Is Incomplete Left Atrial Posterior Wall Isolation Associated With Recurrence of Atrial Fibrillation After Radiofrequency Catheter Ablation?

Takefumi Fujito, MD; Atsushi Mochizuki, MD, PhD; Naoyuki Kamiyama, MD; Masayuki Koyama, MD, PhD; Daigo Nagahara, MD, PhD; Tetsuji Miura, MD, PhD

Background: Complete left atrial posterior wall isolation (LAPI) is not always achieved. We examined whether incomplete LAPI has an effect on outcomes after catheter ablation (CA).

Methods and Results: This study enrolled 75 consecutive patients (mean ±SD age 62.6±8.9 years, 74.7% male) who underwent LAPI by radiofrequency CA for persistent atrial fibrillation (AF). The median follow-up period was 541 days (interquartile range 338–840 days). Incomplete LAPI was defined as the presence of a successfully created roof or floor linear lesion. The rate of complete LAPI was 41.3% (31/75). Either a roof or floor linear lesion was created in 38 patients, whereas neither was created in 6. Multivariate Cox proportional hazards regression analysis revealed that female sex (hazard ratio [HR] 5.29; 95% confidence interval [CI] 1.81–16.8; P=0.002) and complete or incomplete LAPI (HR 0.17; 95% CI 0.03–0.79; P=0.027) were independent predictors of AF recurrence. Kaplan-Meier curves indicated that better outcome was associated with at least one rather than no successful linear lesion (86.5% vs. 50.0% at 1 year; P=0.043). There were no significant differences in outcomes between the complete LAPI and incomplete LAPI groups.

Conclusions: Complete LAPI is unachievable in a significant percentage of patients with persistent AF. However, incomplete LAPI, as a result of aiming for complete LAPI, may have a benefit comparable to that of complete LAPI.

Key Words: Atrial fibrillation; Catheter ablation; Left atrial posterior wall isolation

Pulmonary vein isolation (PVI) is the cornerstone of catheter ablation (CA) for atrial fibrillation (AF), a standard of care in AF patients. The increasing number of patients with AF has added further weight to CA; however, the frequency of recurrent AF after successful PVI is not negligible. Recurrence of AF after PVI alone is more frequent in patients with persistent AF than in patients with paroxysmal AF. To improve the benefit of CA, several adjuvant substrate modifications that are usually performed in combination with PVI in patients with persistent AF have been reported. These substrate modifications include linear ablation of the left atrial (LA) roof and/or LA isthmus, ganglionated plexus ablation, complex fractionated atrial electrogram (CFAE) ablation, low-voltage area ablation, and LA posterior wall isolation (LAPI).

Of the strategies for substrate modification, LAPI has multiple advantages because the LA posterior wall is a considerable source of non-pulmonary vein (PV) triggers, CFAE, drivers, and low voltage zones. LAPI consists of the posterior lines of PVI, a roof line between the tops of the bilateral superior PVs, and a floor line that connects the bottoms of the bilateral inferior PVs, leading to electrical isolation of the LA posterior wall. However, it has not been determined whether complete LAPI is definitely required to reduce the recurrence of AF after CA or whether incomplete LAPI is also acceptable.

Complete LAPI is not always achieved due to a thick myocardial wall, unstable contact of the ablation catheter with the myocardium, and/or insufficient lesion formation because of the risk of myocardial perforation or esophageal injury. An incomplete linear lesion with small gaps or recurrence of conduction could increase the incidence of reentrant atrial tachycardia (AT). Although several investigators have shown the effectiveness of LAPI for persistent AF in meta-analyses, the rates of recurrence of AF vary between investigations, and the relationship between the rate of AF recurrence after LAPI and procedural outcomes of LAPI remains unclear. Thus, in the present study, we examined the success rate of complete LAPI.
vein, and 2 multipole catheters (i.e., 2 circular catheters or a circular catheter and a PENTARAY catheter; Biosense Webster, Diamond Bar, CA, USA) were introduced into the LA. RF ablation was performed under the guidance of a CARTO system using a 3.5-mm tip open-irrigated and contact force (CF)-sensing catheter (NaviStar ThermoCool SmartTouch; Biosense Webster). All patients underwent extensive encircling PVI, and balloon ablation technologies were not used. Although the basic RF energy setting was 30 W for 20–30 s for each point, the power and duration were reduced to 20 W and 10–15 s, respectively, at the left-sided posterior wall or at a site close to the esophagus. An esophageal temperature monitoring catheter was used, and RF energy delivery was stopped immediately if the temperature exceeded 39–40°C. The interlesion distance was set at 2–4 mm and target CF was aimed at >10 g. When the PV potential was not eliminated by a single circular line, detailed mapping along the lesion line and additional touch-up ablation at a residual conduction gap were performed. If AF was ongoing even after entrance block of all PVs was attained, sinus rhythm (SR) was restored by intracardiac or external electrical cardioversion. Pacing from the circular catheter within the PV was performed to evaluate the presence of the exit block.

LAPI and whether the outcomes after CA were affected by completeness of the LAPI procedure in patients with persistent AF.

Methods

Study Patients
The present study was a single-center retrospective study conducted at Sapporo Medical University Hospital. The study population consisted of 75 consecutive patients with drug-refractory and symptomatic persistent AF who underwent first-time LAPI by radiofrequency (RF) CA at Sapporo Medical University Hospital between 2015 and 2018. Because follow-up data at the outpatient clinic were not available for one of the 75 patients, data for 74 patients were used in the analysis of the prediction of AF recurrence. Persistent AF was defined as continuous AF that was sustained beyond 7 days.1 The present study was approved by the Institutional Ethics Committee of Sapporo Medical University (Reference no. 312-73).

CA Procedure
Administration of antiarrhythmic agents was discontinued 2 days before the CA procedure. CA was performed in patients under deep sedation using continuous infusion of dexmedetomidine and propofol. Three long sheaths, including a steerable sheath (Agilis; St. Jude Medical, St. Paul, MN, USA), were inserted into the LA via the femoral
potential along the ablation line and a compatible atrial activation sequence during differential pacing across the line (Figure 1B). The order of linear lesion formation, whether the roof line or the floor line was formed first, was left to the discretion of individual operators. Complete LAPI was defined as: (1) the disappearance of atrial potentials within the posterior area and demonstration of local atrial capture without conduction to the LA; (2) observation of dissociated spontaneous activity within the posterior area; or (3) a lack of atrial capture by pacing the session; however, vigorous induction by isoproterenol infusion was not performed.

Incomplete LAPI was defined as the presence of a successfully created roof or floor linear lesion, whereas unsuccessful LAPI was defined as the lack of both roof and floor linear lesions. Thus, incomplete LAPI and unsuccessful LAPI were failed attempts of complete LAPI.

Additional touch-up ablation targeting the earliest activation site in the middle area of the enclosed posterior wall away from the lines and adenosine challenge for dormant posterior wall conduction were not performed. Cavotricuspid isthmus (CTI) ablation and superior vena cava (SVC) isolation were performed at the operator’s discretion. Ablation of non-PV triggers was performed if atrial premature complexes were sufficiently frequent during the session; however, vigorous induction by isoproterenol infusion was not performed.

Patient Follow-up
All patients underwent electrocardiography (ECG) and/or 24-h Holter monitoring at the outpatient clinic of Sapporo Medical University Hospital, or at the clinics of the physicians who referred the patients to Sapporo Medical University Hospital, at 3, 6, 9, 12, 18, and 24 months after CA or at any time when a patient was symptomatic. Administration of antiarrhythmic agents for AF was discontinued 3 months after CA. Discontinuation of oral anticoagulation (OAC) therapy was recommended if patients had maintained SR for 6 months and had a low risk of thromboembolism (CHADS2 score <2) without other indications for OAC. Recurrence of AF was defined as AF or AT documented by 12-lead ECG or 24-h Holter monitoring (the cut-off duration was >30s in cases documented by Holter ECG) after a blanking period of 3

Table 1. Baseline Clinical Characteristics in All Study Subjects and in Groups With and Without Complete LAPI

	All study subjects (n=75)	Complete LAPI (n=31)	Incomplete or unsuccessful LAPI (n=44)	P value
Age (years)	62.6±8.9	64.0±8.3	61.5±9.2	0.240
Male sex	56 (74.7)	21 (67.7)	35 (79.6)	0.247
Body mass index (kg/m²)	24.7 [22.8–26.7]	24.4 [22.2–26.6]	25.1 [23.1–28.9]	0.182
Duration of AF (months)	9 [5–19]	8 [5–25]	10 [5.3–18.8]	0.635
Structural heart disease	16 (21.3)	8 (25.8)	8 (18.2)	0.427
Hypertension	40 (53.3)	17 (54.8)	23 (52.3)	0.826
Diabetes	13 (17.3)	3 (9.7)	10 (22.7)	0.142
History of stroke or TIA	7 (9.3)	3 (9.7)	4 (9.1)	0.932
CHADS₂ score	1 [1–2]	1 [0–2]	1 [1–2]	0.452
CHA₂DS₂-VASc score	2 [1–3]	2 [1–3]	1 [1–3]	0.996
LA diameter (mm)	43.7±6.1	42.2±5.9	44.8±6.1	0.075
LA volume index (mL/m²)	47.3±12.2	49.6±11.4	45.5±12.6	0.164
LVEF (%)	56.2 [51.0–61.8]	57.9 [53.3–62.4]	55.4 [47.3–61.3]	0.254
eGFR (mL/min/1.73m²)	65.0±14.1	65.3±12.0	64.9±15.5	0.890
BNP (pg/mL)	95.2 [66.3–212.5]	133.3 [74.2–361.5]	78.7 [62–192.2]	0.037*
NT-proBNP (pg/mL)	579.3 [359.4–992.1]	759.3 [448.7–1,060]	562.1 [252.3–851.8]	0.210
ACEI/ARB	34 (45.3)	12 (38.7)	22 (50.0)	0.333
Statin	18 (24.0)	6 (19.4)	12 (27.3)	0.429
Antiarrhythmic agents				
Before ablation	40 (53.3)	19 (61.3)	21 (47.7)	0.246
During blanking period	56 (74.7)	24 (77.4)	32 (72.7)	0.646
At the end of follow-up	6 (8.0)	3 (9.7)	3 (6.8)	0.653
Procedural data				
Cavotricuspid isthmus ablation	69 (92.0)	29 (93.6)	40 (90.9)	0.678
Superior vena cava isolation	46 (61.3)	19 (61.3)	27 (61.4)	0.995
Operation time (min)	298.4±49.2	291.5±42.2	303.3±53.5	0.310

Data are presented as the mean±SD for normally distributed variables, the median [interquartile range] for non-normally distributed variables, or as the number (%) of patients. *Indicates P<0.05. ACEI, angiotensin converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin II receptor blocker; BNP, B-type natriuretic peptide; eGFR, estimated glomerular filtration rate; LA, left atrial; LAPI, left atrial posterior wall isolation; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro B-type natriuretic peptide; TIA, transient ischemic attack.
months after the prior CA.¹

Statistical Analysis

Continuous data are expressed as the mean ± SD for normally distributed variables and as median values with the interquartile ranges (IQR) for non-normally distributed variables. Categorical variables are given as absolute counts and percentages. The significance of differences in continuous variables between 2 groups was assessed using Student’s t-test for normally distributed variables and the Mann-Whitney U-test for non-normally distributed variables. Categorical variables were analyzed using the Chi-squared test, with Fisher’s exact test used when appropriate. Recurrence-free survival rates were calculated by the Kaplan-Meier method and compared by the log-rank test across groups. To identify independent predictors of AF recurrence after CA, Cox proportional hazards regression analysis was used. Variables with P<0.05 in the univariate analysis were entered into a multivariate analysis. Two-sided P<0.05 was considered significant. Data were analyzed using JMP version 11.0.0 (SAS Institute, Cary, NC, USA).

Results

Baseline Clinical Characteristics of Study Subjects

Table 1 shows the baseline clinical characteristics of the study subjects. The mean age of the patients was 62.6±8.9 years, and 74.7% of patients were male. The median duration of AF was 9 months (IQR 5–19 months). Sixteen patients (21.3%) had structural heart disease. Forty patients (53.3%) had hypertension. In echocardiography, the LA diameter was 43.7±6.1 mm, the LA volume index was 47.3±12.2 mL/m² and the median left ventricular ejection fraction was 56.2% (IQR 51.0–61.8%). PVI was completed in all 75 patients. CTI linear ablation was performed in 69 patients (92.0%) and SVC isolation was performed in 46 patients (61.3%). Antiarrhythmic agents were used in 40 patients (53.3%) before ablation and in 56 patients (74.7%) during the blanking period. The administration of antiarrhythmic agents was continued in 6 patients (8.0%) at the end of follow-up: patients received amiodarone for concomitant ventricular tachyarrhythmia (n=3) or they were administered amiodarone (n=2) or bepridil (n=1) because of an expected higher probability of AF recurrence due to severe LA dilatation. Except for 1 patient with cardiac tamponade requiring drainage, there were no cases of major complications, such as symptomatic esophageal injury or ischemic stroke.

LAPI Success Rate

Of the 75 patients who underwent LAPI, a successful roof line was achieved in 36 (48.0%) and a successful floor line was achieved in 64 (85.3%), indicating that the floor line was easier to create than the roof line (Table 2). Ablation time was longer and ablation energy was higher in patients with unsuccessful linear lesions than in patients with successful linear lesions (Table 3). Lesion gaps were frequently located in the middle portion of the roof line and at a site close to the esophagus on the floor line. Complete LAPI was achieved in 31 patients (41.3%). Ablation of the floor

Table 2. Completeness of LAPI (n=75)
No. patients (%)
Successful roof line 36 (48.0)
Successful floor line 64 (85.3)
Complete LAPI 31 (41.3)
Incomplete LAPI (either roof or floor line successful) 38 (50.7)
Successful roof line alone (unsuccessful floor line) 5 (6.7)
Successful floor line alone (unsuccessful roof line) 33 (44.0)
Unsuccessful LAPI (neither roof nor floor line successful) 6 (8.0)

LAPI, left atrial posterior wall isolation.

Table 3. Ablation Time and Ablation Energy for Creating a Linear Lesion and Location of the Lesion Gap (n=75)
Roof line
No. patients

Total no. RF applications
Total ablation time (s)
Total ablation energy (joules)
Location of lesion gap
Right side
Middle portion
Left side
Floor line
No. patients
Total no. RF applications
Total ablation time (s)
Total ablation energy (joules)
Location of lesion gap
Close to the esophagus
Other sites

Unless indicated otherwise, data are presented as the median [interquartile range] or the number (%) of patients. *Indicates P<0.05. RF, radiofrequency.
line prior to the roof line was performed in 60 patients (80.0%). Among patients in whom LAPI was not completed, either the roof line or the floor linear lesion was successfully created in 38 patients (50.7%) and neither linear lesion was created in 6 (8.0%). N-Terminal pro B-type natriuretic peptide (NT-proBNP) concentrations were higher in patients with a successful roof linear lesion than in those with an unsuccessful roof line (median [IQR] 817.3 [458.4–1,060] vs. 514.5 [200.3–704.8] pg/mL, respectively; P=0.044), and serum B-type natriuretic peptide (BNP) concentrations were higher in patients with complete than incomplete or unsuccessful LAPI (median [IQR] 133.3 [74.2–361.5] vs. 78.7 [62–192.2] pg/mL, respectively; P=0.037; Table 1).

The reasons for the intergroup differences in NT-proBNP and BNP concentrations are unclear, but possibly reflect some effects of LA remodeling on susceptibility of the LA wall to ablation. Patients with a successful floor line were older than those with an unsuccessful floor line (63.7 ± 8.6 vs. 56.2 ± 7.8 years, respectively; P=0.009).

Relationship Between at Least One Successful Linear Ablation and AF Recurrence

During a median follow-up period of 541 days (IQR 338–840 days), 18 of 74 patients (24.3%) had AF recurrence. Of those 18 patients, AF only was documented in 13 patients, AT only was documented in 2 patients, and both AF and AT were documented in 3 patients. The incidence of AT in patients with recurrence tended to be higher in the group with complete LAPI (3 of 7 patients) than in patients with incomplete or unsuccessful LAPI (2 of 11 patients),
although the difference was not statistically significant (42.9% vs. 18.2%; P=0.255). Recurrence-free survival rates 1 and 2 years after CA were 83.5% and 75.1%, respectively, in all patients.

In univariate analysis using a Cox proportional hazards regression model, female sex, LA volume index, and successful linear ablation in at least one of the lines (roof or floor line) during LAPI were associated with a lower rate of AF recurrence. In multivariate analysis, female sex (hazard ratio [HR] 5.29; 95% confidence interval [CI] 1.81–16.8; P=0.002) and success in at least one of the 2 linear ablations (HR 0.17; 95% CI 0.03–0.79; P=0.027) were independent predictors of the recurrence of AF (Table 4). In the group with incomplete LAPI, the number of RF applications, ablation time, and ablation energy were not associated with AF recurrence. As shown by Kaplan-Meier curves (Figure 2), the recurrence-free rate was higher in patients with at least one successful linear ablation (complete and incomplete LAPI groups) than in patients without successful linear ablation (unsuccessful LAPI group) (86.5% vs. 50.0% and 77.2% vs. 50.0% at 1 year and 2 years, respectively; P=0.043), although baseline clinical characteristics were comparable between the 2 groups (Table 5). The recurrence-free rates did not differ between the complete LAPI group and the incomplete or unsuccessful LAPI group (93.4% vs. 76.3% and 78.8% vs. 73.2% at 1 year and 2 years, respectively; P=0.501). Interestingly, there was no significant difference in recurrence-free rates

Table 5. Baseline Clinical Characteristics in Groups With and Without at Least One Successful Linear Lesion
Group with at least one successful line (n=69)
Age (years)
Male sex
Body mass index (kg/m²)
Duration of AF (months)
Structural heart disease
Hypertension
Diabetes
History of stroke or TIA
CHADS² score
CHA²DS²-VASC score
LA diameter (mm)
LA volume index (mL/m²)
LVEF (%)
eGFR (mL/min/1.73m²)
BNP (pg/mL)
NT-proBNP (pg/mL)
ACEI/ARB
Statin
Antiarrhythmic agents
Before ablation
During blanking period
At the end of follow-up
Procedural data
Cavotricuspid isthmus ablation
Superior vena cava isolation
Operation time (min)
Data are presented as the mean±SD for normally distributed variables, the median [interquartile range] for non-normally distributed variables, or as the number (%) of patients. Abbreviations as in Table 1.
Discussion

The present study showed that an attempt at LAPI often resulted in incomplete LAPI. It was more difficult to successfully create the roof line than the floor line, and this difficulty was primarily responsible for the failure to achieve complete LAPI. However, the results of the present study suggest that complete LAPI is not essential for reducing the rate of AF recurrence; the effect of incomplete LAPI (resulting after aiming for complete LAPI), with a successfully created roof or floor linear lesion, on AF recurrence was comparable to that of complete LAPI. Thus, the present study revealed, for the first time, that LAPI has a clinical benefit if there is sufficient modification of the LA posterior area and that a clinical benefit can be provided by successful creation of at least one of the lines even if complete LAPI is not achieved.

Difficulty Completing LAPI

There are specific problems that impede successful linear lesion formation for the roof line and floor line. One of the 2 major reasons why successful creation of the roof line is difficult is that the LA roof is the thickest area in the LA, reaching a wall thickness of 6.5 mm.\(^1\)\(^2\) Continuous transmural lesions can be difficult to achieve for a thick myocardial wall. The other reason why creating a roof line is difficult is the technical difficulty in obtaining stable contact between the ablation catheter and the myocardium in the LA roof area.\(^3\)\(^7\) Moreover, a high reconnection rate has been reported even if a successful roof line is achieved in the first CA session. For example, Rostock et al showed that electrical conduction across the roof line was recovered in 79% of cases, predominantly at a site close to the right PV, at the time of the repeat CA procedure.\(^8\) In another study, the rate of reconnection observed in the second session was 79.2% in the roof line.\(^9\)

Conversely, the wall thickness of the LA decreases in the inferior direction. The wall thickness of the LA has been reported to be 2.3±0.9 mm in the area between the superior PVs, and the wall becomes much thinner in the area between the inferior PVs.\(^10\) this thinner myocardium makes it easier for the floor line to be successfully created. However, there are difficulties associated with creating the floor line. Careful attention should be paid to increases in the temperature of the esophagus to avoid esophageal injury; because the floor line traverses the esophagus in almost all patients, insufficient RF energy may be used.\(^11\)

Similarly, it had been reported that reconnection of the block line is more frequent at sites where the temperature of the esophagus rises than at other sites.\(^12\)

Although we did not evaluate the actual wall thickness or stability of the catheter contact, complete and durable LAPI is not easy to achieve, even though there was a clear endpoint of electrical isolation from the LA. At least one successful linear lesion was sufficient to reduce the rate of AF recurrence in the present study, but creating 2 linear lesions, and not just the roof or floor line alone, is recommended because of the difficulty in achieving a successful and durable linear lesion.

The rate of complete LAPI in the present study was 41.3%. The rates of complete LAPI reported in previous studies vary widely, from 23.3% to 95.7%.\(^13\)\(^14\) The difference in the success rates of LAPI depend, in part, on the ablation setting. The recommended ablation setting is a CF between 15 and 30 g, RF energy power of 30 W, and application duration of 60 s or until split or attenuation of local potential for each point when creating the roof line.\(^15\) However, we used a less intense RF setting to avoid myocardial perforation or esophageal injury, and this may explain the lower rate of complete LAPI in the present study. Furthermore, it has been reported that LAPI is difficult to complete due to multiple conduction gaps if linear ablation is started in the setting of the other unsuccessful line.\(^16\) Hence, the rate of complete LAPI differs among studies, and this difference may be caused by the settings for RF application and the order of creating the line, in addition to differences in anatomy among individuals.

Relationship Between LAPI Completeness and AF Recurrence

Kumar et al reported that the recurrence-free rate did not differ between patients with complete and those with incomplete LAPI.\(^17\) In that study, the definition of “incomplete LAPI” was different from that of the present study, i.e., “incomplete LAPI” included both incomplete LAPI and unsuccessful LAPI of the present study, and Kumar et al presumed that the drivers at the roof or floor area may be interrupted despite incomplete LAPI.\(^17\) However, detailed evaluation of the relationship between completeness of LAPI and AF recurrence was not undertaken. Verma et al included patients with PV reconnection in the second ablation, and reported that sufficient LA-PV conduction delay was associated with a lower rate of AF recurrence (i.e., the conduction delay was smaller in patients with than without AF recurrence).\(^18\) The authors of that study concluded that significant conduction delay brought about by the prior CA resulted in the suppression of rapid conduction, leading to a decrease in the triggers of AF.\(^19\)

Although conduction delay in the LA posterior area was not evaluated in the present study, the same mechanism as that proposed by Verma et al\(^3\) may be applied to incomplete LAPI. Therefore, even if either the roof line or the floor linear lesion is not created successfully during LAPI, a significant conduction delay in the LA posterior wall may contribute to modification of the arrhythmogenic nature of the LA posterior area, leading to a decreased risk of AF recurrence. In addition, successful creation of either the roof or floor line prevents roof-dependent macroreentrant AT, which is thought to contribute considerably to

...
the reduction in the risk of AT or AF recurrence.

In the present study, procedural outcomes of LAPI attempts were heterogeneous, and the successful creation of at least either the roof line or floor line during LAPI was actually associated with a better outcome after CA (Table 4; Figure 2). However, the findings in the present study do not prove the effectiveness of a strategy of a single roof or floor line, and further studies in which such a single-line strategy is compared to incomplete LAPI are needed. Nevertheless, the results of the present study support the notion that LAPI is beneficial for the prevention of AF recurrence unless both roof and floor lines are not successfully created.

In the present study, female sex was also found to be an independent predictor of AF recurrence. It is well known that the outcome of CA for AF differs between the sexes, and female sex has been shown to be strongly associated with arrhythmia recurrence. Possible explanations for the poor outcome in females include less-durable ablation lesions in women, more symptomatic status in women than in men, a more advanced LA substrate in women, and a propensity for the development of non-PV triggers in women.

Study Limitations
This study has several limitations. First, the study was a single-center retrospective study and the number of patients was relatively small, limiting the study’s statistical power. Thus, data for some factors that may affect procedural outcomes of LAPI, such as LA wall thickness and stability of the contact between the ablation catheter and atrium, were not available, and the statistical power may not have been sufficient to detect factors associated with successful creation of a linear lesion, completion of LAPI, and AF recurrence. Second, we did not perform additional touch-up ablation in the middle area of the enclosed posterior wall even when LAPI was incomplete in the period when the subjects underwent ablation. If this strategy had been adopted in the incomplete LAPI group, the success rate of complete LAPI and the rate of AF recurrence may have been different. Third, an ambulatory ECG monitor or implantable cardiac monitor was not used in the present study. Therefore, asymptomatic or short-lasting AF may have been overlooked, resulting in a higher recurrence-free rate than in previous studies.

Fourth, although general practitioners were recommended to discontinue antiarrhythmic agents 3 months after CA, several patients were on antiarrhythmic agents during the follow-up period, which may have modified the clinical outcomes. However, antiarrhythmic agents were not associated with the recurrence of AF in the present study. Fifth, patients with severe valvular heart disease were not included in this study. LA dilatation was mild and the duration of AF (median 9.0 months) was relatively short. It is possible that there was a selection bias towards AF patients with mild LA remodeling at the time of assessing indications for CA. Sixth, the precise mechanism underlying AF recurrence was not assessed. SVC isolation was not performed in approximately 40% of subjects and we did not perform aggressive induction of non-PV triggers by isoproterenol infusion. Therefore, non-PV triggers originating from the SVC may have affected the clinical outcomes. Thus, it is difficult to evaluate the relationship purely between the completeness of LAPI and AF recurrence because possible reconnection of linear lesions, PV reconnection, and non-PV triggers may also have been responsible for AF recurrence.

Conclusions
Complete LAPI is not achievable in a significant proportion of patients in whom RF CA is performed for persistent AF. However, if at least either the roof or floor linear lesion is created successfully, even incomplete LAPI resulting after aiming for complete LAPI has benefits comparable to those of complete LAPI in terms of the suppression of AF recurrence.

Acknowledgments
The authors would like to thank clinical engineers, Hirohito Takahashi and Naoto Noumura, for their devoted support.

Sources of Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Disclosures
The authors have no conflicts of interest to disclose.

IRB Information
This study was approved by the Institutional Ethics Committee of Sapporo Medical University (Reference no. 312-73).

References
1. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2017; 14: e275 – e444.
2. Oral H, Knight BP, Tada H, Ozaydin M, Chugh A, Hassan S, et al. Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation 2002; 105: 1071 – 1081.
3. Willems S, Klemm H, Rostock T, Brandstrup B, Ventura R, Steven D, et al. Substrate modification combined with pulmonary vein isolation improves outcome of catheter ablation in patients with persistent atrial fibrillation: A prospective randomized comparison. Eur Heart J 2006; 27: 2871 – 2878.
4. Pokushalov E, Romanov A, Katritsis DG, Artyomenko S, Shirokova N, Karakov A, et al. Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: A randomized comparison. Heart Rhythm 2013; 10: 1280 – 1286.
5. Hayward RM, Upadhayay GA, Mela T, Ellinor PT, Barrett CD, Heist EK, et al. Pulmonary vein isolation with complex fractionated atrial electrogram ablation for paroxysmal and nonparoxysmal atrial fibrillation: A meta-analysis. Heart Rhythm 2011; 8: 994 – 1000.
6. Jadidi AS, Lehmann H, Keyl C, Sorrel J, Markstein V, Minners J, et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol 2016; 9: e002962.
7. Kumar P, Banimore AM, Schwartz JD, Chung EH, Ghei AK, Kser AC, et al. Challenges and outcomes of posterior wall isolation for ablation of atrial fibrillation. J Am Heart Assoc 2016; 5: e003885.
8. Kece F, Scholte AJ, de Riva M, Naruse Y, Watanabe M, Alizadeh Dehnavi R, et al. Impact of left atrial box surface ratio on the recurrence after ablation for persistent atrial fibrillation. Pacing Clin Electrophysiol 2019; 42: 208 – 215.
9. Sugumar H, Thomas SP, Prabhu S, Voskoboinik A, Kistler PM. How to perform posterior wall isolation in catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol 2018; 29: 345 – 352.
10. He X, Zhou Y, Chen Y, Wu L, Huang Y, He J. Left atrial posterior wall isolation reduces the recurrence of atrial fibrillation: A meta-analysis. J Interv Card Electrophysiol 2016; 46: 267 – 274.
11. Lupericio F, Lin AY, Aldaaas OM, Romero J, Briceno D, Hoffmayer KS, et al. Role of adjunctive posterior wall isolation in patients undergoing atrial fibrillation ablation: A systematic review and meta-analysis. J Interv Card Electrophysiol 2020; 58: 77 – 86.
12. Bai R, Di Biase L, Mohanty P, Trivedi C, Dello Russo A, Themistoclakis S, et al. Proven isolation of the pulmonary vein antrum with or without left atrial posterior wall isolation in patients with persistent atrial fibrillation. Heart Rhythm 2016; 13: 132–140.

13. Higuchi S, Sohara H, Nakamura Y, Ihara M, Yamaguchi Y, Shoda M, et al. Is it necessary to achieve a complete box isolation in the case of frequent esophageal temperature rises? Feasibility of shifting to a partial box isolation strategy for patients with non-paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 2016; 27: 897–904.

14. McLellan AJA, Prabhu S, Voskoboinik A, Wong MCG, Walters TE, Pathik B, et al. Isolation of the posterior left atrium for patients with persistent atrial fibrillation: Routine adenosine challenge for dormant posterior left atrial conduction improves long-term outcome. Europace 2017; 19: 1958–1966.

15. Di Biase L, Mohanty P, Mohanty S, Santangeli P, Trivedi C, Lakkireddy D, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: Results from the AATAC multicenter randomized trial. Circulation 2016; 133: 1637–1644.

16. Lee SH, Tai CT, Hsieh MH, Tsao HM, Chang SL, et al. Predictors of non-pulmonary vein ectopic beats initiating paroxysmal atrial fibrillation: Implication for catheter ablation. Am J Cardiol 2005; 96: 1054–1059.

17. Kalifa J, Tanaka K, Zaitsev AV, Warren M, Vaidyanathan R, Auerbach D, et al. Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 2006; 113: 626–633.

18. Lim HS, Hocini M, Dubois R, Denis A, Derval N, Zellerhoff S, et al. Complexity and distribution of drivers in relation to duration of persistent atrial fibrillation. Am J Cardiol 2017; 119: 1257–1269.

19. Benito EM, Cabanelas N, Nuñez-Garcia M, Alarcon F, Figueras I, Ventura RM, et al. Preferential regional distribution of atrial fibrosis in posterior wall around left inferior pulmonary vein as identified by late gadolinium enhancement cardiac magnetic resonance in patients with atrial fibrillation. Europace 2018; 20: 1959–1965.

20. Sawhney N, Anousheh R, Chen W, Feld GK. Circumferential pulmonary vein ablation with additional linear ablation results in an increased incidence of left atrial flutter compared with segmental pulmonary vein isolation as an initial approach to ablation of paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol 2010; 3: 243–248.

21. Sanders P, Hocini M, Jaïs P, Sacher F, Hsu LF, Takahashi Y, et al. Complete isolation of the pulmonary veins and posterior left atrium in chronic atrial fibrillation: Long-term clinical outcome. Eur Heart J 2007; 28: 1862–1871.

22. Hocini M, Jaïs P, Sanders P, Takahashi Y, Rotter M, Rostock T, et al. Techniques, evaluation, and consequences of linear block at the left atrial roof in paroxysmal atrial fibrillation: A prospective randomized study. Circulation 2005; 112: 3688–3696.

23. Dixit S, Marchinski FE, Lin D, Callans DJ, Bala R, Riley MP, et al. Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study. Circ Arrhythm Electrophysiol 2012; 5: 287–294.

24. Takamiya T, Nitta J, Sato A, Inamura Y, Kato N, Inaba O, et al. Pulmonary vein isolation plus left atrial posterior wall isolation and additional nonpulmonary vein trigger ablation using high-dose isoproterenol for long-standing persistent atrial fibrillation. J Arrhythm 2019; 35: 215–222.

25. Ho SY, Sanchez-Qintana D, Cabrera JA, Anderson RH. Anatomy of the left atrium: Implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 1999; 10: 1525–1533.

26. Markides V, Schilling RJ, Ho SY, Chow AW, Davies DW, Peters NS. Characterization of left atrial activation in the intact human heart. Circulation 2003; 107: 733–739.

27. Yu HT, Shim J, Park J, Kim JS, Kim TH, Uhm JS, et al. Pulmonary vein isolation alone versus additional linear ablation in patients with persistent atrial fibrillation converted to paroxysmal type with antiarrhythmic drug therapy: A multicenter, prospective, randomized study. Circ Arrhythm Electrophysiol 2017; 10: e004915.

28. Rostock T, O’Neill MD, Sanders P, Rotter M, Jaïs P, Hocini M, et al. Characterization of conduction recovery across left atrial linear lesions in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol 2006; 17: 1106–1111.

29. Platonov PG, Ivanov V, Ho SY, Mitrofanova L. Left atrial posterior wall thickness in patients with and without atrial fibrillation: Data from 298 consecutive autopsies. J Cardiovasc Electrophysiol 2008; 19: 689–692.

30. Kapur S, Barbhaiya C, Dencke T, Michaud GF. Esophageal injury and atrioesophageal fistula caused by ablation for atrial fibrillation. Circulation 2017; 136: 1247–1255.

31. Tran VN, Kusa S, Smietana J, Tsai WC, Bhasin K, Teh A, et al. The relationship between esophageal heating during left atrial posterior wall ablation and the durability of pulmonary vein isolation. Europace 2017; 19: 1664–1669.

32. Verma A, Kilicaslan F, Pisano E, Marrouche NF, Fanelli R, Brachmann J, et al. Response of atrial fibrillation to pulmonary vein antrum isolation is directly related to resumption and delay of pulmonary vein conduction. Circulation 2005; 112: 627–635.

33. Arbello E, Guia E, Ramos P, Bishal F, Borras R, Andreu D, et al. Benefit of left atrial roof linear ablation in paroxysmal atrial fibrillation: A prospective, randomized study. J Am Heart Assoc 2014; 3: e000877.

34. Kuck KH, Brugada J, Fünkranz A, Chun KJ, Metzner A, Ouyang F, et al. Impact of female sex on clinical outcomes in the FIRE AND ICE trial of catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol 2018; 11: e006204.

35. Santangeli P, Di Biase L, Pelargonio G, Natale A. Outcome of invasive electrophysiological procedures and gender: Are males and females the same? J Cardiovasc Electrophysiol 2011; 22: 605–612.

36. Sugumar H, Nanayakkara S, Chieng D, Wong GR, Parameswaran R, Anderson RD, et al. Arrhythmia recurrence is more common in females undergoing multiple catheter ablation procedures for persistent atrial fibrillation: Time to close the gender gap. Heart Rhythm 2020; 17: 692–698.

37. Ganesan AN, Shipp NJ, Brooks AG, Kuklik P, Lau DH, Lim HS, et al. Long-term outcomes of catheter ablation of atrial fibrillation: A systematic review and meta-analysis. J Am Heart Assoc 2013; 2: e004549.