Study on effect of seasonal variations on water quality of Shallabugh wetland

Ishrat Bashir, FA Lone, Haleem Bano, Nageena Nazir, NA Kirmani, and FA Mohi-u-din

DOI: https://doi.org/10.22271/chemi.2020.v8.i2a.8744

Abstract
The present study was aimed to determine the seasonal physical and chemical nature of water at three different sites of Shallabugh wetland, Kashmir Himalaya. Different parameters viz. water temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total dissolved solids (TDS) were assessed during the study period from February 2018 to November 2018. The data reveals that water temperature ranged from 5.98 to 25.88 °C, COD (40.62 to 74.77 mg/L), BOD (16.06 to 38.28 mg/L) with higher value in summer and lower in winter. On the other hand value of DO (2.41 to 11.56 mg/L) and TDS (155.0 to 324.5 mg/L) where recorded maximum in winter compared to summer. The trend of temperature, BOD, COD and TDS at different sites in all the four seasons were observed in the following descending order: Site-II>Site-III>Site-I whereas DO showed reverse trend. Site-II has been observed to be more affected by the pollution sources, experiencing higher pollution load compared to Site-I and Site-III due to due to anthropogenic activities such as domestic waste water and other waste material entering into the wetland through an inlet channel near site-II. The correlation among water parameters showed both significant positive and negative trends.

Keywords: Water, shallabugh, wetland, anthropogenic activities, wastewater, correlation

Introduction
Wetlands are under severe anthropogenic pressures (Mishra and Naran, 2010 and Euliss et al., 2014)[22, 23] and around 50% of the earth’s wetlands have been disappeared through conversion into industrial, agricultural and residential areas (National wetland atlas of Assam, 2010) [21]. The wetlands are increasingly receiving due attention as they contribute to the healthy environment. They provide habitat for waterfowl (Dar and Dar, 2009) [11], help in nutrient recycling, recharging ground water by releasing water slowly, purification of water by reducing nutrients from inflow water (O’Geeen et al., 2010; Pramod et al., 2011 and Sarkar and Upadhyay, 2013) [12, 22, 23] and flood control by slowing and retaining water during periods of high runoff (Minga et al., 2007) [19]. The most important step for conservation of wetlands is to maintain a proper water quality (Smitha and Shivashankar, 2013) [30] as it reflects the health of any water body.

Shallabugh is a shallow wetland located in Sherpathri area (1580 meters amsl, 34º10’ N Latitude and 74º42’ E Longitude) of Ganderbal district at a distance of about 20 km in the northwest of Srinagar city and covers an area of about 17 km². The wetland receives water from Anchar Lake and Sindh nullah (Siraj et al., 2010). [29]. The fluctuation in the water level occurs due to varying amount of water brought in by Sindh nullah and Anchar Lake (Qadri, 1989). It harbours rich diversity of resident and migratory avifaunal species as well as macrophytes of high socio-economic importance (Dar and Dar, 2009) [11]. The major source of nutrients in Shallabugh wetland are inputs from the feeding channel, mineralization of dead organic matter and the returns from sediments (Dar and Dar, 2009) [11]. Shallabugh wetland is experiencing significant bio-ecological changes due to continued anthropogenic activities viz. intense agricultural activities, pollution, encroachment and erosion in catchment and watershed areas has seriously affected the wetland (Dar and Dar, 2009) [11]. The water body is under myriad anthropogenic perturbations that threaten its survival and the problem is exacerbated by heavy silt load brought into it through various feeding channels from the Sindh Nallah...
(Siraj et al., 2010) [29]. The concern about the overall deterioration of the wetland stimulated the need to carry out this study on water quality of Shallabug wetland of Kashmir Himalaya.

Material and Methods

Three different sites (Site-I, Site-II and Site-III) of Shallabugh wetland were selected for collection of water samples on the basis of location, vegetation and availability of nutrients (Fig. 1). The sampling site-I is situated on the western side of Anchar lake. Sampling site-II is located near the inlet channel from Sindh Nallah which enters into the wetland. At this site the wetland receives more effluents and waste water. Sampling site-III is located away from site-II near semi closed outlet.

![Study Area Map Showing Sampling Sites](image)

Fig 1: location of study sites

The collection of water samples from three different study sites were carried out in different seasons viz. spring, summer, autumn and winter from February 2018 to November 2018. Water samples were collected in 1 litre plastic bottles from each sampling site that were prior cleaned with detergent, washed repeatedly with distilled water, soaked in 10% nitric acid for 24 h and finally washed with distilled water. Temperature and TDS were measured on spot by mercury thermometer and TDS meter whereas for other parameters water samples were properly stored and taken to laboratory for estimation of DO, BOD and COD by employing the standard methods (APHA, 1995) [4]. Statistical analysis was carried out by using Microsoft excel 2007 and SAS9.2 software.

Results and Discussion

Water temperature plays an important role in regulating the various physico-chemical and biological activities in aquatic environments (Sawant et al., 2010 and Balaji, 2015) [28, 5]. Water temperature showed both seasonal as well as site variation (Fig. 2) with highest water temperature in summer (25.88 °C) and lowest (5.98 °C) in winter whereas site-wise water temperature was determined maximum at site-II (19.11 °C) and minimum at site-I (17.81°C). Increase and decrease in water temperature from summer to winter is attributed to the increase and decrease in solar radiation due to changes in day length (Ahanger et al., 2012; Yousuf et al., 2015 and Baniyan et al., 2019) [3, 36, 6]. The highest summer and lowest winter seasonal values in the water temperature indicate that the wetland is basically temperate (Yousuf et al., 2015) [36]. The highest water temperature at site-II may be due to the due high microbial activity.

DO content is the most significant factor in assessing the water quality, primary production and pollution (Thirumala et al., 2011) [15]. DO (Fig. 3) was observed maximum in winter (11.56 mg/L) and minimum in summer (2.41 mg/L) indicating significant seasonal variation and shows an inverse relationship with the temperature (Bhat et al., 2013) [10]. DO content was less at site-II (5.24 mg/L) and more at site-I (6.25 mg/L). Higher amount of DO in winter may be due to low temperature (Barman et al., 2015) [7] as solubility of oxygen increases at lower temperature (Yadavi et al., 2013 and Yousuf et al., 2015) [15, 36] and low biological activity (Idowu et al., 2013) [14]. Lower DO content in summer could be due to the combined effect of the addition of domestic sewage (Hazarka, 2013) [13], rise in temperature (Abubakar and Yakasai, 2015 and Baniyan et al., 2019) [2, 6], high metabolic rate of organisms (Barman et al., 2015) [7] and increased rate of decomposition of organic matter (Bhat et al., 2013; Yousuf et al., 2015 and Baniyan et al., 2019) [10, 36, 6]. Lower value of DO at Site-II may be due to the increased amount of organic load (Ramachandra et al., 2014) [29], entry of sewage and agricultural run-off (Joseph and Jacob, 2010) [15] which needs oxygen for decomposition (Bhat et al., 2013 and Yousuf et al., 2015) [10, 36].

Levels of BOD (Fig.4) differed widely during the study period with highest BOD value in summer (38.28 mg/L) and lowest in winter (16.06 mg/L), however with respect to sites highest BOD was recorded at site-II (30.97 mg/L) and lowest at site-I (27.25 mg/L). Higher value of BOD in summer may be due to rise in temperature and consumption of DO by microbes in stabilization of organic matter (Siraj et al., 2010 and Bhat et al., 2013) [29, 10]. The minimum BOD in winter, may be due to the decrease in temperature leading to decrease
in microbial activity (Sachidanandamurthy and Yajurvedi, 2004 [26] and Bhat et al., 2013 [10]). Higher value of BOD in summer and lowest in winter were also recorded by other workers (Yadavi et al., 2013; Abir, 2014 and Barman et al., 2015) [18, 1, 7]. Increased level of BOD at site-II may be due to high organic wastes from domestic sewage and industrial effluents (Joseph and Jacob, 2010 and Barman et al., 2015) [15, 7].

The highest COD value (Fig. 5) was recorded during summer (74.77 mg/L) and least in winter (40.62 mg/L). Highest COD value was recorded at site-II (56.18 mg/L) and lowest at site-I (51.10 mg/L). The higher value of COD in summer and lower in winter corroborates with the findings of Barman et al., (2015) [7]. Higher COD value at site-II is attributed to the increased anthropogenic pressures such as inflow of agricultural runoff and domestic wastewater (Kundangar and Abubakr 2004 and Khuhawari et al., 2009) [18, 16] which enters into the wetland through an inlet channel near site-II.

Seasonal variation in TDS (Fig. 6) showed maximum value in winter (324.5 mg/L) and minimum in summer (155.0 mg/L) whereas site variation showed maximum TDS at site-II (245.5 mg/L) and minimum at site-I (219.9 mg/L). The highest concentration of TDS in winter could be due to less photosynthetic activity because of death and decay of macrophytes which causes accumulation of salts ions in the water (Sondergaard et al., 2003) [31] while the lower concentration during summer could be due to very high macrophytic cover which enhances sedimentation and counteracts resuspension of sediment particles, and therefore restricts the return of nutrients from sediments (Kufel, 2002 and Bhat, 2010) [17, 8] as well as due to uptake of ions by macrophytes. The higher value of TDS in winter and lower in summer was also observed by Wani et al., (2016) [34]. Highest TDS at site-II may be due to its location in the proximity of major inflow to the wetland and due to the presence of high organic materials (Bhat and Pandit, 2014 and Sonowal and Baruah, 2017) [9, 32].

Table 1: The correlation between water quality parameters

	Temp	DO	BOD	COD
DO	-0.992**			
BOD	0.988**	-0.983**		
COD	0.789**	-0.772**	0.839**	
TDS	-0.928**	0.908**	-0.905**	-0.848**

** Correlation is significant at the 0.01 level

Fig 2: Distribution of water temperature with respect to season and site

Fig 3: Distribution of DO with respect to season and site
Conclusion

Increasing disturbances from the anthropogenic activities occurring in the vicinity like inputs from domestic sewage and agricultural runoff are responsible for the deterioration of water quality of the wetland. High values of BOD and COD indicate heavy organic load in the wetland due to decomposition of organic matter and bird droppings of migratory winter water fowl. It can be concluded that the wetland is eutrophic by reflecting high values of BOD and COD. The existence of Shallabugh wetland is threatened due to deterioration of the water quality thus the wetland needs immediate measures of restoration. For preventing and controlling the destruction of the wetland, various steps should be taken like sediment dredging, macrophyte harvesting, raising bunds and constant water supply.
References

1. Abir S. Seasonal Variations in Physico-Chemical Characteristics of Rudrasagar Wetland-A Ramsar Site, Tripura, North East, India. Research Journal of Chemical Science. 2014; 4(1):31-41.
2. Abubakar MM, Yakasai SM. Effect of Physico-Chemical Factors of Water on the Distribution of Macrobenthic Invertebrate Fauna in the Hadejia-Nguru Wetlands. International Journal of Scientific Engineering and Applied Science. 2015; 1(4):67-74.
3. Ahangar IA, Saksena DN, Mir MF, Afzal M, Ahangar MA. Crustacean community in Anchar lake. Bulletin of Environment, Pharmacology and Life Science. 2012; 1(7):18-21.
4. APHA (American Public Health Association). Standard methods for the examination of water and wastewater. 19th ed., Washington, DC, USA, 1995, 23-35.
5. Balaji PS. Physico-chemical properties of reservoir at Makni, Osmanabad, India. Weekly Science Research Journal. 2015; 2(32):1-6.
6. Baniyan AG, Abubakr A, Bhat FA, Balkhi MH and Mahaboooba. Assessment of Water Quality Parameters at Different Sites of Anchar Lake. International Journal of Pure and Applied Bioscience. 2019; 7(1):199-208.
7. Barman D, Roy B, Roy S. Seasonal Variation of Physico-Chemical characteristics of Wetlands in the West Garo Hill, Meghalaya, India. International Research Journal of Biological Sciences. 2015; 4(1):60-65.
8. Bhat AA. Geochemistry of three Kashmir Himalayan lakes and its impact on vegetation dynamics. Ph.D thesis University of Kashmir, Srinagar, J&K, 2010.
9. Bhat SA, Pandit AK. Surface Water Quality Assessment of Wular Lake, A Ramsar Site in Kashmir Himalaya, Using Discriminant Analysis and WQI. Journal of Ecosystems. 2014; doi.org/10.1155/2014/724728.
10. Bhat SA, Meraj G, Yaseen S, Bhat AR, Pandit AK. Assessing the impact of anthropogenic activities on spatio-temporal variation of water quality in Anchar lake, Kashmir Himalayas. International Journal of Environmental Sciences. 2013; 3(5):1625-1640.
11. Dar IM, Dar MA. Seasonal variations of avifauna of Shallabugh wetland, Kashmir. Journal of Wetlands Ecology. 2009; 2:20-34.
12. Euliss JNH, Mushet DM, Newton WE, Otto CRV, Nelson RD, LaBaugh JW et al. Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations. Journal of Hydrology 2014; 513: 490-503.
13. Hazarika LP. A study of certain physico-chemical characteristics of Satajan wetland with special reference to fish diversity indices, Assam, India. European Journal of Experimental Biology. 2013; 3(4):173-180.
14. Idowu EO, Ugwumba AAA, Edward JB, Oso JA. Study of the seasonal variation in the physico-chemical parameters of a tropical reservoir. Greener Journal of Physical Sciences. 2013; 3(4):142-148.
15. Joseph PV, Jacob C. Physicochemical Characteristics of Pennar River, A Fresh Water Wetland in Kerala, India. E-Journal of Chemistry. 2010; 7(4):1266-1273.
16. Khuhawari MY, Mirza MA, Leghari SM, Arain R. Limnological study of Baghsar lake district Bhimber, Azad Kashmir. Pakistan Journal of Botany. 2009; 41(4):1903-1915.
17. Kufel L, Kufel I. Chara beds acting as nutrient sinks in shallow lakes-a review. Aquatic Botany. 2002; 72:249-260.
18. Kundangar MRD, Abubakr A. Thirty years of Ecological Research on Dal Lake Kashmir. Journal of Research and Development. 2004 4:45-57.
19. Minga J, Xian-guo L, Lin-shu X, Li-juan C, Shouzheng T. Flood mitigation benefit of wetland soil: a case study in Momoge national nature reserve in China. Ecological Economics. 2007; 61:217-223.
20. Mishra S, Naran S. Floristic and ecological studies of Bakhra wetland, Uttar Pradesh, India. The Indian Forester. 2010; 136:375-381.
21. National wetland atlas of Assam. National wetland inventory and assessment. Ministry of environment and forests, government of India; space application centre, Ahmedabad and Assam remote sensing application centre, Guwahati. 2010.
22. O'Geen AT, Budd R, Gan J, Maynard JJ, Parikh SJ, Dahlgren RA. Mitigating non-point source pollution in agriculture with constructed and restored wetlands. Advances in Agronomy. 2010; 108:1-76.
23. Pramod A, Kumara V, Gowda R. A Study on Physico-Chemical Characteristics of Water in Wetlands of Hebbe Range in Bhadra Wildlife Sanctuary, Mid-Western ghat Region, India. Journal of Experimental Sciences. 2011; 2(10):09-15.
24. Qadri SS. Ecological factors affecting waterfowl in the wetlands of Kashmir. Ph.D. Thesis, University of Kashmir, Srinagar, 1989.
25. Ramachandra TV, Asulabha KS, Lone AA. Nutrient enrichment and proliferation of invasive macrophytes in urban lakes. Journal of Biodiversity. 2014; 5(1-2):33-44.
26. Sachidanandamurthy KL, Yajuvedi HN. Monthly variations in water quality parameters (physico-chemical) of a perennial lake in Mysore city. Indian Hydrobiology. 2004; 7:217-228.
27. Sarkar A, Upadhyay B. Assessment of the Variations in Physico-Chemical Characteristics of Water Quality of the Wetlands in District Manipuri (U.P.) India. International Journal of Geology, Earth and Environmental Sciences. 2013; 3(1):95-103.
28. Sawant RS, Telave AB, Desai PD, Desai JS. Variations in hydrobiological characteristics of Atyal pond in Gadhinjlag tahsil, dist. Kolhapur, Maharashtra. Nature Environment and Pollution Technology. 2010; 9(2):273-278.
29. Siraj S, Yousuf AR, Bhat FA, Parveen N. The ecology of macrozoobenthos in shallabugh wetland of Kashmir Himalaya, India. Ecology and the Natural Environment. 2010; 2(5):84-91.
30. Smitha AD, Shivashankar P. Physico Chemical Analysis of the Freshwater at River Kapila, Nanjangudu Industrial Area, Mysore, India. Journal of Environmental Sciences. 2013; 2(8):59-65.
31. Sondergaard M, Jensen A, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia. 2003; 135(45):506-509.
32. Sonowal J, Baruah D. Study of Certain Physico-chemical Properties of Water in Bordoiabam Bilmukh Birds’ Sanctuary (IBA), Wetlands of Assam, North Eastern India. Annals of Biological Research. 2017; 8(2):19-26.
33. Thirumala S, Kiran BR, Kantaraj GS. Fish diversity in
relation to physico-chemical characteristics of Bhadra reservoir of Karnataka, India. Advances in Applied Science Research 2011; 2 (5): 34-47.

34. Wani YH, Jatayan M, Kumar S, Ahmad S. Assessment of Water Quality of Dal Lake, Srinagar by Using Water Quality Indices. Journal of Environmental Science, Toxicology and Food Technology. 2016; 10(7):95-101.

35. Yadavi P, Yadavi VK, Yadavi AK, Khare PK. Physico-Chemical Characteristics of a Fresh Water Pond of Orai, U.P., Central India. Octa Journal of Biosciences. 2013; 1(2):177-184.

36. Yousuf T, Yousuf AR, Mushtaq B. Comparative Account on Physico-Chemical Parameters of two Wetlands of Kashmir, Valley. International Journal of Recent Scientific Research. 2015; 6(2):2876-2882.