Antibiotic susceptibility of mycobacteria isolated from ornamental fish

Leszek Guz, Krzysztof Puk

Department of Biology and Fish Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
krzysztof.puk@up.lublin.pl

Received: September 3, 2021 Accepted: March 1, 2022

Abstract

Introduction: Nontuberculous mycobacteria (NTM) are increasingly recognised as causative agents of opportunistic infections in humans for which effective treatment is challenging. There is very little information on the prevalence of NTM drug resistance in Poland. This study was aimed to evaluate the susceptibility to antibiotics of NTM, originally isolated from diseased ornamental fish. Material and Methods: A total of 99 isolates were studied, 50 of them rapidly growing mycobacteria (RGM) (among which three-quarters were Mycobacterium chelonae, M. peregrinum, and M. fortuitum and the rest M. neoaurum, M. septicum, M. abscessus, M. mucogenicum, M. salmoniphilum, M. saopaulense, and M. senegalense). The other 49 were slowly growing mycobacteria (SGM) isolates (among which only one was M. szulgai and the bulk M. marium and M. gordonae). Minimum inhibitory concentrations for amikacin (AMK), kanamycin (KAN), tobramycin (TOB), doxycycline (DOX), ciprofloxacin (CIP), clarithromycin (CLR), sulfamethoxazole (SMX), isoniazid (INH) and rifampicin (RMP) were determined. Results: The majority of the isolates were susceptible to KAN (95.95%: RGM 46.46% and SGM 49.49%), AMK (94.94%: RGM 45.45% and SGM 49.49%), CLR (83.83%: RGM 36.36% and SGM 47.47%), SMX (79.79%: RGM 30.30% and SGM 49.49%), CIP (65.65%: RGM 24.24% and SGM 41.41%), and DOX (55.55%: RGM 9.06% and SGM 46.46%). The majority were resistant to INH (98.98%: RGM 50.50% and SGM 48.48%) and RMP (96.96%: RGM 50.50% and SGM 46.46%). Conclusion: The drug sensitivity of NTM varies from species to species. KAN, AMK, CLR and SMX were the most active against RGM isolates, and these same four plus DOX and CIP were the best drugs against SGM isolates.

Keywords: Mycobacterium spp., antimicrobial susceptibility, minimum inhibitory concentration, fish.

Introduction

Fish mycobacteriosis is a chronic progressive disease caused by several species of the Mycobacterium genus. Mycobacterial species are capable of causing serious diseases in most vertebrates, including humans (28), and infect a wide range of tissue and organ types, with pulmonary infections being the most frequent (57). According to the List of Prokaryotic Names with Standing in Nomenclature, there are over 150 recognised species of mycobacteria (42), all of which other than those in the M. tuberculosis complex and M. leprae are nontuberculous mycobacteria (NTM), also known as environmental mycobacteria, atypical mycobacteria and mycobacteria other than tuberculosis (MOTT). These are generally free-living organisms ubiquitous in the environment and are known to infect a number of aquatic animals, including fish. The host range of this disease is correspondingly broad and includes over 150 species of both marine and freshwater ornamental fish (e.g. Astronotus ocellatus, Carassius auratus, Colisa lalia, Cyprinus carpio subsp. haematopterus, Danio rerio, Helostoma temminckii, Hypheossobrycon serape, Labidochromis caeruleus, Microgeophagus ramirezi, Paracheirodon innesi, Poecilia reticulata, Symphysodon discus, Trichogaster lalius, Xiphophorus helleri and X. maculatus) (15, 19, 23, 31, 44, 45). The most common NTM pathogens of fish include M. marinum, M. fortuitum, M. peregrinum and M. cheloneae. Other species isolated from fish include M. abscessus, M. arupense, M. avium, M. chesapeakei, M. conceptionense, M. flavescens, M. gordonae, M. haemophilum, M. kansasii, M. montifiorensis, M. mucogenicum, M. neoaurum, M. nonchromogenicum, M. parascrofulaceum, M. porcinum, M. pseudoshottii, M. salmoniphilum, M. saopaulense, M. scrofulaceum, M. senegalense, M. septicum, M. shimoidei, M. shottsii, M. simiae, M. terrae, M. szulgai, M. triviale, M. triplex, M. ulcerans.
and *M. xenopi* (18, 23, 34, 41, 43, 44, 45). In recent years, human nontuberculous mycobacterial infections and diseases have significantly increased (32). There are approximately 30 NTM that are pathogenic to humans, who commonly acquire infections if they are aquarium staff and tropical fish breeders.

The clinical signs of fish mycobacteriosis are nonspecific and include dermal ulceration, scale loss, pigmented changes, abnormal behaviour, spinal defects, and emaciation. Ascites and granulomas may appear in all internal organs, e.g. the kidneys, liver and spleen (17). Bacterial species such as *M. fortuitum*, *M. marinum*, *M. smegmatis*, *M. flavescens*, *M. peregrinum* and *M. chelonae*, which are well-known pathogens in fish and humans, have been isolated from apparently healthy fish (23, 50). Mycobacterial infections in fish are a risk factor for the human population; nevertheless, relatively few studies have investigated large collections of ornamental fish for the presence of mycobacteria (26, 31, 34, 44).

Regarding food fish rather than ornamental fish and antimycobacterial therapy rather than mycobacterial presence, Kawakami and Kusuda (29) reported that rifampicin, streptomycin, and erythromycin were effective in reducing mortality associated with *Mycobacterium* spp. in cultured yellowtail (*Seriola quinquergadiatora*). However, there are no treatments for mycobacteriosis in cultured food fish approved by the US Food and Drug Administration, nor are there any unapproved products which have been proven effective in application in the field. If antibiotics are to be used in fish mycobacteriosis treatment, their appropriacy must be validated in terms of the benefit against the risk, because the development and spread of antimicrobial resistance has become a global public health problem that is impacted by both human and non-human antimicrobial usage (37, 65). In this study, the drug susceptibility of 99 isolates of *Mycobacterium* spp. isolated from diseased ornamental fish to nine antibiotics was investigated.

Material and Methods

Bacterial strains and growth conditions. The study was conducted on 99 NTM strains originally isolated from diseased ornamental fish between January 2015 and December 2016 in the bacteriology laboratory of the Department of Fish Diseases and Biology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Poland. The atypical mycobacteria studied were determined in terms of the benefit against the risk, because the development and spread of antimicrobial resistance has become a global public health problem that is impacted by both human and non-human antimicrobial usage (37, 65). In this study, the drug susceptibility of 99 isolates of *Mycobacterium* spp. isolated from diseased ornamental fish to nine antibiotics was investigated.

Antimicrobial agents and chemicals. Lyophilisates of eight antimicrobial agents, *i.e.* amikacin (AMK), ciprofloxacin (CIP), clarithromycin (CLR), doxycycline (DOX), isoniazid (INH), rifampicin (RMP), sulfamethoxazole (SMX) and tobramycin (TOB), were purchased from Sigma-Aldrich Company (St Louis, MO, USA), while the ninth lyophilisate, kanamycin (KAN), was purchased from A&A Biotechnology (Gdynia, Poland). Cation-adjusted Mueller–Hinton broth (CA-MHB) and albumin, dextrose and catalase (ADC) supplement were supplied by Difco (Detroit, MI). Resazurin was ordered from Sigma-Aldrich (St. Louis, MO, USA). All antibiotic solutions were prepared before the day of the experiment and stored at −70°C.

Determination of minimum inhibitory concentration. The MICs of each antimicrobial were determined by the CA-MHB microdilution method, as recommended by the Chemical and Laboratory Standards Institute (CLSI), using 96-well plates. The suspensions of mycobacteria for a resazurin microtitre assay were prepared from Lowenstein–Jensen subcultures. The inocula were adjusted with sterile distilled water to a turbidity equivalent to that of 1.0 McFarland standard, and the suspensions were then diluted (1:200) using CA-MHB for rapidly growing mycobacteria (RGM) or CA-MHB + 5% ADC supplement (CA-MHB-S) for slowly growing mycobacteria (SGM). The antibiotics were serially diluted twofold in 100 μL of CA-MHB or CA-MHB-S. Each well of a sterile plate was inoculated with 100 μL of mycobacteria suspension, and 100 μL of serial twofold dilutions of the agent was added to each well. A drug-free growth control and a mycobacteria-free sterility control aliquot of the medium were included in each plate. If the microbial growth in the control sample was sufficient, the MICs were measured on day 3. Otherwise, the incubation period was extended, and the MICs were measured on day 4 or 5. The MICs of all antibiotics except for clarithromycin were determined after 3 days (for RGM) or after 4, 5 or 7 days (for SGM) of incubation at 37°C. Plates with *M. marinum*, *M. chelonae* and *M. salmoniphilum* were incubated at 30°C. Extended incubation of plates for clarithromycin was performed as described by Nash et al. (39), with successive readings after 5, 7, 9, and 14 days. After incubation, resazurin at 0.01 g/100 mL was added to each well, and the plates were incubated a second time for 24 h. Each test was performed in triplicate. A colour change from blue at −80°C in Youmans broth supplemented with 20% foetal bovine serum until the minimum inhibitory concentrations (MICs) were determined. *Mycobacterium marinum* ATCC 927 and *M. smegmatis* ATCC 19420 were used as reference strains, and *M. peregrinum* ATCC 700686 was used as a quality control strain in the antimicrobial susceptibility tests. Mycobacteria were grown in Middlebrook 7H9 broth for 3 to 5 days, and the culture suspension was adjusted with additional sterile distilled water to equal a McFarland 1.0 turbidity standard (approximately 10⁶ CFU per mL) as described by Aubry et al. (3).
(the oxidised state) to pink (the reduced state) indicated bacterial growth. The MIC was defined as the lowest concentration of the drug that prevented this change in colour. The MIC$_{90}$ and MIC$_{50}$ values were defined as concentrations that inhibited 90% and 50% of the isolates, respectively. Susceptibility was evaluated according to the CLSI (12, 13) and WHO (66) breakpoint recommendations (Table 1).

Table 1. MIC breakpoints used for categorisation of susceptibility of RGM and SGM to nine antimicrobial agents

Antimicrobial agent	Range (µg/mL)	MIC breakpoints (µg/mL)	RGM	S I R	S I R
AMK	1–128	≤16 32 ≥64 - - >32			
KAN	1–64	≤16 32 ≥64 - - >32			
TOB	1–64	≤1 2–4 ≥8 - - >4			
DOX	0.25–32	≤2 4 ≥8 ≤2 4 ≥8			
CLR	0.25–32	≤2 4 ≥8 ≤8 16 ≥32			
CIP	0.125–16	≤1 2 ≥4 - - ≥2			
SMX	1–64	≤32 - ≥64 ≤32 - ≥64			
RMP	0.25–64	- - >1 - - >1			
INH	1–64	- - ≥5 - - ≥5			

MIC – minimum inhibitory concentration; RGM – rapidly growing mycobacteria; SGM – slowly growing mycobacteria; S – susceptible; I – intermediate; R – resistant; AMK – amikacin; KAN – kanamycin; TOB – tobramycin; DOX – doxycycline; CLR – clarithromycin; CIP – ciprofloxacin; SMX – sulfamethoxazole; RMP – rifampicin; INH – isoniazid

Table 2. Antimicrobial resistance or susceptibility determined by microdilution

NTM species (number of isolates tested)	Resistant (R) or susceptible Amikacin Kanamycin Tobramycin Doxycycline Clarithromycin Ciprofloxacin Sulfamethoxazole Rifampicin Isoniazid (%)	Percentage of strains resistant or susceptible for each antimicrobial agent	
M. abcessus (n = 1)		R 100.00 100.00 100.00	I 100.00 100.00 100.00
		S 100.00 100.00 100.00	
M. chelonae (n = 16)		R 6.25 43.75 100.00 6.25	I 12.50 12.50 50.00
		S 81.25 87.50 6.25 93.75	
M. fortuitum (n = 10)		R 10.00 100.00 90.00 50.00	I 10.00 100.00 90.00 40.00
		S 90.00 90.00 100.00 90.00	
M. gordanae (n = 15)		R 20.00 6.67 20.00 93.33	I 46.67
		S 100.00 100.00 33.33 80.00 3.03 93.94 100.00	
M. marinum (n = 33)		R 3.03 9.90 12.12 93.94	I 87.88
		S 100.00 100.00 9.09 96.97 87.88 6.06	
M. mucoginicum (n = 1)		R 100.00 100.00 100.00	I 100.00 100.00 100.00
		S 100.00 100.00 100.00	
M. neoaurum (n = 2)		R 100.00 100.00 100.00	I 100.00 100.00 100.00
		S 100.00 100.00 100.00 100.00 100.00	
M. peregrinum (n = 12)		R 8.33 8.33 8.33 8.33 8.33 100.00 100.00 100.00	
		I 3.33 3.33 3.33 3.33	
		S 91.67 91.67 58.33 25.00 83.34 91.67 100.00	
M. salmoniphilum (n = 1)		R 100.00 100.00 100.00 100.00 100.00	
		I 100.00 100.00 100.00	
M. saoaulense (n = 1)		R 100.00 100.00 100.00	I 100.00 100.00 100.00
		S 100.00 100.00 100.00	
M. senegalense (n = 4)		R 25.00 25.00 75.00 25.00 100.00 100.00 100.00	
		I 25.00 25.00	
		S 100.00 100.00 75.00 75.00 75.00 75.00	
M. septicum (n = 2)		R 50.00 50.00 50.00 100.00 100.00 100.00	
		I 50.00 50.00 50.00 50.00	
		S 100.00 100.00 100.00 100.00 100.00 100.00	
M. szulgaii (n = 1)		R 100.00 100.00 100.00 100.00 100.00	
		I 100.00 100.00 100.00 100.00 100.00	
		S 100.00 100.00 100.00 100.00 100.00 100.00	

NTM – nontuberculous mycobacteria; S – susceptible; I – intermediate; R – resistant
Nontuberculous mycobacteria are known to be ubiquitous in the environment. Mycobacterium marinum, M. chelonae, M. peregrinum, M. gordonae, M. fortuitum, M. abscessus, M. mucogenicum, M. neoaurum, M. septicum, M. senegalense and M. szulgai have been isolated from diseased fish (1, 11, 16, 44, 45, 63, 64) and have been shown to be the causative agents of pulmonary, skin, soft tissue and disseminated diseases in humans (1, 10, 11, 16, 36, 46, 54, 55). As in other countries, in Poland also Kwiatkowska et al. (32) observed an increased frequency of NTM isolated from clinical samples. Several isolates in the present study, namely M. abscessus, M. chelonae, M. fortuitum, M. gordonae, M. marinum, M. mucogenicum, M. neoaurum, M. peregrinum and M. szulgai, were also identified by Kwiatkowska et al. (32) in human clinical samples.

At present, standard therapeutic strategies for treating NTM infections are yet to be laid down. In this study, nine antimicrobial agents were tested against 99 NTM pathogens isolated from diseased ornamental fish (44). The growth of most NTM isolates was inhibited by AMK and KAN, only a few isolates showing a multidrug resistance profile which rendered these antimicrobials ineffective. Similarly, Yakrus et al. (67) also found that only 1 of 75 strains of M. abscessus and M. chelonae was resistant to AMK, and Swenson et al. (53) observed AMK to be most active against M. fortuitum. In the present study, the M. abscessus, M. chelonae, M. fortuitum, M. mucogenicum, M. saopaulense and M. szulgai isolates showed a multidrug resistance profile to at least three different classes of antimicrobials.

Mycobacterium marinum is intrinsically resistant to pyrazinamide and INH. Antibiotic agents that have been shown to be effective against _M. marinum_ include CLR, RMP, SMX, ethambutol, tetracyclines, some of the quinolones, and those used in combination therapy, i.e., ethambutol and RMP (27). The MICs of CLR, trimethoprim, azithromycin, telithromycin, quinupristin/dalfopristin, gemifloxacin, ofloxacin, and levofloxacin are above the concentrations usually obtained in vivo, and consequently, _M. marinum_ may be considered resistant to them (5, 7, 47, 60). Chang and Whippes (11) showed that six strains of _M. marinum_ isolated from diseased zebrafish were susceptible to AMK, CLR and RMP. In the present study, the majority of the _M. marinum_ isolates were susceptible to AMK, CLR, KAN, DOX, CIP and SMX, whereas most isolates were resistant to RMP and INH.

There is currently no effective and definitive treatment for _M. gordonae_ infection. Ethambutol, rifabutin, linezolid, CLR and new quinolones are active in vitro as antibiotics, but in vivo data are still insufficient (22, 56). Treatment with RMP, INH, pyrazinamide, and ethambutol was successfully used by Tsankova et al. (56). In a study by Goswami et al. (21), most of the _M. gordonae_ isolates were sensitive to CLR and AMK and resistant to the first-line antitubercular drugs INH, RMP, ethambutol and streptomycin. In the

Table 3. Antibiotic susceptibility profiles of RGM and SGM isolated from diseased fish

Antibacterial agent	RGM (n = 50)	SGM (n = 49)				
	I	R		I	R	
AMK	90.00	4.00	6.00	100	0.00	0.00
KAN	92.00	6.00	2.00	100	0.00	0.00
TOB	32.00	28.00	40.00	16.33	73.47	10.20
DOX	18.00	4.00	78.00	93.88	0.00	6.12
CLR	72.00	12.00	16.00	95.92	2.04	2.04
CIP	48.00	8.00	44.00	83.67	0.00	16.33
SMX	60.00	0.00	40.00	100.00	0.00	0.00
RMP	0.00	0.00	100.00	6.12	0.00	93.88
INH	0.00	0.00	100.00	2.04	0.00	97.96

RGM – rapidly growing mycobacteria; SGM – slowly growing mycobacteria; S – susceptible; I – intermediate; R – resistant; AMK – amikacin; KAN – kanamycin; TOB – tobramycin; DOX – doxycycline; CLR – clarithromycin; CIP – ciprofloxacin; SMX – sulfamethoxazole; RMP – rifampicin; INH – isoniazid

Results

The results of the antimicrobial drug susceptibility tests are shown in Table 2 and are presented in terms of resistance, intermediate resistance and susceptibility.

The majority of the isolates were susceptible to KAN (95.95%; RGM 46.46% and SGM 49.49%), AMK (94.94%; RGM 45.45% and SGM 49.49%), CLR (83.83%; RGM 36.36% and SGM 47.47%), SMX (79.79%; RGM 30.30% and SMG 49.49%), CIP (65.65%; RGM 24.24% and SGM 41.41%), and DOX (55.55%; RGM 9.06% and SGM 46.46%). Most of the strains were moderately susceptible to TOB (50.50%; RGM 14.14% and SGM 36.36%) (data not shown). While KAN (92.00%), AMK (90.00%), CLR (72.00%) and SMX (60.00%) were the most active against RGM isolates, AMK (100%), KAN (100%), SMX (100.00%), CLR (95.92%), DOX (93.88%) and CIP (83.67%) were the most effective drugs against SGM isolates (Table 3).

Almost all of the isolates were resistant to INH (98.98%; RGM 50.50% and SGM 48.48%) and RMP (96.96%; RGM 50.50% and SGM 46.46%) (data not shown). RGM isolates were resistant to RMP (100%), INH (100%), and the greater part of them were resistant to DOX (78.00%), and SGM isolates were resistant to INH (97.96%) and RMP (93.88%) (Table 3).

Discussion

Data not shown
present study, the majority of *M. gordonaee* isolates were susceptible to AMK, KAN, DOX, CLR and CIP and SMX, but resistant to INH and RMP.

Mycobacterium abscessus, *M. chelonae*, *M. salmoniphilum* and *M. saopaulense* are members of the *M. chelonae-abscessus* complex (35, 40, 53). Natural susceptibility to AMK, cefoxitin and imipenem and resistance to many other chemotherapeutic agents are characteristics of *M. abscessus* (35). Current treatment recommendations for *M. abscessus* pulmonary infections include therapy combining two or more intravenous drugs (AMK, tigecycline, imipenem and cefoxitin) with one or two oral antimicrobials, including macrolides, linezolid, clofazimine and, occasionally, a quinolone (38). Almost all *M. abscessus* strains tested by Shen et al. (51) were found to be resistant to SMX, vancomycin, oxacillin, clindamycin, and all fluoroquinolones, and more than 50% of the isolates were resistant to tetracyclines, carbapenems, and aminoglycosides, except for amikacin. The lowest resistance rates to cefoxitin (10%), azithromycin (10%), AMK (10%), and CLR (20%) (51) were demonstrated by *M. abscessus*. In this study, *M. abscessus* was susceptible to AMK, KAN and CLR, and resistant to TOB, DOX, SMX, RMP and INH. These findings are comparable to those described in other studies (14, 35, 43).

Regimens for the treatment of *M. chelonae* infections may include TOB, CLR, CIP, DOX and AMK. Hatakeyama et al. (25) showed that *M. chelonae* was susceptible to AMK, TOB, CLR, SMX, imipenem, linezolid and tigecycline. In this study, the majority of the *M. chelonae* isolates were susceptible to AMK, CLR and KAN, but resistant to DOX, CIP, SMX, RMP and INH.

The antimicrobial pattern of *M. saopaulense* is characterised by susceptibility to CLR and resistance to DOX, TOB and cefoxitin. Variable results, intermediate or resistant, were obtained with AMK, CIP, minocycline and moxifloxacin (40). In this research, the *M. saopaulense* isolate was susceptible to AMK, KAN and CLR, and resistant to DOX, SMX, RMP and INH.

Nogueira et al. (40) found that *M. salmoniphilum* was susceptible to AMK, CLR, and CIP and resistant to DOX, which is consistent with our results finding the test strain to be susceptible to AMK, KAN, TOB, CLR, CIP and SMX, and resistant to DOX, RMP and INH.

Mycobacterium fortuitum, *M. peregrinum*, *M. septicum* and *M. senegalense* are members of the *M. fortuitum* complex. *M. fortuitum* isolates are usually susceptible to multiple antimicrobial agents, including AMK, CIP, CLR, DOX, sulphonamides, cefoxitin, and imipenem (6, 53, 61). Hatakeyama et al. (25) showed that *M. fortuitum* was susceptible to AMK, CIP, moxifloxacin, imipenem, linezolid, meropenem and tigecycline. In our research, most of the *M. fortuitum* isolates were found to be susceptible to AMK, KAN, CIP and SMX, and resistant to TOB, DOX, RMP and INH. The results of this study correlate well with those of other investigators (33), differing only from those reported by Lee et al. (33), who found strains susceptible to CLR (93%) and DOX (84%).

At present, little information is available on antibiotic activity against *M. peregrinum*. In a study by Guz et al. (23), test strains of *M. peregrinum* were found to be susceptible to AMK, ofloxacin and capreomycin, and resistant to RMP, INH, streptomycin, ethambutol, sulfamethoxazole/trimethoprim, clofazimine and erythromycin cyclocarbonate. Santos et al. (48) showed that the new fluoroquinolones with the C8-methoxy group, especially moxifloxacin, exhibit greater activity against this species. In the present study, most strains were susceptible to AMK, KAN, CIP, SMX, CLR and TOB, which correlates well with the results reported by Hatakeyama et al. (25).

Most of the *M. septicum* strains tested by Lian et al. (36) were found to be susceptible to AMK, CIP, SMX, KAN, ofloxacin and levofloxacin. The strains of *M. septicum* described by Schinsky et al. (49) were susceptible to AMK, CIP, DOX, SMX, TOB, KAN, amoxicillin-clavulanate, erythromycin, imipenem, minocycline, trimethoprim-sulfamethoxazole, vancomycin, gentamicin and neomycin but resistant to ampicillin, cefamandole, cefotaxime, ceftriaxone and streptomycin. Go et al. (20) found *M. septicum* isolates to be susceptible to AMK, CIP, imipenem, linezolid, moxifloxacin, and trimethoprim-sulfamethoxazole but universally resistant to CLR and DOX. In our research, the *M. septicum* isolates were susceptible to AMK, KAN, TOB, CLR and SMX, but resistant to RMP and INH.

Talavilkar et al. (54) showed that *M. senegalense* was susceptible to AMK, CLR, CIP, DOX, cefoxitin, imipenem and trimethoprim/sulfamethoxazole, which is consistent with previously published results (2, 62). In the present study, most *M. senegalense* isolates were susceptible to AMK, KAN, TOB, CLR and SMX and resistant to RMP and INH.

The majority of *M. neoaurum* isolates tested by Brown-Elliott et al. (9) were susceptible to AMK, TOB, CIP, DOX, SMX, cefoxitin, gatifloxacin, imipenem, linezolid, moxifloxacin, tigecycline and trimethoprim/sulfamethoxazole. In our research, the *M. neoaurum* isolates were susceptible to AMK, KAN, TOB, DOX, CLR, CIP, SMX and INH and resistant to RMP and INH.

Rapidly growing mycobacteria are usually resistant to standard antimicrobial therapy, but *M. mucogenicum* is generally more susceptible to antimicrobials. Isolates of this species are susceptible to most antibacterial agents, *i.e.* AMK, KAN, CLR, CIP, imipenem, cefoxitin, linezolid, cephalothin, polymyxin B, and fluoroquinolones, but like other RGM, they are resistant to first-line antitubercular agents, *i.e.* RMP, INH, and pyrazinamide (8, 24, 52). Han et al. (24) reported that 100% (25/25) of *M. mucogenicum* isolates were susceptible to AMK, CLR, cefoxitin, imipenem and trimethoprim-sulfamethoxazole. In addition, 88% of isolates were susceptible to CIP, and 67% were susceptible to DOX, whereas 45% of strains were resistant to minocycline. Furthermore, Van Ingen et al. (58)
tested 15 *M. mucogenicum* strains against a panel of 11 antibiotics and found the majority to be susceptible to AMK, CLR, CIP and rifabutin. The current NTM practice guidelines do not explicitly state a specific treatment protocol for *M. mucogenicum* but do state that most isolates are susceptible to multiple antimicrobial agents, including AMK, CLR, KAN, DOX, quinolones and imipenem (4, 24). In our research, the *M. mucogenicum* isolate was susceptible to AMK, KAN and SMX but resistant to CIP, RMP and INH.

Isolates of *M. szulgai* are often susceptible in vitro to most antitubercular agents. The most common regimen includes RMP, ethambutol and macrolides and/or quinolones (59). Lung disease induced by *M. szulgai* was successfully treated with RMP, CLR and ethambutol by Kempisty et al. (30). In the present study, the *M. szulgai* isolate was susceptible to AMK, KAN, DOX, CLR, SMX and INH and resistant to RMP, CIP and TOB.

In summary, this study determined the antibiotic susceptibility of ornamental fish mycobacteria. The antimicrobial resistance rate of *Mycobacterium* spp. isolated from ornamental fish is high and thus needs to be monitored. Tested in this investigation for effect against isolates from diseased fish, KAN, AMK, CLR and SMX were the most inhibitory of rapidly growing mycobacteria, while AMK, KAN, SMX, CLR, DOX and CIP were the most efficacious against slowly growing mycobacteria. Our results confirm that antibiotic-resistant bacteria can be found in fish, which has potential consequences for public health. Consequently, continued monitoring of *Mycobacterium* spp. for antibiotic resistance should be performed in ornamental fish to help to establish strategies for the treatment of mycobacteriosis.

Conflict of Interests Statement: The authors declare that there is no conflict of interests regarding the publication of this article.

Financial Disclosure Statement: The study was financed by the statutory activity of the University of Life Sciences in Lublin.

Animal Rights Statement: None required.

References

1. Abalain-Colloc M.L., Guillerm D., Salivn M., Gouriou S., Vincent V., Picard B.: *Mycobacterium szulgai* isolated from a patient, a tropical fish and aquarium water. Eur J Clin Microbiol Infect Dis 2003, 22, 768–769, doi: 10.1007/s10096-003-1036-x.

2. Adékambi T., Stein A., Carvajal J., Raoult D., Drancourt M.: Description of *Mycobacterium conceptionense* sp. nov., *Mycobacterium fortuitum* group organism isolated from a posttraumatic osteitis inflammation. J Clin Microbiol 2006, 44, 1268–1273, doi: 10.1128/JCM.44.4.1268-1273.2006.

3. Aubry A., Jardier V., Escolano S., Truffot-Pernot C., Cambau E.: Antibiotic susceptibility pattern of *Mycobacterium marinum*. Antimicrob Agents Chemother 2000, 44, 3133–3136, doi: 10.1128/aac.44.11.3133-3136.2000.

4. Basnet S., Mir I., Dhillt R., Basnet G., Patel N.: *Mycobacterium mucogenicum* hand infection in an intravenous drug abuser. Case Rep Infect Dis 2016, 1258649, 1–3, doi: 10.1155/2016/1258649.

5. Brábek M., Riesbeck K., Forsgren A.: Susceptibilities of *Mycobacterium marinum* to gatifloxacin, gemifloxacin, levofloxacin, linezolid, moxifloxacin, telithromycin, and quinupristin-dalfopristin (Synercid) compared to its susceptibilities to reference macrolides and quinolones. Antimicrob Agents Chemother 2002, 46, 1114–1116, doi: 10.1128/AAC.46.4.1114-1116.2002.

6. Brown B.A., Wallace R.Jr., Orsi G.O., De Rosas V., Wallace R.J.III.: Activities of four macrolides, including clarithromycin, against *Mycobacterium fortuitum*, *Mycobacterium chelonae*, and *Mycobacterium chelonae*-like organisms. Antimicrob Agents Chemother 1992, 36, 180–184, doi: 10.1128/aaac.36.1.180.

7. Brown-Elliott B.A., Crist C.J., Mann L.B., Wilson R.W., Wallace R.Jr.: *In vivo* activity of linezolid against slowly growing nontuberculous mycobacteria. Antimicrob Agents Chemother 2003, 47, 1736–1738, doi: 10.1128/AAC.47.5.1736-1738.2003.

8. Brown-Elliott B.A., Wallace R.Jr.: Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev 2002, 15, 716–746, doi: 10.1128/CMR.15.4.716-746.2002.

9. Brown-Elliott B.A., Wallace R.Jr., Pettt C.A., Mann L.B., McGlasson M., Chihara S., Smith G.L., Painter P., Hail D., Wilson R., Simmon K.E.: *Mycobacterium neoaurum* and *Mycobacterium butyricum* sp. nov. as causes of mycobacterenemia. J Clin Microbiol 2010, 48, 4377–4385, doi: 10.1128/ICM.00853-10.

10. Brown-Elliott B.A., Woods G.L.: Antimycobacterial susceptibility testing of nontuberculous mycobacteria. J Clin Microbiol 2019, 57, e00834-19, doi: 10.1128/JCM.00834-19.

11. Chang C.T., Whippis C.M.: Activity of antibiotics against *Mycobacterium* species commonly found in laboratory zebrafish. J Aquat Anim Health 2015, 27, 88–95, doi: 10.1080/08997659.2015.1007176.

12. Clinical and Laboratory Standards Institute: M24-A2 Susceptibility Testing of Mycobacteria, Nocardia, and other aerobic actinomycetes; Approved standard-Second Edition. CLSI, Wayne, 2011.

13. Clinical and Laboratory Standards Institute: M100-S25 Performance Standards for Antimicrobial Susceptibility Testing; Twenty First Informational Supplement. CLSI, Wayne, 2015.

14. Colombo R.E., Olivier K.N.: Diagnosis and treatment of infections caused by rapidly growing mycobacteria. Semin Respir Crit Care Med 2008, 29, 577–585, doi: 10.1055/s-0028-1065709.

15. Decostere A., Hermans K., Haesebrouck F.: Pigine mycobacteriosis: a literature review covering the agent and the disease it causes in fish and humans. Vet Microbiol 2004, 99, 159–166, doi: 10.1016/j.vetmic.2003.07.011.

16. Dibaj R., Shojaei H., Narimani T.: Identification and molecular characterization of mycobacteria isolated from animal sources in a developing country. Acta Trop 2020, 204, 105297, doi: 10.1016/j.actatropica.2019.105297.

17. Gauthier D.T., Rhodes M.W.: Mycobacteriosis in fishes: A review. Vet J 2009, 180, 33–47, doi: 10.1016/j.vj.2008.05.012.

18. Geebe N., Michel A.L., Hlokwe T.M.: Non-tuberculous *Mycobacterium* species causing mycobacteriosis in farmed aquatic animals of South Africa. BMC Microbiol 2018, 18, 32, doi: 10.1186/s12866-018-1177-9.

19. Giavenni R., Finazzi M., Poli G., Grimaldi E.: Tuberculosis in aquatic animals of South Africa. BMC Microbiol 2018, 18, 32, doi: 10.1186/s12866-018-1177-9.

20. Go J.R., Wengenack N.L., Abu Saleh O.M., Corsini Campioli C., Demi S.M., Wilson J.W.: *Mycobacterium septicum*: a 6-year clinical experience from a Tertiary Hospital and Reference Laboratory. J Clin Microbiol 2020, 58, e02091-20, doi: 10.1128/JCM.02091-20.
21. Goswami B., Narang R., Mishra P.S., Narang R., Narang U., Mendiratta D.K.: Drug susceptibility of rapid and slow growing non-tuberculous mycobacteria isolated from symptoms for pulmonary tuberculosis, Central India. Indian J Med Microbiol 2019, 37, 247, doi: 10.4103/imm.imm_2577_18.

22. Griffith D.E., Altmann T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., Iseman M., Olivieri K., Ruoss S., von Reyn C.F., Wallace R.J.R., Winthrop K.: An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007, 175, 367–416, doi: 10.1164/rccm.200604-571ST.

23. Guz L., Gradziński Z., Krajewska M., Lipiec M., Zabost A., Augustynowicz-Kopeć E., Złotowska Z., Szulowski K.: Occurrence and antimicrobial susceptibility of Mycobacterium peregrinum in ornamental fish. Bull Vet Ins Polawy 2013, 57, 489–492, doi: 10.2478/bivp-2013-0085.

24. Han X.Y., Dé I., Jacobson K.L.: Rapidly growing mycobacteria: clinical and microbiological studies of 115 cases. Am J Clin Pathol 2007, 128, 612–621, doi: 10.1093/ajcp/kxm195.

25. Hatakeyama S., Ohama Y., Okazaki M., Nuki Y., Moriya K.: Evaluation of the broth microdilution method using 2,3-thienyl hsp65 gene. J Vet Med Assoc Fish Pathol 2014, 34, 78, doi: 10.17221/5752.

26. Hirs J., Kopeć E., Korzeniewska M., H., Lee E.Y., Carpen O., Meatherill B., Desai S., Sharma M., Wang J., Zhao X., Jiang Y., Zhao L.: Mycobacterium Marinum. VETMED.

27. Hirs J., Lee M.K., Chang C.L.: Evaluation of the broth microdilution method using 2,3-thienyl hsp65 gene. J Vet Med Assoc Fish Pathol 2014, 34, 78, doi: 10.17221/5752.

28. Jacobs J.M., Stine C.B., Baya A.M., Kent M.L.: A review of Mycobacterium marinum infection in aquarium fish from Swedish pet shops. Bull Eur Assoc Fish Pathol 2010, 30, 129–139, doi: 10.1051/aeam:2010016.

29. Kawakami K., Kusuda R.: Efficacy of rifampicin, streptomycin and erythromycin against experimental Mycobacterium infection in cultured yellowtail (in Japanese). Nippon Suisan Gak 1990, 56, 51–53, doi: 10.2331/bsa.56.51.

30. Kempiaty A., Augustynowicz-Kopeć E., Opoka L., Szmamowicz M.: Mycobacterium szulgai lung disease or breast cancer relapse – case report. Antibiotics 2020, 9, 482, doi: 10.3390/antibiotics90600482.

31. Kular D., Zajc U., Jenčič V., Ocepek M., Higgins J., Žolnir-Dovč M., Pate M.: Mycobacteria in aquarium fish: results of a 3-year survey indicate caution required in handling pet shop fish. J Fish Dis 2016, 40, 773–784, doi: 10.1111/jfd.12558.

32. Kwiatowska S., Augustynowicz-Kopeć E., Korzeniowska-Kośmala M., Filipczak D., Gruszczynski P., Zabost A., Klatt M., Sadkowski-Todys M.: Non-tuberculous mycobacterial strains isolated from patients between 2013 and 2017 in Poland. Our data with respect to the global trends. Adv Respir Med 2018, 86, 291–298, doi: 10.5603/ARM.a2018.0047.

33. Lee S.M., Kim J.M., Jeong J., Park Y.K., Bai G.: Mycobacterium asboe predinfection. Microbiol Infect Dis 2008, 14, 262, doi: 10.1007/s10156-008-0611-6.

34. Schinske M.F., McNeil M.M., Whitney A.M., Steigerwald A.G., Lasker B.A., Floyd M.M., Hogg G.G., Brenner D.J., Brown J.M.: Mycobacterium peregrinum sp. nov., a rapidly growing mycobacterium closely related to members of the Mycobacterium–Mycobacterium sp. nov. group. Int J Syst Evol Microbiol 2015, 65, 4409–4410, doi: 10.1099/ijsem.0.000590.

35. Novotny L., Dvorska L., Lorencova A., Beran V., Pavlik I.: Fish: a potential source of bacterial pathogens for human beings. Vet Med – Czech 2004, 49, 343–358, doi: 10.17221/5715-VETMED.

36. Santos A., Cremades R., Rodriguez J.C., Ruiz M., Royo G., Garcia-Pachon E.: Mycobacterium peregrinum: bacillary activity of antibiotics alone and in combination. J Infect Chemother 2008, 14, 262, doi: 10.1007/s10156-008-0611-6.

37. Schinske M.F., McNeil M.M., Whitney A.M., Steigerwald A.G., Lasker B.A., Floyd M.M., Hogg G.G., Brenner D.J., Brown J.M.: Mycobacterium peregrinum sp. nov., a rapidly growing species associated with cather-related bacteremia. J Int J Syst Evol Microbiol 2000, 50, 575–581, doi: 10.1099/ijsem.0.000332-7.

38. Santos A., Cremades R., Rodriguez J.C., Ruiz M., Royo G., Garcia-Pachon E.: Mycobacterium peregrinum: bacillary activity of antibiotics alone and in combination. J Infect Chemother 2008, 14, 262, doi: 10.1007/s10156-008-0611-6.

39. Schinske M.F., McNeil M.M., Whitney A.M., Steigerwald A.G., Lasker B.A., Floyd M.M., Hogg G.G., Brenner D.J., Brown J.M.: Mycobacterium peregrinum sp. nov., a rapidly growing species associated with cather-related bacteremia. J Int J Syst Evol Microbiol 2000, 50, 575–581, doi: 10.1099/ijsem.0.000332-7.

40. Seifahmadi M., Moaadab S.R., Sabokbar A.: Identification of mycobacteria from unhealthy and apparently healthy aquarium fish using both conventional and PCR analyses of hsp65 gene. Thai J Vet Med 2017, 47, 571–578.

41. Shen Y., Wang X., Jin J., Wu J., Zhang X., Chen J., Zhang W.: In vitro susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum isolates to 30 antibiotics. BioMed Res Int 2018, 4902941, 1–10, doi: 10.1155/2018/4902941.

42. Springer B., Böttger E.C., Kirschner P., Wallace R.J.R.: Phylogeny of the Mycobacterium chelonae-like organism based on partial sequencing of the 16S rRNA gene and proposal of Mycobacterium mucogenicum sp. nov. Int J Syst Bacteriol 1995, 45, 262–267, doi: 10.1099/00207713-45-2-262.

43. Swenson J.M., Wallace R.J.R., Sileo V.A., Thrashnberry C.: Antimicrobial susceptibility of five subgroups of Mycobacterium fortuitum and Mycobacterium chelonae. Antimicrob Agents Chemother 1985, 28, 807–811, doi: 10.1128/aac.28.6.807.

44. Talavlikar R., Carson J., Weatherill B., Desai S., Sharma M., Shandro C., Tyrell G.J., Kuhn S.: Mycobacterium senegalense indicator (CRI) assay for the rapid detection of extensively drug-resistant (XDR) Mycobacterium tuberculosis. J Antimicrob Chemother 2011, 66, 827–833, doi: 10.1093/jac/dkq527.
tissue infection in a child after fish tank exposure. Can J Infect Dis Med Microbiol 2011, 22, 101–103, doi: 10.1155/2011/206532.

55. Tortoli E., Besozzi G., Lacchini C., Penati V., Simonetti M.T., Emler S.: Pulmonary infection due to Mycobacterium szulgai: case report and review of the literature. Eur Respir J 1998, 11, 975–977, doi: 10.1183/09031936.98.11040975.

56. Tsankova G., Kaludova V., Todorova T., Ermenlieva N., Georgieva E.: Nontuberculous tuberculosis caused by Mycobacterium gordonae – clinical case report. J IMAB 2015, 21, 856–858, doi: 10.5272/jimab.2015213.856.

57. Van Ingen J., Griffith D.E., Aksamit T.R., Wagner D.: Pulmonary diseases caused by non-tuberculous mycobacteria. Eur Respir Monogr 2012, 58, 25–37, doi: 10.1183/1025448x.10022511.

58. Van Ingen J., van der Laan T., Dekhuijzen R., Boeree M., van Soolingen D.: In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in the Netherlands. Int J Antimicrob Agents 2010, 35, 169–173, doi: 10.1016/j.ijantimicag.2009.09.023.

59. Van Ingen J., Boeree M.J., de Lange W.C.M., de Haas P.E.W., Dekhuijzen P.N.R., van Soolingen D.: Clinical relevance of Mycobacterium szulgai in The Netherlands. Clin Infect Dis 2008, 46, 1200–1205, doi: 10.1086/529443.

60. Vera-Cabrera L., Brown-Elliot B.A., Wallace R.J.Jr., Ocampo-Candiani J., Welsh O., Choi S.H., Molina-Torres C.A.: In vitro activities of the novel oxazolidinones DA-7867 and DA-7157 against rapidly and slowly growing mycobacteria. Antimicrob Agents Chemother 2006, 50, 4027–4029, doi: 10.1128/AAC.00763-06.

61. Wallace R.J.Jr., Brown B.A., Onyi G.: Susceptibilities of M. fortuitum biovar. fortuitum and the two subgroups of Mycobacterium chelonae to imipenem, cefmetazole, cefoxitin, and amoxicillin-clavulanic acid. Antimicrob Agents Chemother 1991, 35, 773–775, doi: 10.1128/aac.35.4.773.

62. Wallace R.J.Jr., Brown-Elliot B.A., Brown J., Steigerwalt A.G., Hall L., Woods G., Cloud J., Mann L., Wilson R., Crist C., Jost K.C.Jr., Byrer D.E., Tang J., Cooper J., Stamenova E., Campbell B., Wolfe J., Turenne C.: Polyphasic characterization reveals that the human pathogen Mycobacterium peregrinum type II belongs to the bovine pathogen species Mycobacterium senegalense. J Clin Microbiol 2005, 43, 5925–5935, doi: 10.1128/JCM.43.12.5925-5935.2005.

63. Watral V., Kent M.L.: Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities. Comp Biochem Physiol C 2007, 145, 55–60, doi: 10.1016/j.cbpc.2006.06.004.

64. Whipp C.M., Lieggi C., Wagner R.: Mycobacteriosis in zebrafish colonies. ILAR Journal 2012, 53, 95–105, doi: 10.1093/ilar.53.2.95.

65. World Health Organization: Joint FAO/OIE/WHO Expert workshop on non-human antimicrobial usage and antimicrobial resistance: scientific assessment. WHO, Geneva, 2004. https://apps.who.int/iris/handle/10665/68883.

66. World Health Organization: Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs. WHO, Geneva, 2008. https://www.who.int/tb/publications/2008/whohtmtb_2008_392/en.

67. Yakrus M.A., Hernandez S.M., Floyd M.M., Sikes D., Butler W.R., Metchock B.: Comparison of methods for identification of Mycobacterium abscessus and M. chelonae isolates. J Clin Microbiol 2001, 39, 4103–4110, doi: 10.1128/JCM.39.11.4103-4110.2001.