Hilbert domains quasi-isometric to normed vector spaces
Bruno Colbois, Patrick Verovic

To cite this version:
Bruno Colbois, Patrick Verovic. Hilbert domains quasi-isometric to normed vector spaces. 2009.
<hal-00271381v2>

HAL Id: hal-00271381
https://hal.archives-ouvertes.fr/hal-00271381v2
Submitted on 27 May 2009
HILBERT DOMAINS QUASI-ISOMETRIC TO NORMED VECTOR SPACES

BRUNO COLBOIS AND PATRICK VEROVIC

ABSTRACT. We prove that a Hilbert domain which is quasi-isometric to a normed vector space is actually a convex polytope.

1. INTRODUCTION

A Hilbert domain in \mathbb{R}^m is a metric space (C, d_C), where C is an open bounded convex set in \mathbb{R}^m and d_C is the distance function on C — called the Hilbert metric — defined as follows.

Given two distinct points p and q in C, let a and b be the intersection points of the straight line defined by p and q with ∂C so that $p = (1 - s)a + sb$ and $q = (1 - t)a + tb$ with $0 < s < t < 1$. Then

$$d_C(p, q) := \frac{1}{2} \ln [a, p, q, b],$$

where

$$[a, p, q, b] := \frac{1 - s}{s} \times \frac{t}{1 - t} > 1$$

is the cross ratio of the 4-tuple of ordered collinear points (a, p, q, b).

We complete the definition by setting $d_C(p, p) := 0$.

The metric space (C, d_C) thus obtained is a complete non-compact geodesic metric space whose topology is the one induced by the canonical topology of \mathbb{R}^m and in which the affine open segments joining two points of the boundary ∂C are geodesics that are isometric to $(\mathbb{R}, | \cdot |)$.

For further information about Hilbert geometry, we refer to [4, 5, 9, 11] and the excellent introduction [15] by Socié-Méthou.

The two fundamental examples of Hilbert domains (C, d_C) in \mathbb{R}^m correspond to the case when C is an ellipsoid, which gives the Klein model of m-dimensional hyperbolic geometry (see for

Date: May 27, 2009.

2000 Mathematics Subject Classification. Primary: global Finsler geometry, Secondary: convexity.
example ([13], first chapter]), and the case when the closure \overline{C} is a m-simplex for which there exists a norm $\|\cdot\|_C$ on \mathbb{R}^m such that (\overline{C}, d_C) is isometric to the normed vector space $(\mathbb{R}^m, \|\cdot\|_C)$ (see [8], pages 110–113 or [14], pages 22–23).

Much has been done to study the similarities between Hilbert and hyperbolic geometries (see for example [7], [16] or [1]), but little literature deals with the question of knowing to what extent a Hilbert geometry is close to that of a normed vector space. So let us mention three results in this latter direction which are relevant for our present work.

Theorem 1.1 ([10], Theorem 2). A Hilbert domain (\mathcal{C}, d_C) in \mathbb{R}^m is isometric to a normed vector space if and only if \mathcal{C} is the interior of a m-simplex.

Theorem 1.2 ([6], Theorem 3.1). If \mathcal{C} is an open convex polygonal set in \mathbb{R}^2, then (\mathcal{C}, d_C) is Lipschitz equivalent to Euclidean plane.

Theorem 1.3 ([2], Theorem 1.1. See also [17]). If \mathcal{C} is an open set in \mathbb{R}^m whose closure $\overline{\mathcal{C}}$ is a convex polytope, then (\mathcal{C}, d_C) is Lipschitz equivalent to Euclidean m-space.

In light of these three results, it is natural to ask whether the converse of Theorem 1.3 — which generalizes Theorem 1.2 in higher dimensions — holds. In other words, if a Hilbert domain (\mathcal{C}, d_C) in \mathbb{R}^m is quasi-isometric to a normed vector space, what can be said about \mathcal{C}? Here, by quasi-isometric we mean the following (see [3]):

Definition 1.1. Given real numbers $A \geq 1$ and $B \geq 0$, a metric space (S, d) is said to be (A, B)-quasi-isometric to a normed vector space $(V, \|\cdot\|)$ if and only if there exists a map $f : S \rightarrow V$ such that

$$\frac{1}{A} d(p, q) - B \leq \|f(p) - f(q)\| \leq Ad(p, q) + B$$

for all $p, q \in S$.

We can now state the result of this paper which asserts that the converse of Theorem 1.3 is actually true:

Theorem 1.4. If a Hilbert domain (\mathcal{C}, d_C) in \mathbb{R}^m is (A, B)-quasi-isometric to a normed vector space $(V, \|\cdot\|)$ for some real constants $A \geq 1$ and $B \geq 0$, then \mathcal{C} is the interior of a convex polytope.

2. Proof of Theorem 1.4

The proof of Theorem 1.4 is based on an idea developed by Förtsch and Karlsson in their paper [10]. It needs the following fact due to Karlsson and Noskov:

Theorem 2.1 ([12], Theorem 5.2). Let (\mathcal{C}, d_C) be a Hilbert domain in \mathbb{R}^n and $x, y \in \partial \mathcal{C}$ such that $[x, y] \not\subseteq \partial \mathcal{C}$. Then, given a point $p_0 \in \mathcal{C}$, there exists a constant $K(p_0, x, y) > 0$ such that for any sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in \mathcal{C} that converge respectively to x and y in \mathbb{R}^m one can find an integer $n_0 \in \mathbb{N}$ for which we have

$$d_C(x_n, y_n) \geq d_C(x_n, p_0) + d_C(y_n, p_0) - K(p_0, x, y)$$

for all $n \geq n_0$.
Now, here is the key result which gives the proof of Theorem 1.4:

Proposition 2.1. Let \((\mathcal{C}, d_{\mathcal{C}})\) be a Hilbert domain in \(\mathbb{R}^n\) which is \((A, B)\)-quasi-isometric to a normed vector space \((V, \|\cdot\|)\) for some real constants \(A \geq 1\) and \(B \geq 0\). Then, if \(N = N(A, \|\cdot\|)\) denotes the maximum number of points in the ball \(\{v \in V \mid \|v\| \leq 2A\}\) whose pairwise distances with respect to \(\|\cdot\|\) are greater than or equal to \(1/(2A)\), and if \(X \subseteq \partial \mathcal{C}\) is such that \([x, y] \not\subseteq \partial \mathcal{C}\) for all \(x, y \in X\) with \(x \neq y\), we have

\[
\text{card}(X) \leq N.
\]

Proof.

Let \(f : \mathcal{C} \rightarrow V\) such that

\[
\frac{1}{A} d_{\mathcal{C}}(p, q) - B \leq \|f(p) - f(q)\| \leq Ad_{\mathcal{C}}(p, q) + B
\]

for all \(p, q \in \mathcal{C}\).

First of all, up to translations, we may assume that \(0 \in \mathcal{C}\) and \(f(0) = 0\).

Then suppose that there exists a subset \(X\) of the boundary \(\partial \mathcal{C}\) such that \([x, y] \not\subseteq \partial \mathcal{C}\) for all \(x, y \in X\) with \(x \neq y\) and \(\text{card}(X) \geq N + 1\). So, pick \(N + 1\) distinct points \(x_1, \ldots, x_{N+1}\) in \(X\), and for each \(k \in \{1, \ldots, N + 1\}\), let \(\gamma_k : [0, +\infty) \rightarrow \mathcal{C}\) be a geodesic of \((\mathcal{C}, d_{\mathcal{C}})\) that satisfies \(\gamma_k(0) = 0\), \(\lim_{t \to +\infty} \gamma_k(t) = x_k\) in \(\mathbb{R}^n\) and \(d_{\mathcal{C}}(0, \gamma_k(t)) = t\) for all \(t \geq 0\).

This implies that for all integers \(n \geq 1\) and every \(k \in \{1, \ldots, N + 1\}\), we have

\[
\left\| \frac{f(\gamma_k(n))}{n} \right\| \leq A + \frac{B}{n}
\]

from the second inequality in Equation 2.1 with \(p = \gamma_k(n)\) and \(q = 0\).

On the other hand, Theorem 2.1 yields the existence of some integer \(n_0 \geq 1\) such that

\[
d_{\mathcal{C}}(\gamma_i(n), \gamma_j(n)) \geq 2n - K(0, x_i, x_j)
\]

for all integers \(n \geq n_0\) and every \(i, j \in \{1, \ldots, N + 1\}\) with \(i \neq j\), and hence

\[
\left\| \frac{f(\gamma_i(n))}{n} - \frac{f(\gamma_j(n))}{n} \right\| \geq \frac{2}{A} - \frac{1}{n} \left(\frac{K(0, x_i, x_j)}{A} + B \right)
\]

from the first inequality in Equation 2.1 with \(p = \gamma_i(n)\) and \(q = \gamma_j(n)\).

Now, fixing an integer \(n \geq n_0 + AB + \max\{K(0, x_i, x_j) \mid i, j \in \{1, \ldots, N + 1\}\}\), we get

\[
\left\| \frac{f(\gamma_k(n))}{n} \right\| \leq 2A
\]

for all \(k \in \{1, \ldots, N + 1\}\) by Equation 2.2 together with

\[
\left\| \frac{f(\gamma_i(n))}{n} - \frac{f(\gamma_j(n))}{n} \right\| \geq \frac{1}{2A}
\]

for all \(i, j \in \{1, \ldots, N + 1\}\) with \(i \neq j\) by Equation 2.3.

But this contradicts the definition of \(N = N(A, \|\cdot\|)\).

Therefore, Proposition 2.1 is proved. \(\Box\)

Remark. Given \(v \in V\) such that \(\|v\| = 2A\), we have \(\|v\| = 2A\) and \(\|v - (-v)\| = 2\|v\| = 4A \geq 1/(2A)\), which shows that \(N \geq 2\).

The second ingredient we will need for the proof of Theorem 1.4 is the following:
Proposition 2.2. Let \(C \) be an open bounded convex set in \(\mathbb{R}^2 \).
If there exists a non-empty finite subset \(Y \) of the boundary \(\partial C \) such that for every \(x \in \partial C \) one can find \(y \in Y \) with \([x, y] \subseteq \partial C\), then the closure \(\overline{C} \) is a convex polygon.

Proof. Assume \(0 \in C \) and let us consider the continuous map \(\pi : R \rightarrow \partial C \) which assigns to each \(\theta \in R \) the unique intersection point \(\pi(\theta) \) of \(\partial C \) with the half-line \(R^+ \cdot (\cos \theta, \sin \theta) \).

For each pair \((x, y) \in \partial C \times \partial C\), denote by \(A(x, y) \subseteq \partial C \) the arc segment defined by \(A(x, y) = \pi([\theta_1, \theta_2]) \), where \(\theta_1 \) and \(\theta_2 \) are the unique real numbers such that \(\pi(\theta_1) = x \) and \(\pi(\theta_2) = y \) with \(\theta_1 \in [0, 2\pi) \) and \(\theta_1 \leq \theta_2 < \theta_1 + 2\pi \).

Before proving Proposition 2.2, notice that adding a point of \(\partial C \) to \(Y \) does not change \(Y \)'s property at all, and therefore we may assume that \(\text{card}(Y) \geq 2 \).

So, write \(Y = \{x_1, \ldots, x_n\} \) with \(x_1 = \pi(\theta_1), \ldots, x_n = \pi(\theta_n) \), where \(\theta_1 \in [0, 2\pi) \) and \(\theta_1 < \cdots < \theta_n < \theta_{n+1} := \theta_1 + 2\pi \), and let \(x_{n+1} := \pi(\theta_{n+1}) = x_1 \).

Fix \(k \in \{1, \ldots, n\} \) and pick an arbitrary \(x \in A(x_k, x_{k+1}) \setminus \{x_k, x_{k+1}\} \).

By hypothesis, one can find \(y \in Y \) with \([x, y] \subseteq \partial C\).

Then the convex set \(C \) is contained in one of the two open half-planes in \(\mathbb{R}^2 \) bounded by the line passing through the points \(x \) and \(y \), and hence either \(A(x, y) = [x, y] \), or \(A(y, x) = [x, y] \).

Since \(x_k \in A(y, x) \) and \(x_{k+1} \in A(x, y) \), we then have \(x_k \in [x, y] \) or \(x_{k+1} \in [x, y] \), which yields \(A(x_k, x) = [x_k, x] \) or \(A(x, x_{k+1}) = [x, x_{k+1}] \).

Conclusion: \(A(x_k, x_{k+1}) = S_k \cup S_{k+1} \), where \(S_k = \{x \in A(x_k, x_{k+1}) | A(x_k, x) = [x_k, x]\} \) and \(S_{k+1} = \{x \in A(x, x_{k+1}) | A(x, x_k+1) = [x, x_{k+1}]\} \).

Now, the set \(S_k \) (resp. \(S_{k+1} \)) satisfies \([x_k, x] \subseteq S_k \) (resp. \([x, x_{k+1}] \subseteq S_{k+1} \)) whenever \(x \in S_k \) (resp. \(x \in S_{k+1} \)).

So, if we consider \(\alpha_0 := \max\{\theta \in [\theta_k, \theta_{k+1}] | A(x_k, \pi(\theta)) = [x_k, \pi(\theta)]\} \), we have \(S_k = [x_k, \pi(\alpha_0)] \) and \(S_{k+1} = [\pi(\alpha_0), x_{k+1}] \).

Hence, \(A(x_k, x_{k+1}) \) is the union of the two affine segments \([x_k, \pi(\alpha_0)] \) and \([\pi(\alpha_0), x_{k+1}] \).

Finally, since \(\partial C = \bigcup_{k=1}^n A(x_k, x_{k+1}) \), this implies that \(\partial C \) is the union of \(2n \) affine segments in \(\mathbb{R}^2 \), and thus \(\overline{C} \) is a convex polygon. \(\square \)

Before proving Theorem 4.4, let us recall the following useful result, where a convex polyhedron in \(\mathbb{R}^m \) is the intersection of a finite number of closed half-spaces:

Theorem 2.2 ([4], Theorem 4.7). Let \(P \) be a convex set in \(\mathbb{R}^m \) and \(p \in \hat{P} \).
Then \(P \) is a convex polyhedron if and only if all its plane sections containing \(p \) are convex polyhedra.

Proof of Theorem 4.4.
Let \((C, \mathcal{C}) \) be a non-empty Hilbert domain in \(\mathbb{R}^m \) that is \((A, B)\)-quasi-isometric to a normed vector space \((V, \|\cdot\|)\) for some real constants \(A \geq 1 \) and \(B \geq 0 \).

According to Theorem 2.2, it suffices to prove Theorem 4.3 for \(m = 2 \) since any plane section of \(C \) gives rise to a 2-dimensional Hilbert domain which is also \((A, B)\)-quasi-isometric to \((V, \|\cdot\|)\).

So, let \(m = 2 \), and consider the set \(\mathcal{E} = \{X \subseteq \partial C | [x, y] \nsubseteq \partial C \text{ for all } x, y \in X \text{ with } x \neq y\} \).

It is not empty since \([x, y] \in \mathcal{E} \) for some \(x, y \in \partial C \) with \(x \neq y \) (indeed, \(C \) is a non-empty open set in \(\mathbb{R}^2 \)), which implies together with Proposition 2.1 that \(n = \max\{\text{card}(X) | X \in \mathcal{E} \} \) does exist and satisfies \(2 \leq n \leq N \) (recall that \(N \geq 2 \)).
Then pick $Y \in \mathcal{E}$ such that $\text{card}(Y) = n$, write $Y = \{x_1, \ldots, x_n\}$, and prove that for every $x \in \partial C$ one can find $k \in \{1, \ldots, n\}$ such that $[x, x_k] \subseteq \partial C$.

Owing to Proposition \ref{prop:convex_polygon}, this will show that \overline{C} is a convex polygon.

So, suppose that there exists $x_0 \in \partial C$ satisfying $[x_0, x_k] \nsubseteq \partial C$ for all $k \in \{1, \ldots, n\}$, and let us find a contradiction by considering $Z := Y \cup \{x_0\}$.

First, since $x_0 \neq x_k$ for all $k \in \{1, \ldots, n\}$ (if not, we would get an index $k \in \{1, \ldots, n\}$ such that $[x_0, x_k] = \{x_0\} \subseteq \partial C$, which is false), we have $x_0 \notin Y$. Hence $\text{card}(Z) = n + 1$.

Next, since $Y \in \mathcal{E}$ and $[x_0, x_k] \nsubseteq \partial C$ for all $k \in \{1, \ldots, n\}$, we have $Z \in \mathcal{E}$.

Therefore, the assumption of the existence of x_0 yields a set $Z \in \mathcal{E}$ whose cardinality is greater than that of Y, which contradicts the very definition of Y.

Conclusion: \overline{C} is a convex polygon, and this proves Theorem \ref{thm:convex_polygon}.

References

[1] Benoist, Y. A survey on convex divisible sets. Lecture notes, International Conference and Instructional Workshop on Discrete Groups in Beijing, 2006.

[2] Bernig, A. Hilbert geometry of polytopes. Tech. rep., To appear in Archiv der Mathematik, 2008.

[3] Burago, D., Burago, Y., and Ivanov, S. A course in metric geometry. AMS, 2001.

[4] Busemann, H. The geometry of geodesics. Academic Press, 1955.

[5] Busemann, H., and Kelly, P. Projective geometry and projective metrics. Academic Press, 1953.

[6] Colbois, B., Vernicos, C., and Verovic, P. Hilbert geometry for convex polygonal domains. Tech. rep., University of Neuchâtel, 2008.

[7] Colbois, B., and Verovic, P. Hilbert geometry for strictly convex domains. Geom. Dedicata 105 (2004), 29–42.

[8] de La Harpe, P. On Hilbert’s metric for simplices. Lond. Math. Soc. Lect. Note Ser. 1, 181 (1993), 97–119.

[9] Egloff, D. Uniform Finsler Hadamard manifolds. Ann. Inst. Henri Poincaré, Phys. Théor. 66 (1997), 323–357.

[10] FöRtsch, T., and Karlsson, A. Hilbert metrics and Minkowski norms. J. Geom. 83, 1-2 (2005), 22–31.

[11] Goldman, W. Projective geometry on manifolds. Lecture notes, University of Maryland, 1988.

[12] Karlsson, A., and Noskov, G. The Hilbert metric and Gromov hyperbolicity. Enseign. Math. 48, 1-2 (2002), 73–89.

[13] Klee, V. Some characterizations of convex polyhedra. Acta Math. 102 (1959), 79–107.

[14] Nussbaum, R. Hilbert’s projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 75, 391 (1988).

[15] Socié-Méthou, É. Comportements asymtptotiques et rigidités des géométries de Hilbert. PhD thesis, University of Strasbourg, 2000.

[16] Vernicos, C. Introduction aux géométries de Hilbert. Sémin. Théor. Spectr. Géom. 23 (2005), 145–168.

[17] Vernicos, C. Lipschitz characterization of polytopal Hilbert geometries. Tech. rep., University of Maynooth, 2008.

Bruno Colbois, Université de Neuchâtel, Institut de mathématique, Rue Émile Argand 11, Case postale 158, CH–2009 Neuchâtel, Switzerland

E-mail address: bruno.colbois@unine.ch

Patrick Verovic, UMR 5127 du CNRS & Université de Savoie, Laboratoire de mathématique, Campus scientifique, 73376 Le Bourget-du-Lac Cedex, France

E-mail address: verovic@univ-savoie.fr