Abstract
Let \(G = (V,E) \) be a connected graph. A subset \(H \) of \(V \) is called a hub set of \(G \) if for any two distinct vertices \(u,v \in V - H \), there exists a \(u-v \) path \(P \) in \(G \) such that all the internal vertices of \(P \) are in \(H \). A hub set \(H \) of \(V \) is called an open hub set if the induced subgraph \(<H> \) has no isolated vertices. The minimum cardinality of an open hub set of \(G \) is called the open hub number of \(G \) and is denoted by \(h_o(G) \). In this paper, we present several basic results on the open hub number.

Keywords
Open hub set, Open hub number.

AMS Subject Classification
05C40, 05C99.

1 Department of Mathematics, PRNSS College, Mattanur-670702, Kerala, India.
2 Department of Mathematics, Kannur University, Kannur-670002, Kerala, India.
*Corresponding author: 1 ragiputhanveettil@gmail.com; 2ramakrishnantvknr@gmail.com
Article History: Received 29 April 2020; Accepted 30 August 2020

Contents
1 Introduction ... 1375
2 Main Results ... 1375

References .. 1377

1. Introduction

By a graph \(G = (V,E) \) we mean a finite ordered graph with no loops and no multiple edges. For graph theoretic terminology we refer [1]. Let \(G = (V,E) \) be a connected graph. The concept of hub set is introduced by M. Walsh [3]. A subset \(H \) of \(V \) is called a hub set of \(G \) if for any two distinct vertices \(u, v \in V - H \), there exists a \(u-v \) path \(P \) in \(G \) such that all the internal vertices of \(P \) are in \(H \). The minimum cardinality of a hub set of \(G \) is called the hub number of \(G \) and is denoted by \(h_c(G) \). A dominating set of a graph \(G \) is a sub set \(D \) of \(V \) such that every vertex not in \(D \) is adjacent to at least one member of \(D \). The domination number \(\gamma(G) \) is the number of vertices in a smallest dominating set for \(G \). A dominating set \(D \) is said to be a connected dominating set if the subgraph \(<D> \), induced by \(D \) is connected in \(G \). The minimum of the cardinalities of the connected dominating sets of \(G \) is called the connected domination number and is denoted by \(\gamma_c(G) \). In this paper we introduce the Open hub number of a graph \(G \). A hub set \(H \) of \(V \) is called an open hub set if the induced subgraph \(<H> \) has no isolated vertices. The minimum cardinality of an open hub set of \(G \) is called the open hub number of \(G \) and is denoted by \(h_o(G) \). Since an open hub set has at least two elements we have \(h_o(G) \geq 2 \).

We use the following results to prove our main results.

Lemma 1.1. [3] For any graph \(G \), \(\gamma(G) \leq h(G) + 1 \).

Lemma 1.2. [3] Let \(d(G) \) denote the diameter of \(G \). Then \(h(G) \geq d(G) - 1 \), and the inequality is sharp.

Theorem 1.3. [3] If \(C_n \) is the cycle with \(n \) vertices then, \(h(C_n) = n - 3 \).

Theorem 1.4. [3] If \(P_n \) is the path with \(n \) vertices then, \(h(P_n) = n - 2 \).

Theorem 1.5. [4] If \(G \) is a connected graph and \(n \geq 3 \), then \(\gamma_c(G) = n - e_f(G) \leq n - 2 \), where \(e_f(G) \) is the maximum number of pendant vertices of underlying spanning tree of \(G \).

Theorem 1.6. [5] For any connected graph \(G \), \(h(G) \leq h_c(G) \leq \gamma_c(G) \leq h(G) + 1 \).

2. Main Results

Theorem 2.1. For every connected graph \(G \), \(h(G) \leq h_o(G) \leq 2h(G) \).

Proof. Since every open hub set is a hub set we have \(h(G) \leq h_o(G) \). Let \(H = \{v_1, v_2, ..., v_k\} \) be a minimum hub
Theorem 2.5. If $\Delta (G)$ is a minimum open hub set, the open hub number of tree G. Hence $h_{O}(G) \leq |H \cup H'| \leq 2|H| = 2h(G)$.

Proposition 2.2. For a connected graph G, if $h_{c}(G) \geq 2$ then every connected hub set is an open hub set.

Proof. Suppose $h_{c}(G) \geq 2$ and assume H is a connected hub set of G. Then $<H>$ is connected and contains more than one vertex. Hence H is an open hub set.

Proposition 2.3. For any connected graph G, if $\Delta (G) = n - 1$, then $h_{O}(G) = 2$.

Proof. Suppose $\Delta (G) = n - 1$. Let u be a vertex of G having degree $n - 1$. Then $\{u, v\}$ where $v \in N(u)$, the neighborhood of u, forms an open hub set of G. Hence the result.

Corollary 2.4. $h_{O}(W_{n}) = 2$

Proof. The result is obvious from above proposition since $\Delta (W_{n}) = n - 1$.

Now we characterise a class of graphs having open hub number $n - 3$

Theorem 2.5. Suppose G is a connected graph of order n such that $\Delta (G) \neq n - 1$, then $h_{O}(G) = n - 3$ if and only if G isomorphic to one of the following graphs

1. The cycle C_{n}
2. A subdivision of $K_{1,3}$
3. C_{k} with a path attached for any k.
4. C_{3} with two paths attached
5. C_{3} with three paths attached
6. A graph with exactly two cycles C_{3} and C_{k} for any $k \geq 3$, with one edge common if G has no pendent vertices.
7. A graph with exactly two cycles C_{3} and C_{k} for any $k \geq 3$, with one edge common and a path attached to a vertex of degree 2 in C_{3}

Proof. Suppose $h_{O}(G) = n - 3$. Since $h_{O}(G) \leq n - \Delta (G)$ we have $\Delta (G) \leq 3$.

If $\Delta (G) = 1$, $G \cong K_{2,2}$, a contradiction.

If $\Delta (G) = 2$, G is either a cycle or a path. But open hub number of the path P_{2} is $n - 2$. Hence G is a cycle.

If $\Delta (G) = 3$

Case 1 Suppose G is a tree having l leaves.

Since the set of all non leaf vertices of a tree (which is not a star) is a minimum open hub set, the open hub number of tree is $n - l$, we have $l = 3$. That is G is a tree having 3 leaves and $\Delta = 3$.

Therefore G must be isomorphic to a subdivision of $K_{1,3}$.

Case 2 G is not a tree.

Then G contains cycles. If G contains two disjoint cycles $C_{l} = (u_{1}, u_{2}, ... , u_{l})$ and $C_{k} = (v_{1}, v_{2}, ... , v_{k})$. Let H_{1} and H_{2} are minimum open hub sets of C_{l} and C_{k} respectively such that $|H_{1}| = |V(C_{l})| - 3$ and $|H_{2}| = |V(C_{k})| - 3$.

Then $H = H_{1} \cup H_{2} \cup T$ where $T = V(G) - (V(C_{l}) \cup V(C_{k}))$ is an open hub set of G, a contradiction to $h_{O}(G) = n - 3$. Also since $\Delta = 3$, no cycle has only single vertex in common. Hence any two cycles have common edge. Thus G is either unicyclic or exactly two cycles with a common edge.

Subcase I: G is unicyclic.

Suppose G contains a cycle $C_{k} = (v_{1}, v_{2}, ... , v_{k})$.

Let $S = \{v \in V(C_{k}) | \delta (v) = 3\}$. Then $|S| \leq 3$.

If $|S| = 0$ Then G is isomorphic to $C_{k}, k = n$.

If $|S| = 1$, then G is isomorphic to the graph C_{k} with a path attached to one vertex.

If $|S| = 2$, then G is isomorphic to C_{2} with two paths attached.

If $|S| = 3$, G is isomorphic to C_{l} with 3 paths attached.

Subcase II: G is not Unicyclic

Then G contains exactly 2 cycles and at least one cycle should be C_{3}. In this case if G has no pendent vertices, then it is isomorphic to a graph with 2 cycles C_{3} and $C_{k}, k \geq 3$ with one common edge. If G has pendent vertices then it is isomorphic to a graph with 2 cycles C_{3} and $C_{k}, k \geq 4$ with one edge common and a path attached to vertex of degree 2 in C_{3}.

Converse is trivial.

Figure 1. Class of graphs in Theorem 2.5

Theorem 2.6. Given two integers k and n with $2 \leq k \leq \left[\frac{n}{2} \right]$, there exist a connected graph G of order n with $h_{O}(G) = k$.

Proof. Let K_{n-k} be the complete graph with $V(K_{n-k}) = \{v_{1}, v_{2}, ... , v_{n-k}\}$. Let G be the graph obtained from K_{n-k} by adding k new vertices $u_{1}, u_{2}, ... u_{k}$ and k new edges $u_{i}v_{j}, 1 \leq i \leq k$.

Then G is a connected graph of order n.

The domination number $\gamma(G) = k$. Hence $h(G) \geq k - 1$.

Let H be a hub set of G. Then either $v_{j} \in H \forall j$ $1 \leq j \leq k$ or $u_{i} \in H \forall j, 1 \leq j \leq k$. Therefore $h(G) = k$ and $\{v_{1}, v_{2}, ... , v_{k}\}$ is a minimum hub set of G and the induced subgraph $H >$ is the path graph $v_{1}v_{2}...v_{k}$ and hence it is an open hub set. Hence the result.

□
Given two integers \(k \) and \(n \) with \(2 \leq k \leq n - 2 \), there exist a connected graph \(G \) of order \(n \) with \(h_0(G) = k \).

Proof. Let \(K_{n-k} \) be the complete graph with \(V(K_{n-k}) = \{v_1, v_2, \ldots, v_{n-k}\} \). Let \(P_{k+1} \) be the path \(w_1w_2\ldots w_{k+1} \). Let \(G \) be the graph obtained by identifying the vertices \(v_1 \) and \(w_1 \). We claim that \(h(G) = k \). It follows from Theorem 1.5 that \(\chi_c(G) = k \) and by Theorem 1.6 \(h(G) = k \) or \(k - 1 \). Now suppose \(h(G) = k - 1 \). Let \(H \) be a hub set of \(G \) with cardinality \(k - 1 \). If both \(v_1 \) and \(w_{k+1} \) are not in \(H \), then \(w_i \in H \) for \(2 \leq i \leq k \). Since cardinality of \(H \) is \(k - 1 \), we have \(H = \{w_2, w_3, \ldots, w_k\} \). A contradiction to \(H \) is a hub set of \(G \). Suppose \(v_1 \in S \) and \(w_{k+1} \notin S \). Then if \(w_2 \notin H \) then \(w_i \in H \) for \(3 \leq i \leq k \). In this case \(H = \{v_1, v_3, \ldots, w_k\} \), which is not a hub set, again a contradiction. We must have \(w_2 \in H \). By similar argument we have \(w_i \in H \) for \(3 \leq i \leq k \), a contradiction. We get a similar contradiction if \(v_1 \notin H \) and \(w_{k+1} \in H \) or if both \(v_1 \) and \(w_{k+1} \in H \). Thus \(h(G) \neq k - 1 \). Hence \(h_0(G) \geq k \).

Now \(S = \{v_1, w_2, \ldots, w_k\} \) is a minimum hub set of \(G \) and the induced subgraph \(\langle S \rangle \) is the path graph \(v_1, w_2, w_3, \ldots, w_k \). Hence has no isolated vertices. Hence \(S \) is an open hub set of \(G \) so that \(h_0(G) \leq k \). Hence the result.

Corollary 2.8. For each positive integer \(n \), there exist a connected graph \(G \) of order \(n \) such that \(h_0(G) = n - \Delta(G) \).

Definition 2.9. Let \(G_1, G_2, \ldots, G_r \) be connected graphs, then the graph \(G \) obtained by joining each vertex of \(G_i \) with each vertex of \(G_{i+1} \), \(1 \leq i \leq r - 1 \), is called the successive join of \(G_1, G_2, \ldots, G_r \) and is denoted by \(G_1 + G_2 + \ldots + G_r \).

Theorem 2.10. Let \(G_1, G_2, \ldots, G_r \) be connected graphs and let \(G = G_1 + G_2 + \ldots + G_r \), then

\[
 h_0(G) = \begin{cases}
 2 & \text{if } r = 2, 3 \\
 r - 2 & \text{if } r \geq 4
\end{cases}
\]

Proof. Case I \(r = 2, 3 \)

Here \(H = \{u, v\} \) where \(u \in V(G_1) \) and \(v \in V(G_2) \), is an open hub set of \(G \).

Case II \(r \geq 4 \)

In this case \(H = \{v_2, v_3, \ldots, v_{r-1}\} \), where \(v_i \in V(G_i) \) for \(2 \leq i \leq r - 1 \), is an open hub set of \(G \).

Hence \(h_0(G) \leq r - 2 \). Now the diameter of \(G, d(G) = r - 1 \) and hence by Lemma 1.2, \(h_0(G) \geq r - 2 \). Hence \(h_0(G) = r - 2 \).

References

[1] F. Harary, *Graph Theory*, Addison-Wesley Pub House, 1963.

[2] C. Gary and Z. Ping, *Introduction to Graph Theory*, Tata McGraw-Hill, 2006.

[3] W. Matthew, The hub number graphs, *International Journal of Mathematics and Computer Science*, 1(2006), 117–124.

[4] W.H. Teresa, T.H. Stephan and J.S. Peter, *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc, 2008.

[5] G. Tracy, A.H. Stephan and J. Adam, The hub number of a graph, *Information Processing Letters*, 108(2008), 226–228.