Research Article

Feature Importance Score-Based Functional Link Artificial Neural Networks for Breast Cancer Classification

Shatakshi Singh,1 Sunil Kumar Jangir,2 Manish Kumar,3 Madhushi Verma,4 Sunil Kumar,5 Tarandeep Singh Walia,6 and S. M. Mostafa Kamal7

1Dept. of Computer Science and Engineering, Mody University of Science and Technology, Sikar 332001, India
2Wisflx Pvt. Ltd, Jaipur, Rajasthan, India
3Dept. of Biomedical Engineering, Mody University of Science and Technology, Sikar 332001, India
4School of Computer Science Engineering and Technology, Bennett University, Greater Noida 201310, India
5School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248001, India
6School of Computer Application, Lovely Professional University, Phagwara, India
7Department of Mathematics, Islamic University, Kushtia 7003, Bangladesh

Correspondence should be addressed to S. M. Mostafa Kamal; kamal@math.iu.ac.bd

Received 7 February 2022; Revised 4 March 2022; Accepted 8 March 2022; Published 2 April 2022

Academic Editor: B. D. Parameshachari

Copyright © 2022 Shatakshi Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Growth of malignant tumors in the breast results in breast cancer. It is a cause of death of many women across the world. As a part of treatment, a woman might have to go through painful surgery and chemotherapy that may further lead to severe side effects. However, it is possible to cure it if it is diagnosed in the initial stage. Recently, many researchers have leveraged machine learning (ML) techniques to classify breast cancer. However, these methods are computationally expensive and prone to the overfitting problem. A simple single-layer neural network, i.e., functional link artificial neural network (FLANN), is proposed to overcome this problem. Further, the F-score is used to reduce the issue of overfitting by selecting features having a higher significance level. In this paper, FLANN is proposed to classify breast cancer using Wisconsin Breast Cancer Dataset (WBCD) (with 699 samples) and Wisconsin Diagnostic Breast Cancer (WDBC) (with 569 samples) datasets. Experimental results reveal that the proposed models can diagnose breast cancer with higher performance. The proposed model can be used in the early breast cancer diagnosis with 99.41% accuracy.

1. Introduction

Cancer can spread in the whole body and accounts for the estimation of 9.6 million deaths worldwide, out of which 2.06 million deaths were caused due to breast cancer [1]. Similarly, breast cancer is caused by the growth of malignant tumors in the breast. It can be cured if it is diagnosed at an early stage. The World Health Organization (WHO) says that the survivability rate decreases from developed to developing countries due to inadequate diagnosis facilities [2].

In recent years, ML has majorly been applied in health informatics to predict various diseases as they can decrease the diagnosis time and find hidden relationships between complex datasets, which is indeed a tedious task for humans [3]. Various classification techniques such as SVM, KNN, logistic regression (LR), and NB have been used along with various supportive techniques like feature selection and feature extraction to reduce the error rate and overfitting [4]. However, if one algorithm is not efficient enough, then ensemble techniques are used to improve the accuracy and make the algorithm more effective [5]. Chen et al. applied the rough set-support vector machine (RS-SVM) and divided datasets in 70%-30% and 50%-50% using a 5-fold cross-validation technique during experimentation [6]. Osman, A.H., has used a two-step SVM technique in which the first step is the clustering technique which is used to find
the hidden pattern and SVM is used for classification [7]. As the application of AI and ML rise for the diagnosis of diseases, it can improve the efficiency and accuracy of the breast cancer diagnosis. Such an AI powered system could help to save lives by diagnosing cancer at an early stage and prevent the deaths in women due to breast cancer [8]. AI will not only help to make the process more accurate but also help the clinicians to speed up the diagnosis with the prescreening test [9]. This paper evaluates various researchers who have worked on WBCD and WDBC datasets to classify breast cancer and compare the accuracy, precision, recall, and specificity of classification techniques applied on these datasets to classify breast-cancer.

Following are the significant contributions of this research article:

(1) A novel functional link artificial neural network (FLANN)–based classifier is proposed to classify breast cancer with selected features. As per the authors’ knowledge, functional link artificial neural network for the classification of breast cancer is first introduced and applied on two datasets with different features

(2) Significant features have been selected based on the F-score for the classifier’s training to reduce the complexity

(3) The accuracy of the classifier is also examined based on selected breast cancer attributes

(4) Different algorithms, including SVM, KNN, RF, NB, and MLP, have been implemented on WBCD and WDBC datasets, and their performance is compared with the proposed FLANN

The rest of the paper is arranged as follows: Related work is discussed in Section 2, highlighting some of the existing works of other researchers. In Section 3, various classification techniques implemented in this work and performance measurement techniques are discussed followed by the Results and Discussion presented in Section 4. Finally, the conclusion of this research paper is given.

2. Related Work

Abonyi and Szeifert have examined supervised fuzzy clustering using 5 to 6 features and a 10-fold cross-validation
Othman and Yau have compared the performance of different techniques and got the classification accuracy of 99.42% on the WBCD dataset [17]. T. Admassu optimized best classification accuracy 96.1%, highest area under the curve (AUC), and highest F-measure metric [16]. Adel S. Assiri presented a comparison of multilayer perceptron (MLP), Naive Bayes (NB), sequential minimal optimization (SMO), and nearest neighbors algorithm using the WEKA data mining tool and achieved the highest accuracy of 96.99% [11]. Salama et al. proposed a system utilizing SVM and KNN with a K-fold cross-validation method and suggested that SVM performs better on the WBCD dataset than the KNN algorithm with an accuracy of 98.57% and specificity of 95.5% [20]. Chaurasia V. et al. applied six different ML algorithms on WDBC with all the features and then reduced the features using statistical measures before applying the stacked classifiers to minimize the probability of misclassification in results [21]. In addition, various researchers have worked on different ML techniques to classify breast cancer types. It is found that the existing models suffer from the gradient vanishing [22–24], overfitting [25, 26], and data leakage [27, 28] kind of problems. Even development of generalized model [34,35] is still defined as an ill-posed problem.

Table 1 presents the work of the various researchers who contributed to the same domain.

3. Methodology

Neural networks are often preferred for solving nonlinear problems [18]. FLANN is a high-order functional link–based single layer artificial neural network. There are no hidden layers in its architecture; therefore, it provides high convergence speed compared to other networks [19]. The structure of FLANN is given in Figure 1, where input features are expanded using nonlinear mathematical functions such as exponential, trigonometric, logarithmic, power, and Chebyshev functions. In the proposed methodology, features in the breast cancer dataset are expanded using trigonometric functions, depicted in Equation (2).

The breast cancer feature input is stored in a vector containing n different features which is given as

$$X = [x_1 x_2 \cdots x_n]^T,$$

where X can be further expanded using trigonometric functions as

$$X = [x_1 \cos (\pi x_1) \sin (\pi x_1) \cdots \cos (2\pi x_1) \cdots x_n \cos (\pi x_n) \sin (\pi x_n) \cdots \cos (2\pi x_n) \cdots x_n]^T.$$
After expansion of the input feature, weights will be initialized randomly, and it is given as

$$W = [w_0, w_1, w_2, \ldots, w_{n-1}]^T.$$ \hspace{1cm} (3)

The weighted sum of input and bias will provide output $Y^{(j)}$,

$$Y^{(j)} = \sum_{k=0}^{n-1} x_k^{(j)} W_k.$$ \hspace{1cm} (4)

$Y^{(j)}$ is then passed through a nonlinear hyperbolic logarithmic activation function as

$$y^{(j)} = \frac{1}{2} \log \frac{1 + y^{(j)}}{1 - y^{(j)}}.$$ \hspace{1cm} (5)

Network error of FLANN can be computed by

$$\epsilon_j(n) = d_j(n) - y_j^{(j)}.$$ \hspace{1cm} (6)

The weights of the FLANN network is updated by applying the backpropagation algorithm, given as

$$w^{(l)}_{ij}(n+1) = w^{(l)}_{ij}(n) + \alpha \Delta_{ij}(n),$$ \hspace{1cm} (7)

where $w^{(l)}_{ij}(n+1)$ is an updated weight, similarly, $w^{(l)}_{ij}(n)$ is the old weight, and α denotes the learning rate.

$$\Delta_{ij}(n) = \delta^{(l+1)}(x_j^{(l)}) l = L - 1, L - 2, \ldots, 0,$$ \hspace{1cm} (8)

where L denotes current layer.

$$\delta^{(l)}(p) = \delta^{(l)}(n) g'(S_i(p)),$$ \hspace{1cm} (9)

for the output layer.

$$= |\sum_{k=1}^{N} N_k \delta^{(p+1)} w_k^{(p)}(n) g'(S_i(p)),$$ \hspace{1cm} (10)

for the other layers.

Table 2 shows the properties of SVM, MLP, DT, KNN, and NB, and these properties can be used to get better accuracy and will help in selecting an algorithm according to the need. Apart from accuracy, researchers have worked on various other metrics to evaluate the performance of the different ML algorithms. Various quality metrics such as confusion matrix, precision, specificity, accuracy, and recall are used to measure implemented ML algorithms' performance [31]. The confusion matrix represents the data graphically, and values in the matrix are represented using colors. They include the information about the actual and classified output of the input data points.
The abovementioned metrics can be mathematically represented as

\[
\begin{align*}
\text{Accuracy} &= \frac{TP + TN}{N}, \\
\text{Precision} &= \frac{TP}{TP + FP}, \\
\text{Recall} &= \frac{TP}{TP + FN}, \\
\text{Specificity} &= \frac{TN}{TN + FP},
\end{align*}
\]

where TP represents true positive results, FP is the false positives, TN is the number of true negative results, and FN denotes the false negatives in the output. Equations (8) presents the mathematical form of performance measurement criteria, and Table 3 shows the confusion matrix components which can be used to evaluate any algorithm.

4. Results and Discussion

The simulation work was done in the Google Colaboratory (Google Colab). It is a cloud-based Jupyter Notebook that uses Python version 3.6 platform. It provides decent computation power, 12.72 GB Random Access Memory (RAM) and 68 GB disk storage. In this study, various machine learning-based classification algorithms have been used to train the models using two different breast cancer datasets: Wisconsin Breast Cancer Dataset (WBCD) [32] and Wisconsin Diagnostic Breast Cancer Dataset (WDBC) [33]. Their performance has been compared with FLANN considering the different number of features.

WBCD contains 11 columns, out of which the first column is “sample id,” which is not relevant, and the last column of the dataset contains the output, which exhibits whether the tumor is benign or malignant. In this dataset, there are 699 samples, out of which 458 (65.5%) are benign and 341 (35.5%) are malignant. In WBCD (original), 16 values are missing, which have been replaced with the mean value.

The F-score of each feature is shown in Figure 2 to determine the significance level of each feature, using which we
found that feature numbers f5, f0, f7, and f3 play a significant role in classifying breast cancer. F-score can be computed with the help of confusion matrix for every feature. The feature importance is calculated for every decision tree by the amount that each attribute split point improves the performance measure, weighted by the number of observations the node is responsible for.

The FLANN is compared with other classification techniques such as NB, SVM, RF, KNN, and MLP. The comparison study is depicted in Table 4. This table also gives the accuracy level on various features level and is selected by applying the F-score method.

The experimental results of Table 4 reveal that all the algorithms perform well, particularly with three features, i.e., Bare Nuclei, Clump Thickness and Normal Nucleoli. SVM outperformed the other ML techniques, and accuracy reached 97.8%, whereas 97.14% accuracy was obtained using FLANN. The above result demonstrates that the result mainly relies upon the significant features only, thereby eliminating redundant attributes for the training of the ML models. Furthermore, it will not only help to reduce computational complexity but also in expediting the learning process of ML techniques. Finally, the confusion matrix of classification using SVM with three features is presented in Figure 3.

This confusion matrix provides different quality metric data such as precision (0.976), recall (0.9888) and specificity (0.964). Likewise, MLP consists of multiple perceptron in each layer and is applied to the WBCD dataset. The batch size is taken as 16, and categorical cross-entropy is used to calculate the loss. Also, Adam’s optimizer is a learning algorithm. The accuracy obtained by the MLP on only two features is 94.28%, with three features is 96.85% and with five features is 95.28%. The loss and accuracy after each epoch can be depicted using the graphs Figures 4 and 5.

The above graphs demonstrate the accuracy of the training and a testing dataset. Initially, the graph increases exponentially and then increases, and after a few epochs, the accuracy becomes saturated. The model’s accuracy may change with the learning rate and other ML network parameters. Similarly, the model loss is inversely proportional to the accuracy. Hence the graph decreases exponentially and is then saturated with the epoch. Since WBCD (Original) has only ten features and only one value ranging from 1-10 is considered, another dataset, i.e., WDBC having more features, was considered for the experiments.

Similarily, in WDBC, there are ten features followed by the mean of values, standard error and the maximum value of the mean of the largest three values of features for each property, making it a total of 30 features. The input values of the selected features are obtained using the digitized image of the fine needle aspirant technique, and all feature values are recoded with up to four significant digits. There are no missing values in the dataset. This dataset contains 569 samples, of which 357 (62.74%) are benign and 212 (37.25%) malignant. This F-score of each feature is shown in Figure 6.

Using Figure 6 it is found that f21, f23, f13, f27, f1, f26, f7, f24, f4 and f15 play a major role in classifying breast cancer. Table 5 shows the result of the experiment of different algorithms with various numbers of features.

SVM and Naive Bayes work better with six major features, FLANN with 11 features, and random forest with all the features.

From Figure 7, we can calculate the precision (97.2%), recall (100%), and specificity (95.34%). Apart from these machine learning techniques, MLP also performs well in classifying the tumor, and data are trained in the batch size of 16. The categorical cross-entropy and Adam’s optimizer were calculated to improve the accuracy level. After each forward propagation loss is calculated, the weight parameters are changed to reduce the loss and increase accuracy. The

Technique	Accuracy when the number of features are 6	Accuracy when the number of features are 11	Accuracy when the number of features are 30
SVM	98.24%	97.36%	98.24%
KNN	95.61%	96.49%	96.49%
Random forest	96.49%	92.98%	97.14%
Naive Bayes	97.36%	96.49%	96.49%
MLP	96.49%	96.49%	97.28%
FLANN	95.57%	97.45%	99.41%

Figure 8: Accuracy of a model after each epoch.

Figure 9: Loss of model after each epoch.
accuracy obtained when using six features is 96.49%, with 11 features 96.49%, and the highest accuracy of 97.28% was obtained when all the features were considered. Figures 8 and 9 show the accuracy and loss after each epoch when all the features are used.

From both the above graphs, it can be concluded that loss and accuracy have an inverse relation. In the initial epochs, accuracy increases rapidly, and loss decreases, and after that rate of change of both accuracy and loss decreases, and after a few epochs, they change negligibly. Hence, the training is stopped without further delay. From Table 4 and Table 5, it can be concluded that for most machine learning techniques, better results are obtained for WDBC using the same classification algorithm, but WBCD did better when FLANN was used and achieved accuracy 99.41%, which is the best among all.

It can be observed that ML algorithms like NB, KNN, and SVM were able to achieve the accuracy obtained by FLANN. These algorithms have certain demerits which make it infeasible to use them for diagnosis. Naive Bayes has a strong assumption that is unrealistic for real-world data that all the input features are independent. KNN, despite of being a machine learning algorithm, cannot be used to train a model. There is no training involved when we use KNN. At the time of query, the k data points close to the query point are considered, and final output is decided. Hence, all the data need to be stored in the system and has to be accessed for each single query. SVM also required the training data to be loaded in memory at once. This makes the algorithm computationally very expensive and unrealistic for the real-time implementation.

5. Conclusions

This paper presents the study based on machine learning algorithms to diagnose breast cancer using physiological measures. WBCD and WDBC datasets are used for the study. The feature selection techniques are applied to select the most significant features in the dataset. Further, the accuracy is compared based on feature selection. To avoid the overfitting issue, this paper presents a FLANN algorithm for classification on two datasets WBCD and WDBC. This algorithm is computationally effective, more accurate, and converges faster than other algorithms because it has no hidden layer. The experimental studies conclude that an accuracy of 99.41% is achieved using the proposed FLANN with all features on the WDBC dataset. WDBC dataset is better as it considers dispersion factors like the standard deviation of the features that are important in breast cancer classification. In the future, X-ray images can be used to classify cancers using deep learning. However, X-ray is more feasible than the fine needle aspirant technique and uses the regional dataset to address a specific cancer problem.

Data Availability

The data used is freely available at https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original) and https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic).

Conflicts of Interest

The authors would like to confirm there are no conflicts of interest regarding the study.

Funding

This paper is self-funded.

References

[1] C. A. Pena-Reyes and M. Sipper, “A fuzzy-genetic approach to breast cancer diagnosis,” Artificial Intelligence in Medicine, vol. 17, no. 2, pp. 131–155, 1999.
[2] H. A. Abbass, “An evolutionary artificial neural networks approach for breast cancer diagnosis,” Artificial Intelligence in Medicine, vol. 25, no. 3, pp. 265–281, 2002.
[3] G. Chugh, S. Kumar, and N. Singh, “Survey on machine learning and deep learning applications in breast cancer diagnosis,” Cognitive Computation, vol. 13, no. 6, pp. 1451–1470, 2021.
[4] E. H. Houssein, M. M. Emam, A. A. Ali, and P. N. Suganthan, “Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review,” Expert Systems with Applications, vol. 167, article 114161, 2021.
[5] V. Chaurasia and S. Pal, “Stacking-based ensemble framework and feature selection technique for the detection of breast cancer,” SN Computer Science 2021 2:2, vol. 2, no. 2, pp. 1–13, 2021.
[6] B. Fatima and C. M. Amin, “A neuro-fuzzy inference model for breast cancer recognition,” AIRCC’s International Journal of Computer Science and Information Technology, vol. 4, no. 5, pp. 163–173, 2012.
[7] T. Manning and P. Walsh, “Improving the performance of CGPANN for breast cancer diagnosis using crossover and radial basis functions,” Lecture Notes in Computer Science, vol. 7833, pp. 165–176, 2013.
[8] Y. D. Zhang, S. C. Satapathy, D. S. Guttery, J. M. Górriz, and S. H. Wang, “Improved breast cancer classification through combining graph convolutional network and convolutional neural network,” Information Processing & Management, vol. 58, no. 2, article 102439, 2021.
[9] J. H. Chen, O. Agbodike, W. L. Kuo et al., “Online textual symptomatic assessment chatbot based on Q&A weighted scoring for female breast cancer prescreening,” Applied Sciences, vol. 11, no. 11, p. 5079, 2021.
[10] H. Guo and A. K. Nandi, “Breast cancer diagnosis using genetic programming generated feature,” Pattern Recognition, vol. 39, no. 5, pp. 980–987, 2006.
[11] E Ü-E, “Systems with Applications and undefined,” in Implementing automated diagnostic systems for breast cancer detection, Elsevier, 2007.
[12] T. S. Subashini, V. Ramalingam, and S. Palanivel, “Breast mass classification based on cytological patterns using RBFNN and SVM,” Expert Systems with Applications, vol. 36, no. 3, pp. 5284–5290, 2009.
[13] B. Zheng, S. W. Yoon, and S. S. Lam, “Breast cancer diagnosis based on feature extraction using a hybrid of K-means and
support vector machine algorithms,” Expert Systems with Applications, vol. 41, no. 4, pp. 1476–1482, 2014.

[14] C. Banerjee, S. Paul, and M. Ghoshal, “A Comparative Study of Different Ensemble Learning Techniques Using Wisconsin Breast Cancer Dataset,” in 2017 International Conference on Computer, Electrical & Communication Engineering (ICCECE), Kolkata, India, 2017.

[15] A. Eleyan, “Breast cancer classification using moments,” in 2012 20th Signal Processing and Communications Applications Conference (SIU), Mugla, Turkey, 2012.

[16] J. Alwidian, B. H. Hammo, and N. Obeid, “WCBA: weighted classification based on association rules algorithm for breast cancer disease,” Applied Soft Computing, vol. 62, pp. 536–549, 2018.

[17] E. A. Bayrak, P. Kirci, and T. Ensari, “Comparison of machine learning methods for breast cancer diagnosis,” in 2019 Scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBRT), Istanbul, Turkey, 2019.

[18] P. Jagannathan, S. Rajkumar, J. Frnda, P. B. Divakarachari, and P. Subramani, “Moving vehicle detection and classification using gaussian mixture model and ensemble deep learning technique,” Wireless Communications and Mobile Computing, vol. 2021, Article ID 5590894, 15 pages, 2021.

[19] K. Thiagarajan, M. Manapakkam Anandan, A. Stateczny, P. Bider Divakarachari, and H. Kivudujogappa Lingappa, “Satellite image classification using a hierarchical ensemble learning and correlation coefficient-based gravitational search algorithm,” Remote Sensing, vol. 13, no. 21, p. 4351, 2021.

[20] I. Triguero, D. Garcia-Gil, J. Maillol, J. Luengo, S. Garcia, and F. Herrera, “Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 2, article e1289, 2018.

[21] S. Agrawal and J. Agrawal, “Neural network techniques for cancer prediction: a survey,” Procedia Computer Science, vol. 60, pp. 769–774, 2015.

[22] S. Bai, S. Song, S. Liang, J. Wang, B. Li, and E. Neretin, “UAV maneuvering decision-making algorithm based on twin delayed deep deterministic policy gradient algorithm,” Journal of Artificial Intelligence and Technology, vol. 2, no. 1, pp. 16–22, 2021.

[23] M. Kaur and D. Singh, “Multiobjective evolutionary optimization techniques based hyperchaotic map and their applications in image encryption,” Multidimensional Systems and Signal Processing, vol. 32, no. 1, pp. 281–301, 2021.

[24] X. Zhang and G. Wang, “Stud pose detection based on photometric stereo and lightweight YOLOv4,” Journal of Artificial Intelligence and Technology, vol. 2, no. 1, pp. 32–37, 2021.

[25] K. Yadav, M. Yadav, and S. Saini, “Stock values predictions using deep learning based hybrid models,” CAAI Transactions on Intelligence Technology, vol. 7, no. 1, pp. 107–116, 2022.

[26] J. Zhang, G. Ye, T. Zhigang et al., “A spatial attentive and temporal dilated (SATD) GCN for skeleton-based action recognition,” CAAI Transactions on Intelligence Technology, 2022.

[27] M. Kaur, V. Kumar, V. Yadav, D. Singh, N. Kumar, and N. N. Das, “Metaheuristic-based deep COVID-19 screening model from chest X-ray images,” Journal of Healthcare Engineering, vol. 2021, 2021.

[28] P. K. Singh, “Data with non-Euclidean geometry and its characterization,” Journal of Artificial Intelligence and Technology, vol. 2, no. 1, pp. 3–8, 2022.