viRome: an R package for the visualization and analysis of viral small RNA sequence datasets

Citation for published version:
Watson, M, Schnettler, E & Kohl, A 2013, 'viRome: an R package for the visualization and analysis of viral small RNA sequence datasets'. Bioinformatics, vol. 29, no. 15, pp. 1902-3.
https://doi.org/10.1093/bioinformatics/btt297

Digital Object Identifier (DOI):
10.1093/bioinformatics/btt297

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Bioinformatics

Publisher Rights Statement:
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
viRome: an R package for the visualization and analysis of viral small RNA sequence datasets

Mick Watson¹,*, Esther Schnettler² and Alain Kohl²

¹ARK-Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG and ²MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK

ABSTRACT
Summary: RNA interference (RNAi) is known to play an important part in defence against viruses in a range of species. Second-generation sequencing technologies allow us to assay these systems and the small RNAs that play a key role with unprecedented depth. However, scientists need access to tools that can condense, analyse and display the resulting data. Here, we present viRome, a package for R that takes aligned sequence data and produces a range of essential plots and reports.

Availability and implementation: viRome is released under the BSD license as a package for R available for both Windows and Linux http://virome.sf.net. Additional information and a tutorial is available on the ARK-Genomics website: http://www.ark-genomics.org/bioinformatics/virome.

Contact: mick.watson@roslin.ed.ac.uk

Received on December 20, 2012; revised on May 17, 2013; accepted on May 21, 2013

1 INTRODUCTION
RNA interference (RNAi) is mediated by small RNAs, such as microRNAs (miRNAs) of 21–22 nt (Lagos-Quintana et al., 2001), small interfering RNAs (siRNAs) of 21–22 nt (Bernstein et al., 2001; Zamore et al., 2000) and PIWI-interacting RNAs (piRNAs) of 24–30 nt (Aravin et al., 2003; Brennecke et al., 2007), and these molecules regulate many biological processes. These pathways are also a major part of the antiviral response in both insects and plants, including a variety of important mosquito-borne diseases of humans and animals, such as West Nile Virus, Dengue Virus and Chikungunya Virus. In arthropods, these are characterized by the production of 21–22 nt virus-derived small interfering RNAs (viRNAs) or 24–30 nt viral piRNA-like molecules (Blair, 2011; Donald et al., 2012; Myles et al., 2009).

Second-generation sequencing allows scientists to assay these systems in unprecedented depth, and short reads capture both the 21–22 nt siRNAs and the 24–30 nt piRNAs. However, there is a need for scientists to be able to summarize, analyse and visualize the results of such experiments. Here, we present viRome, a package for R, which takes aligned sequencing data in the BAM format (Li et al., 2009) and produces a variety of plots and reports that are essential to the analysis of data from viral siRNA datasets.

Software packages to analyse viral siRNA data exist. Paparazzi (Vodovar et al., 2011) is designed to reconstruct viral genomes from siRNA data and produces some similar plots to viRome. Alternatively, Visitor (Antoniewski, 2011), an informatic pipeline for analysing short-read viRNA data, also produces several similar plots. However, both are implemented in Perl and are limited to the Linux/Unix operating system; they include alignment as part of the analysis; therefore, using an alternative aligner would require programming skills; finally, the plots are generated in batch mode; hence, there is no interaction between the user and the software.

As a package for R, viRome improves on these software packages in several ways, including (i) viRome allows interaction between the user and the software during report and graph generation, (ii) viRome is available on any operating system that supports R and has been tested on Microsoft Windows and several Linux distributions, (iii) viRome separates visualization from alignment; therefore, the user is free to use any alignment software they wish and (iv) as an R package, viRome integrates seamlessly with other R packages from the Bioconductor project (Gentleman et al., 2004).

2 ANALYSIS AND VISUALIZATION
As input, viRome takes aligned sequence data in the BAM format. Many tools exist for alignment (Fonseca et al., 2012) and provided they support the SAM/BAM format, viRome is capable of working with their output. Many of the functions within viRome attempt to summarize millions of data points into tables and plots that allow biological interpretation. One of the benefits of viRome is that most functions return the summarized data, as well as creating a plot. This allows users to create their own plots if they wish. Figure 1 shows a selection of plots produced by viRome.

Global analyses: One of the first requirements is to plot a histogram of the lengths of mapped reads—a peak at 21–22 nt implying an siRNA response, and a high frequency of 24–30 nt with a peak at 28 a piRNA response. In viRome, this can be created using the barplot.bam function. Users may also create a report using the sequence.report function. This produces a data.frame in R that summarizes and counts the sequences aligned to each base in a given reference sequence. Users can see the exact sequence, its length, the location and strand of the alignment plus a count of how many times that sequence
occurs. As a data.frame, this can be easily exported to Excel or
other spreadsheet software.

Location-based analyses: Although many viruses are targeted
by the siRNA pathway throughout the genome, others are tar-
geted only in limited regions (Sabin et al., 2013). A heatmap
representing the occurrence of all mapped read lengths across
all genomic locations can be produced using the
size.position.heatmap function, and barplots showing counts for
each genomic location for each read length generated using the
stacked.barplot function.

Read-based analyses: Read-based analyses allow users to focus
on patterns in particular subsets of reads. Single barplots show-
ing the location, strand and count of reads mapping through-
out the genome can be visualized using the position.barplot
function. The base composition of subsets of reads can be calcu-
lated with the make.pwm function. Sequence signatures of the
piRNA pathway include a strong U1 bias in primary, antisense
piRNAs and following ‘ping-pong’ cycle amplification involving
AGO3 and Aub, a strong A10 bias in secondary sense piRNAs in
piRNAs and following ‘ping-pong’ cycle amplification involving
pathways, and there is a need for software that allows scientists
to process such data. We have developed viRome, a package for
R that allows the interactive generation of a range of informative
plots and reports. As an R package, viRome is released under an
open-source license and can be downloaded from http://
virome.sf.net, where a tutorial is also available.

Funding: UK Biotechnology and Biological Sciences Research Council (BBSRC) (BB/J004243/1; BB/J004235/1) (to M.W.);
UK Medical Research Council (MRC) (to A.K. and E.S.); The Netherlands Organisation for Scientific Research NWO
(Rubicon Fellowship number: 825.10.021) (to E.S.).

Conflict of Interest: none declared.

REFERENCES

Antoniewski,C. (2011) Visitor, an informatic pipeline for analysis of viral siRNA
sequencing datasets. Methods Mol. Biol., 721, 123–142.

Aravin,A.A. et al. (2003) The small RNA profile during Drosophila melanogaster
development. Dev. Cell, 5, 337–350.

Bernstein,E. et al. (2001) Role for a bidentate ribonuclease in the initiation step of
RNA interference. Nature, 409, 363–366.

Blair,C.D. (2011) Mosquito RNAi is the major innate immune pathway controlling
arbovirus infection and transmission. Future Microbiol., 6, 265–277.

Brennecke,J. et al. (2007) Discrete small RNA-generating loci as master regulators
of transposon activity in Drosophila. Cell, 128, 1089–1103.

Donald,C.L. et al. (2012) New insights into control of arbovirus replication and
spread by insect RNA interference pathways. Insects, 3, 511–531.

Fonseca,N.A. et al. (2012) Tools for mapping high-throughput sequencing data.
Bioinformatics, 28, 3169–3177.

Gentleman,R.C. et al. (2004) Bioconductor: open software development for com-
putational biology and bioinformatics. Genome Biol., 5, R80.

Lagos-Quintana,M. et al. (2001) Identification of novel genes coding for small
expressed RNAs. Science, 294, 853–858.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.
Bioinformatics, 25, 2078–2079.

Morazzani,E.M. et al. (2012) Production of virus-derived ping-pong-dependent
piRNA-like small RNAs in the mosquito soma. PLoS Pathog., e1002470.

Myles,K.M. et al. (2009) Origins of alphavirus-derived small RNAs in mosquitoes.
RNA Biol., 6, 387–391.

Sabin,L.R. et al. (2013) Dicer-2 processes diverse viral RNA species. PLoS One, 8,
65548.

Schnittler,E. et al. (2013) RNA interference targets arbovirus replication in culi-
coids cells. J. Virol., 87, 2441–2454.

Vodovar,N. et al. (2011) In silico reconstruction of viral genomes from small RNAs
improves virus-derived small interfering RNA profiling. J. Virol., 85,
11016–11021.

Vodovar,N. et al. (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature
in mosquito cells. PLoS One, 7, e30861.

Zamore,P.D. et al. (2000) RNAi: double-stranded RNA directs the ATP-dependent
cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33.