Activity concentrations of environmental samples collected in Fukushima Prefecture immediately after the Fukushima nuclear accident

Masahiro Hosoda1, Shinji Tokonami2, Hirofumi Tazoe2, Atsuyuki Sorimachi2, Satoru Monzen1, Minoru Osanai1, Naofumi Akata2, Hideki Kakiuchi3, Yasutaka Omori4, Tetsuo Ishikawa4, Sarata K. Sahoo5, Tibor Kovács5, Masatoshi Yamada2, Akifumi Nakata5, Mitsuki Yoshida2, Hironori Yoshino1, Yasushi Mariya1 & Ikuo Kashiwakura1

1Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan, 2Institute of Radiation Emergency Medicine, Hirosaki University 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan, 3Department of Radioecology, Institute for Environmental Sciences 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212, Japan, 4Research Center for Radiation Protection, National Institute of Radiological Sciences 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan, 5Institute of Radiochemistry and Radioecology, University of Pannonia Egyetem St. 10, Veszprem, H-8200, Hungary.

Radionuclide concentrations in environmental samples such as surface soils, plants and water were evaluated by high purity germanium detector measurements. The contribution rate of short half-life radionuclides such as 132I to the exposure dose to residents was discussed from the measured values. The highest values of the 131I/137Cs activity ratio ranged from 49 to 70 in the environmental samples collected at Iwaki City which is located to the south of the F1-NPS. On the other hand, the 132I/131I activity ratio in the same environmental samples had the lowest values, ranging from 0.01 to 0.02. By assuming that the 132I/131I activity ratio in the atmosphere was equal to the ratio in the environmental samples, the percent contribution to the thyroid equivalent dose by 132I was estimated to be less than 2%. Moreover, the contribution to the thyroid exposure by 132I might be negligible if 132I contamination was restricted to Iwaki City.

On March 11, 2011, the power supplies for the cooling systems in the Fukushima Dai-ichi Nuclear Power Station (F1-NPS) were lost due to tsunami damage following the magnitude 9.0 Great East Japan earthquake1,2. Loss of cooling functions led to hydrogen explosions in three reactor units in the F1-NPS. On the other hand, the 132I/131I activity ratio in the same environmental samples had the lowest values, ranging from 0.01 to 0.02. By assuming that the 132I/131I activity ratio in the atmosphere was equal to the ratio in the environmental samples, the percent contribution to the thyroid equivalent dose by 132I was estimated to be less than 2%. Moreover, the contribution to the thyroid exposure by 132I might be negligible if 132I contamination was restricted to Iwaki City.
radionuclides were not considered. Balanov et al.12 determined the average percent contribution of short half-life radionuclides to thyroid dose of residents in Chernobyl was about 30%.

The authors collected environmental samples such as surface soils, leaves and water immediately after the accident. In this study, radionuclide concentrations in these environmental samples were evaluated, and the percent contribution of short half-life radionuclides to the exposure dose to residents was discussed. On the other hand, airborne radionuclide concentrations provide important information on the estimation of internal dose due to inhalation in nuclear disasters. In such an emergency, a simple technique to measure airborne radionuclide concentrations without an AC power supply is needed. Immediately after the accident, radioactive aerosol sampling was also carried out using a glass fiber filter and a battery-powered pump at several locations in Fukushima Prefecture. Furthermore, the inhalation exposure from radioactive aerosols for residents in a measurement period was also discussed.

Results

Ambient dose rate at each measurement site. Ambient dose rate at each measurement site is shown in Table 1. Ambient dose rates ranged from 0.414 to 9.70 μGy h\(^{-1}\). The highest ambient dose rate of 9.70 μGy h\(^{-1}\) was observed at Koriyama City (KO-2), located to the west of F1-NPS, on March 17, 2011. Ambient dose rate at Iwaki City (IW-2), located to the south of F1-NPS, had the lowest value of 0.414 μGy h\(^{-1}\) on March 18, 2011. As previously reported9, ambient dose rates in the northwest and west directions such as Kawamata Town (KA), Fukushima City (FU) and Koriyama City (KO) were observed to have higher values ranging from 4.50 to 9.70 μGy h\(^{-1}\). However, the ambient dose rate measured for a fourth floor balcony in Fukushima City had the lowest value of 0.252 μGy h\(^{-1}\).

Air-borne radionuclide concentrations at four sampling sites. 131I was detected at three sites (KO-1, FU and IW-2) as shown in Table 2. Air-borne 131I aerosol concentration at Iwaki City was the highest, 10 ± 3 mBq m\(^{-3}\). On the other hand, air-borne concentrations of 134Cs and 137Cs at the fourth site, Kawamata Town, were the highest with values of 89 ± 23 and 66 ± 18 mBq m\(^{-3}\), respectively. The highest ambient dose rates of 131I, 134Cs and 137Cs at Koriyama City were 2 ± 1, 6 ± 4 mBq m\(^{-3}\) and under the detection limit (ND), respectively.

Radionuclide concentrations of environmental samples at each sampling site. 132Te, 131I, 134Cs and 137Cs were detected in soil samples which were collected at all sampling sites as shown in Table 3. The maximum values of these radionuclides in the soil samples were observed at Fukushima City (FU), and their respective values were 2.2 × 10\(^5\), 1.5 × 10\(^6\), 2.8 × 10\(^7\) and 2.9 × 10\(^9\) Bq kg\(^{-1}\) wet. 129mTe, 136Cs and 131I were detected in soil samples which were collected at most of the sampling sites in Fukushima Prefecture. Maximum values of these radionuclides (and site ID) were 4.1 × 10\(^2\) (FU), 9.2 × 10\(^2\) (KO-2) and 3.3 × 10\(^5\) Bq kg\(^{-1}\) wet (FU). Furthermore, 134La was also detected at several sampling sites and the maximum value (and site ID) was 1.8 × 10\(^5\) Bq kg\(^{-1}\) wet.

Table 1	Summary of the sampling site locations, date and type of samples							
Sample	Longitude (degree)	Latitude (degree)	Distance from NPS (km)	Ambient dose rate (μGy h\(^{-1}\))	Site ID	Soil (cm)	Water (cm)	Filter
KO-1	58.8 km (NW)	37.371	0.5	11.68	2011/3/22	NC		
FU	62.9 km (NW)	37.394	0.5	11.40	2011/3/17	NC		
IW-1	69.4 km (NW)	37.763	0.5	11.40	2011/3/17	NC		
KA	78.6 km (SW)	37.669	0.5	11.40	2011/3/17	NC		
ZA	73.5 km (SW)	37.817	0.5	11.40	2011/3/17	NC		

Table 2 | Radionuclide concentrations for samples collected on a glass fiber filter at four sampling sites

Site ID	131I (364 keV)	134Cs (795 keV)	137Cs (662 keV)
KO-1	2.3 ± 0.8	5.6 ± 4.3	ND**
FU	2.9 ± 0.9	8.7 ± 3.8	7.7 ± 3.0
IW-2	10.0 ± 2.6	20.1 ± 15.2	15.2 ± 11.4
KA	ND**	88.8 ± 22.8	66.3 ± 18.0

*Radionuclide concentrations were corrected to the sampling date. ND: Under the detection limit.
SCIENTIFIC Discussion

132Te, 131I, 134Cs, 137Cs, 136Cs and 132I were detected from some water (FU). 132Te, 131I, 134Cs, 136Cs and 137Cs were detected in the plant samples which were collected at all sampling sites as shown in Table 4. Maximum values of these radionuclides (and site ID) were 4.1 × 10^6 (KO-1), 3.7 × 10^6 (IW-1), 1.5 × 10^6 (KO-1), 2.7 × 10^6 (KO-I) and 1.6 × 10^6 Bq kg^-1 wet (KO-1). 131I activity concentration in Iwaki City (IW) had the highest value. 132Te and 131I were detected in the plant samples which were collected at most sampling sites in Fukushima Prefecture. Maximum values of these radionuclides (and site ID) were 6.6 × 10^6 (KO-I) and 5.8 × 10^6 Bq kg^-1 wet (KO-2). Furthermore, 132Te was also detected at several sampling sites and the maximum value (and site ID) was 4.8 × 10^6 Bq kg^-1 wet (KO-2). 132Te, 131I, 134Cs, 136Cs and 132I were detected from some water samples as summarized in Table 5. Maximum values of these radionuclides (and site ID) were 1.8 × 10^6 (AI-SN), 1.3 × 10^6 (FU-RI), 6.8 × 10^6 (AI-SN), 8.5 × 10^6 (AI-SN), 1.4 × 10^6 (AI-SN) and 2.4 × 10^6 Bq L^-1 (AI-SN). A maximum value was observed in a snow sample collected at Aizuwakamatsu City, which is located approximately 96 km from the F1-NPS. On the other hand, the activity concentrations of 131I and 134Cs were below detection limits.

Discussion

Radon decay products were collected more than 99% on the 1st stage as the result of performance test of the filter sampling system in the radon chamber of the National Institute of Radiological Sciences, Japan (NIRS). Moreover, radionuclide distributions on the glass fiber filter obtained by the imaging plate measurements seemed to be homogeneous. Therefore, the simple filter sampling system used for this study was an effective technique for the collection of airborne radionuclide in an emergency situation. The airborne 131I activity concentration at Iwaki City was observed as the highest value of 10 mBq m^-3 on March 18, 2011. According to the estimation of thyroid equivalent dose for an infant by SPEEDI (System for Prediction of Environmental Emergency Dose Information), high equivalent doses were shown not only in the northwest direction from F1-NPS but also in the south direction such as along the coast in Iwaki City. According to the simulation results by Katata et al., a radioactive plume including 131I was released in the south direction from F1-NPS in the morning on March 15, and it reached Iwaki City. No rainfall was observed around Iwaki City (Yamada monitoring station) on March 15 according to meteorological observation data of the Japan Meteorological Agency. Rainfall of 0.5–2.0 mm was observed at Iwaki City from 2 PM to 4 PM on March 16, and no rainfall was observed until 7 AM on March 21. This fact suggested that the contamination in Iwaki City was dry deposition. The maximum values of thyroid equivalent dose for residents in Namie Town were estimated to be 33 mSv according to Tokonami et al.

Moreover, they estimated the atmospheric 131I activity concentration on March 15 was 23 kBq m^-3. This estimated value was the 131I activity concentration of particulate and gaseous forms. According to Momoshima et al., the 131I collected on activated charcoal accounted for 30 to 67% of the total 131I. 131I activity concentration was corrected to the value of March 15, 2011 for the physical half-life, and it was evaluated as 13 mBq m^-3. 131I activity concentration as gaseous forms was estimated to be 30 mBq m^-3, assuming that 131I gaseous forms were 70% of the total amount. Moreover, according to the simulation results by Morino et al., all the species in the radioactive plume from F1-NPS were released toward the Pacific Ocean during the period from March 17 to 19. This fact might indicate the internal exposure by inhalation of 131I at Iwaki City during the period from March 17 to March 19, 2011 was negligible.

Radionuclide concentrations in the environmental samples collected at Fukushima City and Koriyama City were higher than those

Table 3 | Radionuclide concentrations for soil samples

Site ID	132Te	131I	134Cs	136Cs	132I	134La
KO-1	31.59	0.23	28.32	0.16	6.02	0.05
KO-2	46.14	0.27	42.81	0.20	5.32	0.05
FU	223.90	0.62	150.10	0.18	28.35	0.11
KA	75.32	0.34	93.90	0.28	9.05	0.06
IW-1	2.06	0.06	16.01	0.11	0.26	0.01
IW-2	2.52	0.07	15.72	0.12	0.35	0.01
AI	14.97	0.15	6.91	0.08	2.00	0.03
SH	15.11	0.17	11.42	0.11	2.07	0.03
MA	4.64	0.09	10.59	0.10	0.50	0.02
KU	59.73	0.31	51.70	0.20	6.33	0.05
ZA	11.75	0.14	19.31	0.13	1.37	0.03

Table 4 | Radionuclide concentrations for plant samples

Site ID	132Te	131I	134Cs	136Cs	132I	134La
KO-1	341.45	1.49	167.60	0.77	149.70	0.47
KO-2	372.80	1.21	304.00	0.83	62.86	0.27
FU	13.56	0.46	123.50	0.51	5.08	0.08
KA	120.30	0.73	126.80	0.57	13.10	0.13
IW-1	28.69	0.43	365.40	0.97	5.09	0.08
IW-2	22.69	0.35	247.10	0.75	5.62	0.08
AI-SK	49.16	0.70	15.31	0.32	15.26	0.21
AI-AJ	17.91	0.29	43.79	0.13	4.79	0.08
SH	241.60	1.03	142.10	0.61	49.26	0.25
MA	105.50	0.77	97.28	0.57	17.35	0.17

*ND: Under the detection limit.
for samples collected in other sites (Table 2). Radionuclide concentrations of soil samples collected at Fukushima City on March 22 were reported by Taira et al.19. Although 132Te, 132I, and 140La were not detected, activity concentrations of other radionuclides in that report were similar values to the present results. According to the simulation results by Katata et al.14, the radioactive plume including 131I was released to the northwest direction from F1-NPS in the evening on March 15, and it reached Fukushima City and Koriyama City. Katata et al. also reported that the radioactive contamination by wet deposition (rainfall) was observed around these areas in the evening on March 15. Activity ratio of each radionuclide based on 137Cs activity concentration is shown in Table 6 and Table 7. The obtained radionuclide concentrations were corrected to the value of March 15, 2011 for each physical half-life. Since the number of detected radionuclides in water samples was small, only the activity ratio results for soil and plant samples are shown in this table. Tagami et al.19 reported the average value of the 134Cs/137Cs activity ratio of soil samples which were collected 20 km south of F1-NPS was 0.9. Moreover, 134Cs/137Cs activity ratios of tea leaves (collected 300 km southwest from F1-NPS) and camellia leaves (collected 220 km south from F1-NPS) were also reported to be 0.98 ± 0.09 and 0.92 ± 0.0520. In this study, the average value (range) of 134Cs/137Cs activity ratio of all soil and plant samples was 1.0 (0.89–1.1) and 1.0 (0.93–1.0), respectively. These values were similar to the previous study19,20. Range of 131I/137Cs activity ratio of all soil and plant samples were 16.2 (2.9–54) and 16.5 (0.85–70), respectively. Average values (range) of 131I/137Cs activity ratio of soil and plant samples at Iwaki City were 51 (49 and 54) and 57 (43 and 70), respectively. On the other hand, average values of 131I/137Cs activity ratio of soil and plant samples excluding Iwaki City were 8.7 and 6.4, respectively. These results suggested that the generation sources of radioactive plume which was released on March 15, 2011 to each area differed.

Average values (range) of 132I/131I activity ratio of all soil and plant samples were 0.09 (0.02–0.32) and 0.19 (0.01–0.59), respectively (Table 6 and Table 7). Especially, 132I/131I activity ratio of soil and plant samples at Iwaki City had the lowest values, and they were 0.02 and 0.01, respectively. The percent contribution to the thyroid equivalent dose of 132I was not considered in the report by Tokonami et al11. According to ICRP Publication 72, dose coefficients of 131I and 132I to an adult are 2.2 × 10{superscript}–8 and 2.9 × 10{superscript}–10 (Sv/Bq), respectively21. If it was assumed that the 132I/131I activity ratio in the atmosphere was equal to the ratio in the environmental samples, the percent contribution to the thyroid equivalent dose by 132I was estimated to be less than 2%. Moreover, the contribution by 131I to the thyroid exposure might be negligible (less than 0.03%) if 131I was restricted to Iwaki City. However, if 132Te is taken into the body, 132I will be generated by radioactive decay of 132Te, and the generated 132I will accumulate in the thyroid12. Thus, it will be necessary to examine this process in the human body.

The authors have already reported on the thyroid equivalent dose for residents who lived in the northwest direction from F1-NPS11. Although the local health authorities were reported on the screening survey of the thyroid dose in Iwaki City which was contaminated by 131I at the same level as the northwest region, no detailed examination in this area was carried out by the Japanese government. Furthermore, since the residents were not evacuated from Iwaki City, many children who lived in this city might have been exposed to radioiodine. Therefore, it is important to clarify the thyroid equivalent dose for children who lived in a south direction from F1-NPS (especially coastal areas) immediately after the accident, and it is also important to continue to make ultrasound examinations of the thyroid for residents.

Table 5 | Radionuclide concentrations for water samples

Site ID	132Te	131I	134Cs	137Cs	129mTe	136Cs	132I	140La
KO-1	1.31 ± 0.05	2.91 ± 0.05	0.09 ± 0.01	0.11 ± 0.01	ND*	ND*	ND*	ND*
KO-2	ND*	ND*	ND*	ND*	ND*	ND*	ND*	ND*
FU-Ra	0.27 ± 0.02	1.22 ± 0.03	0.04 ± 0.01	0.04 ± 0.01	ND*	ND*	ND*	ND*
FU-Rr	1.45 ± 0.09	128.00 ± 0.33	0.06 ± 0.01	0.07 ± 0.01	ND*	ND*	0.23 ± 0.01	ND*
KA	ND*	0.14 ± 0.01	ND*	ND*	ND*	ND*	ND*	ND*
IV-1	ND*	0.03 ± 0.01	ND*	ND*	ND*	ND*	ND*	ND*
IV-2	ND*	ND*	ND*	ND*	ND*	ND*	ND*	ND*
AI-SE	ND*	0.01 ± 0.00	ND*	ND*	ND*	ND*	ND*	ND*
AI-SN	1.82 ± 0.05	0.27 ± 0.02	0.68 ± 0.02	0.85 ± 0.03	ND*	0.14 ± 0.01	0.24 ± 0.01	ND*
SH	ND*	0.12 ± 0.01	ND*	ND*	ND*	ND*	ND*	ND*
MA	0.04 ± 0.01	0.12 ± 0.01	ND*	ND*	ND*	ND*	ND*	ND*
KU	ND*	0.08 ± 0.01	ND*	ND*	ND*	ND*	ND*	ND*

*ND: Under the detection limit.

Table 6 | Activity ratio in soil samples of seven radionuclides to 137Cs and the 132I/131I activity ratio

Site ID	132Te/137Cs	131I/137Cs	134Cs/137Cs	134Cs/137Cs	129mTe/137Cs	134Cs/137Cs	132I/137Cs	140La/137Cs	132I/131I
KO-1	5.2	4.7	1.0	1.0	0.18	0.88	0.82	0.19	
KO-2	8.3	7.7	1.0	1.3	1.7	1.2	0.84	0.16	
FU	7.6	5.1	1.0	1.4	0.16	1.1	0.63	0.22	
KA	7.8	9.7	0.94	1.5	0.16	1.1	0.67	0.11	
IW-1	7.0	5.4	0.89	–	0.16	0.97	–	0.018	
IW-2	7.8	49	1.1	3.1	–	1.0	–	0.021	
AI	6.2	2.9	1.0	0.83	0.17	0.91	0.32	0.18	
SH	6.8	5.2	0.93	1.2	0.17	0.95	0.85	0.18	
MA	9.4	21	1.0	–	0.14	–	–	–	
KU	9.1	7.9	1.0	1.2	0.16	1.3	–	0.17	
ZA	8.3	14	1.0	–	0.18	1.2	–	0.085	
Figure 1 | The location of the environmental sampling points. Sampling sites in Fukushima Prefecture were selected after considering their direction and distance from the F1-NPS.

Table 7 | Activity ratio in plant samples of seven radionuclides to 137Cs and the $^{132}/^{131}$I activity ratio

Site ID	132Te/137Cs	134I/137Cs	134Cs/137Cs	129mTe/137Cs	134Ca/137Cs	132I/137Cs	140La/137Cs	132/131I
KO-1	2.7	1.1	1.0	0.43	0.18	–	–	–
KO-2	5.9	4.8	1.0	1.0	1.9	0.20	0.85	0.012
FU	11	26	1.0	1.8	1.9	1.7	0.61	0.066
KA	8.8	9.2	0.95	1.6	1.7	1.3	–	0.14
IW-1	5.5	70	0.98	0.89	0.20	0.20	–	–
IW-2	4.0	43	0.98	–	–	–	–	–
Ai-SK	3.0	0.94	0.93	0.55	0.17	–	–	–
Ai-AJ	3.5	0.85	0.93	–	0.16	0.50	0.25	–
SH	4.8	2.8	1.0	0.81	0.18	0.72	0.92	–
MA	5.9	5.4	1.0	1.4	0.17	0.88	–	0.16

Methods

Environmental sampling. Environmental sampling sites in Fukushima Prefecture are shown in Fig. 1. This figure was made using the Generic Mapping Tools (GMT) created in 1988 by Wessel and Smith. The types of environmental samples were summarized in Table 1. The sampling sites were selected after considering direction and distance from the F1-NPS. Moreover, the environmental sampling sites were located at evacuation shelters and public facilities. The distance between F1-NPS and each sampling site was about 44–96 km. A 1 kg soil sample from 5 cm below the surface was collected at each sampling site. Moreover, a plant sample was also collected at each soil sampling site. Plant species are summarized in Table 1. Rain water, river water and snow were collected at some sampling sites. Ambient radioactive aerosols were collected by a two-stage sampling technique with glass fiber filters (Whatman GF/F). Radioactive aerosols were collected by a two-stage sampling technique with glass fiber filters (Whatman GF/F). Water samples were collected at some sites. The water sample (100 mL) had several grams of NaCl added as a carrier for the evaluation of radionuclide concentrations. Two filter samples were enclosed in a glass container of 48 mm. Measurement time was set at 600 s for the evaluations of short half-life radionuclides such as 131I, 134I and 132Te. For evaluation of long half-life radionuclides such as 134Cs and 137Cs, measurement time was set at more than 16,000 s. The radionuclide concentrations in environmental samples excluding filter samples were corrected to the value on March 15, 2011 by each physical half-life. On the other hand, radionuclide concentrations of filter samples were corrected to the sampling date.

Evaluation of surface distribution of radioactive aerosols on the filter. The surface distribution of radioactive aerosols on the filter is also important due to the counting efficiency in the HPGe detector measurement. Therefore the surface distribution with the same system as for in-situ sampling was evaluated using a radioactive aerosol chamber (internal volume: approximately 25 m3) at NIRS. This radioactive aerosol chamber is environmentally controlled for temperature and relative humidity. Radon is used as the radioactive source. The temperature and relative humidity can be controlled in the range of 5 to 30 °C with an error of 0.5 °C, and from 30 to 90% with an error of 3%, respectively. In this study, radon concentration, temperature and relative humidity were set to 10,000 Bq m$^{-3}$, 20 °C and 60%, respectively. Carnauba wax was used as the aerosol material and the particle size had the distribution which made approximately 100 nm maximum. Two glass fiber filters with a battery-powered pump which were used for the in-situ sampling were used for the performance test. The sampling flow rate was set to 2 L min$^{-1}$ and radon decay products were collected during 3.5 h. After aerosol samples were collected, the gross alpha measurements were recorded over consecutive 1 minute intervals during a total recording period of 60 minutes. Moreover, an imaging plate technique (BAS-MS2012, Fuji Film Co.) was used in order to obtain the distribution images of the radon decay products on the glass fiber filters. All radionuclides other than 131I, which has a low beta energy of 18.6 keV, can be detected by this technique. Information in the imaging plate was read out after 3 days using a reading system (PLA-5100, Fuji Film Co.). Gradation and resolution for the reading system were set to 16 bits and 25 μm, respectively.

1. Monateersky, R. Giant shock rattles ideas about quake behavior. Nature 471, 274 (2011).
2. Tanimoto, T., Uchida, N., Kodama, Y., Teshima, T. & Taniguchi, S. Safety of workers at the Fukushima Daiichi nuclear power plant. Lancet 377, 1489–1490 (2011).
3. Manolopoulou, M., Vagena, E., Stoulos, S., Ioannidou, A. & Papastefanou, C. Radioiodine and radiocesium in Thessaloniki, northern Greece due to the Fukushima nuclear accident. J. Environ. Radioact. 102, 796–797 (2011).
4. Norman, E. B., Angell, C. T. & Chodash, P. A. Observations of fallout from the Fukushima reactor accident in San Francisco bay area rainwater. PLoS ONE 6(9), e24330; doi:10.1371/journal.pone.0024330 (2011).
5. Bolshunovsky, A. & Dementyev, D. Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima nuclear accident. J. Environ. Radioact. 102, 1062–1064 (2011).
6. Tazoe, H. et al. Radioactive pollution from Fukushima Daiichi Nuclear Power Plant in the terrestrial environment. Radiat. Prot. Dosim. 152(1–3), 198–203 (2012).
7. Kakuchi, H. et al. Concentration of 131I in plants around Fukushima Dai-ichi Nuclear Power Station. Sci. Rep. 2, 947; doi:10.1038/srep00947 (2012).
8. Hoshida, M. et al. The time variation of dose rate artificially increased by the Fukushima nuclear crisis. Sci. Rep. 1, 87; doi:10.1038/srep00087 (2011).
9. Monzen, S. et al. Individual radiation exposure dose due to support activities at safe shelters in Fukushima Prefecture. PLoS ONE 6(11), e27761; doi:10.1371/journal.pone.0027761 (2011).
10. Akitina, S. Epidemiological studies of Fukushima residents exposed to ionising radiation from the Fukushima Daiichi Nuclear Power Plant: preliminary review of current plans. J. Radiol. Prot. 32, 1–10 (2012).
11. Tokonami, S. et al. Thyroid doses for evacuees from the Fukushima nuclear accident. Sci. Rep. 2, 507; doi:10.1038/srep00507 (2012).
12. Balonov, M. et al. Contributions of short-lived radiiodines to thyroid doses received by evacuees from the Chernobyl area estimated using early in vivo activity measurements. Radiat. Prot. Dosim. 105, 593–599 (2003).
13. Nuclear Safety Commission of Japan, http://www.nsc.go.jp/mext_speedi/0312-0406_ex.pdf (accessed 1 September 2012).
14. Katata, G., Terada, H., Nagai, H. & Chino, M. Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 111, 2–12 (2012).

15. Japan Meteorological Agency, http://www.data.jma.go.jp/obd/stats/etrn/index.php?Prec_no=36&block_no=1607&year=2011&month=3&day=21&view= (accessed 12 December 2012).

16. Momoshima, N., Sugihara, S., Ichikawa, R. & Yokoyama, H. Atmospheric radionuclides transported to Fukuoka, Japan remote from the Fukushima Dai-ichi nuclear power complex following the nuclear accident. J. Environ. Radioact. 111, 28–32 (2012).

17. Morino, Y., Ohara, T. & Nishizawa, M. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys. Res. Lett. 38, L00G11 (2011).

18. Taira, Y. et al. Environmental contamination and external radiation dose rates from radionuclides released from the Fukushima nuclear power plant. Radiat. Prot. Dosim. 151, 537–545 (2012).

19. Tagami, K. et al. Specific activity and activity ratios of radionuclides in soil collected about 20 km from the Fukushima Daiichi Nuclear Power Plant: Radionuclide release to the south and southwest. Sci. Tot. Environ. 409, 4885–4888 (2011).

20. Tagami, K., Uchida, S. & Ishii, N. Extractability of radium from processed green tea leaves with hot water: the first emergent tea leaves harvested after the TEPCO’s Fukushima Daiichi Nuclear Power Plant accident. J. Radioanal. Nucl. Chem. 292, 243–247 (2012).

21. International Commission on Radiological Protection. Age-dependent Doses to the Members of the Public from Intake of Radionuclides Part 5, Compilation of Ingestion and Inhalation Coefficients. ICRP Publication 72 (1996).

22. Wessel, P. & Smith, W. H. F. Free software helps map and display data. Eos Trans. AGU. 72(41), 441–446 (1991).

23. Minato, S. Application of a \(^{60} \text{Co} \) Response matrix for a NaI(Tl) scintillator to fallout from the Fukushima reactor accident. Radiat. Emerg. Med. 1(1–2), 108–112 (2012).

24. Ichitsubo, H., Yamada, Y., Shimo, M. & Koizumi, A. Development of a radon-aerosol chamber at NIRS-general design and aerosol performance. J. Aerosol Sci. 35, 217–232 (2004).

25. Sorimachi, A., Takahashi, H. & Tokonami, S. Influence of the presence of humidity, ambient aerosols and thoron on the detection responses of electret radon monitors. Radiat. Meas. 44, 111–115 (2009).

26. Hosoda, M., Fukushi, M., Shimizu, H. & Tokonami, S. Visualization of radionuclide distribution in contaminated soil from Kashiwa City, Chiba, Japan. Sci. Rep. 1(1–2), 117–120 (2012).

Acknowledgments
This work was partly supported by a Grant for the Co-medical Education Program in Radiation Emergency Medicine by the Ministry of Education, Culture, Sports, Science and Technology, Japan (2011). The authors thank Drs. Shun’ichi Hisamatsu and Yoshishito Ohtsuka, Institute for Environmental Sciences for their kind assistance in carrying out measurement of radionuclide concentrations with the HPGe detector. Mr. Junya Ishikawa and Mr. Masaru Yamaguchi, Hirosaki University Graduate School of Health Sciences assisted in preparing the environmental samples.

Author contributions
M.H., S.T. and I.K. designed the study; M.H., S.T., S.M., M.O., Masatoshi Yamada, A.N., Mitsuaki Yoshida, H.Y. and I.K. carried out field measurements and sample preparations; H.T. and Masatoshi Yamada measured filter samples; M.H., S.S., N.A., H.K. and Y.M. analyzed gamma spectrum; M.H., Y.O. and T.I. carried out experiment at NIRS radon chamber; M.H., S.T. and T.K. wrote the manuscript; S.T. supervised the study. All authors contributed extensively to discussions about this work and in reviewing the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hosoda, M. et al. Activity concentrations of environmental samples collected in Fukushima Prefecture immediately after the Fukushima nuclear accident. Sci. Rep. 3, 2283; DOI:10.1038/srep02283 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0