Abstract

Effort Estimation has always been a challenging task for the Project managers. Many researchers have tried to help them by creating different types of models. This has been already proved that none is successful for all types of projects and every type of environment. Analytic Hierarchy Process (AHP) has been identified as the tool that would help in Multi Criteria Decision Making. Researchers have identified that AHP can be used for the comparison of effort estimation of different models and techniques. But the problem with traditional AHP is its inability to deal with the imprecision and subjectivity in the pairwise comparison process. The motive of this paper is to propose Fuzzy Analytic Hierarchy Process, which can be used to rectify the subjectivity and imprecision of AHP and can be used for selecting the type of Model best suited for estimating the effort for a given problem type or environment. Instead of single crisp value, Fuzzy AHP uses a range of values to incorporate decision maker’s uncertainty. From this range, decision maker can select the value that reflects his confidence and also he can specify his attitude like optimistic, pessimistic or moderate. In this work, the comparison of AHP and Fuzzy AHP is concluded using a case study of selection of effort estimation model.
Researchers on software effort estimation have concluded that no practice for finding the effort and cost estimation of the software project is best. But different approaches have different success rates in different environments. The aim of this work is to examine the application of the Fuzzy Analytic Hierarchy Process (FAHP) method of multi-criteria decision-making for selecting the best model based on the company environment and type of the project. For doing the same DM has to select the best mode. The important consequences of the choice outcome may confer a level of uncertainty on the decision maker, in the form of doubt, procrastination etc. This is one reason for the utilization of FAHP, with its allowance for imprecision in the judgments made. Future work will be to work with the decisions, when DM does not want to make any comparison between any two criterion/alternatives and can leave that comparison matrix entry empty. Efforts can be made to implement other Multi Criteria Decision Making approaches, using Different Fuzzy Numbers and optimization of the weights of the MCDM.

7. REFERENCES

- K. Molokken and M. Jorgensen, “A review of surveys on software effort estimation” at ISESE’03, 2003.
- S. McConnell, “Rapid development: taming wild software schedules”, Microsoft Press 1996.
- F. J. Heemstra. "Software cost estimation", Information and software technology, Vol. 34, No. 10, 1992, pp. 627-639.
- C. Jeganathan, “Developing of fuzzy logic architecture to assess sustainability of the Forest Management” Master thesis, Netherland, 2003.
- Schank, R. 1982. Dynamic Memory: A theory of reminding and learning in computers and people. New York, NY: Cambridge University Press. 95-109.
- T. J. Sejnowski and C. R. Rosenberg, ’NETtalk: A parallel network that learns to read aloud”, Johns Hopkins University Department of Electrical Engineering and Computer Science Technical Report 86/01 (1986).
- Narendra and Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, 1:4-27, 1990.
- Hegazy T. and Moselhi, O. 1994. Analogy-based solution to markup estimation problem. ASCE Journal of Computing in Civil Engineering, 8(1): 72–87.
- Juan J. Cuadrado-Gallegoa, b, Pablo Rodríguez-Soriaa, Borja Martín-Herreraa, “Analogies and differences between Machine Learning and Expert based Software Project Effort Estimation”, 2010 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing.: 269-276.
- Martin Shepperd and Michelle Cartwright. Predicting with sparse data. IEEE Trans. Softw.Eng., 27(11):987–998, 2001.
- Roberto Meli. Human factors and analytical models in software estimation: An integration perspective. In Proceedings of the ESCOM-SCOPE 2000, pages 33–40, Munich, Germany, 2000. Shaker Publishing.
- T. Menzies, Z. Chen, J. Hihn, K. Lum, “Selecting Best practices for effort estimation, IEEE Transaction on Software Engineering, Vol 32, No 11. November 2006.
- Stam, A. and Silva, A. P. D. (1997)," Stochastic Judgments in the AHP: The Measurement of Rank Reversal Probabilities”. Decision Sciences, 28: 655–688.
Multi Criteria Decision Making Approach for Selecting Effort Estimation Model

- George Valiris, Panagiotis Chytas, Michael Glykas, (2005) "Making decisions using the balanced scorecard and the simple multi-attribute rating technique", Performance Measurement and Metrics, Vol. 6 Issue 3, pp.159 – 171
- Magne Jørgensen and Barry Boehm, “Viewpoints Software Development Effort Estimation: Formal models or Expert Judgment? ”, Software, IEEE 2009 Volume: 26 Issue: 2 PP 14 – 19
- K. Moløkken and M. Jørgensen, "Expert Estimation of Web-Development Projects: Are Software Professionals in Technical Roles More Optimistic Than Those in Non-Technical Roles?", Empirical Software Engineering, vol. 10, pp. 7-29, 2005.
- Chiou, H.K. and Tzeng, G.H. (2002), "Fuzzy Multicriteria decision making approach to analysis and evaluation of green engineering for industry", Environmental Management, 30(6): 816-830.
- F. Bolger and G. Wright, "Assessing the quality of expert judgment: Issues and Analysis," Decision Support Systems, vol. 11, pp. 1-24, 1994.
- Christopher Jarabek, "Expert Judgment in Software Effort Estimation", Non-peer Reviewed Writings Department of Computer Science University of Calgary
- M. Jørgensen, "A Review of Studies on Expert Estimation of Software Development Effort," The Journal of Systems and Software, vol. 70, pp. 37-60, 2004.
- B. W. Boehm, Software engineering economics, Englewood Cliffs, NJ: Prentice-Hall, 1981.
- L. H. Putnam, “A general empirical solution to the macro software sizing and estimating problem”, IEEE Transactions on Software Engineering, SE-4(4) pp 345-361, 1987.
- Wang, L., and T. Raz, “Analytic Hierarchy Process Based on Data Flow Problem,” Computers & Industrial Engineering, 20, 355-365, 1991.
- Sehra S.K., Sehra S.S., Kaur R., “A survey of techniques for software project effort estimation” International Conference on Wireless Networks & Embedded Systems (WECON-2009) held on 23-24 October, 2009 at Chitkara Institute of Engineering & Technology, Rajpura,(Punjab), pp. 207-210.
- Tanja Gruschke and Magne Jørgensen. Assessing uncertainty of software development effort estimates: The learning from outcome feedback. In METRICS ’05: Proceedings of the 11th IEEE International Software Metrics Symposium (METRICS’05), page 4, Washington, DC, USA, 2005. IEEE Computer Society
- Alaa Sheta, David Rine and Aladdin Ayesh, “[Development of Software Effort and Schedule Estimation Models Using Soft Computing Techniques”, Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). June 2008 pp. : 1283 – 1289
- J. W. Bailey and V. R. Basili, “A meta model for software development resource expenditure,” in Proceedings of the International Conference on Software Engineering, pp. 107–115, 1981.
- Hwang, C.L., Yoon, K., “Multiple Attributes Decision Making Methods and Applications”, Springer, Berlin Heidelberg, 1981
- G. C. Roper-Lowe and J. A. Sharp. The analytic hierarchy process and its application to an information technology decision. The Journal of the Operational Research Society, 41(1):49–59, 1990.
- T.L. Saaty. The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. McGraw-Hill, New york, 1980.
- Buckley, J.J. 1985. Fuzzy Hierarchical Analysis, Fuzzy Sets and Systems, Vol.17, 233-247
- L. Zadeh: Fuzzy sets, Information and Control, 8, 338-353, 1965
- Bozbura, F. T., Beskese, A., & Kahraman, C. (2007). Prioritization of human capital measurement indicators using fuzzy AHP. Expert Systems with Applications, 32(4), 1100-1112. doi:10.1016/j.eswa.2006.02.006
- Cheng, C. H., (1999), “Evaluating Weapon Systems Using Ranking Fuzzy Numbers,” Fuzzy Sets and Systems, 107, 25-35.
- Dubois, D. and H. Prade, (2000), Fundamentals of Fuzzy Sets-The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers

Index Terms

Computer Science
Software Engineering

Keywords
Effort Estimation Fuzzy Multiple Criteria Decision Making Expert Judgment Analytic Hierarchy Process.