Excretory/Secretory-Products of *Echinococcus multilocularis* Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells *In Vitro*

Justin Komguep Nono¹, Katrien Pletinckx², Manfred B. Lutz², Klaus Brehm¹*

¹University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany; ²University of Würzburg, Institute of Virology and Immunobiology, Würzburg, Germany

Abstract

Background: Alveolar echinococcosis, caused by *Echinococcus multilocularis* larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that *E.multilocularis*, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action.

Methodology/Principal Findings: We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with *Echinococcus* primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naïve T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3⁺ T cells *in vitro*.

Conclusions: This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of *E. multilocularis* is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4⁺CD25⁺Foxp3⁺ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.

Citation: Nono JK, Pletinckx K, Lutz MB, Brehm K (2012) Excretory/Secretory-Products of *Echinococcus multilocularis* Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells *In Vitro*. PLoS Negl Trop Dis 6(2): e1516. doi:10.1371/journal.pntd.0001516

Editor: Andrew Scott MacDonald, University of Edinburgh, United Kingdom

Received July 27, 2011; Accepted December 19, 2011; Published February 21, 2012

Copyright: © 2012 Nono et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant IRTG 1522 from the Deutsche Forschungsgemeinschaft (to KB and MBL) as well as a personal grant from the Wellhöfer Foundation (Fonds 827317) to KB. This publication was funded by the German Research Foundation (DFG) and the University of Wuerzburg in the funding programme Open Access Publishing. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kbrehm@hygiene.uni-wuerzburg.de

Introduction

The metacestode larval stage of the fox-tapeworm *E. multilocularis* is the causative agent of alveolar echinococcosis, one of the most dangerous zoonoses worldwide [1]. Apart from the strobilar adult stage that resides within the intestine of the definitive host (e.g. foxes, dogs), the life cycle of this cestode comprises three larval stages that are involved in the infection of the intermediate host (e.g. foxes, dogs), the life cycle of this cestode comprises three larval stages. The metacestode larval stage of the fox-tapeworm *E. multilocularis*, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that *E.multilocularis*, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action.

Methodology/Principal Findings: We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with *Echinococcus* primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naïve T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3⁺ T cells *in vitro*. This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of *E. multilocularis* is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4⁺CD25⁺Foxp3⁺ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.

Conclusions: This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of *E. multilocularis* is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4⁺CD25⁺Foxp3⁺ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.

Citation: Nono JK, Pletinckx K, Lutz MB, Brehm K (2012) Excretory/Secretory-Products of *Echinococcus multilocularis* Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells *In Vitro*. PLoS Negl Trop Dis 6(2): e1516. doi:10.1371/journal.pntd.0001516

Editor: Andrew Scott MacDonald, University of Edinburgh, United Kingdom

Received July 27, 2011; Accepted December 19, 2011; Published February 21, 2012

Copyright: © 2012 Nono et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant IRTG 1522 from the Deutsche Forschungsgemeinschaft (to KB and MBL) as well as a personal grant from the Wellhöfer Foundation (Fonds 827317) to KB. This publication was funded by the German Research Foundation (DFG) and the University of Wuerzburg in the funding programme Open Access Publishing. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kbrehm@hygiene.uni-wuerzburg.de

Introduction

The metacestode larval stage of the fox-tapeworm *E. multilocularis* is the causative agent of alveolar echinococcosis, one of the most dangerous zoonoses worldwide [1]. Apart from the strobilar adult stage that resides within the intestine of the definitive host (e.g. foxes, dogs), the life cycle of this cestode comprises three larval stages that are involved in the infection of the intermediate host (small rodents and, occasionally, humans). An infection of the oncosphere - metacestode metamorphosis, fully mature, cyst-like metacestode vesicles are formed that grow infiltratively, like a malignant tumor, into the surrounding host tissue and that consist of an inner, cellular ‘germinal layer’ (GL) and an outer, glycan-rich and acellular ‘laminated layer’ (LL) [2]. At least in experimentally infected mice, the formation of the LL cannot be observed earlier than 2–3 weeks upon initial infection [3,4,5,6]. Evidence has been obtained that the LL is one of the parasite’s key structures for protection against the host immune system in the later phase of the infection [7]. Approximately 2 months after the infection of mice, ‘brood-capsules’ are formed from stem cells of the GL that later give rise to the third larval stage, the protoscolex, which is passed on to the definitive host [2]. The *E. multilocularis*
infection process can thus be separated into 3 phases. The first phase starts with the oncosphere and culminates, after 2–3 weeks, in the formation of mature metacestode vesicles which, in the second phase, grow infiltratively into the host tissue. During the third stage, protoscoleces are formed in natural intermediate hosts, but only rarely in human infections [2].

Cellular effector mechanisms are considered to be the key defense against metacestode growth and dissemination in mice and humans since mouse strains that cannot develop cellular immune responses are highly susceptible to AE, whereas strains defective in humoral immunity can control parasite growth to a certain level [8]. Furthermore, in humans co-infected with *E. multilocularis* and the human immunodeficiency virus (HIV), very fast and unlimited parasite proliferation occurs [9,10], whereas promotion of cellular immunocompetence has a beneficial effect on the outcome of the disease [8]. A significant number of studies on both humans and mice indicated that T helper 1 (Th1)-dominated immune responses, characterized by the release of interferon-γ (IFN-γ), after priming by DC that secrete interleukin (IL)-12, are effective in eliminating the parasite at an early stage, whereas a Th2 cytokine profile (IL-4, IL-5) and the release of immunosuppressive IL-10 and TGF-β is generally associated with susceptibility to the parasite and progressive disease [8]. Although it became clear from these studies that the parasite, most probably by E/S-products from early infective larvae are strong inducers of tolerogenic DC *in vitro* and show that E/S-products of larvae of the chronic stage lead to an *in vitro* expansion of Foxp3+ T cells, suggesting that both the expansion of these T cells and poorly responsive DC are important for the establishment and persistence of *E. multilocularis* larvae within the host.

Author Summary

Parasitic helminths are inducers of chronic diseases and have evolved mechanisms to suppress the host immune response. Mostly from studies on roundworms, a picture is currently emerging that helminths secrete factors (E/S-products) that directly act on sentinels of the immune system, dendritic cells, in order to achieve an expansion of immunosuppressive, regulatory T cells (T-reg). Parasitic helminths are currently also intensely studied as therapeutic agents against autoimmune diseases and allergies, which is directly linked to their immunosuppressive activities. The immunomodulatory products of parasitic helminths are therefore of high interest for understanding immunopathology during infections and for the treatment of allergies. The present work was conducted on larvae of the tapeworm *E. multilocularis*, which grow like a tumor into surrounding host tissue and thus cause the lethal disease alveolar echinococcosis. The authors found that E/S-products from early infective larvae are strong inducers of tolerogenic DC *in vitro* and show that E/S-products of larvae of the chronic stage lead to an *in vitro* expansion of Foxp3+ T cells, suggesting that both the expansion of these T cells and poorly responsive DC are important for the establishment and persistence of *E. multilocularis* larvae within the host.
teristic for the chronic phase, and protoscoleces which, in intact parasite material, do not have direct contact with host immune cells.

Materials and Methods

Ethics statement
All experiments were carried out in accordance with European and German regulations on the protection of animals (Tierschutzgesetz). Ethical approval of the study was obtained from the local ethics committee of the government of Lower Franconia (Regierung von Unterfranken; 621-2531.01-2/05 and 55.2-2531.01-73/07).

Isolation and cultivation of E. multilocularis larvae
All experiments were performed with the natural E. multilocularis isolate JAV [32] which was propagated in Mongolian jirds (Meriones unguiculatus) as described [33]. Isolation of metacestode tissue and axenic cultivation of metacestode vesicles was performed essentially as described previously by Spiliotis and Brehm [33]. For the isolation of protoscoleces, parasite tissue was isolated from infected jirds and homogenized as described [34]. The homogenate was subsequently filtered through a nylon mesh of 150 μm pore size, thus separating protoscoleces from larger pieces of metacestode tissue. The flow through was subsequently filtered through a nylon mesh of 30 μm pore size, separating protoscoleces from single cells and small cell clumps. Protoscoleces were then washed off the nylon mesh with sterile PBS and separated from equally sized metacestode vesicles by microsopoe-aided, manual picking with a pipette tip prior to applying axenic cultivation conditions in order to eliminate eventual host remnants [33]. For the isolation of primary cells, axenically cultivated metacestode vesicles were mechanically sheared and trypsin-digested essentially as previously described [28]. Primary cells were then directly cultivated in hepatocyte-conditioned medium supplemented with reducing agents under a nitrogen atmosphere.

Qualitative assessment of E multilocularis larval material
After one week of cultivation under axenic conditions [33,35], the different larval stages (primary cells, metacestode vesicles, protoscoleces) were analyzed for host cell contamination by organism-specific PCR. Chromosomal DNA was isolated from the larvae and from liver tissue of a non-infected jird using the DNeasy isolation kit (Qiagen). Part of the parasite specific gene elp (ezrin-radixin-moesin-like [36]) was amplified using the primers Em10-15 (5′-TCC TTA CCT TGC AGT TTT GT -3′) and Em10-16 (5′-TTG CTG GTA ATG AGT CGA TC-3′). As a control for host-DNA contamination, a previously described β-tubulin-encoding gene from Meriones unguiculatus was used [37], employing primers Tub12-UP and TUB12-ST as described [38].

Quantitative assessment of E multilocularis larvae and normalization

In vitro cultivated material of all three larval stages was isolated and cell lysates were generated by first passing larval material repeatedly through a pipette tip, followed by one washing step in 1×PBS, and subsequent treatment with 50 μl of 2× STOP mix (2 ml 0.5 M Tris–HCl pH 6.8, 1.6 ml glycerol, 1.6 ml 20% SDS, 1.4 ml H2O, 0.4 ml 0.05% (w/v) bromphenol blue, 7 μl β-mercaptoethanol per 100 μl) and boiling for 10 min at 100°C. Proteins were separated by SDS-PAGE and analyzed by Western blotting using an antibody directed against β-actin (Cell signalling technology®). No. 49676) of a wide variety of metazoan organisms. Images were subsequently analyzed for the relative expression of β-actin using the Image-J program (http://rsb.info.nih.gov/ij/)

[39]. The relative expression transcribed as values of area under the curve (AUC) was used to normalize the β-actin content of each sample. In a first set of experiments, different amounts of in vitro cultivated primary cells, metacestode vesicles and protoscoleces were analyzed (Figure S1A) and the relative β-actin content of each sample was then used as a basis for normalization. Based on previous studies showing that, in vivo, oncosphere-derived stem cells develop into mature metacestode vesicles within 2–3 weeks upon infection [3–6], we first determined the amount of primary cells which, in our in vitro system, lead to the production of metacestode vesicles within the same time. This was the case when we used 1/6th of the amount of primary cells that can be isolated from 40 ml of metacestode vesicles (Figure S1B). This amount was defined as 1 Unit and contained ~600 μg of total protein (Figure S1B). We then carried out calculations for the remaining larval stages and found that 2000 protoscoleces as well as 4 metacestode vesicles (2 months of age) of a diameter of 5 mm after 1 week of axenic cultivation represented 1 Unit and also contained ~600 μg of total protein (Figure S1B). The reliability of this quantitative approach was further assessed by comparing one half unit of parasite material from each stage (i.e. 1000 protoscoleces, 2 metacestode vesicles of a diameter of 5 mm and 1/12th of the amount of primary cells that can be isolated from 40 ml metacestode vesicles) which, as shown in Figure S1C, also resulted in comparable β-actin content.

Mice
C57BL/6 mice were purchased from Charles River/Wiga (Sulzdeld, Germany) and TCR transgenic OT2 B6 mice were a kind gift of Prof. F. Carbone (Melbourne, Australia). All mice were bred within the animal facility of the Institute of Virology and Immunobiology, University of Würzburg, under specific pathogen-free conditions. Female mice were used at the age of 6–14 weeks.

Splenocyte isolation
Single cell suspensions were obtained from the spleen of C57BL/6 mice by mechanically squeezing the tissue with glass slides in cold PBS and filtered through a 70 μm nylon cell strainer. Red blood cells in the filtrate were lysed with 1.4% NH4Cl for 5 minutes at 37°C, and the splenocytes were washed in R10 medium, that is RPMI 1640 (GIBCO BRL) supplemented with penicillin (100 U/ml, Sigma, Deisenhofen, Germany), streptomycin (100 μg/ml, Sigma), L-glutamine (2 mM, Sigma), 2-mercaptoethanol (50 μM, Sigma) and 10% heat-inactivated fetal calf serum (FCS, PAA Laboratories, Pasching, Austria). Cell counts were subsequently determined using the trypan blue (No. 26323, Biochrom, Berlin, Germany) exclusion test on a bright-lined Neubauer counting chamber.

Generation of murine bone marrow-derived DC
DC were generated from the bone marrow (BM) precursors of C57BL/6 mice as previously described [40]. Briefly, BM precursor cells were cultured for 6 days with GM-CSF. At day 6, non-adherent DC (70–80% CD11c+ cells) were harvested and seeded at a density of 106 cells/ml R10 culture medium.

Stimulation of murine DC and splenocytes with E/S-products of E. multilocularis larva
A comparable amount of axenically cultivated parasite material, normalized for β-actin content, from each of the three larval stages was used throughout the stimulation process. Tissue culture inserts (Greiner Bio-One) of 1 μm pore size with or without larvae were
thoroughly washed in R10 medium to completely remove hepatocyte-conditioned medium, were then added to DC or splenocyte cultures, and kept at 37°C in the presence of 5% CO₂ for different time points. For LPS stimulation experiments, inserts containing parasite material were removed after 24 h, DC were harvested and re-plated at an equal number of living cells (5×10⁵ cells/ml) in R10 culture medium with or without 0.1 μg/ml lipopolysaccharide (LPS; E. coli 021:B8; Sigma Aldrich) for additional 48 h. Upon completion, DC or splenocyte viability was determined by trypan blue exclusion (No. 26323, Biochrom, Berlin, Germany) on a bright-lined Neubauer counting chamber. Flow cytometric assessment of DC surface staining was then performed using fluorochrome-conjugated antibodies (anti-mouse) against the surface lineage marker CD11c (CD11c-PE-Cy5.5, Caltag Laboratories), MHC II (eBiosciences) and CD86 (B7-2-FITC, eBiosciences or B7-2-PE, BD Pharmingen). Splenocytes were stained for CD19 (CD19-pecy5, BD Pharmingen) as a specific marker for B cells and an exclusion marker for T cells within lymphocytes. To monitor the level of DC apoptosis, annexin-V binding buffer (BD Pharmingen) and FITC-conjugated annexin-V ready-to-use solution (BD Pharmingen) were used coupled to 7-AAD staining solution (BD Pharmingen). To assess DC maturation, marker-specific antibodies (CD11c, MHC II and CD86) were applied and after 30 min incubation at 4–8°C in the dark, cells were washed twice with FACS buffer (3% FCS, 0.1% NaN₃ in PBS) and fixed with 1% (v/v) formaldehyde in PBS. The staining procedure was identically conducted for CD 19 on splenocytes. In DC apoptosis assays, stimulated DC along with UV-irradiated DC (positive control for apoptosis) at a peak intensity of 9000 mW/cm² were identically conducted for CD 19 on splenocytes. In DC apoptosis assays, stimulated DC along with UV-irradiated DC was performed using fluorochrome-conjugated antibodies (anti-mouse) against the surface lineage marker CD11c (CD11c-PE-Cy5.5, Caltag Laboratories), MHC II (eBiosciences) and CD86 (BD Pharmingen) as a specific marker for B cells and an exclusion marker for T cells within lymphocytes. To monitor the level of DC apoptosis, annexin-V binding buffer (BD Pharmingen) and FITC-conjugated annexin-V ready-to-use solution (BD Pharmingen) were used coupled to 7-AAD staining solution (BD Pharmingen). To assess DC maturation, marker-specific antibodies (CD11c, MHC II and CD86) were applied and after 30 min incubation at 4–8°C in the dark, cells were washed twice with FACS buffer (3% FCS, 0.1% NaN₃ in PBS) and fixed with 1% (v/v) formaldehyde in PBS. The staining procedure was identically conducted for CD 19 on splenocytes. In DC apoptosis assays, stimulated DC along with UV-irradiated DC (positive control for apoptosis) at a peak intensity of 9000 mW/cm² at the filter surface and a peak emission of 313 nm (trans-illuminator), were directly resuspended in 50 μl of 1× annexin-V binding buffer. Next, 5 μl of 7-AAD and 2 μl of annexin-V-FITC were added to the tubes and incubated for 15 minutes at RT. Cells were then resuspended in 200 μl of 1× annexin-V binding buffer then acquired on a FACSCalibur™ (Beckton Dickinson) cytometer, equipped with CellQuest software. Results were further analyzed with FlowJo software (Tree Star, USA).

Measurement of cytokine release by DC

After stimulation of DC, the production of IL-6, IL-10, and IL-12p70 was measured in supernatant using sandwich enzyme-linked immunosorbent assays (ELISA, OptEIA kits, BD Pharmingen) according to the manufacturer’s instructions. The cytokine detection limits were of 39 pg/ml for IL-12p70 and 19 pg/ml for IL-10 and IL-6.

Preparation of OT2 T cells

Spleens and lymph nodes from 6–14 weeks old OT2 mice were isolated, and the separated splenocytes and lymph node cells, obtained as described above (Splenocytes isolation), were resuspended in cold PBS. CD4+ cells were isolated using an EasyStep negative selection mouse CD4+ T cell enrichment kit (Stemcell Technologies). After separation, the purity of T-cell preparation was routinely higher than 90%, as determined by flow cytometry. CD4+ T cells were subsequently enriched for CD25+ cells using Miltenyi Biotec’s LD columns with a suitable MACS separator usually achieving 90–95% of purity.

In vitro regulatory T cell conversion assay

DC were incubated with 3-fold higher numbers of OT2 CD4+CD25− T cells and 200 ng/ml of OVA protein (Sigma, grade V) supplemented or not with parasite larvae E/S-products (supernatant of equal amounts of larvae kept in medium for 7 days). After 5 days of co-culture, the cells were harvested and stained using the T-reg detection Kit (Miltenyi Biotec) prior to flow cytometric analysis.

Statistical analysis

All results were expressed as mean ± standard deviation (SD). Differences observed between groups were evaluated using the Wilcoxon/Mann-Whitney U test, a nonparametric test that does not assume normality of the measurements (it compares medians instead of means). Values of p<0.05 were considered statistically significant. All statistical analysis were performed with STATISTICA version 8.0.725.0 (StatSoft GmbH)

Results

Isolation of E. multilocularis larvae

The morphology of the three different E. multilocularis larval stages investigated in this study is depicted in Figure 1A. Primary cells were isolated from the GL of metacestode vesicles and seeded into culture dishes where they formed aggregates with central cavities within one week of cultivation. As previously outlined, these primary cell aggregates closely resemble the early developing metacestode both morphologically and physiologically, and routinely result in the production of fully mature metacestode vesicles after 3–4 weeks of cultivation [28]. Furthermore, primary cell aggregates express factors such as members of the EG95/W45 protein family (or host protective oncospheral antigens) that are specifically present in taeniid oncospheres and are known to play an important role in early parasite establishment [30]. Primary cell aggregates thus closely mimic the E. multilocularis larval stage at the onset of the oncosphere-metacestode metamorphosis [29,30]. In all experiments, primary cell cultures were carefully checked for the absence of mature, LL-containing metacestode vesicles (Figure 1Aa). Mature metacestode vesicles had a size of approximately 5 mm (diameter) and were completely equipped with a LL surrounding a cellular GL (Figure 1Ab). Protoplasts (50–100 μm in size) were covered by a tegument and were used in a non-activated, dormant state (i.e. no pre-activation with low pH and trypsin), as they typically occur within metacestode vesicles in the intermediate host (Figure 1Ac). After one week cultivation under axenic conditions [33,35], the absence of contaminating, cellular host material in all parasite samples was confirmed by organism-specific PCR (Figure 1B). Parasite material of each of the three larval stages was subsequently prepared for transmission electron microscopy (Figure 1B) and a specific protein pattern (Figure S1). As shown in Figure 1B, the parasites contained typical tegument features and were recognized as being Echinococcus spp. with a high degree of confidence. To exclude the presence of protoscoleces (76,6% of parasites were negative for protoscoleces), the presence of protoscoleces was routinely higher than 90%, as determined by flow cytometry. These results confirm the absence of contaminating, cellular host material in all parasite samples as judged by organism-specific PCR (Figure 1B).

E/S-products of E. multilocularis larvae induce apoptosis in DC

In a first set of experiments, the influence of E. multilocularis E/S-products on DC viability was tested. To this end, E. multilocularis larval material (1 Unit each for all three larval stages) was co-incubated for 48 h with DC, physically separated through a transwell system (1 μm pore size), and the number of viable DC was assessed by trypan blue exclusion. As shown in Figure 2A, co-incubation of DC with primary cells and metacestode vesicles led to greatly reduced viability (30–40% surviving cells compared to the control), whereas a still significant, but reduced killing effect was observed in the presence of protoscoleces (76,6%–3,7% survival). To exclude the possibility that cell death in DC-parasite co-cultures merely resulted from starvation due to the presence of proliferating larvae, conditioned medium of a comparable amount of primary cells was conditioned medium of a comparable amount of primary cells was...
tested on DC. To this end, supernatant from primary cell cultures (7 days old) was collected, sterile filtered, and added to fresh cultures of DC. As depicted in Figure 2B, even in the absence of proliferating larvae, conditioned medium similarly induced DC death.

In order to assess whether *Echinococcus* E/S-products do have general cytolytic effects that might account for the observed DC death, a hemolysis assay was carried out in which parasite material was co-incubated with human erythrocytes. However, as shown in Figure S2, no such effects were observed for any of the larval stages. We further tested whether *E. multilocularis* metacestode vesicles, which displayed the strongest killing effect on DC, could also affect other immune effector cells. Splenocytes from C57BL/6 mice were exposed to metacestode vesicles through a transwell system for 48 to 72 h and host cell viability was assessed by trypan blue exclusion. As shown in Figure 2C, in contrast to what we observed for BMDC, splenocyte viability was not affected by E/S-products of metacestode vesicles. We also specifically analyzed the CD19+ (B cells) and CD19− (primarily T cells) splenic lymphocytes for the effect of MCE/S on viability. As observed for the whole splenocyte population, the splenic B and T cell proportions were not altered upon 48–72 h of exposure to MCE/S (Figure 2D). Taken together, these data indicated that E/S-products of *E. multilocularis* larvae, particularly those that are released by primary cells and metacestode vesicles, induce murine DC death, but do not have general cytolytic properties and do not lead to killing in whole spleen cell preparations or alter the splenic B and T cell compartments in vitro.

To examine by which mechanism the *E. multilocularis* E/S-products induced DC death, Annexin-V/7-AAD dual staining was performed to differentiate necrotic (7AAD+) from apoptotic (Annexin-V+) cells. DC were separately exposed to comparable amounts of parasite material from each of the larval stages through transwells for 24 h, harvested and processed for staining. As shown in Figure 2E,F, following exposure of DC to E/S-products of
Figure 2. E/S-products of *E. multilocularis* larvae induce DC Death, but fail to kill splenocytes. (A) DC were exposed to comparable amounts of parasite material (1 Unit) from each of *E. multilocularis* larval stages (primary cells, PC; metacestode vesicles, MC; protoscoleces, PS), separated through a transwell system, or (B) to primary cell aggregate-conditioned medium (PCES) for 48 h. DC viability was then assessed using the Trypan Blue exclusion test. The number of surviving DC is expressed as a percentage of the initial number of DC seeded. As a control, the percentage of viable DC at the beginning of the experiment is given (t0). Results shown are the means ± SD of 4 independent experiments. * = p < 0.05. (C) Splenocytes from female C57BL/6 mice were similarly exposed to metacestode vesicles (MC), separated through a transwell system, and viability was assessed using the Trypan Blue exclusion test after 48 h and 72 h. (D) Within the splenic lymphocytes, gated with respect to the forward and side scatter, CD19+ lymphocytes were stained and CD19− lymphocytes deduced by flow cytometry and the proportions of both cell populations (CD19− and CD19+) were monitored for changes upon exposure to MC. C and D are representative of two independent experiments. (E, F) E/S-products of *E. multilocularis* larvae induce DC death via apoptosis. DC were exposed to comparable amounts of *E. multilocularis* larvae (primary cell aggregates, PC; metacestode vesicles, MC; protoscoleces, PS), separated by a transwell system, for 24 h. DC were then analyzed by flow cytometry for the expression of Cd11c, AnnexinV and 7-AAD. The proportion of apoptotic DC (Cd11c−AnnexinV−7-AAD+) was then determined. UV-treatment of DC was used as positive control for apoptosis-inducing conditions. (E) Representative plots of the proportion of AnnexinV+ 7-AAD− cells, gated on CD11c+ cells. (F) Mean percentage ± SD of apoptotic DC (Apo-DC) of 4 independent experiments. * = p < 0.05.

doi:10.1371/journal.pntd.0001516.g002
primary cells or metacestode vesicles, 2-fold more DC underwent apoptosis than DC exposed to protoscolex E/S-products, which showed a similar rate of apoptosis as untreated DC. Taken together, these results indicated apoptosis as the primary mechanism by which E/S-products from primary cells and metacestode vesicles induce DC death.

E/S-products of *E. multilocularis* larvae differentially affect DC maturation

Having shown that E/S-products of *E. multilocularis* primary cells and metacestode vesicles induce apoptosis in part of the co-incubated DC, we subsequently analyzed the fate of the surviving DC concerning maturation and cytokine release. To this end, DC were first incubated for 72 h with each of the three different *E. multilocularis* larval stages, separated by transwells. Subsequently, DC maturation was assessed by measuring the expression of surface markers MHCII and CD86 by flow cytometry (Figure 3A,B). Interestingly, E/S-products from primary cells and metacestode vesicles significantly inhibited the spontaneous DC maturation rate as compared to untreated DC, which was not observed for E/S-products of protoscoleces (Figure 3A, B).

Figure 3. E/S-products of *E. multilocularis* differentially affect DC maturation and the DC cytokine profile. DC were exposed to *E. multilocularis* larvae (primary cell aggregates, PC; metacestode vesicles, MC; protoscoleces, PS), separated through a transwell system, for 72 h and their maturation was assessed by flow cytometry after staining for surface markers CD11c, MHCII and CD86. (A) Representative scatter plots showing the proportion of matured DC (upper right quadrant) with respect to MHCII and CD86, gated on CD11c cells. *t0* indicates maturation at the beginning of the experiment. (B) Mean fluorescence intensities of MHCII and CD86 on DC after 72 h of treatment. (C) DC supernatants were collected and analyzed for the presence of IL-12p70, IL-10 and IL-6 by ELISA. Data shown are the mean ± SD of 4 independent experiments. #: not detectable by ELISA.

doi:10.1371/journal.pntd.0001516.g003
To investigate whether parasite larvae also alter DC cytokine release, DC were first exposed to each of the parasite stages through transwells for 24 h after which the parasite larvae were removed. Upon this brief exposure to the various larvae, the DC were harvested, counted and an equal number of surviving DC were re-seeded in fresh medium for an additional 48 h. Supernatant was then harvested and the level of secreted IL-12, IL-6 and IL-10 was assessed by ELISA. As expected, bacterial LPS, used here as a positive control, led to a strong induction of all three cytokines in DC (Figure 3C). On the other hand, none of the parasite E/S-products was able to trigger IL-12 release. However, substantial amounts of IL-10 were produced upon exposure of DC to E/S-products of primary cells, whereas those of protoscolecites induced the production of IL-6. Following challenge by metacestode E/S-products, neither IL-6 nor IL-10 production were induced in DC (Figure 3C). Taken together, these results indicated that E/S-products of primary cells and metacestode vesicles inhibited the ability of DC to spontaneously mature in vitro, and failed to promote (or blocked) the release of detectable amounts of the pro-inflammatory and Th1-associated cytokine, IL-12. Interestingly E/S-products of primary cells additionally acted on DC to induce IL-10 secretion, a feature which was not seen with E/S-products of the metacestode. In contrast, E/S-products of protoscolecites fostered DC maturation and induced IL-6 but not IL-12 secretion by DC.

E/S-products of *E. multilocularis* larvae modulate DC response to subsequent LPS exposure

The consistent absence of detectable amounts of IL-12 in culture supernatant of DC after treatment with *E. multilocularis* larvae suggested that parasite E/S-products either failed to induce the secretion of this Th1-associated cytokine, or simply impaired its production by treated DC. Since there is increasing evidence that parasite survival within the intermediate host depends on the ability to deviate immune polarization away from a potential para-stioic Th1 type [8], we examined whether exposure of DC to *E. multilocularis* E/S-products could have an influence on subsequent DC maturation by LPS, a stimulus usually associated with strong IL-12 release. To this end, DC were first incubated with each of the larval stages physically separated through transwells for 24 h. After this brief incubation time, the parasite larvae were removed and the DC were harvested, counted and an equal number of surviving DC were re-seeded in fresh medium containing 0.1 µg/ml of LPS for an additional 48 h. At the end of this second incubation period, DC were assessed for their level of maturation (MHCII and CD86 surface molecule expression) and DC supernatant was analyzed by ELISA for the presence of IL12p70, IL10 and IL6. As shown in Figure 4A/B, in contrast to the situation for protoscolex co-cultures, LPS did not induce maturation when DC had previously been cultivated in the presence of primary cells or metacestode vesicles. Furthermore, pre-exposure to E/S-products of all three larval stages significantly altered the cytokine profile of DC upon subsequent LPS stimulation, again leading to a strongly diminished release of the Th1 associated cytokine IL-12 (Figure 4C). Taken together, our results indicate that exposure of DC to E/S-products of primary cells inhibits maturation in response to LPS, diminishes the ability to produce IL-12 and IL-10, but induces IL-6 production. E/S-products of metacestode vesicles act similarly on DC, but have a reduced effect on LPS-induced IL-10 and IL-6 production. In contrast, E/S-products of protoscolecites do not inhibit the expression of MHCII and CD86 surface markers by LPS-stimulated DC, but strongly affect LPS-induced IL-12 production.

E/S-products of *E. multilocularis* larvae differentially affect DC-based CD4+CD25+Foxp3+ T cell conversion *in vitro*

A recent report has suggested an implication of Foxp3+ regulatory T cells (T-reg) in *E. multilocularis* larval establishment and/or persistence within the intermediate host [15]. Furthermore, a key role of DC in inducing the *de novo* generation of Foxp3+ T-reg is well established [41–43]. Using an in vitro OVA peptide-based assay for the co-cultivation of DC and CD4+ T cells [44] we therefore tested whether additionally present E/S-products of *E. multilocularis* larvae could lead to an expansion of CD4+CD25+Foxp3+ T cells, commonly assumed to be T-reg [41–43]. To this end, co-cultures of freshly generated DC (day 8) and naive CD4+CD25− cells from OT2 zebrafish TCR-transgenic mice at a DC/T cell ratio of 1/3, supplemented with OVA peptide, were exposed to E/S-products of all three larval stages. Upon 5 days of incubation, the cells were harvested and stained for Foxp3+ T-reg-specific cell markers (CD4, CD25 or Il2Rα chain and Foxp3). Interestingly, in contrast to co-cultures of DC and T-cells with E/S-products of primary cells and protoscolecites, there was a significant expansion (2.5-fold) of the population of T-reg (CD4+CD25+Foxp3+) in co-cultures that included E/S-products of metacestode vesicles (Figure 5). These results indicated that at least the developmental stage that characterizes the chronic phase of AE, the metacestode, is able to induce *de novo* CD4+CD25+Foxp3+ T-reg conversion *in vitro* in the presence of DC.

Discussion

As typical in the case of helminth infections, AE is a long-lasting and chronic disease that is most probably associated with parasite-induced, immunosuppressive mechanisms around the primary site of infection [8]. For a number of nematode and trematode systems, research during recent years has demonstrated a crucial role of T-reg in the respective immunosuppressive mechanisms and emphasized the importance of DC in the induction of helminth-associated Th2- and tolerogenic immune responses [11,12]. Compared to nematode and trematode infections, immunomodulatory functions of DC in cestode infections have drawn significantly less attention, although this is clearly an emerging field since several studies concerning the influence of parasite products on DC maturation and cytokine secretion profiles have been conducted very recently. In two of these recent reports, Reyes et al. [45] and Terrazas et al. [46] investigated the effects of E/S-products of *Taenia crassiceps* cysticerci, representing the metacestode larval stage of this *Taenia* infection model, on the activation of murine DC. These authors observed impaired DC maturation in response to TLR dependent stimuli, particularly when DC of infection susceptible mouse strains were pre-incubated with parasite E/S-products [45]. In the case of *E. granulosus*, a species closely related to *E. multilocularis*, the effects of hydatid cyst fluid (HCF) and isolated antigen B (AgB), a major constituent of HCF, were tested and led to DC maturation as well as DC cytokine profiles that were indicative of Th2 immune responses [19,20]. However, whether these interactions are of major relevance *in vivo* remains questionable since intact parasite tissue usually prevents direct contact between HCF and host immune effector cells, and the spectrum of metacestode E/S-products does not necessarily overlap with the spectrum of proteins present in HCF. Although it is generally assumed that AgB might leak out of intact metacestode vesicles or be released early during an infection from damaged metacestode material [47], we could not detect AgB in the E/S-products of *in vitro* cultivated *E. multilocularis* metacestode vesicles despite the fact that
this component was well expressed in HCF [48]. Crude metacestode antigen preparations containing vesicle fluid, somatic parasite proteins and contaminating host components [16] as well as isolated vesicle fluid of *E. multilocularis* [20] were also already tested concerning their effects on DC and failed to induce maturation as did a purified mucin-type glycoprotein (Em2) that is usually expressed at the surface of LL-containing metacestode vesicles [49,50]. Hence, although all these reports indicate that larval cestode parasite products can exert immunomodulatory effects on host DC, depending on the source and form of application, their precise nature and role during the course of an infection of the intermediate host remains elusive so far. What became clear through a recent *in vivo* investigation on experimentally infected mice, on the other hand, was that, at least in the chronic phase of experimental AE, peritoneal DC display a significant down-regulation of surface markers that are associated with DC maturation, and over-expressed TGF-β mRNA, which might lead to an induction of T-reg in this phase of the disease.

Figure 4. E/S-products of *E. multilocularis* differentially alter DC responsiveness to LPS. DC were first exposed to *E. multilocularis* larvae (primary cell aggregates, PC; metacestode vesicles, MC; protoscoleces, PS), separated through a transwell system, for 24 h. DC were then harvested, counted and seeded at equal numbers of living cells in medium containing LPS for 48 h, prior to staining and flow cytometric detection for surface markers CD11c, MHCII and CD86. (A) Representative scatter plots showing the proportion of matured DC (upper right quadrant) with respect to MHCII and CD86, gated on CD11c cells. (B) Mean fluorescence intensities of MHCII and CD86 on DC. (C) DC supernatants were collected and analyzed for the presence of IL-12p70, IL-10 and IL-6 by ELISA. Data shown are the mean ± SD of 4 independent experiments. * = p<0.05. #: not detectable by ELISA.

doi:10.1371/journal.pntd.0001516.g004
[15,51]. A potential role of T-reg in human AE has also already been suggested [8] based on the fact that immune-suppressive TGF-β and IL-10, major cytokines that are released by T-reg [52], can be predominantly found in the immediate vicinity of actively proliferating parasite tissue.

In order to more closely mimic the situation at the site of infection, we utilized in this study a cultivation system by which actively secreted E/S-products of living parasite material can be tested on DC. Furthermore, in addition to parasite components that are produced during late stages of the infection (metacestode and eventually protoscolecès), we also included larval material that represents early stages of the infection, prior to the establishment of metacestode vesicles, in which E. multilocularis should be highly susceptible to host attacks due to the absence of a protective LL [7].

First, although co-incubation with protoscolex E/S-products clearly induced DC maturation, no activation could be observed upon co-incubation with E/S-products of primary cells and metacestode vesicles. The cells were not only affected in the expression of surface activation markers but also failed to secrete pro-inflammatory cytokines. This inhibitory effect was even apparent in the presence of strong stimuli of TLR signaling since DC pre-incubated with E/S-products of primary cells and metacestode vesicles did not mature in response to LPS, whereas pre-incubation with E/S-products of protoscolecès had no such effect. Furthermore, in a much more pronounced manner than protoscolex compounds, E/S-products of both primary cells and metacestode vesicles induced DC death mediated by apoptosis. To our knowledge, this is the first report on the induction of apoptosis in host DC in response to cestode larval material, which should have important implications concerning immunosuppressive activities, particularly at the very early stage of the infection. On the one hand, the induction of apoptosis in DC should be beneficial to the parasite since it depletes immune effector cells around the early parasite lesions that are important to induce inflammatory immune responses. Moreover, it is well established that apoptosis, extrinsically triggered by infectious agents such as viruses, parasites, or bacteria, usually results in a bystander effect of induced immunosuppression [53]. In parasitic helminths, the induction of DC apoptosis has already been reported for microfilariae of the nematode Brugia malayi which, as also shown herein for E. multilocularis, strongly limited their capacity to produce pro-inflammatory IL-12, and prevented T cell activation and proliferation [54]. Previous in vitro studies further demonstrated that apoptotic DC are rapidly taken up by immature DC, which prevents subsequent maturation of immature DC in response to TLR stimuli [55]. It is, therefore, conceivable that the strongly diminished ability of DC that were pre-incubated with E/S-products of primary cells and the metacestode to LPS, as observed in our study, is indirectly mediated by the induction of apoptosis in a subset of immature DC, rather than by direct inhibition of DC maturation through parasite E/S-products. Since the uptake of apoptotic DC induces immature DC to secrete TGF-β, which induces differentiation of naïve T cells into Foxp3+ T-reg [53], E/S-products of the metacestode, and particularly of primary cells, could thus establish a strongly immunosuppressive environment around parasite lesions already at the beginning of an infection.

As in the case of E/S-products produced by B. malayi microfilariae [54], we can currently only speculate about the molecular nature of Echinococcus E/S factors that might induce DC apoptosis. Among the various host-derived compounds that can extrinsically trigger DC apoptosis are ligands of the tumor necrosis factor (TNF) superfamilly as well as glucocorticoids [53] and B. malayi microfilariae have already been demonstrated to induce DC apoptosis by triggering TNFα-dependent signaling mechanisms [55]. Although no TNF-like ligand has been described so far in Echinococcus or any other flatworm, there has been a recent report on the presence of a TNFα-receptor like surface protein in Schistosoma mansoni which presumably interacts with host TNFα [56]. Our own preliminary analyses on the E. multilocularis genome, which is currently being sequenced [29,30], revealed that a very similar receptor is also expressed by cestodes (data not shown). Bioinformatically, TNF-ligands are difficult to identify in raw sequence data, which might be the reason why so far no such molecule was identified in the Schistosoma or Echinococcus genomes. However, the presence of a respective receptor in these organisms implies that they might also express cognate ligands, which subsequently could bind to members of the TNF-receptor family on host cells (such as DC), thus triggering apoptosis. Apart from
components of the TNF signaling machinery, it has recently also been demonstrated that cestode larvae (*T. canisae* cysticerci) are capable of producing steroid hormones [57]. Although in this system only the production of sex steroids has been tested, it is conceivable that they also produce glucocorticoids which might, either together with TNF-ligands or as an alternative, be involved in triggering host DC apoptosis. By utilization of the culture system established in this work, these alternatives can now be addressed.

A marked difference between DC that were incubated in the presence of E/S-products of metacestode vesicles and primary cells was that, in the latter case, the production of anti-inflammatory IL-10 was significantly induced. To our knowledge, an elevated expression of IL-10 coinciding with DC apoptosis has so far never been described, indicating that this effect was not provoked by the elevated induction of DC apoptosis through E/S-products of primary cells, when compared to those of the metacestode. Hence, we rather suggest that primary cells secrete a set of factors that differs from E/S-products of the metacestode and contains additional components that are able to induce the expression of IL-10 by non-activated DC. This hypothesis is supported by the differential influence of E/S-products from primary cells and metacestode vesicles that we have observed in T-reg conversion assays. Only E/S-products of metacestode vesicles, but not those of primary cells (or protoscoleces), were able to significantly increase the number of CD4+CD25+Foxp3+ regulatory T cells in *vitro*. Although we cannot presently tell whether the *in vitro* T-reg conversion was exclusively mediated by the modified DC, or whether there is also a direct influence of parasite E/S-products on CD4+ T cells, these data nevertheless clearly support an emerging picture that points at Foxp3+ T-reg cells as potential mediators of the fine tuning of the host immune system during metacestode establishment and growth within the intermediate host [15]. Furthermore, our data suggest that an expansion of Foxp3 expressing T cells during chronic (peritoneal) AE, as observed by Mejri et al. [15], might not simply be an intrinsic consequence of an ongoing immune response, but that the parasite actively induces Foxp3+ T-reg through its E/S-products.

The factor(s) and mechanism(s) involved in the modulation of DC maturation and function are currently subject to ongoing investigations. These include studies on the possibility that *Echinococcus* E/S-products might directly interact with TLR ligands rendering the latter less able to elicit a ‘normal’ response from DC, or may be acting as antagonists of TLR-ligand binding interactions [11]. Furthermore, parasite E/S-products may affect DC directly through interactions with non-TLR pattern recognition receptors such as DC-SIGN, Dectin family members [11]. In previous studies on other helminth systems, secreted compounds such as filarial cystatins [58] were shown to induce the expression of IL-10 in antigen presenting cells, including non-activated DC. Interestingly, our own preliminary analyses of the *E. multilocularis* genome sequence indicate that related molecules are also encoded by the cestode, although further experimentation is clearly necessary concerning a possible secretion of these molecules by PC or whether they exert immunomodulatory activities comparable to those of filarial cystatins. Regarding T-reg conversion, the so far best characterized component that elicited similar *in vitro* effects as E/S-products from metacestode vesicles was a secreted compound of the nematode *Heligmosomoides polygyrus* with TGF-β-like activities [59]. Due to the fact that TGF-β-signaling mechanisms have already evolved very early in animal evolution, TGF-β-like cytokines are expressed by a wide variety of free-living, but also parasitic invertebrates [60,61]. Notably, at least one gene that encodes a structural homolog of mammalian TGF-β is also present on the genome of *E. multilocularis* [62], and the involvement of this component in the *in vitro* T-reg conversion process induced by metacestode E/S-products is currently investigated by us using the *in vitro* cultivation models established in this study.

In sharp contrast to co-incubation with primary cells and metacestode vesicles, DC exposed to E/S-products of protoscoleces were clearly activated, as assessed by up-regulation of surface activation markers (MHCII and CD86), secreted elevated levels of IL-6 (but no IL-10), and strongly impaired the ability of DC to produce IL-12 in response to TLR stimuli (LPS). This phenotype resembles that of DC that had been incubated in the presence of *E. granulosus* HCF and isolated AgB [19,20]. However, in contrast to these investigations, DC incubated with protoscolex compounds in our study did not release elevated levels of IL-10, as reported by Rigano et al. [20], or IL-12, as reported by Kanan and Chain [19]. This is most probably due to the fact that the spectrum of E/S-products of protoscoleces does not fully overlap with the content of HCF since, for example, AgB is only weakly expressed by protoscoleces [30,63]. In general, however, the phenotype of DC upon co-incubation with E/S-products of protoscoleces in our study is largely comparable to that of DC incubated with certain *Trypanosoma* antigens which have been closely associated with the induction of Th2-dominated immune responses [64]. Whether the Th2 immune response that is characteristic of the chronic stage of AE [8] is provoked (or supported) by direct contact between protoscoleces and DC within the intermediate host remains highly questionable, since this larval stage is only produced very late in the infection and direct contact between protoscoleces and host cells is usually prevented by the parasite’s surface layers. Furthermore, Th2-dominated immune responses can also be observed in chronic AE under conditions in which no protoscoleces are produced [65]. However, since intestinal luminal infections by adult cestodes are associated with Th2 immune responses [66], the phenotype we observed in this study for DC exposed to E/S-products of protoscoleces could rather be associated with immunological processes that are relevant for an infection of the definitive host [66]. In any case, the marked differences between the responses of DC to E/S-products of early versus late developmental stages of *E. multilocularis* clearly demonstrates that an induction of tolerance in DC is not a general characteristic of *Echinococcus* material, but rather that the E/S repertoire of primary cells and metacestodes has specifically evolved to fulfill these purposes. Care should therefore be taken in the interpretation of results that have been obtained concerning the immune response during echinococcosis (intermediate host infection) by using co-incubation-systems of *Echinococcus* protoscoleces with host cells [21–27] or by employing the mouse model of peritoneal, protoscolex-induced secondary alveolar echinococcosis for short-term infections [67].

In conclusion, in this study we provide for the first time evidence for the induction of apoptosis in host DC through E/S-products of early infectious stages of *E. multilocularis*. We further show that primary cells, as representative of the oncosphere stage that undergoes metamorphosis towards the metacestode, are able to induce poorly responsive, IL-10 secreting DC *in vitro*. This effect is somewhat reduced at the chronic stage (metacestode), leading to poorly responsive, immature DC, but a Foxp3+ T-reg-inducing environment, and is no longer present in the protoscolex stage (table 1). Although our study concentrated on *in vitro* interactions between parasite larvae and DC, thus excluding the possible influence of other immune effectors or epithelial cells, the clear induction of poorly responsive, apoptotic and IL-10 secreting DC in response to primary cells suggests that a similar mechanism might also be operative in the tissue surrounding the early
metamorphosing oncosphere. If so, this process might be important for an early establishment of the parasite during a phase of relatively high vulnerability to the host immune system, whereas in the chronic phase, after production of the LL, a slightly altered profile of E/S-products that mainly induces T-reg could support long-term persistence and infiltrative growth of the metacestode, as previously suggested [15]. The molecular nature of Echinococcus E/S-products that are responsible for these effects is currently being investigated by us using the available genome sequence information [29,30], recently established methods for genetic manipulation of primary cells [68], and the cultivation settings established in this work.

Supporting Information

Figure S1 Normalization of parasite material. (A) Different quantities of host-cell free E. multilocularis larvae were used to generate cell lysates, which were subsequently analyzed by Western blot using an anti-β-actin antibody (upper panel). β-actin band intensity was subsequently quantified by ImageJ (lower panel). PC1, primary cells from 15 ml of metacestode vesicles after 1 week axenic cultivation; PC2, primary cells from 25 ml of metacestode vesicles after 1 week axenic cultivation; V1, 1 metacestode vesicle of 5 mm diameter after 2 months in vitro cultivation and one week axenic cultivation; V2, 2 metacestode vesicles of 5 mm diameter after 2 months in vitro cultivation and one week axenic cultivation; 2Pro, 2000 protoscoleces after 1 week axenic cultivation. (C) Western blot analysis of half of the amount of normalized parasite material determined in (B). (D) Assessment of the total amount of protein extracted from 1 Unit each of larval material.

(TIF)

Figure S2 Assessment of the hemolytic activity of E. multilocularis E/S-products. Human blood was collected from 2 healthy donors in heparinized tubes and, for each donor, an equal volume of red blood cell suspension was seeded in parasite culture medium. Red blood cells were exposed to E/S-products of comparable amounts (1 Unit) of primary cells (PCES), metacestode vesicles (MCES) and protoscoleces (PSES), and maintained in culture. Culture medium (Medium) was used as negative control whereas an equal volume of water was used as positive control (H2O). After 48 h, the plates were centrifuged and the supernatant collected for measurement of hemoglobin content as a marker of red blood cells lysis. The percentage of hemolysis is expressed as a ratio of sample absorbance over that of water (540 nm). Results shown are means ± SD from 2 healthy donors.

(TIF)

Acknowledgments

The authors wish to thank Monika Bergmann and Dirk Radloff for excellent technical assistance, and Jens Hanig and Sarah Sandwick for valuable advice.

Author Contributions

Conceived and designed the experiments: JKN KP MBL KB. Performed the experiments: JKN KP. Analyzed the data: JKN KP MBL KB. Contributed reagents/materials/analysis tools: JKN KP MBL KB. Wrote the paper: JKN MBL KB.

References

1. Kern P (2010) Clinical features and treatment of alveolar echinococcosis. Curr Opin Infect Dis 23: 505–512.
2. Brehm K, Spiliotis M, Zavala-Góngora M, Konrad C, Frosch M (2006) The molecular mechanisms of larval cestode development: first steps into an unknown world. Parasitol Int 55: S15–S21.
3. Rausch R (1954) Studien über den Larvenstadien und histopathologische Reaktionen in der Feldmaus, Microtus arvalis. Tropenmed Parasitol 28: 409–427.
4. Vogel H (1977) Über den Echinococcus multilocularis-Studie. Entwicklung der Larvenstadien und histopathologische Reaktionen in der Feldmaus, Microtus arvalis. Tropenmed Parasitol 28: 409–427.
5. Zang W, Li J, McManus DP (2003) Concepts in immunology and diagnosis of hydatid disease. Clin Microbiol Rev 16: 10–36.
6. Gottstein B, Haag K, Walker M, Matsumoto J, Meiji N, et al. (2006) Molecular survival strategies of Echinococcus multilocularis in the murine host. Parasitol Int 55: S45–S49.
7. Vuitton DA, Gottstein B (2010) Echinococcus multilocularis and its intermediate host: a model of parasite-host interaction. J Biomed Biotechnol 2010: 923193.

Table 1. In vitro immunomodulation of DC by E/S-products of E. multilocularis larvae.

Larval stages	Primary stages	Metacestode vesicles	Protoscoleces
Induction of apoptosis	++	+	±
Surface maturation markers (MHCII, CD86)	↓ ↓	↓	↑
Induction of IL-12p70	–	–	–
Induction of IL-10	+	–	–
Induction of IL-6	–	–	+
IL-12p70 production upon subsequent exposure to LPS	↓ ↓	↓	↓ ↓ ↓
DC killing + IL-10-producing DC	–	+	–
DC killing + Tolerogenic Foxp3+ T-reg-inducing DC	–	+	Th2-like inducing DC

doi:10.1371/journal.pntd.0001516.t001
9. Saile M, Soeldler B, Allerberger F, Zaknun D, Feichtinger H, et al. Alveolar echinococcosis of the liver in a six-year-old girl with acquired immunodeficiency syndrome. J Pediatr 130: 320–323.

10. Zhang W, Ross AG, McManus DP (2000) Mechanisms of immunity in hydatid disease: implications for vaccine development. J Immunol 161: 6679–6685.

11. Everts B, Smits HH, Hokke CH, Yaendahalhak M (2010) Helminths and dendritic cells: sensing and regulating via pattern recognition receptors Th2 and Th-reg responses. Eur J Immunol 40: 1525–1537.

12. McDade SW, Brehm K (2000) Abloring dendritic cells for Th2 induction. J Exp Med 205: 13–17.

13. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, et al. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811.

14. Grainger JR, Hall JA, Bouloudou N, Oldenheuven N, Belkhayd Y (2008) Microbe-induced T-cell regulatory activity. J Immunol 180: 350–356.

15. Mejri N, Muller N, Hemphill A, Gottstein B (2011) Intraperitoneal Echinococcus multilocularis infection in mice modulates peritoneal CD4+ and CD8+ regulatory T cell development. Parasitol Int 60: 45–53.

16. Jenne L, Arrighi JF, Sauter B, Kern P (2001) Dendritic cells pulsed with unfractionated helminthic proteins to generate antiparasitic cytotoxic T lymphocyte. Parasite Immunol 23: 195–201.

17. Tappe D, Weise D, Ziegler U, Muller A, Mullages W, Stich A (2008) Brain and lung metastasis of alveolar echinococcosis in a refinery in a hypertensive area. J Med Microbiol 57: 1420–1423.

18. MacIntyre AR, Dixon JB (2001) Interleukin-23 and prospects for advancing basic and applied aspects of flatworm biology. Parasitology 123: 198–205.

19. Kanan JH, Chain BM (2006) Modulation of dendritic cell differentiation and function by Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response. Infect Immun 75: 1667–1678.

20. Cox DA, Marshall-Slater S, Dixon JB (1989) Activation of normal murine B cells by Echinococcus granulosus. Immunol Today 10: 116–120.

21. Kizaki T, Ishige M, Bingyan W, Kumagai M, Day NK, et al. (1993) Interleukin-1-dependent monocyte responses induced by protoscoleces of Echinococcus multilocularis in vitro. Immunology 79: 412–417.

22. Kizaki T, Ishige M, Bingyan W, Kumagai M, Day NK, et al. (1993) Immunosuppression induced by protoscoleces of Echinococcus multilocularis in mice. Evidence for the presence of CD8+ suppressor cells in spleens of mice immunized with protoscoleces of Echinococcus multilocularis. Infect Immun 61: 523–533.

23. Kizaki T, Kobayashi S, Ogasawara K, Day NK, et al. (1991) Immune suppression induced by protoscoleces of Echinococcus multilocularis in vitro. J Immunol Methods 149: 1025–1039.

24. Yamazaki S, Iyoda T, Tarbell K, Olson K, Velinzon K, et al. (2003) Direct cell-cell interactions between monocytes and dendritic cells during the early stages of the immune response. Immunobiology 205: 13–17.

25. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Annu Rev Immunol 26: 489–525.

26. Klotz C, Ziegler T, Figueiredo TS, Rausch S, Hepworth MR, et al. (2011) A novel microarray-based gene expression atlas of the adult Caenorhabditis elegans. PLoS One 6: e17534.

27. Lutz MB, Kukutsch N, Ogilvie AL, Roessner S, Koch F, et al. (1999) Identification and molecular characterization of a gene encoding a member of the EM10 family from mouse bone marrow-derived dendritic cells. J Immunol Methods 223: 77–92.

28. Lao X, Tarbell KV, Yang H, Pothoven K, Bailey SL, et al. (2007) Dendritic cells with TGF-β1-differentiated naive CD4+CD25+ T cells into iodo-protective Fosp3+ regulatory T cells. Proc Natl Acad Sci USA 104: 2821–2826.

29. Lutz MB, Kukutsch N, Ogilvie AL, Roessner S, Koch F, et al. (1999) An advanced culture method for generating large quantities of highly pure dendritic cells suitable for use in murine lymphocyte. J Immunol Methods 223: 77–92.

30. Yamazaki S, Isoda T, Tarbell K, Olson K, Velinzon K, et al. (2005) Direct expansion of functional CD56+CD16+ regulatory T cells by antigen processing dendritic cells. J Exp Med 198: 235–247.

31. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, et al. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811.

32. MacIntyre AR, Dixon JB (2001) Echinococcus granulosus: regulation of leukocyte growth by living protoscoleces from horses, sheep, and cattle. Exp Parasitol 99: 190–203.

33. Wilhelmus MS, al Nahhas S, Gabrion C, Mesnil M, Petrazy AF (1994) Echinococcus multilocularis in vitro interactions between protoscoleces and Kupffer cells. Parasitol Res 80: 381–387.

34. Spiliotis M, Lehner S, Tappe D, Scheller C, Krohne G, et al. (2008) Transient transfection of Echinococcus multilocularis primary cells and colony formation in vitro regeneration of metacestode vesicles. Int J Parasitol 38: 1025–1039.

35. Brehm K (2010) Intraperitoneal murine Echinococcus multilocularis infection induces differentiation of TGF-β expressing DCs that remain immature. Parasite Immunol 32: 574–578.

36. Nuovo GJ, Kramer BR, Brehm K, et al. (2000) Echinococcus granulosus antigen B impairs in vitro lymph node cell proliferation by mouse bone marrow dendritic cells following infection with Echinococcus multilocularis antigen B in cystic echinococcosis. Int J Parasitol 30: 1377–1380.

37. Brehm K, Epping K, Schmitz G, Deplazes P, Brehm K (2009) Molecular characterization of EmARP, an apolipoprotein A-I binding protein secreted by the Echinococcus multilocularis metacestode. Infect Immun 77: 5564–5571.

38. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Annu Rev Immunol 26: 489–525.

39. Serafini TT, Cavalcante DF, Adams JF, et al. (2009) Identification and molecular characterization of a gene encoding a member of the EM10 family from mouse bone marrow-derived dendritic cells. J Immunol Methods 223: 77–92.

40. Klotz C, Ziegler T, Figueiredo TS, Rausch S, Hepworth MR, et al. (2011) A novel microarray-based gene expression atlas of the adult Caenorhabditis elegans. PLoS One 6: e17534.
genes in five subclasses which are differentially expressed. PLoS Negl Trop Dis 4: e784.

64. Pletinckx K, Stijlemans B, Pavlovic V, Laube R, Brandl C, et al. (2011) Similar inflammatory DC maturation signatures induced by TNF or Trypanosoma brucei antigens instruct default Th2-cell responses. Eur J Immunol. doi:10.1002/eji.201141631.

65. Matsumoto J, Kouguchi H, Oku Y, Yagi K (2010) Primary alveolar echinococcosis: course of larval development and antibody responses in intermediate host rodents with different genetic backgrounds after oral infection with eggs of Echinococcus multilocularis. Parasitol Int 59: 435–444.

66. McKay DM, Webb RA (2005) Cestode infection: immunological considerations from host and tapeworm perspectives, p193–209. In: Maule AG, Marks NJ, eds. Parasitic flatworms: molecular biology, biochemistry, immunology and physiology, CABl publishing, Wallingford, United Kingdom.

67. Dvoroznakova E, Porsabcova J, Sevcikova Z (2009) Immune response of mice with alveolar echinococcosis to therapy with transfer factor, alone and in combination with albendazole. Parasitol Res 105: 1067–1076.

68. Spiliotis M, Mizukami C, Oku Y, Kis F, Brehm K, et al. (2010) Echinococcus multilocularis primary cells: improved isolation, small-scale cultivation and RNA interference. Mol Biochem Parasitol 174: 83–87.