Review

Viral Shrimp Diseases Listed by the OIE: A Review

Dain Lee 1, Young-Bin Yu 2,*, Jae-Ho Choi 2,*, A-Hyun Jo 3, Su-Min Hong 3, Ju-Chan Kang 2,* and Jun-Hwan Kim 3,*

1 Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea; gene419@korea.kr
2 Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
3 Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; wh92dk23gus@naver.com (A.-H.J.); hongsumin0608@naver.com (S.-M.H.)
* Correspondence: unero@naver.com (Y.-B.Y.); chowogh325@naver.com (J.-H.C.); jckang@pknu.ac.kr (J.-C.K.); junhwan1982@hanmail.net (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)

Abstract: Shrimp is one of the most valuable aquaculture species globally, and the most internationally traded seafood product. Consequently, shrimp aquaculture practices have received increasing attention due to their high value and levels of demand, and this has contributed to economic growth in many developing countries. The global production of shrimp reached approximately 6.5 million t in 2019 and the shrimp aquaculture industry has consequently become a large-scale operation. However, the expansion of shrimp aquaculture has also been accompanied by various disease outbreaks, leading to large losses in shrimp production. Among the diseases, there are various viral diseases which can cause serious damage when compared to bacterial and fungi-based illness. In addition, new viral diseases occur rapidly, and existing diseases can evolve into new types. To address this, the review presented here will provide information on the DNA and RNA of shrimp viral diseases that have been designated by the World Organization for Animal Health and identify the latest shrimp disease trends.

Keywords: shrimp disease; OIE; viral disease; DNA and RNA virus

1. Introduction

The shrimp aquaculture industry has grown rapidly in previous decades due to increasing consumer demand, and it has consequently contributed significantly to the socio-economic development of coastal communities in many developing countries [1]. Production by the shrimp farming industry has steadily increased to approximately 3.6 million t in 2008, accounting for more than 50% of the global shrimp market, with the main production areas being in Southeast Asia, such as China, Thailand, Vietnam, Indonesia, and India, while in the Americas, the major producers are Ecuador, Mexico, and Brazil [2]. Shrimp production has steadily grown from 0.673 million t in 1990 to 6.004 million t in 2019, which is a nearly tenfold increase (Figure 1). Until recently, shrimp aquaculture production was most widespread in Latin America and East and Southeast Asian countries, but consumption is concentrated in various developed countries. Consequently, this industry is helping to reduce the economic gaps between countries by generating high levels of income in developing countries [3]. Indeed, in Southeast Asia, penaeid shrimp have contributed significantly to the economies of Indonesia, the Philippines, Vietnam, and Thailand [4].

The shrimp aquaculture industry is growing in many regions of the world, including Asia and Latin America, and it accounts for 17% of the total value of aquatic products [5]. Globally, 67% of shrimp production is from aquaculture and 33% is caught naturally, and the most common species used in shrimp aquaculture are the whiteleg shrimp, Penaeus vannamei, and Giant tiger prawn, the marine shrimp Penaeus monodon, and the freshwater prawns Macrobrachium rosenbergii and Macrobrachium nipponense [6]. Crustacean production
toted 8.4 million t in 2017, representing an average annual increase of 9.92% since 2000, and more than 30 crustacean species were valued at 61.06 billion USD in 2017 [7]. However, with the increase in global shrimp aquaculture production, mass mortality caused by frequent disease outbreaks has become a major obstacle for the industry. Worldwide losses from disease in shrimp aquaculture in the last 15 years to 2005 were estimated to be approximately 15 billion USD, 80% of which occurred in Asia [8].

Figure 1. World aquaculture production of shrimp from 1990 to 2019 (Source: FAO yearbook of Fishery and Aquaculture Statistics).

Until the 1980s, marine viruses were considered ecologically insignificant, because their concentrations were underestimated, but subsequent studies have confirmed that the ocean contains an abundance of organisms, including millions of virus particles per milliliter of seawater [9]. Most shrimp diseases are caused by viral infection, and they have an approximately four times more negative impact than bacterial diseases. In most cases, diseases caused by bacterial pathogens and parasites can be prevented through the proper management of shrimp farms (biosecurity, water quality control, stocking density, aeration, fresh feed, shrimp seed quality, and proper breeding environment), which is in contrast to viral diseases [8,10].

The occurrence of disease is the reason that existing farmed shrimp species are replaced with other species. The cause of the conversion from *P. monodon* in the 1990s to *P. vannamei* in the 2000s is also closely related to disease occurrence (Figure 2). Thailand’s *P. monodon* production increased rapidly from 1987 to the early 1990s, but thereafter, until the early 2000s, there was a large loss in production due to YHV (yellow head virus), WSSV (white spot syndrome virus), and then MSGS (monodon slow growth syndrome) [11]. Prior to 2000, *P. monodon* was the predominant aquaculture shrimp species in Asia, but the disease-free SPF (specific pathogen free) species *P. vannamei* began to increase as a replacement species (Figure 3). In Korea, the reason for the rapid replacement of *P. vannamei* from *P. chinensis*, which had been cultured since 2006, is also due to the damage caused by the frequent occurrence of WSSV (Figure 4). Ultimately, *P. vannamei* has now become the dominant shrimp aquaculture species worldwide as it is less susceptible to WSD (white spot disease) outbreaks, which had a major impact on many other shrimp species [12]. The replacement of shrimp species with *P. vannamei* in Asia has led to an increase in shrimp production from approximately 900,000 t in 2004 to 2.9 million t in 2009.
increase in shrimp production from approximately 900,000 t in 2004 to 2.9 million t in 2009.

Figure 2. Proportion of the major shrimp species *Penaeus monodon* and *Penaeus vannamei* in aquaculture production from 1990 to 2019 (Source: FAO yearbook of Fishery and Aquaculture Statistics).

Figure 3. Total shrimp aquaculture production for *Penaeus monodon* and *Penaeus vannamei* in Thailand from 1980 to 2019 (Source: FAO Global Aquaculture Production Statistics from FishstatJ Software for Fishery and Aquaculture Statistical Time Series).

Managing the health of farmed shrimp species and developing new methods for disease prevention and treatment, preventing the illegal transboundary movement of live shrimp species, and controlling disease outbreaks through the supply of fresh food worldwide, requires an immense amount of effort. To address these issues, Flegel (2012) [8] suggested the following: (1) the development of pathogen-free SPF shrimp seeds; (2) widespread use and standardization of diagnostic tests; (3) development of biosecurity-applied breeding techniques; (4) control efforts to reduce the risk of disease transmission through cross-border movement; (5) investigations into the efficacy of immune-stimulants and vaccines; (6) a complete understanding of the specificity of shrimp species by pathogen; (7) rich epidemiologic studies of shrimp diseases; (8) molecular ecology studies to control
pathogenic microorganisms in shrimp hatcheries and breeding grounds; (9) conducting virus tests through strict cross-border quarantine procedures; and (10) restricting indiscriminate imports of exotic crustaceans. This review aims to analyze the viral OIE shrimp diseases that occur frequently around the world, by examining the disease occurrence trends and diagnostic methods and providing basic data for future alternatives to shrimp diseases using the latest trend analyses and treatment plans.

Figure 4. Total shrimp aquaculture production for *Penaeus chinensis* and *Penaeus vannamei* in the Republic of Korea from 1980 to 2019 (Source: FAO Global Aquaculture Production Statistics from FishstatJ Software for Fishery and Aquaculture Statistical Time Series).

2. DNA Viral Diseases

2.1. White Spot Syndrome Disease (WSSD)

Aquaculture practices are responsible for approximately 75% of the world’s shrimp production, and the predominant species used are black tiger shrimp, *P. monodon* and white Pacific shrimp, *P. vannamei* [13,14]. In the past 20 years, shrimp diseases have caused critical economic losses that seriously threaten farming practices, of which white spot syndrome (WSS) is the deadliest viral disease caused by white spot syndrome virus (WSSV) [15]. WSSV causes up to 80–100% mortality of infected shrimp within 5–10 days, thus leading to great economic loss [16]; the total economic loss from this disease is estimated to be approximately 8–15 billion USD, and this continues to increase by 1 billion USD (10% of global shrimp production) annually [17,18].

The first reports of WSD in penaeid shrimp occurred in China and Taiwan in 1992, and then spread to Korea (1993), Japan (1993), Vietnam, Thailand (1994), Malaysia (1995) and Indonesia. WSSV also occurred in America (Latin America, such as Ecuador, Mexico, and Brazil in 1999 and North America in 1995), the Middle East in 2001, and Africa (such as Mozambique and Madagascar in 2011), and most recently at an Australian shrimp farm in 2016 [19] (Figure 5). WSSV presumably reached America through the importation of *P. monodon* from Asia and became rapidly endemic in American native species such as *P. vannamei*. In Asia, during the early 2000s, the SPF species *P. vannamei* was imported from the Americas to avoid disease problems such as WSSV, resulting in the conversion of the predominant farmed species from *P. monodon* to *P. vannamei*. However, the translocation of broodstock that are unscreened or inadequately tested for WSSV has led to the spread of WSSV back to Asia from the Americas [12,19]. White spot syndrome disease (WSSD) has been listed by the World Organization for Animal Health since 1997 [20]. WSSV is considered the most serious of approximately 20 viral pathogens in shrimp, and in 2018, 46.3% of farmed crayfish in 13 provinces in China were WSSV-positive. Of note, however, is that the WSSV mortality rate in farmed crayfish is less sensitive than for shrimp, at approximately 5–90%, and it does not always lead to mortality [21].
monodon from Asia and became rapidly endemic in American native species such as *P. vannamei*. In Asia, during the early 2000s, the SPF species *P. vannamei* was imported from the Americas to avoid disease problems such as WSSV, resulting in the conversion of the predominant farmed species from *P. monodon* to *P. vannamei*. However, the translocation of broodstock that are unscreened or inadequately tested for WSSV has led to the spread of WSSV back to Asia from the Americas [1,2,19].

White spot syndrome disease (WSSD) has been listed by the World Organization for Animal Health since 1997 [20]. WSSV is considered the most serious of approximately 20 viral pathogens in shrimp, and in 2018, 46.3% of farmed crayfish in 13 provinces in China were WSSV-positive. Of note, however, is that the WSSV mortality rate in farmed crayfish is less sensitive than for shrimp, at approximately 5–90%, and it does not always lead to mortality [21].

Figure 5. Distribution map showing the geographical occurrence of white spot syndrome disease (WSSD) (Reprinted from CABI, 2019, White spot syndrome virus. In: Invasive Species Compendium. Wallingford, UK: CAB International, with permission from CABI).

WSSV is the only member of the genus Whispovirus in the family Nimaviridae (initially included in the family Baculoviridae) and has a double-stranded DNA genome with a virion size of 80–120 × 250–380 nm, which is rod-shaped to elliptical, and surrounded by a trilaminar envelop with a tail-like appendage [16] (Table 1). The naked viral nucleocapsid is about 80 × 350 nm and has 15 spiral and cylindrical helices of 14 spherical capsomers along its long axis, with a ‘ring’ structure at one end [22]. On the outer surface of the viral envelope, there are many tadpole-shaped spikes (5–6 nm long, 4–5 nm head diameter) to which host cells can easily attach [20]. WSSV has been reported to be approximately 300–305 kbp in length according to the isolates with 180 open reading frames (ORFs) and nine repeated sequence regions in tandem, and minisatellites (ORF 94, ORF75 and ORF125) are used for WSSV genomic and epidemiological studies [20] (Table 2). As a result, of sequencing the genes isolated from China and Taiwan, significant variations were confirmed in WSSV isolates from Vietnam and Thailand, due to the insertion of major ORF14/15 and ORF23/24 variable regions [23].

Structural proteins play important roles in cell targeting, viral entry, assembly, and budding, which is highly related to WSSV infection. Envelope protein function has a particularly critical role in viral entry to the host cell [24]. Interactions between structural proteins are common in enveloped viruses such as WSSV, but this kind of interaction involves nine WSSV virion proteins (VP19, VP24, VP26, VP28, VP37 or VP281, VP38A or VP38, VP51C or VP51, VP51A and WSV010), some of which (VP19, VP24 and VP51A) prefer self-interaction [22]. Of the envelope proteins, VP19, VP24, VP26 and VP28 are the main proteins, and VP28 and VP26 account for approximately 60% (VP28, VP26, VP24 and VP19 account for about 90%) of the envelope as the most abundant proteins [20,25]. VP28 has a critical role in the early stages of viral infection by binding WSSV to shrimp cellular receptors, and the structural protein VP24 is a key protein that directly binds to VP26, VP28, VP38A, VP51A, and WSV010 to form a membrane-associated protein complex [22].
WSSV VP28 is an adhesion protein that helps the virus to bind to shrimp cells and enter the cytoplasm during infection, and VP26 may bind to actin or actin-related proteins and help WSSV translocate to the nucleus [9]. In addition to VP28, VP37 is a viral envelope protein known to promote WSSV infection through binding to shrimp cells, resulting in virus binding to the hemocytes [26]. Furthermore, structural proteins of the virion envelope such as VP26, VP31, VP37, VP90, and VP136 interact with integrin receptors to stimulate the binding of viruses to the extracellular matrix (or intercellular adhesion) [13,27].

WSSV isolates from several regions with different genotypes [Thailand (GenBank no. AF369029), Taiwan (GenBank no. AF440570), China (GenBank no. AF332093), and South Korea (GenBank no. JX515788)] have been sequenced, but they are all classified as a single species of the genus Whispovirus (family Nimaviridae) [24,28]. The complete genome sequence of WSSV isolates was reported in 2001 (WSSV-TH, GenBank no. AF369029; WSSV-CN, GenBank no. AF332093), 2002 (WSSV-TW, GenBank no. AF440570), 2013 (WSSV-KR, GenBank no. JX515788), 2016 (WSSV-MX08, GenBank no. KU216744), 2017 (WSSV-CN02, CN01 and CN03, GenBank no. KT995470-995472; WSSV-CN04, GenBank no. KY827813; WSSV-CN-Pc, GenBank no. KX686117) and 2018 (WSSV-AU, GenBank no. MF768985; IN_AP4RU, GenBank no. MG702567; WSSV-EC-15098, GenBank no. MH090824; WSSV-chimera, GenBank no. MG264599) and 2020 (CN_95_DFPE, GenBank no. MN840357) [29–41] (Table 3). The major deletion region at ORF14/15, and variable number tandem repeats (VNTRs) located in ORF75, ORF94, and ORF125 are used as genetic marker to differentiate WSSV genotypes [23,36,42]. Mx-F, Mx-H, Mx-C, and Mx-G strains (GenBank no. HQ257380-257383) have 99–100% identity to each other in the ORF14/15 region and all four contain a 314 bp region present only in isolated WSSV-In-07-I (GenBank no. EF468499). The low-virulence strain Mx-G has additional repeat units (RUs) in ORF94 when compared to the highly virulent strain Mx-H, and both have 100% identity in the variable number of tandem repeats (VNTR) in ORF75 and ORF125 [28]. During the spread of WSSV in Asia, significant changes were observed in the ORF14/15 and ORF23/24 regions, and consequently, WSSV strains increased host mortality, shortened host survival, and developed increased competencies in host competition [43].

WSSV is known to be highly pathogenic to crabs, copepods, and other arthropods, including penaeid shrimp (P. monodon, P. indicus, P. japonicus, P. chinensis, P. penicillatus, P. semisulcatus, P. aztecs, P. vannamei, P. merguiensis, P. duorarum, P. stylirostris, Trachypenaus curvoirostris, and Metapenaeus ensis), caridean shrimp (Exopalaemon orientalis and M. rosenbergii) and crayfish, Procambarus clarkii [44] (Table 4). Of the more than 100 potential host species for WSSV, it is particularly lethal to all marine aquaculture shrimp which are more vulnerable to WSSV than freshwater shrimp and other species, even though the susceptibility of a potential host to WSSV may vary from species to species [20,45]. During all stages of development, from egg to adult, species are vulnerable to WSSV [46].

Shrimp infected with WSSV are characterized by anorexia, lethargy, abnormal behavior (decreased swimming ability, disorientation and swimming on one side), red discoloration of the body surface (uropods, telson, pereiopods, and pleopods), swelling of branchiostegites, a loosening of the cuticle, enlargement and yellowish discoloration of the hepatopancreas, thinning and delayed clotting of hemolymph, and characteristic white spots with a diameter of 1–2 mm (or 0.5–3.0 mm) on the carapace, appendages, and internal surfaces during disease progression [47] (Figure 6). WSSV infection in shrimp is easily recognized by the characteristic white spots on the carapace, but WSSV infection does not always show symptoms of white spots and cannot be considered as a reliable indication for the diagnosis of disease, as some bacterial infections, high alkalinity, and stress can also produce similar spots [48]. Although the exact mechanism of white spot formation by WSSV infection is not known, WSSV infection can cause integumentary dysfunction, resulting in accumulation of calcium salts in the cuticle, resulting in white spot formation [49]. WSSV proliferates in the nucleus of the target cell in the subcuticular epithelium, gills, lymphoid organs, antennal glands, hematopoietic tissue, connective tissue, ovaries, and...
ventral nerve cord. In the later stages of infection, the infected cell is degraded and the tissue destroyed [50].

Figure 6. External white spot symptoms indicating white spot syndrome virus (WSSV) infection. (A) *Penaeus monodon* and (B–D) *Penaeus vannamei* infected with WSSV. (A) Reprinted from Letter in Applied Microbiology, Vol. 60 (2), Hossain, A., Nandi, S.P., Siddique, M.A., Sanyal, S.K., Sultana, M., Hossain, M.A., Prevalence and distribution of White Spot Syndrome Virus in cultured shrimp, p. 7, Copyright (2014), with permission from John Wiley and Sons; (B) Reprinted from Elsevier Books, Dashtiannasab, A., Emerging and Reemerging Viral Pathogens, p. 12, Copyright (2020), with permission from Elsevier; (C,D) Reprinted from Journal of Fish Diseases, Vol. 36 (12), Cheng, L., Lin, W.H., Wang, P.C., Tsai, M.A., Hsu, J.P., Chen, S.C., White spot syndrome virus epizootic in cultured Pacific white shrimp *Litopenaeus vannamei* (Boone) in Taiwan, p. 9, Copyright (2013), with permission from John Wiley and Sons).

WSSV replicates rapidly in the host’s cells after infecting the host, and usually causes host death within one week [51]. WSSV frequency can be influenced by a variety of environmental stressors, such as temperature changes, salinity reductions, and pH fluctuations [27]. The transmission of WSSV disease can occur through the feeding of infected individuals, and horizontal transmission through the water-borne route has also been demonstrated. Individuals surviving WSSV infection can carry the virus for life and transmit it to their offspring through vertical transmission via oocytes [52]. Aquatic and benthic organisms such as polychaete worms, microalgae, and rotifer eggs are known vectors of WSSV, and 43 arthropods have been reported as hosts and vectors of WSSV in culture facilities, aquatic systems, and experiment [18]. Shrimp infected with WSSV usually congregate near the edge of the pond and show clinical signs one to two days before death occurs [20]. WSSV disease susceptibility in crabs, crayfish, freshwater prawns, spiny lobster, and clawed lobsters is highly variable, but in penaeid shrimp, the cumulative mortality rate is typically 90–100%, 3–10 days post-infection and WSSV is fatal to penaeid shrimp [18]. WSSV usually...
shows clinical signs in farmed penaeid shrimp at 14–40 days and shows a high mortality rate with up to 100% mortality in sensitive hosts.

WSSV diagnostic technology is evolving from the previous, morphology-based identification to more highly sensitive immunological and molecular technologies that can detect viruses, even in asymptomatic carriers, using electron microscopy (EM) [53]. Among various diagnostic methods, PCR is used as the most sensitive method by which to detect WSSV infection, by targeting the VP28 gene [27] (Table 5). There are several PCR methods available for the diagnosis of WSSV, such as one-step PCR, nested-PCR, and real-time PCR [54]. One-step PCR can be used to detect the presence of WSSV in shrimp with high levels of infection, and nested-PCR can increase the sensitivity level when compared to one-step [55] to detect low levels of infection in the broodstock, nauplii, post-larvae, and juvenile stages [54]. Therefore, the pathogen can be easily detected using one-step PCR when clinical signs such as lethargy, reduced feeding and white spots on the exoskeleton appear, but can only be detected by nested-PCR when asymptomatic [55]. In addition, real-time PCR is a reliable technique by which to monitor the entire analysis in actual time through the detection and quantification of WSSV virion copy number [27]. Hematoxylin and eosin (H & E) histology is an important diagnosis method that is used to verify WSSV infection in shrimp [56]. Histological diagnosis following WSSV infection occurs in all tissues of mesodermal and ectodermal origin such as gills, lymphoid organ, cuticular epithelium, and sub-cuticular connective tissues, and infected nuclei are enlarged with alienated chromatin and contain inclusion bodies with strongly stained eosinophils in early infection and basophilic in more advanced infections [18] (Figure 7). Biosecurity measures (specific pathogen-free (SPF) broodstock, complete dry-out of culture tanks after harvest, low water exchange systems such as RAS), restricting access to vectors and pathogens (through crab fence, bird blocking, and foot baths in shrimp farm entrance), and improving disease resistance (immunostimulants, neutralization, environmental management and vaccines) in shrimp are effective management methods, as there is currently no way to treat WSSV infection [20].

2.2. Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV)

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a critical viral pathogen of penaeid shrimp, causing serious economic loss to the shrimp aquaculture industry (up to 50% of the overall economic loss in shrimp aquaculture), and has been listed as a reportable crustacean disease pathogen by the World Organisation for Animal Health (OIE) since the year of 1995 [57]. IHHNV was first detected in blue shrimp, *P. stylirostris* post-larvae and juvenile imported from Costa Rica and Ecuador at a shrimp farm of Hawaii in 1981, causing up to 90% mortality, and it was discovered in the quarantine process of imported white leg shrimp, *P. vannamei* at a shrimp farming facility in Taiwan in 1986, and in giant tiger prawn, *P. monodon* aquaculture of Australia in 2008 [58].

Since IHHNV was first reported in blue shrimp, *P. stylirostris*, IHHNV disease outbreaks had been reported in more than 20 countries in Asia, America, Africa and Oceania, such as Korea, Philippines, Singapore, Malaysia, Thailand, Indonesia, USA, Brazil, Mexico, Argentina, India, Venezuela, Mozambique, Madagascar, Tanzania and Australia [59] (Figure 8). IHHNV infects the major aquaculture shrimp species, *P. stylirostris* and *P. vannamei*, in North America, which is causing economic losses [60]. IHHNV is lethal in juvenile *P. stylirostris* with 90% mortality (acute disease), whereas it causes runt deformity syndrome (RDS; asymptomatic carrier of the virus) in *P. monodon* and *P. vannamei*, reducing the market value by 10–50% [61]. IHHNV causes the RDS in juvenile *P. vannamei* and *P. monodon*, which causes stunting in growth, and accounts for 50% of the economic loss in the shrimp industry [59,62] (Figure 9). IHHNV causes economic damage by reducing the marketability of shrimp due to poor growth, irregular growth, and epidermal malformation during harvest by RDS (cuticular deformities of the rostrum, antennae, thoracic and abdominal areas) [63,64] (Figure 10).
Figure 7. *Penaeus vannamei* infected with white spot syndrome virus (WSSV). The infection progresses through different stages that can be seen in the nucleus via histology. (A) Early-stage infected cells display enlarged nuclei with marginalized chromatin and a homogenous eosinophilic central region. These then develop an intranuclear eosinophilic Cowdry A-type inclusion (*); this can be surrounded by a clear halo beneath the nuclear membrane (white arrow). Scale bar = 25 µm; (B) The eosinophilic inclusion usually expands to fill the nucleus (*). This inclusion becomes basophilic when staining and denser in color as the infection progresses (white arrow). Nuclei then disintegrate so that the content fuses with the cytoplasm (black arrow). Scale bar = 10 µm. H & E stain; (C) WSSV virions appear ovoid in shape and contain an electron-dense nucleocapsid (white arrow) within a trilaminar envelope (black arrow). Scale bar = 0.2 µm. Inset. Negatively stained WSSV nucleocapsid, showing the presence of cross-hatched or striated material that is structured as a series of stacked rings of subunits and is a key diagnostic feature of WSSV. Scale bar = 20 nm; (D) Presumptive nucleocapsid material within the nucleus prior to envelopment. This material is cross-hatched or striated in appearance and linear prior to its incorporation in the formation of mature WSSV particles. This linear nucleocapsid material is observed sporadically in the manufacture of the WSSV particles. Scale bar = 100 nm. Transmission electron microscopy images (Source: Verbruggen et al., 2016, https://doi.org/10.3390/v8010023 accessed on 11 May 2018).
and abdominal areas) [63,64] (Figure 10).

Invasion by IHHNV can reduce the marketability of shrimp due to poor growth, irregular growth, and epidermal malformation during harvest by RDS (cuticular deformities of the rostrum, antennae, thoracic appendages, and abdominal areas) [65]. IHHNV causes the RDS in juvenile Penaeus monodon, which causes stunting in growth, and accounts for 50% of the economic loss due to the IHHNV (Table 1). IHHNV infection in adult Penaeus vannamei, which can cause RDS in shrimp, can carry the infectious IHHNV sequence through feeding and injection [59]. P. monodon and Penaeus stylirostris can carry the infectious IHHNV sequence through feeding and injection [59]. IHHNV causes the RDS in juvenile Penaeus vannamei with RDS from a nursery population at approximately 60 days post stocking (Reprinted from Journal of Invertebrate Pathology, Vol. 106 (1), Lightner D.V., Virus diseases of farmed shrimp, Elsevier).

Figure 8. Distribution maps showing the geographical occurrence of infectious hypodermal and hematopoietic necrosis virus (Reprinted from CAB International, 2019, Infectious hypodermal and hematopoietic necrosis. In: Invasive Species Compendium. Wallingford, UK: CAB International, with permission from CAB International).

Figure 9. External symptoms of infectious hypodermal and hematopoietic necrosis virus (IHHNV) on shrimp. (A,B) subadult *Penaeus vannamei* with bent (to the left) rostrums, a classic sign of 'runt deformity syndrome' (RDS); (C) a juvenile *P. vannamei* with RDS. In this specimen the rostrum is bent to the right and the antennal flagella are wrinkled, brittle and mostly broken-off; (D) juvenile *P. vannamei* with RDS from a nursery population at approximately 60 days post stocking (Reprinted from Journal of Invertebrate Pathology, Vol. 106 (1), Lightner D.V., Virus diseases of farmed shrimp in the Western Hemisphere (the Americas) A review, p. 21, Copyright (2011), with permission from Elsevier).
IHNNV is a single linear stranded DNA virus of 3.9 kb in length and the smallest penaeid shrimp virus that is non-enveloped and icosahedral linear virion with an average diameter of 22–23 nm [60]. IHNNV was taxonomically a *Panaea stylirostris* densovirus (PstDNV) from the Parvoviridae family, Densovirinae subfamily, but in July 2019, ICTV (International Committee on Taxonomy of Viruses) reconstituted the Parvoviridae family as the Parvoviridae family, Hamaparvovirinae subfamily, and Penstylhamaparvovirus [59]. IHNNV has a capsid made up of four polypeptides with molecular weights of 74 k, 47 k, 39 k and 37.5 k [65]. IHNNV may exhibit different virulence due to differences in genotype of IHNNV, host susceptibility and developmental stage of infected shrimp; (i) Acute infection: IHNNV-infected post-larvae and juveniles *P. stylirostris* sink to the bottom without swimming and can cause up to 90% of shrimp mortality in a short period of time; (ii) Chronic infection: Mass mortality does not usually occur in IHNNV-infected juvenile *P. vannamei* and *P. monodon*, and sub-adults *M. rosenbergii*, which can cause RDS such as growth and rostrum retardation, abdominal and tail fan deformation, cuticular roughness, and wrinkled antennal flagella, resulting in 30–90% growth retardation; (iii) Asymptomatic carriers: *Mytilus edulis* and adult *M. rosenbergii* can carry the infectious IHNNV type, but do not show major clinical and pathological symptoms and serve only as carriers; (iv) non-infectious IHNNV insertion into shrimp host genome: Exposure to IHNNV was not infectious in *P. monodon* and *P. vannamei* individuals injected with crude extracts of *P. monodon* carrying the IHNNV sequence through feeding and injection [59].

Genetic characterization of multiple IHNNV strains isolated from multiple regions can determine whether the virus has evolved or not and the existence of other strains in the region with exogenous sources [58] (Table 3). The IHNNV genome consists of three ORFs (open reading frames): two encoding nonstructural proteins (NS1; 2001 bp and NS2; 1092 pb) and one encoding viral capsid proteins (CP; 990 bp) [57,59] (Table 2). Of five genotypes classified in IHNNV, type I, type II, and type III are infectious types, and type A and type B are non-infectious. Type I was found in *P. monodon* of Australia (GenBank no. CQ475529.1); type II was mainly found in the United States and Southeast Asia (GenBank no. AY102034.1, JN616415.1, AY362547.1, etc.), and type III was mainly distributed in East Asia (GenBank no. AY355308.1, EF633688.1, KF214742.1, and JX258653.1, etc.) [59] (Table 3). Two IHNNV virus sequences were found in *P. monodon* in Africa (Type A was found in Madagascar and Australia, and Type B was found in Tanzania). Type A and type B sequences have three ORFs with high similarity, which has the identical replication initiator motif and NTP-binding and helicase domains with IHNNV virus, but both type A and type B IHNNV-related sequences are non-infectious genotypes [66]. IHNNV was found in *P. monodon* in Southeast Asia (Thailand, Taiwan, and the Philippines), and only about 30 animal species are known to be IHNNV-susceptible or carriers.
of IHHNV [59]. IHHNV mainly affects Penaeid shrimp, but Artemesia longinaris, Palaemon macrodactylus and post-larvae and subadults of M. rosenbergii as well as P. clarkii are also known to be naturally infected with IHHNV. Bivalve shellfish and adults of M. rosenbergii act as carriers in IHHNV without infection-related symptoms [57]. For example, in the IHHNV PCR test on the coast of China, the positive rate of IHHNV in the gills, muscles and gonads of Mytilus edulis was more than 80%, but the pathogenicity of IHHNV infection was not shown. In addition, the pathogenicity of IHHNV infection was closely related to the age and size of the host, and in general, young shrimp are more susceptible to IHHNV infection [59]. Larval and juvenile P. stylirostris at 0.05–2 g is more susceptible to IHHNV, especially P. stylirostris at 0.08 g is most susceptible to IHHNV, whereas P. stylirostris at 2 g or more significantly weakens IHHNV pathogenicity. Adults of M. rogenbergii do not show obvious symptoms of IHHNV infection, but IHHNV infection in subadults can cause slow growth and cause RDS also in juvenile of P. vannamei and P. monodon, whereas adult P. vannamei showed no obvious pathological symptoms [62]. IHHNV shows a marked difference in pathogenicity according to the infecting shrimp species; While P. sylirostris is highly pathogenic, P. vannamei causes RDS, a chronic disease [67].

Because IHHNV does not encode a DNA polymerase and is dependent on the host cell for DNA replication and proliferation, it requires the host’s rapidly proliferating cells for replication; the main target organs for IHHNV infection contains tissues of ectodermal (cuticular epidermis, nerve cord and ganglia, hypodermal epithelium of the fore and hind gut) and mesodermal (antennal gland, lymphoid organ, hematopoietic organs, striated muscles, tubule epithelium and connective tissue) origin, but IHHNV does not affect tissues of endodermal origin such as hepatopancreas, anterior mid-gut caecum, midgut epithelium or posterior midgut caecum [58] (Table 4). It is the post-larvae and juvenile shrimp that are susceptible to IHHNV owing to the reason that they have actively dividing cells. The P. stylirostris presents acute symptoms of IHHNV such as white or buff-colored spots at the junction of the tergal plates in the abdomen, whereas IHHNV in the P. vannamei appears as a chronic disease, RDS, showing symptoms such as wrinkled antennal flagella, ‘bubble-heads’, deformed rostrum, cuticular roughness and deformation in 6th abdominal segment and tail fan [59].

Shellfish, as an important carrier of IHHNV disease, have a very high risk of transmission, but the mechanisms of infection and pathogenicity are still unclear in many respects [59]. In the case of horizontal transfer of infection, the P. stylirostris surviving IHHNV infection can become life-long carriers of the virus and cause spread through vertical and horizontal propagation. In the natural environment, IHHNV transmission can occur horizontally through shrimp feeding and water, and vertical transmission can occur from mother to offspring [58]. IHHNV was detected in the ovaries of IHHNV-infected females, whereas the IHHNV did not appear in the sperm of infected males, so vertical transmission of IHHNV from infected females was clearly established [67]. Post-larvae M. rosenbergii with IHHNV infection showed a high mortality rate of up to 80–100, and juvenile and subadult P. stylirostris showed a mortality rate of up to 90% (however, P. stylirostris also has increased resistance to IHHNV infection, and no significant mortality has recently been reported.); on the other hand, in P. vannamei and P. monodon, IHHNV was less virulent with no death, just including RDS such as stunting and cuticular deformities [58,66].

In an epidemiological survey, the IHHNV prevalence of shrimp in aquaculture areas was 51.5% and 8.3% for shrimp and crab in China, 9.4–81% for shrimp in northeastern Brazil, 14.1%for P. monodon in Brunei Barussalam and 30% for Artemesia longinaris in Argentina, 1.1–3.3% for P. vannamei in Venezuela, 20% for M. rosenbergii in Malaysia [58]. Currently, the most reliable techniques used for IHHNV detection are conventional PCR and real-time PCR. However, since the existing PCR cannot quantify the virus in the infected sample, the real-time PCR technique (probe-based and dye-based methods) is more useful [68] (Table 5). TaqMan probe-based real-time PCR is also a sensitive technique for IHHNV detection (Table 5). Encinas-Garcia et al. (2015) [69] developed SYBR Green-based real-time PCR for the detection and quantification of IHHNV in P. stylirostris, which
is much cheaper and simpler than TaqMan probe real-time PCR (Table 5). Histologically, the diagnosis of IHHNV infection is made through the identification of prominent Cowdry type A, eosinophilic, intra-nuclear inclusion bodies enclosed by margined chromatin in hypertrophied nuclei of cells in tissues of ectodermal and mesodermal origin [58]. In electron microscopy of negatively stained IHHNV VLPs in *P. vannamei*, IHHNV-VLPs were uniformly spherical and 23 ± 3 nm in diameter, similar to native IHHNV particles [70] (Figure 11A). H&E staining of *P. monodon* infected with IHHNV showed intra-nuclear Cowdry type A eosinophilic inclusion bodies [64] (Figure 11B). Several hypertrophied nuclei were observed in the gill tissues of IHHNV-infected *P. clarkii* [71] (Figure 11D). An effective vaccination strategy for IHHNV has not been developed, and there are no confirmed reports of effective chemotherapy and immune-stimulation treatment [72]. As there is currently no effective treatment for IHHNV, the best management strategy is to screen SPF shrimp for IHHNV, but when IHHNV cannot be completely controlled, IHHNV-resistant shrimp populations may be used.

Figure 11. Electron microscopy and histological analysis of the changes in shrimp with infectious hypodermal and hematopoietic necrosis virus (IHHNV). (A) Electron microscopy of negatively stained IHHNV VLPs under self-assembly and disassembly conditions in *Penaeus vannamei*; (B) Cowdry type A eosinophilic inclusion of IHHNV in a nucleus of subcuticular epithelial cells of the pleopod of *P. monodon* (H & E, 1000×); (C) Histological detection of *Procambarus clarkii* gills negative to IHHNV detected by PCR. The gill cells were normal, no hypertrophied nucleus was observed; (D) Histological detection of *P. clarkii* gills positive to IHHNV detected by PCR. Several hypertrophied nuclei (arrow) were observed. ((A) Reprinted from Journal of Invertebrate Pathology, Vol. 166, Zhu, Y.P., Li, C., Wan, X.Y., Yang, Q., Xie, G.S., Huang, J., Delivery of plasmid DNA to shrimp hemocytes by infectious hypodermal and hematopoietic necrosis virus (IHHNV) nanoparticles expressed from a baculovirus insect cell system, p. 1, Copyright (2019), with permission from Elsevier; (B) Reprinted from Aquaculture, Vol. 289 (3–4), Rai, P., Pradeep, B., Karunasagar, I., Karunasagar, I., Detection of viruses in *Penaeus monodon* from India showing signs of slow growth syndrome, p. 5, Copyright (2009), with permission from Elsevier; (C,D) Reprinted from Aquaculture, Vol. 477, Chen, B.K., Dong, Z., Liu, D.P., Yan, Y.B., Pang, N.Y., Nian, Y.Y., Yan, D.C., Infectious hypodermal and hematopoietic necrosis virus (IHHNV) infection in freshwater crayfish *Procambarus clarkii*, p. 4, Copyright (2017), with permission from Elsevier).
3. RNA Viral Diseases

3.1. Infectious Myonecrosis Virus (IMNV)

Infectious myonecrosis (IMN), also known as Penaeid shrimp myonecrosis virus (PsIMNV), is a major disease caused by the infectious myonecrosis virus (IMNV), which adversely affects the shrimp aquaculture industry [73,74]. IMN was first identified in Piaui state, Brazil in August 2002, and then rapidly spread through the coastal areas of northeastern Brazil, which significantly reduced the productivity of the Brazilian shrimp aquaculture industry in 2004 and 2005 [75]. In the Asia-Pacific region, *P. vannamei* is steadily increasing in importance as a major aquaculture species. Furthermore, IMNV was added to the World Organization for Animal Health in 2005 and NACA (Network of Aquaculture Centres in Asia-Pacific)/FAO (Food and Agriculture Organisation) in January 2006 due to large-scale transboundary movements of the disease and its impacts on aquaculture species [62,76]. In Brazil this pathogen caused an economic loss of approximately 20 million USD with 40–60% mortality in 2003. By the end of 2005 the economic losses as a result of the IMNV outbreak had reached 430 million USD, and by the end of 2011, Brazil and Indonesia had suffered a combined economic loss of approximately 1 billion USD in Brazil and Indonesia [76,77].

IMNV was first reported in 2003 in *P. vannamei* cultured in northeastern Brazil, then in Indonesia (2006), and most recently in India (2016), Malaysia (2018) and Indonesia (2018) [78,79] (Figure 12). Until the IMNV virus was reported in India in 2016, it had only occurred in Brazil and Indonesia [80]. IMNV occurs in *P. vannamei*, its infectious host, and causes infective myonecrosis. The occurrence of this disease is thought to be related to certain types of environmental and physical stress (extreme temperature and salinity, collection by cast-net) and the use of low-quality shrimp feed [62]. Although IMNV can induce an increase in mortality due to an acute infection in *P. vannamei*, the infection is usually detected by observing chronic symptoms in the host rather than a rapid mortality. The symptoms displayed by *P. vannamei* infected with IMNV include focal to extensive white necrotic areas in the striated muscle, especially the distal abdominal segments and tail fan [79], as well as a slow mortality that persists during the culture period (cumulative mortality reaching up to 70%) [81].

Figure 12. Distribution map showing the geographical occurrence of infectious myonecrosis virus (IMNV) (Reprinted from CABI, 2019, Infectious myonecrosis virus. In: Invasive Species Compendium. Wallingford, UK: CAB International, with permission from CABI).
IMNV is a single molecule of double-stranded RNA forming a monopartite genome that is 7561–8230 bp in length with two open reading frames (ORFs). It is a non-enveloped icosahedral virus with a diameter of 40 nm and fiber-like protrusions on the surface [74,82] (Table 1). IMNV is taxonomically a totivirus belonging to Totiviridae family that is similar to Protozoa and Fungal viruses. In a phylogenetic analysis based on RdRp, IMNV was identified as a member of the Totiviridae family in 2008 [74,83]. The Totiviridae family consists of five genera (Giardiavirus, Leishmaniavirus and Trichomonasvirus, which infect protozoa; and Totivirus, and Victorivirus, which infect fungi) recognized by the ICTV (International Committee on Taxonomy of Viruses), but many researchers have recently suggested that the Arthropod Totiviruses should be classified separately as an Artivirus genus within the Totiviridae family [76].

Whole-genome sequencing of IMNV revealed two ORFs such as ORF1, encoding RNA binding and capsid proteins and ORF2, encoding putative RNA-dependent RNA polymerase (RdRp) [83] (Table 2). The coding region of the RNA-binding protein is situated in the first half of ORF 1 (including a dsRNA-binding motif). The second half of ORF1 encodes a capsid protein with a molecular mass of 106 kDa [77]. The function of the dsRBM (dsRNA binding motif) is critical for modulation and viral replication in the immune system of the shrimp host. However, the functions of small proteins are still unclear, but hypotheses have been suggested in which they may be connected to assembly, cell entry, and extracellular transmission of the virus [76]. ORF2 demonstrates high similarity to the RdRp of the Totiviridae family, and ORF2 coding strategies of IMNV are similar to the strategies of GLV (Giardia lamblia virus) and other members of the Totiviridae family, which indicates that RdRp is a conserved domain [76].

IMNV strains identified in Brazil (six strains) and Indonesia (ten strains) showed high similarity with the alignment of a 372 bp fragment encoding the major capsid protein (MCP) of IMNV strains isolated from the two regions. This suggests that the MCP could be used as a target gene to track the movement of IMNV [77] (Table 3). Through subsequent analysis, it was confirmed that the IMNV in Brazil and Indonesian reported by GenBank had nucleic acid sequence identity of 99.6% [82]. The capsid protein has a major role in virus adhesion, virulence, and cell entry, and the MCP gene (nt 2248~4953) of IMNV also contains a variable region with 72 polymorphic sites, so that the MCP gene sequence can be used to trace the origin of a new strain [82].

IMNV not only infects *P. vannamei*, which are naturally susceptible to it, but also *P. stylirostris* and *P. monodon*, which have been found to be experimentally susceptible. Furthermore, the wild Southern brown shrimp, *Penaeus (Farfantepenaeus) subtilis* is also susceptible to IMNV infection [76,84]. IMNV is known to only infect Penaeid shrimp (4 shrimp species: *P. vannamei, P. stylirostris, P. monodon, P. subtilis*), but can do so at all life stages including post larvae, juvenile, and adult, but mortality was observed only in the juveniles and adults showing symptoms of a cooked appearance [76,79] (Figure 13). In IMNV-infected shrimp, extensive white necrosis of the striated muscle, especially the distal part of the abdomen and tail fan, may progress, and dissection of moribund shrimp may show enlarged lymphoid organs more than twice the normal size [62] (Figure 13C,D). Clinical signs of IMNV are prominent in the acute phase of infection, and although the main target organ is the skeletal muscle, gills and lymphatic organs may also be affected. IMNV infection in the chronic stage can be identified by necrotic muscle liquefaction exhibiting coagulative muscle necrosis [76]. Typical symptoms of IMNV infection include transparency loss, abdominal and cephalothorax necrosis, tail coloration, hepatopancreas volume loss, and progressive tail fan necrosis [85]. Shrimp infected with IMNV are characterized by whitish or reddish discolorations in the tail muscle and opaque, whitish discolorations in the abdominal muscle due to white necrosis in the striated muscle [86]. Coelho et al. (2009) [75] suggest that shrimp infected with IMNV lose transparency, and this symptom starts at around the second or third segment and then extends towards the telson.
The first report of IMNV occurred in a shrimp farm in northeastern Brazil in 2002 and it then spread to a shrimp farm in Indonesia in 2006. The cause of IMNV transmission is believed to be the uncontrolled movement of brood stocks and post larvae shrimp across borders [87]. Since it was first reported from Brazil, the origin of IMNV is thought to be South America, and the geographical distribution of the disease is limited. Although the exact mechanism for IMNV transmission is unknown, there is also the possibility of horizontal transmission through cannibalistic behavior or the water via infected shrimp, and vertical transmission from broodstock to progeny [76]. The source of vertical transmission is assumed to be maternal based on the low sperm cell survival rate of naturally infected males and the 100% positive occurrence in the ovaries of female shrimp infected with IMNV [82]. Although specific data on the vector of IMNV are lacking, it has a non-envelope particle structure like TSV (non-enveloped virus particles have high survival rates in the

Figure 13. External symptoms of infectious myonecrosis virus (IMNV) on shrimp. (A) IMNV-infected *Penaeus vannamei* with reddish opaque muscles at the distal abdominal segments; (B) *P. vannamei* injected with IMNV propagated in a C6/36 cell line with reddish opaque muscle at the distal abdominal segments as observed in the natural infection; (C,D) *P. vannamei* infected with IMNV and displaying focal to extensive white necrotic areas in the striated muscle, especially of the distal abdominal segments and tail fan, and exposure of the paired lymphoid organs (LO) by simple dissection will show that the paired LO are hypertrophic to twice or more their normal size. ((A) Reprinted from Journal of Fish Diseases, Vol. 40 (12), Sahul Hameed, A.S., Abdul Majeed, S., Vimal, S., Madan, N., Rajkumar, T., Santhoshkumar, S., Sivakumar, S., Studies on the occurrence of infectious myonecrosis virus in pond-reared *Litopenaeus vannamei* (Boone, 1931) in India, p. 8, Copyright (2017), with permission from John Wiley and Sons; (B) Reprinted from Journal of Fish Diseases, Vol. 44 (7), Santhosh Kumar, S., Sivakumar, S., Abdul Majeed, S., Vimal, S., Taju, G., Sahul Hameed, A.S., In vitro propagation of infectious myonecrosis virus in C6/36 mosquito cell line, p. 6, Copyright (2021), with permission from John Wiley and Sons; (C,D) Reprinted from Journal of Invertebrate Pathology, Vol. 106(1), Lightner, D.V., Virus diseases of farmed shrimp in the Western Hemisphere (the Americas) a review, p. 21, Copyright (2011), with permission from Elsevier).
gastrointestinal tracts of animals), and thus has the potential to maintain infectivity in the intestines and feces of seabirds that feed on IMNV-infected dead or dying shrimp [88].

IMNV infection progresses slowly throughout the growing season with low mortality, but cumulative shrimp mortality in ponds during harvest can reach up to 70% [86]. In general, the mortality rate due to IMNV infection is between 20–50%, and the mortality rate gradually increases, resulting in 40–70% mortality during the growing season [83]. Given that the major target tissues of IMNV are the striated skeletal muscles which are not considered vital tissue, the virulence following IMNV infection is less lethal, when compared to other viruses such as WSSV, YHV, and TSV. In addition, the damage at the early steps of IMNV infection can be repaired in the muscle tissues [76]. Although IMNV is not fatal when compared to WSSV and YHV, this virus is a stress-dependent virus, which is lethal to P. vannamei when there are rapid changes in water quality parameters such as pH, temperature, plankton, and dissolved oxygen [82]. Due to its slow disease progression, IMNV can cause significant economic losses due to high feed conversion efficiency as the infected individuals consume feed continuously [76].

IMNV infection is diagnosed primarily through clinical symptoms, histopathological examination, and molecular techniques [74]. Since there are no effective drugs or vaccines available for IMNV, a sensitive and reliable diagnosis is required for appropriate control measures. The TaqMan real-time RT-PCR assay provides a rapid and sensitive method for clinical diagnosis of IMNV [89] (Table 5). Histological lesions due to IMNV infection are characterized by coagulative myonecrosis, with hemocytic infiltration, fibrosis, and fluid accumulation in muscle fiber (edema) [90] (Figure 14). Among shrimp challenged with IMNV, 10% showed a light coagulation and hemocyte infiltration [75]. During the acute phase of IMNV, the main target organs are the striated muscles, hemocytes, connective tissues, and lymphoid organ tubule parenchyma cells, whereas the major tissues targeted during the chronic phase are the lymphoid organs [76]. During the acute or chronic phase of IMNV, considerable hypertrophy of the lymphoid organs, induced by the accumulation of lymphoid organ spheroids (LOS), results in the development of consistent lesions [62].

Figure 14. Electron microscopy and histological changes in shrimp with infectious myonecrosis virus (IMNV). (A) TEM of a purified preparation of IMNV from naturally infected Penaeus vannamei from Brazil. Photomicrographs of tissue sections from P. vannamei examined for IMNV lesions (B–D) (Scale bar = 50 µm); (B) Focal hemocytic infiltration in muscle tissue; (C) Muscle coagulation necrosis accompanied by infiltration of hemocytes; (D) Muscle liquefactive necrosis and fibrosis. ((A) Reprinted from Journal of Invertebrate Pathology, Vol. 106 (1), Lightner, D.V., Virus diseases of farmed shrimp in the Western Hemisphere (the Americas) a review, p. 21, Copyright (2011), with permission from Elsevier; (B–D) Reprinted from Aquaculture, Vol. 380, Feijó, R.G., Kamimura, M.T., Oliveira-Neto, J.M., Vila-Nova, C.M., Gomes, A.C., Maria das Graças, L.C., Maggioni, R., Infectious myonecrosis virus and white spot syndrome virus co-infection in Pacific white shrimp (Litopenaeus vannamei) farmed in Brazil, p. 5, Copyright (2013), with permission from Elsevier).
As there is currently no effective method by which to control the spread of or treat IMNV, prevention, management, and prompt diagnosis are the most effective tools [87]. Experimental infections showed that here was 20% mortality in *P. vannamei*, but 0% mortality in *P. stylirostris* and *P. monodon*. Therefore, restocking with IMNV-resistant individuals such as *P. monodon* and *P. stylirostris* could be a useful method to reduce mortality losses [76]. To prevent the vertical transmission of IMNV, eggs and larvae must be disinfected, and biological security measures, appropriate quarantine, and SPF (specific pathogen free) bloodstocks procedures implemented, in addition to stocking density decreases, stress reduction in the culture environment, and immune-stimulant administration [82].

3.2. Yellow Head Virus Genotype 1 (YHV Genotype 1)

Yellow head virus (YHV-1) and gill-associated virus (YHV-2; GAV) first emerged in the early to mid-1990s and are serious pathogens of the giant tiger shrimp, *P. monodon* farmed in Thailand and Australia, respectively [91]. Although YHV-1 and YHV-2 (GAV) share the same susceptible host, *P. monodon*, they have geographically distant natural distributions and show significant differences in virulence and pathogenicity [92]. Of the eight identified genotypes, typical symptoms of YHV infection in shrimp are known only for the YHV genotype 1 [93], and losses due to YHV were estimated to be between 30 to 40 million USD in Thailand in 1995, before the outbreak of WSSV [94].

The YHV genotype 1 is the most virulent, was first identified in *P. monodon* cultured in Thailand in 1990 [95] (Figure 15), and it caused mass mortality of the species and significant economic losses to the shrimp industry. It was designated as a notifiable disease by the World Organisation for Animal Health (OIE) in 1995 [68]. It was first observed in cultured black tiger shrimp, *P. monodon* in central Thailand in 1990, and by 1992 had spread to shrimp farming areas on the eastern and western coasts of the Gulf of Thailand. In 1993, a virus morphologically identical to YHV genotype 1 was detected in the lymphoid organs of healthy wild and farmed *P. monodon* in Queensland, Australia, and was thereafter named the lymphoid organ virus (LOV). YHV was then detected at high levels in gills with YHD (yellow head disease)-like histopathology in the gills of moribund aquaculture *P. monodon* between 1995 and 1996 and was named GAV (gill-associated virus) [95].

![Figure 15. Distribution map showing the geographical occurrence of yellow head virus genotype 1 (YHV genotype 1) (Reprinted from CABI, 2019, Yellow head virus. In: Invasive Species Compendium. Wallingford, UK: CAB International, with permission from CABI).](https://www.cabi.org/iscc)
There have been reports of YHD infection in farmed *P. vannamei* and *P. stylirostris* in Mexico, but it has not been confirmed, and there are no official reports of YHV infection in the Americas [96]. YHD has also been reported in *P. monodon* in Asian countries such as Vietnam, Philippines, Sri Lanka, Indonesia, Malaysia, India, and China, but has rarely been confirmed by laboratory analysis [97]. GAV, a YHV strain in Australia (YHV genotype 2), is related to a disease called mid-crop mortality syndrome (MCMS) in *P. monodon* in Australia, which was also detected in black tiger shrimp, *P. monodon* farmed in Vietnam and Thailand [98]. GAV is a chronic infection in Australia, causing significant economic losses to the Australian shrimp aquaculture industry since 1996, and GAV infections have been reported in farmed and wild *P. monodon* along the eastern coast of Australia [99]. YHV genotype 3 was detected in Taiwan, Vietnam, Indonesia, Malaysia, Thailand, and Mozambique, and YHV genotype 4 was found in India, which is the most frequently detected genotype. YHV genotype 5 was detected in the Philippines, Malaysia, and Thailand, and YHV genotype 6 was detected in Mozambique [100]. YHV genotype 7 was detected in *P. monodon* infected with the disease in Australia in 2012 [101]. In China, YHV genotype 1 was first detected in *P. monodon* imported from Thailand by the Shanghai Entry-Exit Inspection and Quarantine Bureau in 2005, and a new genotype YHV 8 was discovered in Hebei, China in July of 2012 [68].

YHV genotype 1 is a positive sense, rod-shaped, enveloped single-stranded RNA genome with virions of 40–60 nm × 150–200 nm and internal helical nucleocapsids of 15 nm in diameter 80–450 nm in length [94,100]. YHV is taxonomically classified in the Okavirus genus belonging to the Roniviridae family within the Nidovirales order [102] (Table 1). The virions of YHV include a polyadenylated 26.6 kDa genome and three structural proteins with transmembrane glycoproteins gp64 and gp116, the components on the virion surface [100]. YHV virions include three structural proteins, such as two transmembrane glycoproteins (gp116 and gp64) and a nucleoprotein (p20), and the envelope glycoprotein (gp116) has been shown to be the main virulence factor of YHV genotype 1 [103]. The genotypes that have evolved from *P. monodon* individuals are geographically separated from YHV and have evolved into YHV (YHV genotype 1) and GAV (YHV genotype 2) forms, which are indistinguishable [91].

The genome includes five canonical long ORFs (ORF1a, ORF1b, ORF2, ORF3, and ORF4), in order from the 5′-end: encoding replicase enzymes (ORF1a, overlapping ORF1b); encoding the nucleoprotein, p20 (ORF2); encoding the precursor polyprotein, pp3 that is processed to produce envelope glycoproteins such as gp116 and gp64 (ORF3) [104] (Table 2). YHV (YHV genotype 1) and GAV (YHV genotype 2) share a similar genome as the level of nucleotide sequence identity between them is approximately 79% overall (approximately 74% for ORF3 and 82% for ORF1b); the level of amino acid sequence identity between the genomes is 73% for gp116 and 84% for pp1ab [92]. The YHV genome (26,662 nt) is larger than the GAV genome (26,235 nt) owing to the sequence insertions occurring in several large blocks, whereas the GAV genome has few sequence insertions [92]. After YHV was first reported in Thailand in 1990, eight geographic types of genotypes have been reported, with genotypes differing by up to 20% in virulence and whole genome sequence [105] (Table 3). The mutant YHV genotype was also detected in healthy *P. monodon* broodstock in Thailand and was reported in *P. monodon* and *P. japonicus* which were cultured in Taiwan [97]. YHV genotype 1, the only virulence genotype of YHV was first reported in 1990 with typical signs of yellow head disease, which caused the mass mortality of *P. monodon* in Thailand [68]. YHV genotype 2 (GAV) is the only disease-associated YHV gene line other than YHV genotype 1 and is associated with a less severe form of the disease in Australian farmed shrimp [98]. Senapin et al. (2010) [106] suggests that GAV induces MCMS, which have lower virulence levels than those for YHV genotype 1 which is 106 times more virulent.

Most aquacultured species of penaeid shrimp, including *P. stylirostris*, *P. aztecus*, *P. duorarum*, *P. setiferus*, and *P. vannamei*, are susceptible to YHV-1 infection, while *P. esculentus*, *P. merguiensis*, and *P. japonicus* are susceptible to GAV [107] (Table 4). YHV infection also caused high mortality in *Marsupenaeus japonicus*, *P. vannamei*, *P. stylirostris*, *P. esculentus*, *P.
V. Para Merguiensis, P. setiferus, P. aztecs, P. duorarum, M. ensis, and M. affinis [100], but P. monodon was the most affected overall [108]. It was observed that juvenile and sub-adult shrimp are susceptible to YHD and mortality within a few hours after showing clinical symptoms [95]. The GAV and YHV genotypes (YHV 3–8) have also been reported in healthy P. monodon from Indonesia, Malaysia, the Philippines, Vietnam, Thailand, Taiwan, Brunei, India, Mozambique, and Fiji [100].

YHV genotype 1 infection presents typical disease symptoms with yellow coloration of the cephalothorax and gills, but YHV-1 infection can exist for long periods without any signs of disease, such as with the WSSV outbreaks [102]. Samocha (2019) [109] also reported yellow discoloration of the cephalothorax and gills of P. monodon infected with YHV-1 (Figure 16). YHV-1 infection faded the overall body color of the shrimp, and mortality progressed after about 45–60 days of culture, resulting in a cumulative mortality rate of 60–70% [106]. Prapavorarat et al. (2010) [110] reported that after the initial clinical signs of YHV-1 disease (the development of yellow discoloration of the cephalothorax and gills), 100% mortality occurred within 3–9 days, resulting in rapid damage to shrimp production. As a result, of dissecting moribund shrimp due to YHV-1 infection, hepatopancreatic atrophy was reported [68]. YHV-1 affects tissues of ectodermal and mesodermal origin, and leads to critical lymphoid organ and gills necrosis [1]. In acute GAV infection, yellow cephalothorax lesions were not clearly seen, and general redness of the body and gills was observed, which was reproduced in artificial GAV challenge infection experiments in the laboratory [95]. GAV is very prevalent in penaeid shrimp and does not cause disease in healthy shrimp, other than a chronic infection [99]. Acute infection with YHV-1 and GAV can affect all mesodermal and ectodermal tissues containing lymphoid organs, circulating hemocytes, neural ganglia, nerve fibers, neurosecretory, glial cells, gonads, stomach subcuticulum, heart, and antennal gland [111].

![Figure 16. External symptoms on yellow head virus genotype 1 (YHV genotype 1)-infected shrimp. (A) P. monodon showing signs of yellow head disease (YHD) Yellow (light gray in print version) to yellow-brown (dark gray in print version) discoloration of the cephalothorax. Three shrimp with (left) and without (right) YHD; (B) discoloration of the gill region. (A,B) Reprinted from Elsevier Books, Samocha, Sustainable biofloc systems for marine shrimp, p. 23, Copyright (2019), with permission from Elsevier.](image-url)

YHV-1 can cause lethal infections in farmed penaeid shrimp species, but some wild shrimp and crab species can be YHV-1 carriers and transmit the disease without showing serious symptoms themselves [102]. YHV-1 can be horizontally transferred when the YHV-1 virus is released into the water, or through a formula of the infected shrimp individual [95]. It has been reported that YHV-1 can remain infectious for at least 72 h in seawater, and that approximately 30 ppm of calcium hypochlorite is an effective disinfectant [103]. YHV-1 is combined with a specific receptor, YRP65 on the cell membrane of lymphocyte cells as its primary target organ [92]. Although there is no direct report that YHV-1 propagates...
vertically, it has been experimentally verified for GAV [1]. GAV was detected in infected mature ovarian and spermatophores in broodstock, fertilized eggs and nauplii from shrimp infected with GAV, which demonstrated efficient vertical propagation from both males and females [100].

Mortality in shrimp infected with YHV-1 occurs a few days after the onset of symptoms. Generally, individuals die within 1–2 days, and mass death (70–100%) occurs within 2–3 days [102,112]. YHV-1 infection can occur from the late post-larvae stage of development, but mass mortality usually occurs in the early to late juvenile stages [100]. In contrast, GAV causes death after 7–14 days in experimentally infected P. monodon, and mainly occurs as a chronic farm disease [95]. It was reported that there was 100% prevalence of GAV infection in healthy P. monodon in eastern Australia and common prevalence in healthy P. monodon in Vietnam and Thailand [108]. GAV-infections are much less lethal for shrimp than YHV-1, and mortality progresses more slowly, with 100% mortality being rare. GAV-infected moribund shrimp do not show the pale discoloration typical of yellow head disease and are reddish [1]. Walker and Mohan (2009) [1] reported that YHV-1 was 106 times more virulent than GAV at lethal concentrations of 50% in an artificial YHV-1 and GAV challenge experiment.

There are various techniques for YHV detection, including reverse transcriptase-polymerase chain reaction (RT-PCR), nested RT-PCR (IQ2000™ YHV Detection and Prevention System), loop mediated isothermal amplification (RT-LAMP), in situ hybridization, and real time RT-LAMP, all of which are currently being used [113] (Table 5). PCR-based methods for detecting YHV-1 and GAV have high efficiency in terms of speed, sensitivity and specificity, and quantitative real-time RT-PCR using a TaqMan probe or SYBR Green chemistry are effective detection methods [114] (Table 5). The OIE manual recommends detection using the YHV ORF1b gene region to diagnose YHV [91]. YHV infection is histologically accompanied by the observation of pyknotic and karyorrhectic nuclei and dense basophilic cytoplasmic inclusions in the lymphoid organs and gills, as well as the target tissues such as hepatopancreas, hematopoietic tissue, heart, midgut, nerve cord, eyestalks, abdominal muscle, and soft head tissues [102,110] (Figure 17).

Prevention of YHV gene expression is considered a major method to control YHV infection; the method by RNA interference (RNAi)-based anti-YHV efficiency through dsRNA injection was reported to specifically inhibit YHV infection by inducing the sequence-specific degradation of mRNA [112]. Sanitt et al. (2014) [115] confirmed that three types of orally delivered dsRNA (dsRab7, dsYHV, combined dsRab7 + dsYHV) were effective in reducing mortality by YHV infection up to 70% compared to control (dsRab7: 70%, dsYHV: 40%, combined dsRab7 + dsYHV: 56%). YHV disease control should mainly be done through the selection of YHV-1 SPF individuals through PCR screening of broodstock and seeds, strengthening of biological security and sanitation measures in the farm, and management of the water environment [100].

3.3. Taura Syndrome Virus (TSV)

TSV (Taura syndrome virus) is known as one of the three most critical shrimp viruses alongside WSSV and YHV, as it has seriously damaged the shrimp aquaculture industry worldwide over the past two decades [95,116]. The name, TSV disease, comes from the Taura River in Ecuador, where it was first reported [52] in the P. vannamei of Ecuador in June 1992 (viral etiology confirmation in 1995). It has since spread to the Americas (Ecuador, Columbia, Honduras, USA, and Mexico), Asia (Thailand, Indonesia, China, Taiwan, and Myanmar), Africa, and the Middle East (Saudi Arabia), with new TSV strains continuing to appear as the virus adapts to new penaeid species and environments [117]. It is estimated that TSV in the Americas has resulted in 1.2 to 2 billion USD in economic losses from 1992–1996 [118].
was originally limited to the Americas, but after *P. vannamei* was introduced to Asia, it was reported across Asia, in countries such as Thailand, Taiwan, and China and was spread via infected *P. vannamei* from Latin America [52]. TSV was first reported in juvenile *P. vannamei* in Ecuador in 1992 and then spread to Colombia in 1993, Honduras and Hawaii in 1994, Mexico and Guatemalan in 1995, Taiwan in 1998–1999, Thailand 2003, Korea and Texas coastal countries in 2004, Venezuela in 2005, Saudi Arabia in 2010–2011 and Venezuela in 2016 [1,120–127]. Since the first case of TSV infection in Asia was reported in *P. vannamei* imported for aquaculture from Taiwan in 1998, it has been reported in all Asian countries that import *P. vannamei* [62]. TSV was listed as an OIE-designated disease in 2000 and is

Figure 17. Electron microscopy and histological changes in shrimp infected with yellow head virus genotype 1 (YHV). (A) TEM of negative-strained YHV virions (Scale bars = 100 nm); (B) LO tissue of moribund shrimp from YHV immersion challenged *P. vannamei* at day 5 showing numerous pyknotic nuclei (arrows), karyorrhectic nuclei and cytoplasmic inclusion (arrow heads); (C) Hemolymph from normal and YHV infected shrimp identified by staining hemolymph smears; (D) Gills of YHV infected shrimp stained with H&E in rapidly fixed and stained (3 h) whole mounts. ((A) Reprinted from Advances in virus research, Vol. 63, Dhar, A.K., Cowley, J.A., Hasson, K.W., Walker, P.J., Genomic organization, biology, and diagnosis of Taura syndrome virus and yellow head virus of penaeid shrimp, p. 69, Copyright (2004), with permission from Elsevier; (B) Reprinted from Developmental & Comparative Immunology, Vol. 32 (6), Anantasomboon, G., Poonkhum, R., Sittidilokratna, N., Flegel, T.W., Withyachumnarnkul, B., Low viral loads and lymphoid organ spheroids are associated with yellow head virus (YHV) tolerance in whiteleg shrimp *Penaeus vannamei* genotype 1 (YHV). ((C,D) Reprinted from Aquaculture, Vol. 258 (1–4), Flegel, T.W., Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand, p. 33, Copyright (2006), with permission from Elsevier).
widespread especially in the Americas and Asia [128] (Figure 18). TSV occurs in all regions except Australia, Africa and some specific regions according to the guidelines of the OIE Aquatic Animal Health Code, and it is the second most damaging disease in the shrimp aquaculture industry after WSSV, in terms of economic loss [2]. However, recently, through enhanced biological security measures, the introduction of TSV-SPF (specific pathogen free) species, and the production of TSV-resistant *P. vannamei*, the occurrence and damage caused by TSV infection has greatly been reduced [118].

![Figure 18. Distribution map showing the geographical occurrence of Taura syndrome virus (TSV) (Reprinted from CABI, 2019, Taura syndrome virus. In: Invasive Species Compendium. Wallingford, UK: CAB International, with permission from CABI).](image)

TSV is a positive-sense, icosahedral-shaped, non-enveloped single-stranded RNA genome of 10.2 kb with a diameter of 32 nm [129] (Table 1). TSV is taxonomically classified in the Aparavirus genus belonging to the Dicistroviridae family [117]. TSV infects tissues of ectodermal and mesodermal origin, particularly hematopoietic tissue, epidermal epithelium, antennal glands, subcuticular connective tissue, lymphoid organs, and striated muscle [1]. The TSV viral capsid consists of three major polypeptides, VP1 (55 kDa), VP2 (40 kDa), and VP3 (24 kDa), and a minor polypeptide, VP0 (58 kDa) [130]. The TSV genome includes ORF 1 [the sequence motifs for non-structural proteins containing protease, helicase, and RNA-dependent RNA polymerase (RdRp); 6324 nt long, encoding a 2107 amino acid polyprotein with a 324 kDa molecular mass] and ORF 2 [the sequences for TSV structural proteins such as three major capsid proteins [VP1 (55 kDa), VP2 (40 kDa), and VP3 (24 kDa)]; 3036 nt long, encoding a 1011 amino acid polypeptide with a 112 kDa molecular mass] [2] (Table 2). As the VP2 (40 kDa) gene among the capsid protein genes exhibits the highest genetic variation, it is widely used to determine the genetic relationship between TSV geographical isolates [117].

Phylogenetic analysis of TSV isolates has identified seven lineages, corresponding to geographic origins: (1) America such as Ecuador, Columbia, Honduras, USA, and Mexico from 1993–1998; (2) Southeast Asia (Thailand, Indonesia, China, Taiwan, and Myanmar); (3) Mexico; (4) Belize; (5) Venezuela, (6) Colombia, and (7) Saudi Arabia [116] (Table 3). Based on the sequence of the VP1 (55 kDa) structural protein, three genotypic variants were identified: the American group, the Southeast Asian group, and the Belize group [52]. When the TSV isolate from Belize (GenBank no. AY826051-826053) in 2002 was compared
with the reference isolate from Hawaiian (GenBank no. AY826054-826055), it was confirmed that the Belize isolate was a unique variant of TSV [117]. A new TSV genotype was observed in Saudi Arabia (GenBank no. JX094350), which was a distinct TSV isolate when compared to those from Southeast Asia and Latin America, and it shared 90% sequence identity with a reference isolate in Hawaii (GenBank no. AF277675) [122]. Phylogenetic analysis of Korean TSV strains based on the partial nucleotide sequence of VP1 (55 kDa) determined that Korean isolates (GenBank no. DQ099912-DQ099913) are closely associated with Thailand TSV types (GenBank no. AY912503-9125038) [131]. Sequence identity of TSV isolates for the Texas isolate (GQ502201) were very high in the Chinese and Thai isolates (GenBank no. DQ104696 and AY997025, respectively) and the Hawaii and Belize isolates (GenBank no. AF277675 and AY590471, respectively) (sequence identities for the Texas isolate ORF 1: 98% for the China and Thailand isolates, 97% for Hawaii and Belize isolates, sequence identities for the Texas isolate, an intergenic region (IGR) sequence: 98% for the Hawaii, China, Belize and Thailand isolates, sequence identities for the Texas isolate ORF 2: 97% for the Hawaii, China, and Thailand isolates, 96% for the Belize isolate) [132].

Other species susceptible to TSV infection include the Gulf white shrimp, P. setiferus and Pacific blue shrimp, P. stylirostris, which has been shown to be affected by TSV disease in the juvenile and adults, as well as in the nursery or post larval stages [52]. Although P. vannamei is known to be the main infective host for TSV, several other penaeid species (P. stylirostris, P. setiferus, P. aztecus, P. duorarum, P. chinensis, and P. monodon) have also been identified as susceptibility through experimental challenge infections. In addition, natural infections of TSV were found in various species including P. stylirostris, P. monodon, P. japonicus, M. ensis and the freshwater shrimp, M. rosenbergii [1]. Dhar and Allnutt (2008) [130] reported that the susceptibility of penaeid shrimp species to TSV differs from species to species, and P. vannamei and P. schmitti cultured in the Americas are highly susceptible, whereas other penaeid shrimp species in the Americas such as P. stylirostris, P. setiferus, P. duorarum, and P. aztecus reported less sensitivity to TSV infection. TSV usually causes serious disease as it infects P. vannamei in the late post larval to early juvenile stages, between 15–40 days, but it can also induce serious diseases in both sub-adult and adult P. vannamei [95].

TSV infection in P. vannamei is divided into three stages: acute (7 days after infection with an asymptomatic phase of 2–5 days), transition (lasting 5 days after the acute stage), and chronic (survivors after molting) stages, with a mortality rate of 60–90% [86,133]. Clinical symptoms of acute TSV infection in farmed P. vannamei are characterized by a reddish body color (especially on the tail; uropods, and appendages induced by chromatophore expansion) and irregular black (melanization) spots under the cuticle layer, in addition to anorexia, an erratic swimming behavior, lethargy, soft cuticles, anorexia, flaccid bodies and opaque musculature [95,129] (Figure 19). Shrimp acutely infected with TSV persist for 1–10 days after infection, and exhibit TSV-specific histological lesions, and mortality occurs during or immediately after molting [134,135]. According to Dhar and Allnutt (2008) [130], TSV infection begins within 24 h and death peaks between 7–10 days, and naturally or experimentally surviving individuals with acute infections develop grossly visible, multifocal, melanized lesions on the cephalothorax, tail, and appendages [95]. The main target organs following TSV infection are the cuticular epithelium of the gills, appendages, hindgut, foregut, and general body cuticle, and the lesion can spread to the underlying subcuticular connective tissue and striated muscle, and even the hematopoietic tissue, antennal gland, testes, and ovaries can become infected.

The transition stage of TSV infection is characterized by melanized multifocal lesions of the cephalothorax and tail with reduced mortality, lethargy, and anorexia [95]. Histological features of TSV infected shrimp at the transition stage show the initiation of spheroid developments within the lymphoid organ (LO), normal-appearing LO arterioles (tubules) that demonstrate a diffuse TSV probe positive signal by in situ hybridization (ISH), and infrequent scattered acute phase epithelial lesions [95] (Figure 20). The stage from transition
infection to chronic infection begins with the shedding of the melanized exoskeleton and resumption of the molt cycle [156].

Figure 19. External symptoms of Taura syndrome virus (TSV) on infected shrimp. (A,B) *Penaeus vannamei* showing typical signs of TSV at the end of the acute phase: Multifocal and melanized lesions on the thorax and tail (indicated by arrow); (C,D) *P. vannamei* showing signs of TSV: red tail fan with rough edges on the cuticular epithelium of uropods (indicated by arrow) and multiple melanized cuticular lesions. ((A) Reprinted from Elsevier Books, Dhar, A.K., Allnutt, F.T., Taura Syndrome Virus. In Encyclopedia of virology, p. 8, Copyright (2008), with permission from Elsevier; (B) Reprinted from Aquaculture, Vol. 260 (1–4), Phalitakul, S., Wongtawatchai, J., Sarikaputi, M., Viseshakul, N., The molecular detection of Taura syndrome virus emerging with White spot syndrome virus in penaeid shrimps of Thailand, p. 9, Copyright (2006), with permission from Elsevier; (C,D) Reprinted from Elsevier Books, Samocha, Sustainable biofloc system for marine shrimp, p. 23, Copyright (2019), with permission from Elsevier).

The TSV chronic infection stage (or ‘recovery stage’) appears from 6 days after TSV infection and lasts for a period of 8–12 months in experimentally infected *P. vannamei* with no disease symptoms, normal swimming behavior, and feeding, and no mortality [95]. During chronic TSV infection, there can be complete removal of TSV through apoptosis or there can be continued infection in a chronic state due to continuous virus replication, which is determined by the host’s immunity, nutritional status, and overall health condition [129]. In the chronic stage of TSV infection, shrimp are asymptomatic, and the only histologically identifiable lesions are numerous lymphoid organ spheroids (LOS) [133]. Surviving individuals after TSV infection can act as life-long carriers of TSV infection, and the prevalence of TSV infection in farms can vary from 0–100% [134].
Figure 20. Electron microscopy and histological changes in shrimp infected with Taura syndrome virus (TSV). (A) TEM of CsCl gradient-purified and negative-strained (with 2% PTA) TSV particle isolated from Penaeus vannamei in Ecuador; (B) the section of intestine with 400 × magnification has cytoplasmic inclusion bodies in the lymphoid organ of Penaeus monodon (arrow); (C,D) spheroids (LOS) in the lymphoid organ tissue and ectopic spheroids in the connective tissue of P. vannamei from Venezuela, when stained with H&E, respectively (Scale bar = 25 µm). (A) Reprinted from Advances in virus research, Vol. 63, Dhar, A.K., Cowley, J.A., Hasson, K.W., Walker, P.J., Genomic organization, biology, and diagnosis of Taura syndrome virus and yellowhead virus of penaeid shrimp, p. 69, Copyright (2004), with permission from Elsevier; (B) Reprinted from Aquaculture, Vol. 260 (1–4), Phalitakul, S., Wongtawatchai, J., Sarikaputi, M., Viseshakul, N., The molecular detection of Taura syndrome virus emerging with White spot syndrome virus in penaeid shrimps of Thailand, p. 9, Copyright (2006), with permission from Elsevier; (C,D) Reprinted from Aquaculture, Vol. 480, Tang, K.F., Aranguren, L.F., Piamsomboon, P., Han, J.E., Maskaykina, I.Y., Schmidt, M.M., Detection of the microsporidian Enterocytozoon hepatopenaei (EHP) and Taura syndrome virus in Penaeus vannamei cultured in Venezuela, p. 5, Copyright (2017), with permission from Elsevier).

TSV can maintain pathogenicity in dead shrimp for up to 3 weeks, and transmission of TSV can occur when healthy shrimp ingest infected moribund or dead P. vannamei through formula. The water-borne transmission of TSV has been experimentally shown to occur for up to 48 h after the period of maximum mortality, and it is known that TSV infection can be transmitted to other farms through the excrement of birds including seagulls, Larus atricilla that eat TSV-infected shrimp, as well as a flying aquatic insects such as water boatmen, Trichocorixa reticulata [52,130]. Transboundary transport of TSV occurs primarily through the sale and export of live post-larvae or adult shrimp infected with acute or chronic TSV, while frozen shrimp can also be potential carriers due to the ability of TSV to remain infective during prolonged freezing [95]. Although studies on the survival and resistance of TSV under environmental conditions are insufficient, it has commonly been shown to be very resistant, especially in seawater [52]. Although it is hypothesized that...
vertical transmission from TSV-infected broodstock to offspring is possible, it has not been experimentally verified [137].

P. vannamei infected with TSV exhibits a cumulative mortality rate of 60–95% (cumulative loss 80–95%, survival rate of ≥60%) within one week of TSV disease onset [52,95]. In the years following the first outbreak of TSV in Colombia, the mortality rate from TSV reached 100% [138]. According to Wertheim et al. (2009) [127], it was reported that mortality rates ranged from 40% to 100% when TSV infection occurred in _P. vannamei_ farms. TSV infection occurs most frequently in _P. vannamei_ in the nursery- the grow-out-stage post-larvae or in juveniles weighing <0.05–5 g within 14–40 days [62]. Efforts of several research and commercial breeding programs through TSV-SPR (specific pathogen resistance) selective breeding to control TSV disease since the mid-1990s have significantly reduced TSV incidence (Sookruksawong et al. 2013). Indeed, from 1999 to 2004, there were no TSV outbreaks in the shrimp farms of Colombia, indicating the success of a TSV-resistant breeding program in which 100% of the animals raised were TSV-SPR [138].

Diagnosis of pathogens following TSV disease infection is important to control, predict, and prevent potential outbreaks and significant economic losses [120]. TSV infection at acute, transition, and early chronic stages can be accurately diagnosed using histological or molecular methods, but it is difficult to detect low virus levels during the chronic stage, when the symptoms and most histological lesions disappear [86]. TSV virus testing is carried out using PCR assays, such as a commercial nested RT-PCR kits and reverse transcriptase PCR (RT-PCR) using TSV virus target organs such as uropods, gills, body cuticles, and swimming feet; the OIE recommends using a one-step PCR method for TSV testing [129,139] (Table 5).

In the acute stage of TSV, the cuticular epithelium of the appendages, gills, hindgut, foregut, and general body cuticle are infected as major target tissues, and infected cells appear to have highly basophilic pyknotic, karyorrhectic nuclei, and vivid cytoplasmic eosinophilia, with staining and sized cytoplasmic inclusion bodies in a variable manner [130]. The TSV at the transition stage histologically represents the onset of lymphoid organ (LO) arterioles (tubules) and spheroid development within the LO, and the marked histological characteristic during the chronic stage of infection is the LO spheroid appearance; spheroids include phagocytic semigranular and granular hemocytes undergoing apoptosis [130]. TSV control methods would be effective using farm-level biological security and TSV-specific pathogen free (SPF) and TSV-specific pathogen resistance (SPR) shrimp, a clean environment, and strict seed selection in addition to the immune system improvements for shrimp, could help to reduce the rate of TSV infection [123].

3.4. **White Tail Disease (WTD)**

WTD (white tail disease) is caused by _Macrobrachium rosenbergii_ nodavirus (MrNV) and extra small virus (XSV), and it induces critical economic losses, especially at the hatchery and nursery stages [140]. WTD was first reported in Guadeloupe (French West Indies) in 1995 or 1997 (named white tail disease from Pointe Noire, Guadeloupe in 1997) and later in Martinique (French West Indies) (1999), China (2003), India (2004), Thailand (2006), Taiwan (2006), Australia (2008), Malaysia (2012) [141–144] (Figure 21). White-tailed disease occurs in the freshwater shrimp _M. rosenbergii_, which is cultivated in many countries, and has an extremely high mortality rate (often reaching 100%) and causes enormous economic loss [145].

Natural infection of WTD was also observed in _P. monodon_ and _P. indicus_ hatcheries, which are geographically close to the freshwater shrimp _M. rosenbergii_ hatcheries with reported WTD infections; the transmission of MrNV and XSV from _M. rosenbergii_ to _P. monodon_ and _P. indicus_ [144]. Mass mortality due to WTD occurs frequently in _M. rosenbergii_ hatcheries in India, and the cumulative losses are estimated to be worth of millions of dollars [146]. WTD causes high mortality (up to 100%) in _M. rosenbergii_ post-larvae within 2–3 days after infection. In India, WTD caused more than 50 freshwater shrimp hatcheries to have losses of 50%, which resulted in economic losses of approximately 15 million
USD per year [147]. WTD (MrNV) causes large amounts of damage in all countries with aquaculture practices for *M. rosenbergii*, including the world’s largest producer, China [148]. This disease has the potential to disrupt the *M. rosenbergii* aquaculture industry in the future, and it was listed as the OIE-designated disease of 2009 [149].

Figure 21. Distribution map of the geographical occurrence of White tail disease (WTD). (Reprinted from CABI, 2019, *Macrobrachium rosenbergii* nodavirus. In: Invasive Species Compendium. Wallingford, UK: CAB International, with permission from CABI).

WTD is caused by MrNV (*Macrobrachium rosenbergii* nodavirus) which is accompanied by another virus, XSV (extra small virus) [142] (Table 1). MrNV is a small icosahedral with non-enveloped two single-stranded RNA virus (RNA1: size 2.9 kb, RNA2: size 1.26 kb) approximately 26–27 nm in diameter and was observed in the cytoplasm of connective cells classified into the family Nodaviridae, which consists of two genera, Alphanodavirus and Betanodavirus, Nodaviruses have T = 3 capsids of a single polypeptide that is 43 kDa [54,144]. The phylogenetic tree obtained from RdRp demonstrates that MrNV is more related to alphanodaviruses, whereas in the capsid-based phylogenetic tree, MrNV and PeNV (a second prawn nodavirus; *Penaeus vannamei* nodavirus) are more closely related to betanodaviruses (MrNV and PrNV: 69% homology in the capsid protein genes) [150,151]. Since it is difficult to classify MrNV as an Alphanodavirus as it mainly infects insects and Betanodavirus which mainly infects fish, it has been proposed that it be classified as a Gammanodavirus genus belonging to the Nodaviridae family [146,150]. Shrimp infected with MrNV target hemocytes and myonuclei in the lower abdomen, they then spread to the rest of the abdomen, and subsequently, throughout the body via the hemolymph circulatory system, thereby observing the almost tissues of infected shrimp except for hepatopancreas and eyestalks [142]. MrNV, a viral particle with an initial diameter of 27 nm, was observed in WTD-infected shrimp, and shortly thereafter, a second type of virus particle with an abnormally small diameter of 15 nm was observed in the WTD-infected shrimp tissue, which was named XSV [152]. Although there is evidence that MrNV has a critical role in the pathogenesis of WTD, the role of XSV is also important in its pathogenesis [149]. XSV is an icosahedral and linear single stranded positive-sense RNA genome of 0.9 kb.
(approximately 700–1200 nucleotides) coding for a capsid protein, cp-17 with a 15 nm diameter that was identified in the cytoplasm of connective tissue cells [140]. MrNV and XSV are found to be related in WTD-infected M. rosenbergii, but the interactions between the two pathogens and their effects on pathogenicity are currently unknown [149,150].

MrNV genomic nucleotide sequencing suggested that RNA-1 contained 3202 nucleotides (GenBank no. AY222839) and RNA-2 consisted of 1175 nucleotides (GenBank no. AY222840) [153] (Table 2). RNA-1 included two nonstructural proteins such as A protein [RNA-dependent RNA polymerase (RdRp) containing approximately 1000 amino acids (ca. 100 kDa)] and B protein [13 kDa encoding 30 region of RNA-1 (2725–3126 nucleotides)], whereas RNA-2 included a single polypeptide in the capsid protein [54]. XSV genomic nucleotide sequencing indicated that it consisted of 796 nucleotides such as the coding sequence of the capsid protein CP-17 (17 kDa) and CP-16 (16 kDa) [137]. The MrNV structural protein consisted of a single protein of approximately CP-43 (43 kDa), whereas two polypeptides of approximately CP-17 (17 kDa) and CP-16 (16 kDa) were observed in the XSV particles [150].

Phylogenetic analysis of the WTD isolates was divided into groups for the French West Indies, China, India, Taiwan, Malaysia, Australia, Thailand, and France. The complete genome sequence of MrNV RNA-1 and RNA-2 was reported in 2003 (French West Indies, Gen bank no. AY222839 and AY222840, respectively) in 2004 (Australia, GenBank no. JN619369 and JN619370) [143,154]. Analysis of the nucleotide sequence was used to determine identity with other MrNV. The nucleotide sequence of MrNV (RNA-1) isolated India (GenBank no. AAO60068) has 98% identity with MrNV isolated from French West Indies (GenBank no. AY222839). Similar to MrNV, the nucleotide sequence of XSV isolated from Taiwan (GenBank no. DQ521573) has 97% and 98% identity with the XSV isolated from India (GenBank no. AY247793) and China (GenBank no DQ147318), respectively [151]. In addition, that isolated from Australia (Australian, GenBank no. JN619369) has 94%, 95%, 95%, and 97% identity with MrNV isolated French West Indies (GenBank no. AY222839), China (Chinese 1, GenBank no. AY231436; Chinese 2, GenBank no. FJ751226) and Malaysia (GenBank no. JN187416), respectively. The nucleotide sequence of MrNV (RNA-2) isolated from Australia (GenBank no. JN619370) has 92% identity with French West Indies (GenBank no. AY222840), Chinese 2 (GenBank no. FJ751225), China (GenBank no. AY231437), and Thailand (GenBank no. EU150126-150129) [143].

M. rosenbergii is more susceptible to WTD than other shrimp species, and especially in the larvae, post-larvae, and juvenile stages of development, it has a high mortality. In post-larvae infected M. rosenbergii, the striated muscles of the cephalothorax, abdomen and tail are the most targeted tissues, and adults of M. rosenbergii infected with WTD are resistant to WTD and function only as carriers [140]. Although M. rosenbergii was initially reported as the only host species for the onset of WTD induced by MrNV and XSV, subsequent reports confirmed that marine shrimp species such as P. indicus, P. japonicus, P. monodon, and P. vannamei at the post-larval (PL) stage are also susceptible and capable of high mortality [150] (Table 4). However, according to Bonami and Widada (2011) [150], in the WTD challenge test by the oral route and injection, marine shrimp such as P. indicus, P. japonicus, and P. monodon did not show high susceptibility to the WTD and had no clinical signs or mortality.

Clinical signs of WTD-infected shrimp include lethargy, degeneration of the telson and uropods, opaqueness of the abdominal muscle, reaching up to 100% within 4 days of onset [150,155] (Figure 22). WTD-infected shrimp at post-larvae stage develop symptoms in the second or third abdominal region, gradually extending from the center of the muscle to the anterior and posterior parts of the muscle, showing lethargy and opaqueness of the abdominal muscle [156]. WTD infection begins in some areas of the tail, extends to the tail muscles (abdomen), and causes whitish pigmentation in all muscles in the final stage, including the head (cephalothorax) muscles; in severe cases, degeneration of telsons and uropods is observed [147,150]. WTD symptoms mainly appeared when MrNV values were high, suggesting that MrNV plays an important role in WTD [140].
Viruses 2022, 14, x FOR PEER REVIEW 32 of 69

Figure 22. External symptoms of shrimps with White tail disease (WTD). (A) MrNV-infected Penaeus vannamei showing signs of whitish muscle in the tail (arrows); (B) Cherax quadricarinatus showing signs of WTD with necrosis and myositis (arrows); (C,D) Clinical signs, whitish abdominal muscles (arrows), in the infected post-larvae of Penaeus indicus ((A) Reprinted from Aquaculture, Vol. 483, Jariyapong, P., Pudgerd, A., Weerachatyunukul, W., Hirono, I., Senapin, S., Dhar, A.K., Chotwiwatthanakun, C., Construction of an infectious Macrobrachium rosenbergii nodavirus from cDNA clones in Sf9 cells and improved recovery of viral RNA with AZT treatment, p. 9, Copyright (2018), with permission from Elsevier; (B) Reprinted from Aquaculture, Vol. 319 (1–2), Hayakijkosol, O., La Fauce, K., Owens, L., Experimental infection of redclaw crayfish (Cherax quadricarinatus) with Macrobrachium rosenbergii nodavirus, the aetiological agent of white tail disease, p. 5, Copyright (2011), with permission from Elsevier; (C,D) Reprinted from Aquaculture, Vol. 292(1–2), Ravi, M., Basha, A.N., Sarathi, M., Idalia, H.R., Widada, J.S., Bonami, J.R., Hameed, A.S., Studies on the occurrence of white tail disease (WTD) caused by MrNV and XSV in hatchery-reared post-larvae of Penaeus indicus and P. monodon, p. 4, Copyright (2009), with permission from Elsevier).

MrNV and XSV can be transmitted horizontally in the form of dead tissue, live carriers, and free virions through formulas of M. rosenbergii infected with WTD, and natural hosts of adjacent ecosystems and culture systems [142,146]. In the WTD horizontal transmission experiment, artemia was exposed to MrNV and XSV by immersion and oral routes, confirming that it could act as a reservoir or carrier for the MrNV and XSV [140]. A high prevalence of WTD induced by MrNV and XSV has been reported in hatchery larvae and post-larvae of M. rosenbergii, suggesting that vertical transmission may occur from infected brooders to offspring during spawning [157]. Murwantoko et al. (2016) [147] also reported the vertical transmission of MrNV and XSV in M. rosenbergii, suggesting that this is the main disease transmission mechanism of WTD. Vectors of WTD include penaeid shrimp (P. japonicus, P. indicus, and P. monodon), aquatic insects (Cybister sp., Aesohna sp., Belostoma sp., and Notonecta sp.), and artemia [158]. A WTD challenge experiment using both oral and intramuscular routes in M. malcolmsonii and M. rude did not cause clinical
symptoms or mortality but indicated that it could serve as a reservoir as the toxicity of MrNV and XSV were maintained [147].

Mortality due to WTD infection reaches its maximum 5–6 days after the first severe symptoms appear, and infected post-larvae die within 15 days, and surviving post-larvae can grow to market size just like normal individuals [140]. MrNV infection of *M. rosenbergii* at the post-larvae stage results in a high mortality rate of almost 100% but it is not fatal for adults [139]. Bonami and Widada (2011) [150] reported that mortality started to occur 1–3 days after the first clinical signs of post-larvae *M. rosenbergii* infection with WTD, and the cumulative mortality rate reached 100%, 8–14 days post-infection.

To confirm WTD infection, real-time RT-PCR is one of the most sensitive diagnostic methods and has been used to detect the presence of both MrNV and XSV [149] (Table 5). Of the many samples infected with WTD, the majority of MrNV-positive samples were also positive for XSV, but some samples did not have XSV, and in some cases XSV was detected without MrNV [150]. Histological features of WTD-infected shrimp include large oval or irregular basophilic cytoplasmic inclusions with a diameter of 1–4 μm in the infected muscles of the abdomen, cephalothorax, and intratubular connective tissue of the hepatopancreas [140]. Murwantoko et al. (2016) [147] also found lesions in the muscle and connective tissues upon histological examination of the shrimp infected with WTD, and these lesions corresponded to the dense basophilic inclusions that had a diameter of 0.5–3.0 μm, and were located in the cytoplasm. Jariyapong et al. (2018) [159] confirmed coagulation necrosis of skeletal muscle in *P. vannamei* infected with MrNV (Figure 23B). Hayakijkosol et al. (2011) [160] reported that muscle degeneration, tissue necrosis, and myolysis with hemocytic infiltration were found in MrNV-infected redclaw crayfish, *Cherax quadricarinatus* (Figure 23C,D).

![Figure 23. Histological changes in shrimp tissues when infected with White tail disease (WTD) and stained with H&E. (A) Uninfected shrimp; (B) Histological detection included the aggregation of cells into clumps of various sizes and coagulative necrosis in P. vannamei skeletal muscle (72 h post-infection); (C,D) Muscle degeneration and necrotic muscle tissues in MrNV-infected C. quadricarinatus (arrow). ((A,B) Reprinted from Aquaculture, Vol. 483, Jariyapong, P., Pudgerd, A., Weerachatyanukul, W., Hirono, I., Senapin, S., Dhar, A.K., Chotwiwatthanakun, C., Construction of an infectious Macrobrachium rosenbergii nodavirus from cDNA clones in Sf9 cells and improved recovery of viral RNA with AZT treatment, p. 9, Copyright (2018), with permission from Elsevier; (C,D) Reprinted from Aquaculture, Vol. 319 (1–2), Hayakijkosol, O., La Fauce, K., Owens, L., Experimental infection of redclaw crayfish (Cherax quadricarinatus) with Macrobrachium rosenbergii nodavirus, the aetiological agent of white tail disease, p. 5, Copyright (2011), with permission from Elsevier).]
To control the spread of WTD, it is essential to develop highly sensitive and rapid diagnostic methods that can detect pathogens early, because effective methods such as vaccines or treatment for controlling and preventing WTD have not been presented [142]. Screening using sensitive diagnostic methods such as reverse-transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) to select specific pathogen free (SPF) broodstock and post-larvae can be an effective method [153]. Since virus-borne infections such as WTD are difficult to control, only preventive measures, including daily monitoring of shrimp health and early diagnosis, are critical and can help manage the WTD occurrence [149].

Table 1. Summary information for DNA and RNA viral diseases infections.

Virus Type	Pathogen	Taxonomy	Morphology	Reference
ds DNA	WSSV	Family Nimaviridae		
			Rod-shape to elliptical	[9,13,16,18,20,22,52]
		Genus Whispovirus	Tail like appendage at one end of the virion	
			Virion size: 80–120 × 250–380 nm	
			Envelope:	
			- Tadpole-shaped spike	
			- Thickness: 6–7 nm	
			- Nucleocapsid	
			- 15 helices composed of 14 globular capsomers	
			- along its long axis	
			- Ring structure at one terminus	
			- Size: 54–85 × 180–440 nm	
ss DNA	IHHNV	Family Paroviridae		
		subfamily Hamarvovirinae	Virus diameter: 20–22 nm	[57,59,60,65,66,85,161,162]
			Containing a 4 kb linear ssDNA genome	
			Density: 1.40 g/mL in CsCl	
		Genus Penetylhamarvovirus	Icosahedral shape	
			Smallest penaeid shrimp virus	
			Density: 1.40 g/mL in CsCl	
			Capsid	
			Four polypeptides with molecular masses of 74 K, 47 K, 39 K, and 37.5 K, respectively	
ds RNA	BMNV	Family Totiviridae		
			Virus diameter: 40 nm	[73,77,29,83,85]
			Virion size: 83,226–83,230 bp	
			Density: 1.366 g/mL in CsCl	
		Genus Giarivovirus	Icosahedral shape	
			Tridimensional image reconstruction of the BMNV virion revealed a 120 kDa capsid protein that has a totivirus-like architecture	
			Genome consists of a double-stranded RNA molecule that is 7561–8230 bp in size	
ss RNA	YHV	Order Nidovirales		
		Family Roniviridae		
			Rod-shape	[68,95,104]
			Envelope:	
			- Contain two transmembrane glycoprotein (gp64 and gp 116)	
			- Size: 40–60 nm × 150–200 nm	
			- Buoyant density in sucrose: 1.18–1.20 g/mL	
		Genus Okavirus	Icosahedral shape	
			Helical symmetry	
			- Composed of a coiled filament	
			- Diameter: 16–30 nm	
			- Periodicity: 5–7 nm	
ss RNA	TSV	Order Picornavirales		
		Family Dicistroviraide		
			Icosahedral shape	[2,62,95,116,117]
			Non envelope	
		Genus Aparavirus	Icosahedral shape	
			Non-enveloped	
			- Located in the cytoplasm of infected target cells, particularly connective tissue cells	
			Virion diameter: 26–27 nm	
			Density: 1.27–1.28 g/mL in CsCl	
		Genus Gammanodavirus	Icosahedral shape	[56,140–142,144,146,149,150,157,163]
			Consists of two pieces: RNA1 and RNA2	
			Capssid contains a single polypeptide of 43 kDa	
			Located in the cytoplasm of infected target cells, particularly connective tissue cells	
			Virus diameter: 14–16 nm	
			Non-enveloped	
			Icosahedral shape	
			Located in the cytoplasm of infected target cells, particularly connective tissue cells	
Table 2. Summary of the DNA and RNA viral diseases ORF characteristics.

Virus Type	Pathogen	ORF	Characteristics	Reference
DNA virus		ORF75	• Number of bp in the repeat unit: 45 bp (type 1), 102 bp (type 2)	
			• Repeat unit sequences:	
			- Type 1: GAA GCA GCT CCC CCA CTT AAA GGT GCA CTT GGA CGT AAG AGG CGC	
			- Type 2: GAA GCA GCT CCC CCA CTT AAA GGT GCG CTT GGA CGT AAG AGG CGC GAA GCA CTT GTG TCT GCT GAA GAA GAA CTT GGA GAA CTT GAA	
			• Primers:	
			- ORF75F (5'-GCC AGA TTT CTT CCC GTA CC-3')	
			- ORF75R (5'-CTC CAT GTA GAG GCA AAG CA-3')	
ds DNA	WSSV	ORF94	• Number of bp in the repeat unit: 54 bp	
			• The most informative single genetic marker	
			• Repeat unit sequences:	
			- CGC AAA AAG CGT GCC GCA CCT CCA CCT GAG GAT GAA GAA GAG GAT GA G/T TTC TAC	
			• Primers:	
			- ORF94-F (5'-TCT ACT CGA GGA GGT GAC GAC-3')	
			- ORF94-R (5'-AGC AGG TGT GTA CAC ATT TCA TG-3')	
DNA virus		ORF125	• Number of repeat unit: 69 bp	
			• Repeat unit sequences:	
			- AG/TA AAC AAG GAG GAA GAA GAC GCG AGG ATA AAG CGT GTA GCC GTC AGG ACA TTT ACA GCA ATC AGA GAAA	
			• Primers:	
			- ORF125F (5'-CTG AAA AAG CGT GCC GCA CCT CCA CCT GAG GAT GAA GAA GAG GAT GA G/T TTC TAC	
			- ORF125R (5'-AGC AGG TGT GTA CAC ATT TCA TG-3')	
DNA virus		ORF14/15	• Prone to the recombination region	
		ORF23/24	• Deletion region	
DNA virus		ORF109	• Nucleotide position: 163996–164238	
			• VP15	
			- Location: nucleocapsid	
			- Overlaps with ORF110 (11 kDa)	
DNA virus		ORF182	• Nucleotide position: 290363–289998	
			• VP19	
			- Location: envelope	
ss DNA	IHHNV (Decapod penstylium papaviruses 1)	ORF153	• VP26	
			- Location: nucleocapsid	
			- Tegument protein	
			- N-terminal anchors in the envelope	
			- C-terminal is bound to the nucleocapsid	
			- Capable of binding to actin or actin-associated proteins	
			- Interacts with VP51	
ss DNA	IHHNV (Decapod penstylium papaviruses 1)	ORF-wsv002	• VP24	
			- Location: nucleocapsid	
			- Major structural protein	
			- Chitin-binding protein	
ss DNA	IHHNV (Decapod penstylium papaviruses 1)	ORF-wsv421	• VP28	
			- Location: envelope	
			- Major structural protein	
			- Early stages of virus infection	
			- Viral attachment protein	
			- Helps the virus to enter the cytoplasm	
ss DNA	IHHNV (Decapod penstylium papaviruses 1)	ORF-wsv308	• VP51	
			- Location: nucleocapsid	
			- Molecular mass: 51.9 kDa	
			- Encodes a 466 aa protein	
ss DNA	IHHNV (Decapod penstylium papaviruses 1)	ORF1	• Length: 2001 bp	
			- Starts at nt 648 and terminates with a TAA codon at 2648 nt	
			- Encodes a 666 aa protein with a molecular weight of 75.77 kDa	
			- Coding domain	
			- Nonstructural proteins 1	
			- Function: enzymatic activities involved in viral transcription and replication	
			- Contains highly conserved replication initiation motifs (rolling-circle replication (RCR) motifs) and NTP-binding and helicase domains (ATPase motifs)	

References: [9,13,20,24,164–172]
Virus Type	Pathogen	ORF	Characteristics	Reference
ds RNA IMNV (PsIMNV)	ORF1 (59 ORF)	• Length: 5127 nt		
• Nucleotide: 136–4953
• First half of ORF1
- Region of the RNA-binding protein
- Contained a dsRNA-binding motif in the first 60 aa
• The second half of ORF1
- Encodes a capsid protein (molecular mass of 106 kDa) | [62,73,74,76,83,86] |
| RNA virus YHV | ORF1a | • Nucleotides: 12,216
• Encodes a 4027 aa polyprotein (pp1a)
• ORF1a polyprotein (pp1a)
- 15 amino acids longer than GAV pp1a
- Contains four hydrophobic domains (HD1, HD2, HD3 and HD4)
- 3C-like cysteine protease catalytic domain
- Papain-like protease (PL1) domain
- Lacks the canonical α + β fold of the papain-like protease (PLX) domain
• Autolytic activity | |
| ss RNA | ORF1b | • Nucleotides: 7887
• Encodes a 6688 aa polyprotein (pp1b)
• Encodes enzyme of the replication complex:
- RNA dependent RNA polymerase
- Cysteine and histidine-rich domain (C/H) Zn fingers
- Helicase (HEL)
- Exonuclease
- Uridylyl-specific endoribonuclease
- Ribose-2′-O-methyl transferase domains
• Untranslated region (UTR) between ORF1b and ORF2:
- 352 nt | [1,92,100,104,107,111,114,163,175,176] |
| ss RNA | ORF2 | • Encodes a 146 aa nucleoprotein (p20) | |
| ds RNA IMNV (PsIMNV) | ORF2 (39 ORF) | • Length: 2739 nt
• Nucleotides: 5241–7451
• Encoded a putative RNA-dependent RNA polymerase (RdRp) | |
| ds RNA IMNV (PsIMNV) | ORF3 | • Length: 990 bp
• Smallest among the three ORFs
• Starts with an ATG at 2590 nt, and terminates with an TAA codon at 3577 nt
• Encodes a 329 aa protein with a molecular mass of 37.48 kDa
• Coding domain: CP | |
| Virus Type | Pathogen | ORF | Characteristics | Reference |
|------------|----------|-----|-----------------|-----------|
| GAV | | ORF4| 677 nt region downstream of ORF3
| | | | Encodes a 20 aa polypeptide
| | | | Interrupted by multiple stop codons | |
| | | ORF1a| ORF1a polyprotein (pp1a)
| | | | Encodes 3C-like cysteine protease catalytic domain
| | | | Identity of pp1a with YHV pp1a: 82.4% | |
| | | ORF1b| Identity of the ORF1b sequence with YHV ORF1b: ~82%
| | | | Untranslated region (UTR) between ORF1b and ORF2
| | | | 93 nt | |
| ORF1/2 | | ORF1a/ORE/1b| Identity of pp1ab with YHV pp1ab: 84.9% | [1,92,100,
| | | | [107,114,177] | |
| | | ORF2| Encodes a 144 aa polypeptide | |
| | | ORF3| Encodes a 1640 aa glycoprotein
| | | | Identity of the ORF3 sequence with YHV ORF3: ~74% | |
| | | ORF4| 638 nt region downstream of ORF3
| | | | An unidentified 83 aa polypeptide | |
| TSV | | ORF1| Nucleotides: 6324
| | | | Amino acid polyprotein: 2107
| | | | Molecular mass: 234 kDa
| | | | Encode the non-structural proteins
| | | | Helicase
| | | | Protease
| | | | RNA dependent RNA polymerase | [95,128,130,
| | | | [178] | |
| | | ORF2| Nucleotides: 3036
| | | | Amino acid polyproteins: 1011
| | | | Molecular mass: 112 kDa
| | | | Encodes 3 major and 1 minor capsid proteins:
| | | | - Major VP1 (55 kDa)
| | | | - Major VP2 (40 kDa)
| | | | - Major VP3 (24 kDa)
| | | | - Minor VP0 (58 kDa) | |
| WTD | (RNA-1) | ORF1| Length: 2.9 Kbp
| | | | Nucleotides: 3202
| | | | Encodes approximately 1000 amino-acids (approximately 100
| | | | kDa) and a B protein encoded by the 30 region (13 kDa)
| | | | Coding domain:
| | | | - Protein A or RNA-dependent RNA polymerase
| | | | - Protein B2 | |
| WTD | (RNA-2) | ORF2| Length: 1.26 Kbp
| | | | Nucleotides: 1175
| | | | Coding domain:
| | | | - Capsid protein (CP-43) | [56,140,150,
| | | | [153,156,157] | |
| WTD | (XSV) | XSV genome| Length: 900 bp
| | | | Nucleotides: 796
| | | | Short poly (A) tail and polyadenylation signal AAUAAA were found
| | | | Coding domains:
| | | | - Capsid protein (CP-16 or CP-17)
| | | | - Methionine N-terminal ends for both polypeptides | |
Table 3. Summary isolation and GenBank accession number information for the DNA and RNA viral disease infections.

Type	Pathogen	Origin	Host Species	Isolation ORF Region	GenBank No.	Year	Reference	
DNA virus	ds DNA	WSSV	Penaeus vannamei	Hypothetical protein (ORF13 and ORF16) gene; Nonfunctional hypothetical protein gene	HQ257380	2001	[179]	
			Mx-F		HQ257381	2004		
			Mx-H		HQ257382	2005		
			Mx-C	Nonfunctional hypothetical protein genes	HQ257383	2004		
			Mx-L1		HQ257384	2001		
			WSSV-MX08	Complete genome	KU216744	2008	[33]	
		Mexico	Penaeus vannamei	Partial genome				
			LG		MG432482	2012		
			JP		MG432479	2011		
			AC1		MG432474	2011		
			DV1		MG432477	2011		
			LC1		MG432481	2011		
			LC10		MG432480	2011		
			ACF2		MG432475	2012		
			ACF4		MG432476	2012		
			GVE05		MG432478	2005		
		India	Penaeus monodon	wsv285 gene	KX980155	2016	[181]	
			ANI		EF468499	2007		
			WSSV-IN-07-I	Unknown gene	EF468498	2006		
			WSSV-IN-06-I	Unknown gene	EU327499	2005		
			WSSV-IN-05-I	ORF23/ORF24 region genomic sequence	EU327500	2005		
			Penaeus vannamei	Complete genome	MG702567	2013	[38]	
		China	Penaeus japonicus	Hypothetical protein 75 gene	KF157839	2012		
			WSSV-CN	ORF75 gene	KC906268	2011		
			WSSV-CN01	ORF75 gene	KF157832	2012		
			WSSV-CN02	ORF75 gene	KP455493	2013		
			WSSV-CN-Pc	ORF75 gene	KP956791	2013		
		China	Penaeus vannamei	Complete genome	AF332093	1996	[30]	
			WSSV-CN	Nonfunctional ORF14 gene; ORF1, ORF2, ORF3, ORF4, and ORF5 gene; ORF15 and ORF16 gene	AF369029	1996	[29]	
			WSSV-CN01	Complete genome	KT995472	1994	[34]	
			WSSV-CN02	Complete genome	KT995470	2010	[34]	
			WSSV-CN-Pc	Complete genome	KX686117	2015	[36]	
		China	Marsupenaeus japonicus	Complete genome	KT995471	2010	[34]	
	WSSV-CN04		Complete genome		KY827813	2012	[35]	
		China	Penaeus vannamei	Complete genome	AF440570	1994	[31]	
	WSSV-CN03		Complete genome		AF369029	1996	[29]	
		China	Marsupenaeus japonicus	Complete genome	KT995472	1994	[34]	
	WSSV-CN04		Complete genome		KT995470	2010	[34]	
			WSSV-CN-Pc	Complete genome	KX686117	2015	[36]	
		China	Penaeus vannamei	Complete genome	KY827813	2012	[35]	
	WSSV-CN04		Complete genome		AF440570	1994	[31]	
		South Korea	Penaeus vannamei	Complete genome	KS35788	2011	[32,34]	
	WSSV-KR		Complete genome		KS35788	2011	[32,34]	
Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
--------------------	-------------------	----------	--------------	-------------------------	-------------------------------------	-------------	------	-----------
Australia	Penaeus monodon		WSSV-AU	Complete genome	MF768985	2016		[37]
USA	Penaeus vannamei		CN_95_DEPE	Complete genome	MN840357	2017		[41]
Ecuador	Penaeus vannamei		WSSV-EC-15098	Complete genome	MF890824	2015		[39]
Brazil	Penaeus vannamei		WSSV-chimera	Complete genome	MG264599	2015		[40]

Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
Australia	Penaeus monodon		Australian	Non-structural protein 2	Non-structural protein 1 gene; Capsid protein genes	GQ475529	2008	[60]
Thailand	Penaeus monodon		IHHNV_TH	Non-structural protein 2	Non-structural protein 1 gene; Capsid protein genes	AY362547	2003	[173]
Taiwan	Penaeus monodon		Taiwan B	Non-structural protein 2	Non-structural protein 1 gene; Capsid protein genes	AY355307	2003	[186]
Vietnam	Penaeus monodon		KK-Lv-VIET1	Non-structural protein 1		MN481525	2019	[187]
Vietnam	Penaeus stylirostris		VN2007	Complete genome	KF031144	2007		[57]
India	Penaeus monodon		IN-07	Complete genome	GQ411199	2007		[60]
Vietnam	Penaeus monodon		KG	Complete genome	JX840067	2012		[57]
Taiwan	Penaeus monodon		Taiwan A	Non-structural protein 2	Non-structural protein 1 gene; Capsid protein genes	AY355306	2003	[186]
Taiwan	Penaeus monodon		Taiwan C	Non-structural protein 2	Non-structural protein 1 gene; Capsid protein genes	AY355308	2003	[186]
Vietnam	Penaeus stylirostris		HHNV	Capsid protein gene	FJ169961	2007		[173]
Taiwan	Penaeus monodon		Taiwan A	Capsid protein gene				
Ecuador	Penaeus vannamei		HHNV	Non-structural protein 2	Non-structural protein 1 gene; Capsid protein genes	AY362548	2003	[186]
Brazil	Penaeus vannamei		HHNV_BR	Partial genome	KJ662253	2013		[60]

Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
China	Penaeus vannamei		HHNV	Partial genome	KJ830753	-		[60]
China	Penaeus vannamei		Fuqian	Capsid protein gene	EF636688	2007		[188]
China	Penaeus vannamei		Ganyu	Capsid protein gene	JX258563	2009		[57]
China	Penaeus vannamei		CS1	Capsid protein gene	KP907320	2012		
China	Penaeus vannamei		Sheyang	Capsid protein gene	KF214742	2011		
Hawaii	Penaeus stylirostris		Hawaii A	Complete genome	NC_002190	1990		[60]
Malaysia	Macrobrachium		HHNV	Non-structural protein 1	Capsid protein genes	HM536212	2009	[189]
Taiwan	Macrobrachium		AC-04-367	Non-structural protein 1	Capsid protein genes	DQ057982	-	
Taiwan	Macrobrachium		AC-05-005	Non-structural protein 1	Capsid protein genes	DQ057983	-	
Mexico	Penaeus stylirostris		HHNV	Non-structural protein 2	Non-structural protein 1 gene; Capsid protein genes	AF273215	2000	[190]
South Korea	Penaeus vannamei		K1	Structural protein gene	HQ699073	2010		[191]
South Korea	Penaeus vannamei		K2	Structural protein gene	HQ699074	2010		[191]
South Korea	Penaeus vannamei		KLV-2010-01	Complete genome	JN377975	2010		[58]
Madagascar	Penaeus monodon		HHNV	Non-structural protein 1	Structural protein genes; Unnamed retrotransposon reverse transcriptase gene	DQ228358	-	[191]
Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
------------	----------	----------------	--------------	-----------	--	-------------	------	-----------
Australia	*Penaeus monodon*	Australia	*Penaeus monodon*	Au2005	Non-structural protein 2 gene; Non-structural protein 1-like gene; Viral capsid protein gene	EU675312	-	[188]
IHHNV (Type B)	Tanzania Mozambique	East Africa	*Penaeus monodon*	Non-structural protein 1 gene; Structural protein genes	AY124937	2000	[185]	
Tanzania Mozambique	*Penaeus monodon*	East Africa	*Penaeus monodon*	ID-EJ-12-1	ORF1/ORF2 and ORF1 polyprotein genes	KJ636783	2012	[40,77]
Tanzania Mozambique	*Penaeus monodon*	East Africa	*Penaeus monodon*	ID-EJ-12-2	ORF1/ORF2	AIC34746	2012	
Tanzania Mozambique	*Penaeus monodon*	East Africa	*Penaeus monodon*	ID-EJ-12-3	ORF1 polyprotein	AIC34749	2012	
Tanzania Mozambique	*Penaeus monodon*	East Africa	*Penaeus monodon*	ID-LP-12-2	ORF1 polyprotein	AIC34750	2012	
Tanzania Mozambique	*Penaeus monodon*	East Africa	*Penaeus monodon*	ID-BB-12-2	Structural protein	AIC34752	2012	
Indonesia	*Penaeus vannamei*	Indonesia	*Penaeus vannamei*	Id-EJ-06	Structural protein	ABN05324	-	
Indonesia	*Penaeus vannamei*	Indonesia	*Penaeus vannamei*	ID-LP-11	Complete genome	KJ636782	2011	
Indonesia	*Penaeus vannamei*	Indonesia	*Penaeus vannamei*	ID-LP-11	ORF1 polyprotein	AIC34741	2011	
Indonesia	*Penaeus vannamei*	Indonesia	*Penaeus vannamei*	ID-LP-12-1	ORF1/ORF2	AIC34748	2012	
Indonesia	*Penaeus vannamei*	Indonesia	*Penaeus vannamei*	IMNV	Complete genome	EF061744	-	[74]
Indonesia	*Penaeus vannamei*	Indonesia	*Penaeus vannamei*	ID-LP-11	Complete genome	KJ636782	2011	
Brazil	*Penaeus vannamei*	Brazil	*Penaeus vannamei*	IMNV-BZ-11-UAZ219	ORF1 polyprotein	AIC34754	2011	
Brazil	*Penaeus vannamei*	Brazil	*Penaeus vannamei*	IMNV	Complete genome	AY570982	-	[74]
Brazil	*Penaeus vannamei*	Brazil	*Penaeus vannamei*	YHV1992	Complete genome	FJ84673	1992	[98,101]
Brazil	*Penaeus vannamei*	Brazil	*Penaeus vannamei*	YHV1995	Complete genome	FJ84674	1995	
Thailand	*Penaeus vannamei*	Thailand	*Penaeus vannamei*	Chachoengsao	Complete genome	EU487200	1988	[98,108]
Thailand	*Penaeus vannamei*	Thailand	*Penaeus vannamei*	YHA-98-Ref	pp1ab gene	EU785033	1998	[98,114]
Thailand	*Penaeus vannamei*	Thailand	*Penaeus vannamei*	YHV1999	Complete genome	FJ84675	1999	[98,101]
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	3C-like protease gene	EU977577	-	[108]
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	Replicase polyprotein 1ab gene	EU977578	-	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	RNA polymerase gene	EU977579	-	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	Helicase gene	EU977580	-	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	Nucleocapsid gene	EU977581	-	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	Glycoprotein 116 gene	EU977582	-	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	Glycoprotein 64 gene	EU977583	-	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	YHV-PmA	Genomic sequence	EU977584	-	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-00-DRH	Complete genome	EU785032	2000	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-01-D4	Complete genome	EU785004	2001	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-01-D8	Complete genome	EU785034	2001	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-01-D9	Complete genome	EU785019	2001	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-01-D10	Complete genome	EU784984	2001	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-02-D34	Complete genome	EU785001	2002	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-03-D1	Complete genome	EU784982	2003	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-03-D2	Complete genome	EU784991	2003	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-03-D3	Complete genome	EU784998	2003	
Thailand	*Penaeus monodon*	Thailand	*Penaeus monodon*	THA-03-D8	Complete genome	EU785023	2003	
Table 3. Cont.

Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
			Penaeus vannamei	YHV	ORF1b genes	EU785035	2003	
Mexico	Penaeus vannamei	YHV	3C-like protease gene	DQ978355				
				ORF1a and ORF1b polyprotein gene	DQ978356			
				Nonfunctional ORF1b polyprotein gene	DQ978357			
				ORF1b polyprotein gene	DQ978358	2000	[108]	
				Helicase gene	DQ978359			
				Nucleocapsid gene	DQ978360			
				Glycoprotein 116 gene	DQ978361			
				Glycoprotein 64 gene	DQ978362			
				ORF4-like gene	DQ978363			
China	Fenneropenaeus chinensis	HB2012	Replicase polyprotein 1b mRNA	KF278563	2012	[98]		
			GAV	Complete genome	AF227196	-	[98,101,108]	
			Australia	Penaeus monodon	pp1ab gene	EU784980	1997	
					EU784989	1997		
					EU785038	1997		
					EU785029	2000		
					EU785030	2000		
					EU785031	2000		
					EU785028	2000		
					EU785026	1996		
			Vietnam	Penaeus monodon	pp1ab gene	EU785039	2001	
					EU785013	2001		
					EU785009	2002		
					EU785008	2002		
			Thailand	Penaeus monodon	pp1ab gene	EU785024	2003	
					EU785025	2003		
					EU785021	2003		
					EU785023	2003		
					EU784992	2004		
					EU785027	2004		
			Vietnam	Penaeus monodon	pp1ab gene	EU785006	2002	
					EU784994	2002		
					EU785016	2002		
					EU785012	2002		
					EU785040	2001		
					EU785041	2001		
					EU784996	2002		
					EU784995	2002		
					EU785020	2002		
					EU785042	2002		

(YHV (genotype 3) Vietnam Penaeus monodon pp1ab gene; p20 gene; pp3 gene EU785042 2002 [114] |
Table 3. Cont.

Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
		Indonesia	Penaeus monodon	IDN-04-H7	pp1ab gene	EU785011	2004	[114]
				IDN-04-H11		EU784985	2004	
				IDN-04-H10		EU784983	2004	
				IDN-04-H4		EU785002	2004	[98,114]
		Malaysia	Penaeus monodon	MYS-03-H1	pp1ab gene	EU784981	2003	
				MYS-03-H2		EU784990	2003	[114]
				MYS-03-H3		EU784997	2003	
Mozambique	Penaeus monodon	MOZ-04-H1	pp1ab gene	EU784986	2004			
YHV (genotype 4)	Thailand	Penaeus monodon	YHV type 4	ORF1b polyprotein gene	EU170438	-	[98,193]	
		Indonesia	Penaeus monodon	IND-02-H9	pp1ab gene	EU785017	2002	[98,114]
				IND-02-H5		EU785005	2002	
				IND-02-H7		EU785010	2002	
YHV (genotype 5)	Thailand	Penaeus monodon	YHV	ORF1b polyprotein gene	EU853170	2005	[192]	
		Malaysia	Penaeus monodon	MYS-03-H4	pp1ab gene	EU785003	2003	
		Philippines	Penaeus monodon	PHL-03-H8	pp1ab gene	EU785015	2003	
YHV (genotype 6)	Mozambique	Penaeus monodon	MOZ-04-H6	pp1ab gene	EU785007	2004	[114]	
				MOZ-04-H8		EU785014	2004	
				MOZ-04-H9		EU785018	2004	
				MOZ-04-H11		EU785036	2004	
				MOZ-04-H12		EU785037	2004	
YHV (genotype 7)	Australia	Penaeus monodon	YHV7 (13-00169-01)	ORF1b polyprotein gene	KP738160			
				YHV7 (13-00169-01)	PCR1	KP738161		
				YHV7 (13-00169-02)	ORF1b polyprotein gene	KP738162	2012	[98,105]
				YHV7 (13-00169-03)	PCR2	KP738163		
				YHV7 (13-00169-02)	PCR3	KP738164		
YHV (genotype 8)	China	Fenneropenaeus chinensis	20120706	Complete genome	KX947267	2012	[101]	
Ecuador	Penaeid shrimp	EC1993a	Capsid protein 2 gene	FJ876460	1993			
		EC1993b		FJ876461				
		EC1994		FJ876466	1994			
		EC2006a		FJ876512	2006			
		EC2006b		FJ876513				
Columbia	Penaeid shrimp	CO1994a	Capsid protein 2 gene	FJ876462				
		CO1994b		FJ876463	1994			
		CO1994c		FJ876464				
		CO1994d		FJ876465				
		CO1998		FJ876477	1998			
Table 3. Cont.

Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
Penaeus vannamei	CO-06A			JN194141			2006	
	CO-06B			JN194142			2006	
	CO-06C			JN194143			2007	
	CO-07A			JN194144			2007	
	CO-07B			JN194145			2007	
	CO-10			JN194146			2010	
	CO10		Complete genome	JF966384			2010	
Penaeus vannamei	94USHI	USA		AF277675			1994	[62,132,194,195]
	H94TSV	USA		AF277675			1994	[62]
	US-TX04	USA	Complete genome	GQ502201			2004	[132]
	US1994	US		FJ76468			1994	
	US1995	US		FJ76469			1995	
	US1996	US		FJ76470			1995	
	US1998	US		FJ76471			1995	
	US2004	US		FJ76480			1998	
	US2007	US		FJ76492			2004	
	US2008	US		FJ76517			2007	
Penaeid shrimp	HO1994	US		FJ76467			1994	
	HO1998	US		FJ76475			1998	
	HO2003	US		FJ76483			2003	
	HO1996	US		FJ76470			1996	
	HO1997	US		FJ76471			1996	
	HO1998	US		FJ76472			1996	
	HO1999	US		FJ76473			1996	
	HO2000	US		FJ76474			1998	
	HO2001	US		FJ76475			1998	
	HO2002	US		FJ76476			1998	
	HO2003	US		FJ76477			1998	
	HO2004	US		FJ76478			1998	
	HO2005	US		FJ76479			1998	
	HO2006	US		FJ76480			2000	
	HO2007	US		FJ76481			2000	
	HO2008	US		FJ76482			2001	
	HO2009	US		FJ76483			2001	
	MX1995a	Mexico		FJ76470			1994	
	MX1995b	Mexico		FJ76471			1995	
	MX1995c	Mexico		FJ76472			1995	
	MX1996	Mexico		FJ76473			1996	
	MX1998	Mexico		FJ76477			1998	
	MX1999a	Mexico		FJ76478			1998	
	MX1999b	Mexico		FJ76479			1998	
	MX2000	Mexico		FJ76480			2000	
	MX2001	Mexico		FJ76481			2001	
	MX2002	Mexico		FJ76482			2002	
	MX2003	Mexico		FJ76483			2003	
	MX2004	Mexico		FJ76484			2004	
	MX2005a	Mexico		FJ76485			2005	
	MX2005b	Mexico		FJ76486			2005	
	MX2005c	Mexico		FJ76487			2005	
	MX2006	Mexico		FJ76488			2006	
	MX2007	Mexico		FJ76489			2007	
Penaeus vannamei	SIN98TSV	Taiwan		AF510515			1998	[125,195]
	MX99	Mexico		AF277378			1999	[126,127]
Penaeus stylirostris	MX99TSV			AF510516			1999	[125,195]
Penaeus stylirostris	S0N2KTSV			AF510517			2000	[131,195]
Penaeus vannamei	H94TSV	Taiwan		AF510518			2000	[117,125]
Penaeus monodon	Tw2KPMtTSV			AF406789			1999	[62,126,195]
Metapenaeus ensis	Tw2KMectSV			AF535309			2000	[126]
Penaeus vannamei	Tw02PvTSV			AF535310			2000	[126]
Penaeus vannamei	Tw02PvTSV			AF535311			2002	[127]
Table 3. Cont.

Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
Penaeid shrimp	TW2007	Capsid protein 2 gene	FJ876520	2007				
Penaeus vannamei	Th03-1TSV	Capsid protein 2 gene	DQ000304	2003	[196]			
Penaeus vannamei	Th03-2TSV	Capsid protein 2 gene	DQ000305	2003				
Penaeus vannamei	ThOct03LtvTSV							
Penaeus vannamei	ThMar04LtvTSV	VP1 gene	AY912503	2003				
Penaeus vannamei	ThJul04LtvTSV		AY912504	2004				
Penaeus vannamei	TH03-1	Capsid protein 1 gene	AY755587	2003	[125,196]			
Penaeus vannamei	TH03-2		AY755588	2003				
Penaeus vannamei	TH03-3		AY755589	2003				
Penaeus vannamei	TH03-4		AY755590	2003				
Penaeus vannamei	TH03-5		AY755591	2003				
Penaeus vannamei	TH03-7		AY755593	2003				
Penaeus vannamei	TH03-9		AY755595	2003				
Penaeus vannamei	TH04Lv	Complete genome	AY997025	2005	[132,197]			
Macrobrachium	TH03-6	Capsid protein 1 gene	AY755592	2003	[125]			
Penaeus monodon	TH04Pm	Capsid protein 2 gene	DQ000306	2004	[196]			
Penaeus monodon	TH03-8	Capsid protein 1 gene	AY755594	2003	[125]			
Penaeus vannamei	TH2003a		FJ876484	2003				
Penaeus vannamei	TH2003b		FJ876485	2003				
Penaeus vannamei	BH2004a		FJ876496	2004	[127]			
Penaeus vannamei	BH2004b		FJ876497	2004				
Penaeus vannamei	BH2005a		FJ876499	2005				
Penaeus vannamei	BH2005b		FJ876499	2005				
Penaeus vannamei	BH2005c		FJ876500	2005				
Penaeus vannamei	BH2008		FJ876522	2008				
Penaeus vannamei	Id03TSV		DQ000303	2003	[196]			
Penaeus vannamei	Indonesia 10	Capsid protein 2 gene	JN194148	2010	[138]			
Penaeus vannamei	ID2003a		FJ876486	2003	[127]			
Penaeus vannamei	ID2003b		FJ876487	2003	[127]			
Penaeus vannamei	ID2003c		FJ876488	2003				

Thailand

- **Penaeus vannamei**
 - TH03-1
 - TH03-2
 - TH03-3
 - TH03-4
 - TH03-5
 - TH03-7
 - TH03-9
 - TH04Lv

Macrophthalmus rosenbergii

- TH03-6
 - Capsid protein 1 gene

Penaeus monodon

- TH04Pm
 - Capsid protein 2 gene
 - Capsid protein 1 gene

Penaeus vannamei

- BH2003a
 - Capsid protein 2 gene
 - Non-structural polyprotein gene; Capsid protein precursor gene

Penaeus vannamei

- 2005-175
 - Complete gene
 - Viral coat protein 1 gene
 - Viral coat protein 2 gene
 - Viral coat protein 3 gene

Belize

- BH2003
 - Capsid protein 2 gene

Penaeus vannamei

- Indonesia 10
 - Capsid protein 2 gene
Table 3. Cont.

Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
		China	Penaeus vannamei					
		China	Penaeus japonicus					
		Korea	Penaeus vannamei					
		Eritrea	Penaeus monodon					
		Venezuela	Penaeus vannamei					
		Saudi Arabia	Penaeus indicus					
		Aruba	Penaeus shrimp					
		Nicaragua	Penaeus shrimp					
		WTD	Macrobachium rosenbergii					
		China	Penaeus shrimp					

References: [132, 199], [196], [125, 208], [127], [131], [196], [127], [127], [127], [118], [143, 154], [201], [141], [202], [143, 202], [143].
Type	Pathogen	Origin	Host Species	Isolation	ORF Region	GenBank No.	Year	Reference
MrNV	Segment RNA-1			Capsid protein gene	AY231437			[...][201]
	RNA-dependent RNA							[...][201]
	polymerase gene; B2 protein gene							[...][201]
	Capsid protein gene			GU300102	-			[...][201]
	B2 protein gene			GU300103	2011			[...][201]
	Capsid protein-like gene			HM565741	2010			[...][201]
India	RNA-1 RNA-dependent RNA polymerase gene; B2 protein gene			JQ418295	-			[...][201]
MrNV	RNA-2 capsid protein gene			JQ418298	-			[...][201]
	Capsid protein			AM114036	-			[...][201]
	RNA-dependent RNA			AAC60068	2011			[...][201]
	polymerase gene			DQ459207	-			[...][201]
	RNA-directed RNA			DQ459208	-			[...][201]
MsNV	Segment RNA-1			Capsid protein gene	HQ637179	2008		[...][201]
	nonfunctional RNA				DQ521574	-		[...][201]
	polymerase gene				DQ521575	-		[...][201]
Malaysia	MrNV			Dependent RNA polymerase gene	JN187416	2009	[...][201]	
Australia	07-265.1			Capsid protein gene	FJ29530	2007		[...][201]
	07-265.2			A protein gene	FJ29531			[...][201]
	MsNV			Segment RNA 1	JN619369	2004		[...][201]
	MsNV			Segment RNA 2	JN619370			[...][201]
Thailand	MsNV			Capsid protein gene	EU150126			[...][201]
	MsNV			EU150127	-			[...][201]
	MsNV			EU150128	-			[...][201]
	MsNV			EU150129	-			[...][201]
Thailand	MsNV			Capsid protein mRNA	DQ189990			[...][201]
Taiwan	XSV			Nucleocapsid protein CP17 gene	DQ521573	-	[...][201]	
Thailand	MsNV			Capsid protein gene	EU150133			[...][201]
	MsNV			EU150132	-			[...][201]
	MsNV			FJ29532	2007			[...][201]
WTD (XSV)	Macrobrachium			Isolate Kakinada 1XSV capsid protein gene	DQ174318	2008	[...][201]	
	rosenbergii							[...][201]
India	MrNV			Capsid protein gene	JQ418299			[...][201]
	XSV			Capsid protein, genomic RNA	AM114037	-	[...][201]	
	capsid protein gene			NC_043494	-			[...][201]
China	MrNV			Capsid protein gene	AY24793			[...][201]
	XSV			Capsid protein CP17 and CP16 genes	DQ174318	-	[...][201]	

Table 3. Cont.
Table 4. Summary of host species following DNA and RNA viral disease infections.

Type	Pathogen	Host Species	Characteristics	Reference
DNA virus	ds DNA WSSV	*Penaeus monodon*	• White spots: - Diameter (1–2 mm) - Carapace, appendages, and inside surfaces - Cuticle of cephalothorax and tail part - Calcium deposition on the inner surface of cuticle	[9,13,18,20,44,49,51,53,207–210]
		Penaeus indicus	• Lethargic • Reddish body discoloration • Pleopods • Periopods • Telson • Uropods	
		Penaeus japonicas	• Discoloration of the hepatopancreas	
		Penaeus chinensis	• Loss of appetite • Reduced swimming activity • Reduced preening activity • Disorientation during swimming • Loosening of the cuticle • Branchiostegites swelling • Thinning and delayed clotting of the hemolymph	[48,50,207,211]
		Penaeus semisulcatus	• Reduction of food consumption • Gathered near the pond edge • Tendency to move towards the edges of tanks, near the surface	
		Penaeus azteca	• Loss of appetite • Lethargy • White spots on the carapace • Looseing of the stratum corneum • Discoloration of the hepatopancreas • White calcification spots on the exoskeleton • Dark coloration on the dorsal side • Dark and pinkish color on the dorsal side	[48,50,207,210,212,213]
		Penaeus vannamei	• Reduced swimming activity • Not observed white spots	
		Penaeus merguiensis	• Lack of appetite • Dark coloration on the dorsal side • Reduced swimming activity • Lethargy • Lack of movement • Not observed white spots	
		Penaeus penicillatus	• Reduced swimming activity • Not observed white spots	
		Penaeus stylostris	• Reduced swimming activity • Not observed white spots	
		Trachypenaeus curirostris	• Reduced swimming activity • Not observed white spots	
		Metapenaeus ensis	• Reduced swimming activity • Not observed white spots	
		Exopalaemon orientalis	• Reduced swimming activity • Not observed white spots	
		Macrobrachium rosenbergii	• Reduced swimming activity • Not observed white spots	
		Marsupenaeus japonicus	• Reduced swimming activity • Not observed white spots	
		Metapenaeus dobsoni	• Reduced swimming activity • Not observed white spots	
		Parapeneaus stylifera	• Reduced swimming activity • Not observed white spots	
		Solenocera indica	• Reduced swimming activity • Not observed white spots	
		Squilla mantis	• Reduced swimming activity • Not observed white spots	
		Procambarus clarkii	• Reduced swimming activity • Not observed white spots	
		Pacifastacus leniusculus	• Reduced swimming activity • Not observed white spots	
		Orconectes punctimanus	• Reduced swimming activity • Not observed white spots	
		Austropotamobius pallipes	• Reduced swimming activity • Not observed white spots	
		Panulirus versicolor	• Reduced swimming activity • Not observed white spots	
		Panulirus penicillatus	• Reduced swimming activity • Not observed white spots	
		Panulirus homarus	• Reduced swimming activity • Not observed white spots	
		Panulirus ornatus	• Reduced swimming activity • Not observed white spots	
		Charybdis feriatus	• Reduced swimming activity • Not observed white spots	
		Charybdis cruciata	• Reduced swimming activity • Not observed white spots	
		Portunus pelagicus	• Reduced swimming activity • Not observed white spots	
		Portunus sanguinolentus	• Reduced swimming activity • Not observed white spots	
		Charybdis granulata	• Reduced swimming activity • Not observed white spots	
		Scylla serrata	• Reduced swimming activity • Not observed white spots	
		Helice tridens	• Reduced swimming activity • Not observed white spots	
		Carcinus maenas	• Reduced swimming activity • Not observed white spots	
		Calappa lophos	• Reduced swimming activity • Not observed white spots	
		Paratelphusa hydrodomous	• Reduced swimming activity • Not observed white spots	
Table 4. Cont.

Type	Pathogen	Host Species	Characteristics	Reference
Penaeus vannamei	*Paratelphusa pulvinata*	*Matuta planipes*	• Target organs:	
			- Ectodermal (cuticular epidermis, hypodermal epithelium of the fore and hind gut, nerve cord and nerve ganglia)	
			- Mesodermal (hematopoietic organs, antennal gland, tubule epithelium, gonads, lymphoid organ, connective tissue and striated muscles)	
			- Origin (i.e., hepatopancreas, midgut epithelium, anterior mid-gut caecum or posterior midgut caecum)	
	ss	IHHNV	• Acute infection:	
	DNA		- Post-larvae and juveniles	
			- Stop swimming	
			- Tumble	
			• Chronic infection:	
			- Juvenile and subadult	
			- Growth retardation	
			- Deformed rostrum	
			• Susceptible:	
			- All life stages	
			- Larvae and juvenile	
			- Carrier stage: Adults	
			- Low mortality: *Penaeus vannamei*	
	RNA virus	ds RNA	• Target tissue	
		IMNV	- Skeletal muscles	
			- Gills and lymphoid organ	
			• Acute infection:	
			- Clinical manifestation is prominent	
			- Moribund	
			- Lethargy during or soon after stressful events such as netting, feeding, sudden changes in water temperature and sudden reductions in water salinity	
			- Extensive necrotic areas in skeletal muscle tissues	[62,73,76,83–86,195]
			- Distal abdominal segments	
			- White and opaque tail muscle	
			- Milky tail	
Type	Pathogen	Host Species	Characteristics	Reference
-------------	---------------------------	-------------------------------	---	---------------
YHD	Penaeus stylirostris	Penaeus stylirostris	• Pink hue of tail	
			• Chronic infection:	
			- Liquefying of the necrotic muscles	
			- Reddish coloration of the muscles and appendages	
		Penaeus aztecs	• Susceptible	[68,91,100,
		Penaeus duorarum	- Occur at any stage	101,106,113,
		Penaeus setiferus	- Most susceptible stage: Juvenile	215]
		Penaeus vannamei		
		Penaeus esculentus		
		Penaeus stylirostris	• Necrosis:	[52,95,129,
		Penaeus monodon	- Lymphoid organ	130,136,216]
		Fenneropenaeus merguiensis	• Yellow coloration of the cephalothorax and gills	
		Farfantopenaeus aztecs	• Congregate at pond edges near the surface	
		Farfantopenaeus duorarum	• Irregular swimming pattern	
		Metapenaeus ensis	• Cessation of feeding	
		Metapenaeus affinis		
		Marsupenaeus japonicus		
RNA	Penaeus schmitti	Penaeus schmitti	• Acute infection	
		Penaeus setiferus	• Reddish body color, especially on the tail	
		Penaeus duorarum	• Red chromatophore expansion	
		Penaeus aztecs	• Irregular black spot under the cuticle layer	
		Penaeus monodon	• Lethargy	
		Penaeus japonicus	• Anorexia	
		Penaeus japonicus	• Flaccid bodies	[56,140,144,
		Penaeus japonicus	- Soft cuticle	160,163]
		Penaeus chinensis	• Transitional infection	
		Penaeus japonicus	- Multifocal melanized lesions of the cephalothorax and tail	
		Penaeus japonicus	- Lethargy	
		Penaeus japonicus	- Anorexia	
		Penaeus japonicus	• Chronic infection	
		Penaeus japonicus	- Cessation of mortality	
		Penaeus japonicus	- Absence of disease signs	
		Penaeus japonicus	- Resumption of normal feeding and swimming behavior	
WTD	Macrobrachium rosenbergii	Macrobrachium rosenbergii	• Clinical signs:	
	Penaeus indicus	Penaeus indicus	- Lethargy	
	Penaeus japonicus	Penaeus japonicus	- Opaqueness of the abdominal muscle	
	Penaeus monodon	Penaeus monodon	- Degeneration of the telson and uropods	
	Penaeus vannamei	Penaeus vannamei	• Susceptible stages:	[56,140,144,
		Penaeus vannamei	- Hatchery and nursery phases	160,163]
		Cherax quadricarinatus	• Carrier stage	
		Cherax quadricarinatus	- Adult	
Table 5. Summary of the DNA and RNA viral diseases PCR analyses.

Type	Pathogen	PCR	Host	Tissue	Primer	Sequence 5'-3'	Annealing Temperature (°C)	Amplicons (bp)	Reference
DNA virus		Conventional PCR	*Macrobrachium rosenbergii*	Hepatopancreas	WRS primer 5'	WRS primer 3'	62	941	
ds DNA WSSV		Real-time qPCR (EVA green)	*Penaeus monodon*	Muscle	WSSV-VP28 F	WSSV-VP28 R	52	516	
DNA virus	*Periclimax patulus*	Real-time PCR (BRYT Green)	*Penaeus monodon*	Muscle	WSSV-qVP28 F	WSSV-qVP28 R	53	148	
DNA virus	*Penaeus monodon*	Real-time PCR (TaqMan)	*Penaeus monodon*	Muscle	WSSV-qVP28 F	WSSV-qVP28 R	60	69	
ss DNA IHHNV	*Fenneropenaeus indicus*	Nested PCR	*Fenneropenaeus indicus*	Pleopod	146F	146R	55	1447	
ss DNA IHHNV	*Penaeus monodon*	Conventional PCR	*Penaeus monodon*	Tissues of infected samples	77012F	77353R	53	356	
ss DNA IHHNV	*Penaeus vannamei*		*Penaeus vannamei*	Tissues of infected samples	IHHNV389F	IHHNV389R	389		
ss DNA IHHNV	*Penaeus stylirostris*; *Penaeus vannamei*		*Penaeus stylirostris*; *Penaeus vannamei*	Tissues of infected samples	IHHNV721F	IHHNV2860R	55	2000	[58]
ss DNA IHHNV	*Penaeus vannamei*		*Penaeus vannamei*	Tissues of infected samples	IHHNV3065F	IHHNV3065R	392		
ss DNA IHHNV	*Penaeus vannamei*		*Penaeus vannamei*	Tissues of infected samples	IHHNV309R	IHHNV309R	3000		
ss DNA IHHNV	*Penaeus vannamei*		*Penaeus vannamei*	Tissues of infected samples	IHHNV309R	IHHNV309R	309		
Table 5. Cont.

Type	Pathogen	PCR	Host	Tissue	Primer	Sequence 5'-3'	Annealing Temperature (°C)	Amplicons (bp)	Reference
			Penaeus vannamei	Hepatopancreas	IHHNV	CGA TGT GCA ATA TAT ACC CGA TT	52	442	[57]
					REPF	CTT CGC AGA AAC CGT TAA CTT			
					REPR	ACG AAC GAC CAC CCA TGG CA	57	472	
					472F	TCT GGT TCG CCC TGA CGT GT			
					472R	CGA GGC GCG AGT ATC CAT CA			
					447F	TGA GTG ATG GAC GAA AGC GG	55	447	
					447R	TCA TGA AGC GGC AGT ATC CAT CAT	54	228	
Real-time PCR (TaqMan)			Penaeus monodon	Gills	IHHNV-q309F1	CCT AAA GAA AAC AGT GCA GAA TAT GAC	60.7	98	[219]
					q309R1	TCA TCG TCA AGT TTA TTG ACA AGT TC	60.8		
					qEVEF1	CCC ACA AAA AGC AAA TAT ATC TCA CTA T	61.1	106	
					qEVER1	GTC ATT ATG ACA TTA TTG TCC CAC CTT	61.7		
					Pmon-EF1qF1	GCC CGT GTG GAC ACT GTG AT	62.3	110	
					Pmon-EF1qR1	CCG GTT GCA CCT TCA CAG A	62.0		
Real-time PCR (SYBR Green)			Penaeus vannamei	Gills, hepatopancreas, hemolymph	IHHNV	GGG AGT TAC CTT TGC TGC	56	195	[220]
					195F	GCC CGG TCT ACT CGG TCT			
					195R	GCC CAA GAC CAA AAT AC G A			
ds RNA	IMNV	Reverse transcriptase PCR	Penaeus vannamei	Muscle	389F	CGG AAC ACA ACC CGA CTT TA	55	284	[62]
					389R	GCC CAA GAC CAA AAT AC G A			
					IMNV 155-207-F	CAT ATG GGG CAA TTA CGG TTA CAG GG	60	600	[74]
					IMNV 300-357-F	CCG GAT CCG TAT ACA TAC CAA ATG GCC			
					IMNV 300-357-F	CTC GAG ACT AAA CAA ACA ACA GAC 55 700	[87]		
					IMNVF22	C CAT ATG ATT GTI TCA ATG GAA AAT C	57	811	[84]
					IMNVB819	G GAA TTC TTG TAG TGC AGT TGC TGG			
Type	Pathogen	PCR	Host	Tissue	Primer	Sequence 5'–3'	Annealing Temperature (°C)	Amplicons (bp)	Reference
---------------------	-----------------	--------------------	-----------------------	----------------------	-------------------------	---	-----------------------------	----------------	-----------
ss RNA	YHD	RT-PCR	Penaeus monodon	Gills, hemolymph	YHVF5f	CGT ATT GCA TCG AAT GTC ACT G	64	372	[221]
					YHVF5r	CAA GAT CAG TAA TAA CGT ATG C			
					YHVF2s	CGG GGT TAC CCG TTT ATT TTT G			
		Nested PCR			YHVF2as	GCC TGA GGT GAA GTC CAT GT			
		RT-PCR	Penaeus monodon	Gills, epidermis	YCF1a	ATC GTC GTC AGC TAC GGC AAT ACT GC	60	359	[98]
					YCF1b	ATC GTC GTC AGY TAY CTA AAT ACC GC			
					YCR1a	TCT CRG GTG TAC AAT CAC TAC TTR GC			
					YCR1b	TCT CGG TGG GTG AAC ACC TCC TTT GC			
		Nested PCR			YCF2a	CGG TTC CAA TGT TAC TGT ATG CAC CA			
					YCF2b	CGG TTY CAR TGT ATC TGC ATG CAC CA			
					YCR2a	RTC DGT GTA CAT GAT TGC GAG TTT G			
					YCR2b	GTC AGT CAT GAT ATT GGA GAG TTT R			
Real time	**RT-qPCR**	**(TaqMan)**	**Penaeus monodon**	**Pleopod**	**GAVQPF1**	**GGT ATC TAA ACA TGC TCA AGC T**			[223]
					GAVQPR1	**AGT ATG ATG CAT TAC CTC GGT GCA T**			
					6FAM-TAMRA	**6FAM-TCA GCC GCT TCC GCT TCC AAT G**			
Type	Pathogen	PCR	Host	Tissue	Primer	Sequence 5′-3′	Annealing Temperature (°C)	Amplicons (bp)	Reference
-------------------	-------------------	---------------------------	---------------	---------------	----------------	---	-----------------------------	----------------	-----------
RT-LAMP PCR	*Penaeus vannamei*	Pleopods			YHV-F3 ACC CTG TAA TTG GCC ATG TT		65	186	[113]
					YHV-B3 TGC AGT TAA GAT GGT CAC AG				
					YHV-FIP AGA GCA CTG TAG ACT GGT GCC TTT TTG TGG AAC CTG AAG AAT GC				
					YHV-BIP-Biotin Biotin-TCA GCA CCT GGG CTC GTC TCT TTT CGA CAG TGA TTG AAG ACT CG				
					YHV-LF AAC TGT TGC AGA TCG GAT T				
					YHV-LB ATG TGT CAT GAT ATT CTC				
					YHV FITC probe CTC CAT CCA GAA A				
YHV7-qPCR (TaqMan)	*Penaeus monodon*	Pleopods, gills			qYHV-F1 CAT CCA ACC TAT GCC CTA CA		79		[91]
					qYHV-F2 ACC TAT CGC CTA CAC AG TA		73		
					qYHV-R1 TGT GAA GTC CAT GTG AAG GA		-	-	
					qYHV7-Pri 6FAM- CAA CGA CAG ACA CCT CAT CCG TGA-BHQ1		-	-	
YHV7-PCR	*Penaeus monodon*	Pleopods			YHV7-F1a CCT ACA CGC ATG CTC TCT CTA TG		-	788	
					YHV7-R1b GGT GTC TGT CGT GTG GTA TAG CT				
					YHV7-F2a CAA ACA CCA ACC GAC ATT CAG T		58	412	
					YHV7-R2a GCG ACA GTG CCT GAA GAC TTT AG				
ConventionalPCR	*Penaeus monodon*	Gills, tail, body cuticles, swimming feet			9992F AAG TAG ACA GCC GCG CTT		60	231	[129]
					TSV1004F TGG GCC ACC AAA CGA CAT T				
					TSV1075R GGG AGC TTA AAC TGG ACA CAC TGT		417		[119]
					TSV-P1 FAM-CAG CAC TGA CGC ACA ATA TTC GAG CAT C-TAMARA				
					TSV1004F TGG GCC ACC AAA CGA CAT T		60		
					TSV1075R GGG AGC TTA AAC TGG ACA CAC TGT		122		[120]
					TSV-probe FAM-CAG CAC TGA CGC ACA ATA TTC GAG CAT C-TAMARA				
TSV	Davidson’s-fixed paraffin-embedded (DFPE) shrimp tissue				TSV-55P1 GGC GTA GTG AGT AAT GTA GC		60	955	[116]
	Penaeus vannamei	Pleopods			TSV-55P1 GGC GTA GTG AGT AAT GTA GC				
Type	Pathogen	PCR	Host	Tissue	Primer	Sequence 5'-3'	Annealing Temperature (°C)	Amplicons (bp)	Reference
-----------------------	----------	---	-------------	------------	-----------------------------	---------------------------------	-----------------------------	----------------	-----------
Real-time RT-PCR	*Penaeus vannamei*	Cephalothorax	*Penaeus vannamei*	Cephalothorax	TSV-55P2 CTT CAG TGA CCA CGG TAT AG				[138]
		TSV-306F CGT AAA TAG ACG GCC CAC AAA			TSV306F CGT AAA TAG ACG GCC CAC AAA				
		TSV384R TGC ATC TAT ATA TCC AGG GAC TTA TCC			TSV384R TGC ATC TAT ATA TCC AGG GAC TTA TCC				
		TSV-26SF TIC TAT AGG TCT GGT TTA AAA CGT AAA			TSV-26SF TIC TAT AGG TCT GGT TTA AAA CGT AAA				
		TSV-516R CGG TTT TCT CCA TCA TCG TT			TSV-516R CGG TTT TCT CCA TCA TCG TT				
		Mr-RdRp-F GCA TTT GTG AAG AAT GAA CCG			Mr-RdRp-F GCA TTT GTG AAG AAT GAA CCG				
		Mr-RdRp-R CAT GTT CAACTTCTCCACGT			Mr-RdRp-R CAT GTT CAACTTCTCCACGT				
		qMrNV-F AGG ATC CAC TAA GAA CGT GG			qMrNV-F AGG ATC CAC TAA GAA CGT GG				
		qMrNV-R CACCGTCAAACTCCCTGGCG			qMrNV-R CACCGTCAAACTCCCTGGCG				
		MrNv2F GAT ACA GAT CCA CTA GAT GAC C			MrNv2F GAT ACA GAT CCA CTA GAT GAC C				
		MrNv2R GAC GAT AGC TCT GAT AAT CC			MrNv2R GAC GAT AGC TCT GAT AAT CC				
Infected sample		I1775 CCA CGT TCT TAG TCG ATC CT			I1775 CCA CGT TCT TAG TCG ATC CT				
		B690 CGT CCG CCT GGT AGT TCC			B690 CGT CCG CCT GGT AGT TCC				
Muscle		MrNV DBHF ATG GCT AGA GGT AAA CAA AAT TC			MrNV DBHF ATG GCT AGA GGT AAA CAA AAT TC				
		MrNV DBHR TCA TGG ATC ATC AGG CCT GAC A			MrNV DBHR TCA TGG ATC ATC AGG CCT GAC A				
		MrNV PEF GGG CCG GAT CCA TGG CTA GAG GTA			MrNV PEF GGG CCG GAT CCA TGG CTA GAG GTA				
		MrNV PER GGC CAA GCT TTC ATT GAT CAT CAC			MrNV PER GGC CAA GCT TTC ATT GAT CAT CAC				
		GCC CCG CCT GGT TAG CCA AAC AAA ATT C			GCC CCG CCT GGT TAG CCA AAC AAA ATT C				
WTD		Reverse transcriptase PCR	*Macrobrachium rosenbergii*	Muscle	FL-XSV-F CCA CGT CTA GCT GAC GTT				
		FL-XSV-R AAG GTC TTT ATT TAT CTA CCG G			FL-XSV-R AAG GTC TTT ATT TAT CTA CCG G				
		XSV-F GGA GAA CCA TGA CAG CAC G			XSV-F GGA GAA CCA TGA CAG CAC G				
		XSV-R CTG CTC ATT ACT GTT CGG AGT C			XSV-R CTG CTC ATT ACT GTT CGG AGT C				
		qXSV-F AGC CAC ACT CTC GCA TCT GA			qXSV-F AGC CAC ACT CTC GCA TCT GA				
		qXSV-R CTC CAG CAA AGT CGA GCA AGT C			qXSV-R CTC CAG CAA AGT CGA GCA AGT C				
Infected sample		XSV DBHF ATG AAT AAG CGC ATT AAT AAT			XSV DBHF ATG AAT AAG CGC ATT AAT AAT				
		XSV DBHR TTA CTG TTC GGA GTC CCA ATA			XSV DBHR TTA CTG TTC GGA GTC CCA ATA				
Muscle		XSV PEF GGG CCG GAT CCA TGA ATA AGC GCA			XSV PEF GGG CCG GAT CCA TGA ATA AGC GCA				
		TTA ATA AT			TTA ATA AT				
		XSV PER GGC CAA GCT TTC ATT GGT CGG AGT			XSV PER GGC CAA GCT TTC ATT GGT CGG AGT				
		CCC AAT A			CCC AAT A				
4. Conclusions

In this review, we have looked at the DNA and RNA viral diseases affecting shrimp, which are listed by the World Organization for Animal Health. We have provided an overview of the basic characteristics of the viral disease pathogens that can be fatal to farmed shrimp, as well as the disease distribution range, information on the specific hosts, apparent clinical symptoms, disease transmission methods and vectors, mortality rates, diagnostic techniques, as well as strategies for control and prevention. The legal or illegal cross-border movement of living aquatic species for aquaculture has accelerated the spread of diseases and the demand for vaccines and therapeutics for their prevention. However, to find a fundamental solution, various studies on the etiology of these diseases are needed, and breeding organism-friendly aquaculture methods will be required, which consider animal welfare, such as maintaining an appropriate breeding density and a clean breeding environment, using SPF (specific pathogen free) or SPR (specific pathogen resistance), and nature-friendly breeding and nurturing for a disease-free and sustainable shrimp farming industry. The material in this review will help researchers and those working in the industry to better understand the major viral diseases of shrimp, and can be used as a basic data document to help prepare policy measures to prevent and control shrimp viral diseases in the future.

Author Contributions: Conceptualization, Y.-B.Y. and J.-H.C.; Visualization, A.-H.J. and S.-M.H.; Supervision, J.-H.K. and J.-C.K.; Investigation, A.-H.J. and S.-M.H.; Writing-original draft, D.L., Y.-B.Y. and J.-H.C.; Writing-review & editing, J.-H.K. and J.-C.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the project ‘Development and industrialization of genetically advanced aquatic organism using genetic breeding technology’ (grant number, R2022001) of the National Institute of Fisheries Science.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Walker, P.J.; Mohan, C.V. Viral disease emergence in shrimp aquaculture: Origins, impact and the effectiveness of health management strategies. Rev. Aquac. 2009, 1, 125–154. [CrossRef] [PubMed]
2. Lightner, D.V.; Redman, R.M.; Pantoja, C.R.; Tang, K.F.J.; Noble, B.L.; Schofield, P.; Navarro, S.A. Historic emergence, impact and current status of shrimp pathogens in the Americas. J. Invertebr. Pathol. 2012, 110, 174–183. [CrossRef] [PubMed]
3. Roy, S.; Bossier, P.; Norouzitallab, P.; Vanrompay, D. Trained immunity and perspectives for shrimp aquaculture. Rev. Aquac. 2020, 12, 2351–2370. [CrossRef]
4. Manan, H.; Ikhwanuddin, M. Triploid induction in penaeid shrimps aquaculture: A review. Rev. Aquac. 2021, 13, 619–631. [CrossRef]
5. Morshed, M.; Islam, M.S.; Lohano, H.D.; Shyamsundar, P. Production externalities of shrimp aquaculture on paddy farming in coastal Bangladesh. Agric. Water. Manag. 2020, 238, 106213. [CrossRef]
6. Thornber, K.; Verner-Jeffreys, D.; Hinchliffe, S.; Rahman, M.M.; Bass, D.; Tyler, C.R. Evaluating antimicrobial resistance in the global shrimp industry. Rev Aquac. 2020, 12, 966–986. [CrossRef]
7. Tacon, A.G. Trends in global aquaculture and aquafeed production: 2000–2017. Rev. Fish. Sci. Aquac. 2020, 28, 43–56. [CrossRef]
8. Flegel, T.W. Historic emergence, impact and current status of shrimp pathogens in Asia. J. Invertebr. Pathol. 2012, 110, 166–173. [CrossRef]
9. Sánchez-Paz, A. White spot syndrome virus: An overview on an emergent concern. Vet. Res. 2010, 41, 43. [CrossRef]
10. Xiong, J. Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Appl. Microbiol. Biotechnol. 2018, 102, 7343–7350. [CrossRef]
11. Flegel, T.W. Current status of viral diseases in Asian shrimp aquaculture. Isr. J. Aquac. Bamidgeh 2009, 60, 229–239. [CrossRef]
12. Thitamadee, S.; Prachumwat, A.; Srisala, J.; Jaroenlak, P.; Salancha, P.V.; Sritunyalucksana, K.; Itsathipaisarn, O. Review of current disease threats for cultivated penaeid shrimp in Asia. Aquaculture 2016, 452, 69–87. [CrossRef]
13. Boonyakida, J.; Xu, J.; Satoh, J.; Nakanishi, T.; Mekata, T.; Kato, T.; Park, E.Y. Antigenic properties of VP15 from white spot syndrome virus in kuruma shrimp *Marsupenaeus japonicus*. *Fish Shellfish. Immunol.* **2020**, *101*, 152–158. [CrossRef] [PubMed]

14. Pradeep, B.; Rai, P.; Mohan, S.A.; Shekhari, M.S.; Karunasarag, I. Biology, host range, pathogenesis and diagnosis of white spot syndrome virus. *Indian. J. Virol.* **2012**, *23*, 161–174. [CrossRef] [PubMed]

15. Zhu, L.; Zhang, S.; Hou, C.; Liang, X.; Dehwah, M.A.S.; Tan, B.; Shi, L. The T cell factor, pangolin, from *Litopenaeus vannamei* play a positive role in the immune responses against white spot syndrome virus infection. *Dev. Comp. Immunol.* **2021**, *119*, 104041. [CrossRef] [PubMed]

16. Qiu, W.; Geng, R.; Zuo, H.; Weng, S.; He, J.; Xu, X. Toll receptor 2 (Toll2) positively regulates antibacterial immunity but promotes white spot syndrome virus infection in shrimp. *Dev. Comp. Immunol.* **2021**, *115*, 103878. [CrossRef]

17. Panchal, V.; Kumar, S.; Hossain, S.N.; Vasudevan, D. Structure analysis of thymidylate synthase from white spot syndrome virus reveals WSSV-specific structural elements. *Int. J. Biol. Macromol.* **2021**, *167*, 1168–1175. [CrossRef]

18. Verbruggen, B.; Bickley, L.K.; Van Aerle, R.; Bateman, K.S.; Stentiford, G.D.; Santos, E.M.; Tyler, C.R. Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. *Viruses* **2016**, *8*, 23. [CrossRef]

19. Oakey, J.; Smith, C.; Underwood, D.; Afsharnasab, M.; Alday-Sanz, V.; Dhar, A.; Crook, A. Global distribution of white spot syndrome virus genotypes determined using a novel genotyping assay. *Arch. Virol.* **2019**, *164*, 2061–2082. [CrossRef]

20. Dey, B.K.; Dugassa, G.H.; Hinzano, S.M.; Bossier, P. Causative agent, diagnosis and management of white spot disease in shrimp: A review. *Rev. Aquac.* **2020**, *12*, 822–865. [CrossRef]

21. Chen, H.; Wang, Y.; Zhang, J.; Bao, J. Intestinal microbiota in white spot syndrome virus infected red swamp crayfish (*Procambarus clarkii*) at different health statuses. *Aquaculture* **2021**, *542*, 736826. [CrossRef]

22. Lai, Y.; Zhu, F.; Xu, Y. WSSV proteins and DNA genome released by ultrasonic rupture can infect crayfish as effectively as intact virions. *J. Virol. Methods* **2020**, *283*, 113917. [CrossRef] [PubMed]

23. Pereira, J.M.P.; de Souza, E.N.V.; Candido, J.R.; Dantas, M.D.; Nunes, A.R.; Ribeiro, K.; Lanza, D.C. Alternative PCR primers for genotyping of Brazilian WSSV isolates. *J. Invertebr. Pathol.* **2019**, *162*, 52–63. [CrossRef] [PubMed]

24. Sathyabhama, A.B.; Puthumana, J.; Kombiyil, S.; Philip, R.; Singh, I.S.B. ‘PmLyO-Sf9-WSSV complex’ could be a platform for elucidating the mechanism of viral entry, cellular apoptosis and replication impediments. *Virology* **2021**, *533*, 102–110. [CrossRef]

25. Weerachatyanukul, W.; Chotwiwatthanakun, C.; Jariyapong, P. Dual VP28 and VP37 dsRNA encapsulation in IHHNV virus-like particles enhances shrimp protection against white spot syndrome virus. *Fish Shellfish. Immunol.* **2021**, *113*, 89–95. [CrossRef]

26. Li, J.; Xu, L.; Li, F.; Yang, F. Low-abundance envelope protein VP12 of white spot syndrome virus interacts with envelope protein VP15 and capsid protein VP51. *Virus Res.* **2013**, *178*, 206–210. [CrossRef]

27. Talukder, A.S.; Punom, N.J.; Eshik, M.M.E.; Begum, M.K.; Islam, H.R.; Hossain, Z.; Rahman, M.S. Molecular identification of white spot syndrome virus (WSSV) and associated risk factors for white spot disease (WSD) prevalence in shrimp (*Penaeus monodon*) aquaculture in Bangladesh. *J. Invertebr. Pathol.* **2021**, *179*, 107535. [CrossRef]

28. Ramos-Paredes, J.; Grijalva-Chon, J.M.; Ibarra-Gámez, J.C. Virulence and genotypes of white spot syndrome virus infecting Pacific white shrimp *Litopenaeus vannamei* in north-western Mexico. *J. Fish Dis.* **2017**, *40*, 425–435. [CrossRef]

29. van Hulten, M.C.; Witteveldt, J.; Peters, S.; Kloosterboer, N.; Tarchini, R.; Fiers, M.; Vlak, J.M. The white spot syndrome virus DNA genome sequence. *Virology* **2001**, *286*, 7–22. [CrossRef]

30. Yang, F.; He, J.; Lin, X.; Li, Q.; Pan, D.; Zhang, X.; Xu, X. Complete genome sequence of the shrimp white spot bacilliform virus. *J. Virol.* **2001**, *75*, 11811–11820. [CrossRef]

31. Chen, L.L.; Wang, H.C.; Huang, C.J.; Peng, S.E.; Chen, Y.G.; Lin, S.J.; Chen, W.Y.; Dai, C.F.; Yu, H.T.; Wang, C.H.; et al. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus. *Virology* **2002**, *301*, 136–147. [CrossRef] [PubMed]

32. Chai, C.Y.; Yoon, J.; Lee, Y.S.; Kim, Y.B.; Choi, T.J. Analysis of the complete nucleotide sequence of a white spot syndrome virus isolated from pacific white shrimp. *J. Microbiol.* **2013**, *51*, 695–699. [CrossRef] [PubMed]

33. Rodriguez-Anaya, L.Z.; Gonzalez-Galaviz, J.R.; Casillas-Hernandez, R. Draft genome sequence of white spot syndrome virus isolated from cultured Litopenaeus vannamei in Mexico. *Genome Announc.* **2016**, *4*, e01674-15. [CrossRef] [PubMed]

34. Li, F.; Gao, M.; Xu, L.; Yang, F. Comparative genomic analysis of three white spot syndrome virus isolates of different virulence. *Virus Genes*. **2017**, *53*, 249–258. [CrossRef]

35. Han, Y.; Li, F.; Xu, L.; Yang, F.A. VP24-truncated isolate of white spot syndrome virus is inefficient in per os infection. *Vet. Res.* **2017**, *48*, 1–11. [CrossRef]

36. Jiang, L.; Xiao, J.; Liu, L.; Pan, Y.; Yan, S.; Wang, Y. Characterization and prevalence of a novel white spot syndrome viral genotype in naturally infected wild crayfish, *Procambarus clarkii*, in Shanghai, China. *Viruses* **2017**, *28*, 250–261. [CrossRef]

37. Oakey, H.J.; Smith, C.S. Complete genome sequence of a white spot syndrome virus associated with a disease incursion in Australia. *Aquaculture* **2018**, *484*, 152–159. [CrossRef]

38. Vinaya Kumar, K.; Shekhari, M.S.; Otta, S.K.; Karthick, K.; Ashok Kumar, J.; Gopikrishna, G.; Vijayan, K.K. First Report of a Complete Genome Sequence of White spot syndrome virus from India. *Genome Announc.* **2018**, *6*, e00555-18. [CrossRef]

39. Restrepo, L.; Reyes, A.; Bajaña, L.; Betancourt, I.; Bayot, B. Draft genome sequence of a white spot syndrome virus isolate obtained in Ecuador. *Genome Announc.* **2018**, *6*, e00605-18. [CrossRef]
40. Dantas, M.D.A.; Teixeira, D.G.; Silva-Portela, R.C.B.; Soares, P.E.T.; Lima, J.P.M.S.; Agnez-Lima, L.F.; Lanza, D.C.F. Direct sequencing of the white spot syndrome virus from Brazil: Genome assembly and new insights on phylogeny. Virus Res. 2018, 245, 52–61. [CrossRef]

41. Cruz-Flores, R.; Mai, H.N.; Kanrar, S.; Caro, L.F.A.; Dhar, A.K. Genome reconstruction of white spot syndrome virus (WSSV) from archival Davidson’s-fixed paraffin embedded shrimp (Penaeus vannamei) tissue. Sci. Rep. 2020, 10, 13425. [CrossRef] [PubMed]

42. Dashtiannas, A. White Spot Syndrome Virus. In Emerging and Reemerging Viral Pathogens; Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens; Ennaji, M.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 717–728. [CrossRef]

43. Zwart, M.P.; Dier, B.T.M.; Hemerik, L.; Vlak, J.M. Evolutionary trajectory of white spot syndrome virus (WSSV) genome shrinkage during spread in Asia. PLoS ONE 2010, 5, e13400. [CrossRef] [PubMed]

44. Yogananthand, K.; Thirupath, S.; Hameed, A.S. Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture 2003, 221, 1–11. [CrossRef]

45. Tuyen, N.X.; Verrre, J.; Vlak, J.M.; de Jong, M.C.M. Horizontal transmission dynamics of White spot syndrome virus by cohabitation trials in juvenile Penaeus monodon and P. vannamei. Prev. Vet. Med. 2014, 117, 286–294. [CrossRef] [PubMed]

46. Arulmoorthy, M.P.; Anandajothi, E.; Vasudevan, S.; Suresh, E. Major viral diseases in culturable penaeid shrimps: A review. Aquac. Int. 2020, 28, 1939–1967. [CrossRef]

47. Patil, P.K.; Geetha, R.; Ravisankar, T.; Avunj, S.; Solanki, H.G.; Abraham, T.J.; Vijayan, K.K. Economic loss due to diseases in Indian shrimp farming with special reference to Enterocytozoon hepatopenaei (EHP) and white spot syndrome virus (WSSV). Aquaculture 2021, 533, 736231. [CrossRef]

48. Hameed, A.S.; Yogananthand, K.; Sathish, S.; Rasheed, M.; Murugan, V.; Jayaraman, K. White spot syndrome virus (WSSV) in two species of freshwater crabs (Paratelphusa hydrodomous and P. palvenate). Aquaculture 2001, 201, 179–186. [CrossRef]

49. Escobedo-Bonilla, C.M.; Alday-Sanz, V.; Wille, M.; Sorgeloos, P.; Pensaert, M.B.; Nauwynck, H.J. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J. Fish Dis. 2008, 31, 1–18. [CrossRef]

50. Qian, X.; Zhu, F. Use of glycerol monolaurate as a treatment against white spot syndrome virus in crayfish (Procambarus clarkii). Aquaculture 2021, 541, 736853. [CrossRef]

51. Xiao, C.; Zhang, Y.; Zhu, F. Effect of dietary sodium butyrate on the innate immune response of Procambarus clarkii and disease resistance against white spot syndrome virus. Aquaculture 2021, 541, 736784. [CrossRef]

52. Stentiford, G.D.; Bonami, J.R.; Alday-Sanz, V. A critical review of susceptibility of crustaceans to Taura syndrome, Yellowhead disease and White Spot Disease and implications of inclusion of these diseases in European legislation. Aquaculture 2009, 291, 1–17. [CrossRef]

53. Hossain, A.; Nandi, S.P.; Siddique, M.A.; Sanyal, S.K.; Sultana, M.; Hossain, M.A. Prevalence and distribution of White Spot Syndrome Virus in cultured shrimp. Lett. Appl. Microbiol. 2015, 60, 128–134. [CrossRef] [PubMed]

54. Gholamhosseini, A.; Mohammadi, A.; Akbari, S.; Banaee, M. Molecular, histopathologic and electron microscopic analysis of white spot syndrome virus in wild shrimp (Fenneropenaeus indicus) in the coastal waters of Iran. Arch. Virol. 2020, 165, 1433–1440. [CrossRef] [PubMed]

55. Sritunyalucksana, K.; Srisala, J.; McColl, K.; Nielsen, L.; Flegel, T.W. Comparison of PCR testing methods for white spot syndrome virus (WSSV) infections in penaeid shrimp. Aquaculture 2006, 255, 95–104. [CrossRef]

56. Gangnonngiw, W.; Bunnontae, M.; Phiwsaiya, K.; Senapin, S.; Dhar, A.K. In experimental challenge with infectious clones of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV), MrNV alone can cause mortality in freshwater prawn (Macrobrachium rosenbergii). Virology 2020, 540, 30–37. [CrossRef]

57. Chai, C.; Liu, Y.; Xia, X.; Wang, H.; Pan, Y.; Yan, S.; Wang, Y. Prevalence and genomic analysis of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in Litopenaeus vannamei shrimp farmed in Shanghai, China. Arch. Virol. 2016, 161, 3189–3201. [CrossRef]

58. Rai, P.; Safeena, M.P.; Krabsetsve, K.; La Fauce, K.; Owens, L.; Karunasagar, I. Genomics, molecular epidemiology and diagnostics of infectious hypodermal and hematopoietic necrosis virus. Indian J. Virol. 2012, 23, 203–214. [CrossRef]

59. Yu, J.Y.; Yang, N.; Hou, Z.H. Research progress on hosts and carriers, prevalence, virulence of infectious hypodermal and hematopoietic necrosis virus (IHHNV). J. Invertebr. Pathol. 2021, 183, 107556. [CrossRef]

60. Shen, H.; Zhang, W.; Shao, S. Phylogenetic and recombination analysis of genomic sequences of IHHNV. J. Basic Microbiol. 2015, 55, 1048–1052. [CrossRef]

61. Nita, M.K.H.; Kua, B.C.; Bhassu, S.; Othman, R.Y. Detection and genetic profiling of infectious hypodermal and haematopoietic necrosis virus (IHHNV) infections in wild berried freshwater prawn, Macrobrachium rosenbergii collected for hatchery production. Mol. Biol. Rep. 2012, 39, 3785–3790. [CrossRef]

62. Lightner, D.V. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): A review. J. Invertebr. Pathol. 2011, 106, 110–130. [CrossRef] [PubMed]

63. Leyva-Madrigal, K.Y.; Luna-González, A.; Escobedo-Bonilla, C.M.; Fierro-Coronado, J.A.; Maldonado-Mendoza, I.E. Screening for potential probiotic bacteria to reduce prevalence of WSSV and IHHNV in whiteleg shrimp (Litopenaeus vannamei) under experimental conditions. Aquaculture 2011, 322, 16–22. [CrossRef]

64. Rai, P.; Pradeep, B.; Karunasagar, I.; Karunasagar, I. Detection of viruses in Penaeus monodon from India showing signs of slow growth syndrome. Aquaculture 2009, 289, 231–235. [CrossRef]
65. Montgomery-Brock, D.; Tacon, A.G.J.; Poulous, B.; Lightner, D. Reduced replication of infectious hypodermal and haematopoietic necrosis virus (IHHNV) in *Litopenaeus vannamei* held in warm water. *Aquaculture* 2007, 265, 41–48. [CrossRef]

66. Tang, K.F.; Lightner, D.V. Infectious hypodermal and haematopoietic necrosis virus (IHHNV)-related sequences in the genome of the black tiger prawn *Peneaus monodon* from Africa and Australia. *Viruses* 2006, 118, 185–191. [CrossRef]

67. Motte, E.; Yugcha, E.; Luzardo, J.; Castro, F.; Lecercq, G.; Rodriguez, J.; Boulo. V. Prevention of IHHNV vertical transmission in the white shrimp *Litopenaeus vannamei*. *Aquaculture* 2003, 219, 57–70. [CrossRef]

68. Chen, J.; Wang, W.; Wang, X.; Zhang, Q.; Ren, Y.; Song, J.; Wang, X.; Dong, X.; Huang. J. First detection of yellow head virus genotype 3 (YHV-3) in cultured *Peneaus monodon*, mainland China. *J. Fish Dis.* 2018, 41, 1449–1451. [CrossRef]

69. Encinas-García, T.; Mendoza-Can, F.; Enríquez-Espinosa, T.; Luken-Vega, L.; Vichido-Chávez, R.; Sánchez-Paz, A. An improved validated SYBR green-based real-time quantitative PCR assay for the detection of the *Peneus stylirostris* demosivirus in penaeid shrimp. *J. Virol. Methods* 2015, 212, 53–58. [CrossRef]

70. Zhu, Y.P.; Li, C.; Wan, X.Y.; Yang, Q.; Xie, G.S.; Huang. J. Delivery of plasmid DNA to shrimp hemocytes by Infectious hypodermal and haematopoietic necrosis virus (IHHNV) nanoparticles expressed from a baculovirus insect cell system. *J. Invertebr. Pathol.* 2019, 166, 107231. [CrossRef]

71. Chen, B.K.; Dong, Z.; Liu, Y.B.; Pang, N.Y.; Nian, Y.Y.; Yan, D.C. Infectious hypodermal and haematopoietic necrosis virus (IHHNV) infection in freshwater crayfish *Procambarus clarkii*. *Aquaculture* 2017, 477, 76–79. [CrossRef]

72. Andrade, T.P.D.; Redman, R.M.; Lightner, D.V. Evaluation of the preservation of shrimp samples with Davidson’s AFA fixative for infectious myonecrosis virus (IMNV) in situ hybridization. *Aquaculture* 2008, 278, 179–183. [CrossRef]

73. Coelho, M.G.L.; Silva, A.C.G.; Nova, C.M.V.; Neto, J.M.O.; Lima, A.C.N.; Feijó, R.G.; Apolinário, D.F.; Maggioni, R.; Gesteira, T.C.V. Susceptibility of the wild southern brown shrimp (*Farfantepenaeus subtilis*) to infectious hypodermal and haematopoietic necrosis (IHHNV) and infectious myonecrosis (IMNV). *Aquaculture* 2009, 294, 1–4. [CrossRef]

74. Prasad, K.P.; Shyam, K.U.; Banu, H.; Jeena, K.; Krishnan, R. Infectious Myonecrosis Virus (IMNV)—An alarming viral pathogen to farmed *Peneaus monodon*. *Aquaculture* 2017, 477, 99–105. [CrossRef]

75. Mai, H.N.; Hanggono, B.; Caro, L.F.A.; Komaruddin, U.; Nur‘aini, Y.L.; Dhar, A.K. Novel infectious myonecrosis virus (IMNV) genotypes associated with disease outbreaks on *Peneaus vannamei* shrimp farms in Indonesia. *Arch. Virol.* 2019, 164, 3051–3057. [CrossRef]

76. Jithendran, K.P.; Krishnan, A.N.; Jagadeesan, V.; Anandaraja, R.; Ezhil Praveena, P; Anushya, S.; Bhuvaneswari, T. Co-infection of infectious myonecrosis virus and *Enterocytozoon hepatopenaei* in *Peneaus vannamei* farms in the east coast of India. *Aquac. Res.* 2021, 52, 4701–4710. [CrossRef]

77. Santhosh Kumar, S.; Sivakumar, S.; Abdul Majeed, S.; Vimal, S.; Taju, G.; Sahul Hameed, A.S. In vitro propagation of infectious myonecrosis virus in C6/36 mosquito cell line. *J. Fish Dis.* 2021, 44, 987–992. [CrossRef]

78. Kokkattunivarthil, S.; Krishnan, R.; Kezhedath, J.; Prasad, K.P.; Naik, T.V. New set of PCR primers for SYBR green-based qPCR for the detection of the *Peneus stylirostris* demosivirus in penaeid shrimp. *J. Virol. Methods* 2013, 56, 107231. [CrossRef]

79. Senapin, S.; Phiwsaiya, K.; Gangnonngiw, W.; Flegel, T.W. False rumours of disease outbreaks caused by infectious myonecrosis virus (IMNV) nanoparticles expressed from a baculovirus insect cell system. *J. Invertebr. Pathol.* 2019, 166, 107231. [CrossRef]

80. Teixeira-Lopes, M.A.; Vieira-Girévez, R.; Cunha, R.; Souza, M.; Lopes, M.A. Prevention of IHHNV vertical transmission in the white shrimp *Litopenaeus vannamei*. *Aquaculture* 2003, 219, 57–70. [CrossRef]

81. Senapin, S.; Phiwsaiya, K.; Gangnonngiw, W.; Flegel, T.W. False rumours of disease outbreaks caused by infectious myonecrosis virus (IMNV) nanoparticles expressed from a baculovirus insect cell system. *J. Invertebr. Pathol.* 2019, 166, 107231. [CrossRef]

82. Andrade, T.P.D.; Redman, R.M.; Lightner, D.V. Evaluation of the preservation of shrimp samples with Davidson’s AFA fixative for infectious myonecrosis virus (IMNV) in situ hybridization. *Aquaculture* 2008, 278, 179–183. [CrossRef]

83. Borsa, M.; Seibert, C.H.; Rosa, R.D.; Stoco, P.H.; Cargnin-Ferreira, E.; Pereira, A.M.L.; Grisard, E.C.; Zanetti, C.R.; Pinto, A.R. Detection of infectious myonecrosis virus in penaeid shrimps using immunoassays: Usefulness of monoclonal antibodies directed to the viral major capsid protein. *Arch. Virol.* 2021, 156, 9–16. [CrossRef] [PubMed]

84. Coelho, M.G.L.; Silva, A.C.G.; Nova, C.M.V.; Neto, J.M.O.; Lima, A.C.N.; Feijó, R.G.; Apolinário, D.F.; Maggioni, R.; Gesteira, T.C.V. Susceptibility of the wild southern brown shrimp (*Farfantepenaeus subtilis*) to infectious hypodermal and haematopoietic necrosis (IHHNV) and infectious myonecrosis (IMNV). *Aquaculture* 2009, 294, 1–4. [CrossRef]

85. Kunanopparat, A.; Chaivisuthangkura, P.; Senapin, S.; Longyant, S.; Rukpratanporn, S.; Flegel, T.W.; Sithigornrug, P. Detection of infectious myonecrosis virus using monoclonal antibody specific to N and C fragments of the capsid protein expressed heterologously. *J. Virol. Methods* 2011, 171, 141–148. [CrossRef] [PubMed]

86. Poulos, B.T.; Tang, K.F.J.; Pantoja, C.R.; Bonami, J.R.; Lightner, D.V. Purification and characterization of infectious myonecrosis virus of penaeid shrimp. *J. Gen. Virol.* 2006, 87, 987–996. [CrossRef] [PubMed]

87. Seibert, C.H.; Borsa, M.; Rosa, R.D.; Cargnin-Ferreira, E.; Pereira, A.M.L.; Grisard, E.C.; Zanetti, C.R.; Pinto, A.R. Detection of major capsid protein of infectious myonecrosis virus in shrimps using monoclonal antibodies. *J. Virol. Methods* 2010, 169, 169–175. [CrossRef]

88. Vanpatten, K.A.; Nunan, L.M.; Lightner, D.V. Seabirds as potential vectors of penaeid shrimp viruses and the development of a surrogate laboratory model utilizing domestic chickens. *Aquaculture* 2004, 241, 31–46. [CrossRef]
89. Srisala, J.; Sanguanrut, P.; Laiphrom, S.; Siritawatno, J.; Khudet, J.; Thaide, D.; Sritunyalucksana, K. Infectious myonecrosis virus (IMNV) and decapod iridescent virus 1 (DIV1) detected in Penaeus monodon from the Indian Ocean. *Aquaculture* **2021**, *454*, 1–26. [CrossRef]

90. Feijó, R.G.; Kamimura, M.T.; Oliveira-Neto, J.M.; Vila-Nova, C.M.V.M.; Gomes, A.C.S.; Coelho, M.G.L.; Vasconcelos, R.F.; Gesteira, T.C.V.; Marins, L.F.; Maggioni, R. Infectious myonecrosis virus and white spot syndrome virus co-infection in Pacific white shrimp (*Litopenaeus vannamei*) farmed in Brazil. *Aquaculture* **2013**, *380*, 1–5. [CrossRef]

91. Cowley, J.A.; Rao, M.; Mohr, P.; Moody, N.J.; Sellars, M.J.; Crane, M.S.J. TaqMan real-time and conventional nested PCR tests specific to yellow head virus genotype 7 (*YHV7*) identified in giant tiger shrimp in Australia. *J. Virol. Methods* **2019**, *273*, 113689. [CrossRef]

92. Sittidilokratna, N.; Dangtip, S.; Cowley, J.A.; Walker, P.J. RNA transcription analysis and completion of the genome sequence of yellow head nidovirus. *Virus Res.* **2008**, *136*, 157–165. [CrossRef] [PubMed]

93. Li, C.; Ren, Y.; Dong, X.; Wang, C.; Huang, J. Extraction of assembling complexes of viral capsomers from shrimp tissue infected with yellow head virus genotype 8 (*YHV8*). *J. Fish Dis.* **2019**, *42*, 613–616. [CrossRef] [PubMed]

94. Soowannayan, C.; Nguyen, G.T.; Pham, L.N.; Phanthura, M.; Nakthong, N. Australian red claw crayfish (*Cherax quadricarinatus*) is susceptible to yellow head virus (*YHV*) infection and can transmit it to the black tiger shrimp (*Penaeus monodon*). *Aquaculture* **2015**, *445*, 63–69. [CrossRef]

95. Dhar, A.K.; Cowley, J.A.; Hasson, K.W.; Walker, P.J. Genomic organization, biology, and diagnosis of Taura syndrome virus and yellowhead virus of penaeid shrimp. *Adv. Virus Res.* **2004**, *63*, 353. [CrossRef] [PubMed]

96. Bateman, K.S.; Stentiford, G.D. A taxonomic review of viruses infecting crustaceans with an emphasis on wild hosts. *J. Invertebr. Pathol.* **2017**, *147*, 86–110. [CrossRef]

97. Wijegoonawardane, P.O.; Taengchaiyaphum, S.; Paemanee, A.; Phungthanom, N.; Roytrakul, S.; Sritunyalucksana, K.; Krittanai, C. Genetic diversity in yellowhead virus of penaeid shrimp. *Virology* **2017**, *630*, 213–225. [CrossRef]

98. Dhar, A.K.; Cowley, J.A.; Hasson, K.W.; Walker, P.J. Genetic diversity in the yellow head nidovirus complex. *Virology* **2008**, *380*, 213–225. [CrossRef]

99. Dhar, A.K.; Cowley, J.A.; Hasson, K.W.; Walker, P.J. Genomic organization, biology, and diagnosis of Taura syndrome virus and yellowhead virus of penaeid shrimp. *Adv. Virus Res.* **2004**, *63*, 353. [CrossRef] [PubMed]

100. Walker, P.J.; Sittidilokratna, N. Yellow Head Virus. In *Aquaculture Virology*; Kibenge, F.S.B., Godoy, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 443–472. [CrossRef]

101. Dong, X.; Liu, S.; Zhu, L.; Wan, X.; Liu, Q.; Qiu, L.; Zou, P.; Zhang, Q.; Huang, J. Complete genome sequence of an isolate of yellow head nidovirus. *Virus Res.* **2015**, *201**, 63–69. [CrossRef]

102. Anantasomboon, G.; Poonkhum, R.; Sittidilokratna, N.; Flegel, T.W.; Withyachumnarnkul, B. Low viral loads and lymphoid organ regression in yellow head virus infected shrimp. *Dev. Comp. Immunol.* **2008**, *32*, 613–626. [CrossRef] [PubMed]

103. Havanapan, P.O.; Taengchaiyaphum, S.; Paemanee, A.; Phungthanom, N.; Rroytrakul, S.; Sritunyalucksana, K.; Krittanai, C. Caspase-3, a shrimp phosphorylated hemocytic protein is necessary to control YHV infection. *Arch. Virol.* **2015**, *160*, 103–110. [CrossRef] [PubMed]

104. Yang, H.L.; Qiu, L.; Liu, Q.; Wan, X.Y.; Liu, S.; Zhu, L.L.; Huang, J. A novel method of real-time reverse-transcription loop-mediated isothermal amplification developed for rapid and quantitative detection of a new genotype (*YHV8*) of yellow head virus. *Lett. Appl. Microbiol.* **2016**, *63*, 103–110. [CrossRef] [PubMed]

105. Senapin, S.; Thaoawut, Y.; Gungnonngiw, W.; Chuchird, N.; Sritunyalucksana, K.; Flegel, T.W. Impact of yellow head virus outbreaks in the whiteleg shrimp, *Penaeus vannamei* (Boone), in Thailand. *J. Fish Dis.* **2010**, *33*, 421–430. [CrossRef] [PubMed]

106. Senapin, S.; Thaoawut, Y.; Gungnonngiw, W.; Chuchird, N.; Sritunyalucksana, K.; Flegel, T.W. Impact of yellow head virus outbreaks in the whiteleg shrimp, *Penaeus vannamei* (Boone), in Thailand. *J. Fish Dis.* **2010**, *33*, 421–430. [CrossRef] [PubMed]

107. Cowley, J.A.; Cadogan, L.C.; Spann, K.M.; Sittidilokratna, N.; Walker, P.J. The Gene Encoding the Nucleocapsid Protein of Gill-Associated Nidovirus of *Penaeus monodon*. *J. Gen. Virol.* **2010**, *91*, 1432–1443. [CrossRef]

108. Cedano-Thomas, Y.; de la Rosa-Veláz, J.; Bonami, J.R.; Vargas-Albores, F. Gene expression kinetics of the yellow head virus in experimentally infected *Litopenaeus vannamei*. *Aquac. Res.* **2010**, *41*, 1432–1443. [CrossRef]

109. Samocha, T.M. *Sustainable Biofloc Systems for Marine Shrimp*; Academic Press: Cambridge, MA, USA, 2019. [CrossRef]

110. Prapavorarat, A.; Pongsomboon, S.; Tassanakajon, A. Identification of genes expressed in response to yellow head virus infection in the black tiger shrimp, *Penaeus monodon*, by suppression subtractive hybridization. *Dev. Comp. Immunol.* **2010**, *34*, 611–617. [CrossRef]

111. Cowley, J.A. Nidoviruses of Fish and Crustaceans. In *Aquaculture Virology*; Kibenge, F.S.B., Godoy, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 443–472. [CrossRef]

112. Thedcharoen, P.; Pewklang, Y.; Kiem, H.K.T.; Nuntakarn, L.; Taengchaiyaphum, S.; Sritunyalucksana, K.; Borwornpinnoy, S. Effective suppression of yellow head virus replication in *Penaeus monodon* hemocytes using constitutive expression vector for long-hairpin RNA (ihRNA). *J. Invertebr. Pathol.* **2020**, *175*, 107442. [CrossRef]
113. Khunthong, P.; Jaroenram, W.; Arunrut, N.; Suebsing, R. Rapid and sensitive detection of shrimp yellow head virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J. Virol. Methods 2013, 188, 51–56. [CrossRef]

114. Wijegoonawardane, P.K.M.; Cowley, J.A.; Walker, P.J. Consensus RT-nested PCR detection of yellow head complex genotypes in penaeid shrimp. J. Virol. Methods 2008, 153, 168–175. [CrossRef]

115. Sanitt, P.; Attasaart, P.; Panyim, S. Protection of yellow head virus infection in shrimp by feeding of bacteria expressing dsRNAs. J. Biotechnol. 2014, 179, 26–31. [CrossRef]

116. Tang, K.F.; Aranguren, L.F.; Piamsomboon, P.; Han, J.E.; Maskaykina, I.Y.; Schmidt, M.M. Detection of the microsporidian Enterocytozoon hepatopenaei (EHP) and Taura syndrome virus in Penaeus vannamei cultured in Venezuela. Aquaculture 2017, 480, 17–21. [CrossRef]

117. Cruz-Flores, R.; Mai, H.N.; Dhar, A.K. Complete genome reconstruction and genetic analysis of Taura syndrome virus of shrimp from archival Davidson’s-fixed paraffin embedded tissue. Virusology 2021, 553, 117–121. [CrossRef] [PubMed]

118. Ochoa, L.M.; Cruz-Flores, R.; Dhar, A.K. Detection and Phylogenetic Analyses of Taura Syndrome Virus from Archived Davidson’s-Fixed Paraffin-Embedded Shrimp Tissue. Viruses 2020, 12, 1030. [CrossRef]

119. Kiatpathomchai, W.; Jareonram, W.; Jitrapakdee, S.; Flegel, T.W. Rapid and sensitive detection of Taura syndrome virus by reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 2007, 146, 125–128. [CrossRef] [PubMed]

120. Boube, I.; Lotz, J.M.; Pozhitkov, A.E.; Li, S.; Griffitt, R.J. Identification of genes involved in Taura Syndrome Virus resistance in Litopenaeus vannamei. J. Aquat. Anim. Health 2014, 26, 137–143. [CrossRef] [PubMed]

121. Cheng, L.T.; Lin, W.H.; Wang, P.C.; Tsai, M.A.; Ho, P.Y.; Hsu, J.P.; Chern, R.S.; Chen, S.C. Epidemiology and phylogenetic analysis of Taura syndrome virus in cultured Pacific white shrimp Penaeus vannamei B. in Taiwan. Dis. Aquat. Org. 2011, 97, 17–23. [CrossRef] [PubMed]

122. Tang, K.F.; Navarro, S.A.; Pantoja, C.R.; Aranguren, F.L.; Lightner, D.V. New genotypes of white spot syndrome virus (WSSV) and Taura syndrome virus (TSV) from the Kingdom of Saudi Arabia. Dis. Aquat. Org. 2012, 99, 179–185. [CrossRef]

123. Moss, D.R.; Moss, S.M.; Lotz, J.M. Estimation of genetic parameters for survival to multiple isolates of Taura syndrome virus in a selected population of Pacific white shrimp Penaeus (Litopenaeus) vannamei. Aquaculture 2013, 416, 78–84. [CrossRef]

124. Nielsen, L.; Sang-Oum, W.; Cheevadhanarak, S.; Flegel, T.W. Taura syndrome virus (TSV) in Thailand and its relationship to TSV in China and the Americas. Dis. Aquat. Org. 2005, 63, 101–106. [CrossRef]

125. Phalitakul, S.; Wongtawatchai, J.; Sarikaputi, M.; Viseshakul, N. The molecular detection of Taura syndrome virus emerging with White spot syndrome virus in penaeid shrimps of Thailand. Aquaculture 2006, 260, 77–85. [CrossRef]

126. Erickson, H.S.; Poulos, B.T.; Tang, K.F.; Bradley-dunlop, D.; Lightner, D.V. Taura syndrome virus from Belize represents a unique variant. Dis. Aquat. Org. 2005, 64, 91–98. [CrossRef] [PubMed]

127. Wertheim, J.O.; Tang, K.F.; Navarro, S.A.; Lightner, D.V. A quick fuse and the emergence of Taura syndrome virus. Virology 2009, 380, 324–329. [CrossRef] [PubMed]

128. George, S.K.; Kaizer, K.N.; Betz, Y.M.; Dhar, A.K. Multiplication of Taura syndrome virus in primary hemocyte culture of shrimp (Penaeus vannamei). J. Virol. Methods 2011, 172, 54–59. [CrossRef] [PubMed]

129. Fadilah, A.N.; Fasya, A.H. Examination of Taura Syndrome Virus (TSV) in white shrimp (Litopenaeus vannamei) and tiger prawn (Penaeus monodon) with Polymerase Chain Reaction (PCR) method. IOP Conf. Ser. Earth Environ. Sci. 2021, 679, 0212069. [CrossRef]

130. Dhar, A.K.; Allnutt, F.T. Taura Syndrome Virus. In Encyclopedia of Virology; Academic Press: Cambridge, MA, USA, 2008; pp. 1–8. [CrossRef]

131. Do, J.W.; Cha, S.J.; Lee, N.S.; Kim, Y.C.; Kim, J.D.; Park, J.W. Taura syndrome virus from Penaeus vannamei shrimp cultured in Korea. Dis. Aquat. Org. 2006, 70, 171–174. [CrossRef] [PubMed]

132. Dhar, A.K.; Lakshman, D.K.; Amundsen, K.; Robles-Sikisaka, R.; Kaizer, K.N.; Roy, S.; Hasson, K.W.; Allnutt, F.T. Characterization of a Taura syndrome virus isolate originating from the 2004 Texas epizootic in cultured shrimp. Arch. Virol. 2010, 155, 315–327. [CrossRef]

133. Tang, K.F.; Wang, J.; Lightner, D.V. Quantitation of Taura syndrome virus by real-time RT-PCR with a TaqMan assay. J. Virol. Methods 2004, 115, 109–114. [CrossRef]

134. Cao, Z.; Wang, S.Y.; Breeland, V.; Moore, A.M.; Lotz, J.M. Taura syndrome virus loads in Litopenaeus vannamei hemolymph following infection are related to differential mortality. Dis. Aquat. Org. 2010, 91, 97–103. [CrossRef]

135. Tumburu, L.; Shepard, E.F.; Strand, A.E.; Browdy, C.L. Effects of endosulfan exposure and Taura Syndrome Virus infection on the survival and molting of the marine penaeid shrimp, Litopenaeus vannamei. Chemosphere 2012, 86, 912–918. [CrossRef]

136. Côté, I.; Navarro, S.; Tang, K.F.; Noble, B.; Lightner, D.V. Taura syndrome virus from Venezuela is a new genetic variant. Aquaculture 2008, 284, 62–67. [CrossRef]

137. Vergel, J.C.V.; Cabawatan, L.D.P.; Madrona, V.A.C.; Rosario, A.F.T.; Tare, M.V.R.; Maningas, M.B.B. Detection of Taura Syndrome Virus (TSV) in Litopenaeus vannamei in the Philippines. Philipp. J. Fish. 2019, 26, 8–14. [CrossRef]

138. Aranguren, L.F.; Salazar, M.; Tang, K.; Caraballo, X.; Lightner, D. Characterization of a new strain of Taura syndrome virus (TSV) from Colombian shrimp farms and the implication in the selection of TSV resistant lines. J. Invertebr. Pathol. 2013, 112, 68–73. [CrossRef] [PubMed]
139. Phromjai, J.; Mathuros, T.; Phokharatkul, S.; Prompun, P.; Suesbing, R.; Tuantranont, A.; Kiaptomchai, W. RT-LAMP detection of shrimp Taura syndrome virus (TSV) by combination with a nanogold-oligo probe. *Aquac. Res.* 2015, 46, 1902–1913. [CrossRef]

140. Hameed, A.S.; Bonami, J.R. White tail disease of freshwater prawn, *Macrobrachium rosenbergii*. *Indian J. Virol.* 2012, 23, 134–140. [CrossRef]

141. Bonami, J.R.; Shi, Z.; Qian, D.; Widada, J.S. White tail disease of the giant freshwater prawn, *Macrobrachium rosenbergii*: Separation of the associated viorns and characterization of MrNV as a new type of nodavirus. *J. Fish Dis.* 2005, 28, 23–31. [CrossRef]

142. Chen, K.F.; Tan, W.S.; Ong, L.K.; Abidin, S.A.Z.; Othman, I.; Tey, B.T.; Lee, R.F.S. The *Macrobrachium rosenbergii* nodavirus: A detailed review of structure, infectivity, host immunity, diagnosis and prevention. *Rev Aquac.* 2021, 13, 2117–2141. [CrossRef]

143. Hayakijkosol, O.; Burgess, G.; La Fauce, K.; Owens, L. The complete sequence of the Australia recognizate of *Macrobrachium rosenbergii* nodavirus which causes white tail disease. *Aquaculture* 2012, 366, 98–104. [CrossRef]

144. Kumar, S.N.; Rai, P.; Karunasagar, I.; Karunasagar, I. Genomic and antibody-based assays for the detection of Indian strains of nodavirus associated with white tail disease of *Macrobrachium rosenbergii*. *VirusDisease* 2020, 31, 459–469. [CrossRef] [PubMed]

145. Pillai, D.; Bonami, J.R.; Sri Widada, J.S. Rapid detection of *Macrobrachium rosenbergii* nodavirus (MrNV) and extra small virus (XSV), the pathogenic agents of white tail disease of *Macrobrachium rosenbergii* (De Man), by loop-mediated isothermal amplification. *J. Fish Dis.* 2006, 29, 275–283. [CrossRef]

146. Sudhakaran, R.; Haribabu, P.; Kumar, S.R.; Sarathi, M.; Ahmed, V.I.; Babu, V.S.; Hameed, A.S. Natural aquatic insect carriers of nodavirus (*MrNV*) and extra small virus (XSV). *Dis. Aquat. Org.* 2008, 79, 141–145. [CrossRef]

147. Murwantoko, M.; Bimantara, A.; Roosmanto, R.; Kawaichi, M. Genome-based detection methods of nodavirus (*MrNV*) and extra small virus isolated in China. *Mol. Cell. Proteomics*. 2018, 40, 1–7. [CrossRef]

148. Kumar, S.N.; Rai, P.; Karunasagar, I.; Karunasagar, I. Genomic and antibody-based assays for the detection of Indian strains of *Macrobrachium rosenbergii* nodavirus and extra small virus associated with white tail disease of *Macrobrachium rosenbergii*. *VirusDisease* 2020, 31, 459–469. [CrossRef] [PubMed]

149. Hameed, A.S.; Bonami, J.R.; Widada, J.S. Viral diseases of the giant fresh water prawn *Macrobrachium rosenbergii*: A review. *J. Invertebr. Pathol.* 2011, 106, 131–142. [CrossRef] [PubMed]

150. Pillai, D.; Bonami, J.R. A review on the diseases of freshwater prawns with special focus on white tail disease of *Macrobrachium rosenbergii*. *Aquac. Res.* 2012, 43, 1029–1037. [CrossRef]

151. NaveenKumar, S.; Shekar, M.; Karunasagar, I.; Karunasagar, I. Genetic analysis of RNA1 and RNA2 of *Macrobrachium rosenbergii* nodavirus (*MrNV*) isolated from India. *Virus Res.* 2013, 173, 377–385. [CrossRef] [PubMed]

152. Pasookhush, P.; Hindmarch, C.; Sithigorngul, P.; Longyant, S.; Bendena, W.G.; Chaivisuthangkura, P. Transcriptomic analysis of nodavirus infection in a giant freshwater prawn hatchery in Indonesia. *Springerplus* 2016, 5, 2–9. [CrossRef] [PubMed]

153. Sudhakaran, R.; Syed Musthaq, S.; Haribabu, P.; Mukherjee, S.C.; Gopal, C.; Sahul Hameed, A.S. Experimental transmission of *Macrobrachium rosenbergii* nodavirus (MrNV) and extra small virus (XSV) in three species of marine shrimp (*Penaeus indicus*, *P. japonicus* and *P. monodon*). *Aquaculture* 2006, 257, 136–141. [CrossRef]

154. NaveenKumar, S.; Shekar, M.; Karunasagar, I.; Karunasagar, I. Genetic analysis of RNA1 and RNA2 of *Macrobrachium rosenbergii* nodavirus. *Virus Res.* 2013, 173, 377–385. [CrossRef] [PubMed]

155. Pasookhush, P.; Hindmarch, C.; Sithigorngul, P.; Longyant, S.; Bendena, W.G.; Chaivisuthangkura, P. Transcriptomic analysis of nodavirus infection in a giant freshwater prawn (*MrNV*) post-larvae in response to *M. rosenbergii* nodavirus (MrNV) infection: De novo assembly and functional annotation. *BMC Genom.* 2019, 20, 762. [CrossRef]

156. Sudhakaran, R.; Syed Musthag, S.; Haribabu, P.; Mukherjee, S.C.; Gopal, C.; Sahul Hameed, A.S. Experimental transmission of *Macrobrachium rosenbergii* nodavirus (MrNV) and extra small virus (XSV) from brooders to progeny in *Macrobrachium rosenbergii* and *Artemia*. *J. Fish Dis.* 2007, 30, 27–35. [CrossRef] [PubMed]

157. Pillai, D.; Bonami, J.R. A review on the diseases of freshwater prawns with special focus on white tail disease of *Macrobrachium rosenbergii*. *Aquac. Res.* 2012, 43, 1029–1037. [CrossRef]

158. NaveenKumar, S.; Shekar, M.; Karunasagar, I.; Karunasagar, I. Genetic analysis of RNA1 and RNA2 of *Macrobrachium rosenbergii* nodavirus (*MrNV*) isolated from India. *Virus Res.* 2013, 173, 377–385. [CrossRef] [PubMed]

159. Pasookhush, P.; Hindmarch, C.; Sithigorngul, P.; Longyant, S.; Bendena, W.G.; Chaivisuthangkura, P. Transcriptomic analysis of nodavirus infection in a giant freshwater prawn (*MrNV*) post-larvae in response to *M. rosenbergii* nodavirus (MrNV) infection: De novo assembly and functional annotation. *BMC Genom.* 2019, 20, 762. [CrossRef] [PubMed]

160. Li, F.; Liu, L.; Hao, G.J.; Sheng, P.C.; Cao, Z.; Zhou, Y.; Chen, K. The development and application of a duplex reverse transcription loop-mediated isothermal amplification assay combined with a lateral flow dipstick method for *Macrobrachium rosenbergii* nodavirus and extra small virus isolated in China. *Mol. Cell. Proteomics*. 2018, 40, 1–7. [CrossRef]

161. Hameed, A.S.; Bonami, J.R.; Widada, J.S. Viral diseases of the giant fresh water prawn *Macrobrachium rosenbergii*: A review. *J. Invertebr. Pathol.* 2011, 106, 131–142. [CrossRef] [PubMed]

162. Pillai, D.; Bonami, J.R. A review on the diseases of freshwater prawns with special focus on white tail disease of *Macrobrachium rosenbergii*. *Aquac. Res.* 2012, 43, 1029–1037. [CrossRef]

163. OIE. Manual of Diagnostic Tests for Aquatic Animals. Chapter 2.2.6, White Tail Disease. 2018. Available online: https://www.oie.int/en/what-we-do/standards/codes-and-manuals/aquatic-manual-online-access/ (accessed on 11 May 2017). [CrossRef]

164. Jariyapong, P.; Pudgerd, A.; Weerachatyanukul, W.; Hirono, I.; Senapin, S.; Dhar, A.K.; Chotwiwatthanakun, C. Construction of an infectious *Macrobrachium rosenbergii* nodavirus from cDNA clones in Sf9 cells and improved recovery of viral RNA with AZT treatment. *Aquaculture* 2018, 483, 111–119. [CrossRef]

165. Sudhakaran, R.; Ishaq Ahmed, V.P.; Haribabu, P.; Mukherjee, S.C.; Sri Widada, J.; Bonami, J.R.; Sahul Hameed, A.S. Experimental vertical transmission of *Macrobrachium rosenbergii* nodavirus (MrNV) and extra small virus (XSV) from brooders to progeny in *Macrobrachium rosenbergii* and *Artemia*. *J. Fish Dis.* 2007, 30, 27–35. [CrossRef] [PubMed]

166. OIE. Manual of Diagnostic Tests for Aquatic Animals. Chapter 2.2.6, White Tail Disease. 2018. Available online: https://www.oie.int/en/what-we-do/standards/codes-and-manuals/aquatic-manual-online-access/ (accessed on 11 May 2017). [CrossRef]
164. Chaivisuthangkura, P.; Phattanapaijikul, P.; Thammapalerd, N.; Rukpratanporn, S.; Longyant, S.; Sithigornrul, W.; Sithigornrul, P. Development of a polyclonal antibody specific to VP19 envelope protein of white spot syndrome virus (WSSV) using a recombinant protein preparation. J. Virol. Methods 2006, 133, 180–184. [CrossRef]

165. de Jesús Durán-Avelar, M.; Pérez-Enríquez, R.; Zambrano-Zaragoza, J.F.; Montoya-Rodriguez, L.; Vázquez-Juárez, R.; Vibanco-Pérez, N. Genotyping WSSV isolates from northwestern Mexican shrimp farms affected by white spot disease outbreaks in 2010-2012. Dis. Aquat. Org. 2015, 114, 11–20. [CrossRef]

166. Li, Z.; Li, F.; Han, Y.; Xu, L.; Yang, F. VP24 is a chitin-binding protein involved in white spot syndrome virus infection. J. Virol. 2016, 90, 842–850. [CrossRef]

167. Liu, Q.H.; Ma, F.F.; Guan, G.K.; Wang, X.F.; Li, C.; Huang, J. White spot syndrome virus VP51 interact with ribosomal protein L7 of Litopenaeus vannamei. Fish Shellfish Immunol. 2015, 44, 382–388. [CrossRef]

168. Mendoza-cano, F.; Sánchez-paz, A. Development and validation of a quantitative real-time polymerase chain assay for universal detection of the White Spot Syndrome Virus in marine crustaceans. Virol. J. 2013, 10, 1–11. [CrossRef] [PubMed]

169. Muller, L.C.; Andrade, T.P.D.; Tang-Nelson, K.F.; Marques, M.E.F.; Lightner, D.V. Genotyping of White spot syndrome virus (WSSV) geographical isolates from Brazil and comparison to other isolates from the Americas. Dis. Aquat. Org. 2010, 88, 91–98. [CrossRef] [PubMed]

170. Sindhupriya, M.; Saravanan, P.; Otta, S.wK.; Amarnath, C.B.; Bhuvaneswari, T.; Ponniah, A.G. White spot syndrome virus. Vet. Sci. 2020, 175. Zeng, Y. Molecular epidemiology of white spot syndrome virus in the world. Aquaculture 2021, 537, 736509. [CrossRef]

171. Tang, K.F.; Groumellec, L.M.; Lightner, D.V. Novel, closely related, white spot syndrome virus (WSSV) genotypes from Madagascar, Mozambique and the Kingdom of Saudi Arabia. Dis. Aquat. Org. 2013, 106, 1–6. [CrossRef] [PubMed]

172. Wan, Q.; Xu, L.; Yang, F. VP26 of white spot syndrome virus functions as a linker protein between the envelope and nucleocapsid of virions by binding with VP51. J. Virol. 2008, 82, 12598–12601. [CrossRef]

173. Kim, J.H.; Kim, H.K.; Nguyen, V.G.; Park, B.K.; Choresca, C.H.; Shin, S.P.; Park, S.C. Genomic sequence of infectious hypodermal and hematopoietic necrosis virus (IHHNV) KLV-2010-01 originating from the first Korean outbreak in cultured Litopenaeus vannamei. Arch. Virol. 2009, 157, 369–373. [CrossRef]

174. Rai, P.; Safeena, M.P.; Karunasagar, I.; Karunasagar, I. Complete nucleic acid sequence of Penaeus stylirostris densovirus (PstDNV) from India. Virus Res. 2011, 158, 37–45. [CrossRef]

175. Siddiqui, M.J.; Saravanapavan, P.; Otta, S.wK.; Amarnath, C.B.; Arulraj, R.; Bhuvaneswari, T.; Ponniah, A.G. White spot syndrome virus (WSSV) genome stability maintained over six passages through three different penaeid shrimp species. Dis. Aquat. Org. 2014, 111, 23–29. [CrossRef] [PubMed]

176. Sriphaijit, T.; Flegel, T.W.; Senapin, S. Characterization of a shrimp serine protease homolog, a binding protein of yellow head nidovirus. Dev. Comp. Immunol. 2007, 31, 1145–1158. [CrossRef]

177. Cowley, J.A.; Walker, P.J. The complete genome sequence of gill-associated virus of Penaeus monodon prawns indicates a gene organisation unique among nidoviruses. Arch. Virol. 2002, 147, 1977–1987. [CrossRef]

178. Aranguren, L.F.; Tang, K.F.; Lightner, D.V. Protection from yellow head virus (YHV) infection in Penaeus vannamei pre-infected with Taura syndrome virus (TSV). Dis. Aquat. Org. 2012, 98, 185–192. [CrossRef] [PubMed]

179. Ramos-Paredes, J.; Girijalva-Chon, J.M.; Rosa-Veláz, J.D.L.; Enriquez-Paredes, L.M. New genetic recombination in hypervariable regions of the white spot syndrome virus isolated from Litopenaeus vannamei (Boone) in northwest Mexico. Aquac. Res. 2012, 43, 339–348. [CrossRef]

180. Parrilla-Taylor, D.P.; Vibanco-Perez, N.; Durán-Avelar, M.D.J.; Gomez-Gil, B.; Llera-Herrera, R.; Vázquez-Juárez, R. Molecular variability and genetic structure of white spot syndrome virus strains from northwest Mexico based on the analysis of genomes. FEMS Microbiol. Lett. 2018, 365, fny216. [CrossRef]

181. Saravanan, K.; Kumar, P.P.; Praveenraj, J.; Baruah, A.; Sivaramakrishnan, T.; Kumar, T.S.; Roy, S.D. Investigation and confirmation of white spot syndrome virus (WSSV) infection in wild caught penaeid shrimps of Andaman and Nicobar Islands, India. VirusDisease 2017, 28, 368–372. [CrossRef]

182. Pradeep, B.; Shekar, M.; Karunasagar, I.; Karunasagar, I. Characterization of variable genomic regions of Indian white spot syndrome virus. Virology 2008, 376, 24–30. [CrossRef] [PubMed]

183. Zeng, Y. Molecular epidemiology of white spot syndrome virus in the world. Aquaculture 2021, 537, 736509. [CrossRef]

184. Marks, H.; van Duijse, J.J.A.; Zuidema, D.; van Hulten, M.C.W.; Vlak, J.M. Fitness and virulence of an ancestral White Spot Syndrome Virus isolate from shrimp. Virus Res. 2005, 110, 9–20. [CrossRef]

185. Tang, K.F.; Poulos, B.T.; Wang, J.; Redman, R.M.; Shih, H.H.; Lightner, D.V. Geographic variations among infectious hypodermal and hematopoietic necrosis virus (IHHNV) isolates and characteristics of their infection. Dis. Aquat. Org. 2003, 53, 91–99. [CrossRef]

186. Hsia, H.L.; Chen, L.L.; Peng, S.E.; Yu, H.T.; Lo, C.F.; Kou, G.H. Comparison of genomic sequence of infectious hypodermal and hematopoietic necrosis virus (IHHNV) between taiwan and other geographical isolates. Fish Pathol. 2003, 38, 177–179. [CrossRef]

187. Park, S.C.; Choi, S.K.; Han, S.H.; Park, S.; Jeon, H.J.; Lee, S.C.; Han, J.E. Detection of infectious hypodermal and hematopoietic necrosis virus and white spot syndrome virus in whiteleg shrimp (Penaeus vannamei) imported from Vietnam to South Korea. J. Vet. Sci. 2020, 21, e31. [CrossRef]
Viruses 2022, 14, 585

188. Saksmperome, V.; Puiprom, O.; Noonin, C.; Flegel, T.W. Detection of infectious hypodermal and haematopoietic necrosis virus (IHHNV) in farmed Australian *Penaeus monodon* by PCR analysis and DNA sequencing. *Aquaculture* 2010, 298, 190–193. [CrossRef]

189. Wei, Y.W.; Fan, D.D.; Chen, J. The mussel *Mytilus edulis* L. as an important reservoir of infectious hypodermal and haematopoietic necrosis virus (IHHNV). *Aquac. Res.* 2017, 48, 1346–1350. [CrossRef]

190. Hou, L.; Wu, H.; Xu, L.; Yang, F. Expression and self-assembly of virus-like particles of infectious hypodermal and haematopoietic necrosis virus in *Escherichia coli*. *Arch. Virol.* 2009, 154, 547–553. [CrossRef] [PubMed]

191. Kim, J.H.; Choresca Jr, C.H.; Shin, S.P.; Han, J.E.; Jun, J.W.; Han, S.Y.; Park, S.C. Detection of infectious hypodermal and haematopoietic necrosis virus (IHHNV) in *Litopenaeus vannamei* shrimp cultured in South Korea. *Aquaculture* 2011, 313, 161–164. [CrossRef]

192. Shekhar, M.S.; Sahoo, P.K.; Dillikumar, M.; Das, A. Cloning, expression and sequence analysis of *MrNV* and *XSV* nodavirus genes: Indian isolate. *Virus Res.* 2014, 190, 653–664. [CrossRef] [PubMed]

193. Senapin, S.; Jaengsanong, C.; Plipowsaiya, K.; Prasertsri, S.; Laisutisan, K.; Chuchird, N.; Flegel, T.W. Infections of *MrNV* (Macrobachium rosenbergii) nodavirus in cultivated whiteleg shrimp *Penaeus vannamei* in Asia. *Aquaculture* 2012, 338, 41–46. [CrossRef]

194. Shekhar, M.S.; Azad, I.S.; Jitenthran, K.P. RT-PCR and sequence analysis of *Macrobachium rosenbergii* nodavirus: Indian isolate. *Aquaculture* 2006, 252, 128–132. [CrossRef]

195. Shekhar, M.S.; Sahoo, P.K.; Dillikumar, M.; Das, A. Cloning, expression and sequence analysis of *Macrobachium rosenbergii* nodavirus genes: Indian isolate. *Aquac. Res.* 2011, 42, 1778–1788. [CrossRef]

196. Owens, L.; Faunce, L.K.; Juntunen, K.; Hayakijkosol, O.; Zeng, C. *Macrobachium rosenbergii* nodavirus disease (white tail disease) in Australia. *Dis. Aquat. Org.* 2009, 85, 175–180. [CrossRef]

197. Wang, C.S.; Chang, J.S.; Shih, H.H.; Chen, S.N. RT-PCR amplification and sequence analysis of extra small virus associated with white tail disease of *Macrobachium rosenbergii* (de Man) cultured in Taiwan. *J. Fish Dis.* 2007, 30, 127–132. [CrossRef]

198. Wang, J.M.; Zhang, H.J.; Shi, Z.L. Expression and assembly mechanism of the capsid proteins of a satellite virus (XSV) associated with *Macrobachium rosenbergii* nodavirus. *Virol. Sin.* 2008, 23, 73–77. [CrossRef]

199. Bateman, K.S.; Tew, I.; French, C.; Hicks, R.J.; Martin, P.; Munro, J.; Setentiford, G.D. Susceptibility to infection and pathogenicity of White Spot Disease (WSD) in non-model crustacean host taxa from temperate regions. *J. Invertebr. Pathol.* 2012, 110, 340–351. [CrossRef]

200. Hameed, A.S.; Charles, M.X.; Anilkumar, M. Tolerance of *Macrobachium rosenbergii* to white spot syndrome virus. *Aquaculture* 2000, 183, 207–213. [CrossRef]

201. Jin, W.; Lai, Y.; Zhu, F. Effect of dietary fucoidan on innate immune response of *Procambarus clarkii* and disease resistance against white spot syndrome virus. *Aquaculture* 2021, 534, 736233. [CrossRef]

202. Kono, T.; Savan, R.; Sakai, M.; Itami, T. Detection of white spot syndrome virus in shrimp by loop-mediated isothermal amplification. *J. Virol. Methods* 2004, 115, 59–65. [CrossRef] [PubMed]

203. Yuan, G.; Zhu, L.; Jiang, X.; Zhang, J.; Pei, C.; Zhao, X.; Kong, X. Diagnosis of co-infection with white spot syndrome virus and *Aeromonas veronii* in red swamp crayfish *Procambarus clarkii*. *Aquaculture* 2021, 532, 736010. [CrossRef]

204. Chang, P.S.; Chen, L.J.; Wang, Y.C. The effect of ultraviolet irradiation, heat, pH, ozone, salinity and chemical disinfectants on the infectivity of white spot syndrome baculovirus. *Aquaculture* 1998, 166, 1–17. [CrossRef]
213. Musthaq, S.S.; Sudhakaran, R.; Ahmed, V.I.; Balasubramanian, G.; Hameed, A.S. Variability in the tandem repetitive DNA sequences of white spot syndrome virus (WSSV) genome and suitability of VP28 gene to detect different isolates of WSSV from India. *Aquaculture* **2006**, *256*, 34–41. [CrossRef]

214. Mathew, S.; Kumar, K.A.; Anandan, R.; Nair, P.G.V.; Devadasan, K. Changes in tissue defence system in white spot syndrome virus (WSSV) infected *P. monodon*. *Comp. Biochem. Phys. C* **2007**, *145*, 315–320. [CrossRef]

215. Jatuyosporn, T.; Supungul, P.; Tassanakajon, A.; Kruusong, K. The essential role of clathrin-mediated endocytosis in yellow head virus propagation in the black tiger shrimp *P. monodon*. *Dev. Comp. Immunol.* **2014**, *44*, 100–110. [CrossRef]

216. Senapin, S.; Phongdara, A. Binding of shrimp cellular proteins to Taura syndrome viral capsid proteins VP1, VP2 and VP3. *Virus Res.* **2006**, *122*, 69–77. [CrossRef]

217. Lee, C.; Kim, J.H.; Choi, S.K.; Jeon, H.J.; Lee, S.H.; Kim, B.K.; Kim, Y.K.; Lee, K.J.; Han, J.E. Detection of infectious white spot syndrome virus in red claw crayfish (Cherax quadricarinatus) and red swamp crayfish (*Procambarus clarkii*) imported into Korea. *Aquaculture* **2021**, *544*, 737117. [CrossRef]

218. Ochoa-Meza, A.R.; Álvarez-Sánchez, A.R.; Romo-Quinonez, C.R.; Barraza, A.; Magallón-Barajas, F.J.; Chávez-Sánchez, A.; Mejía-Ruíz, C.H. Silver nanoparticles enhance survival of white spot syndrome virus infected *P. vannamei* shrimps by activation of its immunological system. *Fish Shellfish Immunol.* **2019**, *84*, 1083–1089. [CrossRef] [PubMed]

219. Cowley, J.A.; Rao, M.; Coman, G.J. Real-time PCR tests to specifically detect Infectious hypodermal and haemopoietic necrosis virus (IHHNV) lineages and an IHHNV endogenous viral element (EVE) integrated in the genome of Black Tiger shrimp (*P. monodon*). *Dis. Aquat. Org.* **2018**, *129*, 145–158. [CrossRef] [PubMed]

220. Chen, B.K.; Dong, Z.; Pang, N.Y.; Nian, Y.Y.; Yan, D.C. A novel real-time PCR approach for detection of infectious hypodermal and haemato poietic necrosis virus (IHHNV) in the freshwater crayfish *Procambarus clarkii*. *J. Invertebr. Pathol.* **2018**, *157*, 100–103. [CrossRef]

221. Coelho-Melo, M.V.; Florindo-Guedes, M.I.; Rodríguez-Málaga, S.; de Almeida, L.M.; de Freitas Moreira, M.; de Oliveira, T.R. Molecular characterization of Infectious Myonecrosis Virus (IMNV) isolated from the shrimp *L. vannamei* farmed in Ceará state, Brazil. *Lat. Am. J. Aquat. Res.* **2014**, *42*, 649–652. [CrossRef]

222. Hamano, K.; Miyoshi, T.; Aue-unmeoy, D.; Srisapoome, P.; Maeno, Y.; Tsutsui, I. Waterborne and cannibalism-mediated transmission of the Yellow head virus in *P. monodon*. *Aquaculture* **2015**, *437*, 161–166. [CrossRef]

223. Noble, T.H.; Coman, G.J.; Cowley, J.A.; Wade, N.; Sellars, M.J.; Jerry, D.R. Comparison of methods for uniformly challenging Black Tiger shrimp (*P. monodon*) with gill-associated virus. *Aquaculture* **2017**, *473*, 191–196. [CrossRef]