Multipole ordering in f-electron systems

Katsunori Kubo*, Takashi Hotta

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

Abstract

In order to investigate multipole ordering in f-electron systems from a microscopic viewpoint, we study the so-called Γ_8 models on three kinds of lattices, simple cubic (sc), bcc, and fcc, based on a $j-j$ coupling scheme with f-electron hopping integrals through $(ff\sigma)$ bonding. From the Γ_8 model, we derive an effective model for each lattice structure by using the second-order perturbation theory with respect to $(ff\sigma)$. By further applying mean-field theory to the effective model, we find a Γ_{3u} antiferro-quadrupole transition for the sc lattice, a Γ_{3u} antiferro-octupole transition for the bcc lattice, and a longitudinal triple-q Γ_{3u} octupole transition for the fcc lattice.

Key words: multipole ordering, $j-j$ coupling scheme, Γ_8 crystalline electric field ground state

PACS: 75.30.Et; 71.10.Fd; 75.40.Cx

In recent decades, various kinds of magnetic and orbital ordering have been found in f-electron systems. In particular, it has been recognized that cubic systems with Γ_8 crystalline electric field ground states frequently exhibit higher-order multipole ordering due to their high symmetry. Indeed, octupole ordering has been proposed to reconcile experimental observations for Ce$_3$La$_{1-x}$B$_6$ [1,2,3,4,5] and NpO$_2$ [6,7,8,9]. To understand the origin of such multipole ordering from a unified viewpoint, it is important to analyze a simple microscopic model with correct f-electron symmetry.

In this paper, we study the so-called Γ_8 models on three kinds of lattices, simple cubic (sc), bcc, and fcc, based on a $j-j$ coupling scheme. For the description of the model, we define annihilation operators in the second-quantized form for Γ_8 electrons with α and β orbitals as $f_{\alpha\uparrow} = \sqrt{5/6}a_{\alpha\uparrow} + \sqrt{1/6}a_{\alpha\downarrow}$, $f_{\beta\uparrow} = \sqrt{5/6}a_{\beta\uparrow} + \sqrt{1/6}a_{\beta\downarrow}$, where $a_{\alpha\beta}$ is the annihilation operator for an electron with the z-component j_z of the total angular momentum $j=5/2$ at site r.

In the tight-binding approximation, the model Hamiltonian is given by [10]

$$H = \sum_{r,\mu,\tau,\sigma,\tau',\sigma'} t^{\mu}_{\tau\sigma,\tau',\sigma'} f_{\tau\sigma}^{\dagger} f_{\tau'\sigma'} + U \sum_{r,\tau} n_{\tau\uparrow} n_{\tau\downarrow} + U' \sum_{r,\tau} n_{\tau\alpha} n_{\tau\beta} + J \sum_{r,\sigma,\sigma'} f^{\dagger}_{\tau\sigma} f_{\tau'\sigma'} f^{\dagger}_{\tau'\sigma'} f_{\tau\sigma} + J' \sum_{r,\tau,\sigma,\tau',\sigma'} f^{\dagger}_{\tau\sigma} f^{\dagger}_{\tau'\sigma'} f_{\tau'\sigma'} f_{\tau\sigma},$$

where μ is a vector connecting nearest-neighbor sites, $t^{\mu}_{\tau\sigma,\tau',\sigma'}$ is the hopping integral of an electron with (τ',σ') at site $r+\mu$ to the (τ,σ) state at r through $(ff\sigma)$ bonding [11], $n_{\tau\sigma} = f^{\dagger}_{\tau\sigma} f_{\tau\sigma}$, and $n_{\tau\sigma} = \sum_{\sigma} n_{\tau\sigma}$. The coupling constants U, U', J, and J' denote the intra-orbital, inter-orbital, exchange, and pair-hopping interactions, respectively. Note that the form of $t^{\mu}_{\tau\sigma,\tau',\sigma'}$ characterizes the lattice structure.

By using the second-order perturbation theory with respect to $(ff\sigma)$ including only the lowest energy Γ_8 triplet among the intermediate states, we obtain effective multipole interactions for each lattice structure. The detail of the effective models will be reported elsewhere, and here we report the ordered state obtained in the mean-field theory.

For sc lattice, a Γ_{3u} antiferro quadrupole (AFQ) transition occurs at a finite temperature, and as lowering temperature further, we find another transition to
Fig. 1. Ordered states in the sc lattice under a magnetic field along [001]. (a) The Γ_{3g} AFQ state. (b) The FM state with the Γ_{3g} AFQ moment.

Fig. 2. Ordered states in the bcc lattice under a magnetic field along [001]. (a) The Γ_{2u} AFO state. (b) The FM state with the Γ_{2u} AFO moment.

Fig. 3. The triple-q Γ_{5u} octupole state in the fcc lattice.

In summary, we have derived the multipole interaction model from the microscopic Γ_8 Hamiltonian. By analyzing the effective model, we find a Γ_{3g} AFQ state for the sc lattice, a Γ_{2u} AFO state for the bcc lattice, and the longitudinal triple-q Γ_{5u} octupole state for the fcc lattice.

We thank S. Kame, N. Metoki, H. Onishii, Y. Toku-naga, K. Ueda, R. E. Walstedt, and H. Yasuoka for discussions. K. K. is supported by the REIMEI Research Resources of Japan Atomic Energy Research Institute. T. H. is supported from Japan Society for the Promotion of Science and from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References
[1] Y. Kuramoto, H. Kusunose, J. Phys. Soc. Jpn. 69 (2000) 671.
[2] H. Kusunose, Y. Kuramoto, J. Phys. Soc. Jpn. 70 (2001) 1751.
[3] T. Sakakibara, et al., J. Phys. Chem. Solids 63 (2002) 1147; T. Sakakibara, et al., Physica B 312-313 (2002) 194.
[4] K. Kubo, Y. Kuramoto, J. Phys. Soc. Jpn. 72 (2003) 1859.
[5] K. Kubo, Y. Kuramoto, J. Phys. Soc. Jpn. 73 (2004) 216.
[6] P. Santini, G. Amoretti, Phys. Rev. Lett. 85 (2000) 2188.
[7] P. Santini, G. Amoretti, J. Phys. Soc. Jpn. 71 (Suppl.) (2002) 11.
[8] J. A. Paixão, et al., Phys. Rev. Lett. 89 (2002) 187202.
[9] R. Caciuffo, et al., J. Phys.: Condens. Matter 15 (2003) S2287.
[10] T. Hotta, K. Ueda, Phys. Rev. B 67 (2003) 104518.
[11] K. Takegahara, et al., J. Phys. C: Solid St. Phys. 13 (1980) 583.

[12] K. Kubo, T. Hotta, Phys. Rev. B 71 (2005) 140404(R).