Biomedical Event Annotation with CRFs and Precision Grammars

Andrew MacKinlay, David Martinez, Timothy Baldwin
Motivation and Architecture

- Our motivation: deep linguistic processing for detection of speculation and negation
- Architecture:
 - Task 1:
 - Trigger word detection: CRF and Lookup systems
 - Event-theme construction (hand-crafted rules)
 - Task 3:
 - Deep parsing for semantic representation
 - Classification of events using Maximum Entropy
Trigger word detection with CRFs

- Conditional probability distribution over label sequences given a particular observation sequence
- CRF++ toolkit (Sha and Pereira, 2003)
- Tested features: word-form, lemma, POS, chunking marks, protein NER, grammatical dependencies (from Bikel parser and GDep)
- JULIE-Lab sentence splitter and Genia Tagger for pre-process
- Window sizes: ±3 and ±4
Best results (training data): Precision $\sim 66\%$, Recall $\sim 30\%$

- All features help except for grammatical dependencies
- ± 3 window size
Trigger word detection with dictionary look-up

- Decision list for each trigger string found in training data
 - Simply assign highest frequency class
- Frequency cut-off
- We can reach high recall (≈ 77%) but at the cost of precision (≈ 13%)
- Best f-score ≈ 36% (≈ 50% recall)
Add all trigger words identified by CRF and look-up

Two approaches:
 - Optimise per class (Optim)
 - Always preference to CRF (All)
Event-theme construction

- **Approach:** assign closest events/proteins as themes (without crossing sentence boundaries)

- **Basic events:**
 - Single closest protein

- **Binding events:**
 - Closest proteins
 - Parameters: maximum distance and number of themes

- **Regulation events**
 - Single closest protein or event (give precedence to events)
 - Parameters: maximum distance and detect/ignore CAUSE
Task 1 Results

System	Rec.	Prec.	FSc.
Combined (Optim.)	17.44	39.99	24.29
Combined (All)	24.36	30.87	27.23
CRF	12.23	62.24	20.44
CRF (+ synt feats)	12.01	61.91	20.11
Look-Up	22.88	29.67	25.84
Look-Up (freq >= 20)	23.26	26.74	24.88
Look-Up (freq >= 30)	21.37	30.50	25.13

Table: Task 1 results with approximate span matching, recursive evaluation (our final submission is in bold)
Negation/Speculation detection

- English Resource Grammar (ERG): high-precision grammar in the HPSG framework
- GENIA tagger to deal with named entities
- 72% of training sentences parsed
Semantic formalism: Robust Minimal Recursion Semantics
Elementary Predicates (EP): Predicates with their arguments
Relationships between trigger EP and lexical cues
 - Outscoping and shared-argument
Features for negation identification

Pre-identify word lists:

- Conjunctions: _not_c, _but+not_c, _nor_c
- Other markers: _only_a, _never_a, _not+as+yet_a, _not+as+yet_a, _unable_a, neg_rel

Negative-outsScope feature: when negative EP outscopes trigger-EP

- E.g. “...product was not (NEG-EP) able to bind (TRIG-EP) DNA and...”
 - NegOutscope neg_rel = 1
 - NegOutscope not = 1
...product was not able to bind DNA and was recovered in cytoplasmic cellular extracts...

ERG analysis

- **l8**: neg_rel(692:695)(e9, ARG1: h10)
- **l11**: able_a_1(696:700)(e12, ARG1: x6, ARG2: h13)
- **l14**: bind_v_to(704:708)(e17, ARG1: x6, ARG2: x16, ARG3: u15)
- h10 qeq l11, h13 qeq l14

Thus l8 immediately outscopes l11, and l11 immediately outscopes l14
Negative conjunction: when trigger-EP is the argument (ARG0) of a negative conjunction EP

- E.g. “...but not (NEG-EP) binding (TRIG-EP) DNA...”

When trigger-EP is the argument (ARG0) of a negatively-outscooped EP

- E.g. “...the product (TRIG-EP) was never (NEG-EP) considered...”
Pre-identify word lists:

- Speculation verb short list: _investigate, _study, _examine, _test, _evaluate, _observe\}
- Extended list: adding WordNet sisters

SpecVOBJ: when verb part of “speculative-verbs” set, and object is a trigger word

E.g. “IkappaBalpha phosphorylation and degradation (TRIG-EP) was analyzed (SPEC-EP)”

- SpecVObj2+WN-seed:examine = 1
- SpecVObj2+wn-sister:_analyze_v_1(examine) = 1
- SpecVObj2+wn-gen = 1
More features

- Speculation:
 - Modal verb outscopes trigger
 - ARG0 of trigger-EP occurs as argument of the word ‘analysis’

- General features:
 - E.g. (Modifier adjective) “…Fas upregulation (TRIG-EP) is central (ADJ-EP) to the preservation...”
 - ’ModAdj:_central_a_1’ = 1
 - Trigger name, trigger POS, etc.
Negation/Speculation Classifiers

- Maximum Entropy classifier (Maxent Toolkit)
- Different feature combinations
- Baseline: bag of words
- Development phase:
 - Goldstandard events
 - 10-fold cross-validation
- Test phase:
 - Trained over goldstandard event extraction
 - Output of task-1 classifier as source of trigger words
Very low performance over automatic classification
Linguistic features better than BOW
Combination of features works best
Development results: Negation

Feats.	Rec.	Prec.	FSc.
BOW	15.0	30.2	20.0
Neg. + BOW	24.3	68.4	35.9

- Bigger improvement over BOW
Official results for Task 3

TEAM	gold (match)	answer (match)	recall	prec.	fscore
ConcordU	3617 (1182)	1943 (1182)	32.68	60.83	42.52
VIBGhent	3617 (1105)	2227 (1104)	30.55	49.57	37.80
ASU+HU+BU	3617 (710)	1185 (710)	19.63	59.92	29.57
NICTA	3617 (577)	1450 (575)	15.95	39.66	**22.75**
USzeged	3617 (722)	3113 (722)	19.96	23.19	21.46
CCP-BTMG	3617 (446)	777 (446)	12.33	57.40	20.30
Lessons learned

- Keyword detection suffers from data sparseness
- Rules for event construction are too naive
- Deep parsing better than lexical baseline, but there are coverage problems
- Combined approach (detect triggers and themes together) to be explored for task 1
Biomedical Event Annotation with CRFs and Precision Grammars

Andrew MacKinlay, David Martinez, Timothy Baldwin