RAPIDLY ACCRETING SUPERGIANT PROTOSTARS: EMBRYOS OF SUPERMASSIVE BLACK HOLES?

TAKASHI HOSOKAWA1,2, KAZUYUKI OMUKAI2, and HAROLD W. YORKE1

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; Takashi.Hosokawa@jpl.nasa.gov, hosokwtk@gmail.com
2 Department of Physics, Kyoto University, Kyoto 606-8502, Japan; omukai@tap.scphys.kyoto-u.ac.jp

Received 2012 March 7; accepted 2012 July 7; published 2012 August 20

ABSTRACT

Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with \(M_\ast \sim 0.1–1 M_\odot \, \text{yr}^{-1} \) during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper, we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches \(10^3 M_\odot \).

To this end, we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than \(10^{-2} M_\odot \, \text{yr}^{-1} \), stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates, the star always has a radius exceeding \(100 R_\odot \), which increases monotonically with the stellar mass. The mass–radius relation for stellar masses exceeding \(\sim 100 M_\odot \) follows the same track with \(R_\ast \propto M_\ast^{1/2} \) in all cases with accretion rates \(\gtrsim 10^{-2} M_\odot \, \text{yr}^{-1} \); at a stellar mass of \(10^3 M_\odot \), the radius is \(\sim 7000 R_\odot \) (\(\sim 30 \) AU). With higher accretion rates, the onset of hydrogen burning is shifted toward higher stellar masses. In particular, for accretion rates exceeding \(M_\ast \gtrsim 0.1 M_\odot \, \text{yr}^{-1} \), there is no significant hydrogen burning even after \(10^3 M_\odot \) have accreted onto the protostar. Such “supergiant” protostars have effective temperatures as low as \(T_{\text{eff}} \sim 5000 \) K throughout their evolution and because they hardly emit ionizing photons, they do not create an \(\text{H}^\text{ii} \) region or significantly heat their immediate surroundings. Thus, radiative feedback is unable to hinder the growth of rapidly accreting stars to masses in excess of \(10^3 M_\odot \) as long as material is accreted at rates \(M_\ast \gtrsim 10^{-2} M_\odot \, \text{yr}^{-1} \).

Key words: accretion, accretion disks – cosmology: theory – early universe – galaxies: formation – stars: formation

Online-only material: color figures

1. INTRODUCTION

Recent observations reveal that supermassive black holes (SMBHs) exceeding \(10^9 M_\odot \) already existed in the universe less than 1 Gyr after the big bang (e.g., Fan 2006; Mortlock et al. 2011; Treister et al. 2011). The origins of such SMBHs must be intimately related to structure formation in the early universe. Some scenarios on the birth and growth of SMBHs postulate the existence of remnant BHs from Population III (Pop III) stars as their seeds (e.g., Madau & Rees 2001; Schneider et al. 2002). For several decades, theoretical studies have predicted that the majority of Pop III stars were very massive, exceeding \(100 M_\odot \) (e.g., Bromm & Larson 2004). Pop III stars more massive than \(300 M_\odot \) end their lives by directly collapsing to form BHs (e.g., Heger & Woosley 2002). If such a \(\sim 100 M_\odot \) BH grows via continuous mass accretion at the Eddington limited rate, then its mass barely attains \(10^9 M_\odot \) in 1 Gyr.

This scenario, however, has recently been challenged. First, it is suspected that most Pop III stars were much less massive than previously thought. A circumstellar disk forming after the cloud’s collapse easily fragments due to gravitational instability and could produce multiple protostars (e.g., Machida et al. 2008; Stacy et al. 2010; Clark et al. 2011). The final stellar masses would be reduced as the accreting gas is shared by multiple stars. Moreover, strong stellar UV light creates an \(\text{H}^\text{ii} \) region around the protostar when the stellar mass exceeds a few \(\times 10 M_\odot \). The resulting feedback terminates the growth of Pop III protostars via mass accretion at a few \(\times 10 M_\odot \) (e.g., McKee & Tan 2008; Hosokawa et al. 2011b; Stacy et al. 2012). A large amount of gas would be expelled from the dark halo due to the expansion of \(\text{H}^\text{ii} \) regions and the onset of core-collapse supernovae (e.g., Whalen et al. 2004; Kitayama et al. 2004; Kitayama & Yoshida 2005), which quenches the supply of gas to any remnant BH.

Even if a BH gets some gas supply, radiative feedback from the BH accretion disk could regulate mass accretion onto the BH-disk system (e.g., Alvarez et al. 2009; Milosavljević et al. 2009; Jeon et al. 2011).

Another pathway for generating SMBHs is BH binary mergers. However, this process could also be limited due to the strong recoil resulting from gravitational wave emission (e.g., Campanelli et al. 2007; Herrmann et al. 2007). It is not straightforward that a seed BH \(\lesssim 100 M_\odot \) can grow to a \(\sim 10^9 M_\odot \) SMBH within 1 Gyr of its birth.

An alternative possibility is that massive BHs exceeding \(10^5 M_\odot \) form directly in some rare occasions in the primordial gas (e.g., Bromm & Loeb 2003). The primary cooling process in the primordial gas is line emission of molecular hydrogen. However, the thermal evolution of a gravitationally collapsing cloud can change significantly, if this cooling process is suppressed, for example, due to photodissociation of molecules by strong background radiation (Omukai 2001; Oh & Haiman 2002; Shang et al. 2010; Inayoshi & Omukai 2011) or collisional dissociation in dense shocks (Inayoshi & Omukai 2012). If the dark halo is sufficiently massive (\(\gtrsim 10^8 M_\odot \)), then the baryonic gas can contract with atomic hydrogen cooling even without molecular hydrogen. The collapse proceeds nearly isothermally at \(\sim 8000 \) K. Without efficient molecular cooling, fragmentation is suppressed and single or binary protostars form within dense cloud cores of \(\gtrsim 10^5 M_\odot \) (Bromm & Loeb 2003; Regan & Haehnelt 2009). The protostar’s mass is initially \(\sim 10^{-2} M_\odot \) but quickly increases via mass accretion. The expected accretion rates are \(0.1–1 M_\odot \, \text{yr}^{-1} \), more than 100 times higher than the standard value \(\sim 10^{-3} M_\odot \, \text{yr}^{-1} \) expected for Pop III star formation. The stellar mass could reach \(10^5–10^6 M_\odot \) in \(\sim 1 \) Myr with this very rapid mass accretion. General relativity predicts that such a supermassive star (SMS) becomes unstable
(e.g., Chandrasekhar 1964) and collapses to form a BH, which subsequently swallows most of the surrounding stellar material (e.g., Shibata & Shapiro 2002). Some authors are exploring a different picture, whereby only a central part of the SMS collapses to form a $\sim 100 M_\odot$ BH and heat input from the accreting BH inflates the outer envelope of the SMS (“quasi-star”; Begelman et al. 2006, 2008; Begelman 2010; Ball et al. 2011; Dotan et al. 2011).

However, we only have limited knowledge on how stars evolve under such extreme conditions of rapid mass accretion. Begelman (2010) predicts that, based on simple analytic arguments, such stars have a very different structure from their main-sequence counterparts. Stellar evolution at lower accretion rates $M_\ast \lesssim 10^{-2} M_\odot \, \text{yr}^{-1}$ has been studied in detail by numerically solving the stellar interior structure (e.g., Stahler et al. 1986; Omukai & Palla 2001, 2003; Ohkubo et al. 2009; Hosokawa & Omukai 2009, 2011). Omukai & Palla (2001, 2003) showed that rapid mass accretion with $M_\ast > 4 \times 10^{-2} M_\odot \, \text{yr}^{-1}$ causes the protostar’s abrupt expansion before its arrival to the zero-age main sequence (ZAMS). Further comprehensive studies on stellar evolution with rapid mass accretion are indispensable for considering their radiative feedback and observational signatures (e.g., Johnson et al. 2011).

We present here our first results of this sort, whereby as a first step, we study the early evolution up to a stellar mass of $10^3 M_\odot$. Our results show that rapid accretion with $M_\ast \sim 10^{-2} M_\odot \, \text{yr}^{-1}$ causes the star to boil up like a red giant. The stellar radius increases monotonically with stellar mass and reaches $\approx 7000 R_\odot$ (≈ 30 AU) at a mass of $10^3 M_\odot$. Unlike the cases with lower accretion rates previously studied, the mass–radius relation in this phase is almost independent of the assumed accretion rate. Such massive “super-giant” protostars could be the progenitors that eventually evolve to the observed SMBHs in the early universe.

The organization of this paper is as follows. First, we briefly review our numerical method and summarize the calculated cases in Section 2. We describe our results in Section 3; we first focus on the fiducial case with $M = 0.1 M_\odot \, \text{yr}^{-1}$ and then examine effects of varying accretion rates and boundary conditions. Finally, summary and discussions are described in Section 4.

2. NUMERICAL MODELING OF ACCRETING STARS

2.1. Method

We calculate stellar evolution with mass accretion using the numerical codes developed in our previous work (see Omukai & Palla 2003; Hosokawa & Omukai 2009; Hosokawa et al. 2010, for details). The four stellar structure equations, i.e., equations of continuity, hydrostatic equilibrium, energy conservation, and energy transfer, including effects of mass accretion, are solved assuming spherical symmetry. We focus on the early evolution until slightly after the ignition of hydrogen fusion in this paper. To this end, the appropriate nuclear network for the thermo-nuclear burning of deuterium, hydrogen, and helium is considered.

The codes are designed to handle two different outer boundary conditions for stellar models: shock and photospheric boundaries. The shock boundary condition presupposes spherically symmetric accretion onto a protostar, whereby the inflow directly hits the stellar surface and forms a shock front (e.g., Stahler et al. 1980; Hosokawa & Omukai 2009). We solve for the structure of both the stellar interior and outer accretion flow. With this boundary condition, the photosphere is located outside the stellar surface where the accretion flow is optically thick to the stellar radiation. The photospheric boundary condition, on the other hand, presupposes a limiting case of mass accretion via a circumstellar disk, whereby accretion columns connecting the star and disk are geometrically compact and most of the stellar surface radiates freely (e.g., Palla & Stahler 1992; Hosokawa et al. 2010). In this case, we only solve the stellar interior structure without considering details of the accretion flow; the location of the photosphere always coincides with the stellar surface.

The different outer boundary conditions correspond to the two extremes of accretion flow geometries, or more specifically to different thermal efficiencies of mass accretion, which determine the specific entropy of accreting materials (e.g., Hosokawa et al. 2011a). The accretion thermal efficiency controls the entropy content of the star, which determines the stellar structure. With the shock boundary condition, the accreting gas obtains a fraction of the entropy generated behind the shock front at the stellar surface. The resulting thermal efficiency is relatively high (“hot” accretion).

For the photospheric boundary condition, on the other hand, the accreting gas is assumed to have the same entropy as in the stellar atmosphere. The underlying idea is that when the accreting gas slowly approaches the star via angular momentum transport in the disk, its entropy should be regulated to the atmospheric value. This is a limiting case of thermally inefficient accretion (“cold” accretion). In general, with even a small amount of angular momentum, mass accretion onto the protostar would be via a circumstellar disk, perhaps with geometrically narrow accretion columns connecting the disk with the star. For extremely rapid mass accretion, however, the innermost part of the disk becomes hot and entropy generated within the disk is advected into the stellar interior (e.g., Popham et al. 1993). Thus, cold accretion as envisioned for the photospheric boundary condition is not appropriate for the case of rapid mass accretion (also see discussions in Hartmann et al. 1997; Smith et al. 2011). We therefore expect that the shock boundary condition is a good approximation for the extremely high accretion rates considered here and mostly focus on stellar evolution with the shock boundary condition. We also consider a few cases with the photospheric boundary condition for comparison to test potential effects of reducing the accretion thermal efficiency (also see Section 2.2 below).

2.2. Cases Considered

The cases considered are summarized in Table 1. In this paper, we only consider the evolution with constant accretion rates for simplicity. The adopted accretion rates range from $10^{-3} M_\odot \, \text{yr}^{-1}$ to $1 M_\odot \, \text{yr}^{-1}$. Stellar evolution with accretion rates less than $10^{-2} M_\odot \, \text{yr}^{-1}$ (cases MD1e3 and MD6e3) has been studied in detail in our previous work (e.g., Omukai & Palla 2003; Hosokawa & Omukai 2009). As described in Section 2.1 above, we calculate the protostellar evolution assuming shock outer boundary conditions for most of the cases. Cases MD3e1-HC10 and MD3e1-HC50 are the only exceptions, whereby we switch to the photospheric boundary condition after the stellar mass reaches $10 M_\odot$ and $50 M_\odot$, respectively, at a constant accretion rate of $0.3 M_\odot \, \text{yr}^{-1}$. The underlying idea for switching the boundary at some moment is that the specific angular momentum of the inflow, and thus the circumstellar disk, grow with time, which reduces entropy of the accreted
matter. The higher mass at switching point corresponds to the higher angular momentum of the parental core. As in our previous work, we start the calculations with initial stellar models constructed assuming that the stellar interior is in radiative equilibrium (e.g., Hosokawa & Omukai 2009). We adopt a slightly higher initial stellar mass of \(\lesssim 1 M_\odot \) for stability reasons. The calculated initial stellar radii are also summarized in Table 1.

3. RESULTS

3.1. Evolution in the Fiducial Case (\(M_* = 0.1 M_\odot \) yr\(^{-1} \))

We first consider the fiducial case (MD1e1), whereby the stellar mass increases with the constant accretion rate of \(1 M_\odot \) yr\(^{-1} \). The calculated evolution of the stellar interior structure for the fiducial case, whereby the stellar mass increases at a rate of 0.1 \(M_\odot \) yr\(^{-1} \) (case MD1e1). The thick solid line depicts the stellar surface, which is the position of the accretion shock front. The dotted lines show the radial positions of the mass coordinates of \(M = 3, 10, 30, 100, \) and 300 \(M_\odot \). The dot-solid line indicates the radial position within which 70\% of the stellar mass is enclosed. The gray-shaded areas represent the convective layers. The hatched areas indicate layers of active nuclear burning, where the energy production rate exceeds 10\% of the steady state rate 0.1\(L_\odot / M_\odot \) for deuterium burning (see Equation (9)), and 0.1\(L_\odot / M_\odot \) for hydrogen burning. The blue solid line shows the evolution of the radius of a star accreting material at 10\(^{-3} \) \(M_\odot \) yr\(^{-1} \) for comparison.

(A color version of this figure is available in the online journal.)

Table 1

Case	\(M_* \) (\(M_\odot \) yr\(^{-1} \))	\(M_{10} \) (\(M_\odot \))	\(R_{10} \) (\(R_\odot \))	Notes	References
MD1e0	1.0	2.5	298.4		Section 3.2
MD3e1	0.3	2.0	238.3		Section 3.2
MD3e1-HC10	0.3	2.0 (10)	238.3 (437.1)	shock \(\rightarrow \) photo. BC at \(M_* = 10 M_\odot \)	Section 3.3
MD3e1-HC50	0.3	2.0 (50)	238.3 (826.8)	shock \(\rightarrow \) photo. BC at \(M_* = 50 M_\odot \)	Section 3.3
MD1e1	0.1	2.0	177.8		Section 3.1, 3.2
MD6e2	0.06	1.0	118.6		Section 3.2
MD3e2	0.03	1.0	95.2		Section 3.2
MD6e3	0.006	1.0	52.3	also see Omukai & Palla (2003)	Section 3.2
MD1e3	0.001	0.05	12.5	also see Omukai & Palla (2003)	Sections 3.1, 3.2

Notes. Column 2: mass accretion rate, Column 3: initial stellar mass, Column 4: initial radius. For cases MD3e1-HC10 and MD3e1-HD50, the values when the boundary condition is switched are given in parentheses.

A key quantity for understanding the contrast between the two cases is the balance between the two characteristic timescales: the accretion timescale

\[
T_{\text{acc}} \equiv \frac{M_*}{\dot{M}_*} \tag{1}
\]

and the Kelvin–Helmholtz (KH) timescale

\[
T_{\text{KH}} \equiv \frac{GM_*^2}{R_* L_*} \tag{2}
\]

where \(R_* \) and \(L_* \) are the stellar radius and luminosity, and \(G \) is the gravitational constant (e.g., Stahler et al. 1986; Omukai & Palla 2003; Hosokawa & Omukai 2009). In the early stage, during which the stellar radius increases with mass, the timescale balance is \(T_{\text{acc}} \ll T_{\text{KH}} \) and radiative loss of the stellar energy is negligible (adiabatic accretion stage). However, the radiative energy loss becomes more efficient as the stellar mass increases. This is because opacity in the stellar interior, which is due to the free–free absorption following Kramers’ law \(\kappa \propto \rho T^{-3.5} \), decreases and the stellar luminosity \(L_* \) increases with the stellar interior temperature (and thus with its mass \(M_* \)). The upper panel of Figure 2 indeed shows that the maximum luminosity within the star \(L_{\text{max}} \) increases as a power-law function of \(M_* \).

This increase of \(L_* \) is consistent with the analytic scaling relation for radiative stars with Kramers’ opacity, \(L \propto M_*^{11/2} R_*^{-1/2} \) (e.g., Hayashi et al. 1962). Our numerical results are well fitted by the analytic relation

\[
L_{\text{max}} \approx 0.6 L_\odot \left(\frac{M_*}{M_\odot} \right)^{11/2} \left(\frac{R_*}{R_\odot} \right)^{-1/2} \tag{3}
\]

The increase of \(L_* \) causes an inversion of the timescale balance to \(T_{\text{acc}} > T_{\text{KH}} \) at low accretion rates. The star contracts by losing its energy (KH contraction stage), which is seen for \(M_* \gtrsim 6 M_\odot \). The opacity in the stellar interior has fallen down to the constant value of electron scattering. Figure 2 shows that, in this stage, luminosity takes its maximum value at the stellar surface and increases as \(L_* \propto L_{\text{max}} \propto M_*^3 \), which is valid for the constant opacity cases (e.g., Hayashi et al. 1962). The relation

\[
L_{\text{max}} \approx 10 L_\odot \left(\frac{M_*}{M_\odot} \right)^3 \tag{4}
\]
roughly agrees with our results. Temperature at the stellar center increases during the KH contraction stage. Hydrogen burning finally begins and the stellar radius begins to increase following the mass–radius relation of ZAMS stars for $M_\ast \gtrsim 50 M_\odot$. Figure 2 shows that the stellar luminosity gradually approaches the Eddington limit

$$L_{\text{Edd}}(M_\ast) \simeq 3.8 \times 10^6 L_\odot \left(\frac{M_\ast}{100 M_\odot} \right). \quad (5)$$

By contrast, there is no contraction stage for the case with a much higher accretion rate $M_\ast = 0.1 M_\odot \text{yr}^{-1}$ (MD1e1). Nevertheless, the evolution of the timescales still follows the picture described above (Figure 3(a)). We see that the timescale balance changes from $t_{\text{acc}} < t_{K\text{H}}$ to $t_{\text{acc}} > t_{K\text{H}}$ at $M_\ast \approx 40 M_\odot$. The protostar is in the adiabatic accretion stage for $M_\ast \lesssim 40 M_\odot$. The accretion luminosity $L_{\text{acc}} \equiv GM_\ast M_\ast/R_\ast$ at this stage is much higher than the stellar luminosity L_\ast, since the luminosity ratio L_{acc}/L_\ast is equal to the timescale ratio $t_{K\text{H}}/t_{\text{acc}}$ by definition. Stahler et al. (1986) derived the approximate analytic formulae describing radial positions of the stellar surface R_\ast and photosphere R_ph (located within the accretion flow) during the adiabatic stage:

$$R_\ast \simeq 26 R_\odot \left(\frac{M_\ast}{100 M_\odot} \right)^{0.27} \left(\frac{M_\ast}{10^{-3} M_\odot \text{yr}^{-1}} \right)^{0.41}, \quad (6)$$

$$R_\text{ph} \simeq 1.4 R_\ast. \quad (7)$$

The bottom panel of Figure 3 shows that these formulae still agree with our numerical results with $0.1 M_\odot \text{yr}^{-1}$. Equation (6) shows that the stellar radius is larger for the higher accretion rate at the same mass. The larger radius is due to the higher specific entropy of accreting material and the resulting higher entropy content of the star (e.g., Hosokawa & Omukai 2009). Comparing two stars of the same mass, the one with a larger radius has a lower interior temperature, which then implies a higher opacity due to the strong T dependence of the opacity $\kappa \propto \rho T^{-3.5}$. For this reason, the adiabatic accretion stage is prolonged up to higher stellar masses for higher accretion rates. (See the Appendix for an analytic expression describing

![Figure 2](image_url)

Figure 2. Evolution of the stellar surface luminosity L_\ast (dashed line) and maximum luminosity within the star L_{max} (solid line) for the cases with $10^{-3} M_\odot \text{yr}^{-1}$ (MD1e3; upper panel) and $0.1 M_\odot \text{yr}^{-1}$ (fiducial case MD1e1; lower panel). The mass–luminosity relations given by Equations (3), (4), and (5) are shown with the thin green, blue, and red lines, respectively. In each panel, the vertical dot-dashed line (magenta) indicates the epoch when the accretion time is equal to the KH time.

(A color version of this figure is available in the online journal.)

![Figure 3](image_url)

Figure 3. Evolution of several physical quantities for the fiducial case with $0.1 M_\odot \text{yr}^{-1}$ (MD1e1). Top panel: comparison between the accretion timescale t_{acc} (dashed line) and KH timescale $t_{K\text{H}}$ (dotted line). The vertical magenta dot-dashed line indicates the epoch when $t_{K\text{H}}$ is equal to t_{acc}. The thin solid line represents 100 times of the stellar free-fall timescale $t_\text{ff} = \sqrt{3\pi/16\pi}$, where ρ is the average mass density of the star. The fact that t_ff is much shorter than $t_{K\text{H}}$ and t_{acc} verifies the hydrostatic balance assumption implicit in the stellar structure equations. Middle panel: evolution of the accretion luminosity L_{acc} (dashed line), stellar luminosity L_\ast (dotted line), and total luminosity $L_{\text{tot}} \equiv L_{\text{acc}} + L_\ast$ (solid line). The red line indicates the Eddington luminosity at each stellar mass. Bottom panel: evolution of the radial positions of the photosphere $R_\text{ph}(R_\ast)$ (dashed line) and stellar surface $R_\ast(R_\odot)$ (black solid line). The red solid and dashed lines denote the analytic formulae for these radii by Stahler et al. (1986) (Equations (6) and (7)). The evolution of the stellar effective temperature $T_\odot(K)$ is also shown with the blue line.

(A color version of this figure is available in the online journal.)
this dependence.) Figure 2(b) shows that the evolution of the stellar maximum luminosity L_{max} still obeys Equations (3)–(5). Unlike the case for $10^{-3} \ M_{\odot} \ \text{yr}^{-1}$, however, it is only after L_{max} approaches the relation of $L_{\text{max}} \propto M_{\odot}^4$ (Equation (4)) that t_{KH} becomes equal to t_{acc}. The rapid heat input via mass accretion prevents the star from losing internal energy until the stellar luminosity becomes sufficiently high.

The fact that t_{KH} is shorter than t_{acc} for $M_{\ast} \gtrsim 40 \ M_{\odot}$ indicates that most of the stellar interior is contracting, as shown by the trajectories of the mass coordinates (dashed lines in Figure 1). The figure also shows that the bloated surface layer occupies only a small fraction of the total stellar mass. When the stellar mass is $\approx 300 \ M_{\odot}$, for example, the layer which has 30% of the total mass measured from the surface covers more than 98% of the radial extent. The star has a radiative core surrounded by an outer convective layer. Although the convective layer covers a large fraction of the stellar radius, even the central radiative core is much larger than a ZAMS star with the same mass (compare with the blue curve for $M_{\ast} \gtrsim 40 \ M_{\odot}$ in Figure 1). Figure 4 shows the radial distributions of physical quantities, i.e., specific entropy, luminosity, temperature, and density, in the stellar interior. We see that the specific entropy is at its maximum value near the boundary between the radiative core and convective layer. The stellar entropy distribution is controlled by the energy equation,

$$T \left(\frac{\partial s}{\partial t} \right)_M = \epsilon - \left(\frac{\partial L}{\partial M} \right)_t,$$

where s is the specific entropy and ϵ is the energy production rate by nuclear fusion. For $M_{\ast} \gtrsim 40 \ M_{\odot}$, most of the stellar luminosity comes from the release of gravitational energy. In fact, as seen in Figure 4(b), $(\partial L / \partial M)_t > 0$ in the radiative core, which means that the internal energy of the gas is decreasing. The local luminosity in the radiative core is close to the Eddington value given by Equation (5), using the mass coordinate M rather than the stellar mass M_{\ast} (Figure 4(b)). Note that the opacity in the radiative core is only slightly higher than that expected from electron scattering alone.

In the outer parts of the star, where temperature and density are lower, however, opacity is higher than in the core because of bound–free absorption of H, He atoms, and the H$^-$ ion. Energy transport via radiation is inefficient there, and most of the energy coming from the core is carried outward via convection. Figure 4 shows that the surface convective layer lies in the temperature and density range where $T \lesssim 10^5$ K and $\rho \lesssim 10^{-7}$ g cm$^{-3}$, which is almost independent of the stellar mass. We also see that the specific entropy is not constant over the convective layer, decreasing toward the stellar surface (a so-called superadiabatic layer). This is because convective heat transport is inefficient near the stellar surface. A part of the outflowing energy is absorbed there, as indicated by the fact that the surface layer has a negative luminosity gradient $(\partial L / \partial M)_t < 0$. This explains the high specific entropy in the outer convective layer.

The energy flux coming from the radiative core increases as the star grows in mass. As a result, the energy absorbed in the outer convective layer also increases with stellar mass, which raises the entropy peak at the bottom of the convective layer (Figure 4(a)). As the entropy increases, the outer layers expand, while the central part of the core contracts further. Therefore, the star assumes a more centrally condensed structure for the higher stellar mass.

The outermost part of the star has a density inversion, i.e., the density increases toward the stellar surface. Here, opacity assumes very high values because of H$^-$ absorption. Radiation pressure is so strong that the hydrostatic balance is not achieved only with gravity; the additional inward force by the negative gas pressure gradient helps maintain the hydrostatic structure. Note, however, that this density inversion could be unstable in realistic multi-dimensions (see, e.g., Begelman et al. 2008).

Although deuterium burning is ignited when the stellar mass is $\approx 50 \ M_{\odot}$, its influence on the subsequent evolution
is negligible (Figure 1). The total energy production rate by deuterium burning is approximately

\[L_{\text{D, st}} = \dot{M}_* \delta_\text{D} = 1.5 \times 10^5 L_\odot \left(\frac{M_*}{0.1 M_\odot \text{ yr}^{-1}} \right) \left(\frac{[\text{D/H}]}{2.5 \times 10^{-5}} \right), \]

where \(\delta_\text{D} \) is the energy available from deuterium burning per unit gas mass. Since this is much lower than the Eddington luminosity \(L_{\text{edd}} \) in the mass range considered, energy production by deuterium burning contributes only slightly to the luminosity in the stellar interior. Hosokawa & Omukai (2009) showed that deuterium burning influences the stellar evolution only when the accretion rate is low \(\dot{M}_* \lesssim 10^{-4} M_\odot \text{ yr}^{-1} \).

Figure 4(c) shows that temperature in the stellar interior increases with total mass. The central temperature reaches \(10^8 \text{ K} \) when the stellar mass is \(\lesssim 600 M_\odot \). Soon after that, hydrogen burning begins and a central convective core develops (Figure 1). This convective core can also be seen in the radial profiles for the \(10^3 M_\odot \) model in Figure 4 (indicated by magenta). The luminosity profile tells that most of the energy produced by hydrogen burning is absorbed within the convective core. The star still shines largely by releasing its gravitational energy even after hydrogen ignition.

When the stellar radius is sufficiently large, the accretion flow reaches the stellar surface before becoming opaque to the outgoing stellar light. In fact, soon after the end of the adiabatic accretion stage, the accreting envelope remains optically thin throughout (Figure 3(c)). We also see that the stellar effective temperature is almost constant at \(T_{\text{eff}} \approx 5000 \text{ K} \) during this period. In general, the stellar effective temperature never assumes a lower value due to the strong temperature dependence of \(\text{H}^- \) absorption opacity (e.g., Hayashi 1961). Stars that have a compact core and bloated envelope (e.g., red giants) commonly have an almost constant effective temperature, regardless of their stellar masses.

3.2. Cases with Different Accretion Rates

We now investigate how stellar evolution changes with the accretion rate. Figure 5 shows the evolution of the stellar radius for several cases, including \(\dot{M}_* = 10^{-3} M_\odot \text{ yr}^{-1} \) (case MD1e3) and \(0.1 M_\odot \text{ yr}^{-1} \) (case MD1e1) explained in Section 3.1. We see that, with accretion rates higher than \(6 \times 10^{-2} M_\odot \text{ yr}^{-1} \), the evolution becomes similar to that of the fiducial case for \(0.1 M_\odot \text{ yr}^{-1} \) (MD1e1); the stellar radius monotonically increases with mass. The protostars undergo adiabatic accretion in the early stage. As Equation (6) shows, the stellar radius is larger for higher accretion rates at a given stellar mass, say, at \(\dot{M}_* = 10 M_\odot \).

Even after \(t_{\text{ff}} \) becomes shorter than \(t_{\text{acc}} \), the stellar radius continues to increase for accretion rates \(\gtrsim 10^{-2} M_\odot \text{ yr}^{-1} \). The variations of radii among cases with different accretion rates gradually disappear. The stellar radii finally converge to a unique mass–radius relation with \(R_* \propto M_*^{1/2} \) in all the cases. We can derive the approximate mass–radius relation from the following simple argument. First, the stellar luminosity is generally written as

\[L_* = 4\pi R_*^2 \sigma T_{\text{eff}}^4, \]

where \(\sigma \) is the Stefan–Boltzmann constant. As discussed in Section 3.1 for \(\dot{M}_* = 0.1 M_\odot \text{ yr}^{-1} \) (case MD1e1), the stellar luminosity generally approaches the Eddington value \(L_{\text{edd}}(M_*) \) for \(M_* \gtrsim 100 M_\odot \). Figure 6(b) and Figure 7 show the evolution of the stellar effective temperature as a function of the stellar mass and on the H-R diagram, respectively. We see that the effective temperature stays constant at \(T_{\text{eff}} \approx 5000 \text{ K} \) for the high accretion rates considered. Substituting these relations into Equation (10), we obtain

\[R_* \approx 2.6 \times 10^3 R_\odot \left(\frac{M_*}{100 M_\odot} \right)^{1/2}. \]

Figure 5 shows that our numerical results approximately follow this relation. The stellar luminosity is actually a bit lower than the Eddington value, which is consistent with the fact that the numerical results show a slightly smaller stellar radius than the analytic relation (11).

Begelman (2010) also considered stellar evolution with very rapid mass accretion using simple analytic arguments. His model predicts that the stellar radius is proportional to the mass accretion rate (his Equation (24)), which does not agree with our numerical results. Begelman (2010), however, does not take into account the detailed structure of the outermost layer of the star, where \(\text{H}^- \) opacity is important. The fact that the strong \(T \) dependence of \(\text{H}^- \) opacity keeps the stellar effective temperature almost constant is essential for our results.

Cases MD3e2 and MD6e3 for intermediate accretion rates \(3 \times 10^{-2} \) and \(6 \times 10^{-3} M_\odot \text{ yr}^{-1} \), respectively) exhibit a different
behavior than the higher accretion-rate cases described above (see Figure 5). Figure 6(a) shows the evolution of radial positions of the stellar surface and the photosphere. In this case, the photospheric radius is located outside the stellar surface, i.e., the accreting envelope remains optically thick after the onset of KH contraction. For an accretion rate of $3 \times 10^{-2} M_\odot$ yr$^{-1}$ (MD3e2), the protostar initially contracts after the adiabatic accretion stage.

At $M_\ast \approx 70 M_\odot$, however, the stellar radius sharply increases and eventually converges to the mass--radius relation given by Equation (11). The case with $6 \times 10^{-3} M_\odot$ yr$^{-1}$ exhibits an oscillatory behavior of the stellar radius for $M_\ast \gtrsim 70 M_\odot$, but its photospheric radius still follows the mass--radius relation $R_{\text{ph}} \propto M_\ast^{2/5}$. Figures 6(b) and 7 show that the effective temperature also assumes the constant value $T_{\text{eff}} \approx 6000$ K. These evolutionary features for $M_\ast \lesssim 10^{-2} M_\odot$ yr$^{-1}$ have also been found in previous studies (e.g., Omukai & Palla 2001, 2003).

We have seen that the stellar radius at $M_\ast \approx 5.5 M_\odot$ is almost independent of accretion rate as long as $M_\ast \gtrsim 3 \times 10^{-2} M_\odot$ yr$^{-1}$. However, the stellar interior structure at this moment is not identical among these cases. This is seen in Figure 8, which displays the radial distributions of physical quantities within the $10^5 M_\odot$ models for the different accretion rates. Although each of these stars has a radiative core and a convective envelope, the mass is more centrally concentrated for the lower accretion rates; the less massive envelopes have a higher entropy and inflate more to achieve the same stellar radius.

This can be understood by the following consideration. Recall that after the KH timescale t_{KH} falls below the accretion timescale t_{acc}, the star becomes more and more centrally condensed with increasing stellar mass as explained in Section 3.1. Since this timescale inversion occurs earlier, i.e., at a lower stellar mass for the lower accretion rate (also see the Appendix), the prolonged $t_{\text{KH}} < t_{\text{acc}}$ phase until the stellar mass reaches $10^4 M_\odot$ causes a more centrally condensed structure.

Figure 6. Upper panel: evolution of radial positions of the stellar surface (solid) and photosphere (dotted). The black, blue, and magenta curves denote cases with $M_\ast = 10^{-3} M_\odot$ yr$^{-1}$ (case MD1e3), $6 \times 10^{-3} M_\odot$ yr$^{-1}$ (MD6e3), and $1 M_\odot$ yr$^{-1}$ (MD1e0), respectively. The mass--radius relation given by Equation (11) is plotted with the thin green line. Lower panel: the stellar effective temperature for the same cases as in the upper panel. (A color version of this figure is available in the online journal.)

Figure 7. Evolutionary tracks in the H-R diagram. The different colors denote the evolution for different accretion rates, $10^{-3} M_\odot$ yr$^{-1}$ (case MD1e3, black), $6 \times 10^{-3} M_\odot$ yr$^{-1}$ (MD6e3, blue), $0.1 M_\odot$ yr$^{-1}$ (MD1e1, red), and $1 M_\odot$ yr$^{-1}$ (MD1e0, magenta). For each case, the values at the stellar photosphere (T_{ph} and T_{eff}) and at the stellar surface (L_\ast and T_{eff}) are plotted with solid and dashed lines, respectively. The thick dashed line represents the loci of non-accreting ZAMS stars taken from Marigo et al. (2001) ($M_\ast \lesssim 100 M_\odot$) and Bromm et al. (2001) ($M_\ast \gtrsim 100 M_\odot$). The filled circles and open squares on the lines mark the positions for $M_\ast = 30 M_\odot$, $100 M_\odot$, $300 M_\odot$, and $10^3 M_\odot$ in ascending order.

(A color version of this figure is available in the online journal.)
reach the ZAMS following KH contraction. Figure 5 indicates that there is another critical accretion rate \(\dot{M}_{\text{crit}} \) which is \(\sim 6 \times 10^{-2} \ M_\odot \ yr^{-1} \), above which the stellar evolution changes qualitatively; the KH contraction stage disappears entirely at higher rates. This critical rate can also be derived from a similar argument as the one above.

Note that the increase of stellar mass during the KH contraction stage is smaller for the case with \(3 \times 10^{-2} \ M_\odot \ yr^{-1} \) than with \(6 \times 10^{-3} \ M_\odot \ yr^{-1} \). Extending this fact for our critical case, the total luminosity would nearly reach the Eddington limit just at the end of the adiabatic accretion stage, i.e., when \(t_{\text{KH}} \sim t_{\text{acc}} \). Since the opacity in the surface layer is higher than from Thomson scattering during this epoch, having the total luminosity only slightly lower than the Eddington value causes the star to expand. Thus, the condition for the critical case is

\[
2L_{\text{max}} \simeq C_{\text{Edd}} L_{\text{Edd}}.
\]

where \(C_{\text{Edd}} \) is a factor less than the unity and we have used the fact that the total luminosity is written as \(L_{\text{tot}} \simeq 2L_{\text{max}} \) when \(t_{\text{KH}} \simeq t_{\text{acc}} \). Using \(C_{\text{Edd}} = 0.25 \) as a fiducial value (Figure 9(b)) and Equation (4) for \(L_{\text{max}} \), the stellar mass which satisfies the condition (12) is

\[
M_{*, \text{Edd,teq}} \simeq 21.7 \ M_\odot \left(\frac{C_{\text{Edd}}}{0.25} \right)^{0.5}.
\]

On the other hand, Equation (A1) also gives the stellar mass when \(t_{\text{KH}} \simeq t_{\text{acc}} \) for a given accretion rate. Equating \(M_{*, \text{teq}} \) and \(M_{*, \text{Edd,teq}} \) with Equations (A1) and (13), we obtain the critical mass accretion rate

\[
\dot{M}_{\text{crit}} \simeq 4.7 \times 10^{-2} \ M_\odot \ yr^{-1} \left(\frac{C_{\text{Edd}}}{0.25} \right)^{1.9},
\]

which agrees with our numerical results.

3.3 Effects of Lower-entropy Accretion

We have used the shock outer boundary condition for the stellar models presented and discussed above. As discussed in Section 2.1, the shock boundary condition, which implies that the accreting gas joins the star with relatively high entropy, would be valid for cases with the very rapid mass accretion considered in this paper. If the accreted gas had lower entropy, however, then the stellar radius would be reduced because of the resulting lower entropy throughout the stellar interior. Here, we examine potential effects of the colder mass accretion by adopting the photospheric boundary conditions (e.g., Hosokawa et al. 2010, 2011a).

Figure 9. Evolution of the maximum temperature in the stellar interior (upper panel) and Eddington ratio \(L_\text{tot}/L_{\text{Edd}} \) (lower panel) with increasing stellar mass. The solid and dashed curves alternately represent the cases with different accretion rates, \(10^{-3} \ M_\odot \ yr^{-1} \) (case MD1e3), \(6 \times 10^{-3} \ M_\odot \ yr^{-1} \) (MD6e3), \(3 \times 10^{-2} \ M_\odot \ yr^{-1} \) (MD3e2), \(0.1 \ M_\odot \ yr^{-1} \) (MD1e1), and \(0.3 \ M_\odot \ yr^{-1} \) (MD3e1). (A color version of this figure is available in the online journal.)

Figure 8. Comparisons of the interior structure of \(10^9 \ M_\odot \) stars produced by different accretion rates. Radial profiles of mass (a), specific entropy (b), and luminosity (c) are shown. In each panel, the solid and dashed curves represent the cases for \(0.3 \ M_\odot \ yr^{-1} \) (MD3e1), \(0.1 \ M_\odot \ yr^{-1} \) (MD1e1), \(3 \times 10^{-2} \ M_\odot \ yr^{-1} \) (MD3e2), and \(10^{-3} \ M_\odot \ yr^{-1} \) (MD1e3). The magenta lines mark convective layers in the stellar interior. The thin red line in panel (c) represents the Eddington luminosity as a function of mass \(M_\ast \).

(A color version of this figure is available in the online journal.)
The uniqueness of the mass–radius relation for \(M_* \gtrsim 100 M_\odot \) can be explained by the fact that the argument leading to the analytic expression, Equation (11), does not assume a specific boundary condition. When the boundary condition is switched at \(M_* = 10 M_\odot \) (MD3e1-HCm10), the stellar interior temperature is higher and thus the opacity in the stellar interior (\(\propto T^{-3.5} \)) is lower than for the shock-boundary case (MD3e1) at the same stellar mass. As a result, the star begins to release its internal energy earlier than for the shock-boundary case. Indeed, the timescale equality between \(f_{\text{KH}} \) and \(t_{\text{acc}} \) occurs at \(M_* \approx 40 M_\odot \), earlier than for the shock-boundary case, which occurs at the time of abrupt expansion of the stellar radius.

4. SUMMARY AND DISCUSSIONS

We have studied the evolution of stars growing via very rapid mass accretion with \(10^{-2} M_\odot \text{ yr}^{-1} \lesssim \dot{M}_* \lesssim 1 M_\odot \text{ yr}^{-1} \), which potentially leads to formation of SMBHs in the early universe. In contrast to previous attempts to address this problem, we study the stars’ evolution by numerically solving the stellar structure equations including mass accretion. Our calculations show that stellar evolution in such cases is qualitatively different from that expected for the normal Pop III star formation, which proceeds at much lower accretion rates \(\sim 10^{-3} \) to \(10^{-2} M_\odot \text{ yr}^{-1} \). Rapid mass accretion causes the star to inflate; the stellar radius further increases monotonically with stellar mass at least up to \(M_* \approx 10^2 M_\odot \). For masses exceeding \(\sim 100 M_\odot \), the star consists of a contracting radiative core and a bloated surface convective layer. The surface layer, which contains only a small fraction of the total stellar mass, fills out most of the stellar radius. The evolution of the stellar radius in this stage follows a unique mass–radius relation \(R_* \propto M_*^{1/2} \), which reaches \(\gtrsim 7000 R_\odot \) (\(\approx 30 \text{ AU} \)) at \(M_* = 10^2 M_\odot \), in all the cases with \(\gtrsim 10^{-2} M_\odot \text{ yr}^{-1} \). Hydrogen burning begins only after the star becomes very massive (\(M_* \gtrsim 100 M_\odot \)); its onset is shifted toward higher masses for higher accretion rates. With very high accretion rates \(M_* \gtrsim 0.1 M_\odot \text{ yr}^{-1} \), hydrogen is ignited after the stellar mass exceeds \(10^2 M_\odot \). The stellar radius continues to grow as \(R_* \propto M_*^{1/2} \) even after hydrogen ignition.

In this paper, we have focused on the early evolution until the stellar mass reaches \(10^3 M_\odot \). The subsequent evolution remains unexplored because of convergence difficulties with the current numerical codes. If the star continues to expand following the same mass–radius relation (11) also for \(M_* > 10^3 M_\odot \), then the stellar radius at \(10^3 M_\odot \) would be \(\approx 400 \text{ AU} \). Since the stellar effective temperature remains \(\approx 5000 \text{ K} \), the stellar ionizing photon flux is estimated as

\[
S_{\text{EUV}} = 4\pi R_*^2 \int_{13.6 \text{ eV}}^{\infty} \frac{\pi B_\nu(T_{\text{eff}})}{h\nu} d\nu \approx 3.1 \times 10^{45} \text{ s}^{-1} \left(\frac{M_*}{100 M_\odot} \right),
\]

where \(h \) is Planck’s constant, \(B_\nu(T_{\text{eff}}) \) is the Planck function, \(\nu \) is the frequency, and Equation (11) is used for the mass–radius relation \(R_*(M_\odot) \). This value is about \(10^4 \) times lower than that of ordinary Pop III ZAMS stars (e.g., Bromm et al. 2001). Therefore, it is unlikely that stellar growth is limited by the radiative feedback via formation of an H II region as discussed by Hosokawa et al. (2011b).

Johnson et al. (2011) also reached an analogous conclusion that UV feedback does not hinder SMS formation. In their argument, however, the star is assumed to reach the ZAMS and to emit a copious amount of ionizing photons, but the expansion of the H II region is squelched by rapid spherical inflow. They also expected that, as a result of confinement of the H II region, strong emission lines reprocessed from the ionizing photons (e.g., H \(\alpha \) and He \(\Pi 1640 \)) would escape from the accretion envelope to be an observational signature of these objects. By contrast, our calculations show that the stellar UV luminosity and thus the luminosities in those lines should be much weaker.

Figure 10(a) shows the evolution of the stellar radius for three cases with \(0.3 M_\odot \text{ yr}^{-1} \), whereby the shock boundary condition is used throughout in one case (MD3e1), whereas the outer boundary condition is changed to the photospheric one for \(> 10 M_\odot \) (MD3e1-HCm10) and \(> 50 M_\odot \) (MD3e1-HCm50), respectively. The stars are still in the adiabatic accretion stage when the boundary condition is changed in both cases. The different outer boundary conditions do affect the stellar evolution. For the case where the photospheric boundary condition is adopted at \(M_* = 10 M_\odot \) (MD3e1-HCm10), for example, the star initially contracts after the boundary condition is switched at \(M_* = 10 M_\odot \), and then abruptly inflates at \(M_* \approx 45 M_\odot \). The stellar radius exceeds \(10^3 R_\odot \) and gradually increases with the stellar mass thereafter. In spite of the different behaviors in the early stages, the subsequent evolution for \(M_* \gtrsim 100 M_\odot \) is quite similar to that in the case with the shock boundary condition throughout (MD3e1). The evolution when the boundary condition switching occurs at \(M_* = 50 M_\odot \) (MD3e1-HCm50) is much closer to that in the shock-boundary case.

Figure 10. Effect of reducing the thermal efficiency of mass accretion (upper panel: stellar radius, lower panel: maximum temperature within the star). The same accretion rate of \(0.3 M_\odot \text{ yr}^{-1} \) is adopted for all three cases presented. The solid line represents the evolution with the shock boundary condition, i.e., thermally efficient or “hot” accretion, throughout (MD3e1). The dashed and dot-dashed lines show the evolution in cases MD3e1-HC10 and MD3e1-HC50, where the photospheric boundary condition (i.e., thermally inefficient or “cold” accretion) is adopted after the stellar mass exceeds 10 \(M_\odot \) and 50 \(M_\odot \), respectively. In the lower panel, the dot-dashed line is indistinguishable from the solid line.
than supposed. Note that the argument by Johnson et al. (2011) assumes perfect spherical symmetry, which allows the \(\text{H}\text{II} \) region to be confined within the accretion envelope. Given that mass accretion will likely occur through a circumstellar disk, the \(\text{H}\text{II} \) region should grow toward the polar region where the gas density is much lower than the spherical accretion flow (e.g., Hosokawa et al. 2011b). This should be the case with the high stellar UV luminosity assumed in Johnson et al. (2011).

Even without stellar radiative feedback, stellar growth via mass accretion might be hindered by some other process, e.g., rapid mass loss. Indeed, evolved massive stars in the Galaxy (\(M_* \sim 10-100 M_\odot \)), which have large radii (\(R_* \gtrsim 100 R_\odot \)) and high luminosities close to the Eddington limit (\(L_* \sim 10^6 L_\odot \)), generally have strong stellar winds with mass losses \(\sim 10^{-3} M_\odot \text{yr}^{-1} \) (e.g., Humphreys & Davidson 1994). Although the line-driven winds of primordial stars are predicted to be weak (e.g., Hosokawa & Omukai 2009). Figure 2 shows that mass accretion will likely occur through a circumstellar disk, region to be confined within the accretion envelope. Given that gas density is much lower than the spherical accretion flow (e.g., Hosokawa et al. 2011b). This should be the case with the high stellar UV luminosity assumed in Johnson et al. (2011).

Here, we derive an analytic expression to explain how the length of the adiabatic accretion phase depends on the accretion rate. As long as the KH timescale \(t_{\text{KH}} \) is longer than the accretion timescale \(t_{\text{acc}} \), we have adiabatic accretion (e.g., Hosokawa & Omukai 2009). Figure 2 shows that \(t_{\text{acc}} \), whose evolution is well described by simple analytic expressions (Equations (3) and (4)), converges to \(L_\epsilon \) at the end of the adiabatic accretion stage. Thus, the stellar mass at which adiabatic accretion terminates \(M_{*,\text{acc}} \) can be estimated using the relation \(t_{\text{acc}} \simeq t_{\text{KH}} = GM_*^2/R_\epsilon L_{\text{max}} \). Eliminating \(L_{\text{max}} \) and \(R_\epsilon \) with Equations (4) and (6), we obtain

\[
M_{*,\text{teq}} \simeq 14.9 M_\odot \left(\frac{M_*}{10^{-2} M_\odot \text{yr}^{-1}} \right)^{0.26}.
\]

We have confirmed that the epoch of the timescale equality in our numerical calculation is approximately described by this equation.

REFERENCES

Alvarez, M. A., Wise, J. H., & Abel, T. 2009, ApJ, 701, L133
Ball, W. H., Tout, C. A., Zykow, A. N., & Eldridge, J. J. 2011, MNRAS, 414, 2751
Baraffe, I., Heger, A., & Woosley, S. E. 2001, ApJ, 550, 890
Begelman, M. C. 2010, MNRAS, 402, 673
Begelman, M. C., Rossi, E. M., & Armitage, P. J. 2008, MNRAS, 387, 1649
Begelman, M. C., Volonteri, M., & Rees, M. J. 2006, MNRAS, 370, 289
Bromm, V., Kudritzki, R. P., & Loeb, A. 2001, ApJ, 552, 464
Bromm, V., & Larson, R. B. 2004, ARA&A, 42, 79
Bromm, V., & Loeb, A. 2003, ApJ, 596, 34
Campanelli, M., Lousto, C., Zlochower, Y., & Merritt, D. 2007, ApJ, 659, L5
Chandrasekhar, S. 1964, Phys. Rev. Lett., 12, 114
Clark, P. C., Glover, S. C. O., Smith, R. J., et al. 2011, Science, 331, 1040
Dotan, C., Rossi, E. M., & Shaviv, N. J. 2011, MNRAS, 417, 3035
Fan, X. 2006, New Astron. Rev., 50, 665
Hartmann, L., Cassen, P., & Kenyon, S. J. 1997, ApJ, 475, 770
Hayashi, C. 1961, PASJ, 13, 450
Hayashi, C., Hoshi, R., & Sugimoto, D. 1962, Prog. Theor. Phys. Suppl., 22, 1
Heger, A., & Woosley, S. E. 2002, ApJ, 567, 532
Herrmann, F., Hinder, I., Shoemaker, D., & Laguna, P. 2007, Class. Quantum Grav., 24, 33
Hosokawa, T., Offner, S. S. R., & Krumholz, M. R. 2011a, ApJ, 738, 140
Hosokawa, T., & Omukai, K. 2009, ApJ, 691, 823
Hosokawa, T., Omukai, K., Yoshida, N., & Yorke, H. W. 2011b, Science, 334, 1250
Hosokawa, T., Yorke, H. W., & Omukai, K. 2010, ApJ, 721, 478
Humphreys, R. M., & Davidson, K. 1994, PASP, 106, 1025
Inayoshi, K., & Omukai, K. 2011, MNRAS, 416, 2748
Inayoshi, K., & Omukai, K. 2012, MNRAS, 422, 2539
Jeon, M., Pawlik, A. H., Greif, T. H., et al. 2012, ApJ, 754, 34
Johnson, J. L., Whalen, D. J., Fryer, C. L., & Li, H. 2011, arXiv e-prints
Kitayama, T., & Yoshida, N. 2005, ApJ, 630, 675
Kitayama, T., Yoshida, N., Susa, H., & Umemura, M. 2004, ApJ, 613, 631
Kricha, J., & Kubáš, J. 2006, A&A, 446, 1039
Machida, M. N., Omukai, K., Matsumoto, T., & Inutsuka, S.-i. 2008, ApJ, 677, 813
Madau, P., & Rees, M. J. 2001, ApJ, 551, L27
Marigo, P., Girardi, L., Chiosi, C., & Wood, P. R. 2001, A&A, 371, 152
McKee, C. F., & Tan, J. C. 2008, ApJ, 681, 771
Milosavljević, M., Couch, S. M., & Bromm, V. 2009, ApJ, 696, L146
Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, Nature, 474, 616
Ohkubo, T., Nomoto, K., Umeda, H., Yoshida, N., & Tsuruta, S. 2009, ApJ, 706, 1184
Omukai, K. 2001, ApJ, 546, 635
Omukai, K., & Palla, F. 2001, ApJ, 561, L55
Omukai, K., & Palla, F. 2003, ApJ, 589, 577
Palla, F., & Stahler, S. W. 1992, ApJ, 392, 667
Popham, R., Narayan, R., Hartmann, L., & Kenyon, S. 1993, ApJ, 415, L127
Regan, J. A., & Haehnelt, M. G. 2009, MNRAS, 393, 858
Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. 2002, ApJ, 571, 30
Shang, C., Bryan, G. L., & Haiman, Z. 2010, MNRAS, 402, 1249
Shibata, M., & Shapiro, S. L. 2002, ApJ, 572, L39
Smith, R. J., Hosokawa, T., Omukai, K., Glover, S. C. O., & Klessen, R. S. 2012, MNRAS, 424, 457
Sonoi, T., & Umeda, H. 2012, MNRAS, 421, L34
Stacy, A., Greif, T. H., & Bromm, V. 2010, MNRAS, 403, 45
Stacy, A., Greif, T. H., & Bromm, V. 2012, MNRAS, 422, 290
Stahler, S. W., Palla, F., & Salpeter, E. E. 1986, ApJ, 302, 590
Stahler, S. W., & Shapiro, S. L. 1983, ApJ, 270, 185
Stahler, S. W., Shu, F. H., & Taam, R. E. 1980, ApJ, 241, 637
Treister, E., Schawinski, K., Volonteri, M., Natarajan, P., & Gawiser, E. 2011, Nature, 474, 356
Whalen, D., Abel, T., & Norman, M. L. 2004, ApJ, 610, 14