Characterisation of the vasodilation effects of DHA and EPA, n-3 PUFAs (fish oils), in rat aorta and mesenteric resistance arteries

Roshan Limbu, Graeme S. Cottrell, Alister J. McNeish*

Reading School of Pharmacy and ICMR, University of Reading, Reading, Berkshire, United Kingdom

* a.mcneish@reading.ac.uk

Abstract

Background and purpose
Increasing evidence suggests that the omega-3 polyunsaturated acids (n-3 PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are beneficial to cardiovascular health, promoting relaxation of vascular smooth muscle cells and vasodilation. Numerous studies have attempted to study these responses, but to date there has not been a systematic characterisation of both DHA and EPA mediated vasodilation in conduit and resistance arteries. Therefore, we aimed to fully characterise the n-3 PUFA-induced vasodilation pathways in rat aorta and mesenteric artery.

Methods
Wire myography was used to measure the vasomotor responses of freshly dissected rat mesenteric artery and aorta. Arteries were pre-constricted with U46619 and cumulative concentrations of either DHA or EPA (10 nM-30 μM) were added. The mechanisms by which n-3 PUFA relaxed arteries were investigated using inhibitors of vasodilator pathways, which include: nitric oxide synthase (NOS; L-NAME), cycloxygenase (COX; indomethacin), cytochrome P450 epoxygenase (CYP450; clotrimazole); and calcium-activated potassium channels (KCa), SKCa (apamin), IKCa (TRAM-34) and BKCa (paxilline).

Results
Both DHA- and EPA-induced relaxations were partially inhibited following endothelium removal in rat mesenteric arteries. Similarly, in aorta EPA-induced relaxation was partially suppressed due to endothelium removal. CYP450 also contributed to EPA-induced relaxation in mesenteric artery. Inhibition of IKCa partially attenuated DHA-induced relaxation in aorta and mesenteric artery along with EPA-induced relaxation in mesenteric artery. Furthermore, this inhibition of DHA- and EPA-induced relaxation was increased following the additional blockade of BKCa in these arteries.
Conclusions

This study provides evidence of heterogeneity in the vasodilation mechanisms of DHA and EPA in different vascular beds. Our data also demonstrates that endothelium removal has little effect on relaxations produced by either PUFA. We demonstrate IK$_{Ca}$ and BK$_{Ca}$ are involved in DHA-induced relaxation in rat aorta and mesenteric artery; and EPA-induced relaxation in rat mesenteric artery only. CYP450 derived metabolites of EPA may also be involved in BK$_{Ca}$ dependent relaxation. To our knowledge this is the first study indicating the involvement of IK$_{Ca}$ in n-3 PUFA mediated relaxation.

Introduction

Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide and according to the World Health Organisation, CVDs account for up to 31% of all deaths globally. One of the major risk factors associated with CVDs is endothelial and vascular dysfunction which causes impairment of vascular relaxation and reactivity [1]. Endothelium lines the interior surface of blood vessels and has a critical role in the production of various vasodilators such as nitric oxide (NO), prostaglandins, endothelium-dependent hyperpolarization (EDH) and endothelium-derived hyperpolarization factors (EDHFs) that include; hydrogen peroxide and cytochrome P450 (CYP450) metabolites of arachidonic acid (AA) [2–6].

The cardioprotective effects of omega-3 long chain polyunsaturated fatty acids (n-3 PUFAs) or “fish oils” were first identified in Greenland and Japanese populations where the mortality rate from CVDs were significantly less compared to Western populations [7, 8]. These beneficial effects were attributed to high consumption of fish; subsequently clinical and epidemiological studies on n-3 PUFAs reported therapeutic benefits to health [9]. The beneficial effects of n-3 PUFAs include providing protective cardiovascular effects, enhancing brain function, attenuating the risk of cancer, and inhibiting inflammation [10–12]. There are three main types of n-3 PUFAs found in fish: alpha linolenic acid (ALA, 18:3), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) [13]. DHA and EPA are primarily associated with the beneficial effects of n-3 PUFAs, including vasodilation [14].

Vascular studies have reported that dietary fats can affect endothelial function and overall vascular tone [15]. For example, AA is an omega-6 PUFA involved in numerous signalling pathways including vasodilatation—reviewed in [4, 6, 16–18]. Different enzymes are involved in the production of metabolites of AA, also known as eicosanoids, these include; cyclooxygenase (COX)-derived series-2 prostaglandins (e.g. PGL$_2$) and cytochrome P450 epoxyenase (CYP450)-derived epoxeicosatrienoic acids (EETs) both of which are known to evoke vasodilation [16, 17]. Similar to AA, n-3 PUFAs can also be found as free fatty acids and can be released from membrane phospholipids via the activity of phospholipase A2 (PLA2) [19, 20]. n-3 PUFAs compete with AA as substrates for many enzymes including those involved in the production of AA-derived eicosanoids [21, 22]. For example, EPA and DHA produce COX metabolites (series-3 PGs), CYP450 metabolites known as epoxycosatetraenoic acids (EETs) derived from EPA [23] and epoxydocosapentaenoic acids (EDPs) derived from DHA [22] which are all involved in vasodilation [24–26].

n-3 PUFAs can improve endothelial function and vascular reactivity in both healthy volunteers and patients suffering from cardiovascular disorders [27–29]. These studies indicated an increased arterial vasodilatation following the dietary inclusion of n-3 PUFAs; the mechanisms
involved can differ depending upon the n-3 PUFA studied [28]. One mechanism proposed to be involved in these responses is the improved bioavailability of NO [29]. However, n-3 PUFAs also compete with AA for various enzymes involved in vasodilation [30], indicating that these vasodilator pathways also contribute to n-3 PUFA mediated relaxation. For example, EDPs derived from DHA metabolism by CYP450s are involved in vasodilation of porcine coronary arteries [25]. Similar to AA-derived EETs, these EDPs were reported to activate large conductance calcium activated potassium channels (BK_{Ca}) resulting in hyperpolarization and relaxation of vascular smooth muscle cells (VSMCs). COX metabolites of EPA are also reported to be involved in n-3 PUFA mediated vasodilation [24]. These studies indicate that n-3 PUFAs evoke relaxation through an endothelium-dependent mechanism, but there is also evidence that they may act directly on VSMCs via uncharacterized mechanisms [27].

Few studies have looked in depth into the individual vasodilation mechanisms of DHA and EPA and different mechanisms are reported to be involved, depending upon the type of artery and n-3 PUFA studied. Therefore, this study focused on the detailed characterisation of common vasodilation pathways including NO, COX, CYP450 and EDH-like responses in the individual vasodilator effects of DHA and EPA. We conducted these studies in a conduit artery (aorta) and a resistance artery (mesenteric artery) of rats as the vasodilator mechanisms in these artery types show considerable heterogeneity; the NO pathway dominating in conduit arteries and a greater contribution of EDH in resistance arteries [6, 31]. We confirm the role of BK_{Ca} and provide evidence of a novel role for intermediate K_{Ca} (IK_{Ca}) channels in relaxation mediated by DHA in rat aorta and mesenteric artery along with EPA-induced relaxation in rat mesenteric artery.

Methods

Male Wistar Kyoto (WKY, 8–12 weeks, 200–300 g) rats were killed according to schedule one of the Animals (Scientific Procedures) Act 1986 and thus was given an ethical approval waiver by the University of Reading Animal Welfare and Ethical Review Board (AWERB). To ensure death, an inhaled overdose of isoflurane was immediately followed by cervical dislocation. The aortic and mesenteric vascular beds were dissected from WKY rats and immediately placed in ice-cold isotonic Krebs solution containing (mM): CaCl$_2$, 2.5; glucose, 11; KCl, 3.6; KH$_2$PO$_4$, 1.2; MgSO$_4$,7H$_2$O, 1.2; NaCl, 118 and NaHCO$_3$, 24. Segments of aorta and third order mesenteric arteries (~2 mm of length) were mounted in Mulvany-Halpern wire myograph (Danish Myotechnology, 620M). The tissues were immersed in Krebs solution bubbled with 95% O$_2$/ 5% CO$_2$ and subjected to zero tension followed by equilibration at 37˚C for 20 minutes. The tissues were then stretched to a standardised tension of 7–13 mN (aorta) and ~3 mN (mesenteric artery) according to the DMT normalization module in Labchart 7. Tension was measured using isometric force transducer connected to PowerLab (ML846; AD Instruments, UK) and a computer running Labchart 7 software (AD Instruments, UK). All arteries were tested for functional endothelium by preconstricting them with the thromboxane A_2 receptor (TP) agonist, U46619 (5–100 nM) followed by the addition of acetylcholine (ACh, 1 µM) to induce vascular relaxation. Arteries that exhibited >90% relaxation were considered to have viable endothelium. A stable sub-maximal tone (~ 50–80% of maximum) was elicited with U46619 (5–100 nM) and n-3 PUFA mediated relaxations were investigated through cumulative addition with increasing concentrations (10 nM—30 µM). In some experiments the endothelium was removed to assess its role in n-3 PUFA mediated relaxation by gently rubbing the inner layer of the arteries with either a stainless steel wire (Diameter: 250 µm) (aorta) or gold plated tungsten wire (Diameter: 25 µm) (mesenteric artery). Arteries with <10% relaxation to ACh (1 µM) were considered to have functional removal of endothelium. Following the control
concentration response curve, in the same arterial rings, inhibitors were incubated for at least 20 mins before preconstricting to a similar level of tone as was achieved in the control experiment by adjusting the concentration of U46619 (5–100 nM), if necessary. The role of eNOS, COX, CYP450 and EDH-like responses were assessed on DHA- and EPA-mediated relaxation. NO, COX and CYP450 pathways were blocked by: the selective nitric oxide synthase inhibitor L-NAME (300 μM), the selective cyclooxygenase inhibitor indomethacin (10 μM) and the non-selective CYP450 inhibitor clotrimazole (1 μM) respectively. In order to investigate the EDH response, experiments were conducted in the presence of L-NAME to prevent the effect of basal NO release or NO mediated responses. The K_{Ca} channels involved in EDH responses were inhibited with the specific blockers, apamin (SK_{Ca} blocker, 50 nM), TRAM-34 (IK_{Ca} blocker, 1 μM) and paxilline (BK_{Ca} blocker, 1 μM). Often EDH-like responses require blockade of all 3 subtypes of K_{Ca} generally the combination of SK_{Ca} and IK_{Ca} is sufficient to block this pathway [6]. We initially added apamin which failed to affect responses; therefore, we then assessed the combination apamin and TRAM-34 which would elucidate the role of IK_{Ca}. As residual relaxation was observed following this combination, the further contribution of BK_{Ca} (and thus the total EDH/EDHF component of relaxation) was assessed by adding paxilline to this blocking cocktail.

Data analysis and statistical procedures

Results are expressed as mean±SEM of n experiments, where n refers to the number of biological replicates each obtained from a separate animal. Data analysis was carried out using GraphPad Prism 5 (v5.0, GraphPad Software, San Diego, CA, USA). Relaxation response was measured as percentage reduction of the stable tone induced by U46619 (5–100 nM). One-way analysis of variance (ANOVA) and Bonferroni’s post-hoc test or two-tailed Student’s t-test (as appropriate) were used for statistical comparison of the concentration response curves in GraphPad Prism 5 (GraphPad, USA). P-value of < 0.05 was considered as being statistically significant.

Drugs, chemicals, reagents and other materials

All inhibitors were obtained from Sigma (Poole, UK). Salts for Krebs solution were obtained from Fisher Scientific (Loughborough, UK) with the exception of CaCl₂ and MgSO₄·7H₂O which were acquired from Sigma. Apamin, L-NAME (L-N^G^-Nitroarginine methyl ester) and acetylcholine were dissolved in distilled water. Clotrimazole (1-[(2-Chlorophenyl)(diphenyl)methyl]-1H-imidazole), indomethacin (2-[(4-Chlorophenyl)carbonyl]-5-methoxy-2-methyl-1H-indol-3-yl)acetic acid), paxilline ((2R, 4bS, 6aS, 12bS, 12cR, 14aS)-4b-hydroxy-2-(1-hydroxy-1-methylethyl)-12b, 12c-dimethyl-5, 6, 6a, 7, 12, 12b, 12c, 13, 14, 14a-decachydro-2H-chromeno [5',6': 6,7] indeno [1,2-b] indol-3(4H)-one), TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole) and U46619 (9,11-dideoxy-9α,11α-methanoepoxy PGF2α) were dissolved in 100% dimethyl sulphoxide (DMSO). DHA and EPA were dissolved in 100% ethanol and subsequent dilutions were carried out in distilled deionized water. All stock drugs were prepared at 10 mM with the exception of L-NAME (100 mM), indomethacin (100 mM) and apamin (100 μM).

Results

For all experimental groups EC₅₀ and maximum relaxation (E_{max} %) to each n-3 PUFA were calculated and can be found in supplemental materials (Table A in S1 File). A pooled analysis of control curves for DHA and EPA mediated relaxation (Table B in S1 File) demonstrated that there was no difference in the E_{max} but that DHA was significantly more potent at evoking
Role of endothelium in n-3 PUFA-dependent relaxation of rat mesenteric artery and aorta

Endothelium has a critical role in maintaining vascular homeostasis therefore we assessed the contribution of endothelium to DHA and EPA mediated vasodilation. Both n-3 PUFAs evoked concentration dependent relaxation of mesenteric artery and aorta. Relaxations to both DHA and EPA were partially inhibited following endothelium removal in rat mesenteric arteries (Fig 1A and 1B) \((n = 5–6, P < 0.05)\) and aorta (Fig 1D, \(n = 6, P < 0.05\); Table B in S1 File).

Role of endothelium in n-3 PUFA-dependent relaxation of rat mesenteric artery and aorta

Endothelium has a critical role in maintaining vascular homeostasis therefore we assessed the contribution of endothelium to DHA and EPA mediated vasodilation. Both n-3 PUFAs evoked concentration dependent relaxation of mesenteric artery and aorta. Relaxations to both DHA and EPA were partially inhibited following endothelium removal in rat mesenteric arteries (Fig 1A and 1B) \((n = 5–6, P < 0.05)\). Similarly, in aorta EPA-induced relaxation was partially suppressed following endothelium removal (Fig 1D, \(n = 6, P < 0.05\)). However, DHA-induced relaxation was unaffected by the removal of endothelium in aorta (Fig 1C, \(n = 7\)).

Role of eNOS and COX in n-3 PUFA-dependent relaxation of rat mesenteric artery and aorta

In rat mesenteric artery, DHA and EPA-induced relaxation are unaffected by the inhibition of eNOS (L-NAME, 300 μM) and the additional inhibition of COX (indomethacin, 10 μM)
Similarly, in rat aorta both DHA- and EPA-induced relaxations were not altered in the presence of L-NAME alone, or in combination with indomethacin (Fig 2C and 2D) (n = 5).

Role of CYP450 in n-3 PUFA-dependent relaxation of rat mesenteric artery and aorta

The effect of CYP450 epoxygenase inhibition on n-3 PUFA-mediated relaxation was investigated in rat mesenteric artery and aorta. Fig 3A and 3C demonstrate that non-selective inhibition of CYP450 (clotrimazole, 1 μM) did not modify the relaxant effects of DHA in rat mesenteric artery and aorta (n = 5 and 6, respectively). In contrast, EPA-induced relaxation in rat mesenteric artery and aorta were both partially inhibited with clotrimazole (1 μM) as shown in Fig 3B and 3D (n = 5, P < 0.05). These findings indicate that CYP450 epoxygenase metabolites of EPA are involved in vasodilation.

Role of K_{Ca} channels in n-3 PUFA-dependent relaxation of rat mesenteric artery

The EDH pathway is an integral component of endothelium-dependent relaxation in resistance arteries [32]. This pathway was investigated through the blockade of K_{Ca} channels.
responsible for subsequent hyperpolarization and relaxation of VSMCs. Pre-treatment of rat mesenteric artery with the combination of L-NAME and the SK channel inhibitor, apamin (50 nM), did not modify DHA-induced relaxation. However, additional inhibition of IK with TRAM-34 (1 μM) partially inhibited this relaxation (n = 5, P < 0.05) (Fig 4A). Subsequent addition of the BK channel inhibitor, paxilline (1 μM) further inhibited DHA-induced relaxation (Fig 4A) (P < 0.05). Consistent with these findings using identical experimental conditions, inhibition of IK and BK channels also inhibited EPA-induced relaxations in rat mesenteric artery (Fig 4B n = 5, P < 0.05).

Role of KCa channels in n-3 PUFA-dependent relaxation of rat aorta

While EDH is not the predominant vasodilation mechanism in the aorta, KCa channels are present and can affect dilator responses [33–36]. Combined inhibition of eNOS with L-NAME (300 μM) and SK with apamin (50 nM) did not modify DHA-induced relaxation (Fig 5A). However, subsequent inhibition of IK with TRAM-34 (1 μM) led to partial attenuation of DHA-induced relaxation which was enhanced upon additional inhibition of BK with paxilline (1 μM) (n = 5, P < 0.05). In contrast, combined inhibition of eNOS, SK, IK, and BK did not affect the EPA-induced relaxation of rat aorta (Fig 5B) (n = 5).
Discussion

CVDs are associated with the impairment of vasodilation mechanisms in arteries [14, 37]. The n-3 PUFAs, EPA and DHA, found in fish and supplements are reported to improve vasodilation through different mechanisms that promote endothelial function and vascular reactivity [27]. Our study characterised n-3 PUFA-induced relaxation at concentrations of free fatty acid (100 nM-30 μM) that are achievable in human plasma following a n-PUFA rich meal (~70 μM) [38]. We did this in both resistance and conduit arteries of rats since studies suggest that the vasodilation mechanisms can differ depending upon the type of artery [31]. Conduit
arteries are the larger elastic blood vessels that are mainly involved in the distribution of blood [39] whereas arteries with the lumen diameter of <300 μm are classed as resistance arteries and are critical in the regulation of blood pressure [40, 41]; vasodilation is predominantly mediated by NO in conduit arteries while in resistance arteries EDH mechanisms also contribute to relaxation [31, 36]. Therefore, we investigated both types of blood vessel to fully understand the mechanisms involved with n-3 PUFA mediated relaxation.

Endothelium has an important role in the regulation of vascular tone since it is involved in the production of various vasodilators including NO, PG12 and EETs, along with the transmission of endothelial hyperpolarization to VSMCs via myoendothelial gap junctions [2–5]. We investigated the effect of endothelial removal in n-3 PUFA mediated relaxation of rat aorta and mesenteric arteries. Our findings indicate that endothelial removal causes partial attenuation in both DHA- and EPA-induced relaxation of rat mesenteric artery (Fig 1A and 1B). Similarly, this inhibitory effect was also observed with EPA-induced relaxation of rat aorta (Fig 1D). This is consistent with numerous reports suggesting that n-3 PUFAs can improve endothelial function and augment endothelium dependent relaxation [15, 27–29, 42]. However, relaxation was only partially inhibited following removal of endothelium and a large residual relaxation remained indicating that the vasodilator effect of n-3 PUFAs is primarily endothelium-independent. Furthermore, as DHA-induced relaxation remained unaltered following endothelium removal in the aorta (Fig 1C), there is heterogeneity in the vasodilator mechanisms of DHA between conduit and resistance arteries.

A large body of evidence exists demonstrating that n-3 PUFAs can evoke endothelium-dependent NO-mediated relaxation. For example, EPA was reported to induce calcium-independent increases in NO resulting in relaxation of bovine coronary arteries [43]. Similarly, DHA was also reported to enhance IL-1β-mediated NO production in VSMCs derived from rat aorta [44]. Elevation of eNOS mRNA and protein levels in isolated aortic tissues have been suggested as a mechanism of n-3 PUFA-induced NO production [45]. Clinical studies have validated these findings, indicating that long-term EPA treatment in patients with coronary artery disease improved both NO-dependent and -independent vasodilation [29]. However, our results demonstrate that inhibition of eNOS did not affect DHA- and EPA-induced relaxation in rat mesenteric artery and aorta (Fig 2A–2D). Other groups have reported a lack of effect of n-3 PUFAs on NO mediated relaxation. For example a study investigating the effect of DHA supplementation in orchidectomized animals [46] found that vasodilator responses and NO levels were significantly lower in orchidectomized rats compared to the control rats and that DHA normalized these levels [46]. However, DHA-supplemented control rats did not have altered levels of NO in aortic segments. Additionally, in placental tissue derived from pregnancy-induced hypertensive rats with impaired vasodilator responses, n-3 PUFA supplementation led to an increase in eNOS levels [47]. Therefore, it is possible that the beneficial effects of n-3 PUFAs on NO production can only be observed in conditions where NO bioavailability is compromised. A recent meta-analysis indicated that the hypotensive effects of n-3 PUFAs are only observed in hypertensive individuals but not in healthy volunteers [48]. We believe our study indicates that n-3 PUFAs do not affect eNOS-mediated relaxations when acutely applied to arterial tissue from healthy animals and highlights that care must be taken when comparing n-3 PUFA effects between species and disease models.

Both DHA and EPA compete with AA as substrates for COX enzymes resulting in the production of vasoactive metabolites and clinical evidence demonstrates there is altered prostanooid production as a result of fish oil supplementation in humans [49]. Furthermore, n-3 PUFAs inhibit noradrenaline- and angiotensin II-induced vasoconstriction of human forearm resistance vessels, an effect that is sensitive to COX blockade [49]. However, we found no evidence of COX-derived metabolites contributing to n-3 PUFA-mediated relaxation in either...
mesenteric artery or aorta (Fig 2). This is in contrast to previous studies by Engler et al where COX-derived metabolites of DHA and EPA were reported to be involved in relaxation of rat aorta [24, 50]. In these studies, relaxations were sensitive to the blockade of COX and adenosine triphosphate-sensitive potassium channels (K_{ATP}); consistent with studies indicating that AA-derived prostanoids activate vascular K_{ATP} [51]. This discrepancy might have occurred due to significant methodological differences between our laboratory and that of Engler et al [24, 50], which include the use of a different vasoconstrictor (noradrenaline) and the use of considerably larger and older WKY rats by the Engler group [16–17 weeks, 355±11 g]. There is evidence indicating that ageing is associated with endothelial dysfunction and therefore is a risk factor for CVDs [52]. Various studies have indicated that ageing can evoke biochemical changes in the blood vessels resulting in impairment of NO production and PGI_{2}-induced relaxation [53–57]. Therefore, it is possible that ageing could also affect the mechanisms involved with n-3 PUFA-induced vasodilation [58]; for example, the COX metabolites of n-3 PUFAs may have a more profound effect in improving the impaired endothelial function in older rats and this may partly explain the discrepancy. However, our findings are consistent with another study where combined inhibition of COX and eNOS did not modify DHA-induced relaxation of U46619-constricted rat aorta [59]. This study was conducted with rats of the same age and weight as used in our study. Further investigation is required to examine if different vasoconstrictor agonists and age groups of WKY rats alter the mechanisms underlying n-3 PUFA mediated vasodilation.

In addition to the reported effects on NOS and COX mediated relaxations, n-3 PUFA compete with AA as substrates for CYP450, resulting in the production of different vasoactive metabolites in arteries [22, 25, 60]. In porcine coronary arteries, DHA-derived CYP450 metabolites, EDPs, were reported to activate BK_{Ca} channels found in VSMCs resulting in hyperpolarization and vasodilation [25]. Furthermore, CYP450 metabolites of EPA, 17(18)-EpETEs, relax pulmonary artery through activation of BK_{Ca} [60]. Therefore, we investigated the role of CYP450 epoxygenase in rat mesenteric artery and aorta with n-3 PUFAs. Our findings demonstrate that inhibition of CYP450 epoxygenase did not affect DHA-induced relaxation in either artery (Fig 3A and 3C). In contrast, EPA-induced relaxation was partially attenuated by inhibition of CYP450 in both arteries (Fig 3B and 3D). These findings again indicate heterogeneity in the vasodilation mechanisms of n-3 PUFAs. The lack of effect on DHA mediated relaxation and the large proportion of relaxation remaining following the blockade of CYP450 in EPA mediated relaxation, suggests other mechanisms are also involved. Therefore, our findings suggest that n-3 PUFAs do not necessarily require CYP450 metabolism to induce full vascular relaxation. However, we cannot eliminate the possibility that metabolism by other enzymes, such as lipoxigenase, could contribute to these relaxation responses [61].

In this study, we also investigated if mechanisms of EDH-mediated relaxation could be involved with the vasodilation effect of n-3 PUFAs. EDH is an important vasodilation pathway, especially in smaller resistance arteries, that involves endothelial SK_{Ca} and IK_{Ca} and VSMC BK_{Ca} activation resulting in the hyperpolarization and relaxation of VSMCs [4, 5]. DHA and DHA-derived EDPs activate BK_{Ca} channels present in VSMCs from porcine coronary [25] and rat coronary arteries [62, 63]; with EDPs reported to be 1000 times more potent in activating BK_{Ca} compared to AA-derived EETs. Similarly, CYP450 metabolites of EPA, 17R, 18S-EpETEs, activate BK_{Ca} channels in rat cerebral and mesenteric arteries [26] as well as human pulmonary artery [60]. Consistent with these studies, our results demonstrate that DHA-mediated relaxations in both mesenteric artery and aorta have a component sensitive to the blockade of BK_{Ca} (Figs 4A and 5A). Our data is consistent with the ability of DHA to directly activate these channels as the relaxations are independent of the metabolic action of CYP450 (Fig 3A and 3C). In the mesenteric artery (but not the aorta), BK_{Ca} blockade also led
to inhibition of EPA-induced relaxation (Fig 4B). It is conceivable that EpETEs derived by metabolism of EPA by CYP450 could contribute to this effect as inhibition of CYP450 also reduced EPA-mediated relaxation (Fig 3B). The lack of any effect on EPA-induced relaxation following BK$_{\text{Ca}}$ inhibition in the aorta indicates that direct or indirect modulation of this channel by EpETEs does not occur in this artery; again demonstrating the heterogeneity in the vasodilator mechanisms of n-3 PUFA mediated responses, depending upon both the type of artery and the n-3 PUFAs used to evoke relaxation.

To date there are no reports of n-3 PUFAs activating the SK$_{\text{Ca}}$ and IK$_{\text{Ca}}$ channels involved in EDH mediated relaxations. Blockade of the SK$_{\text{Ca}}$ channel did not modify the relaxation responses to DHA or EPA in either artery. It is worth noting that we preconstricted arteries with U46619 and that activation of TP receptors inhibits SK$_{\text{Ca}}$ channel activity in rat cerebral [64] and mesenteric arteries [65]. Therefore, it is possible that any potential SK$_{\text{Ca}}$ component of n-3 PUFA-mediated relaxation was masked. However, an entirely novel finding of this study is that IK$_{\text{Ca}}$ blockade inhibits DHA-induced relaxation of rat mesenteric artery and aorta (Figs 4A and 5A respectively). Furthermore, IK$_{\text{Ca}}$ also contributed to EPA-induced relaxation of rat mesenteric artery (Fig 4B). This was surprising as it has been previously reported that DHA inhibits IK$_{\text{Ca}}$ currents [66] in human embryonic kidney (HEK) cells. We cannot fully explain this discrepancy, but arterial IK$_{\text{Ca}}$ channels are restricted to signalling microdomains in the endothelium where activation of associated proteins regulates IK$_{\text{Ca}}$-mediated hyperpolarization [67, 68]. It is possible that HEK cells lack these microdomains, and thus what we observe may reflect an indirect activation of IK$_{\text{Ca}}$ by DHA observed only in native tissue.

The endothelium-independent vasodilation mechanisms of n-3 PUFAs in arteries have not been extensively studied and remain unclear. BK$_{\text{Ca}}$ are predominantly expressed in VSMCs and as discussed earlier, DHA and n-3 PUFA metabolites have been found to activate BK$_{\text{Ca}}$ [25, 62, 63]. These metabolites are generally reported to be produced by endothelium derived enzymes such as CYP450 epoxygenase, but DHA also directly activates BK$_{\text{Ca}}$ channels in the VSMCs [62]. Our data supports the direct action on VSMCs through BK$_{\text{Ca}}$, as there was a minimal role of endothelium-dependent mechanisms in n-3 PUFA-induced relaxations. However, other endothelium-independent mechanisms for n-3 PUFA induced relaxation have been reported, for example, via inhibition of calcium influx in sheep pulmonary artery [69]. Furthermore, n-3 PUFAs are known to activate protein kinases such as protein kinase G, as demonstrated in cardiac fibroblasts [70]. If n-3 PUFAs are involved in activation of protein kinase G in arteries, they would also indirectly activate BK$_{\text{Ca}}$ [71–74] which would be consistent with our findings. n-3 PUFAs also activate protein kinase A in rat cardiac cells, epithelial cells and human adipocytes [75, 76]. Protein kinase A can also evoke vasodilation, through direct activation of vascular K$_{\text{ATP}}$ [77], therefore it can be speculated that n-3 PUFAs could also have an indirect interaction with potassium channels through the modulation of protein kinases, presenting an avenue for future investigation.

Conclusion

The aim of this study was to characterise the mechanisms of DHA- and EPA-dependent vasodilation in rat conduit and resistance arteries. We demonstrate that endothelium has a minor role in these relaxations as confirmed by NO and COX not being involved in n-3 PUFA-induced relaxation and CYP450 metabolism only having a small effect. These findings are summarised in Fig 6 and they clearly demonstrate heterogeneity in the vasodilation mechanisms of n-3 PUFAs depending upon both the type of n-3 PUFA and the vascular bed. Similar to previous studies, BK$_{\text{Ca}}$ was found to be involved in DHA- and EPA-induced relaxation [25,
However, we also observed a novel role for IK$_{Ca}$ in DHA- and EPA-induced relaxation of rat mesenteric arteries. Despite inhibition of a number of major vasodilator pathways, a large proportion of relaxation remained residual to these interventions indicating the presence of uncharacterised, endothelium-independent vasodilation mechanisms, which may involve other K$^+$ channels and protein kinases [24, 50, 77, 78]. In conclusion, our study provides evidence of significant heterogeneity in the mechanisms of n-3 PUFA mediated relaxation in rat aorta and mesenteric artery along with a novel role for IK$_{Ca}$. We believe these findings will be invaluable for the design of future vascular studies that involve the use of n-3 PUFAs.

Supporting information

S1 File. Supplementary data for: Characterisation of the vasodilation effects of DHA and EPA, n-3 PUFAs (fish oils), in rat aorta and mesenteric resistance arteries. Table A shows curve fit analysis for all experimental groups in each artery type Table B Shows curve fit analysis for pooled control data for DHA and EPA in each artery type.

(DOCX)

Author Contributions

Conceptualization: Graeme S. Cottrell, Alister J. McNeish.
Data curation: Roshan Limbu.

Formal analysis: Roshan Limbu, Alister J. McNeish.

Funding acquisition: Alister J. McNeish.

Investigation: Roshan Limbu.

Methodology: Alister J. McNeish.

Project administration: Alister J. McNeish.

Resources: Alister J. McNeish.

Supervision: Graeme S. Cottrell, Alister J. McNeish.

Validation: Alister J. McNeish.

Visualization: Roshan Limbu, Graeme S. Cottrell, Alister J. McNeish.

Writing – original draft: Roshan Limbu, Alister J. McNeish.

Writing – review & editing: Roshan Limbu, Graeme S. Cottrell, Alister J. McNeish.

References

1. Schächinger V, Britten MB, Zeiher AM. Prognostic Impact of Coronary Vasodilator Dysfunction on Adverse Long-Term Outcome of Coronary Heart Disease. Circulation. 2000; 101(16):1899–906. PMID: 10779454

2. Förstermann U, Münzel T. Endothelial Nitric Oxide Synthase in Vascular Disease: From Marvel to Menace. Circulation. 2006; 113(13):1708–14. https://doi.org/10.1161/CIRCULATIONAHA.105.602532 PMID: 16585403

3. Kukovetz WR, Holzmann S, Wurm A, Poch G. Prostacyclin increases cAMP in coronary arteries. J Cyclic Nucleotide Res. 1979; 5(6):469–76. PMID: 231612

4. Parkington HC, Coleman HA, Tare M. Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Rep. 2004; 49(6):509–14.

5. Ozkor MA, Quyyumi AA. Endothelium-Derived Hyperpolarizing Factor and Vascular Function. Cardiol Res Pract. 2011; 2011(156146):1–12.

6. Edwards G, Feletou M, Weston AH. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch. 2010; 459(6):863–79. https://doi.org/10.1007/s00424-010-0817-1 PMID: 20383718

7. Kagawa Y, Nishizawa M, Suzuki M, Miyamoto T, Goto K, et al. Eicosapolyenoic acids of serum lipids of Japanese islanders with low incidence of cardiovascular diseases. J Nutr Sci Vitaminol (Tokyo). 1982; 28(4):441–53.

8. Bang HO, Dyerberg J, Sinclair HM. The composition of the Eskimo food in north western Greenland. Am J Clin Nutr. 1980; 33(12):2657–61. PMID: 7435433

9. Peter S, Chopra S, Jacob JJ. A fish a day, keeps the cardiologist away!–A review of the effect of omega-3 fatty acids in the cardiovascular system. Indian J Endocrinol Metab. 2013; 17(3):422–9. https://doi.org/10.4103/2230-8210.111630 PMID: 23869297

10. Zheng J-S, Hu X-J, Zhao Y-M, Yang J, Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ. 2013; 346(f3706):1–10.

11. Birch EE, Garfield S, Cañafieda Y, Hughbanks-Wheaton D, Uauy R, Hoffman D. Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum Dev. 2007; 83(5):279–84. https://doi.org/10.1016/j.earhumdev.2006.11.003 PMID: 17240089

12. Maroon JC, Bost JW. ω-3 Fatty acids (fish oil) as an anti-inflammatory: an alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surg Neurol. 2006; 65(4):326–31. https://doi.org/10.1016/j.surneu.2006.10.023 PMID: 16531187

13. Siroth V, Oseredczuk M, Bemrah-Aouachria N, Volatier J-L, Leblanc J-C. Lipid and fatty acid composition of fish and seafood consumed in France: CALIPSO study. J Food Compost Anal. 2008; 21(1):8–16.
14. Mozaffarian D, Wu JHY. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J Am Coll Cardiol. 2011; 58(20):2047–67. https://doi.org/10.1016/j.jacc.2011.06.063 PMID: 22051327

15. Khan F, Elherik K, Bolton-Smith C, Barr R, Hill A, Murrie I, et al. The effects of dietary fatty acid supplementation on endothelial function and vascular tone in healthy subjects. Cardiovasc Res. 2003; 59(4):955–62. PMID: 14553835

16. Bruno RS, Tiago DP, Michele P, Lusiane MB. Nitric Oxide Signaling and the Cross Talk with Prostaglandins Pathways in Vascular System. Med Chem. 2016; 12:1–15.

17. Fleming I. The factor in EDHF: Cytochrome P450 derived lipid mediators and vascular signaling. Vascul Pharmacol. 2016; 86:31–40. https://doi.org/10.1016/j.vph.2016.03.001 PMID: 26975734

18. Garland CJ, Dora KA. EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol. 2017; 219(1):152–61.

19. Strokin M, Sergeeva M, Reiser G. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A(2) and is differentially regulated by cyclic AMP and Ca(2+). Br J Pharmacol. 2003; 139(5):1014–22. https://doi.org/10.1038/sj.bjp.0705326 PMID: 12839876

20. Strokin M, Sergeeva M, Reiser G. Role of Ca2+-independent phospholipase A2 and n-3 polyunsaturated fatty acid docosahexaenoic acid in prostanoid production in brain: perspectives for protection in neuroinflammation. Int J Dev Neurosci. 2004; 22(7):551–7. https://doi.org/10.1016/j.ijdevneu.2004.07.002 PMID: 15465285

21. Dong L, Zou H, Yuan C, Hong YH, Kuklev DV, Smith WL. Different Fatty Acids Compete with Arachidonic Acid for Binding to the Allosteric or Catalytic Subunits of Cyclooxygenases to Regulate Prostanoid Synthesis. J Biol Chem. 2016; 291(8):4069–78. https://doi.org/10.1074/jbc.M115.698001 PMID: 26703471

22. Cosima A, Konkel A, Fischer R, Schunck W-H. Cytochrome P450-dependent metabolism of omega-6 and omega-3 long-chain polyunsaturated fatty acids. Pharmacol Rep. 2010; 62(3):536–47. PMID: 20631419

23. Thomson SJ, Askari A, Bishop-Bailey D. Anti-Inflammatory Effects of Epoxyeicosatrienoic Acids. Int J Vasc Med. 2012; 2012:1–7.

24. Engler MB, Engler MM, Browne A, Sun Y-P, Sievers R. Mechanisms of vasorelaxation induced by eicosapentaenoic acid (20:5n-3) in WKY rat aorta. Br J Pharmacol. 2000; 131(8):1793–9. https://doi.org/10.1038/sj.bjp.0703754 PMID: 11139460

25. Ye D, Zhang D, Oltman C, Dellsperger K, Lee H-C, VanRollins M. Cytochrome P-450 Epoxygenase Metabolites of Docosahexaenoate Potently Dilate Coronary Arterioles by Activating Large-Conductance Calcium-Activated Potassium Channels. J Pharmacol Exp Ther. 2002; 303(2):768–76. PMID: 12388664

26. Hercule HC, Salanova B, Essin K, Honeck H, Falck JR, Sausbier M, et al. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BKα channel subunit in rodents. Exp Physiol. 2007; 92(6):1067–76. https://doi.org/10.1113/expphysiol.2007.038166 PMID: 17675416

27. Armah Christopher K, Jackson Kim G, Doman I, James L, Cheghani F, Minihane Anne M. Fish oil fatty acids improve postprandial vascular reactivity in healthy men. Clin Science. 2008; 114(11):679–86. https://doi.org/10.1042/CS20070277 PMID: 18052925

28. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Vascular Reactivity of the Forearm Microcirculation in Hyperlipidemic, Overweight Men. Circulation. 2000; 102(11):1264–9. PMID: 10982541

29. Tagawa H, Shimokawa H, Tagawa T, Kuroiwa-Matsumoto M, Hirooka Y, Takeshita A. Long-Term Treatment with Eicosapentaenoic Acid Augments Both Nitric Oxide-Mediated and Non-Nitric Oxide-Mediated Endothelium-Dependent Forearm Vasodilation in Patients with Coronary Artery Disease. J Cardiovasc Pharmacol. 1999; 33(4):633–40. PMID: 10218735

30. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008; 47(2):147–55. https://doi.org/10.1016/j.plipres.2007.12.004 PMID: 18198131

31. Shimokawa H, Godo S. Diverse Functions of Endothelial NO Synthases System: NO and EDH. J Cardiovasc Pharmacol. 2016; 67(5):361–6. https://doi.org/10.1097/FJC.0000000000000348 PMID: 26647119

32. Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002; 23(8):374–80. PMID: 12377579

33. Kwan H-Y, Shen B, Ma X, Kwok Y-C, Huang Y, Man Y-B, et al. TRPC1 Associates With BKCa Channel to Form a Signal Complex in Vascular Smooth Muscle Cells. Circ Res. 2009; 104(5):670–8. https://doi.org/10.1161/CIRCRESAHA.108.188748 PMID: 19168436
34. Jiang J, Thorén P, Caligiuri G, Hansson GK, Pernow J. Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of K(Ca) channels: relation to K(v) channels and nitric oxide. Br J Pharmacol. 1999; 128(3):637–46. https://doi.org/10.1038/sj.bjp.0702855 PMID: 10516643

35. Li Z, Chen X, Niwa Y, Sakamoto S, Nakaya Y. Involvement of Ca²⁺-activated K⁺ channels in ginsenoside-induced aortic relaxation in rats. J Cardiovasc Pharmacol. 2001; 37(1):41–7. PMID: 11152372

36. Shimokawa H, Yasutake H, Fuji K, Owada MK, Nakaike R, Fukumoto Y, et al. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol. 1996; 28(5):703–11. PMID: 9945685

37. Davignon J, Ganz P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation. 2004; 109(23 suppl 1):III-27–III-32.

38. Newens KJ, Thompson AK, Jackson KG, Wright J, Williams CM. DHA-rich fish oil reverses the detrimental effects of saturated fatty acids on postprandial vascular reactivity. Am J Clin Nutr. 2011; 94(3):742–8. https://doi.org/10.3945/ajcn.110.009233 PMID: 21831993

39. London GM. Large arteries haemodynamics: conduit versus cushioning function. Blood Press Suppl. 1997; 2:48–51. PMID: 9495627

40. Davis MJ, Ferrer PN, Gore RW. Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol Heart Circ Physiol. 1986; 250(2):H291–H303.

41. Schiffrin EL. Reactivity of small blood vessels in hypertension: relation with structural changes. State of the art lecture. Hypertension. 1992; 19(2 Suppl):Ii1–9.

42. Sawada T, Tsukuba H, Hashimoto N, Takabe M, Miyata T, Aoki K, et al. Effects of 6-month eicosapentanoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc Diabetol. 2016; 15(1):121. https://doi.org/10.1186/s12933-016-0437-y PMID: 27565734

43. Omura M, Kobayashi S, Mizukami Y, Mogami K, Todoroki-Ikeda N, Miyake T, et al. Eicosapentanoic acid (EPA) induces Ca²⁺-independent activation and translocation of endothelial nitric oxide synthase and endothelium-dependent vasorelaxation. FEBS Lett. 2001; 487(3):361–6. PMID: 11163359

44. Hirafuji M, Machida T, Tsunoda M, Miyamoto A, Minami M. Docosahexaenoic acid potentiates interleukin-1β induction of nitric oxide synthase through mechanism involving p44/42 MAPK activation in rat vascular smooth muscle cells. Br J Pharmacol. 2002; 136(4):613–9. https://doi.org/10.1038/sj.bjp.0704768 PMID: 12055140

45. López D, Orta X, Casós K, Sáez MP, Puig-Parellada P, Farriol M, et al. Upregulation of endothelial nitric oxide synthase in rat aorta after ingestion of fish oil-rich diet. Am J Physiol Heart Circ Physiol. 2004; 287(2):H567–H72. https://doi.org/10.1152/ajpheart.01145.2003 PMID: 15059781

46. Villalpando DM, Navarro R, del Campo L, Largo C, Muñoz D, Taberner M, et al. Effect of Dietary Docosahexaenoic Acid Supplementation on the Participation of Vasodilator Factors in Aorta from Orchidectomized Rats. PLOS ONE. 2015; 10(11):e0142039. https://doi.org/10.1371/journal.pone.0142039 PMID: 26540339

47. Kemse NG, Kale AA, Joshi SR. Supplementation of maternal omega-3 fatty acids to pregnancy induced hypertension Wistar rats improves IL10 and VEGF levels. Prostaglandins Leukot Essent Fatty Acids. 2016; 104(Supplement C):25–32.

48. Morris MC, Sacks F, Rosner B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation. 1993; 88(2):523. PMID: 8339414

49. Chin JP, Gust AP, Dart AM. Indomethacin inhibits the effects of dietary supplementation with marine oils on vasoconstriction of human forearm resistance vessels in vivo. J Hypertens. 1993; 11(11):1229–34. PMID: 8301104

50. Engler MB, Engler MM. Docosahexaenoic Acid-Induced Vasorelaxation in Hypertensive Rats: Mechanisms of Action. Biol Res Nurs. 2000; 2(2):85–95. https://doi.org/10.1177/109980040002000202 PMID: 11337819

51. Eguchi S, Kawano T, Yinhua, Tanaka K, Yasui S, Mawatari K, et al. Effects of Prostaglandin E1 on Vascular ATP-Sensitive Potassium Channels. J Cardiovasc Pharmacol. 2007; 50(6):686–91. https://doi.org/10.1097/FJC.0b013e3181583d9b PMID: 18091586

52. Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci (Lond). 2011; 120(9):357–75.

53. Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest. 1993; 92(2):652–62. https://doi.org/10.1172/JCI116634 PMID: 8349804
54. Holowatz LA, Thompson CS, Kenney WL. L-Arginine supplementation or arginase inhibition augments reflex cutaneous vasodilation in aged human skin. J Physiol. 2006; 574(Pt 2):573–81. https://doi.org/10.1113/jphysiol.2006.108993 PMID: 16675494
55. Holowatz LA, Thompson-Torgerson CS, Kenney WL. Altered mechanisms of vasodilation in aged human skin. Exerc Sport Sci Rev. 2007; 35(3):119–25. https://doi.org/10.1097/jess.0b013e3180a02f85 PMID: 17620930
56. Nicholson WT, Vaa B, Hesse C, Eisenach JH, Joyner MJ. Aging is associated with reduced prostacyclin-mediated dilation in the human forearm. Hypertension. 2009; 53(6):973–8. https://doi.org/10.1161/HYPERTENSIONAHA.108.121483 PMID: 1941649
57. Nicholson WT, Vaa B, Hesse C, Eisenach JH, Joyner MJ. Aging is associated with reduced prostacyclin-mediated dilation in the human forearm. Hypertension. 2009; 53(6):973–8. https://doi.org/10.1161/HYPERTENSIONAHA.108.121483 PMID: 1941649
58. Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, et al. Age-Related Reduction of NO Availability and Oxidative Stress in Humans. Hypertension. 2001; 38(2):274–9. PMID: 11509489
59. Jackson KG, Armah CK, Doman I, James L, Cheghani F, Minihan e AM. The impact of age on the post-prandial vascular response to a fish oil-enriched meal. Br J Nutr. 2009; 102(10):1414–9. https://doi.org/10.1017/S0007114509990742 PMID: 19563691
60. Morin C, Sirois M, Echave V, Rizzallah E, Rousseau E. Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am J Physiol Lung Cell Mol Physiol. 2009; 296(1):L130–L9. https://doi.org/10.1152/ajplung.90436.2008 PMID: 18978038
61. Li X, Hong S, Li P-L, Zhang Y. Docosahexae noic Acid-In duced Coronary Arterial Dilation: Actions of 17S-Hydroxy Docosahexaenoic Acid on K(+) Channel Activity. J Pharmacol Exp Ther. 2011; 336(3):891–9. https://doi.org/10.1124/jpet.110.176461 PMID: 21156816
62. Lai LH, Wang RX, Jiang WP, Yang XJ, Song JP, Li XR, et al. Effects of docosahexaenoic acid on large-conductance Ca2+-activated K+ channels and voltage-dependent K+ channels in rat coronary artery smooth muscle cells. Acta pharmacologica Sinica. 2009; 30(3):314–20. https://doi.org/10.1038/aps.2009.7 PMID: 19262555
63. Wang R, Chai Q, Lu T, Lee H-C. Activation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity. Cardiovasc Res. 2011; 90(2):344–52. https://doi.org/10.1093/cvrr/cvr411 PMID: 21183702
64. McNeish AJ, Garland CJ. Thromboxane A(2) inhibition of SK(Ca) after NO synthase block in rat middle cerebral artery. Br J Pharma col. 2007; 151(4):441–9. https://doi.org/10.1038/sj.bjp.0707240 PMID: 17420777
65. Crane GJ, Garland CJ. Thromboxane receptor stimulation associated with loss of SK(Ca) activity and reduced EDHF responses in the rat isolated mesenteric artery. Br J Pharmacol. 2004; 142(1):43–50. https://doi.org/10.1038/sj.bjp.0705756 PMID: 15051624
66. Kacic M, Oliván-Viguer a A, Köhler R. Modulation of K(Ca)3.1 Channels by Eicosanoids, Omega-3 Fatty Acids, and Molecular Determinants. PLoS One. 2014; 9(11):1–11.
67. Sansom SC, Stockand JD. Physiologic al role of large, Ca2+- activated K+ channel s in human glomeru lar mesangial cells. Clin Exp Pharmacol Physiol. 1996; 23(1):76–82. PMID: 8713500
68. Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol. 1993; 265(1 Pt 1):C299–303. https://doi.org/10.1152/ajpcell.1993.265.1.C299 PMID: 8338137
73. Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD. Cyclic GMP-dependent Protein Kinase Activates Cloned BKCa Channels Expressed in Mammalian Cells by Direct Phosphorylation at Serine 1072. J Biol Chem. 1999; 274(16):10927–35. PMID: 10196172

74. Lincoln TM, Dey N, Sellak H. Invited Review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol (1985). 2001; 91 (3):1421–30.

75. Tai CC, Chen CY, Lee HS, Wang YC, Li TK, Mersamm HJ, et al. Docosahexaenoic Acid Enhances Hepatic Serum Amyloid A Expression via Protein Kinase A-dependent Mechanism. J Biol Chem. 2009; 284(47):32239–47. https://doi.org/10.1074/jbc.M109.024661 PMID: 19755416

76. Mies F, Shlyonsky V, Goolaerts A, Sariban-Sohrab S. Modulation of epithelial Na+ channel activity by long-chain n–3 fatty acids. Am J Physiol Renal Physiol. 2004; 287(4):F850–F5. https://doi.org/10.1152/ajprenal.00078.2004 PMID: 15198929

77. Yang Y, Shi Y, Guo S, Zhang S, Cui N, Shi W, et al. PKA-dependent activation of the vascular smooth muscle isoform of KATP channels by vasoactive intestinal polypeptide and its effect on relaxation of the mesenteric resistance artery, BBA Biomembranes. 2008; 1778(1):88–96. https://doi.org/10.1016/j.bbamem.2007.08.030 PMID: 17942071

78. Sato K, Chino D, Nishioka N, Kanai K, Aoki M, Obara K, et al. Pharmacological Evidence Showing Significant Roles for Potassium Channels and CYP Epoxigenase Metabolites in the Relaxant Effects of Docosahexaenoic Acid on the Rat Aorta Contracted with U46619. Biol Pharm Bull. 2014; 37(3): 394–403. PMID: 24369179