Assessment of Antioxidant and Antimicrobial Compounds of Volatiles from Leaves, Stems and Flowers of Olives

Dhouha Saidana Naija1*, Samia Ben Mansour Gueddes1, Guido Flamini2, Hayfa Jabnoun Khiareddine3, Mejda Daami Remadi3, Fathi Ben Mariem1, Wafa Ghariani1, Mohamed Braham1

1Olive Tree Institute, Sousse Station, 4061,14 Ibn Khaldoun, Sousse, Tunisia
2Università di Pisa, Dipartimento di Farmacia Via Bonanno 33, 56126 Pisa, Italy
3Regional Centre of Research on Horticulture and Organic Agriculture (CRRHAB), University of Sousse, Chott-Mariem, Tunisia

Received: 12 March 2020
Accepted: 29 April 2020

Abstract

Protection of olive cultivars, Olea europaea L., from diseases and the development of more sophisticated control methods are indispensable for a renovated and competitive olive sector. In this context, the volatiles obtained by the main Tunisian oil cultivar Chemlali and both the introduced cultivars Arbequina and Koroneiki were tested for their antimicrobial activity against several dangerous pathogens by diffusion and dilution methods (in 2014). To evaluate the adaptation to biotic stress, the antioxidant potential was additionally evaluated. The volatiles extracted from leaves, stems and flowers of the tested cultivars exhibited interesting antimicrobial and antioxidant activities, reaching in many cases 100% of inhibition. To identify the bioactive compounds, GC-FID and GC-MS were performed, permitting to identify up to 97.8% of total compounds. Both non-terpene hydrocarbons and terpenes were present in important proportions among volatiles.

Keywords: olive cultivars, antimicrobial activity, antioxidant activity, non-terpene hydrocarbons, terpenes

Introduction

Tunisia is the main olive producing country in the southern Mediterranean. 34% of its cultivated land is devoted to olive growing, which extends from the north to the south of the country. This sector plays, economic, social and environmental roles, contributing to food security, job creation, equilibrium of the commercial balance, preservation of natural resources and limitation of the rural exodus. The olive forest is dominated by the oil cultivars, Chemlali in the center and south of the country, and Chetoui in the north. Chemlali alone occupies 56% of the olive-growing area and represents 69% of the total number of olive trees.
Other varieties have been introduced in the Tunisian olive system, such as Arbequina and Koroneiki, of Spanish and Greek origin respectively, to improve the productivity and to mitigate the fluctuation problem that characterizes the local varieties. To maintain satisfying productivity and defend the Tunisian position in the world, the olive tree must be well protected from microbes that may have adverse effects on final yield. Nevertheless in the Mediterranean region, olive production is affected by several diseases, Verticillium wilt, caused by *Verticillium dahlia* Kleb., is currently the most devastating disease correlated with low yield and high rates of olive tree loss [2]. *Fusarium solani* causes leaf drop, wilt, and mortality of the olive tree [3]. *Pseudomonas* is a very dangerous bacterium, *Pseudomonas savastanoi* and its pathovars *savastanoi, fraxini,* and *nerii* provoke a disease characterized by tumorous out growths [4]. The contamination of olive tree by *P. savastanoi* pv. *savastanoi* causes to hypertrophy of the stems and branches and, rarely, of the leaves and fruits [5]. Similarly, *Agrobacterium tumefaciens* leads crown gall disease on various plant species, especially olive cultivars, by introducing its T-DNA into the host genome, causing its proliferation and consequently plant tumors. The cited microbes, in the company of many others, have great economic consequences. Since no effective bactericides or fungicides exist, biological control using the naturally occurring antagonistic potential against pathogens is a potentially viable and environmentally friendly alternative [6].

Thus, the aim of the present study is to evaluate the behavior of the principal olive cultivar Chemlali and both the introduced cultivars Arbequina and Koroneiki against many dangerous pathogenic germs and to evaluate their antioxidant capacity to scavenge radicals that could be a consequence of such biotic stress.

Experimental

Plant Material

Chemlali, Koroneiki and Arbequina, 35 years old, were cultivated in intensive mode (6x6), in “Menzel El Mhiri”, located in Kairouan governorate and Nasrallah delegation (35°21’ North 9°49’ East). From each cultivar, fresh leaves, flowers and stems were harvested during the flowering stage, in 2014.

Volatile Extraction and Analyses

Volatile compounds were extracted from the aerial parts of the different cultivars. Fresh leaves, flowers and stems were weighted and crushed and submitted to steam distillation. Obtained samples were conserved at -16°C until tests. The analyses of volatile compounds were performed with GC- FID and GC-MS systems, according to Saidana et al. [7].

Antimicrobial Activities

The bacterial strains investigated were: *Pseudomonas savastanoi* pv *savastanoi* EW2009; *Agrobacterium tumefaciens* C58; *Pseudomonas aureofaciens* NCPPB 3335, *Burkholderia glathei* MB196942, *Botrytis cinerea* TAX: 40559, *Fusarium solani* (Mar.) Sac. 1881, *Penicilliu mitalicum* MB162660, *Fusarium oxysporum* f. sp. *Lycopersici* MB 416243. The inhibition zones, MIC, MBC and MFC were determined according to Saidana et al. [7, 8].

Antioxidant Activity

DPPH and ABTS** scavenging activities were performed according to Saidana et al. [9, 10].

Statistical Analysis

Statistical comparisons of the different parameters were performed with SPSS version 20. Analyses of one-way ANOVA, were followed by means comparisons (P = 0.05) and Tukey test.

Results

Volatile Content

Volatile yield in Chemlali, Koroneiki and Arbequina leaves, stems and flowers varied significantly from 0.01 to 0.024%.

The highest yield of essential oils was found in the flowers of all the cultivars. Compared to the other flowers, those of Chemlali showed the highest yield, reaching 0.024%.

Similarly, Chemlali appeared to be the richest in volatiles in all its organs, followed by Koroneiki then Arbequina. Indeed, the contents of volatiles were 0.019, 0.012 and 0.010% in the leaves, 0.024, 0.017 and 0.015% in the flowers and 0.012, 0.012 and 0.010% in the stems of Chemlali, Koroneiki and Arbequina respectively.

Antibacterial Activity

The antibacterial activities of the volatiles extracted from Chemlali, Arbequina, Koroneiki leaves, stems and flowers were tested against both pathogenic strains, *Pseudomonas savastanoi* and *Agrobacterium tumefaciens* and various soil bacteria, such as *Pseudomonas aureofaciens, Burkholderia glathei* and *Bacillus pumilus*.

Leaves of the tested cultivars exhibited an antibacterial activity against *P. savastanoi*, with inhibition diameters of 12, 13 and 13.5 mm for Chemlali, Arbequina and Koroneiki, respectively (Table 1). Flowers exhibited even more interesting
Table 1. Antibacterial activity of volatiles extracted from Chemlali, Arbequina and Koroneiki leaves, stems and flowers against pathogenic strains and soil bacteria.

	Pathogenic bacteria	Soil bacteria	Pathogenic fungi									
	P.s.	A.t.	B.p.	P.a.	B.g.	P. i.	V.d.	F.s.	F. o.	B. c.	A.n.	
Ch.Le.	Ø	12±0.1a	10±0.3b	11±0.2b	9±0.1c	9±0.1d	8±0.3b	12±0.3b	8±0.2c	9±0.1b	-	9±0.3b
MIC	125	125	-	-	-	125	125	125	125	250	125	
MBC/MFC	>1	>1	-	-	-	-	-	-	1	-	-	250
Ch.St.	Ø	20±0.1a	6.5±0.1d	7±0.3c	8±0.2d	10±0.1c	8±0.3b	10±0.3b	-	-	7.5±0.3	7.5±0.3c
MIC	125	125	-	-	-	125	125	-	125	250	250	
MBC/MFC	>1	>1	-	-	-	250	-	-	-	-	-	
Ch.Fl.	Ø	14.5±0.3b	10.5±0.2b	-	5.5±0.3f	6±0.1f	6±0.1c	15±0.1b	8±0.3c	8±0.2c	-	8±0.1c
MIC	225	225	-	-	-	-	-	-	125	250	125	
MBC/MFC	>1	>1	-	-	-	250	-	-	-	-	-	
Ar.Le.	Ø	13±0.1c	9±0.3c	9±0.1c	13±0.2a	10.5±0.2b	9±0.2a	-	8±0.3c	9±0.3b	-	8±0.3c
MIC	-	-	-	-	-	125	125	125	125	250	125	
MBC/MFC	-	-	-	-	-	-	-	-	-	-	-	
Ar.St.	Ø	10±0.3b	-	-	-	-	12±0.1b	10±0.2b	8±0.3b	-	7.5±0.3c	
MIC	125	-	-	-	-	250	125	125	-	250	250	
MBC/MFC	>1	-	-	-	-	500	-	-	-	-	-	
Ar.Fl.	Ø	13±0.3c	-	11±0.3b	9±0.1c	8±0.2c	-	-	6±0.2c	8±0.2c	-	-
MIC	-	-	-	-	-	125	125	125	-	250	125	
MBC/MFC	-	-	-	-	-	250	-	-	-	-	-	
Ko.Le.	Ø	13.5±0.3b	-	5.5±0.1f	7±0.1c	8±0.1e	-	-	-	8±0.3c	-	8±0.3c
MIC	-	-	-	-	-	-	-	-	-	250	250	
MBC/MFC	-	-	-	-	-	-	-	-	-	-	-	
Ko.St.	Ø	10.5±0.3b	-	8±0.1d	5.5±0.1f	-	-	10±0.3b	-	-	-	9±0.3b
MIC	-	225	-	-	-	250	125	-	-	250	125	
MBC/MFC	-	>1	-	-	-	500	-	-	-	-	-	
Ko.Fl.	Ø	13.5±0.3b	-	12±0.1c	9±0.2a	10±0.1c	-	11±0.3b	-	8±0.3b	-	8±0.3c
MIC	-	125	-	-	-	250	-	-	250	250	250	250
activity, presenting inhibitions zones of 14.5, 13 and
13.5 mm, respectively.
However, stem volatiles of Chemlali showed
the best antibacterial activity, which corresponded to the
largest inhibition zone, reaching 20 mm. This activity
was similar to that of Ampicillin, the antibacterial
reference drug. On the contrary, volatiles extracted
from stems of Arbequina and Koroneiki presented
the least activity against
P. savastanoi, with an
inhibition zone diameter of 10.5 mm. The antibacterial
activities of all tested volatiles against
A. tumefaciens
were feeble.
Only the volatiles extracted from all the organs
of Chemlali and Arbequina leaves presented
diameter inhibition zones varying from 7 to 11 mm
(Table 1). B. pumilus seemed sensitive to flower volatiles
of Arbequina and Koroneiki and leaf volatiles of
Chemlali, with inhibition zone diameters of 11, 12 and
11 mm. These values were similar to that of Ampicillin,
the antibacterial reference drug. P. aureofaciens
was moderately sensitive to Arbequina leaf volatiles. While
B. glathei appeared resistant to all the volatiles.
The antibacterial activities of all the samples much smaller
than that of Ampicillin against P. aureofaciens and
B. glathei, which presented inhibition zones of 30
and 40 mm, respectively. Stem volatiles of the tested
cultivars were inactive against all tested soil bacteria.
All Chemlali volatiles extracted from leaves, flowers
and stems exhibited an interesting antibacterial activity
against
P. savastanoi and
A. tumefaciens at quite low
concentrations (Table 1). Visible growth inhibitions
of both cited bacteria were performed by leaf and
stem volatiles of Chemlali at 125 µg/ml; whereas
flower volatiles were active against these bacteria at
225 µg/ml. Bactericidal activities were not determined,
being superior to 1.
Arbequina seemed to be active only through its stem
volatiles against
P. savastanoi, which visible growth
was inhibited at 125 µg/ml.
While, Koroneiki was active against A. tumefaciens
through its flower and stem volatiles, with visible
growth inhibitions at 125 and 225 µg/ml.

Antifungal Activity

The antifungal activity of the three olive cultivars
was tested against six phytopathogenic fungi,
Verticillium dahlia, Botrytis cinerea, Fusarium solani,
Penicillium italicum, Fusarium oxysporum f. sp.
Lycopersici and Aspergillus niger. According to the
results given in Table 1, V. dahlia appeared to be the most
sensitive to volatiles of olive cultivars, especially leaf and
flower volatiles of Chemlali, which presented inhibition
zones of 12 and 15 mm, respectively. Stem volatiles of
Arbequina and flower volatiles of Koroneiki caused
inhibition zones of 12 and 11 mm. Leaf, flower and stem
volatiles of Chemlali and leaf volatiles of Arbequina
exhibited a moderate antifungal activity against
P. italicum, but interestingly this activity exceeded that
Table 2. Antioxidant activities (%) of volatiles extracted from leaves (Le.), stems (St.) and flowers (Fl.) of Chemlali (Ch.), Koroneiki (Ko.) and Arbequina (Ar.) against the radical DPPH at different concentrations (mg/ml).

Samples	Concentration mg/ml	IC50							
	0.125	0.25	0.5	1	2	4	8	16	
Ch.Le.	27.89 ±0.2a	11.22±0.2b	18.25±0.6b	37.3±1.0b	46.8±3.0b	53.28±2.5b	68.7±4.2b	80.15±1.1b	±0.015
Ch.St.	30.95 ±2.1d	30.04±0.5c	37.3±1.2e	57.02±2.1c	80.61±3.7c	86.28±4.1c	89.9±1.2c	89.06±3.6c	±0.0013
Ch.Fl.	28.23 ±0.5d	24.03±1.2e	38.66±3.8f	38.88±2.1c	52.72±5.1f	64.85±0.1c	74.71±0.2c	77.21±1.9c	±0.0009
Ar.Le.	52.26 ±2.8g	56.12±2.3g	92.74±0.9a	94.33±0.2a	92.29±0.4b	93.19±0.4g	98.54±1.2c	98.16±1.2c	±0.0008
Ar.St.	34.46 ±0.1c	29.5±0.2e	68.48±0.3g	79.02±1.1f	84.35±0.7f	84.7±4.4c	85.51±2.7c	85.51±2.7c	±0.0003
Ar.Fl.	27.32 ±0.5f	27.77±1.5h	36.05±2.3h	49.09±4.3h	63.71±0.2c	72.67±0.3e	77.66±0.7c	77.66±0.7c	±0.0006
Ko.Le.	40.92 ±1.1f	29.02±4.0a	37.41±0.3c	45.01±3.0a	71.76±0.9f	83.21±0.6g	86.8±1.9d	86.8±1.9d	±0.0014
Ko.St.	30.83 ±0.1d	26.07±4.0a	39.11±0.3c	53.17±1.3h	73.24±2.8d	82.32±1.5h	85.83±1.5h	85.83±1.5h	±0.0007
Ko.Fl.	8.27 ±2.1e	25.96±1.9e	41.49±1.7e	49.77±1.4e	6.12±2.1e	74.48±3.7e	79.93±0.1e	81.85±4.4e	±0.0012
Trolox	95.39 ±0.1e	95.32±1.2e	94.98±1.5e	94.45±2.2e	100±0.1e	100±0.1e	100±0.1e	100±0.1e	±0.0014

Different letters indicate statistical significance at the p<0.05 level for each concentration.

Assessment of Antioxidant and Antimicrobial...
The variation of the percentage inhibition of volatiles from leaves, stems and flowers of Chemlali, Arbequina and Koroneiki as a function of time and concentration is illustrated in Fig. 1. Volatiles extracted from all the olive tree parts exhibited an interesting scavenging capacity starting from the first five minutes of contact with the radical cation ABTS^\bullet. This capacity increased gradually with contact time. Leaf volatiles of Chemlali, Arbequina, Koroneiki seemed to be very active against ABTS^\bullet, with 87.5, 100 and 94.85% of radicals scavenged at a concentration of 16 mg/ml. Leaf volatiles of Arbequina were the most active ones, scavenging the totality of radicals at only 1.0 mg/ml and in a short time. Chemlali and Koroneiki exhibited a time depending activity, which became more important over time. The inhibitions of 50% of radicals by leaf volatiles were respectively reached after 30 min of contact at the concentrations of 1.81, 0.316 and 0.18 mg/ml for Chemlali, Arbequina and Koroneiki, respectively.

Fig. 1. Antioxidant activities (%) of volatiles extracted from leaves (A1, A2, A3), stems (B1, B2, B3) and flowers (C1, C2, C3) of Chemlali, Arbequina and Koroneiki against the radical cation ABTS^\bullet.

[Diagram with graphs showing the antioxidant activities]
Koroneiki presented the lowest IC$_{50}$ after 30 min of contact (Table 3). Also stem volatiles of the studied cultivars were very active against ABTS$^+$, especially those of Chemlali, which inhibited almost the totality of radicals (IC$_{50}$ = 0.722 mg/ml). Koroneiki and Arbequina seemed to be active even at lower concentrations, with IC$_{50}$ of 0.513 and 0.580 mg/ml, respectively. Flower volatiles of Chemlali and Arbequina inhibited over 90% of radicals in almost all time intervals; whereas those of Koroneiki had a slightly weaker activity (80% after 30 min). IC$_{50}$ of these cultivars were respectively 0.784, 0.55 and 0.784 mg/ml for Chemlali, Arbequina and Koroneiki, respectively). Aldehydes were particularly detected in flowers (23.3, 18.6 and 14.7%, respectively). Hydrocarbons appeared to be dominant in all the cultivars, especially in the leaves (5.4, 16.0 and 14.1% for Chemlali, Arbequina and Koroneiki, respectively). Aldehydes were particularly produced by stems of Arbequina (10.4%) and Koroneiki (13.5%). Dihydroedulan IIA was the most represented compound in Koroneiki flowers (17.8%) and apocarotene of Arbequina flowers (18.4%); while, dihydroedulan I in Chemlali (12.2%), Arbequina (10.7%) and Koroneiki (14.7%). Dihydroedulan IIA was the most represented apocarotene of Arbequina flowers (18.4%); while, dihydroedulan I in Koroneiki flowers (17.8%) and

Table 3. Radical cation scavenging activity of Chemlali (Ch.), Arbequina (Ar.) and Koroneiki (Ko.) volatiles extracted from leaves (Le.), stems (St.) and flowers (fl.), expressed as Trolox equivalent after 30 min of initial mixing and as 50% of inhibition.

Samples	Concentration mg/ml
Ko.Le.	0.60 ±0.01
Ch.Le.	0.59 ±0.01
Ch.St.	0.65 ±0.01
Ch.Fl.	1.26 ±0.01
Ar.Le.	0.95 ±0.01
Ko.St.	1.81 ±0.01
Ko.Fl.	2.08 ±0.01
Ar.Fl.	2.11 ±0.01
Ko.St.	2.11 ±0.01
Ko.Fl.	2.11 ±0.01
Samples	Concentration mg/ml
---------	---------------------
Ch.Le.	0.60 ±0.01
Ch.St.	0.59 ±0.01
Ch.Fl.	0.65 ±0.01
Ar.Le.	1.26 ±0.01
Ar.St.	1.81 ±0.01
Ar.Fl.	2.08 ±0.01
Ko.Le.	2.11 ±0.01
Ko.St.	2.11 ±0.01
Ko.Fl.	2.11 ±0.01

Different letters indicate statistical significance at the p<0.05 level for each concentration.

Chemical Composition of Volatiles

The chemical investigation on the volatiles extracted from different organs of Chemlali, Arbequina and Koroneiki cultivars permitted to characterize 95.7, 94.9 and 91.7% of the total compounds in leaves; 80.6, 84.4 and 87.3% in stems and 95.1, 97.8 and 88.6% in flowers, respectively (Table 4).

Hydrocarbons appeared to be dominant in all the cultivars, especially in their leaves (49.0, 44.8 and 30.7% in Chemlali, Arbequina and Koroneiki, respectively). Similarly, terpenes seemed to be the main chemical class in stems and flowers.

Apocarotenones were particularly produced by stems of Chemlali (34.3%) and flowers of Arbequina (55.4%) and Koroneiki (44.9%). Aromatic derivatives were present in relevant amounts in all the cultivars, especially in the leaves (5.4, 16.0 and 14.1% for Chemlali, Arbequina and Koroneiki, respectively). Aldehydes were particularly detected in flowers (23.3, 18.6 and 14.7%, respectively).

The major aliphatic compounds were 1-hexadecene (34.4%, Chemlali leaves), n-pentadecane (13.5%, Arbequina leaves) and n-dodecane (10.4%, Arbequina flowers). Nonanal was the major aldehyde in flowers of Chemlali (12.2%), Arbequina (10.7%) and Koroneiki (14.7%). Dihydroedulan IIA was the most represented apocarotene of Arbequina flowers (18.4%); while, dihydroedulan I in Koroneiki flowers (17.8%) and

(E)-β-damascenone in Chemlali leaves (16.8%).

(E)-nerolidol and liguloxide were the major oxygenated sesquiterpenes presents in all the cultivar volatiles, reaching the maximum in Koroneiki leaves (13.1%) and Arbequina stems (11%).
Table 4. Chemical composition of volatiles extracted from leaves (Le), stems (St) and flowers (Fl) of Chemlali, Koroneiki and Arbequina.

Constituents (%)	Chemlali	Arbequina	Koroneiki
2-methyloctane	864		0.6
p-xylene	867	0.8	0.2
n-nonane	900	4.1	6.5
3-ethyl-1,5-octadiene	942	0.9	2.4
1-ethyl-4-methylbenzene	965		0.9
phenol	985	1.7	
2-methyldecane	1062	1.8	
linalool	1101	6.1	3.8
nonanal	1102	3.9	12.2
camphor	1145	1.5	
methyl nicotinate	1148		15.6
Decane, 5,6-dimethyl-	1155		
Undecane, 2-methyl-	1167	1.8	
2-Decanol	1185		
(Z)-3-hexenyl butyrate	1188	2.4	2.1
α-terpineol	1191	3.2	21.9
methyl salicylate	1192		1
n-dodecane	1200	4.8	2.1
decanal	1205	0.4	
trans-piperitol	1207	2.1	
β-cyclocitral	1222	1.4	0.2
(E)-2-decenal	1263	11.1	5.3
nonanoic acid	1275	2.8	
2,6,11-trimethyltridecane	1277	3.3	
dihydroedulan IIA	1285	8.8	18.4
p-cymen-7-ol	1290		12.7
dihydroedulan I	1292	2.3	7.4
theaspirane I	1298	4.9	13.6
4-vinylguaiacol	1313	1.3	
theaspirane II	1315	2.1	3.9
methyl 4-formylbenzoate	1370		16.0
3-methyltridecane	1373	2.2	1.1
(E)-β-damascenone	1382	16.8	3.2
10-acetyl-3-carene	1389	5.5	2.7
1-tetradecene	1392	3.1	5.2
dihydro-γ-ionone	1396	7.4	10.9
n-tetradecane	1400	3.4	4.8
(E)-β-damascone	1412	4.8	1.2
trans-α-ambrinol	1414	2.4	3.2
Discussion

Volatiles from leaves, stems and flowers of Chemlali, Arbequina and Koroneiki cultivars were characterized. Flowers of all the cultivars were the organs that produced most of the volatiles, with yields reaching 0.024, 0.015 and 0.017%, respectively. Generally, Chemlali produced most volatiles, regardless of the tested organ. Chemlali is of Tunisian origin, while Arbequina and Koroneiki cultivars were introduced for reasons of productivities.

The differences observed for these yields could then be influenced by edaphic and climatic conditions [11], differing in different countries [12]. Additionally, the essential oil content and its composition may vary according to the plant part [13]. To test the effect of

Table 4. Continued.

Compound	Chemlali	Arbequina	Koroneiki									
dihydro-α-ionone	1420	3.9	5.0	1420	3.9	5.0	1420	3.9	5.0	1420	3.9	5.0
nerylacetone	1436	8.0	9.3	1436	8.0	9.3	1436	8.0	9.3	1436	8.0	9.3
(E)-geranylacetone	1456	3.4	8.0	1456	3.4	8.0	1456	3.4	8.0	1456	3.4	8.0
(E)-β-ionone	1487	3.5	3.4	1487	3.5	3.4	1487	3.5	3.4	1487	3.5	3.4
1-pentadecene	1492	1.0	2.4	1492	1.0	2.4	1492	1.0	2.4	1492	1.0	2.4
n-pentadecane	1500	13.5	2.3	1500	13.5	2.3	1500	13.5	2.3	1500	13.5	2.3
(E,E)-α-farnesene	1507	1.6	1.6	1507	1.6	1.6	1507	1.6	1.6	1507	1.6	1.6
liguloxide	1532	9.5	11.0	1532	9.5	11.0	1532	9.5	11.0	1532	9.5	11.0
dihydroactinidiolide	1536	7.8	3.5	1536	7.8	3.5	1536	7.8	3.5	1536	7.8	3.5
epi-ligulyl oxide	1551	2.3	2.7	1551	2.3	2.7	1551	2.3	2.7	1551	2.3	2.7
4-methylpentadecane	1556	2.2		1556	2.2		1556	2.2		1556	2.2	
2-methylpentadecane	1563			1563			1563			1563		
(E)-nerolidol	1564	9.8	3.9	1564	9.8	3.9	1564	9.8	3.9	1564	9.8	3.9
(Z)-3-hexenyl benzoate	1570	5.4	11.3	1570	5.4	11.3	1570	5.4	11.3	1570	5.4	11.3
hexyl benzoate	1580			1580			1580			1580		
caryophyllene oxide	1582		3.1	1582		3.1	1582		3.1	1582		3.1
1-hexadecene	1593	34.3	4.9	1593	34.3	4.9	1593	34.3	4.9	1593	34.3	4.9
n-hexadecane	1600	11.3	7.4	1600	11.3	7.4	1600	11.3	7.4	1600	11.3	7.4
Valerianol	1656	4.4		1656	4.4		1656	4.4		1656	4.4	

Hydrocarbons | 49.0 | 17.1 | 8.2 | 44.8 | 31.3 | 18.4 | 30.7 | 35.7 |
Monoterpenic hydrocarbons | 5.5 | 2.7 | 1.9 | 5.5 | 2.7 | 1.9 | 5.5 | 2.7 | 1.9 |
Oxygenated monoterpenes | 10.8 | 25.7 | 2.1 | 10.8 | 25.7 | 2.1 | 10.8 | 25.7 | 2.1 |
Sesquiterpenic hydrocarbons| | | | | | | | | |
Oxygenated sesquiterpenes | 14.2 | 11.8 | 3.9 | 14.2 | 11.8 | 3.9 | 14.2 | 11.8 | 3.9 |
Apocarotenes | 21.6 | 34.3 | 19.9 | 21.6 | 34.3 | 19.9 | 21.6 | 34.3 | 19.9 |
Terpenes | 41.3 | 59.6 | 45.6 | 33.0 | 50.3 | 57.7 | 46.3 | 50.1 | 73.9 |
Aromatic hydrocarbon | 0.8 | | 1.1 | 0.8 | | 1.1 | 0.8 | | 1.1 |
Aromatic esters | 5.4 | 12.2 | 13.0 | 5.4 | 12.2 | 13.0 | 5.4 | 12.2 | 13.0 |
Aromatic compounds | 5.4 | 16.0 | 14.1 | 5.4 | 16.0 | 14.1 | 5.4 | 16.0 | 14.1 |
Aldehydes | 3.9 | 23.3 | 11.1 | 3.9 | 23.3 | 11.1 | 3.9 | 23.3 | 11.1 |
Nitrogen compounds | | | 15.6 | | | 15.6 | | | 15.6 |
Fatty acid and its ester | 2.4 | 2.8 | 3.1 | 2.4 | 2.8 | 3.1 | 2.4 | 2.8 | 3.1 |
No aromatic compounds | 3.9 | 41.3 | 1.1 | 2.8 | 21.7 | 0.6 | 2.8 | 21.7 | 0.6 |
Total identified compounds| 95.7 | 80.6 | 95.1 | 94.9 | 84.4 | 97.8 | 91.7 | 87.3 | 88.6 |
volatiles extracted from the different organs of the three cultivars, they were tested against the most pathogenic bacteria for the olive tree, *Pseudomonas savastanoi* and *Agrobacterium tumefaciens*, by both the diffusion and broth dilution methods. Interaction with some soil bacteria, such as *Pseudomonas aureofaciens*, *Burkholderia glathei* and *Bacillus pumilus* were also noted.

P. savastanoi seemed to be more susceptible to the applied olive volatiles than *A. tumefaciens*, with inhibition zones varying from 10 to 20 mm. All the volatiles seemed to be active against this bacterium, but Chemlali stem volatiles had the best effect. In the case of *A. tumefaciens*, only volatiles extracted from leaves, flowers and stems of Chemlali and Arbequina leaf volatiles exhibited inhibition zones that reached a maximum of 10.5 mm.

Interaction of olive volatiles with soil bacteria was variable according to the tested microorganism, cultivar and organ. Indeed, *B. pumilus* seemed to be the most sensitive, with inhibition diameters similar to that of Ampicillin.

The other bacteria, *P. aureofaciens* and *B. glathei*, presented much smaller inhibition zones (13 and 10 mm, respectively) than those registered for the antibacterial reference drug (30 and 40 mm, respectively). Chemlali volatiles showed inhibition zones against both bacteria and inhibited their visible growth at quite low concentration (125 µg/ml).

Arbequina and Koroneiki volatiles presented inhibition zones against *P. savastanoi* according to diffusion method, but only stem volatiles of Arbequina inhibited visible growth of this bacterium at 125 µg/ml.

Similarly, Koroneiki volatiles, extracted from its flowers and stems, did not show inhibition zones against *A. tumefaciens* but presented nevertheless a visible inhibition growth at 125 and 225 µg/ml, respectively. The negative response of *A. tumefaciens*, when using the diffusion method, may be explained by the high resistance of these Gram-negative bacteria.

Additionally, the diffusion method can greatly vary according to the molecules [14], the organisms tested [15], and the inoculum size. Then, physical and chemical properties of the drugs as well as biological behavior of the bacteria could be put in competition, sometimes with a rather unpredictable outcome [16]. The volatiles were also tested qualitatively and quantitatively against several pathogenic fungi. All the tested volatiles exhibited moderate antifungal activities, with inhibition zones varying from 7.5 to 15 mm. These values were much smaller than those registered for the antifungal reference drug (45 to 57 mm).

However, all the Chemlali volatiles and Arbequina leaf volatiles exhibited a moderate antifungal activity against *P. italicum*, while the antifungal reference drug presented no activity against this species.

Differently, using the dilution method, almost all the olive volatiles exhibited interesting antifungal activities against the majority of fungi at low doses.

Growth of *F. solani* was totally inhibited by volatiles of Chemlali leaves, while growth of *A. niger* was totally inhibited by volatiles of Chemlali leaves and flowers. Additionally, *B. cinerea* was totally inhibited by volatiles extracted from Chemlali flowers. Consequently, Chemlali appeared to be the most active cultivar, totally inhibiting the growth of the three pathogenic fungi. *P. italicum* was totally inhibited by stem volatiles of the three olive cultivars, and by Arbequina flower volatiles. Thus *P. italicum* was the most sensitive species. The antifungal activity of olive volatiles, evaluated by diffusion method, was moderate.

However, this activity was more interesting when micro-dilution method was adopted, with low values of MIC and MFC. This proposed that the size of the inhibition zone does not reflect the real antibacterial efficiency of volatiles, since it is affected by the solubility of the oil, its diffusion in the agar, its evaporation, etc. This point was in agreement with Kim et al. [17] and Cimanga et al. [18] observations.

The essential oil activity is evidently related to the chemical composition of its compounds, their proportions and their interactions each other [19, 20].

Antifungal susceptibility is influenced by the type of medium, the inoculum size, the pH, the temperature and the time of incubation [21]. All tested samples exhibited an interesting antioxidant activity against DPPH radicals, reaching over 80% inhibition.

The most effective volatiles were those from stems of all the cultivars that inhibited 50% of radicals in the range 0.75-0.9 mg/ml.

Similarly, an important antioxidant activity was noted for all the volatiles when tested against the cation radicals ABTS•+, reaching 100% of radical inhibition for some of them. This activity depended on the tested organ, the cultivar and the contact time.

Leaf volatiles of Arbequina appeared to be the most active, scavenging the totality of radicals at only 1 mg/ml and in a very short time. Chemlali stems and Chemlali and Arbequina flowers were the most active against ABTS•+ when applied at low concentrations and short time of contact. Trolox equivalent antioxidant capacity measured after 30 min of contact presented elevated values, demonstrating the powerful antioxidant activity of these volatiles. Awika et al. [22] reported the advantage of ABTS•+ test over DPPH, as ABTS•+ test is operable over a wide range of pH, inexpensive and more rapid than the DPPH test. The absorbance of DPPH at 517 nm is depended on light, oxygen, pH and type of solvent [23]. Aruoma [24] mentioned that more than one method of antioxidant testing should be used to gain a perceivable indication of antioxidant efficacy of the tested substances. Chemlali, Arbequina and Koroneiki leaf, flower and stem volatiles exhibited interesting antioxidant and antimicrobial activities.

The chemical analyses evidenced the presence of several bioactive compounds. Indeed, all the volatiles contained hydrocarbons in important proportions (up to 49%). 1-Hexadecene, the main aliphatic hydrocarbon,
especially in Chemlali leaves (34.3%) is known for both antioxidant and antimicrobial activities [25-27]. Also terpenes were well represented among these olive cultivar volatiles, reaching a maximum of 73.9%.

Among apocarotenes, dihydroedulan IIA was particularly detected in Arbequina flowers (18.4%), while dihydroedulan IA was the major one in Koroneiki flowers (17.8%). Additionally, many other major bioactive apocarotens, exhibiting antioxidant and antimicrobial activities, were characterized, such as (E)-β-damascenone (Chemlali leaves, 16.8%) and (E)-geranylacetone (Koroneiki stems, 14.2%) [28-29] (Table 5).

Regarding oxygenated sesquiterpenes, the most representative ones were (E)-nerolidol (Koroneiki leaves, 13.1%) and ligulyl oxide (Arbequina stems, 11.0%) [30-31].

Some studies have proved that sometimes the whole volatile extracts have a more powerful biological activity compared to the major component [32-33]. These authors propose that the compounds present in the greatest proportions were responsible only for a part of the total activity; also, the other components present with smaller amount, contribute to the unregistered activity. As well, a synergistic effect between all components should be considered [34].

Compounds	Biological activity	References
Hydrocarbons		
Hexadecene	Antioxidant and antimicrobial activities	[26]
Nonane derivate	Antioxidant and antimicrobial activities	[35-36]
Dodecane	Antioxidant activity	[37]
Trimethyldecane	Antimicrobial activity	[38]
Pentadecane	Antimicrobial activity	[39]

Oxygenated Monoterpenes		
Linalool	Antioxidant and antimicrobial activities	[40-41]
Terpineol	Antioxidant and antimicrobial activities	[42-43]

Monoterpenes hydrocarbon		
Carene	Antioxidant and antimicrobial activities	[44]

Oxygenated sesquiterpenes		
Nerolidol	Antioxidant and antimicrobial activities	[30; 45]
Caryophyllene oxide	Antioxidant and antimicrobial activities	[46-47]
Ligulyl oxide	Antioxidant activity	[31]

Apocarotenes		
β-Ionone	Antioxidant and antimicrobial activities	[48-49]
Dihydroedulan	Antioxidant and antimicrobial activities	[50-51]
Beta-Damascenone	Antioxidant and antimicrobial activities	[28; 52]
Geranylacetone	Antioxidant and antimicrobial activities	[53]
Theaspirane	Antioxidant activity	[54]
Hexyl benzoate	Antimicrobial activity	[55]
Methyl 4-formylbenzoate	Antimicrobial activity	[56]

| Aldehyde | | |
| Nonanal | Antifungal activity | [57] |

| Fatty acid | | |
| Nonanoic acid | Antifungal activity | [58] |
Conclusion

Chemlali, Arbequina and Koroneiki volatiles have shown an interesting antibacterial activity against dangerous pathogenic bacteria; in particular, the principal Tunisian cultivar Chemlali exhibited a powerful activity against *P. savastanoi* and *A. tumefaciens* at low concentration (125 µg/ml). Both Chemlali and Arbequina inhibited the visible growth of the majority of the tested fungi at 125 µg/ml through their leaf, stem and flower volatiles and could block completely their growth in many cases. Interestingly, all the tested olive volatiles have an excellent capacity to scavenge radicals. 50% of radicals were inhibited at 100 µg/ml by the Arbequina leaf volatiles which seemed to be the most active. Many bioactive compounds such as hydrocarbons, oxygenated monoterpenes and apocarotenes, have been identified in the olive cultivar volatiles. These components could contribute to the recorded activities, expected to be related to their stereochemistry, to the proportions in which they are recorded and to the interactions between them. Further research is required to elucidate the exact mode of action of these active principles. Thus, olive tree volatiles might be a prospective source of alternative antimicrobial and antioxidant agents interesting for a potential use in the biological control or the conservation of food products.

Conflict of Interest

The authors declare no conflict of interest.

References

1. MASMoudi Charfi C., MSALEM M., AYADI M., FENDRI M., BEN DHIAB A., BEN ABDALLAH S., OUESLATI A., YAKOUBI S. Caractérisation d’une collection variétale d’oliviers (*Olea europaea* L.) Efficience de l’utilisation de l’eau. Institut de l’Olivier 1-95, 2017. from IOSfax Website: http://wwwiosfaxagrinettn/annonce/documentcollectionvarietalepdf

2. LEYVA-PÉREZ M., JIMÉNEZ-RUIZ J., GÓMEZ-LAMA C.C., VALVERDE-CORREDOR A., BARROSO J.B., LÚQUE F., MERCADO-BLANCO J. Tolerance of olive (*Olea europaea*) cv Frantoio to *Verticillium dahliae* relies on both basal and pathogen-induced differential transcriptomic responses. New Phytopathol., 1-16, 2017.

3. VETTRAINO A.M., SHRESTHA G.P., VANNINI A. First Report of *Fusarium solani* Causing Wilt of *Olea europaea* in Nepal. Plant Dis., 93 (2), 200, 2009.

4. PENYALVER R., GARCIA A., FERRER A., BERTOLINI E., LOPEZ M.M. Detection of *Pseudomonas savastanoi* pv savastanoi in Olive Plants by Enrichment and PCR. App. Env. Microb., 66 (6), 267, 2000.

5. KENNELLY M.M., CAZORLA F.M., DE VICENTE A., RAMOS C., Sundin G.W. *Pseudomonas syringae* diseases of fruit trees: progress toward understanding and control. Plant dis., 91, 4, 2007.

6. JIMÉNEZ DÍAZ R.M., OLIVARES-GARCÍA C., LANDA B.B., DEL MAR JIMÉNEZ-GASCO M., NAVAS-CORTÉS J. Region-wide analysis of genetic diversity in *Verticillium dahliae* populations infesting olive in southern Spain and agricultural factors influencing the distribution and prevalence of vegetative compatibility groups and pathotypes. Phytopathology 101, 304, 2011.

7. SAIDANA D., MAHJOUB M.A., BOUSSADA A.O., CHÉRAIF I., CHRIA J., DAAMI M., MIGHRI Z., HELAL A.N. Chemical composition and antimicrobial activity of volatile compounds of *Tamarix boveana* (*Tamaricaceae*). Microb. Res., 163, 445, 2008.

8. SAIDANA D., MAHJOUB S., BOUSSADA A.O., CHRIA J., MAHJOUB M.A., CHÉRAIF I., DAAMI M., MIGHRI, Z., HELAL, A.N. Antibacterial and antifungal activities of the essential oils of two saltcedar species from Tunisia. J. Am. Oil Chem. Soc., 85, 817, 2008.

9. SAIDANA D., BOUSSADA A.O., AYED F., MAHJOUB M.A., MIGHRI Z., HELAL A. N. The in vitro free radical scavenging and antifungal activities of the medicinal herb *Limonium echinoïdes* L growing wild in Tunisia. J. Food Proc. Pres. 37, 533, 2013.

10. SAIDANA D., BOUZIDI A., BOUSSADA O., HELAL A.N., MAHJOUB M.A., CHÉRAIF I., HELAL A.N., MIGHRI, Z. The antioxidant and free radical scavenging activities of *Tamarix boveana* and *Suada fruticosa* fractions and related active compound. Eur. Sci. J., 10 (18), 201, 2014 [In French].

11. GILLY G. Perfume plants and essential oils in Grasse: botany, culture, chemistry, production and market, Paris, L’harmattan, 2000.

12. DERWICH E., BENZIANE Z., CHABIR R. Aromatic and medicinal plants of Morocco: Chemical composition of essential oils of *Rosmarinus officinalis* and *Juniperus Phoenicea*. Int. J. Appl. Biol. Pharrm. Techn., 2 (1), 145, 2011.

13. BRUNETON J. Pharmacognosie: phytochimie, plantes médicinales. 3rd ed, Paris, Lavoisier, 1999 [In French].

14. HAHNE G.B., GOULD R.W. Effects of temperature on biochemical reactions and drug resistance of virulent and avirulent *Aeromonas salmonicida*. J. Fish. Dis., 5, 329, 1982.

15. MICHEL C., BASSELAERT J.F. Influence de la température sur les résultats de l’antibiogramme pratiqué par la méthode de diffusion en ichtyopathologie. Ann. Rech. Vet., 13, 245, 1982 [In French].

16. MICHEL C., BLANC G. Minimal inhibitory concentration methodology in aquaculture: the temperature effect. Aquaculture 196, 311, 2001.

17. KIM J., MARSHALL M.R., WEI C. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem., 43, 2839, 1995.

18. CIMANGA K., KAMBU K., TONA L., APERS S., DE BRUYNE T., HERMANS N., TOTTE J., PIETERS L., VLIETINCK A.J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol., 79, 213, 2002.

19. MARINO M., BERSANI C., COMI G. Impedance measurements to study the antimicrobial activity of essential oils from *Lamiaceae* and *Compositae*. Int. J. Food Microbiol., 67, 187, 2001.

20. DELAQUIS STANICH P.J. K., GIRARD B., MAZZA G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol., 74, 101, 2002.

21. GHANNOUN M.A., REX J.H., GALGIANI J.N. Susceptibility testing of fungi: current status of correlation
of in vitro data with clinical outcome. J. Clin. Microbiol., 34, 489, 1996.

22. AWIKA J.M., ROONEY L.W., WU X., PRIOR R.L. ZEVALLOS L.C. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem., 5, 6657, 2003.

23. OZCELIK B., LEE J.H., MIN D.B. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J. Food Sci., 68, 487, 2003.

24. ARUOMA O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res. 9 (20), 523, 2003.

25. KUMAR V., BHATNAGAR A.K., SRIVASTAVA J.N. Antimicrobial activity of 2,4-diaryl-3-azabicyclo[3.3.1]nonane in rubber and rubber vulcanizates. Polym. Sci. 74 (18), 15587, 2013.

26. MAIMULYANTI A., RESTU PRIHADI A. Chemical composition, phytochemical and antioxidant activity from extract of Eulinger aelator flower from Indonesia. Journal of Pharmacognosy and Phytochemistry 3(6), 233-238, 2015.

27. ALALAN L., AL-SHAMMAA I., AL-NOURI A.S. Antibacterial activity of essential oil and two of its components extracted from Syrian Inula viscosa against some Syrian gram positive and negative bacteria isolates. J.Chem. Pharm. Res. 7 (12), 857, 2015.

28. KUMAR V., BHATNAGAR A.K., SRIVASTAVA J.N. Antimicrobial activity of crudes extracts of Inula viscosa against airborne microbes and further biological activities. J. Med. Plants Res., 7 (4), 356, 2012.

29. OZCELIK B., LEE J.H., MIN D.B. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J. Food Sci., 68, 487, 2003.

30. KRIST S., BANOVAC D., TABANCA N., WEDGE D.E., GOCHEV V.K., WANNER J., SCHMIDT E., JIROVETZ L. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Nat. Prod. Commun., 10 (1), 143, 2015.

31. HOSSEINIHASHEMI S.K., ANOOSHEI H., AGHAJANI A. Antibacterial activity of crude extracts of 9-thiabicyclo[3,3,1]nonane in rubber and rubber vulcanizates. Polym. Sci. 74 (18), 15587, 2013.

32. KUMAR V., BHATNAGAR A.K., SRIVASTAVA J.N. Antimicrobial activity of 2,4-diaryl-3-azabicyclo[3.3.1]nonane in rubber and rubber vulcanizates. Polym. Sci. 74 (18), 15587, 2013.

33. MAIMULYANTI A., RESTU PRIHADI A. Chemical composition, phytochemical and antioxidant activity from extract of Eulinger aelator flower from Indonesia. Journal of Pharmacognosy and Phytochemistry 3(6), 233-238, 2015.

34. ALALAN L., AL-SHAMMAA I., AL-NOURI A.S. Antibacterial activity of essential oil and two of its components extracted from Syrian Inula viscosa against some Syrian gram positive and negative bacteria isolates. J.Chem. Pharm. Res. 7 (12), 857, 2015.

35. KUMAR V., BHATNAGAR A.K., SRIVASTAVA J.N. Antimicrobial activity of 2,4-diaryl-3-azabicyclo[3.3.1]nonane in rubber and rubber vulcanizates. Polym. Sci. 74 (18), 15587, 2013.

36. PREMALATHA B., BHAKIARAJ D., SELVAM E., GOPALAKRISHNAN M.D. Synthesis, spectral analysis, in vitro microbiological evaluation and antioxidant properties of 2,4-diaryl-3-azabicyclo[3.3.1] nonane -9-one-O-[2,4,6-tritierryabuty-1-cyclohexa-2,5- dienon-4-y] oximes as a new class of antimicrobial and antioxidant agents. J. Pharm. Res. 6 (7), 730, 2013.

37. MONTAGNA W., DOBSON R.L. Carcinogenesis: Proceedings of a Symposium on the Biology of Skin Held at the University of Oregon Medical School, 1965. Elsevier Sci. 372, 2017.

38. OLANIKEN O.O., OGUNBAYO A.O., NWACHUKWU S.C.U., BELLO R.A. Comparative Study of Microbial Activities and Biodegradation-Abilities of Undefined Consortium in Some Hydrocarbon Contaminated Sites in the Niger Delta, Nigeria. J. Env. Prot. 6, 138, 2015.

39. BRUNO F., CASTELLI G., MIGLIAZZO A., PIAZZA M., GALANTE A., LO VERDE V., CALDERONE S., NUCATOLÒ G., FABRIZIO VITALE F. Cytotoxic screening and in vitro evaluation of pentadecane against leishmania infantum promastigotes and amastigotes. J. Parasitol. 101 (6), 701, 2015.

40. DUARTE A., LUIS A., OLEASTRO M., DOMINGUES F.C. Antioxidant properties of coirander essential oil and linalool and their potential to control Campylobacter spp. Food Contr., 61, 115, 2016.

41. GUNASEELAN S., BALUPILLAI A., GOVINDASAMY K., RAMASAAMY K., MUTHUSAMY G., SHANMUGAM M., THANGAIYAN R., ROBERT B.M., NAGARAJAN R.P., PONNIRESAN V.K., RATHINARAJ P. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS One 3, 1, 2017.

42. PARK S.N., LIM Y.K., FREIRE M.O., CHO E., JIN D., KOOK J.K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 18 (3), 369, 2012.

43. PRAKASH, D., SINGH P., GONI R., KUMAR A., RAINA T. Antibacterial activity of some Indian endemic plants against Leishmania infantum promastigotes. Molecules. 21 (5), 529, 2016.

44. YANG D., MICHEL L., CHAUMONT J.P., MILLET-FIDYT K., FIEDOROWICZ A., DAŁA L.S., SZUMNY F.C. Antioxidant properties of coriander essential oil, phenyl ethyl alcohol and α-terpineol against isolated molds from walnut and their anti aflatoxigenic and antioxidant activity. J. Food Sci. Technol. 52 (4), 2220, 2015.

45. MAHBBOURI M., KAZEMPOUR N. Biological Activities of Iranian Cymbopogon olivieri (Boiss) Bor. Essential Oil. Indian J. Pharm. Sci. 74 (4), 356, 2012.

46. CHAN W.K., DOBSON R.L. Carcinogenesis: Proceedings of a Symposium on the Biology of Skin Held at the University of Oregon Medical School, 1965. Elsevier Sci. 372, 2017.

47. MONTAGNA W., DOBSON R.L. Carcinogenesis: Proceedings of a Symposium on the Biology of Skin Held at the University of Oregon Medical School, 1965. Elsevier Sci. 372, 2017.

48. BELSITO D., BICKERS D., BRUZE M., CALOW P., DUBEY N.K. Efficacy of Angelica archangelica essential oil, phenyl ethyl alcohol and α-terpineol against isolated molds from walnut and their anti aflatoxigenic and antioxidant activity. J. Food Sci. Technol. 52 (4), 2220, 2015.

49. MAHBBOURI M., KAZEMPOUR N. Biological Activities of Iranian Cymbopogon olivieri (Boiss) Bor. Essential Oil. Indian J. Pharm. Sci. 74 (4), 356, 2012.

50. FIDYT K., FIEDOROWICZ A., DALA L.S., SZUMNY A. β-caryophyllene and β-caryophyllene oxide natural compounds of anticancer and analgesic properties. Cancer Med. 5 (10), 3007, 2016.
Antioxidant Activity of *Salvia staminea* Benth extracts. J. Essent. Oil Bear. Pl. 16 (5), 582, 2013.

51. OZEN T., TELCI I., GUL F., DEMIRTAS I., Chemical analyzes and antioxidant activities of essential oils of four wild Mentha species growing in the Tokat and its districts. Int. J. Chem. Tech. Sayfalar. 46, 2017.

52. BENMEDDOUR T., LAOUER H., AKKAL S., FLAMINI G. Chemical composition and antibacterial activity of essential oil of *Launaea lanifera* Pau grown in Algerian arid steppes. Asian Pac. J. Trop. Biomed. 5 (11), 960, 2015.

53. BONIKOWSKI R., ŚWITAKOWSKA P., KULA J. Synthesis, odour evaluation and antimicrobial activity of some geranyl acetone and nerolidol analogues. Flav. Fragr. J. 30, 238, 2015.

54. BOUTEBOUHERT H., DIDAQUI L. Study of the chemical composition and antioxidant activity of olive leaves of different varieties (*Olea europaea* L.) growing in Algeria. Conference: CIPAM 2014, International Congress on Aromatic and Medicinal Plants, Zarzis (Tunis), 2014 [In French].

55. MOJTABA T., REZA G.H., BORZO S., SHIVA N., ESMAEIL S. In vitro Antibacterial and Antifungal Activity of *Salvia multicaulis*. J. Essent. Oil Bear. Pl. 14 (2), 255, 2011.

56. PELZ K., WIEDMANN-AL-AHMAD M., BOGDAN C., OTTEN J.E. Analysis of the antimicrobial activity of local anaesthetics used for dental analgesia. J. Med. Microb. 57, 88, 2008.

57. KUBICEK C.P., DRUZHININA I.S. Environmental and Microbial relationships. The Mycota, Springer-Verlag Berlin Heidelberg (ed.), 350, 2007.

58. YUN-WOO J., JIN-YOUNG J., IN-KYOUNG L., SI-YONG K., BONG-SIK Y. Nonanoic Acid, an Antifungal Compound from *Hibiscus syriacus* Ggoma. Mycobiology 40 (2), 145, 2012.