Synchronization in abstract mean field models

W. Oukil,
Laboratory of Dynamical Systems (LSD), Faculty of Mathematics, University of Sciences and Technology Houari Boumediene, BP 32 El Alia 16111, Bab Ezzouar, Algiers, Algeria.

January 17, 2019

Abstract

We show in this paper a sufficient condition for the existence of solution, the synchronized and the periodic locked state in abstract mean field models.

Keywords: Coupled oscillators, mean field, synchronization, desynchronization, periodic orbit.

1 Introduction

This article is a generalization of the result obtained in [8]. The class of abstract mean field systems that we study in this article is given by the next systems. The periodic not-perturbed system

\[\dot{x}_i = F(X, x_i), \quad i = 1, \ldots, N, \quad t \geq t_0, \]

(PNP)

and the perturbed system

\[\dot{x}_i = F(X, x_i) + H_i(X), \quad i = 1, \ldots, N, \quad t \geq t_0, \]

(P)

where \(N \geq 2 \) and \(X = (x_1, \ldots, x_N) \) is the state of the system. \(F: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R} \) and \(H = (H_1, \ldots, H_N): \mathbb{R}^N \to \mathbb{R}^N \) are a \(C^1 \) functions. The function \(H \) is a perturbation of the system (PNP). We note \(\Phi^t \) the flow of the system (P) (in particular of the system (PNP)). We have take the two systems because the results seem not trivial for the periodic not-perturbed system.
1.1 Notations and definitions

In this section, we introduce some notations and definitions. For \(q, p \in \mathbb{N}^* \) let \(G \) be a function from \(\mathbb{R}^q \) to \(\mathbb{R}^p \). Put \(G = (G_1, \ldots, G_p) \) we consider the quasi-norm on the space of continues functions from \(\mathbb{R}^q \) to \(\mathbb{R}^p \) defined by the next quantity

\[
||G||_B = \sup_{Y \in B} \max_{1 \leq i \leq p} |G_i(Y)|,
\]

where \(B = \{ Y = (y_1, \ldots, y_q) \in \mathbb{R}^q : \max |y_i - y_j| \leq 1 \} \).

This quasi-norm is a norm on the space of continues functions from \(B \) to \(\mathbb{R}^p \). We note \(d^iG, i = 1, 2, \ldots \), the \(i \)th differential of \(G \). We define

\[
||dG||_B = \max_{1 \leq i \leq p} ||\partial_j G_i(Y)||_B, \quad ||d^2G||_B = \max_{1 \leq i \leq p} \max_{1 \leq j, k \leq q} ||\partial_k \partial_j G_i(Y)||_B.
\]

Let \(G : \mathbb{R}^N \times \mathbb{R} \rightarrow \mathbb{R}, \ Y = (y_1, \ldots, y_N) \in \mathbb{R}^N \) and \(z \in \mathbb{R} \). We note

\[
\partial_i G(Y, z) := \begin{cases}
\frac{\partial}{\partial z} G(Y, z) & \text{if } i = N + 1, \\
\frac{\partial}{\partial y_i} G(Y, z) & \text{if } i \in \{1, \ldots, N\}.
\end{cases}
\]

A function \(G : \mathbb{R}^q \rightarrow \mathbb{R}^p \) is called \(1 \)-periodic in the sense of the following definition

Definition 1. [1-periodic function] Let \(G : \mathbb{R}^q \rightarrow \mathbb{R}^p \) be a function and note \(1 := (1, \ldots, 1) \in \mathbb{R}^q \). The function \(G \) is called \(1 \)-periodic if

\[
G(Y + 1) = G(Y), \quad \forall Y \in \mathbb{R}^q.
\]

Remark that the previous definition do not imply that the function \(G \) is periodic relative to each variable. Now we define a positive \(\Phi^{t_0} \)-invariant set,

Definition 2. Suppose that the flow \(\Phi^{t} \) of system (P) exists for every \(t \geq t_0 \). We say that an open set \(C \subset \mathbb{R}^N \) is a positive \(\Phi^{t_0} \)-invariant if \(\Phi^{t_0}(C) \subset C \) for all \(t \geq t_0 \).

Synchronization and locking may have several meanings or definitions depending on the authors. We choose the following definitions.

Definition 3 (Dynamical oscillator). The oscillator \(x_i(t) \) of a solution \(X(t) = (x_1(t), \ldots, x_N(t)) \) of system (P) is called dynamical if there exists \(t_0 \in \mathbb{R} \) such that

\[
\inf_{t \geq t_0} \dot{x}_i(t) > 0.
\]
Definition 4 (Synchronisation). We say that the oscillators \(\{x_i(t)\}_{i=1}^{N} \) are synchronized if they are dynamical and if \(\sup_{1 \leq i,j \leq N} |x_i(t) - x_j(t)| \) is bounded from above uniformly in time \(t \geq t_0 \).

Definition 5 (Periodic locked solution). We say that the oscillators \(\{x_i(t)\}_{i=1}^{N} \) are periodically locked to the frequency \(\rho > 0 \) if they are synchronized and if there exist a periodic functions \(\Psi_i(t) \) such that
\[
x_i(t) = \rho t + \Psi_i(t), \quad \forall i = 1 \ldots N, \forall t \geq t_0.
\]

1.2 Synchronization Hypothesis \((H)\) and \((H_\ast)\)

The goal is to prove the existence of the synchronization state of the system \((P)\) when \(||H||_B \approx 0 \). Consider the following hypotheses
\[
(\text{H}) \quad \begin{cases}
F \text{ is } C^2, \\
\text{ and } \max\{|\|F\|_B, |dF|_B, |d^2F|_B\} < +\infty,
\end{cases}
\]
\[
(\text{H}_\ast) \quad \int_0^1 \frac{\partial_{N+1} F(s\mathbb{1}, s)}{F(s\mathbb{1}, s)} ds < 0.
\]

We call the hypothesis \((\text{H}_\ast)\) the synchronization hypothesis. The particularity of the hypothesis \((\text{H}_\ast)\) is the fact: \(H \approx 0 \) and \(x_i \approx x_j (\approx x) \) implies that the system \((P)\) is equivalent to
\[
\frac{dx_i}{dt} \approx F(x\mathbb{1}, x) \text{ and } \frac{dx_i - x_j}{dt} \approx \partial_{N+1} F(x\mathbb{1}, x)(x_i - x_j).
\]

The condition \(\min_{s \in [0,1]} F(s\mathbb{1}, s) > 0 \) is a sufficient condition to get a dynamical oscillators as defined in definition 3.

1.3 Main Results

The following main result \(\text{I} \) shows the existence of the solution and a synchronized state as defined in Definition 4.

Main Result (\(\text{I} \)). We consider the system \((P)\). Suppose that \(F \) satisfies the hypotheses \((H)\) and \((\text{H}_\ast)\) then there exists \(D_\ast > 0 \) such that for all \(D \in (0, D_\ast) \) there exists \(r > 0 \) and an open set \(C_r \) of the form,
\[
C_r := \left\{ X = (x_i)_{i=1}^{N} \in \mathbb{R}^N : \exists \nu \in \mathbb{R}, \max_i |x_i - \nu| < \Delta_r(\nu) \right\},
\]
where \(\Delta_r : \mathbb{R} \to (0, D] \) is a \(C^1 \) and 1-periodic function, such that for every \(C^1 \) function \(H \) satisfying \(||H||_B < r \) we have
1. Existence of solution. The flow Φ^t of the system (P) exists for all initial condition $X \in C_r$ and for all $t \geq t_0$.

2. Synchronization. The open set C_r is positive Φ^t-invariant. Further, for every $X \in C_r$ we have

$$\min_{1 \leq i \leq N} \inf_{t \geq t_0} \frac{d}{dt} \Phi^t_i(X) > 0 \text{ and } |\Phi^t_i(X) - \Phi^t_j(X)| < 2D, \forall 1 \leq i, j \leq N, \forall t \geq t_0.$$

The next main result II shows the existence of a periodic locked solution as defined in definition 5

Main Result (II). We consider the system (P). Suppose that F satisfies the hypotheses (H) and (H_*) then there exists $D_* > 0$ such that for all $D \in (0, D_*]$ there exists $r > 0$ such that for every C^1 and \per-periodic function H satisfying $\|H\|_B < r$, there exists an open set C_r (same in main result (I)) and a initial condition $X_* \in C_r$ such that

$$\Phi^t_i(X_*) = \rho t + \Psi_{i,X_*}(t), \quad \forall i = 1, \ldots, N, \forall t \geq t_0,$$

where $\rho > 0$ and $\Psi_{i,X_*} : \mathbb{R} \to \mathbb{R}$ are a C^1 and $\frac{1}{\rho}$-periodic functions.

Remark. The result I can be generalized to a function $H(t, X)$ which depend on the variable time t.

1.4 Remarks and motivation

The results can be applied to the model of coupled oscillators as the Winfree [13] and the Kuramoto model [11].

Example 6. [Winfree and Kuramoto Models] Winfree [13] proposed a model describing the synchronization of a population of organisms or oscillators that interact simultaneously. The Winfree model is also studied in [10, 6, 12, 5, 2, 7, 9]. Kuramoto model is a refined model of the Winfree model. The Kuramoto model is applied for example in the Neurosciences to study the synchronization of neurones in the brain [3, 4]. We call natural frequency, the frequency of each oscillator, as if it were isolated from the others. The explicit Winfree [1] and Kuramoto model are defined by the following equation respectively

$$\dot{x}_i = \omega_i + \text{Win}(X, x_i), \quad i = 1 \ldots N, \quad t \geq t_0, \quad \text{(W)}$$

$$\dot{x}_i = \omega_i + \text{Kur}(X, x_i), \quad i = 1 \ldots N, \quad t \geq t_0, \quad \text{(K)}$$
where for \((\omega, \kappa) \in \mathbb{R}^2_+\), \(W_{\text{in}}(Y, z) = \omega - \frac{\kappa}{N} \sum_{j=1}^{N} [1 + \cos(y_j)] \sin(z)\) and \(K_{\text{ur}}(Y, z) = \omega - \frac{\kappa}{N} \sum_{j=1}^{N} \sin(y_j - z)\) for all \(Y = (y_1, \ldots, y_N) \in \mathbb{R}^N\) and \(z \in \mathbb{R}\). \(X(t) = (x_1(t), \ldots, x_N(t))\) is the state of the systems, and \(x_i(t)\) is the phase of the \(i\)-th oscillator. The parameter \(\kappa \geq 0\) is the strong coupling; the vector \((\omega_1 + \omega, \ldots, \omega_N + \omega) \in \mathbb{R}^N\) is the vector of the natural frequencies. In order to apply the main result \(\text{I and II}\) we need only shows that the functions \((W)\) and \((K)\) satisfies the synchronization hypothesis \((H^*)\) and the hypothesis \((H)\) as proved in the following proposition.

Proposition 7. There exists an open set of parameters \((\kappa, \omega) \in \mathbb{R}^2_+\), such that the functions \(W_{\text{in}}\) and \(K_{\text{ur}}\) of the systems \((W)\) and \((K)\) respectively, satisfies both hypotheses \((H)\) and \((H^*)\).

Proof. The function \(W_{\text{in}}\) is \(C^2\) and \(2\pi\)-periodic. Further
\[
\min_{s \in [0, 2\pi]} W_{\text{in}}(s, s) > 0 \iff \forall \omega > (1 + \cos(\pi/3)) \sin(\pi/3) \kappa, \quad \forall s \in [0, 2\pi].
\]
For every \(\omega > (1 + \cos(\pi/3)) \sin(\pi/3) \kappa\) we have
\[
\int_0^{2\pi} \frac{\partial_{N+1} W_{\text{in}}(s, s)}{W_{\text{in}}(s, s)} ds = - \int_0^{2\pi} \frac{\kappa [1 + \cos(s)] \cos(s)}{\omega - \kappa (1 + \cos(s)) \sin(s)} ds = - \int_0^{2\pi} \frac{\kappa \sin^2(s)}{\omega - \kappa (1 + \cos(s)) \sin(s)} ds < 0.
\]
Same for the Kuramoto model, we have \(K_{\text{ur}}\) is \(2\pi\)-periodic, and
\[
\min_{s \in [0, 2\pi]} K_{\text{ur}}(s, s) > 0, \quad \forall \omega > 0, \quad \forall s \in [0, 2\pi],
\]
For every \(\omega > 0\) and \(\kappa > 0\) we have
\[
\int_0^{2\pi} \frac{\partial_{N+1} K_{\text{ur}}(s, s)}{K_{\text{ur}}(s, s)} ds = - \int_0^{2\pi} \frac{\kappa}{\omega} ds = - \frac{2\pi \kappa}{\omega} < 0.
\]

2 Dispersion curve

The strategy to prove the main results is to use the comparison theorem of differentials equations. We assumed a priori that the distance between the oscillators is small and find some differential equation estimation to deduce that the distance between oscillators is bounded uniformly on time. We call the “upper-solution” the dispersion curve. We have the following lemma
Lemma 8. Let \(\eta = (\eta_1, \eta_2, \eta_3) \in \mathbb{R}_+^3 \setminus \{(0,0,0)\} \). Let \(P_1(a,b) = \eta_1a + \eta_2b^2 \) a polynomial defined for all \((a,b) \in \mathbb{R} \times \mathbb{R}\) and let \(\Lambda : \mathbb{R} \to \mathbb{R} \) a \(C^1 \) and 1-periodic function satisfying
\[
\int_0^1 \Lambda(s)ds < 0.
\]

Then for all \((a,b) \in \mathbb{R}_+^* \times (0, \eta_3)\) the following differential equation
\[
\frac{d}{ds}z(s) = \frac{P_1(a,b)}{\eta_3 - b} + \Lambda(s)z(s), \tag{1}
\]

admits a positive solution \(C^1 \) and 1-periodic solution that we note \(\Delta_{a,b}(s) \). Further, there exists \(D_{\eta,\Delta} \in (0, \eta_3) \) such that for all \(D \in (0, D_{\eta,\Delta}] \) there exists \(r > 0 \) such that the solution \(\Delta_r := \Delta_{r,D} \) satisfies
\[
\max_{s \in [0,1]} \Delta_r(s) \leq D.
\]

Proof. Remark that for all \((a,b) \in \mathbb{R}_+^* \times (0, \eta_3)\), the differential equation (1) admit a positive \(C^2 \) and 1-periodic solution \(\Delta_{a,b}(s) \) of the form
\[
\Delta_{a,b}(s) = \frac{P_1(a,b)}{\eta_3 - b} \int_{s}^{1+s} \frac{\exp \left(\int_{t}^{1+s} \Lambda(v)dv \right) dt}{1 - \exp \left(\int_{0}^{1} \Lambda(v)dv \right)}
\]

Put
\[
\lambda_1 = -\int_0^1 \Lambda(s)ds \quad \text{and} \quad \lambda_2 = \max_{0 \leq s,t \leq 1} \int_{t}^{1+s} \Lambda(v)dv.
\]

To get \(\max_{s \in [0,1]} \Delta_r(s) \leq D \) it sufficient to choose \(r \) and \(D \) such that
\[
\frac{P_1(r,D)}{\eta_3 - D} \frac{\exp(\lambda_2)}{1 - \exp(-\lambda_1)} = D,
\]

which is satisfied for all \(D \in (0, D_{\eta,\Delta}] \) such that
\[
D_{\eta,\Delta} = \eta_3 \frac{1 - \exp(-\lambda_1)}{2 \left(1 - \exp(-\lambda_1) + \eta_2 \exp(\lambda_2) \right)}.
\]

where \(r > 0 \) is given by the following formula
\[
r = \frac{D}{\eta_1} \left[\frac{1 - \exp(-\lambda_1)}{\exp(\lambda_2)} - \frac{\exp(-\lambda_1) + \eta_2 D}{\exp(\lambda_2)} \right].
\]
Definition 9. Let $D \in (0, D_{\eta,\Lambda}]$. We call the dispersion curve associated to D the solution
$$\Delta_r := \Delta_{r,D}(s),$$
of the differential equation (1) where r is defined by
$$r = \frac{D}{\eta_1} \left[\eta_3 \frac{1 - \exp(-\lambda_1)}{\exp(\lambda_2)} - \frac{1 - \exp(-\lambda_1)}{\exp(\lambda_2)} + \eta_2 \right] D,$$
and where
$$\lambda_1 = -\int_0^1 \Lambda(s) ds \quad \text{et} \quad \lambda_2 = \max_{0 \leq s,t \leq 1} \int_s^{1+s} \Lambda(v) dv.$$

Definition 10. Let $D \in (0, D_{\eta,\Lambda}]$. We call the synchronization open set associated to D and we note C_r the open set on \mathbb{R}^N defined by
$$C_r := \left\{ X = (x_i)_{i=1}^N \in \mathbb{R}^N : \exists \nu \in \mathbb{R}, \max_i |x_i - \nu| < \Delta_r(\nu) \right\},$$
where Δ_r is the dispersion curve associated to D.

Remark 11. Remark that
$$D < D_{\eta,\Lambda} < \frac{\eta_3}{2\eta_2} \exp(-\lambda_2) \quad \text{and} \quad r < \frac{\eta_3}{\eta_1} \exp(-\lambda_2).$$

3 Reduction of the system (P)

The goal of this Section is to prove that the perturbed system (P) in particular the periodic not-perturbed system (PNP) can be studied by using a scalar periodic differential equation such as equation (1) of lemma 8. Define the following new system

Definition 12. Let $X \in \mathbb{R}^N$ and let $\mu_0 \in \mathbb{R}$, we call the (NPS) system associated to $\Phi^t(X)$ the not-perturbed following system
$$\dot{\mu}_X = F(\Phi^t(X), \mu_X), \quad t \in I_X,$$
where $I_X = [t_0, T_X]$ is the maximal interval of the solution $X(t) := \Phi^t(X)$ of the system (P) of initial condition $\phi^0(X) = X$. We say that $\mu_X(t)$ is the solution of the system (NPS) associated to $\Phi^t(X)$ of initial condition $\mu_X(t_0) \in \mathbb{R}$.
We note

\[L := ||F||_B + ||dF||_B + ||d^2F||_B, \quad \text{and} \quad \alpha := \min_{s \in [0,1]} F(s1, s). \quad (5) \]

Let \(X \in \mathbb{R}^N \) and let \(\mu_X(t) \) be the solution of the system \(\Phi_t(X) \) of initial condition \(\mu_0 \in \mathbb{R} \). We also note \(X := \Phi_t(X) \) and \(\mu_X := \mu_X(t) \) without loss of generality. We consider the following quantities

\[
\delta_{i,1}(X) := x_i - \mu_X, \quad \delta_{i,2}(X) := \mu_X - x_i,
\]
and

\[
\delta(X) := \max_{1 \leq i \leq N} |\delta_{i,1}(X)| = \max_{1 \leq i \leq N} |\delta_{i,2}(X)|.
\]

We have the next lemma

Proposition 13. We consider the system \((P) \). Suppose that the function \(F \) satisfies the hypothesis \((H)\) and suppose that \(\Phi_t^i(X) \) is defined for all \(t \in [t_1, t_2] \). Let \(D \in (0, \frac{\alpha}{2}) \) and suppose that \(\delta(X) < D \) for all \(t \in [t_1, t_2] \), then

\[\dot{\mu}_X > -LD + \alpha > 0, \quad \forall t \in [t_1, t_2]. \]

In particular, \(t \to \mu_X(t) \) is a diffeomorphism from \([t_1, t_2]\) to \([\mu_X(t_1), \mu_X(t_2)]\).

Proof. The strategy is to use the Mean value theorem. Since \(\delta(X) < D \) we get \(||F(X, \mu_X) - F(\mu_X 1, \mu_X)|| < ||dF||_B D < LD \). Hence

\[\dot{\mu}_X = F(X, \mu_X) = [F(X, \mu_X) - F(\mu_X 1, \mu_X)] + F(\mu_X 1, \mu_X) > -LD + \alpha. \]

Thanks to hypothesis \(0 < D < \frac{\alpha}{2} \) to get \(\dot{\mu}_X(t) > -LD + \alpha > 0 \) for all \(t \in [t_1, t_2] \). \(\Box \)

Proposition 14. We consider the system \((P) \). Suppose that \(F \) satisfies the hypothesis \((H)\) and suppose that \(\Phi_t^i(X) \) is defined for all \(t \in [t_1, t_2] \). Let \(D \in (0, \frac{\alpha}{L}) \) and \(r > 0 \). Suppose that

\[||H||_B < r, \quad \text{and} \quad \delta(X) < D, \quad \forall t \in [t_1, t_2]. \]

Then for all \(1 \leq i \leq N, \ k \in \{1, 2\} \) and \(s \in [\mu_X(t_1), \mu_X(t_2)] \) we have

\[
\frac{d}{ds} \delta_{i,k}^*(s) < \frac{1}{\alpha} \left(\frac{\alpha r + LD^2(L + 2\alpha)}{\alpha - LD} + \frac{\partial F_{N+1}(s1, s)}{F(s1, s)} \delta_{i,k}^*(s) \right), \quad (6)
\]

where

\[\delta_{i,k}^*(s) := \delta_{i,k}(X(\mu_X^{-1}(s))) \quad \text{and} \quad X(\mu_X^{-1}(s)) = (x_1(\mu_X^{-1}(s)), \ldots, x_N(\mu_X^{-1}(s))). \]
Proof. The strategy is to use several times the Taylor formula. Let $D \in (0, \frac{\alpha}{2})$ and suppose that $\delta(X) < D$ for all $t \in [t_1, t_2]$. Use the Taylor formula, there exists $c_i \in [x_i, \mu_X]$ such that for all $1 \leq i \leq N$

$$F(X, x_i) - F(X, \mu_X) = \partial_{N+1} F(X, \mu_X) \delta_{i,1} + \frac{1}{2} \partial_{N+1}^2 F(X, c_i) \delta_{i,1}^2$$

$$< \partial_{N+1} F(X, \mu_X) \delta_{i,1} + \frac{1}{2} ||d\partial_{N+1} F||_B D^2$$

$$< \partial_{N+1} F(X, \mu_X) \delta_{i,1} + LD^2.$$

For $k = 2$ we also obtain

$$F(X, \mu_X) - F(X, x_i) = -\partial_{N+1} F(X, \mu_X) \delta_{i,1} - \frac{1}{2} \partial_{N+1} [\partial_{N+1} F(X, c_i)] \delta_{i,1}^2$$

$$= \partial_{N+1} F(X, \mu_X) \delta_{i,2} - \frac{1}{2} \partial_{N+1}^2 F(X, c_i) \delta_{i,2}^2$$

$$< \partial_{N+1} F(X, \mu_X) \delta_{i,2} + LD^2.$$

We have $||H||_B < r$, use equations (P) and (NPS) we obtain for all $1 \leq i \leq N$

$$\frac{d}{dt} \delta_{i,k} = H_i(X) + [F(X, x_i) - F(X, \mu_X)] < r + LD^2 + \partial_{N+1} F(X, \mu_X) \delta_{i,k}.$$

(7)

Use again the Taylor formula to get

$$\partial_{N+1} F(X, \mu_X) \delta_{i,k} = [\partial_{N+1} F(X, \mu_X) - \partial_{N+1} F(\mu_X, \mu_X) + \partial_{N+1} F(\mu_X, \mu_X)] \delta_{i,k}$$

$$< ||d\partial_{N+1} F||_B \delta_{i,j} + \partial_{N+1} F(\mu_X, \mu_X) \delta_{i,k}$$

$$< LD^2 + \partial_{N+1} F(\mu_X, \mu_X) \delta_{i,k}.$$

Equation (7) implies that for all $1 \leq i \leq N$ and $k \in \{1, 2\}$

$$\frac{d}{dt} \delta_{i,k} < r + 2LD^2 + \partial_{N+1} F(\mu_X, \mu_X) \delta_{i,k}.$$

Thanks to proposition [13], $\dot{\mu}_X > \alpha - LD$. We consider the change of variable: $t \rightarrow s := \mu_X(t)$ for $t \in [t_1, t_2]$. Put $\delta_{i,k}(s) := \delta_{i,k}(\mu_X^{-1}(s))$ and $X(\mu_X^{-1}(s)) = (x_1(\mu_X^{-1}(s)), \ldots, x_N(\mu_X^{-1}(s)))$. We deduce that for all $s \in [\mu_X(t_1), \mu_X(t_2)]$

$$\frac{d}{dt} \delta_{i,k}(X) = \frac{d}{ds} \delta_{i,k}(s) \frac{d}{dt} \mu_X(t) < r + 2LD^2 + \partial_{N+1} F(s^{\perp}, s) \delta_{i,k}(s)$$

$$\frac{d}{ds} \delta_{i,k}(s) = \frac{r + 2LD^2}{\mu_X} + \frac{\partial_{N+1} F(s^{\perp}, s)}{\dot{\mu}_X} \delta_{i,k}(s) < \frac{r + 2LD^2}{\alpha - LD} + \frac{\partial_{N+1} F(s^{\perp}, s)}{\dot{\mu}_X} \delta_{i,k}(s)$$

$$= \frac{r + 2LD^2}{\alpha - LD} + \frac{\partial_{N+1} F(s^{\perp}, s)}{F(s^{\perp}, s)} \frac{F(s^{\perp}, s)}{\dot{\mu}_X} \delta_{i,k}(s).$$
Use the Mean value theorem and the change of variable \(t \to s := \mu_X(t) \) we get
\[
|F(\mu_X, \mu_X) - \dot{\mu}_X| = |F(\mu_X, \mu_X) - F(X, \mu_X)| < ||dF||_{BD} < LD,
\]
which is equivalent to
\[
\frac{F(s, s)}{\dot{\mu}_X} = 1 + \theta(s), \quad |\theta(s)| < \frac{LD}{\alpha - LD}, \quad \forall s \in [\mu_X(t_1), \mu_X(t_2)].
\]
Finlay, since \(|\partial_{N+1}F(s, s)| < \frac{L}{\alpha} \) and since \(|\delta_{i,k}(t)| \leq \delta(X) < D \) for all \(t \in [t_1, t_2] \) we obtain for all \(s \in [\mu_X(t_1), \mu_X(t_2)] \)
\[
\frac{d}{ds} \delta^s_{i,k}(s) < \frac{r + 2LD^2}{\alpha - LD} + \frac{\partial_{N+1}F(s, s)}{F(s, s)}[1 + \theta(s)]\delta^s_{i,k}(s)
\]
\[
< \frac{r + 2LD^2}{\alpha - LD} + \frac{L^2 D^2}{\alpha - LD} + \frac{\partial_{N+1}F(s, s)}{F(s, s)} \delta^s_{i,k}(s)
\]
\[
= \frac{1}{\alpha} \left(r + 2LD^2 \right) + \frac{L^2 D^2}{\alpha} + \frac{\partial_{N+1}F(s, s)}{F(s, s)} \delta^s_{i,k}(s).
\]

We have the following proposition

Proposition 15. Let \(F \) be a function satisfying hypotheses \((H)\) and \((H_*)\). Then there exists \(D_* \in (0, 1) \) such that for all \(D \in (0, D_*] \), there exists \(r > 0 \) and an open set \(C_r \) (as in definition \([10] \)), such that for any function \(H \) satisfying \(||H||_{B} < r \) we have
\[
\forall X \in C_r : \Phi^t(X) \in C_r, \quad \forall t \in I_X.
\]

Proof. Use equation (5) and hypothesis \((H)\)
\[
\max \left\{ \int_{t_1}^{t_2} \frac{\partial_{N+1}F(s, s)}{F(s, s)} ds : 0 \leq t_1 \leq t_2 \leq 1 \right\} \leq \frac{L}{\alpha}.
\]
Let \(D_{\eta, \Lambda} \) the constant defined by lemma \([5] \) such that \(\eta \) et \(\Lambda \) are defined by
\[
\eta = \left(\frac{1}{L}, 2 + \frac{L}{\alpha}, \frac{\alpha}{L} \right), \quad \text{and} \quad \Lambda(s) = \frac{\partial_{N+1}F(s, s)}{F(s, s)}.
\]
Put \(D_* := D_{\eta, \Lambda} \). Let \(D \in (0, D_*] \) and the dispersion function \(\Delta_r \) associated to \(D \) (See definition \([9] \)). The dispersion curve \(\Delta_r \) is solution of the periodic scalar differential equation
\[
\frac{d}{ds} \Delta_r(s) = \frac{1}{\alpha} \left(r + LD^2(L + 2\alpha) \right) + \frac{F_{N+1}(s, s)}{F(s, s)} \Delta_r(s),
\]
and satisfies the following estimation

\[\max_{s \in [0,1]} \Delta_r(s) \leq D. \]

Let \(C_r \) be the synchronization open set associated to \(D \), as defined in definition \([10]\).

For any function \(H \) satisfying \(\|H\|_B < r \), where \(r \) is given by formula \((3)\), let \(X(t) = (x_1(t), \ldots, x_N(t)) := \Phi^t(X) \) be the solution of the system \((P)\) of initial condition \(X = (x_1, \ldots, x_N) \in C_r \). There exists \(\nu_X \in \mathbb{R} \) such that \(\max_{1 \leq i \leq N} |x_i - \nu_X| < \Delta_r(\nu_X) \leq D \). Let \(\mu_X(t) \) be the solution of the system \((NPS)\) associated to \(X(t) \) of initial condition \(\mu_X(t_0) = \nu_X \), then \(\delta(X) < \Delta_r(\mu_X(t_0)) \). Let

\[T^* := \sup\{t \in I_X : \forall t_0 < s < t, \max_i |x_i(s) - \mu_X(s)| < \Delta_r(\mu_X(s))\}. \]

By continuity we have \(t_0 \neq T^* \). The proposition is proved if we show that \(T^* = \sup\{t \in I_X\} \). By contradiction, suppose that \(T^* \in I_X \). Using the change of variable \(s = \mu_X(t) \) the proposition \([14]\) implies that for all \(s \in [\nu_X, \mu_X^*] \)

\[\frac{d}{ds} \delta_{i,k}^*(s) < \frac{1}{\alpha} \frac{\alpha_r + LD^2(L + 2\alpha)}{\alpha - LD} + \frac{F_{N+1}(s_1, s)}{F(s_1, s)} \delta_{i,k}^*(s), \quad \forall s \in [\mu_X, \mu_X^*]. \]

Hence there exists \(1 \leq i_0 \leq N \) and \(k \in \{1, 2\} \) such that \(|\delta_{i_0,k_0}^*(\mu_X^*)| = \Delta_r(\mu_X^*) \). Suppose that \(\delta_{i_0,k_0}^*(\mu_X^*) = \Delta_r(\mu_X^*) \) without loss of generality. We get

\[\frac{d}{ds} \delta_{i_0,k_0}^*(\mu_X^*) < \frac{1}{\alpha} \frac{\alpha_r + LD^2(L + 2\alpha)}{\alpha - LD} + \frac{F_{N+1}(\mu_X^*, \mu_X^*)}{F(\mu_X^*, \mu_X^*)} \delta_{i_0,k_0}^*(\mu_X^*) = \frac{d}{ds} \Delta_r(\mu_X^*). \]

There exists \(s < \mu_X^* \) close enough to \(\mu_X^* \) such that \(\delta_{i_0,k_0}^*(s) > \Delta_r(s) \) or in other words there exists \(t < T^* \) close enough to \(T^* \) such that \(\delta_{i_0,k_0}(t) > \Delta_r(\mu_X(t)) \). We have obtained a contradiction. \(\square \)

4 Proof of main result I : Existence of solution and the synchronized state

Theorem 16. Let \(F \) be a function satisfying the hypotheses \((H)\) and \((H_s)\). Then there exists \(D_* \in (0, 1) \) such that for all \(D \in (0, D_*] \), there exists \(r > 0 \)
and an synchronization open set C_r (as defined in the definition \[17\]), such that for any function H satisfying $\|H\|_B < r$, and for all $X \in C_r$ we have $I_X = [t_0, +\infty[$. Further C_r is positive Φ^t-invariant and

$$\forall X \in C_r, \exists \nu_X \in \mathbb{R} : |\Phi^t_i(X) - \mu_X(t)| < D, \forall i = 1, \ldots, N, \forall t \geq t_0,$$

where $\mu_X(t)$ is the solution of the system (NPS) associated to $\Phi^t(X)$ of initial condition $\mu_X(t_0) = \nu_X$.

Proof. Thanks to proposition \[15\] it is sufficient to prove that $I_X = [t_0, +\infty[$. By contradiction suppose that there exists $t_0 < t_X < +\infty$ such that the solution $X(t)$ is defined only on $I_X = [t_0, t_X]$. Then $\lim_{t \to t_X} \|\Phi^t(x)\| = +\infty$. Proposition \[15\] implies that

$$|\Phi^t_i(X) - \Phi^t_j(X)| < D, \forall 1 \leq i, j \leq N, \forall t \geq t_0,$$

For all $i = 1, \ldots, N$,

$$\alpha - LD - r < \frac{d}{dt}x_i \leq \max_{s \in [0,1]} |F(s, s)| + LD + r, \forall t \geq t_0.$$

Hence $\|\Phi^t(X)\| < +\infty$ for all $t \in [t_0, t_X]$, in particular $\lim_{t \to t_X} \|\Phi^t(t)\| < +\infty$. We have obtained a contradiction. \qed

5 Proof of main result II: Periodic locked solution

We use the fixed point theorem to prove the existence of periodic locked state as follow

Lemma 17. Let F be a function satisfying the hypotheses (H)and (H_*). For any 1-periodic C^1 function H satisfying $\|H\|_B < r$ let C_r the synchronization Φ^t-invariant open set given by theorem \[17\]. Let the set Σ defined by

$$\Sigma = \{X \in \mathbb{R}^N, \max_i |x_i| < \Delta r(0)\} \subset C_r.$$

Then there exists a C^1 function $P : \Sigma \to \Sigma$ (the Poincaré map) and a C^1 function $\theta : \Sigma \to \mathbb{R}^+$ (the return time map) such that

$$\Phi^{t_0 + \theta(X)}(X) = P(X) + 1, \quad 1 = (1, \ldots, 1) \in \mathbb{R}^N,$$

$$\frac{1}{L} < \theta(X) < \frac{2}{\alpha}.$$
Proof. Let $X \in \Sigma \subset C_r$. Let $\mu_X(t)$ be the solution of the system (NPS) associated to $X(t)$ of initial condition $\mu_X(t_0) = 0$. Let τ_X be the inverse function of the function $\mu_X := \mu_X(t)$. By the proposition 13 and the theorem 16 we obtain
\[
\alpha - LD < \dot{\mu}_X(t) < L.
\]
Remark (11) in the Section 2 shows that for all $D < \frac{\alpha}{2L}$ we have
\[
\frac{\alpha}{2} < \dot{\mu}_X(t) < L.
\]
Let $\theta(X) := \tau_X(1) - t_0$. Then $\int_{t_0}^{\tau_X(1)} \dot{\mu}_X(t)dt = 1$ which implies the second estimation of lemma. Recall that $\max_{1 \leq i \leq N} |\Phi(X) - \mu_X(t)| < \Delta(\mu_X(t)) < D$ for all $t \geq t_0$. Put $P(X) := \Phi_{t_0}^{t_0+\theta}(X) - t_0$, $P = (P_1, \ldots, P_N)$. Since $\mu_X(t_0 + \theta(X)) = 1$ then
\[
\max_{1 \leq i \leq N} |P_i(X)| = \max_{1 \leq i \leq N} |\Phi_{t_0}^{t_0+\theta}(X) - 1| < \Delta(1) = \Delta(0).
\]
We have shown that P is a map from Σ into itself.

Corollary 18. The Poincaré map P defined in lemma 17 admits a fixed point $X_s \in \Sigma$.

Proof. Σ is compact and convex; $P : \Sigma \to \Sigma$ is continuous. By Brouwer fixed point theorem, P admits a fixed point in $X_s \in \Sigma$. We claim that $X_s \notin \partial\Sigma$. Suppose by contradiction $X_s \in \partial\Sigma$. There exists $1 \leq i_0 \leq N$, such that $|x_{i_0,s}| = \Delta(0)$; Put
\[
X_s(t) = \Phi^t(X_s), \quad X_s(t) = (x_{1,s}(t), \ldots, x_{N,s}(t)).
\]
Let $\mu_X(t)$ the solution of the system (NPS) associated to the solution $X_s(t)$ of initial condition $\mu_X(t_0) = 0$. We note
\[
\delta_{i,1}(X_s(t)) = x_{i,s}(t) - \mu_X(t), \quad \delta_{i,2}(X_s(t)) = \mu_X(t) - x_{i,s}(t).
\]
There exists $1 \leq i \leq N$, $k \in \{1,2\}$, and $t' > t_0$ close to t_0 such that $\delta_{i_0,k}(X_s(t)) < \Delta_r(\mu_X(t))$ for all $t' > t > t_0$. By repeating this argument for every $1 \leq i_1 \leq N$ and $k \in \{1,2\}$ satisfying the equality $\delta_{i_1,k}(X_s(t)) = \Delta_r(\mu_X(t))$ we obtain for some $t'' > t_0$, $\delta(X_s(t'')) < \Delta_r(\mu_X(t''))$. But 16 implies that $\max_{1 \leq i \leq N} |x_{i,s}(t) - \mu_X(t)| < \Delta_r(\mu_X(t))$ for all $t > t''$. We have obtained a contradiction with the fact that
\[
\max_{1 \leq i \leq N} |\Phi_{t}^{t_0+\theta}(X_s) - \mu_X(t_0 + \theta(X_s))| = \max_{1 \leq i \leq N} |x_{i,s} + 1 - 1| = \Delta_r(0) = \Delta_r(\mu_X(t_0 + \theta(X_s))),
\]
knowing that $\mu_{X_*}(t_0 + \theta(X_*)) = 1$ and $\Phi^{t_0 + \theta(X_*)}(X_*) = X_* + 1$. □

The main result II is a consequence of the previous corollary.

Proof of the main result II. Corollary 18 implies the existence of a fixed point $X_* \in C_r$ and return time $\theta_* > 0$ such that

$$\Phi^{t_0 + \theta_*}(X_*) = X_* + 1.$$

Thanks to periodicity and uniqueness of solution of differential equation, we obtain

$$\Phi^{\theta_* + t}(X_*) = \Phi^t(X_*) + 1, \quad \forall t \geq t_0.$$

Let $\Psi : \mathbb{R}^N \rightarrow \mathbb{R}^N$ the function defined by

$$\Psi(s) := \Phi^s(X_*) - \frac{s}{\theta_*}1 = (\Psi_1(s), \cdots, \Psi_N(s)), \quad \forall s \geq t_0.$$

The theorem is proved if we show that Ψ_i are θ_*-periodic. We have

$$\Psi(s + \theta_*) = \Phi^{s + \theta_*}(X_*) - \frac{s + \theta_*}{\theta_*}1 = \Phi^s(X_*) + 1 - \frac{s + \theta_*}{\theta_*}1 = \Psi(s).$$

Lemma 17 implies that θ_* is uniformly bounded. □

6 Conclusion

We have generalized the result obtained in [8] to a class of abstract mean field models. We have proved the existence of solution and the existence of the synchronized solution under small perturbation. In addition, we have proved the existence of periodic locked state for a periodic systems.

References

[1] J.T. Ariaratnam, and S.H. Strogatz, Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators, Phys. Rev. Lett. 86, 4278 (2001).

[2] L. Basnarkov, and V. Urumov, Critical exponents of the transition from incoherence to partial oscillation death in the Winfree model, J. Stat. Mech. P10014 (2009)
[3] D. Cumin and C.P. Unsworth, Generalising the Kuramoto model for
the study of neuronal synchronization in the brain. Physica D: Nonlin-
ear Phenomena, 2, 226, 181–196. (2007).

[4] G. B. Ermentrout and M. Pascal and B. S. Gutkin, The Effects of Spike
Frequency Adaptation and Negative Feedback on the Synchronization
of Neural Oscillators. Neural Computation, 6, 13, 1285-1310.(2001)

[5] F. Giannuzzi, D. Marinazzo, G. Nardulli, M. Pellicoro, and S. Stram-
glia, Phase diagram of a generalized Winfree model, Phys. Rev. E
75, 051104.(2007)

[6] S.-Y. Ha, J. Park, and S. W. Ryoo, Emergence of phase-locked states for
the Winfree model in a large coupling regime . Discrete and Continuous
Dynamical Systems, Series A, 35 , no. 8, 3417-3436 (2015)

[7] S. Louca, and F. M. Atay, Spatially structured networks of pulse-
coupled phase oscillators on metric spaces AIMS Journal of Discrete
and Continuous Dynamical Systems - A, vol. 34 (2014)

[8] W. Oukil, A. Kessi and Ph. Thieullen, Synchronization hypo-
thesis in the Winfree model. Dynamical System, doi =
10.1080/14689367.2016.1227303 (2016)

[9] D. Pazó and E. Montbrió, Low-dimensional dynamics of populations of
pulse-coupled oscillators, Phys. Rev. X 4 011009 (2014).

[10] O.V. Popovych, YL Maistrenko, PA Tass. Phase chaos in coupled osc-
cillators. Physical Review E 71, 065201 (R), (2005)

[11] Y. Kuramoto, International Symposium on Mathematical Problems in
Theoretical Physics. Lecture Notes in Physics, Springer, New York, 39
420-20.(1975)

[12] D.D. Quinn, R. H. Rand and S.H. Strogatz, Singular unlocking transition
in the Winfree model of coupled oscillators. Physical Review E 75,
036218 (2007)

[13] A. T. Winfree, Biological rhythms and the behavior of populations of
coupled oscillators J. Theor. Biol. 16 15-42.(1967)