Letter

Endoscopic management of adolescent closed Cowper’s gland syringocele with holmium:YAG laser

Dear editor,

The term “syringocele” originated from Greek words “syringo” meaning tube and “cele” meaning swelling and was first coined by Maizels et al. [1] in 1983 to represent a spectrum of dilatation of the normal Cowper’s gland duct. They classified syringocele into four morphological types: Simple, perforate, imperforate, and ruptured. Melquist et al. [2] simplified the classification by dividing syringocele into two groups: Closed and open syringocele. Usually diagnosed in the pediatric population, only 10 cases of adult syringocele were reported in literature till 2007 [3]. Endoscopic management is preferred in most symptomatic adolescent patients and various energy sources employed for endoscopic marsupialization include cold knife urethrotomy, electrocautery, or holmium laser [4,5]. Use of holmium laser is reported only in three cases with maximum follow-up of up to 1 year [6–8]. We herein report three additional cases of adolescent closed syringocele, provide detailed technique of laser marsupialization, and report its long-term postoperative outcome. The study was approved by the University of Miami Ethics Committee (study ID: 20180511). All patients consented to treatment and also to utilize their information as a part of publication.

Case 1 is a 19-year-old male presented with a history of straining to void associated with progressively worsening and bothersome perineal discomfort after sitting for long periods of time for about 1 year. He was evaluated for perineal pain at an outside institution and was detected to have a midline Cowper’s duct cyst on computerized tomographic (CT) scan (Fig. 1). His uroflow was obstructed. He underwent endoscopic deroofing of the syringocele using holmium:YAG laser on an outpatient basis and was discharged home without a foley catheter (Fig. 2). He presented for follow-up after 6 weeks and reported that his symptoms had abated.

Case 2 is a 16-year-old male who presented with obstructive urinary symptoms and congenital phimosis. After circumcision, his obstructive urinary symptoms persisted and uroflow revealed Q_max of 11.3 mL/s with postvoid residual urine of 90 mL. On cystoscopy he was found to have closed syringocele. After endoscopic holmium:YAG laser incision of syringocele, he noted dramatic improvement in his urinary symptoms. His Q_max was 20.1 mL/s and residual urine reduced to 12 mL at 6-week follow-up. Thirteen years after the surgery, he remained asymptomatic.

Case 3 is a 13-year-old male who underwent CT scan for evaluation of lower abdominal pain and was detected to have syringocele. He had an intermittent urinary stream and terminal dribbling. His Q_max was 12.6 mL/s. After discussion with the parent and making them aware that the abdominal pain was unlikely to be due to the syringocele, the patient underwent endoscopic management. His postoperative uroflow at 6 weeks revealed Q_max of 18.9 mL/min. He remained asymptomatic at 4 years follow-up.

Under general anesthesia, cystoscopy was performed with 17 Fr sheath and a 30° telescope, and syringocele was identified (Fig. 2A). A 550-micron laser fiber was passed through working channel through a 5 Fr ureteric catheter to stabilize laser fiber. The most distal portion of syringocele bulging in urethra was initially incised with holmium laser.

Figure 1 Syringocele of the bulbourethral gland. (A) Axial imaging with syringocele pointed by the red arrow; (B) Sagittal imaging pointing the syringocele with the red arrow.
Endoscopic treatment was typically performed with the cold knife, diathermy hook, or cautery scissors [4,5]. Piedrahita and Palmer [8] were first to describe the use of holmium laser for endoscopic deroofing of syringocele. After these, there were two more case reports describing laser deroofing of syringocele. Taskovska and Hawlina [7] used 230-micron laser fiber at settings of 0.8 J and 6 Hz. None of these three case reports mentioned detail surgical technique to treat this relatively uncommon pathology [7]. We provided technical nuances to novice urologist. All the three previously reported cases had postoperative follow-up ranging from 6 to 12 months [6-8]. Two patients in our series completed 4- and 13-year follow-up. Our study thus demonstrates that the outcome of laser incision of syringocele is durable at long-term. In the literature, comparative data about the outcome of incision methods are scarce. The hemostatic nature of holmium laser definitely has an advantage over the cold knife. We believe that it also provides us confidence in avoiding postoperative urethral catheterization. Additional benefit of using the laser is that it also facilitates precise vaporization of syringocele wall, which we believe is likely to reduce risk of recurrence. Although ruptured syringocele can sometimes act as anterior urethral diverticulum, none of the patients had any symptoms of urethral diverticulum in long-term follow-up. Overall, the technique represents a simple and effective way of management of syringocele.

Based on our experience, we conclude that endoscopic deroofing of adolescent closed syringocele with holmium laser, can be performed in a safe and efficient manner without any complications and durable long-term outcome. Per-urethral foley catheter can be safely avoided in these patients after surgery.

Author contributions

Study design: Hemendra N. Shah.
Data acquisition: Maria F. Becerra, Abhishek Bhat.
Data analysis: Maria F. Becerra, Nicholas Smith.
Drafting of manuscript: Maria F. Becerra.
Critical revision of the manuscript: Hemendra N. Shah, Abhishek Bhat, Nicholas Smith.

Conflicts of interest

The authors declare no conflict of interest.

References

[1] Maizels M, Stephens FD, King LR, Firlit CF. Cowper’s syringocele: a classification of dilatations of Cowper’s gland duct based upon clinical characteristics of 8 boys. J Urol 1983;129:111–4.

[2] Melquist J, Sharma V, Sciullo D, McCaffrey H, Khan SA. Current diagnosis and management of syringocele: a review. Int Braz J Urol 2010;36:3–9.

[3] Kumar J, Kumar A, Babu N, Gautam G, Seth A. Cowper’s syringocele in an adult. Urol 2010;36:3.

[4] Bevers RF, Abbekerk EM, Boon TA. Cowper’s syringocele: symptoms, diagnosis and treatment of an unappreciated problem. J Urol 2000;163:782–4.

[5] Awad MA, Alwaal A, Harris CR, Zaid UB, Gaither TW, Osterberg EC, et al. Transurethral unroofing of a symptomatic imperforate Cowper’s syringocele in an adult male. Case Rep Urol 2016;2016:3743607. https://doi.org/10.1155/2016/3743607.

[6] Matta I, Chalhoub K, Abou Zahr R, Ghazal G, Huyghe E, Nohra J. A case of symptomatic Cowper’s syringocele in an adolescent male an indwelling catheter for 1–2 week might cause more harm in the long-term.

All the three previously reported cases had postoperative follow-up ranging from 6 to 12 months [6-8]. Two patients in our series completed 4- and 13-year follow-up. Our study thus demonstrates that the outcome of laser incision of syringocele is durable at long-term. In the literature, comparative data about the outcome of incision methods are scarce. The hemostatic nature of holmium laser definitely has an advantage over the cold knife. We believe that it also provides us confidence in avoiding postoperative urethral catheterization. Additional benefit of using the laser is that it also facilitates precise vaporization of syringocele wall, which we believe is likely to reduce risk of recurrence. Although ruptured syringocele can sometimes act as anterior urethral diverticulum, none of the patients had any symptoms of urethral diverticulum in long-term follow-up. Overall, the technique represents a simple and effective way of management of syringocele.

Based on our experience, we conclude that endoscopic deroofing of adolescent closed syringocele with holmium laser, can be performed in a safe and efficient manner without any complications and durable long-term outcome. Per-urethral foley catheter can be safely avoided in these patients after surgery.
adult male: diagnosis and management. J Endourol Case Rep 2019;5:56–9.

[7] Taskovska M, Hawlina S. Cowper’s syringocele in adolescent male: case report. J Endourol Case Rep 2017;3:130–3.

[8] Piedrahita YK, Palmer JS. Case report: Cowper’s syringocele treated with Holmium:YAG laser. J Endourol 2006;20:677–8.

[9] Campobasso P, Schieven E, Fernandes EC. Cowper’s syringocele: an analysis of 15 consecutive cases. Arch Dis Child 1996;75:71–3.

[10] Blasl F, Rösch WH, Koen M, Ardelean MA, Ebert AK. Cowper’s syringocele: a rare differential diagnosis of infravesical obstruction in boys and young adults. J Pediatr Urol 2017;13:52.e1–5. https://doi.org/10.1016/j.jpurol.2016.08.023.

Maria F. Becerra
Nicholas Smith
Abhishek Bhat
Hemendra N. Shah*
Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA

*Corresponding author.

E-mail address: drhemendrashah@yahoo.co.in (H.N. Shah)

24 November 2020