Machine Learning for Data-Driven Movement Generation: a Review of the State of the Art

Omid Alemi
School of Interactive Arts and Technology
Simon Fraser University
Vancouver, Canada

Philippe Pasquier
School of Interactive Arts and Technology
Simon Fraser University
Vancouver, Canada

Abstract

The rise of non-linear and interactive media such as video games has increased the need for automatic movement animation generation. In this survey, we review and analyze different aspects of building automatic movement generation systems using machine learning techniques and motion capture data. We cover topics such as high-level movement characterization, training data, features representation, machine learning models, and evaluation methods. We conclude by presenting a discussion of the reviewed literature and outlining the research gaps and remaining challenges for future work.

1. Introduction

The shift from linear media (e.g., music, books, movies, etc.) to non-linear media (e.g., video games, interactive installations, etc.), along with the proliferation of interactive storytelling mediums such as web and virtual and augmented reality has resulted in an increase in the need for creating diverse content, ranging from sound and music to graphical textures and virtual agent animation.

In particular, the dynamic and interactive nature of non-linear applications lead to a need for the animation of anthropomorphic virtual agents with a wide range of behaviours, actions, expressions, and personalities. This increase in demand is changing the practice of creating movement animation, as the traditional methods are too costly and time consuming to be used in non-linear applications (Tomlinson, 2005; Pejsa and Pandzic, 2010). As a result, a body of research around building automatic movement generation models has been growing over the past two decades.

Automatic movement generation can be applied to both physical agents (robots) and animated software agents. In this paper, we focus on animated software agents, although we note that the techniques used for both types of agents are not mutually exclusive and similar models can be used in the motor controllers of physical robots and software agents, e.g., (Herzog et al., 2008; Matsubara et al., 2010; Kulić et al., 2011).

There are three broad groups of approaches that are employed in the computational models of movement to generate new animation: physics-based, data-driven, and hybrid.

Physical simulations are used to model and generate movement animation (Safonova et al., 2004; Agrawal et al., 2013). Incorporating physical laws allows such models to create movements that are physically valid, are proportionate to the physical dimensions of the body, and react to the other forces in the environment such as gravity, friction, and external push or pull. This group includes models that use reinforcement learning techniques in which an agent interacts with an environment...
and iteratively learns how to move through a rewarding system that is enforced by the physical laws of the environment. Despite its powerful properties, relying solely on physical simulation can be insufficient in producing natural looking movements and modelling the expressive variations of movements (Pejsa and Pandzic, 2010; Wei et al., 2011).

Data-driven animation techniques use pre-recorded movements of real human actors. The movement segments are concatenated, e.g., (Tanco and Hilton, 2000), blended, e.g., (Kwon and Shin, 2005; Hsu et al., 2005), or used as the training data of machine learning models, e.g., (Brand and Hertzmann, 2000; Wang et al., 2007; Taylor and Hinton, 2009; Tilmann et al., 2012). Compared to physics-based approaches, the resulting movements are more natural looking and expressive. However, they are susceptible to artifacts such as foot skating or lack of balance. In addition, while physics-based approaches allow for modelling a wide variety of movement types and creatures, not every movement can be generated using most data-driven methods as most data-driven methods can only generate a movement if the dataset it is based on contains movement that is, in one way or another, similar to the desired movement. Machine learning and statistical approaches can overcome this limitation by learning a generalized model of movement to create movements that do not have an explicit example in their training dataset.

The hybrid approaches, while less explored in the literature, combine both the physics and the data-driven approaches in an attempt to create movement animations that are simultaneously physically valid and natural looking, e.g., (Wei et al., 2011). This integration of the laws of physics and learning from observations and experiences resembles has overlaps with the processes that are behind human motor control. While moving, we humans (and animals) respond to the feedbacks about our physical environment through our perception. We learn movement through the neural plasticity property of the brain, in which special regions of the brain change in ways that are determined by the personal experience, including movement (Rosenbaum, 2009). Therefore, a hybrid architecture that allows for learning movement from experiences, enforced by the physical laws of the environment could lead to more powerful generative models than purely physics-based or data-driven approaches.

In the rest of this paper, we focus on data-driven techniques, and in particular on machine learning and statistical methods applied on motion capture data. Compared to the other data-driven methods, statistical models are not confined to the variations that exist in the training data and can be used to learn a generalized space of movements, fill the missing data, or generate continuous streams of movements. The potential for the application of using statistical models in movement generation can be demonstrated by the success of such models in generating patterns of data in other fields, such as speech synthesis, e.g., (Zen et al., 2012; Ling et al., 2013), computer music, e.g., (Dubnov et al., 2003; Schulze and van der Merwe, 2011; Anderson and Pasquier, 2013), and visual textures, e.g., (Kivinen and Williams, 2012).

Review studies have covered the physics-based and data-driven techniques for movement generation. For example, Wang et al. (2014) present a general overview of the field of 3D human movement editing and generation. Geijtenbeek and Pronost (2012) provide an extensive survey of different components of physics-based models and review the literature. In another study, Pejsa and Pandzic (2010) review the literature on data-driven methods for creating graph-like structures, motion planning, and parametric movement synthesis using interpolation techniques. Karg et al. (2013) review the recognition and generation techniques in the domain of affect-expressive movements. While statistical movement generation has been actively researched over the past two decades, to the best of our knowledge, there is no study presenting a comprehensive survey of the literature on applying machine learning models on movement data for animation generation.

In this paper, we identify the key goals, challenges, and gaps in the research on statistical movement generation. We first review the typical architecture of a statistical movement generation system and its components, and outline the goals, challenges, and the design choices that are involved, in Section 2. We summarize our findings on the characterization of movement in the literature and detail our framework in Section 3. We discuss recording, processing, and representations of movement
ML for Movement Generation

data in the literature, and review the publicly available movement databases in Section 4. We sur-
vey the application of using machine learning techniques with motion capture data for learning and
generating movement animation in Section 5. We look at the evaluation methods in Section 6. We
summarize our findings and provide a discussion of the gaps and remaining challenges in Section 7.
Finally, we present the conclusions in Section 8.

2. Background and Fundamentals

This section presents the fundamentals of statistical movement generation. We first lay out the
definitions and assumptions that we use throughout this paper. Next, we describe a typical archi-
tecture for capturing, learning, and generating human movement. We discuss the common themes
and the research goals motivating the field, followed by a description of the applications of movement
generation.

2.1 Definition of Key Concepts

- **Skeleton**: In modelling and animating full-body movement, it is common to use a skeleton to
represent the body structure. Each body pose is described by a set of the rotations of the
joints (or equivalently the bones), as well as the orientation and position of the agent in the
global space (typically called the *root*). The hierarchy of the joints and their rotations are
constrained by a pre-defined skeleton structure.

- **Posture / Pose**: Posture or pose refer to a static state of the body, described by the positions
or orientations of the body parts as a whole. Numerically, a pose is represented by a single
frame of data.

- **Pose Space**: We use the term pose space to refer to the space of all possible body poses. A pose
is therefore a single point in this space.

- **Gesture**: Gesture is the movement of a subset of body parts, often performed to communicate
information (Lamb, 1965).

- **Movement**: By movement we refer to the animation of a full-body representation of an anthrop-
omorphic skeleton through time.

- **Motion**: We make a distinction between human *motion* and human *movement*. While mostly
used interchangeably in the literature, we use *motion* to refer to the changes of the position of
the body as a whole rather than individual body parts. In contrast, we use human *movement*
to refer to the coordinated motion of individual body limbs.

- **Movement Primitives**: The notion of *movement primitive* is used to represent basic segments
of human movements that constitute longer movements (Schaal et al., 2003).

- **Factor Space**: We use the term factor space to refer to a high-level space of movement descriptors,
such as those describing actions and emotions.

- **Agent**: We use the term agent to refer to an abstract model of a mover. Although the agent
can refer to a human, physical robot, or a software, throughout the paper we use agent to
specifically describe software agents.

- **Mover**: Throughout this paper, we use the terms *actor*, *mover*, *dancer*, *performer*, and *subject*,
interchangeably to refer to the person or agent moving.

- **Personal Movement Signature/Style**: An individual’s distinguishable movement patterns that
is influenced by a combination of factors such as the individual’s physical build and cultural
background (Bartenieff and Lewis, 1980; Serlin et al., 2007).
2.2 Research Directions

We categorize the directions that the body of research on movement generation follows in three themes: (a) achieving believability, (b) controlling and manipulating the characteristics of the generated movements, and (c) supporting real-time and continuous generation. Each of the themes bring challenges that justify the design and development of movement generation models.

(a) **Believability:** Believability is one of the fundamental notions in virtual agent animation (Las- seter, 1987; Bates, 1994; Pejsa and Pandzic, 2010; Mori et al., 2012). Even non-movement-expert humans notice the smallest details that make movement look unnatural (Pejsa and Pandzic, 2010; Geijtenbeek and Pronost, 2012). It is challenging to manually create a believable animation that looks appealing to the audience from scratch.

The animation industry has employed motion capture technologies in order to record the movements of human actors. The recordings preserve the realism and expressive details of the movement, and is used as the basis of animations (Menache, 2000). Data-driven movement generation methods also take advantage of motion capture data in order to create natural-looking animations (Pina et al., 2000). The challenge facing such methods is the often unwanted noise or artifacts that are introduced as a result of the computational manipulations of the recorded data. Generating natural-looking movements is therefore one of the intrinsic goals of data-driven movement generation techniques.

There are two ingredients that are essential in achieving higher levels of believability in movements of an agent:

− **Physical Validity:** As in reality, humans move in a physical world, their movements are constrained by the laws of physics. The movements that are generated also need to follow the laws of physics and the biomechanics that are involved in human movement. Note that in humans, the notion of physics is implicit. The brain does not explicitly solve physical equations in order to produce the movement patterns. However, through feedbacks from the physical environment, the brain learns to adapt to the laws of physics.

As most of the data-driven methods approach the modelling problem without any prior assumptions about the mechanisms that produce the data, they are limited in guaranteeing obeying the laws of physics. Hybrid approaches, e.g., (Wei et al., 2011) (17), combine data-
driven methods with physical models to generate movements that are physically valid and look natural.

The majority of the data-driven studies do not address the problem of physical validity. Although by learning the movements from real data and imitating their qualities, the generated movements uphold some of the physical properties of human movements, there is no constraint to enforce such rules and react to dynamic changes of forces.

- **Expressivity**: The expressiveness of the movements of agents plays an important role in their believability (Bates, 1994). Movement is a form of non-verbal communication and conveys affective qualities that reflect the inner state of the agent. A generative model of movement, should therefore be able to exhibit a variety of expressions, and allow controlling those expressions according to some high-level descriptors. In particular, the literature on data-driven models has addressed modelling expressive walks (Tilmanne and Dutoit, 2010; Tilmanne et al., 2014; Alemi et al., 2015) and hand movements (Taubert et al., 2011, 2012; Samadani et al., 2013). Modelling the expressivity of movement is discussed in more details in Section 3. Expressivity is one of the advantages that data-driven models have over physics-based movement modelling approaches.

Note that achieving a high level of realism may not always results in the agent being perceived as natural, which is a concept known as the *uncanny valley* introduced by Mori et al. (2012). As shown in Figure 1, people’s affinity to humanlike animated agents or robots increases as the similarities to real humans increases, but it abruptly diminishes as the similarities reach to near humanlike, but fail to reach too close. With respect to data-driven movement generation techniques, one could argue that achieving the same level of realism as the original recorded data is a satisfying criteria for evaluating the naturalness of the movement. We discuss the evaluation methods of movement generation systems in Sections 6 and 7.

(b) **Control and Manipulation**: Automatic movement generation is fully utilized when provided with a level of control over the characteristics of the movements being generated (Chai et al., 2002; Pejsa and Pandzic, 2010; Geijtenbeek and Pronost, 2012). The ability to control and manipulate the movement is one of the main elements that give data-driven, and statistical generation techniques in particular, benefit over using just the recorded movements. A single model can generate many variations of the same movement, while one would otherwise need to capture all those variations individually, and blend or sequence them manually.

An agent’s movements portray its personality, emotional state, goals, and intentions, while corresponding to its reactions to the external stimuli from the environment and other agents surrounding it (Bartenieff and Lewis, 1980; Studd and Cox, 2013). One can therefore use high-level cognitive attributes and states in order to control and manipulate the generated movements. These many sources of influence result in a large combinatorial space of possible movements. Consequently, the problem of manipulation and control is nontrivial and it brings challenges and requirements that we detail below and throughout this paper.

- **Movement Parameterization**: Directly manipulating movement at the level of raw data (joint rotations) is cumbersome and inefficient, mostly due to the low-level, high-dimensional, dense in time, and non-linear space of movement data. It is easier to manipulate a high-level representation that is sparse in time and has fewer dimensions than the raw data. In addition, it is easier to associate a high-level representation with the meaningful characteristics of the agent and its movement. This has motivated the research on learning a mapping from a low-dimensional control space to the high-dimensional pose space, as well as performing operations such as interpolation and extrapolations on the parameters. Techniques for addressing these are described in details in Section 5.
− **Characterization of Movement**: In order to properly integrate the movement generation process into an agent with physiological and psychological properties, the high-level parameters used to control the movement have to correspond to, directly or indirectly, the agent’s physiological, mental, emotional states, components, as well as the properties of the environment in which the agent resides. As will be discussed in further details in Sections 3 and 4, most studies have not adopted a characterization framework that refers to meaningful concepts and either model a single pattern of movement, or model arbitrary variations of a movement pattern.

− **Motor Variability**: Various studies have shown that variability is a fundamental characteristic of the movement of biological entities including humans (Davids et al., 2006; Müller and Sternad, 2009). Humans never exactly repeat the same movement even when they try to do so. In other words, although multiple repetitions of the same movement can have the exact same functional, planning, and expressive descriptors, the execution dimension will always differ for each try. Thus, models that replicate the same execution will be perceived as more mechanical than natural. For example, Motion Graphs (Kovar et al., 2002) and similar approaches use exact copies of the recorded motion capture segments (except some of the transitions), which replicate the same execution over and over.

(c) **Interactive and Real-Time Animation**: Generating movement animation interactively, as in applications such as video games, requires two conditions to be present:

− **Computational Constraints**: A model that generates new samples in real-time given a set of parameters makes it possible to be used in interactive applications, in which real-time generation of the contents is desired. Real-time generation brings challenges in both time and space complexities of the generation algorithms of a statistical model. The model should be able to generate new frames according to the frame-rate of the system, while leaving enough processing power and memory for other computations needed in the system.

− **Generate Transitions**: Interactive animation requires making a large number of transitions between consecutive movements segments. Due to the dynamic nature of the scenarios, the exact timing and occurrences of such transitions cannot be defined and authored by the animator a priori. Therefore, the transitions need to be generated in real-time. While generating a transition can be seen as simply blending the source and target movements, a statistical model that has learned a general model of movement can be able to generate transitions the same way it generates any movement. Creating smooth and believable transitions is more challenging than generating movement segments with fixed characteristics and remains an open problem, which is discussed in Sections 3 and 5.

As described above, automatic movement generation research follows the goals along three general themes of believability, control and manipulation, and interactive animation. In the next part, we argue that the aforementioned research goals are shaped by two types of applications for automatic movement generation.

2.3 Statistical Movement Generation Architecture

Statistical movement generation can be described as synthesizing new movements by learning a movement model from a group of recorded movement segments. The typical architecture of a movement learning and generation model is shown in Figure 2. In this section, we briefly highlight different parts of the architecture, while leaving their detailed discussions in the proceeding sections.

The first choice in designing a generative model is the type of the movements to generate. In data-driven approaches, the repertoire of the movements that a model can generate relies on the diversity of the movements that exist in the training data, the available variations of each movement
type, the number of samples for each variation, and the number of human actors performing these samples. The size of the training dataset is important. If trained on a relatively small dataset, a machine learning model might closely imitate the only movements it has seen, but fail to learn a more general space of possible movements. In case of supervised learning, it is required to annotate the training data based on some descriptors (Section 4.2).

Depending on the choice of the movements, one can use the data available from a public database (Section 4.3), or record the movements using a motion capture system (Section 4.1). The latter is costly and time-consuming, but could produce a more desirable set of data, while the former data are ready to use, but might not directly fit the desired requirements of a particular study.

In the optional pre-processing and feature extraction stage, the raw training data is transformed to a set of features to make them more suitable to be used by the learning algorithm. The pre-processing stage can include changing the rotational representation of the data (Section 4.1.2); calculating the joint speed and acceleration, or learning more suitable representations of the raw input data using feature learning or extraction algorithms (Section 4.2); or reducing the dimensionality of the data (Section 4.2). The training sequences might also be divided into shorter segments.

If multiple databases are combined, each data source might use a different skeleton with a different shape, size, and number of body joints. In most cases, one needs to re-target the data to a uniform representation of the data from all sources so that they can be interpreted by the machine learning model in the same way.

In the training stage, depending on the machine learning technique and the type of the features used, a learning algorithm is employed to determine the generation function. In some cases, more that one learning algorithm might be used for different parts of the system. The learning can be supervised, unsupervised, or semi-supervised. In supervised learning, the training process involves learning the correlation between the movement data and a set of labels. In unsupervised learning, the data is not labeled and the model learns the underlying patterns that generate the data. In semi-supervised learning, only a subset of the training data is labeled and the training process
involves both supervised and unsupervised techniques. The choice of which learning method to use is determined by the problem being addressed, as well as the approach designed to tackle the problem. We will discuss the examples and implications of each method throughout the paper.

A generation algorithm (Section 5) uses the learned model to create new samples. A group of models are able to generate new data based on a given description of the movements, which allow controlling the qualities of the generated movements (Section 2.2). Some machine learning techniques such as Gaussian Process Models need to retain the training data to be able to generate new samples while others require to keep only a few initialization frames (such as some artificial neural networks) or do not need any data for the generation (such as Hidden Markov Models).

The raw output of the model goes through the post-processing stage to be converted to a movement representation that can be used for animation. It is often the case that the post-processing involves reversing the steps performed in the pre-processing stage.

The quality of the output of the system is then evaluated formally or informally, as discussed in (Section 6).

3. Characterization of Movement

Movement is multifaceted. Multiple elements influence the movement: the internal state of the agent performing the movement (e.g., emotions and intentions), as well as the external stimuli that shape the environment surrounding the agent (e.g., objects, gravity, friction, etc.).

We use the term “factors” to describe the sources of influence on the agent movement. Each factor has a specific domain, which can be continuous or discrete. Choosing different values for a factor results in movements with different characteristics. For example, if we consider the position of the hand as a factor, the factor space would be the 3D space that is within the reach of the hand. Or if we consider the affective state of the agent as a factor and follow a categorical representation of affect, the categories such as happy, sad, or afraid would be within the space of the factor.

The interaction and combination of the factors across multiple dimensions (e.g., affective state, actions, etc.) result in the endless varieties of movement that humans can perform. As building movement generation systems that can understand and generate all of this endless variety is not yet feasible (see the discussion in Section 7), researchers choose a subset of movements to model, and only a few factors to describe these movements (if any.)

In this section, we first review and criticize the characterization of movement and its factors in the literature. Next, we present a framework to characterize movement based on the factors that are meaningful to agents.

3.1 Movement Factors in the Literature

We present a summary of the dimensions of movement that are characterized, the definitions and application of the factors, and the controlling abilities of the reviewed works in Table 1.

The majority of the works address movement characterization from a perceptual perspective, i.e., how an arbitrary factor changes the perceived movement, rather than from an agency perspective, i.e., how factors that characterize an agent’s internal state change the movement.

Research on perceptual systems has identified the notion of content and style as two factors of a perceptual system (Tenenbaum and Freeman, 2000). For instance, the same word (the content) can be spoken in different accents (the style), or the same letter (the content) can be written with different fonts (the style). Although movement is not merely a perceptual system, style and content separation is applied to the domain of human movement analysis. For instance, walking from point A to point B in an environment, the content, can be performed in different styles, such as taking different paths, exhibiting distinct movement signatures, or expressing different emotions.

Consequently, the research on statistical movement generation has adopted the concept of style and content separation as a method for controlling the characteristics of the generated movements,
Table 1: An overview of characterization of movement in the reviewed literature.

Ref	ML Technique	Characterization	Control Support	Control Technique	Discret / Continuous Factors	Supervised / Unsupervised Learning	Modelled Movements	
1	Brand and Hertzmann (2000)	Stylistic HMM	Expression - Personal Signature	Yes	Parametric Gaussian Distribution	C, U, M	Gender, weight distribution, grace, energy, and formal dance styles	
2	Tanco and Hilton (2000)	HMM	Function	Yes	Hierarchical architecture and clustering	D, U, S	Standing up, walking, running	
3	(Li et al., 2002)	LDS	Expression	No	-	-	Disco dance	
4	Yamazaki et al. (2005)	HMM + Multiple Regression	Expression	Yes	Parametric Gaussian Distribution	C, S, M	Walking with different speed and stride length	
5	Wang et al. (2005)	HMM	Function	Yes	Hierarchical architecture	D, U, S	Regular walk, chopping a tree, ballet walk, ballet roll, disco, and complex disco	
6	Wang et al. (2006a)	SOMN	Planning	Yes	Parametric Gaussian Distribution	C, S, M	Boxing, with varying body height and the distance of punch target	
7	(Wang et al., 2006b)	HMM/MD-SDTG	Planning	Yes	Parametric Gaussian Distribution	C, S, M	The height of the right arm	
8	Taylor et al. (2006)	CRBM	-	No	-	-	-	
9	(Wang et al., 2007)	Multifactor GPLVM	Expression	Yes	Mapping points in a low-dimensional latent space to movement	C, Semi-S, M	Identity and gait in walking	
10	(Wang et al., 2008)	GPDFM	-	No	-	-	-	Walking
11	(Lin et al., 2008)	MLP	Planning	Yes	Regression	C, S, M	Humanoid arm movements	
12	Qu et al. (2008)	Isomap + LDS	Function and Expression	No	-	-	-	
13	(Herzog et al., 2008; Herzog and Krüger, 2009)	Parametric HMM	Planning	Yes	Interpolating individual models for each parameter value and using parametric Gaussian distribution	C, S, M	the position of the pointing target	
14	Taylor and Hinton (2009)	Factored CRBM	Expression and Planning	Yes	Modulating network weights	C, S, M	Walking styles + walking speed and stride length	
15	Matsubara et al. (2010)	Nonlinear Dynamical Systems	Planning	Yes	Dynamical systems	C, S, M	Table tennis	
16	Tilmanne and Duttok (2010)	PCA	Expression	Not explicit	Principal Components	-	-	Walking styles
17	(Wei et al., 2011)	GP + Physics	-	No	-	-	-	Running, walking, and jumping under different physical forces
18	(Liu et al., 2011)	Multilinear ICA	Planning and Expression	Yes	Optimization	C, S, M	Sideways stepping, reaching, and striding over obstructions, with multiple actors	
19	(Kulić et al., 2011)	HMM	Function	Yes	Hierarchical model	-	-	Arm raising, bending, walking, squatting, kicking
20	Chiu and Marsella (2011a)	Hierarchical FCRBM	Execution	Yes	Modulating network weights	C, S, M	Prosody of speech in gestures	
21	Chiu and Marsella (2011b)	Hierarchical CRBM	Expression	Yes	Modulating network weights + blending networks	D, S, S	Walking styles	
22	Taubert et al. (2011, 2012)	Hierarchical GPLVM + HMM Transformation	Expression	Yes	Model interpolation	D, S, S	Handshake	
23	Tilmanne et al. (2012)	HMM + Transformation	Expression	No	Model interpolation + Transformation algorithms	-	S, S	Walking styles
24	Min and Chu (2012)	Functional PCA + Gaussian Mixture Model + Gaussian Process	Function and Planning	Yes	Graph + Optimization	C, S, M	Function transitions: walking, sitting, picking, placing; Controlling the movement: direction, and position, speed	
25	Samadani et al. (2013)	Functional PCA	Expression	Not explicit	Principal components + clustering	-	U	Hand movement
26	Tilmanne et al. (2014)	HSMM	Expression	Yes	Model interpolation	D, S, S	Walking with different emotions, morphology personalizations, or situations	
27	Fragiadaki et al. (2015)	Recurrent Neural Networks	Function	No	-	-	-	Walking, eating, smoking
28	Alam et al. (2015)	Factored CRBM	Expression	Yes	Modulating network weights	C, S, M	Valence and arousal dimensions of affect	
29	(Embrosio-Fila and Embrosio-Fila, 2018)	LSTM RNN	Expression	No	-	-	-	Contemporary Dance
30	(Fodden et al., 2018)	Convolutional Autoencoders + Feedforward Networks	Planning	Yes	Using a control neural network	C, Semi-S, M	Navigation, punching and kicking, factor transfer, crowd animation	
Table I: An overview of characterization of movement in the reviewed literature - Continued.

Ref	ML Technique	Characterization	Control Support	Control Technique	Discrete / Continuous Factors	Supervised / Unsupervised Learning	Single / Multi Factor(s)	Modified Movements	
31	Wang and Artieres (2017)	Adversarial Learning	Function and Expression	Yes	Factors as conditional inputs	C	S	M	Experiments
32	Herrmann et al. (2017)	Functional PCA + Gaussian Mixture Model + Gaussian Process + kMeans Trees	Function, Planning, and Expression	Yes	Graphs + Optimization	C	S	M	Walking with different emotions, lifting, sitting, moving books, knocking on the door, throwing
33	Martinez et al. (2017)	Recurrent Neural Networks	Function	No	-	-	-	Mean angle error for prediction of a variety of actions	
34	Alemi and Pasquier (2017)	Factored FCRBM	Planning and Expression	Yes	Modulating network weights	C	S	M	Valence and arousal dimensions of affect, walking direction, movement signature
35	Alemi et al. (2017)	Factored FCRBM	Expression	Yes	Modulating network weights	C	S	M	Dance movements for a given song

Employing the two-dimensional style and content characterization of movement brings out the question of what is considered the content of a movement and what is considered its style. A majority of studies have considered gaits variations during locomotion, or anthropomorphizations of non-human creatures as the style factor of movement, treating the locomotion as the content factor, e.g., (Taylor and Hinton, 2009; Tilmann and Dutoit, 2010; Tilmann et al., 2012; Chiu and Marsella, 2011b; Tilmann et al., 2014) or transferring the style of one movement to another, e.g., (Brand and Hertzmann, 2000; Wang et al., 2007).

A few studies model movement factors by using a more specific characterization scheme than style and content. For instance, Taubert et al. (2012) and Alemi et al. (2015) use factors that represent the categories of emotions or the valence and arousal dimensions of affect, respectively.

The review of the literature reveals two main issues on movement characterization:

1) The definition of the style factor varies across the literature, and there is no consensus on what style represents. While many studies do not provide any definition of style, some refer to it as the quality of movement that changes across the training data. The most viable definition of style is used by Brand and Hertzmann (2000) as the variations of the same movement type.

2) Simply using the two dimensions of content and style as the influential factors is insufficient in describing the multifaceted nature of agent movement. A framework with a broader range of dimensions is required to distinguish adequately between various movement qualities, and to better connect those qualities to the internal state of the agent. Only a few studies have addressed associating the controlling factors with the internal state of an agent, e.g., (Herzog et al., 2008; Matsubara et al., 2010; Taubert et al., 2012; Alemi et al., 2015)

In the next section, we make the case for a characterization framework tailored for the integration with an agent model that addresses the above shortcomings.
3.2 Movement Characterization for Agents

When describing the internal state of an agent and its surrounding environment, we can often put things into multiple semantic dimensions. As the agent movement is influenced by these factors, we can also describe the qualities of its movement across multiple semantic dimensions. The way that these dimensions are laid out and incorporated into a movement generation system plays an important role in the application of the movement generation model. For example, movement generation for video games would benefit from a high-level interface that corresponds directly to an agent model and generates the movement according to the changes in the agent’s internals. Note that, although inspired by humans, such framework may not exactly mirror how human internal state and movement work together.

Here, we present a framework for characterizing movement that is tailored for integration with virtual agent models. We use this framework throughout this paper to provide a coherent analysis of the literature. The proposed framework consists of six semantic dimensions that characterize an agent’s movement: function, planning, execution, expression, personal movement signature, and limb motion (Fig. 3):

Function According to the goal-oriented behaviour of an agent and at the cognitive level, the functional dimension of movement corresponds to the task that the agent is performing through its movement: e.g., reaching the destination from its current location or picking up an object from the table. The functional dimension is perfunctory and does not communicate expression Cruz-Garza et al. (2014). Note that the function may not always explicitly be present in some movements, such as dancing or abstract movements (Karg et al., 2013).

In modelling the functional dimension of movement in generative models, the common practice is to build a different model for each function. Upon generation, controlling the function of the movement is done by selecting and switching between the available models. A more challenging approach is to build a single model that is capable of generating a variety of functions, e.g., (Li et al., 2002; Qu et al., 2008) ③⑪⑫.

Planning The planning dimension is concerned with the sequencing of the fully-body movement and limb motions in order to realize a desired task. For example, moving between two points in a room requires planning the movement in a way to avoid any obstacles. Another example would be choreography, which lays out the sequence of movements in a dance.

Different sequencing and timing of movements used for planning are often implemented by modelling parametrized movements. For example, a model can be parameterized by the po-
sition of end-effectors (Wang et al., 2006b; Herzog et al., 2008; Herzog and Krüger, 2009) or the trajectory of end-effectors (Matsubara et al., 2010) in order to capture different planning sequences that can achieve the tasks.

Execution This dimension encapsulates the patterns that result from the coordinated motion of individual limbs in order to realize the higher-level dimensions of movement in the physical or virtual world. For example, walking (the function) is executed through a locomotion pattern. In other words, the patterns that are defined across the execution dimension act as templates for realizing function and plan variations.

During the training process, the main task of the learning algorithm is to learn the underlying patterns that produce the movements. Any machine learning model would learn one or more execution templates. In addition, some models learn how these templates are modulated by other dimensions, such as expression or planning.

Expression The *expressional* dimension refers to the exhibition of affect through body movement, including the emotions and mood. The expression can be understood as modulation of the execution pattern. For example, for most people, walking while being angry looks different from walking the same path while enjoying it.

The expression in movement can be described using a variety of representations, such as Laban Movement Analysis (LMA) (Bartenieff and Lewis, 1980) for describing movement qualities, or categorical and dimensional representations of affect for emotions (Karg et al., 2013). Controlling the expressivity of the movement is done by learning separate models for each state, e.g., Tilmanne et al. (2014), or learning movements that are parameterized by factors describing the expressivity e.g., (Taubert et al., 2011; Alemi et al., 2015).

Personal Movement Signature This dimension encapsulates the qualities across the other dimensions that together make the movements of one individual distinguishable from the movements of others.

Action Rendering At the lowest semantical level, the positions of the individual body limbs are manipulated through space and time, as defined by the execution patterns and modulated by the expressive factors. Action rendering is defined in the pose space, in which we only deal with the configuration of body parts.

Now that we have discussed how to provide a high-level, semantical representation of movement, we look at how to capture and represent movement at a lower level in the next section.

4. Movement Data

Data-driven and statistical movement generation systems do not incorporate any prior knowledge of human movement into their models. As a result, the collection of the movement data that are used in creating such models plays an important role in the generative capabilities and of them.

Table II summarizes the characteristics of the training data used in the reviewed works. There are a number of choices involved in acquiring a training data set for movement generation, including the type of sensors by which the movement is captured, the way movement data is represented numerically, whether annotations and labels are needed, and the number of human subjects that are available in the data. In addition, there are a number of processing operations that are often performed on the raw data to make them more suitable for a particular machine learning model. In this section, we discuss and review each of these aspects with respect to common practices as reported in the literature. We also include the review of the freely available movement databases that can be used for movement generation.
Table II: Characteristics of the training data used in the reviewed models

Ref	Data Source	Capturing & Input Format	Content	Pre-processing & Feature Extraction	
1	Brand and Hertmann, 2000	Various sources / Unspecified			
2	(Tanco and Hilton, 2000)	Their own (not shared)	FPS: unspecified (not shared)	- Standing up from the floor, - Walking, - Running (46 frames total)	- Aligning data to be invariant to orientation - Converting the rotations to the angle-axis representation adapted from (Preusez and Tihonin, 1997) - Reducing dimensions using PCA
3	(Li et al., 2002)	Their own (not shared)	FPS: 60, Features Dimensions: 60	- Disco dance (49,800 frames)	- Converting the rotations to exponential maps
4	(Yamazaki et al., 2005)	Their own (not shared)	Markers: 19 (CMU), Features Dimensions: 62 (CMU), 49 ((Hsu et al., 2005))	- Walking, varied pace and stride length, 66 sequences	- Manually labeling each frame with motion primitives - Calculating 1st and 2nd derivatives of the raw rotations - Calculating the walking pace and stride length
5	(Wang et al., 2005)	Unspecified	FPS: unspecified (not shared)	- Walk (119 frames), - Chop tree (701 frames), - Ballet walk (148 frames), - Ballet roll (169 frame)	- Segmentsing the elementary behavior, - Converting the rotations to exponential maps - Calculating the first-order derivatives
6	(Wang et al., 2006b)	Their own (not shared)	Markers: 19 (CMU), Features Dimensions: 120 (FPP 33)	- Normal walking of a male actor, - Cat walk of a female character with right arm raised	- Converting the rotations to exponential maps
7	(Wang et al., 2006a)	Their own (not shared)	FPS: 66 (CMU), Features Dimensions: unspecified	- Boxing (3 minutes)	- Manually labeling the motion - Calculating the style values
8	(Taylor et al., 2005)	CMU	FPS: 30, Markers 30 (CMU), 17 [(Hsu et al., 2005)]	- Walking and running	- Converting the rotations to exponential maps - Feature standardization - Removing constant zero dimensions
9	(Wang et al., 2007)	CMU	FPS: 30, Features Dimensions: 89	- Locomotion (CMU)	- Calculating rotation and translation velocities - Converting the rotations of joints with 3 DOFs and the global orientation to exponential maps - Labeling the gait type
10	(Wang et al., 2008)	CMU	FPS: 60, 10, Features Dimensions: 50	- Single-subject walk (120 frames), - Four-subjects walk (1146 frames), - Golf club swing (four samples, 1015 frames)	N/A
11	(Lin et al., 2008)	Their own (not shared)	Features Dimensions: 21 positions (5 arm joints + initial position + final position in 3D)	- Lifting arm movements (four repetitions)	N/A
12	(Qu et al., 2008)	CMU	FPS: 60, Raw Dimensions: unspecified, Features Dimensions: 5 & 8	- Boxing, jumping, kicking	N/A - Reducing dimensions with hmmap
13	(Tilma and Dutoit, 2009)	Their own (not shared)	Markers: 7 (CMU), Dimensions: unspecified (not shared)	- Grasping, pointing	N/A
14	(Taylor and Hinton, 2009)	CMU	FPS: 60, Markers 30 (CMU), 17 [(Hsu et al., 2005)]	- Stylistic walks, - Multiple style variables: cross-product of (slow, normal, fast) speed and (short, normal, long) stride length, 6000 frames.	- Converting the rotations to exponential maps - Feature Standardization - Removing constant zero dimensions - Labelling the data
15	(Metabara et al., 2010)	Their own (not shared)	FPS: unspecified	- Table tennis swing (15 sequences)	N/A
16	(Tilma and Dutoit, 2009)	Their own (not shared)	FPS: 30, Features Dimensions: 54	- Stylized walks (247 cycles)	N/A - Removing the root translation - Re-sampling the data to have a fixed length - Converting the rotations to quaternions for re-sampling - Converting the rotations exponential maps for PCA
17	(Wei et al., 2011)	Unspecified	FPS: unspecified, Features Dimensions: 19, 22, and 19	- Walking variations: step sizes, turning angles, walking speeds, and walking slopes	- Solving the root translation
18	(Liu et al., 2011)	Their own (not shared)	FPS: unspecified, Features Dimensions: unspecified	- Sideways stepping (75 sequences), - Reaching (75 sequences), - Stride over obstacles (78 sequences)	- Time warping all movements to a reference movement - Manually specifying key-frames for each sequence - Reducing dimensions using PCA
Continued

Ref	Data Source	Capturing & Input Format	Content	Pre-processing & Feature Extraction	
19	(Kooli et al., 2011)	Their own (not shared)	FFT, 90 and 120	Walking, squatting, kicking, raising an arm - Single subject	
20	(Alemi and Pasquier, 2017)	FFS: unspecified	Dance conversations (1140 frames)	Three subjects	
21	(Herrmann et al., 2017)	CMU: unspecified	Stylized walk	Single subject	
22	(Taubert et al., 2017)	Their own (not shared)	Handshakes with four emotions	Two subjects	
23	(Tilmanne et al., 2011)	Proprietary: Mockey (Muller et al., 2010)	Mockey: Walks in 11 styles: proud, decided, sad, top model, drunk, cool, afraid, tip-toeing, heavy, in a hurry, and manly.	Aligning the direction of all the walking sequences. Manually segmenting the sequences into left and right steps. Converting to exponential maps Calculating the speed and acceleration of the rotations	
24	(Mao and Chau, 2012)	Their own (not shared)	Standing, walking, running, two-feet jumping, stepping-stone jumping, sitting down, standing up, climbing up, climbing down, left punching, right punching, picking, placing, kneeling down, kneeling up, backward walking - Transitions between the above	Extracting keyframes Segmentation Segment extraction for each primitive Functional decomposition of each segment	
25	(Samadani et al., 2013)	Data from (Samadani et al., 2011)	Features Dimensions: 54	Closing and opening the hand with happy, sad, and angry emotions Re-sampling the data to be aligned and have a fixed length Modelling the data with Basis Function Expansion method	
26	(Tilmanne et al., 2014)	Mocky Database (Tilmanne and Dutoit, 2010)	Features Dimensions: 54	Stylized walk	Single subject Automatically annotating frames with left and right steps Converting the rotations to exponential maps
27	(Fragkiadaki et al., 2015)	H3.6M (Ionescu, Papava, Olim, and Sminchanski, Ionescu et al.)	Markers: 30	Walking, eating, smoking	Converting the rotations to exponential maps Calculating the speed of the motions and global translation Feature standardization
28	(Alemi et al., 2015)	Their own (shared) (McArdle, 2018)	Features Dimensions: 53	Affect-expressive walks (30,000 frames)	Two subjects Converting the rotations to exponential maps Feature standardization Removing constant zero dimensions Labelling each training sequence with the valence and arousal values
29	(Cebolla-Frias and O. Ale in and P. Pasquier, 2016)	Their own (not shared)	Features Dimensions: 75	Contemporary Dance	N/A
30	(Holden et al., 2018)	CMU, 2019 + (Muller et al., 2007) + (OH, Chaudry, Kurfil, and Bajcsy, OH et al.) + (Xia et al., 2015)	Features Dimensions: 70	All of the contents of the used databases, retargeted into a uniform skeleton, resulting in around six million frames (at 60 FPS)	Converting the joint rotations to positions with respect to a body-centric coordinate system Calculating the body orientation and global velocities Applying Gaussian filters to reduce noise Finding foot contact points Feature standardization Segmenting the data into overlapping windows
31	(Wang and Aristeas, 2017)	Emlysa Database (Fourati and Pelachaud, 2014)	Features Dimensions: Unspecified	12 performers - 8 activities - 8 emotions	N/A
32	(Hermann et al., 2017)	Their own (not shared)	Joints: 20	Walking - Picking - Placing - Screwing	Converting the rotations to quaternions Segmentation Temporal and spatial alignment Feature standardization Smoothing
33	(Martinez et al., 2017)	Human 3.6M (Chen et al., 2017)	Markers: 53	Seven performers - Walking, smoking, engaging in a discussion, taking pictures, and talking on the phone - Two different trials for each performer/actions	Converting the rotations to exponential maps
34	(Alemi et al., 2017)	Their own (shared) (McArdle, 2018)	Features Dimensions: Unspecified	All of the contents of the used databases, retargeted into a uniform skeleton, resulting in around six million frames (at 60 FPS)	Converting the rotations to exponential maps Feature standardization Removing constant zero dimensions Labelling the valence and arousal values for each training sequence Labelling each frame with the orientation of the body
35	(Alemi et al., 2017)	Their own (shared) (McArdle, 2018)	Features Dimensions: 51	Dance movements Audio features	Converting the rotations to exponential maps Feature standardization Removing constant zero dimensions Labelling each frame with corresponding audio features
4.1 Capturing Human Movement

A number of sensor systems are used to capture the movements of human actors. Depending on the application, one or more sensor system might be used to capture movement data. These systems vary based on the areas of the body they capture, such as hand movements, full-body movements, expansion of the lungs through breathing, and muscle contractions among others. They also capture different quantities such as position, acceleration, biometrics, energy, etc. Other factors such as the setup requirements (e.g., indoors, outdoors, capturing volume, mobility), the precision and reliability of the measurements, and the sampling rate play a role in choosing the sensor system.

The quantities that sensors capture are summarized in the following categories:

- Joint positions and rotations: motion capture systems
- Joint acceleration and orientation: accelerometer and gyroscope
- Biometric features: electromyography, electroencephalography, breath, heart rate
- Location of the body: Radio Frequency ID (RFID), Global Positioning System (GPS), and Mobile Networks

Throughout the rest of the paper, we only focus on motion capture data, as none of the generative models reviewed use other sensor systems.

4.1.1 Motion Capture

Motion Capture (Mocap) is a popular approach for recording movement and is widely used in the movie, video game, sports, and health care industries. Mocap systems use marker-based or marker-less techniques to capture the trajectories of body limbs in a 3D coordinate system. Mocap markers can be acoustic, inertial (as in (Tilmanne and Dutoit, 2010)), magnetic, reflective (as in CMU (2019); Alemi et al. (2015)) or a combination of these. Marker-less systems use computer vision techniques to track the optical flow of the pixels in a 2D video stream of movement (RGB and infrared), as used in Microsoft Kinect. Special motion capture systems for capturing the movements of hands and fingers can be worn like a glove, e.g., (Lu et al., 2009).

Motion capture systems are often used to capture whole body movements. However, it is also commonly used for capturing detailed limb movements, e.g., (Samadani et al., 2011), as well as facial expression.

Regardless of the capturing techniques, the trajectories of the markers or pixels are often mapped to a virtual skeleton, defined by a hierarchy of joint angle rotations that ensures that the body limbs have fixed lengths. While most of the approaches use joint rotations, the trajectories are also directly used for modelling movement (Kulić et al., 2011; Crnkovic-Friis and Crnkovic-Friis, 2016)

Mocap data are provided in different formats such as C3D (3D marker positions); Acclaim, Biovision (BVH), and Vicon (both the skeleton and the motion data); text (comma or space delimited); and more general 3D asset formats such as COLLADA and FBX.

C3D format (Dainis, 2019) is a public-domain format which represents movement using the position of the limbs or markers in a 3D coordinate system. It does not include a skeleton or a hierarchical representation. Most of the raw data in movement database are provided in the C3D format.

The Acclaim format (Acclaim, 2013) is a skeleton-based format for mocap data developed by the video game company Acclaim. It consists of two files, one for describing the skeleton information and one containing the movement data. Typically, the same skeleton file is used for multiple movement sequences of the same subject. Unlike other formats, in the Acclaim format the movement is represented by rotations of bones rather than the rotations of joints.

Biovision Hierarchical data (BVH) (BVH, 2019) is a widely used skeleton-based mocap format developed by Biovision. Unlike acclaim, BVH contains both the skeleton and the content in a single
file and uses the rotations of the joints to represent the movement. Most of the reviewed public databases provide their mocap data in the BVH format.

COLLADA (Arnaud and Barnes, 2006; Barnes and Finch, 2013) and FBX (FBX, 2019) are standard asset exchange formats used in computer graphics and 3D animation software. They are designed to provide an extensible and flexible container for animation assets such as motion capture data, geometry, shaders, physics, lighting, animation, and kinematics as well as any custom data. Thus, they can be used to integrate multiple data describing the movement such as annotations associated with the mocap.

4.1.2 Motion Capture Data Representation

Each frame of motion capture data consists of a root node which defines the body’s absolute position and orientation with respect to a global Cartesian coordinate system, and a set of nodes each representing a joint’s or bone’s orientation. Each node, depending on what part of the body it corresponds to, can be represented by 1 (e.g. knee), 2 (e.g. wrist), or 3 (e.g. arm) parameters, also called Degrees Of Freedom or DOF. Each parameter or DOF describes the rotation of the joint/bone along one of the axes of a 3D coordinate system relative to its parent joint/bone. These parameters constitute the input of the machine learning pipelines.

There are different parametrization schemes to represent the aforementioned joint angle rotations. None of these representations is perfect and depending on the application one might be chosen over another. One of the basic formalisms to represent rotational DOFs is to use rotation matrices. Using a rotation matrix, rotating a point can be implemented by a matrix multiplication. A representation based on a 3×3 rotation matrix requires nine components plus three orthogonality constraints which require a larger space compared to other techniques. Because of this large number of components and the need for imposing constraints on various operations, it is not efficient to use rotation matrices for most of the applications. Four other common parametrization techniques are discussed below.

Euler Angles is one of the most common representations for orientations in movement data. Euler angles describe a one, two or three DOFs of orientation by a sequence of rotations around each axis in the global or local coordinate system using a vector in \mathbb{R}^3. While widely being used by animators, they cannot be interpolated and are susceptible to the loss of degrees of freedom in which different combinations of its three components can lead to the same 3D rotation (also known as a gimbal lock). Thus, few computational models use Euler angles in practice (Wang et al., 2007).

Quaternions represent rotational DOFs using 4 components. Gimbal locks do not occur with quaternions representation, and interpolation is well supported with them. A minor shortcoming of quaternions is the extra 4th component they use to represent the rotations compared to the Euler angles. Despite this, the Quaternions representation is commonly used in the movement generation systems (Pejsa and Pandzic, 2010; Tilmann and Dutoit, 2010).

Exponential map is another technique that is applied to motion capture representations. “The exponential map maps a vector in \mathbb{R}^3 describing the axis and magnitude of a three DOF rotation to the corresponding rotation” (Grassia, 1998). Exponential map representation has a number of benefits over Euler angles including the support for interpolation and being less susceptible to gimbal lock when used for modelling human movement. As a result, exponential map is the most commonly used representation for machine learning purposes (Li et al., 2002; Wang et al., 2007; Taylor and Hinton, 2009; Tilmann and Dutoit, 2010; Tilmann et al., 2014; Alemi et al., 2015).

4.2 Training Data for Movement Modelling

In the following, we discuss those aspects of modelling movement data that are relevant to creating generative movement models.
Sampling Rate The sampling rate (frame rate) of the data represents how many measurements are recorded by the sensors in a window of time. In order to capture fast-paced movements, a high sampling rate is needed to produce a smooth recorded movement. The sampling rate of the training data might be adjusted to comply with the space and computational complexities of the statistical models, as well as to combine data from different sources that have different sampling rates. While the original data might be recorded in higher frame rates (e.g., 120HZ), most approaches down-sample the data (e.g., to 30HZ) to reduce the size of the training dataset. Most of the motion capture formats use a fixed sampling rate when recording the data. This ensures that the frames are linearly sampled.

Pre-Processing & Feature Extraction A generative system might require the raw mocap data to go through a series of processes to make the data usable for the learning algorithm. Some common processes include, but not limited to:

- **Data Representation:** The representation of the data can be changed in a number of different ways in the pre-processing stage. The motion capture files typically use the Euler formalism to represent the joint rotations. However, many approaches convert the data into exponential maps or quaternions before performing other processes on them. In addition, approaches that use functional statistics transform the motion capture data using basis functions (Samadani et al., 2011).

- **Segmentation:** Some approaches use segmentation to break down long sequences or to organize the system into a hierarchical structure. The segmentation can be done based on identification of elementary movements, which is discussed in more details in Section 5, or based on choosing windows of fixed length, as done by Holden et al. (2016) [30].

- **Alignment and Length Normalization:** Some approaches require the training data to have fixed lengths in such a way that similar movements (e.g., each walking cycle) are aligned. The alignment and resampling can be done using the SLERP algorithm (Shoemake and Shoemake, 1985), or using piecewise linear re-sampling.

- **Rotational or Positional Velocity and Acceleration:** Some studies calculate the velocity and acceleration of each DOF of the movement and add the extra features to the training data, as in (Wang et al., 2005; Yamazaki et al., 2005; Wang et al., 2007; Tilmanne et al., 2012) [30] [49] [23].

- **Derived Movement Features:** It is also possible to derive other features from the movement data using analytical formulas. For example, the stride length is directly extracted from the data and used as labels to annotate the data (Yamazaki et al., 2005) [4].

- **Dimensionality Reduction:** The curse of dimensionality, a concept in machine learning, states that the higher the dimensionality of the data, the more difficult it becomes to learn and model the data. Therefore, some statistical models are trained more effectively when given a fewer number of dimensions. Often many of the dimensions of the data do not carry much information about the underlying patterns. Dimensionality reduction techniques, such as Principal Component Analysis (PCA) (Jolliffe, 2002), are applied to the data to identify the dimensions that cause the most variations in the data and eliminate the ones that do not carry much information. A reduced feature vector is then used for training the model, e.g., (Brand and Hertzmann, 2000; Liu et al., 2011; Wei et al., 2011) [1] [18] [17].

- **Feature learning:** Instead of solely using the raw movement data or the features that are derived from analytical approaches (also known as feature engineering), one can derive features through an unsupervised learning processes. In such learning process, a machine learning algorithm is used to learn a new representation of the data that could possess characteristics that are
Figure 4: Comparison of (a) a Gaussian distribution and (b) a DTG distribution with three components (the triangles). Each node represents a dimension of the data. Edges represent the dependencies between the dimensions. The DTG components are \{x_1, x_5, x_6\}, \{x_1, x_2, x_3\}, and \{x_2, x_3, x_4\}.

more efficient for learning a generative model that the raw data or analytical features. This is more common in deep learning applications in which a neural network is first trained on a large amount of training data in an unsupervised way, and then a second model is trained on a possibly smaller dataset that is used directly for the generation (Holden et al., 2016) 30.

- Normalization: For approaches that use artificial neural networks, e.g., (Taylor and Hinton, 2009; Alemi et al., 2015; Holden et al., 2016) 14 28 30, the training process converges more efficiently when the training data vectors are normalized to have zero mean and unit standard deviation. The normalization is often the latest stage of the pre-processing and is applied to each dimension of the data independently.

The above operations can be discussed under the field of movement signal processing (Françoise et al., 2016). Unlike other forms of data such as audio and images that have a well-established signal processing body of literature, studies on movement signal processing are still limited and scarce.

Dimensionality of Movement Data The dimensionality is another important characteristic of training data. The number of dimensions of each frame of the training data (i.e., the feature vector) is determined by the type of the rotation parameterization, the number of data points corresponding to the markers, joints, or bones, and any extra movement features that might be added to the feature vector such as the velocity or the acceleration of the joint rotations.

Probability Distribution The multivariate Gaussian distribution is the most commonly used probability distribution to model the multi-dimensional movement data. The Gaussian distribution represents the correlations between the dimensions of the data with the assumption that each dimension conditionally depends on all other dimensions (see Fig. 4(a)). With this configuration, if several pairs of the data dimensions are not significantly conditionally dependent (as it is in the mocap data), the covariance matrix can become singular, which in turn prevents from sampling the distribution. However, the high-dimensional human movement data can be modelled more efficiently with the assumption that each dimension only depends on two other dimensions (Song et al., 2003), and can be represented by a decomposable triangulated graph (DTG), as shown in Fig. 4(b)). Each triangle in the DTG is modelled by a 2-dimensional or 3-dimensional Gaussian distribution. DTGs are applied in a few movement generation studies, e.g., (Wang et al., 2005, 2006b) 5 7. Refer to the article by Song et al. (2003) for more information and discussion of the differences between the Gaussian and DTG distributions.
Data Annotations Using supervised learning techniques requires the training data to be annotated (labeled) according to some descriptors. The annotations then allow the model to learn the associations between the given descriptors, and the underlying mechanisms that generate the movement patterns. The annotations are often marked manually by human observers.

The annotations can be discrete to represent categorical data such as the mover’s identity or gait type, or continuous to represent real-valued measurements such as stride length or hand position. Depending on the semantics of the descriptors and the learning mechanisms, the annotations can be associated to whole sequences of the training data for each frame individually.

Some of the descriptors that are used in the literature include the right and left steps of a walking cycle, e.g., Yamazaki et al. (2005); Tilmanne et al. (2012, 2014); the body height and the distance of a punching action (Wang et al., 2006a); the affective qualities of the movement, in terms of categorical emotions, e.g., (Samadani et al., 2013), or in terms of the valence and arousal dimensions, e.g., (Alemi et al., 2015); the walking speed and stride length (Taylor and Hinton, 2009; Yamazaki et al., 2005); or arbitrary class labels, e.g., the gait styles during walking (Taylor and Hinton, 2009).

Number of Subjects Human movement, in terms of its modulations and variations, depends on the personal movement signature of the performer. Each person has a different movement signature, which is influenced by her or his genetics, habits, attitudes, values, and life history (Studd and Cox, 2013). To learn a generalized model of movement, which is invariant to the performer-specific styles while recognizing the “personal factor” of movement, requires training the model using the data from multiple subjects.

The majority of studies use a single subject in their training data, while some studies use two, e.g., (Wang et al., 2006b; Taubert et al., 2011, 2012; Alemi et al., 2015); three subjects, e.g., (Wang et al., 2007; Chiu and Marsella, 2011a); and in other cases 12 and 41 subjects, e.g., (Liu et al., 2011) and (Tilmanne et al., 2012), respectively.

The number of subjects used in the studies is, to some extent, limited by the availability of the data from multiple actors, performing the same type of movements. This number varies in the publicly available training databases, which is discussed in the following section.

4.3 Movement Databases

The majority of the reviewed studies use the data from the Carnegie Mellon University Motion Capture Database (CMU mocap) or have captured their own data. In addition to the CMU database, there are a number of other databases that are publicly available for research purposes and potentially can be used for movement generation. Key details of these movement databases are presented in Table III and are discussed in the following.

4.3.1 Curation and Purpose

Most of the databases are created and tailored towards a set of particular research questions. For example, the primary goal of the IEMOCAP, University of Glasgow, and AffectMe databases is towards the analysis of emotional expression, while the University of Pennsylvania database is tailored towards modelling multi-actor behaviours. Databases such as the CMU, ACCAD, and HDM05 provide a wider and more general set of contents that are created to provide freely available motion capture data to the research community for a variety of purposes. MoDa, an open-source movement database, is a repository of multiple databases that address a range of movement-related research questions such as affect-expressive motion graphs, data tailored for Laban Movement Analysis research, and dance and music studies.

Some databases, such as Berkeley MHAD, NTU RGB+D, and Human 3.6M, are created for the research on human movement analysis and action recognition from image and video (RGB) data in the context of everyday human activities. However, they often include reference motion capture data which can be used for training generative movement models.
Table III: A summary of the motion capture databases

DB	Purpose	Content and Size	Characterization	Recording Tech	Modality	Subjects	Redundancy	Annotation		
Ohio State	Video Games & Animation	350 sequences	Function with Planning Variations	- Vicom	Marker Data, Skeletal Data	3	One instance per performer	Categorical Emotions		
University's (ACCAD	(ACCAD, 2019)									
AlterEgos (AffectMe,	Study of body posture as an indicator of human affective states, pain, and	Collection of datasets:	Expression	- Vicom	Marker Data, Skeletal Data 144		(including duplicates)			
2018)	immunity	- Acted emotions						Varies for different functions		
		- Non-acted affective states in computer game settings								
CMU MoCap (CMU, 2019)	General Research	2605 sequences in five categories:	Function with Planning and Expression Variations	- Vicom with 41 markers	Marker Data, Skeletal Data, Video, Animation					
		- Human Interaction								
		- Interaction with Environment								
		- Locomotion								
		- Physical Activities & Sports								
		- Situations & Scenarios								
Colyles DB(Cologne	Unspecified	- Locomotion	Expression with variations in Function	26 joints	Marker Data, Skeletal Data 29		Different roles, moods, genders, and actions			
DB, 2019)		- Arm Gestures								
		- Skydiving, Swimming, Climbing								
Dance Motion	Digital Archive of Dance	- Greek and Cypriot Dances	Expression	- PhaseSpace Impulse X2 with 38 markers	Marker Data, Skeletal Data, Video	3				
Capture Database										
of the University										
of Cyprus. (DanceDB,										
2019)										
HDM05 (Wölle et al.,	General Research	3 hours of motion captures in 70 different classes	Function with variations in Planning and Performer	- Vicom with 40 markers and 24 joints	Marker Data, Skeletal Data 5					
2007)		- Locomotion								
		- Grabbing and Depoising								
		- Sports								
		- Sitting and Lying Down								
		- Dance								
HumanEval (Sigal and	Human movement and pose estimation from video data	- Walking	Function	- VicomPeak	Synchronized	Marker Data, Skeletal Data 4				
Block, 2006)		- Facial expression and head and hand movements + the audio recordings of the								
		conversations								
IEMOCAP (Ramo et al.,	Analysis of Emotional Expression - Analysis of Human Dyadic	12 hours	Function with variations in Expression	- Vicom with 53 facial markers, 5 markers for each hand, and 2 markers on the head	Facial MoCap, Head Movement and Orientation, Video, Speech, Dialog Transcript	10				
2008)	Interactions - Design of Emotion-Sensitive Human Computer Interfaces and									
		Virtual Agents								
MoDa (MoDa,	Study of movement and meaning based on Laban Movement Analysis -	Collection of Data:	Function, Emersion, Planning	- Vicom with 53 markers and 26 joints	Marker Data, Skeletal Data, Video, (Audio and Physiological, for some datasets)	Varies (1 to 3 repetitions across function and expression)				
2019)	Creating motion graphs - Affect-expressive movement generation	Affect-Expressive Motion Graph - LMA Basic Effort Actions - Knocking and Direction								
		Gestures with Variation form LMA								
		- Grounding								
NLS DB (NLSDB,	Unspecified	- Locomotion	Function with planning variations	- Vicom	Marker Data, Skeletal Data 8					
2019)		- Interaction with Obstacles								
		- Martial Arts								
		- Dance								
		- Yoga								
UPave DB (U Pave,	Multi-Actor behaviours - Diverse personalization - The effects of posture	Collection of multimodal datasets:	Function and Expression	Unspecified	Marker Data, Skeletal Data, Audio, Physiological, Biological Data	Varies		Categorical emotions		
2018)	and dynamics on the perception of emotion	- Walking								
		- Emotional Actions								
		- Emotional Body Language								
		- Exercise								
(Ma et al., 2006)	Study of identity, gender, and emotion perception	4080 sequences	Function and Emersion	Falcon Analog, 35 markers, 15 joints	Marker Data, Skeletal Data	30		Categorical Emotions		
NTU RGB+D (Shahroodi,	RGB+D human action recognition	60 action classes within daily actions, health-related actions, and inter-personal actions	Function	- Three Microsoft Kinect V2 devices Video, Joint Position	Video, Joint Position	40	2 instances for each action (two different angles from the camera)	Action labels		
Liu, Ng, and										
Wang, Shahroodi et										
al.)										
Berkeley MHAD (Ofli,	RGB+D human action recognition	11 actions with high dynamics in:	Function	- Microsoft Impulse Video: 12 Dragonfly2 cameras - Depth: 2 Microsoft Kinect V2 - Acceleration: 6 three-axis wireless accelerometers on wrists, ankles, and hips	Joint position, depth, multi-angle video, audio, acceleration	5 female, 7 male	5 repetitions for each action	Action labels		
Ofli, Chasrouy,		- Both upper and lower body								
Kurillo, Vital, and		- Lower body								
Ofla et al.)										
Human 3DM (Ioannou,	Human pose estimation	15 actions within upper body movement, full-body upright variations, sitting on	Function	- Microsoft Vicom T40 - TOF: Meso SH4000 - Video: Basler piA1000 - Body Scan: Vi tus Smart LC5	RGB video, depth, joint positions, 3D volumetric models of subjects	5 female and 6 male subjects	One repetition	Action labels, body parts (for video)		
Papas, Otaru, and		the floor, and miscellaneous movements								
Smrinchescu,										
Ionescu et al.)										
4.3.2 Content and Size
The size of the presented databases varies extensively both in terms of the length of the content and the diversity of the movements. While some databases provide a relatively large amount of motion captured data (e.g., Human 3.6M, CMU, IEMOCAP, and MoDa), others only have a few sequences (e.g., Cypress DanceDB).

4.3.3 Characterization Diversity
To effectively create systems that model and control variations across different dimensions of movement (as described in Section 3), one has to have access to a training dataset that contains the desired variations. The majority of the databases contain movements that vary across the function and expression dimensions, while a fewer number of databases contain variations across the planning dimension.

4.3.4 Recording Technology and Files Formats
The majority of the database use Vicon motion capture systems with reflective markers, some use mocap systems with infrared markers, and a few use inertia-based capturing systems.

All of the databases provide the raw marker data in C3D format, and most provide skeletal data (joint angle rotations) in the form of BVH or AMC files. Multi-modal data sets are also available in some databases and provide video, audio, or physiological recordings that accompany the movement.

4.3.5 Capturing Modalities
Most databases provide the raw marker data, as well as the skeletal data. Some also accompany a video recording of the motion capture session for each movement as a reference. Few databases such as MoDa, IEMOCAP, and Berkeley MHAD provide other modalities such as voice, text, facial expression, and physiological measures.

4.3.6 Human Subjects
Every human has a distinct movement signature and style (Studd and Cox, 2013). The more the number of subjects in a training dataset, the better is the models ability to distinguish between these personal modulations in the data and the underlying patterns that is common among the movements of all performers.

The number of subjects varies from 1 to 144 in the reviewed databases. Note that in some cases, the same movement may not be available for all of the subjects. For example, in the CMU database the same movement is only repeated by very few subjects, rather than the whole 144 movers. On the other hand, databases such as IEMOCAP or MoDa ensure that the same movements are consistently performed by all subjects.

4.3.7 Repetitions and Motor Variation
In most machine learning problems, including learning generative movement models, having more variations of the data increases the robustness of the model towards the variations that the model faces in real-world applications and avoids overfitting the model to a limited set of input. While many databases provide no or very few repetitions, databases such as HDM05, MoDa, and the University of Glasgow provide multiple repetitions of the same movement.

4.3.8 Annotations
In the reviewed databases, annotations mostly include the categorical emotions (as in IEMOCAP, University of Pennsylvania, University of Glasgow, and AffectMe) and the dimensional affect rep-
Table IV: Machine Learning Methods for Movement Learning and Generation

Machine Learning Family	Model Description	Details	Factorization Technique	Remarks
Dimensionality Reduction				
	Isomap embedding (Qu et al., 2008)	Modelling dynamics with LDS		
	Principal Component Analysis (PCA) (Tilmanne and Dutoit, 2010)		Principal Components	
	Functional PCA + Gaussian Mixture Model + Gaussian Process (Min and Chai, 2012)		Graphs + Optimization	
	Functional PCA (Samadani et al., 2013)		Principal components + clustering	
	Functional PCA + Gaussian Mixture Model + Gaussian Process + kMeans Trees (Herrmann et al., 2017)		Graphs + Optimization	
Gaussian Process Models	Multifactor Gaussian Process Models (Wang et al., 2007)	Dynamic model	Latent space	
	Gaussian Process Dynamical Models (GPDM) (Wang et al., 2008)		Dynamic model	
	Gaussian Process Latent Variable Models (GPLVM) (Taubert et al., 2011, 2012)	Modelling dynamics with HMM		Modelling two-character handshake
Hidden Markov Models	Stylistic HMM (Brand and Hertzmann, 2000)	75 states	Parametric Gaussian	Unsupervised learning of movement factors
	Multiple Regression Hidden Semi-Markov Models (Yamazaki et al., 2005)	5 states	Parametric Gaussian	Modeling walking pace and stride length
	Hierarchical HMM (Wang et al., 2005)		Hierarchical model - Using DTG	
	HMM/Mix-SDTG (Wang et al., 2006b)	4 states	Parametric Gaussian	Using mixture of SDTGs
	Parametric HMM (Herzog et al., 2008)	20 states	1.Interpolating individual models 2. Parametric Gaussian	
	Hidden Semi-Markov Models (Tilmanne et al., 2012)	5 states	Average model + Individual stylized models + Transformation algorithms	Learns a neutral walking model which can be adapted to different styles
Others	Linear Dynamic System (Li et al., 2002)		Motion Texture	
	Multilinear Independent Component Analysis (Liu et al., 2011)		Optimization	

representations (as in IEMOCAP and MoDa). Databases in MoDa also include annotations based on the Laban Movement Analysis (Bartenieff and Lewis, 1980).

5. Learning and Generation

In this section, we analyze the learning and generation methods that are applied to the motion capture data. We organize our analysis based on the machine learning families, namely dimensionality reduction techniques, Gaussian processes, hidden Markov models, artificial neural networks, as well as a few other machine learning approaches.
5.1 Generative Dimensionality Reduction

As we saw in Section 4.2, dimensionality reduction (DR) techniques are used to derive a smaller feature vector from a high-dimensional dataset. Smaller feature vectors are effective to reduce the redundancies in the data, reduce the memory usage during the training process, and increase the learning speed of other machine learning models (e.g., HMMs). In this section, we look at another application of DR techniques that aims to directly generate movement animation.

Dimensionality reduction techniques map high-dimensional movement data, either in the form of single poses or windows of consecutive poses, to a lower-dimensional representation. Depending on the DR technique, this mapping can be bi-directional: not only can we transform movements to the DR space, it is also possible to reconstruct movements, with some information loss, from a given representation in the DR space. As different points in the DR space correspond to different movement qualities, by choosing a point in the DR space and mapping it back to the high-dimensional space
we can generate movements. In the following, we review the application of Isomap and variations of the Principal Component Analysis in generating movements.

5.1.1 Isomap

Isometric feature mapping (Isomap) is a non-linear dimensionality reduction technique that constructs a graph connecting the nearest data points. The graph is then used to create a lower-dimensional representation that preserves the geodesic distance\(^2\) between all data point pairs.

A method proposed by Qu et al. (2008)\(^{12}\) combines Isomap and linear dynamic systems (LDS). After low-dimensional representations of the training data are extracted using Isomap, they are segmented using dynamic models that are trained on the same data. The resulting segments are considered as the basic units of movement, which can be assembled to create longer sequences. The method calculates the transition matrix between the segments with the assumption that the segments satisfy a first-order Markov chain constraint. For generating new sequences, first, a low-dimensional representation is created by making noise-driven transitions between the segments. The resulting sequence is then mapped back to the high-dimensional pose space, which produces the generated movement segment.

5.1.2 Principal Component Analysis

Tilmanne and Dutoit (2010)\(^{16}\) use Principal Component Analysis (PCA) to generate expressive walking movements using a dataset of walking cycles with different gait styles. First, the walking sequences are segmented into individual walking cycles, and cycles are normalized using the SLERP interpolation algorithm (Shoemake and Shoemake, 1985) to have the same length. To allow for interpolation between each frame, joint rotations parameterized by Euler angles are first converted to quaternions.

The resulting fixed-length vectors are converted into exponential maps, which are locally linear and more suitable for PCA. After performing PCA, empirical experiments by the authors show that the first 23 principal components account for 90% of the variations in the data, in such a way that the reconstruction data is visually similar to the original data.

Generation is performed for each gait style individually. First, the values of new data points for the Principal Components (PCs) are calculated for each cycle of the walk. Cycles are concatenated and smoothed in the PC subspace. The sequence is then transformed back from the PC subspace to the pose space, parameterized in exponential maps. The generated movement, after conversion to the quaternions, is resampled to the correct duration using the SLERP algorithm.

5.1.3 Functional Principal Component Analysis

Samadani et al. (2013)\(^{25}\) use functional statistics for extracting a set of movement features that are most salient to the expression of affect. First, similar movement segments are aligned with each other and converted into fixed-length vectors using piece-wise linear resampling. These fixed-length vectors of movement are then decomposed into temporal functions using basis function expansion (BFE) (Ramsay and Silverman, 2013). Next, using functional principal component analysis (FPCA), the BFE representation is transformed into a set of low-dimensional features that are suitable for discriminative analysis of affective movements, resulting in a low-dimensional representation that is used for both tasks of affect recognition and movement generation.

Affect recognition can be implemented by using any simple classifier trained on the low-dimensional subspace that is the product of the FPCA. Movement generation is performed by using the centroids of the clusters (that represent the classes of movement) in the FPCA subspace as the representatives of each class. Next, the FPCA functional feature transformations are used to reconstruct the high-dimensional representation.

\(^2\) Determined by the number of nodes on the shortest path between two nodes on the graph.
dimensional features in the pose space. These features are then linearly resampled to the average length of the original movements in the corresponding movement class.

Min and Chai (2012) propose an approach that creates a finite directed graph of generative movement models. It differs from similar graph-based approaches for movement generation (Kovar et al., 2002; Arikan and Forsyth, 2002; Heck and Gleicher, 2007) in that this approach uses generative models rather than the recorded data for each node or transition.

Building the graph follows a series of procedures: first, the data is decomposed into segments representing movement primitives. The segments that represent the same movement primitive are aligned using dynamic time warping. Functional PCA is then applied on the aligned representations of each primitive. Next, output of the FPCA is modelled using Gaussian Mixture Model (GMM) to create a generative model for each primitive (graph nodes). Finally, the transitions between each node is learned using a Gaussian Process (GP) model.

The approach requires each movement primitive to be annotated with the environmental contact information, which are used in the generation processes to constrain the model to generate movements that follow a user-defined contact specification.

For movement generation without using any control parameters, a two-step procedure is followed. First, the high-level structure of the movement is generated through a random walk over the graph. Next, movement segments for each node (model) is generated by probabilistic sampling over the movement parameters. The transitions between each node/segment are created using a blending approach introduced by Rose et al. (1998) to reduce any discontinuities around the transition points.

For control over the generation, an approach based on graph walks, probabilistic sampling, and gradient-based optimization is devised by formulating the problem as a Maximum A Posteriori (MAP) framework to find a posteriori distribution defined over three terms: transition, contact-awareness, and control at the kinematic and semantic levels.

Given the initial node, the generation algorithm first evaluates each possible transitions from the current node in the graph using the GP model that is trained before. The contact term measures the distance between the generated contact points and the target contact point. To support semantic control, semantic commands such as “picking up an object at a particular location” are mapped to the proper graph node (e.g., ‘pick-up action’), and the proper kinematic parameters (e.g., the contact location). The control term also allows defining kinematic control parameters by using the likelihood of a forward kinematic function that maps the control parameters to their corresponding movements.

Herrmann et al. (2017) extend the work by Min and Chai (2012) by using a k-Means tree to speed-up the optimization process. Similar to Min and Chai (2012), each pre-processed movement segment is mapped into a fixed-length, low-dimensional representation by applying Functional PCA. These fixed-length segments are then modelled by a Gaussian Mixture Model (GMM). For generating a new movement segment, one has to draw a new sample from the GMM and back-project the low-dimensional representation into the movement space.

To speed up the optimization step during the generation process, rather than performing a brute force search over the position, orientation, and pose constraints, this approach takes advantage of the observation that the data in the latent space created by the GMM forms clusters of similar movements. Based on the described clusters, the latent space is partitioned hierarchically by recursively applying the k-Means++ algorithm (Arthur and Vassilvitskii, 2007) on the data.

To generate movements, the tree is traversed to find the optimal sample using an objective function that is specified by the user-defined constraints.
5.2 Gaussian Processes

5.2.1 Gaussian Process Latent Variable Model

Gaussian Process Latent Variable Models (GPLVM) learn the joint distribution of observations and their low-dimensional representation in a latent space. GPLVM can also be described as a non-linear dimensionality reduction method that generalizes the probabilistic PCA (Tipping and Bishop, 1999). In the method proposed by Taubert et al. (2012), the model generates handshake movements for a chosen category (neutral, fearful, happy, angry, and sad). First, a hierarchical Gaussian process latent variable model (GP-LVM) maps the motion capture data of handshakes into a low-dimensional space. Next, a standard hidden Markov model (HMM) learns the dynamics of the handshakes from the low-dimensional space encoded by movement categories.

As shown in Fig. 5, the resulting model consists of three layers: the bottom layer is the GP-LVM-single, in which the movements of one individual actor are mapped onto a 3-dimensional latent variable while capturing the variations with respect to parameters such as actors, trials, emotional category, and time. The interaction layer (GP-LVM-interaction) learns a 3-dimensional latent variable from a 6-dimensional observation variable that is created by the learned bottom-layer model for each pair of interacting actors. In the top layer (HMM-dynamic), a left-to-right HMMs with seven states learns the temporal evolution of the latent variable in the interaction layer. For each emotion category, a different HMM is learned.

5.2.2 Gaussian Process Dynamical Models

Wang et al. (2008) extend the GPLVM with a dynamical model over its latent space to learn the temporal structures of sequences. The resulting model provides generative mappings between the input observations and a low-dimensional and sequential latent space (Fig. 6). GPDM can model first-order, as well as higher-order Markov chains, which can be used to learn the speed and acceleration of movement as well. Learning GPDMs involves performing numerical optimization to estimate the model parameters. Four different learning algorithms are examined by Wang et al.

3. Also called hidden.
5.2.3 Multifactor Gaussian Process Model

Multifactor Gaussian Process Model (MF-GPM), a special case of Gaussian process latent variable model, is proposed by Wang et al. (2007) to learn and generate cyclic locomotion. The MF-GPM includes a low-dimensional latent space of multiple movement factors, as well as a mapping from the latent space to the high-dimensional observations (Fig. 6). The MF-GPM is capable of learning a factorized model, which allows it to generate movements with factor combinations that do not exist in the training data.

In this model, each pose in a movement segment is generated based on the combination of three independent factors: (1) the identity of the subject, (2) the gait (walk, stride, run), and (3) the current state of the movement (e.g., the walking phase). These factors are learned in a semi-supervised manner from the training data. The movement is modelled based on the assumption that the identity and gait variables are fixed for each sequence, and only the movement state changes. While this assumption does not allow to observe transitions in the training data, transitions can be generated by interpolating the gait factors during the generation.

5.3 Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in sequence modelling and speech synthesis (Zen et al., 2009), as well as in learning and generating human movement. A variety of statistical models are derived from HMMs, among them, left-to-right HMM, Hidden Semi-Markov Model (HSMM), Parametric HMM, and Hierarchical HMM are used for movement generation.

Classical Hidden Markov Models are trained using variations of the Expectation-Maximization (EM) algorithm, such as the Baum-Welch algorithm (Rabiner, 1989). Generating new movements using an HMM involves creating a sequence of hidden states, and then generating the pose for each state by sampling from its probability distribution. Creating the hidden state sequence can be done manually, e.g., if they are associated with some meaningful notions such as a particular walking phase, or can be done automatically using the Viterbi algorithm (Rabiner, 1989). The former approach allows for authoring the content of the movement explicitly whereas the latter generates a random sequence.
There are two approaches to using HMMs for learning and generating movement: by learning a parameterized model of movement, and by modelling individual movement primitives. In the following, we review studies in each approach.

5.3.1 Parameterized Movement Models

Learning a single classical HMM is only efficient in learning an average model over the whole training dataset. Consequently, it does not allow modelling any variations of movement factors. However, HMMs can be adapted to learn and generate parameterized data. We review how parameterized movements are learned by HMMs, followed by discussing the parameterized generation methods as used in the literature.

Parametric Hidden Markov Model (PHMM) captures the variations in movement using a designated factor parameter variable (Fig. 7). Herzog and Krüger (2009) propose two approaches to learn a Parametric HMM. The first approach uses Gaussian distributions with their means conditioned on the factor parameter. These PHMMs are trained using an extension of the Baum-Welch algorithm (Wilson and Bobick, 1999).

The second approach trains a group of individual classic HMMs, one for each factor value in the training data (Herzog et al., 2008), and uses component-wise linear interpolation of the means and covariance matrices of the observation distributions to derive a new HMM that generates movements based on the desired factors. In order for the interpolation to work, the states of all of the HMMs should be synchronized. This means that for each HMM state, there is an equivalent state in all other HMMs. As a result, the movements in the training data are aligned so that all the individual HMMs have the same number of states that point to the same parts of movement.

Wang et al. (2006b) introduce HMM/Mix-SDTG (Mixtures of Stylized Decomposable Triangulated Graph), an extension of HMM that uses Mix-SDTGs instead of the Gaussian distribution to model movement data. Similar to the Parametric HMMs, SDTG incorporates a supervised variable to model the variations in the data, shown in (Fig. 8). In HMM/Mix-SDTG, each observation (i.e., movement data) is conditioned based on the parameter variable, and the model is trained using a modified version of the EM algorithm.

In a similar approach, the Stylistic Hidden Markov Model (SHMM) used in Style Machines (Brand and Hertzmann, 2000) is an HMM with its parameters (e.g., the means and covariances of the observation probability distributions) being functionally dependent on a factor variable. In contrast to the Parametric HMMs, Style Machines simultaneously learns a generic HMM as well as a group of style-specific HMMs using an entropy minimization algorithm in an unsupervised manner. The generic model captures the movement mechanisms that are shared among all the styles. Each style-specific model then only captures a variation of the generic movement. Using an optimization method via Expectation-Maximization (EM), the Style Machines automatically segment the data.
Figure 8: The HMMIMix-SDTG model. SDTGs are linear functions of the factor variables.

into movement primitives. Using this segmentation, Style Machines is able to learn similar primitives that are performed in different styles.

Style Machine uses a multidimensional style (i.e., factor) variable that represents continuous values. Each dimension of the style variable is automatically discovered from the variations in the training data through an unsupervised learning algorithm as follows. First, a style space is constructed from the means vector of the generic HMM states, their square-root covariances, as well as their state dwell times (how long the model stays in one state before transiting to another state). Principal Component Analysis (PCA) is then applied on this style space to identify the dimensions of the space that explain the most variations in the data. Each of these dimensions represents a space of variation that exists in the training data and is used as the dimensions of the style variable.

To generate new movements with HMMs that use a conditional probability distribution for their observations, first a sequence of hidden states is determined. Next, given the desired conditions a new pose is sampled from the probability distribution of each hidden state.

To generate new movements with Parametric HMMs (Herzog and Krüger, 2009) that are built from a group of individual models, first the set of local HMMs that are closest to the desired parameters are identified. Next, a new HMM for the desired parameters is derived by interpolating the model parameters of the group of the chosen HMMs. Once we have the new HMM, the movements are generated using the Viterbi algorithm.

In the method proposed by Wang et al. (2006b), the first step to generate movements with an HMM/Mix-SDTG involves creating a sequence of hidden states based on the most likely state transition probabilities. Next, based on the given parameter, the output values of each hidden state is calculated. A B-spline curve is constructed based on the mean vectors of the joint rotations and the global position as the control points. New poses are generated by interpolating the points along the curve. The mean vectors of the dynamic features (i.e., the global and angular velocities) are used as the constraints for the local derivatives on the control points to ensure that the generated movement is smooth and continuous.

Unlike other HMM-based models that use between 4-5 hidden states, Style Machines uses a relatively larger number of hidden states, about 69 states in the experiments performed by Brand and Hertzmann (2000). More hidden states allow the model to also learn a more diverse set of movements. During the training, the Style Machines automatically maps movement primitives to sub-sequences of the hidden states. One can then manually arrange these sub-sequences to choreograph new movements. One can also perform a random walk on the graph of the learned hidden state transitions in order to generate new movements. This is similar to the concept of motion graphs that was later introduced in the literature (Kovar et al., 2002). With style machines, one can also regenerate existing movements with a different style by taking the state sequence.
identified from the existing movement and use a new style value to reproduce the same movement with the new style.

5.3.2 Movement Primitive Learning

The notion of *movement primitive* is used to represent basic segments of human movements that constitute longer movements (Schaal et al., 2003). The studies discussed in the following use this notion to break down the learning process by training the statistical models on shorter movement primitive segments rather than the whole movement. By concatenating these shorter segments differently, one can create different longer movements.

Yamazaki et al. (2005) use Hidden Semi-Markov Model (HSMM) to control the pace and the stride length of the generated movements. Compared to the classic HMMs, HSMMs also capture the dwell-time of each of its hidden states, which makes them suitable for modelling the variations in the duration of movement. To learn the state dwell-time parameters of an HSMM, the first and second derivatives of the joint rotations must also be added to the training data.

Unlike the Style Machines in which movement primitives are learned in an unsupervised manner, this approach is based on learning movement primitives based on manually segmented and labelled data. In addition, each movement primitive is modelled by a separate HSMM with fewer states than the Style Machines. The model is based on decomposing walking cycle into four primitives. The L-step, which is the back-to-front movement of the left leg, and the R-step, which is the back-to-front movement of the right leg. In addition, two primitives for the beginning and the end of a walking cycle are also considered.

Generating movements with an HSMM is similar to the classical HMMs. First, for each HSMM, the most likely state sequence is determined by using Maximum Likelihood. Next, poses are sampled for each state Yamazaki et al. (2005). The pose sequences from all of the HSMMs are then concatenated in the correct order to create a movement.

Another system introduced by Tilmanne et al. (2012) is inspired by style-adaptive speech synthesis techniques. Similar to the approach used by Yamazaki et al. (2005), the walking sequences are manually segmented into shorter ones based on five stages that they define for each walking cycle. In this method, a generic (average) walking model is learned from a relatively large number of training sequences. The style-specific HSMMs are created by transforming the parameters of the generic model to produce a particular walking style using linear transformations that are borrowed from speech synthesis applications (Gales, 1998; Yamagishi et al., 2009).
With the style-adaptive HSMM, the generation is performed through the HMM-based Speech Synthesis System (HTS) framework\(^4\), which is designed for speech synthesis. First, HSMMs that correspond to a desired series of primitives are concatenated. After determining the most likely state sequence for each HSMM, the poses for each frame is sampled using the Cholesky decomposition from the model parameters and the output features of the HSMM. The generation is completed by scaling back the data based on the data's global variance to avoid overly smoothed movements. The output of the model does not include the global displacement of the agent (i.e., the root location). Thus, the trajectory of the agent is calculated by identifying the points in time when the feet contact the ground.

In a later work, Tilmanne et al. (2014)\(^26\) extend the previous approach. For the generation, the HSMMs are ‘unwrapped’, i.e. the transition matrix is replaced with an explicit model. Next, to ensure the smooth trajectory of the output, the Maximum Likelihood Parameter Generation (MLPG) algorithm (Tokuda et al., 2000) is used over the strict Maximum Likelihood criterion. This model allows for choosing the factors of the generated movements (styles), as well as interpolating models based on a weighted sum of the model parameters in order to blend, inhibit, exaggerate, or inverse the movements factors.

The HMMs described above only learn a single-layer model. In the following, we look at the methods that use hierarchical architectures to capture the hierarchical nature of human movement. The algorithm proposed by Tango and Hilton (2000)\(^2\) builds a two-layer model of movement. First, the training mocap data is transformed into 15 principal components that are determined by PCA. In the bottom layer, the data is clustered into multiple groups using the K-means algorithm. The clusters are then modelled using a Markov chain to learn the temporal relationships between the clusters. In the top layer, a discrete-output HMM models the higher level relationships. For generating new movements, first the two keyframes of the starting and ending poses are specified by the user and quantized using the K-means classifier. These keyframes correspond to the initial and final states of the Markov chain. Then a sequence of states between the initial and final states is determined by forming a synchronous sequential decision problem solved using dynamic programming. Finally, given the sequence and using the top layer HMM, the most likely hidden state sequence, and thus the set of consecutive movement segments are calculated using the Viterbi algorithm.

In a different approach, Kulić et al. (2011)\(^19\) model movement by segmenting the training data into movement primitives, clustering the primitives, and concatenating them into longer sequences for generating new movements. Unlike other techniques which take an off-line learning approach, this work uses a method for learning movements from observations during an on-line, continuous process.

In this method, movement is modelled in a hierarchical way. The data is segmented using a stochastic segmentation technique. The segments are incrementally clustered and organized into a hierarchical tree structure which represents movement primitives. If a new movement primitive is introduced to the model at any stage, a new cluster is formed to represent the new primitive. Each movement primitive is modelled with an HMM. At the top layer, the temporal relationships between movement primitives (i.e. their transition matrix) are learned through a hierarchical graph structure, called the “movement primitive graph”. By performing walks on the movement primitive graph, and sampling primitives from the HMMs of the nodes in the walk, one can generate continuous streams of movement.

Wang et al. (2005)\(^5\) use hierarchical hidden Markov models with non-parametric output distributions (NPHHMM) to create a hierarchical movement model: the top layer acts as a state machine describing the relationships between movement primitives, while the bottom layer models the sequences of poses that represent each primitive. Compared to the classical HMM which is based on a first-order Markov model, NPHHMM can capture longer temporal dependencies within the data.

\(^4\) http://hts.sp.nitech.ac.jp
During the training process, first, the training sequences are segmented into movement primitives. Next, the segments are clustered using the EM algorithm, which also learns the transitions between each primitive cluster. In the final step, each movement in each primitive is learned by a hidden Markov model. Similar to the HMM/Mix-SDTG model, the output densities of the HMMs are modelled by the decomposable triangulated graphs (DTG). In contrast, NPHHMM only models the functional factors of movement and does not support controlling the expressive or planning factors.

With the NPHHMM, for any given user constraints, new sequences are generated by first synthesizing a path for the top layer of the model. This path represents the most likely behaviours with the given constraints. Next, for each behaviour defined in the top layer, a movement segment is generated. To ensure that the joint rotations in each frame are consistent with the adjacent frames velocities, the position of the joints are calculated by interpolating the frames.

5.4 Artificial Neural Networks

In the following, we review studies that use artificial neural networks to learn and generate movement, discussing different types of the units and architectures they use.

5.4.1 Feed-Forward Networks

Lin et al. (2008) use feed-forward neural networks in combination with optimization techniques for learning and generating the trajectory of a humanoid arm lifting objects. This perceptron-based neural network, as shown in Fig. 10, works as a function approximator for the angular positions. The network has one hidden layer with ten hidden units. Its input layer consists of the frame number (time), initial joint positions, final joint positions, and the total number of frames. The output layer contains the angular position of the joints at a particular time in the lifting movement. The output is then applied to an optimization model to ensure that the initial and final positions match the desired values. The network is trained using the back-propagation algorithm.

5.4.2 Self-Organizing Mixture Networks

Self-Organizing Mixture Network or SOMN (Yin and Allinson, 2001) is a type of artificial neural network that estimates mixture distributions using a self-organizing, unsupervised approach. Wang et al. (2006a) use a SOMN of parametric Gaussians and introduce an approach called key-styling to generate movement animations. Unlike the original SOMN, this model uses a conditional probability distribution to learn the effects of different values of movement factors. The model learns a probabilistic mapping from the low-dimensional space of factors to the high-dimensional

Figure 10: The architecture of the perceptron-based neural network using by Lin et al. (2008).
pose space, while the mapping is controlled by a style (factor) variable. The value of each dimension of the variable is determined in a supervised manner via the annotations of the training data.

For movement generation, one can specify a sparse sequence of key-style values (as opposed to keyframes). The algorithm then interpolates the key styles into a dense sequence of style values, as it is expected to be more robust than interpolating the rotations in the pose space. Next, a pose is generated for each style value using the distribution learned by the SOMN.

5.4.3 Boltzmann Machines

Taylor et al. (2006) introduce a generative model for human movement based on Conditional Restricted Boltzmann Machines (CRBM). CRBM extends the Restricted Boltzmann Machine by adding conditional inputs to the model to capture temporal dependencies in the data (Fig. 11). CRBM can use an adjustable number of past data frames as conditional inputs at each time step and uses two extra sets of weights compared to the visible-to-hidden weights in the standard RBM: Autoregressive weights connecting the conditional inputs (past frames) to current visible units, which model the linear, temporally local structures, and weights connecting the conditional inputs to the hidden units, which model the non-linear and higher-level structures (Taylor et al., 2006).

CRBM learns the weights in an unsupervised manner using an adapted version of the Contrastive Divergence (CD) algorithm (Hinton, 2002).

It is possible to use CRBMs in layered architectures similar to Deep Belief Networks (DBN) (Hinton et al., 2006) and form a Conditional DBN to achieve more representational power (Fig. 11.b).

CRBM does not support an explicit representation of movement factors. A single model can learn and generate different movement functions (e.g., walking and running) if they exist in the training data. In this setting, the type of the movement to be generated is specified by seeding the model (a small number of frames used as the first set of conditional inputs). For example, if frames from a walking movement are used to initialize the model, it will generate walking movements and if frames from running are used, it will generate running movements.

Figure 11: (a) The architecture of a single-layer Conditional Restricted Boltzmann Machines (CRBM) with \(n \) previous time steps as the conditional inputs. (b) A Conditional Deep Belief Network (CDBN) built from two CRBMs. The \(o_{<t} \) and \(h_{<t} \) represent the data history vector \(t-1, \ldots, t-n \) where \(n \) is the number of past time steps that are connected to the units at the current time step.
An updated version of CRBM (Taylor, 2009) uses soft-max labels as extra inputs to control the factors of movement during the generation. However, this technique determined to be inefficient as each hidden unit also receives many connections from the past and the current visible units, which diminishes the influence of the soft-max labels.

Further research in explicitly controlling movement factors using CRBM resulted in Factored CRBM (FCRBM) (Taylor and Hinton, 2009), a model which supports more representational capabilities and effective control over the generation. As depicted in Fig. 12, FCRBM uses three-way connections that allow a third unit (the context unit) to control the interactions between the visible and hidden units. Thus, the user can control the factors of the movements being generated (Taylor and Hinton, 2009; Alemi et al., 2015).

FCRBM supports a multidimensional discrete or continuous variable as the context unit, which allows it to capture and represent different factors of human movement. The interaction of the factors with the model is learned in a supervised manner using annotated data. In addition, one can interpolate or extrapolate the factors to create new characteristics that did not exist in the training data. This generalization is demonstrated by Alemi et al. (2015) with generating movements with a full spectrum of affective states and transitions by only training the model on nine discrete states.

A model for blending the factors of different movement segments is introduced by Chiu and Marsella (2011b). The model uses an extension of the CRBM called the Hierarchical Factored CRBM (HFCRBM). An HFCRBM consists of a Reduced CRBM as its bottom layer and an FCRBM as the top layer (Fig. 13.a). A Reduced CRBM is the same as a CRBM except that it does not include the autoregressive connections. In an HFCRBM, the input visible data are fed into the Reduced CRBM. Once the Reduced CRBM is trained, an FCRBM is trained on the features discovered by the hidden layer of the Reduced CRBM as its input. This way of stacking the models together without the autoregressive connections ensures that during the generation, the visible data are only affected by the top layer and its labels and not the past visible data.

This model is designed specifically to interpolate different values of a factor using a procedure called the multi-path method. To interpolate between two factor values, we first generate a sample for each value from the FCRBM. The generated samples are effectively two representations of the hidden layer of the Reduced CRBM. We then create a weighted sum of these two representations, and generate the corresponding new sample from the Reduced CRBM.

This type of factor interpolation is not as robust as directly interpolating the labels or the movements as it is not guaranteed that the Reduced CRBM would always produce a plausible movement. However, this method has a better chance of generating a novel factor value as the
interpolation occurs in the latent space, and the final sample is generated through a non-linear process.

Chiu and Marsella (2011a) use a modified version of the HFCRBM (Fig. 13.b) to generate gestures using the prosody of speech as the controlling factor. Using a set of training data that includes motion capture recordings of gestures accompanied by the voice recordings of the actors, the model learns the relationship between the prosody of speech and the movement.

Rather than directly learning the relationship between the audio features and the joint rotations, this approach uses the two layer architecture of the HFCRBM. The FCRBM portion of the model is trained on the features discovered by the hidden layer of a Reduced CRBM that is self is trained on the joint rotations of the upper-body. The use of this two-layer architecture adds more non-linearity to the model, and learns a more robust relationship between the audio features and movement.

5.4.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks that apply the same operation on every input vector, (Fig. 14), with the output depending on previous operations and input vectors. By processing the input data sequentially and updating the weights accordingly at each step, RNNs create a form of ‘memory’, which makes them suitable to model sequences with short and long-term dependencies. At the time of this writing, RNNs are the state-of-the-art technique for modelling speech recognition and natural language translation (Greff et al., 2015).

Crnkovic-Friis and Crnkovic-Friis (2016) train an Long Short-Term Memory (LSTM) on 3D joint positions of a dancer. LSTM is a special type of RNN that is capable of learning high-order dependencies (Hochreiter and Schmidhuber, 1997) more effectively than the classic RNN. The authors train an LSTM with 3 hidden layers, each with 1024 neurons and at each frame, the model unrolls in time for 1024 previous frames. In order to output real-valued motion capture data, a Mixture Density Network (MDN) (Bishop, 1994) is attached to the output of the LSTM. By using
an MDN, the LSTM learns to output a probability density function for each DOF of the joint positions, from which the actual values of the joint positions can be sampled.

For the generation, one can sample random sequences from a trained LSTM. The sampling is done by providing a short initial sequence to the model, followed by iteratively producing a probability density function, which in turn is used to determine the next pose by the MDN.

Fragkiadaki et al. (2015) use RNNs with the addition of an encoder network before the input of the RNN and a decoder network after the output of the RNN. The proposed architecture is used for both tasks of modelling the motion capture data for movement generation as well as learning to recognize activities from videos.

The proposed Encoder-Recurrent-Decoder (ERD) architecture, as shown in Fig. 14, extends the typical RNN architecture by jointly learning representations of posture using the encoder-decoder networks, as well as the dynamic qualities of movement using the RNN. The motivation behind this architecture is to first learn representations of the input data that would make learning their dynamics easier by the recurrent network. In particular, the authors use fully-connected networks for the encoder and decoder modules, and two stacked LSTMs each with 1000 hidden units for the recurrent module.

Martinez et al. (2017) train a single-layer Gated Recurrent Unit (GRU) on the complete Human 3.6M dataset. As shown in Figure 15, the proposed network follows a sequence-to-sequence modelling architecture that consists of an encoder RNN and a decoder RNN that share the same set of weights, as well as residual connections for the output of the decoder network.

This approach differs from similar approaches in two ways. First, although the input of the model contains the joint angle data, the network is trained to predict the joint velocities instead. Using the residual connections on the output, the predicted velocities are then added to the joint angles from the previous frame to calculate the joint angles of the output frame. The residual connections implicitly push the network to internally model the velocities from the joint rotations and the authors argue that this approach reduces the amount of drifting in the predictions. Second,
the authors point out that since it is shown that RNNs cannot learn to recover from the incorrect predictions that they make if they are only exposed to the ground truth data, they propose a learning approach in which they feed the predictions of the network as the input to the decoder RNN instead of the ground-truth data during the training.

Wang and Artières (2017) propose a model called Sequential Adversarial Auto Encoder (SAAE) based on a sequence-to-sequence architecture and is trained using an adversarial approach. They include the factor information as extra input to both the encoder and decoder networks, enabling the model to learn the relationships between the factor values to the output sequences.

5.4.5 Convolutional Networks

(Holden et al., 2016) propose a deep learning framework that combines convolutional autoencoders (Vincent et al., 2010) with a feed-forward convolutional network for generating movements controlled by high-level parameters.

First, a representation of movement is learned based on the approach for learning human movement manifolds using convolutional autoencoders (Holden et al., 2015). In this approach, the convolutional autoencoders are trained over a large dataset of movement with the objective of learning a manifold that can be used to reconstruct the movement it is given as input. The convolutional network performs a one-dimension convolution over the temporal domain to learn an unsupervised feature map of movement. As a result, instead of learning a dynamic model of movement, the network is trained on windows of movement, learning the temporal features the same way it learns the spatial features.

Next, a feed-forward convolutional neural network is trained based on the representation learned by the convolutional autoencoder. This network creates a regression model that maps from high-level parameters (factors) to movement in the output pose space. While the autoencoder network is trained over the whole database, this network is trained over a subset of movements that is desired to be generated. Since the network is trained independently from the autoencoder, it allows for learning different control networks for different movement types using the same representation learned by the autoencoder.
Finally, another convolutional network is trained on top of the feed-forward control network in order to resolve possible ambiguities in the control, such as foot-step timing. The details of this network is specific to the type of the movements being generated.

For generation, the characteristics of the desired movement is fed to the top-most-layer and the network outputs the movement data. As opposed to other approaches reviewed here, which generate movements frame-by-frame, the proposed framework generates a movement segment at once.

5.5 Other Techniques

Other than the aforementioned mainstream machine learning models, a few studies use other techniques to learn and generate movement.

Li et al. (2002) introduce a technique called motion texture for editing motion capture data using a two-level statistical model. This approach overcomes the limited ability of linear systems in capturing highly nonlinear complex movements by introducing a hierarchical approach for modelling non-linearities. A set of motion textons, representing movement primitives, is learned using a Linear Dynamic System (LDS) at the bottom level. The top-level model then learns the distribution of the textons using a transition matrix and thus captures the global dynamics of the movement, as an entire sequence.

Multilinear Independent Component Analysis (MICA) is a generalization of Independent Component Analysis (ICA) and N-model Singular Value Decomposition (SVD), which models higher order dependencies for each factor. Liu et al. (2011) use MICA and decompose the training data into multiple factors. With the assumption that the factors are statistically independent, different states of the factors are arranged in a tensor. In this approach, time-warping is applied on the training data to achieve structurally similar movements. Furthermore, the dimensionality of the data is reduced using PCA.

6. Evaluation Methods

A review of the literature on movement generation systems reveals a lack of emphasis on evaluation of the system itself, as well as the quality of its output movements. The majority of the publications in statistical movement generation provide no formal assessment and rely on the authors informal inspection of a small subset of hand-picked movements, generated by the proposed system, and reported via 2D sketches or supplementary videos. Furthermore, only a few works compare their proposed methods with alternative approaches (Fragkiadaki et al., 2015; Martinez et al., 2017).

The systems that control the planning factors of the generated movements (e.g., pointing position, stride length, etc.) use the Root Mean Square Error (RMSE) between the generated data and the target as an indicator of the performance of their systems (Herzog and Krüger, 2009; Yamazaki et al., 2005). While this evaluation gives a good measure of how accurately the model is able to generate the movements that satisfy the given planning constraints, they do not measure the believability of the movements. For example, a generated movement for picking up an object might precisely put the hand in the location of the target object, but do so by introducing artifacts in the movement that render the movement unrealistic.

In another group of studies, the authors quantitatively evaluate the prediction precision of their system (Wang et al., 2007; Taylor and Hinton, 2009; Fragkiadaki et al., 2015; Martinez et al., 2017). A test segment as set aside, and a portion of it is fed as an input to the model, with the task of predicting (generating) the consecutive frames. The precision of the prediction is then quantitatively assessed by using the RMSE of the the generated movement and the ground truth data. As we discuss in more detail in the discussion section, using the RMSE to evaluate a movement generation system fails to take into account the stochastic and creative nature of human movement.
A number of works conducted studies involving human subjects assessing the perceptual qualities of the generated and recorded movements (Chiu and Marsella, 2011a,b; Tilmanne et al., 2012; Alemi et al., 2015). The main motivation behind these studies is to evaluate the believability of the generated movement, as well as to validate the generation of the intended expressions. In such studies, human subjects are presented with one or more movement animations and are asked to either compare them, for example based on which one is more realistic, or to categorize, rate, or rank them based on a given metric such as the valence dimension of affect.

7. Summary and Discussion

In this section, we summarize our findings from reviewing the literature on statistical movement generation. First, we look at the types of movement that are modelled, as well as the dimensions of generated movements that the model can control. We then discuss the limitations and challenges in acquiring training data, followed by summarizing the approaches to learn, generate, and control movement. Finally, we make the case for better evaluation methods for movement generation systems.

7.1 The Choice of Movements And Scenarios

Humans are able to perform a broad range of movements with intricate modulations that come from various factors such as the physical characteristics of the mover, her or his affective state, intentions, and plans. No computational model is yet capable of learning and generating all types of movements with every possible modulation. Research on movement generation therefore is done on relatively small and constrained subsets of all possible movements and scenarios.

Although in many of the reviewed literature it is not clearly stated why certain movements and scenarios were chosen for learning and generation, we point out a number of elements that might play a role in choosing what to model: meeting the demands of a certain application (e.g., the movement repertoire of a video game character), the simplicity or complexity of the movement pattern and thus different challenges in modelling them (e.g., modelling walking versus grand pas de chat), or the availability of the training data for certain movements (e.g., there are more training data for walking movements compared to the data available for writing with a pen on paper). In addition, the focus of a group of works is mainly on introducing a new machine learning model and generating movement is used to demonstrate the capabilities of the new model, as in the work of Taylor et al. (2006). In the following, we provide a brief discussion of different aspects of what has been chosen to be generated in the literature and the type of problems that needs to be addressed.

Scenarios: Table 1 and Table II provide some insights into the movement types and scenarios that are the subject of the reviewed works. Walking is arguably the most commonly modelled form of movement (Wang et al., 2006b; Taylor et al., 2006; Wang et al., 2007; Tilmanne and Dutoit, 2010; Kulić et al., 2011; Tilmanne et al., 2012, 2014; Alemi et al., 2015). The prevalence of walking can be explained by the short and cyclic nature of walking patterns, the large availability of training data, and its application in video games. While most works generate arbitrary walks, a few have addressed the problem of character navigation, which requires the model to provide a way to control the direction of the movement such as minimizing the divergence of the generated path from a target path (Holden et al., 2016) or continuously adjusting the heading direction of the character as movements are being generated (Alemi and Pasquier, 2017).

Arm movements are also commonly modelled as they have various applications in robotics, character animation, and non-verbal communication (Herzog et al., 2008; Taubert et al., 2012). In reviewing the works on modelling arm movements, we highlight two open problems in modelling generative models of movement. First, some forms of movement performed mainly by a subsection of the body can be combined with movements in other parts of the body. For example, one can wave her hands while standing, walking, running, or biking. Second, in some applications
it might be needed that the movement must satisfy certain constraints. For example, reaching a specific location in space to interact with an object.

Dance movements, with applications in art installations and video games, are also explored in a number of works (Brand and Hertzmann, 2000; Li et al., 2002; Qu et al., 2008; Crnkovic-Friis and Crnkovic-Friis, 2016; Alemi et al., 2017). Dancing implies precise timing and positioning rules for different body parts, especially in the case of dancing with a partner. In most cases, the dance is accompanied by music and the choices of movements and their timings are influenced by the music, as well as by the particular choreography of the dance. Addressing these challenges remain open to the research community.

A few studies consider modelling sports scenarios (Wang et al., 2006a; Qu et al., 2008; Wang et al., 2008; Matsubara et al., 2010). Similar to the challenges described in modelling arm movements, certain sports movements are often expected to satisfy constraints and interactions with other movers or objects. For example, kicking the ball in its exact position in space or ducking at the right time and position to avoid being hit by an opponent. While none of these problems are addressed in the reviewed literature, they bring interesting challenges in controlling the generated movements that can be made the focus of future research.

Diversity of Movements: The level of diversity in the training data also plays a role in the choices involved in building generative movement models. A machine learning model can be trained on a dataset that contains samples from the same form of movement with no variations across the function, planning, expression, or personal movement signature dimensions. This model learns a specific pattern and generates movements similar to that pattern. On the other hand, models that are trained on a dataset that contains movements that vary across one or more dimensions learn multiple patterns or different modulations of the same pattern. When it comes to generating new movements, only a few of these models provide ways to control the characteristics of the generated movements, which will be discussed in Section 7.7.

Creating models that can generate a diverse repertoire of movements has two requirements. First, a machine learning model that has the capacity of learning all such variations (e.g., neural networks versus HMMs), or using a hierarchical architecture that allow breaking down the training task into multiple subtasks. Second, a diverse training dataset. The recent availability of large datasets and computational power have allowed training models on a wider variety of movements than before (Martinez et al., 2017). Yet, large datasets such as Human 3.6M are tailored for human activity recognition use cases. They mostly contain variations across the functional dimension, corresponding to everyday movements, and may not contain variations of the same function in the planning or expressive dimensions needed for many generative applications.

Factors Used for Control: A group of the reviewed works allow for controlling the characteristics of the generated movements. We now summarize and discuss which movement factors in each movement dimension (Section 3.2) are used for control.

Function: Controlling the functional factors of movement allows the user to choose the function (action) and ideally make transitions from one function to another. For example, one can ask the model to generate walking movements, followed by jumping over an obstacle, and then grabbing an object. The majority of the systems only model a single function and only a few works address controlling the functional factors of movement (Wang et al., 2005) and Kulić et al. (2011). The main challenge in modelling the functional factors comes from the broad variations in how different functions are executed (e.g., the differences between walking and shaking hands). Controlling the functional factors, compared to controlling the planning and expressive factors, requires employing machine learning models with higher learning capacities that can accommodate the larger repertoire of movement patterns, or designing hierarchical systems that consist of individual models for each function. Another challenge comes from the need to generate transitions from one function to another, which requires performing so in a plausible manner, even if samples of such transitions do not exist in the training data.
Planning: The execution of a given movement function can be planned by one or more planning factors. Considering walking as an example, one can plan the walk by specifying its trajectory or by setting the stride length. In modelling the planning factors, the reviewed works mainly investigate controlling the trajectories of the hands (Lin et al., 2008; Herzog et al., 2008; Herzog and Krüger, 2009) or the trajectory of the agent on the ground plane (Holden et al., 2016; Alemi and Pasquier, 2017).

The challenges in controlling planning factors often come from the need to satisfying the given constraints to a desired level of precision as defined by the plan. Depending on the application, the movement might have to follow an exact trajectory or stop at an exact location in space to follow the plan. In most cases, the plan can be described formally through a set of constraints, which allows calculating the error the agent is making with respect to the given constraints. The movement can then follow the plan by minimizing this error. The minimization can be done through an offline optimization process, as done by (Holden et al., 2016), by learning to perform the movements that cause a reasonably small error, or by designing a sensorimotor loop for the agent, and feeding back the perceived error the agent has made from the target and adjusting the movements as they are being generated.

Expression: A variety of affective expressions can be conveyed by modulating human movement. While reviewing the literature, two issues come up in designing generative models that can control the expressive factors of the generated movements.

First, as opposed to the planning factors, there is no perfect execution pattern for an expression. One can express the same affective state through movements that differ in the way they are executed, which can be influenced by various factors such as the characteristics of the mover or her cultural background. Therefore, unlike the planning factors, one cannot directly measure expressive qualities of a movement, and use such measurements to control the desired expressive modulation. Consequently, supervised machine learning techniques are the common approaches to control the expressive factors.

Second, to control the expressive factors, one has to, explicitly or implicitly, choose a method to describe the affective state or quality. Therefore, systems that support controlling expressive factors differ on their choice of expressive factors and the way the factors are described. Although the majority of the studies use informally described walking gaits (e.g., chicken walk, drunk walk, etc.) as the expressive factor, more recent studies use categorical (Taubert et al., 2012; Samadani et al., 2013) and dimensional (Alemi et al., 2015) representations of affect as the expressive factor.

Modelling Interactions: The majority of the studies do not consider modelling the interactions between one agent (mover) and objects or other agents. Only one study explores modelling the interactions of two or more agents (Taubert et al., 2012).

There are two main challenges in modelling interactions. First, there is a lack of publicly available motion capture data of agent-agent and agent-object interactions. Second, interactions with an object or another agent introduce hard constraints that the generated movements have to satisfy, such as the exact timing and positioning of different body parts. Both of the aforementioned challenges have left creating machine learning models for generating interactions a widely open area.

Moving Forward: To summarize our findings with respect to the current gaps in the choice of movements and scenarios, we highlight two areas for further consideration by the research community:

Exploring a wider variety of movement scenarios. As humans have a large repertoire of movements, the movements chosen in the literature at the time of this writing only incorporate a small subset of what humans are able to do in various different scenarios. This includes both the scenarios in which only one mover is involved and scenarios involving agent-agent and agent-object interactions. Each scenario entail different set of challenges, and addressing each challenge contributes to stronger generative models.
Work towards better integrations with an agent model. Controlling the generated movements based on factors that directly map to the internal state of an agent, such as intentions, plans, and affective state makes generative models more suitable for integration into real-world applications such as video games. Using such direct mappings, one can define the desired behavior of an agent and the appropriate movements will be generated. To integrate a generative movement model into an agent model, one needs to address two problems. First, the internal state of the agent needs to be formalized in such a way that it can be translated to movements, across the dimensions of function, planning, expression, and personal movement signature. Second, the generative model should support controlling the movement based on these formalized characteristics.

7.2 Training Data

Although the training data is one of the fundamental components of machine-learning-based solutions, the field of statistical movement generation faces a number of challenges when it comes to finding a desired set of training data to address a particular research problem. Lack of available training data arguably limits the scope of the problems that can be tackled.

There is a shortage of publicly available motion capture databases. The vast majority of motion capture data are owned by film and video game industries, or are captured by independent research groups that do not publish them to the public. As mentioned in Section 4.3, few publicly available databases are well curated towards particular research questions, and the ad hoc characterization of the movements in the rest of the database makes them less applicable for many research projects.

New databases can be curated to provide a wider variety of movements to support the problems described in Section 7.1. This includes training data that contain movements with variations across the five movement dimensions to allow for creating models that are able to generate such variations. Moreover, to fully take advantage of the supervised and semi-supervised learning algorithms, the research community needs more annotated databases. Annotations allow for controlling movements based on meaningful factors, and supports creating generative models that integrate well with agent models. There is also a shortage of training data for scenarios in which two or more agents interact with each other, which is necessary to develop movement generation systems that address inter-agent communications as well as agent-object interactions.

Another challenge in building a large training set is the different skeleton configuration that each database uses. Each database uses a different number of joints and bone proportions. As a result, one needs to re-target the skeletons from multiple datasets to a uniform target skeleton before being able to combine them, which is time and labor intensive.

7.3 Modular Learning

While in most reviewed works a single machine learning model is used to learn and generate the entire repertoire of the movements the system is expected to learn, a generative system might instead utilize a group of machine learning models working in connection with one another. Making the training process modular works by breaking down the structure of the movement data into smaller components and training different models on different, smaller segments of movement.

We describe two ways that one can break down the complexity of movements: 1) following the physical structure of human body, and 2) segmenting the time dimension.

We can group together the moving parts of the body in different ways in the context of motion capture data: all of the body joints together, separating the upper and lower body joints, grouping joints belonging to individual limbs (e.g., right arm, left leg), and finally considering a single body joint. A system can be designed to follow such groupings and assign different machine learning models to different parts of the data. For example, Sukhbaatar et al. (2011) use a two layer design: at the bottom layer, they train individual models for the right arm, left arm, right leg, left leg, and
the trunk at the frame level. On the top layer, a CRBM is then used to coordinate the movements of individual limbs.

Another approach to break down the mocap data is to split the longer sequence of frames into smaller segments, and train each segment by a separate model. For example, an approach that is common among HMM-based works is to split a walking cycle into a few movement primitives (e.g., right leg lifted,), and use a separate HMM to lean each primitive. During the generation, the output of the HMMs are then concatenated in the right order.

7.4 Loss Function

In training artificial neural networks, the loss function directs what the model does and does not learn. In the reviewed works, it is common to use the Mean Square Error (MSE) between the generated joint rotations or positions and their ground truth counterparts. However, because of the highly variable nature of movement, using MSE has some implication on the generative and creative performance of the model. Considering the rotations of individual joints in the 3D space, there are many different ways the movement can unfold, resulting in different joints configurations. Therefore, using MSE as the loss function restricts the model to only a single numerically correct prediction while there might be many more perceptually correct predictions that might result in large MSEs. Further research is needed to devise more effective loss functions that consider the natural variabilities in human movement.

7.5 Modelling the Time Dimension

Movement unfolds through time and likewise, motion capture data is in the form of sequences of frames. The generative models are trained on these sequences and are expected to create new sequences, directly or indirectly. In the reviewed literature, modelling sequences is handled differently depending on what machine learning model is used. Notably, we can refer to flattening the time dimension, as done in most of the dimensionality-reduction-based models, sequences as conditional inputs as in CRBM and FCRBM, recurrent connections in RNNs, and convolution over time in CNNs. Further investigation is needed to compare the pros and cons of each technique. The approach to modelling sequences also has an impact on the memory and time complexities of both the learning and generation algorithms. As a result, the length of the sequences that can be modelled is limited by available computational resources.

7.6 Generation Algorithms

The mechanics of the generation algorithms depend on the machine learning model. An algorithm that is suitable for one group of models may not work for others. As a result, it is not easy to compare the algorithms with on another. In the following, we summarize algorithms used in the literature for each family machine learning models.

Dimensionality reduction (DR) techniques generate movements by choosing a point in the DR space, and projecting the data from the DR space back into the mocap space. This process is often followed up by post-processing procedures to re-sample the data into a sequence of frames as the time dimension is often flattened in DR models.

HMM-based models use the Viterbi algorithm (Rabiner, 1989) to sample form the distribution learned by the HMM. In cases where more than one HMM is used for different portions of the movement, first the desired order of the multiple HMMs is determined manually or by sampling from another model. Next, mocap frames are sampling from each HMM and concatenated to create the final sequence.

A group of neural networks including feed-forward nets, CRBM, FCRBM, and RNNs, use iterative sampling. Such models are trained to predict the next frame from an input sequence of previous
frames. By iteratively performing this sampling operation, while shifting the input sequence to include the newly predicted frames, a sequence is generated.

To sample from Convolutional Neural Networks (CNNs), one has to reverse the flow of information in the network. While during the training the flow of information is from the mocap data to the labels, during generation the network is fed with a set of desired values for the labels and the connections are followed back to reach the input layer of the network which represents the generated mocap data. Since the CNNs use convolution over time, a whole sequence is generated at once, as opposed to the iterative sampling of other neural networks.

7.7 Control Techniques

One of the challenges in statistical movement generation is controlling the qualities of the generated movements. As described in Section 3, the term factor refers to the sources of influence on movement and we call the domain of possible values for each factor the factor space. In Section 7.1, we discussed what factors are used to control the movement in the literature. In the following, we summarize the key techniques that are used to implement the control mechanisms.

Supervised versus Unsupervised Learning. Most works use a supervised learning approach, in which the model learns a mapping between the input data and the labels. Supervised approaches have the benefit of allowing the researchers to explicitly convey to the model what factors they want to be controlled. However, the performance of the model depends on the quality and the balance of the labels. Another challenge in using supervised techniques is the lack of annotated mocap datasets as mentioned in Section 7.2.

In unsupervised techniques, the factors of variation in the training data are determined automatically, without any prior knowledge of what they might correspond to semantically. The result is often a low-dimensional representation of movement that could be interpreted by means of experimentation, e.g., (Brand and Hertzmann, 2000; Wang et al., 2007).

Using unsupervised methods eliminates the need for labeled datasets. However, the discovered factors are not defined by the researchers and highly depend on the variations that exist in the training data, which may or may not directly correspond to semantically meaningful factors. While this can make it more challenging to design a system for a particular application that requires controlling certain factors, such unsupervised methods can be used as pre-trained models for creating supervised models.

Individual Models. The simplest way to create a control mechanism is to train a separate model for each point in the factor space and switch between models to control the generation. Each model is trained only on the data that correspond to that particular point, thus only imitating the same factor value. For example, one can train a model on a set of training data containing only walking movements, and train another model on a set of training data containing only jumping movements. The former model will only generate walking movement while the latter will only generate jumping movements.

Some studies combine the outputs of the individual models to create movements for other points in the factor space. For instance, Herzog et al. (2008) and Herzog and Krüger (2009) train individual Hidden Markov Models (HMMs) for learning pointing movements that vary in the position the hand points at. To generate a movement that points to a target position, a set of local HMMs with aiming positions closer to the target position are selected. Next, the parameters of a new HMM for the target position are determined by interpolating the chosen HMMs, and a new output is generated from the newly constructed HMM.

Similarly, Tilmanne et al. (2014) train a Hidden Semi-Markov Model (HSMM) for each variation that exists in their training dataset. To generate movements for a given new point in the factor space, the model parameters of the individual HSMMs are interpolated or extrapolated.

In another study, Tilmanne et al. (2012) train an HSMM on a large set of neutral walking sequences and use a linear regression transformation technique to adapt the parameters of the HSMM
to a particular walking style. The adaptation algorithm uses the data from a small set of walks with that particular style.

Other models in this category learn one model per factor state, e.g., (Tilmanne and Dutoit, 2010) (16), or learn a range within the factor space using the same model, e.g., (Taylor et al., 2006) (5), but provide no method for controlling the generated movements.

Parametric Probability Distributions. One way to learn factor variations is to use a parametric probability distribution to model the data. In a parametric probability distribution, the mean of the distribution is a function of the factor(s). As a result, the value of the factor influences the mean of the distribution and thus controls the characteristics of the movements sampled from the distribution.

This method is commonly used among the HMM-based studies, e.g., (Herzog et al., 2008; Herzog and Krüger, 2009; Yamazaki et al., 2005) (13) (4). Wang et al. (2006a) (1) use Self-Organizing Mixture Network (SOMN) of parametric Gaussians to create a probabilistic mapping from the factor space to the pose space. In another approach, Wang et al. (2006b) (7) use parametric Gaussians to build Stylistic DTGs (Song et al., 2003).

Labels as Extra Model Input. Another technique to control what the model generates based on given labels is to feed the labels as extra inputs to the model alongside the training data. In this way, the model learns the correlations between the labels and the training data. During the generation, we can set the label inputs to our desired values and perform the sampling procedures as usual to control the generated data, e.g., (Wang and Artières, 2017; Taylor, 2009).

Built-in Support for Control. A machine learning model can be designed in a way that provides a mechanism for a factor variable to control the characteristics of the generated movements through its internal connections. For instance, Factored Conditional Restricted Boltzmann Machine (FCRBM) uses a context variable that controls the behaviour of the network through gated connection between the observations and the latent variables (Taylor and Hinton, 2009) (14).

Holden et al. (2016) (20) use a feed-forward convolutional neural network dedicated to controlling the behaviour of another machine learning model that is trained on movement data. The control network learns a regression model from high-level parameters (factors) to the hidden layer of the main machine learning model. In this approach, a different control network is trained for different applications (e.g., controlling the walking direction versus controlling the affect), while the same main network is reused.

7.8 Machine Learning Family

As presented in Section 5, different families of machine learning models such as dimensionality reduction (DR), Gaussian Processes (GP), Hidden Markov Models (HMMs), and Artificial Neural Networks (ANNs), are used to learn and generate movement. While we point out the strengths and limitations of each family, we acknowledge that further investigations are needed to discuss which types of movements each machine learning model is capable of learning and generating. For example, while most reviewed works that are based on DR techniques model walking movements, one needs to apply the same approaches to other types of movement for comparison. This would be challenging since it is not always easy to replicate the approaches described in the literature.

DR techniques have two limitations in learning human movement. First, DR models map static poses to a DR space and do not explicitly consider the dynamics of movement. This is overcome by using a dynamical model such as LDS (Qu et al., 2008) (12) to model the temporal characteristics. Second, DR techniques rely on pre-processing steps such as sequence alignments and fixed-length representation of the data, which could require extensive manual labor or limit the variety of movements that can be modelled beyond short and cyclic movements such as locomotion (Tilmanne and Dutoit, 2010; Samadani et al., 2013) (16) (25).
The GPLVM family (Section 5.2) are known for their abilities to generalize well from a relatively small training data, which is demonstrated by Wang et al. (2007) (9). This capability makes them suitable for applications in which one is interested in generating movements that there is not pre-existing recordings for them. However, GPLVMs are not inherently dynamic models and do not capture the temporal structures of the data. This is overcome by integrating them with a dynamic model such as HMM (Taubert et al., 2012) (22), or by the introduction of dynamic GP models such as GPDM (Wang et al., 2008) (10) and MF-GPM (Wang et al., 2007) (9). Another limitation of the GP-based models is that they are computationally expensive to train and draw samples from, and they require maintaining the complete training dataset for generation, which make them less efficient for realtime and interactive applications.

HMMs (Section 5.3) were designed to learn and generate temporal data such as human speech. Unlike GP-based models, they do not require retaining the training data, and their generation algorithms can be used in real-time applications. However, the learning and expressive capacity of HMMs is limited. To keep the computational cost manageable, most HMMs are trained with the assumption that the data follows a first-order Markovian dependency, meaning that the next frame of data only depends on the current frame. While the first-order assumption might be sufficient in modelling short and cyclic movements such as walking, it has limitations in modelling more complex movements. One way that to overcome this limitation, as applied in the literature, is to train a group of individual HMMs to capture different movement primitives or different factor variations as demonstrated in most HMM-based studies (Yamazaki et al., 2005; Herzog and Krüger, 2009; Tilmanne et al., 2012) (4) (13) (23). However, it is still possible to learn longer movements with a single HMM as demonstrated by Brand and Hertzmann (2000) (1).

There are a variety of artificial neural networks (Section 5.4) used for movement generation, each with different characteristics and applications. Shallow, perceptron-based neural networks can only learn basic movements with few degrees-of-freedom. However, the more complex versions of neural networks that are discussed here provide more expressive power than HMMs. While RBM-based models are successfully applied in generating mocap data, the need for layer-wise training rather than back propagation makes it harder to train deeper RBM-based networks. On the other hand, over the past few years Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) have shown promising results in learning long-term dependencies well beyond a first-order Markovian assumption in sequential data. It is easier to train deep RNN or CNN networks compared to RBMs. These properties make them suitable for learning movements that in nature have longer-term dependencies and might follow complex hierarchical characteristics. For example, while a walking cycle can be modelled with a single-order Markov process, many dance pieces contain phrasings that need to be defined over longer windows of frames rather than a single past frame.

7.9 Evaluations

As presented in Section 6, a major gap in the field of automatic movement generation is the lack of a widely-accepted evaluation procedure for the proposed systems and most of the studies merely rely on the informal inspection of their authors.

Evaluation of movement generation systems is a challenging task. First, movement generation is highly function-dependent. Each movement generation system models only a subset of possible human movements, such as walking and running, or picking up an object. Such a model is therefore only capable of generating movements functionally similar to the ones it has seen in the training data and can be expected to be evaluated for those movements only. For example, model that can successfully learn and generate walking movements may not perform well in learning and generating more complex movements such as dancing. This makes it difficult to compare alternative approaches to movement generation if they do not model the same set of movement functions.

Second, each system targets a specific application and has to be evaluated towards meeting the specifications of that application. For example, a model aiming for real-time generation has to
be evaluated towards its space and time complexities, whereas an offline generation system might prefer better quality over faster generation. As another example, a system that supports controlled generation has to be evaluated based on its control abilities. As a result, not all systems can be evaluated in the same way.

Third, movement generation is a creative task, which requires a different evaluation approach than rational problem solving tasks. Although a movement generation system can be evaluated based on memorizing and regenerating the movement in the training data, thus using perfect recall as a measure of evaluation, one can evaluate the system based on its creativity and generalization capabilities. For example, evaluating the quality of the systems output in generating movements that do not exist in the training set.

In this section, we discuss the challenges we face in evaluating movement generation systems. We then highlight the lack of comparisons between alternative approaches and make the case for building a stronger community for movement generation and its role in evaluations.

Evaluation of Generative Systems For any generative system, there are two dimensions that can be evaluated: 1) the performance of the software or the algorithm, and 2) the system’s quality at its generative task (output). These evaluations can be exploratory, to identify any issues with the system or to determine the characteristics that can be measured in later evaluations, or they can be descriptive, to assess the quality of the system according to some standards, metrics, or requirements.

For evaluating the software and the algorithmic aspects of a generative system, we are mainly interested in the computational and memory (time and space) complexities. One can therefore use the common space and time complexity analysis to evaluate the performance of a system. This becomes more important if the system aims at performing real-time generation.

Validating the creative quality of the system can be difficult. First, as opposed to rational problem solving, creative tasks are those for which there is no such a thing as a well-defined preference relation or utility measure. This is where most attempts at evaluating movement generation systems presented here fall short while using the mean squared error (MSE) between the generated movements and the ground truth data. Using MSE implies that there exist a single correct prediction and that is the one closest to the ground truth. However, in human movement, there exist many possible poses that can proceed from a given sequence of previous poses. This results in a space of correct and plausible poses rather than a single correct instance.

It is worth mentioning that one can evaluate a movement generation systems short-term and long-term prediction errors using MSE between the generated movements and the ground-truth data as a proxy to ensure that the model continues to generate plausible movements over time and the output does not drift to implausible and unrealistic movements.

Another aspect of evaluating generative systems is to browse the variety of possible inputs and observe the system’s output to make sure the system produces the correct output. For example, if we ask the model to point at a particular location in space, we are interested in making sure the system does generate movements that satisfy the given conditions for a variety of inputs. While this can easily be done if the conditions are quantified (such as locations in space), it is more challenging if we are evaluating in terms of more qualitative factors such as emotional states.

For the qualitative aspects of generative systems, evaluation studies involving human subjects are designed and conducted. In such studies, one has to consider that creative tasks can be subjective and the cultural biases, as well as any individual judgments in the evaluation of the outputs of a generative system as to be taken into account in analyzing the responses from human subjects.

Replicability The majority of the reviewed systems are difficult to replicate. First, the training data for many studies are not provided to the public. Second, only a few studies have published the source codes for their experiments. As a result, only a few studies have provided a comparison between their approach and the alternative ones.

Objective comparisons between alternative approaches based on well-defined metrics, tasks, and applications can speed up the research and facilitate the innovations in any field. Some fields such as computer vision take advantage of the availability of widely accepted datasets that come with
well-defined tasks and evaluation methods, such as the ImageNet (Deng et al., 2009) dataset and the ImageNet Large Scale Visual Recognition Challenge. While the field of movement generation lacks such datasets and challenges, the Movement and Computing (MOCO) community which has been established in recent years can be a place for setting up such datasets and challenges by a group of interdisciplinary researchers and artists.

8. Conclusion

With the increasing demand for dynamic and interactive contents across various media, the need for automatic content generation is more apparent and movement animation is no exception. Meanwhile, the recent advancement in the field of machine learning and the promising results in the domains of audio, vision, and text, machine learning has shown to be a prominent choice for learning generative models of spatio-temporal data.

In this paper, we provided a review of the body of literature on using machine learning techniques and motion capture data for the purpose of movement animation generation. We argue that advances in this field lead to a variety of applications in the video game and film industries, as well as in art practices by providing a less expensive, faster, and more flexible way to create movement animation content both in offline and interactive scenarios.

We point out a number of gaps in each aspect of the reviewed systems. Above all, we raise the need for high quality training datasets with diverse and well-curated contents that serve particular research questions. The availability of public-domain datasets, in conjunction with the rapid progress of the field of machine learning, will pave the way to create more powerful movement generation systems.

The works reviewed here have been published in a variety of different communities, depending on the field where the focus of the contributions were. Studies with focus on computer animation side of the research have been published in conferences and journals such as SIGGRAPH and ACM Transactions on Computer Graphics. Studies that focus on the affective movements are published in IEEE Transactions on Affective Computing and International Conference on Affective Computing and Intelligent Interaction (ACII). Studies that contribute to the field of machine learning and use motion capture data have been published in machine learning venues such as international conference on machine learning and IEEE Transactions on Pattern Analysis and Machine Intelligence. While some fields such as computer music or computer graphics take advantage of strong specialized communities, ISMIR and ACM SIGGRAPH respectively, a specialized community for human movement and computation has only recently been emerged through Movement and Computing community (MOCO).

Acknowledgments

This work was funded by the Social Sciences and Humanities Research Council of Canada (SSHRC) through the Moving Stories Project, as well as the Natural Sciences and Engineering Research Council of Canada (NSERC).

5. https://www.movementcomputing.org/
6. http://www.ismir.net/
7. http://www.siggraph.org
8. http://movementcomputing.org/
References

ACCAD. 2019. Open Motion Data Project by The Ohio State University Advanced Computing Center for the Arts and Design. https://accad.osu.edu/research/motion-lab/system-data. Accessed: 2019-03-19.

ACCLAIM. 2013. ASF/AMC Formats Specifications. http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html. Accessed: 2019-03-19.

AFFECTME. 2016. AffectME: Affective Multimodal Engagement. http://web4.cs.ucl.ac.uk/uclic/people/n.berthouze/AffectME.html. Accessed: 2019-03-19.

AGRAWAL, S., SHEN, S., AND VAN DE PANNE, M. 2013. Diverse motion variations for physics-based character animation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium. 37–44.

ALEMI, O., FRANOISE, J., AND PASQUIER, P. 2017. GrooveNet: Real-time music-driven dance movement generation using artificial neural networks. Poster accepted to the Workshop on Machine Learning for Creativity, 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

ALEMI, O., LI, W., AND PASQUIER, P. 2015. Affect-Expressive Movement Deneration with Factored Conditional Restricted Boltzmann Machines. In Proceedings of the International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 442–448.

ALEMI, O. AND PASQUIER, P. 2017. WalkNet: A neural-network-based interactive walking controller. In Intelligent Virtual Agents. Springer International Publishing, 15–24.

ANDERSON, C. AND PASQUIER, P. 2013. The Generative Electronic Dance Music Algorithmic System (GEDMAS). In Proceedings of the Second International Workshop on Musical Metacreation (MUME-2013), in conjunction with the Ninth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-13). AAAI Press.

ARIKAN, O. AND FORSYTH, D. A. 2002. Interactive motion generation from examples. ACM Transactions on Graphics (TOG) 21, 3 (July), pages 483–490.

ARNAUD, R. AND BARNES, M. 2006. Collada: Sailing the Gulf of 3d Digital Content Creation. Ak Peters Series. A K Peters.

ARTHUR, D. AND VASSILVITSKII, S. 2007. K-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07). 1027–1035.

BARNES, M. AND FINCH, E. 2013. COLLADA 1.5.0 Specification. http://www.khronos.org/files/collada_spec_1_5.pdf. Accessed: 2019-03-19.

BARTENIEFF, I. AND LEWIS, D. 1980. Body Movement: Coping With the Environment. Routledge.

BATES, J. 1994. The role of emotion in believable agents. Communications of the ACM 37, 7, 122–125.

BISHOP, C. M. 1994. Mixture density networks. Tech. rep., Aston University.

BRAND, M. AND HERTZMANN, A. 2000. Style machines. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’00. New York, NY, USA, 183–192.
Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E., Kim, S., Chang, J. N., Lee, S., and Narayanan, S. 2008. IEMOCAP: interactive emotional dyadic motion capture database. Language Resources and Evaluation 42, 4, 335–359.

BVH. 2019. Biovision BVH Format Specification. http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html. Accessed: 2019-03-19.

Chai, J., Hodgins, J. K., Lee, J., Reitsma, P. S. A., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. In ACM Transactions on Graphics (TOG). ACM, 491–500.

Chiu, C. and Marsella, S. 2011a. How to Train Your Avatar: A Data Driven Approach to Gesture Generation. In Proceedings of the 10th international conference on Intelligent Virtual Agents. 127–140.

Chiu, C. and Marsella, S. 2011b. A style controller for generating virtual human behaviors. In The 10th International Conference on Autonomous Agents and Multiagent Systems - Volume 3. AAMAS ’11. 1023–1030.

CMU. 2019. The Carnegie Melon University Motion Capture Database. http://mocap.cs.cmu.edu/. Accessed: 2019-03-19.

Cologne DB. 2019. The MoCap Database of TH Köln University of Applied Science. http://mocap.web.th-koeln.de/index.php. Accessed: 2019-03-19.

Crnkovic-Friis, L. and Crnkovic-Friis, L. 2016. Generative Choreography using Deep Learning. CoRR abs/1605.06921.

Cruz-Garza, J. G., Hernandez, Z. R., Nepaul, S., Bradley, K. K., and Contreras-Vidal, J. L. 2014. Neural decoding of expressive human movement from scalp electroencephalography (EEG). Frontiers in Human Neuroscience 8.

Dainis, A. 2019. C3D Format Specification. https://www.c3d.org/pdf/C3D.pdf. Accessed: 2019-03-19.

DanceDB. 2019. Dance Motion Capture Database of the University of Cyprus. https://dancedb.cs.ucy.ac.cy. Accessed: 2019-03-19.

Davids, K., Bennett, S., and Newell, K. M. 2006. Movement System Variability. Human Kinetics.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. 2009. ImageNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition. 248–255.

Dubnov, S., Assayag, G., Lartillot, O., and Bejerano, G. 2003. Using machine-learning methods for musical style modeling. IEEE Computer 36, 10, 73–80.

Ennis, C., McDonnell, R., Ennis, C., McDonnell, R., and O’Sullivan, C. 2010. Seeing is believing: body motion dominates in multisensory conversations. body motion dominates in multisensory conversations, vol. 29. ACM.

FBX. 2019. FBX Specification. https://www.autodesk.com/products/fbx/overview. Accessed: 2019-03-19.
FOURATI, N. AND PELACHAUD, C. 2014. Emilya: Emotional body expression in daily actions database. In *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14)*. 26–31.

FRAGKIADAKI, K., LEVINE, S., FELSEN, P., AND MALIK, J. 2015. Recurrent Network Models for Human Dynamics. *CoRR abs/1508.00271*.

FRANÇOISE, J., ALEMI, O., PASQUIER, P., AND SCHIPHORST, T. 2016. State of the Art on Movement Feature Extraction. Manuscript under preparation.

GALES, M. 1998. Maximum likelihood linear transformations for HMM-based speech recognition. *Computer Speech & Language 12*, 2, 75 – 98.

GEIJTENBEEK, T. AND PRONOST, N. 2012. Interactive Character Animation Using Simulated Physics: A State-of-the-Art Review. *Computer Graphics Forum 31*, 8, pages 2492–2515.

GRASSIA, F. 1998. Practical parameterization of rotations using the exponential map. *J. Graph. Tools 3*, 3, 29–48.

GREFF, K., SRIVASTAVA, R. K., KOUTNÍK, J., STEUNEBRINK, B. R., AND SCHMIDHUBER, J. 2015. LSTM: A Search Space Odyssey. *CoRR abs/1503.04069*.

HECK, R. AND GLEICHER, M. 2007. Parametric motion graphs. In *Proceedings of the 29th Representation Learning Workshop. International Conference on Machine Learning*. 129–136.

HERRMANN, E., MANNS, M., DU, H., HOSSEINI, S., AND FISCHER, K. 2017. Accelerating statistical human motion synthesis using space partitioning data structures: accelerating statistical human motion synthesis. *Computer Animation and Virtual Worlds 28*, 6, e1780.

HERZOG, D., KRÜGER, V., AND GREST, D. 2008. Parametric Hidden Markov Models for Recognition and Synthesis of Movements. In *Proceedings of the British Machine Vision Conference*. 17.1–17.10.

HERZOG, D. AND KRÜGER, V. 2009. Recognition and Synthesis of Human Movements by Parametric HMMs. *Statistical and Geometrical Approaches to Visual Motion Analysis 5604*, 148–168.

HINTON, G. E. 2002. Training Products of Experts by Minimizing Contrastive Divergence. *Neural Computation 14*, 8, 1771–1800.

HINTON, G. E., OSINDERO, S., AND TEH, Y.-W. 2006. A fast learning algorithm for deep belief networks. *Neural Computation 18*, 7, 1527–1554.

HOCHREITER, S. AND SCHMIDHUBER, J. 1997. Long short-term memory. *Neural Computation 9*, 9, 1735–1780.

HOLDEN, D., SAITO, J., AND KOMURA, T. 2016. A deep learning framework for character motion synthesis and editing. *ACM Transactions on Graphics (TOG) 35*, 4, 138–11.

HOLDEN, D., SAITO, J., KOMURA, T., AND JOYCE, T. 2015. Learning motion manifolds with convolutional autoencoders. In *SIGGRAPH ASIA 2015 Technical Briefs*. 18:1–18:4.

HSU, E., PULLI, K., AND POPOVIC, J. 2005. Style translation for human motion. *ACM Transactions on Graphics (TOG) 24*, 3, 1082–1089.

IONESCU, C., PAPAVA, D., OLAGU, V., AND SMINCHISESCU, C. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. *IEEE Transactions on Pattern Analysis and Machine Intelligence 36*, 7, 1325–1339.
Jolliffe, I. T. 2002. *Principal Component Analysis*. Springer Series in Statistics. Springer.

Karg, M., Samadani, A.-A., Gorbet, R., Kuhnlenz, K., Hoey, J., and Kulic, D. 2013. Body Movements for Affective Expression: A Survey of Automatic Recognition and Generation. *IEEE Transactions on Affective Computing* 4, 4, 341–359.

Kivistö, J. and Williams, C. 2012. Multiple texture boltzmann machines. In *Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics*. Vol. 22. 638–646.

Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In *Proceedings of the 29th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’02)*. 473–482.

Kulić, D., Ott, C., Lee, D., Ishikawa, J., and Nakamura, Y. 2011. Incremental learning of full body motion primitives and their sequencing through human motion observation. *The International Journal of Robotics Research* 31, 3, 16 pages.

Kwon, T. and Shin, S. Y. 2005. Motion modeling for on-line locomotion synthesis. In *Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation*. SCA ’05. ACM, New York, NY, USA, 29–38.

Lamb, W. 1965. *Posture and gesture: an introduction to the study of physical behaviour*. G. Duckworth.

Lasseter, J. 1987. Principles of traditional animation applied to 3D computer animation. In *In Proceedings of the 14th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’87)*. 35–44.

Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion texture: a two-level statistical model for character motion synthesis. In *Proceedings of the 29th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’02)*. 465–472.

Lin, C., Shiang, W., Rau, H., and Chen, J. 2008. Applying neural networks and optimization techniques to the simulation of human motion. In *Proceedings of the 2008 International Conference on Machine Learning and Cybernetics*. 3194–3198.

Ling, Z.-H., Deng, L., and Yu, D. 2013. Modeling Spectral Envelopes Using Restricted Boltzmann Machines and Deep Belief Networks for Statistical Parametric Speech Synthesis. *IEEE Transactions on Audio, Speech & Language Processing* 21, 10, 2129–2139.

Liu, G., Xu, M., Pan, Z., and Rhalibi, A. 2011. Human motion generation with multifactor models. *Computer Animation and Virtual Worlds* 22, 4, 351–359.

Lu, G., Shark, L.-K., Hall, G., and Zeshan, U. 2009. Dynamic Hand Gesture Tracking and Recognition for Real-Time Immersive Virtual Object Manipulation. In *Proceedings of the 2009 International Conference on CyberWorlds*. 29–35.

Ma, Y., Paterson, H. M., and Polllick, F. E. 2006. A motion capture library for the study of identity, gender, and emotion perception from biological motion. *Behavior Research Methods* 38, 1, 134–141.

Martinez, J., Black, M. J., and Romero, J. 2017. On human motion prediction using recurrent neural networks. *CoRR abs/1705.02445*.

Matsubara, T., Hyon, S., and Morimoto, J. 2010. Learning Stylistic Dynamic Movement Primitives from multiple demonstrations. In *Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010)*. 1277–1283.
ML for Movement Generation

Menache, A. 2000. *Understanding Motion Capture for Computer Animation and Video Games.* Morgan Kaufmann.

Min, J. and Chai, J. 2012. Motion graphs++: a compact generative model for semantic motion analysis and synthesis. *ACM Transactions on Graphics (TOG)* 31, 6, 153.

MoDa. 2019. MoDa: The Open Source Movement Database. http://moda.movingstories.ca. Accessed: 2019-03-19.

Mori, M., MacDormian, K. F., and Kageki, N. 2012. The Uncanny Valley [From the Field]. *Robotics & Automation Magazine, IEEE* 19, 2, 98–100.

Müller, H. and Sternad, D. 2009. Motor Learning: Changes in the Structure of Variability in a Redundant Task. In *Progress in Motor Control*. Springer US, 439–456.

Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and Weber, A. 2007. Documentation mocap database HDM05. Tech. Rep. CG-2007-2, Universität Bonn. June.

NUSDB. 2019. National University of Singapore Motion Capture Database. http://mocap.cs.sfu.ca/nusmocap.html. Accessed: 2019-03-19.

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy, R. Berkeley MHAD: A comprehensive Multimodal Human Action Database. In *2013 IEEE Workshop on Applications of Computer Vision (WACV)*. IEEE, 53–60.

Pejča, T. and Pandzic, I. S. 2010. State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications. *Computer Graphics Forum* 29, 1, 202–226.

Pennec, X. and Thirion, J.-P. 1997. A Framework for Uncertainty and Validation of 3-D Registration Methods Based on Points and Frames. *International Journal of Computer Vision* 25, 3, 203–229.

Pina, A., Cerezo, E., and Serón, F. J. 2000. Computer animation: from avatars to unrestricted autonomous actors (A survey on replication and modelling mechanisms). *Computers & Graphics* 24, 2, 297–311.

Qu, H., Yu, Z., Wang, X., and Wong, H. 2008. Motion synthesis based on dimensionality reduction. In *2008 First IEEE International Conference on Ubi-Media Computing*. 237–242.

Rabiner, L. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. *Proceedings of the IEEE* 77, 2, 257–286.

Ramsay, J. and Silverman, B. W. 2013. *Functional Data Analysis.* Springer Science & Business Media.

Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. *IEEE Computer Graphics and Applications* 18, 5, 32–40.

Rosenbaum, D. A. 2009. *Human Motor Control.* Academic Press.

Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In *Proceedings of the 29th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’04)*. 514–521.

Samadani, A.-A., DeHart, B. J., Robinson, K., Kulić, D., Kubica, E., and Gorbet, R. 2011. A study of human performance in recognizing expressive hand movements. In *Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)*.
O. Alemi and P. Pasquier

Samadani, A.-A., Kubică, E., Gorbet, R., and Kulić, D. 2013. Perception and Generation of Affective Hand Movements. *International Journal of Social Robotics* 5, 1, 35–51.

Schaal, S., Ijspeert, A., and Billard, A. 2003. Computational approaches to motor learning by imitation. *Philosophical Transactions of the Royal Society B: Biological Sciences* 358, 1431, 537–547.

Schulze, W. and van der Merwe, B. 2011. Music Generation with Markov Models. *IEEE MultiMedia* 18, 3, 78–85.

Serlin, I. A., Berger, M. R., and Bar-Sinai, R. 2007. Moving through conflict: Understanding personal and cultural differences through movement style. *Journal of Humanistic Psychology* 47, 3, 367–375.

Shahroudy, A., Liu, J., Ng, T.-T., and Wang, G. NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis. In *Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. 1010–1019.

Shoemake, K. and Shoemake, K. 1985. Animating rotation with quaternion curves. In *Proceedings of the 14th annual conference on Computer graphics and interactive techniques*. 245–254.

Sigal, L. and Black, M. J. 2006. HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion. Tech. Rep. CS-06-08, Department of Computer Science Brown University.

Song, Y., Goncalves, L., and Perona, P. 2003. Unsupervised learning of human motion. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 25, 7, 814–827.

Studd, K. A. and Cox, L. L. 2013. *Everybody Is a Body*. Dog Ear Publishing.

Sukhbaatar, S., Makino, T., Aihara, K., and Chikayama, T. 2011. Robust generation of dynamical patterns in human motion by a deep belief network. In *Proceedings of the 3rd Asian Conference on Machine Learning, ACML*. 231–246.

Tanco, L. M. and Hilton, A. 2000. Realistic synthesis of novel human movements from a database of motion capture examples. In *Proceedings of the Workshop on Human Motion*. 137–142.

Taubert, N., Christensen, A., Endres, D., and Giese, M. A. 2012. Online simulation of emotional interactive behaviors with hierarchical Gaussian process dynamical models. In *Proceedings of the ACM Symposium on Applied Perception (SAP ’12)*. 25–32.

Taubert, N., Endres, D., Christensen, A., and Giese, M. A. 2011. Shaking Hands in Latent Space - Modeling Emotional Interactions with Gaussian Process Latent Variable Models. In *Proceedings of the 34th Annual German Conference on AI (KI 2011)*. 330–334.

Taylor, G. 2009. Composable, distributed-state models for high-dimensional time series. Ph.D. thesis, Toronto, Ont., Canada, Canada. AAINR61113.

Taylor, G. and Hinton, G. 2009. Factored conditional restricted boltzmann machines for modeling motion style. In *Proceedings of the th Annual International Conference on Machine Learning (ICML)*. 1025–1032.

Taylor, G., Hinton, G., and Roweis, S. 2006. Modeling human motion using binary latent variables. *Advances in neural information processing system*, 1345–1352.

Tenenbaum, J. B. and Freeman, W. T. 2000. Separating Style and Content with Bilinear Models. *Neural Computation* 12, 6, 1247–1283.
TILMANNE, J., dALESSANDRO, N., ASTRINAKI, M., AND RAVET, T. 2014. Exploration of a Stylistic Motion Space Through Realtime Synthesis. In Proceedings of the 9th International Conference on Computer Vision Theory and Applications. 1–7.

TILMANNE, J. AND DUTOIT, T. 2010. Expressive gait synthesis using PCA and Gaussian modeling. In Proceedings of the Third international conference on Motion in games. 363–374.

TILMANNE, J., MOINET, A., AND DUTOIT, T. 2012. Stylistic gait synthesis based on hidden markov models. EURASIP Journal on Advances in Signal Processing 2012, 1, 72.

TILMANNE, J., SEBBE, R., AND DUTOIT, T. 2008. A database for stylistic human gait modeling and synthesis. In Proceedings of the eNTER-FACE’08 Workshop on Multimodal Interfaces. 91–94.

TIPPING, M. E. AND BISHOP, C. 1999. Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society, Series B 21.

TOKUDA, K., YOSHIMURA, T., MASUKO, T., KOBAYASHI, T., AND KITAMURA, T. 2000. Speech parameter generation algorithms for HMM-based speech synthesis. Proceedings of the International Conference on Acoustics, Speech and Signal Processing 3, 1315–1318.

TOMLINSON, B. 2005. From linear to interactive animation: how autonomous characters change the process and product of animating. ACM Computers in Entertainment 3, 1 (Jan.), 20 pages.

U PENN DB. 2016. University of Pennsylvania - SIG Center for Computer Graphics Multi Modal Motion Capture Database. https://fling.seas.upenn.edu/~mocap/cgi-bin/Database.php. Accessed: 2019-03-19.

VINCENT, P., LAROCHELLE, H., LAJOIE, I., BENGIO, Y., AND MANZAGOL, P.-A. 2010. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. The Journal of Machine Learning Research 11, 3371–3408.

WANG, J., FLEET, D., AND HERTZMANN, A. 2007. Multifactor gaussian process models for style-content separation. In Proceedings of the 24th international conference on Machine learning ICML ’07. 975–982.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2008. Gaussian Process Dynamical Models for Human Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2, 283–298.

WANG, Q. AND ARTIÈRES, T. 2017. Motion Capture Synthesis with Adversarial Learning. In Affective Computing and Intelligent Interaction. Springer International Publishing, 467–470.

WANG, X., CHEN, Q., AND WANG, W. 2014. 3D Human Motion Editing and Synthesis: A Survey. Computational and Mathematical Methods in Medicine 2014, 3 (June), 1–11.

WANG, Y., LIU, Z., AND ZHOU, L. 2005. Learning hierarchical non-parametric hidden markov model of human motion. In Proceedings of 2005 International Conference on Machine Learning and Cybernetics. Vol. 6. 3315–3320.

WANG, Y., LIU, Z., AND ZHOU, L. 2006a. Key-styling: learning motion style for real-time synthesis of 3D animation. Computer Animation and Virtual Worlds 17, 3-4, 229–237.

WANG, Y., LIU, Z., AND ZHOU, L. 2006b. Learning style-directed dynamics of human motion for automatic motion synthesis. In IEEE International Conference on Systems, Man and Cybernetics (SMC ’06). Vol. 5. 4428–4433.

WEI, X., MIN, J., AND CHAI, J. 2011. Physically valid statistical models for human motion generation. ACM Transactions on Graphics (TOG) 30, 3, 19:119:10.
Wilson, A. D. and Bobick, A. F. 1999. Parametric hidden Markov models for gesture recognition. *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 21, 9 (Sept.), 884–900.

Xia, S., Wang, C., Chai, J., and Hodgings, J. 2015. Realtime style transfer for unlabeled heterogeneous human motion. *ACM Transactions on Graphics (TOG)* 34, 4 (July), 119–119:10.

Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K., and Isogai, J. 2009. Analysis of speaker adaptation algorithms for hmm-based speech synthesis and a constrained smaplr adaptation algorithm. *IEEE Transactions on Audio, Speech, and Language Processing* 17, 1 (Jan), 66–83.

Yamazaki, T., Niwase, N., Yamagishi, J., and Kobayashi, T. 2005. Human walking motion synthesis based on multiple regression hidden semi-Markov model. In *Proceedings of the International Conference on Cyberworlds*. 8 pp.–452.

Yin, H. and Allinson, N. M. 2001. Self-organizing mixture networks for probability density estimation. *IEEE Transactions on Neural Networks* 12, 2 (Mar.), 405–411.

Zen, H., Braunschweiler, N., Buchholz, S., Gales, M. J. F., Knill, K., Krstulovic, S., and Latorre, J. 2012. Statistical Parametric Speech Synthesis Based on Speaker and Language Factorization. *IEEE Transactions on Audio, Speech & Language Processing* 20, 6, 1713–1724.

Zen, H., Tokuda, K., and Black, A. W. 2009. Statistical parametric speech synthesis. *Speech Communication* 51, 11, 1039–1064.