Sine Scleroderma, Limited Cutaneous and Diffused Cutaneous Systemic Sclerosis Survival and Predictors of Mortality

Sebastien De Almeida Chaves (dealmeida.se@chu-toulouse.fr)
Hôpital Purpan: Hopital Purpan https://orcid.org/0000-0003-2729-3635

Tiphaine Porel
Hôpital Purpan: Hopital Purpan

Mickael Mounié
Recherche en épidémiologie et biostatistique: INSERM

Laurent Alric
Hôpital de Rangueil: Hopital de Rangueil

Léonardo Astudillo
Hôpital Purpan: Hopital Purpan

Antoine Huart
Hôpital de Rangueil: Hopital de Rangueil

Olivier Lairez
Hôpital de Rangueil: Hopital de Rangueil

Martin Michaud
Hôpital Joseph Ducuing: Hopital Joseph Ducuing

Gregoire Prevot
Hôpital Larrey: Hopital Larrey

David Ribes
Hospital Rangueil: Hopital de Rangueil

Laurent Sailler
Hôpital Purpan: Hopital Purpan

Francis Gaches
Hôpital Joseph Ducuing: Hopital Joseph Ducuing

Daniel Adoue
Hôpital Purpan: Hopital Purpan

Gregory Pugnet
Hôpital de Rangueil: Hopital de Rangueil

Research Article
Sine Scleroderma, Limited Cutaneous and Diffused Cutaneous Systemic Sclerosis
survival and predictors of mortality

Sébastien De Almeida Chaves¹, Tiphaine Porel¹, Mickael Mounié², Laurent Alric¹,³, Léonardo
Astudillo⁴, Antoine Huart⁵, Olivier Lairez⁶,³, Martin Michaud⁷, Grégoire Prévoi⁸, David Ribes⁵,
Laurent Sailler¹,³, Francis Gaches⁷, Daniel Adoue¹,², Gregory Pugnet¹,³

¹CHU Toulouse, Internal Medicine, Toulouse, Midi-Pyrénées, France
²INSERM UMR1027, 37 Allées Jules Guesdes, Toulouse, Midi-Pyrénées, France
³Universite Toulouse III Paul Sabatier Toulouse, Occitanie, France
⁴Saint Exupéry Nephrology Clinic, Internal Medicine, Toulouse, Midi-Pyrénées, France
⁵CHU Toulouse, Nephrology, Toulouse, Midi-Pyrénées, France
⁶CHU Toulouse, Cardiology, Toulouse, Midi-Pyrénées, France
⁷Hospital Joseph Ducuing, Internal Medicine, Toulouse, France
⁸CHU Toulouse, Pneumology, Toulouse, Midi-Pyrénées, France

Correspondence: De Almeida Chaves Sébastien

Department of Internal Medicine, CHU Toulouse, Midi-Pyrénées, France

Tel +0335 617 79901
Fax +0335 617 77124

Contact email dealmeida.se@chu-toulouse.fr
Abbreviations

ACA Anti-centromere
ANA Antinuclear
ATS American Thoracic Society
BMI Body Mass Index
CNIL Commission Nationale Informatique et Liberté
DLCO Diffusing capacity of the lung for carbon monoxide (% predicted value)
ECG Electrocardiogram
ERS European Respiratory Society
FVC Forced vital capacity (% predicted value)
GI Gastrointestinal
HRCT High resolution computed tomography
ILD Interstitial lung disease
INSEE Institut national de la statistique et des études économiques
LVEF Left ventricular ejection fraction
mRSS Modified Rodnan skin score
PAH Pulmonary arterial hypertension
PASP Pulmonary arterial systolic pressure
PAWP Pulmonary artery wedge pressure
PH Pulmonary hypertension
RP Raynaud’s phenomena
SD Standard deviation
SMR Standardized mortality ratio
SRC Scleroderma renal crisis
SSc Systemic sclerosis
SSTC Systemic Scleroderma Toulouse Cohort
TRV Tricuspid regurgitation velocity
TTE Trans-thoracic echography
Highlights

- Strong predictors of mortality in systemic sclerosis: male sex, cardiac involvement, DLCO <70%, and CRP > 5 mg/l
- Study of the survival of subtypes and in particular sine scleroderma
- Better survival sine scleroderma subtype versus diffuse or limited cutaneous subtypes
- Non-systemic sclerosis related death more frequent than systemic sclerosis-related deaths
- Importance of cardiovascular deaths
Abstract

Background: Systemic sclerosis (SSc) is associated with a variability of mortality rate in the literature.

Objective: To determine the mortality and its predictors in a long-term follow-up of a bicentric cohort of SSc patients.

Methods: A retrospective observational study by systematically analyzing the medical records of patients diagnosed with SSc in Toulouse University Hospital and Ducuing Hospital. Standardized Mortality Ratio (SMR), mortality at 1, 3, 5, 10 and 15 years of disease and causes of death were described. Predictors of mortality using Cox regression were assessed.

Results: 375 patients were included: 63 with diffuse cutaneous SSc, 279 with limited cutaneous SSc and 33 with sine scleroderma. The SMR ratio was 1.88 (95% CI 1.46-1.97). The overall survival rates were 97.6% at 1 year, 93.4% at 3 years, 87.1% at 5 years, 77.9% at 10 years and 61.3% at 15 years. 69 deaths were recorded. 46.4% were SSc related deaths secondary to interstitial lung disease (ILD) (34.4%), pulmonary hypertension (31.2%) and digestive tract involvement (18.8%). 53.6% were non-related to SSc: cardiovascular disorders (37.8%) and various infections (35.1%) largely distanced those from cancer (13.5%). Four significant independent predictive factors were identified: carbon monoxide diffusing capacity (DLCO) < 70% (HR=3.01; p=0.0053), C-reactive protein (CRP) >5 mg/l (HR=2.13; p=0.0174), cardiac involvement (HR=2.86; p=0.0012) and the fact of being male (HR=3.25; p=0.0004).

Conclusion: Long term data confirmed high mortality of SSc. Male sex, DLCO <70%, cardiac involvement and CRP> 5mg/l were identified as independent predictors of mortality.

Keywords: Autoimmune Diseases, Systemic sclerosis, Mortality, Prognostic Factors
Key messages:

- One the first study that ascertained sine scleroderma mortality rate versus diffuse and limited subtypes

- 4 predictors of at 5, 10 years and all mortality: male sex, cardiac involvement, DLCO <70%, and CRP > 5 mg/l.

- Importance of cardiovascular causes in non-systemic sclerosis related death
1. Introduction

Systemic sclerosis (SSc) is a severe systemic autoimmune connective tissue disease characterized by an elevated standardized mortality ratio (SMR) of 1.34 to 7.18 [1–11]. Because the presentation and prognosis of SSc are highly heterogeneous, studies showed a 10-year survival rate between 50 to 84% [12,13].

Such mortality is still related to SSc in 27% to 72% of cases [3,6,8,12,14–18]. The two main causes of death remain interstitial lung disease (ILD) and pulmonary hypertension (PH). However, the SSc-non-related causes of death are increasing, particularly cardiovascular diseases and infections [3,6,8,15,18–19].

Assessment of prognosis is crucial to identify patient who may benefit from close monitoring and immunosuppressants or autologous hematopoietic stem cells transplantation [20]. Given the wide variability of mortality rate reported in the literature, it appeared essential to obtain a better understanding of SSc prognosis and its associated risk factors in a well-characterized incident SSc cohort. The objective of the present study was to estimate mortality in the Systemic Scleroderma Toulouse Cohort (SSTC) in order to determine risk factors and causes of death.

2. Methods and Materials

2.1. Data source

Data were obtained from the SSTC which includes incident patients with SSc who fulfilled the 2013 ACR/EULAR criteria and 2001 LeRoy and Medsger classification [21,22], with retrospective collection of data between January 1, 1978 and May 30, 2018 and prospective onwards. The SSTC is a bi-centric cohort from the Toulouse University Hospital, a tertiary referral center for SSc, and Joseph Ducuing Hospital.

A thorough medical chart review followed by the entry of the standardized data collection form, for all consecutive unselected incident SSc patients were performed. SSc sub-types were classified as “diffuse SSc”, “limited SSc” and “SSc sine scleroderma” [23]. Localized scleroderma patients (morphea and linear disease) were not included in the SSTC. The standardized data collection covered demographic aspects, disease duration, organ involvement, laboratory data and drug exposure. Patients with more 25% of missing data were excluded. Disease onset was defined as the date of the first non-Raynaud’s phenomenon
symptom attributable to SSc. Annual follow-up examinations were carried out. The forms were filled out by SSc specialists. Patients gave informed consent to participate in the SSTC. The data were collected in the SSTC as part of routine clinical care in accordance to Good Clinical Practice and complied with the requirements of the Commission Nationale Informatique et Liberté (CNIL) (registration No. 914607). In compliance with French regulation relating to clinical non-interventional research, this study does not require ethics committee approval.

2.2. Population

For the present study we included adult (≥18 years) incident SSc subjects who had at least one follow-up visit during the first years in the SSTC and a disease onset between January 1, 2000 and January 1, 2018. Patients were followed until May 31, 2018.

2.3. Collected data

Data collected at the inclusion visit and at each follow-up evaluations were sex, ethnic group, age at disease onset, date of the first Raynaud’s phenomenon symptom, date of the first non-Raynaud’s phenomenon symptom, Body Mass Index (BMI), smoking habits, SSc sub-types according to Leroy and Medsger [23], presence of arthralgia, myalgia, calcinosis or tendon friction rubs [24], gastrointestinal (GI) complications [25], neurological involvement [26], skin involvement as measured by the Rodnan modified skin score (mRSS) [27], cardiac [28] and pulmonary evaluation [29], including: pulmonary function tests (Forced Vital Capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLCO)) according to the American Thoracic Society and European Respiratory Society (ATS/ERS) consensus standards [30], presence of SSc related interstitial lung disease (ILD) or pleural effusion on chest X-ray or on high resolution computed tomography (HRCT), results from transthoracic echocardiography (TTE) including left ventricular ejection fraction (LVEF), tricuspid regurgitation velocity (TRV, m/s) and pulmonary arterial systolic pressure (PASP, mmHg) measurement [31]. Pulmonary arterial hypertension (PAH) was confirmed as a mean PAP ≥25 mmHg and was considered a SSc associated pre-capillary PAH when associated with a pulmonary artery wedge pressure (PAWP) ≤ 15 mmHg [32]. Cardiac involvement was defined by LVEF <50%, and/or TTE abnormalities (pericarditis, cardiac valvulopathy or diastolic dysfunction), and/or an electrocardiogram (ECG) abnormality (arrhythmia or conduction blocks). Atrial and ventricular arrhythmia were included in arrhythmia. Any cardiac symptoms appearing prior to SSc diagnosis were considered as having no connection
with the disease under study. The scleroderma renal crisis (SRC) was defined as a new onset of significant systemic hypertension (>150/85 mmHg) and acute renal failure (≥30% reduction in estimated glomerular filtration rate) [2,33–36]. Laboratory parameters collected were: hemoglobin level, serum creatinine, C-reactive protein, albumin, antinuclear (ANA), anti-centromere (ACA), anti-SCL70, anti RNA polymerase III, anti PM/Scl, anti-TIF1-y, ANCA [37,38].

2.4. Mortality data

Survival status was ascertained up until the end of this study based on the records in the database and systematically verified in each medical chart, telephone tracing of patient’s general practitioner (GP), telephone tracing of patients in whom no data had been entered for ≥24 months in the database, and systematic interrogation of either the Registre d’état civil [39]. The final status of loss to follow-up was defined as one where no data had been entered for ≥24 months with a failure to contact the patient or his GP despite at least two attempts, no death recorded in either the Registre d’état civil [39] and in French database recording deaths “https://deces.matchid.io/search”.

2.5. Calculation of standardized mortality ratio

The SMR and its 95% confidence interval (95% CI) were calculated according to the ratio of observed death in the cohort to the number of deaths of the French age/sex-matched population [40]. The mortality rates of the general population were obtained from the French National Statistical Agency (Institut national de la statistique et des études économiques - INSEE) and the most recent available data at the time of data analysis were from December 2016 [41]. In relation to subjects lost to follow-up, we performed 2 sensitivity analyses to recalculate SMR, one of which assumed that all such subjects were alive at the end of the study and the other of which assumed that all such subjects were dead at the end of the study.

2.6. Causes of death

A standardized death case report form was extracted from the SSTC database. Cause of death was then systematically verified against source documents. The causes of death were categorized as a single primary cause (either SSc or non-SSc related) and all other SSc organ involvement that contributed to death. Death was attributed to SSc if the cause was identified with the specific organ involved. Death not attributed to SSc in the following cases - when the
specific organ involved was cited in a diagnosis prior to SSc diagnosis, sudden inexplicable
death, death from events with no direct link to SSc.

2.7. Statistical analysis

Data are presented as the mean ± SD for continuous variables, the median and interquartile
range for non-normally distributed continuous variables, and the number and percent for
categorical variables. Baseline characteristics were compared using ANOVA variance
analysis for continuous variables, and a chi-square test or Fisher’s exact test for categorical
variables depending on the sample size.

Survival analysis was performed using the Kaplan-Meier method with comparisons
performed using the log rank test. The primary end point was death from any cause or data
censoring. The follow-up period ended in May 30, 2018.

Univariable and multivariable Cox proportional hazards models (ascending step-by-step
method) were used to determine variables associated with mortality. Variables with p-value
≤0.05 in univariate analysis were selected for multivariate analysis.

Two-tailed P values less than or equal to 0.05 were considered significant. All statistical
analyses were performed using SAS® software (French version 9.4).

3. Results

3.1. Characteristics of the population

We included 375 patients (292 females): 63 (15.2%) with diffuse cutaneous SSc, 279 (76.7%)
with limited cutaneous SSc and 33 (8.1%) with SSc sine scleroderma between January 1,
2000 and January 1, 2018 (Figure 1). The characteristics of patients at disease onset are
shown in Table 1.

3.2. SMR and Survival analysis

During the study period 69 patients died (18.4%) and 6 patients (only women, one sine
scleroderma sub-type and 5 diffuse SSc) were lost to follow-up. The mean ± SD age at the
time of death was 69.1 ± 14.8 years for SSc patients, 72 ± 15.5 and 64.2 ± 12.3 years, for
women and men respectively. The age – and sex-adjusted SMR of the cohort was 1.88 (95% CI 1.46-1.97) assuming that all subjects lost to follow-up were alive or 2.04 (95% CI 1.60-2.13) assuming that they were dead. Age-adjusted SMR for men was 3.61 (95% CI 2.35-
3.94). Age-adjusted SMR for women was 1.80 (95% CI 1.31-1.92) assuming that all women lost to follow-up were alive or 2.05 (95% CI 1.52-2.18) assuming that they were dead. Age- and sex adjusted SMR for diffuse subtype was 3.31 (95% CI 1.88-3.76). Age- and sex adjusted SMR for limited cutaneous and sine scleroderma subtype was respectively 1.74 (95% CI 1.30-1.85) and 1.03 (95% CI 0.20-1.49) assuming that all patients lost to follow-up were alive or 1.91 (95% CI 1.44-1.98) and 1.37 (95% CI 0.36-1.86) assuming that they were dead.

The overall survival rates were 97.6% at 1 year, 93.4% at 3 years, 87.1% at 5 years, 77.9% at 10 years and 61.3% at 15 years (Figure 2). Survival for patients with SSc sine scleroderma tended to be the best. Indeed, the survival rates were for diffuse, limited cutaneous and sine scleroderma sub-types respectively: 95.1%, 97.4%, 100% at 1 year, 89.8%, 93%, 100% at 3 years, 85.5%, 86.6%, 88.9% at 5 years, 69.7%, 78.6%, 81.9% at 10 years and 54.9%, 59.7%, 81.9% at 15 years (Figure 2).

3.3. Predictors of mortality

Univariable Cox hazards analyses showed that subjects with male sex, Raynaud’s phenomenon onset after the age of 45, disease onset after the age of 50, cardiac involvement, PAPs > 35 mm Hg, DLCO <70%, FVC <65%, SRC, anemia, CRP > 5 mg/l, albumin < 35 g/l had a higher risk of death (see Appendix). Multivariable Cox hazards regression analysis for all mortality in the cohort showed that male sex (HR=3.25 95%CI 1.69–6.22; p=0.0004), cardiac involvement (HR=2.86 95%CI 1.54–5.41; p=0.0012), DLCO<70% (HR=3.01 95%CI 1.40–6.88; p=0.0053), and a CRP >5 mg/l (HR=2.13 95%CI 1.11–5.41; p=0.0174) were independent predictors of risk (Table 2). The results of the two sensitivity analyses performed to account for predictors of mortality at 5 and 10 years respectively, were consistent with those of the primary analysis (Table 2).

3.4. Causes of death

Between January 2000 and May 2018, there were 69 deaths (42 [62.3%] women). Death was considered SSc-related in 32 cases (46.4%) and unrelated to SSc in 37 cases (53.6%). Among the SSc-related death, three main causes were identified: ILD (34.4%), PH (31.2%) and GI involvement (18.8%) (Figure 3A). The most common causes of non-SSc related death were cardiovascular events (37.8%) and infections (35.1%) well in front of malignancies (13.5%) (Figure 3B). Thus, the principal causes of non-SSc related death were cardiovascular with sudden cardiac arrest (24.3%), myocardial infarction (5.4%), mesenteric ischaemia (5.4%). Pneumonia predominated among the infections.
4. Discussion

This study still clearly confirmed an increased mortality risk from SSc, compared with the general healthy population. This is one of the only to describe the mortality rate of SSc sine scleroderma. Male sex, cardiac involvement, systemic inflammation and altered DLCO were independent mortality risk factors. The majority of deaths (53.6%) was not attributed to SSc directly, especially cardiovascular mortality (37.8%).

Our SMR is lower than those produced in the two most recent meta-analyses focusing on mortality in SSc. Rubio-Rivas et al. [8], analysing 17 articles from 1964 to 2005, found an SMR of 2.72 (95% CI 1.93-3.83). More recently, Pokeerbux et al. [11] reported an SMR of 5.73 (95% CI 4.68-6.94) from a French multi-centred cohort of patients suffering from SSc. The latter also carried out a meta-analysis of 18 articles with a pooled SMR of 3.45 (95% CI 3.03-3.94). However, the literature reveals a wide variability of mortality rate in SSc, with SMRs ranging from 1.34 to 7.18 [8,10,11,42]. Such variability is probably caused by considerable methodological differences in the various studies carried out, differences in time origin from which survival time is calculated and this disease high heterogeneity. The elevated SMR figure in the Pokeerbux et al. cohort study [11] could also be explain by the over-representation of patients with anti-SCL70 antibodies (35% in their study vs. 23.8% in our cohort). Other explanations could account for our SMR within the lower range of published data such as a lower number of diffuse cutaneous subtype of SSc (16.8% vs. 23.4% to 46%) [8–11,19,43–47], a lower number of patients with a SRC (2.4% compared to 2.9%-10%) [9–11,19,43,47], and a less extended level of cutaneous involvement (average Rodnan skin score of 6.8 for the patients in the present study vs. 9) [11]. Regarding SRC, we described the same incidence as in the recent German epidemiological study evaluating renal involvement on 2873 patients with SSc [48]. In addition, we kept in our analysis SSc sine scleroderma, which is often excluded from such studies that could explain our relatively low SMR. Indeed, sine scleroderma subtype tended to have the best survival in our study with more 80% of survival rate at 15 years; the same result was found by Siméon-Aznar et al [49]. The SMR of our cohort more approximated “mortality with real life”, taking into account the different subtypes of SSc, in particular sine scleroderma subtype.

Our overall survival rates at 1 year, 3 years, 5 years, 10 years were consistent with those reported previously [8,9,11,15,18]. In addition, we have shown a non-significant higher mortality rate from the diffuse cutaneous sub-type vs. the limited cutaneous sub type and the sine scleroderma sub type of SSc, in line with the published literature [8,11,12,16,17,50–52].
However, the absence of significance may be related to an underpowered sample size for this analysis.

Our study identified 4 independent predictors of mortality: male sex, cardiac involvement, DLCO <70% of predicted, and CRP >5 mg/ml, DLCO which were consistent with previous studies [11,15,50,53–59]. Indeed, a low DLCO in SSc often associated with ILD and/or PH (essentially pulmonary arterial hypertension and secondary pulmonary hypertension resulting from ILD), the two main causes SSc-related mortality. Male SSc patients often presented with a worst prognostic than female SSc patients [11,58,60,61], like in our cohort. Cardiac involvement during the course of SSc is also associated with an increased risk of mortality, especially pericardial effusion [11,55,57,62], valvular disease [11], and an LVEF <50% [15]. In our study, cardiac involvement was a composite outcome including LVEF <50%, and/or a TTE anomaly (pericarditis, valvulopathy or diastolic dysfunction), and/or an ECG anomaly (arrhythmia or conduction blocks), which was strongly associated with a 2.9-fold increase mortality risk (HR=2.86 95% CI 1.54–5.41). Finally, we confirmed that systemic inflammation was a major pejorative prognostic factor of mortality (HR: 2.13 95%CI 1.11–5.41) like reported by few studies [11,15,51].

One of the most interesting results of our study was that the majority of identified death in the SSTC cohort was not related to SSc directly. Due to a better understanding of SSc and a better management of this severe systemic disease, SSc-related deaths became less frequent [3,12]. The first cause of non-SSc related in our work was cardiovascular diseases in a higher proportion than in previous large cohort studies. (2%-11.9%) [8,9,12,60]. The cardiovascular-related deaths are represented mainly by sudden cardiac arrest. The majority of cardiac arrest cases, occurring at the patient’s home, were diagnosed by general practitioner and thus could be subject to a bias. However, 46.4% of the deaths in our cohort were directly attributable to SSc. Our results were consistent with the data from the EUSTAR cohort, finding that nowadays the two main causes of SSc-related were ILD and PH [3,6,12,15,17,50,51,60]. SSc GI-related mortality were frequent in our cohort (18.2%) and this cause of death represented 7.6% of deaths in metanalysis of Rubi-Rivas et al [8]. Due to our strict methodology with a thorough medical chart review and systematic telephone tracing of patient’s general practitioner to ascertain cause of death, we were perhaps, more able to identified this complication and its prognosis.

The major strengths of the present study are that we carried out an exhaustive medical chart review for each included patient, which led to detailed clinical and laboratory characteristics
in a large cohort of incident patients. We ascertained vital status and cause of death by systematically interrogated the SSTC database, reviewed each medical chart a second time, called each patient’s GP, and interrogated the Registre d’état civil [39]. Other major strengths of this study are the long-term follow-up of patients, a very low attrition rate, as only six patients were lost to follow-up covering a period of 18 years and that we kept for the analysis SSc sine scleroderma which is often excluded from clinical trial and cohort studies. Thus, this study provides the sine scleroderma subtype survival. Probably our overall SMR is more pertinent, not excluding thus subtypes.

Our study has some limitations. Our study is necessarily limited by its retrospective and bicentric nature. Additionally, we did not include information about the treatments used during the follow up due to heterogeneity in time of treatment initiation and the duration or type of treatment administered and as a consequence the effect of the various treatments in the natural course of the disease could not be eradicated. Finally, as with all the large cohorts collected over many years, there is the bias of survival. The longer the period covered, the greater is the risk of losing track of dead patients, and thus survival data could be distorted.

5. Conclusion

In conclusion, our results show that mortality is still substantial in SSc despite constant therapeutic progress. This is one the first study that ascertained SSc sine scleroderma mortality rate alongside the two other sub type of SSc. This serves as an important reference for future survival analysis and epidemiology surveys. Our study identifies strong predictors of mortality male sex, cardiac involvement, DLCO <70%, and CRP > 5 mg/l. Non-SSc related death are more frequent than SSc-related deaths, of whom cardiovascular disease is the most common. An early and systematic management of the large proportion of cardiac complications is in order, in hope of extending SSc outcome.
Contribution: S. De Almeida Chaves and G. Pugnet designed the study, performed analyses (with M. Mounié), analyzed the results, and wrote the manuscript. D. Adoue, L. Alric, L. Astudillo, A. Huart, O. Lairez, M. Michaud, G. Prévot, D. Ribes, T. Porel, L. Sailler, F. Gaches, and G. Pugnet contributed to patient recruitment, informed consent, and data collection and have reviewed and approved the final version of the manuscript for submission.

Conflict-of-interest disclosure: The authors have no funding and conflicts of interest to disclose.

Acknowledgement: The authors would like to thank FA²R, la filière de santé des maladies auto-immunes et autoinflammatoires rares.

Funding info: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval information: Patient has provided informed consent for publication of the case. The data were collected in the Systemic Scleroderma Toulouse Cohort (SSTC) as part of routine clinical care in accordance to Good Clinical Practice and complied with the requirements of the Commission Nationale Informatique et Liberté (CNIL) (registration No. 914607). In compliance with French regulation relating to clinical non-interventional research, this study does not require ethics committee approval.

Data sharing statement: Data are available in a public, open access repository.
6. References

[1] Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis 2007;66:940–4. https://doi.org/10.1136/ard.2006.066068.

[2] Bussone G, Bérezné A, Pestre V, Guillevin L, Mouthon L. The scleroderma kidney: progress in risk factors, therapy, and prevention. Curr Rheumatol Rep 2011;13:37–43. https://doi.org/10.1007/s11926-010-0145-7.

[3] Rubio-Rivas M, Simeón-Aznar CP, Velasco C, Marí-Alfonso B, Espinosa G, Corbella X, et al. Changes in the pattern of death of 987 patients with systemic sclerosis from 1990 to 2009 from the nationwide Spanish Scleroderma Registry (RESCLE). Clin Exp Rheumatol 2017;35 Suppl 106:40–7.

[4] Scussel-Lonzetti L, Joyal F, Raynauld J-P, Roussin A, Rich E, Goulet J-R, et al. Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Medicine (Baltimore) 2002;81:154–67.

[5] Hissaria P, Lester S, Hakendorf P, Woodman R, Patterson K, Hill C, et al. Survival in scleroderma: results from the population-based South Australian Register. Intern Med J 2011;41:381–90. https://doi.org/10.1111/j.1445-5994.2010.02281.x.

[6] Elhai M, Meune C, Avouac J, Kahan A, Allanore Y. Trends in mortality in patients with systemic sclerosis over 40 years: a systematic review and meta-analysis of cohort studies. Rheumatol Oxf Engl 2012;51:1017–26. https://doi.org/10.1093/rheumatology/ker269.

[7] Sampaio-Barros PD, Bortoluzzo AB, Marangoni RG, Rocha LF, Del Rio APT, Samara AM, et al. Survival, causes of death, and prognostic factors in systemic sclerosis: analysis of 947 Brazilian patients. J Rheumatol 2012;39:1971–8. https://doi.org/10.3899/jrheum.111582.

[8] Rubio-Rivas M, Royo C, Simeón CP, Corbella X, Fonollosa V. Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin Arthritis Rheum 2014;44:208–19. https://doi.org/10.1016/j.semarthrit.2014.05.010.

[9] Hao Y, Hudson M, Baron M, Carreira P, Stevens W, Rabusa C, et al. Early Mortality in a Multinational Systemic Sclerosis Inception Cohort. Arthritis Rheumatol Hoboken NJ 2017;69:1067–77. https://doi.org/10.1002/art.40027.

[10] Ioannidis JPA, Vlachoyiannopoulos PG, Haidich A-B, Medsger TA, Lucas M, Michet CJ, et al. Mortality in systemic sclerosis: an international meta-analysis of individual patient data. Am J Med 2005;118:2–10. https://doi.org/10.1016/j.amjmed.2004.04.031.

[11] Poekerbux MR, Giovannelli J, Dauchet L, Mouthon L, Agard C, Lega JC, et al. Survival and prognostic factors in systemic sclerosis: data of a French multicenter cohort, systematic review, and meta-analysis of the literature. Arthritis Res Ther 2019;21: https://doi.org/10.1186/s10024-019-1867-1.

[12] Tyndall AJ, Bannert B, Vonk M, Airò P, Cozzi F, Carreira PE, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 2010;69:1809–15. https://doi.org/10.1136/ard.2009.114264.

[13] Bennett R, Bluestone R, Holt PJ, Bywaters EG. Survival in scleroderma. Ann Rheum Dis 1971;30:581–8.

[14] Assassi S, Del Junco D, Sutter K, McNearney TA, Reveille JD, Karnavas A, et al. Clinical and genetic factors predictive of mortality in early systemic sclerosis. Arthritis Rheum 2009;61:1403–11. https://doi.org/10.1002/art.24734.

[15] Elhai M, Meune C, Boubaya M, Avouac J, Hachulla E, Balbir-Gurman A, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis 2017;76:1897–905. https://doi.org/10.1136/annrheumdis-2017-211448.

[16] Hachulla E, Carpentier P, Gressin V, Diot E, Allanore Y, Sibilia J, et al. Risk factors for death and the 3-year survival of patients with systemic sclerosis: the French ItinérAIR-Sclérodémie study. Rheumatol Oxf Engl 2009;48:304–8. https://doi.org/10.1093/rheumatology/ken488.

[17] Simeón CP, Armadans L, Fonollosa V, Solans R, Selva A, Villar M, et al. Mortality and prognostic factors in Spanish patients with systemic sclerosis. Rheumatol Oxf Engl 2003;42:71–5.
[18] Ferri C, Sebastiani M, Lo Monaco A, Iudici M, Giuggioli D, Furini F, et al. Systemic sclerosis evolution of disease pathomorphosis and survival. Our experience on Italian patients’ population and review of the literature. Autoimmun Rev 2014;13:1026–34. https://doi.org/10.1016/j.autrev.2014.08.029.

[19] Pérez-Bocanegra C, Solans-Laquè R, Simeón-Aznar CP, Campillo M, Fonollosa-Pla V, Vilardell-Tarrés M. Age-related survival and clinical features in systemic sclerosis patients older or younger than 65 at diagnosis. Rheumatol Oxf Engl 2010;49:1112–7. https://doi.org/10.1093/rheumatology/keq046.

[20] J Henes, M C Oliveira, M Labopin, M Badoglio, H U Scherer, N Del Papa et al. Autologous stem cell transplantation for progressive systemic sclerosis: a prospective non-interventional study from the European Society for Blood and Marrow Transplantation Autoimmune Disease Working Party. Haematologica 2021; 106(2):375-383. https://doi.org/10.3324/haematol.2019.230128.

[21] LeRoy EC, Medsger TA. Criteria for the classification of early systemic sclerosis. J Rheumatol 2001;28:1573–6.

[22] van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 2013;72:1747–55. https://doi.org/10.1136/annrheumdis-2013-204424.

[23] LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988;15:202–5.

[24] Avouac J, Walker U, Tyndall A, Kahan A, Matucci-Cerinic M, Allanore Y, et al. Characteristics of joint involvement and relationships with systemic inflammation in systemic sclerosis: results from the EULAR Scleroderma Trial and Research Group (EUSTAR) database. J Rheumatol 2010;37:1488–501. https://doi.org/10.3899/jrheum.091165.

[25] Shreiner AB, Murray C, Denton C, Khanna D. Gastrointestinal Manifestations of Systemic Sclerosis. J Scleroderma Relat Disord 2016;1:247–56. https://doi.org/10.5301/jsrd.5000214.

[26] Amaral TN, Peres FA, Lapa AT, Marques-Neto JF, Appenzeller S. Neurologic involvement in scleroderma: a systematic review. Semin Arthritis Rheum 2013;43:335–47. https://doi.org/10.1016/j.semarthrit.2013.05.002.

[27] Steen VD, Medsger TA, Rodnan GP. D-Penicillamine therapy in progressive systemic sclerosis (scleroderma): a retrospective analysis. Ann Intern Med 1982;97:652–9. https://doi.org/10.7326/0003-4819-97-5-652.

[28] Fernández-Codina A, Simeón-Aznar CP, Pinal-Fernandez I, Rodríguez-Palomares J, Pizzi MN, Hidalgo CE, et al. Cardiac involvement in systemic sclerosis: differences between clinical subsets and influence on survival. Rheumatol Int 2017;37:75–84. https://doi.org/10.1007/s00296-015-3382-2.

[29] Bernstein EJ, Jaafar S, Assassi S, Domsic RT, Frech TM, Gordon JK, et al. Performance Characteristics of Pulmonary Function Tests for the Detection of Interstitial Lung Disease in Adults with Early Diffuse Cutaneous Systemic Sclerosis. Arthritis Rheumatol Hoboken NJ 2020. https://doi.org/10.1002/art.41415.

[30] Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A, et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J 2017;49. https://doi.org/10.1183/13993003.00016-2016.

[31] Coghlan JG, Denton CP, Grünig E, Bonderman D, Distler O, Khanna D, et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis 2014;73:1340–9. https://doi.org/10.1136/annrheumdis-2013-203301.

[32] Galí N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and
[33] Denton CP, Lapadula G, Mouthon L, Müller-Ladner U. Renal complications and scleroderma renal crisis. Rheumatol Oxf Engl 2009;48 Suppl 3:i32-35. https://doi.org/10.1093/rheumatology/ken483.

[34] Mouthon L, Bussonne G, Berezné A, Noël L-H, Guillemin L. Scleroderma renal crisis. J Rheumatol 2014;41:1040–8. https://doi.org/10.3899/jrheum.131210.

[35] Mouthon L, Bérézé N, Bussonne G, Noël L-H, Villiger PM, Guillemin L. Scleroderma renal crisis: a rare but severe complication of systemic sclerosis. Clin Rev Allergy Immunol 2011;40:84–91. https://doi.org/10.1007/s12016-009-8191-5.

[36] Guillemin L, Bérezné A, Bussone G, Noël L-H, Villiger PM, Guillemin L. Scleroderma renal crisis: a retrospective multicentre study on 91 patients and 427 controls. Rheumatol Oxf Engl 2012;51:460–7. https://doi.org/10.1093/rheumatology/ker271.

[37] Cepeda EJ, Reveille JD. Autoantibodies in systemic sclerosis and fibrosing syndromes: clinical indications and relevance. Curr Opin Rheumatol 2004;16:723–32.

[38] Steen VD. Autoantibodies in systemic sclerosis. Semin Arthritis Rheum 2005;35:35–42. https://doi.org/10.1016/j.semarthrit.2005.03.005.

[39] Etat civil en ligne. FranceArchives n.d. https://francearchives.fr/fr (accessed July 14, 2020).

[40] Naing NN. Easy Way to Learn Standardization : Direct and Indirect Methods. Malays J Med Sci MJMS 2000;7:10–5.

[41] Mortalité en 2016 - Tableaux de séries longues – La situation démographique en 2016 | Insee n.d. https://www.insee.fr/fr/statistiques/3552372?sommaire=3552423#titre-bloc-2 (accessed June 16, 2020).

[42] Strickland G, Pauling J, Cavill C, Shaddick G, McHugh N. Mortality in systemic sclerosis—a single centre study from the UK. Clin Rheumatol 2013;32:1533–9. https://doi.org/10.1007/s10067-013-2289-0.

[43] Alba MA, Velasco C, Siméon CP, Fonollosa V, Trapiella L, Egurbide MV, et al. Early- versus late-onset systemic sclerosis: differences in clinical presentation and outcome in 1037 patients. Medicine (Baltimore) 2014;93:73–81. https://doi.org/10.1097/MD.0000000000000018.

[44] Alamanos Y, Tsiiferayi N, Voulgaris PV, Siozos C, Tsamandouraki K, Alexiou GA, et al. Epidemiology of systemic sclerosis in northwest Greece 1981 to 2002. Semin Arthritis Rheum 2005;34:714–20. https://doi.org/10.1016/j.semarthrit.2004.09.001.

[45] Bryan C, Knight C, Black CM, Silman AJ. Prediction of five-year survival following presentation with scleroderma: Development of a simple model using three disease factors at first visit. Arthritis Rheum 1999;42:2660–5. https://doi.org/10.1002/1529-0131(199912)42:12<2660::AID-ANR23>3.0.CO;2-N.

[46] Jacobsen S, Ullman S, Shen GQ, Wiik A, Halberg P. Influence of clinical features, serum antinuclear antibodies, and lung function on survival of patients with systemic sclerosis. J Rheumatol 2001;28:2454–9.

[47] Hoffmann-Vold A-M, Molberg Ø, Midtedt Ø, Garen T, Gran JT. Survival and causes of death in an unselected and complete cohort of Norwegian patients with systemic sclerosis. J Rheumatol 2013;40:1127–33. https://doi.org/10.3899/jrheum.121390.

[48] Moinzadeh P, Kuhn K, Siegert E, Blank N, Sunderkoetter C, Henes J, et al. Scleroderma Renal Crisis: Risk Factors for an Increasingly Rare Organ Complication. J Rheumatol 2019;jrheum.180582. https://doi.org/10.3899/jrheum.180582.

[49] Simeon-Aznar CP, Fonollosa-Pla V, Tolosa-Vilella C, Espinosa-Garriga G, Campillo-Grau M, Ramos-Casals M, et al. Registry of the Spanish Network for Systemic Sclerosis: Survival, Prognostic Factors, and Causes of Death. Medicine (Baltimore) 2015;94:e1728. https://doi.org/10.1097/MD.0000000000001728.

[50] Poudel DR, Jayakumar D, Danve A, Sehra ST, Derk CT. Determinants of mortality in systemic sclerosis: a focused review. Rheumatol Int 2017. https://doi.org/10.1007/s00296-017-3826-y.
[51] Li X, Qian Y-Q, Liu N, Mu R, Zuo Y, Wang G-C, et al. Survival rate, causes of death, and risk factors in systemic sclerosis: a large cohort study. Clin Rheumatol 2018;37:3051–6. https://doi.org/10.1007/s10067-018-4291-z.

[52] Ewert R, Ittermann T, Habedank D, Held M, Lange TJ, Halank M, et al. Prognostic value of cardiopulmonary exercise testing in patients with systemic sclerosis. BMC Pulm Med 2019;19:230. https://doi.org/10.1186/s12890-019-1003-7.

[53] Goh NS, Hoyles RK, Denton CP, Hansell DM, Renzoni EA, Maher TM, et al. Short-Term Pulmonary Function Trends Are Predictive of Mortality in Interstitial Lung Disease Associated With Systemic Sclerosis. Arthritis Rheumatol Hoboken NJ 2017;69:1670–8. https://doi.org/10.1002/art.40130.

[54] Volkman ER, Tashkin DP, Sim M, Li N, Goldmuntz E, Keyes-Elstein L, et al. Short-term progression of interstitial lung disease in systemic sclerosis predicts long-term survival in two independent clinical trial cohorts. Ann Rheum Dis 2019;78:122–30. https://doi.org/10.1136/annrheumdis-2018-213708.

[55] Hsu VM, Chung L, Hummers LK, Shah A, Simms R, Bolster M, et al. Risk Factors for Mortality and Cardiopulmonary Hospitalization in Systemic Sclerosis Patients At Risk for Pulmonary Hypertension, in the PHAROS Registry. J Rheumatol 2019;46:176–83. https://doi.org/10.3899/jrheum.180018.

[56] Chung L, Domsic RT, Lingala B, Alkassab F, Bolster M, Csuka ME, et al. Survival and predictors of mortality in systemic sclerosis-associated pulmonary arterial hypertension: outcomes from the pulmonary hypertension assessment and recognition of outcomes in scleroderma registry. Arthritis Care Res 2014;66:489–95. https://doi.org/10.1002/acr.22121.

[57] Lefèvre G, Dauchet L, Hachulla E, Montani D, Sobanski V, Lambert M, et al. Survival and prognostic factors in systemic sclerosis-associated pulmonary hypertension: a systematic review and meta-analysis. Arthritis Rheum 2013;65:2412–23. https://doi.org/10.1002/art.38029.

[58] Fransen J, Popa-Diaconu D, Hesselstrand R, Carreira P, Valentini G, Beretta L, et al. Clinical prediction of 5-year survival in systemic sclerosis: validation of a simple prognostic model in EUSTAR centres. Ann Rheum Dis 2011;70:1788–92. https://doi.org/10.1136/ard.2010.144360.

[59] Panopoulou S, Bournia V-K, Konstantonis G, Fragiadaki K, Sfikakis PP, Tektonidou MG. Predictors of morbidity and mortality in early systemic sclerosis: Long-term follow-up data from a single-centre inception cohort. Autoimmun Rev 2018;17:816–20. https://doi.org/10.1016/j.autrev.2018.02.008.

[60] Freire M, Rivera A, Sopeña B, Tolosa Vilella C, Guillén-Del Castillo A, Colunga Argüelles D, et al. Clinical and epidemiological differences between men and women with systemic sclerosis: a study in a Spanish systemic sclerosis cohort and literature review. Clin Exp Rheumatol 2017;35 Suppl 106:89–97.

[61] Elhai M, Avouac J, Walker UA, Matucci-Cerinic M, Riemekasten G, Airò P, et al. A gender gap in primary and secondary heart dysfunctions in systemic sclerosis: a EUSTAR prospective study. Ann Rheum Dis 2016;75:163–9. https://doi.org/10.1136/annrheumdis-2014-206386.

[62] Ferdowski N, Huq M, Stevens W, Hudson M, Wang M, Tay T, et al. Development and validation of the Scleroderma Clinical Trials Consortium Damage Index (SCTC-DI): a novel instrument to quantify organ damage in systemic sclerosis. Ann Rheum Dis 2019;78:807–16. https://doi.org/10.1136/annrheumdis-2018-214764.
Figure 1: Flow chart showing selecting patients from Systemic Scleroderma Toulouse Cohort

Patients selected through the coding system

Doctors’ active patient files
N= 312

Removal of duplicates
N= 765

Patients identified with Systemic Sclerosis
N= 555

Patients not meeting ACR/EULAR 2013 criteria or with localized scleroderma:
N= 93

Systemic Sclerosis Toulouse Cohort
N= 462

Patients excluded N= 87
- 81: diagnosed before 01/01/2000
- 6: SSc with only one visit or with more 25% of missing data were excluded

Patients selected
N= 375
Table 1: Demographics and clinical characteristics of patients from Systemic Scleroderma Toulouse Cohort at baseline

Demographics	Complete cohort (n=375)	Diffuse cutaneous SSc (n=63)	Limited cutaneous SSc (n=279)	Sine scleroderma (n=33)
Female sex	292 (77.9)	38 (60)	226 (81)	28 (85)
Ethnic Group				
European	256 (89.8)	40 (80)	190 (91.3)	26 (96.3)
African	21 (7.3)	9 (18)	11 (5.3)	1 (3.7)
Asiatic	8 (2.8)	1 (2)	7 (3.4)	0
Smoking	129 (39.3)	23 (42.6)	95 (38.9)	11 (36.6)
BMI (kg/m²)	23.8 ±4.8	23.9 ±4.5	23.8 ±4.9	23.2 ±3.8
Age at disease onset	55.3 ±14.2	50.8 ± 13.4	56.4 ± 14	55.1 ± 15.4
Age at first Raynaud’s syndrome	45.9 ±16.6	48 ±13.6	45.9 ±16.9	43.5 ±17.8
Disease duration (years)	1.8 ±2.5	2.1 ±2.8	1.8 ±2.6	1.3 ±1.6
Raynaud’s syndrome	362 (96.5)	60 (95.2)	268 (96)	33 (100)
Skin involvement				
mRSS	6.8 ±9.4	19.2 ±11.1	5.3 ±6.3	0
Calcinosis	46 (12.4)	10 (15.9)	33 (12)	3 (9)
Telangiectasias	141 (38)	14 (22.2)	102 (37.1)	25 (75.7)
Active digital ulcers	57 (15.2)	7 (11.1)	48 (17.2)	3 (9)
Previously reported digital ulcers	53 (14.2)	11 (17.5)	38 (13.7)	4 (12.1)
Cardiac involvement				
ECG				
Bundle branch block	21 (6.1)	6 (10.5)	14 (5.4)	1 (3.2)
Arrhythmia	29 (8.4)	7/57 (12.3)	21/258 (8)	1 (3.3)
TTE				
LVEF (in %) +/- SD	66 ±9	65.6 ±9	66 ±9	67 ±7
Diastolic dysfunction	17 (5.6)	1 (1.8)	15 (6.7)	1 (4.2)
Pericarditis	18 (5.8)	7 (12.5)	9 (3.9)	2 (8.3)
Valvular disease	63 (20.4)	7 (12.5)	50 (21.8)	6/ (25)
PAPs ≥ 35 mm Hg (TTE)	64 (36.9)	12 (40)	47 (34.3)	5 (41.7)
---------------------------	-----------	---------	-----------	---------
PH (Right Catheterisation)	18 (4.8)	4 (6.4)	11 (4.2)	3 (9.3)

Lung involvement

Interstitial syndrome	91 (25.4)	22 (34.5)	66 (25)	3 (9.3)
FVC < 70%	36 (12)	11 (20)	24 (10.9)	1 (3.8)
DLCO <70%	140 (46.9)	36 (65.4)	96 (43.8)	8 (33.3)

Digestive tract involvement

| 243 (64.8) | 47 (74.6) | 180 (64.5) | 16 (48.5) |

Kidney involvement

| Renal crisis | 9 (2.4) | 3 (4.7) | 5 (1.8) | 1 (3) |

Rheumatological involvement

Muscular signs	66	19 (30.1)	43 (15.4)	4 (12.1)
Joint signs	171 (45.6)	37 (58.7)	124 (44.4)	10 (30.3)

Neurological involvement

| 89 (23.7) | 17 (26.9) | 65 (23.2) | 7 (21.2) |

Autoantibodies

Anti-centromere	185 (50.5)	7 (11.6)	152 (55.6)	26 (78.8)
Anti-Scl70	87 (23.8)	30 (48.4)	53 (19.6)	4 (12.1)
Anti-RNA pol III	16 (4.3)	4 (6.4)	12 (4.4)	0
Anti-U1RNP	4 (1.1)	2 (3.2)	2 (0.7)	0
Anti-PMScl	7 (1.9)	0	6 (2.2)	1 (3)
Anti-TIF1y	2 (0.5)	0	2 (0.7)	0
Anti-SSA	20 (5.5)	2 (3.2)	18 (6.6)	0
Anti-SSB	12 (3.2)	1 (1.6)	11 (4)	0
ANCA	5 (2.1)	1/41 (2.4)	4/169 (2.4)	0/21

Laboratory parameters

Haemoglobin (g/dl),	13.2 ±1.5	13.1 ±1.6	13.2 ±1.5	13.5 ±1.4
Anaemia <12 g/dl	54 (15.7)	15 (25)	35 (13.8)	4 (13.3)
CRP >5 mg/l	103 (32.8)	24 (43.6)	72 (31.2)	7 (25)
Albumin <35 g/l	34 (12.3)	10 (20.8)	23 (11.3)	1 (4.3)

Drug exposure

Calcium channel blockers	213 (56.8)	39 (61.9)	156 (55.9)	18 (54.5)
Immunosuppressants				
Corticosteroids	135 (36)	41 (65.1)	92 (32.9)	2 (6.1)
Other	120 (32)	38 (60.3)	78 (27.9)	4 (12.1)
Results are expressed as numbers (percentages) for qualitative variables and mean ±SD for quantitative variables. Arrhythmia was defined as atrial or ventricular arrhythmia. ACAN: antinuclear antibodies; ANCA: anti-neutrophil cytoplasmic antibodies; Anti-RNA pol III: anti-polymerase III antibody; BMI: Body mass index; DLCO: Carbon monoxide diffusing capacity of the lung (% of predicted); ECG: electrocardiogram; FVC: forced vital capacity (% of predicted); LVEF: left ventricular ejection fraction PAPs: systolic pulmonary arterial pressure; PH: pulmonary hypertension; SSc: systemic sclerosis; mRSS: Rodnan modified skin score; SD: standard deviation; TTE: trans-thoracic echography.
Figure 2: Kaplan-Meier analysis of overall survival following disease onset in the Systemic Scleroderma Toulouse Cohort according to SSc sub-types
Table 2: Multivariable predictors of mortality in the Systemic Scleroderma Toulouse Cohort at 5, 10 years and all mortality

	Multivariate 5 years	Multivariate 10 years	All mortality
	HR 95% CI p	HR 95% CI p	HR 95% CI p
Sex: Male	2.13 0.99-4.58 0.0526	3.42 1.75-6.67 0.0003	3.25 1.69-6.22 0.0004
DLCO <70%	5.48 1.61-18.60 0.0063	4.54 1.74-1.85 0.002	3.1 1.40-6.88 0.0053
Cardiac involvement	2.89 1.30-6.41 0.0089	3.18 1.62-6.24 0.0008	2.86 1.52-5.41 0.0012
CRP >5 mg/l	3.28 1.42-7.53 0.005	2.37 1.23-6.46 0.01	2.13 1.14-5.41 0.0174

The results are expressed as Hazard ratios (HR) with a 95% confidence interval (95% CI). Cardiac involvement comprises left ventricle ejection fraction <50%, and/or a TTE anomaly (pericarditis, valvular disease or diastolic dysfunction), and/or an ECG anomaly (arrhythmia or conduction blocks). PAPs >35 mm Hg and Raynaud’s syndrome appearing after age 45 were not taken into account in the multi-variate analysis given the co-linearities respectively with the DLCO< 70% of the theoretical value and disease onset after the age of 50 years-old.
Figure 3: Primary causes of deaths in Systemic Scleroderma Toulouse Cohort. A. Percentages of causes of death related to systemic sclerosis. B. Percentages of causes of death non-related to systemic sclerosis. The bars in bold correspond to the groups of causes of death and in the same color are represented the different etiologies: MI: myocardial infarction; PH: pulmonary hypertension; SSc: systemic sclerosis. UTI: Urinary Tract infection.
Appendix: Prognosis factors: COX univariate analysis in the Systemic Scleroderma Toulouse Cohort

	HR	95% CI	p
Form of systemic sclerosis			
Diffuse SSc vs. limited cutaneous forms	1.21	0.68-2.15	0.5167
Demographic data			
Sex: male	3.10	1.88-5.12	<0.001
African vs. European	1.12	0.40-3.11	0.8235
Smoking	1.19	0.72-1.95	0.4883
BMI <18	1.57	0.67-3.66	0.29
Raynaud’s syndrome after 45 years	2.96	1.49-5.86	0.0018
Disease onset disease after 50 years	3.06	1.64-5.72	0.0004
Skin involvement			
mRSS > 15	1.59	0.78-3.28	0.2016
Puffy fingers	0.61	0.32-1.16	0.1326
Sclerodactyly	1.43	0.87-2.35	0.1605
Calcinosis	0.92	0.44-1.93	0.8344
Telangiectasias	1.41	0.87-2.25	0.1607
Ulcers (history of ulcers, active ulcers, pulpy scars)	0.88	0.50-1.54	0.6454
Cardiac involvement			
Cardiac involvement (TTE anomalies and/or ECG)	3.37	1.99-5.69	<0.001
PH			
PAPs ≥ 35 mm Hg (TTE)	2.77	1.44-5.32	0.002
Kidney involvement			
Scleroderma renal crisis	6.75	2.41-18.94	0.0003
Lung involvement			
FVC < 70%	1.63	0.81-3.24	0.1652
DLCO <70%	5.06	2.58-9.52	<0.0001
Neurological involvement	1.1	0.64-1.89	0.7238
--------------------------	-----	-----------	--------
Blood tests			
Anti-centromere	1.11	0.68-1.81	0.6764
Anti-SCL70	1.25	0.74-2.13	0.3937
Anti-RNA polymerase III	0.79	0.10-5.81	0.8225
Anti-PMScI	0.87	0.12-6.26	0.8858
Anaemia <12 g/dl	2.92	1.68-5.1	0.0001
CRP >5 mg/l	4.03	2.37-6.83	<0.0001
Albumin <35 mg/dl	1.24	1.03-1.51	0.024

The results are expressed as Hazard ratios (HR) with a 95% confidence interval (95% CI). Cardiac involvement comprises left ventricle ejection fraction <50%, and/or a TTE anomaly (pericarditis, valvular disease or diastolic dysfunction), and/or an ECG anomaly (arrhythmia or conduction blocks). BMI: Body mass index; DLCO: pulmonar diffusing capacity (% of predicted); FVC: forced vital capacity (% of predicted); PAPs: systolic pulmonary arterial pressure; PFT: pulmonary function tests; SSc: systemic sclerosis; mRSS: Rodnan modified skin score TTE: transthoracic echography.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- appendix.pdf