Molecular Taxonomy and Diversity of *Symbiodinium* Spp. Based on 28S rDNA Sequences Within 15 Coral Species in Daao Bay, Shenzhen

Fei TONG, Lu ZHANG, Pi Mao CHEN and Wen Jing CHEN
South China Sea Fisheries Research Institute Shenzhen test base. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences. Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture, P. R. Guangzhou, Guangdong, 510300, China
Email: chenpm@scsfri.ac.cn

Abstract: The identity and diversity *Symbiodinium* spp. of scleractinian corals are valuable to understand the response of reef ecosystems to environment change. The molecular taxonomy and genetic diversity of *Symbiodinium* of scleractinian coral were studied by specific amplification and sequencing of 28S rDNA, which belong to 5 families, 9 genera and 15 species in Daao Bay, Shenzhen. The 28S rDNA sequence of *Symbiodinium* from 45 samples of scleractinian corals was obtained by direct PCR sequencing. The molecular phylogenetic tree was constructed by using the method of Neighbor-Joining (NJ). The *Symbiodinium* of reef coral in Daao sea area of Shenzhen could be divided into two groups of *Symbiodinium*. Among them, 11 species belong to group D and 4 species belong to group C, and the average contents of G+C base and A+T base of 28 s rDNA gene of reef coral *Symbiodinium* in this area are similar. The results showed that the gene evolution rate of 28 s rDNA was fast, which was suitable for the identification of coral reef coral *Symbiodinium* community. The ability of light utilization and resistance of reef coral *Symbiodinium* in Daao sea area were strong, but the diversity is low. It suggests that the symbiotic system of reef coral *Symbiodinium* is fragile and poor resistance to external environmental pressure in this area. This single *Symbiodinium* with the scleractinian coral strategy may be an adaptation to the environment stress in this area.

1. Introduction
Scleractinian corals live in tropical and subtropical seas, an oligotrophic alkaline environment, characterized by high calcium and carbonate saturation states, which are habitats that support very high biodiversity [1, 2]. At least 19% of all reefs worldwide have been permanently lost, and of those remaining, over 60% are at immediate risk from direct human activities [3]. Coral reefs, for instance, are increasingly under pressure due to coastal development and resource use [4]. They live in a symbiotic relationship with the dinoflagellate *Symbiodinium* sp. (zooxanthellae) and due to light limitation in deep water, corals are more successful in shallow water [5]. The endosymbiotic relationship provides the foundation of coral reef ecosystems by providing the energy to construct the three-dimensional framework of coral reefs [6]. The knowledge to taxonomy and diversity of *Symbiodinium* is important, which could acquire more information about recruitment and growth across environmental of the coral. Morphological classification is difficult for *Symbiodinium* spp., and the molecular DNA barcoding take a novel method to taxonomy for it. Fabricius investigated the genetic identity and diversity of *Symbiodinium* at three reefs with contrasting histories of bleaching mortality, water temperature and
shading, in the Republic of Palau [7]. Hauf used ITS2 sequence of the *Symbiodinium* reveal that the offshore reef samples displayed higher numbers of transitions of *Symbiodinium* subclade types between seasons in the Lower Florida Keys, while inshore fragments demonstrated more stability and may explain previously measured thermotolerance [8]. Leydet surveyed the *Symbiodinium* communities associated with Oculina corals in the western North Atlantic and the Mediterranean using one clade-level marker found that Oculina corals harbor different *Symbiodinium* communities across their geographical range [9]. Scleractinian corals live in Shenzhen is suffering high mortality rates due to coral bleaching. The present study used 28S rDNA sequences of *Symbiodinium* studied *Symbiodinium* community characteristics which could understand the functional diversity and acclimatization potential of the coral host well.

2. **Materials and Methods**

2.1. **Research Area**

The research was conducted off the Daao Bay coast, Shenzhen in November 2017, which was used for collection of coral samples for genetic analyses (114°28′02.10″ E, 22°33′06.21″ N ~114°27′58.52″ E, 22°33′10.59″ N) (Fig. 1). The survey water bottom sea temperature was 22.5°C, transparency was 2.5 m and salinity was 32.2‰. With handheld GPS Positioning System (78s, Garmin, American) determines the exact position in this investigation. Sampling sea water depth was range of 3-10 meters.

![Figure 1. Scleractinian coral sampling stations](image)

2.2. **Sample Collection for DNA Analysis**

Sampling was achieved by chipping off a 3 cm piece of coral from fragments using a hammer and chisel by SCUBA diver. Tissues of scleractinian corals were collected from coral fragments, which was removed from the skeleton using a water pick. The homogenate was poured into centrifuge tubes and pelleted (500 × g for 10 minutes), and the supernatant decanted, washed with *Symbiodinium* isolation buffer, and pelleted (500 × g for 10 minutes) a second time. The tissues were flash-frozen in liquid nitrogen and stored at -80°C in the laboratory for study. The samples of scleractinian coral belong to 5 families, 9 genera and 15 species, which were 3 repeat of each species.

Family	Genus	Species
Acroporidae	Acropora	Acropora robusta
		Acropora digitifera
		Acropora pruinosa
Poritidae	Porites	Porites lutea

![Table.1 15 kinds of scleractinian corals samples of Shenzhen Daao bay](image)
2.3. DNA Extraction and Sequencing
Samples of Symbiodinium stored at -80 °C were macerated into a fine powder using a mortar and pestle pre-chilled in liquid nitrogen. Upon collection of the tissue pellet, total DNA was extracted using a plant DNA extraction kit (QIAGEN Plant Mini Kit, QIAGEN, German) according to manufacturer’s instructions [8].

For polymerase chain reactions (PCR) of the 28S rDNA, using the whole genome as the template, the primers were forward primer (GCC GAC CCG CTG AAT TCA AGC AT A T) and reverse primer (TGT GGC AYG TGA CGC GCA AGC TAA G). The reaction system was 50μL, containing Taq Master Mix 25 μL, ddH2O 17 μL, DNA template 4 μL, forward primer 2 μL and reverse primer 2 μL. The reaction conditions referred to the denaturation temperature of the primers and PCR Mix specification, and were set as follows: 5min pre-denaturation at 94°C, denaturation at 94°C for 30s, 53°C annealing for 1 min, 72°C extended 2min, (30 cycles) and extended at 72°C for 10 min. After the reaction, the 5 μL PCR products were detected by electrophoresis in the buffer system of 1% agarose gel with 0.5 times TBE. All Symbiodinium PCR solution were taken 30 μL respectively and sent to Beijing Qingke Biotechnology Co., Ltd to complete bidirectional sequencing.

2.4. Data Analysis
The accuracy and completeness of the sequence were confirmed by NCBI alignment. The sequence was spliced by DNAmann software (DNAMAN 6.0.3.99; Lynnon, 2005), the base composition of different sequences was analyzed by MEGA6 (MEGA 6.0.2.74; Arizona State University, 2011), and the current molecular classification method was used. A phylogenetic tree was constructed by comparing the 28S rDNA gene sequences of 15 species of coral Symbiodinium from Daao Bay, Shenzhen; with the sequences of different strains of Symbiodinium obtained from GenBank, the molecular diversity of symbiodinium in this sea area was analyzed. The faunal division of 15 species of coral Symbiodinium in Daao Bay of Shenzhen was carried out. Comparison of two Symbiodinium of the Gymnodinium genus (AF060901, AF060909) as external sequences. Constructing phylogenetic tree based on Neighbor-Joining. The confidence level of each branch was evaluated by the 1000 bootstrap resampling method.

3. Results

3.1 Analysis of base composition of 28S rDNA sequence
The length of the 28S rDNA gene amplified from 15 species of Symbiodinium in Daao Bay, Shenzhen, was 515-553 bp (mean 532 bp), and the average content of C base was the highest (26.09%) in this experimental; the average content of G base was the lowest (23.17%). The average contents of A base and T base were 24.67% and 25.95%, respectively; and the average contents of G+C base and A+T base were approach, which were 49.27% and 50.73%, respectively.

Agariciidae	Pavona	Porites lobata
	Pavona minutum	Pavona decussata

Merulinidae	Hydrophora	Hydrophora exesa
Pavona	Pavona	Pavona minuta

Favidae	Plesiastrea	Plesiastrea versipora
Goniastrea	Goniastrea	Goniastrea pectinata
Favites	Favites abdita	Favites micropentagona
Platygyra	Platygyra carnosa	
Table 2. Average nucleotide frequencies of 28S rDNA sequences of 15 species of *Symbiodinium* (%)

Number	*Symbiodinium*	A	G	T	C	G+C
1	*Symbiodinium* sp. Acropora robusta	24.03	19.77	27.13	28.88	48.64
2	*Symbiodinium* sp. Acropora digitifera	26.58	27.85	24.05	21.52	49.37
3	*Symbiodinium* sp. Acropora pruinosa	27.13	28.88	24.22	19.77	48.64
4	*Symbiodinium* sp. *Porites* lutea	23.70	20.56	26.48	28.89	49.44
5	*Symbiodinium* sp. *Porites* lobata	26.37	28.94	23.44	21.25	50.18
6	*Symbiodinium* sp. *Pavona* minuta	23.05	21.00	27.32	28.44	49.44
7	*Symbiodinium* sp. *Pavona* decussata	23.50	21.31	26.41	28.60	49.91
8	*Symbiodinium* sp. *Hydnophora* exesa	23.75	20.27	27.03	28.96	49.23
9	*Symbiodinium* sp. *Plesiastrea* versipora	26.39	29.06	23.33	21.03	50.10
10	*Symbiodinium* sp. *Cyphastrea* serailia	24.03	20.13	26.94	28.68	48.84
11	*Symbiodinium* sp. *Goniastrea* pectinata	23.88	19.81	26.99	29.13	48.93
12	*Symbiodinium* sp. *Favites* abdita	23.67	20.64	27.08	28.60	49.24
13	*Symbiodinium* sp. *Favites* micropentagona	23.72	20.68	26.94	28.46	49.15
14	*Symbiodinium* sp. *Favites* pentagona	23.84	20.52	27.36	28.28	48.80
15	*Symbiodinium* sp. *Platygyra* carnosa	26.36	28.18	24.55	20.91	49.09
Mean		24.67	23.17	25.95	26.09	49.27

3.2 Homology comparison and phylogenetic tree construction based on 28S rDNA sequence

The 28S rDNA sequence of *Symbiodinium* from Daao Bay of Shenzhen was selected on the sequenced to BLAST on the NCBI database. A phylogenetic NJ tree was constructed by selecting the 28S rDNA gene fragment of *Symbiodinium* Clade-C and Clade-D which is most similar to the sample gene; and two *Gymnodinium* genus *Symbiodinium* were selected as external sequence comparison.

The results of NJ tree based on 28S sequence (Fig. 2) showed that all samples were divided into three groups, the first clustered group including *Symbiodinium* sp. *Acropora* robustaus and *Symbiodinium* sp. *Porites* lutea et al., 10 species of *Symbiodinium* totally. Which were within Clade-D. The second group including *Symbiodinium* sp. *Acropora* digitifera and *Symbiodinium* sp. *Acropora* pruinosa et al., 5 species of *Symbiodinium* totally. Which were within Clade-C. The third group was exogenous sequence. The results showed that 66.67% of scleractinian coral species were symbiotic within Clade-D group *Symbiodinium* and 33.33% of stone scleractinian coral species were symbiotic with Clade-C group in this vessel.
Figure 2. 50% majority-rule consensus of the 1000 bootstrap NJ tree resulting using the P-distance model

4. Discussions

In exchange for protection, CO$_2$ and substrates for cellular synthesis, the *Symbiodinium* supply their hosts with essential metabolites [10, 11]. Corals obtained *Symbiodinium* from two models, which were vertical (Direct progeny of corals isolation of *Symbiodinium* from the parent) and horizontal model (ThCe offspring of corals obtain *Symbiodinium* from the outside environment) [12]. Variation at the nuclear ribosomal internal spacer regions has often been used to approximate species-level diversity in *Symbiodinium*. However, delineations between *Symbiodinium* groups at finer scales are often blurred and inconsistent due to the application of different makers and techniques, different naming systems and sometimes unknown origins of variation that could be inter- vs. intragenomic [13]. Research in *Symbiodinium* diversity has allowed the identification of specific or generalist host associations [14].

The problem of fully interpreting srDNA variation in natural samples of *Symbiodinium* is challenging [15]. The present study showed that the 28S rDNA of *Symbiodinium* could distinguish the species-level diversity well in this sea area. The results showed that the 28S rDNA of *Symbiodinium* showed AT base bias in the studied area. It is consistent with the researches by Madeleine and Yamashita [16, 17]. Hugall thinks that high A+T content accelerates variation of amino acid sequence [18].

The genus *Symbiodinium* is currently classified into nine genetic clades (A–I) [19]. Studies on reef coral *Symbiodinium* have shown that the *Symbiodinium* of A, B and F Clade are more present in higher latitudes, while Clade-C *Symbiodinium* are more widely distributed in tropical waters [20, 21]. The water depth of Clade-D *Symbiodinium* are widely distributed, which may occur in the deeper sea area, intertidal zone and coastal coral reef area with environmental stress [22]. *Symbiodinium* subclade type may be an important driver of holobiont stress tolerance [8, 23]. Furthermore, the clade-D *Symbiodinium* are more common in marginal environments where other *Symbiodinium* are not suitable for survival. In addition, studies have shown that scleractinian corals might release *Symbiodinium* when suffered environmental stress and replace it with Clade-D *Symbiodinium* [24]. It may be a strategy for the holobiont which successful colonisation (recruitment and growth) across environmental gradients.
requires that both the symbiotic microalgae (Symbiodinium spp.) and the host coral optimise available resources, while retaining the physiological plasticity needed to survive under different conditions [25]. Previous researches on coral transplantation and blanching recovered observed also showed that genus Clade-D symbiodinium are the dominant in inshore [15, 26]. And the coral assemblages from inshore reefs demonstrate higher thermostolerance than their offshore conspecifics [27]. The genus Clade-C symbiodinium can provide more efficient photosynthesis for corals, but their tolerance to environment may decreased [28]. The present results showed that 10 species were found to be symbiotic with Clade-D symbiodinium and 5 species symbiotic with Clade-C symbiodinium in this area, which both were the higher resistance and adaptability species to this sea environment. It suggested that the environmental pressure on the reef coral and Symbiodinium system in this waters should not be ignored.

It was widely assumed that one species of coral associates with only one species of Symbiodinium. However, Symbiodinium are diverse and it is now recognized that some species of corals associate with multiple species of Symbiodinium [15]. The adaptation mechanism of Symbiodinium is the switch and shuffle. In the process of coral growth, the new Symbiodinium species were obtained by corals due to the change of environment and other factors. The shuffle shows that the species and proportion of the Symbiodinium change correspondingly when corals respond to the changes of external environment. In this study, some different species scleractinian corals belonging to the same genus are symbiotic with different Symbiodinium species, which may be the result of respond to the environmental changes of scleractinian corals [29]. The mechanism of the switch and shuffle of Symbiodinium indicates that the stone coral itself can be symbiotic with different or different species of Symbiodinium at the same time or at different times, which indicates that the coral itself should have symbiotic polymorphism. But all samples have contained only one genotype of Symbiodinium in this study [15], which are all vertical transmitters. Forming symbiosis with the best acclimatized symbiont, instead of with a diverse group of symbionts with different physiological performances, either sequentially or simultaneously, may be a strategy used by this area [30].

Corals have survived global changes since the first scleractinian coral-algal symbioses appeared during the Triassic, 225 million years ago [31]. While molecular biology have much to offer, the synergistic effects of multidisciplinary approaches, including such other fields as geochemistry, biochemistry, paleoclimatology, invertebrate physiology, stratigraphy and paleontology will improve our knowledge about the scleractinian coral-algal symbioses correspond with the environment changes. DNA sequences data are easily obtained, at reasonable cost, from many samples of Symbiodinium, which allows ecological data to inform taxonomic decisions. It could be assist the corals to cope with stressful conditions.

Acknowledgments
This research was jointly supported by Shenzhen science and technology innovation project (JCYJ20160331141759795). We express appreciation to Mr. Xiao-guo Li for technical support, editors and reviewers for constructive comments,

References:
[1] Davies SW, Marchetti A, Ries JB, Castillo KD 2016 Thermal and Pco2 Stress Elicit Divergent Transcriptomic Responses in a Resilient Coral Frontiers in Marine Science 3
[2] Fujise L, Yamashita H, Suzuki G, Sasaki K, Liao LM, Koike K 2014 Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) From Corals Plos One 9 e114321
[3] Baum G, Januar HI, Ferse SC, Kunzmann A 2015 Local and Regional Impacts of Pollution On Coral Reefs Along the Thousand Islands North of the Megacity Jakarta, Indonesia Plos One 10 e138271
[4] Shidqi RA, Pamuji B, Sulistiantoro T, Risza M, Faozi AN, Muhammad AN, Muharam MR, Putri ED, Hartini R, Valentina B, Fakhri RZ, Putra GG, Kurniawan R, Pratomo A, Syakti AD 2018 Coral Health Monitoring at Melinjo Island and Saktu Island: Influence From Jakarta Bay
Regional Studies in Marine Science 18 237-42

[5] Ferrigno F, Bianchi CN, Lasagna R, Morri C, Russo GF, Sandulli R 2016 Corals in High Diversity Reefs Resist Human Impact Ecological Indicators 70 106-13

[6] Baumgarten S, Bayer T, Aranda M, Yi JL, Carr A, Micklem G, Voolstra CR 2013 Integrating Microrna and Mrna Expression Profiling in Symbiodinium Microadriaticum, a Dinoflagellate Symbiont of Reef-Building Corals Bmc Genomics 14 704

[7] Fabricius KE, Mieog JC, Colin PL, Idip D, H Van Oppen MJ 2004 Identity and Diversity of Coral Endosymbionts (Zooxanthellae) From Three Palauan Reefs with Contrasting Bleaching, Temperature and Shading Histories Mol Ecol 13 2445-58

[8] Hauff B, Haslun JA, Strychar KB, Ostrom PH, Cervino JM 2016 Symbiont Diversity of Zooxanthellae (Symbiodinium Spp.) In Porites Astreoides and Montastraea Cavernosa From a Reciprocal Transplant in the Lower Florida Keys Canadian Center of Science and Education 8 9-22

[9] Leydet KP, Hellberg ME 2016 Discordant Coral – Symbiont Structuring: Factors Shaping Geographical Variation of Symbiodinium Communities in a Facultative Zooxanthellate Coral Genus, Oculina Coral Reefs 35 583-95

[10] Mies M, Sluys MAV, Metcalfe CJ, Sumida PYG 2016 Molecular Evidence of Symbiotic Activity Between Symbiodinium and Tridacna Maxima Larvae Symbiosis 1-10

[11] Reimer JD, Shah MMR, Sinniger F, Yanagi K, Suda S 2010 Preliminary Analyses of Cultured Symbiodinium Isolated From Sand in the Oceanic Ogasawara Islands, Japan Marine Biodiversity 40 237-47

[12] Baker AC 2003 Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium Annual Review of Ecology Evolution & Systematics 34 661-89

[13] Howells EJ, Willis BL, Bay JK, Van Oppen MJH 2016 Microsatellite Allele Sizes Alone are Insufficient to Delineate Species Boundaries in Symbiodinium Mol Ecol 25 2719-23

[14] Grajales A, Sánchez JA 2016 Holobiont Assemblages of Dominant Coral Species (Symbiodinium Types and Coral Species) Shape Caribbean Reef Community Structure 40 300-11

[15] Toller WW, Rowan R, Knowlton N 2001 Zooxanthellae of the Montastraea Annularis Species Complex: Patterns of Distribution of Four Taxa of Symbiodinium On Different Reefs and Across Depths Biol Bull-U 201 348-59

[16] Oppen MJV, Willis BL, Miller DJ 1999 Atypically Low Rate of Cytochrome B Evolution in the Scleractinian Coral Genus Acropora Proceedings of the Royal Society B Biological Sciences 266 179

[17] Hiroshi Y, Kazuhioko K 2013 Genetic Identity of Free-Living Symbiodinium Obtained Over a Broad Latitudinal Range in the Japanese Coast Phycological Research 61 68-80

[18] Hugall A, Stanton J, Moritz C 1997 Evolution of the at-Rich Mitochondrial Dna of the Root Knot Nematode, Meloidogyne Hapla. Molecular Biology & Evolution 14 40-8

[19] Delghani H, Mostafavi PG, Fatemi SMR, Mehrabadi JF 2018 Molecular Diversity of Symbiodinium Spp. Within Six Coral Species in Larak Island, the Persian Gulf Iranian Journal of Fisheries Sciences 17 151-61

[20] Lajeunesse TC, Trench RK 2000 Biogeography of Two Species of Symbiodinium (Freudenthal) Inhabiting the Intertidal Sea Anemone Anthopleura Elegantissima (Brandt). Biol Bull 199 126-34

[21] Rodriguez M, Loh WKW, Carter D, Hoeeg-Guldberg IO 2001 Latitudinal Variability in Symbiont Specificity within the Widespread Scleractinian Coral Plesiastrea Versipora Mar Biol 138 1175-81

[22] Lien YT, Nakano Y, Platthong S, Fukami H, Wang JT, Chen CA 2007 Occurrence of the Putatively Heat-Tolerant Symbiodinium Phylotype D in High-Latitudinal Outlying Coral Communities Coral Reefs 26 35-44
[23] Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O 2008 Bleaching Susceptibility and Mortality of Corals are Determined by Fine-Scale Differences in Symbiont Type. *P Natl Acad Sci USA* **105** 10444

[24] Toller WW, Rowan R, Knowlton N 2001 Repopulation of Zooxanthellae in the Caribbean Corals Montastraea Annularis and M. Faveolata Following Experimental and Disease-Associated Bleaching *Biol Bull* **201** 360-73

[25] Hennige SJ, Smith DJ, Walsh S, Meginley MP, Warner ME, Suggett DJ 2010 Acclimation and Adaptation of Scleractinian Coral Communities Along Environmental Gradients within an Indonesian Reef System *J Exp Mar Biol Ecol* **391** 143-52

[26] Baker AC, Starger CJ, Mcclanahan TR, Glynn PW 2004 Coral Reefs: Corals' Adaptive Response to Climate Change *Nature* **430** 741

[27] Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV 2013 Evidence for a Host Role in Thermotolerance Divergence Between Populations of the Mustard Hill Coral (*Porites Astreoides*) From Different Reef Environments *Mol Ecol* **22** 4335-48

[28] Wong JCY, Thompson P, Xie JY, Qiu JW, Baker DM 2016 *Symbiodinium* Clade C Generality Among Common Scleractinian Corals in Subtropical Hong Kong *Regional Studies in Marine Science* **439-44**

[29] Lewis CL, Coffroth MA 2004 The Acquisition of Exogenous Algal Symbionts by an Octocoral After Bleaching. *Science* **304** 1490-2

[30] Ng TY, Ang P 2016 Low Symbiont Diversity as a Potential Adaptive Strategy in a Marginal Non-Reefal Environment: A Case Study of Corals in Hong Kong *Coral Reefs* **35** 941-57

[31] Jr GDS 2003 The Evolution of Modern Corals and their Early History *Earth Science Reviews* **60** 195-225