Exogenous Salicylic Acid Modifies Cell Wall Lignification, Total Phenolic Content, PAL-Activity in Wheat (*Triticum aestivum* L.) and Buckwheat (*Fagopyrum esculentum* Moench) Plants under Cadmium Chloride Impact

Myroslava Kobyletska 1,*, Yana Kavulych 1, Nataliya Romanyuk 1, Olena Korchynska 2, Olga Terek 3

1 Department of Plant Physiology and Ecology, Ivan Franko National University of Lviv, Ukraine; myroslava.kobyletska@lnu.edu.ua (M.K.); yana.kavulych@lnu.edu.ua (Y.K.); nataliya.romanyuk@lnu.edu.ua (N.R); 2 Danylo Halytsky Lviv National Medical University, Ukraine; olenakorchynska@ukr.net (O.K.); 3 Department of Plant Physiology and Ecology, Ivan Franko National University of Lviv, Ukraine; olha.terek@lnu.edu.ua (O.T.);

* Correspondence: yana.kavulych@lnu.edu.ua (Y.K.);

Received: 10.12.2021; Accepted: 4.01.2022; Published: 24.03.2022

Abstract: Salicylic acid (SA) is considered one of the most important plant signaling molecules involved in abiotic and biotic stress tolerance. Application of 0.05 mM SA enhanced plants’ tolerance to cadmium stress by modulating levels of several metabolites, including components of antioxidative defense, osmolytes, secondary metabolites, and metal-chelating compounds. Seeds of bread wheat (*Triticum aestivum* L.) and buckwheat (*Fagopyrum esculentum* Moench) were presoaked in 0.05 mM SA/or distilled water for 5 h, with the following germination in a dark thermostat for 3 d. Uniform seedlings were planted into +Cd / or -Cd-containing substrate and grown for 16/8 h light/dark. It was revealed that seed pretreatment with SA alone caused a 3-5-fold decrease in phenylalanine ammonia-lyase (PAL) activity and total phenolic content compared to the control water treatment. Seed pretreatment with SA alleviated the negative impact of Cd on plant growth, PAL activity, and total phenolic content. These results indicate that salicylate treatment alleviates Cd toxicity by modifying lignin synthesis and accumulation of flavonoids in wheat and buckwheat plants. Protective effects were more pronounced for buckwheat with the studied variables' high total phenolic content.

Keywords: salicylic acid; lignin; phenolic compounds; phenylalanine ammonia-lyase; cadmium chloride.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Salicylic acid (SA) belongs to the class of phenolic compounds [1] and plays a key role both in a plant’s immunity [2-4] and responses to abiotic stresses [5,6].

One of the serious problems of agricultural production worldwide and in Ukraine is soil heavy metal pollution [7-9]; it affects food safety and marketability, crop yields, and environmental health of soil organisms [10,11]. Cadmium toxicity has a high impact on plants and consequently affects the ecosystem, where plants form an integral component [7,12,13].

Current research data support the possible mediatory role of SA in protecting physiological and biochemical processes under cadmium toxicity. There are reports that SA
increases the distribution ratio of Cd in lignin due to the formation of chelate complexes with phenolic compounds and precedes the processes of changes in the enzymatic activity of PAL [14].

Bread wheat (*Triticum aestivum* L.) is an important crop worldwide and a major staple crop in Ukraine [15-17], whereas buckwheat (*Fagopyrum esculentum* Moench) belongs to pseudocereal food crops and healthy herbs [18], emerging as an alternative for traditional food sources due to its high nutrient value and productivity [19-22]. The main buckwheat producers are China, Ukraine, Kazakhstan, but generally, it is consumed or traded locally [3,23]. Several authors showed that exogenous SA seed pretreatment alleviated the negative effect of Cd on crop plants’ growth parameters [20] and chlorophyll level [24]. Application of 0.05 mM SA to wheat seeds also decreased the extent of the negative Cd effect, as revealed by a decline in the level of phenolic content [25-27].

The presented work aimed to study the influence of seed pretreatment with exogenous SA on PAL activity, the total content of phenolic compounds, and lignin distribution under cadmium chloride impact on bread wheat and buckwheat plants.

2. Materials and Methods

2.1. Experimental design and treatments.

Wheat plants (*Triticum aestivum* L.) var. Podolyanka (Institute of Plant Physiology and Genetics of National Academy of Science of Ukraine, V.M. Remeslo Myronivka Institute of Wheat of NAAS, https://sops.gov.ua/reestr-sortiv-roslin) and buckwheat (*Fagopyrum esculentum* Moench.) var. Rubra (State Agrarian and Engineering University in Podilia) were used for laboratory vegetative experiments. The seeds were sterilized in 1% potassium permanganate solution for 20 min. Their surface was rinsed with water at least twice. Then, the seeds were soaked for 5 h in 0.05mM SA (Sphera Sim, Lviv, Ukraine) solution or distilled water (control). The optimal concentration of SA was determined experimentally, based on the previous data [28,29] and literature reports [30,31].

2.2. Seed germination and growing plants.

The seeds of the selected varieties were germinated on filter paper in Petri dishes at 23°C for 3 days in a dark thermostat. Uniform seedlings were transferred into pots filled with sterile sand supplemented with Hoagland’s nutrient solution (Hoagland and Arnon, 1950) [32] and grown under controlled conditions (16/8-h photoperiod) for 3 weeks. Cadmium was applied as cadmium chloride (CdCl) salt (Sphera Sim, Lviv, Ukraine) in the dose of 25 ppm of the substrate. Control plants were grown without Cd and SA treatments; experimental plants were grown from seeds treated with SA +/- Cd in the substrate. The content of phenolic compounds and PAL activity were determined on the 7th, 14th and 21st days of plant growth.

2.3. Phenylalanine ammonia-lyase activity assay.

Phenylalanine ammonia-lyase (PAL, L-Phenylalanine Ammonia-Lyase EC 4.3.1.24) activity was determined spectrophotometrically by the modified Zucker method [33,34]. Samples of 0.5 g plant tissue were homogenized manually in 2 ml of 25 mM borate buffer (pH 8.8) containing 23 μL mercaptoethanol (Sphera Sim, Lviv, Ukraine). The homogenates were centrifuged for 20 min at 8000 g, and the supernatant was used for the enzymatic assay. PAL
assay mixture contained 1 ml of the supernatant, 1 ml of borate buffer, 1 ml of 12 mM L-phenylalanine (Sphera Sim, Lviv, Ukraine). The resulting mixture was incubated at 37 °C for 1 hour; the reaction was stopped by 15% trichloroacetic acid. Absorbance at 274 nm was measured using a spectrophotometer (ULAB 101, China). PAL activity was expressed in mM of cinnamic acid per gram of protein. Protein was determined by the Bradford method [35].

2.4. Determination of total phenolics.

The total content of phenolic compounds in the plant shoots and roots was determined by the modified Folin-Denis’ method [36,37]. The reaction mixture was obtained by mixing 0.5 ml of ethanol extract, 0.5 ml of 10% Folin-Denis’ reagent (Sphera Sim, Lviv, Ukraine), and 1 ml of 7.5% NaHCO₃, with the following incubation at room temperature for 60 min and absorbance readings at 725-730 nm with ULAB 101 Spectrophotometer. Gallic acid (GA) (Sphera Sim, Lviv, Ukraine) standard solutions were prepared using the same procedure.

2.5. Flavonoids estimation.

Plant material was fixed at 105 °C for 15 min and dried at 40 °C to dry matter in an oven (UOSLab-100, Ukraine). Sample 25 mg of the dried plant material was extracted with 1 ml of absolute methanol (Sphera Sim, Lviv, Ukraine) for 24 h. Total flavonoid content was determined using 0.2% zirconyl (IV) nitrate hydrate (ZrO(NO₃)₂·2H₂O) (Sphera Sim, Lviv, Ukraine), and rutin as a standard, with aluminum chloride by the differential spectrophotometry method (ULAB 101, China). The reference cuvette contained the plant extract (50 μl) and 3.5 ml of deionized water. The sample cuvette was prepared when the plant extract was added to 3 ml of deionized water and 0.5 ml of zirconyl nitrate hydrate. The absorbance was measured at 397.6 nm after 15 min incubation at 25 °C [34,38].

2.6. Lignin visualization.

We used the Wiesner reaction based on phloroglucinol condensation with cinnamic aldehydes (coniferyl aldehyde) in an acidic environment and developed a cherry red-colored product [39]. A thin stem section obtained with a razor after washing in the distilled water was placed on a glass slide and stained with 5 % phloroglucinol in alcohol (Sphera Sim, Lviv, Ukraine), then treated with 25 % H₂SO₄. After 10 min, the sections were examined under a light microscope (XS-2610 Led MICROmed, Ukraine) [40].

2.7. Statistical analyses.

Each experiment was performed in five replications. The means and standard deviation values were calculated by JMP Pro (https://www.jmp.com/en_us/home.html) and Microsoft Office Excel (https://www.microsoft.com). Statistical significance of the difference was evaluated with Student’s t-test (P<0.05) (https://www.jmp.com/en_us/home.html).

3. Results and Discussion

The accumulation of secondary metabolites is activated by abiotic stresses, signal molecules, or elicitors in various plants [41]. In particular, the production of secondary metabolites can be promoted by salicylic acid. Exogenous SA could stimulate the production of endogenous SA and phenolic compounds in plants, thus helping the treated plants to reduce
the load of abiotic stress [42]. Many studies have documented the role of other phytohormones in enhancing the level of some classes of phenolic compounds [43-46]. Some reports showed the effects of jasmonic acid, chitosan, and salicylic acid (SA) on the accumulation of phenolic compounds in germinated buckwheat. However, in this case, treatment with SA in concentrations of 50, 100, and 150 mg/L did not affect the production of phenolic compounds in buckwheat plants [47].

There are a lot of data that SA influences the activity of phenylalanine ammonia-lyase (PAL), the key enzyme of phenolic compounds biosynthesis in many plants, in particular, saffron leaves (Crocus sativus L.) [48], barley shoots (Hordeum vulgare L.) [49], Vitis vinifera L. fruits [50], wheat (Triticum aestivum L.) roots and shoots [51] and buckwheat (Fagopyrum esculentum Moench.) plants [47]. A peak of PAL activity was observed in Matricaria chamomilla plants under heavy metal (Ni and Cd) stress with the application of SA [46,52]. SA affects cell wall biosynthesis, namely lignification in Brachypodium distachyon [53] and rice (Oryza sativa L.) [54]. Previously, we have demonstrated that SA plays a regulatory role at the stage of phenolic compounds quantity, which means that SA can both increase or decrease the concentration of total phenolic compounds in plant tissues [29]. We have studied the influence of SA seed pretreatment on wheat and buckwheat tolerance to the subsequent treatment with cadmium chloride (25 ppm) in laboratory vegetative experiments.

Phenylalanine ammonium-lyase (PAL), a key enzyme in the phenylpropanoid pathway, is involved in the defense responses of plant cells [55,56]. Synthesis of phenolic compounds and their accumulation under stress conditions may be associated with increased activity of PAL [57]. Therefore, PAL has been generally recognized as a marker of environmental stress in different plant species [58]. PAL activity shows significant changes for a short period in plant tissues [34,59]. There are data that salt stress increased dynamic changes of PAL activity in plant seedlings [60].

On the 7th day of the experiment, we observed a significant, 5-fold increment in PAL activity for both wheat and buckwheat under 0.05 mM SA treatment alone. In contrast, it decreased on the 14th and 21st days of the experiment (Figures 1, 2). Exceptions were noted for buckwheat root tissues, where PAL activity remained high at all experimental stages. Wheat plants also had significantly higher PAL activity in roots than in shoots. The results confirm that roots are the main place of phenolic synthesis and localization. Our suggestion is supported by similar results by Colak et al. for wheat (T. aestivum) plants [61].

![Figure 1](https://biointerfaceresearch.com/)

Figure 1. Effect of CdCl$_2$ (25 ppm) and seed pretreatment with 0.05 mM SA on phenylalanine ammonia-lyase (PAL) activity in wheat (a)-roots, (b) -shoots; laboratory experiment. * – P<0.05.
On the 7th day of the experiment, under CdCl₂ impact in wheat treated with SA, we observed a 4-fold increase in PAL activity in shoot tissues; PAL activity decreased on the next time points (Figure 1b). In the roots, we observed a linear increase of the enzymatic activity, with a slight increase on the 7th and 14th days and 0.6 times on the 21st day under cadmium stress compared to control (Figure 1a). We assume that exogenously applied SA positively affects PAL activity in wheat (Figure 1). The obtained data confirm data on early changes in PAL activity under stress conditions [62].

Buckwheat plants in control demonstrated a comparatively high PAL activity in the roots. Under CdCl₂ influence, there was a 2-fold increase in enzyme activity (Figure 2). A prolonged cadmium impact caused a higher enzyme activity. In the shoots, an increase of PAL activity was observed on the 7th day of cadmium stress, whereas on the 21st day, we observed a 3-fold decrease in this activity. Seed pretreatment with SA increased PAL activity thus, we suppose that it can, at least partially, be explained by common pathways of synthesis of SA and other phenols.

Our results revealed changes in PAL enzymatic activity without a distinct time- or age dependence in the untreated control plants. On the other hand, PAL activity depended on cadmium chloride and SA application. When comparing wheat and buckwheat plants, the higher PAL activity in buckwheat was noted (Figure 2).

As the published data suggest, early changes in PAL activity are characteristic of plant tissues [62]. In particular, a short-term increase in the activity of PAL and peroxidase enzymes, which activate the protective mechanisms of wheat plants, was shown by Feduraev [63]. PAL activity also changes under the influence of biogenic factors, such as chitosan and salicylic acid [27].

![Figure 2](https://doi.org/10.33263/BRIAC132.117)

Figure 2. Effect of CdCl₂ (25 ppm) and seed pretreatment with 0.05 mM SA on phenylalanine ammonia-lyase (PAL) activity in buckwheat (a)-roots, (b)-shoots; laboratory experiment. * – P<0.05.

According to the published data, changes in PAL activity led to different changes in total phenolic compound content [2,64]. Phenolics are important for natural plant metabolism and development; they participate in cell wall development, photosynthesis, respiration, plant-to-plant allelopathic interactions, defense against pathogens and herbivores [64]. Plants also produce them in response to biotic or abiotic stresses [2].

Total phenolic compounds in the control wheat plants were accumulated predominantly in the root tissues, whereas, in the shoots, their concentration decreased during the experiment (Figure 3). SA alone induced a decrease in the content of phenolics in both the roots and shoots (Figure 3). Roots, the first organs exposed to heavy metals, are considered their main sources
within the plant organism [65]. It is assumed that a high content of phenolic compounds in roots and its relatively low content in shoots may serve as a protective mechanism and a logical redistribution of phenolics observed under heavy metal stress [45,59].

Figure 3. Effect of CdCl₂ (25 ppm) and seed pretreatment with 0.05 mM SA on total phenolic content in wheat (a)-roots, (b)-shoots, laboratory experiment. * – P<0.05.

The obtained results are consistent with the published data, where in most cases, the root tissue is the site of synthesis and localization of phenolic compounds [45,63,66,67]. A significant accumulation of phenolic compounds is reported for Fagopyrum esculentum Moench., Kandelia obovata L., Lactuca sativa L., and Hypericum perforatum L. plants under heavy metal stress [44,62,68,69].

Under the influence of Cd, a 1.2-1.5-fold increase in total phenolic concentration in the wheat organs was observed (Figure 3). The prolonged action of CdCl was followed by an increase in total phenolic compounds concentrations in the roots, which is consistent with their protective functions and the ability to form chelate complexes with heavy metals [70].

In the buckwheat plants, the concentration of total phenolics was higher than that in the wheat plants (Figure 4). Cadmium increased phenolic compounds by 1.5 times at both time points – the 14th and 21st days of the experiment. SA alone also increased their accumulation, but in the presence of CdCl, the concentration of phenolics was lower than in the separate cases with Cd or SA (Figure 4). The presented results confirm the involvement of SA in plant stress responses to cadmium.

Figure 4. Effect of seed pretreatment with 0.05 mM SA on phenolic content in buckwheat shoots under CdCl₂ (25 ppm) impact, laboratory experiment. * – P<0.05.
An increase in PAL enzymatic activity leads to growth in phenolic compounds, which results from increased lignification of cell walls [63]. The key compounds involved and precursors of lignin formation are flavonoids. Therefore, the growth of concentration of these compounds under the action of cadmium is rarely observed [71,72]. Flavonoids possess antioxidant properties; they produce a protective effect and perform a barrier function due to lignin formation [72].

The main function of flavonoids is to protect plants from various exogenous influences. Any biotic and abiotic stressors can intensify the biosynthesis of flavonoids in different anatomical parts of the plant [73]. The antioxidant properties of these compounds and their barrier function are realized through the formation of tannins and lignin [71]. An insignificant increase in these compounds was caused by processes of lignification of cell walls of buckwheat [68] and wheat [66,67] plants.

Exogenous SA induced lignin formation, especially in buckwheat cell walls, both on the 14th and 21st days of plant growth (Figures 5,6). The results show a difference in lignin accumulation in the area of the metaxylem of the above-ground part of the plant depending on the growing conditions, particularly the differences in lignin accumulation in the shoots under SA and Cd influence. It should be noted that different parts of the plant – leaf, stem, node – were selected to detect lignin. In the control variants of longitudinal sections, lignin formation was not observed (Figure 5).

![Figure 5](https://biointerfaceresearch.com/)

Figure 5. Localization of lignin with the Wiesner reaction (cherry red color, black arrows) in shoots (longitudinal sections) of 14-, 21-day buckwheat (*Fagopyrum esculentum* Moench, Rubra var.) plants under the action of cadmium chloride and salicylic acid (laboratory pot experiment, seed pretreatment with 0.05mM SA, dose of CdCl₂ - 25 ppm).

![Figure 6](https://biointerfaceresearch.com/)

Figure 6. Localization of lignin with the Wiesner reaction (cherry red color, black arrows) in shoots (longitudinal sections) of 14-, 21-day wheat (*Triticum aestivum* L., Podolanka var.) plants under the action of cadmium chloride and salicylic acid (laboratory pot experiment, seed pretreatment with 0.05mM SA, dose of CdCl₂ - 25 ppm).
An active form of lignin is associated with an excessive accumulation of heavy metal ions in the environment [74]. Different tissues of one plant may differ in the composition of lignin, which may result from different expressions of lignin biosynthesis genes. SA, as a substance of phenolic origin, also influenced the process of lignification in buckwheat plants (Figure 5); similar results obtained on mutants and transgenic plants prove the metabolic plasticity of lignin biosynthesis [75-77].

Experimental time points did not show a significant difference in the accumulation of this compound in control. However, the accumulation of lignin depends on the conditions of plant growth. Control groups of plants accumulated significantly less lignin compared to plants that grew under cadmium stress or under the action of salicylic acid. The process of lignification is active in all variants of the research, except control, with a predominance in buckwheat plants caused by the varietal specificity. Lignin production has a temporal dependence that increases on the 21st day of plant growth. Salicylic acid also affects the lignification of the cell wall process.

Salicylic acid promoted a local increase in flavonoids at the early stages of growth with their further decrease on the 21st day of the experiment (Table 1).

Table 1. Effect of CdCl₂ and SA on total flavonoids content in buckwheat (Fagopyrum esculentum Moench) organs, mg/g (laboratory pot experiment, seed pretreatment with 0.05mM SA, 25 ppm CdCl₂ in the substrate).

Variant	Roots	Shoots		
	14 days	21 days	14 days	21 days
Control	0.046±0.002	0.024±0.004	0.285±0.004	0.163±0.001
SA	0.107±0.006*	0.026±0.004	0.429±0.005*	0.178±0.002
Cd	0.035±0.003	0.054±0.002*	0.203±0.003	0.204±0.004*
SA+Cd	0.033±0.003	0.032±0.003	0.318±0.004*	0.123±0.002

At the early stages of the growth of seedlings, high flavonoids concentrations were detected in the shoots, with no significant values in the roots. The increase in flavonoids concentration in plant organs under the application of salicylate is probably due to the common path of synthesis for these compounds, as in the case of the total phenolic level. The decrease in the content of flavonoids on the 21st day of plant growth might be caused by their decay and be associated with an increased level of other classes of phenolic compounds, such as lignin. The effect of cadmium ions caused a decrease in the content of flavonoids in the roots on the 14th day, while a significant increase in their content compared to control was observed on the 21st day. The content of these compounds under the action of cadmium chloride in the shoots did not change during the experiment (Table 1).

Thus, an increase in total phenolic compounds under the impact of cadmium chloride has been revealed both for buckwheat and wheat plants in laboratory experiments. Seed pretreatment with 0.05 mM SA modulated the level of phenolic compounds in plant organs under cadmium stress. SA also affected the activity of PAL, the key enzyme of phenolic metabolism. All experimental variants with wheat plants, except for the combined SA and CdCl₂ action, demonstrated an increase in total phenolic content and PAL activity, in contrast to control values. These data were subjected to correlation analysis; the correlation index was 0.7-0.9, indicating a strong direct dependence between the studied parameters (Figure 7a). In the wheat roots, the correlation between the content of phenolic compounds and PAL activity is average, its indicator ranging within 0.75-0.8 units, which demonstrates the direct impact (Figure 7b). In buckwheat shoots, the connection between phenolic compounds and PAL enzymatic activity is not present; data confirmed by correlation analysis, index ranged from -
0.3 to 0.05 (Figure 7c). It may be due to a high basic content of phenolic compounds in this buckwheat variety and/or involve other enzymes responsible for synthesizing phenolic compounds.

![Figure 7](https://biointerfaceresearch.com/)

Figure 7. Correlation among the measured parameters - total phenolic content and phenylalanine ammonia-lyase (PAL) in wheat (*Triticum aestivum* L.) a- shoots, b- roots, and buckwheat (*Fagopyrum esculentum* Moench) c- shoots.

However, the present/non-present correlation between phenolic compounds and PAL activity does not exclude the positive and regulatory effects of SA on these separate parameters. The obtained results indicate that lignin formation correlated with flavonoids content. Moreover, cadmium and SA acid increase lignin formation without any changes in flavonoid content.

4. Conclusions

The results of this study will be useful for cultivating plants on Cd-contaminated soils. The application of exogenous SA can be recommended for the pretreatment of wheat and buckwheat seeds to alleviate cadmium toxicity. A pre-sowing seed treatment with SA affects the concentration of phenolic compounds in shoots, modifies PAL activity, and decreases the lignification of cell walls in wheat while increasing it in buckwheat plants if compared to the lignification under the action of cadmium chloride without SA. This assumption is supported by the data on a significant decline in Cd accumulation in SA-pretreated plants, especially in the shoots. The protective role of SA in cadmium-stressed plants is unambiguous. It can be related to antioxidant process regulation, enhanced PAL activity, a decrease in the content of total phenolic compounds, lignin formation in leave tissues, and an increased lignification in root tissues. The present study's findings can be useful for the safe cultivation of pre-treated plants with the optimal concentration of SA on Cd-contaminated soils.

Funding

Research project “Study of the impact of biologically active substances on resistance to stress factors” (2017-2019, №0117U000894).

Acknowledgments

This research has no acknowledgment.
Conflicts of Interest

The authors declare no conflict of interest.

References

1. Kohli, S.K.; Handa, N.; Kaur, R.; Kumar, V.; Khanna, K.; Bakshi, P.; Singh, R.; Arora, S.; Kaur, R.; Bhardwaj, R. Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism. In: Salicylic Acid: A Multifaceted Hormone. Nazar, R.; Iqbal, N.; Khan, N.A. Eds.; Springer Singapore: Singapore, 2017; pp. 123-144, https://doi.org/10.1007/978-981-10-6068-7_7.

2. Zhang, Q.; Chen, C.; Wan, G. Solar light induced synthesis of silver nanoparticles by using lignin as a reductant, and their application to ultrasensitive spectrophotometric determination of mercury(II). Microchem Acta 2019, 186, https://doi.org/10.1007/s00604-019-3832-8.

3. Huang, W.; Wang, Y.; Li,X.; Zhang, Y. Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypropeic Acid in Plant Immunity. Molecular plant 2020, 13, 31-41, https://doi.org/10.1016/j.molp.2019.12.008.

4. Zhou, J.M.; Zhang, Y. Plant Immunity: Danger Perception and Signaling. Cell 2020, 5, 978-989, https://doi.org/10.1016/j.cell.2020.04.028.

5. Ahmad, F.; Singh, A.; Kamal, A. Chapter 23 - Salicylic Acid–Mediated Defense Mechanisms to Abiotic Stress Tolerance. In: Plant Signaling Molecules. Khan, M.I.R.; Reddy, P.S.; Ferrante, A.; Khan, N.A. Eds.; Woodhead Publishing: 2019; pp. 355-369, https://doi.org/10.1016/B978-0-12-816451-8.00022-8.

6. Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J. 2020, 36, 1-10, https://doi.org/10.5423/PPJ.RW.12.2019.0295.

7. Seleimam, M.F.; Hasanuzzaman, M.; Nahar, K.; Hossain, M. Use of Plant Nutrients in Improving Abiotic Stress Tolerance in Wheat: Wheat Production in Changing Environments. Springer, Singapore 2019, 7, 68-83. https://doi.org/10.1007/978-981-13-6883-7_19.

8. Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination. An International Journal 2019, 28, 380-394, https://doi.org/10.1080/15320383.2019.1592108.

9. Pal, L.; Muhollari, T.; Bujdoso, O.; Baranayi, E.; Nagy, A.; Arnyas, E.; Adany, R.; Sandor, J.; McKee, M.; Szucs, S. Heavy metal contamination in recorded and unrecorded spirits. Should we worry? Regulatory Toxicology and Pharmacology 2020, 116, 0273-2300, https://doi.org/10.1016/j.yrtph.2020.104723.

10. Kumar, S.; Prasad, S.; Yadav, K.K.; Shrivastava, M.; Gupta, N.; Nagar, S.; Bach, O.V.; Kamyab, H.; Khan, S.A.; Yadav, S.; Malav, L.C. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches. A review: Environmental Research 2019, 179, 108-792, https://doi.org/10.1016/j.envres.2019.108792.

11. Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.T.; Ki-Hyun Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International J. 2019, 125, 365-385, https://doi.org/10.1016/j.envint.2019.01.067.

12. Ahmed, A.; Khalid, N.; Ahmad, A.; Abbasi, N.A.; Latif, M.Z.; Randhawa, M.A. Phytochemicals and biofunctional properties of buckwheat: a review. J. Agric. Sci. 2014, 152, 349-369, https://doi.org/10.1017/S0021861613000166.

13. Versieren, L.; Evers, S.; Elgawag, H.; Asard, H.; Smolders, E. Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Environ. Toxicol. Chem. 2017, 36, 220-230, https://doi.org/10.1007/etc.3529.

14. Jia, H.L.; Wang, H.X.; Wei, T.; Wang, M.; Liu,X.; Hua.L.; Ren, H.X.; Guo, J.K.; Li, J. Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicology and environmental safety 2021, 207, https://doi.org/10.1016/j.ecosyst.2020.111550.

15. Nazarenko, M.; Mykolenko, S.; Chernysky, V. Modern Ukrainian winter wheat varieties grain productivity and quality at ecological exam. Agriculture & Forestry 2019, 65, 127-136, https://doi.org/10.17707/AgricultForest.65.1.13.

16. Falcone, G.; Stillitano, T.; Montemurro, F.; Luca, D.; Gulisano, G.; Strano, A. Environmental and economic assessment of sustainability in Mediterranean wheat production Agronomy Research 2019, 17, 60-76, https://doi.org/10.15155/AR.19.011.

17. Chaprina, Yu.Yu.; Klymenko, I.V.; Belay, Yu.M.; Golovan, L.V.; Buzina, I.M.; Nazarenko, V.V.; Buhaiov, S.M.; Mikhail, V.H.; Laslo, O.O. The adaptability of soft spring wheat (Triticum aestivum L.) varieties. Ukrainian Journal of Ecology 2021, 11, 267-272.

18. Sedlacko, E.M.; Courtney, E.J.; Heuberger, A.L.; Sindt, N.M.; Miller, H.M.; Borch, T.; Blaine, A.C.; Cath, T.Y.; Higgins, C.P. Potential for beneficial reuse of oil and gas–derived produced water in Agriculture: Physiological and morphological responses in spring wheat (Triticum aestivum). Environmental Toxicology and Chemistry 2019, 24, 892-923, https://doi.org/10.1002/etc.4449.
19. Verma, S.P.; Pathak, V.N.; Verma, O.P. Interrelationship between yield and its contributing traits in wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. App. Sci. 2019, 8, 3209-3215, https://doi.org/10.20546/ijcmas.2019.82.375.

20. Singh, M.; Malhotra, N.; Sharma, K. Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world? Genet Resour Crop Evol 2020, 67, 1639-1658, https://doi.org/10.1007/s10722-020-00961-0.

21. Tanveer, P.B.; Bisma, M.; Inayatullah, T.; Rehman, U.R. Buckwheat Journey to Functional Food Sector. Current Nutrition & Food Science 2020, 16, 134-141, https://doi.org/10.2174/1573401314666181022154332.

22. Fan, Z. Buckwheat proteins and peptides: Biological functions and food applications. Trends in Food Science & Technology 2021, 110, 155-167, https://doi.org/10.1016/j.tifs.2021.01.081.

23. Tryhub, O.V.; Bahan, V.; Shakalij, S.M.; Barat, Y.M.; Yurchenko, S.O. Ecological plasticity of buckwheat varieties (Fagopyrum esculentum Moench.) of different geographical origin according to productivity. Agronomy Research 2020, 18, 2627-2638, https://doi.org/10.15159/AR.20.214.

24. Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Khan, M.J.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, G.S.; El-Esawi, M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants 2020, 9, https://doi.org/10.3390/plants9101386.

25. Horvath, E.; Szalai, G.; Janda, T. Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant. Growth Regul. 2007, 26, 290-300, https://doi.org/10.1007/s00344-007-9017-4.

26. Kolupaeva, Y.E. Formation of adaptive reactions of plants to the action of abiotic stresses. Osnova 2010, 352.

27. Szalai, G.; Krantev, A.; Yordanova, R.; Popova, L.P.; Janda, T. Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk. J. Bot. 2013, 37, 708-714, https://doi.org/10.3906/bot-1210-6.

28. Malýk, B.; Kavulych, O.; Kobylyets, M. The effect of salicylate and cadmium chloride on polyphenol oxidase activity in buckwheat plants (Fagopyrum esculentum Moench.). Biol. Stud. 2017, 11, 108-109.

29. Kavulych, O.; Kobylyets, M.; Terek, O. Investigation of salicylic acid-induced change in flavonoids production under cadmium toxicity in buckwheat (Fagopyrum esculentum Moench) plants. EUREKA: Life Sciences 2019, 5, 13-18, https://doi.org/10.21303/2504-5695.2019.00986.

30. Shu, Y.; Shu; L.; Hui, H. Role of salicylic acid in plant abiotic stress. Zeits. fur Naturforschung 2008, 63, 313-320, https://doi.org/10.1515/znc-2008-5-601.

31. Guo, B.; Liu, C.; Liang, Y.; Li, N.; Fu, Q. Salicylic Acid Signals Plant Defence against Cadmium Toxicity. Int J Mol Sci. 2019, 20, https://doi.org/10.3390/ijms20122960.

32. Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 1950, 347.

33. Zucker, M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol. 1965, 40, 779-784, https://dx.doi.org/10.1104%2Fpp.40.5.779.

34. Smirnow, O.; Kosyan, A.; Kosyk, O. The cytocel effect on flavonoids content and phenilalanin ammonialase (PAL) activity in buckwheat plants. Studia Biologica 2012, 6, 247-252, https://doi.org/10.30970/sbi.0603.230.

35. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 1976, 72, 248-254, https://doi.org/10.1016/0003-2697(76)90527-3.

36. Zaprometov, M.N. Biochemical methods in plant physiology. Science 1971, 191.

37. Bobo-Garcia, G.; Davidov-Pardo, G.; Arroqui, C.; Virsed, P.; Marin-Arroyo, M.R.; Navarro, M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015, 95, 204-209, https://doi.org/10.1002/jsfa.6706.

38. Petry, R.D.; Ortega, G.G.; Silva, W.B. Flavonoid content assay: influence of the reagent concentration and reaction time on the spectrophotometric behavior of the aluminium chloride-flavonoid complex. Die Pharmazie 2011, 56, 465-470.

39. Zhang, Y.; Xin, L. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology 2019, 50, 29-39, https://doi.org/10.1016/j.pbi.2019.02.004.

40. Ovrutsk, I.I. The main mechanisms of lignification of cell walls. Ukrainian Botanical Journal 2007, 5, 463-469.

41. Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283-333, https://doi.org/10.1016/j.biotechadv.2005.01.003.

42. Ratchaseema, M.N.; Kladuswan, L.; Soulard, L. The role of salicylic acid and benzothiadiazole in decreasing phytoplasma titer of sugarcane white leaf disease. Sci Rep. 2021, 11, https://doi.org/10.1038/s41598-021-94746-9.

43. Kohli, S.K.; Handa, N.; Sharma, A. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 2018, 25, 15159–15173, https://doi.org/10.1007/s11356-018-1742-7.
44. Chen, S.; Wang, Q.; Lu, H.; Li, J.; Yang, D.; Liu, J.; Yan, C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. *Ecotoxicology and Environmental Safety* 2019, 169, 134-143, https://doi.org/10.1016/j.ecoenv.2018.11.004.

45. Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. *Plant Phenolics in Sustainable Agriculture*. Springer 2020, 22, 978-981, https://doi.org/10.1007/978-981-15-4890-1_22.

46. Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. *Molecules* 2020, 25, https://doi.org/10.3390/molecules25030540.

47. Park, C.H.; Yeo, H.J.; Park, Y.E.; Chun, S.W.; Chung, Y.S.; Lee, S.Y.; Park, S.U. Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (*Fagopyrum esculentum* Moench). *Foods* 2019, 8, https://doi.org/10.3390/foods8050153.

48. Tajik, S.; Zarinkamar, F.; Mohammad, B.; Nazari, S.M. Induction of phenolic and flavonoid compounds in leaves of saffron (*Crocus sativus* L.) by salicylic acid. *Scientia Horticulturae* 2019, 257, https://doi.org/10.1016/j.scienta.2019.108751.

49. Chaman, Me.E.; Copaja, S.V.; Argandoña, H.V. Relationships between Salicylic Acid Content, Phenylalanine Ammonia-lyase (PAL) Activity, and Resistance to Barley to Aphid Infestation. *Journal of Agricultural and Food Chemistry* 2003, 51, 2227-2231, https://doi.org/10.1021/jf020953b.

50. Wenab, F.P.; Chen, J.Y.; Kong, F.W.; Pan, Q.H.; Wan, S.B.; Huang, W.D. Salicylic Acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. *Plant science* 2005, 169, 928-934, https://doi.org/10.1016/j.plantsci.2005.06.011.

51. Ketabchi, S.; Majzoob, S.; Charagani, H.A. Effect of salicylic acid and methyl jasmonate on phenylalanine ammonia-lyase activity and total phenol in wheat infected by *Pratylenchus thornei*, *Archives of Phytopathology and Plant Protection* 2015, 48, 10-17, https://doi.org/10.1080/03235408.2014.882104.

52. Kováčik, J.; Grúz, J.; Hedbalvná, J.; Klejduš, B.; Strnad, M. Cadmium and Nickel Uptake Are Differentially Modulated by Salicylic Acid in *Matricaria chamomilla*. *Plants Journal of Agricultural and Food Chemistry* 2009, 57, 9848-9855, https://doi.org/10.1021/jf902645c.

53. Napoleao, T.A.; Camilo, G.S.; Carla, E.V.; Castro, R.B.; Loureiro, M.E.; Giordano, A.A. Methyl jasmonate and salicylic acid are able to modify cell walls but only salicylic acid alters biomass digestibility in the model grass *Brachypodium distachyon*. *Plant science* 2017, 263, 46-54, https://doi.org/10.1016/j.plantsci.2017.06.014.

54. Deus, A.F.; Prado, R.M.; Alvarez, R. Role of Silicon and Salicylic Acid in the Mitigation of Nitrogen Deficiency Stress in Rice Plants. *Silicon. Plant Science*. 2020, 12, 997-1005, https://doi.org/10.1007/s12633-019-00195-5.

55. Apel, K.; Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. *Annu. Rev. Plant Biol. 2004*, 55, 373-399, https://doi.org/10.1146/annurev.arplant.55.031903.141701.

56. Yu, X.Z.; Fan, W.J.; Lin, Y.J. Differential expression of the PAL gene family in rice seedlings exposed to chromium by microarray analysis. *Ecotoxicology* 2018, 27, 325-335, https://doi.org/10.1007/s10646-018-1897-5.

57. MacDonald, M.J.; D’Cunha, G.B. A modern view of phenylalanine. *Biochem. Cell Biol*. 2007, 85, 273-279, https://doi.org/10.1139/o07-018.

58. Korobkova, K.S.; Onishchenko, A.M.; Panchenko, L.P.; Mamchur, O.Y.; Dmitruk, V.I. Elaboration of the in vitro model system to study the interaction of phytopathogenic Mollicutes with plant cells. *Microb. J. 2009*, 71, 58-62.

59. Babenko, L.M.; Smirnov, O.E.; Romanenko, K.O.; Trunova, O.K.; Kosakivska, I.V. Phenolic compounds in plants: biogenesis and functions. *Ukrainian Biochemical Journal* 2019, 91, 5-18, https://doi.org/10.15407/ubj91.03.005.

60. Mohammadi, F.; Kavousi, H.R.; Mansouri, M. Effects of salt stress on physio-biochemical characters and gene expressions in halophyte grass *Leptochloa fusca* (L.) Kunth. *Acta Physiol Plant* 2019, 41, https://doi.org/10.1007/s11738-019-2935-5.

61. Colak, N.; Torun, H.; Gruz, J.; Strnad, M.; Ahmet, F. Exogenous N-Acetylcysteine alleviates heavy metal stress by promoting phenolic acids to support antioxidant defence systems in wheat roots. *Ecotoxicology and Environmental 2019*, 181, 49-59, https://doi.org/10.1016/j.ecoenv.2019.05.052.

62. Kosyk, O.I.; Khomenko I.M.; Batsmanova, L.M.; Taran, N.Y. Phenylalanine ammonia-lyase activity and anthocyanin content in different varieties of lettuce under the cadmium influence. *The Ukrainian Biochemical Journal* 2019, 89, 85-91, https://doi.org/10.15407/ubj91.02.085.

63. Feduraev, P.; Riabova, A.; Skrynkin, L.; Punjing, A.; Tokupova, E.; Maslenikov, P.; Chupakhina, G. Assessment of the Role of PAL in Lignin Accumulation in Wheat (*Triticum aestivum* L.) at the Early Stage of Ontogenesis. *Int. J. Mol. Sci.* 2021, 22, https://doi.org/10.3390/ijms22189848.

64. Medda, S.; Dessena, L.; Mulas, M. Monitoring of the PAL Enzymatic Activity and Polyphenolic Compounds in Leaves and Fruits of Two Myrtle Cultivars during Maturation. *Agriculture* 2020, 10, https://doi.org/10.3390/agriculture10090389.
of heavy metals (metalloids) by selenium via root application in plants. *Journal of Hazardous Materials* **2021**, 402, https://doi.org/10.1016/j.jhazmat.2020.123570.

66. Zainulabdeen, J.A.; Ibrahim, S.A. Effect of herbicide (Pyroxsulam) on Nickel, Cadmium, Lead, and total Flavonoid levels of two Iraqi Wheat species. *Eurasia J Biosci.* **2020**, 14, 2817-2821.

67. Fadel, S.S. Change total flavonoids and some trace elements contents of two Iraqi wheat species after spraying pallas 45 OD herbicide. *Annals of the Romanian society for Cell Biology* **2021**, 25, 4327-4334.

68. Borovaya, S.A.; Klykov, A.G. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. *Plant Biotechnol Rep.* **2020**, 14, 213-225, https://doi.org/10.1007/s11816-020-00614-9.

69. Nese, E.; Abdullah, D.; Musa, T. The effects of abiotic stressors and signal molecules on phenolic composition and antioxidant activities of *in vitro* regenerated *Hypericum perforatum* (St. John’s Wort). *South African Journal of Botany* **2020**, 133, 253-263, https://doi.org/10.1016/j.sajb.2020.07.037.

70. Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. *Biochimie* **2006**, 88, 1707-1719, https://doi.org/10.1016/j.biochi.2006.07.003.

71. Baskar, V.; Venkatesh, R.; Ramalingam, S. Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses. In: *Antioxidants and Antioxidant Enzymes in Higher Plants*. Springer, Cham. Gupta, D.; Palma, J.; Corps, F. (eds) **2018**, https://doi.org/10.1007/978-3-319-75088-0_12.

72. Wang, Q.; Hu, J.; Yang, T. Anatomy and lignin deposition of stone cell in *Camellia oleifera* shell during the young stage. *Protoplasma* **2021**, 258, 361-370, https://doi.org/10.1007/s00709-020-01568-z.

73. Borisova, G.G.; Chukina, N.V.; Maleva, M.G. Accumulation of heavy metals in leaves of submerged hydrophytes (*Elodea canadensis* Michx. and *Potamogeton perfoliatus* L.) and their responses to the effect of the wastewater of a metallurgical plant. *Inland Water Biol* **2017**, 10, 176-181, https://doi.org/10.1134/S1995082917020031.

74. Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water. *A Review ACS Sustainable Chemistry & Engineering* **2018**, 6, 7181-7192, https://doi.org/10.1021/acssuschemeng.8b01345.

75. Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. *Int. J. Mol. Sci.* **2018**, 19, https://doi.org/10.3390/ijms19020335.

76. Pazhan, A.S.; Henry, R.J. Genetic Modification of Biomass to Alter Lignin Content and Structure. *Industrial & Engineering Chemistry Research* **2019**, 58, 16190-16203, https://doi.org/10.1021/acs.iecr.9b01163.

77. Sevindik, M.; Akgul, H.; Bal, C.; Selamoglu, Z. Phenolic Contents, Oxidant/Antioxidant Potential and Heavy Metal Levels in Cyclocybe cylindracea. *Indian J of Pharmaceutical Education and Research* **2018**, 52, 437-41, https://doi.org/10.5530/ijper.52.3.50.