A fatal case report of antibody-dependent enhancement of dengue virus type 1 following remote Zika virus infection

Ashley N. Bonheur1†, Sarah Thomas2†, Sara H. Soshnick1, Emily McGibbon3, Alan P. Dupuis II4, Rene Hul4, Sally Slavinski3, Paula E. Del Rosso3, Don Weiss3*, Danielle T. Hunt4, Megan E. McCabe1, Amy B. Dean4, Rebecca Folkerth2, Anne M. Laib2 and Susan J. Wong4

Abstract

Background: Dengue virus (DENV) is endemic in many parts of the world. Antibody dependent enhancement (ADE) in DENV infections occurs when a person with primary immunity is infected by a second, different DENV strain. Antibodies to Zika virus (ZIKV), which emerged in the Western Hemisphere in 2015, are cross reactive with DENV and theoretically could provoke ADE in a DENV naive individual.

Case presentation: DENV infection was suspected in a child who had recently returned from a one-month stay in the Dominican Republic. The child presented with fever, vomiting, abdominal pain, and hypovolemic shock. Volume and pressor resuscitation were unsuccessful, and the child died less than 24 h after hospitalization. Laboratory results suggested an early acute first DENV infection since serum, plasma, and spinal fluid had DENV1 detected by polymerase chain reaction (PCR), yet the serum lacked IgG antibodies to DENV nonstructural protein 1 (NS1) of all four DENV serotypes. This acute DENV infection occurred in the presence of a remote ZIKV infection as determined by antibodies to ZIKV NS1 envelope by multiplex microsphere immunoassay and an exceptionally high plaque reduction neutralization titer to ZIKV. ZIKV IgG avidity index was high, confirming a past infection. DENV1 RNA was detected in all ten organs and tissues examined by PCR. The severe and fatal complications reported here suggest that a remote ZIKV infection may provoke an exaggerated immune response leading to hypovolemic shock when primarily infected by DENV1.

Conclusion: We report the first known patient in the United States with a rapidly progressive and fatal case of travel-associated DENV in which prior exposure to ZIKV likely played a role in triggering an ADE phenomenon. This association of prior ZIKV immunity and subsequent new dengue infection is a worrisome phenomenon and an important contribution to the body of knowledge on immunity to flaviviruses.

Keywords: Dengue virus, Zika virus, Antibody dependent enhancement, Avidity assay, Case report

Background

Dengue infection (DENV) is the most common mosquito borne viral disease in the world [1]. DENV is a positive sense RNA virus in the Flaviviridae family, genus flavivirus, that occurs as one of four serotypes [2]. Dengue viruses are closely related to Zika virus (ZIKV): both are members of the Flaviviridae family and have...
mortality as a consequence of ADE following a ZIKV infection.

Case presentation
Patient’s clinical course
A previously healthy, United States born, Hispanic, school-aged female known to have sickle-cell trait presented to a New York City emergency department (ED) in August 2019 with a 4-day history of fever (maximum-38.4 °C), headache, abdominal pain, and vomiting. The patient was diagnosed with acute gastroenteritis and discharged home. She presented to a second emergency department 14 h later prompted by worsening abdominal pain and episodes of epistaxis, hematemesis, and black tarry stools. The patient had recently returned from a one month visit to the Dominican Republic two weeks prior to presentation (Fig. 1), during which it was reported that her cousin was hospitalized with dengue fever. Upon arrival to the second ED, she was afebrile (initial-36.6 °C, maximum-37.3 °C) with a pulse of 122 beats/min, blood pressure of 122/62 mm Hg, and a respiratory rate of 21 breaths/min. Her oxygen saturation was 85% in room air, which increased to 98% with 100% oxygen delivery via non-rebreather. Significant findings on physical examination were skin pallor, cold extremities with a prolonged capillary refill, weak pulses, waning and waning consciousness, and a distended abdomen with rebound tenderness. The patient was determined to be in hypovolemic and septic shock. Broad-spectrum antibiotics were administered, and resuscitation efforts were initiated.

Timeline of patient risk from travel to onset of symptoms, ED visit, hospitalization and death. Key clinical factors are listed above, and laboratory findings are presented below the days post onset.

Initial laboratory results were significant for hyponatremia (130 mEq/L), hyperkalemia (5.5 mEq/L), and a severe metabolic acidosis (bicarbonate 6 mEq/L, venous pH < 6.8 and lactate level 14.2 mmol/L). The white blood cell count was elevated at 32.9 k/µL with 61% neutrophils, 34% lymphocytes, and 3% immature granulocytes. The patient was anemic and thrombocytopenic with a hematocrit of 26.6% and a platelet count of 36 k/µL. Poikilocytosis (3+), burr cells (3+), anisocytosis (1+), macrocytosis (1+), spherocytosis (1+), and schistocytosis (1+) were noted, but no sickling. A malaria antigen test was negative and no parasites were noted on thick or thin blood smears. Blood urea nitrogen was 21 mg/dL and creatinine was 0.8 mg/dL, both elevated for the patient’s age. Liver enzymes were significantly elevated with an aspartate aminotransferase of 2137 U/L and alanine transaminase of 744 U/L, and her serum albumin was subnormal at <2.0 g/dL. Coagulation studies were
concerning for disseminated intravascular coagulation (DIC) with prolongation of her prothrombin time (PT) to 32.2 s, partial thromboplastin time (PTT) to 95.1 s, and an Internal Normalized Ratio (INR) of 3.2. Lactic acid dehydrogenase (4,171 U/L) and uric acid (9.6 mg/DL) were also abnormal. An initial portable chest radiograph revealed clear lungs and a computerized tomography (CT) scan with contrast of the abdomen was obtained due to the concern for an intraabdominal process. The CT scan revealed significant ascites, bilateral pleural effusions, a small pericardial effusion, thickening of the bowel, a collapsed inferior vena cava, lack of enhancement of the liver and spleen, and delayed nephrograms, all consistent with hypovolemic shock.

In the pediatric intensive care unit, the patient was intubated for altered mental status and worsening respiratory failure. Central venous and arterial access was obtained, and despite fluid resuscitation with both crystalloids and colloids, the patient became increasingly hypotensive with a narrow pulse pressure, requiring multiple vasopressors for blood pressure support. Repeat labs revealed worsening hyperkalemia (9.0 mEq/L) with refractory acidosis (bicarbonate <5 mEq/L, arterial lactate of 17 mmol/L). A repeat chest radiograph revealed increasing pleural effusions consistent with worsening capillary leak. Fulminant DIC developed exhibited by bleeding from the mouth, nares, mucosa, and the central line site. Repeat laboratory tests were consistent with a rapidly progressive coagulopathy with a PTT of > 300 s, PT of 53 s, INR of 6.0, fibrinogen level of 55 mg/dL, and D-Dimer of 2-43 μg/mL. The patient remained in catecholamine and fluid refractory shock despite the administration of packed red blood cells and fresh frozen plasma. Twelve hours after presentation to the second ED the patient suffered an asystole cardiac arrest. A bedside echocardiogram showed no evidence of pericardial tamponade. Despite all efforts the patient expired. Postmortem genetic testing confirmed the patient was heterozygous for hemoglobin AS (sickle cell trait).

Findings at autopsy

External examination revealed no rash. The oral and conjunctival membranes were pale. There were pleural and pericardial effusions, as well as a small amount of peritoneal fluid. The lungs were congested and edematous, with numerous, scattered, mucosal petechial hemorrhages along all bronchial branches. The epicardial surface also had scattered petechial hemorrhages and there were patchy, subendocardial hemorrhages of the left ventricle. The stomach mucosa was markedly erythematous, with associated dispersed patches of finely raised, lymphoid nodular stippling. The stomach, small and large intestines contained a small amount of blood. Sparse tissue hemorrhages were present within the peritoneal cavity and surrounded the adrenal glands, small intestine, and posterior uterus. There were no intraparenchymal adrenal gland hemorrhages. The mesenteric tissues had marked lymphadenopathy with associated patchy hemorrhagic congested areas. The spleen was enlarged and indurated, with slightly pale-pink, capsular discolorations. The liver parenchyma was congested. A discrete focus of acute parenchymal hemorrhage was noted within the pancreatic head, subjacent to the sphincter of Oddi. Throughout the body cavity, within the visceral fascial planes, there was marked subcutaneous emphysema. The brain was edematous and the leptomeninges were congested.
primarily adjacent to the superior sagittal sinus, in the distribution of the arachnoid granulations. The cerebrospinal fluid was bright red tinged.

Histopathologic examination was concordant with the gross findings of tissue and mucosal hemorrhage. Hemophagocytosis was seen in the lungs and bone marrow, there was marked sinusoidal congestion of the spleen, and red blood cell sickling (Fig. 2). Hepatocyte necrosis was present, and the kidneys showed many multifocal areas of tubule mineralization and marked edema of the glomeruli. The stomach had dense mucosal lymphocytic infiltration and prominent reactive lymphoid follicles. Hemophagocytosis was marked within intra-alveolar macrophages and among scattered bone marrow histiocytes. Sections of heart tissue did not show evidence of myocarditis.

Laboratory diagnosis

Whole blood, serum, cerebrospinal fluid (CSF), and fresh frozen organ tissue samples were collected 5- and 6-days post onset of symptoms and at autopsy (day 7). Molecular diagnostic testing was performed using an FDA approved, CDC developed 1-step real-time RT-PCR assay that detects and differentiates between the DENV serotypes 1, 2, 3, and 4 [14]. Real-time RT-PCR assays for the detection of ZIKV and Chikungunya virus were also performed [15, 16]. DENV1 was detected in whole blood, serum, cerebrospinal fluid, and in frozen tissue from ten organs (heart, lung, liver, spleen, kidney, adrenal gland, intestine, brain, stomach, and lymph node). The lowest cycle threshold (corresponding to the highest level of RNA) value was found in the liver, the tissue with the most marked pathologic changes (Table 1). The highest cycle threshold value was found in the heart where no significant histopathologic changes were detected. RT-PCR for ZIKV and Chikungunya were negative.

Commercial laboratory antemortem serology testing found Dengue Fever IgM = 1.73 (reference ranges: negative, < 0.80, equivocal 0.8–1.09, positive ≥ 1.10) and IgG = 7.59 (reference ranges: negative, ≤ 1.65, equivocal 1.66–2.83, positive ≥ 2.84). Commercial assays for dengue were developed and cleared by FDA prior to arrival.

![Fig. 2](image_url)

Fig. 2 Histopathology. Hematoxylin and eosin staining (magnification 400×): A Lung with alveolar macrophages containing intact erythrocytes (hemophagocytosis). B Spleen with markedly congested sinusoids. C Early, focal liver necrosis and sinusoidal hemorrhage. D Section of bone marrow with histiocyte containing intact erythrocytes (hemophagocytosis, green arrow) and red blood cell sickling (black arrow).
of Zika in the Western Hemisphere. The available DENV IgG assays are based on a broadly cross-reactive envelope protein and cannot differentiate between Flaviviruses. The above IgM result is consistent with acute DENV infection whereas the IgG result, as shown by further testing below, is likely explained by cross reaction from previous Zika infection.

At the Wadsworth Center total antibodies (IgG + IgA + IgM) to ZIKV and DENV were evaluated using a suspension phase microsphere immunoassay [17]. The test was developed, validated, and approved for clinical use by the New York State’s Clinical Laboratory Evaluation Program (CLEP). Serum collected 5 days and 6 days after onset had a high level of antibodies to Zika envelope and Zika NS1 yet lacked significant detectable antibodies to NS1 of the four dengue serotypes, thus ruling out a previous dengue infection (Fig. 3a).

Cross species plaque reduction neutralization tests (PRNT 90) were performed in Vero cells and showed an exceptionally high titer to ZIKV (>81,920) and lower titers to DENV1 (10,240) and DENV2 (2560) (Fig. 3b) [18]. Viral culture in Vero cells was attempted using plasma, spinal fluid and autopsy tissue. After two weeks no viral growth was detected.

An avidity index (AI) is a measure of IgG binding affinity that was developed to determine the amount of time passed since a flavivirus infection [19–21]. IgG antibodies mature over time becoming more selective through a process akin to natural selection [22]. Mutations in antibody-producing B lymphocytes create a pool from which non-neutralizing antibody producers are deselected [8, 23]. IgG avidity increases in a nearly linear manner achieving AI of about 50% at 6 months post infection. After 6 months IgG avidity will continue to increase sometimes reaching 80–90%; however, exposure to another flavivirus will also boost the AI to these levels. The Wadsworth Center has developed, validated, and received CLEP approval for an IgG avidity assay. Most adults living in dengue endemic areas have IgG avidity indices to dengue NS1 proteins in the 75–95% range [21]. The IgG AI for this patient was 85% to Zika envelope and 55% to Zika NS1, indicative of remote Zika infection > than 6 months prior to specimen collection.

Sample type	Days post onset	Dengue 1 Real-time PCR Cycle threshold
Whole blood*	5	34.83
Whole blood*	7	26.43
Serum**	6	28.17
CSF	7	28.88
Tissue A-Mesentery #1	7	34.83
Tissue B-Kidney	7	28.77
Tissue C-Thymus	7	24.19
Tissue D-Pancreas	7	28.92
Tissue E-Mesentery #2	7	28.60
Tissue F-Liver	7	19.04
Tissue G-Lung	7	21.80
Tissue H-Heart	7	30.64
Tissue I-Lymph Node	7	30.31
Tissue J-Spleen	7	24.77

*Screened for Zika and chikungunya viruses
**Screened for chikungunya virus

![Table 1](https://example.com/table1.png)

Fig. 3 a Multiplex microsphere immunoassay measurement of total antibodies to Zika envelope, Zika NS1, and the NS1 proteins of all four dengue serotypes are presented as the median fluorescence intensity (MFI) of 100 beads counted for each antigen coated beads on the Y axis. The target antigens are reported on the X axis. This multiplex analysis demonstrates past Zika infection. The dramatically lower level of antibodies to dengue NS1 proteins makes a past dengue infection unlikely. **b** Shows the virus being neutralized. Exceptionally high PRNT to Zika indicates past infection. The lower PRNT to DENV1 and DENV2 may indicate cross reaction of the Zika antibodies recognizing dengue since it is the envelope protein being neutralized.
IgG avidity to dengue was not performed for this patient since there were no significant levels of detectable IgG antibodies to the dengue NS1 proteins in the early acute infection.

Discussion and conclusions

We describe a case of fatal DHF/DSS due to DENV1 in a school-aged child whose exposure occurred in the Dominican Republic. Serologic evidence confirmed a prior ZIKV infection, but not a prior DENV infection which, along with the severity of the illness, was consistent with ADE.

Research has shown that the risk of DHF/DSS is elevated in the presence of preexisting DENV antibodies of a different serotype [8, 24, 25]. Since ZIKV antibodies are known to cross-react with DENV, it has been hypothesized that individuals with ZIKV immunity may be at risk for ADE when then exposed to DENV. Antibodies to ZIKV likely have a decreased capacity to neutralize DENV, but still have binding affinity. Immune complexes composed of ZIKV antibodies attached to DENV would have the ability to fix complement and bind to cell surface Fc receptors enabling virus entry into phagocytic cells. Enhanced viral replication ensues leading to more severe manifestations of disease [8].

Data from DENV outbreaks in Cuba in 1977 and 1981 support the ADE hypothesis. The 1977 outbreak was caused by DENV1 and resulted in an estimated 500,000 cases [26]. In 1981, DENV2 was the responsible strain and there were over 10,000 severe illnesses with 101 deaths in children [26]. A subsequent serosurvey found that the prevalence of DENV1 antibodies following the 1977 outbreak was 44.5%. Among 124 severely ill children who survived the 1981 outbreak, 98% had antibodies to both DENV1 and 2, supporting the notion that the presence of those antibodies placed children at a higher risk for severe disease [24]. Furthermore, no child aged 1–2 years old (born after the 1977 outbreak) was hospitalized during the 1981 outbreak [26].

Additional support for the ADE phenomenon comes from a safety and efficacy trial of Dengvaxia, a live attenuated tetravalent dengue vaccine, that was studied in the Philippines [27]. Analysis of the data revealed that children less than 9 years of age without previous DENV immunity who received vaccine were found to have an increased risk of hospitalization for severe disease [28]. Data from a Nicaraguan pediatric cohort has further suggested that dengue ADE occurs within a narrow range of pre-existing antibody titer which places children at the highest risk for severe illness in the immediate years following their initial DENV infection or vaccination [25].

DENV, and other non-endemic arboviruses, may not be considered by providers in the United States and familiarity with WHO guidelines is warranted in communities with frequent travel to flavivirus endemic countries [40]. Providers evaluating DENV compatible illnesses should obtain a detailed history including birthplace and recent travel. Early detection of signs of shock or other complications attributable to ADE DENV can help prevent a fatal outcome. DHF/DSS patients require acute intensive medical care and
aggressive fluid resuscitation is recommended based on a rising hematocrit, which did not occur in this child [40]. Treating DHF/DSS differs from the management of septic shock from other etiologies as early fluid resuscitation is part of the mainstay of the latter’s treatment. Without a high index of suspicion and or rapid assays to diagnose infection as well as prior immunity to DENV and or ZIKV, prompt and appropriate care remains a challenge.

We report the first known occurrence in a United States resident of DENV ADE precipitated by prior ZIKV immunity. As new and existing arboviruses emerge/reemerge it is important to understand how they may interact and the implications this has for both vaccine development and clinical care. Further research is required to decipher the immune responses to DENV, ZIKV, and other flaviviruses and to develop accurate rapid assays for clinical diagnosis.

Consent for publication
Written consent was obtained from the patient’s next of kin for publication of case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Division of Pediatric Critical Care Medicine, The Children’s Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA. 2 New York City Department of Health and Mental Hygiene, Queens, NY, USA. 3 Wadsworth Center, New York State Department of Health, Albany, NY, USA.

Received: 2 April 2021 Accepted: 27 July 2021

Acknowledgements
Not applicable.

Authors’ contributions
SW and DW is credited for the conceptualization of this manuscript. AB, ST, SS, RH, SHS, DW, MM, AD, RF, AL, SW performed the data curation. Formal analysis completed by AB, ST, AD, RH, DW, HD, AB, RF, AL, and SW. Investigation performed by AB, ST, SS, EM, SS, PR, DW, MM, RF, AL, and SW. DW administered this project. Methodology performed by ST, AD, RH, DH, AD, RF, AL, and SW. Supervision provided by AD, RF, MM, and SW. Visualization provided by DH and ST. Original draft written by AB, EM, SS, SHS, ST, DW, and SW. Writing-review and editing performed by AB, ST, SHS, EM, AD, RH, SS, PR, DW, DH, MM, AD, RF, AL, and SW. Manuscript revisions by DW and AD. All authors have read and approved the manuscript.

Funding
The PCR testing was supported in part by Cooperative Agreement Number NU50CK000423 funded by the Centers for Disease Control and Prevention. CDC did not contribute to the collection, analysis, interpretation of data, nor writing of this manuscript. The contents of the manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations
Ethics approval and consent to participate
The project was submitted to the New York State Department of Health Institutional Review Board and was exempted from review.

References
1. Bhatt S, Gething PW, Brady OJ, Messina JP, farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7 (PMID: 23563266).
2. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998;11:480–96. (PMID: 9665979).
3. Priyamvada L, Hudson W, Ahmed R, Wrammert J. Humoral cross-reactivity between Zika and dengue viruses: implications for protection and pathology. Emerging Microbes Infect. 2017;6:1-6 (PMID: 28487557).
4. Jen J, Shresta S. Antigenic cross-reactivity between Zika and dengue viruses: is it time to develop a universal vaccine? Curr Opin Immunol. 2019;59:1-8 (PMID: 30884384).
5. Langerak T, Muntzal N, Tolk-V, van Gorup ECM, Martina BE, Rockx B, et al. The possible role of cross-reactive dengue virus antibodies in Zika virus pathogenesis. PLoS Pathog. 2019;15(4):e1007640 (PMID: 30998804).
6. Halstead S. Recent advances in understanding dengue. F1000Research. 2019; (F100FacultyRev):1279 Last updated:31 JULY 2019 (PMID: 31448083).
7. Smith SA, Nivarthi UK, de Alwis R, Sapparapu G, Bombardi R, et al. Dengue virus prM-specific human monoclonal antibodies with virus replication-enhancing properties recognize a single immunodominant antigenic site. J Virol. 2015;90:780–9 (PMID: 26512092).
8. Halstead SB. Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res. 2003;60:421–46 (PMID: 14689700).
9. Johnston D, Viray M, Ushiroda J, Whelen AC, Sciulli R, Remedios G, et al. Notes from the field: outbreak of locally acquired cases of dengue fever—Hawaii, 2015. MMWR Morb Mortal Wkly Rep. 2016;65:34–5 (PMID: 26799994).
10. Rey JR. Dengue in Florida (USA). Insects. 2014;5:991–1000 (PMID: 26462955).
11. Murray KG, Rodriguez LF, Herrington E, Khurat V, Vasilakis N, Walker C, et al. Identification of dengue fever cases in Houston, Texas with evidence of autochthonous transmission between 2003 and 2005. Vector-borne Zoonotic Dis. 2013;13(835–845):24107180.
12. Centers for Disease Control and Prevention. Summary of notifiable diseases and conditions—United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;64(15):1-41.
13. Faria NR, do Socorro da Silva Azevedo R, Kraemer MUG, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352:345–9 (PMID: 27013429).
14. Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J, Medina JF, et al. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLOS Negl Trop Dis. 2013;7(7):2311 (PMID: 23875046).
15. St. George K, Sohi IS, Dufort EM, Dean AB, White JL, Limberger R, et al. Zika virus testing considerations: lessons learned from the first 80 realtime reverse transcription-PCR-positive cases diagnosed in New York State. J Clin Microbiol. 2017;55:535–44 (PMID: 27927917).
16. Lanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, Lambert AJ, et al. Chikungunya virus in US travelers returning from India, 2006:Emerg Infect Dis. 2007;13(5):764–767 (PMID: 17553261).

Abbreviations
DENV: Dengue virus; ADE: Antibody dependent enhancement; ZIKV: Zika virus; PCR: Polymerase chain reaction; NS1: Nonstructural protein 1; DHF: Dengue hemorrhagic fever; DSS: Dengue shock syndrome; HA: Headache; AMS: Aggregating multi-organ syndrome; CT: Computed tomography; CSF: Cerebrospinal fluid; MFI: Median fluorescence intensity; CLEP: Clinical laboratory evaluation program; RT: Real-time; PRNT: Cross species plaque reduction neutralization tests; HLH: Hemophagocytic lymphohistiocytosis; AI: Avidity index.

Acknowledgements
Not applicable.

Authors’ contributions
SW and DW is credited for the conceptualization of this manuscript. AB, ST, SS, RH, SHS, DW, MM, AD, RF, AL, SW performed the data curation. Formal analysis completed by AB, ST, AD, RH, DW, HD, AB, RF, AL, and SW. Investigation performed by AB, ST, SS, EM, SS, PR, DW, MM, RF, AL, and SW. DW and SW administered this project. Methodology performed by ST, AD, RH, DH, AD, RF, AL, and SW. Supervision provided by AD, RF, MM, and SW. Visualization provided by DH and ST. Original draft written by AB, EM, SS, SHS, ST, DW, and SW. Writing-review and editing performed by AB, ST, SHS, EM, AD, RH, SS, PR, DW, DH, MM, AD, RF, AL, and SW. Manuscript revisions by DW and AD. All authors have read and approved the manuscript.
17. Wong SJ, Furuya A, Zou J, Xie X, Dupuis AP, Kramer LD, et al. A multiplex microsphere immunoassay for Zika Virus diagnosis. EbioMedicine. 2017;16:136–40 (PMID: 28094237).

18. Lee WT, Wong SJ, Kulase KE, Dupuis AP, Payne AF, Kramer LD, et al. Development of Zika virus serological testing strategies in New York State. J Clin Microbiol. 2017;56:e01391–e1617 (PMID: 29263203).

19. deSouza VAUF, Fernandes S, Araujo ES, Tateno AF, Oliveira ONMPF, dos Reis Oliveira R, et al. Use of an immunoglobulin G avidity test to discriminate between primary and secondary dengue virus infections. J Clin Micro. 2004;42(4):1782–4 (PMID: 15071049).

20. Fox JL, Hazell SL, Tobler LH, Busch MP. Immunoglobulin G avidity in dengue virus infection/dengue shock syndrome. Clin Vaccine Immunol. 2006;13(1):33–6 (PMID: 16425997).

21. Furuya AKM, Hunt D, St. George KS, Dupuis AP, Kramer LD, Shi PY, et al. Immunoglobulin G avidity in dengue virus infection/dengue shock syndrome. Clin Vaccine Immunol. 2006;13(1):33–6 (PMID: 16425997).

22. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6588):267–71 (PMID: 8657279).

23. Watson CT, Glanville J, Marasco WA. The individual and population dynamics of antibody immunity. Trends Immunol. 2017;38(7):459–70. https://doi.org/10.1016/j.it.2017.04.003.

24. Guzman MG, Kouri G, Martinez E, Bravo J, Riveron R, Soler M, et al. Clinical and serological study of Cuban children with dengue hemorrhagic fever/dengue shock syndrome. PAHO Bulletin. 1987;21(3):270–9 (PMID: 3442718).

25. Katzelnick LC, Gresh L, Halloran EM, Mercado JC, Kuan G, Gordon A, et al. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358(6362):929–32 (PMID: 29097492).

26. Kouri GP, Guzman MG, Bravo JR, Triana C. Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981. Bull WHO. 1989;67(4):375–80 (PMID: 2805215).

27. Hadinengro SR, Arrendondo JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. New Eng J Med. 2015;373(13):1195–206 (PMID: 26214039).

28. Dans AL, Dans LF, Lansang MAD, Silvestre MAA, Guyatt GH. Controversy and debate on dengue vaccine series—paper 1: review of a licensed dengue vaccine: inappropriate subgroup analyses and selective reporting may cause harm in mass vaccination programs. J Clin Epi. 2018;95:137–9 (PMID: 29180056).

29. George MR. Hemophagocytic lymphohistiocytosis: review of etiologies and management. J Blood Med. 2014;5:69–86 (PMID: 24966707).

30. Ellis EM, Sharp TM, Perez-Padilla J, Gonzalez L, Poole-Smith BK, Lebo E, et al. Incidence and risk factors for developing dengue-associated hemophagocytic lymphohistiocytosis in Puerto Rico, 2008–2015. PLoS Negl Trop Dis. 2016;10(8):e0004939 (PMID: 27556807).

31. Jordan MB, Allen CE, Greenberg J, Henry M, Hermiston ML, Kumar A, et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: recommendations from the North American Consortium for Histiocytosis (NACHO). Pediatr Blood Cancer. 2019;66:e27929 (PMID: 31339233).

32. Xu X, Tang Y. Dilemmas in diagnosis and management of hemophagocytic lymphohistiocytosis in children. World J Pediatr. 2019. https://doi.org/10.1007/s12519-019-00299-3 (PMID: 31506890).

33. Fox JL, Hazell SL, Tobler LH, Busch MP. Immunoglobulin G avidity in dengue virus infection/dengue shock syndrome. PAHO Bulletin. 1987;21(3):270–9 (PMID: 3442718).

34. Mullings A, Reid ME, Sang MM, Richards-Dawson MA, Knight-Madden JM. A retrospective analysis of the significance of haemoglobin SS and SC in dengue? Lancet. 2018;6:e140–141 (PMID: 29389533).

35. Martin-Acebes MA, Saiz JC, Jimenez de Oya N. Antibody-dependent enhancement and Zika: real threat or phantom menace? Front Cell Infect Microbiol. 2018;8:44 (PMID: 29497604).

36. Katzelnick LC, Navarez C, Arquello S, Mercado BL, Collado D, Amoie O, et al. Zika virus enhances future risk of severe dengue disease. Science. 2020;369:1123–8.

37. Mullings A, Reid ME, Sang MM, Richards-Dawson MA, Knight-Madden JM. Antibody-dependent enhancement and Zika: real threat or phantom menace? Front Cell Infect Microbiol. 2018;8:44 (PMID: 29497604).

38. Mullings A, Reid ME, Sang MM, Richards-Dawson MA, Knight-Madden JM. Antibody-dependent enhancement and Zika: real threat or phantom menace? Front Cell Infect Microbiol. 2018;8:44 (PMID: 29497604).

39. Elenga N, Celicourt D, Muanza B, Elana G, Hocquelet S, Tarer V, et al. An early clinical and serologic study of Cuban children with dengue hemorrhagic fever/dengue shock syndrome. PAHO Bulletin. 1987;21(3):270–9 (PMID: 3442718).

40. World Health Organization. Comprehensive Guideline for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. Revised and expanded edition, 2011. https://apps.who.int/iris/handle/10665/204894.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.