Prevalence of tick-borne encephalitis virus in ticks from southern Korea

Sungjin Ko¹, Jun-Gu Kang¹, Su Yeon Kim², Heung-Chul Kim³, Terry A. Klein⁴, Sung-Tae Chong³, William J. Sames⁵, Seok-Min Yun², Young-Ran Ju²*, Joon-Seok Chae¹*,

¹Veterinary Internal Medicine, Research Institute and BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
²Division of Arboviruses, Center for Immunology and Pathology, Korea National Institute of Health, Seoul 122-701, Korea
³5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit #15247, APO AP 96205-5247, Seoul, Korea
⁴Force Health Protection and Preventive Medicine, 65th Medical Brigade, Unit #15281, APO AP 96205-5281, Seoul, Korea
⁵Defense Logistics Agency, 8725 John J. Kingman Road, Suite 2639 Attn: DES-EQ, Fort Belvoir, VA 22060-6221, USA

The prevalence of tick-borne encephalitis virus (TBEV) in southern Korea was determined by collecting ticks using tick drags. A total of 4,077 of 6,788 ticks collected were pooled (649 pools) according to collection site, species, and developmental stage and assayed for TBEV. The TBEV protein E and NS5 gene fragments were detected using RT-nested PCR in six pools of nymphs collected from Jeju Island (2,491 ticks). The minimum field detection rates for TBEV were 0.17% and 0.14% for *Haemaphysalis longicornis* and *Haemaphysalis flava* nymphs, respectively. The 252 bp NS5 and 477 bp protein E gene amplicons were sequenced. Phylogenetic analysis showed that the NS5 and protein E genes of the Jeju strain were clustered with Western subtype (98.0% and 99.4% identity, respectively). The Western subtype of TBEV is endemic in Korea, including Jeju Island. The study of vector and zoonotic host susceptibility to TBEV is required to better understand its potential impact on public health.

Keywords: *Haemaphysalis flava*, *Haemaphysalis longicornis*, Korea, tick, tick-borne encephalitis virus

Introduction

Tick-borne encephalitis virus (TBEV) is a member of flaviviridae, genus flavivirus, that causes inflammatory infections of the central nervous system presenting as meningitis, meningoencephalitis, or meningoencephalomyelitis in European countries, northern Russia, China, and Japan [2,10,14]. TBEV is subdivided into three subtypes; Far Eastern [Russian spring-summer encephalitis (RSSE)], Western [Central European encephalitis (CEE)], and Siberian that demonstrate various severities of disease [7]. RSSE infections frequently result in very severe encephalitis with mortality rates ranging from 20 ∼ 60%, while CEE infections caused by the Western subtype induce milder symptoms with mortality rates of 1 ∼ 5% [7]. *Ixodes (I.) ricinus* is the primary vector of the Western subtype, while *I. persulcatus* is the primary vector of the Far Eastern and Siberian subtypes [7,15].

In Korea, *Haemaphysalis* spp. are the predominant ticks collected in tick drag surveys, while *I. nipponensis* is the primary species collected from small mammals [20]. The protein E gene of the Western subtype of TBEV was detected by RT-nested PCR and TBEV was isolated from lung and spleen tissues of *Apodemus agrarius* Thomas, the striped field mouse, captured in northern Gangwon-do and Gyeonggi-do provinces, Korea, and from *Haemaphysalis (H.) longicornis* and *I. nipponensis* ticks, which previously had not been reported as TBEV vectors [5,11]. Only the Far Eastern subtype was detected in countries neighboring Korea, including Japan, China, and northeastern Russia [5,14]. The purpose of our investigation was to evaluate the potential for TBEV occurrence in Jeju Special Self-Governing Province (Jeju Island) and southern Korea.

Materials and Methods

Tick collections

Ticks surveys were conducted using tick drags (1 × 1 m white cotton flannel cloth) through various vegetative habitats, including deciduous, pine, and mixed forest leaf-litter, grasses, and herbaceous vegetation, in 2007 at Jeju Island, Jeollanam-do, Gyeongsangbuk-do, and Gyeongsangnam-do provinces. Ticks were placed individually into 1.5 μL cryovials, labeled with a collection site number, transported...
to the laboratory, and identified to species and development stages under a dissecting microscope [30]. Identified ticks (total 6,788 larvae, nymphs, and adults) were returned to the original vial with a unique identification number and stored at −70°C until assayed.

RT-nested PCR

A total of 4,077 (60.1%) of 6,788 ticks collected were pooled according to species, developmental stages, and collection sites into 649 pools (larvae, 1 ~ 14; nymphs, 1 ~ 20; adults, 1 ~ 5 ticks/pool), and homogenized using beadbeater. Thirty cycles/sec with a tissue lysis buffer μRNeasy mini kit (Qiagen, Germany) according to the manufacturer’s instructions. The RNA was eluted with 40 μL of distilled water and stored at −80°C until used. The cDNA synthesis was performed using Sensiscript RT kit (Qiagen, Germany) according to the manufacturer’s instructions.

For detection of the TBEV envelope glycoprotein gene, primary reactions were carried out with i-Star Master mix PCR kit (Intron, Korea) and previously designed primers, TBE913F (5´-TGCACACAYYTGGAAACAAGGGA-3´) and TBE1738R (5´-TGCCACTTTTCAGGTGTA CTT GGTTCC-3´) [27]. RT-nested PCR was conducted in a PCR thermal cycler (PTC-200, MJ Research, USA) and the primary reaction was performed with an initial denaturation of 5 min at 94°C, followed by 30 cycles of 30 sec at 94°C, 1 min at 53°C, and 1 min at 72°C, with a final extension step of 5 min at 72°C. Two μL of synthesized cDNA and 18 μL of i-Star Master mix solution (Intron, Korea) was used in a total volume of 20 μL. Nested PCR was carried out with an i-Star Master mix PCR kit (Intron, Korea) of 30 cycles for 20 sec at 94°C, 10 sec at 65°C, 20 sec at 68°C, with a final extension step of 5 min at 72°C. The nested reaction was conducted using 1 μL of the primary PCR product as a template and previously described primers [TBE1192F (5’-CAGAGTGATCGAGGTGGYAA-3´) and TBE1669R (5’-AACACTCCAGTCTCGTCCRAGGTGTA-3´)] [29]. Samples that were found to be positive by previous screening were selected for a second PCR assay with the following NS5-gene specific primers: outer forward primer, 5´-GAGGCCTGAAACACTGACG-3´; outer reverse primer, 5´-GAAACGCTCATTCATGACT-3´; internal forward primer, 5´-ACGGACCTGACAAGGCTAG-3´; and internal reverse primer, 5´-GCTGGTCTACATCTTGGGAG-3´ [17]. Thirty-five amplification cycles were performed, with each cycle consisting of 30 sec at 96°C, 30 sec at 40°C, and 30 sec at 68°C, with 1.0 μL of this amplification mixture subjected to the laboratory, and identified to species and development stages under a dissecting microscope [30]. Identified ticks (total 6,788 larvae, nymphs, and adults) were returned to the original vial with a unique identification number and stored at −70°C until assayed.

Cloning, sequencing, and phylogenetic analysis

To confirm positive TBEV PCR products, all purified positive amplicons were ligated and cloned in the pGEM-T Easy Vector system (Promega, USA). The vectors were transformed in thermo-competent *Escherichia coli* DH5α cells. The plasmid DNAs were amplified and purified with DNA-spin plasmid DNA purification kit (Intron, Korea) and verified by sequence analysis. The cloned DNA was sequenced by a cycle sequencer using ABI Prism 3700 DNA analyzer (Applied Biosystems, USA). Sequence homology searches were made at the National Center for Biotechnology Information (NCBI, USA) BLAST network service. Comparative analysis of the amino acid sequences (protein E gene) and nucleotide sequences (NS5 gene) was completed using TBEV sequences in the GenBank database. Phylogenetic analysis was completed using the ClustalX 1.60 program [28] and a phylogenetic tree deduced by neighbor-joining method PAUP 4.0b software for Macintosh (Sinauer Associates, USA). Numbers on the branches represent bootstrap support (more than 50%) generated from 400 replications.

Sequences were obtained from GenBank database. Accession numbers for TBEV protein E gene partial amino acid sequences are as follows: AB062063 (TBEV strain Oshima); AY182009 (TBEV strain Senzhang); AF091019 (TBEV strain T-Blood); AB062064 (TBEV strain Sofjin); AY217093 (TBEV strain MDJ-01); AF091008 (TBEV strain Crimea); AF091013 (TBEV strain N132); AF091016 (TBEV strain RK1424); L40361 (TBEV strain Vasilenko); AF091006 (TBEV strain Aina); AF527415 (TBEV strain Zausaev); EU276110 (TBEV strain Krm213); EU276113 (TBEV strain Krm219-1); EU276111 (TBEV strain Krm215); DQ988684 (TBEV strain Krm219); EU276109 (TBEV strain Krm93); AF091010 (TBEV strain K23); U39292 (TBEV strain Hypr); DQ992536 (TBEV strain Krm216); AF091007 (TBEV strain Als.I) NC005062 (Omsk hemorrhagic fever virus strain Bogoluvovska); NC003687 (Powassan virus strain LB).

Accession numbers for NS5 gene sequenes are as follows: U39292 (TBEV strain Hypr); FJ572210 (TBEV strain Salem); AM600965 (TBEV strain K23); FJ159003 (TBEV strain FVG-ML); AB062063 (TBEV strain Oshima); AB062064 (TBEV strain Sofjin); FJ906622 (TBEV strain Primâye-89); AY182009 (TBEV strain Senzhang); AY217093 (TBEV strain MDJ-01); DQ899336 (TBEV strain 205); L40361 (TBEV strain Vasilenko); DQ451301 (TBEV strain Kokkola-26); NC005062 (Omsk hemorrhagic fever virus strain Bogoluvovska); NC003687 (Powassan virus strain LB).

Results

Tick identifications

A total of 6,788 ticks (78 larvae, 6,444 nymphs, and 266 DNA size marker (Intron, Korea) in 1.5% agarose gel, stained with ethidium bromide.
Table 1. The number of ticks tested for tick-borne encephalitis virus, by species and developmental stage, number of pools assayed, number of positive pools, and minimum field detection rates

Species	Stage	No. ticks	No. pools	No. PCR-positive sample	Minimum field detection rates (%)*
Haemaphysalis longicornis	Larvae	33	3	0	0
	Nymph†	2,864	320	5	0.17
	Male§	6	6	0	0
	Female§	13	11	0	0
	Subtotal	2,916	340	5	0.17
Haemaphysalis flava	Larvae	0	0	0	0
	Nymph	729	146	1	0.14
	Male	99	52	0	0
	Female	101	58	0	0
	Subtotal	929	256	1	0.11
Haemaphysalis phasiana	Larvae	0	0	0	0
	Nymph	167	17	0	0
	Male	0	0	0	0
	Female	0	0	0	0
	Subtotal	167	17	0	0
Ixodes nipponensis	Larvae	0	0	0	0
	Nymph	12	9	0	0
	Male	7	5	0	0
	Female	5	5	0	0
	Subtotal	24	19	0	0
Ixodes turdus	Larvae	6	2	0	0
	Nymph	9	5	0	0
	Male	0	0	0	0
	Female	1	1	0	0
	Subtotal	16	8	0	0
Amblyomma testudinarium	Larvae	0	0	0	0
	Nymph	24	8	0	0
	Male	1	1	0	0
	Female	0	0	0	0
	Subtotal	25	9	0	0
Total	Larvae	39	5	0	0
	Nymph	3,805	505	6	0.16
	Male	113	64	0	0
	Female	120	75	0	0
	Total	4,077	649	6	0.15

*Minimum field detection rate: Number of positive pools/Total number of ticks assayed. †1 ∼ 14 larvae/pool. ‡1 ∼ 20 nymphs/pool. §1 ∼ 5 adults/pool.
The prevalence of tick-borne encephalitis virus protein E gene, by species and provinces, identified by RT-nested PCR.

Table 2. Prevalence of tick-borne encephalitis virus protein E gene, by species and provinces, identified by RT-nested PCR

Collection sites	Species	Total No. assayed	No. pools	No. positive samples	
				No. pools (%)	No. ticks (%)
Jeollanam-do province	*H. longicornis*	469	64	0	0
	H. flava	192	70	0	0
	H. phasiana	32	3	0	0
	I. nipponensis	12	11	0	0
	Subtotal	705	148	0	0
Gyeongsangnam-do province	*H. longicornis*	491	57	0	0
	H. flava	288	75	0	0
	I. nipponensis	11	7	0	0
	A. testudinarium	25	9	0	0
	Subtotal	815	148	0	0
Gyeongsangbuk-do province	*H. longicornis*	39	10	0	0
	H. flava	26	13	0	0
	I. nipponensis	1	1	0	0
	Subtotal	66	24	0	0
Jeju Island	*H. longicornis*	1,917	209	5 (2.39)	34 (1.77)
	H. flava	423	98	1 (1.02)	9 (2.13)
	I. turdus	16	8	0	0
	H. phasiana	135	14	0	0
	Subtotal	2,491	329	6 (1.82)	43 (1.73)

Only nymphs were positive.

Detection of TBEV from ticks

TBEV was detected in two of the six collected species (*H. longicornis* and *H. flava*) (Table 1). The minimum field detection rates (assumes a minimum of one infected tick/pool) of TBEV were 0.17% for *H. longicornis* and 0.14% for *H. flava.* Using PCR primer sets targeting the protein E gene of TBEV, 6/649 pooled tick samples of 4,077 ticks were PCR positive, which produced a 477 bp amplicon. All six of the positive PCR pools were collected from Jeju Island, while no positive amplicons were detected from other areas surveyed (Table 2, Fig. 1).

Sequence analysis and phylogenetic tree

The amplified 477 bp region of the protein E gene and 252 bp region of the NS5 gene of six positive samples at five collection sites were sequenced and compared with other TBEV sequences of northeast Asia available in the GenBank database. The NS5 gene sequences are presented in Fig. 2. Acquired NS5 gene sequences showed a 98% identity to the Western subtype K293 (Czech) strain, 81.7% identity to the Siberian subtype strain Vasilchenko (Russia) and 82.5% identity to the Far Eastern subtype strain Oshima (Japan). The phylogenetic trees of the protein E genes with support positions are shown in Fig. 3. Positive amplicons of the protein E gene (GenBank accession number FJ972625) from Jeju Island belong to the Western subtype (Fig. 3). Strains Als.I (AF091007), Aina (AF091006), and Oshima (AB001026), are representative strains for Western, Siberian, and Far-eastern subtypes, isolated from France, Russia, and Japan.
Fig. 1. Distribution of tick collection sites (#1~113) with open circles (○) representing sites negative for TBEV and closed circles (●) representing sites positive for TBEV ticks [Positive collection sites: #25 (N 33° 31' 30.47", E 126° 35' 49.27", Jeju-si, Jeju Island), #46 (N 33° 25' 04.84", E 26° 37' 48.07", Jocheon-eup, Bukjeju-gun, Jeju Island), #52 (N 33° 20' 24.32", E 126° 42' 21.13", Namwon-eup, Namjeju-gun, Jeju Island), #65 (N 33° 26' 09.89", E 126° 29' 20.72", Jeju-si, Jeju Island), #68 (N 33° 25' 39.22", E 126° 29' 38.40", Mt. Halla, Jeju Island)].

Fig. 2. Alignment of the NS5 gene sequence from positive tick samples with available TBEV genetic information. Western subtype strains are highlighted in dark gray and Far Eastern subtype strains are highlighted in light gray.

respectively [7,24]. The protein E gene nucleotide sequences of positive amplicons demonstrated a closer homology with the Western subtype (99.4%) than with the Siberian (97.6%) and Far Eastern (97.6%) subtypes.

Discussion

Since 2000, noticeable increases have been seen in the number of tick-borne encephalitis (TBE) cases in Europe and in the number of isolations of TBEV from wild rodents and ticks in endemic countries, e.g., Czech Republic, Germany, Slovenia, Sweden, Switzerland, and Korea [12,22,23]. Neighboring countries, including Japan, China, and Russia have reported a high incidence of TBEV infections, with Russia having the highest number of reported Siberian and Far Eastern TBEV cases [4,13,23]. Only the Far Eastern
TBEV subtype has been reported from China and Japan [7,14]. While northern Japan is highly endemic for TBEV with numerous reports of transmission to sentinel animals and isolations from ticks, few human cases have been reported. In China [14,25,26], the first human TBE case was detected in 1943 and the Far Eastern TBEV subtype is mostly reported from the northeastern forests and mountains of Changbai, Jilin province, and Xiaoxing'an, Heilongjiang province, which extend into North Korea. The Changbai, Jilin province, Daxing'an, Inner Mongolia regions have reported TBEV subtype isolations from ticks, few human cases have been reported from ticks infesting migratory birds during their stay. Based on Chinese data, both the Far Eastern and Western subtypes are likely to coexist in North Korea [11]. Furthermore, range expansion of TBEV vectors due to world climate and ecological changes are regarded as key factors of the recent expansion of TBEV [1,3,18,19]. In Korea, as a result of a tree planting policy established in the 1960s, previously barren hills and mountains are now covered with dense young deciduous and conifer forests. This has dramatically altered the ecology of these areas, creating the potential for increases and variation of animal populations and their associated ectoparasites, which are dependent upon forested areas for refuge. Additionally, migratory birds, considered as primary hosts for many tick species, are responsible for transporting TBEV and their vectors [6,9]. Recently, TBEV was identified from ticks infesting migratory birds in Sweden, suggesting that birds may be a competent reservoir by serving as a host for all stages of potential tick vectors that infest wild birds [29].

Large populations of migratory birds visit Jeju Island annually, possibly transporting ticks or infecting indigenous ticks that feed on potentially infected migratory birds during their stay. Based on Chinese data, both the Far Eastern and Western subtypes are likely to coexist in North Korea [14]. More comprehensive surveys throughout Korea are required to determine the presence, geographical distributions, and prevalence of TBEV subtypes in Korea. Furthermore, for other Asian countries where undiagnosed encephalitis outbreaks occur and I. persulcatus and I. ricinus are not primary tick species, investigations to determine the source of the infections are needed. Our results add to the growing evidence that other species of ticks, including H. japonica, H. flava, I. persulcatus, and I. nipponensis) have been reported in Korea [11,12]. Of the six species assayed for TBEV in our study, only H. longicornis (five pools) and H. flava (one pool), the most frequently collected ticks in grass and forested habitats, respectively, were positive by PCR for TBEV. Although TBEV infected ticks have been collected on Jeju Island, we were positive by PCR for TBEV. The distribution and population densities of tick vectors are considered important elements in the distribution and prevalence of each of the TBEV subtypes [11]. Furthermore, the Far Eastern TBEV subtype has also been identified from ticks infesting migratory birds in Sweden, suggesting that birds may be a competent reservoir by serving as a host for all stages of potential tick vectors that infest wild birds [29].

While it would seem reasonable that the Far Eastern TBEV subtype would be present in Korea, only the Western subtype has thus far been isolated from A. agrarius [12], while the Western subtype TBEV protein E gene was identified from H. longicornis, H. japonica, H. flava, and I. nipponensis [11]. Based on these findings, we presume that there is a high probability of the coexistence of the Western and Far Eastern TBEV subtypes in Korea. Only limited surveys of TBEV have been conducted in Korea, primarily in Gyeonggi-do and Gangwon-do provinces, and more comprehensive surveys where there are relatively high populations of I. persulcatus may result in the identification of coexisting TBEV subtypes. Globally, ten species of ticks (I. ricinus, I. persulcatus, I. hexagonus, I. arboricola, I. ovatus, H. punctata, H. concinna, H. inermis, Dermacentor marginatus, and D. reticulatus) are reported to be vectors of TBEV [8,20,21]. Currently, five species incriminated as TBEV vectors (H. longicornis, H. japonica, H. flava, I. persulcatus, and I. nipponensis) have been reported in Korea [11,12]. Of the six species assayed for TBEV in our study, only H. longicornis (five pools) and H. flava (one pool), the most frequently collected ticks in grass and forested habitats, respectively, were positive by PCR for TBEV. Although TBEV infected ticks have been collected on Jeju Island, we were positive by PCR for TBEV. The distribution and population densities of tick vectors are considered important elements in the distribution and prevalence of each of the TBEV subtypes [11]. Furthermore, range expansion of TBEV vectors due to world climate and ecological changes are regarded as key factors of the recent expansion of TBEV [1,3,18,19]. In Korea, as a result of a tree planting policy established in the 1960s, previously barren hills and mountains are now covered with dense young deciduous and conifer forests. This has dramatically altered the ecology of these areas, creating the potential for increases and variation of animal populations and their associated ectoparasites, which are dependent upon forested areas for refuge. Additionally, migratory birds, considered as primary hosts for many tick species, are responsible for transporting TBEV and their vectors [6,9]. Recently, TBEV was identified from ticks infesting migratory birds in Sweden, suggesting that birds may be a competent reservoir by serving as a host for all stages of potential tick vectors that infest wild birds [29].

Large populations of migratory birds visit Jeju Island annually, possibly transporting ticks or infecting indigenous ticks that feed on potentially infected migratory birds during their stay. Based on Chinese data, both the Far Eastern and Western subtypes are likely to coexist in North Korea [14]. More comprehensive surveys throughout Korea are required to determine the presence, geographical distributions, and prevalence of TBEV subtypes in Korea. Furthermore, for other Asian countries where undiagnosed encephalitis outbreaks occur and I. persulcatus and I. ricinus are not primary tick species, investigations to determine the source of the infections are needed. Our results add to the growing evidence that other species of ticks, including H. longicornis and H. flava, serve as potential vectors of the TBEV Western subtype.

Acknowledgments

This study was supported through BK21 Program for Veterinary Science. We thank Soh Keum Lee, Robert Moore, Joshua Bast, Shin Sung Lee, Joon-Yung Park, Kristen Leeflang for their assistance during the collection phase of this study. We also thank Dr. Joel Gaydos and Dr. Clara Witt for their support in conducting this work. Funding for portions of this work was provided by the Armed Forces Health Surveillance Center, Global Emerging Infections...
Prevalence of tick-borne encephalitis virus in Korea

A. Kalnina V, Hörting L, Lundkvist A. Characterization of tick-borne encephalitis virus from Latvia. J Med Virol 2000, 60, 216-222.

16. Monath TP, Heinz FX. Flaviviruses. In: Fields BN, Knipe DM, Howley PM (eds.). Fields Virology. 3rd ed. pp. 961-1034, Lippincot-Raven, Philadelphia, 1996.

17. Puchhammer-Stöckl E, Kunz C, Mandl CW, Heinz FX. Identification of tick-borne encephalitis virus ribonucleic acid in tick suspensions and in clinical specimens by a reverse transcription-nested polymerase chain reaction assay. Clin Diagn Virol 1995, 4, 321-326.

18. Randolph SE. Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe. Int J Med Microbiol 2004, 37, 5-15.

19. Randolph SE. Dynamics of tick-borne disease systems: minor role of recent climate change. Rev Sci Tech 2008, 27, 367-381.

20. Reec J. Medical Entomology: Medical Arthropodology. 4th ed. pp. 345-390, Komoonsa, Seoul, 2005.

21. Süss J. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine 2003, 21 (suppl), S19-35.

22. Süss J. Importance of tick-borne encephalitis (TBE) increases in Europe. Dtsch Med Wochenschr 2005, 130, 1397-1400.

23. Süss J. Tick-borne encephalitis in Europe and beyond - the epidemiological situation as of 2007. Euro Surveill 2008, 13, pii:18916.

24. Takashima I, Hayasaka D, Goto A, Kariwa H, Mizutani T. Epidemiology of tick-borne encephalitis (TBE) and phylogenetic analysis of TBE viruses in Japan and Far Eastern Russia. Jpn J Infect Dis 2001, 54, 1-11.

25. Takashima I, Morita K, Chiba M, Hayasaka D, Sato T, Takezawa C, Igarashi A, Kariwa H, Yoshimatsu K, Arikawa J, Hashimoto N. A case of tick-borne encephalitis in Japan and isolation of the virus. J Clin Microbiol 1997, 35, 1943-1947.

26. Takeda T, Ito T, Osada M, Takahashi K, Takashima I. Isolation of tick-borne encephalitis virus from wild rodents and a seroepizootiologic survey in Hokkaido, Japan. Am J Trop Med Hyg 1999, 60, 287-291.

27. Ternovoi VA, Kurzhukov GP, Sokolov YV, Ivanova AG, Ivanisenko VA, Loktev AV, Ryder RW, Netesov SV, Loktev VB. Tick-borne encephalitis with hemorrhagic syndrome, Novosibirsk region, Russia, 1999. Emerg Infect Dis 2003, 9, 743-746.

28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 1997, 25, 4876-4882.

29. Waldenström J, Lundkvist A, Falk KI, Garpun M, Bergström S, Lindegren G, Sjöstedt A, Meljon H, Fransson T, Haemig PD, Olsen B. Migrating birds and tick-borne encephalitis virus. Emerg Infect Dis 2007, 13, 1215-1218.

30. Yamaguti N, Tipton VJ, Keegan HL, Toshioka S. Ticks of Japan, Korea, and the Ryukyu Islands. Brigham Young Univ Sci Bull Biol Ser 1971, 15, 1-226.

References