Median nerve entrapment in a callus fracture following a pediatric both-bone forearm fracture: A case report and literature review

Amine Fourati¹, Iyadh Ghorbel¹, Amir Karra¹, Mohamed Habib Elleuch², Khalil Ennouri¹

Departments of ¹Plastic Surgery and ²Physical Medicine and Rehabilitation, Habib Bourguiba Hospital, Sfax, Tunisia

INTRODUCTION

Forearm fractures are common injuries in childhood. Median nerve entrapment is a rare complication of forearm fractures, but several cases have been reported in the literature. This case report discusses the diagnosis and management of median nerve entrapment in a 13-year-old male who presented acutely with a both-bone forearm fracture and numbness in the median nerve distribution. Following the delayed diagnosis, surgical exploration revealed complete nerve entrapment and a nerve graft was performed.

CASE

A 13-year-old right-hand-dominant boy fell off a bicycle. He was seen at a local emergency room in December 2013. A physical examination revealed a deformed and painful left forearm without neurological or circulatory impairment. Radiographs showed a greenstick both-bone distal fracture (Fig. 1). The patient underwent a closed reduction with satisfactory post-manipulation radiographs. Weekly examinations showed no fracture displacement and normal bone healing, but the patient complained of numbness in his thumb, index finger, and middle finger. The sensory loss was thought to be caused by neurapraxia, and the patient was advised that the numbness would resolve spontaneously.

Two months later, the plaster was removed, radiographs showed union of both fractured bones with callus bridging (Fig. 2), and the patient noted improved sensibility in the thumb.

Six months after the initial injury, the patient presented to the emergency room after burning his middle finger pulp. On examination, there was no 2-point discrimination in the median nerve distribution of the left hand.

Finally, the patient was referred to us for evaluation. Examination revealed a thenar eminence atrophy, decreased power of the abductor pollicis brevis, and the Tinel sign was positive over the fracture site and the wrist. The flexor digitorum profundus extending into the index finger and the flexor pollicis longus muscles were normal in muscle testing. A neurophysiological study revealed abnormal median nerve conduction distally, and nee-
dle electromyography detected denervation of the abductor pollicis brevis. Radiographs showed that the fracture had healed with only a slight irregularity.

Eight months after the injury, surgical exploration of the median nerve was carried out. An anterior incision was performed on the left forearm, centered on the area of the positive Tinel sign. The flexor muscles were split and the median nerve was identified. The nerve was trapped in the radius callus fracture (Fig. 3). Neurolysis was attempted, but was impossible (Fig. 4). After resection of the injured nerve and the neuroma, we found a loss of substance (Fig. 5). The possibility of a nerve suture without tension was tested with a nylon 9/0 suture, but it was not possible, even with flexion of the wrist. A nerve graft was performed using the left sural nerve (Fig. 6).

Two years after surgery, follow-up revealed recovery of the abductor pollicis brevis, and 2-point discrimination was 6 mm on the thumbs and 10 mm on the index and the middle finger.
DISCUSSION

Median nerve entrapment in forearm fractures in children is uncommon. Eleven cases have reported in the literature from 1974 to 2016 (Table 1). The mean age of the affected patients was 11 years (range, 6–13 years). Except for the cases described by Nunley and Urbaniak [10] and Yeo et al. [3], in which the nerve entrapment was at an ulnar fracture site, the nine other cases were due to a radial fracture. The radial fractures were proximal in one case [7], at the mid-shaft in eight cases, and in the distal third in the two remaining cases and our case. Closed reduction was performed in eight cases [1,3-8,11], an open reduction in one case [2], and no reduction was needed in two cases [9,10].

In addition to the median nerve, the interosseous nerve was involved in one case [8]. Except for the case described by Hurst and Aldridge [2], in which surgical exploration was immediately indicated, both the diagnosis and the surgical exploration were delayed. In the reported cases, the median nerve entrapment was released after 39 days to 24 months [7,11]. The reasons for the delayed diagnosis include the absence of clinician continuity in serial follow-up examinations, the unclear nature of complaints from affected children, and the assumption that such numbness will prove to be temporary.

The presence of a slight bony irregularity, a bony canal [10], or a bony spike at the site of the fracture may suggest median nerve entrapment [7]. However, those radiological irregularities are usually only appreciated postoperatively [7]. In our case, a bony canal was present on the anteroposterior view of the healed radial fracture (Fig. 7). Magnetic resonance imaging (MRI) was only performed in one case [3], although it is useful for tracing the median nerve course in the forearm. Yanagibayashi et al. [12] advocate the use of MRI earlier if entrapment is suspected. It enables immediate visualization of the entrapment, and surgical exploration can be promptly performed to release the entrapment.

Neurolysis and neurorrhaphy were the most common management procedures, and a median nerve graft was performed.
Table 1. Literature review of nerve entrapment in the osseous callus in pediatric forearm fractures

Author	Year	Age (yr)	Fracture	Nerve	Entrapment location	Fracture treatment	Surgical exploration delay	Surgical management	Follow-up	Outcome
Wolfe et al. [11]	1974	7	Radius and ulna, middle and distal third junction	Median nerve	Radius	Closed reduction	39 day	Neuorrhaphy	2 yr	Complete recovery
Nunley and Urbaniak [10]	1980	6	Proximal third of the ulna	Median nerve	Ulna	Long-arm cast (no reduction needed)	9 mon	Neuorrhaphy	7 mon	Nearly complete recovery
Genelin et al. [9]	1988	13	Radius and ulna, middle third	Median nerve	Radius	No reduction needed	3 mon	Nerve graft	8 mon	Nearly complete recovery, with persistent derervation signs in electromyography
Gainor et al. [8]	1990	12	Radius and ulna, mid-shaft	Median and anterior interosseous nerves	Radius	Closed reduction and casting	5 mon and 15 day	Neurolysis for both and median nerve neurolysis	6 mon	Complete sensory recovery, incomplete muscle strength recovery
al-Qattan et al. [7]	1994	10	Radius and ulna, middle third	Median nerve	Radius	Closed reduction	24 mon	Neurolysis	9 mon	Complete recovery
Huang et al. [6]	1998	13	Junction of the proximal and middle thirds of the radius and ulna	Median nerve	Radius	Closed reduction and long-arm cast	4 mon and 14 day	Neuorrhaphy	11 mon	Good sensory recovery, no motion regained
Proubasta et al. [5]	1999	12	Closed both-bone forearm fracture, distal third	Median nerve	Radius	Closed reduction and long-arm cast	6 wk	Neurolysis	6 mon	Full sensory and motion recovery
Benske et al. [4]	2005	12	Closed middle-third both-bone forearm fracture	Median nerve	Radius	Closed reduction and long-arm cast	15 mon	Neurolysis	1 yr	Full sensory and motion recovery
Hurst and Aldridge [2]	2006	13	Closed midshaft both-bone forearm fracture	Median nerve	Radius	Open reduction and internal plate fixation	0 day	Neurolysis	14 wk	Complete recovery
Ardolino et al. [1]	2009	12	Closed both-bone distal-third fracture	Median nerve	Fracture site	Closed reduction then discharge	4 mon and 7 day	Neuorrhaphy	1 yr	Complete motion recovery, with persistent paresthesia
Yeo et al. [3]	2011	11	Radius and ulna, middle third	Median nerve	Ulna	Closed reduction and immobilization	6 mon	Neurolysis, then neurolysis	1 yr	Complete recovery
Current study	2016	13	Closed both-bone distal-third fracture	Median nerve	Radius	Closed reduction and long-arm cast	8 mon	Nerve graft	2 yr	Complete motion recovery, good sensory recovery
in one other case [9], as well as in our case. Fortunately, the literature has demonstrated that median nerve function shows excellent recovery in childhood, even with delayed surgery. This case emphasizes the importance of a meticulous clinical examination before and after closed reduction to detect a nerve injury. We highlight the value of clinician continuity in serial follow-up examinations. Early exploration of persistent neurological deficits is advocated, and MRI may be useful.

NOTES

Conflict of interest
No potential conflict of interest relevant to this article was reported.

Ethical approval
The study was approved by the Habib Bourguiba University Hospital Ethics Committee (IRB No. 7-17) and performed in accordance with the principles of the Declaration of Helsinki. Written informed consents were obtained.

Patient consent
The patient provided written informed consent for the publication and the use of his images.

Author contribution
Clinical study, drafting, and approval of the manuscript: Fourati A. Literature review: Karra A. Critical revision: Ghorbel I. Electromyography study: Elleuch MH. Study supervision: Ennouri K.

ORCID
Amine Fourati https://orcid.org/0000-0003-3401-2010
Iyadh Ghorbel https://orcid.org/0000-0001-7395-4196
Amir Karra https://orcid.org/0000-0001-9827-2511
Mohamed Habib Elleuch https://orcid.org/0000-0002-7432-4839
Khalil Ennouri https://orcid.org/0000-0003-1387-1772

REFERENCES

1. Ardolino A, Webb D, Richards S. Median nerve entrapment in fracture callus following a paediatric forearm fracture: case report and review of the literature. Injury Extra 2009;40:274-6.
2. Hurst JM, Aldridge JM 3rd. Median nerve entrapment in a pediatric both-bone forearm fracture: recognition and management in the acute setting. J Surg Orthop Adv 2006;15:214-6.
3. Yeo G, Prodger S, Latendresse K. Median nerve entrapment in a paediatric fracture of the ulna demonstrated by magnetic resonance imaging. J Hand Surg Eur Vol 2011;36:329-30.
4. Bendre A, Adee M, Malkan D. Median nerve entrapment in mid-shaft radius fracture callus. Eur J Trauma 2005;31:407-8.
5. Proubasta IR, De Sena L, Caceres EP. Entrapment of the median nerve in a greenstick forearm fracture: a case report and review of the literature. Bull Hosp Jt Dis 1999;58:220-3.
6. Huang K, Pun WK, Coleman S. Entrapment and transection of the median nerve associated with greenstick fractures of the forearm: case report and review of the literature. J Trauma 1998;44:1101-2.
7. al-Qattan MM, Clarke HM, Zimmer P. Radiological signs of entrapment of the median nerve in forearm shaft fractures. J Hand Surg Br 1994;19:713-9.
8. Gainor BJ, Olson S. Combined entrapment of the median and anterior interosseous nerves in a pediatric both-bone forearm fracture. J Orthop Trauma 1990;4:197-9.
9. Genelin F, Karlbauer AF, Gasperschitz F. Greenstick fracture of the forearm with median nerve entrapment. J Emerg Med 1988;6:381-5.
10. Nunley JA, Urbaniak JR. Partial bony entrapment of the median nerve in a greenstick fracture of the ulna. J Hand Surg Am 1980;5:557-9.
11. Wolfe JS, Eyring EJ. Median-nerve entrapment within a greenstick fracture: a case report. J Bone Joint Surg Am 1974;56:1270-2.
12. Yanagibayashi S, Yamamoto N, Yoshida R, et al. Magnetic resonance imaging visualizes median nerve entrapment due to radius fracture and allows immediate surgical release. Case Rep Orthop 2015;2015:703790.