Targeting BCL-2 as a Therapeutic Strategy for Primary $p^{210}BCR-ABL1$-positive B-ALL Cells

MICHELE MASSIMINO1,2*, ELENA TIRRÒ1,2*, STEFANIA STELLA1,2*, MARIA STELLA PENNISI1,2, SILVIA RITA VITALE1,2, ADRIANA PUMA1,2, CHIARA ROMANO1,2, SANDRA DI GREGORIO1,2, MARIA ANNA ROMEO3, FRANCESCO DI RAIMONDO3 and LIVIA MANZELLA1,2

1Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; 2Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy; 3Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico Vittorio Emanuele, Catania, Italy

Abstract. Background/Aim: Philadelphia-positive acute lymphoblastic leukemia (Ph$^+$ B-ALL) is caused by the malignant transformation of lymphoid cells induced by BCR-ABL1 constitutive catalytic activity. BCR-ABL1 tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML) cells, inducing durable hematological, cytogenetic and molecular responses. However, in Ph$^+$ B-ALL - as in CML progressing to blast crisis - TKIs fail to maintain disease remission. We, therefore, wanted to investigate if dual targeting of BCL-2 and BCR-ABL1 would be more effective in killing Ph$^+$ B-ALL cells. Materials and Methods: p^{210}-B-ALL CD34-positive cells were used to evaluate the BCR-ABL expression and pharmacological targeting of BCL-2, by venetoclax, alone or in combination with BCR-ABL1 inhibition. Results: We demonstrated the cytotoxic effect of BCL-2 inhibition and that dual targeting of BCL-2 and BCR-ABL1 with venetoclax and nilotinib further increases this cytotoxicity. Conclusion: BCL-2 is a key survival factor for primary Ph$^+$ B-ALL cells and its inhibition - alone or in combination with a BCR-ABL1 TKI - should be further investigated as a potential therapeutic strategy for these patients.

Approximately 30% of adult Acute Lymphoblastic Leukemia (ALL) patients display neoplastic blasts expressing the Philadelphia chromosome (Ph$^+$ ALL), i.e. the product of the reciprocal t(9;22) translocation which generates the BCR-ABL1 chimeric oncogene (1). The ensuing BCR-ABL1 oncoprotein is characterized by constitutive tyrosine kinase activity that transforms hematopoietic stem cells altering multiple biological mechanisms involved in their survival and proliferation (2-4). Different BCR-ABL1 fusion transcripts can be generated depending on the BCR and ABL1 exons involved (5-8). More common BCR-ABL1 isoforms include e1a2 (p190), e13a2 and e14a2 (both p210) and, while most ALL patients express p190 BCR-ABL1 in B lymphoid precursors (9), previous data have shown that some of these patients may also express p210 BCR-ABL1 or co-express p190 and p210 (10). Furthermore, while B-ALL is generally considered an aggressive disease, patients expressing $p^{210}BCR-ABL1$ usually display an inferior prognosis compared to those displaying the p190 isoform (10). The introduction of the first-generation (1G) tyrosine kinase inhibitor (TKI) imatinib (IM) (11), has radically improved the hematological, cytogenetic and molecular responses of BCR-ABL1-positive individuals. However, most individuals diagnosed with Ph$^+$ ALL ultimately develop IM resistance because of BCR-ABL1-dependent or -independent mechanisms (12-17). To overcome this resistance, both second- (nilotinib, dasatinib, bosutinib) (18-22) and third-generation (ponatinib) (23, 24) TKIs have been developed and introduced in clinical practice. However, as these drugs are unable to offer a complete disease remission (10), stem cell transplantation (SCT) still represents the golden-standard approach for Ph$^+$ ALL, with long-term survival rates ranging between 35% and 55%. Recently, allosteric inhibition of the BCR-ABL1 oncoprotein through the small-molecule asciminib (25) has led to eradication of CML xenograft tumors (26) when the compound was combined with nilotinib (NIL). However, to date, the efficacy of this approach on Ph$^+$ B-ALL blasts has not been investigated.

The BCL-2 family of proteins plays a critical role in mitochondrial-mediated apoptosis (27) and leukemic stem cell survival (28). Indeed, the activity of the BCL-2 anti-apoptotic protein is deregulated in BCR-ABL1-positive cells...
showing a further increase in Ph+ blast cells (29). In CML stem/progenitor cells obtained from patients that have progressed to the acute phase of the disease, dual targeting of BCL-2 and ABL1 strongly reduces the number of vital leukemic blasts (29-31). Hence, we wanted to investigate the efficacy of a dual therapeutic approach combining BCL-2 (venetoclax) and BCR-ABL1 (asciminib and nilotinib) targeted therapies on Ph+B-ALL blasts. We found that BCL-2, but not BCR-ABL1, inhibition is critical for the survival of Ph+B-ALL leukemic cells.

Materials and Methods

RNA extraction and multiplex RT-PCR. White blood cells (WBCs) derived from peripheral blood (PB) were used to perform RNA isolation and multiplex RT-PCR, as previously reported (32).

Isolation and expansion of CD34-positive cells. CD34-positive cells were immuno-magnetically separated from the bone marrow employing the CD34 MicroBead Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) as previously described (33). CD34+ progenitors were then grown in StemSpan Serum-Free Expansion medium (SFEM) supplemented with recombinant human (rh) cytokines at low concentrations, i.e. Flt-3 ligand 5 ng/ml; rh stem cell factor 5 ng/ml; rh interleukin-3 1 ng/ml and rh interleukin-6 1 ng/ml (all from Stem Cell Technologies, Köln, Germany).

Trypan blue exclusion, colony forming unit (CFU) assays, apoptosis assessment and drug treatment. A total of 300x10^3/ml CD34-positive cells were left untreated or exposed to NIL (2 μM) (34), ASC (1.2 μM) (35) (all provided by Novartis) and VEN (400 nM) (Selleckchem, Munich, Germany) (36). Alternatively, cells received a combination of NIL plus VEN or ASC plus VEN for 24 hours. At this time, 10 μl of the cell culture were diluted in 10 μl of 0.4% Trypan Blue solution mixed and counted in a hemocytometer to determine their proliferation rate, while CFU assay and apoptosis assessment were performed as previously published (37, 38).

Statistical analysis. Statistical significance was calculated using the Prism Software version 6.0 applying the unpaired t-test. Results were considered statistically significant at a p<0.05.

Results

Co-expression of e13a2 and e14a2 BCR-ABL1 fusion transcripts in Ph+B-ALL primary cells. Flow cytometry and cytogenetic analyses performed at diagnosis suggested the presence, at diagnosis, of BCR-ABL1-positive B-ALL blasts (Table I). To confirm this finding, we performed a multiplex RT-PCR using mRNAs extracted from SD1 (e1a2 BCR-ABL1), BV-173 (e13a2 BCR-ABL1) and K562 (e14a2 BCR-ABL1) cell lines as reaction controls. We detected co-expression of e13a2 and e14a2 BCR-ABL1 fusions in the patient’s blasts (Figure 1).

Venetoclax - alone or in combination with nilotinib reduces the proliferation and clonogenesis of primitive Ph+B-ALL cells. To investigate the cytotoxic effect of individual and combined targeting of BCL-2 and BCR-ABL1, we exposed Ph+ primitive blasts to venetoclax (VEN), nilotinib (NIL) or asciminib (ASC) or to VEN combined with NIL or ASC, respectively. Initially, we evaluated the effect of this therapeutic approach on proliferation of Ph+B-ALL primitive blast cells. We found that VEN – alone 82% (p<0.01) or combined with NIL 95% (p<0.01) – significantly reduced cell proliferation compared to the untreated control (Figure 2A). We next investigated the effect of the two-drug combinations and observed that, while VEN decreased clonogenesis (68.5%, p<0.01) compared to NIL or ASC, respectively. Initially, we evaluated the effect of this therapeutic approach on proliferation of Ph+B-ALL primitive blast cells. We found that VEN – alone 82% (p<0.01) or combined with NIL 95% (p<0.01) – significantly reduced cell proliferation compared to the untreated control (Figure 2A). We next investigated the effect of the two-drug combinations and observed that, while VEN decreased clonogenesis (68.5%, p<0.01) compared to NIL or ASC, only co-treatment with NIL further enhanced this cytotoxic effect inducing a CFU reduction of 93.45% (p<0.001) (Figure 2B).

Ph+B-ALLp210 primitive blast cells are dependent on BCL-2 for their survival. We wanted to investigate if the reduction in proliferation and clonogenesis induced by VEN, alone or in combination with NIL, was dependent on higher apoptotic

Table I. Patient characteristics at diagnosis.

Diagnosis	B-ALL; Ph+p210
Immunophenotype	CD19+; CD22a; CD33+; CD34+; HLA-DR+; CD38+; TDT+; CD79a++; CD45a
Blasts 40%	
Cytogenetic Analyses	100% Ph+ metaphases
Karyotype	46, XX, t(9;22)(q34;q11)
Fusion Transcript	BCR-ABL1 e14a2/e13a2

Immunophenotype of p210 B-ALL blast crisis cells performed by flow cytometric analysis. Cytogenetic analysis shows the percentage of Ph+ metaphases. Fusion transcript indicates the coexistence of both e14a2 and e13a2 BCR-ABL isoforms.

Figure 1. Co-expression of e13a2 and e14a2 BCR-ABL1 fusion transcripts in Ph+B-ALL cells. Results of a multiplex RT-PCR performed using total RNA extracted from WBC of a Ph+B-ALL patient and from K562, BV173 and SD1 were used as controls.
rates. To this end, we exposed Ph\(^+\) B-ALL primitive blasts to these compounds and stained the cells with Annexin V and 7-AAD. We found that single-agent VEN induced a massive (95.7%) increase in apoptosis (Figure 3A and B). When we combined VEN with NIL we observed similar cell death rates (96.5%), indicating that BCL-2 inhibition, but not suppression of BCR-ABL1 kinase activity is critical for the survival of Ph\(^+\) ALL blasts.

Discussion

The concept of precision medicine postulates that effective treatment strategies should be tailored to the individual variability of both the patient and his disease. Indeed, in several neoplastic diseases targeted therapy has increased survival compared to conventional strategies (25, 39-45). Several FDA-approved TKIs are available for the treatment of CML and Ph\(^+\) B-ALL. However, an ever-increasing number of these patients exhibit TKI resistance requiring alternative therapeutic approaches (46). We found that VEN-mediated BCL-2 inhibition reduces both the proliferation and clonogenic potential of Ph\(^+\) B-ALL-naïve cells and that these effects are increased when the drug is combined with NIL. We also found that ABL-directed inhibition by NIL or ASC is unable to generate the same effect.

Two previous studies have evaluated the efficacy of BCL-2 inhibition in TKI-resistant BCR-ABL1-positive cells derived from the blast crisis of CML patients previously in chronic phase. Both reports demonstrated that single agent VEN displayed modest activity but could overcome TKI resistance if associated with a BCR-ABL1-selective inhibitor (31, 36). As our findings significantly differ from those of Ko et al. and Bing and colleagues, we hypothesize that while morphologically and phenotypically similar, CML-derived blast crisis and Ph\(^+\) B-ALL are two biologically distinct diseases. Of course, selection of TKI-insensitive clones is likely to further increase these differences.

In summary, we report that BCL-2 selective inhibition displays a strong anti-leukemic activity in Ph\(^+\) B-ALL p210 and that this effect is increased by NIL. Our data support additional evaluation of combined BCL-2 and BCR-ABL1 pharmacological inhibition for the treatment of patients with this disease.

Conflicts of Interest

The Authors declare that they have no competing interests.

Authors’ Contributions

MM drafted the manuscript; MM, ET and SS were responsible of study concept, designed and performed the experiments; MM, ET, SS, MSP, SRV, AP, CR, SDG analyzed and interpreted the data; MAR made a critical revision of the paper and managed the patient; FDR supervised the project; LM conceived the original idea and supervised the project. All Authors have read and approved the manuscript to be published.
Figure 3. BCL-2 is a critical regulator of Ph+ B-ALL survival. (A) Dot plots indicate a representative experiment displaying apoptotic rates detected in Ph+ B-ALL cells. The indicated percentages refer to the distribution of necrotic (upper left), early (lower right) and late (upper right) apoptotic cells in the untreated condition or after exposure to the specified drugs. (B) Histograms representing average Annexin V- and 7AAD-positive cells left untreated or exposed to the reported drugs. Bars indicate standard deviations from two independent experiments. The unpaired t-test was used to calculate statistical significance as previously indicated. p-Values were obtained comparing each condition to untreated cells.

References

1. Liu-Dumlao T, Kantarjian H, Thomas DA, O’Brien S and Ravandi F: Philadelphia-positive acute lymphoblastic leukemia: current treatment options. Curr Oncol Rep 14(5): 387-394, 2012. PMID: 22669492. DOI: 10.1007/s11912-012-0247-7

2. Ishii Y, Nhiayi MK, Tse E, Cheng J, Massimino M, Durden DL, Vigneri P and Wang JY: Knockout serum replacement promotes cell survival by preventing bim from inducing mitochondrial cytochrome c release. PLoS One 10(10): e0140585, 2015. PMID: 26473951. DOI: 10.1371/journal.pone.0140585

3. Manzella L, Tirro E, Pennisi MS, Massimino M, Stella S, Romano C, Vitale SR and Vigneri P: Roles of interferon regulatory factors in chronic myeloid leukemia. Curr Cancer Drug Targets 16(7): 594-605, 2016. PMID: 26728039. DOI: 10.2174/1568009616666160105105857

4. Ren R: Mechanisms of bcr-abl in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3): 172-183, 2005. PMID: 15719031. DOI: 10.1038/nrc1567

5. Burmeister T and Reinhardt R: A multiplex PCR for improved detection of typical and atypical bcr-abl fusion transcripts. Leuk Res 32(4): 579-585, 2008. PMID: 1792805. DOI: 10.1016/j.leukres.2007.08.017

6. Massimino M, Stella S, Tirro E, Consoli ML, Pennisi MS, Puma A, Vitale SR, Romano C, Zammit V, Stagno F, Di Raimondo F and Manzella L: Rapid decline of philadelphia-positive metaphases after
nilotinib treatment in a cmi patient expressing a rare e14a3 bcr-abl1 fusion transcript: A case report. Oncol Lett 18(3): 2648-2653, 2019. PMID: 31404304. DOI: 10.3892/ol.10558

7 Massimino M, Stella S, Tirro E, Consoli ML, Pennisi MS, Puma A, Vitale SR, Romano C, Zammit V, Stagno F, F DIR and Manzella L: Detection and clinical implications of a novel bcr-abl1 e12a2 insertion/deletion in a cmi patient expressing the e13a2 isoform. Anticancer Res 39(12): 6965-6971, 2019. PMID: 31810968. DOI: 10.21873/anticanceres.13918

8 Stella S, Massimino M, Tirro E, Vitale SR, Accurso V, Puma A, Pennisi MS, S DIG, Romano C, F DIR, Cirri P, Sapienza G, Milone G and Manzella L: B-cell relapses after autologous stem cell transplantation associated with a shift from e1a2 to e14a2 bcr-abl transcripts: A case report. Anticancer Res 39(1): 431-435, 2019. PMID: 30591491. DOI: 10.21873/anticanceres.13130

9 Cimino G, Pane F, Elia L, Finolezzi E, Fazi P, Annino L, Meloni G, Mancini M, Tedeschi A, Di Raimondo F, Specchia G, Fioritoni G, Leoni P, Cuneo A, Mecucci C, Saglio G, Mandelli F, Foa R and Party GLW: The role of bcr-abl isoforms in the presentation and outcome of patients with philadelphia-positive acute lymphoblastic leukemia: A seven-year update of the gimenoa 0496 trial. Haematologica 93(5): 377-380, 2006. PMID: 16531262.

10 Capdeville R, Buchdunger E, Zimmermann J and Matter A: Glivec (st1571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1(7): 493-502, 2002. PMID: 12120256. DOI: 10.1038/nrd839

11 le Coutre P, Ottmann OG, Giles F, Kim DW, Cortes J, Gattermann N, Apperley JF, Larson RA, Abruzzese E, O'Brien SG, Kaliczkowski K, Hochhaus A, Mahon FX, Saglio G, Golbi M, Kwong YL, Baccarani M, Hughes T, Martinelli G, Radich JP, Zheng M, Shou Y and Kantarjian H: Nilotinib (formerly amn107), a highly selective bcr-abl tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 113(4): 1834-1839, 2008. PMID: 17715389. DOI: 10.1182/blood-2007-04-083196

12 Mahon FX, Deininger MW, Schulteis B, Chabrol J, Reffiers J, Goldman JM and Melo JV: Selection and characterization of bcr-abl positive cell lines with differential sensitivity to the tyrosine kinase inhibitor st1571: Diverse mechanisms of resistance. Blood 96(3): 1070-1079, 2000. PMID: 10910924.

13 Stagno F, Vigneri P, Consoli ML, Cupri A, Stella S, Tambe L, Massimino M, Manzella L and Di Raimondo F: Hyperdiploidy associated with a high bcr-abl transcript level may identify patients at risk of progression in chronic myeloid leukemia. Acta Haematol 127(1): 7-9, 2012. PMID: 21986290. DOI: 10.1159/000330607

14 Stella S, Zammit V, Vitale SR, Pennisi MS, Massimino M, Tirro E, Forte S, Spitaleri A, Antolino A, Siracusas S, Accurso V, Mannina D, Impera S, Musolino C, Russo S, Malato A, Mineo G, Musso M, Porretto F, Martino B, Di Raimondo F, Manzella L, Vigneri P and Stagno F: Clinical implications of discordant early molecular responses in cml patients treated with imatinib. Int J Mol Sci 20(9), 2019. PMID: 31064152. DOI: 10.3390/ijms20092226

15 Vigneri P, Stagno F, Stella S, Cupri A, Forte S, Massimino M, Antolino A, Siragus S, Mannina D, Impera SS, Musolino C, Malato A, Mineo G, Tomasselli C, Murgano P, Musso M, Morabito F, Moli S, Martino B, Manzella L, Muller MC, Hochhaus A and Raimondo FD: High bcr-abl/gus(is) levels at diagnosis of chronic phase cml are associated with unfavorable responses to standard-dose imatinib. Clin Cancer Res 23(23): 7189-7198, 2017. PMID: 28928163. DOI: 10.1158/1078-0432.CCR-17-0962

16 Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG, Darnay BG, Lamotho B, Sun H, Talpaz M and Donato NJ: Association between imatinib-resistant bcr-abl mutation-negative leukemia and persistent activation of lyn kinase. J Natl Cancer Inst 100(13): 926-939, 2008. PMID: 18577747. DOI: 10.1093/jnci/djn188

17 Hantschel O, Rix U and Superti-Furga G: Target spectrum of the bcr-abl inhibitors imatinib, nilotinib and dasatinib. Leuk Lymphoma 49(4): 615-619, 2008. PMID: 18577747. DOI: 10.1080/10428190801896013

18 Stagno F, Vigneri P, Del Fabro V, Stella S, Massimino M, Berretta S, Cupri A, Consoli C, Messina L, Tirro E, Messina A and Di Raimondo F: Successful nilotinib therapy in an imatinib-resistant chronic myeloid leukemia patient displaying an intron-derived insertion/truncation mutation in the bcr-abl kinase domain. Leuk Res 33(9): e157-158, 2009. PMID: 19406471. DOI: 10.1016/j.leukres.2009.03.040

19 Tirro E, Massimino M, Stella S, Zammit V, Consoli ML, Pennisi MS, Vitale SR, Romano C, Pirrosc A, Martinez E, S DIG, Puma A, F DIR, Manzella L and Stagno F: Efficacy of nilotinib in a cmi patient expressing the three-way complex variant translocation t(2;9;22). Anticancer Res 39(7): 3949-3954, 2019. PMID: 31262926. DOI: 10.21873/anticanceres.13548

20 Stagno F, Vigneri P, Stagno F, Vigneri P, Del Fabro V, Stella S, Berretta S, Massimino M, Tirro E, Messina A and Di Raimondo F: Uncommon long-term survival in a patient with chronic myeloid leukemia. Acta Oncol 48(8): 1215-1216, 2009. PMID: 19863235. DOI: 10.3109/02841860903156475

21 Boschelli F, Arndt K and Gambacorti-Passerini C: Bosutinib: A review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer 46(10): 1781-1789, 2010. PMID: 24479382. DOI: 10.1016/j.ejca.2010.02.032

22 Buffa P, Romano C, Pandini A, Massimino M, Tirro E, Di Raimondo F, Mannella L, Fraternali F and Vigneri PG: Bcr-abl residues interacting with ponatinib are critical to preserve the tumorigenic potential of the oncoprotein. FASEB J 28(3): 1221-1236, 2014. PMID: 24297701. DOI: 10.1096/fj.13-236992

23 Zhou T, Commodore L, Huang WS, Yang W, Thomas M, Keats J, Xu Q, Rivera VM, Shakespeare WC, Clackson T, Dalgarno DC and Zhu X: Structural mechanism of the pan-bcr-abl inhibitor ponatinib (ap24534): Lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des 77(1): 1-11, 2011. PMID: 21187377. DOI: 10.1111/j.1747-0285.2010.01054.x

24 Massimino M, Tirro E, Stella S, Frasca F, Vella V, Sciacca L, Pennisi MS, Vitale SR, Puma A, Romano C and Manzella L: Effect of combined epigenetic treatments and ectopic nis expression on undifferentiated thyroid cancer cells. Anticancer Res 38(12): 6653-6662, 2018. PMID: 30504373. DOI: 10.21873/anticanceres.13032

25 Wylie AA, Schoepfer J, Furet P, Marzinzik AL, Pelle X, Donovan J, Zhu W, Buonamici F, Petruzzelli L, Vanasse KG, Warmuth M, Hofmann F, Keen NJ
and Sellers WR: The allosteric inhibitor abl001 enables dual targeting of bcr-abl. Nature 543(7647): 733-737, 2017. PMID: 28329763. DOI: 10.1038/21702
27 Hata AN, Engelman JA and Faber AC: The bcl2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov 5(5): 475-487, 2015. PMID: 25895919. DOI: 10.1118/2015-CD-15-0011
28 Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minijaund M, Ashton JM, Pei S, Grose V, D’Oywer KM, Liesveld JL, Brookes PS, Becker MW and Jordan CT: Bcl-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3): 329-341, 2013. PMID: 23333149. DOI: 10.1016/j.stem.2012.12.013
29 Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Gladman MJ, Hata AN, Engelman JA and Faber AC: The bcl2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov 5(5): 475-487, 2015. PMID: 25895919. DOI: 10.1118/2015-CD-15-0011
30 Kuroda J, Kimura S, Strasser A, Andreff M, O’Reilly LA, Ashihara E, Kamitsui Y, Yokota A, Kawata E, Takeuchi M, Tanaka R, Tabe Y, Taniwaki M and Maekawa T: Apoptosis-based dual molecular targeting by inmo-406, a second-generation bcr-abl inhibitor, and bcl-737, an inhibitor of antiapoptotic bcl-2 proteins, against bcr-abl-positive leukemia. Cell Death Differ 14(9): 1667-1677, 2007. PMID: 17510658. DOI: 10.1038/sj.cell.4402168
31 Ko TK, Chuaht CT, Huang JW, Ng KP and Ong ST: The bcl2 inhibitor abt-199 significantly enhances imatinib-induced cell death in chronic myeloid leukemia progenitors. Oncotarget 5(19): 9033-9038, 2014. PMID: 25333252. DOI: 10.18632/oncotarget.1925
32 Stella S, Tirro E, Massimino M, Vitale SR, Russo S, Pennisi MS, Puma A, Romano C, S DIG, Innao V, Stagno F, F DIR, Musolino C and Manzella L: Successful management of a pregnant patient with chronic myeloid leukemia receiving standard dose imatinib. In Vivo 33(5): 1593-1598, 2019. PMID: 31471409. DOI: 10.21873/inivo.11641
33 Massimino M, Consoli ML, Mesuraca M, Stagno F, Tirro E, Stella S, Pennisi MS, Romano C, Buffa P, Bond HM, Morrone G, Sciaccia L, Di Raimondo F, Mannelli L and Vigneri P: Irf5 is a target of bcr-abl kinase activity and reduces cml cell proliferation. Carcinogenesis 35(5): 1123-1143, 2014. PMID: 24445143. DOI: 10.1093/carcin/bgu013
34 Bradeen HA, Eide CA, O’Hare T, Johnson KJ, Willis SG, Lee FY, Druker BJ and Deininger MW: Comparison of imatinib mesylate, dasatinib (bms-354825), and nilotinib (amn107) in an n-ethyl-n-nitrosourea (enu)-based mutagenesis screen: High efficacy of drug combinations. Blood 108(7): 2332-2338, 2006. PMID: 16772610. DOI: 10.1182/blood-2006-02-004580
35 Saunders V, Wang J, Lu L, Eadie LN, McLean JA, Goyne JM, Yeung DT, White DL and Hughes TP: A low concentration of abl001 potentiates in vitro tk-induced bcr-abl kinase inhibition in cml cells. Blood 128: 1121, 2016. DOI: 10.1182/blood.V128.22.1121.1121
36 Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, Leverson JD, Zhang B, Bhatia R, Huang X, Cortes J, Kantarjian H, Konopleva M and Andreff M: Combined targeting of bcl-2 and bcr-abl tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med 8(355): 355ra117, 2016. PMID: 27605552. DOI: 10.1126/scitranslmed.aag1180
37 Tirro E, Massimino M, Romano C, Pennisi MS, Stella S, Vitale SR, Fidilio A, Manzella L, Parrinello NL, Stagno F, Palumbo GA, La Cava P, Romano A, Di Raimondo F and Vigneri PG: Chk1 inhibition restores inotuzumab ozogamicin citotoxicity in cd22-positive cells expressing mutant p53. Front Oncol 9(57), 2019. PMID: 30834235. DOI: 10.3389/fonc.2019.00057
38 Tirro E, Stella S, Massimino M, Zammit V, Pennisi MS, Vitale SR, Romano C, Di Gregorio S, Puma A, Di Raimondo F, Stagno F and Manzella L: Colony-forming cell assay detecting the coexpression of jak2v617f and bcr-abl in the same clone: A case report. Acta Haematol 141(4): 261-267, 2019. PMID: 30965317. DOI: 10.1159/000496821
39 Chan BA and Hughes BG: Targeted therapy for non-small cell lung cancer: Current standards and the promise of the future. Transl Lung Cancer Res 4(1): 36-54, 2015. PMID: 25806345. DOI: 10.3978/j.issn.2218-6751.2014.05.01
40 Manzella L, Massimino M, Stella S, Tirro E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, Di Gregorio S, Russo M, Malandrino P and Vigneri P: Activation of the igf axis in thyroid cancer: Implications for tumorigenesis and treatment. Int J Mol Sci 20(13), 2019. PMID: 31269742. DOI: 10.3390/ijms20133258
41 Pelster MS and Amaria RN: Combined targeted therapy and immunotherapy in melanoma: A review of the impact on the tumor microenvironment and outcomes of early clinical trials. Ther Adv Med Oncol 11: 1758835919830826, 2019. PMID: 30815041. DOI: 10.1177/1758835919830826
42 Tirro E, Martorana F, Romano C, Vitale SR, Motta G, Di Gregorio S, Massimino M, Pennisi MS, Stella S, Roma A, Gian F, Russo M, Manzella L and Vigneri P: Molecular alterations in thyroid cancer: From bench to clinical practice. Genes (Basel) 10(9), 2019. PMID: 31540307. DOI: 10.3390/genes10090709
43 Poulet ME, Iida A, Sanzón M and Ligon KL: Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann Oncol 28(7): 1457-1472, 2017. PMID: 28863449. DOI: 10.1093/annonc/mdy010
44 Peters GJ: From ‘targeted therapy’ to targeted therapy. Anticancer Res 39(7): 3341-3345, 2019. PMID: 31262854. DOI: 10.21873/anticancerres.13476
45 Zheng B, Qu Y, Wang J, Shi Y and Yan W: Pathogenic and targetable genetic alterations in resected recurrent undifferentiated pleomorphic sarcomas identified by targeted next-generation sequencing. Cancer Genomics Proteomics 16(3): 221-228, 2019. PMID: 31018952. DOI: 10.21873/cgp.20127
46 Massimino M, Stella S, Tirro E, Romano C, Pennisi MS, Puma A, Manzella L, Zanghi A, Stagno F, Di Raimondo F and Vigneri P: Non abl-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer 17(1): 56, 2018. PMID: 29455672. DOI: 10.1186/s12943-018-0805-1

Received December 12, 2019
Revised December 19, 2019
Accepted January 5, 2020