Supplement of

Quartz dissolution associated with magnesium silicate hydrate cement precipitation

Lisa de Ruiter et al.

Correspondence to: Håkon Austrheim (h.o.austrheim@geo.uio.no)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1. PHREEQC calculations showing the development of a solution in which quartz dissolves until equilibrium. The initial solution is in equilibrium with brucite. The results show that the saturation index of sepiolite (Mg$_4$Si$_6$O$_{15}$(OH)$_2$·6H$_2$O), talc (Mg$_3$Si$_4$O$_{10}$(OH)$_2$) and chrysotile (Mg$_5$Si$_2$O$_5$(OH)$_4$) is above 0 after very little quartz has been dissolved, and that the solution is thus supersaturated with respect to these phases. The saturation index of brucite (Mg(OH)$_2$) and amorphous silica stays below 0. The pH of the solution decreases gradually during quartz dissolution.
Table S1. Composition of till from frost-boil at the Feragen Ultramafic Body (FER18/15 and 19/15) and nearby M-S-H cemented rock (FER21/15). Data is obtained by whole rock geochemical analysis.

	FER18/15	FER19/15	FER21/15
SiO2	87.72	89.58	72.81
Al2O3	4.48	4.23	4.25
Fe2O3(T)	1.54	1.42	1.01
MnO	0.02	0.02	0.01
MgO	0.79	0.63	9.98
CaO	0.26	0.30	0.24
Na2O	0.69	0.70	0.56
K2O	2.11	1.99	1.90
TiO2	0.20	0.21	0.16
P2O5	0.04	0.03	0.03
LOI	0.70	0.52	9.40
Total	98.55	99.61	100.4