Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and In Vitro Study

Souvik Banerjee,* Shalini Yadav, Sourav Banerjee, Sayo O. Fakayode, Jyothi Parvathareddy, Walter Reichard, Surekha Surendranathan, Foyez Mahmud, Ryan Whatcott, Joshua Thammathong, Bernd Meibohm, Duane D. Miller,* Colleen B. Jonsson,* and Kshatresh Dutta Dubey*

Cite This: https://doi.org/10.1021/acs.jcim.1c00524

ABSTRACT: COVID-19, an acute viral pneumonia, has emerged as a devastating pandemic. Drug repurposing allows researchers to find different indications of FDA-approved or investigational drugs. In this current study, a sequence of pharmacophore and molecular modeling-based screening against COVID-19 Mpro (PDB: 6LU7) suggested a subset of drugs, from the Drug Bank database, which may have antiviral activity. A total of 44 out of 8823 of the most promising virtual hits from the Drug Bank were subjected to molecular dynamics simulation experiments to explore the strength of their interactions with the SARS-CoV-2 Mpro active site. MD findings point toward three drugs (DB04020, DB12411, and DB11779) with very low relative free energies for SARS-CoV-2 Mpro with interactions at His41 and Met49. MD simulations identified an additional interaction with Glu166, which enhanced the binding affinity significantly. Therefore, Glu166 could be an interesting target for structure-based drug design. Quantitative structural−activity relationship analysis was performed on the 44 most promising hits from molecular docking-based virtual screening. Partial least square regression accurately predicted the values of independent drug candidates’ binding energy with impressively high accuracy. Finally, the EC50 and CC50 of 10 drug candidates were measured against SARS-CoV-2 in cell culture. Nilotinib and bemcentinib had EC50 values of 2.6 and 1.1 μM, respectively. In summary, the results of our computer-aided drug design provide a roadmap for rational drug design of Mpro inhibitors and the discovery of certified medications as COVID-19 antiviral therapeutics.

INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is accountable for the corona virus disease 2019 (COVID-19), a devastating pandemic with more than four million dead as of August 2021.1–4 This novel RNA virus of the genus Betacoronavirus (BCoV) and family Coronaviridae is an encircled positive-sense RNA virus with significantly bigger genomes with respect to the known RNA viruses.5,6 SARS-CoV and MERS-CoV are two more members of this class.5,6 Unlike the other BCoV members, SARS CoV-2 developed with a mutation that allowed the receptor binding domain of its spike glycoprotein to connect to the angiotensin-converting enzyme-2 with greater affinity.7–10 A second mutation between the S1 and S2 glycoproteins created a novel polybasic furin cleavage site, amplifying the pathogen’s potency many times. Despite rigorous efforts of diagnostic testing, isolation, contact tracing, and immunization efforts, the number of infected and the rate of mortality are on a surge.11–13 Rapid development of drugs and/or vaccines has, thus, been sought after, leading to intensive research to save the global economy from a near-collapse situation.14–16

Received: May 8, 2021
There has been extensive research on drug repurposing to find FDA-approved drug candidates as COVID-19 antiviral therapeutics. Drug repurposing has been emphasized as a priority given the prolonged time span required for the experimental validation of safety and efficacy with new potential drugs, thus saving a substantial amount of time and money. Thus, the majority of the drugs under investigation are repurposed from FDA-approved therapeutics. Current repurposed drugs, that are either being prescribed or further developed for the COVID-19 treatment, include ritonavir, lopinavir, oseltamivir, remdesivir, ribavirin, and interferon-α. Recent reports exhibited ritonavir and remdesivir to be efficacious against the SARS-CoV-2 in vitro and in vivo with the need of further experimental validations. However, recent clinical trials have failed to produce very strong evidence for the efficacy of ritonavir and remdesivir when compared to placebos. Ritonavir, if considered, should be administered well before the peak of the viral replication to observe an optimal effect. A recent clinical trial with 1063 patients shows that remdesivir shortened the recovery time by four days with respect to the placebo. Additionally, a significant difference was reported in the mortality rate between the drug (7.1%) and placebo (11.9%). Thus, there has been constant efforts in identifying effective drug candidates with wider therapeautic indices against SARS-CoV-2. Recently, there are numerous reports on the computer-aided drug design (CADD) approach, aiming to detect repurposed drugs with potentially enhanced efficacy against various drug targets of the COVID-19 pathogen.

Our goal was to find either FDA-certified or advanced clinical trial candidates, aiming at the SARS-CoV-2 main protease (Mpro). Similar to the previous coronaviruses, the duplication of SARS-CoV-2 relies on the production and proteolytic processing of two overlapping polyproteins, leading to multiple functional subunits. Mpro or 3C-like protease (3CLpro) is responsible for site-specific hydrolysis of polyproteins. Thus, Mpro is one of the most crucial enzymes for virus replication and considered one of the most attractive drug targets among coronaviruses. One of the biggest advantages of the Mpro target is that human and SARS-CoV-2 proteases differ in cleavage specificity. Hence, it is unlikely that an Mpro inhibitor will have side effects with a human protease. Recently, Jin and co-

![Figure 1.](https://pubs.acs.org/doi/10.1021/acs.jcim.1c00524) Recently discovered SARS-CoV-2 Mpro co-crystal structures. (A) SARS-CoV-2 Mpro complex with native ligand N3 (PDB: 6LU7). (B) SARS-CoV-2 Mpro complex with native ligand Z18197050 (PDB: 5R80). (C) COVID-19 Mpro complex with native ligand Z45617795 (PDB: 5R7Y).

![Figure 2.](https://pubs.acs.org/doi/10.1021/acs.jcim.1c00524) (A) Workflow to identify repurposed therapeutics as potential SARS-COV-2 Mpro inhibitors. (B) Top 10 drugs biologically evaluated for SARS-COV-2 replication inhibition.
workers have reported the co-crystal structure of Mpro with a potent antagonist (6LU7, Figure 1).38 Two co-crystal structures of Mpro with sulfonamide-based antagonists were reported by Fearon et al. (SR70 and SR7Y, Figure 1).39,40 There are numerous reports on drug repurposing virtual screening studies employing different methodologies against Mpro, resulting in several drug-like molecules with potential Mpro inhibitory activity.47

In this current study (Figure 2), a structure-based (SB) pharmacophore model was developed to carry out virtual screening experiments on the Drug Bank library, consisting of 8823 active pharmaceuticals either approved or under investigation. Pharmacophore-centered screening led to 502 candidates with potential to bind to the active site of Mpro in a noncovalent manner. The candidates from the pharmacophore screening were subjected to additional screening employing molecular docking to identify potential noncovalent inhibitors. The molecular docking study led to 44 promising compounds with binding affinities of −8.0 kcal/mol or above. Selected poses of top 44 candidates underwent molecular dynamics simulations (MD simulation) to assess the stability of the protein ligand complexes. The MD simulation study led to six top hits with potential Mpro inhibitory activity. A quantitative structure–activity relationship (QSAR) study was conducted on the 44 most promising docking hits. Prescreening of thousands of potential drug candidates based on their pharmacological potency in rational drug design and discovery is labor-intensive and time-consuming in the pharmaceutical industry. The use of CADD, computational chemistry, and molecular docking in conjunction with QSARs and multivariate analysis such as principal component analysis (PCA) and partial least square (PLS) regression has proven critical and their applications in rational drug design.47–49 Accordingly, multivariate regression analysis of the QSAR of drug candidates was used for pattern recognition and to model and predict the binding energies of individual agents. Finally, 10 promising commercially available compounds with very good binding affinity and interactions at His41 and Met49 for the SARS-CoV-2 Mpro active site were selected for an in vitro SARS-CoV-2 cytopathic effect experiment.

METHODS

Computational Details. We used a series of computational and bioinformatics tools to predict the best drug candidate. We started with SB pharmacophore hypothesis generation, and virtual screening was performed using LigandScout 4.4/Advance software. Molecular docking experiments were carried out employing PyRx/AutoDock Vina software. MD simulation was accomplished using the Amber 18 MD package. Visualization of molecular interactions was done using Discovery Studio Visualizer and VMD. QSAR was carried out applying Unscrambler Chemometrics software (CAMO Software, 9.8, Oslo, Norway).

Chemicals and Cells. The American Type Culture Collection provided Vero E6 cells, which had been cultured in minimal essential medium enriched with 100 μg/mL streptomycin, 100 U/mL penicillin, and 5% fetal bovine serum. Chemicals were received from the MedChem Express Library (MCE; Monmouth Junction, NJ, USA); and the Cayman Chemical Library (Ann Arbor, MI, USA). The purity of the chemicals ranged from 96 to 99 percent. Chemical dilutions and dosage response concentrations were taken care of manually.

Generation of the SB Merged Pharmacophore. Three co-crystal structures of SARS-CoV-2 Mpro with the respective noncovalent inhibitors, namely, N3 (PDB ID: 6LU7, resolution 2.16 Å), Z18197050 (PDB ID: 5R80, resolution 1.93 Å), and Z45617795 (PDB ID: 5R7Y, resolution 1.65 Å), were used to generate three individual energy-optimized SB pharmacophore hypotheses using LigandScout’s SB module. Three structural coordinates of the Mpro–ligand complexes were downloaded from the PDB. The water molecules within 5 Å of the native ligand were eliminated during refinement of protein–ligand complexes. Protein structure adjustments, including addition of missing hydrogens and loops, were performed followed by controlled energy minimization using the GROMOS96 43B1 force field.30 These steps were performed using Swiss-pdb viewer 4.1.0, AutoDockTools-1.5.7, and Discovery Studio Visualizer software. Prepared protein–ligand complexes were imported to LigandScout’s SB module workspace to map default pharmacophore features, including (a) hydrophobicity, (b) hydrogen bond donor, and (c) hydrogen bond acceptor. The alignment module of LigandScout was then employed to align three SB pharmacophores with respect to the 6LU7 SB hypothesis as the reference point. The alignment module was further utilized to generate the final merged pharmacophore hypothesis in two steps, namely, (a) generate a shared feature pharmacophore and then (b) merge pharmacophores and interpolate overlapping features.

Virtual Screening using the Merged Pharmacophore Model. Chemical structures of 8823 drugs candidates/ligands from the DrugBank database underwent virtual screening using the developed merged pharmacophore. The energy of the ligands was minimized employing the MMFF94 force field using the SB module of LigandScout 4.4/Advance software before undergoing screening. Using LigandScout’s screening module, probable stereoisomers and tautomers were created, and protonation states were designated. Finally, virtual screening was accomplished using LigandScout’s screening module to identify the drug candidates with important pharmacophore features responsible for improved binding to Mpro. A pharmacophore fit score of 40% or above was considered to select best hits (Table S1).

Virtual Screening on Molecular Docking. Initial screening using pharmacophores yielded 502 best hits with probability to interact strongly with the Mpro catalytic site. This subset of drug candidates was then subjected to molecular docking against the 6LU7 Mpro–ligand complex to screen the most promising candidates. Molecular docking-based virtual screening was performed employing PyRX/AutoDock Vina software. A grid box was created by considering the native ligand (N3) at the center of it. It was made sure that all nine hotspot residues are inside the grid box. The dimensions of the box were fixed at 23 × 28 × 24 Å. Docking score was applied to rank the candidates based on their binding affinities. Candidates with a docking score of −8 kcal/mol or above were considered as hits, leading to 44 most promising drug candidates. All cysteine residues kept their natural (proto- nated) form.

Validation of the Docking Process. A control experiment was set up to validate the docking process. The native ligands in the crystal structures 6LU7 (N3), 6LZE (FHR), 6M0K (FJC), 6WTK (UED), and 6XHL (V2M) underwent docking against the refined protein while maintaining the uniform grid box. The docking score of this control experiment
was set as a benchmark for comparing scores of other drugs. This experiment was accomplished using AutoDock Vina.

MD Simulations. System Preparation and Setup. The initial coordinate of the protein was derived from the recently crystallized COVID-19 Mpro complex consisting of an antagonist N3 (PDB code: 6LU7, solved at a resolution of 2.16 Å). The drug was docked into the 6LU7 receptor using AutoDock Vina. Lack of the hydrogen atoms in the protein was filled by the LEAP module of the Amber18 package. Atomic partial charges and the absent parameter for the drug molecule were acquired by a semiempirical method (AM1-BCC) using the antechamber module of Amber18. The generalized Amber force field was employed for all the drug molecules. After that, the subsequent system undergoes solvation in a rectangular box of transferable intermolecular potential 3-point water model stretching up to a distance of 8 Å from the surface of the protein. After checking the total charge of the system, to neutralize it, few Na⁺ ions had been introduced into the surface of the protein. Each MD simulation utilized the Amber ff14SB force field for the protein residues.

MD Simulations. After proper parametrization, minimization was performed on the system’s geometries to eliminate all the nasty contacts and to relax the system (5000 steps by the steepest descent and 5000 steps by the conjugate gradient approach). Afterward, to adjust the temperature, the system was gently annealed for 50 ps, under the NVT ensemble, where a weak restraint was applied on protein residues. Subsequently, the system undergoes density equilibration for 1 ns under the

drug name	Drug Bank ID	docking score (kcal/mol)	pharmacophore fit score	primary target
bemcentinib	DB12411	−10.4	45.7	AXL kinase inhibitor
nilotinib	DB04868	−9.2	55.8	tyrosine kinase (TK) inhibitor
SAR-125844	DB15382	−8.9	54.6	MET TK inhibitor
temafloxacin	DB01405	−8.8	65.7	fluoroquinolone antibiotic
enasidenib	DB13874	−8.7	55.7	IDH2 inhibitor
tegobuvir	DB11852	−8.6	55.5	HCV, chronic
NA	DB08553	−8.5	67.0	ser/thr-protein kinase B-raf
ziresovir	DB15145	−8.4	55.6	RSV
NA	DB08141	−8.4	65.1	cyclin dependent kinase-2
danoprevir	DB11779	−8.4	43.2	NS3/4A protease inhibitor
selinexor	DB11942	−8.4	42.8	refractory multiple myeloma
fribuvir	DB11878	−8.3	42.2	NSSB inhibitor for HCV
NA	DB02573	−8.3	55.3	ribonuclease pancreatic
A-443654	DB08073	−8.3	55.2	kinase inhibitor
danicopan	DB15401	−8.3	54.0	factor D inhibitor
AGG-523	DB15460	−8.3	52.3	aggrecanase-selective inhibitor
SB-649868	DB14822	−8.2	56.7	dual orexin receptor antagonist
NA	DB08166	−8.2	56.0	ser/thr-protein kinase pim-1
luifenuron	DB11424	−8.2	55.1	flea control
defibrotide sodium	DB04932	−8.2	42.2	antithrombotic, anti-inflammatory
naflamostat	DB12598	−8.2	42.0	synthetic protease inhibitor
indinavir	DB00224	−8.1	42.0	protease inhibitor for HIV
sisunatovir	DB15674	−8.1	66.0	RSV fusion inhibitor
montelukast	DB00471	−8.1	41.8	anti-inflammatory
NA	DB04020	−8.1	65.0	estrogen-β receptor
SB220025	DB04338	−8.1	57.1	mitogen-activated protein kinase 1/14
gemiglitin	DB12412	−8.1	56.5	DPP4
KW-7158	DB05498	−8.1	56.0	urinary incontinence
carfucilin	DB13506	−8.1	56.0	β-lactam antibiotic
NA	DB08445	−8.1	55.7	DPP4
brivanib	DB11865	−8.1	55.5	hepatocellular carcinoma
lopinavir	DB01601	−8.0	41.6	antiretroviral protease inhibitor
NA	DB08588	−8.0	68.2	DPP4
verucerfont	DB12512	−8.0	56.4	CRF-1 antagonist
NA	DB06994	−8.0	56.3	DPP4
BMS-690514	DB11665	−8.0	56.3	inhibitor of EGFR and VEGFR
retagluptin	DB14898	−8.0	56.0	DPP4 inhibitor
CHEBI:40083	DB07145	−8.0	56.0	disintegrin and metalloproteinase domain-containing protein 17
salvianolic acid	DB15246	−8.0	55.5	oxidative stress
TAK733	DB12241	−8.0	54.8	inhibitor of MEK1
flufenoxuron	DB15006	−8.0	54.0	insecticide
NA	DB08590	−8.0	42.0	NA
NA	DB02510	−8.0	41.6	NA
NA	DB07568	−8.0	42.3	NA

NA: commercial name not available.
NPT ensemble (constant pressure of 1.0 atm and constant temperature of 300 K). To maintain the constant temperature and pressure, a Langevin thermostat with 2 ps collision frequency and Barendsen barostat with 1 ps pressure relaxation time were used, respectively. This density equilibration over 1 ns is a MD simulation performed with weak restraints under periodic boundary conditions until the system obtained a uniform density. After 1 ns of density equilibration, all the restraints applied before (during heating and density equilibration) had been eliminated, and the system was further equilibrated for 3 ns followed by 100 ns of MD production run. Using the SHAKE algorithm, all the covalent bonds consisting of hydrogen had been kept constrained during all MD simulations. Particle mesh Ewald was utilized to manage long-range electrostatic interactions. The GPU version of the Amber18 package had been used for MD simulation of each complex, and the CPPTRAJ module was used for the analyses of the trajectories.

MMPBSA Calculation. The molecular mechanics generalized Boltzmann surface area (MMGBSA) calculations had been conducted over the 2000 frames selected from the trajectory, in which root mean square deviation (rmsd) of the complex was found to be well converged. Water molecules and Na+ ions present in the system had been removed before the MMGBSA analysis. For solute, the dielectric constant was 1, and for the surrounding solvent molecules, it had been kept at 80. MMGBSA calculation was carried out using the MMPBSA.py module of Amber18. We used the Onufriev and David Case GB model for MMGBSA calculations.

QSAR Analysis. The QSAR dataset used for the PCA and PLS regression is made up of 44 drug candidates (Table 1). Drug candidates in Table 1 were divided into two datasets, training set and validation dataset. The training set comprised 23 drug candidates. However, 19 drug candidates were used as validation or independent samples (Table S2). The drug candidate’s QSAR including the molecular weight, number of each atom present in the molecule, presence of single, double, and triple bonds, and benzene ring (x-variables) was modeled with subjecting to PCA and modeled by PLS regression for the prediction of drug candidate binding energies (x-variables).**\(^51,52\)** Unscrambler Chemometrics software (CAMO Software, 9.8, Oslo, Norway) was used to conduct the drug candidates’ QSAR regression analysis.

Biological Evaluation. In Vitro Screening. The in vitro screening experiment was performed following the protocol recently published by Jonsson and co-workers.**\(^53\)**

RESULTS AND DISCUSSION

Virtual Screening on the SB Pharmacophore. A pharmacophore represents an assembly of steric and electrostatic features of different molecules that are crucial to ensure best-possible supramolecular interactions with a given protein structure to stimulate or deactivate its pharmacological response.**\(^26\)** Recently, pharmacophore-based screening has
been employed extensively as a result of its capacity to identify potential hits from a large dataset within a short timeframe and with minimum computational powers. In the present study, we have used the “SB” pharmacophore creation guideline available in LigandScout to generate pharmacophores indicative of nonbonding interactions of three individual Mpro protein–ligand complexes, namely, 6LU7, 5R7Y, and 5R80 (Figure S3A–C). The number of pharmacophore features varied from one for 5R7Y to two for 5R80 to a 12-feature model for 6LU7. We have then used the “alignment” protocol in LigandScout to align three SB pharmacophores by the reference point (6LU7 as a reference), generate a shared feature pharmacophore, and finally merge pharmacophores and interpolate overlapping features. The final pharmacophore model included 14 features (14FP, Figure 3D), including seven hydrogen bond donors, two hydrogen bond acceptors, and a positive ionizable feature, representing nonbonding interactions between the Mpro catalytic site and ligands. A group of BioVia scientists recently performed alanine scanning mutagenesis on the catalytic pocket residues of all known Mpro–ligand complexes, finding eight critical contacts (Gln192, Gln189, Pro168, Met165, Asn142, Met49, His41, and His41) in no less than one complex and three critical contact residues in no less than four complexes. Six characteristics of the newly developed 14FP hypothesis correlate to interactions with one of the eight critical contact residues (Figure 3D). The 14FP hypothesis was applied as a 3D probe to filter 8823 candidates from the Drug Bank database (https://go.drugbank.com/) employing the “screening” module of LigandScout with the requirement that at least four features needed to match to identify a hit. During screening, the LigandScout screening module analyzed the alignment of the drug candidates with query features and ranked them on the basis of the pharmacophore fit score (Table S1). Pharmacophore-based screening resulted in 502 hits (Table S1) that were moved forward for the molecular docking-based screening against the 6LU7 binding site.

Virtual Screening on Molecular Docking. Top candidates from SB pharmacophore screening (n = 502 with a fit score of 40% and above) were further filtered through molecular docking-based screening. The docking experiment assesses nonbonding interactions of different poses of ligands with the binding pocket of Mpro to rank them based on the docking score (binding affinity: kcal/mol). The docking study also helps establish atomic-level interactions between the Mpro and candidates. Selected docking parameters were validated by redocking the 6LU7 native ligand N3, 6LZE native ligand FHR, 6M0K native ligand FJC, 6WTK native ligand UED, and 6XHL native ligand V2M in the respective binding site applying the exact procedure, yielding native ligands with a similar location and alignment-like co-crystal structure (Figures S1–S6), confirming the optimal choice of parameters. Seven hydrogen bonding interactions, including Gly143, His164, Phe140, Cys145, His164, Thr190, and Gln189, stabilized the Mpro–N3 complex (Figure S2A). The docked structure demonstrated six of these hydrogen bonds, including the ones with Cys145 and His41 (Figure S2B). Other co-crystal structures, Mpro–FHR, Mpro–FJC, Mpro–UED, and Mpro–V2M complexes, have exhibited binding stabilization by four–six hydrogen bonding contacts with the binding site amino acids, including Phe140, Cys145, Gly143, His164, Glu166, and Gln189 (Figures S3–S6). The in silico-ducted structures were in concert with these hydrogen bonding interactions.

The molecular docking-based virtual screening led to 44 promising potential inhibitors based on the affinity of binding of −8 kcal/mol or above (Table 1). The docking score of the native ligand N3, was found to be −8 kcal/mol (Table S3), providing the rationale behind setting it up as the threshold for elimination. The highest-scoring candidate bencemtib (DB12411, −10.4 kcal/mol) is an experimental selective inhibitor of AXL kinase and currently being tested in phase II clinical trials for nonsmall-cell lung cancer and triple-negative breast cancer. Interestingly, bencemtib is currently under clinical trials against SARS-CoV-2 as the COVID-19-infected lung cells have been observed to upregulate AXL. The AXL receptor signaling pathway is known to downmodulate the interferon-related host immune response and, thus, promote viral infection. Temafloxacin, a fluoroquinolone-based antibacterial agent approved in 1992 and marketed by Abbott. However, it was withdrawn due to adverse side effects, including allergic reactions and hemolytic anemia. Enasidenib (DB13874, −8.7 kcal/mol) is an orally bioavailable approved drug against refractory acute myeloid leukemia in patients with specific mutation in isocitrate dehydrogenase 2 (IDH2). Tegobuvir prevented viral RNA replication in vitro and was found to have superior efficacy in individuals with hepatitis C virus (HCV). Last year, Ark Biosciences reported the successful completion of a phase II clinical trial of ziresovir (DB15145, −8.4 kcal/mol) in infants with respiratory syncytial virus (RSV) infection.

Danoprevir is one of the most potent HCV protease inhibitors (DB15401, −8.3 kcal/mol) and is being studied for remedy of COVID-19 patients. Selinexor (DB11942, −8.4 kcal/mol) is an anticancer medication that inhibits nuclear factor kappa B (NF-kB) receptor selective. It has been approved by the FDA for the therapy of refractory multiple myeloma and diffuse large B-cell lymphoma. Currently, selinexor is being investigated for the cure of SARS-CoV-2 for its potential to decrease the ability of the virus to replicate and reduce the release of a biochemical, IL-6, responsible for inflammation and organ damage. Defibrotide sodium (DB04932, −8.2 kcal/mol) has been certified by the U.S. FDA in 2016 for the remedy of hepatic veno-occlusive disease, aka sinusoidal obstructive syndrome, with renal or pulmonary dysfunction. It is now being tested for the deterrence and therapy of respiratory distress and COVID-19 cytokine release syndrome. Nafamostat (DB12598, −8.2 kcal/mol), a highly potent synthetic serine protease inhibitor, has been investigated for acute pancreatitis. Nafamostat has been observed to significantly inhibit viral transmembrane serine protease 2 enzyme, leading to the inhibition of SARS-CoV-2 from infecting human lungs. Nafamostat is being tested in clinical studies against COVID-19. Indinavir, a protease inhibitor, is utilized to reduce the amount of HIV in human body, so the body’s immune system can work better. It is known to keep the viral polyprotein precursor from cleaving into individual functional protein subunits found in the infectious HIV-1. There has been a number of recent reports recommending indinavir for COVID-19 treatment.

Montelukast, a leukotriene inhibitor, is an FDA-certified drug for the cure of asthma and allergies and is prescribed to control wheezing and shortness of...
breath. There have, recently, been many publications with potential benefits of montelukast in SARS-CoV-2 treatment. Recent publications suggest that dipeptidyl peptidase 4 (DPP4) inhibitors, for example, gemigliptin and retagliptin, may help reduce virus entrance and reproduction in the respiratory system. DDP4 inhibitors can also disrupt prolongation of cytokine storm and infection in the lungs of COVID-19 sufferers. Recent findings suggest that COVID-19 treatment may stimulate cardiovascular impairment in people with no abnormalities. The high morbidity and mortality number of COVID-19 are attributed to its adverse impacts on the lungs and heart. The mitogen-activated kinase (MAPK) pathway is critically involved in the secretion of cytokines and linked with severe lung damage and myocardial dysfunction. Thus, MAPK inhibitors, such as SB220025 (DB04020, −8.1 kcal/mol), are being looked into for their ability to significantly diminish cardiovascular damage and morbidity in COVID-19 patients. Lopinavir, known for antagonizing antiretroviral protease, is applied against HIV infection. It is under investigation in conjunction with ritonavir for individuals with serious COVID-19 symptoms. In summary, molecular docking-based virtual screening has led to many potential SARS-CoV-2 therapeutics, and many of these are under clinical trial to further validate our experiments. Figure 4 represents conformations of selected bound drugs, with high binding affinities, in the enzyme binding site.

MD Simulations. As demonstrated in the earlier section, the docking and virtual screening revealed 44 drugs as good binders for the main protease. Next, we performed MD simulations for these 44 drugs to check their binding stabilities. During the MD simulation of all 44 drugs, we found that some of these drugs left the initial binding cleft and show very poor stabilities (see the rmsd plot in Figure 5). The visual inspection of MD trajectories reveals that some of those drugs who maintained the same binding conformation as in molecular docking were also very flexible. Therefore, among the 44 drugs screened by molecular docking, only few drugs were showing a stable binding in MD simulations. To quantify these observations, we further performed thermodynamical calculations using MMGBSA for all 44 drugs. The results of the MMGBSA calculations along with the residue-wise interaction map are shown in Table S4. Here, we see that many drugs which have a good docking score have less binding energy, which is in accordance with the poor rmsd of these drugs. Considering the fact that the change in entropy of an FDA-approved drug is roughly around 25 ± 5 kcal/mol (calculated for the FDA-approved drug nilotinib, Table S5), we considered >33.0 kcal/mol as a screening cutoff for a good binder. Applying this screening cutoff, we found that DB04020, DB07145, DB11865, DB12411, DB11779, and DB00471 can be considered as better drugs for the main protease. Among these six drugs, three drugs, DB04020, DB12411, and DB11779, show excellent binding free energies (Table 2). To scrutinize the key interactions of these three drugs, the total binding free energy had been decomposed into key residue interactions, as shown in Tables 3−5. A comparison of key interactions for all three drugs shows that His41 and Met49 are common residues for all three drugs, and they have significant contribution in the free binding stabilization energies. Moreover, DB04020 which shows the best binding affinity interacts very strongly with the Glu166 residue. Interestingly, the interaction of Glu166 was absent in all other drugs except for DB04020. The key interactions of these drugs are shown in Figure 6.

In Vitro Cytopathic Effect Experiment. We have selected top nine commercially available drug candidates
Table 2. Binding Free Energy of Top Three Drugs Selected from MD Simulations

Drug ID	Total ΔH (kcal/mol)
DB04020	-67.53 ± 5.6
DB12411	-46.51 ± 4.0
DB11779	-49.82 ± 4.1

Table 3. Residue-Wise Energy Decomposition for DB04020

Drug ID	Residue ID	Total Interaction Energy (kcal/mol)
DB04020	HID 41	-4.43 ± 0.59
DB04020	MET 49	-4.20 ± 0.59
DB04020	PHE 140	-4.39 ± 0.74
DB04020	ASN 142	-3.47 ± 0.99
DB04020	HID 163	-3.68 ± 0.42
DB04020	GLU 166	-12.25 ± 1.38
DB04020	HID 172	-3.63 ± 1.39

picked nilotinib because it had a binding free energy of above -25 kcal/mol with the Mpro protein, and it has been reported
to have antiviral activity. Moreover, nilotinib has shown strong predicted binding interactions with the SARS-CoV-2 papain-like protease (PLpro) active site in our preliminary study (Figure S7). Recently, nilotinib was demonstrated to be efficacious against SARS-CoV-2 in vitro, strengthening our computational calculation. Thus, we wanted to make sure that it worked in our hands. Out of 10 compounds tested, nilotinib and bemcentinib were able to interfere with the repetition of SARS-CoV-2 in Vero-E6 cells in vitro with the respective EC₅₀ values of 2.6 and 1.2 μM (Figure 7), while the control remdesivir demonstrated an EC₅₀ value of 2.8 μM. BMS-690514 (EC₅₀ = 32.78 μM) and lopinavir (EC₅₀ = 30.10 μM) had shown moderate activity, while montelukast was weakly active (Figure S8). Rest of the drug candidates were found to be inactive. Nilotinib and BMS-690514 demonstrated potent to moderate antiviral behavior with one of the highest SI values among the tested compounds, provided their low cytotoxicity (Table 6). Thus, a higher concentration of nilotinib and BMS-690514 may be used in in vivo experiments without incurring undesired toxicity. These findings strengthen our computational screening campaign as both bemcentinib and nilotinib have come out to be top hits. Bemcentinib is being tested in clinical trials for SARS-CoV-2, and we are the second to experimentally evaluate the therapeutic potential of nilotinib against SARS-CoV-2. Although lopinavir has been in the clinical trial against severe hospitalized SARS-CoV-2 patients, we, for the first time, report BMS-690514 (an orally active EGFR and VEGFR inhibitor) to be a potential treatment for SARS-CoV-2. These findings suggest that nilotinib and BMS-690514 should be assessed in clinical trials for further experimental evaluations.

PCA and PLS Regression. The initial PCA and PLS regression modeling involved model optimization and model refinement. Five (5) PCs were found to be sufficient for PCA and PLS regression analysis. Figure 8 presents the score plots (PC1 vs PC2) of the PCA study. A total of 98% of the variability in the drug candidate QSAR and 6% of the variability in drug candidate binding energy can be explained by the first PC. PC2 accounted for 1% of the variability in the drug candidate's QSAR and 26% of the variability in drug candidate binding energy. Groupings of drug candidates into four distinct and notable groups based on the similarity and differences in the drug candidate QSAR were observed in PCA analysis. For instance, S7, S9, S21, and S33 drug candidates are grouped on the far-right corner of the score plot. Interestingly, S7, S9, S21, and S33 have a strong relationship, as they have either imidazole or similar looking guanidine moieties. S7 (DB08553) is under investigation for the treatment of cancer and targeting serine/threonine protein kinase B-raf. S9 (DB08141) is under investigation as a serine protease inhibitor for liver

| Table 4. Residue-Wise Energy Decomposition for DB12411 |
|---------------------------------|------------|
| drug (DB12411) | residue ID | total interaction energy (kcal/mol) |
| DB12411 | HID41 | −5.27 ± 0.89 |
| DB12411 | MET 49 | −3.45 ± 0.52 |
| DB12411 | MET 165 | −4.20 ± 0.59 |
| DB12411 | ASP 187 | −4.35 ± 1.12 |
| DB12411 | GLN 189 | −6.49 ± 1.37 |

| Table 5. Residue-Wise Energy Decomposition for DB11779 |
|---------------------------------|------------|
| drug (DB11779) | residue ID | total interaction energy (kcal/mol) |
| DB11779 | THR 25 | −8.82 ± 1.12 |
| DB11779 | THR 26 | −3.13 ± 0.61 |
| DB11779 | HID 41 | −4.428 ± 0.57 |
| DB11779 | SER 46 | −6.645 ± 0.83 |
| DB11779 | MET 49 | −5.483 ± 0.68 |
| DB11779 | ASN 142 | −4.606 ± 1.91 |

Figure 6. Key interactions for the top three drugs during the MD simulations.
transplantation and post-reperfusion syndrome therapy. This is also approved for use in individuals who are on continuous renal replacement therapy owing to acute kidney damage.

Drug candidates (S23, S29, S31, S35, S39, and S41) containing at least one crucial 5-membered heterocyclic or fused heterocyclic moiety in the molecule are notably identified in the center of the score plots. S23 (DB15674) is an under-investigation antiviral fusion inhibitor, with a benzimidazole moiety, for the treatment of RSV. S29 (DB13506) is a β-lactam antibacterial agent with a fused 5-membered thiazole moiety. S31 (DB11865) is under investigation for colorectal cancer. S35 (DB06994), five-membered oxadiazole moiety, is under investigation targeting DPP4 for T-cell activation and enhanced immune response. S39 (DB08590) is under investigation, with a benzimidazole moiety, targeting interleukin-1 receptor-associated kinase 4 (IRAK-4) known to be involved in signaling innate immune responses from toll-like receptors. Animals with knockout IRAK-4 are known to be more susceptible to the viruses and bacteria.

Drug candidates (S1, S3, S15, S17, and S25) with fused heterocyclic compounds with a single fluorine or chlorine atom are grouped at the left corner of the third quadrant of the score plots. S3 (DB15382) is under investigation for advanced malignant solid tumors. S15 (DB15401) is under investigation for patients with kidney malfunction, C3 glomerulopathy. S17 (DB14822) is under investigation as a dual orexin receptor antagonist for the treatment of insomnia. S25 (DB04020) is a

Table 6. Fifty-Percent Efficacy (EC_{50}) against SARS-CoV-2 WA1 Strain and Vero E6 Cytotoxicity (CC_{50}) Measured for the Drugs Identified. Remdesivir as a Positive Control Candidate

SL	Compound Name	Structure	Drug Bank ID	EC_{50} (μM)	CI (95%)	CC_{50} (μM)	SI	Binding free energy (kcal/mol)
1	Darunavir	DB11779	IN	23.4	IN	IN	-49.82	
2	Bemcentinib	DB1241	1.2	6.55 – 1.15	4.3	3.6	-46.52	
3	Brivanib	DB11865	IN	29.7	IN	IN	-40.14	
4	BMS-690514	DB11665	32.78	16.92 – 63.51	2069326	~63, 000	-39.35	
5	Montelukast	DB00471	645.0	53.17 – -0.04	24.01	0.04	-42.34	
6	Nilotinib	DB04868	2.62	1.20 – 0.05	52.88	20.2	-27.53	
7	Salvianolic Acid A	DB15246	IN	IN	27.94	IN	-34.62	
8	SB-649868	DB14822	IN	199.5	IN	IN	-32.82	
9	Lopinavir	DB01601	30.10	12.72 – 71.23	27.48	~1	-37.1149	
10	Temafloxacin	DB01405	IN	16022	IN	IN	-37.779	
11	Remdesivir	DB14761	2.8	2.23 – 5.19	ND	ND	ND	

*95% confidence interval (CI); EC_{50}: half maximum effective concentration; CC_{50}: 50% cytotoxic concentration; SI: selectivity index; and IN: inactive. *Indeterminate.

Figure 7. Inhibitory activity of nilotinib, bemcentinib, and remdesivir (positive control) in Vero-E6 cells.

an under-investigation antiviral fusion inhibitor, with a benzimidazole moiety, for the treatment of RSV. S29 (DB13506) is a β-lactam antibacterial agent with a fused 5-membered thiazole moiety. S31 (DB11865) is under investigation for colorectal cancer. S35 (DB06994), five-membered oxadiazole moiety, is under investigation targeting DPP4 for T-cell activation and enhanced immune response. S39 (DB08590) is under investigation, with a benzimidazole moiety, targeting interleukin-1 receptor-associated kinase 4 (IRAK-4) known to be involved in signaling innate immune responses from toll-like receptors. Animals with knockout IRAK-4 are known to be more susceptible to the viruses and bacteria.

Drug candidates (S1, S3, S15, S17, and S25) with fused heterocyclic compounds with a single fluorine or chlorine atom are grouped at the left corner of the third quadrant of the score plots. S3 (DB15382) is under investigation for advanced malignant solid tumors. S15 (DB15401) is under investigation for patients with kidney malfunction, C3 glomerulopathy. S17 (DB14822) is under investigation as a dual orexin receptor antagonist for the treatment of insomnia. S25 (DB04020) is a
Drug candidates (S5, S11, S19, S27, S37, and S43) with at least one trifluoromethyl group moiety and one aromatic six-membered ring (benzene, pyridine, pyrimidine, or triazine) are grouped in the fourth quadrant of the score plots. S5 (DB13874) is a FDA-certified candidate against AML. S11 (DB11942) is a recently approved drug for multiple myeloma, a type of cancer that originates from antibody-producing plasma cells. S27 (DB12412) is under investigation against type-2 diabetes. It has also been tested for cancer. S37 (DB14898) is under investigation for type-2 diabetes as well. S43 (DB15006) is under clinical trials for septic shock.

The obtained pattern recognition of drug candidates on the score plots is remarkable, which could enhance the ability to rapidly filter and estimate the efficacy and pharmacophore properties of future drug candidates with a similar QSAR in rational drug design.

Validation Study. The summary of the validation study conducted using 19 independent leads showing the calculated energy of binding stabilization by the PLS regression and the actual binding energy calculated from the pharmacophore and molecular docking is shown in Table S2. The obtained low % relative errors (% RE) of predictions revealed the potential of the PLS regression in precisely determining the energy of binding for individual candidates. Root-mean-square-percent-relative error (rms % RE) was applied to further evaluate the overall performance of the PLS regression for the determination of drug candidates’ binding energy. Overall, PLS regression determined the binding energy of individual drug candidates with a low rms % RE of 4.4% and impressively high accuracy of 95.6%.

CONCLUSIONS

Medication repurposing is one of the most effective techniques for combating the horrible medical emergency initiated by SARS-CoV-2 infections which are spreading at an exponential rate. Repurposing employs the techniques of screening and identifying known therapeutic agents aiming certain biological targets in SARS-CoV-2. The biggest advantage of drug reprofiling is the potential to bring them to the market in a shorter timeframe and at lower costs as opposed to the orthodox drug discovery. The \(M^{\text{pre}} \) of SARS-CoV-2 has earned considerable attention as a drug target because of its important significance in proteolytic processing of polyproteins, translated from the virus RNA, facilitating viral assembly and disease progression. In this study, a sequence of SB pharmacophore and molecular modeling-centered virtual screening allowed us to repurpose a subset of drugs, from the Drug Bank database, against COVID-19 \(M^{\text{pre}} \). After multiple screening, 44 promising hits, out of 8823 agents from the Drug Bank, were recruited for MD simulation experiments to explore their strength of binding in the SARS-CoV-2 \(M^{\text{pre}} \) catalytic site. MD results demonstrated that three drugs (DB04020, DB12411, and DB11779) show very strong affinity for binding against the SARS-CoV-2 \(M^{\text{pre}} \) catalytic site. His41 and Met49 are common residues, which interact with all drugs. Met165 interacts with most of the candidates, demonstrating interactions with five of the top six hits from MD simulation. Table S4. Gln189 has consistently interacted with most of the candidates. Gly143 and His163 have been reported to be very attractive residues to form hydrogen bonding with potential inhibitors, as we have observed for DB11942 and DB08166.\(^{95,96,92,93}\) The main chain of Leu141 and side chain of Ser144 have been reported to form hydrogen bonding with a number of ligands.\(^{92}\) Two of the candidates with a low binding free energy, DB04020 (\(\Delta H = -67.5326 \text{ kcal/mol} \)) and DB08166 (\(\Delta H = -28.2756 \text{ kcal/mol} \)), have demonstrated interactions with Phe140, revealing its importance as reported previously.\(^{92,94}\) MD simulations have also shown that an additional interaction with Glu166 is very crucial, and it enhances the binding affinity significantly (Table S4). Therefore, His41, Met49, Phe140, Met165, His163, Gly143, Glu189, and Gln166 could be interesting targets for SB drug design. We have then performed QSAAR analysis on the 44 promising hits from molecular docking-centered screening. The use of PCA and QSAAR promoted fast drug candidate pattern recognition. PLS regression accurately predicted the values of independent drug candidates’ binding energy with impressively high accuracy. Finally, we have selected 10 drug candidates, as shown in Table 6, for the in vitro SARS-CoV-2 cytopathic effect experiment. Four out of the 10 drug candidates, nilotinib (DB04868), bemcentinib (DB12411), lopinavir (DB01601), and BMS-690514 (DB11665), have demonstrated capability of interfering in SARS-CoV-2 duplication with \(EC_{50} \) values of 2.6, 1.1, 30.1, and 32.8 \(\mu M \), respectively, in Vero-E6 cells. It is noteworthy that nilotinib and BMS-690514 have one of the highest SI values among the tested compounds, given their low cytotoxicity values. Currently, bemcentinib and lopinavir are in clinical trials...
against COVID-19. We are the second to report experimental validation of nilotinib against SARS-CoV-2. Also, we, for the first time, report BMS-690514 to be an experimentally validated potential drug for SARS-CoV-2. These findings demonstrate the strong antiviral potential of nilotinib, bempentinib, lopinavir, and BMS-690514. While bempentinib and lopinavir are currently in clinical trials for SARS-CoV-2 treatment, nilotinib and BMS-690514 hold strong potential for future experimental evaluation. Overall, the results of our study are significant and will facilitate rapid screening, assessment, and prediction of pharmacophore properties, behavior, and drug candidate potency. The results of this CADD are envisioned to lead to rational drug design and new discoveries against the COVID-19 pandemic.

DATA AND SOFTWARE AVAILABILITY

LigandScout software (4.4.5 version) used for the pharmacophore development and virtual screening can be downloaded for a one-month free trial at http://www.inteligand.com/. PyRx/AutoDock Vina software used for molecular docking can be downloaded free of charge at https://pyrx.sourceforge.io/. The Amber 18 MD package used for MD and simulation is available at https://www.ks.uiuc.edu/Research/vmd/. VMD used for visualization is available free of charge at https://discover.3ds.com/discovery-studio-visualizer/. PyRx/AutoDock Vina software used for molecular docking can be downloaded free of charge at https://pyrx.sourceforge.io/. The Amber 18 MD package used for MD and simulation is available at https://www.ks.uiuc.edu/Research/vmd/. VMD used for visualization is available free of charge at https://discover.3ds.com/discovery-studio-visualizer-download. VMD used for visualization is available free of charge at https://www.ks.uiuc.edu/Research/vmd/. The QSAR was investigated using Unscrambler Chemometrics software available at https://www.camo.com/unscrambler/.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.1c00524.

Validation study showing the predicted and actual binding energy and % relative errors of prediction, S02 hits from pharmacophore-based screening using LigandScout’s screening module, docking score (Kcal/mol) of three native ligands against Mpro, inhibitory activity of lopinavir, BMS-690514, and remdesivir (positive control) in Vero-E6 cells, and SMILES for the drugs tested (PDF)

AUTHOR INFORMATION

Corresponding Authors

Souvik Banerjee — Department of Physical Sciences, University of Arkansas Fort Smith, Fort Smith, Arkansas 72904, United States; orcid.org/0000-0002-7811-2577; Email: souvik.banerjee@uafs.edu

Duane D. Miller — Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States; orcid.org/0000-0002-6093-0985; Email: dmill@uthsc.edu

Colleen B. Jonsson — Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States;

Author Contributions

The article was co-written by all authors. The final draft has been approved by all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.B. expresses gratitude for the AR INBRE voucher award and the AR INBRE Collaborative Research Award (AR INBRE award: 316511-356103-190). S.B. also acknowledges the Department of Physical Sciences and the Dean’s office for software and computer support. K.D.D. wants to acknowledge the Department of Biotechnology, Government of India, for Ramalingaswami re-entry research grant (BT/RLF/Re-entry/10/2017).

ABBREVIATIONS

SB, structure-based; BCoV, Betacoronavirus; RBD, receptor binding domain; ACE 2, angiotensin-converting enzyme-2; CADD, computer-aided drug design; Mpro, main protease; PLpro, papain-like protease; 3CLpro, 3C-like protease; MD,
molecular dynamics; QSAR, quantitative structural–activity relationships; PCA, principal component analysis; PLS, partial least squares; MCE, Medchem Express; GAFF, generalized Amber force field; MAFF94, Merck molecular force field; DB, Drug Bank; VOD, veno-occlusive disease; MAPL, mitogen-activated kinase; rmsd, root mean square deviation; CPE, cytopathic effect; SI, selectivity index

REFERENCES

(1) Saxena, A. Drug targets for COVID-19 therapeutics: Ongoing global efforts. J. Biosci. 2020, 45, 87–110.
(2) Covid-19 Coronavirus Pandemic; WorldOmeter, 2021. Aug 15, 2021.
(3) Gorbalenya, A. E.; Baker, S. C.; Baric, R. S.; de Groot, R. J.; Drosten, C.; Gulyaeva, A. A.; Haagmans, B. L.; Lauber, C.; Leonotivich, A. M.; Neuman, B. W.; Penzar, D.; Perlman, S.; Poone, L. L. M.; Samborskiy, D. V.; Sidorov, I. A.; Sola, I.; Ziebuhr, J.; Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544.
(4) Suárez, D.; Val, N. SARS-CoV-2 Main Protease: A Molecular Dynamics Study. J. Chem. Inf. Model. 2020, 60, 5815–5831.
(5) Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M. Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N. E.; Martínez, A. COVID-19: Drug Targets and Potential Treatments. J. Med. Chem. 2020, 63, 12359–12386.
(6) Zhou, Y.; Yang, Y.; Huang, J.; Jiang, S.; Du, L. Advances in MERS-CoV Vaccines and Therapies Based on the Receptor-Binding Domain. Viruses 2019, 11, 60–77.
(7) Huang, Y.; Yang, C.; Xu, X.-f.; Xu, W.; Liu, S.-w. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149.
(8) Hussain, A.; Hasan, A.; Nejadi Babadaei, M. M.; Bloukh, S. H.; Chowdhury, M. E. H.; Sharifi, M.; Haghighat, S.; Falahati, M. Targeting SARS-CoV-2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies. Biomol. Pharmacother. 2020, 130, 110559.
(9) Zhang, L.; Jackson, C. B.; Mou, H.; Ojha, A.; Rangarajan, E. S.; Izard, T.; Farzan, M.; Choe, H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv:10.1101/2020.06.12.148726.
(10) Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 11727–11734.
(11) Joshi, S.; Joshi, M.; Degani, M. S. Tackling SARS-CoV-2: proposed targets and repurposed drugs. Future Med. Chem. 2020, 12, 1579–1601.
(12) Center for Disease Control and Prevention. Information for the Search for Effective Therapy. Nat. Engl. J. Med. 2020, 382, 1815–1852.
(13) De Oliveira, O. V.; Rocha, G. B.; Paluch, A. S.; Costa, L. T. Drug repurposing and synergism of lopinavir–ritonavir against COVID-19. J. Biomed. Struct. Dyn. 2021, 39, 2673–2678.
(14) Hendaus, M. A. Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): a simplified summary. J. Biomed. Struct. Dyn. 2021, 39, 3787–3792.
(15) Arun, K. G.; Sharanya, C. S.; Abhithaj, J.; Francis, D.; Sadasivan, C. Drug repurposing against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking and molecular dynamics with main protease as the target. J. Chem. Inf. Model. 2020, 60, 5781–5793.
(16) NGO, S. T.; Quyhn Anh Pham, N.; Thi Le, L.; Pham, D.-H.; Vu, V. V. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. J. Chem. Inf. Model. 2020, 60, 5771–5780.
(33) Gupta, M. K.; Vemula, S.; Donde, R.; Gouda, G.; Behera, L.; Vadde, R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J. Biomol. Struct. Dyn. 2021, 39, 2617–2627.

(34) Efliky, A. A. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J. Biomol. Struct. Dyn. 2021, 39, 3204–3212.

(35) Kumar, S.; Sharma, P. P.; Shankar, U.; Kumar, D.; Joshi, S. K.; Pena, L.; Durvasula, R.; Kumar, A.; Kempaiah, P.; Poonam; Rathi, B. Discovery of New Hydroxethylamine Analogs against 3CLpro Protein Target of SARS-CoV-2: Molecular Docking, Molecular Dynamics Simulation, and Structure–Activity Relationship Studies. J. Chem. Inf. Model. 2020, 60, 5754–5770.

(36) Ziebuhr, J. The coronavirus replicase. Curr. Top. Microbiol. Immunol. 2005, 287, 57–94.

(37) Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drostoen, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412.

(38) Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Gudatt, L. W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293.

(39) Fearon, D.; Powel, A. J.; Douangamath, A.; Owen, C. D.; Wild, C.; Krojer, T.; Lukacik, P.; Strans-Damerell, C. M.; Walsh, M. A.; von Delft, F. PanDDA Analysis Group Deposition—Crystal Structure of SARS-CoV-2 Main Protease in Complex with Z18197050; Protein Data Bank, 2020.

(40) Fearon, D.; Powel, A. J.; Douangamath, A.; Owen, C. D.; Wild, C.; Krojer, T.; Lukacik, P.; Strans-Damerell, C. M.; Walsh, M. A.; von Delft, F. PanDDA Analysis Group Deposition—Crystal Structure of COVID-19 Main Protease in Complex with Z45617795; Protein Data Bank, 2020.

(41) Khan, R. J.; Jha, R. K.; Amara, G. M.; Jain, M.; Singh, E.; Pathak, A.; Singh, R. P.; Muthukumarajan, J.; Singh, A. K. Targetting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like protease and 2′-O ribose methyltransferase. J. Biomol. Struct. Dyn. 2021, 39, 2679–2692.

(42) Pant, S.; Singh, M.; Ravichandiran, V.; Murty, U. S. N.; Srivastava, H. K. Peptide-like and small-molecule inhibitors against Covid-19. J. Biomol. Struct. Dyn. 2021, 39, 2904–2913.

(43) Joshi, R. S.; Jagdale, S. S.; Bansode, S. B.; Shankar, S. S.; Tellis, M. B.; Pandya, V. K.; Chugh, A.; Giri, A. P.; Pulkami, M. J. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomol. Struct. Dyn. 2021, 39, 3099–3114.

(44) Ennomshi, S. K.; Raja, K.; Sebastine, I.; Joseph, J. Androgrophiolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J. Biomol. Struct. Dyn. 2021, 39, 3092–3098.

(45) Choudhury, C. Fragment tailoring strategy to design novel chemical entities as potential binders of novel coronavirus main protease. J. Biomol. Struct. Dyn. 2021, 39, 3733–3746.

(46) Kumar, A.; Choudhir, G.; Shukla, S. K.; Sharma, M.; Tyagi, P.; Bhushan, A.; Rathore, M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn. 2021, 39, 3760–3770.

(47) Alam, S.; Khan, F. 3D-QSAR studies on Maslinic acid analogs for antiviral drug candidates targeting the SARS-CoV-2 main protease. Bioorg. Med. Chem. 2020, 28, 1267–1274.

(48) Stewart, C. A.; Gay, C. M.; Ramkumar, K.; Cargill, K. R.; Cardnell, R. J.; Nilsson, M. B.; Heeke, S.; Park, E. M.; Kundu, S. T.; Diao, L.; Wang, Q.; Shen, L.; Xi, Y.; Maria Della Corte, C.; Fan, Y.; Kundu, K.; Pickering, C. R.; Johnson, F. M.; Zhang, J.; Kadara, H.; Minna, J. D.; Gibbons, D. L.; Wang, J.; Heymach, J. V.; Byers, L. A. SARS-CoV-2 infection induces EMT-like molecular changes, 2020.
including ZEB1-mediated repression of the viral receptor ACE2, in lung cancer models, 2020. bioRxiv:10.1101/2020.05.28.122291.

(63) Encinar, J. A.; Menendez, J. A. Potential Drugs Targeting Early Innate Immune Evasion of SARS-CoV-2 virus 2'-O-Methylation of Viral RNA. *Viruses* **2020**, *12*, 525–549.

(64) Jabbour, E.; Cortes, J.; Kantarjian, H. Nilotinib for the treatment of chronic myeloid leukemia: An evidence-based review. *Core Evidence* **2010**, *4*, 207–213.

(65) U.S. Food and Drug Administration. FDA Updates the Label of Tasigna to Reflect that Certain Patients with a Type of Leukemia May Be Eligible to Stop Treatment after Sustained Response, 2017. https://www.fda.gov/news-events/press-announcements/fda-updates-label-tasigna-reflect-certain-patients-type-leukemia-may-be-eligible-stop-treatment (accessed Jan 2, 2017).

(66) ThePharmaLetter. Abbott Withdraws Temafloxacin, 1992. https://www.thepharmaletter.com/article/abott-withdraws-temafloxacin (accessed Jan 2, 2021).

(67) Stein, E.; DiNardo, C. D.; Polleyea, D. A.; Fathi, A. T.; Roboz, G. J.; Altman, J. K.; Stone, R. M.; DeAngelo, D. J.; Levine, R. L.; Flinn, I. W.; Kantarjian, H. M.; Collins, R.; Patel, M. R.; Frankel, A. E.; Stein, A.; Sekeres, M. A.; Swords, R. T.; Medeiros, B. C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R. D.; Yen, K. E.; Agresta, S.; de Botton, S.; Tallman, M. S. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. *Blood* **2017**, *130*, 722–731.

(68) Shih, I.-h.; Vliegen, I.; Peng, B.; Yang, H.; Hebner, C.; Paehuysye, J.; Pürrstinger, G.; Fenaux, M.; Tian, Y.; Mabery, E.; Qi, X.; Bahadar, G.; Paulson, M.; Lehman, S. B.; Bondy, S.; Tse, W.; Reiser, H.; Lee, W. A.; Schmitz, U.; Neyts, J.; Zhong, W. Mechanistic Characterization of GS-9190 (Tigecovir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase. *Antimicrob. Agents Chemother.* **2011**, *55*, 4196–4203.

(69) Zheng, X.; Gao, L.; Wang, L.; Liang, C.; Wang, B.; Liu, Y.; Peng, S.; Zhang, B.; Zhou, M.; Yu, X.; Xiang, K.; Chen, L.; Guo, T.; Shen, H. C.; Zou, G.; Wu, J. Z.; Yun, H. Discovery of Ziresovir as a Potent, Selective, and Orally Bioavailable Respiratory Syncytial Virus Fusion Protein Inhibitor. *J. Med. Chem.* **2019**, *62*, 6003–6014.

(70) Chen, H.; Zhang, Z.; Wang, L.; Huang, Z.; Gong, F.; Li, X.; Chen, Y.; Wu, J. J. First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naive and Experienced COVID-19 Patients. *medRxiv* 2020:20.03.02.20034041.

(71) Chen, C.; Siegel, D.; Gutierrez, M.; Jacoby, M.; Hofmeister, C. G.; Cabral, N.; Bial, R.; Mau-Sorensen, M.; Berdeja, J. G.; Savona, M.; Savio, L.; Trudel, S.; Areethamsirikul, N.; Unger, T. J.; Rashal, T.; Hanke, T.; Kaufman, M.; Schamah, S.; Reece, D. Safety and efficacy of selinexor in relapsed or refractory multiple myeloma and Waldenstrom macroglobulinemia. *Blood* **2018**, *131*, 855–863.

(72) Karyopharm Therapeutics. Oral Selinexor, 2020. https://www.karyopharm.com/pipeline/oral-selinexor/ (accessed Jan 2, 2021).

(73) U.S. Food and Drug Administration. FDA grants accelerated approval to selinexor for multiple myeloma, 2019. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-selinexor-multiple-myeloma (accessed Jan 2, 2021).

(74) U.S. Food and Drug Administration. FDA approves selinexor for relapsed/refractory diffuse large B-cell lymphoma, 2020. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-selinexor-relapsedrefractory-diffuse-large-b-cell-lymphoma (accessed Jan 2, 2021).

(75) Norton Healthcare. Norton Healthcare physicians first in world to test cancer drug as COVID-19 treatment, 2020. https://nortonhealthcare.com/news/selinexor-covid-19-trial/ (accessed Jan 2, 2021).

(76) U.S. Food and Drug Administration. Defibrotide (defibrotide sodium), 2016. https://www.fda.gov/drugs/resources-information-approved-drugs/defibrotide-defibrotide-sodium (accessed Jan 2, 2021).

(77) Medicine, USNL. Defibrotide as Prevention and Treatment of Respiratory Distress and Cytokine Release Syndrome of Covid 19. (DEFCOVID19), 2020. https://clinicaltrials.gov/ct2/show/NCT04348383 (accessed Jan 2, 2021).

(78) Mahapatra, S.; Nath, P.; Chatterjee, M.; Das, N.; Kalita, D.; Roy, P.; Satapathi, S. Repurposing Therapeutics for COVID-19: Rapid Prediction of Commercially available drugs through Machine Learning and Docking, 2020. medRxiv:2020.04.05.20054254.

(79) Sang, P.; Tian, S.-H.; Meng, Z.-H.; Yang, L.-Q. Anti-HIV drug repurposing against SARS-CoV-2. *RSC Adv.* **2020**, *10*, 15775–15783.

(80) Hall, D. C.; Jr.; Ji, H.-F. A search for medications to treat COVID-19 via silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. *Travel Med. Infect. Dis.* **2020**, *35*, 101646–101648.

(81) Almerie, M. Q.; Kerrigan, D. D. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast. *Med. Hypotheses* **2020**, *143*, 109883.

(82) Bhattacharyya, D. Reposition of montelukast either alone or in combination with levocetirizine against SARS-CoV-2. *Med. Hypotheses* **2020**, *144*, 110464.

(83) Solerte, S. B.; Di Sabatino, A.; Galli, M.; Fiorina, P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. *Acta Diabetol.* **2020**, *57*, 779–783.

(84) Grimes, J. M.; Grimes, K. V. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. *J. Mol. Cell. Cardiol.* **2020**, *144*, 63–65.

(85) Andhalu, H. K.; Parker, S.; Touchette, E.; Buller, R. M.; Patel, G.; Kalman, D.; Salzer, J. S.; Gallardo-Romero, N.; Olson, V.; Damon, I. K.; Moir-Savitz, T.; Sallans, L.; Werner, M. H.; Sherwin, C. M.; Desai, P. B. Preclinical pharmacokinetic evaluation to facilitate repurposing of tyrosine kinase inhibitors nilotinib and imatinib as antiviral agents. *BMJ Pharmacol. Toxicol.* **2018**, *19*, 80–90.

(86) Soria, J.-C.; Baselga, J.; Hanna, N.; Laurie, S. A.; Bahleda, R.; Felip, E.; Calvo, E.; Armand, J.-P.; Shepherd, F. A.; Harbison, C. T.; Berman, D.; Park, J.-S.; Zhang, S.; Vakkalagadda, B.; Kurland, J. F.; Pathak, A. K.; Herbst, R. S. Phase I/IIa study of BMS-690514, an EGFR, HER-2 and -4 and VEGFR-1 to -3 oral tyrosine kinase inhibitor to develop novel antiviral therapy for COVID-19. *Front. J. Cancer* **2013**, *4*, 1815–1824.

(87) Mengist, H. M.; Dilnessa, T.; Jin, T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. *Front. Chem.**2021**, *9*, 622898–622916.

(88) Nguyen, D. D.; Gao, K.; Chen, J.; Wang, R.; Wei, G.-W. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. *Chem. Sci.* **2020**, *11*, 12036–12046.

(89) Jain, R.; Mujwar, S. Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. *Struct. Chem.**2020**, *31*, 2487–2499.