Enumeration of *Legionella* CFU by Colony Hybridization Using Specific DNA Probes

Wakako Satoh,1* Mayumi Nakata,2 Hiroyuki Yamamoto,3 Takayuki Ezaki,4 and Keiichi Hiramatsu5

Technology and Development Laboratory, Kurita Water Industries Ltd., Kanagawa 243-0124, 1 Kurita Sogo Service Co., Ltd., Kanagawa 234-0124, 3 St. Marianna University School of Medicine, Kanagawa 216-8511, 3 Gifu University School of Medicine, Gifu 508, and Department of Bacteriology, Juntendo University, Tokyo 113-8421, Japan

Received 16 October 2001/Accepted 17 September 2002

* Corresponding author. Mailing address: Technology and Development Laboratory, Kurita Water Industries Ltd., 7-1, Wakamiya Morinosato, Atsugi-city, Kanagawa 243-0124, Japan. Phone: 81 046 270 2103. Fax: 81 046 270 2149. E-mail: wakako.Satoh@kurita.co.jp

Reference microorganisms except *Staphylococcus aureus* were cultured in Luria-Bertani broth overnight and harvested. About 10^8 to 10^9 cells were suspended in 2 ml of 10 mM Tris-HCl–1 mM EDTA buffer (pH 8.0). One hundred μl of 10% SDS (final concentration, 0.5%) and 20 μl of 10-mg/ml proteinase K solution (final concentration, 100 μg/ml) were added. After the solutions were mixed, the mixture was incubated for 1 h at 37°C. Then 353 μl of 5 M NaCl and 282 μl of cetyltrimethylammonium bromide-NaCl were added, and the solution was incubated for 10 min at 65°C. *Staphylococcus aureus* was cultured overnight in Luria-Bertani broth and harvested. The cells were washed twice in 2 ml of 10 mM Tris-HCl–10 mM EDTA buffer (pH 8.0). The pellet was suspended in 2 ml of 10 mM Tris-HCl–10 mM EDTA buffer (pH 8.0) and then mixed sufficiently with 40 μl of achromopeptidase (50,000 U/ml in 10 mM NaCl). The solution was incubated at 55°C until the cells were lysed.

The subsequent DNA extraction and purification procedures were described previously (7).

Detection of legionella colonies. The cultivation and identification of legionella colonies from the cooling tower water samples were performed as described previously (1). The replicated agar plates were reincubated for another 2 to 3 days at 37°C until the colonies grew to a visible size.

Testing of oligonucleotide probe specificity. One hundred ng of nucleic acid was blotted onto a 0.22-μm-pore-size Biodyne A nylon membrane (Poll Europe Ltd.). Subsequent dot blot hybridization was performed under the standard 5× SSC pro-

TABLE 1. Probes sequences and target positions

Probe	Sequence	Target position
LEG225	5′-AAgATTgACttGCTgCTCCgAT-3′	16S rRNA
CA/G L253	5′-ggTGATtgTACTA ACTA CTgC-3′	Common antigen
CA/G L301	5′-gAGgtTACCAAgAGtTgC-3′	Common antigen
LSS (16)	5′-CTCGAAACcaCTAgAGtCAAGGA C-3′	5S rRNA

* Legionella is the etiologic agent of Legionnaires' disease. The combination of isolation on selective medium and identification by DNA probe is useful in attempting to detect proliferating *Legionella* organisms (1, 2). Here we report two kinds of oligonucleotide probes, one targeting 16S rRNA and the other targeting a new target region, namely, an antigen common to the genus *Legionella*. Subsequently, we applied these probes to enumerate viable legionellae in various cooling tower water samples by using colony hybridization (CH). As a result of this investigation, we successfully identified and detected pinpoint *Legionella* colonies by using each of the probes.

Design and labeling of specific oligonucleotide probes for *Legionella*. The probes LEG225 (6), CA/G L253, CA/G L301 (3, 4, 8), and LSS-1 (5), together with their sequences and target positions, are listed in Table 1. The probe LSS-1 was used as a positive control.

The synthesized oligonucleotides were labeled with a digoxigenin oligonucleotide tailing kit (Boehringer Mannheim, Germany), in accordance with the manual.

Bacterial strains. The bacterial strains used in this study, along with their sources, are listed in Tables 2 and 3. *Legionella* strains were obtained from the stock strains of the Department of Bacteriology, Gifu University School of Medicine. The reference strains were supplied by the Department of Bacteriology, Juntendo University.

Cell lysis for DNA extraction and purification. *Legionella* strains were cultivated at 37°C for 3 to 5 days on a 0.1% (wt/vol) α-ketoglutarate (BCYEα) agar plate (Eiken Chemical Co., Tokyo, Japan). About 10^8 to 10^9 cells were supplied in 533 μl of 10 mM Tris-HCl–1 mM EDTA buffer (pH 8.0). Sixty μl of 10% sodium dodecyl sulfate (SDS) (final concentration, 1%) and 6 μl of 10-mg/ml proteinase K solution (final concentration, 100 μg/ml) were added. After the solutions were mixed, they were incubated for 1 h at 37°C.

Reference microorganisms except *Staphylococcus aureus* were cultured in Luria-Bertani broth overnight and harvested. About 10^8 to 10^9 cells were suspended in 2 ml of 10 mM Tris-HCl–1 mM EDTA buffer (pH 8.0). One hundred μl of 10% SDS (final concentration, 0.5%) and 20 μl of 10-mg/ml proteinase K solution (final concentration, 100 μg/ml) were added. After the solutions were mixed, the mixture was incubated for 1 h at 37°C. Then 353 μl of 5 M NaCl and 282 μl of cetyltrimethylammonium bromide-NaCl were added, and the solution was incubated for 10 min at 65°C. *Staphylococcus aureus* was cultured overnight in Luria-Bertani broth and harvested. The cells were washed twice in 2 ml of 10 mM Tris-HCl–10 mM EDTA buffer (pH 8.0). The pellet was suspended in 2 ml of 10 mM Tris-HCl–10 mM EDTA buffer (pH 8.0) and then mixed sufficiently with 40 μl of achromopeptidase (50,000 U/ml in 10 mM NaCl). The solution was incubated at 55°C until the cells were lysed.

The subsequent DNA extraction and purification procedures were described previously (7).

Detection of legionella colonies. The cultivation and identification of legionella colonies from the cooling tower water samples were performed as described previously (1). The replicated agar plates were reincubated for another 2 to 3 days at 37°C until the colonies grew to a visible size.

Testing of oligonucleotide probe specificity. One hundred ng of nucleic acid was blotted onto a 0.22-μm-pore-size Biodyne A nylon membrane (Poll Europe Ltd.). Subsequent dot blot hybridization was performed under the standard 5× SSC pro-

* Corresponding author. Mailing address: Technology and Development Laboratory, Kurita Water Industries Ltd., 7-1, Wakamiya Morinosato, Atsugi-city, Kanagawa 243-0124, Japan. Phone: 81 046 270 2103. Fax: 81 046 270 2149. E-mail: wakako.Satoh@kurita.co.jp
TABLE 2. *Legionella* strains used for probe specificity examinations and dot blot hybridization results

Legionella organism	Origin*	Reaction with probe at indicated concn [pmol/ml]b				
		LEG225 [0.3]	CA/G L253 [1]	CA/G L301 [1]	CA/G L253 and CA/G L301 [1]	LSS-1 [0.3]
L. jordanis	GIFU 3193T	++	+	+	+	+
L. pneumophila	GIFU 9134T	++	+	+	+	+
L. bozemanus	GIFU 9140T	++	+	+	+	+
L. micdadei	GIFU 9141T	++	+	+	+	+
L. gormanii	GIFU 9142T	++	+	+	+	+
L. longbeachae	GIFU 9245T	++	+	+	+	+
L. pneumophila subsp. fraseri	GIFU 9246T	++	+	+	+	+
L. dumoffii	GIFU 9247T	++	+	+	+	+
L. oakridgensis	GIFU 10061T	++	+	+	+	+
L. wadsworthii	GIFU 10062T	++	+	+	+	+
L. proteus	GIFU 10063T	++	+	+	+	+
L. saintthelensi	GIFU 10392T	++	+	+	+	+
L. hackeliae	GIFU 10740T	++	+	+	+	+
L. jamestowniensis	GIFU 10741T	++	+	+	+	+
L. cherrii	GIFU 10742T	++	+	+	+	+
L. rubrivulcens	GIFU 10743T	++	+	+	+	+
L. maceachernii	GIFU 10745T	++	+	+	+	+
L. spiritensis	GIFU 11199T	++	+	+	+	+
L. israelensis	GIFU 11367T	++	+	+	+	+
L. portiae	GIFU 11746T	++	+	+	+	+
L. santicerianus	GIFU 11747T	++	+	+	+	+
L. steigerwaltii	GIFU 11748T	++	+	+	+	+
L. erythra	GIFU 11749T	++	+	+	+	+
L. birminghamensis	GIFU 12079T	++	+	+	+	+
L. anisa	GIFU 12080T	++	+	+	+	+
L. cincinnatiensis	GIFU 12081T	++	+	+	+	+
L. quinlivanii	GIFU 12082T	++	+	+	+	+
L. moravica	GIFU 12648T	++	+	+	+	+
L. brunensis	GIFU 12649T	++	+	+	+	+
L. tucsonensis	GIFU 12650T	++	+	+	+	+
L. adelaidensis	GIFU 13562T	++	+	+	+	+
L. fieldiae	GIFU 13563T	++	+	+	+	+
L. gratiana	GIFU 13564T	++	+	+	+	+
L. lansingensis	GIFU 13565T	++	+	+	+	+
L. shakespearei	GIFU 13566T	++	+	+	+	+
L. pneumophila subsp. pasculei	GIFU 13567T	++	+	+	+	+
*Total hybridization rate for *Legionella* spp. [%]		91	74	57	100	100

* a GIFU, Gifu University School of Medicine.

b ++, Strong hybridization signal; +, moderately strong hybridization signal; ±, weak hybridization signal; −, no hybridization signal.

c DNA extraction failed.

TABLE 3. Reference strains used for probe specificity examinations and dot blot hybridization results

Organism	Origin*	Reaction with probe at indicated concn [pmol/ml]b				
		LEG225 [0.3]	CA/G L253 [1]	CA/G L301 [1]	CA/G L253 and CA/G L301 [1]	LSS-1 [0.3]
Enterobacter cloacae	ATCC 23355T	−	−	−	±	+
Escherichia coli	ATCC 25922T	−	−	−	±	+
Klebsiella pneumoniae	ATCC 13883T	−	+	±	+	+
Proteus vulgaris	ATCC 13315T	−	−	−	±	+
Pseudomonas aeruginosa	ATCC 27853T	−	−	−	±	+
Salmonella enterica serovar Typhimurium	ATCC 14028T	−	−	−	±	+
Serratia marcescens	ATCC 8100T	−	−	−	±	+
Staphylococcus aureus	ATCC 12600T	−	−	−	±	+
*Total hybridization rate [%]		0	12.5	0	12.5	100

a ATCC, American Type Culture Collection.

b ++, Strong hybridization signal; +, moderately strong hybridization signal; ±, weak hybridization signal; −, no hybridization signal.
procedure (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) in a digoxigenin system (Boehringer Mannheim).

CH. The concentrated cooling tower water was cultured on a WYOα agar plate at 37°C for 2 to 5 days. Colonies were transferred from plates to 0.22-μm-pore-size (82-mm-diameter) Biodyne A nylon membranes (Poll Europe) by using procedures described previously (7). After replication, the membranes were placed colony-side-up on the paper (3MM; Whatman) and were saturated with 5% Triton X-100 in 10 mM Tris-HCl (pH 8.0) for 1 h at 60°C. The membranes were transferred onto the paper (3MM); supplemented with 0.1 mg of proteinase K per ml in 10 mM Tris-HCl (pH 8.0) containing 10 mM NaCl, 1 mM sodium citrate, and 1.5% SDS; and incubated for 1 h at 60°C to lyse the cells. Subsequently,

FIG. 1. Cultivated colonies of *Legionella* spp. from cooling tower water samples and CH results. The sample water was concentrated and mixed with 0.2 M KCl-HCl buffer (pH 2.2) for 4 min at 25°C. Then, 0.1 ml of mixture was streaked on WYOα agar. The plate was incubated at 37°C. (A) The plate after 4 days of incubation, just before the membrane was laid on the culture. The white arrows indicate *Legionella* colonies. (B) Signals of X-ray film developed after the plate shown in panel A was exposed to a membrane which was hybridized with a mixed probe consisting of probes CA/G L253 and CA/G L301.

FIG. 2. Cultivated colonies of *Legionella* spp. from cooling tower water samples and CH results. The sample water was concentrated and mixed with 0.2 M KCl-HCl buffer (pH 2.2) for 4 min at 25°C. Then, 0.1 ml of mixture was streaked on WYOα agar. The plate was incubated at 37°C. (A) The plate after 4 days of incubation, just before the membrane was laid on the culture. The white arrows indicate *Legionella* colonies. (B) Signals of X-ray film developed after the plate shown in panel A was exposed to a membrane which was hybridized with a mixed probe consisting of probes CA/G L253 and CA/G L301.
denaturing and neutralization of the DNA were performed as described previously (7). In order to remove the protein, the DNA fixed in the membranes was incubated overnight at 37°C with gentle agitation in a solution including 0.1 mg of proteinase K per ml, 10 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.5% SDS. The membranes were washed twice for 5 min at room temperature with about 50 ml of 6x SSC per 100 cm².

Hybridization was carried out by using the same procedure described for dot blot hybridization, except that 10% blocking reagent was used.

Specificity of the oligonucleotide probes. Probe LEG225 hybridized to 32 of the tested strains of *Legionella* spp. (91%) (Table 2). No false-positive hybridization occurred with the reference strain (Table 3). Probes CA/G L253 and CA/G L301 could hybridize 26 strains (74%) and 18 strains (54%) of the *Legionella* species tested, respectively. A mixed probe consisting of probes CA/G L253 and CA/G L301 together could hybridize 100% of the *Legionella* species tested (Table 2), but false-positive hybridization occurred with *Klebsiella pneumoniae* (Table 3).

Other bacteria and fungi which grew on the WYOα agar plates frequently disturbed the growth of legionellae and of the screened legionella colonies. However, as shown in Fig. 1, the signals from *Legionella* colonies clearly discriminated among these other microorganisms. A *Legionella* colony formed within a fungus colony was also detected (Fig. 2).

The results of CH counts of organisms from cooling tower water by using probe LEG225 and the results of CFU counts by cultivation revealed a close relationship, with a regression coefficient of 0.96 (Fig. 3).

In the case of the mixed probe consisting of probes CA/G L253 and CA/G L301 together, the results of CH counts were generally in agreement with those of CFU counts by plate culture; the regression coefficient was 0.98 (Fig. 4). The results of CH counts were slightly lower than those yielded by CFU counts of WYOα agar plate cultures. This tendency became remarkable in the samples that contained more than 100 CFU per 100 ml. This phenomenon is considered to result from the creation of large spots on the membrane by individual adjacent colonies because the colonies were aggregated after the process of colony transfer and lysing. But this phenomenon did not significantly affect the result of *Legionella* enumeration. The CH method has excellent features, including the ability to simultaneously perform enumeration of colonies and identification of every colony on a single plate.

Grimont et al. (2) reported that pinpoint *Legionella pneumophila* colonies were detectable by the use of a DNA probe labeled with a radioactive isotope after 4 days of incubation on BCYEα agar. In our study, we demonstrated the ability to enumerate *Legionella* colonies by DNA probe without radioactive-isotope labeling after the samples were cultured for 3 days.

We thank Hirohisa Tasiro and Takao Numakura for stimulating discussions. We are grateful to Eiko Yabuuchi and Katsunori Furuhata for their invaluable suggestions.

REFERENCES

1. Furuhata, K., W. Satoh, M. Wakasa, S. Shimahata, T. Itoh, and M. Fukuyama. 1999. Colony hybridization method for rapid detection of *Legionella* spp. biocontrol. Science 489:892.

2. Grimont, P. A. D., F. Grimont, N. Desplaces, and P. Tchen. 1985. DNA probe specific for *Legionella pneumophila*. J. Clin. Microbiol. 21:431–437.

3. Hemmingsen, S. M., C. Woolford, S. M. van der Vies, K. Tilly, D. T. Dennis, C. P. Georgopoulos, R. W. Hendrix, and R. J. Ellis. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334.

4. Hindersson, P., N. Holby, and J. Bangsbo. 1991. Sequence analysis of the *Legionella micdadei* groELS operon. FEMS Microbiol. Lett. 77:31–38.

5. Mahbubaini, M. H., A. K. Bej, R. Miller, L. Haif, J. DiCesare, and R. M. Atlas. 1990. Detection of *Legionella* with polymerase chain reaction and gene probe methods. Mol. Cell. Probes 4:175–187.
6. Miyamoto, H., H. Yamamoto, K. Arima, J. Fujii, K. Maruta, K. Izu, T. Shiomori, and S.-I. Yoshida. 1997. Development of a new seminested PCR method for detection of Legionella species and its application to surveillance of legionellae in hospital cooling tower water. Appl. Environ. Microbiol. 63:2489–2494.

7. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

8. Sampson, J. S., S. P. O’Connor, B. P. Holloway, B. B. Plikaytis, G. M. Carlone, and L. W. Mayer. 1990. Nucleotide sequence of htpB, the Legionella pneumophila gene encoding the 58-kilodalton (kDa) common antigen, formerly designated the 60-kDa common antigen. Infect. Immun. 58:3154–3157.