Highlighting Theodor W. Engelmann’s
“Farbe und Assimilation” [Color and Assimilation]

Nils Hendrik Hintz

Abstract

In 1883, Theodor Wilhelm Engelmann, a German scientist, wrote his essay “color and assimilation” (Ger.: “Farbe und Assimilation”) describing the state of the art in photosynthesis research, his recent findings, and further assumptions based upon his presented results. Nearly 140 years later, many of his assumptions were proven correct. By his still well-known bacteria experiments using aerotactic, heterotrophic bacteria, he identified the chloroplasts as the location in which photosynthesis and oxygen production takes place. Furthermore, by evaluating the effects of different light spectra, he constructed the first action spectra that demonstrated the implication of the “green gap” of chlorophylls. He further posited that accessory photosynthetic pigments existed to extend the absorption range of chlorophyll. Although infrequently cited, his work was foundational for current ecological research of the vertical appearance of algae species within the underwater gradient in light spectrum due to specific harvesting of different light spectra, hence complementary chromatic adaptation of communities. This short retrospective highlights this piece of literature that represents an early step toward our current understanding of ecological competition for light spectra.

Introduction

Underwater light is highly variable in its spectral quality (i.e., color) due to the selective absorption by water molecules, dissolved substances, nonalgal particles, and algae themselves (Kirk 2010). During their evolution, phototrophic algae adapted to this heterogeneity by taxon-specific equipment with pigments by which the wavelengths of light can be efficiently exploited (Falkowski and Knoll 2007). Due to the different light absorption of these pigments, the available light spectrum affects photosynthetic yield and drives competition of phototrophs but can also enable coexistence if different parts of the light spectrum can be harvested (Stomp et al. 2004).

Today, researchers are well aware of the physiological complexity of photosynthetic processes, but also of the complex role light, as a multitude of resources, plays in ecology. Nevertheless, our current understanding would not be possible without the long journey of scientific investigations within the past centuries.

Although the involvement of light in the production of oxygen by plants was discovered early by Ingen-Housz (1779), it took various investigations until Daubeney (1836) explored how the light spectrum affects the plant responses of greening and movement of leaves, as well as transpiration and photosynthesis. Eight years later, von Mohl (1844) then characterized the presence and structure of chloroplasts. Despite these advances, the location of photosynthesis was still a matter of debate (Pringsheim 1881). Furthermore, photosynthetic reaction pathways (e.g., light and dark reactions or electron transport), associated cellular components (e.g., chloroplast structure or photosystem architecture), and organic compounds involved in photosynthesis (e.g., adenosine triphosphate) were not yet discovered, hence photosynthesis was roughly described as the assimilation of CO₂, production of a carbohydrate, and release of O₂ under the use of light energy, without the underlying mechanisms known.

At that time, Theodor Wilhelm Engelmann (Fig. 1), a German scientist and musician who lived from 1843 to 1909, introduced novel ideas and investigational methods to shed light on photosynthesis (Drews 2005). By monitoring aerotactic, heterotrophic bacteria to detect O₂ production of phototrophs, he made substantial contributions to the investigation of the location and process of photosynthesis. Engelmann’s bacteria experiments (Engelmann 1881) belong to the very first bioassays and are still well known after 140 years. Notably, the work “color and assimilation” (Ger.: “Farbe und Assimilation”) of Engelmann (1883) summarized his and other’s recent findings and presented new insight and concepts on that topic (Fig. 2, online accessible at: https://www.biodiversitylibrary.org/item/104958). Despite using rudimentary methods, much of his work proved correct and some of his ecological concepts have been picked up through the years and are presently of major scientific interest. Here, I went back to the roots, by investigating the three parts of “color and assimilation,” deriving their main concepts in photosynthesis research, and set them in context of our modern ecological knowledge.

Part I. Assimilation only takes place within the colorful plasma-particles. Ger.: “Assimilation findet nur in den farbstoffhaltigen Plasmatheilchen statt”

At that time, it was unclear whether the process of CO₂ assimilation of phototrophs via
photosynthesis (i.e., their light reaction) takes place within the “colorful” chloroplast granules, or if those chloroplasts would only capture the light and then deflect it toward the cytoplasm where the photosynthetic reaction could take place (Pringsheim 1882). In the first part of his publication, Engelmann determined that if photosynthetic cells of algae (e.g., Spirogyra sp., Mesocarpus sp., Zygnema cruciatum) were illuminated, aerotactic bacteria accumulated only near the chloroplast granules, but not near the “uncolored” parts (e.g., stroma, cytoplasm, and vacuoles) of the cell. When illuminating those uncolored parts of the cells, no response was visible. Moreover, he let the light of both natural (sun) and artificial (gas lamp) sources transmit through either a leaf or extracted chlorophyll solution to test if that might alter the light, which then could trigger a photosynthetic reaction within the uncolored parts of the cells. As this did not occur, Engelmann concluded that the colored chloroplast granules are not only absorbing the light but are also—and solely—responsible for CO₂ assimilation and subsequent O₂ production.

Today, due to scientific and technical progress, we know that the light reaction pathway is located within the thylakoid membrane lying free in the cytoplasm of prokaryotes or packed within chloroplasts in eukaryotes, proving Engelmann right. However, examples of a few primitive cyanobacteria are known that do not contain thylakoids as separate organelles, but conduct photosynthesis in their cell membrane (Björn 2008). In any case, there is no alteration of the incident light by chloroplasts, by which the beam of light itself could become accessible to other organelles, proving Engelmann right.

Part II. Closer relationship between absorption of light and assimilation.
Ger.: “Näherer Zusammenhang zwischen Lichtabsorption und Assimilation”

In the second part of his publication, Engelmann summarized the relationship of light absorption and assimilation of CO₂ through measuring bacterial accumulation. In previous work, he had projected a variety of light spectra on photosynthetic organisms (Fig. 3). Thereby, he partitioned the used light spectra according to the Fraunhofer lines, which are characteristic dips in the spectrum of sun light, hence often used to describe a light spectrum back then. By assessing the photosynthetic reaction as a response to the incident spectrum of light, he was among the earliest scientists monitoring photosynthetic action spectra (i.e., the photosynthetic response to light ascertained over the wavelength range of light; Kirk 2010). Under green light, he found surprisingly lower bacterial accumulation than under red or blue light, related to what is today commonly known as the “green gap” (i.e., the weak absorption of green light by chlorophylls; Björn 2008). He further assessed these action spectra for a variety of differently colored cells: green (e.g., Sphagnum sp., Cladophora sp., Scenedesmus sp.), yellow-brown (Meliosira sp., Navicula sp., and Pinnularia sp.), blue-green (Oscillatoria sp. and Nostoc sp.), and red cells (Callithamnion sp. and Ceramium sp.) (Fig. 4). For those cells he detected that a relationship existed between the photosynthetic response (action spectrum) and color of the cell (absorption spectrum) as plots of both over the wavelength of light roughly accord. Hence, Engelmann concluded the
photosynthetic activity would increase the better the light could be absorbed by the cell. However, this pattern did not hold for red cells, whose absorption differed from their action spectra. The presence of chlorophyll absorption but lower action under blue and red light was revealed decades later by the discovery of photosystem II and I (Fromme and Mathis 2004). One problem in Engelmann’s experimental series was the incomparable application of different light spectra. He aimed to correct these differences in light intensities by adjusting the lighting’s slit width and further ascertainment of the loss of light due to scattering by comparing colored and uncolored cells. However, due to technical restrictions, it can be assumed that the light spectra treatments were not run under consistent intensities, neither in terms of energy nor quanta. Especially for the adjustment of far-red light under the usage of gas lamps, he discussed problems arising due to its low intensity, as well as a steep increase in absorption and photosynthesis (Engelmann 1884). With improved equipment, today’s research has turned away from roughly adjusting prismatically dispersed light to Fraunhofer lines and toward the use of higher resolution radiation per respective wavelength (e.g., by high-intensity monochromators; Björn 2008). The measurement of the photosynthetic response does not rely on bacterial aerotaxis anymore, but can be directly measured (e.g., by real-time imaging of photosynthetic O₂ development; Kasai et al. 2019). Yet, the concepts of action spectra, the exemplary “green gap” of chlorophyll absorption, and dependency of photosynthesis on the specific light absorption are still valid.

Part III. Further conclusions. Ger.: “Weitere Folgerungen”

In his final part, Engelmann made several conclusions of his presented work. As he found that the light spectrum has different effects on cells depending on their color, he concluded that there must be more light absorbing substances besides chlorophyll that have a role in photosynthesis. At the time of his work, the function and presence of other photosynthetic (accessory) pigments within a single cell was a matter of debate. In particular, the involvement of phycoerythrin as the predominant red color of Florideophyceae and their greenish discoloration after dieback due to presence of chlorophyll was highly disputed (Kylin 1911). Engelmann added to this discussion by claiming that multiple “chromophylls” (Ger.: “Chromophylle”), i.e., pigments) need to be present and involved in photosynthesis. The close relationship of absorption and action spectra indicates their active involvement in photosynthesis rather than simply being present to color the cell. If not involved in photosynthesis, accessory pigments would still attenuate the light reaching the chlorophyll; hence, Engelmann’s experiments could never show these specific photosynthetic activities. Furthermore, he highlighted that the high variety of natural cell colors indicted these chromophylls exist as a mixture within the chloroplast granules. In a mixture of green and nongreen chromophylls, the latter ones would then act as “optical sensitizing agents” (Ger.: “optische Sensibilatoren”) and extend the absorption spectrum of the cell. However, this

FIG. 2. Title page of “Farbe und Assimilation” within the journal “Botanische Zeitung” (Engelmann 1883). Printed volume in possession of the Mertz Library of the New York Botanical Garden’s collection, retrieved online from the Biodiversity Heritage Library (https://www.biodiversitylibrary.org/item/104958).

november 2021
Today, we know that not only the intensity of light but also its spectral quality drives ecological competition. Thus, the growth of a population of photoautotrophs depends on how efficiently they use the available light spectrum (Kirk 2010). Stomp et al. (2004) found that when in direct competition for light with another species, the spectrum can determine competitive outcomes, whereas spectrum partitioning among species can allow coexistence. However, neither the light’s intensities nor their spectrum are the only factors or (co-)limiting resources affecting performance and competition of phototrophs. In this regard, especially nutrient availability (Harpole et al. 2011) but also taxon-specific thermal performances are highly important (Epplie 1972). Furthermore, complexity arises by the phenotypic plasticity of organisms to ontogenetically acclimate to the available light. This was later investigated by Engelmann’s student Gaidukov, who observed the acclimation of cyanobacteria toward a complementary absorption of the projected light spectrum (Gaidukov 1903). Hence, the relationship of light spectrum and species occurrence is not trivial to examine and was attempted by various researchers leading to different outcomes (Ramus 1982). Yet, with improved monitoring techniques the relationship of available light spectrum and community composition was specifically observed by Hickman et al. (2009), and can further be related to several observations on taxonomical distribution (Kirk 2010). Finally, it was shown that the underwater light spectrum does not gradually shift with depth, but creates specific gaps and peaks according to the vibrational nodes of water molecules (Stomp et al. 2007, Holtrop et al. 2021). These were found to form ecological niches captured complementary-wise by cyanobacteria and by which the presence of phototrophs can be predicted (Holtrop).
but further found that due to the taxon-specific process takes place within photosynthetic cells, synthesis. He not only concluded where this substantial impact on the investigation of photobiology, as mentioned, the community structures in natural ecosystems are inextricably governed by various environmental factors and resources, other species traits, and trophic interactions, but Engelmann’s nearly 140 years old concept of complementary chromatic adaption is still a veritable prerequisite for our current ecological understanding.

Conclusion

Theodor Wilhelm Engelmann had a substantial impact on the investigation of photosynthesis. He not only concluded where this process takes place within photosynthetic cells, but further found that due to the taxon-specific equipment with accessory pigments, photosynthetic activity depends on its complementarity to the wavelengths of available light. Nearly 140 years ago and long before the description of the competitive exclusion principle and the concept of ecological niches (Pocheville 2015), and without knowing physiological details of the photosynthetic apparatus (Croce and van Amerongen 2014) concomitant to specific underwater light absorption (Stoep et al. 2007, Holtrop et al. 2021), Engelmann was the first to predict the occurrence of species under different light spectra. This highlights not only the advance of Engelmann’s work, but further the importance for today’s scientists to be aware of the foundational studies in their field to provide context for future research.

Acknowledgments

I thank the Biodiversity Heritage Library (https://www.biodiversitylibrary.org) for the conservation and provision of historical scientific work. Without their efforts, most of the sources used in here would become inaccessible and forgotten in today’s internet-era.

et al. 2021). Therefore, ecological outcomes and community structures in natural ecosystems are inextricably governed by various environmental factors and resources, other species traits, and trophic interactions, but Engelmann’s nearly 140 years old concept of complementary chromatic adaption is still a veritable prerequisite for our current ecological understanding.

References

Berthold, G. 1882. Über die Vertheilung der Algen im Golf von Neapel nebst einem Verzeichnis der bisher daselbst beobachteten Arten. Mirth. Zool. Sta. Neapel 3: 393–535.

Björn, L. O. 2008. Photobiology, 2nd ed. Springer.

Croce, R., and H. van Amerongen. 2014. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10: 492–501. https://doi.org/10.1038/nchembio.1555.

Daubeney, C. 1836. On the action of light upon plants, and of plants upon the atmosphere. Philos. Trans. R. Soc. London 126: 149–175.

Drews, G. 2005. Contributions of Theodor Wilhelm Engelmann on phototaxis, chemotaxis, and photosynthesis. Photosynth. Res. 83: 25–34. https://doi.org/10.1007/s11120-004-6313-8.

Engelmann, T. W. 1881. Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und tierischer Organismen. Pflügers Arch. Ges. Physiol. 25: 285–292. https://doi.org/10.1007/bf01661982.

Engelmann, T. W. 1882. Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot. Zeitung 40: 419–426.

Engelmann, T. W. 1883. Farbe und assimilation. Bot. Zeitung 41: 17–29.

Engelmann, T. W. 1884. Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot. Zeitung 42: 97–105.

Engelmann, T. W. 1888. Das Mikrospectrometer. Z. Wiss. Mikrosk. Mikrosk. Tech. 5: 289–296.

Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.

Falkowski, P. G., and A. H. Knoll. 2007. Evolution of primary producers in the sea. Academic Press.

Fromme, P., and P. Mathis. 2004. Unraveling the photosystem I reaction center: A history, or the sum of many efforts. Photosynth. Res. 80:
Gaidukov, N. 1903. Weitere Untersuchungen über den Einfluss farbigen Lichtes auf die Färbung der Oscillarien. Ber. Deuts. Bot. Ges. 21: 484–492.

Harpole, W. S., and others. 2011. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14: 852–862. https://doi.org/10.1111/j.1461-0248.2011.01651.x.

Hickman, A. E., P. M. Holligan, C. M. Moore, J. Sharples, V. Krivtsov, and M. R. Palmer. 2009. Distribution and chromatic adaptation of phytoplankton within a shelf sea thermocline. Limnol. Oceanogr. 54: 525–536. https://doi.org/10.4319/lo.2009.54.2.0525.

Holtrop, T., and others. 2021. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nat. Ecol. Evol. 54: 273–277.

Ingen-Housz, J. 1779. Experiments upon vegetables: Discovering their great power of purifying the common air in the sun-shine, and of injuring it in the shade and at night. To which is joined, a new method of examining the accurate degree of salubrity. P. Elmsly and H. Payne.

Kamen, M. D. 1986. On creativity of eye and ear: a commentary on the career of T. W. Engelmann. Proc. Am. Philos. Soc. 130: 232–246.

Kasai, S., and others. 2019. Real-time imaging of photosynthetic oxygen evolution from spinach using LSI-based biosensor. Sci. Rep. 9: 12234. https://doi.org/10.1038/s41598-019-48561-y.

Kirk, J. T. O. 2010. Light and photosynthesis in aquatic ecosystems, 3rd ed. Cambridge Univ. Press.

Kyrin, H. 1911. Über die grünen und gelben Farbstoffe der Florideen. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 74: 105–122. https://doi.org/10.1515/bchm2.1911.74.2.105.

von Mohl, H. 1844. Einige Bermerkungen über den Bau der vegetabilischen Zelle. Bot. Zeitung 2: 273–277.

Pocheville, A. 2015. The ecological niche: history and recent controversies, p. 547–586. In P. H. Thomas Heams, G. Lecointre, and M. Silberstein [eds.], Handbook of evolutionary thinking in the sciences. Springer.

Pringsheim, N. 1881. Untersuchungen über Lichtwirkung und Chlorophyllfunction in der Pflanzen. Verlag von W. Engelmann. https://doi.org/10.5962/bhl.title.8127.

Pringsheim, N. 1882. Ueber Chlorophyllfunction und Lichtwirkung in der Pflanze, Offenes Schreiben. Jahrb. Wiss. Bot. 13: 377–490.

Ramus, J. 1982. Engelmann’s theory: The compelling logic, p. 29–46. In L. M. Srivastava [ed.], Synthetic and degradative processes in marine Macrophytes. Walter de Gruyter & Co.

Rowan, K. S. 2011. Photosynthetic pigments of algae. Cambridge Univ. Press.

Sinha, R. P., M. Klisch, A. Gröniger, and D. P. Häder. 1998. Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J. Photochem. Photobiol. B 47: 83–94. https://doi.org/10.1016/s1011-1344(98)00198-5.

Stomp, M., J. Huisman, L. J. Stal, and H. C. P. Matthijs. 2007. Colorful niches of photo-trophic microorganisms shaped by vibrations of the water molecule. ISME J. 1: 271–282. https://doi.org/10.1038/ismej.2007.59.

Stomp, M., and others. 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104–107. https://doi.org/10.1038/nature03044.