Defects, diffusion and dopants in the ceramic mineral “Lime-Feldspar”

Sivanujan Suthaharan*, Poobalasuntharam Iyngaran*, Navaratnarajah Kuganathan†,‡,§ and Alexander Chronene†

*Department of Chemistry, University of Jaffna, Thirunelvely, Jaffna, Sri Lanka; †Department of Materials, Imperial College London, London, UK; ‡Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK

ABSTRACT

Calcium aluminosilicate, CaAl$_2$Si$_2$O$_8$, is a promising ceramic material that has found applications in several areas, such as glass production and petrology. Atomistic scale simulation techniques are used to study the intrinsic defects, Ca-ion migration paths and doping behavior in CaAl$_2$Si$_2$O$_8$. The most favorable defect is the Al–Si anti-site in agreement with the experimental observation. The O-Frenkel is the second most favorable defect. The Ca-Frenkel is higher in energy only by 0.62 eV than the O-Frenkel. Long-range Ca-ion migration is observed in the ac plane with the activation energy of 2.84 eV suggesting that Ca-ion diffusion in this material is slow. The prominent isovalent dopant on the Ca site is the Sr, which was experimentally substituted on the Ca site to prevent phase transformation. The formation of Ca interstitials and oxygen vacancies is favored by Fe$^{3+}$ doping on the Si site. The favorable tetravalent dopant on the Si site and the Al site to form Ca vacancies is the Ge.

1. Introduction

Anorthite (CaAl$_2$Si$_2$O$_8$), also termed lime-feldspar, is a naturally occurring rock-forming mineral found in many countries including Italy, Japan, USA, India and Sri Lanka [1–3]. It is a potential ceramic material in the industrial preparation of heat exchangers, feldspar glasses, electronic substrates and materials required for biomedicine [4–7]. As its crystalline phase, it can improve the translucent property of bone china, there is an increasing attention to prepare anorthite-based porcelain to make tableware with high heat stability [8]. Furthermore, calcium-bearing minerals are of interest in the development of electrode materials for rechargeable Ca-ion batteries [9]. Though CaAl$_2$Si$_2$O$_8$ was not studied for this purpose yet, theoretical investigation on other Ca-based minerals is available [10–12].

There have been extensive research efforts to study its physical and mechanical properties during the past few decades in order to develop this ceramic material for industrial applications [13–15]. Anorthite porcelain synthesized by Pal et al. [13] exhibited low thermal expansion coefficient inferring its usage in cooking wares. Le Parc et al. [16] used Raman spectroscopy and neutron scattering experiment to compare the rigidity and disorder behavior of CaAl$_2$Si$_2$O$_8$ glass structure with that of the anorthite crystal structure. At high temperatures and pressures, this material undergoes partial Al/Si disorder leading to phase transition [17,18]. The addition of Fe$_2$O$_3$ not only improves its crystalline behavior but also provides color to its glassy form [18,19]. McGuinn et al. [20] have shown that doping of Sr$^{2+}$ or Ba$^{2+}$ on the Ca site in CaAl$_2$Si$_2$O$_8$ can prevent phase transition and increase its symmetry [21,22]. Though there are many experimental studies available on this material, only a few theoretical works have been reported. Molecular dynamics simulation has been carried by Karki et al. [21] to look at the diffusion and viscosity of molten CaAl$_2$Si$_2$O$_8$ at different temperatures and pressures. In a density functional theory (DFT) study by Zhang et al. [23], the surface structure of anorthite was considered for the adsorption of CO$_2$ molecules and the influence of water on its adsorption predicted.

The fundamental understanding of intrinsic and extrinsic defects in CaAl$_2$Si$_2$O$_8$ can be useful to optimize its performance in ceramic and battery industries. Atomistic simulations based on the classical pair potentials can provide valuable information about defect processes including cation disorder, self-diffusion and promising dopants in CaAl$_2$Si$_2$O$_8$. This simulation technique has been successfully used to model crystalline materials over the last two decades and has provided experiments with unique insight and prediction [24–28]. To the best of our knowledge, there is no simulation study on the defects, diffusion and dopant reported for CaAl$_2$Si$_2$O$_8$ in the literature. In this work, we report the results of intrinsic defect processes, Ca-diffusion pathways together with activation energies and solution of MO (M = Co, Mn, Ni, Mg, Zn, Sr and Ba), M$_2$O$_3$ (M = Ga, Fe, In, Sc, Y, Gd and La) and MO$_2$ (M = Ge, Ti, Sn, Zr and Ce) in CaAl$_2$Si$_2$O$_8$.
Table 1. Buckingham potential parameters [30,31] used in the classical simulations of CaAl2Si2O8. Two-body \(\Phi (r_{ij}) = A \exp \left(- \frac{r_{ij}}{\rho} \right) - C/r_{ij}^6 \) where \(A, \rho \) and \(C \) are parameters that were selected carefully to reproduce the experimental data. The values of \(Y \) and \(K \) represent the shell charges and spring constants. A very large spring constant means there is no shell charge and the atom is treated as the core.

Interaction	\(A/\text{eV} \)	\(\rho/\text{Å} \)	\(C/\text{eV} \cdot \text{Å}^6 \)	\(Y/\text{e} \)	\(K/\text{eV} \cdot \text{Å}^{-2} \)
\(\text{Ca}^{2+} - \text{O}^{2-} \)	1090.40	0.34370	0.00	3.135	110.20
\(\text{Al}^{3+} - \text{O}^{2-} \)	1114.90	0.31180	0.00	3.000	99.9990
\(\text{Si}^{4+} - \text{O}^{2-} \)	1283.91	0.32052	10.66	4.000	99.9990
\(\text{O}^{2-} - \text{O}^{2-} \)	22764.00	0.1490	27.89	2.040	27.29

Figure 1. Crystal structure of triclinic CaAl2Si2O8 (space group \(\text{P}\bar{1} \)).

2. Computational methods

All calculations were performed using a classical pair-wise potential simulation code GULP (General Utility Lattice Program) [29]. Interactions between ions were modeled using long-range (Coulombic) and short-range (Pauli repulsion and van der Waals attraction). The Buckingham potentials were used to model short-range repulsive forces (see Table 1) [30,31]. Full geometry relaxations were carried out using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [32]. Forces on all ions in the relaxed configurations were smaller than 0.001 eV/Å. The Mott–Littleton method [33] was used to model point defects. The methodology to calculate migration ion pathway together with activation energy has been well explained in the previous simulation work [34]. The current methodology treats ions as a spherical shape with full charge at the dilute limit. Therefore, it is anticipated that calculated defect energies will be overestimated. However, the trend in relative energies will be consistent [35].

3. Results and discussion

3.1. Crystal structure of \(\text{CaAl}_2\text{Si}_2\text{O}_8 \)

The crystal structure of CaAl2Si2O8 (lattice parameters: \(a = 8.186 \) Å, \(b = 12.876 \) Å, \(c = 14.182 \) Å, \(\alpha = 93.3^\circ \), \(\beta = 115.79^\circ \) and \(\gamma = 91.12^\circ \)) belongs to triclinic phase with \(\text{P}\bar{1} \) symmetry as reported by Bruno et al. [36].

Table 2. Calculated and experimental lattice parameters of CaAl2Si2O8

| Parameter | Calculated | Experiment [36] | \(|\Delta|/\% \) |
|-----------|------------|-----------------|-----------------|
| \(a/\text{Å} \) | 8.35 | 8.19 | 2.09 |
| \(b/\text{Å} \) | 12.93 | 12.88 | 0.39 |
| \(c/\text{Å} \) | 14.04 | 14.18 | 1.02 |
| \(\alpha^\circ \) | 92.26 | 93.30 | 1.11 |
| \(\beta^\circ \) | 114.84 | 115.79 | 0.82 |
| \(\gamma^\circ \) | 90.78 | 91.12 | 0.37 |
Al and Si form tetrahedral units and they are interlinked by sharing their corners (see Figure 1).

Both ionic positions and lattice constants were relaxed (full geometry optimization) to obtain equilibrium lattice constants and compare with corresponding experimental values in order to validate the choice of potential parameters in this study. Initial and final lattice parameters are reported in Table 2. There is a good agreement between the calculated and experimental lattice parameters indicating the efficacy of the potentials.

3.2. Intrinsic defect processes

Defects play a significant role in mechanical and diffusion properties of a material. A series of isolated point defects (vacancies and interstitials) were calculated and then they were combined to calculate Frenkel and Schottky defect formation energies. The anti-site defects were also considered in the form of isolated and cluster. Impurity defects (e.g., Al\textsubscript{Si} and Si\textsubscript{Al}) were considered separately and their defect energies were combined to calculate the anti-site (isolated) reaction energy. In the case of cluster form, both defects were considered simultaneously. The difference between the defect energies \((E_{\text{cluster}} - E_{\text{isolated}}) \) is defined as binding energy. Defect reaction energies as written using Kröger-Vink notation [37] are shown in equations 1–14.

\[
\begin{align*}
\text{CaFrenkel: } & \text{Ca}\text{}\text{Ca} \rightarrow V\text{Ca} + \text{Ca}^{**} \\
\text{AlFrenkel: } & \text{Al}\text{Al} \rightarrow V\text{Al} + \text{Al}^{***} \\
\text{SiFrenkel: } & \text{Si}\text{Si} \rightarrow V\text{Si} + \text{Si}^{****} \\
\text{O Frenkel: } & O\text{O} \rightarrow V\text{O}^{**} + O^{\text{**}}
\end{align*}
\]

Defect process	equation	Reaction energy (eV)	Reaction energy (eV)/defect
Ca Frenkel	1	4.00	3.63
Al Frenkel	2	12.72	6.36
Si Frenkel	3	22.30	11.15
O Frenkel	4	6.02	3.01
Schottky	5	96.59	7.43
CaO Schottky	6	9.06	4.53
Al\textsubscript{2}O\textsubscript{3} Schottky	7	8.80	4.40
Si\textsubscript{2}O\textsubscript{3} Schottky	8	18.10	9.05
Ca/Al anti-site (isolated)	9	8.58	4.29
Ca/Al anti-site (cluster)	10	6.56	3.28
Ca/Si anti-site (isolated)	11	14.24	7.12
Ca/Si anti-site (cluster)	12	8.48	4.24
Al/Si anti-site (isolated)	13	1.72	0.86
Al/Si anti-site (cluster)	14	0.78	0.39

Schottky: \(\text{Ca}_{\text{Ca}} \rightarrow 2\text{Al}_{\text{Al}} + 2\text{Si}_{\text{Si}} + 8\text{O}_{\text{O}} \rightarrow V_{\text{Ca}} + 2V_{\text{Al}} + 2V_{\text{Si}} + 8V_{\text{O}}^{**} + \text{CaAl}_{2}\text{Si}_{2}\text{O}_{8} \)

\[
(5)
\]

CaOSchottky: \(\text{Ca}_{\text{Ca}} \rightarrow O_{\text{O}}^{\text{**}} + V_{\text{Ca}} + V_{\text{O}}^{**} + \text{CaO} \)

\[
(6)
\]

\(\text{Al}_{2}\text{O}_{3}\) Schottky: \(2\text{Al}_{\text{Al}} + 3O_{\text{O}}^{\text{**}} \rightarrow 2V_{\text{Al}} + 3V_{\text{O}}^{**} + \text{Al}_{2}\text{O}_{3} \)

\[
(7)
\]

\(\text{SiO}_{2}\) Schottky: \(\text{Si}_{\text{Si}}^{\text{**}} + 2O_{\text{O}}^{\text{**}} \rightarrow V_{\text{Si}}^{\text{**}} + 2V_{\text{O}}^{**} + \text{SiO}_{2} \)

\[
(8)
\]

Table 3. Reaction energies calculated for Schottky, Frenkel and anti-site defects.

Table 3 reports the reaction energies calculated for different defect processes. The Al-Si anti-site cluster is the most dominant defect inferring the presence of cation intermixing (Al on the Si site and Si on the Al site \(\text{Si}_{\text{Al}} \) and \(\text{Al}_{\text{Si}} \)) in \(\text{CaAl}_{2}\text{Si}_{2}\text{O}_{8} \). This result is in agreement with the experimental observation of Al/Si disorder at high temperatures [17,18]. Exoergic binding energy of \(-0.47\) eV shows that isolated defects \(\text{Al}_{\text{Si}} \) and \(\text{Si}_{\text{Al}} \) are not stable and they aggregate to form clusters \(\text{Al}_{\text{Si}} : \text{Si}_{\text{Al}}^{\text{X}} \) without an energy penalty. In many oxide materials, the anti-site defect has been identified experimentally and theoretically [38–41]. The O Frenkel is identified as the second most favorable defect energy process. However, this process would require moderate temperature. Other Frenkel and Schottky defect processes exhibit high endothermic energies implying that they are highly unlikely to occur at normal temperatures. The formation of CaO in this material was considered via CaO Schottky-like reaction (equation 6). The formation energy for this process is \(4.53\) eV per defect suggesting that formation of \(V_{\text{Ca}}^{\text{**}} \) and \(V_{\text{O}}^{**} \) in this material is only possible at high temperatures.

3.3. Calcium ion diffusion

The performance of a material is partly dependent on its diffusion properties. The diffusion of Ca-ions in this material can be of interest in the application of Ca-ion batteries. Materials exhibiting long-range Ca-ion diffusion with low activation energy are one of the essential
conditions for constructing a promising Ca-ion battery. However, it is expected that the Ca-ion diffusion in Ca-bearing oxide materials would be slow due to its ion size with a double positive charge. Previous quantum mechanical simulations [10,42] analyzed the suitability of minerals as electrode materials for Ca-ion batteries and high activation energies of migration confirmed the slow diffusivity ion of Ca-ions. Atomistic simulations based on the classical pair potentials can provide useful information on diffusion pathways and activation energies as this information is generally difficult from the experiment. The present methodology has been successfully applied to various ionic materials to calculate migration pathways together with activation energies [11,12,25,26]. For example, there is an excellent agreement between calculated and experimentally determined Li-ion diffusion pathway in LiFePO₄ [43,44].

Five different local Ca hops (see Figure 2) were identified for the vacancy-mediated Ca-ion migration. Local Ca hops with their separations and corresponding activation energies are reported in Table 4. Activation energies for individual Ca hops are greater than 2.50 eV suggesting that Ca-ion diffusion in this material is very limited. Figure 3 shows the energy profile diagrams calculated for local hops. Local hops were connected in different ways to construct long-range diffusion pathways (see Table 5). In all cases, the movement of Ca-ions is observed in the ac plane. The pathway with the lowest activation energy of 2.84 eV is noted for D→E→D→B. Other pathways exhibit slightly higher activation energies only by ~0.13 eV than that calculated for the lowest energy pathway. We should add that we have considered a range of other paths with longer Ca-Ca hopping distances of >5.75 Å, but these were all found to have prohibitively high migration barriers (>4 eV).

3.4. Solution of dopants

The performance of a material is partially dominated by the substitutional dopants. A range of dopants were considered for screening and predicting promising dopants that can be verified experimentally. Appropriate charge-compensation defects and lattice energies were introduced to calculate solution energies. In the supplementary information, Buckingham potentials used for dopants are provided (see Table S1).

3.4.1. Divalent dopants

First, divalent dopants (M = Co, Mn, Ni, Mg, Zn, Sr and Ba) were considered on the Ca site. The following equation was used to calculate the solution energy.

\[
MO + Ca^{X}_{Ca} \rightarrow M^{X}_{Ca} + CaO
\]

(15)

Exothermic solution energy is calculated for Sr²⁺ and Ba²⁺ suggesting that they are the most prominent dopants on the Ca site (see Table 6). Possible composition that can be available in nature or from experimental preparation is Ca₁₋ₓMₓAl₂Si₂O₈ (M = Sr or Ba and 0.0 < x < 1.0). Experimental preparation of Ca₁₋ₓSrₓAl₂Si₂O₈ has been considered to prevent the distortion of monoclinic and triclinic forms of CaAl₂Si₂O₈ [20]. Other
dopants exhibit endoergic solution energies. They are unlikely to be doped at normal temperatures. High preference of Sr$^{2+}$ can be due to its ionic radius (1.18 Å) close to the ionic radius of Ca$^{2+}$ (1.00 Å).

3.4.2. Trivalent doping

Next, a range of trivalent dopants ($M = \text{Ga, Fe, In, Sc, Y, Gd and La}$) were considered on the Al site. The following equation explains the defect process in which trivalent dopants are substituted on the Al site without introducing charge compensating defects.

$$M_2O_3 + 2Al_{Al}^{3+} \rightarrow 2M_{Al}^{3+} + Al_2O_3 \quad (16)$$

Table 7 reports the solution energies calculated for this process. The most favorable dopant is the Fe$^{3+}$ with the solution energy of 0.23 eV per dopant. This dopant is particularly important in the glass industry as the
presence of a small amount of Fe$^{3+}$ in the feldspar glasses makes them colorful [18]. The Sc$^{3+}$ is identified as the second most favorable dopant and its solution energy is 0.71 eV. High positive solution energies (>1 eV) are calculated for the other dopants suggest that this process is possible at high temperatures.

Thereafter, the Si site was considered for doping of trivalent dopants. In this case, negative charges are introduced in the lattice and they are compensated by positively charged Ca interstitials. This process will lead to the formation of additional Ca in the lattice. The formation of Ca interstitials can increase the capacity of CaAl$_2$Si$_2$O$_8$ and enhance the diffusion of Ca ion. The following equation was used to calculate the solution energy for this process.

$$\text{M}_2\text{O}_3 + 2\text{Si}^{4+} + \text{CaO} \rightarrow 2\text{M}^{3+}_1 + \text{Ca}^{4+} + 2\text{SiO}_2$$ \hspace{1cm} (17)

Calculated solution enthalpies are shown in Table 8. The most favorable dopant is Fe$^{3+}$ with the solution energy of 3.27 eV though its solution energy is endothermic. The possible composition would be Ca$_{1+y}$AlFe$_{1-x}$Si$_2$O$_8$ (0.0 < y < 1.0). The second most favorable dopant is In$^{3+}$. Other dopants exhibit high solution energies (>4 eV) meaning they are highly unlikely to take place at normal temperatures.

Trivalent dopants on the Si site can introduce oxygen vacancies as charge compensating defects as described by the following equation.

$$\text{M}_2\text{O}_3 + 2\text{Si}^{4+} + \text{CaO} \rightarrow 2\text{M}^{3+} + \text{V}^{0} + 2\text{SiO}_2$$ \hspace{1cm} (18)

Calculations reveal that the Fe$^{3+}$ is the most favorable dopant (see Table 8). The trend in solution energy is the same as calculated for Ca interstitial as charge compensating defect.

3.4.3. Tetravalent doping

Finally, tetravalent dopants (M = Ge, Ti, Sn, Zr and Ce) were considered on the Si site. Solution energy was calculated using the following reaction equation.

$$\text{MO}_2 + \text{Si}^{4+} \rightarrow \text{M}^{4+} + \text{SiO}_2$$ \hspace{1cm} (19)

Table 10 reports the calculated solution energies. The promising dopant for this process is the Ge$^{4+}$. The preference of Ge$^{4+}$ is due to the ionic radius of Si$^{4+}$ (0.26 Å) is close to the ionic radius of Ge$^{4+}$ (0.39 Å). Endoergic solution energy indicates that energy should be provided in the form of heat for this process. This is due to the stronger Si-O bonds present in the SiO$_4$ unit than Ge-O bonds present in GeO$_4$ unit. High solution enthalpies are observed for other dopants. In particular, solution enthalpies for TiO$_2$ and CeO$_2$ are approximately 3.50 eV, respectively, suggesting that they are highly unlikely to occur.

Formation of calcium vacancies was considered by doping of tetravalent dopants on the Al site as explained by the following equation.
2MO₂ + 2Al₄⁺⁺ₐlt + Ca₃⁺ → 2M⁺ₐlt + \(\Delta \)Ca + Al₂O₃ \((20) \)

Favorable dopant for this process is the Ge⁴⁺ (see Table 10). Finally, tetravalent dopants \(M = Ge, Ti, Sn, Zr \) and Ce were considered on the Si site. Solution energy was calculated using the following reaction equation.

Formation of Ca vacancies is favored by the doping of Ge⁴⁺ though this process is endothermic with the solution energy of 2.50 eV. High solution energies (>3.50 eV) are calculated for other dopants meaning that they are highly unfavorable.

3.5. Ca-diffusion in the presence of dopants

Here we calculate the activation energies for Ca-ion diffusion in the presence of most favorable dopants (Sr²⁺ on the Ca site, Fe³⁺ on the Al site and Ge⁴⁺ on the Si site). Table 11 shows the activation energies for the local Ca hops and the long-range diffusion pathways. There is a very small reduction (by ~0.10 eV) in the activation energy in all cases. This small perturbation in the activation energies can be due to the ionic radius mismatch between host and guest ions. The current simulation considered the doping at dilute limit. Once the doping concentration increases the further reduction in the activation can be expected.

4. Conclusions

In this study, atomistic simulation techniques are used to understand the defect energetics, diffusion of Ca-ion and solution of dopants. The Al–Si anti-site is found to be the most dominant defect inferring the cation disorder in this material as observed in the experiment. The second most favorable defect is the O-Frenkel. The Ca-ion diffusion pathway takes place in the ac plane exhibiting low ionic conductivity. The candidate isovalent dopants on the Ca, Al and Si sites are Sr, Fe and Ge respectively. Additional Ca or oxygen vacancies can be introduced by doping Fe³⁺ on the Si site. The formation of calcium vacancies is favored by doping of Ge on the Al site. The present study aims to simulate further experimental work on the doped CaAl₂Si₂O₈.

Acknowledgments

Imperial College London, Coventry University and the University of Jaffna are acknowledged for providing high-performance computing facilities.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Navaratnarajah Kuganathan http://orcid.org/0000-0002-4826-5329

References

[1] King R. Minerals explained 23: Plagioclase feldspars. Geol. Today. 1997;13:117–20.
[2] Navaratnar SW. Feldspar and vein quartz mineralization in Srilanka: a possible post metamorphic mid-paleozoic pegmatitic-pseudomylonitic activity. J Geol Soc Srilanka. 2009;13:83–96.
[3] Navaratnar SW, Liyanage UJNI. Industrial applications of the minerals in the matele area and its future trends. Ceylon J Sci. 2014;18:17–26.
[4] Taylor M, Brown GE. Structure of mineral glasses—I. The feldspar glasses NaAlSi₂O₈, KAlSi₂O₈, CaAlSi₂O₈. Geochim Cosmochim Acta. 1979;43:61–75.
[5] Agathopoulos S, Tulyaganov DU, Marques PAAP, et al. The fluorapatite–anorthite system in biomedicine. Biomaterials. 2003;24:1317–1331.
[6] Kavalci S, Yalamač E, Akkurt S. Effects of boron addition and intensive grinding on synthesis of anorthite ceramics. Ceram Int. 2008;34:1629–1635.
[7] Kurama S, Ozel E. The influence of different CaO source in the production of anorthite ceramics. Ceramic Int. 2009;35:827–830.
[8] Ke S, Cheng X, Wang Y, et al. Dolomite, wollastonite and calcite as different CaO sources in anorthite-based porcelain. Ceram Int. 2013;39:4953–4960.
[9] Arroyo-de Dompablo ME, Pomrouch A, Johansson P, et al. Achievements, challenges, and prospects of calcium batteries. Chem Rev. 2020;120:6331–6357.
[10] Torres A, Luque FJ, Tortajada J, et al. Analysis of minerals as electrode materials for Ca-based rechargeable batteries. Sci Rep. 2019;9:9644.
[11] Kuganathan N, Ganeshalingam S, Choneos A. Defect, transport, and dopant properties of andradite garnet Ca₃Fe₂Si₃O₁₂. AIP Adv. 2020;10:075004.
[12] Kuganathan N, Choneos A. Defects and Dopants in CaFeSi2O6: Classical and DFT Simulations. Energies. 2020;13:1285.
[13] Pal M, Das S, Das SK. Anorthite porcelain: synthesis, phase and microstructural evolution. Bull Mater Sci. 2015;38:551–555.
[14] Harabi A, Zaiou S, Guechi A, et al. Mechanical properties of anorthite based ceramics prepared from kaolin DD2 and calcite. Cerâmica. 2017;63:311–317.
[15] Yasin Y, Mazlee MN, Norzilah AH, et al. The investigation of physical and mechanical properties of porous anorthite ceramics using statistical analysis. AIP Conf Proc. 2016;1756:090011.
[16] Le Parc R, Champagnon B, Dianoux J, et al. CaAl₂Si₂O₈ glass: low frequency Raman spectroscopy and neutron scattering. J Non-Cryst Solids. 2003;323:155–161.
[17] Angel RJ. Order-disorder and the high-pressure P₁-I transition in anorthite. Am Mineral. 1992;77:923–929.
[18] Aliyu ZS, Garkida AD, Ali EA, et al. Characterization of Feldspar by instrumental analytical techniques. In: characterization of minerals, metals, and materials 2015. Carpenter JS, Bai C, Escobedo JP, et al., editors. Cham: Springer International Publishing; 2016. p. 291–297.
[19] Chevrel MO, Giordano D, Potuzak M, et al. Physical properties of CaAl₂Si₂O₈-CaMgSi₂O₆–FeO–Fe₂O₃.
melts: analogues for extra-terrestrial basalt. Chem Geol. 2013;346:93–105.

[20] McGuinn MD, Redfern SAT. Ferroelastic phase transition along the join CaAl$_2$Si$_2$O$_6$SrAl$_2$Si$_2$O$_8$. Am Mineral. 1994;79:24–30.

[21] Kariki BB, Bohara B, Stixrud L. First-principles study of diffusion and viscosity of anorthite (CaAl$_2$Si$_2$O$_8$) liquid at high pressure. Am Mineralo. 2011;96(5–6):744–751.

[22] Noritake F, Kawamura K, Matsukage KN, Matsukage KN. Elastic anomalies of anorthite: molecular dynamics simulations. Phys Earth Planet Inter. 2015;244:32–41.

[23] Zhang F, Liu X, He X, et al. A periodic density functional theory study of adsorption of CO$_2$ on anorthite (001) surface and effect of water. J Theoretical Computational Chemi. 2019;18(2):1950010.

[24] Kuganathan N, Srikanth R, Fossati CMP, et al. Theoretical modeling of defects, dopants, and diffusion in the mineral ilmenite. Minerals. 2019;9:610.

[25] Kuganathan N, Iyangaran P, Vovk R, et al. Defects, dopants and Mg diffusion in MgTiO$_3$. Sci Rep. 2019;9:4394.

[26] Islam MS, Fisher CAJ. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev. 2014;43:185–204.

[27] Freeman CM, Catlow CRA. A computer modeling study of defect and dopant states in SnO$_2$. J Solid State Chem. 1990;85:65–75.

[28] Battle PD, Bush TS, Catlow CRA. Structures of quaternary Ru and Sb oxides by computer simulation. J Am Chem Soc. 1995;117:6292–6296.

[29] Gale JD, Rohl AL. The General Utility Lattice Program (GULP). Mol Simul. 2003;29:291–341.

[30] Lewis GV, Catlow CRA. Potential models for ionic oxides. J Phys C Solid State Phys. 1985;18:1149.

[31] Fisher CAJ, Kuganathan N, Islam MS. Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li$_2$MnSiO$_4$. J Mater Chem A. 2013;1:4207–4214.

[32] Gale JD. GULP: a computer program for the symmetry-adapted simulation of solids. J Chemi Soci Faraday Transact. 2014;43(4):185–204.

[33] Mott NF, Littleton MJ. Conduction in polar crystals I. Electrolytic conduction in solid salts. Trans. Faraday Soc. 1938;34:485–499.

[34] Kuganathan N, Ganeshalingam S, Chronoes A. Defects, diffusion, and dopants in Li$_2$Ti$_6$O$_{15}$: atomistic simulation study. Materials. 2019;12:2851.

[35] Grimes RW, Busker G, McCoy MA, et al. The effect of ion size on solution mechanism and defect cluster geometry. Ber Bunsen Phys Chem. 1997;101:1204–1210.

[36] Bruno E, Chiari G, Facchinielli A. Anorthite quenched from 1530°C: I. Structure refinement. Acta Crystallogr. B. 1976;32:3270–3280.

[37] Kröger FA, Vink HJ. Relations between the Concentrations of Imperfections in Crystalline Solids. In: Solid State Physics, Seitz F, Turnbull D. (Eds.), 956:3:307–435. New York: Academic Press.

[38] Armstrong AR, Kuganathan N, Islam MS, et al. Structure and lithium transport pathways in Li$_2$FeSiO$_4$ cathodes for lithium batteries. J Am Chem Soc. 2011;133:13031–13035.

[39] Kempaiah Devaraju M, Duc Truong Q, Hyodo H, et al. Synthesis, characterization and observation of antisite defects in LiNiPO$_4$ nanomaterials. Sci Reports. 1985;18:11041.

[40] Kuganathan N, Gkanas El, Chronoes A. Mg$_3$MnO$_4$ as a magnesium-ion battery material: defects, dopants and Mg-Ion transport. Energies. 2019;12:3213.

[41] Poltiaev VV, Petrenko AA, Nalbandyan VB, et al. Crystal structure, phase relations and electrochemical properties of monoclinic Li$_3$MnSiO$_4$. J Solid State Chem. 2011;183:13031–13035.

[42] Dompablo MEA, De Krich J, Nava-Avendaño J, et al. Atomic-scale and experimental evaluation of CaMn$_2$O$_4$ polymorphs as cathode materials for Ca ion batteries. Chem Mater. 2016;28:6886–6893.

[43] Islam MS, Driscoll DJ, Fisher CAJ, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO$_4$ olivine-type battery material. Chem Mater. 2005;17:5085–5092.

[44] Nishimura S-I, Kobayashi G, Ohoyama K, et al. Experimental visualization of lithium diffusion in Li$_x$FePO$_4$. Nat Mat. 2019;12(9):707.