A NOTE ON “A GENERALIZATION OF ROBERTS’ COUNTEREXAMPLE TO THE FOURTEENTH PROBLEM OF HILBERT BY S. KURODA”

MIKIYA TANAKA

Abstract. In [4], Kuroda generalized Roberts’ counterexample [5] to the fourteenth problem of Hilbert. The counterexample is given as the kernel of a locally nilpotent derivation on a polynomial ring. We replace his construction of the invariant elements by a more straightforward construction and give a more precise form of invariant elements.

1. Introduction

Let k be a field of characteristic zero and let B be a k-algebra. We denote by $\text{LND}_k(B)$ the set of k-derivations of B. In [4], Kuroda proved the following result.

Theorem 1.1. Let $B = k[x_1, \ldots, x_n, y_1, \ldots, y_n, y_{n+1}]$ be a polynomial k-algebra and define $\delta \in \text{LND}_k(B)$ by $\delta(x_i) = 0$ and $\delta(y_i) = x_i^2$ for all $1 \leq i \leq n$, and $\delta(y_{n+1}) = x_1 \cdots x_n$. Suppose that $n \geq 4$. Then $A := \text{Ker} \delta$ is not finitely generated over k.

In order to prove this theorem, he made use of the following lemma.

Lemma 1.2. With the notations and assumptions in the above theorem, there exists a positive integer α such that the k-subalgebra A contains elements of the form

$$x_1^\alpha y_{n+1}^\ell + (\text{terms of lower degree in } y_{n+1})$$

for each $\ell \geq 1$.

In this paper, we prove that we can take $\alpha = 1$. Namely, we prove the following.

2000 Mathematics Subject Classification. Primary: 14R20; secondary: 13A50, 13N15.

Key words and phrases. locally nilpotent derivation, the fourteenth problem of Hilbert.
Theorem 1.3. With the notations and assumptions in the above theorem, the k-subalgebra A contains elements of the form
\[x_1 y_{n+1}^\ell + \text{(terms of lower degree in } y_{n+1}) \]
for each $\ell \geq 1$.

2. Proof of Theorem 1.3

In a subsequent proof, we use the following result.

Lemma 2.1. Let $B = k[x_2, \ldots, x_n, y_2, \ldots, y_n]$ and define $\delta \in \text{LND}_k(B)$ by $\delta(x_i) = 0$ and $\delta(y_i) = x_i^2$ for each i. Then $\text{Ker} \, \delta$ is a k-algebra generated by x_2, \ldots, x_n and $x_i^2 y_j - x_j^2 y_i$ (2 \leq i, j \leq n, i \neq j).

We can prove this lemma by the same argument in [3, Theorem 1.2].

Now, for each monomial $m = x_1^{a_1} \cdots x_n^{a_n} y_1^{b_1} \cdots y_{n+1}^{b_{n+1}}$, define
\[\tau(m) = \left(\frac{a_2}{2} \right) + \cdots + \left(\frac{a_n}{2} \right) - (b_1 + \cdots + b_n), \]
where we write $[a] = \max\{ n \in \mathbb{Z} \mid n \leq a \}$ for any $a \in \mathbb{R}$. Let $f_{1,n+1} = x_1 y_{n+1} - x_2 \cdots x_n y_1$ and let $f_{i,j} = x_i^2 y_j - x_j^2 y_i$ for each pair (i,j) with $1 \leq i, j \leq n$ and $i \neq j$. It is easy to see that all of $f_{1,n+1}, x_i$ and $f_{i,j}$ belong to A. Let A' be the k-subalgebra generated by $f_{1,n+1}, x_i$ (1 \leq i \leq n) and $f_{i,j}$ (1 \leq i,j \leq n, i \neq j). Since A is factorially closed in B, i.e., $a = b_1 b_2$ with $b_1, b_2 \in B$ implies $b_1, b_2 \in A$, it suffices to show that there exists $f \in A'$ such that $f_{1,n+1}^\ell - f$ is of the form
\[x_1^\ell y_{n+1}^\ell + x_1^{\ell-1} \text{(terms of lower degree in } y_{n+1}) \]
\[= x_1^{\ell-1} \left(x_1 y_{n+1}^\ell + \text{(terms of lower degree in } y_{n+1}) \right). \]

We have
\[f_{1,n+1}^\ell = x_1^\ell y_{n+1}^\ell - \ell x_1^{\ell-1} y_{n+1}^\ell x_2 \cdots x_n y_1 \]
\[+ \binom{\ell}{2} x_1^{\ell-2} y_{n+1}^\ell x_2^2 \cdots x_n^2 y_1 + \cdots + (-1)^\ell x_2^\ell \cdots x_n^\ell y_1 \]
and we construct $f \in A'$ which, when subtracted from $f_{1,n+1}^\ell$, cancels the terms in $f_{1,n+1}^\ell$ of degree < $\ell - 1$ in x_1 and produces only the terms of degree $\geq \ell - 1$ in x_1. Namely, as the element $f_{1,n+1}^\ell - f$, we construct an element in A' of the form
\[x_1^\ell y_{n+1}^\ell + g_{\ell-1} y_{n+1}^{\ell-1} + g_{\ell-2} y_{n+1}^{\ell-2} + \cdots + g_0, \]
where $g_i \in k[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and $x_1^{\ell-1}$ divides every g_i.

By the descending induction on r, we suppose that we obtain an element in A' of the form
\[G_r = x_1^\ell y_{n+1}^\ell + g_{\ell-1} y_{n+1}^{\ell-1} + g_{\ell-2} y_{n+1}^{\ell-2} + \cdots + g_r y_{n+1}^r + \cdots + g_0 \]
with \(g_i \in k[x_1, \ldots, x_n, y_1, \ldots, y_n] \) and \(g_{\ell-1}, \ldots, g_{\ell+1} \) divisible by \(x_1^{\ell-1} \). We show that \(G_r \) is modified by an element of \(A' \) so that a new \(g_r \) is divisible by \(x_1^{\ell-1} \) without changing the terms \(g_{\ell-1}, \ldots, g_{\ell+1} \). Furthermore, we suppose the following conditions are satisfied.

1. For \(0 \leq i \leq \ell - 1 \), if we write \(g_i = \sum_j x_1^j y_1^{q_{i,j}} h_{i,j} \) with \(h_{i,j} \in k[x_2, \ldots, x_n, y_2, \ldots, y_n] \), then \(i + j + 2q_{i,j} = 2\ell \).
2. We have \(h_{i,0} = \cdots = h_{i,i-1} = 0 \) for \(0 \leq i \leq \ell - 1 \), i.e., for each \(x_1^j y_1^{q_{i,j}} h_{i,j} \) appearing in \(g_i \), we have \(j \geq i \).
3. For each monomial \(m = x_1^i x_2^{a_2} \cdots x_n^{a_n} y_1^{b_1} \cdots y_n^{b_n} y_{n+1}^i \) in \(y_{n+1} x_1^i y_1^{q_{i,j}} h_{i,j} \), we have

 (i) \(2\tau(m) \geq \ell - j - 3 \) and \(a_2, \ldots, a_n \) are all odd integers if \(j \equiv \ell - 1 \pmod{2} \),

 (ii) \(2\tau(m) \geq \ell - j \) and \(a_2, \ldots, a_n \) are all even integers if \(j \equiv \ell \pmod{2} \).

In order to improve the term \(g_r \) in such a way that \(h_{r,0} = \cdots = h_{r,\ell-2} = 0 \), we suppose by a double induction that \(h_{r,0} = \cdots = h_{r,p-1} = 0 \) and \(h_{r,p} \neq 0 \) with \(r \leq p \leq \ell - 2 \). With this hypothesis taken into account, we denote the polynomial \(G_r \) by \(G_{r,p} \). The beginning polynomial for induction is \(G_{\ell-2,\ell-2} = f_{1,n+1}^\ell \), for which \(g_i = (-1)^i \binom{\ell}{i} x_1^i (x_2 \cdots x_n y_1)^{\ell-i}, h_{i,i} = (-1)^i \binom{\ell}{i} (x_2 \cdots x_n)^{\ell-i} \), \(h_{i,j} = 0 \) \((i \neq j) \) and \(q_{i,j} = \ell - i \) for \(0 \leq i, j \leq \ell - 1 \). One can check easily that the above conditions are satisfied for \(G_{\ell-2,\ell-2} = f_{1,n+1}^\ell \).

We explain the process of improving \(g_r \). Since \(g_{r+1} \) is divisible by \(x_1^{\ell-1} \) and

\[
\delta(x_1^p y_1^{q_{r,p}} h_{r,p} y_{n+1}^r) = x_1^p y_1^{q_{r,p}} y_{n+1}^r \delta(h_{r,p}) + \text{(terms of degree } > p \text{ in } x_1) + \text{(terms of degree } < r \text{ in } y_{n+1}),
\]

we have

\[
0 = \delta(G_{r,p}) = x_1^p y_1^{q_{r,p}} y_{n+1}^r \delta(h_{r,p}) + \text{(terms of degree } > p \text{ in } x_1) + \text{(terms of degree } \neq r \text{ in } y_{n+1})
\]

and hence \(\delta(h_{r,p}) = 0 \). Lemma 2.1 implies that \(h_{r,p} \) is a sum of polynomials of the form

\[cx_2^{d_2} \cdots x_n^{d_n} \prod_{i,j \in \{2, \ldots, n\}} f_{i,j}^{t_{i,j}} \]

with \(c \in k \) and non-negative integers \(d_i, t_{i,j} \). Note that all of \(d_2, \ldots, d_n \) are odd integers (resp. even integers) if \(p \equiv \ell - 1 \pmod{2} \) (resp. if \(p \equiv \ell \pmod{2} \)). In fact, since the contributions of the \(f_{i,j} \) to the exponent \(d_2, \ldots, d_n \) are even, the remark follows from the conditions.
(i) and (ii) of (3). Now we choose any one of the above polynomi-
als and let $H = \prod_{i,j \in \{2,\ldots,n\}} f_{i,j}^{k_{i,j}}$. Then, for each monomial m in $y_{n+1}^r x_1^p y_1^{q_{r,p}x_2^{d_2}} \cdots x_n^{d_n} H$, we have in view of (i) and (ii) of (3),
\begin{align*}
2\tau(y_1^{q_{r,p}x_2^{d_2}} \cdots x_n^{d_n}) &= 2\tau(m) \\
&\geq \begin{cases} \\
\ell - p - 3 & \text{if } p \equiv \ell - 1 \pmod{2} \\
\ell - p & \text{if } p \equiv \ell \pmod{2} \end{cases},
\end{align*}
where multiplying $y_1^{q_{r,p}x_2^{d_2}} \cdots x_n^{d_n}$ by any $x_i^2 y_j (i \neq 1)$, y_{n+1} or x_1 does not change the value of τ. Note that $r \leq p \leq \ell - 2$ and that if $p \equiv \ell - 1 \pmod{2}$, then $p \leq \ell - 3$ and hence $\ell - p - 3 \geq 0$. Thus we have $\tau(y_1^{q_{r,p}x_2^{d_2}} \cdots x_n^{d_n}) \geq 0$ and there exists an element $F \in A'$ of the form
\begin{align*}
F &= c x_1^{p-r} f_{1,n+1}^r f_{2,1}^{q_2} \cdots f_{n,1}^{q_n} x_2^{d_2-2q_2} \cdots x_n^{d_n-2q_n} \\
&= c x_1^{p-r} y_1^{q_{r,p}y_{n+1}^r} x_2^{d_2} \cdots x_n^{d_n} \\
&\quad + \text{(terms of degree } > p \text{ in } x_1) + \text{(terms of degree } < r \text{ in } y_{n+1}),
\end{align*}
where $q_2 + \cdots + q_n = q_{r,p}$. We can prove that $G_{r,p} - FH$ satisfies the same conditions as $G_{r,p}$ does except for the condition $h_{r,p} \neq 0$ but the number of nonzero terms in $h_{r,p}$ gets smaller. We prove this below. By repeating this process finitely many times, we obtain a new G_r satisfying the condition $h_{r,p} = 0$. Further, continuing this process finitely many times, we obtain a modified G_r satisfying the condition $h_{r,0} = \cdots = h_{r,\ell-2} = 0$, i.e., g_r is divisible by $x_1^{\ell-1}$. Hence by induction on r, we completes a proof.

Now we show that $G_{r,p} - FH$ satisfies the same conditions as $G_{r,p}$ does but the number of nonzero monomial terms in $h_{r,p}$ becomes less. We have only to show that each monomial in F satisfies the conditions (1)-(3) since none of y_{n+1}, x_1 and y_1 appears in H and multiplication of any monomial in H to a monomial does not change the value of τ. Each nonzero monomial m_F in F is of the form
\begin{align*}
x_1^{p-r}(x_1 y_{n+1})^{r_1}(x_2 \cdots x_n y_1)^{r_2} x_2^{d_2-2q_2} \cdots x_n^{d_n-2q_n} \prod_{i=2}^n (x_i^2 y_1)^{\alpha_i} (x_1^2 y_1)^{\beta_i}
\end{align*}
with $r_1 + r_2 = r$ and $\alpha_i + \beta_i = q_i$ for $i = 2, \ldots, n$. We choose one m_F and let w, z_1, and z_{n+1} be the exponents of x_1, y_1, and y_{n+1} in m_F respectively. Then we have
\begin{align*}
w &= p - r + r_1 + 2\beta_2 + \cdots + 2\beta_n = p - r_2 + 2\beta_2 + \cdots + 2\beta_n, \\
z_1 &= r_2 + \alpha_2 + \cdots + \alpha_n \quad \text{and} \quad z_{n+1} = r_1.
\end{align*}
First we prove \(m_F \) satisfies the conditions (1) and (2). Indeed, we have
\[
z_{n+1} + w + 2z_1 = p + r_1 + r_2 + 2(\alpha_2 + \beta_2) + \cdots + 2(\alpha_n + \beta_n)
\]
\[
= p + r + 2q_2 + \cdots + 2q_n = p + r + 2q_{r,p} = 2\ell
\]
and
\[
w - z_{n+1} = p - (r_1 + r_2) + 2(\beta_2 + \cdots + \beta_n)
\]
\[
= p - r + 2(\beta_2 + \cdots + \beta_n) \geq p - r \geq 0.
\]
In order to prove that \(m_F \) satisfies the condition (3), we consider four cases
(a) \(p \equiv \ell - 1 \pmod{2} \) and \(r_2 = 2u + 1 \)
(b) \(p \equiv \ell - 1 \pmod{2} \) and \(r_2 = 2u \)
(c) \(p \equiv \ell \pmod{2} \) and \(r_2 = 2u + 1 \)
(d) \(p \equiv \ell \pmod{2} \) and \(r_2 = 2u, \)
where \(u \) is an integer. We only consider the case (a). The remaining cases can be treated in a similar fashion. Then we have
\[
w \equiv \ell - 1 - 2u - 1 + 2\beta_2 + \cdots + 2\beta_n \equiv \ell \pmod{2}.
\]
The exponent of each \(x_i \) \((i \neq 1) \) in \(m_F \) is equal to \(2u + 1 + d_i - 2q_i + 2\alpha_i \). Since each \(d_i \) is an odd integer by the condition (i) of (3), it is an even integer. In addition, we have
\[
2\tau(m_F) = 2((n - 1)u + (n - 1) + \tau(x_2^{d_2-2q_2} \cdots x_n^{d_n-2q_n})
\]
\[
- (2u + 1) - (\beta_2 + \cdots + \beta_n)) = 2u(n - 3) + 2(n - 2) + 2\tau(x_2^{d_2-2q_2} \cdots x_n^{d_n-2q_n})
\]
\[
- 2(\beta_2 + \cdots + \beta_n)
\]
\[
=(r_2 - 1)(n - 3) + 2(n - 2) + 2\tau(y_1^{q_{r,p}}x_2^{d_2} \cdots x_n^{d_n})
\]
\[
- 2(\beta_2 + \cdots + \beta_n)
\]
\[
\geq r_2 - 1 + 2 \cdot 2 + \ell - p - 3 - 2(\beta_2 + \cdots + \beta_n)
\]
\[
= \ell - (p - r_2 + 2\beta_2 + \cdots + 2\beta_n) = \ell - w,
\]
where the term \((n - 1) \) in the first equality is due to the condition that all the \(d_i \) and \(r_2 \) are odd integers and we use the condition \(n \geq 4 \) to show the inequality. Thus the condition (3) holds for \(m_F \). This induction completes a proof of Theorem 1.3.

3. Application to module derivations

In this section, we give application of Theorem 1.3 to locally nilpotent module derivations. First, we recall the following definition (see [6]).
Definition 3.1. Let $\delta \in \text{LND}_k(B)$ and let M be a B-module with a k-linear endomorphism $\delta_M : M \to M$. A pair (M, δ_M) is called a (B, δ)-module (a δ-module, for short) if the following two conditions are satisfied.

1. For any $b \in B$ and $m \in M$, $\delta_M(bm) = \delta(b)m + b\delta_M(m)$.
2. For each $m \in M$, there exists a positive integer N such that $\delta^n_M(m) = 0$ if $n \geq N$.

Let $A = \text{Ker} \delta$. Then δ_M is an A-module endomorphism. Whenever we consider δ-modules, the derivation δ on B is fixed once for all. We call δ_M a module derivation (resp. locally nilpotent module derivation) on M if it satisfies the condition (1) (resp. both conditions (1) and (2)).

If there is no fear of confusion, we simply say that M is a δ-module instead of saying that (M, δ_M) is a δ-module.

We consider the following problem.

Problem 3.2. Let B be an affine k-domain with a locally nilpotent derivation δ and let M be a finitely generated B-module with δ-module structure. Is $M_0 := \text{Ker} \delta_M = \{m \in M \mid \delta_M(m) = 0\}$ a finitely generated A-module?

We have positive answers to Problem 3.2 if one of the following conditions is satisfied (see [7]).

1. M is torsion-free as a B-module and A is a noetherian domain.
2. M is torsion-free as a B-module and $\dim B \leq 3$.
3. M_0 is a free A-module.
4. The B-module BM_0 generated by M_0 is a free B-module with a basis $\{e_1, \ldots, e_n\}$ such that $e_i \in M_0$.
5. $B = A[y]$ is a polynomial ring over a noetherian domain A, $a := \delta(y)$ is a nonzero element of A and a has no torsion in M.

In [6], there is an easy counterexample to Problem 3.2 in the case where M has torsion as a B-module. In addition, there are counterexamples in the free case by making use of the counterexamples to the fourteenth problem of Hilbert given by Roberts [5], Kojima-Miyamishi [3], Freudenburg [2] and Daigle-Freudenburg [1]. In such examples, we take B to be a polynomial ring and M to be the differential module $\Omega_{B/k}$. We can give $\Omega_{B/k}$ a natural module derivation as follows.

Lemma 3.3. Let B be a C-algebra and let δ be a locally nilpotent C-derivation of B. Then the differential module $M := \Omega_{B/k}$ is a δ-module if we define δ_M by $\delta_M(db) = d\delta(b)$ for $b \in B$.

We can prove this lemma easily (see [7]). Theorem 1.3 gives a new counterexample to Problem 3.2. Namely, we have the following assertions.

Theorem 3.4. With the notations and assumptions in Theorem 1.1, let $M = \Omega_{B/k}$ be the differential module with natural δ-module structure. Namely, M is a free B-module

$$M = \bigoplus_{i=1}^{n} Bdx_i \oplus \bigoplus_{i=1}^{n} Bdy_i$$

with a free basis $\{dx_1, \ldots, dx_n, dy_1, \ldots, dy_{n+1}\}$ and a module derivation defined by

$$\delta(dx_i) = 0, \quad \delta(dy_i) = 2x_i dx_i \quad (1 \leq i \leq n) \quad \text{and}$$

$$\delta(dy_{n+1}) = \sum_{i=1}^{n} x_1 \cdots \hat{x_i} \cdots x_n dx_i.$$

Then M_0 is not a finitely generated A-module.

We can prove this in a fashion similar to [7, Theorem 6.2] by making use of Theorem 1.3. The fact that we can take $\alpha = 1$ in Lemma 1.2 plays an important role in the proof of Theorem 3.4.

REFERENCES

[1] D. Daigle and G. Freudenburg, A Counterexample to Hilbert’s Fourteenth Problem in Dimension 5, J. Algebra 221 (1999), 528-535.

[2] G. Freudenburg, A counter example to Hilbert’s fourteenth problem in dimension six, Transformation Groups, Vol. 5, No. 1, 2000, 61-71.

[3] H. Kojima and M. Miyanishi, On Roberts’ counterexample to the fourteenth problem of Hilbert, J. Pure Appl. Algebra 122 (1997), 277-292.

[4] S. Kuroda, A generalization of Roberts’ counterexample to the fourteenth problem of Hilbert, Tohoku Math. J. 56 (2004), 501-522.

[5] P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert’s fourteenth problem, J. Algebra 132 (1990), 461-473.

[6] M. Tanaka, Locally nilpotent derivations on modules, J. Math. Kyoto Univ. 49-1 (2009), 131-159.

[7] M. Tanaka, Locally nilpotent module derivations and the fourteenth problem of Hilbert, arXiv.org e-print 1005.0887 (2010).

Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

E-mail address: mtanaka@kwansei.ac.jp