Alzheimer’s disease (AD), the most common form of dementia, is a chronic, progressive, brain disorder resulting in a loss of memory, reasoning, language skills, and the ability to care for one’s self (1). AD is the seventh leading cause of death in the US (2), affecting 5.2 million Americans at an estimated cost of $214 billion, figures that are expected to rise steeply in coming years. Despite decades of research, there is still no cure for AD, and effective therapies for preventing or slowing progression of cognitive decline in at-risk populations remain elusive. Although the etiology of AD remains uncertain, chronic stress, sleep deficits, and mood disturbance, conditions common in those with cognitive impairment, have been prospectively linked to the development and progression of both chronic illness and memory loss and are significant predictors of AD. Therapies such as meditation that specifically target these risk factors may thus hold promise for slowing and possibly preventing cognitive decline in those at risk. In this study, we briefly review the existing evidence regarding the potential utility of meditation as a therapeutic intervention for those with and at risk for AD, discuss possible mechanisms underlying the observed benefits of meditation, and outline directions for future research.

Keywords: cognitive impairment, meditation, mind–body therapies, mood, sleep, stress, cellular aging, epigenetics

Meditation as a therapeutic intervention for adults at risk for Alzheimer’s disease – potential benefits and underlying mechanisms

Kim E. Innes1,2* and Terry Kit Selfe1,2

1 Department of Epidemiology, West Virginia University, Morgantown, WV, USA
2 Center for the Study of Complementary and Alternative Therapies, University of Virginia Health System, Charlottesville, VA, USA

Alzheimer’s disease (AD) is a chronic, progressive, brain disorder that affects at least 5.3 million Americans at an estimated cost of $148 billion, figures that are expected to rise steeply in coming years. Despite decades of research, there is still no cure for AD, and effective therapies for preventing or slowing progression of cognitive decline in at-risk populations remain elusive. Although the etiology of AD remains uncertain, chronic stress, sleep deficits, and mood disturbance, conditions common in those with cognitive impairment, have been prospectively linked to the development and progression of both chronic illness and memory loss and are significant predictors of AD. Therapies such as meditation that specifically target these risk factors may thus hold promise for slowing and possibly preventing cognitive decline in those at risk. In this study, we briefly review the existing evidence regarding the potential utility of meditation as a therapeutic intervention for those with and at risk for AD, discuss possible mechanisms underlying the observed benefits of meditation, and outline directions for future research.

Keywords: cognitive impairment, meditation, mind–body therapies, mood, sleep, stress, cellular aging, epigenetics
function (33, 35), and elevated risk for metabolic syndrome, cardiovascular disease (CVD), and mortality (36, 37). Chronic psychological stress can have profound effects on memory and behavior in persons both with and without cognitive impairment, and has been prospectively linked to increased risk for incident MCI and dementia in older adults, and to accelerated cognitive decline (38–40). Chronic stress leads to deleterious neuroendocrine and associated inflammatory changes, to suppression of IGF-1 and other neuroprotective factors, and to impaired synaptic plasticity, suppressed neurogenesis, reduced neuronal survival, and other adverse morphological and functional changes in the hippocampus, prefrontal cortex, and other brain structures; all these changes can profoundly affect mood, sleep, memory, and learning (41–45). A large body of experimental, clinical, and epidemiological research has also implicated chronic stress and associated sympathoadrenal activation in the etiology of hypertension, obesity, dyslipidemia, and other components of the metabolic syndrome, and in the development and progression of CVD, type 2 diabetes, depression, and related chronic disorders (41, 46). These disorders have, in turn, been shown to predict cognitive dysfunction, and to increase risk for the development and progression of AD (47–54). Autonomic and hypothalamic pituitary adrenal (HPA) axis dysfunction has also been linked directly to cognitive decline, and to adverse changes in brain structure and function. For example, HPA axis activation, manifested by elevated cortisol levels, has been associated with hippocampal volume loss and memory impairment in non-demented elders (41, 55).

As noted above, depression and other mood disorders are common in those with and at risk for AD, including adults with MCI and SCI (12, 13, 28, 56). Depressive symptoms and other distressful states have also been linked to significantly increased risk for diabetes, CVD, stroke, and the metabolic syndrome (57–59), and are a significant contributor to the profound reductions in quality of life reported by those with cognitive impairment (12, 31). Anxiety and depressive symptoms are also significant predictors of cognitive decline and incident cognitive impairment (60, 61). Moreover, in those with MCI, behavioral and psychological symptoms, including anxiety, depression, irritability, and apathy, are strong predictors of progression to AD (28, 62). In addition, mood disturbance can contribute not only to impairment of memory, but also to sleep disturbance, HPA axis dysregulation, and autonomic dysfunction and related pro-inflammatory changes, thus helping to promote a vicious cycle of adverse physiologic, neuroendocrine, and psychosocial changes that foster the development and progression of AD, CVD, and related chronic conditions (41, 63, 64).

Sleep disruption, also common in cognitively impaired adults (26), likewise has negative effects on health, functioning, and quality of life, and is a major reason for institutionalization (25, 29, 30, 65, 66). Sleep deficits are known to impair cognitive function in healthy populations (67, 68), to accelerate cognitive decline (29, 30), and to predict incident MCI and dementia (25). In addition, sleep disturbances have been strongly associated, in a bidirectional manner, with mood disorders (69) and autonomic dysfunction (70, 71), and can promote glucose intolerance, pro-inflammatory changes, dyslipidemia, obesity, and hypertension (70, 72, 73). Sleep impairment has likewise been linked to increased risk for incident type 2 diabetes and for CVD morbidity and mortality (41, 72–74), disorders that have, in turn, been significantly and prospectively linked to AD (75–78). The association of impaired sleep to chronic illness and related risk factors appears strongly reciprocal (72, 79).

ALZHEIMER’S DISEASE AND COGNITIVE IMPAIRMENT: NEED FOR NEW PREVENTION AND TREATMENT STRATEGIES

Despite decades of research, there is still no cure for AD. While a number of lifestyle factors have been linked to the subsequent development of this devastating disorder, effective therapies for preventing or slowing progression of AD in at-risk populations remain elusive (80), and there are no approved treatments for MCI or age-associated cognitive decline (22, 81). Given the high prevalence of chronic stress, sleep disturbance, and mood impairment in those with or at risk for cognitive impairment, the deleterious impact of these and related factors on health and cognitive function, interventions that specifically address these risk factors may hold promise not only for enhancing health and well-being, but also for slowing and possibly preventing cognitive decline in those at risk for AD. Of particular interest in this regard is meditation, an ancient mind–body practice that is gaining increasing favor throughout the western industrialized world as a means of reducing stress and improving both mental and physical well-being (82).

MEDITATION: HEALTH EFFECTS AND THERAPEUTIC PROMISE

Meditation has been broadly defined as “an intentional and self-regulated focusing of attention, whose purpose is to relax and calm the mind and body” (83). The studies included in this mini-review encompass a wide variety of meditative techniques, including mantra, mindfulness, and Kundalini meditation practices, among others. As indicated in recent systematic reviews by our group and other investigators, and by the growing body of original research on the health effects of meditation, there is mounting evidence that even brief meditative practices (5 days–8 weeks) may improve neuropsychological, metabolic, and clinical profiles in a range of populations (82, 84–87). For example, studies have shown meditation to reduce perceived stress (85, 88–90), anxiety (85, 88–91), and depressive symptoms (89–92), enhance quality of life (87, 92), decrease sleep disturbance (90, 93), improve several domains of cognition (90, 94, 95), reduce sympathetic activation and enhance cardiac vagal tone (96–99), both acutely and long term in clinical as well as non-clinical populations (84, 100). A growing body of research also suggests that meditation promotes beneficial changes in CNS dopaminergic and other neurochemical systems (101, 102), and increases blood flow, oxygen delivery, and glucose utilization in specific regions of the brain associated with mood elevation, memory, and attentional processing, including the hippocampus, prefrontal cortex, and anterior cingulate gyrus (91, 95, 103–106). Long-term meditation practice has also been associated with cortical thickening and increased gray matter volume in brain regions involved in attentional performance, sensory processing, and interception (103, 107, 108), apparently offsetting typical age-related cortical thinning and gray matter loss (108). In addition, recent research suggests that meditation programs can enhance immune response (109) and clinical outcomes (82, 85), and reduce blood pressure (85, 90, 100, 110),...
insulin resistance and glucose intolerance (97, 111), oxidative stress (84, 112), inflammation (93), and other related risk indices (84, 85). While research in cognitively impaired populations remains limited, findings from previous observational studies (113, 114) and two recent small clinical trials (90, 91, 95, 105) suggest that meditation practice may reduce stress, anxiety, depression, and blood pressure; improve cognition; promote beneficial changes in brain structure and function; and improve health outcomes in adults with memory disorders.

In addition to its many reported health benefits, meditation carries numerous practical advantages as a therapeutic intervention and health promotion method. It is a simple, economical, non-invasive therapy that is easy to learn and can be practiced by very elderly, ill, or disabled individuals, including those suffering from cognitive impairment (82, 90, 95, 115). Requiring no special equipment and little in the way of professional personnel, meditation is a practice that is relatively easy to maintain at no cost, with several studies indicating excellent long-term adherence (84, 116, 117). Meditation practice typically brings immediate positive benefits, including feelings of relaxation and tranquility, and even short-term (5 day–6 week) meditation programs may also reduce health care costs in both clinical and non-clinical populations (82, 118).

POTENTIAL UNDERLYING MECHANISMS

Although the mechanisms underlying the putative beneficial effects of meditation on cognitive, psychological, and physical health are not yet well understood, the observed changes likely occur through at least four pathways (41, 46, 84, 85, 101, 119). First, by reducing activation and reactivity of the sympathoadrenal system and the HPA axis and promoting feelings of well-being, meditation may alleviate the effects of stress, enhance sleep and mood, and foster multiple positive downstream effects on cognition, neuroendocrine status, neurological and metabolic function and related inflammatory responses (Figure 1, pathway 1). Second, meditation may enhance parasympathetic output, possibly via direct vagal stimulation, and thereby shift the autonomic nervous system balance from primarily sympathetic to parasympathetic, leading to positive changes in cardiovagal function, in mood, sleep, and energy state, and in related neuroendocrine, metabolic, and inflammatory responses, in turn, reducing risk for depression and cognitive decline (Figure 1, pathway 2). Third, findings of recent neuroimaging and neurophysiological studies (98, 106, 120) suggest that meditation, by selectively activating specific neurochemical systems and brain structures associated with positive mood, attention, and memory, may likewise promote beneficial changes in sympathetic/parasympathetic balance, in neurological structure and function, in affect and memory, and in related metabolic and inflammatory responses (Figure 1, pathway 3). Finally, findings of a recent study in dementia caregivers (121) suggest that meditation may also, by directly or indirectly stimulating increased telomerase activity, help promote telomere maintenance and buffer the effects of stress-induced cellular aging, thereby helping to preserve immune function and possibly reduce neuronal loss and other degenerative changes associated with aging and cognitive decline (122, 123). As discussed below, reductions in telomerase activity and telomere length have been linked to stress, depression, sleep loss, and cognitive impairment (99, 124–135) and shown to predict cognitive decline in both clinical and non-clinical populations (136, 137). Likewise, recent research in healthy adults (138–140), lonely older adults (141), and depressed dementia caregivers (142, 143) suggest that meditation may also buffer or reverse multiple stress-related changes in specific gene expression pathways implicated in the development and progression of AD, including those regulating oxidative stress, inflammation, cellular aging, and other factors contributing to impaired brain structure and function, and ultimately, to cognitive decline (144–150).

FIGURE 1 | Possible pathways by which meditation may improve health outcomes in adults with cognitive impairment
TELOMERES, INFLAMMATION, COGNITIVE DECLINE, AND CHRONIC STRESS: POSSIBLE BENEFITS OF MEDITATION

An emerging body of literature suggests that both inflammation and telomere maintenance may be important factors in the pathogenesis of AD. Telomeres are DNA–protein complexes that protect the ends of chromosomes, and are essential for maintaining chromosomal integrity during replication (127, 151). The cellular enzyme telomerase acts to repair and replace the genetic telomeric material lost, helping to counteract the telomere shortening that occurs with age. There is growing evidence linking both shorter telomere length and lower telomerase activity with reduced survival and several age-related diseases (127, 151, 152), including AD (152–156) and suggesting that these telomeric alterations may mediate the degenerative changes associated with these conditions (131, 151, 157). Telomere shortening has been linked to cognitive impairment in several non-clinical populations (124–126) and shown in prospective studies to predict cognitive decline in post-stroke patients (136) and older community-dwelling women (137). Moreover, recent studies suggest that several lifestyle and environmental factors are important determinants of both telomere length and telomerase activity (127, 131, 152). Notably, these factors include chronic stress, depression, and impaired sleep, now emerging as powerful predictors of accelerated telomere shortening and reduced telomerase activity (99, 127–135). As indicated above, these deleterious changes may be buffered by meditative practices (99, 121, 158).

Telomere degradation may also be accelerated by chronic inflammation (156, 159, 160) which is, in turn, thought to be an important mechanism underlying cognitive decline and the pathogenesis of AD (54). Systemic inflammatory markers, including IL-6, TNF-alpha, and hsCRP, have been linked to loss of cerebral volume, and large population-based studies have consistently shown high blood levels of these inflammatory indices, to predict cognitive decline (54). Elevated inflammatory markers are also strongly associated, in a bidirectional manner, to chronic psychological stress, mood disturbance, sleep loss, and other distressful states (41, 72, 161–165). Emerging evidence suggests that meditative practices can not only reduce stress, improve sleep, and enhance mood, but may also decrease indices of systemic inflammation (121, 166, 167).

GENOMIC CHANGES IN COGNITIVE IMPAIRMENT, STRESS, AND POTENTIAL BENEFITS OF MEDITATION

Genomic changes characterizing the inception and progression of AD is an active area of investigation (168–170). To date, over 180 genes distributed across the human genome have been directly or indirectly implicated in the pathogenesis of AD (168). Transcriptional profiling of blood mononuclear cells by microarray in those with AD have identified 19 upregulated and 136 downregulated genes (170, 171). While gene expression profiling in those with or at risk for AD is an emerging and still rapidly developing field of inquiry, recent studies suggest that multiple changes in gene expression may be important in AD progression (145, 147–150). These include alterations related to pro-inflammatory pathways (145), immune function (146), synaptic function (150), and regulation of apoptosis (146), oxidative stress (144) and other pathways (147, 148, 171); several of these changes have been linked to chronic psychological stress (139, 140, 144). Exploratory research in depressed dementia caregivers (142) and lonely older adults (141), as well as in healthy adults (138–140), suggests that the practice of meditation may lead to multiple beneficial changes in gene expression and may buffer or reverse adverse stress-related changes in transcriptional profiles. These include favorable alterations in several pathways linked to cognitive impairment, including those regulating cellular metabolism and aging, oxidative stress, immune function, inflammation, DNA repair, cell-cycle control, and apoptosis (138–143). However, while these preliminary findings suggest that meditative practices may help prevent, mitigate, or even reverse specific genomic changes implicated in cognitive decline, studies regarding the effects of meditation or other mind-body therapies on gene expression profiles in adults with memory loss are lacking.

SUMMARY

In brief, meditation may offer considerable promise as a safe and cost-effective intervention for reducing stress and for improving cognition, mood, sleep, and related outcomes in adults with or at risk for cognitive impairment. However, despite the apparent therapeutic potential of meditation for these populations, research remains sparse, and interpretation of existing studies is limited by small sample sizes, selection bias, and/or lack of appropriate control groups. Clearly, larger, rigorous randomized controlled trials are needed to establish the efficacy of meditation for improving cognitive function, stress, mood, sleep and related neuropsychosocial and physiological outcomes in adults with cognitive impairment, and to examine the long-term effects of meditation on cognitive decline and on the inception and progression of AD. Also needed are high-quality studies to assess the potential cost-effectiveness of meditation as a therapeutic intervention for those with or at risk for cognitive impairment, and to investigate potential underlying mechanisms, including changes in inflammatory markers, brain structure and function, cellular aging, and gene expression. If future studies show meditation to be effective in reducing stress and improving cognition and related outcomes in adults at risk for AD, it may offer a novel, safe, and low-cost approach to preventing or slowing cognitive decline in this population, and ultimately help reduce the significant health and economic burden associated with AD.

ACKNOWLEDGMENTS

This work was made possible in part by the West Virginia University Health Sciences Center, the National Institutes of Health National Center for Complementary and Alternative Medicine, and the Alzheimer’s Research and Prevention Foundation (ARPF). The contents are solely the responsibility of the authors and do not represent the official views of the authors’ academic institution, the National Institutes of Health, or the ARPF.

REFERENCES

1. Gauthier S. Should we encourage the use of high-dose vitamin E in persons with memory complaints as a preventive strategy against Alzheimer’s disease? J Psychiatry Neurosci (2000) 25(4):394.
2. National Center for Health Statistics (2004). Available from: http://www.cdc.gov/nchs/fastats/deaths.htm.
3. Alzheimer’s Association. 2014 Alzheimer’s Disease Facts and Figures. Alzheimers Dement (2014) 10(2):1–75.
Khalsa DS. Mindfulness effects on caregiver stress: should we expect more? J Altern Complement Med (2010) 16(10):1025–6. doi:10.1089/acm.2010.0431

Logsdon RG, Teri L. The Pleasant Events Schedule-AD: psychometric properties and relationship to depression and cognition in Alzheimer’s disease patients. Gerontologist (1997) 37(1):40–5. doi:10.1093/geront/37.1.40

Teri L. Behavior and caregiver burden: behavioral problems in patients with Alzheimer disease and its association with caregiver distress. Alzheimer Dis Assoc Disord (1997) 11(4):535–8.

Liu YT, Haase HE. Expertise and perspectives of caregivers of spouse with mild cognitive impairment. Curr Alzheimer Res (2009) 6(4):384–91. doi:10.2174/15672509098929309

Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA (2002) 288(12):1475–83. doi:10.1001/jama.288.12.1475

Rosenberg PB, Mielke MM, Appleby B, Oh E, Lountosakos MJ, Lyketsos CG. Neuropsychiatric symptoms in MCI subtypes: the importance of executive dysfunction. Int J Geriatr Psychiatry (2011) 26(4):364–72. doi:10.1002/gps.2535

Ryu S-H, Lee K-J. Neuropsychiatric symptoms in patients with mild cognitive impairment and mild Alzheimer’s disease in the community-dwelling elderly in Korea. Alzheimers Dement (2008) 4(Suppl 1):T465. doi:10.1016/j.jalz.2008.05.1543

Rongve A, Boeve BF, Aarsland D. Frequency and correlates of caregiver distress in patients with dementia: contributing factors and treatment implications. Sleep Med Rev (2007) 11(2):143–53. doi:10.1016/j.smrv.2006.09.002

Schulz R, Martire LM. Family caregiving of persons with dementia: prevalence, health effects, and support strategies. Am J Geriatr Psychiatry (2004) 12(3):240–9. doi:10.1016/j.appjgp.2003.12.240

Wilson RS, Arnold SE, Schneider JA, Kelly JF, Tang Y, Bennett DA. Chronic stress and insulin resistance-related indices of cardiovascular disease risk, part I: neurophysiological responses and age-related neuropathology, and late-life dementia. Neurology (2006) 69(1):53–5. doi:10.1212/01.WNL.0000326425.05017.21

Innes KE, Vincent HK, Taylor AG. Chronic stress and insulin resistance-related indices of cardiovascular disease risk, part 2: neurophysiological responses and pathological sequelae. Altern Ther Health Med (2007) 13(4):46–52.

Kim JY, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci (2002) 3(6):453–62.

Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, et al. Regulation of pre-MCI: subtypes and longitudinal outcomes. Alzheimers Dement (2012) 8(3):S35–8. doi:10.1016/j.jalz.2011.04.006

Beaulieu-Bonneau S, Hudon C. Sleep disturbances in older adults with mild cognitive impairment. Int Psychogeriatr (2009) 21(4):654–66. doi:10.1017/S1041610209002934

Guarnieri B, Adorni F, Musico M, Appollonio I, Bonanni E, Caffarra P, et al. Prevalence of sleep disturbances in mild cognitive impairment and dementia disorders: a Multicenter Italian Clinical Cross-Sectional Study on 431 patients. Dement Geriatr Cogn Disord (2012) 33(1):53–8. doi:10.1159/000335563

Schufeld PW, Marder M, Dooneief G, Jacobs DM, Sano M, Stern Y. Association of subjective memory complaints with subsequent cognitive decline in community-dwelling elderly individuals with baseline cognitive impairment. Am J Psychiatry (1997) 154(5):695–15.

Palmer K, Berger AK, Monastero R, Winblad B, Backman L, Fratiglioni L. Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology (2008) 68(19):1596–602. doi:10.1212/01.wnl.0000326425.05017.21

Lee DR, Thomas AJ. Sleep in dementia and caregiving – assessment and treatment implications: a review. Int Psychogeriatr (2011) 23(2):190–201. doi:10.1017/S1041610210001894

McCurry SM, Logsdon RG, Teri L, Vitello MV. Sleep disturbances in caregivers of persons with dementia: contributing factors and treatment implications. Sleep Med Rev (2007) 11(2):143–53. doi:10.1016/j.smrv.2006.09.002

Valimaki TH, Vehvilainen-Julkunen KM, Pirttila AM, Pirttila TA. Caregiver depression is associated with a low sense of coherence and health-related quality of life. Aging Ment Health (2009) 13(6):799–807. doi:10.1080/13607860903046487

Reagan LP, Grillo CA, Pirolo GG. The As and Ds of stress: metabolic, morphological and behavioral consequences. Eur J Pharmacol (2008) 583(1–2):64–75. doi:10.1016/j.ejphar.2008.02.050

Schulz R, Martire LM. Family caregiving of persons with dementia: prevalence, health effects, and support strategies. Am J Geriatr Psychiatry (2004) 12(3):240–9. doi:10.1016/j.appjgp.2003.12.240

Alspaugh ME, Stephens MA, Townsend AL, Zarit SH, Greene R. Longitudinal patterns of risk for depression in dementia caregivers: objective and subjective primary risk as predictors. Psychol Aging (1999) 14(1):34–43. doi:10.1037.0882–7974.141.3.14

Lovell B, Wetherell MA. The cost of caregiving: endocrine and immune implications in elderly and non elderly caregivers. Neurosci Biobehav Rev (2011) 35(6):1342–52. doi:10.1016/j.neubiorev.2011.02.007

Dinsdale JE. Psychological stress and cardiovascular disease. J Am Coll Cardiol (2008) 51(13):427–46. doi:10.1016/j.jacc.2007.12.024

Vitaliano PP, Scanlan JM, Zhang J, Savage MV, Hirsch IB, Siegler IC. A path model of chronic stress, the metabolic syndrome, and coronary heart disease. Psychosom Med (2002) 64(3):418–35.

Wilson RS, Arnold SE, Schneider JA, Kelly JE, Tang Y, Bennett DA. Chronic psychological distress and risk of Alzheimer's disease in old age. Neuropsychology (2006) 20(2):135–43. doi:10.1037.0894–3922.100.2

Wilson RS, Schneider JA, Boyle PA, Arnold SE, Tang Y, Bennett DA. Chronic distress and incidence of mild cognitive impairment. Neurology (2007) 68(24):2085–92. doi:10.1212/01.wnl.0000249300.70061.82

Wilson RS, Arnold SE, Schneider JA, Li Y, Bennett DA. Chronic distress, age-related neuropathy, and late-life dementia. Psychosom Med (2007) 69(1):47–53. doi:10.1016/j.psychmedicine.2006.11.003

Innes KE, Vincent HK, Taylor AG. Chronic stress and insulin resistance-related indices of cardiovascular disease risk, part 1: neurophysiological responses and pathological sequelae. Altern Ther Health Med (2007) 13(4):46–52.

Kim JY, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci (2002) 3(6):453–62.

Lucassen PJ, Heine VM, Muller MB, van der Beek EM, Wingatt VM, De Kloet ER, et al. Stress, depression and hippocampal apoptosis. CNS Neurol Disord Drug Targets (2006) 5(3):531–46. doi:10.2174/15672509077859273

Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev (2005) 4(2):141–94. doi:10.1016/j.arr.2005.03.003

Lucassen PJ, Meerdor F, Nayler AS, van Dam AM, Dayer AG, Fuchs E, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol (2010) 20(1):1–17. doi:10.1016/j.euroneuro.2009.08.003

Innes KE, Vincent HK, Taylor AG. Chronic stress and insulin resistance-related indices of cardiovascular disease risk, part 2: a potential role for mind-body therapies. Altern Thera Health Med (2007) 13(5):54–51.
47. Hellstrom HR. The altered homeostatic theory: a hypothesis proposed to be useful in understanding and preventing ischemic heart disease, hypertension, and diabetes – including reducing the risk of age and atherosclerosis. *Med Hypotheses* (2007) 68(2):415–33. doi:10.1016/j.mehy.2006.05.031
48. Lee PY, Yun AJ, Bazar KA. Conditions of aging as manifestations of sympathetic bias unmasked by loss of parasympathetic function. *Med Hypotheses* (2004) 62(6):686–70. doi:10.1016/j.mehy.2003.11.024
49. Raber J. Detrimental effects of chronic hypothalamic-pituitary-adrenal axis activation. From obesity to memory deficits. *Mol Neurobiol* (1998) 18(1):1–22. doi:10.1007/BF02741147
50. Stall VR, Convat A. Diabetes, sugar-coated but harmful to the brain. *Curr Opin Pharmacol* (2007) 7(6):638–42. doi:10.1016/j.coph.2007.10.007
51. Skoog I. Vascular aspects in Alzheimer’s disease. *J Neural Transm Suppl* (2000) 59:37–43.
52. Martins II, Hone E, Foster JK, Sunram-Lea SI, Gjere A, Fuller SJ, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. *Mol Psychiatry* (2006) 11(8):721–36. doi:10.1038/mp.2008.154
53. Gottfried CG, Baldlin J, Blennow K, Brane G, Karlsson I, Regland B, et al. Regulation of the hypothalamic-pituitary-adrenal axis in dementia disorders. *Ann NY Acad Sci* (1994) 746:336–43. doi:10.1111/j.1749-6632.1994.tb9253.x
54. Gorelick PB. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. *Innate Inflamm State* (2010) 1207:155–62. doi:10.10111/j.i1749-6632.2010.05726.x
55. McEwen BS. Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. *Neurobiol Res* (2007) 5(5):921–39. doi:10.1016/j.neuropsychologia.2007.10.026
56. Steffen DC, Otey A, Alexopoulos GS, Butters MA, Cuthbert B, Ganguli M, et al. Perspectives on depression, mild cognitive impairment, and cognitive decline. *Arch Gen Psychiatry* (2006) 63(2):130–8. doi:10.1001/archpsyc.63.2.130
57. Clarke DM, Currie KC. Depression, anxiety and their relationship with chronic diseases: a review of the epidemiology, risk and treatment evidence. *J Med J Aust* (2009) 190(7 Suppl):554–60.
58. Cohen BE, Pangaluri P, Na B, Whosley MA. Psychological risk factors and the metabolic syndrome in patients with coronary heart disease: findings from the Heart and Soul Study. *Psychiatry Res* (2010) 175(1/2):133–7. doi:10.1016/j.psychres.2009.02.004
59. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW, et al. Short or long sleep duration is associated with memory impairment in older Chinese: the Guangzhou Biobank Cohort Study. *Sleep* (2011) 34(5):575–80.
60. Petersen MJ, Benca RM. Sleep in mood disorders. *Clin Med Clin* (2008) 3:231–49. doi:10.1016/j.jmcm.2008.01.009
61. McEwen BS. Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. *Metabolism* (2006) 55(10 Suppl 2):528–33. doi:10.1016/j.metabol.2006.07.008
62. Innes KE, Selje TK, Taylor AG. Menopause, the metabolic syndrome, and mind-body therapies. *Menopause* (2008) 15(5):1005–13. doi:10.1097/gme.0b013e318166904e
63. Miller MA, Cappuccio FP. Inflammation, sleep, obesity and cardiovascular disease. *Curr Vasc Pharmacol* (2007) 5(2):93–102. doi:10.2174/157016107780838280
64. Suarez EC. Self-reported symptoms of sleep disturbance and inflammation, coagulation, insulin resistance and psychosocial distress: evidence for gender disparity. *Brain Behav Immun* (2008) 22(6):960–8. doi:10.1016/j.bbi.2008.01.011
65. Treemell MJ, Marshall NS, Rogers NL. Sleep and metabolic control: waking to a problem? *Clin Exp Pharmacol Physiol* (2007) 34(1-2):1–9. doi:10.1111/j.1440-1681.2007.04541.x
66. Dauvilliers Y. Insomnia in patients with neurodegenerative conditions. *Sleep* (2006) 29(4 Suppl):S231–49. doi:10.1016/j.jsmc.2008.01.009
67. Xu L, Jiang CQ, Lam TH, Liu B, Jin YL, Zhu T, et al. Short or long sleep duration is associated with memory impairment in older Chinese: the Guangzhou Biobank Cohort Study. *Sleep* (2011) 34(5):575–80.
Innes and Sefele Meditation for cognitive impairment

92. Jayadevapura R, Johnson JC, Bloom BS, Nidich S, Desai S, Chhatre S, et al. Effectiveness of transcendental meditation on functional connectivity and quality of life of African Americans with congestive heart failure: a randomized control study. *Ethn Dis* (2007) 17(1):72–7.

93. Carlson LE, Speca M, Patel KD, Goedde E. Mindfulness-based stress reduction in relation to quality of life, mood, symptoms of stress, and immune parameters in breast and prostate cancer outpatients. *Psychosom Med* (2003) 65(4):571–81. doi:10.1097/01.PSY.0000074403.59111.4F

94. Sharma VK, Das S, Mandal S, Goswami U, Gandhi A. Effect of Sahaj Yoga on neuro-cognitive functions in patients suffering from major depression. *Indian J Physiol Pharmacol* (2006) 50(4):375–83.

95. Khalsa DS, Newberg A. Kirtan Kriya meditation: a promising technique for neuro-cognitive functions in patients suffering from major depression. *Indian J Physiol Pharmacol* (2006) 50(4):375–83.

96. Newberg AB, Wintering N, Khalsa DS, Waldman MR. Meditation experience is associated with increased cortical thickness. *Cogn Brain Res* (2002) 11(2):255–9. doi:10.1016/S0926-6410(01)00106-9

97. Manikonda JP, Stork S, Togel S, Lobmuller A, Grunberg I, Bedel S, et al. Contemplative meditation reduces ambulatory blood pressure and stress-induced hypertension: a randomized controlled trial. *J Hum Hypertens* (2008) 22(2):138–40. doi:10.1038/sj.jhh.1002275

98. Rubia K. The neurobiology of meditation and its clinical effectiveness in psychiatric disorders. *Biol Psychol* (2009) 82(1):11–11. doi:10.1016/j.biopsych.2009.04.003

99. Eipel E, Daubenmier J, Moskowitz JT, Folkman S, Blackburn E. Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. *Ann N Y Acad Sci* (2009) 1172:34–53. doi:10.1111/j.1749-6632.2009.04414.x

100. Manikonda JP, Stork S, Togel S, Lobmuller A, Grunberg I, Bedel S, et al. Contemplative meditation reduces ambulatory blood pressure and stress-induced hypertension: a randomized pilot trial. *J Hum Hypertens* (2008) 22(2):138–40. doi:10.1038/sj.jhh.1002275

101. Newberg AB, Iverson J. The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. *Med Hypotheses* (2003) 61(2):282–91. doi:10.1016/S0308-9877(03)00175-0

102. Kjaer TW, Bertelsen C, Piccini P, Brooks D, Alving J, Lou HC. Increased memory loss: a preliminary study. *Neurobiol Aging* (2005) 26(2):255–9. doi:10.1016/j.neurobiolaging.2007.07.003

103. Walton KG, Schneider RH, Salerno JW, Nidich SI. Psychosocial stress and cardiovascular disease. *Part 3: clinical and policy implications of research on the transcendental meditation program. Behav Med* (2005) 30:173–83. doi:10.3200/BMED.30.4.173-184

104. Pradhan EK, Baumgarten M, Langenberg P, Handwerger B, Gilpin AK, Magyari T, et al. Effect of mindfulness-based stress reduction on rheumatoid arthritis patients. *Arthritis Rheum* (2007) 57(7):1134–42. doi:10.1002/art.23010

105. Sepptonen SE, Salmon P, Weisbecker I, Umer C, Floyd A, Hoover K, et al. Mindfulness meditation alleviates depressive symptoms in women with fibromyalgia: results of a randomized clinical trial. *Arthritis Rheum* (2007) 57(1):77–85. doi:10.1002/art.22478

106. Lavretsky H, Eipel ES, Siddarth P, Nazarian N, Cyn KS, Khalsa DS, et al. A pilot study of yoga meditation for family dementia caregivers with depressive symptoms: effects on mental health, cognition, and telomerase activity. *Int J Geriatr Psychiatry* (2013) 28(1):57–65. doi:10.1002/gps.3790

107. Andrews NP, Fuji H, Goronyz JJ, Weyand CM. Telomeres and immunological diseases of aging. *Gerontology* (2010) 56(4):389–403. doi:10.1159/000268620

108. Franco S, Blasco MA, Siedlak SL, Harris PL, Moreira PL, Perry G, et al. Telomeres and telomerase in Alzheimer’s disease: epiphenomena or a new focus for therapeutic strategy? *Alzheimers Dement* (2006) 2(3):164–8. doi:10.1016/j.jalz.2006.03.001

109. Canale A, Vera E, Klett P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. *Proc Natl Acad Sci U S A* (2007) 104(30):12505–5. doi:10.1073/pnas.0609367104

110. Grodstein F, van Oijen M, Irizarry MC, Rosas HD, Hyman BT, Growdon JH, et al. Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses’ health study. *PLoS One* (2008) 3(2):e1590. doi:10.1371/journal.pone.0001590

111. Valdes AM, Deary II, Gardner J, Kimura M, Lu X, Spector TD, et al. Leukocyte telomere length is associated with cognitive performance in healthy women. *Neurobiol Aging* (2010) 31(6):986–92. doi:10.1016/j.neurobiolaging.2008.07.012

112. Lin J, Eipel E, Blackburn E. Telomeres and lifestyle factors: roles in cellular aging. *Mutat Res* (2012) 730(1):85–9. doi:10.1016/j.mrmm.2011.08.003

113. Eipel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. *Proc Natl Acad Sci U S A* (2004) 101(49):17131–5. doi:10.1073/pnas.0407161101

114. Eipel ES, Lin J, Wilhelm FH, Wolozkin OM, Cawthon R, Adler NE, et al. Cell aging in relation to stress arousal and cardiovascular disease risk factors. *Psychoneuroendocrinology* (2006) 31(5):277–87. doi:10.1016/j.psyneuen.2005.08.011

115. Damjanovic AK, Yang YH, Glauser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. *J Immunol* (2007) 179(6):4249–54.
131. Shammas MA. Telomeres, lifestyle, cancer, and aging. *Curr Opin Clin Nutr Metab Care* (2011) 14(1):28–34. doi:10.1097/MCO.0b013e282412d1b1

132. Barcelo A, Piquerol J, Lopez-Escobar H, de la Pena M, Soriano JR, Alonzo-Fernandez A, et al. Telomere shortening in sleep apnea syndrome. *Respir Med* (2010) 104(8):1225–9. doi:10.1016/j.rmed.2010.03.025

133. Prather AA, Puterman E, Lin J, O’Donovan A, Kraus J, Tomiyama AJ, et al. Shorter leukocyte telomere length in midlife women with poor sleep quality. *J Aging Res* (2011) 2011:21390. doi:10.4061/2011/21390

134. Elvassoragen T, Vera E, Boen E, Bratlie I, Andreassen OA, Josefsen D, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. *J Affect Disord* (2011) 135(1–3):43–50. doi:10.1016/j.jad.2011.08.006

135. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, et al. T:elomeres, lifestyle, cancer, and aging. *Curr Opin Clin Nutr Metab Care* (2011) 14(1):28–34. doi:10.1097/MCO.0b013e282412d1b1

136. Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, Von Zglinicki T. Telomere length predicts poststroke mortality, dementia, and cognitive decline. *Ann Neurol* (2006) 60(2):174–80. doi:10.1002/ana.20869

137. Yaffe K, Lindquist K, Kluse M, Cawthon R, Harris T, Hsueh WC, et al. Shorter leukocyte telomere length in midlife women with poor sleep quality. *J Aging Res* (2011) 2011:21390. doi:10.4061/2011/21390

138. Yaffe K, Lindquist K, Kluse M, Cawthon R, Harris T, Hsueh WC, et al. Telomere length and cognitive function in community-dwelling elders: findings from the health ABC study. *Neurobiol Aging* (2011) 32(11):2055–60. doi:10.1016/j.neurobiolaging.2010.12.006

139. Ravnik-Blagav M, Hrasoncik S, Ban J, Droj D, Glavac D. Genome-wide expression changes in a higher state of consciousness. *Conscious Cogn* (2012) 21(3):1322–44. doi:10.1016/j.concog.2012.08.003

140. Dusek JA, Oto HJH, Wohlhuter AL, Bhasin M, Zerbini LF, Joseph MG, et al. Genomic counter-stress responses induced by the relaxation response. *PLoS One* (2008) 3(7):e2576. doi:10.1371/journal.pone.0002576

141. Sharma H, Datta P, Singh A, Sen S, Bhardwaj NK, Kochupillai V, et al. Gene expression profiling in practitioners of Sudarshan Kriya. *J Psychosom Res* (2008) 64(2):213–8. doi:10.1016/j.jpsychores.2007.07.008

142. Creswell JD, Irwin MR, Burkland LJ, Lieberman MD, Arvelo JM, Ma J, et al. Mindfulness-based stress reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial. *Brain Behav Immun* (2012) 26(7):1095–101. doi:10.1016/j.bbi.2012.07.006

143. Black DS, Cole SW, Irwin MR, Breen E, St Cyr NM, Nazarian N, et al. Effect of compassion meditation on neuroendocrine, innate immune and givers of people with Alzheimer’s disease. *J Alzheimers Dis* (2013) 38(3):491–504. doi:10.3233/JAD-2012-102244

144. Takimoto-Omishita E, Ohnishi J, Murakami K, Mind-body medicine: effect of the mind on gene expression. *Personal Med* (2011) 1(1):2–6. doi:10.1016/j.jpmu.2011.02.002

145. Katsel P, Iliopoulos Z, Makris N, Papadimitriou D, Koutsis K, et al. Cognitive function and telomere length in Alzheimer’s disease. *Aging Cell* (2013) 12(5):823–9. doi:10.1111/acel.12115

146. Dinan TG. Inflammatory markers in depression. *Curr Opin Psychiatry* (2012) 25(2):168–76. doi:10.1097/YCO.0b013e32835a5f68

147. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. *Psychosom Med* (2009) 71(2):171–86. doi:10.1097/PSY.0b013e3181907c1b

148. Motivala SJ, Safarri A, Olmos L, Irwin MR. Inflammatory markers and sleep disturbance in major depression. *Psychosom Med* (2005) 67(2):187–94. doi:10.1097/PSY.0b013e318352f089

149. von Kanel R, Dimsdale JE, Jorm LJ, Israel S, Mills PJ, Patterson TL, McKibbin CL, et al. Poor sleep is associated with higher plasma proinflammatory cytokine interleukin-6 and procoagulant marker fibrin D-dimer in older caregivers of people with Alzheimer’s disease. *J Am Geriatr Soc* (2006) 54(3):431–7. doi:10.1111/j.1532-5415.2005.00642.x

150. Gosin JP. Chronic stress, immune dysregulation, and health. *Am J Lifestyle Med* (2011) 5(6):476–85. doi:10.1177/1932562510395467

151. Pace TW, Negi LT, Adamee SD, Cole SP, Sivilli TL, Brown TD, et al. Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychological stress. *Psychoneuroendocrinology* (2009) 34(1):87–98. doi:10.1016/j.psyneuen.2008.08.011

152. Pullen PR, Nagamia SH, Mehta PK, Thompson WR, Benardot D, Hammoud H. Association of telomere length with telomere shortening in T cells correlates with Alzheimer’s disease. *Neurobiol Aging* (2007) 28(9):1267–73. doi:10.1016/j.neurobiolaging.2006.09.006

153. Cacabelos R. Genomic characterization of Alzheimer’s disease and genotype-related phenotypic analysis of biological markers in dementia. *Pharmacogenomics* (2008) 9(3):1049–55. doi:10.2174/138920308785437468

154. Grumbart E, Burt J, Zebekasmer S, Ringel TM, Bauer P, Riederer P, et al. Gene expression as peripheral biomarkers for sporadic Alzheimer’s disease. *J Alzheimers Dis* (2009) 16(3):627–34. doi:10.3233/JAD-2009-0996

155. Cedazo-Minguez A, Winblad B. Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. *Exp Gerontol* (2010) 45(1):5–14. doi:10.1016/j.exger.2009.09.008

Innes and Selfe Meditation for cognitive impairment
171. Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging (2007) 28(12):1795–809. doi:10.1016/j.neurobiolaging.2006.08.004

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 19 November 2013; accepted: 31 March 2014; published online: 23 April 2014.

Citation: Innes KE and Selfe TK (2014) Meditation as a therapeutic intervention for adults at risk for Alzheimer’s disease – potential benefits and underlying mechanisms. Front. Psychiatry 5:40. doi: 10.3389/fpsyt.2014.00040

This article was submitted to Affective Disorders and Psychosomatic Research, a section of the journal Frontiers in Psychiatry.

Copyright © 2014 Innes and Selfe. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.