Abstract—Copy detection pattern (CDP) is a novel solution for products’ protection against counterfeiting, which gains its popularity. CDP attracts industries due to its numerous benefits in comparison to alternative protection techniques. Besides its attractiveness, there is an essential gap in the fundamental analysis of CDP authentication performance in large-scale industrial applications. It concerns variability of CDP parameters under different production conditions that include a type of printer, substrate, printing resolution, etc. Since digital off-set printing represents great flexibility in terms of product personalized in comparison with the traditional off-set printing, it looks very interesting to address the above concerns for digital off-set printers that are used by several companies for the CDP protection of physical objects. In this paper, we thoroughly investigate certain factors impacting CDP. The experimental results obtained during our study reveal some previously unknown results and raise new and even more challenging questions. The results prove that it is a matter of great importance to choose carefully the substrate or printer for CDP production. This paper presents a new dataset produced by two industrial HP Indigo printers. The deviations of printed CDP from their digital templates, from which they have been produced, are chosen as a simple measure of similarity in our study. We found several particularities that might be of interest for large-scale industrial applications.

Index Terms—Copy detection patterns, digital offset printing, printing variability, substrate, similarity measure, fakes.

I. INTRODUCTION

In recent years, copy detection patterns (CDP) [1] became an attractive and popular technique for product protection against counterfeiting. CDP are often used for the protection of packaging and security labels. CDP are also used for the protection of pharmaceutical products and vaccines, for example, those against COVID-19 [2]. In general, CDP are printed on digital off-set printers but classical off-set and flexo can be used as well. They are easily integrated in the package design as shown in Fig. 1 according to [2], [3].

Besides the popularity of CDP and its wide usage, there are still some issues that are little studied and raise questions about CDP security in critical applications. This relates to the lack of large-scale public datasets produced on industrial equipment. Moreover, there are numerous researches which aim at challenging CDP security by creating high-quality fakes [4] [5] [6] [7]. Such fakes represent a considerable threat to CDP as a protection technology.

In this paper, we aim to fulfill the gap in the variability of original CDP and release a new public dataset of CDP printed on two industrial printers HP Indigo 5500 (HPI55) and HP Indigo 7600 (HPI76) under various settings. The main goal of this study is to investigate the statistical variability of CDP in terms of the deviation of statistics of printed CDP with their digital counterparts. Each factor of variability is formulated as a separate research question in this work. In summary, we investigated the impact of the following factors:

- The difference in CDP statistics produced by two industrial printers HPI55 and HPI76;
- The influence of substrate;
- The variability of continuous printing and over the time;
- The effect caused by the acquisition device;
- The impact of deviation of printing resolution.

Taking into account the mentioned impact factors the main contributions of the paper are twofold:

- The new public dataset with synchronized CDP and their digital templates;
- The analysis of CDP variability of the above factors.

II. DATASET

In this work, we present a new public CDP dataset specifically created to investigate the CDP variability. The produced dataset of CDP contains digital templates of size 228x228 pixels with 50% of pixels being white and 50% black. The digital CDP with the synchronization patterns are allocated on A4 pages. One page contains 12 rows and 12 columns of CDP. The resulting amount of CDP per page is 144. The basic set consists of 10 A4 pages in total and all CDP are unique. This set of A4 pages is then printed with different printing parameters and substrates at different time intervals.

The dataset and code will be available upon the acceptance of the paper.
TABLE I: Produced data set: the numbers in cells with the slash indicating “p/s” denote p the maximum number of print runs and s the maximum number of scan runs.

on two printers. The methodology of our approach for CDP production in detail is described in [4].

Taking into account that the methodology of CDP’s printing, acquisition, and the following post-processing, i.e., synchro-

Fig. 2: Examples of CDP printed on two different printers and on three different substrates.

Fig. 3: Examples of CDP printed on two different printers on IG substrate at three printing sessions.

Fig. 4: Examples of CDP printed on two different printers on IG substrate during the same printing session. Three runs of the same session are shown.

III. INVESTIGATION OF IMPACT FACTORS ON THE VARIABILITY OF CDP STATISTICS

Instead of investigating the intra-class variability of CDP statistics, we focus on an authentication setup, where the variability of some similarity score between the printed CDP and its digital reference used for the authentication decision is studied. In this respect, the studied variability is a function of the reference template and chosen metric. Such an approach has its advantages when directly evaluating the authentication system performance in the space of chosen decision metrics.

Therefore, after the printing, acquisition, and pre-

pre-processing\(^2\) we calculate a set of similarity metrics for each CDP with respect to the digital template. In our study, we investigate the following similarity metrics: Pearson correlation coefficient (PCORR), Hamming distance (HAMMING), and structural similarity (SSIM) similarly to [8]. We provide

\(^2\)The pre-processing includes synchronization of acquired CDP in respect to the digital CDP and min-max normalization.
The statistical variability of HPI55.

The statistical variability of HPI76.

Fig. 5: The statistical variability over three printing sessions for both printers, including the fakes.

Fig. 6: The violin plot of 10 print runs from HPI55 with PCORR

the results only for PCORR and SSIM as they are the most discriminative metrics. Additionally, PCORR is widely used in CDP-related studies as information-preserving and sufficient statistics under certain assumptions [5].

In our study, we set up a reference set of parameters to be\(^3\):
- Printer: HPI55;
- Printing session: 1;
- Printing substrate: IG;
- Printing resolution: 812.8 dpi;
- Print run: 1;
- Scan run: 1.

A. The variability over three printing sessions

The printer is a device whose technical conditions and potentially tuning are not stable over time as it requires the replacement of certain parts and inks during the exploitation. Thus, these printer updates can have an impact on the printing quality especially if CDP are produced over a long time interval. Therefore, it is very critical to ensure that the statistics of CDP remain stable over this interval of time. The period can be several months or even a year. To investigate the stability of CDP with respect to the digital templates from which CDP are printed, we considered three printing sessions as described in Section II corresponding to May 2021, November 2021, and February 2022. The examples of variabilities are shown in Fig. 3. The PCORR between the acquired images and their digital counterparts is shown in Fig. 5. One can observe a considerable variability for both printers over three printing sessions. The variability for HPI76 is lower in comparison to HPI55.

The obtained results show that the variability over time that we investigate expands significantly the distribution of original CDP as shown in Fig. 5 and, hence, increases the probability of false acceptance \(P_{fa}\) for fake CDP. At the same time, the distributions of original and fake CDP do not completely overlap. This allows achieving a small enough probability of miss \(P_{miss}\) in the considered scenario. However, it is important to investigate the variability of original CDP under different factors that might impact the statistics of printed codes.

It is important to point out that printers are located in different printing companies and there is a small chance that their maintenance is performed at the same time. Moreover, the micro-climate conditions in the printing companies might impact both printers and substrates. Therefore, it is difficult to establish which factors might impact such considerable variations. In any case, the variability of similarity score is non-negligible and should be properly taken into account when planning a long-term deployment of CDP-based authentication systems.

B. The variability within one time printing session

In this part, we aim at investigating the variability of CDP statistics within one printing session on the extended set. To investigate this variability we printed basic set 10 times on HPI55 printer. We summarize the variability per each printing run in Fig. 6. The variabilities over 1 run and overall in 10 runs are relatively small in comparison to the printing in different printing sessions as shown in Fig. 5.

It is also important to note that there are some fluctuations between the physical copies printed from the same digital template in the same position on A4 page\(^4\). Examples of

\(^3\)Unless it is mentioned otherwise, we use the above set of parameters for all figures.

\(^4\)We demonstrate in Section III-D that the position of CDP on an A4 page is also a source of statistical variability due to non-uniform printing in different positions.
The variability of 4 paper types for HPI55.

The variability of 3 paper types for HPI76.

Fig. 7: The scatter plot with corresponding histograms for PCORR (X-axis) and SSIM (Y-axis).

The variability are shown in Fig. 4. The differences between the printed codes are noticeable during visual inspection. However, these fluctuations are relatively small in terms of the chosen similarity measure between CDP and digital templates, i.e., in terms of PCORR.

Several factors might explain the variability within one printing session. The first factor is the natural randomness of interaction between the printer toner and substrate leading to the different appearance of CDP printed from the same digital template. Moreover, the quality and uniformity of toner might play an important role in the roughness of the substrate. In any case, one can conclude that the printing variability within a single printing session can be neglected for the authentication systems. At the same time, one should not disregard the possibility of further exploring the individual properties of each printed CDP for fingerprinting purposes [9] that is out of the scope of our present study.

The presented stability of printing in a single printing session can guarantee that printer itself yields deterministic results and we can utilize this for future CDP production. At the same time, individual printing of each cylinder might be used as forensic fingerprinting.

C. The variability due to substrate

The impact of the substrate on the CDP variability is not well studied and it is often neglected. Sometimes substrates with similar parameters are used interchangeably during the printing session. Thus, our goal is to establish the impact of the substrate on the variability of CDP statistics.

To highlight this impact we use both PCORR and SSIM to measure the similarity between CDP and digital templates. The obtained results are shown in Fig. 7. First of all, one can observe that the variability of CDP printed on different substrates is approximately the same for HPI55. However, the means of the histograms do not coincide. It is interesting to note that CDP printed on the substrate AD provide the largest values of both PCORR and SSIM, i.e., they are less distorted. The smallest values are obtained for the substrate CS. At the same time, we cannot confirm an obvious superiority of AD for HPI76. This raises the question of substrate selection for the particular printer. However, we have a stable performance for IG for both printers.

It is also interesting to note the statistical behaviors of CDP in a 2D system of coordinates represented by PCORR and SSIM as shown in Fig. 7. The substrates have different clustering for the two printers. Considering different clusters for the substrates used for HPI76 printing, one can deploy this property for forensic authentication based on the knowledge of used substrates for the authentic CDP.

The main reason for the obtained results might be explained by the structure of the paper surface. Due to this, the physical processes vary between various substrate types, because of different toner behavior on such surfaces.

One can conclude that the choice of printing substrate plays a crucial role in CDP manufacturing. As well it might be important to select the proper substrate for a certain printer.

D. The variability as a function of CDP position

During the experiments, we noticed, that there is some dependency between CDP position on a sheet of A4 paper and its similarity score. We anticipated that some areas of the paper have higher quality CDP reproduction than others. Therefore, our goal is to establish the impact of CDP positioning on the A4 page on the similarity score.

According to Section II, we have 12 rows and 12 columns of CDP on the A4 page. For this experiment, we print 100 pages for HPI55 and 30 pages for HPI76. In Fig. 8a we show the similarity scores from all CDP printed over 100 pages in the same position on the A4 page. Thus, each cell contains the average score for 100 CDP located in the same position. The same results for 30 pages of HPI76 are shown in Fig. 8b.

One can observe that the visualized maps possess some regular patterns. For HPI55, columns 1-3 and rows 5, 6, and 9 have a lower PCORR than others. On the other hand, HPI76 has another pattern and only column 2 and row 6 stand out among the rest. In terms of numbers, for HPI55 we have the
The heat map for HPI55 for 10 print runs.

(a) The heat map for HPI55 for 10 print runs.

(b) The heat map for HPI76 for 3 print runs.

Fig. 8: The heat map of CDP similarity score (PCORR) per geometrical position on the page averaged over all print runs for the particular printer. Each cell contains mean PCORR with its standard deviation.

Fig. 9: The PCORR violin plot for both printers with printing resolution 812.8 and 813 dpi.

best case which equals 0.63, and the worst 0.57. The difference of 6% is high enough to be addressed properly in the future.

The observed results can be explained by the same physical properties of the particular printing cylinder and the mechanical feeding elements. The obtained knowledge of the relation between CDP position on the paper allows us to utilize this information for the filtering of outliers with low values of PCORR that is known as a code expurgating technique in information theory [10]. The codes with the low PCORR populate the tail of the distribution responsible for the probability of missing. Thus, removing these codes from the analysis might enhance the overall system performance.

Alternatively, to minimize the rejection of printed packaging or labels with a low PCORR in the discovered positions, one can choose a decision threshold of authentication rule in a function of the code position on the paper.

E. Impact of printing resolution

It was considered that chosen printers support different printing resolutions. At the same time, the resolution 812.8 dpi is considered to be a native resolution for both HPI55 and HPI76 as there is no interpolation. However, in some cases, the resolution may be set to the non-native value for some reasons. Since setting the printing resolution essentially higher than 812.8 dpi will lead to the obvious degradation due to the interpolation that is also proprietary in the case of HP printers and unknown, we decide to investigate the impact of just a minor deviation from the native resolution. Therefore, we aim at investigating the variability of CDP statistics under the native 812.8 dpi resolution and its proxy 813 dpi resolution.

In Fig. 9 one can observe histograms for different printing resolutions and printers. For HPI55 there is not any major difference between 812.8 and 813 dpi. The distributions are almost identical and there is no impact on the results. However, for HPI76 we observe a drastic difference: 813 dpi PCORR is considerably lower with a mean value lower than 0.05 compared to 812.8 dpi.

Such observation indicates significant variability for HPI76 that might be important in practice when the authentication algorithm faces high-quality fakes.

F. Impact of acquisition device

Along with the analysis of printing variability, it is important to exclude the probability that the acquisition device used in our study is also a source of certain variability. Thus, motivated by the desire to exclude the deviation of acquisition conditions, human factors, and model of acquisition devices, we used the same acquisition device in all our tests. For this purpose we choose a high-resolution scanner Epson Perfection V850 Pro. It allows the acquisition of a lot of CDP in a short period and negates the human factor and lightning conditions, which are present during the acquisition based on a mobile phone.

5Used software: Epson Scan 2 v6.4.94, resolution = 2400 ppi, unsharp mask: high, brightness = 35, bit depth = 16, color mode = gray. These parameters have been chosen to ensure compatibility with the previous experiments [4] where the CDP authentication problem was studied.
The results shown in Section III-D are very crucial since the method of acquisition might be a source of additional variability. Our caveat is that the scanner might be a reason for these results as it is not a perfect acquisition device and has its drawbacks and could be responsible for the correlation between CDP position and its similarity score that should be investigated. To investigate this problem we perform four scans, three of which were done in the default orientation, meaning that the page was placed on the scanning panel in a particular way and the fourth scan is done with the page rotated by 180°. We expected to see that the pattern would change as well. The results are shown in Fig. 10 and they prove that our concern is not confirmed. We observe that regardless of the page orientation the acquisition does not impact the resulting similarity score for CDP. The lines on the plot are following the same pattern and present deviations are minor. We see that the red line, for the rotated page, has almost identical behavior.

From the obtained results we can state that scanner does not have an impact on the investigated CDP variability in terms of page placement. However, the impact of other imaging devices such as mobile phones should be additionally investigated.

IV. CONCLUSIONS

In this work, we investigate the variety of factors that influence CDP production and discovered several interesting insights that might have a great impact on understanding the performance of CDP in industrial applications.

We have focused our study on the investigation of CDP variability with respect to their digital templates in a function of printer models, different printing sessions, substrates, which mimic the packaging coating, CDP positioning on the paper, printing resolution, and scanner.

The obtained results show that each of these parameters is worth being taken into consideration in industrial applications. We think that the public availability of the produced datasets of industrially printed CDP under the considered set of parameters will foster a deeper investigation of CDP security to increase the level of trust in this anti-counterfeiting technology for critical applications.

For future work, we aim at investigating the impact of considered factors for the fake production when the attacker has particular benefits in chosen parameters while the defender does not possess such or vice versa. Moreover, it is also important to investigate the impact of the mobile phone as an imaging device.

REFERENCES

[1] J. Picard, “Digital authentication with copy-detection patterns,” Electron. Imaging, vol. 5310, 06 2004.
[2] —— (2020) This technology can beat the coronavirus counterfeiters. [Online]. Available: https://www.weforum.org/agenda/2020/06/counterfeiters-pandemic-how-to-stop-them/
[3] J. Picard, P. Landry, and M. Bolay, “Counterfeit detection with qr codes,” in Proceedings of the 21st ACM Symposium on Document Engineering, 2021, pp. 1–4.
[4] R. Chaban, O. Taran, J. Tutt, T. Holotyak, S. Bonev, and S. Voloshynovskiy, “Machine learning attack on copy detection patterns: are 1 × 1 patterns cloneable?” in 2021 IEEE International Workshop on Information Forensics and Security (WIFS), 2021, pp. 1–6.
[5] E. Khermaza, I. Tkachenko, and J. Picard, “Can copy detection patterns be copied? evaluating the performance of attacks and highlighting the role of the detector,” in 2021 IEEE International Workshop on Information Forensics and Security (WIFS), 2021, pp. 1–6.
[6] O. Taran, S. Bonev, and S. Voloshynovskiy, “Clonability of anti-counterfeiting printable graphical codes: A machine learning approach,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 2482–2486.
[7] R. Yadav, I. Tkachenko, A. Trèmeau, and T. Fournel, “Estimation of copy-sensitive codes using a neural approach,” in Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, ser. IH and MMSec’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 77–82. [Online]. Available: https://doi.org/10.1145/3335203.3335718
[8] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
[9] S. Voloshynovskiy, M. Diephuis, F. Beechhof, O. Koval, and B. Keel, “Towards reproducible results in authentication based on physical non-cloneable functions: The forensic authentication microstructure optical set (famos),” in Proceedings of IEEE International Workshop on Information Forensics and Security, Tenerife, Spain, December 2–5 2012.
[10] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). USA: Wiley-Interscience, 2006.