INTRODUCTION

Since the introduction of radio broadcasting in the 1930’s, the use of radiofrequency (RF) radiation has proliferated to encompass a range of applications across many sectors. Combined with the increase of the wireless office and the growth of mobile telecommunications, the number of persons exposed to RF radiation has rapidly increased and has led to continuing concerns over potential health effects. Though no adverse health outcomes are consistently apparent, its ubiquity means an undetected effect may yet become a serious public health problem.

So far, few epidemiological cohort studies have investigated the effects of RF exposure in occupational settings [1-3] and there remains a need for improved research into potential health effects of long-term exposure to RF in the working environment. In classifying RF as 2b “a possible carcinogen” based on studies of mobile phone users, the International Agency for Research into Cancer acknowledged that evidence from previous studies exploring the impact on health of occupational exposures was “inadequate” containing methodological limitations and inconsistent results [4].

methods

Following a series of consultations with representatives from a range of industry sectors and other relevant organizations, HSE created a Steering Group in September 2002 to manage the register and develop a recruitment strategy and in turn, the University of Birmingham was selected to administer the register.
Individuals with the potential to be exposed to RF above guidelines for public exposure established by the International Commission on Non-Ionizing Radiation Protection are eligible to join the register [6]. However, finite resources meant the Steering Group has to make a series of strategic decisions on which groups of workers would be pursued for inclusion. The management structure of the Register and the groups of eligible workers are described in Figure 1.

Once identified, potential participants are provided with information leaflets allowing them to provide informed consent (see results for more on ethical approval). Identifying particulars are collected alongside work history information including job title, year first employed in the RF industry, and incidents where knowingly exposed to RF above occupational guidelines. Recruitment and the first set of analyses are scheduled to finish at the end of December 2015. In considering the estimated number of eligible individuals and acknowledging the decline in participation in rates in epidemiological studies [7] we conservatively estimate that at this point, the cohort will consist of a minimum of 2500 participants.

RESULTS

The first study to use the register is now underway, following the favorable ethical opinion of the National Research Ethics Service, West Midlands (The Black Country). Led by the University of Birmingham, the long-term follow-up study will explore mortality and cancer incidence. The study team will receive copies of death certificates and cancer registration (incidence) details from the Health and Social Care Information Center. Cancer registrations and mortality data (underlying cause and multiple-cause coding) will be supplied according to the tenth revision of the International Classification of Diseases [8].

Job title and sector will be used as surrogate for exposure and informed by existing exposure data, job descriptions and the input of our partners in industry and the HSE, individuals will be allocated one of three bands of exposure; high, medium, or low. Standardized mortality ratios (SMRs) will be calculated as the ratio of observed to expected numbers of deaths expressed as a percentage. In calculating P-values and confidence intervals, it will be assumed that deaths occur following a Poisson distribution. Any significance tests will be two-tailed. Similar analyses will be performed on the cancer registration data to calculate standardized registration ratios (SRRs). It is possible that SMRs and SRRs can differ from national expectation for reasons other than occupational factors. For example, a healthy worker effect may lead to low-risk estimates whereas socio-economic effects may lead to higher risk estimates. The use of internal comparisons should assist in mitigating such influences and evidence will be sought of any trends in disease risk with levels of estimated cumulative RF exposure.

Calculations of statistical power for the size of the register forecast (n = 2500) are shown in Table 1. These estimates are shown for follow-up ending both at 2015 and 2025, and for true relative risks of 1.5 and 2.0 (equivalent to SMRs of 150 and 200).

![Figure 1: The flow of information within the register showing management structure and recruitment strategy](image-url)
The register is predicted to consist of 2500 employees by December 31st, 2015, based on mortality rates for England and Wales. *Probability is doubled (i.e., RR=2). FU: Follow-up, RR: Relative risk (i.e., RR=1.5), **Probability of observing a statistically significant excess using a two-tailed test of significance at the 5% level, if the underlying risk is increased by 50% (i.e., RR=2). FU: Follow-up, RR: Relative risk

Cause of death	2015 FU	2025 FU						
	Expected number	Statistical power%	RR=1.5	RR=2.0	Expected number	Statistical power%	RR=1.5	RR=2.0
All causes	55.27	92	100		223.99	100		
All neoplasms	15.80	42	90		70.83	96	100	
Brain cancer	0.92	5	12		3.08	9	27	
Leukemia	0.55	5	10		2.01	9	22	

DISCUSSION

The Register provides a valuable long-term framework for research into potential health effects of occupational exposure to RF radiation across a range of industries. The complexity of recruiting participants from disparate workforces is not tantamount to saying these groups of workers should not be included. Notwithstanding the relatively small numbers, the register retains the potential to become a valuable resource for multiple studies, of various designs. Able to offer the opportunity to investigate any emergent health effects over the coming years, it is foreseen that evidence from the register will ultimately be considered together with similar databases elsewhere. By continuing to work closely with our partners in HSE and industry, the numbers enrolled are expected to increase further as the EU EMF) Directive (EU/35/2013) approaches transposition, and additional eligible groups are identified.

One lesson already learned from the register is how to manage the demands of various stakeholders in collaborative projects exploring occupational health. For industry, research partnerships are considered as an important channel of information transfer [9] and in other areas such as manufacturing or engineering research agreements between academia and industry are commonplace, yet they remain the exception in occupational health research [10]. With funding from groups such as the British Occupational Health Research Foundation no longer available, the pooling of resources and knowledge within industry, government bodies, and academia, provides the best opportunity to meet demands for a healthier working population [11].

ACKNOWLEDGMENTS

The author would like to thank Prof. Tom Sorahan for his tireless work in both overseeing the beginning of the register and maintaining it in its formative years. His help has been invaluable in both the register and this article.

REFERENCES

1. Lagorio S, Rossi S, Vecchia P, De Santis M, Bastianini L, Fusilli M, et al. Mortality of plastic-ware workers exposed to radiofrequencies. Bioelectromagnetics 1997;18:418-21.
2. Morgan RW, Kelsh MA, Zhao K, Exuzides KA, Heringer S, Negrete W. Radiofrequency exposure and mortality from cancer of the brain and lymphatic/hematopoietic systems. Epidemiology 2000;11:118-27.
3. Ahlbom IC, Cardis E, Green A, Linet M, Savitz D, Svedlow A, et al. Review of the epidemiologic literature on EMF and Health. Environ Health Perspect 2001;109 Suppl 6:911-33.
4. Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol 2011;12:624-6.
5. Independent Expert Group on Mobile Phones. Mobile Phones and Health. IEGMP. 2000. Available from: http://webarchive.nationalarchives.gov.uk/20101011032547/http://www.iegmp.org.uk/report/text.htm.
6. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 1998;74:494-522.
7. Galea S, Tracy M. Participation rates in epidemiologic studies. Ann Epidemiol 2007;17:643-53.
8. World Health Organisation. ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision. 2nd ed. Geneva: WHO; 2004.
9. Cohen W, Nelson R, Walsh J. Links and impacts: The influence of public research on industrial R&D. Manage Sci 2002;48:1-23.
10. d’Este P, Patel P. University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry? Res Pol 2007;36:1295-313.
11. Department of Work and Pensions, Department of Health, Health and Safety Executive. Health, Work and Well-being – Caring for our Future: A Strategy for the Health and Well-being of Working Age People; 2008.