Finding Good Proofs for Description Logic Entailments Using Recursive Quality Measures (Extended Technical Report)

Christian Alrabbaa, Franz Baader, Stefan Borgwardt, Patrick Koopmann, and Alisa Kovtunova
Theoretical Computer Science, TU Dresden, Dresden, Germany

Abstract. Logic-based approaches to AI have the advantage that their behavior can in principle be explained to a user. If, for instance, a Description Logic reasoner derives a consequence that triggers some action of the overall system, then one can explain such an entailment by presenting a proof of the consequence in an appropriate calculus. How comprehensible such a proof is depends not only on the employed calculus, but also on the properties of the particular proof, such as its overall size, its depth, the complexity of the employed sentences and proof steps, etc. For this reason, we want to determine the complexity of generating proofs that are below a certain threshold w.r.t. a given measure of proof quality. Rather than investigating this problem for a fixed proof calculus and a fixed measure, we aim for general results that hold for wide classes of calculi and measures. In previous work, we first restricted the attention to a setting where proof size is used to measure the quality of a proof. We then extended the approach to a more general setting, but important measures such as proof depth were not covered. In the present paper, we provide results for a class of measures called recursive, which yields lower complexities and also encompasses proof depth. In addition, we close some gaps left open in our previous work, thus providing a comprehensive picture of the complexity landscape.

1 Introduction

Explainability has developed into a major issue in Artificial Intelligence, particularly in the context of sub-symbolic approaches based on Machine Learning [6]. In contrast, results produced by symbolic approaches based on logical reasoning are “explainable by design” since a derived consequence can be formally justified by showing a proof for it. In practice, things are not that easy since proofs may be very long, and even single proof steps or stated sentences may be hard to comprehend for a user that is not an expert in logic. For this reason, there has been considerable work in the Automated Deduction and Logic in AI communities on how to produce “good” proofs for certain purposes, both for full first-order logic, but also for decidable logics such as Description Logics (DLs) [9].
We mention here only a few approaches, and refer the reader to the introduction of our previous work \cite{2} for a more detailed review.

First, there is work that transforms proofs that are produced by an automated reasoning system into ones in a calculus that is deemed to be more appropriate for human consumption \cite{11, 22, 23}. Second, abstraction techniques are used to reduce the size of proofs by introducing definitions, lemmas, and more abstract deduction rules \cite{16, 17}. Justification-based explanations for DLs \cite{10, 14, 29} can be seen as a radical abstraction technique where the abstracted proof consists of a single proof step, from a minimal set of stated sentences that implies a certain consequence directly to this consequence. Finally, instead of presenting proofs in a formal, logical syntax, one can also try to increase readability by translating them into natural language text \cite{12, 25, 27, 28} or visualizing them \cite{5}.

The purpose of this work is of a more (complexity) theoretic nature. We want to investigate how hard it is to find good proofs, where the quality of a proof is described by a measure m that assigns non-negative rational numbers to proofs. More precisely, as usual we investigate the complexity of the corresponding decision problem, i.e., the problem of deciding whether there is a proof P with $m(P) \leq q$ for a given rational number q. In order to abstract from specific logics and proof calculi, we develop a general framework in which proofs are represented as labeled, directed hypergraphs, whose hyperedges correspond to single sound derivation steps. To separate the complexity of generating good proofs from the complexity of reasoning in the underlying logic, we introduce the notion of a deriver, which generates a so-called derivation structure. This structure consists of possible proof steps, from which all proofs of the given consequence can be constructed. Basically, such a derivation structure can be seen as consisting of all relevant instantiations of the rules of a calculus that can be used to derive the consequence. We restrict the attention to decidable logics and consider derivers that produce derivation structures of polynomial or exponential size. Examples of such derivers are consequence-based reasoners for the DLs \mathcal{EL} \cite{7, 21} and \mathcal{ELI} \cite{9, 18}, respectively. In our complexity results, the derivation structure is assumed to be already computed by the deriver, i.e., the complexity of this step is not assumed to be part of the complexity of computing good proofs. Our complexity results investigate the problem along the following orthogonal dimensions: we distinguish between (i) polynomial and exponential derivers; and (ii) whether the threshold value q is encoded in unary or binary. The obtained complexity upper bounds hold for all instances of a considered setting, whereas the lower bounds mean that there is an instance (usually based on \mathcal{EL} or \mathcal{ELI}) for which this lower bound can be proved.

In our first work in this direction \cite{2}, we focused our attention on size as the measure of proof quality. We could show that the above decision problem is NP-complete even for polynomial derivers and unary coding of numbers. For exponential derivers, the complexity depends on the coding of numbers: NP-complete (NExpTime-complete) for unary (binary) coding. For the related mea-
Table 1. Overview over existing and new complexity results for deciding the existence of good proofs, w.r.t. polynomial/exponential derivers and unary/binary encoding of the bound q (known results in gray).

Measure	polynomial unary	polynomial binary	exponential unary	exponential binary
Size	NP [2]	NP [2]	NP [2]	NExpTime [2]
Monotone recursive Φ-measures	$\leq P$	$\leq P$ [Th.12]	$\leq \text{ExpTime}$	$\leq \text{ExpTime}$ [Th.12]
Tree size	P [2]	P	NP [2]	PSpace [Th.12]
Depth	P [Cor.15]	P	PSpace [Th.12]	ExpTime [Th.12]
Logarithmic depth	P [Cor.15]	P	ExpTime [Cor.15]	ExpTime

Sure tree size (which assumes that the proof hypergraphs are tree-shaped, i.e. cannot reuse already derived consequences), the complexity turned out to be considerably lower, due to the fact that a Dijkstra-like greedy algorithm can be applied. In [3], we generalized the results by introducing a class of measures called Ψ-measures, which contains both size and tree size and for which the same complexity upper bounds as for size could be shown for polynomial derivers. We also lifted the better upper bounds for tree size (for polynomial derivers) to local Ψ-measures, a natural class of proof measures. In this paper, we extend this line of research by providing a more general notion of measures, monotone recursive Φ-measures, which now also allow to measure the depth of a proof. We think that depth is an important measure since it measures how much of the proof tree a (human or automated) proof checker needs to keep in memory at the same time. We analyze these measures not only for polynomial derivers, but this time also consider exponential derivers, thus giving insights on how our complexity results transfer to more expressive logics. In addition to upper bounds for the general class of monotone recursive Φ-measures, we show improved bounds for the specific measures considering depth and tree size, in the latter case improving results from [2]. Overall, we thus obtain a comprehensive picture of the complexity landscape for the problem of finding good proofs for DL and other entailments (see Table 1).

This is an extended version of the paper [4], including an appendix with more detailed proofs and some auxiliary lemmas.

2 Preliminaries

Most of our theoretical discussion applies to arbitrary logics $\mathcal{L} = (\mathcal{S}_\mathcal{L}, \models_\mathcal{L})$ that consist of a set $\mathcal{S}_\mathcal{L}$ of \mathcal{L}-sentences and a consequence relation $\models_\mathcal{L} \subseteq P(\mathcal{S}_\mathcal{L}) \times \mathcal{S}_\mathcal{L}$ between \mathcal{L}-theories, i.e. subsets of \mathcal{L}-sentences, and single \mathcal{L}-sentences. We assume that $\models_\mathcal{L}$ has a semantic definition, i.e. for some definition of “model”, $\mathcal{T} \models_\mathcal{L} \eta$ holds iff every model of all elements in \mathcal{T} is also a model of η. We also assume that the size $|\eta|$ of an \mathcal{L}-sentence η is defined in some way, e.g. by the number of symbols in η. Since \mathcal{L} is usually fixed, we drop the prefix “\mathcal{L}-“ from...
now on. For example, \mathcal{L} could be first-order logic. However, we are mainly interested in proofs for DLs, which can be seen as decidable fragments of first-order logic $[9]$. In particular, we use specific DLs to show our hardness results.

The syntax of DLs is based on disjoint, countably infinite sets \mathbb{N}_C and \mathbb{N}_R of concept names A, B, \ldots and role names r, s, \ldots, respectively. Sentences of the DL \mathcal{EL}, called general concept inclusions (GCIs), are of the form $C \sqsubseteq D$, where C and D are \mathcal{EL}-concepts, which are built from concept names by applying the constructors \top (top), $C \sqcap D$ (conjunction), and $\exists r. C$ (existential restriction for a role name r). The DL \mathcal{EL}_I extends \mathcal{EL} by the role constructor r^- (inverse role).

In DLs, finite theories are called TBoxes or ontologies.

The semantics of DLs is based on first-order interpretations; for details, see $[9]$. In Figure 1 we depict a simplified version of the inference rules for \mathcal{EL} from $[21]$. For example, $\{A \sqsubseteq \exists r.B, B \sqsubseteq C, \exists r. C \sqsubseteq D\} \models A \sqsubseteq D$ is a valid inference in \mathcal{EL}. Deciding consequences in \mathcal{EL} is P-complete $[7]$, and in \mathcal{EL}_I it is ExpTime-complete $[8]$.

2.1 Proofs

We formalize proofs as (labeled, directed) hypergraphs (see Figures 2, 3), which are tuples (V, E, ℓ) consisting of a finite set V of vertices, a finite set E of (hyper)edges of the form (S, d) with $S \subseteq V$ and $d \in V$, and a vertex labeling function $\ell: V \rightarrow S_\mathcal{L}$. Full definitions of such hypergraphs, as well as related notions such as trees, unravelings, homomorphisms, cycles can be found in the appendix. For example, there is a homomorphism from Figure 3 to Figure 2, but not vice versa, and Figure 2 is the tree unraveling of Figure 3.

![Fig. 2. An acyclic hypergraph/proof](image)

![Fig. 3. A tree hypergraph/proof](image)

The following definition formalizes basic requirements for hyperedges to be considered valid inference steps from a given finite theory.
Definition 1 (Derivation Structure). A derivation structure $\mathcal{D} = (V, E, \ell)$ over a finite theory T is a hypergraph that is
- grounded, i.e. every leaf v in \mathcal{D} is labeled by $\ell(v) \in T$; and
- sound, i.e. for every $(S, d) \in E$, the entailment $\{\ell(s) \mid s \in S\} \models \ell(d)$ holds.

We define proofs as special derivation structures that derive a conclusion.

Definition 2 (Proof). Given a conclusion η and a finite theory T, a proof for $T \models \eta$ is a derivation structure $\mathcal{P} = (V, E, \ell)$ over T such that
- \mathcal{P} contains exactly one sink $v_\eta \in V$, which is labeled by η,
- \mathcal{P} is acyclic, and
- every vertex has at most one incoming edge, i.e. there is no vertex $w \in V$ s.t. there are $(S_1, w), (S_2, w) \in E$ with $S_1 \neq S_2$.

A tree proof is a proof that is a tree. A subproof S of a hypergraph H is a subgraph of H that is a proof s.t. the leaves of S are a subset of the leaves of H.

The hypergraphs in Figures 2 and 3 can be seen as proofs in the sense of Definition 2, where the sentences of the theory are marked with a thick border. Both proofs use the same inference steps, but have different numbers of vertices. They both prove $A \sqsubseteq B \sqcap \exists r.A$ from $T = \{A \sqsubseteq B, B \sqsubseteq \exists r.A\}$. The second proof is a tree and the first one a hypergraph without label repetition.

Lemma 3. Let $\mathcal{P} = (V, E, \ell)$ be a proof for $T \models \eta$. Then
1. all paths in \mathcal{P} are finite and all longest paths in \mathcal{P} have v_η as the target; and
2. $T \models \eta$.

Given a proof $\mathcal{P} = (V, E, \ell)$ and a vertex $v \in V$, the subproof of \mathcal{P} with sink v is the largest subgraph $\mathcal{P}_v = (V_v, E_v, \ell_v)$ of \mathcal{P} where V_v contains all vertices in V that have a path to v in \mathcal{P}.

2.2 Derivers

In practice, proofs and derivation structures are constructed by a reasoning system, and in theoretical investigations, it is common to define proofs by means of a calculus. To abstract from these details, we use the concept of a deriver as in [2], which is a function that, given a theory T and a conclusion η, produces the corresponding derivation structure in which we can look for an optimal proof. However, in practice, it would be inefficient and unnecessary to compute the entire derivation structure beforehand when looking for an optimal proof. Instead, we allow to access elements in a derivation structure using an oracle, which we can ask whether given inferences are a part of the current derivation structure. Similar functionality exists for example for the DL reasoner Elk [19], and may correspond to checking whether the inference is an instance of a rule in the calculus. Since reasoners may not be complete for proving arbitrary sentences of \mathcal{L}, we restrict the conclusion η to a subset $C_L \subseteq S_L$ of supported consequences.
Fig. 4. The inference rules for \mathcal{ELT} [9]. Given a finite theory T in a certain normal form, the rules produce a saturated theory T'. Here, K, L, M are conjunctions of concept names, A is a concept name, C is an \mathcal{EL} concept of the form A, $\exists r.M$, or $\forall r.A$, and r is a role name or the inverse of a role name. In this calculus conjunctions are implicitly viewed as sets, i.e. the order and multiplicity of conjuncts is ignored.

Definition 4 (Deriver). A deriver D is given by a set $C_L \subseteq S_L$ and a function that assigns derivation structures to pairs (T, η) of finite theories $T \subseteq S_L$ and sentences $\eta \in C_L$, such that $T \models \eta$ iff $D(T, \eta)$ contains a proof for $T \models \eta$. A proof P for $T \models \eta$ is called admissible w.r.t. $D(T, \eta)$ if there is a homomorphism $h : P \rightarrow D(T, \eta)$. We call D a polynomial deriver if there exists a polynomial $p(x)$ such that the size of $D(T, \eta)$ is bounded by $p(|T| + |\eta|)$. Exponential derivers are defined similarly by the restriction $|D(T, \eta)| \leq 2^{p(|T| + |\eta|)}$.

Elk is an example of a polynomial deriver, that is, for a given \mathcal{EL} theory T and \mathcal{EL} sentence η, Elk(T, η) contains all allowed instances of the rules shown in Figure 4. As an example for an exponential deriver we use Eli, which uses the rules from Figure 4 and is complete for \mathcal{ELT} theories and conclusions of the form $A \sqsubseteq B$, $A, B \in \mathbb{N}_C$. The oracle access for a deriver D works as follows. Let $D = (V, E, \ell) := D(T, \eta)$ and $V = \{v_1, \ldots, v_m\}$. D is accessed using the following two functions, where i, i_1, \ldots, i_l are indices of vertices and α is a sentence:

$$[D](i_1, \ldots, i_l, i) := \begin{cases} \text{true} & \text{if } \{v_{i_1}, \ldots, v_{i_l}\}, v_i \in E, \\ \text{false} & \text{otherwise}; \end{cases}$$

$$[D](i, \alpha) := \begin{cases} \text{true} & \text{if } \ell(v_i) = \alpha, \\ \text{false} & \text{otherwise}. \end{cases}$$

In this paper, we focus on polynomial and exponential derivers, for which we further make the following technical assumptions: 1) $D(T, \eta)$ does not contain two vertices with the same label; 2) the number of premises in an inference is polynomially bounded by $|T|$ and $|\eta|$; and 3) the size of each label is polynomially bounded by $|T|$ and $|\eta|$. While 1) is without loss of generality, 2) and 3) are not. If a deriver does not satisfy 2), we may be able to fix this by splitting inference steps. Assumption 3) would not work for derivers with higher complexity, but is required in our setting to avoid trivial complexity results for exponential derivers. We furthermore assume that for polynomial and exponential derivers, the polynomial p from Definition 4 bounding the size of derivation structures is known.
3 Measuring Proofs

To formally study quality measures for proofs, we developed the following definition, which will be instantiated with concrete measures later. Our goal is to find proofs that minimize these measures, i.e. lower numbers are better.

Definition 5 (Φ-Measure). A (quality) measure is a function \(m : P_L \to Q_{\geq 0} \), where \(P_L \) is the set of all proofs over \(L \) and \(Q_{\geq 0} \) is the set of non-negative rational numbers. We call \(m \) a Φ-measure if, for every \(P \in P_L \), the following hold.

\[[P] \quad m(P) \text{ is computable in polynomial time in the size of } P.\]

\[[HI] \quad \text{Let } h : P \to H \text{ be any homomorphism, and } P' \text{ be any subproof of the homomorphic image } h(P) \text{ that is minimal (w.r.t. } m) \text{ among all such subproofs having the same sink. Then } m(P') \leq m(P). \]

Intuitively, a Φ-measure \(m \) does not increase when the proof gets smaller, either when parts of the proof are removed (to obtain a subproof) or when parts are merged (in a homomorphic image). For example, \(m_{\text{size}}((V,E,\ell)) := |V| \) is a Φ-measure, called the size of a proof, and we have already investigated the complexity of the following decision problem for \(m_{\text{size}} \) in [2].

Definition 6 (Optimal Proof). Let \(\mathcal{D} \) be a deriver and \(m \) be a measure. Given a finite theory \(T \) and a sentence \(\eta \in \mathcal{C}_L \) s.t. \(T \models \eta \), an admissible proof \(P \) w.r.t. \(\mathcal{D}(T, \eta) \) is called optimal w.r.t. \(m \) if \(m(P) \) is minimal among all such proofs.

The associated decision problem, denoted \(\text{OP}(\mathcal{D}, m) \), is to decide, given \(T \) and \(\eta \) as above and \(q \in Q_{\geq 0} \), whether there is an admissible proof \(P \) w.r.t. \(\mathcal{D}(T, \eta) \) with \(m(P) \leq q \).

For our complexity analysis, we distinguish the encoding of \(q \) with a subscript (unary/binary), e.g. \(\text{OP}_{\text{unary}}(\mathcal{D}, m) \).

We first show that if \(P \) is optimal w.r.t. a Φ-measure \(m \) and \(\mathcal{D}(T, \eta) \), then the homomorphic image of \(P \) in \(\mathcal{D}(T, \eta) \) is also a proof. Thus, to decide \(\text{OP}(\mathcal{D}, m) \) we can restrict our search to proofs that are subgraphs of \(\mathcal{D}(T, \eta) \).

Lemma 7. For any deriver \(\mathcal{D} \) and Φ-measure \(m \), if there is an admissible proof \(P \) w.r.t. \(\mathcal{D}(T, \eta) \) with \(m(P) \leq q \) for some \(q \in Q_{\geq 0} \), then there exists a subproof \(Q \) of \(\mathcal{D}(T, \eta) \) for \(T \models \eta \) with \(m(Q) \leq q \).

In particular, this shows that an optimal proof always exists.

Corollary 8. For any deriver \(\mathcal{D} \) and Φ-measure \(m \), if \(T \models \eta \), then there is an optimal proof for \(T \models \eta \) w.r.t. \(\mathcal{D} \) and \(m \).

Proof. By Definition 4, the derivation structure \(\mathcal{D}(T, \eta) \) contains at least one proof for \(T \models \eta \). Since \(\mathcal{D}(T, \eta) \) is finite, there are finitely many proofs for \(T \models \eta \) contained in \(\mathcal{D}(T, \eta) \). The finite set of all \(m \)-weights of these proofs always has a minimum. Finally, if there were an admissible proof weighing less than this minimum, it would contradict Lemma 7. \(\square \)
3.1 Monotone Recursive Measures

Since the complexity of $\text{OP}(D, m)$ for Φ-measures in general is quite high [2], in this paper we focus on a subclass of measures that can be evaluated recursively.

Definition 9. A Φ-measure m is recursive if there exist
- a leaf function $\text{leaf}_m : S_L \rightarrow Q_{\geq 0}$ and
- a partial edge function edge_m, which maps (i) the labels (S, α) of a hyperedge and (ii) a finite multiset Q of already computed intermediate weights in $Q_{\geq 0}$ to a combined weight $\text{edge}_m((S, \alpha), Q)$

such that, for any proof $P = (V, E, \ell)$ with sink v, we have

$$m(P) = \begin{cases}
\text{leaf}_m(\ell(v)) & \text{if } V = \{v\}, \\
\text{edge}_m(\ell(S, v), \{m(P_w) \mid w \in S\}) & \text{if } (S, v) \in E.
\end{cases}$$

Such a measure is monotone if, for any multiset Q, whenever $q \in Q$ and $Q' = (Q \setminus \{q\}) \cup \{q'\}$ with $q' \leq q$ and both $\text{edge}_m((S, \alpha), Q')$ and $\text{edge}_m((S, \alpha), Q)$ are defined, then $\text{edge}_m((S, \alpha), Q') \leq \text{edge}_m((S, \alpha), Q)$.

Intuitively, a recursive measure m can be computed in a bottom-up fashion starting with the weights of the leaves given by leaf_m. The function edge_m is used to recursively combine the weights of the direct subproofs into a weight for the full proof. This function is well-defined since in a proof every vertex has at most one incoming edge. We require edge_m to be defined only for inputs $((S, \alpha), Q)$ that actually correspond to a valid proof in L, i.e. where $S \models_L \alpha$ and Q consists of the weights of some proofs for the sentences in S. For example, if m always yields natural numbers, we obviously do not need edge_m to be defined for multisets containing fractional numbers.

In this paper, we are particularly interested in the following monotone recursive Φ-measures.

- The depth m_{depth} of a proof is defined by
 $$\text{leaf}_{m_{\text{depth}}}(\alpha) := 0 \text{ and } \text{edge}_{m_{\text{depth}}}(\alpha, Q) := 1 + \max Q.$$

- The tree size m_{tree} is given by
 $$\text{leaf}_{m_{\text{tree}}}(\alpha) := 1 \text{ and } \text{edge}_{m_{\text{tree}}}(\alpha, Q) := 1 + \sum Q.$$

What distinguishes tree size from size is that vertices are counted multiple times if they are used in several subproofs. The name tree size is inspired by the fact that it can be interpreted as the size of the tree unraveling of a given proof (cf. Figures 2 and 3). In fact, we show in the appendix that all recursive Φ-measures are invariant under unraveling. This indicates that tree size, depth and other monotone recursive Φ-measures are especially well-suited for cases where proofs are presented to users in the form of trees. This is for example the case for the proof plugin for Protégé [20].

Lemma 10. Depth and tree size are monotone recursive Φ-measures.
Algorithm 1: A Dijkstra-like algorithm

Input: A derivation structure $\mathcal{D}(T, \eta) = (V, E, \ell)$, a monotone recursive Φ-measure m

Output: An optimal proof of $T \models \eta$ w.r.t. $\mathcal{D}(T, \eta)$ and m

1. $Q := \emptyset$
2. foreach $e \in E$ do $k(e) := 0$
3. foreach $v \in V$ do
4. if $\ell(v) \in T$ then
5. $\mathcal{P}(v) := (\{v\}, \emptyset, \ell|_{\{v\}})$; $Q := Q \cup \{v\}$ // $\ell(v)$ is in the theory
6. else if $(\emptyset, v) \in E$ then
7. $\mathcal{P}(v) := (\{v\}, \{(\emptyset, v)\}, \ell|_{\{v\}})$; $Q := Q \cup \{v\}$ // $\ell(v)$ is a tautology
8. else
9. $\mathcal{P}(v) := \text{undefined}$
10. while $Q \neq \emptyset$ do
11. choose $v \in Q$ with minimal $m(\mathcal{P}(v))$ // $\mathcal{P}(v)$ is optimal for $\ell(v)$
12. $Q := Q \setminus \{v\}$
13. foreach $e = (S, d) \in E$ with $v \in S$ do
14. $k(e) := k(e) + 1$
15. if $k(e) = |S|$ then // all source vertices have been reached
16. $\mathcal{P} := (S \cup \{d\}, e, \ell|_{S \cup \{d\}}) \cup \bigcup_{s \in S} \mathcal{P}(s)$ // construct new proof
17. if \mathcal{P} is acyclic then
18. if $\mathcal{P}(d)$ is undefined or $m(\mathcal{P}(d)) > m(\mathcal{P})$ then
19. $\mathcal{P}(d) := \mathcal{P}$; $Q := Q \cup \{d\}$ // \mathcal{P} is better for $\ell(d)$
20. return $\mathcal{P}(v_{\eta})$, where $\ell(v_{\eta}) = \eta$

4 Complexity Results

We investigate the decision problem OP for monotone recursive Φ-measures. We first show upper bounds for the general case, and then consider measures for depth and tree size, for which we obtain even lower bounds. An artificial modification of the depth measure gives a lower bound matching the general upper bound even if unary encoding is used for the threshold q.

4.1 The General Case

Algorithm describes a Dijkstra-like approach that is inspired by the algorithm in [13] for finding minimal hyperpaths w.r.t. so-called additive weighting functions, which represent a subclass of monotone recursive Φ-measures. The algorithm progressively discovers proofs $\mathcal{P}(v)$ for $\ell(v)$ that are contained in $\mathcal{D}(T, \eta)$. If it reaches a new vertex v in this process, this vertex is added to the set Q. In each step, a vertex with minimal weight $m(\mathcal{P}(v))$ is chosen and removed from Q. For each hyperedge $e = (S, d) \in E$, a counter $k(e)$ is maintained that is increased whenever a vertex $v \in S$ is chosen. Once this counter reaches $|S|$, we know that all source vertices of e have been processed. The algorithm then constructs a new proof \mathcal{P} for $\ell(d)$ by joining the proofs for the source vertices using the current hyperedge e. This proof \mathcal{P} is then compared to the best previously known
proof $P(d)$ for $\ell(d)$ and $P(d)$ is updated accordingly. For Line 23 recall that we assumed $D(T, \eta)$ to contain no two vertices with the same label, and hence it contains a unique vertex v_η with label η.

Lemma 11. For any monotone recursive Φ-measure m and deriv er D, Algorithm 7 computes an optimal proof in time polynomial in the size of $D(T, \eta)$.

Since we can actually compute an optimal proof in polynomial time in the size of the whole derivation structure, it is irrelevant how the upper bound q in the decision problem OP is encoded, and hence the following results follow.

Theorem 12. For any monotone recursive Φ-measure m and polynomial deriver D, $OP_{binary}(D, m)$ is in P. It is in $ExpTime$ for all exponential derivers D.

4.2 Proof Depth

We now consider the measure m_{depth} in more detail. We can show lower bounds of P and $ExpTime$ for polynomial and exponential derivers, respectively, although the latter only holds for upper bounds q encoded in binary.

Since our definition of $OP(D, m)$ requires that the input entailment $T \models \eta$ already holds, we cannot use a straightforward reduction from the entailment problem in EL or ELI, however. Instead, we show that ordinary proofs P for $T \models \eta$ satisfy $m(P) \leq q$ for some q, and then extend the TBox to T' in order to create an artificial proof P' with $m(P') > q$. In this way, we ensure that $T' \models \eta$ holds and can use q to distinguish the artificial from the original proofs.

For ELI, we can use an observation from [9, Example 6.29] for this purpose.

Proposition 13 ([9]). For every $q \in Q_{\geq 0}$ and ELI sentence of the form $A \sqsubseteq B$, where $A, B \in N_C$, one can construct in time polynomial in q an ELI theory T such that $T \models A \sqsubseteq B$, and every proof for $T \models A \sqsubseteq B$ in ELI is of depth larger than 2^q.

We can now reduce the entailment problems for EL and ELI to obtain the claimed lower bounds.

Theorem 14. The problems $OP_{\text{unary}}(ELI, m_{\text{depth}})$ and $OP_{\text{binary}}(ELI, m_{\text{depth}})$ are P-hard and $ExpTime$-hard, respectively.

Proof. For the P-hardness, we provide a LOGSPACE-reduction from the entailment problem of a GCI $A \sqsubseteq B$ with two concept names A, B from an EL-theory T, which is P-hard [9]. To reduce this problem to $OP_{\text{unary}}(ELI, m_{\text{tree}})$, we need to find a theory T' and a number q such that $T' \models A \sqsubseteq B$ holds, and moreover $T \models A \sqsubseteq B$ holds iff $\text{ELI}(T', A \sqsubseteq B)$ contains a proof of $T' \models A \sqsubseteq B$ of depth $\leq q$ (cf. Lemma 7).

First, observe that, since proofs must be acyclic, the depth of any proof of $A \sqsubseteq B$ from T is bounded by $q := |\text{ELI}(T, A \sqsubseteq B)|$, whose size in unary encoding is polynomial in the size of T. We now construct

$$T' := T \cup \{A \sqsubseteq A_1, A_1 \sqsubseteq A_2, \ldots, A_{q+2} \sqsubseteq B\},$$
where A_1, \ldots, A_q are concept names that do not occur in T. Furthermore, the existence of an admissible proof for $T' \models A \sqsubseteq B$ of depth at most q is equivalent to $T \models A \sqsubseteq B$, since any proof that uses the new concept names must take $q + 1$ consecutive steps using rule R_{\sqsubseteq}, i.e. must be of depth $q + 1$. Moreover, we can compute q (in binary representation) and output it in unary representation using a logarithmically space-bounded Turing machine, and similarly for T'. Hence, the above construction constitutes the desired LOGSPACE-reduction.

For the remaining result, we can use similar arguments about the exponential deriver ELI, where entailment is \textup{ExpTime}-hard [9]:

\begin{itemize}
 \item the minimal depth of a proof in an exponential derivation structure is at most exponential, and this exponential bound q can be computed in polynomial time using binary encoding;
 \item by Proposition 13 there is an ELI theory T of size polynomial in the size of the binary encoding of q such that $T \models A \sqsubseteq B$ and any proof for $T\models A \sqsubseteq B$ must have at least depth $q + 1$.
\end{itemize}

To demonstrate that the generic upper bounds from Theorem 12 are tight even for unary encoding, we quickly consider the artificial measure $m_{\text{log}(\text{depth})}$ (logarithmic depth), which simply computes the (binary) logarithm of the depth of a given proof. This is also a monotone recursive Φ-measure, since the logarithmic depth contains exactly the same information as the depth itself. It is easy to obtain the following lower bounds from the previous results about m_{depth}.

\textbf{Corollary 15.} $\text{OP}_\text{unary}(\text{ELK}, m_{\text{log}(\text{depth})})$ is \textup{P}-hard and $\text{OP}_\text{unary}(\text{ELI}, m_{\text{log}(\text{depth})})$ is \textup{ExpTime}-hard.

\textit{Proof.} Regardless of the chosen deriver D, $\text{OP}_\text{binary}(D, m_{\text{depth}})$ can be LOGSPACE-reduced to $\text{OP}_\text{unary}(D, m_{\text{log}(\text{depth})})$, because in order to find a proof of depth at most q (with q given in binary), one can equivalently look for a proof whose logarithmic depth is bounded by the value $\log q$. The unary encoding of $\log q$ has the same size as the binary encoding of q and can be computed in LOGSPACE by flipping all bits of the binary encoding of q to 1. \hfill \Box

We now return to m_{depth} and cover the remaining case of exponential derivers and unary encoding of the upper bound q.

\textbf{Theorem 16.} $\text{OP}_\text{unary}(D, m_{\text{depth}})$ is in \textup{PSPACE} for any exponential deriver D. It is \textup{PSPACE}-hard for the exponential deriver $D = ELI$.

\textit{Proof.} For the upper bound, we employ a depth-first guessing strategy: we guess a proof of depth at most q, where at each time point we only keep one branch of the proof in memory. As the length of this branch is bounded by q, and due to our assumptions on derivers, this procedure only requires polynomial space.

For the lower bound, we provide a reduction from the PSPACE-complete QBF problem (satisfiability of quantified Boolean formulas). Let $Q_1x_1Q_2x_2\ldots Q_mx_m.\phi$ be a quantified Boolean formula, where for $i \in \{1, \ldots, m\}$, $Q_i \in \{\exists, \forall\}$, and ϕ is a formula over $\{x_1, \ldots, x_m\}$. We assume ϕ to be in negation normal form, that
is, negation only occurs directly in front of a variable. We construct an \(\mathcal{ELT} \) theory \(T \) and a number \(q \), both of size polynomial in the size of the formula, such that \(T \models A \sqsubseteq B \) holds (cf. Definition 6) and \(T \) has a proof for \(A \sqsubseteq B \) of depth \(q \) iff the QBF formula is valid. We use two roles \(r_1, r_2 \) to deal with the variable valuations, concept names \(A_0, \ldots, A_m \) to count the quantifier nesting, and a concept name \(A_\psi \) for every sub-formula \(\psi \) of \(\phi \). In addition, we use the concept names \(A \) and \(B \) occurring in the conclusion, and two concept names \(B_1 \) and \(B_2 \).

The concept name \(A \) initializes the formula at quantifier nesting level 0:

\[
A \sqsubseteq A_0
\]

For every \(i \in \{1, \ldots, m\} \), \(T \) contains the following sentence to select a truth valuation for \(x_i \), increasing the nesting depth in each step.

\[
\begin{align*}
A_{i-1} \sqsubseteq & \exists r_1. (A_i \sqcap A_{x_i}) \quad (1) \\
A_{i-1} \sqsubseteq & \exists r_2. (A_i \sqcap A_{\neg x_i}). \quad (2)
\end{align*}
\]

To ensure truth valuations are kept along the role-successors, we use the following sentences for every \(l \in \{x_i, \neg x_i \mid 1 \leq i \leq m\} \):

\[
A_l \sqsubseteq \forall r_1. A_l \quad A_l \sqsubseteq \forall r_2. A_l \quad (3)
\]

The following GCIs are now used to evaluate \(\phi \). For every conjunction \(\psi = \psi_1 \land \psi_2 \) occurring in \(\phi \), we use:

\[
A_{\psi_1} \sqcap A_{\psi_2} \sqsubseteq A_{\psi} \quad (4)
\]

and for every disjunction \(\psi = \psi_1 \lor \psi_2 \), we use:

\[
A_{\psi_1} \sqsubseteq A_{\psi} \quad A_{\psi_2} \sqsubseteq A_{\psi} \quad (5)
\]

Finally, the following GCIs are used to propagate the result of the evaluation back towards the start.

\[
\begin{align*}
A_\phi \sqsubseteq B \quad (6) \\
A_i \sqcap B \sqsubseteq \forall r_1^-. B \quad A_i \sqcap B \sqsubseteq \forall r_2^-. B \quad \text{if } Q_i = \exists \quad (7) \\
A_i \sqcap B \sqsubseteq \forall r_1^- B_1 \quad A_i \sqcap B \sqsubseteq \forall r_2^- B_2 \quad B_1 \sqcap B_2 \sqsubseteq B \quad \text{if } Q_i = \forall \quad (8)
\end{align*}
\]

One can now show that there exists a proof for \(A \sqsubseteq B \) from \(T \) of depth at most \(q \) iff the QBF formula is valid, where \(q \) is polynomial and determined by the size and structure of \(\phi \). Finally, we can extend \(T \) with the sentences from Proposition 13 to ensure that \(T \models A \sqsubseteq B \) holds while retaining this equivalence. \(\square \)
Fig. 5. Illustration of the argument used for Theorem 17. On the top, the partially guessed proof tree for two consecutive steps of the algorithm is shown, where the dark nodes are what is currently kept in memory. On the bottom, we see how the corresponding tuples are organized into a tree satisfying Conditions S1–S6.

4.3 The Tree Size Measure

The tree size measure was discussed already in [2], where tight bounds were provided for polynomial derivers and exponential derivers with unary encoding. For the case of exponential derivers with binary encoding, only an ExpTime upper bound was provided, and the precise complexity left open. We improve this result by showing that $\text{OP}_{\text{binary}}(D, m_{\text{tree}})$ can indeed be decided in PSPACE.

Theorem 17. For any exponential deriver \mathcal{D}, $\text{OP}_{\text{binary}}(\mathcal{D}, m_{\text{tree}})$ is in PSPACE.

Proof (sketch). We describe a non-deterministic procedure for $\text{OP}_{\text{binary}}(\mathcal{D}, m_{\text{tree}})$, in polynomial space. Let \mathcal{T} be a theory, η the goal sentence, and q a rational number in binary encoding. By Lemma [7], it suffices to find a proof P for $\mathcal{T} \models \eta$ in $\mathcal{D}(\mathcal{T}, \eta)$ with $m_{\text{tree}}(P) \leq q$. The procedure guesses such a proof starting from the conclusion, while keeping in memory a set S of tuples (η', q'), where η' is a sentence and $q' \leq q$ a rational number. Intuitively, such a tuple states: “We still need to guess a proof for η' of tree size at most q'.”

1. Initialize $S := \{(\eta, q)\}$.
2. While $S \neq \emptyset$,
 (a) select from S a tuple (η', q') such that for all tuples $(\eta'', q'') \in S$ it holds that $q'' \geq q'$;
 (b) guess a hyperedge $\{(\{v_1, \ldots, v_m\}, v')\}$ in $\mathcal{D}(\mathcal{T}, \eta)$ (using the oracle access described in Section 2.2) and m numbers q_1, \ldots, q_m, such that $\ell(v') = \eta'$ and $q_1 + \ldots + q_m + 1 \leq q'$; and
 (c) replace (η', q') in S by the tuples $(\ell(v_1), q_1)$, \ldots, $(\ell(v_m), q_m)$.

There is a proof for $\mathcal{T} \models \eta$ of tree size at most q iff every step in the algorithm is successful. To show that it only requires polynomial space, we show that during the computation, the number of elements in S is always polynomially bounded. For this, we show that the elements in S can always be organized into a tree with the following properties:
the root is labeled with ϵ,

- **S2** every other node is labeled with a distinct element from S,

- **S3** every node that is not the root or a leaf has at least 2 children,

- **S4** every node has at most p children, where p is the maximal number of premises in any inference in $D(T, \eta)$, which we assumed to be polynomial in the input,

- **S5** every node (η', q') has at most 1 child (η'', q'') that is not a leaf and for this child it holds that $q'' < \frac{q'}{2}$,

- **S6** for every node labeled (η', q') with children labeled $(\eta_1, q_1), \ldots, (\eta_m, q_m)$, we have $q_1 + \ldots + q_m < q'$.

We prove this by induction on the steps of the algorithm, where in each step, we either replace one tuple in the tree, or put the new tuples under the leaf with the currently smallest value (see Fig. 5). By **S3** and because every number in S is bounded by q, we can show that the tree has depth at most $\log_2 q$, which with **S4** and **S5** implies that it has at most $p \cdot \log_2 q$ nodes. **S2** then implies that that $|S| \leq p \cdot \log_2 q$ is always satisfied, and thus that S is polynomially bounded. \(\Box\)

A corresponding lower bound can be found for the exponential deriver Eli by a reduction of the word problem for deterministic Turing machines with polynomial space bound.

Theorem 18. For the exponential deriver Eli, $\text{OP}_{\text{binary}}(\text{Eli}, m_{\text{tree}})$ is PSPACE-hard.

Proof (sketch). Let $T = (Q, \Gamma, \delta, q_0, F)$ be a deterministic Turing machine, where Q is the set of states, Γ the tape alphabet, $\delta \in \Gamma$ the blank symbol, $\Sigma \subseteq \Gamma$ the input alphabet, $\delta : Q \times \Gamma \nrightarrow Q \times \Gamma \times \{-1, 0, +1\}$ the partial transition function, q_0 the initial state, and $F \subseteq Q$ the accepting states. We assume that T is polynomially space bounded, that is, there is a polynomial p such that on input words $w \in \Sigma^*$, T only accesses the first $p(|w|)$ cells of the tape. For a word w, we denote by $w[i]$ its ith letter. For some fixed word w, we construct a theory T using the following names, where $k = p(|w|)$:

- **Start** marks the initial and **Accept** an accepting configuration;
- to denote that we are in state $q \in Q$, we use a concept name S_q;
- for every $a \in \Gamma$ and $i \in \{0, \ldots, k\}$, we use a concept name A^a_i denoting that the letter a is on tape position i;
- for every $i \in \{0, \ldots, k\}$, we use the concept name P^+_i to denote that the head is currently on position i, and P^-_i to denote that it is not;
- the role r is used to express the transitions between the configurations.

For convenience, we present the theory not in the required normal form, but aggregate conjunctions on the right. The following sentence describes the initial configuration.

$$\text{Start} \sqsubseteq S_{q_0} \land \bigcap_{i=0}^{k} A^w_i \land \bigcap_{i=|w|} A^l_i \land \bigcap_{i=0}^{k} P^+_i \land \bigcap_{i=1}^{k} P^-_i$$ (9)
The transition from one configuration to the next is encoded with the following sentences for every \(i \in \{0, \ldots, k\} \) and every \((q, a) \in Q \times \Gamma \) with \(\delta(q, a) = (q', b, d) \):

\[
S_q \cap A^a_i \cap P^+_{i+d} \subseteq \exists r. S_{q'} \cap \forall r.A^b_i \cap \forall r.P^+_{i+d} \cap \bigcap_{j \in \{0, \ldots, k\} \setminus \{i+d\}} \forall r.P^-_j
\]

(10)

\[
A^a_i \cap P^-_{i+d} \subseteq \forall r.A^a_i
\]

(11)

Finally, we use the following sentences to detect accepting configurations and propagate the information of acceptance back to the initial configuration

\[
S_f \subseteq \text{Accept} \text{ for all } f \in F,
\]

(12)

\[
\text{Accept} \subseteq \forall r^-.\text{Accept}
\]

(13)

One can find a number \(q \) exponential in \(k \) and the size of \(T \) s.t. that there is a proof for \(T \models \text{Start} \subseteq \text{Accept} \) with tree size at most \(q \) iff \(T \) accepts \(w \). Using Proposition 12, we can extend \(T \) to a theory \(T' \) s.t. \(T' \models \text{Start} \subseteq \text{Accept} \), while a proof of tree size \(q \) exists iff \(T \) accepts \(w \) (observe that \(m_{\text{tree}}(P) \geq m_{\text{depth}}(P) \) holds for all proofs \(P \)).

5 Conclusion

We have investigated the complexity of finding optimal proofs w.r.t. quality measures that satisfy the property of being monotone recursive. Two important examples of this class of measures, depth and tree size, have been considered in detail in combination with exponential and polynomial derivers. The obtained results are promising: given a deriver, the search for an optimal proof for an entailment can be easier than producing all of the proofs by this deriver. The algorithms used to show the upper bounds can serve as building blocks for finding an optimal proof w.r.t. to a monotone recursive measure automatically.

We conjecture that weighted versions of tree size and depth, where sentences or inference steps can have associated rational weights, are also monotone recursive, and the generic upper bounds established in this paper can be straightforwardly applied to them. However, a more thorough study is required here, since the complexity of the decision problem depends on the exact way in which the weights are employed. This step towards weighted measures is motivated by user studies [1, 15, 24], demonstrating that different types of sentences and logical inferences can be more or less difficult to understand.

Acknowledgements This work was supported by the DFG in grant 389792660 as part of TRR 248 (https://perspicuous-computing.science), and QuantLA, GRK 1763 (https://lat.inf.tu-dresden.de/quantla).

References

1. Alharbi, E., Howse, J., Stapleton, G., Hamie, A., Touloumis, A.: The efficacy of OWL and DL on user understanding of axioms and their entailments. In: d’Amato,
2. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovo
tunova, A.: Finding small proofs for description logic en
tailments: Theory and practice. In: Albert, E., Kovacs, L.
eds.) LPAR-23: 23rd International Conference on Logic for Prog-
gramming, Artificial Intelligence and Reasoning. EPiC Series in Compu-
ting, vol. 73, pp. 32–67. EasyChair (2020), https://doi.org/10.29007/nhpp

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovo
tunova, A.: On the complexity of finding good proofs for description logic en-
tailments. In: Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd Interna-
tional Workshop on Description Logics (DL 2020). CEUR Workshop Proceed-

ing, vol. 2663. CEUR-WS.org (2020), http://ceur-ws.org/Vol-2663/paper-1.pdf

4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovo
tunova, A.: Finding good proofs for description logic entailments using recursi-
ve quality measures. In: Platzer, A., Sutcliffe, G. (eds.) Proceedings of the 28th International Conference on Automated Deduction (CADE’21) (2021)

5. Alrabbaa, C., Baader, F., Dachselt, R., Flemisch, T., Koopmann, P.: Visualising
proofs and the modular structure of ontologies to support ontology repair. In: DL
2020: International Workshop on Description Logics. CEUR Workshop Proceed-

ing, vol. 2663. CEUR-WS.org (2020), http://ceur-ws.org/Vol-2663/paper-2.

6. Arrieta, A.B., Diaz-Rodriguez, N., Ser, J.D., Bennetot, A., Tabik, S., Barbado,
A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., Herrera, F.;
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion 58, 82–115 (2020).
https://
doi.org/10.1016/j.inffus.2019.12.012

7. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI’05). pp. 364–369. Professional Book Center (2005), http://ijcai.org/
Proceedings/09/Papers/053.pdf

8. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark,
K., Patel-Schneider, P.F. (eds.) Proc. of the 4th Workshop on OWL: Experi-
ences and Directions. pp. 1–10 (2008), http://webont.org/owled/2008dc/papers/
owlad2008dc_paper_3.pdf

9. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic.
Cambridge University Press (2017). https://doi.org/10.1017/9781139025355

10. Baader, F., Sunthisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic \mathcal{EL}^+. In: Proc. of the 3rd Conference on Knowl-
edge Representation in Medicine (KR-MED’08): Representing and Sharing Knowledge
Using SNOMED. CEUR-WS, vol. 410 (2008), http://ceur-ws.org/Vol-410/
Paper01.pdf

11. Borgida, A., Franconi, E., Horrocks, I.: Explaining \mathcal{ALC} subsumption. In:
ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelli-
gence, Berlin, Germany, August 20-25, 2000. pp. 209–213 (2000), http://www.
frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf

12. Fiedler, A.: Natural language proof explanation. In: Mechanizing Mathematical
Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th
Birthday. pp. 342–363 (2005). https://doi.org/10.1007/978-3-540-32254-2_20
13. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Discrete Applied Mathematics 42(2), 177–201 (1993). https://doi.org/10.1016/0166-218X(93)90045-P

14. Horridge, M.: Justification Based Explanation in Ontologies. Ph.D. thesis, University of Manchester, UK (2011). https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF

15. Horridge, M., Bail, S., Parsia, B., Sattler, U.: Toward cognitive support for OWL justifications. Knowl. Based Syst. 53, 66–79 (2013). https://doi.org/10.1016/j.knosys.2013.08.021

16. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In: The Semantic Web - ISWC 2010 - 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010. Revised Selected Papers, Part I. pp. 354–369 (2010). https://doi.org/10.1007/978-3-642-17746-0_23

17. Huang, X.: Reconstruction proofs at the assertion level. In: Proceedings of the 12th International Conference on Automated Deduction. p. 738–752. CADE-12, Springer-Verlag (1994). https://doi.org/10.1007/3-540-58156-1_53

18. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009. pp. 2040–2045 (2009). http://ijcai.org/Proceedings/09/Papers/336.pdf

19. Kazakov, Y., Klinov, P.: Goal-directed tracing of inferences in Ł Ł ontologies. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic, D., Groth, P.T., Noy, N.F., Janowicz, K., Goble, C.A. (eds.) Proc. of the 13th International Semantic Web Conference (ISWC 2014). Lecture Notes in Computer Science, vol. 8797, pp. 196–211. Springer (2014). https://doi.org/10.1007/978-3-319-11915-1_13

20. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in Protege. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proc. of the 30th Int. Workshop on Description Logics (DL’17). CEUR Workshop Proceedings, vol. 1879 (2017). http://www.ceur-ws.org/Vol-1879/paper31.pdf

21. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK – from polynomial procedures to efficient reasoning with Ł Ł ontologies. J. Autom. Reasoning 53(1), 1–61 (2014). https://doi.org/10.1007/s10817-013-9260-3

22. Lingenfelder, C.: Structuring computer generated proofs. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit, MI, USA, August 1989. pp. 378–383 (1989). http://ijcai.org/Proceedings/89-1/Papers/050.pdf

23. McGuinness, D.L.: Explaining Reasoning in Description Logics. Ph.D. thesis, Rutgers University, NJ, USA (1996). https://doi.org/10.7282/t3-q0cc-5305

24. Nguyen, T.A.T., Power, R., Piwek, P., Williams, S.: Measuring the understandability of deduction rules for OWL. In: Proceedings of the First International Workshop on Debugging Ontologies and Ontology Mappings, WoDOOM 2012, Galway, Ireland, October 8, 2012. pp. 1–12 (2012). http://www.ida.liu.se/~patla/conferences/WoDOOM12/papers/paper4.pdf

25. Nguyen, T.A.T., Power, R., Piwek, P., Williams, S.: Predicting the understandability of OWL inferences. In: The Semantic Web: Semantics and Big Data, 10th International Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceedings. pp. 109–123 (2013). https://doi.org/10.1007/978-3-642-38288-8_8

26. Nielsen, L.R., Andersen, K.A., Prétolani, D.: Finding the K shortest hyperpaths. Computers & OR 32, 1477–1497 (2005). https://doi.org/10.1016/j.cor.2003.11.014
27. Schiller, M.R.G., Glimm, B.: Towards explicative inference for OWL. In: Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23 - 26, 2013. pp. 930–941 (2013), http://ceur-ws.org/Vol-1014/paper_36.pdf

28. Schiller, M.R.G., Schiller, F., Glimm, B.: Testing the adequacy of automated explanations of EL subsumptions. In: Proceedings of the 30th International Workshop on Description Logics, Montpellier, France, July 18-21, 2017. (2017), http://ceur-ws.org/Vol-1879/paper43.pdf

29. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003). pp. 355–362. Morgan Kaufmann, Acapulco, Mexico (2003), http://ijcai.org/Proceedings/03/Papers/053.pdf
A Appendix

A.1 Hypergraphs

Definition 19 (Hypergraph). A (finite, directed, labeled) hypergraph \(\mathcal{H} \) is a triple \(\mathcal{H} = (V, E, \ell) \), where

- \(V \) is a finite set of vertices,
- \(E \) is a set of hyperedges \((S, d)\) with source vertices \(S \subseteq V \) and target vertex \(d \in V \), and
- \(\ell: V \rightarrow |S| \) is a labeling function that assigns sentences to vertices.

We extend the function \(\ell \) to hyperedges as follows: \(\ell(S, d) := \{ \ell(s) \mid s \in S \}, \ell(d) \). The size of \(H \), denoted \(|H|\), is measured by the size of the labels of its hyperedges:

\[
|H| := \sum_{(S, d) \in E} |(S, d)|, \text{ where } |(S, d)| := |\ell(d)| + \sum_{v \in S} |\ell(v)|.
\]

A vertex \(v \in V \) is called a leaf if it has no incoming hyperedges, i.e. there is no \((S, v) \in E\); and \(v \) is a sink if it has no outgoing hyperedges, i.e. there is no \((S, d) \in E\) such that \(v \in S \). We denote the set of all leaves and the set of all sinks in \(H \) as \(\text{leaf}(H) \) and \(\text{sink}(H) \), respectively.

A hypergraph \(H' = (V', E', \ell') \) is called a subgraph of \(H = (V, E, \ell) \) if \(V' \subseteq V \), \(E' \subseteq E \) and \(\ell' = \ell|_{V'} \). In this case, we also say that \(H \) contains \(H' \) and write \(H' \subseteq H \). Given two hypergraphs \(H_1 = (V_1, E_1, \ell_1) \) and \(H_2 = (V_2, E_2, \ell_2) \) s.t. \(\ell_1(v) = \ell_2(v) \) for every \(v \in V_1 \cap V_2 \), the union of the two hypergraphs is defined as \(H_1 \cup H_2 := (V_1 \cup V_2, E_1 \cup E_2, \ell_1 \cup \ell_2) \).

Definition 20 (Cycle, Tree). Given a hypergraph \(H = (V, E, \ell) \) and \(s, t \in V \), a path \(P \) of length \(q \geq 0 \) in \(H \) from \(s \) to \(t \) is a sequence of vertices and hyperedges

\[
P = (d_0, (S_1, d_1), d_1, (S_2, d_2), \ldots, d_{q-1}, (S_q, d_q), d_q),
\]

where \(d_0 = s \), \(d_q = t \), and \(d_{j-1} \in S_j \) for all \(j, 1 \leq j \leq q \). By \(|P|\) we denote the length of a path \(P \). If there is such a path of length \(q > 0 \) in \(H \), we say that \(t \) is reachable from \(s \) in \(H \). If \(t = s \), then \(P \) is called a cycle. The hypergraph \(H \) is acyclic if it does not contain a cycle. The hypergraph \(H \) is connected if every vertex is connected to every other vertex by a series of paths and reverse paths.

A hypergraph \(H = (V, E, \ell) \) is called a tree with root \(t \in V \) if \(t \) is reachable from every vertex \(v \in V \setminus \{t\} \) by exactly one path. In particular, the root is the only sink in a tree, and all trees are acyclic and connected.

Definition 21 (Homomorphism). Let \(H = (V, E, \ell) \) and \(H' = (V', E', \ell') \) be two hypergraphs. A homomorphism from \(H \) to \(H' \), denoted \(h: H \rightarrow H' \), is a mapping \(h: V \rightarrow V' \) s.t. for all \((S, d) \in E \), one has \(h(S, d) := \{h(v) \mid v \in S \}, h(d) \in E' \) and, for all \(v \in V \), it holds that \(\ell'(h(v)) = \ell(v) \). Such an \(h \) is an isomorphism if it is a bijection, and its inverse, \(h^{-1}: H' \rightarrow H \), is also a homomorphism.
Definition 22 (Hypergraph Unraveling). The unraveling of an acyclic hypergraph $H = (V,E,\ell)$ at a vertex $v \in V$ is the tree $H_T = (V_T,E_T,\ell_T)$, where V_T consists of v as well as all paths in H that end in v, E_T contains all hyperedges $\{(P_1,\ldots,P_n),P\}$ (resp. $\{(P_1,\ldots,P_n),v\}$) where each P_i is of the form $(d_i,(S,d)) \cdot P$ (resp. $(d_i,(S,v),v)$) such that $S = \{d_1,\ldots,d_n\}$, $\ell_T(v) = \ell(v)$ and $\ell_T(P)$ is the label of the starting vertex of P in H.

Moreover, the mapping $h_T: V_T \to V$ that maps each path to its starting vertex and v to itself is a homomorphism from H to H_T. The tree in Figure 3 represents the unraveling of the hypergraph from Figure 2.

A.2 Additional Proofs

Lemma 3. Let $P = (V,E,\ell)$ be a proof for $T \models \eta$. Then

1. all paths in P are finite and all longest paths in P have v_η as the target; and
2. $T \models \eta$.

Proof. The first statement trivially follows from the acyclicity and the only sink v_η in P. The length of a path in P can be bounded by $|V|$. The second claim can be shown by an induction on the depth of P. Namely, for every k and every $w \in V$ s.t. all paths leading to w have length at most k it holds that $T \models \ell(w)$. The induction base follows from the fact that the leaves are labeled with the sentences from T. For the induction step, for a vertex $w \in V$, we consider an hyperedge $(S,w) \in E$. Every $s \in S$ satisfies the induction hypothesis and, thus, $T \models \ell(s)$. By P being a derivation structure, it holds $\{\ell(s)|s \in S\} \models \ell(w)$ and, by transitivity of model-based entailment, $T \models \ell(w)$. \qed

We now show that Definition 5 is more general than the similar definition of Ψ-measures in [3], and in particular now also covers the measure depth.

Definition 23 ([3]). A measure m is a Ψ-measure if, for every $P \in \mathcal{P}_L$,

- $[P]$ $m(P)$ is computable in polynomial time in the size of P,
- $[SI]$ every subproof of a homomorphic image of P weighs no more than P, i.e. $m(P'') \leq m(P)$ for any homomorphism $h: P \to P'$ and $P'' \subseteq h(P)$ such that $P'' \in \mathcal{P}_L$.

Lemma 24. For proofs according to Definition 2, every Ψ-measure (as introduced in [3]) is a Φ-measure, but not vice versa.

Proof. Trivially follows since [HI] requires that only minimal subproofs of the homomorphic image weighs no more than P. However, in contrast to [3], in this paper we require every vertex in a proof in Definition 2 to have at most one incoming edge. Thus, rigorously speaking, measures in this paper may be undefined for some proof hypergraphs from the paper [3].

Moreover, depth is a Φ-measure (see Lemma 8 in [3]) but not a Ψ-measure (see Lemma 8 in [3]). \qed
For the following proof, we define $\mathcal{P}^{-v} = (V^{-v}, E^{-v}, \ell^{-v})$ as the largest subproof of \mathcal{P} such that

- $v \in \text{leaf}(\mathcal{P}^{-v})$,
- $\text{leaf}(\mathcal{P}^{-v}) \subseteq \text{leaf}(\mathcal{P})$, and
- $\text{sink}(\mathcal{P}^{-v}) = \text{sink}(\mathcal{P})$.

Intuitively, we obtain \mathcal{P}^{-v} by removing the proof of v, i.e. \mathcal{P}_v, from \mathcal{P}. Therefore, for every $w \in V_v$ where $w \neq v$, and every $(S, d) \in E_v$ where $w \in S$, if all paths P in \mathcal{P} from w to $\text{sink}(\mathcal{P})$ go through v, then $w \notin V^{-v}$ and $(S, d) \notin E^{-v}$, otherwise, $w \in V^{-v}$ and $(S, d) \in E^{-v}$. \mathcal{P}^{-v} need not be a proof w.r.t. \mathcal{T} since v is now a leaf, but $\ell(v)$ may not be a sentence from \mathcal{T}.

Lemma 7. For any deriv \mathcal{D} and Φ-measure m, if there is an admissible proof \mathcal{P} w.r.t. $\mathcal{D}(\mathcal{T}, \eta)$ with $m(\mathcal{P}) \leq q$ for some $q \in \mathbb{Q}_{\geq 0}$, then there exists a subproof \mathcal{Q} of $\mathcal{D}(\mathcal{T}, \eta)$ for $\mathcal{T} \models \eta$ with $m(\mathcal{Q}) \leq q$.

Proof. Let \mathcal{P} be such a proof with associated homomorphism $h : \mathcal{P} \to \mathcal{D}(\mathcal{T}, \eta)$.

First, we show that there is a subproof for $\mathcal{T} \models \eta$ in the homomorphic image. If $h(\mathcal{P})$ is acyclic and every vertex has at most one incoming edge, then we already found one subproof. Since \mathcal{P} has a unique sink v_0, it must be mapped to a unique sink $h(v_0)$ in $h(\mathcal{P})$, and thus $h(\mathcal{P})$ is the desired subproof of $\mathcal{D}(\mathcal{T}, \eta)$.

If $h(\mathcal{P})$ is not acyclic or there is a vertex with more than one incoming edge, our goal is to find another admissible proof \mathcal{P}^* w.r.t. $\mathcal{D}(\mathcal{T}, \eta)$ that uses a subset of the vertices of \mathcal{P} such that $h(\mathcal{P}^*) \subset h(\mathcal{P})$ is acyclic with only one incoming edge for any vertex. For this purpose, first consider an arbitrary cycle in $h(\mathcal{P})$, which must be due to two vertices v, v' in \mathcal{P} such that $h(v) = h(v')$ and there is a path between v and v' (or due to multiple such pairs of vertices). Since \mathcal{P} is acyclic, we can assume that there is a path from v to v', but no path from v' to v. We now consider the two subproofs \mathcal{P}_v and $\mathcal{P}_{v'}$. As there is a path from v to v', we have $\mathcal{P}_v \subset \mathcal{P}_{v'}$. Since $h(v) = h(v')$, both vertices are labeled with the same sentence. The idea of the following construction is to remove $\mathcal{P}_{v'}$ from \mathcal{P} and replace it with \mathcal{P}_v, which effectively removes all paths from v to v'.

More formally, we first consider the hypergraph $H = \mathcal{P}^{-v} \cup \mathcal{P}_v$ and then, in the hyperedges (S, d) in H that still contain $v' \in S$, we replace v' by v, effectively merging the two vertices, remove v' from the set of vertices, and thus obtain a hypergraph \mathcal{P}'. If there was no such hyperedge, then v' was the sink of \mathcal{P}, i.e. $\ell(v') = \eta$, and v will now be the new sink in \mathcal{P}' with $\ell(v) = \ell(v') = \eta$.

For a vertex v in $h(\mathcal{P})$ with more than one incoming edge, again there must be two vertices v, v' in \mathcal{P} s.t. $h(v) = h(v') = w$. We can thus apply the same procedure as above. However, since $\mathcal{P}_v \subset \mathcal{P}_{v'}$ may not hold, it does not matter which of the subproofs $\mathcal{P}_v, \mathcal{P}_{v'}$ is replaced by the other.

We now show that \mathcal{P}' is also an admissible proof w.r.t. $\mathcal{D}(\mathcal{T}, \eta)$. Our construction does not produce new leaves, and hence \mathcal{P}' is still grounded. Clearly, all remaining edges are sound since they were already sound in \mathcal{P}. Moreover, \mathcal{P}' is acyclic and every vertex has only one incoming edge since all edges and cycles in \mathcal{P}' can be traced back to paths in \mathcal{P} that involve both v and v'; but we
have assumed that there are no paths from \(v' \) to \(v \), and have destroyed all paths from \(v \) to \(v' \). As argued above, we have also kept the property that there is exactly one sink, which is labeled with \(\eta \). Observe that \(h \) is also a homomorphism from \(P' \) to \(\mathcal{D}(T, \eta) \) (when restricted to the vertices of \(P' \)), because \(h(v) = h(v') \), and moreover \(h(P') \subseteq h(P) \).

This means that, after finitely many such operations, we can obtain from \(P \) the desired proof \(P^* \) such that \(h(P^*) \subseteq h(P) \) is acyclic with every vertex having at most one incoming edge. Since \(h(P^*) \) also has a unique sink labeled by \(\eta \), it is a subproof with sink \(h(v_0) \) in \(\mathcal{D}(T, \eta) \).

Second, consider the set \(Q \) of all possible subproofs with sink \(h(v_0) \) in \(\mathcal{D}(T, \eta) \). As shown above, \(Q \) is non-empty. Thus, if the proof \(h(P^*) \) obtained in the previous step is minimal w.r.t. \(m \), then \(m(h(P^*)) \leq m(P) \leq q \) by [HI] in Definition 5.

Otherwise, there is another subproof \(Q' \subseteq Q \) with sink \(h(v_0) \) in \(\mathcal{D}(T, \eta) \), s.t. \(m(Q') < m(h(P^*)) \) and its weight is minimal w.r.t. \(m \) among \(Q' \). Then, again, \(m(Q) \leq m(P) \leq q \) by [HI] in Definition 6.

An interesting property of recursive measures is that they are invariant under unraveling (see Definition 22).

Lemma 25. Let \(m \) be a recursive \(\Phi \)-measure, \(P \) be a proof for \(T \models \eta \) and \(P_T \) its unraveling into a tree (starting at the sink). Then \(m(P) = m(P_T) \).

Proof. We show this by induction on the depth of \(P \). If \(P \) contains only one vertex, then \(P_T = P \), and thus the claim is trivial. If the longest path in \(P \) has length \(n \), assume that the claim holds for all proofs of depth at most \(n - 1 \). Consider the unique hyperedge \((S, v) \in P\) that leads to the sink \(v \) of \(P \). Then \(P_T \) is isomorphic to the union of the unravelings \(P_{w,T} \) of all \(P_w \) with \(w \in S \), together with the hypergraph that contains only the edge \((S, v)\) (if we identify the paths \((w, (S, v), v) \) with the vertices \(w \)). By induction, \(m(P_w) = m(P_{w,T}) \) since each \(P_w \) is of depth at most \(n - 1 \). We obtain that

\[
m(P) = \text{edge}_m(\ell(S, v), \{m(P_w) \mid w \in S\})
= \text{edge}_m(\ell(S, v), \{m(P_{w,T}) \mid w \in S\}) \\
= m(P_T)
\]

since \(m \) is recursive.

Lemma 10. Depth and tree size are monotone recursive \(\Phi \)-measures.

Proof. Both measures are monotone recursive by definition and can be computed in polynomial time in the size of the input proof.

For tree size, we consider a homomorphism \(h: P \to H \) and a vertex \(w \) in \(P \). By the procedure described in the proof of Lemma 7, there exists a proof \(P_w^* \) with edges from \(P \) (modulo renamed vertices) s.t. \(h(P_w^*) \subseteq h(P) \) is a proof with sink \(h(w) \). It is not hard to see that, by construction, \(m_{\text{tree}}(P_w^*) \leq m_{\text{tree}}(P) \), since we replace subproofs \(P_v \) with \(P_{w,v} \), where \(P_v \subseteq P_w \) and \(m_{\text{tree}}(P_v) < m_{\text{tree}}(P_w) \). Since \(h(P_w^*) \) is a proof, \(m_{\text{tree}}(h(P_w^*)) \) is defined. The property of any proof vertex
Lemma 11. For any monotone recursive \(\Phi \)-measure \(m \) and deriver \(D \), Algorithm \(\Phi \) computes an optimal proof in time polynomial in the size of \(\Omega(T, \eta) \).

Proof. We can show the following facts about this algorithm.

(I) Whenever \(P(v) \) is defined, then it is a proof for \(\ell(v) \) contained in \(\Omega(T, \eta) \). We prove this by induction on the order in which the hypergraphs \(P(v) \) are constructed by Algorithm \(\Phi \). The ones in Line 5 consist of a single leaf \(v \), which is labeled by a theory sentence, and hence are sound, grounded, acyclic, and have the single sink \(v \). Similarly, \(P(v) \) in Line 7 is always a proof since it consists of a single edge from \(D \). Every vertex in \(P \) has a pre-image in \(P \) and, therefore, \([HI]\) holds for tree size.

For depth, we can use a similar argument. The process of replacing subproofs \(P_v' \) with their smaller alternatives \(P_v \subset P_v' \) also results in a non-increasing depth for \(P_v \). As a consequence, \(m_{\text{depth}}(h(P_v')) \leq m_{\text{depth}}(P) \) for \(h(P_v') \subseteq h(P) \).

(II) If vertex \(v \) is chosen before vertex \(w \) in Line 12, then \(m(P(v)) \leq m(P(w)) \). We show that after choosing \(v \) in Line 11 the algorithm cannot produce a new proof \(P \) in Line 10 with \(m(P) < m(P(v)) \), and thus the smallest weight \(\min\{m(P(w)) \mid w \in Q\} \) can never decrease. Consider the proof \(P \) from Line 11. Since \(v \in S \), we have \(P(v) \subset P \), and therefore \(m(P(v)) \leq m(P) \) by \([HI]\).

(III) Algorithm \(\Phi \) terminates in polynomial time.

Item \([II]\) implies that each vertex \(v \in V \) can be removed from \(Q \) at most once: in order for \(v \) to be added again to \(Q \) in Line 10 there would need to exist a proof other than \(P(v) \) with the same sink \(v \) but a smaller weight, but according to \([II]\), after choosing \(v \) in Line 11 the algorithm does not construct any proofs with a weight smaller than \(m(P(v)) \) for any sink. Therefore, during the complete run of the algorithm, each edge having only one incoming edge guarantees that \(h(P_v') \) and \(P_v' \) are isomorphic. Since homomorphisms preserve edges, \(m_{\text{tree}}(P_v') = m_{\text{tree}}(h(P_v')) \). Thus, for every vertex \(w \) in \(P \), there is a proof with sink \(h(w) \) in \(h(P) \) of tree size no greater than \(m_{\text{tree}}(P) \). Trivially, every minimal (w.r.t. \(m_{\text{tree}} \)) subproof with sink \(h(w) \) weighs no more than \(m_{\text{tree}}(h(P_w)) \). Every vertex in \(h(P) \) has a pre-image in \(P \) and, therefore, \([HI]\) holds for tree size.

For depth, we can use a similar argument. The process of replacing subproofs \(P_v' \) with their smaller alternatives \(P_v = P_v' \) also results in a non-increasing depth for \(P_v \). As a consequence, \(m_{\text{depth}}(h(P_v')) \leq m_{\text{depth}}(P) \) for \(h(P_v') \subseteq h(P) \).
Every vertex \(v \in V \) that is the sink of a proof \(P \) contained in \(\mathcal{D}(T, \eta) \) is added to \(Q \) at some point.

We prove this by induction on the structure of \(P \). If \(P \) contains only \(v \), then either \(\ell(v) \in T \), and hence \(v \) is added to \(Q \) in Line 5 or otherwise there is an edge \((\emptyset, v)\) in \(P \) (and hence in \(E \)), in which case \(v \) is added to \(Q \) in Line 4.

If \(P \) has more than one vertex, then it must contain at least one edge \(e = (S, v) \in E \), where each \(s \in S \) is the sink of a subproof of \(P \) in \(\mathcal{D}(T, \eta) \). By induction we know that each \(s \in S \) is added to \(Q \) at some point during the algorithm. By Item [III], they must also be removed from \(Q \) at some point afterwards, and hence eventually \(k(e) \) reaches \(|S| \) in Line 15. If \(P(v) \) was already defined at this point, then \(v \) had already been added to \(Q \) earlier. Otherwise, \(v \) is now added to \(Q \) in Line 19.

When Algorithm 4 terminates and \(P(v) \) is defined, then \(m(P(v)) \) is minimal among all proofs for \(\ell(v) \) contained in \(\mathcal{D}(T, \eta) \).

By [I], \(P(v) \) is a proof of this form. Assume to the contrary that there is a proof \(P \) for \(\ell(v) \) contained in \(\mathcal{D}(T, \eta) \) such that \(m(P) < m(P(v)) \). Then \(P \) and \(P(v) \) must both have the sink \(v \), because we assume that \(\mathcal{D}(T, \eta) \) contains no two vertices with the same label. Assume moreover that:

i) \(P \) is an optimal proof for \(\ell(v) \) in \(\mathcal{D}(T, \eta) \), that is, \(m(P) \leq m(P') \) for every other proof \(P' \) for \(\ell(v) \) in \(\mathcal{D}(T, \eta) \) (cf. Corollary 8), and

ii) among all other vertices \(v' \in V \) and all proofs \(P' \) for \(\ell(v') \) in \(\mathcal{D}(T, \eta) \) such that \(m(P') < m(P(v')) \), we also have \(m(P) \leq m(P') \) and whenever \(m(P) = m(P') \), then \(|P| \leq |P'| \).

Consider the unique last inference step \((S, v)\) in \(P \). We show that, for every vertex \(w \in S \), an optimal proof was assigned to \(P(w) \) before \(v \) was chosen in Line 11.

First, \(P_w \) is a proof of \(\ell(w) \) contained in \(\mathcal{D}(T, \eta) \), and hence by [IV] \(P(w) \) must be defined when Algorithm 4 terminates.

Next we show that \(m(P(w)) \leq m(P_w) \). Assume to the contrary that \(m(P_w) < m(P(w)) \), i.e. \(w \) and \(P_w \) satisfy the precondition in Assumption [II] and thus \(m(P) \leq m(P_w) \) must hold. However, by [III], we have \(m(P_w) \leq m(P) \) (observe that \(m(P_w) \) must be minimal among the subproofs of \(P_w \) with sink \(w \) since otherwise \(m(P) \) would not be minimal, because \(m \) is monotone recursive). Thus, Assumption [II] also yields that \(|P| \leq |P_w| \), which contradicts the fact that \(P_w \) is a subproof of \(P \).

We obtain that
\[
m(P(w)) \leq m(P_w) \leq m(P) < m(P(v)),
\]
which by (11) means that \(w \) must have been chosen (in Line 11) before \(v \).

To summarize, for every vertex \(w \in S \), we know that an optimal proof for \(\ell(w) \) with weight \(m(P_w) \) has already been assigned to \(P(w) \) before \(v \) is chosen in Line 11 and moreover each \(w \in S \) was chosen before \(v \). But then, for one of these vertices \(w \) (the last one to be processed), a proof \(P' \) is constructed from the subproofs \(P(w) \) and the edge \((S,v)\) in Line 16. Moreover, since \(m(P(w)) \leq m(P_w) \) holds for all \(w \in S \) and \(m \) is a monotone recursive measure, we obtain

\[
m(p') = \text{edge}_m(\ell(S, v), \{m(P(w)) \mid w \in S\}) \\
\leq \text{edge}_m(\ell(S, v), \{m(P_w) \mid w \in S\}) \\
= m(P).
\]

Since \(P' \) was constructed as a candidate for \(P(v) \) by the algorithm, we further know that \(m(P(v)) \leq m(P') \leq m(P) \), which contradicts our initial assumption that \(m(P) < m(P(v)) \). We obtain that \(P(v) \) must be optimal.

Since by Lemma 7 the derivation structure \(D(T, \eta) \) contains an optimal proof for \(T \models \eta \), Items (III)–(V) show that Algorithm 1 returns such a proof in Line 20.

\(\square \)

Theorem 17. For any exponential derivier \(D \), \(\text{OP}_{\text{binary}}(D, m_{\text{tree}}) \) is in PSPACE.

Proof (continued). By our assumption that all sentences in \(D(T, \eta) \) are of polynomial size and due to the binary encoding of numbers, each tuple in \(S \) takes only polynomial space. It thus remains to verify the properties (S1)–(S6) to show that \(S \) is polynomially bounded.

We proceed by induction on the algorithm steps: for the original set, \((\eta, q)\) is the only child of the root. In each step where we replace \((\eta', q')\) with \((\eta_1, q_1), \ldots, (\eta_m, q_m)\), we remove from the current tree the node labeled with \((\eta', q')\), and if \(m = 1 \), we replace it with the new node, and if \(m > 1 \), we put the new nodes under the leaf labeled with the now smallest value, or under \(\epsilon \) if there is no other leaf. It is clear that the resulting structure must always satisfy (S1)–(S6) because we replace a node in the tree if the number of new nodes is 1. It satisfies (S4) because we only replace nodes or add \(m > 1 \) nodes to a leaf, and we have \(m \leq p \). For (S5) we note that because of (S3) and (S6) for each node labeled \((\eta', q')\), its child \((\eta'', q'')\) with minimal \(q'' \) must always satisfy \(q'' < \frac{q}{2} \), and we always put new nodes only under the node with the smallest associated number. Now, as a consequence of (S5), and because every number in \(S \) is bounded by \(q \), we obtain that the subtree containing all inner nodes is a path and of depth \(\log_2 q \). Together with (S4) this implies that the tree has at most \(p \cdot \log_2 q \) nodes, and with (S2) we obtain that \(|S| \leq p \cdot \log_2 q \) is always satisfied.

\(\square \)

Theorem 18. For the exponential derivier \(\text{ELI} \), \(\text{OP}_{\text{binary}}(\text{ELI}, m_{\text{tree}}) \) is PSPACE-hard.

Proof (continued). It remains to find the upper bound \(q \) on the tree size of a proof for \(T \models \text{Start} \sqsubseteq \text{Accept} \).
We first note that T has at most $|Q| \cdot |Γ|^k$ different configurations, and thus an accepting run involves $m \leq |Q| \cdot |Γ|^k$ steps. Let $Conf_0, \ldots, Conf_m$ denote the sequence of conjunctions representing those configurations, where $Conf_0$ represents the initial configuration and $Conf_m$ the final one. For $j \in \{0, \ldots, m-1\}$, the transitions from one configuration to the succeeding is encapsulated in an entailment of the form $Conf_j \subseteq \exists r. Conf_{j+1}$. Those entailments are inferred as follows with the calculus:

1. $(2 + k + 1) + k = 2k + 3$ times we have to apply CR1 and then CR2 to obtain sentences as in (10) and (11), but with the entire configuration encoding $Conf_j$ on the left-hand side. For each of the $2 + k + 1$ sentences corresponding to (10), this gives a tree of size 5 (3 times we apply CR1 without a premise to get the sentences $Conf_j \subseteq A$, where A is an atom on the left-hand side of (10), followed by one application of CR2 with a sentence corresponding to (10)). For the k sentences in (11), this requires a tree of size 4 (the same argument as before, but now with one atom less on the left-hand side of (11)).

2. The resulting $2k + 3$ sentences are then step-wise combined using CR4 to obtain the desired entailment with $Conf_{j+1}$ under the role restriction. This generates $2k + 1$ intermediate conclusions. Together with the final conclusion $Conf_j \subseteq \exists r. Conf_{j+1}$, this makes $2k + 2$ additional tree vertices in total.

Consequently, each inference of $Conf_j \subseteq \exists r. Conf_{j+1}$ is generated by a proof of tree size $(2 + k + 1) \cdot 5 + k \cdot 4 + (2k + 2) = 11k + 17$.

The complete tree proof for $\text{Start} \subseteq \text{Accept}$ is now obtained by first generating $Conf_m \subseteq \text{Accept}$ for the final configuration. This involves 3 vertices, the first by using CR1 to generate $Conf_m \subseteq S_f$, where f is the accepting state of the configuration, and then using CR2 with Sentence (12) to generate $Conf_m \subseteq \text{Accept}$. From here, we follow the sequence of configurations backwards, each time inferring from $Conf_j \subseteq \text{Accept}$ and (13) the sentence $Conf_j \subseteq \forall r^{-} . \text{Accept}$ (increasing the tree size by 2), and then using this sentence together with $Conf_{j-1} \subseteq \exists r. Conf_j$ via CR3 to get $Conf_{j-1} \subseteq \text{Accept}$ (tree size increased by $11k + 17$). Finally, from $Conf_0 \subseteq \text{Accept}$ we get to $\text{Start} \subseteq \text{Accept}$ using the $2k + 3$ sentences corresponding to (10) and CR2. We obtain that the entire tree proof requires at most

$$1 + (2k + 3) + m \cdot (3 + 2 + (11k + 17)) \leq (m + 1) \cdot (11k + 22)$$

$$\leq (|Q| \cdot |Γ|^{|w|} + 1) \cdot (17 + 11p(|w|))$$

vertices. Note that this number can be encoded using polynomially many bits. \qed