Research Article

Immunoinformatic Analysis of Calcium-Dependent Protein Kinase 7 (CDPK7) Showed Potential Targets for *Toxoplasma gondii* Vaccine

Ali Taghipour 1,1, Sanaz Tavakoli 2, Mohamad Sabaghan 3, Masoud Foroutan 4, Hamidreza Majidiani 5, Shahrzad Soltani 4, Milad Badri 6, Ali Dalir Ghaffari 1, and Sheyda Soltani 4

1Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3Behbahan Faculty of Medical Sciences, Behbahan, Iran
4USERN Office, Abadan University of Medical Sciences, Abadan, Iran
5Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
6Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran

Correspondence should be addressed to Mohamad Sabaghan; sabaghan.m@ajums.ac.ir and Masoud Foroutan; masoud_foroutan_rad@yahoo.com

Received 10 April 2021; Revised 10 June 2021; Accepted 22 June 2021; Published 12 July 2021

Academic Editor: José F. Silveira

Copyright © 2021 Ali Taghipour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Apicomplexan parasites, including *Toxoplasma gondii* (*T. gondii*), express different types of calcium-dependent protein kinases (CDPKs), which perform a variety of functions, including attacking and exiting the host cells. In the current bioinformatics study, we have used several web servers to predict the basic features and specifications of the CDPK7 protein. The findings showed that CDPK7 protein has 2133 amino acid residues with an average molecular weight (MW) of 219085.79 D. The aliphatic index with 68.78 and grand average of hydropathicity (GRAVY) with -0.331 score were estimated. The outcomes of current research showed that the CDPK7 protein included 502 alpha-helix, 1311 random coils, and 320 extended strands with GOR4 method. Considering the Ramachandran plot, the favored region contains more than 92% of the amino acid residues. In addition, evaluation of antigenicity and allergenicity showed that CDPK7 protein has immunogenic and nonallergenic nature. The present research provides key data for more animal-model study on the CDPK7 protein to design an efficient vaccine against toxoplasmosis in the future.

1. Introduction

Toxoplasma gondii is a prevalent intracellular protozoan, which can infect a broad spectrum of mammals (i.e., human) and birds [1, 2]. Oocysts are the potential infective form in the life cycle of the parasite. Feline species as the only definitive hosts can contaminate the environment by shedding unsporulated oocysts through feces [3]. *T. gondii* is transferred by water/vegetables contaminated via mature oocysts and consumption of raw or semicooked meat from infected animals, vertical transmission from infected pregnant mothers to neonates, and blood transfusion [4–7]. Approximately one-third of human society has been exposed to *T. gondii*, worldwide [5, 8, 9]. Often *T. gondii* infection among immunocompetent people is asymptomatic or demonstrates mild symptoms, whereas in immunocompromised patients, it can cause a various range of clinical symptoms [6, 9, 10]. Toxoplasmosis in immunocompromised subjects can cause repeated attacks in the brain and manifests as encephalitis [11]. Moreover, toxoplasmosis in pregnant women can cause blindness, microcephaly, and mental retardation in the infant [6, 12]. Different factors, such as host's
Figure 1: Continued.
Figure 1: NetPhos server output for CDPK7 phosphorylation sites. (a) The number of predicted sites, based on S (serine), T (threonine), and Y (tyrosine); (b) prediction diagram of CDPK7 phosphorylation sites.

Table 1: The acylation sites of CDPK7 sequence.

ID	Position	Peptide	Score
TGME49_228750 CDPK7 (T. gondii)	34	STQLSKECLKQYLKK	1.129
TGME49_228750 CDPK7 (T. gondii)	109	FLIGIAYCCRTGKSD	1.996
TGME49_228750 CDPK7 (T. gondii)	110	LIGIAVCCRTGKSD	5.494
TGME49_228750 CDPK7 (T. gondii)	187	QNLFSPCQRTPQNG	0.526
TGME49_228750 CDPK7 (T. gondii)	222	DEEDTGSCGNSNP	5.293
TGME49_228750 CDPK7 (T. gondii)	244	YPEAALVCSDPFP	3.693
TGME49_228750 CDPK7 (T. gondii)	321	SLDVFQGSPFP	0.984
TGME49_228750 CDPK7 (T. gondii)	524	SSEASVICPQGGISP	2.536
TGME49_228750 CDPK7 (T. gondii)	706	VDKIEECEFEEHGK	0.403
TGME49_228750 CDPK7 (T. gondii)	736	ILSMFTECLHEEVWG	1.821
TGME49_228750 CDPK7 (T. gondii)	1298	AHDPPACSGHSDP	5.591
TGME49_228750 CDPK7 (T. gondii)	1309	SPRLYSCNPCPNCNL	1.744
TGME49_228750 CDPK7 (T. gondii)	1312	DLSCPNCNPPLLC	8.015
TGME49_228750 CDPK7 (T. gondii)	1313	LYSSCPNCNPPLLC	7.05
TGME49_228750 CDPK7 (T. gondii)	1319	CCNPLCFLPFCHSY	2.719
TGME49_228750 CDPK7 (T. gondii)	1322	PLLLCPCFHSRPQPL	2.865
TGME49_228750 CDPK7 (T. gondii)	1340	EGRVMEGRCQGRLG	2.295
TGME49_228750 CDPK7 (T. gondii)	1343	VVMCRQCGRLGSSR	2.929
TGME49_228750 CDPK7 (T. gondii)	1395	DVEAGICVGGSRR	5.406
TGME49_228750 CDPK7 (T. gondii)	1406	SSRVFTRCWHCGWEL	0.108
TGME49_228750 CDPK7 (T. gondii)	1409	VFTURCWCGWELSK	1.424
TGME49_228750 CDPK7 (T. gondii)	1416	CGWELSKCAEMLKG	4.272
TGME49_228750 CDPK7 (T. gondii)	1474	GMFLECGYELLSE	1.626
TGME49_228750 CDPK7 (T. gondii)	1649	TVYYLHKCIVHRD	1.164
TGME49_228750 CDPK7 (T. gondii)	1683	DFGLSTLCAPNEVLH	1.6
TGME49_228750 CDPK7 (T. gondii)	1693	NEVLHCPGTLAYVA	1.927
TGME49_228750 CDPK7 (T. gondii)	1828	GEERTMACPVEPPTF	4.139
TGME49_228750 CDPK7 (T. gondii)	1829	EERTMACPVEPPTT	7.362
TGME49_228750 CDPK7 (T. gondii)	2080	PSILAPGCDSLASS	3.862
TGME49_228750 CDPK7 (T. gondii)	2110	ARQDERACGTAPA EVP	6.173
immune system status, genetic background, age, gender, contact with infected cats, environmental conditions, and diet and cultural habits, as well as the protozoan genotype, can affect the morbidity and mortality rate of Toxoplasma infection [13, 14].

Today, treatment of toxoplasmosis with conventional drugs can just limit the proliferation of tachyzoites at the beginning of infection, while these drugs cannot eradicate cystic forms of parasites in host tissue [15, 16]. In addition, taking these medications in pregnant women can have serious side effects, such as the possibility of teratogenic effects on the fetus [17]. Hence, the discovery and design of an effective vaccine to control and prevent toxoplasmosis is very important, especially in humans and domestic animals. In this regard, various in silico-based studies suggest various antigens as suitable candidates for vaccine design [18–32]. Calcium-dependent protein kinases (CDPKs) are a class of serine/threonine kinases that express in apicomplexans, ciliates, and plants [33]. In T. gondii as a member of the apicomplexan parasites, several CDPKs have been identified involving in critical functions in the different stages of the life cycle of parasite, including gliding motility (surface translocation), entry into (invasion), and exit from (egress) of host cells [34]. The CDPK7 is a crucial enzyme for division, growth, and maintenance of structural integrity of the Toxoplasma centrosome. As a result, TgCDPK7 knockdown is suggested as an important goal in achieving the right vaccine [35].

Computer-aided evaluation of different T. gondii proteins involved in various stages of life cycle can open new doors towards recognizing potent vaccine candidates through identification of highly immunogenic, nonallergenic, and nontoxic B- and T-cell epitopes [36]. Thereby, the present in silico study was performed to evaluate the crucial biochemical features and immunogenic epitopes of the CDPK7 protein by means of different bioinformatics servers.

2. Methods

2.1. CDPK7 Sequence. For this purpose, ToxoDB online website was used to obtain the whole amino acid sequence of T. gondii CDPK7 protein.

2.2. Physicochemical Characterization. We used the Expasy ProtParam online server to predict the physicochemical parameters of CDPK7 [37].

2.3. Prediction of Posttranslational Modification (PTM) Sites. The NetPhos 3.1 online tool was applied to predict phosphorylation location, and the CSS-Palm online server was applied to predict acylation location of the CDPK7 [38, 39].

2.4. Transmembrane Domains and Subcellular Location. The transmembrane regions and subcellular localization of T. gondii CDPK7 protein were assessed utilizing the TMHMM 2.0 and PSORT II web servers, respectively [38].
2.5. Secondary and Tertiary Structures. In this study, we employed the Garnier-Osguthorpe-Robson 4 (GOR4) online tool to forecast the secondary structure of CDPK7 protein [40]. Consequently, the three-dimensional (3D) model structures was used by SWISS-MODEL [38, 41].

2.6. The 3D Modeled Structure Refinement and Validation. GalaxyRefine was selected to develop and refine the quality of the template-based protein prediction [42]. To the Ramachandran plot validated the 3D structure of the protein, the SWISS-MODEL software was applied [43]. ProSA-web was used for evaluation of the whole quality of the model [44].

2.7. Linear and Conformational B-Cell Epitopes. We used a web-based Bcepred server to predict continuous B-cell epitopes exploiting physicochemical characteristics [45]. An online server of ABCpred was applied to predict B-cell epitopes [46]. Using the immune epitope database (IEDB), hydrophobicity [47], Bepipred linear epitope prediction [48], antigenicity [49], surface accessibility [50], beta-turn [51], and flexibility [52] were predicted. Afterwards, discontinuous B-cell epitopes were appraised by ElliPro [53] from the 3D structure of protein epitopes.

2.8. MHC-I and MHC-II Epitopes. To this aim, we used the IEDB website to evaluate the half-maximal inhibitory concentration (IC$_{50}$) values of peptides that bind to the main histocompatibility complex (MHC) class I and class II molecules for CDPK7 [54, 55]. All predicted epitopes were then
Figure 4: SWISS-MODEL server output. (a) Computed 3D model; (b) global quality estimate; (c) comparison with nonredundant set of PDB structures; (d) local quality estimate.
evaluated in terms of antigenicity using the VaxiJen v2.0 server.

2.9. Cytotoxic T-Lymphocyte (CTL) Epitopes. We applied CTLpred online website according to 75.8% accuracy [56]. Next, all predicted epitopes were evaluated regarding antigenicity using the VaxiJen v2.0 server.

2.10. Antigenic and Allergenic Profiles. The antigenicity of the full CDPK7 sequence was estimated by VaxiJen v2.0 [57]. The allergenic profile of CDPK7 was predicted by the AllergenFP v1.0 and AllerTOP v2.0 servers [58, 59].

3. Results

3.1. General Information of CDPK7. The amino acid structure of CDPK7 was obtained from the ToxoDB server with accession no. TGME49_228750. Based on the ProtParam database, the CDPK7 protein entails of 2133 amino acid residues with molecular weight of 219085.79 D, whereas theoretical pI was 5.79. The overall number of negatively (Asp + Glu) charged residues was 209, and positively (Arg + Lys) charged residues was 178. There are a total number of 30441 atoms. The half-life of the CDPK7 was predictable at 30 hours, >20 hours, and >10 hours for mammalian (in vitro), yeast (in vivo), and Escherichia coli (in vivo), respectively. In addition, the instability index of the CDPK7 protein presented an unstable nature with a value of 53.28. In addition, the aliphatic index was calculated 68.78, and GRAVY of the protein was estimated -0.331.

3.2. PTM Sites of CDPK7 Protein. In the present research, the results exhibited that 269 phosphorylation sites (Thr: 64, Tyr: 13, and Ser: 192) (Figures 1(a) and 1(b)) and 30 acylation
Prediction parameter	Epitope sequence
Hydropilicity	GAGGGAGGAG; KKFSDEV; KGGSVDYEE; CRGTSKDSRM; AQAHSEGNSVGRGSHGGKKEEQNL; SPOQCTRQPONGGSSGTAGA; SPGNLDEDEDEDTGSCGSSN; SLSDTSSSNERP; EQASSESEYGRFDEESGSSYSS; DHAERSN; QGFEAQPOEP; STPTSEQGTA; SASSPAGGS; DPDAGATIGAE; RPAAGGDDGSSAPAGGAGSSEAAKAEPSKPTGTG; SQOPPRG; STQSSSTQAPGS; SGGGSREP; PSRQEGSAEV; SRAETQENETG; GEGATPGDGREASLeAGQGNG; QPSKGPTKSA; QAEKDTRKQEQAKKPN; IKEEKEENEQKDV; GSGREGGS; GKSAGSPPSSRGG; TNPAHSSPRRPRD; QATGSSGASA; ARAGSGA; GQAGPENAGA; ETSQASQHTQGSPGSPSSP; GVEPKQE; AGGAGGETQPA; ASGGP; SEGPA; SEGPA; SEGGP; SPQG; SEQATG; DPTTAGA; EAAAAAGG; GPQDGGRGSDA; SIGEEGERSGSDGDVYER; DSRAPPS; GASAGSGPA; ASPSEGASAR; ARAHHDP; SGHSPDR; AGTГANSGAGGAGSADPGSSPSLEEDVEQAE; KNGSEAA; RRGGDAPRPG; SEQVGGQ; KGETVS; ANSAKEQRE; DKGKING; TDRTPNAT; EVSSSADK; VNNGSKNID; DEVHRHSTREYGEERTA; AASSPS; DPGAPS; AARTEGDTGPVEG; DEVPESS; GGEVYSID; AGRGVED; TRQGQGQQTAG; TLQDGSEGR; AAEAGPS; SASSGTQRGTRTEEPAEPARQERAC; GSPGGS
Flexibility	LAFSTQ; QYLKKFD; KALARSPS; QKFDFKGSS; AVCCRGTDKS; QAHHSEGNSVGRGSHGGKKEEQNL; CQCTRTQNPONGGSSGTAG; AVSSPNGNLDEDEDEDTGSCGSSN; SLSDTSSSNERP; ARLQEAEASSE; RSFDEESSGA; FDHASRNPSP; GTVSTPSQEG; PAAALSR; VSASSP; PAADGDGSS; PGAGAGG; SAAGGKAEPSKPTGTSLQQPPIR; GKEEEQNL; DDEDDEEDT; SSNERPRRPL; ARLEQEAEAS; GSDGDVYERHAG; QPSKG; EASQHQTG; PTDP; TPSG; PRAETQENEE; GDAQGREA; QAAQPSKPG; LQAEKDTRKQEQAKKPN; IKEEKEENEQKDV; GSGREGGS; GKSAGSPPSSRGG; TNPAHSSPRRPRD; QATGSSGASA; ARAGSGA; GQAGPENAGA; ETSQASQHTQGSPGSPSSP; GVEPKQE; AGGAGGETQPA; ASGGP; SEGPA; SEGPA; SEGGP; SPQG; EQGPPDGRGSGA; SVLQDGSEGRR; AEAGPS; SASSGTQRGTRTEEPAEPARQERAC; GSPGGS
Accessibility	STQLSKECLKQYLKFSDEV; VLKKYKAL; PGIDETFLQ; GELEDAEQGN; PQAAPQS55KPTSA; LQAEKDTRKQEQAKKPN; QPSKG; EASQHQTG; PTDP; TPSG; PRAETQENEE; GDAQGREA; QAAQPSKPG; LQAEKDTRKQEQAKKPN; IKEEKEENEQKDV; GSGREGGS; GKSAGSPPSSRGG; TNPAHSSPRRPRD; QATGSSGASA; ARAGSGA; GQAGPENAGA; ETSQASQHTQGSPGSPSSP; GVEPKQE; AGGAGGETQPA; ASGGP; SEGPA; SEGPA; SEGGP; SPQG; PQVSHQAQ; VSAGSDV; AARTEGDTGPVEG; DEVPESS; GGEVYSID; AGRGVED; TRQGQGQQTAG; TLQDGSEGR; AAEAGPS; SASSGTQRGTRTEEPAEPARQERAC; GSPGGS
Polarity	KECLKQYLKFDSSDE; VLKKYKAL; RGTKSDF; GKEEEQNL; DDEDEDEET; SNNERPRLPKYPEHP; RNPSSPR; AEKSPKGT; IQLAEKDTRKQEQAKKPN; QPSKG; EASQHQTG; PTDP; TPSG; PRAETQENEE; GDAQGREA; QAAQPSKPG; LQAEKDTRKQEQAKKPN; IKEEKEENEQKDV; GSGREGGS; GKSAGSPPSSRGG; TNPAHSSPRRPRD; QATGSSGASA; ARAGSGA; GQAGPENAGA; ETSQASQHTQGSPGSPSSP; GVEPKQE; AGGAGGETQPA; ASGGP; SEGPA; SEGPA; SEGGP; SPQG; GVEPKQE; VLYKKGKHLH; EQVGGQ; KGETVS; ANSAKEQREWVD; VTQVQAAEQ; IFRATNERE; KVIDQKINGHERELLSE; RLHNP; KELDLKTE; TLQDGSEG;

Table 2: Epitopes predicted in CDPK7 protein by different parameters based on the Bcepred online server.
Prediction parameter	Epitope sequence
	QLSKECLKQYLK; VEVLKKVYK; FLQYFPLPGL; VCCRGTK; MYVLFQVFDL; NLFSPQCQ; LVCVSDFVPSQQYV; YEPHPLL; YSSLSDVFQCFSPFDH; PSIDSLVS; GGSPVVLPPPVD; SRPVSVLPSRQS; SVICPQGG; PPPIVPTS; VSPPPQVPPVVVR; QKDVLDVEGIV; ECLHEEVW; FQKVKHLF; GPISVPVSPSVT; QEVTVSVSVVTV; PSITLQVTTTL; IVSKELVDFIRS; PRDLYSCPNCCNPLLLCPFCHSRYPQLTLLEGRVVMECRQCGRL; ICVGGSS; VFTRCWHC; IDGVLYK; RYYVLVDNML; FLEGCYVELLSEQVG; TVSKRLLF; LEQLYQV; GKFSIVYKGIH; ILRLLNHPNV; KETLYIVMELVR; LFDLIQQ; RLPELHVNRSOLRVYHGIVHRD; FGLSTLC; EVLHQPCGTL; YNHQVDVWSIGVIMYLLLRGRL; LIVRMLQ; IDVYQSD; CCPEVPT; LRPVSOQ; YSPSSLP; SLLNILTG; SVPSYSPSY

Rank	Sequence	Start position	Score
1	SSPPGTPASVVSPAAPAGAPI	965	0.95
1	EVPQAAQPSKGPTKSMALLQ	638	0.95
1	GGVSPPPPQVPPVVRASSPR	564	0.95
1	GETVSKRLLFANSAKEQREW	1497	0.95
2	DVLDVEGIVDKHEECCEFEE	691	0.91
2	EDEAQNGMNLVYPQAAQPS	627	0.94
2	GAPTVPATVPVAVISSAPP	1922	0.94
3	KNGAKLQNHGAPVATAGPP	1839	0.93
4	ALEQLYQVGEQILGHGKFSIV	1528	0.92
4	GAPSILAVGATPLAGTTPPP	927	0.91
4	FGYSASGGMVNMQHFQKVK	821	0.91
4	KDKTQRSEQKKNPSVPVQLSL	660	0.91
4	EDTQGCGSNNFPGQAQQQA	217	0.91
5	LPAAPAVASRAPAASSPSL	1868	0.91
5	DVWSIGVIMYILLLRGLPFP	1714	0.91
5	VYKGIHRATNELYAIKVIDK	1547	0.91
5	SAKEQREWVDTLRVTAKQQA	1509	0.91
5	TPYQAAPASAPGVSLSGG	1898	0.89
5	LIQQNHRLPELHVNRJSQL	1620	0.89
6	SGDARDDDVYERIAGYRICH	1184	0.89
6	VAGAPTSSAGVEKPQEVTVS	1003	0.89
6	QATGSSGAASAAAGASSVSA	877	0.89
6	RSAKLLSSRTSASSFSRSSRGM	789	0.89
6	VGSAHANAPPPSGTAPPP	532	0.89
6	LYYYRKRGDARKPRGFMLEG	1454	0.89
6	AGALAVASPVGAPLSAVGG	916	0.88
6	PAAGDGDSSAGPAGGASGE	424	0.88
6	SEAADGTVLYKKGHLLHWWQ	1424	0.88
6	KNPSVQASLKEEKEENEQ	670	0.87
6	GGDAGREASKQAFAAAGTGRG	603	0.87
6	SAGPAGGAGESAAKGAES	433	0.87
7	ASRNPSPPRVRSAOQPPTHYG	328	0.87
7	PHPLARLQEASQSESSYGR	281	0.87
7	SSNERPRRLKPYEPHILLA	267	0.87
7	TPAEVPAGSGPPGSPSIEEEV	2112	0.87
7	SLSLADGAQPAATGANTNGA	1351	0.87
7	KQEVVTVSVVTVTAGGAGS	1016	0.87
7	STVQPSRQSIATGLOGIF	752	0.86
7	LIKEEKEENEQKDVLDVEGI	679	0.86
7	LQASPHARPAAGDDGDSSAQ	416	0.86
7	AQAQGAYPEAALVCVSDFVP	231	0.86
7	GEERTMCCPEVPFTFIPKN	1821	0.86
7	RCWHCGWELSKCAEMLGN	1405	0.86
7	MSPQALDIVSKELVDFIR	1207	0.86
7	VASGSSPAAPGVTGTVTEAVA	1044	0.86
7	TQGAPGSPPVRFSGGGGS	488	0.85
7	KTAARFTSAIKRTFTSSQSS	468	0.85
7	EESSGASSYSSLSDVFQCS	304	0.85
3.3 Transmembrane Domains and Subcellular Location. Based on the TMHMM output, no transmembrane domain was found for CDPK7 (Figures 2(a) and 2(b)). Moreover, by PSORT II, the CDPK7 subcellular site was predicted as follows: 78.3% nuclear, 8.7% cytoplasmic, 8.7% plasma membrane, and 4.3% cytoskeletal.

3.4 Secondary and Tertiary Structures. The secondary structure of CDPK7 was predicted via the GOR4 online server (Table 4). The average score of antigenicity, beta-turn, flexibility, hydrophilicity, Bepipred linear epitope prediction, and surface accessibility for the CDPK7 protein using the IEDB online server was 1.026, 1.042, 1.017, 2.396, 0.350, and 1.00, respectively (Figure 6). Five discontinuous B-cell epitopes were predicted using the ElliPro server (Table 4).

3.5 Refinement and Validation of Tertiary Structure. Protein validation by means of the SWISS-MODEL server displayed that 92.86% of residues were situated in favored regions and 1.65% in the outlier regions. According to the Ramachandran plot, there were 97.80% residues in the favored region with 0.27% residues in the outlier regions of the refined model (Figure 5).

3.6 Predicted Linear and Discontinuous B-Cell Epitopes of the CDPK7 Protein. The predicted linear B-cell epitopes by the Bcepred are listed in Table 2. The outputs of the ABCpred server are tabulated in Table 3 (only the epitopes over scores of 0.75 are embedded in Table 3). The higher peptide score proposes the greater chance of being an epitope. The present server estimated 124 epitopes over 0.75 scores on the sequence, in which the linear epitope SSPGTPASVVSPAAGAGPI (score: 0.95) had the greatest score. Four epitopes with over 0.95 scores were as follows: “SSPGTPASVVSPAAGAGPI,” “EVPQAAQPSKGPTK-SAMLLQ,” “GGVSPPPQVVPPVGRAASPR,” and “GETVSKRLLFANSAKEQREW.” The average score of antigenicity, beta-turn, flexibility, hydrophilicity, Bepipred linear epitope prediction, and surface accessibility for the CDPK7 protein using the IEDB online server was 1.026, 1.042, 1.017, 2.396, 0.350, and 1.00, respectively (Figure 6). Five discontinuous B-cell epitopes were predicted using the ElliPro server (Table 4).

3.7 MHC-Binding Epitopes. The results are listed in Tables 5 and 6. Epitopes were assessed regarding antigenicity, and those highly antigenic epitopes were finally selected.

3.8 CTL Epitope Prediction. The high-ranked CTL epitopes predicted by the CTLpred tool for CDPK7 protein are summarized in Table 7. Epitopes were assessed regarding antigenicity, and those highly antigenic epitopes were finally selected.

3.9 Antigenic and Allergenic Profiles. The antigenic profile of CDPK7 was conducted by the VaxiJen web server with score of 0.7074 (threshold: 0.5). Based on AllergenFP and AllerTOP v2.0 analyses, the CDPK7 protein was appraised as possible nonallergen.

4. Discussion

Toxoplasmosis is a significant menace to human society as well as livestock industry [2, 8, 60]. Thus, the design and improvement of an efficient vaccine against T. gondii infection is still a great challenge for researchers against toxoplasmosis in domestic animals and humans [61]. Recently, bioinformatics tools are more focused for rational vaccine design, with some advantage, including the following: (i) time- and cost-effectiveness; (ii) accurately targeting, long-lasting immunity with favorable polarity in cellular components; and (iii) elimination of undesired responses through specific, epitope-based construct design. Nevertheless, the obtained in silico results are only theoretical data which must be confirmed using wet lab experiments inevitably [62].

It has been known that CDPK7 contributes to several functions in T. gondii such as gliding movement, host-cell invasion, and egress as well as other vital growth processes [34]. Here, we conducted a comprehensive analysis of TgCDPK7, a member of the CDPK family in T. gondii. The
Figure 6: Continued.
Figure 6: Propensity scale plots of CDPK7 protein. (a) Bepipred linear; (b) beta-turn; (c) surface accessibility; (d) flexibility; (e) antigenicity; (f) hydrophilicity. x-axis and y-axis represent position and score, respectively. The horizontal line indicates the threshold or the average score. Yellow colors (above the threshold) indicate favorable regions related to the properties of interest. Green color (below the threshold) indicates the unfavorable regions related to the properties of interest.
Residues	Number of residues	Score	3D structure
A:V1431, A:L1432, A:Y1433, A:K1434, A:K1435, A:G1436, A:K1437, A:H1438, A:L1439, A:H1440, A:Q1441, A:W1442, A:Q1443, A:A1444, A:R1445, A:Y1446, A:Y1447, A:R1448, A:R1449, A:K1460, A:G1461, A:D1462, A:A1463, A:K1464, A:P1465, A:R1466, A:G1467, A:F1468, A:R1471, A:K1476	51	0.82	![3D structure](image1.png)
A:V1493, A:H1494, A:P1495, A:K1496, A:G1497, A:E1498, A:T1499, A:V1500, A:S1501, A:K1502, A:R1503	11	0.755	![3D structure](image2.png)
A:A1528, A:L1529, A:E1530, A:Q1531, A:L1532, A:Y1533, A:Q1534, A:V1535, A:G1536, A:E1537, A:Q1538, A:H1541, A:R1546, A:Y1548, A:K1549, A:G1550, A:L1551, A:H1552, A:R1553, A:A1554, A:T1555, A:N1556, A:E1557, A:L1558, A:V1612, A:R1613, A:G1614, A:Q1623, A:N1624, A:K1511, A:Q1513, A:R1514	99	0.677	![3D structure](image3.png)
amino acid sequence of CDPK7 comprises 2133 residues with an average MW of 219085.79 D, which characterizes a suitable antigenic nature (the peptides with MW more than 10 kDa are considered as good immunogens) [63]. According to the Expasy ProtParam server, GRAVY and the aliphatic index of the CDPK7 were achieved at -0.331 and 68.78, respectively. In summary, the great value of aliphatic index means that the peptide has more stability in a broad range of various temperatures. Moreover, the low/negative value of the GRAVY factor signifies the better interaction of peptide with the molecules of water. It is efficient to identify that PTMs have a fundamental role in cell stability [64]. The acquired outcomes show that CDPK7 comprises 299 potential PTM sites (269 phosphorylation and 30 acylation positions), representing that these positions may organize protein activity.

To predict the secondary structure of CDPK7, the GOR4 tool was recruited. The results of secondary structure of CDPK7 verified and included 502 (out of 2133) alpha-helix, 320 extended strands, and 1311 random coils. It is known that the key role of the proteins is related to their three-dimensional structure. As such, to comprehend the influences between both structures and functions, assessment of 3D structure is the key aim of expecting a protein’s nature [65].

Humoral and cellular immunity are strongly stimulated in T. gondii infection [66, 67], in such a way that the establishment of IgG antibodies avoids the protozoan from attachment to the receptors of host cell [67]. Interferon-γ (IFN-γ), CD4+, and CD8+ T cells as the main members of T cells play a dynamic role in constraining acute and chronic infection. These major cytokines prevent the reactivation of bradyzoites in the host tissue cyst [66]. Epitope prediction has critical value to evaluate the specificity of antigen. Furthermore, epitope evaluation may reveal the pathogenesis and immune process of the pathogen in design vaccine researches [65, 68]. The strength of using in silico is the detection of the component epitopes that are critical for the interaction of antibodies and antigens. Several linear B-cell epitopes were predicted by the ABCpred server, among which those epitopes above 0.9 score were of great significance to be included in multiepitope vaccine constructs. Moreover, we applied the IEDB online server to evaluate the IC50 values of peptides that link to the MHC class I/II molecules for CDPK7. According to the

Residues	Number of residues	Score	3D structure
A:F1544, A:D1565, A:K1566, A:G1567, A:K1568, A:I1569, A:N1570, A:G1571, A:H1572, A:E1603, A:T1604, A:Y1606	12	0.645	
A:C1683, A:A1684, A:P1685, A:N1686, A:E1687, A:V1688, A:L1689, A:Q1691, A:P1692, A:C1693	10	0.535	
obtained results from IEDB, the T-cell epitopes on CDPK7 have the capability to bind intensely to MHC class I and class II molecules. It is important to note that the lower IC50 values show the higher-level of affinity, which show an appropriate T-cell epitope.

Other the main stage, CTLpred is a special approach used to predict CTL epitopes, which is important in vaccine-related studies. This tool relies on elegant machine learning methods, such as ANN and SVM. We recognized the CTL epitopes using the CTLpred online database to select the top CDPK7 epitopes. The CTLpred server utilizes consensus and combined estimates, in line with these two methods [56]. Evaluation of antigenicity and allergenicity showed that CDPK7 protein has immunogenic and nonallergenic nature.

Table 5: IC50 values for CDPK7 binding to MHC class I molecules obtained using the IEDB.

MHC-II allele	Start-stop	Peptide sequence	Percentile rank	Antigenicity
H2-Db	1882-1891	SSPSSLPTPI	0.15	0.4079
	143-152	SNLPNLDRYM	0.21	-0.4284
	1637-1646	SPLITTVYYL*	0.24	0.9146
H2-Dd	647-656	KGPNTKAMLL*	0.18	0.9201
	1612-1621	VRGGELFDL*	0.28	0.1770
	1483-1492	VGRQYGF*	0.64	0.1561
H2-Kb	1721-1730	IMYLIRRGL*	0.55	1.4751
	798-807	SSASGG*	1.0	1.3623
	1643-1652	VYYLHKG*	1.2	0.1373
H2-Kd	1474-1483	CYVELLE*	0.79	0.5079
	1445-1454	RYYVLVDML*	1.15	0.9079
	822-831	GYSASGG*	1.3	0.9579
H2-Kk	1555-1564	TNELYAIKV*	0.12	0.2695
	1084-1093	SEGPA*	0.75	0.2366
	694-703	DVEGIVD*	1.5	0.1511
H2-Ld	1589-1598	HPHYMIK*	3.8	0.2773
	1729-1738	RLPPP*	4.2	0.3317
	279-288	YEHPLILAR*	4.6	0.1027

*The immune epitope database (http://tools.iedb.org/mhci/). H2-Db, H2-Dd, H2-Kb, H2-Kd, H2-Kk, and H2-Ld alleles are mouse MHC class I molecules.

Ten amino acids for analysis were used each time. Low percentile rank = high level binding; high percentile rank = low level binding; IC50 values = percentile rank. * indicates potential antigenic epitopes (threshold = 0.5).

Table 6: IC50 values for CDPK7 binding to MHC class II molecules obtained using the IEDB.

MHC-II allele	Start-stop	Peptide sequence	Percentile rank	Antigenicity
H2-IAb	1109-1123	AAGAAAAAATAAAAA*	0.07	0.8045
	1108-1122	AAGAAAAAATAAAAA*	0.08	0.8354
	1110-1124	AGAAAAAATTAAAAB*	0.08	0.7176
H2-IAd	1035-1049	SETQPAMASVAGSS*	0.13	0.6766
	1034-1048	GSETQPAMASVAGS*	0.15	0.7059
	1036-1050	ETQPAMASVAGSSP*	0.25	0.6536
H2-IEd	1451-1465	DNMLOYYRKKGDAKP*	0.14	0.6972
	1452-1466	NMLYYRKKGDAKPR*	0.14	0.8298
	1450-1464	VDNMLYYRKKGDAK*	0.19	0.6159

*The immune epitope database (http://tools.immuneepitope.org/mhcii). H2-IAb, H2-IAd, and H2-IEd alleles are mouse MHC class II molecules. Fifteen amino acids for analysis were used each time. Low percentile rank = high level binding; high percentile rank = low level binding; IC50 values = percentile rank. * indicates potential antigenic epitopes (threshold = 0.5).
5. Conclusion

Well antigenicity, hydrophilicity, surface accessibility, and flexibility indexes were detected for CDPK7. Hence, we recommend that a suitable vaccine should be designed and verified both in silico and in vivo by the potential B- and T-cell epitopes predicted in this study.

Abbreviations

3D: Three-dimensional
ACC: Auto cross covariance
ANN: Artificial neural network
CD: Cluster of differentiation
CDPK: Calcium-dependent protein kinase
CTL: Cytotoxic T-lymphocyte
GOR: Garnier-Osguthorpe-Robson
GRAVY: Grand average of hydropathicity
IC50: Half-maximal inhibitory concentration
IEDB: Immune epitope database
IFN-γ: Interferon-γ
MHC: Major histocompatibility complex
MW: Molecular weight
PDB: Protein data bank
pl: Isoelectric point
PTM: Post-translational modification
SVM: Support vector machine
T. gondii: Toxoplasma gondii.

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Table 7: Predicted CDPK7 epitopes by CTLpreda.

Peptide rank	Start positionb	Sequence	Score (ANN/SVM)c	Antigenicity
1	280	EPHPLLARL	0.83/1.3591088	0.0131
2	1716	WSIGVIMYL	0.96/1.1120848	0.1711
3	1398	GSSRVTFRC	0.94/1.0685326	-0.7197
4	1187	ARDDDVYER	0.65/1.3441588	0.3493
5	715	SFPEFKTWL*	0.98/0.95345497	1.0485
6	1763	AKDLIVRML*	0.98/0.89030833	0.8096
7	724	ERNEGILSM*	0.65/1.0757075	0.5393
8	470	ASRFTSAIK*	0.80/0.85963689	1.0303
9	1573	ERELLRSEM*	0.51/1.0720792	0.9337
10	1188	RDDDVYERI	0.85/0.73017891	0.0942
11	1666	RTPNATIKL	0.99/0.58481613	0.2323
12	32	KECLKQYLK*	0.99/0.58376856	1.2628
13	1411	WELSKCAEM	0.19/1.3750392	0.3168
14	1749	VSFDGAVWR*	0.96/0.59370426	1.2284
15	743	GLQGNALYR*	0.99/0.54848483	1.4369

aCTLpred, available online at http://www.imtech.res.in/raghava/ctlpred/index.html. bNine amino acids for analysis were used. cThe default artificial neural network (ANN) and support vector machine (SVM) cut-off scores were set 0.51 and 0.36, respectively. * indicates potential antigenic epitopes (threshold = 0.5).

Ethical Approval

This study received the approval from the Behbahan Faculty of Medical Sciences Ethical Committee (IR.BHN.REC.1399.034).

Disclosure

The funders of this study had no role in the study design, analysis and interpretation of data, writing of the final paper, and the decision to submit the manuscript for publication. The corresponding author had access to the data in the study and had final responsibility for the decision to submit for publication.

Conflicts of Interest

The authors declare that there is no conflict of interest.

Acknowledgments

This study was financially supported by the Behbahan Faculty of Medical Sciences, Behbahan, Iran (Grant No. 99013).

References

[1] J. P. Dubey, “The history of Toxoplasma gondii The first 100 years,” The Journal of Eukaryotic Microbiology, vol. 55, no. 6, pp. 467–475, 2008.
[2] M. Foroutan, Y. Fakhri, S. M. Riahi et al., “The global seroprevalence of Toxoplasma gondii in pigs: A systematic review and meta-analysis,” Veterinary Parasitology, vol. 269, pp. 42–52, 2019.
[3] J. Dubey, “History of the discovery of the life cycle of Toxoplasma gondii,” International Journal for Parasitology, vol. 39, no. 8, pp. 877–882, 2009.
[4] K. Shapiro, L. Bahia-Oliveira, B. Dixon et al., “Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food,” Food and Waterborne Parasitology, vol. 15, article e00049, 2019.

[5] M. Foroutan-Rad, H. Majidiani, S. Dalvand et al., “Toxoplasmosis in blood donors: a systematic review and meta-analysis,” Transfusion Medicine Reviews, vol. 30, no. 3, pp. 116–122, 2016.

[6] A. Rostami, S. M. Riahi, D. G. Contopoulos-Ioannidis et al., “Acute Toxoplasma infection in pregnant women worldwide: a systematic review and meta-analysis,” PLoS Neglected Tropical Diseases, vol. 13, no. 10, article e0007807, 2019.

[7] Z. D. Wang, H. H. Liu, Z. X. Ma et al., “Acute Toxoplasma infection in immunocompromised patients: a systematic review and meta-analysis,” Frontiers in Microbiology, vol. 8, p. 389, 2017.

[8] S. Soltani, M. S. Kahvaz, S. Soltani, F. Maghsoudi, and M. Foroutan, “Seroprevalence and associated risk factors of Toxoplasma gondii infection in patients undergoing hemodialysis and healthy group,” BMC Research Notes, vol. 13, no. 1, p. 551, 2020.

[9] H. Furrer, M. Opravil, E. Bernasconi, A. Telenti, and M. Egger, “Stopping primary prophylaxis in HIV-1-infected patients at high risk of toxoplasma encephalitis,” The Lancet, vol. 355, no. 9222, pp. 2217–2218, 2000.

[10] S. Fallahi, A. Rostami, M. Noroullahpour Shiadeh, H. Behniafar, and S. Paktinat, “An updated literature review on maternal-fetal and reproductive disorders of Toxoplasma gondii infection,” Journal of Gynecology Obstetrics and Human Reproduction, vol. 47, no. 3, pp. 133–140, 2018.

[11] R. Silva, H. Langoni, and J. Medig, “Adaptive and genetic evolution of Toxoplasma gondii: a host-parasite interaction,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 50, no. 4, pp. 580–581, 2017.

[12] L. Galal, D. Azjenberg, A. Hamidović, M. F. Durieux, M. L. Dardé, and A. Mercier, “Toxoplasma and Africa: One Parasite, Two Opposite Population Structures,” Trends in Parasitology, vol. 34, no. 2, pp. 140–154, 2018.

[13] M. Antczak, K. Dzitko, and H. Długosńska, “Human toxoplasmosis—Searching for novel chemotherapeutics,” Bio-medicine & Pharmacotherapy, vol. 82, pp. 677–684, 2016.

[14] S. Rajapakse, M. Chrishan Shivathan, N. Samaranayake, C. Rodrigo, and S. Deepika Fernando, “Antibiotics for human toxoplasmosis: a systematic review of randomized trials,” Pathogens and Global Health, vol. 107, no. 4, pp. 162–169, 2013.

[15] P. Valenti, M. Annunziata, D. F. Angelone et al., “Role of spiramycin/cotrimoxazole association in the mother-to-child transmission of toxoplasmosis infection in pregnancy,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 28, no. 3, pp. 297–300, 2009.

[16] N.-Z. Zhang, M. Wang, Y. Xu, E. Petersen, and X. Q. Zhu, “Recent advances in developing vaccines against Toxoplasma gondii: an update,” Expert Review of Vaccines, vol. 14, no. 12, pp. 1609–1621, 2015.

[17] M. Foroutan, L. Zaki, S. Tavakoli, S. Soltani, A. Taghipour, and F. Ghaffarifar, “Rhomboid antigens are promising targets in the vaccine development against Toxoplasma gondii,” EXCLI Journal, vol. 18, pp. 259–272, 2019.

[18] M. Foroutan, F. Ghaffarifar, Z. Sharifi, A. Dalimi, and O. Jorjani, “Rhoptry antigens as Toxoplasma gondii vaccine target,” Clinical and Experimental Vaccine Research, vol. 8, no. 1, pp. 4–26, 2019.

[19] M. Foroutan, L. Zaki, and F. Ghaffarifar, “Recent progress in microneum-based vaccines development against Toxoplasma gondii,” Clinical and Experimental Vaccine Research, vol. 7, no. 2, pp. 93–103, 2018.

[20] A. Asghari, S. Shamsinia, H. Nourmohammadi et al., “Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and acicoplast proteins using comprehensive immunoinformatics approaches,” European Journal of Pharmaceutical Sciences, vol. 162, p. 105837, 2021.

[21] M. C. Nosrati, E. Ghasemi, M. Shams et al., “Toxoplasma gondii ROP38 protein: Bioinformatics analysis for vaccine design improvement against toxoplasmosis,” Microbial Pathogenesis, vol. 149, p. 104488, 2020.

[22] H. Can, S. Erkunt Alak, A. E. Köseoğlu, M. Düşkaya, and Ç. Ün, “Do Toxoplasma gondii acicoplast proteins have antigenic potential? An in silico study,” Computational Biology and Chemistry, vol. 84, p. 107158, 2020.

[23] A. D. Ghaffari, A. Dalimi, F. Ghaffarifar, M. Pirestani, and H. Majidiani, “Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach,” Clinical and Experimental Vaccine Research, vol. 10, no. 1, pp. 59–77, 2021.

[24] H. Majidiani, A. Dalimi, F. Ghaffarifar, M. Pirestani, and A. D. Ghaffari, “Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis,” Microbial Pathogenesis, vol. 147, p. 104386, 2020.

[25] A. D. Ghaffari, A. Dalimi, F. Ghaffarifar, and M. Pirestani, “Structural predication and antigenic analysis of ROP16 protein utilizing immunoinformatics methods in order to identification of a vaccine against Toxoplasma gondii: An in silico approach,” Microbial Pathogenesis, vol. 142, p. 104079, 2020.

[26] A. D. Ghaffari, A. Dalimi, F. Ghaffarifar, and M. Pirestani, “Antigenic properties of dense granule antigen 12 protein using bioinformatics tools in order to improve vaccine design against Toxoplasma gondii,” Clinical and Experimental Vaccine Research, vol. 9, no. 2, pp. 81–96, 2020.

[27] M. Foroutan, A. D. Ghaffari, S. Soltani, H. Majidiani, A. Taghipour, and M. Sabaghan, “Bioinformatics analysis of calcium-dependent protein kinase 4 (CDPK4) as Toxoplasma gondii vaccine target,” BMC Research Notes, vol. 14, no. 1, p. 50, 2021.

[28] M. Khodadadi, F. Ghaffarifar, A. Dalimi, and E. Ahmadpour, “Immunogenicity of in-silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice,” Acta Tropica, vol. 216, p. 105836, 2021.
responses in mice,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 69, p. 101413, 2020.

32. M. Foroutan, F. Ghaffarifar, Z. Sharifi, A. Dalimi, and M. Pirestani, “Bioinformatics analysis of ROP8 protein to improve vaccine design against Toxoplasma gondii,” Infection, Genetics and Evolution, vol. 62, pp. 193–204, 2018.

33. M. Tzen, R. Benarous, J. Dupouy-Camet, and M. P. Roisin, “A novel Toxoplasma gondii calcium-dependent protein kinase,” Parasite, vol. 14, no. 2, pp. 141–147, 2007.

34. M. Foroutan and F. Ghaffarifar, “Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine,” Clinical and experimental vaccine research, vol. 7, no. 1, pp. 24–36, 2018.

35. J. Morlon-Guyot, L. Berry, C. T. Chen, M. J. Gubbels, M. Lebrun, and W. Daher, “The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival,” Cellular Microbiology, vol. 16, no. 1, pp. 95–114, 2014.

36. D. R. Flower, “Computer-aided vaccine design,” Human Vaccines & Immunotherapeutics, vol. 10, no. 1, pp. 241–243, 2014.

37. E. Gasteiger, C. Hoogland, A. Gattiker et al., “Protein Identification and Analysis Tools on the ExPASy Server,” in The proteomics protocols handbook, pp. 571–607, Springer, 2005.

38. J. Zhou, L. Wang, A. Zhou et al., “Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii,” Acta Parasitologica, vol. 61, no. 2, pp. 319–328, 2016.

39. H. Majidiani, S. Soltani, A. D. Ghaffari, M. Sabaghan, A. Taghipour, and M. Foroutan, “In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination,” Clin Exp Vaccine Res, vol. 9, no. 2, pp. 146–158, 2020.

40. J. Garnier, J.-F. Gibrat, and B. Robson, “GOR method for predicting protein secondary structure from amino acid sequence,” in Methods Enzymol, pp. 540–553, Elsevier, 1996.

41. N. Guex, M. C. Peitsch, and T. Schwede, “Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective,” Electrophoresis, vol. 30, no. S1, pp. S162–S173, 2009.

42. H. Park and C. Seok, “Refinement of unreliable local regions in template-based protein models,” Proteins: Structure, Function, and Bioinformatics, vol. 80, pp. 1974–1986, 2012.

43. M. Bertoni, F. Kiefer, M. Biasini, L. Bordoli, and T. Schwede, “Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology,” Scientific Reports, vol. 7, no. 1, pp. 10480, 2017.

44. M. Wiederstein and M. J. Sippl, “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins,” Nucleic Acids Research, vol. 35, no. Web Server, pp. W407–W410, 2007.

45. S. Saha and G. P. S. Raghava, “BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physicochemical properties,” in International Conference on Artificial Immune Systems, pp. 197–204, Springer, 2004.

46. S. Saha and G. P. S. Raghava, “Prediction of continuous B-cell epitopes in an antigen using recurrent neural network,” Proteins: Structure, Function, and Bioinformatics, vol. 65, no. 1, pp. 40–48, 2006.

47. J. M. R. Parker, D. Guo, and R. S. Hodges, “New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites,” Biochemistry, vol. 25, no. 19, pp. 5425–5432, 1986.

48. J. E. P. Larsen, O. Lund, and M. Nielsen, “Improved method for predicting linear B-cell epitopes,” Immuno Informatics Research, vol. 2, no. 1, p. 2, 2006.

49. A. Kolaskar and P. C. Tongaonkar, “A semi-empirical method for prediction of antigenic determinants on protein antigens,” FEBS Letters, vol. 276, no. 1-2, pp. 172–174, 1990.

50. E. A. Emini, J. V. Hughes, D. Perlow, and J. Boger, “Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide,” Journal of Virology, vol. 55, no. 3, pp. 836–839, 1985.

51. P. Y. Chou and G. D. Fasman, “Prediction of the secondary structure of proteins from their amino acid sequence,” Advances in Enzymology and Related Areas of Molecular Biology, vol. 47, pp. 45–148, 1978.

52. P. Karplus and G. E. Schulz, “Prediction of chain flexibility in proteins,” Naturwissenschaften, vol. 72, no. 4, pp. 212-213, 1985.

53. J. Ponomarenko, H.-H. Bui, W. Li et al., “EliPro: a new structure-based tool for the prediction of antibody epitopes,” BMC Bioinformatics, vol. 9, no. 1, p. 514, 2008.

54. M. Andreatta and M. Nielsen, “Gapped sequence alignment using artificial neural networks: application to the MHC class I system,” Bioinformatics, vol. 32, no. 4, pp. 511–517, 2016.

55. P. Wang, J. Sidney, C. Dow, B. Mothe, A. Sette, and B. Peters, “A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach,” PLoS Computational Biology, vol. 4, no. 4, article e1000048, 2008.

56. M. Bhasin and G. P. S. Raghava, “Prediction of CTL epitopes using QM, SVM and ANN techniques,” Vaccine, vol. 22, no. 23-24, pp. 3195–3204, 2004.

57. I. A. Doytchinova and D. R. Flower, “Vaxijen: a server for prediction of protective antigens, tumour antigens and subunit vaccines,” BMC Bioinformatics, vol. 8, no. 1, p. 4, 2007.

58. I. Dimitrov, L. Naneva, I. Doytchinova, and I. Bangov, “AllergenFP: allergenicity prediction by descriptor fingerprints,” Bioinformatics, vol. 30, no. 6, pp. 846–851, 2014.

59. I. Dimitrov, D. R. Flower, and I. Doytchinova, “AllerTOP-a server for in silico prediction of allergens,” in BMC bioinformatics, p. 54, BioMed Central, 2013.

60. S. Stelzer, W. Basso, J. Benavides Silván et al., “Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact,” Food and Waterborne Parasitology, vol. 15, article e00337, 2019.

61. F. Rezaei, S. Sarvi, M. Sharif et al., “A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization,” Microbial Pathogenesis, vol. 126, pp. 172–184, 2019.

62. S. Parvizpour, M. M. Pourseif, J. Razmara, M. A. Rafi, and Y. Omidi, “Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches,” Drug Discovery Today, vol. 25, no. 6, pp. 1034–1042, 2020.

63. J. Berzoński and I. Berkower, “Antigen-antibody interaction,” in Fundamental immunology, pp. 595–644, Raven Press, New York, 1984.

64. T.-Y. Lee, J. B.-K. Hsu, W.-C. Chang, T. Y. Wang, P. C. Hsu, and H. D. Huang, “A comprehensive resource for integrating and displaying protein post-translational modifications,” BMC Research Notes, vol. 2, no. 1, p. 111, 2009.
[65] Y. Wang, G. Wang, J. Cai, and H. Yin, “Review on the identification and role of Toxoplasma gondii antigenic epitopes,” Parasitology Research, vol. 115, no. 2, pp. 459–468, 2016.

[66] I. El-Kady, “T-cell immunity in human chronic toxoplasmosis,” Journal of the Egyptian Society of Parasitology, vol. 41, no. 1, pp. 17–28, 2011.

[67] P. C. Sayles, G. W. Gibson, and L. L. Johnson, “B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii,” Infection and Immunity, vol. 68, no. 3, pp. 1026–1033, 2000.

[68] D. Xu and Y. Zhang, “Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization,” Biophysical Journal, vol. 101, no. 10, pp. 2525–2534, 2011.