Global Developmental Delay in a Mexican Patient With Megalencephalic Leukoencephalopathy With Subcortical Cysts

Cesar Misael Cerecedo Zapata,1 Rocio Adriana Villafuerte De la Cruz,1 Ana Maria Cortes Rubio,2 Mirelle Kramis Hollands,1 Ivonne Natalia Flores Estrada,1 and Maria Luz Arenas Sordo1,*

1Department of Genetics, National Rehabilitation Institute, Mexico City, Mexico
2Department of Imaging, National Rehabilitation Institute, Mexico City, Mexico
*Corresponding author: Maria Luz Arenas Sordo, Department of Genetics, National Rehabilitation Institute, Mexico City, Mexico. Tel: +52-5559991000, Fax: +52-5556455603, E-mail: avgk@unam.mx

Received: June 9, 2015; Revised: June 25, 2015; Accepted: July 2, 2015

Introduction: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a neurologic disorder characterized by macrocephaly within the first year of life and the delayed onset of motor function deterioration with ataxia and spasticity. Magnetic resonance imaging of the brain is diagnostic and shows diffusely abnormal, mildly swollen cerebral white matter and subcortical cysts. MLC exhibits an autosomal recessive mode of inheritance. Two genes have been associated with MLC. The first and most important gene is MLC1, the other gene involved is HEPACAM.

Case Presentation: We studied a Mexican patient with a compatible diagnosis of MLC. The patient exhibited the c.353C > T, p.Thr118Met mutation, and both parents were carriers for the same mutation. To the best of our knowledge, no other cases of MLC have been reported in Mexican patients. This patient exhibited rapid deterioration of motor function.

Conclusions: A diagnosis of MLC, which can be facilitated by imaging studies, should be considered in all patients who exhibit global developmental delay.

Keywords: Global Developmental Delay; Megalencephalic Leukoencephalopathy; Leukoencephalopathy; Subcortical Cysts; Van der Knaap Disease
apparent congenital hydrocephalus and mental retardation was reported in one paternal 14-year-old cousin.

The patient, who was born at 40 weeks of gestation was the product of a third pregnancy. The mother presented with a urinary infection with nonspecific treatment and diminished fetal movements. The patient presented with Apgar scores of 8/9, height of 51 cm, weight of 3300 gr, and slight jaundice at birth. The patient exhibited psychomotor retardation, which was dominant in the language area. In her first evaluation, at 3 years 9 months of age, the patient had not developed independent walking or speech with sentences, used only a few words, and did not have sphincter control. Her current disease is congenital, but was not treated until she was 1 year 10 months of age. Upon physical examination, we observed a height of 100.5 cm (50th percentile), head circumference of 56.5 cm (> 97th percentile), apparent age equal to chronologic age, autistic behavior, easily irritable and uncooperative, assisted walking with an ataxic component and wide base support, macrocephaly without other dysmorphias or malformations, limbs with discrete intention tremor, exhaustible bilateral clonus, bilateral extensor plantar responses, and slight dysmetria. A second examination one year later revealed further deterioration. In addition, the patient had less contact with people, and she was screaming and walking with the assistance of her mother at all times. An MRI and electroencephalography (EEG) had been conducted since the first examination.

A molecular study for genetic analysis was conducted after a review of the MRI results. The exons and flanking intronic regions of the gene MLC1 were analyzed by sequence analysis at the genomic level in both the patient and her parents (2).

3. Discussion

The MRI showed widespread cortical atrophy, which is suggestive of delayed cerebral and cerebellar myelination. Fluid-filled cavities of varying dimensions without a noticeable membrane separating them from the rest of the white matter were observed. Those cavities were located in the rostral portion of the anterior temporal lobes (Figures 1, 2, and 3).

Based on these characteristics, MLC was considered to be the most likely diagnosis. The EEG showed no abnormal patterns. The molecular study revealed the following mutation in the patient: c.353C > T, p.Thr118Met. Both parents were carriers of the same mutation.

MRI is mandatory for patients with global developmental delays. In approximately 50 - 60% of cases, as in the present case, MRI reveals the cause of the global developmental delay (4). MLC exhibits very specific characteristics on MRI (7-11).

Figure 1. Magnetic Resonance Imaging in the Axial Plane (Sequence T1)

Fluid-filled cavities are located in the rostral portion of the temporal lobes. Other white matter is diffusely affected (areas of decreased signal in T1).

Figure 2. Magnetic Resonance Imaging in the Axial Plane (Sequence T2)

The cavities exhibit different dimensions without a noticeable membrane separating them from the rest of the white matter. The remaining white matter signal intensity is increased in T2.
An intensity-increased signal of white matter is observed around the subcortical cysts (which does not appear to be gliosis). This finding is indicative of delayed myelination.

The feature that distinguishes van der Knaap syndrome from other leukoencephalopathies associated with either large or normal-sized heads is the presence of temporal and frontal white matter cysts in combination with diffuse white matter abnormalities on computed tomography (CT) or MR. The presence of cystic degeneration of the white matter can be confirmed by fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging (12).

The differential diagnosis of leukoencephalopathy with anterior temporal cysts includes congenital cytomegalovirus (CMV) infection, leukoencephalopathy with subcortical temporal cysts and megalencephaly, and vanishing white matter disease as well as other diseases such as Alexander disease, Canavan disease, and L-2-hydroxyglutaric aciduria. The differences with MLC are based on clinical evolution, neuroimaging, and biochemical findings (13, 14).

Two genes are involved in MLC, and the most frequent involvement is from the MLC1 gene (9). Neurological deterioration is usually slow in patients with MLC. In contrast, our patient exhibited significant deterioration over one year. Her communication and social skills were significantly affected such that she never developed language, and her attitude was that of a child with mental retardation and hyperkinesias (8-11). In general, the literature defines MLC by normal to mildly decreased cognitive capacity initially, with increases in deterioration over several years. It has also been reported that communication and social skills remain generally unaffected. In contrast, our patient had significant affectation since birth (15).

The MR images from our patient are not consistent with the clinical evolution in either our patient or others from the literature. The cysts in our patient were small in comparison to findings in other patients, but the affectation was worse than the majority of other patients that have been reported (16). There are many different phenotypes that have been described in the literature with no apparent presence of a genotype-phenotype correlation (15, 17).

The most constant clinical findings in patients with MLC are macrocephaly, loss of motor skills, ataxic gait, and epilepsy. There are many differences in the clinical features and evolution between patients of the same family and others with the same mutation. Other clinical findings, including ataxia, spasticity, extrapyramidal signs, and mental retardation are inconsistent across cases, and when they exist, the time of onset is variable (Table 1) (6, 8, 18-23). Recently, Masuda and Ueda reported a patient without the classical features of MLC on MRI. This finding is important because these features were considered to be diagnostic of the disease. We should be suspicious of the disease based on clinical features, and not dismiss the diagnosis based on negative MRI findings (22). The evolution of the disease also depends on the mutated gene (24).

The MLC protein is involved in the chloride channel as well as in other protein complexes. The protein product is highly expressed in the brain (mainly in astrocytes). This multiple involvement of the MLC protein may explain its relation to edema as well as other functions. It is also possible that phenotype differences across patients are due to the presence of other modifier genes (16, 25, 26).

We can conclude that there are many different phenotypes associated with MLC. When global developmental delay is present, it is essential to perform an MRI, as MRI can provide either a diagnosis or additional clues. There is much yet to learn about MLC.

Acknowledgements

We want to thank Dr. M. Van der Knaap and her work team for conducting the molecular study, and Ms. Diane N. Goslinga Krynen for assistance with the translation.
Author	Year	Number of Cases	Sex	Mutation	Macrocephaly	Age Of Symptom Onset	Epilepsy (Seizures)	Evolution	Parental Consanguinity	Subcortical Cysts	Bibliography
Patrono et al. (18)	2003	18 (15 families)	F/M	177delG, IVS2_1G_T, 848delC/, 2496G_A, 2693G_A, 4293A, 3570+1T, 880C_T, IVS5_1G_A, IVS6_1G_C	Yes	3-12 months	Yes (15)	Mild and severe	No	Present	Neurol 2003; 61: 534 - 537
Riel-Romero M. et al. (23)	2005	2 siblings	F/M	c.366A>G, 538+1G_a (compound heterozygous)	Yes	5 and 6 months	Yes (2)	Mild	No	Present	J Child Neurol 2005
Kumar and Singh (19)	2012	3		Non done	Yes	All of them around the 5 years.	No	Mild	No	Present	Ann Indian Acad Neurol 2012 Jul-Sep; 15 (3): 214 - 217.
Koul et al. (20)	2013	2 siblings	F/M	c.432 +1G > A mutation	Yes	1 year	No	Severe	Yes	Present	Sultan Qaboos University Med J November 2013, Vol 13, Iss 4, pp. 585 - 586
Kocaman et al. (8)	2013	1	Male	c.177+1G>T	Yes	38 years (headache)	No	Mild	No	Present	Clinical Neurology and Neurosurgery 115 (2013) 1564 - 1566
Mahmoud et al. (21)	2014	6 (3 families)		c.908-918del/insGCA and c.880 C>T	Yes	Birth, 4 months, 8 months	Yes (4)	Mild and severe	Yes (First cousins; 3 families)	Present	Pediatr Neurol 2014; 50: 140 - 148
Masuda and Ueda (22)	2015	2 siblings	Female	c.393C > T (p.Ser91Leu) in exon 4 and c. 823C > A	Yes/No	3 months/2 years	Yes/No	Mild	No	Present/Absent	Journal of the Neurological Sciences 351 (2015) 211 - 218
Our study		1	Female	c.353C>T, p.Thr118Met	Yes	Birth (psychomotor retardation)	No	Severe	Yes	Present	--

Table 1. Clinical Findings and Other Data From Patients with MLC Reported in the Literature

Zapata CMC et al.
J Pediatr Rev. 2015;3(2):e2808
References

1. van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraad F, et al. Leukoencephalopathy with swelling and a disconcertingly mild clinical course in eight children. Ann Neurol. 1995;37(1):324–34.
2. Leegwater PA, Yuan BQ, van der Steen J, Mulders J, Konst AA, Boor PK, et al. Mutations of MLCI (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am J Hum Genet. 2001;68(4):831–4.
3. Shevell MI, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, et al. Practice parameter: Evaluation of the child with global developmental delay Report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology. 2003;60(3):367–80.
4. McDonald L, Rennie A, Tolmie J, Galloway P, McWilliam R. Investigation of global developmental delay. Arch Dis Child. 2006;91(8):701–5.
5. Secretaría de Desarrollo Social. Resumen municipal. 2005. Available from: http://www.microrregiones.gob.mx/catdoc/local-Mun.aspx?tipo=clave&campo=loc&ent=15&mun=114.
6. Pascual-Castroviejo I, van der Knaap MS, Pronk J, García-Sergué JM, Gutierrez-Molina M, Pascual-Pascual SI. Vacuolating megalencephalic leukoencephalopathy: 24 year follow-up of two siblings. Neurology. 2005;64(1):33–40.
7. Bajaj SK, Misra R, Gupta R, Chandra R, Malik A. Megalencephalic leukoencephalopathy with subcortical cysts: An inherited dysmyelinating disorder. J Pediatr Neurosci. 2013;8(1):77–80.
8. Kocaman G, Eyirig G, Abbink TE, Kiliçarslan R, Aslı T, Alkan A, et al. An unusually mild presentation of megalencephalic leukoencephalopathy with subcortical cysts. Clin Neurol Neurosurg. 2013;115(6):564–6.
9. van der Knaap MS, Boor I, Estevé R. Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homeostasis. Lancet Neurol. 2012;11(11):973–85.
10. van der Knaap MS, Lai V, Kohler W, Salih MA, Fonseca MJ, Benke TA, et al. Megalencephalic leukoencephalopathy with cysts without MLCI defect. Ann Neurol. 2006;60(4):334–7.
11. Omezzine J, Ameur B, Bousoufara R, Avedi A, Hamza H, Star M. Megalencephalic leukoencephalopathy with subcortical cysts: report of 4 new cases. J Radiol. 2008;89(7-8):891–4.
12. Sener RN. Demonstration of glycine peaks at 3.50 ppm in a patient with van der Knaap syndrome. AJNR Am J Neuroradiol. 2002;22(5):1587–9.
13. Fink KR, Thapa MM, Ishak GE, Pruthi S. Neuroimaging of Pediatric Central Nervous System Cytomegalovirus Infection 1. Radiographics. 2010;30(7):1779–96.
14. Tu YF, Chen CY, Huang CC, Lee CS. Vacuolating megalencephalic leukoencephalopathy with mild clinical course validated by diffusion tensor imaging and MR spectroscopy. AJNR Am J Neuroradiol. 2004;25(6):1041–5.
15. Singhal BS, GurSAHani RD, Udani VP, Biniwale AA. Megalencephalic leukodystrophy in an Asian Indian ethnic group. Pediatr Neurol. 1996;14(4):291–6.
16. Durrari A, Teijido O, Lopez-Hernandez T, Scheper GC, Barriere H, Boor I, et al. Molecular pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts: mutations in MLCI cause folding defects. Hum Mol Genet. 2008;17(21):3726–39.
17. Ilja Boor PK, de Groot K, Meijers-Bosnjak V, Brenner C, van der Knaap MS, Scheper GC, et al. Megalencephalic leukoencephalopathy with subcortical cysts: an update and extended mutation analysis of MLCI. Hum Mutat. 2006;27(6):505–12.
18. Patrono C, Di Giacinto G, Eymard-Pierre E, Santorelli FM, Rodriguez D, De Stefano N, et al. Genetic heterogeneity of megalencephalic leukoencephalopathy and subcortical cysts. Neurology. 2003;61(4):534–7.
19. Kumar MK, Singh BB. Megalencephalic leukoencephalopathy with subcortical cysts in all three siblings of a non-Aggarwal Indian family. Ann Indian Acad Neurol. 2012;15(3):214–7.
20. Koul R, Al-Thihli K, Al-Azri F, Al-Futaisi A. Megalencephalic leukoencephalopathy with subcortical cysts. Sultan Qaboos Univ Med J. 2013;13(4):585–6.
21. Mahmoud IG, Mahmoud M, Refaat M, El Badawy A, et al. Clinical, neuroimaging, and genetic characteristics of megalencephalic leukoencephalopathy with subcortical cysts in Egyptian patients. Pediatr Neurol. 2014;50(2):340–4.
22. Masuda T, Ueda M. Megalencephalic leukoencephalopathy with subcortical cysts caused by compound heterozygous mutations in MLC, in patients with and without subcortical cysts in the brain. J Neurolo Sci. 2015;351(1-2):121–3.
23. Riel-Romero RM, Smith CD, Pettigrew AL. Megalencephalic leukoencephalopathy with subcortical cysts in two siblings owing to two novel mutations: case reports and review of the literature. J Child Neurol. 2005;20(3):230–4.
24. Hamilton EMC, Kariminejad A, Rajare A, Mejatki Bonesjak V, Postma NA, Abbink TM, et al. OP3 - 2232: Phenotype and genotype in 212 patients with megalencephalic leukoencephalopathy with subcortical cysts: New insights in the disease spectrum. Eur J Pediatr. 2015;174(3):535–42.
25. Depienne C, Bugiani M, Dupuis C, Galanaud D, Toutou V, Postma N, et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. J Neurol. 2013;260(7):1539–48.
26. Petrini S, Minzone G, Coccetti M, Frank C, Aiello C, Cutarelli A, et al. Monocytes and macrophages as biomarkers for the diagnosis of megalencephalic leukoencephalopathy with subcortical cysts. Mol Cell Neurosci. 2013;56:307–21.