SOCLE OF A HAMILTONIAN GROUP

Sourav Koner and Biswajit Mitra

Department of Mathematics, The University of Burdwan, India 713104 & Department of Mathematics, The University of Burdwan, India 713104

ABSTRACT
The socle of a group G is the subgroup generated by all minimal normal subgroups of G. In this short note, we determine the socle of a Hamiltonian group explicitly.

1. Introduction

A group is called a Dedekind group if all of its subgroups are normal (see [RD (1897)]). Therefore, all abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group. The smallest example of Hamiltonian group is Q_8, the quaternion group of order 8. In both finite and infinite order cases, Dedekind and Baer have shown that every Hamiltonian group is a direct product of Q_8, a group of exponent 2, and a torsion abelian group in which all elements have odd order (see [BR (1933)], [HM (1999)]). In particular, Hamiltonian groups are locally finite, nilpotent of class 2, and solvable of length 2. In the present paper we prove the following theorem:

Theorem 1.1. If $H = Q_8 \oplus B \oplus D$, where B is an elementary abelian 2-group, and D is a torsion abelian group with all elements of odd order, then $\text{Soc}(H) \simeq \mathbb{Z}_2 \oplus B \oplus \mathbb{P}(D)$, where $\mathbb{P}(D)$ is the group generated by all the elements of D that have prime orders.

For a finite solvable group G, the socle is a product of elementary abelian p-groups for a collection of primes dividing the order of G. However, this may not include all primes that divide the order of G. This result follows from a well-known fact that the socle of a finite nilpotent group is a product of elementary abelian p-groups for the collection of primes dividing the order of the group. The main objective of above stated theorem is that it explicitly determines the socle of a Hamiltonian group. We prove theorem (1.1) shortly, before that we develop a few facts about proper essential subgroups (see [PG (1970)]).

Definition 1.2. A proper nontrivial subgroup E of a group G is said to be proper essential in G if $E \cap H \neq \{1_G\}$ for every nontrivial subgroup H of G.

Hereafter, we write E is a proper essential subgroup of G or E is proper essential in G if E satisfies definition (1.2).
2. Proper essential subgroups

Theorem 2.1. Let \(\{G_\omega\}_{\omega \in \Lambda} \) be a family of groups indexed by a nonempty set \(\Lambda \). Then \(\bigoplus_{\omega \in \Lambda} G_\omega \) has a proper essential subgroup if and only if some \(G_\omega \) has a proper essential subgroup.

Proof. Let \(G = \bigoplus_{\omega \in \Lambda} G_\omega \) and \(\omega_0 \in \Lambda \) be such that \(G_{\omega_0} \) has a proper essential subgroup \(E_{\omega_0} \). Let \(X = \bigoplus_{\omega \in \Lambda} X_\omega \), where \(X_{\omega_0} = E_{\omega_0} \) and \(X_\omega = G_\omega \) if \(\omega \neq \omega_0 \). We claim that \(X \) is a proper essential subgroup of \(G \). Let \(N \) be any nontrivial subgroup of \(G \) and let \((n_\omega)_{\omega \in \Lambda} \) be a nonzero element of \(N \). Clearly, \((n_\omega)_{\omega \in \Lambda} \subseteq X \) if \(n_{\omega_0} = 1_{G_{\omega_0}} \). If \(n_{\omega_0} \neq 1_{G_{\omega_0}} \), consider the cyclic group \(\langle n_{\omega_0} \rangle \). As \(E_{\omega_0} \cap \langle n_{\omega_0} \rangle \neq \{1_{G_{\omega_0}}\} \), we conclude that \(X \) is a proper essential subgroup of \(G \).

For the converse, assume that \(G \) has a proper essential subgroup \(E \) but \(G_\omega \) does not have a proper essential subgroup for all \(\omega \in \Lambda \). Observe that, for all \(\omega \in \Lambda \), we have either \(E \cap G_\omega \) is proper essential in \(G_\omega \) or \(G_\omega \subseteq E \). As \(G_\omega \) does not have any proper essential subgroup, it must be that \(G_\omega \subseteq E \) for all \(\omega \in \Lambda \), that is, \(G \subseteq E \), a contradiction.

Definition 2.2. Let \(G \) be a group. If \(G \) has a proper essential subgroup, we define \(\delta(G) \) to be the intersection of all proper essential subgroup of \(G \), and \(G \) otherwise.

Observe that \(\delta(G) \) is a characteristic subgroup of \(G \) and hence is normal in \(G \). Also, we have \(\delta(G) = G \) if \(G \) is a finite simple group, because, if \(G \) has a proper essential subgroup, then \(\delta(G) \) is a proper essential, therefore, proper non-trivial characteristic subgroup of \(G \), a contradiction. Now, if \(G \) is a finite group such that \(\text{Soc}(G) = G \), then \(G = \bigoplus_{\alpha=1}^n S_\alpha \), where each \(S_\alpha \) is a simple group for \(1 \leq \alpha \leq n \). Thus, applying theorem 2.1 we can conclude that \(G \) does not contain proper essential subgroup. In the following theorem, we establish that \(\delta \) commutes with the direct sum.

Theorem 2.3. If \(\{G_\omega\}_{\omega \in \Lambda} \) be a family of groups indexed by a nonempty set \(\Lambda \), then \(\delta(\bigoplus_{\omega \in \Lambda} G_\omega) = \bigoplus_{\omega \in \Lambda} \delta(G_\omega) \).

Proof. Let \(G = \bigoplus_{\omega \in \Lambda} G_\omega \), \(G' = \bigoplus_{\omega \in \Lambda} \delta(G_\omega) \), \(T = \{\omega \in \Lambda \mid \delta(G_\omega) = G_\omega\} \) and \(T' = \{\omega \in \Lambda \mid \delta(G_\omega) \neq G_\omega\} \). Clearly the sets \(T \) and \(T' \) are disjoint and \(T \cup T' = \Lambda \).

We have the following cases: (a) \(T \neq \emptyset \), \(T' = \emptyset \); (b) \(T = \emptyset \), \(T' \neq \emptyset \); (c) \(T \neq \emptyset \), \(T' \neq \emptyset \).

(a) : Since \(G \) does not have any proper essential subgroup (see theorem 2.1), we conclude that \(\delta(G) = G' \).

(b) : Let \((g_\omega)_{\omega \in \Lambda} \in \delta(G) \), \(\tau \in \Lambda \) be any element and \(E_\tau \) be any proper essential subgroup of \(G_\tau \). Consider \(X = \bigoplus_{\omega \in \Lambda} X_\omega \), where \(X_\omega = G_\omega \) for \(\omega \neq \tau \) and \(X_\tau = E_\tau \). Since \(X \) is proper essential in \(G \), we have \(g_\tau \in E_\tau \). As \(E_\tau \) was arbitrary we get \(g_\tau \in \delta(G_\tau) \). But \(\tau \) was arbitrarily chosen as well. Hence, \((g_\omega)_{\omega \in \Lambda} \in G' \), that is, \(\delta(G) \subseteq G' \). Now, let \(E \) be any proper essential subgroup of \(G \). Observe that for any \(\omega \in \Lambda \) we have either \(E \cap G_\omega \) is proper essential in \(G_\omega \) or \(G_\omega \subseteq E \). But either of the cases give us \(\delta(G_\omega) \subseteq E \). As \(\omega \) and \(E \) were arbitrary, we get that \(G' \subseteq \delta(G) \).

(c) : Let \((g_\omega)_{\omega \in \Lambda} \in \delta(G) \), \(\tau \in T' \) and \(E_\tau \) be any proper essential subgroup of \(G_\tau \). Consider \(X = \bigoplus_{\omega \in \Lambda} X_\omega \), where \(X_\omega = G_\omega \) for \(\omega \in \Lambda \setminus \{\tau\} \) and \(X_\tau = E_\tau \). Since \(X \) is proper essential in \(G \), we have \(g_\tau \in E_\tau \). As \(\tau \) was arbitrary in \(T' \), we get that \(g_\tau \in \delta(G_\tau) \) for all \(\tau \in T' \), that is, \(\delta(G) \subseteq G' \). Now, let \(E \) be any proper essential subgroup of \(G \). Observe that for any \(\omega \in T' \) we have either \(E \cap G_\omega \) is proper essential in \(G_\omega \) or \(G_\omega \subseteq E \). But either of the cases give us \(\delta(G_\omega) \subseteq E \). As \(\omega \) was arbitrary in \(T' \) and \(G_\lambda \subseteq E \) for all \(\lambda \in T \), we get that \(G' \subseteq \delta(G) \).
Lemma 2.4. If a torsion group G has a proper essential subgroup, then $\delta(G)$ is proper essential in G. Moreover, we have $\delta(G) = \mathbb{P}(G)$, where $\mathbb{P}(G)$ is the group generated by all the elements of G that have prime orders.

Proof. Assume on the contrary that $\delta(G)$ is not proper essential in G. Therefore, there exists a subgroup $H \neq \{1_G\}$ of G such that $H \cap \delta(G) = \{1_G\}$. If $h \in H \setminus \{1_G\}$ is such that $|h| = n$, then $\langle h \rangle \cap \delta(G) = \{1_G\}$. Thus, for each i with $1 \leq i \leq n - 1$, there exists at least one proper essential subgroup E_i of G such that $h^i \in E_i$. But this shows that $\langle h \rangle \setminus \{1_G\} \subseteq \bigcup_{i=1}^{n-1} E_i$, that is, $\left(\bigcap_{i=1}^{n-1} E_i \right) \cap \langle h \rangle = \{1_G\}$. As finite intersection of proper essential subgroups of G is again proper essential in G, we get that $\bigcap_{i=1}^{n-1} E_i$ is a proper essential subgroup of G which intersects $\langle h \rangle$ trivially, a contradiction.

Finally, if $g \in G$ be such that $g^p = 1_G$ for some prime p, then $g \in \delta(G)$. This shows that $\mathbb{P}(G) \subseteq \delta(G)$. Now, as $\mathbb{P}(G)$ is also proper essential in G and $\delta(G)$ is the intersection of all proper essential subgroups of G, we get that $\delta(G) \subseteq \mathbb{P}(G)$.

We now show that for a Hamiltonian group \mathbb{H}, $\text{Soc}(\mathbb{H})$ is the intersection of all proper essential subgroups of \mathbb{H}.

Theorem 2.5. If \mathbb{H} is a Hamiltonian group, then $\delta(\mathbb{H}) = \text{Soc}(\mathbb{H})$.

Proof. Let $\mathbb{H} = Q_8 \oplus B \oplus D$, where B is an elementary abelian 2-group, and D is a torsion abelian group with all elements of odd order. Now, applying theorem (2.1) we get that \mathbb{H} has a proper essential subgroup. Since \mathbb{H} is a torsion group, applying lemma (2.4) we conclude that $\delta(\mathbb{H})$ is a proper essential subgroup of \mathbb{H}. If N is any minimal normal subgroup of \mathbb{H}, then $N \cap \delta(\mathbb{H}) \neq \{1_H\}$ shows that $N \subseteq \delta(\mathbb{H})$. As N was arbitrary, we conclude that $\text{Soc}(\mathbb{H}) \subseteq \delta(\mathbb{H})$. As any nontrivial subgroup K of \mathbb{H} contains a minimal normal subgroup, we conclude that $\text{Soc}(\mathbb{H})$ is a proper essential subgroup of \mathbb{H}. Hence, we get that $\delta(\mathbb{H}) \subseteq \text{Soc}(\mathbb{H})$.

3. Proof of theorem 1.1.

Applying theorem (2.3) and (2.5), we conclude that $\text{Soc}(\mathbb{H}) = \delta(Q_8) \oplus \delta(B) \oplus \delta(D)$. We claim that $\delta(B) = B$. Because, if B possess a proper essential subgroup E, then, as all elements of B have order 2, we must have $b \in E$ for all $b \in B$. But this implies $E = B$. This shows that B does not contain any proper essential subgroup. Since, we have $\delta(Q_8) \simeq \mathbb{Z}_2$, so, applying lemma (2.4) we conclude that $\text{Soc}(\mathbb{H}) \simeq \mathbb{Z}_2 \oplus B \oplus \mathbb{P}(D)$.

References

R. Dedekind, Ueber Gruppen, deren sämtliche Theiler Normaltheiler sind, Math. Ann., 1897.
R. Baer, Situation der Untergruppen und Struktur der Gruppe, S. B. Heidelberg. Akad. Wiss., 1933.
D. S. Nymann, Dedikind groups, Pac. J. Math., 1967.
P. A. Griffith, Infinite Abelian group theory, Chicago Lectures in Mathematics, Univ. Chicago Press, 1970.
M. Hall, The theory of groups, Amer. Math. Soc., 1999.
D. M. Reboli, On the classification of generalized Hamiltonian groups, London Math. Soc. Lecture Note Ser., 1999.
J. McCarron, Hamiltonian groups with perfect order classes, Math. Proc. R. Ir. Acad., 2021.