O que todo intensivista precisa saber sobre gestão de antimicrobianos: suas armadilhas e desafios

What every intensivist must know about antimicrobial stewardship: its pitfalls and its challenges

O aumento das taxas de patógenos multirresistentes é uma ameaça global ao sistema de saúde. Como o surgimento de novos antimicrobianos está longe de resolver todos os desafios ligados à resistência, cada vez mais se têm estudado e adotado novas alternativas para melhorar o uso atual de antimicrobianos. Sem dúvida, uma das mais importantes iniciativas se refere à gestão de antimicrobianos (AMS - antimicrobial stewardship). A AMS é cada vez mais utilizada para melhorar não só a adesão às diretrizes, como também os resultados obtidos, para diminuir a resistência antimicrobiana e outros danos colaterais, em adição ao controle dos custos.

Uma recente revisão da Cochrane investigou a eficácia e a segurança da AMS e identificou evidência com elevado grau de certeza de que as intervenções levaram a que mais pacientes nos hospitais recebessem tratamento apropriado, segundo as políticas de antibióticos e evidência de moderado grau de certeza de que as intervenções reduzem o tempo de permanência no hospital, sem afetar a segurança.(1)

Existem diversas armadilhas e limitações que podem comprometer a própria concepção, a implantação e o desenvolvimento da AMS em unidades de terapia intensiva (UTI). A finalidade deste artigo é tratar resumidamente de algumas das principais armadilhas.

A gestão de antimicrobianos não deve ser realizada tendo contenção de custos como finalidade principal

A ausência de uma definição universal para AMS em combinação com a falta de orientação e padrões internacionais se encontra entre as muitas barreiras para a implantação destes programas a nível mundial. A finalidade da AMS é promover o uso ideal, prudente e responsável de antibióticos para obter os melhores resultados para os pacientes, ao mesmo tempo em que se minimiza a probabilidade de efeitos adversos, inclusive toxicidade e seleção de potenciais microrganismos patogênicos (como fungos ou Clostridium difficile), e o surgimento e disseminação de resistência a antibióticos, idealmente reduzindo os custos.(2-4)

Desde a primeira vez em que foi mencionada em um artigo de John McGowan e Dale Gerding, dois especialistas em medicina interna da Emory University School of Medicine,(5) a AMS foi vista como “...ensaios bem controlados em larga escala sobre a regulação do uso de antimicrobianos, empregando métodos epidemiológicos sofisticados, tipificação de microrganismos por meio de biologia molecular e análise precisa dos mecanismos de resistência [...]
para determinar os melhores métodos para prevenção e controle da resistência a antimicrobianos e assegurar a gestão do melhor uso de antimicrobianos". Estes autores também afirmaram que "os efeitos em longo prazo da seleção de antimicrobianos, posologia e duração do tratamento no desenvolvimento de resistência devem ser ponderados em todas as decisões de tratamento com antimicrobianos". Recentemente o ESCMID Study Group for Antimicrobial Stewardship(2) enfatizou esse propósito ecológico ao definir a AMS como uma estratégia que inclui "um conjunto coerente de ações que promovem o uso de antimicrobianos, de modo a assegurar acesso sustentável a tratamentos eficazes para todos os que deles necessitarem".

Na verdade, a preservação da eficácia dos antibióticos é um desafio fundamental e difícil no contexto do aumento global e convergência geográfica no consumo de antibióticos.(6) Embora as taxas de consumo de antibióticos na maior parte dos países de baixa e média renda continuem inferiores às dos países desenvolvidos, apesar de uma maior carga de doenças bacterianas, o consumo em países de baixa e média renda vem rapidamente convergindo para taxas similares às dos países desenvolvidos.(7) Globalmente, o consumo de antibióticos, expresso em doses diárias definidas (DDD), aumentou 65%, e a taxa de consumo de antibióticos aumentou 39% entre 2000 e 2015. (6) É previsto que, assumindo-se que não ocorram mudanças na política, o consumo de antibióticos em 2030 deve ser 200% mais alto do que em 2015.(6)

Assim, o controle dos custos não pode ser visto como finalidade principal da AMS. A preservação da eficácia dos antibióticos é o propósito inicial e principal, ao minimizar a indução e a seleção de resistência antimicrobiana.

A gestão de antimicrobianos não deve ser realizada exclusiva ou principalmente com base em intervenções restritivas

Há três tipos principais de intervenções de AMS: restritiva, capacitante e estrutural.(8-10) A maior parte das intervenções estruturais têm natureza capacitante, por exemplo, a implantação de métodos diagnósticos melhores e mais rápidos, a utilização de vigilância quanto à resistência antimicrobiana e ao consumo de antibióticos, ou a utilização de decisão sobre antibióticos com uso de sistemas computadorizados de apoio. Com intervenções restritivas, como restrições de formulários, aprovação prévia por médico sênior da AMS e ordens automáticas de cessação, tenta-se reduzir o número de oportunidades para prescrição inadequada, enquanto intervenções capacitantes, como educação dos prescritores, implantação de diretrizes terapêuticas, promoção de descalonamento, doses e intervalo de doses orientadas por farmacocinética/farmacodinâmica e auditoria e devolutiva prospectivas para os provedores, têm o objetivo de aumentar o número de oportunidades e diminuir as barreiras para a prescrição ideal.

Tanto intervenções capacitantes quanto restritivas se associam independentemente, com aumento de 15% na adesão às práticas desejadas, diminuição de 1,95 dias de duração do tratamento com antibióticos e diminuição de 1,12 dias no tempo de permanência no hospital, sem comprometer a segurança do paciente.(1) Intervenções restritivas podem ser arriscadas em ambientes, como a UTI, onde o acesso imediato a antibióticos é de importância fundamental e, na vida real, observam-se potenciais atrasos no início da antibioticoterapia, com algumas intervenções restritivas. Estas podem ser também prejudiciais à comunicação entre os médicos clínicos e as equipes de gestão. A capacitação aumenta de forma consistente o efeito das intervenções e salienta sua sustentabilidade, inclusive daquelas com componente restritivo (evidência de elevado grau de certeza), e se associa com melhor aceitação.(1)

A gestão de antimicrobianos deve ser uma abordagem multifacetada na qual as intervenções capacitantes são fundamentais, já que se associam com melhor aceitação pelos médicos e aumento do efeito e sustentabilidade de outras intervenções. Diferentemente das intervenções restritivas, as capacitantes não ameaçam nem retardam o acesso à antibioticoterapia apropriada, nem prejudicam a comunicação entre as equipes clínica e de gestão.

A gestão de antimicrobianos não deve ser realizada com omissão de intervenções comportamentais

A educação é uma ferramenta importante e necessária na AMS. Em estudo recente, que incluiu 7.328 respostas de 179 faculdades de medicina em 29 países,(11) a maioria dos estudantes europeus no último ano de medicina sentia necessidade de mais educação a respeito do uso de antibióticos para sua prática futura como médicos recém-formados. A proporção de alunos com anelo por mais educação a respeito do uso prudente de antibióticos ou de uso geral de antibióticos variou de 20,3% (Suécia) a 94,3% (Eslováquia), com média de 66,1%, e foi inversamente proporcional aos índices de preparação. Taxas mais altas de prevalência de bactérias não suscetíveis a antibióticos se associaram com índices mais baixos de preparação e maiores necessidades referidas pela própria pessoa de mais educação (p < 0,01).

Rev Bras Ter Intensiva. 2020;32(2):207-212
A recente revisão Cochrane de 221 estudos revela que a maioria dos programas utilizou intervenções educacionais e que raramente foram usadas intervenções comportamentais.\(^{[1]}\) A pesquisa em ciências comportamentais e sociais é subutilizada no desenvolvimento de intervenções relativas à prescrição de antibióticos. Embora a devolutiva tenha aumentado os efeitos das intervenções, e intervenções capacitantes que incluíram devolutivas foram mais eficazes do que as que não as incluíram (evidência com grau de certeza moderado), estas só foram utilizadas em uma minoria das intervenções capacitantes.

Além disso, devemos nos lembrar de que o diagnóstico de infecção em pacientes críticos na UTI é frequentemente repleto de dificuldades e incertezas. Isso pode levar a um diagnóstico excessivo de sepsis e uso desnecessário de antibióticos, o que pode se associar com resultados piores.\(^{[12,13]}\) Nestas condições, intervenções comportamentais com objetivo de modificar a forma como os médicos abordam suspeitas de infecção na UTI têm mais chances de obter efeitos benéficos persistentes do que o uso de medidas restritivas. Por exemplo, a estratégia de “aguardar sob observação”, inicialmente proposta por Yu et al.\(^{[14]}\) e recentemente revisada por Denny,\(^{[15]}\) pode ser uma opção atrativa na UTI. O monitoramento estrito de múltiplos parâmetros fisiológicos pode facilitar o aguardo antes de administrar antibioticoterapia empírica a pacientes percebidos em baixo risco de efeitos adversos, se o médico considerar a redução da exposição a antibióticos como um resultado desejável.

Dessa forma, os programas de AMS devem incluir intervenções tanto educacionais quanto comportamentais. A evidência qualitativa enfatiza a influência de normas sociais, atitudes e crenças no comportamento de prescrição de antimicrobianos. Intervenções comportamentais, como auxílios à tomada de decisão, ação desejada como opção inicial, uso de incentivos, vias delineadas com base em hábitos e padrões, demandam o desenvolvimento de sistemas que lidam com fatores humanos. A falta desta abordagem comportamental pode ser fator contribuinte para os desafios enfrentados pelas melhores intervenções realizadas com objetivo de influenciar no comportamento prescritivo e melhorar a prescrição de antimicrobianos.\(^{[16,17]}\) Nesse cenário, a Tecnologia da Informação pode desempenhar papel importante, e o uso de painéis eletrônicos e de incentivos deve ser encorajado.\(^{[18,19]}\)

O uso de informação quase em tempo real é factível por meio da interrelação entre diferentes sistemas de informática e painéis de antibiótico/patógeno. Essa abordagem tem um efeito de “retroalimentação” e pode melhorar substancialmente o conhecimento dos padrões de resistência e dar melhores informações para a decisão, quanto ao uso de antibióticos empíricos na UTI.

Com o aumento do uso de prontuários clínicos eletrônicos e análise de streaming, os painéis podem ser disponibilizados para os médicos na UTI com atualizações quase em tempo real.\(^{[20,21]}\) Um painel ideal deveria fornecer informações sobre os padrões atuais de resistência, bem como sobre a sua tendência evolutiva, uso de antimicrobianos e adesão aos processos de cuidado, incluindo diretizes locais de antibioticoterapia e infecções associadas aos cuidados de saúde. Este elemento tecnológico deveria ser combinado com intervenções comportamentais.

Apesar das evidências, que mostram o impacto dos determinantes comportamentais e das normas sociais na prescrição, ambos frequentemente não recebem consideração adequada no delineamento e na avaliação de intervenções. Recomendam-se a incorporação e a aplicação de ciências comportamentais apropriadas por colaboração multidisciplinar. O comportamento usual deve ser investigado como primeiro passo para modificá-lo, reconhecendo os fatores pessoais, sociais e ambientais que afetam o comportamento. Na verdade, as intervenções para influenciar na prescrição de antimicrobianos por profissionais de saúde individuais e, eventualmente, modificar sua cultura devem cuidar do ritual de prescrição e utilizar liderança clínica com grupos clínicos existentes para influenciar a prática.\(^{[21]}\)

A gestão de antimicrobianos não deve ser delineada como intervenção externa e omitir a definição dos alvos locais adaptados

Como previsto, diferentes intervenções de AMS têm diferentes níveis de evidência e diversas probabilidades de eficácia (Tabela 1). Entretanto, as intervenções para um programa específico de AMS devem ser escolhidas levando em consideração principalmente a analysis do sistema local. A adaptação é essencial para a eficácia. O peso dos diferentes componentes do programa deve ser selecionado com base nos alvos específicos fundamentais, levando em conta as taxas locais de germes com resistência a múltiplos fármacos, o contexto/cultura do serviço que molda os comportamentos dos profissionais de saúde, os principais determinantes da prescrição de antibióticos e os recursos disponíveis para AMS. É essencial identificar as barreiras e os facilitadores que têm impacto na implantação bem-sucedida de recomendações, para delinear um plano estruturado para abordar e superar essas barreiras.\(^{[22]}\) Gabbay et al.\(^{[23]}\) demonstraram que os médicos raramente consultam e utilizam evidências explícitas de pesquisa ou de outras fontes diretamente;
Tabela 1 - Probabilidade de eficácia de diferentes intervenções de gestão de antimicrobianos na unidade de terapia intensiva

1. Maior Nível de Evidência
 - Auditoria prospectiva e devolutiva sobre prescrições de antimicrobianos
 - Monitoramento de fármacos terapêuticos para vancomicina, aminoglicosídeos, azóis e, se possível, betalactâmicos
 - Restrições de formulário
 - Uso de conhecimento sobre a epidemiologia e antibiogramas locais
 - Parceria com as unidades de controle de infecção e resistência de antimicrobianos ou especialistas/serviços de moléstias infecciosas
 - Comunicação sistemática e organizada com laboratórios de microbiologia, microbiologistas e unidades de farmacologia clínica
 - Comunicação ágil com a farmácia

2. De benefícios prováveis
 - Programas educacionais para todos os proveedores
 - Implantação de diretrizes
 - Estratégias de descalonamento
 - Utilização de testes rápidos de diagnóstico, em conformidade com as diretrizes de consenso locais

Fonte: adaptado de Kollef MH, Bassetti M, Francois B, Burnham J, Dimopoulos G, Gamacho-Montero J, et al. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship. Intensive Care Medicine. 2017;43(9):1187-97.

antes se apoiam em “linhas de pensamento” - normas tácitas reforçadas coletivamente e internalizadas. Esses autores demonstraram que as linhas de pensamento foram informadas principalmente por eles mesmos e pela experiência de seus colegas, suas interações internas e com líderes de opinião, pacientes e representantes da indústria farmacêutica. Tendem a ser negociadas de forma iterativa, com uma variedade de atores-chave, com frequência por meio de uma diversidade de interações informais em “comunidades fluidas de prática”. Pakyz et al., em estudo qualitativo com utilização de entrevistas telefônicas semiestruturadas com 15 farmacêuticos, 21 centros médicos e seis médicos representantes de 21 centros médicos individuais, demonstraram que a implantação bem-sucedida de estratégias de AMS se relacionou com estilo de comunicação, tipos de relacionamento formado entre as pessoas da AMS e fora da AMS, e conflitos de gestão. O sucesso foi também influenciado pela disponibilidade de recursos humanos e de tecnologia da informação, além da capacidade de gerar e analisar dados específicos de AMS.

Mais ainda, já que é amplamente apoiada pela literatura e por organizações nacionais, tais como Public Health England, British Society for Antimicrobial Chemotherapy e grandes organizações e governos internacionais, a AMS requer a colaboração entre diferentes especialidades e envolvimento dos serviços médicos. A promoção da liderança dentro das próprias coortes, motiva a modificação de comportamento quanto ao uso de antimicrobianos. O tópico AMS deve ser parte da agenda de cada serviço médico, que, por sua vez, deve envolver-se na definição de alvos e objetivos e no delineamento da intervenção, sua implantação e seu monitoramento. A unidade de AMS do hospital precisa compreender que liderança não é exercer autoridade, mas dar poder às pessoas, e que, assim como qualquer programa de melhoria da qualidade, a unidade central de AMS deve mover-se da manutenção para o compartilhamento de poder e, finalmente, transmiti-lo para as unidades periféricas que receberam a intervenção.

Portanto, não existe um padrão-ouro de modelo para gestão. Diretrizes nacionais são úteis, porém a implantação efetiva precisa ser adaptada a cada serviço que receber a intervenção. Abordagens sob medida são necessárias, para que se definam os determinantes organizacionais e culturais e se assegure que a gestão de antimicrobianos seja implantada de forma eficaz em todos os lugares.

A gestão de antimicrobianos não deve ser implantada e realizada fora do escopo de uma iniciativa de melhoria da qualidade

Em cada hospital, a AMS deve ser vista como uma série de iniciativas de melhoria da qualidade devidamente adaptadas, conectadas por um objetivo global em comum. As iniciativas de melhoria da qualidade devem seguir um ciclo pré-especificado de melhorias, que inclua um planejamento amplo, porém também que meça os resultados das ações implantadas. Como qualquer iniciativa de melhoria da qualidade, a AMS necessita do estabelecimento adaptado de alvos e objetivos e de uma definição do tempo até obtenção do alvo, inclusive documentação de comportamentos específicos de prescrição que se tenham como alvos da intervenção; de um pacote de mudança; de uma estrutura de realimentação que permita a provisão de um resumo do desempenho clínico em cuidados da saúde em um período especificado de tempo e de um planejamento de ações, com indicação de lacunas de qualidade e oportunidades de melhoria,
com recompensas ou motivações para atingir os alvos e como uso de planos de ação se não se atingir o alvo. Pode-se obter maior melhoria com funções adicionais de modificação do comportamento em uma série de ciclos de Planejar-Fazer-Estudar-Agir.

Em 2016, estabeleceu-se um painel de consenso entre especialistas em métricas na avaliação do impacto de intervenções de gestão ao nível do paciente em ambiente de cuidados agudos e definiu-se um conjunto de indicadores de processos e resultados prontos para uso imediato e acompanhamento. Contudo, métricas e indicadores devem ser definidos localmente e ser diferentes em variados ambientes, já que os alvos podem - e devem - ser diversos.

Independentemente, a implantação e a utilização de uma base de dados que forneça realimentação contínua das métricas e dos indicadores aos provedores de saúde são fundamentais, porém frequentemente acarretam um problema na vida real. Em geral, as métricas de vigilância são derivadas de fontes de dados eletrônicos separadas: dados de prescrição de antibióticos (com base na farmácia), resultados de microbiologia (com base no laboratório) ou códigos diagnósticos (com base na administração), ou uma combinação deles. Vigilância não é a finalidade primária dessas fontes de dados, e o uso delas resulta em problemas na combinação dos dados de prescrição de antibióticos com as informações clínicas ou microbiológicas correspondentes. Sua capacidade de representar a natureza complexa do processo decisório na prescrição de antibióticos e, consequentemente, sua utilidade prática para fornecer uma compreensão da prescrição de antibióticos são limitadas. Quando se conecta essas fontes, idealmente dentro do próprio registro eletrônico de dados, pode-se obter uma compreensão mais profunda dos diferentes fatores que guiam o uso de antimicrobianos. A criação de interfaces entre prontuário eletrônico, sistemas de laboratório e ferramentas especializadas ou gerais (porém adaptadas) de análise, tem sido tornado estratégia mais comum e amplamente empregada.

Recentemente De Bus et al. descreveram o sistema utilizado na UTI do Ghent University Hospital. Nessa instituição, os dados de prescrição de antibióticos foram combinados de forma prospectiva com os de diagnóstico e microbiologia por médicos da UTI, por meio de um programa de computador dedicado durante um período de 4 anos. A definição do foco de infecção e a probabilidade de infecção (alta/moderada/baixa) foram reavaliadas por médicos dedicados da UTI quando da alta do paciente. Ao combinar prospectivamente os dados de antibióticos, microbiologia e clínicos, construiu-se uma base de dados longitudinal sobre o uso de antibióticos e diagnóstico de infecção: 80% dos dias de tratamento com antibacterianos se ligaram com infecção, sendo o foco predominante o trato respiratório (49%); a causa microbiana foi identificada em 56% dos casos e probabilidades de infecção moderadas/baixas responderam por 42% dos dias de tratamento com antibacterianos para infecções do trato respiratório. Isso permitiu a identificação dos padrões de prescrição de antibióticos que demandam futura atenção de gestão de antimicrobianos.

Em nossa opinião, a AMS deveria sempre ser vista como uma iniciativa de melhoria de qualidade, o que exige um pacote de mudança com base em evidência, idealmente em conjuntos; clara definição dos alvos, indicadores e objetivos localmente adaptados; um sistema de mensuração dinâmica e coleta de dados, com devolutiva para os prescritores em base continuada; uma estratégia para construir capacidades (disponibilidade de conhecimento especializado, educação, treinamento prático e modelamento de papeis); um plano para identificar e abordar áreas para melhoria e resolver lacunas de qualidade, com utilização de intervenções educacionais e comportamentais; e comprometimento da liderança da UTI e envolvimento da equipe, com tarefas e responsabilidades.

A gestão de antimicrobianos não deve ser conduzida sem o engajamento dos consumidores

Há boa evidência de que campanhas públicas para promoção do uso responsável de antibióticos podem se associar com redução do uso global destes medicamentos. Estimou-se que o impacto individual de várias campanhas públicas realizadas na Europa entre 1997 e 2007 foi equivalente a uma queda de 6,5% a 28,3% do nível médio de uso global de antibióticos. Os fatores que levam a campanhas de conscientização bem-sucedidas incluem objetivar uma grande audiência, como familiares, pacientes, profissionais de saúde, farmacêuticos na comunidade e formuladores de políticas; o uso de mídia social e de massa; a repetição de mensagens-chave simples; e a manutenção da difusão dessas mensagens mesmo após o final da campanha, melhorando de forma global o conhecimento sobre saúde. Na verdade, sustentar os impactos obtidos é a principal dificuldade, porém isto pode ser conseguido quando se incorpora esse conceito ao relacionamento médico-paciente, ou seja, fornecendo a pacientes e familiares informações a respeito das opções terapêuticas, inclusive evidências a respeito da eficácia e prováveis benefícios e riscos, para apoiar o envolvimento dos pacientes e o compartilhamento da tomada de decisões. A representação dos consumidores nos comitês de gestão de antimicrobianos também deve possibilitar a existência de comunicação efetiva.
CONCLUSÃO

A gestão de antimicrobianos deve ser realizada tratando da preservação da eficácia dos antibióticos como finalidade principal; como intervenção multifacetada, com utilização de estratégias estruturais, restritivas e capacitantes; utilizando intervenções tanto educacionais quanto comportamentais e painéis informativos com base tecnológica; delineada como intervenção direcionada pelo serviço/unidade de terapia intensiva que sofre a intervenção, para construir capacitação e, progressivamente, transferir a liderança da unidade central de AMS para a equipe local; definindo alvos locais adaptados e promovendo retroalimentação constante e resolvendo a lacuna de atitude; como uma iniciativa de melhoria da qualidade; e envolvendo consumidores (pacientes e familiares) e a sociedade como um todo.

REFERÊNCIAS

1. Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017;2:CD003543.
2. Dyar OJ, Huttner B, Schouten J, Pulcini C, ESIDM (ESGIDM Study Group for Antimicrobial stewardship) What is antimicrobial stewardship? Clin Microbiol Infect. 2017;23(11):793-8.
3. Hulscher ME, Pines JM. Antibiotic stewardship: does it work in hospital practice? A review of the evidence base. Clin Microbiol Infect. 2017;23(11):799-805.
4. Cox JA, Vlieghe E, Mendelson M, Wertheim H, Ndegwa L, Villegas MV, et al. Antibiotic stewardship in low- and middle-income countries: the same but different? Clin Microbiol Infect. 2017;23(11):812-8.
5. McGowan JE Jr, Gerding DN. Does antibiotic restriction prevent resistance? New Horiz. 1996;4(3):370-6.
6. Klein EY, Van Boeckel TP, Martinez EM, Gandra S, Levin SA, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):E3463-70.
7. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14(8):742-50.
8. Pulcini C, Binda F, Lamkang AS, Trett A, Charani E, Goff DA, et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin Microbiol Infect. 2019;25(1):20-5.
9. De Waele JJ, Akova M, Antonelli M, Canton R, Carlet J, De Backer D, et al. Antimicrobial resistance and antibiotic stewardship programs in the ICU: insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med. 2018;44(2):189-96.
10. Kollef MH, Bassetti M, Francos B, Burnham J, Dimopoulos G, Garnacho-Montero J, et al. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship. Intensive Care Med. 2017;43(9):1187-97.
11. Dyar OJ, Nathwani D, Monnet DL, Gyssens IC, Stålsby Lundborg C, Pulcini C, ESIDM (Student-PREPARE Working Group. Do medical students feel prepared to prescribe antibiotics responsibly? Results from a cross-sectional survey in 28 European countries. J Antimicrob Chemother. 2018;73(8):2236-42.
12. Klein Kolwouenberg CM, Cremer DL, van Vught LA, Ong DS, Frencken JF, Schultz MJ, et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care. 2015;19:319.
13. Paiva JA, Mergulhão P, Gomes A, Taccone FS, Van den Abeele AM, Bulpa P, et al. Drivers and impact of antifungal therapy in critically ill patients with Aspergillus-positive respiratory tract cultures. Int J Antimicrob Agents. 2017;50(4):529-35.
14. Yu VL, Singh N. Excessive antimicrobial usage causes measurable harm to patients with suspected ventilator-associated pneumonia. Intensive Care Med. 2004;30(8):735-8.
15. Denny KJ, de Waal J, Laupland KB, Harris PN, Lipman J. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect. 2020;26(1):35-40.
16. Rawson TM, Moore LS, Tsao A, Gilchrist M, Charani E, et al. Behaviour change interventions to influence antimicrobial prescribing: a cross-sectional analysis of reports from UK state-of-the-art scientific conferences. Antimicrob Resist Infect Control. 2017;6:11.
17. Charani E, Edwards R, Sevdalis N, Alexandrou D, Biddle E, Mullett D, et al. Behavior change strategies to influence antimicrobial prescribing in acute care: a systematic review. Clin Infect Dis. 2011;53(9):651-62.
18. Timsit JF, Bassetti M, Cremer O, Diakos G, de Waele J, Kalil A, et al. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med. 2019;45(2):172-89.
19. Halpern SD. Using default options and other nudges to improve critical care. Crit Care Med. 2018;46(3):460-4.
20. Zampieri FG, Soares M, Borges LP, Salluh JI, Ranzani OT. The Epimed Monitor ICU Database®: a cloud-based national registry for adult intensive care unit patients in Brazil. Rev Bras Ter Intensiva. 2017;29(4):418-26.
21. Charani E, Castro-Sanchez E, Sevdalis N, Kyriatsis Y, Drumright L, Shah N, et al. Understanding the determinants of antimicrobial prescribing within hospitals: the role of "prescribing etiquette". Clin Infect Dis. 2013;57(2):188-96.
22. De Waele JJ, Schouten J, Dimopoulos G. Understanding antibiotic stewardship for the critically ill. Intensive Care Med. 2016;42(12):2063-5.
23. Gabbay J, Le May A. Evidence based guidelines or collectively constructed “mindlines?” Ethnographic study of knowledge management in primary care. BMJ. 2004;329(7437):1013.
24. Pakyz AL, Moczygema LR, VanderWiel LM, Edmond MB, Stevens MP, Kuzel AJ. Facilitators and barriers to implementing antimicrobial stewardship strategies: Results from a qualitative study. Am J Infect Control. 2014;42(10 Suppl):S257-63.
25. Moehring RW, Anderson DJ, Cochran RL, Hicks LA, Srivinasa A, Dodds Ashley ES. Structured Taskforce of Experts Working at Reliable Standards for Stewardship (STEWARDS) Panel. Expert Consensus on Metrics to Assess the Impact of Patient-Level Antimicrobial Stewardship Interventions in Acute-Care Settings. Clin Infect Dis. 2017;64(3):377-83.
26. De Bus L, Gadeyne B, Steen J, Boelens J, Claeys G, Benoit D, et al. A complete and multifacetted overview of antibiotic use and infection diagnosis in the intensive care unit: results from a prospective four-year registration. Crit Care. 2018;22(1):241.
27. Saem M, Huttner B, Harbarth S for the World Health Organization Expert Committee on the Selection and Use of Essential Medicines Policy. Access and Use (PAU). Evaluation of antibiotic awareness campaigns. Available at http://www.who.int/selection_medicines/committees/expert/21/applications/antibacterials-ccps_rev/en/.
28. Filipini M, Ortiz LG, Masiero G. Assessing the impact of national antibiotic campaigns in Europe. Eur J Health Econ. 2013;14(4):587-99.
29. Huttner B, Goossens H, Verheij T, Harbarth S, CHAMP consortium. Characteristics and outcomes of public campaigns aimed at improving the use of antibiotics in outpatients in high-income countries. Lancet Infect Dis. 2010;10(1):17-31.
30. Australian Commission on Safety and Quality in Health Care. Antimicrobial Stewardship in Australian Health Care 2018. Sydney: ACSQHC, 2018.