On Contractible Banach Algebras of Operators

Maysam Maysami Sadr

Department of Mathematics,
Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan, Iran

Abstract

In this short note, we give some results concerning contractible (super-amenable) Banach algebras: It is shown that any contractible central Banach algebra is local (i.e. has a unique maximal ideal), and any symmetrically contractible Banach algebra has a normalized trace with values in its center. It is shown that for a Banach subalgebra $A \subseteq \mathcal{L}(X)$ of bounded linear operators on infinite-dimensional Banach space X, which contains the ideal of finite-rank operators (e.g. $A = \mathcal{L}(X)$), the image of any diagonal of A under the canonical algebra-morphism $\mathcal{L}(X) \otimes^\gamma \mathcal{L}(X) \to \mathcal{L}(X \otimes^\gamma X)$ is zero.

MSC 2020. 46H20; 47L10.

Keywords. Banach algebra; contractibility; Banach algebra of bounded linear operators; amenability.

1 Introduction

A Banach algebra A is called contractible (super-amenable) if every bounded derivation from A into any Banach A-bimodule, is inner [6, 8]. Contractibility is one of the many variants of the concept of amenability (for Banach algebras) originally introduced by Johnson [4]. (For various notions of amenability see [5, 6, 8].) It is known that any finite-dimensional contractible Banach algebra is a finite direct sum of full matrix algebras [8, Theorem 4.1.4]. The only known contractible Banach algebras are of this form. Indeed, it is a longstanding question whether every contractible Banach algebra is finite-dimensional [2, 6 Problem 15, page 224]. Also, the following special case of this question ([2, 6 Problem 16, page 224]) has not been answered yet: does for any Banach space X, the contractibility of the Banach algebra $\mathcal{L}(X) = \mathcal{L}(X, X)$ of all bounded linear operators on X, imply that X is finite-dimensional? (For information on these questions see [8, §4.1 and page 196].) We must remark that the chance that there exist infinite-dimensional contractible Banach algebras is not very small: For a long time it was a common belief that for infinite-dimensional Banach spaces X, $\mathcal{L}(X)$ cannot be amenable (a weaker version of contractibility). But, in 2009, Argyros and Haydon [1] found out a specific
infinite-dimensional Banach space E that has Scaler-Plus-Compact property, and as it was pointed out by Dales, $\mathcal{L}(E)$ become an amenable algebra. (See for more details [7].)

The aim of this short note, is to report some properties of contractible Banach algebras (of operators): In §§23 it is shown that any contractible central Banach algebra is local (i.e. has a unique maximal ideal), and symmetrically contractible Banach algebras have center-valued normalized traces. In [11] we show for any infinite-dimensional Banach space X, and any contractible Banach subalgebra A of $\mathcal{L}(X)$ which contains the ideal of finite-rank operators, the image of any diagonal of A, under the canonical algebra-morphism,

$$A \otimes \gamma A \hookrightarrow \mathcal{L}(X) \otimes \gamma \mathcal{L}(X) \to \mathcal{L}(X \otimes \gamma X),$$

is zero. (For terminology see below.)

For preliminaries on contractibility, we refer the reader to Runde’s books [10, 8]. The topological dual of a Banach space X is denoted by X^*. The completed projective tensor product of Banach spaces X, Y is denoted by $X \otimes \gamma Y$. The projective norm is denoted by $\| \cdot \|_\gamma$. The Banach space of bounded linear operators from X into Y is denoted by $\mathcal{L}(X,Y)$. For a Banach algebra A, $\mathcal{Z}(A)$ denotes the center of A. If X,Y are unital Banach left modules over a unital Banach algebra A, then $\mathcal{A} \mathcal{L}(X,Y) \subset \mathcal{L}(X,Y)$ denotes the closed linear subspace of bounded module-morphisms from X into Y. For Banach algebras A, B, the Banach space $A \otimes \gamma B$ is a Banach algebra with the multiplication given by $(a \otimes b)(a' \otimes b') = aa' \otimes bb'$ for $a, a' \in A, b,b' \in B$. The diagonal mapping $\Delta : A \otimes \gamma A \to A$ for A is the unique bounded linear operator defined by $a \otimes b \mapsto ab$. Note that $A \otimes \gamma A$ is canonically a Banach A-bimodule with module-operations given by $c(a \otimes b) := (ca \otimes b)$ and $(a \otimes b)c := (a \otimes bc)$, and Δ is a bimodule-morphism. A diagonal for a unital Banach algebra A is an element $M \in A \otimes \gamma A$ satisfying

$$\Delta(M) = 1, \quad (c \otimes 1)M = M(1 \otimes c), \quad (c \in A).$$

It is well-known that a Banach algebra is contractible iff it is unital and has a diagonal: Suppose that A is contractible. Let E denote the Banach A-bimodule with the underlying Banach space A and, left and right module-operations $ax := ax$ and $xa := 0$ for $a \in A, x \in E$. Then $\text{id} : A \to E$ is a derivation and hence inner. Thus A has a right unit. Similarly, it is proved that A has a left unit and hence A is unital. Now, consider the derivation $D : A \to \ker(\Delta)$ defined by $a \mapsto (1 \otimes a) - (a \otimes 1)$. D must be inner and thus there is $N \in \ker(\Delta)$ with the property $aN - Na = D(a)$; hence $M := N + (1 \otimes 1)$ is a diagonal for A. Conversely, suppose that M is a diagonal for A. If $D : A \to X$ is a bounded derivation, then it can be checked that for the element $z := \sum_{n=1}^\infty a_n D(b_n)$ of X we have $D(a) = az - za$. Thus D is inner.

2 Contractible Central Banach Algebras Are Local

The content of the following lemma is known in literatures:
Lemma 2.1. Let A be a contractible Banach algebra and let E, F be unital Banach left A-modules. Then any diagonal for A gives rise to a bounded projection $\Phi = \Phi_{E,F}$ from $\mathcal{L}(E,F)$ onto $\mathcal{L}_A(E,F)$.

Proof. Let M be a diagonal for A of the form Φ_{M}. For any $T \in \mathcal{L}(E,F)$ let

$$\Phi(T) : E \to F, \quad x \mapsto \sum_{n=1}^{\infty} a_n T(b_n x), \quad (x \in E).$$

Then it can be checked that $\Phi(T)$ is well-defined and belongs to $\mathcal{L}_A(E,F)$. Also, it is easily verified that $T \mapsto \Phi(T)$ is a bounded linear projection. \hfill \Box

Proposition 2.2. Let A be a contractible Banach algebra. Then any diagonal for A gives rise to a canonical bounded linear operator $\Psi : A \to \mathcal{Z}(A)$ with $\Psi(1) = 1$.

Proof. Consider A as a Banach left A-module in the canonical fashion. For any $c \in A$, let $\ell_c : A \to A$ denote the left multiplication operator by c. By the notations of Lemma 2.1,

$$\Phi_{A,A}(\ell_c) : A \to A, \quad x \mapsto \sum_{n=1}^{\infty} a_n cb_n x$$

is a left module-morphism and hence there is a $\tilde{c} \in A$ such that $\Phi_{A,A}(\ell_c) = r_{\tilde{c}}$ where $r_{\tilde{c}} : A \to A$ denotes the right multiplication operator by \tilde{c}. It is clear that $\tilde{c} = \sum_{n=1}^{\infty} a_n cb_n$ and $\tilde{c} \in \mathcal{Z}(A)$. We let Ψ to be defined by $c \mapsto \tilde{c}$. \hfill \Box

Proposition 2.3. Let A be a contractible central Banach algebra. Then any diagonal for A gives rise to a canonical bounded linear functional $\psi \in A^*$ with $\psi(1) = 1$.

Proof. We have $\mathcal{Z}(A) = C1$. With the notations of Proposition 2.2 ψ is defined by

$$\Psi(c) = \sum_{n=1}^{\infty} a_n cb_n = \psi(c)1, \quad (c \in A).$$

\hfill \Box

The following theorem is the main result of this section.

Theorem 2.4. Let A be a contractible central Banach algebra. Then A has a unique maximal (two-sided) ideal \mathcal{M}_A.

Proof. Let $\mathcal{M}_A := \text{closed linear span of } \{ c \in A : c \text{ belongs to a proper ideal of } A \}$. It is clear that \mathcal{M}_A is an ideal of A which contains every proper ideal of A. With ψ as in Proposition 2.3, for any $c \in A$ which is contained in a proper ideal J of A, we must have $\psi(c) = 0$, because otherwise we must have $1 = \psi(c)^{-1} \sum_{n=1}^{\infty} a_n cb_n \in J$, a contradiction. Thus $\mathcal{M}_A \subseteq \ker(\psi)$ and hence \mathcal{M}_A is a proper ideal of A. \hfill \Box

A closed linear subspace F of a Banach space E is called topologically complemented if there is a closed linear subspace F' of E such that $E = F \oplus F'$. In this case F' is called a topological complement for F. F is topologically complemented in E iff there is a bounded linear projection from E onto F. The following lemmas are very well-known. For the sake of completeness we bring their proofs.
Lemma 2.5. Let A be a contractible Banach algebra and let E be a unital Banach left A-module. Suppose that $F \subset E$ is a closed submodule which is (as a Banach space) topologically complemented in E. Then F has a topological complement in E which is also a closed submodule.

Proof. Let p be a bounded linear projection from E onto F. By Lemma 2.1, $\Phi_{E,F}(p)$ is a module-morphism from E into F. It is easily verified that $\Phi_{E,F}(p)$ is also a projection from E onto F. Thus $\ker \Phi_{E,F}(p)$ is the desired complement for F. \square

If A, A' are contractible Banach algebras with diagonals M, M' of the forms as in (1), then $\sum_{n,m=1}^{\infty} a_n \otimes a'_m \otimes b_n \otimes b'_m$ is a diagonal for $A \otimes A'$. Also, $\sum_{n=1}^{\infty} b_n \otimes a_n$ is a diagonal for A^{op}, the opposite algebra of A. Thus if A is contractible then $A \otimes A^{\text{op}}$ is contractible.

Lemma 2.6. The analogue of Lemma 2.5 is satisfied for bimodules: Let A be a contractible Banach algebra and E a unital Banach A-bimodule. If F is a closed sub-bimodule of E which is topologically complemented, then it has a complement in E which is also a sub-bimodule.

Proof. Any unital Banach A-bimodule E may be considered as unital Banach left $A \otimes A^{\text{op}}$-module with module operation given by $(a \otimes b)x := axb$ ($a \in A, b \in A^{\text{op}}, x \in E$). In this fashion, any A-bimodule-morphism is a left $A \otimes A^{\text{op}}$-module-morphism. The converses of this facts are also satisfied. Now, the desired result follows from Lemma 2.5. \square

Theorem 2.7. Let A be a contractible central Banach algebra. Then M_A (as a closed subspace) is topologically complemented in A iff $M_A = 0$.

Proof. Suppose that M_A is topologically complemented in A. Then by Lemma 2.6 there is an ideal J in A such that $M_A \oplus J = A$. Since M_A is the only maximal ideal of A we must have $J = A$. The proof is complete. \square

The following result is directly concluded from Theorems 2.4 and 2.7.

Corollary 2.8. Let X be an infinite-dimensional Banach space. If $\mathcal{L}(X)$ is contractible then it has a unique maximal ideal. Moreover, this ideal is not topologically complemented.

3 A Trace on Symmetrically Contractible Algebras

A contractible Banach algebra A is called symmetrically contractible if A has a symmetric diagonal; that is, a diagonal M satisfying $\mathcal{F}_A(M) = M$ where $\mathcal{F}_A : A \otimes A \to A \otimes A$ denotes flip i.e., the unique bounded linear mapping defined by $(a \otimes b) \mapsto (b \otimes a)$. The matrix algebra M_n is symmetrically contractible. Indeed, it is well-known that M_n has the unique diagonal $n^{-1} \sum_{i,j=1}^{n} \delta_{ij} \otimes \delta_{ji}$ where δ_{ij}‘s denote the standard basis of M_n. Thus any finite-dimensional contractible Banach algebra is symmetrically contractible.

Theorem 3.1. Let A be a symmetrically contractible Banach algebra. Then any symmetric diagonal of A gives rise to a bounded normalized $\mathbb{Z}(A)$-valued trace for A.

4
Proof. Let M be a symmetric diagonal for A of the form (1). We saw in Proposition 2.2 that the assignment $c \mapsto \sum_{n=1}^{\infty} a_n c b_n$ defines a bounded linear mapping $\Psi : A \to \mathcal{Z}(A)$ with $\Psi(1) = 1$. For every $c, c' \in A$ we have $\sum_{n=1}^{\infty} b_n \otimes a_n c c' = \sum_{n=1}^{\infty} c b_n \otimes a_n c'$ and hence $\sum_{n=1}^{\infty} a_n c c' \otimes b_n = \sum_{n=1}^{\infty} a_n c' \otimes c b_n$. Thus we have

$$\Psi(cc') = \Delta(\sum_{n=1}^{\infty} a_n c c' \otimes b_n) = \Delta(\sum_{n=1}^{\infty} a_n c' \otimes c b_n) = \Psi(c'c).$$

Theorem 3.2. Let A be a symmetrically contractible central Banach algebra. Then any symmetric diagonal of A gives rise to a normalized trace $\psi \in A^*$.

Proof. We let ψ to be defined by $\Psi(c) = \psi(c)1$ where Ψ is given by Theorem 3.1.

For matrix algebra M_n, the unique diagonal of M_n gives rise to the ordinary trace. We have the following direct corollary of Theorem 3.2.

Corollary 3.3. Let X be a Banach space. If $\mathcal{L}(X)$ is symmetrically contractible then it has a normalized trace.

4 A Null-Property of Diagonals for $\mathcal{L}(X)$

Let X be a Banach space. Consider the unique bounded linear operator

$$\Upsilon : \mathcal{L}(X) \otimes^{\gamma} \mathcal{L}(X) \to \mathcal{L}(X \otimes^{\gamma} X),$$

defined by

$$[\Upsilon(T \otimes S)](x \otimes y) = T(x) \otimes S(y), \quad (T, S \in \mathcal{L}(X), x, y \in X).$$

Then Υ is an algebra-morphism between Banach algebras. We denote the image under Υ of any element $N \in \mathcal{L}(X) \otimes^{\gamma} \mathcal{L}(X)$, by N^{op}. It follows from properties of projective tensor product, that $\|\Upsilon\| = 1$ and hence $\|N^{op}\| \leq \|N\|_\gamma$. Note that, in general, Υ is not one-to-one. (This fact can be concluded from the fact that the canonical mapping from $X^* \otimes^{\gamma} X^*$ onto the space of nuclear bilinear functionals on $X \times X$ is not necessarily one-to-one; see [9, §2.6].)

Proposition 4.1. Let $\Lambda \in \mathcal{L}(X \otimes^{\gamma} X)$ be such that for every one-rank operator $T \in \mathcal{L}(X)$,

$$(T \otimes 1)^{\text{op}} \Lambda = \Lambda (1 \otimes T)^{\text{op}}.$$

Then there is a unique operator Γ in $\mathcal{L}(X)$ such that $\Lambda = (1 \otimes \Gamma)^{\text{op}} \mathcal{F}_X$.

Proof. Let y be a nonzero vector in X, and let $f \in X^*$ be such that $f(y) = 1$. Let $T \in \mathcal{L}(X)$ to be defined by $x \mapsto f(x)y$. For every $x \in X$ we have

$$(T \otimes 1)^{\text{op}} \Lambda(x \otimes y) = \Lambda(x \otimes y). \quad (2)$$
X has the decomposition $<y> \oplus \ker(f)$ where $<y>$ denotes the subspace generated by y. There exist $z \in \ker(f) \otimes \gamma X$ and $w \in X$ such that $\Lambda(x \otimes y) = y \otimes w + z$. It follows from (2) that $\Lambda(x \otimes y) = y \otimes w$. Since the mapping $x \mapsto \Lambda(x \otimes y)$ is linear and bounded, there is $\Gamma_y \in \mathcal{L}(X)$ such that $\Lambda(x \otimes y) = y \otimes \Gamma_y(x)$. Now, suppose that y, y' in X are linearly independent. We have

\[
\Lambda(x \otimes (y + y')) = y \otimes \Gamma_y(x) + y' \otimes \Gamma_{y'}(x),
\]

\[
\Lambda(x \otimes (y + y')) = (y + y') \otimes \Gamma_{y+y'}(x).
\]

Thus $\Gamma_y = \Gamma_{y'}$. Also, it can be checked that for every nonzero scalar λ we have $\Gamma_{\lambda y} = \Gamma_y$. Thus there exists $\Gamma \in \mathcal{L}(X)$ such that $\Lambda(x \otimes y) = y \otimes \Gamma(x)$ for every $x, y \in X$. The proof is complete.

Corollary 4.2. Let M be an element of $\mathcal{L}(X) \otimes \gamma \mathcal{L}(X)$ that satisfies

\[
(T \otimes 1)M = M(1 \otimes T), \quad (T \in \mathcal{L}(X) \text{ of rank one}.
\]

Then there exists $\Gamma \in \mathcal{L}(X)$ such that $M^{op} = (1 \otimes \Gamma)^{op} \mathcal{F}_X$. Moreover, if M is symmetric (i.e. $\mathcal{F}_{\mathcal{L}(X)}(M) = M$) then there exists a scalar λ such that $M^{op} = \lambda \mathcal{F}_X$.

Proof. The first part follows directly from Proposition 4.1. Suppose that M is symmetric. Then it follows from the identity $[\mathcal{F}_{\mathcal{L}(X)}(M)]^{op} = \mathcal{F}_X M^{op} \mathcal{F}_X$, that

\[
\mathcal{F}_X (1 \otimes \Gamma)^{op} = (1 \otimes \Gamma)^{op} \mathcal{F}_X.
\]

Thus for every $x, y \in X$ we have $\Gamma(y) \otimes x = y \otimes \Gamma(x)$. This means that Γ is a scalar multiple of identity. The proof is complete.

Let Y, Y', Z be finite-dimensional Banach spaces. Similar to the mapping Υ above, we denote by $\tilde{T} : N \mapsto N^{op}$ the unique bounded linear mapping given by

\[
\mathcal{L}(Y, Z) \otimes \gamma \mathcal{L}(Z, Y') \rightarrow \mathcal{L}(Y \otimes Y), \quad \mathcal{F}_X (y \otimes z) = \mathcal{F}_X (x \otimes S(z)).
\]

We know that this is a linear isomorphism.

Lemma 4.3. With the above assumptions, suppose that $\dim(Y) = \dim(Y')$. Suppose that $T : Y \rightarrow Y'$ is a linear isomorphism. For every finite-dimensional Banach space Z, let the linear mapping \tilde{T}_Z be given by

\[
\tilde{T}_Z : Y \otimes \gamma Z \rightarrow Z \otimes \gamma Y', \quad (y \otimes z) \mapsto (z \otimes T(y)).
\]

There is a numerical positive constant c such that c is independent from Z (independent from norm and dimension of Z) and such that:

\[
\|\Upsilon^{-1}(\tilde{T}_Z)\|_\gamma \geq c^{-1} \dim(Z).
\]
Proof. Suppose that \(y_1, \ldots, y_k \) and \(z_1, \ldots, z_m \) are vector basis respectively for \(Y \) and \(Z \), and let \(y'_i = T(y_i) \). Let the linear operators

\[
S_{ij} : Y \to Z, \quad S'_{ji} : Z \to Y',
\]

be given by

\[
S_{ij}(y_i) = z_j, S_{ij}(y_q) = 0, \quad (q \neq i), \quad S'_{ji}(z_j) = y'_i, S'_{ji}(z_q) = 0, \quad (q \neq j).
\]

Let \(N := S_{ij} \otimes S'_{ji} \). Then \(N^\text{op} = \tilde{T}_Z \) and hence \(\Upsilon^{-1}(\tilde{T}_Z) = N \).

Let \(\nu \) denote the linear functional on \(L(Y,Y') \) that associates to any operator \(Y \to Y' \), the normalized trace of its matrix in the bases \(y_1, \ldots, y_k \) and \(y'_1, \ldots, y'_k \) of \(Y \) and \(Y' \). Suppose that \(c \) denotes the functional-norm of \(\nu \). It is clear that \(c \neq 0 \). Consider the bilinear functional

\[
\mu : L(Y,Z) \times L(Z,Y') \to \mathbb{C}, \quad (P,Q) \mapsto \nu(QP).
\]

Then we have \(\|\mu\| \leq c \) and hence \(\|c^{-1}\mu\| \leq 1 \). Now, it follows from the properties of projective tensor-norm that

\[
\|N\|_\gamma \geq |c^{-1}\mu(N)| = c^{-1}m.
\]

\[\square\]

Theorem 4.4. Let \(X \) be an infinite-dimensional Banach space. Let \(M \in \mathcal{L}(X) \otimes^\gamma \mathcal{L}(X) \) be an element that satisfies (3). Then \(M \in \ker(\Upsilon) \). In other notation, \(M^\text{op} = 0 \).

Proof. Suppose that \(\Gamma \in \mathcal{L}(X) \) is as in Corollary 4.2. Suppose that \(M^\text{op} \neq 0 \) and hence \(\Gamma \neq 0 \). Let \(y,y' \) be two nonzero vectors in \(X \) such that \(\Gamma(y) = y' \). Suppose that \(Y,Y' \) denote the one-dimensional subspaces of \(X \) generated respectively by \(y,y' \), and suppose that \(T : Y \to Y' \) is defined by \(T(y) = y' \). Let \(Z \) be an arbitrary finite-dimensional subspace of \(X \). Suppose that \(E_Y : Y \to X \) and \(E_Z : Z \to X \) denote the embedding-maps and \(P_Y : X \to Y' \) is an arbitrary continuous projection from \(X \) onto \(Y' \). By Kadec-Snobar’s Theorem [3, Theorem 6.28] we know that there exists a continuous projection \(P_Z : X \to Z \), from \(X \) onto \(Z \), such that \(\|P_Z\| < 1 + \sqrt{\dim(Z)} \). Let

\[
N := (P_Z \otimes P_Y)M(E_Y \otimes E_Z) \in \mathcal{L}(Y,Z) \otimes^\gamma \mathcal{L}(Z,Y').
\]

We have

\[
\|N\|_\gamma \leq \|P_Z\|\|P_Y\|\|M\|_\gamma, \quad N^\text{op} = \tilde{T}_Z,
\]

where \(\tilde{T}_Z \) is as in Lemma 4.3. Now, by Lemma 4.3 we have

\[
\frac{\dim(Z)}{c\|P_Y\|\left(1 + \sqrt{\dim(Z)}\right)} < \|M\|_\gamma.
\]

This implies that \(\|M\|_\gamma = \infty \), a contradiction. Thus we must have \(M^\text{op} = 0 \). \[\square\]

We have the following direct corollary of Theorem 4.4.
Corollary 4.5. Let X be an infinite-dimensional Banach space. Let $A \subseteq \mathcal{L}(X)$ be a contractible Banach subalgebra such that contains the ideal of finite-rank operators. Then for any diagonal M of A we have $M^{\text{op}} = 0$.

Note that any Banach algebra A as in Corollary 4.5 is central and hence by Theorem 2.4 has a unique maximal ideal.

Remark 4.6. Suppose that $\mathcal{L}(X)$ is contractible. By Corollary 4.5, to prove that X is finite-dimensional, it is enough to prove that at least one of the diagonals of $\mathcal{L}(X)$ is invertible as a member of the Banach algebra $\mathcal{L}(X) \otimes \mathcal{L}(X)$. Note that for the unique diagonal M of M_n we have $n^2 M^2 = 1 \otimes 1$ in the Banach algebra $M_n \otimes M_n$.

Remark 4.7. Suppose that X is an infinite dimensional Banach space for which the canonical mapping Υ is one-to-one. Then, by Corollary 4.5, any Banach subalgebra of $\mathcal{L}(X)$ containing the ideal of finite-rank operators, is not contractible.

Remark 4.8. Let X be an infinite dimensional Banach space. If $A = \mathcal{L}(X)$ has at least two maximal ideals, then by Corollary 2.3 we know that A is not contractible. Suppose that A has only one maximal ideal J. To prove that A is not contractible it is enough to show that the closer \tilde{J} of the ideal $(J \otimes A) + (A \otimes J) \subset A \otimes A$ is a maximal ideal of $A \otimes A$: Indeed, if A is contractible then $A \otimes A$ is contractible and since $A \otimes A$ is central (this fact can be checked by considering projections onto finite-dimensional subspaces of X similar to the first part of the proof of Lemma 4.3) then it must have a unique maximal ideal. Thus we must have $\ker(\Upsilon) \subseteq \tilde{J}$ and hence for any diagonal M of A, M belongs to \tilde{J}. Therefore, we have $1 = \Delta(M) \in \Delta(\tilde{J}) \subset J$ that contradicts properness of J.

References

[1] S.A. Argyros, R.G. Haydon, A hereditarily indecomposable \mathcal{L}_∞-space that solves the scalar-plus-compact problem, Acta Math. 206, (2011) 1–54. (arXiv:0903.3921 [math.FA])

[2] N. Gronbæk, Various notions of amenability, a survey of problems, Proceedings of 13th International Conference on Banach Algebras in Blaubeuren, 1997, Walter de Gruyter, Berlin, (1998) 535–547.

[3] M. Fabian, P. Habala, P. Hajek, V. Montesinos, V. Zizler, Banach space theory: The basis for linear and nonlinear analysis, CMS Books in Mathematics, Springer, New York, 2011.

[4] B.E. Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, vol. 127, 1972.

[5] O.T. Mewomo, Various notions of amenability in Banach algebras, Expositiones Mathematicae 29, (2011) 283–299.

[6] V. Runde, Lectures on amenability, Springer-Verlag, Berlin, Heidelberg, 2002.

[7] V. Runde, (Non-)amenability of $B(E)$, preprint (2009). (arXiv:0909.2628 [math.FA])

[8] V. Runde, Amenable Banach algebras, Springer Monographs in Mathematics, Science+Business Media, Berlin, 2020.

[9] R.A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 2002.