INTRODUCTION

The brain is remarkably adaptive. Neuroimaging studies in animals and humans have shown multiple facets of plasticity, manifesting as structural changes induced by environment, learning, and emotions. Similar to structural plasticity, emotions alter neural responsivity. Although the notion that the human brain is adaptive has extensive support from unimodal brain imaging studies, integrative models of the brain’s functional changes in relation to structural plasticity are largely lacking, and multimodal studies are needed to improve our understanding of the adaptive brain. For instance, using a longitudinal multimodal-imaging approach, Nyberg and colleagues demonstrated that age-related reductions in prefrontal functional response to a cognitive task are driven by local gray matter atrophy. The observation that neural response alterations over time are accounted for by structural changes may have implications for research in psychiatric disorders. For example, a recent large study found that both GM volume and neural responsivity in the amygdala were associated with symptoms of separation anxiety, suggesting dependence between anxiety-related brain structure and function.

The amygdala, anterior cingulate cortex (ACC), insula and hippocampus, have central roles in the acquisition and expression of fear. Exaggerated neural response in these regions has commonly been reported in anxiety disorders. In comparison to functional activation studies, volumetric differences between anxiety patients and healthy controls have been investigated less frequently and inconsistent findings are present, for example, in volumetric studies on social anxiety. Examinations of both structure and function concomitantly in anxious patients are largely lacking, and it has not been studied whether anxiety-related structure and neural activity are simultaneously changed by effective treatments. Treatments targeting anxiety, like cognitive behavior therapy (CBT) and psychotropic medication (for example, with selective serotonin reuptake inhibitors), have been shown to decrease neural responsivity in the amygdala. In line with this, Mahan and Ressler suggested that synaptic plasticity in the amygdala may be an important target for treatment of posttraumatic stress disorder. While there is limited literature on structural changes with anxiety-reducing pharmacologic agents or psychotherapy, the results are mixed and the conclusions are restricted by not including a treatment control group.

The present randomized controlled trial (RCT) examined CBT-related changes in the brain using a multimodal neuroimaging approach. Hence, we evaluated the relationship between structural neuroplasticity (GM volume) and functional changes (blood-oxygen level dependent, BOLD responsivity) in 26 participants with social anxiety disorder randomly assigned either to CBT or an attention bias modification control treatment. Also, 26 matched healthy controls were included. Significant time x treatment interactions were found in the amygdala with decreases both in GM volume (family-wise error (FWE) corrected $P_{FWE} = 0.02$) and BOLD responsivity ($P_{FWE} = 0.01$) after successful CBT. Before treatment, amygdala GM volume correlated positively with anticipatory speech anxiety ($P_{FWE} = 0.04$), and CBT-induced reduction of amygdala GM volume (pre–post) correlated positively with reduced anticipatory anxiety after treatment ($P_{FWE} < 0.05$). In addition, we observed greater amygdala neural responsivity to self-referential criticism in socially anxious participants, as compared with controls ($P_{FWE} = 0.029$), before but not after CBT. Further analysis indicated that diminished amygdala GM volume mediated the relationship between decreased neural responsivity and reduced social anxiety after treatment ($P = 0.007$). Thus, our results suggest that improvement-related structural plasticity impacts neural responsiveness within the amygdala, which could be essential for achieving anxiety reduction with CBT.

Neuroplasticity in response to cognitive behavior therapy for social anxiety disorder

KNT Månsson, A Salami, A Frick, P Carlbring, G Andersson, T Furmark and C-J Boraxbekk

Patients with anxiety disorders exhibit excessive neural reactivity in the amygdala, which can be normalized by effective treatment like cognitive behavior therapy (CBT). Mechanisms underlying the brain’s adaptation to anxiolytic treatments are likely related both to structural plasticity and functional response alterations, but multimodal neuroimaging studies addressing structure–function interactions are currently missing. Here, we examined treatment-related changes in brain structure (gray matter (GM) volume) and function (blood–oxygen level dependent, BOLD response to self-referential criticism) in 26 participants with social anxiety disorder randomly assigned either to CBT or an attention bias modification control treatment. Also, 26 matched healthy controls were included. Significant time x treatment interactions were found in the amygdala with decreases both in GM volume (family-wise error (FWE) corrected $P_{FWE} = 0.02$) and BOLD responsivity ($P_{FWE} = 0.01$) after successful CBT. Before treatment, amygdala GM volume correlated positively with anticipatory speech anxiety ($P_{FWE} = 0.04$), and CBT-induced reduction of amygdala GM volume (pre–post) correlated positively with reduced anticipatory anxiety after treatment ($P_{FWE} < 0.05$). In addition, we observed greater amygdala neural responsivity to self-referential criticism in socially anxious participants, as compared with controls ($P_{FWE} = 0.029$), before but not after CBT. Further analysis indicated that diminished amygdala GM volume mediated the relationship between decreased neural responsivity and reduced social anxiety after treatment ($P = 0.007$). Thus, our results suggest that improvement-related structural plasticity impacts neural responsiveness within the amygdala, which could be essential for achieving anxiety reduction with CBT.
criticism\(^7\) in participants with social anxiety disorder (SAD) who were treated with CBT or an attention-training control treatment.\(^27\) Brain parameters were also related to a matched healthy control group to evaluate pre-treatment differences and normalization effects of treatment. We expected concomitant treatment-related changes in GM volume and functional response in the brain’s fear circuitry (that is, the amygdala, ACC, insula and hippocampus).\(^17\) Mediation analysis was conducted to determine the path for reduced social anxiety after treatment, that is, whether structural neuroplasticity or altered neural response mediated the relationship between the other and symptom improvement with CBT.

MATERIALS AND METHODS

Participants

Fifty-two right-handed participants were included (see Table 1), 26 with a primary diagnosis of SAD according to the structured clinical interview for DSM-IV axis I (SCID-I)\(^38\) and 26 healthy controls matched on age, sex and educational level, and free from psychiatric disorders as assessed by the Mini-International Neuropsychiatric Interview (MINI).\(^39\) Prior to the diagnostic interview, participants answered internet-administered self-report questionnaires regarding social anxiety (for example, Liebowitz Social Anxiety Scale – Self-report version (LSAS-SR))\(^40\) see online Supplementary Material), depression (for example, Montgomery-Åsberg Depression Rating Scale—Self-report version (MADRS-S))\(^41\) and magnetic resonance safety. Eight SAD participants were on prescription medication throughout the study, but the selective serotonin reuptake inhibitors dose had been stable for at least 3 months prior to treatment initiation.

As shown in Table 1, SAD participants had higher scores on social anxiety and depressive symptoms than the healthy controls.

Procedure and design

The present paper is part of a RCT previously described in detail.\(^27,42\) In short, participants with SAD were treated with Internet-delivered CBT or Internet-delivered Attention Bias Modification (ABM), and an independent researcher executed the randomization. Magnetic resonance imaging (MRI) assessments were performed before as well as 9 weeks after treatment (pre-post). The matched healthy controls underwent only one MRI assessment. The SAD participants were not offered economic compensation, but the healthy controls received about 125 USD and a cinema ticket.

Clinical assessment

An independent clinical psychologist, blind to the experimental conditions, determined clinical response rates using the Clinical Global Impression-Improvement Assessment scale (CGI-I; scores 1 or 2, that is, much or very much improved defining treatment responders).\(^43\) Moreover, social anxiety self-report questionnaires were administrated at pre- and post-treatment (for example, LSAS-SR).\(^40\) We were also interested in state-related social anxiety,\(^44\) so after the MRI assessment the participants performed a 2-min public speaking task. Both after the initial anatomical image acquisition, and prior to the speech, the participants rated subjective units of discomfort. Fear and distress were rated separately on a scale from 0 to 100 (min-max), and anxiety was calculated as the mean of these measures.

Table 1. Demographic and clinical characteristics of SAD participants and healthy controls

	SAD participants (n = 26)	Healthy controls (n = 26)	Between-group statistics (n = 52)
Age, years, mean (s.d.)	32.27 (9.7)	32.23 (10.5)	t(51) = 0.01, P = 0.989
Range, years	19–57	18–57	
Gender, female (%)	22 (85)	18 (69)	
Highest educational level, n (%)			
Completed university	9 (35)	11 (42)	χ² = 1.73, P = 0.188
Current university	10 (38)	8 (31)	
Lower grade\(^a\)	7 (27)	7 (27)	
Age of SAD onset, years, mean (s.d.)	15.88 (6.0)	20.53 (1.1)	t(51) = 12.97, P < 0.001
LSAS-SR, mean (s.d.)	76.31 (18.7)	50.15 (24.6)	
MADRS-S, mean (s.d.)	15.73 (6.6)	13.44 (16.0)	
Anticipatory speech anxiety, mean (s.d.)	50.15 (24.6)	13.44 (16.0)	t(51) = 6.48, P < 0.001

Abbreviations: LSAS-SR, Liebowitz Social Anxiety Scale—Self-report version; MADRS-S, Montgomery-Åsberg Depression Rating Scale—Self-rating version; SAD, social anxiety disorder. Including high school, vocational school and compulsory school.
analyses. The T1-weighted images were preprocessed using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/download). The Voxel-Based Morphometry v. 8 (VBM8) toolbox calculates normalized GM volumes and allows for comparing tissue amounts while controlling for individual brain sizes (default settings were used). To identify outliers, quality control was carried out using the sample homogeneity test, and we found that the variance was within 2 s.d. Thus, outliers were excluded. VBM8 preprocessing was performed in 3 steps; (a) longitudinal MRI data assessment on SAD participants (pre- vs post-treatment; n = 23 × 2; that is, three participants withdrew from the post-MRI assessment), (b) case-control differences at baseline (SAD vs healthy control; n = 26+26) and (c) case-control differences following CBT (n = 11+26). Structural scans were segmented into gray and white matter, and the GM volumes were non-linearly normalized to the Montreal Neurological Institute (MNI) template, modulated and smoothed using an 8 mm full-width half-maximum isotropic Gaussian kernel.

Functional MRI data were first rigidly aligned to the middle image volume of each run to correct for head movements. The realigned images were then corrected for acquisition time differences between slices within each volume. A within-subject rigid registration was conducted to align functional and structural images together. For the 23 SAD participants who underwent the post-treatment MRI, we co-registered the functional scans to a longitudinal mean structural image (if post-treatment images were missing, the pre-treatment image was used). For healthy controls, the functional scans were co-registered to the structural image. Functional scans were subsequently warped to MNI152 standard space (using the transformation parameters that normalized GM images into the MNI space) and smoothed with an 8 mm full-width half-maximum isotropic Gaussian kernel. Thus, both fMRI and VBM images were in the same space and had the same voxel size (that is, 1.5 × 1.5 × 1.5 mm³).

In the BOLD-fMRI paradigm, subject-specific contrasts (self-referential criticism vs other referential criticism) were generated with voxel-wise general linear models. Each condition was modeled as a box-car function, convolved with the hemodynamic response function and filtered using a 128 s high-pass filter. In addition, six motion parameters derived from the realignment algorithm were included in the model to account for motion artifacts.

Data analysis
Demographics, clinical data and mediation analyses were evaluated using the STATA Statistical Software, v. 13.1 (STATA, College Station, TX, USA) and SPSS Statistics, v. 19.0 (IBM, Armonk, NY, USA).

Regions of interest (ROI) in all neuroimaging analyses were the left and right amygdala, anterior cingulate gyrus and hippocampus. Thus, the regions of the Fear circuitry affected in SAD,

Results
As previously reported, the clinician administered CGI-I assessments revealed significantly more participants responding positively to the CBT (61%, 8/13) than to the ABM control treatment (23%, 3/13; χ² = 3.94, P = 0.047), and on the self-report questionnaires, we found similar results in favor of CBT. Furthermore, when controlling for pre-treatment level, anticipatory speech anxiety decreased more with CBT than with ABM (time × treatment; Wilks’s λ = 0.678, F₂,₉₂₁ = 4.98, P = 0.017), see Supplementary Table S1, and Supplementary Figure S4.

On average, the CBT participants completed eight (out of nine) modules of treatment. In addition to completing the module-based assignments, the participants were required to earn at least 95% correct answers on a multiple-choice quiz about CBT every week. The ABM control participants earned an average of 98.4% (16383/16640) correct responses on the attentional shifting task, and they completed all training sessions.

Table 2. Structural and functional response alterations in participants treated with effective CBT, in comparison to the ABM control treatment (time × treatment interactions)

Analyses and brain regions	MNI coordinates	Maximum Voxels	P*WE	
2 × 2 interactions (pre-treatment vs post-treatment × CBT vs ABM)				
L. Amygdala GM	-20 -1 -21	3.30	69	0.024
L. Amygdala GM	22 2 -2	19.39	0.048	
L. Amygdala BOLD	26 -7 -17	2.05	26	0.218
L. Amygdala BOLD	28 0 -16	3.28	140	0.015

Main effects of CBT (pre-treatment × post-treatment)

L. Amygdala GM	20 -1 -21	3.12	61	0.060
L. Amygdala GM	22 2 -21	3.15	17	0.395
L. Amygdala BOLD	— — <0.0			
L. Amygdala BOLD	28 2 -16	2.89	78	0.061

Abbreviations: ABM, attention bias modification; CBT, cognitive behavior therapy; FWE, family wise-error-corrected P-value; GM, gray matter volume; MNI, Montreal Neurological Institute template
Whole-brain analysis of structural change showed that the GM volumes of the dorsomedial prefrontal cortex (Brodmann area 8) and the bilateral precuneus were more greatly reduced after CBT than ABM (see Supplementary Table S2). Whole-brain BOLD-signal analyses only revealed a greater reduction in the activation of the right amygdala ($xyz: 29,1,-16; Z = 3.28, P < 0.001, k = 15$ voxels) in CBT compared with ABM participants.

Relationship between social anxiety symptomatology, brain structure and neural responsivity

Pre-treatment GM volume in the left amygdala was positively correlated with the level of anticipatory speech anxiety in SAD participants ($xyz: -24,-4,-12; Z = 2.96, P_{FWE} = 0.04; k = 273$ voxels, see Figure 2). As reported in Supplementary Table S3, whole-brain analysis additionally showed that GM volume of the left and right precuneus was positively correlated with anticipatory speech anxiety.

CBT-induced reductions of the GM volumes of the bilateral amygdala and the insula were positively associated with decreased levels of anticipatory speech anxiety (left amygdala, $xyz: -16,-3,-18; Z = 2.83, P_{FWE} = 0.05, k = 73$ voxels; right amygdala, $xyz: 22.6,-18; Z = 3.42, P_{FWE} = 0.01, k = 131$ voxels; see Figure 2; left insula, $xyz: -40,14,1; Z = 4.02, P_{FWE} = 0.02, k = 468$ voxels; right insula, $xyz: 28,12,-18; Z = 3.69, P_{FWE} = 0.04, k = 128$ voxels). Whole-brain analysis revealed anxiety-related reductions of the GM volume in the left fusiform gyrus (Supplementary Table S4).

Contrary to our expectations, GM volume was not associated with general social anxiety symptomatology as measured with LSAS-SR; nor was BOLD responsivity significantly correlated with pre-treatment severity or pre–post improvement of symptoms (anticipatory speech anxiety or LSAS-SR).

Comparisons of brain structure and neural response between SAD participants and healthy controls

Before treatment there was no significant difference between SAD participants and healthy controls in GM volume within the fear neurocircuitry ($Z < 2.99, P_{FWE} > 0.374$). Amygdala BOLD response to self-referential criticism was elevated in participants with SAD compared with the healthy controls (right amygdala, $xyz: 27,-8,-12; Z = 3.04, P_{FWE} = 0.029, k = 150$ voxels; with a trend in the left amygdala ($xyz: -26,-2,-11; Z = 2.54, P_{FWE} = 0.088, k = 90$ voxels). The post-CBT amygdala response did not differ significantly from that of healthy controls ($Z < 1.50, P_{FWE} > 0.743$), indicating normalization through CBT. Result from the whole-brain analysis is reported in Supplementary Table S5.
Mediation analysis was conducted to determine the most probable brain path for improvement in anticipatory speech anxiety. Within the CBT group, the a-path was significant in both amygdalae, indicating that structural plasticity was interrelated with diminished amygdala neural responsivity (right amygdala, $xyz: 29,1,-22; Z = 3.14, P_{FWE} = 0.001$ at cluster-level, $k = 71$ voxels; left amygdala, $xyz: -21,2,-20; Z = 2.45, P_{FWE} = 0.029$ at cluster-level; $k = 40$ voxels).

In the right amygdala, reduced GM volume mediated the relationship between reduced BOLD response and symptom improvement ($a \times b$-path, indirect effect: $\beta = 33.39$, 95% CI = 9.32 to 57.45, $P = 0.007$). The direct effect was not significant (c-path: $\beta = -15.26$, 95% CI = -38.93 to 8.40, $P = 0.206$; see also Figure 3). Furthermore, without controlling for the indirect effect, the c-path suggested an opposite relationship ($\beta = 18.12$, $P = 0.104$) between the predictor and the outcome, that is, an inverse association. The other probable path, that is, BOLD response as mediator, was not significant ($\beta = -479.90$, 95% CI = -1469.93 to 510.14, $P = 0.342$).

Supplementary analyses
As detailed in the online Supplementary Materials, we found no pre-treatment differences in clinical and demographic (for example, age and sex) variables, nor did the amygdala characteristics (that is, GM volume or BOLD responsivity) differ between participants allocated to CBT or ABM. Furthermore, we found no clinical, or demographic differences between included participants and the three participants who withdrew from the post-treatment MRI assessment. Finally, we performed an alternative mediation analysis using the CGI-I responder status as the outcome measure, noting a trend-level indirect effect ($a \times b$-path).

DISCUSSION
Using a multimodal neuroimaging RCT design, we demonstrate interrelated structural plasticity and altered neural responsivity, within the amygdala, after CBT for social anxiety. Both GM volume and neural responsivity in the bilateral amygdala diminished after effective treatment. Left amygdala GM volume was positively associated with symptom severity before treatment, and amygdala volume decreased significantly with CBT, correlating positively with symptom improvement in both hemispheres. Concomitantly, amygdala hyperresponsivity to self-referential criticism was normalized with CBT, and the mediation paths suggested that reduced amygdala volume mediated the relationship between decreased right amygdala neural response and decreased social anxiety after treatment.
Thus, we demonstrate that the relationship between CBT-induced attenuation of amygdala hyperresponsivity and social anxiety symptoms is mediated by decreased local GM volume. Similar to our finding on the structure–function relationship in the amygdala, a previous longitudinal study also showed dependence between GM atrophy and age-related cognitive neural responsibility in the prefrontal cortex, suggesting that the adaptive brain may be best understood in a multimodal context. Hence, we argue that analyses of structural neuroplasticity and concomitant functional changes provide better understanding of how the brain adapts to anxiolytic treatments, which could not be fully explained by each modality separately. Furthermore, our results reinforce the notion that structural neuroplasticity in the amygdala is an important target for psychosocial treatments of anxiety, as previously suggested for pharmacological treatments of posttraumatic stress disorder.

In our whole-brain analyses we found volumetric reduction, but not decreased neural response, following CBT in regions that have been linked to self-referential processing and commonly also in studies of the default mode network (that is, the dorsomedial prefrontal cortex and precuneus), see Supplementary Tables S2-S4. Resting-state fMRI and neural response in the default mode network have also been suggested to be biomarkers for SAD. Further, as suggested in a previous BOLD-fMRI study on self-referential criticism, SAD participants were hyperresponsive in the amygdala. The present results further indicate that the excessive amygdala responsivity is normalized with successful CBT. This is consistent with studies demonstrating reduced amygdala responsivity after anxiolytic treatments, but because individuals with SAD show residual symptoms of social anxiety after effective treatment, normalized neural response in isolation may not solely explain reduced symptom severity. This further underscores the importance of taking multimodal measures of brain function and structure into account.

The interrelationship between neuronal response changes and the underlying anatomical plasticity is not clearly established in the animal literature. However, a large body of research exists on fear and anxiety in the brain, suggesting that both the number of recruited amygdala neurons and the strength of the neuronal response correlate with anxious behavior in rats. Trabalza et al. showed structural rearrangements in the mice amygdala, the density of spines and number of nodes increasing after fear conditioning. Chronic stress also induces the formation of new synapses in the amygdala. Similarly, the total number and the size of synapses are reversed during fear extinction but that is, the laboratory analog to exposure interventions in CBT. Thus, we speculate that the attenuated anxiety-related amygdala volume could be due to synaptic reorganization, such as changes in spine shape or density, or a reduced number of synapses. However, in the present study the morphological neuroplasticity was related only to decreased state-dependent (anticipatory speech) anxiety, and not to more enduring symptoms of social anxiety as measured with the LSAS-SR.

Although the RCT design and multimodal-imaging approach are noteworthy strengths of the present study, there are also a number of limitations. As discussed elsewhere, the number of participants in the present study is limited, yet, sufficient to detect a differential treatment effect between CBT and ABM. The mediation analysis is also limited by not including a second repeated MRI assessment, that is, predictor and mediator were assessed at the same time-point. In addition, structural neuroplasticity and functional changes were closely related, but they may still be independently controlled by other processes such as metabolism, or the corticotropin-releasing factor system. Reduced amygdala neural response after CBT did not correlate with improved social anxiety. It is, however, likely that the task-specific neural activations to self-referential criticism target cognitions not covered in our measures of state-dependent anxiety or LSAS-SR symptoms. Finally, eight SAD participants were on concurrent psychotropic medication, so we cannot entirely rule out drug × treatment interactions. However, these participants were evenly distributed in the trial arms.

In conclusion, we demonstrate compelling evidence that CBT for a common anxiety disorder simultaneously changes the physical structure and neurofunctional response of the amygdala. While our results support that amygdala neuroplasticity is directly related to improved social anxiety symptoms with CBT, these results should be replicated and further tested in other anxiety disorders and with other anxiolytic treatments.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
We are grateful to the staff of the Umeå Functional Brain Imaging Centre (UFBl) and Ann-Kathrine Larsson for providing excellent research conditions. Dr Malin Gren-Lindell conducted interviews with the healthy control group. Also, we thank the audience during behavioral tests: Amez Jaafar Hussein, Isabella Wincent, Johanna Henriksson, Karin Kamp, Kjell Andersson, Matts Östling, Morgan Ström, Sara Lann, Simon Nilsson and others. We also thank Katherine Cotter who provided us with proofreading. Parts of the data were presented in a poster at the 70th annual meeting of Society of Biological Psychiatry, 2015 in Toronto, Canada.

DISCLAIMER
Funding bodies had no role in the study setup, data interpretation or reporting. This study was supported by grants from Linköping University (GA), Swedish Research Council, Swedish Council for Working Life and Social Research (PC and TF), LJ Boëlius Foundation (TF) PRIMA Psychiatry Research Foundation (KNTM).

REFERENCES
1 Kühn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol Psychiatry 2014; 19: 265–271.
2 Trabalza A, Colazingari S, Sgobio C, Bevilacqua A. Contextual learning increases dendrite complexity and EphrinB2 levels in hippocampal mouse neurons. Behav Brain Res 2012; 227: 175–183.
3 Szitainberg Y, Kuperman Y, Tsoory M, Lebow M, Chen A. The anxiety effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Mol Psychiatry 2010; 15: 905–917.
4 Lövdmén M, Wengler E, Mårtensson J, Lindenberger U, Backman L. Structural brain plasticity in adult learning and development. Neurosci Biobehav Rev 2013; 37: 2296–2310.
5 Maass A, Duzel S, Goerke M, Becke A, Sobieray U, Neumann K et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry 2015; 20: 585–593.
6 Amone D, McKeie S, Elliott R, Juhasz G, Thomas EJ, Downey D et al. State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry 2013; 18: 1265–1272.
7 Ghosh S, Laxmi TR, Chattarji S. Functional connectivity from the amygdala to the hippocampus grows stronger after stress. J Neurosci 2013; 33: 7234–7244.
8 Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci 2004; 5: 844–852.
9 Poldrack RA. Imaging brain plasticity: conceptual and methodological issues—a theoretical review. NeuroImage 2000; 12: 1–13.
10 Sui J, Huster R, Yu Q, Segall JM, Calhoun VD. Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. NeuroImage 2014; 102: 11–23.
11 Nyberg L, Salami A, Andersson M, Eriksson J, Kalpouzos G, Kauppi K et al. Longitudinal evidence for diminished frontal cortex function in aging. Proc Natl Acad Sci USA 2010; 107: 22662–22666.
12 Salami A, Eriksson J, Nyberg L. Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control. J Neurosci 2012; 32: 10749–10757.
Neuroplasticity and cognitive behavior therapy
KNT Månsson et al.

validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
J Clin Psychiatry 1998; 59: 22–33.
Baker SL, Heirichs N, Kim HI, Hofmann SG. The liebowitz social anxiety scale as a self-report instrument: a preliminary psychometric analysis. Behav Res Ther 2002; 40: 701–216.
Svanborg P, Asberg M. A new self-rating scale for depression and anxiety states based on the comprehensive psychopathological rating scale. Acta Psychiatr Scand 1994; 89: 21–31.
Månsson KN, Fricke A, Boraxbekk CJ, Marquand AF, Williams SC, Carlbring P et al. Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Transl Psychiatry 2015; 5: 6530.
Zaider TI, Heimberg RG, Fresco DM, Schneier FR, Liebowitz MR. Evaluation of the Clinical Global Impression Scale among individuals with social anxiety disorder. Psychosom Med 2003: 61: 627–116.
Furmañk P, Appel L, Michelgård A, Wahlstedt K, Ahs F, Zancan S et al. Cerebral blood flow changes after treatment of social phobia with the neurokinin-1 antagonist GR005171, citiplaprazol or placebo. Biol Psychiatry 2005; 58: 132–142.
Andersson G, Carlbring P, Furmark T. Group SOTER Therapist experience and knowledge acquisition in internet-delivered CBT for social anxiety disorder: a randomized controlled trial. PLoS One 2012; 7: e37411.
Boettcher C, Carlbring P, Renneberg B, Berger T. Internet-based interventions for social anxiety disorder -- an overview. Verhaltenstherapeutie 2013; 23: 160–168.
Andersson G, Cuipers P, Carlbring P, Ripper H, Hedman E. Guided Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: a systematic review and meta-analysis. World Psychiatry 2014; 13: 288–295.
MacLeod C, Mathews A. Cognitive bias modification approaches to anxiety. Annu Rev Clin Psychol 2012; 8: 189–217.
Carlbring P, Apelstrand M, Sehlin H, Amir N, Rousseau A, Hofmann SG et al. Internet-delivered attention bias modification training in individuals with social anxiety disorder--a double blind randomized controlled trial. BMC Psychiatry 2012; 12: 66.
Amir N, Beaud C, Taylor CT, Klump L, Ellis J, Bums M et al. Attention training in individuals with generalized social phobia: a randomized controlled trial. J Consult Clin Psychol 2009; 77: 961–973.
Linetzky M, Pergamin-Hight L, Pine DS, Bar-Hain Y. Quantitative evaluation of the clinical efficacy of attention bias modification treatment for anxiety disorders. Depress Anxiety 2015; 32: 383–391.
Miskovic V, Schmidt LA. Social fearfulness in the human brain. Neurosci Biobehav Rev 2012; 36: 459–478.
Maldjian JA, Laurienti PJ, Kraft RA, Buettke JD. An automated method for neuroanatomical and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 2003; 19: 1233–1239.
Shrout PE, Bolger N. Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol Methods 2002; 7: 422–413.
Casanova R, Srikanth R, Baer A, Laurienti PJ, Burdette JH, Hayasaka S et al. Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage 2007; 34: 137–143.
Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J. Self-referential processing in our brain--A meta-analysis of imaging studies on the self. NeuroImage 2006; 30: 440–457.
Zhang W, Yang X, Lui S, Meng S, Yao L, Xiao Y et al. Diagnostic prediction for social anxiety disorder via multivariate pattern analysis of the regional homogeneity. Biomed Res Int 2015; 2015: 763965.
Felmingham K, Kemp A, Williams L, Das P, Hughes G, Peduto A et al. Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol Sci 2007; 18: 127–129.
Faria V, Ahs F, Appel L, Limnemann C, Barry M, Bettica P et al. Amygdala-frontal couplings characterizing SRSI and placebo response in social anxiety disorder. Int J Neuropsychopharmacol 2014; 17: 1149–1157.
Faria V, Appel L, Ahs F, Limnemann C, Pissiotta A, Frans O et al. Amygdala subregions tied to SSRI and placebo response in patients with social anxiety disorder. Neuropsychopharmacology 2012; 37: 2222–2323.
Klump H, Fitzgerald DA, Phan KL. Neural predictors and mechanisms of cognitive behavioral therapy on threat processing in social anxiety disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 83–91.
Alvarez VA, Sabatini BL. Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci 2007; 30: 79–97.
Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D. Activity-induced changes of spine morphology. Hippocampus 2002; 12: 585–591.
Duvarca S, Pare D. Amygdala microcircuits controlling learned fear. Neurol 2014; 82: 966–980.
Wang YC, Hu OC, Ko MC, Liao CC, Lee LJ. Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Struct Funct 2012; 217: 337–351.
66 Ghosh S, Chattarji S. Neuronal encoding of the switch from specific to generalized fear. Nat Neurosci 2015; 18: 112–120.
67 Suvrathan A, Bennur S, Ghosh S, Tomar A, Anilkumar S, Chattarji S. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. Philos Trans R Soc Lond B Biol Sci 2014; 369: 20130151.
68 Heinrichs SC, Leite-Morris KA, Guy MD, Goldberg LR, Young AJ, Kaplan GB. Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in mice. Behav Brain Res 2013; 248: 80–84.
69 Vetere G, Restivo L, Novembre G, Aceti M, Lумaca M, Ammassari-Teule M. Extinction partially reverts structural changes associated with remote fear memory. Learn Memory 2011; 18: 554–557.
70 Milad MR, Rosenbaum BL, Simon NM. Neuroscience of fear extinction: implications for assessment and treatment of fear-based and anxiety related disorders. Behav Res Ther 2014; 62: 17–23.
71 Mattsson N, Insel PS, Aisen PS, Jagust W, Mackin S, Weiner M et al. Brain structure and function as mediators of the effects of amyloid on memory. Neurology 2015; 84: 1136–1144.
72 Saxena S, Gorbis E, O’Neill J, Baker SK, Mandelkern MA, Maidment KM et al. Rapid effects of brief intensive cognitive-behavioral therapy on brain glucose metabolism in obsessive-compulsive disorder. Mol Psychiatry 2009; 14: 197–205.

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)