A Method to Measure the Mass of Damped Lyα Absorber Host Galaxies Using Fluctuations in 21cm Emission

J. Stuart B. Wyithe

School of Physics, University of Melbourne, Parkville, Victoria, Australia
Email: swyithe@unimelb.edu.au

10 April 2008

ABSTRACT

Observations of damped Lyα absorbers (DLA) indicate that the fraction of hydrogen in its neutral form (HI) is significant by mass at all redshifts. This gas represents the reservoir of material that is available for star formation at late times. As a result, observational identification of the systems in which this neutral hydrogen resides is an important missing ingredient in models of galaxy formation. Precise identification of DLA host mass via traditional clustering studies is not practical owing to the small numbers of known systems being spread across sparsely distributed sight lines. However following the completion of reionization, 21cm surface brightness fluctuations will be dominated by neutral hydrogen in DLAs. No individual DLAs could be detected in 21cm emission. Rather, observations of these fluctuations will measure the combined clustering signal from all DLAs within a large volume. We show that measurement of the spherically averaged power-spectrum of 21cm intensity fluctuations due to DLAs could be used to measure the galaxy bias for DLA host galaxies when combined with an independent measurement of the cosmological HI mass density from quasar absorption studies. Utilising this technique, the low frequency arrays now under construction could measure the characteristic DLA host mass with a statistical precision as low as 0.3 dex at \(z \gtrsim 4 \). In addition, high signal-to-noise observations of the peculiar-motion induced anisotropy of the power-spectrum would facilitate measurement of both the DLA host mass and the cosmic HI density directly from 21cm fluctuations. By exploiting this anisotropy, a second generation of low frequency arrays with an order of magnitude increase in collecting area could measure the values of cosmic HI density and DLA host mass, with uncertainties of a few percent and a few tens of percent respectively.

Key words: cosmology: diffuse radiation, large scale structure, theory – galaxies: high redshift, inter-galactic medium

1 INTRODUCTION

The primary avenue for study of the physical properties of the inter-galactic medium utilises the Lyα absorption systems observed along the lines-of-sight towards high redshift quasars. These absorbing systems include the Lyα forest (with column depth \(n < 10^{17}\text{cm}^{-2} \)), Ly-limit systems (\(10^{17}\text{cm}^{-2} < n < 2 \times 10^{20}\text{cm}^{-2} \)), and damped Lyα absorbers (DLA, \(n > 2 \times 10^{20}\text{cm}^{-2} \)). The latter are self-shielded and have been shown to host > 80% of the neutral hydrogen (HI) gas during most of cosmic time \(z \lesssim 5 \) (Prochaska et al. 2005).

As the primary reservoirs of neutral gas, it is thought that DLAs provide the dominant sites for star formation, and represent the progenitors of modern galaxies (Woolfe, Gawiser & Prochaska 2005). Thus the identity of DLA hosts is crucial for our understanding of galaxy formation, and of the buildup of stellar mass in the Universe. DLA hosts have been identified in a few cases (e.g. Colbert & Malkan 2002; Warren et al. 2001), and observations of these (with some exceptions) are consistent with their being at the faint end of the Lyman break galaxy (LBG) population. On the other hand, these studies will more easily discover hosts in the most luminous systems, and could therefore be systematically biased in their conclusions. Within the cold-dark-matter model the masses of objects may be determined independently from their luminosity by studying their clustering properties and appealing to theoretical predictions of the bias relative to the underlying mass distribution. At high redshift \(z > 3 \), clustering analyses have been used in
this way to study the host halo masses of quasars (Shen et al. 2007; White, Martini & Cohn 2007), and LBGs (Adelberger et al. 2005). However the numbers of DLAs known is small, occurring only once in every few quasar spectra, and so no sample of sufficient size to allow for an auto-correlation clustering analysis exists (Cooke et al. 2006). As a result a quantitative measurement of DLA host mass has remained illusive. Some progress has been made through comparison of clustering with the LBG population through cross-correlation. Cooke et al. (2006) have performed a survey for LBGs in regions surrounding known DLA systems. This sample allows for measurement of the cross-correlation between DLAs and LBGs. Cook et al. (2006) find the cross-correlation length to be comparable to the correlation length (Adelberger et al. 2005) among the large LBG sample of Steidel et al. (2003), and so conclude that DLA systems have similar masses to LBGs. They argue for a host halo mass of $10^{10} M_\odot \lesssim M \lesssim 10^{12} M_\odot$. This interpretation is consistent with modeling studies carried out in a cosmological framework (Nagamine et al. 2007).

Alternatively, the presence of cold gas is also traced by MgII absorption. Indeed, MgII absorbers have been shown to be associated with neutral hydrogen absorbers over a range of column densities, including DLAs (e.g. Rao et al. 2006), and so MgII absorption is used as a proxy to study the HI galaxy population at $z \lesssim 1.5$. The host halo masses of MgII absorbers have been estimated at $z \sim 0.5$ via cross-correlation with luminous red galaxies in the Sloan Digital Sky Survey Data Release 3 (Bouché et al. 2006), yielding a host mass of $M \sim 10^{12} M_\odot$. The large number of objects available (both MgII absorbers and galaxies) yields a statistical accuracy of a factor of 2 in host halo mass, much better than is available using comparable techniques for DLAs at higher redshift (Cook et al. 2006). In addition, host masses have been estimated via direct kinematic measurement in spatially resolved followup spectroscopy (Bouché et al. 2007), yielding estimates that are consistent with clustering results.

The small number of known DLAs is due to the low density of bright background sources. An alternative approach is therefore to observe the DLA population directly through 21cm emission. There is an extensive literature describing the use of redshifted 21cm observations as a probe of the process of reionization in the high redshift IGM [see Furlanetto, Oh & Briggs (2006) for an extensive discussion]. Reionization starts with ionized (HII) regions around galaxies, which later grow to surround groups of galaxies. The process of reionization is completed when these HII regions overlap (defining the so-called overlap epoch) and fill-up most of the volume between galaxies. The conventional wisdom has been that the 21cm signal disappears after the overlap epoch, because there is little neutral hydrogen left through most of intergalactic space. However, the following simple estimate can be used to demonstrate that 21cm emission should be significant even after reionization is completed (Wyithe & Loeb 2008).

As mentioned above, DLA systems are believed to contain the majority of HI at high redshifts. Indeed, observations of DLAs out to a redshift of $z \sim 4$ show the cosmological density parameter of HI to be $\Omega_{\text{HI}} \sim 10^{-3}$ (Prochaska et al. 2005). In the standard cosmological model the density parameter of baryons is $\Omega_b \sim 0.04$, so that the mass-averaged neutral hydrogen fraction at $z \sim 4$ (long after the end of the HII overlap epoch) is $x_{\text{HI}} \equiv \Omega_{\text{HI}}/\Omega_b \sim 0.02$.

At $z \sim 4$, the brightness temperature contrast of redshifted 21cm emission will be $\Delta T \sim 0.5 \text{mK}$. Moreover on the $R \sim 10$ co-moving Mpc scales relevant for upcoming 21cm experiments, the root-mean-square amplitude of density fluctuations at $z \sim 4$ is $\sigma \sim 0.2$. Hence, we expect fluctuations in the 21cm intensity field due to DLAs to be at least $\sim 0.1 \text{mK}$ on 10 co-moving Mpc scales, with a boost in this signal if the DLAs are hosted by biased (i.e. massive) dark matter halos (Wyithe & Loeb 2008). The fluctuations in the 21cm emission signal after reionization are therefore expected to be only an order of magnitude or so smaller than the largest fluctuations predicted at any time during the entire reionization era (e.g. Wyithe & Morales 2007). Moreover the sky temperature, which provides the limiting factor in the system noise at the low frequencies relevant for 21cm studies, is proportional to $(1+z)^2 \delta_0^6$, and so is a factor of $\sim 3.4((1+z)/5)^2 \delta_0^6$ smaller at low redshifts than for observations at $z \sim 7$.

Several experiments are currently under development which aim to detect the 21cm signal during reionization (including MWA, LOFAR, PAPER, 21CMA and more ambitious designs are being planned (SKA)). In addition, the first statistical detection of 21cm fluctuations due to discrete, unresolved clumps of neutral gas was recently made (Pen et al. 2008) through cross-correlation of the HIPASS (Barnes et al. 2001) 21cm observations of the local universe with galaxies in the 6 degree field galaxy redshift survey (Jones et al. 2004; 2005). This detection represents an important step towards using 21cm surface brightness fluctuations to probe the neutral gas distribution in the IGM (both during and after reionization), as well as the mass power-spectrum (PS) and cosmology (McQuinn et al. 2006; Wyithe, Loeb & Geil 2008; Chang et al. 2007; Mao et al. 2008; Loeb & Wyithe 2008; Pritchard & Loeb 2008; Wyithe 2008).

The first generation of low frequency radio arrays will have low spatial resolution, and insufficient sensitivity to detect individual DLAs in emission. On the other hand, the redshifted 21cm emission is sensitive to the total (mass-weighted) optical depth of this neutral gas. Observations of the redshifted 21cm signal would therefore detect the total neutral hydrogen content in a volume of IGM dictated by the observatory beam and frequency band-pass, and as a result each beam will contain the combined emission from a large number of DLAs. It is important to note that observation of DLAs via 21cm surface brightness fluctuations would be fundamentally different from quasar absorption line studies. The surface brightness fluctuations would be sensitive to the statistical properties of the population (particularly the clustering), but could not be used to study individual DLAs.

Although the 21cm emission after HII overlap is dominated by dense clumps of gas rather than by diffuse gas in the IGM as is the case before reionization is complete,
we do not expect 21cm self absorption to impact the level of 21cm emission. This conclusion is based on 21cm absorption studies towards DLAs at a range of redshifts between $z \sim 0$ and $z \sim 3.4$, which show optical depths to absorption of the back-ground quasar flux with values less than a few percent (Kanekar & Chengalur 2003; Curran et al. 2007). The small optical depth for self absorption is also supported by theoretical calculations of the 21cm optical depth of neutral gas in high redshift mini-halos (Furlanetto & Loeb 2002). Moreover, DLAs have a spin temperature that is large relative to the temperature of the cosmic microwave background radiation, and will therefore have a level of emission that is independent of the kinetic gas temperature (e.g. Kanekar & Chengalur 2003). These factors combine to make prediction of the 21cm signal from DLAs robust against poorly understood astrophysical details of galaxy formation.

In this paper we consider the PS of 21cm intensity fluctuations due to DLA systems at 2.5 $\lesssim z \lesssim 5.5$ where there are complementary quasar absorption line studies ($\S\E$). We show that the clustering could be accurately determined using low-frequency radio telescopes currently under construction ($\S\E$, and that this clustering will allow for an accurate measurement of the DLA mass ($\S\E$). We summarise our conclusions in $\S\E$ Through the paper we adopt the set of cosmological parameters based in part of data from WMAP3 (Spergel et al. 2007) for a flat ΛCDM universe.

2 THE 21CM POWER-SPECTRUM OF DLAS

We begin by describing the 21cm PS following the completion of reionization. The amplitude of fluctuations in the 21cm signal depends on the mass-averaged neutral hydrogen fraction in the IGM, and on the clustering bias of DLA systems. The latter is related to the galaxy bias of the DLA host dark matter halos. If more massive halos tend to house more neutral hydrogen, we would expect there to be a mean relation between DLA column density and the host halo mass. However DLA systems have a range of column densities, and so we would also expect significant scatter around this mean relation, both because of variation in the HI content from galaxy to galaxy, and because the column density for a particular galaxy will depend on the line-of-sight probed by a particular observation. In addition, there is a small contribution to the neutral hydrogen content of the IGM from Lyman limit systems and the Lyα forest.

For a DLA host with halo mass M, the galaxy bias b may be approximated using the Press-Schechter (1974) formalism (Mo & White 1996), modified to include non-spherical collapse (Sheth, Mo & Tormen 2001)

$$b(M,z) = 1 + \frac{1}{\delta_c}\left[\nu^2 + b'\nu^{2(1-c)}\right]^{-\frac{3c}{\nu^{2c}+b(1-c)(1-c/2)}},$$

where $\nu \equiv \delta^2/\sigma^2(M)$, $\nu' \equiv \sqrt[3]{\nu}a$, $a = 0.707$, $b = 0.5$ and $c = 0.6$. Here $\sigma(M)$ is the variance of the density field smoothed on a mass scale M at redshift z. This expression yields an accurate approximation to the halo bias determined from N-body simulations (Sheth, Mo & Tormen 2001).

Our approach to computing the DLA PS is to assume that there is a probability distribution $p(b)db$ for the neutral hydrogen mass-weighted clustering bias b of DLAs relative to the underlying dark matter. This distribution has a mean $\langle b \rangle$ and a characteristic mass $M(b)$ where $b = b(M(b))$. The quantity b is the typical galaxy bias of halos hosting neutral hydrogen. Since DLAs dominate the neutral hydrogen mass, and are thought to reside in massive, biased halos, we refer to this typical bias in the 21cm PS as the bias of DLA hosts, and $M(b)$ as the DLA host mass throughout this paper.

Our goal is to discuss the statistical precision with which $M(b)$ can be determined via the 21cm PS. As noted above, while most neutral hydrogen is located in the DLAs, a fraction of HI in the IGM is observed in Ly-limit systems with column densities below 2×10^{20}cm$^{-2}$. If these systems are found in the same host halo population as the DLAs, then $M(b)$ will faithfully represent the DLA host mass. On the other hand, if Ly-limit systems are located in smaller less biased halos, then equation (2) will lead to an underestimate of the DLA host mass. We do not expect this underestimate to be significant because the contribution to the observed PS is weighted by the the HI mass density squared and the bias squared, with DLA systems dominating both quantities.

Assuming that the relation between HI and halo mass is independent of large scale over density (and hence ionizing background), the 21cm PS due to DLAs (Wyithe 2008) is

$$P_{21}(k) = 400 \text{mK} \left(\frac{1+z}{7.5}\right)^2 x_{\text{HI}}^2 P(k) \left[\langle b \rangle + f \mu^2\right]^2,$$

(2)

where $x_{\text{HI}} \equiv \Omega_{\text{HI}}/\Omega_b$ is the mass weighted neutral fraction of hydrogen in the Universe. The PS is evaluated at a wavenumber k with modulus k and $\mu = \cos \theta$, where θ is the angle between the line-of-sight and wave-number k. In deriving this expression we have assumed $x_{\text{HI}} \ll 1$, as is observed following the completion of reionization. The peculiar motion induced anisotropy is dependent on cosmology through the evolution of growth factor D via $f = d \log D/d \log (1+z)$, and follows from application of redshift space distortions (Kaiser 1987) to the 21cm PS. We assume $f = 1$, which is appropriate at high redshift. From equation (2) we also find the spherically averaged PS

$$P_{21}(k) = 400 \text{mK} \left(\frac{1+z}{7.5}\right)^2 [b^2 + \frac{2}{3}(b) + \frac{1}{5}] P(k).$$

(3)

We note that in the case where $b = 1$ (which corresponds to a uniformly ionized IGM), we have

$$P_{21}(k) = 400 \text{mK} \left(\frac{1+z}{7.5}\right)^2 [1.87] x_{\text{HI}}^2 P(k),$$

(4)

which includes the enhancement of fluctuations by the factor of $(1+\mu^2)^2 = 1.87$ owing to peculiar velocities (Barkana & Loeb 2005). Importantly, the PS is sensitive only to the first moment of $p(b)$. As a result, we do not need to calculate (or assume) a functional form for this distribution in order to estimate the constraints on $M(b)$.

Examples of spherically averaged power-spectra are plotted in Figure 4 (thick grey lines) assuming values of b corresponding to DLA halo masses of $M(b) = 10^{10} M_{\odot}$, $M(b) = 10^{11} M_{\odot}$ and $M(b) = 10^{12} M_{\odot}$ (bottom to top), at each of the redshifts $z = 2.5, 3.5, 4.5$ and 5.5. We have assumed $x_{\text{HI}} = 0.02$ in these models corresponding to observations of HI density in DLAs at high redshift (Prochaska et al. 2005). The wiggles at wave numbers $k \sim 0.1\text{Mpc}^{-1}$ are
the baryonic oscillations that are familiar to galaxy redshift surveys (Eisenstein et al. 2005). The models with larger DLA host mass yield fluctuations with significantly more power, owing to the larger galaxy bias. It is this variation in the power that enables measurement of the DLA host mass.

3 SENSITIVITY TO FLUCTUATIONS IN 21CM EMISSION FROM DLAS

As an example of the sensitivity of forthcoming low-frequency telescopes to the fluctuations in 21cm emission after reionization, we have estimated the signal-to-noise for the Murchison-Widefield Array (MWA). Calculations of the sensitivity to the 21cm PS for an interferometer of this sort have been presented by a number of authors. We follow the procedure outlined by McQuinn et al. (2006), drawing on results from Bowman, Morales & Hewitt (2006) for the dependence of the array antenna density on radius $\rho(r)$. The uncertainty in a measurement of the PS per mode in the survey volume has two separate components, due to the thermal noise of the instrument ($\delta P_{21,N}$), and due to sample variance within the finite volume of the survey ($\delta P_{21,SV}$). Since we are dealing with discrete systems rather than a diffuse IGM, the latter includes a Poisson component due to the finite sampling of each mode and equals $\delta P_{21,SV} = P_{21}(k)[1 + (\langle b \rangle^2 n_{DLA} P(k))^{-1}]$, in which we approximate the number density of absorbing hosts by $n_{DLA} \sim M dn_{ST}/dM$ where dn_{ST}/dM is the Sheth-Tormen (2002) mass function of dark matter halos. The noise due to sample variance therefore depends both on the survey volume and on DLA host mass. We combine the above components to yield the uncertainty on the estimate of the PS within a k-space volume element d^3k

$$\Delta P_{21} = [\delta P_{21,SV} + \delta P_{21,N}] / \sqrt{N_c}.$$

where the quantity $N_c = 2\pi k^2 \sin^2 \theta dk d\theta/(2\pi)^3$ denotes the number of modes observed within $d^3k = 2\pi k^2 \sin \theta dk d\theta$. In computing N_c we assume symmetry about the polar angle and express the wave vector \vec{k} in components of its modulus k and angle θ relative to the line-of-sight.

The contamination of foregrounds provides an additional source of uncertainty in the estimate of the PS. McQuinn et al. (2006) have shown that it should be possible to remove the power due to foregrounds to a level below the cosmological signal, provided that the region of band-pass from which the PS is estimated is substantially smaller
than the total band-pass available. Following the approximation suggested in McQuinn et al. (2006), we set \(N_c = 0 \) if \(2\pi/k \cos(\theta) > \Delta D \), where \(\Delta D \) is the co-moving length corresponding to the line-of-sight distance over which foregrounds can be removed. The number of modes observed depends on the volume of the survey, \(V = D^2 \Delta D (\lambda^2/A_{\text{tile}}) \), where \(A_{\text{tile}} \) is the total physical surface area of an antenna, and \(D \) is the co-moving distance to the redshift of emission.

3.1 Power-Spectrum Sensitivity of the MWA

Estimates of the noise for detection of the spherically averaged PS for the MWA are plotted in Figure 1 (thin solid lines). Note that only redshifts \(z \gtrsim 3.5 \) are accessible with the MWA antennae design. When complete, the MWA will comprise a phased array of 512 tiles (each tile will contain 16 cross-dipoles) distributed over an area with diameter 1.5 km. To compute the noise on the PS we model the antennae distribution as having \(\rho(r) \propto r^{-2} \) with a maximum radius of 750 m and a finite density core of radius 18 m. We assume a 1000 hr integration on each of 3 fields, and a foreground removed bandpass of \(B = 8 \) MHz within a total processed bandpass of 32 MHz.

The sensitivity to the 21 cm PS is dependent on both the sensitivity of the telescope to a particular mode, and to the number of such modes in the survey. The former is set by the effective collecting area \((A_e) \) of each antenna element (as well as the total number of antennae), while the latter is sensitive to the total physical area covered by each antenna (which we refer to as \(A_{\text{tile}} \)). This issue is discussed in more detail in Wyithe, Loeb & Geil (2008). In computing the sensitivity we have assumed \(A_e \sim 16(\lambda^2/4) \) m\(^2\) and \(A_{\text{tile}} = 16 \) m\(^2\) (corresponding to the design of the MWA). The combined uncertainties include the minimum \(k \) cutoff due to foreground subtraction. Comparison of the noise estimate with the expected 21 cm signal shows that the MWA could detect the PS at \(3.5 \lesssim z \lesssim 5.5 \) with high significance provided that the DLA hosts are sufficiently massive (and therefore biased).

3.2 Power-Spectrum Sensitivity of the MWA5000

At values of \(k \sim a few \times 10^{-1} \) Mpc\(^{-1} \), the measurement of the PS using the MWA will be limited by the thermal sensitivity of the array, and so the signal-to-noise achievable in this regime will be greatly enhanced by a subsequent generation of telescopes with larger collecting area. As an example we consider a hypothetical followup telescope to the MWA which would comprise 10 times the total collecting area. We refer to this followup telescope as the MWA5000.

The design philosophy for the MWA5000 would be similar to the MWA, and we therefore assume antennae distributed as \(\rho(r) \propto r^{-2} \) with a diameter of 2 km and a flat density core of radius 80 m (see McQuinn et al. 2006). For MWA5000 we assume the antennae design to be optimised at the redshift of observation (in which case we assume \(A_e = A_{\text{tile}} \)). In Figure 1 we present estimates for measurement uncertainty of the 21 cm PS using MWA5000 (thin dashed lines). An MWA5000 would achieve a high signal-to-noise detection of the PS, even in cases where the DLA hosts have a small value of galaxy bias.

3.3 Dependence of SN on DLA Host Mass

In Figure 2 we show the integrated signal-to-noise ratio \((SN) \) for detection of the spherically averaged PS as a function of DLA host mass. The SN improves with increasing host mass owing to the increase in bias. Four different redshift cases are shown for each of the MWA (left panel) and MWA5000 (right panel). Figure 2 quantifies the results described in Figure 1. The MWA can detect the spherically averaged PS at a signal-to-noise of \(\gtrsim 3 \) for DLA masses \(M_{(b)} \gtrsim 10^3 M_\odot \), while the MWA5000 could detect the PS at a signal-to-noise of \(\gtrsim 3 \) for DLA masses as small as \(M_{(b)} \sim 10^8 M_\odot \). In each case SN is limited at the highest masses by the Poisson noise introduced into the PS by the discreteness of the DLA emission.
Figure 3. Constraints on DLA host mass and neutral fraction from a spherically averaged 21cm PS. The diagonal contours show the loci of points with likelihoods corresponding to 64% (solid lines) and 10% (dashed lines) of the maximum, given a true model with DLA masses of $10^{12} M_\odot$ (upper panels) and $10^{10} M_\odot$ (lower panels) combined with a neutral fraction $x_{HI} \sim 0.02$ and observation with the MWA. The vertical lines show the 64% and 10% likelihood contours for neutral fraction based on existing observations of DLAs within a redshift bin of width $\delta z = 0.5$.

4 MEASUREMENT OF DLA HOST MASS USING SPHERICALLY AVERAGED 21CM POWER SPECTRA

In this section we consider the spherically averaged PS, which would be the observable of choice for 21cm PS observations that achieve only modest SN. To estimate the potential for constraints on the DLA host mass properties from the spherically averaged PS, we first calculate the regions of parameter space $\vec{p} = (x_{HI}, \langle b \rangle)$ that are allowed around true models with \vec{p}_o. We assume there is no uncertainty in the PS of matter fluctuations, which would increase the uncertainty somewhat by introducing distortions onto the PS via assumption of an incorrect cosmology (Wyithe 2008). As part of this procedure, we construct likelihoods

$$\ln L(\vec{p}) = -\frac{1}{2} \sum_k \frac{(P_{\Delta T}(k, \vec{p}) - P_{\Delta T}(k, \vec{p}_o))^2}{\Delta P_{\Delta T}^2(k)},$$

(5)

where the sum is over bins of k, and $\Delta P_{\Delta T}^2$ is the spherically averaged uncertainty on measurement of the 21cm PS. In Figure 3 we show the likelihood contours for combinations of x_{HI} and $\langle b \rangle = M(\langle b \rangle)$ given input models with $M(\langle b \rangle) = 10^{12} M_\odot$ (upper panels) and $M(\langle b \rangle) = 10^{10} M_\odot$ (lower panels), combined with $x_{HI} = 0.02$ and observation with the MWA (diagonal sets of contours). The contours illustrate the degeneracy between x_{HI} and $\langle b \rangle$ in the resulting PS. Also shown is the existing constraint on the neutral fraction from quasar absorption line studies [vertical sets of contours showing the current uncertainty within $\Delta z = 0.5$ bins (Prochaska et al. 2005)]. The figure illustrates how the neutral fraction constraint can be used to break the degeneracy. It is clear from Figure 3 that the constraint on x_{HI} will be the limiting factor for measurement of the DLA host mass via the spherically averaged PS (in cases where the host bias is large).

From equation (3) we see that measurement of the spherically averaged PS with a signal to noise SN yields a fractional error on the combination $b_{DLA} x_{HI}$ with value

$$\frac{\Delta (b_{DLA} x_{HI})}{b_{DLA} x_{HI}} = \frac{1}{2SN},$$

(6)

where we have defined the quantity $b_{DLA} = \sqrt{\langle b \rangle^2 + 2/3 \langle b \rangle + 1/5}$. In deriving equation (6) we have assumed the mass PS to have negligible uncertainty. The measurement of neutral fraction with uncertainty Δx_{HI} is independent of the PS (having been obtained via the column density in DLAs along the line-of-sight towards high redshift quasars). The uncertainty in the characteristic bias (Δb_{DLA}) is therefore

$$\Delta b_{DLA} = b_{DLA} \sqrt{\left(\frac{\Delta (b_{DLA} x_{HI})}{b_{DLA} x_{HI}}\right)^2 + \left(\frac{\Delta x_{HI}}{x_{HI}}\right)^2}.$$

(7)
Figure 4. The uncertainty (in dex) on the mass of the DLA host achievable using a spherically averaged 21cm PS. The cases of different redshifts are shown for each of the MWA (left panels) and MWA5000 (right panels). Upper panels: The fractional uncertainty in x_{HI} was assumed to be $\Delta x_{HI}/x_{HI} = 0.2$ (corresponding to one $\delta z = 0.5$ bin in the SDSS study of Prochaska et al. 2005). Central panels: The fractional uncertainty in x_{HI} was assumed to be $\Delta x_{HI}/x_{HI} = 0.09$ (corresponding to a combination of all five $\delta z = 0.5$ bins in the SDSS study, or a future survey with smaller error-bars). Lower panels: The fractional uncertainty in x_{HI} was assumed to be negligible. In the central and lower panels, the curves for $\Delta x_{HI}/x_{HI} = 0.2$ are reproduced for comparison (thin grey curves).

The corresponding uncertainty in (b) is

$$
\Delta (b) = \frac{d(b)}{db_{DLA}} \Delta b_{DLA} = \frac{b_{DLA}}{(b) + 1/3} \Delta b_{DLA},
$$

yielding the uncertainty in host mass (in dex)

$$
\Delta (\log M(b)) = \frac{d \log M(b)}{d(b)} \Delta (b),
$$

where $d(\log M(b))/d(b)$ is determined via equation (1).

The values of $\Delta (\log M(b))$ that are obtained via equation (8) represent the dispersion of a likelihood function $L(\log M_{obs}| \log M(b))$ for observation of $\log M_{obs}$ given a true value $\log M(b)$. Following the observation of a 21cm DLA PS the likelihood function could then be used to obtain an a-posteriori measurement of the DLA host mass. Thus, in the instance of a flat prior probability distribution for the logarithm of host mass, the dispersion approximates the error (in dex) achievable for the mass of the DLA host given the true mass $M(b)$. The dispersion from equation (9) is plotted in Figure 4 as a function of host mass, at a range of redshifts, and for different assumptions regarding the uncertainty in neutral fraction and properties of the 21cm telescope used [the MWA (left panels) and MWA5000 (right panels)]. The fractional uncertainty in x_{HI} was assumed to be $\Delta x_{HI}/x_{HI} = 0.2$ [upper panels; corresponding to one $\delta z = 0.5$ bin in the SDSS DR3 study of Prochaska].
Wyithe

5 MEASUREMENT OF THE DLA HOST MASS USING ANISOTROPY OF THE OBSERVED 21CM POWER-SPECTRUM

In the previous section we discussed the constraints that could be placed on the DLA host mass via a spherically averaged 21cm PS. That analysis broke the degeneracy between mass averaged neutral fraction and the galaxy bias of DLA hosts using an independent measurement of neutral column density in quasar absorption systems. In this section we use the peculiar velocity induced anisotropy of the observed PS to break the degeneracy between bias and neutral fraction using the fact that these quantities contribute differently to the PS viewed at different angles relative to the line-of-sight (equation (2)).

To estimate the potential for constraints on the DLA host mass, we again calculate the region of parameter space $\bar{p} = (x_{HI}, M_{(b)})$ that is allowed around a true solution with \bar{p}_o. We assume there is no uncertainty in the PS of matter fluctuations, which would increase the uncertainty somewhat by introducing distortions onto the PS via assumption of an incorrect cosmology (Wyithe 2008). As part of this procedure, we construct likelihoods

$$\ln \mathcal{L}(\bar{p}) = -\frac{1}{2} \sum_{k, \mu} \left(\frac{P_{\Delta T}(k, \mu, \bar{p}) - P_{\Delta T}^0(k, \mu, \bar{p}_o)}{\Delta P_{\Delta T}(k, \mu)} \right)^2,$$

where $P_{\Delta T}(k, \mu, \bar{p})$ is the realisation of the power spectrum at k and μ, $P_{\Delta T}^0(k, \mu, \bar{p}_o)$ is the theoretical value at k and μ, and $\Delta P_{\Delta T}(k, \mu)$ is the theoretical variance.

Figure 5. Constraints on the DLA host masses derived from measurement of the anisotropy of the 21cm PS. We assume observations using the MWA and 3 fields integrated for 1000 hours each. Results are shown at 2 redshifts, and for 3 values of the true host mass ($M_{(b)} = 10^{10} M_\odot$, $10^{11} M_\odot$ and $10^{12} M_\odot$; from bottom to top). We assume a true value of $x_{HI} = 0.02$. In each case likelihood contours are shown at 10% and 64% of the maximum for the parameter set ($x_{HI}, M_{(b)}$). Also shown are the corresponding likelihoods for $M_{(b)}$. We have assumed a flat prior probability for $M_{(b)}$, and a Gaussian prior probability for the neutral fraction with a variance of Δx_{HI}. Results are shown at 2 redshifts, and for 3 values of the true host mass ($M_{(b)} = 10^{10} M_\odot$, $10^{11} M_\odot$, $10^{12} M_\odot$; from bottom to top). We assume a true value of $x_{HI} = 0.02$. In each case likelihood contours are shown at 10% and 64% of the maximum for the parameter set ($x_{HI}, M_{(b)}$). Also shown are the corresponding likelihoods for $M_{(b)}$. We have assumed a flat prior probability for $M_{(b)}$, and a Gaussian prior probability for the neutral fraction with a variance of Δx_{HI}.
21cm emission from DLAs

where the sum is over bins of k and μ.

The results are shown in Figure 6 for the MWA and MWA5000 respectively using the observing strategy outlined in §4. In each case likelihood contours are shown for the parameter set (x_{HI}, M_{b}) at two redshifts, $z = 2.5$ and 3.5, assuming a true value of $x_{\text{HI}} = 0.02$ and three true values of host mass $M_{b} = 10^{10} M_\odot$, $10^{11} M_\odot$ and $10^{12} M_\odot$. Also shown are the corresponding likelihoods for M_{b}. We have assumed a flat prior probability for M_{b}. The SN of the MWA is not sufficiently large to break the degeneracy between bias and neutral fraction. Therefore, as in the previous section we impose a Gaussian prior probability on x_{HI}, with a variance of $\Delta x_{\text{HI}} = 0.2 x_{\text{HI}}$, corresponding to current uncertainty from quasar absorption line studies (Prochaska et al. 2005). Figure 6 shows that at the sensitivity of the MWA, the constraints on the DLA host mass are very similar to those obtained from the spherically averaged PS. As a result nothing is gained by considering the angular dependence. On the other hand, the degeneracy is broken at the SN obtained by the MWA5000. As a result, we have not imposed a prior probability on the neutral fraction from quasar absorption studies in this case, and the allowed values of x_{HI} in Figure 6 are derived directly from the 21cm PS, in addition to M_{b}. Figure 6 shows that the MWA5000 (Figure 6) would obtain accuracies of a few percent on the neutral fraction, and a few 10s of percent in the DLA host mass.

6 CONCLUSIONS

Observations of DLA systems out to redshift $z \sim 5$ show the density parameter of HI to be $\Omega_{\text{HI}} \sim 10^{-3}$, indicating that the mass averaged neutral hydrogen fraction remains at the level of a few percent through most of cosmic history. These DLA systems will produce 21cm intensity fluctuations, whose power-spectrum has an amplitude that depends both on the total mass of neutral hydrogen within the DLA systems (Ω_{HI}), and the masses of the DLA host halos (through galaxy bias). Since Ω_{HI} is measured via quasar absorption line studies, we show that measurement of the spherically averaged 21cm power-spectrum amplitude at $2 \lesssim z \lesssim 5$ could be used to determine the DLA host mass. Using a telescope of collecting area equal to the MWA, the DLA host mass could be determined to within a factor as small as ~ 2 (provided the hosts were massive galaxies), with the accuracy limited by the determination of Ω_{HI} in this case.

In observations of the 21cm power-spectrum with high signal-to-noise, the limitation of the quasar absorption line derived neutral fraction could be removed by including the observed angular dependence due to peculiar motions in the analysis. In this case the measurement of DLA host mass would be limited by the sensitivity to the 21cm power-spectrum, and future telescopes with larger collecting area would significantly increase the precision (to within a few 10s of percent) with which the DLA host mass could be determined.

The DLA host mass is currently estimated via clustering analyses of absorption systems which are very rare, only...
being found in one of every few quasar lines of sight. Thus
measurement of the 21cm power-spectrum, which measures
the clustering of all DLAs in a large volume, has the potential
to greatly increase the precision with which the DLA
host mass is known. Since DLAs are thought to host the
majority of gas available for star formation, measurement of
the DLA host mass will be a valuable contribution to our
understanding of galaxy formation and the star formation
history.

Acknowledgments The author would like to thank
Michael Murphy for helpful comments on the draft
manuscript. This research was supported by the Australian
Research Council.

REFERENCES
Adelberger, K. L., Steidel, C. C., Pettini, M., Shapley,
A. E., Reddy, N. A., & Erb, D. K. 2005, ApJ, 619, 697
Barkana, R., & Loeb, A. 2005, ApJL, 624, L65
Barnes, D. G., et al. 2001, MNRAS, 322, 486
Bowman, J. D., Morales, M. F., & Hewitt, J. N. 2006, ApJ,
638, 20
Bouché, N., Murphy, M. T., Péroux, C., Csabai, I., & Wild,
V. 2006, MNRAS, 371, 495
Bouché, N., Murphy, M. T., Péroux, C., Davies, R., Eisen-
hauer, F., Förster Schreiber, N. M., & Tacconi, L. 2007,
ApJL, 669, L5
Chang, T.-C., Pen, U.-L., Peterson, J. B., & McDonald, P.
2007, ArXiv e-prints, 709, arXiv:0709.3672
Colbert, J. W., & Malkan, M. A. 2002, ApJ, 566, 51
Cooke, J., Wolfe, A. M., Gawiser, E., & Prochaska, J. X.
2006, ApJ, 652, 994
Curran, S. J., Tzanavaris, P., Murphy, M. T., Webb, J. K.,
& Pihlström, Y. M. 2007, MNRAS, 381, L6
Eisenstein et al. 2005, ApJ, 633, 560
Furlanetto, S. R., & Loeb, A. 2002, ApJ, 579, 1
Furlanetto, S. R., Oh, S. P., & Briggs, F. H. 2006, Phys.
Rep., 433, 181
Jones, D. H., et al. 2004, MNRAS, 355, 747
Jones, D. H., Saunders, W., Read, M., & Colless, M. 2005,
Publications of the Astronomical Society of Australia, 22,
277
Kanekar, N., & Chengalur, J. N. 2003, Astron. Astrophys.,
399, 857
Loeb, A., & Wyithe, S. 2008, ArXiv e-prints, 801,
arXiv:0801.1677
Kaiser, N. 1987, MNRAS, 227, 1
Mao, Y., Tegmark, M., McQuinn, M., Zaldarriaga, M., &
Zahn, O. 2008. ArXiv e-prints, 802, arXiv:0802.1710
McQuinn, M., Zahn, O., Zaldarriaga, M., Hernquist, L., &
Furlanetto, S. R. 2006, ApJ, 653, 815
Mo, H. J., & White, S. D. M. 1996, MNRAS, 282, 347
Nagamine, K., Wolfe, A. M., Hernquist, L., & Springel, V.
2007, ApJ, 660, 945
Pen, U.-L., Staveley-Smith, L., Peterson, J., & Chang, T.-
C. 2008, ArXiv e-prints, 802, arXiv:0802.3239
Press, W., Schechter, P. 1974, ApJ, 187, 425
Pritchard, J. R., & Loeb, A. 2008, ArXiv e-prints, 802,
arXiv:0802.2102
Prochaska, J. X., Herbert-Fort, S., & Wolfe, A. M. 2005,
ApJ, 635, 123
Rao, S. M., Turnshek, D. A., & Nestor, D. B. 2006, ApJ,
636, 610
Shen, Y., et al. 2007, AJ, 133, 2222
Sheth, R. K., Mo, H. J., & Tormen, G. 2001, MNRAS, 323,
1
Sheth, R., Torman, G., 2002, M.N.R.A.S., 321, 61
Spergel, D. N., et al. 2007, ApJS, 170, 377
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini,
M., Dickinson, M., & Giavalisco, M. 2003, ApJ, 592, 728
Warren, S. J., Møller, P., Fall, S. M., & Jakobsen, P. 2001,
MNRAS, 326, 759
White, M., Martini, P., & Cohn, J. D. 2007, ArXiv e-prints,
711, arXiv:0711.4109
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2005, Ann.
Rev. Astron. Astrophys, 43, 861
Wyithe, J. S. B., Loeb, A., & Geil, P. M. 2008, MNRAS,
383, 1195
Wyithe, J. S. B., & Loeb, A. 2008, MNRAS, 383, 606
Wyithe, J. S. B., & Morales, M. F. 2007, MNRAS, 379,
1647
Wyithe, J. S. B., 2008, submitted