Universidade de São Paulo
Faculdade de Saúde Pública

Aspectos ecológicos de mosquitos (Diptera: Culicidae) em ambientes degradados e preservados da APA Capivari-Monos no município de São Paulo.

Andressa Francisca Ribeiro

Tese apresentada ao programa de Pós-graduação em Saúde Pública para obtenção do título de Doutor em Ciências.

Área de Concentração: Epidemiologia

Orientador: Dr. Paulo Roberto Urbinatti

São Paulo
2014
Aspectos ecológicos de mosquitos (Diptera: Culicidae) em ambientes degradados e preservados da APA Capivari-Monos no município de São Paulo.

Andressa Francisca Ribeiro

Tese apresentada ao programa de Pós-graduação em Saúde Pública para obtenção do título de Doutor em Ciências.

Área de Concentração: Epidemiologia

Orientador: Dr. Paulo Roberto Urbinatti

São Paulo
2014
É expressamente proibida a comercialização deste documento tanto na sua forma impressa como eletrônica. Sua reprodução total ou parcial é permitida exclusivamente para fins académicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano da tese.
Dedico:

Ao meu marido Orivaldo, por aceitar com paciência e amor se privar da minha companhia para que finalizasse os estudos.
Ao meu filho Pedro, com todo amor!
Aos meus pais, João e Maria, que me incentivaram a vida inteira.
AGRADECIMENTOS

Durante o trajeto do doutorado conheci muitas pessoas admiráveis. Todos são verdadeiros mestres que de certa forma me ensinaram algo que está além dos livros nas estantes da biblioteca. Entre esses gostaria de destacar alguns nomes:

Ao meu querido orientador, Dr. Paulo Roberto Urbinatti, pela orientação, confiança e amizade;

A todos os amigos que participaram da pesquisa, sem os quais não teria realizado essa tese: Paulo Roberto Urbinatti, Delsio Natal, Luis Felipe Mucci, Marcia Bicudo de Paula, Aristides Fernandes, Rosa de Sá, Rosane Correa de Oliveira, Diego Mendes Pereira, Maria Helena Silva Homem de Mello, Marco Otávio de Matos Júnior. Especialmente a Ana Maria Ribeiro de Castro Duarte e Rosely Malafrente, coordenadoras da equipe, que me aceitaram prontamente na pesquisa.

Ao biólogo Aristides Fernandes e Dra. Marcia Bicudo de Paula pela amizade e por todo aprendizado na identificação dos mosquitos.

A Rosa Maria Marques de Sa Almeida por toda ajuda na manutenção dos mosquitos imaturos em laboratório.

Ao professor Dr. Delsio Natal e à Dr. Regiane Maria Tironi de Menezes pela amizade, pelas sugestões de análises e valiosas críticas na avaliação da qualificação e defesa. A todos os membros da banca de defesa que contribuíram com seu tempo na avaliação da tese.

A equipe da Sucen, Sr. Fernando e Sr. Gabriel, companheiros incansáveis em todas as visitas de campo da região de Evangelista de Souza.

Ao Instituto Pedro Matajes e Guarda Civil Metropolitana, Prefeitura Municipal de São Paulo pelo suporte logístico nas coletas de campo.

Ao Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo, pelo fornecimento dos dados climáticos.

Especialmente à Gisela R.A.M. Marques, Lígia L.N. Serpa e Marylene A. Brito do laboratório de pesquisas da SUCEN de Taubaté por me iniciarem nos estudos dos mosquitos;

A Dr. Ina Kakitani, que com seu exemplo de pesquisadora e mestre me ajudou a fazer as escolhas mais acertadas nesse caminho de pós-graduação.
As amigas da “república 14”: Larissa G. Baraldi, Maria Isabel (Mabel) Fioravante, Aline B. Mariath, Jaqueline Müller, Abiaka Pedrosa, Camila Borges, Ana Luiza, pela amizade, acolhida e por compartilharem comigo as dificuldades e alegrias de cursar a pós-graduação.

Aos colegas do Laboratório de Entomologia em Saúde Pública-LESP/FSP/USP pela amizade e pelo enriquecimento na troca de conhecimentos: Professor Titular José Maria Soares Barata, Dr. Walter Ceretti Junior, Msc. Frederico Alves D’Avila.

Ao professor Dr. Almério de Castro Gomes (in memorian) por me aceitar no Laboratório de Entomologia FSP/USP para aprendizado na identificação de mosquitos.

Aos funcionários da Biblioteca da FSP-USP que sempre me ajudaram prontamente.

Aos funcionários da Pós-Graduação da FSP/USP, especialmente a Renilda Maria Figueiredo e Maria Aparecida Mendes por toda ajuda.

A todos familiares e amigos que indiretamente me ajudaram ouvindo, aconselhando e torcendo pelo bom término do trabalho.

Aos amigos da Obra dos Santos Anjos – Mosteiro de Belém em Guaratinguetá, que me ajudaram rezando por mim e me ensinaram a trabalhar com persistência por amor a Deus e a minha família.

Aos meus irmãos, Ana Paula e Alessandro, por serem sempre meus companheiros.

Eterna gratidão aos melhores exemplos, meus pais, que me apoiaram e amaram incondicionalmente. Agradeço principalmente pelo carinho e compreensão com minhas ausências. Tudo o que sou hoje devo a eles.

E o meu profundo agradecimento ao meu marido, Orivaldo, por me apoiar ao longo desta custosa caminhada. Sempre que necessário soube criticar e aconselhar, o que me ajudou muito no amadurecimento como pessoa e como profissional. Agradeço especialmente pela compreensão da minha ausência.

Ao meu filho Pedro, que sempre me animou com seu sorriso nos meus momentos de cansaço quando a tese parecia não ter fim.

A todos que direta ou indiretamente me ajudaram na realização desse trabalho!

Essa tese foi uma parte do projeto “Estudo da fauna de Anofelinos e de sua infecção natural por Plasmodium sp. em área de foco de malária autóctone em Parelheiros,
São Paulo, Brasil” financiado pela FAPESP processo n°2008/52016-0. Também teve subsídios da bolsa de doutorado concedida pela CNPQ, processo n° 141901/2009-8.
“A fé e a razão (fides et ratio) constituem como que as duas asas pelas quais o espírito humano se eleva para a contemplação da verdade. Foi Deus quem colocou no coração do homem o desejo de conhecer a verdade e, em última análise, de O conhecer a Ele, para que, conhecendo-O e amando-O possa chegar também a verdade plena sobre si próprio”.

(Beato Papa João Paulo II)
RESUMO

Ribeiro, A.F. Aspectos ecológicos de mosquitos (Diptera: Culicidae) em ambientes degradados e preservados da APA Capivari-Monos no município de São Paulo. [Tese de Doutorado]. São Paulo: Faculdade de Saúde Pública da USP; 2013.

A Área de Proteção Ambiental (APA) Capivari-Monos no sul do município de São Paulo, sub-distríto de Parelheiros, é uma área de Mata Atlântica que abriga importantes mananciais. Devido à urbanização desorganizada, alterações das condições ecológicas naturais dessa área propiciam o contato entre humanos, patógenos e culicídeos. Pouco se sabe sobre a ecologia de mosquitos vetores de patógenos nessa localidade, o que instigou a pesquisa na região. Nesse sentido, o presente estudo investigou a fauna culicídeos presentes em ambiente silvestre e antrópico na APA Capivari-Monos, determinando-se indicadores de biodiversidade e relacionando-os a fatores ambientais.

Para tal, por 12 meses foram capturados mensalmente culicídeos adultos e imaturos de ambiente silvestre e antrópico usando-se diferentes técnicas de captura. Foram utilizados indicadores de diversidade para avaliar a riqueza, dominância, abundância e equabilidade dos diferentes ambientes. Um total de 9.403 mosquitos adultos foram capturados de maio de 2009 a junho de 2010. As espécies prevalentes entre as coletadas no ambiente silvestre foram Anopheles (Kerteszia) cruzii, Culex (Melanoconion) seção Melanoconion e Aedes serratus, enquanto as mais comuns no ambiente antrópico foram Coquillettidia chrysonotum / albifera, Culex (Culex) grupo coronator e An. (Kerteszia) cruzii. A riqueza de mosquitos adultos foi semelhante entre os ambientes, e a abundância variou entre as espécies. Ao comparar os padrões de diversidade entre os ambientes, a região antrópica apresentou maior riqueza e uniformidade, o que sugere que o estresse ambiental aumentou o número de nichos favoráveis para culicídeos e promoveu maior diversidade. A espécie An. cruzii apresentou correlação positiva com pluviosidade e temperatura no ambiente antrópico, mas no ambiente silvestre essa espécie não esteve associada aos fatores climáticos. Dos 2443 mosquitos imaturos coletados, 1507 (61,7%) foram encontrados no ambiente antrópico e 936 (38,3%) no ambiente silvestre. Os mosquitos imaturos foram distribuídos em 62 categorias taxonômicas, e sua riqueza e abundância foram maiores no ambiente antrópico que no silvestre. Os indivíduos Culex (Microculex) grupo Imitator foram os que apresentaram maior abundância e foram encontrados com maior frequência no ambiente antrópico e silvestre.
Descritores: Culicidae, biodiversidade, epidemiologia, agentes patogênicos, fatores climáticos, Floresta Atlântica, mosquitos vetores.
ABSTRACT

Ribeiro, A.F. Ecological aspects of mosquitoes (Diptera: Culicidae) in degraded environments and in the Environmental Protection Area Capivari-Monis in São Paulo. [PhD Thesis]. São Paulo: Faculdade de Saúde Pública da USP; 2013.

The Environmental Protection Area (APA) Capivari-Monis in the Parelheiros sub-district, in South São Paulo, is an Atlantic Forest area that comprises important springs. Owing to the disorganized urbanization, changes in the natural ecological conditions of the APA promoted human-Culicidae-pathogen contact. The lack of information on the ecology of mosquito vectors in the APA motivated the present study, which investigated the Culicidae fauna wild and anthropic zones of the Capivari-Monis APA, determining biodiversity indicators and relating them to environmental factors. To that end, adult and immature Culicidae were monthly collected from the wild and from the anthropic zones for 12 months and using different capture techniques. Diversity indicators were used to assess richness, dominance, evenness and abundance in the different environments. A number of 9,403 adult mosquitoes were collected from May 2009 to June 2010. The main species collected in the wild environment were Anopheles (Kerteszia) cruzii, the Melanoconion section of Culex (Melanoconion) and Aedes serratus, whereas the most common species in the anthropic zone were Coquillettidia chrysonotum/albifera, Culex (Culex) Coronator group and An. (Ker.) cruzii. Mosquito richness was similar between the zones, and their abundance varied according to the species. Compared to the wild zone, the anthropic zone exhibited higher richness and evenness, suggesting that environmental stress increased the number of favorable niches for culicids, promoting diversity. An. cruzii occurrence was positively correlated with rainfall and temperature in the anthropic zone, but in the wild zone it was not associated with climatic factors. From the 2,443 immature mosquitoes collected, 1,507 (61.7%) were found int the anthropic zone and 936 (38.3%) in the wild zone. The immature mosquitoes were distributed into 62 taxonomic categories, and their richness and abundance were higher in the anthropic than in the wild zone. Culex (Microculex) Imitator group was the prevailing species in both environments.

Keyword: Culicidae, diversity, epidemiology, pathogenic agents, climatic factors, Atlantic Forest, mosquito vectors.
APRESENTAÇÃO

O presente estudo é resultado de um projeto desenvolvido em parceria com pesquisadores de diversas instituições, entre elas a Superintendência de Controle em Endemias (SUCEN), o Instituto de Medicina Tropical (IMT/USP), o Centro de Controle de Zoonoses (CCZ/PMSP) e Faculdade de Saúde Pública (FSP/USP). O projeto principal teve como título “Estudo da fauna de anofelinos e de sua infecção natural por Plasmodium sp. em área de foco de malária autóctone em Parelheiros, São Paulo, Brasil” e foi financiado pela FAPESP, processo nº2008/52016-0. O objetivo desse projeto foi estudar a fauna de anofelinos presentes em área de transmissão autóctone de malária na Mata Atlântica Paulista, no sub-distrito de Parelheiros, enfatizando alguns aspectos relacionados à ecologia das espécies encontradas e suas relações com fatores ambientais, a fim de melhor compreender a dinâmica de transmissão da doença na área de estudo. O projeto também visou estimar a infecção natural por espécies de Plasmodium circulantes em fêmeas de anofelinos capturados na área de estudo, por meio da técnica de PCR. Na presente tese são apresentados os resultados relacionados aos aspectos ecológicos dos culicídeos e discutida sua importância epidemiológica, avaliando a possibilidade da transmissão de patógenos a humanos.
A metodologia utilizada e os resultados obtidos são apresentados em três manuscritos, os quais seguem as normas dos periódicos científicos onde foram publicados ou serão submetidos para publicação.

a) Mosquitos in degraded and preserved areas of the Atlantic Forest and potential for vector-borne disease risk in the municipality of São Paulo, Brazil.
Esse artigo foi publicado na revista Journal of Vector Ecology. 37 (2):316-324; 2012. Nesse artigo a comunidade de mosquitos da região de Parelheiros é caracterizada através de índices de riqueza, abundância, dominância, equabilidade, a identificação de espécies vetoras e a distribuição temporal.

b) Aspectos sazonais da abundância de mosquitos em Mata Atlântica peri-urbana
Esse artigo será submetido para a revista Revista de Saúde Pública e versa sobre a influência de alguns fatores climáticos sobre a riqueza e abundância de mosquitos adultos na região de Parelheiros.

c) Diversidade da fauna de culicídeos imaturos na APA Capivari-Monos situada na Mata Atlântica, Estado de São Paulo, Brasil. Esse artigo será submetido para a Revista da Sociedade Brasileira de Medicina Tropical. Nesse artigo foi descrita a
comunidade de mosquitos imaturos coletados nos diferentes ambientes bem como a relação entre riqueza, abundância e alguns fatores climáticos.
SUMÁRIO

1. INTRODUÇÃO .. 14
 1.1. Caracterização da Mata Atlântica e Interface com Meio Urbano 15
 1.2. A APA de Capivari-Monos no sub-distrito de Parelheiros 16
 1.3. Patógenos transmitidos por culicídeos .. 21
 1.4. Justificativa .. 23

2. OBJETIVOS .. 24
 2.1. Objetivos Específicos .. 25

3. RESULTADOS .. 26
 3.1. MANUSCRITO 1 .. 26
 3.2. MANUSCRITO 2 .. 37
 3.3. MANUSCRITO 3 .. 56

4. CONSIDERAÇÕES FINAIS ... 77

5. REFERÊNCIAS .. 89

ANEXO A – AMBIENTE DE COLETA ... 100
ANEXO B – TÉCNICAS DE COLETA ... 106
ANEXO C – CURRÍCULO LATTES DA AUTORA E ORIENTADOR 110
1. INTRODUÇÃO
1.1. Caracterização da Mata Atlântica e Interface com Meio Urbano

A Mata Atlântica se estende ao longo da costa do Brasil, do Rio Grande do Norte ao Rio Grande do Sul. Embora seja um dos biomas terrestres mais biodiversos do planeta, é também um dos mais ameaçados pela ação antrópica, sendo que atualmente corresponde a apenas 8% de sua cobertura original (FRANKE et al., 2005).

A exuberância da Mata Atlântica é explicada pela alta umidade do ar trazida pelos ventos marinhos que, ao subir pela encosta e atingir camadas mais frias, precipita sob forma de chuvas. Segundo a classificação de Koeppen, o clima ao longo da Mata Atlântica varia entre os tipos Aw (tropical), Cwa (tropical de altitude) e Cf (subtropical). As temperaturas médias variam entre 14 e 21°C, chegando à máxima de 35°C e não passando da mínima de 1°C. A pluviosidade média varia de 1500 a 2000 mm/ano, variando em função do relevo (FRANKE et al., 2005).

Há milhares de anos a Mata Atlântica está separada de outras florestas da América do Sul por savanas e pelo Cerrado, e esse isolamento explica o alto endemismo da sua fauna e flora (CI, 2012). Além disso, o bioma possui um diversificado mosaico de formações florestais, incluindo Floresta Ombrófila Densa, Floresta Ombrófila Aberta, Floresta Ombrófila Mista, Florestas Estacionais Deciduais e Semi-deciduais, Brejos de altitude, Encraves do Nordeste; e Matas ripárias. Possui ainda ecossistemas associados, como campos de altitude, restingas e manguezais, entre outros (MMA, 2012).

O ambiente é caracterizado por árvores de grande porte e acentuada riqueza de lianas e epífitas, mas há visíveis diferenças locais na composição florística e fisionomia da mata. As plantas epífitas, muito diversificadas, são responsáveis por parte
considerável da biomassa vegetal. Entre elas destacam-se as bromélias, com alto grau de endemismo na Mata Atlântica. Em várias espécies de bromélias, as folhas (e em alguns casos as raízes entrelaçadas), retém a água da chuva, formando tanques que podem armazenar até 50 mil litros de água por hectare. As bromélias formam hábitats para uma diversificada fauna de artrópodes, anfíbios e répteis, e além disso são vitais para o ciclo de vida dos mosquitos (TONHASCA, 2005).

A Mata Atlântica é diretamente responsável pela qualidade de vida de muitos brasileiros. Vivem no entorno desse bioma aproximadamente 120 milhões de habitantes, os quais exercem impacto sobre os remanescentes florestais. Apesar da pressão humana, a Mata Atlântica regula o fluxo dos mananciais hídricos, assegura a fertilidade do solo, controla o clima e protege escarpas e encostas das serras nas cidades, áreas rurais, comunidades caïcaras e indígenas (CAPOBIANCO, 2001). Mais de 100 milhões de brasileiros utilizam água originária dos rios e riachos que nascem na Mata Atlântica ou passam por seus domínios. Só na região metropolitana da cidade de São Paulo, pelo menos 15 milhões de habitantes dependem dos reservatórios da bacia de Guarapiranga, que são localizados na Área de Proteção Ambiental Capivari-Munos e alimentados por cursos d’água originários da floresta (TONHASCA, 2005).

1.2. A APA de Capivari-Munos no sub-districto de Parelheiros

Populações que vivem em cidades com alta densidade demográfica são comumente levadas a habitar regiões de periferia, e devido à ocupação desorganizada essas áreas ficam ambientalmente fragilizadas. Com o decorrer do tempo, há
homogeneização da paisagem e redução da cobertura vegetal primitiva (FORATTINI, 2004). Apesar dessa tendência, o município de São Paulo, que tem 11.253.503 de habitantes (IBGE, 2010), não apresenta um cenário grave de degradação ambiental na região sul da sua periferia, onde há remanescentes de Mata Atlântica. Para proteger esses remanescentes florestais e seus recursos hídricos, foi criada no sub-distrítio de Parelheiros a Área de Proteção Ambiental (APA) Municipal do Capivari-Monos através da Lei nº 13.136 de maio de 2001. A APA faz fronteira com o Parque Estadual da Serra do Mar e está inserida na Reserva da Biosfera do Cinturão Verde de São Paulo. Essa APA abriga os rios Capivari e Monos, e a preservação desses mananciais é primordial porque, além de sua importância ecológica, eles alimentam os reservatórios de Billings e Guarapiranga que abastecem a região metropolitana de São Paulo (BELLLENZANI, 2011).

A criação da APA teve por objetivos a contenção da ocupação humana, melhoria da qualidade de vida das populações com o uso sustentado dos recursos naturais e proteção da biodiversidade, dos recursos hídricos e dos remanescentes da Mata Atlântica. Porém, apesar da proteção legal, as áreas de mananciais da APA vêm sendo progressivamente degradadas, principalmente pela expansão urbana desordenada (JACINTHO, 2003).

A APA Capivari-Monos abrange 1/6 da área do município, e grande parte de seu território está coberto com vegetação nativa. No entanto, sua cobertura florestal é predominante secundária, composta por um complexo mosaico de vegetação em diferentes estágios de sucessão ecológica. As classes de vegetação nativa dessa APA incluem Floresta Ombrófila Densa Montana, Alto-Montana e Sub-Montana (Florestas
Nebulares). Associadas a essas formações vegetais encontram-se Matas Ciliares, Brejos, Matas de Turfeira e Campos de Várzea em diferentes estágios de regeneração (BELLENZANI, 2011).

São reconhecidos na referida APA formações vegetais antropizadas, consistindo em áreas alteradas pela ação humana continuada ou de épocas passadas. Essas formações, homogêneas e pouco diversas, são representadas por pastagens, lavouras e reflorestamentos com Pinus sp. e Eucalyptus sp. Diferindo dos campos naturais, os campos antrópicos são outro tipo vegetacional na APA, e resultam de intervenções humanas relacionadas ao desmatamento, abandono de pastos e cultivos agrícolas. Nesses campos incia-se o processo de sucessão ecológica que pode atingir estágios mais avançados (BELLENZANI, 2011). A agricultura de subsistência é a atividade produtiva predominante, embora os agricultores geralmente não sejam proprietários das terras. Apesar de esforços do poder público em implantar o uso sustentável do solo para agricultura, persiste o risco de degradação ambiental (SVMA, 1998).

As formações florestais da APA já foram alteradas no passado, e entender o processo de ocupação da região possibilita a compreensão de alguns aspectos da paisagem atual. No início do século XIX o território da APA Capivari-Monos era ocupado por índios Guarani. A partir de 1829 chegaram os primeiros alemães, que se estabeleceram como sitiantes e agricultores. Os colonos se instalaram no fundo de vales e em várzeas féteis, próximos a Engenheiro Marsilac e no bairro do Gramado, onde cultivavam hortaliças, pomares e pastagens para gado e extraíam madeira para abastecimento da capital (BELLENZANI, 2011).
A transformação da paisagem tomou maiores proporções com a exploração madeireira para produção de carvão. Essa atividade, exercida no extremo sul de São Paulo por várias décadas, suprimiu parte considerável de sua vegetação e implicou na abertura de trilhas, principalmente às margens dos corpos d’água, para transporte de toras de madeira por animais (BELLENZANI, 2001). Somente a partir da década de 60 a exploração de madeira para produção de carvão declinou, e houve então expressiva ocupação das áreas mais próximas aos mananciais. A ocupação da periferia pela população economicamente desfavorecida acompanhou a valorização das áreas próximas ao centro urbano (BELLENZANI, 2011).

Atualmente, os 31.068 habitantes da APA estão concentrados na porção norte do território. O principal núcleo, composto por 50% dos habitantes, é o loteamento de Vargem Grande, localizado no interior da Cratera de Colônia, na bacia da Billings (JACINTHO, 2003). A exemplo de Vargem Grande, o bairro Embura é formado por loteamentos irregulares em consequência da expansão urbana com acentuado desordenamento no uso do solo. Outro núcleo urbano importante na APA é o bairro de Engenheiro Marsilac, que se desenvolveu na época da construção da estrada de ferro Santos-Jundiaí. Hoje essa área se configura num pequeno centro regional com características rurais. Destaca-se a proximidade desse bairro aos ambientes naturais de floresta.

O modo de ocupação humana na APA Capivari – Monos, entremeada a áreas florestais, não apenas provocou como vem provocando visíveis alterações do ambiente natural. Sabe-se que a degradação reduz a diversidade de espécies primitivas enquanto favorece o crescimento e adaptação de populações de espécies oportunistas
(FORATTINI, 2004). Dessa forma, a heterogeneidade de ambientes na APA Capivari-Monos favorece a propagação de espécies oportunistas como mosquitos da família Culicidae, que de fato são encontrados em alta densidade na região.

Os culicídeos encontram na APA nichos favoráveis para seu desenvolvimento, e com abundância de criadouros eles ocupam desde florestas secundárias em estágio avançado de regeneração (ambiente “silvestre”) até locais bastante urbanizados. Tendo plasticidade adaptativa, os mosquitos também encontram na APA diversas fontes de alimento, e espécies hematófagas podem se alimentar do homem e de outros animais domésticos e silvestres. No entanto, muitos são vetores de patógenos, e seu contato com a população humana facilita a ocorrência de ciclos enzoóticos dos agentes das doenças infecciosas e parasitárias (IVERSSON, 1994; FIGUEIREDO, 2007).

Estudos em ecologia de culicídeos são essenciais para a compreensão da epidemiologia de diferentes patologias e trazem conhecimentos aplicáveis ao controle de vetores e monitoramento de espécies bioindicadoras de alterações ambientais. Espécies de culicídeos capazes de se adaptar aos ambientes periféricos das cidades e com tendência à domiciliação conseguem se proliferar em ambientes degradados, podendo assim veicular patógenos para populações humanas e para os animais (FORATTINI et al., 1989; FORATTINI et al., 1991).

Provavelmente em decorrência da proximidade do homem a áreas florestadas e consequente relação com vetores e transmissão de doenças (DUARTE et al., 2013), focos de malária autóctone têm sido registrados na APA Capivari Monos desde 2006. Esse quadro representa um problema de saúde pública, pois além da
exposição da população aos anofelinos e à malária, outros vetores locais podem veicular arbovírus como agentes da febre amarela, da dengue e das encefalomielites. Daí a necessidade de estudar a fauna de culicídeos da APA Capivari Monos, que até a realização do presente estudo era desconhecida.

1.3. Patógenos transmitidos por culicídeos

Os culicídeos podem ser vetores de uma série de patógenos que causam doenças graves em seres humanos. Eles veiculam patógenos como arbovírus que, por definição, são vírus que necessitam de um culicídeo hematófago e de um hospedeiro vertebrado para completar seu ciclo. Existem mais de 500 arbovírus identificados no Catálogo Internacional de Arbovírus, dos quais pelo menos 134 são causadores de doenças em humanos (KARABATSOS, 1978).

Os arbovírus são transmitidos entre seus hospedeiros vertebrados principalmente por artrópodes hematófagos que servem como vetores. No entanto, a dinâmica da infecção por arbovírus é muito mais complexa porque eles infectam tanto hospedeiros vertebrados quanto invertebrados. Além disso, o sucesso da sua transmissão envolve muitos fatores, incluindo a habilidade do vírus em se multiplicar em diferentes espécies de hospedeiros, suas interações com o hospedeiro (COLLINGE e RAY, 2006) e fatores ambientais como temperatura e pluviosidade.

Quase todas as espécies de arbovírus encontrados no Brasil ocorrem na região amazônica, e entre aproximadamente 200 tipos descritos, 36 têm sido considerados causadores de doença humana. Desses, 5 tipos de arbovírus são os mais importantes em
termos de saúde pública uma vez que estão associados a epidemias. São eles os vírus Dengue (DEN), Mayaro (MAY), Oropouche (ORO), Rocio (ROC) e Febre Amarela (FA). DEN e ORO estão associados a epidemias em áreas urbanas, enquanto MAY, ROC e FA ocorrem especialmente em áreas rurais e silvestres (VASCONCELOS, 1998).

Os arbovírus podem ser transmitidos por mosquitos dos gêneros Aedes, Culex, Haemagogus, Coquillettidia, Psorophora, Trichoprosopon e Sabethes, o que reflete a importância epidemiológica dos culicídeos. O gênero Culex, por exemplo, pode transmitir patógenos que causam encefalite, filariose linfática e dirofilariose (SERVICE, 1993). Esse gênero também é transmissor do Vírus do Nilo Ocidental (VNO) e do vírus da encefalite São Luís (SLEV) em cidades. Esses arbovírus são mantidos em ambiente urbano por aves migratórias, que são seus hospedeiros vertebrados (LUNA et al., 2003; ROCCO et al., 2005).

Os culicídeos dos gêneros Aedes, Anopheles, Mansonia, Psorophora, e Coquillettidia podem transmitir o agente etiológico da dirofilariose, uma helmintíase canina (MARCONDES, 2009). Na região do Vale do Ribeira, estado de São Paulo, suspeita-se que Aedes scapularis transmite o vírus Rocio, em outras regiões do Brasil parece que essa espécie é vetora de outros arboviroses (FORATTINI et al., 1995).

Na região de Mata Atlântica em São Paulo há pelo menos duas regiões distintas onde foi registrada a presença de anofelinos vetores de agentes da malária. A espécie Anopheles (Nyssorhynchus) darlingi, o principal vetor da malária no Brasil (PAULA e GOMES 2007; GOMES et al., 2008), foi encontrado na área próxima à Hidrelétrica de Porto Primavera, região oeste, sob influência da bacia hidrográfica do rio Paraná. Já o
Anopheles (Kerteszia) cruzii, que transmite os agentes da chamada “malária bromélia” (GOMES et al., 1987; TUBAKI et al., 1993; MARRELLI, et al., 2007), foi encontrado em alta densidade na Serra do Mar, ecossistema ainda relativamente preservado e coberto por Mata Atlântica.

1.4. Justificativa

Dada a importância epidemiológica dos culicídeos e a falta de conhecimento sobre esse grupo em remanescentes de Mata Atlântica de São Paulo, este estudo apresenta alguns aspectos de sua ecologia na APA Capivari-Monos. Pelas características descritas, a área estudada se mostra importante pela facilitação na transmissão de diversos patógenos e mesmo como fonte de incômodo pelas picadas por culicídeos. Com vistas a contribuir para o conhecimento do potencial epidemiológico dos culicídeos, este estudo descreve a diversidade da fauna de mosquitos da APA Capivari-Monos e a influência de fatores sazonais. Discute ainda os riscos potenciais do contato de culicídeos com a população humana local.
2. OBJETIVOS
Identificar a composição de espécies de mosquitos (Diptera: Culicidae) nos ambientes silvestre e antrópico da APA Capivari-Monos, município de São Paulo.

2.1. Objetivos Específicos

a) Investigar a composição específica e a frequência dos mosquitos adultos e imaturos coletados nos ambientes antrópico e silvestre.

b) Descrever o perfil de diversidade dos mosquitos dos ambientes antrópico e silvestre usando medidas de diversidade como riqueza, abundância, equabilidade e dominância.

c) Relacionar os fatores climáticos a riqueza de espécies e a abundância de culicídeos.

d) Discutir as implicações epidemiológicas das espécies de culicídeos potenciais transmissores de patógenos.
3. RESULTADOS

3.1. MANUSCRITO 1

Artigo publicado na revista Journal of Vector Ecology
Mosquitoes in degraded and preserved areas of the Atlantic Forest and potential for vector-borne disease risk in the municipality of São Paulo, Brazil

Andressa Francisca Ribeiro¹,², Paulo Roberto Urbinatti¹, Ana Maria Ribeiro de Castro Duarte², Marcia Bicudo de Paula¹, Diego Mendes Pereira², Luís Filipe Mucci², Aristides Fernandes¹, Maria Helena Silva Homem de Mello⁷, Marco Otávio de Matos Júnior⁸, Rosane Correa de Oliveira¹, Delso Natal¹, and Rosely dos Santos Malafronte¹,⁵

¹Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo, 01246-904, Brazil, andressa.fr@usp.br
²Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, Rua Paula Souza, 166, São Paulo, 01027-000, Brazil
³Laboratório de Culicídeos/SR-03, Superintendência de Controle de Endemias, Pça. Cel. Vitoriano, 23, Taubaté, 12020-020, Brazil
⁴Laboratório de Identificação e Pesquisa em Fauna Sinartrópica, Centro de Controle de Zoonoses, Coordenação de Vigilância Saúde, Secretaria Municipal de Saúde Prefeitura Municipal de São Paulo, Rua Santa Eulália, 86, São Paulo, 02031-020, Brazil
⁵Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
⁶Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina/USP, Av. Dr. Arnaldo 455, 01246-000, São Paulo, Brazil

Received 11 January 2012; Accepted 7 May 2012

ABSTRACT: In order to assess the epidemiological potential of the Culicidae species in remaining areas of the Brazilian Atlantic Forest, specimens of this family were collected in wild and anthropic environments. A total of 9,403 adult mosquitoes was collected from May, 2009 to June, 2010. The most prevalent among species collected in the wild environment were Anopheles (Kerteszia) cruzii, the Melanoconion section of Culex (Melanoconion), and Aedes serratus, while the most common in the anthropic site were Coquillettidia chrysomotum/albifera, Culex (Culex) Coronator group, and An. (Ker.) cruzii. Mosquito richness was similar between environments, although the abundance of individuals from different species varied. When comparing diversity patterns between environments, anthropic sites exhibited higher richness and evenness, suggesting that environmental stress increased the number of favorable niches for culcids, promoting diversity. Increased abundance of opportunistic species in the anthropic environment enhances contact with culcids that transmit vector-borne diseases. Journal of Vector Ecology 37 (2): 316-324, 2012.

keyword Index: Culicidae, Atlantic Rainforest, diversity, epidemiology, pathogenic agents.

INTRODUCTION

Remnants of the Atlantic Forest in southeastern Brazil constitute a biome of high diversity and multiple niches that favor mosquito (Diptera: Culicidae) proliferation (Forattini et al. 1990, Guimarães et al. 2000). A portion of São Paulo state contains a mountainous coastal area dominated by an Atlantic Forest fragment, which plays an essential role in
the dynamic balance of temperature and humidity in the metropolis, affecting the local quality of life. However, humans are increasingly invading these areas, causing environmental disturbance and degradation.

The Capivari-Monos Environmental Protection Area (APA) was established in the south of São Paulo municipality to ensure the preservation of an Atlantic Forest area. A significant part of the APA is still covered by primary vegetation, corresponding to 1/6 of the municipal area. However, as a result of vegetation suppression and selective plant cutting throughout land use history, secondary forest is currently the main formation in the APA, producing an assemblage of plant species at different ecological succession phases. Classes of native vegetation present in the APA are dense, upper-mountain and lower-mountain rainforest (Ombrophilous Forest). Riparian forests, swamps, bogs, and flood plains are also found at different recovery stages (PMSP 2011).

Silviculture in the APA is limited and consists of Pinussp followed by Eucaliptus sp planting. Activities such as pasture growing for livestock production and cropping are also developed, forming anthropic sites with low plant diversity. Subsistence agriculture is the main productive activity of APA inhabitants, although they are not landowners. Public policies attempt to implement sustainable agriculture practices among these farmers; however, the area is at risk of environmental impact (PMSP 2011).

Environmental heterogeneity of the Capivari-Monos APA promotes biodiversity. Development of Culicidae fauna in particular benefits from the abundance of suitable breeding sites and blood sources. In this scenario, direct contact between humans and mosquitoes facilitates enzootic cycles of infectious and parasitic disease agents (Iversson 1994, Figueiredo 2007).
The study of mosquito ecology is essential in order to understand the epidemiology of different diseases. These investigations provide useful knowledge for vector control, allowing monitoring of these biological indicators of environmental changes caused by man. In fact, environmental degradation promotes the proliferation of mosquito species with adaptive plasticity, which can develop in suburban areas, showing a domiciliation tendency and ability to carry and transmit pathogens to humans and animals (Forattini et al. 1989, Forattini et al. 1991).

In light of human proximity to forest areas and consequent interaction with disease vectors, autochthonous malaria outbreaks have been reported in the Capivari-Monos APA since 2006. This triggered interest in studying the previously unknown mosquito fauna in the area. However, in addition to Anopheline mosquitoes and malaria risk, the situation described is a potential public health problem since other local vectors can carry a number of arboviruses, causing diseases such as yellow fever, dengue fever, and encephalomyelitis. Aggravating this situation, humans are accidentally inserted into the natural cycle of some pathogens, eventually participating as primary, secondary, or dead-end hosts (Marcondes 2009).

In an attempt to better understand the epidemiological potential of mosquitoes in the Capivari-Monos APA, the present study describes their diversity profile and similarity within this region and discusses the potential risk of vector contact with the local human population.

MATERIALS AND METHODS

Study area

The study was conducted in a remnant of Atlantic Rainforest in the Capivari-Monos APA, located in the subdistrict of Parelheiros, south of São Paulo and almost 60 km from the city center. The protected area includes part of the Billings and Guarapiranga hydrographic basins, and the Capivari and Monos River basins, important water sources for the city of São Paulo (PMSP 2011).

Entomological collections were carried out in two areas. The first was a wildlife zone (WLZ) close to the São Paulo-Santos railway line at the Evangelista de Souza station (S 23° 56' 14.09"/W 46°38’ 09.07”). According to current legislation for the Capivari-Monos APA, the WLZ is an integrated conservation area for the preservation of the biota and water resources. The region is predominantly covered by advanced stage secondary forest, with limited human presence and influence. The second area, denominated the anthropic environment, is located 15 km from the WLZ in an agricultural zone (AZ) in Embura (S 23° 53' 14.36"/W 46°44’ 25.96”). The AZ was formed to promote sustainable development among APA inhabitants with adequate agricultural management and land use. Rural areas are close to forest fragments, which suffer intense anthropic pressure. Predominant plant cover formation is forests at initial or intermediate succession stage. Occurrence of malaria has been recorded in the AZ and culicids at this site were collected in domiciliary and peri-domestic environments.

A high occurrence of epiphytic bromeliads was detected in both environments. The characteristic leaf shape of these plants form natural breeding sites that house immature culicids of different species. Climate in the area is predominantly super-humid oceanic tropical, typical of the eastern portion of the Serra do Mar (mountain range) (PMSP 2011).

Mosquito capture

To estimate diversity patterns, mosquitoes were captured once a month from May, 2009 to June, 2010 with CDC-type automatic traps, aspirator and Shannon traps. Six CDC-type traps containing dry ice as attractant were installed at three fixed points in the anthropic environment and three other points in the wild area, operating for 12 h (from dusk to dawn) during each collection, totaling a 1,008-h sampling effort in each environment. The aspirator (12V) captured mosquitoes at rest by suctioning for 20 min during each sampling, with a total sampling effort of 840 min per area. The Shannon traps, fed with a gas lamp to attract the mosquitoes, operated for 3 h (beginning at dusk) during each collection, with a 42-h sampling effort for each environment.

Mosquitoes were identified in the Entomology Laboratory at the Public Health Faculty of the University of São Paulo. Abbreviations used for species names were in accordance with Reinert (2001) and identifications were determined following Forattini (2002).

Data analysis

Data for each environment were analyzed irrespective of capture techniques used. According to Magurran (2004), the number of species and their relative contribution to the community are important in assessing diversity. As such, given that richness and evenness are complimentary parameters, they are the most suitable for analyzing diversity. Specific richness (S) and Shannon-Wiener (H’) indices were used to assess diversity, the Simpson’s index (DS) to determine dominance, and Pielou's index (J’) to evaluate evenness. Similarity between environments was established using the jaccard's index (JI) (Magurran 2004). Indices were applied using version 1.88 of the PAST software package (Hammer and Harper 2009).

The diversity pattern of environments was also used for comparisons. This procedure compares richness and evenness using a diversity ordering technique known as Rényi diversity profiles:

\[H_\alpha = \frac{\ln^\alpha (p_1^\alpha + p_2^\alpha + p_3^\alpha + ... + p_n^\alpha))}{(1-\alpha)} \]

where, \(H_\alpha \) is the diversity index value for factor \(\alpha (\alpha \geq 0, \alpha \neq 1) \) and \(p_1, p_2, p_3, ..., p_n \) corresponds to the number of individuals from species 1, 2, 3 ... S (Melo 2008).

The classification established by Ott and Carvalho (2001) was applied to determine species dominance, using the formula \(D\% = \left(\frac{t}{n} \right) \times 100 \), where \(n = \) number of individuals of a same species and \(t = \) number of individuals captured. According to the D values obtained, five dominance classes were established: eudominant (over 10%), dominant (5...
to 10%), subdominant (2 to 5%), recedent (1 – 2%), and subrecedent (under 1%).

The constancy index was calculated with the following formula: $C = \frac{p}{N} \times 100$, where $p =$ number of samples belonging to a given species; $P =$ total number of samples analyzed. Species were then classified into three constancy categories: constant ($C > 50\%$), accessory (25$<C<50\%$), and accidental ($C < 25\%$) (Dajos 1983).

The individual-based rarefaction curve was used to analyze sample sufficiency and compare environments (Gotelli and Colwell 2001). Rarefaction curve, error bar (S_{se}, Mao Tau) and Jackknife estimates were calculated with EstimateS 8.2 (Colwell 2009).

RESULTS

Monthly data on mosquito captures from May, 2009 to June, 2010 (Table 1) showed higher mosquito abundance from December, 2009 to February, 2010 in the anthropic environment and from October to December, 2009 in the wild environment (Figure 1).

We collected 9,403 adult mosquitoes from 91 taxonomical categories. Of these, 6,911 (73.5%) were captured in the wild environment and 2,492 (27.5%) in the anthropic environment. The most frequent species in the former was Anopheles (Kerteszia) cruzii ($n = 5,371$), followed by the Melanoconion section of Culex (Melanoconion) ($n = 373$) and Aedes serratus ($n = 246$). In the anthropic environment, the most common species were Coquillettidia chrysonotum/albifera ($n = 407$), Culex (Culex) from the Coronator group ($n = 321$), and An. (Ker.) cruzii ($n = 304$) (Table 1).

Shannon traps yielded the highest An. (Ker.) cruzii capture efficiency in both environments ($n = 4,827$; 90%). CDC traps captured the highest number of Cx. (Mel.) Melanoconion section in the wild area ($n=299$, 75%) and Cx. (Cux.) Coronator group in the anthropic environment. Cq. chrysonotum/albifera species, collected in Shannon traps, were abundant in the anthropic environment (Table 1).

The most constant and dominant (eudomiant) species was An. (Ker.) cruzii, occurring in all captures, with relative abundance above 10%. Melanoconion section of Cx. (Mel.), Ae. serratus and Cq. chrysonotum/albifera were classified as constant, but were subdominant since abundance was below 5% (Table 1).

The rarefaction curve for species (Figure 2) showed sampling efficiency in both wild and anthropic environments, while the plot revealed higher species richness in the anthropic environment. The jackknife technique indicated that both environments have a tendency towards a same richness with increased sampling effort. However, mean richness (and standard deviation) observed differed from the mean jackknife value (and standard deviation), indicating that total richness was not estimated for these environments.

The diversity pattern (Figure 3) shows similar species richness between the areas, whereas diversity and evenness were greater in the anthropic environment. Low evenness in the wild environment reflects high species dominance, since 75% ($n = 5,371$) of individuals captured corresponded to An. cruzii (Table 2). Richness of the samples captured in CDC traps was higher than in samples collected by the other methods, irrespective of the environment. However, Shannon traps captured the highest number of individuals. The samples collected with CDC traps and aspirator exhibited the highest diversity and homogeneity (Table 3).

Jaccard’s Index demonstrated similarity of 55% between the wild and anthropic environments, revealing a high similarity in species composition. Of the species collected, 50 were found in both environments, 19 were exclusive to the anthropic environment, and 22 to the wild environment. The primary exclusive species in the anthropic environment was Cx. (Mel.) delpontei ($n = 48$), and Ocellatus section of Cx. ($n = 35$) in the wild environment.

DISCUSSION

We identified substantial Culicidae richness in the
Table 1. Adult mosquitoes collected in different traps in the wild and anthropic environments in the subdistrict of Pareheiros, municipality of São Paulo, from May, 2009 to June, 2010.

Taxonomic categories	ANTHROPIC	WILD								
	Shan. CDC	Asp.	Shan. CDC	Asp.	Total	%	Dominance	Constancy		
ANOPHELINEAE										
Anophelini										
(n = 5,438; 57.83%; S = 6)										
An. (Ker.) cruzii	244	40	20	4827	219	21	5,371	57.12	Eudominant	Constant
An. (Nys.) strodei	28	2	9	13	52	0.55	Subreduced	Constant		
Other species*	7	6	2	15	0.16	-	-	-		
CULICIDAE										
Aedini										
(n = 434; 46.1%; S = 15)										
Ae. (Och.) serrata	2	4	1	9	213	24	253	2.69	Subdominant	Constant
Ps. ferox	1	6	24	13	44	0.47	Subreduced	Constant		
Ae. (Och.) scapularis	24	6	1	3	35	0.37	Subreduced	Constant		
Other species*	16	10	3	17	32	24	102	1.08	-	-
Culicini										
(n = 2,005; 21.32%; S = 42)										
Cx. (Cux.) Coronator group	64	245	12	6	146	2	475	5.05	Dominant	Constant
Cx. (Mel.) Melanoconion section	7	19		51	299	23	399	4.24	Subdominant	Constant
Cx. (Cux.) sp.	52	61	5	3	178	2	301	3.20	Subdominant	Constant
Cx. (Cux.) nigripalpus	10	48	1	4	116	7	186	1.98	Recedent	Constant
Cx. (Cux.) dolosus/eduardoi	4	22	6	5	39	10	86	0.91	Subreduced	Constant
Cx. (Mel.) glyptosalpinx	1	1	14	65	81	0.86	Subreduced	Accessory		
Cx. (Mcx.) Limator group	1	3	13	43	61	0.65	Subreduced	Constant		
Cx. (Mel.) misidionensis	1	8	7	27	10	53	0.56	Subreduced	Constant	
Cx. (Mel.) vaxas	1		30	18	49	0.52	Subreduced	Constant		
Other species*	60	93	10	8	93	131	395	4.20	-	-
Mansoniini										
(n = 1,059; 11.26%; S = 7)										
Cq. chrysonotoma/albifera	363	43	1	34	18	1	460	4.89	Subdominant	Constant
Ma. titillans	137	36	3	1	177	1.88	Recedent	Constant		
Cq. juxtanansonia	154	13	1	6	174	1.85	Recedent	Constant		
Cq. venezuelensis	106	13	1	2	122	1.30	Recedent	Constant		
Other species*	114	7	1	3	0	126	1.34	-	-	
Sabethini										
(n = 376; 3.99%; S = 15)										
Wy. confusa	5	150	12	1	169	1.80	Recedent	Constant		
Li durhami	58	10	1	3	72	0.77	Subreduced	Constant		
Tr. Pallidiventer/castor/similis	2	42	3	47	0.50	Subreduced	Constant			
Ru. Reversa	1	11	1	5	18	0.19	Subreduced	Constant		
Other species*	3	15	5	3	60	70	0.74	-	-	
Uranotaeniini										
(n = 91; 0.96%; S = 6)										
Ur. palcherrima	7	46	1	1	54	0.57	Subreduced	Accessory		
Ur. geometrica	8	6	2	1	16	0.17	Subreduced	Accidental		
Other species*	2	17	1	0	0	21	0.22	-	-	
Total	1,420	975	97	5,045	1,539	327	9,403	100.00	-	-

1 Eudominant (D > 10%), Dominant (D > 5-10%), Subdominant (D > 2-5%), Recedent (D > 1-2%), Subreduced (D < 1%). 2 Constant (C > 50%), Accessory (C > 25 – 50%), Accidental (C < 25%).

* Other species* An. strolei, An. triannulatus, An. (Ker.) bellator, An. maculipes/pseudomaculipes, An. pseudotibiamaculata, Ae. serratus/nubilas, Ae. terrens, Ps. albigena, Ae. crinifer, Ae. hastatus/oligopistus, Ae. nubilas, Ae. hastatus, Ad. squamipennis, Ae. flavitennis, Ae. argyrophyra, Ae. albopectus, Ps. lutzii, Cx. (Mel.) delaponi, Cx. Ocellatus section, Cx. (Mex.) neglectus, Cx. (Cux.) chiesteri, Cx. (Mel.) ribeirensis, Cx. (Mel.) sacchettae, Cx. (Cux.) coronator, Cx. (Mex.) pleunisriatus/abipes, Cx. (Mel.) bastagarius, Cx. (Mel.) zetek, Cx. (Mel.) orflai, Cx. (Mel.) pereyra, Cx. (Mel.) Anatus group, Cx. (Cux.) quinquesscutatus, Cx. (Mel.) aliae, Cx. (Cux.) tigrinus, Cx. (Mel.) intrincatus, Cx. (Mel.) alaskos, Cx. (Mel.) austromostus, Cx. (Mel.) Piloups group, Cx. (Mel.) trilobulatus, Cx. (Gar.) iridescens, Cx. (Mex.) sp., Cx. (Mel.) palus, Cx. (Mel.) tabelloi, Cx. (Phe.) corniger, Cx. (Cux.) bidens, Cx. (Cux.) declator, Cx. (Mex.) Pleunisriatus group, Cx. (Mel.) distinguendus, Cx. (Mel.) oedipus, Cx. (Mel.) pedroi, Cx. (Mel.) productus, Cq. albifera, Ma. wilsoni, Ma. indubitata.
Figure 2. Individual-based rarefaction curve comparing species richness between the anthropic and the wild environments and first order jackknife estimator. Error bars indicate standard deviation and Mao Tau index. Estimates were calculated using EstimateS.

Figure 3. Diversity pattern in the anthropic and in the wild environments calculated from the relative frequency of culicid species by the Rényi diversity profile technique. For an alpha value of 0, diversity is equal to the number of species in the sample. For alpha values tending towards 1, diversity corresponds to the Shannon Index (on a neperian base) and can be obtained by $^{(N_1)}$, where $e = 2.718282$. For alpha = 2, diversity is expressed by the inverse Simpson index (1/D).
Table 2. Mosquito diversity in the wild and anthropic environments in the subdistrict of Parelheiros, municipality of São Paulo, from May, 2009 to June, 2010.

	Anthropic	Wild
Richness (S)	71	68
Abundance	2.492	6.911
Shannon-Wiener (H')	2.977	1.292
Simpson’s (DS)	0.9192	0.4318
Pielou’s (J')	0.6984	0.3061
An. (Ker.) cruzii	304 (12.5%)	5,371 (75.5%)

Capivari-Monos APA. This area, on the outskirts of the city of São Paulo, has approximately 11 million inhabitants and is recognized as an important economic center in Brazil. Factors such as intensive urban growth along with disordered encroachment of spring and forest areas favors contact between humans and several species of mosquitoes, facilitating the transmission of arboviruses and other parasites. Some species captured deserve special attention due to their epidemiological importance. Although species richness in both environments was similar, they differed in terms of abundance.

In the present study, captures with CDC traps and aspirator provided samples of higher diversity than those obtained with Shannon traps. The highest richness index values in anthropic and wild environments were obtained in CDC trap samples. However, mosquitoes captured with the aspirator exhibited the highest diversity. According to Brown et al. (2008), these results are important for comparing different types of traps since richness and diversity are not necessarily associated.

The diversity profile of the anthropic environment was characterized by higher richness and evenness. Man-modified environments are known to eventually become favorable to greater biological diversity. Although these modifications can compromise vertebrates, they stimulate proliferation of invertebrates such as culcids (Hunter 2007). The anthropic environment is an ecotone, a transition area between urban and wild regions. Modification in this environment promotes species dispersion, causing changes in the population of native communities. Moreover, proximity of the forest edge and higher variability of breeders in relation to the wild environment may have resulted in greater richness and evenness, as well as lower species dominance.

Following the same reasoning, environmental changes may have increased the abundance of opportunistic species. Species of the tribe Mansonii dominated the anthropic environment which, according to Dorvillé (1996), indicates a high level of environmental change. Species from this tribe are attracted by light and displayed marked nocturnal activity (Barghini et al. 2004). They are epidemiologically significant because they are naturally infected by several arboviruses, including transmitters of Venezuelan equine encephalitis (Forattini 2002). In addition to pathogen transmission, culcids can attack and thus disturb local residents and animals (Consoli and Lourenço-de-Oliveira 1994, Forattini 2002).

An important epidemiological finding was the occurrence of 321 specimens of An. cruzii in the anthropic environment over the 14 months of the study. Although this number is lower than that detected in the wild environment, sporadic autochthonous cases of malaria have been notified in the anthropic area.

The presence of An. cruzii and Cx. neglectus is also ecologically significant, given that these species are associated with undisturbed primary environments and can therefore indicate forest recovery. Similar results on mosquito fauna were found in an Atlantic Forest fragment in southern Brazil (Cardoso et al. 2011).

The anthropic environment exhibited man-made modifications such as cropped areas, irrigation ponds, and open areas surrounding the forest. It also contains several endogenous and exogenous bromeliads growing in peri-domiciliary areas, as well as tree assemblages at different succession stages, frequently colonized by epiphytes. Such environmental diversity favors the occurrence of wild and domestic mosquito species owing to the availability of breeding sites, proximity to the wild environment, and human and animal hosts.

Several studies report high dominance of An. cruzii in Atlantic Forest fragments, corroborating this aspect as an indicator of preservation (Forattini et al. 1990, Dorvillé 1996, Guimarães et al. 2000). In the present study, An. cruzii accounted for more than 70% (n = 5,067) of individuals captured in the wild environment, suggesting it is subjected to low anthropic influence, thereby preserving characteristics. According to Forattini et al. (2000), despite their low synanthropy, An. cruzii are found in anthropic areas since they ensure blood sources for food. However, the species

Table 3. Diversity of mosquitoes collected in the wild and anthropic environments using different capture techniques, in the subdistrict of Parelheiros, municipality of São Paulo, from May, 2009 to June, 2010.

	Anthropic	Wild
Richness (S)	56	30
Abundance	975	134
Shannon-Wiener (H')	2.87	2.799
Simpson (DS)	0.8931	0.9062
Pielou’s (J')	0.7939	0.6575

	CDC	Aspirator
Shannon	45	50
Abundance	1,420	1,717
Shannon-Wiener (H')	2.503	2.583
Simpson (DS)	0.871	0.8797
Pielou’s (J')	0.6538	0.7885

	CDC	Aspirator
Shannon	36	36
Abundance	326	4,873
Shannon-Wiener (H')	2.947	0.2865
Simpson (DS)	0.9151	0.08216
Pielou’s (J')	0.7885	0.08124
is not adapted to artificial environments and move to the surrounding forest after feeding, where females lay eggs on water corpuses accumulated in the axils of bromeliads. This ensures the epidemiological cycle of bromelian malaria in the Atlantic Forest of south and southeastern Brazil (Downs and Pittendrich 1946).

Close proximity between humans and natural malaria vectors in the study area is alarming because it heightens the risk of malaria occurrence. An. cruzii is a vector of human and simian malaria (Deane et al. 1970, Deane 1992), and some research has reported its occurrence, naturally infected with Plasmodium vivax and its variants, in Atlantic Forest areas of São Paulo (Branquinho et al. 1997) and more recently in Espírito Santo state (Rezende et al. 2009). The occurrence of zoonosis from simian plasmodia (Plasmodium simium and P. brasilianum, which are similar to P. vivax and P. malariae, respectively) in Atlantic Forest areas remains a matter of debate (Duarte et al. 2008). In light of malaria cases recorded, Anopheles sp. occurrence and particularly An. cruzii abundance, research into natural infection of this vector in the area as shown by the collector’s curve and Jackknife estimate, total richness in the environments was not assessed. However, the 91 taxonomical groups found in the two environments were sufficiently high to indicate significant high richness.

Notably, a substantial number of species from the tribe Culicini were captured, particularly in the wild environment. Forty species were identified, including Culex specimens from the subgenus Melanoconion. Some of these culcids can adapt to modified environments and may therefore introduce and transmit several arboviruses to humans and animals within the anthropic habitat, promoting and maintaining enzootic cycles (Forattini et al. 1991, Natal et al. 1998). Furthermore, according to Forattini (2002), one of the main biological vectors of filariasis belongs to the genus Culex. However, since most Melanoconion species are exclusive to wild areas, their occurrence in forest environments has low impact.

The presence of Psorophora ferox, Aedes scapularis, and Aedes serratus reinforces the epidemiological importance of the Capivari-Monos APA, as well as the need for monitoring possible arbovirus transmission. The Rocio virus, for instance, was found to infect Ps. ferox specimens in natural habitats (Lopes et al. 1981), and Ae. scapularis under laboratory conditions. This last finding was recorded following the encephalitis outbreak in Vale do Ribeira during the 1970s (Mitchell and Forattini 1984, Mitchell et al. 1986). Although these studies only demonstrate the ability of these culcids to carry pathogens, they play a significant role in virus circulation in the natural environment (Forattini 2002). The most abundant species of Aedini was Ae. serratus. Its relevance from a public health standpoint is poorly known, although natural infection records suggest that it has potential to carry arboviruses. Ae. serratus, considered a secondary vector of the Ilhéus virus (Vasconcelos et. al. 1998) was also found to be infected by the Trocara virus in the Peruvian Amazon and in the state of Pará (Travassos da Rosa et al. 2001, Turell et al. 2005). In addition, the occurrence of infected Anopheles, Aedes, Culex, and Uranotaenia mosquitoes with unclassified viruses and uncharacterized viruses of the families Bunyaviridae, Coronaviridae, Flaviviridae, and Rhabdoviridae was found in the West African rainforest (Junglen et al. 2009).

Several authors have suggested that anthropogenic changes should not be underestimated in the recrudescence of vector-borne diseases. For instance, a study investigating a region in France from World War II to 1971 found that the populations of An. Hyrcanus, a vector with potential for malaria transmission, and of the West Nile Virus vector Culex modestus were initially very high in agricultural areas, decreasing after a few years owing to pesticide control in rice cultivation (Ponçon et al. 2007). However, a number of factors caused the population of these mosquitoes to increase again in 2000, raising the risk of malaria and WNV transmission.

Aedes aegypti was not recorded in captures and Aedes albopictus was scarce in the anthropic environment. However, incidences of dengue have increased over the last two years in other urban areas of the Parelheiros region. In accordance with SUVIS (Health Surveillance Supervision) records, dengue occurrences grow progressively from downtown Parelheiros towards Vargem Grande and Engenheiro Marsilac. According to these data, 37 cases were recorded in 2009, with four of them autochthonous. In 2010, incidences rose to 74, with nine autochthonous cases, and by October 2011 a further 95 occurrences were registered, one of which was autochthonous (personal communication).

In regard to possible reservoirs of wild arboviruses, the APA area contains 364 vertebrate species including amphibians, reptiles, birds, and mammals, corresponding to 67% of the fauna recorded in the city of São Paulo. Avifauna in particular is highly diverse in the APA, with 288 species accounting for 77% of those recorded in the city. The 35 mammal species found in the region correspond to 42% of total municipality records in accordance with an SVMA (Municipal Secretariat of Green Areas and the Environment) survey (SMA 2010). This fauna diversity enables the existence of several arboviruses in the natural environment, including encephalitis.

In conclusion, the study area displays a culicid-rich fauna, with species relevant to public health. Diversity, richness, and evenness components may help to control different pathogens in the Capivari-Monos APA. However, further research in the area is needed, since continuous environmental change caused by human activity results in selective pressure and consequent adaptations of culicid vectors and hosts, which may produce new epidemiological scenarios. Given the existence of mosquitoes able to carry arboviruses and inhabit both wild and anthropic environments, new vectors capable of transmitting pathogens from natural focal points to the anthropic environment may emerge.

The present study provides information to guide local malaria control and prevent metaxenic diseases in Atlantic Rainforest areas subject to human pressure and environmental degradation. As such, we strongly recommend mosquito monitoring by surveillance and control agencies in urban
areas surrounded by Atlantic Forest.

Acknowledgments

We thank the Supervisão de Vigilância em Saúde, Coordenação de Vigilância em Saúde, Secretaria Municipal de Saúde, Prefeitura Municipal de São Paulo for providing data on dengue prevalence; and Instituto Pedro Matta and Guarda Civil Metropolitana, Prefeitura Municipal de São Paulo for logistic support in field collections. This research was sponsored by FAPESP (2008/52016-0).

REFERENCES CITED

Barghini, A., P.R. Urbinatti, and D. Natal. 2004. Atração de mosquitos (Diptera: Culicidae) por lâmpadas incandescentes e fluorescentes. Entomol. Vect. 11: 611-622.

Branquinho, M.S., M.T. Marrelli, I. Curado, D. Natal, J.M.S. Barata, R. Tubaki, G.C. Carréri-Bruno, R.T. Menezes, and J.K. Kloeetzl. 1997. Infeção do Anopheles (Kerteszia) cruzii por Plasmodium vivax e Plasmodium vivax variante VK 247 nos municípios de São Vicente e Juquitiba, São Paulo. Rev. Panam. Saúd Públ. 2: 189-193.

Brown, H.E., M. Paladini, R.A. Cook, D. Kline, D. Barnard, and D. Fish. 2008. Effectiveness of mosquito traps in measuring species abundance and composition. J. Med. Entomol. 45: 517-521.

Cardoso J.C., M.B. de Paula, A. Fernandes, E. Santos, M.A.B. Almeida, D.F. Fonseca and M.A.M. Sallum. 2011. Ecological aspects of mosquitoes (Diptera: Culicidae) in an Atlantic forest area on the north coast of Rio Grande do Sul State, Brazil. J. Vector Ecol. 36: 175-186.

Colwell, R.K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2.0. URL http://purl.oclc.org/estimates.

Consoli, R.A.G.B. and R. Lourenço-de-Oliveira. 1994. Principais mosquitos de importância no Brasil. Editora Fiocruz, Rio de Janeiro, 228 pp.

Dajas, R. 1983. Ecologia geral. Editora Vozes/Edusp, São Paulo, 472 pp.

Deane, L.M. 1992. Simian malaria in Brazil. Mem. Inst. Oswaldo Cruz 87: 1-20.

Deane, L.M., J.A. Ferreira-Neto, S.P. Deaneand I.P. Silveira. 1970. Anopheles(Kerteszia) cruzii, a natural vector of the monkey malaria parasites. Plasmodium simium and Plasmodium brasilianum. Trans. R. Soc. Trop. Med. Hyg. 64: 647.

Dorvill, L.F.M. 1996. Mosquitoes as bioindicators of forest degradation in southeastern Brazil, a statistical evaluation of published data in the literature. Stud. Neotrop. Environ. 31: 68-78.

Downs, W.G. and C.S. Pittendrich. 1946. Bromelian malaria in Trinidad, British West Indies. Am. J. Trop. Med. Hyg. 26: 47-66.

Duarte, A.M.R.C., R.S. Malafronte, C. Cerutti-Jr., I. Curado, B.C. Paiva, A.Y. Maeda, T. Yamasaki, M.E.L. Summa, D.V.D. Andrade-Neves, S.G. Oliveira, and A.C. Gomes. 2008. Natural Plasmodium infections in Brazilian wild monkeys: Reservoirs for human infections? Acta Trop. 107: 179-185.

Figueiredo, L.T.M. 2007. Emergent arboviruses in Brazil. Rev. Soc. Bras. Med. Trop. 40: 224-229.

Forattini, O.P., A.C. Gomes, D. Natal, I. Kakitaniand, and D. Marucci. 1989. Preferências alimentares e domiciliação de mosquitos Culicidae no Vale do Ribeira, São Paulo, Brasil com especial referência a Aedes scapularis and Culex (Melanoconion). Rev. Saúde Públ. 23: 9-19.

Forattini, O.P., A.C. Gomes, J.L.F. Santos, I. Kakitaniand, and D. Marucci. 1990. Frequência ao ambiente humano e dispersão de mosquitos Culicidae em área adjacente à Mata Atlântica primitiva da planície. Rev. Saúde Públ. 24: 101-107.

Forattini, O.P., A.C. Gomes, I. Kakitaniand, and D. Marucci. 1991. Observações sobre domiciliação de mosquitos Culex (Melanoconion) em ambiente com acentuadas modificações antrópicas. Rev. Saúde Públ. 25: 257-266.

Forattini, O.P., I. Kakitani, R.L. dos Santos, K.M. Kobayashi, H.M. Ueno and Z. Fernández. 2000. Potencial siantrópico de mosquitos Kerteszia e Culex (Diptera: Culicidae) no sudeste do Brasil. Rev. Saúde Públ. 34: 565-569.

Forattini, O.P. 2002. Culicidología Médica. Vol. 2. Editora Universidade de São Paulo, São Paulo, 864 pp.

Gotelli, N.J. and R.K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379-391.

Guimarães, A.E., C. Gentile, C.M. Lopes, and R.P. Mello. 2000. Ecology of mosquitoes (Diptera: Culicidae) in areas of Serra do Mar State Park, State of São Paulo, Brasil II: habitat distribution. Mem. Inst. Oswaldo Cruz 95: 17-28.

Hammer, O. and D.A.T. Harper. 2009. PAST: Paleontological Statistics software package for education and data analysis. Version 1.88. URL http://folk.uio.no/omhammer/
past.

Hunter, P. 2007. The human impact on biological diversity: How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep. 8: 316-318.

Iversson, L.B. 1994. Situação atual do conhecimento ecoepidemiológico sobre arbovírus patogênicos para o homem na região da mata atlântica do Estado de São Paulo. Rev. Inst. Med. Trop. São Paulo 36: 343-353.

Junglen, S., A. Kurth, H. Kuehl, P.-L. Quan, H. Ellerbrok, G. Pauli, A. Nitsche, C. Nunn,S. M. Rich, W. I. Lipkin, T. Briese, and F. H. Leendertzl. 2009. Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection. EcoHealth 6: 239-249.

Lopes, O.S., L.A. Sacchetta, D.B. Francy, W.L. Jakob, and C.H. Calisher. 1981. Emergence of a new arbovirus disease in Brazil III. Isolation of Rocio virus from Psorophoraferox (Humboldt, 1819). Am. J. Epidem. 113: 122-125.

Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Science, Oxford, 256 pp.

Marcondes, C.B. 2009. Doenças transmitidas e causadas por vetores artrópodes. Editora Atheneu, São Paulo, 580 pp.
Melo, A.S. 2008. O que ganhamos ‘confundindo’ riqueza de espécies e equabilidade em um índice de diversidade? Biota Neotrop. 8: 21-27.

Mitchell, C.J. and O.P. Forattini. 1984. Experimental transmission of Rocio encephalitis virus by *Aedes capularis* (Diptera: Culicidae) from the epidemic zone in Brazil. J. Med. Entomol. 21: 34-37.

Mitchell, C.J., O.P. Forattini, and B.R. Miller. 1986. Vector competence experiments with Rocio virus and three mosquito species from the epidemic zone in Brazil. Rev. Saúde Públ. 20: 171-177.

Natal, D., P.R. Urbinatti, and D. Marucci. 1998. Arbovirus vector ecology in the Brazilian coastal range system. In: A.P.A. Travassos da Rosa, P.F.C. Vasconcelos and J.F.S. Travassos da Rosa (eds.) *An Overview of Arbovirology in Brazil and Neighbouring Countries*. pp. 234-247. Instituto Evandro Chagas, Belém.

Ott, A.P. and G.S. Carvalho. 2001. Comunidade de cigarrinhas (Hemyptera: Auchenorrhyncha) de uma área de campo do município de Viamão, Rio Grande do Sul, Brasil. Neotrop. Entomol. 30: 233-243.

PMSP -Prefeitura Municipal de São Paulo. 2011. Plano de manejo: APA Capivari-Monos. Secretaria do Verde e do Meio Ambiente, São Paulo. 346 pp.

Ponçon, N., T. Balenghien, C. Totty, J.B. Ferrá, C. Thomas, A. Dervieux, G. L'ambert, F. Schaffner, O. Bardin, and D. Fontenille. 2007. Effects of local anthropogenic changes on potential malaria vector *Anopheles hyrcanus* and West Nile Virus vector *Culex modestus*, Camargue, France. Emerg. Infect. Dis. 13: 1810-1815.

Reinert, J.F. 2001. Revised list of abbreviations for genera and subgenera of Culicidae (Diptera) and notes on generic and subgeneric changes. J. Am. Mosq. Contr. Assoc. 17: 51-55.

Rezende, R.H., R.M. Soares, C. Cerutti-Jr, I.C. Alves, D. Natal, P.R. Urbinatti, T. Yamasaki, A. Falquetto, and R.S. Malafonse. 2009. Entomological characterization and natural infection of Anophelines in an area of the Atlantic Forest with autochthonous malaria cases in mountainous region of Espírito Santo State, Brazil. Neotrop. Entomol. 38: 272-280.

SMA - Secretaria do Meio Ambiente. 2010. Resolução SMA 48 of May 21 2010. Inventário da Fauna do Município de São Paulo. Diário Oficial do Município de São Paulo (Supplement), São Paulo.

Travassos da Rosa, A.P., M.J. Turell, D.M. Watts, A.M. Powers, P.F.C. Vasconcelos, J.W. Jones, T.A. Klein, D.J. Dohm, R.E. Shope, N. Degallier, V. Popov, K.L. Russell, S.C. Weaver, H. Guzman, C. Calampa, A.C. Brault, A.P. Lemon, and R.B. Tesh. 2001. Trocará Virus: A newly recognized *Alphavirus* (Togaviridae) isolated from mosquitoes in the Amazon Basin. Am. J. Trop. Med. Hyg. 64: 93-97.

Turell, M.J., M.L. O’Guinn, J.W. Jones, M.R. Sardelis, D.J. Dohm, D.M. Watts, R. Fernandes, A. Travassos da Rosa, H. Guzman, R. Tesh, C.A. Rossi, G.V. Ludwig, J.A. Mangiafico, J. Kondig, J.R. Wasieloski, J. Pecor, M. Zyzak, G. Schoeler, C.N. Mores, C. Calampa, S. Lee, and T.A. Klein. 2005. Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon Basin Region of Peru. J. Med. Entomol. 42: 891-898.

Vasconcelos, P.F.C., A.P.A. Travassos da Rosa, F.P. Pinheiro, R.E. Shope, J.F.S. Travassos da Rosa, S.G. Rodrigues, N. Dégallier, and E.S. Travassos da Rosa. 1998. Arbovirusespathogenic for man in Brazil. In: A.P.A. Travassos-da-Rosa, P.F.C. Vasconcelos and J.F.S. Travassos-da-Rosa (eds.). *An Overview of Arbovirology in Brazil and Neighbouring Countries*. pp. 72-99. Instituto Evandro Chagas, Belém.
3.2. MANUSCRITO 2
Submetido para a Revista de Saúde Pública
Aspectos sazonais da abundância de mosquitos em Mata Atlântica peri-urbana*

Seasonality affects mosquito abundance in peri-urban Atlantic Forest

Título Resumido: Sazonalidade e abundância de mosquitos

Andressa Francisca Ribeiro (Ribeiro, AF)
Paulo Roberto Urbinatti (Urbinatti, PR)
& Co-autores do Projeto Malária

1 Departamento de Epidemiologia. Faculdade de Saúde Pública. Universidade de São Paulo. São Paulo, SP, Brasil.

*Parte da tese de Andressa Francisca Ribeiro, apresentada ao programa de Pós-graduação em Saúde Pública da Universidade de São Paulo para obtenção do título de Doutor em Ciências em Janeiro de 2014.

Correspondência / Correspondence
Andressa Francisca Ribeiro
Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo, 01246-904, Brazil.
E-mail: andressa.fran@usp.br

RESUMO

OBJETIVO: Investigou-se a flutuação sazonal de culicídeos em zonas antrópica (ZA) e silvestre (ZS) na Área de Proteção Ambiental (APA) Capivari-Monos, em São Paulo, onde nos últimos anos foi registrada a maior ocorrência de malária em Mata Atlântica.

MÉTODOS: Os culicídeos foram capturados de maio de 2009 a junho de 2010 com armadilhas automáticas CDC, aspirador elétrico e armadilha de Shannon, em uma área antrópica (ZA) e outra silvestre (ZS). Dados das espécies dominantes (com frequência
acima de 5%) foram correlacionadas com pluviosidade, temperatura e umidade relativa do ar de 10, 15 e 20 dias pré-coleta.

RESULTADOS: Das 91 categorias taxonômicas identificadas, cinco foram dominantes em ZA e duas em ZS, sendo *Anopheles (Kertezsia) cruzii* a mais abundante em ambos ambientes. Em ZA, a abundância de *An. cruzii* foi positivamente associada a pluviosidade e temperatura, e em ZS ela se manteve alta ao longo do ano, sem correlação com fatores climáticos. A abundância das tribos Culicini e Mansoniiini, principalmente em ZA, foi diretamente correlacionada com temperaturas e pluviosidade.

CONCLUSÕES: Observou-se maior susceptibilidade das espécies, particularmente *An. cruzii*, a variações no microclima, as quais são mais intensas em ambiente antrópico em função de modificações como redução da cobertura vegetal. Isso sugere a necessidade de intensificação de serviços de controle epidemiológico, especialmente nas áreas antrópicas, nas estações quentes e úmidas.

DESCRITORES: Sazonalidade. Macroclima. Culicidae. Epidemiologia.

ABSTRACT

OBJECTIVE: The study investigated the seasonal fluctuation of Culicidaes in anthropic (ZA) and wild zones (WZ) of the Capivari-Monos Environmental Protection Area (APA), in São Paulo, where the greatest number of cases of malaria in Atlantic Forest areas was recorded in the last years.

METHODS: The Culididaes were captured in the anthropic (ZA) and in a wild zones (ZS) from May 2009 to June 2010, using automatic CDC light traps, electric aspirator and Shannon traps. Data on the dominant species (with frequency higher than 5%) were correlated with rainfall, temperature and relative humidity in the period of 10, 15 and 20 days pre-capture.

RESULTS: From the 91 taxonomic categories identified, five were dominant in ZA and two in ZS; *Anopheles (Kertezsia) cruzii* was the most abundant in both environments. In ZA, *An. cruzii* abundance was positively associated with rainfall and temperature, and in
ZS, it continued high throughout the year, without correlation with climatic factors. The abundance of Culicini and Mansoniini tribes, especially in ZA, was also positively correlated with high temperatures and rainfall rates.

CONCLUSIONS: The Culicidae species captured, particularly An. cruzii, were more susceptible to microclimate variations, which were more marked in the anthropic environment as a function of modifications such as reduction in vegetal cover. It suggests that epidemiological control must be intensified in hot and wet seasons and especially in anthropic areas.

DESCRIPTORS: Seasonality. Macroclimate. Culicidae. Epidemiology.

INTRODUÇÃO

A expansão geográfica das áreas urbanas leva à redução da cobertura vegetal primitiva, com fragmentação e isolamento dos resquícios florestais. Zonas urbanas são, de maneira geral, constituídas por uma parte central mais desenvolvida e circundadas por faixas irregulares de ocupação, produzindo um gradiente urbano-rural em função da intensidade da manipulação antrópica. É importante que os fragmentos florestais sejam conservados em torno das zonas urbanas para suprir necessidades e manter o equilíbrio do ecossistema formado no meio antrópico. No entanto, a proximidade de ambientes florestais aumenta o risco de transmissão de patógenos por vetores como mosquitos que se abrigam nas matas, o que pode gerar um impacto epidemiológico em áreas densamente povoadas.

O local estudo foi situado em uma área de interface entre ambiente urbano e rural no sub-districto de Parelheiros, na extremidade Sul da cidade de São Paulo. Com mais de 11 milhões de habitantes, a região contém remanescentes da Mata Atlântica. Para resguardar esses resíduos florestais e seus recursos hídricos, essa região foi oficializada como Área de Proteção Ambiental (APA) Capivari-Monos (Lei Federal 13136 /2001). Apesar de estar próxima ao grande centro urbano e sofrer a pressão da ocupação
humana, a referida APA detém elevada diversidade biológica e vários hábitats adequados para a proliferação de mosquitos.

A APA Capivari-Monos apresenta uma rica fauna de culicídeos, com espécies relevantes para a saúde pública. Esses mosquitos, capazes de transportar arbovírus e habitar tanto ambientes silvestres quanto antrópicos, representam uma ameaça dada a possibilidade de produzirem na área novos vetores que intercambiem patógenos entre os diferentes ambientes\(^5\). Dentre as muitas espécies identificadas, destaca-se a presença dos vetores *Anopheles (Kerteszia) cruzii*, *Culex (Melanoconion)* sp. seção Melanoconion, *Aedes serratus* e *Psorophora ferox*. A primeira espécie, *An. cruzii*, é historicamente conhecida como o principal vetor de plasmódios na Mata Atlântica. Nos últimos anos, o maior número de registros de malária em toda a abrangência da Mata Atlântica ocorreu na APA Capivari-Monos. Entre 2006 e 2010, foram notificados 64 casos de malária autóctone, nove desses sintomáticos. A alta frequência de casos assintomáticos reflete a prolongada interação entre humanos de comunidades próximas às matas e vetores anofelíneos\(^6\).

A diversidade de mosquitos na APA Capivari-Monos foi caracterizada por Ribeiro *et al*\(^5\), mas a flutuação sazonal das espécies de importância médica permanece desconhecida. Na Mata Atlântica brasileira, vários estudos sobre ecologia de mosquito demonstraram que a temperatura e a precipitação afetam a abundância dos culicídeos\(^7,8\). Porém, é necessário estudar com mais profundidade a sazonalidade de mosquitos na APA Capivari-Monos visto a importância epidemiológica dessa área. A dinâmica de populações de mosquito fornece informações significativas para avaliar o risco potencial de transmissão de patógenos por esses vetores\(^9\).

O objetivo deste estudo foi correlacionar a abundância sazonal de mosquitos na APA Capivari-Monos com dados meteorológicos da região Sul de São Paulo. Os possíveis efeitos de variações sazonais de clima na fauna de culicídeos foram avaliados em áreas ocupadas pelo homem e áreas desabitadas desse remanescente florestal. As informações
obtidas contribuem para preencher uma lacuna sobre a ecologia de culicídeos na área, o que pode auxiliar o estabelecimento de medidas de controle de malária e arboviroses.

MATERIAL E MÉTODOS

Área de Estudo

A área da APA Capivari-Monos localiza-se a 60 km ao sul do centro da cidade de São Paulo, Brasil. Sob forte influência oceânica, seu clima é tropical superúmido, com temperatura média de 19.5°C e precipitação anual variando de 1600 a 2100mm. A precipitação e a umidade relativa do ar são elevadas o ano todo, com o período mais seco de maio a agosto. A formação de nevoeiro é frequente na região por causa da proximidade com o oceano e devido ao perfil montanhoso da paisagem^{10}.

A APA ocupa 1/6 do território do município de São Paulo, mas sua área total é bem maior, estendendo-se do topo da Serra do Mar, nas confluências da metrópole, até a região litorânea do Atlântico. Esse remanescente florestal compõe um mosaico com manchas de vegetação em diferentes estágios de sucessão ecológica e classes de vegetação, incluindo Floresta Ombrófila Densa Montana, Alto-Montana e Sub-Montana. De modo geral, a maior parte de sua cobertura vegetal é secundária, e matas primitivas persistem nas encostas mais íngremes da Serra. Na área da planície costeira que sofre intensa ocupação humana notam-se matas ciliares, mangues, pântanos e dunas em diferentes estágios de recuperação^{10}. Uma característica marcante em todas as regiões da APA é a alta densidade de plantas Bromeliaceae.

As capturas de mosquitos foram feitas em duas áreas, ambas situadas no topo da Serra do Mar, nos limites sul do município paulistano. A primeira área, classificada nesse trabalho como zona silvestre (ZS), situa-se nas proximidades da Ferrovia Santos-Jundiaí, perto de Evangelista de Souza (S 23° 53' 14.36" /W 46° 44' 25.96"). Embora a legislação que rege a APA determine que a biota e os recursos hídricos do local de
coleta devem ser totalmente preservados, com tolerância de um mínimo de interferência humana, algumas moradias ainda são encontradas em ZS. Adentrando as matas há algumas trilhas para cachoeiras e outros pontos que preservam a beleza natural, sendo esses locais utilizados para ecoturismo esporádico. Em ZS os mosquitos foram capturados em ambientes preservados, com mínima interferência da ação humana.

A segunda área, classificada neste trabalho como zona antrópica (ZA), foi demarcada a 15 km da primeira. Com uma população superior a 5 mil habitantes, ZA ocupa predominantemente a periferia da metrópole, no subdistrito do Embura (S 23°56‘14.09”/ W 46°38‘09.07”). Embora essa área pertença à APA, apresenta muitas moradias entremeadas por campos agrícolas visto a permissão de uso de solo para esse fim, resultando em intensa pressão sobre manchas remanescentes de Mata Atlântica em seu perímetro. Em ZA os mosquitos foram coem ambientes ocupados por assentamentos humanos que tiveram registro prévio de casos de malária.

Coleta de mosquito

As coletas de mosquitos em ZA e ZS foram realizadas uma vez por mês, de maio de 2009 a junho de 2010. Os mosquitos foram coletados por armadilhas automáticas CDC, aspirador elétrico e armadilha de Shannon, como descrito por Ribeiro et al. Seis armadilhas CDC foram instaladas em cada área e operaram com acréscimo de gelo seco, que foi usado como atrativo. Cada armadilha funcionava por 12 horas, do crepúsculo vespertino ao matutino, somando um esforço amostral de 1008 horas em cada zona. Um aspirador elétrico de 12V foi usado para amostrar exemplares de mosquitos que se encontravam em seus sítios de repouso. Para cada amostra, o aspirador funcionou por 20 minutos, totalizando um esforço de 840 minutos em cada zona. Já a armadilha de Shannon, usada para coletar mosquitos ativos no início da noite, foi incrementada de luz de lampião a gás como atrativo dos mosquitos. Essa armadilha foi operada por 2 pessoas por 3h a partir do começo do crepúsculo vespertino, somando ao longo da pesquisa 42 horas de esforço amostral em cada zona.
Os mosquitos foram examinados no Laboratório de Entomologia da Faculdade de Saúde Pública da Universidade de São Paulo. A identificação foi baseada em Consoli e Lourenço-de-Oliveira11 e Forattini12, e quando necessário os exemplares foram comparados a padrões depositados na coleção entomológica da referida Faculdade. As abreviações utilizadas para gêneros e subgêneros seguiram a padronização proposta por Reinert13.

Análise de Dados

Os dados de abundância de mosquitos, analisados separadamente para cada zona de estudo (ZA e ZS), são os mesmos publicados em Ribeiro et al5. Foram coletados no total 9.403 mosquitos adultos pertencentes a 91 categorias taxonômicas. Desses, 6.911 mosquitos (73,5 \%) foram capturados em ZS e 2.492 (27,5 \%) em ZA. Os mosquitos da subfamília Anophelinae contribuíram para quase 60 \% da abundância total em ambas as zonas5.

Os valores de precipitação diária, temperatura e umidade relativa do ar foram fornecidos pelo Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG - USP) e foram colhidos no município de São Paulo, a 44 km da APA Capivari- Monos. A partir dos valores de precipitação diária, médias diárias de temperatura e umidade relativa do ar, calculou-se as médias dessas variáveis para os períodos de 10, 15 e 20 dias pré-coleta. Esses períodos pré-coleta abrangem o tempo estimado de desenvolvimento dos imaturos da fase aquática à alada.

A normalidade e homocedasticidade dos dados de abundância e riqueza obtidos foram avaliadas respectivamente pelos testes de Kolmogorov-Smirnov e teste de Levene. Dada a distribuição não normal de dados e a observação da heterocedasticidade de variâncias, os mesmos foram avaliados por meio de testes não paramétricos. A força da associação entre os fatores climáticos e a dominância dos foi analisada por meio do coeficiente de
correlação de Spearman com nível de significância de 0,05. Para definição de dominância de mosquitos foi utilizada a mesma classificação no trabalho de Ribeiro et al., onde dominância (D) foi calculada pela equação: \(D\% = \left(\frac{i}{t} \right) \times 100 \); onde \(i \) = número de indivíduos da mesma espécie e \(t \) = número de indivíduos capturados. De acordo com os valores de D, foram estabelecidas diferentes classes de dominância, sendo consideradas dominantes as espécies com frequência acima de 5%. Os gráficos e as análises de correlação foram feitos apenas para essas espécies.

RESULTADOS

De acordo com registros climáticos, os meses mais chuvosos foram de novembro de 2009 a fevereiro de 2010, com pico de chuvas evidente em janeiro e menor precipitação em fevereiro. A curva da temperatura oscilou de forma semelhante à da precipitação, sendo os meses mais chuvosos os de temperaturas mais elevadas (19,7 ± 2,9°C). A umidade relativa do ar (75,7 ± 4,3%) manteve-se aproximadamente estável ao longo do ano, sempre em patamar elevado (Figura 1).

Em ZA, as variáveis precipitação e temperatura foram fortemente correlacionadas com riqueza de espécies de mosquito e abundância. Em ZS, riqueza e a abundância não foram correlacionadas com fatores climáticos, com exceção de riqueza e umidade relativa do ar, que foram correlacionados positivamente 15 e 20 dias pré-coleta (Tabela 1). Do total de 91 categorias taxonômicas, somente sete apresentaram frequência maior do que 5% em relação ao total coletado.
Figura 1. Pluviosidade acumulada (A), temperatura média (B) e umidade relativa do ar (C) na região metropolitana de São Paulo.
Tabela 1. Coeficiente de correlação de Spearman entre fatores climáticos no período pré-coleta e abundância e riqueza de mosquitos.

	Pluviosidade	Temperatura	Umidade Relativa						
	10 d	15 d	20 d	10 d	15 d	20 d	10 d	15 d	
Zona Antrópica									
Riqueza	0,670*	0,809*	0,761*	0,667*	0,476	0,871*	0,319	0,340	0,160
Abundância	0,635*	0,780*	0,785*	0,718*	0,547*	0,772*	0,372	0,455	0,370
Zona Silvestre									
Riqueza	0,282	0,384	0,432	0,138	0,211	0,432	0,440	0,552*	0,626*
Abundância	0,292	0,402	0,442	0,421	0,218	0,251	0,075	0,301	0,372

*P< 0.05 level (bicaudal).

A única espécie dominante da subfamília Anophelinae foi *Anopheles (Kerteszia) cruzii*. O padrão de abundância dessa espécie foi diferente entre as zonas ZA e WS (Figura 2). Em ZA, a abundância de *An. cruzii* foi maior de novembro de 2009 a fevereiro de 2010 e esteve correlacionada com temperatura e precipitação (Figura 2c). Em ZS, no entanto, essa espécie foi abundante durante todo o ano, e sua abundância não esteve correlacionada com qualquer variável climática. *An. cruzii* atingiu o pico de abundância em janeiro de 2010, com 117 indivíduos, enquanto a sua menor ocorrência foi registrada de março a outubro de 2009 e de março a junho de 2010. Em ZS, *An. cruzii* foi a espécie de maior dominância, representando mais de 70% do número de mosquitos coletados. A sua abundância em ZS foi maior do que em ZA (t = 3,488, p = 0,001), e o número mais elevado foi registado em novembro de 2009 (Figura 2a). A abundância de *An. cruzii* em ZS flutuou, exibindo vários picos, mas manteve-se maior do que em ZA ao longo do ano.
Figura 2. Variação sazonal das espécies de mosquito capturadas nos ambientes antrópico e silvestre.
Membros da tribo Culicini apresentaram padrão oposto nas duas zonas (Figura 2, Tabela 2). Em ZA, *Culex (Culex)* sp. do grupo Coronator foi mais abundante entre julho e outubro de 2009, com o pico registrado em setembro (Figura 2d). Em ZS, *Culex (Melanoconion)* sp. Seção Melanoconion exibiu pico de abundância em dezembro de 2009 e novamente em março de 2010. O maior número registrado para a espécie ocorreu em dezembro de 2009 (Figura 2b, n= 72). Em ZA, a abundância de *Cx. (Cux.)* sp. do grupo Coronator não foi associada a qualquer variável climática, enquanto em ZS, a abundância de *Cx. (Mel.)* sp. Seção Melanoconion foi significativamente e positivamente correlacionado com todas as variáveis de temperatura e precipitação.

Em ambas as zonas foi encontrada correlação entre abundância de mosquitos da tribo Mansonini e fatores climáticos (Tabela 2). Destaca-se a alta abundância de *Coquillettidia chrysonotum/albifera* e *Coquillettidia juxtamansonia*. A maior ocorrência de *Cq. chrysonotum/albifera* foi entre outubro de 2009 e abril de 2010, com pico de abundância em fevereiro de 2010 (n = 99). A maior abundância de *Cq. juxtamansonia* ocorreu a partir de outubro de 2009 e perdeu até maio de 2010, especialmente em novembro de 2009 (n = 76). *Mansonia titillans* foi mais abundante a partir de novembro de 2009 a março de 2010, com um segundo pico de abundância em abril de 2010 (Figura 2g).

Na tribo Sabethini, *Wyeomyia confusa* foi a única espécie com alta abundância. Esse mosquito apresentou dois picos, um em dezembro de 2009 e outro em março de 2010 (Figura 2h).
Tabela 2. Coeficiente de correlação de Spearman entre fatores climáticos no período pré-coleta e ocorrência das principais espécies de mosquitos.

	Pluviosidade	Temperatura	Umidade Relativa						
	10 d	15 d	20 d	10 d	15 d	20 d	10 d	15 d	20 d
Zona Antrópica									
Anopheles cruzii	0,46	0,46	0,59*	0,73*	0,77*	0,73*	0,19	0,24	0,27
Cx. (Cux.) grupo									
Coronator	0,11	0,21	0,18	0,15	-0,08	-0,12	-0,30	-0,08	-0,01
Cq. chrysonotum/albifera	0,70*	0,70*	0,68*	0,75*	0,60*	0,86*	0,27	0,33	0,18
Man. tiillans	0,49	0,75*	0,76*	0,35	0,27	0,53*	0,30	0,29	0,35
Cq. juxtamansionia	0,61*	0,65*	0,62*	0,74*	0,56*	0,85*	0,29	0,33	0,11
Wy. confusa	0,44	0,48	0,41	0,27	0,19	0,67*	0,31	0,29	0,04
Zona Silvestre									
Anopheles cruzii	0,28	0,41	0,42	0,40	0,14	0,42	0,02	0,27	0,31
Cx. (Mel.) seção									
Melanoconion	0,63*	0,75*	0,70*	0,76*	0,56*	0,70*	0,14	0,04	-0,13

* P < 0.05.

DISCUSSÃO

Na associação da fauna de culicídeos com fatores climáticos na APA Capivari-Monos, observou-se que as altas temperaturas e pluviosidade foram positivamente correlacionadas com a abundância das tribos Culicinae e Mansoninni, principalmente em ZA onde as modificações no ambiente e redução da cobertura vegetal podem deixar os mosquitos mais expostos às variações de microclima. Como tratam-se de espécies de vetores de patógenos de relevância em saúde pública, os dados reportados indicam que, em região de Mata Atlântica habitadas pelo homem, o monitoramento epidemiológico e entomológico deve ser constante.

A riqueza de espécies foi positivamente correlacionada com os fatores climáticos em ZA, corroborando outros estudos que mostram que essa variável é maior nos meses de maior pluviosidade e umidade relativa do que durante os meses secos\(^{14}\). A sensibilidade dos mosquitos à pluviosidade reforça a ideia da influência da variabilidade climática sobre a diversidade (riqueza e equabilidade) da comunidade de mosquitos,
provavelmente por causa de alterações nos criadouros que podem promover a coexistência de espécies15.

A elevada densidade de bromélias nas duas zonas investigadas, ZA e ZS, além das condições climáticas de altas temperaturas e pluviosidade da APA Capivari-Monos ajudam explicar a elevada abundância de \textit{An. (Ker.) cruzii}. Situações similares já foram observadas em região de Mata Atlântica16,17. Em ZA, o pico de abundância de \textit{An. cruzii} correspondeu ao período de maior pluviosidade e temperatura. A correlação da abundância dessa espécie com a temperatura foi mais intensa nos períodos (\textit{time lag}) de 10, 15 e 20 dias pré-coleta, e a correlação com pluviosidade maior no período de 20 dias pré-coleta. Essas associações sugerem que, diferente da maioria dos culicídeos cujo desenvolvimento inicial se dá em 10 dias, imaturos de \textit{Kerteszia} demandam mais tempo. Divergindo desses resultados, outros estudos não encontraram correlação entre os fatores climáticos e a abundância de \textit{An. (Ker.) cruzii} na mesma região de Mata Atlântica e usando os mesmos períodos de avaliação16,18. Entretanto, a associação encontrada no presente estudo é sustentada por um estudo que descreve que larvas de \textit{An. (Ker.) cruzii} podem demorar um longo tempo para completar seu desenvolvimento19.

Em ZS a abundância de \textit{An. cruzii} se manteve alta e com vários picos ao longo de um ano, diferente de ZA cuja curva define um pico acentuado no período quente e chuvoso e um recuo acentuado na época mais fria e menos chuvosa. A diferença nas curvas de correlação entre as zonas amostradas está provavelmente relacionada à maior proteção conferida pela mata em ZS, que resguarda um microclima que, praticamente durante todo o ano, é favorável à \textit{An. cruzii}. Por outro lado, em ZA essa espécie é mais exposta a variações de microclima uma vez que a modificação da área, com perda da cobertura vegetal e transformação da paisagem se torna muito mais aberta e ensolarada. Resultados semelhantes foram encontrados em estudos em área de Mata Atlântica no Vale do Ribeira que mostraram que enquanto a área modificada do ambiente antrópico prejudica \textit{An. Cruzi}, a mata fechada é favorável a essa espécie20, e nesse ambiente
silvestre sua dominância mantêm-se alta o ano todo, mesmo nos meses de menor rendimento nas coletas 21.

A tribo Mansoniiini teve elevada abundância dentro da subfamília Culicinae. Dos mosquitos desse táxon, *Coquillettidid* foi o gênero cuja abundância teve maior correlação com temperatura média e precipitação, independentemente do período pré-coleta. Esse resultado vai de acordo com outro estudo realizado no Brasil Central, onde a temperatura foi o principal fator que afetou a abundância de *Coquillettidid*

Mosquitos da tribo Mansoniiini são reconhecidamente zoofílicos, oportunistas e bastante ativos. Esses podem se alimentar em humanos que estejam próximos aos seus abrigos ou criadouros, a qualquer hora do dia. Quando abundantes, os mosquitos dessa tribo causam incômodo, afetando a vida humana e os rebanhos de gado 23.

A maior abundância de *Cx. (Cux.)* sp. do grupo Coronator no ambiente ZA correspondeu aos meses de menor temperatura e precipitação, e a correlação com as variáveis de clima não teve expressão estatística. Essa falta de correlação pode decorrer da adaptabilidade das formas imaturas desse mosquito a diferentes criadouros de solo, temporários ou perenes e tanto no período seco como no chuvoso 24. Os mosquitos pertencentes ao gênero *Culex*, subgênero *Culex*, parecem beneficiar-se de alterações que o homem introduz no ambiente. De fato, esses mosquitos frequentemente colonizam ecótopos naturais e artificiais (produzidos pela atividade humana). O potencial de colonização de espaços antrópicos traduz a capacidade da espécie à domiciliação, porém não assegurando-lhe a obrigatoriedade de hematofagia em humanos 25.

A dominância de *Cx. (Mel.)* seção Melanoconion foi detectada apenas em ZS, e sua dominância correlacionada aos períodos de maior temperatura e pluviosidade, em qualquer período pré-coleta. Outro estudo em área de Mata Atlântica indica maior frequência e elevada densidade de mosquitos desse subgênero em meio florestal primitivo, embora várias espécies tenham tendência à domiciliação 26.
Deve-se ponderar que os dados climáticos utilizados no presente estudo são adequados para uma avaliação dos efeitos do macroclima na fauna de culicídeos uma vez que a estação meteorológica que os registrou estava situada a 44Km da APA Capivari-Monos. Nesse contexto, os resultados indicam maior susceptibilidade das espécies, particularmente *An. cruzii*, a variações no microclima que são mais intensas em ambiente antrópico. Torna-se portanto relevante a realização de novos estudos sobre a influência do microclima sobre a ecologia das populações de culicídeos da região, com ênfase ao *An. cruzii*, pois esse mosquito é comprovadamente vetor de plasmódios nesse complexo ecológico. Mesmo diante das limitações, o presente estudo apresenta dados que apontam para aspectos importantes da sazonalidade dos mosquitos. Releva-se que no meio antrópico, onde a malária é endêmica e o *An. cruzii* é dominante, esse mosquito apresenta pico nítido de atividade nos meses quentes e chuvosos. Tal informação é de importância para os serviços de vigilância e controle da malária que estão em operação nos espaços habitados da zona sul do município de São Paulo.

REFERÊNCIAS

1. Forattini OP. Ecologia, epidemiologia e sociedade. 2. ed. São Paulo: Artes Médicas; 2004.

2. Taipe-Lagos CB, Natal D. Abundância de culicídeos em área metropolitana preservada em suas implicância epidemiológica. *Rev Saude Publica*. 2003;37(3):275-9.

3. Urbinatti PR, Menezes RMT, Natal D. Sazonalidade de *Aedes albopictus* em área protegida na cidade de São Paulo, Brasil. *Rev Saude Publica*. 2007;41(3):478-81.

4. Medeiros-Souza AR, Ceretti-Junior W, Urbinatti PR, Natal D, Carvalho GC, Paula MB, *et al*. Biodiversidade de mosquitos (Diptera: Culicidae) nos parques da cidade de São Paulo I. *Biota Neotrop*. 2013;13(1):317-21.

5. Ribeiro, AF, Urbinatti PR, Duarte AMRC, Paula MB, Pereira DM, Mucci LF, *et al*. Mosquitoes in degraded and preserved areas of the Atlantic Forest and potential for vector-borne disease risk in the municipality of São Paulo, Brazil. *J Vector Ecol*. 2012;37:316-24.
6. Duarte AMRC, Pereira DM, Paula MB, Fernandes A, Urbinatti PR, Ribeiro AF, et al. Natural infection in anopheline species and its implications for autochthonous malaria in the Atlantic Forest in Brazil. *Parasit Vectors*. 2013;6:58.

7. Guimarães AE, Mello RB, Lopes CM, Gentille C. Ecology of mosquitoes (Diptera: Culicidae) in Areas of Serra do Mar State Park, State of São Paulo, Brazil I – Monthly frequency and climatic factors. *Mem Inst Oswaldo Cruz*. 2000; 95(1):1-16.

8. Cardoso JC, Paula MB, Fernandes A, Santos E, Almeida MAB, Fonseca DF, et al. Ecological aspects of mosquitos (Diptera:Culicidae) in an Atlantic forest area on the north coast of Rio Grande do Sul State, Brazil. *J Vector Ecol*. 2011;36(1):175-86.

9. Osório HC, Amaro F, Zé-Zé L, Moita S, Labuda M, Alves MJ. Species composition and dynamics of adult mosquitoes of southern Portugal. *Eur Mosq Bull* 2008; 25:12-23.

10. Bellenzani MLR. Plano de Manejo: APA Capivari-Monos. São Paulo: Secretaria do Verde e do Meio Ambiente; 2011.

11. Consoli RAGB, Lourenço-de-Oliveira R. Principais mosquitos de importância no Brasil. Rio de Janeiro: Editora Fiocruz; 1994.

12. Forattini OP. Culicidologia médica. vol. 2. São Paulo: Editora Universidade de São Paulo; 2002.

13. Reinert JF. Revised list of abbreviations for genera and subgenera of Culicidae (Diptera) and notes on generic and subgeneric changes. *J Am Mosq Control Assoc*. 2001;17:51-55.

14. Silva JS, Pacheco JB, Alencar J, Guimarães AE. Biodiversity and influence of climatic factors on mosquitoes (Diptera: Culicidae) around the Peixe Angical hydroelectric scheme in the state of Tocantins, Brazil. *Mem Inst Oswaldo Cruz*. 2010;105(2):155-62.

15. Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. *Ecosphere*. 2011;2(6):art70.

16. Ueno HM, Forattini OP, Kakitani I. Distribuição vertical e sazonal de *Anopheles* (Kerteszia) em Ilha Comprida. *Rev Saude Publica*. 2007;41(2):269-75.
17. Resende HR, Soares RM, Cerutti-Junior C, Alves IC, Natal D, Urbinatti PR, et al. Entomological characterization and natural infection of Anophelines in an area of the Atlantic Forest with autochtonous malaria cases in a montainous region of Espirito Santo State, Brazil. *Neotrop Entomol.* 2009;38(2):272-80.

18. Bona CD, Navarro-Rosa MA. Diversidade de Culicidae durante os períodos crepusculares em bioma de Floresta Atlântica. *Rev Bras Zool.* 2008;25(1):40-8.

19. Aragão MB. O ciclo anual dos *Anopheles* do subgênero Kerteszia no Brasil. *Mem Inst Oswaldo Cruz.* 1968;66(1):85-106.

20. Forattini OP, Kakitani I, Massad E, Marucci D. Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 4- Survey of resting adults and synanthropic behaviour in South-Eastern, Brazil. *Rev. Rev Saude Publica.* 1993;27(6):398-411.

21. Forattini OP, Gomes AC, Natal D, Santos FLJ. Observações sobre atividade de mosquitos Culicidae em matas primitivas da planície e perfis epidemiológicos de vários ambientes no Vale do Ribeira, São Paulo, Brasil. *Rev Saude Publica.* 1986;20(3):178-203.

22. Guimarães AE, Gentile C, Alencar J, Lopes CM, Mello RP. Ecology of Anopheline malária vectors around the Serra da Mesa Reservoir, state of Goiás, Brazil. *Cad Saude Publica.* 2004; 20(1):291-302.

23. Tadei WP. O gênero *Mansonia* (Diptera: Culicidae) e a proliferação de mosquitos na usina hidrelétrica de Tucuruí. In: Magalhães SB, Brito RC, Castro ER, editores. Energia na AmZâônia. vol. 1. Belém: MPEG/FPA/UNAMZA; 1996. p. 311-8.

24. Dibo MR, Menezes RMT, Ghirardelli CP, Mendonça AL, Chiaravalloti-Neto F. Presença de culicídeos em município de porte médio do Estado de São Paulo e risco de ocorrência de febre do Nilo Ocidental e outras arboviroses. *Rev Soc Bras Med Trop.* 2011; 44(4):496-503.

25. Gomes AC, Forattini OP. Abrigos de mosquitos *Culex (Culex)* em zona rural (Diptera: Culicidae). *Rev Saude Publica.* 1990;24(5):394-7.

26. Forattini OP, Gomes AC, Kakitani I, Marucci D. Observações sobre domiciliação de mosquitos *Culex (Melanoconion)*, em ambiente com acentuadas modificações antrópicas. *Rev Saude Publica.* 1991;25(4):257-66.
3.3. MANUSCRITO 3

A ser submetido em inglês para a Revista Sociedade Brasileira de Medicina Tropical
Diversidade da fauna de culicídeos imaturos na APA Capivari-Monos

Andressa Francisca Ribeiro*

Paulo Roberto Urbinatti

& Co-autores do Projeto Malária

1 Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo, 01246-904, Brazil.

*Parte da tese de Andressa Francisca Ribeiro, apresentada ao programa de Pós-graduação em Saúde Pública da Universidade de São Paulo para obtenção do título de Doutor em Ciências em fevereiro de 2014.

*Corresponding author. andressa.fran@usp.br

RESUMO

Introdução: Formas adultas de diversas espécies de mosquitos vetores foram identificadas em fragmentos de Mata Atlântica próximos a áreas rurais na APA Capivari-Monos, entretanto faltam dados sobre suas formas imaturas. O presente estudo apresenta o levantamento da fauna de mosquitos imaturos e seu perfil de diversidade na APA Capivari-Monos. **Métodos:** O levantamento faunístico foi realizado mensalmente, por 14 meses, em duas áreas: uma zona silvestre localizada em ambiente de floresta secundária bem desenvolvida e uma zona antrópica com atividade humana. **Resultados:** Foram coletados 2.443 mosquitos de 62 categorias taxonômicas, a maioria na zona antrópica. De modo geral, indivíduos da família Culicidae, tribo Culicini, apresentaram maior abundância e frequência. A espécie mais frequente no ambiente antrópico foi o
anofelino *Anopheles (Nyssorhynchus) strodei*, e na zona silvestre o sabetino *L. durhami* também teve alta abundância. A maior diversidade (riqueza, abundância e equabilidade) foi encontrada no ambiente antrópico. Não houve correlação entre fatores climáticos, abundância e riqueza de espécies em nenhuma das zonas avaliadas. **Conclusões:** o ambiente antrópico foi mais propício que o silvestre para aumentar a diversidade de mosquitos imaturos na APA Capivari-Monos, oferecendo uma variedade de criadouros e condições abióticas que favorecem particularmente o desenvolvimento de espécies vetores.

Palavras-chave: epidemias, criadouros, malária, culicídeos, imaturos

INTRODUÇÃO

Parte da costa Brasileira é coberta por Mata Atlântica, um bioma que afeta diretamente a qualidade de vida de cerca de 120 milhões de pessoas que vivem em seu entorno. Essa área florestal é cada vez mais necessária para melhorar a qualidade do ambiente urbano e proteger recursos hídricos devido ao aumento das cidades e de suas populações. Na região metropolitana da cidade de São Paulo, cursos d’água originários da floresta e localizado na Área de Proteção Ambiental (APA) Capivari-Monos alimentam a bacia de Guarapiranga, um reservatório que abastece pelo menos 15 milhões de habitantes.

Apesar de sua importância, a APA Capivari-Monos apresenta uma vegetação densa (Floresta Ombrófila Densa Alto-Montana) que, combinada às habitações humanas nas suas proximidades, propicia a proliferação de várias espécies de hospedeiros
hematófagos, particularmente mosquitos. No ambiente natural, os criadouros que protegem e favorecem o desenvolvimento de formas imaturas de culicídeos são formados por troncos e folhas que acumulam água, poças de água no solo, lagos, e outros. No ambiente antrópico, os mosquitos utilizam as mais diferentes estruturas produzidas pela ação humana (depressões no solo, recipientes plásticos, lagos artificiais e outros) além de elementos naturais como plantas que acumulam água. Em ambos os ambientes os mosquitos encontram condições climáticas favoráveis, abrigo e animais dos quais se alimentam por hematofagia.

Estudos recentes sobre diversidade de culicídeos adultos na APA Capivari-Monos registraram espécies como *Anopheles (Kerteszia) cruzii*, *Culex (Melanoconion)* seção Melanoconion, *Aedes serratus*, *Psorophora ferox*, e outras espécies das Tribos Mansoniiini e Culicini³. Essa informação é de relevância epidemiológica visto que *An. cruzii* é reconhecida como o principal vetor de plasmódios da malária na Mata Atlântica, e as demais espécies são conhecidas como potenciais transmissoras de arbovírus silvestres ao homem e a outros animais³⁻⁵. Ressalta-se que, na APA Capivari-Monos a população de aproximadamente 31.000 habitantes é um alvo frequente de picadas de mosquitos, pois a proximidade entre áreas florestadas e a população promove a ação de vetores na propagação de patógenos⁶. Desde 2006 há registros esporádicos de malária na área, e os casos de dengue tem aumentado progressivamente desde 2010.

Nos últimos anos foi registrada na APA Capivari-Monos a maior ocorrência de malária em área de floresta Atlântica. Entre 2006 a 2010 foram notificados 62 casos de malária autóctone, 9 deles sintomáticos. Esse fato despertou o interesse em estudar a fauna de culicídeos da região, que até então era desconhecida. Em levantamento
faunístico de mosquitos na referida APA, Ribeiro et al.³ utilizaram armadilhas de atração por luz para captura de mosquitos adultos, de modo que os indicadores de abundância e riqueza produzidos limitaram-se a esse estágio de desenvolvimento. Entretanto, formas imaturas também devem ser investigadas para que se tenha um cálculo mais representativo dos índices ecológicos⁷.

A fim de complementar o conhecimento sobre a ecologia de mosquitos de importância em Saúde Pública na APA Capivari-Monos, o presente estudo reporta o levantamento da fauna de mosquitos imaturos em seus criadouros, descrevendo seu perfil de diversidade. A pesquisa sobre diferentes aspectos da ecologia das espécies de vetores biológicos locais, especialmente mosquitos, é essencial para avaliar os riscos potenciais do contato dos mesmos com a população humana local além de contribuir na prevenção da disseminação de patógenos e o surgimento de epidemias.

MATERIAL E MÉTODOS

Área de estudo e coleta de mosquitos

O estudo foi realizado em uma área remanescente de Mata Atlântica no subdistrito de Parelheiros, zona sul do município de São Paulo. Essa área faz parte da APA Capivari-Monos e fica a aproximadamente 60 km do centro do município. Os 31.068 habitantes da APA estão concentrados na porção norte do território. O principal núcleo, composto por 50% dos habitantes, é o loteamento de Vargem Grande, localizado no interior da Cratera de Colônia, na bacia da Billings⁸. Assim como Vargem Grande, o bairro Embura é formado por loteamentos irregulares em consequência da expansão urbana com acentuado desordenamento no uso do solo. Outro núcleo urbano importante
na APA é o bairro de Evangelista de Souza, que se desenvolveu na época da construção da estrada de ferro Santos-Jundiaí. Hoje essa área se configura num pequeno centro regional com características rurais. Destaca-se a proximidade desse bairro aos ambientes naturais de floresta.

Dentro da área protegida, estão parte das bacias hidrográficas de Guarapiranga e da represa Billings, além de toda a bacia dos rios Capivari e Monos. Grande parte do território da APA ainda é coberto por vegetação nativa de Mata Atlântica. Os fragmentos florestais são encontrados em diferentes estágios de sucessão, mas há predominância de matas secundárias em estágio médio e avançado. A formação florestal da área de estudo é classificada como Floresta Ombrófila Densa Alto-Montana e caracteriza-se por ser densa e estratificada

Foram demarcadas duas áreas de coleta entomológica, uma em ambiente de mata para captura de mosquitos silvestres e a outra em região sob ocupação humana para captura de mosquitos de ambientes peridomiciliares e domiciliares. A zona silvestre, próxima ao bairro Evangelista de Souza, era predominantemente coberta por mata secundária em estágio avançado e apresentava baixa presença e influência humana. Já a zona antrópica, próxima ao bairro Embura, apresentava áreas agrícolas próximas a remanescentes de Mata Atlântica geralmente em estágio inicial ou médio de sucessão e sob forte pressão humana. Ambos os ambientes de coleta continham bromélias epífitas, que pela disposição característica das folhas formam criadouros para mosquitos imaturos de diferentes espécies.

A coleta de mosquitos imaturos foi realizada mensalmente, de maio de 2009 a junho de 2010. Coletas simultâneas eram feitas por duas equipes fixas nas zonas
silvestre e antrópica. Em ambos ambientes foram pesquisados criadouros tais como bromélias, ocos de bambus, alagados e lagoas. As técnicas utilizadas foram sucção (para as bromélias e ocos de bambu) e conchada (para os alagados e lagoas). Nas bromélias e ocos de bambus os imaturos foram coletados com bomba de sucção, sendo extraído o máximo conteúdo de água possível sem a necessidade de manipulação da planta ou eventual desprendimento do substrato ao qual estava fixada. Nas áreas de alagados e lagoas, os imaturos foram coletados com concha entomológica. O levantamento faunístico para cada zona foi realizado considerando as técnicas de coleta.

Análise dos Imaturos e Cálculo dos Índices Ecológicos

Em campo, os culicídeos imaturos foram colocados vivos em frascos contendo a água do próprio criadouro. No laboratório, os espécimes foram acondicionados em recipientes devidamente identificados onde se desenvolveram até a fase adulta, quando puderam ser identificados. As larvas que não se desenvolveram foram preparadas para montagem em lâminas. As chaves de Consoli e Lourenço-de-Oliveira\(^\text{10}\) e Forattini\(^\text{11}\) foram usadas para identificação das espécies.

A fauna de mosquitos em cada zona estudada foi avaliada por índices de diversidade. Assim, determinou-se a dominância/equabilidade de espécies pelo gráfico de Whittaker, a riqueza pelo índice de Margalef e a equabilidade pelo índice de Pielou\(^\text{12}\).

Análises Estatísticas

A homogeneidade e homocedasticidade dos dados de abundância e riqueza obtidos foram avaliadas pelo teste de Komogorov-Smirnov. Dada a distribuição não
normal de dados e variâncias, os mesmos foram avaliados por testes não-paramétricos. Resultados obtidos para zonas silvestre e antrópica foram, portanto, comparados pelo teste U de Mann-Whitney, estabelecendo-se a significância estatística mínima de p < 0.05.

A associação entre as variáveis climáticas, a abundância e riqueza de mosquitos imaturos nos ambientes antrópico e silvestre foram averiguados pelo teste de correlação de Spearman.

RESULTADOS

Após 14 meses de coleta, contabilizou-se que 61,7% dos 2.443 mosquitos imaturos coletados encontravam-se na zona antrópica e 38,3% na zona silvestre (*Tabela 1*). Esses mosquitos foram distribuídos em 62 categorias taxonômicas.

Na família Culicidae, a tribo Culicini concentrou maior número (n) e riqueza (S) de mosquitos imaturos (n = 1.728 e S = 34). Os indivíduos *Culex (Microculex)* grupo Imitator apresentaram maior abundância e frequência em ambas as zonas avaliadas. Na zona antrópica foi também registrada maior abundância de *Cx. (Cux.)* grupo Coronator e *Culex (Culex) dolosus*. Entre os imaturos da família Anofelinae, destaca-se o *Anopheles (Nyssorhynchus) strodei*, que foi mais frequente. No ambiente silvestre, outras espécies com alta abundância foram *Li. durhami, Cx. (Cux.)* grupo Coronator e *Cx. seção Ocellatus* (*Tabela 1*).

Considerando as categorias taxonômicas, 50 foram encontradas na zona antrópica e 36 na silvestre. O índice de diversidade de Margalef foi mais alto na zona antrópica (6,696) que na silvestre (5,116). Também a riqueza foi maior no ambiente antrópico (teste U-Mann Whitney: U = 5,500, Z = 4,250 e p = 0,000).
Tabela I. Imaturas de mosquitos (Diptera: Culicidae) coletados nos ambientes antrópico e silvestre, por meio de concha entomológica e sucção, em Parelheiros/SP, no período de maio de 2009 a junho de 2010.

Categoria taxonômica	ANTRÓPICO	SILVESTRE						
	Conchada	Succão						
ANOPHELINAE								
Anophelini								
(n = 204; 8,35%; S = 2)								
An. (Nys.) strode	181	0	181	12	4	0	4	0,43
An. (Ker.) cruzii	0	11	11	0,7	0	8	8	0,85
CULICIDAE								
Aedini								
(n = 82; 4,91%; S = 5)								
Ae. (Och.) crinifer	73	0	73	4,8				
Ae. (Och.) scapularis	2	0	2	0,1				
Ae. (Och.) serratus	1	0	1	0,0				
Ae. (Ste.) albopictus	0	5	5	0,3				
Ae. (Och.) hastatus	-	-	-	-				
Culicini								
(n = 1728; 70,73%; S = 34)								
Cx. (Car.) iridescens	0	15	15	1				
Cx. (Cux.) chidesteri	9	0	9	0,6				
Cx. (Cux.) coronator	44	0	44	2,9				
Cx. (Cux.) dolosus	85	30	115	7,6				
Cx. (Cux.) dolosus/eduardoi	1	0	1	0,0				
Cx. (Cux.) eduardoi	20	0	20	1,3				
Cx. (Cux.) grupo Coronator	109	8	117	7,7				
Cx. (Cux.) lygrus	2	0	2	0,1				
Cx. (Cux.) sp.	2	0	2	0,1				
Cx. (Mcx.) albipes	0	35	35	2,3				
Cx. (Mcx.) aureus	0	5	5	0,3				
Cx. (Mcx.) dubitans	-	-	-	-				
Cx. (Mcx.) grupo Imitator	0	230	390	41,7				
---------------------------	---	-----	-----	------				
Cx. (Mcx.) grupo Pleuristriatus	0	2	1	0,11				
Cx. (Mcx.) inimitabilis/fuscatus	0	6	0	2	0,21			
Cx. (Mcx.) inimitabilis/inimitabilis	0	5	0	2	0,21			
Cx. (Mcx.) neglectus	0	73	15	4,27				
Cx. (Mcx.) pleuristriatus	0	88	4	3,1				
Cx. (Mcx.) reducens	0	2	3	0,11				
Cx. (Mcx.) sp.	0	7	6	-				
Cx. (Mcx.) worontzowi	0	5	0	15	1,6			
Cx. (Mel.) alinkios	-	-	1	-				
Cx. (Mel.) bastagarius	8	0	0	1,1				
Cx. (Mel.) dureti	10	0	0	1,1				
Cx. (Mel.) ensiformis	-	-	7	-				
Cx. (Mel.) glyptosalpinx (próx.)	9	0	0	0,75				
Cx. (Mel.) intrincatus	7	0	6	-				
Cx. (Mel.) misionensis	4	0	0	0,32				
Cx. (Mel.) orfilai	-	-	12	-				
Cx. (Mel.) productus	-	-	1	-				
Cx. (Mel.) seção Melanoconion	91	0	0	4,38				
Cx. (Mel.) sp.	26	0	8	0,85				
Cx. (Mel.) trigeminatus	-	-	2	0,21				
Cx. seção Ocellatus	0	91	0	5,88				

Sabethini

(n = 278; 11,37%; S = 13)

Li. Durhami	0	139	14,9	
Li. Flavisetosus	-	5	5	0,53
Lu. Bigoti	1	0	0,0	
Ru. Reversa	-	2	2	0,21
Tr. pallidiventer/castroi/similis	0	1	0,0	
Wy. (Pho.) airosai	0	21	1,3	
Wy. (Pho.) davisi	0	7	0,4	
Wy. (Pho.) galvaoi	0	37	2,4	
Wy. (Pho.) incaudata/pilicauda	0	1	0,0	
Wy. (Pho.) pilicauda	0	6	0,4	
Wy. (Pho.) quasilongirostris 0 14 14 0,9 0 5 5 0,53
Wy. (Pho.) sp. - - - - 0 6 6 0,64
Wy. (Pho.) theobaldi 0 9 9 0,6 0 8 8 0,85

Uranotaeniini
(n = 95; 4,05%; S = 4)

Espécie	N							
Ur. Apicalis	1	0	1	0,0	1	0	1	0,11
Ur. Geométrica	75	0	75	4,9	-	-	-	-
Ur. Lovii	1	0	1	0,0	-	-	-	-
Ur. pulcherrima	18	0	18	1,1	1	2	3	0,32

Toxorhynchitini
(n = 13; 0,57% S = 3)

Espécie	N							
Tx. haemorrhoidalis separatus	0	8	8	0,5	-	-	-	-
Tx. sp.	0	4	4	0,2	0	1	1	0,11
Tx. theobaldi	0	1	1	0,0	-	-	-	-

Total	150	10	93	100
	7	0	6	100

A curva de rarefação de espécies comparando a riqueza de imaturos coletados nas zonas antrópica e silvestre diferiu da projeção pelo estimador de riqueza Jackknife (Figura 1). Quanto à abundância, essa foi maior na zona antrópica que na silvestre (U = 1,507, Z = 2,297 e p = 0,022). A Figura 2 mostra a abundância relativa das espécies por ordem de dominância, sendo que a curva mais abrupta indica o ambiente com menor equidade. O índice de equabilidade de Pielou foi 0,772 para a zona antrópica e 0,6281 para a silvestre. A maior equabilidade no ambiente antrópica foi confirmada pela curva menos abrupta do gráfico.
Fig. 1. Curva de rarefação de espécies comparando a riqueza de imaturos coletados nos ambientes antrópico e silvestre e projeção da estimativa pelo Jacknife de primeira ordem. As barras de erro correspondem ao desvio padrão do índice de Mao Tau.

Todas as estimativas foram calculadas pelo EstimateS. Não houve correlação entre fatores climáticos, abundância e riqueza de espécies em nenhuma das zonas avaliadas (Tabela 2). Os dados climáticos podem ser visualizados na Figura 3.
Fig. 2. Distribuição das abundâncias relativas por ordem de dominância das espécies (Whittaker plot) nos ambientes antrópico e silvestre, de maio de 2009 a junho de 2010 na APA Capivari-Monos, São Paulo.

Tabela II. Coeficiente de correlação de Spearman (rho) entre média dos fatores climáticos de 15 dias pré-coleta e abundância e riqueza de mosquitos imaturos entre maio de 2009 e junho de 2010, APA Capivari-Monos, São Paulo.

	Antrópico		Silvestre	
	Abundância	Riqueza	Abundância	Riqueza
	r	p	r	p
Pluviosidade	-0,270	0,349	0,031	0,916
Temperatura	0,138	0,636	0,006	0,981
Umidade Relativa	-0,136	0,641	0,286	0,321
	-0,057	0,844	-0,057	0,844
	0,323	0,259	0,323	0,259
Fig. 3. Médias mensais de pluviosidade acumulada, temperatura e umidade relativa do ar no município de São Paulo.

DISCUSSÃO

Estudos anteriores investigaram a diversidade da fauna de mosquitos adultos na APA Capivari-Monos, uma importante região de intersecção entre o meio natural e a maior região metropolitana da América Latina\(^3\). O presente estudo complementa essas informações com indicadores de diversidade de formas imaturas de mosquitos nesse ambiente. Embora os métodos de coleta dos imaturos possam ser aprimorados, os dados obtidos são importantes para mostrar o alto potencial da zona antrópica para abrigar espécies de mosquitos oportunistas e propiciar maior contato entre humanos e patógenos carregados por esses vetores que o ambiente natural.
Em ambas zonas antrópica e silvestre, a categoria taxonômica dominante foi *Cx. (Mcx.)* grupo Imitator. Esses mosquitos, de pouca ou nenhuma importância médica, proliferam usando bromélias e outros recipientes naturais como criadouros\(^\text{10}\). Aparentemente eles preferem se alimentar de animais de sangue frio (anfíbios), mas há relatos que eles podem se alimentar do sangue de pássaros e equinos\(^\text{13}\).

Embora menos abundantes que *Cx. (Mcx.)*, as espécies dos grupos *Culex (Culex)* e *Culex (Melanoconion)* somadas atingiram uma alta proporção numérica, que representou cerca de 30% de frequência no ambiente antrópico e quase 20% no ambiente silvestre. Esses mosquitos têm grande importância epidemiológica por serem potenciais vetores de arbovírus, filárias e outros patógenos, além de fatores de incômodo para o homem\(^\text{10,14}\).

Entre os Anophelini, a espécie *Anopheles (Nyssorhynchus) strodei* foi muito abundante apenas no ambiente antrópico. Segundo Consoli e Lourenço-de-Oliveira\(^\text{10}\) e Forattini\(^\text{11}\), as formas imaturas de anofelinos de pequeno e médio porte desenvolvem-se em coleções líquidas que vão desde pequenas poças no solo até grandes cursos d’água. Embora *An. strodei* receba pouca atenção dos especialistas, ela apresenta, esporadicamente, infecção natural por plasmódio (principalmente oocistos). Mas como a frequência desses mosquitos essencialmente zoófilos e exófilos nunca está relacionada com a prevalência de malária, é certo que eles são infectados apenas no auge de epidemias desencadeadas por um vetor primário competente\(^\text{10}\).

Quanto aos demais grupos taxonômicos, os Sabethini em especial foram os mais frequentes no ambiente natural. As tribos Toxorhynchitini e Uranotaeniini foram capturadas principalmente na zona antrópica. Segundo Consoli e Lourenço-de-Oliveira\(^\text{10}\), os mosquitos do gênero *Toxorhynchites* são coloridos, de grande porte, não
hematófagos na fase adulta e vorazes predadores na fase larvária. Os criadouros podem ser naturais ou artificiais. Entre os criadouros naturais podem ser encontrados em bromélias e axilas de outras plantas e os criadouros artificiais feitos pelo homem descartados em áreas próximas de floresta como latas, barris, vasos de barro e pneus. As formas imaturas do gênero *Uranotaenia* vivem nas coleções líquidas no solo, ricas em vegetação, sombreadas e permanentes. As fêmeas sugam animais de sangue frio, especialmente os anfíbios. São mosquitos muito atraídos pela luz, sendo por isso frequentemente encontrados dentro do domicílio, porém não se interessando pelo sangue humano. Por conta de seus hábitos, esse grupo tem pouca importância em Saúde Pública.

Em um estudo anterior, detectamos grande abundância de culicídeos adultos do gênero *Mansonia* e *Coquillettidia* na APA Capivari-Monos. No presente estudo, entretanto, não foram encontradas formas imaturas desses gêneros. Isso pode ser decorrente da limitação da metodologia de coleta que não incluiu plantas macrófitas. As formas imaturas desses gêneros apresentam uma particularidade em seus apêndices respiratórios adaptados para a perfuração de tecidos vegetais de plantas aquáticas, de onde retiram o oxigênio que necessitam dos parênquimas aeríferos.

A riqueza estimada para as zonas antrópico e silvestre pode de fato ser bem maior que a registrada, conforme mostrado pela curva de rarefação. Ainda assim, é possível adiantar que, corroborando o perfil encontrado para mosquitos adultos na APA estudada, a fauna de mosquitos imaturos apresentou maior diversidade (riqueza, abundância e equidade) na zona antrópico que na silvestre.
Deve-se notar que a zona antrópica possuía um ambiente misto, com mata secundária em estágio inicial de regeneração e atividade humana. Isso de fato caracteriza a zona antrópica estudada como é um ecótono, isto é, uma área de transição entre a região urbana e silvestre. Devido à sua estrutura, a zona antrópica é mais susceptível a perturbações abióticas tais como vento e insolação, o que dificulta o estabelecimento de dominância e favorece o aumento da diversidade de culicídeos. O oposto pode ser observado no ambiente silvestre, onde a proteção às perturbações abióticas promove o avanço da sucessão ecológica e estabelecimento de espécies dominantes.

Apesar da maior exposição propiciada pelo ambiente antrópico, a variedade de criadouros produzidos favorece a diversidade de imaturos. Além da proximidade de áreas florestais e criadouros naturais como as bromélias, essa área possui artefatos e construções propícios ao seu desenvolvimento. A maior diversidade de mosquitos em ambiente de transição entre zona silvestre e urbana foi também descrita em outras pesquisas. Johnson et al. encontraram maior diversidade de mosquitos em área rural que em periurbana e urbana no Peru, e Bueno-Marí e Jiménez-Peydró observaram maior diversidade em meio rural que em florestas na Espanha.

Era esperado que a população de imaturos crescesse na época das chuvas em função do aumento no número de criadouros naturais e artificiais e temperaturas elevadas que são propícias ao desenvolvimento dos insetos. Contudo, não foram encontradas correlações entre abundância, riqueza e variáveis climáticas médias de 15 dias anteriores às coletas.

Pequenas mudanças na elevação de regiões tropicais podem ter um impacto na disponibilidade e adequação dos habitats de mosquitos, incluindo criadouros de...
imaturos, de modo que, dentro da Mata Atlântica, pode se encontrar diferenças na comunidade de Culicídeos de acordo com sua localização20. Isso explica o contraste entre os achados do presente estudo e aqueles obtidos em outros trabalhos, que encontraram maior diversidade de mosquitos em ambiente de mata do que em ambientes periurbano e urbano21.

Corroborando estudos anteriores, conclui-se que a APA Capivari-Monos alberga vários mosquitos, inclusive culicídeos e anofelinos que servem de reservatório para arbovírus e parasitas. Os resultados sobre ecologia de mosquitos imaturos reportados no presente estudo indicam que as condições proporcionadas pelo ambiente antrópico favorecem mais o desenvolvimento das espécies vetoras que o ambiente silvestre. Estudos dessa natureza são necessários não apenas para conhecer a influência do homem na dinâmica de populações de mosquitos como também para embasar programas de controle epidemiológico.
REFERÊNCIAS BIBLIOGRÁFICAS

1. Capobianco JP. Dossiê Mata Atlântica: Projeto monitoramento participativo da Mata Atlântica. Brasília: Rede de ONGS Mata Atlântica, Instituto Socioambiental, Sociedade Nordestina de Ecologia; 2001.

2. Tonhasca Jr A. Ecologia e História Natural da Mata Atlântica. Salvador: Editora Interciência; 2005.

3. Ribeiro AF, Urbinatti PR, Duarte AMRC, Paula MB, Pereira DM, Mucci LF et al. Mosquitoes in degraded and preserved areas of the Atlantic Forest and potential for vector-borne disease risk in the municipality of São Paulo, Brazil. J Vector Ecol 2012; 37:316-324.

4. Forattini OP. Ecologia, epidemiologia e sociedade. São Paulo: Artes Médicas/EDUSP; 2004.

5. Cardoso JC, Paula MB, Fernandes A, Santos E, Almeida MAB, Fonseca DF et al. Ecological aspects of mosquitos (Diptera:Culicidae) in an Atlantic forest area on the north coast of Rio Grande do Sul State, Brasil. J Vector Ecol 2011; 36:175-186.

6. Duarte AMRC, Pereira DM, Paula MB, Fernandes A, Urbinatti PR, Ribeiro AF et al. Natural infection in anopheline species and its implications for autochthonous malaria in the Atlantic Forest in Brazil. Parasit Vectors 2013; 1:2-6.

7. Silver JB. Mosquito Ecology: Field sampling methods. Dordrecht: Springer; 2008.
8. Jacintho LRC. Geoprocessamento e sensoriamento remoto como ferramentas na gestão ambiental de Unidades de Conservação: o caso da Área de Proteção Ambiental (APA) do Capivari-Monos, São Paulo-SP [dissertation]. [São Paulo]: University of São Paulo; 2003. 110p.

9. Bellenzani, MLR. Plano de Manejo: APA Capivari-Monos. São Paulo: Secretaria do Verde e do Meio Ambiente; 2011.
10. Consoli RAGB, Lourenço-de-Oliveira R. Principais mosquitos de importância no Brasil. Rio de Janeiro: Editora Fiocruz; 1994.
11. Forattini OP. Culicideologia médica. vol. II. São Paulo: Editora da Universidade de São Paulo; 2002.
12. Magurran AE. Measuring biological diversity. Oxford: Blackwell Science; 2004.
13. Forattini OP, Gomes AC, Natal D, Kakitani I., Marucci D. Preferências alimentares do mosquitos Culicidae no Vale do Ribeira, São Paulo, Brasil. Rev Saúde Pública 1987; 21:171-187.
14. Forattini OP. Entomologia média. vol. II. São Paulo: Editora da Universidade de São Paulo; 1965.
15. Steffan WA, Evenhuis NL. Biology of Toxorhynchites. Ann Rev Entomol 1981; 26: 159-181.
16. Begon M, Townsend CR, Harper JL. Ecologia: de indivíduos a ecossistemas, 4th ed. Porto Alegre: Artmed; 2007.
17. Johnson MF, Gómez A, Pinedo-Vasquez M. Land use and mosquito diversity in the Peruvian Amazon. J Med Entomol 2008; 45:1023-1030.
18. Bueno-Marí R, Jiménez-Peydró R. Differences in mosquito (Diptera: Culicidae) biodiversity across varying climates and land-use categories in Eastern Spain. Entomol Fenn 2011; 22:190-198.

19. Bona ACD, Navarro-Silva MA. Diversidade de Culicidae durante os períodos crepusculares em bioma de Floresta Atlântica e paridade de Anopheles cruzii (Diptera: Culicidae). Rev Bras Zool 2008; 25:40-48.

20. Marques TC, Bourke BP, Laporta GZ, Sallum MAM. Mosquito (Diptera: Culicidae) assemblages associated with Nidularium and Vriesea bromeliads in Serra do Mar, Atlantic Forest, Brazil. Parasit Vectors 2012; 5:41.

21. Marques GRAM, Forattini OP. Culicídeos em bromélias: diversidade de fauna segundo influência antrópica, litoral de São Paulo. Rev Saúde Públ 2008; 42: 979-985.
4. CONSIDERAÇÕES FINAIS
Ambientes antrópico e o silvestre

Os ambientes silvestre e antrópicos estudados estão situados em área de remanescentes de Mata Atlântica, e embora separados geograficamente, sua interação é viabilizada por ilhotas de florestas entre os mesmos. Por causa da circulação dos culicídeos entre os ambientes, sua diversidade na região de interface é alta. Deve-se, portanto, atentar às espécies de culicídeos que habitam essa região, principalmente aquelas associadas à transmissão de patógenos.

A composição de espécies em uma comunidade é um reflexo do contexto ambiental, incluindo estrutura e condições físicas e interações com outros organismos (BEGON et al., 2007). No contexto da Serra do Mar e da Mata Atlântica, a fragmentação dos ecossistemas e a consequente redução dos habitats teve como resposta a diminuição da biodiversidade de culicídeos no meio silvestre. Contudo, o ambiente antrópico, que está sob constante pressão da expansão urbana da cidade de São Paulo, apresentou maior diversidade. Esse ambiente pode ser caracterizado como um ecótono, ou seja, uma área de transição entre uma área florestal e a área exclusivamente urbana. Os ecótonos formam a borda que separa uma área arborizada e as formações herbáceas circundantes, consistindo uma estrutura complexa e geralmente mais rica em espécies e em indivíduos que os ambientes que separam (DAJOS, 2005). De fato, a matriz que compôs o ambiente antrópico estudado na APA Capivari-Monos apresentava áreas alteradas, como lavouras, lagos para irrigação, áreas abertas adjacentes a espaços florestados e florestas em diferentes estágios de sucessão. Nesse ambiente era muito comum a presença de bromélias epífitas, tanto as introduzidas pelo homem como as que vicejam no peridomicílio, produzindo assim diferentes opções de criadouros para os
culicídeos. Essa variedade de ambientes, disponibilidade de criadouros, proximidade do meio silvestre e acesso a fontes de alimento (sangue humano e de outros animais) propiciaram a ocorrência de espécies de mosquitos silvestres e também domiciliados no meio ambiente antrópico, explicando a maior tendência do ambiente antrópico em apresentar alta diversidade de culicídeos.

No ambiente silvestre, a alta densidade de bromélias de Mata Atlântica foi o fator que provavelmente mais influenciou na diversidade de mosquitos, embora a riqueza de culicídeos tenha sido um pouco menor que a registrada no ambiente antrópico. Nesse ambiente houve também maior dominância da espécie *An. cruzii* embora essa espécie tenha sido raramente coletada na forma imatura. Segundo Forattini (2002), a baixa frequência de imaturos de *An. cruzii* está relacionada ao baixo volume de água nas bromélias, pois a quantidade de formas imaturas é proporcional ao volume de água.

Diferentes espécies de mosquitos podem ser classificadas em campestres ou florestais, mas em geral elas alternam entre esses ambientes, repousando na floresta durante o dia, voando para áreas abertas de noite e retornando à floresta ao amanhecer. Assim, nenhuma espécie está sempre confinada a um habitat particular, e mosquitos adultos ocorrem em toda parte em números variados (BIDLINGMAYER, 1985). No presente estudo, ainda que as coletas tenham sido feitas predominantemente no período noturno com uso das armadilhas Shannon e CDC, a maior diversidade de mosquitos foi encontrada no ambiente antrópico, indicando adaptação de diversos culicídeos a esse ambiente.
Um último aspecto a ser considerado sobre a área de estudo é o baixo impacto ambiental. Isso é indicado pela alta dominância de An. cruzii e ocorrência de Cx. neglectus, que são espécies que ocorrem apenas em espaços preservados ou em estágio avançado de recuperação (FORATTINI et al., 1990; DORVILLÉ, 1996; GUIMARÃES et al., 2000; CARDOSO et al., 2011).

Técnicas de captura de culicídeos

Armadilhas de captura de culicídeos são limitadas espacialmente com referência à informação que fornecem sobre a comunidade de mosquito local (BROWN et al., 2008). Além disso, o número de mosquitos capturados depende da densidade da população e da atividade de vôo dos indivíduos (SERVICE, 1993).

Mesmo considerando essas restrições, o uso de armadilhas atrativas como a Shannon e CDC e não atrativa com o Aspirador de Nasci foi essencial para a descrição da fauna de mosquitos adultos. Embora cada tipo de armadilha apresente seu viés em relação a riqueza e a abundância, esses diferentes métodos conferiram a qualidade dos dados para os ambientes antrópico e silvestre devido à complementaridade.

Indicadores de diversidade

Os índices de riqueza, abundância, equidade, dominância são comumente considerados separadamente embora se relacionem de maneira intrínseca para indicar diversidade. Porém, considerando-se que alterações na riqueza de espécies ou a estrutura da comunidade são de difícil interpretação quando não se retorna aos dados de riqueza específica e abundância (MORENO, 2006), no presente estudo optou-se por apresentar
valores de riqueza junto a algum índice de estrutura da comunidade, de modo que ambos os parâmetros fossem complementares na descrição da diversidade.

A quantificação de espécies (riqueza) é importante para comparar diferentes paisagens e estimar a saturação das comunidades locais (GOTELLI e COLWELL, 2001). O elevado número de espécies de culicídeos encontrado na área de estudo era esperado, embora sua saturação não tenha sido atingida. Conforme mostrado pela curva de rarefação e a estimativa do Jacknife, não foi possível determinar a riqueza total dos ambientes estudados. A riqueza de espécies é de fato difícil de ser medida corretamente. Para alguns táxons, o número de espécies registradas aumenta conforme aumenta-se o número de indivíduos amostrados. Isso, porém, dificulta a determinação da riqueza, pois inicialmente a curva de amostragem sobe relativamente rápido e depois esse aumento torna-se lento conforme táxons mais raros são adicionados em amostragens posteriores (GOTELLI e COLWELL, 2001).

De qualquer forma, pode-se afirmar que a área de estudo apresentava alta riqueza de espécies frente ao registro de 97 grupos taxonômicos nos dois ambientes considerados. O ambiente antrópico apresentou maior número de espécies que o silvestre embora essa diferença não tenha sido estatisticamente significante. O gênero com maior riqueza de espécies foi Culex, destacando-se a presença de vários espécimes dos subgêneros Melanoconion, Culex e Microculex. Isso provavelmente se explica pela variedade de criadouros e habitats na área, especialmente no ambiente antrópico.

Por outro lado, a abundância de mosquitos adultos foi maior no ambiente silvestre, provavelmente devido às características ambientais como exuberância da mata e alta pluviosidade além da variedade de hospedeiros. Foram registrados na APA 364
especies de vertebrados (anfíbios, répteis, aves e mamíferos) que servem de possíveis reservatórios silvestres de arbovírus e correspondem a 67% da fauna registrada no município de São Paulo. As 288 espécies de aves e 35 de mamíferos representam 77% e 42% dos registros desses grupos no município de São Paulo, respectivamente, conforme inventário da Secretaria do Verde e do Meio Ambiente (SVMA, 2010). A diversidade da fauna possibilita a existência do ciclo de diversas arboviroses, como as encefalites, no meio natural. A abundância de hospedeiros pode influenciar diretamente na competência vetorial, pois a manutenção de um ciclo de um arbovírus em um determinando ambiente depende da interação entre as espécies de hospedeiros vertebrados e invertebrados (MATTINGLY, 1969).

Implicações epidemiológicas

Considerando a totalidade de espécies capturadas, mosquitos pertencentes ao gênero *Culex* além de membros da tribo Aedini e Mansoniiini apontam a importância epidemiológica da APA Capivari-Monos. O grupo mais encontrado, no entanto, foi dos anofelinos, que são responsáveis pelos casos de malária na região.

Os *Culex* do subgênero *Melanoconion* foram mais frequentemente encontrados no ambiente silvestre, mesmo porque a maioria de mosquitos desse subgênero é exclusiva de habitats silvestres. Isso indica preservação das áreas florestais na APA Capivari Monos. Mesmo assim, essa ocorrência representa ameaça de introdução de arboviroses no hábitat antrópico uma vez que algumas espécies têm capacidade de se adaptar ao meio modificado (FORATTINI, 2002), criando-se em locais muito diversificados que variam de recipientes naturais (como bromélias) a grandes coleções.
líquidas no solo (como bolsões de rios, charcos, alagados e rios). Essa condição pode facilitar a manutenção do ciclo enzoótico de arboviroses em ambiente alterado (FORATTINI et al., 1991; NATAL et al., 1998), pois o gênero Culex é um dos principais vetores biológicos da filariose bancroftiana e possivelmente de diversos arbovírus perigosos tanto ao homem como aos animais domésticos.

Outros Culex de importância epidemiológica foram encontrados na região. É o caso do subgênero Microculex que alimenta-se principalmente do sangue de anfíbios, e os subgênero Culex, parecem preferir o de aves, mas esses mosquitos podem picar também mamíferos, incluindo o homem (CONSOLI e LOURENÇO-DE-OLIVEIRA, 1994; FORATTINI, 2002).

Modificações ambientais podem ter favorecido a abundância de espécies oportunistas no ambiente antrópico, como observado para mosquitos Coquilletidia chrysonotum/albifera da Tribo Mansoniini. Mosquitos dessa tribo, com atividade marcadamente noturna e forte atração por luz artificial (BARGHINI et al., 2004), indicam alto grau de alteração ambiental (DORVILLÉ, 1996). A significância epidemiológica dos Mansoniini advém do fato de serem naturalmente infectados por diversos arbovírus, como agentes das encefalites equinas (venezuelana, oeste e leste) (FORATTINI, 2002). Além de atuar na transmissão de patógenos, podem causar incômodo aos moradores da região e aos animais devido às picadas (CONSOLI e LOURENÇO-DE-OLIVEIRA 1994; FORATTINI, 2002).

A presença de espécies de Aedini como Psorophora ferox, Aedes scapularis e Aedes serratus foi confirmada, e essas espécies merecem atenção por serem suspeitas de participar da transmissão de viroses. Espécimes de Ps. ferox foram encontrados
infectados naturalmente pelo vírus Rocío (LOPES et al., 1981), e a competência vetora de *Ae. scapularis* para esse mesmo vírus foi constatada em laboratório após epidemia causada no Vale do Ribeira na década de 70 (MITCHELL e FORATTINI, 1984; MITCHELL et al., 1986). Embora tais achados demonstrem somente a competência de veicular a infecção, ambas as espécies têm papel relevante na circulação do agente viral no meio natural (FORATTINI, 2002). O Aedini, mais abundante foi *Ae. serratus*, e embora sua importância em saúde pública seja ainda pouco conhecida, ele é considerado vetor secundário do vírus Ilhéus (VASCONCELOS et al., 1998) e já foi encontrado infectado com o vírus Trocara na Amazônia Peruana e no Pará (TRAVASSOS DA ROSA, 2001; TURELL et al., 2005).

A presença dos anofelinos foi marcante na área de estudo, tanto em ambiente antrópico quanto silvestre. As consequências da aproximação entre o homem e o vetor silvestre da malária culmina com o surgimento de casos de malária no ambiente antrópico, onde em 12 meses de coleta foram capturados 321 exemplares de *An. cruzii*. Segundo FORATTINI et al. (2000), embora *An. cruzii* seja de baixa sinantropia, esses mosquitos frequentam o ambiente antrópico, onde o repasto sanguíneo é garantido. Por não estarem adaptados ao meio artificial, logo após se alimentarem são atraídos às matas nativas circundantes, onde as fêmeas fazem a ovoposição nos corpos d’água acumulados nos verticílios de bromeliáceas. Essa situação garante o ciclo epidemiológico da malária-bromeliana de Mata Atlântica nas regiões Sul e Sudeste do Brasil (DOWNS e PITTENDRICH, 1946, REZENDE et al., 2009), onde *An. cruzii* pode ser infectado naturalmente com *Plasmodium vivax* e suas variantes (BRANQUINHO et al., 1997). Embora, *An. cruzii* possa transmitir também a malária simiana (DEANE et al., 1970;
DEANE, 1992), a possibilidade da ocorrência de zoonose por plasmódios símios (*P. simium* e *P. brasilianum*, semelhantes respectivamente ao *P. vivax* e *P. malariae*) em áreas de Mata Atlântica ainda permanece em discussão (DUARTE et al., 2008).

Pela relevância da presença de anofelinos e da abundância do *An. cruzii*, associado à ocorrência dos surtos de malária na área estudada, DUARTE et al. (2013) desenvolveram um estudo paralelo na região da APA Capivari-Monos visando investigar a infecção natural dos anofelinos na região. Espécimes de *Anopheles (Kerteszia) cruzii*, coletados nos ambientes antrópico e silvestre foram positivos para *P. vivax* e *P. malariae*. Outros anofelinos encontrados em baixa abundância no ambiente antrópico como *An. (Nys.) triannulatus* e *An. (Nys.) lutzi* também estavam naturalmente infectados com *P. vivax*. No ambiente de transição (entre o antrópico e silvestre) espécimes de *An. (Nys.) strodei* foram positivos para *P. malariae*. Esses dados confirmam que *Anopheles (Kerteszia) cruzii* desempenha um papel importante como um vetor de *Plasmodium*. No entanto, a descoberta de outras espécies naturalmente infectadas pode indicar que vetores secundários também estão envolvidos na transmissão da malária nas áreas de estudo (DUARTE et al., 2013).

Efeitos da sazonalidade na fauna de culicídeos

As variáveis ambientais influenciam fortemente a atividade de culicídeos. Dentre os fatores abióticos que afetam a dinâmica populacional de mosquitos vetores, destacam-se a temperatura, pluviosidade e umidade relativa do ar. Nas regiões tropicais, as variáveis abióticas geralmente são favoráveis aos Culicidae no verão, pois a ocorrência de chuvas é acompanhada do aumento de criadouros, e as temperaturas
elevadas facilitam o ciclo de desenvolvimento dos insetos (BONA e NAVARRO-SILVA, 2008).

Na Mata Atlântica em particular, diversos estudos reportam que a temperatura e a pluviosidade influenciam a abundância de mosquitos (GUIMARÃES et al., 2001; MONTES, 2005; UENO et al., 2007; SILVA et al., 2010). No presente estudo, confirmou-se essa informação, sugerindo intensificação em serviços de controle epidemiológico em épocas de alta temperatura e chuvas.

Conclusões

Em resposta aos objetivos específicos da tese:

Em resposta ao primeiro objetivo da presente tese, que foi “Investigar a composição específica e a frequência dos mosquitos adultos e imaturos coletados nos ambientes antrópico e silvestre”, encontramos diferentes resultados de acordo com o estágio dos mosquitos e ambiente. Um total de 9.403 mosquitos adultos foram capturados de maio de 2009 a junho de 2010. As espécies prevalentes entre as coletadas no ambiente silvestre foram *Anopheles (Kerteszia) cruzii*, *Culex (Melanoconion)* seção Melanoconion e *Aedes serratus*, enquanto as mais comuns no ambiente antrópico foram *Coquillettidia chrysonotum/albifera*, *Culex (Culex)* grupo coronator e *An. (Kerteszia) cruzii*. Quanto aos imaturos, foram coletados 2.443 mosquitos, sendo 1507 (61,7%) no ambiente antrópico e 936 (38,3%) no ambiente silvestre. Imaturos de *Culex (Microculex)* grupo Imitator foram os que apresentaram maior abundância e foram encontrados com maior frequência no ambiente antrópico e silvestre.
O segundo objetivo consistiu em “Descrever o perfil de diversidade dos mosquitos dos ambientes antrópico e silvestre usando medidas de diversidade como riqueza, abundância, equabilidade e dominância”. Nesse sentido, a riqueza de mosquitos, tanto adultos quanto imaturos, foi semelhante entre os ambientes, e a abundância variou entre as espécies. Ao comparar os padrões de diversidade entre os ambientes, a região antrópica apresentou maior riqueza e equabilidade, o que sugere que o estresse ambiental aumentou o número de nichos favoráveis para culicídeos e promoveu maior diversidade.

O terceiro objetivo do trabalho foi “Relacionar os fatores climáticos a riqueza de espécies e a abundância de culicídeos”. Observou-se que a riqueza e abundância de mosquitos adultos no ambiente antrópico foi positivamente correlacionada com os valores médios de pluviosidade e temperatura de 10, 15 e 20 dias anteriores a coleta. A espécie An. cruzii apresentou correlação positiva com pluviosidade e temperatura no ambiente antrópico, mas no ambiente silvestre essa espécie não esteve associada aos fatores climáticos. Quanto aos mosquitos imaturos, não houve correlação entre fatores climáticos, abundância e riqueza de espécies em nenhuma das zonas avaliadas.

O último objetivo do estudo foi “Discutir as implicações epidemiológicas das espécies de culicídeos potenciais transmissores de patógenos”. Concluímos ser necessário intensificar estudos de culicídeos vetores na região, pois mudanças ambientais provocadas pelo homem e a consequente adaptação de espécies de mosquitos vetores e de hospedeiros pode induzir a novos cenários epidemiológicos. Além da existência de mosquitos competentes para a veiculação de arbovírus, que frequentam
tanto o ambiente silvestre como o humano, é ainda possível o surgimento de vetores que possam transferir patógenos a partir de focos naturais para o ambiente antrópico.

Uma consideração final é que os componentes da diversidade, riqueza e equabilidade de culicídeos evidenciados podem auxiliar na vigilância de diferentes patógenos na APA Capivari-Monos. Nesse sentido, o presente estudo contribui para orientar as ações de prevenção de doenças infecciosas transmitidas por vetores nas áreas de Mata Atlântica sujeitas à pressão humana e à degradação ambiental. De imediato, sugere-se a intensificação de serviços de vigilância e monitoramento de culicídeos nessa região, principalmente nas áreas de confronto entre mata e área urbana.
5. REFERÊNCIAS
BARGHINI, A.; URBINATTI P. R.; NATAL, D. Atração de mosquitos (Diptera: Culicidae) por lâmpadas incandescentes e fluorescentes. *Entomologia e Vectores*, v. 11, n. 4, p. 611-622, 2004.

BEGON, M.; TOWNSEND, C. R.; HARPER, J. L. *Ecologia: de indivíduos a ecossistemas*. Porto Alegre: Artmed, 2007.

BELLENZANI, M. L. R. *A APA municipal do Capivari-Monos como uma estratégia para a proteção dos mananciais da região Metropolitana de São Paulo*. 2001. Dissertação (Mestrado em Ciências Ambientais). Universidade de São Paulo, São Paulo.

BELLENZANI, M. L. R. *Plano de Manejo: APA Capivari-Monos*. São Paulo: Secretaria do Verde e do Meio Ambiente, 2011

BIDLINGMAYER, W. L. The measurement of adult mosquito population changes--some considerations. *Journal of the American Mosquito Control Association*. v. 1. n. 3. p. 328-348, 1985.

BONA, A. C. D.; NAVARRO-SILVA, M. A. Diversidade de Culicidae durante os períodos crepusculares em bioma de Floresta Atlântica e paridade de *Anopheles cruzii* (Diptera: Culicidae). *Revista Brasileira Zoologia*, v. 25, n. 1, p. 40-48, 2008.

BRANQUINHO, M. S.; MARRELLI, M. T.; CURADO, I.; NATAL, D.; BARATA, J. M. S.; TUBAKI, R.; CRISTINA, G.; CARRÉRI-BRUNO, G. C.; MENEZES, R. T; KLOETZEL, J. Infecção do *Anopheles (Kerteszia) cruzii* por *Plasmodium vivax* e *Plasmodium vivax* variante VK 247 nos municípios de São Vicente e Juquitiba, São Paulo. *Revista Panamericana Salud Pública*, v. 2, n. 3, p. 189-193, 1997.
BROWN, H. E.; PALADINI, M.; COOK, R. A.; KLINE D.; BARNARD, D.; FISH, D.
Effectiveness of mosquito traps in measuring species abundance and composition.

Journal of Medical Entomology, v. 45, n. 3, p. 517-521, 2008.

CAPOBIANCO, J. P. (Coord.). *Dossiê Mata Atlântica: Projeto monitoramento participativo da Mata Atlântica*. [S.I.]: Rede de ONGS Mata Atlântica, Instituto Socioambiental, Sociedade Nordestina de Ecologia, 2001.

CARDOSO, J. C.; PAULA, M. B.; FERNANDES, A.; DOS SANTOS, E.; ALMEIDA, M. A., FONSECA, D. F., SALLUM, M. A. Ecological aspects of mosquitoes (Diptera: Culicidae) in an Atlantic forest area on the north coast of Rio Grande do Sul State, Brazil. *Journal of Vector Ecology*, v. 36, n. 1, p. 175-186, 2011.

CI - Conservation International. [acesso em 20 set 2012] Disponível em: http://www.biodiversityhotspots.org

COLLINGE, S. K.; RAY, C. *Disease Ecology: community structure and pathogen dinamics*. Nova York: Oxford University press, 2006.

CONSOLI, R. A. G. B.; LOURENÇO-DE-OLIVEIRA, R. *Principais mosquitos de importância no Brasil*. Rio de Janeiro: Editora Fiocruz, 1994.

DAJOS, R. *Princípios de Ecologia*. Porto Alegre: Artmed, 2005.

DOWNS, W. G.; Pittendrich, C. S. Bromelian malaria in Trinidad, British West Indies. *American Journal of Tropical Medicine and Hygiene*, v. 26, n. 1, p. 47-66, 1946.

DEANE, L. M. Simian malaria in Brazil. *Memórias do Instituto Oswaldo Cruz*, v. 87, Supl. 3, p. 1-20, 1992.
DEANE, L. M.; FERREIRA NETO, J. A.; DEANE, S. P.; SILVEIRA, I. P. *Anopheles (Kerteszia) cruzii*, a natural vector of the monkey malaria parasites. *Plasmodium simium* and *Plasmodium brasilianum*. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 64, n. 4, p. 647, 1970.

DORVILLÉ, L. F. M. Mosquitoes as bioindicators of Forest degradation in southeastern Brazil, a statistical evaluation of published data in the literature. Studies on Neotropical Fauna and Environment, v. 31, n. 2, p. 68-78, 1996.

DUARTE, A. M. R. C.; MALAFRONTÉ R. S.; CERUTTI-JR, C.; CURADO, I.; PAIVA, B. R.; MAEDA, A. Y.; YAMASAKI, T.; SUMMA, M. E.; NEVES, V.; OLIVEIRA, S. G.; GOMES A. C. Natural Plasmodium infections in Brazilian wild monkeys: Reservoirs for human infections? *Acta Tropica*, v. 107, n. 2, p. 179-185, 2008.

DUARTE, A. M. R. C.; PEREIRA, D. M.; PAULA, M. B.; FERNANDES, A.; URBINATTI, P. R.; RIBEIRO, A. F.; MELLO, M. H.; MATOS-JR, M. O.; MUCCI, L. F.; FERNANDES, L. N.; NATAL, D.; MALAFRONTÉ, R. S. Natural infection in anopheline species and its implications for autochthonous malaria in the Atlantic Forest in Brazil. *Parasite & Vectors* (in press), 2013.

FIGUEIREDO, L. T. M. Emergent arboviruses in Brazil. Revista da Sociedade Brasileira Medicina Tropical, v. 40, n. 2, p. 224-229, 2007.

FORATTINI, O. P. *Culicidologia médica*. São Paulo: EDUSP, 2002. v. 2.

FORATTINI, O. P. *Ecologia, epidemiologia e sociedade*. São Paulo: Artes Médicas/EDUSP, 2004.
FORATTINI O. P.; GOMES, A. C.; NATAL, D.; KAKITANI, I.; MARUCCI, D. Preferências alimentares e domiciliação de mosquitos Culicidae no Vale do Ribeira, São Paulo, Brasil com especial referência a Aedes scapularis e Culex (Melanoconion). Revista Saúde Pública, v. 23, n. 1, p. 9-19; 1989.

FORATTINI, O. P.; GOMES, A. C.; SANTOS, J. L. F.; KAKITANI, I.; MARUCCI, D. Frequência ao ambiente humano e dispersão de mosquitos Culicidae em área adjacente à Mata Atlântica primitiva da planície. Revista Saúde Pública, v. 24, n. 2, p. 101-107, 1990.

FORATTINI, O. P.; GOMES, A.C.; KAKITANI, I.; MARUCCI, D. Observações sobre domiciliação de mosquitos Culex (Melanoconion) em ambiente com acentuadas modificações antrópicas. Revista Saúde Pública, v. 25, n. 4, p. 257-256, 1991.

FORATTINI, O. P.; MASSAD, E.; KAKITANI, I.; MARUCCI, D. Studies on mosquitoes (Diptera: Culicidae) and anthropic environment. 9 – Synanthropy and epidemiological vector role of Aedes scapularis in South-Eastern Brazil. Revista Saúde Pública, v. 29, n. 3, p. 199-207, 1995.

FORATTINI, O. P.; KAKITANI, I.; DOS SANTOS, R. L. C.; KOBAYASHI, K. M.; UENO, H. M.; FERNANDÉZ, Z. Potencial sinantrópico de mosquitos Kerteszia e Culex (Diptera: Culicidae) no sudeste do Brasil. Revista Saúde Pública, v. 34, n. 6, p. 565-569, 2000.

FRANKE, C. R.; ROCHA, P.L.B, KLEIN, W., GOMES, S.L. Mata Atlântica e biodiversidade. Salvador: Edufba, 2005.
GOMES, A. C.; FORATTINI, O. P.; NATAL, D. Composição e atividade de mosquitos Culicidae. Emprego de armadilha CDC no Vale do Ribeira, Estado de São Paulo, Brasil. Revista de Saúde Pública, v. 21, p. 363-70, 1987.

GOMES, A. C.; PAULA, M. B.; DUARTE, A. M. R. C.; LIMA, M. A.; MALAFRONTÉ, R. S.; MUCCI, L. F.; GOTLIB, S. L.; NATAL, D. Epidemiological and ecological aspects related to malaria in the área of influence of the lake at porto primavera dam, in western São Paulo state, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, v. 50, n. 5, p 287-295, 2008.

GOTELLI, N. J.; COLWELL, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, v. 4, n. 4, p. 379-391, 2001.

GUIMARÃES, A. E.; GENTILE, C.; LOPES, C. M., MELLO, R. P. Ecology of mosquitoes (Diptera: Culicidae) in areas of Serra do Mar State Park, State of São Paulo, Brasil II: habitat distribution. Memórias do Instituto Oswaldo Cruz, v. 95, n. 1, p. 17-28, 2000.

GUIMARÃES, A. E.; GENTILE, C.; LOPES C. M.; SANT'ANNA, A. Ecologia de mosquitos em áreas do Parque Nacional da Serra da Bocaina: II - Frequência mensal e fatores climáticos. Revista de Saúde Pública, v. 35, n. 4, p. 392-399, 2001.

IBGE [homepage na internet] Instituto Brasileiro de Geografia. [Atualizado em 2010; acesso em 10 de outubro de 2013]. Disponível em http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=355030.
IVERSSON, L. B. Situação atual do conhecimento eco-epidemiológico sobre arbovírus patogênicos para o homem na região da mata atlântica do Estado de São Paulo. *Revista do Instituto de Medicina Tropical*, v. 36, n. 4, p. 343-353, 1994.

JACINTHO, L. R. C. Geoprocessamento e sensoriamento remoto como ferramentas na gestão ambiental de unidades de conservação: o caso da Área de Proteção Ambiental (APA) do Capivari – Monos, São Paulo – SP. 2003. Dissertação (Mestrado em Recursos Minerais e Hidrogeologia). Universidade de São Paulo, São Paulo.

KARABATSOS N. Supplement to international catalogue of arboviruses, including certain other viruses of vertebrates. *American Society of Tropical Medicine and Hygiene*, v. 27, n. 2, p. 372-440, 1978.

LOPES, O. S.; ABREU S. L.; FRANCY, D. B.; JAKOB, W. L.; CALISHER, C. H. Emergence of a new arbovirus disease in Brazil III. Isolation of Rocio virus from *Psorophora ferox* (Humboldt, 1819). *American Journal of Epidemiology*, v. 113, n. 2, p. 122-125, 1981.

LUNA, E. J. A.; PEREIRA, L. E.; SOUZA, R. P. Encefalite do Nilo Ocidental, nossa próxima epidemia? *Epidemiologia e Serviços de Saúde*, v.12, n.1, p. 7-19, 2003.

MARCONDES, C.B. *Doenças transmitidas e causadas por vetores artrópodes*. São Paulo: Editora Atheneu, 2009.

MARRELLI, M. T.; MALAFRONTE, R. S.; SALLUM, M. A. M.; NATAL, D. *Kerteszia* subgenus of Anopheles associated with the Brazilian Atlantic rainforest: current knowledge and future challenges. *Malaria Journal*, v. 6, p. 127, 2007.
MATTINGLY, P. F. *The biology of mosquito-borne disease*. Great Britain: Elsevier. 1969.

MITCHELL, C. J.; FORATTINI, O. P. Experimental transmission of Rocío encephalitis virus by *Aedes scapularis* (Diptera: Culicidae) from the epidemic zone in Brazil. *Journal of Medical Entomology*, v. 21, n. 4, p. 34-37, 1984.

MITCHELL, C.J.; FORATTINI, O. P.; MILLER, B. R. Vector competence experiments with Rocío virus and three mosquito species from the epidemic zone in Brazil. *Revista de Saúde Pública*, v. 20, n. 3, p. 171-177, 1986.

MORENO, C.E. *Métodos para medir la biodiversidad*. Zaragoza: M&T–Manuales y Tesis SEA, 2006.

MMA - Ministério do Meio Ambiente. [Acesso em 20 set 2012]. Disponível em http://www.mma.gov.br/biomas/mata-atlantica.

MONTES, J. Fauna de Culicidae da Serra da Cantareira, São Paulo, Brasil. *Revista Saúde Pública*, v. 39, n. 4, p. 578-584, 2005.

NATAL, D., URBINATTI, P. R.; MARUCCI, D. Arbovirus vector ecology in the Brazilian coastal range system. In: TRAVASSOS DA ROSA, A. P. A.; VASCONCELOS, P. F. C.; TRAVASSOS DA ROSA, J. F. S. (Org.) *An overview of arbovirology in Brazil and neighbouring countries*. Belém: Instituto Evandro Chagas, 1998. p. 234-247.

PAULA, M. B., GOMES A. C. Culicidae (Diptera) em area sob influência de construção de represa no estado de São Paulo. *Revista de Saúde Pública*, v. 41, n. 2, p. 284-289, 2007.
REZENDE, R. H.; SOARES, R. M.; CERUTTI JR, C.; ALVES, I. C.; NATAL, D.;
URBINATTI, P. R.; YAMASAKI, T. Y.; FALQUETO, A.; MALAFRONTE, R. S.
Entomological characterization and natural infection of Anophelines in an area of the
Atlantic Forest with autochthonous malaria cases in mountainous region of Espírito
Santo State, Brazil. Neotropical Entomology, v. 38, n. 2, p. 272-280, 2009.

ROCCO, I.; SANTOS, C. L. S.; BISORDI, I.; PETRELLA, S. M. C. N; PEREIRA, L.
E.; SOUZA, R. P.; COIMBRA, T. L. M.; BESSA, T. A. F.; OSHIRO, F. M.; LIMA,
L. B. Q; CERRONI, M. P.; MARTI, A. T.; BARBOSA, V. M.; KATZ, G.;
SUZUKI, A. St. Louis encephalitis vírus: first isolation from a human in São Paulo
state, Brasil. Revista do Instituto de Medicina Tropical de São Paulo, v.47, n.5, p.
281-285, 2005.

SERVICE MW. Mosquito ecology: field sampling method. London: Applied Science
PUBL., 1993.

SILVA, J. S.; PACHECO, J. B.; ALENCAR, J; GUIMARÃES, A. E. Biodiversity and
influence of climatic factors on mosquitoes (Diptera: Culicidae) around the Peixe
Angical hydroelectric scheme in the state of Tocantins, Brazil. Memórias do
Instituto Oswaldo Cruz, v. 105, n. 2, p. 155-162, 2010.

SVMA - Secretaria do Verde e Meio Ambiente. Área de Proteção Ambiental
Municipal do Capivari-Monos: Caracterização Sócio-ambiental: Relatório
Preliminar. São Paulo: PMSP/SVMA, 1998.

SVMA - Secretaria do Verde e Meio Ambiente. 2010. Resolução SMA 48 de 21 Maio
2010. Inventário da Fauna do Município de São Paulo. São Paulo: Diário Oficial do
Município de São Paulo (Supplement).
TONHASCA JR., A. *Ecologia e História Natural da Mata Atlântica*. Salvador: Editora Interciência, 2005.

TRAVASSOS DA ROSA, A. P.; TURELL, M. J.; WATTS, D. M.; POWERS, A. M.; VASCONCELOS, P. F. C.; JONES, J. W.; KLEIN, T. A.; DOHM, D. J.; SHOPE, R. E.; DEGALLIER, N.; POPOV, V.; RUSSELL, K. L.; WEAVER, S. C.; GUZMAN, H.; CALAMPA, C.; BRAULT, A. C.; LEMON, A. P.; TESH, R. B. Trocara Virus: a newly recognized *Alphavirus* (Togaviridae) isolated from mosquitoes in the Amazoan Basin. *American Society of Tropical Medicine and Hygiene*, v. 64, n. 1, p. 93-97, 2001.

TUBAKI, R. M.; CARRIERI-BRUNO, G. C.; GLASSER, C. M.; CIARAVOLO, R. M. C. Biting activity of Anopheles (Kerteszia) cruzii (Diptera, Culicidae) in domiciliary habitats in the southern Atlantic Forest, Peruibe, State of São Paulo, Brazil. *Revista Brasileira de Entomologia*, v. 37, p. 569-575, 1993.

TURELL, M. J.; O’GUINN, M.L.; JONES, J.W.; SARDELIS, M.R.; DOHM, D.J.; WATTS, D.M.; FERNANDES, R.; TRAVASSOS DA ROSA, A.; GUSZMAN, H.; TESH, R.; ROSSI, C.A.; LUDWIG, G.V.; MANGIAFICO, J.A.; KONDIG, J.; WASIELOSKI, J.R.; PECOR, J.; ZYZAK, M.; SCHOELER, G.; MORES, C.N.; CALAMPA, C.; LEE, S.; KLEIN, T.A. Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazoan Basin Region of Peru. *Journal of Medical Entomology*, v. 42, n. 8, p. 891-898, 2005.

UENO, H. M.; FORATTINI, O. P.; KAKITANI, I. Distribuição vertical e sazonal de Anopheles (Kerteszia) em Ilha Comprida, SP. *Revista de Saúde Pública*, v. 41, n.2, p. 269-275, 2007.
VASCONCELOS, P. F. C.; TRAVASSOS DA ROSA, A. P. A; PINHEIRO, F. P.; SHOPE, R. E.; DEGALLIER, N.; TRAVASSOS DA ROSA, E. S. Arbovirus pathogenic for man in Brazil. In: TRAVASSOS-DA-ROSA, A.P.A.; VASCONCELOS, P.F.C.; TRAVASSOS-DA-ROSA, J.F.S. (Org.). An overview of arbovirology in Brazil and neighbouring countries. Belém: Instituto Evandro Chagas, 1998. p. 72-99.
ANEXO A – AMBIENTE DE COLETA

Figura 1 - Área de Proteção Ambiental Capivari Monos, com destaque em ponto amarelo para áreas de transmissão de malária, município de São Paulo.
Figura 2 - Pontos de coleta de mosquitos adultos e imaturos no ambiente silvestre, APA Capivari Monos, São Paulo.
Figura 3 - Pontos de coleta de mosquitos imaturos e adultos no ambiente antrópico, APA Capivari, São Paulo.
Figura 4 - Visão parcial do ambiente antrópico, APA Capivari Monos, São Paulo.
Figura 5 - Visão Parcial do ambiente silvestre, APA Capivari Monos, São Paulo.
Figura 6 - Bromélia localizada em ambiente silvestre, APA Capivari Monos.
ANEXO B – TÉCNICAS DE COLETA

Figura 7 - Armadilha CDC + CO₂ para captura de mosquitos adultos em ambiente antrópico e silvestre, APA Capivari Monos, São Paulo.
Figura 8 - Armadilha de Shannon para captura de mosquitos adultos em ambiente antrópico e silvestre, APA Capivari-Munos, São Paulo.

Figura 9 - Aspirador para coleta de mosquitos adultos em ambiente antrópico e silvestre, APA Capivari Mono, São Paulo.
Figura 10 - Coleta de mosquitos imaturos em lagos nos ambientes antrópico e silvestre com uso de concha entomológica, APA Capivari Monos, São Paulo.
Figura 11 - Coleta de mosquitos imaturos utilizando tubo de sução em bromélias, APA Capivari Monos.
ANEXO C – CURRÍCULO LATTES DA AUTORA E ORIENTADOR

Currículo completo
http://lattes.cnpq.br/7622065491621023

Currículo completo
http://lattes.cnpq.br/3081730046700249
O MOSQUITO ESCREVE

O mosquito pernilongo
trança as pernas, faz um \textbf{M},
depois, treme, treme, treme,
faz um \textbf{O} bastante oblongo,
faz um \textbf{S}.

O mosquito sobe e desce.
Com artes que ninguém vê,
faz um \textbf{Q},
faz um \textbf{U}, e faz um \textbf{I}.

Este mosquito esquisito
cruza as patas, faz um \textbf{I}.

E aí,
se arredonda e faz outro \textbf{O},
mais bonito.

Oh!
Já não é analfabeto,
esse inseto,
pois sabe escrever seu nome.

Mas depois vai procurar
algéem que possa picar,
pois escrever cansa,
\textbf{não é, criança}?

E ele está com muita fome.
(\textbf{Cecília Meireles. Ou isto ou aquilo}, 1961)