Treatment such as carotid sinus massage and Valsalva manoeuver cause vagal stimulation, inhibit conduction in AV node, and help resolve paroxysmal SVT. Pharmacological treatment is best reserved for those with haemodynamic changes, severe symptoms, or sustained arrhythmias. Adenosine is the drug of choice. The ACC/AHA/ESC guidelines recommend the use of IV propranolol or metoprolol if adenosine fails, and if arrhythmia still persists it recommends the use of verapamil. In case of resistance to pharmacotherapy or maternal instability, aggressive management strategies such as electrical cardioversion should be considered. Cardioversion has been found to be safe in all stages of pregnancy as negligible current reaches the foetus. However, transient foetal dysrhythmia may occur which warrants foetal heart rate monitoring.

We conclude that regional anaesthesia is a feasible, safe option for caesarean section in patients with structural cardiac lesion with SVT. The success depends on thorough knowledge, meticulous planning, and effective collaboration between the gynaecologist, cardiologist, and anaesthesiologist.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Rachana Chhabria, Prajwala S Kaushik
Department of Anaesthesia, Seth GSMC, KEM Hospital, Mumbai, Maharashtra, India

Address for correspondence:
Dr. Prajwala S Kaushik,
Department of Anaesthesia, Seth GSMC, KEM Hospital, Mumbai, Maharashtra, India.
E-mail: olesi_psk@yahoo.com

REFERENCES
1. Servin MN, Mhyre JM, Greenfield ML, Polley LS. An observational cohort study of the meniscus test to detect intravascular epidural catheters in pregnant women. Int J Obstet Anesth 2009;18(3):215-20.
2. Camorcia M. Testing the epidural catheter. Curr Opin Anaesthesiol 2009;22(3):336-40.
3. Wu W, Chen Q, Zhang L, Chen W. Epidural anaesthesia for caesarean section for pregnant women with rheumatic heart disease and mitral stenosis. Arch Gynecol Obstret 2016;294:103-8.
4. Stuart RK, Shikora SA, Akerman P, Lowell JA, Baxter JK, Apovian C, et al. Incidence of Arrhythmia with Central Venous Catheter Insertion and Exchange. JPEN J Parenter Enteral Nutr 1990;14:152-5.
5. Kanoupakis EM, Vardas PE. Arrhythmias and Pregnancy. Hellenic J Cardiol 2005;46:317-9.
6. Cox JL, Gardner MJ. Treatment of cardiac arrhythmias during pregnancy. Progr Cardiovasc Dis 1993;36:137-78.
7. Ghosh N, Luk A, Derzko C, Dorian P, Chow C. The Acute Treatment of Maternal Supraventricular Tachycardias During Pregnancy: A Review of the Literature. J Obstet Gynaecol Can 2011;33:17-23.
8. Gowda RM, Khan IA, Mehta NJ, Vasavada BC, Sacchi TJ. Cardiac arrhythmias in pregnancy: Clinical and therapeutic considerations. Int J Cardiol 2003;88:129-33.

How to cite this article: Chhabria R, Kaushik PS. Wolff-Parkinson-White syndrome in a parturient with rheumatic heart disease for caesarean section - Anaesthesia management. Indian J Anaesth 2018;62:641-3.
to its popularity in procedures requiring cerebral oxygenation monitoring. However, NIRS may be associated with poor specificity in certain situations. We describe one such case where NIRS monitoring using cerebral INVOS™ (Somanetics Corp. Troy, MI) revealed persistent cerebral oxygen desaturation but was not associated with any postoperative neurological deficit in an elderly gentleman undergoing repair for type B aortic dissection.

An elderly gentleman, with no history of neurological disorder, presented with type B aortic dissection and underwent a hybrid procedure with a carotid-carotid bypass and an endovascular stent to treat the condition. Neurological monitoring was performed with INVOS™ (Somanetics Corp. Troy, MI) cerebral oximeter. Fresh sensors were applied and reliable recording quality was confirmed by signal strength index. Baseline bilateral cerebral oxygen saturation (rSO2) was low (Channel 1: 47%; Channel 2: 41%) [Figure 1]. The rSO2 did not reach 50% at any point during the procedure. A systematic approach to this unexplained cerebral desaturation was performed based on the algorithm proposed by Denault et al.[1] The rSO2 remained persistently and critically low with a mean of 38% in Channel 1 and 35% in Channel 2 during entire procedure. The patient did not have any major or minor neurological event during the hospital stay or at 6 months follow-up.

NIRS with the INVOS™ monitoring system has become increasingly popular for cerebral oxygen monitoring. It is based on the fact that oxygenated and deoxygenated haemoglobin have characteristic absorption spectra and light in the range of 650–1100 nm and has an absorbance that is proportional to the relative concentrations of these two chromophores.[2] The INVOS monitor is a saturation monitor that measures the ratio of haemoglobin and oxyhaemoglobin by using a single light-emitting diode and displays a single unitless value defined as “regional haemoglobin oxygen saturation (rSO2)”.[3] The typical acceptable range of rSO2 is 55–80%. It has been reported that rSO2 values below 59 provide 100% sensitivity and 47% specificity.[4] As seen in our case where the mean values were significantly lower with no postoperative neurological impairment, it is the specificity that is of major concern. Interestingly, in our case the rSO2 remained low throughout, and no considerable drop was seen during the procedure phase compared to the preprocedure evaluation. To address similar situation, it has been proposed that along with absolute numbers, perhaps a percentage decrease from baseline might be a useful criterion for cerebral ischaemia. A proposed cutoff value of 20% was reported to have 83% sensitivity and 83% specificity for cerebral ischaemia.[4]

Artificially low rSO2 values may be attributable to cranial bone anomaly or frontal sinus inflammation, presence of infrared-absorbing intracranial or intravascular pigments or dyes, optode positioning over an intracranial photon sink (i.e., intracranial venous sinus or haematoma), excessive photon scattering (i.e., hair or hair follicles), or dyshaemoglobinemias.[5] In this particular patient, despite critical evaluation, we were unable to find a definite cause for the low rSO2 values. However, it has been shown that during hypothermic cardiopulmonary bypass, as needed in this case, the rSO2 values can be paradoxically low and may have been the cause for the persistent low rSO2 value seen.[6]

NIRS may produce not only artifactually low rSO2 values but can also fail to detect cerebral ischaemia in certain cases. It is possible that the placement of sensors on the forehead may not be able to detect ischaemia of parietal or deeper lobes without reflecting any changes in the monitored frontal lobe. Infarct of the middle cerebral artery with an entirely satisfactory rSO2 values have been reported in the literature. Moreover, as NIRS reflects the balance between regional oxygen supply and demand, saturation may be near-normal in infarcted nonmetabolizing brain.

The problem with NIRS or any other monitoring system for cerebral ischaemia is absence of an objective gold standard with no single monitoring method providing perfect sensitivity and specificity.

Transcranial Doppler sonography and carotid artery stump pressure are the other monitoring techniques currently available; however, no single method has been proved to be superior to others. Considering that NIRS is easy to carry out and provides comparable accuracy, this should perhaps continue to be the technique of choice. However, rather than relying only on absolute rSO2 values of 50%, a 20% drop from baseline rSO2 values should also be incorporated in

Channel	rSO2 Range	Baseline	Avg rSO2
Ch1	28 - 48	47	38
Ch2	15 - 48	41	32

Figure 1: Baseline bilateral cerebral oxygen saturation (rSO2)
order to increase the specificity of this diagnostic tool for cerebral ischaemia.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Pooja Natarajan, Rahul GuhaBiswas, Atanu Saha, Pradeep Narayan
Departments of Cardiac Anesthesiology and Cardiac Surgery, NH Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India

Address for correspondence:
Dr. Pradeep Narayan,
Department of Cardiac Surgery, NH Rabindranath Tagore International Institute of Cardiac Sciences, 124, EM Bypass, Mukundapur, Kolkata - 700 099, West Bengal, India.
E-mail: pradeepdoc@gmail.com

REFERENCES
1. Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothoracic. Vasc Anesth 2007;11:274-81.
2. Owen-Reece H, Smith M, Elwell CE, Goldstone JC. Near infrared spectroscopy. Br J Anaesth 1999;82:418-26.
3. Davies LK, Janelle GM. Con: all cardiac surgical patients should not have intraoperative cerebral oxygenation monitoring. J Cardiothorac Vasc Anesth 2006;20:450-5.
4. Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C. Accuracy of cerebral monitoring in detecting cerebral ischaemia during carotid endarterectomy: A comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 2007;107:563-9.
5. Yoshitani K, Kawaguchi M, Miura N, Okuno T, Kanoda T, Ohnishi Y, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology 2007;106:458-62.
6. Baraka A, Naufal M, El-Khatib M. Correlation between cerebral and mixed venous oxygen saturation during moderate versus tepid hypothermic hemodiluted cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2006;20:819-25.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Access this article online
Quick response code: Website:
DOI: 10.4103/ija.IJA_277_18

How to cite this article: Natarajan P, GuhaBiswas R, Saha A, Narayan P. Persistent cerebral desaturation on near-infrared spectroscopy without neurological insult. Indian J Anaesth 2018;62:643-5.

© 2018 Indian Journal of Anaesthesia | Published by Wolters Kluwer - Medknow