Pilot experiment for muonium photo ionization in GaAs

K. Shimomura1, P. Bakule2, F. L. Pratt2, K. Ohishi3, K. Ishida3, I. Watanabe3, Y. Matsuda4, K. Nishiyama1, E. Torikai5, K. Nagamine1,3,6

1 Muon Science Laboratory, IMSS, KEK, Tsukuba, Ibaraki, 305-0801, Japan
2 ISIS, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, U.K
3 Advanced Meson Science Laboratory, RIKEN, Wako, Saitama 351-0191, Japan
4 Graduate School of Arts and Science, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
5 Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, 400-8511, Japan
6 Department of Physics and Astronomy, University of California, Riverside, California, 92521, U.S.A

E-mail: koichiro.shimomura@kek.jp

Abstract. Direct observation of muonium photo ionization in GaAs was tried for the first time, with wide range wave length from 1325nm to 800nm lasers in n-type GaAs at 15 K. Recently, Lichti et al. determined the energy levels in the band gap of T center muonium (as an acceptor) and BC muonium (as a donor) by reanalysis of the existing data obtained by various μSR techniques for several semiconductors like Si, Ge, GaAs, GaP etc. In these semiconductors, GaAs is the best sample to apply the muonium photo ionization method for the first time, because the energy level of T center muonium is above 0.54 eV from the valence band, therefore the ionization energy for Mu T\(^{-}\) → Mu T\(^{0+}\) + e\(^{-}\) is 0.98eV (corresponding laser wave length is 1260nm), which is within the region of present OPO laser system produced, which was installed RIKEN-RAL.

1. Introduction

Hydrogen is a ubiquitous impurity in most semiconductors, including elemental (e.g., Si), compound (e.g., GaAs) one. Theoretical modeling of hydrogen impurities in semiconductors carried out over a period of many years has produced the accepted picture of H behavior in these materials [1], albeit with rather meager direct experimental evidence for the isolated atomic defect except in Si. The indirect verification of these models is mostly from results on the complexes formed by passivation reactions of mobile hydrogen with other impurities in which the addition of H satisfies various bonding mismatches and removes defect levels from the gap, thus eliminating the defect-related electrical activity. Isolated hydrogen is typically a negative-U center, where \(U = E_d(-/0) - E_{\alpha}(0/+ \)) is the separation between donor and acceptor thermodynamic levels. Consequently, in most semiconductors, hydrogen shows compensating properties, existing as H\(^{+}\) in p-type and H\(^{-}\) in n-type materials under equilibrium conditions.

Isolated hydrogen can exist in three charge states, H\(^{+}\), H\(^{0}\), and H\(^{-}\), with the ionic centers residing at different interstitial sites. For predominantly covalent cubic materials, H\(^{+}\) is stable at or near the center of a stretched bond [bondcentered(BC) site] and H\(^{-}\) is stable in the large tetrahedral
void (T site) of the diamond or zinc-blende structure. Both of these sites can support a neutral center, but the electronic wave functions and the hyperfine interactions are vastly different at the two locations. When H^0 resides in the void, it is simply an interstitial impurity atom with a large isotropic hyperfine constant, somewhat reduced from the free-atom value by relatively small overlaps with near neighbors. However, in forming H_{BC}^0, hydrogen has reacted with the host to form a radical in which the unpaired electron resides in antibonding orbitals on its two nearest neighbors, producing a small anisotropic hyperfine interaction. Most of the direct experimental evidence supporting the above picture comes from studies of muonium (Mu), a light isotope of hydrogen in which the proton has been replaced by a positive muon.

Recently, Lichti et al. determined the energy levels in the band gap of T center muonium (as an acceptor) and BC muonium (as a donor) by reanalysis of the existing data obtained by various μSR techniques for several semiconductors like Si, Ge, GaAs, GaP etc [2]. To check these values by independently and directly, the laser photo ionization of muonium in these semiconductors is one of the best methods. And if this method works well, it is also applicable to the muonic oxygen atom, which is nitrogen atom analog in oxide semiconductors like ZnO or TiO$_2$, where nitrogen impurities are recently considered to play key roles in the developments.

Among several semiconductors, GaAs is the best sample to apply the muonium photo ionization method for the first time, because the energy level of T center muonium is above 0.54 eV from the valence band, therefore the ionization energy for $\text{Mu}_T^- \rightarrow \text{Mu}_T^{0+} + e^-$ is 0.98eV (corresponding laser wave length is 1260nm), which is within the region of existing OPO laser system produced.

2. Experiments

The experiment was conducted at Port 2 of the RIKEN-RAL Muon facility at ISIS of Rutherford Appleton Laboratory (UK) by using pulsed (a double pulse with 75 ns width and 350 ns separation with 50 Hz repetition) 4 MeV positive muon beam. The sample used was 360 μm of thickness 50.8 mm diameter single crystalline GaAs with 3×10^{16} cm$^{-3}$ Si doping. The [001] axis was placed along muon/laser direction.

![Fig.1 Laser μSR setup at RIKEN-RAL Muon Facility.](image)
The tunable laser light with repetition frequency of 25 Hz was generated using a widely tunable OPO system (Continuum Panther EX OPO) pumped by 355 nm beam from Continuum Powerlite 9025 Nd:YAG laser. The linearly polarized laser output was transported through a light-tight enclosure to optical breadboard located in the muon beam port above the muon spectrometer at a distance of ~8 m using 9 silver mirrors. The laser pulse energy over the sample could be varied using a computer controlled attenuator up to 3 mJ/pulse.

At the ending part of the laser transport, a sample box with He-flow cryostat was installed. The second laser steering prism was placed right at the downstream of the muon beam so that the laser light is injected to the rear side of the sample through fused-quartz window. Sample was placed in a strain-free manner in a specially designed sample holder containing He gas. Care was taken for the muon beam not to be stopped at neither mirror nor cold plate. All measurements are performed under zero field condition, where only diamagnetic component (here MuT⁻) is observed. At zero field, MuT⁰ is expected to lose their polarization immediately, due to large nuclear hyperfine interaction with surrounding Ga and As.

Preliminary data is shown in Fig.2. Around 1.4 to 1.5 eV, a large asymmetry drop were observed, these are the effect of the interactions between MuT⁻ and photo excited electron, which is already established in the previous study [3,4]. Around 1.0 to 1.2 eV, there is some bump, which cannot be explained by the above picture. The most reasonable explanation is the effect of direct photo ionization of MuT⁻ and MuT⁰ lose their polarization. Unfortunately, at this time, laser power and quality is not enough around 0.9 to 1.1 eV, therefore we cannot say strongly there is a difference between above and below MuT⁻ ionization energy. To improve this point, we should optimize laser power at this region and prepare laser beam size adjuster.

![Fig.2 The photon energy dependence of the asymmetry change of MuT⁻ in GaAs under laser irradiation. Asymmetry change is normalized by laser power. The arrow shows the ionization energy of MuT⁻, determined by Lichti et. al.](image)

The tunable laser light with repetition frequency of 25 Hz was generated using a widely tunable OPO system (Continuum Panther EX OPO) pumped by 355 nm beam from Continuum Powerlite 9025 Nd:YAG laser. The linearly polarized laser output was transported through a light-tight enclosure to optical breadboard located in the muon beam port above the muon spectrometer at a distance of ~8 m using 9 silver mirrors. The laser pulse energy over the sample could be varied using a computer controlled attenuator up to 3 mJ/pulse.

At the ending part of the laser transport, a sample box with He-flow cryostat was installed. The second laser steering prism was placed right at the downstream of the muon beam so that the laser light is injected to the rear side of the sample through fused-quartz window. Sample was placed in a strain-free manner in a specially designed sample holder containing He gas. Care was taken for the muon beam not to be stopped at neither mirror nor cold plate. All measurements are performed under zero field condition, where only diamagnetic component (here MuT⁻) is observed. At zero field, MuT⁰ is expected to lose their polarization immediately, due to large nuclear hyperfine interaction with surrounding Ga and As.

Preliminary data is shown in Fig.2. Around 1.4 to 1.5 eV, a large asymmetry drop were observed, these are the effect of the interactions between MuT⁻ and photo excited electron, which is already established in the previous study [3,4]. Around 1.0 to 1.2 eV, there is some bump, which cannot be explained by the above picture. The most reasonable explanation is the effect of direct photo ionization of MuT⁻ and MuT⁰ lose their polarization. Unfortunately, at this time, laser power and quality is not enough around 0.9 to 1.1 eV, therefore we cannot say strongly there is a difference between above and below MuT⁻ ionization energy. To improve this point, we should optimize laser power at this region and prepare laser beam size adjuster.
References

[1] For reviews, Patterson B. D. 1998 *Rev. Mod. Phys.* 60, 69; Kiefl R. F. and Estle T. L. 1991 in *Hydrogen in Semiconductors* (Academic, San Diego)
[2] Lichti R.L. et al. 2007 *Phys. Rev. B* 76, 045221
[3] Shimomura K. et al. 2003 *Physica B* 326, 151
[4] Yokoyama K. et al. 2009 *Physica B* 404, 856