Development of a reverse transcription polymerase chain reaction for the detection of severe fever with thrombocytopenia syndrome virus from suspected infected animals

Eun-sil Park, Osamu Fujita, Masanobu Kimura, Akitoyo Hotta, Koichi Imaoka, Masayuki Shimojima, Masayuki Saijo, Ken Maeda, Shigeru Morikawa

1. Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
2. Laboratory of Veterinary Microbiology, Yamaguchi University, Yamaguchi, Japan
3. Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
4. Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan

* To whom correspondence should be addressed.
Abstract

Background

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes severe hemorrhagic fever in humans and cats. Clinical symptoms of SFTS-infected cats resemble to those of SFTS patients and SFTS-contracted cats shows high levels of viral RNA loads in the serum and body fluids. Due to the risk of direct infection from SFTS-infected cats to human, it is important to diagnose SFTS-suspected animals.

Methodology/Principle findings

Four primer sets were newly designed from consensus sequences constructed by 108 strains of SFTSV. A reverse transcription polymerase chain reaction (RT-PCR) with these four primer sets were successfully and specifically detected several clades of SFTSV. Their limits of detection are 1-10 copies/reaction. By this RT-PCR, 5 cat cases among 56 SFTS-suspected animal cases were diagnosed as SFTS. From these cats, IgM or IgG against SFTSV were detected by enzyme-linked immunosorbent assay (ELISA), but not neutralizing antibodies by plaque reduction neutralization titer (PRNT) test. This phenomenon is similar to those of fatal SFTS patients.

Conclusion/Significance

This newly developed RT-PCR could detect SFTSV RNA of several clades from SFTS-suspected animals. In addition to ELISA and PRNT test, the useful laboratory diagnosis systems of SFTS-suspected animals has been made in this study.

Author summary

This study developed RT-PCR to detect SFTS animal cases. This assay could detect SFTSV RNA belonging to different clades. Cats diagnosed as SFTS had IgM or IgG, but not neutralizing
antibodies. SFTS cat cases were distributed in the area where SFTS patients have been reported highly, indicating the establishment of the circulation of SFTSV in the environment. These diagnostic assays could be helpful tools to detect and not to miss SFTS animal cases.

Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever that was first identified in China (1), with cases since reported in Japan, South Korea, Vietnam and Taiwan (2, 3). SFTS virus (SFTSV) has been identified as a causative virus of SFTS belonging to the genus *Banyangvirus*, family *Phenuiviridae*, order *Bunyavirales*.

SFTS has been considered to be mainly transmitted by tick bites. Ticks infest a variety of animals, and viral RNA and antibodies against SFTSV have been detected in wild animals, domestic animals and companion animals, such as dogs and cats [1-5]. Since these animals show no clinical symptoms, they have been considered subclinically infected with SFTSV. In recent years, SFTS patients without a history of tick bites have been reported, and they are considered to have received the virus through transmission from animals, such as cats and dogs [4, 6]. Furthermore, it has been shown that cheetahs [7], cats [8] and dogs can contract SFTS (*manuscript in preparation*). Thus, it is important to diagnose SFTS-suspected animals. Seven to eight clades of SFTSV are reportedly spread throughout Japan, China and South Korea [9].

In this study, a reverse transcription polymerase chain reaction (RT-PCR) was developed to establish a laboratory diagnosis system for detecting all the clades of SFTSV in the specimens of SFTS-suspected animals.
Materials and Methods

Serum samples

The samples, including serum and oral and rectal swabs, were collected from SFTS-suspected cats and dogs at veterinary hospitals throughout Japan from August 2017 to March 2019. Cats exhibiting a fever (>39 °C), leukocytopenia (<2000 /μL), thrombocytopenia (<200,000 /μL) and elevated levels of AST, ALT and CK were suspected of having SFTS. Clinical information was provided by veterinarians.

A phylogenic analysis for primer design

The nucleotide sequences of 100 strains of SFTSV S segment and M segment were selected randomly from Genbank to cover all the clades and aligned and phylogenetically analyzed (Figure 1). In brief, phylogenic trees were constructed using with the maximum likelihood method with the Tamura-Nei model using the MEGA 7 software program [10]. The robustness of the resulting branching patterns was tested using the bootstrap method with 1,000 replicates. From this analysis, it was confirmed that the seven to eight clades of SFTSV correlate with their geographical location, as has been reported previously [9]. The nucleotide identity, determined using the Bioedit sequence alignment editor [11], was 94.1%-99.1% in S segment, and 93%-99.7% in M segment among clusters (Figure 2). The consensus sequences of S segment and M segment among the different strains were selected using the Bioedit program, and primers were designed by the NCBI Primer-BLAST [12] from the consensus sequences.

RT-PCR
RNAs isolated from the culture supernatants of three strains of SFTSV belonging to different clades - SPL010 (J1 clade, accession No. AB817999), cat#1 (C4 clade, accession No. DRA007207) and HB29 (C3 clade, accession No. NC_018137) - were used as positive controls. RNA was extracted using a High Pure Viral RNA Kit (Roche, Mannheim, Germany) as previously reported study (Park ES). RT-PCR was performed using the Superscript III one-step RT-PCR system with platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA) under the following conditions: RT at 55 °C for 30 min, inactivation at 95 °C for 2 min, and then 40 cycles of PCR at 94 °C for 30 s, 52 °C for 30 s, and 68 °C for 30 s, followed by extension at 68 °C for 5 min. Four primer pairs successfully detected the RNAs of the three different SFTSV strains with a detection limit of 1-10 copies/reaction (Figures 3 and 4 and Table 1).

SFTSV detection from samples using four designated primers

Total RNAs were extracted from the specimens of dogs and cats using ISOGEN (Wako, Osaka, Japan) and a precipitation carrier (Ethachinmate; Wako), according to the manufacturer’s instructions. RT-PCR was performed using a Superscript III one-step RT-PCR system with platinum Taq DNA polymerase (Invitrogen) with four sets of specific primers. Samples with more than two positive bands were considered SFTSV RNA-positive.

Amplification of viral genome of S segment and phylogenetic analysis

RT-PCR-positive RNAs were used to determine the viral genome of the S segment for a phylogenetic analysis. RT-PCR was performed using a Superscript III one-step RT-PCR system with platinum Taq DNA polymerase (Invitrogen) with primers covering the entire S segment region according to a previously reported study [9]. The PCR products were determined by
electrophoresis on 1% agarose gels with GR Red Loading Buffer (GRR-1000, Bio-Craft, Tokyo, Japan). The PCR products were then extracted and purified using an illustra™ GFX™ PCR DNA and Gel Band Purification kit (GE Healthcare, Buckinghamshire, UK). The samples were sequenced using the general Sanger sequencing technique.

The nucleotide sequences determined in this study were deposited in the DDBJ GenBank databases. For the phylogenetic analysis, three nucleotide data points per cluster were selected. The sequence alignment was computed using the Clustal W program of MEGA 7 software program. The phylogenetic tree was constructed using the maximum likelihood method based on the Tamura-Nei model of the MEGA program. The confidence of the tree was tested using 1000 bootstrap replications.

Detection of IgM and IgG in cats by an enzyme-linked immunosorbent assay (ELISA)

Antibodies against SFTSV were detected by an ELISA, essentially performed as in the previously described study [13]. In brief, SFTSV- or mock-infected Huh7 cells were lysed in 1% NP40 in phosphate-buffered saline (PBS), ultraviolet (UV)-irradiated to completely inactivate SFTSV, and then clarified by centrifugation at 12,000 rpm for 10 min. The lysates were coated onto the ELISA plate (Nunc-Immuno™ plate; Thermo Fisher Scientific, Roskilde, Denmark). The antigen-coated wells were then blocked with 20% Blocking One (Nacalai Tesque, Inc., Kyoto, Japan) in PBS (blocking solution) at room temperature for 1 h. Sera of cats and dogs were inactivated at 56 °C for 30 min and serially 4-fold diluted from 1:100 to 1:6400 in the blocking solution at 37 °C for 1 h. Horseradish (HRD)-conjugated goat anti-feline IgG Fc and HRD-conjugated goat anti-feline IgM (Novus biologicals), and HRD-conjugated goat anti-dog IgM(μ) and HRD-conjugated sheep anti-dog IgG(H) were used to detect IgM and IgG antibodies in cats and dogs, respectively. The
reaction was finally visualized by a substrate for HRP (ABST, 2, 2-azinobis (3-
ethylbenzthiazolesulfonic acid); Roche, Mannheim, Germany) for 30 min at room temperature.
The optical density (OD) at 405 nm was measured with an iMark™ microplate reader (Bio-Rad,
Tokyo, Japan). The OD values in the mock-antigen coated well were subtracted from the OD value
in the respective SFTSV-antigen coated wells. The cut-off OD value was set as the average
subtracted OD value plus three times the standard deviation (SD), that is, mean + 3SD, of SFTS-
negative serum that had been confirmed by an indirect immunofluorescent antibody assay using
SFTSV-infected Vero cells. The sera were considered positive when the OD values were above
the cut-off value. RT-PCR was performed to detect SFTSV in clinical animal specimens.

The 50% plaque reduction neutralization titer (PRNT50)
The PRNT test was performed to determine the neutralizing antibodies against SFTSV using Vero
cells (ATCC), according to previously reported studies. Approximately 100 plaque-forming units
of the HB29 strain of SFTSV were mixed with serially diluted heat-inactivated sera and incubated
for 1 h at 37 °C and then inoculated into confluent monolayers of Vero cell in 12-well plates for 1
h at 37 °C. The inocula were removed, and the cells were washed once with DMEM containing
2% FBS and kanamycin and then cultured at 37 °C in a 5% CO2 incubator with DMEM containing
2% FBS, Kanamycin and 1% methylcellulose for 1 week. Cultured cells were fixed with 10%
buffered formalin and exposed to UV radiation to inactivate the virus. The cells were
permeabilized with 0.1% Triton X-100, followed by incubation with rabbit antibodies against
SFTSV-N as primary antibodies and HRP-conjugated recombinant protein A/G (Cat. No. 32490,
Thermo Scientific, Rockford, IL, USA) as secondary antibodies. Plaques were visualized with 3,
3’-diaminobenzidine tetrahydrochloride (Peroxidase stain DAB kit [Brown stain]; Nacalai
Tesque). The PRNT50 value was determined as the reciprocal of the highest dilution at which the number of the plaques was below 50% of the number calculated without cat serum.

Results
Four primer pairs (2 for the S segment and 2 for the M segment) successfully detected the RNAs of the three SFTSV strains belonging to different clusters with a detection limit of 1-10 copies/reaction (Figures 3 and 4 and Table 1). For the detection of SFTSV RNA from samples, these four primer sets were used.

From August 2017 to March 2019, 56 cases were collected, and RT-PCR was performed to detect SFTSV RNA. Among them, SFTSV RNA was detected in the sera of five cats. The PCR products were confirmed with RT-PCR using all four sets of primer pairs (Figure 5). The positive samples were evaluated to determine the nucleotide of the S segment (Table 2). These nucleotide sequences of the S segment from five cases were phylogenetically analyzed with the corresponding segment of the Heartland virus as an outgroup (Figure 6). As a result, four strains were clustered into genotype J1, and one strain was clustered into genotype J3 of the Japanese clade, according to previous studies.

In addition to SFTSV RNA, antibodies against SFTSV were detected in the sera of the five cats that were positive on RT-PCR (Table 3). Three samples had IgM and IgG against SFTSV, and two had IgM or IgG, respectively (Table 3). Serum samples were collected at a one-week interval from one case. IgM was detected in these two interval sera, and IgG was detected in the serum collected one week later. This seroconversion pattern was similar to that of our previous study. Antibodies were not detected in the RT-PCR-negative animals.
The neutralizing antibodies against SFTSV were then measured with the PRNT$_{50}$ according to our previous study. The titer of neutralizing antibodies was below the limit of detection, indicating that the antibodies detected by the ELISA were not functional, similar to those of fatal human cases.

Discussion

In this study, four primer sets were able to detect SFTSV RNA belonging to different genotypes with a low detection limit. Two pairs were specific for the S segment, and two pairs were specific for the M segment. SFTSV RNAs were detected from five cases using these primers. Four positive bands were observed in all five cases. These positive cases were distributed in the same region where human SFTS cases have been reported (Table 4). The sites at which two cases were detected were close to each other. The genotype of these strains was J1, showing 99.3%-99.7% homology (data not shown). These findings are believed to establish the hot spot and circulation of SFTSV among ticks and animals. The ages of the cats ranged from 9 months to 15 years old. The period of disease onset was from January to October. All of these cats were kept both indoors and outdoors. In addition, four cases had a tick-bite history, indicating the transmission of SFTSV by tick. Their clinical symptoms were similar to those described in previous reports. Thus, these cats were diagnosed with SFTS.

Five cats had IgM and/or IgG against SFTSV, determined by an ELISA. However, the titer of neutralizing antibodies was below the limit of detection. The serum specimens of the cats were collected within one week after the onset. Given that the level of neutralizing antibodies in the surviving cats was elevated in our previous study [8], the insufficient induction or non-function of neutralizing antibodies might result in the severe onset in cats. Given that B cell lineages, such as plasmablasts, can be the target of SFTSV, this may be a plausible result.
In conclusion, the RT-PCR approach developed in the present study and the IgM- and IgG-ELISA performed to detect SFTS-specific antibodies were useful for making a laboratory diagnosis of SFTS-suspected cats and dogs.
References

1. Liu S, Chai C, Wang C, Amer S, Lv H, He H, et al. Systematic review of severe fever with thrombocytopenia syndrome: virology, epidemiology, and clinical characteristics. Rev Med Virol. 2014;24(2):90-102. doi: 10.1002/rmv.1776. PubMed PMID: 24310908; PubMed Central PMCID: PMCPMC4237196.

2. Niu G, Li J, Liang M, Jiang X, Jiang M, Yin H, et al. Severe fever with thrombocytopenia syndrome virus among domesticated animals, China. Emerg Infect Dis. 2013;19(5):756-63. doi: 10.3201/eid1905.120245. PubMed PMID: 23648209; PubMed Central PMCID: PMCPMC3647489.

3. Xing X, Guan X, Liu L, Zhan J, Jiang H, Liu L, et al. Natural Transmission Model for Severe Fever With Thrombocytopenia Syndrome Bunyavirus in Villages of Hubei Province, China. Medicine (Baltimore). 2016;95(4):e2533. doi: 10.1097/MD.0000000000002533. PubMed PMID: 26825892; PubMed Central PMCID: PMCPMC5291562.

4. Lee SH, Kim HJ, Byun JW, Lee MJ, Kim NH, Kim DH, et al. Molecular detection and phylogenetic analysis of severe fever with thrombocytopenia syndrome virus in shelter dogs and cats in the Republic of Korea. Ticks Tick Borne Dis. 2017;8(4):626-30. doi: 10.1016/j.ttbdis.2017.04.008. PubMed PMID: 28442241.

5. Ding S, Yin H, Xu X, Liu G, Jiang S, Wang W, et al. A cross-sectional survey of severe fever with thrombocytopenia syndrome virus infection of domestic animals in Laizhou City, Shandong Province, China. Jpn J Infect Dis. 2014;67(1):1-4. Epub 2014/01/24. PubMed PMID: 24451093.

6. Hwang J, Kang JG, Oh SS, Chae JB, Cho YK, Cho YS, et al. Molecular detection of severe fever with thrombocytopenia syndrome virus (SFTSV) in feral cats from Seoul, Korea. Ticks Tick Borne Dis. 2017;8(1):9-12. Epub 2016/08/21. doi: 10.1016/j.ttbdis.2016.08.005. PubMed PMID: 27542506.

7. Matsuno K, Nonoue N, Noda A, Kasajima N, Noguchi K, Takano A, et al. Fatal Tickborne Phlebovirus Infection in Captive Cheetahs, Japan. Emerg Infect Dis. 2018;24(9):1726-9. doi: 10.3201/eid2409.171667. PubMed PMID: 30124411; PubMed Central PMCID: PMCPMC6106400.

8. Park ES, Shimojima M, Nagata N, Ami Y, Yoshikawa T, Iwata-Yoshikawa N, et al. Severe Fever with Thrombocytopenia Syndrome Phlebovirus causes lethal viral hemorrhagic fever in cats. Sci Rep. 2019;9(1):11990. doi: 10.1038/s41598-019-48317-8. PubMed PMID: 31427690; PubMed Central PMCID: PMCPMC6700714.

9. Yoshikawa T, Shimojima M, Fukushi S, Tani H, Fukuma A, Taniguchi S, et al. Phylogenetic and Geographic Relationships of Severe Fever With Thrombocytopenia Syndrome Virus in China, South Korea, and Japan. J Infect Dis. 2015;212(6):889-98. doi: 10.1093/infdis/jiv144. PubMed PMID: 25762790.

10. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870-4. Epub 2016/03/24. doi: 10.1093/molbev/msw054. PubMed PMID: 27004904.

11. A. HT. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95-8.

12. Ye J, Irena Zaretskaya, Ioana Cutcutache, Stee Rozen and Thomas L Madden. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(134):1471-2105.

13. Kimura T, Fukuma A, Shimojima M, Yamashita Y, Mizota F, Yamashita M, et al. Seroprevalence of severe fever with thrombocytopenia syndrome (SFTS) virus antibodies in humans and animals in Ehime prefecture, Japan, an endemic region of SFTS. Journal of Infection and Chemotherapy. 2018;24(10):802-6. doi: https://doi.org/10.1016/j.jiac.2018.06.007.
Figure legends

Figure 1. Phylogenic trees of the SFTSV genome for the S (A) and M (B) segments. Strains that were identified in China, Japan and Korea are indicated by red, blue and red, respectively.

Figure 2. The nucleotide identities among SFTSV clades of S (A) and M (B) segments. Two strains of each clade were selected randomly, and the nucleotide identities were determined using the Bioedit software program. (A) S segment; J1 (Japan 1: SPL010A, Korea 1: CP01Korea13), J2 (Japan 2: SPL097A, China 1: JS2014-Hlongicornis-01), J3 (Japan 3: SPL129A, Korea 2: JP03Korea14), C1 (China 2: JS2, China 3: SDLZSheep01/2011), C2 (China 4: 2015SYSH33, China 5: 2014181S), C3 (China 6: SDLZDog01/2011, China 7: HB29) and C4 (Japan 4: cat#1, China 8: HLEgg_G2). M segment; J1 (Japan 1: SPL010A, Korea 1: KAGWH_korea), J2 (Japan 2: SPL057A, Japan 3: SPL100A), J3 (Japan 4: SPL004A, Korea 2: KAJJH_korea), C1 (China 1: JS4, China 2: SD4), C2 (Korea 3: Gangwon/korea/2012, China 3: SDLZtick12/2010_china), C3 (China 4: HB154/China/2011_china, China 5: HB29) and C4 (China 6: HL/Nymph/G2_china, Japan 5: cat#1).

Figure 3. RT-PCR using primer 2 (S segment) electrophoresis of the SPL010 strain for the confirmation of the detection limit. Viral RNA was extracted from the SPL010 strain. 10^3-10^0 copies/reaction and mock sample (from left to right). A PCR product of 125 bp was observed.

Figure 4. RT-PCR using primer 4 (M segment) electrophoresis of HB29 strain for the confirmation of the detection limit. HB29-M/pKS336 plasmid was used. 10^8-10^0 copies/reaction and mock sample (from left to right). A PCR product of 179 bp was observed.

Figure 5. RT-PCR electrophoresis of an SFTS case (Case 1). The PCR product bands were observed. I: sample RNA, II: positive control, III: negative control.
Figure 6. Phylogenic trees of detected SFTSV genome in this study (red) and reference SFTSV genome (black) for the S segments.
Figure 2
Figure 6
No. of primer	Segment	Site	product size (bp)	nucleotide sequence	Limit of detection
1	S segment	1347-1369	178	5'-TGCTGCAGCAGCATGTCCAAGTGG-3'	1~10
		1524-1496		5'-GACACAAAGTTCTACATTGTCTTTTGCCCT-3'	
2	S segment	1028-1048	125	5'-GCCATCTGTCTTTCTTTTGCG-3'	1~10
		1131-1152		5'-AGTCATCTTGCAAGGCTAGAAGG-3'	
3	M segment	2422-2442	185	5'-AGGCAAGGTTGGAGAGATACA-3'	1~10
		2586-2606		5'-CCCCAATAGTGTTGGATAGG-3'	
4	M segment	373-393	174	5'-AGTTCCTGGCCTTCATACAA-3'	1~10
		530-551		5'-CATCACCTATCCAGAACCCT-3'	
Table 2. The accession number of positive samples

Strain	The accession No.	
JDVS17	LC514461	
JDVS22	LC514462	
JDVS26	LC514463	
JDVS41	LC514464	
JDVS47	LC514465	
	Median (Distribution)	%
--------------------------	-----------------------	-----
Age	3y (9m-15y5m)	-
Disease Onset	Jan.-Oct.	-
Habitat	Indoor & outdoor	-
SFTSV RNA		100
IgM	1:400 (1:100-1600)	80
IgG	1:100 (1:100-6400)	100
Neutralizing antibodies	Below the detection limit	100
Depression, anorexia		100
Fever (> 39 °C)	39.3 (38.3-40<)	80
Jaundice		80
Vomit		20
Leukocytopenia	4 (2.18-7.50)	100
(10^3 /μL)		
Thrombocytopenia	44 (15-120)	80
(10^3 /μL)		
ALT/GPT (I/U)	74.5 (59-135)	20
T-bil (mg/dl)	2.9 (2-5.9)	60
Tick-bite history		80
	Reported	Not reported
----------	----------	--------------
Negative	21	24
Positive	5	0

Table 4. Distribution of positive cases