Probability Analysis of DAMRI Bus Mode Selection on the Operation of Adi Soemarmo International Airport (BIAS) Train

Ardani*, Dewi Handayani, and Syafi’i

Civil Engineering Postgraduate Department Sebelas Maret University, Jl. Ir. Sutami 36 A Solo 57126 Indonesia
E-mail: *ardanidani7@gmail.com

Abstract. Adi Soemarmo International Airport railway’s construction is an investment in the transportation sector expected to encourage the tourism sector in Joglosemar (Jogja-Solo-Semarang) Area. Adi Soemarmo International Airport (BIAS) train from Solo to the airport with a distance of about 13.5 km is an alternative to public transportation besides the pre-existing DAMRI Bus service. For this reason, this research aims to obtain a probability value for choosing the mode between DAMRI Bus and BIAS Train. The variables used in this research were travel time, tariff, and waiting time using the stated preference technique. The primary data were then processed using logistic regression analysis to obtain the probability values. The results show that the probability value of the fastest travel time in the choice of condition one or scenario 9. The value obtained from comparing airport trains’ use compared to DAMRI buses saves 17 minutes, a reduced waiting time of 22.5 minutes, and cheaper ticket costs around Rp. 10,000. There was a 99.59% increase in passenger displacement from DAMRI buses to BIAS trains from all these comparisons

1. Introduction

The tourism sector is one of the sources of local income that has the potential to be developed. Creating and utilizing local tourism resources and potential is expected to contribute to economic development to increase the locally-generated revenue. The construction of the Adi Soemarmo Airport railway is an investment in the transportation sector. In addition to improving the airport’s accessibility, this airport train process can reduce traffic congestion and provide other options for transportation modes than those that existed before. It is necessary to know how people want the attributes on the airport train to be. Based on this background, research would be carried out on the probability analysis of Adi Soemarmo Airport train mode selection for DAMRI bus passengers.

The previous research conducted [1] and [2] used four variables to obtain the utility values, whereas, in this research, only three variables were used: tariff, travel time, and waiting time. [3] His research also used the stated preference method, but it used the ordered probit model method in the analysis. The difference with this research lay in the analysis method using the binomial logit model. Likewise, [4] used CVM (Contingent Valuation Method) analysis method, whereas this research did not. The study [5] was that the respondents were given yes or no answers in this research.
2. Research Method

This research began with the problem formulation and literature review on the probability of the mode selection in research journals, books, the internet, and other related sources. The stated preference survey interview technique was used for data collection. This technique uses individual respondents’ statements or opinions regarding their choice of a set of options/experimental [6]. In the transportation sector, this technique massively has been used since it can estimate an individual or society’s preferences for transportation (facilities or infrastructure) policy that does not yet exist (still in the form of a hypothesis). The researchers took a total sample of 80 respondents with a maximum error rate (e) of 10%. In this research, the questionnaire design used the respondents’ questions to choose Adi Soemarmo Airport’s transportation mode. Then this choice would present a development scenario to provide a level for each attribute. There were three attributes used in this research: travel fare, travel time, and waiting time. The survey data results for the characteristics of each mode can be seen in Table 1.

From the processed attributes, scenarios that would occur and used in the interview survey were determined. There were 16 scenarios used in the interview survey to the respondents. Then, the questionnaire data results were arranged according to the stated preference method is also used [7], [8], [9], [10]. The data were analyzed to obtain the utility values. The utility concept was used to express an alternative’s attractiveness as something maximized by individuals [11]. The utility was described as a linear combination of several attributes or variables, so it was essential to choose the relevant variable. According to [1] and [12], the utility function depended on the mode service attribute, the individual’s socioeconomic status, and the trip’s characteristics concerning the mode selection model. The difference in utility could be expressed in terms of the difference in the number of relevant attributes between the two modes, formulated as follows:

\[
U_{ka} - U_{moda} = \beta_0 + \beta_1(X_{1ka} - X_{1moda}) + \beta_2(X_{2ka} - X_{2moda}) + \cdots + \beta_n(X_{nka} - X_{nmoda}),
\]

with \(U_{ka} - U_{moda} = \) train utility to the mode, \(\beta_0 = \) constant, \(\beta_1, \beta_2, \beta_3 = \) coefficient, and \(x_1, x_2, x_n = \) forming variables. The probability was then calculated using the binomial logit model to determine the transportation mode based on two methods. In research [13], [14], [15], [16], [17] and [18] also look for the probability of train. The model that the respondent would choose was the model with the highest utility. With the utility values, the probability would be obtained. In this research, the models being compared were the Adi Soemarmo International Airport train with the DAMRI bus. Quoted from [19], deriving the binomial logit model equation to determine the probability is as follows.

\[
P_n(i) = \frac{1}{1 + e^{-\beta(X_i-X_j)}}
\]

with \(\beta = \) Calibration parameters, \(X_i = \) Mode-forming variable value \(i\), \(X_j = \) Mode-forming variable value \(j\), and \(P_n(i) = \) Probability of mode selection \(i\).

Table 1. Airport Train and DAMRI Bus Attributes

Tariff	Travel time (minute)	Waiting time (minute)			
Airport Train	DAMRI Bus	Airport Train	DAMRI Bus	Airport Train	DAMRI Bus
15000	25000	13	30	40	45
37200	25000	18	30	22.5	15
3. Results and Discussion

3.1. Airport train utility analysis

The analysis was carried out by finding the difference in each variable between the airport train and the DAMRI bus. The results can be seen in Table 2.

Scenario	$S(T_{KA} - T_{BD})$	$Rp(C_{KA} - C_{BD})$	$T(H_{KA} - H_{BD})$
1	-12	-10	-12.5
2	-12	-10	-5
3	-12	-10	7.5
4	-12	-10	25
5	-12	12.7	-22.5
6	-12	12.7	-5
7	-12	7.5	
8	-12	7.5	
9	-17	-10	-22.5
10	-17	-10	-5
11	-17	-10	7.5
12	-17	-10	25
13	-17	12.7	-22.5
14	-17	7.5	
15	-17	7.5	
16	-17	25	

With $S = \text{Travel Time Difference in minute}$, $Rp = \text{Tariff Difference in rupiah}$, $T = \text{Waiting Time Difference in minute}$, $T_{KA} = \text{Travel time airport train}$, $T_{BD} = \text{Travel time DAMRI bus}$, $C_{KA} = \text{Cost/Tariff airport train}$, $U_{KA} = \text{Utility airport train}$, $C_{BD} = \text{Cost/Tariff DAMRI bus}$, $H_{KA} = \text{Waiting time airport train}$, $H_{BD} = \text{Waiting time DAMRI bus}$, $U_{BD} = \text{Utility DAMRI bus}$.

Then the data in Table 2 were combined with the answers from each scenario. Furthermore, the data were entered into the statistical software to determine the utility equation’s constant and coefficient. The utility model obtained was as follows:

$$U_{KA} - U_{BD} = -9.348 - 4.471(T_{KA} - T_{BD}) - 0.381(C_{KA} - C_{BD}) - 0.134(H_{KA} - H_{BD})$$ \hspace{1cm} (3)

The utility analysis results can be seen in Table 3.

3.2. Coefficient of determination statistical test

It was used to determine the independent variables (travel time, tariff, and waiting time) explaining the dependent variable. The results can be seen in Table 4. From Table 4, the Nagelkerke R Square value or Pseudo-R2 (\hat{R}^2) the value was 0.811. Then, by using the mapping graph of \hat{R}^2 and R2 values, the R2 the value was 1. It could be concluded that the independent variables’ ability to explain the dependent variable was 100%, so the model was declared the goodness of fit.

3.3. Hosmer and Lemeshow test

The Hosmer and Lemeshow test [20] results can be seen in Table 5.

From the Hosmer and Lemeshow test results above, it was found that the probability values of sig 0.585 and 0.153 were more significant than the 5% (0.05) significance level, so the null hypothesis (H0) could be rejected. It meant that the model could predict its observation value, or it could be said that the model could be accepted.
Table 3. The utility analysis results

Scenario	$S(T_{KA} - T_{BD})$	$R_p(C_{KA} - C_{BD})$	$T(H_{KA} - H_{BD})$	Utility
1	-12	-10	-22.5	3.129
2	-12	-10	-5	0.784
3	-12	-10	7.5	-0.891
4	-12	-10	25	-3.236
5	-12	12.7	-22.5	-5.5197
6	-12	12.7	-5	-7.8647
7	-12	12.7	7.5	-9.5397
8	-12	12.7	25	-11.8847
9	-17	-10	-22.5	5.484
10	-17	-10	-5	3.139
11	-17	-10	7.5	1.464
12	-17	-10	25	-0.881
13	-17	12.7	-22.5	-3.1647
14	-17	12.7	-5	-5.5097
15	-17	12.7	7.5	-7.1847
16	-17	12.7	25	-9.5297

Table 4. Coefficient of Determination Test Results with Statistical Software for Airport Train and DAMRI Bus

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
1	492.466a	0.579	0.811

Table 5. Hosmer and Lemeshow Test Results with Statistical Software for Airport Train and DAMRI

Step	Chi-square	df	Sig.
1	4.686	6	0.585

3.4. Overall percentage test

Overall percentage test is a test used to find out the predictive power of the regression model obtained. Table 6 shows the statistical software results.

Table 6. Overall Percentage Test Results with Statistical Software for Airport Train and DAMRI Bus

Observed	μ_1	μ_2	ξ
Step 1 Y			
Unwilling to Use Airport Train	825	49	94.4
Willing to Use Airport Train	55	351	86.5
Overall Percentage			91.9

with $\mu = \text{Unwilling to Use Airport Train}$, $\mu_2 = \text{Willing to Use Airport Train}$, and $\xi = \text{Percentage Correct}$. Based on the logistic regression results above, it could be concluded that the predictive power or model accuracy in classifying the observations was 91.9%.
3.5. Airport train probability analysis

The calculation results for the probability values of each scenario can be seen in Table 7. with

Scenario	ΔT	R_p	Δt	Utility	P (%)
1	-12	-10	-22.5	3.129	95.81
2	-12	-10	-5	0.784	68.65
3	-12	-10	7.5	-0.891	29.09
4	-12	-10	25	-3.236	3.78
5	-12	12.7	-22.5	-5.5197	0.40
6	-12	12.7	-5	-7.8647	0.04
7	-12	12.7	7.5	-9.5397	0.01
8	-12	12.7	25	-11.8847	0.00
9	-17	-10	-22.5	5.484	99.59
10	-17	-10	-5	3.139	95.85
11	-17	-10	7.5	1.464	81.21
12	-17	-10	25	-0.881	29.30
13	-17	12.7	-22.5	-3.1647	4.05
14	-17	12.7	-5	-5.5097	0.40
15	-17	12.7	7.5	-7.1847	0.08
16	-17	12.7	25	-9.5297	0.01

$\Delta T =$ travel time difference, $R_p =$ Tariff difference, $\Delta t =$ waiting time difference, and $P =$ probability

4. Conclusions

From the previous analysis results, it could be concluded that the probability of selecting the airport train depended on the offered conditions. Picking this transportation could be seen in every situation that occurred. The more favorable the Airport Train variable, the greater the probability value was. The results show that the probability value of the fastest travel time in the choice of condition one or scenario 9. The value obtained from comparing airport trains’ use compared to DAMRI buses saves 17 minutes, a reduced waiting time of 22.5 minutes, and cheaper ticket costs around Rp. 10,000. There was a 99.59% increase in passenger displacement from DAMRI buses to BIAS trains from all these comparisons.

References

[1] Setiawan D (2018), "Analisis Preferensi Penggunaan Moda Kereta Api Bandara Menuju New Yogyakarta International Airport Semesta Teknika" 21, 1, 43-52.

[2] W. Wahab (2019), "Studi Analisis Pemilihan Moda Transportasi Umum Darat di Kota Padang antara Kereta Api dan Bus Damri Bandara Internasional Minangkabau" J. Tek. Sipil ITP, vol. 6, no. 1, pp. 30-37.

[3] Tamin O Z (2000), "Perencanaan dan Permodelan Transportasi" (Bandung: ITB).

[4] Wulansari D N and Tamin O Z and Wibowo S S and Weningtyas W (2015), "Analisis Ability To Pay (ATP) dan Willingness To Pay (WTP) Pengguna Kereta Api Bandara (Studi Kasus-Bandar Udara Internasional Soekarno-Hatta)" Jurnal Forum Studi Transportasi Program Studi Magister Teknik Sipil Institut Teknologi Bandung Bandung.

[5] Oktaviani and Saputra A Y (2015), "Alternatif Pemilihan Moda Transportasi Umum (Studi Kasus: Bus Dan Kereta Api Trayek Kota Padang - Kota Pariaman)" Annual Civil Engineering Seminar 2015, 1, 978-979.

[6] Pearce, David and Ozdemiroglu (2002), "Economic Valuation with Stated Preference technique, Summary Guide" Department for Transport Local government and The Region, March 2002.

[7] Sadhukhan et al. (2016), Commuters’ willingness-to-pay for improvement of transfer facilities in and around metro stations – A case study in Kolkata, Transportation Research Part A: Policy and Practice, 92, 43-58.
[8] Krisnawardhana and Widyastuti (2015), “Analisis Willingness To Pay Menggunakan Binary Choice Model (Studi Kasus Rencana Re-Aktivasi Rute Kereta Api Jember-Panarukan)” 10.

[9] Jackson et al. (2012). On the willingness to pay for rural rail service level changes. Research in Transportation Business and Management, 4, 104–113. https://doi.org/10.1016/j.rtbm.2012.06.006

[10] Julien dan Mahalli. (2014). Analisis Ability To Pay Dan Willingness To Pay Pengguna Jasa Kereta Api Bandara Kualanamu (Airport Railink Service). Jurnal Ekonomi Dan Keuangan, 2(3), 167–179.

[11] Ridwan U, Priyanto S and Suparna L B (2018), Analisis Ability To Pay (ATP) dan Willingness To Pay (WTP) Pengguna Sepeda Motor Mobil Pribadi dan Bus di Wilayah Yogyakarta dan Bantul terhadap Pengoperasian Kereta Api Perkotaan. Jurnal Riset Daerah, 17, 1, 2941–2971.

[12] Hidayati and Emi Mutia. 2003, Permodelan Pemilihan Moda Kereta Api Eksekutif dan Pesawat Terbang Berdasarkan Persepsi Penumpang, Skripsi (Universitas Sebelas Maret).

[13] Nuryadi, A. Subagiyo, and D. M. Utomo (2017), “Kajian Pemilihan Moda Bus dan Kereta Api pada Pengerakan Pergajau Sidoarjo - Surabaya,” Transportasi, vol. 6, no. November 2018, p. 64, 2017.

[14] F. Miro (2016), “Analisis Pilihan Moda Transportasi Umum Rute Padang – Jakarta Menggunakan Metode Stated Preference,” J. Reg. City Plan., vol. 27, no. 1, pp. 25–33.

[15] W. Wahab and A. Roza (2020), “Pemodelan Pemilihan Moda Transportasi Darat Antara Angkutan Kota dan Gojek di Kota Bukittinggi dengan Teknik Stated Preference,” J. Ilm. Rekayasa Sipil, vol. 17, no. 1, pp. 63–74.

[16] A. Hadid et al. (2014), “Model pemilihan moda antara kereta api dan bus rute makassar – parepare dengan menggunakan metode stated preference,” pp. 1–10.

[17] H. Meylisa, A. Mhm, and D. Handayani (2017), “Pemilihan Moda Angkutan Kereta Api Kalijaga Jurusan Solo- Semarang,” pp. 1287–1295.

[18] D. N. Wulansari (2016), “Kompetisi Pemilihan Moda Angkutan Penumpang Berdasarkan Model Logit-Binomial-Selisih dan Logit-Binomial-Nisbah,” J. Fropil, vol. 4, no. 1, pp. 15–27.

[19] Ortuzar J D and Willumsen (1994), Modelling Transport. (England: John Wiley and Sons Ltd).

[20] Hosmer, D. W. dan Lemeshow, S. (2000). Applied logistic Regression. 2nd Edition. New York, NY: John Wiley dan Sons, Inc.