Papovavirus detection by electron microscopy in the brain of an elderly patient without overt progressive multifocal leukoencephalopathy

Received: 26 August 1993 / Accepted: 3 March 1994

Abstract Virions resembling papovavirus were demonstrated in glial cells in the brain of an aged patient without overt progressive multifocal leukoencephalopathy. The patient was not in a severely immunocompromised state. On histological examination, only a few tiny incomplete necrotic foci were found in the subcortical area. These foci were widely dispersed. Rare, swollen oligodendroglial cells and astrocytes in which papovavirus capsid protein (VP-1) was demonstrated immunohistochemically were present around the foci. The two typical types of virus particles i.e. 35 to 40 nm round particles and elongated particles, were observed in the nuclei of the swollen glial cells. The latter were in the minority. Distinct crystals were also found in the nuclei. The centre-to-centre distance of the particles in the crystals, about 40 nm, and the electron-opaque spots of the round-shaped virions and of the elongated particles, were indicative of structural subunits of papovavirus capsids. This case provides further evidence that papovavirus, possibly JC virus, may be reactivated in the brains of aged patients who are not in an immunocompromised state.

Key words Papovavirus • Progressive multifocal leukoencephalopathy • Electron microscopy

Elderly patient

Introduction

The notion of progressive multifocal leukoencephalopathy (PML) as an atypical viral infection in patients with compromised immunity was proposed by Richardson [14]. ZuRhein and Chou [18] provided strong electron microscopic evidence for the viral infection hypothesis which showed that abnormal oligodendrocytes in and around the lesions contained numerous papovavirus-like particles. Since the isolation and designation of the virus as JC virus by Padgett et al. [11], JC virus has been known to be the cause of PML. We recently demonstrated JC viral DNA and protein by in situ hybridization and immunostaining in the brains of apparently immunocompetent aged patients who did not have PML [8]. This finding was confirmed using the polymerase chain reaction method both by us [9] and several other groups [3, 13, 16]. In the present study, one of the brains in which JC viral DNA was detected most strongly was examined by electron microscopy. In order to select the locations of the cells where the virions may be detected, we detected virions resembling papovavirus, possibly JC virus, in three overt PML cases prior to this study.

Case report

A 75-year-old woman was admitted to Tokyo Metropolitan Geriatric Hospital in June 1980 for left hemiparesis and dysarthria. A CT scan revealed a small, low-density area in the right cerebrum. The hemiparesis and dysarthria disappeared within 1 month. The patient was able to go about her life normally with the exception of calculation. In April 1981 her left hemiparesis and dysarthria recurred, and a CT scan and arteriography revealed occlusion of the ascending branch of the right middle cerebral artery. Her blood pressure was 130–150/70–80. Shoulder-hand syndrome developed on the left side in May. Prednisolone, 10 mg/day, was prescribed for one month resulting in the disappearance of this syndrome and prednisolone was stopped. The patient was transferred to a nursing home, and her mental impairment remained at the same level as before. After discharge, she was bedridden and became unable to speak more than a few words. From June 1985, she needed assistance in eating. Beginning in July 1988 she suffered repeated bouts of pneumonia and died on 5 September 1988.
Fig. 1 a The largest focal demyelinated lesion, where the sections were made for electron microscopy. (× 3.8). b Histological findings in the same area. Swollen oligodendroglial cells and large astrocytes are observed (H & E; × 400). c Immunohistochemical staining for VP-1. Arrowheads point to positive cells, which contain many virions. (× 400)

Fig. 2 a A glial nucleus with a complex composite of crystals. (× 8000). b A portion of the nucleus in a. Electron-lucent centres are present in some. (× 60000)

Fig. 3 A portion of a glial nucleus packed with elongated particles. (× 60000)
Autopsy was performed 10 h after death at Tokyo Metropolitan Geriatric Hospital. Significant findings outside the central nervous system consisted of severe organizing and organized pneumonia associated with scattered foci of aspiration in the left lung. Viscous sputum was found to have obstructed the glottis resulting in apnea and death.

The brain weighed 1100 g and exhibited marked atrophy of the right hemisphere. Coronal sections through both cerebral hemispheres revealed a large, old infarction in the territory of the right middle cerebral artery. This large vascular lesion was confirmed to have resulted from an arteriosclerotic stenosis of a branch of the right middle cerebral artery. Severe sclerosis was found in the cerebral arteries, but no lesions resembling a demyelinating process could be detected in the white matter macroscopically. Routine histological examination was carried out on paraffin sections of the cerebral, cerebellar and brain stem areas. Away from these old vascular lesions, a few tiny foci of incomplete necrosis were found in the subcortical white matter of the parietal and frontal lobes. The margins of the necrotic area were obscure. The largest lesion was about 2 mm in diameter (Fig. 1a). There were some areas where the number of glial cells was decreased without necrosis. These foci were widely dispersed and non-confluent. Rare, swollen oligodendroglial cells and a few, fairly large astrocytes were observed mainly at the edge of the minute incomplete necrotic area (Fig. 1b). Some of these glial cells had altered nuclei, with distinct margination of chromatin along the nuclear membrane. Others featured bizarre nuclei. Lymphocytes, macrophages and plasma cells were not increased.

Paraffin-embedded 4-μm-thick sections from the subcortical white matter of the parietal lobe were stained with toluidine blue or immunohistochemically and examined under the light-microscope. Immunohistochemistry was performed on deparaffinized specimens by the avidin DIl-biotinylated horse-radish peroxidase technique using polyclonal antibodies raised against either the common papovavirus capsid antigen or glial fibrillary acidic protein (GFAP), as described previously [9]. Areas where the large cells with large nuclei or the histochecmically VP-1 positive cells were clustered, were embedded in Epon after fixation in 1% cacodylate-buffered osmium tetroxide for 30 min at 4 °C and dehydration in graded ethanol rinses. Two thin (60-100 nm), small (1×1 mm) sections were cut from the edge of the largest lesion with diamond knives (Fig. 1a), and a small section was also cut from the area where the number of glial cells was reduced and the large glial cells were scattered without necrosis. These sections were stained with uranyl acetate and lead citrate, and examined using an Hitachi H-600 transmission electron microscope. All cells (294 cells) except those in the peripheral region were examined in one section taken from the largest lesion. There were conspicuous post-mortem changes, with poor preservation of cell membranes and cytoplasmic organelles. Identification of individual cells was almost impossible. The cells were identified as glial cells by comparing toluidine blue and immunohistochemically stained sections. The size of virion-bearing nuclei, 4.5-9.5 μm (mean: 6.3 μm) was larger than that of the virion-negative nuclei, 3.0-6.3 μm (mean: 4.0 μm). Cells strongly positive for VP-1 at the periphery of the nuclei (Fig. 1c), contained many virions. Numerous randomly distributed, round, 35 to 40 nm particles were observed in the nuclei of 22% of the glial cells. Orderly intranuclear arrays of particles or distinct crystals were found in 65% of the virion-bearing nuclei (Fig. 2). The centre-to-centre distance between the particles in the crystals was roughly 40 nm. The shape of the individual particles in the crystals was mostly hexagonal. Elongated virions, referred to as "filamentous" or "tubular forms", were found in 29% of the virion-bearing nuclei (Fig. 3). Their length was variable, and their width was about one half to two-thirds that of the round virions. Electron-lucent centres were seen in some of both types of virions. The viral envelopes were not seen. Two-thirds of these heavily virion-bearing cells were found near the margin of the necrotic area. The features of the other section from the largest lesion were almost the same as described above.

In the third section, no crystals or tubular forms were found in the cells.
that do not bear envelope proteins. Based on these features, the virions demonstrated in this case were probably papovaviruses, which include polyomavirus and papillomavirus. Papilloma virus particle size is 52 to 55 nm in diameter [6] while the polyomaviruses in the brains of PML patients have been reported to be between 28 and 45 nm in diameter [19]. As the size of the particles in our own case was between 35 nm and 40 nm, the virions were probably polyomaviruses, specifically JC viruses [10].

Gibson et al. [5] reported that in one patient with neuro-Behçet syndrome without PML, JC viral DNA was found to be weakly positive using molecular hybridization, however, they were unable to find any virus particles. The present case is the first in which papova virions were detected in the brain of a non-immunocompromised aged patient without overt PML. The morphological evidence per se is not sufficient to designate it as the lesion responsible for her clinical condition, because the demyelinated foci in the white matter were extremely small. Nevertheless, papovavirus replication may have occurred in the brain of this patient. Since JC virus is of low pathogenicity and requires impairment of cell-mediated host defences to allow a progressive nervous system infection [17], the disease may be static in this case.

A few tiny demyelinating lesions may be overlooked at routine autopsies. If such lesions were noticed and examined electron microscopically, papova virions might be demonstrated in the brains of aged patients more frequently than expected.

Acknowledgements This work was supported by a Government subsidy for aiding scientific researches, Japan.

References

1. Bauer WR, Turel AP, Johnson KP (1973) Progressive multifocal leukoencephalopathy and cytarabine. Remission with treatment. JAMA 226: 174–176
2. Bernhard W, Febvre HL, Cramer R (1959) Mise en vidence au microscope lectronique d’un virus dans des cellules infect ees in vitro par l’agent du polyome. C R Acad SCI [III] 249: 483–485
3. Elsner C, Dorries K (1992) Evidence of human polyomavirus BK and JC infection in normal brain tissue. Virology 191: 72–80
4. Fazakerley JK, Buchmeier MJ (1993) Pathogenesis of virus-induced demyelination. In: Advances in virus research, Maramorosch (ed) vol 42. Academic Press, pp 249–324
5. Gibson PE, Gardner SD, Field AM (1986) Use of a molecular probe for detecting JCV DNA directly in human brain material. J Med Virol 18: 87–95
6. Gissmann L, Pfister H, zur Hausen H (1977) Human papillomavirus (HPV). Characterization of four different isolates. Virology 76: 569–580
7. Kepes JJ, Chon SM, Price LW (1975) Progressive multifocal leukoencephalopathy with 10-year survival in a patient with non-tropical sprue. Neurology 25: 1006–1012
8. Mori M, Kuruta H, Tajima M, Shimada H (1991) JC virus detection by in situ hybridization in brain tissue from elderly patients. Ann Neurol 29: 428–432
9. Mori M, Aoki N, Shimada H, Tajima M, Kato K (1992) Detection of JC virus in the brains of aged patients without progressive multifocal leukoencephalopathy by the polymerase chain reaction and southern hybridization. Neurosci Lett 141: 151–155
10. Padgett BL, Walker DL (1976) New human papovaviruses. Prog Med Virol 22: 1–35
11. Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ (1971) Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet 1:1257–1260
12. Price RW, Nielsen S, Horton B, Rubino M, Padgett B, Walker D (1983) Progressive multifocal leukoencephalopathy: a burnt-out case. Ann Neurol 13: 485–490
13. Quinlivan EB, Norris M, Bouldin TW, Suzuki K, Meeker R, Smith MS, Hall C, Kenny S (1992) Subclinical central nervous system infection with JC virus in patients with AIDS. J Infect Dis 166: 80–85
14. Richardson EP Jr (1961) Progressive multifocal leukoencephalopathy. N Engl J Med 265: 815–823
15. Selhorst JB, Ducy KF, Thomas JM, et al. (1978) PML: remission and immunologic reversals. Neurology 28: 337
16. White FA, Ishaq M, Stoner GL, Frisque RJ (1992) JC virus DNA is present in many human brain samples from patients without progressive multifocal leukoencephalopathy. J Virol 66: 5726–5736
17. Willoughby E, Price RW, Padgett BL, et al. (1980) Progressive multifocal leukoencephalopathy (PML): in vitro cell mediated immune responses to mitogens and JC virus. Neurology 30: 256–262
18. ZuRhein GM, Chou SM (1965) Particles resembling papovaviruses in human cerebral demyelinating disease. Science 148: 1477–1479
19. ZuRhein GM (1969) Association of papova-virions with a human demyelinating disease (progressive multifocal leukoencephalopathy). Prog Med Virol 11: 185–247