Fungi associated with grapevine trunk diseases (GTDs) with emphasize on pestalotioid species in Kurdistan Province, Iran

Esmail Khaledi
University of Kurdistan

Jamal Nahvi Moghadam
University of Kurdistan

Jafar Abdollahzadeh (✉ J.abdollahzadeh@uok.ac.ir)
University of Kurdistan https://orcid.org/0000-0001-8642-1401

Jahanshir Amini
University of Kurdistan

Research

Keywords: Seimatosporium, Sporocadus, Sporocadaceae, Truncatella, Xenoseimatosporium

DOI: https://doi.org/10.21203/rs.3.rs-192033/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Grapevine trunk diseases (GTDs) are destructive and important economically with worldwide distribution. In this survey 233 fungal isolates were obtained from grapevine cultivars showing trunk diseases symptoms in Kurdistan Province, Iran. Based on sequences data and morphology 24 species belong to 20 genera were characterized. *Botryosphaeriaceae*, *Alternaria*, *Sporocadaceae* and *Phaeoacremonium* members were the most prevalent identified fungal groups. At the species level *Botryosphaeria dothidea*, *Alternaria malorum*, *Phaeoacremonium aleophilum* and *Acremonium sclerotigenum* were the most frequent identified species. All species are new records in Kurdistan Province. *Clonostachys rosea* and *Neoscytalidium novae-hollandiae* are new records on grapevine in Iran. *Acremonium sclerotigenum*, *Alternaria chlamydosporigena*, *Ascochyta herbicola* and *Paecilomyces formosus* are new records on grapevine around the world. In phylogenetic analyses based on LSU, ITS, *TEF-1a* and *TUB2* sequence data four pestalotioid species belong to *Sporocadaceae* were identified. Of these, three species are new for science and introduced here as *Seimatosporium marivanicum*, *Sporocadus kurdistani* and *Xenoseimatosporium kurdistanicum*. Furthermore, three new combinations in *Sporocadus* are proposed.

Introduction

Grapevine trunk diseases (GTDs) including esca disease, eutypa and botryosphaeria dieback are the most destructive fungal diseases causing dieback and rapid or gradual decline in grapevine (Mugnai et al. 1999; Úrbez-Torres et al. 2012; Bertsch et al. 2013; Úrbez-Torres et al. 2014). These fungal diseases are major threat to the grapevine-related industries with a worldwide distribution, which have long been considered by researchers and dates back more than a century ago (Dubos and Larignon 1988; Mugnai et al. 1999; Graniti et al. 2000; Mostert et al. 2006; Surico et al. 2006; Surico 2009; Bertsch et al. 2013; Gramaje et al. 2015; Fischer and Peighami Ashnaei 2019). As can be concluded from literature usually different basidiomycetous taxa, more often *Fomitiporia mediterranea*, *Fomitiporia punctata* and *Phellinus igniarius*, and ascomycetous species belong to the most important and well-known genera *Phaeoacremonium* and *Pestalotioid fungi* are found as saprobes, endophytes and plant pathogens in association with mainly woody plants and human pathogens in different climates worldwide (De Hoog et al. 2000; Watanabe et al. 2010; Tanaka et al. 2011; Liu et al. 2019). These fungi comprising various anamorphic genera known by producing multi-septate conidia with appendages at both or either ends (Nag Rj 1993; Lee et al. 2006; Liu et al. 2019). Taxonomy of these fungi have been problematic and controversial in the past. In the past two decades, taxonomic studies based on DNA sequence data have contributed to clarify the ambiguities surrounding the systematic of pestalotioid fungi (Jeewon et al. 2002, 2003; Lee et al. 2006; Barber et al. 2011; Tanaka et al. 2011; Crous et al. 2015; Senanayake et al. 2015; Jaklitsch et al. 2016; Maharachchikumbura et al. 2016; Wijayawardene et al. 2016; Crous et al. 2018; Liu et al. 2019). In an extensive multigene phylogenetic study on coelomycetous fungi with appendage-bearing conidia Liu et al. (2019) discussed taxonomic history of these fungi in detail and placed them in the family *Sporocadaceae*, *Xylariales*. Liu et al. (2019) recognized 30 monophyletic genera in *Sporocadaceae* including *Seimatosporium*, *Sporocadus*, *Truncatella* and *Xenoseimatosporium*.

Kurdistan Province located in Iran is a part of Zagros Mountains occupied by early humans and ancient history in agriculture. Oak and grapevine are the two common trees that can be find growing across the Zagros Mountains. It is the first research on GTDs in this part of the world. In this survey during 2012–2014 some 230 fungal isolates were obtained. This study aimed to characterize these isolates based on morphology and DNA sequence data.

Materials And Methods

Sampling and fungal isolation

During a survey between 2012 and 2014 on grapevine trunk diseases in Kurdistan Province, twig and trunk samples of grapevines showing trunk diseases symptoms (cv. Askari, Bidaneh Sefid, Farkhi, Rasha and Sahabi) were collected from vineyards all over 10 years
old in 25 different villages. Grapevine cultivars showed different symptoms consisting of decline, reduced growth, interveinal yellow-brown or red-brown necrotic spots on leaves known as tiger-stripes pattern, spotting berries (black measles), sectorial and central brown necrosis of the trunks. Cross sections of samples were made and sliced to 0.5-1 cm pieces of infected wood. After surface sterilization, (3–4 min in 70% ethanol) four pieces were placed on 9 cm PDA plates supplemented with 100 mg chloramphenicol, streptomycin or tetracycline. Plates were incubated at 25 ± 2 °C in the dark. Colonies grown from wood pieces were transferred to PDA plates and incubated at 25 ± 2 °C in the dark. After 1–2 wk conidiomata were formed on PDA plates. To purify the isolates using single-spore method conidia were transferred to tap water agar (2% WA). After incubation at 25°C for 12 h single germinated conidia were transferred to PDA plates. Representative isolates were deposited in the culture collection (IRAN) of the Iranian Research Institute of Plant Protection (Tehran, Iran) and the culture collection (CBS) of the Westerdijk Fungal Biodiversity Institute (Utrecht, the Netherlands).

Morphology

Colonies were grown on PDA, MEA and OA at 25 ± 2°C for 1–2 wk. Structures were mounted in 100 % lactic acid or water and digital images were recorded with an Olympus DP72 camera on a Olympus BX51 microscope. Measurements were made with the Cell Sense Entry measurement module. For each isolate the mean, standard deviation, minimum and maximum values were calculated from measurements of at least 30 fungal structures. Conidial length was measured from the base of the basal cell to the base of the apical appendage, and conidial width was measured at the widest point of the conidium (Bonthond et al. 2018). Dimensions are presented as a range with extremes and mean ± standard deviation in parentheses. Depending fungal taxonomic groups the colony morphology and growth rate were determined on different culture media and temperature in the dark. For pestalotioloid fungi colony morphology and growth rate were determined on MEA and PDA at 21°C in the dark. After 2 wk mycelial growth was measured and cultural characteristics were recorded based on the colour charts of Rayner (1970).

DNA extraction, PCR and sequencing

The PCR reaction mixtures 25 µL contained 1×PCR buffer (PCR buffer with (NH4)2SO4), 3 mM MgCl2, 200 µM of each nucleotide, 5 pmol of each primer, 1 U of Taq polymerase and 1 µL of template DNA (50–100 ng/µL). Genomic DNA was extracted from 4–7 d old cultures grown in potato dextrose broth (PDB) using modified method of Raeder & Broda (1985) as described by Abdollahzadeh et al. (2009). The D1/D2 variable domains of the 28S nrDNA (LSU) and the ITS1, 5.8 and ITS2 region of ribosomal DNA and part of β-tubulin (TUB2) and the translation elongation factor 1-alpha (TEF-1α) were amplified and sequenced using the following primer pairs LR0R/LR5 for LSU (Vilgalys and Hester 1990), ITS5 or ITS1/ITS4 for ITS (White et al. 1990), T1/Bt2b for TUB2 (Glass and Donaldson 1995, O'Donnell and Cigelnik 1997), EF-1/EF-2 for TEF-1α (O'Donnell et al. 1998). The PCR reaction mixtures 12.5 µL contained 1×PCR buffer (PCR buffer with (NH4)2SO4), 3 mM MgCl2, 200 µM of each nucleotide, 5 pmol of each primer, 1 U of Taq polymerase and 1 µL of template DNA (50–100 ng/µL). The PCR amplification conditions were 95°C for 5 min, followed by 35 cycles of 94°C for 30 s, 52°C for 45 s (LSU and ITS) or 55°C for 45 s (TEF-1α and TUB2), and 72°C for 1 min, and a final extension of 72°C for 7 min. The PCR products were sequenced with both forward and reverse primers using an Applied Biosystems 3730xl DNA Analyzer (Thermo Fisher Scientific). Forward and reverse reads were paired and consensus sequences were obtained using the software BioEdit v. 7.0.0 (Hall 2004). All new sequences were submitted to GenBank (Table 1).
Table 1
Isolates used in phylogenetic analyses

Species	Isolate No.1	Host	Location	GenBank accession number			
				LSU	ITS	TUB2	EF1-α
Allelochaeta fusispora	CBS 810.73^T	*Eucalyptus polyanthemos*	Australia	MH554279	MH554067	MH554743	MH554503
All. falcata	CPC 13580	*E. alligatrix*	Australia	MH554284	MH554073	MH704626	MH704601
Bartalina robillardoides	CBS 122615	*Cupressus lusitanica*	South Africa	MH554207	MH553989	MH554657	MH554415
Broomella vitalbae	HPC 1154	-	-	MH554367	MH554173	MH554846	MH554608
Ciliochorella phanericola	MFLUCC 12–0310	Dead leaves	Thailand	KF827445	KF827444	KF827478	KF827477
Diploceras hypericinum	CBS 109058	*Hypericum* sp.	New Zealand	MH554178	MH553955	MH554614	MH554373
D. hypericinum	CBS 492.97	*H. perforatum*	Netherlands	MH554267	MH554054	MH554730	MH554489
Disaeta arbuti	CBS 143903	*Acacia pycnantha*	Australia	MH554346	MH554148	MH554821	MH554583
Discosia sp. 1	CBS 241.66	*A. karroo*	South Africa	MH554244	MH554022	MH554698	MH554456
Discosia sp. 2	CBS 684.70	*Aesculus hippocastanum*	Netherlands	MH554277	MH554064	MH554740	MH554500
Distononappendiculata banksiae	CBS 143906	*Banksia formosa*	Australia	MH554354	MH554158	MH554831	MH554593
Diversimediispora humicola	CBS 302.86^T	Soil	USA	MH554247	MH554028	MH554705	MH554463
Heterotruncatella restionacearum	CBS 118150	*Restio filiformis*	South Africa	MH554203	DQ278914	MH554649	MH554407
Hyalotiella transvalensis	CBS 303.65^T	Leaf litter and top	South Africa	MH554248	MH554029	MH554706	MH554464
		soil of *A. karroo*		MH554248	MH554029	MH554706	MH554464
		community					
Hymenopleella hipphophaeicola	CBS 113687	*Hippophaë rhamnoides*	Sweden	MH554188	MH553969	MH554628	MH554387
Immersidiscosia eucalypti	CBS 104197	*Ardisia japonica*	Japan	AB593724	AB594792	NA	NA
Lepteutypa fuckelii	CBS 140409^NT	*Tilia cordata*	Belgium	KT949902	NR_154123	MH554677	MH554435

1 CBS Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CJA Personal cultures of Jafar Abdollahzadeh; CPC Working collection of P.W. Crous housed at the Westerdijk Institute; HPC Herbarium of Pedro Crous, housed at the Westerdijk Institute; IRAN Iranian Fungal Culture Collection, Iranian Research Institute of Plant Protection, Iran; MAFF Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MFLUCC Mae Fah Luang University Culture Collection; NRBC Biological Resource Center. ET: ex-epitype; IT: ex-isotype; NT: ex-neotype; T: ex-type. * MFLUCC 15–0563: Type of Seimatosporium rosigenum; MFLUCC 14–0466: Type of Seimatosporium pseudosarum; MFLUCC 14–0468: Type of Seimatosporium pseudorosae.

2 LSU large subunit ribosomal DNA; ITS internal transcribed spacer; EF1-α translation elongation factor 1-alpha; TUB2 β-tubulin 2; N/A not available; Newly generated sequences are indicated in bold.
Species	Isolate No.¹	Host	Location	GenBank accession number²			
				LSU	ITS	TUB2	EF1-α
Monochaetia ilexae	CBS 101009	Air	Japan	MH554176	MH553953	MH554612	MH554371
Morinia acaciae	CBS 100230	Prunus salicina cv. Omega	New Zealand	MH554174	MH553950	MH554609	MH554368
Neopestalotiopsis zimbabwana	CBS 111495T	Leucospermum cunciforme	Zimbabwe	JX556249	JX556231	KM199456	KM199545
Nonappendiculata quercina	CBS 270.82	Quercus pubescens	Italy	MH554246	MH554025	MH554701	MH554459
Parabartalinia lateralis	CBS 399.71T	A. karroo	South Africa	MH554256	MH554043	MH554719	MH554478
Pestalotiopsis humicola	CBS 115450	*ilex cinerea*	Hong Kong	KM116208	KM199319	KM199418	KM199487
Pseudopestalotiopsis cocos	CBS 272.29T	Cocos nucifera	Indonesia	KM116276	KM199378	KM199467	KM199553
Pseudosarcostroma osyndicola	CBS 103.76T	Osyris alba	France	MH554177	MH553954	MH554613	MH554372
Robillarda terrae	CBS 587.71T	Soil	India	KJ710459	KJ710484	MH554734	MH554493
Sarcostroma leucospermi	CBS 111290T	Leucospermum cv. 'High Gold'	South Africa	MH554292	MH554081	MH554755	MH554516
Sarcostroma proteae	CBS 113610T	Protea magnifica	Australia	MH554187	MH553968	MH554627	MH554386
Seimatosporium botan	NBRC 104200T	Paeonia suffruticosa	Japan	AB593731	AB594799	LC047770	NA
Seimatosporium ficeae	MFLUCC 15-0519T	Ficus sp.	China	KR920686	KR920800	NA	NA
Seimatosporium germanicum	CBS 437.87T	-	Germany	MH554259	MH554047	MH554723	MH554482
Seimatosporium luteosporum	CBS 142599T	Vitis vinifera	USA	KY706309	KY706284	KY706259	KY706334

¹ CBS: Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CJA: Personal cultures of Jafar Abdollahzadeh; CPC: Working collection of P.W. Crous housed at the Westerdijk Institute; HPC: Herbarium of Pedro Crous, housed at the Westerdijk Institute; IRAN: Iranian Fungal Culture Collection, Iran; MAFF: Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MFLU: Mae Fah Luang University Culture Collection; NBRC: Biological Resource Center. ET: ex-epitype; IT: ex-isotype; NT: ex-neotype; T: ex-type. * MFLUCC 15–0563: Type of Seimatosporium rosigenum; MFLUCC 14–0466: Type of Seimatosporium pseudosararum; MFLUCC 14–0468: Type of Seimatosporium pseudosararum.

² LSU: large subunit ribosomal DNA; ITS: internal transcribed spacer; EF1-α: translation elongation factor 1-alpha; TUB2: β-tubulin 2; N/A: not available. Newly generated sequences are indicated in bold.

Page 5/20
Species	Isolate No.1	Host	Location	GenBank accession number2			
				LSU	ITS	TUB2	EF1-α
Seimatosporium marivanicum	IRAN 2310C = CBS 143781	*V. vinifera*	Iran, Mariwan	MW361960	MW361952	MW375352	MW375358
	IRAN 2310C = CBS 143780	*V. vinifera*	Iran, Mariwan	MW361959	MW361951	MW375351	MW375357
				CBS 789.68			
Seimatosporium physocarpi	CBS 139968T	Physocarpus opulifolius	Russia	KT198723	KT198722	MH554676	MH554434
Seimatosporium pistaciae	CPC 24457	Pistacia vera	Iran	MH554331	MH554126	MH554799	MH554561
Seimatosporium rhombisporum	MFLUCC 15-0543T	Vaccinium myrtillus	Italy	KR092780	KR092792	NA	NA
Seimatosporium rosae	CBS 139823ET	Rosa kalmiussica	Russia	KT198727	LT853105	LT853253	LT853203
Seimatosporium soli	CBS 941.69T	Forest soil under	Denmark	MH554282	MH554071	NA	MH554507
		Fagus sylvatica					
Seimatosporium vitifusiforme	CBS 142600T	*V. vinifera*	USA	KY706321	KY706296	KY706271	KY706346
Seimatosporium vitis	MFLUCC 14-0051	*V. vinifera*	Italy	KR920362	KR920363	NA	NA
Seimatosporium vitis-viniferae	CBS 123004T	*V. vinifera*	Spain	MH554211	MH553992	MH554660	MH554418
Seiridium pseudocardinale	CBS 122613	Cupressus sp.	Portugal	MH554206	LT853096	LT853243	LT853193
Sporocadus biseptatus	CBS 110324T	-	-	MH554179	MH553956	MH554615	MH554374
Sporocadus cornicola	CBS 143889	*Cornus sanguinea*	Germany	MH554326	MH554121	MH554794	MH554555
Sporocadus comi	MFLUCC 14-0467T	*Cornus sp.*	Italy	KR559739	KT162918	NA	NA
Sporocadus cotini	CBS 139966T	*Cotinus coggyria*	Russia	MH554222	MH554003	MH554675	MH554433

1 CBS Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CJA Personal cultures of Jafar Abdollahzadeh; CPC Working collection of P.W. Crous housed at the Westerdijk Institute; HPC Herbarium of Pedro Crous, housed at the Westerdijk Institute; IRAN Iranian Fungal Culture Collection, Iranian Research Institute of Plant Protection, Iran; MAFF Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MFL(U) CC Mae Fah Luang University Culture Collection; NBRC Biological Resource Center. ET: ex-epitype; IT: ex-isotype; NT: ex-neotype; T: ex-type. * MFLUCC 15–0563: Type of *Seimatosporium rosigenum*; MFLUCC 14–0466: Type of *Seimatosporium pseudorosarum*; MFLUCC 14–0468: Type of *Seimatosporium pseudorosae*.

2 LSU large subunit ribosomal DNA; ITS internal transcribed spacer; EF1-α translation elongation factor 1-alpha; TUB2 β-tubulin 2; N/A not available; Newly generated sequences are indicated in bold.
Species	Isolate No.\(^1\)	Host	Location	GenBank accession number\(^2\)			
				LSU	ITS	TUB2	EF1-α
Sporocadus incanus	CBS 123003\(^T\)	Prunus dulcis	Spain	MH554210	MH553991	MH554659	MH554417
Sporocadus italicus	MFLUCC 14-1196\(^T\)	Crategus sp.	Italy	MF614829	MF614831	NA	NA
Sporocadus kurdistanicus	IRAN 2356C\(^T\) = CBS 143778	V. vinifera	Iran, Sanandaj	MW361958	MW361950	MW375350	MW375356
	IRAN 2355C	V. vinifera	Iran, Mariwan	NA	MW361949	NA	NA
	IRAN 2354C	V. vinifera	Iran, Mariwan	MW361957	MW361948	MW375349	MW375355
	IRAN 2313C	V. vinifera	Iran, Dehgolan	MW361956	MW361947	MW375348	MW375354
Sporocadus lichenicola	NBRC 32625\(^ET\)	Fagus sylvatica	Germany	MH554252	MH554035	MH554711	MH554470
Sporocadus mali	CBS 446.70\(^T\)	Malus sylvestris	Netherlands	MH554261	MH554049	MH554725	MH554484
Sporocadus microcyclus	CBS 424.95\(^T\)	Sorbus aria	Germany	MH554258	MH554045	MH554721	MH554480
Sporocadus multisepatus	CBS 143899\(^T\)	Viburnum sp.	Serbia	MH554343	MH554141	MH554814	MH554576
Sporocadus rosigena	MFLU 16-0239\(^T\)	Rosa canina	Italy	MG829069	MG828958	NA	NA
Sporocadus pseudocorni	MFLUCC 13-0529\(^T\)	Cornus sp.	Italy	KU359033	NA	NA	NA
Sporocadus rosarum	CBS 113832	Rosa canina	Sweden	MH554189	MH553970	MH554629	MH554388
	MFLUCC 14-0466\(^T\)	Rosa canina	Italy	KT281912	KT284775	NA	NA
	MFLUCC 15-0563\(^T\)	Rosa canina	Italy	MG829071	MG828960	NA	NA
	MFLUCC 14-0468\(^T\)	Rosa villosa	Italy	KU359035	NA	NA	NA
Sporocadus rotundatus	CBS 616.83\(^T\)	Arceuthobium pusillum	Canada	MH554273	MH554060	MH554737	MH554496
Sporocadus sorbi	CBS 160.25	-	-	MH554229	MH554008	MH554684	MH554442

\(^1\) CBS: Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CJA: Personal cultures of Jafar Abdollahzadeh; CPC: Working collection of P.W. Crous housed at the Westerdijk Institute; HPC: Herbarium of Pedro Crous, housed at the Westerdijk Institute; IRAN: Iranian Fungal Culture Collection, Iranian Research Institute of Plant Protection, Iran; MAFF: Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MFLUCC: Mae Fah Luang University Culture Collection; NBRC: Biological Resource Center. ET: ex-epitype; IT: ex-isotype; NT: ex-neotype; T: ex-type. * MFLUCC 15–0563: Type of Seimatosporium rosigenum; MFLUCC 14–0466: Type of Seimatosporium pseudorosarum; MFLUCC 14–0468: Type of Seimatosporium pseudosassae.

\(^2\) LSU: large subunit ribosomal DNA; ITS: internal transcribed spacer; EF1-α: translation elongation factor 1-alpha; TUB2: β-tubulin 2; N/A: not available; Newly generated sequences are indicated in bold.
Species	Isolate No.¹	Host	Location	GenBank accession number²			
				LSU	ITS	TUB2	EF1-α
Sporocadus sp. 1	CBS 506.71	Euphorbia sp.	Italy	MH554268	MH554055	MH554731	MH554490
Sporocadus sp. 2	CBS 466.96	Inner tissue of zoocercidium, caused by Lasioptera rubi, on Rubus sp.	Netherlands	MH554265	MH554052	MH554728	MH554487
Sporocadus trimorphus	CBS 114203	*Rosa canina*	Sweden	MH554196	MH553977	MH554636	MH554395
Strickeria kochii	CBS 140411	*Robinia pseudoacacia*	Austria	KT949918	NR_154423	MH554679	MH554437
Synnemapestaloides juniperi	CBS 477.77	*Juniperus phoenicea*	France	MH554266	MH554053	MH554729	MH554488
Synnemapestaloides rhododendri	MAFF 239201	*Rhododendron brachycarpum*	Japan	LC047744	LC047753	LC047761	NA
Truncatella angustata	CBS 393.80	*Gevuina avellana*	Chile	MH554254	MH554041	MH554717	MH554476
	CJA35	*V. vinifera*	Iran, Sanandaj	NA	MW361953	NA	NA
	CJA82	*V. vinifera*	Iran, Sanandaj	NA	MW361954	NA	NA
Undetermined species	CBS 387.77	Skin of man	Finland	KM116277	MH554040	MH554716	MH554475
	CBS 113991	*Salix caprea*	Sweden	MH554190	MH553971	MH554630	MH554389
Xenoseimatosporium kurdistanicum	IRAN 2353	*V. vinifera*	Iran, Mariwan	MW361955	MW361946	MW375347	MW375353
	IRAN 2305	*V. vinifera*	Iran, Kamyaran	NA	MW361945	NA	NA
Xenoseimatosporium quercinum	CBS 129117	*Rhododendron sp.*	Lativa	MH554216	MH553997	MH554666	MH554424
	MFLUCC 14-1198	*Quercus robur*	Germany	NG_059681	NR_155804	NA	NA

¹ CBS Culture collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CJA Personal cultures of Jafar Abdollahzadeh; CPC Working collection of PW. Crous housed at the Westerdijk Institute; HPC Herbarium of Pedro Crous, housed at the Westerdijk Institute; IRAN Iranian Fungal Culture Collection, Iranian Research Institute of Plant Protection, Iran; MAFF Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan; MFLU (CC) Mae Fah Luang University Culture Collection; NBRC Biological Resource Center. ET: ex-epitype; IT: ex-isotype; NT: ex-neotype; T: ex-type. * MFLUCC 15–0563: Type of Seimatosporium rosigenum; MFLUCC 14–0466: Type of Seimatosporium pseudorosae.

² LSU large subunit ribosomal DNA; ITS internal transcribed spacer; EF1-α translation elongation factor 1-alpha; TUB2 β-tubulin 2; N/A not available; Newly generated sequences are indicated in bold.

Phylogenetic analyses

Consensus sequences together with retrieved sequences from GenBank (http://www.ncbi.nlm.nih.gov) were aligned using MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html), and manually edited in MEGA v. 7.0.21. The aligned dataset was subjected to Bayesian analysis (BA) and Maximum Likelihood (ML) on the CIPRES Science Gateway portal (https://www.phylo.org/; Miller et al. 2012).
using MrBayes v. 3.2.6 (Huelsenbeck and Ronquist 2001, Ronquist and Huelsenbeck 2003) and RAxML-HPC BlackBox v. 8.2.10 (Stamatakis 2014), respectively. The optimal nucleotide substitution models were determined for each locus using MrModelTest v. 2.3 (Nylander 2004). Bayesian analyses were implemented under the optimal nucleotide substitution models with four simultaneous Markov Chain Monte Carlo chains, 10 M generations and a sampling frequency of 1 000 generations, ending the run automatically when standard deviation of split frequencies dropped below 0.01. Burn-in was set to remove 25 % of the first sampled trees, after which the 50 % majority rule consensus trees and posterior probability (PP) values were calculated. The ML analyses were done using a GTR + GAMMA substitution model and four rate classes with 1 000 bootstrap iterations. The obtained phylogenetic trees were plotted using FigTree v. 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree). Alignments and trees were deposited in TreeBASE (www.treebase.org; S27404) and taxonomic novelties in MycoBank (www.MycoBank.org; Crous et al. 2004).

Results

Fungal isolates and species identification

In this survey some 223 fungal isolates were obtained from grapevines showing trunk diseases symptoms (Fig. 1), which 30 isolates were morphologically pestalotioid belong to Sporocadaceae. Based on morphology and DNA sequence data 24 fungal species belong to 20 genera were identified (Fig. 2; Table 2). All fungal species characterized in this survey are new records for the fungal flora of Kurdistan Province. It is the first time Clonostachys rosea and Neoscytalidium novaehollandiae are reported on grapevine in Iran. Acremonium sclerotigenum, Alternaria chlamydosporigena, Ascochyta herbicola and Paecilomyces formosus are new records on grapevine around the world.
Table 2
Fungal species associated with grapevine trunk diseases identified in this study

Species	Isolates no.	Frequency (%)	Grapevine cv.	Location
Acremonium sclerotigenum	20	8.55	Rasha, Sahabi, Farkhi	Dehgolan, Kamyaran, Marivan, Sanandaj
Alternaria chlamydosporigena	15	6.4	Rasha	Bijar, Dehgolan, Kamyaran, Qorveh
Alternaria malorum	27	11.55	Rasha, Sahabi, Farkhi, Bidaneh Sefid	Bijar, Dehgolan, Divandareh, Kamyaran, Marivan, Sanandaj, Saqez
Ascochyta herbicola	4	1.7	Rasha	Marivan
Botryosphaeria dothidea	27	11.55	Rasha, Sahabi, Bidaneh Sefid	Bijar, Marivan, Sanandaj, Saqez
Cadophora malorum	7	3	Rasha, Bidaneh Sefid	Baneh, Kamyaran, Marivan, Saqez
Clonostachys rosea	14	6	Rasha, Bidaneh Sefid	Kamyaran, Marivan, Sanandaj
Didymella glomerata	10	4.3	Rasha	Dehgolan, Kamyaran, Marivan
D. pinodella	5	2.1	Rasha, Bidaneh Sefid	Kamyaran
Diplodia seriata	4	1.7	Rasha	Marivan
Juxtiphoma eupyrena	4	1.7	Rasha	Marivan, Sanandaj
Kalmusia variispora	2	0.85	Rasha	Kamyaran
Microsphaeropsis olivacea	7	3	Rasha, Bidaneh Sefid	Kamyaran, Sanandaj
Neoscytalidium hyalinum	14	6	Rasha, Sahabi	Marivan
N. novaehollandiae	6	2.5	Rasha	Baneh, Qorveh
Paecilomyces formosus	6	2.5	Rasha	Marivan
Phaeoacremonium aleophilum	23	9.9	Rasha, Sahabi, Bidaneh Sefid	Dehgolan, Kamyaran, Marivan, Sanandaj
Ph. parasiticicum	2	0.85	Rasha	Marivan
Ph. rubrigenum	5	2.1	Rasha	Marivan
Phaeomoniella chlamydospora	2	0.85	Rasha	Kamyaran, Marivan
Seimatosporium marivanicum	10	4.3	Rasha, Sahabi	Marivan
Sporocadus kurdistanicus	6	2.6	Rasha	Dehgolan, Marivan, Sanandaj
Truncatella angustata	4	1.7	Rasha, Sahabi, Bidaneh Sefid	Marivan, Sanandaj
Xenoseimatosporium kurdistanicum	10	4.3	Rasha, Sahabi	Kamyaran, Marivan

Given that three new pestalotioid species were identified for science here we focused on phylogeny and description of the pestalotioid fungi isolated in this study. Based on morphology, cultural characteristics, grapevine cultivar and sampling geographical location 10 out of 30 isolates were selected for sequencing and phylogenetic studies (Table 1).

Phylogeny

Two datasets were subjected to phylogenetic analyses. The first dataset consisted of concatenated LSU, ITS, TEF-1α and TUB2, containing 55 taxa representing 30 genera and one undetermined clade recognized by Liu et al. 2019 and Leptotyphla fuckelii CBS.
Seimatosporium marivanicum Abdollahz., Nahvi M. & Khaledi E., sp. nov.

MycoBank MB 838232

Etymology: Name refers to Marivan in Kurdistan Province, Iran where this species was first found.

Diagnosis: In the multigene phylogenetic tree Sei. marivanicum constituted a highly supported distinct calde grouped with a clade containing Seimatosporium luteosporum and Seimatosporium vitifusiforme (Fig. 4). Sei. marivanicum has 4, 5, 20 and 17 bp differences with Sei. luteosporum in LSU, ITS, TEF-1a and TUB2 sequences, respectively. LSU and ITS sequences of Sei. marivanicum are identical to the Sei. vitifusiforme, but there are 6 and 2 bp differences between these two species in TEF-1a and TUB2, respectively. Sei. marivanicum can be easily differentiated from Sei. luteosporum by conidial dimensions (24 × 3.5 μm vs. 19.9 × 5.3 μm) (Table 3). Conidial size of Sei. marivanicum is almost indistinguishable from Sei. vitifusiforme, but conidia in Sei. vitifusiforme are 3-eusepta, while in Sei. marivanicum we have conidia with up to 6 eusepta (Table 3). Moreover, both appendages (apical/basal) of Sei. marivanicum are more longer than Sei. vitifusiforme (15/16 μm vs. 10/9.5 μm) (Table 3). Sei. luteosporum has been reported on Prunus persica and Vitis vinifera from California and Sei. vitifusiforme has only reported on Vitis vinifera from California (Farr and Rossman, 2020). To differentiate Seimatosporium species reported on grapevine we have presented conidial characteristics in Table 3.
Table 3 Conidial characteristics of *Seimatosporium* species reported on grapevine

Species	Conidial dimensions (µm)	Septum no.	Type of appendages	Apical appendage length (µm)	Basal appendage length (µm)	Conidia L/W ratio	Reference
S. botan	16–20 × 5–7 (av. = 18 × 6)	3	basal	4–8 (av. = 5.8)	4–8 (av. = 5.4)	2.6–3.8 (av. = 3)	Hatakeyama and Harada 2004
	16–20 × 4–5 (av. = 18 × 4)	3	apical and basal			4–5 (av. = 4.6)	
S. hysteroides	12–14 × 5–6	3	often lacking, occasionally basal or with both types	5–12	5–12	–	Shoemaker 1964
S. lonicerae	9–16 × 3.5–5 (av. = 13 × 4.4)	3, (2)*	both types or basal only	3–7 (av. = 5.5)	2–12 (av. = 7)	3	Nag Raj 1993
S. luteosporum	16.7–25.4 × 4.7–5.6 (av. = 19.9 × 5.3)	3	apical and basal	10.1–24.2 (av. = 17.9)	9.8–23.6 (av. = 16.7)	–	Lawrence et al. 2018
S. macrosporum	28–39 × 9–12.5	5	lacking appendages	–	–	–	Sutton 1975
S. marivanicum	16–31 × 3–7 (av. = 24 × 3.5)	3 (–6)	apical and basal	7–20 (av. = 15)	5–20 (av. = 16)	5 (–6)	This study
S. parasiticum	22–35 × 5–6 (–7) (av. = 27.5 × 5.5)	5, (3/4)*	apical and basal	2–5 (av. = 3.5)	2–8 (av. = 4.5)	5	Nag Raj 1993
S. vitifusiforme	18.6–30.3 × 3.7–5.1 (av. = 24.9 × 4.2)	3	apical and basal	7–12.6 (av. = 10)	3.9–16.6 (av. = 9.5)	–	Lawrence et al. 2018
S. vitis-viniferae	13.5–26 × 4.5–6 (av. = 16.5 × 5.2)	3 (–6)	basal or with both types	4–11 (av. = 7)	4–10 (av. = 7.9)	3.2	Liu et al. 2019
S. vitis	34–40 × 14–17 (av. = 37 × 15)	3	basal	–	4–8 (av. = 5)		Senanayake et al. 2015

Type. Iran: Kurdistan Province. Marivan, Nzhmar, *Vitis vinifera* (cv. Rasha), 11 Sep. 2012, J. Nahvi Moghadam (IRAN 17872F—holotype; IRAN 2310C = CBS 143781—ex-type culture).

Description. Sexual morph: unknown. Asexual morph. Conidiomata acervular, stromatic, immersed, semi-immersed to erumpent, dark brown to black. Conidiophores branched, hyaline, smooth. Conidiogenous cells discrete, mostly cylindrical or oblong, 4–20 × 1–2 µm (av.
= 10 ± 1.5 × 1.5 ± 0.2 μm), hyaline, smooth. Conidia allantoid, subcylindrical, curved to straight, 3(–6)-septate, wall smooth, some constricted at the septa, 16–31 x 3–7 μm (av. = 24 ± 1.5 x 3.5 ± 0.4 μm), bearing appendages; basal cell obconic with truncate base or trapezoid, thin-walled, hyaline to pale brown, 2–4 μm (av. = 3 ± 0.2 μm) long; median cells 2(–5), cylindrical or doliiform to ovoid, thick-walled, pale to mid-brown, ± equal, each 5–10 μm (av. = 8 ± 0.7 μm) long; apical cell conic with an acute or rounded apex, thin-walled, hyaline to pale brown, 3–7 μm (av. = 4 ± 0.5 μm) long; apical appendage single, attenuated, smooth, flexuous, unbranched, hyaline, (4–) 7–20 μm (av. = 15 ± 2.5 μm) long; basal appendage single, attenuated, smooth, excentric, 5–20 μm (av. = 16 ± 3 μm) long; mean conidium length/width ratio = 5(–6):1.

Culture characteristics: Colonies on MEA at with fluffy aerial mycelium and entire edge, white to buff (19''f), honey (19-21''b) to vinaceous buff (15-17”d) at the center, reaching 61–64 mm diam after 14 d at 21 °C; on PDA at with fluffy aerial mycelium and entire edge, white at the edge to olivaceous grey (21”i) at the center, reaching 58 mm diam after 14 d at 21 °C.

Specimens examined: Iran: Kurdistan Province: Marivan, Barda Rash, Vitis vinifera (cv. Rasha), 12 Sep. 2012, J. Nahvi Moghadam (IRAN 2300C = CBS 143780).

Sporocadus kurdistanicus Abdollahz., Nahvi M. & Khaledi E., sp. nov.

MycoBank MB838233

Etymology: Name refers to Kurdistan Province in Iran where this species was first found.

Diagnosis: Four isolates of Spo. kurdistanicus clustered in a highly supported clade separated from all Sporocadus species (Fig. 4). Three Sporocadus species including Sporocadus lichenicola, Sporocadus rhododendri and Sporocadus rosigena have previously been reported from grapevine. Spo. lichenicola shows 4 bp (substitution), 8 bp (substitution), 81 bp (28 deletion/insertion, 53 substitutions) and 68 bp (13 deletion/insertion, 55 substitutions) differences with Spo. kurdistanicus. TEF-1α and TUB2 sequences are not available for Spo. rosigena, but in LSU and ITS the type of Spo. rosigena (MFLU 16-0239) has 6 bp and 5 bp differences with Spo. kurdistanicus, respectively. In terms of morphology, conidial dimension of Spo. kurdistanicus is similar with Spo. lichenicola, but conidia of Spo. kurdistanicus are 3-euseptate while in Spo. lichenicola they are 3–4-euseptate and occasionally 5-euseptate. Spo. kurdistanicus is differentiated easily from Spo. rosigena by having larger conidia (Table 4). No sequences are available for Spo. rhododendri, but Spo. kurdistanicus can be distinguished from Spo. rhododendri by producing larger conidia (Table 4).

Table 4 Conidial characteristics of Sporocadus species reported on grapevine

Species	Conidial dimensions (μm)	Septum no.	Type of appendages	Conidia L/W ratio	Reference
S. kurdistanicus	18–24×6.5–9.5 (av. = 21.5×8)	3	lacking app	3	This study
S. lichenicola	18–25×5.5–8 (av. 21.6×7.2)	3(–4), occasionally 5	lacking app	3	Liu et al 2019
S. rhododendri	15.5–20×6.5–8.5	3	lacking app	–	Pirozynski and Shoemaker 1970
S. rosigena	12–14×5–7.5 (av. = 13×6.5)	3, occasionally 2	lacking app	–	Wanasinghe et al 2018

Type: Iran: Kurdistan Province: Sanandaj, Bavarez, Vitis vinifera (cv. Rasha), 28 Sep. 2012, J. Nahvi Moghadam (IRAN 17870F–holotype; IRAN 2356C = CBS 143778–ex-type culture).

Description: Sexual morph: unknown. Asexual morph: Conidiomata acervular, stromatic, immersed, semi-immersed to erumpent, dark brown to black. Paraphyses 30–40 μm, filiform, cylindrical, aseptate, hyaline, smooth-walled. Conidiophores cylindrical or reduced to conidiogenous cells, hyaline, smooth. Conidiogenous cells discrete, mostly cylindrical, sometimes ampulliform, 5–20 x 1–4 μm (av. = 11.6 ± 3.72 x 2.8 ± 0.58 μm), hyaline, smooth. Conidia fusoid, ellipsoidal to obovoid, subcylindrical, rarely slightly curved, 3-septate, wall
smooth, 18–24 × 6.5–9.5 μm (av. = 21.5 ± 0.9 × 8 ± 0.5 μm), lacking appendages; basal cell obconic with a truncate base, pale brown, 2.5–6.5 μm (av. = 4.8 ± 0.92 μm) long; median cells 2, fairly thick-walled, pale brown to brown, doliiform, mostly ± equal, each 6–8 μm (av. = 7 ± 0.5 μm) long, occasionally variable in size, together 10–15 μm (av. = 13.5 ± 1.5 μm) long; apical cell not conic with rounded apex, or conic with obtuse apex, concolourous with median cells, 3–7 μm (av. = 4.5 ± 0.5 μm) long; mean conidium length/width ratio = 3:1.

Culture characteristics: Colonies on MEA flat, appressed to fluffy, folded, edge sinuate, white to buff (19''f) to sinnamon (13-15''i) at the edge, reaching 43–47 mm diam after 14 d at 21 °C; on PDA flat with fluffy aerial mycelium and a few radial circular line from the center, edge sinuate, buff (19''f) to vinaceous buff (15-17”d), wet and cinnamon (13-15''i) to sepia (13-15''k), at the center reaching 33–45 mm diam after 14 d at 21 °C.

Specimens examined: Iran: Kurdistan Province: Marivan, Ahmadabad, *Vitis vinifera* (cv. Rasha), 23 Sep. 2012, J. Nahvi Moghadam (IRAN 2354C); Marivan, Nasl-Goshtkhani, *Vitis vinifera* (cv. Rasha), 14 Sep. 2012, J. Nahvi Moghadam (IRAN 2355C); Dehgolan, Javanmardabad, *Vitis vinifera*, 10 Sep. 2012, J. Abdollahzadeh & E. Khaledi (IRAN 2313C = CBS 143777).

Sporocadus comri (Wijayawardene, Camporesi & K.D. Hyde) Abdollahz., **comb. nov.** Mycobank, MB838310

Basionym: *Seimatosporium comri* Wijayaw., Camporesi & K.D. Hyde, *Fungal Diversity* **73:** 100 (2015).

Type: Italy: Pesaro-Urbino Province, Monte Nerone, on branches of *Cornus* sp., 11 June 2012, Erio Camporesi (MFLU 15–0742–holotype; MFLUCC 14–0467–ex-type culture).

Description: For a complete description, see Li et al. (2016).

Sporocadus pseudocorni (Wijayawardene, Camporesi & K.D. Hyde) Abdollahz., **comb. nov.** Mycobank, MB838308

Basionym: *Seimatosporium pseudocornii* Wijayaw., Camporesi & K.D. Hyde. *Fungal Diversity* **78:** 99 (2016).

Type: Italy: Forlì-Cesena Province, near Monte Riccio-Bagno di Romagna, on dead branch of *Cornus* sp. (*Cornaceae*), 5 Jan. 2013, Erio Camporesi (MFLU 15–3558–holotype; MFLUCC 13–0529–ex-type culture).

Description: For a complete description, see Senanayake et al. (2015).

Notes: *Sporocaduscomricola* and *Sporocaduspseudocorni* are identical in LSU sequence data. ITS, *TEF-1a* and *TUB2* sequences data are not available for *Spo. pseudocorni* but morphologically these are two distinct species (31–42 × 5–7 μm in *Spo. pseudocorni* vs. 34–51 × 13–18 μm in *Spo. cornicola)*.

Sporocadus italicus (Q.J. Shang & K.D. Hyde) Abdollahz., **comb. nov.**

Mycobank, MB838309

Basionym: *Seimatosporium italicum* Q.J. Shang & K.D. Hyde, *Fungal Diversity* **67:** 165 (2017).

Type: Italy: Papiano–Stia, Arezzo Province, on dead aerial branch of *Crategus* sp., 14 May 2014, E. Camporesi (MFLU 17-0499–holotype; MFLUCC 14-1196–ex-type culture).

Description: For a complete description, see Hyde et al. (2017).

Xenoseimatosporium kurdistanicum Abdollahz., Khaledi E. & Nahvi M., **sp. nov.**

MycoBank MB838234

Etymology: Name refers to Kurdistan Province in Iran where this species was first found.

Diagnosis: *Xen. kurdistanicum* is the second introduced species in *Xenoseimatosporium* after *Xenoseimatosporium quercinum*. These two species are clearly separated in phylogenetic analyses (Fig. 4). There are 1 bp (substitution), 15 bp (12 substitutions, 3 deletions/insertions), 20 bp (16 substitutions, 4 deletions/insertions) and 15 bp (14 substitutions, 1 deletion/insertion) differences in LSU, ITS, *TEF-1a* and *TUB2* sequences, respectively. These two species are easily distinguishable morphologically by conidial

Page 14/20
dimensions (29 × 6 μm in *Xen. kurdistanicum* vs. 18.2 × 4.5 μm in *Xen. quercinum*), number of septa in conidia (3 in *Xen. kurdistanicum* vs. 2-4 in *Xen. quercinum*) and apical/basal appendages length (20/25 μm in *Xen. kurdistanicum* vs. 13.4/12.1 μm in *Xen. quercinum*).

Type: Iran: Kurdistan Province. Marivan, Bara Rash, *Vitis vinifera* (cv. Rasha), 12 Sep. 2012, J. Nahvi Moghadam (IRAN 17871F—holotype; IRAN 2353C—ex-type culture).

Description: Sexual morph: unknown. Asexual morph: *Conidiomata* acervular, immersed, semi-immersed to erumpent. *Conidiophores* branched, hyaline, smooth. *Conidiogenous cells* discrete, cylindrical, oblong to lageniform, 8–15 × 1.5–2.5 μm (av. = 10 ± 1.5 × 2 ± 0.5 μm), hyaline, smooth. *Conidia* mostly allantoid, occasionally subcylindrical, curved to straight, 3-septate, smooth, some constricted at septa, 22–32 × 4–8 μm (av. = 29 ± 2 × 6 ± 0.9 μm), bearing appendages; basal cell obconic with truncate base or trapezoid, thin-walled, hyaline to pale brown, 2–4 μm (av. = 3 ± 0.3 μm) long; median cells 2, mostly cylindrical, occasionally doliiform, pale to mid-brown, thin-walled, ± equal, each 8–12 μm (av. = 10 ± 0.8 μm) long; apical cell conic with an acute or rounded apex, hyaline to pale brown, 2–4 μm (av. = 3 ± 0.5 μm); apical appendage single, attenuated, smooth, flexuous, unbranched, 15–30 μm (av. = 20 ± 2 μm); basal appendage single, attenuated, smooth, flexuous, unbranched, excrcent, 18–33 μm (av. = 25 ± 1.8 μm) long; mean conidium length/width ratio = 5(−6):1.

Culture characteristics: Colonies on MEA flat, appressed to fluffy, folded, edge sinuate, buff (19”f) to sinnamon (13-15”i), reaching 45–50 mm diam after 14 d at 21 °C; on PDA flat with entire edge, fluffy, buff (19”f) to vinaceous buff (15-17”d), reaching 55–61 mm diam after 14 d at 21 °C.

Specimens examined: Iran: Kurdistan Province. Kamyaran, Bovana, *Vitis vinifera*, 18 Sep. 2012, E. Khaleedi (IRAN 2305C).

Discussion

In an extensive study on grapevine trunk diseases (GTDs) of vineyards showing esca, petri, dieback and decline symptoms in Kurdistan Province we collected 233 fungal isolates including 30 *Pestalotia*-like isolates. Based on morphology and sequences data (LSU, ITS, TEF-1α and TUB2) 24 fungal species belong to 20 genera including well-known genera associated with grapevine trunk diseases such as *Botryosphaeria*, *Diplodia*, *Neoscytalidium*, *Phaeoacremonium* and *Phaeomoniella* were identified. *Botryosphaeraceae* (21.75%), *Alternaria* (17.95%), *Sporocadaceae* (12.9%) and *Phaeoacremonium* (12.85%) species were the most prevalent fungi isolated in this study. *Botryosphaeria dothidea* (11.55%). *Alternaria malorum* (11.55%), *Phaeoacremonium aleophilum* (9.9%) and *Acremonium sclerotigenum* (8.55%) were the most frequent identified species.

All 24 characterized species are new fungal records in Kurdistan Province, Iran. *Clonostachys rosea* and *Neoscytalidium novaehollandiae* are reported as new records in association with grapevine in Iran.

Most of the identified species have previously been reported on grapevine, but *Acremonium sclerotigenum*, *Alternaria chlamydosporigena*, *Ascochyta herbicola* and *Paecilomyces formosus* are reported as new records on grapevine in the world.

In a multigene phylogeny based on LSU, ITS, TEF-1α and TUB2 sequences of representative species of all *Sporocadaceae* genera our representative pestalotioid isolates resided in four different genera *Seimatosporium*, *Sporocadus*, *Truncatella* and *Xenoseimatosporium*. To recognize our isolates at the species level we performed another multigene phylogeny based on LSU, ITS, TEF-1α and TUB2 sequences data of ex-type or authentic strains of all species belong to these four genera. Phylogenetic analyses showed that two isolates CJA35 and CJA82 are belong to *Sei. vitifusiform* and *Sei. macrospermum* species, respectively. The remaining eight isolates placed in three genera *Seimatosporium*, *Sporocadus* and *Xenoseimatosporium* and identified as new species namely, *Seimatosporium marivanicum*, *Sporocadus kurdistanicus* and *Xenoseimatosporium kurdistanicum*. Two isolates IRAN 2300C and IRAN 2310C constituted a distinct and well supported clade (BI-PP/ML-BS = 1/100) in *Seimatosporium* named as *Sei. marivanicum*. So far, 10 *Seimatosporium* species have reported on grapevine namely, *Seimatosporium botan*, *Seimatosporium hysterioides*, *Seimatosporium licaniae*, *Seimatosporium lichenicolus* (= *Sporocadus lichenicolus*), *Seimatosporium luteosporum*, *Seimatosporium macrosporum*, *Seimatosporium parasiticum*, *Seimatosporium vitifusiforme*, *Seimatosporium vitis* and *Seimatosporium vitis-viniferae*. Phylogenetically *Sei. marivanicum* is clearly distinct from all *Seimatosporium* species, but *Sei. luteosporum* and *Sei. vitifusiform* are the two closest species. Morphologically if we use conidial characteristics *Sei. marivanicum* can be distinguish from all other *Seimatosporium* species reported on grapevine. *Sei. marivanicum* is separated from *Sei. luteosporum* by having larger conidia. Although conidial morphology of *Sei. marivanicum* is more similar with *Sei. vitifusiform*, but number of eusepta and longer appendages can be used to differentiate these two species.
Four isolates IRAN 2313C, IRAN 2354C, IRAN 2355C and IRAN 2356C were grouped together in a separate and highly supported clade in both Bayesian (PP = 1) and RAxML (BS = 99) analyses within *Sporocadus* as a new species *Sporocadus kurdistanicus*. This species is the fourth *Sporocadus* species reported from grapevine along with *Spo. lichenicola*, *Spo. rhododendri* and *Spo. rosigena*. Phylogenetically *Spo. kurdistanicus* is well separated from *Spo. lichenicola* and *Spo. rosigena*. No sequences were available for *Spo. rhododendri* but it is possible to distinguish these two species by having larger conidia (18–24 × 6.5–9.5 µm vs. 15.5–20 × 6.5–8.5 µm) in *Spo. kurdistanicus*.

Phylogenetic analyses in this study revealed that *Sei. pseudocornii*, *Sei. italicum* and *Sei. cornii* are belong to *Sporocadus*, we therefore transferred them to *Sporocadu* as new combinations. Although asexual morph of *Sei. italicum* has not seen, as in most of *Sporocadus* species both apical and basal appendages absent in conidia of *S. cornii* and *S. pseudocornii* indicates their taxonomic position in *Sporocadus*.

Liu et al. (2019) used isolate CBS 466.96 as a representative isolate for *Spo. rosigena* despite three and two differences with the holotype (MFLU 16–0239) in LSU and ITS sequence data, respectively. In our analyses the holotype (MFLU 16–0239) and CBS 466.96 placed in two separate clades and thus isolate CBS 466.96 represents a distinct clade and can be introduced as a new *Sporocadus* species.

The type specimens of *Sei. pseudoraosae* (MFLUCC 14–0468), *Sei. pseudorusarum* (MFLUCC 14–0466) and *Sei. rosigenum* (MFLUCC 15–0563) were placed along with strain CBS 113832 in a clade named as *Sporocadus rosarum* by Liu et al. (2019). Since TEF-1α and TUB2 sequences are not available for *Sei. pseudorusarum* and *Sei. rosigenum* and only LSU is available for *Sei. pseudorosae* the identity of these species is not clear and we thus considered them as intraspecific variation in *Spo. rosarum* until these sequence data is available in the future studies.

Xenoseimatosporium kurdistanicum another new species we introduced here is the second species of *Xenoseimatosporium* a new pestalotioid genus recently introduced by Liu et al. (2019). These two species are easily distinguishable morphologically by conidial dimensions and appendages length as mentioned in the notes under *Xen. kurdistanicum*.

In a preliminary field experiment on pathogenicity of some identified species on two grapevine cultivars (Bidaneh Sed and Rasha), *N. novaehollandiae*, *B. dothidea* and *Ph. aleophilum* were the most virulent pathogenic species. Four pestalotioid species characterized in this study using an isolate from each species were nonpathogenic, but it is necessary to examine their pathogenicity with more isolates in greenhouse and field conditions individually and in combination with other species isolated from grapevine in this study.

Declarations

Acknowledgements

We thank Mr. Alireza Javadi for his assistance in preparation of holotypes and recording growth rate of new species introduced here. LSU, EF1-α and TUB2 sequences of new species described in this study were amplified and sequenced in Westerdijk Fungal Biodiversity Institute (Utrecht, the Netherlands) during Jafar Abdollahzadeh sabbatical leave in 2018.

Adherence to national and international regulations

All material for this study was collected in Iran in 2012, thus before the implementation of the Nagoya Protocol to the Convention on Biological Diversity.

Author contributions

JAb designed the project. JAb, EK and JNM collected the samples, photography and phylogenetic analyses. EK and JNM performed fungal isolation and all experiments. All authors contributed to the preparation of the manuscript.

Funding

This research was supported by the University of Kurdistan and Kurdistan Provincial Office under project 65/6/64197/2011.

Availability of data and material

All data generated or analyzed during this study are included in this published article. Requests for materials should be addressed to JAb.
Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.

References

Abdollahzadeh J, Goltapeh EM, Javadi A, Shams-Bakhsh M, Zare R, Phillips AJL (2009) *Barriopsis iraniana* and *Phaeobotryon cupressi*: two new species of the *Botryosphaeriaceae* from trees in Iran. Persoonia 23:1–8.

Abed Ashtiani F, Narmani A, Arzanlou M (2019) Analysis of *Kalmusia variispora* associated with grapevine decline in Iran. European Journal of Plant Pathology 154:787–799.

Armengol J, Vicent A, Tomé L, García-Figueres F, García-Jiménez J (2001) Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathologia Mediterranea 40:S325–S329.

Barber PA, Crous PW, Groenewald JZ, Pascoe IG, Keane P (2011) Reassessing *Vermisporium* (*Amphisphaeriaceae*), a genus of foliar pathogens of eucalypts. Persoonia 27:90–118.

Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C, Fontaine F (2013) Grapevine trunk diseases: complex and still poorly understood. Plant Pathology 62:243–265.

Bonthond G, Sandoval-Denis M, Groenewald JZ, Crous PW (2018) *Seiridium* (*Sporocadaceae*): an important genus of plant pathogenic fungi. Persoonia 40:96–118.

Cimmino A, Bahmani Z, Masi M, Di Leccce R, Amini J, Abdollahzadeh J, Tuzi A, Evidente A (2020) Massarilactones D and H, phytotoxins produced by *Kalmusia variispora*, associated with grapevine trunk diseases (GTDs) in Iran. Natural Product Research. doi:10.1080/14786419.2020.1791116.

Crous PW, Carris LM, Giraldo A, Groenewald JZ, Hawksworth DL, Hemández-Restrepo M, Jaklitsch WM, Lebrun MH, Schumacher RK, Stielow JB, Van der Linde EJ, Vilcánez J, Voglmayr H, Wood AR (2015) The genera of fungi-fixing the application of the type species of generic names—G 2: *Allantophomopsis*, *Latorua*, *Macrodiplodiopsis*, *Macrohilum*, *Milospium*, *Protostegia*, *Pyricularia*, *Robillarda*, *Rotula*, *Septoriella*, *Torula*, and *Wojnowicia*. IMA Fungus 6:163–198.

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50:19–22.

Crous PW, Liu F, Cai L, Barber PA, Thangavel R, Summerell BA, Wingfield MJ, Edwards J, Carnegie AJ, Groenewald JZ (2018) *Allelochaeta* (*Sporocadaceae*): pigmentation lost and gained. Fungal Systematics and Evolution 2:273–309.

De Hoog GS, Guarro J, Gene J, Figueras MJ (2000) Atlas of clinical fungi. Centraalbureau voor Schimmel Cultures.

Dubos B, Larignon P (1988) Esca and black measles. In: Pearson RC, Goheen AC (eds) Compendium of grape diseases. American Phytopathological Society, St. Paul, pp 34–35.
Farr DF, Rossman AY (2020) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/. Accessed Dec 2020.

Fischer M, Kassemeyer HH (2003) Fungi associated with esca disease of grapevine in Germany. Vitis 42:109–116.

Fischer M, Peighami Ashnaei S (2019) Grapevine, esca complex, and environment: the disease triangle. Phytopathologia Mediterranea 58:17–37.

Fontaine F, Pinto C, Vallet J, Clement C, Gomes AC, Spagnolo A (2016) The effects of grapevine trunk diseases (GTDs) on vine physiology. European Journal of Plant Pathology 144:707–721.

Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61:1323–1330.

Gramaje D, Mostert L, Groenewald JZ, Crous PW (2015) Phaeoacremonium: from esca disease to phaeohyphomycosis. Fungal Biology 119:759–783.

Gramaje D, Muñoz RM, Lerma ML, Garcia-Jimenez J, Armengol J (2009) Fungal grapevine trunk pathogens associated with Syrah decline in Spain. Phytopathologia Mediterranea 48:396–402.

Graniti A, Surico G, Mugnai L (2000) Esca of grapevine: a disease complex or a complex of diseases? Phytopathologia Mediterranea 39:16–20.

Hall T (2004) BioEdit version 7.0.0. Department of Microbiology, North Carolina State University.

Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755.

Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Chethana KWT, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S, Huang SK, Jayasiri SC, Jayawardena RS, Karunarthana A, Konta S, Kušan I, Lee H, Li J, Lin CG, Liu NG, Lu YZ, Luo ZL, Manawisinghe IS, Mapook A, Perera RH, Phookamsak R, Phukhampak C, Siedlecki I, Soares AM, Tennakoon DS, Tian Q, Tiptoomma S, Wanasinghe DN, Xiao YP, Yang J, Zeng XY, Abdel-Aziz FA, Li WJ, Senanayeke IC, Shang QJ, Daranagama DA, de Silva NL, Thambugala KM, Abdel-Wahab MA, Bahkali AH, Berbee ML, Boonmeem S, Bhat DJ, Bulgakov TS, Buyck B, Camporesi E, Castaña-Ruiz RF, Chomnunti P, Doiilom M, Dovana F, Gibertoni TB, Jadan M, Jeewon R, Gareth Jones EB, Kang JC, Karunarthana SC, Lim YW, Liu JK, Liu ZY, Piautz Jr. HL, Lumyong S, Maharachchikumbura SSN, Matočec N, McKenzie EHC, Mešić A, Miller D, Pawłowska J, Pereira OL, Promputtha I, Romero Al, Ryvarden L, Su HY, Suetrong S, Tkaličić Z, Vizzini A, Wen TC, Wisitrassameewong K, Wrzosek M, Xu JC, Zhao Q, Zhao RL, Mortimer, PE (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87:1–235.

Jaklitsch WM, Gardiennet A, Voglmayr H (2016) Resolution of morphology based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 37:82–105.

Jeewon R, Edward CY, Hyde KD (2003) Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences. Mycological Research 107:1392–1402.

Jeewon R, Liew EC, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Molecular Phylogenetics and Evolution 25:378–392.

Larignon P, Dubos B (1997) Fungi associated with esca disease in grapevine. European Journal of Plant Pathology 103:147–57.

Lee S, Crous PW, Wingfield MJ (2006) Pestalotioid fungi from Restionaceae in the Cape Floral Kingdom. Studies in Mycology 55:175–187.

Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, Alvarado P, Alves-Silva G, Ammirati JF, Aiyawansha HA, Baghela A, Bahkali AH, Beug M, Bhat DJ, Bojantchev D, Boonpratuang T, Bulgakov TS, Camporesi E, Boro MC, Ceska O, Chakraborty D, Chen JJ, Chethana KWT, Chomnunti P, Consiglio G, Cui BK, Dai DQ, Dai YC, Daranagama DA, Das K, Dayarathne MC, Crop ED, de Oliveira RJV, de Souza CAF, de Souza JJ, Dentinger BTM, Dissanayake AJ, Doiilom M, Drechsler-Santos ER, Ghabod-Nejhad M, Gilmore SP, Góes-Neto A, Gorczak M, Hajić Jerman CH, Hapuarachchi KK, Hashimoto A, He MQ, Henske JK, Hirayama K, Iribarren MJ, Jayasiri SC, Jayawardena RS,
Jeon SJ, Jerónimo GS, Jesus AL, Gareth Jones EB, Kang JC, Karunarathna SC, Kirk PM, Konta S, Kuhnert E, Langer E, Lee HS, Lee HB, Li WJ, Li XH, Limatainen K, Lima DX, Liu CG, Liu JK, Liu XZ, Liu ZY, Luangsara JJ, Lücking R, Lumbsch HT, Lumyong S, Leaño EM, Marano AV, Matsumura M, McKenzie EHC, Mongkolsamrit S, Mortimer PE, Nguyen TTT, Niskanen T, Norphanphoun C, O’Malley MA, Parmen S, Pawlowska J, Perera RH, Phookamsak R, Phukhamsakda C, Pires-Zottarelli CLA, Raspé O, Reck MA, Rocha SCO, de Santiago ALCM, Senanayake I, Setti L, Shang QJ, Singh SK, Sir EB, Solomon KV, Song J, Sirikitikulchai P, Stadler M, Suetrong S, Takahashi H, Takahashi T, Tanaka K, Tang LP, Thambugala KM (2016) Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 78:1–237.

Liu F, Bonthond G, Groenewald JZ, Cai L, Crous PW (2019) Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Studies in Mycology 92:287–415.

Maharachchikumbura SSN, Larignon P, Hyde KD, Al-Sadi AM, Liu ZY (2016) Characterization of Neopestalotiopsis, Pestalotiopsis and Truncatella species associated with grapevine trunk diseases in France. Phytopathologia Mediterranea 55:380–390.

Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: Proceedings of the 1st conference of the extreme science and engineering discovery environment: Bridging from the extreme to the campus and beyond. Association for Computing Machinery, USA:1–8.

Mohammadi H, Banihashemi Z, Gramaje D, Armengol J (2013) Fungal pathogens associated with grapevine trunk diseases in Iran. Journal of Agricultural Science and Technology 15:137–150.

Mostert L, Halleen F, Fourie P, Crous PW (2006) A review of Phaeoacremonium species involved in petri disease and esca of grapevines. Phytopathologia Mediterranea 45:S12–S29.

Mugnai L, Graniti A, Surico G (1999) Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Disease 83:404–418.

Nag Raj TR (1993) Coelomycetous anamorphs with appendage-bearing conidia. Mycologue publications, Canada.

Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden.

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7:103–116.

O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95:2044–2049.

Pintos C, Redondo V, Costas D, Aguin O, Mansilla P (2018) Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. Phytopathologia Mediterranea 57:407–424.

Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1:17–20

Rayner RW (1970) A mycological colour chart. CMI and British Mycological Society 34 p.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.

Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD, Gareth Jones EB, McKenzie EHC, Dai DQ, Daranagama DA, Dayarathne MC, Goonasekara ID, Konta S, Li WJ, Shang QJ, Stadler M, Wijayawardene NN, Xiao YP, Norphanphoun C, Li Q, Liu XZ, Bahkali AH, Kang JC, Wang Y, Wen TC, Wendt L, Xu JC, Camporesi E (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Diversity 73:73–144

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.

Steel CC, Greer LA, Savocchia S (2007) Studies on Colletotrichum acutatum and Greeneria uvicola: two fungi associated with bunch rot of grapes in sub-tropical Australia. Australian Journal of Grape and Wine Research 13:23–29.
Surico G (2009) Towards a redefinition of the diseases within the esca complex of grapevine. Phytopathologia Mediterranea 48:5–10.

Surico G, Mugnai L, Marchi G (2006) Older and more recent observations on esca: a critical review. Phytopathologia Mediterranea 45:68–86.

Tanaka K, Endo M, Hirayama K, Okane I, Hosoya T, Sato T (2011) Phylogeny of Discosia and Seimatosporium, and introduction of Adisciso and Immersidiscosia genera nova. Persoonia 26:85–98.

Trouillas FP, Úrbez-Torres JR, Gubler WD (2010) Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102:319–336

Úrbez-Torres JR, Adams P, Kamas J, Gubler WD (2009) Identification, incidence, and pathogenicity of fungal species associated with grapevine dieback in Texas. American Journal of Enology and Viticulture 60:497–507.

Úrbez-Torres JR, Haag P, Bowen P, O’Gorman DT (2014) Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with esca and Petri diseases of grapevine. Plant Disease 98:469–482.

Úrbez-Torres JR, Peduto F, Smith RJ, Gubler WD (2013) Phomopsis dieback: a grapevine trunk disease caused by Phomopsis viticola in California. Plant Disease 97:1571–1579.

Úrbez-Torres JR, Peduto F, Striegler RK, Urrea-Romero KE, Rupe JC, Cartwright RD, Gubler WD (2012) Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal Diversity 52:169–189.

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238–4246.

Watanabe K, Motohashi K, Ono Y (2010) Description of Pestalotiopsis pallidotheae: a new species from Japan. Mycoscience 51:182–188.

White CL, Halleen F, Fischer M, Mostert L (2011) Characterization of the fungi associated with esca diseased grapevines in South Africa. Phytopathologia Mediterranea 50:S204–S223.

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications (Innes MA, Gelfand DH, Sninsky JJ, et al., eds). Academic Press, USA 315–322.

Wijayawardene NN, Hyde KD, Wanasinghe DN, Papizadeh M, Goonasekara ID, Camporesi E, Bhat DJ, McKenzie EH, Phillips AJL, Diederich P, Tanaka K, Li WJ, Tangthirasunun N, Phookamsak R, Dai DQ, Dissanayake AJ, Weerakoon G, Maharachchikumbura SSN, Hashimoto A, Matsumura M, Bahkali AH, Wang Y (2016) Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77:1–316.