Plasma Chromogranin A as a marker of cardiovascular involvement in Erdheim–Chester disease

Elisabetta Ferrera, Angelo Corti, Julien Haroche, Daniela Belloni, Barbara Colomba, Alvise Bert, Giulio Cavalli, Corrado Campochiaro, Antonello Villa, Fleur Cohen-Aubart, Zahir Amoura, Claudio Dogliolo, Lorenzo Dagna, Marina Ferrarini

Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy; Department of Medicine, Vita-Salute San Raffaele University, Milan, Italy; Pitie-Salpetriere Hospital, Université Pierre et Marie Curie, Paris, France; Unit of Medicine and Clinical Immunology, San Raffaele Scientific Institute, Milan, Italy; Consorzio MIA, University of Milano-Bicocca, Milan, Italy; Pathology Unit, San Raffaele Scientific Institute, Milan, Italy

ABSTRACT

Erdheim–Chester disease (ECD) is a rare non-Langerhans cell histiocytosis (LCH) characterized by tissue infiltration with CD68+ foamy histiocytes. TNF-related chronic inflammation and mutations in the MAP kinase signaling pathway in histiocytes are recognized as the two major pathogenic events. Among pleomorphic clinical manifestations, cardiovascular involvement is frequent and prognostically relevant. Evaluation of ECD clinical course and response to treatment is, however, still challenging. Taking advantage of the two largest cohorts of ECD patients worldwide, we investigated the relevance and the potential of circulating Chromogranin A (CgA), a pro-hormone involved in cardiovascular homeostasis and inflammation, as a biomarker of response to therapy in ECD. Consistent with other TNF-related inflammatory diseases, we found that not only TNF-α and soluble TNF-Receptors (sTNF-Rs), but also CgA plasma levels were significantly increased in ECD patients compared to controls. CgA, but not sTNF-Rs, discriminated cardiovascular involvement in ECD patients and correlated with pro-Brain Natriuretic Peptide (pro-BNP). In a single case, where a cardiac biopsy was available, CgA was found expressed by cardiomyocytes but not by infiltrating histiocytes. In four ECD patients, where serial determination of these parameters was obtained, the kinetics of sTNF-Rs and CgA paralleled response to therapy with anti-inflammatory and cytotoxic inhibitors; specifically, sTNF-Rs overlapped TNF-associated inflammation, while CgA, together with pro-BNP, closely mirrored response of cardiac disease. Our data indicate that both sTNF-Rs and CgA are linked to ECD pathophysiology. Moreover, CgA, in concert with pro-BNP, can be further exploited to fulfill the unmet clinical need of non-invasive reliable biomarkers of cardiac disease in these patients.

Abbreviations: CgA, Chromogranin A; CHF, chronic heart failure; ECD, Erdheim–Chester disease; LCH, Langerhans cell histiocytosis; pro-BNP, pro-Brain Natriuretic Peptide; sTNF-R, soluble TNF-Receptors; TNF-α, Tumor Necrosis Factor-α

Introduction

Erdheim–Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis (LCH), with about 550 cases reported since its first description in 1930. Histologically, the disease is characterized by xanthomatous or xantho-granulomatous infiltration of tissues by foamy CD68+ CD1a– non-Langerhans histiocytes or lipid-laden macrophages, surrounded by fibrosis. Since virtually any organ can be affected, ECD exhibits protean clinical manifestations, including the nearly pathognomonic osteosclerosis especially of the long bones and extra-skeletal manifestations (exophthalmos, xanthelasma, interstitial lung disease, obstructive renal impairment, diabetes insipidus, and cardiovascular and central nervous system (CNS) involvement). The prognosis is generally severe, particularly when the cardiovascular and central nervous system are involved. Given the lack of reliable biomarkers, evaluation of clinical course of ECD and response to treatment is still challenging.

We and others have identified two major and possibly interconnected pathogenic events, i.e., a full-blown chronic inflammation and a mutation in the Ras–Raf–Mek–Erk signaling pathway (in particular the BRAFV600E mutation) in histiocytes, which is detectable in the majority of ECD patients. Oncogene-induced senescence has been proposed as a possible link between those pathogenic events, which have been therapeutically targeted with cytokine inhibitors and more recently with the BRAFV600E inhibitor vemurafenib. Chronic local and systemic inflammation is a hallmark of the disease, with TNF-α playing a key role, as indicated by increased plasma levels of TNF-related cytokines and chemokines, and also of soluble TNF-Receptor I (sTNF-RI) and sTNF-RII, in ECD patients. STNF-Rs derive from proteolytic cleavage of membrane-associated TNF-Rs, which is promoted by TNF-α itself, and can therefore be considered bona fide surrogates of TNF-activity. Recently, serum TNF-α and/or
CgA is a 49-kDa acidic polypeptide stored in the secretory granules of chromaffin cells and released in the extracellular environment by exocytosis. This protein can undergo intracellular and extracellular proteolytic processing, originating biologically active fragments which are implicated in several functions, including vascular homeostasis, angiogenesis, and tissue repair.22-25 CgA levels are increased in patients with neuroendocrine tumors, or with heart or renal failure, rheumatoid arthritis (RA) or other inflammatory diseases.18-22 With regard to the cardiovascular system, serum CgA levels correlate with severity of cardiac dysfunction and are a predictive factor for mortality in patients with chronic heart failure (CHF) and acute coronary syndrome.21,26-28 More recently, immunohistochemical analyses identified cardiomiocytes as an important source of CgA in patients with CHF.29 In these cells, CgA colocalized with the brain natriuretic peptide (BNP) inside cytoplasmic granules in patients but not in normal controls.29 The relationship between CgA and TNF-α/sTNF-Rs in ECD, and also its association with cardiovascular involvement, a prominent clinical manifestation of the disease,30,31 are presently unknown. Taking advantage of the two largest cohorts of ECD patients worldwide, we aimed to assess the expression and kinetics of circulating sTNF-Rs and CgA in ECD patients, in order to explore their potential to fulfill the unmet clinical need of non-invasive reliable biomarkers of disease activity and response to therapy.

Results

Circulating CgA is increased in ECD patients and identifies cardiovascular involvement

We have previously reported the systemic increase in TNF-α, TNF-related cyto-chemokines and sTNF-Rs in 10 ECD patients.14 We here confirm and extend this observation to a larger cohort of patients, including 17 patients from Ospedale San Raffaele (OSR) and 20 from Pitié-Salpêtrière Hospital. Demographic and clinical characteristics of ECD patients recruited to the study are summarized in Table 1. Also in this cohort of patients sTNF-RI and -RII are significantly increased compared to controls (Table 2). Circulating CgA was also significantly increased in ECD patients (Table 2), and correlated with sTNF-RI only (r = 0.433, p ≤ 0.05); sTNF-RI and sTNF-RII instead strongly correlated with each other (r = 0.770, p ≤ 0.001) (Fig. 1A). Given the reported increase in circulating CgA in patients affected by CHF,30 we aimed to determine whether CgA levels

Table 1. Demographic and clinical characteristics of ECD patients.

Age	Sex	Involvement	Ongoing therapy	
1	69	F	Exophthalmos, diabetes insipidus, bone, pleuro-pericardial effusion	None
2	49	M	Bone, retroperitoneal fibrosis, lung	None
3	46	M	Retropertoneal fibrosis, diabetes insipidus, exophthalmos, bone	None
4	52	M	End-stage renal disease, heart (chronic heart failure, pericardial effusion)	None
5	79	F	Heart (CHF), mediastinal localization, bone	Corticosteroids
6	65	F	Bone, lung, heart, xanthelasma, CNS	IFN
7	46	M	Retropertoneal fibrosis, renal failure, aortic aneurism, lung, bone	Corticosteroids + IFN
8	61	M	Heart (CHF), bone, lung, diabetes insipidus, hypogonadotropic hypogonadism, retroperitoneal fibrosis	Methotrexate
9	56	M	Heart (atrial mass and pericardial effusion), retroperitoneal fibrosis, bone	Corticosteroids
10	71	M	Heart (pericardial effusion), bone, retroperitoneal fibrosis	None
11	54	M	CNS, diabetes insipidus	IFN
12	55	M	Renal failure, retropertoneal fibrosis, bone, xanthelasma, CNS and heart (atrial mass and pericardial effusion)	IFN
13	27	M	Diabetes insipidus, CNS, renal failure, bone, pulmonary fibrosis	Corticosteroids
14	26	M	Retropertoneal fibrosis, CNS, retro-orbital, pericardial effusion, bone	Corticosteroids + IFN
15	45	M	Diabetes insipidus, pulmonary fibrosis, optic nerves, retroperitoneal fibrosis, bone	Corticosteroids
16	58	F	Retropertoneal fibrosis, xanthelasma, bone	IFN
17	52	M	Pan-hypopituitarism, diabetes insipidus, pulmonary infiltration, bone	Corticosteroids
18	69	M	CNS, bone	PEG-IFN
19	25	F	Skin, exophthalmos, bone	IFN
20	33	M	Exophthalmos, retropertoneal fibrosis, bone	Cladribine
21	64	F	Xanthelasma, heart (atrial mass and pericardial effusion), retroperitoneal fibrosis, bone	IFN
22	59	M	Xanthelasma, bone, heart (pericardial effusion), diabetes insipidus, CNS, retropertoneal fibrosis	IFN
23	58	F	Bone, exophthalmos, CNS, retropertoneal fibrosis	None
24	45	F	Bone, xanthelasma, retropertoneal fibrosis, diabetes insipidus	PEG-IFN
25	67	F	Bone, xanthelasma, heart (atrial mass and pericardial effusion), lung, retroperitoneal fibrosis	Corticosteroids
26	73	M	Bone, retropertoneal fibrosis, xanthelasma, CNS	Corticosteroids + IFN
27	65	F	Bone, xanthelasma	PEG-IFN
28	60	M	Bone, diabetes insipidus, heart (pericardial effusion), retroperitoneal fibrosis	PEG-IFN
29	56	M	Bone, lung, retropertoneal fibrosis	IFN
30	75	M	Bone, CNS, diabetes insipidus, retropertoneal fibrosis	None
31	33	M	Bone, heart (atrial mass), retroperitoneal fibrosis, CNS, xanthelasma	Corticosteroids
32	68	F	Bone, retroperitoneal fibrosis, lung, xanthelasma, exophthalmos	Corticosteroids
33	55	M	Retropertoneal fibrosis, bone, exophthalmos	None
34	56	M	Heart (atrial mass and pericardial effusion), retroperitoneal fibrosis, aortic aneurism, bone	PEG-IFN
35	52	M	CNS, diabetes insipidus, bone, exophthalmos	None
36	63	M	Heart (CHF), coated aorta, bone	None
37	52	M	CNS, diabetes insipidus, bone, retropertoneal fibrosis	PEG-IFN

Abbreviations: CNS, central nervous system; CHF, chronic heart failure; IFN, interferon.
in ECD correlate with cardiac disease. Since echocardiography
is not sensitive enough to exclude cardiac involvement,5 we
analyzed only 17 patients who had cardiac MRI performed at
the time of blood sampling. Baseline clinical characteristics of
these patients (eight with cardiac involvement and nine with-
out) are summarized in Table 3. CgA concentration in patients
with cardiac involvement was significantly higher
(217.66 ± 38.29 ng/mL) compared to both HD (35.44 ±
1.72 ng/mL; p < 0.001) and nine ECD patients without cardiac
involvement (84.36 ± 21.48 ng/mL; p < 0.001) (Fig. 1B,
Table 4). Neither sTNF-R could discriminate between the two
groups of patients (Fig. 1B, Table 4): sTNF-RI and sTNF-RII
concentrations were 4.41 ± 0.99 ng/mL and 4.22 ± 0.84 ng/mL
in ECD patients with versus 4.55 ± 1.04 ng/mL and 5.30 ±
1.05 ng/mL in patients without cardiac involvement.

Since circulating CgA significantly correlates with BNP in
patients with cardiomyopathy,29 we determined Pro-BNP levels
in 14 ECD patients, including 8 with and 6 without cardiac
involvement. Pro-BNP levels were higher in the former group
(median value of 613.5 pg/mL, range 42–5196 pg/mL vs.
124 pg/mL, range 17–366 pg/mL). Moreover, pro-BNP levels
significantly correlated with circulating CgA (r = 0.618, p < 0

Table 2. Soluble TNF-Rs and Chromogranin A in ECD patients.

	sTNF-RI (ng/mL)	sTNFRII (ng/mL)	TNF- (pg/mL)	CgA (ng/mL)
HD (n = 20)	1.21 ± 0.09	1.83 ± 0.10	0.89 ± 0.56	35.4 ± 1.7
ECD (n = 37)	3.88 ± 0.41***	4.86 ± 0.35***	11.53 ± 3.41	153.08 ± 23.7***

Results are mean ± SEM of soluble TNF Receptor (sTNF-R) I and II, TNF-α, and Chromogranin A (CgA) concentrations in plasma from Healthy Donors (HD) and ECD patients, as determined by ELISA.

TNF-α concentration was determined in 17 ECD patients and 7 HD. Data obtained from ECD patients and controls were compared by the Mann–Whitney U test.

*statistically significant at p < 0.05.
**statistically significant at p < 0.01.
***statistically significant at p < 0.001.

![Figure 1](image-url)

Figure 1. Circulating CgA identifies cardiovascular involvement in ECD patients. (A) Correlation between sTNF-RI and sTNF-RII (left) and between sTNF-RI and CgA (middle) and sTNF-RII and CgA (right) was evaluated by Spearman correlation analysis in 37 ECD patients. (B) circulating CgA, sTNF-RI, and sTNF-RII levels were determined in ECD patients with (n = 8, white columns) or without (w/o) (n = 9, gray columns) cardiovascular involvement (CV) and represented as mean ± SEM. Statistical significance was assessed by ANOVA. Black columns represent the mean of healthy controls (HD) (n = 20). (C) correlation between circulating CgA, sTNF-RI, or sTNF-RII with pro-BNP values was performed by Spearman correlation analysis in 14 patients. "p < 0.05; "p < 0.005; ""p < 0.001.
ECD diagnosis. Notably, intra-lesional cardiomyocytes express the reported diffuse granular cytoplasmic immunoreactivity for the anti-CgA antibody 5A8 (Figs. 2C–D), at variance with infiltrating histiocytes.

CgA is expressed in cardiomyocytes from an ECD patient

Cardiomyocytes from patients with dilated cardiomyopathy and hypertrophic cardiomyopathy have been identified as a source of CgA. We therefore investigated intra-lesional CgA expression on a biopsy obtained for diagnostic purposes from an ECD patient who presented with a cardiac mass, involving the right atrium and the right intra-ventricular groove. Infiltration by foamy histiocytes (Figs. 2A–C), which stained positive for CD68 (Fig. 2B), was evident, leading to ECD diagnosis. Notably, intra-lesional cardiomyocytes expressed also by cardiomyocytes inside ECD intracardiac masses. This finding, together with the correlation of CgA levels with cardiovascular involvement and with pro-BNP, suggests that, also in ECD, CgA is mainly produced and released by diseased myocardium and may be implicated in cardiovascular homeostasis and tissue remodeling.

sTNF-Rs and CgA levels parallel response to therapy

To investigate the potential of sTNF-Rs and CgA as biomarkers of response to therapy in ECD patients, we serially determined these parameters in four patients with cardiovascular involvement and divergent response to therapy (infliximab for Patients 8 and 10; tocilizumab for Patients 9 and 11). In particular, Patients 9 and 10 experienced substantial amelioration of their cardiac disease upon treatment; Patient 8 showed an initial response of his cardiac disease, which later progressively worsened, and Patient 11 presented neurological progression under treatment, while showing improvement of cardiac involvement.

As shown in Fig. 3, the time-course of all soluble factors paralleled response to therapy. The kinetics of circulating sTNF-Rs and CgA, however, did not completely overlap. In fact, in patients with prominent cardiovascular involvement (Patient 8 and particularly Patients 9 and 10), CgA and pro-BNP levels marked the clinical course of cardiac disease. Conversely, in Patient 11, where response to treatment discriminated neurological from cardiac involvement, sTNF-Rs levels steadily increased at variance with the decrease of CgA and pro-BNP levels.

In all patients, TNF-α plasma levels paralleled circulating sTNF-Rs (Fig. 3).

Discussion

ECD is a rare form of non-LCH, characterized by mutations in the Ras–Raf–Mek–Erk signaling pathway in histiocytes, associated with local and systemic chronic inflammation. We here confirm the key pathogenic role of TNF-α in a large cohort of 37 ECD patients, showing an increase in both plasma TNF-α and sTNF-Rs. TNF-α is produced by intra-lesional ECD histiocytes in the context of a complex cytokine–chemokine storm, and in turn can modulate the release of down-stream pro-inflammatory molecules and also of sTNF-Rs. Excessive TNF-α exerts its detrimental effects particularly on vasculature, consistently, we have recently reported that TNF-α released in pericardial fluid from ECD patients promotes vascular leakage in vitro. sTNF-Rs counteract TNF-driven inflammation, possibly in concert with CgA, which is released from neuroendocrine cells in response to TNF-α and also inhibits TNF-induced endothelial activation.

Another major source of CgA is represented by stretched cardiomyocytes from patients with dilated and hypertrophic cardiomyopathy, where it co-localizes with BNP. The emerging pathophysiological contribution of CgA to cardiovascular homeostasis is further suggested by its inhibitory effect on myocardial contractility and relaxation found in experimental models. Of note, one hereby show for the first time that CgA is expressed also by cardiomyocytes inside ECD intracardiac masses. This finding, together with the correlation of CgA levels with cardiovascular involvement and with pro-BNP, suggests that, also in ECD, CgA is mainly produced and released by diseased myocardium and may be implicated in cardiovascular homeostasis and tissue remodeling.

Finally, we investigated the potential of sTNF-Rs and CgA as biomarkers for ECD. Assessment of disease activity and response to therapy presently relies on clinical examination and radiologic investigation. Recently, a droplet-digital assay for quantitative determination of BRAFV600E mutation in plasma and urine cell-free DNA was proposed as a sensitive biomarker of response to therapy in both ECD and LCH.

Table 3. Characteristics of ECD patients with or without cardiovascular involvement.

	ECD with CV involvement (n = 8)	ECD without CV involvement (n = 9)
Median systolic blood pressure (mmHg)	135	125
Median diastolic blood pressure (mmHg)	75	80
Arterial hypertension (% of patients)	88%	56%
Median LV ejection fraction (%)	67	65
Median LV end diastolic volume (mL)	93	116
Diastolic dysfunction (% of patients)	75%	33%
Systolic disfunction (% of patients)	13%	11%
Median pericardial effusion thickness (mm)	16.4	N.A.

Abbreviations: LV, left ventricular; CV, cardiovascular; N.A., not applicable.

.05) (Fig. 1C). Neither sTNF-RI nor sTNF-RII correlated with pro-BNP (Fig. 1C).

Table 4. Soluble TNF-Rs and Chromogranin A in ECD patients with/without cardiovascular involvement.

	sTNF-R1 (ng/mL)	sTNF-R2 (ng/mL)	CgA (ng/mL)
ECD w CV (n = 8)	4.41 ± 0.99**	4.22 ± 0.84*	217.66 ± 38.29***
ECD w/o CV (n = 9)	4.55 ± 1.04***	5.30 ± 1.05***	84.36 ± 21.48
HD (n = 20)	1.21 ± 0.09	1.83 ± 0.10	35.44 ± 1.72

Results are mean ± SEM of soluble TNF Receptor (sTNF-R) I and II, and Chromogranin A (CgA) concentrations in plasma from ECD patients with or without cardiovascular involvement (CV) and from Healthy Donors (HD), as determined by ELISA. Statistical significance between ECD patients and controls was assessed by ANOVA.

*statistically significant at p < 0.05.
**statistically significant at p < 0.01.
***statistically significant at p < 0.001.
n.s. = not significant.
patients, but this method can be obviously applied only to patients carrying identified mutations, and only to monitor the impact of a drug on mutated histiocytes.

We show here that both sTNF-Rs and CgA levels parallel response to therapy in individual patients, irrespective of the ongoing treatment. These factors, however, are possibly...
endowed with different clinical implications, the former being markers of ECD-associated inflammation, while the latter, together with pro-BNP, being specifically marker of ECD-associated cardiovascular involvement. Circulating CgA is a well-established marker of neuro-endocrine tumors and is emerging as a diagnostic/prognostic indicator of acute coronary syndromes and CHF. Given that cardiovascular involvement in ECD is prognostically significant but often asymptomatic, our data suggest that CgA can be also exploited as an independent biomarker for the disease.

Patients and methods

Patients

We enrolled 37 patients with ECD, diagnosed on the basis of clinical imaging and histopathological criteria, including the accumulation inside lesions of CD68+ CD1a+ foamy histiocytes. Seventeen patients were followed in the Unit of Medicine and Clinical Immunology of the OSR (Milan, Italy) and 20 in the Department of Internal Medicine and French Reference Center for Rare Autoimmune and Systemic Diseases of the Pitié-Salpêtrière Hospital (Paris, France). The study was approved by the locally appointed Ethics Committees in accordance with the Declaration of Helsinki and written informed consent was obtained from all subjects. Twenty age- and sex-matched healthy volunteers were enrolled as controls. In four patients samples were subsequently obtained every 3–6 mo after the baseline; two patients (Patients 9 and 11) were in treatment with the IL-6 receptor inhibitor tocilizumab (TCZ) and two (Patients 8 and 10) with the anti-TNF-α antibody infliximab (IFX) as second-line therapies because of contraindications or unresponsiveness to IFN-α treatment. Clinical evaluation, including collection of laboratory and radiological data (total-body computed tomography-CT-scan, Technetium-99m methylene diphosphonate-99mTc-MDP-bone-scan, fluorine-18-2-fluoro-12-glucose positron emission tomography–FDG PET, brain and cardiac Magnetic Resonance Imaging–MRI) was performed at the baseline and repeated at the time of each blood collection.

Determination of TNF-αR55, sTNF-Rs, and CgA concentrations

Plasma levels of TNF-α were determined by the Bio-Plex Multiplex-Cytokines Assay (Bio-Rad, Hercules, CA). Plasma sTNF-Rs and CgA were measured by ELISA as described.

Determination of pro-BNP concentration

Pro-BNP plasma levels were determined through a specific electrochemiluminescence (ECL) method (Elecys® NT-proBNP, Roche) and analyzed with a Hitachi Cobas E601 analyzer.

Immunohistochemistry

Immunohistochemistry for CgA was performed using the mouse anti-human CgA monoclonal antibody 5A8, directed against the N-terminal domain (vasoactive-1) on paraffin sections of a myocardial sample. Infiltrating histiocytes were identified by staining with an anti-human CD68 monoclonal antibody (DAKO, Glostrup, Denmark).

Statistical analysis

Data are presented as mean ± SEM. We used the Mann–Whitney U test to compare parameters between ECD patients and controls. The correlation between CgA levels, TNF-Rs and pro-BNP in ECD patients was calculated by Spearman correlation analysis and is expressed as r coefficient. A p value below 0.05 was considered significant.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Kathy Brewer and the ECD Global Alliance (De Ridder, LA) for their continuous activities for patients with Erdheim–Chester disease and their unceasing support. We also thank Dr Barbara Vergani (Consorzio MIA) for histological analyses; Dr Giliola Calori (San Raffaele Scientific Institute) for her assistance in statistical analyses; and Dr Andrea Motta (San Raffaele Scientific Institute) for pro-BNP determination.

Funding

The work was supported in part by a grant from the Italian Ministry of Health (GR 2009-1594586 to LD) and by a grant from ECD Global Alliance (to MF & LD).

References

1. Chester W. Über lipoidgranulomatose. Virchows Arch Pathol Anat Physiol Klin Med 1930; 279:561-602; http://dx.doi.org/10.1007/BF01942684
2. Veyssier-Belot C, Cacoub P, Caparros-Lefebvre D, Wechsler J, Brun B, Remy M, Wallaert B, Petit H, Grimaldi A, Wechsler B et al. Erdheim-Chester disease. Clinical and radiologic characteristics of 59 cases. Medicine (Baltimore) 1996; 75:157-69; PMID:8965684; http://dx.doi.org/10.1097/00005792-199605000-00005
3. Haroche J, Arnaud L, Amoura Z. Erdheim-Chester disease. Curr Opin Rheumatol 2012; 24:53-9; PMID:22089098; http://dx.doi.org/10.1097/BOR.0b013e32834d861d
4. Cavit G, Guglielmi B, Berti A, Campochiaro C, Sabbadini MG, Dagna L. The multifaceted clinical presentations and manifestations of Erdheim-Chester disease: comprehensive review of the literature and of 10 new cases. Ann Rheum Dis 2013; 72:1691-5; PMID:23936641; http://dx.doi.org/10.1136/annrheumdis-2012-202542
5. Diamond EL, Dagna L, Hyman DM, Cavit G, Janku F, Estrada-Veras J, Ferrari M, Abdel-Wahab O, Heaney ML, Scheel PJ et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood 2014; 124:483-926; PMID:24850756; http://dx.doi.org/10.1182/blood-2014-03-561381
6. Campochiaro C, Tomelleri A, Cavit G, Berti A, Dagna L. Erdheim-Chester disease. Eur J Intern Med. 2015; 26:223-9; PMID:25865950; http://dx.doi.org/10.1016/j.ejim.2015.03.004
7. Stoppacciaro A, Ferrarini M, Abdel-Wahab O, Heaney ML, Scheel PJ et al. Immunohistochemical evidence of a cytokine and chemokine network in three patients with Erdheim-Chester disease: implications for pathogenesis. Arthritis Rheum 2006; 54:4018-22; PMID:17133532; http://dx.doi.org/10.1002/art.22280
8. Arnaud L, Gorochov G, Charlotte F, Lvovschi V, Parizot C, Larsen M, Ghilliani-Dalbin P, Hervier B, Kahn JE, Deback C et al. Systemic perturbation of cytokine and chemokine networks in Erdheim-Chester disease.
disease: a single-center series of 37 patients. Blood 2011; 117:2783-90; PMID:21205927; http://dx.doi.org/10.1182/blood-2010-10-313510

9. Haroche J, Charlotte F, Arnaud L, von Deimling A, Hélias-Rodzewicz Z, Hervier B, Cohen-Aubart F, Launay D, Lesot A, Mokhtari K et al. High prevalence of BRAFV600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 2012; 120:2790-3; PMID:22875939; http://dx.doi.org/10.1182/blood-2012-05-430140

10. Cangi MG, Biavasco R, Cavalli G, Grassini G, Dal-Cin E, Campo- chiaro C, Guglielmi B, Bertì A, Lampasona V, von Deimling A et al. BRAFV600E-mutation is invariably present and associated to oncogene-induced senescence in Erdheim-Chester disease. Ann Rheum Dis 2015; 74:1596-602; PMID:24671772; http://dx.doi.org/10.1136/annrheumdis-2013-204924

11. Blombery P, Wong SQ, Lade S, Prince HM. Erdheim-Chester disease harboring the BRAF V600E mutation. J Clin Oncol 2012; 30;e331-2; PMID:23008323; http://dx.doi.org/10.1200/JCO.2012.43.2260

12. Cavalli G, Biavasco R, Borgiani B, Dagna L. Oncogene-induced senescence as a new mechanism of disease: the paradigm of Erdheim-Ches-
der disease. Front Immunol 2014; 5:281; PMID:24982657; http://dx.doi.org/10.3389/fimmu.2014.00281

13. Aouba A, Georgin-Lavialle S, Pagnoux C, Martin Silva N, Renand A, Galateau-Salle F, Le Toquin S, Rensadoun H, Larousserie F, Silvera S et al. Rationale and efficacy of interleukin-1 targeting in Erdheim-Chester disease. Blood 2010; 116:4070-6; PMID:20724540; http://dx.doi.org/10.1182/blood-2010-04-279240

14. Dagna L, Corti A, Langheim S, Guglielmi B, De Cobelli F, Doglioni C, Fragasso G, Sabbadini MG, Ferrarini M. Tumor necrosis factor α as a master regulator of inflammation in Erdheim-Chester disease: rationale for the treatment of patients with infliximab. J Clin Oncol 2012; 30:e286-90; PMID:22869874; http://dx.doi.org/10.1200/JCO.2012.41.9911

15. Haroche J, Cohen-Aubart F, Emile JF, Arnaud L, Maksud P, Charlotte F, Cluzel P, Drier A, Hervier B, Benureau N et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood 2013; 121:1495-500; PMID:23528922; http://dx.doi.org/10.1182/blood-2012-07-446286

16. Haroche J, Cohen-Aubart F, Emile JF, Maksud P, Drier A, Tolédano D, Barete S, Charlotte F, Cluzel P, Donadié J et al. Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J Clin Oncol 2015; 33:411-8; PMID:25424282; http://dx.doi.org/10.1200/JCO.2014.57.1950

17. Puimeüe L, Libert C, Van Haevermeiren F. Regulation and dysre-
gulation of tumour necrosis factor receptor-1. Cytokine Growth Factor Rev 2014; 25:285-300; PMID:24746195; http://dx.doi.org/10.1016/j.cytogfr.2014.03.004

18. Scirosani V, Massironi S, Conte D, Caprioli F, Ferrero S, Ciafardini C, Paracchi M, Bardella MT, Piodi L. Plasma chromogranin A in patients with inflammatory bowel disease. Inflamm Bowel Dis 2009; 15:867-74; PMID:19354971; http://dx.doi.org/10.1002/ibd.20386

19. Di Comite G, Rossi CM, Marinosci A, Lolmede K, Baldissera E, Aiello F, Cacoub P, Isnard R, Gianferrari M et al. Prognostic value of circulating chromogranin A levels in acute coronary syndromes. Eur Heart J 2009; 30:25-3; PMID:19028779; http://dx.doi.org/10.1093/eurheartj/ehn513

20. Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MG, Ferrarini M. Erdheim-Chester disease: a single-center series of 37 patients. Blood 2011; 117:2783-90; PMID:21205927; http://dx.doi.org/10.1182/blood-2010-10-313510

21. Tota B, Angeleno T, Cerra MC. The surging role of Chromogranin A in cardiovascular homeostasis. Front Chem 2014; 2:64; PMID:25177680; http://dx.doi.org/10.3389/fchem.2014.00064

22. Helle KB, Corti A. Chromogranin A: a paradoxical player in angiogenesis and vascular biology. Cell Mol Life Sci 2015; 72:339-48; PMID:25297920; http://dx.doi.org/10.1007/s00018-014-1759-0

23. Crippa L, Bianco M, Colombo B, Gasparri AM, Ferrero E, Loh YP, Curnis F, Corti A. A new chromogranin A-dependent angiogenic switch activated by thrombin. Blood 2013; 121:392-402; PMID:23529053; http://dx.doi.org/10.1182/blood-2012-05-430314

24. Ferrero E, Scabini S, Magni E, Foglieni C, Belloni D, Colombo B, Cerrina F, Villa A, Ferrero ME, Corti A. Chromogranin A protects vessels against tumor necrosis factor α-induced vascular leakage. FASEB J 2004; 18:554-6; PMID:14734634

25. Helle KB, Corti A, Metz-Boutigue MH, Tota B. The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 2007; 64:2863-86; PMID:17717629; http://dx.doi.org/10.1007/s00018-007-7254-0

26. Gregorc V, Spreafico A, Floriani I, Colombo B, Ludovini V, Pistola L, Belizzia G, Viganò MG, Villa E, Corti A. Prognostic value of circulating chromogranin A and soluble tumor necrosis factor receptors in advanced nonsmall cell lung cancer. Cancer 2007; 110:845-53; PMID:17599769; http://dx.doi.org/10.1002/cncr.228586

27. Corti A, Ferrari R, Ceconi C. Chromogranin A and tumor necrosis factor α (TNF) in chronic heart failure. Adv Exp Med Biol 2000; 482:351-9; PMID:11192955; http://dx.doi.org/10.1007/3-06-46837-9_28