S3.3a Alveolar macrophage-mediated host resistance against Aspergillus fumigatus

Joshua Debar

Graduate School of Medicine at Dartmouth, Hanover, United States

S3.3a Innate immune responses to pathogenic fungi, September 21, 2022, 4:45 PM - 6:15 PM

Alveolar macrophages (AlveMφ) reside on the laminar surface of the airways serving as the primary phagocyte within the airways of the lungs where they act as intense sentinel cells sensing and responding to microbial and environmental expositions. In this role, AlveMφ must be able to respond in a manner that is appropriate to the threat posed which has been hypothesized to occur through sensing microbial vitality and/or patterns of pathogenesis. It is well-established that AlveMφ interact with phagocytes and respond to A. fumigatus, but their role in host resistance against A. fumigatus is currently controversial. Here I will discuss the role of AlveMφ in orchestrating a robust and effective antifungal innate immune response to modulate A. fumigatus clearance. AlveMφ orchestrating the protective innate immune response against A. fumigatus by sensing live fungal conidia using the cytosolic RNA-sensing MDA5 receptor to initiate the host protective type I and type III interferon response in both mice and humans. The activation of MDA5/MYD88 signaling appears to be mediated by both fungal RNA-dependent and fungal dsRNA-independent mechanisms. Thus, AlveMφ serve as a central hub for regulating and tuning the antifungal immune response within the respiratory tract.

S3.3d Influenza versus COVID-19-associated pulmonary aspergillosis: Profiling lower respiratory tract epithelial and myeloid innate immunity in patient samples

Simon Ferri1,2, Samuel M. González3,4, Mona Khan5, Suman Chop1, Bram Boedrich1,2, Denis Chatelain6, Cristina Condr3, Yves Delhaye7,8, Greit Hermans9,9, Martijn Hertoghe10,10, Stephanie Humbel11,11, Cato Jacobs12,12, Ke-trien Lagrou13,13, Lukas Mancel14,14, Julien Maes15,15, Philipp Meurman16,16, Remy Noga17,17, Laura Sebeslaclie15,15, Mariko Rodrigues-Stynth18,18, Karin Theeuwen19,20, Christoph Vanderbeke7,16,21, Lore Vanderbeke16,21, Greetje Vande Velde19,20, Sara Van den Broeck20,20, Gert De Hertogh13,13, Peter Mombart14, Diether Lambrecht13,21, Agostino Carvalho15, Johan Van Weenen21,3, Jorrit Wouters1,2

1Department of Microbiolog, Immunology and Transplantation, KU Leuven, Leuven, Belgium
2Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
3Life and Health Sciences Research Institute (VCS), School of Medicine, University of Minho, Braga, Portugal
4ICVS/3B’s-PG Government Associate Laboratory, Braga/Guimarães, Portugal
5Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
6VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
7Department of Human Genetics, KU Leuven, Leuven, Belgium
8Department of Pathology, CHU Amiens Picardie, Amiens, France
9Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
10Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
11Department of Pathology, National Hospital GZA-ZNA, Antwerp, Belgium
12Department of Laboratory Medicine and National Reference Center for Mycology, Leuven, Belgium
13Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
14Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
15Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
16Department of Microbial and Molecular Systems, Center of Microbial and Plant Genomics, KU Leuven, Leuven, Belgium

Objective: Up to 20% and 15% of critically ill influenza and co-infection disease 2019 (COVID-19) patients are affected by influenza- and COVID-19-associated pulmonary aspergillosis (IAPA and CAPA) respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality. Mechanistic insights into the development of IAPA and CAPA are a prerequisite for the development of new biomarkers and novel immunomodulatory therapeutic targets. Moreover, data on the pathophysiology are scarce. With this study, we aimed at expanding our knowledge of IAPA and CAPA pathophysiology in an exploratory way, resorting to lower respiratory tract samples and focusing on the epithelial and myeloid innate immune response to antifungal host responses.

Methods: We performed nCounter gene expression analyses of 755 genes linked to innate immunity, and determined protein levels of 47 cytokines, chemokines, growth factors, and other inflammatory mediators on bronchoalveolar lavage (BAL) fluid samples from 164 EU5-admitted influenza and COVID-19-patients with or without aspergillosis. Additionally, we performed spatial transcriptomics and RNAscope on in vivo tracheobronchial biopsies from four IAPA and CAPA patients.

Results: Several genes encoding proteins with important effector functions in antifungal innate immunity are downregulated in BAL fluid of IAPA and CAPA patients compared with influenza-only or COVID-19-only patients. Cellular deconvolution of the gene expression data reveals a significantly lower BAL neutrophil fraction in CAPA patients compared to COVID-19-only patients.

IAPA and CAPA patients have high BAL fluid levels of pro-inflammatory cytokines, but these are not significantly different from the levels seen in influenza-only and COVID-19-only patients. By integrating the BAL fluid cytokine levels with their respective transcriptional responses, we show that IAPA patients, and to a lesser extent CAPA patients, have an aberrant transcriptional response to pro-inflammatory cytokines as well as type I and type II interferon, which may result in poor cellular effector functions (Fig. 1E). Interferon-γ signaling is aberrant in both IAPA and CAPA patients when compared with influenza-only and COVID-19-only patients.

We observe significantly higher levels of growth factors associated with lung thrombosis in both IAPA and CAPA BAL fluid, which may contribute to the higher mortality seen in these coinfections (Fig. 1B).

Conclusion: Using spatial transcriptomics, we show that different epithelial defense mechanisms are at play in IAPA and CAPA (Fig. 1D). Finally, using RNAscope ultrasmall single-molecule RNA in situ hybridization, we visualize fungal and viral co-localization in CAPA tracheobronchial tissue, proving that virus-induced epithelial barrier disruption paves the way for invasive aspergillosis (Fig. 2B).

Acknowledgments: Using state-of-the-art techniques in lower respiratory tract samples obtained from a large representative patient cohort, we provide arguments for a three-level breach in antifungal immunity in IAPA and CAPA. A hampered ability to phagocytose and kill fungal spores enables Aspergillus germination and growth, leading to byphases that are not contained because of restrained extracellular defense mechanisms. These byphases may easily become tissue-invasive through an epithelial breach weakened by the viral infection, causing detrimental damage to the respiratory system. Functional studies will be necessary to further unravel the pathophysiology of IAPA and CAPA.
S3.4a

The repurposing approach identifies pitavastatin (calcium) making fluconazole fungicidal by inhibiting ergosterol synthesis

Wenqian Li, Yanni Feng, Hui Lu, Yamaoying Jiang
Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China

S3.4 Free oral paper session, September 21, 2022, 4:41 PM – 6:15 PM

Objective: Making fluconazole (FLC) fungicidal in combination with adjuvants is a promising strategy to avoid the emergence of FLC resistance and eliminate the persistence and recurrence of fungal infections. To address this question, we combined an ex vivo screening of a library of FDA-approved drugs to identify compounds for making FLC fungicidal.

Methods: We performed a high-throughput screen of an FDA-approved compound library (HTS@T22, MCB®), which contains 2372 drugs, to identify potentially novel FLC synergistic lethal adjuvants using both microdilution and dose-matrix inhibition assays. The abilities of candidate drugs to turn FLC from fungistatic to fungicidal were further investigated by FLC disk diffusion assays carried out by four tested strains with different FLC tolerance levels (SC5314, SN132, cmp1-Δ/Δ/Δ/Δ, and ADH1p::UPC2 strain). We determined the median lethal dose (LD50) of Candidate compounds by the Up-and-Down procedure (UADP) [ORCID: 625, 2008] via the intraperitoneal route in adult mice and used cyclosporine A and goldmanamycin as control drugs to screen FLC synergistic lethal adjuvants with lower toxicity. Finally, we constructed hemizygous deletion mutants for ergosterol synthesis-related genes to identify the mechanism of action of the synergistic lethality of pitavastatin (calcium) (PIT) and FLC (Fig. 1a).

Results: We found that 200 compounds (≤100 μg/ml) could make FLC (4 μg/ml) fungicidal and further confirmed that 50 compounds tested FLC (4 μg/ml) from fungistatic to fungicidal at a concentration lower than 12.5 μg/ml by broth microdilution assays (Fig. 2a). We further identified that 12/20 compounds (≤5.125 μg/ml) can make FLC fungicidal (≤0.5 μg/ml) using dose-matrix inhibition assays. Among these compounds, PIT can make FLC fungicidal at as low as 0.78 μg/ml (Fig. 1c). In the FLC disk diffusion assay, we identified 8 compounds (5 μg/ml) that were superior to or equivalent to the abilities of the control drugs to eliminate the FLC tolerance of four tested strains. It was worth noting that PIT could make FLC fungicidal against all four tested strains (Fig. 1c). The LD50 value of PIT is 103.4 μg/kg and the highest of the tested compounds. Spot assay results showed that compounds 100 μg/ml antagonized counteracted the antifungal activity of PIT (16 μg/ml) (Fig. 2a), but did not reverse the growth defect of Tet-HMG1/hmg1Δ mutant, in which the HMG1 gene expression would be inhibited by tetracycline.