Identification of new transitions and mass assignments of levels in $^{143-153}$Pr

E. H. Wang et al.

Phys. Rev. C 92, 034317 — Published 16 September 2015

DOI: 10.1103/PhysRevC.92.034317
Identification of new transitions and mass assignments of levels in $^{143-153}$Pr

E. H. Wang,\(^1\) A. Lemasson,\(^2\) J. H. Hamilton,\(^1\) A. V. Ramayya,\(^1\) J. K. Hwang,\(^1\) J. M. Eldridge,\(^1\), *A. Navin,\(^2\) M. Rejmund,\(^2\) S. Bhattacharyya,\(^3\) S. H. Liu,\(^1,4\) N. T. Brewer,\(^1,4\) Y. X. Luo,\(^1\) J. O. Rasmussen,\(^4\) H. L. Liu,\(^5\) H. Zhou,\(^6\) Y. X. Liu,\(^7\) H. J. Li,\(^8\) Y. Sun,\(^9\) F. R. Xu,\(^6\) S. J. Zhu,\(^8\) G. M. Ter-Akopian,\(^10\) Yu. Ts. Oganessian,\(^10\) M. Caamaño,\(^11\) E. Clément,\(^2\) O. Delaune,\(^2\) F. Farget,\(^2\) G. de France,\(^2\) and B. Jacquot\(^2\)

\(^1\) Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
\(^2\) GANIL, CEA/DAM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France
\(^3\) Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India
\(^4\) Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
\(^5\) Department of Physics, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
\(^6\) Department of Physics, Peking University, Beijing 100871, People’s Republic of China
\(^7\) Department of Physics, Huzhou University, Huzhou 313000, People’s Republic of China
\(^8\) Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
\(^9\) Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
\(^10\) Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation
\(^11\) USC, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

Background: The previously reported levels assigned to 151,152,153Pr have recently been called into question regarding their mass assignment.

Purpose: Clarify the above questioned level assignments by measuring γ-transitions tagged with A and Z in an in-beam experiment in addition to the measurements from 252Cf spontaneous fission (SF) and establish new spectroscopic information from $N = 84$ to $N = 94$ in the Pr isotopic chain.

Methods: The isotopic chain $^{143-153}$Pr has been studied from the spontaneous fission of 252Cf by using Gammasphere and also from the measurement of the prompt γ-rays in coincidence with isotopically-identified fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced using 238U beams on a 9Be target at energies around the Coulomb barrier. The $\gamma-\gamma-\gamma$ data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated spectra were combined to unambiguously assign the various transitions and levels in 151,152,153Pr and other isotopes.

Results: A band of 3 new transitions added to the known level in 145Pr, 9 new transitions in two new bands in 147Pr, 6 new transitions in a new level scheme for 148Pr, two new bands with 17 new transitions in 149Pr and 2 new bands with 11 new transitions in 150Pr were identified by using $\gamma-\gamma-\gamma$ and $\gamma-\gamma-\gamma$ coincidences and A and Z gated $\gamma-\gamma$ spectra. The transitions and levels previously assigned to 151,153Pr have been confirmed by the (A,Z) gated spectra. Small changes have been made to their original level schemes. The transitions previously assigned to 152Pr are now assigned to 151Pr on the basis of the (A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new band with 7 new transitions in 153Pr are identified from the $\gamma-\gamma-\gamma$ coincidence spectra and the (A,Z) gated spectrum. In addition, new γ-rays are also reported in $^{143-146}$Pr.

Conclusions: New levels of $^{145,147-153}$Pr have been established, reliable mass assignments of the levels in 151,152,153Pr have been given in the present work and new transitions have been identified in $^{143-148}$Pr showing the new avenues that are opened by combining the two experimental approaches.

PACS numbers: 23.20.Lv, 25.85.Ca, 21.10.-k, 27.70.+q

I. INTRODUCTION

Studies of nuclear energy levels over long isotopic chains reveal structural changes as a function of N and provide important test of nuclear models. Spontaneous fission (SF) has provided a good approach to study nuclei over long isotopic chains [1]. In SF, the new transitions in a certain isotope are generally identified by gating on the known transitions in the particular isotope observed in β-decay or by gating on known transitions in the complementary fission fragment, which are usually less neutron-rich and well studied in most of the cases. Usually, this procedure gives reliable identifications. However, in some cases, when the γ-spectrum is complex, the overlapping of transition energies in different isotopes could lead to a wrong mass identification of the bands.

Recently prompt γ ray spectroscopy of fully identified (A, Z) fission fragments produced in fusion-fission and transfer-fission reactions around the Coulomb barrier [2, 3] have been reported where due to the advantage of unambiguously identifying the fragments, the assignments of γ-rays to a particular A and Z are directly obtained. The combination of the traditional high fold gamma-coincidence method [1] and this method [2, 3] is expected to strengthen explorations and understand-
ing of the evolution of nuclear structure as a function of both isospin and spin.

Historically, levels of several Pr isotopes have been identified from 252Cf and 248Cm SF [4–7]. Only 151,153Pr were reported to have possible octupole correlations between parity-doublet bands [5]. As mentioned in Ref. [5] the octupole correlations in this region are associated with $\Delta N = 1$, $\Delta j = 3$ and $\Delta l = 3$ orbital pairs such as $\pi d_{5/2} - h_{11/2}$ near $Z = 56$ and $\nu f_{7/2} - i_{13/2}$ near $N = 88$. The mass assignments of the previously reported levels assigned to 151,152,153Pr [5, 7] have recently been called into question [8]. The γ-ray transitions and levels in 151,153Pr reported in the previous work [5] were assigned to 152,154Pr respectively in Ref. [8]. The two bands proposed to be in 152Pr in Ref. [7] were assigned to 151,153Pr separately [8]. The assignment of gamma transitions to their corresponding nuclei is challenging due to the closely spaced transitions and the complexity of the spectra. In order to have an unambiguous identification of the nuclei in the $A \sim 150$ mass region, two different techniques have been combined in the present work to investigate the high spin states and the possible octupole correlations for neutron rich Pr isotopes. In this paper, we provide new analysis of both 252Cf SF and 238U+9Be induced fission data [2, 3] with direct identification of fission fragment mass and Z to give reliable assignments of the levels and transitions in these Pr isotopes. New level schemes of $^{145,147−153}$Pr and new transitions in $^{143−146}$Pr are reported in the present work. The possibility of the occurrence of octupole correlations in the band structures of 149,151Pr are indicated.

II. EXPERIMENTAL METHOD

Two complementary methods have been used to investigate the level structure of Pr isotopes, which include both the unambiguous identification of the mass (A) and the proton number (Z) of the emitting fission fragment using a large acceptance spectrometer for in-beam measurements and the high fold data from spontaneous fission of a 252Cf source. These complementary methods have allowed us to identify new transitions and extend the level schemes to higher spins. In the present work the new transitions identified using (A, Z) gated 'singles' prompt γ-ray spectroscopy did not require knowledge of the spectroscopic information of the complementary fragment. This allowed the study of very neutron rich nuclei, combining the unique in-beam identification with the high fold γ–γ–γ coincidences from SF. In the following, double gated coincidence spectra have a variable energy binning ranging from 0.7 keV/channel at 100 keV to 1 keV/channel at 1 MeV. The triple gated coincidence spectra have a fixed binning of 1.3 keV/channel.

A. 238U + 9Be induced fission

The measurements of transfer and fusion induced fission were performed at GANIL using a 238U beam at 6.2 MeV/u, with a typical intensity of 0.2 pA, impinging on a 10-μm thick 9Be target. The advantage of the inverse kinematics used in this work is that fission fragments are forward focussed and have a large velocity, resulting in both an efficient detection and isotopic identification in the spectrometer. A single magnetic field setting of the large-acceptance spectrometer VAMOS++ [9], possessing a momentum acceptance of around $\pm 20\%$, placed at 20° with respect to the beam axis, was used to identify uniquely the fission fragments. The detection system (1 x 0.15 m2) at the focal plane of the spectrometer was composed of (i) a Multi-Wire Parallel Plate Avalanche Counter (MWPPAC), (ii) two Drift Cham-
In this section new transitions for $^{143-147}$Pr are reported using in-beam fission whereas the new level schemes of $^{145,147-153}$Pr were obtained by combining both the data sets.

A. 143Pr

The A- and Z- gated γ-ray spectrum on 143Pr is shown in Fig. 3. Three new transitions 251(1), 445(1) and 554(1) keV were identified. Other transitions are not labelled.
FIG. 3. Partial 143Pr A- and Z- gated γ-ray spectrum obtained from 238U + 9Be induced fission data.

FIG. 4. Partial 144Pr mass- and Z- gated γ-ray spectrum obtained from 238U + 9Be induced fission data.

B. 144Pr

The A- and Z- gated γ-ray spectrum on 144Pr is shown in Fig. 4. The 133(1) keV peak could be the 133.5 keV transition identified in 144Ce β-decy [16]. It should be pointed out that the unbiased 'singles' nature of the data allows the identification of low multiplicity transitions seen in beta decay. In addition two new transitions 155(1) and 177(1) keV were also identified. Due to the complexity of the spectrum and lack of γ−γ coincidences in this odd-odd nucleus, other transitions above 200 keV are not labeled and no level scheme is presented.

C. 145Pr

The A- and Z- gated γ-ray spectrum on 145Pr is shown in Fig. 6(a). The 207.6, 211.6, 284.5 and 492.2 keV peaks were previously identified in 145Ce β-decy [17]. The 350.9 keV peak could be an overlap of a 350.9 keV transition (decay from 350.9 keV level to the ground state seen in β-decy) and another 350.9 keV transition (decay from 540.1 keV level to a 188.8 keV level in β-decy) identified in β-decy [17]. Fig. 6(b) and (c) shows γ-ray spectra gated on the 211.6 keV and 546 keV transitions respectively. In these spectra, the coincident 204.0, 207.6, 368.8, 492.2, 546.3 and 672.3 keV transitions can be seen. From the energy spacing of the 211.6, 368.8, 546.3 and 672.3 keV transitions and the intensities shown in Fig. 6(a), these γ-rays are possibly E2 transitions in a rotational band. Thus, spins and parities of levels in this band are tentatively assigned. The level scheme for 145Pr is shown in Fig. 5. It should be pointed out that in the beta decay measurements the 211.6 is weak whereas in the present work it is very intense, showing the complementarity of the in-beam and decay work. There is coincidence evidence in the (A, Z) gated data for a 350-415 keV cascade feeding a 168 keV transition. It is not definitive that this cascade feeds into the 207-212 cascades, so it is not placed in the level scheme. The (A, Z) gated γ coincidence data (Fig. 6) indicate the 176.7 keV transition is in coincidence with the 207-212-284-368-546 keV cascade, but it is not clear where to place it. The observed 190.0, 230.1, 518.0, 579.8, 616.7 keV transitions are also new but we have no coincidence data to place them.
D. 146Pr

The A- and Z- gated γ-ray spectrum on 146Pr is shown in Fig. 7(a). The 87.2 keV transition can be identified with that previously known in 146Ce β-decay [18]. Fig. 7(b) is a spectrum gated on the 188.9 keV transition. In this spectrum, the coincident 87.2, 173.9 and 484.6 keV transitions can be seen. With only these data it was not possible to build a level scheme.

E. 147Pr

The new level scheme for 147Pr is shown in Fig. 8. In this case, the known transitions were previously observed in the β-decay of 147Ce [19, 24]. The ground state, 2.7, 27.9, 93.2 and 246.4 keV levels were tentatively proposed to have positive parity [19]. The 363.3 keV level was proposed to have a negative parity [19]. The (A, Z) gated γ spectrum is shown in Fig. 9, where evidence for a high spin band is seen. A new band is assigned to 147Pr by observing the γ-rays in coincidence with the 138.7, 218.5 and 243.7 keV transitions. A partial coincident γ-ray spectrum obtained with 252Cf SF data is shown in Fig. 10. In this spectrum with gate on a previously known transition and the strongest transition in Fig. 9, one can clearly see the known 218.5 and 243.7 keV transitions, new 423.9, 536.1, 607.9 and 660.5 keV transitions and the Y partner transitions. Note the 179.2 keV transition labeled in the spectrum is a new transition in 100Y. The work including the new level scheme of 100Y will be published later. These new transitions in 147Pr are confirmed in the (A, Z) gated spectrum on 147Pr (Fig. 9). The 2.7 and 25.2 keV transitions are not observed in the current work because the 3d and 4d cube data cut off the energy from 33.3 keV. The 66 and 72 keV transitions in this double gate come from the coincidence of the 138 keV transition in 107Tc. The 103 keV transition in this gate in Fig. 10 is caused by the 138 and 255 keV transitions in 103Mo. These three contamination transitions...
FIG. 8. (Color online) The new level scheme of 147Pr in the present work. Transitions and levels previously reported in β decay work are labeled in blue. New ones in the current work are labeled in red and with an asterisk. It is possible there is a low energy transition between the 256.6 and 138.7 keV transitions as discussed in the text.

FIG. 9. (a) Partial 147Pr A- and Z- gated γ-ray spectrum obtained from 238U + 9Be induced fission data. (b) is a spectrum gated on the 256.6 keV transition and (c) is a spectrum gated on the 374.6 keV transition. The * indicates new transitions.

FIG. 10. Partial γ-ray coincidence spectrum by gating on 138.7 and 256.6 keV transitions in 147Pr from 252Cf SF data. In the spectrum, transitions belonging to Y fission partners are indicated with neutron evaporation numbers. The * indicates new transitions.
a negative parity and the band-head could be either the 362.3 or 385.1 keV level. From the comparison with the negative parity bands in 145La [20, 21] and 149Pm [22], the 256.6 keV γ ray is more likely to be a transition decaying from $15/2^-$ to $11/2^-$. Previously, the ground state, 2.7, 27.9, 93.2 keV levels were tentatively assigned to $3/2^+$, $5/2^+$, $7/2^+$ and $5/2^+$, respectively, in β-decay work [19] according to the decay pattern. The 218.5 and 269.1 keV transitions were assigned as M1 and E1, respectively, according to internal conversion measurement [19]. Assigning $11/2^-$ to 385.1 keV level, the 246.4 keV γ ray is proposed to be a transition decaying from $15/2^-$ to $11/2^-$. The 362.3 keV level is then $7/2^-$ because the $11/2^-$ level decays to this state. Note that $11/2^-$ and $7/2^-$ are the lowest two negative levels (≤ 250 keV) in the particle-plus-triaxial rotor model (PTRM) calculation in Ref. [19]. In contrast, the adopted levels in Ref. [23] tentatively assigned the ground state, 2.7, 27.9, 93.2 and 362.3 keV states to $5/2^+$, $3/2^+$, $5/2^+$, $7/2^+$ and $5/2^-$, respectively, based on the PTRM positive parity calculation in Ref. [19]. However, this $5/2^-$ assignment does not agree with the lowest negative parity levels as the already noted. Thus considering both the negative and positive parity calculations, we agree with the spins and parities assigned in Ref. [19] and not with Ref. [23] for the lowest states.

F. 148Pr

The new level scheme for 148Pr is shown in Fig. 11. In this case, all transitions are newly identified. The new transitions are seen in the mass-Z gated spectrum of 148Pr (Fig. 12). None of transitions from the β-decay of 148Ce [24–26] are observed in this work. A partial coincident γ-ray spectrum from the 252Cf data is shown in Fig. 13. In this spectrum with gates on 132.1 and 290.5 keV transitions, one can clearly see the 137.6, 219.9, 435.2 and 546.4 keV new transitions and the Y partner transitions. The order of these new transitions are placed based on the intensities and the similarity to 150Pr. In 252Cf SF data, the intensity ratios of 137.6/132.1 and 219.9/132.1 decrease about 80% as the time coincidence window decreases from 500 ns to 8 ns. In the contrast, the ratio of the 132.1, 290.5, 435.2 and 546.4 keV transition intensities remain almost the same. Thus, the 219.9 and 137.6 keV transitions are placed at the bottom and a lifetime of the order of a hundred ns is proposed for the level which the 132.1 keV transition feeds. This is consistent with the non observation of the 219.9 keV transition in coincidence with 290.5 keV in the prompt γ ray spectrum obtained using the (A, Z) gate where the prompt gamma rays are sensitive only to states with lifetimes shorter than ~ 2 ns. In addition spectra obtained in A/Z coin-

FIG. 11. (Color online) The new level scheme of 148Pr in the present work. Relative intensities could not be extracted because of the very strong 219.8 keV transition in 149Pr.

FIG. 12. Partial 148Pr mass- and Z- gated γ-ray spectrum obtained from 238U + 9Be induced fission data. The * indicates new transitions.

FIG. 13. Partial γ-ray coincidence spectrum by gating on 132.1 and 290.5 keV transitions in 148Pr from 252Cf SF data. In the spectrum, transitions belonging to Y fission partners are indicated with the corresponding number of evaporated neutrons. The * indicates new transitions.
In Fig. 15, previously reported band (1) transitions and new transitions in bands (2) and (3) are seen in the (A, Z) gated spectra. These spectra were important in guiding SF γ-ray coincidence spectra analysis to identify the new band (3). These two new bands (2) and (3) are established in the present work by observing the coincidence between the γ-rays in these bands and the 86.5 or 58.5 keV transition in 252Cf SF data. A partial coincident γ-ray spectrum is shown in Fig. 16(a). In this spectrum with a gate on two new transitions in band (3), one can clearly see the 86.5 keV transition, three other new transitions and Y partner transitions. Another partial coincident γ-ray spectrum is shown in Fig. 16(b). In this spectrum with gate on two new transitions in band (2) one can clearly see the 58.5, 103.2 keV transitions, six other new transitions and Y partner transitions. By gating on these new transitions and analyzing the relative γ-transition intensities, these two new bands are proposed for 149Pr. The 252Cf data also shows some weak evidence for the coincidences between the 103.2 and 232.4, 219.8 and 344.7 keV transitions, respectively. The possible low energy 13.2 (174.9 to 161.7) and 25.8 (407.3 to 381.5) keV transitions are not indicated in the level scheme in Fig. 14.

Spins and parities of levels in band (1) were tentatively assigned in Ref. [6] by an internal conversion coefficient measurement and theoretical calculations. Those results are adopted in this paper. Based on the regular energy spacings and γ-ray intensities, the new level at 3724.8 keV is assigned as 43/2−.

The total internal conversion coefficient of the 86.5 keV transition in 149Pr was measured from the intensity ratio between 86.5 and 278.5 keV transition in the coincident spectrum gated on 371.6 and 437.4 keV transitions above them. The value was obtained to be 1.63(22), and is in agreement with the theoretical calculated value [29] of 1.96 for a M1 transition but not with 3.58 for an E2 transition.

G. 149Pr

The new level scheme for 149Pr is shown in Fig. 14. In this case, the 86.5 and 58.5 keV transitions were previously observed in the β-decay of 149Ce [27, 28]. The band (1) in Fig. 14 was previously reported in Ref. [4].

In Fig. 14, previously reported band (1) transitions and new transitions in bands (2) and (3) are seen in the (A, Z) gated spectra. These spectra were important in guiding SF γ-ray coincidence spectra analysis to identify the new band (3). These two new bands (2) and (3) are established in the present work by observing the coincidence between the γ-rays in these bands and the 86.5 or 58.5 keV transition in 252Cf SF data. A partial coincident γ-ray spectrum is shown in Fig. 16(a). In this spectrum with a gate on two new transitions in band (3), one can clearly see the 86.5 keV transition, three other new transitions and Y partner transitions. Another partial coincident γ-ray spectrum is shown in Fig. 16(b). In this spectrum with gate on two new transitions in band (2) one can clearly see the 58.5, 103.2 keV transitions, six other new transitions and Y partner transitions. By gating on these new transitions and analyzing the relative γ-transition intensities, these two new bands are proposed for 149Pr. The 252Cf data also shows some weak evidence for the coincidences between the 103.2 and 232.4, 219.8 and 344.7 keV transitions, respectively. The possible low energy 13.2 (174.9 to 161.7) and 25.8 (407.3 to 381.5) keV transitions are not indicated in the level scheme in Fig. 14.

Spins and parities of levels in band (1) were tentatively assigned in Ref. [6] by an internal conversion coefficient measurement and theoretical calculations. Those results are adopted in this paper. Based on the regular energy spacings and γ-ray intensities, the new level at 3724.8 keV is assigned as 43/2−.

The total internal conversion coefficient of the 86.5 keV transition in 149Pr was measured from the intensity ratio between 86.5 and 278.5 keV transition in the coincident spectrum gated on 371.6 and 437.4 keV transitions above them. The value was obtained to be 1.63(22), and is in agreement with the theoretical calculated value [29] of 1.96 for a M1 transition but not with 3.58 for an E2 transition.
FIG. 16. Partial γ-ray coincidence spectra (a) by gating on 278.5 and 371.6 keV transitions, and (b) by gating on 344.7 and 437.4 keV transitions in 149Pr from 252Cf SF data. In the spectrum, transitions belonging to Y fission partners are indicated with neutron evaporation numbers, specifically, 5n, 4n, 3n, 2n correspond to 98,99,100,101Y respectively. The * indicates new transitions.

Quasiparticle-rotor model (QPRM) calculations [6, 30] suggest a $\pi 5/2^+[413]$ configuration for the 149Pr ground state level. The lowest three exited level energies at 86.5, 365.0, 736.6 keV of band (3) in 149Pr are also reasonably consistent with the QRPM calculations of $7/2^+$, $11/2^+$ and $15/2^+$ for the states at 87, 342 and 708 keV, respectively in Ref. [6]. Therefore, the spins and parities of exited states in band (2) are tentatively assigned as $7/2^+$, $11/2^+$, $15/2^+$, $19/2^+$, $23/2^+$ and $27/2^+$ in the present work.

Spins and parities of the levels in band (2) are tentatively assigned in Fig. 14 based on the structure similarity to the $h_{11/2}$ signature $s=+i$ octupole bands "(1)" and "(2)" in Ref. [21]. When octupole deformation or octupole correlations are strong, one expects a symplectic quantum number $s=i$, two bands of opposite parity with the spin show in Fig. 14 and strong E1 transitions between the two bands as found [31]. Note that QPRM calculation in Ref. [6] indicates that this band is unlikely to be another signature of band (1). Further analysis is included in the discussion part.

H. 150Pr

The new level scheme for 150Pr is shown in Fig. 17. Bands (1) and (4) were previously assigned to 150Pr in Ref. [4, 5] from the SF of 252Cf. In this earlier work, the relative yield ratios of partner Y isotopes were measured transition.

The previously assigned to 150Pr along with several new ones are shown in the (A, Z) gated spectrum (Fig. 18). Fig. 19(a) shows a coincidence spectrum double-gated on the new 190.2 and 254.6 keV transitions. Fig. 19(b) shows a coincidence spectrum double gated on the new 244.7 and 340.0 keV transitions. The previously known γ-transitions of 96, 82.2 and 104.0 keV of 150Pr and the γ-transitions in the partner Y isotopes can be seen in these spectra. Therefore, these new transitions are assigned to 150Pr in the present work. The newly observed 334.3, 419.8 and 503.0 keV transitions are coincident with the new 190.2 and 254.6 keV transitions in Fig. 19(a). Also, the new 438.4 and 532.6 keV transitions are coincident with the new 340.7 and 244.7 keV transitions in Fig. 19(b). By using these coincidence relationships in multiple gates, bands (2) and (3) were found as shown in Fig. 17. The 143.7 keV transition is dashed because the intensity is weaker than that of the 190.2 keV transition.

I. 151Pr

The new level scheme for 151Pr is shown in Fig. 20. The 151Pr A and Z gated spectra obtained from 238U + 9Be induced fission are shown in Figs. 21(a) and (b). Bands (1) and (2) in Fig. 20 were assigned previously to 151Pr in Ref. [5]. In this earlier work, the relative yield ratios of partner Y isotopes were measured. However, bands (1) and (2) were assigned to 152Pr, by Malkiewicz...
FIG. 17. The new level scheme of 150Pr in the present work. Transitions and levels previously reported by Hwang [4, 5] are labeled in green. New ones are labeled in red and with an asterisk.

et al. [8]. The previously reported [5] γ-transitions in bands (1) and (2) are confirmed from the mass and Z gated spectrum in Fig. 21(a). In the present work, the 204.2 and 41.9 keV transitions in Ref. [5] are replaced with the new 214.6 and 52.3 keV transitions in bands (1) and (2) of Fig. 20. Also, a possible new 143.1 keV transition is added. Previously, bands (3) and (4) were assigned to 152Pr in Ref. [7].

Then band (3) was assigned to 151Pr and band (4) to 153Pr from the SF work of 248Cm and 252Cf [8]. Now band (3)and band (4) in Fig. 20 are assigned to 151Pr in the present work because the 142.3, 221.3+221.9, 296.4, 291.9, 365.2 and 358.4 keV transitions are seen in the 151Pr mass and Z gated spectra in Figs. 21(a) and 21(b). The 221.3 and 221.9 keV transitions were reported earlier as one 221.9 keV transition [7]. Later, the 142.3 keV transition in Ref. [7] was separated into 142.1 and 141.6 keV transitions in Ref. [8]. The 221.9 keV transition in Ref. [7] was separated into 221.8 and 221.0 keV transitions in Ref. [8]. In this paper, a shift of about 0.6 keV of the 221.9 keV peak has been confirmed by comparing the gates between bands (3) and (4), for example, double gates on 296.4 and 356.2 keV in band (3), 291.9 and 358.4 keV in band (4), triple gates on 296.4,356.2 and 428.7 keV in band (3), 291.9, 358.4 and 420.8 keV in band (4). But no visible energy difference of the 142.3 keV transition is seen when comparisons are set between any of the gates in bands (3) and (4). Thus, two different 221.9 and 221.3 keV transitions are proposed but there is only one 142.3 keV transition in the level scheme. In the present work all of bands-(1), (2), (3) and (4) are definitely assigned to 151Pr, as shown Fig. 20. Further analysis about the mass assignment will be presented in the 152Pr and discussion sections.

Fig. 22(a) is a coincidence spectrum from 252Cf SF data by gating on 216.3 and 292.0 keV transitions showing the new 52.3 and 143.1 keV transitions. The peak around 40 keV is an overlap of a 39.4 keV γ transition and 41.0 keV Pr X-ray. Therefore, the energy of the 39.4 keV transition has a relative large uncertainty and might range from 39 to 42 keV. If the 39.4 keV transition is the same as the 38.9 keV one reported in β-decay work [26], bands (1) and (2) would decay to the ground state. However, since the energy of this transition has a large uncertainty, an x keV level is used in Fig. 20. The 143.1 keV transition is much weaker than the 90.8 keV one and is bracketed in the level scheme. Fig. 22(b) is a coincidence spectrum from 252Cf SF data triple gated on 298.8, 377.2 and 445.0 keV transitions. The 204.2 keV transition is not seen compared to 214.6 keV in this gate, which suggest some contamination at 204.2 keV in the spectrum of the previous work (Ref. [5]). Thus, the 204.2 keV transition is replaced by the 214.6 one in the present work.

Fig. 23(a) is a coincidence spectrum from 252Cf SF data by gating on 221.9, 296.4 and 365.2 keV transitions. The 428.7, 487.3, 540.5 and 584.4 keV transitions in band 3 can be seen. Fig. 23(b) is a coincidence spectrum from 252Cf SF data by gating on 221.3, 291.9 and 358.4 keV transitions. The 420.8, 479.1 and 534.6 keV transitions in band 4 can be seen. The 252Cf SF data also show coincidence of the 296.4 and 358.4 keV transitions, as well as the 365.2 and 420.8 keV transitions, but interband
FIG. 19. Partial γ-ray coincidence spectra (a) by gating on 190.2 and 254.6 keV transitions, and (b) by gating on 244.7 and 340.0 transitions in 150Pr from 252Cf SF data. In the spectrum, transitions belonging to Y fission partner are indicated with neutron evaporation numbers, specifically, 4n, 3n, 2n correspond to 98,99,100Y, respectively. The * indicates new transitions.

transitions linking bands (3) and (4) are not observed in the current work. These coincidences indicate the existence of a very low energy transition to lift up band (4) in 151Pr.

The analysis result for γ transition intensities are also labeled in the level scheme. The intensities have been separated into two parts. The intensities of transitions in band (1) and band (2) are normalized to that of the 162.3 keV transition and those in band (3) and band (4) are normalized to the summation of the 221.9 and 221.3 keV transition intensities.

Previously, internal conversion measurements established the 47.2 and 54.0 keV transitions as E1 and 90.8 keV one as M1 [5]. The value of the 90.8 keV transition was obtained from the 90.8 and 292.0 keV transition intensities in the coincidence spectrum gated on 216.3 and 363.3 keV in Ref. [5]. This measurement did not include the contribution of the 47.2 keV transition. If this contribution is taken into account, the internal conversion value will increase by a factor of ~20%, which will make it closer to the theoretical M1 value. Those corrections can be seen in the erratum Ref. [32]. The branching of the 143.1 keV transition is very small (see Fig. 22(a)) and does not change the result much. The α_{exp} value of the 54.0 keV transition cannot be obtained in the present work. The α_{exp} value of the 52.3 keV can be obtained from the 292.0 keV double gate in Ref. [5]. This measurement did not include the contribution of the 47.2 keV transition. If this contribution is taken into account, the internal conversion value will increase by a factor of ~20%, which will make it closer to the theoretical M1 value. Those corrections can be seen in the erratum Ref. [32]. The branching of the 143.1 keV transition is very small (see Fig. 22(a)) and does not change the result much.

The new level scheme for 152Pr is shown in Fig. 24. All levels and transitions are newly established in the present work except for the 114.8 and 98.1 keV transitions, which were identified in 152Ce β- decay [33]. Fig. 25 shows the 152Pr A- and Z- gated 'single' γ spectrum from 238U + 9Be induced fission data, illustrating the evidence for the mass assignment for these three new bands. All the strong transitions in these three bands can be seen. As can be seen from the figure the 221.3, 221.9, 358.4 and 365.3 keV transitions are not seen in A = 152 spectrum (Fig. 25) as compared to A = 151 gated spectra (Figs. 21(a),(b)). This confirms that the 124.3-221.9-296.4 (151Pr) and 124.3-221.3-290.2 keV cascades do not belong to 152Pr as previously reported in Ref. [7] but in 151Pr and the latter does not belong to 153Pr as recently reported[8]. The position of the 162.3 keV transition in 151Pr (100 relative intensity) is labeled in Fig. 25. The absence of the 162.3 keV peak (the weak peak seen in
The valley is at 160.5 keV) indicates that bands (1) and (2) assigned to \(^{151}\text{Pr}\) belong there and not to \(^{152}\text{Pr}\) as recently reported in Ref. [8]. These facts give further evidence for the mass assignment for the four bands in \(^{151}\text{Pr}\) in the present work. Further analysis of the mass assignments will be reported in the \(^{153}\text{Pr}\). The relatively strong 90 and 188 keV peaks in Fig. 25 are not seen in any of the SF coincidence data connected to bands (1) and (2) in Fig. 24. The SF coincidence data do indicate a 188-279-322-385 keV cascade which could form another band in \(^{152}\text{Pr}\).

The new level scheme of \(^{151}\text{Pr}\) in the present work. Transitions and levels previously reported by Hwang et al.\[^{5}\] are labeled in green. New levels and transitions are labeled in red and with an asterisk. The 221.9+221.3 keV transitions, superscript a, have the normalized intensity of 100. Band 3 and 4 are shown in red with other new transitions since both band now feed a 'single' 142.3 keV transition. Band 3 was assigned to \(^{151}\text{Pr}\) and band 4 to \(^{151}\text{Pr}\) in Ref. [5]. The \(\gamma\)-ray intensities are relative to 100 for the 162.3 keV transition.

The previously assigned 51.7, 227.8 and 277.7 keV transitions are not placed in Fig. 27 because these transitions are not clearly seen in the \(^{252}\text{Cf}\) SF data. Further analysis of the mass assignment will be reported in the discussion part.

K. \(^{153}\text{Pr}\)

The new level scheme for \(^{153}\text{Pr}\) is shown in Fig. 27. Band (1) in Fig. 27 was assigned previously to \(^{153}\text{Pr}\) in Ref. [5], but was assigned, recently, to \(^{154}\text{Pr}\) from the SF work of \(^{248}\text{Cm}\) and \(^{252}\text{Cf}\) [8]. In the earlier work, the relative yield ratios of partner Y isotopes were measured [5]. The \(^{153}\text{Pr}\) mass and Z gated spectrum obtained from \(^{238}\text{U} + {^9}\text{Be}\) induced fission are shown in Fig. 28. The previously reported \(\gamma\)-transitions of 88.0, 156.7, 206.6, 279.5, 351.1, 417.8 and 477.9 keV transitions in \(^{153}\text{Pr}\) [5] are confirmed from the mass and Z gated spectrum shown in Fig. 28. The 142.3, 221.3 and 292.2 keV cascade previously assigned to \(^{153}\text{Pr}\) by Malkiewicz et al. [8] is not confirmed by the mass and Z gated spectrum in Fig. 28. The position of the 292.2 keV transition is shown in Fig. 28 to illustrate its non-observation. Instead, a new cascade with 143.1, 221.9 and 297.7 keV transition can be seen in the spectrum. Further analysis about the mass assignment will be reported in the discussion part.

The previously assigned 51.7, 227.8 and 277.7 keV transitions are not placed in Fig. 27 because these transitions are not clearly seen in the \(^{252}\text{Cf}\) SF data. Fur-
thermore, the 227.8 keV transition is not observed in the 206.6 and 969.1 keV (a fission partner 95Y transition) double gate and the 206.6 and 417.8 keV double gate. Thus, the previously reported 13/2 level and its three transitions are tentatively removed from the level scheme. The results for γ transition intensities are shown in the level scheme. Previous internal conversion measurements established the 50.4 keV transition as E1 and the 88.0 keV one as M15. The value of the 50.4 keV transition is questionable because the 206.6/351.1 keV gate used in Ref. [5] might be interfered by the 207.1 keV transition. If one approximately assumes the 49.9 and
50.4 keV transitions have the same α_{exp} value, the 2.3(7) value in Ref. [5] should be used, not 3.2(9) in the erratum Ref. [32] because the 227.8 keV transition is not confirmed in the current work. Fig. 29 shows a coincidence spectrum from 252Cf SF data by gating on the 221.9, 297.7 and 368.9 keV transitions. In this gate, four other γ-ray transitions in band (3) can be seen. The (A, Z) gated spectra were important in guiding the γ-ray coincidence spectra analysis to identify new band (3).

IV. DISCUSSION

Mantica et al. showed that the quadrupole deformation increases gradually from 145Pr to 149Pr [19]. The current work implies 151,153Pr have similar but larger deformation than 149Pr based on the decreasing E2 energies and ΔE2 values with a shown for their bands (1) in Table I. A comparison of the proposed E2 transition energies and transition energy spacing in bands (1), (2) and (3) in 147,149,151,153Pr is shown in Table I. The similarity of the transition energies indicates similar structures of the nuclei. Moreover, bands (1) and (3) in 151,153Pr are almost identical both in transition energy (less than 10 keV) and intensity up to very high spins. Such kind of almost identical bands were also observed in 152,154,156Nd [35], 153,155,157Pm [36], 156,158,160Sm [37], 155,157,159Eu [38], 160,162,164Gd [39] respectively. This identical bands phenomenon occurs just after the phase transition from spherical to large deformed shape as N increases from 88 to 90 in this region. ΔE2 energy shrinks more in 151Pr to 153Pr, which indicates a relatively rigid rotor in these

![FIG. 24. The level scheme of 152Pr in the present work. The 114.8 and 98.1 keV transitions and levels previously reported in β decay work are labeled in blue. All others are new ones labeled in red. * This level is an isomer with a lifetime of 4.1 μs according to the measurement in Ref. [33] The γ-ray intensities are relative to 100 for the 200.3 keV transition.](image)

![FIG. 25. Partial 152Pr mass- and Z- gated γ-ray spectra obtained from 238U + 9Be induced fission data. The position of the 162.3 keV transition from 151Pr is also indicated to illustrate its non-observation (see text for details). Note the absence of the 114.8 keV isomeric transition. The * indicates new transitions.](image)
FIG. 26. Partial γ-ray coincidence spectra (a) by gating on 264.5 and 327.3 keV transitions, (b) by gating on 232.6, 295.3 and 353.4 keV transitions, and (c) by gating on 219.6, 274.1 and 306.9 keV transitions in 152Pr from 252Cf SF data. In the spectrum, transitions belonging to Y fission partner are indicated with neutron evaporation numbers, specifically, 2n, 1n, 0n correspond to 98,99,100Y respectively. The * indicates new transitions.

As discussed in the previous part, band (1) in 147Pr is proposed to have a negative parity. The available orbital of negative parity in this region is $\pi h_{11/2}$. According to the PTRM calculations [19], $1/2^+\ [550]$ band was proposed to be the low lying negative parity one. Note that the negative parity band (1) in 149Pr in the current work was also proposed to be $1/2^−\ [550]$ from previous QPRM calculation [6].

The band (2) in 149Pr does not match any configurations in the previous QPRM calculations which are mentioned here for completeness [6]. This band could form a =i octupole band with band (1) if they have the opposite parity. Note that octupole correlation is not included in the QPRM calculation in Ref. [6]. Our potential-energy-surface calculation in the present work (more details in Ref. [42–44]) shows medium octupole deformation ($\beta_3=0.068$) of $1/2^−\ [550]$ configuration (band (1)). Although the previous QPRM predictions predicted this configuration does not have 100% amplitude (91% in Ref. [6], 77% and 81% in Ref. [30]), the octupole deformation may change the signature splitting of the $1/2^−\ [550]$ band (1) in 149Pr. Furthermore, a small double backbending occurs in band (1) of 149Pr at $h\omega\sim 0.27$ MeV while a little more distinct one occurs at about the same rotational frequency in band (2). As discussed in Ref. [4], cranked shell model calculations [21] suggest that this backbending at 0.27 MeV originates from the alignment of a neutron $i_{13/2}$ pair and not a proton $h_{11/2}$ pair. Thus, band (2) in 149Pr can also be another signature of band (1). If bands (1) and (2) in 149Pr have the op-
The level scheme of ^{153}Pr in the present work. Transitions and levels previously reported by Hwang et al.\cite{5} are labeled in green, bands 1 and 2. New ones in band 3 are labeled in red. a: The 206.6+207.1 keV transitions have the relative intensity of 100. b: The 49.9+50.4 keV transition have the relative intensity of <127. The new transitions in red were too close in energy to transitions in ^{151}Pr to measure intensities.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{level_scheme.png}
\caption{FIG. 27. The level scheme of ^{153}Pr in the present work. Transitions and levels previously reported by Hwang et al.\cite{5} are labeled in green, bands 1 and 2. New ones in band 3 are labeled in red. a: The 206.6+207.1 keV transitions have the relative intensity of 100. b: The 49.9+50.4 keV transition have the relative intensity of <127. The new transitions in red were too close in energy to transitions in ^{151}Pr to measure intensities.}
\end{figure}

The partial ^{153}Pr mass- and Z- gated 'single' γ-ray spectra obtained from $^{238}\text{U} + \text{Be}$ induced fission data. The position of the 291.9 keV transition from ^{151}Pr is also indicated to illustrate its non-observation (see text for details). The * indicates new transitions.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{mass gated.png}
\caption{FIG. 28. Partial ^{153}Pr mass- and Z- gated 'single' γ-ray spectra obtained from $^{238}\text{U} + \text{Be}$ induced fission data. The position of the 291.9 keV transition from ^{151}Pr is also indicated to illustrate its non-observation (see text for details). The * indicates new transitions.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{gamma coincidence.png}
\caption{FIG. 29. Partial γ-ray coincidence spectrum by triple gating on 221.9, 297.7 and 368.9 keV transitions in ^{153}Pr from ^{252}Cf SF data. In the spectrum, transitions belonging to the Y fission partner are indicated with neutron evaporation numbers, specifically, 3n correspond to ^{96}Y. The * indicates new transitions.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{gamma coincidence.png}
\caption{FIG. 29. Partial γ-ray coincidence spectrum by triple gating on 221.9, 297.7 and 368.9 keV transitions in ^{153}Pr from ^{252}Cf SF data. In the spectrum, transitions belonging to the Y fission partner are indicated with neutron evaporation numbers, specifically, 3n correspond to ^{96}Y. The * indicates new transitions.}
\end{figure}

Spin and parity assignments of the bands in ^{151}Pr and ^{153}Pr are not placed in the present work because the E2 transition energies in these bands are quite similar. According to the QPRM calculation in Ref. \cite{8}, 3/2$^-\text{[420]}$, 1/2$^+\text{[420]}$ and 3/2$^+\text{[422]}$ are proposed to be the three low lying states in $^{151,153}\text{Pr}$. If one assumes the bands (1) and (2) in ^{151}Pr have the same configuration and parity, then only the theoretical prediction of the 3/2$^+\text{[422]}$ configuration in Ref. \cite{8} can reproduce the signature splitting in bands (1) and (2). According to the statement in the previous part, the x keV level in ^{151}Pr could be the 3/2$^-\text{ ground state. The x+182.5 keV level in band (1) in Fig. 20 would be 7/2}^+\text{. Bands (3) and (4) in } ^{151}\text{Pr could be } 1/2^+\text{[420]} \text{ or } 3/2^-\text{[541]} \text{ but } 1/2^+\text{[420]} \text{ is more likely, because no linking transitions are observed between bands (1,2) and (3,4) in the current work and bands (3) and (4) are more likely to decay to the 35.1 keV isomer. The y keV level could be the } 1/2^+\text{[420]} \text{ state. The configurations of bands in } ^{153}\text{Pr} \text{ can be assigned according to the level scheme similarity to } ^{151}\text{Pr. However, such assignments cannot explain the absence of bands (2) and (4) in } ^{153}\text{Pr}. \text{ Also, our potential-energy-surface calculation reported here shows octupole deformation } (\beta_3=0.043) \text{ of the } 1/2^+\text{[420]} \text{ configuration. If bands (1) and (2) in } ^{151}\text{Pr} \text{ have the opposite parity, they can form an octupole band. In the current work, band (1) is the strongest populated one.}
Thus, similar to the discussion in Ref. [8], states in this band are possibly yrast and more likely to be the favored branch of the 3/2− [541]. In all, similar to the discussion of 149Pr, spins and parities of the bands in 151,153Pr still cannot be firmly assigned.

Potential-energy-surface calculations show tendencies toward both octupole deformation and triaxiality. The octupole Y3,0 deformation can give rise to parity doubling, and triaxiality can give so-called γ bands. Further theoretical and experimental work is needed.

V. CONCLUSION

In conclusion, new bands in 145,147−150Pr have been reported; the previous questionable assignments of transitions and levels in 151,153Pr were clarified by A- and Z- gated spectra and yield curves; a new high spin level scheme for 152Pr has been established and confirmed by mass-Z gated spectra. Spins and parities of the levels in the new band in 148Pr have been tentatively assigned. New transitions have been identified in 143−146Pr. More work on both experiment and theory is needed to understand the nuclear structure of 147−153Pr well. The levels in 149,151Pr are similar to octupole structures. The bands in 151,153Pr are very similar in transition energies and ΔE2, which indicates they are relatively rigid rotors. The long multiple high spin bands with increasing neutron number in the Pr isotopes provide interesting tests for nuclear model calculations. The unique combination of (A, Z) identified in-beam γ-rays and high fold data from a Cf source has opened new vista to study the evolution of nuclear structure as functions of spin and isospin. Further improvements in the sensitivity for fission fragment spectroscopy are planned using the next generation tracking detector AGATA combined with an improved VAMOS++ spectrometer at GANIL.

ACKNOWLEDGMENTS

The work at Vanderbilt University and Lawrence Berkeley National Laboratory are supported by the US Department of Energy under Grant No. DE-FG05-88ER40407 and Contract No. DE-AC03-76SF00098. The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grant No. 11175095. The work at JINR was supported by the Russian Foundation for Basic Research Grant No. 08-02-00089 and by the INTAS Grant No. 03-51-4496. One of us (S.B.) acknowledges partial financial support through the LIA France-India agreement. We would like to thank J. Goupil, G. Fremont, L. Ménager, J. Ropert, C. Spitaels, and the GANIL accelerator staff for their technical contributions.

[1] J. H. Hamilton et al., Prog. Part. Nucl. Phys. 35, 635 (1995).
[2] A. Navin et al. 5th Int. Conf. on “Fission and properties of neutron-rich nuclei, Sanibel 2012”, World Scientific, 2013.
[3] A. Navin and M. Rejmund, McGraw-Hill Yearbook of Science and Technology, and the online edition AccessScience (2014).
[4] J. K. Hwang et al., Phys. Rev. C 62, 044303 (2000).
[5] J. K. Hwang et al., Phys. Rev. C 82, 034308 (2010).
[6] T. Rzaca-Urban et al., Phys. Rev. C 82, 067304 (2010).
[7] S. H. Liu et al., Phys. Rev. C 84, 044303 (2011).
[8] T. Malkiewicz et al., Phys. Rev. C 85, 044314 (2012).
[9] M. Rejmund et al., Nucl. Inst. Meth. Phys. Res. A 646, 184 (2011).
[10] A. Navin et al., Phys. Lett. B 728, 136 (2014).
[11] J. Simpson et al., Acta Physica Hungarica, New Series, Heavy Ion Physics 11, 150 (2000).
[12] D. C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995).
[13] J. K. Hwang et al., Phys. Rev. C 57, 2250 (1998).
[14] J. K. Hwang et al., Phys. Rev. C 67, 054304 (2003).
[15] C. Wahl, At. Data. Nucl. Data Tables 39, 1 (1988).
[16] J. Dalmasso et al., Nucl. Instrum. Methods 221, 564 (1984).
[17] E. M. Baum et al., Phys. Rev. C 39, 1514 (1989).
[18] H. Yamamoto et al., J. inorg. nucl. Chem. Vol. 42, 1539 (1980).
[19] P. F. Mantica, J. D. Robertson, E. M. Baum, W. B. Walters, Phys. Rev. C 48, 1579 (1993).
[20] W. Urban et al., Phys. Rev. C 54, 945 (1996).
[21] S. J. Zhu et al., Phys. Rev. C 59, 1316 (1999).
[22] M. A. Jones et al., Nucl. Phys. A 609, 201 (1996).
[23] N. Nica, Nucl. Data Sheets, 110, 749 (2007).
[24] R. C. Greenwood et al., Nucl. Inst. Meth. Phys. Res. A 390, 95 (1997).
[25] N. K. Arns et al., Can. J. Chem. 61, 780 (1983).
[26] Y. Kojima et al., Eur. Phys. J. A 19, 77 (2004).
[27] B. Pfeiffer et al., J. Phys.(Paris) 38, 9 (1977).
[28] U. Keyser et al., Proc.Intern.Conf. “Atomic Masses and Fundamental Constants, 6th, East Lansing 1979”, J.A.Nolen, Jr., W.Benenson Eds., Plenum Press, New York, p.485 (1980).
[29] BrIcc v2.3S, conversion coefficient calculator [http ://bricc.anu.edu.au/]; T. Kibedi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, and C. W. Nestor Jr., Nucl. Instrum. Methods Phys. Res. A 589, 292 (2008).
[30] Gabriela Thiamova et al., Phys. Rev. C 86, 044334 (2012).
[31] W. Nazarewicz and P. Olanders, Nuclear Physics A 441, 420 (1985).
[32] J. K. Hwang et al., Phys. Rev. C 82, 049901(E) (2010).
[33] S. Yamada, A. Taniguchi, and K. Okano,J. Phys. Soc. Jpn. 64, 4047 (1995).
[34] W. Urban et al., Phys. Rev. C 79, 044304 (2009).
[35] A. G. Smith et al., Phys. Rev. Lett. 73, 2540 (1994).
[36] J. Ranger et al., 81st Annual Meeting of the APS South-eastern Section, (2014).
[37] S. J. Zhu et al., J. Phys. G: Nucl. Part. Phys. 21, L57 (1995).
[38] D. G. Burke et al., Nucl. Phys. A 318, 77 (1979).
[39] E. F. Jones et al., J. Phys. G: Nucl. Part. Phys. 30, L43 (2004).
[40] Y. J. Chen et al., Phys. Rev. C 73, 054316 (2006).
[41] S. J. Zhu et al., Phys. Rev. C 85, 014330 (2012).
[42] W. Nazarewicz, R. Wyss, and A. Johnson, Nucl. Phys. A 503, 285 (1989).
[43] F. R. Xu, W. Satula, and R. Wyss, Nucl. Phys. A 669, 119 (2000).
[44] F. R. Xu, P. M. Walker, and R. Wyss, Phys. Rev. C 65, 021303(R) (2002).