Insights on Heterologous Expression of Fungal Cellulases in *Pichia pastoris*

Sajid Kamal¹, Shahid Ullah Khan², Nawshad Muhammad³, Muhammad Shoaib⁴, Mukama Omar⁵,⁶, Kaneza Pascal¹, Mukasekuru Marie Rose¹, Fubao Fuelbiol Sun¹, *

¹School of Biotechnology, Jiangnan University, Wuxi, P. R. China
²College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, P. R. China
³Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology, Lahore, Pakistan
⁴School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
⁵Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P. R. China
⁶Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda

Email address:

fubao@jiangnan.edu.cn (F. F. Sun), saji@jiangnan@yahoo.com (S. Kamal)

*Corresponding author

To cite this article:

Sajid Kamal, Shahid Ullah Khan, Nawshad Muhammad, Muhammad Shoaib, Mukama Omar, Kaneza Pascal, Mukasekuru Marie Rose, Fubao Fuelbiol Sun. Insights on Heterologous Expression of Fungal Cellulases in *Pichia pastoris*. Biochemistry and Molecular Biology. Vol. 3, No. 1, 2018, pp. 15-35. doi: 10.11648/j.bmb.20180301.13

Received: February 17, 2018; Accepted: March 27, 2018; Published: April 2, 2018

Abstract: Cellulosic biomass, the most remarkable renewable source of fuels and other compounds of potential importance, needs highly complex mixture of various enzymes for its degradation. For sustainable and economical bioprocess, the availability of these enzymes in high quantities and at a low price is much warranted. The advancements in discovery of new strains, highly valuable techniques and molecular biotechnological tools have led to *Pichia pastoris* gaining a recognized organism status both at industrial as well as laboratory level. With numerous beneficial characteristics on its credit *P. pastoris* has emerged a promising host for most of heterologous proteins production. Thus, the production of fungal cellulytic enzymes is of worth to be comprehensively illustrated. There are some activators including promoters used in the expression host to increase the utility of expression system. This review summarizes the heterologous expression of fungal cellulases (*Exo-glucanases*, *endo-glucanases* (*EGs*) and *beta-glucosidases* (*BGLs*)) and advocates the various kinds of promoters used in *P. Pastoris* for expression of these enzymes and proteins. Further, concluding remarks will provide insights revealing the scope of *P. pastoris* as a potential expression system tool in today's modern direction of research.

Keywords: *Pichia pastoris*, Heterologous Expression, Fungal Cellulases, Promoters, Synthetic Core Promoters

1. Introduction

Biomass is a principal source of food, coarse food, pulp as well as delivers bioenergy ~10.2% (50.3 EJ/yr) of the total worldwide primary energy [1]. At present, the most potential and plentiful lignocellulosic biomass resulting from plant residues in the USA, South America, Asia, and Europe are corn stover, sugarcane bagasse, rice, and wheat straws, respectively [2]. From decades research is being carried out for increasing the digestibility of cellulosic biomass into various kinds of applicable products, but still no clear characteristics have been enumerated which may act as a proxy to indicate the course of successful hydrolysis of cellulosic biomass [3]. Cellulose plays the main structural function in plants and is synthesized through complex enzymatic machinery during cell wall synthesis [4]. Lignin generated by a biosynthetic process, build a protective seal around the other two constituents i.e., cellulose and hemicelluloses [5]. Cotton, chemical pulp, and flax signify new and fresh cellulosic biomass resources (up to 90%
Cellulose, while wood has about 50% cellulose [6]. Novel fungal enzymes, need for high degradation of biomass, are attributed to at least 35 families of glycoside hydrolases, three of which are carbohydrate esterase and six of polysaccharide lyase [7]. The filamentous fungi are a prevalent source of fungal cellulases enzymes which are commonly exploited in the industry for biodegradation of biomass into useful products (i.e. biofuels and chemical molecules) with a wide range of applications. The functional studies are progressing with a rapidness on which genomic plus (post)-genomic data of novel fungi is being generated [8]. *Pichia pastoris* (*Komagataella phaffii* has emerged as an alternative host system for the heterologous expression of desired enzymes and proteins [9]. In contrast to other expression host, *P. pastoris* secretes endogenous cellulolytic enzymes in very low quantities [10].

A well-organized secretion tools and the relative simplicity of getting high dry cell weights >100 g/L through bioreactor fermentation make *P. pastoris* a popular alternative expression host for enzymes and proteins both at industrial and laboratory levels [11]. Despite the fact that *P. pastoris is beneficial expression system for the heterologous expression of proteins [12] still there exist a room for betterment on transcriptional [13] and posttranslational level [14]. The optimization of gene and expression of enzyme can be determined on a transcriptional level through changing copy numbers of the integrated expression cassettes also by promoter selection [15]. As yet highly methanol inducible promoter pAOX1 and, to a certain degree, the constitutive promoter pGAP are largely employed for enzymes and proteins heterologous expression in *P. pastoris* [12]. Synthetic promoters generally render a broad range of expression levels (10−1000-fold) and fine growths [16]. The aim of designing promoters is scaling up the heterologous proteins and enzymes production. All of the recent efforts carried on to design promoters to alter the upstream regulatory sequences most commonly in *P. pastoris* and *S. cervisiae* [17].

This review gives detail elucidation on heterologous expression of fungal cellulases (*Exo-glucanases, endo-glucanases (EGs) and beta-glucosidases (BGLs)*) and various kinds of promoters commonly used in *P. Pastoris* for enzymes and proteins expression, to reveal the scope of *P. pastoris* in today's modern field of research as a good expression system tool.

2. Cellulosic Biomass

Cellulosic biomass, a complex plant derived organic compound, comprised of carbohydrates such as cellulose and hemicelluloses etc represents the most favorable choice for the production of renewable energy materials. It is a cheap, inexpensive and frequently occurring agricultural biomass, and desirable feedstock for sugar, chemicals and biofuels [18, 19]. Approximately 50-60% of celluloses, hemicelluloses biomass are accounts for a good source of pentose and hexose sugars using various cellulases through bioprocessing [20]. Cellulose is a homogenous linear crystalline biopolymer composed of D-glucose monomers, linked covalently with (1→4) d-glycosidic bonds and also have amorphous non-crystalline regions, however the precise proportions and allocation within plant tissues and cell walls have not been entirely illuminated [21]. Cellulose has interlinked glucopyranose structure, each chain of glucan comprising over 25,000 glucose monomer [22]. Their microscopic studies clearly reveals that, 15-45 glucan chain forming a recalcitrant microfibril structure, while fusing poly microfibril forming structure of macrofibril/cellulose fibril [22]. There are some forces concerning with stability and recalcitrance of cellulose crystalline structure such as hydrogen bonding (intra-chain, inter-chain and inter-sheet) and Vander Waals forces (inter-sheet) [23]. Recalcitrance is regarded to be the chokepoint to exploiting biomass in the production of biofuels [24], which will assist to lessen our reliance on fossil energy resources. The high molecular weight and well ordered tertiary structure of cellulotic biomass created big hurdles to their solubilization in water. Even though starchy energy resources need temperatures of only 60-70°C to be transformed from crystalline form into amorphous, cellulose has need of 320°C and a pressure of 25 MPa to modify from the firm crystalline structure to an amorphous structure in water [6].

These microorganisms have been proven which containing high ability of cellulose productivity viz. *Actinomyces, Butyrivibrio/fibrisolvens, Bacteroides succinogenes, Clostridium species, Aspergillus species, Rumignococcus albus, Chaetomium species, Myrothecium species, Fusarium species, Methanohrevibacter ruminantium, Trichoderma species* etc [25]. The most common crystalline cellulose producing green algae include *Cladophorales (Chaetomorpha, Cladophora, Microctyon and Rhizoclonium)* and some of *Siphonocladas* members, while *V. ventricosa* generated more and big microfibrils of cellulose as compared to plant microfibrils of cell wall [26].

Their modification is carried out in different ways in nature, but still limited numbers of microorganisms are involved in their degradation as compared to cellulose degradation [27]. The biomass conversion into fermentable sugars via enzymatic hydrolysis is a complex process [28]. Depolymerization of cellulose into glucose is accompanied by, both chemical and enzymatic hydrolysis. Chemical hydrolysis is carried out in harsh conditions using inorganic acids and gives toxic byproducts which need further detoxification, whereas enzymatic hydrolysis is smoothly done in mild conditions, free of byproducts [22]. That’s why hydrolysis of cellulotic insoluble materials need the production of cell-associated or free extracellular cellulases [19]. In contrast, soluble substrates can be disseminated in enzymes active sites [29].

3. Major Cellulytic Fungal Species and Cellulases Productivity

The dissemination of industrial enzymes based on their...
applications in food (45%), additive in surfactants (34%), textiles (11%), leather (3%), and pulp and paper industries [29]. The most commonly available commercial enzymes are derived from plants, animals, and microorganisms. The main part of industrial enzymes are approximately over 50%, however, bacteria and fungi produces also producing highly valuable enzymes, which are mainly due to simplicity of their growth, low nutritional necessities, and wide biochemical diversity. Hydrolases, such as cellulases, proteases, lipases and amylases, cover more than 75% of commercially available enzymes [30], and the demand of these enzymes are much more warranted.

Though numerous microorganisms are involved in enzymes cellulases production, but fungi are prominent microorganisms playing key role in the production of cellulases. That’s why advanced studies are mainly focused on cellulase production of fungi [31-34]. The largest producer of cellulases is *Streptomyces*, some of their genera like *Micromonospora* and *Thermobifida* also used as a host for recombinant cellulases production [25, 35]. *Streptomyces thermoviolaceus* producing more thermo and PH stable recombinant cellulases, work in extreme conditions of industrial detergents and some ionic liquids [36]. *Thermomonospora fusca* generated cellulases commonly act on and degraded cotton and avicel [37]. That’s why the increasing development of technology working as well discovered many organisms having the cellulose degradation machinery depolymerized cellulose into depolymerized and hydrolyzed products using in multiple applications.

In a recent study, by using six different Azurine cross-linked substrates *Penicillium chrysogenum* and *Cladosporium sphaerospermum* gives the highest production of cellulase, arabinanase, β-glucosidase, mannanase and, β-galactanase activities and promote the degradation of lignocellulosic biomass. While *Stachybotrys* and *Chaetomium* showed low or had no cellulytic and xylanolytic activity by using Azurine cross-linked as a substrates [38]. *Melanomoria* sp. CCT 7736 acquired from coconut shell powder produced (7.50 IU/gds) of cellulase at optimized conditions at 24 h and pH 6.5 in a solid state fermentation, showed the same growth on both lignified and delignified substrates, avoid us from delignification [39]. *Proteobacteria* and *Firmicutes*, prevailed by the genera *Streptomyces*, *Arthrobacter*, *Bacillus*, *Pseudomonas*, *Stenotrophomonas* and *Pseudoaxanthomonas* found in a chimpampas saline-alkaline soils and humus content showed high cellulytic activities in a medium provided with NaCl up to 9% and at pH4.5--10.0. Furthermore, 84.8 of them degraded xylan while 71.7% degraded Avicel [40]. The most potent cellulytic fungal spiec *Scytalidium thermophilum* SKESMBKU01 showed maximum cellulytic activity of endo and exoglucanase in a media containing glucose as a carbon source compiled by xylose and lactose, whilst used KNO3 as a nitrogen source for endoglucanase and urea for exoglucanase activity with the activity of (0.366 U/ml1), and exhibited high stability at 85°C and pH--8.0. Which indicates that both endo and exoglucanase from *Scytalidium thermophilum* SKESMBKU01 are highly stable at high temperature and in alkaline pH, whereas they both are also active in PH ranges of (pH 3-8) and temperature ranges up to (45--85°C) [41].

Recently about forty fungal species from Wadi El-Natrun lake areas have been studied most of them showed cellulases activity (95%) while with different degrees 15% of them exhibited xylanolytic activity and only 1% showed pectinolytic activity. Some of them produced cellulases only on the single type of media such as *Alternaria alternata* on control media, *Cladosporium cladosporioides* and *Aspergillus terreus* at PH 4 adjusted media and *Emericella nidulans*, *Cochliobolus australiensis*, *Fusarium solani*, generated cellulases on medium supplemented with 10% NaCl. Others species such as *Emericella nidulans* and *Cladosporium cladosporioides* produced cellulase on the control, 10% NaCl and the acidic media or alkaline media respectively. While some organisms like *Emericellula* and *Fusarium solani* have not shown the capability of generating cellulase on all media used [42]. Some filamentous fungal species have been reported as β-glucosidase producers such as *Aspergillus*, *Talaromyces*, *Thermoascus*, *Penicillium*, *Trichoderma* [43, 44]. *Trichoderma reesei* is the well known organism play a pivotal role in cellulases production. Though, *T. reesei* has no ability to produce β-glucosidase which results in the accumulation of cellubiose and cello-oligosaccharides in media that gives catabolite repression on endoglucanase and cellobiohydrolase [45]. Especially, *Penicillium* sp. is widely used for β-glucosidase production [46, 47]. *Penicillium funiculosum* NCL1 has been accounts as an effective cellulytic fungus and it has been also proven that up to 97% of cotton hydrolysis is accomplished by due to its high β-glucosidase production [48].

The production of cellulytic enzymes and ethanol production via fermentation process needs at least 2unlike organisms conventionally, whereas recently reported single yeast isolate *Candida tropicalis* MTCC 25057 expressed xylanases and cellulases above the broad range of temperatures (32 and 42°C) through using various cellulosic substrates (carboxymethyl cellulose and wheat straw) and ferment the liberated sugars into xylitol and ethanol. It has been pointed out that the cultivation of *Candida tropicalis* at 42°C in pretreated hydrolysate having 0.5% wheat straw resulted in relative expression of cellulases (endoglucanases and exoglucanases) at concentrations of 97.8 U/gds and 114.1, respectively. A high xylanase activity (689.3 U/gds) has been shown by the yeast specie in the same cultivation conditions [49]. *Trichoderma reesei* NCIM 1186 showed the maximum cellulytic activity of 30.85 IU/gds utilizing wheat bran as the substrate and coconut water as an extra dietary. The produced cellulase has been utilized for the enzymatic sacharrification of phosphoric acid pre-treated wheat straw [50]. While previous reports pertained to xylanase production showed that the strains of *Penicillium* sp., *Aspergillus* sp., etc. demonstrate
high xylanase activities ranging from 5000 to 7000 U/gds [51, 52]. *Candida tropicalis* also showed high tolerance to inhibitors for example, HMF, furfural and acetic acid, found usually in lignocellulosic hydrolysate but still producing lower ethanol and xylitol titers assigned to the accessible dietary shortage in hydrolysates. Though, in an attempt to accomplish proficient hydrolysis of pretreated cellulose biomass, the expression and activities of the cellulytic enzymes will encompass to be importantly meliorated by the over expression of heterologous cellulases, accessory proteins and can be improved moreover by strain adjustment to nutritionally deficient conditions and genetic engineering [49].

From few years thermophilic fungi have remarkable significant in production of thermostable cellulases and their key role in biomass degradation at high temperature [53]. The GHs families 1, 3, 5, 6, 7, 12, and 45, are frequently contributed to therophilic fungal cellulases. Up to date, the complete repertoire of transcriptional factors involved in thermophilic fugal cellulases gene expression has not been illustrated as of *T. reesei*. They show their activities at the high temperature range in 50-80°C and in the PH range 4.0-7.0, also maintained the conspicuous thermal stability at 60°C with prolonged half-lives at 70, 80, and 90°C contrasted with other fungi [54]. Various thermophilic fungal species for example *Myceliophthora thermophila*, *Talaromyces emersonii*, *Melanocarpus albomyces*, *Humicola insolens*, *Humicola grisea*, and *Thermoascus aurantiacus* have been identified responsible for production of thermostable cellulases and hemicellulases [54]. Furthermore, these thermophilic fungal species have also the ability of higher production of cellobiohydrolases, endoglucanases, β-glucosidases and xylanases [54, 55], which are the most warranted.

4. Functions of Carbohydrate Binding Modules and Cellulose Binding Domains

Mostly cellulases in bacteria are attached to their cell wall forming a structure called cellulosome [56] also known as microbial complex system, whereas fungi secrete cellulases directly into the environment, the system is called as a noncomplex or free system. The microscopic study showed that, enzymes subunits are set periodically on scaffolding proteins in cellulosome, having dockerins and cohesions [22]. Cellulosome comprises a fibillar protein scaffoldin . This protein also termed as “scaffolds” and comprised of proteins CbpA, CipAn or Cip C [57]. Whereas dockerins are binds with enzyme subunit on one side and binds with cohesins on the other side. Theirs interactions playing a remarkable role in their structural architecture, having 6-9 different cohesions, bind to 26 various cellulosomal enzymes [22].

In fungal cellulases, the coupling module appears to perpetually have a place with the CBMI family and targets binding to cellulose surfaces [58]. The CD of exoglucanase Cel7A is made out of a β sandwich structure with a long substrate burrow lined by β-sheets, while four circles cover the passage. The CelA of *Cald. bescii* constitutes on a GH 48 and a GH 9 catalytic domain (CD), also containing type III cellulose binding modules. This carried cellulose hydrolysis not simply by surface ablation mechanism, but also carrying digging inside substrate surface, forming wide cavities therein [59]. The architecture of fungal cellulases comprising of a catalytic domain (CD) and cellulose binding domain (CBD) linked via peptide linkers [22]. Whereas CBD remains attached to substrate letting the CD to accomplish its catalytic activity. Cellulose binding domain (CBD) is renamed as Carbohydrate binding module (CBM). CBM have many families on their similarities in amino acids sequences. Until now 64 families of CBMs have been updated in the CAZY database [60]. CBMs comprising varying amino acids monomers from 30 up to over 200, gives single, double or triple in one protein [61]. At least 35 different glycoside hydrolase (GH) families of fungal cellulases, including six (6) polysaccharide lyase families and three (3) carbohydrate esterase families are involved in efficient degradation of plant lignocellulosic biomass [7]. These are either connected to the N-or C- end of the CD [62]. The nearness of CBMs is appeared to expand the binding of the substrate and focuses on the chemical towards particular substrates [61]. CBD is not directly needed in depolymerization of cellulose but its presence indirectly increase the catalytic performance of CD [63]. *T. reesei* Cel7A carried degradation of crystalline cellulose via processivity. As the cellulobiohydrolases have the ability to bind to carbohydrate chain, which decrystalize di-saccharide monomers from the end of the chain without separation [64]. The lower processivity of Cel6A is ascribed to a more open and shorter dynamic site burrow contrasted with Cel7A. Cel7B endoglucose has missing four β-sheets covering their tunnel, so having open burrow type active site [64]. This enables them to bind easily to make cut internally on cellulose structure at various positions, which depends on exocellulases structural characteristics allowing them for processively binding. Cel9A structural illumination has shown that it works as a bridge between exo- and endocellulases, because it adjusted the weak binding domain of 3c CBD within the active site of catalytic domain, letting enzyme processive hydrolysis [65].

The second class includes brown rot fungi (e.g Postia placenta) that need both CBMs and processive cellulases, in any case it is found to use crystalline cellulose as a sole carbon source, recommending the inclusion of non-enzymatic low atomic weight oxidants through the creation of receptive oxygen species (OH-, peroxide-or superoxide radicals), otherwise called Fenton response [66, 67].

5. Cellulases’ Mechanism of Action

CELs are the most important component of industrial processes having wide spread application in biotechnology, agriculture, and bio-energy uses mainly in the employment of cellulose biomass for their corresponding products [68].
CELs are categorized into 1, 3, 5, 6, 7, 8, 9, 10, 12, 16, 44, 45, 48, 51, and 61 families. The Carbohydrate-Active Enzyme (CAZy) database is a specialized data facts system of enzymes that construct and deconstruct convoluted carbohydrates and their conjugates, comprised of 113 proteins families, have over 47% of the total glycoside hydrolases (GH) coding genes. Recently, these families are further subdivided for inconvenient grouping of proteins using their sequence similarities as specificity. Currently available subfamilies are only GH1, GH2, GH5 [60] and GH13 [69]. There are three important types of cellulases, which are used basically for the efficient degradation of cellulose [70], Cellobiohydrolases (CBHs), also named as exo-glucanases, attack on cellobiose producing crystalline ends of cellulose. Endo-glucanases (EGs) break the glycosidic bonds inside the amorphous part of the substrate. The products of cellobiohydrolases and endoglucanases are inhibitory to the activities of their enzymes, so finally, the unconfined cellobiose is split by beta-glucosidases (BGLs) into glucose monomers to facilitate organinal cellular uptake [61]. There is a high level of coordination between the enzymes, for examples exo/endo, exo/exo and endo/BGL synergy, which is required for the productive hydrolysis of cellulose crystal. (See figure 1) More recently discovered oxidative cellulases act like endoglucanases reducing long chain cellulose into short chain oligomers by free radical mechanism [22]. The enzymes β-glucosidases are categorized into GH1, GH3, and GH9 founded on resemblances in their amino acids sequence, moreover most of the fungal β-glucosidases is a part of GH1 and GH3. According to substrate specificity, β-glucosidases have been categorized into alkyl β-glucosidases that particularly hydrolyze cello-oligosaccharides (including cellobiose) and aryl β-glucosidases that mainly hydrolyze p-nitrophenyl-β-D-glucopyranoside (pNPG), cellobiase, whilst β-glucosidases have the capability to hydrolyze both substrates referred above [71].

Figure 1. Schematic Illustration of cellulose structure and cellulases’ mode of action.
CELs (β-1,4 glucan hydrolases) enzymes work in group act on cellulose synergistically to hydrolyze it, this extends the subject to high level specification and remarkable importance in the hydrolysis of biomass [72]. The increasing demand and high prices of CELs make constricting, resulting in wasteful production processes. These facts compelled the researchers on exploitation of low quality carbohydrates, improving strain strength through manipulating their genetic material for reduction of their high priced production [68].

Biomass degrading fungi having two different types of machineries that playing a remarkable role in the degradation of biomass are, direct enzymatic depolymerisation and generation of oxidative species [73]. The most studied fungal enzymes are saprobic ascomycetes, while enzymes in basidiomycetes are less studied but basidiomycetes showed the ability of novel and more applicable enzymes production [74]. The lack of lignin altering peroxidases enzymes of ascomycetes seldom degrade aromatic lignin chain, it merely acts on polysaccharide portion [75] but can produce laccases for lignin degradation [76]. While on the other hand, basidiomycetes are the main producer of lignin degrading enzymes, playing a key role in lignin rich biomass conversion and also have the polysaccharides degrading ability [77, 78]. Discovery of new genomic information changing this categorization of fungal species as Basidiomycota are classified as white rot and brown rot, perhaps will no longer categorization of fungal species as Basidiomycota are reported strains which are genetically engineered having the capability to generate primitive CELs (over 100 g/l) with high specificity to the elevated extent [65].

That’s why the increasing development of technology working as well discovered many organisms having the cellulose degradation machinery depolymerized cellulose into depolymerized and hydrolyzed products using in multiple applications.

6. Synergy Studies Using Cellulases

Synergy among cellulases has been recognized between various celllobiohydrolases (with specificity for decreasing and non-lessening closes) amongst endo and exo-glucanase; between endo-glucanases; between celllobidynamic, endo-glucases and β-glucosidases [81, 82]. The most astounding degree of synergy has been largely found on very crystalline cellulose substrates, for example, bacterial cellulose (5-10) and cotton (3.9-7.6), while more undefined cellulose by and large showed much more degrees of collaboration (0.7-1.8) [83]. Nonetheless, the examination by Andersen et al., 2008 [84] found the inverse with synergy showed by cellulases on phosphoric acid swollen cellulose (3.1), while no synergy was shown on Avicel. The degrees of synergy accordingly seem to differ contingent upon the idea of the substrate, the particular idea of the proteins and the test conditions [85]. Different audits have been distributed on the synergy between cellulases [86, 87]. While pretreatment of cellulose has been shown to enhance hydrolysis, it isn’t certain whether this is because of expanded synergy or basic changes caused by the pretreatment. Pretreatment of cotton with acetone-ethanol at 1:1 ratio enhanced debasement of this cellulose with a 98.6% transformation accomplished [88]. Exceptional returns were likewise accomplished on Avicel pretreated with ionic fluids where a 100% change was accomplished inside 24 h with commercial enzyme mixtures [89]. This impact of pretreatments on the synergistic associations between cellulases has been explored by a few analysts. Samejima et al., 1998 [90] found no synergy on acid-pretreated bacterial cellulose utilizing a cellulohydrolase and endoglucanase, while Ramirez-Ramirez et al., 2008 [91] discovered synergy between these two enzymes on acid-pretreated Avicel. Along these lines, the connection between expanded synergy and expanded hydrolysis is not clear.

The proportions of different cellulases utilized as a part of various examinations to acquire most extreme synergy showed expansive varieties. Bothwell et al., 1993 [92] utilized a proportion of endoglucanases to celllobiohydrolases of 3:1, while different investigations utilized higher proportions of celllobiohydrolase to endoglucanase. Boisset et al., 2001 [93] utilized 98.75% celllobiohydrolase to 1.25% endoglucanase; Ramirez-Ramirez et al., 2008 [91] utilized 8:1 celllobiohydrolase to endoglucanase; Berger et al., 2007 [94] utilized 17:1 celllobiohydrolase to endoglucanase; and Jung et al., 2008 [95] utilized a proportion of 10:1 celllobiohydrolase to endoglucanase. Hoshino et al., 1997 [96], then again, discovered ideal synergy with a mix of 1:1 celllobiohydrolase to endoglucanase. It isn’t clear why such changed outcomes have been found, however, this might be because of enzyme qualities, test conditions or varieties in substrate attributes, especially coming about because of various pretreatment. These outcomes affirm that the main strategy to decide ideal synergy is through real biochemical assays with the particular enzymes and substrates. Benoit et al., 2015 [97] evaluated the potential and approaches of plant biomass degradation of eight (8) Aspergillus species: A. clavatus, A. nidulans, A. fischeri, A. flavus, A. oryzae, A. fumigatus, A. niger, and A. terreus during cultivation using sugar beet pulp or wheat bran as a substrate. Benoit et al., 2015 [97] have been confirmed that the most similar fungi employ extremely varied enzymatic strategies for the similar substrates hydrolysis, although with the same
efficiency. They also presumed that in nature not all fungi degrade specifically the similar fraction of the substrate. Therefore, the classification of the enzyme sets used by different fungi can be exploited to propose proficient commercial enzyme cocktails by integrating these enzyme sets. This might be able to considerably advance the saccharification effectiveness of industrial and commercial enzyme cocktails. By integrating the whole enzymes set of two (2) fungi is probably enhance the saccharification effectiveness as compared to, by adding up specific enzymes to the cocktail produced by a single fungal species. This logic could be seen in an ecological approaching where mixed populations of fungi work together for degradation of plant cellulose biomass. Therefore, this approach will be helpful for degradation of cellulosic biomass at industrial level [97].

7. *Pichia pastoris* as a Host Expression System

For screening and evaluation of enzyme libraries strains with desired characteristics are used, which require cloning and expressing in a suitable screening expression system. For screening of fungal enzymes, conventional yeasts such as *Kluyveromyces lactis*, *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe* and unconventional yeasts such as *Yarrowia lipolytica*, *P. pastoris* have been exploited equally [98, 99]. For screening of desired cellulytic enzymes *P. pastoris* has been employed as the first option for heterologous expression. Moreover, *P. pastoris* produces endogenous proteases in a very low amount by contrast to other eukaryotic expression host [10]. However, to get the highest possible product yield from *P. pastoris* might be cultured under well defined conditions, commonly manageable in continuously stirred tank fermenter. Thus the optimal exploitation of *P. pastoris* might takes more time and instrumentation resources as compared to *S. cerevisiae* expression system [100].

During the last three decades, *P. pastoris* majorly has become the best expression system for a number of heterologous proteins and enzymes because of some remarkable characteristics, these are; (1) the simplicity in genetic manipulation at molecular level and their resemblances to the most commonly used expression host *S. cerevisiae*; (2) having the ability of both intracellular or extracellular desired proteins production at maximum level; (3) A number of Post- translational modifications are carried out in it, such as di-sulfide bond formation glycosylation, and proteolytic processing; (4) the kit availability of their expression system at commercial level [12]; (5) Can also work as a useful model system tool to examine certain areas of modern cell biology including (the implication and assemblage of peroxisomes; the selective autophagic degradation of peroxisomes; and the arrangement and function of the secretory pathway in eukaryotes) [101]. Both yeast and filamentous fungi have same phylogenetic origin, so *P. pastoris* a non-traditional yeast has the first choice for expression of various classes of active CAZymes, such as Cellulases [102, 103] GHs [104, 105], and AA9 enzymes such as lytic polysaccharide mono- oxygenases (LPMOs) [106, 107]. On behalf of much more benefits *P. pastoris* has first option for industrial enzymes production compared to other expression host systems [108]. Nevertheless, despite the fact that *P. pastoris* is currently well and best host for heterologous expression of various proteins and enzymes [12, 109] but still have a chance of betterment on transcriptional [13, 110] and posttranslational level [14, 111].

Recently *Scytalidium thermophilum* showed the activities of producing Oxido-reductases, namely Oxidase, Laccase, Tyrosinase and Peroxidase, and some Hydrolases like Lipase, Protease, Amylase and Cellulase. *Scytalidium thermophilum* (ST26) produced Laccase up to 1575 U/l in liquid media [112]. During study of cellobiohydrolase I and II, endoglucanases and β-glucosidase, the highest yield production of endoglucanase from *V. volvacea* was obtained (100 mg/l) produced in *P. pastoris* [113]. The T. reesei produced a high yield of these proteins *TrbMan1.142* g/l, *TrCBH2* 6.55 g/l, and *TIxynA* 1.2 g/l in fed-batch culture using *P. pastoris* as a host expression system [15]. The glucan 1,3-β-glucosidase gene A (exgA) from Aspergillus oryzae combined with α-factor of *Saccharomyces cerevisiae* was expressed in pichia pastoris with over about one and half fold more extra-cellular enzyme activity (2 U/ml) using inducible promoter alcohol oxidase (pAOX1), while up to (1.4 U/ml) enzymatic activity was gained using GAP constitutive promoter using p-nitrophenyl-β-D-glucopyranoside as the substrate [114]. However, most fungal BGLs are set within the cells or outside the cell surface and those that are secreted are generally at very low degrees, while most of fungi express various different related BGLs [115]. While the β-glucosidase from *Aspergillus oryzae* gene GII-10 was successfully expressed with production up to 321 mg/mL after incubation for seven days. And showed varying specificity in activity with hydrolyzing range of (1-4)→(1-4)-β-D-glucopyranosides and (1-4)-α-D-glucosides, while using Mn²⁺ as a stimulator [116]. The filamentous fungus *Penicillium funiculosum* described the maximum production of cellobiases such as carboxymethyl cellulase (13-15 U/ml), p-nitrophenyl-β-D-glucopyranosidase (10-12 U/ml) and cellobiase (7.5 U/ml), showed high activity at pH (4.0) and temperature (50°C) besides this showed high specificity in filter paper degradation. Nevertheless, it does not comprise carbohydrate binding domain and this was the first account on the expression of cellobiohydrolase II from *Penicillium funiculosum* in *P. pastoris* [117]. The genes of the cellubiohydrolase GH6 family has been also cloned and expressed in *P. pastoris* from different fungal species such as *Irpsx lacteus* MC2 [118], *Trichoderma parceramosum* [119] and *Chaetomium thermophilum* [120].

Till up to date, numerous GH3 β-glucosidases genes from fungi have been reported be expressed in *P. pastoris* [121, 122]; though, a limited accounts on heterologous expression of thermostable fungal β-glucosidase in *P. pastoris* [123, 124]. Recently discovered β-glucosidase of GH3 from *Myceliophthora thermophila* (mtgl3b) has been expressed
successfully in *P. pastoris*, showed high stability at pH ranged over (3.0-10.0) and temperature ranges up to (60-65°C). The enzyme has proven to have maximum cellulytic activity on substrates such as pNPG, complied by *p*-nitrophenyl-β-D-cellobioside (pNPC), cellobiose, gentiobiose, cellotetraose, and cellotriose. MtBgl3b has more hydrolytic ability towards the substrate cellotetraose than cellotriose and cellobiose, which showed that MtBgl3b can play a key role in hydrolysis of cellulose with enzymes endoglucanase and cellulbiohydrolase [125]. It has been reported that MtBgl3b has high activity at 60-65°C, alike to that of *Melanocarpus sp.* (60°C) [126] and *Penicillium purpurogenum* (65°C) [127], lower than that of *Thermoascus aurantiacus* (70°C) [128], but higher than *Fomitopsis pinicola* (50°C) [129], *Stachybotrys sp.* (50°C) [130] β-glucosidases activities. The isoform of β-glucosidase *Bgl4* of *P. funiculosum* NCL1 has been highly expressed in *P. pastoris*, with 1,354.3 U/mg of specific activity, showed maximum activity at pH 5.0 and 60°C. The isoform *Bgl4* showed possible betterment in the method of saccharification gives through the synergistic action with *T. reesei* cellulase [131]. (See table 1)

Fungal species	Enzymes	Substrate specificity	Enzyme relative activity / Stability range	pH opt	Temp opt (°C)	References
Penicillium decumbens 114-2	Cel45A	konjac glucomanan, PASC, Sodium carboxymethyl cellulose (CMC-Na), barley β-glucan, xylan, Avicel	Ascomycota; subfamily B; 90% relative activity retained at 70°C and 30% at 80°C	5.0−3.5	60	[132]
Phanerochaete chrysosporium K-3	Cel45A	PASC, carboxymethyl cellulose (CMC), lichenan, barley β-glucan, glucomanan	-	-	-	[133]
Phialophora sp. G5	EgG5, EgG5-Mut, EgG5-CBM, EgGH45	Sodium carboxymethyl cellulose (CMC-Na), barley β-glucan, Avicel, filter paper	Activity range >45% at 50–80°C while 51.6% at 65°C for 12 h; EgG5 and EgG5-Mut: pH 2.0–10.0; EgG5-CBM: pH 2.0–7.0 showed stability	6.0−8.0	60	[134]
Syncephalastrum racemosum	Chh1	Carboxymethyl cellulose (CMC), azurine cross-linked hydroxymethylcellulose retained >80% activity after 1 h at 80°C, and >50% for 4 h at 70°C	-	5−6	70	[135]
Penicillium decumbens	Cel5C	Glucomanan, tamarind seed gum, carboxymethyl cellulose (CMC), barley β-glucan	-	4.8	40−50	[136]
Penicillium echinulatum	Egl1	Carboxymethyl cellulose (CMC), filter paper, short oligosaccharides	-	5.0−9.0	60	[137]
Phialophora sp. G5	EgG5	Carboxymethyl cellulose (CMC), barley β-glucan, galactoglucomannan, filter paper, Avicel	-	4.0−5.0	70	[138]
Volvariella volvacea	Egl1	Carboxymethyl cellulose (CMC), PASC, filter paper	-	7.5	55	[139]
Aspergillus fumigatus	Egl2	Carboxymethyl cellulose (CMC), filter paper	-	5.0	50	[140]
Aspergillus fumigatus	Egl3	Carboxymethyl cellulose (CMC), filter paper, Avicel	-	4.0	60	[140]
Aspergillus nidulans	EglB	Carboxymethyl cellulose (CMC), cello-oligosaccharides	-	4.0	52	[141]
Aspergillus niger	EglB	Carboxymethyl cellulose (CMC), locust bean gum, cellobiose, CMc, laminarin	-	4.0	70	[142]
Gloeophyllum trabecum	Cel5B	Carboxymethyl cellulose (CMC), filter paper	-	3.5	30−70	[143]
Chaetomium thermophilum	Chh3	Carboxymethyl cellulose (CMC), Glc3/Glc4/Glc5/Glc6	T 1/2: 45 min at 70°C	4.0	60	[120]
Thermoascus aurantiacus	Bgl1	Carboxymethyl cellulose (CMC), Glc3/Glc4/Glc5/Glc6, barley β-glucan, lichenan, xylanogluan	70% residual activity for 60 min at 60°C	5.0	70	[128]
Aspergillus nidulans FGSC A4	Cbh1, CbhB	Carboxymethyl cellulose (CMC), assay conditions 37°C and pH 4.5	-	4.0	60	[141]
Aspergillus nidulans FGSC A4	EglB	Carboxymethyl cellulose (CMC), Glc3/Glc4/Glc5/Glc6, barley β-glucan, lichenan, xylogluan	-	5.5	42	[141]
Bispora sp. MEY-1	Bgl7A	Barley β-glucan, lichenan, carboxymethyl cellulose (CMC), laminarin, xylan	stable at 60°C for at least 1 h and at pH 1.0−8.0	5.0	60	[30]
Chaetomium thermophilum CT2	Cbh3	pNPC, MCC, filter paper	-	5.0	60	[144]
Fusarium oxysporum BCC4124	Cbh1	Avicel, filter paper, 4-methylumbelliferyl-β-D-cellobioside	stable at pH 3−11 and maintains ~50% at 70−90°C for 30 min	5.0	40	[35]
Fungal species	Enzymes	Substrate specificity	Enzyme relative activity / pH	Temp opt (°C)	References	
------------------------	---------	--	-----------------------------	--------------	------------	
Myceliophthora thermophila	Eg7A	Barley β-glucan, carboxymethyl cellulose (CMC), lichenan, arabinoxylan, xylan, filter paper, hydroxethylcellulose, Avicel, Glc3/Glc4/Glc5	stable at pH 3–11, retaining initial activity after 24 h	5	60 [35]	
Trichoderma pseudokoningii	Cel7B	4-methylumbelliferyl-β-D-lactoside, carboxymethyl cellulose (CMC)	-	45	[145]	
Chaetomium thermophilum	Cel6A	pNPC, BMCC, filter paper, carboxymethyl cellulose (CMC)	-	4	50 [146]	
Irpex lacteus MC-2	Cbh2 (Ex-4)	Avicel, PASC	-	5	50 [147]	
Phialophora sp. G5	EgGH6A	Sodium carboxymethyl cellulose (CMC-Na), barley β-glucan, Avicel, filter paper	retained >40% activity at pH 4.0–10	7	65 [134]	
Podospora anserina S mat+	Cel6A	Avicel, carboxymethyl cellulose (CMC), Glc3/Glc4/Glc5/Glc6	-	7	45 [148]	
Podospora anserina S mat+	Cel6B	Avicel, carboxymethyl cellulose (CMC), Glc3/Glc4/Glc5/Glc6	-	7	35 [148]	
Podospora anserina S mat+	Cel6C	Avicel, carboxymethyl cellulose (CMC), Glc3/Glc4/Glc5/Glc6	-	6	25 [148]	
Trichoderma reesei QM9414	Cel6A	Avicel, carboxymethyl cellulose (CMC), Glc3/Glc4/Glc5/Glc6	-	5	45 [148]	
Penicillium funiculosum	CMCase, pNPase and cellobiase	Showed more specificity in filter paper degradation	-	4	50 [117]	
Myceliophthora thermophila	β-glucosidas (MtBgl3b)	p-nitrophenyl-β-D glucopyranoside (pNPG)	-	3.0–6.0	60-65 [125]	
Aspergillus oryzae	glucan	p-nitrophenyl-β-D-glucopyranoside (pNPG)	-	3.0–10.0	60-65 [125]	
Aspergillus oryzae	1,3-β-glucosi dase	p-nitrophenyl-β-D-glucopyranoside (pNPG)	-	6.5	[116]	
Aspergillus oryzae	β-glucosidas e	hydrolyzing range of (1-4)β-diglycosides and (1-4)-adiglycosides	-	6.5	[116]	
Trichoderma reesei	Cbh2	Carboxymethyl cellulose (CMC)	Showed stability at 90°C Activity range >60% at 30–70°C while 70% EG1, 40% EG4 after 30 min at 85°C: pH 4.5–10.0 showed stability	5.5	60	[149]
B. subtilis	Eg1, Eg2, Eg3, Eg4	-	-	6.0	65 [150]	
P. anserine, T. reesei	PaCel6A	-	PaCel6A pH 5.0–9.0; <45°C; PaCel6A pH<9.0	7.0	55 [137]	
Aspergillus nidulans	TrCel6A	-	TrCel6A pH <6.0	5.0	65 [137]	
Aspergillus nidulans	Cbh1,	-	-	4.5–5.5	52 [151]	
Aspergillus nidulans	Cbh2	-	-	4.8	46 [151]	

8. Promoters Involved in *Pichia pastoris* Metabolic Pathway

The promoters used in fungi for heterologous expression of genes are broadly divided into constitutive and inducible promoters, though all arise from genes that are extremely expressed in the specified expression hosts. The benefit which constitutive promoters have is that, they show high expression under almost all culture conditions, letting high flexibility in the production of the enzyme. In contrast, inducible promoters need more specific and explicit conditions for induction, but give more production of the enzyme as compared to constitutive promoters. Furthermore, inducible promoters have been exploited for expression and production of those proteins that have negative consequences on the expression host system. In such a case, the proteins producing strain can be primarily cultivated in non-inducing conditions after enough growth has taken place, the inducer can be supplemented to enhance and produce the maximal high protein in a short extent of time.

P. pastoris, the methylotrophic yeast using methanol as an inducible promoter strongly regulates the alcohol oxidase 1gene (pAOX1) has been explored and well studied in terms of regulatory sequences and factors [152]. Up to now an inducible promoter AOX1 and to a certain degree, the constitutive promoter GAP were more widely used promoters in *P. pastoris* for heterologous protein and enzymes production [12]. A large number of various proteins and enzymes have been expressed under the control of alcohol oxidase 1gene (pAOX1) regulated by methanol, with yields up to 14.8 g l\(^{-1}\) (of mouse collagen), and claims up to 20–30 g l\(^{-1}\) [153] of recombinant protein. Since *P. pastoris* prefers an aerobic rather than an anaerobic mode of culture conditions.
and growth, products from an anaerobic culture such as acetic acid and ethanol do not build up fast [154], altering cultures to reach high cell densities [155]. In the pathway of methanol metabolism, the initial step is the oxidation of methanol to formaldehyde, producing hydrogen peroxide (H₂O₂) in the process, by the enzyme alcohol oxidase (AOX). During this step the toxic hydrogen peroxide is generated, to prevent their toxicity this step is carried on within peroxisome, which keeps apart hydrogen peroxide from the other components of the cell. The promoter AOX is a homoc-tetramer comprising on one cofactor which is non-covalently bound FAD (flavin adenine dinucleotide) to each one subunit. Alcohol oxidase has low affinity towards O₂, and methlyotrophic yeasts seems to counterbalance this deficiency by synthesizing high quantities of the enzyme [156]. The yield and production quality of enzymes and proteins are exceedingly affected by culture conditions, therefore a variety of culture conditions have been developed in wild-type P. pastoris and glyco-engineered P. pastoris [157, 158]. The yield production of cellulase either at pilot scale or large industrial scale needs desirable bioprocessing, specific growth medium and optimal conditions [72]. Now days both submersed and solid state bioprocessing are very common for cellulases production [159]. The demonstration showed that at least 7 integrated expression cassettes enhance the quantity of produced enzymes in a linear manner [15]. However, to study effects of codon optimization combining with different promoters and gene copy number to supply data to make P. pastoris as a valuable model for codon optimization, there have been screened more than 15,000 P. pastoris transformants resulting by analysis of purported single copy activity landscapes. The copy number can be defined of any integrated expression cassettes using quantitative real time PCR (qRT-PCR) in P. pastoris [111]. There are various ways of how to realize the highest possible gene copy numbers are reviewed [160], e.g. in Gasser et al., 2013. Furthermore, codon optimization to alter the codon use of the desired produced gene to the desirable host codon use has been reported to show the way to get the valuable results, although there is various argumentation which kind of optimization is the most excellent [161]. Additionally, the folding and secretion capability has a significant effect on the yield and production of secretory enzymes [162].

A key factor in process conditions influencing the production of recombinant proteins P. pastoris is the transcriptional regulation of promoter alcohol oxidase 1 (pAOX1). The demonstration showed the regulation of AOX1 and peroxisome biogenesis based on various process conditions, whereas two types of GFP-fusion proteins, Ub-R-GFP (shortlived GFP in the cytosol) and GFP-SKL (peroxisomal targeting GFP) of AOX1 and peroxisome biogenesis respectively, were used successfully to characterized their timed (time-course). Based on various fermentation process conditions the activities of promoter alcohol oxidase 1 (pAOX1) and peroxisome biogenesis has been checked out- methanol limited condition, changed flowing of carbon sources and oxygen limited condition. The promoter alcohol oxidase 1 (pAOX1) is dynamic under limited methanol condition and peroxisome biogenesis and is also dynamic under a carbon limited fed batch culture process condition, but AOX1 promoter is less dynamic under oxygen limited condition while the growth of peroxisome biogenesis has been an account of being inhibited in a glucose containing media. The AOX1 promoter gives higher productivity of specific monoclonal antibody at 86 h of induction in the methanol limited condition than in the oxygen limited condition (0.026 vs 0.020 mg g⁻¹ h⁻¹). Nevertheless, due to high cell fitness the oxygen limited culture condition is more suitable for longer induction process (180 h). This showed that the higher production of desired protein is influenced by the consumption rate of methanol indirectly affected by the methanol and oxygen molecules availability [163].

The AOX1 promoter of P. pastoris is the most prevailing and frequently applicable promoter for controlling expression and production of enzymes and proteins. However, its transcriptional regulatory mechanisms are still unclear. The Zn(II) (2) Cys (6)-type methanol-induced transcriptionfactor1 (Mit1) has been identified which regulates the expression of multi-genes required form ethanol consumption pathway, including alcohol oxidase 1 (AOX1), but did not take part in the uncontrolled growth of peroxisome and transportation of peroxisomal proteins throughout the methanol metabolism. Significantly, methanol-induced transcription factor 1 (Mit1), Mxr1, and Prm1 (also called Trm1), which positively regulated Promoter AOX1 under the control of methanol, were attached to Promoter AOX1 at various sites but they did not relate and cooperate with each other. However, these factors cooperatively activated Promoter AOX1 via cascade. Mxr1 mostly worked throughout the carbon derepression in the culture, while Mit1 and Prm1 worked in the methanol induction, with Prm1 conveying methanol signal to Mit1 by binding to the Mit1 promoter, as a result progressively expressing Mit1 and later on activating Promoter AOX1 [164].

The fungal cellulolytic enzymes endoglucanase II and cellobiohydrolase II from the fungus T. reesei QM9414 has been expressed in Yarrowia lipolytica using promoters POX2 or TEF along the use of either the native or preproLip2 secretion signals. While the same enzymes have been expressed in P. pastoris under the methanol inducible promoter (pAOX1) and compared both Yarrowia lipolytica and P. pastoris as an expression host system, showed that Y. lipolytica produced endoglucanase II and cellobiohydrolase II about 15 mg/l and 50 mg/l respectively, which is higher than P. pastoris proteins production ability. While both systems showed the same endoglucanase II activity on account of total enzymes activity, also showed the same glycosylation, PH and temperature visibilities [99]. P. pastoris utilizes promoter AOX1 to assure maximum elevated levels of protein expression. Though, methanol is harmful and arises a fire hazard, consequences which befal more noteworthy at both pilot and industrial levels. It is promising to take out these risks and hazards while keep the highest production level by switching to the constitutive promoter (pGAP). More recently
marketed PichiaPink™ expression system permits and expressed two (2) endoglucanases, Af Cel12A from Aspergillus fumigatus and Ta Cel5A from Thermoascus aurantiacus, controlled by either the methanol inducible promoter (pAOX1) or the constitutive promoter (pGAP). It has been demonstrated that the levels of Af Cel12A in small tubes and bioreactors achieved by using constitutive promoter might be the same or high, compared to the promoter AOX1 levels, whereas the levels of Ta Cel5A might be slightly lower. After optimization of culture conditions using a 15L bioreactor, the recombinant expression host P. pastoris employing the constitutive promoter (pGAP) has been produced ca. 3-5 g/l of the entire secreted protein, with enzyme Carboxymethylcellulase cellulase activity equivalent to 1200 nkat/ml Af Cel12A and 170 nkat/ml Ta Cel5A [141].

The reported optimization study showed based on DNA level, assessing 48 various individual TrCbh2 synthetic genes, which codes the same sequence of T. reesei cellulase combining with various three promoters (Constitutive promoter PGAP and synthetic promoter AOX1 with random variables Pen (enhanced) and PDes (derepressed). The determined activity of secreted enzyme examined from the supernatants of 96 well plates, while their expression varied from insensible to ~300% of known gene. Eventually, based on the best optimal conditions of the gene and novel promoters, by combining them the high yielding and expression strains of P. pastoris Cbh2 was constructed. Although, under the well controlled conditions in laboratory scale bioreactor cultivations without induction of methanol no more final titer has been produced of secreted protein than 18g/l after 60-70 h at glycerol feeding media [165]. PDes is a strong methanol inducible promoter as well active under derepressed conditions is also disclosed by protein titer finding. The highest attained titer of generated protein TrCbh2 was about over 17-20 g/l under the control of PDes in the absence of methanol [163]. This showed the latest and highest result of secreted enzyme concentration in P. pastoris and furthermore showed the optimization of individual parts of expression cassette and their linear effects to enhancement in protein yield production by P. pastoris [165]. Recent study showed that a novel strong constitutive promoter PGCW14 was identified, and by using green fluorescent protein (EGFP) its promoter activity was tested. PGCW14 were cloned upstream of the EGFP gene under different carbon sources, which showed strong promoter activity than the most common promoters PTEF1 and PGap. So, we can use PGCW14 as a strong promoter for high yield production of desired proteins and enzymes [166].

The production of desired enzymes under the control of the PADH3 has been compared with the most commonly used promoters PAOX1 and PGAP of P. pastoris. Regulation of methanol at production level is a fundamental parameter for sustaining the cell growth and increasing the production of recombinant desired proteins and enzymes by P. pastoris [167]. Instead of raising the amount of methanol to a Mut+ strain, the mutant strains of P. pastoris with a slow consumption of methanol (Mut+) have been exploited. These mutant strains utilize minute amount of methanol as well as need very low oxygen, characteristics that are beneficial in the growth of high cell density. However, it has been an account that Mut+ strains grow very slowly compared to Mut−, while their productivity and yield is very specific [168]. An enzyme β-glucosidase derived from the fungus species Periconia sp. BCC2871 has been revealed prospective for efficient cellulolytic biomass biodegradation due to its thermal tolerance. This enzyme has been effectively expressed in P. pastoris KM71 in control condition of methanol with more efficiency, at the lowest incubation time of 2 h and at temperature of 70°C. The growth of P. pastoris KM71 at laboratory level, an extended duration of poor methanol induction can cause low down of cell concentration and restricted the productivity of this thermostable β-glucosidase in an expression system [122]. T. Charoenrat et al., 2015 [167] has been investigated the optimization of supply rate of the primary methanol induction for high cell density fed-batch growth of fungal enzyme β-glucosidase in a slow methanol utilization strain (Mut+), P. pastoris KM71. The primary induction at a cell concentration of 60 g/l through changing various methanol supply rates, the optimal primary methanol feeding rate has been find out up to 30.34±0.34 mg/g/h. According to the determined optimal feeding rates limitation and factors the methanol feed rate has been subjected at the elevated cell concentrations of 80 and 100 g/l for recombinant β-glucosidase production. The activity of recombinant β-glucosidase gained was of 2851.7±14.6 U/ml, which was four (4) times higher than that gained through the declared condition (40 g/l initial cell concentration). T. Charoenrat et al., 2015 [167] gained the maximum activity of recombinant β-glucosidase in the growth medium when the maximum primary cell concentration of 100 g/l has been exploited. This approach can be implemented for the production of all kind of recombinant enzymes including endo and exoglucanases and for all other recombinant proteins production in P. pastoris through high cell density cultivation. (See table 2).

Gene Name	Gene product/function	Highest expression level	Reference
AOX1	Alcohol oxidase 1	Strong (naturally ~5% of mRNA and ~30% of total protein)	[12]
AOX2	Alcohol oxidase 2	~5–10% of PAOX1	[169]
DAS	Dihydroxyacetone synthase	Strong (similar to PAOX1)	[170]
FLD1	Formaldehyde dehydrogenase	Strong (similar to PAOX1)	[171]
PEX8	Peroxiosomal matrix protein	Weak	[12]
THI11	Protein involved in synthesis of the thiamine precursor hydroxymethylpyrimidine	-	[172]

Table 2. The most characterized and newly recognized promoters for recombinant fungal enzymes expression in Pichia pastoris.
9. Constructed Synthetic Core Promoters and Terminators of Pichia pastoris

Promoters covering a broad range of expression levels should be in approach to enable expression fine-tuning, ranging from tight down regulation to high over expression. To this end, either natural or synthetic promoters can be used. Synthetic promoters generally render a broad range of expression levels (10–1000-fold) and finer growths [16].

The aim of designing promoters is scaling up the heterologous proteins and enzymes production. All of the recent efforts carried on to design promoters to alter the upstream regulatory sequences most commonly in P. pastoris and S. cerevisiae [17]. Cellulose is the most common inducer for production of fungal cellulases and is regulated by a repressor and inducer system [183]. In prokaryotes, where promoters are the minimal region furnishing binding sites for RNA polymerase II and some common transcriptional factors, whereas in eukaryotes promoters are more retentive and composite part of DNA [17]. The most usual promoter alcohol oxidase 1 gene (pAOX1) of P. pastoris regulated by methanol has been studied in terms of regulatory sequences and factors [152]. It had been also employed for variants designing of synthetic promoter rendering a wide range of expression levels and changed the regulatory profiles. These design engineering attempts have been focused on upstream regulatory sequences (URS) [110, 184] unsystematic methanol utilization ageness of core promoter sections [185] or the 5′ untranslated region (UTR) [186]. For the first time, it has been reported to engineer a completely synthetic core promoter along with 5′ UTR for P. pastoris and to utilize such artificial sequences for designing of pAOX1 core promoter to acquire a sequence-diversified promoter library with diverse characteristics. Designing of URS can also obstruct the promoters regulation [110]. The way of controlled regulation stayed untouched for the fusions of synthetic core promoter/pAOX1 URS. That's why the same engineering strategy has been used for prokaryotes, where the sites of ribosome binding altered to fine-tune strong natural promoters [187], is practicable by designing eukaryotic core promoters and UTRs. As contradicted to engineering and designing strategies of the notably longer whole promoter, such short core promoters can directly contribute to a PCR primer helping library generation as well as have enough capability to acquire variable expression yields [17].

Even though, this promoter designing strategy is employed mostly in bacteria [188]. There are very few examples in which a promoter library has been designed in yeast cell [189], besides a single promoter library has been designed for fine-tuning of gene expression in P. pastoris [110]. Hartner., et al 2008 [110] designed a library comprised of 46 mutant promoters via duplication and deletion of putative transcription factor binding sites in the methanol inducible
promoter gene 1 (pAOX1). By induction of methanol the designed library extended from 6% to 160% of the natural promoter activity. Hartner., et al 2008 [110] moreover deliberate short synthetic promoters by fusing pAOX-derived cis-acting elements with a variety of basal promoters, because short promoters usually allocate to an extra efficient PCR-based production of expression cassettes or mutant libraries as compared to long promoters. However, all the designed five (5) synthetic promoters showed no more than 10% of the activity of the wild-type methanol inducible promoter (pAOX1).

For expression of gene across a broad dynamic range in P. pastoris and to facilitate manipulation, a functional promoter library by yeast-enhanced green fluorescent protein (yEGFP) as the reporter has been created by mutagenesis of the constitutive promoter (pGAP). The mutants’ numbers (33) have been selected to figure the efficient promoter library which extended an activity range between 0.6% and 19.6-fold of the wild-type promoter activity by roughly linear fluorescence intensity allocation. The promoter library consent regulates the expression of gene and quantitative assessment accurately that associates gene expression level and physiologic parameters. Therefore, it is a helpful toolbox for both fundamental and practical study of P. pastoris [190]. These difficulties emphasized the need for engineering a promoter library derived from a constitutive promoter, which would allow regulation of steady-state gene expression and make sure transcriptional homogeneity with no inducer. The key enzyme of glycolysis Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which gives strong constitutive expression on glucose for promoter (PGAP) at a level similar to that seen with inducer promoter (pAOX) [177] and has been extensively employed for constitutive expression of heterologous proteins in P. pastoris [191]. A further benefit of employing constitutive promoter (pGAP), is mainly for industrial fermentation, where no need of methanol for culture induction. This characteristic of pGAP makes simpler the strain growth with no changes of carbon source and eradicates the risks (hazards) and expenses associated with the storage and transportation of a huge methanol amount. Meanwhile, because its size (477 bp) is less than half of that of inducer promoter (pAOX) (960 bp), the constitutive promoter (pGAP) is more appropriate for the efficient production of expression cassettes or mutant libraries [190].

Recently, survey reports have been suggested on recombinant gene expression that P. pastoris is employed more often for single protein production than S. cerevisiae [11]. Lately, metabolic models have been revised on an improved annotation of the P. pastoris proteome [192]. However, the key knowledge of P. pastoris is comparatively limited as compared to S. cerevisiae, and have less molecular tools, such as promoters, terminators, or knockout strains, are acquireable for it [193]. In P. pastoris and concerned methylotrophic yeasts (for example, Candida boidinii Hansenula polymorpha, Picha methanolica), methanol regulated promoters (PmAOX) are typically used to drive heterologous gene expression [152, 194-197], and transcriptional regulation is the main response of these organisms during cultivation on different carbon sources [198]. As well, in the concerned methylotrophic yeasts, studies have been carried out at transcriptomics levels [199, 200]; but up to now, only few promoters have been consistently characterized (e.g., five promoters in C. boidinii [201]). Regardless of their similar regulation, in the recent report the promoters have been tested indicate little to no sequence similarities, perhaps because of short regulatory elements such as transcription factor binding sites may be dispersed variably over the entire promoter (as reported for PmAOX, PmDAG, and PmPE8 [152, 202, 203]). In contrast to highly resemble variants of a mutant promoter library, which are typically derived by little alterations of a single promoter, the low sequence similarity between natural methanol utilization promoters seems to be favorable for in vitro overlap-directed DNA assembly as well in vivo stability. From a fundamental research perspective, this low sequence similarity between highly co-regulated promoters is puzzling and may propose the use of methanol inducible promoters as a model system for studying transcriptional regulation. Over the last 2 decades, P. pastoris has become a popular expression host, surpassing S. cerevisiae [11] for high-level single protein production.

Regarding the latest development in genome scale metabolic models and the handiness of suitable promoters and terminators as well as the feasibility of new and easy pathway assembly methods, P. pastoris with its robust growth to high level cell densities as well as its low natural inclination for homologous recombination also seems to be a promising alternative to S. cerevisiae for metabolic engineering endeavors needing tight transcriptional regulation of large heterologous pathways, efficient cytochrome P450 (CYP) expression or other membrane protein expression, compartmentalization in peroxisomes or other organelles, and oxidative stress tolerance [178]. Realizing of these natural transcriptional regulatory systems (networks) is a useful source for metabolic engineering and synthetic biology advances that alter the design of tailor-made production strains [152].

10. Conclusion and Future Prospective

The advanced research has been mostly brought out the value of the persistent exploration for innovative fungal isolates that be able to generate enzymes and proteins with high concerning characteristics and prospect for future industrial applications. Based on the investigation analysis, a large number of various fungal isolates has been evaluated in terms of their productivity and cellulytic enzymes activities. There are many proteins that have not been successfully expressed in Baculovirus or S. cerevisiae yet, whilst nowadays they are fruitfully produced in P. pastoris. Which showed that P. pastoris is the best expression host for various kinds of proteins. Even though many more applicable key factors especially in the past three decades have been discovered for the improvement of protein production in P. pastoris, still the implicit fact for itshigh possible production of cellulases
remained mostly unknown. The best apprehension of secretion signals, glyco-sylation, and endogenous proteases of *P. pastoris* would be highly assisted in the development and betterment of *P. pastoris* heterologous expression system.

The advancement in molecular systems and methodologies such as rational designing, directed evolution, gene fusion, site directed mutagenesis, and DNA shuffling and new methods have to be broadening for amending the characteristics of the free fungal cellulases and all other enzymes.

Acknowledgements

The authors wish to thank Muhammad Shamoon, Haroon Khan, Shad Man, Asif Kamal, Mugisha Samson, and for their suggestion in this manuscript and encouragement during the course of this work.

List of Abbreviations

Abbreviation	Description
CEL	Cellulase
CBH	Cellobiohydrodase
EG	Endoglucanases
BGLs	β-glucosidases
HC	Hemicellulase
CD	Catalytic domain
CBD	Cellulose binding domain
CBM	Carbohydrate binding module
GHs	Glycoside hydrolases
AOX1	Alcohol oxidase 1 gene
GAP	Glyceraldehyde 3-phosphate dehydrogenase
pNPG	p-nitrophenyl-β-Dglucopyranoside
UTR	5’ untranslated region
URS	Upstream regulatory sequences

References

[1] Owen, N. A.; Inderwildi, O. R.; King, D. A., The status of conventional world oil reserves—Hype or cause for concern? *Energy policy* 2010, 38, (8), 4743-4749.

[2] Phitsuwan, P.; Sakka, K.; Ratanakhanokchai, K., Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. *Biomass and bioenergy* 2013, 58, 390-405.

[3] Hendriks, A.; Zeeman, G., Pretreatments to enhance the digestibility of lignocellulosic biomass. *Bioresource technology* 2009, 100, (1), 10-18.

[4] Morgan, J. L.; Strumillo, J.; Zimmer, J., Crystallographic snapshot of cellulose synthesis and membrane translocation. *Nature* 2013, 493, (7431), 181-186.

[5] Menon, V.; Rao, M., Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. *Progress in Energy and Combustion Science* 2012, 38, (4), 522-550.

[6] Limayem, A.; Riche, S. C., Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. *Progress in Energy and Combustion Science* 2012, 38, (4), 449-467.

[7] van den Brink, J.; de Vries, R. P., Fungal enzyme sets for plant polysaccharide degradation. *Applied microbiology and biotechnology* 2011, 91, (6), 1477-1492.

[8] Haon, M.; Grisel, S.; Navarro, D.; Gruet, A.; Berrin, J.-G.; Bignon, C., Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast *Pichia pastoris*. *Frontiers in microbiology* 2015, 6.

[9] Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H., Protein expression in *Pichia pastoris*: recent achievements and perspectives for heterologous protein production. *Applied microbiology and biotechnology* 2014, 98, (12), 5301-5317.

[10] Cregg, J. M.; Vedvick, T. S.; Raschke, W. C., Recent advances in the expression of foreign genes in *Pichia pastoris*. *Nature Biotechnology* 1993, 11, (8), 905-910.

[11] Bill, R. M., Playing catch-up with *Escherichia coli*: using yeast to increase success rates in recombinant protein production experiments. *Recombinant protein expression in microbial systems* 2014, 81.

[12] Cereghino, J. L.; Cregg, J. M., Heterologous protein expression in the methylotrophic yeast *Pichia pastoris*. *FEMS microbiology reviews* 2000, 24, (1), 45-66.

[13] Welch, M.; Govindarajan, S.; Ness, J. E.; Villalobos, A.; Gurney, A.; Minshull, J.; Gustafsson, C., Design parameters to control synthetic gene expression in *Escherichia coli*. *PloS one* 2009, 4, (9), e7062.

[14] Gasser, B.; Sauer, M.; Maurer, M.; Stadlmayr, G.; Mattanovich, D., Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. *Applied and environmental microbiology* 2007, 73, (20), 6499-6507.

[15] Mellitzer, A.; Weis, R.; Glieder, A.; Flicker, K., Expression of lignocellulolytic enzymes in *Pichia pastoris*. *Microbial cell factories* 2012, 11, (1), 1.

[16] Blazeck, J.; Alper, H. S., Promoter engineering: recent advances in controlling transcription at the most fundamental level. *Biotechnology journal* 2013, 8, (1), 46-58.

[17] Vogl, T.; Ruth, C.; Pitzer, J.; Kickenweiz, T.; Glieder, A., Synthetic core promoters for *Pichia pastoris*. *ACS synthetic biology* 2013, 3, (3), 188-191.

[18] Singhaniya, R. R.; Patel, A. K.; Sukumaran, R. K.; Larroche, C.; Pandey, A., Role and significance of beta-glucoisidases in the hydrolysis of cellulose for bioethanol production. *Bioresource Technology* 2013, 127, 500-507.

[19] Hasunuma, T.; Okazaki, F.; Okai, N.; Hara, K. Y.; Ishii, J.; Kondo, A., A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. *Bioresource technology* 2013, 135, 513-522.

[20] Galbe, M.; Zacchi, G., Pretreatment: the key to efficient utilization of lignocellulosic materials. *Biomass and bioenergy* 2012, 46, 70-78.

[21] Ritter, S., A Fast Track to Green Gasoline. *Chem. Eng. News* 2008, 86, (10).

[22] Juturu, V.; Wu, J. C., Microbial cellulases: Engineering, production and applications. *Renewable and Sustainable Energy Reviews* 2014, 33, 188-203.
Biotechnology production by Trichoderma viride in a rotating fibrinous bed bioreactor. Laymon, R. A.; Adney, W. S.; Mohagheghi, A.; Himmel, M. E.; Thomas, S. R. In Cloning and expression of full-length Trichoderma reesei cellulohydrolase I cDNAs in Escherichia coli; Seventeenth Symposium on Biotechnology for Fuels and Chemicals, 1996; Springer: 1996; pp 389-397.

Boer, H.; Teeri, T. T.; Koivula, A., Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnology and bioengineering 2000, 69, (5), 486-494.

Ekperigin, M., Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. African Journal of Biotechnology 2007, 6, (1).

Horikawa, Y.; Sugiyma, J., Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR technique. Cellulose 2008, 15, (3), 419-424.

Cragg, S. M.; Beckham, G. T.; Bruce, N. C.; Buugg, T. D.; Distel, D. L.; Dupree, P.; Etzabe, A. G.; Goodell, B. S.; Jellison, J.; McGeehan, J. E., Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology 2015, 29, 108-119.

Donohoe, B. S.; Resch, M. G., Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates. Current opinion in chemical biology 2015, 29, 100-107.

Singh, B. K., Exploring microbial diversity for biotechnology: The way forward. Trends in biotechnology 2010, 28, (3), 111-116.

Prakash, D.; Navani, N.; Prakash, M.; Bodas, M.; Mandal, A.; Khetmalas, M.; Kapadnis, B., Actinomycetes: a repertoire of green catalysts with a potential revenue resource. BioMed research international 2013, 2013.

Callow, N. V.; Ray, C. S.; Kelbly, M. A.; Ju, L.-K., Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzyme and microbial technology 2016, 82, 8-14.

Sharma, B.; Agrawal, R.; Singhania, R. R.; Satlewal, A.; Mathur, A.; Tuli, D.; Adsul, M., Untreated wheat straw: Potential source for diverse cellulolytic enzyme secretion by Penicillium janthinellum EMS-UV-8 mutant. Bioresource technology 2015, 196, 518-524.

Saini, R.; Saini, J. K.; Adsul, M.; Patel, A. K.; Mathur, A.; Tuli, D.; Singhania, R. R., Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresource technology 2015, 188, 240-246.

Lan, T.-Q.; Wei, D.; Yang, S.-T.; Liu, X., Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor. Bioresource technology 2013, 133, 175-182.

Zhang, F.; Chen, J.-J.; Ren, W.-Z.; Nie, G.-X.; Ming, H.; Tang, S.-K.; Li, W.-J., Cloning, expression and characterization of an alkaline thermostable GH9 endoglucanase from Thermobifida halotolerans YIM 90462. Bioresource technology 2011, 102, (21), 10143-10146.

Jones, B. E.; Van Der Kleij, W. A.; Van Solingen, P.; Weyerl, W.; Goedegebuur, F., Cellulase producing actinomycetes, cellulase produced therefrom and method of producing same. In Google Patents: 2003.

George, S. P.; Ahmad, A.; Rao, M. B., Studies on carboxymethyl cellulase produced by an alkaloathermophilic actinomycete. Bioresource Technology 2001, 77, (2), 171-175.

Andersen, B.; Poulsen, R.; Hansen, G. H., Cellulolytic and xylanolytic activities of common indoor fungi. International Biodeterioration & Biodegradation 2016, 107, 111-116.

de Oliveira, S. L. R.; Maciel, T. C.; Sancho, S. O.; Rodrigues, S., Solid-state production of cellulase by Melanoporia sp. CCT 7736: a new strain isolated from coconut shell (Cocos nucifera L.). Bioresources and Bioprocessing 2016, 3, (1), 1.

Trujillo-Cabrera, Y.; Ponce-Mendoza, A.; Vázquez-Murrieta, M. S.; Rivera-Orduña, F. N.; Wang, E. T., Diverse cellulolytic bacteria isolated from the high humus, alkaline-saline chinampa soils. Annals of microbiology 2013, 63, (2), 779-792.

Sujatha, E.; Santoshkumar, S.; Shiva Krishna, P., Optimization and characterization of cellulases from thermophilic strain of Scytalidium thermophilum SKESMBKU01. Current Research in Environmental & Applied Mycology 2014, 4, (2), 236-249.

Moubasher, A.-A. H.; Ismail, M. A.; Hussein, N. A.; Gouda, H. A., Enzyme producing capabilities of some extremophilic fungal strains isolated from different habitats of Wadi El-Natrun, Egypt. Part 2: Cellulase, xylanase and pectinase. European Journal of Biological Research 2016, 6, (2), 103-111.

Wallecha, A.; Mishra, S., Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsi. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2003, 1649, (1), 74-84.

Njokweni, A.; Rose, S.; Van Zyl, W., Fungal β-glucosidase expression in Saccharomyces cerevisiae. Journal of industrial microbiology & biotechnology 2012, 39, (10), 1445-1452.

Wang, S.; Liu, G.; Wang, J.; Yu, J.; Huang, B.; Xing, M., Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. Journal of industrial microbiology & biotechnology 2013, 40, (6), 633-641.

Krogh, K. B.; Harris, P. V.; Olsen, C. L.; Johansen, K. S.; Hojer-Pedersen, J.; Borjesson, J.; Olsson, L., Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasiliensis. Applied microbiology and biotechnology 2010, 86, (1), 143-154.

Nagraj, A.; Singhvi, M.; Ravikumar, V.; Gokhale, D., Optimization studies for enhancing cellulase production by Penicillium janthinellum mutant EU2D-21 using response surface methodology. BioResources 2014, 9, (2), 1914-1923.

de Castro, A., de Albuquerque de Carvalho ML, Leite SG, Pereira N. Jr. Cellulases from Penicillium fumiculosum: production, properties and application to cellulose hydrolysis. Journal of Industrial Microbiology and Biotechnology 2010, 37, 151-158.

Mattam, A. J.; Kuila, A.; Suralikerimath, N.; Choudary, N.; Rao, P. V.; Velankar, H. R., Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnology for Biofuels 2016, 9, (1), 157.

Kuila, A.; Rao, P. V.; Choudary, N. V.; Gandham, S.; Velankar, H. R., Novel natural supplement for the production of fungal cellulases and application for enzymatic saccharification of wheat straw. Environmental Progress & Sustainable Energy 2015, 34, (4), 1243-1248.
[51] Bakri, Y.; Jacques, P.; Thonart, P., Xylanase production by Penicillium canescens 10–10c in solid-state fermentation. Applied biotechnology and biotechnology 2003, 108, (1-3), 737-748.

[52] Adsul, M.; Sharma, B.; Singhania, R. R.; Saini, J. K.; Sharma, A.; Mathur, A.; Gupta, R.; Tuli, D. K., Blending of cellulolytic enzyme preparations from different fungal sources for improved cellulose hydrolysis by increasing synergism. RSC Advances 2014, 4, (64), 44726-44732.

[53] Li, D.-C.; Li, A.-N.; Papageorgiou, A. C., Cellulases from thermophilic fungi: recent in sights and biotechnological potential. Enzyme research 2011, 5, (97), 1028-1038.

[54] Li, Jianfang, Tang, Cunduo, Shi, Hongling and Wu, Minchen Advancement of biofuel production—lessons from bacterial genomes and structural analysis. Applied microbiology and biotechnology 2012, 93, (2), 497-502.

[55] Doshiwan, P.; Laohakunjit, N.; Kerdchoocheuen, O.; Kyu, K. L.; Ratanaikanokchai, K., Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia microbiologica 2013, 58, (2), 163-176.

[56] Doi, R. H.; Kosugi, A., Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology 2004, 2, (7), 541-551.

[57] Doi, R. H.; Kosugi, A.; Murashima, K.; Tamaru, Y.; Han, S. O., Cellulosomes from mesophilic bacteria. Journal of bacteriology 2003, 185, (20), 5907-5914.

[58] Le Costauèc, T.; Pakarinen, A.; Várnai, A.; Puranen, T.; Viikari, L., The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reeseri and Thermus aquaticus Cc7A (CBH I) and Cc5A (EG III). Bioresource technology 2013, 143, 196-203.

[59] Brunecky, R.; Alahuita, M.; Xu, Q.; Donohoe, B. S.; Crowley, M. F.; Kataeva, I. A.; Yang, S.-J.; Resch, M. G.; Adams, M. W.; Lunin, V. V., Revealing nature’s cellulase diversity: the digestion mechanism of Caldibacteriumultraruminus Cc7A (CBHI) and Cc5A (EGLI). Bioresource technology 2013, 2016, 200, 706-712.

[60] Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B., The Carbohydrate-Active EnZymes database (CAZY): an expert resource for glycanogenomes. Nucleic acids research 2009, 37, (suppl 1), D233-D238.

[61] Bhattacharya, A. S.; Bhattacharya, A.; Pletschke, B. I., Synergism of fungal and bacterial cellulosomes and hem cellulases: a novel perspective for enhanced bio-ethanol production. Biotechnology letters 2015, 37, (6), 109-118.

[62] Shoseyov, O.; Shani, Z.; Levy, I., Carbohydrate binding modules: biochemical properties and novel applications. Microbiology and molecular biology reviews 2006, 70, (2), 283-295.

[63] Bayer, E. A.; Chanzy, H.; Lamed, R.; Shoham, Y., Cellulose, cellulosomes and cellulosomes. Current opinion in structural biology 1998, 8, (5), 548-557.

[64] Beckham, G. T.; Matthews, J. F.; Bomble, Y. J.; Bu, L.; Adney, W. S.; Himmel, M. E.; Nimlos, M. R.; Crowley, M. F., Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. The Journal of Physical Chemistry B 2010, 114, (3), 1447-1453.

[65] Wilson, D. B., Processive and nonprocessive cellulases for biofuel production—lessons from bacterial genomes and structural analysis. Applied microbiology and biotechnology 2012, 93, (2), 497-502.

[66] Phitsuwon, P.; Laohakunjit, N.; Kerdchoocheuen, O.; Kyu, K. L.; Matsumoto, H., Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia microbiologica 2013, 58, (2), 163-176.

[67] Van Dyk, J. S.; Pletschke, B. I., A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnology Advances 2012, 30, (6), 1458-1480.

[68] Bhatia, Y.; Mishra, S.; Bisaria, V., Microbial β-glucosidases: cloning, properties, and applications. Critical reviews in biotechnology 2002, 22, (4), 375-407.

[69] Budihal, S. R.; Apsar, D.; Patil, S. R., Enhanced production and application of acidothermophilic Streptomyces cellulase. Bioresource technology 2016, 201, 706-712.

[70] Cragg, S. M.; Beckham, G. T.; Bruce, N. C.; Bugg, T. D. H.; Distel, D. L.; Dupree, P.; Etzabe, A. G.; Goodell, B. S.; Jellison, J.; McGeehan, J. E.; McQueen-Mason, S. J.; Schnorr, K.; Walton, P. H.; Watts, J. E. M.; Zimmer, M., Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology 2015, 29, 108-119.

[71] López, S. C.; Sietiö, O.-M.; Hilden, K.; de Vries, R. P.; Mäkelä, M. R., Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. In Gene Expression Systems in Fungi: Advancements and Applications, Springer: 2016; pp 119-160.

[72] Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R. A.; Henrissat, B.; Martinez, A. T.; Ottillar, R.; Spatafora, J. W.; Yadv, J. S.; The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336, (6089), 1715-1719.

[73] Xie, N.; Chapeland · Leclerc, F.; Silar, P.; Ruprich · Robert, G., Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina. Environmental microbiology 2014, 16, (1), 141-161.

[74] Jolivalt, C.; Madzak, C.; Brault, A.; Caminade, E.; Malosse, C.; Mougin, C., Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Applied microbiology and biotechnology 2005, 66, (4), 450-456.

[75] Raghukumar, C.; D’Souza-Tielo, D.; Verma, A., Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Critical Reviews in Microbiology 2008, 34, (3-4), 189-206.
[79] Riley, R.; Salamov, A. A.; Brown, D. W.; Nagy, L. G.; Floudas, D.; Held, B. W.; Levasseur, A.; Lombard, V.; Morin, E.; Otiilar, R.; Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences 2014, 111, (27), 9923-9928.

[80] Pollegioni, L.; Tonin, F.; Rosini, E., Lignin - degrading enzymes. FEBS Journal 2015, 282, (7), 1190-1213.

[81] Qi, M.; Jun, H.-S.; Forsberg, C. W., Characterization and synergistic interactions of Fibrobacter succinogenes glycosidases. Applied and Environmental Microbiology 2007, 73, (19), 6098-6105.

[82] Zhang, X.-Z.; Sathitsuksanoh, N.; Zhang, Y. H. P., Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresource Technology 2010, 101, (14), 5534-5538.

[83] Zhang, Y. H. P.; Lynd, L. R., Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering 2004, 88, (7), 797-824.

[84] Andersen, N.; Johansen, K. S.; Michelsen, M.; Stenby, E. H.; Krogh, K. B. R. M.; Olsson, L., Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology 2008, 42, (4), 362-370.

[85] Woodward, J., SYNERGISM IN CELLULASE SYSTEMS. Bioresource Technology 1991, 36, (1), 67-75.

[86] Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.; Pretorius, I. S., Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 2002, 66, (3), 506-+.

[87] Schwarz, W. H., The cellulosome and cellulase degradation by anaerobic bacteria. Applied Microbiology and Biotechnology 2001, 56, (5-6), 634-649.

[88] Gusakov, A. V.; Salanovich, T. N.; Antonov, A. I.; Ustinirov, B. B.; Okuniev, O. N.; Burlingame, R.; Emaifarh, M.; Baez, M.; Siminyu, A. P., Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering 2007, 97, (5), 1028-1038.

[89] Samayam, I. P.; Schall, C. A., Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresource Technology 2010, 101, (10), 3561-3566.

[90] Samejima, M. S. J.; Igarashi K-E, Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res 1998, 305, 281–8.

[91] Ramirez-Ramirez, N.; Romero-Garcia, E. R.; Calderon, V. C.; Avitia, C. I.; Telliez-Valencia, A.; Pedraza-Reyes, M., Expression, characterization and synergistic interactions of Myxobacter sp AL-1 Cel9 and Cel48 glycosyl hydrolases. International Journal of Molecular Sciences 2008, 9, (3), 247-257.

[92] Bothwell, M. K.; Walker, L. P.; Wilson, D. B.; Irwin, D. C.; Price, M., SYNERGISM BETWEEN PURE THERMOMONOSPORA-FUSCA AND TRICHODERMA-REESEI CELLULASES. Biomass & Bioenergy 1993, 4, (4), 293-299.

[93] Boisset, C.; Petrequin, C.; Chanzy, H.; Henrisatt, B.; Schulein, M., Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnology and Bioengineering 2001, 72, (3), 339-345.

[94] Berger, E.; Zhang, D.; Zverlov, V. V.; Schwarz, W. H., Two noncellulosomal cellulases of Clostridium thermocellum, Cel91 and Cel48Y, hydrolyse crystalline cellulose synergistically. Fems Microbiology Letters 2007, 268, (2), 194-201.

[95] Jung, H.; Yoon, H. G.; Park, W.; Choi, C.; Wilson, D. B.; Shin, D. H.; Kim, Y. J., Effect of sodium hydroxide treatment of bacterial cellulose on cellulase activity. Cellulose 2008, 15, (3), 465-471.

[96] Hoshino, E.; Shiroishi, M.; Amano, Y.; Nomura, M.; Kanda, T., Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. Journal of Fermentation and Bioengineering 1997, 84, (4), 300-306.

[97] Benoit, J.; Culleton, H.; Zhou, M.; DiFalco, M.; Aguilar-Osorio, G.; Battaglia, E.; Bouzid, O.; Brouwer, C. P.; El-Bushari, H. B.; Coutinho, P. M., Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnology for biofuels 2015, 8, (1), 107.

[98] Lambertz, C.; Garvey, M.; Kinger, J.; Heesel, D.; Klose, H.; Fischer, R.; Commandeur, U., Challenges and advances in the heterologous expression of cellobioytic enzymes: a review. Biotechnology for biofuels 2014, 7, (1), 1.

[99] Boonvitthya, N.; Bozonnet, S.; Burapatana, V.; O’Donohue, M. J.; Chulalaksananukul, W., Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeasts Picha pastoris and Yarrowia lipolytica. Molecular biotechnology 2013, 54, (2), 158-169.

[100] Darby, R. A. J.; Cartwright, S. P.; Dilworth, M. V.; Bill, R. M., Which Yeast Species Shall I Choose? Saccharomyces cerevisiae Versus Picha pastoris (Review). In Recombinant Protein Production in Yeast: Methods and Protocols, Bill, M. R., Ed. Humana Press: Totowa, NJ, 2012; pp 11-23.

[101] Cregg, J. M.; Cereghino, J. L.; Shi, J.; Higgins, D. R., Recombinant protein expression in Picia pastoris. Molecular biotechnology 2000, 16, (1), 23-52.

[102] Topakas, E.; Moukouri, M.; Dimarogona, M.; Vafiadi, C.; Christakopoulos, P., Functional expression of a thermophilic glucuronoyl esterase from Sporotrichum thermophile: identification of the nucleophilic serine. Applied microbiology and biotechnology 2010, 87, (5), 1765-1772.

[103] Topakas, E.; Moukouri, M.; Dimarogona, M.; Christakopoulos, P., Expression, characterization and structural modelling of a fureryl esterase from the thermophilic fungus Myceliophthora thermophila. Applied microbiology and biotechnology 2012, 94, (2), 399-411.

[104] Couturier, M.; FelIU, J.; Haon, M.; Navarro, D.; Lesage-Meessen, L.; Coutinho, P. M.; Berrin, J.-G., A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microbial cell factories 2011, 10, (1), 1.

[105] Couturier, M.; Haon, M.; Coutinho, P. M.; Henrisatt, B.; Lesage-Meessen, L.; Berrin, J.-G., Podospora anserina hemi-cellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Applied and environmental microbiology 2011, 77, (1), 237-246.
[106] Kittl, R.; Kracher, D.; Burgstaller, D.; Haltrich, D.; Ludwig, R., Production of four Neurospora crassa lytic polysaccharide monoxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnology for biofuels 2012, 5, (1), 1.

[107] Bey, M.; Zhou, S.; Poidevin, L.; Henriassat, B.; Coutinho, P. M.; Berrin, J.-G.; Sigoillot, J.-C., Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monoxygenases (family GH61) from Podospora anserina. Applied and environmental microbiology 2013, 79, (2), 488-496.

[108] Rabert, C.; Weinacker, D.; Pessoa Jr, A.; Farias, J. G., Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system. Brazilian Journal of Microbiology 2013, 44, (2), 351-356.

[109] Damasceno, L. M.; Huang, C.-J.; Batt, C. A., Protein secretion in Pichia pastoris and advances in protein production. Applied Microbiology and Biotechnology 2012, 93, (1), 31-39.

[110] Hartner, F. S.; Ruth, C.; Langenegger, D.; Johnson, S. N.; Hyka, P.; Lin-Cereghino, G. P.; Lin-Cereghino, J.; Kovar, K.; Cregg, J. M.; Glieder, A., Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic acids research 2008, 36, (12), e76-e76.

[111] Inan, M.; Aryasomayajula, D.; Sinha, J.; Meagher, M. M., Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnology and bioengineering 2006, 93, (4), 771-778.

[112] Younes, S. B.; Karray, F.; Sayadi, S., Isolation of thermophilic fungal strains producing oxido-reductase and hydrolase enzymes from various Tunisian biotopes. International Biodeterioration & Biodegradation 2011, 65, (7), 1104-1109.

[113] Ding, S.-j.; Ge, W.; Buswell, J. A., Secretion, purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeast Pichia pastoris. Enzyme and Microbial Technology 2002, 31, (5), 621-626.

[114] Boonvitthya, N.; Tanapong, P.; Kannag, P.; Burapatana, V.; Chulalaksananukul, W., Cloning and expression of the Aspergillus oryzae glucan 1,3-beta-glucosidase A (exG A) in Pichia pastoris. Biotechnology letters 2012, 34, (10), 1937-1943.

[115] Cairns, J. R. K.; Esen, A., beta-Glucosidases. Cellular and Molecular Life Sciences 2010, 67, (20), 3389-3405.

[116] Tang, Z.; Liu, S.; Jing, H.; Sun, R.; Liu, M.; Chen, H.; Wu, Q.; Han, X., Cloning and expression of A. oryzae beta-glucosidase in Pichia pastoris. Molecular biology reports 2014, 41, (11), 7567-7573.

[117] Chinnathambi, V.; Balasubramanion, M.; Gurusamy, R.; Paramasamy, G., Molecular Cloning and Expression of a Family 6 Cellobiohydrolase Gene cbhl from Penicillium funiculosum NCL1. Advances in Bioscience and Biotechnology 2015, 6, (3), 213.

[118] Zafari, S.; Zaman, M. R.; Totailebi, M.; Sadeghi, M., Cloning and characterization of cbhl gene from Trichoderma parceramomus and its expression in Pichia pastoris. Iranian Journal of Biotechnology 2005, 3, 204-215.

[119] Liu, Y.; Yoshida, M.; Kurakata, Y.; Miyazaki, T.; Igarashi, K.; Samejima, M.; Fukuda, K.; Nishikawa, A.; Tozouzuka, T., Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinerea. FEBS journal 2010, 277, (6), 1532-1542.

[120] Li, Y. L.; Li, H.; Li, A. N.; Li, D. C., Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. Journal of applied microbiology 2009, 106, (6), 1867-1875.

[121] Ko, J.-A.; Ryu, Y. B.; Kwon, H.-J.; Jeong, H. J.; Park, S.-J.; Kim, C. Y.; Wee, Y.-J.; Kim, D.; Lee, W. S.; Kim, Y.-M., Characterization of a novel steviol-producing beta-glucosidase from Penicillium decumbens and optimal production of the steviol. Applied microbiology and biotechnology 2013, 97, (18), 8151-8161.

[122] Hampicharnchai, P.; Champreda, V.; Sornlak, W.; Euwilaichitr, L., A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein expression and purification 2009, 67, (2), 61-69.

[123] Yan, Q.; Hua, C.; Yang, S.; Li, Y.; Jiang, Z., High level expression of extracellular secretion of a beta-glucosidase gene (PBlgBu3) from Paccilomyces thermophila in Pichia pastoris. Protein Expression and Purification 2012, 84, (1), 64-72.

[124] Karnamouri, A.; Topakas, E.; Paschos, T.; Taouki, I.; Christakopoulos, P., Cloning, expression and characterization of an ethanol tolerant GH3 beta-glucosidase from Myceliophthora thermophila. PeerJ 2013, 1, e46.

[125] Zhao, J.; Guo, C.; Tian, C.; Ma, Y., Heterologous expression and characterization of a GH3 beta-glucosidase from thermophilic fungi Myceliophthora thermophila in Pichia pastoris. Applied biochemistry and biotechnology 2015, 177, (2), 511-527.

[126] Kaur, J.; Chaddha, B. S.; Kumar, B. A.; Kaur, G.; Saini, H. S., Purification and characterization of beta-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology 2007, 10, (2), 260-270.

[127] Jeya, M.; Joo, A.-R.; Lee, K.-M.; Tiwari, M. K.; Lee, K.-M.; Kim, S.-H.; Lee, J.-K., Characterization of beta-glucosidase from a strain of Penicillium purpurogenum KJS006. Applied microbiology and biotechnology 2010, 86, (5), 1473-1484.

[128] Hong, J.; Tamaki, H.; Kumatagi, H., Cloning, functional expression of thermostable beta-glucosidase gene from Thermosascus aurantiacus. Applied microbiology and biotechnology 2007, 73, (6), 1331-1339.

[129] Joo, A.-R.; Jeya, M.; Lee, K.-M.; Sim, W.-I.; Kim, J.-S.; Kim, I.-W.; Kim, Y.-S.; Oh, D.-K.; Gunasekaran, P.; Lee, J.-K., Purification and characterization of a beta, 1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Applied microbiology and biotechnology 2009, 83, (2), 285-294.

[130] Amouri, B.; Gargouri, A., Characterization of a novel beta-glucosidase from a Stachybotrys strain. Biochemical Engineering Journal 2006, 32, (3), 191-197.

[131] Ramani, G.; Meera, B.; Vanitha, C.; Rajendhran, J., Thermophilic fungus Penicillium funiculosum NCL1 characterization. Journal of industrial microbiology & biotechnology 2013, 40, (6), 553-565.

[132] Liu, G.; Wei, X.; Qin, Y.; Qu, Y., Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. The Journal of general and applied microbiology 2010, 56, (3), 223-229.
[133] Igarashi, K.; Ishida, T.; Hori, C.; Samejima, M., Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. *Applied and environmental microbiology* 2008, 74, (18), 5628-5634.

[134] Zhao, J.; Shi, P.; Li, Z.; Yang, P.; Luo, H.; Bai, Y.; Wang, Y.; Yao, B., Two neutral thermostable cellulases from Phialophora sp. G5 act synergistically in the hydrolysis of filter paper. *Bioresource technology* 2012, 121, 404-410.

[135] Wonganu, B.; Pootanakit, K.; Boonyapakron, K.; Champreda, V.; Tanaponpipat, S.; Eurwilaiitch, L., Cloning, expression and characterization of a thermostolerant endoglucanase from Synccephalastrum racemosum (BCB18080) in Pichia pastoris. *Protein expression and purification* 2008, 58, (1), 78-86.

[136] Liu, G.; Qin, Y.; Hu, Y.; Gao, M.; Peng, S.; Qu, Y., An endo-1,4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinct domain composition and hydrolysis product profile. *Enzyme and microbial technology* 2013, 52, (3), 190-195.

[137] Rubini, M.; Dillon, A.; Kyaw, C.; Faria, F.; Poças *·* Fonseca, M.; Silva *·* Pereira, I., Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. *Journal of applied microbiology* 2010, 108, (4), 1187-1198.

[138] Zhao, J.; Shi, P.; Huang, H.; Li, Z.; Yuan, T.; Yang, P.; Luo, H.; Bai, Y.; Yao, B., A novel thermoacidophilic and thermostable endo-β-1,4-glucanase from Phialophora sp. G5: its thermostability influenced by a distinct β-sheet and the carbohydrate-binding module. *Applied microbiology and biotechnology* 2012, 95, (4), 947-955.

[139] Ding, S. j.; Ge, W.; Buswell, J. A., Endoglucanase I from the edible straw mushroom, Volvariella volvacea. *European Journal of Biochemistry* 2001, 268, (22), 5687-5695.

[140] Liu, Y.-S.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Haas, T.; Ding, S.-Y., Cellulohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. *Journal of Biological Chemistry* 2011, 286, (13), 11195-11201.

[141] Vármai, A.; Tang, C.; Bengtsson, O.; Atterton, A.; Mathiesen, G.; Eijsink, V. G., Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. *Microbial cell factories* 2014, 13, (1), 1.

[142] Li, C.-H.; Wang, H.-R.; Yan, T.-R., Cloning, purification, and characterization of a heat-and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494. *Molecules* 2012, 17, (8), 9774-9789.

[143] Kim, H. M.; Lee, Y. G.; Patel, D. H.; Lee, K. H.; Lee, D.-S.; Bae, H.-J., Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum. *Journal of industrial microbiology & biotechnology* 2012, 39, (7), 1081-1089.

[144] Jang, H.-D.; Chang, K.-S., Thermostable cellulases from Streptomyces sp.: scale-up production in a 50-L fermenter. *Biotechnology letters* 2005, 27, (4), 239-242.

[145] Mitrovic, A.; Flicker, K.; Steinklerner, G.; Gruber, K.; Reisinger, C.; Schirrmacher, G.; Camattari, A.; Glieder, A., Thermostability improvement of endoglucanase Cel7B from Hypocrea pseudokoningii. *Journal of Molecular Catalysis B: Enzymatic* 2014, 103, 16-23.

[146] Wang, J.; Quirk, A.; Lipkowski, J.; Dutcher, J. R.; Hill, C.; Mark, A.; Clarke, A. J., Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. *Langmuir* 2012, 28, (25), 9664-9672.

[147] Toda, H.; Nagahata, N.; Amano, Y.; Nozaki, K.; Kanda, T.; Okazaki, M.; Shimosaka, M., Gene cloning of cellobiohydrolase II from the white rot fungus Irpex lacteus MC-2 and its expression in Pichia pastoris. *Bioscience, biotechnology, and biochemistry* 2008, 72, (12), 3142-3147.

[148] Poidevin, L.; Feliu, J.; Doan, A.; Berrin, J.-G.; Bey, M.; Coutinho, P. M.; Henriassat, B.; Record, E.; Heiss-Blanquet, S., Insights into exo-and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. *Applied and environmental microbiology* 2013, 79, (14), 4220-4229.

[149] Sun, F. F.; Bai, R.; Yang, H.; Wang, F.; He, J.; Wang, C.; Tu, M., Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris. *Enzyme and Microbial Technology* 2016, 92, 107-116.

[150] Zi-Zhong, T.; Zhen-Fang, W.; Hui, C.; Xin, L.; Xue-yi, H.; Qi, W., Characterization of novel EGs reconstructed from Bacillus subtilis endoglucanase. *Applied biochemistry and biotechnology* 2013, 169, (6), 1764-1773.

[151] Galvighi, H. A.; Meyer, A. S.; Mikkelsen, J. D., Enhanced enzymatic cellulose degradation by cellobioticellodrases via product removal. *Biotechnology letters* 2013, 35, (2), 205-212.

[152] Vogl, T.; Glieder, A., Regulation of Pichia pastoris promoters and its consequences for protein production. *New biotechnology* 2013, 30, (4), 385-404.

[153] Morrow Jr, K. J., Improving protein production processes. *Gen Eng News* 2007, 27, (5), 50-4.

[154] Cereghino, G. P. L.; Cereghino, J. L.; Ilgen, C.; Cregg, J. M., Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. *Current opinion in biotechnology* 2002, 13, (4), 329-332.

[155] Heyland, J.; Fu, J.; Blank, L. M.; Schmid, A., Quantitative physiology of Pichia pastoris during glucose limited high cell density fed-batch cultivation for recombinant protein production. *Biotechnology and bioengineering* 2010, 107, (2), 357-368.

[156] Kainer, F. W.; Dietzsch, C.; Hajek, T.; Herwig, C.; Spadiut, O.; Glieder, A., Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. *Microbial cell factories* 2012, 11, (1), 1.

[157] Potgieter, T. I.; Cukan, M.; Drummond, J. E.; Houston-Cummings, N. R.; Jiang, Y.; Li, F.; Lynamgh, H.; Mallem, M.; McKevel, T. W.; Mitchell, T., Production of monoclonal antibodies by glycoengineered Pichia pastoris. *Journal of biotechnology* 2009, 139, (4), 318-325.

[158] Ye, J.; Ly, J.; Watts, K.; Hsu, A.; Walker, A.; McAulhghin, K.; Berdichevsky, M.; Prinz, B.; Sean Kersey, D.; d’Anjou, M., Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. *Biotechnology progress* 2011, 27, (6), 1744-1750.

[159] Cunha, F.; Esperanca, M.; Zangirolami, T.; Badino, A.; Farinas, C., Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. *Bioresource technology* 2012, 112, 270-274.
[160] Gasser, B.; Priehofer, R.; Marx, H.; Maurer, M.; Nocon, J.; Steiger, M.; Puxbaum, V.; Sauer, M.; Mattanovich, D., Pichia pastoris: protein production host and model organism for biomedical research. *Future microbiology* 2013, 8, (2), 191-208.

[161] Chung, B. K.-S.; Lee, D.-Y., Computational codon optimization of synthetic gene for protein expression. *BMC systems biology* 2012, 6, (1), 1.

[162] Puxbaum, V.; Mattanovich, D.; Gasser, B., Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. *Applied microbiology and biotechnology* 2015, 99, (7), 2925-2938.

[163] Kim, S.; Warburton, S.; Boldogh, I.; Svensson, C.; Pon, L.; d’Anjou, M.; Stadheim, T. A.; Choi, B.-K., Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris. *Journal of biotechnology* 2013, 166, (4), 174-181.

[164] Wang, X.; Wang, Q.; Wang, J.; Bai, P.; Shi, L.; Shen, W.; Zhou, M.; Zhou, X.; Zhang, Y.; Cai, M., Mtl1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris. *Journal of Biological Chemistry* 2016, 291, (12), 6245-6261.

[165] Mellitzer, A.; Ruth, C.; Gustafsson, C.; Welch, M.; Birner-Grünenberger, R.; Weis, R.; Purkarthofer, T.; Glieder, A., Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. *Journal of biotechnology* 2014, 191, 187-195.

[166] Liang, S.; Zou, C.; Lin, Y.; Zhang, X.; Ye, Y., Identification and characterization of P GCW14: a novel strong constitutive promoter of Pichia pastoris. *Biotechnology letters* 2013, 35, (11), 1865-1871.

[167] Charoenrat, T.; Sangprapai, K.; Promdonkoy, P.; Kocharin, K.; Tanaponpipat, S.; Roongswang, N., Enhancement of thermostable β-glucosidase production in a slow methanol utilization strain of Pichia pastoris by optimization of the specific methanol supply rate. *Biotechnology and Bioprocess Engineering* 2015, 20, (2), 315-323.

[168] Cos, O.; Serrano, A.; Montesinos, J. L.; Ferrer, P.; Cregg, J. M.; Valero, F., Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. *Journal of biotechnology* 2005, 116, (4), 321-335.

[169] Cregg, J. M.; Madden, K. R.; Barringer, K. J.; Thill, G. P.; Stillman, C. A., Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. *Molecular and cellular biology* 1989, 9, (3), 1316-1323.

[170] Kübler, A.; Schneider, J.; Thallinger, G. G.; Anderl, I.; Wibberg, D.; Hajek, T.; Jaenicke, S.; Brinkrolf, K.; Goesmann, A.; Szczepanowski, R., High-quality genome sequence of Pichia pastoris CBS7435. *Journal of biotechnology* 2011, 154, (4), 312-320.

[171] Shen, S.; Sulter, G.; Jeffries, T. W.; Cregg, J. M., A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. *Gene* 1998, 216, (1), 93-102.

[172] Ahn, J.; Hong, J.; Lee, H.; Park, M.; Lee, E.; Kim, C.; Choi, E.; Jung, J.; Lee, H., Translation elongation factor 1-a gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter. *Applied microbiology and biotechnology* 2007, 74, (3), 601-608.

[173] Stadlmayr, G.; Mecklenbräuker, A.; Rothmuller, M.; Maurer, M.; Sauer, M.; Mattanovich, D.; Gasser, B., Identification and characterization of novel Pichia pastoris promoters for heterologous protein production. *Journal of biotechnology* 2010, 150, (4), 519-529.

[174] Menendez, J.; Valdes, I.; Cabrera, N., The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. *Yeast* 2003, 20, (13), 1097-1108.

[175] Ahn, J.; Hong, J.; Park, M.; Lee, H.; Lee, E.; Kim, C.; Lee, J.; Choi, E.-s.; Jung, J.-k.; Lee, H., Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. *Applied and environmental microbiology* 2009, 75, (11), 3528-3534.

[176] Cegg, J. M.; Tolstorukov, I. L., P pastoris ADH promoter and use thereof to direct expression of proteins. In Google Patents: 2012.

[177] Waterham, H. R.; Digan, M. E.; Koutz, P. J.; Lair, S. V.; Cregg, J. M., Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation of use of its promoter. *Gene* 1997, 186, (1), 37-44.

[178] Vogl, T.; Sturmbberger, L.; Kickenweitz, T.; Wasmayer, R.; Schmid, C.; Hatzl, A.-M.; Gerstmann, M. A.; Pitzer, J.; Wagner, M.; Thallinger, G. G., A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris. *ACS synthetic biology* 2015, 5, (2), 172-186.

[179] De Almeida, J. R. M.; de Moraes, L. M. P.; Torres, F. A. G., Molecular characterization of the 3-phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris. *Yeast* 2005, 22, (9), 725-737.

[180] Sears, I. B.; O’Connor, J.; Rossanese, O. W.; Glick, B. S., A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. *Yeast* 1998, 14, (8), 783-790.

[181] Liang, S.; Zou, C.; Lin, Y.; Zhang, X.; Ye, Y., Identification and characterization of P GCW14: a novel, strong constitutive promoter of Pichia pastoris. *Biotechnology letters* 2013, 35, (11), 1865-1871.

[182] Prielhofer, R.; Maurer, M.; Klein, J.; Wenger, J.; Kiziac, K.; Gasser, B.; Mattanovich, D., Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. *Microbial cell factories* 2013, 12, (1), 5.

[183] Suto, M.; Tomita, F., Induction and catalolite repression mechanisms of cellulase in fungi. *Journal of Bioscienc and Bioengineering* 2001, 92, (4), 305-311.

[184] Xuan, Y.; Zhou, X.; Zhang, W.; Zhang, X.; Song, Z.; Zhang, Y., An upstream activation sequence controls the expression of AOX1 gene in Pichia pastoris. *FEMS yeast research* 2009, 9, (8), 1271-1282.

[185] Alper, H.; Fischer, C.; Nevoigt, E.; Stephanopoulos, G., Tuning genetic control through promoter engineering. *Proceedings of the National Academy of Sciences of the United States of America* 2005, 102, (36), 12678-12683.

[186] Staley, C. A.; Huang, A.; Nattestad, M.; Oshiro, K. T.; Ray, L. E.; Mulye, T.; Li, Z. H.; Le, T.; Stephens, J. J.; Gomez, S. R., Analysis of the 5′ untranslated region (5′ UTR) of the alcohol oxidase 1 (AOX1) gene in recombinant protein expression in Pichia pastoris. *Gene* 2012, 496, (2), 118-127.
[187] Salis, H. M.; Mirsky, E. A.; Voigt, C. A., Automated design of synthetic ribosome binding sites to control protein expression. *Nature biotechnology* 2009, 27, (10), 946-950.

[188] Bakke, I.; Berg, L.; Aune, T. E. V.; Brautaset, T.; Sletta, H.; Tøndervik, A.; Valla, S., Random mutagenesis of the PM promoter as a powerful strategy for improvement of recombinant-gene expression. *Applied and environmental microbiology* 2009, 75, (7), 2002-2011.

[189] Nevoigt, E.; Fischer, C.; Mucha, O.; Matthäus, F.; Stahl, U.; Stephanopoulos, G., Engineering promoter regulation. *Biotechnology and bioengineering* 2007, 96, (3), 550-558.

[190] Qin, X.; Qian, J.; Yao, G.; Zhuang, Y.; Zhang, S.; Chu, J., GAP promoter library for fine-tuning of gene expression in *Pichia pastoris*. *Applied and environmental microbiology* 2011, 77, (11), 3600-3608.

[191] Zhang, A.-L.; Luo, J.-X.; Zhang, T.-Y.; Pan, Y.-W.; Tan, Y.-H.; Fu, C.-Y.; Tu, F.-z., Recent advances on the GAP promoter derived expression system of *Pichia pastoris*. *Molecular biology reports* 2009, 36, (6), 1611-1619.

[192] Renuse, S.; Madugundu, A. K.; Kumar, P.; Nair, B. G.; Gowda, H.; Prasad, T.; Pandey, A., Proteomic analysis and genome annotation of *Pichia pastoris*, a recombinant protein expression host. *Proteomics* 2014, 14, (23-24), 2769-2779.

[193] Dikicioglu, D.; Wood, V.; Rutherford, K. M.; McDowall, M. D.; Oliver, S. G., Improving functional annotation for industrial microbes: a case study with *Pichia pastoris*. *Trends in biotechnology* 2014, 32, (8), 396-399.

[194] Kranthi, B. V.; Kumar, R.; Kumar, N. V.; Rao, D. N.; Rangarajan, P. N., Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in *Pichia pastoris*. *Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms* 2009, 1789, (6), 460-468.