Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
1744P COVID-19 in cancer patients: Risk factors for the development of severe clinical event (SCE)

J.J. Serrano Domingo, E. Corral de la Fuente, R. Martin Huertas, E.M. Vida Navas, J.J. Soto Castillo, J. Torres Jimenez, J. Esteban Villarrubia, I. Orejana Martin, P. Alvarez Ballesteros, J. Pozas Perez, M.V. San Roman Gil, P. Garrido Lopez, A. Carrato Mena

1Medical Oncology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain; 2Department of Oncology, Hospital Universitario Ramon y Cajal, Madrid, Spain; 3Medical Oncology, Hospital Universitario Ramon y Cajal, Madrid, Spain; 4Dept. Oncología Médica, Hospital Universitario Ramon y Cajal, Madrid, Spain; 5Oncología Médica, Hospital Universitario Ramon y Cajal, Madrid, Spain; 6Medical Oncology, Hospital Universitario Ramon y Cajal, Madrid, Spain

Some studies have suggested a higher risk of respiratory complications related to COVID-19 (C-19) in cancer patients (pts), but there is a lack of knowledge concerning the outcomes and prognostic factors. We evaluated whether various factors can predict a more serious C-19 infection.

Methods: We conducted a retrospective study including 51 pts diagnosed of C-19 between March 10 and April 7, 2020. All pts present tumor disease at diagnosis of C-19: advanced disease, neoadjuvant treatment (ttm) or maintenance ttm after definitive chemoradiotherapy. It has been evaluated whether certain factors may present an increased risk for the development of a SCE, defined as death, the need of high oxygen flow (FiO2>50%), non-invasive or invasive mechanical ventilation or Intensive Care Unit admission. These factors have been age, ECOG, ttm line, type of ttm, time from last ttm to C-19 diagnosis, smoke, hypertension, diabetes mellitus, chronic obstructive pulmonary disease, cardiopathy, body mass index, fever, cough, dyspnea, myalgia, gastrointestinal symptoms, infiltrates in chest radiography, CURB65 ≥1, creatine phosphokinase, lactate dehydrogenase and D-Dimer elevated, lymphopenia and PaO2/FiO2 <300 mmHg.

Results: At the time of the data cut-off on May 16, 2020, we collected 51 cancer pts. Most of them were men (61%) with a median age of 68 years (range 19-86). Lung cancer was the most frequent type of cancer (22%), and the most common ttm was chemotherapy (51%). Eighteen pts (35%) developed a SCE, with 13 deaths (25%). Only dyspnea and PaO2/FiO2 <300 mmHg showed an increased risk to develop a SCE.

Conclusions: Despite our retrospective analysis and the limited number of pts, we conclude that advanced cancer pts receiving antitumoral ttm have a higher risk for the development of SCE when considering the presence of PaO2/FiO2 <300 mmHg and dyspnea on admission. Therefore, it is crucial to screen for C-19 infection in any cancer patient who reports dyspnea, given the potential risk of poor evolution.

Legal entity responsible for the study: Oncology Department, Hospital Universitario Ramon y Cajal, Madrid.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.anonc.2020.08.1809

1746P SARS-CoV-2 infects metabolically-primed epithelial cells in lung cancer models

K.R. Cargill, C.A. Stewart, C. Gay, K. Ramkumar, R. Cardnell, M. Nilsson, S. Heeke, E.M. Park, L. Diao, Q. Wang, L. Shen, X. Le, Y. Xi, K. Kunda, D. Gibbons, J. Wang, J.V. Heymach, L.A. Byers

1Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Background: The novel coronavirus SARS-CoV-2 is the cause of the respiratory illness COVID-19—a global pandemic affecting over 4 million individuals worldwide. Viruses efficiently replicate by hijacking host cell machinery to obtain macromolecules and energy by similar mechanisms as cancer cells. Since viral infection is known to alter cellular nutrient requirements, this study explores the metabolites and metabolic pathways associated with SARS-CoV-2 infection.

Methods: Bulk and single-cell sequencing data from cell lines and tumor samples were retrieved from publically available datasets. Transcriptional data were retrieved from publically available datasets of gefitinib- and erlotinib-resistant EGFR-mutant cell lines and Calu3 and A549 cells mock treated or infected with SARS-CoV-2. Single-cell RNAseq datasets of EGFR-mutant PC-9 mock and osimertinib treated were downloaded from GEO. 225 metabolites were profiled in CLEL cell lines using LC-MS.

Results: To identify metabolic features of cells able to be infected by SARS-CoV-2 via the ACE2 receptor, metabolites associated with ACE2 expression were investigated. ACE2 expression positively correlates with glutamine in upper aerodigestive tract cell lines. Consistent with this, ACE2 expression was examined against a list of 253 metabolism-associated genes and GLUL, which encodes an enzyme (glutamine synthetase) responsible for conversion of glutamate to glutamine, was significantly positively correlated in NSCLC, HNSCC, and SCLC cell lines and confirmed in human tumor datasets. Additionally, GLS, which encodes the enzyme (glutaminase) that catalyzes the opposing reaction, is negatively correlated with ACE2 expression. Further, we analyzed RNA sequencing data from NSCLC cell lines infected with SARS-CoV-2 for 24 hours and revealed that upon infection there is a down regulation of GLU1, signifying a metabolic-shift away from glutamine as the cells undergo EMT.

Conclusions: We show that SARS-CoV-2 targeting of ACE2 expressing, metabolically-primed epithelial cells is advantageous to exploit the abundance of glutamine to synthesize nucleotides for rapid replication and viral spread.

Legal entity responsible for the study: Lauren A. Byers.

Funding: NIH/NCI R01 CA207295 (L.A.B.), NIH/NCI U01 CA123173 (L.A.B., J.V.H.), CCGP P30 CA01667 (L.A.B.), University of Texas SPORE in Lung Cancer PS CA070907 (L.A.B., J.V.H., C.M.G., M.G.), the Department of Defense (LC70171L), Khalifa Bin Zayed Al Nahyan Foundation (C.M.G.), The University of Texas MD Anderson Cancer Center-Oropharynx Cancer Program generously supported by Mr. and Mrs. Charles W. Stiefel (F.M.J.), through generous philanthropic contributions to The University of Texas MD Anderson Lung Cancer Moon Shot Program and Andrew Sabin Family Fellowship, and The Rexanna Foundation for Fighting Lung Cancer.

Disclosure: C. Gay: Research grant/Funding (self): AstraZeneca; S. Heeke: Honoraria (self): Qiagen; Boehringer Ingelheim; Travel/ Accommodation/Expenses: Roche. D. Gibbons: Advisory/Consultancy, Research grant/Funding (self): AstraZeneca; J. Wang: Advisory/Consultancy: GlaxoSmithKline; Sanofi; Research grant/Funding (self): Takeda; Ribon Therapeutics; Astellas. J.V. Heymach: Advisory/Consultancy, Research grant/Funding (self): AstraZeneca; Advisory/Consultancy: Boehringer Ingelheim; EMD Serono; Novartis; Lilly; Hengrui; Guardian Health; GSK; Genentech; Exelixis; Synta; Advisory/Consultancy, Research grant/Funding (self): Bayer; GlaxoSmithKline. L.A. Byers: Advisory/Consultancy: Pfizer; Genentech; Bristol Myers Squibb; Merck; Pharma Mar S A; BergenBio; Advisory/Consultancy, Research grant/Funding (self): Boltaxa; Ticagen Therapeutics; All other authors have declared no conflicts of interest.

https://doi.org/10.1016/j.anonc.2020.08.1809

Table: 1744P

Odds ratio (95% CI)	p	Hazard ratio for SCE (95% CI)
Dyspnea	5.2 (1.47-18.33) 0.01	3.22 (1.09-9.48) 0.034
PaO2/FiO2 <300 mmHg	8.8 (2.23-33.71) 0.002	3.7 (1.34-10.24) 0.012

Table: 1746P

Site primary tumor/Lung metastasis	Age (years)	Gender	1st Line Regimens	Smoker (Never = F)	Hospitalization (days)	Pulmonary infection involvement (%)	Death
Colon/no	40	Female	Atezolizumab PDL1OXR1 Bevacizumab	N	16	20-40	No
Kidney/yes	76	Male	Nivolumab Ipilimumab	N	14	10	Yes
Pleura/yes	65	Male	Pembrolizumab Cisplatin Pemetrexed	F	65	10	No