A quadratic bound on the number of boundary slopes of essential surfaces with bounded genus

Tao Li * Ruifeng Qiu † Shicheng Wang ‡

Abstract

Let M be an orientable 3-manifold with ∂M a single torus. We show that the number of boundary slopes of immersed essential surfaces with genus at most g is bounded by a quadratic function of g. In the hyperbolic case, this was proved earlier by Hass, Rubinstein and Wang.

Subject class: 57M50, 57N10

1 Introduction

A proper immersion $f : (F, \partial F) \to (M, \partial M)$ from a compact surface to a compact 3-manifold is essential if it is π_1-injective and ∂-injective, i.e., it maps essential loops and arcs in F to essential loops and arcs in M. Let M be a compact orientable 3-manifold with ∂M a single torus. We say a slope s in ∂M is realized by an essential surface if there is a proper essential immersion $f : (F, \partial F) \to (M, \partial M)$ such that every component of $f(\partial F)$ is a curve of slope s in ∂M. Such an immersed surface is particularly interesting because it extends to a closed immersed surface in the closed 3-manifold $M(s)$ obtained by Dehn filling along the slope s.

The study of boundary slopes of essential surfaces has been an active and attractive topic for long times. Hatcher [Ha] showed that there are only finitely many boundary slopes of embedded essential surfaces. The number of boundary slopes of small-genus embedded surfaces (e.g. punctured spheres or tori) is quite small and the study of these exceptional slopes is a center topic in the theory of Dehn surgery, see the survey article [Go].

*Partially supported by NSF grant DMS-0705285
†Partially supported by NSFC grant 10631060
‡Partially supported by NSFC grant 10625102
However, for immersed essential surfaces, there is no such bound in general. In fact, there are examples that every slope is realized by an immersed essential surface, see [Ba, BC, O]. In [HRW], Hass, Rubinstein and Wang show that for hyperbolic manifolds, the number of boundary slopes of essential surfaces of genus at most g is bounded by Cg^2, where C is a constant independent of the manifold (see also Agol [Ag]). The purpose of this paper is to extend the quadratic bound result to general 3-manifolds.

Theorem 1.1. Suppose M is an orientable 3-manifold with ∂M a single torus. For any g, let $N_g(M)$ be the number of slopes that can be realized by essential immersed surfaces of genus at most g.

Then $N_g(M) \leq \begin{cases} C(M)g^2 & g \geq 1 \\ C'(M) & g = 0 \end{cases}$ for some constants $C(M)$ and $C'(M)$ that depend on M.

Remark. (1). In [HRW], Hass, Rubinstein and Wang proved that $N_g(M)$ is finite, but no bound on $N_g(M)$ is given in [HRW]. Recently Zhang [Zh] extended the techniques in [HRW] and proved that $N_g(M)$ is bounded by $c(M)g^3$ for some constant $c(M)$ that depends on M.

(2). The coefficient $C(M)$ depends on M. One would hope for a quadratic bound independent of M, but even for embedded surfaces, it seems difficult to obtain such a bound if M contains essential annuli. Nevertheless, the coefficients $C(M)$ and $C'(M)$ can be algorithmically determined, see Remark 4.4.

(3). When ∂M is a high genus surface, there are finiteness and infiniteness results in both embedded and immersed case, see [SWu, Qi, HWZ, La] and [QW].

2 Some crucial facts

The proof of Theorem 1.1 relies on a theorem of Hass-Rubinstein-Wang [HRW], a theorem of Culler-Shalen [CS], and Li’s extension of Hatcher’s argument [Li2]. Propositions 2.1, 2.2 and 2.3 below are their variations, presented in the forms we need.

In this section we first consider a hyperbolic 3-manifold M with possibly more than one cusp. We denote by M_{max} the interior of M with a system of maximal cusps removed. Now we identify M with M_{max}, then ∂M has a Euclidean metric induced from the hyperbolic metric and each closed Euclidean geodesic in ∂M has length at least 1 (see [Ad] for detail).

Proposition 2.1. Suppose M is a hyperbolic 3-manifold as above and T is a component of ∂M. Suppose F is an essential immersed surface of genus g in M and let c_1, \ldots, c_n be the components of $\partial F \cap T$.

2
1. If we identify M with M_{max}, then

$$\sum_{i=1}^{n} L(c_i) \leq -2\pi \chi(F),$$

where $L(c_i)$ is the length of an Euclidean geodesic homotopic to c_i in T.

2. Let S be an embedded essential surface in M and let γ be a component of $\partial S \cap T$. Then there is a number C_S which can be expressed as an explicit function of $\chi(S)$, such that

$$|\gamma \cap \partial F| \leq -C_S \cdot \chi(F),$$

where $|\gamma \cap \partial F|$ is the minimum number of intersection points of γ and ∂F.

3. There are two distinct essential circles Γ_1 and Γ_2 in T, such that

$$|\Gamma_j \cap \partial F| \leq -C \chi(F)$$

for some constant C, where $|\Gamma_j \cap \partial F|$ is the minimum number of intersection points of Γ_j and ∂F up to isotopy, $j = 1, 2$.

Proof. Part (1) is proved in [HRW].

Now we prove part (2). Recall we have identified M with M_{max}, and ∂M has a Euclidean metric induced from the hyperbolic metric. We may assume that γ and each component c_i of ∂F have been isotoped to be closed Euclidean geodesics in ∂M.

Let $p : E^2 \to T$ be the universal cover, where E^2 is the Euclidean plane. By lifting γ to E^2, we get an Euclidean line segment OO_1 which projects to γ. By part (1), the Euclidean length $L(\gamma) = L(OO_1)$ is at most $-2\pi \chi(S)$. The covering translations of O form a lattice in E^2. Let O_2 be a lattice point such that OO_1 and OO_2 span a fundamental parallelogram P for T. By a theorem of Cao and Meyerhoff (also see Lemma 2.2 of [HRW]), $\text{area}(P) \geq 3.35$.

Let h be the distance from O_2 to the line OO_1. Since the Euclidean length $L(OO_1) \leq -2\pi \chi(S)$ and since $\text{area}(P) \geq 3.35$, the height $h \geq \frac{3.35}{L(OO_1)} \geq \frac{3.35}{-2\pi \chi(S)}$.

By lifting c_i to E^2, it is easy to see that the length of c_i is at least $h|c_i \cap \gamma|$. By part (1), we have

$$h|\gamma \cap \partial F| = h\sum_{i=1}^{n} |c_i \cap \gamma| \leq \sum_{i=1}^{n} L(c_i) \leq -2\pi \chi(F).$$

So part (2) holds and $C_S = \frac{-4\pi^2 \chi(S)}{3.35}$.

The proof of part (3) is similar. Pick an origin O in E^2 and consider the lattice L in E^2 given by the covering translations of O. Let O_1 and O_2 be two independent vertices in L which have the first and second shortest distance from the origin O. Let α be the angle of the triangle OO_1O_2 at O and let l, l_1, l_2 be the lengths of O_1O_2, O_1O_2.
OO\textsubscript{1} and OO\textsubscript{2} respectively. By our assumptions above and by a theorem in [Ad] mentioned earlier, we have \(l \geq l_{2} \geq l_{1} \geq 1 \). This implies that \(\alpha \geq \pi/3 \). Furthermore, we can assume that \(\alpha \leq \pi/2 \), because otherwise we can replace one of the vertices by its inverse.

\(\text{OO}_{1} \) and \(\text{OO}_{2} \) span a fundamental parallelogram \(P \) for \(T \). It follows from our assumptions above that \(l_{1} \sin \alpha \) (resp. \(l_{2} \sin \alpha \)), the height of \(P \) over \(\text{OO}_{2} \) (resp. over \(\text{OO}_{1} \)), is at least \(\sqrt{3}/2 \). Let \(\Gamma_{j} = p(\text{OO}_{j}), j = 1, 2 \). As in part (2), we have

\[
\frac{\sqrt{3}}{2} |\Gamma_{j} \cap \partial F| = \frac{\sqrt{3}}{2} \sum_{i=1}^{n} |c_{i} \cap \Gamma_{j}| \leq \sum_{i=1}^{n} L(c_{i}) \leq -2\pi \chi(F),
\]

and part (3) follows with \(C = 4\pi \sqrt{3} \).

Proposition 2.2. Suppose \(M \) is a hyperbolic 3-manifold as above and \(T \) is a component of \(\partial M \). Then \(T \) has two distinct boundary slopes \(c_{1} \) and \(c_{2} \) of embedded essential surfaces, i.e., there are properly embedded essential surfaces \(F_{i} \) in \(M \) such that \(F_{i} \cap T \) is a multiple of \(c_{i} \), \(i = 1, 2 \).

Proof. By performing hyperbolic Dehn filling on each boundary component of \(\partial M \setminus T \), we get a hyperbolic 3-manifold \(M^{*} \) with \(\partial M^{*} = T \). By a theorem of Culler-Shalen [CS], there are two distinct boundary slopes \(c_{1} \) and \(c_{2} \) on \(T \), i.e. there are properly embedded essential surfaces \(F_{i}^{*} \) in \(M^{*} \) such that \(F_{i}^{*} \cap T \) is a multiple of \(c_{i} \), \(i = 1, 2 \). So \(F_{i} = F_{i}^{*} \cap M \) has the required property. \(\square \)

A surface in a Seifert fiber space is said to be horizontal if it is transverse to the \(S^{1} \)-fibers. If an orientable Seifert fiber space has a single boundary component, then it is easy to see that all embedded horizontal surfaces have the same slope which is determined by its Euler number. The following Lemma is a generalization of this fact to immersed horizontal surfaces in a Seifert fiber space with more than one boundary component.

Proposition 2.3. Let \(N \) be an orientable Seifert fiber space with boundary and \(T \) a boundary component of \(N \). Let \(F_{1} \) and \(F_{2} \) be immersed essential horizontal surfaces in \(N \). Suppose \(F_{i} \cap T \) is embedded for both \(i = 1, 2 \) and \(|\partial F_{1} \cap \partial F_{2} \cap T| \) is minimal in the isotopy classes of \(F_{1} \) and \(F_{2} \). If there is a double curve \(\alpha \subset F_{1} \cap F_{2} \) with both endpoints in \(T \), then the curves of \(F_{1} \cap T \) and \(F_{2} \cap T \) must have the same slope in \(T \).

Proof. The proof of the lemma is basically an argument first used by Hatcher in [Ha] and then extended to immersed surfaces in [Li2]. As \(N \) is a Seifert fiber space, we can fix a direction for the \(S^{1} \)-fibers of \(N \) in \(T \). Since \(N \) is orientable and each \(F_{i} \) is horizontal, the normal direction of \(\partial N \) and the orientation of the \(S^{1} \)-fibers in \(T \) uniquely determine an orientation for every curve of \(\partial F_{1} \cap T \) and \(\partial F_{2} \cap T \). Since
$F_i \cap T$ is embedded, every component of $\partial F_i \cap T$ ($i = 1$ or 2) with this induced orientation represents the same element in $H_1(T)$. If $\partial F_1 \cap T$ and $\partial F_2 \cap T$ have different slopes, they must have a nonzero intersection number. Moreover, since we have assumed $|\partial F_1 \cap \partial F_2 \cap T|$ is minimal in the isotopy classes of F_1 and F_2, the signs of the intersection points of $\partial F_1 \cap \partial F_2 \cap T$ (with respect to the directions above) are the same, either all positive or all negative.

Let $\alpha \subset F_1 \cap F_2$ be an intersection arc with both endpoints in T. One can easily list all possible configurations of the directions of the S^1-fibers at $\partial \alpha$ and the induced orientations of ∂F_1 and ∂F_2. However, since each F_i is horizontal, only two possible configurations can happen, see Figure 1. In either case, the two ends of α give points of $\partial F_1 \cap \partial F_2 \cap T$ with opposite signs of intersection. This contradicts our conclusion on the sign of the intersection points above. So $F_1 \cap T$ and $F_2 \cap T$ must have the same slope in T.

![Figure 1](image.png)

The following fact follows immediately from Lemma 2.8. Since an essential surface in a Seifert fiber space is either vertical or horizontal [H], if M is an orientable Seifert fiber space with a single boundary component, this means that only two possible slopes can be realized by immersed essential surfaces, one vertical and one horizontal.

Corollary 2.4. Let N be an orientable Seifert fiber space with a single boundary torus. Then all immersed horizontal surfaces with respect to a fixed Seifert structure have the same slope in ∂N.

3 Construct a surface of reference

Let M be as in Theorem 1.1. First note that we may assume M is irreducible, since if M is reducible we can use the prime factor of M that contains ∂M and the proof
is the same. Since the hyperbolic case is proved in [HRW] and the Seifert fiber case is trivial (see Corollary 2.4), we may assume M has a nontrivial JSJ decomposition.

Let T be the set of JSJ decomposition tori of M. We call the closure (under path metric) of each component of $M - N(T)$ a JSJ piece. Let M_0 be the JSJ piece that contains the torus ∂M.

In this section, we suppose M_0 is a Seifert fiber space and we will use the JSJ structure of M to construct a surface of reference for counting the boundary slopes of immersed essential surfaces. This surface is in M_0 and is not a proper surface in M.

For any Seifert fiber space N with boundary, we call a slope in a boundary torus the vertical slope if it is the slope of a regular fiber of N.

Proposition 3.1. Let N be a Seifert fiber space and T_0, T_1, \ldots, T_n the boundary tori of N. Let s_i ($i = 1, \ldots, n$) be any slope in T_i that is not vertical in N. Then there is an embedded horizontal surface in N realizing each slope s_i in T_i.

Proof. We perform Dehn fillings along each slope s_i ($i = 1, \ldots, n$) and let \hat{N} be the resulting manifold. So $\partial \hat{N} = T_0$. Since s_i is not vertical in N, the Seifert structure of N extends to \hat{N}. Hence \hat{N} is a Seifert fiber space with boundary. Every Seifert fiber space with boundary has an embedded horizontal surface. The restriction of a horizontal surface of \hat{N} to N is a horizontal surface of N realizing each slope s_i in T_i ($i = 1, \ldots, n$).

Let M_0 be the Seifert JSJ piece of M as above. Let $\partial M, T_1, \ldots, T_n$ be the boundary tori of M_0. So each T_i can be viewed as a JSJ torus in T and M_0 is a JSJ piece on one side of T_i. Next we fix a slope in T_i according the JSJ piece on the other side of T_i. Let M_i be the JSJ piece on the other side of T_i. Note that M_i is the same as M_0 if T_i is glued to some T_j in M. We fix a slope s_i for each boundary component T_i of M_0 as follows.

Case 1. M_i is a Seifert fiber space and M_i is not a twisted I-bundle of a Klein bottle. In this case we choose the slope s_i of T_i to be the slope of a regular fiber of M_i. Note that s_i is not a vertical slope for M_0, because otherwise the regular fibers of M_0 and M_i match and $M_0 \cup_{T_i} M_i$ is a Seifert fiber space, which contradicts the hypothesis that T_i is a JSJ torus. So s_i is not a vertical slope for M_0.

Case 2. M_i is a twisted I-bundle over a Klein bottle. In this case, M_i has two different Seifert structures [Ja]. For any point $x \in T_i = \partial M_i$, we define $p(x)$ to be the other endpoint of the I-fiber of M_i that contains x. Let γ_ν be a simple closed curve in T_i which is a regular fiber of M_0. Let s_i be the slope of $p(\gamma_\nu)$. Note that γ_ν and $p(\gamma_\nu)$
bound an immersed essential annulus in M_i. If γ_ν and $p(\gamma_\nu)$ have the same slope in T_i, i.e. $\gamma_\nu \cup p(\gamma_\nu)$ bounds an embedded annulus, then we can choose a Seifert structure for M_i so that γ_ν is also a regular fiber for M_i and hence $M_0 \cup M_i$ is a Seifert fiber space, a contradiction to the hypothesis that T_i is a JSJ torus. So s_i is not a vertical slope for M_0.

Case 3. M_i is hyperbolic. By Proposition 2.2, T_i has at least two boundary slopes (of embedded essential surfaces in M_i). In this case we choose s_i to be a boundary slope of M_i that is not a vertical slope in M_0 and hence $M_0 \cup M_i$ is a Seifert fiber space, a contradiction to the hypothesis that T_i is a JSJ torus. So s_i is not a vertical slope for M_0.

By Proposition 3.1, M_0 contains a properly embedded horizontal surface S such that the slope of $\partial S \cap T_i$ is the slope s_i described above. Note that S is not a properly embedded surface in M, since two tori T_i and T_j ($i \neq j$) may be glued together in M and s_i and s_j may not match in the corresponding JSJ torus of M.

Next we fix the surface S in the construction above. Let μ the slope of $S \cap \partial M$ in the torus ∂M and let ν be the vertical slope of ∂M with respect to the Seifert structure of M_0.

4 Proof of the Theorem 1.1

Let F be a proper immersed essential surface of genus g in M.

If M_0 is hyperbolic then Theorem 1.1 follows from [HRW]. More precisely, suppose ∂F is an n multiple of a slope c in ∂M and we have identified M_0 with the metric space $M_{0\text{max}}$ as in Proposition 2.1 By Proposition 2.1 (1), we have

$$nL(c) \leq L(\partial(F \cap M_0)) \leq -2\pi \chi(F \cap M_0) \leq -2\pi \chi(F) = 2\pi(2g - 2 + n).$$

Then as discussed in [HRW] we have $L(c) \leq 2\pi$ if $g = 0$ and $L(c) \leq 2g\pi$ if $g > 0$, therefore $N_g(M) \leq C'$ for $g = 0$ and $N_g(M) \leq Cg^2$ for some constants C' and C independent of M.

Below we assume that M_0 is a Seifert fiber space.

We may assume the slope of ∂F is not the vertical slope of M_0, so $F \cap M_0$ is horizontal in M_0. Since ∂M is incompressible, F is not a disk. If F is an annulus, then $F \cap M_0$ is a horizontal annulus. The only orientable Seifert fiber space that admits a horizontal annulus is either $T^2 \times I$ or a twisted I-bundle over a Klein bottle. Since M_0 is a JSJ piece, M_0 is not $T^2 \times I$. If M_0 is a twisted I-bundle over a Klein bottle, $M_0 = M$ and by Corollary 2.4 there are only two possible slopes for F. Thus Theorem 1.1 holds if $\chi(F) \leq 0$. So in this section, we assume $\chi(F) > 0$.

7
Lemma 4.1. Let \(N \) be a Seifert JSJ piece of \(M \) and \(v \) a regular fiber of \(N \). Suppose \(N \) is not a twisted \(I \)-bundle over a Klein bottle. Let \(F \) be an essential surface in \(M \) and suppose \(F \cap N \) is horizontal in \(N \). Then \(|v \cap F| \leq -6\chi(F) \).

Proof. Let \(O(N) \) be the base orbifold of \(N \). Since \(O(N) \) has boundary and \(N \) is not a solid torus, \(\chi(O(N)) \leq 0 \). Moreover, since \(N \) is orientable and is not \(T^2 \times I \), \(\chi(O(N)) = 0 \) if and only if \(O(N) \) is a disk with two cone points both of order 2 and \(N \) is a twisted \(I \)-bundle over a Klein bottle. Thus by our hypothesis that \(N \) is not a twisted \(I \)-bundle over a Klein bottle, we have \(\chi(O(N)) < 0 \).

Since \(F \cap N \) is horizontal in \(N \), \(\chi(F \cap N) = k\chi(O(N)) \) where \(k = |v \cap F| \). Since \(O(N) \) has boundary, the maximal possible value for \(\chi(O(N)) \) occurs when \(O(N) \) is a disk with two cone points of orders 2 and 3 respectively, in which case \(\chi(O(N)) = -1/6 \). Therefore \(\chi(O(N)) \leq -1/6 \) and \(k = |v \cap F| \leq -6\chi(F \cap N) \leq -6\chi(F) \). \(\square \)

Remark 4.2. In the proof of Lemma 4.1, \(\chi(O(N)) \leq -1/2 \) except when \(O(N) \) is a disk with two cone points. Thus \(|v \cap F| \leq -2\chi(F) \) if \(\partial N \) has more than one boundary component. This is a key observation in the proof of the following lemma, see [Zh].

Lemma 4.3 ([Zh], Lemma 3.2). Let \(M \) and \(M_0 \) be as in section 3 and let \(v \) be the vertical slope of \(\partial M \) in \(M_0 \). Let \(F \) be an immersed essential surface in \(M \) of genus at most \(g \) and let \(s_F \) be the boundary slope of \(F \) in \(\partial M \). Then the geometric intersection number

\[
\Delta(v, s_F) \leq U(g) = \begin{cases}
2 & g = 0 \\
2g & g \geq 1
\end{cases}
\]

Proof of Theorem 4.4 when \(M_0 \) is a Seifert fiber space. Let \(S \) be the fixed embedded horizontal surface in \(M_0 \) constructed in section 3. Let \(F \) be an immersed essential surface in \(M \) of genus at most \(g \). We will study the intersection of \(F \cap M_0 \) and \(S \). Let \(s_F \) be the boundary slope of \(F \). Our main goal is to show that \(\Delta(\mu, s_F) \) is bounded by a linear function of \(g \), where \(\mu \) is the slope of \(\partial S \cap \partial M \). As only one slope is vertical, we suppose \(F \cap M_0 \) is horizontal in \(M_0 \).

We will use the same notation as section 3. The boundary tori of \(M_0 \) are \(\partial M \), \(T_1, \ldots, T_n \) and \(S \) is properly embedded in \(M_0 \). In this section, we view \(S \) as a surface in \(M \) instead of \(M_0 \). Since it is possible that \(T_i \) and \(T_j \) \((i \neq j)\) are glued together in \(M \), when regarded as a surface in \(M \), curves of \(\partial S \) may intersect in a JSJ torus of \(M \).

Now we consider the intersection of \(F \) and \(S \). A key difference between \(F \) and \(S \) is that \(F \) is a proper surface in \(M \) while \(S \) is only defined in \(M_0 \). We view the torus \(T_i \) as a JSJ torus of \(M \) and as in section 3, let \(M_i \) be the JSJ piece incident to \(T_i \) on the other side of \(M_0 \) \((M_i \) may be the same JSJ piece as \(M_0 \)). Let \(\Gamma_i = S \cap T_i \) in \(M_0 \).
As above, we view Γ_i as a collection of curves in a JSJ torus in M. Next we estimate $|F \cap \Gamma_i|$. Let k_i be the number of components of Γ_i. As in the construction of S, we have 3 cases:

Case 1. M_i is a Seifert fiber space and M_i is not a twisted I-bundle over a Klein bottle. By the construction of S, in this case, each curve in Γ_i is a regular fiber of the Seifert fiber space M_i. By Lemma 4.1 $|F \cap \Gamma_i| \leq -6k_i\chi(F \cap M_i) \leq -6k_i\chi(F)$.

Case 2. M_i is a twisted I-bundle over a Klein bottle. By our construction of S in this case, each curve γ in Γ_i and a regular fiber $p(\gamma)$ of M_0 bound an immersed essential annulus in M_i. We may assume $F \cap M_i$ to be essential in M_i. So the intersection of F and an essential annulus in M_i consists of essential arcs in the annulus. In particular, $|F \cap \gamma| = |F \cap p(\gamma)|$. Since $p(\gamma)$ is a regular fiber of M_0 for each curve γ in Γ_i and since M_0 has more than one boundary component, by Lemma 4.1 and Remark 4.2 $|F \cap \Gamma_i| \leq -2k_i\chi(F \cap M_0) \leq -2k_i\chi(F)$.

Case 3. M_i is hyperbolic. In this case there is an embedded essential surface S_i in M_i whose boundary slope in the torus T_i is the same as the slope of Γ_i. Now we consider the intersection of S_i and $F \cap M_i$. By Proposition 2.3 (2), $|F \cap \Gamma_i| \leq -c_i\chi(F \cap M_i) \leq -c_i\chi(F)$ for some number c_i which depends on $|\Gamma_i|$ and $\chi(S_i)$.

Let $\Gamma_0 = \partial S \cap \partial M$ be the boundary curves of S lying in ∂M. So $\partial S - \Gamma_0 = \bigcup_{i=1}^{n} \Gamma_i$. By the argument above, there is a number $c > 0$ depending on S such that the total number of intersection points of F and $\partial S - \Gamma_0$ is at most $-c\chi(F) = c(2g - 2 + |\partial F|)$ for some constant c which depends on $|\partial S - \Gamma_0|$ and the surface S_i in the case that M_i is hyperbolic as in Case (3).

Let $\Delta = \Delta(\mu, s_F)$ be the intersection number of a curve in Γ_0 and a curve ∂F. So the total number of intersection points of Γ_0 and ∂F is $\Delta \cdot |\Gamma_0| \cdot |\partial F|$.

Thus, if $g \geq 1$, there is a number C_1 depending on S and S_i such that if $\Delta > C_1g$, we have $\Delta \cdot |\Gamma_0| \cdot |\partial F| > c(2g - 2 + |\partial F|)$ and hence there must be an arc in $S \cap F$ with both endpoints in ∂M. However, by Proposition 2.3 this means that ∂F has the same slope as $\partial S \cap \partial M$ and $\Delta = 0$, a contradiction. Therefore, if $g \geq 1$, $\Delta \leq C_1g$ for some constant C_1 which depends on S and the surface S_i in Case (3).

Similarly if $g = 0$, there is a number C_0 such that if $\Delta > C_0$, then $\Delta \cdot |\Gamma_0| \cdot |\partial F| > c(|\partial F| - 2)$ and hence there must be an arc in $S \cap F$ with both endpoints in ∂M, which means that $\Delta = 0$. Thus if $g = 0$, $\Delta \leq C_0$ for some constant C_0 which depends on M.

We have two fixed slopes for ∂M, the vertical slope ν and the slope μ of $\partial S \cap \partial M$. For any horizontal immersed essential surface F of genus at most g, let s_F be its
boundary slope. The argument above says that $\Delta(\mu, s_F) \leq V(g)$, where $V(g) = C_1 g$ if $g \geq 1$ and $V(g) = C_0$ is $g = 0$ for some constants C_1 and C_0 depending on S. By Lemma 4.3 $\Delta(\nu, s_F) \leq U(g)$ where $U(g) = 2g$ if $g \geq 1$ and $U(g) = 2$ if $g = 0$. Therefore, the total number of possible slopes for ∂F is bounded by a quadratic function of g, where the coefficients depend on the fixed surface S and the surface S_i used in the hyperbolic JSJ piece as in Case (3).

Remark 4.4. If one uses part (3) of Proposition 2.1 instead of part (2) in the argument, then one can prove the main theorem without using the Culler-Shalen theorem (i.e. Proposition 2.2). However, there is an advantage of using Proposition 2.2. Given any triangulation of a 3-manifold, one can use normal surface theory to algorithmically find two embedded essential surfaces with different boundary slopes whose existence is guaranteed by Proposition 2.2. Since there are algorithms to determine the JSJ and Seifert structures, the constant in Theorem 1.1 can be found algorithmically by following the proof.

References

[Ad] Colins Adams, Volumes of N-cusped hyperbolic 3-manifolds, J. London Math. Soc. 38 (1988) 555–565.

[Ag] Ian Agol, Bounds on exceptional Dehn filling. Geom. Topol. 4 (2000), 431–449.

[Ba] Mark Baker, On boundary slopes of immersed incompressible surfaces. Ann. Inst. Fourier (Grenoble) 46 (1996), no. 5, 1443–1449.

[BC] Mark Baker, Daryl Cooper, A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3-manifolds. J. Topol. 1 (2008), no. 3, 603–642.

[CS] Marc Culler, Peter Shalen, Bounded, separating, incompressible surfaces in knot manifolds. Inven. Math. 75. (1984) 537-545.

[Go] Cameron McA Gordon, Small surfaces and Dehn filling. Proceedings of the Kirbyfest (Berkeley, CA, 1998), 177–199, Geom. Topol. Monogr., 2, 1999.

[H] Joel Hass, Minimal surfaces in manifolds with S^1 actions and the simple loop conjecture for Seifert fiber spaces. Proc. Amer. Math. Soc. 99 (1987) 383–388.

[HRW] Joel Hass, Hyam Rubinstein, Shicheng Wang, Boundary slopes of immersed surfaces in 3-manifolds. J. Differential Geometry 52 (1999) 303–325.
[HWZ] Joel Hass, Shicheng Wang, Qing Zhou, *On finiteness of the number of boundary slopes of immersed surfaces in 3-manifolds*. Proc. Amer. Math. Soc. 130 (2002), no. 6, 1851–1857

[Ha] Allen Hatcher, *On the boundary curves of incompressible surfaces*. Pacific J. Math. 99 (1982), 373–377.

[Ja] William Jaco, *Lectures on Three-Manifold Topology*. CBMS Regional Conference Series in Mathematics, 43 (1977).

[La] Lackenby, Marc Attaching handlebodies to 3-manifolds. Geom. Topol. 6 (2002), 889–904

[Li1] Tao Li, *Immersed essential surfaces in hyperbolic 3-manifolds*. Comm. Anal. Geom. 10 (2002), 275–290.

[Li2] Tao Li, *Boundary curves of surfaces with the 4-plane property*. Geometry & Topology, 6 (2002), 609–647.

[O] Ulrich Oertel, *Boundaries of π₁-injective surfaces*. Topology and its Applications, 78 (1997) 215–234.

[Qi] Ruifeng Qiu, *Incompressible surfaces in handlebodies and closed 3-manifolds of Heegaard genus 2*, Proc. Amer. Math. Soc. 128:10 (2000), 3091–3097.

[QW] Ruifeng Qiu, Shicheng Wang, *Handle additions producing essential surfaces*. Pacific J. Math. 229 (2007), no. 1, 233–255.

[SWu] Martin Scharlemann, Ying-Qing Wu, *Hyperbolic manifolds and degenerating handle additions*, J. Austral. Math. Soc. Ser. A 55:1 (1993), 72–89.

[Zh] Qiang Zhang, *Boundary slopes of immersed surfaces in Haken manifolds*. Journal of Knot Theory and its ramification, to appear.

Department of Mathematics; Boston College; Chestnut Hill, MA 02167 USA.
Email address: taoli@bc.edu

Department of Mathematics; East China Normal University; Shanghai 200062 CHINA
Email address: qiurf@dlut.edu.cn

Department of Mathematics; Peking University, Beijing 100871, CHINA
Email address: wangsc@math.pku.edu.cn