Functionalization of Intact Trimetaphosphate: A Triphosphorylating Reagent for C, N, and O Nucleophiles

>The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

Citation	Shepard, Scott M. and Christopher C. Cummins. “Functionalization of Intact Trimetaphosphate: A Triphosphorylating Reagent for C, N, and O Nucleophiles.” Journal of the American Chemical Society 141, 5 (January 2019): 1852-1856 © 2019 American Chemical Society
As Published	http://dx.doi.org/10.1021/jacs.8b12204
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/123690
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Abstract: Trimetaphosphate (TriMP, \([P_3O_9]^{1–}\)) reacts with PyAOP ([H(C=C(NH)Me)]PON$_2$C$_6$H$_5$][PF$_6$]), to yield an activated TriMP, [P$_3$O$_9$P(NC$_4$H$_8$)$_3$]$^–$ (1), incorporating a phosphonium moiety. Anion 1 is isolated as its bis(triphenylphosphine)iminium (PPN) salt in 70% yield and phosphorylates nucleophiles with elimination of phosphoramidate OP(NC$_4$H$_8$)$_3$). Treatment of 1 with amines HNR$_2$ generates [P$_3$O$_9$NR2]$^{2–}$ (2a: R$_1$ = R$_2$ = Et; 2b: R$_1$ = H, R$_2$ = tBu) in greater than 70% yield as mixed PPN and alkyl ammonium salts. Treatment of 1 with primary alcohols in the presence of a tertiary amine base results in salts of intact TriMP alkyl esters [P$_3$O$_9$OR]$^{2–}$ (3a, R = Me; 3b R = Et) in greater than 60% isolated yield. Reaction of 1 with [PPN][H$_2$PO$_4$] provides orthophosphoryl TriMP (4, \([P_3O_9H_2]^{2–}\)) in 40% yield as the PPN salt. Treatment of 1 with Wittig reagent H$_2$C$_2$PPh$_3$ (2 equiv) provides phosphorus ylide [P$_3$O$_9$CH$_2$PPh$_3$]$^{2–}$ (5), in 61% yield as a mixed salt. Ylide 5 reacts with water to provide [P$_3$O$_9$OME]$^{2–}$ (6) and with aldehydes to give olefins [P$_3$O$_9$CHCHR]$^{2–}$ (7a: R = H, 7b: R = 4-C$_6$H$_5$Br), products in which one TriMP oxygen is replaced by a phosphonate P–C linkage. Treatment of intact TriMP derivatives 2a, 2b, 3a, and 7a with aqueous tetrabutylammonium hydroxide results in a ring-opening to linear triphosphate derivatives. X-ray crystal structures are provided for salts of 1, 2a, 3a, and 4.

Functionalization of Intact Trimetaphosphate: A Triphosphorylating Reagent for C, N, and O Nucleophiles

Scott M. Shepard and Christopher C. Cummins*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA

Received January 15, 2019; E-mail: ccummins@mit.edu

Abstract: Trimetaphosphate (TriMP, \([P_3O_9]^{1–}\)) reacts with PyAOP ([H(C=C(NH)Me)]PON$_2$C$_6$H$_5$][PF$_6$]), to yield an activated TriMP, [P$_3$O$_9$P(NC$_4$H$_8$)$_3$]$^–$ (1), incorporating a phosphonium moiety. Anion 1 is isolated as its bis(triphenylphosphine)iminium (PPN) salt in 70% yield and phosphorylates nucleophiles with elimination of phosphoramidate OP(NC$_4$H$_8$)$_3$). Treatment of 1 with amines HNR$_2$ generates [P$_3$O$_9$NR2]$^{2–}$ (2a: R$_1$ = R$_2$ = Et; 2b: R$_1$ = H, R$_2$ = tBu) in greater than 70% yield as mixed PPN and alkyl ammonium salts. Treatment of 1 with primary alcohols in the presence of a tertiary amine base results in salts of intact TriMP alkyl esters [P$_3$O$_9$OR]$^{2–}$ (3a, R = Me; 3b R = Et) in greater than 60% isolated yield. Reaction of 1 with [PPN][H$_2$PO$_4$] provides orthophosphoryl TriMP (4, \([P_3O_9H_2]^{2–}\)) in 40% yield as the PPN salt. Treatment of 1 with Wittig reagent H$_2$C$_2$PPh$_3$ (2 equiv) provides phosphorus ylide [P$_3$O$_9$CH$_2$PPh$_3$]$^{2–}$ (5), in 61% yield as a mixed salt. Ylide 5 reacts with water to provide [P$_3$O$_9$OME]$^{2–}$ (6) and with aldehydes to give olefins [P$_3$O$_9$CHCHR]$^{2–}$ (7a: R = H, 7b: R = 4-C$_6$H$_5$Br), products in which one TriMP oxygen is replaced by a phosphonate P–C linkage. Treatment of intact TriMP derivatives 2a, 2b, 3a, and 7a with aqueous tetrabutylammonium hydroxide results in a ring-opening to linear triphosphate derivatives. X-ray crystal structures are provided for salts of 1, 2a, 3a, and 4.

The PPN salt of TriMP has been investigated in organic solvents as a ligand for transition metals. It has properties favorable for functionalization studies including a lack of acidic protons, solubility in polar organic solvents, and crystallinity of reaction products. TriMP is also the obvious choice for synthesizing triphosphorylated biomolecules. Notable recent advances in this area using MstCl as activator are due to Mohamady and Taylor. Phosphonium based condensing reagents have also been used as activators for phosphates and phosphonates for coupling with alcohols (Scheme 1).

By analogy with a powerful methodology for carboxylate activation, we find that TriMP reacts smoothly with peptide coupling reagent PyAOP, to provide anion 1 (Figures 1 and 2). Anion 1 is a potent electrophile, as the phosphonium group is able to leave as the neutral phosphoramidate OP(NC$_4$H$_8$)$_3$. The PPN salt of 1 is readily isolated on a multigram scale under open air conditions. Anion 1 is analogous to the phosphorylation intermediates proposed in several previous publications, but the present work represents the first isolation and characterization of such a phosphonium-phosphate. As a crystalline solid, the PPN salt of anion 1 is stable for weeks.

The structure of 1 as revealed by X-ray crystallography contains several interesting features (Figure 2). Notably, the P2–O4 and P2–O6 bond lengths of 1.555(1) and 1.554(1) Å are much shorter than the corresponding P4–O4 and P3–O6 bond lengths of 1.678(1) and 1.674(1) Å. The contraction of
by phosphorus atom are shortened to 1.580(1) Å with elongation of the opposing P–O bond to 1.651(1) Å. This structural effect is somewhat less pronounced than that observed for 1, as the more electron releasing –NEt₂ substituent induces less buildup of positive charge on the phosphorus atom.

As expected, 1 reacts with primary alcohols (Figure 1). The reaction is less facile than for amines owing to the lower reactivity of ROH nucleophiles. It was necessary to add a tertiary amine base to the reaction mixture when functionalityzing TriMP with an alcohol, to neutralize the generated acidic proton. Otherwise, an intractable mixture of products forms that contains, according to ³¹P NMR analysis, symmetric linear triphosphate diesters and lower phosphates. The reaction of 1 with alcohols is slower than with amines, requiring hours rather than minutes to reach completion. However these reactions were found to reach completion faster when pyridine was used as the base rather than triethylamine, a less nucleophilic tertiary amine base. This observation suggests that pyridine may undergo initial phosphorylation, to form [C₅H₅N]₃PO₄积极作用 as a reactive intermediate. However, it was found that addition of triethylamine during the workup was necessary to isolate crystalline products (Figure S79). With these conditions, mixed PPN and triethylammonium salts of the methyl ester, 3a, and the ethyl ester, 3b, were obtained with a respectable isolated yield (74% and 61%). The salt of anion 3a has been crystallographically characterized; hydrogen bonding is observed between the [HNEt₃]⁺ cation and a negatively charged oxygen of the cyclophosphate ring (Fig. S79).

In contrast to the essentially quantitative nature of the reaction between 1 and amines, the reaction with ROH nucleophiles suffers from competing formation of TriMP. This can be ascribed to the reaction of 1 with water becoming competitive with the relatively sluggish ROH triphosphorylation. Excess ROH therefore increases the yield of phosphorylated product by minimizing unproductive conversion of 1 to TriMP. Utilizing one equivalent of methanol in the synthesis of 3a rather than five equivalents extends the reaction time from two hours to eighteen hours and decreases the isolated yield from 74% to 54%. This problem is not fully mitigated by using anhydrous solvents under an inert atmosphere because the PPN salt of anion 1 crystallizes as a double hydrate, a feature that may be important to its stability or else key to our ability to obtain the salt pure and in crystalline form; efforts to obtain an anhydrous salt of 1 have not yet met with success. The PPN salt of 1·(H₂O)₂ is not effective for triphosphorylation of 2° or 3° alcohols as such reactions lead exclusively to trimetaphosphate.

Figure 1. Synthesis of anions 1 through 5 as their PPN salts: i, one equivalent PyAOP in acetone for 30 minutes at 25 °C; ii, 5 equivalents amine in acetonitrile for 15 minutes at 25 °C; iii, 5 equivalents alcohol, 2 equivalents pyridine, and 2 equivalents triethylamine in acetonitrile for 2 hours at 25 °C; iv, one equivalent [PPN][H₂PO₄] in acetonitrile for 15 minutes at 25 °C; v, 4 equivalents H₂C₂PPh₃ in acetonitrile for 24 hours under an inert atmosphere at 25 °C.

Figure 2. Thermal ellipsoid (50%) plot of anion 1 (dihydrate).

these bonds can be explained by the increased electrophilicity of P2. We explored this effect computationally with Natural Population Analysis (NPA) at the B3LYP/6-31++G** level of theory.¹⁷,¹⁸ NPA reveals a natural charge of 2.67 for P2 compared to 2.58 for both P3 and P4. This difference in charge is small, suggesting that charge buildup on P2 is neutralized by the shortening of the P–O bonds.

Anion 1 reacts rapidly and quantitatively (as monitored by ³¹P NMR spectroscopy) with the primary and secondary amines H₂N·Bu and HNEt₂ to give new phosphoramide species (Figure 1). These reactions generate an acidic proton, which is scavenged by excess amine to produce an alkyl ammonium counterion that engages in hydrogen bonding with an anionic phosphate ring oxygen, as revealed in a crystallographic study of the salt of 2a (Figure S78). The acidic proton generated in such reactions should be a useful synthetic handle for introducing functionalized trimetaphosphate molecules into the coordination sphere of transition metals, along the lines of our previous work with monoprotonated TriMP.²,³ As in the case of anion 1, it is observed for 2a that the P–O bond lengths of the functionalized phosphorus atom are shorter than those of anion 1, which is scavenged by excess amine to produce an alkyl amine during the workup was necessary to isolate crystalline products (Figure S79). With these conditions, mixed PPN and triethylammonium salts of the methyl ester, 3a, and the ethyl ester, 3b, were obtained with a respectable isolated yield (74% and 61%). The salt of anion 3a has been crystallographically characterized; hydrogen bonding is observed between the [HNEt₃]⁺ cation and a negatively charged oxygen of the cyclophosphate ring (Fig. S79).

In contrast to the essentially quantitative nature of the reaction between 1 and amines, the reaction with ROH nucleophiles suffers from competing formation of TriMP. This can be ascribed to the reaction of 1 with water becoming competitive with the relatively sluggish ROH triphosphorylation. Excess ROH therefore increases the yield of phosphorylated product by minimizing unproductive conversion of 1 to TriMP. Utilizing one equivalent of methanol in the synthesis of 3a rather than five equivalents extends the reaction time from two hours to eighteen hours and decreases the isolated yield from 74% to 54%. This problem is not fully mitigated by using anhydrous solvents under an inert atmosphere because the PPN salt of anion 1 crystallizes as a double hydrate, a feature that may be important to its stability or else key to our ability to obtain the salt pure and in crystalline form; efforts to obtain an anhydrous salt of 1 have not yet met with success. The PPN salt of 1·(H₂O)₂ is not effective for triphosphorylation of 2° or 3° alcohols as such reactions lead exclusively to trimetaphosphate.

Figure 3. Thermal ellipsoid (50%) plot of anion 4.

Phosphorylation of phosphates is an important reaction class, utilized with TriMP to produce nucleoside tetraphosphates from nucleoside monophosphates.³ Anion 1 reacts
rapidly with the simplest monophosphate, orthophosphate, delivered as the salt [PPN][H₂PO₄], to generate anion 4 (Figure 1). Observed previously in complex reaction mixtures and dubbed “orthophosphoryltrimetaphosphate”, no pure salt of anion 4 has been reported until now. The crystalline PPN salt of 4, obtained in 40% yield, was subjected to crystallographic analysis. Anion 4 features an interesting cage structure as a consequence of intramolecular hydrogen bonding with both protons located on the orthophosphate moiety (Figure 3). The 31P NMR data for 4 are consistent with the anion’s solid state structure, with an upfield multiplet (δ = -41.34 ppm) assigned to the branch phosphorus, a doublet for the two ring phosphorus atoms (δ = -23.99 ppm), and another terminal phosphate doublet (δ = -14.58 ppm).

Scheme 2. Treatment of 5 with water or aldehydes to generate phosphonates 6, 7a, and 7b

An attractive target is the phosphorylation of carbon nucleophiles. Extant methods for P–C bond formation require the intermediacy of a reduced phosphorus species; it should be recalled that typical phosphorus electrophiles such as PCl₃ or POCl₃ are derived from P₄ (white phosphorus). The idea of making organophosphorus compounds from phosphoric acid with sodium chloride. In contrast, TriMP can be obtained by thermal dehydration of white phosphorus. The anion’s solid state structure, with an upfield multiplet (δ = -41.34 ppm) assigned to the branch phosphorus, a doublet for the two ring phosphorus atoms (δ = -23.99 ppm), and another terminal phosphate doublet (δ = -14.58 ppm).

Scheme 2. Treatment of 5 with water or aldehydes to generate phosphonates 6, 7a, and 7b

The Wittig reagent H₂CPPh₃ as a C-nucleophile reacts with 1 presumably generating the unobserved intermediate anion [P₃O₅CH₂CPPh₃]⁻, which is deprotonated in turn by a second equivalent of the Wittig reagent. This results in anion 5, itself a phosphorus ylide, delivering a powerful synthetic handle for the synthesis of phosphonates (Figure 1) in the unusual context of a singly functionalized, intact cyclic triphosphate. Due to the synthesis method, novel anion 5 is obtained as a mixed PPN and methyltriethylphosphonium salt, which has proved difficult to crystallize. This mixed salt of anion 5 is obtained in reasonable purity and is well characterized by NMR spectroscopy and MS methods.

Reaction of 5 with water gives methyl phosphonate 6 (Scheme 2). As a phosphorus ylide, 5 undergoes the Wittig reaction with aldehydes to form alkyl phosphonates 7; the olefins generated from 4-BrC₆H₄CHO are a mixture of E and Z isomers (Scheme 2). Anion 5 is unreactive towards acetone and similar ketones at room temperature, a result that is typical for stabilized phosphorus ylides. Phosphorus ylides stabilized by an adjacent phosphonate group are well known and have been employed previously in the synthesis of simple alkyl monophosphonates. The closest reported analogue to 5, Ph₃PCP(O)(OEt)₂ has been utilized in the synthesis of 6'-deoxyhomonucleoside-6'-phosphonic acids from 5'-nucleoside aldehydes.

Scheme 3. Ring-opening of anions 2a, 2b, 3a and 7a by treatment with aqueous tetrabutylammonium hydroxide

Selected examples of the isolated phosphoramidate (2a and 2b), organophosphates (3a), and phosphonate (7a) trimetaphosphate derivatives were converted to linear forms by treatment with aqueous tetrabutylammonium hydroxide in acetonitrile (Scheme 3). Although excess hydroxide reacted with the phosphorus-containing cations to give side products, these were easily separated by extraction with dichloromethane. Accordingly, tetra-anionic linear triphosphate derivatives 8a, 8b, 9a, and 10a were isolated as water-soluble TBA salts in good purity without the need for chromatographic separation.

Previously, activated forms of TriMP were generated in situ with their chemical identities not well established. The synthesis and isolation of 1 shows that such molecules can be brought into the realm of well defined reagents and should encourage the preparation and characterization of analogs based upon TriMP with different leaving groups, or employing entirely different phosphates.

Acknowledgement This work was supported by the NSF under the NSF Center CHE-1305124. We gratefully thank Wesley Transue, Michael Geeson, Martin Riu, and Carly Schissel for thoughtful discussion and suggestions. We also thank Wesley Transue and Charlene Tsai for assistance with X-ray crystallography. We also wish to thank a reviewer for stressing the importance of providing conditions for conversion of the cyclic trimetaphosphate derivatives into their corresponding linear forms (Scheme 3).
Supporting Information Available

Experimental details, further characterization data, and X-ray crystallographic information are provided in the Supporting Information document. X-ray crystallographic information can also be accessed through the Cambridge Crystallographic Data Centre (CCDC), deposition numbers 1877207, 1877206, 1877205, and 1877204.

References

(1) Mohamady, S.; Taylor, S. D. Synthesis of Nucleoside Triphosphates from 2'-3'-Protected Nucleosides Using Trimetaphosphate. Org. Lett. 2016, 18, 580-583.

(2) Azvedo, C.; Singh, J.; Seck, N.; Hofe, A.; Ruiz, F. A.; Singh, T.; Jessen, H. J.; Salardi, A. Screening a Protein Array with Synthetic Biotinylated Inorganic Polyphosphate To Define the Human PolyP-Ome. ACS Chem. Biol. 2018, 13, 1883-1903.

(3) Mohamady, S.; Taylor, S. D. Synthesis of Nucleoside 5'-O-Tetraphosphates from Active Trimetaphosphate and Nucleoside-3'-5'-Monophosphates. CP in Nucleic Acid Chem. 2018, 15, e92.

(4) Smith, M.; Khorana, H. G. Nucleoside Polyphosphates. VI. 1 An Improved and General Method for the Synthesis of Ribonucleyo-bisnucleoside 5'-Triphosphates. J. Am. Chem. Soc. 1958, 80, 1141-1145.

(5) Jiang, Y.; Chakarawat, K.; Kohout, A. L.; Nava, M.; Marino, N.; Cummins, C. C. Dihydrogen Triphosphophosphate \([\text{P}_2\text{O}_5\text{H}_2]^{2-}\) : Synthesis, Solubilisation in Organic Media, Preparation of its Anhydride \([\text{P}_2\text{O}_5\text{O}]^{2-}\) and Acidic Methyl Ester, and Conversion to Tetrametaphosphate Metal Complexes Via Protolytic. J. Am. Chem. Soc. 2014, 136, 11894-11897.

(6) Chakarawat, K.; Knopf, I.; Nava, M.; Jiang, Y.; Steuber, J. M.; Cummins, C. C. Crystalline Metaphosphate Acid Salt Synthesis in Organic Media, Structures, Hydrogen-Bonding Capacity, and Acid-base Implications of Superacidity. Inorg. Chem. 2015, 54, 6178-6185.

(7) Oka, N.; Shimizu, M.; Saito, K.; Wada, T.; 1,3-Dimethyl-2-(3-phenyl-2-methoxyphosphoryl)imidazole-4-yl-1,3,4,5-tetraphosphonium hexafluorophosphate (MTPP) : a powerful condensing reagent for phosphate and phosphonate esters. Tetrahedron 2006, 62, 3667-3673.

(8) Parker, T. L. Novel bi(p)hydroxyphenylaldimine ammoxal nitriles US Patent 5045632 1991.

(9) Steuber, J. M.; Zhang, S.; Grondzik, N.; Jiang, Y.; Aveza, L.; Stevenson, K. J.; Cummins, K. J.; Cummins, C. C. Cobalt and Vanadium Trimetaphosphate Poly-anions: Synthesis, Characterization, and Cyclic Voltammetry Study for the Improved Nitro-Acetate Adduct. J. Am. Chem. Soc. 2014, 140, 1268-1271.

(10) Steuber, J. M.; Cummins, C. C. Terminal Titanyl Complexes of Tri- and Tetrametaphosphate: Synthesis, Structures, and Reactivity with Hydrogen Peroxide. Inorg. Chem. 2011, 50, 3022-3029.

(11) Klamperer, W. G.; Main, D. J. Polyoxometalate-supported metal carboxylate syntheses and characterization of \([\text{O}(\text{OC})\text{R}]_2(\text{N}_2\text{W}_4\text{O}_{12})^{2-}\); \([\text{O}(\text{OC})\text{R}]_2(\text{N}_2\text{W}_4\text{O}_{12})^{2-}\); and \([\text{O}(\text{OC})\text{R}]_2(\text{P}_2\text{O}_5\text{O})^{2-}\). Inorg. Chem. 1990, 29, 2355-2360.

(12) Trowbridge, D. R.; Yamamoto, D. M.; Kenyon, C. L. Ring openings of trimetaphosphoric acid and its biarylbenzene analog. Synthesis of adenine 5'-bis(dihydroxyphosphoryl imethyl)phosphate and 5'-amino-5'-deoxyadenosine 5'-triphosphate. J. Am. Chem. Soc. 1972, 94, 3815-3824.

(13) Mohamady, S.; Taylor, S. D. Synthesis of Nucleoside Tetraphosphates and Dinucleoide Pentaphosphates via Activation of Cyclic Trimetaphosphate. Org. Lett. 2013, 15, 2612-2615.

(14) Compagno, J.; Coste, J.; Jounil, P. (IH-Bezo-trizolato-1-l-oxo-s-trimethylaminoo)phosphonium Hexafluorophosphate and (IH-Bezo-tri-1-l-oxo-s-triphenylmethylphosphonium Hexafluorophosphate-Mediated Activation of Monophosphate Esters: Synthesis of Mixed Phosphate Diesters, the Reactivity. J. Org. Chem. 1995, 60, 5214-5223.

(15) Al-Halimi, T. I.; El-Hamdi, H. M.; El-Faham, A. Recent development in peptide coupling reagents. J. Saudi Chem. Soc. 2012, 16, 9-116.

(16) Barto, F.; Casse, M.; Aikoku, J.; Trillo, S. A.; Carpio, L. A.; Kates, S. A. On the use of PyACP, a phosphonate salt derived from H0AT, in solid-state phase synthesis. Tetrahedron Lett. 1997, 38, 4853-4856.

(17) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Duplce, M.; Montgomery, J. A. General atomic and molecular electronic structure system. J. Comput. Chem. 1995, 16, 1347-1363.

(18) Gloseng, E. D.; Landis, C. H.; Weinhold, F. NBO 5.0. Natural bond orbital analysis program. J. Comput. Chem. 2013, 14, 1249-1347.

(19) Greco, M. B.; Cummins, C. C. Phosphoric acid as a precursor to chemicals traditionally synthesized from white phosphorus. Science 2015, 359, 1385-1385.

(20) Rice, S. J. C. Sustainable Phosphorus Chemistry: A Silicy-phosphide Synthesis for the Generation of Value-Added Phosphorus Chemicals. Angeu. Chem. Int. Ed. 2016, 57, 6385-6388.

(21) Pastor, J. D. From rock-eval to reactive phosphorus. Science 2018, 359, 1333-1333.

(22) Cummins, C. C. Phosphorus: From the Stars to Land & Sea. Dordrecht 2014, 143-9-29.

(23) Yu, X.; Donoghue, J. R.; Jiang, S. C.; Zhang, J. K.; Cirillo, B.; Griffin, B. M.; Labeled, D. P.; Metcalfe, W. W. Diversity and abundance of phosphates in synthetic and synthetic environments. Proc. Natl. Acad. Sci. 2008, 53, 1383-1387.

(24) Peck, S. C.; van der Donk, W. A. Phosphonate biosynthesis and catalysis: A treasure trove of unusual enzyme. Curr. Opin. Chem. Biol. 2013, 17, 580-588.

(25) Chen, J. P.; McCrath, J. W.; Quinn, J. P. Microbial transformations in phosphonate biosynthesis and catalysis, and their importance in nutrient cycling. Curr. Opin. Chem. Biol. 2016, 21, 50-57.

(26) Eymery, P.; Iorga, B.; Saviugnon, P. Synthesis of phosphonates by nucelophilic substitution at phosphorus: The SnP(V) reaction. Tetrahedron 1996, 52, 13109-13150.

(27) Meier, M. S.; Ruder, S. M.; Malona, J. A.; Frontier, A. J. Phosphorus Oxidchloride. In Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons: Hoboken, 2006.

(28) Pham Minh, D.; Rosaros, J.; Nishou, A.; Sharrock, P. One-Step Synthesis of Sodium Trimetaphosphates \((\text{Na}_3\text{P}_2\text{O}_9)\) from Sodium Chloride and Orthophosphoric Acid. Int. Eng. Chem. Res. 2012, 51, 3851-3854.

(29) Xu, Y.; Flavin, M. T.; Xu, Z. Preparation of New Wittig Reagents and Their Application to the Synthesis of α,β-Unsaturated Phosphonates. J. Org. Chem. 1986, 61, 7657-7671.

(30) Joses, G.; Hamamura, E.; Moffatt, J. A new stable Wittig reagent suitable for the synthesis of α,β-unsaturated phosphonates. Tetrahedron Lett. 1969, 8, 673-6734.

(31) Checinska, L.; Kudzin, Z. H.; Malecka, M.; Nazarki, R. B.; Oktuzbek, A. (Diphenylphosphinyl)methylidene(triarylphosphorus) nucleoside: the double P^2-stabilised carbanion: a crystallographic, computational and solution NMR comparative study on the cyclic bonding. Tetrahedron 2006, 62, 7611-7623.

(32) Joses, G. H.; Gries, J. G. The synthesis of 6'-deoxyhexonucleotide 6'-phosphonic acids. J. Am. Chem. Soc. 1988, 106, 5337-5338.
Graphical TOC Entry

C, N, O Nuc

OH

LG = Leaving Group Nuc = Nucleophile

Activated Trimetaphosphate