First light demonstration of the integrated superconducting spectrometer

Akira Endo1,2,*, Kenichi Karatsu1,3, Yoichi Tamura4, Tai Oshima5,6, Akio Taniguchi1,4, Tatsuya Takekoshi5,7, Shin’ichiro Asayama8, Tom J. L. C. Bakx4,5,9, Sjoerd Bosma1, Juan Bueno5, Kah Wuy Chin5,10, Yasunori Fujii8, Kazuyuki Fujita11, Robert Huiting3, Soh Ikarashi11, Tsuyoshi Ishida5, Shun Ishii10,12, Ryohei Kawabe11,12,10, Teun M. Klapwijk10,2,13, Kotaro Kohno1,2, Ryohei Kawabe4, Pieter J. de Visser1,2, Kenichi Karatsu1,3, Yoichi Tamura1,4,5,9, Sjoerd Bosma1,3, Junya Suzuki4,13, Stephen J. C. Yates10, Yuki Yoshimura5,12, Ozan Yurduseven1 and Jochem J. A. Baselmans1,3

Ultra-wideband, three-dimensional (3D) imaging spectrometry in the millimeter–submillimeter (mm–submm) band is an essential tool for uncovering the dust-enshrouded portion of the cosmic history of star formation and galaxy evolution1–3. However, it is challenging to scale up conventional coherent heterodyne receivers4 or free-space diffraction techniques5 to sufficient bandwidths (≥1 octave) and numbers of spatial pixels (≥103) (≥104). Here, we present the design and astronomical spectra of an intrinsically scalable, integrated superconducting spectrometer11, which covers 332–377 GHz with a spectral resolution of F/ΔF = 380. It combines the multiplexing advantage of microwave kinetic inductance detectors (MKIDs)6 with planar superconducting filters for dispersing the signal in a single, small superconducting integrated circuit. We demonstrate the two key applications for an instrument of this type: as an efficient redshift machine and as a fast multi-line spectral mapper of extended areas. The line detection sensitivity is in excellent agreement with the instrument design and laboratory performance, reaching the atmospheric foreground photon noise limit on-sky. The design can be scaled to bandwidths in excess of an octave, spectral resolution up to a few thousand and frequencies up to ~1.1 THz. The miniature chip footprint of a few cm2 allows for compact multi-pixel spectral imagers, which would enable spectroscopic direct imaging and high-resolution spectroscopy. The key concept of the ISS is to perform spectroscopy in a superconducting circuit fabricated on a small chip of a few cm2 in area, using an array of bandpass filters as the dispersive element analogous to a classical filterbank for lower microwave frequencies. The main advantage of an ISS (or grating spectrometer) over a Fourier transform spectrometer is that it is a dispersive spectrometer, which reduces the detection bandwidth and hence photon noise contribution, giving an improvement in the observing speed. The ISS instantaneous bandwidth is limited by the antenna bandwidth and the filter design, which allows onto their central supermassive black hole. These evolutionary processes occurred in a decadal redshift range of 1 + z ~ 1–10. Hence, observationally studying a significant fraction of this history requires a very broad spectral bandwidth of a few octaves. The most violent phases of star formation occur in thick clouds of dust, which absorb the ultraviolet to optical light and re-radiate this light in the far-infrared to mm–submm wavelength range, giving rise to optically faint submm-bright galaxies (SMGs). However, spectroscopic redshift measurements and subsequent studies of the spectral lines from these SMGs are severely limited by the narrow bandwidth (up to ~36 GHz; ref. 7) and small number of spatial pixels (exceptionally up to 64 pixels8) of conventional coherent spectrometers, which require multiple tunings and long exposure times. Quasi-optical spectrometers have shown wideband performance4, but dispersive optical elements for the mm–submm band are large, making it difficult to scale this type of spectrometer to many spatial pixels.

The integrated superconducting spectrometer (ISS)11–13 is an instrument concept that was invented exactly to fill the gap between imaging and high-resolution spectroscopy. The key concept of the ISS is to perform spectroscopy in a superconducting circuit fabricated on a small chip of a few cm2 in area, using an array of bandpass filters as the dispersive element analogous to a classical filterbank for lower microwave frequencies. The main advantage of an ISS (or grating spectrometer) over a Fourier transform spectrometer is that it is a dispersive spectrometer, which reduces the detection bandwidth and hence photon noise contribution, giving an improvement in the observing speed. The ISS instantaneous bandwidth is limited by the antenna bandwidth and the filter design, which allows
1:2 or even 1:3 bandwidth. Many spectrometers could be integrated on a single wafer, allowing for monolithic spectroscopic-imaging focal-plane architectures. Because the detectors are incoherent (that is, they measure only the power and not the phase), the sensitivity of the ISS is not subject to quantum noise, giving ISSs a fundamental sensitivity advantage over heterodyne receivers when operated in low-foreground/background conditions typical for a small transmission line. The signal then enters the filterbank section, of which five are depicted here. Each spectral channel consists of a bandpass filter and an MKID. Only the filter with a passband that matches the redshifted astronomical line frequency resonates, and delivers power to the MKID at its output. The MKID measures the amount of signal power that is absorbed in the aluminium section (black). The horizontal error bars and the yellow shading under them indicate the full-width at half-maximum (FWHM) of the channel response. The previously reported peak frequency of CO is indicated. The instrument sensitivity is photon-noise-limited, which is consistent with the CO(3–2) rest frequency of 345.796 GHz and the redshift $z = 0.02$ of VV 114 (ref. 22).

In this Letter, we present the astronomical spectra obtained with an ISS, from the on-sky test of Deep Spectroscopic High-redshift Mapper (DESHIMA) on the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. DESHIMA instantaneously observes the 332–377 GHz band in fractional frequency steps of $|Δf|f ∼ 380$, matched to the $\Delta f = 0.34$ for the main-beam efficiency and $\Delta f = 1.9 \times 10^{-6}$ sr for the main-beam solid angle. The channels above 365 GHz have a low SNR because of the low atmospheric transmission. The instantaneous bandwidth of ALMA band 7 is indicated for comparison.

The telescope beam shape and main beam efficiency were measured (see Methods section ‘Calibration of the sky signal response’). We evaluated DESHIMA on the ASTE telescope in the period from October to November 2017. The layout of DESHIMA in the ASTE cabin is schematically presented in Fig. 2a. Before the measurements on sky, we verified that the instrument optical sensitivity of DESHIMA in terms of the NEP was not affected by the ASTE cabin environment using the same hot–cold measurement technique as used in the laboratory tests. The response of the MKIDs to the sky signal was calibrated and linearized using skydip measurements (see Methods section ‘Calibration of the sky signal response’). The telescope beam shape and main beam efficiency were measured on Mars (see Methods section ‘Beam efficiency’).

We demonstrate the key applications of this instrument, as a redshift machine and as a fast multi-line spectral imager of large areas, by utilizing the on-sky measurements, which we also analyse to demonstrate the sensitivity achieved. The measurement of a cosmologically redshifted molecular line with an ISS is shown in Fig. 1b. The line of sight is comparable (~ 0.5 GHz; ref. 22) to the spectrometer resolution, which is an optimum condition for achieving both high sensitivity and a wide instantaneous band for a fixed number of detectors (see Methods section ‘Optimum frequency resolution’). Using a combination of a chopper wheel and slow (0.5 Hz) nodding of the ASTE telescope (see Methods section ‘Position-switching observations’), we obtained a CO line signal-to-noise ratio (SNR) of ~ 9 in an on-source integration time of 12.8 min. This method can be applied to targeted, wideband multi-line spectroscopy of high-z SMGs to identify their redshift and study their emission line spectra.

The second result is the successful acquisition of wideband spectral maps using on-the-fly (OTF) mapping. In Fig. 3a we show a three-colour composite map of the Orion nebula, which combines channel maps of CO(3–2), HCN(4–3) and HCO$^+$ (4–3), as...
presented in Fig. 3b–d. The OTF map captures the extended structure of the CO line, whereas the HCN and HCO$^+$ lines are more localized. In making the line intensity maps, the signal component common to all channels was subtracted as the baseline ‘continuum’, as indicated by the horizontal dashed line in the spectrum presented in Fig. 3e. Because this component contains signal from many emission lines unresolved by DESHIMA, we complement this result with a spectral map of the nearby barred spiral galaxy NGC 253, which exhibits CO(3–2) as a single dominant emission line with clear emission-free channels around it. The map of NGC 253 also has well-defined emission-free positions in the direction vertical to its disk. The DESHIMA CO(3–2) map of NGC 253 captures the extended emission along the bar, The Orion and NGC 253 maps together show that ISSs can be operated in OTF mode, by removing fluctuations of the atmosphere and the instrument in a manner similar to observations with coherent spectrometers.

The sensitivity of DESHIMA has been measured from the observation of the post-asymptotic giant branch (AGB) star IRC+10216. This source exhibits a strong HCN(4–3) line that is spatially unresolved with the DESHIMA/ASTE beam. After an on-source
The integration time of $t_{\text{on}} \sim 10^3$ s, a HCN line SNR of ~ 67 was reached, as presented in Fig. 4a,b. The SNR $\propto t_{\text{on}}^{1/2}$ dependence shows good stability during integration. The noise equivalent flux density (NEFD) per channel has been estimated from this dataset (Fig. 4c). For the frequency range in which the atmosphere is most transparent (Fig. 2h), a NEFD of ~ 2–3 Jy s$^{0.5}$ beam$^{-1}$ is reached. The NEFD inferred from the observation of VV 114 is similar, as can be seen in Fig. 4c, confirming that the estimation depends little on the observing conditions or on the properties of the source. This sensitivity would allow for example a 5σ detection of a [C II] line from a hyper-luminous infrared galaxy (HyLIRG) at redshift 4.2–4.7, with an on-source integration time of 8 h, as indicated in Fig. 4c. Furthermore, the blue bars in Fig. 4c indicate the on-sky NEFD predicted from the optical efficiency of DESHIMA measured in the laboratory, in combination with the aperture efficiency we measured on Mars in this work (see Methods section 'Beam efficiency').

The excellent agreement between the instrument design, laboratory sensitivity and on-sky sensitivity shows that DESHIMA on ASTE reaches the foreground photon-noise limit. This means that the sensitivity is limited only by the foreground photon noise and by the coupling efficiency between the source and detector. The limiting factors here are the ISS chip design and the intrinsic coupling between the warm optics and the chip. The efficiency of the chip is currently ~ 0.08, due to the design of the coplanar filters and the oversampling. This can be improved to ~ 0.5 by adopting microstrip filters based on amorphous silicon: we recently measured a loss tangent of $\tan\delta = 10^{-4}$ at ~ 35 GHz (S. Hähnle, private communication). Additionally, a more advanced filter geometry is needed to couple more than 50% of power into a single filter: an example would be to couple the power from several oversampled filters into a single MKID. These developments provide a path to improving the chip efficiency. Regarding the optics, a careful
selection of the quasi-optical filters, and using isotropic substrates (for example, silicon), can bring the transmission from the cryostat window to the on-chip antenna feed point from the current 0.22 to ~0.5. As indicated in Fig. 4c, an instrument optical efficiency of 0.4 and a telescope aperture efficiency of 0.4 would allow easy detection of the unlensed ultra-luminous infrared galaxy (ULIRG) population at $z = 4.2$–4.5 with the [C II] line. In this case, the full system sensitivity on-sky becomes comparable to a state-of-the-art heterodyne receiver instrument, because both systems are limited mainly by the atmosphere. The ISS technology is highly scalable towards ultra-wide bandwidths and many spatial pixels. Half-wave microstrip resonators are intrinsically able to be used as filters in a 1:2 bandwidth spectrometer coupled to a wideband antenna, a similar filter design with an open and a shorted end could be used in a 1:3 bandwidth. With the current density of channels in the filterbank, a 500 channel filterbank covering a 1:3 instantaneous bandwidth (for example, 240–720 GHz) at a resolution of $F/\Delta F = 500$ would still be as small as ~5 cm2. The wide instantaneous bandwidth and sensitivity will easily allow simultaneous detection of multiple emission lines (for example CO, [C II]) that is required to determine an unambiguous spectroscopic redshift. Furthermore, 3D integral field spectrographs can be formed with a 2D array of such spectroscopic pixels. Such an instrument will allow the exploration of cosmic large-scale structures with an unprecedented sensitivity and spatial scales, depicting the 3D distribution of galaxies with abundant molecular and atomic lines across the cosmological volume and time.

Methods

Calibration of the sky signal response. Conversion from the relative frequency response of the MKID to the line-of-sight brightness temperature of the sky (T_{sky}) is based on a model that uses the atmospheric transmission measured by DESHIMA itself. We conducted fast and wide scans of the telescope elevation (‘skydip’ observations) 22 times throughout the observing session, with an elevation range of 32–88°. The precipitable water vapour (PWV) values were typically in the range of 0.4–3.0 mm, with a mean value of 0.9 mm, according to the water vapour radiometers mounted on each telescope of the Atacama Large Millimeter/submillimeter Array (ALMA), located in the vicinity of ASTE. We define x as the fractional change in MKID readout resonance frequency, from when the instrument window is facing the blackened absorber on the chopper wheel at ambient temperature T_{amb} (Fig. 2a) to when the instrument looks at the sky with a brightness temperature T_{sky} through the telescope optics: $x \equiv (R(T_{\text{sky}}) - R(T_{\text{amb}})) / R(T_{\text{amb}})$, T_{amb} was calculated from

$$T_{\text{sky}} = \eta_{\text{fwd}} \left(1 - \eta_{\text{fwd}}\right) T_{\text{atm}} + \left(1 - \eta_{\text{fwd}}\right) T_{\text{amb}}$$

where $\eta_{\text{fwd}} = 0.93$ is the telescope forward efficiency of ASTE, η_{fwd} is the transmission coefficient of the atmosphere calculated from the PWV and telescope elevation, taking into account the frequency response of each channel (Fig. 2b). We have assumed the physical temperature of the atmosphere T_{atm} to be equal to the outside ambient temperature T_{amb} measured with the weather monitor at the ASTE site. From a least-squares fitting of the square-law $T_{\text{atm}} \propto x^2$ dependence for an aluminium-based MKID response, we obtain a calibration model curve as shown in Supplementary Fig. 1b. We perform an iterative estimation of the PWV using all channels of the filterbank with η_{fwd} and from that the PWV, as a single, common free parameter. In this way we obtain a calibration model that has a dispersion of ~4% for all skydip measurements. The error is significantly smaller than the initial model that directly uses the PWV from the ALMA radiometer data (Supplementary Fig. 1a). This calibration model is used for all astronomical measurements reported in this Letter.
Beam efficiency. We used Mars with an apparent diameter of 3.99" and a brightness temperature $T_{\text{brightness}} = 210$ K (ref. 1) to measure the beam pattern and efficiency of the DESHIMA optics coupled with the ASTE 10 m telescope. The data were obtained at 12:48 UTC, 2017 November 15 (daytime in Chile) with a PWV of 1.8 mm. The intensity was calibrated to antenna temperature T_A using a standard chopper wheel method21. The flux scaling, noise removal and map making were performed using data analysis software Decode (DESHIMA Code for data analysis)22. The main beam shape is measured by fitting a 2D Gaussian to the 350 GHz continuum image on Mars (Supplementary Fig. 2). The source-deconvolved beam size is estimated to be 31.4" × 2.8" by 22.8" × 3.1" (in FWHM) with a position angle of 145.5°. We estimate the main-beam efficiency by comparing the peak intensity with what is expected from the model and find $\eta_{\text{MB}} = 0.34 ± 0.03$ at 350 GHz (see Supplementary Note 1 for details). The main beam solid angle ΔA_{MB} and the main-beam efficiency yield an aperture efficiency of $\eta = \eta_{\text{MB}}/\Delta A_{\text{MB}}$, where ΔA_{MB} is the main beam area and λ is the wavelength. This value is much lower than previous 350 GHz measurements with a heterodyne receiver on ASTE ($\eta_{\text{MB}} = 0.6$)31, and can be attributed to an offset of the instrument beam of DESHIMA. In a post-analysis, we took the beam pattern from the cryostat, measured its phase and amplitude6, and the rotating chopper wheel placed in front of the receiver (Fig. 2a). We took the ~1 s), the time-stream data are calibrated at 10 Hz using a blackened absorber on the sky to antenna temperature T_A, excluding overheads for calibration.

The observed data were reduced using Decode33. After the chopper wheel calibration method32 to correct for atmospheric absorption and to convert the source position and a position 60″ away from the target to antenna temperature T_A at on- and off-source positions and used the standard chopper wheel calibration method21 to correct for atmospheric absorption and to convert the source position and a position 60″ away from the target to antenna temperature T_A. Throughout this Letter, on-source integration time refers to the total time that DESHIMA was observing the on-source position, excluding overheads for calibration.

IRC+10216. The broadband spectra of the post-AGB star IRC+10216 were taken on 16–20 November 2017. The PWV measured by ALMA was typically 0.75 mm. The observed data were reduced using Decode18. After the chopper wheel calibration as mentioned above, the strong continuum emission of the target was removed by subtracting the median baseline, which was estimated in the frequency range of <340 GHz and >360 GHz.

The obtained broadband spectrum is shown in Fig. 4a. The noise level of each spectral channel is determined by applying an iterative integration method with random sign inversion (the jackknife method hereafter; see Supplementary Note 2 for details). Two peaks are found at ~345 GHz and ~354 GHz, corresponding to CO(3–2) and HCN(4–3) lines. The peak intensities are 94.7 mK and 79.0 mK in T_A.

The integrated intensities of the CO and HCN lines are estimated by integrating over 340–350 GHz and 353–358 GHz to be 247 mK km s$^{-1}$ and 104 mK km s$^{-1}$, respectively. The spectral shape agrees with that expected from a spectral survey observation with the Submillimeter Array21. The integrated intensities of the CO and HCN lines are measured to be 58% and 31% of those measured by a previous observation using the Caltech Submillimeter Observatory (CSO) 10 m submillimeter telescope, after correcting for the spectral resolution, the beam size of the HCN line is estimated to be 1.2 mK after an on-source integration time of 12.6 min, corresponding to a NEFD of 3.2 Jy s$^{-1}$ beam$^{-1}$.

On-the-fly mapping observations. For the single-pointing observations of IRC+10216 and VV 114, we oscillated the pointing of the ASTE telescope between the source position and a position 60″ away from the source position in the azimuth direction, with a 2 s duty cycle. We integrated the spectrum of the target on-source (within a circle of 11″ radius (on-source position, which corresponds to an approximate half-width at half-maximum of the ASTE beam. We observed the data beyond 27″ from the target as off-source positions. The data were continuously recorded during the scans with a sampling rate of 160 Hz (ref. 35). Because the frequency of the telescope nodding is lower than the typical onset of $1/f$ noise of the detectors (~1 Hz, corresponding to an Allan variance time of ~1 s), the time-stream data are calibrated at 10 Hz using a blackened absorber on the rotating chopper wheel placed in front of the receiver (Fig. 2a). We took the difference $T_{\text{int}} - T_{\text{chop}}$ at on- and off-source positions and used the standard chopper wheel calibration method21 to correct for atmospheric absorption and to convert T_{int} to antenna temperature T_A. Throughout this Letter, on-source integration time refers to the total time that DESHIMA was observing the on-source position, excluding overheads for calibration.

VV 114. The interacting galaxy pair VV 114 was observed on 16 and 21 November 2017. The typical PWVs measured by ALMA were 0.7 m on November 16 and 0.9 mm on 21 November. The scan pattern and data reduction method were the same as for IRC+10216; the continuum emission was removed by subtracting a median baseline of the spectrum, estimated in the frequency range of <335 GHz and >345 GHz.

The broadband spectrum of VV 114 is shown in Fig. 1b. A significant emission line is detected at 339 GHz, corresponding to the redshifted CO(3–2) spectrum23. The peak intensity of the CO line is 8.9 mK in T_A and the integrated intensity is estimated by integrating over 337.9–341.5 GHz to be 12.4 K km s$^{-1}$. Adopting the beam size of DESHIMA on ASTE measured on Mars and the main-beam efficiency of $\eta_{\text{MB}} = 0.34$, the total flux density of the CO(3–2) emission is estimated to be 2.44 × 10$^{-3}$ Jy km s$^{-1}$. Regarding the difference in the integrated regions on sky, the estimated flux density is in reasonable agreement with the previous estimate with the James Clerk Maxwell Telescope (JCMT) (2.956 ± 1.33 Jy km s$^{-1}$). No other line feature is found except for tentative detections near 332 GHz and 343 GHz. The frequencies of these features are consistent with the redshifted frequencies of methanol (ref. 34) (161.5 GHz or 170.1 GHz, respectively (E denotes the torsional symmetry state of methanol). The noise level of the spectrum is typically 1.0 mK in T_A, with a time integration of 12.6 min, which is equivalent to a NEFD of 2.5 Jy s$^{-1}$ beam$^{-1}$. The deep integration and the simple shape of the spectrum allow us to estimate the NEFD at each channel with the jackknife method as shown in Fig. 1b. We find that the NEFDs of all channels, except for some higher frequencies, achieve a good agreement with those of the theoretical prediction (Fig. 4c).

Orion. DESHIMA observations towards the massive star-forming region around Orion KL were executed on 8–12 November 2017. The area presented in Fig. 3b–d was divided into six sub-regions, which each have a size of 29′ by 4′. After separate observations of these sub-regions in a total on-source time of 12.5 h, the data were combined to produce the final map of 29′ by 22′. After the basic data reduction process described above, we modelled the common signal across all channels as a superposition of continuum emission from the source and sky foreground emission, and removed the sky contribution on the channel integration correlation analysis. We applied a moderate high-pass filter in the image domain in the scanning direction to remove part of the instrument and atmospheric 1/f noise, because we did not continuously rotate the chopper during this observation. Finally, we convolved the map with a 43″-diameter aperture to obtain the maps of CO, HCN and HCO$^+$ presented in Fig. 3b–d. The spectrum at the point of Orion KL is displayed in Fig. 3e.

NGC 253. The OTF spectral map of the nearby barred spiral galaxy NGC 253, presented in Fig. 3g, was taken on 6–7 November 2017. The map size is 4.2′ by 4.2′. The total on-source time was 1.7 h. The data were reduced in the same manner as the Orion KL data, except that we used the median value of all channels to subtract the foreground sky emission. No continuum emission was detected from NGC 253, in an analysis similar to that for Orion. The obtained 1σ noise is typically ~5.3 mK from 335 GHz to 365 GHz. The map of the 345.53 GHz channel shows a 12.8σ detection of CO(3–2) emission from NGC 253, as shown in Fig. 3i where the DESHIMA CO(3–2) map is overlaid on a 2MASS JHK RGB image25. The spectrum at this point, for a 43″ aperture, is shown in Fig. 3j. The total integrated intensity of the CO(3–2) emission at the peak position for a 26.7″ aperture is estimated to be 138 K km s$^{-1}$. This value is consistent with the previous measurement using a heterodyne receiver installed on the CSO 10 m telescope, taking into account the difference in beam size and the accuracy of the absolute flux calibration. The total integrated intensity of the CO(3–2) emission is 73 K km s$^{-1}$ (ref. 33), which is smaller than the DESHIMA beam, it should be corrected for comparison. If we assume that the emission is uniformly distributed over the DESHIMA beam, the total integrated intensity is corrected to be 205 K km s$^{-1}$ for a 21.9″ aperture. Adopting a main-beam efficiency of 0.34, the total integrated intensity is thus 643 K km s$^{-1}$. This is slightly lower than the CO value but within the margin of the uncertainty in absolute flux calibration and the distribution of source emission.

Sensitivity. The power coupled to the MKID is the sum of the power from the sky and the power from warm spillover. This is given by

$$P_{\text{MKID}} = \eta_{\text{MKID}} (1 - \eta_{\text{spillover}}) + (1 - \eta_{\text{MKID}}) B(V, T_{\text{AM}}) \Delta F$$

where $\eta_{\text{MKID}} = 0.93$ is the forward efficiency of the telescope, that is, all power coupled to the sky; $\eta_{\text{spillover}}$ is the coupling from the cryostat window to the MKID detector and $B(V, T_{\text{AM}})$ is the atmospheric transmission given by the PWV and elevation. In Fig. 4c, we
to have adopted $n_{\text{inst}} = 0.02$ for the model bars based on the laboratory test. $B(F, T_{\text{quad}})$ is the single-polarization Planck brightness at frequency F and temperature T_{quad}, taken as identical for the ground, cabin and atmosphere. The photon-noise-limited NEP (NEP$_{ph}$) at the detector, is given by

$$\text{NEP}_{ph} = \sqrt{2P_{\text{MKID}}(hF + P_{\text{MKID}}/\Delta F) + 4\Delta F P_{\text{MKID}}/\eta ph}$$

(3)

Here, h is the Planck constant, ΔF is the effective bandwidth of the filter channel, ΔF_{inst} is the full width at half maximum of the filter channel, η_{inst} is the single-polarization Planck brightness at frequency F, and η_{ph} is the physical area of the ASTE telescope A, and is given by

$$\eta_{\text{ph}} = \sqrt{\eta_{\text{freqPlanckPlan}} \eta_{\text{ph}} \Delta F}$$

(4)

Here, the factor $\sqrt{2}$ accounts for the NEP being defined for 0.5 a integration time, and $\eta_{\text{inst}} = 0.5$ accounts for the fact that DESHIMA is sensitive to a single linear polarization.

Optimum frequency resolution. Here we will show that the SNR for a single ISS channel matched to the centre frequency of an astronomical line is maximum when the channel frequency width ΔF_{inst} is equal to the line width ΔF_{inst} under the assumption that the measurement is limited by the foreground/background photon noise. In the following analysis we adopt a frequency width ratio ΔF_{r} ΔF_{inst}, and assume a rectangular frequency profile for both the line and the channel transmission for simplicity.

The SNR for $r = 1$ after an integration time of t is

$$\text{SNR} = \frac{P_{\text{line}} / \sqrt{F}}{\text{NEP}_{ph}}$$

(5)

Here, P_{line} is the total power from the line absorbed by the MKID and η_{inst} is given by equation (3).

If $r > 1$, then P_{line} stays constant but the NEP increases with \sqrt{r} according to equation (5), because $P_{\text{line}} / \sqrt{F}$ and ΔF. In other words, the MKID receives more sky loading but the signal power from the line stays constant. Therefore the SNR drops.

If $r < 1$, then P_{line} decreases in proportion to r because the channel receives only part of the spectral power of the line. At the same time the NEP decreases but with \sqrt{r}, so the net change in SNR is a decrease proportional to r^2.

From these two arguments we can conclude that the SNR for a single channel is maximized for $r = 1$.

Now, the sensitivity loss for the $r < 1$ case can be recovered if one places 1/r channels per line, but this would naturally require more detectors to cover a given instantaneous bandwidth. For DESHIMA we have taken a typical velocity width of $\Delta v = 600$ km s$^{-1}$ for bright SMGs to set the frequency resolution to $F / \Delta F_{r} = 1 / \Delta v - 500$.

If the typical linewidth of the target population is known a priori, then the spectral efficiency η_{r} is given by equation (3).

If the typical linewidth of the target population is known a priori, then the spectral efficiency η_{r} is given by equation (3).

References

1. Geach, J. E. et al. The case for a sub-millimeter SDSS: a 3D map of galaxy evolution to z ~ 10. Preprint at https://arxiv.org/abs/1903.04779 (2019).

2. Farrar, D. et al. Review: far-infrared instrumentation and technology development for the next decade. J. Astron. Telesc. Instrum. Syst. 5, 020901 (2019).

3. Kawabe, R. et al. New 50-m-class single-dish telescope: Large Submillimeter Telescope (LST). Proc. SPIE 9906, 990626 (2016).

4. Erickson, N., Narayanan, G., Goeller, R. & Grosslein, R. In From Z-Machines to ALMA: (Sub)Millimeter Spectroscopy of Galaxies, Astronomical Society of the Pacific Conference Series 375, (eds Baker, A. J. et al.) 71–81 (Astronomical Society of the Pacific, 2007).

5. Stacey, G. J. THz low resolution spectroscopy for astronomy. IEEE Trans. Terahertz Sci. Technol. 1, 241–255 (2011).

6. Endo, A. et al. Wideband on-chip terahertz spectrometer based on a superconducting filterbank. J. Astron. Telesc. Instrum. Syst. 5, 035004 (2019).
Acknowledgements

We thank T. Kobiki, T. Ito, M. Yamada, M. Saito, J. Aguiler and J. Zenteno of NAOJ for their support at ASTE. We thank R. Jara, L. T. Galvéz and M. Konuma of NAOJ for their support in the transportation of the equipment to ASTE. We thank T. Minamidani for hosting a go/no-go review of the campaign, and all committee members who provided invaluable feedback. We thank K. Keizer of SRON for the precise mechanical work on the cryostat. We thank P. P. Kooijman and H. Hoevers of SRON for coordinating the delivery of the cryogenic hardware. We thank the staff of The University of Tokyo Atacama Observatory facility for their hospitality. We thank the staff of Kavli Nanolab Delft for their support in the microfabrication of the ISS chip. We thank the staff of Else Kooi Laboratory for supporting the measurements in the cryolab at TU Delft. We thank D. Wernicke and J. Baumgartner of Entropy Cryogenics for their support in operating the cryostat at ASTE. Finally, we thank J. Pinto for his kindness to donate a piece of copper wire with a diameter in the range of 1.00–1.05 mm from his jewellery shop in San Pedro de Atacama so that we could align the cryogenic thermal mechanical structure on site. This research was supported by the Netherlands Organization for Scientific Research NWO (Vidi grant no. 639.042.423, NWO Medium Investment grant no. 614.061.611 DESHIMA), the European Research Council ERC (ERC-CoG-2014 - Proposal no. 648135 MOSAIC), the Japan Society for the Promotion of Science JSPS (KAKENHI grant nos. JP25247019 and JP17H06130), NAOJ ALMA Scientific Research grant no. 2018-09B, and the Grant for Joint Research Program of the Institute of Low Temperature Science, Hokkaido University. P.J.d.V. is supported by the NWO (Veni Grant 639.041.750). T.M.K. is supported by the ERC Advanced grant no. 339306 (METIQUM) and the Russian Science Foundation (grant no. 17-72-30036). N.L. is supported by ERC (Starting Grant no. 639749). J.S. and M.N. are supported by the JSPS (Veni Grant 639.041.750). T.M.K. is supported by the ERC Advanced grant no. 339306 (METIQUM) and the Russian Science Foundation (grant no. 17-72-30036). N.L. is supported by ERC (Starting Grant no. 639749). J.S. and M.N. are supported by the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (Program no. R2804). T.J.L.C.B. was supported by the European Union Seventh Framework Programme (FP7/2007–2013, FP7/2007–2011) under grant agreement no. 607254. The ASTE telescope is operated by the National Astronomical Observatory of Japan (NAOJ).

Author contributions

A.E. initiated the DESHIMA project as an MKID-based redshift machine. J.J.A.B. invented the concept of the ISS. P.J.d.V., Y.T., K. Kohno and R.K. articulated further astronomical usage of the ISS spectrometers. A.E. designed the ISS filterbank. O.Y. designed the double-slot antenna. A.P.L. explained the chip performance with precise electromagnetic simulations. D.J.T. and V.M. fabricated the chip. D.J.T. and T.M.K. provided the NbTiN thin film. J.B. measured the optical efficiency of the chip. P.J.d.V. provided insight on the quasiparticle physics. S.J.C.Y. designed the cold optics, measured the instrument beam pattern, and did a post analysis to explain the beam pattern and efficiency measured on ASTE. J.J.A.B. and S.J.C.Y. made the conceptual design of the cryogenic set-up, and R.H. made the mechanical designs. J.J.A.B. developed the readout electronics. K. Karatsu measured the sensitivity and frequency response of the instrument. M.N. and J.S. contributed to these measurements. J.S. developed a database for managing the acquired data. S.B., O.Y. and N.L. designed the warm optics. T.O., T. Takekoshi, K.O. and Y.F. designed and tested the warm optics, the room-temperature calibration chopper and the DESHIMA–ASTE hardware interface. A.K. and K.F. manufactured the warm optics, and S.N. measured its surface accuracy. K. Karatsu, Y.T. and J.M. developed the DESHIMA local controller. D.J.T. and T.O. were responsible for the logistics in the transportation of the equipment to ASTE. T.O. led the installation of DESHIMA on ASTE, done by T.O., T. Takekoshi, K. Karatsu, D.J.T., R.H. and A.E. R.H. and K. Karatsu were responsible for the re-integration of the DESHIMA hardware on the ASTE site. K. Karatsu and T.O. realized remote control of DESHIMA on ASTE. T. Takekoshi aligned the warm optics using the scheme he developed. S. Ishii, A.T., Y.T., K. Karatsu, T. Takekoshi, T.U., T.I., K.C. and K.S. defined the data structure. A.T. and T.I. developed the Decode software. Y.T. led the astronomical observations and selected the target objects. Observations were conducted from the TAO facility in San Pedro de Atacama and from NAOJ by Y.T., K.S., T.I., A.T., T. Takekoshi, T.O., K. Karatsu, K.C., Y.Y., T.J.L.C.B., S. Ishii, T.U. and A.E. Y.T. developed the on-sky chopping scheme. T. Takekoshi led the dismounting of DESHIMA, done by T. Takekoshi, K. Karatsu, M.N., K.F. and A.E. The following authors autonomously analysed the on-telescope data and wrote the corresponding sections of this paper: K.S. (Mars), T. Takekoshi (sky dip calibration, in collaboration with J.S. and K. Karatsu), T. Takagashiki (VV 114, IRC+10216), S. Ikarashi (Orion, NGC 253). A.E. led the writing of the paper, and all authors have contributed to improving the project. Management team: S.A. managed the ASTE telescope; J.J.A.B. managed the development of the instrument hardware. T.O. managed the development of the warm optics and chopper, as well as the scheme and hardware for installing DESHIMA on ASTE. Y.T. managed the astronomical commissioning and software development; A.E. managed the DESHIMA project on the top level.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41550-019-0850-8.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to A.E.

Peer review information: Nature Astronomy thanks Ted Huang, Omid Noroozian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019