A User’s Guide to CARSKit

Yong Zheng

Center for Web Intelligence, School of Computing, DePaul University
243 South Wabash Ave, Chicago, Illinois, USA 60604
yzheng8@cs.depaul.edu

Abstract. Context-aware recommender systems extend traditional recommenders by adapting their suggestions to users’ contextual situations. CARSKit is a Java-based open-source library specifically designed for the context-aware recommendation, where the state-of-the-art context-aware recommendation algorithms have been implemented. This report provides the basic user’s guide to CARSKit, including how to prepare the data set, how to configure the experimental settings, and how to evaluate the algorithms, as well as interpreting the outputs. The instructions in this guide are applicable for CARSKit v0.2.0 and v0.1.0.

Keywords: context, context-aware recommendation, CARSKit, user guide

1 Introduction

CARSKit [8] is an open-source Java-based context-aware recommendation engine, where it can be used, modified and distributed under the terms of the GNU General Public License. (Java version 1.7 or higher required). It is specifically designed for context-aware recommendations.

CARSKit is a free software: you can redistribute it and/or modify it under the terms of the GNU General Public License (GPL) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. CARSKit is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with CARSKit. If not, see http://www.gnu.org/licenses/.

1.1 Design

CARSKit provides a flexible architecture so that it is easy to expand the scope of context-aware recommendation algorithms and provides spaces to develop new algorithms in the future. The whole design can be depicted by the Figure

The workflow is straightforward in our design: different recommendation algorithms are the specific implementations and extensions from the generic interfaces where the shared and common functions are defined, such as rating or score prediction for a user on one item in a specific context. Evaluations for rating predictions and top-N recommendations are embedded into the Recommender.

[1] https://github.com/irecsys/CARSKit/
1.2 Algorithms

We divide the contextual algorithms into two categories in CARSKit: transformation algorithms and adaptation algorithms.

The transformation algorithms try to pre-process the data and convert the contextual data set to a 2-dimensional rating matrix which only contains users, items and ratings, so that any traditional recommendation algorithms can be applied to. One of those techniques is the context-aware splitting approaches [25].

The adaptation algorithms directly incorporate contexts into the prediction function. There are two subcategories involved: independent modeling (e.g., TF [3]) which assumes contexts are independent with users (and items), and dependent modeling which exploits the dependencies among users, items and contexts, such as CAMF [1] and contextual sparse linear method (CSLM) [6]. Dependent modeling can be built in two ways: by modeling contextual rating deviations [17] and by learning context similarities [9,10]. Factorization machines (FM) [4] is a finer-grained algorithm which exploits pairwise relationships in its learning process. Among those algorithms, TF and CAMF are two popular ones which have been recognized as the standard baselines in CARS.

In addition to those state-of-the-art contextual recommendation algorithms, we also include some traditional recommendation algorithms in the package baseline. We did not re-compile those algorithms and directly reuse the implementations in LibRec [2]. There are two main purposes to include those traditional recommendation algorithms – On one hand, those algorithms can be applied after the data transformation (e.g., splitting operations), which is an essential step in the context-aware transformation algorithms. On the other hand, it is usually common to compete a contextual recommendation algorithm with non-contextual algorithms to judge whether the contextual effect is significant or a context-aware recommendation algorithm is necessary or not.

1.3 Evaluations

Most of the algorithms embedded in CARSKit are able to perform the two recommendation task: rating prediction and item recommendation, except those ones specifically

2 https://github.com/guoguibing/librec/
designed for top-N recommendation, such as CSLIM. But the evaluation is different from traditional ones, since contexts are additional inputs in the evaluation process. Typically, the rating prediction can be evaluated by different prediction errors, such as mean absolute error (MAE), root mean square error (RMSE) and mean prediction error (MPE). The item recommendation can be evaluated through relevance metrics, such as precision and recall, and ranking metrics, such as mean average precision (MAP), normalized discounted cumulative gain (NDCG) and mean reciprocal rank (MMR).

2 User’s Guide

In this section, the specific instructions about how to use, deploy and evaluate the context-aware recommendation algorithms by CARSKit are introduced as follows.

2.1 Data Format

Usually, the contextual rating data can be stored in two formats: loose format and compact format, as shown in tables below.

Table 1: Data Format

Table 1: Loose Format
UserID
U1
U1
U2
U2

Table 1: Compact Format
UserID
U1
U2
U1
U2

Context dimension is identical to contextual variable, e.g., Time and Location as shown in the example above. Context conditions refer to specific values in a dimension, e.g. Weekend and Weekday are two conditions in the dimension Time. The loose format assumes that there is only one rating for each <user, item> pair in associated contexts, where the compact format allows to store multiple ratings to a same <user, item> pair in different contextual situations. Take the example shown in the two tables above, the first two rows in loose format actually represent a single rating by U1 for T1 within contexts {Weekend, Work}. In compact format, each row represents a single contextual rating profile; that is, there are only two contextual rating profiles in the loose format but four rating profiles in the compact format in this example.

Table 2: Binary Format

Table 2: Binary Format
UserID
U1
U2
U2

Most contextual information is in shape of categorical data. Both the loose and compact format will increase storage pressure and computational costs. In CARSKit, we store contextual rating in a binary format as shown in Table 2, which is able to
significantly boost the running performance. To assist the end users to prepare the rating data, we provide two methods TransformationFromLooseToBinary and TransformationFromCompactToBinary as the data transformer in our toolkit.

2.2 Data Preparation

It is better to follow the steps below to prepare your data:

- **Step 1.** Prepare your data set in either Loose or Compact format, and the CARSKit will automatically convert your data to the binary format. Be advised that you should add header to your data as shown in the Table. Save your file to either txt or csv format by using comma as separator.

- **Step 2.** Create a folder for each data set, and put the ratings.txt or ratings.csv in each folder. It is suggested, since the CARSKit will create a working subfolder under the path where your rating data is stored.

- **Step 3.** Assign the data path to the configuration file and run any algorithms to test the data transformation.

2.3 Experimental Configuration

You are required to create a setting.conf figure which is already included in the CARSKit repository. The main pieces to be configured in this file can be introduced as follows:

Data Path :

dataset.ratings.wins=C:\\Data\\DePaulMovie\\ratings.txt
dataset.ratings.lins=/data/DePaulMovie/ratings.txt

Note: you may set up the data path either for windows (i.e., wins) or non-windows platforms (i.e., lins for Linus/Mac systems)

Setup Your Ratings :

ratings.setup=-threshold -1 -datatransformation 1

Note: By setting a rating threshold (e.g., -threshold 3), the ratings will be converted to binary ones (e.g., ratings larger than 3 will be 1; otherwise, 0), which is usually adopted when evaluating ranking metrics. If there is already a binary rating data under folder “CARSKit.Workspace” and you do not need data transformation, set negative value to -datatransformation; otherwise, set it as any positive value, e.g., 1

Choose An Algorithm :

recommender=xxx

Note: the list of options can be summarized as follows.

- Baseline-Avg recommender: GlobalAvg, UserAvg, ItemAvg, UserItemAvg
- Baseline-Context average recommender: ContextAvg, ItemContextAvg, UserContextAvg

3 https://github.com/irecsys/CARSKit/
– Baseline-CF recommender: ItemKNN, UserKNN, SlopeOne, PMF, BPMF, BiasedMF, NMF, SVD++
– Baseline-Top-N ranking recommender: SLIM, BPR, RankALS, RankSGD, LRMF
– CARS - splitting approaches: UserSplitting, ItemSplitting, UISplitting; algorithm options: e.g., usersplitting -traditional biasedmf -minlength 2
– CARS - independent models: CPTF
– CARS - dependent-dev models: CAMF_CI, CAMF_CU, CAMF_C, CAMF_CUCI, CSLIM_C, CSLIM_CI, CSLIM_CU, CSLIM_CUCI, GCSLIM_CC
– CARS - dependent-sim models: CAMFICS, CAMF_LCS, CAMF_MCS, CSLIMICS, CSLIM_LCS, CSLIM_MCS, GCSLIMICS, GCSLIM_LCS, GCSLIM_MCS

Setup Recommendation Task :
item.ranking=off -topN 10
Note: it will be a rating prediction task if you turn off the item.ranking; otherwise, it will run as a top-N recommendation task.

Evaluation Protocols :
evaluation.setup=cv -k 5 -p on -rand-seed 1 -test-view all -early-stop RMSE
evaluation.setup=given-ratio -r 0.8
Note: You are able to choose k-fold cross validation or a simple train-testing evaluation. Once you assign a fixed value to k, the evaluation will be conducted on the same k-folds even if you examine different recommendation algorithms.

Config Your Outputs :
output.setup=-folder CARSKit.Workspace -verbose on, off -to-clipboard -to-file results.txt
Note: Basically, all the outputs will be put into the folder named as “CARSKit.Workspace” which is created under your data path. And all the evaluation results will be appended to the same file “results.txt”.

Parameter Configurations :
Then you are allowed to config the algorithm parameters as shown in the setting.conf

Run The Toolkit :
java -jar CARSKit.jar -c setting.conf
java -jar CARSKit.jar -c CAMF.conf PMF.conf UserSplitting.conf
Note: You are able to run multiple algorithms or configurations by add configuration files to the command above.

2.4 Output Interpretation
Figure 2 gives an example of the running outputs.
First of all, the outputs provide a list of simple statistics about the data, such as how many unique users, items and context dimensions or conditions, as well as rating statistics, such as the mean, mode and median in ratings.

In this example, we have results for both rating prediction task (evaluated by prediction errors) and top-N recommendation task (evaluated by precision, recall, MAP, NDCG and MRR) followed by the running parameters so that the users are able to find out the best configurations.

Fig. 2: Sample of Running Outputs

3 Acknowledgement

I would like to show our gratitude to Dr. Guibing Guo (the author of LibRec) for his comments and suggestions on the development of CARSKit.

References

1. L. Baltrunas, B. Ludwig, and F. Ricci. Matrix factorization techniques for context aware recommendation. In Proceedings of the fifth ACM conference on Recommender systems, pages 301–304. ACM, 2011.
2. L. Baltrunas and F. Ricci. Experimental evaluation of context-dependent collaborative filtering using item splitting. *User Modeling and User-Adapted Interaction*, pages 1–28, 2013.

3. A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In *Proceedings of the fourth ACM conference on Recommender systems*, pages 79–86. ACM, 2010.

4. S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. In *Proceedings of the fourth ACM conference on Recommender systems*, pages 79–86. ACM, 2010.

5. S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. In *Proceedings of the fourth ACM conference on Recommender systems*, pages 79–86. ACM, 2010.

6. Y. Zheng, R. Burke, and B. Mobasher. Splitting approaches for context-aware recommendation: An empirical study. In *Proceedings of the 29th ACM Symposium on Applied Computing*, pages 274–279. ACM, 2014.

7. Y. Zheng, B. Mobasher, and R. Burke. CSLIM: Contextual SLIM recommendation algorithms. In *Proceedings of the 8th ACM Conference on Recommender Systems*, pages 301–304. ACM, 2014.

8. Y. Zheng, B. Mobasher, and R. Burke. Deviation-based contextual SLIM recommenders. In *Proceedings of the 23rd ACM Conference on Information and Knowledge Management*, pages 271–280, 2014.

9. Y. Zheng, B. Mobasher, and R. Burke. Carskit: A java-based context-aware recommendation engine. In *Proceedings of the 15th IEEE International Conference on Data Mining Workshops*. IEEE, 2015.

10. Y. Zheng, B. Mobasher, and R. Burke. Integrating context similarity with sparse linear recommendation model. In *User Modeling, Adaptation, and Personalization*, pages 370–376. Springer, 2015.

11. Y. Zheng, B. Mobasher, and R. Burke. Similarity-based context-aware recommendation. In *Web Information Systems Engineering*. Springer, 2015.