Mutations Found in the Asc1 Gene That Confer Susceptibility to the AAL-Toxin in Ancestral Tomatoes from Peru and Mexico

Rin Tsuzuki 1, Rosa María Cabrera Pintado 2, Jorge Andrés Biondi Thordrinkle 2, Dina Lida Gutiérrez Reynoso 2, Carlos Alberto Amasifuen Guerra 2, Juan Carlos Guerrero Abad 2, Liliana Maria Aragón Caballero 3, Medali Heidi Huarhua Zaquinaula 2, Cledy Ureta Sierra 2, Olenna Ines Alberca Cruz 2, Milca Gianira Elespuru Sana 2, Raúl Humberto Blas Sevillano 4, Ines Carolina Torres Arias 4, Joel Flores Ticona 4, Fátima Cáceres de Baldárrago 5, Enrique RODRÍGUEZ PÉREZ 6, Takuo Hozum 7, Hiroki Saito 8, Shunsuke Kotera 8, Yasunori Akagi 9, Motoichiro Kodama 10, Ken Komatsu 8 and Tsutomu Arie 1,8,9

Abstract: Tomato susceptibility/resistance to stem canker disease caused by Alternaria alternata f. sp. lycopersici and its pathogenic factor AAL-toxin is determined by the presence of the Asc1 gene. Several cultivars of commercial tomato (Solanum lycopersicum var. lycopersicum, SLL) are reported to have a mutation in Asc1, resulting in their susceptibility to AAL-toxin. We evaluated 119 ancestral tomato accessions including S. pimpinellifolium (SP), S. lycopersicum var. cerasiforme (SLC) and S. lycopersicum var. lycopersicum “jtomate criollo” (SLJ) for AAL-toxin susceptibility. Three accessions, SP PER018805, SLC PER018894, and SLJ M5-3, were susceptible to AAL-toxin. SLC PER018894 and SLJ M5-3 had a two-nucleotide deletion (nt 854_855del) in Asc1 identical to that found in SLL cv. Aichi-first. Another mutation (nt 931_932insT) that may confer AAL-toxin susceptibility was identified in M5-3. AAL-toxin susceptible SLC PER018894 and SLJ M5-3 were in Clade S2 with SLL cultivars. As SLC is thought to be the ancestor of SLL, and SLJ is an intermediate tomato between SLC and SLL, Asc1s with/without the mutation seem to have been inherited throughout the history of tomato domestication and breeding.

Keywords: Solanum pimpinellifolium; Solanum lycopersicum var. cerasiforme; alternaria alternata tomato pathotype; AAL-toxin; Peru
1. Introduction

Agricultural plant evolution has been driven by a complex process involving human activities and natural environment. Humans have selected individual wild plants displaying preferable traits, for example suitable for eating, resulting in domestication of plants [1]. Modern plant breeding has enhanced the selection of genes determining favorable phenotypes within a diverse gene pool, which has led to a reduction in genetic diversity among agricultural plants.

Tomato (Solanum lycopersicum L., formerly Lycopersicon esculentum Mill; SLL) is the most abundantly produced vegetable in the world. The total production of tomatoes was ca. 0.2 billion tons from ca. 5 million ha of fields in 2019 [2]. SLL originated from S. pimpinellifolium L. (SP) in the Andean region of South America, now occupied by Peru, Chile, Ecuador, and Bolivia [3–6]. The history of tomato domestication began about 2000 years ago, possibly in Mexico; subsequently, tomato was brought to Europe around 500 years ago [6–8]. The Andes region continues to sustain wild tomato species, including not only SP but S. chilense (Dunal) Reiche, S. chmielewskii Rick, S. habrochaites Knapp et Spooner, S. neorickii Spooner et al., S. pennellii Correll, and S. peruvianum L. [3–6]. S. lycopersicum var. cerasiforme (Dunal) A.Gray (SLC), an apparent intermediate hybrid between SP and SLL, is currently found as a native-grown tomato in Mexico and several Central and South American countries, such as Peru, Chile, Ecuador, Bolivia, and Columbia [5,9,10]. Traditional SLL cultivars, considered to be the archetype of modern SLL cultivars, have been handed down by generations of peasants in mountain villages in Mexico and designated “jitomate criollo” in Spanish (SL) [5,9]. SLC and SLF are sometimes collectively called transition tomatoes [5].

Solanum fruits have diverse colors. Species with orange and red fruit are in the Lycopersicon species group [11] and include SP, SLC, SLL, S. cheesmaniae (SC) and S. galapagense (SG), the latter two of which are found in the Galápagos Islands, Ecuador. A previous study proposed that the Lycopersicon species group originated from red-fruited SP; initially SP was domesticated in South America to give rise to SLC, and SLC later gave rise to SLL in Mesoamerica through subsequent selection and breeding [4,10].

A phylogenetic study reported that Peruvian SP and/or SLC were transported by the Humboldt Current or the Peru Current to the Galápagos Islands where they settled and established SC and SG [11]. Interestingly, there are collection reports of finding SLC in the Hawaï Island, the Philippines, and Malaysia [12] suggesting that tomato seeds can be carried long distances by ocean currents.

Alternaria stem canker disease caused by the ascomycete fungus Alternaria alternata forma specialis (f. sp.) lycopersici (or, A. alternata tomato pathotype; Aal) is an important disease in tomatoes. In 1975, the disease was reported for the first time in the SLL cultivar (cv.) Earlypak 7 in California, USA [13], followed by a 1977 report of the pathogen infecting cv. Aichi-first in Japan [14]. Most of the other SLL cultivars are resistant to the disease [13,15]. Purified AAL-toxin produced by Aal, a host-specific toxin, is toxic only to those cultivars susceptible to Aal and causes necrotic lesions but not in the cultivars resistant to Aal [16]. Among wild tomatoes, SC and SG from the Galápagos Islands are known to be susceptible to the AAL-toxin [17].

AAL-toxin is the leading cause of symptom development in stem canker disease [18]. AAL-toxin induces apoptotic cell death in SLL tissues; however, cultivars resistant to AAL-toxin produce ceramide that protects the tissues from cell death [18]. The Asc1 (alternaria stem canker resistance protein 1) gene encodes an enzyme involved in ceramide biosynthesis in SLL [18]. The SLL cv. Aichi-first, which is susceptible to AAL-toxin, has a two-nucleotide deletion in the Asc1 ORF, and SC and SG have ca. a 400 nucleotide-deletion that includes the 5’-UTR and a part of the 5’ ORF of Asc1 [17].

We hypothesized that the mutations found in Asc1 in the AAL-toxin susceptible cultivars and SC and SG originated from the gene pool of Asc1 in SP and SLC, the possible wild ancestors of SC and SG, and that we could find variations of Asc1 mutations in SP and SLC. To test this hypothesis, we established a collection of SP in Peru and Ecuador; SLC in Peru, Ecuador and Mexico; and SLJ, the archetypes of SLL, in Mexico. We investigated their
susceptibilities to AAL-toxin and determined the nucleotide sequences of the respective AscI genes.

2. Results

2.1. UNALM-TUAT Collection of Peruvian Tomatoes

From 2016 to 2019, we collected wild tomatoes throughout several field trips in Peru and created the UNALM-TUAT Collection of Peruvian tomatoes composed of 41 SLC and 19 SP accessions (Table 1). In order to construct a diverse collection of wild tomatoes, we collected throughout a large area of Peru that encompassed the northwestern coast area including Tumbes, Piura, Lambayeque and La Libertad Regions, the northern highland and semi-jungle area, including the Cajamarca and Huánuco Regions, the Amazon rainforest area including the Ucayali Region, the south-central highland area including the Junin, Cusco and Ayacucho Regions, and the Pacific coastal area including the Lima and Ica Regions. Usually SP and SLC are found in coastal areas that are not over 800 m in elevation, but we also found SP and SLC in valleys in the Andean Mountains like Quillabamba City in the Cusco Region. SP and SLC were not distributed in the untouched natural environments but rather in fallow agriculture fields and near inhabited centers. Figure 1 schematically presents the sampling areas for SLC (squares) and SP (circles) in the UNALM-TUAT and INIA Collections used in this study.

2.2. Accessions Susceptible to AAL-Toxin

In bioassays using leaflets, one (M5-3 sampled in Querétaro, Mexico) among the two SLJ accessions, one (PER018894 from Huanuco, Peru) among the 62 SLC accessions, and one (PER018805 from Lambayeque, Peru) among the 51 SP accessions presented veinal necrosis and were determined to be susceptible to AAL-toxin (Table 1 and Figure 2). Other accessions presented no symptoms (Table 1 and Figure S2), suggesting that they are resistant to AAL-toxin. The references, SC (LA 0437 and 0521), SG (LA 0438 and 0528) and SLL cv. Aichi-first were susceptible to AAL-toxin, and SLL cv. Momotaro-8 was resistant to AAL-toxin.
Table 1. Tomato accessions and cultivars used in this study, their susceptibility to AAL-toxin and mutations found in Asc1.

Species and Accessions	Sampling Site	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in Asc1 in Comparison to the Reference Sequence					
				#AF198177 b					
				ca. 400 bp-Deletion c	Frameshift Mutation	Missense Mutation	Silent Mutation		
							Exon	Intron	
TUAT Collection (Inami et al.2014)									
* S. lycopersicum var. lycopersicum “jitomate criollo” (SLJ)									
M5-3 Mexico Queretaro	N21°16'00" W99°24'20"	20100530	Susceptible	LC596579	No deletion	854_855del	911G>A	1065G>A, 1306T>G	
M5-4 Mexico Queretaro	N21°16'00" W99°24'20"	20100530	Resistant	LC596581	No deletion	911G>A	1065G>A, 1306T>G		
* S. lycopersicum var. cerasiforme (SLC)									
M-UX Mexico Yucatan	N20°24'35" W89°45'04"	20051229	Resistant	LC596506	No deletion	911G>A, 1010A>C	1306T>G		
E0040W Ecuador Santa Cruz	S00°39'06" W90°24'21"	20080113	Resistant	LC596555	No deletion	911G>A, 1010A>C	1306T>G		
E0043 Ecuador Santa Cruz	S00°41'45" W90°19'36"	20080113	Resistant	LC596554	No deletion	911G>A, 1010A>C	1306T>G		
MC-5a Mexico Hidalgo	N21°00'08" W98°32'18"	20100528	Resistant	LC596505	No deletion	911G>A, 1010A>C	1306T>G		
MC-5b Mexico Hidalgo	N21°00'08" W98°32'18"	20100528	Resistant	LC596504	No deletion	911G>A, 1010A>C	1306T>G		
* ML-1 Mexico Hidalgo	N21°01'06" W98°31'46"	20100529	Resistant	LC596503	No deletion	911G>A, 1010A>C	1306T>G		
* S. pimpinellifolium (SP)									
ECU0043 Ecuador Santa Cruz	S00°41'23" W90°19'10"	20080113	Resistant	LC596553	No deletion	911G>A, 1010A>C	1306T>G		
ECU0045 Ecuador Santa Cruz	S00°40'05" W90°16'08"	20080113	Resistant	LC596552	No deletion	911G>A, 1010A>C	1306T>G		
UNALM-TUAT Collection									
* S. lycopersicum var. cerasiforme (SLC)									
BRC016 Peru Lima	S12°08'21" W77°01'35"	20161104	Resistant	LC596570	No deletion	911G>A	1306T>G		
CCY138 Peru Lambayeque	S06°44'06" W79°32'46"	20170130	Resistant	LC596583	No deletion	911G>A, 1366T>C	509A>G, 569A>C, 570G>A, 823G>A, 722_728insT, 748G>A, 1048T>A	1306T>G	
* CCY152 Peru Lambayeque	S06°30'07" W79°52'14"	20170131	Resistant	LC596577	No deletion	911G>A	823G>A	1306T>G	
Species and Accessions	Sampling Site	Country	Region	Longitude	Latitude	Date	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in Asc1 in Comparison to the Reference Sequence #AF198177 b
------------------------	--------------	---------	--------	-----------	----------	------	--------------------------	-----------------------	------------------------
CCY154 Peru Lambayeque	S06°30'07""	20170131	Resistant	LC596578	No deletion				
CCY156 Peru Lambayeque	S06°30'05""	20170131	Resistant	LC596510	No deletion				
CCY159 Peru Lambayeque	S06°12'03""	20170131	Resistant	LC596556	No deletion, 911G>A				
CCY162 Peru Lambayeque	S06°12'01""	20170131	Resistant	LC596511	No deletion				
CGA028 Peru Lima	S12°01'35""	20161108	Resistant	LC596512	No deletion				
ICA034 Peru Ica	S13°59'24""	20190204	Resistant	LC596564	No deletion				
IND096 Peru Lima	S12°04'38""	20161221	Resistant	LC596529	No deletion				
IND103 Peru Lima	S12°04'42""	20161221	Resistant	LC596531	No deletion				
IND106 Peru Lima	S12°04'45""	20161221	Resistant	LC596532	No deletion				
* JAE035 Peru Cajamarca	S05°33'13""	20190209	Resistant	LC596507	No deletion, 911G>A, 516G>A				
JAE036 Peru Cajamarca	S05°33'15""	20190209	Resistant	LC596508	No deletion, 911G>A, 516G>A				
* JAE037 Peru Cajamarca	S05°39'26""	20190209	Resistant	LC596509	No deletion, 911G>A, 516G>A				
MTP033 Peru Lambayeque	S06°11'49""	20190126	Resistant	LC596558	No deletion				
PIU029 Peru Piura	S05°02'33""	20190121	Resistant	LC596584	No deletion, 1693T>G, 1784T>G				
PIU168 Peru Piura	S05°10'41""	20170201	Resistant	LC596522	No deletion, 911G>A				
PIU172 Peru Piura	S05°10'40""	20170201	Resistant	LC596557	No deletion, 911G>A				
PIU174 Peru Piura	S05°10'39""	20170201	Resistant	LC596523	No deletion, 911G>A				
PKC040 Peru Lima	S12°10'54""	20161119	Resistant	LC596559	No deletion				
QBB204 Peru Cusco	S12°54'22""	20170226	Resistant	LC596513	No deletion				
Species and Accessions	Sampling Site	Country	Region	Longitude	Latitude	Date	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in AscI in Comparison to the Reference Sequence #AF198177 b
-----------------------	---------------	---------	--------	-----------	----------	------	--------------------------	----------------------	-----------------------
QBB215		Peru	Cusco	S12°51'05"	W72°42'02"	20170226	Resistant	LC596514	No deletion
QBB223		Peru	Cusco	S12°50'46"	W72°42'32"	20170226	Resistant	LC596515	No deletion
QBB238		Peru	Cusco	S12°50'05"	W72°41'58"	20170226	Resistant	LC596516	No deletion
SMO068		Peru	Lima	S11°49'14"	W76°21'24"	20161209	Resistant	LC596524	No deletion
QBB215		Peru	Junin	S11°01'21"	W74°58'20"	20161218	Resistant	LC596574	No deletion
TUM004		Peru	Tumbes	S03°31'51"	W80°13'46"	20181216	Resistant	LC596530	No deletion
TUM007		Peru	Tumbes	S03°31'39"	W80°13'36"	20181216	Resistant	LC596533	No deletion
TUM011		Peru	Tumbes	S03°31'40"	W80°13'46"	20181216	Resistant	LC596534	No deletion
TUM012		Peru	Tumbes	S03°31'25"	W80°13'27"	20181216	Resistant	LC596535	No deletion
TUM015		Peru	Tumbes	S03°32'10"	W80°13'05"	20181216	Resistant	LC596536	No deletion
TUM016		Peru	Tumbes	S03°32'06"	W80°13'07"	20181216	Resistant	LC596573	No deletion
TUM017		Peru	Tumbes	S03°32'28"	W80°13'02"	20181216	Resistant	LC596537	No deletion
TUM021		Peru	Tumbes	S03°32'27"	W80°12'44"	20181216	Resistant	LC596538	No deletion
TUM023		Peru	Tumbes	S03°32'37"	W80°12'29"	20181216	Resistant	LC596539	No deletion

* ca. 400 bp-Deletion c Frameshift Mutation Missense Mutation Silent Mutation Exon Intron

1306T>G 1306T>G
Table 1. Cont.

Species and Accessions	Sampling Site	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in AscI in Comparison to the Reference Sequence
				#AF198177 b
				ca. 400 bp-Deletion c Frameshift Mutation Missense Mutation Silent Mutation Exon Intron
S. pimpinellifolium (SP)				
CCY142 Peru Lambayeque		Resistant	LC596560	No deletion 617G>A
CCY164 Peru Lambayeque		Resistant	LC596561	No deletion 1306T>G
CGA022 Peru Lima		Resistant	LC596518	No deletion 1306T>G, 1599C>T
CGA026 Peru Lima		Resistant	LC596519	No deletion 1306T>G
CGA034 Peru Lima		Resistant	LC596540	No deletion 728delT, 1306T>G
* CPN032 Peru La Libertad		Resistant	LC596528	No deletion 911G>A
PIU030 Peru Piura		Resistant	LC596562	No deletion 1306T>G
PIU031 Peru Piura		Resistant	LC596563	No deletion 1306T>G
TUM002 Peru Tumbes		Resistant	LC596541	No deletion 728delT, 1306T>G
TUM003 Peru Tumbes		Resistant	LC596542	No deletion 728delT, 1306T>G
TUM005 Peru Tumbes		Resistant	LC596543	No deletion 728delT, 1306T>G
TUM006 Peru Tumbes		Resistant	LC596544	No deletion 728delT, 1306T>G
TUM014 Peru Tumbes		Resistant	LC596545	No deletion 728delT, 1306T>G
TUM018 Peru Tumbes		Resistant	LC596546	No deletion 728delT, 1306T>G
TUM019 Peru Tumbes		Resistant	LC596547	No deletion 728delT, 1306T>G
TUM020 Peru Tumbes		Resistant	LC596548	No deletion 728delT, 1306T>G
TUM022 Peru Tumbes		Resistant	LC596549	No deletion 728delT, 1306T>G
Table 1. Cont.

Species and Accessions	Sampling Site	Country	Region	Longitude	Latitude	Date	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in AscI in Comparison to the Reference Sequence
		Peru	Tumbes	03°33'11"	08°12'24"	20181216	Resistant	LC596550	No deletion
		Peru	Tumbes	03°33'11"	08°12'25"	20181216	Resistant	LC596551	No deletion

INIA collection

S. lycopersicum var. cerasiforme (SLC)

Species and Accessions	Sampling Site	Country	Region	Longitude	Latitude	Date	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in AscI in Comparison to the Reference Sequence		
PER018795	Peru	Lima	S11°41'60"	W76°52'11"	20150819	Resistant	NT				
PER018836	Peru	Cajamarca	S06°19'12"	W78°41'90"	20111013	Resistant	NT				
PER018878	Peru	Cusco	S12°43'41"	W72°32'44"	20111025	Resistant	NT				
PER018879	Peru	Cusco	S12°41'31"	W72°31'07"	20111025	Resistant	NT				
*PER018894	Peru	Huanuco	S09°50'08"	W76°07'05"	2011109	Susceptible	LC596580	No deletion	854_855del	911G>A	1065G>A, 1306T>G
PER018901	Peru	Huanuco	S09°48'06"	W76°04'08"	20111110	Resistant	NT				
PER018902	Peru	Huanuco	S09°10'52"	W75°57'36"	20111111	Resistant	NT				
PER018909	Peru	Huanuco	S09°22'55"	W75°01'57"	20111113	Resistant	NT				
PER018923	Peru	Ucayali	S08°23'30"	W75°07'41"	20111116	Resistant	NT				
PER018932	Peru	Ayacucho	S12°54'24"	W74°17'05"	20111213	Resistant	NT				
PER018936	Peru	Ayacucho	S13°03'49"	W73°57'27"	20111214	Resistant	NT				
PER018938	Peru	Ayacucho	S13°06'28"	W73°54'36"	20111214	Resistant	NT				

S. pimpinellifolium (SP)

Species and Accessions	Sampling Site	Country	Region	Longitude	Latitude	Date	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in AscI in Comparison to the Reference Sequence
PER018780	Peru	Lima	S11°02'22"	W77°37'37"	20110816	Resistant	NT		
PER018781	Peru	Lima	S11°02'22"	W77°37'36"	20110816	Resistant	NT		
PER018782	Peru	Lima	S11°01'15"	W77°37'20"	20110816	Resistant	NT		
PER018783	Peru	Lima	S10°59'37"	W77°35'55"	20110816	Resistant	NT		
PER018785	Peru	Lima	S10°39'50"	W77°45'66"	20110816	Resistant	NT		
PER018786	Peru	Lima	S10°39'82"	W77°41'10"	20110817	Resistant	NT		
PER018788	Peru	Lima	S10°40'52"	W77°44'07"	20150817	Resistant	NT		
PER018794	Peru	Lima	S11°29'46"	W76°32'77"	20150817	Resistant	NT		
PER018796	Peru	Lima	S11°29'73"	W77°15'61"	20150819	Resistant	NT		
PER018797	Peru	Lima	S11°29'74"	W77°15'64"	20150819	Resistant	NT		

Mutations in AscI in Comparison to the Reference Sequence:

- **Mutations in AscI in Comparison to the Reference Sequence**
- **ca. 400 bp-Deletion**
- **Frameshift Mutation**
- **Missense Mutation**
- **Silent Mutation**
Table 1. Cont.

Species and Accessions	Sampling Site	Country	Region	Longitude	Latitude	Date	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in AscI in Comparison to the Reference Sequence			
									ca. 400 bp-Deletion	Frameshift Mutation	Missense Mutation	Silent Mutation
PER018798		Peru	Lambayeque	S06°27'45"	W79°37'01"	20110914	Resistant	NT				
PER018800		Peru	Lambayeque	S06°26'61"	W79°36'36"	20110914	Resistant	NT				
PER018801		Peru	Lambayeque	S06°26'62"	W79°36'37"	20110914	Resistant	NT				
PER018802		Peru	Lambayeque	S06°25'24"	W79°34'96"	20110914	Resistant	NT				
PER018803		Peru	Lambayeque	S06°25'18"	W79°33'91"	20110914	Resistant	NT				
PER018804		Peru	Lambayeque	S06°20'40"	W79°26'78"	20110914	Resistant	NT				
PER018805		Peru	Lambayeque	S06°20'38"	W79°26'22"	20110914	Susceptible	LC596576	No deletion	911G>A	1306T>G	
PER018808		Peru	Lambayeque	S06°08'57"	W79°41'69"	20110915	Resistant	NT				
PER018812		Peru	Lambayeque	S06°38'63"	W79°46'34"	20110916	Resistant	NT				
PER018819		Peru	Lambayeque	S06°43'34"	W79°29'20"	20110916	Resistant	NT				
PER018821		Peru	Lambayeque	S06°44'05"	W79°32'96"	20110916	Resistant	NT				
PER018825		Peru	Lima	S11°27'86"	W77°08'14"	20111007	Resistant	NT				
PER018842		Peru	Cajamarca	S05°41'45"	W78°47'78"	20111014	Resistant	NT				
PER018854		Peru	Cajamarca	S05°42'62"	W78°49'46"	20111014	Resistant	NT				
PER018862		Peru	Cajamarca	S05°71'16"	W78°82'40"	20111014	Resistant	NT				
PER018877		Peru	Cusco	S12°43'44"	W72°32'45"	20110205	Resistant	NT				
PER018926		Peru	Ucayali	S08°23'41"	W75°05'32"	20111116	Resistant	NT				
PER018937		Peru	Ayacucho	S13°06'28"	W73°54'37"	20111214	Resistant	NT				
PER018940		Peru	Ayacucho	S13°37'34"	W74°08'44"	20111215	Resistant	NT				

TGRG Collection used as references

S. lycopersicum var. cerasiforme (SLC)
LA 1456 Mexico Veracruz N19°10'00" W96°08'00" 1971 | Resistant | LC596520 | No deletion | 1306T>G
LA 1623 Mexico Campeche N20°28'59" W90°16'59" 19750310 | Resistant | LC596569 | No deletion |
LA 1999 Peru Cusco S12°51'00" W72°41'00" 197807 | Resistant | LC596521 | No deletion |

S. pimpinellifolium (SP)
LA 3123 Ecuador Santa Cruz Island N19°37'00" W90°22'59" 19910516 | Resistant | LC596565 | No deletion | 836A>T

S. cheesmaniae (SC)
LA 0437 Ecuador Isabela Island S00°57'09" W90°58'39" 19561125 | Susceptible | LC596568 | 400 bp-deletion |
Table 1. Cont.

Species and Accessions	Sampling Site	AAL-Toxin Susceptibility	Gen Bank Accession No.	Mutations in Asc1 in Comparison to the Reference Sequence					
				#AF198177^b					
				ca. 400 bp-Deletion^c	Frameshift Mutation	Missense Mutation	Silent Mutation	Exon	Intron
* LA 0521	Ecuador	Frenandina Island	Susceptible	LC596567	400 bp-deletion				
		500°22′20″S 91°33′20″W	1957						
* S. galapagense (SG)									
LA 0438	Ecuador	Isabela Island	Susceptible	LC596566	400 bp-deletion				
		500°58′39″S 91°01′16″W	19561126						
LA 0528	Ecuador	Santa Cruz Island	Susceptible	LC596571	400 bp-deletion				
		500°45′00″S 90°19′00″W	19570809						
Commercial cultivars used as references									
*cv. Aichi-first (Matsunaga Seed, Konan, Aichi, Japan)			Susceptible	LC596575	No deletion	854_855del	911G>A	1306T>G	
*cv. Momotaro-8 (Takii & Co, Kyoto, Japan)			Resistant	LC596572	No deletion	911G>A	1306T>G		
^a Date, yymmdd. ^b Blank, identical to #AF198177; NT, not tested. ^c An approximately 400 bp-deletion including the 5′ UTR and a part of the 5′ ORF of Asc1 as determined by PCR; * Accessions used in the phylogenetic analyses.									
Figure 1. Map of the collection sites of Peruvian tomato accessions. Squares shown within each province represent accessions of *Solanum lycopersicum* var. *cerasiforme* (SLC) and circles represent *S. pimpinellifolium* (SP) from the UNALM-TUAT Collection and the INIA Collection (Table 1). Each black square and circle shows an AAL-toxin susceptible accession. Map from Aflo Co. [19] and modified.
Figure 2. Leaflet bioassay for AAL-toxin from a culture extract of Aal As-27. The abaxial side of each tomato leaflet was wounded and a small piece of filter paper containing either the culture extract or water was placed on the wound and incubated in a humidified chamber (25 °C for 3 days). The necrosis of the leaflet was evaluated, and a susceptible reaction or resistant reaction is indicated with an “S” or “R”, respectively, in the figure. SLL cv. Aichi-first is a representative cultivar with susceptibility to AAL-toxin. SLL cv. Momotaro-8 is a representative cultivar with resistance to AAL-toxin. M5-3 was susceptible to AAL-toxin among two accessions of SLJ. Among 60 accessions of SLC, one accession, PER018894, was susceptible to AAL-toxin, and the others were resistant to AAL-toxin. The reaction of BRC016 is representative of AAL-resistant SLC accessions. Among 37 accessions of SP one accession, PER018805, was susceptible to AAL-toxin, and the others were resistant to AAL-toxin. CPN032 is representative of AAL-resistant SP accessions.

2.3. Absence of ca. 400-bp Deletion in Asc1 in SP, SLC and SLJ

The susceptibility to AAL-toxin in SLC and SG is determined by a ca. 400-bp deletion that includes the 5'-UTR and part of the 5' ORF of Asc1 (Figure 3) [17]. PCR using a F10/R10 primer set reveals that all tested accessions, including the three AAL-toxin susceptible accessions (SLJ M5-3, SLC PER018894 and SP PER018805), did not have the ca. 400-bp deletion in the Asc1 region (Table 1 and Figure 4). The references SC (LA 0437 and LA 0521) and SG (LA 0438 and LA 0528) had the ca. 400-bp deletion as previously reported [15].

Figure 3. Schematic structure of Asc1 from SLL in the DDBJ/EMBL/GenBank databases identified as accession #AF198177. Asc1 is composed of 6 exons and encodes an ASC1 protein of 308 amino acids. Primers indicated by arrows are listed in Table 2. The primer set BASC87+R12 was used to amplify a ca. 1600-bp fragment containing Asc1 for cloning and sequencing. The primer set F10+R10 was used to detect the ca. 400-bp deletion including the 5'-UTR and part of the 5' ORF of Asc1. White gaps shown in exon 2 represent a two-nucleotide deletion reported in SLL cv. Aichi-first and found in SLJ PER018894 and SLC M5-3 in this study and a nucleotide insertion found in SP PER018805, respectively. An approximately 400-bp deletion including the upstream region and part of the 5' ORF region indicated by a gray bar has been reported in SC and SG [17].
Table 2. *Asc1* primers used in this study.

Name	Nucleotide Sequence (5′–3′)	Position a	Tm °C	Thermal Conditions	Reference
BASC87	GGAATTCCTGCAATTCTTTGAAACTACAAC	EcoR I recognition site + nt 424–447	70	98 °C, 2 min; 30 × (98 °C, 10 s; 59 °C, 30 s; 68 °C, 1 min); 68 °C, 7 min; 4 °C, ∞	Brandwagt et al. (2000)
R12	CAAGTAGTGCTGCCTCTACAAG	nt 2017–1996	61		This study

Primers to detect the ca. 400 bp-deletion in the 5′-UTR and a part of the 5′ ORF of *Asc1* (Figure 1)

Name	Nucleotide Sequence (5′–3′)	Position a	Tm °C	Thermal Conditions	Reference
F10	GAAACGATCAAACGTGTT	nt 178–198	56	98 °C, 2 min; 30 × (98 °C, 10 s; 56 °C, 30 s; 72 °C, 1 min); 72 °C, 7 min; 4 °C, ∞	Ago et al. (2016)
R10	CAGGTCTGGCCAGAAATAC	nt 986–967	63		

Nucleotide position relative to that of accession #AF198177.
Figure 4. PCR amplification with the primer set F10+R10 (Table 2) to detect the ca. 400-bp deletion including the 5′-UTR and part of the 5′ ORF of Asc1 (Figure 3). Only the reference accessions of SC and SG had the ca. 400 bp-deletion and none of the tested SP, SLC, and SLJ accessions had the deletion. In this figure, only representative accessions of SP, SLC, and SLJ are presented. Marker, 1 kb DNA Ladder (New England Biolabs, Ipswich, MA, USA).

2.4. Mutations in Asc1

We sequenced the all of the Asc1 region of the tomato accessions except for 39 of the accessions from the INIA Collection and compared the sequences with that of the reference AAL-resistant SLL (Acc. #AF198177) [20–23].

Asc1 sequences of SLJ M5-3 and SLC PER018894, both of which were susceptible to AAL-toxin by the leaflet test, had the two-nucleotide deletion (nt 854_855del) in the second exon and generated a frameshift and possibly produced a non-functional protein (Figure 5 and Table 1). This two-bp deletion was identical with that reported for SLL cv. Aichi-first, an AAL-toxin susceptible cultivar [17].

SP PER018805, susceptible to AAL-toxin by the leaflet test, had a T-insertion (nt 931_932insT) in the second exon of Asc1, causing a frameshift that might generate a smaller, premature asc1 protein (Figure 5 and Table 1). This mutation in the Asc1 gene has not been reported previously. Although involvement of this mutation in AAL toxin-susceptibility in PER018805 can be genetically confirmed by outcrossing PER018805 with an AAL-resistant SP accession, the regulation of studies on wild tomatoes in Peru has prevented this experiment from being conducted.

Only five Mexican SLC accessions (M-UX, MC-5a, MC-5b and ML-1 in the TUAT Collection and LA 1623 in the TGRC Collection) had an Asc1 DNA sequence identical with #AF198177.

We found eleven kinds of missense mutations (509A>G, 569A>C, 570G>A, 572A>G, 617G>A, 807T>C, 836A>T, 911G>A, 1010A>C, 1366T>C, 1693T>G) in the Asc1 sequence in 31 accessions (Table 1). Many silent mutations were also detected in Asc1 nucleotide sequences of these accessions (Table 1).
Figure 5. (a) Nucleotide variations found in exon 2 of Asc1 (Figure 3). Identical nucleotides are highlighted in black in comparison to the reference sequence of SLL #AF198177 (resistant to AAL-toxin). SLL cv. Aichi-first (susceptible), SLJ M5-3 (susceptible) from Mexico and SLC PER018894 (susceptible) from Peru have the nt 854_855del mutation, and SP PER018805 (susceptible) from Peru has the nt 931_932insT mutation. (b) Deduced amino acid sequences of Asc1. The amino acid sequences were aligned using CLUSTALW [24]. Identical and similar amino acids are highlighted in black or gray, respectively, by GeneDoc [25]. * indicates termination. In comparison to the reference sequence of SLL #AF198177 (resistant to AAL-toxin), SLL cv. Aichi-first (susceptible), SLJ M5-3 (susceptible), SLC PER018894 (susceptible) and SP PER018805 (susceptible) produce smaller proteins that may be nonfunctional.

2.5. Phylogeny

The maximum likelihood (ML) phylogeny tree based on 18 COSII sequences is presented in Figure 6. The tree formed three clades supported by high bootstrap values, designated in this study as S1, S2 and S3. Clade S1 is composed only of Galápagos tomatoes, including SC and SG. Clade S2 is composed of SLL commercial cultivars, SLJ and SLC from Mexico and Peru. Clade S3 is composed of SLC and SP from Peru and Ecuador only. All of the tested SP accessions were in Clade S3.

The accessions SLJ M5-3 and SLC PER018894, susceptible to AAL-toxin and carrying the identical mutation (nt 854_855del) in Asc1 as SLL cv. Aichi-first, were in Clade S2 with SLL cv. Aichi-first. The SP accession, PER018805, susceptible to AAL-toxin and with a mutation (nt 931_932insT) in Asc1, was placed in Clade S3.

The topology of the ML tree did not contradict that of the BI tree (Figure S3).
Figure 6. A maximum likelihood (ML) tree based on 18 COSII sequences of tomato accessions estimated using Modeltest-NG ver. 0.1.6 [26] and RAxML-NG v. 1.0.0 [27]. *S. arcanum* and *S. neorickii* were used as outgroups. The bootstrap values were calculated after 1,000 bootstrap replicates. The data sets of SG (LA 0317), SC (LA 1450), SLC (LA 1673), SP LA 1581), *S. arcanum* (LA 2185) and *S. neorickii* (LA 1326) are from [10] and are indicated with a § symbol in the tree. AAL-toxin susceptible accessions are highlighted with a black background.

3. Discussion

In this study, we evaluated 119 ancestral tomato accessions for their susceptibility to AAL-toxin produced by *Aal*. Only three accessions, an SLJ from Mexico, an SLC from Peru and an SP from Peru, were susceptible to AAL-toxin; the others were resistant. The number of AAL-toxin susceptible accessions was less than expected. This is the first time that AAL-toxin susceptible SLJ and SLC have been reported.

Among the three AAL-toxin susceptible accessions, SLJ M5-3 sampled from Mexico and SLC PER018894 from Peru had a frameshift mutation (nt 854_855del) identical to that found in SLL cv. Aichi-first, also an AAL-toxin susceptible accession. As SLC is thought to be the oldest progenitor of present-day commercial cultivars and SLJ is an intermediate tomato between SLC and present-day commercial SLL, both of *Asc1* genes with the frameshift mutation (nt 854_855del) and without the frameshift seemed to have been passed down throughout the history of tomato domestication and modern breeding.

As SP and its derivative species, SC and SG, have been collected from the Galápagos Islands and the Hawaiian Islands [11], it has been proposed that SP seeds were carried to the islands from the South American mainland by the Humboldt Current. Interestingly, all SC and SG accessions from the Galápagos Islands evaluated so far are AAL-toxin susceptible and have a ca. 400-bp deletion in *Asc1* [17]. We inferred that the genetic diversity of SP, including the *Asc1* gene, is rich in areas considered to be the center of origin of this species. One of the strains having the ca. 400-bp deletion in *Asc1* was carried to Galápagos Islands by the Humboldt Current to establish SC and SG there. We also hypothesized that the original SP strains having the ca. 400-bp deletion in *Asc1* still survive in South America, the proposed center for the origin of tomatoes. Therefore, we sequenced...
Asc1 from 23 SP accessions (Table 1). Contrary to our expectations, no SP accession with ca. 400-bp deletion has been found. It is possible that we have not yet identified the place of origin of the SP that crossed the ocean to the Galápagos Islands.

Although the diversity of Asc1 among the accessions seemed not as rich as expected (Table 1), we found that PER018805, one of the SP accessions from Lambayeque in Northwestern Peru, had a frameshift mutation, nt 931_932insT, in the second exon of Asc1 (Table 1). This mutation generates the production of a smaller (97 aa.) and possibly premature asc1 protein (Figure 5) and is reported here first.

Sequencing of Asc1 identified the frequent presence of missense mutations (509A>G, 569A>C, 570G>A, 617G>A, 807T>C, 836A>T, 911G>A, 1010A>C, 1366T>C, 1693T>G) that did not affect the susceptibility to AAL-toxin (Table 1).

Since the stem canker disease pathogen Aal has not been reported in South America, susceptibility/resistance to Aal or to AAL-toxin may not be a factor in the selection of Asc1 mutations. These findings suggested that if we analyze more accessions of SP, we may find accessions having more diverse Asc1 sequences.

Silent mutations were frequently detected in introns and exons. Especially 1306T>G in the third intron was common in SLJ (2 among the 2 accessions sequenced), SLC (46 among 51), SP (22 among 23) and both of the SLL commercial varieties (Table 1), suggesting that the Asc1 sequence of SLL #AF198177 used as a reference in this study was not an ideal standard type.

From 2000 to 2019, we tried to isolate Alternaria spp. from the tissues of ancestry tomato accessions in Chile, Ecuador, Mexico and Peru. We examined SP, SLC, SLJ, SLL, S. chilense, S. peruvianum, S. penellii and samples of the surrounding air and soil. Although we obtained hundreds of Alternaria spp., no isolate causing stem canker in tomato was found (data not shown) [28]. We have studied the co-evolution of tomato and tomato wilt pathogen, F. oxysporum f. sp. lycopersici [3,5]. Tomato and the stem canker pathogen Aal seem also likely to be a good model system for co-evolution analysis.

The ML phylogeny tree (Figure 6) formed three clades (S1–S3). Galápagos tomatoes, SC and SG, all of which are susceptible to AAL-toxin and have the ca. 400-bp deletion in Asc1, were grouped together as Clade S1, in agreement with a previous report [11].

Clade S2 is composed of SLC from Mexico and Peru, SLJ from Mexico and SLL commercial cultivars (Figure 6). Although the number of accessions tested in this study is small, clade S2 seems to support the hypothesis that the present commercial tomato (SLL) was established from SLC via SLJ. Our finding was consistent with the report by Raziferd et al. (2020) [10]. Clade S2 includes AAL-susceptible SLC (PER018894), SLJ (M5-3) and SLL cv. Aichi-first, AAL-resistant SLC (BRC016 and ML-1) and SLL cv. Momotaro-8. All three of the AAL-susceptible accessions had the identical frameshift mutation (nt 854_855del) in Asc1, which again suggested that Asc1 with and without the nt 854_855del frameshift mutation have been passed down throughout the history of tomato domestication and modern breeding from SLC to SLL. The mutation was found only in clade S2.

All of the tested SP accessions from Peru and Ecuador were grouped in Clade S3. Clade S3 also includes SLC accessions from Peru and Ecuador. Identification of SP and SLC in this study was based on the morphological characteristics first detailed by Darwin et al. (2003) [9]. SP and SLC are often very similar in morphology, and there have been many discussions on how to classify them correctly [9–11]. Our phylogeny based on the COSII complex region again indicated that SP and SLC are genetically indistinguishable (Figure 6). JAE036, JAE037 and CPN032 constituted a subclade (S3a) supported with a bootstrap value of 89. The accessions LA1581, CCY152, and PER018805, all of which were collected in Lambayeque Province in different years, constituted another subgroup (S3b) with a bootstrap value of 86 (Figures 1 and 6). Interestingly one of the accessions, PER018805 was susceptible to AAL-toxin and had a newly identified mutation (nt 931_932insT) in Asc1. From the phylogenetic tree, this mutation appears to have occurred independently within this subclade.
Most of the accessions in Clade S3 were collected from Cajamarca, La Libertad and Lambayeque Regions, which are geographically close, suggesting that this northwestern area might be the center of origin for tomatoes. Moreover, the two Peruvian SLC accessions, BRC016 and PER018894, in Clade S2 were collected in Lima and Huanuco Provinces, respectively, both of which are in central Peru. These results suggest that these SLCs had already formed an evolutionary branch to SLL, and, moreover, the SLC in central Peru was likely the germplasm brought to Mesoamerica.

4. Materials and Methods

4.1. Plant Materials

The Solanum accessions used in this study are listed in Table 1. From the TUAT Collection (Lab of Plant Pathology, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo) [5], two SLJ and four SLC accessions from Mexico and two SLC and two SP accessions from Ecuador were used. No SP or SLJ accessions were collected in Mexico or Ecuador, respectively.

The UNALM-TUAT Collection (La Molina, Peru) of Peruvian tomatoes is composed of 41 SLC and 19 SP accessions sampled from 2016 to 2019. Details about this collection are described in the Results section.

From the INIA Collection (La Molina, Lima, Peru) 12 SLC and 29 SP accessions sampled from Ayacucho, Cajamarca, Cusco, Huanuco, Lambayeque, Lima, and Ucayali regions of Peru were used (Table 1).

SC (LA 0437 and LA 0521) and SG (LA 0438 and LA 0528), which are susceptible to Aal and its culture extract that contains AAL-toxin, were obtained from the TGRC Collection, C.M. Rick Tomato Genetics Resource Center (Davis, CA, USA). Three additional SLC accessions (LA 1456, LA 1632 and LA 1909) and one SP (LA 3123) accession from the TGRC Collection were used as references.

Cultivated tomato, SLL cvs. Momotaro-8 (Takii & Co., Kyoto, Japan) and Aichi-first (Matsunaga Seed, Konan, Aichi, Japan) were also used as references. Momotaro-8 is a cultivar that is resistant to Aal and to its culture extract containing the AAL-toxin. In contrast, cv. Aichi-first is susceptible to Aal and the culture extract (Figure S1) [14].

For the accessions from the TUAT, TUAT-UNALM and TGRC Collections and the commercial cultivars, three to five seeds were sown in sterilized soil (Nippi Engei Baido; Nihon Hiryo Co, Chuo, Tokyo, Japan) in plastic pots (7 cm in diameter) and were grown in a greenhouse maintained at around 28 ºC for about three weeks. Leaflets (or folioles) were harvested. For the accessions in the INIA Collection, leaflets were harvested from plants grown in a greenhouse for about three weeks at INIA (La Molina, Peru) and the INIA Donoso Agriculture Experiment Station (Huaral, Peru).

4.2. Fungal Isolate and the Preparation of Culture Extracts Containing the AAL-Toxin

Alternaria alternata f. sp. lycopersici As-27 (Aal) maintained in the Laboratory of Plant Pathology, Tottori University, Tottori, Japan was used in this study [29,30]. The isolate is the pathogen responsible for tomato stem canker disease and also produces AAL-toxin [22]. The isolate was maintained on V-8 juice agar medium [31] in the dark at 28 ºC and was used to prepare culture extracts.

Culture extracts of Aal containing the AAL-toxin were prepared following a published protocol [32] with a slight modification. Briefly, Aal was cultured in a modified Richard’s liquid medium (1 L) at room temperature for two weeks. The mycelium was removed by filtration using filter paper (No. 1, Toyo Roshi Kaisha, Chiyoda, Tokyo, Japan), and the filtrate was lyophilized using a freeze-dryer (VD-500, TAITEC Co., Koshigaya, Saitama, Japan), dissolved into 100 mL 70% (v/v) acetonitrile and used as the Aal culture extract containing the AAL-toxin. We assessed the presence of the toxin by bioassay using cv. Aichi-first by the same manner described in 4.3.
4.3. AAL-Toxin Susceptibility Assay

The test was conducted following previously reported procedures with a slight modification [30,32,33]. Briefly, a droplet (3 µL) of the Aal culture extract was pipetted onto a 3 mm square filter paper (No. 2, Toyo Roshi Kaisha) and air dried to vaporize acetonitrile. Three-week old tomato leaflets were detached, and the abaxial side of each leaflet was wounded slightly by rubbing with a paper towel. A droplet (30 µL) of sterilized distilled water was applied to the leaflet wound, and the filter paper containing the culture extract was placed on the water droplet. Filter paper to which a droplet (3 µL) of sterile distilled water (SDW) had been applied was used as the control. The treated leaflets were placed in a humid square petri dish (140 × 100 × 14.5 mm, Eiken Chemical, Taito, Tokyo, Japan) and maintained at 25 °C for three days. Development of veinal necrosis on the leaflet was evaluated using SLL cv. Aichi-first (susceptible to AAL-toxin and presenting veinal necrosis) and cv. Momotaro-8 (resistant to AAL-toxin and presenting no symptoms) as positive and negative controls, respectively.

To conserve genetic resources, wild tomato seeds cannot be transported from Peru, and, moreover, Aal, the stem canker pathogen that has not invaded Peru, could not be transported into Peru; thus, we have not conducted Aal-inoculation tests using wild tomatoes.

4.4. Tomato Genomic DNA Extraction

Genomic DNA from each tomato accession was purified from leaflets by a cetyltrimethylammonium bromide (CTAB) protocol [34]. Freeze-dried leaflets were powdered using a mortar and pestle and dissolved in 700 µL of CTAB buffer (2.0% (w/v) CTAB, 0.1 M Tris-HCl pH 8.0, 0.02 M EDTA pH 8.0, and 8.2% (w/v) NaCl in Milli-Q water) containing 0.5% (v/v) β-mercaptoethanol, and incubated at 65 °C for 45 min with occasional mixing by gentle swirling. To each tube, an aliquot (700 µL) of chloroform:isoamyl alcohol=24:1 (v:v) (CIA) was added, mixed by inversion to form an emulsion, and centrifuged at 10,000 × g for 10 min at room temperature. The aqueous phase was harvested and added to 60 µL of 10× CTAB buffer. After mixing, the samples were again extracted with CIA (700 µL), mixed by inversion, and centrifuged in the same conditions. The aqueous phase was combined with isopropanol (500 µL), mixed well to precipitate DNA and centrifuged for 30 min at room temperature. After centrifugation the supernatant layer was removed carefully, and the precipitated DNA was twice washed with 99% ethanol (500 µL). The DNA pellet was air-dried and dissolved in 50 µL of Milli-Q water.

4.5. PCR

The reference nucleotide sequence of SLL Asc1 is archived in the GenBank database under accession #AF198177. The SLL Asc1 gene is composed of 6 exons (nts 505–645, 791–1017, 1106–1261, 1340–1525, 1616–1800, and 1889–1920) that encode a protein composed of 308 amino acids. In this report the nucleotide positions are assigned in reference to this accession unless otherwise stated.

Primer set BASC87/R12 (Table 2 and Figure 3) was used to amplify a fragment of ca. 1600 bp encoding Asc1. The reaction mixture (10 µL) contained 40 ng of gDNA, 0.4 nmol of each primer, 1× Buffer (Toyobo, Osaka, Japan), 0.2 nmol each dNTP (Toyobo) and 0.2 U of KOD plus NEO polymerase (Toyobo). The thermal conditions are presented in Table 2.

To detect a specific deletion of ca. 400 bp that includes the 5′ UTR and part of the 5′ ORF of Asc1 as found in SC and SG [17], the primer set F10/R10 (Table 2 and Figure 3) was used. The reaction mixture (10 µL) contained 40 ng of gDNA, 0.3 µM each primer, 1× Ex-Taq buffer (Takara Bio, Kusatsu, Shiga, Japan), 200 µM each dNTP and 0.25 U of Ex-Taq polymerase (Takara Bio).

The amplicons were separated in a 1% (w/v) agarose gel by electrophoresis using TAE buffer and were visualized by staining with 0.5 µg/mL ethidium bromide.
4.6. DNA Sequencing

Amplicons obtained with the primer set BASC87/R12 were purified using ExoSAP-IT (Thermo Fisher Scientific, Santa Clara, CA, US), attached to a fluorescent dye by SteP PCR [35], and sequenced with an ABI 3130xl Genetic Analyzer (Thermo Fisher Scientific) using a BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific). For each accession three individual PCR reactions and three times sequencing for each reaction by both directions were performed. When the sequences obtained were not identical, we performed additional PCR/sequencing and the sequence was finalized by “majority vote”.

The obtained sequences of Asc1 were aligned with that of #AF198177 (2457 bp) as the reference sequence using Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets MEGA7 [36] and GeneStudio.exe [37]. Deduced amino acid sequences were obtained using EMBOSS Six pack [38].

4.7. Phylogenetic Analysis of Tomato Accessions

The phylogenetic relationships among the 14 tomato accessions (indicated with an asterisk in Table 1) and the reference accessions were analyzed based on their conserved orthologous set (COSII) of nuclear loci [11]. Eighteen COSII markers for each accession were amplified by PCR using the primer sets, sequenced, and combined [11]. Details about the primers and PCR conditions are described in Table S1. The combined sequences of the tested accessions and the reference sequences of six Solanum spp., including SC, SG, SLC, SP, S. arcanum, and S. neorickii in the GenBank databases (Table S2), were subjected to phylogenetic analyses using MEGA7 and MAFFT version 7 [39] (https://mafft.cbrc.jp/alignment/server/index.html, accessed on September 16, 2020). All gaps in the alignment were ignored in the following analyses. The phylogenies were estimated using two methods including maximum likelihood ML [40] and Bayesian inference (BI) [41]. The data obtained for S. arcanum (LA 2185) and S. neorickii (LA 1326), both of which are accessions in the TGRC Collection, were used as the outgroups [11].

ML analysis was evaluated with Modeltest-NG ver. 0.1.6 [26] using Akaike Information Criterion (AIC). ML phylogeny was estimated using RAxML-NG v. 1.0.0 [27] that allows each partition (each COSII) to have its own model and parameters. Modeltest-NG determined the appropriate substitution model for each respective COSII region (Table S3). To evaluate the stability of the clade on the optimal tree, a bootstrap analysis was performed with 1000 bootstrap replicates. Each branch was statistically estimated by a bootstrap (BS) test in ML analysis and posterior probability (PP) in BI analysis.

BI phylogenetic analysis also was performed using MrBayes version 3.2.7a [42]. Model parameters for DNA data were chosen according to the criteria described above. Tree searching using MrBayes was performed for 1,000,000 generations with trees sampled every 100 generations. A conservative burn-in period was determined, and only post burn-in trees were saved. Finally, the posterior probabilities of each branch were calculated.

5. Conclusions

AAL toxin- susceptible SP and SLC were found in this study for the first time, and that the nt 931_932insT mutation found in SP may confer AAL-toxin susceptibility is the novel report.

Moreover, in Clade S2, we found two AAL-toxin susceptible accessions (SLC PER018894 and SLJ M5-3) that had the nt 854_855del mutation in Asc1. The mutation was identical to that of cv. Aichi-first, an AAL-toxin susceptible commercial cultivar of SLL. This finding suggested that this deletion mutation in Asc1 might have passed down throughout the history of tomato domestication and modern breeding from SLC to SLL.

Since plant breeding is usually carried out by crossing with wild species, conserving the rich genetic resources of wild species is an important issue. We suggest that several wild tomato genetic resources have influenced the transition and breeding of tomatoes so far and that rich genetic resources will continue to play an important role in the future breeding of this globally important crop.
Supplementary Materials: The following are available online at https://www.mdpi.com/2223-7747/10/1/47/s1, Figure S1: Standardization of pathogenicity in *Alternaria alternata* tomato pathotype As-27 (*Aal*) and leaf necrosis bioassay for *AAL-toxin*; Figure S2: Leaflet bioassay of all accessions used in this study for *AAL-toxin* from a culture extract of *Aal*; Figure S3: Bayesian inference (BI) tree based on 18 COSII sequences of tomato accessions estimated using MrBayes version 3. 2. 7a [42]; Table S1: COSII nucleotide primers used in this study referred from Rodriguez et al. 2009 [11]; Table S2: GenBank accession numbers of 18 COSII regions nucleotide sequence; Table S3: Model analysis of maximum likelihood (ML) and Bayesian inference (BI).

Author Contributions: Conceptualization, M.K. and T.A.; methodology, Y.A.; software, H.S. and S.K.; investigation, R.T., C.U.S., O.I.A.C., M.G.E.S., and I.C.T.A.; writing—original draft preparation, R.T. and T.A.; supervision, R.M.C.P., J.A.B.T., D.L.G.R., C.A.A.G., J.C.G.A., L.M.A.C., M.H.H.Z., R.H.B.S., J.F.T., F.C.d.B., E.R.P., T.H. and K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by a Grant-in-Aids (26304025 and 20KK0133) for Scientific Research from the Japan Society for the Promotion of Science (JSPS) awarded to TA.

Acknowledgments: The authors express their appreciation to Inami K. (TUAT), Kashiwà T. (TUAT), Maeda C. (TUAT), Kihara E. (Lima, Peru), Kihara T. (Lima, Peru), Ramirez R.M. (University of Agriculture Ecuador, Guayaquil, Ecuador), Mildreck R.C.R. (UNALM), Alejandro R.M. (Federal Rural University of Pernambuco, Pernambuco, Brazil), Juan J.C.R. (State phytosanitary service, Costa Rica, San jose), Cinthyà Z.C. (UNALM), Jossyn A.L.C. (Farmex, Lima, Peru), Mafer F.M.P. (Farmex, Lima, Peru), and Reyna M. (INIA) for helping with the collection of ancestry tomatoes and bioassay. Accessions in INIA Collection were examined under permission #53-2020 by MINAGRI-SEFOR, Peruvian Government. Accessions in the TUAT Collection were imported and used under special permission of the Minister of Agriculture, Fisheries and Forestry, Japanese Government.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gross, B.L.; Olsen, K.M. Genetic perspectives on crop domestication. *Trends Plant Sci.* 2010, 15, 529–537. [CrossRef] [PubMed]
2. FAOSTAT, Food and Agriculture Organization of the United Nations Statistical Database. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 23 December 2020).
3. Arie, T. Phylogeny and phytopathogenicity mechanisms of soilborne *Fusarium oxysporum*. *J. Gen. Plant Pathol.* 2010, 76, 403–405. [CrossRef]
4. Blanco, J.; Cañizares, J.; Cordero, L.; Pascual, L.; Díez, M.J.; Nuez, F. Variation revealed by SNP genotyping and morphology provides insight into the origin of the Tomato. *PLoS ONE* 2012, 7, e48198. [CrossRef] [PubMed]
5. Inami, K.; Kashiwà, T.; Kawabe, M.; Onokubo-Okabe, A.; Ishikawa, N.; Pérez, E.R.; Hozumi, T.; Caballero, L.A.; de Baldarrago, F.C.; Roco, M.J.; et al. The tomato wilt fungus *Fusarium oxysporum* f. sp. *lycopersici* shares common ancestors with nonpathogenic *F. oxysporum* isolated from wild tomatoes in the Peruvian Andes. *Microb. Environ.* 2014, 29, 200–210. [CrossRef]
6. Peralta, I.E.; Spooner, D.M.; Knapp, S. Taxonomy of wild tomatoes and their relatives (*Solanum* sect. Lycopersicoides, sect. Junglandifolia, sect. Lycopersicon; Solanaceae). *Syst. Bot. Monogr.* 2008, 84, 1–186.
7. Jenkins, J.A. The origin of the cultivated tomato. *Econ. Bot.* 1948, 2, 379–392. [CrossRef]
8. Tanksley, S.D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. *Plant Cell* 2004, 16, 181–189. [CrossRef]
9. Darwin, S.C.; Knapp, S.; Peralta, I.E. Taxonomy of tomatoes in the Galápagos Islands: Native and introduced species of *Solanum* section Lycopersicon (Solanaceae). *Syst. Biodivers.* 2003, 1, 29–53. [CrossRef]
10. Razifard, H.; Ramos, A.; Della Valle, A.L.; Bodary, C.; Goetz, E.; Manser, E.J.; Li, X.; Zhang, L.; Visa, S.; Tieman, D.; et al. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. *Mol. Biol. Evol.* 2020, 37, 1118–1132. [CrossRef]
11. Rodriguez, F.; Wu, F.; Ané, C.; Tanksley, S.; Spooner, D.M. Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? *BMC Evol. Biol.* 2009, 9, 191. [CrossRef]
12. TGRC, Tomato Genetics Resource Center. 2020. Available online: https://tgrc.ucdavis.edu/index.aspx (accessed on 23 December 2020).
13. Grogan, R.G.; Kimble, K.A.; Misaghi, I. A stem canker disease of tomato caused by *Alternaria alternata f.* sp. *lycopersici*. *Phytopathology* 1975, 65, 880–886. [CrossRef]
14. Tagami, Y.; Tomioka, A.; Yamamoto, T.; Katagiri, N.; Kohimoto, K.; Nishimura, S. Occurrence of stem canker of tomato caused by a distinct pathotype of *Alternaria alternata* in Japan. *Proc. Kansai. Pl. Prot. Soc.* 1984, 26, 29–32. (In Japanese).
15. Sugahara, S.; Ito, Y.; Sakurai, Y.; Narikawa, T.; Sakata, Y. Varietal difference of the resistance to stem canker caused by *Alternaria alternata* in tomato. *Res. Bull. Aichi. Agric. Res. Ctr.* 1989, 21, 170–175. (In Japanese).
16. Tsuge, T.; Harimoto, Y.; Akimitsu, K.; Ohtani, K.; Kodama, M.; Akagi, Y.; Egusa, M.; Yamamoto, M.; Otani, H. Host-selective toxins produced by the plant pathogenic fungus Alternaria Alternata. Fems Microbiol. Rev. 2013, 37, 44–66. [CrossRef] [PubMed]

17. Ago, A.; Akagi, Y.; Itai, A.; Arie, T.; Kodama, M. A deletion in the Asc1 gene conferring resistance to the tomato pathotype of Alternaria Alternata is involved in susceptibility of wild tomato species to the disease. (abstr in Japanese). Jpn. J. Phytopathol. 2016, 82, 49.

18. Brandwagt, B.; Mesbah, L.; Laurent, P.; Takken, F.; Kneppers, T.; John, H.; Nijkamp, J.; Hille, J. The interaction of Alternaria alternata f. sp. lycopersici and its AAL-toxins with tomato. In Molecular Genetics of Host-Specific Toxins in Plant Disease; Kohmoto, K., Yoder, O.C., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 317–330.

19. Afio Mall. Available online: https://mall.aflo.com/ (accessed on 23 December 2020).

20. Mesbah, L.A.; Kneppers, T.J.; Takken, F.L.; Laurent, P.; Hille, J.; Nijkamp, H.J. Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol. Gen. Genet. 1999, 261, 50–57. [CrossRef]

21. Aoki, K.; Yano, K.; Suzuki, A.; Kawamura, S.; Sakurai, N.; Suda, K.; Kurabayashi, A.; Suzuki, T.; Tsugane, T.; Watanabe, M.; et al. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genom. 2010, 11, 210. [CrossRef]

22. Brandwagt, B.F.; Mesbah, L.A.; Takken, F.L.W.; Laurent, P.L.; Kneppers, T.J.A.; Hille, J.; Nijkamp, H.J. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc. Natl. Acad. Sci. USA 2000, 97, 4961–4966. [CrossRef]

23. Spassieva, S.D.; Markham, J.E.; Hille, J. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J. 2002, 32, 561–572. [CrossRef]

24. Multiple Sequence Alignment by CLUSTALW. Available online: https://www.genome.jp/tools-bin/clustalw (accessed on 23 December 2020).

25. Nicholas, K.B.; Nicholas, H.B., Jr. GeneDoc: A Tool for Editing and Annotating Multiple Sequence Alignments. 1997. Available online: www.psc.edu/biomed/genedoc (accessed on 23 December 2020).

26. Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Frouli, T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020, 37, 291–294. [CrossRef]

27. Kozlov, A.M.; Darriba, D.; Frouli, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [CrossRef] [PubMed]

28. Kodama, M. Evolution of pathogenicity in Alternaria species. J. Gen. Plant Pathol. 2019, 85, 471–474. [CrossRef]

29. Akagi, Y.; Akamatsu, H.; Otani, H.; Kodama, M. Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot. Cell 2009, 8, 1732–1738. [CrossRef] [PubMed]

30. Akagi, Y.; Taga, M.; Yamamoto, M.; Tsuge, T.; Fukumasa-Nakai, Y.; Otani, H.; Kodama, M. Chromosome constitution of hybrid strains constructed by protoplast fusion between the tomato and strawberry pathotypes of Alternaria alternata. J. Gen. Plant Pathol. 2009, 75, 101–109. [CrossRef]

31. Cassol, T.; Clair, D.A.S. Inheritance of resistance to blackmold (Alternaria Alternata (Fr.) Keissler) in two interspecific crosses of tomato (Lycopersicon esculentum × L. cheesmanii f. typicum). Appl. Genet. 1994, 88, 581–588. [CrossRef] [PubMed]

32. Akamatsu, H.; Itoh, Y.; Kodama, M.; Otani, H.; Kohmoto, K. AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology 1997, 87, 967–972. [CrossRef] [PubMed]

33. Yamagishi, D.; Akamatsu, H.; Otani, H.; Kodama, M. Pathological evaluation of host-specific AAL-toxins and fumonisin mycotoxins produced by Alternaria and Fusarium species. J. Gen. Plant Pathol. 2006, 72, 323–327. [CrossRef]

34. Murray, M.G.; Thomson, W.F. Rapid isolation of high molecular weight plant DNA. Nuc. Acids. Res. 1980, 8, 4321–4325. [CrossRef]

35. Platt, A.R.; Woodhall, R.W.; George, A.L. Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. Biotechniques 2007, 43, 58–62. [CrossRef]

36. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [CrossRef]

37. GeneStudio. 2011. Available online: http://genestudio.com/ (accessed on 23 December 2020).

38. Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends. Genet. 2000, 16, 276–277. [CrossRef]

39. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinf. 2019, 20, 1160–1166. [CrossRef] [PubMed]

40. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [CrossRef] [PubMed]

41. Yang, Z.; Rannala, B. Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo Method. Mol. Biol. Evol. 1997, 14, 717–724. [CrossRef] [PubMed]

42. Hueslenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [CrossRef] [PubMed]