H-He Shell Interactions and Nucleosynthesis in Massive Population III Stars

Ondrea Clarkson1,4,5, Falk Herwig1,4,5, Robert Andrassy1,4, Paul Woodward2,4, Marco Pignatari3,4,5, and Huaqing Mao2,4

1 Department of Physics & Astronomy, University of Victoria, P.O. Box 3055 Victoria, B.C., V8W 3P6, Canada, oclark01@uvic.ca
2 LCSE and Department of Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
3 E.A. Milne Centre for Astrophysics, University of Hull, HU6 7RX, United Kingdom
4 Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements, Michigan State State University, 640 South Shaw Lane, East Lansing, MI 48824, USA
5 NuGrid collaboration, http://www.nugridstars.org

Abstract. We report on our ongoing investigation into the nucleosynthetic and hydrodynamic nature of mixing at the interface between the H- and He-convection zones in massive Pop III stars. Studying recent a grid of 26 1D stellar evolution simulations with different mixing assumptions, we find that H-He interactions occur in 23/26 cases. We demonstrate the nucleosynthesis expected in a H-He interaction in an 80M\textsubscript{☉} star. Finally, we describe our progress in simulating a Pop III double convection zone in the PPMStar hydrodynamics code.

Keywords: Population III, stars, abundances, CEMP, i-process

Pop III stars are thought to have produced and released the first elements heavier than those created in the Big Bang 1. The most metal-poor stars we observe today may be the most direct descendants of Pop III stars and are a powerful diagnostic in our study of early cosmic chemical evolution 2.

Interactions between H and He-convection layers have been seen in 1D stellar evolution simulations of massive Pop III stars 3,4,5 but until recently, have not been investigated in detail.

Similar convective-reactive events occur in additional environments, such as He-shell flashes in low-Z low-mass stars 6,7,8, post-AGB stars 9, rapidly-accreting white dwarfs 10, and low-Z Super-AGB stars 11. In these cases—just as Pop III stars—likely leading to the i-process with neutron densities $\approx 10^{13-15}$ cm$^{-3}$, first discussed by Cowan & Rose 12.

We have explored the possibility that the abundance patterns of the CEMP-no stars SMSS J031300, HE 1327-2326 and HE 0107-5240, among the most iron-poor stars known, could be explained by highly energetic, convective H-He shell interactions in massive Pop-III stars 13 without a strong odd-even effect. Based on a 45 M\textsubscript{☉} stellar model that undergoes a H/He convective-reactive event during
C-core burning, we ran single-zone calculations to ascertain the nucleosynthesis which may result from such an event. For these simulations we found neutron densities of $\approx 6 \times 10^{13}$ cm$^{-3}$, leading to striking similarities with the abundance patterns existing in some of the most metal-poor stars, particularly in abundance ratio trends seen from Na-Si and Ti-Mn.

We have run a grid of 26 models using the MESA stellar evolution code [14] over a mass range of $15 - 140 \text{M}_\odot$. For each initial mass, we use 5 different sets of mixing assumptions in order to explore the dependence of H-He interactions on macrophysical modelling choices. Our findings indicate that there are three distinct modes for the interaction: firstly, as in Clarkson et al. [13] a convective H and He-shell interaction. Secondly, a convective H-shell mixing into a convective He-core and thirdly, a convective H-shell mixing down into a radiative He-shell.

Although difficult to constrain from 1D simulations, we have performed additional single zone calculations more, with the aim to further explore the abundances of HE 0107-5240 and HE 2317-2326. We ran simulations with $T = 2.5 \times 10^8$ K and $\rho = 1.9 \times 10^2$ g cm$^{-3}$ from the He-shell of an 80M_\odot model from our grid of Pop III models with 1% H added, by mass. Preliminary results are shown in Fig. 1. We find that in order to simultaneously reproduce both light and trans-Fe elements in these stars the total neutron exposure must be a factor of 4 smaller than we previously reported.

![Fig. 1. Abundances of CEMP-no stars HE 0107-5240 and HE 2317-2326 in purple and black are shown with single zone calculations (red and blue stars) based on an 80M_\odot stellar evolution simulation.](image)

We have begun using the explicit PPMstar code [15] to investigate these events. Our initial suite of simulations contain the He-shell flash convection zone and the bottom of the H-burning convection zone, separated by a radiative zone of 25,000 km (Fig 2). Initially we are driving these convection zones by a constant volume heating at the bottom of the He convection zone and a corresponding cooling at the top of the H-burning convection zone. In order to realistically
model this Pop III stellar environment, several code modifications were made. In future simulations, we will be including a simplified network to model the nuclear feedback expected from the mixing of H and He-burning material. The aim of these simulations is to answer the hypothesis [13] that such an event may led to a GOSH-like instability and could potentially eject material from the star. We hope to determine whether such an event would occur, and if so, how would it unfold in a full 4π-3D environment in terms of possible asymmetries in the entrainment and how would the model respond to the nuclear feedback?

Fig. 2. 3D simulation of convective H and He-burning shells on a 768^3 grid. Only the first 50,000 km of the H-shell is simulated in order to adequately resolve the stable layer. Colours show vorticity.
The first message stars may have experienced violent convective-reactive interactions at the interface of the H- and He-burning regions. Three dimensional simulations with nuclear feedback are now being constructed to investigate this stellar and nuclear astrophysics environment. A light-element i process could be triggered, and may result in abundance patterns observed in CEMP-no stars without strong odd-even effect.

References

1. K. Nomoto, C. Kobayashi, and N. Tominaga. Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies. *ARA&A*, 51:457–509, August 2013.
2. A. Frebel and J. E. Norris. Near-Field Cosmology with Extremely Metal-Poor Stars. *ARA&A*, 53:631–688, August 2015.
3. M. Limongi and A. Chieffi. Presupernova Evolution and Explosive Nucleosynthesis of Zero Metal Massive Stars. *ApJS*, 199:38, April 2012.
4. A. Heger and S. E. Woosley. Nucleosynthesis and Evolution of Massive Metal-free Stars. *ApJ*, 724:341–373, November 2010.
5. P. Marigo, L. Girardi, C. Chiosi, and P. R. Wood. Zero-metallicity stars. I. Evolution at constant mass. *AA*, 371:152–173, May 2001.
6. R. J. Stancliffe, D. S. P. Dearborn, J. C. Lattanzio, S. A. Heap, and S. W. Campbell. 3D Hydrodynamical Simulations of Proton Ingestion. In W. Aoki, M. Ishigaki, T. Suda, T. Tsujimoto, and N. Arimoto, editors, *Galactic Archaeology: Near-Field Cosmology and the Formation of the Milky Way*, volume 458, page 45, August 2012.
7. Nobuyuki Iwamoto, Toshitaka Kajino, Grant J. Mathews, Masayuki Y. Fujimoto, and Wako Aoki. Flash-Driven Convective Mixing in Low-Mass, Metal-deficient Asymptotic Giant Branch Stars: A New Paradigm for Lithium Enrichment and a Possible s-Process. *ApJ*, 602:377–388, February 2004.
8. L. Dardelet, C. Ritter, P. Prado, E. Heringer, C. Higgs, S. Sandalski, S. Jones, P. Denisnikov, C. Higgs, S. Sandalski, S. Jones, P. Denisnikov, K. Venn, M. Bertolli, M. Pignatari, P. Woodward, and F. Herwig. i process and CEMP-s+r stars. In *XIII Nuclei in the Cosmos (NIC XIII), Proceedings of Science*, 2014.
9. F. Herwig, M. Pignatari, P. R. Woodward, D. H. Porter, G. Rockefeller, C. L. Fryer, M. Bennett, and R. Hirschi. Convective-reactive Proton-12C Combustion in Sakurai’s Object (V4334 Sagittarii) and Implications for the Evolution and Yields from the First Generations of Stars. *ApJ*, 727:89, February 2011.
10. Pavel A. Denissenkov, Falk Herwig, Umberto Battino, Christian Ritter, Marco Pignatari, Samuel Jones, and Bill Paxton. I-process Nucleosynthesis and Mass Retention Efficiency in He-shell Flash Evolution of Rapidly Accreting White Dwarfs. *ApJ*, 834:L10, January 2017.
11. S. Jones, C. Ritter, F. Herwig, C. Fryer, M. Pignatari, M. G. Bertolli, and B. Paxton. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. *MNRAS*, 455:3848–3863, February 2016.
12. J. J. Cowan and W. K. Rose. Production of C-14 and neutrons in red giants. *ApJ*, 212:149–158, February 1977.
13. O. Clarkson, F. Herwig, and M. Pignatari. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars. *MNRAS*, 474:L37–L41, February 2018.
14. B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, H. Hu, N. Langer, R. H. D. Townsend, D. M. Townsley, and F. X. Timmes. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions. *ApJS*, 220:15, September 2015.

15. F. Herwig, P. R. Woodward, P.-H. Lin, M. Knox, and C. Fryer. Global Nonspherical Oscillations in Three-dimensional 4π Simulations of the H-ingestion Flash. *ApJ Lett.*, 792:L3, September 2014.