The potential of breast cancer screening in Europe

Nadine Zielonke1 | Lindy M. Kregting1 | Eveline A. M. Heijnsdijk1 | Piret Veerus2 | Sirpa Heinävaara3 | Martin McKee4 | Inge M. C. M. de Kok1 | Harry J. de Koning1 | Nicolien T. van Ravesteyn1 | the EU-TOPIA collaborators5

1Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
2National Institute for Health Development, Tallinn, Estonia
3Finnish Cancer Registry, Helsinki, Finland
4London School of Hygiene and Tropical Medicine, London, UK
5The EU-TOPIA collaborators are listed in the Appendix

Correspondence
Nadine Zielonke, Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands. Email: n.zielonke@erasusmc.nl

Funding information
Horizon 2020 Framework Programme, Grant/Award Number: 634753

Abstract
Currently, all European countries offer some form of breast cancer screening. Nevertheless, disparities exist in the status of implementation, attendance and the extent of opportunistic screening. As a result, breast cancer screening has not yet reached its full potential. We examined how many breast cancer deaths could be prevented if all European countries would biennially screen all women aged 50 to 69 for breast cancer. We calculated the number of breast cancer deaths already prevented due to screening as well as the number of breast cancer deaths which could be additionally prevented if the total examination coverage (organised plus opportunistic) would reach 100%. The calculations are based on total examination coverage in women aged 50 to 69, the annual number of breast cancer deaths for women aged 50 to 74 and the maximal possible mortality reduction from breast cancer, assuming similar effectiveness of organised and opportunistic screening. The total examination coverage ranged from 49% (East), 62% (West), 64% (North) to 69% (South). Yearly 21,680 breast cancer deaths have already been prevented due to mammography screening. If all countries would reach 100% examination coverage, 12,434 additional breast cancer deaths could be prevented annually, with the biggest potential in Eastern Europe. With maximum coverage, 23% of their breast cancer deaths could be additionally prevented, while in Western Europe it could be 21%, in Southern Europe 15% and in Northern Europe 9%. Our study illustrates that by further optimising screening coverage, the number of breast cancer deaths in Europe can be lowered substantially.

KEYWORDS
breast cancer mortality, breast cancer mortality reduction, breast cancer screening, screening coverage, screening guidelines

1 INTRODUCTION

Breast cancer is a major public health problem in Europe. It is by far the most frequently diagnosed neoplasm in European women and is
responsible for nearly one third of all new cancer cases among women in 31 European countries in 2018.1 Breast cancer is also the leading cause of death in European women.1,2

Randomised trials and several observational studies have demonstrated that systematic screening of eligible women through quality-assured population-based programmes for breast cancer reduces mortality from this disease.2–15

Based on this evidence, in 2003 the European Commission’s Initiative on Breast cancer Guidelines Development Group (GDG) published their first guidelines for organised mammography screening programmes for early detection of breast cancer in asymptomatic women with a strong recommendation to inviting women ages 50 to 69, every 2 years.16,17 The guidelines and recommendations have been updated and expanded regularly ever since based on updated evidence on efficacy or diagnostics, resulting in extending the recommendations to triennial or biennial screening the age-groups 45 to 49 and 70 to 74 in the context of an organised screening programme.17

At present, breast cancer screening programmes are well established in most European countries and all have some form of screening for breast cancer. Nevertheless, disparities exist in terms of the status of implementation, the extent to which screening programmes are organised, the invitation coverage, the coexistence with opportunistic screening activity and the attendance to screening.18

In order to know to which extent the European recommendations have been adopted, reports on the implementation have been published in 2007 and 2017.3,18 It was shown here as well as in other studies that the coverage of (organised) screening is of key importance in order to tap the full public health potential in terms of reduction in mortality from breast cancer.19,20

However, in most European countries, opportunistic and organised screening coexist. Thus, to expect mortality reductions only from population-based screening programmes would probably lead to an underestimation of the total effectiveness of screening.

The primary aim of our study was to investigate what the effect would be of an increased or even complete breast cancer screening coverage on breast cancer mortality for each European country and if this effect differs between the four European regions. Therefore, we estimate how many breast cancer deaths have already been prevented due to screening and how many deaths could additionally be prevented if countries would screen all women in the age-group 50 to 69 years every 2 years for breast cancer with a hypothetical 100% coverage of screening in the advised target age groups. The secondary aim was to provide an overview of screening practice and the amount of organised as well as opportunistic screening in Europe.

2 METHODS

2.1 Data

2.1.1 Data providers

As part of the EU-TOPIA project (TOwards imProv ed screening for breast, cervical and colorectal cancer In All of Europe), we collected data (see indicators listed in this section) of a recent year from over 36 data providers from 31 countries (see list of collaborators). They were either European screening organisers, researchers and/or policymakers. The data providers were contacted to collect any missing data, to correct any apparent inconsistencies and to approve on the use of the data. For only a few countries (Greece, Portugal and Romania), data were completely missing despite best efforts of the authors to involve potential data providers. By utilising other data sources like published reports3 or online databases (eg, the Cancer Mortality Database of the WHO21 or ECIS—European Cancer Information System22), we filled these data gaps.

While our focus was clearly on national data, those were not available for a few countries. In Belgium, Spain, Sweden, Switzerland and the United Kingdom, health care delivery is organised at regional level with effectively independent screening programmes. Therefore, the data for the Belgian regions as well as the data for Scotland, Northern Ireland, England and Wales are presented separately in our study, while the data providers from Spain, Sweden and Switzerland could provide national estimates.

2.1.2 Indicators

Examination coverage of organised screening

Based on the IARC Handbook of Cancer Prevention (2015),23 we defined organised screening as screening programmes organised at the national or regional level, with an explicit policy, including an active invitation of the entire target population and monitoring of cancer occurrence in the target population. For our study, the examination coverage of organised screening was specified as the proportion (%) of the target population (here: 50- to 69-year-old women) screened in the chosen report year after invitation. For countries without a population-based programme, the proportion is zero.

Examination coverage of opportunistic screening

Opportunistic or nonorganised screening refers to all other breast cancer screening activity where individual invitations are not sent to the women in the eligible population or when women undergo a mammography outside or additionally to the (existing) screening programme.3,22 Mammograms for symptomatic women are not counted...
as opportunistic screening. Generally, opportunistic screening is not monitored and is thus difficult to quantify. We asked the data providers to estimate opportunistic breast cancer screening by utilising insurance data, survey results or by providing their expert opinion. If that was not possible, we applied the mean examination coverage of opportunistic screening of the European region.

Total examination coverage

We based our calculations on the total examination coverage as the sum of both organised and opportunistic examination coverage. For countries without an organised breast cancer screening programme and no estimate of opportunistic screening, we applied the region-specific average of the total examination coverage.

Breast cancer deaths

We included the absolute number of breast cancer deaths in women aged 50 to 74 years in the report year for each country or region within a country. In addition to the recommended screening ages range 50 to 69, we included breast cancer deaths for five additional years in ages 70 to 74 to account for death occurring after the last screening round.

Mortality reduction

The maximal possible mortality reduction is taken from a recently published systematic review on breast cancer mortality reduction due to screening. In this publication, the authors identified those studies among 61 included studies that provided best evidence for breast cancer mortality reduction due to screening for each European region, based on observed data.

The identified studies (Table 1) represent point estimates for breast cancer mortality reduction due to breast cancer screening for each European region. These point estimates were 33% in Finland (North), 50% in Italy (South) and 58% in the Netherlands (West). We assume those reductions to be the same across all screened age groups. No studies from Eastern Europe met the initial inclusion criteria and subsequently evidence for mortality reduction due to breast cancer screening was lacking. Consequently, for these countries, we applied the point estimate from Southern Europe as it is the medium value and because these two regions may seem fairly comparable in terms of the extent of screening coverage and the role of opportunistic screening.

Table 1

Overview of point estimates of breast cancer mortality reduction due to breast cancer screening from best evidence studies, per European region

Study	Region	Country	Study type	Target age	Effect sizes for breast cancer mortality*, (95% CI)
Heinavaara et al⁹	North	Finland	Case-control	50-69	HR = 0.67 (0.49-0.90)⁵
Puliti et al²⁴	South	Italy	Case-control	50-74	OR = 0.50 (0.42-0.60)⁶
Paap et al¹²	West	Netherlands	Case-control	50-75	OR = 0.42 (0.33-0.53)⁷

Abbreviations: CI, confidence interval; HR, hazard ratio; OR, odds ratio.

*Attenders/nonattenders.
²Estimates corrected for self-selection bias.
European country, it would be \((-0.005*\text{total examination coverage} + 0.5)\) annual number of breast cancer deaths of women aged 50 to 74 in the absence of screening and for a West European country \((-0.0058*\text{total examination coverage} + 0.58)\) annual number of breast cancer deaths of women aged 50 to 74 in the absence of screening (Figure 1).

Despite differences in target age range and frequency, for our study all calculations were based on the hypothetical situation of a uniform policy of screening women biennially between the ages 50 and 69. The observed coverage rates were adjusted accordingly.

2.3 Sensitivity analyses

Because of uncertainties around some assumptions made, the following sensitivity analyses were performed.

A sensitivity analysis was performed in which potential gains were calculated up to a maximal coverage of 84%, which is the highest screening coverage found in a European country (i.e., Denmark).

In addition, sensitivity analyses were performed in which the effectiveness of opportunistic screening was 10%, 20%, and 30% lower than organised screening. In these analyses, the percentages that could be gained to reach an examination coverage of 100% were distributed over organised and opportunistic screening to the same distribution as was already present in the specific country (e.g., if present screening coverage was 40% organised and 20% opportunistic (ratio 2:1), the additional coverage was 27% organised and 13% opportunistic (2:1)).

To assess the impact of the regional point estimates on the maximal possible breast cancer mortality reduction on the regional results of our study, we performed a sensitivity analysis where we varied the point estimates across all European countries, that is, we applied a 33% (North), a 50% (South) and a 58% (West) breast cancer mortality reduction due to screening irrespective of the location of the country.

3 RESULTS

3.1 Screening practice and examination coverage

Most European countries adopted the target age range for breast cancer screening as recommended by the European Commission for which there is a strong recommendation (50-69). Only a few countries adopted a different age range and either invite women younger than 50 or they invite women beyond the age of 69, while a few stop
TABLE 2 Overview of national background data used as input

Country/region	Report year	Breast cancer deaths 50-74	Examination coverage 50-69 (%)^a	Organised	Opportunistic	Total
North						
Denmark	2014	521	81.1	3.0	84.1	
Estonia^b	2016	121	37.4	8.0	45.4	
Finland	2014	390	78.9	3.9	82.8	
Iceland	2015	25	58.7	2.0	60.7	
Latvia	2016	247	26.7	8.1	34.8	
Lithuania	2016	265	44.2	5.0	49.2	
Norway	2016	347	72.3	5.0	77.3	
Sweden^c	2016	605	76.5	1.0	77.5	
Total North	2016	2521	59.5	4.5	64.0	
West						
Austria^d	2014	658	25.0	20.0	45.0	
Wallonia (B)	2015	386	7.0	45.0	52.0	
Brussels (B)	2015	69	11.6	42.0	53.6	
Vlaanderen (B)	2015	736	51.0	18.2	69.2	
France^c	2015	5043	51.6	13.5	65.1	
Germany	2015	7575	51.2	5.0	56.2	
Ireland^e	2015	335	53.3	3.9	57.2	
Luxembourg	2013	29	56.0	5.7	61.7	
Netherlands^c	2015	1628	75.8	5.0	80.8	
Switzerland	2015	616	14.5	10.5	25.0	
Scotland (United Kingdom)^{f,g}	2015	444	62.1	0	62.1	
N. Ireland (United Kingdom)^{f,g}	2016	133	81.4	0	81.4	
Wales (United Kingdom)^{f,g}	2016	264	76.6	0	76.6	
England (United Kingdom)^{f,g}	2016	4115	75.4	0	75.4	
Total West	2016	21,972	49.0	12.1	61.5	
East						
Bulgaria	2015	711	—	49.0^h	49.0^h	
Croatia	2015	533	37.5	12.0	49.5	
Czech Republic^d	2016	823	57.6	3.0	60.6	
Hungaryⁱ	2015	1197	22.5	19.5	42.0	
Poland	2016	3421	38.7	19.9	58.6	
Romania^j	2016	1867	—	49.0	49.0^h	
Slovakia	2017	542	—	30.0	30.0	
Slovenia	2015	177	40.1	13.0	53.1	
Total East	2015	9271	39.3	16.2	49.0	
South						
Cyprus	2017	58	35.1	32.4^h	63.1	h
Greece^j	2016	824	—	68.9	61.3	
Italy	2013	3900	42.3	19.0	61.3	
Malta^g	2016	40	52.9	19.5	72.4	
Portugal^j	2013	762	33.8	32.4^h	66.2	h
Spain	2016	2644	62	19.5	81.5	
Total South	2016	8228	45.2	32.4	68.9	

^aThe examination coverage of organised/opportunistic screening was specified as the proportion (%) of the target population (here: 50- to 69-year-old women) screened in the index year after invitation.

^bScreening ages 50 to 62.

^cScreening ages 50 to 74.

^dScreening ages 45 to 69.

^eScreening ages 50 to 64.

^fNo opportunistic screening activity due to The Ionising Radiation (Medical Exposure) Regulations 2017.

^gThree-years screening interval.

^hTotal screening is average or the region.

ⁱScreening ages 45 to 64.

^jData from ECIS²² Globocan²¹ and the second screening report.³

^kOpportunistic screening is average of the region.
inviting women at the age of 62 and 64, respectively. The screening interval was 2 years in all countries except for Malta and the United Kingdom where three yearly screening was practiced (Table 2).

The examination coverage of organised breast cancer screening was highest in Northern Europe and lowest in Eastern Europe (an average of 59% compared to 39%; Table 2). In contrast, the examination coverage of opportunistic screening was lowest in Northern Europe and highest in Southern Europe (5% compared to 32%). The total examination coverage ranged from 49% in Eastern Europe, 62% in Western Europe, 64% in Northern Europe to 69% in Southern Europe. With 84% and 25%, Denmark and Switzerland had the highest and the lowest total examination coverage, respectively.

3.2 Prevented breast cancer deaths

Based on the collected data, 42,051 women die of breast cancer in Europe every year. Due to the existence of breast cancer screening, 21,680 breast cancer deaths have already been prevented annually. Consequently, with no breast cancer screening activities, 63,731 women would have died of the cancer. Thus, 34% of breast cancer specific deaths have been prevented due to mammography screening across Europe. We calculated that 12,434 breast cancer deaths could additionally be prevented annually if breast cancer screening coverage would be extended to 100%. The regional results are presented in Figure 2 where Western Europe sticks out due to its population size as well as the biggest regional point estimate of breast cancer mortality reduction. In Western Europe, 22,031 women died of breast cancer in the reported year (red column). Due to the average total examination coverage of 61.5%, 13,147 breast cancer deaths were already averted. Hence, in the absence of screening, 35,178 women would have died annually of breast cancer (red striped column). If screening coverage would increase to 100%, only 14,742 breast cancer deaths would occur (gray striped column) as 7,298 additional breast cancer deaths could be averted annually. The respective numbers for all European countries and regions are presented in Table 3. Figure 3 presents the relative effect of a 100% total examination coverage for each country, that is, showing the share of breast cancer deaths that could additionally be prevented when countries would screen all women 50 to 69 years of age every 2 years. Most countries could potentially avert additional 20% to 29% of their breast cancer deaths. In contrast, all Nordic countries have consistently high coverage rates through their organised programmes and less additional breast cancer deaths could potentially be prevented when screening would be extended to 100%.

![Breast cancer deaths, per year](image)

FIGURE 2 Annual number of observed and preventable breast cancer deaths, ages 50 to 74, per European region [Color figure can be viewed at wileyonlinelibrary.com]
Country	Max. European coverage	Sens—10%a	Sens—20%b	Sens—30%c	Max Westd	Max Nordh	Max Southh		
Denmark	200	38	721	28%	5%	200	38	378	72
Estonia	21	26	142	15%	18%	21	26	36	43
Finland	147	30	537	27%	6%	147	30	198	5%
Iceland	6	4	31	20%	13%	6	6	14	9
Latvia	32	60	279	11%	21%	32	45	31	58
Lithuania	51	53	316	16%	17%	51	53	50	49
Norway	119	35	466	26%	8%	119	11	116	34
Sweden	208	59	813	26%	7%	208	16	209	59
Total	784	306	3305	24%	9%	784	136	780	301
Comp. base case	45%	98%	97%	96%	22%	100%	96%	100%	17%
West									
Austria	232	284	890	26%	32%	233	201	216	266
Wallonia (B)	167	154	553	30%	28%	167	103	147	135
Brussels (B)	31	27	100	31%	27%	31	17	28	24
Vlaanderen (B)	493	221	1229	40%	18%	493	107	472	212
France	3059	1645	8102	38%	20%	3059	893	2000	1660
Germany	3663	2868	11238	33%	26%	3663	1825	3604	2827
Ireland	166	125	501	33%	25%	166	79	164	124
Luxembourg	16	10	43	36%	22%	16	6	16	10
The Netherlands	1436	338	3054	47%	11%	1436	53	1424	335
Switzerland	104	313	720	15%	44%	104	247	104	296
Scotland (United Kingdom)	250	153	694	36%	22%	250	89	250	138
N. Ireland (United Kingdom)	119	28	252	47%	11%	119	3	119	25
Wales (United Kingdom)	211	63	475	44%	13%	211	19	211	57
England (United Kingdom)	3198	1060	7313	44%	15%	3198	339	3198	954
Total	13 147	7289	35 178	37%	21%	13 146	3981	12 954	7003
Comp. base case	55%	96%	92%	88%	100%	46%	96%	100%	79%
Table 3 (Continued)

Prevented breast cancer deaths

Country	# BC deaths already prevented due to current screening coverage	# BC deaths prevented if screening coverage would increase to 100%	Sens–10%a	Sens–20%a	Sens–30%a	Max Westb	Max Northb	Max Southb																																			
East																																											
Bulgaria	231	240	942	24%	26%	231	160	201	205	173	177	193	158	282	288	137	140	231	235																								
Croatia	175	177	708	25%	25%	175	120	172	172	166	166	162	161	215	217	104	105	175	177																								
Czech Republic	358	230	1181	30%	20%	358	136	358	229	355	227	353	226	446	287	206	132	358	230																								
Hungary	318	439	1515	21%	29%	318	318	307	416	304	395	301	374	385	532	193	266	318	439																								
Poland	1418	992	4839	29%	21%	1418	605	1436	962	1370	915	1309	870	1761	1232	820	574	1418	992																								
Romania	605	630	2472	24%	26%	605	420	650	566	543	482	448	405	741	756	360	367	605	618																								
Slovakia	176	183	718	24%	26%	176	194	96	201	83	175	70	150	114	263	60	137	96	220																								
Slovenia	64	57	241	27%	24%	64	14	74	56	71	54	69	52	79	70	38	33	64	57																								
Total	3345	2949	12,616	27%	23%	3345	1968	3293	2807	3065	2592	2905	2397	4023	3645	1917	1755	3264	2969																								
Comp. base case										67%	95%	88%	81%	124%	60%	101%																											
South																																											
Cyprus	29	14	87	33%	17%	29	9	27	15	25	14	25	13	37	20	16	9	29	16																								
Greece	433	176	1257	34%	14%	433	75	387	153	328	129	274	108	549	223	243	109	433	176																								
Italy	1724	1097	5624	31%	20%	1724	647	1641	1047	1574	1002	1511	958	2152	1369	989	629	1724	1097																								
Malta	23	9	63	36%	14%	23	10	22	8	21	8	20	8	29	11	13	5	23	9																								
Portugal	377	194	1139	33%	17%	377	103	312	173	293	161	275	150	475	244	213	109	377	194																								
Spain	1818	402	4462	41%	9%	1818	45	1239	342	1205	331	1171	320	2370	523	973	215	1818	402																								
	4404	1891	12,632	35%	15%	4404	888	3629	1738	3445	1645	3276	1556	5611	2391	2446	1066	4404	1893																								
										47%	9%	87%	82%	126%	56%	100%																											
	ALL	21,680	12,434	63,731	34%	20%	21,680	6973	20,657	11,849	19,832	11,215	19,375	10,667	24,639	14,005	11,028	6472	19,528	11,180																							
	Comp. base case									100%	56%	95%	95%	91%	90%	89%	86%	114%	113%	51%	52%	90%	90%																				

Abbreviation: BC, breast cancer.

a Effectiveness of opportunistic screening to lower cancer specific mortality was set to be 10%, 20% and 30% lower than organised screening. In these analyses, the gained percentages of screening coverage (up to 100%) were distributed over organised and opportunistic screening to the same distribution as was already present in the specific country [eg, if present screening coverage was 40% organised and 20% opportunistic (ratio 2:1), the additional coverage was 27% organised and 13% opportunistic (2:1)].

b Application of each of the regional point estimates across all European countries, that is, we applied a 58% (West), a 33% (North) and a 50% (South) breast cancer mortality reduction due to screening irrespective of the location of the country.
3.3 | Sensitivity analyses

As shown in Table 3, assuming a maximal coverage of 84% instead of 100% led to a significant drop in prevented breast cancer deaths (6975 averted deaths compared to 12,438). This cut is predominantly explained by countries who already have a comparably high screening coverage and lose the additional benefit of increasing up to 100% (e.g., the Netherlands, Spain or Denmark).

Assuming that opportunistic screening is 10% less effective as organised screening led to a 5% reduction of the additionally preventable breast cancer deaths. A 20% and 30% lowered effectiveness led to a 10% and 14% reduction, respectively. The effect was biggest in countries with a high percentage of opportunistic screening (e.g., Walloonia/Belgium). Applying the Western European point estimate for mortality reduction across all of Europe, breast cancer deaths already prevented increased by 14% and breast cancer deaths that can additionally be prevented increased by 13%. This analysis has the biggest impact for Northern Europe (plus 223%), where the point estimate was the smallest in the base analysis. When the estimates from Northern and Southern Europe were applied, the number of breast cancer deaths prevented decreased by 49% and 10%, while the additionally preventable breast cancer deaths decreased by 48% and 10%, respectively, compared to the base calculation.

4 | DISCUSSION

Our study illustrates how breast cancer screening in Europe already has a substantial impact by preventing nearly 21,700 breast cancer deaths per year. In addition, through further optimising screening coverage, the number of breast cancer deaths of European women could be further reduced significantly. The effect would be particularly notable in Eastern and Western Europe. Thus, rolling-out a breast cancer screening programme with complete coverage across the country is...
particularly favourable for Swiss women as it would further reduce breast cancer deaths by 44%. In contrast, all Nordic countries have consistently high coverage rates through their organised programmes (between 72% and 81%) plus a very low coverage of opportunistic screening for breast cancer (between 1% and 5%). When the total examination coverage for women aged 50 to 69 is already as high as 84%, not many additional breast cancer deaths could potentially be prevented if screening was extended to 100%.

Screening provides both harms and benefits, and therefore it is important to ensure a good balance between the two. Information on the balances of benefits and harms is needed to demonstrate that a chosen screening policy and programme with all its components and protocols is appropriate for any given country. In this article, however, we focus solely on the primary aim of (organised) breast screening which is to reduce mortality from breast cancer through early detection.16,20

The calculations for this present analysis are based on the assumption that opportunistic and organised breast cancer screening can lead to the same level of cancer specific mortality reduction. However, past studies resulted in slightly conflictive results. For example, a study in Denmark found that the sensitivity was twice as high for organised screening, while the specificity of organised and opportunistic screening was found to be similar.25 Hofvind et al compared opportunistic breast cancer screening in Vermont (United States) with organised breast cancer screening in Norway.26 Both screening systems detected cancer at about the same rate and at the same prognostic stage. A study from Switzerland found that there was little difference in stage distribution and detection rates between cantons with only opportunistic screening and cantons with both organised and opportunistic screening,27 indicating that both are similarly effective. It was noted, however, that the quality of opportunistic screening in Switzerland probably benefitted from the training of radiographers, a higher reading volume of radiologists and the technical and quality-controlled procedures of the organised programme.

In summary, the main differences between organised and opportunistic screening can be seen in attendance,28 equity,28 and cost-effectiveness29 which are all (much) better in organised screening. With regards to quality aspects, opportunistic screening might be quite similar to that of organised screening. Moreover, since opportunistic screening takes place next to organised screening in most countries (Bulgaria, Romania, Slovakia and Greece being the exception), it can profit from advantages of the organised system. Consequently, we are confident that by conflating opportunistic and organised screening for calculations and argumentations, we can increase the relevance of this article.

The European guidelines for quality assurance in breast cancer screening and diagnosis consider participation rates above 70% as acceptable and above 75% as desirable.30 In line with those guidelines, we do not actually propagate a screening coverage of 100% as this probably conflicts with informed choice.31 However, by basing our calculations on a hypothetical goal of a screening coverage of 100% of eligible women, we assessed the maximum potential of breast cancer screening for each country.

Our study focuses on screening women ages 50 to 69 as this is currently the practice in most European countries. Despite some exceptions (Table 2), women aged 70 to 74 are usually not eligible for mammography screening because there was insufficient evidence that screening would reduce mortality for women in this age group. Previous randomised controlled trials (RCTs) and observational studies on breast cancer screening have not generally included women aged 70 years and over. In their newest (conditional) screening recommendations, however, the European Commission Initiative on Breast Cancer suggests that average-risk and asymptomatic women between 45 and 49, as well as between 70 and 74 years old, have mammography screening for breast cancer.

Several further considerations inform the interpretation of our study. There is an ongoing debate as to which study design is the gold standard for estimating the true effect of screening on cancer-specific mortality.23,32,33 For our study, we considered that high-quality case-control studies7 provide the most informative data. RCTs were conducted more than 20 years ago when adherence to screening was less and the quality of screening programmes and breast cancer care were less advanced than today. In contrast, observational studies of screening are known to be prone to bias as there is no unselected unscreened group. Women who do not participate in screening might have a higher a priori risk of breast cancer mortality. If that was so, our assumption of a proportional relationship between screening coverage and reduction in breast cancer mortality would not hold. Therefore, it was of particular importance to base our analysis on estimates of mortality reduction that were not influenced by self-selection bias.

The regional point estimates from individual studies on mortality reduction due to breast cancer screening, which our calculations are based on, differ quite significantly. These differences indicate differences in evaluation designs, in target ages, in ages of follow-up of breast cancer incidence or mortality, in duration of follow-up since first invitation, in comparison groups and in assessment methods of self-selection bias.7,9,12,24 Therefore, the region-specific point estimates are not directly comparable with each other and they should not be used as a ‘quality indicator’ for organised breast cancer screening in each region.

Despite the different effect sizes, we are confident that our three regional estimates do not present an overestimation of the benefit of mammographic screening. They are well in the range of an analysis of Broeders et al from 20125 who present a pooled breast cancer mortality reduction for women who actually participated in screening of 38% based on incidence based mortality studies [odds ratio (OR) = 0.62 (0.56-0.69)] and 48% based on case-control studies [OR = 0.52 (0.42-0.65), adjusted for self-selection]. An analysis similar to our study has been published in 2013. Mackenbach and McKee34 estimated there would be over 17 000 fewer breast cancer deaths each year if all countries in the EU could reduce death rates to those in the best performing country, Sweden. However, our study was based on cause- and age-specific death rates only rather than the combination of cause- and age-specific mortality and the extent of screening activity.

To our knowledge, there have been no other studies so far that have estimated the effect of breast cancer screening on cancer-specific
mortality when brought to its full potential based on the total extent of breast cancer screening activities in Europe. We were able to provide an extensive overview of the amount of organised as well as opportunistic screening in Europe by consulting national experts. Accordingly, some of the national estimates on screening uptake have never been published before. However, our study also has some potential limitations. The first limitation is the uncertainty regarding the coverage of opportunistic screening as these numbers are based on expert opinion or on national extrapolations of regional observations. Second, because the organised breast cancer screening in the United Kingdom as well as Malta is triennial rather than every 2 years, this led to a slight overestimation of the breast cancer death prevented. Third, our calculations probably led to an underestimation of the already prevented and additionally preventable deaths for the few countries which invite and screen women that are younger than 50 or older than 69. The fourth limitation is the fact that the number of breast cancer deaths and the estimates of examination coverage come from the same report year although the most recent breast cancer deaths rather reflect the past (eg, 5-10 years ago) than current screening practice.

Our analysis paves the way for further research as it could potentially be applied to the other two cancer sites for which the European Council recommends screening: cervical and colorectal cancer.

Our study illustrates that by further optimising screening coverage, the number of breast cancer deaths in Europe could be lowered substantially. Therefore, countries which do not yet offer organised screening for the target age range of 50 to 69 should strongly consider it based on our results. In addition, even when programmes to screen for breast cancer exist, much remains to be done. This includes increasing screening coverage through evidence-based interventions and removing barriers to effective breast cancer screening.

ACKNOWLEDGEMENTS
We like to thank all data providers and EU-TOPIA workshop participants for their valuable help, expert inputs and critical feedback in the making of this study. This study is part of the EU-TOPIA project, funded by the EU-Framework Programme (Horizon 2020) of the European Commission, project reference 634753. The authors alone are responsible for the views expressed in this manuscript.

CONFLICT OF INTEREST
H. J. d. K. reports personal fees from the University of Zurich/MSD. All other authors of this paper report no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Nadine Zielonke https://orcid.org/0000-0001-6148-2371
Eveline A. M. Heijnsdijk https://orcid.org/0000-0002-4890-6069

REFERENCES
1. ECIS - European Cancer Information System: European Commission. https://ecis.jrc.ec.europa.eu/. Accessed September 1, 2019.
2. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. *Eur J Cancer*. 2018;103:356-387.
3. IARC. Cancer Screening in the European Union. Report on the Implementation of the Council Recommendation on Cancer Screening. Lyon, France: IARC; 2017. 2017_cancerscreening_2ndreportimplmentation_en.pdf.
4. Nelson HD, Fu R, Cantor A, Pappas M, Daeges M, Humphrey L. Effectiveness of breast cancer screening: systematic review and meta-analysis to update the 2009 U.S. Preventive Services Task Force recommendation. *Ann Intern Med*. 2016;164(4):244-255.
5. Broeders M, Moss S, Nyström L, et al. The impact of mammographic screening on breast cancer mortality in Europe: a review of observational studies. *J Med Screen*. 2012;19(suppl 1):14-25.
6. Moss SM, Nyström L, Jonsson H, et al. The Impact of mammographic screening on breast cancer mortality in Europe: a review of trend studies. *J Med Screen*. 2012;19(suppl 1):26-32.
7. Zielonke N, Gini A, Jansen E, et al. Evidence for reducing cancer specific mortality due to screening for breast cancer in Europe: a systematic review. *Eur J Cancer*. 2020;127:191-206.
8. Weedon-Fekjær H, Romundstad PR, Vatten LJ. Modern mammography screening and breast cancer mortality: population study. *BMJ*. 2014;348:g3701.
9. Heinavaara S, Sarkeala T, Anttila A. Impact of organised mammography screening on breast cancer mortality in a case-control and cohort study. *Br J Cancer*. 2016;114:1038-1044.
10. Olsen AH, Lyngé E, Njør SH, et al. Breast cancer mortality in Norway after the introduction of mammography screening. *Int J Cancer*. 2013;132(1):208-214.
11. Pultí D, Miccinesi G, Zappa M, Manneschi G, Crocetti E, Paci E. Balancing harms and benefits of service mammography screening programs: a cohort study. *Breast Cancer Res*. 2012;14(1):R9.
12. Paap E, Verbeek ALM, Botterweck AAM, et al. Breast cancer screening halves the risk of breast cancer death: a case-referent study. *Breast*. 2014;23(4):439-444.
13. Massat NJ, Dibden A, Parmar D, Cuzick J, Sasiendi PD, Duffy SW. Impact of screening on breast cancer mortality: the UK program 20 years on. *Cancer Epidemiol Biomarkers Prev*. 2016;25(3):455-462.
14. Johns LE, Coleman DA, Swardlow AJ, Moss SM. Effect of population breast screening on breast cancer mortality up to 2005 in England and Wales: an individual-level cohort study. *Br J Cancer*. 2017;116(2):246-252.
15. Tabár L, Vitak B, Chen THH, et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. *Radiology*. 2011;260(3):658-663.
16. Council of the European Union. Council recommendation of December 2, 2003 on cancer screening (2003/878/EC). OJ L 2003:327:34-38.
17. European Commission Initiative on Breast Cancer. Recommendations from the European Breast Guidelines. 2020. https://ecibc.jrc.ec.europa.eu/recommendations/. Accessed February 1, 2020.
18. Basu P, Ponti A, Anttila A, et al. Status of implementation and organization of cancer screening in the European Union Member States: Summary results from the second European screening report. *Int J Cancer*. 2018;142(1):44-56.
19. Chen TH, Yen AM, Fann JC, et al. Clarifying the debate on population-based screening for breast cancer with mammography: a systematic review of randomized controlled trials on mammography.
Bayesian meta-analysis and causal model. Medicine. 2017;96(3):e5684.

20. Marmot MG, Altman DG, Cameron DA, et al. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108(1):2205-2240.

21. WHO. Cancer Mortality Database 2019. http://www-dep.iarc.fr/WHOdb/WHOdb.htm. Accessed September 1, 2019.

22. The European Commission. ECIS - European Cancer Information System. 2019. https://ecis.jrc.ec.europa.eu/. Accessed September 1, 2019.

23. IARC Working Group. IARC Handbooks of Cancer Prevention. Vol 15. Lyon, France: Breast Cancer Screening; 2016.

24. Puliti D, Miccinesi G, Collina N, et al. Effectiveness of service screening: a case-control study to assess breast cancer mortality reduction. Br J Cancer. 2008;99(3):423-427.

25. Bihlmann K, Jensen A, Olsen AH, et al. Performance of systematic and non-systematic ('opportunistic') screening mammography: a comparative study from Denmark. J Med Screen. 2008;15(1):23-26.

26. Hofvind S, Vacek PM, Skelly J, Weaver DL, Geller BM. Comparing screening mammography for early breast cancer detection in Vermont and Norway. J Natl Cancer Inst. 2008;100(15):1082-1091.

27. Bulliard JL, Ducros C, Jemelin C, Arzel B, Fioretta G, Levi F. Effectiveness of organised versus opportunistic mammography screening. Ann Oncol. 2009;20(7):1199-1202.

28. Espinas JA, Aliste L, Fernandez E, et al. Narrowing the equity gap: the impact of organized versus opportunistic cancer screening in Catalonia (Spain). J Med Screen. 2011;18(2):87-90.

29. de Gelder R, Bulliard JL, de Wolf C, et al. Cost-effectiveness of opportunistic versus organised mammography screening in Switzerland. Eur J Cancer. 2009;45(1):127-138.

30. Perry N, Broeders M, de Wolf C, Törnberg S, Holland R, von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition—summary document. Ann Oncol. 2008;19(4):614-622.

31. van Agt H, Fracheboud J, van der Steen A, de Koning H. Do women make an informed choice about participating in breast cancer screening? A survey among women invited for a first mammography screening examination. Patient Educ Couns. 2012;89(2):353-359.

32. Autier P, Boniol M. Breast cancer screening: evidence of benefit depends on the method used. BMC Med. 2012;10:163.

33. Autier P, Boniol M. Breast cancer screening: evidence of benefit depends on the method used. BMC Med. 2012;10:163.

34. van Agt H, Fracheboud J, van der Steen A, de Koning H. Do women make an informed choice about participating in breast cancer screening? A survey among women invited for a first mammography screening examination. Patient Educ Couns. 2012;89(2):353-359.

32. Autier P, Boniol M. Breast cancer screening: evidence of benefit depends on the method used. BMC Med. 2012;10:163.

33. Autier P, Boniol M. Breast cancer screening: evidence of benefit depends on the method used. BMC Med. 2012;10:163.

34. van Agt H, Fracheboud J, van der Steen A, de Koning H. Do women make an informed choice about participating in breast cancer screening? A survey among women invited for a first mammography screening examination. Patient Educ Couns. 2012;89(2):353-359.

32. Autier P, Boniol M. Breast cancer screening: evidence of benefit depends on the method used. BMC Med. 2012;10:163.

33. Autier P, Boniol M. Breast cancer screening: evidence of benefit depends on the method used. BMC Med. 2012;10:163.
| Country | Collaborators |
|-------------------------|---|
| Austria | Gerald Gredinger¹ |
| Belgium (national) | Cancer registry (I. De Brabander²), Sciensano (M. Arbyn, C. Simoens⁵) |
| Belgium—Flanders | P. Martens¹ |
| Belgium—Wallonia | Michel Candeur¹ |
| Belgium—Brussel | Marc Arbyn, Cindy Simoens, JB. Burron |
| Bulgaria | Plamen Dimitrov, Zdravka Valerianova |
| Croatia | Andrea Supe |
| Czech Republic | Ondrej Ngo, Ondrej Majek |
| Denmark | Elisabeth Lynge⁹ |
| Estonia | Piret Veerus² |
| Finland | Sirpa Heinävaara, Ahti Anttila, Tytti Sarkeala |
| France | Agnes Rogel¹ |
| Germany | Vanessa Kääb-Sanyal, Klaus Kraywinkel² |
| Hungary | Marcell Csanadi, György Széles, Zoltan Voko |
| Italy | Carlo Senore, Nereo Segnan |
| Iceland | Rún Fríðrísdóttir |
| Ireland | Patricia Fitzpatrick⁹ |
| Latvia | Inga Brokere¹ |
| Lithuania | Jurgita Grigariene⁹ |
| Luxembourg | Diane Pivot⁹ |
| Malta | Stephanie Xuereb¹ |
| The Netherlands | Linda de Munck, Inge de Kok, Andrea Gini, Eveline Heijnsdijk, Erik Jansen, Harry de Koning, Iris Landsorp — Vogelaar, Nicolen van Ravesteyn |
| Norway | Solveig Hofvind¹ |
| Poland | Anna Macios |
| Spain | Nieves Ascunce Elizaga |
| Slovakia | Soňa Senderáková¹ |
| Slovenia | Katja Jarm, Urska Ivanus, Dominika Novak Mlakar |
| Sweden | Lennarth Nyström¹ |
| Switzerland | Jean-Luc Bulliard¹ |
| United Kingdom—Scotland | John Quinn |
| United Kingdom—Northern Ireland | Jeni Rosborough¹ |
| United Kingdom—Wales | Ardiana Gjini¹ |
| United Kingdom—England | Radoslav Latinovic, Martin McKee |

¹Data providers.
²EU-TOPIA consortium members (or both).