Species of *Odontia* and *Tomentella* (Thelephorales, Basidiomycota) new to Dagestan, Russia

Yuliya Yu. Ivanushenko and Sergey V. Volobuev

1Dagestan State University, Makhachkala, Russia
2Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia

Principal contact

Sergey V. Volobuev, Candidate of Sciences (Biology), Senior Researcher, Laboratory of Systematics and Geography of Fungi, Komarov Botanical Institute, Russian Academy of Sciences; 2 Professora Popova St, Saint Petersburg, Russia, 197376. Tel. +7(812)3725469. Email sergevolobuev@binran.ru

ORCID https://orcid.org/0000-0003-1217-5548

How to cite this article

Ivanushenko Yu.Yu., Volobuev S.V. Species of *Odontia* and *Tomentella* (Thelephorales, Basidiomycota) new to Dagestan, Russia. South of Russia: ecology, development. 2020, vol. 15, no. 3, pp. 165-173. DOI: 10.18470/1992-1098-2020-3-165-173

Received 27 April 2020
Revised 29 May 2020
Accepted 6 July 2020

Abstract

Aim. To obtain new data on the species diversity, phylogenetic structure, and ecological characteristics of thelephoroid fungi (Thelephorales, Basidiomycota) in the Republic of Dagestan.

Material and Methods. Both micromorphological and molecular analyses were used for studying the fungal specimens collected by the authors in 2018-2019 in the Gunibsky and Magaramkentsky Districts of Dagestan. Additional specimens from the Mycological Herbarium of the Komarov Botanical Institute of the Russian Academy of Sciences (LE) were studied. The ITS region of nrDNA was amplified with two pairs of primers, ITS1F/ITS4 and ITS5/ITS4.

Results. Sixteen ITS sequences belonging to eight species were obtained from the studied material. Of them, 14 sequences clustered in the *Tomentella* clade and two sequences nested within the *Odontia* clade. Four species — *Odontia duemmeri*, *Tomentella lapida*, *T. radiosa*, *T. terrestris* — were registered for the first time for Dagestan. Detailed information on the specimens studied is presented. Species identification of *Odontia fibrosa*, *Tomentella badia*, *T. ferruginea*, and *T. stuposa* was confirmed by ITS nrDNA analysis.

Conclusion. Data on the species richness of the genera *Odontia* and *Tomentella* in Dagestan is updated, and the species *T. lilacinogrisea* is excluded from the regional fungi. To date the genera *Odontia* and *Tomentella* in the Republic of Dagestan are represented by three and fifteen species, respectively.

Key Words

Biodiversity, basidiomycetes, distribution of fungi, ITS phylogeny, DNA barcodes, *Tomentella*, Dagestan, Caucasus.
Новые для Дагестана виды родов Odontia и Tomentella (Thelephorales, Basidiomycota)

Юлия Ю. Иванушенко¹, Сергей В. Волобуев²
¹Дагестанский государственный университет, Махачкала, Россия
²Ботанический институт им. В.Л. Комарова РАН, Санкт-Петербург, Россия

Контактное лицо
Сергей В. Волобуев, кандидат биологических наук, старший научный сотрудник лаборатории систематики и географии грибов, Ботанический институт им. В.Л. Комарова РАН; 197376 Россия, г. Санкт-Петербург, ул. Профессора Попова, 2. Тел. +7(812)3725469
Email sergvolobuev@binran.ru
ORCID https://orcid.org/0000-0003-1217-5548

Формат цитирования
Иванушенко Ю.Ю., Волобуев С.В. Новые для Дагестана виды родов Odontia и Tomentella (Thelephorales, Basidiomycota) // Юг России: экология, развитие. 2020. Т. 15, № 3. С. 165-173. DOI: 10.18470/1992-1098-2020-3-165-173

Резюме
Цель. Получить новые данные о видовом разнообразии, филогенетической структуре и экологических характеристиках телефоровых грибов (Thelephorales, Basidiomycota) Республики Дагестан.

Материал и методы. В работе были использованы микроморфологический и молекулярный анализ для изучения образцов грибов, собранных авторами в 2018-2019 гг. в Гунибском и Магарамкентском районах Дагестана. Были изучены дополнительные образцы из микологического гербария Ботанического института им. В.Л. Комарова Российской академии наук (LE). Участок внутреннего транскрибируемого спейсера (ITS) ярДНК был амплифицирован для исследованных образцов с использованием двух пар приампермоных, ITS1F / ITS4 и ITS5 / ITS4.

Результаты. Впервые получены 16 ITS последовательностей, которые отнесены к восьми видам грибов. 14 нуклеотидных последовательностей оказались в пределах клады, сформированной видами рода Tomentella, а две других последовательности вошли в кладу, образованную видами рода Odontia. Четыре вида — Odontia duemmeri, Tomentella lapida, T. radiosa, T. terrestris — впервые отмечены в Дагестане. Находки видов Odontia fibrosa, Tomentella badia, T. ferruginea, T. stuposa, ранее известных для Дагестана, подтверждены на основе анализа ITS области ярДНК.

Заключение. Обновлены данные о видовом богатстве родов Odontia и Tomentella в Дагестане, при этом вид T. lilacinogrisea исключен из региональной микробиоты. К настоящему времени виды Odontia и Tomentella в Республике Дагестан представлены 3 и 15 видами соответственно.

Ключевые слова
Биоразнообразие, базидиомицеты, распространение грибов, ITS-филогения, ДНК-штрихкодирование, Tomentella, Дагестан, Кавказ.

© 2020 Авторы. Юг России: экология, развитие. Это статья открытого доступа в соответствии с условиями Creative Commons Attribution License, которая разрешает использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.
INTRODUCTION

Despite rather detailed scientific research on the flora and fauna of Dagestan, mycological studies have not been given due attention; they have been episodic and unsystematic in nature. In general, the data on the diversity of aphyllophoroid fungi are available for the protected natural territories [1-4]. This publication continues the series of works devoted to the inventory of species diversity and ecological characteristics of aphyllophoroid fungi in Dagestan [2-8], in particular of the genera Odontia and Tomentella [9].

To date fifteen species of the genus Tomentella s. lato are known for mycobiota of Dagestan: Tomentella atramentaria, T. badia, T. bryphila, T. cinerascens, T. crinalis (=Odontia ferruginea), T. ellisi, T. ferruginea, T. fibrosa (=Odontia fibrosa), T. lateritica, T. lilacinogrisea, T. pilosa, T. puricea, T. suposa, T. subtestacea, and T. umbrospora [7-10].

Taking into account the widespread use of molecular techniques in mycology both to describe new taxa and to study the modern species composition of regional mycobios, we carried out a comparative study of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (rDNA) from the specimens of the genera Odontia and Tomentella, which allowed us to identify species new to Dagestan.

The aim of the study was to obtain new data on the species diversity, phylegetic structure, and ecological characteristics of thelephoroid fungi (Thelephorales, Basidiomycota) in Dagestan.

MATERIAL AND METHODS

Specimens of basidiomycetes were collected during a routine survey of forest ecosystems in the Gunibsky and Magaramkentsky Districts of the Republic of Dagestan within the protected areas: the Upper Gunib Nature Park and the Samursky National Park in May and September-October 2018-2019. Additionally, specimens stored in the Mycological Herbarium of the Komarov Botanical Institute of the Russian Academy of Sciences (LE) were studied. Microscopy-based identification of fungi as well as re-examination of herbarium specimens was done at magnifications up to ×1000 using LOMO Mikmed-6 optical microscope, Carl Zeiss Axioslager A1 microscope and a standard set of reagents (5% potassium hydroxide solution, Melzer’s reagent).

DNA was extracted from small pieces of dried basidicarps using the FitoSORB DNA extraction kit (Syntol, Russia) according to the manufacturer’s instructions. PCR reactions were performed in 25 μL of reaction mixtures containing 5 μL of Fidelity Buffer (5X), 0.5 μL of KAPA HiFi HotStart DNA Polymerase, 0.75 μL of dNTPs, 0.5 μL of each PCR primer, 12.75 μL of deionized H2O, and 5 μL of template DNA. The ribosomal ITS1–5.8S–ITS2 region was amplified with two pairs of the primers: ITS1F and ITS4 or ITS5 and ITS4 [11; 12]. PCR products were visualized using agarose gel electrophoresis and GelRed staining, and subsequently purified with the Fermentas Genomic DNA Purification Kit (Thermo Fisher Scientific, Lithuania). Purified PCR products were sequenced on an ABI model 3130 Genetic Analyzer (Applied Biosystems, CA, USA). Raw data were edited and assembled in MEGA 6 [13]. Newly generated sequences were deposited in the GenBank. Additionally, 46 ITS sequences were retrieved from GenBank [14] and UNITE [15] (Table 1). Sequences were aligned with the MAFFT version 7 web tool [16; 17] using the E-INS-L option. Maximum Likelihood (ML) analysis was performed in the IQ-TREE Web Server [18] with 1000 ultrafast bootstrap replicates.

Table 1. Specimens and sequences used in this study

Species	GenBank / UNITE accessions	Specimen voucher	Origin
Odontia duemmeri	UDB011121	KHL10605	Jamaica
Odontia duemmeri	UDB018552	TU115185	Mexico: Municipality of Lazaro Cardenas
Odontia duemmeri	UDB033701	TU115587	Germany: Bavaria
Odontia duemmeri	MT981503	LE 314777	Russia: Dagestan
Odontia ferruginea	UDB032228	TU111186	Estonia
Odontia fibrosa	MK602775	TU115028	China
Odontia fibrosa	MT981502	LE F-332368	Russia: Dagestan
Thelephora terrestris	AF272921	JS17996 (O)	Unspecified
Thelephora terrestris	AF272923 / UDB000215	TAA201283	Estonia
Tomentella alpina	EF655702	IB20060231 (holotype)	Austria
Tomentella atramentaria	AF272904	TAA149211	Unspecified
Tomentella atramentaria	EF644115	IB2004189	Austria
Tomentella atramentaria	KT353045	GO-2009-248	Mexico: Mexico State
Tomentella badia	AF272917 / UDB000239	TAA164600	Estonia
Tomentella badia	AF272937 / UDB000238	TAA159022	Russia
Tomentella badia	KJ140664	CFMR:DLL2011-166	United States; central Wisconsin
Tomentella badia	UDB000961	NF.S103 (O)	Norway
Tomentella badia	MT981507	LE 299095	Russia: Kaluga Region
Tomentella badia	MT981508	LE 299096	Russia: Kaluga Region
RESULTS AND DISCUSSION

The ITS dataset includes 16 newly generated sequences and 46 sequences of 19 species downloaded from public databases (GenBank, UNITE). The genus Odontia was used as an outgroup. The final ITS alignment contained 858 positions (including gaps). The ML tree is shown in Fig. 1. Our 16 sequenced specimens appeared in eight separate well-supported clades, which correspond to different species. Among them, 14 sequences clustered in the clade comprised of Tomentella species and two sequences nested within the Odontia clade.

The ITS nrDNA analysis confirmed the microscopic-based taxonomic assignment of the specimens from the Republic of Dagestan belonging to three species from the genus Tomentella (T. badia, T. ferruginea, T. stuposa) and one species from the genus Odontia (O. fibrosa) [7-10].

The first finding of Tomentella badia from Dagestan was recorded on a fallen trunk of Juniperus oblonga from the Gunib Plateau (Gunibsky District) as a result of the special study of juniper-associated aphyllophoroid fungi [7]. This fungus was also collected from fallen trunks of Betula sp. in the same area by Sergey Volobuev and Aziz Ismailov in October 2018 and these specimens (LE 314772, LE 314775) were sequenced now (Table 1).

The species Tomentella ferruginea was registered for Dagestan based on four specimens mentioned by U. Kõljalg [10], one specimen (LE F-332319) from the Samursky National Park (Magaramkentsky District) [8], and the specimen from the Gunib Plateau (Gunibsky District) collected from a fallen trunk of Betula sp. by Yuliya Ivanushenko in May 2019 (LE 314778). The last two specimens mentioned were sequenced in this study.

T. stuposa, one of the most common species of the genus Tomentella, was reported for Dagestan [10], but the specimens from the Gunib Plateau (Gunibsky District) collected from fallen trunks of Betula sp. by Sergey Volobuev and Aziz Ismailov in October 2018 (LE 314774, LE 314779) were sequenced and included in the phylogenetic analysis for the first time (Table 1, Fig. 1).
Figure 1. The Maximum Likelihood tree illustrating the phylogeny of *Odontia* and *Tomentella* species, based on ITS sequence dataset. Ultrafast bootstrap values (%) not less than 70 are shown above the branches. Sequence accession numbers (GenBank or UNITE) of selected species are indicated before species names. The bold font shows the names of the sequences obtained in this study.

Рисунок 1. Дерево, построенное методом максимального правдоподобия и иллюстрирующее филогению видов *Odontia* и *Tomentella*, на основе ITS-последовательностей. Значения ultrafast bootstrap (не менее 70%) показаны над ветвями. Номера последовательностей (в базах данных GenBank или UNITE) отобранных таксонов указаны перед видовыми названиями. Жирным шрифтом выделены названия нуклеотидных последовательностей, полученных в данном исследовании.
The newly generated ITS sequence of *Odontia fibrosa* was obtained (Table 1) for the specimen from the Samursky National Park (Magaramkentsky District) [8], which is the second finding of the species besides the record in the Upper Gunib Nature Park (Gunibsky District) [9]. At the same time, four other species are new to Dagestan — *Odontia duemmeri*, *Tomentella lapida*, *T. radiosa*, and *T. terrestris*. Detailed annotations for specimens of these species and some taxonomic and distributional remarks are presented below.

Odontia duemmeri (Wakef.) Köljalg
Specimen examined: Russia, Republic of Dagestan, Gunibsky District, Gunib Plateau, 42.400873° N, 46.910158° E, 1905 m a.s.l., herb-rich birch forest, on fallen trunk of *Betula* sp. (LE 314777), 1 October 2019, coll. and det. Sergey V. Volobuev and Yuliya Yu. Ivanushenko.

The second species of the *Odontia* genus, followed by *O. fibrosa* [9], which is reported for Dagestan. As stable isotope analyses showed, all representatives of *Odontia* possess a non-ectomycorrhizal lifestyle, but their nutrition differs from typical xylotrophic basidiomycetous fungi [19]. Micromorphology of *O. duemmeri* is carefully described and illustrated by E. Martini [20]. This species occurs both on deciduous (*Quercus robur*) and coniferous (*Juniperus communis*) trees, but it was not previously collected from the wood of birch. Our finding (Fig. 2) is the first one of the species on the Caucasus.

![Figure 2. Basidiocarp of *Odontia duemmeri* (LE 314777): details of hymenophore with rhizomorphs](image)

Tomentella lapida (Pers.) Stalpers
Specimen examined: Russia, Republic of Dagestan, Magaramkentsky district, Samursky National Park, 41.845944° N, 48.560056° E, –9 m a.s.l., herb-rich mixed forest dominated by *Carpinus betulus* and *Quercus robur* subsp. *pedunculiflora*, on fallen trunk of *Crataegus* sp. (LE F-332369), 5 October 2019, coll. and det. Sergey V. Volobuev.

This is a common species with a worldwide distribution. *T. lapida* is close to *T. stuposa* (Fig. 1), but it differs distinctly from the latter in its encrusted subicular hyphae and smaller basidiospores. At the same time, it was noted previously [10] that *T. lapida* is also close to *T. lilacino­grisea*. Apparently, the similarities in the incrustation of thick-walled and brown subicular hyphae as well as shape of basidiospores, which can be slightly globose in frontal and lateral face in both species, were taken into account. The main differences between *T. lapida* and *T. lilacinogrisea* are in the size of spores (6–7 µm in *T. lilacinogrisea* and 7.5–9.5 µm in *T. lapida*) and the diameter of subicular hyphae. Our specimen (LE F-332369) has a smaller size of spores (6.5–7(7.5) µm). In a previous microscopic study [8], the specimen was incorrectly identified as *T. lilacinogrisea*. Based on the molecular analysis and additional examination of the micromorphology, the specimen was re­determined as *T. lapida*. The species was known previously in the Caucasus from Russia (Krasnodar Territory) and Armenia [10].

Tomentella radiosa (P. Karst.) Rick
Specimen examined: Russia, Republic of Dagestan, Gunibsky District, Gunib Plateau, 42.392758° N, 46.935123°
A widespread species in the Caucasus, in particular, in its north-western part (Karachay-Cherkessia Republic, Krasnodar Territory) and Transcaucasia (Armenia, Azerbaijan, Georgia) [10]. This species grouped together with sequences of *Thelephora terrestris* Ehrh. in our phylogenetic tree (Fig. 1) that supports the nomenclature combination of *Thelephora terrestris f. radiosa* (P. Karst.) Zmirt. [21] for this taxon.

Tomentella terrestris (Berk. et Broome) M.J. Larsen

Specimens examined: Russia, Republic of Dagestan, Gunibsky District, Gunib Plateau, 42.409078° N, 46.901189° E, 1959 m a.s.l., herb-mosses pine forest, on fallen trunks of *Betula* sp. (LE 314790) and *Pinus kochiana* (LE 314791), 4 October 2018, coll. and det. Sergey V. Volobuev; 42.407591° N, 46.903117° E, 1920 m a.s.l., herb-mosses pine forest, on fallen trunk of *Pinus kochiana* (LE 314773), 6 October 2018, coll. Sergey V. Volobuev and Aziz B. Ismailov, det. Sergey V. Volobuev and Yuliya Yu. Ivanushenko; 42.396977° N, 46.922749° E, 1663 m a.s.l., herb-mosses pine-dominated forest with birch, on fallen trunk of *Pinus kochiana* (LE 314792) and on soil at the base of *Pinus kochiana* trunk (LE 314793), 28 September 2019, coll. and det. Sergey V. Volobuev and Yuliya Yu. Ivanushenko.

This is a remarkable species in the genus *Tomentella* due to the size of its basidia, which are up to 15–20 μm in diameter. This species is widely distributed in the Caucasus and is known from Russia (Karachay-Cherkessia Republic, Krasnodar Territory) and Azerbaijan [10]. The basidio-carpers of *T. terrestris* were found during this study not only on well-decayed wood but also on soil.

CONCLUSION

Based on morphological and molecular evidence, four species of thelephoroid basidiomycetes – *Odontia duemmeri*, *Tomentella lapida*, *T. radiosa*, *T. terrestris* – were recorded for the first time to Dagestan. The data on the species richness of the genera *Odontia* and *Tomentella* in this region are updated and the species *T. ilicinigrisea* is excluded from the regional funa. Currently, the genera *Odontia* and *Tomentella* in the Republic of Dagestan are represented by three and fifteen species, respectively.

ACKNOWLEDGEMENTS

This study was funded by the RFBR according to research project №19-34-50111. The research was done using the equipment of the Core Facility Centre, Cell and Molecular Technologies in Plant Science at the Komarov Botanical Institute, Russian Academy of Sciences (St-Petersburg, Russia).

Morphological studies of LE specimens were carried out within the framework of the research project of the Komarov Botanical Institute RAS, Herbarium Funds of the BIN RAS (History, Conservation, Study and Supplementation) (AAAA-A18-118022090078-2).

БЛАГОДАРНОСТЬ

Исследования выполнены при поддержке РФФИ в рамках научного проекта №19-34-50111 с использованием оборудования ЦКП «Клеточные и молекулярные технологии изучения растений и грибов» Ботанического института им. В.Л. Комарова РАН (Санкт-Петербург). Морфологическое изучение образцов из гербария LE проведено в рамках госзадания BIN РАН по теме «Гарячные фонды БИН РАН: история, сохранение, изучение и полнение» (AAAA-A18-118022090078-2).

REFERENCES

1. Ivanushenko Yu.Yu. [The history of the study of affiloforoid fungi in the Republic of Dagestan]. In: *Universitetsskaya ekologiya* [University Ecology]. Makhachkala, IAE Publ., 2019, pp. 16–18. (In Russian)

2. Bagdasarova A.F. [Fungi of liana forest in the Samur River Delta]. In: *Botanika, fiziologiya rasteniy i rastenievodstva* [Botany, physiology of plants and plant growing]. Makhachkala, 1965, pp. 64-70. (In Russian)

3. Ghabad-Nejhad M., Hallenberg N., Parmasto E., Kotiranta H. A first annotated checklist of corticioid and polypore basidiomycetes of the Caucasus region. *Mycoligia Balcanica*, 2009, vol. 6, iss. 3, pp. 123-168. DOI: 10.5281/zenodo.2550071

4. Viner I.A. [New records of polypores and corticioid fungi in Dagestan]. In: *Trudy gosudarstvennogo prirodnoego zapovednika “Dagestansky”* [Proceedings of "Dagestansky" State Nature Reserve]. Makhachkala, 2017, vol. 13, pp. 13-19. (In Russian)

5. Volobuev S.V., Ivanushenko Yu.Yu., Ismailov A.B. *Auriporia aurulenta* – kandidat v Krasnuyu knigu Respubliki Dagestan [*Auriporia aurulenta* – a proposal to the Red Data Book of the Republic of Dagestan]. Materiały Mezhdunarodnoi konferentsii «Flora i zapovednoe delo na Kavkaze: istoriya i sovremennoe sostoyanie i izuchennost', Pyatigorsk, 2019 [Materials of the International Conference "Flora and reserved matter in the Caucasus: history and current state of knowledge", Pyatigorsk, 2019], pp. 32-33. (In Russian)

6. Ivanushenko Yu.Yu., Ismailov A.B., Volobuev S.V. Pervye svedeniya o trutovykh gribakh plato Gunib (Respublika Dagestan) [First data on polypores of the Gunib Plateau (the Republic of Dagestan)]. *Materiały XXI Mezhdunarodnoi nauchnoi konferentsii “Biologicheskoe raznobrazije Kavkaze i yugo Rossi”,* Magas, 2019 [Materials of the XXI International Scientific Conference "Biological Diversity of the Caucasus and the South of Russia", Magas, 2019]. Magas, 2019, pp. 163-166. (In Russian)

7. Volobuev S.V., Ivanushenko Yu.Yu. Aphyllophoroid fungi (Basidiomycota) on juniper on the Gunib Plateau, inner-mountain Dagestan. *Czech Mycoligia*, 2020, vol. 72, iss. 1, pp. 83-93. DOI: 10.33585/cmy.72106

8. Volobuev S.V. Aphyllophoroid fungi of the "Samurskii" national park (Dagestan). *Mikologiya i fitopatologiya*, 2020, vol. 54, no. 4, pp. 235-243. DOI: 10.31857/5002636482004011X

9. Volobuev S.V., Ivanushenko Y.Yu., Ismailov A.B. New for Dagestan species of *Tomentella* (Thelephorales, Basidiomycota). *South of Russia: ecology, development, 2019*, vol. 14, no. 2, pp. 172-179. (In Russian) DOI: 10.18470/1992-1098-2019-2-172-179

10. Köljalg U. *Tomentella* (Basidiomycota) and related genera in temperate Eurasia. Fungiflora, Oslo, 1996.

11. White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. San Diego, Academic Press, 1990, pp. 315-322.
12. Gardes M., Bruns T.D. ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts, Mol. Ecol., 1993, vol. 2, pp. 113-118.
13. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGAS6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 2013, vol. 30, iss. 12, pp. 2725-2729. DOI: 10.1093/molbev/msr197
14. GenBank. Available at: www.ncbi.nlm.nih.gov/genbank/ (accessed 20.04.2020)
15. UNITE. Available at: https://unite.ut.ee/index.php (accessed 20.04.2020)
16. Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 2019, vol. 20, pp. 1160-1166. DOI: 10.1093/bib/bbx108
17. MAFFT version 7. Available at: http://mafft.cbrc.jp/alignment/server/ (accessed 20.04.2020)
18. Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 2016, vol. 44, iss. W1, pp. W232-W235. DOI: 10.1093/nar/gkw256
19. Tedersoo L., Harend L., Buegger F., Pritscht K., Saar I., Köljalg U. Stable isolate analysis, field observations and synthesis experiments suggest that Odontia is a non-mycorrhizal sister genus of Tomentella and Thelephora. Fungal Ecology, 2014, vol. 11, pp. 80-90. DOI: 10.1016/j.fusco.2014.04.006
20. Martini E. Odontia duemmeri (Wakef.) Köljalg. Excerpts from Crusts & Jells., iss. 123. pp. 1-8.
21. Zmitrovich I.V., Stolyarzkaya M.V., Kalinovskaya N.I., Popov E.S., Myasnikov A.G., Morozova O.V., Volobuev S.V., Bolshakov S.Yu., Svetateva T.Yu., Bondartsveva M.A., Kovalenko A.E. Makromitsety Nizhne-Svirskogo zapovednika (annatirovannyy spisok vidov) [Macromycetes of Nizhnesvirsky Reserve (annotated checklist)]. Saint Petersburg, “Svoeye izdatel’stvo” Publ., 2015, 185 p. (In Russian)

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Иванющенко Ю.Ю. История изучения афиллофоридных грибов в Республике Дагестан // Университетская экология. Сборник научных трудов. Махачкала: Типография ИПЭ, 2019. С. 16-18.
2. Багдасарова А.Ф. Грибы ливенского песя дельты реки Самур // Ботаника, физиология растений и растениеводства. Махачкала: Даг. кн. изд., 1965. С. 64-70.
3. Ghabad-Nejhad M., Hallenberg N., Parmasto E., Korti- ranta H. A first annotated checklist of corticioid and polypore basidiomycetes of the Caucasus region // Mycologia Balcanica. 2009. V. 6. Iss. 3. P. 123-168. DOI: 10.5281/zenodo.2550071
4. Винер И.А. Новые находки трутовых и кортициоидных грибов в Дагестане // Труды государственного природного заповедника «Дагестанский». Махачкала: Алеф, 2017. Вып. 13. С. 13-19.
5. Волобуев С.В., Иванющенко Ю.Ю., Исмаилов А.Б. Auriporia aurulenta – кандидат в Красную книгу Республики Дагестан // Материалы Международной конференции «Флора и заповедное дело на Кавказе: история и современное состояние изученности», Пятиторск, 2019. С. 32-33.
6. Иванющенко Ю.Ю., Исмаилов А.В., Волобуев С.В. Первые сведения о трутовых грибах плато Гуниб (Республика Дагестан) // Материалы XXI Международной научной конференции «Биологическое разнообразие Кавказа и Юга России», Масар, 2019. С. 163-166.
7. Volobuev S.V., Ivanushenko Yu.Yu. Aphylophorid fungi (Basidiomycota) on juniper on the Gunib Plateau, inner-mountain Dagestan // Czech Mycology. 2020. V. 72. Iss. 1. P. 83-93. DOI: 10.33585/cmy.72106
8. Volobuev S.V. Aphylophorid fungi of the “Samurskiy” national park (Dagestan) // Mikologiya i fitopatologiya. 2020. V. 54. N. 4. P. 235-243. DOI: 10.31857/5002636482004011X
9. Волобуев С.В., Иванющенко Ю.Ю., Исмаилов А.Б. Новые для Дагестана виды рода Tomentella (Thelephorales, Basidiomycota) // Юг России: экология, развитие. 2019. T. 14. N. 2. С. 172-179. DOI: 10.18470/1992-1098-2019-2-172-179
10. Köljalg U. Tomentella (Basidiomycota) and related genera in temperate Eurasia. Fungiflora, Oslo, 1996.
11. White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. San Diego: Academic Press. 1990. P. 315-322.
12. Gardes M., Bruns T.D. ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts // Mol. Ecol. 1993. V. 2. P. 113-118.
13. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGAS6: Molecular Evolutionary Genetics Analysis version 6.0. // Molecular Biology and Evolution. 2013. V. 30. Iss. 12. P. 2725-2729. DOI: 10.1093/molbev/msr197
14. GenBank. URL: www.ncbi.nlm.nih.gov/genbank/ (дата обращения 20.04.2020)
15. UNITE. Available at: https://unite.ut.ee/index.php (дата обращения 20.04.2020)
16. Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization // Briefings in Bioinformatics. 2019. V. 20. P. 1160-1166. DOI: 10.1093/bib/bbx108
17. MAFFT version 7. URL: http://mafft.cbrc.jp/alignment/server/ (дата обращения 20.04.2020)
18. Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis // Nucleic Acids Research. 2016. V. 44. Iss. W1. P. W232-W235. DOI: 10.1093/nar/gkw256
19. Tedersoo L., Harend L., Buegger F., Pritscht K., Saar I., Köljalg U. Stable isolate analysis, field observations and synthesis experiments suggest that Odontia is a non-mycorrhizal sister genus of Tomentella and Thelephora // Fungal Ecology. 2014. V. 11. P. 80-90. DOI: 10.1016/j.fusco.2014.04.006
20. Martini E. Odontia duemmeri (Wakef.) Köljalg // Excerpts from Crusts & Jells. Iss. 123. P. 1-8.
21. Эмитрович И.В., Столярская М.В., Калиновская Н.И., Попов Е.С., Ясников А.Г., Морозова О.В., Волобуев С.В., Большаков С.Ю., Светашева Т.Ю., Бондарева М.А., Коваленко А.Е. Макромицеты Нижне-Свирского заповедника (аннотированный список видов) // Под ред. М. В. Столярской. СПб.: ООО “Свое издательство”, 2015. 185 с.
AUTHOR CONTRIBUTIONS
Both authors participated in the collection, morphological and molecular studies of the research materials, as well as in the preparation of the manuscript. Authors are equally responsible for plagiarism and self-plagiarism and other ethical transgressions.

NO CONFLICT OF INTEREST DECLARATION
The authors declare no conflict of interest.

ORCID
Yuliya Yu. Ivanushenko / Юлия Ю. Иванушenko https://orcid.org/0000-0003-0197-4176
Sergey V. Volobuev / Сергей В. Волобуев https://orcid.org/0000-0003-1217-5548