BRAIDED ANTISYMMETRIZER AS BIALGEBRA HOMOMORPHISM

JERZY RÓŻAŃSKI

December 1995

Abstract. For an Yang Baxter operator we show that a bialgebra homomorphism from a free braided tensor bialgebra to a cofree braided shuffle bialgebra is the Woronowicz braided antisymmetrizer [5]. A cofree braided shuffle bialgebra is a braided generalization of a cofree shuffle bialgebra introduced by Sweedler [4]. Its graded dual bialgebra is a free braided tensor bialgebra [3].

1. Introduction

Let k be an associative ring with unit and V be a k-bimodule. For an Yang Baxter operator $B \in \text{End}(V^{\otimes 2})$ Woronowicz [5] defined a braided antisymmetrizer $W(B) \in \text{End}(V^{\otimes})$, which is the generalization of the antisymmetrizer for the flip $B = -\tau$.

For the operator $W_n(B) = W(B)|_{V^{\otimes n}}$ exist two operators $\mu(B)$ and $\Delta(B)$ such that

$$W_{k+l}(B) = \mu_{k,l}(B) \circ \{W_k(B) \otimes W_l(B)\} = \{W_k(B) \otimes W_l(B)\} \circ \Delta_{k,l}(B).$$

We point out that two braided bialgebras are associated with those decompositions, the cofree braided shuffle bialgebra $bShV$ and its graded dual: the free braided tensor bialgebra bTV. We show that the cofree braided shuffle bialgebra is the generalization of the cofree shuffle bialgebra considered by Sweedler [4].

We prove that the kernel of the braided antisymmetrizer $W(B)$ is the biideal in the free braided bialgebra bTV.

Theorem.
The homomorphism W from the braided tensor bialgebra bTV to the braided shuffle bialgebra $bShV$, such that $W|_k = \text{id}$ and $W|_V = \text{id}$, is the braided antisymmetrizer $W(B)$.

Supported by KBN grant # 2 P302 023 07
2. Notations

Let B_n be a braid group with generators $\{\sigma_1, \sigma_2, \ldots, \sigma_{n-1}\}$ and relations
\[
\sigma_i \sigma_j = \sigma_j \sigma_i \quad |i - j| > 1,
\]
\[
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad i = 1, 2, \ldots, n-2.
\]

The generators of a permutation group P_n: $\{t_1, t_2, \ldots, t_{n-1}\}$ satisfy relations (1) and the additional relation $\forall i = 1, \ldots, n-1 : t_i^2 = 1$. For a permutation $p \in P_n$ let $I(p)$ be the number of inversed pairs in the sequence $(p(1), p(2), \ldots, p(n))$, then
\[
p = t_{k_1} t_{k_2} \cdots t_{k_{I(p)}}.
\]

One can define [5] a map π from P_n to a braid group B_n. For the permutation (2) we define $\pi(t_i) = \sigma_i$ and
\[
b = \pi(p) = \sigma_{k_1} \sigma_{k_2} \cdots \sigma_{I(p)} \in B_n.
\]

A braid (3) is independent of the choice of the decomposition (2), see [5]. Denote by Ξ the image of the map π,
\[
\Xi_n := \pi(P_n) \subset B_n.
\]

A (k, l)-shuffle for $k, l \geq 0$ is a permutation $p \in P_{k+l}$ satisfying
\[
p(1) < p(2) < \ldots < p(k) \text{ and } p(k+1) < p(k+2) < \ldots < p(l).
\]

A $(0, n)$ and $(n, 0)$ shuffle is an identity. The subset of (k, l)-shuffles will be denoted by $Sh_{k,l} \subset P_{k+l}$. For this set we have the corresponding subset of braided shuffles
\[
bSh_{k,l} := \pi(Sh_{k,l}) \subset B_n.
\]

For k-bimodule V denote by \mathcal{V} the \mathbb{Z}-graded k-bimodule
\[
\mathcal{V} = k \oplus V \oplus V \otimes 2 \oplus \ldots.
\]

Let $[v_1|v_2|, \ldots, |v_n]$ be an element of $\mathcal{V}^n \equiv \mathcal{V} \cap \mathcal{V}^{\otimes n}$ and $v_0 = 1 \in k$. The tensor algebra TV means in this case [2] the pair $TV = \{\mathcal{V}, \otimes\}$, where $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ is a free product.

Let $V^* = \text{Hom}(V, k)$ be the dual k-bimodule for V. For the evaluation $< V^*, V >$ are two possibilities to evaluate $< V^* \otimes V^*, V \otimes V >$. We use the following evaluation (note that transposition depends on this choice),
\[
< \alpha \otimes \beta, v \otimes w > = < \beta, v > < \alpha, w >, \quad \forall \alpha, \beta \in V^* \quad \text{and} \quad \forall v, w \in V.
\]

For the bimodule \mathcal{V} the graded dual bimodule \mathcal{V}^g means [4]
\[
\mathcal{V}^g = k \oplus V^* \oplus V^* \otimes 2 \oplus \ldots.
\]
Let B be the Yang Baxter operator, i.e. an invertible endomorphism of the k-bimodule $V \otimes V$ which satisfies the braid equation
\begin{equation}
(id \otimes B)(B \otimes id)(id \otimes B) = (B \otimes id)(id \otimes B)(B \otimes id) \in \text{End}(V \otimes^3).
\end{equation}
Let $B_k = id_{k-1} \otimes B \otimes id_{n-k-1}$ of $V^n \subset V \in \text{End}(V \otimes^n)$ be bimodule endomorphisms. For the Yang Baxter operator B we can define the representation ρ_B of the braid group B_n in the \mathbb{Z}-graded k-bimodule V,
\begin{equation}
\rho_B \in \text{group}\{B_n, \text{End}(V^n)\} : \rho_B(\sigma_k) = B_k.
\end{equation}

3. TWO BRAIDED BIALGEBRAS

For the Yang Baxter operator B on the bimodule V the subset $\Xi_n \subset B_n$ is acting on the \mathbb{Z}-graded k-bimodule through the representation ρ_B (11). Let us introduce the notion of the cofree braided shuffle algebra. For the k-bimodule V one can define \footnote{1} the cofree comultiplication Δ^\otimes
\begin{equation}
\Delta^\otimes[v_1|v_2|\ldots|v_n] = \sum_{k=0}^{n} [v_1|v_2|\ldots|v_k] \otimes [v_{k+1}|\ldots|v_n].
\end{equation}

The braided shuffle multiplication $\mu(B) : V \otimes V \to V$ is defined for $\mu_{k,n-k}(B) = \mu(B)|V^k \otimes V^{n-k}$
\begin{equation}
\mu_{k,n-k}(B) = \sum_{b \in bSh_{k,n-k}} \rho_B(b) : V^k \otimes V^{n-k} \to V^n,
\end{equation}
\begin{equation}
\mu_{k,n-k}(B)([v_1|v_2|\ldots|v_k] \otimes [v_{k+1}|\ldots|v_n]) = \sum_{b \in bSh_{k,n-k}} \rho_B[v_1|v_2|\ldots|v_{n}].
\end{equation}

For example $\mu_{1,2}(B) = id_3 + B \otimes \text{id} + (B \otimes \text{id})(\text{id} \otimes B)$.

\textbf{Lemma 3.1.} The multiplication $\mu(B)$ (13) is associative and B-braided.

\textit{Proof.} Denote an element $[v_1|v_2|\ldots|v_{I}]$ by v_{I}. Then we have
\begin{equation}
\mu(B)(v_I \otimes v_J) = \sum_{K=I+J} v_K \in V^K.
\end{equation}
The associativity condition is proved by the following equation
\begin{equation}
[\mu(B) \circ (\mu(B) \otimes \text{id})](v_I \otimes v_J \otimes v_K)
= \sum_{L=I+J+K} v_L = [\mu(B) \circ (\text{id} \otimes \mu(B))](v_I \otimes v_J \otimes v_K).
\end{equation}
\hfill \square
Consider the B-braided monoidal category. A bialgebra is defined over this category if the multiplication m and comultiplication \triangle are morphisms and satisfy the following compatibility condition
\begin{equation}
\triangle \circ m = (m \otimes m) \circ (\text{id} \otimes B \otimes \text{id}) \circ (\triangle \otimes \triangle).
\end{equation}

Lemma 3.2. The triple $(V, \mu(B), \triangle^\otimes)$ is the braided bialgebra.

The proof by induction for the term $V^k \otimes V^l$ is omitted.

Consider the Z-graded dual k-bimodule V^g. The free braided tensor bialgebra $bT V$ is the graded dual to the cofree braided shuffle bialgebra. Then the free braided tensor bialgebra $bT V$ means the triple ${V^g, \otimes, \triangle^\mu(B)}$, where the multiplication \otimes and the comultiplication \triangle^μ are graded duals in the following sense
\begin{equation}
\triangle^\mu(B) = \mu^g(B), \quad \text{and} \quad \otimes = \triangle^{\otimes g}.
\end{equation}

Dual version of the lemma 3.2 is the following braided bialgebra.

Lemma 3.3. The triple $(V, \otimes, \triangle^\mu(B))$ is the braided bialgebra.

4. Braided Antisymmetrizer

For an Yang Baxter operator B the braided antisymmetrizer $W(B)$ was defined by Woronowicz [5] as
\begin{equation}
W(B) = \sum_{b \in \Xi_n} \rho_B(b).
\end{equation}

For $B = -\pi$ we get the Woronowicz form of the braided antisymmetrizer with the sign of the permutation.

Lemma 4.4. For the braided antisymmetrizer $W(B)$, the multiplication $\mu(B)$ and the comultiplication $\triangle^\mu(B)$ the following recurrent formula is holds
\begin{equation}
W_{n+1}(B) = \mu(B)_{n,1} \circ [W_n(B) \otimes \text{id}] = [\text{id} \otimes W_n(B)] \circ \triangle^\mu_{1,n}(B).
\end{equation}

For the proof see [5] for details.

From this lemma by induction we can prove
\begin{equation}
W_{k+l}(B) = \mu(B)_{k,l} \circ [W_k(B) \otimes W_l(B)].
\end{equation}

and dually
\begin{equation}
W_{k+l}(B) = [W_k(B) \otimes W_l(B)] \circ \triangle^\mu_{1,n}(B).
\end{equation}

Consider braided bialgebras $bT V$ and $bShV$. A map $W : bT V \to BShV$ is a homomorphism of these bialgebras $W \in bialg(bT V, bShV)$ if satisfies two conditions

- W is the algebra map:
 \begin{align*}
 W \in \text{alg}(\otimes, \mu(B)), \quad W \circ \otimes &= \mu(B) \circ (W \otimes W).
 \end{align*}
• W is the coalgebra map:
\[W \in \text{coalg}(\Delta^\mu(B), \Delta^\otimes), \quad \Delta^\otimes \circ W = (W \otimes W) \circ \Delta^\mu(B). \]

Theorem 4.5. The bialgebra homomorphism \(W \in \text{bialg}(bTV, bShV) \), such that \(W|k = \text{id} \) and \(W|V = \text{id} \), is the braided antisymmetrizer \(W(B) \).

Proof. From the assumption that \(W \) is the algebra map we obtain
\[W_n = \mu_{n-1,1}(B) \circ (W_{n-1} \otimes \text{id}). \]
Then by induction we have
\[W_n = \mu_{n-1,1}(B) \circ \mu_{n-2,1}(B) \circ \ldots \circ \mu_{1,1}(B). \]
From the assumption \(W|k = \text{id} \) and \(W|V = \text{id} \) this is the braided antisymmetrizer \(W = W(B) \).

\[\square \]

Acknowledgments

I would like to thank prof. Z. Oziewicz for fruitful discussions.

References

1. T. F. Fox, The construction of cofree coalgebras, J. Pure Appl. Algebra 84 (1993) 191–199.
2. M. Gerstenhaber and S. D. Schack, The shuffle bialgebra and the cohomology of commutative algebras, J. Pure Appl. Algebra 70 (1991) 263-272.
3. Z. Oziewicz, E. Paal and J. Rózanowski, Derivations in braided geometry, Acta Phys. Polonica B 26 (7) (1995).
4. M. E. Sweedler, Hopf algebras, Benjamin, New York 1969.
5. S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989) 125–170.