A UNIVERSAL METRIC FOR THE CANONICAL BUNDLE OF A
HOLOMORPHIC FAMILY OF PROJECTIVE ALGEBRAIC MANIFOLDS

DROR VAROLIN

Dedicated to M. Salah Baouendi on the occasion of his 60th birthday.

1. Introduction

In his celebrated work [S-98, S-02], Siu proved that the plurigenera of any algebraic manifold are invariant in families. More precisely, let \(\pi : \mathcal{X} \to \mathbb{D} \) be a holomorphic submersion (i.e., \(d\pi \) is nowhere zero) from a complex manifold \(\mathcal{X} \) to the unit disk \(\mathbb{D} \), and assume that every fiber \(\mathcal{X}_t := \pi^{-1}(t) \) is a compact projective manifold. Then for every \(m \in \mathbb{N} \), the function \(P_m : \mathbb{D} \to \mathbb{N} \) defined by \(P_m(t) := h^0(\mathcal{X}_t, mK_{\mathcal{X}_t}) \) is constant.

Siu’s approach to the problem begins with the observation that the function \(P_m \) is upper semi-continuous. Thus in order to prove that \(P_m \) is continuous (hence constant) it suffices to show that given a global holomorphic section \(s \) of \(mK_{\mathcal{X}_0} \), there is a family of global holomorphic sections \(s_t \) of \(\mathcal{X}_t \) for all \(t \) in a neighborhood of 0, that varies holomorphically with \(t \) and satisfies \(s_0 = s \).

To prove such an extension theorem, Siu establishes a generalization of the Ohsawa-Takegoshi Extension Theorem to the setting of complex submanifolds of a Kahler manifold having codimension 1 and cut out by a single, bounded holomorphic function. This theorem, which we will discuss below, requires the existence of a singular Hermitian metric on the ambient manifold having non-negative curvature current, with respect to which the section to be extended is \(L^2 \). Thus in the presence of the extension theorem, the approach reduces to construction of such a metric.

The case where the fibers \(\mathcal{X}_t \) of our holomorphic family are of general type was treated in [S-98]. In this setting, Siu produced a single singular Hermitian metric \(e^{-\kappa} \) for \(K_X \) so that every \(m \)-canonical section is \(L^2 \) with respect to \(e^{-(m-1)\kappa} \).

However, in the case where the fibers \(\mathcal{X}_t \) of our holomorphic family are assumed only to be algebraic, and not necessarily of general type, Siu’s proof in [S-02] does not construct a single metric as in the case of general type. Instead, Siu constructs for every section \(s \) of \(mK_{\mathcal{X}_0} \), a singular Hermitian metric \(\kappa \) for \(mK_\mathcal{X}_0 \) of non-negative curvature so that \(s \) is \(L^2 \) with respect to this metric.

Definition. Let \(\mathcal{X} \to \Delta \) be a holomorphic family of complex manifolds and \(\mathcal{X}_0 \) the central fiber of \(\mathcal{X} \). A universal canonical metric for the pair \((\mathcal{X}, \mathcal{X}_0) \) is a singular Hermitian metric \(e^{-\kappa} \) for the canonical bundle \(K_{\mathcal{X}} \) of \(\mathcal{X} \) such that for every global holomorphic section \(s \in H^0(\mathcal{X}_0, mK_{\mathcal{X}_0}) \),

\[
\int_{\mathcal{X}_0} |s|^2 e^{-(m-1)\kappa} < +\infty.
\]

The goal of this paper is to prove that for any holomorphic family \(\mathcal{X} \to \Delta \) of compact complex algebraic manifolds with central fiber \(\mathcal{X}_0 \), the pair \((\mathcal{X}, \mathcal{X}_0) \) has a universal canonical metric having non-negative curvature current. To this end, our main theorem is the following result.

Theorem 1. Let \(X \) be a complex manifold admitting a positive line bundle \(A \to X \), and \(Z \subset X \) a smooth compact complex submanifold of codimension 1. Assume there is a subvariety \(V \subset X \) not containing \(Z \) such that \(X \setminus V \) is a Stein manifold. Let \(T \in H^0(X, Z) \) be a holomorphic section of

\[\text{2000 Mathematics Subject Classification. 32L10 14F10.}\]

Partially supported by an NSF grant.
the line bundle associated to Z, thought of as a divisor. Let $E \to X$ be a holomorphic line bundle and denote by K_X the canonical bundle of X. Assume we are given singular metrics $e^{-\varphi_E}$ for E and $e^{-\varphi_Z}$ for the line bundle associated to Z.

Suppose in addition that the above data satisfy the following assumptions.

(R) The metrics $e^{-\varphi_E}$ and $e^{-\varphi_Z}$ restrict to singular metrics on Z.

(B) $\sup_X |T|^2 e^{-\varphi_Z} < +\infty$.

(G) The line bundles $p(K_X + Z + E) + A$, $0 \leq p \leq m - 1$, are globally generated, in the sense that a finite number of sections of $H^0(X, p(K_X + Z + E) + A)$ generate the sheaf $\mathcal{O}_X(p(K_X + Z + E) + A)$.

(P) $\sqrt{-1} \partial \bar{\partial} \varphi_E \geq 0$ and there exists a constant μ such that $\mu \sqrt{-1} \partial \bar{\partial} \varphi_E \geq \sqrt{-1} \partial \bar{\partial} \varphi_Z$.

(T) The singular metric $e^{-(\varphi_Z + \varphi_E)}|Z$ has trivial multiplier ideal:

$$\mathcal{I}(Z, e^{-(\varphi_Z + \varphi_E)}|Z) = \mathcal{O}_Z.$$

Then there is a metric $e^{-\kappa}$ for $K_X + Z + E$ with the following properties:

(C) $\sqrt{-1} \partial \bar{\partial} \kappa \geq 0$.

(L) For every $m > 0$ and every section $s \in H^0(Z, m(K_Z + E)|Z)$, $|s|^2 e^{-(m-1)\kappa + \varphi_E + \varphi_Z}$ is locally integrable.

(I) For every integer $m > 0$ and every section $s \in H^0(Z, m(K_Z + E))$,

$$\int_Z |s|^2 e^{-(m-1)\kappa + \varphi_E} < +\infty.$$

Remarks. (i) For the ambient manifold X, we have in mind the following two examples: either X is compact complex projective (in which case the variety V could be taken to be a hyperplane section of some embedding of X) or else X is a family of compact complex algebraic manifolds. In the former case, it is well-known that the hypothesis (G) holds for any sufficiently ample A, while in the latter case, one might have to shrink X a little to obtain (G). Of course, there are many other examples of such X.

(ii) Note that in condition (L), the local functions $|s|^2 e^{-(m-1)\kappa + \varphi_E + \varphi_Z}$ depend on the local trivializations of the line bundles in question. However, the local integrability condition is independent of these choices.

Together with a variant of the Ohsawa-Takegoshi Theorem (Theorem 11 below), Theorem 1 implies a generalization of Siu’s extension theorem to the case where the normal bundle of the submanifold Z is not necessarily trivial. The first extension theorem of this type was established by Takayama [15-05] Theorem 4.1 under some additional hypotheses. The general case was done in [13-06], where Theorem 11 was also established. The argument here is related to that of [14-06], but the focus is on construction of the metric rather than on the extension theorem.

As a result of Theorem 11 we have the following corollary, which is our stated goal.

Corollary 2. For every holomorphic family $\mathcal{X} \to \Delta$ of smooth projective varieties with central fiber \mathcal{X}_0, the pair $(\mathcal{X}, \mathcal{X}_0)$ has, perhaps after slightly shrinking the family, a universal canonical metric having non-negative curvature current.

Proof. Let X be a family of compact projective manifolds $\pi : \mathcal{X} \to \mathbb{D}$, and $Z = \mathcal{X}_0$ the central fiber. Take $T = \pi$, $E = \mathcal{O}_{\mathcal{X}}$ and $\varphi_E \equiv 0$. Since \mathcal{X}_0 is cut out by a single holomorphic function, the line bundle associated to \mathcal{X}_0 is trivial. Take $\varphi_Z \equiv 0$. Then the hypotheses of Theorem 11 are satisfied, perhaps after shrinking the family, and we obtain a metric $e^{-\kappa}$ for $K_{\mathcal{X}}$ such that $\sqrt{-1} \partial \bar{\partial} \kappa \geq 0$ and $|s|^2 e^{-(m-1)\kappa + m}$ is integrable for every integer $m > 0$ and every section $s \in H^0(\mathcal{X}_0, mK_{\mathcal{X}_0})$. \qed
Remark. Note that in the setting of families, the constant μ is not needed, and the hypotheses (L) and (I) are the same.

Remark. In his paper \cite{Tsuji02}, Tsuji has claimed the existence of a metric with the properties stated in Corollary 2. As in our approach, Tsuji’s proof makes use of an infinite process. It seems that convergence of this process was not checked; in fact, it is demonstrated in \cite{Tsuji02} that Tsuji’s process, as well as any reasonable modification of it, diverges.

Proposition 3. For each integer $m > 0$, fix a basis $s_1^{(m)}, \ldots, s_N^{(m)}$ of $H^0(X, m(K_Z + E|Z))$. Choose constants ε_m such that the metric

$$\kappa_0 := \log \left(\sum_{m=1}^{\infty} \varepsilon_m \left(\sum_{\ell=1}^{N_m} |s_{\ell}^{(m)}|^2 \right)^{1/m} \right)$$

is convergent. Suppose $e^{-\varphi E}$ is locally integrable. Then for each $m > 0$ and every $s \in H^0(X, m(K_Z + E|Z))$,

$$\int_Z |s|^2 e^{-(m-1)\kappa_0 + \varphi E} < +\infty.$$

Proof. Fix $s \in H^0(X, m(K_Z + E|Z))$, and let $\kappa_{0,m} = \log \left(\sum_{\ell=1}^{N_m} |s_{\ell}^{(m)}|^2 \right)^{1/m}$. Note that $e^{-\kappa_0} \lesssim e^{-\kappa_{0,m}}$, and thus we have

$$\int_Z |s|^2 e^{-(m-1)\kappa_0 + \varphi E} \lesssim \int_Z |s|^2/m e^{-(m-1)\kappa_{0,m} + \varphi E}$$

$$= \int_Z |s|^2/m \left(\frac{|s|^2}{|s_1^{(m)}|^2 + \ldots + |s_N^{(m)}|^2} \right)^{(m-1)/m} e^{\gamma E - \varphi E} e^{-\gamma E}$$

$$\lesssim \int_Z |s|^2/m e^{\gamma E - \varphi E} e^{-\gamma E}$$

$$\lesssim \left(\int_Z |s|^2 e^{\gamma E - \varphi E} e^{-\gamma E} e^{-n(m-1)} \right)^{1/m} \left(\int_Z e^{\gamma E - \varphi E} e^{n-1} \right)^{(m-1)/m},$$

where ω is a fixed Kähler form for Z and $e^{-\gamma E}$ is a smooth metric for $E|Z$. The last inequality is a consequence of Hölder’s Inequality. Since $e^{-\varphi E}$ is locally integrable, we are done. \hfill \square

A calculation similar to the proof of Proposition 3 shows that $|s|^2 e^{-(m-1)\kappa_0 + \varphi E}$ is locally integrable on Z. Thus in view of Proposition 3, Theorem 4 follows if we construct a metric $e^{-\kappa}$ with non-negative curvature current such that $e^{-\kappa}|Z = e^{-\kappa_0}$. This is precisely what we do. We employ a technical simplification, due to Paun \cite{Paun05}, of Siu’s original idea of extending metrics using an Ohsawa-Takegoshi-type extension theorem for sections.

Contents

1. Introduction 1
2. The Ohsawa-Takegoshi Extension theorem 4
3. Inductive construction of certain sections by extension 4
4. Construction of the metric 7
 4.1. A metric associated to $m(K_X + Z + E)$ 7
 4.2. The metric for $K_X + Z + E$; Proof of Theorem 4 9
References 10
2. The Ohsawa-Takegoshi Extension Theorem

Let Y be a Kähler manifold of complex dimension n. Assume there exists an analytic hypersurface $V \subset Y$ such that $Y - V$ is Stein. Examples of such manifolds are Stein manifolds (where V is empty) and projective algebraic manifolds (where one can take V to be the intersection of Y with a projective hyperplane in some projective space in which Y is embedded).

Fix a smooth hypersurface $Z \subset Y$ such that $Z \not\subset V$. In [V-06] we proved the following generalization of the Ohsawa-Takegoshi Extension Theorem.

Theorem 4. Suppose given a holomorphic line bundle $H \to Y$ with a singular Hermitian metric $e^{-\psi}$, and a singular Hermitian metric $e^{-\varphi_Z}$ for the line bundle associated to the divisor Z, such that the following properties hold.

(i) The restrictions $e^{-\psi}|Z$ and $e^{-\varphi_Z}|Z$ are singular metrics.

(ii) There is a global holomorphic section $T \in H^0(Y, Z)$ such that

$$Z = \{T = 0\} \quad \text{and} \quad \sup_Y |T|^2 e^{-\varphi_Z} = 1.$$

(iii) $\sqrt{-1} \partial \bar{\partial} \psi \geq 0$ and there is an integer $\mu > 0$ such that $\mu \sqrt{-1} \partial \bar{\partial} \psi \geq \sqrt{-1} \partial \bar{\partial} \varphi_Z$.

Then for every $s \in H^0(Z, K_Z + H)$ such that

$$\int_Z |s|^2 e^{-\psi} < +\infty \quad \text{and} \quad s \wedge dT \in \mathcal{A}(e^{-(\varphi_Z + \psi)}|Z),$$

there exists a section $S \in H^0(Y, K_Y + Z + H)$ such that

$$S|Z = s \wedge dT \quad \text{and} \quad \int_Y |S|^2 e^{-(\varphi_Z + \psi)} \leq 40 \pi \mu \int_Z |s|^2 e^{-\psi}.$$

3. Inductive Construction of Certain Sections by Extension

Fix a holomorphic line bundle $A \to X$ such that the property (G) in Theorem 1 holds.

Let us fix bases

$$\{\tilde{\sigma}_j^{(m,0,p)} ; 1 \leq j \leq M_p\}$$

of $H^0(X, p(K_X + Z + E) + A)$. We let $\sigma_j^{(m,0,p)} \in H^0(Z, p(K_Z + E|Z) + A|Z)$ be such that

$$\tilde{\sigma}_j^{(m,0,p)}|Z = \sigma_j^{(m,0,p)} \wedge (dT)^{\otimes p}.$$

We also fix smooth metrics

$$e^{-\gamma_Z} \text{ and } e^{-\gamma_E} \text{ for } Z \to X, \text{ and } E \to X$$

respectively. Finally, let us fix bases

$$s_1^{(m)}, \ldots, s_N^{(m)} \text{ for } H^0(X, m(K_Z + E|Z)), \quad m = 1, 2, \ldots,$$

orthonormal with respect to the singular metric $(\omega^{-(n-1)e^{-\gamma_E}})^{m-1} e^{-\varphi_E}$ for $(m-1)K_Z + mE|Z$.

(Since $e^{-\varphi_E}$ is locally integrable, every holomorphic section is integrable with respect to this metric.)

Proposition 5. For each $m = 1, 2, \ldots$ there exist a constant $C_m < +\infty$ and sections

$$\tilde{\sigma}_{j,\ell}^{(m,k,p)} \in H^0(X, (km + p)(K_X + Z + E) + A)$$

where $p = 1, 2, \ldots, m - 1$, $1 \leq j \leq M_p$, $1 \leq \ell \leq N_m$ and $k = 1, 2, \ldots$, with the following properties.

(a) $\tilde{\sigma}_{j,\ell}^{(m,k,p)}|Z = (s_\ell^{(m)})^{\otimes k} \otimes \sigma_j^{(m,0,p)} \wedge (dT)^{(km+p)}$
(b) If \(k \geq 1 \),
\[
\int_X \frac{\sum_{j=1}^{M_0} |\tilde{\sigma}_{j,\ell}^{(m,k,0)}|^2 e^{-(\gamma_Z + \gamma_E)}}{\sum_{j=1}^{M_{m-1}} |\tilde{\sigma}_{j,\ell}^{(m,k-1,m-1)}|^2} \leq C_m.
\]

(c) For \(1 \leq p \leq m - 1 \),
\[
\int_X \frac{\sum_{j=1}^{M_p} |\tilde{\sigma}_{j,\ell}^{(m,k,p)}|^2 e^{-(\gamma_Z + \gamma_E)}}{\sum_{j=1}^{M_{m-1}} |\tilde{\sigma}_{j,\ell}^{(m,k,p-1)}|^2} \leq C_m.
\]

Proof. (Double induction on \(k \) and \(p \).) Fix a constant \(\hat{C}_m \) such that the
\[
\sup_X \frac{\sum_{j=1}^{M_0} |\tilde{\sigma}_{j}^{(m,0,0)}|^2 \omega^n e^{m-1}(\gamma_Z + \gamma_E)}{\sum_{j=1}^{M_{m-1}} |\tilde{\sigma}_{j}^{(m,0,m-1)}|^2} \leq \hat{C}_m
\]
and
\[
\sup_Z \frac{\sum_{j=1}^{M_0} |\sigma_j^{(m,0,0)}|^2 \omega^{n-1} m e^{m-1}(\gamma_Z + \gamma_E)}{\sum_{j=1}^{M_{m-1}} |\sigma_j^{(m,0,m-1)}|^2} \leq \hat{C}_m,
\]
and for all \(0 \leq p \leq m - 2 \),
\[
\sup_X \frac{\sum_{j=1}^{N_{p+1}} |\tilde{\sigma}_{j}^{(m,0,p+1)}|^2 \omega^p e^{-(\gamma_Z + \gamma_E)}}{\sum_{j=1}^{M_p} |\tilde{\sigma}_{j}^{(m,0,p)}|^2} \leq \hat{C}_m,
\]
and
\[
\sup_Z \frac{\sum_{j=1}^{N_{p+1}} |\sigma_j^{(m,0,p+1)}|^2 \omega^{-1} e^{-(\gamma_Z + \gamma_E)}}{\sum_{j=1}^{M_p} |\sigma_j^{(m,0,p)}|^2} \leq \hat{C}_m.
\]

\((k = 0)\) We set \(\tilde{\sigma}_{j,\ell}^{(m,0,p)} := \tilde{\sigma}_{j}^{(m,0,p)} \) and simply observe that
\[
\int_X \frac{\sum_{j=1}^{M_p} |\tilde{\sigma}_{j,\ell}^{(m,0,p)}|^2 e^{-(\gamma_Z + \gamma_E)}}{\sum_{j=1}^{M_{m-1}} |\tilde{\sigma}_{j,\ell}^{(m,0,p-1)}|^2} \leq \hat{C}_m \int_X \omega^n.
\]

\((p = 0)\): Consider the sections \((s_{\ell}^{(m)})^{k} \otimes \sigma_j^{(m,0,0)},\) and define the semi-positively curved metric
\[
\psi_{k,\ell,0} := \log \sum_{j=1}^{M_{m-1}} |\sigma_{j,\ell}^{(m,k-1,m-1)}|^2
\]
for the line bundle \((mk - 1)(K_X + Z + E) + A\). Observe that locally on \(Z \),
\[
|s_{\ell}^{(m)} \wedge dT^m|^k \otimes \sigma_j^{(m,0,0)}|^2 e^{-(\varphi_Z + \psi_{k,\ell,0} + \varphi_E)} = |s_{\ell}^{(m)} \wedge dT^m|^2 |\sigma_j^{(m,0,0)}|^2 e^{-(\varphi_Z + \varphi_E)} \sum_{j=1}^{M_{m-1}} |\sigma_j^{(m,0,m-1)}|^2
\]
\[
\lesssim |s_{\ell}^{(m)}|^2 e^{-(\varphi_Z + \varphi_E)}.
\]

Moreover, we have
\[
\sqrt{-1} \partial \bar{\partial} (\psi_{k,\ell,0} + \varphi_E) \geq 0 \quad \text{and} \quad \mu \sqrt{-1} \partial \bar{\partial} (\psi_{k,\ell,0} + \varphi_E) \geq \sqrt{-1} \partial \bar{\partial} \varphi_Z.
\]
Finally,

\[
\int_Z \left| (s^{(m)}_{\ell})^k \otimes \sigma_j^{(m,0,0)} \right|^2 e^{-(\psi_{k,\ell,0} + \varphi_E)} \leq 40\pi \mu \int_Z \left| s^{(m)}_{\ell} \right|^2 \frac{\left| \sigma_j^{(m,0,0)} \right|^2 e^{-(\varphi_E + \varphi_E)}}{\sum_{j=1}^{N_{m-1}} \left| \sigma_j^{(m-1)} \right|^2} < +\infty.
\]

We may thus apply Theorem 4 to obtain sections

\[
\tilde{\sigma}_{j,\ell}^{(m,k,0)} \in H^0(X, mk(K_X + Z + E) + A), \quad 1 \leq j \leq M_0, \quad 1 \leq \ell \leq N_m,
\]
such that

\[
\tilde{\sigma}_{j,\ell}^{(m,k,0)}|_Z = (s^{(m)}_{\ell})^k \otimes \sigma_j^{(m,0,0)} \wedge (dT)^{\otimes km}, \quad 1 \leq j \leq M_0, \quad 1 \leq \ell \leq N_m,
\]

and

\[
\int_X \left| \tilde{\sigma}_{j,\ell}^{(m,k,0)} \right|^2 e^{-(\psi_{k,\ell,0} + \varphi_Z + \varphi_E)} \leq 40\pi \mu \int_Z \left| s^{(m)}_{\ell} \right|^2 \frac{\left| \sigma_j^{(0)} \right|^2 e^{-(\varphi_E + \varphi_E)}}{\sum_{j=1}^{N_{m-1}} \left| \sigma_j^{(m-1)} \right|^2}.
\]

Summing over \(j \), we obtain

\[
\int_X \sum_{j=1}^{M_0} \frac{\left| \tilde{\sigma}_{j,\ell}^{(m,k,0)} \right|^2 e^{-(\gamma_Z + \gamma_E)}}{\sum_{j=1}^{N_{m-1}} \left| \sigma_j^{(m-1)} \right|^2} \leq \sup_X e^{\varphi_Z + \varphi_E - \gamma_Z - \gamma_E} \int_X \sum_{j=1}^{M_0} \frac{\left| \tilde{\sigma}_{j,\ell}^{(m,k,0)} \right|^2 e^{-(\varphi_Z + \varphi_E)}}{\sum_{j=1}^{N_{m-1}} \left| \sigma_j^{(m-1)} \right|^2} \leq 40\pi \sup_X e^{\varphi_Z + \varphi_E - \gamma_Z - \gamma_E} \int_X \left| s^{(m)}_{\ell} \right|^2 \frac{\sum_{j=1}^{M_0} \left| \sigma_j^{(m,0,0)} \right|^2 e^{-\varphi_E}}{\sum_{j=1}^{N_{m-1}} \left| \sigma_j^{(m,0,0)} \right|^2} e^{-\kappa} \leq 40\pi \tilde{C}_m \sup_X e^{\varphi_Z + \varphi_E - \gamma_Z - \gamma_E} \int_X \left| s^{(m)}_{\ell} \right|^2 \frac{\omega^{-(n-1)(m-1)} e^{-(m-1)(\gamma_E + \varphi_E)}}{\sum_{j=1}^{N_{m-1}} \left| \sigma_j^{(m-1)} \right|^2} = 40\pi \tilde{C}_m \sup_X e^{\varphi_Z + \varphi_E - \gamma_Z - \gamma_E} \cdot
\]

\((1 \leq p \leq m - 1)): \) Assume that we have obtained the sections \(\tilde{\sigma}_{j,\ell}^{(m,k,p-1)}, \) \(1 \leq j \leq M_{p-1}, \) \(1 \leq \ell \leq N_m. \) Consider the non-negatively curved singular metric

\[
\psi_{k,\ell,p} := \log \sum_{j=1}^{M_{p-1}} \left| \tilde{\sigma}_{j,\ell}^{(m,k,p-1)} \right|^2
\]

for \((km + p - 1)(K_X + Z + E) + A\). We have

\[
\left| (s^{(m)}_{\ell})^k \otimes \sigma_j^{(m,0,0)} \right|^2 e^{-(\varphi_Z + \psi_{k,\ell,p} + \varphi_E)} = \frac{\left| \sigma_j^{(m,0,p)} \right|^2 e^{-(\varphi_Z + \varphi_E)}}{\sum_{j=1}^{M_{p-1}} \left| \sigma_j^{(m,0,p-1)} \right|^2} \leq e^{-(\varphi_Z + \varphi_E)},
\]

which is locally integrable on \(Z \) by the hypothesis (T). Next,

\[
\int_Z \left| (s^{(m)}_{\ell})^k \otimes \sigma_j^{(m,0,0)} \right|^2 e^{-(\psi_{k,\ell,p} + \varphi_E)} = \int_Z \frac{\left| \sigma_j^{(m,0,p)} \right|^2 e^{-\varphi_E}}{\sum_{j=1}^{M_{p-1}} \left| \sigma_j^{(m,0,p-1)} \right|^2} \leq C^* \int_Z e^{\gamma_Z} \frac{\left| \sigma_j^{(m,0,p)} \right|^2 e^{-(\varphi_Z + \varphi_E)}}{\left| \sigma_j^{(m,0,p-1)} \right|^2} < +\infty,
\]

6
where
\[C^* := \sup_{z} e^{\varphi z - \gamma z}. \]
Moreover,
\[\sqrt{-1} \partial \bar{\partial} (\psi_{k,\ell,p} + \varphi_E) \geq 0 \quad \text{and} \quad \sqrt{-1} \partial \bar{\partial} (\psi_{k,\ell,p} + \varphi_E) \geq \sqrt{-1} \partial \bar{\partial} \varphi_Z. \]
By Theorem 4 there exist sections
\[\tilde{\sigma}_{j,\ell}^{(m,k,p)} \in H^0(X, (mk + p)(K_X + Z + E) + A), \quad 1 \leq j \leq M_0 \]
such that
\[\tilde{\sigma}_{j,\ell}^{(m,k,p)}|Z = (\sigma_{\ell}^{(m)}) \otimes k \otimes \sigma_{j,\ell}^{(m,0,p)} \wedge (dT)^{\otimes km + p}, \quad 1 \leq j \leq M_p, \]
and
\[\int_X |\tilde{\sigma}_{j,\ell}^{(m,k,p)}|^2 e^{-(\psi_{k,\ell,p} + \varphi_E)} \leq 40\pi \mu \int_Z |\sigma_j^{(m,0,p)}|^2 e^{-\varphi_E}. \]
Summing over \(j \), we obtain
\[\int_X \sum_{j=1}^{M_p} |\tilde{\sigma}_{j,\ell}^{(m,k,p)}|^2 e^{-(\gamma_Z + \gamma_E)} \leq 40\pi \mu \sup_X e^\varphi Z + \varphi E - \gamma Z - \gamma E \tilde{C}_m \int_Z e^{-\varphi E} \omega^{n-1}. \]
Letting
\[C_m := 40\pi \mu \tilde{C}_m \max \left(\int_X \omega^n, \sup_X e^{\varphi Z + \varphi E - \gamma Z - \gamma E} \right) \]
completes the proof.

4. CONSTRUCTION OF THE METRIC

4.1. A metric associated to \(m(K_X + Z + E) \). Fix a smooth metric \(e^{-\psi} \) for \(A \to X \). Consider the functions
\[\lambda_{\ell,N}^{(m)} := \log \sum_{j=1}^{M_p} |\tilde{\sigma}_{j,\ell}^{(m,k,p)}|^2 \omega^{-n(mk + p)} e^{-(km(\gamma_Z + \gamma_E) + \psi)}, \]
where \(N = mk + p \). Set
\[\lambda^{(m)}_{N} := \log \sum_{\ell=1}^{N_m} e^{\lambda_{\ell,N}^{(m)}}. \]

LEMMA 6. For any non-empty open subset \(V \subset X \) and any smooth function \(f : V \to \mathbb{R}_+ \),
\[\frac{1}{\int_V f \omega^n} \int_V (\lambda_{N}^{(m)} - \lambda_{N-1}^{(m)}) f \omega^n \leq \log \left(\frac{N_m C_m \sup_V f}{\int_V f \omega^n} \right). \]

Proof. Observe that by Proposition 5 there exists a constant \(C_m \) such that for any open subset \(V \subset X \),
\[\int_V (e^{\lambda_{\ell,N}^{(m)} - \lambda_{\ell,N-1}^{(m)}} - 1) f \omega^n \leq C_m \sup_V f, \]
and thus
\[\int_V (e^{\lambda_{N-1}^{(m)} - \lambda_{N-2}^{(m)}} - 1) f \omega^n = \sum_{\ell=1}^{N_m} \int_V (e^{\lambda_{\ell,N}^{(m)} - \lambda_{\ell,N-1}^{(m)}} - 1) f \omega^n \leq N_m C_m \sup_V f. \]
An application of (the concave version of) Jensen’s inequality to the concave function \(\log \) then gives
\[\frac{1}{\int_V f \omega^n} \int_V (\lambda_{N}^{(m)} - \lambda_{N-1}^{(m)}) f \omega^n \leq \log \left(\frac{N_m C_m \sup_V f}{\int_V f \omega^n} \right). \]
The proof is complete.

Consider the function
\[\Lambda_k^{(m)} = \frac{1}{k} \lambda_{mk}. \]

Note that \(\Lambda_k^{(m)} \) is locally the sum of a plurisubharmonic function and a smooth function. By applying Lemma \(\square \) and using the telescoping property, we see that for any open set \(V \subset X \) and any smooth function \(f : V \to \mathbb{R}_+ \),

\[\frac{1}{\int_V f \omega^n} \int_V \Lambda_k^{(m)} f \omega^n \leq m \log \left(\frac{N_mC_m \sup_V f}{\int_V f \omega^n} \right). \]

Proposition 7. There exists a constant \(C^{(m)}_0 \) such that
\[\Lambda_k^{(m)}(x) \leq C^{(m)}_0, \quad x \in X. \]

Proof. Let us cover \(X \) by coordinate charts \(V_1, \ldots, V_N \) such that for each \(j \) there is a biholomorphic map \(F_j \) from \(V_j \) to the ball \(B(0,2) \) of radius 2 centered at the origin in \(C^n \), and such that if \(U_j = F_j^{-1}(B(0,1)) \), then \(U_1, \ldots, U_N \) is also an open cover. Let \(W_j = V_j \setminus F_j^{-1}(B(0,3/2)) \).

Now, on each \(V_j \), \(\Lambda_k^{(m)} \) is the sum of a plurisubharmonic function and a smooth function. Say \(\Lambda_k^{(m)} = h + g \) on \(V_j \), where \(h \) is plurisubharmonic and \(g \) is smooth. Then for constant \(A_j \) we have
\[\sup_{U_j} \Lambda_k^{(m)} \leq \sup_{U_j} g + \sup_{U_j} h \]
\[\leq \sup_{U_j} g + A_j \int_{W_j} h \cdot F_j \ast dV \]
\[\leq \sup_{U_j} g - A_j \int_{W_j} g \cdot F_j \ast dV + A_j \int_{W_j} \Lambda_k^{(m)} \cdot F_j \ast dV \]

Let
\[C^{(m)}_j := \sup_{U_j} g - A_j \int_{W_j} g \cdot F_j \ast dV \]
and define the smooth function \(f_j \) by
\[f_j \omega^n = F_j \ast dV. \]

Then by (1) applied with \(V = W_j \) and \(f = f_j \), we have
\[\sup_{U_j} \Lambda_k^{(m)} \leq C^{(m)}_j + m A_j \log \left(\frac{N_mC_m \sup_{W_j} f_j}{\int_{W_j} f_j \omega^n} \right) \int_{W_j} f_j \omega^n. \]

Letting
\[C^{(m)}_0 := \max_{1 \leq j \leq N} \left\{ C^{(m)}_j + m A_j \log \left(\frac{N_mC_m \sup_{W_j} f_j}{\int_{W_j} f_j \omega^n} \right) \int_{W_j} f_j \omega^n \right\} \]
completes the proof. \(\square \)

Since the upper regularization of the lim sup of a uniformly bounded sequence of plurisubharmonic functions is plurisubharmonic (see, e.g., [H-90 Theorem 1.6.2]), we essentially have the following corollary.
Corollary 8. The function

\[\Lambda^{(m)}(x) := \limsup_{y \to x} \limsup_{k \to \infty} \Lambda^{(m)}_k(y) \]

is locally the sum of a plurisubharmonic function and a smooth function.

Proof. One need only observe that the function \(\Lambda_k \) is obtained from a singular metric on the line bundle \(m(K_X + Z + E) \) (this singular metric \(e^{-\kappa^{(m)}} \) will be described shortly) by multiplying by a fixed smooth metric of the dual line bundle. \(\square \)

Consider the singular Hermitian metric \(e^{-\kappa^{(m)}} \) for \(m(K_X + Z + E) \) defined by

\[e^{-\kappa^{(m)}} = e^{-\Lambda^{(m)}_k} \omega^{-nm} e^{-m(\gamma_Z + \gamma_E)}. \]

This singular metric is given by the formula

\[e^{-\kappa^{(m)}}(x) = \exp\left(-\limsup_{y \to x} \limsup_{k \to \infty} \kappa^{(m)}_k(y) \right), \]

where

\[e^{-\kappa^{(m)}_k} = e^{-\Lambda^{(m)}_k} \omega^{-nm} e^{-m(\gamma_Z + \gamma_E)}. \]

The curvature of \(e^{-\kappa^{(m)}} \) is thus

\[\sqrt{-1} \partial \bar{\partial} \kappa^{(m)}_k = \frac{\sqrt{-1}}{k} \partial \bar{\partial} \log \sum_{\ell=1}^{N_m} \sum_{j=1}^{N_0} |a^{(m,k,0)}_{\ell j}|^2 - \frac{1}{k} \sqrt{-1} \partial \bar{\partial} \psi \]

\[\geq -\frac{1}{k} \sqrt{-1} \partial \bar{\partial} \psi \]

We claim next that the curvature of \(e^{-\kappa} \) is non-negative. To see this, it suffices to work locally. Then we have that the functions

\[\kappa^{(m)}_k + \frac{1}{k} \psi \]

are plurisubharmonic. But

\[\limsup_{y \to x} \limsup_{k \to \infty} \kappa^{(m)}_k + \frac{1}{k} \psi = \limsup_{y \to x} \limsup_{k \to \infty} \kappa^{(m)}_k = \kappa^{(m)}. \]

It follows that \(\kappa^{(m)} \) is plurisubharmonic, as desired.

4.2. The metric for \(K_X + Z + E \); Proof of Theorem \(\square \) Let \(\varepsilon_m \) be constants, chosen so \(\varepsilon_m \searrow 0 \) sufficiently rapidly that the sum

\[e^\kappa := \sum_{m=1}^{\infty} \varepsilon_m e^{\frac{1}{m} \kappa^{(m)}} = \sum_{m=1}^{\infty} \exp\left(\frac{1}{m} \kappa^{(m)} + \log \varepsilon_m \right) \]

converges everywhere on \(X \) (to a metric for \(-(K_X + Z + E) \)). It is possible to find such constants since, by Proposition \(\square \) each \(\kappa^{(m)} \) is locally uniformly bounded from above. (The lower bound \(e^{\kappa^{(m)}} \geq 0 \) is trivial.) Moreover, by elementary properties of plurisubharmonic functions, \(\kappa \) is plurisubharmonic. Indeed, for any \(r \in \mathbb{N}, \) the function

\[\psi_r := \log \sum_{m=1}^{r} \exp\left(\frac{1}{m} \kappa^{(m)} + \log \varepsilon_m \right) \]

is plurisubharmonic, and \(\psi_r \searrow \kappa. \) It follows that \(\kappa = \sup_r \psi_r \) is plurisubharmonic. (Again, see \(\square \) Theorem 1.6.2.) Thus \(e^{-\kappa} \) is a singular Hermitian metric for \(K_X + Z + E \) with non-negative curvature current.
Observe that, after identifying K_Z with $(K_X + Z)|Z$ by dividing by dT,

$$\kappa_k^{(m)}|Z = \log \left(\sum_{\ell=1}^{N_m} |s^{(m)}_\ell|^2 \right) + \frac{1}{k} \log \sum_{j=1}^{M_0} |\sigma^{(m,0,0)}_j|^2.$$

Thus we obtain $e^{-\kappa^{(m)}}|Z = \left(\sum_{\ell=1}^{N_m} |s^{(m)}_\ell|^2 \right)^{-1}$. It follows that

$$e^{-\kappa}|Z = \frac{1}{\sum_{m=1}^{\infty} \varepsilon_m \left(\sum_{\ell=1}^{N_m} |s^{(m)}_\ell|^2 \right)^{2/m}}.$$

In view of the short discussion following the proof of Proposition 3, the metric $e^{-\kappa}$ satisfies the conclusions of Theorem 1. The proof of Theorem 1 is thus complete.

Acknowledgment. I am indebted to Lawrence Ein and Mihnea Popa. It is to a discussion with them that the present paper owes its existence.

References

[H-90] Hörmander, L., *An introduction to complex analysis in several variables*. Third edition. North-Holland Mathematical Library, 7. North-Holland Publishing Co., Amsterdam, 1990.

[P-05] Paun, M., *Siu’s invariance of plurigenera: a one-tower proof*. Preprint 2005.

[S-98] Siu, Y.-T., *Invariance of plurigenera*. Invent. Math. 134 (1998), no. 3, 661–673.

[S-02] Siu, Y.-T., *Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semi-positively twisted plurigenera for manifolds not necessarily of general type*. Complex geometry. Collection of papers dedicated to Hans Grauert. Springer-Verlag, Berlin, 2002. (223–277)

[Ta-05] Takayama, S, *Pluricanonical systems on algebraic varieties of general type*, preprint 2005.

[Ts-02] Tsuji, H., *Deformation invariance of plurigenera*. Nagoya Math. J. 166 (2002), 117–134.

[V-06] Varolin, D., *A Takayama-type Extension Theorem*. Preprint 2006.

Department of Mathematics
Stony Brook University
Stony Brook, NY 11794