Studying Gamow-Teller transitions and the assignment of isomeric and ground states at $N = 50$

Ali Mollaebrahimia,b,c,* Christine Hornungb, Timo Dickelb,c, Daler Amanbayevb, Gabriella Kripko-Konczb, Wolfgang R. Plaßb,c, Samuel Ayet San Andrésb,c, Sönke Beckb,c, Andrey Blazhev4, Julian Bergmamb,c, Hans Geisellc,d, Magdalena Görskad, Hubert Grawec,e, Florian Greinerb, Emma Haetnerb, Nasser Kalantar-Nayestanikif, Ivan Miskunb, Frédéric Nowacki2, Christoph Scheidenbergerb,c,e, Soumya Bagchif,g,h, Dimitri L. Balabanski, Ziga Brancic, Olga Charviakaf, Paul Constantinf, Masoumeh Dehghan, Jens Ebertb, Lizzy Gröbl, Oscar Hallb, Muhsin N. Harakehb, Sabit Kaurh, Anu Kankainenm,n,o, Ronja Knöfel, Daria A. Kostyleva, Natalia Kurkova, Natalia Kuzminchuk, Israel Mardorf, Dragos Nichitaf, Jan-Hendrik Otto, Zygmunt Patyk, Stephane Pietri, Sivaji Purushothaman, Moritz Pascal Reiter, Ann-Kathrin Rinkb, Heidi Roeschf, Anamaria Spătaru, Goran Stanic, Alexandru State, Yoshiki K. Tanakad, Matjaz Vencelj, Helmut Weickc, John S. Winfieldb,c, Michael I. Yavor, Jianwei Zhao

Abstract

Direct mass measurements of neutron-deficient nuclides around the $N = 50$ shell closure below 100Sn were performed at the FRS Ion Catcher (FRS-IC) at GSI, Germany. The nuclei were produced by projectile fragmentation of 125Xe, separated in the fragment separator FRS and delivered to the FRS-IC. The masses of 14 ground states and two isomers were measured with relative mass uncertainties down to 1×10^{-7} using the multiple-reflection time-of-flight mass spectrometer of the FRS-IC, including the first direct mass measurements of 98Cd and 97Rh. A new Q_{EC} of 5437 ± 67 keV was obtained for 98Cd, resulting in a summed Gamow-Teller (GT) strength for the five observed transitions ($0^+ \rightarrow 1^+$) as $B(GT) = 2.9_{-0.28}^{+0.32}$. Investigation of this result in state-of-the-art shell model approaches sheds light into understanding of the GT transitions in even-even isotones at $N = 50$. The excitation energy of the long-lived isomeric state in 21Rh was determined for the first time to be 293 ± 21 keV. This, together with the shell model calculations, allows the level ordering in 97Rh to be understood.

Keywords:
Mass spectrometry, multiple-reflection time-of-flight mass spectrometer, $N = 50$, Gamow-Teller transition, $B(GT)$ value, nuclear shell structure, isomers, isomer-to-ground state ratio, exotic nuclei

1. Introduction

The mass of a nucleus reflects its total binding energy and can be measured directly by high-precision mass spectrometry. The mass is one of the most fundamental properties in the
study of nuclear structure [1]. Isotopes in the medium-heavy and neutron-deficient region near the $N = 50$ and $N = Z$ lines are of special interest for nuclear structure studies as this region of the nuclear chart exhibits numerous unique phenomena [2, 3, 4, 5, 6]. Of these isotopes, the heaviest doubly-magic $N = Z$ nucleus, 100Sn, is the most desirable to study and attracts considerable attention [7, 8]. Independent measurements of the properties of 100Sn, such as the Q_{EC} value [9, 10] or the production cross-section [11] do not agree, which called for additional investigations [12]. Associated with the contradicting experimental results for the Q_{EC} are also large discrepancies in the Gamow-Teller strength B_{GT}. In general, strong resonances in Gamow-Teller (GT) transitions are observed for the isotopes decaying by β^+ or Electron Capture (EC) processes. The resonance is known to occur as a result of the interaction between the nucleons in the configuration of $1g_{9/2}$ and $1g_{7/2}$ orbitals near the $N = Z = 50$ shell closure [13, 14, 15, 16] and the accessible Gamow-Teller strength distribution within the large Q_{EC} values close to the proton drip-line. Necessary input parameters for the determination of the B_{GT} are the Q_{EC} values, half-lives, decay branching ratios and the level scheme of daughter nuclei. The most precise determination of Q_{EC} value is obtained by direct mass measurements of the mother and daughter nuclei. However, the production of exotic isotopes close to the proton drip-line and in the vicinity of the $N = Z$ line is challenging due to the very low production cross sections. As a result, their mass has often been measured indirectly with poor mass accuracy and not for all relevant isotopes so far.

By measuring the masses of nuclei, one can also study the appearance of excited metastable states, known as nuclear isomers. The properties of nuclear isomers [17, 18, 19] are also of great importance for understanding the structure of nuclei. Nuclear-shape deformations and excitation of nucleons in their shell levels can result in a major spin change compared to the corresponding ground state. Isomeric states can be investigated by high-precision mass spectrometry, yielding direct proof of their existence and determination of their excitation energy relative to the ground state. During the last two decades, high-resolution direct mass measurements of isomers were mainly performed with storage rings [20, 21] and Penning traps [22, 23]. The recent improvement of the MR-TOF-MS (Multiple-Reflection Time-Of-Flight Mass Spectrometer) technique with high resolving power [24] has facilitated the discovery and study of low-lying isomeric states [25, 26]. The FRS Ion Catcher (FRS-IC) at the fragment separator [27] at GSI offers unique conditions for production and high-precision measurements of the ground-state and isomeric-state masses of exotic nuclei [28, 29, 30].

The nuclear structure at $N = 50$ was studied experimentally by studying 14 isotopes and 2 isomers in that region of the nuclear chart, and the results where used to benchmark state-of-the-art large scale shell-model calculations and thus provide an improved basis for the predictions of the nuclear structure of 100Sn.

2. Experiment

The FRS Ion Catcher (FRS-IC) [30] is an experimental setup installed at the final focal plane of the fragment separator FRS [31] at GSI. The FRS in combination with the FRS-IC enables experiments with trapped exotic nuclei. The FRS-IC consists of three main parts: (i) the gas-filled Cryogenic Stopping Cell (CSC) [32, 33, 34] for slowing-down and thermalization of the exotic nuclei produced at relativistic energies, (ii) a radiofrequency quadrupole (RFQ) beamline [29, 35, 36, 37] for mass-selective transport and differential pumping, (iii) the MR-TOF-MS [28, 29] for performing direct mass measurements, which entails a unique combination of performance parameters - fast (\simms), accurate, broadband and non-scanning [28] operation. The mass measurement is done by injecting ions into the isochronous Time-Of-Flight (TOF) analyzer and confining them for a given number of turns between two electrostatic mirrors. The ions with different mass-to-charge ratio (m/q), obtain different velocities and are spatially separated in their path-line in the TOF analyzer. The mass-range selector (MRS) [28] at the center of the analyzer can also cut a certain range of masses by applying deflecting pulses while ions pass through it. The ions are then ejected from the TOF analyzer by opening the exit mirror toward the detector for recording the TOF for the different m/q species.

In the experiments reported here, the exotic nuclei and their isomeric states were produced via projectile fragmentation in two experiments. Experiment I was performed with an 800 MeV/u 124Xe projectile beam with an intensity of up to $1.5 \cdot 10^9$ ions per spill, a typical spill length of 3 s and a repetition rate of 0.2 Hz on a beryllium production target. The ions were then transported to MR-TOF-MS for the high-precision mass measurements. Experiment II was performed with a 600 MeV/u 124Xe projectile beam with an intensity of up to $1 \cdot 10^9$ ions per spill, with a typical spill length of 500 ms and a repetition rate of 0.25 Hz on a beryllium production target with an areal density of 8045 mg/cm2. The FRS was centered on 98Cd. The mono-energetic degrader at the central focal plane had an areal density of 737 mg/cm2. The fragments were then stopped and thermalized in the cryogenic stopping cell of the FRS-IC operating with helium at 85±1 K and 110±5 mbar corresponding to an areal gas density of 6.57±0.34 mg/cm2, and with a mean ion extraction time of about 80 ms from the CSC. The ions were then transported to MR-TOF-MS for the high-precision mass measurements. Experiment II was performed with a 600 MeV/u 124Xe projectile beam with an intensity of up to $1 \cdot 10^9$ ions per spill, with a typical spill length of 500 ms and a repetition rate of 0.25 Hz on a beryllium production target with an areal density of 1622 mg/cm2. The centered fragment in the FRS was 94Rh. The mono-energetic degrader at the central focal plane had an areal density of 737 mg/cm2. The CSC operated at a pressure of 75±5 mbar and a temperature of 82±1 K, corresponding to an areal density of 4.64±0.31 mg/cm2 helium. This results in a mean ion extraction time of about 200 ms from CSC. In both experiments, a mass resolving power of 400,000 to 500,000 was achieved.

The development and validation of the MR-TOF-MS data analysis procedure is presented in a separate publication [38]. To convert time-of-flight into mass, two mass calibrant ions are used; all (see Tab. 1) have have negligible small mass uncertainties. Mass values, their uncertainties and rates of the measured isotopes are obtained after fitting the mass peaks to a Hyper
Exponentially-Modified Gaussian (Hyper-EMG) function [39]. The procedure allows accurate mass determination even for the most challenging conditions, including very low numbers of events and overlapping mass peaks. Unresolved isomeric states are reflected as an additional uncertainty contribution to the evaluation of the ground-state mass (AME, appendix B4 [40]). In the mass measurements reported in Ref. [24], a total relative uncertainty down to $1.7 \cdot 10^{-3}$ was achieved.

3. Results

The mass measurements are summarized in Table 1. The Birge ratio [41] is calculated for the isotopes with known direct mass measurements to be 0.86, thus showing the excellent agreement with literature values. For 97Ag, the isomer-to-ground-state ratio of 0.079 ± 0.019 was obtained and is in agreement with Ref. [25]. As the mass accuracy reported here is similar to the one reported in [26], we calculate the weighted average of the mass excess value to $\sim 70914 \pm 10$ keV.

The excitation energy of the isomeric state in 94Rh was measured for the first time and is determined to be 293 ± 21 keV. The measured mass distribution of 94Rh ions and the corresponding fitted curves are shown in Figure 1 where two measurements are combined and weighted by their errors. For the 94Rh nucleus, two states with half-lives of the order of a minute are reported in literature. The relative order of the two states and their assigned spins is currently under discussion. In NUBASE 2020 [42], the ground state is assigned to the $(4)^+$ state with a half-life of 70.6 s. For the isomeric state, a spin-parity of $(8)^+$ and a half-life of 25.8 s with only an extrapolated value for excitation energy (#300 keV) has been reported. The spin-parity assignment of the ground state is based on a β end-point measurement of the $(4)^+$ state, which was reported originally as a $(3)^+$ state, with a half-life of 70.6 s [42]. In this reference, a Q_{EC}-value of 10.04 ± 0.4 keV for 94Rh decaying to 94Ru was reported and was assigned to the isomeric state of 94Rh. However, shell model calculations [43] disagree with this assignment, predicting the state with 70.6 s half-life to be an excited state at 145 keV with spin-parity $(4)^+$ and the $(8)^+$ state to be the ground state with 25.8 s half-life.

The ground state of 97Rh is measured for the first time in a direct mass measurement. The previous mass evaluation is from the β-end-point energy $Q_{EC} = 3520 \pm 40$ keV. This value is a weighted average of two different measurements [45, 46]. The ground state of 97Rh and the low-lying isomeric state 97mRh are fitted by using a double Hyper-EMG function with a fixed distance between the ground state and the isomeric state of 258.76 \pm 0.18 keV known from gamma spectroscopy [47]. This allows the determination of the ground-state mass even though the isomeric state is not fully resolved. An isomer-to-ground state ratio of 0.064 ± 0.043 was determined. Our measurement improves the uncertainty by more than a factor 2 and shows that the nucleus is 50 keV less bound compared to the previous indirect measurements.

The mass of ground-state of 98Cd is measured directly for the first time. The previous indirect measurements, which are the basis of the mass value reported in the AME2020 [40], are from the β-end-point energy measurement with $Q_{EC} = 5430 \pm 40$ keV published in a conference proceeding [48] and in a non-peer-reviewed laboratory report [49] and $Q_{EC} = 5330 \pm 140$ keV evaluated based on a semi-empirical method [50]. The high sensitivity and reliability of the MR-TOF-MS setup provides the possibility of a mass measurement with a very-low number of identified ions. This has been verified in previous experiments using the FRS-IC [25, 24]. A further benchmark is the high mass-accuracy achieved with only 5-6 counts (97Pd and 100Pd) in this paper. 98Cd (7 counts) was analyzed using the same technique, see (Figure 1). An expected background of 1.7 \pm 0.2 counts under the peak is determined from the measurement. The probability of having 7 background events based on the expected background is only 0.15%. The possibility that an unexpected contamination peak lies beneath the 98Cd is included in the uncertainty of the mass value. From the particle identification of the FRS and the known efficiencies of the setup we expect 4 events of 98Cd, thus in very good agreement with the measured rate. A mass excess value of $\sim 6763 \pm 60$ keV was determined for the ground state of 98Cd. Note that the production of 98Cd by projectile fragmentation of 124Xe has a cross-section of 18 nb [11] only, which further illustrates the high sensitivity of the FRS-IC.

4. Assigned Level scheme for the nuclide 94Rh

From our mass measurement, it was possible to directly measure the excitation energy of 293 ± 21 keV for the isomeric state of 94Rh for the first time, a similar excitation energy of 270.09 ± 0.08 keV as for the $(4)^+$ isomer in the neighboring 92Tc isotope. This is already a strong indication that both isotopes should have a similar level scheme for the first excited states; $(8)^+$ ground state and $(4)^+$ isomeric state [42]. From other isotonic chains in this region of the chart of nuclei, one would expect an increase in excitation energy with increasing number of protons. This expected effect is in agreement with the excitation energy of 94Rh measured here compared to the excitation energy in 92Tc.

Previously, 94Rh was investigated in Penning-trap measurements at JYFLTRAP [52]. There, only one state was measured in the fusion reaction 40Ca+58Ni. This reaction was also studied at SHIP at GSI [53]. In this measurement, the grow-in behaviour of the 25.8 s and the 70.6 s states were compared. The 25.8 s (high spin) state is produced directly in the reaction, while the 70.6 s state (lower spin) showed a feeding from the β decay of 94Pd. Based on the results from Kurciewicz et al. [53] and employing an additional study of the states in 94Ru, Weber et al. [52] assigned the mass measured at JYFLTRAP to the $(8)^+$ state, following the argument that fusion-evaporation reactions generally tend to produce higher spin states. In addition to the ME value of the $(8)^+$ state in 94Rh, the ground state masses of 94Pd and 94Ru were measured at JYFLTRAP and SHIPTRAP [52]. With the subsequent measurement of these three isotopes, it was possible to determine Q_{EC}-values of the β-decays of 94Pd and of the $(8)^+$ state of 94Rh. This has yielded Q_{EC}-values of 6809.6\pm6.3 keV and 9673.1\pm5.9 keV, respectively. The Q_{EC}-values of the β decays of 94Pd and of the 70.6 s state of 94Rh,
which was assigned to a spin-parity of \((4^+)_T\), were obtained via the total \(\gamma\)-ray absorption techniques \([53]\). They measured \(Q_{\text{EC}}\) values of 6700\(\pm\)320 keV and 9750\(\pm\)320 keV, respectively. The ME value of \(^{94}\)Rh was investigated by the Canadian Penning Trap (CPT) mass spectrometer \([55, 56]\) as well. In this measurement, only one state was observed and they followed the same arguments as Weber et al. to assign the measured value to the \((8)^+\) in \(^{94}\)Rh.

The ME value of the present experiment for the ground state of \(^{94}\)Rh is 23\(\pm\)20 keV higher than the AME2020 value. For the isomeric state, the literature data are very controversial. The directly-measured excitation energy with the MR-TOF-MS in combination with the spin-parity assignment above disentangles the level scheme of \(^{94}\)Rh and fixes all levels on an absolute scale, which have only been measured relative to the isomeric state. The resulting level scheme is shown in Figure 2. The additional information on the level scheme are taken from the Evaluated Nuclear Structure Data File (ENSDF), published in Ref. \([57]\).

Calculations in several different shell model approaches were performed. The \(\nu(p_{1/2}, g_{9/2})\) model space and a \(^{56}\)Sr core were used with an empirically fitted isospin-asymmetric interaction \([53]\) (GF) and an isospin-symmetric empirical fit (HB) \([44]\). The latter served as the basis for a comprehensive binding energy extrapolation in the triangle \(^{76}\)Sr, \(^{88}\)Sr and \(^{100}\)Sn relative to \(^{88}\)Sr \([44]\). Furthermore, Large Scale Shell Model (LSSM) calculations have been performed in the full \(\nu r_3g\) model space between \(^{56}\)Ni and \(^{100}\)Sn using the JUN45 interaction \([59]\) and in the full \(n = 4\) harmonic oscillator \(sdg\) shell. This latter valence space has the advantage of incorporating \(Z, N = 50\) core excitations and contains full \(0\hbar\omega\) correlations for \(E2\) and Gamow-Teller operators. The corresponding hamiltonian is the SDGN effective interaction \([60, 61, 62, 9]\) which provides excellent spectroscopy in the \(A = 90 - 120\) region. The largest diagonalisations achieved in this study were for the Yrast band of \(^{94}\)Rh with 15 \(\cdot\) 10\(^{3}\) basis states dimension.

The results yield a good agreement with experiment except for the relative isomer position in the HB approach. This, however, should not be an argument for the existence of isospin-asymmetry in the interaction, as JUN45 is an isospin symmetric interaction and reproduces the isomer energy very well. The deviations for the newly established energy of the \(1^+\) state in \(^{94}\)Rh as observed in Gamow-Teller (GT) decay of \(^{94}\)Pd are due to their content of core-excited configurations. This is demonstrated in the calculation including sdg model space where the agreement is remarkable.

5. Systematic studies of nuclides at the \(N = 50\) shell closure

The nuclear structure and shell evolution around the \(N = 50\) shell closure can be studied by direct mass measurements. Two-neutron separation energy and shell gap are among the observables which can be derived from these mass measurements. The shifted two-neutron shell gap (shifted for \(N + 2\) due to lack of experimental data for \(N = 48\)) is described as \(\Delta_{2N}(Z, N = 4) = M(Z, N) - 2 \cdot M(Z, N + 2) + M(Z, N + 4)\) \([12]\). This observable is also the basis for the argument in a recent article by M. Mougeot et al. \([12]\) about the correct \(Q_{\text{EC}}\) value and the corresponding binding energy reported for the doubly-magic \(^{100}\)Sn. Currently there exist two contradictory measurements \([9, 10]\). Figure 2 shows \(\Delta_{2N}\) for \(N = 50\). The sudden jump based on the \(Q_{\text{EC}}\) measured in Ref. \([10]\) was unfavored.

Nuclide	Calibrant	Number of Isochronous Turn	ME/EX\(_{\text{95-IC}}\) / keV	ME/EX\(\text{AME2020}\) / keV	Difference / keV	Number of events	Exp.
\(^{94}\)Ru	\(^{12}\)C\(_{1/2}^1\)F\(_{3}\)	625 (A = 94)	-82556 \(\pm\) 34	-82584 \(\pm\) 3	28 \(\pm\) 34	69 (II)	
\(^{94}\)Rh	\(^{12}\)C\(_{1/2}^1\)O\(_{3}\)F\(_{3}\)	625 (A = 94)	-72885 \(\pm\) 20	-72908 \(\pm\) 3	23 \(\pm\) 20	338 (II)	
\(^{94}\)Rh	\(^{12}\)C\(_{2/2}^1\)O\(_{3}\)F\(_{3}\)	625 (A = 94)	293 \(\pm\) 21	-	-	64 (II)	
\(^{96}\)Ru	\(^{96}\)Ru	800 (A = 97)	-86075 \(\pm\) 28	-86080 \(\pm\) 0.17	5 \(\pm\) 28	15 (I)	
\(^{96}\)Rh	\(^{96}\)Pd	800 (A = 97)	-79655 \(\pm\) 40	-79688 \(\pm\) 10	33 \(\pm\) 41	10 (I)	
\(^{97}\)Rh	\(^{97}\)Pd	800 (A = 97)	-82550 \(\pm\) 19	-82600 \(\pm\) 40	50 \(\pm\) 44	77 (I)	
\(^{97}\)Rh	\(^{97}\)Rh	800 (A = 97)	fixed	258.76 \(\pm\) 0.18	-	4 (I)	
\(^{97}\)Ag	\(^{97}\)Ag	800 (A = 97)	-77824 \(\pm\) 59	-77806 \(\pm\) 5	-18 \(\pm\) 59	6 (I)	
\(^{97}\)Cd	\(^{97}\)Cd	800 (A = 97)	-70940 \(\pm\) 19	-70904 \(\pm\) 12	-36 \(\pm\) 22	54 (I)	
\(^{97}\)Pd	\(^{97}\)Pd	800 (A = 97)	608 \(\pm\) 73	620 \(\pm\) 40	-12 \(\pm\) 48	4 (I)	
\(^{99}\)Ag	\(^{99}\)Ag	800 (A = 97)	-81326 \(\pm\) 21	-81321 \(\pm\) 5	-5 \(\pm\) 22	102 (I)	
\(^{99}\)Cd	\(^{99}\)Cd	800 (A = 97)	-67633 \(\pm\) 60	-67640 \(\pm\) 50	7 \(\pm\) 78	7 (I)	
\(^{99}\)Pd	\(^{99}\)Pd	800 (A = 97)	-76709 \(\pm\) 33	-76712 \(\pm\) 6	3 \(\pm\) 33	53 (I)	
\(^{101}\)Ag	\(^{101}\)Ag	800 (A = 99)	-85202 \(\pm\) 60	-85213 \(\pm\) 18	11 \(\pm\) 63	5 (I)	
\(^{101}\)Cd	\(^{101}\)Cd	800 (A = 99)	-78095 \(\pm\) 31	-78138 \(\pm\) 5	43 \(\pm\) 32	12 (I)	
\(^{101}\)In	\(^{101}\)In	800,850 (A = 99, 100)	-74194 \(\pm\) 12	-74195 \(\pm\) 2	0.7 \(\pm\) 12	74 (I)	

Table 1: Measured mass excess (ME) values for ground states and the excitation energies of isomers (EX). \(^{1}\) Value reported in AME2020 \([40]\) based on an indirect measurement (private communication) \([49]\) and semi-empirical method \([50]\). \(^{2}\) Indirect measurement from beta end-point measurements. \(^{*}\) Assignment to ground and isomeric states previously uncertain. For the nuclides with previously known masses a Birge ratio of 0.86 was obtained.
For 98Cd the data were fitted with a Hyper-EMG function with one exponential tail on each side. For 94Rh the ground state (red curve) and isomeric state (blue curve) were fitted with a double Hyper-EMG with one exponential tail on the left side. An isomer-to-ground state ratio of 0.19(4) was determined. The histogram of the measured spectrum (black data points) is only drawn to guide the eye; the data analysis was based on the unbinned data (rug graph) below the mass spectrum using the weighted Maximum Likelihood procedure described in Ref. [51].

Figure 2: Experimental level scheme of 94Rh versus shell model calculations for various interactions and model spaces. The suggested assignment of the spins of the ground and isomeric states is based on previous Penning trap measurements of the long-lived state and the direct measurement of both states and thus the excitation energy in this work. The red color shows the entangled states affected by the direct measurement of isomer. The further level information is taken from the ENSDF, published in Ref. [57].

6. Gamow-Teller transition’s strength

The Gamow-Teller transition in beta decay refers to a configuration in which the spins of the emitted electron and antineutrino (or positron and neutrino) are parallel, coupling to total spin $S = 1$, leading to an angular momentum change $\Delta J = 0, \pm 1$ between the initial and final states of the nucleus. The transition probability or strength of the decay strongly depends on the underlying shell structure and it is usually distributed among several states. The strength of the beta-decay is usually referred to for direct comparison of the transition probability in different nuclei, independent of energy and atomic number Z in mother nuclei, and can be described as follows for a single-state transition [10]:

$$B(\text{GT}) = \frac{2\pi^2 \hbar^3 \ln(2)}{m_e c^4 G_F^2 V_{ud}^2 (G_A/G_V)^2 f t_{1/2}} = \frac{3885 \pm 14}{f(Z, \epsilon_0) t_{1/2}}$$

where $f(Z, \epsilon_0) t_{1/2}$ value is the comparative half-life calculated by knowing the decay energy Q_{EC}, half-life $t_{1/2}$ and the decay scheme. The $f(Z, \epsilon_0) t_{1/2}$ value is proportional to the fifth power of Q_{EC}, thus very sensitive in $B(\text{GT})$ determinations. G_A/G_V is the weak coupling constant. G_F and V_{ud} are the Fermi coupling constant and the CKM matrix element, respectively. c is speed of light and m_e is electron mass.
delayed high-resolution gamma-spectroscopy could be considered as reliable, while generally only total absorption gamma-spectroscopy can guarantee the correct estimation of all decay branches, especially the ones de-exiting by low-intensity high-energy gamma-cascades. This is known as the so-called Pandemonium problem (Refs. [68]-[69]). For ^{100}Sn ($N = 50$) so far the highest GT strengths have been reported [9]-[13] for the decay of ^{100}Sn to the single state of 1^+ in ^{100}In. Figure 4 represents the GT strength of the even-even isotones on $N = 50$ (top panel), where the main strength comes from a change of proton from the shell 1g$_9/2$ to a neutron in shell 1g$_7/2$ during the beta transition, separated by a large energy gap at $N = 50$.

A new $Q_{\text{EC}} = 5437 \pm 67$ for ^{98}Cd nuclide was deduced from the mass of ^{98}Cd measured in this work and the mass of daughter nuclide ^{98}Ag from literature [40]. The new Q_{EC} value has an uncertainty that is less than half of that of the extrapolated value ($Q_{\text{EC}} = 5330 \pm 140$) reported in Ref. [50]. The old values were obtained from the beta end-point energy measurements ($Q_{\text{EC}} = 5430 \pm 40$) reported in a conference proceeding [48] and a non peer-reviewed GSI report [49]. Using the new Q_{EC} from this work, the improved half-life ($t_{1/2} = 9.29 \pm 0.1$ s) from Ref. [70] and the log(f) values calculated from Ref. [71] together with the recent decay scheme presented in Ref. [72], the summed Gamow-Teller strength ($B(\text{GT})$) for the five observed transitions ($0^+ \rightarrow 1^+$) is $B(\text{GT}) = 2.94^{+0.32}_{-0.28}$ (red circle in figure 4). The new GT strength has almost a factor 3 improved uncertainty and is still consistent with the previously reported value of $B(\text{GT}) = 3.5^{+0.8}_{-0.7}$ in Ref. [50] and in agreement with the value reported in Refs. [49]-[48] of $B(\text{GT}) = 2.9 \pm 0.2$. The new $B(\text{GT})$ value resulting from the direct mass measurement of ^{98}Cd avoids possible systematic errors in beta end-point energy measurements of Q-values. In addition, we note that the previously reported $B(\text{GT})$ values were based only on observation of feeding to four transitions and a less-precise half-life [50]-[49] (black star and black triangle at $Z = 48$). The direct measurement reported here confirms the previous indirect and non peer-reviewed results, thus the general discussions with respect to the GT hindrance factor, in Refs. [50]-[73] and most recently in Ref. [14] are still correct.

The first attempt to describe the the Gamow-Teller strength in the vicinity of ^{100}Sn was with the Shell Model Monte Carlo (SMMC) approach [74] but provided only the total GT strength, and without assessing the spectroscopy and ph core excitations. State-of-the-art large scale shell (LSSM) model calculations within the sdg valence space and GDSN interaction are presented in Figure 4. The LSSM calculations allow configurations with up to 6p-6h excitations across the $Z = N = 50$ closed shell, and the “standard” quenching factor of $(0.75)^2 \approx 0.56$ as discussed above. These results are compared with the experimental values for the $N = 50$ and $N = 52$ (Figure 4) isotones. In both, the protons and neutrons in the beta decay experience the same transition from $\pi 1g_{9/2}$ to $1g_{7/2}$, although for $N = 52$ there is already a partial occupation of $1g_{7/2}$ shell which reduces the GT strength. Two sets of calculations are shown, either summing the GT strength for the observed decaying states (solid line) or for the total strength contained in the Q_{EC} window (dashed line), thus it indicates experimentally not observed
GT strength. In both cases, the theoretical systematics suggest a relatively smooth trend towards and including Z = 50. The approach to only considering the experimentally known transition in the B(GT) model calculations is done for the first time. It shows a remarkable good agreement between experiment and theory and clearly favors the B(GT) value as reported in the paper of Lubos et al., [10].

7. Conclusions

Mass measurements of isotopes near the N = 50 shell closure have been performed, including 14 ground-state masses and two isomers. Among them, the mass of 98Cd and 97Rh and the excitation energy of 94mRh have been measured directly. For 94Rh, four different shell model calculations have been performed and together with the measure excitation energy (293 ± 21 keV) allow to understand the level ordering and spin-parity assignments of the ground and the isomeric states. The controversy of the QEC values for 108Sn [9,10,12] was investigated with two approaches, the shifted two-neutron shell gap \(\Delta_{2n}(N, N+2) \) and the Gamow-Teller strength B(GT). The previously only indirectly measured isotopes that have an influence on \(\Delta_{2n}(N, N+2) \) at N = 50 have been measured directly and confirm the previously known trends. So if one follows the arguments laid out in Ref. [12], this supports the QEC reported in Ref. [9]. In addition to this, a systematic comparison of experimental and theoretical B(GT) values for even-even isotopes N = 50 and N = 52 was performed. For 98Cd the B(GT) value is determined to be 2.94±0.32 (GT) for the first time by direct measurements. Large scale shell-model calculations have been performed for the full B(GT) strength and, more importantly, also for the experimentally known transitions, enabling for the first time a direct comparison between theory and experiment. The experimental and theoretical value are in perfect agreement. The large scale shell-model calculations clearly support the B(GT) as reported in Ref. [10]. The \(\Delta_{2n}(N, N+2) \) and B(GT) investigations for 108Sn come to contradictory results. Therefore, the current situation calls for new and improved experiments which could solve the ambiguity of the QEC of 108Sn and consequently B(GT) value, for example by a direct mass measurement of 108Sn at the FRS-IC.

Acknowledgments

The authors acknowledge a long-standing collaboration with Hubert Grawe and John S. Winfield and deeply regret their passing. The results presented here are based on the experiment S474, which was performed at the FRS at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) in the context of FAIR Phase-0. The results presented in this paper are based on work performed before February 24th 2022. This work was supported by the German Federal Ministry for Education and Research (BMBF) under contracts no. 05P19RGF1 and 05P21RGF1, by the German Research Foundation (DFG) under contract no. SCHE 1969/2-1, by the Hessian Ministry for Science and Art (HMWK) through the LOEWE Center HICforFAIR, by HGS-HIRe, and by Justus-Liebig-Universität Gießen and GSI under the JLU-GSI strategic Helmholtzpartnership agreement. The paper was partly financed by the international project “PMW” of the Polish Ministry of Science and Higher Education; active in the period 2022-2024; grant Nr 5237/GSI-FAIR/2022/0.

References

[1] C. Scheidenberger, Nuclear Physics A 751, 209 (2005)
[2] V. Isacker et al., Phys. Rev. Lett. 74, 4607 (1995)
[3] I. Bentley and S. Frauenfeld, Physical Review C 88, 014322 (2013)
[4] I. Mukha et al., Nature 439, 298 (2006)
[5] A. Hamaker et al., Nature Physics 17, 1408 (2021)
[6] H. Haetnet et al., Phys. Rev. Lett. 106, 122501 (2011)
[7] T. Faestermann et al., Proc. in Part. and Nucl. Phys. 69, 85 (2013)
[8] M. Gieß, Phys. 4, 364 (2022)
[9] C. B. Hinke et al., Nature 486, 341 (2012)
[10] D. Lubos et al., Phys. Rev. Lett. 122, 222502 (2019)
[11] H. Suzuki et al., Nucl. Instrum. Meth. B 317, 756 (2013)
[12] M. Mougeot et al., Nature Physics 17, 1099 (2021)
[13] A. Juodagalvis et al., Physical Review C 72, 024306 (2005)
[14] L. Batist et al., The Eur. Phys. Jour. A 46, 46 (2010)
[15] M. Kanny et al., Nuclear Physics A 640, 3 (1998)
[16] Z. Hu et al., Phys. Rev. C 60, 024315 (1999)
[17] P. M. Walker et al., “Nuclear Isomers,” in Handbook of Nuclear Physics (Springer Nature Singapore, Singapore, 2020).
[18] P. Walker, Nuclear Physics A 834, 22c (2010)
[19] G. D. Dracoulis et al., Reports on Progress in Physics 79, 076301 (2016)
[20] L. Chen et al., Phys. Rev. Lett. 110, 122502 (2013)
[21] B. Franke et al., Mass Spectrometry Reviews 27, 428 (2008)
[22] M. Block et al., Phys. Rev. Lett. 100, 132501 (2008)
[23] K. Blaum, Physics Reports 425, 1 (2006)
[24] I. Mador et al., Phys. Rev. C 103, 034319 (2021)
[25] C. Hornung et al., Physical Letters B 802, 135200 (2020)
[26] S. Beck et al., Phys. Rev. Lett. 127, 112501 (2021)
[27] H. Geissel et al., Phys. Rev. Lett. 68, 8412 (1992)
[28] T. Dickel et al., Nucl. Instrum. Meth. A 777, 172 (2015)
[29] W. R. Phal et al., Nucl. Instrum. Meth. B 266, 4560 (2008)
[30] W. R. Phal et al., Nucl. Instrum. Meth. B 317, 457 (2013)
[31] H. Geissel et al., Nucl. Instrum. Meth. B 70, 286 (1992)
[32] M. Ranjan et al., Europhys. Lett. 97, 42001 (2013)
[33] S. Purushothaman et al., Europhys. Lett. 170, 20002 (2017)
[34] S. Mitra et al., Nucl. Instrum. Meth. A 797, 87 (2015)
[35] M. P. Reiter, Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell, Ph.D. thesis, Universität Gießen (2015).
[36] I. Miskun et al., GSI Sci. Rep. 2014-1, 146 p. (2015)
[37] E. Haetnet et al., Nucl. Instr. Meth. A 880, 138 (2018)
[38] S. Ayet San Andrés et al., Phys. Rev. C 99, 064313 (2019)
[39] S. Ayet San Andrés et al., Int. J. Mass Spectrom. 421, 245 (2017)
[40] F. Kondev et al., Chinese Physics C 45, 030001 (2021)
[41] R. N. Kacker et al., Nat. Inst. of Stan. and Tech. 115, 453 (2010)
[42] F. Kondev et al., Chin. Phys. C 45, 030001 (2021)
[43] K. Ozorn et al., Zeit. für Phys. A 294, 369 (1980)
[44] H. Herndi et al., Nuclear Physics A 627, 35 (1997)
[45] B. Basi et al., Nuclear Physics 33, 347 (1962)
[46] V. L. Chikhladze et al., Theoretical Physics 43, 453 (1962).
[47] W. Pueckebbaum, Zeit. für Phys. A 273, 393 (1975)
[48] A. Stötz et al., GSI Scientific Reports 45, 014322 (2016)
[49] A. Plochocki et al., Zeit. für Phys. A 342, 43 (1992)
[50] S. Ayet San Andrés, Developments for Multiple-Reflection Time-of-Flight Mass Spectrometers and their Application to High Resolution Mass Measurements of Exotic Nuclei, Ph.D. thesis, Universität Gießen (2018).
[51] C. Weber et al., Physical Review C 78, 054310 (2008)
[52] W. Karczewicz et al., Zeit. für Phys. A 308, 21 (1982)
[53] L. Batist et al., Eur. Phys. Jour. A 29, 175 (2006)
[54] J. A. Clark et al., Eur. Phys. Jour. A 25, 629 (2005)
[56] J. Fallis et al., Phys. Rev. C 84, 045807 (2011).
[57] D. Abriola et al., Nuclear Data Sheets 107, 2423 (2006).
[58] R. Gross et al., Nuclear Physics A 267, 85 (1976).
[59] M. Honma et al., Phys. Rev. C 80, 064323 (2009).
[60] A. Blazhev et al., Phys. Rev. C 69, 064304 (2004).
[61] M. Siciliano et al., Phys. Lett. B 806, 135474 (2020).
[62] H. Grawe et al. (RISING), Phys. Lett. B 820, 135991 (2021).
[63] I. Towner, Physics Reports 555, 263 (1997).
[64] B. H. Wildenthal et al., Phys. Rev. C 28, 1343 (1983).
[65] W.-T. Chou et al., Phys. Rev. C 47, 163 (1993).
[66] G. Martinez-Pinedo et al., Phys. Rev. C 53, R2602 (1996).
[67] P. Gysbers et al., Nature Physics 15, 428 (2019).
[68] J. Hardy et al., Physics Letters B 71, 307 (1977).
[69] J. Hardy et al., Physics Letters B 136, 331 (1984).
[70] J. Park et al., Phys. Rev. C 99, 034313 (2019).
[71] “log(ft) calculator (https://www.nndc.bnl.gov/logft/),” (nndc).
[72] J. Chen et al., Nuclear Data Sheets 164, 1 (2020).
[73] Z. Wu et al., Physical Review C 60, 024315 (1999).
[74] D. Dean et al., Physics Letters B 367, 17 (1996).