Abstract. Inhibitor of nuclear factor-κB kinase subunit ε (IKKe) is an important signal regulator in the formation of abdominal aortic aneurysm (AAA). However, the underlying mechanism remains to be elucidated. Therefore, the present study aimed to investigate the mechanism underlying IKKe function in AAA formation by studying apoptosis and autophagy in angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs). AngII was used to stimulate VSMCs for 24 h to simulate the process of AAA formation. VSMCs were transfected with IKKe small interfering RNA to investigate the effect of IKKe on AAA formation, cell apoptosis and autophagy. IKKe deficiency led to reduced mitochondrial damage and apoptosis in VSMCs in the early stage of apoptosis in vitro, as demonstrated using a JC-1 probe. IKKe deficiency also reduced autophagy and decreased the formation of autophagic vacuoles in VSMCs, demonstrated using transmission electron microscopy. The decrease in apoptosis caused by IKKe knockdown was reversed when the autophagic flow was blocked using bafilomycin A1. Western blot analysis further revealed that IKKe deficiency negatively regulated the ERK1/2 signaling pathway to reduce autophagy. Collectively, the results of the present study revealed that IKKe played a key role in apoptosis by inducing excessive autophagy, thereby potentially contributing to AAA formation. These findings further revealed the mechanism underlying IKKe function in the formation of AAA.

Introduction

Abdominal aortic aneurysm (AAA) is a complicated and dangerous cardiovascular disease characterized by high morbidity and mortality globally (1,2). In developing countries, the incidence of AAA rises to 3-4% in people aged over 65, and rupture of AAA causes ~4,500 deaths in the United States (1,2). Most AAA-related deaths are attributed to AAA rupture (3). Currently, surgery is the only treatment option for AAA; however, the benefits of surgery are limited by the aortic diameter (4). Moreover, AAA pathogenesis during formation and development is yet to be fully elucidated. Apoptosis of vascular smooth muscle cells (VSMCs) aggravates AAA progression at the histopathological level (5). Thus, it is necessary to explore new therapeutic approaches, such as inhibition of apoptosis in VSMCs, in order to minimize AAA progression.

Findings of previous studies report that AAA and atherosclerosis share similar histopathological characteristics (6,7). Inhibitor of nuclear factor-κB kinase subunit ε (IKKe) regulates a variety of pathophysiological processes associated with the occurrence of atherosclerosis, such as morphological changes and lipid accumulation in the aorta (8). It is also an important signal regulator that plays a crucial role in tumorigenesis, inflammation, metabolic disorders and the reduction-oxidation process (9). AAA is characterized by inflammatory cell infiltration and apoptosis of VSMCs (5). Therefore, it was inferred that IKKe plays an important role in AAA development. A previous study revealed that IKKe expression is significantly increased in patients with AAA (10). The results of another study indicated that the lack of IKKe reduced AAA formation by reducing apoptosis and inflammation in the abdominal aorta of mice (11). However, the mechanism underlying IKKe function remains unclear.

Autophagy and apoptosis are two key forms of cell death (12). In the cardiovascular system, autophagy protects blood vessels from dysfunction (13). However, excessive autophagy leads to cell death during the pathological state under ER stress (14). Myocardin regulates the apoptosis of VSMCs by regulating autophagy to promote the occurrence of aortic aneurysms (15). A previous study has reported that
the targeted knockdown of autophagy-related protein (ATG)7 or the autophagy inhibitor 3-methyladenine inhibited caspase activation and reduced apoptosis (16). Furthermore, a recent study postulated that IKKe is an autophagy-activating gene in breast cancer (17). Multiple autophagy-related genes, such as ATG5 and ATG7 are markedly upregulated in human aortic aneurysm disease (18). The present study investigated the effects of IKKe on autophagy and apoptosis in a VSMC model of AAA.

In the present study, loss of IKKe ameliorated angiotensin II (AngII)-induced cellular AAA model by inhibiting autophagy and apoptosis in VSMCs. This phenomenon was partially dependent on activated ERK1/2 signaling.

Materials and methods

Cell line and culture. Mouse thoracic aortic vascular smooth muscle cell (VSMCs; cat. no. CRL-2797) were obtained from the American Type Culture Collection and cultured in DMEM (Gibco; Thermo Fisher Scientific, Inc.) with 10% FBS (Gibco; Thermo Fisher Scientific, Inc.) and 1% antibiotic-antimycotic solution (100 U/ml penicillin and 100 µg/ml streptomycin). Cells were incubated in a humidified incubator at 37°C with 5% CO₂ (Thermo Fisher Scientific, Inc.). VSMCs were passaged 3-5 times and seeded in six-well plates at a density of 1.0x10⁴ cells/well. The following day, cells were treated with AngII (1 µmol/l; Sigma Aldrich; Merck KGaA) for 24 h.

Transfection. VSMCs at 60% confluence were cultured in six-well plates and transfected with IKKe small interfering (si) RNA (20 µmol/l; Shanghai GenePharma Co., Ltd.) for 6 h using Lipofectamine® 3000 (Invitrogen; Thermo Fisher Scientific, Inc.) according to the manufacturer's protocol. The siRNA was used to infect cells for 6 h at 37°C and cell medium was replaced with complete culture medium. The following day, cells were exposed to AngII for 24 h. The sequences were as follows: A sense, 5'-GCAUACUGAUGCUGCCATTT-3' and antisense, 5'-UAGCAGUGUAUCAGUAGCTT-3'; b sense, 5'-CCC ACAACAGCAUGACCAU TT-3' and antisense 5'-AUGGCAU GUGUUGUUGGTTT-3'; c sense, 5'-GCAACCUUGGC UCCUCAU TT-3' and antisense, 5'-AUGAGGAAGGCUAAGG UUGCTT-3' and the control sense, 5'-UUCUCGGAACG GUCCAGGTTT-3' and antisense, 5'-ACGUGACACGUUCG AGAATT-3'.

Western blot analysis. Total proteins of VSMCs were extracted using RIPA buffer (Beyotime Institute of Biotechnology) and their concentrations were determined using the BCA protein assay kit (cat. no. KGP902; Nanjing KeyGen Biotech Co., Ltd.). The proteins (30 µg per lane) were then separated via 10 and 12% SDS-PAGE, and the resultant bands were transferred onto PVDF membranes (Sigma-Aldrich; Merck KGaA). The membranes were blocked with 5% skimmed milk powder for 1 h at room temperature and subsequently incubated with primary antibodies at 4°C overnight. The antibodies included anti-IKKε (1:1,000; cat. no. 3416S; Cell Signaling Technology, Inc.), anti-LC3B (1:2,000; cat. no. ab51520; Abcam), anti-P62 (1:1,000; cat. no. 23214S; Cell Signaling Technology, Inc.), anti-ATG7 (1:1,000; cat. no. 8558S; Cell Signaling Technology, Inc.), anti-Bax (1:1,000; cat. no. 2772S; Cell Signaling Technology, Inc.), anti-cleaved (c)-caspase-3 (1:1,000; cat. no. 9661S; Cell Signaling Technology, Inc.), anti-caspase-9 (1:1,000; cat. no. 9508T; Cell Signaling Technology, Inc.), anti-p38 (1:1,000; cat. no. 9212S; Cell Signaling Technology, Inc.), anti-phosphorylated (p)-p38 (1:1,000; cat. no. 4511S; Cell Signaling Technology, Inc.), anti-MEK1/2 (1:1,000; cat. no. 9122S; Cell Signaling Technology, Inc.), anti-p-MEK1/2 (1:1,000; cat. no. 9154S; Cell Signaling Technology, Inc.), anti-ERK1/2 (1:1,000; cat. no. 4695S; Cell Signaling Technology, Inc.), anti-p-ERK1/2 (1:1,000; cat. no. 4370S; Cell Signaling Technology, Inc.) and anti-GAPDH antibody (1:5,000; cat. no. 8884S; Cell Signaling Technology, Inc.). The PVDF membranes were then incubated with secondary antibodies, including HRP-anti-mouse IgG (1:5,000; cat. no. HRP-60004; ProteinTech Group, Inc.) and HRP-anti-Rabbit IgG (1:5,000; cat. no. 7074P2; Cell Signaling Technology, Inc.) for 1 h at room temperature. The protein bands were subsequently visualized using chemiluminescent HRP Substrate (cat. no. P90720; MilliporeSigma) and captured on a Hyperfilm (Amersham; Cytiva), and the results were analyzed using ImageJ software (version 1.8.0; National Institutes of Health) for semi-quantification of the mean gray value of each blot.

Flow cytometry analysis. Apoptosis was measured using the Annexin-V/PI double staining method. VSMCs were seeded in six-well plates at a density of 1.0x10⁴ cells/well and treated with AngII for 24 h, washed with PBS, and subsequently trypsinized to obtain a single-cell suspension. The Annexin V-FITC Apoptosis Detection Kit (Nanjing KeyGen Biotech Co., Ltd.) was used to stain the cells according to the manufacturer's protocol. Apoptotic cells were subsequently evaluated using a flow cytometer (BD FACSCalibur™; BD Biosciences). The results were analyzed using ModFit LT version 5.0 (Verity Software House, Inc.).

Transmission electron microscopy. VSMCs were centrifuged to form clusters at 67 x g and room temperature for 5 min, and subsequently fixed with 2.5% glutaraldehyde at 4°C overnight. Cells were further fixed in 1% buffered osmium tetroxide and dehydrated in graded ethanol. Cluster sections (60-70 nm) were double stained with 2% uranyl acetate for 2 h at room temperature and lead citrate for 5 min at room temperature. The samples were examined under a JEOL JEM-1010 transmission electron microscope (JEOL, Ltd.). The autophagosomes were manually counted.

Mitochondrial membrane potential analysis. The JC-1 probe (Beyotime Institute of Biotechnology) was employed to measure mitochondrial depolarization in VSMCs. The cells were first cultured with AngII in six-well plates at a density of 1.0x10⁴ cells/well for 24 h and subsequently incubated with an equal volume of JC-1 staining solution (5 pg/ml) at 37°C for 20 min. Cells were then rinsed twice with PBS, followed by monitoring of the mitochondrial membrane potentials by determining the relative amounts of dual emissions from mitochondrial JC-1 monomers and aggregates. Mitochondrial membrane potentials were monitored using an Olympus (Olympus Corporation) under Argon-ion 488 nm laser excitation. An increase in the ratio
of green/red (488/594 nm) fluorescence intensity indicated mitochondrial depolarization. The results were analyzed using ImageJ software (version 1.8.0; National Institutes of Health).

Autophagic flux analysis. VSMCs were first treated with bafilomycin A1 (Baf-A1; 400 nM; Selleck Chemicals) for 4 h prior to AngII treatment as previously described, to block autophagosome-lysosome fusion. Autophagic flux was measured via western blot analysis, as previously described.

Statistical analysis. Data are presented as the mean ± standard error. Differences between groups were determined using ANOVA followed by Tukey’s post hoc test. Comparisons between two groups were performed using a paired Student’s t-test. All statistical analyses were performed using GraphPad Prism 6.0 software (GraphPad Software, Inc.). P<0.05 was considered to indicate a statistically significant difference.

Results

IKKe knockdown attenuates AngII-induced apoptosis in VSMCs. IKKe deficiency has been indicated to attenuate AAA formation in mice by inhibiting apoptosis (11). In the present study, VSMCs were transfected with siRNA to knock down IKKe, and were subsequently exposed to AngII for 24 h to elucidate the role of IKKe in apoptosis in vitro. The sequences of IKKe siRNA with the highest knockdown efficiency were selected (Fig. S1A and B). IKKe knockdown efficiency in VSMCs was 40-60% compared with the control group. (Fig. 1A and B). Western blot analysis revealed that IKKe knockdown reduced the expression of caspase-9, c-caspase-3 and Bax in VSMCs after induction with AngII (Fig. 1A and B). The analysis of the apoptosis of VSMCs detected by flow cytometry revealed that IKKe knockdown reduced the apoptosis of VSMCs following AngII treatment (Fig. 1C and D). Furthermore, JC-1 staining revealed that IKKe deficiency reduced mitochondrial damage after AngII treatment, which occurs at an early stage of apoptosis (19) (Fig. 1E and F). Collectively, the results of the present study demonstrated that IKKe knockdown reduced apoptosis of VSMCs at an early stage with AngII treatment.

IKKe knockdown attenuates AngII-induced excessive autophagy in VSMCs. Autophagy in VSMCs was further investigated to verify the role of IKKe on autophagy in VSMCs. Western blot analysis of LC3B, ATG7 and P62 revealed that IKKe knockdown reduced autophagy in AngII-induced VSMCs (Fig. 2A and B). Transmission electron microscopy further revealed that autophagic vacuoles were significantly reduced in AngII-induced VSMCs in the SiIKKe group compared with the control group (Fig. 2C and D).

IKKe plays an important role in the association of autophagy and apoptosis. To detect the autophagy flow in vitro, Baf-A1 was used to block the autophagy flow in AngII-induced VSMCs. The expression levels of LC3B and P62 in the VSMCs were significantly increased following autophagy blocking with Baf-A1 and AngII compared with the AngII group, indicating that the autophagic process was active in the AngII-induced VSMC autophagosomes (20) (Fig. 3A and B). A smaller decrease in the expression of LC3B and P62 was demonstrated in the IKKe deficiency with Baf-A1 + AngII group compared with the control + AngII + Baf-A1 group, indicating that IKKe potentially played a role in autophagy (Fig. 3A and B). Notably, there was no significant difference in the expression levels of caspase-9 and Bax in the SiIKKe + AngII + Baf-A1 group compared with the control + AngII + Baf-A1 group (Fig. 3C and D). Thus, it was hypothesized that IKKe increased apoptosis by promoting autophagy in VSMCs.

IKKe regulates autophagy and apoptosis via the ERK1/2 signaling pathway. The activation of the ERK1/2 pathway in VSMCs was assessed to further investigate the mechanism underlying IKKe in autophagy regulation in vitro. The level of p-ERK1/2 was decreased in SiIKKe cells exposed to AngII compared with control cells exposed to AngII (Fig. 4A and B). The phosphorylation levels of MEK1/2 and p38 were investigated, and no significant difference was demonstrated in the phosphorylation of MEK1/2 and p38 in VSMCs with AngII treatment (Fig. S2A and B). These results indicated that IKKe knockdown reduced autophagy and apoptosis by inhibiting the ERK1/2 signaling pathway.

Discussion

AAA is a disease associated with serious complications such as the rupture of aneurysm and death, and is more severe than common heart disease (21). However, the specific pathogenesis of AAA is yet to be elucidated. The results of the present study demonstrated the important role of IKKe in autophagy, apoptosis and AAA development. Knockdown of IKKe attenuated AngII-induced autophagy and excessive autophagy in VSMCs. IKKe also increased apoptosis by promoting the autophagy of VSMCs. Moreover, IKKe knockdown reduced autophagy and apoptosis by inhibiting the ERK1/2 signaling pathway.

Apoptosis of VSMCs is a key biomarker of AAA formation (5). The results of a previous study demonstrated that IKKe played an important role in regulating apoptosis of VSMCs in mice (11). In the present study, the in vitro results were consistent with previous findings (8). It has been previously revealed that when the membrane potential of mitochondria decreases, the permeability of the mitochondrial membrane increases and the proapoptotic factors are released into the cytoplasm (22). In the present study, IKKe deficiency reduced mitochondrial damage and apoptosis in vitro, indicating that IKKe regulated the apoptosis of VSMCs via the mitochondrial apoptosis pathway.

Activated autophagy is generally considered a cell protection mechanism due to the promotion of cell survival (23). However, excessive activation of autophagy has been indicated to result in autophagic cell death (24). Functional autophagy is essential for cardiac homeostasis (25); however uncontrolled autophagy induction in ischemia-reperfusion injury response resulted in excessive cardiomyocyte apoptosis, thereby aggravating the injury (26). VSMCs may exhibit excessive autophagy leading to cell death when exposed to severe stimuli (27). This mechanism serves a role in the occurrence of a number of vascular diseases, such as atherosclerosis. A previous study postulated that suppressing autophagy inhibited AAA development (28).
Figure 1. Knockdown of IKKe attenuates AngII-induced apoptosis in VSMCs. (A) Bax, caspase-9, c-caspase-3 and IKKe expression levels were detected via western blot analysis in AngII-induced VSMCs following siRNA transfection for 24 h (n=4-5 per experimental group). (B) Quantitative results of expression levels of Bax, caspase-9 and c-caspase-3 (n=4-5 per experimental group). (C and D) Quantitative flow cytometry results of the apoptosis rate of VSMCs exposed to AngII for 24 h (n=6 per experimental group; magnification, x400). Scale bar, 200 µm. Each experiment was repeated three times. *P<0.05; **P<0.01; ***P<0.001. IKKe, inhibitor of nuclear factor-κB kinase subunit ε; AngII, angiotensin II; VSMCs, vascular smooth muscle cells; si, small interfering; c, cleaved.
Figure 2. Knockdown of IKKε attenuates AngII-induced excessive autophagy in VSMCs. (A) LC3B, P62 and ATG7 expression levels detected via western blot analysis in AngII-induced VSMCs following siRNA transfection for 24 h (n=4-5 per experimental group). (B) Quantitative results of the expressions levels of LC3B, P62 and ATG7. (C) Representative transmission electron microscopy images and (D) autophagosome quantification in VSMCs exposed to AngII for 24 h (n=4-5 per experimental group; magnification, x10,000). Each experiment was repeated three times. *P<0.05; **P<0.01. IKKε, inhibitor of nuclear factor-κB kinase subunit ε; AngII, angiotensin II; VSMCs, vascular smooth muscle cells; ATG7, autophagy-related protein 7; si, small interfering.

Figure 3. IKKε plays an important role in the association of autophagy and apoptosis. (A) Representative western blot images and (B) quantitative results of LC3B and P62 expression in VSMCs pretreated with Baf-A1 for 4 h, followed by siRNA transfection and AngII-induction for 24 h (n=4-5 per experimental group). (C) Representative western blot images and (D) quantitative results of caspase-9 and Bax in VSMCs pretreated with Baf-A1 for 4 h, followed by siRNA transfection and AngII-induction for 24 h (n=4-5 per experimental group). Each experiment was repeated three times. *P<0.05; **P<0.01. IKKε, inhibitor of nuclear factor-κB kinase subunit ε; AngII, angiotensin II; VSMCs, vascular smooth muscle cells; si, small interfering; Baf-A1, bafilomycin A1; ns, not significant.
Although previous findings have suggested that the IKK family plays an important role in autophagy (29), few studies have reported the role of IKKe in autophagy. A previous study demonstrated that IKKe played a protective role against cardiovascular diseases (30). Thus, inhibition of the autophagy of VSMCs may provide a novel treatment against AAA.

The autophagic flow plays an important role in autophagy (31). In the present study, autophagy was blocked with Baf-A1 to prevent the downstream events of autophagy by inhibiting lysosomal degradation (32). IKKe knockdown suppressed the synthesis of autophagy initiation-related autophagy vesicles and the accumulation of autophagosomes; therefore, it was hypothesized that IKKe played an important role in the early stages of autophagic flow in VSMCs.

Apoptosis and autophagy are important biological activities that contribute to the stability of the internal environment, thus promoting the organism’s survival (33). Maintaining a balance between autophagy and apoptosis is critical for cell development (33). Abnormal induction of the autophagic flux has been indicated to promote apoptotic neuronal cell death (34). Autophagy has been demonstrated to play a protective role in attenuating AngII-induced oxidative stress and inflammation (35). However, autophagy has been indicated to contribute to apoptosis in cardiac microvascular endothelial cells (36). In the present study, treatment with Baf-A1 inhibited the expression levels of AngII-induced Bax and Caspase-9 in VSMCs. Therefore, it was hypothesized that IKKe deficiency reduced the apoptosis of VSMCs by decreasing autophagy to alleviate AAA formation.

In conclusion, the present study demonstrated that IKKe induced excessive autophagy in VSMCs, leading to increased apoptosis and potentially AAA formation. Therefore, inhibition of IKKe has the potential to act as a therapeutic target, to inhibit autophagy and apoptosis to reduce AAA occurrence. Nonetheless, the present study was limited by several factors. The VSMC cell line used differs from primary cells, and the levels of IKKe were not increased by AngII treatment in the present study. The findings of the present study should be extended by analyzing both upstream and downstream mechanisms of IKKe and the ERK1/2 signaling pathway. Future studies should therefore focus on these shortcomings to provide more comprehensive results.

Acknowledgements

Not applicable.

Funding

The present study was supported by the National Natural Science Foundation of China (grant. No. 81870193), the Project of Invigorating Health Care through Science, Technology and Education, Jiangsu Provincial Key Medical Discipline (grant. No. ZDKJ2016021) and the Young Program of National Natural Science Foundation of China (grant. No. 81700415).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

GC, YC, YX and YY performed the experiments. GC, YL and HC conducted data analysis. YX, WC and XC designed the experiments and aided in data analyses. WC and XC confirm the authenticity of all the raw data. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.
References

1. Brangsch J, Reimann C, Colletti F, Buchert R, Botnar RM and Makowski MR: Molecular imaging of abdominal aortic aneurysms. Trends Mol Med 23: 150-164, 2017.

2. Aggarwal S, Qamar A, Sharma V and Sharma A: Abdominal aortic aneurysm: A comprehensive review. Exp Clin Cardiol 15: 11-15, 2011.

3. Laine MT, Laukontaus SJ, Sund R, Aho PS, Kantonen I, Albäck A and Venermo M: A population-based study of abdominal aortic aneurysm treatment in Finland 2000 to 2014. Circulation 136: 1726-1734, 2017.

4. Keisler B and Carter C: Abdominal aortic aneurysm. Am Fam Physician 91: 538-543, 2015.

5. Riches K, Angelini TG, Mudhar GS, Kaye J, Clark E, Bailey MA, Sohail S, Korrossis S, Walker PG, Scott DJ and Porter KE: Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm. J Transl Med 11: 208, 2013.

6. Peshkova IO, Schaefer G and Koltsova EK: Atherosclerosis and aortic aneurysm: inflammation a common denominator? FEBS Lett 583: 1656-1652, 2012.

7. Stegbauer J, Thatcher SE, Yang G, Bottemann K, Rump LC, Daugherty H and Cassis LA: Mas receptor deficiency augments angiotensin II-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice. J Vasc Surg 70: 1112-1121.e8, 2014.

8. Cao C, Zhu Y, Chen W, Li L, Qi Y, Wang X, Zhao Y, Wan X and Chen X: IkkE knockout prevents high fat diet induced aortic aneurysm and Nf-kB signaling in mice. PLoS One 8: e64930, 2013.

9. Zhang J, Tian M, Xia Z and Feng P: Roles of JkB kinase in the innate immune defense and beyond. Viriol Sin 31: 457-465, 2016.

10. Zhang L, Wang L, Chen W, Xu Y, Wang L, Iskandar R, Wang X and Chen X: The expression of inhibitor of nuclear factor kappa-B kinase epsilon (IKKe) in human aortic aneurysm. Folia J 283: 1636-1652, 2020.

11. Chai H, Tao Z, Qi Y, Qi H, Chen W, Xu Y, Zhang L, Chen H and Chen X: IKK epsilon deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in mice by inhibiting inflammation, oxidative stress, and apoptosis. Oxid Med Cell Longev 2020: 3602824, 2020.

12. D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43: 582-592, 2019.

13. Simon HU: Autophagy in myocardial differentiation and cardiac development. Circ Res 110: 524-525, 2012.

14. Song S, Tan J, Miao Y, Li M and Zhang Q: Crossstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol 232: 2977-2984, 2017.

15. Huang J, Wang T, Wright AC, Yang J, Zhou S, Li L, Yang J, Small A and Parmacek MS: Myocardin is required for maintenance of aortic aneurysm and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol 233: 2765-2773, 2018.

16. Leonardi M, Perna E, Tronnolone S, Colecchia D and Chiariello M: Autophagic cell death by caspase-8. Science 304: 1500-1502, 2004.

17. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH and Parmacek MS: Myocardin is required for maintenance of ER stress. J Cell Physiol 232: 2977-2984, 2017.

18. Luo T, Yang J, Zhang L, Wang L, Chen W, Xu Y, Wang L, Iskandar R, Wang X and Chen X: IKKE knockdown prevents high fat diet induced atherosclerosis and NF-kB signaling in mice. PLoS One 8: e64930, 2013.

19. Lu Y, Lis S, Wu H, Banz A, Xu J, Gu C, Chen X and Yang D: Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells. Int J Mol Med 36: 1233-1238, 2015.

20. Wang R, Yang Q, Wang X, Wang W, Li J, Zhu J, Liu X, Liu J and Du J: Foxxo3a-mediated autophagy contributes to apoptosis in cardiac microvascular endothelial cells under hypoxia. Microvasc Res 104: 23-31, 2016.

21. Liu J, Liu W and Yang H: Balancing apoptosis and autophagy for Parkinson’s disease therapy: Targeting BCL-2. ACS Chem Neurosci 10: 792-802, 2019.

22. Chung Y, Lee J, Jung S, Lee Y, Cho JW and Oh YJ: Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis 9: 1189, 2018.

23. Lu Y, Lis S, Wu H, Banz A, Xu J, Gu C, Chen X and Yang D: Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells. Int J Mol Med 36: 1233-1238, 2015.

24. Wang R, Yang Q, Wang X, Wang W, Li J, Zhu J, Liu X, Liu J and Du J: Foxxo3a-mediated autophagy contributes to apoptosis in cardiac microvascular endothelial cells under hypoxia. Microvasc Res 104: 23-31, 2016.

25. Cao C, Zhu Y, Chen W, Li L, Qi Y, Wang X, Zhao Y, Wan X and Chen X: IkkE knockout prevents high fat diet induced atherosclerosis and Nf-kb signaling in mice. PLoS One 8: e64930, 2013.