Sjögren’s syndrome concurrent with protein-losing gastroenteropathy with secondary systemic capillary leak syndrome: A case report

Kei Watanabe1 | Shinichiro Murakami1 | Masahiro Misago1 | Mai Yoshikawa1 | Daisuke Tamai1 | Shinichiro Nakao1 | Takato Ueoka1 | Mototoshi Ito1 | Yasuhisa Shinomura2 | Nobuyuki Kajiwara3

1Department of Emergency and General Medicine, Ikeda City Hospital, Ikeda, Osaka, Japan
2Department of Gastroenterology, Ikeda City Hospital, Ikeda, Osaka, Japan
3Department of Nephrology, Ikeda City Hospital, Ikeda, Osaka, Japan

Correspondence
Shinichiro Murakami, Department of Emergency and General Medicine, Ikeda City Hospital, Ikeda, Osaka, Japan.
Email: lgcyb4rsk8809@gmail.com

Key Clinical Message
Sjögren’s syndrome concurrent with protein-losing gastroenteropathy can develop into secondary systemic capillary leak syndrome. Thus, it is important to diagnose the condition as soon as possible and simultaneously administer treatment for Sjögren’s syndrome, protein-losing gastroenteropathy, and systemic capillary leak syndrome.

Keywords
gamma globulin therapy, protein-losing gastroenteropathy, Sjögren’s syndrome, steroid therapy, systemic capillary leak syndrome

1 | INTRODUCTION

Protein-losing gastroenteropathy is a rare condition. In some cases, it has been found to coexist with connective tissue diseases, such as Sjögren’s syndrome.1 We experienced the case of a patient with Sjögren’s syndrome concurrent with protein-losing gastroenteropathy who subsequently developed secondary systemic capillary leak syndrome, making their condition temporarily critical. However, the combination of various treatments resulted in an improvement. Here, we report the first case of Sjögren’s syndrome concurrent with protein-losing gastroenteropathy in which secondary systemic capillary leak syndrome developed, together with a review of the literature.

2 | CASE HISTORY

The patient was an 88-year-old man with a history of dyslipidemia, right corneal transplantation, and cataract surgery. One month prior to hospitalization, he experienced respiratory distress on exertion and pedal edema, for which he consulted his local physician. Upon receiving a diuretic, Chinese herbal medicine, and albumin drip infusion, his symptoms improved. One week prior to hospitalization, the patient experienced abdominal bloating and was referred to our hospital after being diagnosed with pleural effusion with ascites; he was subsequently hospitalized.

On admission, the patient’s height was 155 cm and weight was 62.2 kg, and he presented with mild edema of the fingers and marked fast pitting edema in both legs. Laboratory tests on admission revealed hypoalbuminemia, with 2.8 g/dL Albumin (Table 1). However, as the urinary protein/creatinine ratio was 0.926 g/g Creatinine, nephrotic syndrome was ruled out.

As platelet count was normal and abdominal ultrasonography revealed no sign of liver cirrhosis, liver failure was also ruled out. Heart failure and hypothyroidism were also ruled out. Pleural effusion test revealed exudative, with 83 IU/L LDH and 3.5 g/dL protein, but it was modified according
to infusing albumin by physician who treated him before
the admission. So, actually pleural effusion seemed to be
transudative.

Contrast-enhanced computed tomography of the chest and
abdomen revealed lymph node edema of <1 cm in the bilat-
eral axilla and mediastinum.

A right axillary lymph node biopsy was normal and lab-

oratory tests revealed mildly elevated levels of interleukin-6
at 25.2 pg/mL, vascular endothelial growth factor (VEGF) at
179 pg/mL, gamma globulin at 0.91 g/dL, CRP at 2.3 mg/dL,
and IgG4 at 48.0 mg/dL (Table 1); thus, Castleman disease
was ruled out. Serum positivity for anti-SS-A and anti-SS-B
antibodies (Table 1), as well as an ocular staining score of >4
points in both eyes, indicated that the subject satisfied 2 out
of 3 items of the 2012 classification for Sjögren’s syndrome
established by the American College of Rheumatology and
The Sjögren’s International Collaborative Clinical Alliance;
thus, the patient was diagnosed with Sjögren’s syndrome.2
Furthermore, gum test revealed dry mouth, with a saliva flow
rate of 0.5 mL/10 min.

Biopsies of the stomach, duodenum, rectum, skin, abdom-
inal wall fat, and bone marrow were performed; however,
since amyloid deposition was not observed, amyloidosis was
ruled out. Biopsies of the stomach and duodenum showed
only mild lymphangiectasis. Immunologic studies to assess
complements were not performed.

Fecal fat staining was negative. However, technetium-99 m-labeled human serum albumin (HSA) scintigraphy. 2 minutes after intravenous injection of 99mTc-labelled HSA, there was mild accumulation in the small bowel, and it became clear. 3 hours and 30 minutes after injection, there was movement of accumulation in the anus side. Typical features of protein losing gastroenteropathy were documented

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Technetium-99 m-labelled (99mTc-labelled) human serum albumin (HSA) scintigraphy. 2 minutes after intravenous injection of 99mTc-labelled HSA, there was mild accumulation in the small bowel, and it became clear. 3 hours and 30 minutes after injection, there was movement of accumulation in the anus side.}
\end{figure}

3 | OUTCOME

On day 18 of hospitalization, a dose of prednisolone at
30 mg/d (0.5 mg/kg/d) was initiated. On day 24, a sudden
drop in blood pressure, reduced level of consciousness,
Author	Publish year	Age	Sex	Nationality	Alb (g/dL)	SS-A	SS-B	ANA	Complication	Steroid	Other therapy	Outcome	Reference
Sugiyama T	1988	47	F	Japanese	1.6	+	-	64	Chronic thyroiditis	PSL 60 mg (p.o.)		Improve 1,4	
Yamada H	1994	38	F	Japanese	2.3	ND	ND	ND	SLE	PSL		Improve 5	
Izuka H	1996	28	F	Japanese	1.4	ND	ND	ND	Chronic thyroiditis	PSL 40 mg		Improve 6	
Inoue R	1996	49	F	Japanese	2.4	ND	ND	ND	n.p.	PSL 40 mg		Improve 7	
Mok MY	1997	54	F	-	1.4	ND	ND	ND	-	PSL 60 mg (p.o.)	CPA 100 mg	Improve 8	
Imai K	2002	64	F	Japanese	2.7	+	+	ND	RA	-	Ubai-en (Kampo medicine)	Improve 9	
Hsieh TY	2002	37	F	Taiwanese	1.4	+	ND	320	n.p.	m-PSL 750 mg × 3 d 2course (i.v.) + PSL 30 mg (p.o.)	HCQ 200 mg	Improve 10	
Hsieh TY	2002	50	F	Taiwanese	1.1	+	ND	640	n.p.	m-PSL 750 mg × 3 d 3course (i.v.) + PSL 30 mg (p.o.)	HCQ 200 mg	Improve 10	
Choi HJ	2004	50	F	Korean	1.8	+	-	320	Chronic thyroiditis	PSL 40 mg (i.v.)		Improve 11	
Ushiyama A	2004	61	F	Japanese	1.3	+	+	1280	n.p.	PSL 70 mg (i.v.) + m-PSL 1 g × 3 d (i.v.)		Improve 12	
Nagashima T	2009	41	M	Japanese	2.8	+	-	ND	RA, Chronic thyroiditis	PSL 50 mg (p.o.) + m-PSL 1 g × 3 d 2course (i.v.)	CPA pulse + MZR 150 mg	Improve 13	
Nasu T	2011	59	F	Japanese	1.5	+	ND	ND	n.p.	m-PSL 1000 mg×3 d (i.v.) + PSL 20 mg (p.o.)	CPA pulse + rituximab	Improve 14	
Uraoka Y	2012	42	F	Japanese	1.5	+	ND	ND	MCTD, hypothyroidism	PSL 45 mg (p.o.)		Improve 15	
Kakigao K	2012	58	F	Japanese	1.5	+	-	ND	MCTD	PSL (p.o.) + m-PSL 1 g × 3 d (i.v.)		Improve 16	
Chen HY	2013	69	F	Chinese	1.5	+	+	ND	ND	PSL (p.o.) + m-PSL 1 g × 3 d (i.v.)		Improve 17	
Yamashita H	2014	51	F	Japanese	1.5	+	+	2560	Interstitial pneumonia	PSL 60 mg (p.o.)		Improve 18	
Liao CY	2015	30	F	Taiwanese	1.8	+	ND	5120	n.p.	PSL 30 mg (p.o.)	HCQ 400 mg	Improve 19	
Gupta A	2015	58	F	White	2.6	+	+	1280	Type 1 RTA	PSL 60 mg (p.o.)	CPA 800 mg/mo	Improve 20	
Izumi Y	2016	64	F	Japanese	3.0	+	-	-	n.p.	PSL 50 mg (p.o.) + m-PSL 500 mg × 3 d (i.v.)	MZR 200 mg	Improve 21	
Ofuji K	2016	73	M	Japanese	2.7	+	-	80	Dermatomyositis	PSL 45 mg (p.o.)		Improve 22	
Hadigal S	2017	67	M	United States	2.5	+	ND	640	Pleural effusion	PSL	HCQ	Improve 23	
This case	2018	88	M	Japanese	2.8	+	+	40	n.p.	PSL 30 mg (p.o.) + m-PSL 1000 mg (i.v.)	IVIG 20 g + theophylline	Improve	

PLGE, protein-losing gastroenteropathy; SS, Sjögren’s syndrome; SS-A, Anti SS-A antibody; SS-B, Anti SS-B antibody; ANA, Anti nuclear antibody; PSL, prednisolone, p.o., per os.; SLE, systemic lupus erythematosus; n.p., not particular; CPA, cyclophosphamide; ND, no data; RA, rheumatoid arthritis; m-PSL, methylprednisolone; HCQ, hydroxychloroquine; MZR, mizoribine; IVIG, intravenous immunoglobulin; i.v., intravenous; MCTD, mixed connective tissue disease; RTA, renal tubular acidosis.
elevated level of hematocrit (Ht) at 48.3%, pleural effusion with ascites, pericardial effusion, systemic edema and decreased level of serum albumin at 1.7 g/dL were observed. This led to a suspicion of protein leakage from a location other than the gastrointestinal tract, and upon diagnosis of secondary systemic capillary leak syndrome, human gamma globulin at a dose of 0.4 g/kg/d was administered for 5 days. Because the improvement in edema was poor, the dosage of prednisolone was increased to 50 mg/d starting on day 16; however, the patient showed little response to this increase dosage of prednisolone. From day 28 to day 30, steroid pulse therapy was administered with methylprednisolone at 1 g/d and theophylline therapy was simultaneously initiated and maintained at a serum concentration of 10-20 μg/mL. On day 31, his body weight reached its maximum value of 71.2 kg (9.0 kg increase since admission), and prednisolone was recommenced at 50 mg/day. From day 32 to day 42, 20% albumin at 100 mL/d and furosemide at 20 mg/d were administered. As a result, his body weight gradually decreased and the edema also improved. On day 45, theophylline was discontinued, and the dosage of prednisolone was reduced on days 46, 61, and 75 to 40 mg/d, 30 mg/d, and 25 mg/d, respectively. On day 80, he was discharged from the hospital, and he subsequently continues to receive treatment on an outpatient basis.

4 | DISCUSSION

Autoimmune diseases that cause protein-losing gastroenteropathy include scleroderma, systemic lupus erythematosus, Sjögren’s syndrome, rheumatoid arthritis, mixed connective tissue disease, and dermatomyositis, and the cause of protein-losing gastroenteropathy associated with autoimmune disease is thought to be related to capillary hyperpermeability. Among autoimmune diseases, there have been 21 published reports from 1988 to 2017 in English and Japanese of cases presenting with Sjögren’s syndrome concurrent with protein-losing gastroenteropathy, as in the present case (Table 2).

Among such publications, there are no reports of secondary systemic capillary leak syndrome, thereby making our case the first case to be reported.

Among the 21 reported cases, 18 were females and 19 were reported from East Asia. The present case is also considered a rare case, as the patient is elderly and male. Among the 21 patients reported, 20 received prednisolone, and in the event of a poor response to steroids, additional treatment was administered (eg, cyclophosphamide, hydroxychloroquine, mizoribine, and rituximab), resulting in the alleviation of symptoms in all patients.

In the present case, a sudden drop in blood pressure and hemoconcentration were observed on day 24. Moreover, pleural effusion with ascites, pericardial effusion, and systemic edema were observed. Thus, protein leak other than that from the gastrointestinal tract was suspected, leading to the diagnosis of secondary systemic capillary leak syndrome.

Systemic capillary leak syndrome is a rare disease characterized by 3 features, comprising hypotension, hypoalbuminemia, and hemoconcentration, and is said to cause disruption of vascular endothelial cells, resulting in the leakage of plasma proteins into the interstitial compartment. Because of normal blood pressure and no sign of hemoconcentration on admission, systemic capillary leak syndrome did not present on admission.

The involvement of VEGF has been suggested in the extravascular leakage of protein associated with systemic capillary leak syndrome. Moreover, because our patient also presented with elevated levels of VEGF, VEGF appears to be involved. There has been a reported case of systemic capillary leak syndrome treated with high-dose intravenous immunoglobulin therapy (IVIG), theophylline therapy (blood concentration at 15-25 μg/mL), terbutaline (β2 receptor agonist), anti-human-TNF-alpha monoclonal antibodies, and anti-VEGF antibodies.

Although our patient was first treated with prednisolone at a dose of 30 mg/d for protein-losing gastroenteropathy, he later developed secondary systemic capillary leak syndrome, and thus IVIG was administered at a dose of 0.4 g/kg for 5 days, a regimen that is also considered to be a valid treatment for Sjögren’s syndrome. Upon completion of IVIG therapy, there was no clear therapeutic effect, and additional treatment with steroid pulse therapy and theophylline therapy were administered, which successfully alleviated the symptoms. However, it is unclear whether the steroid, IVIG, or theophylline therapy was effective.

In conclusion, we report the case of a patient who presented with Sjögren’s syndrome concurrent with protein-losing gastroenteropathy and whose condition became severe upon developing secondary systemic capillary leak syndrome. However, the patient’s condition was immediately identified, and he recovered with the simultaneous administration of treatment for Sjögren’s syndrome and systemic capillary leak syndrome.

CONSENT

While ensuring the anonymity of the patient, we obtained the patient’s written consent to report his case.

ACKNOWLEDGMENT

We would like to express our gratitude to Dr. Yasuhiro Kato for his clinical advice, Dr. Seika Higuchi-Uemura for her assistance on revision and Mr. Tomoyuki Uto for his technical advice on revision. We also thank Climson Interactive Pvt.
CONFLICT OF INTEREST

The authors have no conflicts of interest to declare with regard to this report.

AUTHORSHIP

KW: played a key role in the patient’s treatment and wrote the draft of the manuscript. SM: played a key role in the patient’s treatment. All authors were involved in the treatment, preparation of the original manuscript, and revision of the original manuscript. They have agreed to hold accountability for the translation of this report.

ORCID

Kei Watanabe http://orcid.org/0000-0003-3315-0227

REFERENCES

1. Tsutsumi A, Sugiyama T, Matsumura R, et al. Protein losing enteropathy associated with collagen diseases. Ann Rheum Dis. 1991;50:178-181.
2. Shiboski SC, Shiboski CH, Criswell LA, et al. American college of rheumatology classification criteria for Sjögren’s syndrome: a data-driven, expert consensus approach in the Sjögren’s International Collaborative Clinical Alliance Cohort. Arthritis Care Res. 2012;64:475-487.
3. Druey KM, Greipp PR. Narrative Review: Clarkson disease-systemic capillary leak syndrome. Ann Intern Med. 2010;153:90-98.
4. Sugiyama T, Koike T, Imaizumi T, et al. A case of Sjögren’s syndrome associated with protein-losing enteropathy. Jpn J Clin Immunol. 1988;11:80-85. [Japanese].
5. Yamada H, Utahashi K, Arai M, et al. A case of erosive gastritis with protein-losing enteropathy. Shokakika. 1994;18:574-582. [Japanese].
6. Izuka H, Momoy Suenaga M, et al. A case of protein losing gastroenteropathy with latent Sjögren’s syndrome. Kanto Riumachi. 1996;30:33-40. [Japanese].
7. Inoue R, Hotta S, Kurokawa M, et al. A case of protein losing gastroenteropathy with Sjögren’s syndrome. Kyushu Riumachi. 1996;15:151-155. [Japanese].
8. Mok MY, Lau CS. Protein losing enteropathy and primary Sjögren’s syndrome. Clin Exp Rheumatol. 1997;15:705.
9. Imai K, Kainuma M, Kohta K, Mitsuusa T. The potential effect of Ubai-en on protein-losing enteropathy. Jpn J Orient Med. 2002;53:229-234. [Japanese].
10. Hsieh TY, Lan JL, Chen DY. Primary Sjögren’s syndrome with protein-losing gastroenteropathy: report of two cases. J Formos Med Assoc. 2002;101:519-522.
11. Choi HJ, Shin K, Bae YD, et al. A case of primary Sjögren’s syndrome with protein-losing enteropathy. J Korean Rheumat Assoc. 2004;11:61-65.
12. Ushiyama A, Teraoka H, Shiba T, et al. Protein-losing gastroenteropathy associated with Sjögren’s syndrome-case report and review of the Japanese literature. Nihon Shokakibyo Gakkai Zasshi. 2004;101:1314-1319. [Japanese].
13. Nagashima T, Hoshino M, Shimoji S, et al. Protein-losing gastroenteropathy associated with primary Sjögren’s syndrome: a characteristic oriental variant. Rhumatol Int. 2009;29:817-820.
14. Nasu T, Miyata K, Uno A, et al. Successful treatment of protein-losing gastroenteropathy with steroid pulse and immunosuppressive therapies in a patient with Sjögren syndrome. Case Rep Gastroenterol. 2011;5:372-377.
15. Uraoka Y, Tanigawa T, Watanabe K, et al. Complete remission of protein-losing gastroenteropathy associated with Sjögren’s syndrome by B cell-targeted therapy with rituximab. Am J Gastroenterol. 2012;107:1266-1268.
16. Kakigao K, Fukushima N, Mizutani T, et al. A case of protein-losing gastroenteropathy accompanied by Sjögren syndrome and mixed connective tissue disease. Nihon Shokakibyo Gakkai Zasshi. 2012;109:1770-1775. [Japanese].
17. Chen HY, Hsu CY, Huang WC, et al. An uncommon cause of generalized edema: protein-losing gastroenteropathy with primary Sjögren’s syndrome. Acta Nephrologa. 2013;27:52-56.
18. Yamashita H, Muto G, Hachiya R, et al. A case of Sjögren’s syndrome complicated by protein-losing gastroenteropathy with unprecedented pulmonary interstitial lesions. Mod Rheumatol. 2014;24:877-879.
19. Liao CY, Chien ST, Wang CC, et al. Sjögren’s syndrome associated with protein losing gastroenteropathy manifested by intestinal lymphangiectasia successfully treated with prednisolone and hydroxychloroquine. Lupus. 2015;24:1552-1556.
20. Gupta A, Cohen NL, McCarthy S, McHugh IB, Kwon R. Protein-losing gastroenteropathy associated with Sjögren’s syndrome: first known case reported outside of Asia. ACG Case Rep J. 2015;2:184-186.
21. Izumi Y, Nakaoka K, Kamata M, et al. Steroid-resistant protein-losing gastroenteropathy complicated with Sjögren’s syndrome successfully treated with mizoribine. Mod Rheumatol. 2016; published online:04 Apr 2016. https://www.tandfonline.com/doi/full/10.3109/14397595.2016.1145570. Accessed June 29, 2018.
22. Oifuji K, Otani M, Matsuda H, et al. A case of protein-losing gastroenteropathy associated with dermatomyositis and secondary Sjögren’s Syndrome. Gastroenterol Endosc. 2016;58:2405-2411. [Japanese].
23. Hadigal S, Lowther G, Prasad A. Primary Sjögrens syndrome causing pleural effusions. Am J Respir Crit Care Med. 2017;195:A1484.