Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and alterations in carbohydrate, fat and protein metabolisms. Diabetes is associated with absolute or relative deficiencies in insulin secretion by pancreatic β-cells and/or insulin action. For the treatment of diabetes large numbers of herbal preparations are in vogue. Plant cells produced secondary metabolites which are biologically active constituents with therapeutic and prophylactic applications in humans. These metabolites includes alkaloids, glycosides, flavonoids, terpenoids, tannins, resins, lignins, saponins etc. majority of the world population depends on herbal drugs for their health care needs.

This review gives information on secondary metabolites with pharmacological properties, techniques used in isolation and identification and also summaries data on 112 plants, plant parts, their antidiabetic properties with anti glycemic and other chemotherapeutic functions.
for therapeutic applications in diverse experimental animals. Growing recognition for the plant products is attributed to their non-toxicity and easy availability at affordable price.

Diabetes mellitus has become the prominent “killer” disease of mankind like cancer, cardiovascular and cerebrovascular diseases (Chauhan et al., 2010). It is estimated that 25% of the world population is affected by diabetes mellitus (Arumugam et al., 2013). Diabetes mellitus is considered a group of metabolic disorders characterized by high blood sugar (glucose) levels, which result from defects in insulin secretion or action or both. It affects not only carbohydrate but also, protein and fat metabolism (Tripathi, 2003). Insulin is a polypeptide hormone, which is secreted by the β-cells of the islets of Langerhans of the pancreas. It helps in storing the blood glucose as glycogen in the liver and muscles cells. If the pancreas does not produce enough insulin or the produced insulin does not work properly, the glucose cannot enter to the body cells. So glucose remains in the blood and get converted into unwanted products with detrimental consequences. According to the etiology of Diabetes Mellitus, it can be classified into following major categories:

Type-1

It also known as “Insulin dependent Diabetes mellitus”, which occurs in the childhood, and accounts for 5 to 10% of all diabetes cases. This is mainly due to destruction of pancreatic β-cell islets, resulting in absolute insulin deficiency and is positively associated with HLA B8- DR and DR-4. Recent research has shown that there is increased susceptibility to type-1 Diabetes mellitus when the amino acid Asp 57 is absent in DQ B with the presence of Arg 52 in DQ A (Wang and He, 1993; Ronningen et al., 1989).

Type-2

It also known as “Non insulin dependent Diabetes mellitus,” is more associated with adulthood and elderly people. Pathophysiological basis for this is a combination of impaired β- cell function, with marked increase in peripheral insulin resistance at receptor/ post receptor levels and increased hepatic glucose output production. This type of disease accounts for 90 to 95% of all diabetic patients.

Gestational

Another type of diabetes, diagnosed during the pregnancy (Lokesh and Amit, 2006; Seshiah et al., 2000). It is fully treatable, but requires careful medical supervision throughout the pregnancy. About 20-50% of affected women develop type 2 diabetes later in life.

The term pre-diabetes is used for the condition in which fasting blood glucose level is ≥ 110 and < 126 mg/dl. Factors such as Heredity, Age, Obesity, Sex, Diet, Physical Inactivity, sedentary Lifestyle and various stresses etc. are directly or indirectly trigger pre diabetic condition. Persistent hyperglycemia, generates reactive oxygen species (ROS) which may promote peroxidation of lipids, proteins and other biomolecules. The oxidative stress inturn aggravates inflammatory response, which ultimately end up with complications such as cataract, neuropathy and nephropathy over a period of time (Dewanjee et al., 2009).

The ethnobotanical studies report about wide variety of plant species which possess antidiabetic properties (Alarcon et al., 1998; Rashid et al., 2014; Saminathan and Kavimani, 2015). Further an array of plant derived principles mainly belonging to alkaloids, glycosides, galactomannan gum, polysaccharides, hypoglycans, peptidoglycans, guanidine, steroids, glycopeptides, and
terpenoids have demonstrated bioactivity against hyperglycemia (Ivorra et al., 1988; Maries and Farnsworth, 1995). In this review we tried to provide information on the types of secondary metabolites, their identification techniques and also summarised the description of about 112 medicinal plants with antidiabetic property, their bioactive molecules, mode of action and also application of in vitro culture techniques used for secondary metabolites production.

Plants as novel source for bioactive/secondary compounds

Plants produce a vast and diverse variety of organic compounds, the great majority of which do not appear to participate directly in growth and development, traditionally referred to as “secondary metabolites”. They are usually classified according to their biosynthetic pathways (Harborne et al., 1999). Based on biosynthetic origins, plant natural products are classified into three major groups: viz., terpenoids, alkaloids, and the phenylpropanoids & allied phenolic compounds. Terpenoids are derived from the five-carbon precursor isopentenyl diphosphate (IPP). Most of the alkaloids, with one or more nitrogen atoms, are biosynthesized principally from amino acids. While, vast numbers of phenolic compounds are formed either by the shikimic acid pathway or the malonate/acetate pathway (Buchanan et al., 2000).

A brief description of bioactive compounds, their basic nature, their major plant or family and their main pharmacological properties reported are given in Table 1.

Techniques; identification and characterization of bioactive molecule in herbal preparation

The extraction process of bioactive compounds depends on the polarity of the molecule and the solvent used. Different solvents such as aqueous, methanol, ethanol, benzene, chloroform, ether etc. have been used for the extraction of bioactive compounds with antidiabetic property from different medicinal plants. Crude extracts contain numerous plants secondary metabolites like alkaloids, glycosides, flavonoids, terpenoids etc. which are reported to regulate the blood glucose level through different mechanism like nourish or stimulate β-cells, increase in insulin sensitivity, stimulate glycogenesis and/or suppress gluconeogenesis.

Bioactive molecules from the crude extracts can be further separated, isolated and purified by a combination of chromatographic methods and several other techniques depending on the properties of each biomolecule of interest. Some of the most commonly used techniques for the separation; isolation and identification are given below.

High Performance Thin Layer Chromatography (HPTLC)

TLC is the common fingerprint method for herbal analysis. The mobile phase is drawn through the stationary phase by capillary action. Samples are separated according their component’s polarity. HPTLC fingerprint is mainly used to study the compounds with low or moderate polarity.

HPTLC technique is widely employed in process development, identification and detection of adulterants in herbal product and helps in identification of pesticide content, mycotoxins and in quality control of herbs and health foods (Soni and Naved, 2010). Crude extracts along with standard molecule are applied and softwares are available to analyze the amount of compounds present in the sample. In this method we can analyze 6-10 samples at a time.
High Performance Liquid Chromatography (HPLC)

This method is more refined and accurate as compared to HPTLC. In this technique very fine particles of approximately 10 μm in diameter are used as stationary phase and high pressure is used to maintain adequate flow rate of mobile phase along with sample, hence, called High Performance or High Pressure Liquid Chromatography. Small volume of sample is used and one sample at a time is analyzed. At present time, this procedure has been used principally with ion exchange and adsorption chromatography for small molecules, peptides, small carbohydrates and tRNA etc.

Preparative and analytical HPLC are widely used in isolation and purification of herbal compounds. There are basically two types of preparative HPLC: low pressure HPLC (typically under 5 bar) and high pressure HPLC (pressure >20 bar) (Chimezie et al., 2008; Saravanan et al., 2010).

The combination of HPLC and LC/MS is currently the most powerful technique for the quality control of herbal drugs (Zhang and Ye, 2009).

Ultra-Performance Liquid Chromatography (UPLC)

Ultra-performance liquid chromatography (UPLC) is another improved LC technique which utilizes 2 μm size particles as stationary phase and is more advanced technique with improved resolution, sensitivity and speed, without compromise.

UPLC is used to evaluate decocting-induced chemical transformations and chemical consistency between traditional and dispensing granule decoctions (Li et al., 2010a; Li et al., 2010b).

Liquid Chromatography - Mass Spectroscopy (LCMS)

Liquid chromatography-mass spectrometry (LC-MS) is now a routine technique with the development of electrospray ionisation (ESI). LC-MS has become method of choice in many stages of drug development (Mike and Edward, 1999). The use of tandem MS and stable isotope internal standards allows highly sensitive and accurate assays to be developed although some optimization methods are required to minimize ion suppression effects. Fast scanning speeds allow a high degree of multiplexing and many compounds can be measured in a single analytical run. The reasons for choosing LC-MS over LC with conventional detectors are essentially the same as with GC-MS, namely high specificity and the ability to handle complex mixtures.

Liquid Chromatography - Nuclear Magnetic Resonance (LC-NMR)

LC-NMR is the most versatile analytical technique for complex mixture analysis. Specifically, interfacing liquid chromatography with parallel NMR and mass spectrometry (LC–NMR–MS) gives comprehensive structural data on metabolites of novel drugs in development and applications in natural product. Recent innovations to improve NMR detection include speed and sensitivity of detection and found useful in the areas of pharmacokinetics, toxicity studies, drug metabolism and drug discovery process (Dachtler et al., 2003; Pasch et al., 2008; Patil and Rajani, 2010).

Gas Chromatography (GC) and Gas Chromatography-Mass Spectroscopy (GC-MS)

GC-MS is analytical method that combines the features of gas-liquid chromatography and mass spectrometry to identify different
voiletile substances within a test sample. The basic principal of this technique is to measure a sample with an unknown concentration. Applications of GC-MS include; drug detection, environmental analysis, identification and quantification of chemical constituents present in polyherbal oil formulations (Kasthuri et al., 2010).

Supercritical Fluid Chromatography (SFC)

It is a form of normal phase chromatography, which is used for the analysis and purification of low to moderate molecular weight and thermally labile molecules. It can also be used for the separation of chiral compounds. Basic principles for isolating compounds with SFC are similar to the fundamental rules for large-scale preparative liquid chromatography, however SFC typically utilize carbon dioxide as the mobile phase; therefore the entire chromatographic flow path must be pressurized.

Because the supercritical phase represents a state in which liquid and gas properties converge, supercritical fluid chromatography is sometimes called “Convergence Chromatography”. SFC permits the separation and determination of a group of compounds that are not conveniently handled by either gas or liquid chromatography. SFC enables the resolution of unknown components and known markers such as azadirachtin A and B, salannin, and nimbin in neem seed extracts (Agrawal et al., 2009).

Capillary Electrophoresis (CE)

Capillary electrophoresis is the most efficient analytical technique that separates ions based on their electrophoretic mobility with the use of an applied voltage. This method is two times shorter than that of HPLC and solvent consumption was approx 100-fold lesser than HPLC (Sombra et al., 2005). The technique is available for the analysis of both large and small molecules. The electrophoretic mobility of molecules is dependent upon charge, viscosity, and atom's radius. Rate at which the particle moves is directly proportional to the applied electric field. The importance of CE in quality control of herbal medicinal products (Ganzera, 2008) especially in compounds such as alkaloids (Wen et al., 2005) and flavonoids (Pietta et al., 1991).

Infrared spectroscopy

IR - spectroscopy is an accepted and wide spread analytical method to analyze a lot of chemical substances. The working principle is the excitation of vibrations and rotations of molecules by absorption of infrared radiation. The energy to excite this vibrations and rotations depends on the mass of the atoms and the binding forces between them.

A IR - spectrum of a functional group in a molecule is characteristic for this group, That’s why it can be identified with the IR - spectrum like a fingerprint of this group. FTIR along with the statistical method ‘principal component analysis ‘(PCA) has been applied to identify and discriminate herbal medicines for quality control in the fingerprint region of 400-2000 cm\(^{-1}\).

Diabetes mellitus and its treatment

Pancreatic β-cells secretes insulin in response to sugar level of circulating blood, which reduces blood sugar level and allows glucose to more readily enter the cells, and also facilitate the storage of glucose as glycogen. On the other hand low level of insulin in blood leads to brake down of glycogen and reduced ability of cells to absorb sugar. So blood sugar level gets increased. Other than insulin many harmones like glucagon from pancreas, adrenaline and cortisteroids from the adrenal glands also regulate the blood sugar level.
Table 1: Main groups of bioactive compounds in plants

Bioactive compound	Chemical properties	Family of plant sp. Found in	Pharmacological properties
Glycoside	Mono-oligosaccharides + uronic acid	Scrophulariaceae, Convallariaceae	Inhibition of Na\(^+\)/K\(^+\) ATPase pumps.
Cardiac glycoside	Aglycan part is a steroidal moiety. e.g. oleanadrin	Scrophulariaceae, Convallariaceae	
Cynogenic glycoside	Derived from amino acids e.g. dhurrin	Rosaceae	Release of HCN, which is very toxic and being lethal at high dosages.
Glucosinolates	Derived from S-containing amino acids e.g. sinigrin	Brassicaceae	Antioxidant
Saponins "soap forming compound"	Consist of either pentacyclic triterpenoids or tetracyclic steroids. e.g. solanine	Liliaceae	In vitro hemolysis of RBCs.
Anthraquinone glycosides	Derived from di, tri or tetra anthaquinone. e.g. aloe emodin	Polygonaceae	Induced water and electrolyte secretion.
Flavonoids and Proanthocyanidins	Central three-ring (flavone) structure.	Fabaceae	Antioxidant and also reduce inflammation and carcinogenicity.
Type I Tannins	Large polymer of flavonoids e.g. tannic acid	Fagaceae, Polygonaceae	Astringents and used inin cases of diarrhea, skin bleedings and transudates.
Terpenoids	Derivatives of 5-C building block isoprene	Lamiaceae	They are antineoplastic, antibacterial, antiviral acitivity and also stimulate gastro intestinal secretions.

3414
Diterpenoids	Composed of 4-isoprene unit. e.g. g inkgolide	Coffea Arabica	Antineoplastic activity.			
Resin	Complex lipid soluble mixture of Terpenoids, e.g. polymer of styrene	Most conifers	They have Antimicrobial and wound healing activity. Resins are generally safe, but contact allergy may occur.			
Lignans	Composed of two phenylpropanoid units. generally lipophilic. e.g. pinoresinol	Oil seeds	Having phytoestrogenic and antineoplastic effects.			
Alkaloids	Heterocyclic, N-containing compounds derived from amino acids.					
Tropane alkaloids		Solanaceae	Have Anticholinergic activity and also used in hypersecretion and pain.			
Pyrrolizidine alkaloids		Asteraceae Boraginaceae	Hepatotoxicity.			
Isoquinoline alkaloids		Papaveraceae Berberidaceae	Inhibition of various conditions as pain, cancer cells and bacteria.			
Methylxanthine alkaloids		Coffea arabica Theobroma cacao	Elicit neurological effects.			
Pseudoalkaloids	Have heterocyclic ring with nitrogen but not derived from amino acids. e.g. theophylline	Apioceae	Effect on CNS			
Furocoumarins	Furan ring fused with coumarin. e.g. psoralen	Apioceae	Affect the metabolism of certain drugs.			
Anthraqionones	Phenolic compounds based on 9, 10-antheaquinone skeleton. e.g. Hypericin, a naphthodianthrones	Clusiaceae, Polygonaceae	Antidepressant effect.			
Plant Botanical name/ common name/ Family	Plant part explored	Nature of active ingredients	Solvent(s) employed in various studies for extraction	Pharmaceutical activity attributed	Reported experimental validation	Reference
---	---------------------	------------------------------	---	----------------------------------	--------------------------------	-----------
Acacia auriculiformis (Northern black wattle)	Bark	Phenolics Flavonoids Proanthocyanidins	Acetone	Antidiabetic Antioxidant Anti bacterial Antifungal Cardioprotective Anticancer	Significant reduction of blood glucose level was evident in diabetic rats at doses of 250 and 500 mg/kg.	Ray et al., 2006; Sathya and Sidduraju, 2012
Canthium dicoccum (Bogas)	Bark	Alkaloids Glycosides Phytosterols Saponins.	Ethanol	Antifungal Anti-inflammatory Antidiabetic Nephroprotective Antiarthritic	Ethanolic extract at doses (200, 400 mg/kg) exhibited significant anti-hyperglycaemic activity.	Santhan et al., 2013.
Cassia auriculata (Senna, sunamukhi)	Leaf Flower	Terpenoids Tannin Flavonoids Saponin Cardiac glycosides Steroids.	Hexane Chloroform Ethyl acetate Methanol Aqueous Absolute-alcohol	Antifungal Anti-bacterial Antioxidant Antioxidant Hepatoprotective Antidiabetic	Oral administration of aqueous flower extract in streptozotocin-induced diabetic rats shows anti-hyperglycemic activity.	Harborne, 1998; Faraz et al., 2003; Edeog et al., 2005.
Cistus laurifolius (laurel-leaved rock rose)	leaf	Favonoids	Ethanol Aqueous	Anti-inflammatory Anti-rheumatic Antidiabetic Antioxidant Antiulcer	Blood glucose levels of the streptozotocin-induced diabetic rats were decreased by ethanol extract at of 250 and 500mg/kg doses.	Orhan et al., 2013.
Cuminum cymimum (Jeera)	Seed	Flavonoids Polyphenols	Ethanol	Antimicrobial Antidiabetic Antifertility Anticancer Antioxidant Immunomodulatory	Oral dose of 250 mg/Kg body weight shows reduction in glucose level in streptozotocin-induced diabetic rats.	Srivstatava et al., 2011.
Hunteria umbellate (Demouain)	Seed	Alkaloidal Indolealkaloids Flavonoids Tannins Glycosides	Methanol Aqueous	Antidiabetic Antioxidant Antibacterial Weightloss Anti-inflammatory Immune booster.	Oral administration of 400 mg/kg of seeds for 14 days was associated with significantly reduced blood glucose and body weight.	Igbe et al., 2009.
Plant Name	Part	Constituents	Solvent	Activity	Reference	
--	------------------	--	------------	---	---	
Mukia madeaspatana (Melothria)	Root	Phenolics, Carotenoids, Flavonoids	Methanol	Antioxidant, Hypotensive, Immunomodulatory, Anti-inflammatory, Hepatoprotective, Antimicrobial, Vasodialatory, Diuretic, Antiasthmatic, Antidiabetic	Wani et al., 2011.	
		Methanol root extract at a dose of 500 mg/kg to Alloxan induced diabetic rats showed significant reduction of blood glucose, lipid profile except HDL.				
Rehmania glutinosa (Chinese foxglove)	Root	Iridoids, Monoterpenes, Glycosides, Phenols, Flavonoid	Ethanol	Antidiabetic, Hypotensive, Hepatoprotective, Anti-inflammatory, Antimicrobial	Zhang et al., 2004; Jeonga et al., 2013.	
		Ethanolic extract at dose 100mg/kg for 15 days) showed a significant decrease in blood glucose level.				
Syzygium cumini (Black Plum)	Leaf, Stem, Bark, Flower, Root, Fruit	Glycoside, Alkaloids, Flavonoids	Aqueous Alcohol	Antidiabetic, Diuretic, Antioxidant, Antiarrheoal, Antibacterial, Gastrophective, Rudioprotective, Anti-inflammatory	Nair et al., 1986; Pepato et al., 2001; Ayyanar et al., 2012	
		Leaf extract at dose 4g/kg of body weight found to exhibit maximum hypoglycaemic effect in rabbits				
Vaccinium arctostaphylos (Caucasian Whortleberry)	Fruit	Anthocynins	Ethanol	Antidiabetic, Anti-inflammatory, Hepatoprotective, Antioxidant, Antibacterial, Antifungal	Feshani et al., 2011.	
		Ethanolic extract of fruits showed postprandial blood glucose lowering in alloxan induced diabetic male wistar rats				
Plants which increases the sensitivity of liver, fat and muscle cells to insulin						
Amaranthus viridis (Cholai)	Stem	Alkaloids, Steroids, Glycosides, Saponins, Tannins	Aqueous Methanol Pet-ether	Anti-inflammatory, Diuretic, Anti-hemorrhagic, Antidiabetic, Analgesic, Anti-inflammatory, Anti-diabetic	Pandhare et al., 2012.	
		Aqueous extract significantly decreased the blood glucose level in streptozotocin induced diabetic rats.				
Acorus calamus (Bach)	Rhizome	Saponins, Glycosides, Sequiterpenoids	Methanol Ethyl acetate	Aphrodisiac, Diuretic, Antispasmodenic, Anti-hemorrhagic, Anti-inflammatory, Antioxidant, Hypoglycemic	David et al., 2012; Prisilla et al., 2012.	
		200mg/kg of rhizome extract showed significant restoration of the blood glucose levels in streptozotocin induced diabetic rats.				
Bauhinia forficate (Paw-of-cow)	Leaf	Flavonoids	Aqueous Ethanol Hexane	Antidiabetic, Antimutagenic, Antioxidant, Hypolipidimic	Lino et al., 2004.	
		Oral administration of aqueous, ethanolic and hexane extract of leaves at dose 200 and				
Plant Family	Part	Chemicals	Solvent	Pharmacological Activity	Reference	
-------------	------	-----------	---------	--------------------------	-----------	
Fabaceae						
Bryophyllum pinnatum (Air Plant)	leaf	Bryophillin A, Bersaldegenin-3-acetate, Bryophillin C, Alkaloids, Triterpenes, Glycosides, Flavonoids, Steroids, Butadienolides, Lipids, Organic acids.	Aqueous Ethanol	Anthelmintic, Hepatoprotective, Anti-inflammatory, Antidiabetic, Diuretic, Antioxidant, Antimicrobial, Analgesic, Antipyretic	Aransiola et al., 2014.	
Bryophyllum pinnatum (Air Plant)						
Papilionaceae/ Leguminosae						
Cajanus cajan (pigeon pea/ arhar)	Leaf, Stem, Twig	Flavonoids, β-Carotenoids, Glycoside, Resin, Terpenoids, Tannins	Methanol, Ethanol, Aqueous	Antidiabetic, Hepatoprotective, Anti-viral, Anti-bacterial, Neuroprotective, Antioxidant, Anticancer	Ezike et al., 2010	
Camellia sinensis (Green tea)	Leaf, Flower	Epigallocatechin-gallate, Epicatechin-gallate, Epicatechin, Catechin, Epigallocatechin, Gallic acid	Aqueous	Anti-aging, Anticancer, Cardioprotective, Antidiabetic	Han et al., 2011	
Colocasia esculenta (Arbi)	leaf	Cynoglucosides, Flavonoids, β-sitosterol, Steroid	Ethanol	Analgesic, Anti-inflammatory, Anticancer, Hypolipidemic	Kumawat et al., 2010	
Cucurbitaceae	fruit	Emeclocyline glycodeloxycholic acid, 3α,7α,12α - Trihydroxycoprostanic acid, Chlortetracycline, Azafrin, Methyl Ester	Ethanol, Aqueous	Antibacterial, Analgesic, Anti-inflammatory, Diuretic, Antidiabetic, Hepatoprotective	Salahuddin et al., 2010.	

400 mg/kg showed significant reduction in plasma glucose level alloxan rats.

200 mg/kg aqueous extract resulted in a significant drop in blood sugar level.

Single doses of unroasted seeds to normal as well as alloxanized mice shows significant reduction in the serum glucose levels.

75, 150 and 300 mg/kg body weight caused a significant decrease in blood glucose levels of alloxan-induced diabetic mice.

Ethanol extract of leaves at dose 450 mg/kg showed significant reduction of blood glucose levels in alloxan induced diabetic rats.
Plant Family	Genus, Species	Part(s)	Secondary Metabolites	Extraction Method	Effect	Reference(s)
Poaceae	Cynodon dactylon (Doob)	Leaf	Alkaloids, Tannins, Carbohydrates, Glycosides, Steroids, Terpenoids	Aqueous	Hypoglycemic, Hypolipidimic, Woundhealing, Antibacterial, Anti-viral, Anti-inflammatory	Singh et al., 2007; Vijayan et al., 2014.
	Emblica officinalis/Phyllanthus Emblica (Amla)	Fruit, Leaf, Seed	Tannins, Alkaloids, Phenolics, Flavonoids	Aqueous	Antioxidant, Immunomodulatory, Hepatoprotective, Anti-microbial, Anti-inflammatory, Radioprotective, Antitumor, Antimutagenic	Oral administration 100 mg/kg body weight reduced the blood sugar level in normal and in alloxan induced diabetic rats. Jain and Khurdiya, 2004; Suryanarayan et al., 2007; Khan, 2009; Tirgar et al., 2011.
Euphorbiaceae	Foenum graecum (Methi)	Seed, Leaf	Flavonoids, Saponins, Alkaloids, Trigonelline, Choline	Ethanol, Aqueous	Hypoglycemic, Hypocholesterolemic, Immunomodulatory, Antiinflammatory, Antiulcerative, Anticancerous, Antihypertensive, Anticarcinogenic, Antioxidant, Diuretic	Oral administration of ethanol extract of seed at 2 g/kg, 1 g/kg, 0.5 g/kg and 0.1 g/kg dose, in diabetic rats. Sarasa et al., 2012.
Hypoxidaceae	Hypoxis hemerocallidea (yellow stars)	Corm	β-Sitosterol, Ergosterol, Stigmasterol	Aqueous	Anti-inflammatory, Antidiabetic, Antioxidant	Aqueous extract 50-800 mg/kg produced dose-dependent, hypoglycaemia in normal and streptozotocin induced diabetic rats. Ojewole, 2006.
Convolvulus	Ipomoea reniformis (musakani)	Stem, Leaf	Caffeic, P-Coumaric, Ferulic, Sinapic acids, Phthalate, Resins, Glycosides, Tannins	Ethanol, Aqueous	Anthyperglycemic, Antihyperlipidaemic, Diuretic, Laxative, Anti-Inflammatory, Antipyretic	Ethanol extract of leaves at (400 mg/kg) dose in alloxan induced diabetic rats showed significant reduction in blood glucose level. Bothara and Vaidya, 2016.
Juglans regia						
(walnut)						
Juglandaceae	Leaf	Linoleic acid				
Oleic acid						
Linolenic acid						
Palmitic acids	Alcholoh	Antioxidant				
Antibacterial						
Antidiabetic	Alchoholic leaf extract at dose200 and 400 mg/kg body weight to streptozotocin induced male wistar rat showed significant reduction in blood glucose level.	Mohammadi *et al.*, 2011.				
---	---	---	---	---	---	---
Lantana aculeate						
(Red sage)						
Verbenaceae	Roots	Oleanolic acid	Ethanol	Anticancer		
Antiulcer						
Anti-hyperglycemic						
Termitecidal	Ethanolic extract at the doses of 25, 50 and 100 mg/kg to diabetic rats, significantly reduced the level of glucose, total cholesterol and triglycerides.	*Kumar et al.*, 2010				
Phyllanthus neruri						
(Jangli amla)						
Euphorbiaceae	Root					
Stem						
Leaf	Flavonoids					
Alkaloids						
Terpenoids						
Lignin						
Polyphenols						
Tannins						
Coumarins						
Saponins	Acetone					
Aqueous	Anti-inflammatory					
Antidiabetic						
Antimicrobial						
Antihyperlipidaemic						
Antioxidant						
Anticancer						
Hepatoprotective						
Antiviral						
Diuretic	Oral Administration at dose 471.2mg/kg body weight caused a significant dose-related reduction in blood glucose levels in diabetic and normoglycaemic rats.	*Okoli et al.*, 2010.				
Zizyphus mauritiana						
(Ber)
Rhamnaceae | Seed
Petroleu m ether | Alkaloids
Flavonoids
Glycosides
Saponins
Sterols
Lignin
Phenols | Aqueous | Haemolytic
Sedative
Antimicrobial
Hypoglycemic
Antiplasmodial
Antidiabetic
Diuretic
Analgesic
Anti-inflammatory | Aqueous extracts of seeds at dose levels, 200 and 400 mg/kg, showed hypoglycaemic effect in allaxon induced diabetic mice. | *Bhatia and Mishra*, 2010. |

Plants which stimulates the β-cells in the pancreas to release more insulin

| **Acacia arabica**
(Babul)
Fabaceae | Leaf
Pod
Bark
Gum | Flavonoids
Gallic acid
Isoquercitin
Leucocyanadin
Glucopyranoside
Rutin
Glucopyranoside | Methanol
Ethanol
Aqueous | Antidiarrhoeal
Antidiabetic
Antifungal
Antiviral
Antimutagenic
Antifertility
Antibacterial | About 94% seed diet showed hypoglycemic effect in rats. | *Singh et al.*, 2009; *Singh.*, 2011 |
| **Agrimony eupatorium**
(Agrimony)
Rosaceae | Leaf
Stem | Catechin
Palmitic-acid
Quercitrin
Silicic-acid
Tannin | Aqueous | Anticancer
Astringent
Diuretic
Antidiabetic
Antioxidant | Agrimony incorporated into the diet (62.5 g/kg) showed the anti-hyperglycemic | *Gray and Flatt*, 1998. |
Plant Name	Part	Constituents	Extraction Method	Phytochemical Activity	Reference		
Alangium salvifolium (Ankola)	Leaf, Seed, Bark	Tannins, Flavonoids, Glycoside, Alkaloids, Gum, Mucilage	Methanol	Antipyretic, Laxative, Astringent, Anti-rheumatic, Analgesic, Anti-diarrheal, Hepatoprotective, Antidiabetic	Mishra and Gary, 2011		
Allium sativum (Garlic)	Clove, Leaf, Root	Allin, (diallyl disulfide oxide), Allicin, APDS (allyl propyl disulfide), S-allyl cysteine, S-allyl mercaptocysteine	Aqueous Methanol	Lipid-Lowering, Hypotensive, Anticancer, Antioxidant, Antimicrobial	Eidia *et al*., 2006; Younas and Hussain, 2014.		
Aloe vera (Aloe)	Leaf	Pentosides, Barbaloin, Isobarbaloin, Aloin, Betabarbaloin, Anthraquinones, Saponins, Lignin, Salicylic acid	Aqueous	Cardioprotective, Antitumor, Antioxidant, Anti-inflammatory, Hepatoprotective, Immunomodulatory, Antifungal	Chauhan. *et al*., 2010; Singh *et al*., 2010; Saghir *et al*., 2011		
Aralia cachemirica (Aralia)	Root	Essential oils, α-Thujene, α-Pinene, Camphene, Sabinene, B-Pinene, Myrcene, α-Phellandrene, α-Terpinene, Limonene, Cineole, Ocimene, Linalool, Campholenal, Camphor, Borneol, Terpinen-4-ol (Z)-Piperitol	Aqueous Alcohol	Anti gastritis, Anti rheumatic, Anti arthritic, Anti-inflammatory, Anti diabetec	Bhat *et al*., 2005; Verma *et al*., 2010.		
Plant Name	Family	Part	Secondary Metabolites	Extraction Method	Activity	Reference	
------------	--------	------	-----------------------	-------------------	----------	-----------	
Asparagus racemosus (Satavari)	Liliaceae	Root, Flower, Fruit, Leaf	Alkaloid, Asparagamine, Spirostanosides, Sparagine, Flavonoids, Resin, Tannin	Aqueous Ethanol, Alcohol Chloroform/Methanol (1:1)	Hepatoprotective, Immunomodulatory, Hypoglycemic, Diuretic	Daily administration to type 2 diabetic rats for 28 day, decreased serum glucose.	Shao, et al., 1997.
Atriplex halimus L. (Sea orache/Shrubby orache)	Chenopodiaceae	Leaf	Tannins, Flavonoids, Saponins, Alkaloids, Resins	Aqueous Methanol	Antioxidants, Hypoglycemic, Hypolipidemic	Aqueous extract at dosage of 20mg/kg weight to streptozotocin induced diabetic rats significantly shows the glucose lowering effect.	Chikhi et al., 2014.
Bauhinia variegate (Orchid/Kachnar)	Fabaceae	Leaf, Stem, Bark	Lupeol, β-sitosterol, Tannins, Kaempferol-3-glucoside, Amides, Rutin, Apigenin, Apigenin -7-O-glucoside.	Ethanol Aqueous	Antiophidian, Antidiabetic, Antimicrobial, Antioxidant	200 and 400 mg/kg aqueous extract of bark showed significant antihyperglycemic activity in Allaxon induced hyperglycaemic rats.	Kumer et al., 2012; Gunalan et al., 2012.
Biophytum sensitivum (Lajvanti)	Oxalidaceae	Leaf	Amentoflavone, Cupressuflavone, Isoorientin, Flavonoids, Phenolics, Steroids	Aqueous Methanol	Antibacterial, Antioxidant, Anti-inflammatory, Antitumor, Radioprotective, Chemoprotective, Antimetastastic, Anti-angiogenesis, Wound-Healing, Immunomodulatory, Anti-Diabetic, Cardioprotective	Dose of 200 mg/kg body weight was optimum for hypoglycemia.	Puri et al., 2001.
Catharanthus roseus or Vinca rosea (Barah masi)	Apocynaceae	Root, Leaf, Stem, Flower	Tannins, Triterpenes, Alkaloids, Flavonoids, Saponins	Aqueous Ethanol, Acetone, Methanol	Hypotensive, Antibacterial, Antifungal, Antiviral, Anticancer	Dry leaf powder at dose 3 mg/kg shows significant antidiabetic effect in streptozotocin induced diabetic rats.	EL-Sayed and Cordell, 1981; Nayak and Lexley, 2006; Chauhan et al., 2012.
Cinnamomum tamala (Tejpatra)	Leaf	α-pinene	Aqueous	Antihyperglycemic	Gupta *et al.*, 2009; Chakrabarty and Das, 2010.		
Lauraceae	Bark	Camphene		Antidiabetic			
	Myrcene			Antioxidant			
	limonene			Hypolipidemic			
	Eugenol			Astringent			
	p-cymene			Anti-inflammatory			
	Methyl eugenol acetate			Anti-arthritic			

Citrullus colocynthis (Bitter apple/ Bitter cucumber)	Pulp	Colocynthin	Ethanol	Analgesic	Dallak *et al.*, 2009.
Cucurbitaceae		Colocynthein (Resin)		Antibacterial	
		Colocynthetin Pectin Gum		Anti-inflammatory	

Clausena lansium (Wampee)	Stem	β-santalol	Methanol	Anti-trichomonal	Adebajo *et al.*, 2009.
Rutaceae	Bark	Bisabolol		Antidiabetic	
	Fruit	Methyl santalol ledol Sinensal		Anti-Inflammatory	
		9-octadecenamid e phellandrene limonene		Hepatoprotective	
		P-menth-1-en-4-ol.		Antioxidant	

Coriandrum sativum L (Coriander/ Dhaniya)	Seed	Linalool	Ethanol	Antioxidant	Chitra and Leelamma, 1999.
Umbelliferae		Coumarins Flavonoids Phenolic Acids Polyacetylenes Phthalides Mucilage		Antilithogenic	
				Anti-inflammatory	
				Antidiabetics	

Coscinium fenestratum (Jhar haldi)	Whole plant	Alkaloids	Ethanol	Anxiolytic	Sirintorn *et al.*, 2009
Menispermaceae	Berberin	Chloroform		Antidepressant	
				Hypoglycemic	
				Hypotensive	
				Antidiabetic	
				Cardioprotective	

Ginkgo biloba (Maiden hair tree)	Leaf	Polyphenol	Aqueous	Antioxidant	Shankar *et al.*, 2005.
Gingkoaceae				Antihyperglycemic	
				Antihyperlipidemia	
Species	Family	Parts	Constituents	Solvents	Uses	Ref.
Gmelina arborea (Gamar/Gumhar)	Verbenaceae	Leaf, Bark, Root	Alkaloids, Flavonoids, Phenolics, Saponins, Steroid, Glycoside	Methanol, Chloroform, Ethanol	Antioxidant, Diuretic, Antimicrobial, Cardioprotective, Immunomodulatory, Antipyretic, Analgesic	Punitha *et al.*, 2012.
					The highest depletion in blood glucose recorded in the 400 mg/kg body weight dosage in streptozotocin induced diabetic rats.	
Hibiscus rosa sinensis (China Rose)	Malvaceae	Whole Plant, Leaf, Flower	Cyaniding, Quercetin, Hentriacontane	Aqueous, Methanol	Anticomplimentary, Antidiarrhetic, Antimicrobial, Antioxidant, Antidiabetic	Moqbel *et al.*, 2011.
					Oral dose of 100 and 200 mg/kg body weight to non obese diabetic mice shows significant reduction in blood glucose level.	
Momordica charantia (Karela/ Bitter gourd)	Cucurbitaceae	Fruit, Seed, Leaf, Root	Charantin, Polypeptide, Polypeptide-p Vicine, Momordicine	Aqueous, Methanol	Antidiabetic, Hypoglycaemic, Hepatoprotective, Anti Bacterial, Anti Viral, Anti tumor	Ahmed *et al.*, 2001; Kumar *et al.*, 2010.
					The treatment of streptozotocin induced diabetic rats with M. charantia fruit extract over a 10-week period returned the levels of blood glucose and lipid profile close to normal.	
Mucuna pruriens (Atmagupta/ Magic bean)	Leguminosae	Seed, Leaf, Root, Stem	L-DOPA, Tryptamine, Alkaloids, Tannins	Hexane, Chloroform, Methanol, Ethanol	Antibacterial, Anti fungal, Hypotensive, Hypoglycemic, Antidiabetic, Antioxidant	Eze *et al.*, 2012.
					100, 200 and 400 mg/kg of the extract Significantly reduced the fasting blood sugar levels in alloxan-induced diabetic rats.	
Panax ginseng (Korean ginseng)	Araliacea	Fruits	Steroidal saponins	Ethanol	Anticancer, Immunomodulatory, Antioxidant, Antifatigue, Antimicrobial	Attele *et al.*, 2002.
					150 mg/kg extract-significantly improved glucose tolerance in treated obese diabetic mice.	
Quercus Infectoria (Oliver)	Fagaceae	Leaf, Gall, Roots	Tannins, Polyphenols, Gallic acids, Tannins acid, Tannins, Flavonoids	Methanol, Ethanol, Hexane, Chloroform, Aqueous	Antibacterial, Anti fungal, Antidiabetic, Antiinflammatory, Anti tumor, Antioxidant	Saini *et al.*, 2012.
					Methanolic roots extract at a dose of 250 mg/kg and 500 mg/kg body weight was showed the anti-diabetic activity in Alloxan-induced hyperglycaemic rats.	
Ricinus communis (Castor)	Euphorbiaceae	Root	Phenolic Lectins, Ricin, Pyridine, Alkaloids, Ricinoleic Acid	Ethanol	Antioxidant, Antitumor, Antinocepicitive, Anti-Inflammatory, Analgesic	Shokeen *et al.*, 2008.
					500 mg/kg body weight caused the maximum lowering of the fasting blood glucose	
Smallanthus sonchifolius (Aricoma)	Leaf	Phenolic compounds	Methanol, butanol and chloroform extracts showed effective hypoglycemic activity at minimum doses of 50, 10 and 20mg/kg body weight in transiently hyperglycemic and streptozotocin diabetic rats.	Susana *et al.*, 2010.		
Asteraceae						
Syzygium jambolanum or **Eugenia jambolana** (Jamboon/ sweet olive)	Leaf	Anthocyanins Glucoside Alkaloids Jambosin Flavonoids	Methanol, Ethanol Aqueous	Ethanol seed extract at 100 mg/kg of body weight significantly decreased the levels of blood glucose, blood urea, and cholesterol in streptozotocin induced diabetic rats.	Ravi *et al.*, 2004; Srivastava *et al.*, 2012.	
Myrtaceae	Seed					
Taraxacum officinale (Dandelion)	Leaf	Phenylpropanoids Triterpenoids Sterols Taraxasterol Taraxerol Cycloartenol β-sitosterol	Alcohol Aqueous	Aqueous and ethanolic extract of leaves and root at dose 300 and 500mg/kg body weight showed significant antidiabetic effect in alloxan induced diabetic rats.	Hussain *et al.*, 2004; Nnamdi *et al.*, 2012.	
Asteraceae	Root					
Plants that shows inhibitory activity on glucose absorption in the small intestine.						
Actinidia kolomikta (kiwi)	Root Leaf	Phenolics Flavonoid	Aqueous Ethanol	800 mg/kg Aqueous extracts of leaves prevented the increase in blood glucose level without causing a hypoglycemic state in the oral glucose tolerance test.	Hu *et al.*, 2013; Yuan *et al.*, 2014.	
Actinidiaceae						
Psoralea corylifolia (Babchi)	Seed	Flavanoids Alkaloids Phenols Tannins	Chloroform Ethyl acetate Methanol	The dose of 250mg/kg of body weight was found	Sahashini *et al.*, 2014; Dhar *et al.*, 2013.	
Fabaceae	Oils	Diaphoretic Anti-inflammatory	to be the most effective in lowering blood glucose level of normal, sub, mild and severely diabetic rats.			
---	---	---	---			
Tamarindus indica (Imli)	Leaf Bark Fruit N-Hexacosane	Acetone Ethanol Methanol	Anti-microbial Antioxidant Laxative Woundhealing Hepatoprotective Anti-inflammatory Analgesic			
Caesalpiniaeae	Eicosanoic Acid Octacosanyl Ferulate Apigenin	Aqueous methanolic extract of leaf at the dose 200mg/kg body weight showed blood glucose lowering activity in streptozotocin induced diabetic rats.				
Zea mays (Maize)	Corn silk	Benzene Chloroform Ethanol Ethyl Acetate	Antioxidant Diuretic Antidepresent Antifatigue Anti-hyperlipidimic Anti-inflammatory Neuroprotective			
Gramineae	Flavonoids Alkaloids Phenols Steroids Glycosides Terpenoids Tannins	Aqueous Methanol Petroleum ether	After orally administration with corn silk extract, the blood glucose and HbA1c were significantly decreased in alloxan induced hyperglycaemic mice.			
Improving insulin release in response to meals	Ascorbic acid Aegeline Coumarins Alkaloids Aegeline Skimmianine Lupeol Cineol Citral Citronella Cuminaldehyde Eugenol Marmesinine Fagarine Marmin Marmelosin Luvangetin Aurapten Psoralen Marmelide Tannin	Aqueous Alcohol	Oral admistration of aqueous seeds extract at dose of 250mg/kg was found to decreases blood glucose level in normal healthy rats after 6 h of administration.			
Aegle marmelos (Bael)	Flower Leaf Fruit Seed	Aqueous Alcohol	Int.J.Curr.Microbiol.App.Sci (2018) 7(5): 3409-3448			
Rutaceae	Anti-hyperglycemic Hepato-protective Analgesic Antifertility Anti Fungal Hypolipidemic Immunomodulatory Anti-Inflammatory	Sharma et al., 2011; Kesari et al., 2006.				
Alium cepa (Onion)
Alliaceae/Liliaceae
- **Root**
- **Tuber**

| Quercetin, Cysteine, Allyl propyl disulphide Allyl propyl disulfide (APDS) S-methyl cysteine sulphoxide Essential oil | Aqueous Ethanol Ether | Hypocholesterolemic Fibrinolytic Antioxidant Anticancer Antimutagenic Hemostatic Hypoglycaemic Hypolipidaemic | Hypoglycemic activity was showed by the ether soluble fraction of onion (0.25 mg/kg) in normal rabbits. | Ozougwu et al., 2011 |

Costus pictus
(Spiral ginger/Insulin plant)
Zingiberaceae
- **leaf**

| β-L-Arabinopyranose methyl glycoside | Ethanol Acetone Aqueous Ethyl Acetate Methanol | Antidiabetic Antimicrobial Immunomodulatory | Dosage of 2gm/kg body weight exhibited a significant reduction in fasting blood glucose level and a remarkable increase in serum insulin level. | Sindhu et al., 2012; Jayasri et al., 2008. |

Ficus religosa
(peepal)
Moraceae
- **Leaf**
- **Fruit**
- **Bark**

| Flavonoids Sterols | Ethanol | Antiulcer Antibacterial Antigonorrhe Antibacterial Antiprotozoal Antiviral Astringent Antidiarrhoecal | The ethanolic extract of the fruit, at a dosage of 250 mg/kg body weight, showed antidiabetic activity. | Choudhary et al., 2011. |

Mangifera indica
(Mango)
Anacardiaceae
- **Leaf**
- **Stem bark**

| Tannins Saponins Glycosides Phenols | Methanol Hexane Ethyl acetate | Antioxidant Radioprotective Immunomodulatory Anti-allergic Anti-inflammatory Anti-tumor Lipolytic Antiviral Antibacterial Antifungal Anti nociceptive | Oral administration of aqueous leaf extract 1g/kg in streptozotocin-induced diabetic rats reduced blood glucose level | Harbourne, 1973; Baker and Thormsberg, 1983; Sahm and Washington, 1990; Grover et al., 2002. |

Nervilia plicata
(Lotus with single leaf)
Orchidaceae
- **Stem**

| Tannins Gums Flavonoids Saponins Essential oils. | Alcohol | Antidiabetic Antibacterial Antifungal | Administration of 5mg/kg of plant extract showed decrease in the blood glucose levels. in type-II diabetic rats | Kumar et al., 2011; |

Phoenix dactylifera
(Date Palm)
Arecaaceae
- **leaf**

| Tannins Alkaloids Trepenoids Flavonoids | Aqueous | Antidiabetic Antibacterial Antiinflammatory Antiasthamatic Nephroprotective Hepatoprotective | Sub-acute administration of leave’s extract in alloxan-induced diabetic rats significantly reduced blood | Seyyed et al., 2010. |
Plant	Part(s)	Active compounds	Extraction	Action(s)	Reference(s)	
Salvia lavandulifolia (Spanish Sage)	Leaf	Flavonoids Terpenoids 1,8- cineole α- pipene	Aqueous	Spasmolytic Antiseptic Analgesic Sedative Antioxidant Antidiabetic Antiinflammator y	Daily administration of 250 mg/kg of infusion resulted in a 33% decrease in blood glucose levels in alloxan-diabetic rabbits. Jimenez *et al.*, 1986.	
Stevia rebaudiana (Meethi tulsi)	Leaf	Stevioside Rebaudioside A-F Dlucoside Steviobioside Flavonoids Anthocyanins Phenolics.	Aqueous Methanol Petroleum ether	Antihyperglycemic Hypotensive Anti-inflammatory Antibacterial Gastroprotective Immuno-modulatory Cardiovascular Antiinflammator y	Oral administration of stevioside 0.5mg/kg body weight, lowered blood glucose level in streptozotocin induced diabetic rat. Gregersen *et al.*, 2004.	
Swertia chirata (Chiratika/ Kutki)	Seed Root	Alkaloids Flavonoids Xanthones Glycosides Terpenoids	Aqueous Ethanol Methanol	Antipyretic Anthelmintic Analgesic Hypoglycemic Antifungal Antibacterial Anti-inflammatory Hepato-protective Cardio-protective	Oral admistration of the aqueous extract at dose 200 mg/kg body weight per day for 21 days in glebinclamide induced diabetic albino rats showed significant antidiabetic effect. Sobia *et al.*, 2012; Kavitha and Dattatri, 2013.	
Vitellaria paradoxa (Shea tree)	Bark	Phenolics Palmetic acid Stearic acid Oleic acid Linoleic acid Arachidic acid	Aqueous Ethanol Hydro-ethanol	Antiulcer Anti malarial Neuralgia treatment Antidiabetic Antioxidant	Hydro-ethanolic extracts of the bark at a dose of 250 mg/kg body weight induce anti hyper-glycemic activity in rabbits. Coulibaly *et al.*, 2014	
Zizyphus spina-Christi (Olive)	Leaf	Saponins Glycoside Christinin-A	Butanol	Hepatoprotective Anti-obesity Antidiabetic Antioxidant Antimicrobial Antidiarrheal	100 mg/kg butanol extract or christinin-A enhanced the glucose lowering and insulintropic effects in type-II diabetic rats. Abdel-Zahe *et al.*, 2005.	
Zingiber officinale (Ginger)	Rhizome Root	Phenolic compounds	Aqueous	Hypoglycemic Cardiotoxic Antilipemic Antioxidant Antineoplastic Antiviral Antibacterial Antifungal	Oral administration of the juice (4 ml/kg of body weight/day) for 6 weeks on streptozotocin induced diabetic rats significantly reduced blood glucose level.	Khani et al., 2004; Jafri et al., 2011.
Zinzibaraceae						

Preserve the function of the β-cells of the pancreas and Regenerate the damage β cells.

| **Aerva lanata** (Polpala) | Shoot Leaf | Alkaloids Flavonoids Tannin Steroid Saponins Phenolic compounds | Pet-ether Methanol Alcohol Ethanol: Water (1:1) | Anti-inflammatory Diuretic Hepato-protective Nephroprotective Antidiabetic Antimicrobial Antihyperlipidaemic Antiparasitic, | The alcoholic extract at dose 500 mg/kg body weight reduces the blood sugar in alloxan induced diabetic rats. | Vetrichelvan and Jegadeesan., 2002; Shirwaikar et al., 2004 |
| **Amaranthaceae** | | | | | | |

| **Barleria prionitis** (Vjradanti) | leaf Root | Sterols Saponins Tannins Flavonoids | Alcohol | Diuretic Hepatoprotective Antioxidant Antifungal Wound healing | Alcoholic extract of root and leaves at dose 200mg/kg body weight to Alloxan induced rat shows a decrease in blood glucose level. | Dheer et al., 2010 |
| **Acanthaceae** | | | | | | |

| **Caesalpinia digyna** (Teri pod/ Udakiryaka) | Roots Bark Fruit Gall Leaf | Caesalpinine A Cellallocinnine Ellagic acid Gallic acid Bergenin Nicotinamide Tannins | Alchohol | Antioxidant Antipyretic Astringent Wound healing Antidiabetic. | Oral admistration of 750mg/kg for 14 days caused a significant decrease in blood glucose level in streptozotocin induced diabetic rats. | Kumar et al., 2012 |
| **Leguminosae** | | | | | | |

| **Callistemon lanceolatus** (Crimson Bottlebrush) | leaf | Phenolic Saponins Alkaloids Glycosides Sterols Tannins. | Ethanol Methanol Hexane Ethyl acetate. | | | |
| **Myrtaceae** | | | | | | |

| **Ficus amplissima** (kal-itchchi) | Bark | Phenolic compounds | Methanol | Antidiabetic Hypolipidimic Antioxidant Antiinflammatory Antibacterial | Oral administration of methanolic extract of bark at the doses of 50, 100 and 150mg/kg showed significant antidiabetic effect on | Arunachalam and Parimelazhagan, 2013. |
| **Moraceae** | | | | | | |
Plant Name	Part(s)	Constituents	Extract Form	Activity	Reference
Nymphea pubescens (pink water lily)	Flower Tuber	Alkaloids, Flavonoids, Glycosides, Terpenoids, Tannins, Phenols, Saponins, Steroids	Ethanol Aqueous	Antidiabetic, Hypolipidemic, Antioxidant	Shajeela *et al.*, 2012.
Nymphea sp. (Nymphaeaeae)	Flower Tuber	Alkaloids, Flavonoids, Glycosides, Terpenoids, Tannins, Phenols, Saponins, Steroids	Ethanol Aqueous	Antidiabetic, Hypolipidemic, Antioxidant	Shajeela *et al.*, 2012.
Ocimum gratissimum (Clove Basil)	Leaf	Thymol, Citral, Geraniol	Aqueous	Antimicrobial, Antibacterial, Antidiabetic, Hepatoprotective	Nelson *et al.*, 2012.
Otoestegia persica (Goldar)	Root, Aerial parts	Polyphenols, Alkaloids, Glycoside, Flavones, Saponins, Tannins	Aqueous	Antihistamin, Antispasmodic, Antioxidant, Antidiabetic	Bagherzade *et al.*, 2014.
Prunella vulgaris (Self heal)	Leaf, Stem	Rosmarinic acid, Ursolic acid, Oleanolic acid	Aqueous Ethanol	Anti-inflammatory, Anti-allergic, Anticancer, Wound Healing, Antidiabetic, Hepatoprotective, Antipyretic, Mild Antiseptic, Detoxifier, Diuretic, Haemostatic	Hwang *et al.*, 2012.
Pterocarpus marsupium (Vijasar)	Timber Bark, Leaf, Flower	Glycoside, Flavonoids, Tannins.	Ethanol Aqueous	Hypolipidemic, Hepato-protective, Anti-ulcer, Anti-inflammatory, Anti-oxidant, Cardiotonic, Antibacterial, Anti-diabetic	Gupta *et al.*, 2009.
Selaginella tamariscina (Spikemoss)	Leaf	Flavonoids	Aqueous Ethanol	Vasorelaxant, Antimetastatic, Antidiabetic	Zheng *et al.*, 2011.
Selaginellaceae					
---	---	---	---	---	
Scoparia dulcis (Bondhane / sweet broomweed)	Whole plant	Flavonoids	Hexane	Antidiabetic	
Scrophulariaceae	Saponins	Ethyl acetate	Methanol	Antitumor	
	Phenol	Aqueous		Antioxidant	
	Tannins			Neuroprotective	
	Alkaloids				
	Steroids				
	Terpenes				
Tribulus terrestris (Gokhru)	Seed	Protodioscin	Methanol	Antimicrobial	
Zygoophyllaceae	Fruit	Terrestrosins A-E		Cytotoxic	
	Leaf	Desgalactotigonin		Antihyperlipidaemic	
		Desglucolanatigonin		Diuretic	
	Stem	Fgitonin		Anti-inflammatory	
		Gitonin		Astringent	
		Tigogenin		Analgesic	
		Furostanol			
		Glycosides			
		Sterol			
		Diosgenin			
		Hecgenin			
		Ruscogenin			
		Kaempferol			
		Quercetin			
		Tribulosamides A and B.			
Withania somnifera (ashwagandha)	Root	Sitoindosides	Aqueous	Antioxidant	
Solanaceae	Fruit	Steroidal alkaloids		Antitumor	
	Leaf	Steroidal lactones	Alcoholic	Anti-inflammatory	
	Seed			Immuno-modulatory	
				Hematopoetic	
				Anti-ageing	
				Anxiolytic	
				Anti-depressive	
Annona squamosa (custard apple / Sitafal)	Leaf	Annoreticuin	Aqueous	Antitumor	
Annonaceae	Root	Isannoreticuin	Methanol	Antibacterial	
	Bark Seed	Acetogenin		Wound healing	
		Flavonoids		Anti-ulcer	
		Alkaloids		Anthelmintic	
		Glycoside		Antioxidant	
		Anonaine		Anti-malarial	
		6-Hetriacontanone		Anti-HIV Hepato-protective	
		Hexacontanol			
		Higemamine			
		Isocorydine			
		Limonine			
		Linalool acetate			
Azadirachta indica (Neem)	Leaf	Isoprenoids	Methanol	Anti-inflammatory	
	Bark	Azadirone	Chloroform	Antiarthritic	
	Fruits	Azadirachtin	Aqueous	Antipyretic	

Inhibits the activity of hepatic Glucose-6-phosphatase and Increased glycogenesis.

- **Antifungal**
- **Antiinflammatory**
- **Antitumor**
- **Cardioprotective**
- **Antioxidant**

beneficial effects on hyperglycemia and hyperlipidemia in streptozotocin induced diabetic rats

200 mg/kg of the ethanolic extract showed maximum reduction in glucose levels in streptozotocin induced diabetic rats.

Latha *et al.*, 2004.

Oral administration of 50 mg/kg body weight methanolic extracts of aerial parts of *Tribulus terrestris* showed significant reduction in blood glucose level in streptozotocin induced diabetic rats.

Wu *et al.*, 1999; Mahato *et al.*, 1981.

Oral administration of root powder at dose 100 mg/kg showed significant reduction in blood glucose level in streptozotocin induced diabetic rats.

Pradeep *et al.*, 2010.

Oral admsistration of ethanolic leaf-extract (350 mg/kg) in streptozotocin diabetic rats and alloxanized rabbits shows antihyperglycemic activity.

Mohamed., 2011

Aqueous leaves extract at a dose of 250 mg/kg body weight for 16 days.

Eshrat *et al.*, 2002.
Family	Plant	Part	Constituents	Pharmacological Activities	References
Meliaceae	Bougainvillea spectabilis (Bougainvillea)	Leaf	Flavonoids Tannins Cardiac-glycosides Terpenes Steroids	Hypoglycemic Hypolipidimic Antibacterial Nematicidal Insecticidal Antiviral Ethanol extract of stem bark at dose 250mg/kg shows anti hyperglycaemic effect in alloxan induced diabetic rats.	Jawla et al., 2012
Nyctaginaceae	Coccinia indica (Kundru)	Leaf Fruit Stem Root	Alkaloids Steroids Tannins Phenolics Flavonoids Resins	Hepatoprotective Antioxidant Anti-inflammatory Anti-nociceptive Antidiabetic Hypolipidemic Antibacterial Oral administration of dried extract of Coccinia indica at 500mg/kg, for 6 weeks significantly increased insulin concentration in a clinical study.	Joshi et al., 2009.
Cucurbitaceae	Cucumis sativus (Cucumber/ Kheera)	Fruit Seed	Steroids Carotenoids Flavonoids Tannins Resin	Antidiabetic Anti-hyperlipidemic Hepatoprotective Cardioprotective Diuretic Laxative The oral Administration of ethanolic fruit’s extracts at 400 mg/kg body weight dose significantly showed antidiabetic effects in Streptozotocin induced rats.	Karthiayini et al., 2009; Gopalakrishnan et al., 2013. Sharmin et al., 2013.
Asteraceae	Elephantopus scaber (Tutup bumi)	Leaf Root	Stigmasterol Lupeol Stearic acid Deoxyelephantopin Aqueous Acetone	Astringent Antipyretic Anti-diabetic Anti-inflammatory Anticancer Antibacterial Oral administration of aqueous extract of leaves and rootsat dose 300 mg/kg body weight significantly reduced serum glucose level in alloxon induced diabetic rats.	Rajathi et al., 2011.
Gentianaceae	Enicostemma littorale (Chhota-chirayta)	Leaf	Alkaloids Flavonoids Catechins Saponins Sterols Terpenoids Phenolic acids Xanthones. Aqueous Methanol Ethanol Ethyl acetate	Anti-inflammatory Antiulcer Hypoglycemic Anti-malarial Antioxidant Anticancer Anti-nociceptive Antimicrobial 1.5 g dry plant equivalent extract/100 g body weight caused significant increase in serum insulin levels of the diabetic rats.	Maroo et al., 2003
Eugenia Jambolama or Syzygium cumini (Jamun/ Black plum)	Pulp Seed Bark Leaf	Jamboline-a Glucoside Mycaminose Ethanol Methanol Aqueous	Hepato-protective Antioxidant Anti-inflammatory Anti-nociceptive Antidiabetic 100 mg/kg of body weight of ethanolic extracts of whole seeds, kernel showed hypoglycemic activity		Kumar, et al., 2008; Verma et al., 2010.
Myrtaceae	Hypolipidemic	in streptozotocin-induced diabetic rats			
---	---	---			
Gymnema montanum (Gymnema)	Alkaloids Saponin Tannins Glycosides Alcohols	Antihyperglycemic Antiperoxidative Antimicrobial Oral administration of 200 mg/kg body weight of the alcoholic extract of the leaf resulted in a significant reduction in blood glucose and an increase in plasma insulin level. Ananthan et al., 2003; Ramkumar et al., 2011.			
Asclepiadaceae	Stem Leaf	Gymnema			
Psidium guajava (Guava/ Amrud)	Phenolics Glycosides Carotenoids Ethanol	Antidiabetic Hepatoprotective Antioxidant Antioxidant Antimicrobial Oral administration of the alcoholic extract of the leaf at dose 250mg/kg exhibited significant hypoglycaemic activity in alloxan-induced hyperglycaemic rats Mukhtar et al., 2006.			
Myrtaceae	Stem bark	Gymnema			
Tinospora crispa (Akar patawali) Menispermaceae	Terpenoids Borapetoside C Aqueous	Antidiabetic Hepatoprotective Antioxidant Antioxidant Antimicrobial Acute intra-venous treatment with the extract (50 mg/kg) caused an increase in plasma insulin levels Noor et al., 1989; Lokman et al., 2013.			
Tinospora cordifolia (Giloya / guduchi) Menispermaceae	Stem Alkaloids Glycoside Terpenoids Lactones Steroids Aqueous Alcohol	Hypolipidemic Hypoglycemic Cardioprotective Hepatoprotective Antioxidant Anti-inflammatory Oral administration of the aqueous root extract led to a decrease in blood and urine glucose and lipids level in alloxanized rats. Rajalakshmi et al., 2009.			
Vernonia amygdalina (Bitter leaf) Asteraceae	Leaf Polyphenols Alkaloids Saponins Tannins Glycosides Ethanol	Antioxidant Antibacterial Anti-inflammatory Hepato-protective Anticarcinogenic Antifungal Antiplasmodial Nephroprotective Ethanolic leaf extract at dose 400 mg/kg exhibited a significant improvement in glucose tolerance of the streptozotocin induced diabetic rats. Ong et al., 2011.			
Enhance activity of enzymes involved in bile acid synthesis.					
Berberis aristata (Daruhaldi) Berberidaceae	Stem Root Seed Alkaloids Tannins Saponins Glycosides Sterols Flavonoids Terpenoids Lignin Methanol Aqueous Ethanol Acetic anhydride	Anti-inflammatory hepatoprotective Hypoglycemic Antibacterial Antifungal Antipyretic Anticarcin Antiglomerular Immuno-modulatory Oral administration of the methanolic extract at dosens250 and 500 mg/kg effectively reduced the blood glucose in diabetic rats. Upwar et al., 2011.			

Plants which are improves glucose tolerance.
Boerhavia diffusa (Santh/punarnava)

Nyctaginaceae

- **Leaf**
- **Stem**
- **Bark**
- **Root**

Compound	Petroleum Ether	Chloroform	Methanol	Aqueous
Alkaloids	Phytosterols	Lignin		

Hepato-protective

Diuretic

Anti-inflammatory

Antibacterial

Antidiabetic

Anti-asthamic

Oral administration of aqueous leaf extract (200 mg/kg daily for 4 weeks) in normal and alloxan induced diabetic rats shows hypoglycemic and antihyperglycemic activity.

Santhosha *et al.*, 2011.

Brassica juncea (Mustard)

Brassicaceae

- **Seed**

Compound	Methanol	Aqueous
Anthocyanins	Flavonoids	Hydroxycinnamic acids Polyphenols

Antinociceptive

Anti-hyperglycemic

Antioxidant

Dose of 250,350 and 450mg/kg body weight of seed extract has potent hypoglycemic activity in streptozotocin induced diabetic male albino rats.

Khan *et al.*, 1995.

Plants which are shows Potent insulin mimic activity

Cornus officinalis (Asiatic dogwood)
Cornaceae
Fruit
Tannins including cornusins A, B and C Ursolic acid

Methanol

Antibacterial

Antifungal

Hypotensive

Antitumor

Astringent

Hepatoprotective

Antidiabetic

100 mg/kg and 200 mg/kg body weight fruit extract had a significant hypoglycemic effect in diabetic mice.

Chen *et al.*, 2008.

Nigella sativa (kalonji)

Ranunculaceae

- **Seed**

Compound	Methanol	Aqueous
Oil Isochinoline	Alkaloids	

Antidiabetic

Anticancer

Immunomodulatory

Analgesic

Antimicrobial

Anti-inflammatory

Hepato-protective

Antioxidant

Seed extract at dose 5mg/kg of body weight significantly reduced fasting blood glucose level.

Alimohammadi *et al.*, 2013.

Rosmarinus officinalis (Rosemary)

Lamiaceae

- **Leaf**

Compound	Aqueous
Caffeic Acid	Carnosol Ros-Maridiphenol Rosmarinic Acid

Ethanol

Antiasthmatic

Cardiotonic

Hypotensive

Memorybuster

Antihyperglycemic

Hepato-protective

Anti-inflammatory

Water extract of leaves at dose 200mg/kg body weight for 21 days was found to be significantly reducing the blood sugar level in Streptozotocin induced diabetic rats.

Khalil *et al.*, 2012.

Solanum xanthocarpum (Kantakari)

Solanaceae

- **leaf**

Compound	Methanol
Olanocarpine Carpenersterol Solanocarpidine Diosgenin Sitosterol Isochlorogenic acid Neochronogenic	

Hypoglycemic

Hypolipidimic

Antioxidant

Methanol extracts of leaf was efficient anti hyperglycemic agents at a concentration.

Poongothai *et al.*, 2011.
Genus	Plant Part	Constituent	Solvent	Effect	Preparation	Reference
Teucrium polium	Leaves	Terpenoids	Methanol	Hypoglycemic	Single dose of 50 mg/kg body weight /day for a month significantly decrease serum glucose in streptozotocin induced diabetic rats.	Shahraki et al., 2007.
(Kalpooreh)		Flavonoids	Aqueous	Hepatoprotective		
Lamiaceae		Apigenin		Analgesic		
				Antilipidemic		
Curcuma longa	Rhizome	Curcumin	Methanol	Antioxidant	Oral administration of absolute ethanol extract of rhizome and leaves lowers blood glucose in alloxan-induced diabetic rabbits.	Sarah et al., 2009; Sadak et al., 2010
(Turmeric)		Essential oils	Chloroform-water	Anti-inflammatory		
Zinzibaraceae				Anti cancer		
				Anti viral		
				Anti fungal		
				Anti bacterial		
				Antiseptic		
Musaes paradisiaca	Leaf	Catecholamines	Methanol	Antioxidant	Leaves and fruit peels are responsible for antidiabetic potential on streptozotocin induced diabetic rats.	Reddy et al., 2014; Lakshmi et al., 2014.
(Banana)	Ripe fruit’s peel	Norepinephrine	Chloroform	Antidiarrheal		
Musaceae	Root	Serotonin	Petroleum ether	Antidyssenterent		
	Stem	Dopamine	Ethanol	Antidiabetic		
		Flavonoid		Hypotensive		
		Sterol		Cardiotonic		
Pongamia pinnata	Root	Alkaloids	Ethanol	Antitumor	Ethanololic extract of leaves at doses 500mg/kg and 1g/kg shows significant antidiabetic effect on streptozotocin induced male albino rats.	Kavipriya et al., 2013.
(Karanj)	Fruit	Glycosides	Methanol	Antiseptic		
Fabaceae/	Leaf	Flavonoids		Anti-inflammatory		
Leguminocae		Flavone derivative ‘pongol’		Antiinflammatory		
				Antinociceptive		
				Antihyperglycemic		
				Anti-lipidoxidative		
				Antidiarrhoeal		
				Antiucler		
				Antioxidant		

Plants which are preserve β-cell function by depletion of antioxidant enzyme cascade and prevent diabetes induced ROS formation.
If a person’s pancreas does not work properly or body cells does not respond to insulin, blood glucose level gets higher and ultimately increases the risk of many secondary complications like cardiovascular disease, neuropathy, nephropathy, retinopathy, hair loss, foot and skin damage etc.

In present senario for treatment of such type of complex metabolic disorders, differet kinds of medicinal system are available. Allopathy medicines are mostly used for treatment of diabetes mellitus which bind the target site of body system and suppress the illness rather then removing it. Allopathy work by different mechanisms like improving insulin release in response to meals (sulfonylureas and meglitinides), reducing the resistance of the body cells to the effect of insulin (metformin and glitazones), preserve the function of the β-cells of the pancreas (Pioglitazone), stimulate the β-cells in the pancreas to release more insulin (sulfonylureas and meglitinides), α-glucosidase inhibitory activity (Acarbose), inhibiting the SGLT2 transporter (Gliflozins), slowing the absorption of sugar from the gut (acarbose), DPP-4 inhibitory activity (gliptins), Sodium-Glucose Transporter-2 Inhibitory activity (forxiga-dapagliflozin and canagliflozin).

There are certain side effects associated with the allopathic medicines, which make these medicines harmful to human body if taken for
a prolonged period of time. So herbal drugs can be the best for the treatment of diabetes because these are of natural sources and have less or no side effect on human body.

Herbal remedies for management of diabetes mellitus

Many plants have been investigated for their beneficial use in different types of diseases. There are about 600 plants, which are stated to have anti-diabetic property (Murray, 1995). Herbal drugs with antidiabetic activity can be classified into four categories according to their mode of action (Wadkar et al., 2008)-

The first group of plant drugs act like insulin, the classical example of this group is *Momordica charatta*.

The second group of herbal drugs is those acting on the β-cells of pancreas to increase the production of insulin, this group includes *Allium cepa* and *Pterocarpus marsupium*.

The third group of herbal drugs act by enhancing glucose utilization in diabetic patients, this group includes *Gingiber officinale*.

The last group of herbal plants with hypoglycemic potency act by miscellaneous mechanism. This group includes leguminous plants.

Wide arrays of plant derived active principles representing numerous phytochemicals have demonstrated consistent anti-diabetic activity and their possible use in the treatment of diabetes mellitus (Saminathan and Kavimani, 2015; Mamun Rashid et al., 2014).

The summary of 112 plants reported to have significant anti-diabetic activity of the active compounds, used in herbal formulations in India is shown in Table 2.

In vitro production of plant secondary metabolites

Tropical zones of the globe are abundant in medicinal flora. Increase in demand for these plants in industries is leading to frequent and rapid harvesting from natural habitations resulting in erosion of natural habitat and compromization with quality of the product. Hence, there is an urgent need for take up sustainable harvesting measures by balancing the commercial demand with the conservation of the valuable plants and their contribution to biodiversity.

There is great interest in developing alternatives to the intact plant for the production of plant secondary metabolites. Plant cell cultures are capable of producing pharmaceutically important bioactive molecules, equally or in enhanced levels as compared to mother plants. The application of these techniques for bioactive molecules production is increasing rapidly (Mulabagal et al., 2004; Kuruppusamy, 2009). Attempts have successfully been made in generating a range of compounds such as alkaloids, flavonoids, terpenes, steroids, glycosides, etc through tissue culture.

A total of about 28,000 patents are reported to be registred in plant cell culture related products production, especially associated with cosmetic, food and pharmaceutical industries (Marisol et al., 2016). Plants producing secondary metabolites with antidiabetic property like *Allium sativum*, *Azadirach indica*, *Camellia sinensis*, *Coscinium fenestratum*, *Ginko biloba*, *Momordica charantia*, *Mucura pruriens*, *Psoralea cordifolia*, *Scoparia dulcis*, *Tinospora cordifolia* and *Withania somnifera* were also cultured *in vitro* for the active compounds production (Kuruppasamy, 2009). Similarly large scale cultivation of cell suspension cultures, organ cultures in bioreactors was reported in *Catharanthus*.
roseus, Panax ginseng, and stevia rebaudiana (Ozlem et al., 2010).

Plant cells can also transform natural or artificial compounds, introduced into the cultures, through a variety of reactions such as hydrogenation, dehydrogenation, isomerization, glycosylation, hydroxylation, and opening of a ring and addition of carbon atoms. Many attempts have been made to use plant cell cultures for production of plant secondary metabolites, but most of these attempts have not been cost effective, and only few commercially viable systems have been created (Alferman et al., 2003).

This review summaries main group of secondary metabolites produced by plants and the techniques commonly applied for their isolation, identification and characterization. It also summaries potential 112 anti-diabetic plants, their explored plant parts producing secondary metabolites containing various pharmaceutical activities along with specific therapeutic and prophylactic function against diabetis. The crude extracts, however, contain a wide range of bioactive molecules whose composition of components varies from preparation to preparation. In case of herbal medicine pharmacopoeia on herbal products is not available. Hence, standardization and quality control parameters for the raw material as well as finished products are highly essential. Isolation of individual compounds and analysis of pharmaceutical properties and role of each biomolecule present in the extract hold grate importance in human trails. Although, at present increase in awareness on herbal medicine, validation of their pharmacological properties of crude extracts in appropriate experimental animal model has tricked up momentum tremendously, it is highly necessary to collect sound experimental data on toxicity studies, animal and human clinical studies for their worldwide acceptability.

Acknowledgments

All the authors are thankful to SOS in Biochemistry, jiwaji University for the support.

References

Abdel-Zaher, A.O., Salim, S.Y., Assaf, M.H., and Abdel-Hady, R.H., 2005. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves. Journal of Ethnopharmacology. 101(1-3):129-138.

Adebajo, A.C., Iwalewa, E.O., Obuotor, E.M., Ibikunle, G.F., Omosore, N.O., Adewunmi, C.O., Obaparusi, O.O., Klaes, M., Adetogun, G.E., Schmidt, T.J., and Verspohl, E.J. 2009. Pharmacological properties of the extract and some isolated compounds of Clausena lansium stem bark: Anti-trichomonal, anti-diabetic, anti-inflammatory, hepatoprotective and antioxidant effects. Journal of Ethnopharmacology. 122(1): 10-19.

Adeneye, A.A., Ajagbonna, O.P., and Ayodele, O.W., 2007. Hypoglycemic and anti-diabetic activities on the stem bark aqueous and ethanol extracts of Musanga cecropioides in normal and alloxa n-induced diabetic rats. Fitoterapia. 78(7-8): 502-505.

Agrawal, H., Kaul, N., Paradkar, A.R., and Mahadik, K.R. 2009. Standardization of crude extract of neem seed kernels (Azadirachta Indica A. Juss) and commercial neem based formulations using HPTLC and extended length packed columns SFC Method. Chromatographia. 62(3): 183-195.

Ahmed, L., Lakhani, M.S., Gillett, M., John, A., and Raza, H. 2001. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Research and Clinical Practice. 2001; 51(3): 155-161.

Alarcon-Aguilera, F.J., Roman-Ramos, R., Perez-Gutierrez, Aguilar-Contreras, A., Contreras-Weber, C.C., and Flores-Saenz, J.L. 1998. Study of the hypoglycemic effect of plants used as antidiabetics. Journal of Ethnopharmacology. 61: 101-110.

Alfermann, A., Petersen, M., and Fuss, E. 2003. Production of natural products by plant cell biotechnology: Results, problems and perspectives. In: M Lamier, W Rucker, eds, Plant Tissue Culture 100 Years Since Gottlieb Haberlandt. Springer, New York. 153-166.
Alimohammadi, S., Hobbenaghi, R., Javanbakht, J., Kheradmand, D., Mortezaee, R., Tavakoli, M., Khadivar, F., and Akbari, H. 2013. Protective and antidiabetic effects of extract from *Nigella sativa* on blood glucose concentrations against streptozotocin (STZ)-induced diabetic rats: an experimental study with histopathological evaluation. Diagnostic Pathology. 8: 137-314.

Ananthan, R., Latha, M., Ramkumar, K.M., Pari, L., Baskar, C., and Narmatha, B.V. 2003. Study of the Hypoglycemic Effect of *Tamarindus indica* Linn. Seeds on non-diabetic and diabetic model Rats. British Journal of Pharmaceutical Research. 3(4): 1094-1105.

Arambewela, L.S.R., Arawwawala, L.D.A.M., and Ratanasooriya, W.D. 2005. Antidiabetic activities of aqueous and ethanolic extract of *Piper betel* leaves in rats. Journal of Ethnopharmacology. 102: 239-245.

Aransiola, E.F., Daramola, M.O., Iwalewa, E.O., Seluwa, A.M., and Olufowobi, O.O. 2014. Anti- Diabetic Effect of *Bryophyllum pinnatum* Leaves. International Journal of Biological, Veterinary, Agricultural and Food Engineering. 8 (1): 95-99.

Arumugam, G., Manjula, P., and Parimelazhaga, T. 2013. Antidiabetic and antioxidant activities of aqueous and ethanolic extract of *Ficus amplissima* leaves in rats. Journal of Ethnopharmacology. 146(2): 597-604.

Arunachalam, K., and Parmelazhaga, T. 2013 Antidiabetic activity of *Atriplex halimus* Linn. (Chenopodiaceae) in streptozotocin induced diabetic rats. *Journal of Ethnopharmacology*. 147(2): 302-310.

Attele, M.S., Zhou, Y.P., Xu, J.T., Wu, J.A., Zhang, L., Dey, L., Pugh, W., Rue, P.A., Polonsky, K.S., and Yuan, C.S. 2002. Antidiabetic effects of *Panax ginseng* berry extract and the identification of an effective component. Diabetes. 51(6): 1851-1858.

Ayyanar, M., and Babu, P.S. 2012. *Syzygium cumini* (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pacific Journal of Tropical Biomedicine. 2(3): 240-246.

Bagherzade, G., Doranidishan, M. and Malekaneh, M. 2014. Antidiabetic Effects of *Otostegia persica* Root in Alloxan-induced Diabetic Rats. Pure and Applied Chemical Sciences. 2 (1): 1-9.

Baker, C., and Thormsberg, C. 1983. Inoculums Standardization in Antimicrobial Susceptibility Tests. Evaluation of overnight age Culture. *Journal of Clinical Microbiology*. 17(3): 140-457.

Bhat, Z.A., Ansari, S.H., Mukhtar, H.M., Naved, T., and Siddique, J.I. 2005. Effect of *Aralia Cachemirica* Decne, roots extracts on blood glucose level in normal and glucose loaded rats. *Pharmazie*. 60(9): 712-713.

Bhatia, A., and Mishra, T. 2010. Hypoglycemic activity of *Ziziphus mauritiana* aqueous ethanol seed extract in alloxan-induced diabetic mice. *Pharmaceutical biology*. 48(6): 604-610.

Bindu, R., 2013 Antidiabetic and antihyperlipidemic effects of alcoholic and aqueous leaf extracts of *Limonia acidissima*. Linn. in alloxan induced diabetic rats. International Conference and Exhibition on Pharmacognosy, Phytochemistry & Natural Products. Pharmacognosy. 2(3): 241.

Bothara, S.B., and Vaidya, S.K. 2016. Evaluation of antioxidant and antidiabetic effect of *Lpomoea reniformis* chois in alloxan induced diabetic rats. *International Journal of Pharmacy and Pharmaceutical Research*. 6(3): 252-273.

Buchanan, B., Gruissem, W., and Jones, R. 2000. *Biochemistry & Molecular Biology of Plants*, Eds. American Society of Plant Physiologists, Chapter 24: 1250-1318.

Chakraborty, U., and Das, H. 2010. Antidiabetic and antioxidant activities of *Cinnamomum tamala*Leaf Extracts in Streptozotocin-Treated Diabetic Rats. *Global Journal of Biotechnology & Biochemistry*. 5(1): 12-18.

Chauhan, A., Sharma, P.K., Srivastava, P., Kumar, N., and Dudhe, R. 2010. Plants having potential anti-diabetic activity: A review. *Der Pharmacia Lettre*. 2(3): 369-387.

Chauhan, K., Sharma, S., Rohatgi, K., and Chauhan, B. 2012. Antihyperlipidemic and antioxidant efficacy of *Catharanthus roseus* Linn. (Sadabhar) in streptozotocin induced diabetic rats. *Asian Journal of Pharmaceutical and Health Sciences*. 2012; 2(1): 235-243.

Chen, C.C., Hsu, C.Y., Chen, C.Y., and Liu, H.K. 2008. *Fructis corni* suppresses hepatic gluconeogenesis related gene transcription, enhances glucoseresponsiveness of pancreatic beta-cells, and prevents toxin-induced beta-cells death. *Journal of Ethnopharmacology*. 117(3): 483-490.

Chikhli, I., Allahi, H., Dib, M.E.A., Medjdoub, H., and Tabti, B. 2014. Antidiabetic activity of aqueous leaf extract of *Atriplex halimus* L. (Chenopodiaceae) in streptozotocin-induced diabetic rats. *Asian Pacific Journal of Tropical Disease*. 4(3): 181-184.
Chimezie, A., Ibukun, A., Teddy, E., and Francis, O. 2008. HPLC analysis of nicotinamide, pyridoxine, riboflavin and thiamin in some selected food products in Nigeria. African Journal of Pharmacy and Pharmacology. 2(2): 29-36.

Chitra, V., and Leelamma, S. 1999. Coriandrum sativum mechanism of hypoglycaemic action. Food Chemistry. 67(3): 229-231.

Choudhary, S., Pathak, A.K., Khare, S., and Kushwah, S. 2011. Evaluation of antidiabetic activity of leaves and fruits of Ficus religiosa Linn. International Journal of Pharmaceutical and Life Sciences. 2(12): 1325-1327.

Coulilbaly, F.A., 2014. Evaluation of the antidiabetic activity of the extracts of Vitellaria Paradoxa in Oryctolagus cuniculus rabbit (lagomorph). The Experiment. 24(3): 1673-1682.

Dachtler, M., Frans, H.M., de Put, V., Frans, V., Stijn, C.M., and Fritsche, B.J. 2003. On-line LC-NMR-MS characterization of sesame oil extracts and assessment of their antioxidant activity. European Journal of Lipid Science and Technology. 105(9): 488-496.

Dallak, M., Bashir, N., Abbas, M., Elessa, R., Haidara, M., and Khalil, M. 2009. Concomitant down regulation of glycolytic enzymes, upregulation of gluconeogenic enzymes and potential hepatonephro-protective effects following the chronic administration of the hypoglycemic, insulinotropic Citrullus colocynthis pulp extract. American Journal of Biochemistry and Biotechnology. 5(4): 153-161.

David, H.P., Rangachari, B., and Harshit, R.S. 2012. Antidiabetic activity of methanol extract of Acorus calamus in STZ induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine. S941-S946

Dewanjee, S., Das, A.K., Sahu, R., and Gangopadhyay, M. 2009. Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. Food and Chemical Toxicology. 47(10): 2679-2685.

Dhar, P., Gembitsky, I., Rai, P.K., Rai, N.K., Rai, A.K., and Watal, G. 2013. A Possible Connection Between Antidiabetic and Antilipemic Properties of Psoralea corylifolia Seeds and the Trace Elements Present: A LIBS Based Study. Food Biophysics. 8(2): 95-103.

Dheer, R., and Bhatnagar, P. 2010. A Study of the antidiabetic activity of Barleria prionitis Linn. Indian Journal Pharmacology. 42(2): 70-73.

Di, X., Kelvin, K.C., Chan, H.W.L., and Carmen, W.H. 2003. Fingerprint profiling of acid hydrolyzates of polysaccharides extracted from the fruiting bodies and spores of Lingzhi by high-performance thin-layer chromatography. Journal of Chromatography A. 1018(1): 85-95.

Edeog, H.O., Okwu, D.E., and Mbaebie, B.O. 2005. Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology 4(7): 685-688.

Eidia, A., Eidl, M., and Esmaeilia, E. 2006. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicin. 13: 624-629.

El-Sayed, A., and Cordell, G.A. 1981. Catharanthamine: A new antitumor bisindole alkaloid from Catharanthus roseus. Journal of Natural Product. 44(3): 289-293.

Eshrat, H.M., and Hussain, A. 2002. Reversal of diabetic retinopathy in streptozotocin induced diabetic rats using traditional indian anti-diabetic plant, Azadirachta indica (L.). Indian Journal of Clinical Biochemistry. 17 (2): 115-123.

Eze, E.D., Mohammed, A., Musa, K.Y., and Tanko, Y. 2012. Evaluation of Effect of Ethanolic Leaf Extract of Macuna pruriens on blood glucose levels in Alloxan-induced diabetic Wistar rats. Asian Journal of Medical Sciences. 4(1): 23-28.

Ezike, A.C., Akah, P.A., Okoli, C.C., and Okpala, C.B. 2010. Experimental evidence for the antidiabetic activity of Cajanus cajan leaves in rats. Journal of Basic and Clinical Pharmacy. 1: 25-30.

Faraz, M., Mohammad, K., Naysaneh, G., and Hamid, R.V. 2003. Phytochemical screening of some species of Iranian plants. Iranian Journal of Pharmaceutical Research. 2: 77-82.

Feshani, A.M., Kouhsari, S.M., and Mohammad, S. 2011. Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. Journal of Ethnopharmacology. 133(1): 67-74.

Fransworth, N.R., and Soejarto, D.D. 1991. Global importance of medicinal plants. In: Conservation of medicinal plants, edited by Akerele, O., Heywood, V. and Synge, H. Cambridge university press, Cambridge. 25-51.

Frode, T.S., and Medeiros, Y.S. 2008. Animal models to test drugs with potential antidiabetic activity. Journal of Ethnopharmacology. 115(1): 173-183.

Ganzera, M. 2002. Oneline LC-NMR-MS characterization of sesame oil extracts and assessment of their antioxidant activity. European Journal of Lipid Science and Technology. 105(9): 488-496.

Gopalakrishnan, S., and Kalaiarasi, T. 2013. Determination of biologically active...
constituents of the fruits of *Cucumis sativus* Linn. using GC-MS analysis. International Journal of Biological and Pharmaceutical Research. 4(7): 523-527.

Gray, A.M., and Flatt, P.R. 1998. Actions of the traditional anti-diabetic plant, *Agrimony eupatoria* (agrimony): effects on hyperglycaemia, cellular glucose metabolism and insulin secretion. British Journal of Nutrition. 80(1): 109-114.

Gregersen, S., Represent, P.B., Holst, J.J., and Hermansen, K. 2004. Anti-hyperglycemic effects of stevioside in Type 2 diabetic subjects. Metabolism Clinical and Experimental. 53: 73-76.

Grover, J.K., Yadav, S., and Vats, V. 2002. Medicinal plants of India with antidiabetic potential. Journal of Ethnopharmacology. 81(1): 81-100.

Gunalan, G., Saraswathy, A., and Vijayalakshmi, K. 2012. HPTLC fingerprint profile of *Bauhinia variegata* Linn. Leaves. Asian Pacific Journal of Tropical Disease. S21-S25.

Gupta, R., Agnihotri, P.K., Johri, S., and Saxena, M. 2009. Hypoglycaemic Activity of Ethanol Extract of *Cinnamomum tamala* leaves in normal and streptozotocin diabetic rats. Iranian Journal of Pharmacology & Therapeutics, 8(1): 17-21.

Gupta, R., and Gupta, R.S. 2009. Effect of *Pterocarpus marsupium* in streptozotocin-induced hyperglycemic state in rats: comparison with glibenclamide. Diabetologia Croatica. 38(2): 39-45.

Han, Q., Yu, Q.Y., Shi, J., Xiong, C.Y., Ling, Z.J., and He, P.M. 2011. Molecular characterization and hypoglycemic activity of a novel water-soluble polysaccharide from tea (*Camellia sinensis*) flower. Carbohydrate Polymers. 86(2): 797-805.

Harborne, J.B. 1998. In: A guide to modern techniques of plant analysis. In: Phytochemical methods. 3rd edition. London: Chapman and Hall. 40-137.

Harborne, J.B., 1999. Classes and functions of secondary products, in Walton, N.J., Brown, D.E. (Eds.), Chemicals from Plants, Perspectives on Secondary Plant Products, Imperial College Press, 1-25.

Harbourne, J.B., 1973. Phytochemical methods. In: A guide to modern techniques of plant analysis, London, Chapman and Hall. 221-232.

He, W., Mi, Y.L., Song, Y., Moon, S., and Park, S. 2011. Combined genomic–metabolomic approach or the differentiation of geographical origins of natural products: Deer antlers as an example. Journal of Agricultural and Food Chemistry. 59(12): 6339-6345.

Hu, X., Li, S., Wang, L., Zhu, D., Wang, Y., Li, Y., Yang, Y., Zhang, Z., and Cheng, D. 2013. Anti-diabetic Activities of Aqueous Extract from *Actinidia kolomikta* Root Against α-glucosidase. Journal of Pharmacognosy and Phytochemistry. 2(4): 53-57.

Hussain, Z., Waheed, A., and Qureshi, R.A. 2004. The effect of medicinal plants of Islamabad and Murree region of Pakistan on insulin secretion from INS-1 cells. Phytotherapy Research. 18(1): 73-77.

Hwang, S.M., Kim, J.S., Lee, Y.J., Yoon, J.J., Lee, S.M., Kang, D.G., and Lee, H.S. (2012). Anti-diabetic atherosclerosis effect of Prunella vulgaris in db/db mice with type-II Diabetes. American Journal of Chinese Medicine. 40(5): 937-951.

Igbe, I., Omogbai, E.K.I., and Ozolu, R.I. 2009. Hypoglycemic activity of aqueous seed extract of *Hunteria umbellata* in normal and streptozotocin-induced diabetic rats. Pharmaceutical Biology. 2009; 47(10): 1011-1016.

Ivorra, M., Paya, M., and Villar, A. 1988. Hypoglycemic and insulin release effect of tormentic acid: Anew hypoglycemic natural product. Planta Medica. 54: 282-286.

Jafri, S.A., Abass, S., and Qasim, M. 2011. Hypoglycemic Effect of Ginger (*Zingiber officinale*) in Alloxan Induced Diabetic Rats (*Rattus norvegicus*). Pakistan Veterinary Journal. 31(2): 160-162.

Jain, S.K., and Khurdiya, D.S. 2004. Vitamin C enrichment of fruit juice based ready-to-serve beverages through blending of Indian gooseberry (*Emblica officinalis* Gaertn.) juice. Plant Foods for Human Nutrition. 59(2): 63-66.

Jawla, S., Kumar, Y., and Khan, M.S.Y. 2012. Hypoglycemic activity of *Bougainvillea spectabilis* stem bark in normal and alloxan-induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine. S919-S923.

Jayasri, M.A., Gunasekaran, S., Radha, A., and Mathew, T.L. 2008. Anti-diabetic effect of *Costus pictus* leaves in normal and streptozotocin-induced diabetic rats. International Journal of Diabetes and Metabolism. 16: 117-122.

Jeonga, H.J., Kimb, J.S., Hyunc, T.K., Yanga, J., Kangd, H.H., Chod, J.C., Yeomd, H.M., and Kim, M.J. 2013. *In vitro* antioxidant and antidiabetic activities of *Rehmannia glutinosa* tuberous root extracts. Science Asia. 39: 605-609.
Jimenez, J., Risco, S., Ruiz, T., and Zarzuelo, A. 1986. Hypoglycemic Activity of Salvia lavandulifolia. Planta Medica. 52(4): 260-262.

Joshi, B., Lekhak, S., and Sharma, A. 2009. Antibacterial Property of Different Medicinal Plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatemand Origanum majorana. Kathmandu University Journal of Science, Engineering and Technology. 5(1): 143-150.

Kalra, A.N., 2005 Text Book of Industrial Pharmacognosy, Oscar publication.

Kang, J., Choi, M.Y., Kang, S., Kwon, H.N., Wen, H., and Lee, C.H. 2008. Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. Journal of Agricultural and Food Chemistry. 56 (24): 11589-11595.

Karthikeyani, T., Rajesh, K., Kumar, K.L., Sahu, R., and Amit, R. 2009. Evaluation of antidiabetic and hypolipidemic effect of Cucumis sativus fruit in STZ-induced diabetic rats. Biomedical and Pharmacology Journal. 2(2): 351-355

Kasthuri, K.T., Radha, R., Jaysia, N., Anoop, A., and Shanthi, P. 2010. Development of GC-MS for a polyherbal formulation- MEGNI. International Journal of Pharmacy and Pharmaceutical Sciences. 2(2): 81-83.

Kavipriya, S., Tamliselvan, N., Thirumalai, T., and Arumugam, G. 2013. Anti-diabetic effect of methanolic leaf extract of Pongamia pinnata in streptozotocin induced diabetic rats. Journal of Coastal Life Medicine. 1(2): 113-117

Kesari, A.N., Gupta, R.K., Singh, S.K., Diwakar, S., and Wala, S. 2006. Hypoglycemic and antihyperglycemic activity of Aegle marmelosseed extract in normal and diabetic rats. Journal of Ethnopharmacology. 107(3): 374-379.

Khalil, O.A., Ramadan, K.S., Danial, E.N., Alnahdi, H.S., and Ayaz, N.O. 2012. Antidiabetic activity of Rosmarinus officinalis and its relationship with the antioxidant property. African Journal of Pharmacy and Pharmacology. 6(14): 1031-1036.

Khan, B.A., Abraham, A., and Leelamma, S. 1995. Hypoglycaemic action of Murraya Koenigii (curry leaf), Brassica juncea (mustard); mechanism of action. Indian Journal of Biochemistry and Biophysics. 32: 106-108.

Khan, K.H., 2009. Roles of Embleka officinalisin Medicine - A Review. Botany Research International 2 (4): 218-228.

Khan, K.Y., Khan, M.A., Niamat, R., Shah, G.M., Fazal, H., Seema, N., Hussain, I., Ahmad, L., Inayat, H., Jan, G., and Kanwal, F. 2012. Elemental content of some anti-diabetic ethnomedicinal species of genus Ficus Linn. using atomic absorption spectrophotometry technique. Journal of Medicinal Plants Research. 6(11): 2136-2140.

Khani, S.P., Vishwakarma, S.L., and Goyal, R.K. 2004. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. The Journal of pharmacy and pharmacology. 56(1): 101-105.

Kumar, C.H., Ramesh, A., Kumar, J.N.S., and Ishfaq, B.M. 2011. A review on hepatoprotective activity of medicinal plants. International Journal of Pharmaceutical Sciences and Research. 2(3): 501-515.

Kumar, D.S., Sharathnath, K.V., Yogeswaran, P., Harani, S., Sudhakar, K., Sudha, P., and Banji, D. 2010. A Medicinal Potency of Momordica charantia. International Journal of Pharmaceutical Sciences. 1(2): 95-100.

Kumar, E.K., and Janardhana, G.R. 2011. Antidiabetic activity of alcoholic stem extract of Nervilia picata in streptozotocin-nicotinamide induced type 2 diabetic rats. Journal of Ethnopharmacology. 133(2): 480-483.

Kumar, R., Ilavarasan, T., Jayachandran, M., Deecaraman, P., Aravindan, N., Padmanabhan, and Krishan, M.R.V. 2008. Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats. Journal of Medicinal Plants Research. 2(9): 246-249.

Kumar, R., Patel, D.K., Prasad, S.K., Sairam, K., and Hemalatha, S. 2012. Antidiabetic activity of alcoholic root extract of Caesalpina digyna in streptozotocin-nicotinamide induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine. S934-S940.

Kumar, S., Kumar, V., and Prakash, O.M. 2011. Pharmacological Evaluation of Fractioned Extracts of Callistemon lanceolatus for Antidiabetic and Hypolipidemic Activities in Diabetic Rats. Journal of Pharmacy and Allied Health Science. 1(2): 58-63.

Kumar, V.K., Dawood, S.R., Rajkumar, B., and Sukumar, I.E. 2010. Antidiabetic potential of Lantana aculeata root extract in alloxan-induced diabetic rats. International Journal of Phytomedicine. 2(3): 299-303.

Kumar, P., Baraiya, S., Gaidhani, S.N., and Gupta, M.D. 2012. Antidiabetic activity of stem bark of Bauhinia variegata in alloxan induced
hyperglycemic rats. Journal of Pharmacology and Pharmaco- therapeutics. 3: 64-66.
Kumawat, B.K., Chand, T., and Singh, Y. 2012. Antidiabetic and antihyperlipidemic effects of alcoholic and aqueous stem bark extracts of Limonia acidissima Linn in alloxan induced diabetic rats. International Journal of phytomedicine. 4: 187-196.
Kumawat, N.S., Chaudhari, S.P., Wani, N.S., Deshmukh, T.A., and Patil, V.R. 2010. Antidiabetic activity of ethanol extract of Colocasia esculenta leaves in alloxan induced diabetic rats, International Journal of Pharmtech Research. 2: 1246-1249
Kuruppusamy, S., 2009. A review on trends in production of secondary metabolites from higher plats by in vitro tissue, organ and cell cultures. Journal of Medicinal Plant Research. 3(13): 1222-1239.
Lakshmi, V., Agarwal, S.K., Ansari, J.A., Mahdi, A.A., and Srivastava, A.K. 2014. Antidiabetic potential of Musa paradisiacaein Streptozotocin-induced diabetic rats. The Journal of Phytopharmacology, 3(2): 77-81.
Latha, M., and Pari, L. 2004. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes. Brazilian Journal of Medical and Biological Research. 37(4): 577-586.
Li, S.L., Lai, S.F., Song, J.Z., Qiao, C.F., Liu, X., and Zhou, Y. 2010a. Decocting-induced chemical transformations and global quality of Du–Shen–Tang, the decoction of ginseng evaluated by UPLC–Q-TOF-MS/MS based chemical profiling approach. Journal of Pharmaceutical and Biomedical Analysis. 53: 946-957.
Li, S.L., Song, J.Z., Qiao, C.F., Zhou, Y., Qian, K.D., and Xu, H.X. 2010b. UPLC–PDA-TOFMS based chemical profiling approach to rapidly evaluate chemical consistency between traditional and dispensing granule decoctions of traditional medicine combinatorial formulae. Journal of Pharmaceutical and Biomedical Analysis. 52: 468-478.
Lino, C.D.S., Diógenes, J.P.L., Pereira, B.A., Faria, R.A.P.G., Neto, M.A., Alves, R.S., Queiroz, M.G.R.D., Sousa, F.C.F.D., and Viana, G.S.B. 2004. Antidiabetic activity of Bauhinia forficata extracts in alloxan-diabetic rats. Biological and Pharmaceutical Bulletin 27(1): 125-127.
Lokesh, D., and Amit, S.D. 2006. Diabetes mellitus—its possible pharmacological evaluation techniques and naturatherapy. International Journal of Green Pharmacy. 1: 15-28.
Lokman, F.E., Gu, H.F., Mohamud, W.N.W., Yusoff, M.M., Chia, K.L., and Ostenson, C.G. 2013. Antidiabetic Effect of Oral Borapetol B Compound, Isolated from the Plant Tinospora crispa, by Stimulating Insulin Release. Evidence-Based Complementary and Alternative Medicine.727602: 1-7
Mahato, S.B., Sahu, N.P., and Ganguly, A.N. 1981. Steroidal glycosides of Tribulus terrestris. Journal of the Chemical Society, Perkin Transactions. 1: 2405-2410.
Maiti, R., Das, U.K., and Ghosh, D. 2005. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamariindus indica. Biological and Pharmaceutical Bulletin. 28: 1172-1176.
Mamun, Rashid, A.N.M., Hossain, M.S., Hassan, N., Dash, B.K., Sapon, M.A., and Sen, M.K. 2014. A review on Medicinal Plants with antidiabetic activity. Journal of Pharmacognosy and Phytochemistry. 3(4):149-159.
Maries, R.J., and Farnsworth, N.R. 1995. Antidiabetic plants and their active constituents. Phytochemistry. 2(2): 137-189.
Marisol, O.V., Susan, H., Hong, S.M., Jang, M.O., Jin, Y.W., Lee, E.K., and Loake, G.J. 2016. Plant Cell culture strategies for the production of natural products. BMB Reports. 49(3):149-158.
Maroo, J., Vasu, V.T., and Gupta, S. 2003. Dose dependent hypoglycemic effect of aqueous extract of Enicostemma littorale Blume in alloxan induced diabetic rats. Phytochemistry.10: 196-199.
Meenakshi, P., Bhuvaneswari, R., Rathil, M.A., Thirumoorthi, L., Guravaiah, D.C., and Jiji, M.J. 2010. Antidiabetic activity of ethanolic extract of Zaleya decandra in alloxan-induced diabetic rats. Applied Biochemistry and Biotechnology. 162: 1153-1159.
Mike, L.S., and Edward, K.H. 1999. LC/MS applications in drug development. Milestone Development Services, Pennington, New Jersey.
Mishra, A., and Garg, G.P. 2011. Anti diabetic activity of Alangium salvifolium in alloxan induced diabetic rats. International Research Journal of Pharmacy. 2(6): 101-105.
Mohamed, S., Thattakudian, S.U., Ramkanth, S., Azagu, S.M., Gnanaprakash, K., Angala, P.S., Thiruvengada, R.V.S., and Gauthaman, K. 2011. Protective effect of methanolic extract of Annona squamosa Linn in isoniazid-rifampicin induced hepatotoxicity in rats. Pakistan Journal of Pharmaceutical Sciences. 24(2): 129-134.
Mohammadi, J., Saadipour, K., Delaviz, H., and Mohammadi, B. 2011. Anti-diabetic effects of
an alcoholic extract of *Juglans regia* in an animal model. Turkish Journal of Medical Sciences. 2011; 41(4): 685-691.

Moqbel, F.S., Naik, P.R., Habeeb, N., and Selvaraj, S. 2011. Antidiabetic properties of *Hibiscus rosa sinensis* L. leaf extract fractions on non-obese diabetic (NOD) mouse. Indian Journal of Experimental Biology. 49: 24-29.

Mukhtar, H.M., Ansari, S.H., Bhat, Z.A., and Naved, T. 2006. Antidiabetic activity of an ethanol extract obtained from the stem bark of *Psidium guajava* (Myrtaceae). Pharmacie. 61(8): 725-727.

Mulabagal, V., Chen, Y.L., Lo, S.F., Nalawade, S.M., Lin, C.Y., and Tsay, H.S. 2004. Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Botanical Bulletin of Academia Sinica. 45:1-22.

Murra, M.T., 1995. Healing power of Herbs. 2nd edition, Gramercy Books NY. 357.

Nair, B.R., and Santhakumari, G. 1986. Anti diabetic activity of the seed kernel of *Syzygium cumini* Linn. Ancient Science of Life. 6(2): 80-84.

Nayak, B.S., and Lexley, M.P.P. 2006. *Catharanthus roseus* flower has wound healing activity in Sprague Dawley rats. BMC Complementary and Alternative Medicine. 6: 41.

Nelson, I.O., Chijioke, C.P., and Ghasi, S. 2012. Anti diabetic effect of crude leaf extracts of *Ocimum gratissimum* in neonatal streptozotocin-induced type-2 model diabetic rats. International Journal of Pharmacy and Pharmaceutical Sciences. 4(5): 77-83.

Nnamdi, C., Uwakwe, A., and Chuku, L. 2012. Hypoglycemic effects of aqueous and ethanolic extracts of Dandelion (*Taraxacum officinale* Lh. wigg.) Leaves and roots on streptozotocin-induced albino rats. Global Journal of Research on Medicinal Plants and Indigenous Medicine. 1(6): 211-217.

Noor, H., and Ashcroft, S.J. 1989. Antidiabetic effects of *Tinospora crispa* in rats. Journal of Ethnopharmacology. 27(1-2): 149-61.

Ojewole, J.A.O., 2006. Antinociceptive, anti-inflammatory and antidiabetic properties of *Hypoxis heremocallidea* Fisch. & C.A. Mey. (Hypoxidaceae) corn ‘African Potato’ aqueous extractin mice and rats. Journal of Ethnopharmacology. 130(1): 126-134.

Okoli, C.O., Ibiam, A.F., Ezike, A.C., Akah, P.A., and Okoye, T.C. 2010. Evaluation of antidiabetic potentials of *Phyllanthus niruri* in alloxan diabetic rats. African Journal of Biotechnology. 9 (2): 248-259.

Ong, K.W., Hsu, A., Song, L., Huang, D., and Tan, B.K. 2011. Polyphenols-rich *Vernonia amygdalina* shows anti-diabetic effects in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology. 133(2): 598-607.

Orhan, N., Aslan, M., Süeküroğlu, M., and Deliorman Orhan, D. 2013. In vivo and in vitro antidiabetic effect of *Cistus laurifolius* L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. Journal of Ethnopharmacology. 146(3): 859-865.

Ozlem, Y.C., Aynur, G., and Fazilet, V.S. 2010. Large scale cultivation of plant tissue culture in bioreactors. Transworld Research Network. 1-54.

Ozougwu, Jevas, C., 2011. Anti-diabetic effects of *Allium cepa* (onions) aqueous extracts on alloxan-induced diabetic *Rattus norvegicus*. Journal of Medicinal Plants Research. 5(7): 1134-1139.

Pandhare, R., Balakrishnan, S., Mohite, P., and Khanage, S. 2012. Antidiabetic and antihiperlipidaemic potential of *Amaranthus viridis* (L.) Merr. in streptozotocin induced diabetic rats. Asian Pacific Journal of Tropical Disease. S180-S185.

Pasch, H., Heinz, L.C., Macko, T., and Hiller, W. 2008. High-temperature gradient HPLC and LC-NMR for the analysis of complex polyolefins. Pure and Applied Chemistry. 80(8): 1747-1762.

Patil, P.S., and Rajani, S. 2010. An advancement of analytical techniques in herbal research. Journal of Advanced Scientific Research. 1(1): 8-14.

Pepato, M.T., Folgadol, V.B.B., Kettelhut, I.C., and Brunette, I.L. 2001. Lack of antidiabetic effect of a *Eugenia jambolana* leaf decoction on rat streptozotocin diabetes. Brazilian Journal of Medical and Biological Research. 34: 389-395.

Pietta, P., Mauri, P., Rava, A.,and Sabbatini, G. 1991. Application of micellar electrokinetic capillary chromatography to the determination of flavonoid drugs. Journal of Chromatography. 549: 367-373.

Poongothai, K., Ponnurugan, P., Ahmed, K.S., Kumar, B.S., and Sheriff, S.A. 2011. Antihyperglycemic and antioxidant effects of *Solanum xanthocarpum* leaves (field grown & in vitro raised) extract on alloxan induced diabetic rats. Asian Pacific Journal of Tropical Medicine 4(10): 778-785.

Pradeep, S., Kumar, P., Khajuria, D.K., and Rao, S.G. 2010. Preclinical evaluation of antinociceptive effect of *Withania Somnifera* (Ashwagandha) in diabetic peripheral neuropathic rat models. Pharmacologyonline. 2: 283-298.
Prisilla, D.H., Balamurugan, R., and Shah, H.R. 2012. Antidiabetic activity of methanol extract of *Acorus calamus* in STZ induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine. S941-S946.

Punitha, D., Thandavamoorthy, A., Arumugasamy, K., Suress, S.N., Danya, U., and Udhayasankar, M.R. 2012. Anti-hyperlipidemic effect of ethanolic leaf extract of *Gmelina arborea* in streptozotocin induced male wistar albino rats. International Journal of Life science and Pharma Reviews. 2(3): 46-51.

Puri, D., 2001. The insulinotropic activity of Nepalese medicinal plant *Biophytum sensitivum*, preliminary experimental study. Journal of Ethnopharmacology. 78(1): 89-93.

Pushpangadan, P., 1995. Role of Traditional Medicine in Primary Health Care. In: Iyengar, P.K., Damodaran, V.K., Pushpangadan, P., Editors. Science for Health. Published By State Committee On Science, Technology And Environment, Govt. Of Kerala.

Rajalakshmi, M., Eliza, J., Cecilia, E.P., Nirmala, A., and Daisy, P. 2009. Anti-diabetic properties of *Tinospora cordifolia* stem extracts on streptozotocin-induced diabetic rats. African Journal of Pharmacy and Pharmacology. 3(5): 171-180.

Rajathi, M., Modilal, D., and Daisy, P. 2011. Hypoglycemic Effects of *Elephantopus Scaber* in Alloxan-Induced Diabetic Rats. Indian Journal of Novel Drug delivery. 3(2): 98-103.

Ramchander, T., Rajkumar, D., Sravanprasad, M., Goli, V., Dhanalakshmi, C.H., and Arjun. 2012. Antidiabetic activity of aqueous methanolic extract of leaf of *Tamarindus indica*. International Journal of Pharmacy and Pharmaceutical Research. 4(1): 5-7.

Ramkumar, K.M., Vanitha, P., Uma, C., Suganya, N., Bhakkiyalakshmi, E., and Sujatha, J. 2011. Antidiabetic activity of alcoholic stem extract of *Gymnema montanum* in streptozotocin induced diabetic rats. Food and Chemical Toxicology. 49(12): 3390-3394.

Ranilla, L.G., Apostolidis, E., Genovese, M.I., and Shetty, K. 2009. Evaluation of indigenous grains from the *Peruvian Andean* region for antidiabetics and antihypertensive potential using in vitro methods. Journal of Medicinal Food. 12(4): 704-713.

Ravi, K., Sivagnanam, K., and Subramanian, S. 2004. Anti-diabetic activity of *Eugenia jambolana* seed kernels on streptozotocin-induced diabetic rats. Journal of Medicinal Food. 7(2): 187-191.

Ray, D., Sharatchandra, K.H., and Thokchom, I.S. 2006. Antipyretic, antidiarrhoeal, hypoglycaemic and hepatoprotective activities of ethyl acetate extract of *Acacia catechu Wild.* in albino rats. Indian Journal of Pharmacology. 38: 408-413.

Reddy, J., and Hemachandran, J. 2014. Comparative evaluation of the antidiabetic and hypoglycaemic potentials of the parts *Musa paradisiacal* plant extracts. International Journal of Scientific and Research Publications. 4(4): 1-5.

Ronningen, K.S., Iwe, T., Halstensen, T.S., Spurkland, A., and Thorsby, E. 1989. The amino acid at position 57 of the HLA-DQ beta chain and susceptibility to develop insulin-dependent diabetes mellitus. Human Immunology. 26(3): 215-25.

Sabu, M.C., and Kuttan, R. 2009. Antidiabetic and antioxidant activity of *Terminalia bellerica* Robx. Indian Journal of Experimental Biology. 47: 270-275.

Sadak, B.S., Guru, S.M., Mannur, I.S., Sree, V.P., Pushpa Latha, B., Radha Madhavi, Y.R., and Bhaskar, M. 2010. Pharmaceutical Application of *Curcuma Longa* on Alloxan Induced Type 1 Diabetes and Antioxidant Cascade in Liver of Male Albino Rats. Asian Journal of Experimental. Biological Science. 1 (3): 627-632.

Saghir, A.J., Syed, S.H., Aftab, N., Kalsoom, and Javed, I. 2011. Hypoglycemic effect of *Aloe vera* extract in Alloxan-induced diabetic albino rats. Medicinal Journal of Islamic World Academic Science. 19(3): 127-130

Sahm, D.F., and Washington, J.A. 1990. Antibacterial susceptibility Test Dilution Methods: Manuals of Clinical Microbiology. Lennette EH, 5th Edn. America Society of Microbiology Washington DC. 1105-1116.

Saini, R., and Patil, S.M. 2012. Anti-Diabetic Activity Of Roots Of *Quercus infectoria* Olivier In Alloxan Induced Diabetic Rats. International Journal of Pharmaceutical Sciences and Research. 3(4): 1318-1321.

Salahuddin, Md., and jalalpure, S.S. 2010. Antidiabetic activity of aqueous fruit extract of *Cucumis trigonus* Roxb. in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology. 127(2): 565-567.

Saminathan, K., and Kavimani, S. 2015. Current Trends of Plants Having Antidiabetic Activity: A Review. Journal of Bioanalysis and Biomedicine. 7(2): 055-065.

Santhan, S., Janarthan, M., and Zuber, A.M. 2013. Evaluation of anti-diabetic and nephro protective activity of 95% ethanolic extract of *Canthium dicoccum* whole plant by using albino...
rats. Journal of Chemical and Pharmaceutical Sciences. 6(4): 218-222.
Santhosha, D., Ramesh, A., Sravan, Prasad, M., Sathis, K. D., Pawan, K. B., and Dhanalakshmi, C.H. 2011. Punarnava- A Review. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2 (4): 427.
Sarah, N., Oluwatosin, A., and Edith, A. 2009. Oral Administration of Extract from Curcuma longa Lowers Blood Glucose and Attenuates Alloxan-Induced Hyperlipidemia in Diabetic Rabbits. Pakistan Journal of Nutrition. 8 (5): 625-628.
Sarasa, D., Sridhar, S., and Prabakaran, E. 2012. Effect of an antidiabetic extract of Trigonella foenum graecum on normal and alloxan induced diabetic mice. International Journal of Pharmacy and Pharmaceutical Sciences. 4(1): 63-65.
Saravanan, J., Shajan, A., Joshi, N.H., Vararatharajan, R., and Vailiappan, K. 2010. A simple and validated RP-HPLC method for the estimation of methylcobalamin in bulk and capsule dosage form. International Journal of Chemical and Pharmaceutical Science. 1(2): 323-324.
Sathya, A., and Siddhuraju, P. 2012. Role of phenolics as antioxidants, biomoleculeprotectors and as anti-diabetic factors evaluation on bark and empty pods of Acacia auriculiformis. Asian Pacific Journal of Tropical Medicine. 5(10):757-765.
Seshiah, V., and Balaji, V. 2000. Current Concepts in Management of Diabetes Mellitus in Pregnancy: Role of Insulin Pumps and Analougues. International Journal of Diabetes in Developing Countries. 20: 109-111.
Seyyed, A.M., Kowthar, J., Masoumeh, J., Hoda, B., and Mohammad, K.G.N. 2010. Evaluation of the antidiabetic and antilipaemic activities of the hydroalcoholic extract of Phoenix Dactylifera palm leaves and its Fractions in Alloxan-induced diabetic rats. Malaysian Journal of Medical Science. 17(4): 4-13.
Shahraki, M.R., Arab, M.R., Mirimokaddam, E., and Palan, M.J. 2007. The effect of Teucrium polium (Calpoure) on liver function, serum lipids and glucose in diabetic male rats. Iranian Biomedical Journal. 11(1): 65-68.
Shajeela, P.S., Kalpanadevi, V., and Mohan, V.R. 2012. Potential antidiabetic, hypolipidaemic and antioxidant effects of Nyphea pubescens extract in alloxan induced diabetic rats. Journal of Applied Pharmaceutical Science 2(2): 83-88. Shankar, P., Kumar, V., and Rao, N. 2005. Evaluation of antidiabetic activity of Ginkgo biloba in streptozotocin induced diabetic rats. International Journal of Pharmacy and Technology. 4 (1): 16-19.
Shao, Y.U., Poobsasert, O., and Kennelly, E.J. 1997. Steroidal saponins from Asparagus officinalis and their cytotoxic activity. Planta Medica. 35: 1084-87
Sharma, G.N., Dubey, S.K., Sharma, P., and Satì, N. 2011. Review Article Medicinal Values of Bael (Aegle marmelos) (L.) Corr. International Journal of Current Pharmaceutical Research. 1(3):13-22.
Sharmin, R., Khan, M.R.I., Akhter, M.A., Alim, A., Islam, M.A., Anisuzzaman, A.S.M., and Ahmed, M. 2013.Hypoglycemic and Hypolipidemic Effects of Cucumber, White Pumpkin and Ridge Gourd in Alloxan Induced Diabetic Rats. Journal of Scientific Research. 5(1): 161-170.
Shetti, A.A., Sanakal, R.D., and Kaliwal, B.B. 2012. Antidiabetic effect of ethanolic leaf extract of Phyllanthus amarus in alloxan induced diabetic mice. Asian Journal of Plant Science and Research. 2(1): 11-15.
Shirwaikar, A., Issac, D., and Malini, S. 2004. Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. Journal of Ethnopharmacology. 90(1): 81-86.
Shokeen, P., Anand, P., Murali, Y.K., and Tandon, V. 2008. Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food and Chemical Toxicology. 46(11): 3458-3466.
Shyur, L.F., and Yang, N.S. 2008. Metabolomics for phytomedicine research and drug development. Current Opinion in Chemical Biology. 12: 66-71.
Singh, A., Singh, K., and Saxena, A. 2010. Hypoglycaemic activity of different extracts of various herbal plants. International Research Journal of Pharmacy 1(1): 212-224.
Singh, B.N., Singh, B.R., Singh, R.L., Prakash, D., Sarma, B.K., and Singh, H.B. 2009. Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food and Chemical Toxicology. 47: 778-786.
Singh, L.W.,2011. Traditional medicinal plants of Manipur as antidiabetics. Journal of Medicinal Plants Research. 5(5): 677-687.
Singh, S.K., Kesari, A.N., Gupta, R.K., Jaiswal, D., and Watal, G. 2007. Assessment of antidiabetic potential of Cynodon dactylon extract in...
streptozotocin diabetic rats. Journal of Ethnopharmacology. 114(2):174-179.

Sirlintorn, Y., Wanlaya, J., Damrong, S., Wijit, B., and Sirichai, A. 2009. Insulin secreting and a-glucosidase inhibitory activity of Coscinium fenestratum and postprandial hyperglycemia in normal and diabetic rats. Journal of Medicinal Plants Research. 3(9): 646-651.

Snehalatha, and Ramachnadaran. 2009. Insight into the Mechanism of Primary Prevention of Type 2 Diabetes: Improvement in Insulin Sensitivity and Beta cell function. In: “Genetic and Epigenetic Basis of Complex Diseases. Conference in Centre for Cellular and Molecular Biology.

Sobia, T., Sidra, M., Javeria, H., Maryam, H., and Bushra, U. 2012. An Overview of medicinal importance of Swertia chirayita. International Journal of Applied Science and Technology. 2(1): 298- 304.

Somasundaram, G., Manimekalai, K., Salwe, K.J., and Pandiamunian, J. 2012. Evaluation of the antidiabetic effect of Ocimum sanctum in type 2 diabetic patients. International Journal of Life science and Pharma Research. 2 (3): 75-81.

Sombra, L.L., Gómez, M.R., Olsina, R., Martínez, L.D., and Silva, M.F. 2005. Comparative study between capillary electrophoresis and high performance liquid chromatography in ‘guarana’ based phytopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis. 36: 989-994.

Son, K., and Naved, T. 2010. HPTLC- Its applications in herbal drug industry. The Pharma Review. 112-117.

Srivastava, B., Sinha, A.K., Gaur, S., and Barshiliya, Y. 2012. Study of hypoglycaemic and hypolipidemic activity of Eugenia Jambolana pulp and seed extract in Streptozotocin induced diabetic albino rats. Asian Journal of Pharmacy and Life Science. 2 (1): 10-19.

Srivastava, R., Srivastava, S.P., Jaiswal, N., Mishra, A., Maurya, R., and Srivastava, A.K. 2011. Antidiabetic and antisyndrome of Cuminum cyminum L. in validated animal models. Medicinal Chemistry Research. 20: 1656–1666.

Subbulakshmi, G., and Naik, M. 2001. Indigenous foods in the treatment of diabetes mellitus. Bombay Hospital Research Journal. 43: 548-561.

Suhashini, R., Sindhu, S., and Sagadevan, E. 2014. In vitro Evaluation of Antidiabetic Potential and Phytochemical Profile of Psoralea corylifolia Seeds. International Journal of Pharmacognosy and Phytochemical Research. 6(2): 414-419.

Suryanarayan, P., Saraswat, M., Petrash, J.M., and Reddy, G.B. 2007. Emblica officinalis and its enriched tannoids delay streptozotocin-induced diabetic cataract in rats. Molecular Vision. 24(13): 1291-1297.

Susana, B.G., Wilfredo, M.C., María, I.M., Alfredo, G., César, A.C., and Sara, S.S. 2010. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions. Chemico-Biological Interactions. 185(2): 143-152.

Thevenod, F. 2008. Pathophysiology of diabetes mellitus type 2: Roles of obesity, insulin resistance and β-cell dysfunction. Diabetes Basel Karger. 19: 1-18.

Tirgar, P.R., Shah, K.V., Rathod, D., Desai, T.R., and Goyal, R.K. 2011. Investigation Into Mechanism of Action of Anti- Diabetic Activity of Emblica Officinalis on Streptozotocin Induced Type I Diabetic Rat. Pharmacologyonline. 2: 556-575.

Tripathi, K.D., 2003. Essentials of Medical Pharmacology. 5th edition, JayPee Brothers Medical Publishers (Pvt) Ltd, New Delhi. 235-53.

Upwar, N.K., Patel, R., Waseem, N., and Mahobia, N.K. 2011. Hypoglycemic Effect of Methanolic Extract of Berberis aristata Dc Stem on Normal and Streptozotocin Induced Diabetic Rats. International Journal of Pharmacy Pharmaceutical Science. 3 (1): 222-224.

Verma, N., Singh, A.P., Amresh, G.P.K., and Sahub, P.K. 2010. Different approaches for treatment of type 2 diabetes mellitus with special reference to traditional medicines: a review. The Pharmaceutical Research. 3: 27-50.

Verma, R.S., Padalia, R.C., Yadav, A., and Chauhan, A. 2010. Essential oil composition of Aralia cachemirica fromUttarakhand, India. Records of Natural Products. 4(3): 163-166.

Vetricelvan, T., and Jegadeesan, M. 2002. Anti diabetic activity of alcoholic extract of Aerva lanata (L.) Juss. ex schultes in rats, Journal of Ethnopharmacology. 80(2-3): 103-107.

Vijayanand, N., Sivasangari Ramya, S., and Rathinavel, S. 2014. Antidiabetic activity of Cynodon dactylon (L.) Pers. Extracts in alloxan induced rats. International Journal of Pharmacy and Pharmaceutical Sciences. 6(4): 348-352.

Wadkar, K.A., Magdum, C.S., Patil, S.S., and Naikwade, N.S. 2008. Anti diabetic potential and Indian medicinal plants. Journal of Herbal Medicine, Toxicology. 2: 45-50.

Wang, H., and He, R. 1993. HLA-DQA and DQB alleles contribute to susceptibility to insulin-
dependent diabetes mellitus. Chinese Medical Sciences Journal. 8(4): 231-4.
Wani, V.K., Dubey, R.D., Verma, S., Sengottuvelu, S., and Sivakumar, T. 2011. Antidiabetic activity of methanolic root extract of Mukia maderaspatana in alloxan induced diabetic rats. International Journal of PharmTech Research. 3(1): 214-220.
Warjeet, S.L. 2011. Traditional medicinal plants of Manipur as antidiabetics. Journal of Medicinal Plants Research. 5: 677-687.
Wen, H.G., Lin, S.Y., Jia, L., Guo, X.K., Chen, X.G., and Hu, Z.D. 2005. Analysis of protoberberine alkaloids in several herbal drugs and related medicinal preparations by non-aqueous capillary electrophoresis. Journal of Separation Science. 28(1): 92-97.
Wu, T.S., and Shi, L.S. 1999. Alkaloids and other constituents from Tribulus terrestris. Phytochem. 50: 1411-1141.
Younas, J., and Hussain, F. 2014. In vitro Antidiabetic Evaluation of Allium sativum L. International Journal of Chemical and Biochemical Sciences. 5: 22-25.
Yuan, X., Hu, X., Liu, Y., Sun, H., Zhang, Z., and Cheng, D. 2014. In vitro and In vivo Anti-Diabetic Activity of Extracts from Actinidia kolomikta. International Journal of Biology. 6(3): 1-10.
Zhang, Q., and Ye, M. 2009. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). Journal of Chromatography A. 1216(11): 1954-1969.
Zhang, R., Zhou, J., Jia, Z., Zhang, Y., and Gu, G. 2004. Hypoglycemic effect of Rehmannia glutinosa oligosaccharide in hyperglycemic and alloxan-induced diabetic rats and its mechanism. Journal of Ethnopharmacology. 90(1): 39-43.
Zheng, X.K., Zhang, L., Wang, W.W., Wu, Y.Y., Zhang, Q.B., and Feng, W.S. 2011. Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ. Journal of Ethnopharmacology. 137(1): 662-668.

How to cite this article:
Neha Gupta, Tejovathi Gudipati and Prasad, G.B.K.S. 2018. Plant Secondary Metabolites of Pharmacological Significance in Reference to Diabetes Mellitus: An Update. Int.J.Curr.Microbiol.App.Sci. 7(05): 3409-3448. doi: https://doi.org/10.20546/ijcmas.2018.705.398