POLYNOMIAL TREewidth forces
A LARGE GRID-LIKE-MINOR

BRUCE A. REED AND DAVID R. WOOD

Abstract. Robertson and Seymour proved that every graph with sufficiently large treewidth contains a large grid minor. However, the best known bound on the treewidth that forces an $\ell \times \ell$ grid minor is exponential in ℓ. It is unknown whether polynomial treewidth suffices. We prove a result in this direction. A grid-like-minor of order ℓ in a graph G is a set of paths in G whose intersection graph is bipartite and contains a K_ℓ-minor. For example, the rows and columns of the $\ell \times \ell$ grid are a grid-like-minor of order $\ell + 1$. We prove that polynomial treewidth forces a large grid-like-minor. In particular, every graph with treewidth at least $c\ell^4\sqrt{\log \ell}$ has a grid-like-minor of order ℓ.

As an application of this result, we prove that the cartesian product $G \Box K_2$ contains a K_ℓ-minor whenever G has treewidth at least $c\ell^4\sqrt{\log \ell}$.

1. Introduction

A central theorem in Robertson and Seymour’s theory of graph minors states that the grid is a canonical witness for a graph to have large treewidth, in the sense that the $\ell \times \ell$ grid has treewidth ℓ, and every graph with sufficiently large treewidth contains an $\ell \times \ell$ grid minor [13]. See [7, 11, 12] for alternative proofs. The following theorem is the best-known explicit bound. See [4, 5] for better bounds under additional assumptions.

Theorem 1.1 (Robertson, Seymour, and Thomas [12]). Every graph with treewidth at least $20^{2\ell^5}$ contains an $\ell \times \ell$ grid minor.

Robertson et al. [12] also proved that certain random graphs have treewidth proportional to $\ell^2\log \ell$, yet do not contain an $\ell \times \ell$ grid minor. This is the best known lower bound on the function in Theorem 1.1. Thus it is open whether polynomial treewidth forces a large grid minor. This question is not only of theoretic interest—for example, it has direct bearing on certain algorithmic questions [3]. In this paper we prove that polynomial treewidth forces a large ‘grid-like-minor’.

Date: September 17, 2008.

MSC Classification: graph minors 05C83.
A grid-like-minor of order \(\ell \) in a graph \(G \) is a set \(\mathcal{P} \) of paths in \(G \), such that the intersection graph of \(\mathcal{P} \) is bipartite and contains a \(K_{\ell} \)-minor. Observe that the intersection graph of the rows and columns of the \(\ell \times \ell \) grid is the complete bipartite graph \(K_{\ell, \ell} \), which contains a \(K_{\ell+1} \)-minor (formed by contracting a matching of \(\ell - 1 \) edges). Hence, the \(\ell \times \ell \) grid contains a grid-like-minor of order \(\ell + 1 \). The following is our main result.

Theorem 1.2. Every graph with treewidth at least \(c\ell^{4} \sqrt{\log \ell} \) contains a grid-like-minor of order \(\ell \), for some constant \(c \). Conversely, every graph that contains a grid-like-minor of order \(\ell \) has treewidth at least \(\lceil \frac{\ell}{2} \rceil - 1 \).

Theorem 1.2 proves that grid-like-minors serve as a canonical witness for a graph to have large treewidth, just like grid minors. The advantage of grid-like-minors is that a polynomial bound on treewidth suffices. The disadvantage of grid-like-minors is that they are a broader structure than grid minors (but not as broad as brambles; see Section 2).

Theorem 1.2 has an interesting corollary concerning the cartesian product \(G \square K_2 \). This graph consists of two copies of \(G \) with an edge between corresponding vertices in the two copies. Motivated by Hadwiger’s Conjecture for cartesian products, the second author [17] showed that the maximum order of a complete minor in \(G \square K_2 \) is tied to the treewidth of \(G \). In particular, if \(G \) has treewidth at most \(\ell \), then \(G \square K_2 \) has treewidth at most \(2\ell + 1 \) and thus contains no \(K_{2\ell+3} \)-minor. Conversely, if \(G \) has treewidth at least \(2^{4\ell^4} \), then \(G \square K_2 \) contains a \(K_{\ell} \)-minor. The proof of the latter result is based on the version of Theorem 1.1 due to Diestel, Jensen, Gorbunov, and Thomassen [7]. The following theorem is a significant improvement.

Theorem 1.3. If a graph \(G \) has treewidth at least \(c\ell^{4} \sqrt{\log \ell} \), then \(G \square K_2 \) contains a \(K_{\ell} \)-minor, for some constant \(c \).

2. Background

All graphs considered in this paper are undirected, simple, and finite. For undefined terminology, see [6]. A graph \(H \) is a minor of a graph \(G \) if a graph isomorphic to \(H \) can be obtained from a subgraph of \(G \) by contracting edges. A graph \(G \) is \(d \)-degenerate if every subgraph of \(G \) has a vertex of degree at most \(d \). Mader [10] proved that every graph with no \(K_{\ell} \)-minor is \(2^{\ell-2} \)-degenerate. Let \(d(\ell) \) be the minimum integer such that every graph with no \(K_{\ell} \)-minor is \(d(\ell) \)-degenerate. Kostochka [9] and Thomason [15, 16] independently proved that \(d(\ell) \in \Theta(\ell \sqrt{\log \ell}) \).
Theorem 2.1 (Kostochka [9], Thomason [15, 16]). Every graph with no K_ℓ-minor is $d(\ell)$-degenerate, where $d(\ell) \leq c\ell\sqrt{\log \ell}$ for some constant c.

Let G be a graph. Two subgraphs X and Y of G touch if $X \cap Y \neq \emptyset$ or there is an edge of G between X and Y. A bramble in G is a set of pairwise touching connected subgraphs. The subgraphs are called bramble elements. A set S of vertices in G is a hitting set of a bramble \mathcal{B} if S intersects every element of \mathcal{B}. The order of \mathcal{B} is the minimum size of a hitting set. The canonical example of a bramble of order ℓ is the set of crosses (union of a row and column) in the $\ell \times \ell$ grid. The following ‘Treewidth Duality Theorem’ shows the intimate relationship between treewidth and brambles.

Theorem 2.2 (Seymour and Thomas [14]). A graph G has treewidth at least ℓ if and only if G contains a bramble of order at least $\ell + 1$.

See [1] for an alternative proof of Theorem 2.2. In light of Theorem 2.2, Theorem 1.1 says that every bramble of large order contains a large grid minor, and Theorem 1.2 says that every bramble of polynomial order contains a large grid-like-minor.

3. Main Proofs

In this section we prove Theorems 1.2 and 1.3. Let $e := 2.718\ldots$ and $[n] := \{1, 2, \ldots, n\}$. The following lemma is by Birmelé, Bondy, and Reed [2]; we include the proof for completeness.

Lemma 3.1 (Birmelé et al. [2]). Let \mathcal{B} be a bramble in a graph G. Then G contains a path that intersects every element of \mathcal{B}.

Proof. Let P be a path in G that (1) intersects as many elements of \mathcal{B} as possible, and (2) is as short as possible. Let v be an endpoint of P. There is a bramble element X that only intersects P at v, as otherwise we could delete v from P. Suppose on the contrary that P does not intersect some bramble element Z. Since X and Z touch, there is a path Q starting at v through X to some vertex in Z, and $Q \cap P = \{v\}$. Thus $P \cup Q$ is a path that also hits Z. This contradiction proves that P intersects every element of \mathcal{B}. \blacksquare

Lemma 3.2. Let G be a graph containing a bramble \mathcal{B} of order at least $k\ell$ for some integers $k, \ell \geq 1$. Then G contains ℓ disjoint paths P_1, \ldots, P_ℓ, and for distinct $i, j \in [\ell]$, G contains k disjoint paths between P_i and P_j.
Proof. By Lemma 3.1, there is a path $P = (v_1, \ldots, v_n)$ in G that intersects every element of B. For $1 \leq i \leq j \leq n$, let $P(i,j)$ be the sub-path of P induced by $\{v_i, \ldots, v_j\}$. Let t_1 be the minimum integer such that the sub-bramble

$$B_1 := \{X \in B : X \cap P(1,t_1) \neq \emptyset\}$$

has order k. Now let t_2 be the minimum integer such that the sub-bramble

$$B_2 := \{X \in B : X \cap P(1,t_1 + 1,t_2) \neq \emptyset, X \cap P(1,t_1) = \emptyset\}$$

has order k. Continuing in this way, since B has order at least $k\ell$, we obtain integers $t_1 < t_2 < \cdots < t_{\ell} \leq n$, such that for each $i \in [\ell]$, the sub-bramble

$$B_i := \{X \in B : X \cap P(t_{i-1} + 1,t_i) \neq \emptyset, X \cap P(1,t_{i-1}) = \emptyset\}$$

has order k, where $t_0 := 0$. Let $P_i := P(t_{i-1} + 1,t_i)$ for $i \in [\ell]$. Thus P_1, \ldots, P_{ℓ} are disjoint paths in G.

Suppose that there is a set $S \subseteq V(G)$ separating some distinct pair of paths P_i and P_j, where $|S| \leq k - 1$. Thus S is not a hitting set of B_i, since B_i has order k. Hence some element $X \in B_i$ does not intersect S. Similarly, some element $Y \in B_j$ does not intersect S. Thus S separates X from Y, and hence X and Y do not touch. This contradiction proves that every set of vertices separating P_i and P_j has at least k vertices. By Menger’s Theorem, there are k disjoint paths between P_i and P_j, as desired. \qed

We now prove the main result.

Proof of the first part of Theorem 1.2. Let $k := \lceil 2e(2\ell^3 - 3) d(\ell) \rceil$. Let G be a graph with treewidth at least $c\ell^4 \log \ell$, which is at least $k\ell - 1$ for an appropriate value of c. By Theorem 2.2, G has a bramble of order at least $k\ell$. By Lemma 3.2, G contains ℓ disjoint paths P_1, \ldots, P_{ℓ}, and for distinct $i,j \in [\ell]$, G contains a set $Q_{i,j}$ of k disjoint paths between P_i and P_j.

For distinct $i,j \in [\ell]$ and distinct $a,b \in [\ell]$ with $\{i,j\} \neq \{a,b\}$, let $H_{i,j,a,b}$ be the intersection graph of $Q_{i,j} \cup Q_{a,b}$. Since $H_{i,j,a,b}$ is bipartite, if K_ℓ is a minor of $H_{i,j,a,b}$, then $Q_{i,j} \cup Q_{a,b}$ is a grid-like-minor of order ℓ. Now assume that K_ℓ is not a minor of $H_{i,j,a,b}$. By Theorem 2.1, $H_{i,j,a,b}$ is $d(\ell)$-degenerate.

Let H be the intersection graph of $\cup\{Q_{i,j} : 1 \leq i < j \leq \ell\}$; that is, H is the union of the $H_{i,j,a,b}$. Then H is $\binom{\ell}{2}$-colourable, where each colour class is some $Q_{i,j}$. Each colour class of H has k vertices, and each pair of colour classes in H induce a $d(\ell)$-degenerate subgraph. By Lemma 4.2 (in the following section) with $n = k$ and $r = \binom{\ell}{2}$ and $d = d(\ell)$, H has an independent set with one vertex
from each colour class. That is, in each set \(Q_{i,j} \) there is one path \(Q_{i,j} \) such that \(Q_{i,j} \cap Q_{a,b} = \emptyset \) for distinct pairs \(i, j \) and \(a, b \). Consider the set of paths

\[
\mathcal{P} := \{ P_i : i \in [\ell] \} \cup \{ Q_{i,j} : 1 \leq i < j \leq \ell \}.
\]

The intersection graph of \(\mathcal{P} \) is the 1-subdivision of \(K_\ell \), which is bipartite and contains a \(K_\ell \)-minor. Therefore \(\mathcal{P} \) is a grid-like-minor of order \(\ell \) in \(G \).

The next lemma with \(r = 2 \) implies that if a graph \(G \) contains a grid-like-minor of order \(\ell \), then the treewidth of \(G \) is at least \(\left\lceil \frac{\ell}{2} \right\rceil - 1 \), which is the second part of Theorem 1.2.

Lemma 3.3. Let \(H \) be the intersection graph of a set \(\mathcal{X} \) of connected subgraphs in a graph \(G \). If \(H \) contains a \(K_\ell \)-minor, and \(H \) contains no \(K_{r+1} \)-subgraph, then the treewidth of \(G \) is at least \(\left\lceil \frac{\ell}{r} \right\rceil - 1 \).

Proof. Let \(H_1, \ldots, H_\ell \) be the branch sets of a \(K_\ell \)-minor in \(H \). Each \(H_i \) corresponds to a subset \(\mathcal{X}_i \subseteq \mathcal{X} \), such that \(\mathcal{X}_i \cap \mathcal{X}_j = \emptyset \) for distinct \(i, j \in [\ell] \). Let \(G_i \) be the subgraph of \(G \) formed by the union of the subgraphs in \(\mathcal{X}_i \). Since \(H_i \) is connected and each subgraph in \(\mathcal{X}_i \) is connected, \(G_i \) is connected. For distinct \(i, j \in [\ell] \), some vertex in \(H_i \) is adjacent to some vertex in \(H_j \). That is, some subgraph in \(\mathcal{X}_i \) intersects some subgraph in \(\mathcal{X}_j \). Hence \(G_i \) and \(G_j \) share a vertex in common, and \(\mathcal{B} := \{ G_1, \ldots, G_\ell \} \) is a bramble in \(G \). Since \(H \) has no \(K_{r+1} \)-subgraph, every vertex of \(G \) is in at most \(r \) bramble elements of \(\mathcal{B} \). Thus every hitting set of \(\mathcal{B} \) has at least \(\left\lceil \frac{\ell}{r} \right\rceil \) vertices. Thus \(\mathcal{B} \) has order at least \(\left\lceil \frac{\ell}{r} \right\rceil \). By Theorem 2.2, \(G \) has treewidth at least \(\left\lceil \frac{\ell}{2} \right\rceil - 1 \).

Theorem 1.3 follows from Theorem 1.2 and the next lemma.

Lemma 3.4. Let \(\mathcal{P} \) be a grid-like-minor in a graph \(G \). Then the intersection graph \(H \) of \(\mathcal{P} \) is a minor of \(G \square K_2 \).

Proof. Let \(\mathcal{A} \cup \mathcal{B} \) be a bipartition of \(V(H) \). If \(XY \in E(H) \) for some \(X, Y \in \mathcal{P} \), then \(X \in \mathcal{A} \) and \(Y \in \mathcal{B} \), and some vertex \(v \) of \(G \) is in \(X \cap Y \). Thus in \(G \square K_2 \), the copy of \(v \) in the first copy of \(G \) is adjacent to the copy of \(v \) in the second copy of \(G \). Thus \(H \) is obtained by contracting each path in \(\mathcal{A} \) in the first copy of \(G \), and by contracting each path in \(\mathcal{B} \) in the second copy of \(G \), as illustrated in Figure 1.

Note that Lemma 3.4 generalises as follows: If \(H \) is the intersection graph of a set of connected subgraphs of a graph \(G \), then \(H \) is a minor of \(G \square K_{\chi(H)} \).
4. Independent Sets in Coloured Graphs

The proof of Theorem 1.2 depends on the following sufficient condition for a coloured graph to have an independent set with one vertex from each colour class.

The proof is based on the Lovász Local Lemma.

Lemma 4.1 (Erdős and Lovász [8]). Let X be a set of events, such that each event in X has probability at most p and is mutually independent of all but D other events in X. If $ep(D + 1) \leq 1$ then with positive probability no event in X occurs.

Lemma 4.2. For some $r \geq 2$, let V_1, \ldots, V_r be the colour classes in an r-colouring of a graph H. Suppose that $|V_i| \geq n := 2e(2r - 3)d$ for all $i \in [r]$, and $H[V_i \cup V_j]$ is d-degenerate for distinct $i, j \in [r]$. Then there exists an independent set $\{x_1, \ldots, x_r\}$ of H such that each $x_i \in V_i$.

Proof. Let $n := [2e(2r - 3)d]$. For each $i \in [r]$, we can assume that $|V_i| = n$ (since deleting vertices from V_i does not change the degeneracy assumption). For each $i \in [r]$, independently and randomly choose one vertex $x_i \in V_i$. Each vertex in V_i is chosen with probability $\frac{1}{n}$. For each edge vw of G, let X_{vw} be the event that both v and w are chosen. The probability of X_{vw} equals $\frac{1}{n^2}$.

Consider an event X_{vw}, where $v \in V_i$ and $w \in V_j$. Observe that X_{vw} is mutually independent of every event X_{xy} where $\{x, y\} \cap (V_i \cup V_j) = \emptyset$. There are $2r - 3$ pairs of colour classes that include V_i or V_j. Between each pair of colour classes there are at most $2dn$ edges (since a d-degenerate graph with N vertices has at most...
Thus X_{vw} is mutually independent of all but at most $2dn(2r - 3) - 1$ other events.

By assumption, $e \cdot \frac{1}{n^2} \cdot 2dn(2r - 3) \leq 1$. Thus by Lemma 4.1 with positive probability no event X_{vw} occurs. Hence there exists x_1, \ldots, x_r such that no event X_{vw} occurs. That is, $\{x_1, \ldots, x_r\}$ is the desired independent set. \hfill \square

We now give an example that shows that the lower bound on $|V_i|$ in Lemma 4.2 is best possible up to a constant factor. Say V_1 has $d(r - 1)$ vertices. Partition V_1 into sets W_2, \ldots, W_r each of size d. Connect every vertex in W_i to every vertex in V_i by an edge. Each bichromatic subgraph (ignoring isolated vertices) is the complete bipartite graph $K_{d,n}$ (for some n), which is d-degenerate. However, since every vertex in V_1 dominates some colour class, no independent set has one vertex from each colour class.

It is interesting to determine the best possible lower bound on the size of each colour class in Lemma 4.2. It is possible that $|V_i| \geq d(r - 1) + c$ suffices. This is challenging even for $d = 1$. It would also be of interest to find an algorithmic proof of Lemma 4.2. It is easy to see that if each colour class has at least $r(r - 1)d + 1$ vertices, then a minimum-degree-greedy algorithm works.

Finally, note that Lemma 4.2 is generalised as follows.

Lemma 4.3. Let V_1, \ldots, V_r be the colour classes in an r-colouring of a graph H. For $i \in [r]$, let $n_i := |V_i|$, and let m_i be the number of edges with one endpoint in V_i. Suppose that $n_i \geq 2et$ and $m_i \leq tn_i$ for some $t > 0$ and for all $i \in [r]$. Then there exists an independent set $\{x_1, \ldots, x_r\}$ of H such that each $x_i \in V_i$.

Proof. Let $n := \lceil 2et \rceil$. Suppose that $n_i > n$ for some $i \in [r]$. Some vertex $v \in V_i$ has degree at least $\frac{m_i}{n_i}$. Thus $\frac{m_i - \deg(v)}{n_i - 1} \leq \frac{m_i}{n_i} \leq t$. Hence $H - v$ satisfies the assumptions. By induction, $H - v$ contains the desired independent set. Now assume that $n_i = n$ for all $i \in [r]$.

For each $i \in [r]$, independently and randomly choose one vertex $x_i \in V_i$. Each vertex in V_i is chosen with probability $\frac{1}{n}$. Consider an edge vw, where $v \in V_i$ and $w \in V_j$. Let X_{vw} be the event that both v and w are chosen. Thus X_{vw} has probability $p := \frac{1}{n^2}$. Observe that X_{vw} is mutually independent of every event X_{xy} where $x \notin V_i \cup V_j$ and $y \notin V_i \cup V_j$. Thus X_{vw} is mutually independent of all but at most $D := d_i + m_j - 1$ other events.

Now $2em_i \leq 2etn \leq n^2$ and $2em_i \leq 2etn \leq n^2$. Thus $e(m_i + m_j) \leq n^2$. That is, $ep(D + 1) \leq 1$. By Lemma 4.1 with positive probability no event X_{vw} occurs. Hence there exists x_1, \ldots, x_r such that no event X_{vw} occurs. That is, $\{x_1, \ldots, x_r\}$ is the desired independent set. \hfill \square
References

[1] Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-decompositions. Combin. Probab. Comput., 11(6):541–547, 2002.
[2] Etienne Birmelé, J. Adrian Bondy, and Bruce A. Reed. Brambles, prisms and grids. In Graph theory in Paris, Trends Math., pp. 37–44. Birkhäuser, 2007.
[3] Erik D. Demaine and MohammadTaghi Hajiaghayi. Quickly deciding minor-closed parameters in general graphs. European J. Combin., 28(1):311–314, 2007.
[4] Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth with applications through bidimensionality. Combinatorica, 28(1):19–36, 2008.
[5] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic graph minor theory: improved grid minor bounds and Wagner’s contraction. In 17th Annual Int’l Symp. on Algorithms and Computation (ISAAC ’06), Lecture Notes in Comput. Sci. 4288:3–15. Springer, 2006. Full version to appear in Algorithmica.
[6] Reinhard Diestel. Graph theory, vol. 173 of Graduate Texts in Mathematics. Springer, 2nd edn., 2000.
[7] Reinhard Diestel, Tommy R. Jensen, Konstantin Yu. Gorbunov, and Carsten Thomassen. Highly connected sets and the excluded grid theorem. J. Combin. Theory Ser. B, 75(1):61–73, 1999.
[8] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets, vol. 10 of Colloq. Math. Soc. János Bolyai, pp. 609–627. North-Holland, 1975.
[9] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307–316, 1984.
[10] Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann., 174:265–268, 1967.
[11] Bruce A. Reed. Tree width and tangles: a new connectivity measure and some applications. In Surveys in combinatorics, vol. 241 of London Math. Soc. Lecture Note Ser., pp. 87–162. Cambridge Univ. Press, 1997.
[12] Neil Robertson, Paul Seymour, and Robin Thomas. Quickly excluding a planar graph. J. Combin. Theory Ser. B, 62(2):323–348, 1994.
[13] Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B, 41(1):92–114, 1986.
[14] Paul D. Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width. *J. Combin. Theory Ser. B*, 58(1):22–33, 1993.

[15] Andrew Thomason. An extremal function for contractions of graphs. *Math. Proc. Cambridge Philos. Soc.*, 95(2):261–265, 1984.

[16] Andrew Thomason. The extremal function for complete minors. *J. Combin. Theory Ser. B*, 81(2):318–338, 2001.

[17] David R. Wood. Clique minors in cartesian products of graphs, 2008. arxiv.org/0711.1189

Canada Research Chair in Graph Theory
School of Computer Science
McGill University
Montréal, Canada
E-mail address: breed@cs.mcgill.ca

QEII Research Fellow
Department of Mathematics and Statistics
The University of Melbourne
Melbourne, Australia
E-mail address: D.Wood@ms.unimelb.edu.au