POSITIVE MAPS WHICH MAP THE SET OF RANK K PROJECTIONS
ONTO ITSELF

ERLING STØRMER

Abstract. Extending Wigner’s theorem we give a characterization of positive maps of $B(H)$ into
itself which map the set of rank k projections onto itself.

One form of the celebrated Wigner’s theorem [5] is that if ϕ is a linear map of the bounded
operators $B(H)$ on a Hilbert space H into itself with the property that it maps the set of rank 1
projections bijectively onto itself, then ϕ is of the form

(*)

$$\phi(a) = UaU^*$$
or

$$\phi(a) = Ua^t U^*,$$

where a^t is the transpose of a with respect to a fixed orthonormal basis for H, and U is a unitary
operator. In the paper [2] Sarbicki, Chruscinski and Mozrzymas generalized this to the case when
H is of finite dimension n with n a prime number, and the set of rank 1 projections is replaced
by rank k projections, where k is a natural number strictly smaller than n. They gave a counter
example to the conclusion (*) when n is not a prime. In that case ϕ is no longer a positive map.

In the present note we make the extra assumption that ϕ is a positive unital map. Then for any
Hilbert space we obtain the conclusion (*). Closely related results have been obtained by Molnar
[1].

Recall that an atomic masa in $B(H)$ is a maximal abelian subalgebra A generated by the rank
1 projections corresponding to the vectors in an orthonormal basis for H. Thus if H is finite
dimensional each maximal abelian subalgebra is atomic. We start with a lemma. See also [1],
Lemma 2.1.5.

Lemma 1. Let $p \in B(H)$ be a rank 1 projection and A an atomic masa in $B(H)$ containing p. Let
k be a natural number, $k < \text{dim}H$. Then there exist $k + 1$ projections P_1, \ldots, P_{k+1} in A such that

$$p = \frac{1}{k} \sum_{j=2}^{k+1} P_j - \frac{k-1}{k} P_1.$$

Proof. Let $p_1 = p, p_2, \ldots, p_{k+1}$ be mutually orthogonal rank 1 projections in A. Let

$$P_j = \sum_{i=1, i \neq j}^{k+1} p_i, j = 1, \ldots, k + 1.$$

Then P_j is a projection of rank k, and $p_i \leq P_j$ for all $j \neq i$, so $p_i \leq P_j$ for k of the projections P_j.
It is therefore an easy computation to show the above formula. The proof is complete.

Theorem 2. Let ϕ be a positive unital map of $B(H)$ into itself such that ϕ maps the set of projections
of rank k in $B(H), k < \text{dim}H$, onto itself. Then ϕ is of the form (*).

Proof. Since each projection of rank k in $B(H)$ is in the image under ϕ of a rank k projection, it
follows from Lemma 1 that the rank 1 projections are in image of ϕ, hence each finite rank operator
is in the image of the finite rank operators. By continuity of ϕ it follows that ϕ when restricted to the compact operators $C(H)$, maps $C(H)$ onto a norm dense subset of itself.

The definite set D of ϕ is the set of self-adjoint operators a such that $\phi(a^2) = \phi(a)^2$. Let Q be a projection of rank k; then $P = \phi(Q)$ is a projection of rank k, hence

$$\phi(Q^2) = \phi(Q) = P = P^2 = \phi(Q)^2,$$

so that $Q \in D$. By [4], Proposition 2.1.7, D is a norm closed Jordan subalgebra of $B(H)$, so by the same argument as above $D \cap C(H) = C(H)_{sa}$, the self-adjoint operators in $C(H)$. Furthermore, the restriction of ϕ to D is a Jordan homomorphism. Since $C(H)$ is irreducible, by [3], Corollary 3.4, ϕ is either a homomorphism or an anti-homomorphism on $C(H)$. But $C(H)$ is a simple C^*-algebra, so ϕ is either an automorphism or an anti-automorphism of $C(H)$.

Let now ω_x be a vector state on $B(H)$. Then if p is the rank 1 projection onto the 1-dimensional subspace of H generated by x, then for $a \in B(H)$,

$$\omega_x(a) = (ax, x) = Tr(pap).$$

Since ϕ is a Jordan automorphism of $C(H)$ there is a unit vector y such that if q is the rank 1 projection onto the subspace spanned by y, then $\phi(q) = p$. Thus for $a \in B(H)$, since $q \in D$, we have, using [4], Proposition 2.1.7,

$$\omega_x(\phi(a)) = Tr(p\phi(a)p) = Tr(\phi(q)\phi(a)\phi(q)) = Tr(\phi(qa)q) = Tr(\phi(\omega_y(a))q) = \omega_y(a)Tr(p) = \omega_y(a).$$

We have thus shown that each vector state composed with ϕ is a vector state. Hence by [4], Theorem 3.3.2 ϕ is of the desired form (*). The proof is complete.

References

[1] L. Molnar, Selected preserver problems on algebraic structures of linear operators and on function spaces, Lecture Notes in Mathematics, 1895. Springer (2007).
[2] G. Sarbicki, D. Chruscinski, and M. Mozrzymas, Generalising Wigner’s theorem, arXiv: 1602.04968v1 (quant-ph), 16 Feb 2016.
[3] E. Størmer, On the Jordan structure of C*-algebras, Trans.Amer.Math.Soc. (120) (1965), 438-447.
[4] E. Størmer, Positive linear maps of operator algebras, Springer Monographs in Mathematics, Springer (2013).
[5] E.P. Wigner, Group theory, Academic Press. New York (1959)

Department of Mathematics, University of Oslo, 0316 Oslo, Norway.

e-mail erlings@math.uio.no