Detection of k-ras gene point mutation in fine needle aspiration and pancreatic juice by sequence special primer method and its clinical significance

Xun Liang Liu1, Cun Cai Dai1, Yi Miao1, Jing Hui Du1, Zhao Song Zhang2 and Shu Zhen Chen2

Subject headings pancreatic neoplasms/diagnosis; polymerase chain reaction; biopsy; needle; genes, ras; pancreatic diseases; pancreatic juice; gene amplification; cytodiagnosis

Liu XL, Dai CC, Miao Y, Du JH, Zhang ZS, Chen SZ. Detection of -ras gene point mutation in fine needle aspiration and pancreatic juice by sequence special primer method and its clinical significance. *World J Gastroentero.*, 2000;6(6):917-919

INTRODUCTION
The point mutation rate of k-ras gene at codon 12 in pancreatic adenocarcinoma is reported to be as high as 90% [1-30], and with no mutations in normal pancreas tissues or other pancreatic disorders. We have detected the presence of k-ras gene mutation and its mutant styles since 1994 by PCR-SSP in the FNA or pancreatic juice obtained from pancreatic adenocarcinoma tissues.

MATERIALS AND METHODS
Sources of samples
Eighty-eight copies of samples were collected by fine needle aspiration preoperatively under ultrasound guidance or with direct viewing intraoperatively from January 1994 to December 1996, among which there were 35 pancreatic adenocarcinoma, 20 chronic pancreatitis, 8 ampullary carcinoma, 7 bile duct carcinoma, 6 insulinoma and 12 normal pancreas tissues. All the aspirates were routinely smeared, then mixed with 50µL lysis solution and stored in the Eppendorf tubes. Another 47 pancreatic juice samples were obtained by ERCP or puncturing from pancreatic duct intraoperatively or from external drainage tubes. Another 47 pancreatic juice samples were obtained by ERCP or puncturing from pancreatic duct intraoperatively or from external drainage postoperatively, including 17 pancreatic adenocarcinoma. The juice volume was more than 1.5mL. All the samples were immediately frozen in liquid nitrogen and stored at -70°C.

Preparation of samples
FNA samples The aspirates were quickly made into 2 - 5 pieces of smears for light microscopic observation. The other aspirates mixed with 50µL lysis solution were added in proteinase K, making the final concentration of 500mg/L. The mixture was then incubated at 55°C for 2 hours and put into water bath at 95°C for 10 minutes to inactivate proteinase K, then 15µL supernatant was collected after centrifugation for PCR detection.

Pancreatic juice samples Pancreatic juice was put into 1.5mL Eppendorf tube and underwent high speed centrifugation. Some parts of the sediments were used for smears (2-5 pieces), the residual parts were completely washed with PBS, centrifugated and added 50µL lysis buffer solution. The subsequent procedures are the same as used in FNA specimens.

PCR detection
Our primers were synthesized and supplied by Shanghai Bio-Engineering Research Center. The sequences of primers were: R1=5’GGTAGTTGGAGCCTC3’, R2=5’GTAGTTGGAGCCTG3’, R3=5’GTAGTTGGAGCTGA3’, R4=5’CTATTTTGGGATTCAT ATTCG3’. The primers combination were R1-R4 to amplify 89bp fragment of CGT mutation and R2-R4, R3-R4 to produce 88bp fragments of GTT and GAT mutation respectively. The PCR kits were purchased from Shanghai Huaimei Biological Products Corporation (PCR KitA system) and the DNA amplifier is the Perkin-Elmer 2400 model. The reaction volume was 50µL containing 50nmol/L KCl, 10mmol/L Tris-HCl pH = 8.5, 1.7mmol/L MgCl2, 0.01% gelatin, 0.08% Triton-X-100, 1.0µmol/L of each primer, 200µmol/L of each dNTP and 1.5 units of Taq DNA polymerase. Three amplification reactions were performed for each sample. There were 35 circles including denaturation at 94°C for 45 seconds, annealing at 55°C for 45 seconds and extension at 72°C for 45 seconds. Each reaction was set with positive and negative control, the primers and templates of positive control were included in the PCR kitA system. The template was prepared from human genome DNA with its amplification fragment of 110bp. Fifteen iL amplifying products were loaded on 8% acrylamide gel electrophoresis under 120 volts for 50 minutes, stained with ethidium bromide.
and then observed, and photographed under UV transillumination.

RESULTS

PCR findings
There were 32(91.4%) positive cases and 3(8.6%) negative ones in FNA samples of pancreatic adenocarcinoma. The mutant styles included 15 GTT, 11 GAT and 6 CGT. Among the 17 pancreatic juice specimens, 16 (94.1%) were positive and 1 (5.9%) negative with 9 cases of GTT, 4 GAT and 3 CGT. No mutations occurred in aspirates or pancreatic juice specimens of insulinoma, chronic pancreatitis, ampullary carcinoma, bile duct carcinoma, duodenal papilla carcinoma and normal pancreas tissues.

Cytological results

Comparison of different methods for detecting k-ras gene point mutation in pancreatic adenocarcinoma
It has been reported that the k-ras gene at codon 12 had a high incidence of mutation in pancreatic adenocarcinoma, usually presented with CGT, GTT, and GAT styles, occasionally showed TGT, adenocarcinoma, usually presented with CGT, had a high incidence of mutation in pancreatic tissues.

DISCUSSION

Comparison of FNA and pancreatic juice cytological results with PCR-SSP findings
Currently, the accuracy rate for diagnosis of pancreatic neoplasms by FNA technique is about 58%-83%, and the positive rate of pancreatic juice cytology is less than 10%. Our research in FNA and pancreatic juice cytology also supports these results. It indicates that PCR-SSP has advantages in the differential diagnosis of benign and malignant pancreatic diseases compared with cytological examination, but it has little diagnostic value in ampullary carcinoma and bile duct carcinoma.

Significance of detecting k-ras gene point mutation by PCR-SSP
Pancreatic adenocarcinoma is one of the commonly encountered tumors and the incidence is increasing with age. By now there has been no satisfactory method for early diagnosis. It is still very difficult to define the character of the pancreatic mass and to differentiate between tumor-like pancreatitis and pancreatic adenocarcinoma or chronic pancreatitis and whole-pancreas adenocarcinoma. The commonly used imaging examinations (such as type B ultrasound, CT) have no qualitative diagnostic value. Determination of serum tumor markers (CA19.9, CA50, CA242, etc.) has only 60%-70% sensitivity or specificity and the false positive rate may be as high as 30%-40%. The positive rate of pancreatic juice cytology is too low (<10%) and FNA method could yield indefinite results because of the insufficient samples or atypical cellular manifestation. It is, therefore, helpful for us to use PCR-SSP technique to detect the point mutation of k-ras gene at codon 12 when we are not sure about the diagnosis of pancreatic disorders. It may serve as a practical method for distinguishing pancreatic benign masses from malignant ones, and making a definitive diagnosis of pancreatic adenocarcinoma.

REFERENCES
1. Almoguera C, Shibata D, Forrester K, Martin J, Arnehim N, Peruchio M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell, 1988;53:549-554
2. Shibata D, Almoguera C, Forrester K, Dunitz J, Martin SE, Cosgrove MM, Peruchio M,Arnehim N. Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res, 1990:50:1279-1283
3. Caldas C, Hahn SA, Hruban RH, Redston MS, Yeo CJ, Kern SE. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res, 1994;54:3567-3573
4. Smit VTHBM, Boot AJM, Smits AMM, Fleuren GJ, Cornelisse CJ, Bos JL. K-ras codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res, 1988;16:7773-7782
5. Nagata Y, Abe M, Motoshima K, Nakayama E, Shiku H. Frequent glycine-to-aspartic acid mutations at codon 12 of c-Ki-ras gene in human pancreatic cancer in Japanese. Jpn J Cancer Res, 1990;81:135-140
6. Yanagisawa A, Kato Y, Ohtake K, Kitagawa O, Ohashi K, Morii M, Takagi K, Sugano H. C-Ki-ras point mutations in ductectatic-type mucinous cystic neoplasms of the pancreas. Jpn J Cancer Res, 1991;82:1057-1060
7. Motogusa K, Urano T, Nagata Y, Shiku H, Tsurufune T, Kanematsu T. Detection of point mutations in the kirsten-ras oncogene provides evidence for the multicitytrenicity of pancreatic carcinoma. Ann Surg, 1993;217:138-143
8. Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA,
Klepel G. Ki-ras oncogene activation in preinvasive pancreatic cancer. *Gastroenterology*, 1992;102:230-236

9 Schaeffer BK, Glasner S, Kuhlmann E, Myles JL, Longecker DS. Mutated c-K-ras in small pancreatic adenocarcinomas. *Pancreas*, 1994;9:11-14

10 Vries MV, Bogaard ME, Elst HVD, Boom JHV, Eb AJVD, Bos JL. A dot-blot screening procedure for mutated ras oncogenes using synthetic oligodeoxynucleotides. *Gene*, 1986;50:313-320

11 Motojima K, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H. Distinguishing pancreatic carcinoma from other peripapillary carcinomas by analysis of mutations in the kirsten-ras oncogene. *Ann Surg*, 1991;214:657-662

12 Tada M, Omata M, Ohto M. Clinical application of ras gene mutation for diagnosis of pancreatic adenocarcinoma. *Gastroenterology*, 1991;100:233-238

13 Tada M, Yokosuka O, Omata M, Ohto M, Isorno K. Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. *Cancer*, 1990;66:930-935

14 Pellegrata NS, Sessa F, Renault B, Bonato M, Leone BE, Solcia E, Ranzani GN. K-ras and p53 gene mutations in pancreatic cancer: ductal and non ductal tumors progress through different genetic lesions. *Cancer Res.*, 1994;54:1556-1560

15 Tada M, Omata M, Ohto M. Ras gene mutations in intraductal papillary neoplasms of the pancreas. *Cancer*, 1991;67:634-637

16 Mariyama M, Kishi K, Nakamura K, Obata H, Nishimura S. Frequency and types of point mutation at the 12th codon of the c-Ki-ras gene found in pancreatic cancers from Japanese patients. *Jpn J Cancer Res.*, 1989;80:622-626

17 Berthelotry P, Bouisson M, Escourrou J, Vaysses N, Rumeau JL, Pradayrol L. Identification of K-ras mutations in pancreatic juice in the early diagnosis of pancreatic cancer. *Ann Intern Med.*, 1995;123:188-191

18 Tada M, Omata M, Kawai S, Saisho H, Ohto M, Saiki RK, Sninsky 3J. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. *Cancer Res.*, 1993;53:2472-2474

19 Apple SK, Hecht JR, Novak JM, Nieberg RK, Rosenthal DL, Grody WW. Polymerase chain reaction-based K-ras mutation detection of pancreatic adenocarcinoma in routine cytology smears. *Am J Clin Pathol.*, 1996;105:321-326

20 Urban T, Ricci S, Grange JD, Lacave R, Boughghe F, Breittmayer F, Languille O, Roland J, Bernaudin JF. Detection of c-Ki-ras mutation by PCR/RFLP analysis and diagnosis of pancreatic adenocarcinomas. *J Natl Cancer Inst.*, 1993;85:2008-2012

21 Villaneuva A, Reyes G, Cuatrecasas M, Martinez E, Arill N, Lerma E, Farre A, Llusia F, Capella G. Diagnostic utility of K-ras mutations in fine-needle aspirates of pancreatic masses. *Gastroenterology*, 1996;110:1587-1594

22 Wakabayashi T, Sawabu N, Watanabe H, Morimoto H, Sugioka G, Takita Y. Detection of K-ras point mutation at codon 12 in pure pancreatic juice collected 3 years and 6 months before the clinical diagnosis of pancreatic cancer. *Am J Gastroenterol.*, 1996;91:1848-1851

23 Watanabe H, Sawabu N, Songur Y, Yamaguchi Y, Yamakawa O, Satomura Y, Ohta H, Motoo Y, Okai T, Wakabayashi T. Detection of K-ras point mutations at codon 12 in pure pancreatic juice for the diagnosis of pancreatic cancer by PCR-RFLP analysis. *Pancreas*, 1996;12:18-24

24 Hruban RH, van Mansfeld ADM, Offerhaus GJA, van Weering DHJ, Allison DC, Goodman SD, Kessler TW, Bose KK, Cameron JL, Bos JL. K-ras oncogene activation in adenocarcinoma of the human pancreas. *Am J Pathol.*, 1993;143:545-554

25 DeGiuseppe JA, Hruban RH, Offerhaus GJA, Clement MJ, Van den Berg FM, Cameron JL, van Mansfeld ADM. Detection of K-ras mutations in mucinous pancreatic duct hyperplasia from a patient with a family history of pancreatic carcinoma. *Am J Pathol.*, 1994;144:889-895

26 Van ES JM, Polak MM, Berg FM, Ramsekkh TB, Cranen ME, Hruban RH, Offerhaus GJA. Molecular markers for diagnostic cytology of neoplasms in the head region of the pancreas: mutation of K-ras and overexpression of the p53 protein product. *J Clin Pathol.*, 1995;48:218-222

27 Berrozpe G, Schaeffer J, Peinado MA, Real FX, Peruch M. Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. *Int J Cancer*, 1994;58:185-191

28 Kondo H, Sugano K, Fukayama N, Hosokawa K, Okhura H, Otsu A, Mukai K, Yoshida S. Detection of K-ras gene mutations at codon 12 in the pancreatic juice of patients with intraductal papillary mucinous tumors of the pancreas. *Cancer*, 1997;79:900-905

29 Kondo H, Sugano K, Fukayama N, Kyogoku A, Nose H, Shimada K, Okhura H, Ohtsu A, Yoshida S, Shimosato Y. Detection of point mutations in the K-ras oncogene at codon 12 in pure pancreatic juice for diagnosis of pancreatic carcinoma. *Cancer*, 1994;73:1589-1594

30 Sugano K, Kyogoku A, Fukayama N, Okhura H, Shimosato Y, Sekiya T, Hayashi K. Methods in laboratory investigation: rapid and simple detection of c-Ki-ras 2 gene codon 12 mutations by nonradioisotopic single-strand confomeration polymorphism analysis. *Lab Invest.*, 1993;68:361

31 Liu XL, Dai CC, Du JH, Miao Y, Zhang ZS, Chen SZ, Wang X. Rapid detection of K-ras gene point mutation at codon 12 by PCR-SSP in pancreatic adenocarcinoma. *Nanjing Yike Daxue Xuebao*, 1999;13:78-80

32 Cui JT, Lu YY. Modified PCR/SSCP and PCR direct sequencing in detection of gene mutation. *Xin Xiaohuabingxue Zazhi*, 1997;5:593-594

33 Fang DC, Luo YH, Lu R, Men RP, Liu WW. Study on Ki-ras gene point mutation in gastric cancer. *Xin Xiaohuabingxue Zazhi*, 1996;4:80-81

Edited by Ma JY