Epidemiology of meca-Methicillin Resistant *Staphylococcus aureus* in Iran: A Systematic Review and Meta-analysis

Emran Askari¹, Fatemeh Soleymani¹, Arash Arianpoor¹, Seyed Meghdad Tabatabai¹, Aminreza Amini², Mahboobeh Naderi Nasab *¹,³

Abstract

Objective(s)

Staphylococcus aureus is a prevalent pathogen worldwide. Methicillin resistant *S. aureus* (MRSA), which is usually multi-resistant in hospitals, has been a daunting challenge for clinicians for more than half a century. The aim of this systematic review and meta-analysis is to determine the relative frequency (RF) of MRSA in different regions of Iran.

Materials and Methods

Search terms “*Staphylococcus aureus*”, “Methicillin”, “meca” and “Iran” were used in PubMed, Scirus and Google Scholar. Two Persian scientific search engines and ten recent national congresses were also explored. Articles/abstracts, which used clinical specimens and had done PCR to detect the meca gene, were included in this review. Comprehensive Meta-Analysis and Meta-Analyst software were used for statistical analysis.

Results

Out of 2690 results found in the mentioned databases, 48 articles were included in the final analysis. These studies were done in Ahvaz, Falavarjan, Fasa, Gorgan, Hamedan, Isfahan, Kashan, Mashhad, Sanandaj, Shahrekord, Shiraz, Tabriz, Tehran and Tonekabon. Pooled estimation of 7464 *S. aureus* samples showed that 52.7%±4.7 (95% confidence interval [CI]) of strains were meca positive. MRSA RF in different studies varied from 20.48% to 90% in Isfahan and Tehran, respectively. We found a moderate heterogeneity (I²= 48.5%) of MRSA RF among studies conducted in Tehran (ranging from 28.88% to 90%, mean 52.7% [95% CI: 46.6%±58.8%]).

Conclusion

According to the results of this study, MRSA RF in Iran is in the high range. Thus, measures should be taken to keep the emergence and transmission of these strains to a minimum.

Keywords: Iran, Methicillin-Resistant *Staphylococcus aureus*, Systematic Review

¹ Mashhad Medical Microbiology Student Research Group, Mashhad University of Medical Sciences, Mashhad, Iran

² Department of Biostatistics, Mashhad University of Medical Sciences, Mashhad, Iran

³ Department of Microbiology, Central Laboratory, Imam Reza Teaching Hospital, Mashhad, Iran

*Corresponding author: Tel: +98-9151164627; Fax: +98-511-7636185; email: Naderinasabm@mums.ac.ir
Introduction

Staphylococcus aureus has been known as a threat to human health for more than a century. This pathogen is responsible for a wide range of maladies from folliculitis and food poisoning to life-threatening conditions such as endocarditis or necrotizing pneumonia (1).

Introduction of penicillin to the market in the 1940s was a cornerstone in treating staphylococcal infections, which was soon followed by the emergence of β-lactamase producing strains. Methicillin, a β-lactamase-resistant antimicrobial agent, was introduced in 1959. The first report of methicillin-resistant *S. aureus* (MRSA) was from London in 1961 (2, 3).

It has been suggested that the *mecA* gene is responsible for resistance to methicillin. *MecA* encodes an altered penicillin-binding protein (i.e. PBP2a) with a low affinity for β-lactam antibiotics (2). The multi-drug resistance phenomenon, seen especially in MRSA strains, is a main cause of treatment failure and increase in treatment costs (4). It is noteworthy that MRSA infections are associated with a higher mortality rate compared to infections with methicillin-susceptible *S. aureus* (5).

MRSA was previously considered as a nosocomial pathogen, but in the past two decades, reports suggest an increasing trend for community-associated MRSA (CA-MRSA). These clones may replace current health care-associated MRSA (HA-MRSA) clones in the future. This hypothesis is supported not only by mathematical models but also by reports that have shown invasion of CA-MRSA clones to hospitals (6). First described in Minnesota, CA-MRSA has now attracted global attention (1). Since 2004, MRSA related to livestock infections has also been reported. However, this type of MRSA seems to be limited to some countries, especially the ones where pig farms are common (7, 8).

Recent studies have revealed an increase in the worldwide prevalence of MRSA. However, some European countries have maintained low rates of MRSA (4, 7). Although there are many reports from different cities of Iran, the average rate of MRSA in Iranian hospitals is still unknown. Our aim in this study is to provide the relative frequency (RF) of MRSA in Iran, as detected by the PCR amplification of the *mecA* gene.

Materials and Methods

Literature search

“*Staphylococcus aureus*”, “*S. aureus*”, “Methicillin”, “MRSA”, “MSSA”, “*mecA* gene” and Iran (for non-Iranian databases) were searched with special strategies in PubMed, Google Scholar and Scirus search engines. Two Persian scientific search engines “Scientific Information Database” (www.sid.ir), and "IranMedex" (www.irannmedex.com) were searched as well. The keywords were also searched at all Iranian academic domains (i.e. ending with.ac.ir) by “Google advanced search”. Additionally, abstract books of 10 recent congresses (i.e. “1st-5th Iranian Congress of Clinical Microbiology”, “4th Congress of Laboratory and Clinic”, “First International and 12th Iranian Congress of Microbiology”, “The First Iranian International Congress of Medical Bacteriology”, “The Congress of Infections and Antibiotic Resistance” and “The Congress of Rational Usage of Antibiotics”) were explored. All common dictation mistakes and possible conditions of mentioned words (in English and Persian) were covered as well. Search strategies were followed until 17th May 2012.

Inclusion criteria

Among English and Persian articles/abstracts found with above strategies, those with the following features were included in the study:

1. *S. aureus* samples were collected from Iranian hospitals.
2. Clinical specimens were taken from patients. If there were personnel specimens as well, results of the personnel were excluded.
3. PCR method was done to detect *mecA* gene. Phenotypic results were not included because: (A) Phenotypic methods had variable sensitivities and specificities in various studies (9). (B) Phenotypic methods were affected by many factors such as pH of media, concentration of NaCl, incubation period...
of isolates, commercial discs and media used in different studies and also personnel’s/researcher’s skills (10). (C) Generally, avoiding heterogeneity for inclusion of studies is desirable in systematic reviews (11). (D) Breakpoints of phenotypic methods may change over time and make the interpretation of previous results more difficult. For example, Clinical and Laboratory Standards Institute revised the breakpoints for cefoxitin disc diffusion and minimum inhibitory concentration in 2007 and 2008, respectively (12, 13).

Exclusion criteria
During observation, studies with at least one of the aspects mentioned below were excluded:
1. Samples were partially/totally selected from MRSA collections.
2. Method for detecting MRSA strains could not be discovered from the paper.

Data collection
At this stage, articles/abstracts with the following features were excluded as well:
1. Any projects published both in English and Persian. (In these cases, the article published later and/or with more detailed results was chosen for analysis.)
2. Duplicate publications and congress abstracts whose full-text papers were also available.
3. The origin of samples was not clear, meaning that the reviewer(s) could not find out which region or population (i.e. inpatients, personnel, or outpatients) the specimens were gathered from.
4. Nasal, oral or throat swabs were taken from healthy people or patients/healthcare personnel to detect carriers.
5. Unclear report of the results, such as studies that mixed results of “Coagulase-negative Staphylococci and S. aureus” or “healthy people and patients”.

Statistical analysis
Statistical analysis was performed by the Meta-Analyt (version 3.13 Beta) and Comprehensive Meta-Analysis (version 2.0) software. Overall relative frequency of MRSA in Iran was pooled by forest plot using the Meta-Analyt software. Statistical heterogeneity of the results was checked using Cochrane Q-test with significance set at P< 0.1. In order to assess possible publication bias, the Begg and Mazumdar’s test was done using the Comprehensive Meta-Analysis software. The Begg and Mazumdar’s rank correlation test reports the rank correlation between the standardized effect size and the variances (or standard errors) of these effects.

Results
Out of 2690 articles/abstracts found by the aforementioned search strategies, 79 results matched inclusion criteria, out of which 48 (29 full-text articles and 19 abstracts) were selected for analysis (Table 1) (14-61). Sample size and 95% confidence interval (CI) of each study was shown in a Forest plot (Figure 1). According to heterogeneity test, random model methods were used for meta-analysis tests (P< 0.001). I² statistics, the proportion of variation due to heterogeneity, was 0.48, indicating moderate heterogeneity.

Pooled estimation of 7464 S. aureus samples showed 52.7%±4.7 (95% CI) of strains to be meca positive. These samples were taken from 14 different Iranian cities (Figure 2). MRSA RF varied from 20.48% to 90% in Isfahan and Tehran, respectively (22, 55). Amodeate heterogeneity (I²= 48.5%) of MRSA RF in the studies conducted in Tehran, the capital city of Iran (ranging from 28.88% to 90%, mean 52.7% [95% CI: 46.6%-58.8%]) (33-60) was found.

A significant correlation suggested that bias exists but does not directly address the implication of bias (Kendall’s tau= 0.21). The results of a Begg and Mazumdar’s rank correlation test supported its possibility (P= 0.039).
Figure 1. Forest plot of the current relative frequency of *mecA*-MRSA among clinical *Staphylococcus aureus* isolates in different Iranian studies
Discussion
During the past decade, assays for detection of mecA gene for staphylococci became popular among Iranian researchers. Based on these studies, we report the cumulative prevalence of MRSA and provide a map to illustrate the epidemiology of MRSA in Iran. In two previous global reports, the prevalence of MRSA in Iran was unknown (2, 7).

According to our study, the mean prevalence of MRSA in Iran was 52.7%±4.7 and was more than fifty percent in many Iranian cities. This finding indicates that physicians may face difficulties in treatment of more than half of S. aureus infections. Keeping in mind the high prices of newer agents, vancomycin appears to be a suitable agent to fight this pathogen, although recent emergence of vancomycin resistance in Iran is really alarming (36, 62).

In a regional perspective, Iran has a higher prevalence of MRSA compared to reports from neighboring countries in the Middle East with the exception of Iraq (2, 7). The ANSORP study which reported HA-MRSA rates for eight Asian countries showed higher percentage of MRSA in those countries compared to Iran. However, judgment cannot be made because most Iranian studies did not clearly divide their S. aureus population to HA- and CA- infections (63).

From an international stand, our data are in the same range as Argentina and Mexico in Latin America (64). Mean prevalence of MRSA in Iran is moderately higher than Australia and lower than the United States (65, 66). However, recent reports have shown that MRSA rates are declining in United States (67, 68). Prevalence of MRSA in Europe is heterogeneous with average lower than other continents but Portugal seems to have a similar rate of MRSA rates similar to our country (7).
City	Type	Sample size	MRSA	Relative frequency of MRSA (%)	Study team (Reference No.)	Year published/presented
Ahvaz	Article	97	60	61	Ekrami et al (14)	2010
	Abstract	195	≥96	≥49.23*	Moosaviani et al (15)	2011
Falavarjan	Article	95	83	87.36	Khosravi et al (16)	2012
Fasa	Article	108	92	85.18	Heidari et al (17)	2011
Gorgan	Article	164	78	47.56	Abdollahi et al (18)	2012
Hamedan	Article	70	35	50	Zamani et al (20)	2007
Isfahan	Article	83	17	20.48	Havaei et al (22)	2011
Kashan	Article	150	87	58	Zeinali et al (23)	2010
Mashhad	Article	86	46	53.48	NaderiNasab et al (24)	2005
Sanandaj	Abstract	96	37	38.5	Vaiseh et al (25)	2012
Shahrekord	Article	196	96	48.98	Shariati et al (26)	2010
Shiraz	Article	115	49	42.6	Japoni et al (27)	2004
	Article	46	≥32	≥69.5*	Nikbakht et al (28)	2008
Tabriz	Abstract	56	≥7	≥12.5*	Zarrini et al (29)	2008
	Abstract	86	34	39.5	Esfandyari et al (30)	2011
	Abstract	90	64	71	Kianinia et al (31-32)*	2011
	Article	70	28	40	Mirsalehian et al (33)	2003
	Article	338	162	48	Aligholi et al (34)	2006
	Abstract	117	52	44.45	Mostafaei et al (35)	2007
	Article	356	≥149	≥41.85*	Aligholi et al (36)	2008
	Article	277	≥100	≥36*	Fatholahzadeh et al (37)	2008
	Article	222	122	55	Habibi et al (38)	2008
	Abstract	235	110	46.8	Azimian et al (39)	2008
	Abstract	65	≥33	≥50.8*	Bagherzadeh Yazdchi et al (40)	2008
	Abstract	50	22	44	Dadaei et al (41)	2008
	Abstract	80	40	50	Salehipour et al (42)	2008
	Article	927	≥306	≥33*	Aligholi et al (43)	2009
	Article	322	93	28.88	Emaneini et al (44)	2009
	Article	174	≥84	≥48.2*	Najari-peeraieh et al (45)	2009
Tehran	Article	321	282	88	Rahimi et al (46)	2009
	Article	100	53	53	Yadegar et al (47)	2009
	Abstract	250	109	≥43.6*	Farhadian et al (48)	2009
	Article	150	64	≥42.67*	Javan et al (49)	2010
	Abstract	55	28	50.9	Faghri et al (50)	2010
	Article	165	≥87	≥52.72*	Aligholi et al (51)	2011
	Article	42	18	42.8	Nowroozi et al (52)	2011
	Article	186	127	68.3	Saderi et al (53)	2011
	Article	106	62	58.49	Shahsavani et al (54)	2011
	Abstract	100	90	90	Ghorbani et al (55)	2011
	Abstract	150	67	44.6	Mobayen et al (56)	2011
	Abstract	104	76	73.1	Sehebnasagh et al (57)	2011
	Article	125	107	85.6	Yepehrisershe it et al (58)	2012
	Article	100	56	56	Razavi Davoodi et al (59)	2012
	Abstract	48	17	35.4	Azizi Barjini et al (60)	2012
Tonekabon	Abstract	55	30	≥54.54*	Forghani et al (61)	2011

1 MRSA strains were detected/confirmed by PCR amplification of mecA gene
* PCR of mecA was done only for strains resistant to methicillin by phenotypic methods
† Results were obtained by comparing references (31) and (32)
The heterogeneity of MRSA prevalence at national and international level is not completely understood. Possible explanations are different in infection control practices, antimicrobial administration, human population, predominant strain(s), study design and laboratory testing for determining resistance (2, 69).

This study has some limitations. First, it cannot fully represent Iran because there were no data on meca-MRSA from many parts of the country. However, as described above, this is preferred to mixing the results from different phenotypic methods with genotypic ones. Second, due to limited access to in-press articles and theses, some studies might have been missed, which is also suggested by statistical analysis.

Conclusion
Our study showed that the mean MRSA RF among Iranian studies is in the high range. Thus, measures should be taken to keep the emergence and transmission of these strains to a minimum.

Acknowledgment
An abstract of these data has been sent to the International Symposium of Staphylococci and Staphylococcal Infections (ISSSI) 2012, Lyon, France. The authors wish to express their gratitude to Aidin Faroughi, Yeganeh Khazaei, Somayeh Mahdipoor, Zahra Moravvej, Ghazaleh Nouri and Amin Rezaeian for their help in the analyzing step and Najmeh Seifi for her assistance in the search.

References
1. Deleo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 2010; 375:1557-1568.
2. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006; 368:874-885.
3. Cookson B. Five decades of MRSA: controversy and uncertainty continues. Lancet 2011; 378:1291-1292.
4. Köck R, Becker K, Cookson B, van Gemert Pijnen J, Harbarth S, Kluytmans J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill 2010; 15:1-9.
5. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with meticillin-resistant and meticillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 2003; 36:53-59.
6. Moellering RC. Why has meticillin-resistant Staphylococcus aureus become such a successful pathogen in adults? Infect Dis Clin Pract 2010;18:286-291.
7. Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, et al. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 2012; 39:273-282.
8. Graveland H, Duim B, van Duijkeren E, Wagenaar JA. Livestock-associated meticillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 2011; 301:630-634.
9. Forbes BA. Issues in the identification and susceptibility testing of Staphylococci. In: Crossley KB, Jefferson KK, Archer GL, Fowler VG, editors. Staphylococci in Human Disease. 2nd ed. Oxford, UK: Wiley-Blackwell; 2009. p. 235-252.
10. Karami S, Rahbar M, Vand Yousefi J. Evaluation of five phenotypic methods for detection of meticillin resistant Staphylococcus aureus (MRSA). Iran J Pathol 2011; 6:27-31.
11. Radlberger P, Zechmeister I. Innovative framework for evidence-based decision making in healthcare – standardised working in HTA (WP1.2): HTA- Projektbericht. 2011. Available at: http://eprints.hta.lbg.ac.at/932/1/HTA-Projektbericht_Nr.44a.pdf.
12. Clinical and Laboratory Standards Institute/NCCCLS. 2007. Performance standards for antimicrobial susceptibility testing; 17th informational supplement. CLSI document M100-S17. Clinical and Laboratory Standards Institute, Wayne, PA.
13. Clinical and Laboratory Standards Institute/NCCCLS. 2008. Performance standards for antimicrobial susceptibility testing; 18th informational supplement. CLSI document M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA.
14. Ekrami A, Samarbafzadeh A, Alavi M, Kalantar E, Hamzeloii F. Prevalence of meticillin resistant Staphylococcus species isolated from burn patients in a burn center, Ahvaz, Iran. Jundishapur J Microbiol 2010; 3:84-91.
Epidemiology of mecA-MRSA in Iran

15. Moosavian M, Torabipour M. Identification of mecA gene in phenotypic methicillin-resistant Staphylococcus aureus strains isolated from clinical specimens. The First Iranian International Congress of Medical Bacteriology; 4-7 Sep; Tabriz, Iran. 2011. p. 255.

16. Khosravi AD, Hoveizavi H, Farshadzadeh Z. The prevalence of genes encoding leukocidins in Staphylococcus aureus strains resistant and sensitive to methicillin isolated from burn patients in Taleghani hospital, Ahvaz, Iran. Burns 2012; 38:247-251.

17. Heidari M, Mottaz H, Madani M. Detection of the antibiotic resistance genes in Staphylococcus aureus isolated from human infections and bovine mastitis. Afr J Microbiol Res 2011; 5:5132-5136.

18. Abdollahi A, Koohpayeh A, Najafipour S, Mansouri Y, Abdollahi S, Jafari S. Evaluation of drug resistance and SCCmec genotype in MRSA strains. Behdad 2012; 1:47-52.

19. Vaez H, Tabaraei A, Moradi A, Ghaemi EA. Evaluation of methicillin resistance Staphylococcus aureus isolated from patients in Golestan province-north of Iran. Afr J Microbiol Res 2011; 5:432-436.

20. Zamani A, Sadeghian S, Ghaderkhani J, Alikhani MY, Najafimosleh M, Taghi Goodarzi M, et al. Detection of meticillin-resistance (mec-A) gene in Staphylococcus aureus strains by PCR and determination of antibiotic susceptibility. Ann Microbiol 2007; 57:273-276.

21. Alizargar J, Moravveji A. Prevalence of methicillin resistant Staphylococcus in Kashan. First International and 12th Iranian Congress of Microbiology; 23-26 May; Kermanshah, Iran: 2011. p. 1328.

22. Havaei SA, Vidovic S, Tahmineh N, Mohammad K, Mohsen K, Starmino S, et al. Epidemic meticillin-susceptible Staphylococcus aureus lineages are the main cause of infections at an Iranian university hospital. J Clin Microbiol 2011; 49:3990-3993.

23. Zeinali E, Moniri R, Safari M, Mousavi GA. Molecular characterization and SCCmec typing in meticillin-resistant Staphylococcus aureus isolates from clinical samples. Feyz, J Kashan Univ Med Sci 2011; 14:439-446.

24. Naderi Nasab M, Tavakolafshar J, Nazem M, Fatemnasab P, Faramarzi P, Khodadoost M. Detection of meticillin-resistant Staphylococcus aureus by phenotypic methods. Med J Mashhad Univ Med Sci 2005; 48:7-16.

25. Vaiseh P, Ramezanzadeh R, Delami Z. Identification of class I integron and mecA gene in Staphylococcus aureus strains typed by REP-PCR method. The Congress of Infections and Antibiotic Resistance; 2-3 May; Gilan, Iran: 2012.p.101.

26. Shariati L, Validi M, Tabatabaiefar MA, Karimi A, Nafisi MR. Comparison of real-time PCR with disk diffusion, agar screen and E-test methods for detection of meticillin-resistant Staphylococcus aureus. Curr Microbiol 2010; 61:520-524.

27. Japoni A, Alborzi A, Orafa F, Rasouli M, Farshad S. Distribution patterns of meticillin resistance genes (mecA) in Staphylococcus aureus isolated from clinical specimens. Iran Biomed J 2004; 8:173-178.

28. Nikbakht M, Naheai MR, Akhi MT, Asgharzadeh M, Nikvash S. Molecular fingerprinting of meticillin-resistant Staphylococcus aureus strains isolated from patients and staff of two Iranian hospitals. J Hosp Infect 2008; 69:46-55.

29. Zarrini G, Aein F, Bahari Delgosha Z. Study of nosocomial meticillin resistant Staphylococcus aureus (MRSA) using disc diffusion, MASTAScreen MRSA + kit and PCR methods. The Second Iranian Congress of Clinical Microbiology; 7-9 October; Shiraz, Iran: 2008. p. 149.

30. Esfandyari Kalajahi A, Hasani A, Raiyaz A, Abbasian S, Pourmohammad A, Hasani A. Detection of virulence genes of Staphylococcus aureus isolated from nasal specimens of patients admitted in high risk wards of University teaching hospital, Tabriz. 4th Congress of Laboratory and Clinic; 21-23 December; Tehran, Iran: 2011. p. 491.

31. Kiani nia M. Development of Multiplex PCR for the detection of aph(3''-Ila) and aac(6''/aph(2'')) genes in meticillin-resistant Staphylococcus aureus (MRSA) isolates from Northwest, Iran. 4th Congress of Laboratory and Clinic; 21-23 December; Tehran, Iran: 2011. p. 996.

32. Kiani nia M, Hasani A, Hasani A, Mirza Ahmadi S, Sadeghfard M, Deghani L. Nasal colonization of high risk group patients of northwest Iran by MRSA Predictability of resistance and concern about prevention. 4th Congress of Laboratory and Clinic; 21-23 December; Tehran, Iran: 2011. p. 853.

33. Mirmalekian A, Jebelameli F, Kazemi B, Alizadeh SA. Comparison of disc diffusion method withpolymerase chain reaction for detectingmeticillin resistanccein clinical isolates of Staphylococi. Tehran Univ Med J 2003; 61:420-425.

34. Aligholi M, Emameini M, Hashemi FB, Shahnasvan S, Jabalameli F, Kazemi B. Determination of antimicrobial resistance pattern of Staphylococcus aureus isolated from clinical specimens. Tehran Univ Med J 2006; 64:26-32.

35. Mostafaei M, Behzadian-Nejad G, Najar-peeryeh S, Rezaei Yazdi H, Tohidipoor A. Prevalence of mecA gene in Staphylococcus aureus strains isolated from Tehran hospitals, 2013:5. The First Iranian Congress of Clinical Microbiology; 8-10 May; Shiraz, Iran:2007.p.16.

36. Aligholi M, Emameini M, Jabalameli F, Shahnasvan S, Dahiri H, Sedaght H. Emergence of high-level vanconycin-resistant Staphylococcus aureus in the Imam Khomeini Hospital in Tehran. Med Princ Pract 2008; 17:432-434.
37. Fatholahzadeh B, Emameini M, Gilbert G, Udo E, Aligholi M, Modarressi MH, et al. Staphylococcal cassette chromosome mec (SCCmec) analysis and antimicrobial susceptibility patterns of methicillin-resistant Staphylococcus aureus (MRSA) isolates in Tehran, Iran. Microb Drug Resist 2008; 14:217-220.
38. Habibi M, Saderi H, Owlia P, Asadi Karam M. Detection of methicillin resistance in Staphylococcus aureus by disk diffusion and PCR methods. Iran J Pathol 2008; 3:11-14.
39. Azimian A, Najar-peeryeh S, Farshchian M, Naderi M, Salehipoor Z, Mostafaei M. Occurrence of the methicillin-resistant Staphylococcus aureus (MRSA) among clinical samples in Tehran and its correlation with the site of infection. The Second Iranian Congress of Clinical Microbiology; 7-9 October; Shiraz, Iran:2008.p.1101.
40. Bagherzadeh Yazdchi S, Pourmand MR, Zaeeimi Yazdi J. Anbiotic susceptibility patterns and detection of coa and meca genes in the Iranian isolates of Staphylococcus aureus.13th International Congress on Infectious Diseases;19-22 June; Kuala Lumpur, Malaysia 2008. p.e271.
41. Dadaei T, Eftekhari F. Correlation of biofilm formation in clinical isolates of Staphylococcus aureus by colony morphology and microplate measurement of biofilm formation. The Second Iranian Congress of Clinical Microbiology; 7-9 October; Shiraz, Iran:2008. p.107.
42. Salehipour Z, Azimian A, Ghazvini K. Phenotypic and genotypic study of drug resistance in Staphylococcus aureus strains isolated from blood culture of septicaemia patients in selected hospitals of Tehran. The Second Iranian Congress of Clinical Microbiology; 7-9 October; Shiraz, Iran:2008. p.172.
43. Aligholi M, Emameini M, Jabalameli F, Shahsavan S, Abdolmaleki Z, Sedaghat H, et al. Antibiotic susceptibility pattern of gram-positive cocci cultured from patients in three university hospitals in Tehran, Iran during 2001-2005. Acta Med Iran 2009;47:329-334.
44. Emameini M, Taherikalani M, Eslampour MA, Sedaghat H, Aligholi M, Jabalameli F, et al. Phenotypic and genotypic evaluation of aminoglycoside resistance in clinical isolates of Staphylococcus in Tehran, Iran. Microb Drug Resist 2009; 15:129-132.
45. Najar-Peeryeh S, Azimian A, Mostafaei M, Siadat SD. Identification of methicillin-resistant Staphylococcus aureus by disk diffusion method, determination of MIC, and PCR for meca Gene. Modares Med Sci J: Pathobiol 2009; 12:61-69.
46. Rahimi F, Bouzari M, Maleki Z, Rahimi F. Antibiotic susceptibility pattern among Staphylococcus spp. with emphasis on detection of meca gene in methicillin resistant Staphylococcus aureus isolates. Iran J Clin Infect Dis 2009; 4:143-150.
47. Yadegar A, Sattari M, Mozafari NA, Goudarzi GR. Prevalence of the genes encoding aminoglycoside-modifying enzymes and methicillin resistance among clinical isolates of Staphylococcus aureus in Tehran, Iran. Microb Drug Resist 2009; 15:109-113.
48. Farhadian A, Behzadian Nejad, Najar-peeryeh S, Farhadian A, Vaziri. Determination of vancomycin and methicillin resistant in isolates of S.aureus in hospitals in the Iran. Third Iranian Congress of Clinical Microbiology; 6-8 October; Shiraz, Iran:2009.p.21.
49. Javan E, Falahati H, Seifi M, Talebi M, Ebrahimpour G, Poorshahi M. Detection of meca gene in oxacillin resistant Staphylococcus aureus strains isolated from Tehran hospitals. Iran J Infect Dis Trop Med. 2010; 49:17-22.
50. Faghri J, Azimian A, Sadighian H, Khosrojerdi M. Occurrence of the methicillin-resistant Staphylococcus aureus (MRSA) among respiratory tract samples in patients of selected Tehran hospitals. 4th Iranian Congress of Clinical Microbiology; 9-11 November; Isfahan, Iran:2010.p.75.
51. Aligholi M, Mirsalehehian A, Halmi S, Emameini H, Taherikalani M, Jabalameli F, et al. Phenotypic and genotypic evaluation of fluoroquinolone resistance in clinical isolates of Staphylococcus aureus in Tehran. Med Sci Monit 2011; 17:PH71-74.
52. Nowroozi J, Pakzad P, Ebrahimi E, Razavi pou R. Detection of biocide resistance genes, qac A/B and smr, among isolated Staphylococcus aureus from clinical and non-clinical sources. Pejouhandeh 2011; 16:83-91.
53. Saderi H, Emadi B, Owlia P. Phenotypic and genotypic study of macrolide, lincosamide and streptogramin B (MLSB) resistance in clinical isolates of Staphylococcus aureus in Tehran, Iran. Med Sci Monit 2011; 17:BR48-53.
54. Shahsavan S, Emameini M, Noorazar Khosghnab B, Khoramian B, Asadollahi P, Aligholi M, et al. A high prevalence of mupirocin and macrolide resistance determinants among Staphylococcus aureus strains isolated from burnt patients. Burns 2012; 38:378-382.
55. Ghorbani S, Imani Fooladi AA, Nourani MR. Prevalence of methicillin-resistance (mec-A) gene in Staphylococcus aureus strains from scar by PCR and determination of antibiotic susceptibility. 4th Congress of Laboratory and Clinic; 21-23 December; Tehran, Iran:2011.p.540.
56. Mobaiyen H, Molaaabazadeh H, Modirrousta S, Reza Soltani S. Surveying of Staphylococcus aureus methicillin resistant (mec-A) and determine its antibiotic susceptibility with PCR method in Tehran in 2010. International Union of Microbiological Societies 2011 Congress; Sapporo, Japan:2011. P-BA25-11.
57. Sahebnasaghr S, Saderi H, Owlia P. Detection of methicillin-resistant Staphylococcus aureus strains from clinical samples in Tehran by detection of the meca and nuc genes. The First Iranian International Congress of
Medical Bacteriology; 4–7 September; Tabriz, Iran; 2011. p. 195.
58. Sepehrisereh S, Boroumand MA, Pourgholi L, Sotoudeh Anvari M, Habibi E, Sattarzadeh Tabrizi M, et al. Emergence of mupirocin-resistant MRSA among Iranian clinical isolates. Comp Clin Pathol 2012. doi:10.1007/s00580-012-1472-z.
59. Razavi Davoodi N, Vand Yousefi A, Harzandi N, Hahrafi A, Rajaei B, Gerayshnejad S, et al. Molecular detection of methicillin resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (CoNS) in Iran. Afr J Microbiol Res 2012; 6:3716-3721.
60. Azizi Barjini K, Mousazadeh M, Amani J, Asadi A, Khalili S. Detection of MRSA by Disk diffusion and PCR method and detection of resistance pattern. The Congress of Rational Usage of Antibiotics; 27-28 February; Sari, Iran; 2012. p. 38.
61. Forghani F, Alipourfard I, Ghayyomi M, Mahmudi S, Heydari N. Comparative study of methicillin resistant Staphylococcus aureus (MRSA) molecular detection by PCR, with bacteriological methods. First International and 12th Iranian Congress of Microbiology; 23-26 May; Kermanshah, Iran; 2011. p. 1194.
62. Dezfulian A, Aslani MM, Oskoui M, Farrokh P, Azimirad M, Dabiri H, et al. Identification and characterization of a high vancomycin-resistant Staphylococcus aureus harboring vanA gene cluster isolated from diabetic foot ulcer. Iran J Basic Med Sci 2012; 15:803-806.
63. Song JH, Hsueh PR, Chung DR, Ko KS, Kang CI, Peck KR, et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J Antimicrob Chemother 2011; 66:1061-1069.
64. Guzmán-Blanco M, Hsueh PR, Istriz R, Alvarez C, Bavestrello L, Gotuzzo E, et al. Epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Latin America. Int J Antimicrob Agents 2009; 34:304-308.
65. Nimmo GR, Pearson JC, Collignon PJ, Christiansen KJ, Coombs GW, Bell JM, et al. Antimicrobial susceptibility of Staphylococcus aureus isolated from hospital inpatients, 2009: Report from the Australian Group on Antimicrobial Resistance. Commun Dis Intell 2011; 35:237-243.
66. Styers D, Sheehan DJ, Hogan P, Sahm DF. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob 2006; 5:1-9.
67. Kleven RS, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007; 298:1763-1771.
68. Ray GT, Morrison MA, Baxter R. Trends and characteristics of culture-confirmed Staphylococcus aureus infections in a large U.S. integrated health care organization. J Clin Microbiol 2012; 50:1950-1957.
69. Simor AE, Loeb M. Epidemiology of healthcare-associated Staphylococcus aureus infections. In: Crossley KB, Jefferson KK, Archer GL, Fowler VG, editors. Staphylococci in Human Disease. 2nd ed. Oxford, UK: Wiley-Blackwell; 2009. p. 290-309.