Short Communication

Occurrence of *Panstrongylus megistus* (Burmeister, 1835) in an area under entomological surveillance in the Southeast Region of Brazil

João Victor Leite Dias[1], Rita de Cássia Moreira de Souza[2], Janice Maria Borba Souza[3], Liléia Gonçalves Diotaiuti[2] and Raquel Aparecida Ferreira[2]

[1]. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus Teófilo Otoni, Faculdade de Medicina do Mucuri, Teófilo Otoni, MG, Brasil.
[2]. Instituto René Rachou, Grupo de Pesquisa Triatomíneos, Belo Horizonte, MG, Brasil.
[3]. Superintendência Regional de saúde de Divinópolis, Divinópolis, MG, Brasil.

Abstract

Introduction: *Panstrongylus megistus* is the main triatomine involved in the human transmission of *Trypanosoma cruzi* in Minas Gerais, Brazil. We analyzed the occurrence of triatomines in the Itaúna micro-regions for healthcare.

Methods: Data were collected as part of routine entomological surveillance activities, including the species identity, capture site, developmental stage, and trypanosome infection.

Results: In total, 503 specimens from five species were captured (495 *P. megistus*). Adults were mainly captured by residents inside their homes, whereas nymphs were mostly captured by public health professionals outside.

Conclusions: The epidemiologically important triatomine, *P. megistus*, continues to persist in our study region.

Keywords: Chagas disease. Surveillance. Triatomine.

Triatomines (Hemiptera: Reduviidae) are important for public health because some species might play a role in the transmission of *Trypanosoma cruzi*, the causative agent of Chagas disease. Among over 150 described triatomine species, the most epidemiologically important are those able to colonize human dwellings and their associated outbuildings.

In Brazil, the transmission of *T. cruzi* by *Triatoma infestans* (Klug, 1834), a non-native vector, has been effectively interrupted, but native triatomine species remain a target for Chagas disease control programs. In Minas Gerais, the native triatomine *Panstrongylus megistus* (Burmeister, 1835) was the main domiciliary species before the introduction and spread of *T. infestans* during the early 20th century. *Panstrongylus megistus* is currently one of the most frequently captured triatomines in Minas Gerais, and its infestation of houses has persisted, although at low densities. However, the rates of natural *T. cruzi* infection are usually high, and the trypanosome is frequently found in nymph-form inside houses, where they often feed on the blood of humans.

The mid-western region of Minas Gerais has been important for studies on Chagas disease epidemiology, both historically and in the present day, due to the high incidence of the disease in the past and the continuing presence of triatomines, *P. megistus*, the most important species in the region from an epidemiological point-of-view. The mid-western region comprises 54 municipalities coordinated by the Regional Health Management of Divinópolis (RHMD). In turn, each of these municipalities is grouped into one of six healthcare "micro-regions" to comply with the legislation provided for in the Health Regionalization Plan of Minas Gerais. These healthcare micro-regions are administrative divisions that coordinate the health services offered to an area, providing secondary and, eventually, tertiary healthcare assistance.

This study aimed to describe the occurrence of triatomines in "domiciliary units" (DU) (i.e., the intradomicile and peridomicile of residential buildings considered together) located within the micro-region of healthcare of Itaúna (MHI), which comprises four municipalities (Itaguara, Itatiaiuçu, Itaúna, and Piracema; Figure 1) and is the smallest micro-region under the management...
FIGURE 1: The four municipalities of the micro-region of health of Itaúna (MHI), Minas Gerais, Brazil. From top to bottom: Itaúna, Itatiaiuçu, Itaguara, and Piracema. The red dots represent the localities where triatomines were found. Land cover classes were retrieved from the mean normalized difference vegetation index, calculated with four images from LANDSAT 5 TM (1987, 1997, 2007, and 2011). The watercourses layer was obtained from the Brazilian Institute of Geography and Statistics (IBGE).
TABLE 1: The number of triatomines captured in domiciliary environments in the four municipalities of the micro-region of healthcare of Itaúna (MHI), Minas Gerais, Brazil, according to species, developmental stage, capture site (intradomicile or peridomicile), and mode of surveillance (resident notification or prescheduled active search) between 2011 and 2015.

Species	Resident notification	Prescheduled active search	Total	Examined	Positive						
	Intradomicile	Peridomicile	Intradomicile	Peridomicile							
	Adults	Nymphs	Adults	Nymphs	Adults	Nymphs	Adults	Nymphs			
P. megistus	116	2	39	9	47	46	78	158	495	389	5
P. diasi	4	-	1	-	-	-	-	-	5	-	
R. neglectus	1	-	-	-	-	-	-	-	1	-	
T. circummaculata†	1	-	-	-	-	-	-	-	1	-	
T. sordida	-	-	1	-	-	-	-	-	-	-	
Total	122	2	41	9	47	46	78	158	503	390	5

† Specimen misidentified, as this species is restricted to the state of Rio Grande do Sul, Brazil. ‡ Two adults in intradomicile (resident notification), one adult (resident notification), and two nymphs in peridomicile (notification and active search).

Overall, from a total of 423 localities within the MHI, 114 (26.9%) reported the occurrence of at least one triatomine between 2011 and 2015, either through resident notification or prescheduled active searches. Among the subset of localities where prescheduled active searches by public health agents were performed (*n* = 619 searches, as some localities were searched multiple times), triatomines were found in 253 (40.9%) of the opportunities (Figure 2). Concerning individual municipalities, 236 (46.9%) of all triatomines from the MHI were captured from 133 DU in Piracema, 175 (34.8%) from 97 DU in Itatiaiuçu, 79 (15.7%) from 37 DU in Itaguara, and 13 (2.6%) from 6 DU in Itaúna. The municipality of Itaúna did not have prescheduled active searches in 2011, 2012, and 2013. In addition, not all insects captured in DU as part of routine entomological surveillance are reported in the SisPCDCh database, as usually only 10%–20%, or even less, of the sampled insects are recorded. Thus, the number of insects captured during the period of our study, 503, very likely represents only a small proportion of the actual number of triatomines collected in DU, and an even smaller proportion of the triatomines actually present.

Panstrongylus megistus was the most captured species of triatomine. This vector has been captured in many regions of the state of Minas Gerais, where it has colonized domiciles and outbuildings6,11-12. This species was also found to have colonized the intradomicile, and other human-made structures in the municipalities studied. The presence of this species in domiciles may represent a risk for *T. cruzi* transmission to the human residents, as the latter may act as a source of food (blood)5. Besides, residents living in endemic areas often find it difficult to identify and detect nympha (*n* = 215 in total) were significantly more likely to be caught in outbuildings by health workers (73.5% of all nympha; *n* = 158; Table 1). There were significant associations between the developmental stage of the triatomine and their capture site (*χ²* = 66.3; *P* < 0.0001), developmental stage, and mode of surveillance (i.e., resident notification versus prescheduled active search; *χ²* = 144.2; *P* < 0.0001) as well as the capture site and prescheduled active search (*χ²* = 85.8; *P* < 0.0001).

![Figure 2](image-url)
nymphs13,14, which is likely to contribute to the persistent presence of immature forms of triatomines inside houses, especially as they were detected mostly by public health professionals.

The widespread distribution of \textit{P. megistus} observed in our study region could be explained by the vast number of watercourses and riparian forests (Figure 1), as they are known to be the preferred habitats for this species, especially within the Cerrado biome. These types of landscape features and vegetation are remnants of tropical Atlantic Forest, which has been hypothesized as the original native habitat of \textit{P. megistus} and from which it dispersed into the Cerrado6.

Other species found indoors were \textit{Panstrongylus diasi} Pinto \& Lent, 1946, \textit{Rhodnius neglectus} Lent, 1954, \textit{Triatoma circummaculata} (Stål, 1859), and \textit{Triatoma sordida} (Stål, 1859). Except for \textit{T. sordida}, these species are not often observed colonizing domiciles, and thus they are believed to have little epidemiological importance with regard to the human transmission of Chagas disease. It is worth mentioning that the report of \textit{T. circummaculata} is probably an error created during the entry of the species identification code into the relevant field of the SisPCDCh database. The incorrect morphological identification of this specimen is thought to be less likely, as the distribution of this species (\textit{T. circummaculata}) in Brazil is restricted to the state of Rio Grande do Sul15. This situation reinforces the need for better communication and feedback between local health professionals and centralized reference laboratories to enable the correct reporting of triatomine occurrence, such as supporting the surveillance services in each municipality with educational and training activities provided by the reference laboratories.

The Brazilian Chagas Disease Control Program was carried out nationwide since the late 1970s, under the responsibility of federal health agents. However, since the early 2000s, municipalities became responsible for maintaining triatomine surveillance and control activities. However, many municipalities stopped entomological surveillance at this time, and data gathering regarding triatomine occurrence was discontinued6. In MHI, triatomines are detected when surveillance occurs. In areas where active entomological surveillance is still common, the local community is aware of this and know how to recognize triatomines better than in areas where active surveillance is now rare or non-existent14.

Triatomines were found in a number of the searched localities, with no evidence of a decreasing trend over time. This scenario will probably remain unaltered in the future, as riparian vegetation remnants constitute permanently preserved areas and may act as sources of triatomines for the surrounding houses. The occurrence of \textit{P. megistus} within undisturbed native forests has long been recognized6 However, given the current importance of preserving biodiversity and native habitats, the destruction of protected forest fragments is not an acceptable way to control this vector of Chagas disease. On the other hand, the continuous presence of anthropophilic triatomines such as \textit{P. megistus} in domiciles of the MHI, including the presence of insects infected with \textit{T. cruzi}, reinforces the need to strengthen entomological surveillance activities in this and other regions, together with intense health education programs for residents, and the continued involvement of public health agents and policy decision-makers.

ACKNOWLEDGMENTS

We are grateful for the assistance and work of the employees and public health professionals of the healthcare micro-region of Itaúna.

FINANCIAL SUPPORT

This work was supported by FAPEMIG, PPSUS/2013, IRR/Fiocruz, SES/MG and the Municipal Health Departments of Piracema, Itaguara, Itaúna e Itatiaiuçu.

AUTHORS’ CONTRIBUTION

JVLD: data analysis and interpretation; literature review; writing and approval of the final version of the article; responsible for the integrity of the article; RCMS: literature review; writing and approval of the final version of the article; responsible for the integrity of the article; JMBS: data collection, processing, analysis and interpretation; review and approval of the final version of the article; responsible for the integrity of the article; LGD: review and approval of the final version of the article; responsible for the integrity of the article.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

1. Chagas C. Nova espécie mórbida do homem produzida por um \textit{Trypanosoma} (\textit{Trypanosoma cruzi}). Nota prévia. Bras Med. 1909;23(16):161.
2. Dorn PL, Justi SA, Dale C, Stevens L, Galvão C, Lima-Cordôn R, et al. Description of \textit{Triatoma mopan} sp. n. from a cave in Belize (Hemiptera, Reduviidiae, Triatominae). Zootkeys. 2018;775:69-95.
3. Abad-Franch F, Diotaui iT, Gurgel-Gonçalves R, Gürtler RE. Certifying the interruption of Chagas disease transmission by native vectors: cui bono? Mem Inst Oswaldo Cruz. 2013;108(2):251-4.
4. Forattini OP. Biogeografia, origem e distribuição da domiciliação de triatomíneos no Brasil. Rev Saude Publica. 1980;14:265-99.
5. Villela MM, Rodrigues VLCC, Casanova C, Dias JCP. Análise da fonte alimentar de \textit{Panstrongylus megistus} (Hemiptera, Reduviidae, Triatominae) e sua atual importância como vetor do \textit{Trypanosoma cruzi}, no Estado de Minas Gerais. Rev Soc Bras Med Trop. 2010;43(2):125-8.
6. Villela MM, Souza JMB, Melo VP, Dias JCP. Avaliação do Programa de Controle da Doença de Chagas em relação à presença de \textit{Panstrongylus megistus} na região centro-oeste do Estado de Minas Gerais, Brasil. Cad Saude Publica. 2009;25(4):907-17.
7. Santos-Júnior JE, Diotaui iT, Dias JCP. First report of \textit{Panstrongylus megistus} sylvatic focus in municipality of Bambuí, state of Minas Gerais. Mem Inst Oswaldo Cruz. 2011;106(4):510-3.
8. Malachias I, Leles FAG, Pinto MAS. Plano Diretor de Regionalização da Saúde de Minas Gerais. Belo Horizonte: Secretaria de Estado da Saúde de Minas Gerais; 2011. 264 p.
9. Brasil. Fundação Instituto de Geografia e Estatística. Resolução n° 4, de 26 de agosto de 2015. Anexo. Diário Oficial da União. Seção I. 28 de agosto de 2015. p. 98-116.
10. Ayres M, Ayres-Júnior M, Ayres DL, Santos AAS. BioEstat: 5.0 - Aplicações estatisticas nas áreas das ciências biomédicas. Belém: Instituto Mamirauá; 2007. 364 p.
11. Belisário CJ, Dias JVL, Diotaiuti L. Profile of the Trypanosoma cruzi vector infestation in Jaboticatubas, State of Minas Gerais, Brazil. Rev Soc Bras Med Trop. 2013;46(6):779-82.

12. Dias JVL, Fernandes EG, Pires HHR, Dias JCP. Occurrence and distribution of triatomines (Hemiptera: Reduviidae) in municipalities of the Northeastern region of Minas Gerais State, Brazil. Rev Soc Bras Med Trop. 2016;49(4):502-7.

13. Villela MM, Pimenta DN, Lamounier PA, Dias JCP. Avaliação de conhecimentos e práticas que adultos e crianças têm acerca da doença de Chagas e seus vetores em região endêmica de Minas Gerais, Brasil. Cad Saude Publica. 2009;25(8):1701-10.

14. Dias JVL, Queiroz DRM, Diotaiuti L, Pires HHR. Knowledge of triatomine insects and the Chagas disease among people from localities which have different levels of vector infestations. Cienc Saude Colet. 2016;21(7):2293-303.

15. Cardozo-de-Almeida M, Castro-de-Souza S, Oliveira MLR, Almeida SAS, Gonçalves TCM, Santos-Mallet JRS. Ultrastructure and morphometry of eggs of Triatoma rubrovaria (Blanchard, 1843), Triatoma carcavalloi Jurberg, Rocha & Lent, 1998 and Triatoma circummaculata (Stål, 1859) (Hemiptera-Reduviidae-Triatominae). Zootaxa. 2013;3750(4):348-56.