parameters.

This result fits into a long history of definitions of valuation rings in valued fields. In the particular case of power series fields, a lot is already known.

Observation 1.2. $K[[t]]$ is not $\exists\emptyset$-definable in $K((t))$ for $K = \mathbb{Q}_p, \mathbb{C}$.

Proof. Let $K((t))^P := \bigcup_{n<\omega} K((t^{1/n}))$ be the field of Puiseux series and let $K[[t]]^P := \bigcup_{n<\omega} K[[t^{1/n}]]$. If $K[[t]]$ is $\exists\emptyset$-definable in $K((t))$ then $K[[t]]^P$ is $\exists\emptyset$-definable in $K((t))^P$ by the same formula. If $K = \mathbb{C}$ then, by Puiseux’s Theorem, $\mathbb{C}((t))^P$ is algebraically closed and thus no infinite co-infinite subsets are definable. In particular, $\mathbb{C}[[t]]^P$ is not definable.

Now let $K = \mathbb{Q}_p$ and let ϕ be an existential formula (with no parameters). Suppose that ϕ defines $\mathbb{Q}_p[[t]]$ in $\mathbb{Q}_p((t))$; then in $\mathbb{Q}_p((t))^P$ the formula ϕ defines $\mathbb{Q}_p[[t]]^P$, which is a proper subring. Note also that \mathbb{Q}_p is contained in this definable set. The field $\mathbb{Q}_p((t))^P$ is

Most of this research forms part of the first author’s doctoral thesis, which was supported by EPSRC and completed under the supervision of the second author.
is p-adically closed, thus $\mathbb{Q}_p \preceq \mathbb{Q}((t))^{P_x}$. Thus ϕ defines \mathbb{Q}_p in \mathbb{Q}_p, which is not a proper subset. This contradicts the elementary equivalence of \mathbb{Q}_p and $\mathbb{Q}_p((t))^{P_x}$. □

In the field \mathbb{Q}_p the valuation ring \mathbb{Z}_p is $\exists \forall \emptyset$-definable by the formula $\exists y \ 1 + x^l p = y^l$, for any prime $l \neq p$. This formula is not, however, uniform in p. Analogies between \mathbb{Q}_p and $\mathbb{F}_p((t))$ naturally suggest the first, ‘folkloric’ definition of $\mathbb{F}_q[[t]]$ in $\mathbb{F}_q((t))$, which is given in the following fact.

Fact 1.3. $\mathbb{F}_q[[t]]$ is defined in $\mathbb{F}_q((t))$ by the existential formula $\exists y \ 1 + x^l t = y^l$, for any prime l such that $l \nmid q$.

Proof. Let $O := \mathbb{F}_q[[t]]$ denote the valuation ring and $M := tO$ the maximal ideal. Suppose that $x \in O$. Clearly $1 + x^l t \in 1 + M = (1 + M)^l$ by henselianity. Conversely, suppose x is such that $v_t x < 0$. Then $v_t x^l \leq -l$ and $v_t (x^l t) \leq 1 - l < 0$. Thus $v_t (1 + x^l t) = v_t (x^l t) = 1 + lv_t x$ cannot be divisible by l and there can exist no y such that $1 + x^l t = y^l$. □

Other definitions are also well-known. One example is an $\exists \forall \forall$-definition with no parameters due to Ax, from (1), which applies to all power series fields.

Fact 1.4. (Implicit in (1)) Let F be any field. Then $F[[t]]$ is $\exists \forall \forall \emptyset$-definable in $F((t))$.

Another definition, in even greater generality, which uses no parameters is due to the second author and is from (4). However, this definition is not existential.

Fact 1.5. (Lemma 3.6, (4)) Let F be any field and suppose that O is an henselian rank 1 valuation ring on F with a non-divisible value group. Then O is \emptyset-definable.

Recent work of Cluckers-Derakhshian-Leenknegt-Macintyre on the uniformity of definitions of valuation rings in henselian valued fields includes the following theorem in the expanded language $\mathcal{L}_{\text{ring}} \cup \{P_2\}$, where the Macintyre predicate P_2 is interpreted as the set of squares.

Fact 1.6. (Theorem 3, (2)) There is an existential formula ϕ in $\mathcal{L}_{\text{ring}} \cup \{P_2\}$ which defines the valuation ring in all henselian valued fields K with finite or pseudo-finite residue field of characteristic not equal to 2.

One consequence of Theorem 1.1 is in the study of definability in $\mathbb{F}_q((t))$: it reduces questions of existential definability in the language of valued fields (for example $\mathcal{L}_{\text{ring}}$ expanded with a unary predicate for the valuation ring) to existential definability in $\mathcal{L}_{\text{ring}}$ conservatively in parameters; i.e. without needing more parameters.

It is famously unknown whether or not the theory of $\mathbb{F}_q((t))$ is decidable, whereas \mathbb{Q}_p is decidable by the work of Ax-Kochen and Ershov. In (3) Denef and Schoutens prove that Hilbert’s 10th problem has a positive solution in $\mathbb{F}_q[[t]]$ (in the language $\mathcal{L}_{\text{ring}} \cup \{t\}$ of discrete valuation rings) on the assumption of Resolution of Singularities in characteristic p. As a consequence of Theorem 1.1 we prove in Corollary 3.3 that Hilbert’s 10th problem in $\mathcal{L}_{\text{ring}}$ has a solution over $\mathbb{F}_q((t))$ if and only if it has a solution in $\mathbb{F}_q[[t]]$. Of course, the analogous result for the language $\mathcal{L}_{\text{ring}} \cup \{t\}$ follows from the ‘folkloric’ definition in Fact 1.3.

As an imperfect field, $\mathbb{F}_p((t))$ cannot be model complete in the language of rings; however it is still unknown whether it is model complete in a relatively ‘nice’ expansion of that language, for example some analogy of the Macintyre language (see (5)) suitable for positive characteristic.
2 The \exists-\emptyset-definition of $\mathbb{F}_q[[t]]$ in $\mathbb{F}_q((t))$

Let v_t be the t-adic valuation on $\mathbb{F}_q((t))$. The valuation ring of v_t is the ring $\mathbb{F}_q[[t]]$ of formal power series which has a unique maximal ideal $t\mathbb{F}_q[[t]]$. The value group of v_t is \mathbb{Z} and the residue field is \mathbb{F}_q. Importantly, the valued field $(\mathbb{F}_q((t)), \mathbb{F}_q[[t]])$ is henselian.

2.1 Spheres and balls in valued fields

We briefly make a few definitions and notational conventions. Let (K, \mathcal{O}) be a valued field, let v be the corresponding valuation, and let v_K denote the value group.

Definition 2.1. For $n \in v_K$ and $a \in K$, we let

1. $S(n) := v^{-1}(\{n\})$ be the set of elements of value n,
2. $B(n; a) := a + v^{-1}(\langle n, \infty \rangle)$ be the open ball of radius n around a, and
3. $\overline{B}(n; a) := a + v^{-1}(\langle n, \infty \rangle)$ be the closed ball of radius n around a.

We let \sqcup denote a disjoint union.

Lemma 2.2. Let $n \in vK$. Then

1. $B(n; 0) \subseteq S(n) - S(n)$,
2. $B(n; 0) = S(n) \cup B(n; 0)$, and
3. $B(n; 0) - B(n; 0) = \overline{B}(n; 0)$.

Proof.

1. Let $x \in B(n; 0)$ and let $y \in S(n)$. Then $v(y) = n < v(x)$, so that $v(x - y) = n$ (by an elementary consequence of the ultrametric inequality) and $x - y \in S(n)$. Thus $x = x - y + y \in S(n) - S(n)$.

2. Let $x \in \overline{B}(n; 0)$. Then either $v(x) = n$ or $v(x) > n$.

3. Let $x, y \in \overline{B}(n; 0)$. By the ultrametric inequality $v(x - y) \geq n$. Thus $x - y \in \overline{B}(n; 0)$. \(\square\)

2.2 An \exists-definable filter base for the neighbourhood filter of zero

Following Prestel and Ziegler in (7), we give the definition of a t-henselian field. From another paper of Prestel ((6)), we recall a definition of the t-henselian topology (in the context of t-henselian non-separably closed fields). We obtain an \exists-definable bounded neighbourhood of zero. For more information on t-henselian fields, see (7).

For $n \in \mathbb{N}$ and any subset $U \subseteq K$, we denote $x^{n+1} + x^n + U[x]^{n-1} := \{x^{n+1} + x^n + u_{n-1}x^{n-1} + \ldots + x_0 : u_i \in U\}$.

Definition 2.3. Let K be any field. We say that K is t-henselian if there is a field topology \mathcal{T} on K induced by an absolute value or a valuation with the property that, for each $n \in \mathbb{N}$, there exists $U \in \mathcal{T}$ such that $0 \in U$ and such that each $f \in x^{n+1} + x^n + U[x]^{n-1}$ has a root in K.

3
The following definition of the t-henselian topology from (1) corrects an earlier definition given in (3). To define a group topology, we mean that a filter base of the filter of neighbourhoods of zero is a definable family.

Let $D := D_x$ denote the formal derivative with respect to the variable x.

Lemma 2.4. (Proof of Lemma, (6)) Suppose that K is t-henselian and not separably closed. Let $f \in K[x]$ be a separable irreducible polynomial without a zero in K. Let $a \in K \setminus Z(Df)$ be any element which is not a zero of the formal derivative of f. Let $U_{f,a} := f(K)^{-1} - f(a)^{-1} = \{ \frac{1}{f(x)} - \frac{1}{f(a)} \mid x \in K \}$. Then $U := \{ c \cdot U_{f,a} \mid c \in K^* \}$ is a base for the filter of open neighbourhoods around zero in the (unique) t-henselian topology.

We prove a simple consequence of the Lemma.

Proposition 2.5. Suppose that $C \subseteq K$ is a relatively algebraically closed subfield of K which is not separably closed. There exists $V \subseteq K$ which is an \exists-C-definable bounded neighbourhood of 0 in the t-henselian topology.

Proof. We choose $f \in C[x]$ to be non-linear, irreducible, and separable. Let $n := \deg(f)$; thus $\deg(Df) \leq n - 1$. If $|C| > n - 1$ then we may choose $a \in C \setminus Z(Df)$. On the other hand, if C is a finite field, then C allows separable extensions of degree 2. So we may choose f to be of degree 2; whence Df is of degree ≤ 1 and again there exists $a \in C$ which is not a root of Df. Let $V := U_{f,a} = f(K)^{-1} - f(a)^{-1}$. Clearly V is \exists-C-definable. As discussed in [Lemma 2.4] V is a bounded neighbourhood of 0.

2.3 An \exists-F-definable set between O and M in $F((t))$

Now let $K := F((t))$ be the field of formal power series over a field F. Let v be the t-adic valuation, let $O := F[[t]]$ be the valuation ring of v, let $M := tO$ be its maximal ideal, and let $vK = Z$ be its value group. Note that (K, O) is henselian. Let $C \subseteq K$ be any subset. Let $P := S(1)$ be the set of elements of value 1; thus P is the set of uniformisers.

In the following proposition we show how to ‘tweak’ a definable bounded neighbourhood of 0 until we obtain a subset of O containing M, in such a way as to preserve definability.

Proposition 2.6. Suppose that $V \subseteq K$ is an \exists-C-definable bounded neighbourhood of 0.

1. There exists $W \subseteq K$ which is bounded, \exists-C-definable, and is such that $P \subseteq W$.

2. There exists $X \subseteq K$ which is bounded, \exists-C definable, and is such that $M \subseteq X$.

3. There exists $Y \subseteq K$ which is bounded by O, \exists-C-definable, and is such that $M \subseteq Y$.

Proof.

1. V is a neighbourhood of 0. Let $n \in Z$ be such that $B(n; 0) \subseteq V$. Without loss of generality, we suppose that $n \geq 0$. Choose any $m > n$; then $P^m \subseteq S(m) \subseteq B(n; 0) \subseteq V$. Let $\phi(x)$ be the formula expressing $x^m \in V$, and let $W := \phi(K)$ be the set defined by ϕ in K. Note that W is \exists-C-definable, and $P \subseteq W$.

It remains to show that W is bounded. Since V is bounded, there exists $l \in Z$ such that $V \subseteq B(l; 0)$. Let $l' := \min\{l, -1\}$ and let $b \notin B(l'; 0)$. Since $vb \leq l' \leq -1 < 0$, we have that $vb^m = mvb \leq vb \leq l' \leq l$. Thus $b^m \notin V$ and

$$ (x^m \in V \implies x \in B(l'; 0)) . $$

So $W \subseteq B(l'; 0)$.
2. Let \(W' := W \cup \{0\} \) and set \(X := W - W' \). Clearly \(X \) is bounded and \(\exists \mathcal{C} \)-definable.

By Lemma 2.2, we see that \(B(1;0) \subseteq S(1) - S(1) = \mathcal{P} - \mathcal{P} \subseteq W - W \subseteq X \). Also \(\mathcal{P} \subseteq W - 0 \subseteq X \). Thus \(\mathcal{M} = \hat{B}(1;0) = \mathcal{P} \cup B(1;0) \subseteq X \).

3. \(X \) is bounded but contains \(\mathcal{M} \), so there exists \(h \in \mathbb{N} \) such that \(X \subseteq B(-h;0) \). Let \(\psi(x) \) be the formula expressing \(x^h \in X \), and set \(Y := \psi(K) - \psi(K) \). Observe that \(Y \) is \(\exists \mathcal{C} \)-definable. It remains to show that \(Y \) is bounded by \(\mathcal{O} \) and that \(\mathcal{M} \subseteq Y \).

If \(va \leq -1 \) then \(va^h = hva \leq -h \). Thus if \(va \leq -1 \), then \(a^h \notin B(-1,0) \supseteq X \) and \(a \notin \psi(K) \). Therefore \(\psi(K) \subseteq \mathcal{O} \). By Lemma 2.2, \(Y = \psi(K) - \psi(K) \subseteq \mathcal{O} - \mathcal{O} = \mathcal{O} \).

Since \(P^h \subseteq S(h) \) (where \(P^h \) is the set of \(h \)-th powers of elements of \(P \)) and \(S(h) \subseteq \mathcal{M} \subseteq X \); we have that \(\mathcal{P} \subseteq \psi(K) \). Thus \(\mathcal{P} - \mathcal{P} \subseteq \psi(K) - \psi(K) \). By Lemma 2.2, \(B(1;0) \subseteq \mathcal{P} - \mathcal{P} \); thus \(B(1;0) \subseteq \psi(K) - \psi(K) \). Since \(0^h = 0 \in \mathcal{M} \subseteq X \) and \(0 \notin \psi(K) \) and \(\mathcal{P} - 0 \subseteq \psi(K) - \psi(K) \). By another application of Lemma 2.2, this means that \(\mathcal{M} = \mathcal{P} \cup B(1;0) \subseteq \psi(K) - \psi(K) = Y \), as required.

\[\square \]

2.4 The \(\exists \mathcal{O} \)-definition of \(\mathbb{F}_q[[t]] \) in \(\mathbb{F}_q((t)) \)

Finally, we consider the special case where \(F \) is the finite field \(\mathbb{F}_q \) for \(q \) a prime power. Thus we fix \(K := \mathbb{F}_q((t)) \) and \(\mathcal{O} := \mathbb{F}_q[[t]] \).

Lemma 2.7. There exists an \(\exists \mathcal{F}_q \)-definable bounded neighbourhood of 0.

Proof. \(\mathbb{F}_q \subseteq K \) is relatively algebraically closed in \(K \) and is not separably closed. By Proposition 2.5, there exists \(V \) with the required properties. \(\square \)

Proposition 2.8. \(\mathcal{O} \) is \(\exists \mathcal{F}_q \)-definable in \(K \).

Proof. We combine Lemma 2.7 and Proposition 2.6 to obtain an \(\exists \mathcal{F}_q \)-definable set \(Y \) which contains \(\mathcal{M} \) and is bounded by \(\mathcal{O} \). Note that \(\mathbb{F}_q \) is an algebraic set defined by the formula \(x^a - x^b = 0 \) in \(K \). Let \(\chi(x) := \exists y(y^a - y^b = 0 \wedge x \in y + Y) \). This is obviously an \(\exists \mathcal{F}_q \)-formula. Since \(\mathcal{O} = \mathbb{F}_q + \mathcal{M} \subseteq Y \subseteq \mathcal{O} \), it is clear that \(\chi(K) = \mathcal{O} \). \(\square \)

We will improve Proposition 2.8 by removing the parameters. In the definition of the set \(U_{f,a} \) we used \(a \) and the coefficients of \(f \) as parameters. All of these come from \(\mathbb{F}_q \), but not necessarily from \(\mathbb{F}_p \). Although elements of \(\mathbb{F}_q \) are not closed terms, they are algebraic over \(\mathbb{F}_p \). We use this algebraicity and a few simple tricks to find an existential formula with no parameters which defines \(\mathcal{O} \).

Fact 2.9. We state a simple consequence of Euclid’s famous argument about the infinitude of the primes. Let \(\{p_i|i \in I\} \) be a finite set of primes. There exists another prime \(p' \leq \prod_{i \in I} p_i + 1 \) which is not in the set \(\{p_i|i \in I\} \).

Now let \(k \in \mathbb{N} \) and let \(P \) be the set of primes that divide \(k \). Of course \(\prod_{p \in P} p \leq k \).

By the previous remark, there exists another prime \(p' \notin P \) such that \(p' \leq \prod_{p \in P} p + 1 \). If \(p' > k \) then \(k = \prod_{p \in P} p \) and \(p' = k + 1 \). Thus \(p' \leq k + 1 \). Thus the least prime \(p' \) not dividing a natural number \(k \) is no greater than \(k + 1 \). Of course \(k + 1 \) is a very bad upper bound for \(p' \) in general; although if \(k = 1,2 \) then \(p' = k + 1 \).

Lemma 2.10. There exists an \(\exists \mathcal{O} \)-definable bounded neighbourhood of 0.
Proof. We seek a polynomial \(f \in \mathbb{F}_p[x] \) which is irreducible in \(\mathbb{F}_q[x] \) and is such that not all elements of \(\mathbb{F}_q \) are roots of \(Df \), i.e. \(x^q - x \not\equiv Df \).

Write \(q = p^k \) and let \(l \) be the least prime not dividing \(k \). By [Fact 2.9] \(l \leq k + 1 \); consequently \(l \leq p^k = q \). Let \(f \in \mathbb{F}_p[x] \) be an irreducible polynomial of degree \(l \). Since \(l \nmid k \), \(f \) is still irreducible in \(\mathbb{F}_q[x] \). Furthermore, \(Df \) is of degree \(\leq l - 1 < q \). Thus it cannot be the case that every element of \(\mathbb{F}_q \) is a zero of \(Df \). For any \(a \in \mathbb{F}_q \) which is not a zero of \(Df \), \(U_{f,a} = f(K)^{-1} - f(a)^{-1} \) is an \(\exists \mathbb{F}_q \)-definable bounded neighbourhood of 0.

We note that the only parameter in this definition not from \(\mathbb{F}_p \) is \(0 \). Thus it cannot be the case that every element of \(\mathbb{F}_q \) is a zero of \(Df \). For any \(a \in \mathbb{F}_q \) which is not a zero of \(Df \), \(U_{f,a} = f(K)^{-1} - f(a)^{-1} \) is an \(\exists \mathbb{F}_q \)-definable bounded neighbourhood of 0. We note that the only parameter in this definition not from \(\mathbb{F}_p \) is \(a \).

The union of finitely many bounded neighbourhoods of 0 is also a bounded neighbourhood of 0. Thus

\[
\zeta(y) := \exists y \ (y^q - y \equiv 0 \land -Df(y) \equiv 0 \land x \in U_{f,y})
\]

is an \(\exists \mathbb{F}_p \)-formula which defines the union

\[
V := \bigcup \{ U_{f,a} \mid a \in \mathbb{F}_q, Df(a) \neq 0 \}.
\]

Finally note that each element of \(\mathbb{F}_p \) is the image of a closed term; thus each remaining parameter can be replaced by a closed term and we are left with an \(\exists \emptyset \)-definition of \(V \). \(\square \)

Remark 2.11. Here is an alternative method to find an irreducible separable polynomial \(f \in \mathbb{F}_p[x] \) and an element \(a \in \mathbb{F}_p \) which is not a root of \(Df \).

Let \(l \) be a prime such that \(p \nmid l \nmid k \). Let \(g \in \mathbb{F}_p[x] \) be any irreducible polynomial of degree \(l \). Since \(l \nmid k \), \(g \) is still irreducible over \(\mathbb{F}_q \). Let \(\alpha \) be a root of \(g \) in a field extension. Either the coefficient of \(x^{l-1} \) in \(g \) is zero; or else we consider \(h := g(x - 1) \), which is the minimal polynomial of \(\alpha + 1 \). The coefficient of \(x^{l-1} \) in \(h \) is then \(l \neq 0 \). Thus we may assume that the \(x^{l-1} \) term in \(g \) is non-zero. The polynomial \(f := x^l g(1/x) \) is the minimal polynomial of \(1/\alpha \) and has non-zero linear term. Therefore \(Df(0) \neq 0 \). Thus \(U_{f,0} \) is an \(\exists \mathbb{F}_p \)-definable bounded neighbourhood of 0. As before, elements of \(\mathbb{F}_p \) are closed terms, so we may remove all parameters from the definition.

Finally, we prove Theorem 1.1

Theorem 1.1. \(\mathcal{O} \) is \(\exists \emptyset \)-definable in \(K \).

Proof. From Lemma 2.10 we obtain an \(\exists \emptyset \)-definable bounded neighbourhood of 0. Using again Proposition 2.6 we obtain an \(\exists \emptyset \)-definable set \(Y \) which contains \(\mathcal{M} \) and is bounded by \(\mathcal{O} \). We define \(\chi \) as before:

\[
\chi(x) := \exists y \ (y^q - y \equiv 0 \land x \in y + Y).
\]

This is an \(\exists \)-formula with no parameters and it defines \(\mathcal{O} \). \(\square \)

Nevertheless the formula still depends on \(\mathbb{F}_q \) in several ways: our choices of \(m \) and \(h \) in Proposition 2.6 and our choice of \(f \) in Theorem 1.1 depend on \(\mathbb{F}_q \). The number \(q \) also appears directly in several of the formulas. All these factors tell us that \(\chi \) is highly non-uniform in \(q \). In fact, in recent as-yet-unpublished joint work of Cluckers, Derakhshan, Leenknegt, and Macintyre \((2) \) it is shown that no definition exists which is uniform in \(p \) or in \(k \) (where \(q = p^k \)).
Remark 2.12. With a little more effort we can be more explicit about the formula χ. Suppose for the moment that $K = \mathbb{F}_p((t))$. Let $\varphi := x^p - x$ and let $f := \varphi - 1$. Observe that $\varphi - 1$ is separable and irreducible in $K[x]$ and $Df(1) = D(\varphi)(1) = -1 \neq 0$. Working back through the formulas and rearranging, we find that

$$\chi(x) := \exists ab(x_i y_i)_{i=1}^4 \left(\varphi(x - a + b) \equiv 0 \land a^h x_i - x_2 \land b^h x_3 - x_4 \land \wedge f(y_i)(x_i^m - 1) - 1 \equiv 0 \right).$$

3 Extensions of the result

3.1 The field $\bigcup_{n \in \mathbb{N}} \mathbb{F}_q((t^{1/n}))$ of Puiseux series

Let $K^{\text{P}} := \bigcup_{n \in \mathbb{N}} \mathbb{F}_q((t^{1/n}))$ denote the field of Puiseux series over \mathbb{F}_q, where $(t^{1/n})_{n \in \mathbb{N}}$ is a compatible system of n-th roots of t (for $n \in \mathbb{N}$). Note that K^{P} can be formally defined as a direct limit. Let $O^{\text{P}} := \bigcup_{n \in \mathbb{N}} \mathbb{F}_q[[t^{1/n}]]$ denote the valuation ring of the t-adic valuation. Note that the value group is \mathbb{Q}.

The following theorem is the first example of an \exists-formula of a non-trivial valuation ring with divisible value group.

Theorem 3.1. O^{P} is $\exists-\emptyset$-definable in K^{P}.

Proof. By Theorem 1.1 we may let χ be an \exists-formula (with no parameters) which defines O in K. In each field $\mathbb{F}_q((t^{1/n}))$ the formula χ defines the valuation ring $\mathbb{F}_q[[t^{1/n}]]$ since each of these fields is isomorphic to $\mathbb{F}_q((t))$. In the union, χ defines the union of the valuation rings (in any union of structures an existential formula defines the unions of sets that it defines in each of the structures). Thus χ defines $O^{\text{P}} = \bigcup_{n \in \mathbb{N}} \mathbb{F}_q[[t^{1/n}]]$, as required. \square

3.2 The perfect hull $\mathbb{F}_q((t))^{\text{perf}}$

We still denote $K := \mathbb{F}_q((t))$. Let $K^{\text{perf}} := \bigcup_{n \in \mathbb{N}} \mathbb{F}_q((t^{p^{-n}}))$ be the **perfect hull** of K; this is also formally defined as a direct limit. Now we use Theorem 1.1 to existentially define the valuation ring $O^{\text{perf}} := \bigcup_{n < \omega} O^{p^{-n}}$ in K^{perf}.

Theorem 3.2. O^{perf} is $\exists-\emptyset$-definable in K^{perf}.

Proof. The proof is almost identical to the proof of Theorem 3.1 \square

3.3 Consequences for \exists-definability in \mathcal{L}_{val}

We return to the field $K := \mathbb{F}_q((t))$. The most important consequence of Theorem 1.1 is that questions of existential definability in \mathcal{L}_{val} reduce to questions of existential definability in $\mathcal{L}_{\text{ring}}$. Let $C \subseteq \mathbb{F}_q((t))$ be any subfield of parameters and let $\mathcal{L}_{\text{val}} := \mathcal{L}_{\text{ring}} \cup \{ O \}$ be the language of valued fields.

Proposition 3.3. Let $\alpha \in \mathcal{L}_{\text{val}}$ be an existential formula with parameters from C. Then there exists $\beta \in \mathcal{L}_{\text{ring}}$ with parameters in C such that α and β are equivalent modulo the theory of $\mathbb{F}_q((t))$.

7
Proof. Let $b = (b_i)_{i < q}$ be some indexing of the field \mathbb{F}_q such that $b_0 = 0$. Let ϕ be a quantifier-free formula in free variables $y = (y_i)_{i < q}$ expressing the quantifier-free type of b. We define
\[
\psi := \exists y \left(x \in \mathcal{O} \land \phi(y) \land \bigwedge_{0 < i < q} y_i + x \in \mathcal{O}^{-1} \right).
\]
We claim that ψ existentially defines \mathcal{M}. Let $a \in \mathcal{O}$. Then $a \in \mathcal{M}$ if and only if, for each $b \in \mathbb{F}_q^+$, $a + b \in \mathcal{O} \setminus \mathcal{M} = \mathcal{O}^+$; that is if and only if $K \models \psi(a)$. Thus ψ is an \exists-\emptyset-definition for \mathcal{M}. Consequently, $K \setminus \mathcal{O} = (\mathcal{M} \setminus \{0\})^{-1}$ is \exists-\emptyset-definable; and so \mathcal{O} is \forall-\emptyset-definable.

Since \mathcal{O} is both \forall-\emptyset-definable and \exists-\emptyset-definable, we may convert any \exists-C-formula α of \mathcal{L}_{val} into an \exists-C-formula β of $\mathcal{L}_{\text{ring}}$. \hfill \square

Corollary 3.4. Hilbert’s 10th problem has a solution over $\mathbb{F}_q((t))$ if and only if it does so over $\mathbb{F}_q[[t]]$, in any language which expands the language of rings.

Proof. Let ϕ be a quantifier-free formula with x the tuple of free-variables. Suppose that Hilbert’s 10th problem (H10) has a solution over $\mathbb{F}_q((t))$. In order to decide the existential sentence $\exists x \phi(x)$ in $\mathbb{F}_q[[t]]$ we apply our algorithm for $\mathbb{F}_q((t))$ to the sentence
\[
\exists x \left(\phi(x) \land \bigwedge_{x \in \mathcal{X}} \mathcal{O}(x) \right),
\]
where \mathcal{O} denotes the existential formula defining $\mathbb{F}_q[[t]]$ in $\mathbb{F}_q((t))$.

Conversely, suppose that H10 has a solution over $\mathbb{F}_q[[t]]$. By standard equivalences in the theory of fields we may assume that $\phi = f \equiv 0$ for some polynomial $f \in \mathbb{F}_p[x]$.

We need to find a quantifier-free formula which is realised in $\mathbb{F}_q[[t]]$ if and only if f has a zero in $\mathbb{F}_p((t))$. For a variable $x \in \mathcal{X}$ we let d_x denote the degree of f in x; and for any subtuple $\mathcal{X}' \subseteq \mathcal{X}$ we let $\mathcal{X}'' := (\mathcal{X} \setminus \mathcal{X}') \cup \{x^{-1} | x \in \mathcal{X}'\}$ be a new tuple formed from \mathcal{X} by inverting the elements of \mathcal{X}'. Then we set $f_{\mathcal{X}'} := f(\mathcal{X}'') \prod_{x \in \mathcal{X}'} x^{d_x}$. Importantly, $f_{\mathcal{X}'}$ is a polynomial. Finally we let
\[
\phi' := \bigvee_{\mathcal{X}' \subseteq \mathcal{X}} \left(f_{\mathcal{X}'} \equiv 0 \land \bigwedge_{x \in \mathcal{X}'} -x \equiv 0 \right).
\]

Then $\mathbb{F}_q((t)) \models \exists x f(x) \equiv 0$ if and only if $\mathbb{F}_q[[t]] \models \exists x \phi'(x)$. Therefore, in order to decide $\exists x \phi(x)$ in $\mathbb{F}_q((t))$ we apply our algorithm for $\mathbb{F}_q[[t]]$ to the existential sentence $\exists x \phi'(x)$. \hfill \square

A simple consequence of the ‘folkloric’ definition of $\mathbb{F}_q[[t]]$ from Fact 1.3 is that Corollary 3.4 holds for any language expanding $\mathcal{L}_{\text{ring}} \cup \{t\}$.

Note that, by the theorem of Denef-Schoutens in (3), Hilbert’s 10th problem has a positive solution in $\mathbb{F}_p[[t]]$ in the language $\mathcal{L}_{\text{ring}} \cup \{t\}$ on the assumption of Resolution of Singularities in positive characteristic.

If Hilbert’s 10th problem could be proved - outright - to have a positive solution in $\mathbb{F}_p[[t]]$ simply in the language of rings, then Corollary 3.4 would ‘lift’ that result to $\mathbb{F}_p((t))$.

8
References

[1] James Ax. On the undecidability of power series fields. *Proc. Amer. Math. Soc.*, 16:846, 1965.

[2] Raf Cluckers, Jamshid Derakshan, Eva Leenknegt, and Angus Macintyre. Uniformly defining valuation rings in henselian valued fields with finite and pseudo-finite residue field. *arXiv:1306.1802v1*, 2013.

[3] Jan Denef and Hans Schoutens. On the decidability of the existential theory of $\mathbb{F}_p[[t]]$. *Fields Inst. Commun.*, 33:43–60, 2003.

[4] Jochen Koenigsmann. Elementary characterization of fields by their absolute galois group. *Siberian Adv. Math.*, 14:16–42, 2004.

[5] Angus Macintyre. On definable subsets of p-adic fields. *J. Symbolic Logic*, 41:605–610, 1976.

[6] Alexander Prestel. Algebraic number fields elementarily determined by their absolute Galois group. *Israel J. Math.*, 73(2):199–205, 1991.

[7] Alexander Prestel and Martin Ziegler. Model-theoretic methods in the theory of topological fields. *J. Reine Angew. Math.*, 299 (300):318–341, 1978.

Will Anscombe
Lincoln College, Turl Street, Oxford OX1 3DR, UK
anscombe@maths.ox.ac.uk

Jochen Koenigsmann
Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, UK
koenigsmann@maths.ox.ac.uk