Biomass torrefaction: A promising pretreatment technology for biomass utilization

Chen ZhiWen a, Wang Mingfeng a *, Ren Yongzhi a, Jiang Enchen a, Jiang Yang b, Li Weizhen

a College of Materials and Energy, South China Agricultural University, ROC
b Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, ROC

Corresponding author: Wang Mingfeng (1982-), E-mail: wangmingfeng@scau.edu.cn

Abstract: Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrefaction (WT) is a method in hydrothermal or hot and high pressure water at the temperatures within 180-260 degrees C. Torrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

1. Introduction
As sustainable energy resource, biomass has recently attracted more interest from both political and scientific perspectives all over the world [1-3]. However, these biomass energy resources need special attention and more expensive solutions in terms of storage, handling, milling, and feeding compared to the existing system used for coal. There are some disadvantages of raw biomass listed in table 1, such as high moisture content, low bulk and energy density, poor grindability and hygroscopic nature [4-6]. These disadvantages embarrass the energy utilization of biomass.

Biomass characteristics	Main challenges
High moisture content	Reduce the heating value
	Require energy intensive drying step
	Reduce the efficiency of the conversion processes
	Increase storage and transportation costs
	Increase risks of biological degradation
	Increase corrosion because of condensation of water in flue gas
Low bulk and energy density	Increase storage and transportation costs
Poor grindability	Require high feeding capacity
	Increase grinding energy
	More coarse particles

Table 1. Disadvantages of raw biomass
Hygroscopic nature | Absorb moisture during storage
High oxygen content | Reduce the number of high energy C-H bonds
High alkali metal content | Make ash-related problems more serious
Heterogeneity | Wide variation in properties

So far, biomass is turned into energy mainly in thermal process, including co-firing with coal for electricity, pyrolysis for bio-char, bio-oil and bio-gas or pelletization for pellet fuel which can be fit together with gasification process for gas fuel [7, 8]. But for the disadvantages listed in table 1, raw biomass must be pretreated for further utilization.

Torrefaction is a thermochemical treatment process that involves heating biomass at temperatures of 200–300°C in the absence of oxygen, during which the biomass partly decomposes, releasing different types of volatiles [9]. The final product of the process is the remaining solid, which is referred to as torrefied biomass if it is produced from woody biomass. Considerable energy densification can be achieved by torrefaction, as the remaining solid typically contains up to 90% of the initial energy content in only 70% of the initial weight of the biomass feedstock [10, 11]. A brief summary of gas, liquid and solid products from torrefaction are given in Table 2, and the properties of torrefied biomass will be discussed in detail in the following chapter.

Classification	Light	Mild	Severe
Temperature(°C)	200-235	235-275	275-300
Consumption Hemicellulose	Mild	Mild to severe	Severe
Cellulose	Slight	Slight to mild	Mild to severe
Lignin	Slight	Slight	Slight
Liquid color	Brown	Brown dark	Black
Product Gas	H₂, CO, CO₂, CH₄, toluene, benzene and C₅H₆		
Liquid	H₂O, acetic acids, alcohols, aldehydes and ketones		
Solid	Char and ash		

This paper reviews mainly on torrefaction technology, including the specific designing parameters of the process, the characteristics changes of solid product and the applications of the technology, and in this way promoting the full use of biomass energy and facilitating the generalization of torrefaction.

2. The main technology of biomass Torrefaction
Dry torrefaction (DT) or conventional torrefaction is a thermal pretreatment of biomass in the temperature range of 200–300°C. It is normally carried out in inert gas environment, under atmospheric pressure and with low heating rates (less or about 50 °C/min) [12]. The holding time at the maximum temperature can be various but generally less than 1h. Three kinds of products are produced after torrefaction: a solid product called bio-char, which contains about 90% of the energy in the remain 70% of the mass; a condensable mixture containing mostly water, organic components and lipids; permanent gases including hydrogen, carbon dioxide, carbon monoxide and hydro carbons such as methane. There are some factors that would have an effect on the torrefaction process, such as the torrefaction temperature, residence time [13], atmosphere [14] and biomass species [15].

In DT, three main drawbacks should be put forward to the public. Listed as following: (1) DT requires the feedstock being completely dried prior to the process [16, 17], thus reducing
the overall efficiency and increasing the operating costs of DT plants.

(2) The high ash content of bio-char restricts its utilization.

(3) The higher volatile matter and lower moisture content in bio-char may potentially increase the risk of self-ignition, causing fire/explosion, especially when integrating with densification that required higher force for bio-char than raw biomass.

Wet torrefaction (WT) is another thermochemical conversion process, also referred to as hydrothermal carbonization (HTC) or hydrothermal torrefaction (HT), on which lignocellulosic biomass with high moisture content treated in a subcritical pressurized water vessel from 1 to 250 MPa at 180–265°C in an inert environment for a residence time of 5 min to several hours [18]. Hydro-char is the main product of WT, which accounts for up to 88.3% of the mass and 89.1% of the energy in the raw biomass. The factors that would affect the torrefaction process are mainly the torrefaction temperature, residence time, pressure, atmosphere and liquid medium [19, 20]. In comparison, the grindability (including particle size and bulk density), hydrophobicity, and thermal stability of torrefied bamboo are considerably lower than that of bamboo hydro-char produced at the same temperature. Generally, the wet torrefaction process produces a solid with greater energy density than dry torrefaction, with the same mass yield [21].

The major differences and general properties of dry and wet torrefaction are listed in Table 3. In the process parameters, different temperature, pressure and reaction medium (including gas and liquid) lead to different residence time. DT process needs pre-drying while WT needs the drying process after the torrefaction is done. After the torrefaction process, many disadvantages discussed above are improved and turned into more favorable properties when swift to WT from DT, including lower ash content, high carbon content, higher energy density and heating value, higher hydrophobicity, improved fouling behaviors and so on.

Table 3. Summary of the major differences and general properties of dry and wet torrefaction

Process	Dry torrefaction	Wet torrefaction	
Temperature	200-300	180-265	
Residence time	Less than 1 hour	5 min to several hours	
Pressure	Air	1 to 250 MPa	
Atmosphere	Inert	Inert	
Liquid medium	None	Water/Steam	
Pre-drying	Yes	No	
Post drying	No	Yes	
Toxic	A bit	Non-toxic	
Product	Product	Gas, Tar, Solid	Solid, Gas, Liquid
Main product	Bio-char	Hydro-char	
Ash content	Higher	Lower	
Carbon content	Lower	Higher	
O/C and H/C	Decreased	Decreased	
Moisture content	Lower	Higher	
Energy density	Lower	Higher	
Heating value	Lower	Higher	
Bulk density	Low	Low	
Hydrophobicity	Lower	Higher	
Fouling behaviors	No	Improved	
Grindability	Lower	Higher	
Combustion activity	More active	Less active	
Devolatilization activity	Less reactive	More reactive	
Applications	Fuel and Char	Fuel and Char	
3. The forecasted Application of torrefied biomass
Torrefaction promotes the biomass to more uniform fuel that has further utilization in the following process:

(1) Co-firing with coal. Torrefaction can upgrade the fuel properties and change the combustion behaviors of raw biomass, thus promoting its potential to be used as fuel in the existing thermal conversion plants [22, 23], lower SO₂, CO₂, NOₓ emission levels and a reduction of soot in relation to the torrefaction processes [24-26]. Torrefaction is an emerging technology which enables greater co-firing rates of biomass with coal [27].

(2) Pelletization. Pelletization is applying a mechanical force to compact biomass residues or wastes(sawdust, shaving, chip or slab) into the uniformly sized solid particles such as pellets, briquettes and logs, thus increasing the volumetric energy density from the initial 40-200kg·m⁻³ to the final 600-1400kg·m⁻³, facilitating easy to rage and handling, reducing the transportation cost, and decreasing the moisture content [28, 29]. Torrefied biomass represents a high quality renewable energy commodity that can be used to substitute fossil fuels such as coal although the pelletization process will make up a great part of the cost. For full commercialization, torrefaction reactors still require to be optimized [30].

(3) Gasification. In a gasification process, biomass is converted to synthesis gas or syngas (i.e.H₂, CO) from fuels in an oxygen-deficient environment. On account of the improvement in biomass properties from torrefaction, torrefied biomass rather than raw biomass as a feedstock is expected to improve the gasification efficiency and lower the tar formation because of its high heating value and low volatiles content. As is reported, the torrefaction pretreatment of the biomass can be beneficial in terms of system thermal efficiency [31].

There are two routes for torrefied biomass used for gasification: external torrefaction and integrated torrefaction. External torrefaction is defined as the decentralized production of torrefied wood pellets and centralized conversion of the pellets by entrained flow gasification, with the benefit of producing a practically tar-free synthesis gas with nearly complete carbon conversion. Integrated torrefaction is defined as torrefaction integrated with entrained flow gasification. As Isaksson et al [32] reported, it is showed that the biomass to syngas efficiency can be increased from 63% to 86% (LHV-dry) while the total energy efficiency (biomass to methanol + net electricity) could be increased from 53% to 63% when switching from external torrefaction to integrated torrefaction. However the costs of the efficiency increase of integrated are as follows: 1) more difficult transport, storage and handling of the biomass feedstock (wood chips vs. torrefied wood pellets); 2) reduced plant size; 3) no net electricity production; and 4) a more complex plant design.

4. Conclusion
Torrefaction is an emerging technology which will accelerate the development of biomass utilization technology and finally realize the maximum utilization of biomass energy. Recently, there are two main technologies of biomass torrefaction—dry torrefaction and wet torrefaction, which are very different in process and products. Dry torrefaction is a conventional technology and easy to be realized and commercialized. The torrefied biomass is hydrophobic, with lower moisture contents, higher heating value and energy density, which is favor to combustion, pelletization and gasification. However, more intensive work should be done concerning biomass torrefaction for further utilization, especially, the customized torrefaction which is more practical for utilization.

Acknowledgements
This paper was financially supported by: Agricultural science and technology achievements conversion fund project of the ministry of agriculture (2015B020237010) and Guangdong province science and technology project (201607010138).

References:
[1] Striugas N, Skvorcinskie R, Paulauskas R, Zakarauskas K and Vorotinskiene L 2017 J. Fuel
204 227-35
[2] Toklu E 2017 *J. RENEW ENERG* 107 235-44
[3] Barrette J, Thiffault E, Achim A, Junginger M, Pothier D and De Grandpre L 2017 *J. Appl. Energ* 198 410-25
[4] Abdullah H and Wu H 2009 *J. Energ. Fuel* 23(8) 4174-81
[5] Somorin TO, Kolios AJ, Parker A, McAdam E, Williams L and Tyrrle S 2017 *J. Fuel* 203 781-91
[6] Wilk M, Magdziarz A, Gajek M, Zajemska M, Jayaraman K and Gokalp I 2017 *J. Bioresource. Technol.* 243 304-14
[7] Moliner C, Bosio B, Arato E and Ribes A 2016 *J. Fuel* 180 71-9
[8] Simoes Da Silva CM, Oliveira Carneiro ADC, Corradi Pereira BL, Vital BR, Nogueira Alves IC and de Magalhaes MA 2016 *J. Eur. J. Wood. Wood. Prod* 74(6) 845-50
[9] Yan W, Perez S and Sheng K 2017 *J. Fuel* 196 473-80
[10] Stelte W, Nielsen NPK, Hansen HO, Dahl J, Shang L and Sanadi AR 2013 *J Biomass. Bioenerg* 49 214-21
[11] Nunes LJ, Matias JCO and Catalao JPS 2014 *J. Rerew. Sust. Energ Rev* 40 153-60
[12] van der Stelt MJC, Gerhauser H, Kiel JHA and Ptasinski KJ 2011 *J. Biomass. Bioenerg* 35(9) 3748-62
[13] McNamee P, Adams PWR, McManus MC, Dooley B, Darvell LI, Williams A and Jones JM 2016 *J. Energ. Convers. Manage* 113 177-88
[14] Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ and Sokhansanj S 2013 *J. Bioresource. Technol* 127 318-25
[15] Kolokolova O, Levi T, Pang S and Herrington P 2013 *J. Proceedings of the International Conference on Environmental Science and Technology*. Edited by Lekkas TD
[16] Liu HM, Chen MQ, Han ZL and Fu BA 2013 *J. Thermochim. Acta* 573 25-31
[17] Joshi Y, Mangkusaputra V, de Vries H and de Jong W 2014 *J. Environ. Prog. Sustain* 33(3) 721-5
[18] Funke A and Ziegler F 2010 *J. Biofuel. Bioprod. Bior* 4(2) 160-77
[19] Quang-Vu B, Khanh-Quang T, Skreiberg O, Khalil RA and Phan AN 2014 *J. Fuel* 137 375-83
[20] Quang-Vu B, Khanh-Quang T and Skreiberg O 2015 *J. Fuel Process. Technol.* 140 297-303
[21] Yan W, Acharjee TC, Coronella CJ and Vasquez VR 2009 *J. Environ. Prog. Sustain* 28(3) 435-40.
[22] Gucho EM, Shahzad K, Bramer EA, Akhtar NA and Brem G 2015 *J. Energies* 8(5) 3903-23
[23] Valix M, Katyal S and Cheung WH 2017 *J. Bioresource. Technol.* 223 202-9
[24] Ren X, Sun R, Meng X, Vorobiev N, Schiemann M and Levendis YA 2017 *J. Fuel* 188 310-23.
[25] Lasek JA, Kopczynski M, Janusz M, Iluk A and Zuwala J 2017 *J. Energy* 119 362-8
[26] Jones JM, Ross AB, Mitchell EJS, Lea-Langton AR, Williams A and Bartle KD 2017 *J. Fuel* 195 226-31.
[27] Agar D, Gil J, Sanchez D, Echeverria I and Wiheraari M 2015 *J. Appl. Energ* 138 621-30
[28] Puig-Arnava M, Ahrenfeldt J and Henriksen UB 2017 *J. Energ. Fuel* 31(2) 1644-9
[29] Obernberger I and Thek G 2004 *J. Biomass. Bioner* 27(6) 653-69
[30] Batidizirai B, Mignot APR, Schakel WB, Junginger HM and Faaij APC 2013 *J. Energy* 62 196-214
[31] Isaksson J, Asblad A and Berntsson T 2013 *J. Chemical Engineering Transactions* 35 559-64
[32] Clausen LR 2014 *J. Energy* 77 597-607