Elastoresistivity of heavily hole doped 122 iron pnictides superconductors

Xiaochén Hóng1,2,†, Steffen Sykora2,3,‡, Federico Caglieris4,2,5,§, Mahdi Behnami2, Igor Morozov2,6, Saicharan Aswartham2, Vadim Grinenko2,7,8, Kunihiro Kihon9, Chul-Ho Lee9, Bernd Büchner2,8, and Christian Hess1,2,¶
1Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal, Germany
2Leibniz-Institute for Solid State and Materials Research (IFW-Dresden), 01069 Dresden, Germany
3Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01069 Dresden, Germany
4University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
5Consiglio Nazionale delle Ricerche (CNR)-SPIN, Corso Perrone 24, 16152 Genova, Italy
6Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
7Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 200240 Shanghai, China
8Institute of Solid State and Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
9National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
(Dated: May 30, 2022)

Nematicity in the heavily hole-doped iron pnictide superconductors remains controversial. Sizeable nematic fluctuations and even nematic orders far from a magnetic instability were declared in RbFe$_2$As$_2$ and its sister compounds. Here we report a systematic elastoresistance study of series of isovalent- and electron-doped KFe$_2$As$_2$ crystals. We found divergent elastoresistance upon cooling for all the crystals along their [110] direction. The amplitude of elastoresistivity diverges if K is substituted with larger ions or if the system is driven towards a Lifshitz transition. However, we conclude none of them necessarily indicates an independent nematic critical point. Instead, the increased nematicity can be associated with another electronic criticality. In particular, we propose a mechanism how elastoresistivity is enhanced at the Lifshitz transition.

I. INTRODUCTION

The ”122” family, an abbreviation coined for BaFe$_2$As$_2$ and its substituted sister compounds, played a central role in the study of iron-based superconductors. Those tetragonal ThCr$_2$Si$_2$-type structured compounds are blessed by the fact that sizeable single crystals with continuous tuneable doping can be prepared in a wide range, which is a crucial merit for systematic investigation of various ordered states. Within the extended phase diagram of 122 compounds, the heavily hole doped region, including the end-members K/Re/CsFe$_2$As$_2$ are of particular interests. The superconducting transition temperature T_c of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ peaks at optimal doping $x = 0.4$, and continuously decreases toward the over-doped (larger x) region. T_c remains finite in the end-member $x = 1$, while a change of the Fermi surface topology (Lifshitz transition) exists around $x = 0.6$. Although the T_c vs. x trend seems to be smooth across the Lifshitz transition, there are quite a lot of things happening here. Vanishing electron pockets for $x > 0.8$ destroy the basis of the inter-pocket scattering induced S^\pm pairing symmetry which is generally believed as the feature of most iron based superconductors. As a result, a change of the superconducting gap structure across the Lifshitz transition was observed experimentally. Comparable pairing strength at the transition can foster a complex pairing state that breaks time-reversal symmetry. Such exotic state was also demonstrated to exist around the Lifshitz transition. Very recently, a so-called ”Z_2 metal state” above T_c at the Lifshitz transition has been unveiled, with an astonishing feature of spontaneous Nernst effect.

Electronic nematicity, a strongly correlated electronic state of electrons breaking the underlying rotational symmetry of its lattice but preserving translation symmetry, has been a wave of research in unconventional superconductors, particularly in the iron-based superconductors. Consistent experimental efforts have identified nematicity in all different iron-based superconductor families, accompanied by theoretical proposals of the intimate relationship between nematicity and superconducting pairing. However, according to the previous background, we should not simply extend what is known in the under- and optimal-doped 122s to the very over-doped region. Whether nematicity exists and how it develops in this region needs independent censoring.

Indeed, nematicity in the heavily hole doped 122 turns out to be more elusive. Heavily hole doped 122s stand out as a featured series because of their peculiar Fermi surface topology, isostructural phase transition and possible novel pairing symmetries. Nematically ordered states were suggested by nuclear magnetic resonance spectroscopy and scanning tunneling microscopy works.
on CsFe$_2$As$_2$ and RbFe$_2$As$_2$, and they were found to develop in different wave vectors than the underdoped [26,28]. Such nematic state far away from magnetic ordering challenges the prevailing idea that nematicity is some kind of vestigial order of magnetism [26]. An elastoresistance study further claims that a tantalizingly interesting result is actually contributed by the symmetric A_{1g} channel, having little to do with the B_{1g} or B_{2g} channels which are related to nematicity [29]. Overall, the debate is still on for this topic.

In this brief report, we will not touch upon the nature of the possible nematicity of K/Rb/CsFe$_2$As$_2$. Instead, we confirm phenomenologically the existence of elastoresistance (χ^{er}) in K/Rb/CsFe$_2$As$_2$ and find that its amplitude diverges exponentially with growing substituted ion size. Besides, we present χ^{er} data on a series of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ crystals crossing the Lifshitz transition. We observe, unexpectedly, a clear enhancement of χ^{er} from both sides of the Lifshitz point. Although a presumptive nematic quantum critical point (QCP) might be of relevance, here we propose a rather more conventional explanation, based on a small Fermi pocket effect. Our results add a new novel phenomenon to the Lifshitz transition of the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ system, and highlight another contributing factor of elastoresistance which has been almost ignored so far.

II. EXPERIMENTAL DETAILS

Single crystals of heavily hole-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ were grown by the self-flux method [30,32]. The actual doping level x was determined by considering their structural parameters and T_c values. Elastoresistance measurements were performed as described in Ref. [30,32]. Thin stripe-shape samples were glued on the surface of pizoe actuators. The strain gauges were glued on the other side of the pizeo actuators to monitor the real strain generated. In most cases, the samples were mounted to let the electric current flow along the polar direction of the pizeo actuators (R_{xx}), along which direction the strain was measured by the gauge. For one sample ($x = 0.68$), an additional crystal was mounted with 90 degree rotation according to the polar direction (R_{yy}). More details are described in Section 3.3. Sample resistance was collected with a combination of a high-precision current source and a nanovoltage meter. Due to the very large RRR (R_{300K}/R_0) values of the samples, special care was taken to avoid a temperature drift effect and the electric current was set in an alternating positive/negative manner in order to avoid artifact.

We point out that very noisy and irreproducible elastoresistance results can be acquired if DuPont® 4922N silver paint is used for making the contacts to the samples. On the other hand, samples contacted with EPO-TEK® H20E epoxy or directly tin-soldering gave nice and perfectly overlapping results. Given that DuPont® 4922N silver paint is widely used for transport measurements and indeed suitable for elastoresistance experiments of other materials (for example, the LaFe$_{1−x}$Co$_x$AsO series [12]), we have no idea of why it does not work for heavily hole-doped Ba$_{1−x}$K$_x$Fe$_2$As$_2$ crystals. In this work, the presented data were collected by using the H20E epoxy. To avoid sample degradation, the epoxy was cured inside a Ar-glove box. A similar silver paint contact problem of K/Rb/CsFe$_2$As$_2$ crystals was also noticed by another group [29].

III. RESULTS AND DISCUSSIONS

A. Elastoresistance Measurement

Elastoresistance measured along the [110] direction of KFe$_2$As$_2$ single crystal is exemplified in Fig. 1. The sample resistance closely followed the strain change of the piezo actuator when the voltage across the piezo actuator is tuned. As presented in Fig. 1B, the relationship between resistance change ($\Delta R/R$) and strain ($\Delta L/L$) is linear. This fact ensures that our experiments were performed in the small strain limit. In such case, the elastoresistance χ^{er}, defined as the ratio between $\Delta R/R$ and the strain, acts as a measurement of the nematic susceptibility [10]. It is worthwhile to notice that χ^{er} in KFe$_2$As$_2$ is positive (sample under tension yields higher resistance), consistent with the previous reports [26,28], and opposite to BaFe$_2$As$_2$ [15]. Note that a sign reversal of elastoresistance was reported to occur at the underdoped region [19].

![FIG. 1: Representative example of elastoresistance under strain for KFe$_2$As$_2$. (A) Resistance and strain change according to the voltage applied across the piezo actuator at a fixed temperature $T = 50$ K. The strain was applied along the [110] direction. (B) The change of resistance $\Delta R/R$ as a function of strain $\Delta L/L$ at several temperatures.](image-url)
B. Elastoresistance of K/Rb/CsFe$_2$As$_2$

We start by showing our $\chi^{\text{er}}(T)$ data measured along the [110] direction ($\chi^{\text{er}}_{[110]}$) for a set of (K/Rb/Cs)Fe$_2$As$_2$ crystals. As clearly presented in Fig. 2, all the $\chi^{\text{er}}_{[110]}(T)$ curves follow a divergent behavior over the whole temperature range. A Curie-Weiss (CW) fit

$$\chi^{\text{er}} = \chi_0 + \frac{\lambda/\alpha}{T - T_{\text{nem}}},$$

(1)

can nicely capture the data. A slight deviation can be discriminated at low temperatures which is typical for elastoresistance data, and is understood as a disorder effect. Note that the amplitude of the elastoresistance grows substantially from KFe$_2$As$_2$ to CsFe$_2$As$_2$, nearly 5-fold at 30 K. The extracted parameters from the CW fit is shown in Fig. 2E and 2F. While the amplitude term shows a diverging trend, the T_{nem} of all four samples are of a very small negative value, which practically remains unchanged if experimental and fit uncertainties are taken into account. That is at odds with a possible nematic criticality in this isovalent-doping direction. The enhanced $\chi^{\text{er}}_{[110]}$ might be a result of a presumptive QCP of unknown kind or a coherence-incoherence crossover. This can not be discriminated by our technique, and thus are beyond the scope of this report.

C. Elastoresistance of overdoped Ba$_{1-x}$K$_x$Fe$_2$As$_2$

Next, we present a set of $\chi^{\text{er}}(T)$ data of five overdoped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ($0.55 \leq x \leq 1$) across the Lifshitz point. The elastoresistance, measured only for the R_{xx} direction, as has been performed regularly in many reports, has been argued to be inconclusive for the end members (K/Rb/Cs)Fe$_2$As$_2$, as a result of dominating A_{1g} contribution, instead of a B_{2g} (or B_{1g}) component which is related to nematicity. However, such complexity are ruled out by taking R_{uy} also into account for calculating $\chi^{\text{er}}(T)$ for one representative example $x = 0.68$ (Fig. 3B). The $\chi^{\text{er}}(T)$ curves calculated by the two different ways match nicely.

After checking the potential A_{1g} contribution to χ^{er} for a doping level close to the Lifshitz transition, we turn now to the data itself. As shown in Fig. 3, the $\chi^{\text{er}}_{[110]}(T)$ curves of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ also follow a CW like feature. One can see a clear dip at around 50 K in Fig. 3A for the $x = 0.55$ sample. In some reports, such feature was taken as a signal for a nematic order. Since no other ordering transition (structural, magnetic, and so on) has been ever reported in this doping range, we refrain from claiming incipient nematic order solely based on such feature. This might equally well explained by different origins. However, we also can not exclude its possibility.

On the other hand, we measured χ^{er} along the [100] direction ($\chi^{\text{er}}_{[100]}$) for several samples. They are presented in the shaded panels of Fig. 3. All of them are negative, small in amplitude, and none of them shows a CW-like feature. Such observation is incompatible with the existence of B_{1g} nematicity in heavily doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ series, which is in sharp contrast to what is reported for the closely related Ba$_{1-x}$Rb$_x$Fe$_2$As$_2$ series. As a result, the so-called XY-nematicity is clearly ruled out in the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ series.

One remarkable feature, however, can be safely concluded, namely that the amplitude of $\chi^{\text{er}}_{[110]}$ has a clear tendency to peak around $x = 0.8$, close to the Lifshitz transition. This becomes more clear in Fig. 3F, where the CW fit parameters are plotted against the doping level. The question is why $\chi^{\text{er}}_{[110]}$ is increased at the Lifshitz transition? A nematic QCP is a potential explanation. However, as Fig. 3G shows, T_{nem} drops from ~ 45 K of the $x = 0.4$ (optimal doped) to ~ 0 K at the Lifshitz transition. Further doping does not drive T_{nem} to the more negative side within our experimental resolution. This is not a typical QCP behavior. Besides, since T_c across the Lifshitz transition is quite smooth, it seems not boosted by pertinent potential nematic fluctuations. Furthermore, three-point bending experiments did not see any anomaly in this doping range. All these facts seem to be incompatible with the more understood
nematic QCP in the electron doped side. Hence, if it is really a nematic QCP, novel mechanisms need to be invoked. This motivated us to seek for alternative explanations for enhanced χ^{σ} in heavily doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$. Below, we propose a conventional argument based on the small pocket effect, exempting from invoking a QCP to exist at the Lifshitz transition.

D. Theory for enhanced elastoresistance at the Lifshitz transition

To study the effect of a Lifshitz transition to the elastoresistance we have calculated this quantity based on a minimal model of iron-based superconductors [42,43] with a very small Fermi surface. The corresponding dispersion which was used is shown in Fig. 4A for the normal state along a cut (π, k_y). We considered the two orbital model in Ref. [41] with the same hopping matrix elements but having set the nematic interaction equal to a very small value. Thus, the nematic interaction accounts here only for the temperature dependence of the susceptibility according to a Curie Weiss law. Moreover, we introduced a very small lattice distortion in x direction which is coupled to the electron system. Using first order perturbation theory with respect to this coupling (linear response) we then calculated the elastoresistivity. We have considered two different cases of the coupling between distortion and electrons (strength g). (i) The conventional coupling to the local electron density (electron-phonon coupling) where we denote the corresponding response with χ_{ph}. (ii) A direct coupling of the distortion to the hopping matrix element t_x in x direction. The corresponding response is denoted by χ_t.

$$\chi_t \propto g \lim_{\Delta t \rightarrow 0} \frac{\sigma_x^{-1}(tx + \Delta t_x) - \sigma_y^{-1}(tx + \Delta t_y)}{\Delta t_x}$$

$$\chi_{ph} \propto \frac{1}{N} \sum_k \left(\frac{g}{\omega + \epsilon_k - \epsilon_{k+q}} \right)^2 \frac{f_k - f_{k+q}}{\epsilon_{k+q} - \epsilon_k}$$

Here t_x is the hopping matrix element in x direction and σ_{xx}, σ_{yy} are the conductivities in x and y direction. The phonon energy ω in χ_{ph} is in general renormalized by the coupling to the electrons and is becoming soft for a particular mode if the system is near a structural phase transition [42,43]. The electron dispersion ϵ_k considered here is shown in Fig. 4A. The function f_k is the Fermi distribution with respect to ϵ_k. Thus, for most systems investigated, this term dominates χ^{σ}. Note that how magnetic fluctuations impact on the phonons and the nematicity has been investigated [42,43].

Fig. 4B shows the two parts χ^{σ} and χ^{σ}_{ph} which were calculated separately as a function of the chemical potential μ to simulate different doping values. In order

FIG. 3: Doping evolution of the elastoresistance in overdoped Ba$_{1-x}$K$_x$Fe$_2$As$_2$. χ^{σ} measured along the [110] direction is presented in the upper panels for Ba$_{1-x}$K$_x$Fe$_2$As$_2$ single crystals with (A) $x = 0.55$, (B) $x = 0.68$, (C) $x = 0.78$, (D) $x = 0.86$, and (E) $x = 0.97$. The red dashed lines are CW-fit to the data. χ^{σ} was also measured along the [100] direction and ($\Delta R/R$)$_{xy}$ are the conductivities in x and y direction.

FIG. 4: Theoretical consideration of the elastoresistivity. A Dispersion of the hole-like band leading to a very small hole pocket around the point (π, π) when the chemical potential μ_{small} (upper dotted line) is placed near the Lifshitz point. The range of momentum vectors contributing to the elastoresistivity arising from the Fermi function is schematically shown by the dashed lines. A much larger hole pocket is indicated by a lower value of the chemical potential μ_{large} (lower dotted line). B Calculated parts of the elastoresistivity according to Eq. (3). Around the Lifshitz point μ_{small} the first order part χ_t dominates the second order part which is, however, the most important contribution for μ away from the Lifshitz point.
to compare with Fig. 3F, we extracted the temperature behavior according to Eq. 2 and plotted the calculated value λ/a_0 in energy units of t_y. It is seen that the first order part χ_{er}^{T} dominates over the second order part only in the narrow range of μ where the Fermi surface around (π, π) becomes very small. Thus, only when the system has very small Fermi surfaces, as the case of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ at the Lifshitz transition, the term χ_{er}^{T} becomes important. However, it is also clearly seen that if the chemical potential is chosen away from the Lifshitz point corresponding to a proper doping the second order part χ_{er}^{ph} is mostly important as expected.

The enhancement of χ_{er}^{T} in the presence of a very small Fermi surface can be explained by the existence of low energy excitations in a relatively wide range of momentum vectors. Since the conductivities are proportional to Fermi distribution functions f_k as follows,

$$\sigma_{ii} \propto \sum_k \left(\frac{\partial \varepsilon_k}{\partial k_i} \right)^2 f_k(1 - f_k),$$ \hspace{1cm} (3)

one finds that at low temperature, if the Fermi surface is small, the momentum range k where $f_k(1 - f_k)$ is non-zero is much larger due to the tendency of the band to rapidly change the Fermi surface topology near the Lifshitz transition (compare the red dashed lines in Fig. 4A) than for a usual Fermi surface.

IV. CONCLUSION

To summarize, we reported a CW-like $\chi_{er}^{T}(T)$ is observed for all kinds of heavily hole doped 122s. There is an unexpected enhancement of elastoresistance around the Lifshitz transition. We explained it as a small Fermi pocket effect on the nematicity. We expect our explanation of an alternative contribution to the enhanced elastoresistance other than a nematic QCP will be considered in other systems, in particular for those with small Fermi pockets.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

IM, SA, VG, KK, and CHL prepared the samples. XCH, FC, and MB did the experiments. SS proposed the theoretical model. CH and BB supervised the study. XCH, SS, FC, and CH analysed the data and wrote the manuscript with input from all authors.

Funding

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB 1143 (Project No. 247310070), through the Research Projects CA 1931/1-1 (FC) and SA 523/4-1 (SA). S.S. acknowledges funding by the Deutsche Forschungsgemeinschaft via the Emmy Noether Programme ME4844/1-1 (project id 327807255). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 647276-MARS-ERC-2014-CoG).

Acknowledgments

We would like to thank Anna Böhmer, Ian Fisher, Suguru Hosoi, Rüdiger Klingeler, Christoph Meingast, Jörg Schmalian, Christoph Wuttke, Paul Wiecki, and Liran Wang for helpful discussions. We would like to thank Christian Blum and Silvia Seiro for their technical support.

Data Availability Statement

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding authors.

1. Chen XH, Dai PC, Feng DL, Xiang T, Zhang FC. Iron-based high transition temperature superconductors. Natl. Sci. Rev. (2014) 1:371. doi: 10.1093/nsr/nwu007
2. Xu N, Richard P, Shi X, van Roekeghem A, Qian T, Razzoli E, et al. Possible nodal superconducting gap and Lifshitz transition in heavily hole-doped Ba$_{0.1}$K$_{0.9}$Fe$_2$As$_2$. Phys. Rev. B (2013) 88:220508(R) doi: 10.1103/PhysRevB.88.220508
3. Matsuha W, Shimojima T, Ishida Y, Okazaki K, Ota Y, Ohgushi K, et al. Abrupt change in the energy gap of superconducting Ba$_{1-x}$K$_x$Fe$_2$As$_2$ single crystals with hole doping. Phys. Rev. B (2012) 86:165117 doi:10.1103/PhysRevB.86.165117
4. Hong XC, Wang AF, Zhang Z, Pan J, He LP, Luo XG, et al. Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$: a Heat Transport Study. Chin. Phys. Lett. (2015) 32:127403. doi: 10.1088/0256-307X/32/12/127403
Grinenko V, Materne P, Sarkar R, Luetkens H, Kihou K, Lee CH, et al. Superconductivity with broken time-reversal symmetry in ion-irradiated Ba$_{0.7}$K$_{0.3}$Fe$_2$As$_2$ single crystals. *Phys.Rev.B* (2017) **95**:214511. doi: 10.1103/PhysRevB.95.214511

Grinenko V, Sarkar R, Kihou K, Lee CH, Morozov I, Aswartham S, et al. Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state. *Nat.Phys.* (2020) **16**:789 doi: 10.1038/s41567-020-0886-9

Grinenko V, Weston D, Caglieris F, Chattle C, Hess C, Gottschall T, et al. State with spontaneously broken time-reversal symmetry above the superconducting phase transition. *Nat.Phys.* (2021) **17**:1254 doi: 10.1038/s41567-021-01350-9

Fisher IR, Degiorgi L, Shen ZX. In-plane electronic anisotropy of underdoped ‘122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals. *Rep.Prog.Phys.* (2011) **74**:124506 doi: 10.1088/0034-4885/74/12/124506

Fernandes RM, Chubukov AV, Schmalian J. What drives nematic order in iron-based superconductors? *Nat.Phys.* (2014) **10**:97 doi: 10.1038/nphys2877

Chu JH, Kuo HH, Aanlytis JG, Fisher IR. Divergent Nematic Susceptibility in an Iron Arsenide Superconductor. *Science* (2012) **337**:710 doi: 10.1126/science.1217173

Hosoi S, Matsura K, Ishida K, Wang H, Mizukami Y, Watashige T, et al. Nematic quantum critical point without magnetism in FeSe$_{1-y}$S$_y$ superconductors. *Proc.Natl.Acad.Sci.U.S.A.* (2016) **113**:8139 doi: 10.1073/pnas.1605806113

Hong XC, Caglieris F, Kappenberger R, Wurmehl S, Grinenko V, Weston D, Caglieris F, Wuttke C, Hess C, Grinenko V, Sarkar R, Kihou K, Lee CH, Morozov I, Bender AE. Dominant In-Plane Symmetric Elastoresistance in the pressure dependence of T_c in the iron-based superconductor KFe$_2$As$_2$. *Nat.Phys.* (2013) **9**: 349 doi: 10.1038/nphys2617

Wang YQ, Lu PC, Wu JJ, Liu J, Wang XC, Zhao JY, et al. Phonon density of states of single-crystal SrFe$_2$As$_2$ across the collapsed phase transition at high pressure. *Phys.Rev.B* (2016) **94**:014516 doi: 10.1103/PhysRevB.94.014516

Ptok A, Sternik M, Kapca KJ, Piekacz P. Structural, electronic, and dynamical properties of the tetragonal and collapsed tetragonal phases of KFe$_2$As$_2$. *Phys.Rev.B* (2019) **99**:134103 doi: 10.1103/PhysRevB.99.134103

Ptok A, Kapca KJ, Cichy A, Oleś AM, Piekacz P. Magnetic Lifshitz transition and its consequences in multi-band iron-based superconductors. *Sci.Rep.* (2017) **7**:41979 doi: 10.1038/srep41979

Li J, Zhao D, Wu YP, Li SJ, Song DW, Zheng LX, et al. Reemerging electronic nematicity in heavily hole-doped Fe-based superconductors. [arXiv:1611.04694] (2016)

Liu X, Tao R, Ren MQ, Chen W, Yao Q, Wolf T, et al. Evidence of nematic order and nodal superconducting gap along [110] direction in RbFe$_2$As$_2$. *Nat.Commun.* (2019) **10**:1039 doi: 10.1038/s41467-019-08962-z

Fernandes RM, Orth PP, Schmalian J. Intertwined Vesticular Order in Quantum Materials: Nematicity and Beyond. *Annu.Rev.Condens.Matter.Phys.* (2019) **10**:133 doi: 10.1146/annurev-conmatphys-031218-013200

Aswartham S, Abdel-Hafiez M, Bombor D, Kumar M, Wiecki P, Frachet M, Haghighirad AA, Wolf T, Meinigast C, Heid R, Böhmert AE. State with spontaneously broken time-reversal symmetry inside a superconducting Fe_2As_2 superconductor with broken time-reversal symmetry. Proc.Natl.Acad.Sci.U.S.A. (2016) **113**:6424 doi: 10.1073/pnas.1605806113

Kuo HH, Chu JH, Palmstrom JC, Kivelson SA, Fisher IR. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. *Science* (2016) **52**:958 doi: 10.1126/science.aab0103

Gu YH, Liu ZY, Xie T, Zhang WL, Gong DL, Hu D, et al. Unified Phase Diagram for Iron-Based Superconductors. *Phys.Rev.Lett.* (2017) **119**:157001 doi: 10.1103/PhysRevLett.119.157001

Terashima T, Matsushita Y, Yamase H, Kikugawa N, Ahe H, Imai M, et al. Elastoresistance measurements on CaFe$_2$As$_2$ and KCa$_{2-\delta}$Fe$_2$As$_2$ with the Fe site of C_{2v} symmetry. *Phys.Rev.B* (2020) **102**:054511 doi: 10.1103/PhysRevB.102.054511

Fernandes RM, Schmalian J. Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides. *Supercond.Sci.Technol.* (2012) **25**:084005 doi: 10.1088/0953-2048/25/8/084005

Lederer S, Schattner Y, Berg E, Kivelson SA. Enhancement of Superconductivity near a Nematic Quantum Critical Point. *Phys.Rev.Lett.* (2015) **114**:097001 doi: 10.1103/PhysRevLett.114.097001

Labat D, Paul I. Pairing instability near a lattice-influenced nematic quantum critical point. *Phys.Rev.B* (2017) **96**:195146 doi: 10.1103/PhysRevB.96.195146

Maslov DL, Chubukov AV. Fermi liquid near Pomeranchuk quantum criticality. *Phys.Rev.B* (2010) **81**:045110 doi: 10.1103/PhysRevB.81.045110

Tafti FF, Juneau-Fecteau A, Delage M-E, René de Cotret S, Reid J-Ph, Wang AF, et al. Sudden reversal in
Hardy F, Böhmer AE, Aoki D, Burger P, Wolf T, Schweiss P, et al. Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe$_2$As$_2$. Phys. Rev. Lett. (2013) 111:027002 doi: 10.1103/PhysRevLett.111.027002

Onari S, Kontani H. Origin of diverse nematic orders in Fe-based superconductors: 45° rotated nematicity in AFe$_2$As$_2$ (A=Cs,Rb). Phys. Rev. B (2019) 100:020507(R) doi: 10.1103/PhysRevB.100.020507

Borisov V, Fernandes RM, Valentí R. Evolution from B$_2g$ Nematics to B$_{1g}$ Nematics in Heavily Hole-Doped Iron-Based Superconductors. Phys. Rev. Lett. (2019) 123:146402 doi: 10.1103/PhysRevLett.123.146402

Böhmer AE, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, et al. Nematic Susceptibility of Hole-Doped and Electron-Doped BaFe$_2$As$_2$ Iron-Based Superconductors from Shear Modulus Measurements. Phys. Rev. Lett. (2014) 112:047001 doi: 10.1103/PhysRevLett.112.047001

Fernandes RM, VanBebber LH, Bhattacharya S, Chandra P, Keppens V, Mandrus D, et al. Effects of Nematic Fluctuations on the Elastic Properties of Iron Arsenide Superconductors Phys. Rev. Lett. (2010) 105:157003 doi: 10.1103/PhysRevLett.105.157003

Wuttke C, Caglieris F, Sykora S, Steckel F, Hong X, Ran S, et al. Ubiquitous enhancement of nematic fluctuations across the phase diagram of iron based superconductors probed by the Nernst effect. arXiv:2202.00485

Sykora S, Hübisch A, Becker KW. Dominant particle-hole contributions to the phonon dynamics in the spinless one-dimensional Holstein model. Europhys. Lett. (2006) 76:644 doi: 10.1209/epl/i2006-10327-x

Sykora S, Hübisch A, Becker KW. Generalized diagonalization scheme for many-particle systems. Phys. Rev. B (2020) 102:165122 doi: 10.1103/PhysRevB.102.165122