CONTINUUM LIMIT OF A MESOSCOPIC MODEL WITH ELASTICITY OF
STEP MOTION ON VICINAL SURFACES

YUAN GAO, JIAN-GUO LIU, AND JIANFENG LU

Abstract. This work considers the rigorous derivation of continuum models of step motion starting from a mesoscopic Burton-Cabrera-Frank (BCF) type model following the work [Xiang, SIAM J. Appl. Math. 2002]. We prove that as the lattice parameter goes to zero, for a finite time interval, a modified discrete model converges to the strong solution of the limiting PDE with first order convergence rate.

1. INTRODUCTION

In this work, we revisit the derivation of continuum model for step flow with elasticity on vicinal surfaces. The starting point is the Burton-Cabrera-Frank (BCF) type models for step flow [2]; see [5, 6, 27, 13] for extensions to include elastic effects. These are mesoscopic models which track the position of each individual step (and hence keep the discrete nature of the step fronts), while adopt a continuum approximation for the interactions of the steps with surrounding atoms of the thin film. The step motion is hence characterized by a system of ODEs. Such models are widely used for crystal growth of thin films on substrates, with many scientific and engineering applications [22, 28, 33]. The goal of this work is to rigorously understand the PDE limit of such models.

To avoid unnecessary technical difficulties, we will study a periodic train of steps in this work. Denote the step locations at time t by $x_i(t), i \in \mathbb{Z}$, we assume that

$$x_{i+N}(t) - x_i(t) = L, \quad \forall i \in \mathbb{Z}, \forall t \geq 0,$$

where L is a fixed length of the period. Thus, only the step locations in one period $\{x_i(t), i = 1, \ldots, N\}$ are considered as degrees of freedom, see Figure 1 for example.

We denote the height of each step as $a = \frac{1}{N}$, and thus the total height change across the N steps in the period is given by 1. Corresponding to the step locations, we define the height profile h_N of the steps as

$$h_N(x, t) = \frac{N - i}{N}, \quad \text{for } x \in [x_i(t), x_{i+1}(t)], \ i = 1, \ldots, N.$$
Moreover, h_N can be further extended, consistent with the periodic assumption (1.1), such that

\begin{equation}
 h_N(x + L) - h_N(x) = -1, \quad \forall x \in \mathbb{R}.
\end{equation}

For the continuum limit, we consider the step height $a \to 0$ or equivalently, the number of steps in one period $N \to \infty$.

In the pioneering work [29] (see also [30]), Xiang considered a BCF type model which incorporates the elastic interaction as

\begin{equation}
 \frac{dx_i}{dt} = a^2 \left(\frac{f_{i+1} - f_i}{x_{i+1} - x_i} - \frac{f_i - f_{i-1}}{x_i - x_{i-1}} \right), \quad i = 1, \cdots, N,
\end{equation}

where f_i's are the local chemical potential given by

\begin{align*}
 f_i := \frac{\partial E}{\partial x_i} &= -\sum_{j \neq i} \left(\frac{\alpha_1}{x_j - x_i} - \frac{\alpha_2}{(x_j - x_i)^2} \right),
\end{align*}

with the parameters $\alpha_1 = \frac{4}{\pi} a^4$, $\alpha_2 = \frac{2}{\pi} a^6$ and the energy functional E given by

\begin{equation}
 E = \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i} \left(\alpha_1 \ln |x_i - x_j| + \frac{\alpha_2}{2} \frac{1}{(x_i - x_j)^2} \right).
\end{equation}

For the limit $a \to 0$, Xiang [29] asymptotically derived the corresponding continuum model

\begin{equation}
 h_t = \pi \alpha_1 a^2 \left(-H(h_x) + \frac{1}{2\pi} \frac{a h_{xx}}{h_x} + \frac{\pi}{2} \frac{\alpha_2}{\alpha_1} \frac{h_x h_{xx}}{a} \right).
\end{equation}

\footnote{Compared to [29], we drop all the physical constants that are mathematically unimportant.}
Here $H(\cdot)$ is the L-periodic Hilbert transform:

$$
(1.6) \quad (Hu)(x) := \frac{1}{L} \text{PV} \int_0^L u(x-s) \cot\left(\frac{\pi s}{L}\right) \, ds.
$$

Observe that for the particular choice of the parameters α_1 and α_2, (1.5) suggests to rescale t to consider time scale of the order $O(a^{-6})$. Moreover, the coefficients in front of the term $h_x h_{xx}$ and the term $\frac{h_{xx}}{h_x}$ in the bracket scale as a so they become higher order terms compared with the first one. As argued in [30], the term $\alpha \frac{h_{xx}}{h_x}$ is the correction to the misfit elastic energy density due to the discrete nature of the stepped surface. Although it is small compared to the leading-order term $H(h_x)$, it is comparable with the term $a h_x h_{xx}$, which comes from the broken bond elastic interaction between steps. When formally ignoring these terms with small a-dependent amplitude, the PDE analysis for $h_t = -H(h_x)_{xx}$ is easy because the operator $H(\cdot)_x$ is a negative operator.

Recently, motivated by the PDE (1.5) proposed by [29], Dal Maso, Fonseca and Leoni [4] studied the weak solution of

$$
(1.7) \quad h_t = \left(\frac{2\pi}{L} H(h_x) + \left(3h_x + \frac{1}{h_x} \right) h_{xx} \right)_{xx},
$$

in terms of a variational inequality. Note that all the coefficients in this PDE are $O(1)$, unlike the PDE (1.5). They validated (1.7) analytically by verifying the positivity of h_x. Rather remarkably, they found an approximation problem and proved the limit of the solution to the approximation problem also satisfies the weak version of variational inequality, which is satisfied by strong solution. Moreover, Fonseca, Leoni and Lu [9] obtained the existence and uniqueness of the weak solution.

They applied Rothe method and truncation method to carefully deal with the singularity term.

Our goal is to rigorously prove the continuum limit of BCF type models for step flow. While it would be nice to recover (1.5) using the scaling considered in [29], it is quite challenging (if not impossible) since the PDE (1.5) involves two scales, correspond to the three terms on the right hand side:

$$
O(1) : \quad H(h_x); \quad O(a) : \quad h_x h_{xx}; \quad O(a) : \quad \frac{h_{xx}}{h_x}.
$$

Instead, we follow the scaling of the PDE (1.7) considered in [4, 9]. We will derive (1.7) as the continuum limit from a slightly modified BCF type mesoscopic model: we consider the step-flow

\footnote{For the convenience of calculation, we set the coefficients slightly different from [4]. Moreover, instead of taking h to be increasing as in [4], we take h to be decreasing corresponding to physical interpretation of h being the height of the vicinal surface, which is the same convention as [29, 30].}
ODE (1.4) with a rescaled time, i.e.,

\[
\frac{dx_i}{dt} = \frac{1}{a} \left(\frac{f_{i+1} - f_i}{x_{i+1} - x_i} - \frac{f_i - f_{i-1}}{x_i - x_{i-1}} \right), \quad i = 1, \ldots, N,
\]

with a modified chemical potential

\[
f_i := -\frac{2}{L} \sum_{j \neq i} \frac{a}{x_j - x_i} + \left(\frac{1}{x_{i+1} - x_i} - \frac{1}{x_i - x_{i-1}} \right) + \left(\frac{a^2}{(x_{i+1} - x_i)^3} - \frac{a^2}{(x_i - x_{i-1})^3} \right);
\]

see Section 4. The first term in \(f_i \) comes from the misfit elastic interaction between the steps, which is an attractive interaction. The second and third terms come from the broken bond elastic interaction between steps, which are repulsive terms. Different from Xiang’s chemical potential in [29], we choose the scaling so that the attractive and repulsive interactions have the same order as \(a \to 0 \). We add the repulsive term \(\frac{1}{x_{i+1} - x_i} - \frac{1}{x_i - x_{i-1}} \) to cancel a singularity from the first term, which seems to be necessary. Moreover, to ease the mathematical derivation, we restrict the repulsive terms to the nearest neighbor, which is the dominant contribution.

Our modified ODE system, from both the view of chemical potential and free energy, is balanced in order. Therefore unlike the original ODE systems which (at least heuristically) lead to a PDE with multiple scales, our system converges to PDE (1.7) in the limit. We are also able to obtain the convergence rate of order \(a \) for local strong solution of the continuum PDE.

For the study of the PDE (1.7), we discover four variational structures with four corresponding energy functionals, in terms of step height \(h \), step location \(\phi \), step density \(\rho \) and anti-derivative of \(h \), denoted as \(u \). Those four kinds of descriptions are equivalent rigorously for strong local solution but it is convenient to use different one when studying different aspects of our problem. The height \(h \) is the original variable indicating the evolution of surface height while it is a better idea to use \(\rho \) and \(u \) to study the strong local solution of continuum model (1.7) due to its concise variational structure. In the proof of convergence rate in Section 4, 5 and 6, since the original discrete model is described by each step location \(x_i \), it is more natural to use the variational structure of step location \(\phi \), which is the inverse function of step height \(h \), i.e.

\[
\alpha = h(\phi(\alpha, t), t), \quad \forall \alpha.
\]

For the properties of local strong solution of continuum PDE (1.7), we used the variational structures for \(u \) and \(\rho \) to establish some \(a\text{-priori} \) estimates and then obtain the existence and uniqueness for local strong solution to the continuum PDE; see Section 3. We state the main result
of Section 3 below, with the notations \(I := [0, L] \),

\[
W^{k,p}_{\text{per}}(I) := \{ u(x) \in W^{k,p}_{\text{loc}}(\mathbb{R}) ; u(x + L) - u(x) = -1 \},
\]

and

\[
W^{k,p}_{\text{per}}(I) := \{ u \in W^{k,p}(I) ; u \text{ is } L \text{-periodic and mean value zero in one period} \}.
\]

Standard notations for Sobolev spaces are assumed above.

Theorem 1.1. Assume \(h^0 \in W^{m,2}_{\text{per}}(I) \), \(h^0_x \leq \beta \), for some constant \(\beta < 0 \), \(m \in \mathbb{Z} \), \(m \geq 6 \). Then there exists time \(T_m > 0 \) depending on \(\beta \), \(\| h^0 \|_{W^{m,2}_{\text{per}}} \) such that

\[
h \in L^\infty([0, T_m]; W^{m,2}_{\text{per}}(I)) \cap L^2([0, T_m]; W^{m+2,2}_{\text{per}}(I)) \cap C([0, T_m]; W^{m-4,2}_{\text{per}}(I)),
\]

\[
h_t \in L^\infty([0, T_m]; W^{m-4,2}_{\text{per}}(I))
\]

is the unique strong solution of (1.7) with initial data \(h^0 \), and \(h \) satisfies

\[
h_x \leq \frac{\beta}{2}, \quad \text{a.e. } t \in [0, T_m], \quad x \in [0, L].
\]

Moreover, we also study the stability of the linearized \(\phi \)-PDE. This is important in the construction of approximate solutions to the PDE with high-order consistency, which is crucial in the proof of convergence.

For the convergence result of mesoscopic model, we first testify our modified ODE system has a global-in-time solution; see Proposition 4.1. More explicitly, we prove that the steps and terraces will keep monotone if we have monotone initial data. This is consistent with the positivity of step density \(\rho \) of the PDE. Then we calculate the consistency of the step location continuum equation and ODE system till order \(a \); see Theorem 5.1. However, due to the nonlinearity and fourth order derivative in our problem, we need to utilize \textit{a-priori} assumption method and construct an auxiliary solution with high-order consistency. By establishing the stability of the linearized ODE system and carefully calculating the Hessian of coefficient matrix of ODE system, which is a 3rd-order tensor, we finally get the convergence rate \(O(a) \) of modified ODE system to its continuum PDE limit.

Recall the definition (1.2) and (1.10). Denote

\[
\alpha_i = h(x_i(0), 0) = \frac{N - i}{N}.
\]
and
\[\phi_i(t) = \phi(\alpha_i, t). \]

We state the main convergence result in this work as follows:

Theorem 1.2. Let the step height be \(a = \frac{1}{N} \). Assume for some constant \(\beta < 0 \), some \(m \in \mathbb{N} \) large enough, the initial datum \(h(0) \in W^{m,2}_{\text{per}}(I) \) satisfies

(1.14) \[h_x(0) \leq \beta < 0. \]

Let \(h(x,t) \) be the exact solution of (1.7) on \([0,T_m]\), where \(T_m \) is the maximal existence time for strong solution defined in Theorem 1.1. Let \(\phi(\alpha,t) \) be the inverse function of \(h(x,t) \) defined in (1.10), whose nodal values are denoted as \(\phi_N(t) := \{ \phi(\alpha_i, t), i = 1, \cdots, N \} \). Let \(x(t) = (x_1(t), \cdots, x_N(t)) \) be the solution to ODE (1.8) with \(f_i \) defined in (1.9) and initial data \(x(0) = \phi_N(0) \). Then there exists \(N_0 \) large enough such that for \(N > N_0 \), we have \(x(t) \) converges to \(\phi(\alpha,t) \) with convergence rate \(a \), in the sense of

(1.15) \[\| x(t) - \phi_N(t) \|_{\ell^2} \leq C(\beta, \| h^0 \|_{W^{m,2}_{\text{per}}}) a, \text{ for } t \in [0,T_m], \]

where \(C(\beta, \| h^0 \|_{W^{m,2}_{\text{per}}}) \) is a constant depending only on \(\beta \) and \(\| h^0 \|_{W^{m,2}_{\text{per}}}. \)

Several remarks of the main result are in order.

Remark 1. In fact, we can achieve a better convergence rate \(O(a^2) \), if \(f_i \) is modified to be

\[\tilde{f}_i := -\frac{2}{L} \sum_{j \neq i} \frac{a}{x_j - x_i} + \left(1 - \frac{a}{2}\right) \left(\frac{1}{x_{i+1} - x_i} - \frac{1}{x_i - x_{i-1}} \right) + \left(\frac{a^2}{(x_{i+1} - x_i)^3} - \frac{a^2}{(x_i - x_{i-1})^3} \right). \]

Compared with (1.9), the coefficient of the second term is changed from 1 to \(1 - \frac{a}{2} \). This is done to better correct the error from the discretization of the Hilbert transform as \(a \to 0 \) (recall the second term in (1.9) is introduced to correct the singularity from the first term). In fact, by Lemma 5.2, we know the leading error \(\frac{a}{2} \phi_{\alpha} \) in Lemma 5.3 can be removed by such a correction term. Hence we can get \(O(a^2) \) consistency in Section 5 and consequently, the convergence rate can be improved to \(O(a^2) \) in Theorem 1.2 for the modified microscopic model.

Remark 2. Theorem 1.2 is a result of local convergence to strong solutions to the PDE. The global convergence of the ODE system to the (weak) global-in-time solution to the PDE (1.7) is more challenging and will be left for the future. We hope the additional understanding of the variational
structures of the PDE (1.7) provided in this work would help the future investigation on global convergence.

Remark 3. To avoid unnecessary technical complications and to make the presentation of the convergence result clear, in this work we do not try to optimize the initial regularity that is needed in the Theorem 1.2. We just set m to be large enough, so that we may assume sufficient regularity of the solution.

While a comprehensive review of the vast literature of crystal growth is beyond the scope of this work, let us review here some related works mostly in the mathematical literature. Besides the work of [29], the derivation of the continuum limit of BCF models have also been considered in other works, see e.g., [26, 7, 23, 19]. However, as far as we know, the derivation has not been done on the rigorous level and moreover, the convergence rate is provided here, which seems to be missing before in the literature. The idea using step location for formal asymptotic analysis was inspired by [29]. In order to get the convergence rate rigorously, we find it is better to first study the continuum PDE for the inverse function ϕ, instead of the height h. Recently, in the attachment-detachment-limited (ADL) regime, AL Hajj Shehadeh, Kohn and Weare [1] studied the continuum limit of self-similar solution and obtained the convergence rate. Related to the stability analysis, the linear stability of thin film (known as the ATG instability) has been analyzed in previous works, see e.g., [30, 11, 25]. While we consider here the one spatial dimensional models, the asymptotic derivation of two dimensional continuum models have been considered in Margetis and Kohn [18] and Xu and Xiang [31], the rigorous aspects of these results will be interesting future research directions.

For the discrete BCF model considered in [29], very recently, Luo, Xiang and Yip [15] rigorously proved the step bunch phenomenon, which characterized the limiting behavior of the system as $t \to \infty$. They have also connected the step bunching with continuum models through a Γ-convergence argument [16]. These works motivate further study of the continuum limit of mesoscopic models of crystal growth.

Let us also mention that while our starting point is step flow models, the derivation of the continuum limit can be also considered starting from a more atomistic description, such as a kinetic Monte Carlo type model. See the works [12, 32, 10, 21] and more recently [20]. See also a recent work that aims to derive BCF type models from a kinetic Monte Carlo lattice model [14].

The rest of this paper is organized as follows. In Section 2, after setting up some notations, we introduce four equivalent forms of continuum PDE (1.7) and their variational structures. Section
3 is devoted to establish the existence, uniqueness and stability for local strong solution of the PDE. We then introduce the modified step-flow ODE in Section 4 and state the global existence result for the modified ODE system. Section 5 is devoted to prove the consistency result for ODE system and its continuum limit PDE. Finally, by constructing an auxiliary solution with high-order consistency, we obtain the convergence rate of the modified ODE to its continuum PDE limit in Section 6 which completes the proof of our main result Theorem 1.2.

2. The continuum model

In this section, we discuss the properties of the continuum model. Besides using the height profile h, it would be useful to rewrite the dynamics in a few equivalent ways. Let us introduce the following definitions

- step location $\phi(\alpha, t)$, the inverse function of h:
 \[\alpha = h(\phi(\alpha, t), t), \quad \forall \alpha; \]

- step density $\rho(x, t)$, the (negative) gradient of h:
 \[\rho(x, t) = -h_x(x, t); \]

- $u(x, t)$, the (negative) anti-derivative of h:
 \[h(x, t) = -u_x(x, t) - bx - k_0, \]

where b, k_0 are constants chosen to guarantee the periodicity of u_x.

Now we establish the variational structures for h, u, ρ, ϕ. In Section 3 it will be convenient to use ρ-equation and u-equation, while it will be proper to use ϕ-equation when studying the continuum limit in Section 4, 5, 6.

2.1. Equation for height profile h. Let us consider the PDE for the height profile

\[h_t = \left(-\frac{2\pi}{L} H(h_x) + (3h_x + \frac{1}{h_x}) h_{xx} \right)_{xx}. \]

As mentioned in Introduction, the coefficients here are independent of a. In Section 5 we will show that this continuum PDE can be derived as the limit of a BCF type discrete atomistic model.
First we observe that the evolution equation (1.7) has a variational structure. Define the total energy E_h as a functional of h:

$$E_h(h) := \int_0^L \left(\frac{1}{L} \int_0^L \ln|\sin(\frac{\pi}{L} (x - y))| h_x h_y dy - h_x \ln(-h_x) - \frac{h_x^3}{2} \right) dx.$$

Then we have

$$h_t = \mu_{xx} = \left(\frac{\delta E_h}{\delta h} \right)_{xx},$$

where the chemical potential μ is given by

$$\mu := \frac{\delta E_h}{\delta h} = -\text{PV} \int_0^L \frac{2\pi}{L} \cot \frac{\pi}{L} h_y(y) dy + \frac{h_{xx}}{h_x} + 3h_x h_{xx}.$$

To see this, let us calculate in Lemma 2.1 the functional derivative $\frac{\delta E_0}{\delta h}$ for

$$E_0(h) := \int_0^L \int_0^L \ln|\sin(\frac{\pi}{L} (x - y))| h_x h_y dy dx.$$

The derivative of the other two terms in E_h is straightforward.

Lemma 2.1. Assume $h(x) \in C^2([0, L])$. We have

$$\frac{\delta E_0}{\delta h} = -\text{PV} \int_0^L \frac{2\pi}{L} \cot \frac{\pi}{L} h_y(y) dy.$$

Proof. First denote

$$E_0^\delta(h) := \int_0^L \left(\int_0^{x-\delta} + \int_{x+\delta}^L \right) \ln|\sin(\frac{\pi}{L} (x - y))| h_x h_y dy dx.$$

By the definition of the principal value integral, we have

$$\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_0^\delta(h + \varepsilon \tilde{h}) = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \lim_{\delta \to 0^+} E_0^\delta(h + \varepsilon \tilde{h}),$$

and since $\ln|\sin x|$ is even, we have

$$\lim_{\delta \to 0^+} \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_0^\delta(h + \varepsilon \tilde{h}) = \lim_{\delta \to 0^+} \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_0^\delta(h + \varepsilon \tilde{h}).$$

Obviously, $E_0^\delta(h + \varepsilon \tilde{h})$ is continuous respect to δ. It suffices to show that $\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_0^\delta(h + \varepsilon \tilde{h})$ is also continuous respect to δ. Hence, from (2.7), it suffices to prove

$$\lim_{\delta \to 0^+} \int_0^L \int_{x-\delta}^{x+\delta} \frac{\pi}{L} \cot \frac{\pi}{L} h_y(y) \tilde{h}(x) dy dx = 0.$$
Indeed
\[
\int_0^L \int_{x-\delta}^{x+\delta} \frac{\pi}{L} \cot \frac{\pi(x-y)}{L} h_y(y) \tilde{h}(x) \, dy \, dx = \int_0^L -\ln \left| \sin \frac{\pi(x-y)}{L} \right| h_y(y) \bigg|_{y=x-\delta}^{x+\delta} \, dx
+ \int_0^L \int_{x-\delta}^{x+\delta} \ln \left| \sin \frac{\pi(x-y)}{L} \right| h_y(y) \tilde{h}(x) \, dy \, dx.
\]
Notice that \(h(x) \in C^2([0,L]) \). Let \(\delta \to 0 \). The first term tends to zero by Taylor expansion, and
the second term tends to zero as the integrand is integrable. \(\square \)

Note that the energy \(E_h \) we use here has a slightly different form compared to the one in [29],
denoted by \(\tilde{E}_h(h) \), which reads in the periodic setting as
\[
(2.8) \quad \tilde{E}_h(h) = \int_0^L \left(-\frac{\pi}{L} \left(h + \frac{x}{L} \right) H(h_x) - h_x \ln(-h_x) - \frac{h_x^3}{2} \right) \, dx.
\]
In fact, the two energy functionals only differ by a null Lagrangian, as we show below, so we prefer
the more symmetric expression \(E_h \).

Lemma 2.2. Let
\[
(2.9) \quad W(h) := \frac{1}{L^2} \int_0^L \int_0^L \ln \left| \sin \frac{\pi(x-y)}{L} \right| h_y \, dx \, dy.
\]
Then we have
\[
E_h(h) = \tilde{E}_h(h) + W(h),
\]
and
\[
\frac{\delta E_h}{\delta h} = \frac{\delta \tilde{E}_h}{\delta h}.
\]

Proof. First by the definition of the periodic Hilbert transform,
\[
\tilde{E}_h(h) = \int_0^L \left(-\frac{\pi}{L^2} \left(h + \frac{x}{L} \right) \text{PV} \int_0^L \cot \frac{\pi(x-y)}{L} h_y \, dy - h_x \ln(-h_x) - \frac{h_x^3}{2} \right) \, dx.
\]
Notice that
\[
\int_0^L \left(-\frac{\pi}{L^2} \left(h + \frac{x}{L} \right) \text{PV} \int_0^L \cot \frac{\pi(x-y)}{L} h_y \, dy \right) \, dx
= -\frac{1}{L} \int_0^L \left((h + \frac{x}{L}) \ln \left| \sin \frac{\pi(x-y)}{L} \right| \bigg|_0^L - \text{PV} \int_0^L \left(h_x + \frac{1}{L} \right) \ln \left| \sin \frac{\pi(x-y)}{L} \right| \, dx \right) h_y \, dy
= \frac{1}{L} \int_0^L \int_0^L \ln \left| \sin \frac{\pi(x-y)}{L} \right| h_x h_y \, dx \, dy + \frac{1}{L^2} \int_0^L \int_0^L \ln \left| \sin \frac{\pi(x-y)}{L} \right| h_y \, dx \, dy,
\]
where we have used that \(h + \frac{x}{L} \) is \(L \)-periodic function. Therefore, for \(W \) defined in (2.9), we get
\[
E_h(h) = \tilde{E}_h(h) + W(h).
\]
Similar to the proof of Lemma 2.1 we can see

\[
\left(\delta W_{\delta h}, \tilde{h} \right) = \frac{1}{L^2} \int_0^L \int_0^L \ln \left| \sin \frac{\pi (x-y)}{L} \right| dx \, \tilde{h}_y \, dy,
\]

\[
= \frac{1}{L^2} \int_0^L \tilde{h} \ln \left| \sin \frac{\pi (x-y)}{L} \right| \left| \int_0^L PV \int_0^L \frac{2\pi}{L^2} \cot \frac{\pi (x-y)}{L} \, dx \, \tilde{h}(y) \, dy \right| \, dx - \int_0^L \frac{2\pi}{L^2} \cot \frac{\pi (x-y)}{L} \, dx \, \tilde{h}(y) \, dy
\]

\[
= 0.
\]

Hence \(W(h) \) is a null lagrangian.

2.2. Equation for step location function \(\phi \). Consider the step location function \(\phi \), which defined in (1.10) as the inverse function of \(h \). From the definition, we have

\[
(2.10) \quad \phi_t = -\frac{h_t}{h_x}, \quad 1 = h_x \phi_\alpha, \quad h_{xx} = -\frac{\phi_{\alpha\alpha}}{\phi_\alpha^2}.
\]

Then changing variable from \(h \) to \(\phi \) in (2.4), we have

\[
(2.11) \quad \phi_t = -\phi_\alpha \mu_{xx} = -\partial_\alpha \left(\frac{1}{\phi_\alpha} \mu_\alpha \right),
\]

due to (2.10) and the chain rule \(\mu_x = \mu_\alpha \frac{1}{\phi_\alpha} \). Note that this immediately implies that \(\int_0^1 \phi \, d\alpha \) is a constant of motion.

The equation of \(\phi \) (2.11) also has a variational structure. To this end, let us rewrite the energy in terms of \(\phi \) such that \(E_\phi(\phi) = E_h(h) \):

\[
(2.12) \quad E_\phi(\phi) = \int_0^1 \left(\frac{1}{L} \int_0^1 \ln \left| \sin \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \right| \, d\beta - \ln(-\phi_\alpha) + \frac{1}{2\phi_\alpha^2} \right) \, d\alpha.
\]

We will show that

\[
(2.13) \quad \phi_t = -\phi_\alpha \mu_{xx} = -\partial_\alpha \left(\frac{1}{\phi_\alpha} \frac{\delta E_\phi}{\delta \phi_\alpha} \right).
\]

Similar to the proof of Lemma 2.1 let us first calculate \(\frac{\delta E_\phi^0}{\delta \phi} \), where

\[
E_\phi^0(\phi) := \int_0^1 \int_0^1 \ln \left| \sin \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \right| \, d\alpha \, d\beta.
\]

Lemma 2.3. Assume \(h(x) \in C^2([0,L]) \) and there exists a constant \(C > 0 \) such that \(|h_x| \geq C \). We have

\[
\frac{\delta E_\phi^0}{\delta \phi} = PV \int_0^1 \frac{2\pi}{L} \cot \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \, d\beta.
\]
Proof. First denote

\[E^\delta_\phi(\phi) := \int_0^1 \left(\int_0^{\beta-\delta} + \int_{\beta+\delta}^1 \right) \ln \left| \sin \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \right| \, d\alpha \, d\beta. \]

It is obvious to see that

\[\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E^0_\phi(\phi + \varepsilon \tilde{\phi}) = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \lim_{\delta \to 0} E^\delta_\phi(\phi + \varepsilon \tilde{\phi}), \]

and

\[\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E^\delta_\phi(\phi + \varepsilon \tilde{\phi}) = \int_0^1 \left(\int_0^{\beta-\delta} + \int_{\beta+\delta}^1 \right) \pi L \cot \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} (\tilde{\phi}(\alpha) - \tilde{\phi}(\beta)) \, d\alpha \, d\beta. \]

Now we claim

\[\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \lim_{\delta \to 0^+} E^\delta_\phi(\phi + \varepsilon \tilde{\phi}) = \lim_{\delta \to 0^+} \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E^\delta_\phi(\phi + \varepsilon \tilde{\phi}). \]

Obviously, \(E^\delta_\phi(\phi + \varepsilon \tilde{\phi}) \) is continuous respect to \(\delta \). It is sufficient to proof \(\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E^\delta_\phi(\phi + \varepsilon \tilde{\phi}) \) is also continuous respect to \(\delta \). In fact, since \(\cot x \) is odd,

\[\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E^\delta_\phi(\phi + \varepsilon \tilde{\phi}) = 2 \int_0^1 \left(\int_0^{\beta-\delta} + \int_{\beta+\delta}^1 \right) \pi L \cot \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \tilde{\phi}(\alpha) \, d\alpha \, d\beta. \]

Hence, it is sufficient to proof

\[\lim_{\delta \to 0^+} \int_0^1 \left(\int_0^{\beta-\delta} + \int_{\beta+\delta}^1 \right) \pi L \cot \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \tilde{\phi}(\alpha) \, d\alpha \, d\beta = 0. \]

In fact,

\[\int_0^1 \int_{\beta-\delta}^{\beta+\delta} \pi L \cot \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \tilde{\phi}(\alpha) \, d\alpha \, d\beta = \int_0^1 \tilde{\phi}(\alpha) \ln \left| \sin \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \right|_{\alpha=\beta-\delta}^{\beta+\delta} \, d\beta \]

\[- \int_0^1 \int_{\beta-\delta}^{\beta+\delta} \ln \left| \sin \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \right| \left(\frac{\tilde{\phi}(\alpha)}{\phi_\alpha(\alpha)} \right) \, d\alpha \, d\beta. \]

As \(\delta \to 0 \), the first term tends to zero by Taylor expansion. \(\left| \left(\frac{\tilde{\phi}(\alpha)}{\phi_\alpha(\alpha)} \right) \right| \) is bounded since \(h(x) \in C^2([0, L]) \) and \(|h_x| \geq C > 0 \), so the second term tends to zero as the integrand is integrable. \(\square \)

Hence we have

\[(2.14) \quad \frac{\delta E_\phi}{\delta \phi} = \frac{2\pi}{L^2} \text{PV} \int_0^1 \cot \frac{\pi (\phi(\alpha) - \phi(\beta))}{L} \, d\beta - \frac{\phi_\alpha(\alpha)}{\phi_\alpha(\alpha)} - 3 \frac{\phi_\alpha(\alpha)}{\phi_\alpha(\alpha)}. \]

It remains to show that \(\mu = \frac{\delta E_\phi}{\delta \phi} \), i.e., \(\frac{\delta E_\phi}{\delta \phi} = \frac{\delta E_\phi}{\delta h} \). For \(\tilde{\phi}, \tilde{h} \) satisfying

\[\alpha = (h + \varepsilon \tilde{h}) \circ (\phi + \varepsilon \tilde{\phi}), \]

\[\frac{\delta E_\phi}{\delta \phi} = \frac{\delta E_\phi}{\delta h} \].
Taylor expansion shows that
\[0 = h_x \tilde{\phi} + \tilde{h}. \]

Thus by (2.10), we have
\begin{equation}
\tilde{\phi} = -\phi_\alpha \tilde{h},
\end{equation}

\[E_\phi(\phi + \varepsilon \tilde{\phi}) = E_h(h + \varepsilon \tilde{h}). \]

Hence
\begin{equation}
\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_\phi(\phi + \varepsilon \tilde{\phi}) = D_\phi E_\phi \cdot \tilde{\phi}
\end{equation}

\[= \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_h(h + \varepsilon \tilde{h}) = D_h E_h \cdot \tilde{h}, \]

where \(D_h E_h : L^2(\mathbb{R}) \to L^2(\mathbb{R}) \) is the Fréchet differential, i.e. \(D_h E_h \cdot \tilde{h} \) is the dual pair which means the first order variation of \(E_h \) at \(h \) along the direction of \(\tilde{h} \).

By Riesz representation theorem, there exists \(\nabla_h E_h \in L^2([0, L], dx) \), such that
\[D_h E_h \cdot \tilde{h} = \int_0^L \nabla_h E_h \tilde{h} \, dx, \]

where \(\nabla_h E_h \) is gradient of \(E_h(h) \) in \(L^2([0, L], dx) \), which is just what we denoted as \(\frac{\delta E_h}{\delta h} \).

Similarly, there exists \(\nabla_\phi E_\phi \in L^2([0, 1], |\phi_\alpha| \, d\alpha) \), such that
\[D_\phi E_\phi \cdot \tilde{\phi} = \int_0^1 \nabla_\phi E_\phi \tilde{\phi} \, |\phi_\alpha| \, d\alpha = \int_0^1 -\nabla_\phi E_\phi \tilde{\phi} \phi_\alpha \, d\alpha. \]

where \(\nabla_\phi E_\phi \) is gradient of \(E_\phi(\phi) \) in \(L^2([0, 1], |\phi_\alpha| \, d\alpha) \).

Combining (2.15) and (2.16), we get
\[\nabla_\phi E_\phi = -\frac{1}{\phi_\alpha} \nabla_h E_h \circ \phi. \]

Again we define \(\frac{\delta E_\phi}{\delta \phi} \) as gradient of \(E_\phi(\phi) \) in \(L^2([0, 1], d\alpha) \). Noticing (2.15), we have
\[\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_\phi(\phi + \varepsilon \tilde{\phi}) = \int_0^1 \frac{\delta E_\phi}{\delta \phi} \tilde{\phi} \, d\alpha
\]

\[= \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E_h(h + \varepsilon \tilde{h}) = \int_0^L \nabla_h E_h \tilde{h} \, dx
\]

\[= \int_0^1 \frac{\delta E_h}{\delta h} \tilde{\phi} \, d\alpha. \]

Hence
\[\frac{\delta E_h}{\delta h} \circ \phi = \frac{\delta E_\phi}{\delta \phi} \in L^2([0, 1], d\alpha), \]
and

\[\mu = \frac{\delta E_h}{\delta h} \circ \phi = \nabla_h E_h \circ \phi = -\phi_{\alpha} \nabla_{\phi} E_{\phi} = \frac{\delta E_{\phi}}{\delta \phi}. \]

Therefore, we conclude that (2.11) is equivalent with (2.13). Moreover, we obtain energy identity (2.17) as

\[\frac{dE_{\phi}}{dt} = \int_0^1 \delta E_{\phi} \phi_t d\alpha = \int_0^1 \frac{1}{\phi_\alpha} \left(\left(\frac{\delta E_{\phi}}{\delta \phi} \right)_\alpha \right)^2 d\alpha. \]

2.3. Equation for step density \(\rho \). Now consider the step density \(\rho \). From the definition, rewriting the energy in terms of \(\rho \), we obtain

\[E_\rho(\rho) := \int_0^L \left(\frac{1}{L} \int_0^L \ln | \sin(\frac{\pi}{L}(x - y))| \rho(x) \rho(y) dy + \rho(x) \ln \rho(x) + \frac{\rho(x)^3}{2} \right) dx, \]

\[\frac{\delta E_\rho}{\delta \rho} = \int_0^L \frac{2}{L} \ln | \sin(\frac{\pi}{L}(x - y))| \rho(y) dy + \ln \rho(x) + 1 + \frac{3}{2} \rho(x)^2, \]

and

\[\left(\frac{\delta E_{\phi}}{\delta \rho} \right)_x = \text{PV} \int_0^L \frac{2\pi}{L^2} \cot \frac{\pi(x - y)}{L} \rho(y) dy + \frac{\rho_x}{\rho} + 3 \rho_x \rho = \mu. \]

Similar to the proof of Lemma 2.1, we can define

\[\text{PV} \int_0^L \cot \frac{\pi(x - y)}{L} \rho(y) dy = \lim_{\delta \to 0^+} \left(\int_0^{x - \delta} + \int_{x + \delta}^L \right) \cot \frac{\pi(x - y)}{L} \rho(y) dy. \]

Then

\[\frac{d}{dx} \lim_{\delta \to 0^+} \left(\int_0^{x - \delta} + \int_{x + \delta}^L \right) \ln | \sin(\frac{\pi(x - y)}{L})| \rho(y) dy \]

\[= \lim_{\delta \to 0^+} \frac{d}{dx} \left(\int_0^{x - \delta} + \int_{x + \delta}^L \right) \ln | \sin(\frac{\pi(x - y)}{L})| \rho(y) dy. \]

Hence we also obtain a variational structure for \(\rho \) and (2.4) becomes

\[\rho_t = -\mu_{xxx} = -\left(\frac{\delta E_{\phi}}{\delta \rho} \right)_{xxxx}. \]

This also shows that \(\int_0^L \rho dx \) is a constant of motion.
2.4. Equation for u. Finally, from definition of u, the energy can be rewritten in terms of u as

\begin{equation}
E_u(u) = \int_0^L \left(\frac{1}{L} \int_0^L \ln |\sin(\frac{\pi}{L}(x - y))|((u_{xx} + b)(u_{yy} + b)) dy + (u_{xx} + b) \ln(u_{xx} + b) + \left(\frac{u_{xx} + b}{2}\right)^3 \right) dx,
\end{equation}

\begin{equation}
\frac{\delta E_u}{\delta u} = \frac{2\pi}{L} H(u_{xx}) + \left(\ln(u_{xx} + b) + \frac{3}{2}(u_{xx} + b)^2 + 1\right)_{xx} = \mu_x.
\end{equation}

Hence we also obtain a variational structure for u and (2.4) becomes

\begin{equation}
(2.22)
\frac{\delta E_u}{\delta u} = -u_t.
\end{equation}

2.5. Equivalence of the formulations. We end this section with the rigorous justification of the equivalence of the above formulations.

Recall the notations for $W_{k,p}^{\per_*}(I)$, $W_{p0}^{k,p}(I)$ in (1.11) and (1.12). If $k < 0$ and $\frac{1}{p} + \frac{1}{q} = 1$, $W^{k,p}$ is the dual of $W^{-k,q}$. Denote

$$
\Phi(\xi) := \begin{cases}
\xi \ln \xi + \frac{\xi^3}{3}, & \xi > 0, \\
0, & \xi = 0, \\
+\infty, & \xi < 0,
\end{cases}
$$

and

$$
\Phi_b(\xi) := \Phi(\xi + b).
$$

By the definition (2.18), we have

\begin{equation}
E_\rho(\rho) = \int_0^L \left(\frac{1}{L} \int_0^L \ln |\sin(\frac{\pi}{L}(x - y))|\rho(x)\rho(y) dy + \Phi(\rho) \right) dx.
\end{equation}

By (2.21), we have

$$
E_u(u) = \int_0^L \left(\frac{1}{L} \int_0^L \ln |\sin(\frac{\pi}{L}(x - y))|(u_{xx} + b)(u_{yy} + b) dy + \Phi_b(u_{xx}) \right) dx.
$$

Since

$$
\frac{\delta E_u}{\delta u} = \frac{2\pi}{L} H(u_{xx}) + (\Phi'_b(u_{xx}))_{xx},
$$

the equation (2.22) can be recast as

\begin{equation}
(2.24)
u_t + \frac{2\pi}{L} H(u_{xx}) + (\Phi'_b(u_{xx}))_{xx} = 0.
\end{equation}

In order to study the problem (1.7) in periodic and mean value zero set up, we establish first, similar to [4], that
Proposition 2.4. For any integer $m \geq 1$, any $T > 0$ and some constant $\beta < 0$, the following condition are equivalent:

(a) There exists $h \in L^\infty([0, T]; W_{per}^{m,3}(I))$ with $h_t \in L^\infty([0, T]; W_{per}^{m-4,3/2}(I))$ a solution of (1.7) satisfying

$$h_x(x,t) \leq \beta < 0 \quad a.e. \ x \in \mathbb{R}, \ t \in [0, T].$$

(b) Set $b := \frac{1}{T} > 0$. There exists $u \in L^\infty([0, T]; W_{per_0}^{m+1,3}(I))$ with $u_t \in L^\infty([0, T]; W_{per_0}^{m-3,3/2}(I))$ a solution of (2.24) satisfying

$$u_{xx}(x,t) + b \geq -\beta > 0 \quad a.e. \ x \in \mathbb{R}, \ t \in [0, T].$$

(c) There exists $\rho \in L^\infty([0, T]; W_{per}^{m-1,3}(I))$ with $\rho_t \in L^\infty([0, T]; W_{per}^{m-5,3/2}(I))$ a solution of (2.20) satisfying

$$\rho(x,t) \geq -\beta > 0 \quad a.e. \ x \in \mathbb{R}, \ t \in [0, T],$$

and

$$\int_0^L \rho(x,t) \, dx = 1.$$

Proof. Step 1. For (a) \Rightarrow (c), we simply take

$$\rho(t,x) := -h_x(t,x) = u_{xx}(t,x) + b$$

(2.25)

and then (2.19) shows that ρ satisfies (c).

For (c) \Rightarrow (a), we take

$$h(x,t) = -\int_0^x \rho(s,t) \, ds + k_2(t),$$

with

$$k_2(t) = \frac{1}{T} \int_0^L \int_0^x \rho(y,t) \, dy \, dx.$$

Then $h_x = -\rho$ and $h \in L^\infty([0, T]; W_{per}^{m,3}(I))$, with mean value zero.

Noticing (2.19) again, we have

$$h_{xx} = -\rho_t = \left(\frac{\delta E_\rho}{\delta \rho} \right)_{xxxx} = \left(\frac{\delta E_h}{\delta h} \right)_{xxx},$$

in distribution sense. Integrating from 0 to x, for a.e. $t \in [0, T]$, there exists a constant $c(t)$ such that

$$h_t = \left(\frac{\delta E_h}{\delta h} \right)_{xx} + c(t).$$
That is, for any test function \(\varphi \in W^{3,3}_{\text{per}}(I) \), we have
\[
\frac{d}{dt} \langle h, \varphi \rangle = \langle \frac{\delta E}{\delta h}, \varphi_{xx} \rangle + \langle c(t), \varphi \rangle.
\]
Taking \(\varphi = 1 \), we get \(c(t) = 0 \), for a.e. \(t \in [0, T] \). Hence \(h \) is the solution of (1.7).

Step 2. For (a) \(\Rightarrow \) (b), we take
\[
h^T(x, t) = h(x, t) + bx,
\]
with \(b = \frac{1}{L} \). From (1.3) and (1.7), we know \(h^T \) is \(L \)-periodic function respect to \(x \).

Denote
\[
k_0 = \frac{1}{L} \int_0^L h^T(s, 0) ds,
\]
\[
k_1(t) = \frac{1}{L} \int_0^L \int_0^x h^T(y, t) dy \, dx - k_0 \frac{L}{2}.
\]
Set
\[
(2.26) \quad u(x, t) = \int_0^x \left(-h^T(y, t) + k_0 \right) dy + k_1(t).
\]
We know \(u \) is \(L \)-periodic function with mean value zero. To prove such \(u \) satisfies (2.24), we can proceed just the same as Step 1.

Note we also have
\[
(2.27) \quad u_x = -h - bx + k_0,
\]
\[
(2.28) \quad u_{xx} = -h_x - b.
\]
For (b) \(\Rightarrow \) (a), we simply take
\[
(2.29) \quad h = -u_x - bx.
\]
Then (2.24) and (2.22) show that \(h \) satisfies (b). \(\square \)

Proposition 2.5. For any integer \(m \geq 2 \), the following condition are equivalent:

(i) There exists \(h \in L^\infty([0, T]; W^{1,\infty}_{\text{per},*}(I) \cap W^{m,2}(I)) \) with \(h_t \in L^\infty([0, T]; W^{3,\infty}_{\text{per},*}(I)) \) a solution of (1.7) satisfying
\[
(2.30) \quad h_x(x, t) \leq \beta_1 < 0 \quad \text{a.e. } x \in \mathbb{R}, \ t \in [0, T],
\]
for some \(\beta_1 < 0 \).
(ii) There exists \(\phi \in L^\infty([0,T];W^{1,\infty}_{\text{per}}([0,1])) \cap W^{m,2}([0,1])) \) with \(\phi_t \in L^\infty([0,T];W^{-3,\infty}_{\text{per}}([0,1])) \) a solution of (2.13) satisfying

\[
\phi_{\alpha}(\alpha,t) \leq \beta_2 < 0 \quad \text{a.e. } \alpha \in \mathbb{R}, \ t \in [0,T],
\]

for some \(\beta_2 < 0 \).

Proof. Notice condition (2.30), (2.31). By inverse function theorem, \(h \) and \(\phi \) are inverse functions of each other. Noticing (1.10) and (2.10), \(h \in L^\infty([0,T];W^{1,\infty}_{\text{per}} (I)) \) with condition (2.30) implies that \(\phi \in L^\infty([0,T];W^{1,\infty}_{\text{per}}([0,1])) \) with condition (2.31).

From the differentiation of inverse function, we also know

\[
\phi^{(m)} \leq C(\beta_1)(h^{(m)}) + \sum_{0 \leq \alpha_i \leq m-1} h^{(\alpha_1)} h^{(\alpha_2)} \cdots h^{(\alpha_m)}.
\]

Since \(W^{m,2} \hookrightarrow W^{(m-1),\infty} \), we have

\[
\int_0^L |\phi^{(m)}|^2 \, d\alpha \leq C(\beta_1)(\|h\|^2_{W^{m,2}} + \|h\|^m_{W^{m,2}}).
\]

Hence \(h \in L^\infty([0,T];W^{m,2}(I)) \) with condition (2.30) implies that \(\phi \in L^\infty([0,T];W^{m,2}([0,1])) \) with condition (2.31). Vice versa. \(\square \)

3. LOCAL STRONG SOLUTION AND PROOF OF THEOREM 1.1

We continue studying the properties of the continuum PDE. From now on, denote

\[
\varphi^{(n)}(x) = \frac{d^n}{dx^n} \varphi(x),
\]

and \(c \) as a generic constant whose value may change from line to line. We first establish the existence and uniqueness of the local strong solution to (2.24).

Theorem 3.1. Assume \(u^0 \in W^{m,2}_{\text{per}}(I), \ u^0_{xx} + b \geq \eta, \) where \(\eta \) is a positive constant, \(m \in \mathbb{Z}, \ m \geq 7. \) Then there exists time \(T_m \) depending on \(\eta, \|u^0\|_{W^{m,2}_{\text{per}}} \) such that

\[
u \in L^\infty([0,T_m];W^{m,2}_{\text{per}}(I)) \cap L^2([0,T_m];W^{m+2,2}_{\text{per}}(I)) \cap C([0,T_m];W^{m-4,2}_{\text{per}}(I)),
\]

\[
u_t \in L^\infty([0,T_m];W^{m-4,2}_{\text{per}}(I)) \cap L^2([0,T_m];L^2_{\text{per}}(I))
\]

is the unique strong solution of (2.24) with initial data \(u^0 \), and \(u \) satisfies

\[
u_{xx} + b \geq \frac{\eta}{2}, \quad \text{a.e. } t \in [0,T_m], \ x \in [0,L].
\]
Proof. We first make the a-priori assumption

$$\min_{x \in I} (u_{xx} + b) \geq \frac{\eta}{2} > 0, \quad \text{a.e. } t \in [0, T_m],$$

in which T_m will be determined later. We will prove the existence of local strong solution under \ref{3.1} in step 1,2, then justify \ref{3.1} in step3.

Let J_δ be the standard $C^\infty_c(I)$ mollifier. Denote $\bar{u}^\delta = J_\delta * u^\delta$.

Define $E^\delta_u(u) := E_u(J_\delta * u)$. Then

$$\frac{\delta E^\delta_u(u)}{\delta u^\delta} = J_\delta * \frac{\delta E_u(u)}{\delta u} |_{\bar{u}^\delta}.$$

We study problem

$$\begin{aligned}
 u^\delta_t &= -(J_\delta * (\frac{-2\pi}{L} H(u_{xx})))_x - (J_\delta * \Phi_b'(u_{xx}))(x), \\
 u^\delta(0) &= J_\delta * u^0,
\end{aligned}$$

which is

$$\begin{aligned}
 u^\delta_t &= (J_\delta * (\frac{-2\pi}{L} H(u_{xx})))_x - (J_\delta * \Phi_b'(\bar{u}^\delta_{xx}))(x), \\
 u^\delta(0) &= J_\delta * u^0.
\end{aligned}$$

Step 1. We devote to obtain some a-priori estimates, which will be used to prove the convergence of u^δ in \ref{3.2}.

Taking u as a test function in \ref{2.24} gives

$$\int_0^L u_t u \, dx = \int_0^L \frac{2\pi}{L} H(u_{xx}) u_x - (\ln(u_{xx} + b) + \frac{3}{2} (u_{xx} + b)^2) u_{xx} \, dx.$$

Notice that

$$\int_0^L H(u_{xx}) u_x \, dx \leq \int_0^L \frac{3}{4} u_{xx}^2 + 2u^2 \, dx \leq \int_0^L \frac{1}{8} u_{xx}^3 + 2u^2 \, dx + C(L),$$

and that

$$\int_0^L \ln(u_{xx} + b) u_{xx} \, dx \leq C(\eta, L) + \frac{1}{8} \int_0^L u_{xx}^3 \, dx,$$

due to \ref{3.1}. We obtain

$$\frac{d}{dt} \int_0^L u^2 \, dx + \int_0^L u_{xx}^3 \, dx \leq c \int_0^L u^2 \, dx + C(\eta, L).$$

Then for some $T_1 > 0$, Grönwall’s inequality implies that

$$\|u\|_{L^\infty([0,T_1];L^2(I))} \leq C(\eta, L, \|u^0\|_{W^{m,2}_{\text{per}}}, T_1),$$
(3.4) \[\|u_{xx}\|_{L^2([0,T_1];L^3(I))} \leq C(\eta, L, \|u^0\|_{W^{m,2}_{\text{per}}}(T_1)). \]

Here and the following, \(C(\eta, L, \|u^0\|_{W^{m,2}_{\text{per}}}(T_1)) \) is a constant depending only on \(\eta, L, \|u^0\|_{W^{m,2}_{\text{per}}}(T_1) \).

Recall (2.25). We use \(\rho = u_{xx} + b \) from now.

Since

\[
\frac{dE_u(u)}{dt} + \int_0^L \left(\frac{\delta E_u(u)}{\delta u} \right)^2 \, dx = 0,
\]

we have

(3.5) \[E_u(u) \leq E_u(u_0) < +\infty. \]

Also notice

(3.6) \[\left| \int_0^L \int_0^L \ln \left| \frac{\pi}{L}(x-y) \right| \rho(x) \rho(y) \, dx \, dy \right| \]

\[\leq \left(\int_0^L \int_0^L \ln^2 \left| \frac{\pi}{L}(x-y) \right| \, dx \, dy \right)^{\frac{1}{2}} \int_0^L \rho^2(x) \, dx \]

\[\leq \frac{1}{8} \int_0^L \rho^3 \, dx + C(L), \]

and

(3.7) \[\left| \int_0^L \rho \ln \rho \, dx \right| \leq \frac{1}{8} \int_0^L \rho^3 \, dx + C(\eta, L). \]

These, together with (3.5), give that

(3.8) \[\frac{1}{4} \sup_{0 \leq t \leq T_1} \int_0^L \rho^3 \, dx < E_\rho(0) + C(\eta, L). \]

Now we devote to get a higher-order priori estimate for \(m \geq 4 \).

Divide \(m \) times in equation (2.24) and then take \(u^{(m)} \) as a test function, which implies that

(3.9) \[\frac{d}{dt} \|u\|_{W^{m,2}} = \int_0^L -\frac{2\pi}{L} H(\rho)^{(m+1)} u^{(m)} - f(\rho)^{(m+2)} u^{(m)} \, dx, \]

where

\[f(\rho) = \Phi'(\rho) = \ln \rho + 1 + \frac{3}{2} \rho^2. \]
For the first term in (3.9), we have
\[\left| \int_{0}^{L} -H(\rho)(m+1)u^{(m)} \, dx \right| = \left| \int_{0}^{L} -H(\rho)(m)\rho^{(m-1)} \, dx \right| \]
\[\leq \frac{1}{8} \int_{0}^{L} \rho^{(m)} \, dx + 2 \int_{0}^{L} \rho^{(m-1)} \, dx \]
\[\leq \frac{1}{4} \int_{0}^{L} \rho^{(m)} \, dx + c \int_{0}^{L} \rho^{(m-2)} \, dx. \]

For the second term in (3.9), we have
\[\int_{0}^{L} -f(\rho)(m+2)u^{(m)} \, dx = \int_{0}^{L} -f(\rho)(m)\rho^{(m)} \, dx \]
\[= \int_{0}^{L} -(f'(\rho)\rho_x)(m-1)\rho^{(m)} \, dx \]
\[= \int_{0}^{L} -f'(\rho)\rho^{(m)} \, dx + \int_{0}^{L} \sum_{k=0}^{m-2} C_k f'(\rho)(m-1-k)\rho^{(k)} \rho^{(m)} \, dx. \]

Note that
\[f'(\rho) = 3\rho + \frac{1}{\rho} \geq 2\sqrt{3}, \text{ for } \rho > 0, \]
so the first term on the right hand of (3.11) is strictly negative. We will use it to control the other terms later.

Now we carefully estimate the last term in (3.11). Denote
\[M_1 := \int_{0}^{L} \sum_{k=0}^{m-2} C_k f'(\rho)(m-1-k)\rho^{(k)} \rho^{(m)} \, dx \]
\[\leq \|\rho^{(m)}\|_{L^2} \left[\sum_{k=0}^{m-2} C_k \|f'(\rho)(m-1-k)\rho^{(k)}\|_{L^2} \right]. \]

First the chain rule gives
\[f'(\rho)(m-1-k) = \sum_{\beta_1+\beta_2+\cdots+\beta_\mu=m-1-k} C_{\beta} \rho^{(\beta_1)}(\rho^{(\beta_2)} \cdots \rho^{(\beta_\mu)} f^{(\mu+1)}(\rho). \]

Due to (3.1), we know
\[f^{(\mu+1)}(\rho) \leq \frac{C_{\mu}}{\rho^{\mu+1}} \leq \frac{C_{\mu}}{\eta^{\mu+1}}, \text{ for } \mu \geq 1. \]

Also noticing that
\[\|\rho^{(m-3)}\|_{L^\infty} \leq c\|\rho\|_{W^{m-2,2}}, \]
we have
\[\|f'(\rho)(m-1-k)\|_{L^4} \leq C(\eta, m)\|\rho\|_{W^{m-2,2}}, \text{ for } 2 \leq k \leq m-2, \]
\[\|f'(\rho)(m-2)\|_{L^4} \leq C(\eta, m)(\|\rho\|_{W^{m-2,2}} + \|\rho^{(m-2)}\|_{L^2}), \text{ for } k = 1, \]
and
\[\| f'(\rho)^{(m-1)}\|_{L^4} \leq C(\eta, m)(\|\rho\|_{W_{m-2,2}^1}^{m-1} + \|\rho^{(m-2)}\|_{L^4} + \|\rho^{(m-1)}\|_{L^4}), \text{ for } k = 0. \]

Second by interpolating, we know
\begin{equation}
\|\rho^{(m-2)}\|_{L^4} \leq c\|\rho^{(m-2)}\|_{L^2}^{7/2}\|\rho^{(m)}\|_{L^2}^{5/2},
\end{equation}
\begin{equation}
\|\rho^{(m-1)}\|_{L^4} \leq c\|\rho^{(m-2)}\|_{L^2}^{3/2}\|\rho^{(m)}\|_{L^2}^{5/2},
\end{equation}
and for \(\mu < m - 2, \)
\begin{equation}
\|\rho^{(\mu)}\|_{L^4} \leq c\|\rho^{(m-2)}\|_{L^4} + c\|\rho\|_{L^4} \leq c\|\rho^{(m-2)}\|_{L^2}^{7/2}\|\rho^{(m)}\|_{L^2}^{5/2} + c\|\rho\|_{W_{m-2,2}^1}.
\end{equation}
Thus (3.12), (3.13) and (3.14) show that
\begin{equation}
\sum_{k=0}^{m-2} C_k\|f'(\rho)^{(m-1-k)}\rho^{(k)}\|_{L^2} \leq \sum_{k=0}^{m-2} C_k\|f'(\rho)^{(m-1-k)}\|_{L^4}\|\rho^{(k)}\|_{L^4}
\end{equation}
\begin{equation}
\leq c\|f'(\rho)^{(m-2)}\|_{L^4}\|\rho\|_{L^4} + C(k, \eta, m)\|\rho\|_{W_{m-2,2}^1}(\|\rho^{(m-2)}\|_{L^2}^{7/2}\|\rho^{(m)}\|_{L^2}^{5/2} + c\|\rho\|_{W_{m-2,2}^1})
\end{equation}
\begin{equation}
+ C(\eta, m)\|\rho\|_{W_{m-2,2}^1}^{m-2}\|\rho^{(m-2)}\|_{L^2}^{7/2}\|\rho^{(m)}\|_{L^2}^{5/2}.
\end{equation}
For the first term, we have
\begin{equation}
\|f'(\rho)^{(m-2)}\|_{L^4}\|\rho\|_{L^4} \leq C(\eta, m)(\|\rho\|_{W_{m-2,2}^1} + \|\rho^{(m-2)}\|_{L^4})(\|\rho^{(m-2)}\|_{L^4} + \|\rho\|_{W_{m-2,2}^1})
\end{equation}
\begin{equation}
\leq C(\eta, m)[\|\rho\|_{W_{m-2,2}^1} + (\|\rho\|_{W_{m-2,2}^1} + 1)\|\rho^{(m-2)}\|_{L^2}^{7/2}\|\rho^{(m)}\|_{L^2}^{5/2} + \|\rho^{(m-2)}\|_{L^2}^{7/2}\|\rho^{(m)}\|_{L^2}^{5/2}],
\end{equation}
where we used (3.12) and (3.14).
Notice that (3.8) gives \(\|\rho\|_{L^\infty(0, T_1; L^2(I))} \leq C(\eta, L). \) By interpolating, (3.15) and (3.16) lead to
\begin{equation}
M_1 \leq C(\eta, m)[\|\rho^{(m)}\|_{L^2}^{7/2}\|\rho\|_{W_{m-2,2}^1} + \|\rho^{(m)}\|_{L^2}^{7/2}\|\rho\|_{W_{m-2,2}^1}]
\end{equation}
\begin{equation}
+ \|\rho^{(m)}\|_{L^2}^{7/2}\|\rho\|_{W_{m-2,2}^1} + \|\rho\|_{W_{m-2,2}^1} + C(\eta, L))\|\rho^{(m)}\|_{L^2} \leq \frac{1}{8}\|\rho^{(m)}\|_{L^2}^{2} + C(\eta, m)\|\rho\|_{W_{m-2,2}^1}^{10m} + C(\eta, L).\end{equation}
Combining (3.10), (3.11), (3.17) and Grönwall’s inequality, we finally obtain
\[
\|u\|_{L^\infty([0,T_1];W_{per_0}^{m,2}(I))} \leq C(\eta, L, \|u^0\|_{W_{per_0}^{m,2}}, T_1),
\]
\[
\|u\|_{L^2([0,T_1];W_{per_0}^{m+2,2}(I))} \leq C(\eta, L, \|u^0\|_{W_{per_0}^{m,2}}, T_1).
\]

Step 2. Define \(F_\delta : W_{per_0}^{m+2,2} \rightarrow W_{per_0}^{m+2,2} \) with
\[
F_\delta(u^\delta) := (J_\delta * (\frac{2\pi}{L} H(\bar{u}_x^\delta)))_x - (J_\delta * \Phi_b'(\bar{u}_x^\delta))_{xx}.
\]

We can easily check that \(F_\delta \) is locally Lipschitz continuous in \(W^{m+2,2}(I) \) for \(m \geq 1 \). Hence by [17, Theorem 3.1], we know (3.3) has a unique local solution \(u^\delta \in C^1([0,T_0];W_{per_0}^{m+2,2}(I)) \) and those estimates in Step 1 hold true uniformly in \(\delta \). That is, for \(T_0 \), we have
\[
(3.18) \quad \|u^\delta\|_{L^\infty([0,T_0];W_{per_0}^{m,2}(I))} \leq C(\eta, L, \|u^0\|_{W_{per_0}^{m,2}}, T_0),
\]
\[
(3.19) \quad \|u^\delta\|_{L^2([0,T_0];W_{per_0}^{m+2,2}(I))} \leq C(\eta, L, \|u^0\|_{W_{per_0}^{m,2}}, T_0).
\]

Since
\[
E_u^\delta(u^\delta(T)) + \int_0^T \int_0^L u_i^{\delta 2} \, dx \, dt = E_u^\delta(u^\delta(0)),
\]
we also have
\[
(3.20) \quad \|u_t^\delta\|_{L^2([0,T_0] \times I)} \leq C(\eta, L, \|u^0\|_{W_{per_0}^{m,2}}).
\]

Notice \(W^{m+2,2} \hookrightarrow W^{m+1,2} \) compactly and \(W^{m+1,2} \hookrightarrow L^2 \). Therefore, as \(\delta \to 0 \), we can use Lions-Aubin’s compactness lemma to obtain there exists a subsequence, still denoted as \(u^\delta \), such that
\[
u^\delta \rightarrow u, \text{ in } L^2([0,T_0];W_{per_0}^{m+1,2}(I)).
\]
And (3.18), (3.19) and (3.20) show that
\[
u \in L^\infty([0,T_0];W_{per_0}^{m,2}(I)) \cap L^2([0,T_0];W_{per_0}^{m+2,2}(I)),
\]
\[
u_t \in L^\infty([0,T_0];W_{per_0}^{m-4,2}(I)).
\]
Thus we can take limit in (3.3) and \(u \) satisfies (2.21) almost everywhere, i.e., \(u \) is the local strong solution of (2.21).

Since
\[
\|u_t\|_{L^2([0,T_0] \times I)} \leq \liminf_{\delta \to 0} \|u_t^\delta\|_{L^2([0,T_0] \times I)} \leq C(\eta, L, \|u^0\|_{W_{per_0}^{m,2}}),
\]
\begin{equation}
 u_t \in L^2([0,T_0] \times I),
\end{equation}

by [8, Theorem 4, p. 288], we actually have

\begin{equation}
 u \in C([0,T_0]; W^{1,2}_{\text{per}}(I)).
\end{equation}

Step 3. We justify the a-priori assumption (3.1). Note that

\begin{equation}
 u_{xx}(x,t) = u_{xx}(0) + \int_0^t u_{xxt}(x,\tau)d\tau,
\end{equation}

and $u_{xx}^0 + b \geq \eta$, so Step 2 and Sobolev embedding theorem lead to

\begin{equation}
 u_{xxt} \in L^\infty([0,T_0]; W^{m-6,2}_0(I)) \hookrightarrow L^\infty([0,T_0]; L^\infty(I)),
\end{equation}

for $m \geq 7$. Then

\begin{equation}
 \left| \int_0^t u_{xxt}(x,\tau)d\tau \right| \leq t\|u_{xxt}\|_{L^\infty([0,T_0]; L^\infty(I))} \leq \frac{\eta}{2}, \quad t \in [0,T_m],
\end{equation}

where $T_m < T_0$ depends only on η, L and $\|u^0\|_{W^{m,2}(I)}$. This, together with (3.21), gives (3.1). \hfill \Box

By using the above Theorem 3.1, we now prove the Theorem 1.1.

Proof of Theorem 1.1

Step 1 (Existence). Assume $h^0 \in W^{m,2}_{\text{per}}(I)$, $h^0_x \leq \beta$, for some constant $\beta < 0$, $m \in \mathbb{Z}$, $m \geq 6$. From (2.26), there exists $u^0 \in W^{m+1,2}_{\text{per}}(I)$ satisfying $u^0_{xx} + b \geq -\beta$. Then by Theorem 3.1 there exists $T_m > 0$, such that there exists a unique u satisfying (2.24) with the following regularity:

\begin{align*}
 u &\in L^\infty([0,T_m]; W^{m+1,2}_{\text{per}}(I)) \cap L^2([0,T_m]; W^{m+3,2}_{\text{per}}(I)) \cap C([0,T_m]; W^{m-3,2}_{\text{per}}(I)), \\
 u_t &\in L^\infty([0,T_m]; W^{m-3,2}_{\text{per}}(I)),
\end{align*}

and u satisfies

\begin{equation}
 u_{xx} + b \geq -\frac{\beta}{2}, \quad \text{a.e.} \quad t \in [0,T_m], \quad x \in [0,L].
\end{equation}

Let $h := -u_x - bx$. Hence we can get the existence of solution to (1.7) satisfying (1.13) and the regularity stated in Theorem 1.1.

Step 2 (Uniqueness). Now we assume h_1, h_2 are two solutions of (1.7) satisfying (1.13) and the same regularity stated in Theorem 1.1. Subtract h_2-equation from h_1-equation and multiply $h_1 - h_2$...
on both sides. Then integration by parts shows that

\[
\begin{align*}
\frac{d}{dt} \int_0^L (h_1 - h_2)^2 \, dx &= \int_0^L (h_{1t} - h_{2t})(h_1 - h_2) \, dx \\
&= \int_0^L -\frac{2\pi}{L} H(h_{1x} - h_{2x})(h_{1xx} - h_{2xx}) + \left[(3h_{1x} + \frac{1}{h_{1x}})h_{1xx} - \left(3h_{2x} + \frac{1}{h_{2x}}\right)h_{2xx}\right](h_{1xx} - h_{2xx}) \, dx \\
&= \int_0^L -\frac{2\pi}{L} H(h_{1x} - h_{2x})(h_{1xx} - h_{2xx}) + \left[3h_{1x} + \frac{1}{h_{1x}} - 3h_{2x} - \frac{1}{h_{2x}}\right]h_{1xx}(h_{1xx} - h_{2xx}) \, dx \\
&= I_1 + I_2 + I_3.
\end{align*}
\]

Since

\[
(3.23) \quad 3h_{2x} + \frac{1}{h_{2x}} \leq -2\sqrt{3}, \quad \text{due to } h_{2x} < 0,
\]

the second term on the right hand of (3.22) is strictly negative, which will be used to control

the other two terms. For \(I_1\), notice the property of Hilbert transform \(\|H(u)\|_{L^p} \leq c\|u\|_{L^p}\) for

\(1 < p < \infty\); see [3, Proposition 9.1.3]. We can use Young’s inequality and interpolating to obtain

\[
(3.24) \quad I_1 \leq \int_0^L \frac{1}{4}(h_{1xx} - h_{2xx})^2 + c(h_1 - h_2)^2 \, dx.
\]

To estimate \(I_3\), first notice that \(h_{1xx}\) is bounded by \(\|h_1(0)\|_{W^{m,2}}\) and that

\[|h_{1x}| \geq -\frac{\beta}{2} > 0, \quad |h_{2x}| \geq -\frac{\beta}{2} > 0,\]

due to (1.13). Hence

\[
\int_0^L \left[(3h_{1x} - 3h_{2x} + \frac{1}{h_{1x}} - \frac{1}{h_{2x}})h_{1xx}\right]^2 \, dx \leq C(\beta, \|h_1(0)\|_{W^{m,2}})(h_{1x} - h_{2x})^2 \, dx,
\]

where \(C(\beta, \|h_1(0)\|_{W^{m,2}})\) depends only on \(\beta, \|h_1(0)\|_{W^{m,2}}\). Then Young’s inequality and interpo-

lating show that

\[
(3.25) \quad I_3 \leq \int_0^L C(\beta, \|h_1(0)\|_{W^{m,2}})(h_1 - h_2)^2 + \frac{1}{4}(h_{1xx} - h_{2xx})^2 \, dx,
\]

where \(C(\beta, \|h_1(0)\|_{W^{m,2}})\) depends only on \(\beta, \|h_1(0)\|_{W^{m,2}}\). Now combining (3.24), (3.25) with (3.22) leads to

\[
\frac{d}{dt} \int_0^L (h_1 - h_2)^2 \, dx \leq C(\beta, \|h_1(0)\|_{W^{m,2}}) \int_0^L (h_1 - h_2)^2 \, dx.
\]
Then by Grönwall’s inequality, we have
\[
\int_0^L (h_1 - h_2)^2 \, dx \leq C(\beta, \|h_1(0)\|_{W^{m,2}}, T_m) \int_0^L (h_1(0) - h_2(0))^2 \, dx,
\]
where \(C(\beta, \|h_1(0)\|_{W^{m,2}}, T_m)\) depends only on \(\beta, \|h_1(0)\|_{W^{m,2}}\) and \(T_m\). This gives the uniqueness of the solution to (1.7). \(\Box\)

3.1. Stability of linearized \(\phi\)-PDE. Now we set up the stability of linearized \(\phi\)-PDE under assumption
\[
h_x(0) \in W^{m,2}_{\text{per}}(I), \quad h_x(0) \leq 2\beta < 0,
\]
with \(m \geq 6\).

Recall Theorem 1.1 and Proposition 2.5. There exists \(T_m > 0\), such that
\[
\phi(\alpha, t) \in L^\infty([0, T_m]; W^{6,\infty}_{\text{per}}(0, 1))
\]
is the strong solution of (2.13) and there exists constants \(m_1, m_2 > 0\) such that
\[
\phi_\alpha \leq -m_1 < 0, \quad |\phi^{(i)}| \leq m_2, i = 1, \ldots, 6.
\]
Recall equation (2.13):
\[
\phi_t = -\phi_\alpha \mu_{xx} = -\partial_\alpha \left(\frac{\delta E}{\delta \phi} \right)_\alpha,
\]
where
\[
\frac{\delta E}{\delta \phi} = \frac{2\pi}{L^2} \text{PV} \int_0^1 \cot \pi(\phi(\alpha) - \phi(\beta)) \frac{L}{\beta} \, d\beta - \phi_\alpha \frac{\phi_\alpha}{\phi_\alpha} - 3\phi_\alpha \frac{\phi_\alpha}{\phi_\alpha}.
\]
We want to show that the linearized \(\phi\)-PDE is stable, which will be used in the construction of high-order consistency solution (Section 6.2).

For \(\phi, \tilde{\phi}\) satisfying equation (2.13), set \(\phi + \varepsilon \psi = \tilde{\phi}\). Denote
\[
A := -\phi_\alpha \phi_\alpha^2 - 3\phi_\alpha \phi_\alpha + 2\frac{\pi}{L^2} \text{PV} \int_0^1 \cot \pi(\phi(\alpha) - \phi(\beta)) \frac{L}{\beta} \, d\beta,
\]
and
\[
B := \left(-\frac{1}{\phi_\alpha} - 3\frac{1}{\phi_\alpha} \right) \psi_\alpha + \left(2\phi_\alpha \phi_\alpha + 12\phi_\alpha \phi_\alpha - \frac{12\phi_\alpha}{\phi_\alpha} \right) \psi_\alpha - 2\frac{\pi^2}{L^3} \text{PV} \int_0^1 \sec^2 \pi \frac{L}{L^2} (\phi(\alpha) - \phi(\beta))(\psi(\alpha) - \psi(\beta)) \, d\beta.
\]
So the linearized equation of \(\phi\)-PDE (2.13) is
\[
\psi_t = -\partial_\alpha \left(-\psi_\alpha \phi_\alpha A + \psi_\alpha B \right).
\]
Proposition 3.2. Assume \(\psi(0) \in L^2_{\text{per}}([0, 1]) \) and \(m_1, m_2 > 0 \) defined in (3.28). Let \(T_m > 0 \) be the maximal existence time for strong solution \(\phi \) in (3.27). The linearized equation (3.31) is stable in the sense

\[
\| \psi(\cdot, t) \|_{L^2_{\text{per}}([0, 1])} \leq C(m_1, m_2, T_m) \| \psi(\cdot, 0) \|_{L^2_{\text{per}}([0, 1])}, \quad \text{for} \ t \in [0, T_m],
\]

where \(C(m_1, m_2, T_m) \) is a constant depending only on \(m_1, m_2, \) and \(T_m. \)

Proof. Step 1. We perform without the Hilbert transform term \(\frac{2\pi}{L} \text{PV} \int_0^1 \cot \frac{\pi(\phi(\alpha) - \phi(\beta))}{L} d\beta. \) Then \(A, B \) in (3.31) become

\[
A := -\frac{\phi_{\alpha\alpha}}{\phi_{\alpha}^2} - 3\frac{\phi_{\alpha\alpha}}{\phi_{\alpha}^4},
\]

and

\[
B := \left(-\frac{1}{\phi_{\alpha}^2} - 3\frac{1}{\phi_{\alpha}^4} \right) \psi_{\alpha\alpha} + \left(\frac{2\phi_{\alpha\alpha}}{\phi_{\alpha}^4} + \frac{12\phi_{\alpha\alpha}}{\phi_{\alpha}^6} \right) \psi_{\alpha}.
\]

Because \(\psi \) is 1-periodic function respect to \(\alpha, \) we have

\[
\begin{align*}
\psi_t &= -\partial_\alpha \left(-\frac{\psi_{\alpha}}{\phi_{\alpha}^2} A_{\alpha} + \partial_\alpha \left(\frac{B}{\phi_{\alpha}} \right) - \left(\frac{1}{\phi_{\alpha}} \right) B \right) \\
&= -\partial_{\alpha\alpha} \left(\frac{B}{\phi_{\alpha}} \right) + \partial_\alpha \left(\psi_{\alpha\alpha} A_{\alpha} - \frac{\phi_{\alpha\alpha}}{\phi_{\alpha}^2} B \right) \\
&= -\partial_{\alpha\alpha} \left(-\frac{1}{\phi_{\alpha}^2} - 3\frac{1}{\phi_{\alpha}^4} \right) \psi_{\alpha\alpha} + \left(\frac{2\phi_{\alpha\alpha}}{\phi_{\alpha}^4} + \frac{12\phi_{\alpha\alpha}}{\phi_{\alpha}^6} \right) \psi_{\alpha} \\
&\quad + \partial_\alpha \left[\left(\frac{\phi_{\alpha\alpha}}{\phi_{\alpha}^4} + \frac{3\phi_{\alpha\alpha}}{\phi_{\alpha}^6} \right) \psi_{\alpha\alpha} + \left(-\frac{2\phi_{\alpha\alpha}}{\phi_{\alpha}^4} - \frac{12\phi_{\alpha\alpha}}{\phi_{\alpha}^6} + A_{\alpha} \right) \psi_{\alpha} \right].
\end{align*}
\]

Multiplying both sides by \(\psi \) and integration by parts show that

\[
\int_0^1 \psi \psi_t \, d\alpha = \int_0^1 \left[\left(\frac{1}{\phi_{\alpha}^2} + \frac{3}{\phi_{\alpha}^4} \right) \psi_{\alpha\alpha}^2 - \left(\frac{3\phi_{\alpha\alpha}}{\phi_{\alpha}^4} + \frac{15\phi_{\alpha\alpha}}{\phi_{\alpha}^6} \right) \psi_{\alpha}\psi_{\alpha\alpha} + \left(\frac{2\phi_{\alpha\alpha}^2}{\phi_{\alpha}^6} + \frac{12\phi_{\alpha\alpha}^2}{\phi_{\alpha}^8} - A_{\alpha} \right) \psi_{\alpha}^2 \right] \, d\alpha.
\]

From Young’s inequality, for any \(\delta, \varepsilon > 0, \) we have

\[
\psi_{\alpha\alpha}\psi_{\alpha} \leq \varepsilon \psi_{\alpha\alpha}^2 + \frac{1}{4\varepsilon} \psi_{\alpha}^2,
\]

and

\[
\int_0^1 \psi_{\alpha}^2 \, d\alpha \leq \int_0^1 \left(\delta \psi_{\alpha\alpha}^2 + \frac{1}{4\delta} \psi_{\alpha}^2 \right) \, d\alpha.
\]

Note that \(\phi_{\alpha} \) is negative and from (3.27), (3.28), we know

\[
\frac{1}{\phi_{\alpha}^2} + \frac{3}{\phi_{\alpha}^4} \leq -\left(\frac{1}{m_2^2} + \frac{1}{m_2^5} \right).
\]
Now choose ε, δ in (3.34) and (3.35) such that the last two terms in (3.33) can be controlled by
\[
\int_0^1 \left(\frac{1}{m_1^2} + \frac{1}{m_2^2} \right) \psi_{\alpha\alpha}^2 + C(m_1, m_2) \psi^2 \, d\alpha.
\]
Therefore, combining (3.34), (3.35) and (3.28), we have
\[
\frac{d}{dt} \int_0^1 \psi^2 \, d\alpha + C(m_1, m_2) \int_0^1 \psi_{\alpha\alpha}^2 \, d\alpha \leq \int_0^1 C(m_1, m_2) \psi^2 \, d\alpha,
\]
where $C(m_2), C(m_1, m_2) > 0$ are constants depending on m_1, m_2.

By Grönwall’s inequality, we finally achieve the stability for ψ in the sense of (3.32).

Step 2. If we consider Hilbert transform, then A, B are defined in (3.29) and (3.30). First notice that change of variable from h to ϕ does not effect the Cauchy principal value integral and that $h_x < 0$. Then for any $\alpha \in [0, 1]$, by variable substitution, we have
\[
\operatorname{PV} \int_0^1 \frac{\pi}{L} \cot \left(\frac{\pi}{L} (\phi(\alpha) - \phi(\beta)) \right) \frac{1}{\phi(\beta) - \phi(\alpha) - kL} \, d\beta = - \operatorname{PV} \int_0^1 \sum_{k \in \mathbb{Z}} \frac{1}{\phi(\beta) - \phi(\alpha) - kL} \, d\beta
\]
\[
= - \operatorname{PV} \int_{-\infty}^{+\infty} \frac{1}{\phi(\beta) - \phi(\alpha)} \, d\beta = \operatorname{PV} \int_{-\infty}^{+\infty} \frac{h_y}{y - x} \, dy
\]
\[
= \operatorname{PV} \sum_{k \in \mathbb{Z}} \int_{\frac{\pi}{L} + kL}^{\frac{\pi}{L} + (k+1)L} \frac{h_y}{y - x} \, dy = \frac{\pi}{L} \operatorname{PV} \int_{0}^{\frac{\pi}{L}} h_y \cot(\frac{y - x}{L}) \, dy
\]
\[
= - \pi H(h_x) \circ \phi,
\]
where we used the relation for Hilbert kernel
\[
\sum_{k \in \mathbb{Z}} \frac{1}{x + kL} = \frac{\pi}{L} \cot(\frac{\pi}{L}x).
\]
Hence
\[
\left(\frac{\operatorname{PV}}{L} \int_0^1 \cot \frac{\pi}{L}(\phi(\alpha) - \phi(\beta)) \, d\beta \right)_\alpha = -L(H(h_x) \circ \phi) \phi_{\alpha}
\]
is L^p bounded due to the property of Hilbert transform $H(u)_x = H(u_x)$ for $u_x \in L^p$ with $1 < p < \infty$.

Second, using the periodicity of ψ, integration by parts shows that
\[
\frac{\pi}{L} \operatorname{PV} \int_0^1 \sec^2 \frac{\pi}{L} (\phi(\alpha) - \phi(\beta))(\psi(\alpha) - \psi(\beta)) \, d\beta
\]
\[
= \operatorname{PV} \int_0^1 \cos \frac{\pi}{L} (\phi(\alpha) - \phi(\beta)) \left[- \frac{\psi_{\alpha}(\beta)}{\phi_{\alpha}(\beta)} - \frac{(\psi(\alpha) - \psi(\beta))}{\phi_{\alpha}(\beta)} \right] \, d\beta.
\]
For any $\varepsilon > 0$, by Young’s inequality, we have
\[
\int_0^1 \operatorname{PV} \int_0^1 \psi_{\alpha\alpha}(\alpha)(\psi(\alpha) - \psi(\beta)) \sec^2 \frac{\pi}{L} (\phi(\alpha) - \phi(\beta)) \, d\beta \, d\alpha
\]
\[
\leq 2\varepsilon \int_0^1 \psi_{\alpha\alpha}^2 \, d\alpha + \frac{c}{\varepsilon} \int_0^1 \left[\operatorname{PV} \int_0^1 \cos \frac{\pi}{L} (\phi(\alpha) - \phi(\beta)) \left(- \frac{\psi_{\alpha}(\beta)}{\phi_{\alpha}(\beta)} - \frac{(\psi(\alpha) - \psi(\beta))}{\phi_{\alpha}(\beta)} \right) \, d\beta \right]^2 \, d\alpha.
\]
Similar to (3.37), we have
\[PV \int_0^1 \frac{\pi(\phi(\alpha) - \phi(\beta))}{L} \left(- \frac{\psi_\alpha(\beta)}{\phi_\alpha^2(\beta)} - \frac{\psi(\alpha) - \psi(\beta))}{\phi_\alpha^2(\beta)} \right) d\beta \]
\[= \left[H\left(\frac{-\psi_\alpha}{\phi_\alpha^2} \circ h\right) + H\left(\frac{\phi_{\alpha\alpha}}{\phi_\alpha^2} \circ h\right) + \psi(\alpha) H\left(\frac{-\phi_{\alpha\alpha}}{\phi_\alpha^2} \circ h\right) \right] \circ \phi. \]

Then notice the property of Hilbert transform \(\|H(u)\|_{L^p} \leq c\|u\|_{L^p} \) for \(1 < p < \infty \); see [3, Proposition 9.1.3]. For any \(\varepsilon, \delta > 0 \), by Hölder’s inequality and interpolating, we have
\[\int_0^1 PV \int_0^1 \psi_{\alpha\alpha}(\alpha)(\psi(\alpha) - \psi(\beta)) \sec^2 \frac{\pi}{L} (\phi(\alpha) - \phi(\beta)) d\beta d\alpha \]
\[\leq 2\varepsilon \int_0^1 \psi_{\alpha\alpha}^2 d\alpha + \varepsilon \int_0^1 \left[H\left(\frac{-\psi_\alpha}{\phi_\alpha^2} \circ h\right) + H\left(\frac{\phi_{\alpha\alpha}}{\phi_\alpha^2} \circ h\right) + \psi(\alpha) H\left(\frac{-\phi_{\alpha\alpha}}{\phi_\alpha^2} \circ h\right) \right] \circ \phi d\alpha \]
\[\leq 2\varepsilon \int_0^1 \psi_{\alpha\alpha}^2 d\alpha + \varepsilon \int_0^1 \left[\frac{\psi_{\alpha\alpha}^2}{\phi_\alpha^4} + \frac{\phi_{\alpha\alpha}^2}{\phi_\alpha^4} \right] d\alpha + \left(\int_0^1 \psi^4(\alpha) d\alpha \right)^{\frac{1}{2}} \left(\int_0^1 \frac{\phi_{\alpha\alpha}^4}{\phi_\alpha^4} d\alpha \right)^{\frac{1}{2}} \]
\[\leq (2\varepsilon + \frac{\delta}{\varepsilon}) \int_0^1 \psi_{\alpha\alpha}^2 d\alpha + \frac{C(m_1, m_2)}{\varepsilon \delta} \int_0^1 \psi(\alpha)^2 d\alpha \]
where \(C(m_1, m_2) \) depends only on \(m_1, m_2 \). Here we used variable substitution twice and (3.28).

Then we can perform just like Step 1 to get (3.36) and complete the proof of Proposition 3.2. \(\Box \)

4. Modified BCF Type Model

We want to rigorously study the continuum limit of a BCF type model and figure out the convergence rate. From now on, we assume the initial data \(x_i(0) \) satisfying

\[(4.1) \quad x_i(0) < x_{i+1}(0), \quad \text{for} \ i = 1, \cdots, N. \]

As mentioned in the Introduction, we need to modify the ODE as follows
\[(4.2) \quad \frac{dx_i}{dt} = \frac{1}{a} \left(\frac{f_{i+1} - f_i}{x_{i+1} - x_i} - \frac{f_i - f_{i-1}}{x_i - x_{i-1}} \right), \quad i = 1, \cdots, N, \]
where the chemical potential
\[(4.3) \quad f_i := -\frac{2}{L} \sum_{j \neq i} \frac{a}{x_j - x_i} + \left(\frac{1}{x_{i+1} - x_i} - \frac{1}{x_i - x_{i-1}} \right) + \left(\frac{a^2}{(x_{i+1} - x_i)^3} - \frac{a^2}{(x_i - x_{i-1})^3} \right), \]
for \(i = 1, \cdots, N \). Notice (4.2) with (4.3) is exact the ODE (1.8) with (1.9), so we refer (4.2) in the following.

From now on, keep in mind the relation between the Hilbert kernel and Cauchy kernel is
\[(4.4) \quad \sum_{k \in \mathbb{Z}} \frac{1}{x + kL} = \frac{\pi}{L} \cot \left(\frac{\pi}{L} x \right). \]
The corresponding energy is

$$E^N := a^2 \sum_{1 \leq i < j \leq N} \frac{2}{L} \ln |\sin(\frac{\pi}{L}(x_j - x_i))| + a \sum_{i=0}^{N} \left(-\ln \left| \frac{x_i - x_{i+1}}{a} \right| + \frac{a^2}{2} \left(\frac{1}{(x_i - x_{i+1})^2} \right) \right).$$

Since as $a \to 0$, we have $x_i = O(a)$, so the contribution of the various terms in E^N is on the same order. We have

$$f_i = \frac{1}{a} \frac{\partial E^N}{\partial x_i},$$

and energy identity

$$\frac{dE^N}{dt} + \sum_{i=1}^{N} \frac{(f_{i+1} - f_i)^2}{x_{i+1} - x_i} = 0,$$

which is analogous to (2.17).

We will first study some properties of (4.2) and obtain the consistence result in Section 5. Then we construct an auxiliary solution with high-order consistence in Section 6.2, which is important when we prove the convergence rate of the modified ODE system. After those preparations, the proof of Theorem 1.2 will be given in Section 6.3.

4.1. Global solution of ODE. In this section, we will prove that for any fixed $N \geq 2$, the ODE system (4.2) has a global in time solution.

Proposition 4.1. Assume initial data satisfy (4.1). Then for any $N \geq 2$, the ODE system (4.2) has a global in time solution.

Proof. Let T_{max} be the maximal existence time. Then if $T_{\text{max}} < +\infty$, from standard Extension Theory for ODE, we know either two steps collide, i.e. there exists i, such that $x_i(T_{\text{max}}) = x_{i+1}(T_{\text{max}})$; or step reaches infinity, i.e. $x_i(T_{\text{max}}) = +\infty$.

Denote

$$\ell_{\text{min}}(t) := \min_{i \in \mathbb{N}} \{x_{i+1}(t) - x_i(t)\},$$

and we state a proposition that we have a positive lower bound for $\ell_{\text{min}}(t)$. We will proof this proposition later.

Proposition 4.2. For any $N \geq 2$, assume initial data satisfy (4.1) and system (4.2) has initial energy $E^N(0)$. Then for any time t the solution of (4.2) exist, we have

$$\ell_{\text{min}}(t) \geq C(N) > 0,$$

where $C(N)$ is a constant depending only on N.

By Proposition 4.2, we have
\[\ell_{\min}(T_{\max}) \geq \lim_{t \to T_{\max}} \ell_{\min}(t) \geq C(N) > 0, \]
which contradicts with \(x_i(T_{\max}) = x_{i+1}(T_{\max}) \).

On the other hand, combining Proposition 4.2 with equation (4.2) gives
\[\max_{1 \leq i \leq N} |\dot{x}_i| \leq C(N), \]
where \(C(N) \) is a constant depending only on \(N \). Hence there will be no finite time blow up and we conclude \(T_{\max} = +\infty \).

Proof of Proposition 4.2. First from (4.6), we know, for any time \(t \) the solution exist,
\[E^N(t) \leq E^N(0). \]
Let \(0 < \ell^* \leq 1 \) small enough. Then
\[\frac{2\pi}{L^2} \cot \frac{\pi}{L} \ell - \frac{1}{2} \frac{a^2}{\ell^3} < 0, \quad \text{for } 0 < \ell \leq \ell^*. \]
Thus, at least for \(0 < \ell \leq \min\{\ell^*, \frac{L}{2}\} \), we know
\[g(\ell) := \frac{2}{L} \ln \left(\sin \frac{\pi}{L} \ell \right) + \frac{a^2}{4\ell^2} \]
is positive, i.e.
\[\frac{2}{L} \ln \sin \frac{\pi}{L} \ell + \frac{a^2}{4\ell^2} > 0. \]
Hence
\[\frac{2}{L} \ln \sin \frac{\pi}{L} \ell + \frac{a^2}{2\ell^2} > \frac{a^2}{4\ell^2}, \]
and
\[\frac{2}{L} \ln(\sin \frac{\pi}{L} \ell) - \ln \left(\frac{\ell}{a} \right) + \frac{a^2}{2\ell^2} > \frac{a^2}{4\ell^2} + \ln a \geq c_0(N), \]
where \(c_0(N) \) is a constant depending only on \(N \). Then we obtain
\[E^N \geq a^2 \left[\frac{2}{L} \ln(\sin \frac{\pi}{L} \ell_{\min}) - \ln(\ell_{\min}) + \ln a + \frac{a^2}{2\ell_{\min}^2} \right] \frac{N(N - 1)}{2} + c_0(N) \]
\[\geq \frac{a^4}{4\ell_{\min}^2} + c_1(N), \]
where \(c_1(N) \) is a constant depending only on \(N \).

Therefore, we have
\[\frac{1}{\ell_{\min}^2} \leq C(N, E^N(0)), \]
where \(C(N, E^N(0)) \) is a positive constant depending only on \(N \) and initial data.

So we finally get

\[
\ell_{\text{min}} \geq \min \left\{ \frac{L}{2}, \ell^*, \frac{1}{\sqrt{C(N, E^N(0))}} \right\}.
\]

\(\square \)

5. Consistency

In this section, we study the local consistency between exact solution \(\phi \) of equation (2.13) and solution \(x \) of equation (4.2). From now on, we always assume there exists a constant \(\beta < 0 \) such that the initial data satisfy

\[h_x(0) \in W^{m,2}_{\text{per}}(I), \quad h_x(0) \leq 2\beta < 0, \]

with \(m \geq 6 \).

From Theorem 1.1, we know there exists \(T_m > 0 \), for \(t \in [0, T_m] \), \(h(x,t) \in L^\infty([0, T]; W^{6,\infty}_{\text{per}}(\mathbb{R})) \).

Also by Proposition 2.5, we know \(\phi(\alpha, t) \) is the strong solution of (2.13) satisfying (3.27) and (3.28).

Denote

\[
\bar{f}_i := -\frac{2}{L} \sum_{j \neq i} a \frac{\phi_j - \phi_i}{\phi_j - \phi_i} + \left(\frac{1}{\phi_{i+1} - \phi_i} - \frac{1}{\phi_i - \phi_{i-1}} \right) + \left(\frac{a^2}{(\phi_{i+1} - \phi_i)^3} - \frac{a^2}{(\phi_i - \phi_{i-1})^3} \right).
\]

The main result in this section is Theorem 5.1:

Theorem 5.1. For all \(i = 1, \ldots, N \), let \(\bar{f}_i \) be defined in (5.2), and

\[
v_1(\alpha; \phi) := -\frac{\phi_{\alpha\alpha}}{2\phi_\alpha^2}(\alpha), \quad r_0(\alpha; \phi) := \left(\frac{v_{1\alpha} \phi_{\alpha\alpha}}{\phi_\alpha^2} - \frac{v_1}{\phi_\alpha} \right)(\alpha).
\]

Then we have

\[
\frac{d\phi_i}{dt} = \frac{1}{a} \left(\frac{\bar{f}_{i+1} - \bar{f}_i}{\phi_{i+1} - \phi_i} - \frac{\bar{f}_i - \bar{f}_{i-1}}{\phi_i - \phi_{i-1}} \right) + r_0(\alpha_i; \phi)a + R_i a^2, \quad t \in [0, T],
\]

and

\[
|r_0(\alpha_i; \phi)| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}), \quad |R_i| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}),
\]
where \(C(\beta, \|h(0)\|_{W^{7,2}(I)}) \) depends on \(\beta, \|h(0)\|_{W^{7,2}(I)} \), and \(R_i \) is defined in (5.35). In addition, we have

\[
\frac{dE^N(\phi)}{dt} + a \sum_{i=1}^{N} \left(\frac{\bar{f}_{i+1} - \bar{f}_i}{a} \right)^2 \leq Ca.
\]

To achieve this goal, first we need to set up some notations and lemmas. From (3.27) and (3.28), there exist constants \(c_1, c_2 > 0 \), such that

\[
c_1 a \leq \phi_{i+1} - \phi_i \leq c_2 a.
\]

Denoting

\[
F_i := \frac{1}{a} \left(\frac{\bar{f}_{i+1} - \bar{f}_i}{\phi_{i+1} - \phi_i} - \frac{\bar{f}_i - \bar{f}_{i-1}}{\phi_i - \phi_{i-1}} \right),
\]

we want to estimate the difference between \(F_i \) and \(\frac{d\phi_i}{dt} \). From PDE (1.7) and (2.10), we have

\[
\frac{d\phi_i}{dt} = -\left(\frac{2\pi}{L} H(h_x) + (\frac{1}{h_x} + 3h_x)h_{xx} \right)_{xx} \bigg|_{\phi_i}.
\]

The main task is then to calculate the term \(F_i \). Let us first estimate \(\bar{f}_i \) till order \(a \) accuracy by writing

\[
\bar{f}_i = I_{1,i} + I_{2,i} + I_{3,i},
\]

where

\[
I_{1,i} := -\frac{2}{L} \sum_{j \neq i} \frac{a}{\phi_j - \phi_i} = -\frac{2}{L} \sum_{k \in \mathbb{Z}} \sum_{j \neq i}^{N} \frac{a}{\phi_j - \phi_i + kL},
\]

\[
I_{2,i} := \frac{1}{\phi_{i+1} - \phi_i} - \frac{1}{\phi_i - \phi_{i-1}},
\]

\[
I_{3,i} := \frac{a^2}{(\phi_{i+1} - \phi_i)^3} - \frac{a^2}{(\phi_i - \phi_{i-1})^3}.
\]

To simplify notations, we will henceforth denote

\[
\varphi_i = \varphi(x)|_{x=x_i}.
\]

Next, we state four lemmas to estimate \(I_{1,i}, I_{2,i}, I_{3,i} \) one by one, from which, we know \(O(a) \) error only show up when estimating the first term \(I_{1,i} \) in Lemma 5.6

Lemma 5.2. Let \(I_{2,i} \) be defined in (5.9) and \(v_2 \) be function of \(\alpha \) defined as

\[
v_2(\alpha; \phi) := -\frac{\phi^{(4)}}{12\phi^{\alpha}} + \frac{\phi_{\alpha\alpha}}{\phi^4} \left(\frac{1}{3} \phi_{\alpha\alpha} \phi^{(3)} - \frac{1}{4} \phi_{\alpha\alpha}^2 \right).
\]
Then we have

\[I_{2,i} = \left. \frac{h_{xx}}{h_x} \right|_{\phi_i} + v_2(\alpha_i; \phi) a^2 + R_{2,i}, \]

where \(|R_{2,i}| \leq a^4 C(\beta, \|h(0)\|_{W^{7,2}(I)}).

Proof. Notice we have

\[\phi_{i+1} = \phi_i - \phi_{\alpha,i} a + \frac{1}{2} \phi_{\alpha\alpha,i} a^2 - \frac{1}{3!} \phi_i^{(3)} a^3 + \frac{1}{4!} \phi_i^{(4)} a^4 - \frac{1}{5!} \phi_i^{(5)} a^5 + \frac{1}{6!} \phi_i^{(6)} (\xi^+) a^6, \]

(5.12)

\[\phi_{i-1} = \phi_i + \phi_{\alpha,i} a + \frac{1}{2} \phi_{\alpha\alpha,i} a^2 + \frac{1}{3!} \phi_i^{(3)} a^3 + \frac{1}{4!} \phi_i^{(4)} a^4 + \frac{1}{5!} \phi_i^{(5)} a^5 + \frac{1}{6!} \phi_i^{(6)} (\xi^-) a^6, \]

(5.13)

where \(\xi^+ \in [\alpha_i, \alpha_{i+1}], \xi^- \in [\alpha_{i-1}, \alpha_i].\)

Hence, using (2.10), we have

\[
I_{2,i} = \frac{1}{\phi_{i+1} - \phi_i} - \frac{1}{\phi_i - \phi_{i-1}} = \frac{2\phi_i - \phi_{i+1} - \phi_{i-1}}{\phi_{i+1} - \phi_i \phi_i - \phi_{i-1}}
\]

\[= \left(-\phi_{\alpha\alpha,i} - \frac{1}{12} \phi_i^{(4)} a^2 - \frac{1}{6!} (\phi_i^{(6)} (\xi^+) + \phi_i^{(6)} (\xi^-)) a^4 \right) \cdot \frac{1}{-\phi_i + \frac{1}{2} \phi_{\alpha\alpha,i} a - \frac{1}{3!} \phi_i^{(3)} a^2 + \frac{1}{4!} \phi_i^{(4)} a^3 - \frac{1}{5!} \phi_i^{(5)} a^4 + \frac{1}{6!} \phi_i^{(6)} (\xi^+) a^5}
\]

\[= \left(-\phi_{\alpha\alpha,i} - \frac{1}{12} \phi_i^{(4)} a^2 - \frac{1}{6!} (\phi_i^{(6)} (\xi^+) + \phi_i^{(6)} (\xi^-)) a^4 \right) \cdot \frac{1}{-\phi_i + \frac{1}{2} \phi_{\alpha\alpha,i} a - \frac{1}{3!} \phi_i^{(3)} a^2 - \frac{1}{4!} \phi_i^{(4)} a^3 - \frac{1}{5!} \phi_i^{(5)} a^4 - \frac{1}{6!} \phi_i^{(6)} (\xi^-) a^5}
\]

\[= -\phi_{\alpha\alpha,i} - \frac{1}{12} \phi_i^{(4)} a^2 - \frac{1}{6!} (\phi_i^{(6)} (\xi^+) + \phi_i^{(6)} (\xi^-)) a^4 + A_1(\alpha_i; \phi) a^2 + A_{2,i} a^4
\]

\[= \left(-\frac{\phi_{\alpha\alpha}}{\phi_{\alpha}^2} \right) i + \left(-\frac{\phi^{(4)}}{12 \phi_{\alpha}^2} + \frac{\phi_{\alpha\alpha}}{\phi_{\alpha}^4} A_1 \right) a^2 + A_{3,i} a^4,
\]

where

\[A_1(\alpha; \phi) = \frac{1}{3} \phi_{\alpha}^{(3)} \phi - \frac{1}{4} \phi_{\alpha\alpha}^2, \quad |A_{2,i}| \leq c, \quad |A_{3,i}| \leq c.
\]

Denote

\[v_2(\alpha; \phi) = -\frac{\phi^{(4)}}{12 \phi_{\alpha}^2} + \frac{\phi_{\alpha\alpha}}{\phi_{\alpha}^4} A_1,
\]

we complete the proof of Lemma 5.2.

Now we claim an approximation for periodic Hilbert transform.
Lemma 5.3. For any $\phi(\alpha_i)$, $i = 1, \cdots, N$, we have

$$
(5.15) \quad \text{PV} \int_0^1 \frac{\pi}{L} \cot \left(\frac{\pi}{L} (\phi(\alpha) - \phi(\alpha_i)) \right) d\alpha = \sum_{j \neq i,j=1}^N a \frac{\pi}{L} \cot \left(\frac{\pi}{L} (\phi(\alpha_i) - \phi(\alpha_j)) \right) + \frac{a \phi_{\alpha\alpha}}{2} + R_{1,i},
$$

where $|R_{1,i}| \leq a^4 C(\beta, \|h(0)\|_{W^2(I)})$.

Proof. We use the Euler-Maclaurin expansion in [24] to estimate $R_{1,i}$. Without loss of generality, we assume $i = 1, \cdots, N - 1$, that is $\alpha_i \neq 0, 1$. For $i = N$, we can change interval $[0, 1]$ to $[-a, 1 - a]$ due to periodicity. Using (4.4), we can see

$$
\text{PV} \int_0^1 \frac{\pi}{L} \cot \left(\frac{\pi}{L} (\phi(\alpha) - \phi(\alpha_i)) \right) d\alpha
= \sum_{k \in \mathbb{Z}} \text{PV} \int_0^1 \frac{1}{\phi(\alpha) - \phi(\alpha_i) + kL} d\alpha
= \text{PV} \int_0^1 \frac{1}{\phi(\alpha) - \phi(\alpha_i)} d\alpha + \sum_{k \in \mathbb{Z}} \sum_{k \neq 0} \int_0^1 \frac{1}{\phi(\alpha) - \phi(\alpha_i) + kL} d\alpha
= T_1 + T_2.
$$

Denote

$$\# \sum_{j=0}^N \beta_j = \sum_{j=1}^{N-1} \beta_j + \frac{1}{2} \sum_{j=0,N} \beta_j.$$

First we recall Theorem 1 and Theorem 4 in [24] as follows:

Theorem 5.4 (Theorem 1 of [24]). Let function $g(x)$ be $2m$ times differentiable on $[0, 1]$. Then

$$
\int_0^1 g(x) dx = a^\# \sum_{j=0}^N g(x_j) + \sum_{\mu=1}^{m-1} \frac{B_{2\mu}}{2\mu!} [g^{(2\mu-1)}(x=0)] a^{2\mu} + R_{2m}[g; (0, 1)],
$$

where

$$
R_{2m}[g; (0, 1)] = a^{2m} \int_0^1 \frac{\tilde{B}_{2m}[\frac{z}{a}]}{(2m)!} g^{(2m)}(x) dx,
$$

B_μ is the Bernoulli number and \tilde{B}_μ is the periodic Bernoullian function of order μ.

Theorem 5.5 (Theorem 4 of [24]). Let function $G(x)$ be $2m$ times differentiable on $[0, 1]$ and let $g(x) = \frac{G(x)}{x-t}$. Then

$$
\int_0^1 g(x) dx = a^\# \sum_{j=0,x_j \neq t}^N g(x_j) + a G'(t) + \sum_{\mu=1}^{m-1} \frac{B_{2\mu}}{2\mu!} [g^{(2\mu-1)}(x=\frac{1}{a})] a^{2\mu} + \tilde{R}_{2m}[g; (0, 1)],
$$

where

$$
\tilde{R}_{2m}[g; (0, 1)] = a^{2m} \text{PV} \int_0^1 \frac{\tilde{B}_{2m}[\frac{z}{a}]}{(2m)!} g^{(2m)}(x) dx.
$$
For the nonsingular T_2, we apply Theorem 5.4 to obtain

\[
T_2 = \sum_{k \in \mathbb{Z}} a(\# \sum_{j=0}^{N} \frac{1}{\phi(a_j) - \phi(a_i) + kL}) + a^2 B_2 \frac{d}{d\alpha} \left(\frac{1}{\phi(\alpha) - \phi(a_i) + kL} \right) \bigg|_{\alpha=0}^{\alpha=1} + a^4 e_1(k),
\]

where

\[
|e_1(k)| = \left| \int_0^1 \frac{B_4[\alpha]}{4!} - B_4 \frac{d^4}{d\alpha^4} \left(\frac{1}{\phi(\alpha) - \phi(a_i) + kL} \right) d\alpha \right| \leq c \max_{\alpha \in [0,1]} \frac{d^4}{d\alpha^4} \left(\frac{1}{\phi(\alpha) - \phi(a_i) + kL} \right).
\]

Due to $\phi_\alpha(1) - \phi_\alpha(0) = 0$, the second term in (5.16) becomes

\[
K_2 := \sum_{k \in \mathbb{Z}} \frac{B_2}{2} \frac{d}{d\alpha} \left(\frac{1}{\phi(\alpha) - \phi(a_i) + kL} \right) \bigg|_{\alpha=0}^{\alpha=1}
= \sum_{k \in \mathbb{Z}} \frac{B_2}{2} \phi_\alpha(0) \left(\frac{1}{(kL - \phi(a_i))^2} - \frac{1}{(L + kL - \phi(a_i))^2} \right).
\]

To estimate the last term in (5.16), since $\max_{\alpha \in [0,1]} \frac{d^4}{d\alpha^4} \left(\frac{1}{\phi(\alpha) - \phi(a_i) + kL} \right)$ in (5.17) is summable respect to k, we get

\[
| \sum_{k \in \mathbb{Z}} e_1(k) | \leq C(\beta, \| h(0) \|_{W^{2,2}(I)}).
\]

Now we deal with the singular term T_1. Denote $G(\alpha) := \frac{\alpha - \alpha_i}{\phi(\alpha) - \phi(a_i)}$. Applying Theorem 5.3 to

\[
g(\alpha) = \frac{G(\alpha)}{\alpha - \alpha_i} = \frac{\alpha - \alpha_i}{\phi(\alpha) - \phi(a_i)} = \frac{1}{\phi(\alpha) - \phi(a_i)}.
\]

then we have

\[
T_1 = a(\# \sum_{j=0, j \neq i}^{N} \frac{1}{\phi(\alpha_j) - \phi(a_i)}) - a \frac{\phi_\alpha}{2} \bigg|_{\alpha=0}^{\alpha=1} + a^2 B_2 \frac{d}{d\alpha} \left(\frac{1}{\phi(\alpha) - \phi(a_i)} \right) \bigg|_{\alpha=0}^{\alpha=1} + a^4 e_2,
\]

where

\[
e_2 := \text{PV} \int_0^1 \frac{B_4[\alpha]}{4!} - B_4 \frac{d^4}{d\alpha^4} \left(\frac{1}{\phi(\alpha) - \phi(a_i)} \right) d\alpha.
\]

Due to $\phi_\alpha(1) - \phi_\alpha(0) = 0$ again, the third term in (5.20) becomes

\[
K_1 := \frac{B_2}{2} \frac{d}{d\alpha} \left(\frac{1}{\phi(\alpha) - \phi(a_i)} \right) \bigg|_{\alpha=0}^{\alpha=1}
= \frac{B_2}{2} \phi_\alpha(0) \left(\frac{1}{(-\phi(a_i))^2} - \frac{1}{(L - \phi(a_i))^2} \right).
\]
Without loss of generality, we can also assume \(\alpha_i \leq \frac{1}{2} \). Denote \(p(\alpha) := \frac{\bar{B}_4[\alpha] - B_4}{4!} \), we have

\[
e_2 = \text{PV} \int_0^1 p(\alpha) \frac{d^4}{d\alpha^4} \left(\frac{G(\alpha) - G(\alpha_i)}{\alpha - \alpha_i} + \frac{G(\alpha_i)}{\alpha - \alpha_i} \right) d\alpha
\]

\[
\leq C(\beta, \|h(0)\|_{W^{7,2}(I)}) + \text{PV} \int_0^1 c_p(\alpha) \frac{d^4}{d\alpha^4} \left(\frac{1}{\alpha - \alpha_i} \right) d\alpha,
\]

where we used the differentiability of \(G(\alpha) \). For the last term in (5.22), since \(\alpha_i \) is the singular point, we do variable substitution to obtain

\[
\text{PV} \int_0^1 c_p(\alpha) \frac{d^4}{d\alpha^4} \left(\frac{1}{\alpha - \alpha_i} \right) d\alpha = \text{PV} \int_{\alpha_i}^{1} c_p(\alpha + \alpha_i) \frac{1}{\alpha^5} d\alpha + \int_{\alpha_i}^{1 - \alpha_i} c_p(\alpha + \alpha_i) \frac{1}{\alpha^5} d\alpha
\]

\[
= \int_{\alpha_i}^{1 - \alpha_i} c_p(\alpha + \alpha_i) \frac{1}{\alpha^5} d\alpha.
\]

Here we used

\[
\bar{B}_4 \left[\frac{\alpha + \alpha_i}{a} \right] = \bar{B}_4 \left[\frac{\alpha}{a} \right],
\]

due to \(\frac{\alpha_i}{a} \) is integer. Since \(\bar{B}_4(x) \) is even, \(c_p(\alpha + \alpha_i) \frac{1}{\alpha^5} \) is odd, so the Cauchy principal value integral

\[
\text{PV} \int_{-\alpha_i}^{\alpha_i} c_p(\alpha + \alpha_i) \frac{1}{\alpha^5} d\alpha
\]

is zero. Hence we get

\[
(5.23) \quad |e_2| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}).
\]

On the other hand, (5.18) and (5.21) show that

\[
K_1 + K_2 = \sum_{k \in \mathbb{Z}} \sum_{k \neq \alpha_i} \frac{B_2}{2} \phi_\alpha(0) \left(\frac{1}{(kL - \phi(\alpha_i))^2} - \frac{1}{(L + kL - \phi(\alpha_i))^2} \right) = 0.
\]

Denote \(e := \sum_{k \in \mathbb{Z}} e_1(k) + e_2 \). Combining the calculations for \(T_1 \) and \(T_2 \), we obtain

\[
\text{PV} \int_0^1 \frac{\pi}{L} \cot\left(\frac{\pi}{L} (\phi(\alpha) - \phi(\alpha_i))\right) d\alpha = \sum_{j \neq i, j=1}^N \phi \left(\frac{\pi}{L} (\phi_j - \phi(\alpha_i)) \right) - \frac{a}{2} \phi \phi_{\alpha}^2 |_{\alpha_i} + ea^4,
\]

with \(|e| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}) \). This concludes (5.15) and \(|R_{1,i}| \leq a^4C(\beta, \|h(0)\|_{W^{7,2}(I)}) \).
Notice that change of variable from h to ϕ does not effect the Cauchy principal value integral and that $h_x < 0$. Then similar to (3.37), by (4.4) and variable substitution, we have

$$\text{PV} \int_0^1 \frac{\pi}{L} \cot \left(\frac{\pi}{L} (\phi(\alpha_i) - \phi(\alpha)) \right) \, d\alpha = - \text{PV} \int_0^1 \sum_{k \in \mathbb{Z}} \frac{1}{\phi(\alpha) - \phi(\alpha_i) - kL} \, d\alpha$$

$$= - \text{PV} \int_{-\infty}^{+\infty} \frac{h_x}{\phi(\alpha) - \phi(\alpha_i)} \, d\alpha = \text{PV} \int_{-\infty}^{+\infty} \frac{h_x}{x - \phi_i} \, dx$$

$$= \text{PV} \sum_{k \in \mathbb{Z}} \int_{-\frac{L}{2} + kL}^{\frac{L}{2} + kL} \frac{h_x}{x - \phi_i} \, dx = \frac{\pi}{L} \text{PV} \int_{-\frac{L}{2}}^{\frac{L}{2}} h_x \cot \left(\frac{x - \phi_i}{L} \pi \right) \, dx$$

$$= - \pi H(h_x)|_{\phi_i}.$$ This, combined with Lemma 5.3, leads to

Lemma 5.6. Let $I_{1,i}$ be defined in (5.9) and v_1 be function of α defined as

$$v_1(\alpha; \phi) := -\frac{\phi_{\alpha \alpha}}{L\phi_\alpha^2}.$$ Then we have

$$I_{1,i} = \left. -\frac{2\pi}{L} H(h_x) \right|_{\phi_i} + v_1(\alpha_i; \phi) a + R_{1,i},$$

with $|R_{1,i}| \leq a^4 C(\beta, \|h(0)\|_{W^7,2(I)})$.

We now turn to estimate $I_{3,i}$.

Lemma 5.7. Let $I_{3,i}$ be defined in (5.9) and v_3 be function of α defined as

$$v_3(\alpha; \phi) := -\frac{5}{2\pi} \phi_{\alpha \alpha}^3 - \frac{1}{2} \phi_\alpha^2 \phi^{(4)} + 2 \phi_\alpha \phi_{\alpha \alpha} \phi^{(3)}.$$ Then we have

$$I_{3,i} = 3h_{xx} h_x|_{\phi_i} + v_3(\alpha_i; \phi) a^2 + R_{3,i},$$

where $|R_{3,i}| \leq a^4 C(\beta, \|h(0)\|_{W^7,2(I)})$.

Proof. Using (2.10) and Taylor expansion, it is similar to the proof of Lemma 5.2 that
\[I_{3,i} = a^2 \left(\frac{1}{(\phi_{i+1} - \phi_i)^3} - \frac{1}{(\phi_i - \phi_{i-1})^3} \right) \]
\[= \frac{2\phi_i - \phi_{i+1} - \phi_{i-1}}{a^2} \left(\frac{1}{(\phi_{i+1} - \phi_i)^3} + \frac{1}{(\phi_i - \phi_{i-1})^3} \right) \cdot \left(\frac{1}{\phi_{i+1} - \phi_i} + \frac{1}{\phi_i - \phi_{i-1}} + \frac{1}{\phi_{i+1} - \phi_i} \right) \]
\[= \left(-\phi_{\alpha,i} - \frac{1}{12} \phi_i^{(4)} a^2 - \frac{1}{6} \phi_i^{(6)} (\xi^+ + \phi_i^{(6)} (\xi^-)) a^4 \right) \left(3\phi_{\alpha,i}^2 + B_{1,i} a^2 + B_{2,i} a^4 \right) \]
\[= \left(-\frac{3\phi_{\alpha,i}}{\phi_{\alpha,i}^2} \right) + \left[\frac{-5/2 \phi_i^{(4)} - \frac{1}{4} \phi_i^{(2)} \phi_i^{(4)} + 2\phi_i \phi_{\alpha,i} \phi_i^{(3)}}{\phi_{\alpha,i}^6} \right] a^2 + C_{3,i} a^4 \]
\[= (3h_{xx}h_x)_i + \left[\frac{-5/2 \phi_i^{(4)} - \frac{1}{4} \phi_i^{(2)} \phi_i^{(4)} + 2\phi_i \phi_{\alpha,i} \phi_i^{(3)}}{\phi_{\alpha,i}^6} \right] a^2 + C_{3,i} a^4, \]

where
\[B_{1,i} = (\phi_i \phi_i^{(3)} + \frac{1}{4} \phi_{\alpha,i}^2), \quad |B_{2,i}| \leq c, \]
\[C_{1,i} = \left(-\frac{3}{4} \phi_i^2 \phi_{\alpha,i}^2 + \phi_i \phi_{\alpha,i} \phi_i^{(3)} \right), \quad |C_{2,i}| \leq c, \quad |C_{3,i}| \leq c. \]

Denote
\[v_3(\alpha; \phi) := \frac{-5/2 \phi_i^{(4)} - \frac{1}{4} \phi_i^{(2)} \phi_i^{(4)} + 2\phi_i \phi_{\alpha,i} \phi_i^{(3)}}{\phi_{\alpha,i}^6}. \]

We conclude the proof of lemma 5.7. \[\square\]

Denote
\[A(x; h) := \left(-\frac{2\pi}{L} H(h_x) + 3h_{xx}h_x h_{xx} \right) (x), \]

and
\[R_{4,i} := R_{1,i} + R_{2,i} + R_{3,i}. \]

The above three lemmas yield

Lemma 5.8. For \(\bar{f}_i \) defined in (5.2), \(v_1 \) defined in (5.24), \(v_2 \) defined in (5.10), and \(v_3 \) defined in (5.26), we have
\[\bar{f}_i = A(\phi_i; h) + v_1(\alpha_i; \phi) a + (v_2 + v_3)(\alpha_i; \phi) a^2 + R_{4,i}, \]

where \(|R_{4,i}| \leq a^4C(\beta, \|h(0)\|_{W^{7,2}(I)})\).

Now we are ready to prove the main result of this section, Theorem 5.1.
Proof of Theorem 5.1. Step 1. To calculate F_i in (5.7), by (5.29) in Lemma 5.8 we first need to calculate

$$A_{i+1} - A_i \over \phi_{i+1} - \phi_i - A_i - A_{i-1} \over \phi_i - \phi_{i-1}$$

(5.30)

$$= A_{xx,i} \phi_{i+1} - \phi_i - 1 \over 2 + A_{xx,i} (\phi_{i+1} - \phi_i) + \phi_{i-1} - 2 \phi_i \over 3! + r_{1,i} a^4$$

$$= - \phi_{\alpha,i} A_{xx,i} a + r_2(\alpha; \phi) a^3 + r_{3,i} a^4,$$

where $|r_{1,i}|, |r_{3,i}| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)})$ and

$$r_2(\alpha; \phi) := \left(-{\frac{1}{3}} \phi^{(3)}(A_{xx} \circ \phi) - 2 \phi_{\alpha} \phi_{\alpha \alpha} \right)(\alpha).$$

Second, for any smooth function $v(\alpha)$ respect to α, notice that

$$v_{i+1} - v_i = v_{\alpha,i}(\alpha_{i+1} - \alpha_i) + {\frac{1}{2}} v_{\alpha \alpha,i}(\alpha_{i+1} - \alpha_i)^2 + {\frac{1}{3!}} v_i^{(3)}(\xi^+)(\alpha_{i+1} - \alpha_i)^3,$$

$$v_{i-1} - v_i = v_{\alpha,i}(\alpha_{i-1} - \alpha_i) + {\frac{1}{2}} v_{\alpha \alpha,i}(\alpha_{i-1} - \alpha_i)^2 + {\frac{1}{3!}} v_i^{(3)}(\xi^-)(\alpha_{i-1} - \alpha_i)^3.$$

Then for other terms in (5.29), we have

$$v_{i+1} - v_i \over \phi_{i+1} - \phi_i - v_{i-1} - v_i \over \phi_i - \phi_{i-1}$$

(5.31)

$$= v_{\alpha,i} \phi_{i+1} - \phi_i - h_{i+1} - h_i \over \alpha_{i+1} - \alpha_i \phi_{i+1} - \phi_i - v_{i-1} - v_i \over \alpha_i - \alpha_{i-1} \phi_i - \phi_{i-1}$$

$$= v_{\alpha,i} - {\frac{1}{2}} v_{\alpha \alpha,i} a + {\frac{1}{3!}} v_i^{(3)}(\xi^+ a^2) \left[h_{x,i} + h_{xx,i} \phi_{i+1} - \phi_i \over 2 + {\frac{1}{3!}} h_{xxx}(\eta^+)(\phi_{i+1} - \phi_i)^2 \right]$$

$$- v_{\alpha,i} + {\frac{1}{2}} v_{\alpha \alpha,i} a + {\frac{1}{3!}} v_i^{(3)}(\xi^- a^2) \left[h_{x,i} - h_{xx,i} \phi_{i-1} - \phi_i \over 2 + {\frac{1}{3!}} h_{xxx}(\eta^-)(\phi_i - \phi_{i-1})^2 \right]$$

$$= r_4(\alpha; \phi) a + r_{5,i} a^2,$$

where $|r_{5,i}| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)})$, $\eta^+ \in [\phi_i, \phi_{i+1}]$, $\eta^- \in [\phi_{i-1}, \phi_i]$ and

$$r_4(\alpha; \phi) := \left(-{\frac{v_{\alpha} \phi_{\alpha \alpha}}{\phi_{\alpha}^2}} - {\frac{v_{\alpha \alpha}}{\phi_{\alpha}}} \right)(\alpha).$$

Denote

$$r_0(\alpha; \phi) := \left(-{\frac{v_{\alpha} \phi_{\alpha \alpha}}{\phi_{\alpha}^2}} - {\frac{v_{\alpha \alpha}}{\phi_{\alpha}}} \right)(\alpha),$$

and

$$r(\alpha; \phi) := \left(-{\frac{v_{\alpha} \phi_{\alpha \alpha}}{\phi_{\alpha}^2}} - {\frac{v_{2 \alpha} \phi_{\alpha \alpha}}{\phi_{\alpha}^2}} + {\frac{v_{3 \alpha} \phi_{\alpha \alpha}}{\phi_{\alpha}^2}} - {\frac{v_{4 \alpha}}{\phi_{\alpha}}} \right)(\alpha) + r_2(\alpha; \phi).$$
Thus for F_i in (5.7), combining (5.30) and (5.31), we get

\begin{equation}
F_i = -\frac{A_{xx}}{h_x}(\phi_i) + r_0(\alpha_i; \phi) a + r(\alpha_i; \phi) a^2 + \frac{R_{4,i+1} - 2R_{4,i} + R_{4,i-1}}{a^2}(h_x(\phi_i) + r_{6,i}a) \\
= -\frac{A_{xx}}{h_x}(\phi_i) + r_0(\alpha_i; \phi) a + r(\alpha_i; \phi) a^2 + R_{5,i}a^2,
\end{equation}

where $|r_{6,i}| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}), A(x; h)$ defined in (5.28). To obtain $|R_{5,i}| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}),$

here we also used $|R_{4,i}| \leq a^4C(\beta, \|h(0)\|_{W^{7,2}(I)})$ due to Lemma 5.8.

Denote $R_i := r(\alpha_i; \phi) + R_{5,i}.

(5.35)

For a small enough, we have $|R_i| \leq |r(\alpha_i; \phi)| + |R_{5,i}| \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}),$. Finally, comparing (5.34) with (5.8), we conclude (5.4).

Step 2. Now using (5.4) and Lemma 5.8, we can claim

\begin{equation}
\sum_{i=1}^{N} \bar{f}_i \left(F_i - \frac{d\phi_i}{dt} \right) \leq C(\beta, \|h(0)\|_{W^{7,2}(I)}),
\end{equation}

where $C(\beta, \|h(0)\|_{W^{7,2}(I)})$ depends on $\beta, \|h(0)\|_{W^{7,2}(I)}.$

From (5.36), multiplying \bar{f}_i in (5.4) and summation by parts show that

\begin{equation}
\frac{dE_N^N(\phi)}{dt} + \sum_{i=1}^{N} \left(\frac{f_{i+1}(\phi) - \bar{f}_i(\phi)}{\phi_{i+1} - \phi_i} \right)^2 \leq C(\beta, \|h(0)\|_{W^{7,2}(I)})a,
\end{equation}

Then by (5.6), we have

\begin{equation}
\frac{dE_N^N(\phi)}{dt} + a \sum_{i=1}^{N} \left(\frac{f_{i+1}(\phi) - \bar{f}_i(\phi)}{a} \right)^2 \leq C(\beta, \|h(0)\|_{W^{7,2}(I)})a,
\end{equation}

which completes the proof of Theorem 5.1.

6. Convergence and the proof of Theorem 1.2

In this section, our goal is to prove Theorem 1.2. The main idea is to first construct an auxiliary solution with high-order consistency (see Section 6.2), and then prove the convergence rate for the auxiliary solution, which helps us obtain the convergence rate for the original PDE solution.
6.1. Stability of linearized x-ODE. First of all, we devote to study the stability of linearized ODE, which is important when we estimate the convergence rate for the auxiliary solution. The procedure here is analogous to the stability result of linearized φ-PDE; see Section 3.1.

For vector x, y satisfying (4.2), set $x = y + \varepsilon z$. We also assume $y_i(t) = \phi(\alpha_i, t)$, and ϕ is the solution of (2.13) satisfying (3.27) and (3.28). Denote

$$M_i = \frac{1}{y_{i+1} - y_i} + \frac{a^2}{(y_{i+1} - y_i)^3} - \frac{1}{y_i - y_{i-1}} - \frac{a^2}{(y_i - y_{i-1})^3} - \frac{2}{L} \sum_{j \neq i} \frac{a}{y_j - y_i},$$

and

$$T_i = -\frac{z_{i+1} - z_i}{(y_{i+1} - y_i)^2} - 3a^2 \frac{z_{i+1} - z_i}{(y_{i+1} - y_i)^4} + \frac{z_i - z_{i-1}}{(y_i - y_{i-1})^2} + 3a^2 \frac{z_i - z_{i-1}}{(y_i - y_{i-1})^4} + \frac{2}{L} \sum_{j \neq i} a(z_j - z_i).$$

Then z satisfies the following linearized equation

$$\frac{d}{dt} z_i = \frac{1}{a} \left(\frac{T_{i+1} - T_i}{y_{i+1} - y_i} - \frac{T_i - T_{i-1}}{y_i - y_{i-1}} \right) - \frac{1}{a} \left[\frac{z_{i+1} - z_i}{(y_{i+1} - y_i)^2} (M_{i+1} - M_i) - \frac{z_i - z_{i-1}}{(y_i - y_{i-1})^2} (M_i - M_{i-1}) \right].$$

Proposition 6.1. Assume $z(0) \in \ell^2$ and $m_1, m_2 > 0$ defined in (3.28). Let $T_m > 0$ be the maximal existence time for strong solution ϕ in (3.27). The linearized equation (6.3) is stable in the sense

$$\|z(t)\|_{\ell^2} \leq C(m_1, m_2, T_m)\|z(0)\|_{\ell^2}, \text{ for } t \in [0, T_m],$$

where $C(m_1, m_2, T_m)$ is a constant depending only on m_1, m_2, and T_m.

Proof. Step 1. Similar to the proof of Proposition 3.2, first we study the linearized system for (4.2) without the Hilbert transform term $-\frac{2}{L} \sum_{j \neq i} \frac{a}{x_j - x_i}$. Thus M_i, T_i in (6.1) and (6.2) become

$$M_i = \frac{1}{y_{i+1} - y_i} + \frac{a^2}{(y_{i+1} - y_i)^3} - \frac{1}{y_i - y_{i-1}} - \frac{a^2}{(y_i - y_{i-1})^3},$$

and

$$T_i = -\frac{z_{i+1} - z_i}{(y_{i+1} - y_i)^2} - 3a^2 \frac{z_{i+1} - z_i}{(y_{i+1} - y_i)^4} + \frac{z_i - z_{i-1}}{(y_i - y_{i-1})^2} + 3a^2 \frac{z_i - z_{i-1}}{(y_i - y_{i-1})^4}.$$
Since \(z_{i+N} = z_i \), multiplying both sides of (6.3) by \(az_i \) and taking summation by parts, we have

\[
\sum_{i=1}^{N} az_i \dot{z}_i = -\sum_{i=1}^{N} \frac{z_{i+1} - z_i}{y_{i+1} - y_i} (T_{i+1} - T_i) + \sum_{i=1}^{N} \frac{(z_{i+1} - z_i)(z_{i+1} - z_i)}{(y_{i+1} - y_i)^2} (M_{i+1} - M_i)
\]

\[
= -a \sum_{i=1}^{N} \frac{z_{i+1} - z_i}{a} \frac{T_{i+1}}{a} - \frac{T_i}{a} - a \sum_{i=1}^{N} \frac{z_{i+1} - z_i}{a} \frac{T_{i+1}}{a} - \frac{T_i}{a} + a \sum_{i=1}^{N} \left(\frac{z_{i+1} - z_i}{a} \right)^2 \frac{1}{(y_{i+1} - y_i)^2} \frac{M_{i+1} - M_i}{a}
\]

\[
= I_1 + I_2 + I_3.
\]

Next, we will estimate \(I_1, I_2, I_3 \) one by one. First, we deal with

\[
I_1 = -a \sum_{i=1}^{N} \frac{z_{i+1} - z_i}{a} \frac{T_{i+1}}{a} - \frac{T_i}{a}
\]

\[
= a \sum_{i=1}^{N} \frac{T_i}{y_i - y_{i-1}} \frac{z_{i+1} - z_i}{a} - \frac{z_{i} - z_{i-1}}{a}.
\]

We can see

\[
T_i = a^2 \frac{z_{i+1} - 2z_i + z_{i-1}}{a^2} \left(-\frac{1}{(y_{i+1} - y_i)^2} - \frac{3a^2}{(y_{i+1} - y_i)^4} \right)
\]

\[
+ a \left[-\frac{1}{(y_{i+1} - y_i)^2} - \frac{3a^2}{(y_{i+1} - y_i)^4} + \frac{1}{(y_i - y_{i-1})^2} + \frac{3a^2}{(y_i - y_{i-1})^4} \right] \frac{z_i - z_{i-1}}{a}.
\]

Due to Young’s inequality, for any \(\varepsilon > 0 \), we have

\[
a \sum_{i=1}^{N} \left(\frac{z_{i+1} - z_i}{a} \right)^2 = -a \sum_{i=1}^{N} \frac{z_i}{a} \frac{z_{i+1} - 2z_i + z_{i-1}}{a^2}
\]

\[
\leq a \sum_{i=1}^{N} \left(\frac{1}{4\varepsilon} z_i^2 + \varepsilon \left(\frac{z_{i+1} - 2z_i + z_{i-1}}{a^2} \right)^2 \right).
\]

(6.5)

Besides, due to \(y_i(t) = \phi(\alpha_i, t) \), we have

\[
a \left[-\frac{1}{(y_{i+1} - y_i)^2} - \frac{3a^2}{(y_{i+1} - y_i)^4} + \frac{1}{(y_i - y_{i-1})^2} + \frac{3a^2}{(y_i - y_{i-1})^4} \right] \frac{a}{y_i - y_{i-1}} \leq C_0(m_1, m_2),
\]

\[
\left(-\frac{1}{(y_{i+1} - y_i)^2} - \frac{3a^2}{(y_{i+1} - y_i)^4} \right) a^2 \frac{a}{y_i - y_{i-1}} \leq -C(m_2)
\]

for \(a \) small enough.
Then for I_1, we have

$$I_1 = a \sum_{i=1}^N \frac{T_i}{y_i-y_{i-1}} \left(\frac{z_{i+1}-z_i}{a} - \frac{z_i-z_{i-1}}{a} \right)$$

$$\leq C_1(m_1, m_2)a \sum_i z_i^2 - \frac{3}{4} C(m_2)a \sum_i \left(\frac{z_{i+1} - 2z_i + z_{i-1}}{a^2} \right)^2.$$

Let us keep in mind that functions, such as M_i, involving only $\frac{y_{i+1}-y_i}{a}$ can be bounded by a constant depending only on m_1, m_2. Then similar to the estimate for I_1, together with (6.5), we have

$$I_2 \leq C_2(m_1, m_2)a \sum_i z_i^2 + \frac{1}{4} C(m_2)a \sum_i \left(\frac{z_{i+1} - 2z_i + z_{i-1}}{a^2} \right)^2,$$

and

$$I_3 \leq C_3(m_1, m_2)a \sum_i z_i^2 + \frac{1}{4} C(m_2)a \sum_i \left(\frac{z_{i+1} - 2z_i + z_{i-1}}{a^2} \right)^2.$$

Here $C_i(m_1, m_2), i = 0, 1, 2, 3$ are positive constants depending only on m_1, m_2.

Combining estimates for I_1, I_2, I_3, we have

$$\frac{d\|z(t)\|_{L^2}^2}{dt} + \frac{1}{4} C(m_2)a \sum_i \left(\frac{z_{i+1} - 2z_i + z_{i-1}}{a^2} \right)^2 \leq C(m_1, m_2)\|z\|_{L^2}^2.$$

Then Grönwall’s inequality yields (6.4).

Step 2. Now we consider Hilbert transform term $-\frac{2}{L} \sum_{j \neq i} a_{y_j-y_i}$. Then the terms M_i, T_i in (6.3) become (6.1) and (6.2).

First Lemma 5.3 and Lemma 5.6 show that $\sum_{j \neq i} a_{y_j-y_i}$ can be estimated by $C(m_1, m_2)$ and

$$\text{PV} \int_0^1 \cot \frac{L}{\pi} (\phi(\alpha) - \phi(\beta)) \, d\beta.$$

Second, from the proof of Lemma 5.3 we know $a \sum_{j \neq i} \frac{y_j-y_i}{2(y_j-y_i)^2}$ can be estimated by $C(m_1, m_2)$ and $\text{PV} \int_0^1 \sec^2 \frac{(\phi(\alpha)-\phi(\beta))\pi}{L} (\psi(\alpha) - \psi(\beta)) \, d\beta$, where ψ is the piecewise-cubic interpolant of z.

Then using the same arguments in step 2 of the proof of Proposition 3.2, we can conclude (6.3).

6.2. **Construction of solution with high-order truncation error.** From now on, we proceed under the same hypothesis of Theorem 1.2, i.e. we assume for some $\beta < 0$, the initial datum $h(0)$ smooth enough and satisfies

$$h_x(0) \leq \beta < 0.$$
By Theorem 1.1 and Proposition 2.5 for some constant \(m \in \mathbb{N} \) large enough, we know there exists \(T_m > 0 \), such that

\[
(6.7) \quad \phi(\alpha, t) \in C([0, T_m]; C^m[0, 1])
\]

is the strong solution to (2.13). Obviously, there exist \(M > 0 \), whose values depend only on \(\beta \) and \(\|h(0)\|_{W^{m,2}} \), such that

\[
(6.8) \quad \phi_\alpha \leq \frac{\beta}{2} < 0, \quad |\phi^{(i)}| \leq M, \text{ for } 1 \leq i \leq m.
\]

Recalling equation (2.13), we define \(F(\phi) : C^\infty[0, 1] \to C^\infty[0, 1] \) as an operator

\[
F(\phi) := -\partial_\alpha \left(\frac{1}{\phi_\alpha} \frac{\delta E}{\delta \phi}_\alpha \right).
\]

Then we have

\[
(6.9) \quad \phi_t = F(\phi).
\]

For \(F_i \) defined in (5.7), denote

\[
F_N := \{F_i, i = 1, \cdots, N\}, \quad r_N(\phi) := \{r_0(\alpha_i; \phi), i = 1, \cdots, N\},
\]

where \(r_0(\alpha; \phi) \) is the function defined in (5.3). Then for \(\phi_N = \{\phi_i, i = 1, \cdots, N\} \), Theorem 5.1 shows that

\[
\dot{\phi}_N = F_N(\phi_N) + r_N(\phi)a + O(a^2).
\]

Now we want to construct \(y = \phi + a\psi \), for \(\psi \) satisfying the same regularity with \(\phi \), such that \(y \) has a higher truncation error than \(\phi \). In fact, we state

Proposition 6.2. Let \(T_m > 0 \) in (6.7) and \(\phi \) be the solution of (6.9). Then there exists \(\psi \) smooth enough such that \(\|\psi(\cdot, t)\|_{L^2([0, 1])} \) is uniformly bounded for \(t \in [0, T_m] \), and

\[
(6.10) \quad y(\alpha, t) = \phi(\alpha, t) + a\psi(\alpha, t)
\]

satisfies the ODE system (4.2) till order \(O(a^7) \), i.e. the nodal values \(y_N = \{y(\alpha_i, t), i = 1, \cdots, N\} \) satisfy

\[
(6.11) \quad \dot{y}_N = F_N(y_N) + O(a^7).
\]
Proof. To simplify the calculation, first we show there exists ψ such that

\begin{equation}
\dot{y}_N = F_N(y_N) + O(a^2).
\end{equation}

For $y_N = \phi_N + a\psi_N$, where ψ_N is the nodal values of ψ, Theorem 5.1 shows that

\begin{equation}
F_N(y_N) = F_N(\phi_N + a\psi_N) = F(\phi + a\psi)|_{\alpha = \alpha_i} - r_N(\phi + a\psi)a - O(a^2).
\end{equation}

Hence y_N satisfies

\begin{equation}
\dot{y}_N - F_N(y_N) = a\dot{\psi}_N + [F(\phi) - F(\phi + a\psi)]|_{\alpha = \alpha_i} + r_N(\phi + a\psi)a + O(a^2).
\end{equation}

Now by Proposition 3.2 we can choose ψ to be the solution of (6.9)'s linearized system

\begin{equation}
\psi_t = -\partial_\alpha \left(-\frac{\psi_\alpha}{\phi_\alpha} \partial_\alpha A + \frac{\partial_\alpha B}{\phi_\alpha} \right) - r_0(\phi),
\end{equation}

where A, B are defined in (3.29) and (3.30). After that, (6.12) holds.

To obtain higher order truncation error construction, we can repeat above processes to get higher order corrections. We omit the details here. \qed

6.3. **Convergence of ODE and PDE system.** In this section, we will combine above results and complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume ϕ is the strong solution of (2.13) satisfying (6.7) and (6.8) with maximal existence time $T_m > 0$. Let β, M be constants in equation (6.8). Recall vector $x(t) = \{x_i(t); i = 1, \cdots, N\}$ is the solution of (4.2), and with slight abuse of notation, denote $y(t) := \{y(\alpha_i, t); i = 1, \cdots, N\}$ being the constructed vector value function y_N in Proposition 6.2. We will first obtain the convergence rate for x, y in Step 1, 2, and then obtain the convergence rate for x, ϕ in Step 3.

Step 1. We first claim that under the a-priori assumption

\begin{equation}
\|x(t) - y(t)\|_\infty \leq a^{6+\frac{4}{3}}, \text{ for } t \in [0, T_m],
\end{equation}

we have

\begin{equation}
\|x(t) - y(t)\|_2 \leq C(\beta, M, T_m)a^7, \text{ for } t \in [0, T_m],
\end{equation}

where $C(\beta, M, T_m)$ is a constant depending only on β, M, T_m. We will verify the a-priori assumption (6.14) in Step 2.
In fact, from Proposition 6.2, we know y has a^7-order consistence error, i.e.
\[
\frac{d(y-x)}{dt} = F_N(y) - F_N(x) + O(a^7).
\]

Denote the inner product for x, y as
\[
(x, y) := \sum_{i=1}^{N} a x_i y_i.
\]

Then for β, M defined in (6.8), we have
\[
\langle x - y, \dot{x} - \dot{y} \rangle = \langle x - y, \nabla F_N(y)(x - y) \rangle + \langle x - y, (x - y)\nabla^2 F_N(y)(x - y)^T \rangle
\]
\[
+ C(\beta, M) \langle x - y, a^7 \rangle,
\]
where $C(\beta, M)$ depends only on β, M.

For the second term in (6.16), we can see
\[
\langle x - y, (x - y)\nabla^2 F_N(y)(x - y)^T \rangle \leq \|x - y\|_{\ell^2} \|x - y\|_{\ell^\infty} \max_k \left(\sum_{i=1}^{N} \sum_{j=1}^{N} (\partial_{ij} F_k)^2 \right)
\]
\[
\leq \|x - y\|_{\ell^2}^2 \|x - y\|_{\ell^\infty} N \max_k \left(\sum_{i=1}^{N} \sum_{j=1}^{N} (\partial_{ij} F_k)^2 \right),
\]
where we used Hölder’s inequality in the last step.

Now keep in mind that functions involving only $\frac{y_{i+1} - y_i}{a}$ can be bounded by a constant depending only on β, M, and that
\[
\left| \frac{1}{y_{j} - y_{i}} \right| \leq \max\left\{ \frac{1}{y_{i+1} - y_{i}}, \frac{1}{y_{i} - y_{i-1}} \right\}.
\]

We can start to estimate the term $\max_k \left(\sqrt{\sum_i \sum_j (\partial_{ij} F_k)^2} \right)$.

For $k = 1, \ldots, N$, denote
\[
Q_k := \frac{1}{y_{k+1} - y_k} \left[- \sum_{\ell \neq k+1} \frac{a}{y_{\ell} - y_{k+1}} + \sum_{\ell \neq k} \frac{a}{y_{\ell} - y_k} + \left(\frac{1}{y_{k+2} - y_{k+1}} - 2 \frac{1}{y_{k+1} - y_k} + \frac{1}{y_k - y_{k-1}} \right) \right]
\]
\[
+ \left(\frac{a^2}{(y_{k+2} - y_{k+1})^3} - 2 \frac{a^2}{(y_{k+1} - y_k)^3} + \frac{a^2}{(y_k - y_{k-1})^3} \right).
\]
Then $F_k = \frac{1}{a}(Q_k - Q_{k-1})$, and

$$
(\partial_{ij} F_k)^2 \leq \frac{1}{a}[(\partial_{ij} Q_k)^2 + (\partial_{ij} Q_{k-1})^2].
$$

First calculate $\partial_i Q_k$, for $k = 1, \cdots, N$.

$$
\begin{align*}
\partial_i Q_k = \begin{cases}
\frac{a}{y_{k+1} - y_k} \left[\frac{1}{(y_i - y_{k+1})^2} - \frac{1}{(y_i - y_k)^2} \right], & \text{for } 1 \leq i \leq k - 2, \quad k + 3 \leq i \leq N; \\
\frac{a}{y_{k+1} - y_k} \left[\frac{1}{(y_{k-1} - y_{k+1})^2} - \frac{1}{(y_{k-1} - y_k)^2} \right] \\
\quad + \frac{1}{y_{k+1} - y_k (y_{k-1} - y_k)} + \frac{1}{y_{k+1} - y_k (y_{k-1} - y_k)^4}, & \text{for } i = k - 1; \\
\frac{a}{y_{k+1} - y_k} \left[\frac{1}{(y_{k+1} - y_k)^3} - \frac{4}{(y_{k+1} - y_k)^3} - \frac{8a^2}{(y_{k+1} - y_k)^3} \right] \\
\quad - \frac{(y_{k+1} - y_k)^3 - 2y_{k+1} + y_k}{(y_{k+1} - y_k)^2(y_{k-1} - y_k)^2} + a^2 \frac{3(y_{k+1} - y_k) - (y_{k-1} - y_k)}{(y_{k+1} - y_k)^2(y_{k-1} - y_k)^4}, & \text{for } i = k; \\
\frac{a}{y_{k+1} - y_k} \left[\frac{1}{(y_{k+2} - y_{k+1})^2} - \frac{1}{(y_{k+2} - y_k)^2} \right] \\
\quad + \frac{4}{(y_{k+1} - y_k)^3} + \frac{8a^2}{(y_{k+1} - y_k)^3}, & \text{for } i = k + 1; \\
\frac{a}{y_{k+1} - y_k} \left[\frac{1}{(y_{k+2} - y_k)^2} - \frac{1}{(y_{k+2} - y_{k+1})^2} \right] \\
\quad - \frac{3a^2}{y_{k+1} - y_k (y_{k+2} - y_{k+1})^2}, & \text{for } i = k + 2.
\end{cases}
\end{align*}
$$
Hence

\[
\begin{pmatrix}
O(\frac{1}{a^3}) & 0 & 0 & 0 & O(\frac{1}{a^3}) & 0 & 0 & 0 \\
0 & \ddots \\
0 & 0 & O(\frac{1}{a^3}) & 0 & O(\frac{1}{a^3}) & 0 & 0 & 0 \\
0 & 0 & 0 & O(\frac{1}{a^3}) & 0 & O(\frac{1}{a^3}) & 0 & 0 \\
0 & 0 & 0 & 0 & O(\frac{1}{a^3}) & O(\frac{1}{a^3}) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & O(\frac{1}{a^3}) & O(\frac{1}{a^3}) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & O(\frac{1}{a^3})
\end{pmatrix}
\]

\(\partial_{ij} Q_k = \begin{pmatrix}
\frac{C}{\beta,M,T} & 0 & 0 & 0 & \frac{C}{\beta,M,T} & 0 & 0 & 0 \\
0 & \ddots \\
0 & 0 & 0 & 0 & \frac{C}{\beta,M,T} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{C}{\beta,M,T}
\end{pmatrix},
\]

where \(\{\partial_{ij} Q_k\}_{i,j=1,\ldots,k-2}\) and \(\{\partial_{ij} Q_k\}_{i,j=k+3,\ldots,N}\) are diagonal matrices with \(O(\frac{1}{a^3})\) main diagonal entries and the bold zeros 0 represent zero matrices with corresponding dimensions.

For \(Q_{k-1}\), we have a similar Hessian matrix. Notice that only three terms in one row are nonzero and that only at most four terms in one column are order \(\frac{1}{a^3}\). Hence for \(a\) small enough, we have

\[
\max_k \left(\sqrt{\sum_i \sum_j (\partial_{ij} F_k)^2} \right) \leq C(\beta, M) \frac{1}{a^3}.
\]

where \(C(\beta, M)\) is a constant depending only on \(\beta, M\).

Then from \((6.17)\) and the \textit{a-priori} condition \((6.14)\), we have

\[
\langle x - y, (x - y) \nabla^2 F_N(y) (x - y)^T \rangle \leq C(\beta, M) a^{\frac{1}{3}} \|x - y\|^2_{\ell^2}.
\]

Combining this with \((6.16)\), together with linearized stability in Proposition \((6.1)\) gives

\[
\frac{d\|x - y\|_{\ell^2}^2}{dt} \leq C(\beta, M) \|x - y\|_{\ell^2}^2 + C(\beta, M) a^7 \|x - y\|_{\ell^2}.
\]

Therefore by Grönwall’s inequality, we obtain

\[
\|x(t) - y(t)\|_{\ell^2} \leq C(\beta, M, T_m)(\|x(0) - y(0)\|_{\ell^2} + a^7), \quad \text{for } t \in [0, T_m],
\]

where \(C(\beta, M, T_m)\) is a constant depending only on \(\beta, M, T_m\). We choose initial data of \(y\) such that \(y(0) = x(0)\), so \((6.18)\) leads to \((6.15)\).
Step 2. Now we need to verify the a-priori assumption (6.14) is true for $t \in [0,T_m]$. In fact,
\[
\|x(t) - y(t)\|_{\ell^\infty} \leq \frac{\|x(t) - y(t)\|_{\ell^2}}{\sqrt{a}} \leq C(\beta, M, T_m)a^{7-\frac{1}{2}} \ll a^{6+\frac{1}{2}},
\]
for a small enough, $t \in [0,T_m]$. Hence (6.15) actually verifies the a-priori condition (6.14).

Step 3. For the exact strong solution ϕ of (2.13), recall the nodal values $\phi_N = \{\phi_i, i = 1, \cdots, N\}$. By Proposition (6.2) we know that the constructed function y in (6.10) satisfies
\[
\|y(t) - \phi_N(t)\|_{\ell^2} = \|a\psi_N(t)\|_{\ell^2} \leq ca, \; \text{for} \; t \in [0,T_m],
\]
where we used $\psi(t)$, defined in Proposition (6.2), is uniformly bounded. This, together with (6.15), shows that
\[
(6.19) \quad \|x(t) - \phi_N(t)\|_{\ell^2} \leq \|x(t) - y(t)\|_{\ell^2} + \|y(t) - \phi_N(t)\|_{\ell^2} \leq C(\beta, M, T_m)a, \; \text{for} \; t \in [0,T_m],
\]
where $C(\beta, M, T_m)$ is a constant depending only on β, M, T_m. This completes the proof of the Theorem 1.2.

Acknowledgements

We would like to thank the support by the National Science Foundation under grants DMS-1514826 (JGL), DMS-1454939 (JL), and also through the research network KI-Net RNMS11-07444. We thank Dionisios Margetis, Jeremy Marzuola, Yang Xiang, Aaron N.K. Yip for helpful discussions.
REFERENCES

[1] H. Al Hajj Shehadeh, R. V. Kohn and J. Weare, The evolution of a crystal surface: Analysis of a one-dimensional step train connecting two facets in the adl regime, Physica D: Nonlinear Phenomena 240 (2011), no. 21, 1771–1784.

[2] W. K. Burton, N. Cabrera and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 243 (1951), no. 866, 299–358.

[3] P. L. Butzer and R. J. Nessel, Fourier analysis and approximation, vol. 40, Academic Press, 2011.

[4] G. Dal Maso, I. Fonseca and G. Leoni, Analytical validation of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Archive for Rational Mechanics and Analysis 212 (2014), no. 3, 1037–1064.

[5] C. Duport, P. Nozières, and J. Villain, New instability in molecular beam epitaxy, Phys. Rev. Lett., 74 (1995), pp. 134–137.

[6] C. Duport, P. Politi, and J. Villain, Growth instabilities induced by elasticity in a vicinal surface, J. Phys. I France, 5 (1995), pp. 1317–1350.

[7] W. E and N. K. Yip, Continuum theory of epitaxial crystal growth. I, Journal Statistical Physics 104 (2001), no. 1-2, 221–253.

[8] L. C. Evans, Partial Differential Equations (Graduate Studies in Mathematics vol 19), Providence, RI: American Mathematical Society, 1998.

[9] I. Fonseca, G. Leoni and X. Y. Lu, Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Communications in Partial Differential Equations 40 (2015), no. 10, 1942–1957.

[10] T. Funaki and H. Spohn, Motion by Mean Curvature from the Ginzburg-Landau Interface Model, Comm. Math. Phys. 185 (1997) 1–36.

[11] M. Grinfeld, Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt, Soviet Physics Doklady, 1986, 831–834.

[12] M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions, Communications in Mathematical Physics, 118 (1988) 31–59.

[13] F. Liu, J. Tersoff and M. Lagally, Self-organization of steps in growth of strained films on vicinal substrates, Physical Review Letters 80 (1998), no. 6, 1268.

[14] J. Lu, J.-G. Liu and D. Margetis, Emergence of step flow from an atomistic scheme of epitaxial growth in 1+1 dimensions, Physical Review E 91 (2015), no. 3, 032403.

[15] T. Luo, Y. Xiang and N. K. Yip, Energy scaling and asymptotic properties of step bunching in epitaxial growth with elasticity effects, Multiscale Modeling & Simulation 14 (2016), no. 2, 737–771.

[16] T. Luo, Y. Xiang and N. K. Yip, private communication.

[17] A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow, vol. 27, Cambridge University Press, 2002.

[18] D. Margetis and R. V. Kohn, Continuum relaxation of interacting steps on crystal surfaces in 2 + 1 dimensions, Multiscale Modeling & Simulation 5 (2006), no. 3, 729–758.
[19] D. Margetis, K. Nakamura, From crystal steps to continuum laws: Behavior near large facets in one dimension, Physica D, 240 (2011), 1100–1110.

[20] J. L. Marzuola and J. Weare, Relaxation of a family of broken-bond crystal-surface models, Phys. Rev. E, 88 (2013), 032403.

[21] T. Nishikawa, Hydrodynamic limit for the Ginzburg-Landau $\nabla \phi$ interface model with a conservation law, J. Math. Sci. Univ. Tokyo 9 (2002), 481–519.

[22] A. Pimpinelli and J. Villain, Physics of Crystal Growth, Cambridge University Press, New York, 1998.

[23] V. Shenoy and L. Freund, A continuum description of the energetics and evolution of stepped surfaces in strained nanostructures, Journal of the Mechanics and Physics of Solids 50 (2002), no. 9, 1817–1841.

[24] A. Sidi and M. Israeli, Quadrature methods for periodic singular and weakly singular fredholm integral equations, Journal of Scientific Computing 3 (1988), no. 2, 201–231.

[25] D. J. Srolovitz, On the stability of surfaces of stressed solids, Acta Metallurgica 37 (1989), no. 2, 621–625.

[26] L.-H. Tang, Flattening of grooves: From step dynamics to continuum theory, Dynamics of crystal surfaces and interfaces (1997), 169.

[27] J. Tersoff, Y. Phang, Z. Zhang and M. Lagally, Step-bunching instability of vicinal surfaces under stress, Physical Review Letters 75 (1995), no. 14, 2730.

[28] J. D. Weeks and G. H. Gilmer, Dynamics of Crystal Growth, in Advances in Chemical Physics, Vol. 40, edited by I. Prigogine and S. A. Rice (John Wiley, New York, 1979), pp. 157–228.

[29] Y. Xiang, Derivation of a continuum model for epitaxial growth with elasticity on vicinal surface, SIAM Journal on Applied Mathematics 63 (2002), no. 1, 241–258.

[30] Y. Xiang and W. E, Misfit elastic energy and a continuum model for epitaxial growth with elasticity on vicinal surfaces, Physical Review B 69 (2004), no. 3, 035409.

[31] H. Xu and Y. Xiang, Derivation of a continuum model for the long-range elastic interaction on stepped epitaxial surfaces in $2+1$ dimensions, SIAM Journal on Applied Mathematics 69 (2009), no. 5, 1393–1414.

[32] H.-T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys. 22 (1991), 63–80.

[33] A. Zangwill, Physics at Surfaces, Cambridge University Press, New York, 1988.