SIGN-CHANGING MULTI-BUMP SOLUTIONS
FOR CHOQUARD EQUATION
WITH DEEPENING POTENTIAL WELL

Xiaolong Yang

Abstract. In this paper, we are concerned with the existence of sign-
changing multi-bump solutions for the following nonlinear Choquard equa-
tion

\[-\Delta u + (\lambda V(x) + 1)u = (I_\alpha * |u|^p)|u|^{p-2}u \quad \text{in } \mathbb{R}^N, \]

where \(I_\alpha \) is the Riesz potential, \(\lambda \in \mathbb{R}^+, (N - 4)^+ < \alpha < N, 2 \leq p < (N + \alpha)/(N - 2) \), and \(V(x) \) is a nonnegative continuous function with a poten-
tial well \(\Omega := \text{int}(V^{-1}(0)) \) which possesses \(k \) disjoint bounded com-
ponents \(\Omega_1, \ldots, \Omega_k \). We prove the existence of sign-changing multi-bump
solutions for (0.1) if \(\lambda \) is large enough.

1. Introduction

We study the following nonlinear Choquard equation

\[-\Delta u + (\lambda V(x) + 1)u = (I_\alpha * |u|^p)|u|^{p-2}u \quad \text{in } \mathbb{R}^N, \]

where \(\lambda \in \mathbb{R}^+, V(x) \in C(\mathbb{R}^N, \mathbb{R}) \) is a potential function, \(2 \leq p < (N + \alpha)/(N - 2) \), \(I_\alpha : \mathbb{R}^N \to \mathbb{R} \) is the Riesz potential defined at each point \(x \in \mathbb{R}^N \setminus \{0\} \) by

\[I_\alpha(x) = \frac{A_\alpha}{|x|^{N-\alpha}}, \quad A_\alpha = \frac{\Gamma((N - \alpha)/2)}{\Gamma(\alpha/2)\pi^{N/2}2^\alpha}, \]

2020 Mathematics Subject Classification. Primary: 35A15, 35J20; Secondary: 35J65.

Key words and phrases. Choquard equation; sign-changing solutions; multiple solutions.

Xiaolong Yang acknowledges the support of the National Natural Science Foundation of
China (Grant No. 11931012).