Will 1,2-dihydro-1,2-azaborine-based drugs resist metabolism by cytochrome P450 compound I?

Pedro Silva Corresponding Author: Pedro Silva
Email address: pedros@ufp.edu.pt

1,2-dihydro-1,2-azaborine is a structural and electronic analogue of benzene which is able to occupy benzene-binding pockets in T4 lysozyme and has been proposed as suitable arene-mimicking group for biological and pharmaceutical applications. Its applicability in a biological context requires it to be able to resist modification by xenobiotic-degrading enzymes like the P450 cytochromes. Quantum chemical computations described in this work show that 1,2-dihydro-1,2-azaborine is much more prone to modification by these enzymes than benzene, unless steric crowding of the ring prevents it from reaching the active site, or otherwise only allows reaction at the less reactive C_4-position. This novel heterocyclic compound is therefore expected to be of limited usefulness as an aryl bioisostere.
Will 1,2-dihydro-1,2-azaborine-based drugs resist metabolism by cytochrome P450 compound I?

Pedro J. Silva*

1FP-ENAS, Faculdade de Ciências da Saúde, Univ. Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto-Portugal

*pedros@ufp.edu.pt
Abstract: 1,2-dihydro-1,2-azaborine is a structural and electronic analogue of benzene which is able to occupy benzene-binding pockets in T4 lysozyme and has been proposed as suitable arene-mimicking group for biological and pharmaceutical applications. Its applicability in a biological context requires it to be able to resist modification by xenobiotic-degrading enzymes like the P450 cytochromes. Quantum chemical computations described in this work show that 1,2-dihydro-1,2-azaborine is much more prone to modification by these enzymes than benzene, unless steric crowding of the ring prevents it from reaching the active site, or otherwise only allows reaction at the less reactive C₄-position. This novel heterocyclic compound is therefore expected to be of limited usefulness as an aryl bioisostere.
Introduction

1,2-dihydro-1,2-azaborine (abbreviated in this paper as “azaborine”) is a structural and electronic analogue of benzene which, like benzene, undergoes classical electrophilic aromatic substitution (Pan, Kampf & Ashe, 2007) but, in contrast to benzene, also readily undergoes nucleophilic aromatic substitution under mild reaction conditions (Lamm et al., 2011). Computational studies have shown azaborines to be generally much more reactive towards one-electron oxidation and electrophilic substitution than their corresponding benzene analogues (Silva & Ramos, 2009). Azaborines are generally stable in water and react sluggishly with oxygen when substituted on their boron atoms with electron-withdrawing substituents (Lamm & Liu, 2009). These benzene isosteres are able to occupy benzene-binding pockets in T4 lysozyme (Liu et al., 2009) and have been proposed as suitable arene-mimicking groups for biological and pharmaceutical applications (Marwitz et al., 2007). Their deployment as useful components of drug scaffolds requires, however, that they are stable in the presence of drug-metabolizing enzymes such as the P450 cytochromes which hydroxylate the related benzene ring (Guengerich, 2003, 2008).

The active oxidant species of cytochrome P450 (Compound I) is a thiolate-bound heme compound which possesses two unpaired electrons in its Fe=O moiety and one unpaired electron delocalized throughout the porphyrin ring and the thiolate ligand (Schöneboom et al., 2002 and references therein). Depending on the orientation of this lone spin relative to the Fe=O-localized spins, compound I may exist in a doublet (S=1/2) or a quartet (S=3/2) state, which have very similar energies (Rydberg, Sigfridsson & Ryde, 2004 and references therein). Extensive
experimental and computational investigations on the reaction of compound I towards benzene and other aromatic compounds (Guroff et al., 1967; Jerina et al., 1968; Burka, Plucinski & Macdonald, 1983; Koop, Laethem & Schnier, 1989; Korzekwa, Swinney & Trager, 1989; Koerts et al., 1998; de Visser & Shaik, 2003; Bathelt et al., 2003; Bathelt, Mulholland & Harvey, 2008) have shown that the initial formation of a σ-adduct between compound I and the aromatic compound is endergonic and that the subsequent formation of different products (arene oxides, phenols, or ketones) is ruled by a complex potential energy surface, which is sensitive to the reaction environment and to the mode of attack of the benzene (either perpendicular or parallel to the plane of the porphyrin ring). In this paper, we analyze the metabolic stability of 1,2-azaborines towards P450 enzymes through the computational investigation of their reactions with “compound I”.

Computational methods

The geometries of every molecule described were optimized using B3LYP (Lee, Yang & Parr, 1988; Becke, 1993; Hertwig & Koch, 1995). Autogenerated delocalized coordinates (Baker, Kessi & Delley, 1996) were used in geometry optimizations performed with 6-31G(d) (Ditchfield, Hehre & Pople, 1971; Hehre, Ditchfield & Pople, 1972) for all elements except for Fe, which used the SBKJ VDZ (Stevens et al., 1992) basis set in combination with the SBKJ pseudo-potential (Stevens et al., 1992) for the inner shells corresponding to the (1s2s2p) core of Fe. Single-point energies of the DFT-optimized geometries were then calculated using the same functional using the 6-311+G(2d,p) (Hariharan & Pople, 1973; Krishnan et al., 1980; Clark et al., 1983; Frisch, Pople & Binkley, 1984) basis set for all elements except Fe, which used the s6-31G* basis set, specifically developed by Swart et al. to afford more reliable spin-
state splittings (Swart et al., 2010). Zero-point vibrational effects (ZPVE) were computed using a scaling factor of 0.9804 for the computed frequencies. Atomic charge and spin density distributions were calculated with a Mulliken population analysis (Mulliken, 1955) based on symmetrically orthogonalized orbitals (Löwdin, 1970). Geometries of products were obtained from those of the corresponding transition states upon slight deformation of the coordinate corresponding to the imaginary frequency, followed by unconstrained reoptimization. In the few instances where no transition state could be found, product geometries were obtained from extensive exploration of the potential energy surface using two-dimensional scans. All energy values described in the text include solvation effects (ε=10) computed using the Polarizable Continuum Model (Tomasi & Persico, 1994; Mennucci & Tomasi, 1997; Cossi et al., 1998) implemented in Firefly. All computations were performed with the Firefly (Granovsky, 2013) quantum chemistry package, which is partially based on the GAMESS (US) (Schmidt et al., 1993) source code. Intra- and inter-molecular dispersion effects on the energies of the gas-phase B3LYP-optimized species were computed with the DFT-D3 formalism developed by Grimme et al. (Grimme et al., 2010).

Results

The experimental rates of benzene hydroxylation by the thiolate-bound compound I present in cytochrome P450 and haloperoxidases range from 4.6 min⁻¹ (Koop et al., 1989) to 8 s⁻¹ (Karich et al., 2013), which translate to activation free energies from 16.9 kcal·mol⁻¹ to 19.8 kcal·mol⁻¹. The computationally-derived activation energies vary from 12 kcal·mol⁻¹ to 21 kcal·mol⁻¹, depending on the theory level, model size, and inclusion (or not) of ZPVE, dispersion effects, or
solvation (Table 1). Analysis of the susceptibility of 1,2-dihydro-1,2-azaborine to attack by compound I therefore required us to start our investigation by determining the influence of our theory level on the energetic barrier of the analogous reaction of benzene.

In the doublet potential energy surface (Figure 1), we observed that the electronic structure of the reaction product depends on the aryl mode of attack: when benzene approaches the doublet state of compound I perpendicularly to the porphyrin ring (“side-on” in the nomenclature of (Bathelt et al., 2004)), half an electron is transferred from the benzene to the Fe ligands (porphyrin and thiolate) with concomitant spin rearrangements, which lead to the loss of one spin from the Fe-O moiety, mostly to the thiolate ligand (0.52 spin) and substrate (0.32 spin). In contrast, a parallel mode of attack (“face-on” in the nomenclature of (Bathelt et al., 2004)) yields the transfer of almost a full spin (0.86) (but no charge) from the thiolate and porphyrin to the benzene. These results are similar to the observation of a cation-like and a radical-like adduct by (Bathelt et al., 2004), though these workers were able (unlike us) to find both adducts with either attack mode.

Without taking into account zero-point vibrational effects, the quartet state of compound I lies only 0.4 kcal·mol⁻¹ above the doublet state, and the quartet potential energy surface is therefore very accessible. In this spin state, no dramatic differences in electronic structure were found between both attack modes, which always yield a radical-like adduct on the benzene. In the perpendicular attack mode, the quartet state has the same energetic barrier as the doublet state, but produces a more stable product. Such a competitive benzene hydroxylation in the quartet state has not been found by earlier workers, whose studies on the subsequent rearrangement of the compound I/benzene adduct to yield phenol, ketone or epoxide (Bathelt et al., 2008) focused only on the doublet surface due to the higher activation energies they observed for the formation of the compound I/benzene adduct in the quartet state.
Table 1: Energies (in kcal·mol\(^{-1}\), vs. the reactant state) of the transition states (\(^2\)TS and \(^4\)TS) and products (\(^2\)product and \(^4\)product) of direct attack benzene by compound I. Species preceded by \(^2\) are in the doublet (S=1/2) state, whereas those preceded by \(^4\) are in the quartet state (S=3/2). These values cannot be directly compared to the experimental barriers due to the neglect of vibrational/rotational/translational contributions to entropy. Inclusion of entropic effects increases barriers by 4-6.5 kcal·mol\(^{-1}\) due to the loss of vibrational entropy in the transition state (see Supporting Information).

Level of theory	\(^2\)TS	\(^2\)Product	\(^4\)TS	\(^4\)Product	Reference
B3LYP (\(\varepsilon=5.7\))	17.5-18.1	12.3-13.5	20.6	14.0	(de Visser & Shaik, 2003)
B3LYP (\(\varepsilon=4.0\))	15.6-17.9	6.1-6.9	n.d	n.d	(Bathelt et al., 2004)
B3LYP (gas phase only, including ZPVE)	20.7	n.d.	21.1	n.d.	(Ryberg, Ryde & Olsen, 2008)
QM/MM B3LYP/CHARMM27	20.4	n.d.	20.4	n.d.	(Lonsdale, Harvey & Mulholland, 2012)
QM/MM B3LYP-D2/CHARMM27	13.5	n.d.	11.9	n.d.	(Lonsdale et al., 2012)
PBE0 (gas phase only, no ZPVE)	18.8	8.8	24.4	n.d.	(Tomberg et al., 2015)
B3LYP-D3//B3LYP (\(\varepsilon=10.0\)) (including ZPVE) parallel attack	16.1	7.6	21.6	7.9	This work
B3LYP-D3//B3LYP (\(\varepsilon=10.0\)) (including ZPVE)	16.9	9.4	16.9	5.9	This work
perpendicular attack					

Figure 1: Transition states (A and B) and products (C and D) arising from perpendicular (A and C) or parallel (B and D) attack of benzene by compound I in the doublet (S=1/2) state. Charges (and spins) on the substrate moiety and on the porphyrin ring are highlighted.

The energy of the reactant state of compound I towards benzene is mostly independent of the spin state of compound I and of the parallel/perpendicular orientation of benzene. In contrast, the perpendicular orientation of 1,2-dihydro-1,2-azaborine is almost 8 kcal·mol⁻¹ more favorable.
than the parallel orientation, due to the stabilization provided by hydrogen binding between the
nitrogen-bound hydrogen and the compound I oxygen in the perpendicular orientation. This
difference is not, by any means, the most dramatic when comparing the reactivity of benzene
towards that of azaborine, as a large variety of products, transition states and activation energies
is observed when compound I is made to react with azaborine, as described in the next
paragraphs.

Attack on the azaborine nitrogen atom (Figure 2) is kinetically viable only in the doublet state
and with a perpendicular orientation, yielding an azaborine peroxide product (activation
energy=9 kcal·mol⁻¹; reaction energy 5 kcal·mol⁻¹). With a parallel orientation, reaction is
expected to be extremely slow (activation energy=33.4 kcal·mol⁻¹) and yields a high energy
intermediate bearing an unusual interaction between the boron moiety of the substrate and one of
the porphyrin nitrogens. Surprisingly, reaction in the quartet state yields (like that in the doublet
state) an azaborine peroxide product, though with a higher barrier activation energy (18.6
kcal·mol⁻¹). In contrast, attack on the boron atom is extremely fast (with activation energies
between 5.5 and 7.7 kcal·mol⁻¹), regardless of the spin state and initial orientation of the
substrate (Table 2).
Table 2: Energies (in kcal·mol$^{-1}$, vs. the most stable reactant state) of the transition states (2TS and 4TS) and products (2Product and 4Product) for the direct attack of the heteroatoms in 1,2-dihydro-1,2-azaborine by compound I. Species preceded by 2 are in the doublet (S=1/2) state, whereas those preceded by 4 are in the quartet state (S=3/2). All energy values include solvation effects ($\varepsilon=10.0$), zero-point vibrational energy and dispersion effects. Transition states with activation energies above the activation energy of the reaction of compound I towards benzene are highlighted in bold. Unless otherwise noted, all products are σ-adducts of the substrate.

	2TS	2Product	4TS	4Product
N (parallel orientation)	33.4	20.0	Absent	Absent
N (perpendicular orientation)	9.0	5.0a	18.6	11.0a
B (parallel orientation)	5.9	-6.2	5.5	-1.8
B (perpendicular orientation)	7.6	-3.8	6.9	-16.2

a:peroxide product.
Figure 2: Transition states (A-C) and products (D-F) arising from attack of the nitrogen atom in azaborine by compound I. A and D: S=1/2, perpendicular attack; B and E: S=1/2, parallel attack; C and F: S=3/2.

Previous computational (Silva & Ramos, 2009) and experimental studies (Pan et al., 2007) ascertained that the most reactive carbon positions in azaborine towards classical electrophilic agents are its C₃ and C₅ atoms. Our computations show that the same is true regarding its reaction with the doublet state of compound I: the reaction is spontaneous by at least 47.8 kcal·mol⁻¹ at C₃, and by 19 kcal·mol⁻¹ at C₅. The reaction products are, however, quite different in both instances: attack on C₃, yields a novel heptagonal ring (3H-1,3,2-Oxazaborepine) containing a N-B-O-C moiety, whereas reaction in C₅ must overcome a 13-15 kcal·mol⁻¹ barrier and yields epoxides over the C₅-C₆ bond. Both these products assume very similar conformations.
169 relative to the heme regardless of the initial orientation of the substrate (parallel or
170 perpendicular) relative to the porphyrin plane (Figure 3).

Figure 3: Products arising from perpendicular (A and C) or parallel (B and D) attack of positions
173 C$_3$ (A and B) and C$_5$ (C and D) in 1,2-dihydro-1,2-azaborine by compound I in the doublet
174 (S=1/2) state.
The search for a transition state for the attack on C₃ showed that the formation of 3H-1,3,2-oxazaborepine cannot occur directly from the isolated reactants, as no transition state connects this product to the reactant state: instead, 3H-1,3,2-oxazaborepine is formed from the boron-bound azaborine-compound I adduct, after surmounting a small barrier (Figure 4). A second intermediate bearing a C₃-compound I bond was found to be a local minimum in the potential-energy surface (Figure 4, upper right), though kinetically inaccessible due to the absence of any transition state linking it to the isolated reactants: it can only be formed (upon crossing an activation barrier above 40 kcal·mol⁻¹) through rearrangement of the extraordinarily stable oxazaborepine.
Figure 4: Potential energy surface obtained as B$_2$ and C$_3$ approach the reactive oxygen in compound I, computed using B3LYP with the 6-31G(d) basis set for all elements except for Fe, which used the SBKJ VDZ basis set in combination with the SBKJ pseudo-potential for the inner shells corresponding to the (1s2s2p) core of Fe. No solvation or dispersion effects are included. Isoenergetic lines are depicted at 1 kcal·mol$^{-1}$ intervals. Separated reactants with a perpendicular arrangement (corresponding to 0 kcal·mol$^{-1}$) would lie far to the upper left corner of this depiction of the potential energy surface. Grey arrows show the sequence of transformations allowed as B$_2$/C$_3$ atoms approach compound I. 3H-1,3,2-oxazaborepine (lower right) is only accessible after the boron-bound adduct (lower left) has been formed, and the C$_3$-bound compound I intermediate (upper right) is shown to be kinetically inaccessible.

In the quartet state, attack on C$_5$ proceeds with a barrier of 17.1 (parallel) or 18.4 kcal·mol$^{-1}$ (perpendicular) and yields epoxides (like the doublet state). In contrast to the doublet state, a parallel attack of the quartet state on C$_3$ yields a σ-complex similar to that found with benzene. In the perpendicular orientation, the reactivity of the quartet state towards C$_3$ is, however, identical to that found for the doublet state.

Table 3: Energies (in kcal·mol$^{-1}$, vs. the most stable reactant state) of the transition states (2TS and 4TS) and products (2product and 4product) for the direct attack of carbon atoms in 1,2-dihydro-1,2-azaborine by compound I. Species preceded by 2 are in the doublet (S=$1/2$) state, whereas those preceded by 4 are in the quartet state (S=$3/2$). All energy values include solvation effects (ε=10.0), zero-point vibrational energy and dispersion effects. Transition states with activation energies above the activation energy of the reaction of compound I towards benzene
are highlighted in bold. Unless otherwise noted, all products are σ-adducts of the substrate. a:
formation of 3H-1,3,2-oxazaborepine. b: formation of a peroxide product.

	2TS	2Product	4TS	4Product
C₃ (parallel orientation)	n.a.	-49.2ᵃ / 1.2	14.5	2.2
C₃ (perpendicular orientation)	n.a.	-47.8ᵃ / 1.3	n.a.	-40.2ᵃ / 1.8
C₄ (parallel orientation)	21.3	23.0	21.8	11.1
C₄ (perpendicular orientation)	19.5	10.8	20.5	9.6
C₅ (parallel orientation)	14.8	-19.1ᵇ	18.4	-15.6ᵇ
C₅ (perpendicular orientation)	13.2	-18.9ᵇ	17.1	-15.4ᵇ
C₆ (parallel orientation)	13.4	1.5	21.6	-0.6
C₆ (perpendicular orientation)	13.1	-2.0	15.2	7.5

The activation energies for the reactions taking place at the C₄-position are consistently >3 kcal·mol⁻¹ higher than the attacks on benzene, regardless of orientation and spin state. In contrast, attacks on C₅ by the doublet state of compound I must surmount a lower barrier than observed for benzene, and yield very stable epoxides over the C₅-C₆ bond. The same products are observed upon attack at C₅ by the quartet state of compound I, though in this instance the activation barriers are 4 kcal·mol⁻¹ above those computed for the doublet state. In spite of its negligible reactivity towards classical electrophiles (Pan et al., 2007; Silva & Ramos, 2009), the C₆-position in azaborine is more susceptible than benzene to attack by the doublet state of compound I in either a parallel or a perpendicular orientation. In the quartet state, the parallel orientation is noticeably less prone to react than the perpendicular orientation, in spite of yielding a more stable intermediate (Table 3).
Discussion

The computations described in this paper show that most ring positions in 1,2-dihydro-1,2-azaborine are much more reactive towards compound I than the benzene ring (for which they have been proposed as biosteres). It is therefore extremely likely that the proposed inclusion of 1,2-dihydro-1,2-azaborine in drug scaffolds will have a very detrimental effect on their ability to remain unscathed in the organism unless measures are taken to ensure that the reactive azaborine portion is sterically unable to reach the active site of P450 enzymes, or that only the very unreactive C₄-position is able to approach compound I.

Supporting Information Geometries and energies of every intermediate. Input and output files have been deposited in Figshare (https://dx.doi.org/10.6084/m9.figshare.1414338)
238 References

239 Baker J., Kessi A., Delley B. 1996. The generation and use of delocalized internal coordinates in
240 geometry optimization. *Journal of Chemical Physics* 105:192–212.

241 Bathelt CM., Mulholland AJ., Harvey JN. 2008. QM/MM modeling of benzene hydroxylation in
242 human cytochrome P450 2C9. *Journal of Physical Chemistry A* 112:13149–13156.

243 Bathelt CM., Ridder L., Mulholland AJ., Harvey JN. 2003. Aromatic hydroxylation by
244 cytochrome P450: model calculations of mechanism and substituent effects. *Journal of the
245 American Chemical Society* 125:15004–5.

246 Bathelt CM., Ridder L., Mulholland AJ., Harvey JN. 2004. Mechanism and structure-reactivity
247 relationships for aromatic hydroxylation by cytochrome P450. *Organic & Biomolecular
248 Chemistry* 2:2998–3005.

249 Becke AD. 1993. Density-functional thermochemistry. III. The role of exact exchange. *The
250 Journal of Chemical Physics* 98:5648–5652.

251 Burka LT., Plucinski TM., Macdonald TL. 1983. Mechanisms of hydroxylation by cytochrome
252 P-450: metabolism of monohalobenzenes by phenobarbital-induced microsomes. *Proceedings of the National Academy of Sciences of the United States of America* 80:6680–4.

252 Clark T., Chandrasekhar J., Spitznagel GW., Schleyer PVR. 1983. Efficient diffuse function-
253 augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row
254 elements, Li-F. *Journal of Computational Chemistry* 4:294–301.

255 Cossi M., Mennucci B., Pitarch J., Tomasi J. 1998. Correction of cavity-induced errors in
256 polarization charges of continuum solvation models. *Journal of Computational Chemistry*
257 19:833–846.

258 Ditchfield R., Hehre WJ., Pople JA. 1971. Self-Consistent Molecular-Orbital Methods. IX. An
259 Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. *The
260 Journal of Chemical Physics* 54:724–728.

261 Frisch MJ., Pople JA., Binkley JS. 1984. Self-consistent molecular orbital methods 25.
262 Supplementary functions for Gaussian basis sets. *The Journal of Chemical Physics*
263 80:3265–3269.

264 Granovsky AA. 2013. Firefly 8.0.0.

265 Grimme S., Antony J., Ehrlich S., Krieg H. 2010. A consistent and accurate ab initio
266 parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-
267 Pu. *The Journal of Chemical Physics* 132:154104.

268 Guengerich FP. 2003. Cytochrome P450 oxidations in the generation of reactive electrophiles:
269 epoxidation and related reactions. *Archives of Biochemistry and Biophysics* 409:59–71.

269 Guengerich FP. 2008. Cytochrome p450 and chemical toxicology. *Chemical Research in
270 Toxicology* 21:70–83.
Guroff G., Daly JW., Jerina DM., Renson J., Witkop B., Udenfriend S. 1967. Hydroxylation-
induced migration: the NIH shift. Recent experiments reveal an unexpected and general
result of enzymatic hydroxylation of aromatic compounds. *Science (New York, N.Y.)*
157:1524–1530.

Hariharan PC., Pople JA. 1973. The influence of polarization functions on molecular orbital
hydrogenation energies. *Theoretica Chimica Acta* 28:213–222.

Hehre WJ., Ditchfield R., Pople JA. 1972. Self—Consistent Molecular Orbital Methods. XII.
Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of
Organic Molecules. *The Journal of Chemical Physics* 56:2257–2261.

Hertwig RH., Koch W. 1995. On the accuracy of density functionals and their basis set
dependence: An extensive study on the main group homonuclear diatomic molecules Li2 to
Br2. *Journal of Computational Chemistry* 16:576–585.

Jerina DM., Daly JW., Witkop B., Zaltzman-Nirenberg P., Udenfriend S. 1968. The role of arene
oxide-oxepin systems in the metabolism of aromatic substrates. 3. Formation of 1,2-
naphthalene oxide from naphthalene by liver microsomes. *Journal of the American
Chemical Society* 90:6525–6527.

Karich A., Kluge M., Ullrich R., Hofrichter M. 2013. Benzene oxygenation and oxidation by the
peroxyxenase of Agrocybe aegerita. *AMB Express* 3:5.

Koerts J., Soffers AEMF., Vervoort J., De Jager A., Rietjens IMCM. 1998. Occurrence of the
NIH shift upon the cytochrome P450-catalyzed in vivo and in vitro aromatic ring
hydroxylation of fluorobenzenes. *Chemical Research in Toxicology* 11:503–512.

Koop DR., Laethem CL., Schnier GG. 1989. Identification of ethanol-inducible P450 isozyme 3a
(P450IIE1) as a benzene and phenol hydroxylase. *Toxicology and Applied Pharmacology*
98:278–288.

Korzekwa KR., Swinney DC., Trager WF. 1989. Isotopically labeled chlorobenzenes as probes
for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation. *Biochemistry*
28:9019–9027.

Krishnan R., Binkley JS., Seeger R., Pople JA. 1980. Self-consistent molecular orbital methods.
XX. A basis set for correlated wave functions. *The Journal of Chemical Physics* 72:650–
654.

Lamm AN., Garner EB., Dixon D a., Liu S-Y. 2011. Nucleophilic aromatic substitution reactions
of 1,2-dihydro-1,2-azaborine. *Angewandte Chemie (International ed. in English)* 50:8157–
60.

Lamm AN., Liu S-Y. 2009. How stable are 1,2-dihydro-1,2-azaborines toward water and
oxygen? *Molecular bioSystems* 5:1303–5.

Lee C., Yang W., Parr RG. 1988. Development of the Colle-Salvetti correlation-energy formula
into a functional of the electron density. *Physical Review B* 37:785–789.

Liu L., Marwitz AJ., Matthews BW., Liu SY. 2009. Boron mimetics: 1,2-dihydro-1,2-azaborines
bind inside a nonpolar cavity of T4 Lysozyme. *Angewandte Chemie - International Edition*
48:6817–6819.

Lonsdale R., Harvey JN., Mulholland AJ. 2012. Effects of Dispersion in Density Functional
Based Quantum Mechanical/Molecular Mechanical Calculations on Cytochrome P450 Catalyzed Reactions. *Journal of Chemical Theory and Computation* 8:4637–4645.

Löwdin P-O. 1970. On the nonorthogonality problem. In: *Advances in Quantum Chemistry, Vol. 5*. 185–199.

Marwitz AJ., Abbey ER., Jenkins JT., Zakharov LN., Liu S-Y. 2007. Diversity through isosterism: the case of boron-substituted 1,2-dihydro-1,2-azaborines. *Organic letters* 9:4905–8.

Mennucci B., Tomasi J. 1997. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. *Journal of Chemical Physics* 106:5151–5158.

Mulliken RS. 1955. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. *The Journal of Chemical Physics* 23:1833.

Pan J., Kampf JW., Ashe AJ. 2007. Electrophilic aromatic substitution reactions of 1,2-dihydro-1,2-azaborines. *Organic letters* 9:679–81.

Rydberg P., Ryde U., Olsen L. 2008. Prediction of activation energies for aromatic oxidation by cytochrome P450. *Journal of Physical Chemistry A* 112:13058–13065.

Rydberg P., Sigfridsson E., Ryde U. 2004. On the role of the axial ligand in heme proteins: a theoretical study. *Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry* 9:203–23.

Schmidt MW., Baldridge KK., Boatz JA., Elbert ST., Gordon MS., Jensen JH., Koseki S., Matsunaga N., Nguyen KA., Su S. et al. 1993. General atomic and molecular electronic structure system. *Journal of Computational Chemistry* 14:1347–1363.

Schöneboom JC., Lin H., Reuter N., Thiel W., Cohen S., Ogliaro F., Shaik S. 2002. The elusive oxidant species of cytochrome P450 enzymes: characterization by combined quantum mechanical/molecular mechanical (QM/MM) calculations. *Journal of the American Chemical Society* 124:8142–51.

Silva PJ., Ramos MJ. 2009. Computational studies on the reactivity of substituted 1,2-dihydro-1,2-azaborines. *The Journal of Organic Chemistry* 74:6120–6129.

Stevens WJW., Krauss M., Basch H., Jasien PG. 1992. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. *Canadian Journal of ...* 70:612–630.

Swart M., Güell M., Luis JM., Solà M. 2010. Spin-state-corrected Gaussian-type orbital basis sets. *The Journal of Physical Chemistry A* 114:7191–7197.

Tomasi J., Persico M. 1994. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. *Chemical Reviews* 94:2027–2094.

Tomberg A., Pottel J., Liu Z., Labute P., Moitessier N. 2015. Understanding P450-mediated Bio-transformations into Epoxide and Phenolic Metabolites. *Angewandte Chemie - International Edition* 54:13743–13747.

de Visser SP., Shaik S. 2003. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. *Journal of the American Chemical Society* 125:7413–24.
