Supporting Information

Convergent evolution of a parasite-encoded complement control protein-scaffold to mimic binding of mammalian TGF-β to its receptors, TβRI and TβRII

Ananya Mukundan, Chang-Hyeock Byeon, Cynthia S. Hinck, Kyle Cunningham, Tiffany Campion, Danielle J. Smyth, Rick M. Maizels, and Andrew P. Hinck

Materials included: 5 Tables and 12 Figures
Construct	Coding region and description (* indicates stop codon)
TGM-D1	Residues 16-95 of *H. polygyrus* TGF-β Mimic, NCBI MG099712
	Thioredoxin-**His**6-Linker-Thrombin Cleavage Site-Linker-TGM-D1
	MSDKIIHTLDDSFDTDLKADGAILVDFWAECGPCKMIAPILDEIADYEQGKLTVAK
	LNIQDNPGTAPKYGIRGPTLLFLFKNGEVAATKVGALSKGQLKEFLDANLAGSGGHM
	HHHHHH**SSG**LVPGR**GTGSSGS**DDSGCMPSDEAATKYVAKGPKINEIAPAIQIDNSG
	MYPDYTHV**K**FCGLHELGTGDGTGFVIGCLASQWWWYYEGQVQSSTPCAP*
TGM-D2	Residues 96-176 of *H. polygyrus* TGF-β Mimic, NCBI MG099712
	Thioredoxin-**His**6-Linker-Thrombin Cleavage Site-Linker-TGM-D2
	MSDKIIHTLDDSFDTDLKADGAILVDFWAECGPCKMIAPILDEIADYEQGKLTVAK
	LNIQDNPGTAPKYGIRGPTLLFLFKNGEVAATKVGALSKGQLKEFLDANLAGSGGHM
	HHHHHH**SSG**LVPGR**GTGSSGS**DDSGCMPSLEAATKYVAKGPKINEIAPAIQIDNSG
	YPDYTHV**K**FCGLHELGTGDGTGFVIGCLASQWWWYYEGQVQEDDRCSPLPTNDTVSFEYLKATVNP**GIFNITVHPDASGKYELTYIKRICKNFPTDSNV**Q**GHI**M**CYNAEQFSSSTPCAP*
TGM-D12	Residues 16-176 of *H. Polygyrus* TGF-β Mimic, NCBI MG099712
	Thioredoxin-**His**6-Linker-Thrombin Cleavage Site-Linker-TGM-D12
	MSDKIIHTLDDSFDTDLKADGAILVDFWAECGPCKMIAPILDEIADYEQGKLTVAK
	LNIQDNPGTAPKYGIRGPTLLFLFKNGEVAATKVGALSKGQLKEFLDANLAGSGGHM
	HHHHHH**SSG**LVPGR**GTGSSGS**DDSGCMPSLEAATKYVAKGPKINEIAPAIQIDNSG
	YPDYTHV**K**FCGLHELGTGDGTGFVIGCLASQWWWYYEGQVQEDDRCSPLPTNDTVSFEYLKATVNP**GIFNITVHPDASGKYELTYIKRICKNFPTDSNV**Q**GHI**M**CYNAEQFSSSTPCAP*
TGM-D3	Residues 177-262 of *H. Polygyrus* TGF-β Mimic, NCBI MG099712
	Thioredoxin-**His**6-Linker-Thrombin Cleavage Site-Linker-TGM-D3
	MSDKIIHTLDDSFDTDLKADGAILVDFWAECGPCKMIAPILDEIADYEQGKLTVAK
	LNIQDNPGTAPKYGIRGPTLLFLFKNGEVAATKVGALSKGQLKEFLDANLAGSGGHM
	HHHHHH**SSG**LVPGR**GTGSSGS**DDSGCMPSLEAATKYVAKGPKINEIAPAIQIDNSG
	YPDYTHV**K**FCGLHELGTGDGTGFVIGCLASQWWWYYEGQVQEDDRCSPLPTNDTVSFEYLKATVNP**GIFNITVHPDASGKYELTYIKRICKNFPTDSNV**Q**GHI**M**CYNAEQFSSSTPCAP*
TGM-D13	Residues 16-262 of *H. Polygyrus* TGF-β Mimic, NCBI MG099712
	Thioredoxin-**His**6-Linker-Myc-**His**6
	METDTLLLWLLLWLPVGSTGDAAQPPARADDGCMPSDEAATKYVAKGPKINEIP
	AQIDNSGMYPDYTHV**K**FCGLHELGTGDGTGFVIGCLASQWWWYYEGQVQEDDRCSPL
	PTNDTVSFEYLKATVNP**GIFNITVHPDASGKYELTYIKRICKNFPTDSNV**Q**GHI**M**CYNAEQFSSSTPCAP*
TGM-FL	Residues 16-422 of *H. Polygyrus* TGF-β Mimic, NCBI MG099712
	Thioredoxin-**His**6-Linker-Myc-**His**6
	METDTLLLWLLLWLPVGSTGDAAQPPARADDGCMPSDEAATKYVAKGPKINEIP
	AQIDNSGMYPDYTHV**K**FCGLHELGTGDGTGFVIGCLASQWWWYYEGQVQEDDRCSPL
	PTNDTVSFEYLKATVNP**GIFNITVHPDASGKYELTYIKRICKNFPTDSNV**Q**GHI**M**CYNAEQFSSSTPCAP*
Table S2. TGM:TβRI and TGM:TβRII binding as assessed by ITC

Cell Concentration (µM)	TβRI	TβRI	TβRI	TβRI	TβRI	TβRI	TβRII	TβRII	TβRII	TβRII
Syringe	TGM-D1	TGM-D2	TGM-D3	TGM-D1D2	TGM-FL	TGM-D1	TGM-D2	TGM-D3	TGM-FL	
Cell concentration (µM)	7.5	7.5	7.5	7.5	7.5	15	15	15	15	15
Syringe concentration (µM)	150	150	135	100	58	300	300	300	300	320
Temperature (°C)	25	25	25	25	25	35	35	35	35	35
Kd (nM)	NDa	1500 (500 – 4600)b	NDa	25 (11, 48)c	52 (29 – 90)c	NDa	NDa	NDa	NDa	NDa
ΔH (kcal mol⁻¹)	NDa	-18 (-27 – -13)b	NDa	-19 (-20 – -18)b	-17 (-18 – -15)b	NDa	NDa	NDa	NDa	NDa
ΔG (kcal mol⁻¹)	NDa	-8.0	NDa	-11	-9.9	NDa	NDa	NDa	NDa	NDa
-TΔS (kcal mol⁻¹)	NDa	9.7	NDa	8.3	6.8	NDa	NDa	NDa	2.4	-1.7
Stoichiometry (n)	NDa	0.54f	NDa	1.2f	0.96f	NDa	NDa	1.1f	0.84f	

*aNot determined due to weak signal
bUncertainty reported as 68.3% confidence interval
cFit for one replicate
dGlobal fit of three replicates
eGlobal fit of two replicates
fNumber of sites determined by incompetent fraction value on sedphat; set to ‘1’ for Kd analysis
Table S3. ITC-based TβRI and TβRII competition binding

Cell Syringe	TβRI	TβRI	TβRII
Competitor²	TGF-β(TβRII)₂	6 µM TGF-β(TβRII)₂	mmTGF-β27M
Cell concentration (µM)	5	10	0, 6.0, or 12.0 µM TGM-D3
Syringe concentration (µM)	100	110	150
Temperature (°C)	30	25	35
K_D (nM)	61 (36 - 97)d	NDb	35 (17 - 64)c,d
ΔH (kcal mol⁻¹)	-4.2 (-4.5 - 4.0)d	NDb	-7.4 (-7.7 - 7.0)c,d
ΔG (kcal mol⁻¹)	-10	NDb	-11e
-TΔS (kcal mol⁻¹)	-5.8	NDb	-3.2e

²Competitor was added to the sample cell
bK_D, ΔH, ΔG and -TΔS were unable to be fitted
cK_D and ΔH correspond to the parameters, derived from the global fit, for TβRII:mmTGF-β27M binding in the absence of competitor, uncertainty determined by 68.3% confidence interval
dFit for one replicate
eΔG and -TΔS correspond to those for TβRII:mmTGF-β27M binding in the absence of competitor calculated from ΔG = ΔH - TΔS and globally fitted values for K_D and ΔH
Table S4. TGM-D3 Structural Statistics
NOE
Intramolecular NOE: i-j = 0
Sequential NOE: i-j = 1
Short-Range NOE: 1 < i-j < 5
Long-Range: i-j ≥ 5
Angle
TALOS (\(\phi,\varphi\)) dihedral constraints
\(^3\)\(^J\)\(^HNH\)\(\alpha\)
RDC
RDC: N-H
RDC: H\(\alpha\)-C\(\alpha\)
RDC: C\(\alpha\)-CO
RDC: H\(\alpha\)-C\(\alpha\)
RDC: C\(\alpha\)-CO
RMSD (Deviations)
Bonds (Å)
Improper (°)
Angles (°)
Dihedral (°)
HBDA (Å)
\(^3\)\(^J\)\(^HNH\)\(\alpha\) (Hz)
Ramachandran\(^a\)
Most Favored
Additionally Allowed
Generously Allowed
Disallowed
RMSD\(^b\)
Secondary Structure\(^c\)
Backbone
Heavy
Core\(^d\)
Backbone
Heavy

\(^a\)Ramachandran values from the ten lowest-energy structures

\(^b\)RMSD values are computed from a mean structure

\(^c\)Residues 17-21, 45-49, 56-58, 62-69, 76-80

\(^d\)Residues 6-81
Table S5. WT TGM-D3: TβRII variant and WT TβRII: TGM-D3 variant binding as assessed by SPR

Surface	Analyte	Fitted Parameters^a			
		k_{on} (M⁻¹ s⁻¹)	k_{off} (s⁻¹)	K_d (µM)	R_{max} (RU)
TGM-D3	WT TβRII	(4.1 ± 0.1) x 10⁵	0.7 ± 0.1	1.6 ± 0.1	240 ± 10
TGM-D3	D55N	(5.0 ± 0.2) x 10⁴	3.1 ± 0.1	63 ± 1	200 ± 10
TGM-D3	I73A	(1.6 ± 0.1) x 10⁵	1.1 ± 0.1	6.9 ± 0.1	220 ± 10
TGM-D3	S75L	(1.3 ± 0.1) x 10⁴	3.9 ± 0.9	310 ± 30	250 ± 20
TGM-D3	I76A	(4.7 ± 0.1) x 10⁴	1.2 ± 0.1	26 ± 1	430 ± 10
TGM-D3	E142Q	(4.1 ± 0.1) x 10⁴	10 ± 10	17 ± 1	130 ± 10
TβRII	WT TGM-D3	(1.6 ± 0.1) x 10⁵	0.26 ± 0.01	1.6 ± 0.1	120 ± 10
TβRII	R198A	(1.1 ± 0.1) x 10⁵	0.78 ± 0.01	70 ± 1	260 ± 10
TβRII	H199A	(3.3 ± 0.1) x 10⁵	0.98 ± 0.01	3.0 ± 0.1	310 ± 10
TβRII	F235A	(4.5 ± 0.1) x 10⁵	1.8 ± 0.2	4.1 ± 0.1	63 ± 1
TβRII	V236A	(3.8 ± 0.1) x 10⁵	1.8 ± 0.1	4.6 ± 0.1	84 ± 1
TβRII	I238A	(9.4 ± 0.1) x 10⁴	2.3 ± 0.1	25 ± 1	140 ± 10
TβRII	Y252A	(7.8 ± 0.2) x 10⁴	1.7 ± 0.1	21 ± 1	150 ± 10
TβRII	Y253A	ND^b	ND^b	ND^b	ND^b
TβRII	K254A	(3 ± 2) x 10⁵	12 ± 6	35 ± 1	310 ± 10
TβRII	N255A	(4.8 ± 0.1) x 10⁵	1.3 ± 0.1	2.7 ± 0.1	150 ± 10
TβRII	I256A	(8.8 ± 0.1) x 10⁵	1.4 ± 0.1	1.6 ± 0.1	130 ± 10
TβRII	K258A	(4.3 ± 0.1) x 10⁵	1.2 ± 0.1	2.7 ± 0.1	250 ± 10

^aFitted parameters were derived from kinetic analysis of a duplicate or triplicate injection series

^bNot determined due to weak signal

^aNot determined due to weak signal
Figure S1: ITC thermograms for TGM binding to TβRI and TβRII. A-E. Raw thermograms for the injection of (A) TGM-D2, (B) TGM-D12, or (C) TGM-FL into TβRI, and (D) TGM-D3 or (E) TGM-FL into TβRII. F-G, J-K. Raw thermograms for the injection of (F) TGM-D1 or (G) TGM-D3 into TβRI, with corresponding integrated heats (J and K, respectively). H-I, L-M. Raw thermograms for the injection of (H) TGM-D1 or (I) TGM-D2 into TβRII, with corresponding integrated heats (L and M, respectively).
Figure S2. 1H-15N HSQC spectra of TGM-D2 and TGM-D3. A-B. 1H-15N HSQC spectrum of 15N TGM-D2 (A). Blue boxes mark doubled peaks in dynamic equilibrium with one another as identified by a ZZ-exchange HSQC experiment (expansion of ZZ-exchange HSQC spectrum with a mixing time of 250 ms is shown as an inset for two pairs of peaks). Peak expansion corresponding to ZZ-exchange HSQC experiment as a function of the mixing time is shown for the pair of peaks at 1H 10.3 ppm/15N 124 ppm (B). C. 1H-15N HSQC spectrum of 15N TGM-D3. All spectra recorded in 25 mM sodium phosphate, 50 mM sodium chloride, 5% 2H$_2$O pH 6.0, 310 K.
Figure S3. 1H-15N HSQC spectra of TGM-D1. A. 1H-15N HSQC spectrum of 100 µM 15N TGM-D1 in 25 mM sodium phosphate, 250 mM sodium chloride, 5% 2H$_2$O pH 6.0, 310 K (A). B-D. 1H-15N HSQC spectrum of 200 µM 15N TGM-D1 in the same buffer as panel A, but with a protein concentration of 200 µM and with 10 mM CHAPS added (B), a protein concentration of 20 µM 15N TGM-D1 but no CHAPs (C), or a protein concentration of 20 µM and with 10 mM CHAPS added (D).
Figure S4. Binding of TGM domains by TβRI. A-B. 1H-15N HSQC spectra of TGM-D1 alone (red) or with 1.2 molar equivalents of unlabeled TβRI (blue) (A). 1H-15N HSQC spectra of TGM-D3 alone (red) or with 1.2 molar equivalents of unlabeled TβRI (blue) (B). C-D. 1H-15N HSQC spectra of TGM-D2 alone (C) or with 1.2 molar equivalents of unlabeled TβRI (D). The boxed regions on the spectra mark peaks in conformational exchange (C) or resolved into a single peak by TβRI binding (D). All spectra recorded in 25 mM sodium phosphate, 50 mM sodium chloride, 5% 2H$_2$O pH 6.0, 310 K.
Figure S5. Binding of 15N TβRI by TGM-D1, TGM-D2, and TGM-D3. A-B. 1H-15N HSQC spectra 0.03 mM 15N TβRI alone (red) overlaid with the spectrum of the same sample but with 1.5 molar equivalents of unlabeled TGM-D2 (A) or TGM-D3 (B) added (blue). Expansion of boxed region in panel A at intermediate titration points is shown below panel A. C. 1H-15N HSQC spectrum of 0.03 mM 15N TβRI alone (red) overlaid with the spectrum of the same sample but with 1.5 molar equivalents of unlabeled TGM-D1 added. The boxed inset at the top of panel C shows a plot of the intensity ratios ($I_{TGM-D1\text{-}bound}/I_{free}$) per residue of TβRI. The red dots on the baseline indicate residues that completely disappeared upon addition of TGM-D1 to 15N TβRI. Boxed residues in the HSQC of panel C indicate residues of TβRI that undergo a chemical shift upon addition of titrating amounts of TGM-D1. Spectra recorded in 25 mM sodium phosphate, 50 mM sodium chloride, 5% 2H$_2$O pH 6.0, 310 K.
Figure S6. 1H-15N HSQC assignments of TbRI alone and bound to TGM-D2. A. 1H-15N HSQC spectra of TbRI alone with peaks assigned. B. 1H-15N HSQC spectra of TbRI bound to TGM-D2 with peaks assigned. Dashed horizontal lines in panel A indicate sidechain -NH$_2$ resonances of Asn/Gln residues. Spectra recorded in 25 mM HEPES, 50 mM sodium chloride, 0.02% azide, 5% 2H$_2$O pH 6.0, 300K.
Figure S7. Binding of TGM-D1, TGM-D2, and TGM-D3 by TβRII. A-B. ¹H-¹⁵N HSQC spectra of TGM-D1 (A) or TGM-D2 (B) alone (red) overlaid with the spectrum of the same sample but with 1.2 equivalents of unlabeled TβRII added (blue). C-E. ¹H-¹⁵N HSQC spectra of 0.03 mM ¹⁵N TβRII alone (red) overlaid with the spectrum of the same sample, but with 1.2 equivalents of unlabeled TGM-D1 (C), TGM-D2 (D), or TGM-D3 (E) added (blue). Expansion of boxed region in panel E at intermediate titration points is shown below panel E. Spectra recorded in 25 mM sodium phosphate, 50 mM sodium chloride, 5% ²H₂O pH 6.0, 310 K.
Figure S8. 1H-15N HSQC assignments of TβRII alone and as bound to TGM-D3. A. 1H-15N HSQC spectra of TβRII alone with peaks assigned. B. 1H-15N HSQC spectra of TβRII bound to TGM-D3 with peaks assigned. Dashed horizontal lines indicate sidechain -NH$_2$ resonances of Asn/Gln residues. Spectra recorded in 25 mM sodium phosphate, 50 mM sodium chloride, 5% 2H$_2$O pH 6.0, 310K.
Figure S9. 1H-15N HSQC assignments of TGM-D3 alone and bound to TβRII. A-B. 1H-15N HSQC spectra of TGM-D3 alone (A) or bound to TβRII (B) with peaks assigned. Dashed horizontal lines indicate sidechain -NH$_2$ resonances of Asn/Gln residues.
Figure S10: 1H NMR spectra of TGM-D3 and TβRII single amino acid variants. A. 1H NMR spectra of amide region (left) and methyl region (right) of TGM-D3 variants as compared to wild-type TGM-D3. B. 1H NMR spectra of amide region (left) and methyl region (right) of TβRII variants as compared to wild-type TβRII. Spectra were collected in 25mM Na$_2$HPO$_4$, 150 mM NaCl, 0.02% NaN$_3$, pH 7.4 298K.
Figure S11. Binding of TβRII and TGM-D3 variants to their wild type counterparts. A-H. SPR sensorgrams obtained upon injection of TGM-D3 Arg198Ala (A), His199Ala (B), Phe235Ala (C), Val236Ala (D), Lys254Ala (E), Asn255Ala (F), Ile256Ala (G), and Lys258Ala (H), over immobilized TβRII. I-N. SPR sensorgrams obtained upon injection of TβRII WT (I), Asp55Asn (J), Ile73Ala (K), Ser75Leu (L), Ile76Ala (M), and Glu142Gln (N) over immobilized TGM-D3. Sensorgrams, obtained upon injection of a two-fold duplicate or triplicate dilution series of each construct are shown in black. Global fit of the sensorgrams to a 1:1 binding dilution model are shown in orange. Black bars shown above the sensorgrams specify the injection period. Concentrations used and dissociation constants shown in the lower right.
Figure S12. Alignment of TGM family domains. A-B. Alignment of TGM domain 3 with TGM domains 1, 2, 4, and 5 (A) and alignment of TGM domain 3 with the domain 3 of TGM-2, 3, 4, -5, -6, and -7 (B). Red indicates conserved residues while blue indicates similar residues. Overlaid on top are the secondary structural features of TGM-D3. Areas shaded in grey correspond to regions with composite shift perturbations of TGM-D3 due to TβRII binding greater than 0.1. Asterisks highlight residues of TGM-D3 which upon substitution led to a 4-fold or greater perturbation of the measured K_D value for binding TβRII.