Fluid Dynamical Prediction of Changed v_1-flow at LHC

L.P. Csernai1,2,3, V.K. Magas4, H. Stöcker3, and D.D. Strottman1,3

1 Institute of Physics and Technology, University of Bergen, Allegaten 55, 5007 Bergen, Norway
2 MTA-KFKI, Research Inst. of Particle and Nuclear Physics, 1525 Budapest, Hungary
3 Frankfurt Institute for Advanced Studies - Goethe University, 60438 Frankfurt am Main, Germany
4 Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain

(Dated: June 24, 2011)

Substantial collective flow is observed in collisions between Lead nuclei at LHC as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the Global v_1-flow, which at RHIC peaked at negative rapidities (named as 3rd flow component or anti-flow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the Quark-Gluon Plasma. Our calculations also take into account the initial state Center of Mass rapidity fluctuations, and demonstrate that these are crucial for v_1 simulations. In order to better study the transverse momentum flow dependence we suggest a new “symmetrized” $v_1^2(p_t)$ flow component; and we also propose a new method to disentangle Global v_1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v_1 flow both at the STAR Beam Energy Scan program and at LHC.

PACS numbers: 12.38.Mh, 25.75.-q, 25.75.Nq, 51.20.-d

The first publication from the LHC heavy ion run presented amazingly strong elliptic flow, exceeding all measurements at lower energies [1]. This indicates strong equilibration and thermalization at these energies in contrast to expectations of increasing transparency. Just 6 month later ALICE has also measured the v_1-flow [2].

The overall picture indicated by the first v_1 results is very similar for RHIC and ALICE/LHC; namely that v_1 has three physical sources [2, 3]:

(i) the Global collective flow correlated with the reaction plane of the event EP;
(ii) the Random fluctuation flow of all v_n varieties, where the corresponding symmetry axes for (e.g. for v_1 and v_2) have no correlation with the reaction plane EP, instead they are observed with respect to a participant plane EP Event by Event (EbE) [4, 5]. The participant planes are different for the neighbouring flow harmonics;
(iii) at high momenta or high pseudo-rapidity, $|\eta| \leq 4$, there are strong anti-flow peaks (in opposite direction with respect to classical bounce-off). These appear only at RHIC and LHC energies [2,3], and there this is the strongest source of v_1. These high momenta particles are not, and probably can not be, described by fluid dynamical models. It seems reasonable that they are generated in very early (pre-equilibrium?) hadronization and freeze out in some parts of the reaction volume.

This article discusses the behaviour of the first (i), among these flow phenomena, which is the weakest at RHIC and LHC energies. We will also discuss, how to separate the Global v_1-flow, from the one produced by random EbE fluctuations of the initial state (ii).

Collective flow is evidenced by the radial flow and, in non-central collisions, by the asymmetric azimuthal distribution around the beam axis quantified by the functions $v_1(y,p_t)$, $v_2(y,p_t)$, ... in the expansion

$$\frac{d^3N}{dydp_t d\phi} = \frac{1}{2\pi} \frac{d^3N}{dydp_t} [1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + \cdots]$$

where y is the rapidity and p_t is the transverse momentum and ϕ is the azimuth angle in the transverse plane with respect to impact parameter vector, \vec{b}.

The observed large $v_2(p_t)$ has important consequences. As the previously observed constituent quark number scaling indicates, the collective flow must have developed in the Quark-Gluon Plasma (QGP) phase, and the flow at the partonic level becomes observable after parton coalescence [5]. Theoretical calculations also indicate that to explain the observed flow enhanced partonic interaction is needed over perturbative QCD predictions [2]. Thus the QGP is strongly interacting. At the same time theoretical estimates and observations also indicate that the QGP is a nearly perfect fluid, with minimal shear viscosity at the phase transition point [10, 11].

Our model. The energy-momentum tensor density for a perfect fluid is $T_{\mu\nu} = (e+P)u^\mu u^\nu - P g_{\mu\nu}$, where P is
direction of the strongest pressure gradient with time. a large initial "angular momentum", what will change the
tion, which tends to further rotate it, i.e. effectively it has shown in Fig. 1, is tilted, and, thus, the direction of the
color-magnetic field. The produced initial state, model [12], based on longitudinally expanding strings charge, move in an Eulerian grid. The calculation, de-
lected afterwards as a space-time hyper-surface.

external condition, for example a fixed FO temperature, Model Equation of State during the whole calculation. γ
is the local energy density, and u
i
is the local pressure,
characteristics, this is when the hydro stage begins. The calculations are performed according to the effective string rope model [12]. This tilted initial state has a flow velocity obtai-
bmax
5
max
at time 4 fm/c after the first touch of the colliding nuclei, this is when the hydro stage begins. The transition from pre FO QGP to post FO ideal massless pion Jüttner gas is calculated accord-
ing to the method described in ref. [19], satisfying the conservation laws. In this way for each fluid cell i, we obtain a flow velocity \(\vec{v}_i = (\vec{v}_i^x, \vec{v}_i^y) \) of the gas and its temperature \(T^i \).

Using the Cooper-Frye FO formula we obtain:

\[
v_n(y, p_i) = \frac{\sum_{\text{cells}} \int_0^{2\pi} d\phi f^i(y, \vec{p}_i) \cos n\phi}{\sum_{\text{cells}} \int_0^{2\pi} d\phi f^i(y, \vec{p}_i)},
\]

where \(f^i(y, \vec{p}_i) \) is the normalized momentum distribution for cell i; the angle \(\phi \) is taken with respect to the reaction plane. Then,

\[
v_n(y) = \frac{\sum_{\text{cells}} J_n(y, \vec{v}_i, T^i) \cos(n\phi_0)}{\sum_{\text{cells}} J_0(y, \vec{v}_i, T^i)},
\]

\[
v_n(p_i) = \frac{\sum_{\text{cells}} B(\vec{v}_i, T^i, p_i) I_n(\gamma_i v_i^p / T^i) \cos(n\phi_0)}{\sum_{\text{cells}} B(\vec{v}_i, T^i, p_i) I_0(\gamma_i v_i^p / T^i)},
\]

\[
J_n(y, \vec{v}_i, T^i) = \int_0^\infty dp_i p_i^2 I_n(\gamma_i v_i^p / T^i) e^{-\gamma_i p_i \cosh(y - y_0^i) / T^i} B(\vec{v}_i, T^i, p_i) = e^{-\gamma_i p_i / T^i} \left(\frac{1}{1 - v_z^2} \left(v_z - p_i / |v_z| \right) \right)
\]

where \(y_0^i \) is the flow rapidity and \(\phi_0 \) is the azimuthal angle of the flow velocity in the transverse plane of the given cell i. In eq. (2) we have rewritten flow 4-velocity in the following way: \(v_i^x = \gamma_i (\cosh y_0^i \sinh y_0^i \vec{v}_i^x) \), with \(\vec{v}_i^x = \vec{v}_i^x / \sqrt{1 - (\vec{v}_i^x)^2} \), \(\gamma_i = 1 / \sqrt{1 - (\vec{v}_i^x)^2} \). \(J_n \) is a Bessel function, and \(K_1(a, b) = \frac{1}{a b} \int_0^{\infty} dx x^{a-1} e^{-x} x^b \) is a modified Bessel function of the second kind.

Fig. 2 shows the energy density distribution in the reaction plane later. One may notice that the final state is strongly rotated with respect to the initial one, due to the large initial ”angular momentum”, and the direction of strongest transverse expansion points to \(\Theta = 75/255^\circ \). Thus, the upward moving matter is moving now forward and the downward moving matter backward, in contrast to what happens at RHIC and SPS energies [14].

The fluid cells in the presented calculations were \((0.438 fm)^3\) for peripheral collisions, \(b = 0.5 - 0.7 b_{max} \). While initially we had 2500- 5400 fluid cells containing matter, this increased over 100 000 by the end of cal-
culation. The higher energy at LHC results in a more explosive expansion, which leads to an explosion shell with decreasing central density.

In a simplest approach we assume a constant time FO hypersurface. Comparing measured multiplicity b-
dependence at LHC with our FD multiplicity, we have chosen \(t_{FO} = 8 \) fm/c after the formation of the hydro initial state. The transition from pre FO QGP to post FO ideal massless pion Jüttner gas is calculated accord-
ing to the method described in ref. [19], satisfying the conservation laws. In this way for each fluid cell i, we obtain a flow velocity \(\vec{v}_i = (\vec{v}_i^x, \vec{v}_i^y) \) of the gas and its temperature \(T^i \).

Using the Cooper-Frye FO formula we obtain:

\[
v_n(y, p_i) = \frac{\sum_{\text{cells}} \int_0^{2\pi} d\phi f^i(y, \vec{p}_i) \cos n\phi}{\sum_{\text{cells}} \int_0^{2\pi} d\phi f^i(y, \vec{p}_i)},
\]

where \(f^i(y, \vec{p}_i) \) is the normalized momentum distribution for cell i; the angle \(\phi \) is taken with respect to the reaction plane. Then,

\[
v_n(y) = \frac{\sum_{\text{cells}} J_n(y, \vec{v}_i, T^i) \cos(n\phi_0)}{\sum_{\text{cells}} J_0(y, \vec{v}_i, T^i)},
\]

\[
v_n(p_i) = \frac{\sum_{\text{cells}} B(\vec{v}_i, T^i, p_i) I_n(\gamma_i v_i^p / T^i) \cos(n\phi_0)}{\sum_{\text{cells}} B(\vec{v}_i, T^i, p_i) I_0(\gamma_i v_i^p / T^i)},
\]

\[
J_n(y, \vec{v}_i, T^i) = \int_0^\infty dp_i p_i^2 I_n(\gamma_i v_i^p / T^i) e^{-\gamma_i p_i \cosh(y - y_0^i) / T^i} B(\vec{v}_i, T^i, p_i) = e^{-\gamma_i p_i / T^i} \left(\frac{1}{1 - v_z^2} \left(v_z - p_i / |v_z| \right) \right)
\]

where \(y_0^i \) is the flow rapidity and \(\phi_0 \) is the azimuthal angle of the flow velocity in the transverse plane of the given cell i. In eq. (2) we have rewritten flow 4-velocity in the following way: \(v_i^x = \gamma_i (\cosh y_0^i \sinh y_0^i \vec{v}_i^x) \), with \(\vec{v}_i^x = \vec{v}_i^x / \sqrt{1 - (\vec{v}_i^x)^2} \), \(\gamma_i = 1 / \sqrt{1 - (\vec{v}_i^x)^2} \). \(J_n \) is a Bessel function, and \(K_1(a, b) = \frac{1}{a b} \int_0^{\infty} dx x^{a-1} e^{-x} x^b \) is a modified Bessel function of the second kind.

FIG. 1. (color online) Initial energy density [GeV/fm³] distribution in the reaction plane, [x,y] for a Pb+Pb reaction at 1.38 + 1.38 A-TeV collision energy and impact parameter \(b = 0.5 b_{max} \) at time 4 fm/c after the first touch of the colliding nuclei, this is when the hydro stage begins. The calculations are performed according to the effective string rope model [12]. This tilted initial state has a flow velocity obtain a flow velocity \(\vec{v} \). Using the Cooper-Frye FO formula we obtain:

\[
v_n(y, p_i) = \frac{\sum_{\text{cells}} \int_0^{2\pi} d\phi f^i(y, \vec{p}_i) \cos n\phi}{\sum_{\text{cells}} \int_0^{2\pi} d\phi f^i(y, \vec{p}_i)},
\]

where \(f^i(y, \vec{p}_i) \) is the normalized momentum distribution for cell i; the angle \(\phi \) is taken with respect to the reaction plane. Then,

\[
v_n(y) = \frac{\sum_{\text{cells}} J_n(y, \vec{v}_i, T^i) \cos(n\phi_0)}{\sum_{\text{cells}} J_0(y, \vec{v}_i, T^i)},
\]

\[
v_n(p_i) = \frac{\sum_{\text{cells}} B(\vec{v}_i, T^i, p_i) I_n(\gamma_i v_i^p / T^i) \cos(n\phi_0)}{\sum_{\text{cells}} B(\vec{v}_i, T^i, p_i) I_0(\gamma_i v_i^p / T^i)},
\]

\[
J_n(y, \vec{v}_i, T^i) = \int_0^\infty dp_i p_i^2 I_n(\gamma_i v_i^p / T^i) e^{-\gamma_i p_i \cosh(y - y_0^i) / T^i} B(\vec{v}_i, T^i, p_i) = e^{-\gamma_i p_i / T^i} \left(\frac{1}{1 - v_z^2} \left(v_z - p_i / |v_z| \right) \right)
\]

where \(y_0^i \) is the flow rapidity and \(\phi_0 \) is the azimuthal angle of the flow velocity in the transverse plane of the given cell i. In eq. (2) we have rewritten flow 4-velocity in the following way: \(v_i^x = \gamma_i (\cosh y_0^i \sinh y_0^i \vec{v}_i^x) \), with \(\vec{v}_i^x = \vec{v}_i^x / \sqrt{1 - (\vec{v}_i^x)^2} \), \(\gamma_i = 1 / \sqrt{1 - (\vec{v}_i^x)^2} \). \(J_n \) is a Bessel function, and \(K_1(a, b) = \frac{1}{a b} \int_0^{\infty} dx x^{a-1} e^{-x} x^b \) is a modified Bessel function of the second kind.
The ALICE team has made a detailed symmetry analysis of the low rapidity component in the acceptance range of the ALICE TPC [2]. They introduced new quantities

\[v_1^{\text{even/odd}}(\eta, p_t) = [v_1(\eta, p_t) \pm v_1(-\eta, p_t)]/2, \]

where \(v_1(\eta, p_t) \) is the asymmetry parameter calculated in this way is shown in Fig. 4 (full line). This can be attributed to the integral over the whole rapidity range, while the experiment is only for \(|\eta| < 0.8 \), and to the initial state fluctuations, as discussed below.

As \(v_1 \) is an antisymmetric function of \(y \), the \(y \)-integrated \(v_1(p_t) \) value must vanish. In our calculation this is realized to an accuracy better than \(10^{-16} \). However, considering this obvious asymmetry, we propose to construct a symmetrized function \(v_1^{S} \) reversing the \(p_t \)-direction of backward going \((y < 0) \) particles:

\[v_1^{S}(y, p_t) = \frac{\sum_{i} \int_{0}^{2\pi} d\phi f(y, \text{sgn}(y) \cdot p_t) \cos \phi}{\sum_{i} \int_{0}^{2\pi} d\phi f(y, \text{sgn}(y) \cdot p_t)}, \quad (4) \]

where \(\text{sgn}(y) \) extracts the sign of rapidity. The idea stems from Danielewicz and Odyniec [20]. In this way we get a non-vanishing \(v_1^{S}(p_t) \) function, which will be also much less sensitive to the initial state fluctuations.

\[v_1^{S}(p_t) = \frac{\sum_{i} \text{cells} 2D(\vec{v}i, T_i, p_t) f_i(\gamma v_i p_t/T_i) \cos(\phi_i)}{\sum_{i} \text{cells} B(\vec{v}i, T_i, p_t) f_i(\gamma v_i p_t/T_i)}, \quad (5) \]

where \(D(\vec{v}, T, p_t) = e^{-\gamma p_t/T} \frac{v_t}{1 - v_t^2} T \). The \(v_1^{S}(p_t) \) parameter calculated in this way is shown in Fig. 4 (full line).

The ALICE team has made a detailed symmetry analysis of the low rapidity component in the acceptance range of the ALICE TPC [2]. They introduced new quantities

\[v_1^{\text{even/odd}}(\eta, p_t) = [v_1(\eta, p_t) \pm v_1(-\eta, p_t)]/2, \]

and conclude that the Global directed flow, if we repeat the same procedure, we obtain:

\[v_1^{even}(\eta, p_t) = 0, \quad v_1^{odd}(\eta, p_t) = v_1^{even}(\eta, p_t). \quad (7) \]

If we have a Global Mirror Asymmetric (MA) \(v_1 \) flow only, as in our hydrodynamical simulations, then the even component vanishes:

\[v_1^{even}(\eta, p_t) = 0, \quad v_1^{odd}(\eta, p_t) = v_1^{even}(\eta, p_t). \quad (8) \]

A non-vanishing \(v_1^{even}(\eta, p_t) \) can only come from the Mirror Symmetric (MS) part of random fluctuation flow.

Furthermore, if we will integrate over (pseudo-) rapidity, then, as it was discussed above, the Global \(v_1(p_t) \) flow, correlated with the reaction plane of the event, is exactly zero. Thus, non-zero \(v_1^{even}(p_t) \) and \(v_1^{odd}(p_t) \) can only come from the random fluctuation in the initial state. Without other assumption, we should not make any difference for MS and MA fluctuations, and thus these two components should be (approximately) equal:

\[v_1^{even}(p_t) = v_1^{odd}(p_t). \quad (10) \]

However, we can gain information about the \(p_t \) dependence of the Global directed flow, if we repeat the same analysis, i.e. separation into even and odd components, for the \(v_1^{S}(y, p_t) \) function, introduced above, eq. (4). Indeed, we obtain:

\[v_1^{S,even}(p_t) = v_1^{S,\text{fluct.}}(p_t), \quad (9) \]

\[v_1^{S,odd}(p_t) = v_1^{S,\text{fluct.}}(p_t), \quad (10) \]

where \(v_1^{S,\text{fluct.}}(p_t) \) is a contribution to the \(v_1^{S} \) function from the initial state fluctuations, which is approximately equal for both components, as discussed above. Thus, in this case we can separate the contributions from the (i) and (ii) sources:

\[v_1^{S,\text{fluct.}}(p_t) = v_1^{S,odd}(p_t), \quad (11) \]

\[v_1^{S}(p_t) = v_1^{S,even}(p_t) - v_1^{S,odd}(p_t). \quad (12) \]
Results: rapidity-dependence of the flow. The $v_1(y)$ dependence is shown in Fig. 5 (full line is the analytic solution, eq. (2)). As we can see the v_1 is relatively large in the experimental rapidity range $|y| \leq 0.8$, reaching a peak of 26 % at $y = \pm 0.5$. The most important change with respect to the similar simulations for RHIC [18] is that the v_1 now peaks in “forward” direction, i.e. the positive peak appears now at positive rapidity.

Qualitatively our results agree with the simulations performed in a microscopic transport model, namely the quark gluon string model [7], where $v_1(\eta)$ in ”forward” direction was obtained. However, the authors of [7] have not found the reason for such a behaviour, and have qualitatively attributed it to the different viscosities in the region with $|\eta| < 3$ and at higher pseudorapidities.

At lower energies in the same FD model calculations we obtained the v_1 peaking in the “backward” direction (3rd flow component) [17, 18], of a magnitude of 5 % and 2 − 3 % for 158 and 65 + 65 A-GeV energy respectively. The position of the peaks also moved from $|y| \approx 1.5$ to $|y| \approx 0.5$ with energy increasing from SPS to RHIC. Experimentally the 3rd-flow component was indeed measured at these energies [3, 17, 21], although the peak values were smaller. Especially at the RHIC energies [3], where the highest values were $v_1 \approx 0.6$ % and 0.2 % for for 62.4 + 62.4 and 200 A-GeV energy respectively. The peaks appeared at $|y| \approx 1$ around the far end of the acceptance of the central TPC. Thus, at RHIC the v_1 magnitude was about 5 times smaller than the FD prediction. Also, the move towards the more central rapidities was weaker in the experiment than in FD calculations.

The reason for such a disagreement is the effect of initial state Center of Mass (CM) rapidity fluctuations, which may be decisive in the case of v_1, due to the sharp change around $y = 0$.

Initial state CM rapidity fluctuations. One has to take into account that the CM rapidity is not exactly the same for all collisions, due to random fluctuations in

![Figure 4](image-url)
FIG. 4. (color online) The v_1 flow parameter calculated according to the eq. (5) for ideal massless pion Juttner gas, versus the transverse momentum, p_t for $b = 0.7b_{\text{max}}$, at $t = 8$ fm/c FO time. See text for explanation of different curves.

![Figure 5](image-url)
FIG. 5. (color online) The v_1 parameter calculated for ideal massless pion Juttner gas, versus the rapidity y for $b = 0.7b_{\text{max}}$, at $t = 8$ fm/c FO time. Full curve presents semi analytical calculations according to eq. (2), the v_1 peak appears at positive rapidity, in contrast to lower energy calculations and measurements. The dash-dotted and dotted curves present v_1 calculated taking into account initial CM rapidity fluctuations.

the initial state, where the numbers of participant nucleons from projectile and target may not be exactly the same. This leads to considerable y_{CM} fluctuations at large impact parameters, where the flow asymmetry is the strongest, while total number of participants is the smallest. Although, several initial state models generate EbE fluctuating initial states, see for example [22], longitudinal fluctuations are not analysed up to now, neither theoretically nor experimentally in detail. A high acceptance experiment could provide a good estimate for the EbE initial state rapidity, y_{CM} [23], which is a conserved quantity, i.e. it can not be changes by the system expansion, hadronization or freeze out.

To analyze the consequences of these fluctuations, we assumed a Gaussian y_{CM} distribution, centered at $y_{\text{CM}} = 0$, with variance $\delta y = 1, 2$.

Results can be seen in Fig. 5, dash-dotted and dotted lines. As expected the initial state fluctuations strongly reduce $v_1(y)$ at central rapidities. The resulting v_1 is still large enough to demonstrate the ”rotation effect”, discussed above, however being of the order of 1% it can be easily masked by the directed flow generated by the random fluctuations in the initial state.

The first preliminary results from LHC [2] show $v_1(\eta)$ at midrapidity of the order of 0.1% or less, in antiflow direction. Taking into account the error bars, the observed directed flow at LHC is very little, practically compared with 0. This might be a result of a compensation of the $v_1(\eta)$ in ”backward” (anti-flow) direction, coming from the random fluctuations in the initial state [3, 22], with the Global directed flow in the ”forward” direction, as predicted by our simulations.

It is interesting to study the effects of the initial CM rapidity fluctuations on other observables. Fig. 6 shows the elliptic flow as a function of rapidity. Fluctuations
make the $v_2(y)$ peaks wider, but the magnitude is hardly reduced. Thus, we predict a plateau-like shape of the elliptic flow distribution.

The CM rapidity fluctuations have, in principle, no effect of the y-integrated $v_2(p_t)$ and $v_1^2(p_t)$ (therefore the full line in Figs. 3 [1] are marked as "analytical solution (+ fluctuations)"). However, in the realistic simulations, we should not integrate over y from $-\infty$ to $+\infty$, but only over the measured rapidity range, i.e. $-0.8 \leq y \leq 0.8$. Such a "limited range" effect is dramatic for $v_1^2(p_t)$ which can be reduced to less than 1%, see the dashed and dotted lines in Fig. 4 [1]. The $v_2(p_t)$ dependence is weakly affected (Fig. 3 dashed line).

Interestingly, the initial y_{CM}-fluctuations lead to some increase of the elliptic flow, $v_2(p_t)$, putting it in a reasonable agreement with the ALICE data [1], see Fig. 3 [1] - please note that no fine-tuning was done. At the same time y_{CM}-fluctuations strongly reduce $v_2^2(p_t)$, see Fig. 4 [1].

To summarize, our FD simulations of the LHC heavy ion collisions suggest that collective directed $v_1(y)$ flow and newly introduced $v_1^2(p_t)$ function can and should be measured [22], although these are strongly suppressed due to initial state y_{CM}-fluctuations (see Figs. 4 [6]. For the first time in hydrodynamical calculations we see is that the v_1 Global flow can change the direction to "forward" in contrast to what happened at lower energies. This is a result of our tilted and moving initial state [12], in which the effective "angular momentum" from the increasing beam momentum is superseding the expansion driven by the pressure. We have also proposed a new method to distinguish contributions to $v_1(p_t)$ from Global flow (i) and from random fluctuations in the initial state (ii). The method is based on $v_2^2(p_t)$ function, introduced by us in this work, and consist in analyzing its even and odd components according to eqs. [12].

This work is supported in part by the European Community-Research Infrastructure Integrating Activity HadronPhysics2, Grant # 227431 under the 7th Framework Programme. V.K.M. also acknowledges support from MICINN, Spain (contract FIS2008-01661) and Generalitat de Catalunya (contract 2009SGR-1289).

[1] K. Aamodt et al. [The ALICE Collaboration], Phys. Rev. Lett. 105, 252302 (2010).
[2] R. Snellings, presentation at the 22nd international Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2011), Annecy, France, May 23-28, 2011; I. Sheyuzenkov, Ibid.; G. Eyyubova, Ibid.
[3] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 101, 252301 (2008).
[4] N. Borghini, P. M. Dinh and J. Y. Ollitrault, Phys. Rev. C 64, 054901 (2001); J. Schukraft, presentation at the 22nd international Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2011), Annecy, France, May 23-28, 2011.
[5] B. Schenke, presentation at the 22nd international Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2011), Annecy, France, May 23-28, 2011.
[6] L.W. Chen, C.M. Ko, J. Phys. G 31, S49 (2005).
[7] J. Bleibel, G. Burau and C. Fuchs, Phys. Lett. B 659, 520 (2008).
[8] D. Molnár and S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003); V. Greco, C.-M. Ko and P. Lévai, Phys. Rev. C 68, 034904 (2003); R.J. Fries, B. Müller, C. Nonaka and S. A. Bass, Phys. Rev. C 68, 044902 (2003).
[9] D. Molnár and M. Gyulassy, Nucl. Phys. A 697, 495 (2002), erratum-ibid A 703, 893 (2002).
[10] P.K. Kovtun, D.T. Son and A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005);
[11] L.P. Csernai, J.I. Kapusta, L.D. McLerran, Phys. Rev. Lett. 97, 152303 (2006).
[12] V.K. Magas, L.P. Csernai, and D.D. Strottman, Phys. Rev. C 64 (2001) 014901; Nucl. Phys. A 712, 167 (2002).
[13] L.P. Csernai, Y. Cheng, V.K. Magas, I.N. Mishustin, D. Strottman, Nucl. Phys. A 834, 261c (2010).
[14] L.P. Csernai et al., J. Phys. G 36, 064032 (2009).
[15] L. Bravina, L.P. Csernai, P. Lévai, and D. Strottman, Phys. Rev. C 50, 2161 (1994).
[16] Sz. Horvat, V.K. Magas, D.A. Strottman, and L.P. Csernai, Phys. Lett. B 692, 277 (2010).
[17] L.P. Csernai, D. Rührich, Phys. Lett. B 458, 454 (1999).
[18] B. Bächle, et. al., J. Phys. G 34, s1077 (2007).
[19] Yun Cheng, et al., Phys. Rev. C 81, 034904 (2010).
[20] P. Danielevicz, G. Odyniec, Phys. Lett. B 157, 146 (1985).
[21] G. Wang, et al., (STAR Coll.), J. Phys. G 34, s1093 (2007).
[22] F. Gardim, F. Grassi, Y. Hama, M. Luzum and J. Y. Ollitrault, arXiv:1103.4605 [nucl-th].
[23] Dieter Rührich (ALICE Coll.), private communication.