MOMENT INEQUALITIES FOR TRIGONOMETRIC POLYNOMIALS WITH SPECTRUM IN CURVED HYPERSURFACES

J. BOURGAIN

(0). Summary

In this note we develop further the technique from [B-G], based on the multi-linear restriction theory from [B-C-T], to establish some new inequalities on the distribution of trigonometric polynomials on the n-dimensional torus T^n, $n \geq 2$, of the form

$$f(x) = \sum_{\mathbf{z} \in \mathcal{E}} a_{\mathbf{z}} e^{2\pi i x \cdot \mathbf{z}}$$

where \mathcal{E} stands for the set of \mathbb{Z}^n-points on some dilate $D.S$ of a fixed compact, smooth hypersurface S in \mathbb{R}^n with positive definite second fundamental form. More precisely, we prove that for $p \leq \frac{2n}{n-1}$ and any fixed $\varepsilon > 0$, the bound

$$\|f\|_{L^p(T^n)} \leq C_\varepsilon D^\varepsilon \|f\|_{L^2(T^n)}$$

(0.2) holds.

In particular, if Δ stands for the Laplacian on T^n and

$$-\Delta f = Ef$$

(0.3)

we have that for $p \leq \frac{2n}{n-1}$, $n \geq 2$

$$\|f\|_{L^p(T^n)} \ll \varepsilon \|f\|_{L^2(T^n)}.$$

(0.4)

Recall that if $n = 2$, one has the inequality, for f satisfying (0.3),

$$\|f\|_{L^4(T^2)} \leq C \|f\|_{L^2(T^2)}$$

(0.5)
due to Zygmund and Cook. For \(n = 3 \), arithmetical considerations permit to obtain a bound
\[
\| f \|_{L^4(T^3)} \ll \varepsilon \| f \|_{L^2(T^3)}
\]
(0.6)

For \(n \geq 4 \), no estimate of the type (0.4) for some \(p > 2 \) seemed to be known. Recall also that it is conjectured that one has uniform bounds
\[
\| f \|_{L^q(T^n)} \leq C_q \| f \|_{L^2(T^n)} \text{ if } q \leq \frac{2n}{n-2}
\]
(0.7)
and
\[
\| f \|_{L^q(T^n)} \leq C_q \varepsilon^{1/2} \left(\frac{n+2}{4} \right) \| f \|_{L^2(T^n)} \text{ if } q \geq \frac{2n}{n-2}
\]
(0.8)
if \(f \) satisfies (0.3). The inequality (0.8) was proven in [B1] (using the Hardy-Littlewood circle method) under the assumption
\[
q > \frac{2(n+1)}{n-3}
\]
(0.9)
(up to an \(\varepsilon \)-factor).

Another application of (0.2) relates to the periodic Schrödinger group \(e^{it\Delta} \). For \(n \geq 1 \), one has the Strichartz’ type inequality
\[
\| (e^{it\Delta} f)(x) \|_{L^q(T^{n+1})} \ll R^\varepsilon \| f \|_{L^2(T^n)}
\]
(0.10)
for \(q \leq \frac{2(n+1)}{n} \) and \(f \) satisfying \(\text{supp} \hat{f} \subset \mathbb{Z}^n \cap B(0,R) \).

Combined with results from [B3], (0.10) implies that for \(q > \frac{2(n+3)}{n} \)
\[
\| (e^{it\Delta} f)(x) \|_{L^q(T^{n+1})} \leq C_q R^{\frac{n}{2} - \frac{n+2}{q}} \| f \|_{L^2(T^n)}
\]
(0.11)
for \(f \) as above. Note that inequality (0.11) is optimal. This result is new (and of interest to the theory of the nonlinear Schrödinger equations with periodic boundary conditions) for \(n \geq 4 \). (See [B3] for more details).

More generally, fix a smooth function \(\psi : U \to \mathbb{R} \) on a neighborhood \(U \) of \(0 \in \mathbb{R}^n \) such that \(D^2 \psi \) is positive definite. For \(q \leq \frac{2(n+1)}{n} \) and \(R \to \infty \),
\[
\left[\int_{[0,1]^{n+1}} \left| \sum_{z \in \mathbb{Z}^n, |z| < R} a_z e^{2\pi i (x.z + R^2 t \psi(\frac{z}{R}))} \right|^q dx dt \right]^{1/q}
\ll R^\varepsilon \left(\sum |a_z|^2 \right)^{\frac{1}{2}}.
\]
(0.12)
Taking $\psi(x) = \alpha_1 x_1^2 + \cdots + \alpha_n x_n^2, \alpha_1, \ldots, \alpha_n > 0$, generalizes (0.10) to irrational tori (cf. [B]).

(1). Multilinear Estimates

Fix a smooth, compact hyper-surface S in \mathbb{R}^n with positive definite second fundamental form. For $x \in S$, denote $x' \in S^{(n-1)} = \{ |x| = 1 \}$ the normal vector at the point x and let $\sim: S^{(n-1)} \to S$ be the Gauss map. Thus $x' = x$ for $x \in S$. Let σ be the surface measure of S.

The estimates below depend on the multi-linear theory developed in [BCT] to bound oscillatory integral operators. We recall the following version for later use. Let

$$\phi(x, y) = x_1 y_1 + \cdots + x_{n-1} y_{n-1} + x_n (\langle Ay, y \rangle + O(|y|^2))$$ \hspace{2cm} (1.1)

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^{n-1}$ is restricted to a small neighborhood of 0 and A is symmetric and definite (in particular, A is non-degenerate).

Denote

$$Z(x, y) = \partial_{y_1} (\nabla_x \phi) \wedge \cdots \wedge \partial_{y_{n-1}} (\nabla_x \phi).$$ \hspace{2cm} (1.2)

Fix $2 \leq k \leq n$ and disjoint balls $U_1, \ldots, U_k \subset \mathbb{R}^{n-1}$ such that the transversality condition holds

$$|Z(x, y^{(1)}) \wedge \cdots \wedge Z(x, y^{(k)})| > c \text{ for all } x \text{ and } y^{(i)} \in U_i.$$ \hspace{2cm} (1.3)

Then

$$\left\| \left(\prod_{i=1}^{k} |Tf_i| \right)^\frac{1}{k} \right\|_{L^q(B_R)} \ll R^c \left(\prod_{i=1}^{k} \|f_i\|_2 \right)^\frac{1}{q}$$ \hspace{2cm} (1.4)

with $q = \frac{2k}{k-1}$, provided $\text{supp } f_i \subset U_i$.

(2). Preliminary Lemmas

We recall a few estimates from [B-G], §3.

Lemma 1.

Let $U_1, \ldots, U_n \subset S$ be small caps such that $|x'_1 \wedge \cdots \wedge x'_n| > c$ for $x_i \in U_i$.

Let M be large and $\mathcal{D}_i \subset U_i (1 \leq i \leq n)$ discrete sets of $\frac{1}{M}$-separated points.
Let $B_M \subset \mathbb{R}^n$ be a ball of radius M. Then, for $q = \frac{2n}{n-1}$

$$\int_{B_M} \prod_{i=1}^{n} \left| \sum_{\xi \in D_i} a(\xi) e^{ix \cdot \xi} \right|^{q/n} \ll M^\varepsilon \prod_{i=1}^{n} \left[\sum_{\xi \in D_i} |a(\xi)|^2 \right]^{q/n}$$

(2.1)

where \int denotes the average.

Proof.

This is just a discretized version of (2.4) with $k = n$; our assumption ensures the required transversality condition (1.3).

We can assume B_M centered at 0. Introduce functions g_i on U_i defined by

$$\begin{cases} g_i(\zeta) = a(\xi) \text{ if } |\zeta - \xi| < \frac{c}{M}, \xi \in D_i \\ g_i(\zeta) = 0 \text{ otherwise.} \end{cases}$$

(c > 0 a small constant). One may then replace $\sum_{\xi \in D_i} a(\xi) e^{ix \cdot \xi}$ by $c' M^{n-1} \int_S g_i(\zeta) e^{ix \cdot \zeta} \sigma(d\zeta)$ if $x \in B_M$. Hence

$$\int_{B_M} \prod_{i=1}^{n} \left| \sum_{\xi \in D_i} a(\xi) e^{ix \cdot \xi} \right|^{q/n} \ll$$

$$M^{(n-1)q} \int_{B_M} \prod_{i=1}^{n} \left| \int_S g_i(\zeta) e^{ix \cdot \zeta} \sigma(d\zeta) \right|^{q/n} dx \ll$$

$$M^{(n-1)q + \varepsilon} \prod_{i=1}^{n} \|g_i\|_{L^2(U_i)} \sim M^{n-1} \prod_{i=1}^{n} \left[\sum_{\xi \in D_i} |a(\xi)|^2 \right]^{q/n}.$$

(2.3)

Since \int_{B_M} refers to the average, (2.1) follows, since $q = \frac{2n}{n-1}$.

Lemma 2.

Let $S \subset \mathbb{R}^n$ be as above and $2 \leq m \leq n$. Let V be an m-dimensional subspace of \mathbb{R}^n, $P_1, \ldots, P_m \in S$ such that

$$P'_1, \ldots, P'_m \in V \text{ and } |P_1 \wedge \cdots \wedge P_m| > c$$

(2.4)

and $U_1, \ldots, U_m \subset S$ sufficiently small neighborhoods of P_1, \ldots, P_m.

Let M be large and $D_i \subset U_i (1 \leq i \leq m)$ discrete sets of $\frac{1}{M}$-separated points $\xi \in S$ such that $\text{dist}(\xi', V) < \frac{1}{M}$. Let $g_i \in L^\infty(U_i)(1 \leq i \leq m)$. Then
letting \(q = \frac{2m}{m-1} \)

\[
\int_{B_M} \prod_{i=1}^m \left| \sum_{\zeta \in D_i} \left(\int_{|\zeta-\xi| < \frac{1}{M}} g_i(\zeta) e^{ix.\zeta} \sigma(d\zeta) \right) \right|^{q/m} dx \ll
\]

\[
M^\varepsilon \left\{ \int_{B_M} \prod_{i=1}^m \left[\sum_{\zeta \in D_i} \left| \int_{|\zeta-\xi| < \frac{1}{M}} g_i(\zeta) e^{ix.\zeta} \sigma(d\zeta) \right|^2 \right]^{1/2m} \right\}^q .
\]

(2.5)

Proof.

Performing a rotation, we may assume \(V = [e_1, \ldots, e_m] \) and denote \(\tilde{V} \subset S \) the image of \(V \cap S^{(n-1)} \) under the Gauss map. Let again \(B_M \) be centered at 0. For each \(\xi \in \bigcup_{i=1}^m D_i \) there is by assumption some \(\hat{\xi} \in \tilde{V} \). \(|\xi - \hat{\xi}| < \frac{c}{M} \).

Write

\[
\int_{|\zeta-\xi| < \frac{1}{M}} g_i(\zeta) e^{ix.\zeta} \sigma(d\zeta) = e^{ix\hat{\xi}} \int_{|\zeta-\hat{\xi}| < \frac{1}{M}} g_i(\zeta) e^{ix.(\zeta-\hat{\xi})} \sigma(d\zeta). \quad (2.6)
\]

Since in the second factor of (2.6), \(|\zeta-\hat{\xi}| = o\left(\frac{1}{M}\right) \), we may view it as constant \(a(\xi) \) on \(B_M \subset \mathbb{R}^n \).

Thus we need to estimate

\[
\int_{B_M} \left\{ \prod_{i=1}^m \left| \sum_{\zeta \in D_i} e^{ix.\hat{\xi}} a(\zeta) \right|^{q/m} \right\} dx .
\]

Writing \(x = (u, v) \in B_M^{(m)} \times B_M^{(n-m)} \), (2.7) may be bounded by

\[
\max_{v \in B_M^{(n-m)}} \int_{B_M^{(m)}} \left\{ \prod_{i=1}^m \left| \sum_{\zeta \in D_i} e^{iu \cdot \pi_m(\hat{\xi})} a_v(\zeta) \right|^{q/m} \right\} du \quad (2.8)
\]

with \(a_v(\zeta) = e^{iv \cdot \hat{\xi}} a(\zeta) \).

Since \(S \) has positive definite second fundamental form, \(\pi_m(\tilde{V}) \subset V = [e_1, \ldots, e_m] \) is a hypersurface in \(V \) with same property and the normal vector at \(\pi_m(\hat{\xi}) = (\hat{\xi})' \in V \). Since (2.4), application of (2.1) with \(n \) replaced by \(m \) and \(D_i \) by \(\{ \pi_m \hat{\xi}; \xi \in D_i \} \) gives the estimate on (2.7)

\[
\ll M^\varepsilon \prod_{i=1}^m \left[\sum_{\zeta \in D_i} |a(\zeta)|^2 \right]^{q/2m}
\]

and (2.5) follows.
Lemma 3. Let
\[p = \frac{2n}{n-1}. \]

Take \(K_n \gg K_{n-1} \gg \cdots \gg K_1 \gg 1 \). For \(1 \leq j \leq n \), denote by \(\{ U^{(j)}_\alpha \} \) a partition of \(S \) in cells of size \(\frac{1}{K_j} \). Then, for \(R > K_n \) and \(g \in L^2(S) \),

\[
\left\| \int g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p(B_R)} \ll \varepsilon
\]

\[
C(K_n)R^\varepsilon \left[\int_{S} |g(\xi)|^2\sigma(d\xi) \right]^{1/2} + \sum_{2 \leq j \leq n} C(K_{j-1})K_j^\varepsilon \left\{ \sum_{\alpha} \left\| \int_{U^{(j)}_\alpha} g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p(B_R)}^2 \right\}^{1/2}
\]

\[
+ \left\{ \sum_{\alpha} \left\| \int_{U^{(1)}_\alpha} g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p(B_R)}^2 \right\}^{1/2}
\]

(2.9)

where \(C(K) \) denotes some polynomial function of \(K \).

Proof. We follow the analysis from §3 in [B-G].

For \(x \in B_R \), let

\[
(2.10) = \int_{S} g(\xi)e^{ix.\xi}\sigma(d\xi)
\]

Start decomposing \(S = \bigcup_\alpha U_\alpha(\frac{1}{K_n}) \) in caps of size \(\frac{1}{K_n} \) and write

\[
(2.10) = \sum_{\alpha} \int_{U_\alpha(\frac{1}{K_n})} g(\xi)e^{ix.\xi}\sigma(d\xi) = \sum_{\alpha} c_\alpha(x).
\]

Fixing \(x \), there are 2 possibilities

(2.11) There are \(\alpha_1, \alpha_2, \ldots, \alpha_n \) such that

\[
|c_{\alpha_1}(x)|, \ldots, |c_{\alpha_n}(x)| > K_n^{-(n-1)} \max_{\alpha} |c_\alpha(x)|
\]

(2.12)

and

\[
|\xi_1 \wedge \cdots \wedge \xi_n| \gtrsim K_n^{-n} \text{ for } \xi_i \in U_{\alpha_i}. \quad (2.13)
\]

(2.14) The negation of (2.11), which implies that there is an \((n-1) \)-dim subspace \(V_{n-1} \) such that

\[
|c_\alpha(x)| \leq K_n^{-(n-1)} \max_{\alpha} |c_\alpha(x)| \text{ if } \text{dist}(U_\alpha, \bar{V}_{n-1}) \gtrsim \frac{1}{K_n}.
\]
If (2.11), it follows from (2.12) that
\[
\left| \int_S g(\xi) e^{ix.\xi} \sigma(d\xi) \right| \leq K_n^{n-1} \max |c_\alpha(x)| \leq K_n^{2n-2} \left[\prod_{i=1}^n |c_{\alpha_i}(x)| \right]^{\frac{1}{n}}
\]
and the corresponding contribution to the L^p_{BR}-norm of (4.1) is bounded by
\[
\int_{BR} (2.11) \left| \int_S g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^p \leq K_n^{2p(n-1)} \sum_{\alpha_1, \ldots, \alpha_n} \int_{BR} \prod_{i=1}^n \left| \int_{U_{\alpha_i}(1/K_n)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^\frac{p}{n}.
\]
(2.15)

In view of (2.13), the [BCT]-estimate (1.4) with $k = n$ applies to each (2.15) term. Thus
\[
\int_{BR} \prod_{i=1}^n \left| \int_{U_{\alpha_i}(1/K_n)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^\frac{2}{n-1} dx \ll C(K_n) R^\varepsilon \left[\int_S |g(\xi)|^2 \sigma(d\xi) \right]^{\frac{n-1}{n}}.
\]
(2.16)

Next consider the case (2.14). Thus
\[
|2.10| \leq \left| \int_{dist(\xi, \bar{V}_{n-1})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right| + \max_\alpha \left| \int_{U_{\alpha}(1/K_n)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|
\]
\[
= (2.17) + (2.18)
\]
where V_{n-1} depends on x.

Note however that, from its definition, we may view $|c_\alpha(x)|$ as ‘essentially’ constant on balls of size K_n. Making this claim rigorous requires some extra work and one replaces $|c_\alpha(x)|$ by a majorant $|c_\alpha| * \eta_{K_n}$, $\eta_{K_n}(x) = \frac{1}{K_n} \eta\left(\frac{x}{K_n} \right)$ and η a suitable bump-function. We may then ensure that $|c_\alpha| * \eta_{K_n}$ is approximately constant at scale K_n. But we will not sidetrack the reader with these technicalities that may be found in [B-G], §2.

Thus, upon viewing the $|c_\alpha|$ approximatively constant at scale K_n, the bound (2.17) + (2.18) may clearly be considered valid on $B(\bar{x}, K_n)$ with the same linear space V_{n-1}.

Obviously
\[
(2.18) \leq \left(\sum_\alpha \left| \int_{U_{\alpha}(1/K_n)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^p \right)^\frac{1}{p}
\]
and the corresponding L^p_{BR}-contribution is bounded by
\[
\left\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{1}{K_n})} g(\xi) e^{ix\cdot\xi} \sigma(d\xi) \right\|_{L^p_{BR}}^2 \right\}^{1/2}. \tag{2.19}
\]

Consider the term (2.17). Proceeding similarly, write for $x \in B(\bar{x}, K_n)$
\[
\int_{\text{dist} (\xi, V_{n-1}) \leq \frac{1}{K_n}} g(\xi) e^{ix\cdot\xi} \sigma(d\xi) = \sum_{\alpha} \int_{U_{\alpha}(\frac{1}{K_{n-1}}) \cap \text{dist} (\xi, V_{n-1}) \leq \frac{1}{K_n}} g(\xi) e^{ix\cdot\xi} \sigma(d\xi) = \sum_{\alpha} c^{(n-1)}_{\alpha}(x). \tag{2.20}
\]

We distinguish the cases

(2.20) There are $\alpha_1, \ldots, \alpha_{n-1}$ such that
\[
|c^{(n-1)}_{\alpha_1}(x)|, \ldots, |c^{(n-1)}_{\alpha_{n-1}}(x)| > K_{n-1}^{-(n-2)} \max_{\alpha} |c^{(n-1)}_{\alpha}(x)| \tag{2.21}
\]
and
\[
|\xi_1' \land \ldots \land \xi_{n-1}'| \gtrsim K_{n-1}^{-(n-1)} \text{ for } \xi_i \in U_{\alpha_i}(\frac{1}{K_{n-1}}). \tag{2.22}
\]

(2.23) Negation of (2.20), implying that there is an $(n-2)$-dim subspace $V_{n-2} \subset V_{n-1}$ (depending on x) such that
\[
|c^{(n-1)}_{\alpha}(x)| < K_{n-1}^{-(n-2)} \max_{\alpha} |c^{(n-1)}_{\alpha}(x)| \text{ for dist } (U_{\alpha}, V_{n-2}) \gtrsim \frac{1}{K_{n-1}}.
\]

This space V_{n-2} can then again be taken the same on a K_{n-1}-neighborhood of x.

We analyze the contribution of (2.20). By (2.21)
\[
|(2.19)| < K_{n-1}^{2n-4} \left[\prod_{i=1}^{n-1} |c^{(n-1)}_{\alpha_i}(x)| \right]^{\frac{1}{n-1}} \tag{2.24}
\]
and hence
\[
\int_{\text{dist} (\xi, V_{n-1}) \leq \frac{1}{K_n}} g(\xi) e^{ix\cdot\xi} \sigma(d\xi) \leq
\]
\[
K_{n-1}^{p(2n-4)} \sum_{\alpha_1, \ldots, \alpha_{n-1}} \left\{ \prod_{i=1}^{n-1} \int_{U_{\alpha_i}(\frac{1}{K_{n-1}}) \cap \text{dist} (\xi, V_{n-1}) \leq \frac{1}{K_n}} g(\xi) e^{ix\cdot\xi} \sigma(d\xi) \right\}^{p/(n-1)}. \tag{2.25}
\]
We use the bound (2.5) to estimate the individual integrals

\[
(2.26) \quad \int_{B(\bar{x}, K_n)} \left\{ \prod_{i=1}^{n-1} \left| \int_{U_{\alpha_i} \left(\frac{1}{K_{n-1}} \right) \cap \text{dist} \left(\xi, \hat{V}_{n-1} \right) \leq \frac{1}{K_n} \right] g(\xi) e^{ix \cdot \xi} \sigma(d\xi) \right\}^{\frac{q}{n-1}} \text{ with } q = \frac{2(n - 1)}{n - 2}.
\]

Thus \(m = n - 1 \), \(V = V_{n-1} \) and \(P_i \) is the center of \(U_{\alpha_i} \left(\frac{1}{K_{n-1}} \right) \). Let \(M = K_n \) and \(D_i \) the centers of a cover of \(U_{\alpha_i} \left(\frac{1}{K_{n-1}} \right) \cap \text{dist} \left(\xi, \hat{V}_{n-1} \right) \leq \frac{1}{K_n} \) by caps \(U_{\alpha} \left(\frac{1}{K_n} \right) \).

By (2.5) we get an estimate

\[
(2.26) \ll K_n^C(K_{n-1}) \left\{ \int_{B(\bar{x}, K_n)} \prod_{i=1}^{n-1} \left[\sum_{\alpha} \left| \int_{U_{\alpha} \left(\frac{1}{K_n} \right)} g(\xi) e^{ix \cdot \xi} \sigma(d\xi) \right|^2 \right]^{\frac{1}{n-1}} \right\}^q
\]

where in \(\sum^{(i)} \) the sum is over those \(\alpha \) such that \(U_{\alpha} \left(\frac{1}{K_n} \right) \subset U_{\alpha_i} \left(\frac{1}{K_{n-1}} \right) \) and \(U_{\alpha} \left(\frac{1}{K_n} \right) \cap \hat{V}_{n-1} \neq \phi \). Hence, we certainly have

\[
(2.26) \ll K_n^C(K_{n-1}) \left\{ \int_{B(\bar{x}, K_n)} \left[\sum_{\alpha} \left| \int_{U_{\alpha} \left(\frac{1}{K_n} \right)} g(\xi) e^{ix \cdot \xi} \sigma(d\xi) \right|^2 \right]^{\frac{1}{2}} \right\}^q
\]

and therefore, since \(p < q \),

\[
(2.25) \ll K_n^C(K_{n-1}) \left\{ \int_{B(\bar{x}, K_n)} \left[\sum_{\alpha} \left| \int_{U_{\alpha} \left(\frac{1}{K_n} \right)} g(\xi) e^{ix \cdot \xi} \sigma(d\xi) \right|^2 \right]^{p/2} \right\}.
\]

Hence the collected contribution over \(B_R \) of (2.28) is bounded by

\[
K_n^C(K_{n-1}) \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha} \left(\frac{1}{K_n} \right)} g(\xi) e^{ix \cdot \xi} \sigma(d\xi) \right\|_{L^p(B_R)}^2 \right\}^{1/2}.
\]

Next, we analyze the contribution of (2.23) which is similar to that of (2.14) with \(n - 1 \) replaced by \(n - 2 \) and \(K_n \) by \(K_{n-1} \). The local estimate (2.27) becomes

\[
K_{n-1}^C(K_{n-2}) \left\{ \int_{B(\bar{x}, K_{n-1})} \prod_{i=1}^{n-2} \left[\sum_{\alpha} \left| \int_{U_{\alpha} \left(\frac{1}{K_{n-1}} \right)} g(\xi) e^{ix \cdot \xi} \sigma(d\xi) \right|^2 \right]^{\frac{1}{2(n-2)}} \right\}^q
\]

with \(q = \frac{2(n - 2)}{n - 3} \) and where in \(\sum^{(i)} \) the sum is over those \(\alpha \) such that

\[
U_{\alpha} \left(\frac{1}{K_{n-1}} \right) \subset U_{\alpha_i} \left(\frac{1}{K_{n-2}} \right) \text{ and } U_{\alpha} \left(\frac{1}{K_{n-1}} \right) \cap \hat{V}_{n-2} \neq \phi.
\]
The collected contribution of (2.30) to the $L^p_{B_R}$-norm of (2.10) is bounded by
\[
K_n^{-1} C(K_n-2) \left\{ \sum_\alpha \left\| \int_{U_\alpha(\frac{1}{K_n-1})} g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{B_R}}^2 \right\}^{\frac{1}{2}}. \tag{3.31}
\]
The continuation of the process is now clear and leads to the bound (2.9). This proves Lemma 3.

Taking $K_j > K_1^{C/\varepsilon}$ in Lemma 3, we obtain

Lemma 4. Fix $\varepsilon > 0$. Let $K_1 \gg 1$ be large enough and assume $R > K_1^{C(\varepsilon)}$.

Then, with $p = \frac{2n}{n-1}$
\[
\left\| \int g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{B_R}} \leq R^\varepsilon \left[\int_S |g(\xi)|^2\sigma(d\xi) \right]^{\frac{1}{2}}
+ \max_{K_1 < K < K_1^{C(\varepsilon)}} \left\{ K\varepsilon \sum_\alpha \left\| \int_{U_\alpha(\frac{1}{K})} g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{B_R}}^2 \right\}^{1/2}, \tag{2.32}
\]
with $\{U_\alpha(\frac{1}{K})\}$ a cover of S by $\frac{1}{K}$-size caps.

The first term on the right side of (2.32) may be eliminated.

Observe first that since $|x| < R$, the left side may be replaced by
\[
\left\| \int G(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{B_R}} \tag{2.33}
\]
where G is a smoothing of g at scale $\frac{1}{R}$.

Applying (2.32) with g replaced by G, the first term on the right
\[
\left[\int_S |G(\xi)|^2\sigma(d\xi) \right]^{\frac{1}{2}} \lesssim \left\{ \sum_\alpha \left\| \int_{U_\alpha(\frac{1}{R})} g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{B_R}}^2 \right\}^{\frac{1}{2}} \tag{2.34}
\]
and the other terms may be majorized by
\[
\left\| \int_{U_\alpha(\frac{1}{R})} G(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{B_R}} \lesssim \left\| \int_{U_\alpha(\frac{1}{R})} g_1(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{B_R}} \tag{2.35}
\]
for some $g_1 = \eta g$ with η a smooth function.

Hence we obtain
Lemma 5. Fix $\varepsilon > 0$. Let $K_1 \gg 1$ be large enough and assume $R > K_1^{C(\varepsilon)}$. Then, with $p = \frac{2n}{n-1}$, we have

$$\left\| \int g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p(B_R)} < R^\varepsilon \left\{ \sum_{\alpha} \left(\int_{U_\alpha(\frac{1}{R})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right)^2 \right\}^{\frac{1}{2}} + \max_{K_1 < K < K_1^{C(\varepsilon)}} \left\{ K^\varepsilon \sum_{\alpha} \left(\int_{U_\alpha(\frac{1}{K})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right)^2 \right\}^{\frac{1}{2}}$$

(2.36)

where $L^p(R) = L^p(\omega(\frac{1}{R})dx)$ with $0 < \omega < 1$ some rapidly decaying function on \mathbb{R}^n.

In order to iterate (2.36), we rely on rescaling.

Parametrize S (locally, after affine coordinate change) as

$$\begin{cases}
\xi_i = y_i (1 \leq i \leq n-1) \\
\xi_n = y_1^2 + \cdots + y_{n-1}^2 + O(|y|^3)
\end{cases}$$

(2.37)

with y taken in a small neighborhood of 0.

Let $U(\rho)$ be a ρ-cap on S and evaluate

$$\left\| \int_{U(\rho)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p(B_R)}.$$

(2.38)

Thus in view of (2.37), (2.38) amounts to

$$\left\| \int_{B(a,\rho)} g(y) e^{i\varphi(x,y)} dy \right\|_{L^p(B_R)}$$

(2.39)

with

$$\varphi(x,y) = x_1y_1 + \cdots + x_{n-1}y_{n-1} + x_n(|y|^2 + O(|y|^3))$$

(2.40)

and $B(a,\rho) \subset \mathbb{R}^{n-1}$.

A shift $y \mapsto y - a$ and change of variables $x'_i = x_i + x_n(2a_i + \cdots) (1 \leq i < n)$ permits to set $a = 0$. By parabolic rescaling

$$y = \rho y' \text{ and } \rho x_i = x'_i (1 \leq i < n), \rho^2 x_n = x'_n$$

(2.41)
we obtain a new phase function $\psi(x', y')$ and (2.39) becomes

$$\rho^{n-1 - \frac{n+1}{p}} \left\| \int_{B(0,1)} g(a + \rho y') e^{i\psi(x',y')} dy' \right\|_{L^p(\Omega)}$$

(2.42)

where $\Omega = \{ |x_i'| < \rho R (1 \leq i < n), |x'_n| < \rho^2 R \}.$

Partition $\Omega = \bigcup \Omega_s$ in size-$\rho^2 R$ balls Ω_s and apply Lemma 5 on each Ω_s with R replaced by $\rho^2 R$. Assuming

$$R > \rho^{-2} K_1^{C(\epsilon)}$$

(2.43)

(2.36) implies that

$$\left\| \int_{B(0,1)} g(a + \rho y') e^{i\psi(x',y')} dy' \right\|_{L^p(\Omega_s)} <$$

$$(\rho^2 R)^\varepsilon \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha} \left(\frac{\rho^2 R}{R} \right)} g(a + \rho y') e^{i\psi(x',y')} dy' \right\|_{L^p \left(\omega \left(\frac{x' - b_s}{\rho^2 R} \right) dx' \right)}^2 \right\}^{\frac{1}{2}} +$$

$$\max_{K_1 < K < K_1^{C(\epsilon)}} \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha} \left(\frac{1}{R} \right)} g(a + \rho y') e^{i\psi(x',y')} dy' \right\|_{L^p \left(\omega \left(\frac{x' - b_s}{\rho^2 R} \right) dx' \right)}^2 \right\}^{\frac{1}{2}}$$

(2.44)

with b_s the center of Ω_s.

Note that certainly

$$\sum_s \omega \left(\frac{x' - b_s}{\rho^2 R} \right) < \omega_1 \left(\frac{x}{R} \right).$$

Summing (2.44)p over s and reversing the coordinate changes clearly implies that

$$(2.39), (2.42) <$$

$$(\rho^2 R)^\varepsilon \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha} \left(\frac{\rho^2 R}{R} \right)} g(\phi) e^{i\phi(x,y)} dy \right\|_{L^p_R}^2 \right\}^{\frac{1}{2}} +$$

$$\max_{K_1 < K < K_1^{C(\epsilon)}} \left\{ K_1^{\varepsilon} \sum_{\alpha} \left\| \int_{U_{\alpha} \left(\frac{1}{R} \right)} g(\phi) e^{i\phi(x,y)} dy \right\|_{L^p_R}^2 \right\}^{\frac{1}{2}}$$

(2.45)

under the assumption (2.43).

Taking $R = \rho^{-2} K_2$ with $K_2 > K_1^{C(\epsilon)}$ in (2.45), we obtain
Lemma 6. Let $K_2 > K_1^{C(\varepsilon)}$. Then

$$
\left\| \int_{U(\rho)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p(B_{K_2\rho^{-2}})}
\ll_{\varepsilon} \max_{K_1 < K < K_2} \left\{ K^\varepsilon \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{c}{K})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|^2_{L^p_{(\rho^{-2})}} \right\}^{\frac{1}{2}}.
$$

(2.46)

If $R > K_2\rho^{-2}$, we can partition B_R in cubes of size $K_2\rho^{-2}$ and apply (2.46) on each of them, with $g(\xi)$ replaced by $g(\xi) e^{i\alpha.\xi}$ for some $\alpha \in B_R$. Hence

Lemma 6'. Let $R > K_2\rho^{-2}, K_2 = K_1^{C(\varepsilon)}$. Then

$$
\left\| \int_{U(\rho)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p(B_R)}
\ll_{\varepsilon} \max_{K_1 < K < K_2} \left\{ K^\varepsilon \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{c}{K})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|^2_{L^p(R)} \right\}^{\frac{1}{2}}.
$$

(2.47)

It is now straightforward to iterate Lemma 6' and derive the following statement

Proposition 1. Let $0 < \delta \ll 1$ and $R > C(\varepsilon)\delta^{-2}$. Then, with $p = \frac{2n}{n-1}$

$$
\left\| \int g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p_{(R)}}
\ll_{\varepsilon} \delta^{-\varepsilon} \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(\delta)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|^2_{L^p_{(R)}} \right\}^{\frac{1}{2}}.
$$

(2.48)

(3). L^p-bounds for certain exponential polynomials and applications

We fix a smooth compact hyper-surface S in \mathbb{R}^n with positive definite second fundamental form. We consider exponential polynomials with frequencies on some dilate $D.S$ of S.

Proposition 2. Let $0 < \rho < D$ and let \mathcal{E} be a discrete set of points on the dilate $D.S$ that are mutually at least ρ separated. Then, for $p = \frac{2n}{n-1}$ and any (fixed) $\varepsilon > 0$

$$
\left[\int_{B_R} \left| \sum_{z \in \mathcal{E}} a_z e^{ix.z} \right|^p dx \right]^{\frac{1}{p}}
\ll_{\varepsilon} \left(\frac{D}{\rho} \right)^{\varepsilon} \left(\sum_{z \in \mathcal{E}} |a_z|^2 \right)^{\frac{1}{2}}.
$$

(3.1)
provided
\[R > C(\varepsilon)D\rho^{-2}. \] (3.2)

Proof.

By rescaling, we may clearly assume \(D = 1 \).

Let \(0 < \tau < \rho/10 \) and let \(g \) be the function on \(S \) defined by
\[
g(\xi) = \frac{a_z}{\sigma(U(z, \tau))} \text{ if } \xi \in U(z, \tau) \\
= 0 \text{ otherwise} \tag{3.3}
\]

Here \(U(z, \tau) \subset S \) denotes a \(\tau \)-neighborhood of \(z \) on \(S \). Thus
\[
\int g(\xi) e^{ix.\xi} \sigma(d\xi) = \sum_{z \in \mathcal{E}} a_z \int_{U(z, \tau)} e^{ix.\xi} \sigma(d\xi). \tag{3.4}
\]

Applying (2.48) with \(\delta = \rho \), it follows from (3.3), (3.4) that
\[
\left\{ \int_{B_R} \left| \sum_{z \in \mathcal{E}} a_z \int_{U(z, \tau)} e^{ix.\xi} \sigma(d\xi) \right|^p dx \right\}^{\frac{1}{p}} \ll_{\varepsilon} \rho^{-\varepsilon} \left(\sum_{z} |a_z|^2 \right)^{1/2} \tag{3.5}
\]

letting \(\tau \to 0 \), (3.1) clearly follows.

Next, observe that if \(\mathcal{E} \) is contained in a lattice, then \(\sum_{z \in \mathcal{E}} a_z e^{ix.\xi} \) is a periodic function. Hence Proposition 2 implies

Proposition 3. Let \(S \) be as above and \(\mathcal{E} = \mathbb{Z}^n \cap DS, D \to \infty \).

Then, with \(p = \frac{2n}{n-1} \)
\[
\left[\int_{\mathbb{T}^n} \left| \sum_{z \in \mathcal{E}} a_z e^{2\pi ix.z} \right|^p dx \right]^{\frac{1}{p}} \ll_{\varepsilon} D^{\varepsilon} \left(\sum_{z} |a_z|^2 \right)^{1/2} \tag{3.6}
\]

where \(\mathbb{T}^n \) stands for the \(n \)-dimensional torus.

Corollary 4. Let \(\varphi = \varphi_E, -\Delta \varphi_E = E\varphi_E \) be an eigenfunction of \(\mathbb{T}^n, n \geq 2 \).

Then for \(p = \frac{2n}{n-1} \) and any \(\varepsilon > 0 \), we have
\[
\| \varphi \|_{L^p(\mathbb{T}^n)} \leq C(\varepsilon) E^{\varepsilon} \| \varphi \|_{L^2(\mathbb{T}^n)}. \tag{3.7}
\]
Remark. Corollary 4 should be compared with the result from [B1]. It is conjectured that for eigenfunctions of T^n, $n \geq 2$, there is a uniform bound
\[\|\varphi\|_p \leq C(p)\|\varphi\|_2 \text{ for } p < \frac{2n}{n-2}. \] (3.8)

If $n = 2$, (3.8) is known to hold for $p \leq 4$ (due to Zygmund-Cook) but for no exponent $p > 4$.

If $n = 3$, (3.7) is valid for $p \leq 4$. This is a consequence of the following observation. One clearly has the estimate
\[\|\varphi\|_4 \leq K^{1/4}\|\varphi\|_2 \]
denoting
\[K = \max_{\xi \in \mathbb{Z}^3} \left(\# \{(\xi_1, \xi_2) \in \mathbb{Z} \times \mathbb{Z}; |\xi_1|^2 = E = |\xi_2|^2 \text{ and } \xi_1 + \xi_2 = \xi \} \right). \]

Projecting on one of the coordinate planes reduces the issue to bounding the number $|\mathcal{E} \cap \mathbb{Z}^2|$ with $\mathcal{E} \subset \mathbb{R}^2$ some ellipse of size at most $E^{1/2}$. It is well known that
\[|\mathcal{E} \cap \mathbb{Z}^2| \ll E^\varepsilon \] (3.9)
(cf. [B-R]) and hence $K \ll E^\varepsilon$.

For $n \geq 4$, no estimates of the type (3.7) for some $p > 2$, seemed to be previously known. Recall that for $n \geq 4$ and R a large positive integer
\[|RS^{(n-1)} \cap \mathbb{Z}^n| \sim R^{n-2}. \] (3.10)

Thus Corollary 4 provides for any $p = \frac{2n}{n-1}$ an explicit construction of an ‘almost’ Λ_p-set which is not a Λ_q-set for $q \geq \frac{2n}{n-2}$. No explicit constructions of proper Λ_p-sets for $2 < p < 4$ seem to be known and their existence results from probabilistic arguments (see [B2], [B4]).

In view of (3.10), Corollary 4 also provides explicit almost Euclidean subspaces of dimension $\sim N^{\frac{4}{p}-1}$ in ℓ_N^p, for p of the form $\frac{2n}{n-1}$, $n \geq 4$ (while their maximal dimension is $\sim N^{\frac{4}{p}}$ for $2 < p < \infty$). To be compared with the result from [G-L-R] on explicit almost Euclidean subspaces of ℓ_1^n.

Returning to Proposition 3, we have more generally

Proposition 3’. Let S be as in Proposition 3 and $T \in GL_n(\mathbb{R}), \|T\| > 1$, an arbitrary invertible linear transformation. Let $\mathcal{E} = \mathbb{Z}^n \cap T(S)$. Then, letting $p = \frac{2n}{n-1}$, we have the inequality
\[\left[\int_{\mathbb{T}^n} \left| \sum_{z \in \mathcal{E}} a_z e^{2\pi i x \cdot z} \right|^p dx \right]^{\frac{1}{p}} \ll \|T\|^\varepsilon \left(\sum_{x \in \mathcal{E}} |a_z|^2 \right)^{\frac{1}{2}}. \] (3.11)
Proof. Consider the set
\[E' = \{ T^{-1}z; z \in E \} \subset S \]
which elements are at least \(\frac{1}{\|T\|} \)-separated. Applying Proposition 2 with \(D = 1 \) and \(\rho = \frac{1}{\|T\|} \), we obtain
\[
\lim_{R \to \infty} \int_{B_R} \left| \sum_{z \in E} a_z e^{2\pi i x \cdot T^{-1}z} \right|^p dx' \ll \|T\|^\varepsilon \left(\sum_{z \in E} |a_z|^2 \right)^{\frac{1}{2}}.
\] (3.12)

By change of variables \(x = (T^{-1})^* x' \), it follows that
\[
\lim_{R \to \infty} \left[\int_{(T^{-1})^*(B_R)} \left| \sum_{z \in E} a_z e^{2\pi i x \cdot z} \right|^p dx \right]^{\frac{1}{p}} \ll \|T\|^\varepsilon \left(\sum_{z \in E} |a_z|^2 \right)^{\frac{1}{2}}
\] (3.13)
which, by periodicity, is equivalent to (3.11).

Take \(S = \{ (y, |y|^2); y \in \mathbb{R}^n, |y| < 1 \} \) the truncated paraboloid in \(\mathbb{R}^{n+1} \) and let \(T(x, t) = (Rx, R^2 t), R > 1 \). From Proposition 3', we immediately derive the following Strichartz’ type inequality for the periodic Schrödinger group \(e^{it\Delta} \).

Corollary 5. Denote \(\Delta \) the Laplacian on \(\mathbb{T}^n \). Then, for \(p = \frac{2(n+1)}{n} \), we have the inequality
\[
\|e^{it\Delta} f\|_{L^p(\mathbb{T}^n \times \mathbb{T})} \ll R^\varepsilon \|f\|_{L^2(\mathbb{T})}
\] (3.14)
assuming supp \(\hat{f} \subset B(0, R) \).

This bound should be compared with the following result established in [B3].

Proposition 6. Let \(f \in L^2(\mathbb{T}^n), \|f\|_2 = 1 \) and such that supp \(\hat{f} \subset B(0, R) \). Then, for \(\lambda > R^{\frac{2}{n}} \) and \(q > \frac{2(n+2)}{n} \), the following inequality holds
\[
\text{mes } \left[\{(x, t) \in \mathbb{T}^{n+1}; |e^{it\Delta} f|(x) > \lambda \} \right] < C_q R^{\frac{2}{n}q-(n+2)\lambda^{-q}}.
\] (3.15)

Combining Corollary 5, Proposition 6, we obtain the following improvement over Proposition 3.110 in [B3].
Corollary 7. Let \(n \geq 4 \) (for \(n < 4 \), better result may be obtained by arithmetical means, cf. [B3]).

Let \(f \) be as in Proposition 6. Then, for \(q > \frac{2(n+3)}{n} \)

\[
\|e^{it\Delta}f\|_{L^q(T^{n+1})} < C_{q}R^{\frac{n+2}{2n}}
\]

(3.16) holds.

Note that (3.16) is optimal.

Proof.

Denote \(q_0 = \frac{2(n+1)}{n} \) and \(q_1 \) some exponent \(> \frac{2(n+2)}{n} \). Let \(F(x,t) = (e^{it\Delta}f)(x) \) and estimate for \(q > q_1 \)

\[
\int_{T^{n+1}} |F|^q \leq \int_{|F| > R^{\frac{n}{2}}} |F|^q + R^{\frac{n}{2}(q-q_0)} \int |F|^{q_0} < C_{q_1}R^{\frac{n}{2}q_1-(n+2)} + C_{q}R^{\frac{n}{2}(q-q_0)+\varepsilon}
\]

\[
C_{q_1} \frac{1}{q-q_1} R^{\frac{n}{2}q-(n+2)} + C_{\varepsilon}R^{\frac{n}{2}(q-q_0)+\varepsilon} < C_{q}R^{\frac{n}{2}q-(n+2)}
\]

for \(q \) as above.

Corollary 5 admits a generalization that we discuss next. Assume \(\psi : \cup \to \mathbb{R}, U \subset \mathbb{R}^n \) a neighborhood of 0, is a smooth function such that \(D^2\psi \) is positive (or negative) definite. Then one has

Proposition 8. Let \(p = \frac{2(n+1)}{n} \) and \(N \to \infty \). Then for all \(\varepsilon > 0 \),

\[
\left[\int_{[0,1]^{n+1}} \left| \sum_{z \in \mathbb{Z}^n} a_z e^{2\pi i (x,z+N^2t\psi(z/N))} \right|^p dx dt \right]^{\frac{1}{p}} \ll N^\varepsilon \left(\sum |a_z|^2 \right)^{1/2}.
\]

(3.17)

Note that a coordinate change \(x \mapsto x + Nt\nabla\psi(0) \) permits to assume \(\psi(0) = \nabla\psi(0) = 0 \). Let \(S = \{(x, \psi(x), x \in U]\) and

\[
\mathcal{E} = \left\{ \left(\frac{z}{N}, \psi\left(\frac{z}{N} \right) \right) ; z \in \mathbb{Z}^n, \frac{z}{N} \in U \right\} \subset S.
\]
Application of Proposition 2 with $\rho \sim \frac{1}{N}$ implies that

$$\left[\int_{[0,1]^{n+1}} \left| \sum_{z \in \mathbb{Z}^n, \frac{x}{N} \in U} a_z e^{2\pi i (Nz \cdot x + N^2 \psi(\frac{x}{N}) t)} \right|^p \, dx \, dt \right]^{\frac{1}{p}} \ll N^{\varepsilon} \left(\sum |a_z|^2 \right)^{1/2}$$

(3.18)

and (3.17) follows by exploiting periodicity in x. This proves Proposition 8.

Finally, observe that by taking $\psi(x) = \alpha_1 x_1^2 + \cdots + \alpha_n x_n^2$ with $\alpha_1, \ldots, \alpha_n > 0$, Corollary 5 generalizes to a Strichartz inequality for irrational tori, as considered in [B]. Applications to nonlinear Schrödinger type equations will not be discussed in this paper.

REFERENCES

[B]. J. Bourgain, *On Strichartz inequalities and NLS on irrational tori*, Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Math. 63 163 (2007), 1–20.

[B1]. J. Bourgain, *Eigenfunction bounds for the Laplacian on the n-torus*, IMRN, 1993, no 3, 61–66.

[B2]. J. Bourgain, *Bounded orthogonal systems and the $\Lambda(p)$-set problem*, Acta Math. 162 (1989), no 3, 227–245.

[B3]. J. Bourgain, *Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, Schrödinger equations*, GAFA 3 (1993), no 2, 107–156.

[B4]. J. Bourgain, *Λ_p-sets in analysis: results, problems and related aspects*, Handbook of the geometry of Banach Spaces, Vol I, 195–232.

[B-C-T]. J. Bennett, A. Carbery, T. Tao, *On the multilinear restriction and Kakeya conjectures*, Acta Math. 196 (2006), 202, 261–302.

[B-G]. J. Bourgain, L. Guth, *Bounds on oscillatory integral operators obtained from multi-linear estimates*, preprint (to appear in GAFA).

[B-R-S]. J. Bourgain, Z. Rudnick, *Restriction of toral eigenfunctions to hyper surfaces and nodal sets*, (preprint).

[G-L-R]. V. Guruswami, J. Lee, A. Razborov, *Almost Euclidean subspaces of ℓ_1^N via expander codes*, Proc ACM-SIAM Symp. on Discrete Algorithms, 353–362, ACM (2008).