The LexA regulated genes of the Clostridium difficile.
Beata Walter, Maja Rupnik, Vesna Hodnik, Gregor Anderluh, Bruno Dupuy, Nejc Paulič, Darja Žgur-Bertok, Matej Butala

To cite this version:
Beata Walter, Maja Rupnik, Vesna Hodnik, Gregor Anderluh, Bruno Dupuy, et al.. The LexA regulated genes of the Clostridium difficile.. BMC Microbiology, 2014, 14 (1), pp.88. 10.1186/1471-2180-14-88. pasteur-00976526

HAL Id: pasteur-00976526
https://pasteur.hal.science/pasteur-00976526
Submitted on 10 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The LexA regulated genes of the *Clostridium difficile*

Beata M Walter1, Maja Rupnik1,2,3, Vesna Hodnik4, Gregor Anderluh4,5, Bruno Dupuy6, Nejc Paulič7*, Darja Žgur-Bertok4 and Matej Butala4*

Abstract

Background: The SOS response including two main proteins LexA and RecA, maintains the integrity of bacterial genomes after DNA damage due to metabolic or environmental assaults. Additionally, derepression of LexA-regulated genes can result in mutations, genetic exchange and expression of virulence factors. Here we describe the first comprehensive description of the *in silico* LexA regulon in *Clostridium difficile*, an important human pathogen.

Results: We grouped thirty *C. difficile* strains from different ribotypes and toxinotypes into three clusters according to *lexA* gene/protein variability. We applied *in silico* analysis coupled to surface plasmon resonance spectroscopy (SPR) and determined 16 LexA binding sites in *C. difficile*. Our data indicate that strains within the cluster, as defined by LexA variability, harbour several specific LexA regulon genes. In addition to core SOS genes: *lexA*, *recA*, *ruvCA* and *uvrBA*, we identified a LexA binding site on the pathogenicity locus (PaLoc) and in the putative promoter region of several genes involved in housekeeping, sporulation and antibiotic resistance.

Conclusions: Results presented here suggest that in *C. difficile* LexA is not merely a regulator of the DNA damage response genes but also controls the expression of dozen genes involved in various other biological functions. Our *in vitro* results indicate that in *C. difficile* inactivation of LexA repressor depends on repressor’s dissociation from the operators. We report that the repressor’s dissociation rates from operators differentiate, thus the determined LexA-DNA dissociation constants imply on the timing of SOS gene expression in *C. difficile*.

Keywords: *Clostridium difficile*, Antibiotic resistance, Toxin regulation, SOS system, Surface plasmon resonance, LexA repressor

Background

Organisms have evolved gene regulatory systems to maintain their genetic integrity. The SOS regulatory network is a paradigm for bacterial response to DNA damage which is controlled by a global transcriptional repressor LexA and an inducer, the recombinase protein RecA. During normal bacterial growth, LexA binds to DNA recognition sequences (operator) positioned near or overlapping the promoter elements of the SOS genes and occludes RNA polymerase, preventing SOS gene transcription. Upon DNA damage, RecA polymerizes on single-stranded DNA (ssDNA) formed at sites of DNA damage, becomes activated (RecA*) and facilitates self-cleavage of LexA resulting in coordinated expression of SOS genes [1].

The SOS system was found in almost all eubacterial groups [2]. It was suggested that the LexA operator spread from Gram positive bacteria into Gram negative bacteria, which indicates on the evolutionary origin of the LexA protein [3]. In *Escherichia coli*, the consensus operator sequence (SOS box) has been identified as 5′-CTGTN8ACAG-3′ [4] and in the spore former *Bacillus subtilis* 5′-GAACN4GTTC-3′ [5]. The SOS response comprises a variety of physiological processes, not solely involved in the upkeep of the bacterial genome. LexA represses synthesis of toxins [6,7] and antibiotic resistance determinants [8], controls integron cassette recombination [9] and lateral transfer of virulence factor genes [10], as well as drug resistance genes [11].
Genes under the control of LexA differ significantly among species. *B. subtilis* LexA controls a regulon of over 60 genes [12] with only eight of these genes having orthologs in *E. coli*. Those genes play roles in SOS regulation and excision, recombinational and error-prone DNA repair [5].

C. difficile is a human pathogen causing a spectrum of intestinal diseases ranging from mild diarrhoea associated with antibiotic treatment to, in more severe cases, pseudomembranous colitis [13]. Despite extensive research focused on the bacterium, knowledge regarding its SOS system is scarce [14]. Among other clostridia species, binding sites for LexA were identified in *C. acetobutylicum* and *C. perfringens* and resemble *Bacillus* LexA operator sequences [15,16]. As a suitable target site for LexA is sufficient for binding *in vivo* [4], we used a robust *in silico* approach [17] and predicted the LexA-regulated genes of several *C. difficile* strains. In addition, surface plasmon resonance (SPR) was used to confirm the interactions of LexA with regions defined in *in silico* experiments.

Results and discussion

Variability of the lexA gene in *C. difficile*

C. difficile has been described as a bacterium with highly mosaic genetic composition and multiple attempts have been made to distinguish between various strains and to correlate them with virulence [18]. We first analysed the variability of the repressor LexA encoding gene sequence among various *C. difficile* ribotypes (groups characterized by differences in intergenic regions of RNA operon and used worldwide for *C. difficile* typing) and toxino-types (characterized by differences in toxin A and B coding region inside the pathogenicity locus called Pa.loc) (Additional file 1: Table S1) [19]. Analysis revealed 17 single nucleotide polymorphisms (SNPs) in the *lexA* gene of 63 *C. difficile* sequences among which four SNPs resulted in missense mutations but none of the mutations modified amino acids in the cleavage or active sites of LexA (Figure 1). Our analysis grouped the investigated strains into three clusters according to the *C. difficile* LexA (Figure 2). Cluster I encompassed 3 non-toxigenic strains and strains of toxino-type 0; Cluster II encompassed strains of toxino-types III, VIII, IX, and X and finally, Cluster III with the highest number of SNPs, was mostly composed of toxino-type V strains. Ribotypes for the above stated toxino-types can be found in the Additional file 1: Table S1. Previous results showed that strains belonging to the epidemic ribotype 027 form a genome wide clade [20,21], typically characterised as the toxino-type III (North American pulsed field gel electrophoresis type 1 - NAP1, REA group BI). Interestingly, ribotypes 016, 019, 036, 075, 111, 122, 153, 156, 176, 208 and 273 are closely related to ribotype 027 by comparative genomics [20,21], and those ribotypes were found to encompass the *lexA* cluster II.

Comparative phylogenomics along with MLST (multilocus sequence typing) and whole genome sequencing has shown that ribotype 078 lineage is different than other *C. difficile* lineages [22]. Moreover PCR ribotype 078 forms a phylogenetically coherent group with ribotypes 033, 045, 066, 078, 126 and 127 [23] – which encompasses *lexA* cluster III. Genetically distinct strains that belong to ribotypes 078 (V) and 126 (V) clustered together showing the highest number of SNPs in the *lexA* gene. The phylogenetic tree based on LexA variability reflects similarities to genetic lineages based on ribotype patterns and comparative genomics analysis.

In silico screening for the LexA-regulated genes in *C. difficile*

To obtain insight into the LexA regulon genes, we performed *in silico* genome-wide prediction of LexA binding sites within promoter regions of *C. difficile*. Using the xFIToM software [24], we screened genomes of thirty *C. difficile* strains (Additional file 1: Table S1) for the *C. acetobutylicum* and *C. perfringens* consensus operator sequence of LexA [15,16], allowing for two mismatches in one of the two half sites positioned within 350 bp upstream to 35 bp downstream of a protein coding sequence. Among the thirty genomes, the search yielded at least one putative operator sequence upstream of more than 30 genes involved in a variety of biological processes e.g. DNA repair, transport, virulence and antibiotic resistance (Table 1).

Subsequently, we purified *C. difficile* LexA and RecA proteins with an N-terminal hexa-histidine tag (Additional file 2: Figure S1) as described for *E. coli* orthologs [25]. SPR analysis was performed to validate the *in silico* data and determine the LexA-operator interactions *in vitro* in real time. Most of the interaction sites were found in putative promoter regions of “common” putative SOS genes for the majority of the genomes tested and of putative LexA regulon genes encoding unusual SOS proteins. Out of 20 DNA fragments tested, the repressor interacted with 16 targets (Figure 3A, Additional file 3: Table S2). We determined interaction with operators in promoter regions of the core SOS response genes: *recA*, *lexA*, the genes of the *uvrBA* operon encoding for components of the UvrABC endonuclease catalyzing nucleotide excision repair and the *rwwCA* operon genes, encoding the nuclease that resolves Holliday junction intermediates in genetic recombination. In addition, LexA interacts with putative promoter regions of genes involved in sporulation (*sspB*), regulation of DnaA-dependent initiation of DNA replication (*soj*), several ABC transporters (*potC, oppC*, MicroScope:CDR20291_2297) and for homologue of a two-component system regulator of the vancomycin resistance cluster (*vanR*). The LexA repressor was also found to interact within PaLoc with operator identified 525 base pairs upstream of the toxin A gene (*tcdA*).
Figure 1 Variability of lexA gene in Clostridium difficile. Representation of the C. difficile 630 strain lexA nucleotide sequence in comparison to repressor sequences of 62 other strains. Grey arrow denotes the nucleotide sequence of the CD630 lexA gene. Black arrows mark the position of domains in LexA. The number of strains with specific SNP and the corresponding nucleotide/aminoacid change is marked above the arrow. The ordinal number of nucleotides in lexA is presented below the arrow. The SNPs marked in blue encompass strains from cluster III, composed mainly of strains belonging to the toxinotype V. The position of the cleavage site and the catalytic residues is marked in purple.

Figure 2 Dendrogram of the aminoacid sequence alignments of LexA derived from lexA genes of C. difficile strains. PCR ribotypes and taxinotypes of the strains can be found in Additional file 1.
Table 1 *In silico* predicted LexA binding sites in *C. difficile* ribotypes

Gene accession number	GENE	Product	LexA BOX	Distance	Various toxinotypes	Toxinotype V	Toxinotype 0/nontoxinogenic
					O33	O27	O75
					O17	O78	O12
					O9	O1	O2
					O5	O87	O14
					O53		
CDR20291_1854	lexA	Transcriptional regulator, LexA repressor	GAAC...GTTT	−51/91	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_1169	recA	Protein RecA (Recombinase A)	GAAC...GTTT	−39/41	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_2696	ruvC	Crossover junction endodeoxyribonuclease	GAAC...GTTT	−65	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_3234	uvrB	Exnuclease ABC subunit B	GAAC...GTTT	−30	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_0487	rusA	Putative RusA-like endodeoxyribonuclease	GAAC...GTTT	−122	1 8 2 1	3 2 NO NO 1 NO NO NO NO NO	
CDR20291_2024	trxB	Thioredoxin reductase	GAAC...GTTT	−216	NO NO NO NO NO 1 NO NO NO NO NO NO		
63q42v1_580022	rps3	Putative 30S ribosomal protein S3	GAAC...GTTT	−284	NG NG 1 NG NG NG NG 1 NG NG NG NO NO NO NO NO NO		
CDR20291_3107	sspB	Small, acid-soluble spore protein beta	GAAC...GTTT	34	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_0784	oppC	ABC-type transport system, oligopeptide	GAAC...GTTT	−285/286	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_3532	soj	Small walker A ATPase, chromosome replication	GAAC...GTTT	−226	NO NO NO NO NO 1 NO NO NO NO NO NO		
CDR20291_2297		Putative multidrug efflux pump	GAAC...TTTT	−138	1 8 2 1	3 2 1 3	3 3 1 1 1
63q42v1_310170		ABC-type multidrug-family	GAAC...GTTT	−154	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_3125	vanR	Regulatory protein vanR	GAAC...GTTT	−222	NO		
CDR20291_0083	rplT	50S ribosomal protein L1B	GAAC...GTTT	−261/262	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_0060	rpoB	DNA-directed RNA polymerase subunit β	GAAC...GTTT	−42/43	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_1619		Putative transcriptional regulator	GAAC...GTTT	30/31	1 8 2 1	3 2 1 3	3 3 1 1 1
63q42v1_570034		Helix-turn-helix domain protein	GAAC...GTTT	−97	NG 3 NG 1 NG NG NG 1 NG NG NG NG NG		
CDR20291_0882	potC	ABC-type transport system.	GAAC...GTTT	−207	1 8 2 1	3 2 1 3	3 3 1 1 1
CDR20291_0584	tcdA	Toxin A	GAAC...GTTT	−525	NG 2 NG 2 NG 3 2 NG 3 3 3 3 1 1 1		
CDR20291_3466		Putative cell wall hydrolase	GAAC...GTTT	−58	NO 8 NG NO NO NO NO NO NO NO NO		
CDR20291_2689		Putative membrane protein	GAAC...GTTT	−111	NO 7 2 1 NO NO NO 1 3 3 3 3 1 1 1		
CDR20291_1611	moaB	Molybdenum cofactor biosynthesis	GAAC...GTTT	−6	NO		
CDR20291_2775	celG	Cellobiose-phosphate degrading protein	GAAC...GTTT	−314	NO		

Walter et al. BMC Microbiology 2014, 14:88
http://www.biomedcentral.com/1471-2180/14/88
Strain	Gene	Description	Operator Sequence	Position	Strain 1	Strain 2	Strain 3	Strain 4	Strain 5	Strain 6	Strain 7	Strain 8	Strain 9	Strain 10
CDR20291_3372	phnH	Phosphonate metabolism protein	GAAC...CTTT	−34	NG	8	2	1	NG	NG	3	3	3	1
CDR20291_1600	thiC	Thiamine biosynthesis protein ThiC	GAAC...ATTT	−175	1	NO	NO	NO	3	2	NO	NO	NO	NO
CDR20291_1940	CDR20291_1940	N-carbamoyl-L-amino acid hydrolase	GAAC...GTTT	−147	NO									
CDR20291_2056	Endonuclease/exonuclease/phosphatase	GAAC...GTTT	−466	1	8	2	1	3	2	1	3	3	3	
NAP07v1_600016	Two-component sensor histidine kinase	GAAC...GTTT	−217	NO	8	NO								
CDR20291_0331	cbiQ	Cobalt transport protein	GAAC...GTTT	−122	1	8	2	1	3	2	1	3	3	
CDR20291_2597	Putative oxidoreductase	GAAC...CTTC	2	1	8	2	1	3	2	1	3	3	3	
NAP07v1_470051	aroF	P-2-dehydro-3-deoxyheptonate aldolase	GAAC...GTTT	−225	1	NO								
97b34v1_600001	Transposase	GAAC...GTTT	−217	NO	8	NO								
CDE15v2_1270013	Putative ci repressor	GAAC...GTC	−67	NG	NO									
63q42v1_370450	Extrachromosomal origin protein	GAAC...GTTT	10	NG	NO									
CDR20291_1803	vexP	ABC transporter. ATP-binding/permease	GTTC...TTTT	−85	NO	8	2	1	NO	NO	NO	1	2	
97b34v1_250108	ABC-type transport system, sugar-family	GAAC...GTC	−267	NG	8	2	NG							

Sequences of putative LexA operators and their positions (according to the start of the gene coding region). Numbers denote strains with the operator identified. NO marks the gene that was identified in the strain but a target LexA site was not found in its promoter region, NG marks that gene was not found in the genome of the strain.
While the regulation of toxin production in *C. difficile* is controlled in response to several environmental signals mediated by pleiotropic regulators (CcpA, CodY, SigD and SigH [26]), the possible regulation through the SOS system sheds new light on this issue. Furthermore, the subinhibitory concentration of SOS-inducing antibiotic ciprofloxacin was recently shown to increase the Toxin A gene expression in *C. difficile* [27]. Our SPR analysis revealed that also housekeeping genes required for ribosome function (*rplR*) and β subunit RNA polymerase (*rpoB*) belong to the LexA regulon, a feature of the SOS network not yet observed in bacteria. Thus, blockage of LexA self-cleavage could impede pivotal functions in *C. difficile* and this might provide a new approach to treat *C. difficile* infections. Moreover, although putative SOS genes are present in most of the analysed genomes, several of these genes encoding for putative cell wall hydrolase, transposase and for two component sensor histidine kinase seem to be regulated by LexA only in the 027 ribotype strains (Table 1). The *in silico* analysis showed operators in front of several genes upregulated exclusively in ribotype 075 and 027 (*celG*, *vanR*, ABC-type transport system). Furthermore, among the analysed genomes, exclusively in the closely related ribotypes 078, 126 and 033, the LexA target site was not found in front of the *soj* (regulation of DNA replication) and the *phnH* (phosphonate metabolism protein). Thus the mode of SOS regulation might be related to phylogenetic lineages.

Cross-reaction of SOS system components in *E. coli* and *C. difficile*

Induction of SOS gene expression is synchronized and the level, timing and duration of expression of the individual LexA regulon genes differs significantly (1). In *E. coli*, LexA bound to target DNA cannot interact with RecA* and only unbound repressor is proteolytically inactivated [25]. Thus the rate of LexA dissociation from operators controls the precise timing of SOS gene expression following induction. Consequently genes with lower affinity LexA target sites are expressed prior to genes with high affinity operators [1,5]. To follow up on these results, we used SPR to study interaction of the chip-immobilized *C. difficile* RecA* with LexA interacting with either specific or non-specific DNA. We showed that as in *E. coli*, the *C. difficile* LexA repressor interaction with RecA* is prevented by binding to specific DNA targets (Figure 4). In addition, we showed that the key SOS players of *E. coli* and *C. difficile* can cross-react in vitro (Figure 4). Hence, our data indicated that the mode of regulation of the *C. difficile* SOS response resembles the one described for *E. coli*. Nevertheless, in contrast to the *E. coli* SOS system, we observed among the investigated *C. difficile* genes, a slowest LexA dissociation from operators of the core SOS genes, *recA*, *lexA* and *uvrB* (Figure 3A and B, Table 2), implying that these are the last genes upregulated upon SOS induction. For instance, LexA dissociation from the *E. coli* recA operator is more than 20-times faster than from *C. difficile* with regard to the dissociation constant.
constants of $4.8 \pm 2.1 \times 10^{-3}$ s$^{-1}$ (21) and $1.7 \pm 0.5 \times 10^{-4}$ s$^{-1}$, respectively.

We propose that in *C. difficile*, strong repression of core SOS genes affects the magnitude of the system`s induction. Thus, the low association and non-stable LexA binding to putative regulatory regions of genes encoding the RNA polymerase β subunit (*rpoB*), 50S ribosomal protein (*rplR*), spermidine/putrescine permease (*potC*), vancomycin response regulator (*vanR*) and putative multidrug-efflux-pump [MicroScope: CDR20291_2297], indicates that LexA contributes to fine-tuning of expression of these genes independently of substantial recA induction (Figure 3).

The paradigm of the SOS system is that DNA repair genes are rapidly induced in the SOS response to deal with DNA lesions [1,2,28]. However, comparison of induction of LexA regulon genes in *B. subtilis* and *E. coli* in response to double-strand breaks reveals diversity [29]. After DNA damage, the velocity of assembly of RecA* is similar but in contrast to *E. coli*, a limited set of LexA-regulated genes are induced early in the response in *B. subtilis*. Our in vitro results suggest that also in *C. difficile*, induction of the LexA-regulated DNA repair genes might be induced later in the SOS response as the core SOS gene promoter regions harbour high affinity LexA targets. According to the differences in LexA-operator affinities we predict that upon DNA damage, various biological processes will be derepressed without induction of the SOS DNA repair.

Conclusions

We have generated maps of LexA target sites within the genomes of *C. difficile* strains. We predict that SOS functions in *C. difficile* are not solely involved in the DNA repair but are probably linked to other biological functions (virulence factors, sporulation,...). As *C. difficile* infection is a growing problem in healthcare facilities and community patients, further characterisation of the LexA-regulon could provide key insights into pathogenesis. Our data suggest that molecules targeting key SOS proteins could block several housekeeping functions and could provide next generation of *C. difficile* antibiotics. Furthermore, the defined differences in *lexA* gene group *C. difficile* strains into three clusters which correlated...
well with phylogenetic lineages suggested by comparative genomic approaches.

Materials and Methods

Source

The *C. difficile* genomes were obtained from an opened access NCBI database [30] and an undisclosed access to MicroScope platform [31]. The strains used for amplification with PCR and sequencing belong to the strain collection of the Institute of Public Health Maribor. The list of strains used for analysis of the LexA variability and regulation is presented in the Additional file 1: Table S1.

Variability of *lexA* gene

Variability of *lexA* in *C. difficile* was compared by analysis of alignment and phylogenetic trees of nucleotides and amino acid sequences performed with Vector NTI (Invitrogen) and with the interactive viewer for phylogenetic trees: Dendroscope [32]. Sixty three sequences were analysed in total (NCBI – 9 strains, MicroScope – 44 strains, PCR product of in-house strains – 10). Strains CD196, R20291 and 630 were obtained from both databases. List of strains used for *lexA* gene variability can be found in Additional file 1: Table S1.

In silico determination of the *C. difficile* SOS regulon

The search for LexA binding sites was performed for 30 genomes (Additional file 1: Table S1). The number of strains covering ribotypes was as follows: ribotype 027 – eight strains; ribotypes: 078, 001, 005 and 012 - three strains from each; ribotypes 075 and 126 two strains from each and one genome from each ribotypes 017, 087, 014, 053. The analysis was performed with xFiToM software [24]. The searched motifs, based on *C. acetobutylicum*

Table 2 Target DNA sequences of the putative SOS genes of the R20291 strain used for the SPR analysis

GENE	Function	Product	Putative LexA operator (R20291 strain)	Distance from CDS
lexA	SOS response	Transcriptional regulator. LexA repressor	5`-GAACAAATGGTTC-3`	–51/-91
recA	SOS response/DNA repair	Protein RecA (Recombinase A)	5`-GAACAAATGGTTG-3`	–39/-41
ruvC	DNA repair	Crossover junction endodeoxyribonuclease	5`-NAGAAGCTTTG-3`	–65
uvrB	DNA repair	Excinuclease ABC subunit B	5`-GAACAAATGGTGC-3`	–30
sspB	Spores	Small. acid-soluble spore protein beta	5`-GAAGCAGTGGTTCA-3`	34
oppC	Spores/ABC transporter	ABC-type transport system. oligopeptide-family	5`-GAACATAAATTTT-3`	–285/-286
soj	Regulation of DNA replication	protein Soj	5`-TTGAACCTTATGGTCC-3`	–226
CDR20291_2297	Antibiotics	Putative multidrug efflux pump	5`-GAACATCTGAAAAG-3`	–138
vanR	Antibiotics	Response regulator VanR	5`-GAACATATATTTA-3`	–222
rplR	DNA/RNA	SOS ribosomal protein L18	5`-GAACATTAAGTTTCT-3`	–261/-262
rpoB	DNA/RNA	DNA-directed RNA polymerase subunit beta	5`-GAACATTGTTTCA-3`	–42/-43
potC	Biofilm	ABC-type transport system. spermidine/putrescine	5`-TGAACCTTGGTCA-3`	–207
tcdA	Toxicity	Toxin A	5`-TGGAACCAAATGGTGA-3`	–525
CDR20291_2689	Cell wall/membrane	Putative membrane protein	5`-TGAACCTTATGGTCA-3`	–111
CDR20291_2056	Signalling	Putative endonuclease/exonuclease/phosphatase	5`-AAAAACCCCTGCTGAACATTCGTTCGT-3`	–466
NAP07v1_640016	Signalling/Chemotaxis	Two-component sensor histidine kinase	5`-GAACCTGTGTTTTT-3`	–217
cblQ	Transport	Cobalt transport protein	5`-TGAACATGTTAG-3`	–122
aroF	Transport	Phospho-2-dehydro-3-deoxyheptonate aldolase	5`-TGAACATTCTTTCT-3`	–225
vexP	ABC transporter	ABC transporter. ATP-binding/permease protein	5`-AAGTTCAAAATTGGA-3`	–85
97b34v1_250108	ABC transporter	ABC-type transport system sugar-family	5`-GAACCTAAAGTTC-3`	–267
and C. perfringens consensus, were as follows: GAACnnnnGTTT, GAACnnnnGTTT, GAACnnnnGTTT, GAACnnnnGTTT. The default options were used with the limitation to 350 base pairs upstream to 35 bp downstream of a protein coding sequence. An exception was the promoter region of the putative endonuclease/exonuclease/phosphatase (MicroScope: CDR20291_2056) where we found 2 operators positioned approximately 460 upstream of the coding sequence and hence, we included the targets in the analysis. The results were subjected to manual check by extraction of gene sequences along with 1000 base pairs upstream and downstream followed by alignment and research of the binding sites.

Cloning, expression and isolation of recombinant C. difficile LexA and RecA protein

The C. difficile 630 chromosomal DNA was extracted by the Genomic DNA purification kit (Thermo Scientific) according to the manufacturer’s instructions. The lexA and recA genes were amplified by PCR from the chromosomal DNA using specific primers (DinR_U 5′-GCGCGATCCAGTGTAGATCAAGAAAAAT and RecA_D 5′-CGCACGCGTTTATTCTTC, respectively). The PCR products were then purified and cut with BamHI and MluI and cloned into pET8c vector digested by the same enzymes to create plasmids pDinRCD and pRecACD for expression and cloned into pET8c vector digested by the same enzymes.

Surface plasmon resonance assays

C. difficile LexA-operator measurements were performed on a Biacore T100 (GE Healthcare) at 25°C as described to study the interaction among the key E. coli SOS proteins [25]. Experiments were performed in SPR_2 buffer (20 mM NaH_2PO_4 (pH 7.4), 150 mM NaCl, 2 mM MgCl_2, 1 mM DTT, 1 mM ATP (Sigma Aldrich), 0.005% surfactant P20 (GE Healthcare), C. difficile LexA repressor (2.6 μM), interacting with either the 22 bp recA operator DNA fragment or with the 22 bp non-specific DNA fragment derived from the recA operator, was passed over the sensor chip with immobilized RecA* (~2000 response units). LexA specific DNA (recA operator) or non-specific DNA, with 6 nucleotide changes in comparison to the specific DNA, was prepared by hybridising primers (1:1 mol to mol ratio) 5′-CAAGAACAATGTTTTGAGA-3′ and 5′-TCTACAAAAACTCGTGAGTCTTTTTTTCTTGCTTGAGA-3′, respectively. The LexA*-LexA interaction was assayed at 10 μl/min for 60 s and the dissociation followed for 60 s. The sensor chip was regenerated as described [25].

Repressor cleavage assay

Activation of either E. coli or C. difficile RecA (10 μM) nucleoprotein filament was performed on ice for 2 h as described [34]. RecA*-stimulated (~2 μM) cleavage of LexA were performed in 20 mM Tris, pH 7.4, 5 mM MgCl_2, 1 mM ATP-γ-S (Sigma), and 1 mM DTT as described [25]. Samples were resolved on 12% SDS PAGE gels in MOPS running buffer (Invitrogen) and stained by Page blue protein stain (Thermo Scientific). The resolved bands were quantified using a G:Box (Syngene).

The integrated optical densities of the LexA monomers were determined. The LexA levels throughout the time...
course were compared and presented as the ratio of the density value for the sample at time indicated as 0 min relative to the density value obtained from the samples obtained later in the LexA cleavage reaction. The experiments were performed two times and representative gels are shown.

Additional files

Additional file 1: Table S1. List of genomes used for analysis of SOS regulon and LexA variability. The names of the strains used for SOS regulon analysis are additionally bolded.

Additional file 2: Figure S1. Comassie stained Difficult (CD) LexA and RecA proteins and the LexA protein from Escherichia coli (EC). Proteins used in the study were more than 95% pure. Approximately 5 μg of each protein was loaded on the SDS-PAGE gel.

Additional file 3: Table S2. Pairs of primers used to construct double stranded DNAs harbouring predicted LexA target sites. Putative LexA operators are underlined.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BMW, NP and MB designed and performed most of the experiments, VH, NP and GA contributed to SPR experiments, NP and DZB contributed to expression and cleavage experiments, BD and MR contributed toward strain and genome selection. All authors contributed to analysis of the results and during the preparation of the manuscript.

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007–2013 under grant agreement No. 237942. Part of this work was supported by grants from the Slovenian Research Agency (Z1-2142 and J4-2111).

Author details

1. Institute of Public Health Maribor, Centre for Microbiology, Maribor, Slovenia. 2. Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia. 3. Biotechnical Faculty, University of Ljubljana, Department of Biology, Ljubljana, Slovenia. 4. National Institute of Chemistry, Ljubljana, Slovenia. 5. Laboratoire Pathogénèse des Bactéries Anaérobies, Département de Microbiologie, Institut Pasteur, Paris, France.

Received: 23 December 2013 Accepted: 27 March 2014

References

1. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC: Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 2001, 158:41–64.

2. Erill I, Campoy S, Barbe J: Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007, 31:637–656.

3. Mazon G, Erill I, Campoy S, Cottes P, Forano E, Barbe J: Reconstruction of the evolutionary history of the LexA-binding sequence. Microbiology 2004, 150:3783–3795.

4. Wade JT, Reppas NB, Church GM, Struhl K: Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 2005, 19:2619–2630.

5. Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O’Brien TC, Shah A, Tierney JT, Tomm LL, O’Gara TM, Goranov AL, Grossman AD, Lovett CM: Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005, 187:7655–7666.

6. Butala M, Sonjak S, Kamensk S, Hodoscek M, Browning DF, Zgur-Bertok D, Busby SJ: Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Mol Microbiol 2012, 86:129–139.

7. Quinones M, Kimsey HH, Waldor MK: LexA cleavage is required for CTX prophage induction. Mol Cell 2005, 17:291–300.

8. Da Re S, Garnier F, Guihin E, Campoy S, Denis F, Poy MC: The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep 2009, 10:929–933.

9. Guihin E, Cambray G, Sanchez-Alberola N, Campoy S, Errl I, Dau S, Gonzalez-Zorn B, Barbe J, Poy MC, Mazel D: The SOS response controls integron recombination. Science 2009, 324:1034.

10. Ubeda C, Maques E, Knecht E, Lasa I, Novik PP, Penades JR: Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 2005, 56:836–844.

11. Beaber JW, Hochhut B, Waldor MK: SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004, 427:72–74.

12. Goranov AI, Kuester-Schoeck E, Wang JD, Grossman AD: Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. J Bacteriol 2006, 188:5595–5605.

13. Rupnik M, Wilcox MH, Gerding DN: Clodstridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009, 7:526–536.

14. Gebhardt D, Williams SR, Bishop-Lily KA, Gouni GR, Willner KM, Butani A, Sozamanann S, Martin D, Forster LC, Scholl D: Novel high-molecular-weight, RT-type bacteriocins of Clodstridium difficile. J Bacteriol 2012, 194:6240–6247.

15. Johnston JL, Sloan J, Pyke JA, Davies JK, Rood J: The recN gene from Clodstridium perfringens is induced by methyl methanesulphonate and contains an upstream Cheo box. Microbiology 1997, 143(Pt 8):3885–890.

16. Nuyts S, Van Mellaert L, Barbe J, Lammertyn E, Theys J, Landuyt W, Bomsma E, Lamber P, Anne J: Insertion or deletion of the Cheo box modifies radiation inducibility of Clodstridium promotors. Appl Environ Microbiol 2001, 67:4464–4470.

17. Cornish JP, Matthews F, Thomas JR, Erill I: Inference of self-regulated transcriptional networks by comparative genomics. Evol Bioinform Online 2012, 8:449–461.

18. Walker AS, Eyre DW, Wylle DH, Dingle KE, Griffiths D, Shine B, Oakley S, O’Connor L, Finney J, Vaughan A, Crook DW, Wilcox MH, Petrie TJ: Relationship between bacterial strain type, host biomarkers, and mortality in Clodstridium difficile infection. Clin Infect Dis 2013, 56:1589–1600.

19. Rupnik M: Heterogeneity of large clodstridial toxins: importance of Clodstridium difficile toxicotypes. FEMS Microbiol Rev 2008, 32:541–553.

20. Mandlen GD, Davis JW, Wright VI, Sebabah M, Kuiper EJ, Minton NP: Array comparative hybridization reveals a high degree of similarity between UK and European clinical isolates of hypervirulent Clodstridium difficile. BMC Genomics 2010, 11:389.

21. Stabler RA, He M, Dawson L, Martin M, Valente E, Corton C, Lawley TD, Sebabah M, Qual M, Rose G, Gerding DN, Gibert M, Popoff MR, Park JH, Dougan G, Wren BW: Comparative genome and phenotypic analysis of Clodstridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 2009, 10:102.

22. Stabler RA, Dawson LF, Valente E, Cairns MD, Martin MJ, Donahue EH, Ringer TV, Songer JG, Kuiper EJ, Dingle KE, Wren BW: Macro and micro diversity of Clodstridium difficile isolates from diverse sources and geographical locations. PLoS One 2012, 7:e31559.

23. Knetoch CW, Hensgens MP, Harmanus C, van der Bijl MW, Savelkoul PH, Kuiper EJ, Conyer J, Van Leeuwen HC: Genetic markers for Clodstridium difficile lineages linked to hypervirulence. Microbiology 2011, 157:3113–3123.

24. Erill I, O’Neill MC: A reexamination of information theory-based methods for DNA-binding site identification. BMC Bioinformatics 2009, 10:57.

25. Butala M, Klose D, Hodniki V, Rems A, Podlesek Z, Kere JP, Anderlugh G, Busby SJ, Steinhoff HJ, Zgur-Bertok D: Interconnection between bound and free conformations of LexA orchestrates the bacterial SOS response. Nucleic Acids Res 2011, 39:6546–6557.

26. El Meouche I, Pelletier J, Monot M, Soutourina O, Pestel-Caron M, Dupuy B, Pons JL: Characterization of the SigD Regulon of C. difficile and its Positive Control of Toxin Production through the Regulation of tdCR. PLoS One 2013, 8:e58748.
27. Aldape MJ, Packham AE, Nute DW, Bryant AE, Stevens DL. Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile. J Med Microbiol 2013, 62:741–747.

28. Butala M, Zgur-Bertok D, Busby SJ. The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2009, 66:82–93.

29. Simmons LA, Goranov AI, Kobayashi H, Davies BW, Yuan DS, Grossman AD, Walker GC. Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 2009, 191:1152–1161.

30. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH. The NCBI BioSystems database. Nucleic Acids Res 2010, 38:D492–496.

31. Monot M, Boursaux-Eude C, Thibonniere M, Vallenet Q, Moszer I, Medigue C, Martin-Verstraete I, Dupuy B. Reannotation of the genome sequence of Clostridium difficile strain 630. J Med Microbiol 2011, 60:1193–1199.

32. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 2007, 8:460.

33. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202–208.

34. Giese KC, Michalowski CB, Little JW. RecA-Dependent Cleavage of LexA Dimers. J Mol Biol 2008, 377:148–161.

doi:10.1186/1471-2180-14-88

Cite this article as: Walter et al.: The LexA regulated genes of the Clostridium difficile. BMC Microbiology 2014 14:88.