Measurement invariance of the 10-item resilience scale specific to cancer in Americans and Chinese: A propensity score–based multidimensional item response theory analysis

Muzi Liang, Peng Chen, Alex Molassiotis, Sangchoon Jeon, Ying Tang, Guanyun Hu, Yunfei Zhu, Zhe Sun, Yuanling Yu, Tish M. Knobf, Zengjie Ye

Objective: Little is known about the measurement invariance (MI) of resilience instruments in cancer care. This study was designed to examine MI of 10-Item Resilience Scale (RS-SC-10) in Americans and Chinese with cancer using propensity score–based multidimensional item response theory (MIRT) analysis.

Methods: A sample of 924 patients were enrolled in the Be Resilient to Cancer trial involving 1 hospital in America and 3 hospitals in China. Data were collected from the RS-SC-10 and Hospital Anxiety and Depression Scale. Propensity score matching and MIRT were performed to evaluate Differential Item Function. Integrated Discrimination Improvement and Net Reclassification Improvement were used to indirectly estimate the MI through incremental prediction ability of MIRT-based score over total score.

Results: RS-SC-10 retained 10 items with monotonous thresholds and its original two-factor structure. Nonuniform Differential Item Function was recognized in Item 4 (P = 0.0011, Δ%β1 = 4.15%) and Item 8 (P = 0.0017, Δ%β1 = 5.99%). Net Reclassification Improvement ranged from 9.04% to 35.01%, and Integrated Discrimination Improvement ranged from 8.82% to 20.60%.

Conclusions: Although partial MI has been identified between Americans and Chinese, RS-SC-10 remains a critical indicator to emotional distress in cancer care.

Introduction

Despite significant improvements in 5-year survival, psychosocial distress (eg, depression, anxiety, fear of cancer recurrence) persists in cancer survivors, which is associated with a poorer quality of life (QoL). Resilience, defined as the ability to bounce back after a traumatic event, has become an important concept in research across disciplines. For example, cancer survivors with higher resilience levels were reported to have lower psychological distress as well as better QoL. Thus, resilience may be a critical indicator of QoL and data support use in descriptive and intervention studies. A new resilience instrument, the Resilience Scale Specific to Cancer (RS-SC), was developed based on Shift-Persist theory and Resilience Model to Breast Cancer. Subsequent to the original 25-item scale, a shortened version was created, the

ARTICLE INFO

Keywords:
Measurement invariance
Resilience
RS-SC-10
Americans
Chinese
Propensity score matching
Multidimensional item response theory

ABSTRACT

Objective: Little is known about the measurement invariance (MI) of resilience instruments in cancer care. This study was designed to examine MI of 10-Item Resilience Scale (RS-SC-10) in Americans and Chinese with cancer using propensity score–based multidimensional item response theory (MIRT) analysis.

Methods: A sample of 924 patients were enrolled in the Be Resilient to Cancer trial involving 1 hospital in America and 3 hospitals in China. Data were collected from the RS-SC-10 and Hospital Anxiety and Depression Scale. Propensity score matching and MIRT were performed to evaluate Differential Item Function. Integrated Discrimination Improvement and Net Reclassification Improvement were used to indirectly estimate the MI through incremental prediction ability of MIRT-based score over total score.

Results: RS-SC-10 retained 10 items with monotonous thresholds and its original two-factor structure. Nonuniform Differential Item Function was recognized in Item 4 (P = 0.0011, Δ%β1 = 4.15%) and Item 8 (P = 0.0017, Δ%β1 = 5.99%). Net Reclassification Improvement ranged from 9.04% to 35.01%, and Integrated Discrimination Improvement ranged from 8.82% to 20.60%.

Conclusions: Although partial MI has been identified between Americans and Chinese, RS-SC-10 remains a critical indicator to emotional distress in cancer care.

Introduction

Despite significant improvements in 5-year survival, psychosocial distress (eg, depression, anxiety, fear of cancer recurrence) persists in cancer survivors, which is associated with a poorer quality of life (QoL). Resilience, defined as the ability to bounce back after a traumatic event, has become an important concept in research across disciplines. For example, cancer survivors with higher resilience levels were reported to have lower psychological distress as well as better QoL. Thus, resilience may be a critical indicator of QoL and data support use in descriptive and intervention studies. A new resilience instrument, the Resilience Scale Specific to Cancer (RS-SC), was developed based on Shift-Persist theory and Resilience Model to Breast Cancer. Subsequent to the original 25-item scale, a shortened version was created, the

* Corresponding authors.
E-mail addresses: tish.knobf@yale.edu (T.M. Knobf), zengjieye@qq.com (Z. Ye).
1 These authors contributed equally to this work.

https://doi.org/10.1016/j.apjon.2022.100171
Received 7 October 2022; Accepted 22 November 2022
2347-5625/© 2022 The Author(s). Published by Elsevier Inc. on behalf of Asian Oncology Nursing Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
10-item RS-SC (RS-SC-10) based on Item Response Theory (IRT) analysis,10 and validated in our Be Resilient to Breast Cancer trial.7,11,12 RS-SC-10 is a psychometrically established resilience instrument for cancer survivor. We wanted to determine if RS-SC-10 had the property of measurement invariance (MI) in different ethnic groups (ie, Americans vs. Chinese), which is defined as the instrument capturing the same underlying construct across distinct groups or period.13 Patients can vary in their interpretations, understanding, and conceptualization of some items because of the differences in language or cultural assumptions.14

For example, because of the difference in cultural background, Americans and Chinese may read, interpret, and answer “item 9: I believe that good fortune will come after surviving a disaster, derived from RS-SC-10” quite differently. If we compare Americans and Chinese on the same scale, the “actual difference” in scoring may not be attributed to a “true difference.” These differences can be sources of bias resulting in non-equivalent constructs across ethnically diverse groups. In addition, confounders such as unbalanced demographics in most MI-based research are often neglected, resulting in biased parameter estimation in MI.15,16 In the present study, Propensity score matching (PSM) was performed for a confounder-balanced comparison and then followed by a multidimensional item response theory (MIRT)-based Differential Item Function (DIF) analysis. In addition, exploratory indicators, including Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI), were used in the Resilience-Distressed prediction models (MIRT-based score vs. total score) to provide additional information about MI between Americans and Chinese. MI could be confirmed if similar NRI and IDI were identified between Americans and Chinese, indicating that MIRT-based score had higher net benefits and better predictable abilities to the distressed outcome than the resilience total score. We hypothesized that (1) RS-SC-10 would retain its original two-factor structure in Americans and Chinese; (2) uniform/nonuniform DIF would be identified in some items between Americans and Chinese; (3) similar NRI and IDI would be identified between Americans and Chinese and MIRT-based score could offer incremental predictive value above total score.

Methods

Language equivalence

The cross-cultural translation of RS-SC-10 was performed according to World Health Organization’s guideline. Two independent Chinese-English native-speaking researchers translated the Chinese version into English.17 The two translated scales were compared, and a consensus was reached by a panel of experts in the field of cancer care. The consensus version was then back-translated by a third bilingual English-Chinese researcher, and the back translation English version was reviewed against the original Chinese version. No significant discrepancies were identified, and the final version was approved and sent to 15 Americans with cancer for final validation.

Patients and data collection

One hospital in America and 3 hospitals in China participated in the present study. A potential sample of 1052 patients were initially approached between March 2018 and May 2021. Patients with missing demographic or instrument data were excluded, resulting in a final sample of 924 (87.8%). The inclusion criteria were (1) confirmed diagnosis of cancer, (2) aged > 18 years, and (3) receiving active treatment. The exclusion criteria were (1) linguistic or intellectual difficulties, (2) had a currently active Axis I psychiatric disorder, and (3) unwilling to participate in the study. The patients were approached by trained research nurses, and instruments were administered following informed consent.

Ethical approval

The present study was part of the Be Resilient to Cancer, and the details of ethic approval have been described.18–20

Instruments

Ten-item resilience scale specific to cancer

RS-SC-10 is derived from the original 25-item RS-SC, which has five domains of Generic Element, Benefit Finding, Support and Coping, Hope For The Future, and Meaning for Existence. RS-SC-10 has two domains: Generic Elements and Shift-Persist.10,21 It is a 5-point Likert scale, with higher scores indicating higher resilience levels (total score ranges from 10 to 50). RS-SC-10 was attached in the appendix file.

Hospital anxiety and depression scale

Hospital Anxiety and Depression Scale (HADS) contains 7 items for anxiety and 7 items for depression, respectively, with higher scores indicating higher levels of anxiety and depression.22 In this present study, a cutoff of 7 was applied to select patients with high anxiety or depression.23 Patients indicated by anxiety or depression ≥ 7 were defined as distressed (outcome = 1), whereas others were defined as nondistressed (outcome = 0).

Data analysis

First, the propensity score was calculated by multivariable logistic regressions, and demographics, including gender, education, cancer type, stage of cancer, and time since diagnosis associated with resilience, were matched in PSM. To maximize the ratio while maintaining a 90% match stage of cancer, and time since diagnosis associated with resilience, were matched in PSM. To maximize the ratio while maintaining a 90% match.24 Absolute standardized difference < 0.1 indicates a good balance. PSM methods were successfully performed in our previous research.19,25 Second, local independence was examined by item-pair residual correlations, and less than 0.2 is recommended.26 Third, Confirmatory Factor Analysis-based and Bifactor-based MIRT models were explored in the present study.27 A compensatory logistic multidimensional grade response model (MGRM-C) was performed to estimate the item parameters, which was detailed as the equation below:

\[P_{ij} = \frac{\exp(a_i \theta_j + d_k)}{1 + \exp(a_i \theta_j + d_k)} \]

MGRM-C is a logistic probability model (\(P_{ij}\)) that examinee (\(j\)) will respond with category \(k\) (and above) of item \(i\) as a function of the item-category threshold (or easiness parameter, \(d_k\)), item discrimination parameter vector \(a_i\), and examinee ability parameter vector \(\theta_j\). Log-likelihood, Akaike Information Criterion, Bayesian Information Criterion, and Sample-adjusted Bayesian Information Criterion were compared between Confirmatory Factor Analysis-based and Bifactor-based MIRT models. When the optimal model was chosen, multidimensional discrimination (< 0.5 indicates poor; 0.5–1.0 indicates moderate; 1.0–1.5 indicates good; > 1.5 indicates excellent) and multidimensional difficulty (monotonous distribution indicates good fitting) were used as the fitting indicators. In addition, item trace and item information surface were also visualized. Fourth, an iterative hybrid ordinal logistic approach with Monte Carlo Simulation was used to evaluate DIF between Americans and Chinese.28 \(U_i\) is defined as a discrete random variable representing the ordered item response to item \(i\), whereas \(U_i = (0, 1, ..., m_i - 1)\) is defined as the actual response to item \(i\), with \(m_i\) ordered response categories. Based on the parallel regression assumption, regression coefficients are estimated...
for all cumulative logits with varying intercepts (α_k). For each item, an intercept-only (null) model and three nested models are formed as follows:

Model 0: \[
\text{logit} P(u_i \geq k) = \alpha_k
\]
Model 1: \[
\text{logit} P(u_i \geq k) = \alpha_k + \beta_1 \text{ability}
\]
Model 2: \[
\text{logit} P(u_i \geq k) = \alpha_k + \beta_1 \text{ability} + \beta_2 \text{group}
\]
Model 3: \[
\text{logit} P(u_i \geq k) = \alpha_k + \beta_1 \text{ability} + \beta_2 \text{group} + \beta_3 \text{ability} \times \text{group}
\]

where $P(u_i \geq k)$ is defined as the cumulative probabilities that the actual item response u_i falls in category k or higher. Ability represents the latent trait measured by the test. Uniform DIF is evaluated by comparing the log likelihood values for Models 1 and 2, whereas nonuniform DIF is evaluated by comparing the log likelihood values for Models 2 and 3. An overall test of total DIF is estimated by comparing Models 1 and 3. Bonferroni corrected P values were set at $0.01/4 = 0.0025$ for the domain of Generic Elements and $0.01/6 = 0.0017$ for the domain of Shift-Persist.

Results

Demographics in the unmatched and matched data

In the unmatched data set ($N = 924$), mixed, breast, and lung cancer diagnoses accounted for 30.6%, 29.1%, and 25.8%, respectively. In Fig. 1A, before PSM, significant demographic differences were noted between Americans and Chinese in gender ($P = 0.0004$), education ($P = 0.0234$), cancer type ($P = 0.0003$), stage of cancer ($P < 0.0001$), and time since diagnosis ($P < 0.0001$). After PSM, 186 Americans (90.7%) and 372 Chinese (51.7%) were included for further MIRT analysis, and the demographics were well balanced by small standardized differences (ranged from 0.01 to 0.08), which was presented in Fig. 1A.

Item distribution and local independence

The item distribution for Americans and Chinese were summarized in Fig. 1B and C, respectively. In addition, item-pair local independence was visualized in Fig. 1D and E, indicating local independence was satisfied.

Confirmatory factor analysis–based vs. bifactor-based MIRT models

Although better fitting indicators ($P < 0.0001$ for both Americans and Chinese) were identified in the Bifactor-based MIRT model (Model 2, Fig. 2B) compared with the confirmatory factor analysis–based model (Model 1, Fig. 2A), negative slope values (S1 and S2) were recognized in Model 2 (i.e., S1: -0.43 and -0.18 for items 1 and 2 in Americans, respectively; S2: -0.09 and -0.73 for items 6 and 7 in Chinese, respectively). In addition, disordered thresholds were identified in Americans.

![Fig. 1. Demographics, item distribution, and local independence.](image-url)
item 6, MDIFF4) and Chinese (item 2, MDIFF4), indicating the information overextraction. Thus, Confirmatory Factor Analysis–based MIRT model (Model 1) was chosen as the optimal model according to the parsimonious model guideline. In Fig. 2C and D, 10 item traces were visualized for Americans and Chinese, respectively, and monotonous distribution of theta values was confirmed. Finally, expected total score, test information, and test standard errors were summarized for Americans and Chinese in Fig. 3 and Fig. 3D–F, respectively.

Differential item function

For the domain of Generic Elements, Americans showed higher resilience compared with Chinese, although the difference was not statistically significant (Fig. 4A). At the individual level (Fig. 4B), all items except for item 4 showed no DIFs. According to Monte Carlo simulations–based thresholds in Fig. 4C, only nonuniform DIF was recognized in Item 4 ($P = 0.0011, \Delta%|t = 4.15|$). As for the domain of Shift-Persist, Americans showed lower resilience compared with Chinese, although the difference was not statistically significant (Fig. 4D). At the individual level (Fig. 4E), all items except for Item 8 showed no DIFs. According to Monte Carlo simulations–based thresholds in Fig. 4F, only nonuniform DIF was recognized in Item 8 ($P = 0.0017, \Delta%|t = 5.99|$).

The comparison of different prediction models (total score vs. MIRT-based score)

Two models were developed to construct the prediction model for Distressed outcome, including Model 1: total score and Model 2: MIRT-based score. Compared with Model 1, AUC in Model 2 increased from...
Discussion

In the present study, an ethnically diverse sample of Americans and Chinese was used to evaluate MI by comparing two languages: English and Mandarin. Before MI estimation, PSM was performed to help control the effect of potential confounders, resulting in a balanced demographic comparison, which was not well addressed in the previous research. The Confirmatory Factor Analysis–based MIRT model (between-item multidimensional theory framework) was better than the bifactor-based MIRT model (within-item multidimensional theory framework) in consideration of fitting indicators and information overextraction. It indicated that the underlying resilience constructs were conceptually comparable in both the Americans and Chinese, and RS-SC-10 retained 10 items with monotonous thresholds and its original two-factor structure. In addition, a 5-point Likert scaling was suitable for RS-SC-10 in consideration of nondisordered thresholds identified in the present study. Although the local independence assumption was partly compromised owing to several high (> 0.2) item-pair residuals associations (ie, items 2 and 6, items 5 and 9, etc), the problematic item-pair proportions were small and could be ignored. In addition, test information revealed that RS-SC-10 could effectively distinguish patients with lower-middle or upper-middle resilience, confirming Hypothesis 1.

As for Hypothesis 2, nonuniform DIF were identified in Items 4 and 8, indicating that item-means equivalence was partially compromised in the level of resilience construct. For example, nonuniform DIF was recognized in Item 4, and we concluded that Americans had higher responses than Chinese when the patients had low resilience (from −4 to −2), whereas Chinese had higher responses than Americans when the patients had moderate-high resilience (from −2 to 4). Similar results could be derived from Item 8. Based on these findings, items 4 and 8 might not be suitable outcomes for cross-culturally resilience-related intervention between Americans and Chinese because only invariant items could be administered to compare language groups. In addition, more item parameters were estimated in a MIRT model than a unidimensional IRT model such as Rasch model, and a larger sample size should be warranted in the future research to replicate these findings especially for Americans in consideration of only 186 patients in the present study.

As for Hypothesis 3, MIRT-based score vs. total score were compared and anchored against Distressed outcome based on a cross-sectional design. Similar NRI and IDI were identified between Americans and Chinese, and MIRT-based score had higher net benefits and better predictable abilities to Distressed outcome than resilience total score. Thus, MI could be indirectly confirmed by the Resilience-Distressed prediction model, and MIRT-based score instead of total score should be used in clinical settings to have a more precise resilience screening as well as a potential tool for predicting emotional distress. However, PRO-related anchors had subjective bias and external validations, for instance, diagnoses elicited from trained physician, objective indicators of cortisol, C-reactive protein, systolic pressure, and so on could be incorporated into MIRT validation research, which would provide more confidence to the interpretation of results.

Limitations

Several limitations should be considered. First, although PSM was performed to help control the effect of potential confounders, the sample size especially for Americans is inevitably reduced, resulting in a decreased statistical power in MIRT analysis. Therefore, the findings in the present study should be replicated in future research, especially
Fig. 4. Differential item functioning using iterative hybrid ordinal logistic regression/item response theory and Monte-Carlo simulations.
with a larger sample of Americans. Second, the sample is not balanced based on the cancer stage, and more than half (53%) are patients with advanced-stage cancer (IV). Thus, these findings derived from the present study might not be generalized to patients with early cancer stage and should be further validated. Third, compensatory logistic multidimensional grade response model (MGRM-C) was performed in this study, indicating that a higher response in the domain of Generic could compensate a lower response in the domain of Shift-Persist (linear accumulation), and this model might not be consistent with resilience construct resulting in biased parameter evaluations. A non-compensatory MGRM, which means the probability is the product of probabilities derived from Generic and Shift-Persist, is recommended to test the robustness of findings in future research. Fourth, in the present study, MI was estimated by IRT-based methods, and these findings should be further confirmed and compared by Classic Test Theory–based factor model in the future research.

Conclusions

Although partial MI has been identified between Americans and Chinese, RS-SC-10 remains a critical indicator to emotional distress in cancer care.

Acknowledgments

The authors would like to thank the participants with cancer who participated in this study.

Author contributions

M.Z.L. contributed to conceptualization, methodology, and writing the original article. P.C. contributed to conceptualization, methodology, and writing the original article. A.M. and S.J. contributed to methodology and software. Y.T. and G.Y.H. contributed to visualization and investigation. Y.F.Z., Z.S., and Y.L.Y. contributed to investigation. M.T.K. contributed to conceptualization, methodology, and reviewing and editing the article. Z.J.Y. contributed to conceptualization, methodology, and reviewing and editing the article.

Declaration of competing interest

None declared.

Funding

This research was funded by grants from National Natural Science Foundation of China (Grant No. 72274043, 71904033), Young Elite Scientists Sponsorship Program by CACM (Grant No. 2021-QNRC2-B08), Humanity and Social Science Foundation of Department of Education of Guangdong Province (Grant No. 2020WTSCX009), Humanity and Social Science Foundation of Guangzhou (Grant No. 2021GZGJ57), Guangdong Research Center for TCM Service and Industrial Development, Guangzhou University of Chinese Medicine (Grant No. 2022ZDA03), and Humanity and Social Science Foundation of Guangzhou University of Chinese Medicine (Grant No. 2021SKYB07).
Appendix A: Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apjon.2022.100171.

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

2. McCorkle R, Ercolano E, Lazenby M, et al. Self-management: enabling and empowering patients with cancer as a chronic illness. CA Cancer J Clin. 2011;61(1):50–62.

3. Stanton AL. Psychosocial concerns and interventions for cancer survivors. J Clin Oncol. 2006;24:5132–5137.

4. Ye ZJ, Qiu HZ, Li PF, et al. Predicting changes in quality of life and emotional distress in Chinese patients with lung, gastric, and colon-rectal cancer diagnoses: the role of psychological resilience. Psycho Oncol. 2017;26(6):828–835.

5. Rutter M. Resilience in the face of adversity. Protective factors and resistance to psychiatric disorder. Br J Psychiatry. 1985;147:598–611.

6. Harms CA, Cohen L, Pooley JA, Chambers SK, Galvao DA, Newton RU. Quality of life and psychological distress in cancer survivors: the role of psycho-social resources for resilience. Psycho Oncol. 2019;28(2):271–277.

7. Ye ZJ, Liang MZ, Li PF, et al. New resilience instrument for patients with cancer. Qual Life Res. 2018;27(2):355–365.

8. Ye ZJ, Peng CH, Zhang HW, et al. A biopsychosocial model of resilience for breast cancer: a preliminary study in mainland China. Eur J Oncol Nurs. 2018;36:95–102.

9. Ye ZJ, Liang MZ, Zhang HW, et al. Psychometric properties of the Chinese version of resilience scale specific to cancer: an item response theory analysis. Qual Life Res. 2018;27:1635–1645.

10. Ye ZJ, Zhang Z, Tang Y, et al. Development and psychometric analysis of the 10-item resilience scale specific to cancer: a multidimensional item response theory analysis. Eur J Oncol Nurs. 2019;41:64–71.

11. Ye ZJ, Liang MZ, Qiu HZ, et al. Effect of a multidiscipline mentor-based program, Be resilient to breast cancer (BRBC), on female breast cancer survivors in Mainland China: A randomized, controlled, theoretically-derived intervention trial. Breast Cancer Res Treat. 2016;158:509–522.

12. Ye ZJ, Zhang Z, Tang Y, et al. Resilience patterns and transitions in the Be resilient to breast cancer trial: an exploratory latent profile transition analysis. Psycho Oncol. 2021;30(6):901–909.

13. Bieda A, Hirschfeld G, Schönfeld P, Brailovskaia J, Zhang XC, Margraf J. Universal happiness? Cross-cultural measurement invariance of scales assessing positive mental health. Psychol Assess. 2017;29(4):408–421.

14. Veenhoven R. Developments in satisfaction research. Soc Indicat Res. 1996;37:1–46.

15. Ehrich J, Mornaz A, Powern T. Psychometric validation of the 10-item Connor-Davidson resilience scale. J Appl Meas. 2017;18(2):122–136.

16. Liu DWY, Fairweather-Schmidt AK, Burns RA, Rachel MR. The connor-davidson resilience scale: establishing invariance between gender across the lifespan in a large community based study. J Psychophychol Behav Assess. 2015;37:340–348.

17. Guillemin F, Bombardier C, Beaton D. Cross-cultural adaptation of health-related quality of life measures: literature review and proposed guidelines. J Clin Epidemiol. 1993;46:1417–1432.

18. Ye ZJ, Qiu HZ, Liang MZ, et al. Effect of a mentor-based, supportive-expressive program, Be Resilient to Breast Cancer, on survival in metastatic breast cancer—a randomized, controlled intervention trial. Br J Cancer. 2017;117:1486–1494.

19. Ye ZJ, Zhang Z, Zhang XY, et al. Effectiveness of adjuvant supportive-expressive group therapy for breast cancer. Breast Cancer Res Treat. 2020;180:121–134.

20. Liang MZ, Tang Y, Knobf MT, et al. Resilience index improves prediction of 1-year decreased quality of life in breast cancer [published online ahead of print, 2022 Aug 6]. J Cancer Surviv. 2022. https://doi.org/10.1007/s11764-022-0219-3.

21. Ye ZJ, Zhang Z, Tang Y, et al. Minimum clinic importance different for resilience scale specific to cancer: a prospective analysis. Health Qual Life Outcomes. 2020;18:381.

22. Zignond A, Snith B. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–370.

23. Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med. 2014;33:1242–1258.

24. Ye ZJ, Cheng MH, Zhang XY, et al. Treatment decision-making and regret in parents of children with incurable cancer. Cancer Nurs. 2021;44(3):131–141.

25. Chen WH, Thiessen D. Local dependence indexes for item pairs using item response theory. J Educ Behav Stat. 1997;22:265–289.

26. Reckase MD, McKinley RL. The discriminating power of items that measure more than one dimension. Appl Psychol Meas. 1991;15(4):361–373.

27. Choi SW, Gibbons LE, Crane PK, Lordif: An R package for detecting differential item functioning using iterative hybrid ordinal logistic regression/item response theory and Monte Carlo simulations. J Stat Software. 2011;39(8):1–30.

28. Leening MJ, Veder MM, Wittenman JC, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician’s guide. Am J Prev Med. 2016;50(2):122–131.

29. Hayashi K, Egauchi S. The power-integrated discriminant improvement: an accurate measure of the incremental predictive value of additional biomarkers. Stat Med. 2019;38(14):2589–2604.

30. Van Galder B, Wynants L, Verbeek JFM, et al. Reporting and interpreting decision curve analysis: A guide for investigators. Eur J Epidemiol. 2018;34(6):796–804.

31. Edwards MC, Houts CR, Wirth RJ. Measurement invariance, the lack thereof, and modeling change. Qual Life Res. 2018;27(7):1735–1743.

32. Segman RH, Stein MB. C-reactive protein: a stress diathesis marker at the crossroads—current status for a response style MIRT model. J Stat Software. 2021;80(1):1–27.

33. van der Linde B, Büning KH. Local dependence indexes for item pairs using item response theory. Psychometrika. 1997;62:229–252.

34. Jiang S, Wang C, Weiss DJ. Sample size requirements for estimation of item parameters in the multidimensional graded response model. Psychometrika. 2016;81(1):109.

35. Adam EK, Quinn ME, Tavernier R, McQuillan MT, Dahlke KA, Gilbert KE. Diurnal cortisol slopes and mental and physical health outcomes: a systematic review and meta-analysis. Psychoneuroendocrinology. 2017;83:25–41.

36. Segman RH, Stein MB. C-reactive protein: a stress diathesis marker at the crossroads of maladaptive behavioral and cardiometabolic sequelae. Am J Psychiatry. 2015;172(4):307–309.

37. Yavuz G, Hambleton RK. Comparative analyses of MIRT models and software (BMIRT and flexMIRT). Educ Psychol Meas. 2017;77(2):263–274.

38. Starr J, Falk CF, Monroe SL, Vachon DD. A comparison of limited-information test statistics for a response style MIRT model. Multivariate Behav Res. 2021;56(4):687–702.

39. Reise SP, Waller NG. Item response theory and clinical measurement. Annu Rev Clin Psychol. 2009;5:27–48.

40. Mihlap RE, Kowak OM. Evaluating the impact of partial factorial invariance on selection in two populations. Psychol Methods. 2004;9(1):93–115.