Supporting Information

Systematic data-driven modelling of bimetallic catalyst performance for hydrogenation of 5-ethoxymethylfurfural with variable selection and regularization

Pekka Uusitaloa*, Aki Sorsaa, Fernando Russo Abegaob, Markku Ohenojaa, Mika Ruusunena

aEnvironmental and Chemical Engineering Research Unit, Control Engineering Group, Faculty of Technology, P.O.Box 4300, University of Oulu, Oulu, 90014, Finland
bSchool of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom

*Email: pekka.uusitalo@oulu.fi
Table S1. Root mean square error values, correlations and prediction uncertainties for reference models of conversion with diethyl carbonate solvent (C1). RMSET = Root mean squared value for training set. RMSECV = Root mean squared value of cross-validation. RMSEP = Root mean squared value for test set. RT = Correlation between observed and predicted values with training set. RCV = Correlation between observed and predicted values with cross-validation set. RP = Correlation between observed and predicted values with test set. PUT = Prediction Uncertainty (mean value of error ± 2 * standard deviation of error) with training set. PUCV = Prediction Uncertainty with cross-validation set. PUP = Prediction Uncertainty with test set.

Model No.	Modelling Method	RMSET (%)	RMSECV mean/ std (%)	RMSEP (%)	RT	RCV	RP	PUT (e ± 2σ) (%)	PUCV (e ± 2σ) (%)	PUP (e ± 2σ) (%)
1.	Ridge Regression (fitrlinear)	10.58	12.74 / 0.65	13.96	0.86	0.83	0.77	0.33 ± 21.26	-0.45 ± 23.42	-0.4 ± 28.2
2.	Lasso Regression (fitrlinear)	10.10	12.44 / 0.57	13.96	0.88	0.82	0.77	-0.02 ± 20.3	-0.4 ± 24.16	-0.74 ± 28.18
3.	Lasso Regression (lasso)	9.77	9.46 / 0.41	13.75	0.88	0.83	0.78	0 ± 19.64	0.03 ± 23.17	-0.72 ± 27.75
4.	Elastic Net (lasso)	9.77	9.52 / 0.46	13.75	0.88	0.84	0.78	0 ± 19.64	0.09 ± 23.01	-0.72 ± 27.75
5.	PLSR	9.81	11.80 / 0.39	13.72	0.88	0.83	0.78	0 ± 19.73	0.08 ± 23.23	-0.72 ± 27.69

Table S2. Root mean square error values, correlations and prediction uncertainties for reference models of selectivity with diethyl carbonate solvent (S1).

Model No.	Modelling Method	RMSET (%)	RMSECV mean/ std (%)	RMSEP (%)	RT	RCV	RP	PUT (e ± 2σ) (%)	PUCV (e ± 2σ) (%)	PUP (e ± 2σ) (%)
6.	Ridge Regression (fitrlinear)	15.07	15.50 / 0.62	16.18	0.69	0.72	0.65	2.73 ± 29.8	2.57 ± 29.47	3.05 ± 32.13
7.	Lasso Regression (fitrlinear)	13.88	15.57 / 0.51	14.99	0.80	0.71	0.76	2.38 ± 27.5	2.94 ± 30.3	2.7 ± 29.81
8.	Lasso Regression (lasso)	11.73	11.38 / 0.48	14.69	0.82	0.73	0.72	0 ± 23.58	0.15 ± 27.98	0.32 ± 29.7
Model No.	Modelling Method	RMSET (%)	RMSECV mean/std (%)	RMSEP (%)	RT	RCV	RP	PUT (e ± 2σ) (%)	PUCV (e ± 2σ) (%)	PUP (e ± 2σ) (%)
----------	------------------	-----------	---------------------	-----------	----	-----	----	----------------	------------------	----------------
9.	Elastic Net (lasso)	11.73	11.51 / 0.46	14.69	0.82	0.74	0.72	0.82 ± 23.58	0.05 ± 27.77	0.32 ± 29.69
10.	PLSR	11.82	14.49 / 0.60	15.23	0.81	0.72	0.70	0.8 ± 23.77	0.12 ± 28.36	0.32 ± 30.78

Table S3. Root mean square error values, correlations and prediction uncertainties for reference models of conversion with 1,4-dioxane solvent (C2).

Model No.	Modelling Method	RMSET (%)	RMSECV mean/std (%)	RMSEP (%)	RT	RCV	RP	PUT (e ± 2σ) (%)	PUCV (e ± 2σ) (%)	PUP (e ± 2σ) (%)
11.	Ridge Regression (fitrlinear)	13.33	14.78 / 0.69	16.76	0.91	0.90	0.85	0.84 ± 26.75	1.56 ± 27.99	-0.27 ± 33.88
12.	Lasso Regression (fitrlinear)	12.20	14.63 / 0.64	15.72	0.92	0.89	0.87	1.55 ± 24.32	1.41 ± 28.57	0.44 ± 31.76
13.	Lasso Regression (lasso)	11.09	10.77 / 0.51	15.62	0.93	0.91	0.87	0 ± 22.3	0.01 ± 26.21	-1.11 ± 31.49
14.	Elastic Net (lasso)	11.09	10.79 / 0.69	15.61	0.93	0.91	0.87	0 ± 22.3	0.01 ± 26.56	-1.11 ± 31.48
15.	PLSR	11.28	14.30 / 0.84	15.94	0.93	0.90	0.86	0 ± 22.68	-0.02 ± 27.66	-1.11 ± 32.15

Table S4. Root mean square error values, correlations and prediction uncertainties for reference models of selectivity with 1,4-dioxane solvent (S2).
Model No.	Modelling Method	RMSET (%)	RMSECV mean/std (%)	RMSEP (%)	RT	RCV	RP	PUT (e ± 2σ) (%)	PUCV (e ± 2σ) (%)	PUP (e ± 2σ) (%)
19.	Elastic Net (lasso)	31.98	31.23 / 1.25	39.43	0.68	0.54	0.48	0 ±- 64.29	0.04 ±- 75.04	4.37 ±- 79.22
20.	PLSR	32.08	38.27 / 1.34	39.09	0.68	0.53	0.49	0 ±- 64.49	0.42 ±- 75.34	4.37 ±- 78.52

Table S5. Root mean square error values, correlations and prediction uncertainties for reference models of yield with diethyl carbonate solvent (Y1).

Model No.	Modelling Method	RMSET (%)	RMSECV mean/std (%)	RMSEP (%)	RT	RCV	RP	PUT (e ± 2σ) (%)	PUCV (e ± 2σ) (%)	PUP (e ± 2σ) (%)
21.	Ridge Regression (fitrlinear)	13.59	14.46 / 0.52	15.65	0.65	0.62	0.57	2.72 ±- 26.77	2.97 ±- 27.3	2.71 ±- 31.17
22.	Lasso Regression (fitrlinear)	13.93	14.86 / 0.27	15.51	0.75	0.63	0.73	3.64 ±- 27.03	3.79 ±- 28.73	3.64 ±- 30.48
23.	Lasso Regression (lasso)	10.44	10.20 / 0.41	13.95	0.78	0.68	0.65	0 ±- 21	0.02 ±- 24.82	0 ±- 28.2
24.	Elastic Net (lasso)	10.44	10.32 / 0.37	13.95	0.78	0.68	0.65	0 ±- 21	0 ±- 24.78	0 ±- 28.19
25.	PLSR	10.51	12.90 / 0.53	14.34	0.78	0.67	0.63	0 ±- 21.13	0 ±- 25.29	0 ±- 28.99

Table S6. Root mean square error values, correlations and prediction uncertainties for reference models of yield with 1,4-dioxane solvent (Y2).
Model No.	Response	Variable Selection Method	Model structure	RMSET (%)	RMSECV mean/std (%)	RMSEP (%)	RT	RCV	RP	PUT (± 2σ) (%)	PUCV (± 2σ) (%)	PUP (± 2σ) (%)	Number of Variables	Variable subset
31.	C1	-	Quadratic SVM	4.05	11.02	9.51	0.98	0.91	0.90	-0.11 ± 8.14	-0.35 ± 17.44	-1.31 ± 19.05	147	-
32.	C1	-	Exponential GPR	6.16	8.52	9.60	0.96	0.92	0.90	0 ± 12.39	0.02 ± 16.38	-0.96 ± 19.32	2	1
33.	C1	Ridge (fitrlinear)	Cubic SVM	6.49	8.72	9.61	0.95	0.92	0.90	-0.31 ± 13.04	-0.45 ± 16.19	-1.26 ± 19.26	6	VII
34.	S1	-	Fine Tree	5.11	9.28	5.24	0.97	0.92	0.97	0 ± 10.28	0 ± 16.05	0.27 ± 10.57	-	
35.	S1	Ridge (fitrlinear)	Fine Tree	5.31	7.43	5.12	0.97	0.94	0.97	0 ± 10.67	0.07 ± 13.99	0.3 ± 10.33	7	2
36.	S1	-	Matern 5/2 GPR	5.13	7.46	4.87	0.97	0.94	0.97	0 ± 10.31	0.12 ± 13.72	0.01 ± 9.84	2	VII
37.	Y1	-	Fine Tree	3.27	5.90	5.01	0.98	0.96	0.96	0 ± 6.57	0.31 ± 9.25	0.51 ± 10.08	147	-
38.	Y1	Ridge (fitrlinear)	Cubic SVM	3.34	4.76	4.05	0.98	0.97	0.98	0.42 ± 6.67	0.29 ± 8.11	0.04 ± 8.2	7	3
39.	Y1	-	Rational	3.04	4.79	4.22	0.98	0.97	0.97	0 ± 6.12	0.09 ± 8.44	-0.35 ± 8.5	2	7
40.	C2	-	Quadratic SVM	4.50	13.82	9.05	0.99	0.94	0.96	0.12 ± 9.04	-0.37 ± 20.9	-1.35 ± 18.09	147	-
41.	C2	Lasso (fitrlinear)	Matern 5/2 GPR	3.51	9.91	9.09	0.99	0.95	0.96	0 ± 7.06	0.09 ± 18.67	-0.75 ± 18.31	13	VII
42.	C2	-	Squared	6.59	9.30	10.24	0.98	0.96	0.95	0 ± 13.26	0.14 ± 17.57	-1.32 ± 20.53	2	VII
43.	S2	-	Boosted Ensemble Tree	18.02	34.15	34.51	0.92	0.67	0.66	2.31 ± 35.93	2.6 ± 65.53	10.05 ± 66.75	147	-
44.	S2	Ridge (fitrlinear)	Fine Tree	24.95	34.21	34.12	0.82	0.70	0.65	0 ± 50.18	-0.68 ± 62.32	4.37 ± 68.41	10	V
45.	S2	-	Fine Tree	25.45	34.90	34.10	0.81	0.67	0.65	0 ± 51.16	-0.53 ± 65.45	4.37 ± 68.36	2	VII
46.	Y2	-	Quadratic SVM	9.23	18.88	13.09	0.93	0.78	0.84	1.41 ± 18.33	-0.17 ± 31.06	-0.02 ± 26.46	147	-
47.	Y2	Ridge (fitrlinear)	Cubic SVM	6.07	7.81	8.75	0.97	0.95	0.94	0.75 ± 12.1	0.39 ± 14.55	-0.7 ± 17.63	8	VI
48.	Y2	-	Squared	5.56	7.88	9.27	0.97	0.95	0.93	0 ± 11.17	0 ± 14.87	-1.38 ± 18.52	2	VII

Table S7. The best modelling results (18 models) according to RMSEP values for six different responses.

Table S8. Variable subsets for the best modelling results according to RMSEP values. M = main metal, P = promoter, CS = crystal structure, SGN = space group number, IE = ionisation energy, BCM = base-centered monoclinic, FCC = face-centered cubic, SH = simple hexagonal. Definitions for all the variables can be found in tables S15-S19.
Table S9. Variable occurrences for conversion (C1) with four different regularization methods and their sum. EN = Elastic net with lasso function with alpha value 0.5 and \(\lambda \) value corresponding to minimum mean squared error value (minMSE). L1 = Lasso with lasso function with minMSE \(\lambda \) value. L2 = lasso with fitrlinear function. RR = Ridge with fitrlinear function. M = main metal. P = promoter.

	45.	57.	93.	59.	86.	71.	6.	126.	89.
EN	20	20	20	0	0	0	20	0	0
L1	20	20	20	20	20	0	17	12	0
L2	20	20	20	20	20	19	0	20	12
RR	20	20	20	0	0	20	0	0	9
SUM	80	80	60	40	40	39	37	32	21

45. Temperature, 57. Brinell hardness (M), 93. Interaction term for RAPEX and FWHH (M), 59. Bulk modulus (M), 86. Quadratic term for rAPEX (M), 71. Volume magnetic susceptibility (M), 6. Dummy variable for Pt (M), 126. Second lattice angle (P), 89. Quadratic term for SKEW (M)

Table S10. Variable occurrences for selectivity (S1) with four different regularization methods and their sum.

	45.	50.	59.	66.	48.	5.	6.	11.	17.	32.	122.	120.
EN	20	20	20	20	20	20	20	20	20	0	0	0
L1	20	20	20	20	20	20	20	20	20	12	11	19
L2	20	20	20	12	0	0	0	0	0	0	16	2
RR	20	20	20	5	3	3	0	0	0	0	0	0
SUM	80	80	80	60	57	43	43	40	40	32	27	21

45. Temperature, 50. Boiling point (M), 59. Bulk modulus (M), 66. Electron affinity (M), 48. Density (M), 5. Dummy variable for Pd (M), 6. Dummy variable for Pt (M), 11. Dummy variable for Fe (P), 17. Dummy variable for group 9 in periodic table (M), 32. Dummy variable for group 8 in periodic table (P), 122. Volume magnetic susceptibility (P), 120. Electrical conductivity (P)
Table S11. Variable occurrences for conversion (C2) with four different regularization methods and their sum.

	45.	57.	66.	93.	1.	3.	5.	67.	80.	86.	114.
EN	20	20	20	20	20	20	20	0	0	0	0
L1	20	20	0	20	20	20	20	0	0	20	20
L2	20	20	20	20	0	0	0	20	20	19	1
RR	20	0	20	0	0	0	0	20	20	0	0
SUM	80	60	60	60	40	40	40	40	40	39	21

45. Temperature, 57. Brinell hardness (M), 66. Electron affinity (M), 93. Interaction term for RAPEX and FWHH (M), 1. Dummy variable for Au (M), 3. Dummy variable for Ir (M), 5. Dummy variable for Pd (M), 67. First ionization energy (M), 80. Neutron cross section (M), 86. Quadratic term for rAPEX (M), 114. Speed of sound (P)

Table S12. Variable occurrences for selectivity (S2) with four different regularization methods and their sum.

	45.	71.	57.	65.	1.	2.	3.	4.	6.	8.	10.	16.	17.	79.	118.
EN	20	20	20	19	20	20	20	20	20	20	20	20	20	0	0
L1	20	7	0	20	0	0	0	20	20	20	20	20	20	0	20
L2	20	20	20	20	0	0	0	20	20	20	20	20	20	0	14
RR	20	20	20	20	0	0	0	20	20	20	20	20	20	0	0
SUM	80	67	60	59	40	40	40	40	40	40	40	40	40	40	34

45. Temperature, 71. Volume magnetic susceptibility (M), 57. Brinell hardness (M), 65. Electronegativity (M), 1. Dummy variable for Au (M), 2. Dummy variable for Cu (M), 3. Dummy variable for Ir (M), 4. Dummy variable for Ni (M), 6. Dummy variable for Pt (M), 8. Dummy variable for Rt (M), 10. Dummy variable for Cr (P), 16. Dummy variable for group 8 in the periodic table (M), 17. Dummy variable for group 9 in the periodic table (M), 79. Third lattice constant (M), 118. First ionization energy (P)

Table S13. Variable occurrences for yield (Y1) with four different regularization methods and their sum.

	45.	50.	48.	57.	59.	66.	62.	6.	71.	3.	17.	52.	5.
EN	20	20	20	20	20	20	20	17	20	20	20	20	20
L1	20	20	20	0	0	0	0	20	2	20	20	0	16
L2	20	20	20	20	20	20	0	20	0	0	0	0	0
RR	20	20	0	20	20	20	10	5	2	0	0	20	0
SUM	80	80	60	60	60	60	50	45	41	40	40	40	36

45. Temperature, 50. Boiling point (M), 48. Density (M), 57. Brinell hardness (M), 59. Bulk modulus (M), 66. Electron affinity (M), 62. Poisson ratio (M), 6. Dummy variable for Pt (M), 71. Volume magnetic susceptibility (M), 3. Dummy variable for Ir (M), 17. Dummy variable for group 9 in the periodic table (M), 52. Heat of vaporization (M), 5. Dummy variable for Pd (M)
Table S14. Variable occurrences for yield (Y2) with four different regularization methods and their sum.

	45.	57.	93.	66.	67.	80.	3.	5.	61.	65.
EN	20	20	20	20	20	20	20	20	7	8
L1	20	20	20	0	0	0	20	20	0	0
L2	20	20	20	20	20	0	0	0	19	0
RR	20	17	2	20	20	5	1	9	20	20
SUM	80	77	62	60	60	45	41	35	28	28

45. Temperature, 57. Brinell hardness (M), 93. Interaction term for RAPEX and FWHH (M), 66. Electron affinity (M), 67. First ionization energy (M), 80. Neutron cross section (M), 3. Dummy variable for Ir (M), 5. Dummy variable for Pd (M), 61. Young modulus (M), 65. Electronegativity (M)
| Number | Variable | Unit | Definition |
|--------|---|------|---|
| 1. | Dummy variable for Au (M) | N/A | Explains the presence of Au as main metal. |
| 2. | Dummy variable for Cu (M) | N/A | Explains the presence of Cu as main metal. |
| 3. | Dummy variable for Ir (M) | N/A | Explains the presence of Ir as main metal. |
| 4. | Dummy variable for Ni (M) | N/A | Explains the presence of Ni as main metal. |
| 5. | Dummy variable for Pd (M) | N/A | Explains the presence of Pd as main metal. |
| 6. | Dummy variable for Pt (M) | N/A | Explains the presence of Pt as main metal. |
| 7. | Dummy variable for Rh (M) | N/A | Explains the presence of Rh as main metal. |
| 8. | Dummy variable for Rt (M) | N/A | Explains the presence of Rt as main metal. |
| 9. | Dummy variable for Bi (P) | N/A | Explains the presence of Bi as promoter. |
| 10. | Dummy variable for Cr (P) | N/A | Explains the presence of Cr as promoter. |
| 11. | Dummy variable for Fe (P) | N/A | Explains the presence of Fe as promoter. |
| 12. | Dummy variable for Na (P) | N/A | Explains the presence of Na as promoter. |
| 13. | Dummy variable for Sn (P) | N/A | Explains the presence of Sn as promoter. |
| 14. | Dummy variable for W (P) | N/A | Explains the presence of W as promoter. |
| 15. | Dummy variable for d-block in the periodic table (M) | N/A | Explains, if the main metal belongs to d-block in the periodic table. |
| 16. | Dummy variable for group 8 in the periodic table (M) | N/A | Explains, if the main metal belongs to group 8 in the periodic table. |
| 17. | Dummy variable for group 9 in the periodic table (M) | N/A | Explains, if the main metal belongs to group 9 in the periodic table. |
| 18. | Dummy variable for group 10 in the periodic table (M) | N/A | Explains, if the main metal belongs to group 10 in the periodic table. |
| 19. | Dummy variable for group 11 in the periodic table (M) | N/A | Explains, if the main metal belongs to group 11 in the periodic table. |
| 20. | Dummy variable for period 4 in the periodic table (M) | N/A | Explains, if the main metal belongs to period 4 in the periodic table. |
| 21. | Dummy variable for period 5 in the periodic table (M) | N/A | Explains, if the main metal belongs to period 5 in the periodic table. |
| 22. | Dummy variable for period 6 in the periodic table (M) | N/A | Explains, if the main metal belongs to period 6 in the periodic table. |
| 23. | Dummy variable for face-centered cubic crystalline structure (M) | N/A | Explains, if the main metal has face-centered cubic crystalline structure.|
| 24. | Dummy variable for simple hexagonal crystalline structure (M) | N/A | Explains, if the main metal has simple hexagonal crystalline structure. |
| 25. | Dummy variable for space group number 194 (M) | N/A | Explains, if the main metal has space group number 194. |
| 26. | Dummy variable for space group number 225 (M) | N/A | Explains, if the main metal has space group number 194. |
| 27. | Dummy variable for d-block in the periodic table (P) | N/A | Explains, if the promoter belongs to d-block in the periodic table. |
| 28. | Dummy variable for p-block in the periodic table (P) | N/A | Explains, if the promoter belongs to p-block in the periodic table. |
| 29. | Dummy variable for s-block in the periodic table (P) | N/A | Explains, if the promoter belongs to s-block in the periodic table. |
| 30. | Dummy variable for group 1 in the periodic table (P) | N/A | Explains, if the promoter belongs to group 1 in the periodic table. |
| 31. | Dummy variable for group 6 in the periodic table (P) | N/A | Explains, if the promoter belongs to group 6 in the periodic table. |
Table S16. Variables used in the variable selection, part 2. M refers to main metal and P to promoter.

Number	Variable	Unit	Definition
32.	Dummy variable for group 8 in the periodic table (P)	N/A	Explains, if the promoter belongs to group 8 in the periodic table.
33.	Dummy variable for group 14 in the periodic table (P)	N/A	Explains, if the promoter belongs to group 14 in the periodic table.
34.	Dummy variable for group 15 in the periodic table (P)	N/A	Explains, if the promoter belongs to group 15 in the periodic table.
35.	Dummy variable for period 3 in the periodic table (P)	N/A	Explains, if the promoter belongs to period 3 in the periodic table.
36.	Dummy variable for period 4 in the periodic table (P)	N/A	Explains, if the promoter belongs to period 4 in the periodic table.
37.	Dummy variable for period 5 in the periodic table (P)	N/A	Explains, if the promoter belongs to period 5 in the periodic table.
38.	Dummy variable for period 6 in the periodic table (P)	N/A	Explains, if the promoter belongs to period 6 in the periodic table.
39.	Dummy variable for base-centered monoclinic crystalline structure (P)	N/A	Explains, if the promoter has base-centered monoclinic crystalline structure.
40.	Dummy variable for base-centered cubic crystalline structure (P)	N/A	Explains, if the promoter has base-centered cubic crystalline structure.
41.	Dummy variable for centered tetragonal crystalline structure (P)	N/A	Explains, if the promoter has centered tetragonal crystalline structure.
42.	Dummy variable for space group number 12 (P)	N/A	Explains, if the promoter has space group number 12.
43.	Dummy variable for space group number 141 (P)	N/A	Explains, if the promoter has space group number 141.
44.	Dummy variable for space group number 229 (P)	N/A	Explains, if the promoter has space group number 229.
45.	Temperature	°C	Temperature of experiment.
46.	Atomic number (M)	N/A	Atomic number of the element in periodic table.
47.	Atomic weight (M)	g/mol	Defines the weight of an atom.
48.	Density (M)	g/cm³	Defines materials mass per unit volume.
49.	Melting point (M)	K	Defines the temperature value at which the element changes its phase from solid to liquid.
50.	Boiling point (M)	K	Defines the temperature value at which the element changes its phase from liquid to gas.
51.	Heat of fusion (M)	kJ/mol	The quantity of heat necessary to change a solid to a liquid without temperature change.
52.	Heat of vaporization (M)	kJ/mol	The quantity of heat necessary to change a liquid to a solid without temperature change.
53.	Specific heat capacity (M)	J/(kg*K)	The quantity of heat necessary for a given mass to produce a unit change in its temperature.
54.	Thermal conductivity (M)	W/(m*K)	A measure of materials ability to conduct heat.
55.	Thermal expansion (M)	K⁻¹	Defines materials ability to change its shape, area, volume, and density to a temperature change.
56.	Molar volume (M)	m³/mol	Volume occupied by one mole of the substance at the given temperature and pressure.
57.	Brinell hardness (M)	MPa	Definition of materials hardness tested by applying pressure with indenter on the material.
58.	Mohs hardness (M)	N/A	Defines materials scratch resistance.
59.	Bulk modulus (M)	GPa	Defines materials resistance to compression.
60.	Shear modulus (M)	GPa	Describe materials response to shear stress.
Number	Variable	Unit	Definition
--------	---------------------------------------	---------	--
61.	Young modulus (M)	GPa	Defines materials resistance to elastic changes.
62.	Poisson ratio (M)	N/A	A measure of the Poisson effect.
63.	Speed of sound (M)	m/s	Defines how fast sound will travel in the material.
64.	Valence of ion (M)	N/A	Defines the number of electrons in the materials valence orbital.
65.	Electronegativity (M)	N/A	Defines atoms ability to attract a shared pair of electrons with another.
66.	Electron affinity (M)	kJ/mol	Defines the change in energy of a neutral atom, when an electron is added to the atom to form a negative ion.
67.	First ionization energy (M)	kJ/mol	The amount of energy needed to remove one electron from an atom.
68.	Second ionization energy (M)	kJ/mol	The amount of energy needed to remove two electrons from an atom.
69.	Electrical conductivity (M)	S/m	Defines materials ability to conduct electric current.
70.	Resistivity (M)	m*Ω	Defines materials ability to resist electric current.
71.	Volume magnetic susceptibility (M)	N/A	Indicates the degree of magnetization of a material in response to an applied magnetic field.
72.	Atomic radius (M)	pm	Measure of the size of atoms in element.
73.	Covalent radius (M)	pm	Measure of the size of atom that forms part of one covalent bond.
74.	First lattice angle (M)	N/A	Defines first dimension’s angle in unit cell that describes the crystal structure.
75.	Second lattice angle (M)	N/A	Defines second dimension’s angle in unit cell that describes the crystal structure.
76.	Third lattice angle (M)	N/A	Defines third dimension’s angle in unit cell that describes the crystal structure.
77.	First lattice constant (M)	pm	Defines first dimension’s length in unit cell that describes the crystal structure.
78.	Second lattice constant (M)	pm	Defines second dimension’s length in unit cell that describes the crystal structure.
79.	Third lattice constant (M)	pm	Defines third dimension’s length in unit cell that describes the crystal structure.
80.	Neutron cross section (M)	b	Defines the likelihood of interaction between an incident neutron and a target nucleus.
81.	Neutron mass absorption (M)	m²/kg	Thermal neutron mass absorption coefficient.
82.	STO variable rAPEX (M)	N/A	Distance of maximum probability of encountering a valence electron.
83.	STO variable RAPEX (M)	N/A	Maximum value of the probability distribution (i.e. STOs).
84.	STO variable FWHH (M)	N/A	Width of the probability distribution (i.e. STOs) at half height (half of the maximum).
85.	STO variable SKEW (M)	N/A	Measure for the asymmetry of the probability distribution (i.e. STOs).
86.	Quadratic term for rAPEX (M)	N/A	Quadratic term for rAPEX.
87.	Quadratic term for RAPEX (M)	N/A	Quadratic term for RAPEX.
88.	Quadratic term for FWHH (M)	N/A	Quadratic term for FWHH.
89.	Quadratic term for SKEW (M)	N/A	Quadratic term for SKEW.
Number	Variable	Unit	Definition
--------	--	------------	---
90.	Interaction term for rAPEX and RAPEX (M)	N/A	Interaction term for rAPEX and RAPEX.
91.	Interaction term for rAPEX and FWHH (M)	N/A	Interaction term for rAPEX and FWHH.
92.	Interaction term for rAPEX and SKEW (M)	N/A	Interaction term for rAPEX and SKEW.
93.	Interaction term for RAPEX and FWHH (M)	N/A	Interaction term for RAPEX and FWHH.
94.	Interaction term for RAPEX and SKEW (M)	N/A	Interaction term for RAPEX and SKEW.
95.	Interaction term for FWHH and SKEW (M)	N/A	Interaction term for FWHH and SKEW.
96.	Surface energy (M)	J/m	Defines the surface excess free energy per unit area of a particular crystal facet.
97.	Atomic number (P)	N/A	Atomic number of the element in periodic table.
98.	Atomic weight (P)	g/mol	Defines the weight of an atom.
99.	Density (P)	g/cm³	Defines materials mass per unit volume.
100.	Melting point (P)	K	Defines the temperature value at which the element changes its phase from solid to liquid.
101.	Boiling point (P)	K	Defines the temperature value at which the element changes its phase from liquid to gas.
102.	Heat of fusion (P)	kJ/mol	The quantity of heat necessary to change a solid to a liquid without temperature change.
103.	Heat of vaporization (P)	kJ/mol	The quantity of heat necessary to change a liquid to a solid without temperature change.
104.	Specific heat capacity (P)	J/(kg*K)	The quantity of heat necessary for a given mass to produce a unit change in its temperature.
105.	Thermal conductivity (P)	W/(m*K)	A measure of materials ability to conduct heat.
106.	Thermal expansion (P)	K-1	Defines materials ability to change its shape, area, volume, and density to a temperature change.
107.	Molar volume (P)	m³/mol	Volume occupied by one mole of the substance at the given temperature and pressure.
108.	Brinell hardness (P)	MPa	Definition of materials hardness tested by applying pressure with indenter on the material.
109.	Mohs hardness (P)	N/A	Defines materials scratch resistance.
110.	Bulk modulus (P)	GPa	Defines materials resistance to compression.
111.	Shear modulus (P)	GPa	Describe materials response to shear stress.
112.	Young modulus (P)	GPa	Defines materials resistance to elastic changes.
113.	Poisson ratio (P)	N/A	A measure of the Poisson effect.
114.	Speed of sound (P)	m/s	Defines how fast sound will travel in the material.
115.	Valence of ion (P)	N/A	Defines the number of electrons in the materials valence orbital.
116.	Electronegativity (P)	N/A	Defines atoms ability to attract a shared pair of electrons with another.
117.	Electron affinity (P)	kJ/mol	Defines the change in energy of a neutral atom, when an electron is added to the atom to form a negative ion.
118.	First ionization energy (P)	kJ/mol	The amount of energy needed to remove one electron from an atom.
119.	Second ionization energy (P)	kJ/mol	The amount of energy needed to remove two electrons from an atom.
120.	Electrical conductivity (P)	S/m	Defines materials ability to conduct electric current.
121.	Resistivity (P)	m*Ω	Defines materials ability to resist electric current.
Table S19. Variables used in the variable selection, part 5. M refers to main metal and P to promoter.

Number	Variable	Unit	Definition
122.	Volume magnetic susceptibility (P)	N/A	Indicates the degree of magnetization of a material in response to an applied magnetic field.
123.	Atomic radius (P)	pm	Measure of the size of atoms in element.
124.	Covalent radius (P)	pm	Measure of the size of atom that forms part of one covalent bond.
125.	First lattice angle (P)	N/A	Defines first dimension’s angle in unit cell that describes the crystal structure.
126.	Second lattice angle (P)	N/A	Defines second dimension’s angle in unit cell that describes the crystal structure.
127.	Third lattice angle (P)	N/A	Defines third dimension’s angle in unit cell that describes the crystal structure.
128.	First lattice constant (P)	pm	Defines first dimension’s length in unit cell that describes the crystal structure.
129.	Second lattice constant (P)	pm	Defines second dimension’s length in unit cell that describes the crystal structure.
130.	Third lattice constant (P)	pm	Defines third dimension’s length in unit cell that describes the crystal structure.
131.	Neutron cross section (P)	b	Defines the likelihood of interaction between an incident neutron and a target nucleus.
132.	Neutron mass absorption (P)	m²/kg	Thermal neutron mass absorption coefficient.
133.	Slater variable rAPEX (P)	N/A	Distance of maximum probability of encountering a valence electron.
134.	Slater variable RAPEX (P)	N/A	Maximum value of the probability distribution (i.e. STOs).
135.	Slater variable FWHH (P)	N/A	Width of the probability distribution (i.e. STOs) at half height (half of the maximum).
136.	Slater variable SKEW (P)	N/A	Measure for the asymmetry of the probability distribution (i.e. STOs).
137.	Quadratic term for rAPEX (P)	N/A	Quadratic term for rAPEX.
138.	Quadratic term for RAPEX (P)	N/A	Quadratic term for RAPEX.
139.	Quadratic term for FWHH (P)	N/A	Quadratic term for FWHH.
140.	Quadratic term for SKEW (P)	N/A	Quadratic term for SKEW.
141.	Interaction term for rAPEX and RAPEX (P)	N/A	Interaction term for rAPEX and RAPEX.
142.	Interaction term for rAPEX and FWHH (P)	N/A	Interaction term for rAPEX and FWHH.
143.	Interaction term for rAPEX and SKEW (P)	N/A	Interaction term for rAPEX and SKEW.
144.	Interaction term for RAPEX and FWHH (P)	N/A	Interaction term for RAPEX and FWHH.
145.	Interaction term for RAPEX and SKEW (P)	N/A	Interaction term for RAPEX and SKEW.
146.	Interaction term for FWHH and SKEW (P)	N/A	Interaction term for FWHH and SKEW.
147.	Surface energy (P)	J/m	Defines the surface excess free energy per unit area of a particular crystal facet.
Table S20. Data division, part 1.

Index	Dataset (Train/Test)	Main metal	Promoter	Temperature (°C)
1	Test	Au	Bi	80
2	Train	Au	Bi	100
3	Train	Au	Bi	120
4	Train	Au	Cr	80
5	Test	Au	Cr	100
6	Train	Au	Cr	120
7	Train	Au	Fe	80
8	Train	Au	Fe	100
9	Test	Au	Fe	120
10	Test	Au	Na	80
11	Train	Au	Na	100
12	Train	Au	Na	120
13	Train	Au	Sn	80
14	Test	Au	Sn	100
15	Train	Au	Sn	120
16	Train	Au	W	80
17	Train	Au	W	100
18	Test	Au	W	120
19	Train	Cu	Bi	80
20	Test	Cu	Bi	100
21	Train	Cu	Bi	120
22	Train	Cu	Cr	80
23	Train	Cu	Cr	100
24	Test	Cu	Cr	120
25	Test	Cu	Fe	80
26	Train	Cu	Fe	100
27	Train	Cu	Fe	120
28	Train	Cu	Na	80
29	Test	Cu	Na	100
30	Train	Cu	Na	120
31	Train	Cu	Sn	80
32	Train	Cu	Sn	100
33	Test	Cu	Sn	120
34	Test	Cu	W	80
35	Train	Cu	W	100
36	Train	Cu	W	120
37	Train	Ir	Bi	80
38	Train	Ir	Bi	100
39	Test	Ir	Bi	120
40	Test	Ir	Cr	80
41	Train	Ir	Cr	100
42	Train	Ir	Cr	120
Table S21. Data division, part 2.

Index	Dataset (Train/Test)	Main metal	Promoter	Temperature (°C)
43	Train	Ir	Fe	80
44	Test	Ir	Fe	100
45	Train	Ir	Fe	120
46	Train	Ir	Na	80
47	Train	Ir	Na	100
48	Test	Ir	Na	120
49	Test	Ir	Sn	80
50	Train	Ir	Sn	100
51	Train	Ir	Sn	120
52	Test	Ni	Bi	80
53	Train	Ni	Bi	100
54	Train	Ni	Bi	120
55	Train	Ni	Cr	80
56	Test	Ni	Cr	100
57	Train	Ni	Cr	120
58	Train	Ni	Fe	80
59	Train	Ni	Fe	100
60	Test	Ni	Fe	120
61	Test	Ni	Na	80
62	Train	Ni	Na	100
63	Train	Ni	Na	120
64	Train	Ni	Sn	80
65	Test	Ni	Sn	100
66	Train	Ni	Sn	120
67	Train	Ni	W	80
68	Train	Ni	W	100
69	Test	Ni	W	120
70	Train	Pd	Bi	80
71	Test	Pd	Bi	100
72	Train	Pd	Bi	120
73	Train	Pd	Cr	80
74	Train	Pd	Cr	100
75	Test	Pd	Cr	120
76	Test	Pd	Fe	80
77	Train	Pd	Fe	100
78	Train	Pd	Fe	120
79	Train	Pd	Na	80
80	Test	Pd	Na	100
81	Train	Pd	Na	120
82	Train	Pd	Sn	80
83	Train	Pd	Sn	100
84	Test	Pd	Sn	120
Table S22. Data division, part 3.

Index	Dataset (Train/Test)	Main metal	Promoter	Temperature (°C)
85	Test	Pd	W	80
86	Train	Pd	W	100
87	Train	Pd	W	120
88	Train	Pt	Bi	80
89	Train	Pt	Bi	100
90	Test	Pt	Bi	120
91	Test	Pt	Cr	80
92	Train	Pt	Cr	100
93	Train	Pt	Cr	120
94	Train	Pt	Fe	80
95	Test	Pt	Fe	100
96	Train	Pt	Fe	120
97	Train	Pt	Na	80
98	Train	Pt	Na	100
99	Test	Pt	Na	120
100	Test	Pt	Sn	80
101	Train	Pt	Sn	100
102	Train	Pt	Sn	120
103	Train	Pt	W	80
104	Test	Pt	W	100
105	Train	Pt	W	120
106	Test	Rh	Bi	80
107	Train	Rh	Bi	100
108	Train	Rh	Bi	120
109	Train	Rh	Cr	80
110	Test	Rh	Cr	100
111	Train	Rh	Cr	120
112	Train	Rh	Fe	80
113	Train	Rh	Fe	100
114	Test	Rh	Fe	120
115	Test	Rh	Na	80
116	Train	Rh	Na	100
117	Train	Rh	Na	120
118	Train	Rh	Sn	80
119	Test	Rh	Sn	100
120	Train	Rh	Sn	120
121	Train	Rh	W	80
122	Train	Rh	W	100
123	Test	Rh	W	120
124	Train	Ru	Bi	80
125	Test	Ru	Bi	100
126	Train	Ru	Bi	120
Table S23. Data division, part 4.

Index	Dataset (Train/Test)	Main metal	Promoter	Temperature (°C)
127	Train	Ru	Cr	80
128	Train	Ru	Cr	100
129	Test	Ru	Cr	120
130	Test	Ru	Fe	80
131	Train	Ru	Fe	100
132	Train	Ru	Fe	120
133	Train	Ru	Na	80
134	Test	Ru	Na	100
135	Train	Ru	Na	120
136	Train	Ru	Sn	80
137	Train	Ru	Sn	100
138	Test	Ru	Sn	120
139	Test	Ru	W	80
140	Train	Ru	W	100
141	Train	Ru	W	120