Burkholderia thailandensis Isolated from Infected Wound, Arkansas, USA

Jay E. Gee, Mindy G. Elrod, Christopher A. Gulvik, Dirk T. Haselow, Catherine Waters, Lindy Liu, Alex R. Hoffmaster

The bacterium *Burkholderia thailandensis*, a member of the *Burkholderia pseudomallei* complex, is generally considered nonpathogenic; however, on rare occasions, *B. thailandensis* infections have been reported. We describe a clinical isolate of *B. thailandensis*, BtAR2017, recovered from a patient with an infected wound in Arkansas, USA, in 2017.

B. thailandensis is a member of the *Burkholderia pseudomallei* complex and is generally considered nonpathogenic (1). *B. pseudomallei* causes the disease melioidosis and can be fatal even when properly treated (1–3). *B. thailandensis* was first discovered in Thailand and was differentiated from *B. pseudomallei* phenotypically by its ability to assimilate arabinose (3). *B. thailandensis*, like *B. pseudomallei*, naturally occurs in the environment (e.g., in moist soils) and is associated with tropical or subtropical climates (3,4). Environmental isolates of *B. thailandensis* have been predominantly recovered in Southeast Asia, with sporadic reports in other regions such as in Australia, which is considered the ancestral origin for *B. pseudomallei* based on analysis of genomic single-nucleotide polymorphisms (SNPs) (4–6).

The phenotypic similarities are substantial among members of the *Burkholderia pseudomallei* complex, other *Burkholderia* species, and other bacteria such as *Pseudomonas* spp. Laboratory personnel unfamiliar with *B. pseudomallei* often have difficulty identifying it using microbiologic methods commonly available in clinical settings. Automated biochemical systems might also misidentify *B. pseudomallei* because of an insufficient number of reference strains in their databases. Incorrect identification can delay appropriate antimicrobial therapy (1,4,7).

Although rare, *B. thailandensis* infections in humans have been reported. The first case reported in the literature occurred in or before 1999 in Thailand in a 16-year-old boy who suffered compound fractures in a motorcycle accident (8). The second case occurred in 1997 in a 76-year-old man in Louisiana, USA, who had a pleural wound; this case resulted in recovery of isolate H0587 (also known as CDC2721121). Further details on the wound and whether it was acquired locally or whether the patient had a travel history to areas endemic for *B. thailandensis* are not available. The third case occurred in 2003 in a previously healthy 2-year-old boy in Texas, USA, who aspirated water from a ditch after a car accident; this case resulted in recovery of isolate TXDOH (also known as CDC3015869) (9). The fourth case occurred in 2011 in a 42-year-old man in Malaysia who had a foot abscess with ankle swelling and skin cellulitis (10). The fifth report was a fatal case that occurred in 2013 in a 67-year-old man who was treated at a hospital in Chongqing, China (11); however, subsequent correspondence suggested that the species had been identified incorrectly and was most likely *B. pseudomallei* (12).

In April 2017, a 29-year-old woman with diabetes in Arkansas, USA, crashed into a large metal trash bin while driving an all-terrain vehicle, resulting in an open bone forearm fracture. Treatment of the wound included installation of a metal plate. Approximately 3 months later, the patient returned to the hospital because of a 2-week history of swelling of her forearm. An isolate was recovered from pure culture graded 1+ (trace growth) from a deep operative tissue specimen from the forearm wound. Initial antimicrobial treatment consisted of piperacillin/tazobactam, vancomycin, and cefazolin. Testing of the isolate using the Microscan Walkaway automated biochemical system (Beckman Coulter, Atlanta, GA, USA) by the hospital laboratory identified *B. pseudomallei*. Based on this result, the Arkansas Department of Health (DoH) contacted the Centers for Disease Control and Prevention (CDC) about a suspected case of melioidosis. After the hospital transferred the isolate to the Arkansas DoH, *B. pseudomallei* was ruled out by using biochemical and PCR testing. The isolate was presumptively identified as *B. thailandensis* by using the Bruker MALDI Biotyper mass spectrometer (Bruker Daltonics, Billerica, MA, USA). Arkansas DoH forwarded the isolate, designated BtAR2017, to CDC for confirmation and further characterization. The patient was discharged with 6 weeks of intravenous ceftazidime treatment. She last saw her healthcare provider in December 2017 and was reported completely healed.
The Study

Biochemical testing, including arabinose assimilation, identified isolate BtAR2017 as *B. thailandensis*. We extracted DNA from the isolate for next-generation sequencing (online Technical Appendix, https://wwwnc.cdc.gov/EID/article/24/11/18-0821-Techapp1.pdf). We analyzed the genome of BtAR2017 for multilocus sequence typing (MLST), which yielded sequence type (ST) 101. ST101 was previously identified in *B. thailandensis* isolates TXDOH and H0587 (9). Although MLST is commonly used to subtype members of the *B. pseudomallei* complex, it has only a moderate level of resolution and, because of recombination, might not reflect actual levels of relatedness (5,13).

For high-resolution analysis, we compared the genome of BtAR2017 with a reference panel of publicly available *B. thailandensis* genomes (Table). A dendrogram based on the SNP analysis indicates that BtAR2017 clusters with H0587 and TXDOH (Figure). Also within the BtAR2017 cluster is E555, an environmental isolate recovered in Cambodia in 2005, and strain 2.1, which metadata in the National Center for Biotechnology Information entry indicate was recovered in June 2017 from soil in Vietnam (14). This cluster appears as an outlier subgroup compared with other examples of *B. thailandensis*, including E264† (type strain). MLST indicates that E555 is ST696, which is a single-locus variant of ST101. Comparison of the genome sequences indicates >4,700 core SNPs between BtAR2017 and E555, compared with >32,700 SNPs between BtAR2017 and E264†. BtAR2017 has >2,200 SNPs compared with H0587 but >5,900 SNPs compared with TXDOH.

Sim et al. (14) previously noted this outlier subgroup and postulated that its members, including E555, might be more virulent than typical examples of *B. thailandensis*. However, their studies challenging BALB/c mice and the nematode Caenorhabditis elegans with E555 did not reveal any significant difference in virulence compared with E264† (14). Another study by Deshazer using TXDOH and H0587 to challenge mice and hamsters indicated that in these models TXDOH also had a similar level of virulence as E264†, whereas H0587 was avirulent (13). E555 is known to have features such as a *B. pseudomallei*-like capsular polysaccharide (14). We tested BtAR2017 for *B. pseudomallei* capsular polysaccharide, but results were negative.

We analyzed average nucleotide identity (ANI) and determined that the genome for BtAR2017 has 98.99% identity with that of E264†, which is above the 95% threshold commonly used for distinguishing species. The BtAR2017 genome also had an ANI of 99.75% compared with TXDOH but only 92.7% compared with K96243, a representative *B. pseudomallei* strain used in lieu of the species type strain. Although BtAR2017 is in the outlier subgroup resolved by genomic SNP analysis, these ANI results suggest that BtAR2017 and other members of the subgroup are *B. thailandensis* and not a novel species.

Conclusions

The recovery of the clinical isolates suggests that *B. thailandensis* might be endemic to the continental United States

Table. Reference *Burkholderia* spp. genomes used for characterization of *Burkholderia thailandensis* isolated from an infected wound, Arkansas, USA, 2017†

Isolate	Other identifiers	Origin	Source	ST†	GenBank accession nos.	ANI	SNP
BtAR2017	34: 2002712821	France	Horse (foal)	73	NZ_LNNG000000000	X	
BtAR2017	49639	Australia	Environmental	699	NZ_ABBH000000000	X	
BtAR2017	E1	Papua New Guinea	Environmental	668	NZ_LOXF000000000	X	
BtAR2017	E254	Thailand	Environmental	345	NZ_CP004381.1;	X	
					NZ_CP004382.1		
BtAR2017	E264	Thailand	Environmental	80	CP0008785.1; CP0008786.1	X	X
	E444	Thailand	Environmental	79	NZ_CP004117.1;	X	
					NZ_CP004118.1		
E555	H0587	Cambodia	Environmental	696	NZ_AECN000000000	X	
		USA (Louisiana)	Human	101	NZ_CP013409.1;	X	
		Thailand	Human	101	NZ_CP013410.1;		
					NC_006350.1;		X
					NC_006351.1	X	
		Australia	Environmental	699	NZ_CP004385.1;	X	
					NZ_CP004386.1		
		Australia	Environmental	699	NZ_LOXG000000000	X	
		Thailand	Environmental	80	NZ_AQOJ010000000	X	
	Strain 2.1	Vietnam	Environmental	696	PHRD000000000	X	
	TXDOH	CDC3015869;	USA (Texas)	101	NZ_CP013360.1;	X	X
		2003015869	Human	101	NZ_CP013361.1		
	USAMRU Malaysia no.	Malaysia	Unknown	80	NZ_CP004383.1;	X	
	20	200271744			NZ_CP004384.1		

†X indicates inclusion in analysis. ANI, average nucleotide identity; SNP, single nucleotide polymorphism; ST, sequence type.

†By multilocus sequence typing.
and capable of causing opportunistic infections associated with traumatic injuries. Because of the limited number of reports, this bacterium’s geographic range in North America is unknown. Two of the 3 clinical isolates recovered in the United States are now well documented and were acquired in the southern states of Texas and Arkansas, possibly reflecting the affinity for warm climates associated with most members of the \textit{B. pseudomallei} complex (the exception being \textit{B. mallei}, which is host-adapted to equids and does not persist in the environment). These 3 clinical isolates also are members of the outlier subgroup on the dendrogram (Figure), which suggests a genetic bottleneck and does not persist in the environment. These 3 clinical isolates also are members of the outlier subgroup on the dendrogram (Figure), which suggests a genetic bottleneck and does not persist in the environment. These 3 clinical isolates also are members of the outlier subgroup on the dendrogram (Figure), which suggests a genetic bottleneck and does not persist in the environment. These 3 clinical isolates also are members of the outlier subgroup on the dendrogram (Figure), which suggests a genetic bottleneck and does not persist in the environment.

\section*{Acknowledgments}

We thank the CDC Biotechnology Core Facility Branch (Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases) for performing Illumina sequencing.

Our analysis made use of the \textit{Burkholderia pseudomallei} MLST website (http://pubmlst.org/bpseudomallei) sited at the University of Oxford. The development of this site has been funded by the Wellcome Trust.

\section*{About the Author}

Dr. Gee is a research biologist in the Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention. His primary research interest is molecular epidemiology of members of the \textit{B. pseudomallei} complex and other emerging bacterial pathogens.

\section*{References}

1. Tuanyok A, Mayo M, Scholz H, Hall CM, Allender CJ, Kaestli M, et al. \textit{Burkholderia humpdyoodens} sp. nov., a new species related to \textit{Burkholderia thailandensis} and the fifth member of the \textit{Burkholderia pseudomallei} complex. \textit{Appl Environ Microbiol.} 2017;83:e02802-16. http://dx.doi.org/10.1128/AEM.02802-16
2. Wiersinga WJ, Virk HS, Torres AG, Currie BJ, Peacock SJ, Dance DAB, et al. Melioidosis. \textit{Nat Rev Dis Primers.} 2018;4:17107. http://dx.doi.org/10.1038/nrdp.2017.107
3. Brett PJ, DeShazer D, Woods DE. \textit{Burkholderia thailandensis} sp. nov., a \textit{Burkholderia pseudomallei}-like species. \textit{Int J Syst Bacteriol.} 1998;48:317–20. http://dx.doi.org/10.1099/00207713-48-1-317
4. Levy A, Merritt AJ, Arauvena-Roman M, Hodge MM, Inglis TJ. Expanded range of \textit{Burkholderia} species in Australia. \textit{Am J Trop Med Hyg.} 2008;78:599-604.
5. Pearson T, Giffard P, Beckstrom-Sternberg S, Auerbach R, Hornstra H, Tuanyok A, et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. \textit{BMC Biol.} 2009;7:78. http://dx.doi.org/10.1186/1741-7007-7-78
6. Ginther JL, Mayo M, Warrington SD, Kaestli M, Mullins T, Wagner DM, et al. Identification of \textit{Burkholderia pseudomallei} near-neighbor species in the Northern Territory of Australia. \textit{PLOS Negl Trop Dis.} 2015;9:e0003892. http://dx.doi.org/10.1371/journal.pntd.0003892
7. Hoffmaster AR, AuCoin D, Baccam P, Baggett HC, Baird R, Bhengsri S, et al. Melioidosis diagnostic workshop, 2013. \textit{Emerg Infect Dis.} 2015;21.
8. Lertpatanasuwon N, Sermri K, Petkaseam A, Trakulomboon S, Thamlikitkul V, Supattamongkol Y. Arabinose-positive \textit{Burkholderia pseudomallei} infection in humans: case report. \textit{Clin Infect Dis.} 1999;29:927–8. http://dx.doi.org/10.1086/517253
9. Glass MB, Gee JE, Steigerwald AG, Cavaouti D, Barton T, Hardy RD, et al. Pneumonia and septicemia caused by \textit{Burkholderia thailandensis} in the United States. \textit{J Clin Microbiol.} 2006;44:4601–4. http://dx.doi.org/10.1128/JCM.01585-06
10. Zueter AM, Abumarzouq M, Yusof MI, Wan Ismail WF, Harun A. Osteoarticular and soft-tissue melioidosis in Malaysia: clinical characteristics and molecular typing of the causative agent. \textit{J Infect Dev Ctries.} 2017;11:28–33. http://dx.doi.org/10.3855/jidc.7612
11. Chang K, Luo J, Xu H, Li M, Zhang F, Li J, et al. Human infection with \textit{Burkholderia thailandensis}, China, 2013. \textit{Emerg Infect Dis.} 2017;23:1416–8. http://dx.doi.org/10.1128/EID.02308.170048
12. Dance DAB, Sarovich D, Price EP, Limmahurotsakul D, Currie BJ. Human Infection with \textit{Burkholderia thailandensis}, China, 2013. \textit{Emerg Infect Dis.} 2018;24:953–4. http://dx.doi.org/10.3201/eid2405.180238

\textbf{Figure.} Dendrogram used for characterization of \textit{Burkholderia thailandensis} isolate (bold) from an infected wound, Arkansas, USA, 2017; compared with reference isolates. Generated in MEGA 7.0 software (http://www.megasoftware.net) from results of maximum-parsimony phylogenetic analysis of core single-nucleotide polymorphisms from available \textit{B. thailandensis} genomes (conducted by using Parsnp, a component of the Harvest 1.3 software suite [https://github.com/marbl/harvest]). Scale bar indicates number of substitutions per SNP.
13. Gee JE, Gulvik CA, Elrod MG, Batra D, Rowe LA, Sheth M, et al. Phylogeography of *Burkholderia pseudomallei* isolates, Western Hemisphere. Emerg Infect Dis. 2017;23:1133–8. http://dx.doi.org/10.3201/eid2307.161978

14. Sim BM, Chantratita N, Ooi WF, Nandi T, Tewhey R, Wuthiekanun V, et al. Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic *Burkholderia* isolates. Genome Biol. 2010;11:R89. http://dx.doi.org/10.1186/gb-2010-11-8-r89

Address for correspondence: Jay E. Gee, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop G34, Atlanta, GA 30329-4027, USA; email: xzg4@cdc.gov

October 2017: Bacterial Infections

- Fatal Rocky Mountain Spotted Fever along the United States–Mexico Border, 2013–2016
- Surveillance of Extrapulmonary Nontuberculous Mycobacteria Infections, Oregon, USA, 2007–2012
- Investigation of Outbreaks of *Salmonella enterica* Serovar Typhimurium and Its Monophasic Variants Using Whole-Genome Sequencing, Denmark
- Enteric Infections Circulating during Hajj Seasons, 2011–2013
- Economic Assessment of Waterborne Outbreak of Cryptosporidiosis
- Antimicrobial Drug Prescription and *Neisseria gonorrhoeae* Susceptibility, United States, 2005–2013
- Poliovirus Excretion in Children with Primary Immunodeficiency Disorders, India
- Disease Burden of *Clostridium difficile* Infections in Adults, Hong Kong, China, 2006–2014
- Molecular Tracing to Find Source of Protracted Invasive Listeriosis Outbreak, Southern Germany, 2012–2016
- Dengue Virus 1 Outbreak in Buenos Aires, Argentina, 2016
- Mild Illness during Outbreak of Shiga Toxin–Producing *Escherichia coli* O157 Infections Associated with Agricultural Show, Australia
- Enterovirus D68–Associated Acute Flaccid Myelitis in Immunocompromised Woman, Italy
- Diagnosis of Fatal Human Case of St. Louis Encephalitis Virus Infection by Metagenomic Sequencing, California, 2016
- Usutu Virus RNA in Mosquitoes, Israel, 2014–2015
- Macrolide-Resistant *Mycoplasma pneumoniae* Infection, Japan, 2008–2015
- Epidemiology of Reemerging Scarlet Fever, Hong Kong, 2005–2015
- Off-Label Use of Bedaquiline in Children and Adolescents with Multidrug-Resistant Tuberculosis
- Monitoring Avian Influenza Viruses from Chicken Carcasses Sold at Markets, China, 2016
- Bedaquiline and Delamanid Combination Treatment of 5 Patients with Pulmonary Extensively Drug-Resistant Tuberculosis
- Hantavirus Pulmonary Syndrome Caused by Maripa Virus in French Guiana, 2008–2016
- Berlin Squirrelpox Virus, a New Poxvirus in Red Squirrels, Berlin, Germany
- Bedaquiline and Linezolid for Extensively Drug-Resistant Tuberculosis in Pregnant Woman
- *Mycobacterium riyadhense* in Saudi Arabia
- *Carbapenemase VCC-1–Producing Vibrio cholerae* in Coastal Waters of Germany
- Autochthonous Transmission of East/Central/South African Genotype Chikungunya Virus, Brazil
- Fluoroquinolone-Resistant *Alcaligenes faecalis* Related to Chronic Suppurative Otitis Media, Angola
- Spread of Chikungunya Virus East/Central/South African Genotype in Northeastern Brazil
- Familial Transmission of emm12 Group A Streptococcus
- Six-Month Response to Delamanid Treatment in MDR TB Patients

https://wwwnc.cdc.gov/eid/articles/issue/23/10/table-of-contents
Burkholderia thailandensis Isolated from Infected Wound, Arkansas, USA

Technical Appendix

Materials and Methods

DNA was extracted using the Maxwell RSC Cultured Cells DNA kit on the Promega Maxwell RSC Instrument per the manufacturer’s instructions (Promega, Fitchburg, Wisconsin). The sample was eluted in PCR-grade water and RNase A, filtered through a 0.1 µm filter, and checked for sterility before submission for whole genome sequencing (1).

The sequence for BtAR2017 was determined from paired-end Illumina reads which were generated on an Illumina MiSeq (Illumina, Inc., San Diego, California). Genomic DNA was sheared to a mean size of 600 bp using a Covaris LE220 focused ultrasonicator (Covaris Inc., Woburn, MA). DNA fragments were Ampure (Beckman Coulter Inc., Indianapolis, IN) cleaned and used to prepare dual-indexed sequencing libraries using NEBNext Ultra library prep reagents (New England Biolabs Inc., Ipswich, MA) and barcoding indices synthesized in the CDC Biotechnology Core Facility. Libraries were analyzed for size and concentration, pooled and denatured for loading onto flowcell for cluster generation. Sequencing was performed on the Illumina MiSeq using 2 × 250 bp cycle paired-end sequencing kits. On completion, sequence reads were filtered for read quality, basecalled and demultiplexed using bcl2fastq (v2.19). Raw read data were archived at NCBI as SRA accession SRP135864.

The genome was submitted to the Burkholderia pseudomallei MLST Web site (http://pubmlst.org/bpseudomallei) to identify the sequence type (2,3). Core SNPs were analyzed using Parsnp in the Harvest 1.3 suite (4). The dendrogram was generated in MEGA7 (5). Average nucleotide Identity (ANI) was calculated at http://enve-omics.ce.gatech.edu/ani/index (6). The Active Melioidosis Detect kit (inBios, Seattle, WA) was used to test BtAR2017 for the presence of B. pseudomallei capsular polysaccharide as per manufacturer’s instructions (7).
References

1. Gee JE, Gulvik CA, Elrod MG, Batra D, Rowe LA, Sheth M, et al. Phylogeography of *Burkholderia pseudomallei* isolates, Western Hemisphere. Emerg Infect Dis. 2017;23:1133–8. PubMed http://dx.doi.org/10.3201/eid2307.161978

2. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. PubMed http://dx.doi.org/10.1186/1471-2105-11-595

3. Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, et al. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, *Burkholderia pseudomallei* and *Burkholderia mallei*. J Clin Microbiol. 2003;41:2068–79. PubMed http://dx.doi.org/10.1128/JCM.41.5.2068-2079.2003

4. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:524. PubMed http://dx.doi.org/10.1186/s13059-014-0524-x

5. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. PubMed http://dx.doi.org/10.1093/molbev/msw054

6. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91. PubMed http://dx.doi.org/10.1099/ijs.0.64483-0

7. Houghton RL, Reed DE, Hubbard MA, Dillon MJ, Chen H, Currie BJ, et al. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis. 2014;8:e2727. PubMed http://dx.doi.org/10.1371/journal.pntd.0002727