Co-Gorenstein Algebras

Sondre Kvamme1 · René Marczinzik2

Received: 28 May 2018 / Accepted: 11 December 2018 / Published online: 4 January 2019
© Springer Nature B.V. 2019

Abstract
We review the theory of Co-Gorenstein algebras, which was introduced in Beligiannis (Commun Algebra 28(10):4547–4596, 2000). We show a connection between Co-Gorenstein algebras and the Nakayama and Generalized Nakayama conjecture.

Keywords Homological algebra · Nakayama conjecture · Generalized Nakayama conjecture

Mathematics Subject Classification 16G10 · 16E65

Fix a commutative artinian ring R and an artin R-algebra Λ. Let $\text{mod} \ -\Lambda$ be the category of finitely generated right Λ-modules, and let

$$D(_):= \text{Hom}_R(_ , I): (\text{mod} \ -\Lambda)^{\text{op}} \to \text{mod} \ -\Lambda^{\text{op}}$$

denote the equivalence where I is the injective envelope of $S_1 \oplus S_2 \oplus \ldots \oplus S_n$ and S_1, S_2, \ldots, S_n is a complete set of representatives of isomorphism classes of simple R-modules. Let

$$\cdots \to P_1(D\Lambda) \to P_0(D\Lambda) \to D\Lambda \to 0$$

be a minimal projective resolution of right Λ-modules and let

$$0 \to \Lambda \to I_0(\Lambda) \to I_1(\Lambda) \to \cdots$$

Communicated by Henning Krause.

The authors thank Henning Krause and Steffen Koenig for helpful comments. We would also like to thank the referee for helpful comments and suggestions. The first author was supported by a public grant as part of the FMJH.

1 Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France

2 Institute of Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

1 Sondre Kvamme
sondre.kvamme@u-psud.fr

2 René Marczinzik
marczire@mathematik.uni-stuttgart.de
be a minimal injective resolution of Λ as a right module. Recall that the dominant dimension $\text{dom} \dim \Lambda$ of Λ is the smallest integer d such that $I_d(\Lambda)$ is not projective. We write $\text{dom} \dim \Lambda = \infty$ if no such integer exists. The following conjectures are important in the representation theory of artin algebras.

(i) **Generalized Nakayama Conjecture (GNC)** If P is an indecomposable projective right Λ-module, then P is a summand of $P_n(D\Lambda)$ for some n;

(ii) **Nakayama Conjecture (NC)** If $\text{dom} \dim \Lambda = \infty$, then Λ is selfinjective.

Since $\text{dom} \dim \Lambda = \infty$ if and only if $P_i(D\Lambda)$ is injective for all $i \geq 0$ by [8], it follows that GNC implies NC.

In this note we show a relation between these conjectures and the notion of a Co-Gorenstein algebra, which was introduced by Beligiannis in [4]. More precisely, we show that there exist implications

$$
\text{GNC} \overset{\text{Proposition 16}}{\Rightarrow} \text{Conjecture 1} \overset{\text{Proposition 15}}{\Rightarrow} \text{NC}.
$$

where Conjecture 1 is as follows:

Conjecture 1 If $\Omega^n(\text{mod} - \Lambda)$ is extension closed for all $n \geq 1$, then Λ is right Co-Gorenstein.

We start by reviewing the construction and properties of Co-Gorenstein categories. In particular, we give some equivalent properties for an algebra to be right Co-Gorenstein, see Corollary 10. In Sect. 2 we show the implications above.

Throughout the note R denotes a commutative artinian ring, Λ an artin R-algebra. Also, we fix the notation

$$
\Omega^n(\text{mod} - \Lambda) := \{ M \in \text{mod} - \Lambda \mid \text{there exists an exact sequence } 0 \to M \to P_1 \to \cdots \to P_n \text{ with } P_i \in \text{mod} - \Lambda \text{ projective for } 1 \leq i \leq n \}
$$

1 Co-Gorenstein Categories

Let \mathcal{A} be an abelian category with enough projectives, and let $\mathcal{P} := \text{Proj}(\mathcal{A})$ denote the full subcategory of projective objects in \mathcal{A}. The projectively stable category $\mathcal{A} := \mathcal{A}/\mathcal{P}$ of \mathcal{A} consists of the same objects as \mathcal{A}, and with morphisms

$$
\mathcal{A}(A_1, A_2) := \mathcal{A}(A_1, A_2)/\sim
$$

where $f \sim g$ if $f - g$ factors through a projective object. For a morphism $f : A_1 \to A_2$ in \mathcal{A} we let $f : A_1 \to A_2$ denote the corresponding morphism in \mathcal{A}. For each object $A \in \mathcal{A}$ choose an exact sequence $0 \to \Omega A \to P \to A \to 0$ where P is projective. The association $A \mapsto \Omega A$ induces a functor $\Omega : \mathcal{A} \to \mathcal{A}$ [6, Sect. 3]. Furthermore, if $0 \to K \to Q \to A \to 0$ is any exact sequence with Q projective, then there exists a unique isomorphism

$$
K \cong \Omega A
$$

1 This is Lemma 6.19 part (3) in [4]. Beligiannis claims that it follows immediately from results in [2]. However, this is not clear to the authors, so we state it as a conjecture.
in \(\mathcal{A} \) which is induced from a morphism \(K \to \Omega A \) in \(\mathcal{A} \) such that there exists a commutative diagram

\[
\begin{array}{ccc}
0 & \to & K \\
\downarrow & & \downarrow \\
0 & \to & \Omega A \\
\end{array}
\begin{array}{ccc}
& & Q \\
& & \downarrow 1_A \\
& & A \\
\end{array}
\begin{array}{ccc}
& & 0 \\
\end{array}
\]

for some morphism \(Q \to P \).

Definition 2 The **costabilization** \(\mathcal{R}(\mathcal{A}) \) of \(\mathcal{A} \) is a category with objects consisting of sequences \((A_n, \alpha_n)_{n \in \mathbb{Z}}\) where \(A_n \in \mathcal{A} \) and \(\alpha_n : A_n \xrightarrow{\cong} \Omega A_{n+1} \) is an isomorphism in \(\mathcal{A} \). A morphism

\[
(A_n, \alpha_n) \to (B_n, \beta_n)
\]

in \(\mathcal{R}(\mathcal{A}) \) consists of a sequence \((f_n)_{n \in \mathbb{Z}}\) of morphisms \(f_n : A_n \to B_n \) in \(\mathcal{A} \) satisfying \(\beta_n \circ f_n = \Omega(f_{n+1}) \circ \alpha_n \).

Remark 3 Here we explain the name and the universal property of the costabilization. We follow the conventions in [7]. A **category with suspension** is a pair \((\mathcal{C}, T)\) where \(\mathcal{C} \) is a category and \(T : \mathcal{C} \to \mathcal{C} \) is a functor. A **weakly stable morphism**

\[
(F, \phi) : (C_1, T_1) \to (C_2, T_2)
\]

between two categories with suspension is given by a functor \(F : \mathcal{C}_1 \to \mathcal{C}_2 \) together with an isomorphism \(\phi : F \circ T_1 \xrightarrow{\cong} T_2 \circ F \). It is called **stable** if \(\phi \) is the identity morphism. Composition of weakly stable morphisms is given by

\[
(G, \psi) \circ (F, \phi) = (G \circ F, \psi F \circ G(\phi)).
\]

This gives a category where the objects are categories with suspensions, and where the morphisms are the weakly stable morphisms. If \((\mathcal{C}, T) \) is a category with suspension, then we say that \((\mathcal{C}, T) \) is **stable** if \(T : \mathcal{C} \to \mathcal{C} \) is an autoequivalence. Given a category with suspension \((\mathcal{C}, T)\), we can associate a stable category \((\mathcal{R}(\mathcal{C}, T), \hat{T})\), called its **costabilization**, as follows:

An object of \(\mathcal{R}(\mathcal{C}, T) \) is a sequence \((C_n, \alpha_n)_{n \in \mathbb{Z}}\) where \(C_n \in \mathcal{C} \) and \(\alpha_n : C_n \xrightarrow{\cong} TC_{n+1} \) is an isomorphism in \(\mathcal{C} \), and a morphism \((C_n, \alpha_n) \to (C_n', \beta_n)\) in \(\mathcal{R}(\mathcal{C}, T) \) is a sequence \((f_n)_{n \in \mathbb{Z}}\) of morphisms \(f_n : C_n \to C_n' \) in \(\mathcal{C} \) satisfying \(\beta_n \circ f_n = T(f_{n+1}) \circ \alpha_n \). The autoequivalence \(\hat{T} : \mathcal{R}(\mathcal{C}, T) \to \mathcal{R}(\mathcal{C}, T) \) is given by

\[
\hat{T}(C_n, \alpha_n) = (C_{n-1}, \alpha_{n-1}).
\]

Note that if we consider \((\mathcal{A}, \Omega)\) as a category with suspension, then we have that \(\mathcal{R}(\mathcal{A}, \Omega) = \mathcal{R}(\mathcal{A}) \) where \(\mathcal{R}(\mathcal{A}) \) is as in Definition 2. Now for a category with suspension \((\mathcal{C}, T)\) there exists a weakly stable morphism

\[
(R, \gamma) : (\mathcal{R}(\mathcal{C}, T), \hat{T}) \to (\mathcal{C}, T)
\]

where \(R : \mathcal{R}(\mathcal{C}, T) \to \mathcal{C} \) is the forgetful functor sending \((C_n, \alpha_n)\) to \(C_0 \), and \(\gamma : R \circ \hat{T} \xrightarrow{\cong} T \circ R \) is the isomorphism given by

\[
R\hat{T}(C_n, \alpha_n) = C_{-1} \xrightarrow{\alpha_{-1}} T(C_0) = TR(C_n, \alpha_n)
\]

The costabilization satisfies the following universal lifting property: If

\[
(F, \mu) : (\mathcal{B}, \Sigma) \to (\mathcal{C}, T)
\]
is a weakly stable morphism and \((\mathcal{B}, \Sigma)\) is stable, then there exists a unique stable morphism
\((G, 1): (\mathcal{B}, \Sigma) \to (\mathcal{R}(\mathcal{C}, T), \hat{T})\) satisfying
\[(R, \gamma) \circ (G, 1) = (F, \mu).\]

Explicitly, \(G\) is given by \(G(B) = (B_n, \beta_n)\) where \(B_n = F\Sigma^{-n}(B)\) and \(\beta_n: B_n \xrightarrow{\cong} TB_{n+1}\) is given by
\[B_n = F\Sigma^{-n}(B) \xrightarrow{\mu\Sigma^{-n-1}(B)} TF\Sigma^{-n-1}(B) = TB_{n+1}.\]

This lifting property is dual to the universal extension property for the stabilization [7, Proposition 1.1], whence the name costabilization.

We fix some notation. Let \(\mathcal{C}(\mathcal{A})\) be the category of complexes in \(\mathcal{A}\). An object in \(\mathcal{C}(\mathcal{A})\) is denoted by
\[(P_\bullet, d_\bullet) := \cdots \xrightarrow{d_{-2}} P_{-1} \xrightarrow{d_{-1}} P_0 \xrightarrow{d_0} P_1 \xrightarrow{d_1} \cdots\]

For each integer \(n \in \mathbb{Z}\) we have functors
\[Z_n(-): \mathcal{C}(\mathcal{A}) \to \mathcal{A} \text{ and } H_n(-) : \mathcal{C}(\mathcal{A}) \to \mathcal{A}\]
given by taking the \(n\)th cycles \(Z_n(P_\bullet, d_\bullet) = \text{Ker} \, d_n\) and the \(n\)th homology \(H_n(P_\bullet, d_\bullet) := \text{Ker} \, d_n/\text{im} \, d_{n-1}\). We say that \((P_\bullet, d_\bullet)\) is acyclic if \(H_n(P_\bullet, d_\bullet) = 0\) for all \(n \in \mathbb{Z}\). We call a morphism \((P_\bullet, d_\bullet) \xrightarrow{f_\bullet} (Q_\bullet, d'_\bullet)\) of complexes null-homotopic if there exists morphisms \(h_i: P_i \to Q_{i-1}\) in \(\mathcal{A}\) such that \(f_i = d'_{i-1} \circ h_i + h_{i+1} \circ d_i\) for all \(i \in \mathbb{Z}\). Let \(\mathcal{C}_{ac}(\mathcal{P})\) denote the full subcategory of \(\mathcal{C}(\mathcal{A})\) consisting of acyclic complexes with projective components, and let \(\mathcal{K}_{ac}(\mathcal{P})\) denote the homotopy category of \(\mathcal{C}_{ac}(\mathcal{P})\). Explicitly, \(\mathcal{K}_{ac}(\mathcal{P})\) has the same objects as \(\mathcal{C}_{ac}(\mathcal{P})\), and with morphism spaces
\[\mathcal{K}_{ac}(\mathcal{P})((P_\bullet, d_\bullet), (Q_\bullet, d'_\bullet)) = \mathcal{C}_{ac}(\mathcal{P})((P_\bullet, d_\bullet), (Q_\bullet, d'_\bullet))/\sim\]

where \(f_\bullet \sim g_\bullet\) if the difference \(f_\bullet - g_\bullet\) is null-homotopic.

Given \((P_\bullet, d_\bullet)\) in \(\mathcal{C}_{ac}(\mathcal{P})\), we obtain an object \((Z_n(P_\bullet, d_\bullet), \alpha_n)\) in \(\mathcal{R}(\mathcal{A})\) where
\[\alpha_n : Z_n(P_\bullet, d_\bullet) \to \Omega Z_{n+1}(P_\bullet, d_\bullet)\]
is the induced isomorphism as in (1). Furthermore, given a morphism \(f_\bullet : (P_\bullet, d_\bullet) \to (Q_\bullet, d'_\bullet)\) in \(\mathcal{C}_{ac}(\mathcal{P})\) we obtain morphisms
\[Z_n(f_\bullet) : Z_n(P_\bullet, d_\bullet) \to Z_n(Q_\bullet, d'_\bullet)\]
in \(\mathcal{A}\) for each \(n \in \mathbb{Z}\), and it is easy to see that they make the diagram

\[
\begin{array}{ccc}
Z_n(P_\bullet, d_\bullet) & \xrightarrow{\cong} & \Omega Z_{n+1}(P_\bullet, d_\bullet) \\
\downarrow Z_n(f_\bullet) & & \downarrow \Omega Z_{n+1}(f_\bullet) \\
Z_n(Q_\bullet, d'_\bullet) & \xrightarrow{\cong} & \Omega Z_{n+1}(Q_\bullet, d'_\bullet)
\end{array}
\]

commute where the horizontal isomorphisms are as in (1). Hence, we obtain a morphism
\[
(Z_n(f_\bullet) : Z_n(P_\bullet, d_\bullet) \to Z_n(Q_\bullet, d'_\bullet))_{n \in \mathbb{Z}} \in \mathcal{R}(\mathcal{A}), \text{ and therefore, we have a functor}
\]
\[
\mathcal{C}_{ac}(\mathcal{P}) \to \mathcal{R}(\mathcal{A}).
\]
If f_\bullet is null-homotopic, then the morphism $Z_n(f_\bullet) : Z_n(P_\bullet, d_\bullet) \to Z_n(Q_\bullet, d'_\bullet)$ factors through P_n, and hence $Z_n(f_\bullet) = 0$. Therefore, we get an induced functor

$$K_{ac}(\mathcal{P}) \to \mathcal{R}(\mathcal{A})$$

Proposition 4 The functor $K_{ac}(\mathcal{P}) \to \mathcal{R}(\mathcal{A})$ is dense and full.

Proof Let (A_n, α_n) be an arbitrary object in $\mathcal{R}(\mathcal{A})$. By assumption, for all $n \in \mathbb{Z}$ there exists an object $P_{n-1}' \in \mathcal{P}$ and an exact sequence

$$0 \to \Omega A_n \to P_{n-1} \to A_n \to 0$$

Since $A_n \cong \Omega A_{n+1}$ in \mathcal{A}, there exists objects $P_{n-1}', P_{n-1}'' \in \mathcal{P}$ and an isomorphism $A_n \oplus P_{n-1}' \cong \Omega A_{n+1} \oplus P_{n-1}''$ in \mathcal{A}. This implies that there also exists an exact sequence

$$0 \to \Omega A_n \to Q_{n-1} \to \Omega A_{n+1} \to 0$$

in \mathcal{A} where $Q_{n-1} \in \mathcal{P}$. Hence, we obtain a complex (Q_\bullet, d'_\bullet) in $K_{ac}(\mathcal{P})$ with differential d'_n given by the composite $Q_n \to \Omega A_{n+2} \to Q_{n+1}$. Furthermore, by construction the image of the complex (Q_\bullet, d'_\bullet) under the functor $K_{ac}(\mathcal{P}) \to \mathcal{R}(\mathcal{A})$ is the object $(\Omega A_{n+1}, \Omega(\alpha_{n+1}))$. Since we have an isomorphism

$$(\Omega A_{n+1}, \Omega(\alpha_{n+1})) \cong (A_n, \alpha_n)$$

in $\mathcal{R}(\mathcal{A})$ it follows that the functor $K_{ac}(\mathcal{P}) \to \mathcal{R}(\mathcal{A})$ is dense.

Let (Q_\bullet, d'_\bullet) and $(Q'_\bullet, d''_\bullet)$ be complexes in $K_{ac}(\mathcal{P})$ and let $A_n = Z_n(Q_\bullet, d_\bullet)$ and $A'_n = Z_n(Q'_\bullet, d'_\bullet)$ so that we have short exact sequences

$$0 \to A_n \xrightarrow{i_n} Q_n \xrightarrow{p_n} A_{n+1} \to 0$$

$$0 \to A'_n \xrightarrow{i'_n} Q'_n \xrightarrow{p'_n} A'_{n+1} \to 0$$

where $d_n = i_{n+1} \circ p_n$ and $d'_n = i'_{n+1} \circ p'_n$. Under the functor $K_{ac}(\mathcal{P}) \to \mathcal{R}(\mathcal{A})$ these complexes correspond to objects (A_n, α_n) and (A'_n, α'_n) in $\mathcal{R}(\mathcal{A})$. Let

$$(f_n) : (A_n, \alpha_n) \to (A'_n, \alpha'_n)$$

be an arbitrary morphism between these objects in $\mathcal{R}(\mathcal{A})$. For each $n \in \mathbb{Z}$ choose a lifting $g_n : Q_n \to Q'_n$ of $f_{n+1} : A_{n+1} \to A'_{n+1}$. Since $A_n = \text{Ker } p_n$ and $A'_n = \text{Ker } p'_n$, we get a unique morphism $k_n : A_n \to A'_n$ satisfying $i'_n \circ k_n = g_n \circ i_n$. It is easy to see that $k_n = f_n$, and hence there exists a morphism $h_n : A_n \to Q'_{n-1}$ such that

$$p'_{n-1} \circ h_n = f_n - k_n.$$

Now since

$$d'_n \circ (g_n - h_{n+1} \circ p_n) = d'_n \circ g_n - d'_n \circ h_{n+1} \circ p_n$$

$$= i'_{n+1} \circ f_{n+1} \circ p_n - i'_{n+1} \circ (f_{n+1} - k_{n+1}) \circ p_n$$

$$= i'_{n+1} \circ k_{n+1} \circ p_n$$

2 This functor is claimed to be an equivalence in Theorem 3.11 in [4]. It is not clear to the authors why this is true.
and
\[(g_{n+1} - h_{n+2} \circ p_{n+1}) \circ d_n = g_{n+1} \circ d_n = g_{n+1} \circ i_{n+1} \circ p_n = i_{n+1} \circ k_{n+1} \circ p_n\]
it follows that the maps \(l_n = g_n - h_{n+1} \circ p_n : Q_n \to Q'_n\) for all \(n \in \mathbb{Z}\) induce a map of chain complexes \(l \cdot : (Q \cdot , d \cdot) \to (Q' \cdot , d' \cdot)\). Since \(Z_n(l_n) = k_n\) and \(k_n = f_n\), it follows that the functor \(K_{ac}(\mathcal{P}) \to \mathcal{R}(A)\) is full. \(\square\)

Remark 5 It would be interesting to determine if the functor \(K_{ac}(\mathcal{P}) \to \mathcal{R}(A)\) is an equivalence in general, or to find a counterexample and to determine in which cases it induces an equivalence.

Let \(R : \mathcal{R}(A) \to A\) be the forgetful functor sending \((A_n, \alpha_n)\) to \(A_0\), and let
\[\text{im } R = \{ A \in A \mid A \cong R(X) \text{ for some } X \in \mathcal{R}(A)\}.\]
denote the essential image of \(R\).

Definition 6 Let \(A\) be an abelian category with enough projectives. We say that \(A\) is \(\mathcal{P}\text{-Co-Gorenstein}\) if the following holds:

(i) The forgetful functor \(R : \mathcal{R}(A) \to A\) is full and faithful;
(ii) If \(0 \to A_1 \to A_2 \to A_3\) is an exact sequence in \(A\) with \(A_1, A_3 \in \text{im } R\), then \(A_2 \in \text{im } R\). \(^3\)

The notion of Co-Gorenstein category was defined more generally for left triangulated categories in [4, Definition 3.13] and for an exact category in [4, Definition 4.9]. However, we only consider the case above.

Remark 7 We explain the name Co-Gorenstein: Let \(S(A, \Omega)\) be the stabilization of the pair \((A, \Omega)\), see [7]. By [7, Proposition 1.1] there exists a functor \(A \to S(A, \Omega)\) which satisfies a universal extension property dual to the universal lifting property stated in Remark 3 for \(\mathcal{R}(A)\). Following [4], the category \(A\) is called \(\mathcal{P}\text{-Gorenstein}\) if there exists a full left triangulated subcategory \(\mathcal{V} \subset A\) such that the composite \(\mathcal{V} \to A \to S(A, \Omega)\) is an equivalence of left triangulated categories, see [4, Definition 3.13]. This coincides well with the terminology in the literature, since if \(A = \text{Mod} - \Lambda\) where \(\Lambda\) is a noetherian ring, then \(A\) is \(\mathcal{P}\text{-Gorenstein}\) if and only if \(\Lambda\) is an Iwanaga-Gorenstein ring, i.e. if the left and right injective dimension of \(\Lambda\) as a module over itself is finite [4, Theorem 6.9 and Corollary 6.11]. Since the definition of \(\mathcal{P}\text{-Co-Gorenstein}\) is in terms of the costabilization rather than then the stabilization, this can explain the name.

Our goal in the remainder of this subsection is to give a different characterization of \(\mathcal{P}\text{-Co-Gorenstein}\) categories. To this end, let
\[\Omega^\infty(A) := \{ A \in A \mid \text{there exists an exact sequence } 0 \to A \to P_0 \to P_1 \to \cdots \text{ with } P_i \in \mathcal{P} \forall i \geq 0\}.

Lemma 8 Let \(A\) be an abelian category with enough projectives. Then \(X \in \text{im } R\) if and only if there exists \(A \in \Omega^\infty(A)\) such that \(A \cong X\).

\(^3\) In [4, Definition 3.13] it is only required that \(R\) is full and faithful, and it is claimed that this implies assumption (ii), see [4, Proposition 2.13 part (1)]. This is not clear to the authors, so we include this assumption in the definition.
\[\text{Proof} \quad \text{This follows immediately from Proposition 4.} \]
A complex \((P_\bullet, d_\bullet)\) in \(C_{ac}(\mathcal{P})\) is called totally acyclic if the complex
\[
\cdots \to A(P_1, Q) \xrightarrow{-o d_1} A(P_0, Q) \xrightarrow{-o d_0} A(P_n, Q) \xrightarrow{-o d_{n-1}} \cdots
\]
is acyclic for any \(Q \in \mathcal{P}\). An object \(A \in \mathcal{A}\) is called Gorenstein projective if \(A = Z_0(P_\bullet, d_\bullet)\) for some totally acyclic complex \((P_\bullet, d_\bullet)\). The subcategory of Gorenstein projective objects in \(\mathcal{A}\) is denoted by \(\mathcal{GP}(\mathcal{A})\).

Corollary 10 (Theorem 4.10 in [4]) Let \(\mathcal{A}\) be an abelian category with enough projectives. The following statements are equivalent:

(i) \(\mathcal{A}\) is \(\mathcal{P}\)-Co-Gorenstein;
(ii) \(\Omega^\infty(\mathcal{A}) \subseteq 1^\perp \mathcal{P}\);
(iii) \(\Omega^\infty(\mathcal{A}) \subseteq \perp \mathcal{P}\);
(iv) \(\Omega^\infty(\mathcal{A}) = \mathcal{GP}(\mathcal{A})\).

Proof Let \(\hat{\Omega}: \mathcal{R}(\mathcal{A}) \to \mathcal{R}(\mathcal{A})\) be the autoequivalence given by \(\hat{\Omega}(A_n, \alpha_n) = (A_{n-1}, \alpha_{n-1})\). Then there exists an isomorphism \(R \circ \hat{\Omega} \cong \Omega \circ R\). Hence, if \(\mathcal{A}\) is \(\mathcal{P}\)-Co-Gorenstein, then \(R\) is an equivalence onto \(\mathcal{R}\), and therefore \(\Omega\): \(\im R \to \im R\) is also an equivalence. It follows that \(\Omega^\infty(\mathcal{A}) \subseteq 1^\perp \mathcal{P}\) by Lemmas 8 and 9, which proves (i) \(\implies\) (ii). The implications (ii) \(\implies\) (iii) and (iii) \(\implies\) (iv) are straightforward. For (iv) \(\implies\) (i), note first that \(\Omega\): \(\im R \to \im R\) is full and faithful by Lemmas 8 and 9. Let \((f_0): (A_n, \alpha_n) \to (A'_n, \alpha'_n)\) be a morphism in \(\mathcal{R}(\mathcal{A})\). For \(n < 0\) we can write \(f_0\) as a composite
\[
A_n \cong \Omega(A_{n+1}) \cong \cdots \cong \Omega^{-n}(A_0) \xrightarrow{\Omega^{-n}(f_0)} \Omega^{-n}(A'_0) \cong \cdots \cong A'_n
\]
and for \(n > 0\) we can write \(\Omega^n(f_0)\) as a composite
\[
\Omega^n(A_n) \cong \Omega^{n-1}(A_{n-1}) \cong \cdots \cong A_0 \xrightarrow{f_0} A'_0 \cong \cdots \cong \Omega^n(A'_n)
\]
Hence, if \(f_0 = 0\) then \(f_n = 0\) for \(n < 0\) and \(\Omega^n(f_n) = 0\) for \(n > 0\). Since \(\Omega\) is faithful, it follows that \(f_n = 0\) for all \(n \in \mathbb{Z}\), and therefore \(R\) is faithful. To show that \(R\) is full, we chose again two objects \((A_n, \alpha_n)\) and \((A'_n, \alpha'_n)\) in \(\mathcal{R}(\mathcal{A})\), and we let \(f_0: A_0 \to A'_0\) be an arbitrary morphism in \(\mathcal{A}\). Define morphisms \(f_n: A_n \to A'_n\) for \(n < 0\) and \(g_n: \Omega^n(A_n) \to \Omega^n(A'_n)\) for \(n > 0\) in \(\mathcal{A}\) by Eqs. (2) and (3), respectively. Since \(\Omega\) is full and faithful, there exists for each \(n > 0\) a unique morphism \(f_n: A_n \to A'_n\) satisfying \(\Omega^n(f_n) = g_n\). A straightforward computation then shows that \((f_n): (A_n, \alpha_n) \to (A'_n, \alpha'_n)\) is a morphism in \(\mathcal{R}(\mathcal{A})\), and hence \(R\) is full. Finally, part (ii) in the definition of \(\mathcal{P}\)-Co-Gorenstein holds since \(\mathcal{GP}(\mathcal{A})\) is closed under extensions and by Lemma 8. Hence, the claim follows.

\[
\square
\]

2 Co-Gorenstein Artin Algebras

We now restrict ourselves to the case where \(\mathcal{A} = \text{mod-}\Lambda\) and \(\mathcal{P} = \text{Proj(mod-}\Lambda)\) for an artin \(R\)-algebra \(\Lambda\).

Definition 11 \(\Lambda\) is right Co-Gorenstein if mod-\(\Lambda\) is \(\mathcal{P}\)-Co-Gorenstein.

By the above results we know that \(\Lambda\) is right Co-Gorenstein if and only if one of the following equivalent conditions hold:
Co-Gorenstein Algebras 285

(i) $\Omega^\infty(\text{mod-}\Lambda) \subset 1^\perp \Lambda$;
(ii) $\Omega^\infty(\text{mod-}\Lambda) \subset \perp \Lambda$;
(iii) $\Omega^\infty(\text{mod-}\Lambda) = \mathcal{GP}(\text{mod-}\Lambda)$.

Note that any Iwanaga-Gorenstein algebra is Co-Gorenstein. The following example shows that the converse is not true.

Example 12 Let $\Lambda := k[x, y]/(x^2, xy, yx, y^2)$, and let S be the unique simple Λ-module. Λ is a 3-dimensional local algebra with a two dimensional socle, and therefore Λ is not an Iwanaga-Gorenstein algebra as a local artin algebra is an Iwanaga-Gorenstein algebra if and only if it has simple socle. Note that

$$\Omega^1(\text{mod-}\Lambda) = \text{add } S \oplus \Lambda,$$

because Λ is a radical square zero algebra and thus every kernel of a projective cover is semisimple. Hence, if $M \in \Omega^\infty(\text{mod-}\Lambda)$ then $M \cong \Lambda^n \oplus S^m$ for $m, n \geq 0$. Note that in a local algebra, every module has projective dimension zero or infinite and thus the cokernel of a monomorphism of the form $\Lambda^n \to \Lambda^r$ is projective. Therefore, any monomorphism $\Lambda^n \to \Lambda^r$ is split. It follows that $S^m \in \Omega^\infty(\text{mod-}\Lambda)$. On the other hand, if there exists an exact sequence

$$0 \to S^{m_1} \to \Lambda^{m_2} \to S^{m_3} \to 0$$

then we must have $m_1 = 2m_2 = 2m_3$. In particular, we have that $S^m \notin \Omega^2(\text{mod-}\Lambda)$ if $0 < m < 2^{2s-1}$. Since $S^m \in \Omega^\infty(\text{mod-}\Lambda)$ we must have that $m = 0$ and hence

$$\Omega^\infty(\text{mod-}\Lambda) = \text{add } \Lambda \subseteq \perp \Lambda.$$

Therefore, Λ is right Co-Gorenstein. Finally, note that

$$\bigoplus_{i \in \mathbb{Z}} S \in \Omega^\infty(\text{Mod-}\Lambda).$$

where Mod-\Lambda is the category of all right Λ-modules, not necessarily finite dimensional. Since Gorenstein projective modules are closed under direct summands and S is not Gorenstein projective, it follows that Mod-\Lambda is not \mathcal{P}-Co-Gorenstein.

Our goal now is to prove the implications between the conjectures. Fix a minimal projective resolution

$$\cdots \to P_1(\Lambda) \to P_0(\Lambda) \to \Lambda \to 0$$

and a minimal injective resolution

$$0 \to \Lambda \to I_0(\Lambda) \to I_1(\Lambda) \to \cdots$$

of Λ as a right module. Let $\mathcal{X}_n := \text{add } \Omega^n(\text{mod-}\Lambda)$ denote the smallest additive subcategory of mod-\Lambda which contains $\Omega^n(\text{mod-}\Lambda)$ and is closed under direct summands. Note that $\mathcal{X}_n \neq \Omega^n(\text{mod-}\Lambda)$ in general, see the example after Proposition 3.5 in [2].

Theorem 13 The following are equivalent for $n \geq 1$:

(i) $\Omega^k(\text{mod-}\Lambda)$ is extension-closed for $1 \leq k \leq n$;
(ii) \mathcal{X}_k is extension-closed for $1 \leq k \leq n$;
(iii) $\text{inj. dim } P_k(\Lambda) \leq k + 1$ for $0 \leq k < n$.

Proof This follows from [3, Theorem 4.7].

\[\square\]
Unfortunately, the conditions in Theorem 13 are not left-right symmetric, see the paragraph after Corollary 2.8 in [2]. However, the following result shows that after a small modification one obtains a symmetric condition.

Theorem 14 Let $n \geq 1$ be an integer. The following are equivalent:

(i) \(\text{inj. dim } P_k(D\Lambda) \leq k \text{ for all } 0 \leq k < n; \)

(ii) \(\text{proj. dim } I_k(\Lambda) \leq k \text{ for all } 0 \leq k < n. \)

Proof This follows from [5, Theorem 3.7]. \qed

We now show that Conjecture 1 implies NC

Proposition 15 The following holds:

(i) If \(\text{dom. dim } \Lambda = \infty \text{ and Conjecture 1 holds, then } \Lambda \text{ is right Co-Gorenstein; } \)

(ii) If \(\text{dom. dim } \Lambda = \infty \text{ and } \Lambda \text{ is right Co-Gorenstein, then } \Lambda \text{ is selfinjective; } \)

(iii) Conjecture 1 implies NC.

Proof Part (i) follows from Theorems 13 and 14. We prove part (ii). Let \(i: \Lambda \to I_0(\Lambda) \) denote the injective envelope. We have exact sequences

\[
0 \to \Lambda \xrightarrow{i} I_0(\Lambda) \to \text{Coker } i \to 0
\]

and

\[
0 \to \text{Coker } i \to I_1(\Lambda) \to I_2(\Lambda) \to \cdots.
\]

Note that Coker \(i \in \Omega^{\infty}(\text{mod } -\Lambda) \) if \(\text{dom. dim } \Lambda = \infty \). Furthermore, \(\Lambda \) is selfinjective if and only if the sequence (4) is split, and this holds if Coker \(i \in \perp \Lambda \). By Corollary 10, this proves part (ii). Part (iii) follows from part (i) and (ii). \qed

We now show that GNC implies Conjecture 1.

Proposition 16 The following holds:

(i) Suppose the GNC holds. If \(\Omega^n(\text{mod } -\Lambda) \) is extension closed for all \(n \geq 1 \), then \(\text{inj. dim } \Lambda < \infty \) as a right \(\Lambda \)-module;

(ii) If \(\text{inj. dim } \Lambda < \infty \) as right \(\Lambda \)-module, then \(\Lambda \) is right Co-Gorenstein;

(iii) GNC implies Conjecture 1.

Proof By Theorem 13 we have that inj. dim \(P_n(D\Lambda) \leq n + 1 \) for all \(n \geq 0 \). Now write \(\Lambda = P_0 \oplus \ldots \oplus P_m \) as a sum of indecomposable projective \(\Lambda \)-modules. Since GNC holds, there exists integers \(s_0, s_1, \ldots, s_m \) such that \(P_i \) is a direct summand of \(P_{s_i}(D\Lambda) \). Let \(s := \max\{s_0, \ldots, s_m\} + 1 \). Then inj. dim \(P_i \leq \text{inj. dim } P_{s_i}(D\Lambda) \leq s_i + 1 \leq s \) for all \(0 \leq i \leq m \).

Hence, it follows that inj. dim \(\Lambda \leq s < \infty \).

For part (ii), assume inj. dim \(\Lambda = s \), and let \(M \in \Omega^{\infty}(\text{mod } -\Lambda) \). Then there exists an exact sequence

\[
0 \to M \to P_1 \to \cdots \to P_s \to K \to 0
\]

in mod -\(\Lambda \) with \(P_i \) projective. It follows by dimension shifting that

\[
\text{Ext}^i_\Lambda(M, \Lambda) \cong \text{Ext}^{i+s}_\Lambda(K, \Lambda).
\]

Since inj. dim \(\Lambda = s \), we have \(\text{Ext}^{i+s}_\Lambda(K, \Lambda) = 0 \) for all \(i \geq 1 \). This shows that \(M \in \perp \Lambda \), and hence \(\Lambda \) is Co-Gorenstein by Corollary 10. Part (iii) follows immediately from part (i) and (ii). \qed
Remark 17 In Proposition 16 part (ii) we actually prove that

\[\cap_{n \geq 1} \Omega^n (\mod - \Lambda) \subseteq \perp \Lambda. \]

However, under the assumption that \(\Omega^n (\mod - \Lambda) \) is extension closed for all \(n \geq 1 \), we have that

\[\Omega^\infty (\mod - \Lambda) = \cap_{n \geq 1} \Omega^n (\mod - \Lambda). \]

In fact, by [3, Theorem 1.7 part b) and c)] we get that the modules in \(\cap_{n \geq 1} \Omega^n (\mod - \Lambda) \) can be identified with the modules which are \(n \)-torsion free for all \(n \), and it is easy to see that these modules are contained in \(\Omega^\infty (\mod - \Lambda) \).

References

1. Assem, I., Beligiannis, A., Marmaridis, N.: Right triangulated categories with right semi-equivalences. In: Algebras and Modules, II (Geiranger, 1996)
2. Auslander, M., Reiten, I.: \(k \)-Gorenstein algebras and syzygy modules. J. Pure Appl. Algebra 92(1), 1–27 (1994)
3. Auslander, M., Reiten, I.: Syzygy modules for Noetherian rings. J. Algebra 183(1), 167–185 (1996)
4. Beligiannis, A.: The homological theory of contravariantly finite subcategories: Auslander–Buchweitz contexts, Gorenstein categories and (co-)stabilization. Commun. Algebra 28(10), 4547–4596 (2000)
5. Fossum, R.M., Griffith, P.A., Reiten, I.: Trivialextensions of Abelian Categories. Lecture Notes in Mathematics, vol. 456. Springer, Berlin, 1975. Homological Algebra Oftrivial Extensions of Abelian Categories with Applications to Ringtheory
6. Heller, A.: The loop-space functor in homological algebra. Trans. Am. Math. Soc. 96, 382–394 (1960)
7. Heller, A.: Stable homotopy categories. Bull. Am. Math. Soc. 74, 28–63 (1968)
8. Hoshino, M.: On dominant dimension of Noetherian rings. Osaka J. Math. 26(2), 275–280 (1989)
9. Martsinkovsky, A., Zangurashvili, D.: The stable category of a left hereditary ring. J. Pure Appl. Algebra 219(9), 4061–4089 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.