Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in *Melarhaphe neritoides* (Gastropoda: Littorinidae) and other Caenogastropoda

Séverine Fourdrilis¹, Antonio M. de Frias Martins² & Thierry Backeljau¹,³

Mitochondrial DNA hyperdiversity is primarily caused by high mutation rates (\(\mu\)) and has potential implications for mitogenome architecture and evolution. In the hyperdiverse mtDNA of *Melarhaphe neritoides* (Gastropoda: Littorinidae), high mutational pressure generates unusually large amounts of synonymous variation, which is expected to (1) promote changes in synonymous codon usage, (2) reflect selection at synonymous sites, (3) increase mtDNA recombination and gene rearrangement, and (4) be correlated with high mtDNA substitution rates. The mitogenome of *M. neritoides* was sequenced, compared to closely related littorinids and put in the phylogenetic context of Caenogastropoda, to assess the influence of mtDNA hyperdiversity and high \(\mu\) on gene content and gene order. Most mitogenome features are in line with the trend in Mollusca, except for the atypical secondary structure of the methionine transfer RNA lacking the TΨC-loop. Therefore, mtDNA hyperdiversity and high \(\mu\) in *M. neritoides* do not seem to affect its mitogenome architecture. Synonymous sites are under positive selection, which adds to the growing evidence of non-neutral evolution at synonymous sites. Under such non-neutrality, substitution rate involves neutral and non-neutral substitutions, and high \(\mu\) is not necessarily associated with high substitution rate, thus explaining that, unlike high \(\mu\), a high substitution rate is associated with gene order rearrangement.

Melarhaphe neritoides (Linnaeus, 1758) is a littorinid periwinkle that shows mitochondrial DNA (mtDNA) hyperdiversity, i.e. its selectively neutral nucleotide diversity is above the threshold of 5% (see¹ for this definition and threshold), for the cytochrome oxidase c subunit I (COX1) and cytochrome b (COB) genes (\(\pi_{syn} = 7.4\) and 6.4% respectively). This is probably due to an extremely high mtDNA mutation rate (\(\mu = 5.82 \times 10^{-5}\) per site per year at the COX1 locus)². Across eukaryotic phyla, such mtDNA hyperdiversity may be more common than currently appreciated².

Because of its alleged association with high mutation and substitution rates, mtDNA hyperdiversity is expected to affect mitogenome architecture (i.e. gene content and gene order) and evolution in four ways. Firstly, synonymous variation is generated by mutational pressure and is a substrate for genetic-code alteration³. As such, we hypothesise that the unusually large amount of synonymous variation in hyperdiverse mtDNA promotes genetic-code alterations and may be associated with changes in synonymous codon usage.

Secondly, because DNA hyperdiversity, mitochondrial or nuclear, is estimated from synonymous substitutions that are assumed to be neutral, it represents neutral polymorphism, which results from the balance between
mutation pressure, genetic drift and gene flow. Yet, synonymous substitutions might be under selection pressures, because a change of a nucleotide produces different, though synonymous, codons, some of which are more accurately and/or efficiently translated than others. For example, weak selection for codon usage bias leading to non-neutral synonymous sites has been observed in the nematode Caenorhabditis remanei, while strong purifying selection on synonymous sites has been reported in Drosophila melanogaster. So, contrary to the mainstream idea, selection can act upon synonymous variation. Thus, the unusually large amount of synonymous variation in hyperdiverse mtDNA, may contribute to adaptation and may result in significant selection pressures for mitonuclear coevolution favouring compatibility between nuclear- and mtDNA-encoded proteins, and hence may play a major role in mitogenome evolution. Conversely, the crucial metabolic functions of mitochondrial protein-coding genes (PCGs) in energy production and in mitonuclear coevolution constrain adaptive mtDNA variation, and hence may limit the impact of mtDNA hyperdiversity on mitogenome architecture and evolution. So, in order to better understand the potential impact of mtDNA hyperdiversity on mtDNA evolution, it is important to explore the balance between the power of mtDNA hyperdiversity to produce adaptive variation and the limits imposed on such variation by the metabolic constraints of mtDNA.

Thirdly, an increase in mtDNA mutation rate may lead to an increase in the rate of mtDNA recombination. Recombination in animal mtDNA promotes variation in mitogenome architecture by inducing gene deletions and rearrangements, and increases genetic diversity by spreading new recombinant mitogenomes; thence, we hypothesise that the very high mutation rate in hyperdiverse mtDNA may promote recombination and gene order rearrangement. Conversely, high polymorphism in DNA might inhibit homologous recombination, due to a reduced efficiency of enzymes catalysing annealing and recombination between related, but more strongly diverged DNA sequences. Recombination in animal mitogenomes is rare but occurs in e.g. arthropods, bivalve molluscs, cephalochordates, nematodes, and vertebrates including human. Recombination of mtDNA was also suggested, but not tested, in the gastropod Lottia digitalis. Gene rearrangements are infrequent in metazoan mitogenomes, except in molluscs, where they are unusually frequent, and may even occur within family-level taxa such as among genera of the gastropod family Vermetidae.

Finally, mutations that are selected and fixed, accumulate over time in an evolving lineage, and contribute to substitution rates. High mtDNA substitution rates and high rates of mitochondrial genome rearrangements are positively associated in invertebrates, and needs further corroboration. For example, there is no clear indication of a particularly high mtDNA substitution rate in M. neritoides and whether it is associated to a gene order that differs from that of other littorinids. The mtDNA substitution rate in M. neritoides is not known, and no phylomitogenomic data are available for M. neritoides. The substitution rate in M. neritoides, as estimated from the ultrametric species-level phylogeny of the subfamily Littorininae (mtDNA and nDNA combined) presented by Reid et al., is according to our calculations 6.11 × 10⁻⁵ substitutions per site per million years, which is of the same order of magnitude as the substitution rates in the other Littorininae included by Reid et al. However, unpublished phylogenies based on the single mtDNA coxl and rrnS genes extracted from the aforementioned study David Reid, in litt., shows M. neritoides as terminal branch of an intermediate length within the Littorininae, yet longer than in the nuclear 28S phylogeny, indicating that the mitochondrial substitution rate is likely higher when mtDNA data are not combined with nuclear data.

The expected implications of mtDNA hyperdiversity for mitogenome architecture and evolution lead to several questions: (1) Does the extremely high mutational pressure on synonymous variation underlying mtDNA hyperdiversity affect mitogenome architecture? (2) Does non-neutral synonymous variation affect mitogenome architecture? (3) Do elevated substitution rates affect mitogenome architecture? We explore these questions in M. neritoides, the only mollusc in which hitherto mtDNA hyperdiversity has been associated with an extremely high mutational pressure. Hence, here we assess whether this mtDNA hyperdiversity is associated with changes in base composition, codon usage, tRNA structure, gene order and selection on protein-coding genes. To this end, we conduct a comparative mitogenomic analysis of M. neritoides and the three other littorinid species whose mitogenomes have been sequenced, viz. Littorina fabalis, Littorina obtusata and Littorina saxatilis (hereafter referred to as “Littorina sp.”), and extend this analysis to other Caenogastropoda. Melarhaphe neritoides is a caenogastropod that belongs to non-lattragastropod Hypogastropoda, within which the family Naticidae is the closest phylogenetic relative, Hydrobiidae, Pomatiopsidae and Provannidae are more distant, and Cassidae, Cypraeidae, Ranellidae and Strombiidae are the most distant relatives.

Results and Discussion
Mitogenome organisation and composition. The near complete mitogenome of M. neritoides is 15,676 bp long (GenBank accession number MH119311) and comprises 37 genes including 13 PCGs, 2 rRNAs genes, 22 tRNAs genes, and a putative non-coding Control Region (CR), typical for animal mitogenomes (Table 1, Fig. 1). The CR is partial (474 bp) and is flanked by trnF(gaa) and cox3. No repetitive sequences were detected in the CR. As in other molluscs, with the exception of some bivalves, M. neritoides transcribes its mitogenome on two strands, with all genes, except eight tRNAs, being encoded on the plus strand. The plus strand in M. neritoides corresponds to the heavy strand, which is originally defined as the strand with the higher amount of G + T nucleotides, although often mistakenly assigned as the strand encoding the majority of genes. There are five overlapping adjacent genes in M. neritoides [rrnS and trnV(tac), trnV(tac) and rrlL, rrlN and trnL2(taa), nad4l and nad4, nad5 and trnF(gaa)] versus six in Littorina sp. [trnG(tgc) and trnE(ttc), rrnS and trnV(tac), trnV(tac) and rrlN, rrlN and trnL2(taa), nad4l and nad4, nad3 and trnS1(gct)]. The nad4l and nad4 genes in M. neritoides and Littorina sp. overlap over seven nucleotides, and over variable lengths (7–13 bp) in 60 out of the 64 other caenogastropods for which we had mitogenome data. Hence, this overlap seems a common feature to Caenogastropoda. In M. neritoides and Littorina sp. all PCGs start with the canonical ATG codon, except for atp6 that starts with ATT in M. neritoides. The 13 stop codons are the two standard TAA and TAG stop codons, TAA...
being more frequent (77%) than TAG (23%), like *Littorina* sp. (62% TAA and 38% TAG). The pattern of association of these stop codons with their respective PCGs is identical between *M. neritoides* and *Littorina* sp., except for the stop codons in *atp6*, *atp8*, *cob*, *nad1*, *nad2*, *nad4*, *nad4l* and *nad6*. Non-coding intergenic sequences in *M. neritoides* (from 1 to 78 bp) and *Littorina* sp. (from 1 to 72 bp) have similar lengths, the longest being that between *trnE(ttc)* and *rrnS* in the four littorinid species. Yet, *M. neritoides* has fewer intergenic sequences than *Littorina* sp. (23 vs 28) and their total length is shorter (250 vs 328–335 bp).

The overall nucleotide composition of the mitogenome of *M. neritoides* is AT-rich (66.3%), with A = 28.9%, C = 16.6%, G = 17.1% and T = 37.4% (Table 2). All regions of the mitogenome are AT-rich but with the lowest values in *rrnS* (48.6%) and *rrnL* (51.1%) and the highest values in *atp8* (69.2%). This AT content is in line with that of other caenogastropods (65.2–74.9%) except for the Vermetidae whose AT content is slightly lower (59–63%) and of gastropods (55–67%) 15. There is a negative AT skew over the mitogenome (−0.129) indicating a significant bias towards the use of T over A, except in CR and the two rRNA genes in which A is more common. The positive GC skew over the mitogenome (0.012) indicates a significant bias towards the use of G over C, except in *atp8*, *atp6*, *cob*, *nad4*, *nad5* and CR. As such, *M. neritoides* shows a conspicuous positive GC skew, like in many other Mollusca (+0.04), but in strong contrast with the negative GC skew (mean −0.13) in *Littorina* sp.

tRNA secondary structure. All 22 tRNA genes are present in the mitogenome of *M. neritoides*. They range in length from 57 to 72 bp. Only two tRNA genes do not fold into the typical cloverleaf secondary structure: *trnS2(uga)* has a dihydrouridine (DHU) arm (D-arm) that forms a loop without a stem (as in *Littorina* sp.), and *trnM(cau)* has a T-arm with a stem but without the loop, which is specific to *M. neritoides* (Fig. S1). It is unclear whether this unpaired *trnM* is functional. However, it is likely functional because truncated tRNAs lacking the D-arm or the T-arm in some nematodes and other metazoans are functional too 30. The loss of the D-arm and/or T-arm in *trnS2* is an occasional event, that in Mollusca occurs far less frequently than in other metazoans 31. Conversely, the D-arm in *trnS1(gct)* often lacks in metazoans, but is present in *M. neritoides*, *Littorina* sp., and most Mollusca 32. Additionally, there are minor differences between *M. neritoides* and *L. saxatilis*, such as the cloverleaf structure of *trnR(tcg)*, *trnN(gtt)*, *trnH(gtg)*, *trnT(tgt)* and *trnV(tac)* that does not show a loop within the stem of the Acceptor arm, and that of *trnR(tcg)* and *trnL1(tag)* that does not show a loop within the stem of the T-arm (Fig. S1). These loops are also absent in the six species of Vermetidae for which mitogenomes are available 30. There are fewer differences among the three closely related *Littorina* species, than between *Littorina*
whether the mitogenome features observed in one individual are representative for the species and for mtDNA-encoded proteins of the three other species.

Further comparative analyses at the population level among individuals of Melarhaphe neritoides are identical, and differ only from L. obtusata and L. fabalis, COX1 to NAD6 (Table 1). Differences between M. neritoides and L. obtusata and L. saxatilis are in bold. *Numbers of intergenic nucleotides separating a gene from the next one; negative values represent overlapping nucleotides in adjacent genes. **Number (and corresponding percentage) of residues in the amino acid sequence of Melarhaphe neritoides that differ with any of the three other species.

Table 1. Organisation of the mitochondrial genome of Melarhaphe neritoides and comparison with Littorina fabalis, Littorina obtusata and Littorina saxatilis. Differences between M. neritoides and L. obtusata and L. saxatilis are in bold. *Numbers of intergenic nucleotides separating a gene from the next one; negative values represent overlapping nucleotides in adjacent genes. **Number (and corresponding percentage) of residues in the amino acid sequence of Melarhaphe neritoides that differ with any of the three other species.

and Melarhaphe. In fact, the 22 cloverleaf structures of L. fabalis and L. obtusata are identical, and differ only from those of L. saxatilis by the absence of a loop in the Acceptor arm of trnH(gtg) and trnV(tac).

Further comparative analyses at the population level among individuals of M. neritoides are needed to know whether the mitogenome features observed in one individual are representative for the species and for mtDNA hyperdiversity.

Protein sequence evolution and selection. The proportion of amino acids differing between the 13 mtDNA-encoded proteins of M. neritoides and Littorina sp. varies from 2% in COX1 to 37% in NAD6 (Table 1). The most conserved protein sequences between Melarhaphe and Littorina are COX1 > COX2 > COX3 > COB, with ≤10% of amino acid differences, followed by NAD1 > NAD4L > ATP6 > NAD3 > ATP8, NAD5 > NAD4 > NAD2 showing more than 10% amino acid differences, to the least conserved NAD6.

In both prokaryotes and eukaryotes, the rate of amino acid substitution is primarily determined by the protein expression level, which is in turn determined by the intensity of selection, while amino acid composition and
is detected on non-synonymous sites using the dN/dS ratio. Therefore, positive selection acts on synonymous sites. In the present study, no positive selection is detected in the 13 PCGs of *M. neritoides*, but purifying selection applies to all polymorphic nucleotide sites, hence including both synonymous and non-synonymous nucleotide sites only, and purifying selection contributes to lowering rate of substitutions at non-synonymous sites in *M. neritoides*.

Similarly, positive selection on *L. saxatilis* adaptive mitogenome divergence between cod and the other littorinids. In conclusion, purifying selection seems a major evolutionary force acting on the mitogenomes of *M. neritoides*, *L. saxatilis*, *L. fabalis*, and *L. obtusata*, and the stem branch of *L. fabalis + L. obtusata* (Fig. 2, Supplementary Table S1). The ω values vary among branches, indicating stronger purifying selection in the mitogenome of *M. neritoides* (ω = 0.1361) and in the stem branch of *L. fabalis + L. obtusata* (ω = 0.1534), than in the mitogenome of *L. fabalis* (ω = 0.2438), *L. obtusata* (ω = 0.3667) and *L. saxatilis* (ω = 0.3595). Yet, analyses on single PCG suggest that selection acts differently among genes and branches, and show that although most PCGs are under purifying selection, a few of them are positively selected. On the one hand, most PCGs show very low ω values closer to 1, indicative of more relaxed purifying selection. In *M. neritoides*, genes under purifying selection are ranked as follows by decreasing strength of selection (increasing ω): *cox1*, *nad4l* > *cox2* > *nad1* > *nad3* > *nad5* > *nad4l* > *atp8* > *cox3* > *nad2* > *nad5* > *co b* > *atp6* > *nad6*. This order differs from that in *Littorina* sp. and vertebrates. Indeed, purifying selection in cob of *M. neritoides* is one order of magnitude weaker than in the other co genes (*cox1*, *cox2*, *cox3*), whereas in other metazoans purifying selection is usually of similar strength in the four co genes. Nevertheless, the strength of purifying selection on cob in *M. neritoides* and the *Littorina* species lies in the range reported in other metazoans such as fishes, insects and some vertebrates. In contrast, *nad4l* in *L. saxatilis* and *nad5* in the stem branch of *L. fabalis + L. obtusata* show significant (LRT > 3.84) ω values above 1, which are exceptionally high (respectively ω = 3.5994 and ω = 16.8910) and higher than in other littorinid branches. This is indicative of strong positive selection on *nad4l* and *nad5* in these two branches. Such positive selection has been reported in mitochondrial PCGs of other animals, probably reflecting environmental adaptation (e.g. thermal adaptation, hypoxia tolerance) or mitonuclear coadaptation.

In conclusion, purifying selection seems a major evolutionary force acting on the mitogenomes of *M. neritoides*, *L. fabalis*, *L. obtusata* and *L. saxatilis*, and is expected to maintain crucial mitochondrial gene functions, since mtDNA-encoded proteins are responsible for the oxidative phosphorylation. Yet, strong positive selection on *nad4l* and *nad5* suggests that these genes play an important role in mitogenome evolution in *L. saxatilis* and in the stem branch of *L. fabalis + L. obtusata*. Positive selection on *nad4l* in *L. saxatilis* might promote increasing adaptive mitogenome divergence between *L. saxatilis* and the other littorinids. Similarly, positive selection on *nad5* may promote adaptive divergence in *L. fabalis* and *L. obtusata*, and contribute to separate the clade *L. fabalis + L. obtusata* from the other littorinids.

Fourdrilis et al. detected positive selection in *M. neritoides* in *cox1* and *cob* using Fay & Wu’s H statistic that applies to all polymorphic nucleotide sites, hence including both synonymous and non-synonymous nucleotide sites. In the present study, no positive selection is detected in the 13 PCGs of *M. neritoides*, but purifying selection is detected on non-synonymous sites using the dS/dS ratio. Therefore, positive selection acts on synonymous sites only, and purifying selection contributes to lowering rate of substitutions at non-synonymous sites in *M. neritoides*.

Region	A%	C%	G%	T%	A + T%	G + C%	AT skew	GC skew
whole mitogenome	28.9	16.6	17.1	37.4	66.3	33.7	−0.129	0.012
cox1	26.0	17.3	19.3	37.4	63.3	36.7	−0.180	0.055
cox2	29.1	17.5	18.5	34.9	64.0	36.0	−0.091	0.028
atp8	30.2	15.7	15.1	39.0	69.2	30.8	−0.127	−0.019
atp6	24.9	17.1	15.5	42.5	67.4	32.6	−0.261	−0.049
rrnS	30.7	13.8	37.5	17.9	48.6	51.3	0.263	0.462
rrnL	36.1	12.5	36.4	15.0	51.1	48.9	0.413	0.489
nad1	25.7	16.8	17.1	40.4	66.1	33.9	−0.222	0.009
nad6	26.8	15.7	16.1	41.5	68.3	31.8	−0.215	0.013
cob	24.6	18.7	17.7	39.0	63.6	36.4	−0.226	−0.027
nad4l	27.9	15.8	17.2	39.1	67.0	33.0	−0.167	0.042
nad4	26.4	19.0	15.2	39.4	65.8	34.2	−0.198	−0.111
nad5	25.7	20.1	15.9	38.3	64.0	36.0	−0.197	−0.117
CR (partial)	32.7	19.8	15.8	31.6	64.3	35.7	0.016	−0.112
cox3	24.4	18.6	22.2	34.9	59.3	40.8	−0.177	0.088
nad3	28.2	15.0	19.5	37.3	65.5	34.5	−0.139	0.130
nad2	27.7	13.2	17.5	41.6	69.3	30.7	−0.201	0.140
whole mitogenome	29.9	18.9	14.9	36.3	66.2	33.8	−0.097	−0.119
L. fabalis	29.9	18.9	14.7	36.4	66.2	33.8	−0.098	−0.129
whole mitogenome	30.4	18.9	14.1	36.5	66.9	33.1	−0.091	−0.145

Table 2. Nucleotide composition of the mitochondrial genome of *Melarhaphe neritoides* and *Littorina* sp.
Codon usage. The usage of synonymous codons in PCGs is not random in M. neritoides as some codon families and codons are more frequently used (Fig. 3). The codon family encoding the amino acid Ser2 is the most prevalent of the 22 families, followed by the codon families encoding Ala, Arg, Gly, Pro, Thr and Val equally used among each other. Among the 62 synonymous codons (the two stop codons are excluded) of these 22 codon families, 29 codons are more frequently used (RSCU value > 1), and account for less than half (46.77%) of the total set of codons (Supplementary Table S2). The five most frequently used (largest RSCU values) codons are Ser2 (UCU), Leu2 (UUA), Arg (CGA), Pro (CCU) and Ala (GCU) (RSCU = 2.57, 2.47, 2.07, 1.97, 1.92 respectively). They represent together 16.25% of the 3754 synonymous codons constituting the PCGs in M. neritoides. The least used codon is Arg (CGC) (RSCU = 0.07). This suggests selection of optimal synonymous codons for translational efficiency, likely resulting from the strong purifying selection observed on non-synonymous nucleotide sites in the PCGs of M. neritoides.

There is an over-usage of two-fold and four-fold degenerate synonymous codons with A or T in the third position in comparison to other synonymous codons, and all 29 preferentially used codons end with A or T (U) (Supplementary Table S2). This suggests, in addition to the contribution of selection to codon usage bias, a role of higher mutation pressure at the third codon position from GC to AT than in the opposite direction (from AT to GC) and than at the first and second codon positions.

The usage of the three codons UUC(F), AUG(M) and CAG(Q) significantly differs at the 5% level in M. neritoides from that in Littorina sp. (Supplementary Table S3). Even more codons show significant differences (UUC(F), CUC(L1), UUA(L2), AUG(I), AUG(M), CCC(P), UAC(Y), CAC(H), AAC(N), GAC(D), GAG(E) and GGC(G)) with Naticarius hebraeus (family Naticidae), which is expected with increasing phylogenetic divergence. However, no significant differences could be detected between the codon usage in M. neritoides and that in the other non-Latrogastropoda families Provannidae and Hydrobiidae, while in the even more distantly related species Monoplex parthenopeus (Ranellidae) belonging to Latrogastropoda two codons showed significantly
different usage (AUG(M) and GGC(G)). There is therefore no clear evidence of an association between codon usage and phylogenetic relationship within Hypsogastropoda. After Bonferroni correction of the results above, none of the chi-square tests remains significant. Nevertheless, Bonferroni correction is designed to prevent any false positives, and hence may eliminate true positives too. However, after Bonferroni correction, the other littorinid *L. saxatilis* shows much more significant differences than *M. neritoides* with the same other species. Indeed, the usage of five codons significantly differs from that in *Naticarius hebraeus* (Naticidae), one codon in *Ifremeria nautilei* (Provannidae), one codon in *Potamopyrgus antipodarum* (Hydrobiidae), and one codon in *Monoplex parthenopeus* (Ranellidae) (Supplementary Table S3). Hence, mtDNA hyperdiversity in *M. neritoides* does not seem to be associated with greater or smaller biases in codon usage.

Gene arrangement. We focus here on the non-Latrogastropoda i.e. the hypsogastropods that are not included in Latrogastropoda (Fig. 4, Supplementary Table S4), to check for the phylogenetic context of *M. neritoides*, but see Osca et al.\(^\text{26}\) and the recently revised classification by Bouchet et al.\(^\text{27}\) for a more complete description of Caenogastropoda relationships. The non-Latrogastropoda corresponds largely to the former Littorinimorpha, which is a paraphyletic taxon\(^\text{26,27}\). The phylogeny of Caenogastropoda, based on the complete set of mitochondrial PCG sequence data of 68 caenogastropod species with most recently updated annotations, recovered six out of the seven putative families included within non-Latrogastropoda (Fig. 4). The 7th putative family, i.e. Vermetidae, is placed as sister group to all other caenogastropods, probably due to long branch attraction or extensive gene rearrangements\(^\text{19}\). *Ifremeria nautilei* (Provannidae) is placed as sister group to non-Latrogastropoda, and shares the same tRNA gene order L2-L1, which supports its close relationship to non-Latrogastropoda\(^\text{37}\). The families Cassidae (*Galeodea echiniphora*), Ranellidae (*Monoplex parthenopeus*) and Strombiidae (*Conomurex luhuanus*, *Lobatus gigas*) were affiliated to “Littorinimorpha” in the previous classifications, and are nested within Latrogastropoda in the current classification, which is consistent with their tRNAs in the same order L1-L2 as the most frequent gene order in Latrogastropoda. *Melarhaphe neritoides* is sister to the *Littorina* sp. with strong bootstrap support (95%) and maximal posterior probability (pp = 1). The gene order in *M. neritoides* is identical to the most frequent gene order of non-Latrogastropoda, including its closest relatives *Littorina* sp., hence mtDNA hyperdiversity does not seem to be associated with a particular gene order. This most frequent gene order is also found in one out of the 67 other caenogastropod taxa, the architaenioglossan *Marisa cornuarietis*, and is therefore not unique to non-Latrogastropoda.

Assuming that *Haliotis rubra* (subclass Vetigastropoda) represents the ancestral mtDNA gene order (with two additional derived changes) for gastropods\(^\text{15}\), the gene order showing the highest similarity to the ancestral gene order is that of either *Conus borgesi* (identical to *Cymbium olla*) or *Conomurex luhuanus* (identical to the 28 other Latrogastropoda and the two architaenioglossan *Pomacea canaliculata* and *P. maculata*) based on an evolutionary distance measure of similarity (398 common intervals). Yet, when relying on an evolutionary distance measure
of dissimilarity, only Conomurex luhuanus shows a gene order closest to the ancestral one (11 breakpoints versus 12 in Conus borgesi). Moreover, the gene order in Conomurex luhuanus shows the fewest rearrangement events (five events vs. six in Conus borgesi) and thus better represents the ancestral gene order of Caenogastropoda. This means that, in contrast to the conclusion of Wang et al., Conus borgesi does not show the most conserved gene order. This is not surprising since, due to annotation correction in the present study, the gene order in Conus borgesi (and Cymbium olla) differs from that in Conomurex luhuanus on the direction of trnT, whereas it was identical in Wang et al., who did not include Conomurex luhuanus itself in their study but did include 16 taxa with identical gene order to Conomurex luhuanus. Annotation quality has therefore influenced gene order analyses. The Caenogastropoda consensus gene order found in Galeodela echiniphora by Osca et al., which is identical to that of Conomurex luhuanus, is consistent with our conclusion, although the tRNAs L1 and L2 were not distinguished by the authors. However, the existence of gene rearrangement hot spots in mitogenomes suggests that an eventual association between mtDNA gene order rearrangements and increased substitution rates does not hold for all Caenogastropoda, but may apply to a few families and/or species only.

Mitogenome annotation methodology. In the absence of experimental data about the sequence and the length of mature mRNA transcripts, gene annotation is somewhat problematic. We followed a conservative methodology for annotating mitogenomes to limit the risk of spurious annotations. However, conservative methodology has two main inherent shortcomings. Firstly, by selecting the most frequent start codon in the mitogenome data set for the most consistent gene length among related species, peculiarities that truly occurred through evolution might be missed (e.g. shorter/longer gene lengths), particularly in variable PCGs such as atp and nad genes. And secondly, by inferring annotations in newly sequenced mitogenomes, based on a reference mitogenome instead of experimental data from the new mitogenomes, potential erroneous annotations in the reference mitogenome are spread to subsequent annotations. In this study, 41 out of 70 mitogenomes downloaded from GenBank were corrected following criteria detailed hereunder, urging the need of following a standardised protocol to annotate mitogenome data. Annotations were not updated in Genbank at our request, but can be updated at the request of the initial submitting authors.

Conclusions

The relation between mtDNA hyperdiversity, mtDNA mutation rate and mitogenome evolution was investigated using the littorinid periwinkle Malarhaphe neritoides, in which mtDNA hyperdiversity is primarily caused by high mtDNA mutation rates. mtDNA hyperdiversity and high mutation rates do not seem to be associated with a particular mitogenome architecture, which is in line with the trend in Mollusca with the 37 mtDNA genes, the AT-rich nucleotide composition, the strand-specific distribution of genes, the most frequent use of ATG start codons and TAA stop codon, the negative AT skew (and hence positive GC skew), and gene order. Only transfer RNA trnM is atypical and unpaired, lacking the loop in the T-arm. mtDNA hyperdiversity is supposed to reflect neutral polymorphisms, yet, positive selection maintains or reduces the amount of synonymous polymorphism in M. neritoides, while strong purifying selection reduces the amount of non-synonymous polymorphism and is a major evolutionary force acting on the mitogenome of M. neritoides, as it does in the three other littorinids Littorina fabalis, L. obtusata and L. saxatilis. Purifying selection and mutational pressure contribute to codon

...
usage bias, but the non-random usage of codons in *M. neritoides* is comparable to other littorinids, and hence, there is no obvious relation between mtDNA hyperdiversity or high mutation rates and codon usage. In a phylogenetic context, *M. neritoides* shows a low mtDNA substitution rate, suggesting that high mtDNA mutation rates are not necessarily associated with high mtDNA substitution rates. Synonymous substitutions in *M. neritoides* are not neutral, and hence substitution rate involves neutral and non-neutral substitutions and does not equal mutation rate. This may explain the lack of clear association between mtDNA hyperdiversity and high mutation rates on the one hand, and mitogenome architecture and evolution on the other. Yet, architaenioglossan and vermetid caenogastropods with high mtDNA substitution rates appear to show an association between their high substitution rate and gene order rearrangement.

Methods

Specimen collection and DNA extraction. We collected a specimen of *M. neritoides* on 6 July 2012 in the port of Varadouro, Faial Island, Azores, Portugal (N 38.56633, W 28.77068), in accordance with regulations, and preserved it at −20°C (frozen without ethanol) until DNA analysis. We extracted genomic DNA from foot muscle using the NucleoSpin® Tissue kit (Macherey-Nagel GmbH & Co. KG, Germany). All remaining body parts and the shell were deposited in the collections of the Royal Belgian Institute of Natural Sciences, Brussels (RBINS) under the general inventory number IG 32962 and specimen voucher INV.134051.

Mitogenome sequencing and annotation. Library preparation with insert size of 250 bp, shotgun sequencing on an Illumina HiSeq. 4000 platform for 2.5 Gb of paired end reads, and *de novo* assembly of the mitogenome using SOAPdenovo-Trans (−K 71, −1), were performed by the Beijing Genomics Institute (Hong Kong) following manufacturer’s instructions and Tang et al.’s pipeline. The mitogenome was annotated with the MITOS WebServer, followed by manual curation using Geneious 10.2.3. We followed Boore et al. for naming conventions, and Boore et al. and Cameron for annotation recommendations. Despite these recommendations, we noted inconsistent annotations in 41 out of 70 mitogenomes downloaded from GenBank (December 2016) for the present study (see Supplementary Table S4). Revised annotations are provided in Supplementary Dataset 1. We corrected several start codon positions in *nad* genes which have very variable 5′ ends, following the methodology described hereunder. The quality of mitogenome data is influenced by, amongst others, the raw sequence divergence, protein sequence evolution and selection.

Mitogenome composition and organization. We conducted analyses of nucleotide composition and relative synonymous codon usage (RSCU) using MEGA 7.0. We investigated the relation between mtDNA hyperdiversity and RSCU, using a chi-square test and correcting for multiple test biases using the sequential Bonferroni procedure, in order to know whether the bias in the RSCU of *M. neritoides* significantly differs from the bias in the RSCU of closely related species from the same family (i.e. *Littorina* sp.) and from three different families (i.e. *Ifremeria nautilei*, *Naticarius hebraeus*, *Potamopyrgus antipodarum*) or of more distantly related species (i.e. the ranellid *Monoplex parthenopeus*) (Supplementary Table S3). For each pair of species, a total of 21 chi-square tests was performed (one test per codon family), in which the observed frequency of a codon is the count of this codon in *M. neritoides*, and the expected frequency of a codon is the count if this codon was equally used in the two species. We calculated nucleotide skew statistics using the formulas: AT skew = [A−T]/[A+T] and GC skew = [G−C]/[G+C]. We predicted and compared secondary structures of tRNAs among the four littorinids using the MITOS WebServer. We used mitogenome sequences of 21 “Littorinimorpha” taxa and 46 other Caenogastropoda that were available in GenBank (see Supplementary Table S4), and mapped gene order of mitogenomes onto the phylogeny.

Sequence divergence, protein sequence evolution and selection. We estimated protein sequence divergence in the 13 mtDNA-encoded proteins by calculating the proportion of amino acid residues that differ among *M. neritoides* and three *Littorina* species. We performed a maximum likelihood estimation of the ratio (ω) of non-synonymous (dN) to synonymous (dS) substitution rates to infer the direction and magnitude of natural
selection acting on PCGs, using branch models which allow \(\omega \) to vary among branches in the phylogeny\(^{53,54}\) as implemented in CODEML in the PAMLX 1.3.1 package\(^\text{55}\). The number of synonymous nucleotide substitutions per synonymous site, \(d_{SN} \), is largely determined by mutation rate only, whereas the number of non-synonymous nucleotide substitutions per non-synonymous site, \(d_{NS} \), is determined jointly by mutation rate and selection. Therefore, \(\omega \) is determined by selection only. We compared two branch models, viz. the free-ratios model which assumes one \(\omega \) ratio for each branch in the tree, and the two-ratios model which assumes one \(\omega \) ratio for the foreground branch (user-specified \textit{a priori}, one lineage at a time) putatively under positive selection and one \(\omega \) ratio for the remaining background branches, to the null model which yields an averaged \(\omega_0 \) for the whole tree. Significance was assessed by a likelihood ratio test.

Caenogastropoda phylogeny and mitogenome rearrangement. We employed Bayesian (BI) and Maximum Likelihood (ML) approaches, implemented respectively in MrBayes 3.2.6\(^\text{56}\) and RAxML 8.2.10\(^\text{57}\), respectively, both hosted on the CIPRES Science Gateway\(^\text{58}\), to carry out the phylomitogenomic analysis of 68 Caenogastropoda taxa (see Supplementary Table S4) based on their concatenated PCGs. Neritimorpha and Vetigastropoda were used as outgroup (see Supplementary Table S4). Although Heterobranchia has been recovered as sister group to Caenogastropoda\(^{39-41}\), it was not chosen as outgroup because it induces long branch attraction artefacts in mitogenome-based phylogenies\(^\text{42}\). In absence of Heterobranchia, Neritimorpha is the expected closest living sister group to Caenogastropoda, while Vetigastropoda is sister to the group comprising Neritimorpha and Caenogastropoda\(^{43,44}\), hence the tree was rooted on Vetigastropoda. Single PCG nucleotide sequences were translated into amino acid sequences before aligning to avoid spurious gaps within codons, and translated back to nucleotide sequences, using Geneious. The concatenated nucleotide dataset was divided into 39 data blocks, for the first, second and third codon positions of the 13 PCGs. The optimal partition strategy of each block (Supplementary Table S5), restricted to GTR\(^+\) model of sequence evolution as recommended by Stamatakis\(^\text{45}\), was selected by PartitionFinder 2.1.1\(^{46,47}\). The final BI consensus tree was computed from the combination of two independent MCMCs runs of 60,000,000 generations and discarding the first 15,000,000 generations. Convergence was assessed in TRACER 1.6\(^\text{67}\). The bootstrap ML consensus tree was inferred from 1000 replicates. Long branches, i.e. branches significantly longer than the average branch length across the tree, were diagnosed by applying the Branch Length Test (BLT) using LINTREE (http://www.personal.psu.edu/nxm2/software.htm)\(^\text{68}\). LINTREE produced a neighbour-joining tree based on the Tamura-Nei + G model of sequence evolution, the most similar model to GTR + G found in LINTREE, and estimated for each taxon the difference delta (\(\delta \)) between the average branch length across the tree and the root-to-tip distance of the taxon. Events of mitogenome rearrangement were determined using CREx\(^\text{69}\) and we compared gene orders found in Caenogastropoda to the ancestral gastropod gene order in Haliotis rubra. The higher the number of common intervals and the lowest number of breakpoints between pair of taxa, the more similar are the gene orders.

Data Availability

The mitogenome sequence of Melarhaphe neritoides is available in NCBI GenBank database under the accession number MH119311. The revised mitogenome annotations are provided in the form of .gb files (Supplementary Dataset 1).

References

1. Cutter, A. D., Jovelín, R. & Dey, A. Molecular hyperdiversity and evolution in very large populations. *Mol. Biol. 22*, 2074–2095, https://doi.org/10.1111/mec.12281 (2013).
2. Fournidris, S. et al. Mitochondrial DNA hyperdiversity and its potential causes in the marine periwinkle Melarhaphe neritoides (Mollusca: Gastropoda). *PeerJ 4*, e2549, https://doi.org/10.7717/peerj.2549 (2016).
3. Lynch, M., Koskella, B. & Schacka, M. Selection pressure and the evolution of organelle genomic architecture. *Science 311*, 1727–1730, https://doi.org/10.1126/science.1118884 (2006).
4. Hershberg, R. & Petrov, D. A. Selection on codon bias. *Annu. Rev. Genet. 42*, 287–299, https://doi.org/10.1146/annurev.genet.42.110807.091442 (2008).
5. Cutter, A. D. Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei. *Genetics 178*, 1661–1672, https://doi.org/10.1534/genetics.107.085803 (2008).
6. Lawrie, D. S., Messer, P. W., Hershberg, R. & Petrov, D. A. Strong purifying selection at synonymous sites in *D. melanogaster*. *PLoS Genet. 9*, e1003527, https://doi.org/10.1371/journal.pgen.1003527 (2013).
7. Castellana, S., Vicario, S. & Saccone, C. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein–coding genes. *Genome Biology and Evolution 3*, 1067–1079, https://doi.org/10.1093/gbe/evt040 (2011).
8. Xu, W., Jameson, D., Tang, B. & Higgs, P. G. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. *J. Mol. Evol. 63*, 375–392, https://doi.org/10.1007/s00239-005-0246-5 (2006).
9. Shao, R., Barker, S. C., Mitani, H., Takahashi, M. & Fukunaga, M. Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari: Acariformes). *J. Mol. Evol. 63*, 251–261, https://doi.org/10.1007/s00239-005-0196-y (2006).
10. Chen, X. J. Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. *Microbiol. Mol. Biol. Rev. 77*, 476–496, https://doi.org/10.1128/MMBR.00007-13 (2013).
11. Ma, H. & O’Farrell, P. H. Selections that isolate recombinant mitochondrial genomes in animals. *eLife 4*, e07247, https://doi.org/10.7554/eLife.07247 (2015).
12. Stephan, W. & Langley, C. H. Evolutionary consequences of DNA mismatch inhibited repair opportunity. *Genetics 132*, 567–574 (1992).
13. Ladoukakis, E. D. & Zouros, E. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. *Journal of Biological Research 2*, 1, https://doi.org/10.1186/s40709-017-0060-4 (2017).
14. Nohara, M., Nishida, M., Miya, M. & Nishikawa, T. Evolution of the mitochondrial genome in cephalochordata as inferred from complete nucleotide sequences from two Epigonichthys species. *J. Mol. Evol. 60*, 526–537, https://doi.org/10.1007/s00239-004-0238-x (2005).
55. Xu, B. & Yang, Z. pamlX: a graphical user interface for PAML. *Mol. Biol. Evol.* **30**, 2723–2724, https://doi.org/10.1093/molbev/mst179 (2013).
56. Ronquist, F. *et al.* MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* **61**, 539–542, https://doi.org/10.1093/sysbio/sys029 (2012).
57. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312–1313, https://doi.org/10.1093/bioinformatics/btu033 (2014).
58. Miller, M. A., Pfeiffer, W. & Schwartz, T. In Gateway Computing Environments Workshop (GCE). 1–8 (2010).
59. Colgan, D. J., Ponder, W. F., Beacham, E. & Macaranas, J. Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). *Mol. Phylogen. Evol.* **42**, 717–737, https://doi.org/10.1016/j.ympev.2006.10.009 (2007).
60. Zapata, F. *et al.* Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences **281**, https://doi.org/10.1098/rspb.2014.1739 (2014).
61. Ponder, W. & Lindberg, D. R. *Phylogeny and Evolution of the Mollusca*. First edn, xi+469 (University of California Press, 2008).
62. Uribe, J. E., Kano, Y., Templado, J. & Zardoya, R. Mitogenomics of Vetigastropoda: insights into the evolution of pallial symmetry. *Zoologica Scripta* **45**, 145–159, https://doi.org/10.1111/zsc.12146 (2016).
63. Uribe, J. E., Colgan, D., Castro, L. R., Kano, Y. & Zardoya, R. Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda). *Mol. Phylogen. Evol.* **104**, 21–31, https://doi.org/10.1016/j.ympev.2016.07.021 (2016).
64. The RAxML v8.2.X Manual (Heidelberg Institute for Theoretical Studies. http://www.exelixis-lab.org/), 2016.
65. Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. Selecting optimal partitioning schemes for phylogenomic datasets. *BMC Evol. Biol.* **14**, 82, https://doi.org/10.1186/1471-2148-14-82 (2014).
66. Trace v1.6 (http://beast.bio.ed.ac.uk/Tracer, 2014).
67. Takezaki, N., Kuhara, A. & Nei, M. Phylogenetic test of the molecular clock and linearized trees. *Mol. Biol. Evol.* **12**, 823–833, https://doi.org/10.1093/molbev/msa025 (1995).
68. Bernt, M. *et al.* CREx: inferring genomic rearrangements based on common intervals. *Bioinformatics* **23**, 2957–2958, https://doi.org/10.1093/bioinformatics/btm608 (2007).

Acknowledgements

This research was funded by the Belgian Science Policy Office (BELSPO Action 1 project MO/36/027). It was conducted in the context of the Research Foundation – Flanders (FWO) research community “Belgian Network for DNA barcoding” (W0.009.11N) and the Joint Experimental Molecular Unit (JEMU) at the Royal Belgian Institute of Natural Sciences (RBINS). We are grateful to Dinarzarde Raheem (NHM, London) for her help with phylogenetic analyses.

Author Contributions

S.F. and T.B. conceived the experiments. S.F. analysed data and wrote the manuscript. A.M.F.M. contributed to the material. T.B. reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-36428-7.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018