EPIYA Motif Genetic Characterization from *Helicobacter pylori* Isolates in Distinct Geographical Regions of Iran

Fatemeh Estaji¹, Bahram Nasr Esfahani¹, Saeed Zibaee², Mohammad Hossein Sanei³, Sharareh Moghim¹

¹Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, ²Department of Research and Development of Biological Products, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Mashhad, Iran, ³Department of Pathology, Aquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: This study aimed to determine the current EPIYA motifs of the cagA gene in *Helicobacter pylori* isolates from patients with gastric disorders, and evaluate the association between these patterns and the clinical outcome of *H. pylori* infection in different geographical regions of Iran.

Materials and Methods: We examined 150 patients with gastrointestinal disorders from the central and eastern regions of Iran. The detection of *H. pylori* and screening of cagA was performed by polymerase chain reaction (PCR). The pattern of the motifs was determined by PCR followed by sequencing.

Results: The overall prevalence of *H. pylori* was 66.3% in eastern (Mashad) and 50.6% in the central (Isfahan) part of Iran. The frequency of cagA-positive strains in Mashad and Isfahan were 63.4% and 56.7%, respectively. The pattern of EPIYA motif was as follows: 43 (79.6%) ABC, 7 (12.9%) AB, 4 (7.4%) ABCC, and one (1.9%) ABCCC. We also identified a novel EPIYA C sequence motif which showed association with gastric cancer (GC). The relationship between the frequency of specific EPIYA motifs and GC was statistically significant (*P* ≤ 0.05).

Conclusions: This is the first report for the determination of the cagA EPIYA motif of *H. pylori* in the Northeast and center of Iran. The prevalence of cagA positive *H. pylori* between the two regions was significant (*P* ≤ 0.05). All isolates of the *H. pylori* cagA were western type (ABC). The increase in the number of EPIYA-C repeats was associated with GC (*P* ≤ 0.01).

Keywords: CagA, gastric cancer, gastrointestinal diseases, *Helicobacter pylori*, Iran

Introduction

Helicobacter pylori is a spiral-shaped, Gram-negative, and microaerophilic bacteria that infect human gastric mucosa and cause gastric disorders, including gastric adenocarcinoma, peptic ulcer, and chronic gastritis.¹ Although nearly half of the global population is infected with *H. pylori*, only a small number of people develop severe diseases. This indicates that the environmental factors, diversity of virulence genes in *H. pylori* isolates, and host immune status may be supportive in the outcome of the disease.² Various *H. pylori* genes have been identified, which are involved in the pathogenicity of this pathogen. A major *H. pylori* virulence determinant is cytotoxin-associated gene A (cagA), which is located within the *cag* Pathogenicity Islands.³ The CagA protein is delivered into the gastric epithelial cells. Upon delivery into the gastric epithelial cells, CagA is phosphorylated by the Src kinases family.⁴ Tyrosine CagA phosphorylation sites are characterized by a unique 5

Address for correspondence: Dr. Sharareh Moghim, Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
E-mail: moghim@med.mui.ac.ir

Submitted: 07-Sep-2021; Revised: 03-Nov-2021; Accepted: 06-Nov-2021; Published: 27-Sep-2022

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Estaji F, Nasr Esfahani B, Zibaee S, Sanei MH, Moghim S. EPIYA motif genetic characterization from *Helicobacter pylori* isolates in distinct geographical regions of Iran. Adv Biomed Res 2022;11:77.
amino acid sequence (Glu-Pro-Ile-Tyr-Ala), called the EPIYA motif, which exists in variable numbers in the C-terminal cagA region.[3] Then, CagA interacts with host proteins, which are involved in signaling pathways of destroying cell connections, altering epithelial cell polarization, and inducing the inflammatory and mitogen responses.[6] Based on the epidemiological studies, cagA was found to increase the risk for peptic ulceration and gastric cancer (GC). H. pylori cagA-positive is found in 50%–70% of isolates in Western countries and 80%–100% in Asian communities.[13] Extensive polymorphic status of the 3’ end of cagA gene influences the biological activity and has a subsequent exclusive effect on H. pylori-related disorders.[8] According to the amino-acid sequence surrounding the EPIYA motif, four distinct EPIYA types (A-B-C-D) are defined.[9] EPIYA-A and EPIYA-B fragments are present in almost all cagA isolates. In contrast, the EPIYA-C component is characteristic of H. pylori cagA in Europe, North America, and Australia. Therefore, cagA species containing the EPIYA-C component are shown as “Western cagA.” Similarly, the EPIYA-D fragment is specific for H. pylori cagA, which is native to East Asia. Accordingly, cagA with the EPIYA-D section is called “cagA East Asian.”[13] The EPIYA-D motif is phosphorylated more compared to EPIYA-C. However, the potential of inducing GC in EPIYA-ABCCC is similar to EPIYA-D in H. pylori cagA positive patients.[10] East Asian strains increase the risk of gastric ulcer and cancer, although the number of EPIYA-C motifs within the Western-type cagA has been related to an increased risk of stomach cancer.[11]

Iran is located in the Middle East, and according to previous studies, the prevalence of H. pylori infections is 60%–90%.[12-15] Due to migration from eastern countries, the frequency of H. pylori genotypes in a different region could vary. However, the number of previous studies is too small to explain the correlation between different EPIYA motifs and the outcome of the disease in this region.[16] This study aimed to determine the pattern of EPIYA motif of cagA positive strains, with the polymerase chain reaction (PCR)-based sequencing method in H. pylori-positive clinical isolates, and compare the relationship between EPIYA motif typing pattern and the clinical outcomes in the Central and Northeastern region of Iran.

Materials and Methods

Clinical specimens

During 2017–2019, a cross-sectional study was performed on patients who were living in two different geographical regions: Mashad (the provincial capital in the northeastern) and Isfahan, which is the center of the province in the central part of Iran. All patients with gastrointestinal symptoms who were subjected to upper endoscopy were enrolled in the study. None of the patients had received non-steroid anti-inflammatory drugs, proton pump inhibitors, or antibiotics a month before endoscopy. Patients with a previous history of cancer, chemotherapy treatment were excluded from the experiment. A questionnaire has been completed from all patients according to demographic information before gastric endoscopy at the referral Al-Zahra Hospital in Isfahan and the referral Pathobiology Centre in Mashad. A total of 150 patients affected by gastritis, intestinal metaplasia, and gastric adenocarcinoma were included in the study. Informed consent was obtained from the subjects according to the issued regulations approved by the Ethics Committee of Isfahan University of Medical Sciences (IR. mui. Rec. 1396.3765).

Isolation of Helicobacter pylori

Two biopsy were taken from the antrum and the corpus during the endoscopy procedure. The biopsy samples for bacterial culture were placed in transport media (0.9% normal saline) and immediately transported to the microbiology laboratory. The specimens were homogenized and inoculated directly onto H. pylori selective media (Colombia agar, Gibco, U.S.A) supplemented with (5%) defibrinated sheep blood, fetal calf serum (10%), and campylobacter selective supplement (Merck Co., Germany). The plates were incubated at 37°C for 5–7 days under microaerophilic conditions (Anoxomat; MART Microbiology BV, Drachten, the Netherlands). H. pylori were identified by gram stain (spiral red rod), the morphology of colony (small, translucent colonies), and positive reactions to oxidase, catalase, and urease. For histology, other biopsy samples were fixed in 10% formalin and the thin 4 μm sections were stained with H and E. Histological stages of gastrointestinal disease were assessed by a skilled pathologist and classified by the updated Sydney classification system.[17]

Detection of Helicobacter pylori by polymerase chain reaction

Genomic DNA was extracted from colonies using the QIAamp DNA mini kit (QIAGEN, Qiagen, Hilden, Germany) based on the manufacturer’s protocol. PCR was performed to confirm H. pylori using the ureA gene primers. The reaction was done in a final volume of 25 μl including (Taq DNA Polymerase 2x Master Mix RED (Ampliqon)/Denmark), 1.5 mM MgCl₂, 0.5 μM of each primer (Forward primer: 5’-AGTGGGTATTGAAGCGATG-3’ and reverse primer: 5’-TGCTTTTCGTGTCTGCTTT-3’, and 2 ng of template DNA. The reaction conditions included an initial denaturation step 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 59°C for 40 s, 72°C for 30 s, and a final extension at 72°C for 5 min.

The PCR product was purified and sequenced bilaterally to verify H. pylori. For all reactions DNA sample of H. pylori (ATCC 26695) was used as a positive control.

Screening of cagA and typing of EPIYA motif

H. pylori-positive samples (histology, culture, and ureA-PCR) were subjected to PCR to detect cagA gene, as described previously.[18] Primers cag2 (5’-GGAAACCTAGTCGGTAATG-3’), as a forward primer, and cag4 (5’-ATCTTTGACCTTGCTCATCG-3’), as
a reverse primer, were used to amplify the whole 3′ variable region of cagA gene. The reaction was done in a final volume of 50 µl including (Taq DNA Polymerase 2x Master Mix RED (Ampliqon/Denmark), 1.5 mM MgCl₂, 0.5 µM of each primer, and 2 ng of template DNA. PCR was performed under the following conditions: Initial denaturation at 95°C for 5 min followed by 35 cycles of denaturation at 95°C for 30 s, 50°C for 40 s and 72°C for 30 s, final extension at 72°C for 5 min.[19] Agarose gel (1.5%) was used for the electrophoresis of the PCR product. For all reactions, a cagA positive strain (H. pylori ATCC 26695) was used as a positive control.

DNA sequence analysis

PCR products were purified using the Silica Bead DNA Gel Extraction kit (Fermentas, USA). Sequencing was done on both strands by Niagene noor Co. (Tehran, Iran). Mega 10 software was used for the alignment of partial CagA peptide sequences, and the analysis of the EPIYA specific amino acid sequences was compared with the total CagA protein sequences available in the GenBank database. The nucleotide sequences of the EPIYA motifs have been deposited in the GenBank database under accession no. OK077137-OK077158.

Table 1: Sociodemographic, disease, and regions

Diagnosis	Gender	Northeast	Center	Total					
	Female, n (%)	Male, n (%)	P	Female, n (%)	Male, n (%)	P	Female, n (%)	Male, n (%)	P
Gastritis	10 (56)	15 (44)	>0.051	8 (30)	17 (70)	>0.051	19	32	>0.051
Metaplasia	11 (5)	14 (44)		7 (28)	18 (72)		18	32	
Carcinoma	12 (48)	13 (52)		7 (28)	18 (72)		19	31	

Diagnosis	Age (mean, SD)	P	Age (mean, SD)	P	Age (mean, SD)	P
Gastritis	46.52 (19.38)	≤0.012	49.2 (19.60)	≤0.012	47.9 (14.5)	≤0.012
Metaplasia	59.5 (14.46)		65.5 (13.66)		62.5	
Carcinoma	61.24 (13.73)		61.96 (15.49)		61.6 (16.61)	

Diagnosis	Education (median, years)	P	Education (median, years)	P	Education (median, years)	P
Gastritis	9	>0.054	12	>0.054	10.5	≤0.055
Metaplasia	5		9		7	
Carcinoma	5		9		7	

Diagnosis	BMI (mean, SD)	P	BMI (mean, SD)	P	BMI (mean, SD)	P
Gastritis	24.16 (3.98)	>0.055	24.4 (4.02)	>0.055	24.28 (4.0)	>0.055
Metaplasia	24.0 (4.1)		24.2 (5.1)		24.1 (4.6)	
Carcinoma	25.67 (5.25)		25.36 (4.74)		25.51 (4.9)	

1χ² test, 2ANOVA test, 3Kruskal-Wallis test. SD: Standard deviation, BMI: Body mass index

Statistical analysis

SPSS software version 18.0 (SPSS, Inc., Chicago, IL, USA) was used for statistical analysis. ANOVA, Chi-square, and Fisher’s exact probability tests were used to determine the association between cagA types and clinical manifestation. A \(P < 0.05 \) was considered statistically significant (\(P < 0.05 \)).

Results

Demographics, gastrointestinal diseases, and regions

A total of 150 patients with gastrointestinal diseases were enrolled in this study. Based on histopathology method, 46 patients had gastritis, 54 had adenocarcinoma, and 49 had intestinal metaplasia. The population consisted of 75 patients from the Mashad (33 women and 42 men, with the age range of 18–95, and mean age of 58 years) and 75 patients from the Isfahan (22 women and 53 men, with the age range of 8–93, and the mean age of 55 years). Patients with adenocarcinoma were significantly older (\(P \leq 0.001 \)). The statistical relationship between age and type of the disease was similar in both regions. Education levels were significant among the groups (\(P < 0.05 \)) [Table 1].

Frequency of cagA in Helicobacter pylori infections

The presence of ureA gene of H. pylori was detected in 89 specimens (59.3%). People who were living in the...
Northeast had a relatively higher \textit{H. pylori} infection rate than those in the center (odds ratio [OR] = 2.26 and 0.79, respectively), [Table 2]. Among 89 \textit{H. pylori}-positive patients, 35 (39.3\%) had gastritis, 26 (29.2\%) had adenocarcinoma, and 28 (32.5\%) had intestinal metaplasia [Figure 1a]. There was no statistically significant relationship between the prevalence of \textit{H. pylori} and the clinical outcome of the disease, gender, age, and other sociodemographic in either region [Tables 2 and 3].

Among the 89 \textit{H. pylori}-positive patients, 54 (60.7\%) were cagA positive. The prevalence of the cagA positive strains in Mashad and Isfahan were 61.1\% (33/54) and 56.7\% (21/37), respectively. The prevalence of cagA positive \textit{H. pylori} between the two regions was significant (P ≤ 0.05), [Figure 1b]. There was a significant difference in the frequencies of the cagA gene among the study groups (P ≤ 0.01).

Sequence analysis of 3´ variable region

The PCR products of cagA positive samples were showed four electrophoretic patterns in accordance with the following EPIYA motifs: AB, ABC, ABCC, and ABCCC, [Figure 2]. The results were confirmed by sequencing the 3´ variable region of the cagA gene in 54 samples. The EPIYA ABC motif was detected in 42 (77.7\%) samples, ABCC in 4 (7.4\%), AB in 7 (12.9\%), and ABCCC were found in one patient with adenocarcinoma, Figure 1c. The ABC motif was most prevalent among the cagA positive patients in Isfahan with gastritis (83\%), intestinal metaplasia (85\%), and gastric adenocarcinoma (62.5\%). The frequency of cagA EPIYA-ABC as the most prevalent motif was 77.7\%, 78.6\%, 80\%, in patients with gastritis, gastric adenocarcinoma, intestinal

Variable	\textit{H. pylori} positive/total n (%)	OR	95\% CI	P
Place				
Northeast	52/75 (60.3)	2.26	1.26-4.06	≤0.05
Center	38/75 (50.7)	0.79	0.45-1.37	
Gender				
Male	51/95 (53.6)	1.27	1.11-2.17	>0.05
Female	39/55 (51.4)			
Education				
High education	37/66 (56)	1034	0.69-2.59	>0.05
Highschool and lower	53/84 (63)			

\(P<0.05\), Chi-square, estimate risk by OR and 95\% CI. OR: Odds ratio, CI: Confidence interval, \textit{H. pylori}: \textit{Helicobacter pylori}

Table 2: Association of sociodemographic, region with \textit{H. pylori} infection

Table 3: Association of \textit{H. pylori} infection, cagA and and EPIYA pattern with gastrointestinal disease

cagA genotype

Diagnosis	Northeast	H. pylori	Center	Total	P	n	OR	95\% CI	P	n	OR	95\% CI	P	n	OR	95\% CI
Gastritis	19	1.44	0.5-4.3			16	2.26	0.8-6		35	1.9	1-3.9				
Metaplasia	17	1.04	0.4-3			12	0.8	0.3-2.1		29	1	1-4.6				
Carcinoma	16	0.6	0.2-1.8			10	0.5	0.2-1.4		26	0.6	0.2-1.8				

EPIYA motif

Diagnosis	AB	OR	95\% CI	ABC	OR	95\% CI	ABCC	OR	95\% CI	P	n	OR	95\% CI
Gastritis	3	2.2	0.4-11.2	12	1.2	0.3-5.2	-	-	-				
Metaplasia	3	1.8	0.4-8.9	14	1.5	0.4-6.4	-	-	-				
Carcinoma	1	0.2	0.02-1.9	16	0.5	0.1-2	4	9.41b	1-87.2				

Number of EPIYA-C

Diagnosis	1C	≥2C	OR	95\% CI	P	n	OR	95\% CI
Gastritis	15	-	-	-				
Metaplasia	14	-	-	-				
Carcinoma	16	4	9.06	1-84.5	≤0.01c			

\(P<0.05\), Chi-square test, *P<0.05* Fisher’s exact test, †Fisher’s exact test. OR: Odds ratio, CI: Confidence interval, cagA: Cytotoxin-associated gene A, \textit{H. pylori}: \textit{Helicobacter pylori}
metaplasia, in the Northeast [Table 3 and Figure 1c]. Based on the bioinformatic analysis and peptide sequence alignment of the EPIYA motifs it was observed all sequenced cagA variable regions corresponded to the Western-type, with three EPIYA motifs: EPIYA-A EPIYAKVNKKKAGQ; EPIYA-B EPIYA (A/T) QV AKKVNAKI, and EPIYA-C EPIYA TIDDLGGP. No isolate corresponded to the EPIYA-D or East Asian type: EPIYATIDFDEANQAG was detected in the population studied. Two CRIPA motifs (FPLKRHDKVDDLSKVG) were observed in all sequences which were located before and after each EPIYA-C segment.

Discussion

The incidence of GC is closely related to the prevalence of *H. pylori* worldwide.\(^{[21]}\) *H. pylori* seem genetically diverse, and its various strains can be dispersed among different ethnic groups or geographical areas, and this could affect the risk of cancer to be variable in different regions.\(^{[22]}\) In Iran, the ethnic-geographic diversity is so high and almost 69% of Iranian people are infected with *H. pylori*.\(^{[23]}\) Although the migration from highly prevalent neighboring countries (Afghanistan, and Pakistan) to the northeast of Iran is high, few studies are available from this region. We have shown that gastrointestinal disorders are related to age, level of education but not to gender, and obesity. In this study, we found that the *H. pylori* infection rate in the Northeast is slightly higher than those in the central region of Iran (OR = 2.26, 95% CI 1.26–4.06; and 0.79,
95% CI 0.45–1.37, respectively). The relationship between the prevalence of *H. pylori* and the clinical outcome of the disease was not statistically significant (*P* > 0.05). Likewise, in some countries such as India (known as Asian enigma) the high prevalence of *H. pylori* infection is not correlated with high frequencies of GC.[24] It seems that the prevalence of GC depends on the pathogenic factors of the bacterial strains, environmental co-factors, and host susceptibility.[25] Therefore, we further examined the presence of *cagA*, as one of the most important virulence factors of *H. pylori*, in the two regions. Similarly, our *cagA* positivity rate (60.7%) for *H. pylori* isolates was in agreement with the global prevalence of *cagA*‑positive strains in western countries, and other regions of Iran.[26‑28] We addressed that the prevalence of *H. pylori*‑*cagA* positive strains in Mashad is higher than in Isfahan (*P* ≤ 0.05). The presence of *cagA*-positive *H. pylori* is significantly associated with the outcome of gastrointestinal diseases such as peptic ulcers, intestinal metaplasia, and GC.[29] In this study, we detailed a strong association between the *cagA*-positive genotype and the severity of the disease (*P* ≤ 0.01). The ORs were increased with the severity of the disease (OR = 0.6 for gastritis and 2.1 for adenocarcinoma). Also, *H. pylori* *cagA* positive genotype increases the risk of GC (OR = 1.6, 95% CI: 0.8–3.3) relative to the risk of *H. pylori* infection alone (OR = 0.6, 95% CI: 0.2–1.8). Similarly, Doohan et al. indicated that the *H. pylori* IgG seropositive with *CagA* IgG low titer was the strongest risk factor for noncardia GC (relative risk [RR], 3.9; 95% CI: 2.1–7.0; *P* < 0.001), compared with *H. pylori* IgG seropositive with *CagA* IgG negative (RR, 2.2; 95% CI: 1.3–3.9; *P* = 0.0052).[30] In another study related to *cagA*, *cagA*-positive strains were significantly associated with GC and PU.[3] In Western countries, the prevalence of *cagA* positive *H. pylori* genotype is 50%–70%. Given the fact that Iranian strains are in the same group as *hpEurope* population,[23] it is likely that the *cagA* positive genotype may be a useful biomarker for the prediction of clinical outcomes in Iran following western countries.

On the other hand, despite a high prevalence of *cagA* positive *H. pylori* genotype (90%–100%) in East Asian countries, this high prevalence of the *cagA* positive genotype is not related to clinical outcomes.[31] It is reported that types of EPIYA have a major role in the development of gastrointestinal diseases.[32] EPIYA motif is used as a tool for identifying the circulating *H. pylori* as well as epidemiological studies.[33] We further analyzed the sequences surrounding the EPIYA for the first
time in these two regions. We did not find EPIYA-D (East Asian type) in these regions, which is compatible with the findings of previous studies in Iran. In 77.7% of the cases, the cagA gene contained an EPIYA-C motif in the typical ABC sequence, and this was more frequent in patients with adenocarcinoma. In other Iranian studies related to EPIYA-C repeats, Vaziri et al. indicated that the H. pylori-positive patients with gastritis had 68% EPIYA-ABC. There is evidence in Western countries that the number of EPIYA motifs, especially section C, increased the risk of intestinal metaplasia and GC. For instance, the frequency of strain rate exceeding one EPIYA-C (ABCC) replication was 51.1% in Colombia and 33.3% in Italy, which is much higher as compared to the present findings. This would explain those countries as higher GC risk regions than Iran. Although in our study the frequency of the ABC motif in gastric adenocarcinoma and intestinal metaplasia was high, the relationship between the ABC motif and the clinical outcome was not statistically significant. The results of this study show only a relationship between the clinical outcome of the disease and the EPIYA ABCC motif, which is consistent with studies in Iran and other countries. The study conducted by Vaziri et al. showed a significant association between ABC motif and duodenitis. The result of Ajami et al. revealed that CagA-positive H. pylori with ABCC motifs are associated with the risk of GC. In our study, number of EPIYA-C repeats increases 9.01 times the risk of adenocarcinoma (95%CI [0.45–42.8], \(P < 0.01 \)). This result was in agreement with other studies in the EPIYA motif of the western genotypes. It has been suggested that CagA-EPIYA ABC might be associated with GC, while EPIYA-AB might be associated with duodenal ulcers. Polymorphisms in the EPIYA motif pattern vary according to geographical and ethnic distributions due to the influences of environmental conditions and physiological characteristics of populations in different regions. We did not find more than one C repeat in other groups than GC. It might be possible that the number of C repeats in the EPIYA motif could be a good biomarker for detecting or predicting GC. Therefore, further study using a large number of participants will be necessary to investigate this relationship. In some studies, a strong association was found between other pathogenic factors and the incidence of H. pylori-related diseases. In the Northwest of Iran, where the GC risk is high in males, the relationship between the virulence factor, vacA (1-1-d1-genotypes), and the risk of GC have been studied. Xue et al. have also previously shown the possible relationship between H. pylori pathogenic factors such as oipA, babA, icaA, and vacA in China and their clinical outcome. Therefore, examining the other virulence factors in cagA-positive strains might improve the geographic origin diversity and could probably better predict the GC risk in different geographical regions. Furthermore for cancer risk, among Western strains, the most important factor is the number of cagA EPIYA-C segments.

The Agency for Research on Cancer (GLOBOCAN, 2018) estimated that the prevalence of GC in Iran is 25.37 cases per 100,000 people. Since more than 80% of cases of GC have been attributed to H. pylori infection, a program including detecting H. pylori, identifying the important virulence factors would be useful to monitor patients with gastroduodenal disease in hospital laboratories.

Conclusions

The findings indicated that the Western type of cagA gene is predominant in two geographically different regions of Iran. This is the first report of prevalence and genotyping of H. pylori in the northeast and center (Isfahan) of Iran. The frequent EPIYA motifs of CagA were ABC. We also identified a novel EPIYA C sequence motif which showed association with GC. Further study with a larger number of isolates is needed to confirm the proposed association of the identified sequence motifs and GC. We found a strong association between the number of C repeats in the EPIYA motif of the H. pylori isolated from GC; thus, it might be used as an important biomarker for predicting the GC risk in Iran.

Acknowledgments

This study is a part of Ph.D. thesis sponsored by a grant from Isfahan Medical Sciences University. The authors hereby appreciate the Pathology Section of Al-Zahra Hospital for their support and assistance during the investigations.

Financial support and sponsorship

This work was funded by Isfahan University of Medical Sciences (Grant number: 396765, 2018).

Conflicts of interest

There are no conflicts of interest.

References

1. Charitos IA, D’Agostino D, Topi S, Bottalico L. 40 Years of Helicobacter pylori: A revolution in biomedical thought. Gastroenterol Insights 2021;12:111-35.
2. Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun 2021;22:218-26.
3. Nejati S, Karkkha A, Darvish H, Validi M, Ebrahimpour S, Nouri HR. Influence of Helicobacter pylori virulence factors CagA and VacA on pathogenesis of gastrointestinal disorders. Microb Pathog 2018;117:43-8.
4. Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci 2017;93:196-219.
5. Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2020;17:50-63.
6. Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Reyes VE. Effect of Helicobacter pylori on gastric epithelial cells. World J Gastroenterol 2014;20:12767-80.
7. Nguyen TH, Ho TT, Nguyen-Hoang TP, Qamar S, Pham TT, Bui QN, et al. The endemic Helicobacter pylori population in southern Vietnam has both south East Asian and European origins. Gut Pathog 2021;13:57.
8. Kabamba ET, Yamaoka Y. Helicobacter pylori and related virulence factors for gastrointestinal diseases. In: Gastric Cancer. Singapore: Springer; 2019. p. 31-50.
9. El Khadir M, Alaloui Boukhris S, Benajah DA, Ibrahimii SA, Chbani L, Bouguenouch L, et al. Helicobacter pylori CagA EPIYA-C motifs and
Estaji, et al.: EPIYA motif in H. pylori isolates
gastric diseases in Moroccan patients. Infect Genet Evol 2018;66:120-9.
10. Sheikh AF, Yaydaj MI, Goudarzi H, Hashemi SI, Aslani S, Assarzadegan MA, et al. CagA and vacA allelic combination of Helicobacter pylori in gastroduodenal disorders. Microb Pathog 2018;122:144-50.
11. Phan TN, Santona A, Tran VH, Tran TN, Le VA, Cappuccinelli P, et al. Genotyping of Helicobacter pylori shows high diversity of strains circulating in central Vietnam. Infect Genet Evol 2017;52:19-25.
12. Yadegar A, Alebouyeh M, Zali MR. Analysis of the intactness of Helicobacter pylori cag Pathogenicity Island in Iranian strains by a new PCR-based strategy and its relationship with virulence genotypes and EPIYA motifs. Infect Genet Evol 2015;35:19-26.
13. Farzi N, Malekian T, Alebouyeh M, Vaziri F, Zali MR. Genotype diversity and quasispecies development of Helicobacter pylori in a single host. Jpn J Infect Dis 2015;68:176-80.
14. Vaziri F, Najar Peerayeh S, Alebouyeh M, Molaei M, Maghsoudi N, Zali MR. Determination of Helicobacter pylori CagA EPIYA types in Iranian isolates with different gastroduodenal disorders. Infect Genet Evol 2013;17:101-5.
15. Yadegar A, Mobarez AM, Alebouyeh M, Mirzaei T, Kwok T, Zali MR. Clinical relevance of cagL gene and virulence genotypes with disease outcomes in a Helicobacter pylori infected population from Iran. World J Microbiol Biotechnol 2014;30:2481-90.
16. Farzi N, Yadegar A, Aghdei HA, Yamaoka Y, Zali MR. Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases. Infect Genet Evol 2018;60:26-34.
17. Memon GR, Maria G, Memon AF, Siyal AR. Analysis of Helicobacter pylori gastritis according to Sydney classification. J Muhammad Med Coll Mirpurkhas 2019;10:42-5.
18. Abu-Taleb AMF, Abdelattee RS, Abdel-Hady AA, Omran FH, El-Korashi LA, Abdel‑Aziz M, Abu‑Taleb AMF, Abdel‑Hady AA, Omran FH, Farzi N, Yadegar A, Gheysarzadeh A, Khosravi M, Abangah G, Farzi N, Malekian T, Alebouyeh M, Vaziri F, Zali MR. Genotype diversity and quasispecies development of Helicobacter pylori in a single host. Jpn J Infect Dis 2015;68:176-80.
19. Memon GR, Maria G, Memon AF, Siyal AR. Analysis of Helicobacter pylori gastritis according to Sydney classification. J Muhammad Med Coll Mirpurkhas 2019;10:42-5.
20. Tagoe EA, Awandare GA, Quaye O, Asmah RH, Archampong TN, Osman MA, et al. Helicobacter pylori Variants with ABC-Type Tyrosine Phosphorylation Motif in Gastric Biopsies of Ghanaian Patients. Biomed Res Int. 2021 Mar 30;2021:6616059. doi: 10.1155/2021/6616059.
21. Piscione M, Mazzone M, Di Marcantonio MC, Muraro R, Mincone G. Eradicación de Helicobacter pylori y gastritis: A controroversial relationship. Front Microbiol 2021;12:630852.
22. Alexander SM, Retnakumar RJ, Chouhan D, Devi TN, Dharmaseelan S, Devadas K, et al. Helicobacter pylori in human stomach: The inconsistencies in clinical outcomes and the probable causes. Front Microbiol 2021;12:713955.
23. Bakhti SZ, Latif‑Navid S, Safarazradzeh R. Helicobacter pylori-related risk predictors of gastric cancer: The latest models, challenges, and future prospects. Cancer Med 2020;9:4808-22.
24. Sjomina O, Pavlova J, Niv Y, Leja M. Epidemiology of Helicobacter pylori infection. Helicobacter 2018;23 Suppl 1:e12514.
25. Park JY, Forman D, Waskito LA, Yamaoka Y, Crabtree JE. Epidemiology of Helicobacter pylori and CagA-positive infections and global variations in gastric cancer. Toxins (Basel) 2018;10:163.
26. Khaledi M, Bagheri N, Validi M, Zamanzad B, Afkhami H, Fathi J, et al. Determination of CagA EPIYA motif in Helicobacter pylori strains isolated from patients with digestive disorder. Heliyon 2020;6:e04971.
27. Dabirī H, Jafari F, Baghaei K, Shokrzaedeh L, Abdī S, Pourhoseingholī MA, et al. Prevalence of Helicobacter pylori vacA, cagA, cagE, oipA, iceA, babA2 and babB genotypes in Iranian dyspeptic patients. Microb Pathog 2017;105:226-30.
28. Bagheri N, Azadeghan‑Dehkordi F, Rafieian‑Kopaei M, Rahimian G, Asadi‑Samani M, Shirzad H. Clinical relevance of Helicobacter pylori virulence factors in Iranian patients with gastrointestinal diseases. Microb Pathog 2016;100:154-62.
29. Kamogawa‑Schiifer F, Yamaoka Y, Uchida T, Beer A, Tribl B, Schninger‑Hekele M, et al. Prevalence of Helicobacter pylori and its CagA subtypes in gastric cancer and duodenal ulcer at an Austrian tertiary referral center over 25 years. PLoS One 2018;13:e0197695.
30. Doohan D, Mifahussurur M, Matsuo Y, Kido Y, Akada J, Matsuhisa T, et al. characterization of a novel Helicobacter pylori East Asian‑type CagA ELISA for detecting patients infected with various cagA genotypes. Med Microbiol Immunol 2020;209:29-40.
31. Sahara S, Sugimoto M, Vilaiichone RK, Mahaehai V, Miyajima H, Furuta T, et al. Role of Helicobacter pylori cagA EPIYA motif and vacA genotypes for the development of gastrointestinal diseases in Southeast Asian countries: A meta-analysis. BMC Infect Dis 2012;12:223.
32. Mi Y, Dong H, Sun X, Ren F, Tang Y, Zheng P. The association of Helicobacter pylori CagA EPIYA motifs and vacA genotypes with homologous recombination repair markers during the gastric precancerous cascade. Int J Biol Markers 2020;35:49-55.
33. Suzuki R, Shiota S, Yamaoka Y. Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect Genet Evol 2012;12:203-13.
34. Rodríguez Gómez ER, Otero Regino W, Monterrey PA, Trespalacios Rangel AA. cagA gene EPIYA motif genetic characterization from Colombian Helicobacter pylori isolates: Standardization of a molecular test for rapid clinical laboratory detection. PLoS One 2020;15:e0227275.
35. Kalaf EA, Al‑Khafaji ZM, Yassen NY, Al‑Abbudi FA, Sadwen SN. Study of the cytotoxic‑associated gene a (CagA gene) in Helicobacter pylori using gastric biopsies of Iraqi patients. Saudi J Gastroenterol 2013;19:69-74.
36. Ajami A, Shadam M, Rafiei A, Hosseini V, Talebi BA, Alizadeh A, et al. Prevalence of Helicobacter pylori inresults from patients with dyspeptic disorders in Northern Iran. Research in Molecular Medicine 2013;1:29-34.
37. Haddadi MH, Mahdian S, Ghayzarzadeh A, Khosravi M, Abangah G, Maleki A, et al. The cagA EPIYA Motifs and vacA genotypes in upper gastrointestinal diseases. Mol Genet Microbiol Virol 2020;5:105-11.
38. Vianna JS, Ramis IB, Halicki PC, Gastal OL, Silva RA, Junior JS, et al. Detection of Helicobacter pylori CagA EPIYA in gastric biopsy specimens and its relation to gastric diseases. Diagn Microbiol Infect Dis 2015;83:89-92.
39. Mottaghi B, Safarilazadeh R, Bonyadi M, Latifi‑Navid S, Soni MH, Helicobacter pylori vacA gene polymorphism but not babA2 status associated to gastric cancer risk in northwestern Iran. Clin Exp Med 2016;16:57-63.
40. Xue Z, Yang H, Su D, Song X, Deng X, Yu C, et al. Geographical distribution of the cagA, vacA, iceA, oipA and dupA genes of Helicobacter pylori strains isolated in China. Gut Pathog 2021;13:39.
41. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.