A Kenmotsu metric as a conformal \(\eta \)-Einstein soliton

By

Soumendu Roy \(^1\), Santu Dey \(^2\) and Arindam Bhattacharyya \(^3\)

Abstract

The object of the present paper is to study some properties of Kenmotsu manifold whose metric is conformal \(\eta \)-Einstein soliton. We have studied some certain properties of Kenmotsu manifold admitting conformal \(\eta \)-Einstein soliton. We have also constructed a 3-dimensional Kenmotsu manifold satisfying conformal \(\eta \)-Einstein soliton.

Key words : Einstein soliton, \(\eta \)-Einstein soliton, conformal \(\eta \)-Einstein soliton, \(\eta \)-Einstein manifold, Kenmotsu manifold.

2010 Mathematics Subject Classification : 53C15, 53C25, 53C44.

1. Introduction

The notion of Einstein soliton was introduced by G. Catino and L. Mazzieri \(^3\) in 2016, which generates self-similar solutions to Einstein flow,

\[
\frac{\partial g}{\partial t} = -2(S - \frac{r}{2}g),
\]

(1.1)

where \(S \) is Ricci tensor, \(g \) is Riemannian metric and \(r \) is the scalar curvature. The equation of the \(\eta \)-Einstein soliton \(^2\) is given by,

\[
\mathcal{L}_\xi g + 2S + (2\lambda - r)g + 2\mu \eta \otimes \eta = 0,
\]

(1.2)

where \(\mathcal{L}_\xi \) is the Lie derivative along the vector field \(\xi \), \(S \) is the Ricci tensor, \(r \) is the scalar curvature of the Riemannian metric \(g \), and \(\lambda \) and \(\mu \) are real constants. For \(\mu = 0 \), the data \((g, \xi, \lambda)\) is called Einstein soliton.

In 2018, Mohd Danish Siddiqi \(^5\) introduced the notion of conformal \(\eta \)-Ricci soliton \(^7\) as:

\[
\mathcal{L}_\xi g + 2S + [2\lambda - (p + \frac{2}{n})]g + 2\mu \eta \otimes \eta = 0,
\]

(1.3)

where \(\mathcal{L}_\xi \) is the Lie derivative along the vector field \(\xi \), \(S \) is the Ricci tensor, \(\lambda \), \(\mu \) are constants, \(p \) is a scalar non-dynamical field(time dependent scalar field) and \(n \) is the dimension of manifold. For \(\mu = 0 \), conformal \(\eta \)-Ricci soliton becomes conformal Ricci soliton \(^6\).

\(^1\)The first author is the corresponding author, supported by Swami Vivekananda Merit Cum Means Scholarship, Government of West Bengal, India.
In [8], Roy, Dey and Bhattacharyya have defined conformal Einstein soliton, which can be written as:

$$\mathcal{L}_V g + 2S + [2\lambda - r + (p + \frac{2}{n})]g = 0, \quad (1.4)$$

where \mathcal{L}_V is the Lie derivative along the vector field V, S is the Ricci tensor, r is the scalar curvature of the Riemannian metric g, λ is real constant, p is a scalar non-dynamical field (time dependent scalar field) and n is the dimension of manifold.

So we introduce the notion of conformal η-Einstein soliton as:

Definition 1.1: A Riemannian manifold (M, g) of dimension n is said to admit conformal η-Einstein soliton if

$$\mathcal{L}_\xi g + 2S + [2\lambda - r + (p + \frac{2}{n})]g + 2\mu \eta \otimes \eta = 0, \quad (1.5)$$

where \mathcal{L}_ξ is the Lie derivative along the vector field ξ, λ, μ are real constants and S, r, p, n are same as defined in (1.4).

In the present paper we study conformal η-Einstein soliton on Kenmotsu manifold. The paper is organized as follows:

After introduction, section 2 is devoted for preliminaries on $(2n+1)$ dimensional Kenmotsu manifold. In section 3, we have studied conformal η-Einstein soliton on Kenmotsu manifold. Here we proved if a $(2n+1)$ dimensional Kenmotsu manifold admits conformal η-Einstein soliton then the manifold becomes η-Einstein. We have also characterized the nature of the manifold if the manifold is Ricci symmetric and the Ricci tensor is η-recurrent. Also we have discussed about the condition when the manifold has cyclic Ricci tensor. Then we have obtained the condition in a $(2n+1)$ dimensional Kenmotsu manifold admitting Conformal η-Einstein soliton when a vector field V is pointwise co-linear with ξ and a $(0,2)$ tensor field h is parallel with respect to the Levi-Civita connection associated to g. We have also examined the nature of a Ricci-recurrent Kenmotsu manifold admitting conformal η-Einstein soliton.

In last section we have given an example of a 3-dimensional Kenmotsu manifold satisfying conformal η-Einstein soliton.

2. Preliminaries

Let M be a $(2n+1)$ dimensional connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g) where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1-form and g is the compatible Riemannian metric such that

$$\phi^2(X) = -X + \eta(X)\xi, \eta(\xi) = 1, \eta \circ \phi = 0, \phi \xi = 0, \quad (2.1)$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad (2.2)$$
\[g(X, \phi Y) = -g(\phi X, Y), \] (2.3)
\[g(X, \xi) = \eta(X), \] (2.4)

for all vector fields \(X, Y \in \chi(M) \).

An almost contact metric manifold is said to be a Kenmotsu manifold \([4]\) if
\[(\nabla_X \phi) Y = -g(X, \phi Y) \xi - \eta(Y) \phi X, \] (2.5)
\[\nabla_X \xi = X - \eta(X) \xi, \] (2.6)
where \(\nabla \) denotes the Riemannian connection of \(g \).

In a Kenmotsu manifold the following relations hold \([1]\):
\[\eta(R(X, Y)Z) = g(X, Z) \eta(Y) - g(Y, Z) \eta(X), \] (2.7)
\[R(X, Y) \xi = \eta(X) Y - \eta(Y) X, \] (2.8)
\[R(X, \xi) Y = g(X, Y) \xi - \eta(Y) X, \] (2.9)
where \(R \) is the Riemannian curvature tensor.

\[S(X, \xi) = -2n \eta(X), \] (2.10)
\[S(\phi X, \phi Y) = S(X, Y) + 2n \eta(X) \eta(Y), \] (2.11)
\[(\nabla_X \eta) Y = g(X, Y) - \eta(X) \eta(Y), \] (2.12)
for all vector fields \(X, Y, Z \in \chi(M) \).

Now we know,
\[(\mathcal{L}_\xi g)(X, Y) = g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi), \] (2.13)
for all vector fields \(X, Y, \in \chi(M) \).
Then using (2.6) and (2.13), we get,
\[(\mathcal{L}_\xi g)(X, Y) = 2[g(X, Y) - \eta(X) \eta(Y)]. \] (2.14)

3. Conformal \(\eta \)-Einstein soliton on Kenmotsu manifold

Let \(M \) be a \((2n+1)\) dimensional Kenmotsu manifold. Consider the conformal \(\eta \)-Einstein soliton (1.5) on \(M \) as:
\[(\mathcal{L}_\xi g)(X, Y) + 2S(X, Y) + [2\lambda - r + (p + \frac{2}{2n + 1})]g(X, Y) + 2\mu \eta(X) \eta(Y) = 0, \] (3.1)
for all vector fields \(X, Y, \in \chi(M) \).
Then using (2.14), the above equation becomes,
\[S(X, Y) = -[\lambda - \frac{r}{2} + \frac{(p + \frac{2}{2n + 1})}{2} + 1]g(X, Y) - (\mu - 1) \eta(X) \eta(Y). \] (3.2)
Taking \(Y = \xi \) in the above equation and using (2.10), we get,
\[
r = \left(p + \frac{2}{2n+1} \right) - 4n + 2\lambda + 2\mu,
\] (3.3)
since \(\eta(X) \neq 0 \), for all \(X \in \chi(M) \).
Also from (3.2), it follows that the manifold is \(\eta \)-Einstein.
This leads to the following:

Theorem 3.1. If the metric of a \((2n+1)\) dimensional Kenmotsu manifold is a conformal \(\eta \)-Einstein soliton then the manifold becomes \(\eta \)-Einstein and the scalar curvature is \((p + \frac{2}{2n+1}) - 4n + 2\lambda + 2\mu \).

We know,
\[
(\nabla_X S)(Y,Z) = X(S(Y,Z)) - S(\nabla_X Y,Z) - S(Y,\nabla_X Z),
\] (3.4)
for all vector fields \(X,Y,Z \) on \(M \) and \(\nabla \) is the Levi-Civita connection associated with \(g \).
Now replacing the expression of \(S \) from (3.2), we obtain,
\[
(\nabla_X S)(Y,Z) = -(\mu - 1)[\eta(Z)(\nabla_X \eta)Y + \eta(Y)(\nabla_X \eta)Z].
\] (3.5)
for all vector fields \(X,Y,Z \) on \(M \).

Let the manifold \(M \) be Ricci symmetric i.e \(\nabla S = 0 \).
Then from (3.5), we get,
\[
-(\mu - 1)[\eta(Z)(\nabla_X \eta)Y + \eta(Y)(\nabla_X \eta)Z] = 0,
\] (3.6)
for all vector fields \(X,Y,Z \in \chi(M) \).
Taking \(Z = \xi \) in the above equation and using (2.12), (2.1), we obtain,
\[
\mu = 1.
\] (3.7)
Then from (3.3), we get,
\[
r = \left(p + \frac{2}{2n+1} \right) - 4n + 2\lambda + 2.
\] (3.8)
So we can state the following theorem:

Theorem 3.2. If the metric of a \((2n+1)\) dimensional Ricci symmetric Kenmotsu manifold is a conformal \(\eta \)-Einstein soliton then \(\mu = 1 \) and the scalar curvature is \((p + \frac{2}{2n+1}) - 4n + 2\lambda + 2 \).

Now if the Ricci tensor \(S \) is \(\eta \)-recurrent, then we have,
\[
\nabla S = \eta \otimes S,
\] (3.9)
which implies that,
\[
(\nabla_X S)(Y,Z) = \eta(X)S(Y,Z),
\] (3.10)
for all vector fields \(X,Y,Z \) on \(M \).
Using (3.5), the above equation reduces to,
\[
-(\mu - 1)[\eta(Z)(\nabla_X \eta)Y + \eta(Y)(\nabla_X \eta)Z] = \eta(X)S(Y,Z).
\] (3.11)
Taking $Y = \xi, Z = \xi$ in the above equation and using (2.12),(3.2), we get,

$$[\lambda + \mu - \frac{r}{2} + \frac{p + \frac{2}{2n+1}}{2}]\eta(X) = 0,$$

which implies that,

$$r = 2\lambda + 2\mu + (p + \frac{2}{2n+1}).$$

Then we can state the following:

Theorem 3.3 If the metric of a $(2n+1)$ dimensional Kenmotsu manifold is a conformal η-Einstein soliton and the Ricci tensor S is η- Recurrent, then the scalar curvature is $2\lambda + 2\mu + (p + \frac{2}{2n+1})$.

Similarly from (3.5), we get,

$$(\nabla_Y S)(Z, X) = - (\mu - 1)[\eta(Y)(\nabla_Y \eta)Z + \eta(Z)(\nabla_X \eta)Y],$$

and

$$(\nabla_Z S)(X, Y) = - (\mu - 1)[\eta(Y)(\nabla_Z \eta)X + \eta(X)(\nabla_Z \eta)Y].$$

for all vector fields X, Y, Z on M.

Then adding (3.5),(3.14), (3.15) and using (2.12), (2.2), we obtain,

$$\begin{align*}
(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) & = -2(\mu - 1)[\eta(X)g(\phi Y, \phi Z) \allowbreak \, + \eta(Y)g(\phi Z, \phi X) \allowbreak \, + \eta(Z)g(\phi X, \phi Y)].
\end{align*}$$

Now if the manifold M has cyclic Ricci tensor i.e $(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0$, then from (3.16), we have,

$$(\mu - 1)[\eta(X)g(\phi Y, \phi Z) + \eta(Y)g(\phi Z, \phi X) + \eta(Z)g(\phi X, \phi Y)] = 0. $$

Taking $X = \xi$ in the above equation and using (2.1), we get,

$$\mu = 1.$$

Again if we take $\mu = 1$ in (3.16), we obtain $(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0$, i.e the manifold M has cyclic Ricci tensor.

Hence we can state the following:

Theorem 3.4 Let the metric of a $(2n+1)$ dimensional Kenmotsu manifold M is a conformal η-Einstein soliton. Then M has cyclic Ricci tensor iff $\mu = 1$.

Now if $\mu = 1$, then from (3.3) we obtain,

$$r = (p + \frac{2}{2n+1}) - 4n + 2\lambda + 2.$$

Then we have,

Corollary 3.5. If a $(2n+1)$ dimensional Kenmotsu manifold M has a cyclic Ricci tensor and the metric is a conformal η-Einstein soliton then the scalar curvature is $(p + \frac{2}{2n+1}) - 4n + 2\lambda + 2$.
Let a conformal η-Einstein soliton is defined on a $(2n+1)$ dimensional Kenmotsu manifold M as,

$$\mathcal{L}_V g + 2S + [2\lambda - r + (p + \frac{2}{2n+1})]g + 2\mu \eta \otimes \eta = 0,$$ \hfill (3.20)

where \mathcal{L}_V is the Lie derivative along the vector field V, S is the Ricci tensor, r is the scalar curvature of the Riemannian metric g, λ, μ are real constants, p is a scalar non-dynamical field (time dependent scalar field).

Let V be pointwise co-linear with ξ, i.e $V = b\xi$, where b is a function on M.

Then (3.20) becomes,

$$(\mathcal{L}_b \xi)g(X, Y) + 2S(X, Y) + [2\lambda - r + (p + \frac{2}{2n+1})]g(X, Y) + 2\mu \eta(X)\eta(Y) = 0,$$ \hfill (3.21)

for all vector fields X, Y on M.

Applying the property of Lie derivative and Levi-Civita connection we have,

$$bg(\nabla_X \xi, Y) + (Xb)\eta(Y) + bg(\nabla_Y \xi, X) + (Yb)\eta(X) + 2S(X, Y)$$

$$+ [2\lambda - r + (p + \frac{2}{2n+1})]g(X, Y) + 2\mu \eta(X)\eta(Y) = 0.$$ \hfill (3.22)

Now using (2.6), we get,

$$2bg(X, Y) - 2b\eta(X)\eta(Y) + (Xb)\eta(Y) + (Yb)\eta(X) + 2S(X, Y)$$

$$+ [2\lambda - r + (p + \frac{2}{2n+1})]g(X, Y) + 2\mu \eta(X)\eta(Y) = 0.$$ \hfill (3.23)

Taking $Y = \xi$ in the above equation and using (2.1),(2.4),(2.10), we obtain,

$$(Xb) + (\xi b)\eta(X) - 4n\eta(X) + [2\lambda - r + (p + \frac{2}{2n+1})]\eta(X) + 2\mu \eta(X) = 0.$$ \hfill (3.24)

Then by putting $X = \xi$, the above equation reduces to,

$$\xi b = 2n + \frac{r}{2} - \lambda - \mu - \frac{p + \frac{2}{2n+1}}{2}.$$ \hfill (3.25)

Using (3.25), (3.24) becomes,

$$(Xb) + [\lambda + \mu + \frac{(p + \frac{2}{2n+1})}{2}] - 2n - \frac{r}{2} = 0.$$ \hfill (3.26)

Applying exterior differentiation in (3.26), we have,

$$[\lambda + \mu + \frac{(p + \frac{2}{2n+1})}{2}] - 2n - \frac{r}{2} d\eta = 0.$$ \hfill (3.27)

Now we know,

$$d\eta(X, Y) = \frac{1}{2}[(\nabla_X \eta)Y - (\nabla_Y \eta)X],$$ \hfill (3.28)

for all vector fields X, Y on M.

Using (2.12), the above equation becomes,

$$d\eta = 0.$$ \hfill (3.29)
Hence the 1-form η is closed. So from (3.27), either $r = 2\lambda + 2\mu + (p + \frac{2}{2n+1}) - 4n$ or $r \neq 2\lambda + 2\mu + (p + \frac{2}{2n+1}) - 4n$. If $r = 2\lambda + 2\mu + (p + \frac{2}{2n+1}) - 4n$, (3.26) reduces to,

$$ (Xb) = 0. $$

(3.30)

This implies that b is constant.

So we can state the following theorem:

Theorem 3.6. Let M be a $(2n+1)$ dimensional Kenmotsu manifold admitting a conformal η-Einstein soliton (g, V), V being a vector field on M. If V is point-wise co-linear with ξ, a vector field on M, then V is a constant multiple of ξ, provided the scalar curvature is $2\lambda + 2\mu + (p + \frac{2}{2n+1}) - 4n$.

Let h be a symmetric tensor field of $(0,2)$ type which we suppose to be parallel with respect to the Levi-Civita connection ∇ i.e $\nabla h = 0$.

Applying the Ricci commutation identity, we have,

$$ \nabla^2 h(X, Y; Z, W) - \nabla^2 h(X, Y; W, Z) = 0. $$

(3.31)

for all vector fields X, Y, Z, W on M.

From (3.31), we obtain the relation,

$$ h(R(X, Y)Z, W) + h(Z, R(X, Y)W) = 0. $$

(3.32)

Replacing $Z = W = \xi$ in the above equation and using (2.8), we get,

$$ \eta(X)h(Y, \xi) - \eta(Y)h(X, \xi) = 0. $$

(3.33)

Replacing $X = \xi$ and using (2.1), the above equation reduces to,

$$ h(Y, \xi) = \eta(Y)h(\xi, \xi), $$

(3.34)

for all vector fields Y on M.

Differentiating the above equation covariantly with respect to X, we get,

$$ \nabla_X (h(Y, \xi)) = \nabla_X (\eta(Y)h(\xi, \xi)). $$

(3.35)

Now expanding the above equation by using (3.34), (2.6),(2.12) and the property that $\nabla h = 0$, we obtain,

$$ h(X, Y) = h(\xi, \xi)g(X, Y), $$

(3.36)

for all vector fields X, Y on M.

Let us take,

$$ h = \mathcal{L}_\xi g + 2S + 2\mu \eta \otimes \eta. $$

(3.37)

Then from (2.14),(3.2), we get,

$$ h(\xi, \xi) = -2\lambda - (p + \frac{2}{2n+1}) + r. $$

(3.38)

Then using (3.37), (3.36) becomes,

$$ (\mathcal{L}_\xi g)(X, Y) + 2S(X, Y) + [2\lambda - r + (p + \frac{2}{2n+1})]g(X, Y) + 2\mu \eta(X)\eta(Y) = 0, $$

(3.39)
which is the Conformal η-Einstein soliton. This leads to,

Theorem 3.7. In a $(2n+1)$ dimensional Kenmotsu manifold assume that a symmetric $(0,2)$ tensor field $\mathbf{h} = \mathbf{L}_\xi g + 2S + 2\mu \eta \otimes \eta$ is parallel with respect to the Levi-Civita connection associated to g. Then (g, ξ) yields a conformal η-Einstein soliton.

Definition 3.8 A Kenmotsu manifold is said to be Ricci-recurrent manifold if there exists a non-zero 1-form A such that

$$ (\nabla_W S)(Y, Z) = A(W)S(Y, Z), $$

for any vector fields W, Y, Z on M. Replacing Z by ξ in the above equation and using (2.10), we get,

$$ (\nabla_W S)(Y, \xi) = -2nA(W)\eta(Y), $$

which implies that,

$$ WS(Y, \xi) - S(\nabla_W Y, \xi) - S(Y, \nabla_W \xi) = -2nA(W)\eta(Y). $$

Using (2.10) and (2.6), the above equation becomes,

$$ 2n(\nabla_W \eta)Y + 2n\eta(W)\eta(Y) + S(Y, W) = 2nA(W)\eta(Y). $$

Again using (2.12), the above equation reduces to,

$$ 2ng(W, Y) + S(Y, W) = 2nA(W)\eta(Y). $$

Taking $W = \xi$ in the above equation and using (3.2), we obtain,

$$ r = 2\lambda + 2\mu + (p + \frac{2}{2n+1}) + 4n(A(\xi) - 1). $$

So we can state,

Theorem 3.9. If the metric of a $(2n+1)$ dimensional Ricci-recurrent Kenmotsu manifold is a conformal η-Einstein soliton with the 1-form A, then the scalar curvature becomes $2\lambda + 2\mu + (p + \frac{2}{2n+1}) + 4n(A(\xi) - 1)$.

4. Example of a 3-dimensional Kenmotsu manifold admitting conformal η-Einstein soliton:

We consider the three-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, (x, y, z) \neq (0,0,0)\}$, where (x, y, z) are standard coordinates in \mathbb{R}^3. The vector fields

$$ e_1 = z \frac{\partial}{\partial x}, \quad e_2 = z \frac{\partial}{\partial y}, \quad e_3 = -z \frac{\partial}{\partial z} $$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$ g(e_1, e_2) = g(e_2, e_3) = g(e_3, e_1) = 0, $$

$$ g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1. $$
Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$, for any $Z \in \chi(M)$, where $\chi(M)$ is the set of all differentiable vector fields on M and ϕ be the $(1, 1)$-tensor field defined by,

$$\phi e_1 = -e_2, \quad \phi e_2 = e_1, \quad \phi e_3 = 0.$$

Then using the linearity of ϕ and g, we have,

$$\eta(e_3) = 1, \quad \phi^2 Z = -Z + \eta(Z)e_3, \quad g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),$$

for any $Z, W \in \chi(M)$. Thus for $e_3 = \xi$, (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g. Then we have,

$$[e_1, e_2] = 0, \quad [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2.$$

The connection ∇ of the metric g is given by,

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g([X, Y], Z) + g(Z, [X, Y]),$$

which is known as Koszul's formula.

Using Koszul's formula, we can easily calculate,

$$\nabla e_1 e_1 = -e_3, \quad \nabla e_1 e_2 = 0, \quad \nabla e_1 e_3 = e_1,$$

$$\nabla e_2 e_1 = 0, \quad \nabla e_2 e_2 = -e_3, \quad \nabla e_2 e_3 = e_2,$$

$$\nabla e_3 e_1 = 0, \quad \nabla e_3 e_2 = 0, \quad \nabla e_3 e_3 = 0.$$

From the above it follows that the manifold satisfies $\nabla_X \xi = X - \eta(X)\xi$, for $\xi = e_3$. Hence the manifold is a Kenmotsu Manifold.

Also, the Riemannian curvature tensor R is given by,

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z.$$

Hence,

$$R(e_1, e_2)e_2 = -e_1, \quad R(e_1, e_3)e_3 = -e_1, \quad R(e_2, e_1)e_1 = -e_2,$$

$$R(e_2, e_3)e_3 = -e_2, \quad R(e_3, e_1)e_1 = -e_3, \quad R(e_3, e_2)e_2 = -e_3,$$

$$R(e_1, e_2)e_3 = 0, \quad R(e_2, e_3)e_1 = 0, \quad R(e_3, e_1)e_2 = 0.$$

Then, the Ricci tensor S is given by,

$$S(e_1, e_1) = -2, \quad S(e_2, e_2) = -2, \quad S(e_3, e_3) = -2.$$

From (3.2), we have,

$$S(e_3, e_3) = -[\lambda + \mu - \frac{r}{2} + \frac{(p + \frac{2}{3})}{2}],$$

(4.1)

which implies that,

$$r = 2\lambda + 2\mu - 4 + (p + \frac{2}{3}).$$

(4.2)

Hence λ and μ satisfies equation (3.3) and so g defines a conformal η-Einstein soliton on the 3-dimensional Kenmotsu manifold M.

REFERENCES

[1] C. S. Bagewadi and V. S. Prasad, *Note on Kenmotsu manifolds*, Bull. Cal. Math. Soc.(1999), 91, pp-379-384.
[2] A. M. Blaga, *On Gradient η-Einstein Solitons*, Kragujevac Journal of Mathematics(2018), Volume 42(2), pp-229237.
[3] G. Catino and L. Mazzieri, *Gradient Einstein solitons*, Nonlinear Anal(2018). 132, pp-6694.
[4] K. Kenmotsu, *A class of almost contact Riemannian manifolds*, The Tohoku Mathematical Journal(1972), 24, pp-93-103.
[5] Mohd Danish Siddiqi, *Conformal η-Ricci solitons in δ- Lorentzian Trans Sasakian manifolds*, International Journal of Maps in Mathematics(2018), vol. 1, Isu. 1, pp- 15-34.
[6] Soumendu Roy, Arindam Bhattacharyya, *Conformal Ricci solitons on 3-dimensional trans-Sasakian manifold*, Jordan Journal of Mathematics and Statistics (2020), Vol- 13(1), pp-89-109.
[7] Soumendu Roy, Santu Dey, Arindam Bhattacharyya, Shyamal Kumar Hui, *$*$-Conformal η-Ricci Soliton on Sasakian manifold*, arXiv:1909.01318v1 [math.DG].
[8] Soumendu Roy, Santu Dey, Arindam Bhattacharyya, *Conformal Einstein soliton within the framework of para-Kähler manifold*, arXiv:2005.05616v1 [math.DG].

(Soumendu Roy) Department of Mathematics, Jadavpur University, Kolkata-700032, India

E-mail address: soumendu1103mtma@gmail.com

(Santu Dey) Department of Mathematics, Bidhan Chandra College, Asansol - 4, West Bengal-713303 , India

E-mail address: santu.mathju@gmail.com

(Arindam Bhattacharyya) Department of Mathematics, Jadavpur University, Kolkata-700032, India

E-mail address: bhattachar1968@yahoo.co.in