ROLE OF PHARMACISTS IN REDUCING DRUG-RELATED PROBLEMS IN HEMODIALYSIS OUTPATIENTS

ROMAULI LUMBANTOBING\(^1\), RANI SAURIASARI\(^2\), RETNOSARI ANDRAJATI*\(^3\)

\(^1\)Department of Pharmacy, Universitas Kristen Indonesia Hospital, Jakarta, Indonesia. \(^2\)Department of, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia. Email: andraja@farmasi.ui.ac.id

ABSTRACT

Objectives: Hemodialysis outpatients have a higher risk of developing drug-related problems. Pharmacists play a key role in identifying and preventing these drug-related problems. This study aimed to assess the effect of pharmacist intervention on the number and types of drug-related problems in outpatients undergoing hemodialysis at Indonesia Christian University Hospital.

Methods: This pre- and post-prospective study was conducted from January 2013 to June 2013. We evaluated 86 patients who were prescribed 804 drugs.

Results: A total of 337 drug-related problems were identified (41.86% of the total drugs prescribed). The types of drug-related problems identified were as follows: Failed therapy (18.69%); sub-optimal therapy (52.23%); indication of non-adминист ration of therapy (2.37%); and non-allergic adverse drug effects (26.71%). The physicians received 59 recommendations, and the patients received 278 recommendations. These recommendations resulted in a decrease in ineffective drug therapy or therapeutic failure (18.69%); sub-optimal therapy (52.23-21.36%), indications of non-administration of drug (2.37-2.08%), and non-allergic adverse drug effects (26.71-9.20%). The factors that significantly affected the occurrence of drug-related problems were hemodialysis frequency, number of comorbidities, and number of drugs prescribed. Patients undergoing hemodialysis 3 times a week were more likely to experience a decrease in drug-related problems than those undergoing hemodialysis twice a week (odds ratio 26.33, 95% confidence interval 2.710-255.884).

Conclusions: Pharmacist intervention could decrease drug-related problems in hemodialysis patients.

Keywords: Role of pharmacists, Drug-related problems, PCNE-6.02, Hemodialysis, Outpatient.

INTRODUCTION

A drug-related problem is a drug therapy-associated event that disrupts or potentially disrupts the achievement of the desired therapeutic outcome [1]. Sequential drug administration, simultaneous drug administration, or both; low adherence to treatment regimens; and drug interactions may lead to drug-related problems [2]. Drug-related problems generally occur in patients with renal failure and in hemodialysis outpatients. Patients with chronic renal failure undergoing hemodialysis therapy have a higher risk of drug-related problems because hemodialysis outpatients are more likely to have comorbidities such as diabetes mellitus, hypertension, coronary artery disease, and infections, necessitating complex therapies such as five or more drugs, with 12 or more medication doses per day. In addition, some drugs used for the treatment of patients undergoing hemodialysis require monitoring and dose adjustment [3].

Patients undergoing chronic hemodialysis therapy generally have low medication adherence. Therefore, in some studies, the incidence of adverse drug reactions was higher in patients with chronic renal failure than in those without renal failure [3]. Manley et al. (2005) identified 1593 drug-related problems in 395 chronic renal failure patients undergoing hemodialysis [4]. Another study conducted in Dr. Ramelan Naval Hospital in Surabaya, Indonesia, investigated drug-related problems in hemodialysis outpatients in Indonesia. The prevalence rate of failure to obtain drug prescriptions was 32.20%, overly low dose was 20.34%, drug-related side effects was 14.41%, untreated indications was 5.93%, overly high dose was 3.39%, and therapy without indication was 1.70% [5].

Even though polypharmacy and high risk for adverse drug-related problems are common in hemodialysis outpatients, few studies have investigated drug-related problems in this population. As a provider of pharmacy services, a pharmacist is responsible for managing drug-related problems by identifying these problems, implementing solutions in the form of interventions, and taking action proactively to prevent their occurrence [6].

In a study conducted in the Netherlands by Klopotowska et al. [7], pharmacist participation in the intensive care unit resulted in 659 recommendations of 1173 prescribed drugs, with a 74% physician acceptance rate. Pharmacists have taken an active role in the prevention of drug-related problems. For the cost of healthcare, save lives, and improve the patients’ quality of life [8-10]. To date, no studies conducted in Indonesia have investigated the prevalence of hemodialysis in outpatients because the data available on the number of hemodialysis outpatients is incomplete. However, the number of hemodialysis outpatients in Indonesia is expected to increase.

This study was conducted at Indonesia Christian University General Hospital (RSU UKI), which has been providing hemodialysis services since 2004, with a consistent annual increase in the number of hemodialysis outpatients. In 2010, UKI Hospital provided hemodialysis services to an average of 65 outpatients per month, and this number increased to an average of 76 patients per month in 2012. On average, every hemodialysis patient received five different classes of therapeutic drugs. This study aimed to identify drug-related problems, and assess the effect of pharmacist intervention on the number and types of drug-related problems in hemodialysis outpatients at Indonesian Christian University General Hospital.
METHODS
This study was an experimental study with a pre-post design. Pre-tests were conducted to determine the initial patient status for comparison with the patient status after the recommendation(s) had been implemented. This study was conducted in the internal disease hemodialysis room of the Indonesia Christian University Hospital, Jakarta, from January 2013 to June 2013. The data were retrieved for the period from March 2013 to May 2013.

Sample
This study sample consisted of 86 hemodialysis outpatients who were prescribed 804 drugs. Three physicians were involved in the study: The physicians on duty in the specialist practicing room, internal disease polyclinic room, and hemodialysis room, who were willing to receive recommendations. The inclusion criteria for the study sample were outpatients undergoing hemodialysis and age ≥20 years.

Data collection
Before being given to patients, the prescriptions from the physicians were first analyzed to identify potential drug-related problems. When drug-related problems were present, the researchers communicated the problems to the physicians and provided appropriate recommendations to resolve the problems. The researchers assessed the results of these recommendations by monitoring changes in drug therapy in the prescription note or in the patients' medical records. A decline in the number of drug-related problems was defined as implementation of the pharmacist-recommended drug therapy by the physicians. When the drug-related problems occurred because of improper use of drugs by the patients or because of the personality or behavior of the patient, the researchers provided recommendations to the patients in accordance with the problem. The effects of the recommendations given to the patients were assessed on the basis of a change in patient behavior in terms of drug usage, which was determined from information provided by the patient and their family, and the observations of the researchers. A decline in the number of drug-related problems was defined as a change in patient behavior in accordance with the researchers’ recommendations.

RESULTS
Patient demographics
This study included 45 (52.33%) male and 41 (47.67%) female patients, aged 22-75 years old. The 41-60-year-old patient group had the most patients (48.84%).

Clinical characteristics of hemodialysis outpatients
The etiologies of renal failure in the study patients were as follows: Diabetes mellitus, 35 patients (40.70%); hypertension, 30 patients (34.88%); infections and other causes, 9 patients (10.47%); and polycystic kidney disease, 3 patients (3.49%), others 9 (10.47%).

Regarding the duration of hemodialysis, the 0-12-month group had the highest number of patients with 38 patients (44.19%), followed by the 13-24-month group with 17 patients (19.77%) and the ≥25-month group with 31 patients (36.05%).

The weekly frequency of hemodialysis, the highest number of patients underwent dialysis twice a week (81 patients, 94.19%), followed by 3 times a week (5 patients, 5.81%).

Comorbidities in hemodialysis outpatients
Of the 86 hemodialysis outpatients, 37 (42.02%) had <3 comorbidities and 49 (56.98%) had ≥3 comorbidities.

Types of comorbidities in hemodialysis outpatients
Anemia was the most common comorbidity in hemodialysis outpatients, affecting 76 patients (88.37%), followed by hypertension in 47 patients (54.65%), nausea in 33 patients (38.37%), ascites and edema in 23 patients (26.74%), and cough in 18 patients (20.93%).

Table 1: Types of comorbidities in hemodialysis outpatients

Type of comorbidity	Number of patients of 86 patient (%)
Ascites and edema	23 (26.74)
Anemia	76 (88.37)
Body ache	4 (4.65)
Cough	18 (20.93)
Diabetes mellitus	4 (4.65)
Skin disorders	11 (12.79)
Urinary tract disorders	5 (5.81)
Hypertension	47 (54.65)
Lymphadenitis	5 (5.81)
Nausea	33 (38.37)
Shortness of breath	7 (8.14)

Drugs causing drug-related problems before recommendation
Out of 65 drug classes prescribed to hemodialysis outpatients, 12 drug classes caused drug-related problems. The drug that caused the most drug-related problems were CaCO3 with 176 problems (25.23%), followed by ferrous sulfate with 63 problems (18.69%), erythropoiesis-stimulating agents (ESA) with 32 problems (9.50%), and omeprazole with 20 problems (5.81%).

Table 2: The recommendations included

Recommendation Type	Type of comorbidity	Number of recommendations
Pharmacist	Ascites and edema	23
	Anemia	76
	Body ache	4
	Cough	18
	Diabetes mellitus	4
	Skin disorders	11
	Urinary tract disorders	5
	Hypertension	47
	Lymphadenitis	5
	Nausea	33
	Shortness of breath	7

Drugs causing drug-related problems before recommendation
Out of 65 drug classes prescribed to hemodialysis outpatients, 12 drug classes caused drug-related problems. The drug that caused the most drug-related problems were CaCO3 with 176 problems (25.23%), followed by ferrous sulfate with 63 problems (18.69%), erythropoiesis-stimulating agents (ESA) with 32 problems (9.50%), and omeprazole with 20 problems (5.81%).

Pharmacist recommendations
Since the patients were outpatients, they received 277 pharmacist recommendations (92.20%) compared to the 59 recommendations (17.40%) given to the physicians. The types of recommendations given to prescribers and patients to prevent and manage drug-related problems are described in Table 6. The recommendations included adjustment of dose, frequency of drug administration, time of drug administration by patients, information on drug side effects or the effects of simultaneous drug administration, and drug monitoring recommendations.

Decrease in the type and number of drug-related problems before and after recommendations
After the implementation of pharmacist recommendations, a decrease was observed in different types of drug-related problems (Table 7):
The number of non-effective or failed therapy cases decreased from 63 (18.69%) to 0 (0%), suboptimal therapeutic effect cases decreased from 176 (51.92%) to 72 (21.24%), cases with indication of non-treatment decreased from 8 (2.36%) to 7 (2.06%), and patients experiencing non-allergic adverse drug effects decreased from 90 (26.55%) to 31 (9.14%).

Table 2: Classes and frequency of drugs prescribed to hemodialysis outpatients

Drug class	Drug	Number of patients of total patients (%)
Anemia	hemapo/recormon	44 (51.16)
Anemia	Fe sucrose	8 (9.30)
Anemia	Ferrous sulfate	67 (77.91)
Anemia	Folic acid	40 (46.51)
Metabolic acidosis	Sodium bicarbonate	53 (61.63)
Bone disorders	CaCo3/Ca acetate	84 (97.67)
Bone disorders	Calcitriol/active Vitamin D	4 (4.65)
Antihypertensive	Amlodiptine	52 (60.47)
Antihypertensive	Nifedipine	5 (5.81)
Antihypertensive	Diltiazem	5 (5.81)
Antihypertensive	Bisoprolol	22 (25.58)
Antihypertensive	Captopril	20 (23.26)
Antihypertensive	Imidapril	1 (1.16)
Antihypertensive	Lisinopril	1 (1.16)
Antihypertensive	Perindopril	1 (1.16)
Antihypertensive	Ramipril	1 (1.16)
Antihypertensive	Clonidine	5 (5.81)
Antihypertensive	Irbesartan	9 (10.47)
Antihypertensive	Telmisartan	7 (8.14)
Antihypertensive	Volksartan	13 (15.12)
Vasodilators	Isosorbid dinitrate	9 (10.47)
Cardiac glyceride	Digoxin	1 (1.16)
Antiarrhythmic	Amiodarone	1 (1.16)
Diuretic	Furosemide	14 (16.28)
Anticholesteril	Simvastatin	4 (4.65)
Antidabetic	Gliquiridone	5 (5.81)
Antidabetic	Insulin	2 (2.33)
Antibiotic	Ciprofloxacitin	2 (2.33)
Antiplatelet aggregation	Acetyl salicylic	5 (5.81)
Antiplatelet aggregation	Clopidogrel	5 (5.81)
Benzodiazepine	Alprazolam	4 (4.65)
Benzodiazepine	Lorazepam	2 (2.33)
Antihistamine-H2	Cimetidine	1 (1.16)
Antihistamine-H2	Ranitidine	9 (10.47)
Proton pump inhibitor	Omeprazole	30 (34.88)
Antacid	Antacids	2 (2.33)
Antacid	Sucralfate	5 (5.81)
Laxative	Laxadine	2 (2.33)
Analgesic	Neuralgin	2 (2.33)
Analgesic	Paracetamol	4 (4.65)
Supplement	Albumin	3 (3.49)
Supplement	Hemobion	9 (10.47)
Supplement	Kaltake	3 (3.49)
Supplement	Ketosterol	2 (2.33)
Supplement	KSR	2 (2.33)
Supplement	ProRenal	13 (15.12)
Supplement	Renogard	3 (3.49)
Supplement	Sangobion	1 (1.16)
Supplement	Thengram	2 (2.33)
Supplement	Virixon	1 (1.16)
Supplement	Vitamin B12	8 (9.30)
Supplement	Vitamin E/fundamin E	1 (1.16)
Supplement	Biosanbe	1 (1.16)
Supplement	Neurobion	5 (5.81)
Supplement	Neurodex	11 (12.79)
Supplement	Sohibion/neurobion IV	86 (100.00)
Supplement	Vitamin C500 mg (IV)	86 (100.00)
Antihistamine-H1	Cetirizine	3 (3.49)
Antihistamine-H2	Diphenhydramine	1 (1.16)
Dopamine antagonist	Domperidone	4 (4.65)
Receptor antagonist, 5-HT3	Ondanestron	4 (4.65)
Mucolytic	Fluimucil	1 (1.16)
Mucolytic	Cough syrup	5 (5.81)
Mucolytic	Benadryl	1 (1.16)
Decrease in the number of drug-related problems according to drug

The number of drug-related problems caused by amiodipine decreased from 6 (1.78%) to 0 after implementation of pharmacist recommendations. Similar decreases were observed for acetylsalicylic acid, perindopril, clonidine, furosemide, irbesartan, omeprazole, ferrous sulfate, and valsartan. CaCO3 caused the most drug-related problems with 176 problems (52.23%), which decreased to 77 problems (22.85%) after pharmacist recommendations were implemented. ESA administration caused 32 (9.50%) drug-related problems, and this number did not decrease after implementation of the recommendation to use it for correction of hemoglobin levels. Similarly, drug-related problems caused by active vitamin D did not decrease after application of the pharmacist recommendation. Data on the number of drug-related problems before and after recommendation are presented in Tables 4-6. The test resulted in significant 0.000<α=0.05 indicating that at least one estimated value of β is not equal to 0 (Tables 10 and 11). The linear regression analysis resulted in model Y=1552−0.578 (hemodialysis frequency)+0.252 (number of diseases)+0.420 (number of drugs before the recommendation). This means that if the frequency of hemodialysis increases by 1, the number of drug-related issues will be decreased by 0.578, assuming a constant number of diseases and drugs. If the number of comorbidities is increased by one, the number of drug-related problems will increase by 0.252, assuming that the disease and the number of drugs remain constant. The number of drug-related problems caused by active vitamin D did not decrease after implementation of the pharmacist recommendation. Patients undergoing hemodialysis three times a week were more likely to experience a decrease in drug-related problems than those undergoing hemodialysis twice a week (odds ratio 26.33, 95% confidence interval 2.710-255.884).

DISCUSSION

Decrease in drug-related problems

Drug-related problems were evaluated by first identifying the drug-related problems according to the category of Pharmaceutical Care Network Europe V6.2 [1]. A total of 804 drugs were evaluated, resulting in the identification of 337 drug-related problems and 337 pharmacist recommendations for the prevention or management of these drug-related problems. After evaluation, we found that 110 (32.45%) drug-related problems could not be managed. These drug-related problems were because of economic reasons such as lack of insurance coverage for the drugs and examinations required by the patients because they were not listed in the insurance formulary.

Various studies have shown that pharmacists are able to identify and manage drug-related problems. Pharmacist recommendations for preventing drug-related problems are instrumental to reducing the cost of healthcare, saving lives, and improving patients' quality of life [8]. Prevention of overdose by pharmacists can improve patient safety and decrease the risk of drug toxicity and side effects. Optimization of the drug administration schedule may reduce the occurrence of drug-related problems, and manage drug-related problems. Pharmacists also play a role in the selection of drugs for achieving maximal therapeutic effectiveness, minimal toxicity, and optimal cost-effectiveness [11].

CaCO3 resulted in the highest number of drug-related problems likely because it interacted with other drugs, thereby reducing their levels and effects. Another contributing factor was the lack of monitoring of blood calcium content because the high cost of this test made it unaffordable to patients. The National Health Security and Certificate of Financially-challenged citizen do not cover ESAs in the security formulary, resulting in the correction of anemia

Table 3: Class of drugs prescribed to hemodialysis outpatients

Class of drugs	Number of prescriptions (%)
Anemia	159 (19.78)
Metabolic acidosis	53 (6.59)
Bone disorders	88 (10.95)
Antihypertensive	162 (20.15)
Anticholesterol	4 (0.5)
Antidiabetic	7 (0.87)
Antigout	1 (0.12)
Antibiotic	2 (0.25)
Anticoagulant	10 (1.24)
Antispiotics	4 (0.5)
Benzo diazepine	2 (0.25)
Gastrointestinal	50 (6.22)
Analgesic	6 (0.75)
Supplements	237 (29.48)
Antihistamine H1	4 (0.5)
Antinausea	8 (1)
Mucolytic	7 (0.87)
Total	804 (100.00)

Table 4: Type and number of drug-related problems in hemodialysis outpatients of Indonesia Christian University Hospital

Type of problems	Number of problems (%)
Failed therapy	63 (18.69)
Suboptimal therapeutic effect	176 (52.23)
Effect of wrong medication	0 (0.00)
Indication of non-administration of drug	8 (2.37)
Non-allergic adverse drug effect	90 (26.71)
Allergic adverse drug effect	0 (0.00)
Toxic effect	0 (0.00)
Total	337 (100.00)

Table 5: Drugs that caused drug-related problems in hemodialysis outpatients

Drug names	Number of drug-related problems before recommendation (%)
Amiodipine	6 (1.78)
Acetylsalicylic acid	1 (0.3)
Perindopril	1 (0.3)
CaCO3	176 (52.23)
Clonidine	2 (0.59)
ESA	32 (9.5)
Furosemide	8 (2.37)
Irbesartan	7 (2.08)
Omeprazole	30 (8.9)
Ferrous sulfate	63 (18.69)
Valsartan	4 (1.19)
Active Vitamin D	7 (2.08)

ESA: Erythropoiesis-stimulating agent

Lumbantobing et al.
Asian J Pharm Clin Res, Vol 10, Suppl 5, 2017,
with blood transfusions, which have many adverse effects. Active
Vitamin D is needed if the patient’s blood calcium level is <8.8 mg/
dL. However, since Vitamin D is expensive, most patients do not
take it despite low blood calcium levels. The results of analysis
showed that the number of drugs, comorbidities, and frequency of
hemodialysis affected the number of drug-related problems before
the recommendation.

CONCLUSION

A total of 337 (41.86%) drug-related problems were identified. The
Wilcoxon statistical test revealed a significant change in the number
of drug-related problems from before to after implementation of
pharmacist recommendations. Factors that significantly influence
the occurrence of drug-related problems are hemodialysis frequency,
number of comorbidities, and number of drugs prescribed. Patients
undergoing hemodialysis three times a week are likely to have fewer
drug-related problems than those undergoing hemodialysis twice
a week (odds ratio 26.33, 95% confidence interval 2.710-255.884).
We would recommend that pharmacists should play an active role
in monitoring drug-related problems in the hemodialysis room,
and collaborate with other health workers to ensure optimum
and integrated treatment of hemodialysis patients. Future studies
should evaluate external changes in the patients’ conditions after
pharmacists assume a more active role in hemodialysis therapy
management. The effectiveness of providing information on drug
therapy through audiovisual aids in the hemodialysis room should
also be investigated since most hemodialysis patients spend 4-5 hrs
there.
Table 9: Decrease in the number of drug-related problems after recommendation, according to drug

Drug	Number of drug-related problems before recommendation (%)	Number of drug-related problems after recommendation (%)
Amlodipine	6 (1.78)	0 (0)
Acetylsalicylic acid	1 (0.30)	0 (0)
Perindopril	1 (0.30)	0 (0)
CaCO3	176 (52.22)	77 (22.85)
Clonidine	2 (0.59)	0 (0)
ESA	32 (9.50)	32 (9.5)
Furosemide	8 (2.37)	0 (0)
Irbesartan	7 (2.08)	0 (0)
Omeprazole	30 (8.90)	0 (0)
Ferrous sulfate	63 (18.69)	0 (0)
Valsartan	4 (1.19)	0 (0)
Active Vitamin D	7 (2.08)	7 (2.08)
Total	337 (100.00)	109 (34.43)

DRP: Drug-related problems

Table 10: Relationship between drug-related problems and confounding variables

Confounding variables	Asymptotic significance (2-sided)	Decision	Conclusion
Sex-DRP	0.059	>0.05, H₀ accepted	No correlation
Age-DRP	0.694	>0.05, H₀ accepted	No correlation
Total PP-DRP	0	<0.05, H₀ rejected	There is correlation
Frequency of hemodialysis-DRP	0	<0.05, H₀ rejected	There is correlation
Weight-DRP	0.529	>0.05, H₀ accepted	No correlation
Number of drugs-DRP	0	<0.05, H₀ rejected	There is correlation

DRP: Drug-related problems

Table 11: Logistic regression test results

Confounding variables	Asymptotic significance (2-sided)	Decision	Conclusion
Sex-DRP	0.372	>0.05, H₀ accepted	No correlation
Age-DRP	0.916	>0.05, H₀ accepted	No correlation
Total PP-DRP	0.114	>0.05, H₀ accepted	No correlation
Frequency of hemodialysis-DRP	0.005	<0.05, H₀ rejected	Correlation exits
Weight-DRP	0.782	>0.05, H₀ accepted	No correlation
Number of drugs-DRP	0.297	>0.05, H₀ accepted	No correlation

DRP: Drug-related problems

REFERENCES

1. Pharmaceutical Care Network Europe Foundation. Classification For Drug - Related Problems. V6.2 (revised 14-01-2010vm). PCNE; 2010.
2. Tozawa M, Iseki K, Iseki C, Oshiro S, Higashiuesato Y, Yamazato M, et al. Analysis of drug prescription in chronic haemodialysis patients. Nephrol Dial Transplant 2002;17(10):1819-24.
3. Hassan Y, Rowa JR, Aziz NA, Ghazali R. Drug use and dosing in chronic kidney disease. MRCP Clinical Pharmacy Programme. Penang: School of Pharmaceutical Science, University Sains Malaysia; 2009.
4. Manley HJ, McClaran ML, Overbay DK, Wright MA, Reid GM, Bender WL, et al. Factors associated with medication-related problems in ambulatory haemodialysis patients. Am J Kidney Dis 2003;41(2):386-93.
5. Irawati YW. Kajian Drug Related Problem Pada Panatalaksanaan Pasien Hemodialisis Di RSALDR Ramelan Surabaya. Thesis. Yogyakarta: Universitas Gajah Mada; 2009.
6. Aslam M, Chak KT, Adji P. Farmasi Klinik. Jakarta: PT.Elex Komputindo; 2003.
7. Klopotowska JE, Kuiper R, van Kan HJ, de Pont AC, Dijkgraaf MG, Le-A-Huen L, et al. On-ward participation of a hospital pharmacist in a Dutch intensive care unit reduces prescribing errors and related patient harm: An intervention study. Crit Care 2010;14(5):R174.
8. Alderman CP, Farmer C. A brief analysis of clinical pharmacy interventions undertaken in an Australian teaching hospital. J Qual Clin Pract 2001;21(4):99-103.
9. Bosma L, Jansman FG, Franken AM, Harting JW, Van den Bemt PM. Evaluation of pharmacist clinical interventions in a Dutch hospital setting. Pharm World Sci 2008;30(1):31-8.
10. Kopp BJ, Msrn M, Ertstad BL, Duby JJ. Cost implications of and potential adverse events prevented by interventions of a critical care pharmacist. Am J Health Syst Pharm 2007;64(23):2483-7.
11. Arnold FW, McDonald LC, Newman D, Smith RS, Ramirez JA. Improving antimicrobial use: Longitudinal assessment of an antimicrobial team including a clinical pharmacist. J Manag Care Pharm 2004;10(2):152-8.