The family of random attractors for nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients

Abstract: In this paper, the stochastic asymptotic behavior of the nonautonomous stochastic higher-order Kirchhoff equation with variable coefficients is studied. By using the Galerkin method, the solution of this kind of equation is obtained, and stochastic dynamical system under this kind of equation is obtained; by using the uniform estimation, the existence of the family of D_k-absorbing sets of the stochastic dynamical system Φ_k is obtained, and the asymptotic compactness of Φ_k is proved by the decomposition method. Finally, the D_k-stochastic attractor family of the stochastic dynamical system Φ_k in $V_{m,k}(\Omega) \times V_k(\Omega)$ is obtained.

Keywords: nonautonomous higher-order Kirchhoff equation, partial differential equations, variable coefficient, the family of random attractors, additive noise

MSC 2020: 37B55, 35B41, 35G31, 60H15

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary (i.e., the derivative of the function at the boundary exists and is continuous). In this paper, we study the asymptotic behavior of nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients on Ω:

\[
\begin{align*}
&u_{tt} + a(x)(-\Delta)^m u_t + b(x)M(\|\nabla^m u\|)(-\Delta)^m u + g(x, u) = f(x, t) + h(x)\frac{\partial w}{\partial t}, \\
&u = 0, \quad \frac{\partial u}{\partial n} = 0, \quad i = 1, 2, \ldots, m - 1, \quad x \in \Gamma, \quad t \geq \tau, \\
&u(x, \tau) = u_t(x), \quad u_t(x, \tau) = u_{tt}(x), \quad x \in \Omega,
\end{align*}
\]

where Γ is the smooth boundary of Ω, n is the outer normal vector on the boundary Γ, $m > 1$, $a(x)$ and $b(x)$ are variable coefficient functions, $f(x, t) \in L_{\text{loc}}^2(R, V_k(\Omega))$ is a time-dependent external force term, w is a one-dimensional bilateral standard Wiener process, $h(x)\frac{\partial w}{\partial t}$ describes white noise, and $g(x, u)$ is a nonlinear function that satisfies certain growth conditions and dissipation conditions.
The Kirchhoff model was proposed in 1883 to describe the motion of elastic cross-section. Compared with classical wave equations, the Kirchhoff model can describe the motion of elastic rod more accurately. There has been a lot of in-depth research on the Kirchhoff equations. [1–6] studied the long-term dynamics of the autonomous low-order Kirchhoff equation; [7–11] studied the existence of global solutions and the blow-up of solutions of the higher-order Kirchhoff equations.

Stochastic wave equations are a very important class of stochastic partial differential equations, which are widely used in many fields such as fluid mechanics, physics, electricity, etc. The random attractor is an important tool for studying the long-term asymptotic behavior of stochastic dynamical systems. Using it to characterize the long-term behavior of random dynamical systems has laid a solid foundation for the study of random dynamical systems. After more than 30 years of development, random dynamical systems have also been extensively studied. Many scholars have conducted in-depth studies on the dynamical behavior of random wave equations in unbounded domains [12–17] and bounded domains [18–20]. For new trends in functional analysis and random attractors, see also [21–24].

Regarding the variable coefficients in the equation, it represents the wave velocity at the space coordinate x, which will appear in the wave phenomena in mathematical physics, marine acoustics, and other fields. It is of great practical significance to study the mathematical and physical equations with variable coefficients. In [25], they studied the global well-posedness and asymptotic behavior of solutions of Kirchhoff-type equations with variable coefficients and weak damping in unbounded domains. More relevant results can also be found in [26–33].

In recent years, Lin and Chen [34], Lin and Jin [35] have performed a detailed study on the long-term dynamical behavior of higher-order wave equations and proposed the concept of the family of attractors. Combined with the current research results, there are no relevant research results on the long-time dynamics of the nonautonomous stochastic higher-order Kirchhoff equation, and the asymptotic behavior of the higher-order Kirchhoff equation with variable coefficients has not been studied. By studying the nonautonomous stochastic higher-order Kirchhoff model with variable coefficients, the relevant results of the Kirchhoff model can be generalized, and the theoretical achievements of the Kirchhoff model can be enriched, which lays a theoretical foundation for later application. Therefore, this article will specifically study the family of random attractors of nonautonomous random higher-order Kirchhoff equation with variable coefficients. In the research process, the reasonable assumption and Leibniz formula are used to overcome how to define the L^p-weighted space and the difficulty of estimating the absorption sets and asymptotic compactness caused by the variable coefficients.

Section 2 of this article introduces related theories, related definitions, and theories of stochastic dynamical systems; Section 3 presents the family of the continuous cocycle of the problem; In Section 4, the uniform estimation of the solution of problem (1.1) is obtained, and the asymptotic compactness of Φ_α is obtained through the decomposition method; in Section 5, we get the family of D_k-random attractors of Φ_α in X_k.

2 Preparatory knowledge

In this section, we mainly give the related theories of nonautonomous stochastic dynamical systems and random attractor (the family of random attractors).

First, the relevant notation needed in this paper is introduced: Define the inner product and norm on $H = L^2(\Omega)$ as (\cdot, \cdot) and $(\|\cdot\|)$, $L^p = L^p(\Omega)$, $\|\cdot\|_p = \|\cdot\|_{L^p}$, where $p \geq 1$. Set variable coefficient $a(x), b(x) = b_0a(x), b_0$ as a positive constant, satisfying $a \in C_0^\infty(\Omega)$, $a(x) \geq a_\infty > 0$, $\frac{\partial a}{\partial x} |_\Gamma = 0$, $a_0 = \|a(x)\|_{\infty}$, $a(x)^{-1} = \mu(x), x \in \Omega$, and $\mu \in L^2(\Omega) \cap C_0^\infty(\Omega)$.

By $D^{1,2}$, we define the closure of the $C_0^\infty(\Omega)$ functions with respect to the “energy norm” $\|u\|_{D^{1,2}} = \int_\Omega |\nabla u|^2 \, dx$. It is well known that

$$D^{1,2} = L^{2N/(N-2)}(\Omega),$$

and for $D^{1,2} \hookrightarrow L^{2N/(N-2)}(\Omega)$, there exists $\beta > 0$ such that $\|u\|_{L^{2N/(N-2)}} \leq \beta\|u\|_{D^{1,2}}$.

Lemma 2.1. [26] Suppose that $\mu \in L^2_0(\Omega) \cap C_0^\infty(\Omega)$, then for all $u \in C_0^\infty(\Omega)$, there exists $\alpha > 0$ such that

$$a \int_\Omega |\mu|^2 \, dx \leq \int_\Omega |\nabla u|^2 \, dx,$$

where $a = \beta^{-2} \|\mu\|_{L^2_0}^{-2}$.

Let $\mu > 0$ be the weight function, and the weighted space $L^p_\mu = L^p_\mu(\Omega)$ with the following norm:

$$\|u\|^p_{L^p_\mu} = \int_\Omega |\mu|^p |u|^p \, dx = \|\mu^p u\|^p_p,$$

for $1 \leq p < \infty$. Clearly $L^2_\mu = L^2_\mu(\Omega)$ is a separable Hilbert space the inner product and norm are respectively:

$$(u, v)_\mu = \int_\Omega \mu uv \, dx = (\mu^p u, \mu^p v), \quad \|u\| = \|\mu^p u\|.$$

For $p : 1 \leq p < \infty$, the Banach space L^p_μ is uniformly convex, reflexive space, and $(L^p_\mu)' = L^{p'}_\mu$, where p' is the conjugate number of p.

Lemma 2.2. [26] Suppose that $\mu \in L^2(\Omega) \cap C_0^\infty(\Omega)$, then $D^{1,2}$ is compactly embedded in L^2_μ. Let

$$V_m = H^m(\Omega) = H^m(\Omega) \cap H^m_0(\Omega), \quad V_{m+k} = H^{m+k}(\Omega) = H^{m+k}(\Omega) \cap H^k_0(\Omega), \quad k = 0, 1, \ldots, m,$$

and the corresponding inner product and norm are, respectively,

$$(u, v)_{V_{m+k}} = (\nabla^{m+k} u, \nabla^{m+k} v), \quad \|u\|_{V_{m+k}} = \|\nabla^{m+k} u\|_{H^{m+k}}.$$

At the same time, a general form of Poincare inequality: $\lambda_1 \|\nabla u\|^2 \leq \|u\|^2$, where λ_1 is the first eigenvalue of $-\Delta$. In the text, C_1 is a positive constant, $C(\cdot)$ represents a positive constant that depends on the parameters in parentheses, and C_n is the corresponding number of combinations.

Assuming that $(X, \|\cdot\|_X)$ is a separable Hilbert space, and $B(X)$ is the Borel σ-algebra of $X(\Omega_1, \mathcal{F}, P)$ is the metric probability space.

Definition 2.3. [12] Let $\theta_t : R \times \Omega_1 \to \Omega_1$ be a family of $(B(X) \times \mathcal{F}, \mathcal{F})$-measurable mappings such that $\theta_{0t} = \theta_0$ is the identity on $\Omega_1 \forall t, s \in R, \theta_{s} \circ \theta_{t} = \theta_{t} \circ \theta_{s}, \theta_{t} \circ P = P$. A mapping $\Phi : R \times R \times \Omega_1 \times X \to X$ is called a continuous cocycle or continuous random dynamical system (RDS) on X over R and $(\Omega_1, \mathcal{F}, P, (\theta_t)_{t \in R})$ if for all $t \in R, w \in \Omega_1, s \in R^*$ the following conditions are satisfied:

i: $\Phi(\cdot, \cdot, \cdot) : R^* \times \Omega_1 \times X \to X$ is a $(B(R^*) \times \mathcal{F} \times B(X), B(X))$-measurable mapping;

ii: $\Phi(0, t, w, \cdot) = \theta^t$ is the identity on X;

iii: $\Phi(t+s, t, w, \cdot) = \Phi(t, t+s, \theta_{t} w, \Phi(s, t, w, \cdot))$;

iv: $\Phi(t, t, w, \cdot) : X \to X$ is continuous.

Let $D = \{D(\tau, w) \subseteq X : \tau \in R, w \in \Omega_1\}$ be a family of subsets parameterized by $(\tau, w) \in R \times \Omega_1$ in X.

Definition 2.4. [13] The family $D = \{D(\tau, w) \subseteq X : \tau \in R, w \in \Omega_1\}$ satisfies:

1. for all $(\tau, w) \in R \times \Omega_1$ $D(\tau, w)$ is a closed nonempty subset of X;

2. for every fixed $x \in X$ and any $\tau \in R$, the mapping $w \in \Omega_1 \to \text{dist}_x(B(\tau, w))$ is $(\mathcal{F}, B(R^*))$ measurable, then the family D is measurable with to \mathcal{F} in Ω_1.

Definition 2.5. [15] For all $\sigma > 0, w \in \Omega_1$ $D = \{D(\tau, w) \subseteq X : \tau \in R, w \in \Omega_1\}$ satisfies:

$$\lim_{t \to -\infty} e^{\sigma t} \|D(\tau + t, \theta_t w)\|_X = 0,$$

then $D = \{D(\tau, w) \subseteq X : \tau \in R, w \in \Omega_1\}$ is called tempered.
Let $\mathcal{D} = \mathcal{D}(X)$ be the set of all random tempered sets in X.

Definition 2.6. [12] A family $K = \{K(t, w) \subseteq X : t \in R, w \in \Omega\} \in \mathcal{D}$ of nonempty subsets of X is called a measurable \mathcal{D}-pullback attracting(or absorbing) set for $\{\Phi(t, t, w)\}_{t \geq 0, \tau, w \in \Omega}$ if

1. K is measurable with respect to the P completion of \mathcal{F} in Ω; and
2. for all $t \in R$, $w \in \Omega$, there exists $T(D, t, w) > 0$ such that

\[
\Phi(t, t - \tau, \theta, \omega, D(t - t, \theta, \omega)) \subseteq K(t, w), \quad \forall t \geq T(D, t, w).
\]

Definition 2.7. [15] Φ is said to be asymptotically compact in X if for $\forall \tau \in R$, $w \in \Omega$, $D = \{D(t, \omega) \subseteq X : \tau \in R, w \in \Omega\} \in \mathcal{D}$, $x_n \in B(\tau - t_n, \theta, \omega)$ $\{\Phi(t_n, \tau - t_n, \theta, \omega, x_n)\}_{n=1}^\infty$ has a convergent subsequence in X whenever $t_n \to \infty$.

Definition 2.8. [13] A family $A = \{A(t, w) \subseteq X : t \in R, w \in \Omega\} \in \mathcal{D}$ is called a \mathcal{D}-pullback random attractor for $\{\Phi(t, t, w)\}_{t \geq 0, \tau, w \in \Omega}$ if

1. $A(t, w)$ is measurable in Ω, with respect to \mathcal{F} and compact in X for $\forall t \in R, w \in \Omega$,
2. A is invariant, i.e., for $\forall t \in R$ and $w \in \Omega$, $\forall t \geq 0$,

\[
\Phi(t, t, w, A(t, w)) = A(t + \tau, \theta, \omega);
\]
3. A attracts every member of \mathcal{D}, i.e., for every $D \in \mathcal{D}$, $t \in R$ and for every $w \in \Omega$,

\[
\lim_{t \to \infty} \text{dist}_g(\Phi(t, t - \tau, \theta, \omega, B(t - t, \theta, \omega)), A(t, w)) = 0,
\]

where $\text{dist}_g(P, Q)$ denotes the Hausdorff semi-distance between two subsets P and Q of X.

If we change $\mathcal{D} = \mathcal{D}(X)$ to $\mathcal{D}_k = \mathcal{D}_k(X_k)$, where $k = 0, 1, \ldots, m$, then A in Definition 2.8 can be a family of random attractors $\{A_k\}$.

Lemma 2.9. [12] Let \mathcal{D} be a neighborhood-closed collection of (τ, w)-parametrized families of nonempty subsets of X and Φ be a continuous cocycle on X over R and $(\Omega, \mathcal{F}, P, \{\theta_{\tau} \mid \tau \in R\})$, then Φ has a pullback \mathcal{D}-attractor A if and only if Φ is pullback \mathcal{D} asymptotically compact in X and Φ has a closed, \mathcal{F}-measurable pullback \mathcal{D}-absorbing set K in \mathcal{D} and the unique pullback \mathcal{D}-attractor $\Phi = \{A(t, w)\}$ is given by

\[
A(t, w) = \bigcap_{\tau \geq 0} \Phi(\tau, t, \theta, \omega, K(\tau - t, \theta, \omega)), \quad \tau \in R, \quad w \in \Omega.
\]

Similarly, Lemma 2.9 can be extended to Lemma 2.10 of the family of pullback attractors.

Lemma 2.10. Let \mathcal{D}_k be neighborhood-closed collections of (τ, w)-parametrized families of nonempty subsets of X_k, $k = 1, 2, \ldots, m$, and Φ_k be the family of continuous cocycles on X_k, $k = 1, 2, \ldots, m$, over R and $(\Omega_i, \mathcal{F}, P, \{\theta_{\tau} \mid \tau \in R\})$, then Φ_k has the family of pullback \mathcal{D}_k-attractor $\{A_k\}$ if and only if Φ_k is pullback \mathcal{D}_k-asymptotically compact in X_k and \mathcal{D}_k has closed, \mathcal{F}-measurable pullback \mathcal{D}_k-absorbing sets K_k in \mathcal{D}_k and the unique pullback \mathcal{D}_k-attrator $\Phi_k = \{A_k(t, w)\}$ is given by

\[
A_k(t, w) = \bigcap_{\tau \geq 0} \Phi_k(\tau, t, \theta, \omega, K_k(\tau - t, \theta, \omega)), \quad \tau \in R, \quad w \in \Omega_1.
\]

3 The family of cocycles of nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients

Let (Ω, \mathcal{F}, P) be a probability space, where

\[
\Omega_1 = \{w \in C(R, R), w(0) = 0\}.
\]
w is a two-sided real-valued Winner processes on the probability space (Ω, \mathcal{F}, P). Define $\theta(w) = w(\cdot + t) - w(t)$, $w \in \Omega$, $t \in R$, thus, $(\Omega, \mathcal{F}, P, (\theta_t)_{t \in R})$ is an ergodic metric dynamical system.

For a small positive number ε, let z be a new variable given by $z = u + \varepsilon u$ and then, system (1.1) becomes

$$
\begin{aligned}
\frac{\partial u}{\partial t} + \varepsilon u = z; \\
\frac{\partial z}{\partial t} = -\varepsilon z - a(x)(-\Delta)^m z + \varepsilon a(x)(-\Delta)^m u - \varepsilon^2 u - b(x)M(||\nabla u||^2)(-\Delta)^m u - g(x, u) + f(x, t) + h(x)\frac{dw}{dt}; \\
u = 0, \quad \frac{\partial u}{\partial \nu} = 0, \quad i = 1, 2, \ldots, m - 1, \quad x \in \Gamma, \quad t \geq \tau; \\
u(x, t) = u(x), \quad z(x, t) = z(x) = u_t(x) + u(x), \quad x \in \Omega,
\end{aligned}
$$

(3.1)

where $(M)_M \in C^1(R^r)$, $M^r \geq 0$, and $M(s) \leq M_0 \cdot (1 + s^q)$, $0 < q < 1/2$, $M_0 = M(0)$ is a positive constant $\forall s \in R^r$, $h(x) \in V_{m+1}(\Omega)$, $x \in \Omega$, $t \geq \tau$, $x \in R$, $k = 0, 1, \ldots, m$, $f(x, t) \in L^2_{loc}(R, V_k(\Omega))$. In order to get the conclusion of this article, suppose that the nonlinear term $g(x, u)$ satisfies the following conditions: for $\forall u \in R$, $x \in \Omega$, there are positive constants $c_1, c_2, c_3, c_4, c_5 > 0$, satisfying

$$
\begin{aligned}
|g(x, u)| \leq c_4|u|^p + \phi_1(x), \quad \phi_1 \in L^1_0(\Omega), \\
ug(x, u) - c_4G(x, u) \geq \phi_2(x), \quad \phi_2 \in L^1_0(\Omega), \\
G(x, u) \geq c_4|u|^{p+1} - \phi_3(x), \quad \phi_3 \in L^1_0(\Omega), \\
|g_u(x, u)| \leq c_4|u|^{p-1} + \phi_4(x), \quad \phi_4 \in V_1(\Omega), \\
|V_u^2g(x, u)| \leq c_4|u|^p + \phi_5(x), \quad \phi_5 \in V_1(\Omega),
\end{aligned}
$$

(3.2)–(3.5)

where $1 \leq p < +\infty$, for $N = 1, 2$, $1 \leq p < \frac{N}{N-2}$, $N = 3, 4$; and $G(x, u) = \int_0^u g(x, s)ds$. From equations (3.2) and (3.3), we can get

$$
G(x, u) \leq c_4(|u|^2 + |u|^{p+1} + \phi_1^2 + \phi_2).
$$

(3.6)

To show that problem (3.1) generates a random dynamical system, we let $v(t, \tau, w) = z(t, \tau, w) - \varepsilon w(t)$, and then, (3.1) can be rewritten as the equivalent system with random coefficients but without white noise:

$$
\begin{aligned}
\frac{\partial u}{\partial t} - v + \varepsilon u = hw(t); \\
\frac{\partial v}{\partial t} = ev - a(x)(-\Delta)^m v + \varepsilon a(x)(-\Delta)^m u - \varepsilon^2 u - b(x)M(||\nabla u||^2)(-\Delta)^m u \\
- g(x, u) + f(x, t) + \varepsilon h(x)w(t) - a(x)(-\Delta)^m h(x)w(t); \\
v = 0, \quad \frac{\partial u}{\partial \nu} = 0, \quad i = 1, 2, \ldots, m - 1, \quad x \in \Gamma, \quad t \geq \tau; \\
u(x, t) = u(x), \quad v(x, t) = v(x) = z_t(x) - hw(t), \quad x \in \Omega.
\end{aligned}
$$

(3.8)

Let $X_k = V_{m+k} \times V_k$, $k = 0, 1, \ldots, m$, when $k = 0$ $V_0 = L^2_{\mu_0}$, endowed with the usual norm $||u, v||_{X_k} = ||u||_{V_{m+k}} + ||v||_{V_k}$. By the standard Galerkin method: If the assumptions (M) $h(x) \in V_{m+k}(\Omega)$, $x \in \Omega$, $t \geq \tau$, $x \in R$, $f(x, t) \in L^2_{loc}(R, V_k(\Omega))$ conditions (3.2)–(3.6) hold the problem (3.8) is well posed in $X_k = V_{m+k} \times V_k$, i.e., for all $r \in R$ and $P - a$, e. w. $\in \Omega$, $(u_t, v_t) \in X_k$, the problem (3.8) has a unique global solution $(u(t, \tau, w, u_t), v(t, \tau, w, v_t)) \in C([\tau, \infty), X_k)$ and $(u_t, v_t) \in X_k(\tau, w, u_t), v(\tau, w, v_t) = (u_t, v_t)$. Moreover, for $t \geq \tau$, $(u(t, \tau, w, u_t), v(t, \tau, w, v_t))$ is $(\mathcal{F}, B(X_k))$ measurable in w and continuous in (u_t, v_t) with respect to the X_k norm. Thus, the solution mapping can be used to define a family of continuous cocycles for (3.8). Let $\Phi_k : R^r \times R \times \Omega_k \times X_k \rightarrow X_k$ be mappings given by

$$
\Phi_k(t, \tau, w, (u_t, v_t)) = (u(t + \tau, \theta_t w, u_t), v(t + \tau, \theta_t w, v_t)),
$$

(3.9)
where \((t, \tau, w, (u_t, v_t)) \in \mathbb{R}^+ \times \mathbb{R} \times \Omega_t \times X_k\), then \(\Phi_k\) is a family of continuous cocycles over \((R, \tau + t)\) and \((\Omega_t, \mathcal{F}, P, (\theta_t)_{t \in \mathbb{R}})\) on \(X_k\). For \(P = a.e. \ w \in \Omega_t\) and \(t, s \geq 0, \ \tau \in R:\)
\[
\Phi_k(t + s, \tau, w, (u_t, v_t)) = \Phi_k(t, s + \tau, w, \Phi_k(s, \tau, w, (u_t, v_t))).
\]
(3.10)
For any bounded nonempty subset \(B_k\) of \(X_k\) denote by \(\|B_k\| = \sup_{\theta \in \mathcal{F}} \|\Phi_k\|_{X_k}\). Let \(D_k = \{D_k(\tau, w) : \tau \in R, w \in \Omega_t\}\) be a family of bounded nonempty subsets of \(X_k\), and for all \(\tau \in R, w \in \Omega_t\),
\[
\lim_{s \to -\infty} e^{\alpha s} \|D_k(\tau + s, \theta_t w)\|_{X_k}^2 = 0.
\]
(3.11)
Remember that \(D_k\) is the set of the aforementioned subset family \(D_k\), that is, \(D_k = \{D_k(\tau, w) : \tau \in R, w \in \Omega_t\} : D_k\) satisfies (3.11).

4 Uniform estimates of solutions

To prove the existence of the family of random attractors, we conduct uniform estimates on the solutions of the problem (3.8) defined on \(\Omega\), for the purposes of showing the existence of a family of \(D_k\) pullback asymptotic compactness of the random dynamical system. Let \(\varepsilon > 0\) be small enough and satisfy \(\alpha l_{1}^{-1} - 3 \varepsilon > 0, 2a_{00}l_{1}^{-2} - (a_{00}l_{1}^{-1} + 12)\varepsilon > 0, M_0 - \frac{5}{2} e^{-\varepsilon} > 0, M_0 - \frac{5}{2} e^{-\varepsilon} > 0,\)
\[
\sigma = \frac{1}{2} \min \left\{ \alpha l_{1}^{-1} - 3 \varepsilon, \frac{E_0}{2} \right\}, \quad \sigma_1 = \frac{1}{2} \min \left\{ 2a_{00}l_{1}^{-2} - (a_{00}l_{1}^{-1} + 12)\varepsilon, \varepsilon \right\}.
\]
(4.1)
To obtain uniform estimates of the solutions, \(f(x, t)\) needs to satisfy \((F)\), \(\int_{-\infty}^{t} e^{\alpha s} \|f(\cdot, s)\|_{L_{0}^{2}(\Omega)}^{2} ds < \infty\).

Lemma 4.1. Suppose \(M\) satisfies \((M), h(x) \in C_{k}(\Omega)\), \(k = 0, 1, \ldots, m\), (3.2)-(3.6) hold, \(f(x, t)\) satisfies \((F)\), and \(B_k = \{B_k(\tau, w) : \tau \in R, w \in \Omega_t\} \subset D_k\) for \(P = a.e. \ w \in \Omega_t, \ \tau \in R\) initial value satisfies \((u_{\tau - t}, v_{\tau - t}) \in B_k(\tau - t, \theta_t w)\), there exists \(T_k = T_k(\tau, w, B_k) > 0\) such that for all \(t \geq T_k\), the solution \((u(\tau, \tau, w, u_{\tau - t}), v(\tau, \tau, w, v_{\tau - t})) = (u_{\tau - t}, v_{\tau - t})\) of problem (3.8) satisfies
\[
\|v(\tau, \tau - t, \theta_t w, v_{\tau - t})\|_{X_k}^{2} + \|u(\tau, \tau - t, \theta_t w, v_{\tau - t})\|_{X_k}^{2} \leq r_k(\tau, w),
\]
where \(r_k(\tau, w)\) will be given in detail later.

Proof. Taking the inner product of (3.8) with \(v \in L_{0}^{2}(\Omega)\), we find that
\[
\frac{1}{2} \frac{d}{dt} \|v\|_{L_{0}^{2}}^{2} = \varepsilon \|v\|_{L_{0}^{2}}^{2} - \|\nabla v\|^{2} + \varepsilon (-\Delta)^{\mu}u, v) - \varepsilon^{2}(u, v)_{L_{v}^{2}} + b_0(M(\|\nabla u\|^{2})(-\Delta)^{\mu}u, v)
\]
(4.2)
for each term on the right-hand side of (4.2):
\[
\varepsilon (-\Delta)^{\mu}u, v) = \varepsilon (-\Delta)^{\mu}u, u_t + \varepsilon u + h_w(t)) - \frac{\varepsilon}{2} \frac{d}{dt} \|\nabla u\|^{2} + \varepsilon^{2}(u, h)_{L_{v}^{2}},
\]
(4.3)
\[
\varepsilon^{2}(u, v)_{L_{v}^{2}} = \varepsilon^{2}(u, u_t + \varepsilon u - h_w(t))_{L_{v}^{2}} = \frac{\varepsilon^{2}}{2} \frac{d}{dt} \|u\|_{L_{0}^{2}}^{2} + \varepsilon^{2}(u, h)_{L_{v}^{2}},
\]
(4.4)
\[
b_0(M(\|\nabla u\|^{2})(-\Delta)^{\mu}u, v) = b_0(M(\|\nabla u\|^{2})(-\Delta)^{\mu}u, u_t + \varepsilon u - h_w(t)) = b_0(M(\|\nabla u\|^{2})2w(t)(-\Delta)^{\mu}u, h),
\]
(4.5)
\[
(g(x, u), v)_{L_{v}^{2}} = (g(x, u), u_t + \varepsilon u - h_w(t))_{L_{v}^{2}} = \frac{d}{dt} \int_{\Omega} \mu g(x, u) dx + \varepsilon (g(x, u), u)_{L_{v}^{2}} - w(t)(g(x, u), h)_{L_{v}^{2}}.
\]
(4.6)
Substitute (4.3)–(4.6) into (4.2) to obtain

\[
\frac{d}{dt} \left[\|v\|_{L^p}^p + b_0 \int_0^t M(s) \, ds - \epsilon \|v\|_{L^p}^p + \epsilon^2 \|u\|_{L^p}^2 + 2 \int_\Omega \mu G(x, u) \, dx \right] + 2 \|v\|_{L^p}^2 \\
- 2\epsilon \|v\|_{L^p}^2 + 2b_0 M(\|v\|_{L^p}^2) \|v\|_{L^p}^2 - 2\epsilon^2 \|u\|_{L^p}^2 + 2 \epsilon (g(x, u), u)_{L^p}^2
\]

\[
= 2(\epsilon f(x, t), v)_{L^p}^2 + (2b_0 M(\|v\|_{L^p}^2)) - 2\epsilon \|w(t)(-\Delta)^m u, h\|_{L^p}^2 - 2\epsilon^2 \|w(t)(u, h)\|_{L^p}^2 \\
+ 2w(t)(g(x, u), h)_{L^p}^2 + 2w(t)(h, v)_{L^p}^2 - 2w(t)(-\Delta)^m h, v).
\]

(4.7)

Using the Cauchy-Schwarz inequality, Young’s inequality and Holder’s inequality, we have

\[
2\epsilon^2 w(t)(u, h)_{L^p}^2 \leq \epsilon \|u\|_{L^p}^2 + \epsilon^2 \|w(t)\|_{L^p}^2.
\]

(4.8)

\[
2b_0 M(\|v\|_{L^p}^2) w(t)(-\Delta)^m u, h
\]

\[
\leq 2b_0 M_0 (1 + \|v\|_{L^p}^2) w(t)(\|v\|_{L^p}^2)
\]

\[
\leq 2b_0 M_0 w(t)(\|v\|_{L^p}^2) + b_0 M_0 w(t)(\|v\|_{L^p}^2)
\]

\[
\leq \frac{\epsilon b_0 M_0}{4} \|v\|_{L^p}^2 + 4\epsilon^{-1} b_0 M_0 w(t)(\|v\|_{L^p}^2)
\]

\[
+ \frac{1 - 2q}{2q + 4} b_0 M_0 \|w(t)\|_{L^p} \|v\|_{L^p}^2.
\]

(4.9)

By (3.2) and (3.4), we get

\[
2w(t)(g(x, u), h)_{L^p}^2 \leq 2[w(t) \|\phi_t\|_{L^p} \|h\|_{L^p}^2 + 2c_1 w(t) \left(\int_\Omega \mu |u|^{p+1} \, dx \right)^{\frac{p}{p+1}}
\]

\[
\leq 2w(t) \|\phi_t\|_{L^p} \|h\|_{L^p}^2 + 2c_1 w(t) \left(\int_\Omega \mu G(x, u) + \mu \phi_t \, dx \right)^{\frac{p}{p+1}}
\]

\[
\leq 2w(t) \|\phi_t\|_{L^p} \|h\|_{L^p}^2 + \epsilon \|\mu G(x, u) + \mu \phi_t \|_{L^p} \|h\|_{L^p}^2
\]

\[
+ (2c_1)^{p+1} \left(\epsilon \|\mu G(x, u) + \mu \phi_t \|_{L^p} \|h\|_{L^p}^2 \right)^{\frac{p}{p+1}}.
\]

(4.10)

\[
2(\epsilon f(x, t), v)_{L^p}^2 + 2w(t)(h, v)_{L^p}^2 - 2w(t)(-\Delta)^m h, v
\]

\[
\leq 2\epsilon \|f\|_{L^p} \|v\|_{L^p}^2 + 2\epsilon \|w(t)\|_{L^p} \|h\|_{L^p}^2 + 2\epsilon \|w(t)\|_{L^p} \|\|v\|_{L^p}^2
\]

\[
\leq 2\epsilon \|f\|_{L^p} \|v\|_{L^p}^2 + 2\epsilon \|w(t)\|_{L^p} \|\|v\|_{L^p}^2 + 2\epsilon \|w(t)\|_{L^p} \|\|v\|_{L^p}^2
\]

\[
\leq \frac{\epsilon b_0 M_0}{4} \|v\|_{L^p}^2 + 4\epsilon^{-1} b_0 M_0 w(t)(\|v\|_{L^p}^2)
\]

\[
+ \frac{1 - 2q}{2q + 4} b_0 M_0 \|w(t)\|_{L^p} \|v\|_{L^p}^2.
\]

(4.11)

\[
2w(t)(-\Delta)^m u, h \leq 2\epsilon \|w(t)\|_{L^p} \|\|v\|_{L^p}^2 + |w(t)|^2 \|\|v\|_{L^p}^2
\]

\[
(4.12)

Substitute (4.8)–(4.12) into (4.7) to obtain

\[
\frac{d}{dt} \left[\|v\|_{L^p}^2 + b_0 \int_0^t M(s) \, ds - \epsilon \|v\|_{L^p}^2 + \epsilon^2 \|u\|_{L^p}^2 + 2 \int_\Omega \mu G(x, u) \, dx \right] + 2 \|v\|_{L^p}^2
\]

\[
- 3\epsilon \|v\|_{L^p}^2 + \left(\epsilon b_0 M(\|v\|_{L^p}^2) - \frac{\epsilon M_0}{2} \right) b_0 \|v\|_{L^p}^2 - 3\epsilon^2 \|v\|_{L^p}^2 + \epsilon \|u\|_{L^p}^2 + 2\epsilon (g(x, u), u)_{L^p}^2
\]

(4.13)
\[
\leq 2\epsilon^{-1}l_1^{-m-1}\|\mathbf{f}\|^2_{L_\sigma^p} + (3 + 4\epsilon^{-1}M_0b_0)|w(t)|^2\|\nabla^m\bar{h}|^2 + 2\epsilon|w(t)|^2\|\bar{h}\|^2_{L_\sigma^p} \\
+ \frac{1-2q}{2} \left(\frac{\epsilon}{8q+4} \right)^{\frac{\epsilon}{8q+4}} \frac{\epsilon}{b_0M_0}\|w(t)\|^{\frac{\epsilon}{8q+4}}\|\nabla^m\bar{h}|^{\frac{\epsilon}{8q+4}} + 2\epsilon|w(t)|\|\phi||_{L_\sigma^p}\|\bar{h}\|_{L_\sigma^p} + \epsilon C_2 \int_\Omega \mu G(x, u) dx \\
+ \epsilon C_2 \int_\Omega \mu \phi_j(x) dx + (2\epsilon)_{p+1}(\epsilon C_2)_p p \left(\frac{p+1}{p} \right)^{-p} |w(t)|^{p+1}\|\bar{h}\|_{L_\sigma^{p+1}}^{p+1},
\]

By condition (3.3), we have

\[
2\epsilon(g(x, u), u)_{L_\sigma^p} \leq 2\epsilon \left(c_1 \int_\Omega \mu G(x, u) dx + \int_\Omega \mu \phi_j(x) dx \right). \tag{4.14}
\]

Substitute (4.14) into (4.12) to obtain

\[
\begin{aligned}
\frac{d}{dt} \left[\|v\|^2_{L_\sigma^p} + b_0 \int_0^t M(s)ds - \epsilon\|\nabla^m u\|^2 + \epsilon\|u\|^2_{L_\sigma^p} + 2 \int_\Omega \mu G(x, u) dx \right] + \|\nabla^m v\|^2 - 3\epsilon\|v\|^2_{L_\sigma^p} \\
+ \left(2\epsilon M_0 \left(\frac{\epsilon}{8q+4} \right)^{\frac{\epsilon}{8q+4}} b_0 \|w(t)\|^{\frac{\epsilon}{8q+4}} \|\nabla^m\bar{h}|^{\frac{\epsilon}{8q+4}} + 2\epsilon|w(t)|\|\phi||_{L_\sigma^p}\|\bar{h}\|_{L_\sigma^p} \\
+ \epsilon C_2 \int_\Omega \mu \phi_j(x) dx + (2\epsilon)_{p+1}(\epsilon C_2)_p p \left(\frac{p+1}{p} \right)^{-p} |w(t)|^{p+1}\|\bar{h}\|_{L_\sigma^{p+1}}^{p+1},
\end{aligned} \tag{4.15}
\]

According to (4.1), we get

\[
\begin{aligned}
\frac{d}{dt} \left[\|v\|^2_{L_\sigma^p} + b_0 \int_0^t M(s)ds - \epsilon\|\nabla^m u\|^2 + \epsilon\|u\|^2_{L_\sigma^p} + 2 \int_\Omega \mu G(x, u) dx \right] \\
+ \|\nabla^m v\|^2 - 3\epsilon\|v\|^2_{L_\sigma^p} + \sigma \left[\|v\|^2_{L_\sigma^p} + b_0 \int_0^t M(s)ds - \epsilon\|\nabla^m u\|^2 + \epsilon\|u\|^2_{L_\sigma^p} + 2 \int_\Omega \mu G(x, u) dx \right] \\
\leq 2\epsilon^{-1}l_1^{-m-1}\|\mathbf{f}\|^2_{L_\sigma^p} + C_0(1 + |w(t)|^2 + |w(t)|^{\frac{\epsilon}{8q+4}} + |w(t)|^{p+1}),
\end{aligned} \tag{4.16}
\]

where

\[
C_0 = \max \left\{ (3 + 4\epsilon^{-1}M_0b_0)|\nabla^m\bar{h}|^2 + 2\epsilon|\bar{h}|^2_{L_\sigma^p} + \|\phi||_{L_\sigma^p}\|\bar{h}\|_{L_\sigma^p}^2, \epsilon C_2 \int_\Omega \mu \phi_j(x) dx, \\
\frac{1-2q}{2} \left(\frac{\epsilon}{8q+4} \right)^{\frac{\epsilon}{8q+4}} \frac{\epsilon}{b_0M_0}\|w(t)\|^{\frac{\epsilon}{8q+4}}\|\nabla^m\bar{h}|^{\frac{\epsilon}{8q+4}}, (2\epsilon)_{p+1}(\epsilon C_2)_p p \left(\frac{p+1}{p} \right)^{-p} \|\bar{h}\|_{L_\sigma^{p+1}}^{p+1} \right\}.
\]

Using the Gronwall inequality to integrate (4.16) over \([\tau - t, \tau]\) with \(t \geq 0\) and replacing \(w\) by \(\theta,w\), we obtain
\[e^{\alpha t} \left[\|v(t)^2 + b_0 \int_0^{\|v\|_\eta^2 + \int_0^{\|v^m\|_\eta^2} M(s)ds - \varepsilon \|v^m\|_\eta^2 + \varepsilon^2 \|u\|^2_{L^2_\eta} + 2 \int_\Omega \mu G(x, u)dx \right] \]

\[\leq e^{\alpha(t-t)} \left[\|v(t-t)^2 + b_0 \int_0^{\|v\|_\eta^2 + \int_0^{\|v^m\|_\eta^2} M(s)ds - \varepsilon \|v^m\|_\eta^2 + \varepsilon^2 \|u\|^2_{L^2_\eta} + 2 \int_\Omega \mu G(x, u(t-t))dx \right] \]

\[+ \varepsilon^2 \|u(t-t)^2 + 2 \int_\Omega \mu G(x, u(t-t))dx \]

\[\leq e^{-\alpha t} \left[\|n(t-t)^2 + b_0 \int_0^{\|n\|_\eta^2 + \int_0^{\|n^m\|_\eta^2} M(s)ds - \varepsilon \|n^m\|_\eta^2 + \varepsilon^2 \|u\|^2_{L^2_\eta} + 2 \int_\Omega \mu G(x, u(t-t))dx \right] \]

\[\leq e^{\alpha t} \left(1 + \|n(t-t)^2 + \|n^m\|_\eta^2 + \|n^m\|_\eta^2 \right) \rightarrow 0, \]

By (3.7), we have

\[\int_\Omega \mu G(x, u(t-t))dx \leq C_0 \left(\|\phi_{t}\|^2_{L^2_\eta} + \|\phi_{t}\|^2_{L^2_\eta} + \|u\|_\eta^2 + \|u\|_\eta^2 \right) \leq C_0 (1 + \|u\|^2_{L^2_\eta} + \|u\|_\eta^2). \]

Since \((u(t-t), n(t-t)) \in B_0(t-t, \theta, w)\) when \(t \rightarrow +\infty\)

\[e^{-\alpha t} \left[\|n(t-t)^2 + b_0 \int_0^{\|n\|_\eta^2 + \int_0^{\|n^m\|_\eta^2} M(s)ds - \varepsilon \|n^m\|_\eta^2 + \varepsilon^2 \|u\|^2_{L^2_\eta} + 2 \int_\Omega \mu G(x, u(t-t))dx \right] \]

\[\leq C_0 e^{-\alpha t} \left(1 + \|n(t-t)^2 + \|n^m\|_\eta^2 + \|n^m\|_\eta^2 \right) \rightarrow 0, \]

and there exists \(T_0 = T_0(t, w, B_0)\) such that for all \(t \geq T_0,\)

\[C_0 e^{-\alpha t} \left(1 + \|n(t-t)^2 + \|n^m\|_\eta^2 + \|n^m\|_\eta^2 \right) \leq 1. \]

By (3.4), it is easy to get to any \(t \geq 0,\)

\[-2 \int_\Omega G(x, u)dx \leq -2c_0 \int_\Omega |u|^{p+1}dx + 2 \int_\Omega \phi_3dx \leq 2 \int_\Omega \phi_3dx. \]

When \(|\xi| \rightarrow \infty, w(\xi)\) at most polynomial growth,

\[C_0 e^{-\alpha t} \int_{-\infty}^{\tau} e^{\alpha t} (1 + |\theta, w(\xi)|^2 + |\theta, w(\xi)|^{\frac{2}{p-1}} + |\theta, w(\xi)|^{p+1})d\xi \equiv r_0(\tau, w). \]
We get from (4.18) and (4.21) that
\[
\|v(\tau, t, \theta, e_w, \nu_{\alpha, e_{\beta, e_{\gamma, e_{\delta, e_{\eta}}}}})\|_{L_p}^2 + \|\nabla^m u(\tau, t, \theta, e_w, \nu_{\alpha, e_{\beta, e_{\gamma, e_{\delta, e_{\eta}}}}})\|_{L_p}^2
\leq C_0 \left(1 + 2\alpha^1 \lambda_1^{1-m} e^{-\alpha \tau} \int_{-\infty}^{\tau} e^{\alpha|f(\cdot, \xi)|_{L_p}^2} d\xi + r_0(\tau, w) \right),
\]
(4.23)
and \(r_0(\tau, w)\) is bounded. \(\square\)

Taking the inner product of (3.8) with \((-\Delta)^k v, k = 1, 2, \ldots, m - 1\) in \(L^2(\Omega)\), we find that
\[
\frac{1}{2} \frac{d}{dt} \|\nabla v\|^2 = \varepsilon \|\nabla v\|^2 - (a(x)(-\Delta)^m v, (-\Delta)^k v) + (a(x)(-\Delta)^m u, (-\Delta)^k v)
\]
\[
- \varepsilon^2(u, (-\Delta)^k v) - (b(x)M(\|\nabla u\|^2)(-\Delta)^m u, (-\Delta)^k v) - (g(x, u, (-\Delta)^k v)
\]
\[
+ (f(x, t), (-\Delta)^k v) + \varepsilon w(t)h, (-\Delta)^k v) - w(t)(a(x)(-\Delta)^m h, (-\Delta)^k v).
\]
(4.24)

For each term on the right-hand side of (4.24):
\[
(a(x)(-\Delta)^m v, (-\Delta)^k v) = (a(x)\nabla^m v, \nabla^k v) + \left(\sum_{i=1}^{m-k} C_{m-k}^{i} \nabla^{m-k-i} v \nabla^i a(x), \nabla^{m+k} v\right),
\]
(4.25)
\[
\varepsilon(a(x)(-\Delta)^m u, (-\Delta)^k v) = \varepsilon(a(x)\nabla^m u, \nabla^k v) + \left(\varepsilon \sum_{i=1}^{m-k} C_{m-k}^{i} \nabla^{m-k-i} v \nabla^i a(x), \nabla^{m+k} u\right)
\]
\[
= \frac{\varepsilon}{2} \frac{d}{dt} (a(x)\nabla^m u, \nabla^m u) + \varepsilon^2(a(x)\nabla^m u, \nabla^m u) + \varepsilon \sum_{i=1}^{m-k} C_{m-k}^{i} \nabla^{m-k-i} v \nabla^i a(x), \nabla^{m+k} u\right),
\]
(4.26)
\[
\varepsilon^2(u, (-\Delta)^k v) = \varepsilon^2(u, (-\Delta)^k u + \varepsilon u - hw(t)) = \varepsilon^2 \frac{d}{dt} \|\nabla u\|^2 + \varepsilon^2 \|\nabla v\|^2 - \varepsilon^2 w(t)\|\nabla u\|^2, \|\nabla v\|^2\),
\]
(4.27)
\[
(b(x)M(\|\nabla u\|^2)(-\Delta)^m u, (-\Delta)^k v)
\]
\[
= b_0 M(\|\nabla u\|^2)(a(x)\nabla^m u, \nabla^m v) + M(\|\nabla u\|^2) \left(\sum_{i=1}^{m-k} C_{m-k}^{i} \nabla^{m-k-i} v \nabla^i b(x), \nabla^{m+k} u\right)
\]
\[
= b_0 \frac{M(\|\nabla u\|^2) \frac{d}{dt} (a(x)\nabla^m u, \nabla^m u) + \varepsilon b_0 M(\|\nabla u\|^2)(a(x)\nabla^m u, \nabla^m u)}{2}
\]
\[
- b_0 M(\|\nabla u\|^2) w(t)(a(x)\nabla^m u, \nabla^m h) + M(\|\nabla u\|^2) \left(\sum_{i=1}^{m-k} C_{m-k}^{i} \nabla^{m-k-i} v \nabla^i b(x), \nabla^{m+k} u\right)
\]
(4.28)
\[
(g(x, u, (-\Delta)^k) = (g(x)g(x, u), \nabla^k v) \leq \int_{\Omega} |c_s u| |^p + \phi_2(x)| \nabla^k v| dx
\]
\[
\leq c_5 \int_{\Omega} |u|^p |\nabla^k v| dx + \int_{\Omega} |\phi_2(x)| |\nabla^k v| dx
\]
(4.29)
\[
\leq c_5 \|u\|^p_{L^p(\Omega)} \|\nabla^k v\| + \|\phi_2(x)\| \|\nabla^k v\|
\]
\[
\leq \frac{a_0}{8} |\nabla^m v|^2 + C_4 (r_0(\tau, w) + \|\phi_2(x)\|^2),
\]
(4.30)
moreover,
\[(\nabla^{m-k} i v^i a(x), \nabla^{m+k} v) \leq a_i \|\nabla^{m-k} i v^i\| \|\nabla^{m+k} v\|, \quad i = 1, 2, \ldots, m - k, a_i = \|v^i a(x)\|_{q_0}. \quad (4.31)\]

According to the interpolation inequality, we have
\[
\|\nabla^{m-k} i v^i\| \leq C_i \|\nabla^{m+k} v\|^{1-a_i} \|\nabla^m v\|^{a_i}, \quad a_i = \frac{m + k - i}{m + k},
\]
then
\[(C_{m-k}^i v^{m-k} i v^i a(x), \nabla^{m+k} v) \leq C_{m-k}^i C_i a_i \|v\|^{1-a_i} \|\nabla^{m+k} v\|^{a_i},
\]
\[
\leq \frac{a_{00}}{8(m - k)} \|\nabla^{m+k} v\|^2 + \frac{1 - a_i}{2} \left(\frac{a_{00}}{4(1 - a_i)(m - k)}\right)^{\frac{1}{\infty}} (C_{m-k}^i C_i a_i)^{\frac{1}{\infty}} \|v\|^2, \quad (4.32)
\]
\[(C_{m-k}^i v^{m-k} i v^i a(x), \nabla^{m+k} u) \leq \frac{a_{00} b_0 M_0}{8(m - k)} \|\nabla^{m+k} u\|^2 + \frac{2(m - k)}{a_{00} b_0 M_0} (C_{m-k}^i a_i)^2 \|\nabla^{m+k} v\|^2
\]
\[+ (1 - a_i) \left(\frac{a_{00}}{8a_i(m - k)}\right)^{\frac{1}{\infty}} \left(\frac{2(m - k)}{a_{00} b_0 M_0} (C_{m-k}^i a_i C_i)^2\right)^{\frac{1}{\infty}} \|v\|^2, \quad (4.33)
\]
\[b_0 M (\|\nabla u\|^2) w(t)(a(x)\nabla^{m+k} u, \nabla^{m+k} v) \leq \frac{b_0 a_0 M_0}{8} (1 + \|\nabla u\|^2) |w(t)| \|\nabla^{m+k} u\| \|\nabla^{m+k} v\|
\]
\[\leq \frac{b_0 a_0 M_0}{8} \|\nabla^{m+k} u\|^2 + 2 \varepsilon^{-1} \frac{a_{00}}{8a_0 b_0 M_0} b_0 a_0 M_0 (1 + \|\nabla u\|^2) |w(t)|^2 \|\nabla^{m+k} v\|^2, \quad (4.34)
\]
\[M (\|\nabla u\|^2) \left(\sum_{i=1}^{m-k} C_{m-k}^i v^{m-k-i} v^i b(x), \nabla^{m+k} u\right)
\]
\[\leq M_0 b_0 (1 + \|\nabla u\|^2) \sum_{i=1}^{m-k} C_{m-k}^i \|\nabla^{m-k-i} v\| \|\nabla^{m+k} u\|
\]
\[\leq \frac{b_0 a_0 M_0}{8} \|\nabla^{m+k} u\|^2 + b_0 a_0 M_0 \sum_{i=1}^{m-k} (C_{m-k}^i (1 + \|\nabla u\|^2) a_i)^2 \|\nabla^{m-k-i} v\|^2
\]
\[\leq \frac{b_0 a_0 M_0}{8} \|\nabla^{m+k} u\|^2 + a_{00} \frac{a_{00}}{8} \|\nabla^{m+k} v\|^2
\]
\[+ (\varepsilon^{-1} \frac{a_{00}}{8a_0 b_0 M_0} b_0 a_0 M_0)^{\frac{1}{\infty}} \sum_{i=1}^{m-k} (1 - a_i) \left(\frac{a_{00}}{8a_i(m - k)}\right)^{\frac{1}{\infty}} (C_{m-k}^i a_i C_i (1 + \|\nabla u\|^2))^{\frac{1}{\infty}} \|v\|^2. \quad (4.35)
\]

By (4.25)–(4.30) and (4.32)–(4.35), we get
\[
\frac{d}{dt} (\|\nabla^k v\|^2 - \varepsilon (a(x)\nabla^{m+k} u, \nabla^{m+k} v) + \varepsilon^{2} \|\nabla^k u\|^2) + b_0 M (\|\nabla u\|^2) \frac{d}{dt} (a(x)\nabla^{m+k} u, \nabla^{m+k} v)
\]
\[+ 2 \varepsilon (a(x)\nabla^{m+k} v, \nabla^{m+k} v) - \frac{4}{a_{00}} \|\nabla^{m+k} v\|^2 - 2 \varepsilon^{2} \|\nabla^k v\|^2
\]
\[+ 2 \varepsilon b_0 M (\|\nabla u\|^2) (a(x)\nabla^{m+k} u, \nabla^{m+k} u) = \frac{3 \varepsilon a_0 b_0 M_0}{4} \|\nabla^{m+k} u\|^2
\]
\[- 2 \varepsilon^{2} (a(x)\nabla^{m+k} u, \nabla^{m+k} u) + 2 \varepsilon^{2} \|\nabla^k u\|^2
\]
\[\leq \sum_{i=1}^{m-k} (1 - a_i) \left(\frac{a_{00}}{4(1 - a_i)(m - k)}\right)^{\frac{1}{\infty}} (C_{m-k}^i a_i C_i)^{\frac{1}{\infty}} \|v\|^2
\]
\[+ 2 \varepsilon \sum_{i=1}^{m-k} (1 - a_i) \left(\frac{a_{00}}{8a_i(m - k)}\right)^{\frac{1}{\infty}} \left(\frac{2(m - k)}{a_{00} b_0 M_0} (C_{m-k}^i a_i C_i)^2\right)^{\frac{1}{\infty}} \|v\|^2 \quad (4.36)
\]
Using the Cauchy-Schwarz inequality, Young’s inequality and Holder’s inequality, etc. we have
\[
2w(t)(a(x)\nabla^k u, \nabla^k h) \leq 2\varepsilon^2 a_0 \|\nabla^k u\|^2 + a_0^2 a_0^1 \|w(t)\|^2 \|\nabla^k h\|^2, \tag{4.37}
\]
\[
2w(t)(a(x)\nabla^k u, \nabla^k h) \leq \varepsilon^2 \|\nabla^k u\|^2 + \varepsilon |w(t)| |\nabla^k h|, \tag{4.38}
\]
\[
2w(t)(a(x)(-\Delta)^m h, (-\Delta)^m v) \leq \varepsilon |w(t)| |\nabla^k h|, \tag{4.39}
\]

Substitute (4.37)–(4.40) into (4.36) to obtain
\[
\frac{d}{dt} \|\nabla^k v\|^2 = e(a(x)\nabla^k u, \nabla^k u) + e\|\nabla^k u\|^2 + b_0 M(\|\nabla^k u\|^2) \frac{d}{dt} (a(x)\nabla^k u, \nabla^k u)
\]
\[
+ 2a(x)\nabla^k u, \nabla^k u) - \frac{6 + e}{4} a_0 \|\nabla^k u\|^2 - 3\varepsilon |\nabla^k u| + 2\varepsilon |\nabla^k u| |a(x)\nabla^k u, \nabla^k u)
\]
\[
- \frac{3\varepsilon a_0 b_0 M}{4} \|\nabla^k u\|^2 - 2\varepsilon^2 (a(x)\nabla^k u, \nabla^k u) + \varepsilon^2 a_0 \|\nabla^k u\|^2 + \varepsilon |\nabla^k u|^2
\]
\[
\leq \sum_{i=1}^{m-k} \frac{4a_0}{4(1 - a_i(m - k))^m} \left(C_{m-i} a_i C_i (1 + \|\nabla^k u\|^2) \right) \frac{1}{\pi \|\nabla^k u\|^2}
\]
\[
+ 2\varepsilon \sum_{i=1}^{m-k} (1 - a_i) \left(\frac{a_0}{8a_0 (m - k)} \right)^{m-i} \left(\frac{a_0}{2a_0} \right)^{m-i} \frac{a_0 a_0 b_0 M}{b_0 M} \|\nabla^k u\|^2
\]
\[
+ 2\sum_{i=1}^{m-k} (1 - a_i) (\varepsilon^i a_0^1 b_0 M)^1 \left(\frac{a_0}{8a_0 (m - k)} \right)^{m-i} \left(C_{m-i} a_i C_i (1 + \|\nabla^k u\|^2) \right) \frac{1}{\pi \|\nabla^k u\|^2}
\]
\[
+ 4\varepsilon^i a_0^1 b_0 M (1 + \|\nabla^k u\|^2)^2 \|w(t)\|^2 \|\nabla^k h\|^2 + \frac{2\lambda_i^{m-i}}{a_0} \|\nabla^k h\|^2
\]
\[
+ 2C_0 (r(t, w) + ||\phi(t)||^2) + 5\varepsilon^i a_0^1 a_0 b_0 M \|w(t)\|^2 \|\nabla^k u\|^2 + 2\varepsilon |w(t)| \|\nabla^k u\|^2
\]
\[
+ 4a_0^1 b_0 M \|w(t)\|^2 \sum_{i=1}^{m-k} (C_{m-i} a_i) a_i a_i \|\nabla^k u\|^2.
\]

When \(\frac{d}{dt} (a(x)\nabla^k u, \nabla^k u) + 2\varepsilon (a(x)\nabla^k u, \nabla^k u) \geq 0 \),
\[
\frac{d}{dt} (a(x)\nabla^k u, \nabla^k u) + 2\varepsilon (a(x)\nabla^k u, \nabla^k u) \geq \frac{d}{dt} (b_0 M(a(x)\nabla^k u, \nabla^k u)) + 2eb_0 M(a(x)\nabla^k u, \nabla^k u);
we obtain
\[b_0 M(\|v_m u\|^2) \left(\frac{d}{dt} (a(x) v_m k u, v_m k u) + 2e(a(x) v_m k u, v_m k u) \right) \]
\[\geq \frac{d}{dt} (b_0 C(\|v_m u\|^2) (a(x) v_m k u, v_m k u)) + 2b_0 C(\|v_m u\|^2) (a(x) v_m k u, v_m k u), \]

then (4.41) is transformed into
\[
\frac{d}{dt} [\|v^k\|^2 + (b_0 M_0 (C(\|v_m u\|^2))) - e(a(x) v_m k u, v_m k u) + \varepsilon \|v^k u\|^2]
+ 2(a(x) v^k v, v^m k v) - 6 + e \varepsilon_0 \|v^k u\|^2
\]
\[+ 2e b_0 M_0 (C(\|v_m u\|^2)) (a(x) v_m k u, v_m k u) - \frac{3e a_00 b_0 M_0}{4} \|v_m k u\|^2 \]
\[- 2e^2(a(x) v_m k u, v_m k u) - \varepsilon^2 a_00 \|v_m k u\|^2 + \varepsilon \|v^k u\|^2 \]
\[\leq \sum_{l=1}^{m-k} (1 - a_l) \left(\frac{a_00}{4(1 - a_l)} \right)^{\frac{2^2}{2}} \left(C_{m-k} C_{l}^2 \right)^{\frac{1}{2}} \|v\|^2 \]
\[+ 2 \sum_{l=1}^{m-k} (1 - a_l) \left(\frac{a_00}{8a_l} \right)^{\frac{2^2}{2}} \left(C_{m-k} C_{l}^2 \right)^{\frac{1}{2}} \|v\|^2 \]
\[+ 2 \sum_{l=1}^{m-k} (1 - a_l) \left(\frac{a_00}{8a_l} \right)^{\frac{2^2}{2}} \left(C_{m-k} C_{l}^2 \right)^{\frac{1}{2}} \|v\|^2 \]
\[+ 4e^{-1} a_00 \left(\frac{b_0 M_0 (C(\|v_m u\|^2)))}{\|v^k u\|^2} \right)^{\frac{1}{2}} \|v^k f(x, t)\|^2 + \frac{2\varepsilon^m}{a_00} \|v^k f(x, t)\|^2 \]
\[+ 2G_{\alpha \beta} r_{(1, \alpha \beta)} (\|v_m u\|^2)) + 5a_00^2 \|v^k f(x, t)\|^2 + 2\varepsilon \|v^k u\|^2 \]
\[+ 4a_00 \|v^k u\|^2 \sum_{l=1}^{m-k} (C_{m-k} C_{l}^2 \lambda^m) \|v^k h\|^2 \].

By \(2(a(x) v_m k v, v_m k v) \geq a_00 \|v_m k v\|^2, (a(x) v_m k u, v_m k u) \geq a_00 \|v_m k u\|^2, (4.1), \) we have
\[
\frac{d}{dt} [\|v^k\|^2 + (b_0 M_0 (C(\|v_m u\|^2))) - e(a(x) v_m k u, v_m k u) + \varepsilon \|v^k u\|^2]
\[
+ \sigma \|v^k u\|^2 + (b_0 M_0 (C(\|v_m u\|^2))) - e(a(x) v_m k u, v_m k u) + \varepsilon \|v^k u\|^2 \]
\[\leq C_{\alpha \beta} (1 + |w(t)|^2) + \frac{2\varepsilon^m}{a_00} \|v^k f(x, t)\|^2. \]

When \(k = m, (4.43) \) is also true, which will not be detailed here.

Using the Gronwall inequality to integrate (4.43) over \([\tau - t, \tau]\) and replacing \(w \) by \(\theta, w \) we obtain
\[
e^{\varepsilon t} [\|v^k\|^2 + (b_0 M_0 (C(\|v_m u\|^2))) - e(a(x) v_m k u, v_m k u) + \varepsilon \|v^k u\|^2]
\[\leq e^{\varepsilon (\tau - t)} [\|v^k (\tau - t)\|^2 + (b_0 M_0 (C(\|v_m u\|^2))) - e(a(x) v_m k u(\tau - t), v_m k u(\tau - t))] \]
\[+ \varepsilon \|v^k u(\tau - t)\|^2] \]
\[+ \varepsilon \int_{\tau - t}^{\tau} e^{\varepsilon (\xi - t)} C_{\alpha \beta} (1 + |w(\xi)|^2) d\xi + \frac{2\varepsilon^m}{a_00} \int_{\tau - t}^{\tau} e^{\varepsilon |\xi|} \|v^k f(x, \xi)\|^2 d\xi, \]

moreover,
\[
\|v^k\|^2 + (b_0 M_0 (C(\|v_m u\|^2))) - e(a(x) v_m k u, v_m k u) + \varepsilon \|v^k u\|^2
\[\leq e^{\varepsilon t} [\|v^k (\tau - t)\|^2 + (b_0 M_0 (C(\|v_m u\|^2))) - e(a(x) v_m k u(\tau - t), v_m k u(\tau - t))] \]
\[+ \varepsilon \|v^k u(\tau - t)\|^2] + e^{\varepsilon t} \int_{\tau - t}^{\tau} e^{\varepsilon (\xi - t)} C_{\alpha \beta} (1 + |w(\xi)|^2) d\xi + \frac{2\varepsilon^m}{a_00} e^{\varepsilon t} \int_{\tau - t}^{\tau} e^{\varepsilon |\xi|} \|v^k f(x, \xi)\|^2 d\xi. \]
Since \((u(t - r), v(t - r)) \in B_k(t - r, \theta, w)\), when \(t \to +\infty\),
\[
e^{-\alpha(t)}\|\nabla^k v(t - r)\|^2 + (b_0 M_k(C(\|\nabla^m u\|^2)) - \varepsilon(a(x)\nabla^m v(t - r) + \varepsilon^2\|\nabla^k u(t - r)\|^2)
\leq e^{-\alpha(t)}\|\nabla^k v(t - r)\|^2 + (b_0 M_k(C(\|\nabla^m u\|^2)) - \varepsilon)a_0\|\nabla^m v(t - r)\|^2 + e^2\|\nabla^k u(t - r)\|^2 \to 0,
\]
(4.46)
then there exists \(T_k = T_k(t, w, B_k)\) such that for all \(t \geq T_k\)
\[
e^{-\alpha(t)}\|\nabla^k v(t - r)\|^2 + (b_0 M_k(C(\|\nabla^m u\|^2)) - \varepsilon)a_0\|\nabla^m v(t - r)\|^2 + e^2\|\nabla^k u(t - r)\|^2 \leq 1.
\]
(4.47)
When \(|\xi| \to \infty \ w(\xi)\) at most polynomial growth,
\[
e^{-\alpha(t)}\int_{-\infty}^{\tau} e^{\alpha(t)}d\xi = n_k(\tau, w).
\]
We get from (4.45)–(4.47), \((a(x)\|\nabla^m v\|, \|\nabla^m u\|) \geq a_0\|\nabla^m v\|^2\)
that
\[
\|\nabla^k v(t, \tau - r, \theta, w, v_r)\|^2 + \|\nabla^m v(t, \tau - r, \theta, w, v_r)\|^2
\leq C_k \left(1 + \frac{2\lambda_{k} - m}{a_0} e^{-\alpha(t)} \int_{-\infty}^{\tau} e^{\alpha(t)}d\xi \right) + n_k(\tau, w) \equiv n_k(\tau, w),
\]
(4.48)
and \(n_k(\tau, w)\) are bounded.

Lemma 4.1 is derived from (4.23) and (4.48).

Lemma 4.1 is proved. Considering the eigenvalue problem
\[
(-\Delta)^m u = \lambda^m u, u|_{\Gamma} = 0,
\]
the problem (3.8) has a family of eigenfunctions \(\{\phi_j\}_{j=1}^{\infty}\) with the eigenvalues \(\{\lambda_j\}_{j=1}^{\infty} : \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_j \to \infty\)
\((j \to \infty)\), such that \(\{\phi_j\}_{j=1}^{\infty}\) is an orthonormal basis of \(L^2_\mu(\Omega)\). Given \(n \geq 1\) let \(Q_n = \text{span}\{\phi_1, \ldots, \phi_n\}\) and \(P_n : V_k(\Omega) \to Q_n\)
be the projection operator.

Lemma 4.2. Suppose \(M\) satisfies (M), \(h(x) \in C_{\text{comp}}(\Omega), k = 0, 1, \ldots, m\) (3.2)–(3.6) hold \(f(x, t)\) satisfies (F) and for \(\forall \eta > 0, r \in R, w \in \Omega, B_k = \{B_k(\tau, w) : \tau \in R, w \in \Omega\} \in D_k\), there exists \(T_k = T_k(\tau, w, B_k, \eta_k) > 0, N_k = N_k(\tau, w, \eta_k) \geq 0\)
\[
\|I - P_k\|\nabla^k v(t, \tau - r, \theta, w)\|_{L^2_\mu} + \|I - P_k\|u(t, \tau - r, \theta, w)\|_{L^2_{\mu}} \leq \eta_k.
\]

Proof. Let \(u_{n,1} = P_n u, u_{n,2} = u - u_{n,1}, v_{n,1} = P_n v, v_{n,2} = v - v_{n,1}\). Applying \(I - P_n\) to the second equation of (3.8), we obtain
\[
\frac{dv_{n,2}}{dt} = \epsilon v_{n,2} - a(x)(-\Delta)^m v_{n,2} + \epsilon a(x)(-\Delta)^m u_{n,2} - \epsilon^2 u_{n,2} - b(x)(I - P_n)M(\|\nabla^m u\|^2)(-\Delta)^m u
\]
\[
- (I - P_n)(g(x, u) + f(x, t)) + \epsilon h(x)w(t) - a(x)(-\Delta)^m h(x)w(t).
\]
(4.49)
Taking the inner product of the resulting equation (4.49) with \(v_{n,2}\) in \(L^2_\mu(\Omega)\), we have
\[
\frac{1}{2} \frac{d}{dt}\|v_{n,2}\|^2_{L^2_{\mu}} = \epsilon\|v_{n,2}\|_{L^2_{\mu}}^2 - \|\nabla^m v_{n,2}\|_{L^2_{\mu}}^2 + \epsilon((-\Delta)^m u_{n,2}, v_{n,2}) - \epsilon^2(u_{n,2}, v_{n,2})_{L^2_{\mu}}
\]
\[
- b(x)(I - P_n)M(\|\nabla^m u\|^2)(-\Delta)^m u_{n,2} - ((I - P_n)g(x, u), v_{n,2})_{L^2_{\mu}}
\]
\[
+ (I - P_n)(f(x, t), v_{n,2})_{L^2_{\mu}} + \epsilon w(t)(h(x), v_{n,2})_{L^2_{\mu}} - w(t)((-\Delta)^m h, v_{n,2}).
\]
(4.50)
Applying \(I - P_n\) to the first equation of (3.8), we get
\[
v_{n,2} = \frac{du_{n,2}}{dt} + \epsilon u_{n,2} - hw(t).
\]
(4.51)
For the third and fourth terms on the right-hand side of (4.49), we obtain
\[
\begin{align*}
\epsilon((\Delta)^m u_{n,2} - \epsilon^2(u_{n,2}, v_{n,2}))_t^2 & = \epsilon((\Delta)^m u_{n,2} - \epsilon^2(u_{n,2}, v_{n,2})) - \epsilon^2(u_{n,2}, v_{n,2})_t^2 \\
& = \frac{\epsilon}{2} \frac{d}{dt} \|\nabla^m u_{n,2}\|^2 + \epsilon^2 \|\nabla^m u_{n,2}\|^2 - \epsilon^2((\Delta)^m u_{n,2}, h) \\
& \quad - \epsilon^2 \frac{d}{dt} \|u_{n,2}\|^2 - \epsilon^2 \|u_{n,2}\|^2 + \epsilon^2 \omega(t)(u_{n,2}, h)_t^2,
\end{align*}
\]

for the fifth term on the right-hand side of (4.49), we have
\[
\begin{align*}
b_0((I - P_0)g(x, u), v_{n,2})_t^2 & = b_0(M\|\nabla^m u\|^2)((\Delta)^m u, v_{n,2}) - \epsilon \frac{d}{dt}((I - P_0)g(x, u), v_{n,2})_t^2 \\
& \quad + \epsilon((I - P_0)g(x, u), v_{n,2})_t^2 - ((I - P_0)g(x, u), u_{n,2})_t^2,
\end{align*}
\]

for the sixth term on the right-hand side of (4.49), we have
\[
\begin{align*}
((I - P_0)f(x, t), v_{n,2})_t^2 & = \frac{1}{4} \|\nabla^m v_{n,2}\|^2 + \frac{1}{\alpha_n \lambda_{n+1}} \|(I - P_0)f(x, t)\|^2_t, \\
& \quad - \epsilon \frac{d}{dt}((I - P_0)f(x, t), v_{n,2})_t^2,
\end{align*}
\]

for the seventh, eighth, and ninth terms on the right-hand side of (4.49), we have
\[
\begin{align*}
\epsilon \omega(t)(h(x), v_{n,2})_t^2 & \leq \frac{1}{4} \|\nabla^m v_{n,2}\|^2 + \frac{\epsilon \|\omega(t)\|^2}{\alpha_n \lambda_{n+1}} \|h(x)\|^2_t, \\
\omega(t)((\Delta)^m h, v_{n,2})_t^2 & \leq \frac{1}{4} \|\nabla^m v_{n,2}\|^2 + \epsilon \|\omega(t)\|^2 \|\nabla^m h(x)\|^2.
\end{align*}
\]

When \(\frac{d}{dt}\|\nabla^m u_{n,2}\|^2 + 2\epsilon \|\nabla^m v_{n,2}\|^2 \geq 0\)
\[
\begin{align*}
b_0M(\|\nabla^m u\|^2) \left(\frac{d}{dt} \|\nabla^m u_{n,2}\|^2 + 2\epsilon \|\nabla^m v_{n,2}\|^2\right) & \geq \frac{d}{dt} \left(b_0M_0 \|\nabla^m u_{n,2}\|^2\right) + 2\epsilon b_0M_0 \|\nabla^m v_{n,2}\|^2,
\end{align*}
\]

else
\[
\begin{align*}
b_0M(\|\nabla^m u\|^2) \left(\frac{d}{dt} \|\nabla^m u_{n,2}\|^2 + 2\epsilon \|\nabla^m v_{n,2}\|^2\right) & \geq \frac{d}{dt} \left(b_0C(\|\nabla^m u\|^2) \|\nabla^m u_{n,2}\|^2\right) + 2\epsilon b_0C(\|\nabla^m u\|^2) \|\nabla^m v_{n,2}\|^2.
\end{align*}
\]

By using Young’s inequality and Holder’s inequality, we can get
\[
\begin{align*}
2b_0M(\|\nabla^m u\|^2)\omega(t)((\Delta)^m u_{n,2}, h) & \leq 2b_0M(\|\nabla^m u\|^2)\omega(t) \|\nabla^m u_{n,2}\| \|\omega(t)\| \|\nabla^m h\| \\
& \leq \frac{\epsilon b_0M_0}{2} \|\nabla^m u_{n,2}\|^2 + 2\epsilon b_0C(\|\nabla^m u\|^2) \|\omega(t)\|^2 \|\nabla^m h\|^2,
\end{align*}
\]

\[
\begin{align*}
2\epsilon^2\omega(t)(h(x), u_{n,2})_t^2 & = 2\omega(t)((\Delta)^m u_{n,2}, h(x)) \\
& \leq \epsilon \|u_{n,2}\|^2_t + \epsilon \|\nabla^m u_{n,2}\|^2_t + \epsilon \|\omega(t)\|^2 \|h(x)\|^2_t + \|\omega(t)\|^2 \|\nabla^m h\|^2.
\end{align*}
\]
By (3.5), we have
\[2((I - P_0)g(x, u)u_t, u_{n,2})_{L^p_t} \leq 2\|\phi_1\|_{L^p_T}^2\|u_t\|_{L^p_T}^2 + 2c\|u_t\|_{L^p_T}^p\|u_n\|_{L^p_T}^{p-2} \]
\[\leq \frac{eb_0M_0}{2}\|\nabla^m u_n\|_{L^p_T}^2 + \frac{C_05}{eb_0M_0}\lambda_n^{1-m}u_{t,p}^2 + C_06\lambda_n^{1-m}u_{t,p}^2\|\nabla^m u\|_{L^p_T}^{2p-2}, \] \tag{4.62}
\[2w(t)((I - P_0)g(x, u), h)_{L^p_T} \leq 2(w(t)\|\phi_1\|_{L^p_T}\|h\|_{L^p_T} + 2c(w(t))\|u\|_{L^p_T}^p\|h\|_{L^p_T}^p) \]
\[\leq 2(w(t)\|\phi_1\|_{L^p_T}\|h\|_{L^p_T} + 2C_0\|w(t)\|\nabla^m u\|\|h\|_{L^p_T}^p). \tag{4.63} \]

By substituting (4.52)–(4.63) into (4.50), we have
\[\frac{d}{dt}\left[\|v_{n,2}\|_{L^p_T}^2 + (b_0M_0(C(\|\nabla^m u\|)) - \varepsilon)\|\nabla^m u_n\|_{L^p_T}^2 + \varepsilon^2\|u_{n,2}\|_{L^p_T}^2 + 2((I - P_0)g(x, u), u_{n,2})_{L^p_T} \right] \]
\[+ \frac{1}{2}\|\nabla^m v_{n,2}\|_{L^p_T}^2 - 2\|u_{n,2}\|_{L^p_T}^2 + (2\varepsilon M(\|\nabla^m u\|) - \varepsilon M_0)b_0\|\nabla^m u\|_p^2 \]
\[- 3\varepsilon^2\|\nabla^m u\|_{L^p_T}^2 + \varepsilon\|u\|_{L^p_T}^2 + 2(\varepsilon((I - P_0)g(x, u), u_{n,2})_{L^p_T} \right) \]
\[\leq \left(1 + 2\frac{b_0C(\|\nabla^m u\|)}{M_0} + 2\varepsilon\right)\|w(t)\|_{L^p_T}^2\|\nabla^m h\|_{L^p_T}^2 + \left(\varepsilon + \frac{2\varepsilon}{a_{n+1}\lambda_n^{m-1}}\right)\|w(t)\|_{L^p_T}^2\|h(x)\|_{L^p_T}^2 \]
\[+ \frac{C_05}{eb_0M_0}\lambda_n^{1-m}u_{t,p}^2 + C_06\lambda_n^{1-m}u_{t,p}^2\|\nabla^m u\|_{L^p_T}^{2p-2} + (2\|\phi_1\|_{L^p_T}\|h\|_{L^p_T} + 2C_0\|\nabla^m u\|_{L^p_T}^p)\|w(t)\|_{L^p_T}^2\|h\|_{L^p_T} \]
\[\leq \frac{2}{a_{n+1}\lambda_n^{m-1}}\|(I - p_n)f(x, t)\|_{L^p_T}^2. \tag{4.64} \]

Because, when \(N = 1, 2\), then \(1 \leq p < +\infty\); when \(N = 3, 4\), then \(1 \leq p < \frac{N}{N - 2}\). Moreover, when \(n \to \infty\), \(\lambda_n \to \infty\) so given \(\eta_0 > 0\), there exists \(N_01 = N_01(\eta_0) \geq 1\) for \(n \geq N_01\)
\[\left(1 + 2\frac{b_0C(\|\nabla^m u\|)}{M_0} + 2\varepsilon\right)\|w(t)\|_{L^p_T}^2\|\nabla^m h\|_{L^p_T}^2 + \left(\varepsilon + \frac{2\varepsilon}{a_{n+1}\lambda_n^{m-1}}\right)\|w(t)\|_{L^p_T}^2\|h(x)\|_{L^p_T}^2 \]
\[+ \frac{C_05}{eb_0M_0}\lambda_n^{1-m}u_{t,p}^2 + C_06\lambda_n^{1-m}u_{t,p}^2\|\nabla^m u\|_{L^p_T}^{2p-2} \]
\[+ (2\|\phi_1\|_{L^p_T}\|h\|_{L^p_T} + 2C_0\|\nabla^m u\|_{L^p_T}^p)\|w(t)\|_{L^p_T}^2\|h\|_{L^p_T} \]
\[\leq C_0\eta_0\left(1 + \|w(t)\|_{L^p_T}^2 + \|u\|_{L^p_T}^2 + \|\nabla^m u\|_{L^p_T}^2 \right) + \frac{2}{a_{n+1}\lambda_n^{m-1}}\|(I - p_n)f(x, t)\|_{L^p_T}^2. \tag{4.65} \]

Then, there is an appropriate positive constant \(\sigma_3\) so that (4.64) can be reduced to
\[\frac{d}{dt}\left[\|v_{n,2}\|_{L^p_T}^2 + (b_0M_0(C(\|\nabla^m u\|)) - \varepsilon)\|\nabla^m u_n\|_{L^p_T}^2 + \varepsilon^2\|u_{n,2}\|_{L^p_T}^2 + 2((I - P_0)g(x, u), u_{n,2})_{L^p_T} \right] \]
\[+ \sigma_3\left[\|v_{n,2}\|_{L^p_T}^2 + (b_0M_0(C(\|\nabla^m u\|)) - \varepsilon)\|\nabla^m u_n\|_{L^p_T}^2 + \varepsilon^2\|u_{n,2}\|_{L^p_T}^2 + 2((I - P_0)g(x, u), u_{n,2})_{L^p_T} \right] \]
\[\leq C_0\eta_0\left(1 + \|w(t)\|_{L^p_T}^2 + \|u\|_{L^p_T}^2 + \|\nabla^m u\|_{L^p_T}^2 \right) + \frac{2}{a_{n+1}\lambda_n^{m-1}}\|(I - p_n)f(x, t)\|_{L^p_T}^2, \tag{4.66} \]

integrating (4.66) over \((\tau - t, \tau)\) with \(t \geq 0\) we get for all \(n \geq N_01\)
\[\|v_{n,2}(\tau, \tau - t, w)\|_{L^p_T}^2 + (b_0M_0(C(\|\nabla^m u\|))) - \varepsilon)\|\nabla^m u_n(\tau, \tau - t, w)\|_{L^p_T}^2 \]
\[+ \varepsilon^2\|u_{n,2}(\tau, \tau - t, w)\|_{L^p_T}^2 + 2((I - P_0)g(x, u), u_{n,2}(\tau, \tau - t, w))_{L^p_T} \]
\[\leq C_0\eta_0\left(1 + \|w(t)\|_{L^p_T}^2 + \|u\|_{L^p_T}^2 + \|\nabla^m u\|_{L^p_T}^2 \right) + \frac{2}{a_{n+1}\lambda_n^{m-1}}\|(I - p_n)f(x, t)\|_{L^p_T}^2. \tag{4.67} \]
Replacing \(w \) by \(-\theta w \) in (4.67) for every \(\in R^t, \tau \in R, w \in \Omega, n \geq N_0, \) we obtain

\[
\leq e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L_p}^2 + (b_0 M_0 (C(\|v^m u\|)^2)) - \varepsilon \right] \|v^m u_{n,2}(\tau - t)\|_2^2 \\
+ e^t \|u_{n,2}(\tau - t)\|_{L_p}^2 + 2((I - P_n)g(x, u(t - \tau)), u_{n,2}(\tau - t))_{L_p}^2 \\
+ C_{\text{op}} \int_{t-t}^t e^{\alpha s-t} \left((1 + |w(s)|^2) + \|u(s, \tau - t, w, u_{\tau})\|_{L_p}^2 + \|v^m u(s, \tau - t, w, u_{\tau})\|_2^6 \right) ds \\
+ \frac{2}{a_{n,1}^{m-1}} \int_{t-t}^t e^{\alpha s-t} \|f(x, s)\|_{L_p}^2 ds.
\]

Replacing \(w \) by \(\theta w \) in (4.67) for every \(\in R^t, \tau \in R, w \in \Omega, n \geq N_0, \) we obtain

\[
\leq e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L_p}^2 + (b_0 M_0 (C(\|v^m u\|)^2)) - \varepsilon \right] \|v^m u_{n,2}(\tau - t)\|_2^2 \\
+ e^t \|u_{n,2}(\tau - t)\|_{L_p}^2 + 2((I - P_n)g(x, u(t - \tau)), u_{n,2}(\tau - t))_{L_p}^2 \\
+ C_{\text{op}} \int_{t-t}^t e^{\alpha s-t} \left((1 + |w(s)|^2) + \|u(s, \tau - t, w, u_{\tau})\|_{L_p}^2 + \|v^m u(s, \tau - t, w, u_{\tau})\|_2^6 \right) ds \\
+ \frac{2}{a_{n,1}^{m-1}} \int_{t-t}^t e^{\alpha s-t} \|f(x, s)\|_{L_p}^2 ds.
\]

From (3.8), \(f(x, t) \) satisfies (F), \(h \in V_n \text{ and Lemma } 4.1, \) we have

\[
\leq e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L_p}^2 + (b_0 M_0 (C(\|v^m u\|)^2)) - \varepsilon \right] \|v^m u_{n,2}(\tau - t)\|_2^2 \\
+ e^t \|u_{n,2}(\tau - t)\|_{L_p}^2 + 2((I - P_n)g(x, u(t - \tau)), u_{n,2}(\tau - t))_{L_p}^2 \\
+ C_{\text{op}} \int_{t-t}^t e^{\alpha s-t} \left((1 + |w(s)|^2) + \|u(s, \tau - t, w, u_{\tau})\|_{L_p}^2 + \|v^m u(s, \tau - t, w, u_{\tau})\|_2^6 \right) ds \\
+ \frac{2}{a_{n,1}^{m-1}} \int_{t-t}^t e^{\alpha s-t} \|f(x, s)\|_{L_p}^2 ds,
\]

by \((u_{\tau - t}, v_{\tau - t}) \in B_0(\tau - t, \tau - t, w) \), then

\[
e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L_p}^2 + (b_0 M_0 (C(\|v^m u\|)^2)) - \varepsilon \right] \|v^m u_{n,2}(\tau - t)\|_2^2 \\
+ e^t \|u_{n,2}(\tau - t)\|_{L_p}^2 + 2((I - P_n)g(x, u(t - \tau)), u_{n,2}(\tau - t))_{L_p}^2 \\
+ C_{\text{op}} \int_{t-t}^t e^{\alpha s-t} \left((1 + |w(s)|^2) + \|u(s, \tau - t, w, u_{\tau})\|_{L_p}^2 + \|v^m u(s, \tau - t, w, u_{\tau})\|_2^6 \right) ds \\
+ \frac{2}{a_{n,1}^{m-1}} \int_{t-t}^t e^{\alpha s-t} \|f(x, s)\|_{L_p}^2 ds.
\]

Taking the inner product of (4.49) with \((-\Delta)^k v_{n,2}, k = 1, 2, ..., m - 1 \) in \(L^2(\Omega), \) we have

\[
\int \left[\frac{1}{2} \frac{d}{dt} \|v^k v_{n,2}\|^2 \right] ds = e^{-\alpha t} \|v^k v_{n,2}\|^2 - (a(x)(-\Delta)^k v_{n,2} - (-\Delta)^k u_{n,2}) + \varepsilon (a(x)(-\Delta)^m u_{n,2} - (-\Delta)^k v_{n,2}) \\
- e^t (u_{n,2} - (-\Delta)^k v_{n,2}) - (b(x) M(\|v^m u\|^2)) (-\Delta)^m u_{n,2} - (-\Delta)^k v_{n,2}) \\
- ((I - P_n)g(x, u), (-\Delta)^k v_{n,2}) + (f(x, t), (-\Delta)^k v_{n,2}) + \varepsilon w(t)(h, (-\Delta)^k v_{n,2}) \\
- w(t)(a(x)(-\Delta)^m h, (-\Delta)^k v_{n,2}).
\]

Then applying I - P_n to the first equation of (3.8), we obtain

\[
v_{n,2} = \frac{d u_{n,2}}{dt} + \varepsilon u_{n,2} - hw(t).
\]
Combining the processing method of Lemma 4.1,
\[
\frac{d}{dt}[\|\nabla^k \nu_{n,2}\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon)(a(x)\nabla^{m+k} u_{n,2}) + \varepsilon^2\|\nabla^k u_{n,2}\|^2] \\
+ 2(a(x)\nabla^{m+k} u_{n,2}, \nabla^{m+k} u_{n,2}) - \frac{6 + \varepsilon}{4} a_{00}\|\nabla^{m+k} \nu_{n,2}\|^2 - 3\varepsilon\|\nabla^k \nu_{n,2}\|^2 \\
+ 2b_0 M_0(C(\|\nabla^m u\|)^2))(a(x)\nabla^{m+k} u_{n,2}, \nabla^{m+k} u_{n,2}) - \frac{3\varepsilon a_{00} b_0 M_0}{4}\|\nabla^{m+k} \nu_{n,2}\|^2 \\
- 2\varepsilon^2(a(x)\nabla^{m+k} u_{n,2}, \nabla^{m+k} u_{n,2}) - \varepsilon^2 a_{00}\|\nabla^{m+k} \nu_{n,2}\|^2 + \varepsilon\|\nabla^k \nu_{n,2}\|^2 \\
\leq \sum_{i=1}^{m-k} (1 - a_i) \left(\frac{a_{00}}{4(1 - a_i)(m - k)} \right)^\frac{1}{m-k} (C_{m-k}(\tau))^{\frac{m-k}{2}} \|\nabla^k \nu_{n,2}\|^2 \\
+ 2\varepsilon \sum_{i=1}^{m-k} (1 - a_i) \left(\frac{a_{00}}{8\varepsilon(a_i)(m - k)} \right)^\frac{1}{m-k} (C_{m-k}(\tau))^{\frac{m-k}{2}} \|\nabla^k \nu_{n,2}\|^2 \\
+ 2\varepsilon a_{00} b_0 M_0(C_{m-k}(1 + |\nabla^m u|^2))^{\frac{m-k}{2}} \|\nabla^k \nu_{n,2}\|^2 \\
+ 4\varepsilon a_{00} b_0 a_0^2 M_0(1 + |\nabla^m u|^2)^3 |w(t)|^2 |\nabla^{m+k} h|^2 + \frac{2\varepsilon a_{00}^2}{a_{00}} |w(t)|^2 |\nabla^k f(x, t)|^2 \\
+ 2a_{00} |w(t)|^2 \sum_{i=1}^{m-k} (C_{m-k}(\tau))^{\frac{m-k}{2}} \|\nabla^{m+k} h|^2. \quad (4.73)
\]

Then there is a positive constant \(\sigma(4.73)\) can be reduced to
\[
\frac{d}{dt}[\|\nabla^k \nu_{n,2}\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon)(a(x)\nabla^{m+k} u_{n,2}) + \varepsilon^2\|\nabla^k u_{n,2}\|^2] \\
+ \sigma_1[\|\nabla^k \nu_{n,2}\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon)(a(x)\nabla^{m+k} u_{n,2}) + \varepsilon^2\|\nabla^k u_{n,2}\|^2] \\
\leq C_k(1 + |w(t)|^2) + \frac{2\varepsilon a_{00}^2}{a_{00}} |w(t)|^2 |\nabla^k f(x, t)|^2. \quad (4.74)
\]

when \(k = m, (4.74)\) also holds. \(\Box\)

Integrating (4.74) over \((\tau - t, \tau)\) with \(t \geq 0, \) we get for all \(n \geq N_k\)
\[
\|\nabla^k \nu_{n,2}\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon)(a(x)\nabla^{m+k} u_{n,2}) + \varepsilon^2\|\nabla^k u_{n,2}\|^2 \\
\leq e^{-\sigma_1}[\|\nabla^k \nu_{n,1}(\tau - t)\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon)(a(x)\nabla^{m+k} u_{n,2}(\tau - t), \nabla^{m+k} u_{n,2}(\tau - t))] \\
+ \varepsilon^2[\|\nabla^k u_{n,2}(\tau - t)\|^2] + e^{-\sigma_1} \int_{t}^{\tau} e^{\sigma_1} \int_{t}^{\tau} e^{\sigma_1} \|\nabla^k f(x, \xi)|^2|^2 \,d\xi. \quad (4.75)
\]

Replacing \(w\) by \(\theta, w\) in (4.75), we obtain for every \(t \in \mathbb{R}^+, \tau \in \mathbb{R}, w \in \Omega, n \geq N_k\)
\[
\|\nabla^k \nu_{n,2}(\tau - t, \theta, w)\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon) \\
\times (a(x)\nabla^{m+k} u_{n,2}(\tau - t, \theta, w), \nabla^{m+k} u_{n,2}(\tau - t, \theta, w)) + \varepsilon^2\|\nabla^k u_{n,2}(\tau - t, \theta, w)\|^2 \\
\leq e^{-\sigma_1}[\|\nabla^k \nu_{n,1}(\tau - t)\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon)(a(x)\nabla^{m+k} u_{n,2}(\tau - t), \nabla^{m+k} u_{n,2}(\tau - t))] \\
+ \varepsilon^2[\|\nabla^k u_{n,2}(\tau - t)\|^2] + e^{-\sigma_1} \int_{t}^{\tau} e^{\sigma_1} \int_{t}^{\tau} e^{\sigma_1} \|\nabla^k f(x, \xi)|^2|^2 \,d\xi. \quad (4.76)
\]

From (3.8), \(h \in V_{m+k}, f(x, t)\) satisfies (F) Lemma 4.1 and \((u_{n,1}, v_{n,1}) \in B_k(\tau - t, \theta, w)\) for \(t \to +\infty\)
\[
e^{-\sigma_1}[\|\nabla^k \nu_{n,1}(\tau - t)\|^2 + (b_0 M_0(C(\|\nabla^m u\|)^2)) - \varepsilon)(a(x)\nabla^{m+k} u_{n,2}(\tau - t), \nabla^{m+k} u_{n,2}(\tau - t)) \\
+ \varepsilon^2\|\nabla^k u_{n,2}(\tau - t)|^2] \to 0. \quad (4.77)
\]

Combining (4.69), (4.70), (4.76), (4.77), and Lemma 4.1, we can get the conclusion of Lemma 4.2. Lemma 4.2 is proved.
5 The existence of the family of random attractors

In this section, we shall prove the existence of the family of random pullback attractors for system (3.8). From Lemma 4.1, we know that for $P - a.e.$ $D_k = \{D_k(\tau, w) : \tau \in R, w \in \Omega_1 \} \in \mathcal{D}_k$ and $w \in \Omega_1$, there exists $T_k = T_k(D_k, w)$ such that for all $t \geq T_k$

$$
\|v(\tau, \tau - t, \theta_\tau w, v_\tau)\|_{H_k}^2 + \|\nabla u(\tau, \tau - t, \theta_\tau w, u_\tau)\|_{L^{m+1}}^2 \leq \eta_k(\tau, w).
$$

(5.1)

Let

$$
B_k(\tau, w) = \{(u, v) \in V_{m+1} : \|v\|_{H_k}^2 + \|u\|_{L^{m+1}}^2 \leq \eta_k(\tau, w)\}.
$$

(5.2)

Then, by (5.2), $B_k = \{B_k(\tau, w)\}_{w \in \Omega}$ are the closed absorption sets of X_k in X_k. We are now ready to prove the asymptotic compactness of Φ_k in X_k.

Lemma 5.1. Suppose M satisfies (M), $h(x) \in V_{m+1}(\Omega)$, (3.2)-(3.6) hold $f(x, t)$ satisfies, (F), then Φ_k is asymptotically compact in X_k, that is, for every $\tau \in R, w \in \Omega_1$, the sequence $\{\Phi_k(\tau, \tau - t, \theta_\tau w, (u_{t, i}, v_{t, i}))\}$ has a convergent subsequence in X_k provided $t \to \infty$ and

$$
(u_{t, i}, v_{t, i}) \in D_k(\tau - t, \theta_\tau w); \quad D_k = \{D_k(\tau, w) : \tau \in R, w \in \Omega_1 \} \in \mathcal{D}_k.
$$

Proof. We first let $t_i \to \infty$, it follows from Lemma 4.1 that there exist $i_1 = i_1(\tau, w, D_k) > 0$ such that for every $i \geq i_1$

$$
\|\Phi_k(\tau, \tau - t_i, \theta_\tau w, v_{t_i})\|_{H_k}^2 + \|\nabla u(\tau, \tau - t_i, \theta_\tau w, u_{t_i})\|_{L^{m+1}}^2 \leq \eta_k(\tau, w),
$$

(5.3)

next by using Lemma 4.2 for $\eta_k > 0$, there are $i_2 = i_2(\eta_k, w, B_k)$ and $N_k = N_k(\eta_k, w) > 0$ such that for every $i \geq i_2$

$$
\|(I - P_n)\Phi_k(\tau, \tau - t_{i}, \theta_\tau w, v_{t_{i}})\|_{H_k}^2 + \|(I - P_n)u(\tau, \tau - t_{i}, \theta_\tau w, u_{t_{i}})\|_{L^{m+1}}^2 \leq \eta_k.
$$

(5.4)

By using (5.3), we find that $\{(P_n(\Phi_k(\tau, \tau - t, \theta_\tau w, v(\tau, \tau - t, w)))\}$ is bounded in P_nX_k and P_nX_k is finite dimensional, which associates with (5.4) implies that $\{(u(\tau, \tau - t, w), v(\tau, \tau - t, w))\}$ is precompact in X_k.

The family of random attractors for higher-order Kirchhoff equations

Theorem 5.2. Suppose M satisfies (M), $h(x) \in V_{m+1}(\Omega)$, (3.2)-(3.6) hold $f(x, t)$ satisfies, (F), then the family of cocycles $\Phi_k generated by (3.8)$ has a family of pullback \mathcal{D}_k attractors $\{A_k\} = \{A_k(\tau, w) \in \mathcal{D}_k (k = 1, 2, \ldots, m)\}$ in X_k and can be expressed as follows:

$$
A_k(\tau, w) = \bigcap_{t \in \Omega \cup \tau} \Phi_k(t, \tau - t, \theta_\tau w, B_k(\tau - t, \theta_\tau w)), \quad \tau \in R, \quad w \in \Omega_1.
$$

Proof. From (5.2), Lemmas 5.1 and 2.10, the conclusion of Theorem 5.2 can be obtained.

Theorem 5.2 is proved.

Note 5.3. Theorem 5.2 shows the family of cocycles Φ_k generated by (3.8) has a unique pullback attractor A_k, respectively, in the space $X_k(k = 0, 1, \ldots, m)$, which together form a family of pullback attractors $\{A_k\}$. At the same time, according to Lemma 4.1 and (5.2) and the tight embedding of $X_k \hookrightarrow X_0, k = 1, 2, \ldots, m$, get the corresponding a family of pullback attractors $\{A_k\}$, which is (X_k, X_0) the family of random weak attractors, which means that the family of cocycles Φ_k has uniformly asymptotically compact absorption sets $B_k(\tau, w) \subset X_0, k = 1, 2, \ldots, m$, where $B_k(\tau, w)$ are the bounded sets in X_k, i.e., Φ_k are asymptotically compact in X_0.
Acknowledgements: The authors thank the referees for valuable comments and suggestions, which improved the presentation of this manuscript.

Funding information: This work was partially supported by the fundamental research fund of Yunnan Education Department (2020)09008) and the basic science (NATURAL SCIENCE) research project of colleges and universities in Jiangsu Province (21KJB110013).

Conflict of interest: The authors state no conflict of interest.

Data availability statement: No data, models, or code are generated or used during the study.

References

[1] I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations 252 (2011), no. 2, 1229–1262, DOI: https://doi.org/10.1016/j.jde.2011.08.022.
[2] Z. Yang and P. Ding, Long-time dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on \mathbb{R}^d, J. Math. Anal. Appl. 434 (2016), no. 2, 1826–1851, DOI: https://doi.org/10.1016/j.jmaa.2015.10.013.
[3] Z. Yang and Z. Liu, Exponential attractor for the Kirchhoff equations with strong nonlinear damping and supercritical nonlinearity, Appl. Math. Lett. 66 (2015), 127–132, DOI: https://doi.org/10.1016/j.aml.2015.02.019.
[4] G. Lin, P. Lv, and R. Lou, Exponential attractors and inertial manifolds for a class of nonlinear generalized Kirchhoff-Boussinesq model, Far East J. Math. Sci. 101 (2017), no. 9, 1913–1945, DOI: https://doi.org/10.17654/MS101091913.
[5] H. Ma, J. Zhang, and C. Zhong, Attractors for the degenerate Kirchhoff wave model with strong damping: Existence and the fractal dimension, J. Math. Anal. Appl. 484 (2020), 123670, DOI: https://doi.org/10.1016/j.jmaa.2019.123670.
[6] Y. Li, Z. Yang, and P. Ding, Regular solutions and strong attractors for the Kirchhoff wave model with structural nonlinear damping, Appl. Math. Lett. 104 (2020), 106258, DOI: https://doi.org/10.1016/j.aml.2020.106258.
[7] K. Ono, Global existence, decay and blow up of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations 137 (1997), no. 2, 273–301, DOI: https://doi.org/10.1006/jdeq.1997.3263.
[8] S. A. Messaoudi and B. Said Houari, A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett. 20 (2007), no. 8, 866–871, DOI: https://doi.org/10.1016/j.aml.2006.08.018.
[9] F. Li, Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Lett. 17 (2004), no. 12, 1409–1414, DOI: https://doi.org/10.1016/j.aml.2003.07.014.
[10] P. G. Papadopoulos and N. M. Stavrakakis, Global existence and blow-up results for an equation of Kirchhoff type on \mathbb{R}^d, Topol. Methods Nonlinear Anal. 17 (2001), no. 1, 91–109, DOI: https://doi.org/10.12775/TMNA.2001.006.
[11] H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math. 80 (2015), no. 6, 1808–1836, DOI: https://doi.org/10.1093/imamat/hxv018.
[12] H. Li, Y. You, and J. Tu, Random attractors and averaging for nonautonomous stochastic wave equations with nonlinear damping, J. Differential Equations 258 (2015), no. 1, 148–190, DOI: https://doi.org/10.1016/j.jde.2014.09.007.
[13] S. Zhou and M. Zhao, Random attractors for damped nonautonomous wave equations with memory and white noise, Nonlinear Anal. 120 (2015), 202–226, DOI: https://doi.org/10.1016/j.na.2015.03.009.
[14] B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations 246 (2008), no. 6, 2506–2537, DOI: https://doi.org/10.1016/j.jde.2008.10.012.
[15] Z. Wang, S. Zhou, and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl. 12 (2011), no. 6, 3468–3482, DOI: https://doi.org/10.1016/j.nonrwa.2011.06.008.
[16] B. Wang, Random attractors for nonautonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst. 34 (2014), no. 1, 269–300, DOI: https://doi.org/10.3934/dcds.2014.34.269.
[17] Z. Wang and S. Zhou, Random attractor for stochastic nonautonomous damped wave equation with critical exponent, Discrete Contin. Dyn. Syst. 37 (2016), no. 1, 565–573, DOI: https://doi.org/10.3934/dcds.2017022.
[18] Z. Wang, S. Zhou, and A. Gu, Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 4, 1649–1658, DOI: https://doi.org/10.1016/j.cnsns.2011.09.001.
[19] S. Zhou, F. Yin, and Z. Ouyang, random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 4, 883–903, DOI: https://doi.org/10.1137/050623097.
[20] H. Yao and J. Zhang, Random attractors for nonautonomous stochastic wave equations with nonlinear damping and white noise, Adv. Difference Equ. 2020 (2020), 221, DOI: https://doi.org/10.1186/s13662-020-02664-3.
[21] M. A. Ragusa, Parabolic systems with noncontinuous coefficients, Conference Publications 2003 (2003), 727–733.
[22] E. Guariglia, *Primality, fractality, and image analysis*, Entropy 21 (2019), no. 3, 304, DOI: https://doi.org/10.3390/e21030304.

[23] S. Gala and M. A. Ragusa, *A new regularity criterion for strong solutions to the Ericksen-Leslie system*, Appl. Math. 43 (2016), no. 1, 95–103, DOI: https://doi.org/10.4064/am2281-1-2016.

[24] E. Guariglia, *Harmonic Sierpinski gasket and applications*, Entropy 20 (2018), no. 9, 714, DOI: https://doi.org/10.3390/e20090714.

[25] P. G. Papadopoulos, M. Karamolengos, and A. Pappas, *Global existence and energy decay for mildly degenerate Kirchhoff equations on \mathbb{R}^N*, J. Interdiscip. Math. 12 (2009), no. 6, 767–783, DOI: https://doi.org/10.1080/09720502.2009.10700663.

[26] N. I. Karachalios and N. M. Stavrakakis, *Existence of a global attractor for semilinear dissipative wave equations on \mathbb{R}^N*, J. Differential Equations 157 (1999), no. 1, 183–205, DOI: https://doi.org/10.1016/jdeq.1999.03.168.

[27] Y. Li, A. Gu, and J. Li, *Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations*, J. Differential Equations 258 (2015), no. 2, 504–534, DOI: https://doi.org/10.1016/j.jde.2014.09.021.

[28] Y. Li and B. Guo, *Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations*, J. Differential Equations 245 (2008), no. 7, 1775–1800, DOI: https://doi.org/10.1016/j.jde.2008.06.031.

[29] J. Limaco, H. R. Clark, and L. A. Medeiros, *On damped Kirchhoff equation with variable coefficients*, J. Math. Anal. Appl. 307 (2004), no. 2, 641–655, DOI: https://doi.org/10.1016/j.jmaa.2004.12.032.

[30] M. A. Ragusa, A. Razani, and F. Safari, *Existence of radial solutions for a $p(x)$-Laplacian Dirichlet problem*, Adv. Difference Equ. 2021 (2021), 215, DOI: https://doi.org/10.1186/s13662-021-03369-x.

[31] S. Zhang, J. Zhang, and H. Wang, *Global attractors for Kirchhoff wave equation with nonlinear damping and memory*, Bound. Value Probl. 2020 (2020), 116, DOI: https://doi.org/10.1186/s13661-020-01413-5.

[32] G. Zhou, *Random attractor for the 3D viscous primitive equations driven by fractional noises*, J. Differential Equations 266 (2019), no. 11, 7569–7637, DOI: https://doi.org/10.1016/j.jde.2018.12.009.

[33] B. Gess, W. Liu, and A. Schenke, *Random attractors for locally monotone stochastic partial differential equations*, J. Differential Equations 269 (2020), no. 4, 3414–3455, DOI: https://doi.org/10.1016/j.jde.2020.03.002.

[34] G. Lin and Y. Chen, *A family of global attractors for the higher-order Kirchhoff-type equations and its dimension estimation*, Amer. J. Appl. Math. 8 (2020), no. 6, 300–310.

[35] G. Lin and Y. Jin, *Long-time behavior of solutions for a class of nonlinear higher order Kirchhoff equation*, Amer. J. Appl. Math. 7 (2019), no. 1, 21–29, DOI: https://doi.org/10.11648/j.ajam.20190701.14.