Highly pathogenic avian influenza (HPAI) is one of the most serious diseases in the poultry industry. Vaccinations of HPAI for poultry can be used to prevent onset of clinical signs, but vaccines cannot protect birds from infections [17]. In China, Egypt, Mexico and Vietnam where vaccination against HPAI has been used, the causative viruses could not be eradicated [2, 7, 10, 13]. In these days, fatal human cases appeared in China not only infected by HPAI virus H5N1, but also by low pathogenic avian influenza (LPAI) viruses of the subtypes H7N9 [6] and H10N8 [3], and all of which had a domestic poultry intermediate. In Korea, vaccination against LPAI virus H9N2 has been used since 2007, however, the virus underwent antigenic drift and evolved into distinct antigenic groups [11]. According to the strategy by the Office International des Epizooties (OIE), it is important to realize that vaccination alone is not considered the solution to the control of avian influenza (AI) whenever eradication is the desired result [14]. Without the application of monitoring systems, strict biosecurity and depopulation in the face of infection, there is the possibility that these viruses could become endemic in vaccinated poultry populations [5, 14].

Virulent type of Newcastle disease viruses (NDVs) was isolated from vaccinated chicken farms without typical signs of Newcastle disease (ND) [25]. This fact and HPAI conditions in countries using vaccines against HPAI suggest that virulent viruses may survive in the vaccinated flocks in the form of sub-clinical infection.

Enhancement of biosecurity at poultry farms is one of the most important strategies to control infectious diseases [14]. Organic solvents and detergents, such as sodium deoxycholate and sodium dodecylsulfate, can inactivate enveloped viruses, because these detergents can destroy lipid bilayers of viruses. However, non-enveloped viruses that are expected to have high resistance to disinfection, such as norovirus [15, 23] and especially parvovirus, the most resistant species identified, could not be inactivated by detergents [4, 15]. So far, many disinfectants have been applied for enhancement of biosecurity at poultry farms, however, most of them have disadvantages of diminished virus-inactivating ability in the presence of organic materials.

Calcinated calcium powder made by scallop shells, – the average diameter of the powder particles being 20 µm (SSP) – has been shown to possess virus-inactivating ability even in the presence of organic materials [24]. Bioceramic powder prepared from chicken feces was also shown to inactivate viruses in the presence of organic materials [19]. These powders can be used as “trapping” disinfection materials instead of slaked lime, because of their long lasting virus-inactivating ability [24]. Slaked lime became hardened in the shape of a board, but SSP remained as soft powder until the end of the experiment (8 months post-scattering) [24].

In the present study, SSP was further ground into nano-sized particles (the average size of which is 500 nm – thereafter called CaO-Nano), and CaO-Nano solution was evaluated for its virus-inactivating capacity against AIV, NDV and goose parvovirus (GPV).

Heat-treated scallop shell powder with average particle
Table 1. Inactivation of viruses with CaO-Nano solution

Virus	FBS a)	tpc b)	t at incubation period (sec) c)				
			0 d)	5	15	30	60
AIV	+	7.50	7.50	3.75	<3.50	<3.50	<3.50
	−	7.50	7.50	<3.50	<3.50	<3.50	<3.50
NDV	+	9.00	9.00	5.00	4.75	4.50	4.25
	−	9.00	9.00	4.50	4.50	4.50	<3.50
GPV	+	8.00	8.00	NT e)	NT	NT	3.75
	−	8.00	8.00	7.00	5.75	4.25	<3.50

a) Fetal bovine serum (FBS: final concentration in the reaction micro-tube was 20%) was added to viruses before mix with CaO-Nano solution (+), not added (−). b) tpc is the titer converted into an index in log10 of the positive control. c) t is the titer converted into an index in log_{10} of the recovered virus from the CaO-Nano-treated tube. d) CaO-Nano solution was neutralized with 1 M Tris-HCl before add viruses. e) NT: Not tested.

As shown in Table 1, CaO-Nano solution inactivated AIV within 5 sec to undetectable level, and this ability was not affected by the presence of organic materials. When CaO-Nano solution was neutralized with 1 M Tris-HCl (pH 7.2), AIV was not inactivated. The high pH 13.1 of CaO-Nano solution seemed to be one of the main virus-inactivating mechanisms, because the ability of the solution was diminished after neutralization of pH with 1 M Tris-HCl (pH 7.2). SSP solution at 10% (pH 12.3) could not inactivate AIV even after 1 hr incubation (data not shown). To inactivate AIV, high pH – namely more than 12 – was required [26]. In water, calcium oxide (CaO) is converted to calcium hydroxide (Ca(OH)2), which is sparsely soluble in water at 0.15% [1]. In nanoparticle, CaO-Nano may have more solubility in water than SSP, and that solubility makes the pH as high as pH 13.1.

NDV and GPV were also inactivated by CaO-Nano within 5 sec and 30 sec, respectively. In the presence of organic...
materials, CaO-Nano was effective against NDV and GPV (NI >3), yet, these viruses were not completely inactivated even after 60 sec incubation (Table 1)

SSP slurry (0.2% w/v) has been shown to possess bacteriainactivation ability [16]. For enhancement biosecurity in farms, slaked lime has been used in Japan as a “trapping” disinfection material. We have shown the efficacy of alternative materials, such as bioceramics derived from chicken feces [19] and scallop shell powder [24], but all are powder type. SSP has been shown to have advantage over slaked lime, because of its lasting softness under field conditions [24]. SSP and CaO-Nano are derived from the same material, namely scallop shell, but the differences of their particle diameter brought about different solubility in water and different pH (SSP: pH 12.3 and CaO-Nano: pH 13.1). Here, CaO-Nano that can be used in liquid form has been shown as another candidate material for the enhancement of biosecurity in farms. CaO-Nano also has the excellent merit that can keep the virus-inactivating ability even in the presence of organic materials. To combat against pathogens, thick protective barrier with different forms of “trapping” disinfection materials is necessary.

REFERENCES

1. Bassett, H. 1954. Solubility of calcium hydroxide in water. pp. 630–632. In: Solubilities of Inorganic and Metal Organic Compounds, 4th ed. (Linke, W. F. ed.), American Chemical Society, Washington.

2. Chen, H. 2009. H5N1 avian influenza in China. Sci. China C Life Sci. 52: 419–427. [Medline] [CrossRef]

3. Chen, H., Yuan, H., Gao, R., Zhang, J., Wang, D., Xiong, Y., Fan, G., Yang, F., Li, X., Zhou, J., Zou, S., Yang, L., Chen, T., Dong, L., Bo, H., Zhao, X., Zhang, Y., Lan, Y., Bai, T., Dong, J., Li, Q., Wang, S., Zhang, Y., Li, H., Gong, T., Shi, Y., Ni, X., Li, J., Zhou, J., Fan, J., Wu, J., Zhou, X., Hu, M., Wan, J., Yang, W., Li, D., Wu, G., Feng, Z., Gao, G. F., Wang, Y., Jin, Q., Liu, M. and Shu, Y. 2014. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet online Feb 5. http://dx.doi.org/10.1016/S0140-6736(14)60111–2.

4. Eterpi, M., McDonnell, G. and Thomas, V. 2009. Disinfection efficacy against parvoviruses compared with reference viruses. J. Hosp. Infect. 73: 64–70. [Medline] [CrossRef]

5. FAO/OIE. 2005. Regional Meeting on Avian Influenza control in Asia.

6. Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., Xu, X., Lu, H., Zhu, W., Gao, Z., Xiang, N., Shen, Y., He, Z., Gu, Y., Zhang, Z., Yang, Y., Zhao, X., Zhou, L., Li, X., Zou, S., Zhang, Y., Li, X., Yang, L., Guo, J., Dong, J., Li, Q., Dong, L., Zhu, Y., Bai, T., Wang, S., Hao, P., Yang, W., Zhang, Y., Han, J., Yu, H., Li, D., Gao, G. F., Wu, G., Wang, Y., Yuan, Z. and Shu, Y. 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. [CrossRef]

7. Hafez, M. H., Arafa, A., Abdelwab, E. M., Selim, A., Khoulousy, S. G., Hassan, M. K. and Aiy, M. M. 2010. Avian influenza H5N1 virus infections in vaccinated commercial and backyard poultry in Egypt. Poult. Sci. 89: 1609–1613. [Medline] [CrossRef]

8. Jahangir, A., Ruenphet, S., Kara, K., Shoham, D., Sultana, N., Okamura, M., Nakamura, M. and Takehara, K. 2010. Evaluation of human intestinal epithelial differentiated cells (Caco-2) for replication, plaque formation and isolation of avian influenza viruses. J. Virol. Methods 169: 232–236. [Medline] [CrossRef]

9. Jahangir, A., Ruenphet, S., Shoham, D., Okamura, M., Nakamura, M. and Takehara, K. 2010. Haemagglutinin and neuraminidase characterization of low pathogenic H5 and H7 avian influenza viruses isolated from Northern pintail (Anas acuta) in Japan, with special reference to genomic and biogeographical aspects. Virus Genes 40: 94–105. [Medline] [CrossRef]

10. Lee, C. W., Senne, D. A. and Suarez, D. L. 2004. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J. Virol. 78: 8372–8381. [Medline] [CrossRef]

11. Lee, D. H. and Song, C. S. 2013. H9N2 avian influenza virus in Korea: evolution and vaccination. Clin. Exp. Vaccine Res. 2: 26–33. [Medline] [CrossRef]

12. Lombardi, M. E., Ladman, B. S., Alphin, R. L. and Benson, E. R. 2008. Inactivation of avian influenza virus using common detergents and chemicals. Avian Dis. 52: 118–123. [Medline] [CrossRef]

13. Long, N. T., Thanh, T. T., van Doorn, H. R., Vu, P. P., Dung, P. T., Dung, T. T. K., Tien, T. N., Thao, D. T. T., Hung, P., Quang, N. V., Hoa, N. T., Bryant, J. E. and Boni, M. F. 2011. Recent avian influenza virus A/H5N1 evolution in vaccinated and unvaccinated poultry from farms in southern Vietnam, January–March 2010. Transbound. Emerg. Dis. 58: 537–543. [Medline] [CrossRef]

14. OIE. 2007. The global strategy for prevention and control of H5N1 highly pathogenic avian influenza. http://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Global_Strategy_fulldoc.pdf.

15. Sanekata, T., Fukuda, T., Miura, T., Morino, H., Lee, C., Maeda, K., Araki, K., Otake, T., Kawahata, T. and Shibata, T. 2010. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol Sci. 15: 45–49. [Medline] [CrossRef]

16. Sawai, J. 2011. Antimicrobial characteristics of heated scallop shell powder and its application. Biocontrol Sci. 16: 95–102. [Medline] [CrossRef]

17. Sims, L. D. 2007. Lessons learned from Asian H5N1 outbreak control. Avian Dis. 51: 174–181. [Medline] [CrossRef]

18. Smee, D. F., Morrison, A. C., Barnard, D. L. and Sidwell, R. W. 2002. Comparison of colorimetric, fluorometric, and visual methods for determining anti-influenza (H1N1 and H3H2) virus activities and toxicities. J. Virol. Methods 106: 71–79. [Medline] [CrossRef]

19. Takehara, K., Chinen, O., Jahangir, A., Miyoshi, Y., Ueno, Y., Ueda, S., Takada, Y., Ruenphet, S., Mutoh, K., Okamura, M. and Nakamura, M. 2009. Ceramic Powder Made from Chicken Feces: Anti-Viral Effects Against Avian Influenza Viruses. Avian Dis. 53: 34–38. [Medline] [CrossRef]

20. Takehara, K., Hyakutake, K., Imamura, T., Mutoh, K. and Yoshimura, M. 1994. Isolation, identification, and plaque titration of parvovirus from muscovy ducks in Japan. Avian Dis. 38: 810–815. [Medline] [CrossRef]

21. Takehara, K., Shinomiya, T., Kobayashi, H., Azuma, Y., Yamagami, T. and Yoshimura, M. 1987. Characterization of Newcastle disease viruses isolated from field cases in Japan. Avian Dis. 31: 125–129. [Medline] [CrossRef]

22. Takehara, K., Yamazaki, K., Miyazaki, M., Yamada, Y., Ruenphet, S., Jahangir, A., Shoham, D., Okamura, M. and Nakamura, M. 2010. Inactivation of avian influenza virus H1N1 by photocatalyst under visible light irradiation. Virus Res. 151: 102–103.
23. Terpstra, F. G., van den Blink, A. E., Bos, L. M., Boots, A. G., Brinkhuis, F. H., Gijzen, E., van Remmerden, Y., Schuitemaker, H. and van’t Wout, A. B. 2007. Resistance of surface-dried virus to common disinfection procedures. *J. Hosp. Infect.* 66: 332–338. [Medline] [CrossRef]

24. Tsujimura, M., Thammakarn, C., Yamada, Y., Satoh, K., Hasegawa, T., Ruenphet, S. and Takehara, K. 2012. Antiviral activity of scallop-shell powder against avian influenza virus and goose par-ovovirus. *Trans. Mater. Res. Soc. Jpn.* 37: 567–570. [CrossRef]

25. Umali, D. V., Ito, H., Suzuki, T., Shiroti, K., Katoh, H. and Ito, T. 2013. Molecular epidemiology of Newcastle disease virus isolates from vaccinated commercial poultry farms in non-epidemic areas of Japan. *Virol. J.* 10: 330 [CrossRef]. [Medline]

26. Zou, S., Guo, J., Gao, R., Dong, L., Zhou, J., Zhang, Y., Dong, J., Bo, H., Qin, K. and Shu, Y. 2013. Inactivation of the novel avian influenza A (H7N9) virus under physical conditions or chemical agents treatment. *Virol. J.* 10: 289 [CrossRef]. [Medline]