Effect of Neem Cake Urea Mixed Application on Growth and Yield of Rice under Submerged Condition

Harish Shenoy*

Department of Agronomy, Livestock Research and Information Centre (Amrithmahal), Konehalli-572201, Tiptur, Tumkur district, Karnataka, India (Karnataka Veterinary Animal and Fisheries Sciences University, Bidar Karnataka)

*Corresponding author

Abstract

A field experiment was carried out during kharif, 2016 at the farm of ICAR-Krishri Vigyan Kendra (KVK), Mangaluru, Karnataka state to study the effect of neem cake urea mixed application on growth and yield of rice under submerged condition. The soil of the experimental field was lateritic with acidic pH, medium in available nitrogen, high in phosphorus and low in potassium content. The experiment was laid out in randomized block design with seven treatments and each one replicated thrice. The treatments composed of absolute control, 100% nitrogen along with five treatment of urea and neem cake mixed in different proportions. The results indicated that number of tillers per m², number of panicles per m² and plant height (cm) was significantly higher in treatment T3 comprising 100% RDN in three splits + Neem cake (100%) followed by treatment T4 comprising 75% RDN with 100% neem cake application compared to other treatments. The grain yield and straw yield was significantly higher T3-RDN (100%) in three splits + Neem cake (100%) followed by T4-RDN (75%) + Neem cake (100%). The lowest grain yield and straw yield was recorded in treatment T1-Control where nitrogen was not applied.

Keywords
Rice, Neem cake, Urea mixture, Growth, Yield, Submerged

Introduction

Rice (Oryza sativa L) is one of the important cereal crops of the world occupying 11% of the agricultural land and ranks second in terms of cultivated area (Tumrani et al., 2015). Globally Rice is grown in an area of 162 million ha with a production of 461 million tons and productivity is 4.09 tons/ha (Anonymous, 2015). In India, Rice is grown in an area of 43.19 million ha with a production of 110.15 million tons (Anonymous, 2017).

Though rice production continues to play a vital role in the national food and livelihood security of the system, the productivity of rice is only 2.55 t/ha (milled rice) which is less compared to global productivity of 3.28 t/ha (Anonymous, 2018) increasing the
productivity of rice remains the main challenge considering that the 90% of the cultivated area of rice belong to small and marginal farmers. The most feasible way by which this could be achieved is by adopting a more integrated approach involving water nutrients and other agronomic factors for maximizing the rice grain yield (Gobi et al., 2016).

Among the nutrient inputs nitrogen ranks first to maximize the output in agriculture. Nitrogen is the key nutrient element required in large amounts for rice and provision of adequate supply of N throughout the growing period is necessary for realizing potential yields (Sureka et al., 2016). Nitrogen promotes rapid plant growth and improves grain yield and grain quality through higher tillering, leaf area development, grain formation, grain filling and protein synthesis (Pratap Reddy et al., 2019). Though the yield increase due to N fertilization in rice has been substantial (47%), the average agronomic efficiency of N is only 11.4 kg grain/kg N (Prasad, 2011) and nitrogen use efficiency is only (30-50%) due to losses of nitrogen under flooded condition (Johri and Yadav, 2006). Slow-release fertilizers (SRF) are often used to increase nitrogen-use efficiency (Prasad et al., 1998). SRFs are designed to release N over an extended period of time, rather than all at once, in an attempt to better match plant N needs throughout the growing season and to reduce time of exposure for N losses to the environment (Ellison et al., 2013).

However the farmers continue to rely on split dosages and use urea as primary source of nitrogen (Bhalla and Deviprasad, 2008). Low cost alternative to slow release fertilizers include use of plant derived organic substances like neem cake, green leaf manure and Pongamia extract. Many of them exhibit nitrification inhibition property (Devkumar and Goswami, 1992). The neem cake obtained after oil extraction contains 5% nitrogen and is used as manure and making neem coated urea (Subbalakshmi Lokanadhan, 2012). Urea constitutes about 82% of the fertilizer nitrogen (N) used in India. Neem coated urea has been observed to improve nitrogen use efficiency and subsequently crop yield in rice (Pratap Reddy et al., 2019). Nitrification inhibitors like neem cake when applied along with urea reduces losses of applied nitrogen, thereby resulting in an improved yield of crops. The efficiency of nutrient may be improved by combined use of organic neem cake with inorganic source of nitrogen fertilizer namely urea. Hence a study was conducted to know the effect of neem cake urea mixed application on growth and yield of rice under submerged condition.

Materials and Methods

A field experiment was conducted during kharif-2016 in the farm of ICAR-Krishi Vigyan Kendra, Mangaluru, Karnataka to study the effect of neem cake urea mixed application on yield and yield attributes of rice. The experimental site is located at 12°50’N latitude and 75°14’ E longitude in coastal Karnataka. The soil of the experimental site was lateritic characterized by acidic pH (5.5) having Electrical conductivity of 0.14 dSm⁻¹. The soil organic carbon was 1.52%, the available nitrogen was medium (380kg/ha), available phosphorus (97.4kg/ha) was high and available potassium was (96.13 kg/ha) was low. During the crop growth period from June to October 2016, a rainfall of 2751 mm was received compared to normal rainfall of 3245mm during the same period. The experiment was laid out in randomized block design (RBD) replicated thrice. There were totally seven treatments comprising of five neem cake and urea mixed application in various combinations along with one control and one treatment comprising application of recommended dose
of nitrogen in form of urea. The treatments were T1- Control (N₀P₀K₀+No Neem cake), T2- sole RDF (N₀₀P₀₀K₀₀), T3- 100% RDN (N₀₀P₀₀K₀₀) +Neem cake (100%), T4- 75% RDN (N₁₅P₀₀K₀₀) +Neem cake (100%), T5- 50% RDN (N₀₀P₃₀K₀₀) +Neem cake (100%), T6- 50% RDN (N₃₀P₀₀K₀₀) + Neem cake (75%), T7- 50% RDN (N₃₀P₃₀K₀₀) + Neem cake (50%). The rice variety used was MO-4 maturing in 130-135 days. The recommended dose of fertilizers was applied at the rate of 60kg N/ha, 30 kgP₂O₅ and 60 kg K₂O. The source of nitrogen used was urea (46%%N) applied in three split dose (33% each split) at planting, tillering and panicle initiation stage.

The Neem Cake (@1.25 tons/ha (100%) and Farm Yard Manure (5.0 tons/ha) was applied at time of land preparation before planting. Phosphorus was applied in form of rock phosphate at one dose at time of planting and potassium was applied in three splits @ 33% each combined with nitrogen source urea. Observations were recorded at harvest and the treatment means were compared using least significant difference at 5% level of significance. (Gomez and Gomez, 1984)

Results and Discussion

The results of effect of neem cake urea mixed application on growth and yield of rice under submerged condition is presented in Table 1.

Growth and yield attributing characters

The results indicated that the treatment T3-100% RDN (N₀₀P₃₀K₀₀) in three splits (planting, tillering and panicle initiation stage) with Neem cake (100%) recorded significantly higher plant height (107.3 cm) compared to other treatments of various combinations of urea and neem cake application but was on par with treatment T4- 75% RDN (N₁₅P₃₀K₀₀) + Neem cake (100%) which recorded 106.4 cm. The lowest plant height (93.0 cm) was recorded in T1-control where neem cake and nitrogen source was not applied. This was followed by treatment T2 sole RDF (100.3 cm) where only nitrogen was applied. All the urea neem cake mixed application treatments recorded significantly higher plant height than control and could be attributed to higher availability of nitrogen resulting in promoting vegetative growth of rice. Similar findings were also reported by Kumar et al., (2015).

The application of increasing dose of nitrogen significantly increased the number of tillers per m² in rice. The treatment T3 comprising of 100% RDN (N₀₀P₃₀K₀₀) with 100% Neem cake recorded significantly higher number of tillers per m² (472) compared to other treatments of urea and neem cake mixed application. However this treatment was on par with treatment T4- application of 75% RDN (N₁₅P₃₀K₀₀) with 100% Neem cake which recorded 468 tillers/m². The other treatment combinations of neem cake and nitrogen application were on par with each other but significantly higher than treatment T1-control (N₀P₀₀K₀₀+No Neem cake) which recorded only 320 tillers per m² also reported Similar increase in rice tillers per m² by use of neem coated urea was also reported by earlier workers (Raj et al., 2014 and Neha Khandey et al., 2016) and could be attributed to higher availability of nitrogen which enhanced tillering.
Neem cake application (286) and treatment T2 comprising Sole RDF (N₆₀P₃₀K₆₀) without Neem cake application (380). However, treatment T3 was on par with treatment T4 comprising of 75% RDN (N₄₅P₃₀K₆₀) with application of 100% Neem cake (442). The other treatments of urea neem cake mixture in various proportions namely T5 (410), T6 (398) and T7 (376) recorded significantly higher panicles per m² than control but were par with each other. Similar findings were also reported by earlier workers (Kumar et al., 2015 and Neha Khandey et al., 2017).

Grain and straw yield

The grain yield was significantly influenced by neem cake urea mixed application in rice under submerged condition. The grain yield of rice was significantly higher in treatment T3 (55q/ha) comprising of application of 100% RDN (N₆₀P₃₀K₆₀) in three splits (planting, tillering and panicle initiation stage) combined with application of 100% Neem cake compared to treatment T1-control (38.0 q/ha) and treatment T2- Sole RDF (N₆₀P₃₀K₆₀) + No Neem cake (42.0 q/ha) but was on par with treatment T4 (52q/ha) comprising of 75% RDN (N₄₅P₃₀K₆₀) with 100% Neem cake. The treatment T5, T6 and T7 recorded significantly higher yield (46q/ha, 45 q/ha and 43 q/ha respectively) than T1-control but were significantly lower than treatments T3 and T4. Higher yield in paddy by application of 100% NCU (Neem Coated Urea) and 80% NCU was also reported by Mangat and Narang (2004), Suganya et al., (2007) and Neha khandey et al., (2017)

The straw yield was significantly influenced by neem cake mixed urea application in rice. The maximum straw yield was recorded in treatment T3 (4.35 tons/ha) comprising of 100% RDN (three splits) with 100 % Neem cake application followed by treatment T4 (4.28 tons/ha) consisting of 75% RDN (N₄₅P₃₀K₆₀) with 100% Neem cake application which were on par with each other but were significantly higher than treatment T1 control (3.46 tons/ha) and treatment T2 (4.07 tons/ha) comprising of application of 100% RDN without neem cake application.

Table.1 Effect of neem cake urea mixed application on growth and yield of rice under submerged condition

Sl. No.	Treatments	Plant height (cm)	Tillers / m²	Panicles / m²	Grain yield (q/ha)	Straw yield t/ha
1	T1- Control (N₆₀P₃₀K₆₀ + No Neem cake)	93.0	320	286	38.0	3.46
2	T2- Sole RDF N₆₀P₃₀K₆₀ + No Neem cake	100.3	421	380	42.0	4.07
3	T3-100% RDN (N₆₀P₃₀K₆₀) + Neem cake (100%)	107.3	472	445	55.0	4.35
4	T4-75% RDN (N₄₅P₃₀K₆₀) + Neem cake (100%)	106.4	468	442	52.0	4.28
5	T5-50% RDN (N₃₀P₃₀K₆₀) + Neem cake (100%)	103.0	428	410	46.0	4.13
6	T6-50% RDN (N₃₀P₃₀K₆₀) + Neem cake (75%)	102.0	426	398	45.0	4.12
7	T7- 50% RDN (N₃₀P₃₀K₆₀) + Neem cake (50%)	102.0	419	376	43.0	4.10

Sem +

CD (5%)
The increase in straw yield could be attributed to increased vegetative growth in terms of plant height and number of tillers per m² which could be attributed to increased nitrogen use efficiency and continuous supply of nitrogen boosting vegetative growth (Sarangi et al., 2016).

Two processes probably contributed to increased nitrogen availability one is inhibition of denitrifying bacteria by neem cake and the other is slow release of nitrogen caused by the binding of urea particles to surface of urea (Wakimoto, 2004).

It can be concluded that the yield attributing characters i.e number of tillers per m², number of panicles per m² and plant height (cm) was observed to be significantly higher in treatment T3 comprising application of 100% RDN (N₆₀P₃₀K₆₀) in three splits with 100% Neem cake application compared to other treatments.

The grain yield and straw yield was significantly higher in treatment T3 comprising 100% RDN (N₆₀P₃₀K₆₀) in three splits with 100% Neem cake application followed by treatment T4 comprising 75% RDN (N₄₅P₃₀K₆₀) with 100% Neem cake application. The lowest grain yield and straw yield was recorded in control where nitrogen was not applied.

Acknowledgements

Author is thankful to ICAR- Krishi Vigyan Kendra, Dakshina Kannada District, Mangaluru-575002 Karnataka State, Karnataka Veterinary Animal and Fisheries Sciences University, Bidar-575419, Karnataka, India and ICAR- Agricultural Technology Application Research Institute, Zone-XI, Bengaluru-560024, Karnataka. India.

References

Anonymous. 2015. *FAO Production Statistics* Rome: (Food and Agriculture Organization).

Anonymous, 2017. *Agricultural Statistics at a Glance*. Govt. of India Directorate of Economics and Statistics Ministry of Agriculture and farmer welfare DACFW GOI pp. 36.

Anonymous, 2018 *FAO- Rice Market Monitor* 21: 1-2.

Bhalla R S and K V Deviprasad, 2008. Neem cake- urea mixed application increase growth in paddy. *Current Science*, 94(8): 1066-1070.

Devkumar C and Goswami. B K. 1992. Nematicidal principles from neem isolated and bioassay of some melicans. *Pesticides Research Journal*, 4(2): 79-84.

Ellison, E., Blaylock A., Sanchez, C and Smith, R. 2013. Exploring controlled release nitrogen fertilizers for vegetable and melon crop production in California and Arizona. *Proceedings. Western Nutrient Management Conference*. 10: 17-22

Gomez K A and Gomez. A. A.,1984. *Statistical Procedures for Agricultural Research* 2nd Edition An International Rice Research Institute Book published by John Wiley & Sons, New York, pp 639

Gobi R, S. Shanmuga Sundaram, A. Balasubramaniam and D. Elayaraja, 2018, Effect of Integrated nutrient Management on Nutrient Uptake and Nitrogen use Efficiency in Lowland Rice, *Advances in Plant Sciences*, 31(2): 113-115.

Johri B N and Yadav J. S. P. 2006, Low and declining crop response to fertilizers. *National Academy of Agricultural Sciences Policy paper No. 35.*

Kumar Ravendra, Jaiswal Pawan, Kumar Ajit, Kumar Sunil, 2015. Effect of modified
urea on nitrogen use efficiency, growth and yield of transplanted rice (Oryza sativa L.) var. NDR-359., New Agriculturist. 26:263-266

Mangat G S, Narang J. K. 2004. Agronomical trial for efficacy of NFL Neem Coated Urea. Fertilizer Marketing News. 35 (11) :1-7

Neha Khandey, R S Singh, Anurag S, S Sengar and Rahul Kumar, 2017. Response of applied neem coated urea (NCU) on yield and yield attributing parameters of rice (Oryza sativa L) in vertisol. International Journal of Chemical Studies 5(4): 1671-1675.

Prasad R, Saxena VC, Devakumar C, 1998. Pusa Neem golden urea for increasing nitrogen-use efficiency in rice, Current Science. 75: 15.

Prasad. R. 2011, Aerobic Rice Systems Advances in Agronomy 111: 207-247.

Prathap Reddy, N. C H. Bharat Bhushan Rao, K. Surekha and Hussain, S.A. 2019. Transplanted Rice as Influenced by Different Enriched Nitrogen Sources-an Economic Appraisal. International Journal of Current Microbiology and Applied Sciences 8 (06): 3229-3231. doi: https://doi.org/10.20546/ijcemas.2019.80.6384.

Raj S K, Bindhu J S, Girjadevi L.2014. Nitrogen availability and uptake as influenced by time of application and N sources in semi-dry rice (Oryza sativa).

Journal of Crop and Weed. 10:295-302

Suganya S, Appavu K, Vadivel A. 2007. Relative efficiency of neem coated urea products for rice grown in different soils. An Agriculture Journal of Soil Science. 2: 29-34

Subbalakshmi Lokanadhan, P. Muthukrishnan and Jeyaraman, S. 2012. Neem products and their agricultural applications. Journal of Biopest, 5 (Supplementary): 72-76

Sarangi, S.K., Maji, B., Singh, S., Srivastava, A.K., Singh, U.S and Sharma, D.K. 2016. Nitrogen management through neem coated urea and application method further improve rice productivity in coastal flood-prone rainfed lowland. International Agronomy Congress. 2(4): 22-26.

Surekha K R, Mahendra Kumar V, Nagendra N, Sailaja T, Satyanarayana, 2016, 4R nitrogen management for sustained rice production better crops. South Asia, pp. 18-19.

Tumrani, S A., Pathan, P A. and Suleman, B M. (2015) Economic contribution of rice production and food security in Indonesia. Asia Pacific Research Journal 33: 63-74.

Wakimoto, K. 2004. Utilization advantages of controlled release of nitrogen fertilizer on paddy rice cultivation. Japan Agricultural Research Quarterly 38:15-20

How to cite this article:

Harish Shenoy. 2020. Effect of Neem Cake Urea Mixed Application on Growth and Yield of Rice under Submerged Condition. Int.J.Curr.Microbiol.App.Sci. 9 (04): 2224-2229.

doi: https://doi.org/10.20546/ijcemas.2020.904.266