Glucose-lowering therapy in type 2 diabetes
New hope after the EMPA-REG outcome trial

Introduction

The major cause of death and complications in patients with type 2 diabetes (T2DM) is cardiovascular disease (CVD). More than 60% of all patients with T2DM die of CVD, and an even greater percentage have serious complications [1].

The impact of glucose lowering on cardiovascular complications is a worldwide debated issue. Three major studies (ACCORD, ADVANCE, and VADT) evaluated the impact of attaining euglycemia (ACCORD) or near-euglycemia (ADVANCE, VADT) in older patients with diabetes and high cardiovascular (CV) risk [2–4]. None of these studies, either individually or on pooled analysis, demonstrated any reduction in all-cause or CV mortality, although the meta-analyses revealed 15–17% reductions in the incidence of non-fatal myocardial infarction in those exposed to tight glucose control [5]. A higher mortality was observed in the intensive glucose control arm of ACCORD, resulting in the premature termination of the glucose-lowering component of this study [2].

Recent dramatic decline of all-cause mortality and CV death in T2DM

During the last 25 years (1976–2001) an impressive decline in all-cause (~48%) and cardiovascular disease (CVD) mortality (~62%) rates among both men and women with diabetes mellitus was observed in the Framingham study versus the period of 1950–1975 [7]. The implementation of the multifactorial CV risk factor management (blood pressure and lipid lowering) resulted in an enormous improvement in the prognosis of T2DM treated in developed nations (US, EU countries, Canada, Australia). Data from the Danish National Diabetes Register showed that the mortality rate of T2DM patients decreased by 40% from 1997 to 2007 [8]. Similarly, the excess mortality of patients with T2DM in Canada (Ontario) and in UK (THIN database), decreased by 44 and 43% respectively from 1996 to 2009 [9]. In addition data from Australia showed that the age-standardized mortality rates decreased from 9.4 to 5.5 per 1,000 patient years from 1997–2010 [10]. However, in many countries both men and women with T2DM continue to remain at a higher risk of all-cause and CVD mortality than those without DM despite risk-reduction strategies that include lowering of cholesterol and blood pressure, and smoking cessation [11].

Primary prevention of CVD: relevance of multifactorial intervention including diabetes control

Unfortunately, we do not have any long-term multifactorial intervention study in newly diagnosed T2DM patients. A recently published nationwide study [12], which included 435,369 patients with T2DM from the Swedish National Diabetes Register and for each patient five controls randomly selected from the general population and matched according to age, sex, and county (total number of controls n = 2,117,483), showed that the excess mortality in T2DM was substantially higher with worsening glycaemic control, severe renal complications, impaired renal function, and younger age. The included patients had the following characteristics: mean age 65.8 years, age at diagnosis of T2DM 60.2 years, 44.9% women, mean BMI: 29.8 kg/m² and duration of diabetes 5.6 years. After a follow-up of 5 years 77,117 of 435,369 patients with T2DM (17.7%) died, as compared with 306,097 of 2,117,483 controls (14.5%) (adjusted HR, 1.15; 95% CI 1.14–1.16) [12]. The overall excess risk of death from any cause was very low as compared with earlier reports, when the analysis was adjusted for age and sex and the excess risk decreased to 15% when the analysis was further adjusted for coexisting diseases. The relatively low mortality in the Swedish T2DM patients is probably due to aggressive treatment with statins and blood-pressure medications and relatively good
diabetes control. Mean blood pressure was 140/78 mmHg, mean HbA1c was 7.1%, and mean LDL was 2.94 mmol/l. The excess risk of death ranged from 30–40% among patients 65–74 years of age, as compared with controls in the same age group, whereas the excess mortality was 100–200% among those younger than 55 years of age, as compared with controls. Remarkably, all-cause mortality (Fig. 1a) and CV death (Fig. 1b) were closely related to glycaemic control (HbA1c) in all age groups. However, the relationship was much stronger in younger patients and less pronounced in elderly patients. Remarkably, patients 65–74 years of age with normoalbuminuria and an HbA1c of ≤ 6.9% had a lower risk than the controls. Similarly, the risk was also lower among patients ≥ 75 years of age with an HbA1c of ≤ 7.8% than among the controls, but the risk was substantially higher among patients younger than 55 years of age than among the controls, despite an HbA1c level in the target range and normoalbuminuria.

Multifactorial risk factor control is less performed in patients without CVD

A recent large study [13] including about 860,000 patients assessed the incidence of major CV hospitalization events and all-cause deaths among adults with diabetes with or without CVD associated with inadequately controlled diabetes (HbA1c), high LDL-cholesterol (LDL-C), high blood pressure (BP), and current smoking. Inadequate risk factor control was classified as LDL-C ≥ 100 mg/dl, HbA1c ≥ 7%, BP ≥ 140/90 mmHg, or smoking. Interestingly, compared with those without baseline CVD, those with baseline CVD had better control of smoking (8.0 vs. 9.8%), HbA1c ≥ 7% (42 vs. 53%), and LDL-C ≥ 100 mg/dl (38 vs. 58%), and they had similar proportions of subjects with systolic/diastolic BP ≥ 140/90 mmHg (23 vs. 21%). Mean age at baseline was 59 years; 48% of subjects were female, 45% were white, and 31% had CVD. Mean follow-up was 59 months. Major CV events were based on primary hospital discharge diagnoses for myocardial infarction (MI) and acute coronary syndrome (ACS), stroke, or heart failure (HF). Event rates per 100 person-years for adults with diabetes and CVD versus those without CVD were 6.0 vs. 1.7 for MI/ACS, 5.3 vs. 1.5 for stroke, 8.4 vs. 1.2 for HF, 18.1 vs. 40 for all CV events, and 23.5 vs. 5.0 for all-cause mortality. The percentages of CV events and deaths associated with inadequate risk factor control were 11 and 3%, respectively, for those with CVD but 34 and 7%, respectively, for those without CVD. These data demonstrate that (a) T2DM patients without CVD are not as well treated for risk factor control and (b) that the inadequate risk factor control in patients without CVD has a very negative impact on CV events and death.

CV outcome studies with novel anti-diabetic agents in patients with T2DM

Due to the close association of CVD with T2DM and the uncertainty about the CV safety of glucose-lowering drugs, the Food and Drug Administration issued in 2008 guidance for the demonstration of CV safety for new anti-diabetes drugs [14]. Fig. 2 summarizes all CV outcomes trials (CVOT), which will be available at the end of the year 2020. At that time all available CVOT studies will in-
Glucose-lowering therapy in type 2 diabetes. New hope after the EMPA-REG outcome trial

Abstract
Prevention of cardiovascular morbidity and mortality remains the key factor in the treatment of type 2 diabetes (T2DM). In the early phase of T2DM, multifactorial intervention is mandatory and glucose levels should be near normal, in particular in younger patients presenting with the highest cardiovascular risk. Anti-diabetic drugs without any risk for hypoglycaemia should be preferred in order to reduce clinical inertia and increase the long-term adherence to the treatment. In patients already presenting with cardiovascular disease, the best outcome may be expected with the triple oral therapy of metformin, pioglitazone, and empagliflozin, although a controlled prospective study versus insulin therapy is needed to confirm the expectation.

Keywords
Cardiovascular disease · EMPA-REG outcome · PROActive · Glucose-lowering therapy · Type 2 diabetes

PROactive
The PROActive study [15] was a large prospective, randomized, double-blind, secondary prevention study that investigated the effects of pioglitazone (45 mg/day) on macrovascular outcomes in 5,238 patients with T2DM and pre-existing CVD: ~ 50 % with previous MI, 25 % with previous stroke, and 25 % with peripheral arterial disease (PAD). Treatment with pioglitazone or placebo was administered in addition to optimized standard care, which included glucose lowering, antihypertensive, lipid-altering, and antithrombotic drugs. Although the primary end point – a composite of all-cause mortality, non-fatal MI, acute coronary syndrome, stroke, major leg amputation, and coronary or leg revascularization – showed only a nonsignificant 10 % reduction in the pioglitazone arm, a significant reduction in a composite end point, comprising CV death plus non-fatal MI plus non-fatal stroke, was observed (HR 0.82 [95 % CI 0.70–0.97]) in the 3-year follow-up period [15]. Furthermore, in patients with a previous MI, pioglitazone significantly reduced the risk of subsequent MI by 28 % and acute coronary syndrome by 38 % [22]. In patients with a previous stroke, pioglitazone decreased chances of a second stroke by 48 % [23], whereas in patients with PAD no beneficial effect of pioglitazone could be noted [24]. It is well known that diabetic patients with chronic kidney disease (CKD) are at higher risk for cardiovascular morbidity and mortality.

Glukosenenkende Therapie bei Typ-2-Diabetes. Neue Hoffnung nach der EMPA-REG-Wirksamkeitsstudie

Zusammenfassung
Die Verhinderung kardiovaskulärer Ereignisse und des kardiovaskulären Todes bleibt die Schlüsselfaktoren bei der Behandlung des Typ-2-Diabetes mellitus. In der Frühphase des Diabetes ist eine multifaktorielle Intervention nicht wendig und der Blutzuckerspiegel sollte annähernd normal sein, besonders bei jungen Patienten mit hohem kardiovaskulären Risiko. Antidiabetika ohne Hypoglykämierisiko sollten bevorzugt werden, um klinische Untätigkeit zu reduzieren und die Langzeitadherence der Therapie zu erhöhen. Bei Patienten mit bereits vorhandenen kardiovaskulären Erkrankungen wird die beste Wirkung mit einer oralen Tripeltherapie aus Metformin, Pioglitazone und Empagliflozin erwartet, wiewohl eine kontrollierte prospektive Studie mit diesen drei Substanzen im Vergleich zu einer Insulintherapie benötigt wird, um diese Erwartung zu bestätigen.

Schlüsselwörter
Kardiovaskuläre Erkrankungen · EMPA-REG-Outcome-Studie · PROActive · Antidiabetische Therapie · Typ-2-Diabetes
particularly high risk of CVD. In a post hoc analysis from PROActive, the effect of pioglitazone versus placebo was determined in patients with CKD [25]. Patients treated with pioglitazone were less likely to reach the composite (all-cause mortality, MI, or stroke) end point (HR 0.66 [95% CI 0.45–0.98]) compared with placebo. In addition, two randomized head-to-head trials with glimepiride have shown that pioglitazone significantly decreased the rate of carotid intima thickness, a surrogate marker of coronary atherosclerosis [26] and slowed the progression of coronary atherosclerosis measured by IVUS [27]. The antiatherogenic effect of pioglitazone may be mediated by the improvement of many CV risk factors [28, 29], such as increase in HDL-cholesterol, decline of triglycerides and free fatty acids (FFA), conversion of small dense LDL particles to larger, more buoyant, less atherogenic ones; improvement of endothelial dysfunction; increase of adiponectin and reduction of PAI-1, CRP, and TNFα, and reduction of insulin resistance and visceral fat.

The clinical use of pioglitazone is limited by the risk of adverse events, including weight gain, fluid retention, CHF and bone fractures [30]. In the PROActive study [15] 5.7 and 4.1% of pioglitazone and placebo patients, respectively, were admitted to hospital [31]; however, mortality rates due to CHF were similar (0.96 vs. 0.84 %; p = NS). Interestingly, fewer pioglitazone patients with serious CHF had a combined end point of death, MI, or stroke compared with placebo patients (34.9 vs. 47.2 %; p = 0.025). Since heart failure is an ominous sign in T2DM with a five-year mortality of ~ 50 %, it is unlikely that these individuals really had CHF. It is more likely that they had fluid retention and oedema secondary to the sodium retention effect of pioglitazone in the kidney. Concern about bladder cancer with pioglitazone has been negated by the results of a 10-year prospective Kaiser-Permanente Northern-California study [32]. In that safety study involving 193,099 T2DM patients, no association was found between bladder cancer risk and use of pioglitazone, including duration of pioglitazone use, cumulative pioglitazone dose, or time since initiation of pioglitazone. A further study [33] including 1.01 million T2DM patients with over 5.9 million person-years from six populations, reported no increased risk for bladder cancer either for pioglitazone (HR = 1.01) or rosiglitazone (HR = 1.00).

EMPA-REG outcome

The recently published EMPA-REG outcome trial [21] is an international,
prospective, placebo-controlled clinical trial investigating the cardiovascular outcomes of empagliflozin, an inhibitor of sodium-glucose cotransporters type 2 (SGLT2), in patients with T2DM and known CVD. It is the first study to document that a glucose-lowering drug can reduce cardiovascular events in patients with T2DM. In 7020 T2DM patients with a history of CVD, empagliflozin reduced, after a median of 3.1 years, the primary MACE endpoint (CV death, non-fatal stroke) by 14% (HR = 0.86, p = 0.04) and hospitalization for heart failure by 35% (HR = 0.65, p = 0.002). A striking difference was observed between the three MACE endpoints: (a) for CV death, the HR (0.62) was decreased significantly by 38%, (b) for non-fatal MI, the HR (0.87) was decreased slightly, but not significantly (p = 0.22) and (c) for stroke, the HR (1.24) was increased modestly, but not significantly (p = 0.22). Fig. 3 shows the impressive effects of empagliflozin on the absolute risk reduction of CV events in the EMPA-REG outcome study. The reduction in CV death (5.9 to 3.6%, p < 0.001) was observed across all diagnostic categories (sudden death, 1.6 to 1.1%; worsening heart failure, 0.8 to 0.2%; acute MI, 0.5 to 0.3%; stroke, 0.5 to 0.3%; “other CV death”, 2.4 to 1.6%). The latter category includes deaths that cannot be explained by any other known cause. The reduction in mortality appeared very early (< 3 months) and was observed in all subgroups, without any obvious heterogeneity. This reduction in mortality does not seem to be fully explained by the concomitant slight reductions in HbA1c, body weight, waist circumference, blood pressure, and serum uric acid levels in the empagliflozin groups versus the placebo group. The rapid reduction of mortality in empagliflozin-treated patients suggests a hemodynamic mechanism of action. The baseline BP (135.5/76.7 mmHg) was significantly reduced at 4 months (~ 5/2.5 mmHg), and temporarily correlated with the reduction in CV death and hospitalization for heart failure. A recent study [34] showed that empagliflozin reduced not only BP but had also favourable effects on markers of arterial stiffness and vascular resistance. The observation that empagliflozin has an impact on the vasculature without increasing pulse rate is interesting from a CV perspective and could be interpreted as a consequence of a relative reduction in the sympathetic nervous system tonus. It seems likely that the beneficial effects of empagliflozin to reduce CV risk and heart failure are related to the drug’s hemodynamic/cardiovascular action to reduce BP and intravascular volume, resulting in combined afterload and preload reduction.

Surprisingly, an impressive renoprotection was also observed [35] although 26% of the patients with CVD also had CKD (eGFR < 60), usually not receiving SGLT2 inhibitors. New onset or worsening kidney disease were reduced by 39%, new macro-albuminuria by 38%, doubling of serum creatinine by 44%, and incidence of end-stage renal disease by 55%. It is important to mention that the majority of patients with CKD at baseline had stage 3a (68%), whereas stage 3b existed in 32%, furthermore all patients with CKD stages 4 and 5 were excluded from the EMPA-REG outcome study.

The EMPA-REG study also confirms the excellent safety profile of the SGLT2 inhibitor (SGLT2i) class of anti-diabetic agents. Empagliflozin significantly reduced HbA1c, body weight, waist circumference, and blood pressure without out change in heart rate. There was no increase in the incidence of hypoglycaemia despite half of the patients were pre-treated with insulin, renal impairment, urinary tract infections, volume-related side effects, bone fractures, or thromboembolic events. Furthermore, the rate of hyperglycaemic or normoglycaemic diabetic ketoacidosis was very low and not higher in patients exposed to empagliflozin (0.035 %) versus placebo (0.020 %). Serious adverse events and adverse events leading to drug discontinuation were slightly, although not significantly lower in the empagliflozin group. As expected, the incidence of genital infections was higher in the empagliflozin group (6.4 %) vs. placebo (1.8 %).

Individualization of anti-diabetic therapy in relation to stage of the disease and comorbidity

The ADA-EASD consensus statement published in 2009 [36] advocated initial treatment with metformin monotherapy and lifestyle modification, followed by addition of basal insulin or a sulfonylurea if glycaemic goals are not met (tier 1 recommendations). All other glucose-lowering therapies were relegated to a secondary (tier 2) status and only recommended for selected clinical settings. The approach that all patients should have the same HbA1c target (≤ 7.0 %) and that all patients should follow an identical treatment algorithm was heavily criticised by an international expert group [37]. We argued for an appropriate selection of anti-diabetic drugs to individualise and optimise care with a view to sustained control of blood glucose and reduction both of diabetes complications and CV risk. In addition, we stated that diabetes guidelines might need revision to define a minimum HbA1c value, es-

Table 1	Effect of glucose-lowering drugs on the combined endpoint of CV mortality, non-fatal myocardial infarction and stroke		
Study	Anti-diabetic Drug	HR	p-value
PROACTIVE	Pioglitazone	0.84 (CI 0.72–0.98)	0.02
ORIGIN	Insulin Glargine	1.02 (CI 0.94–1.11)	NS
SAVOR	Saxaglibitin	1.00 (CI 0.89–1.12)	NS
EXAMINE	Alogliptin	0.96 (CI 0.80–1.15)	NS
CANVAS	Canagliflozin	1.00 (CI 0.72–1.39)	NS
ELIXA	Lixisenatide	1.02 (CI 0.89–1.17)	NS
TECOS	Sitagliptin	0.98 (CI 0.89–1.08)	NS
EMPA-REG	Empagliflozin	0.86 (CI 0.74–0.99)	0.038

HR hazard ratio, *CI* confidence interval, *NS* not significant
especially for patients with long-standing diabetes or established CVD. The ADA-EASD consensus statements 2012 [38] and 2015 [39] included most of our proposals.

Patients not presenting with vascular complications should have near-normoglycaemic control in association with strict CVD risk factor control as documented in the recently published Swedish population study [12]. In particular, younger patients with a poor long-term risk need HbA1c target levels < 6.5%, which can be reached when glucose-lowering drugs are selected not inducing hypoglycaemia or weight gain. Metformin remains the optimal drug for monotherapy, its low cost, proven safety, and possible benefits on cardiovascular outcomes have secured its place as the favoured initial drug choice [40–42]. In second line, DPP-4 inhibitors are now widely used, since these drugs are well tolerated by the majority of patients, even in the elderly and renal-impaired patients [43–46]. DPP-4 inhibitors improve glycaemic control with similar efficacy to sulphonylurea, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse effects, and have recently been shown not to increase CV risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms [39]. When sulphonylureas are used with respect to very low cost, Gliclazide should be preferred versus other sulphonylureas based on the lower risk for hypoglycaemia and better CV safety profile [47–50]. The glucose-lowering potency is very similar for most of the anti-diabetic drugs when starting at a HbA1c level of about 8% [51], however when HbA1c values are < 6.5%, which can be reached when glucose-lowering drugs are selected not inducing hypoglycaemia or weight gain. Metformin remains the optimal drug for monotherapy, its low cost, proven safety, and possible benefits on cardiovascular outcomes have secured its place as the favoured initial drug choice [40–42]. In second line, DPP-4 inhibitors are now widely used, since these drugs are well tolerated by the majority of patients, even in the elderly and renal-impaired patients [43–46]. DPP-4 inhibitors improve glycaemic control with similar efficacy to sulphonylurea, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse effects, and have recently been shown not to increase CV risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms [39]. When sulphonylureas are used with respect to very low cost, Gliclazide should be preferred versus other sulphonylureas based on the lower risk for hypoglycaemia and better CV safety profile [47–50]. The glucose-lowering potency is very similar for most of the anti-diabetic drugs when starting at a HbA1c level of about 8% [51], however when HbA1c values are higher Insulin, GLP-1 receptor agonists, or SGLT2-inhibitors are more powerful than DPP-4 inhibitors and sulphonylureas [52–54].

In T2DM patients already presenting with CVD, principally all drugs (DPP-4 inhibitors, GLP-1 receptor agonists, and basal insulin glargine) with confirmed safety in outcome studies [16–20] could be used, however in order to reduce CV events and CV death, a combination of drugs should be preferred with documented CV benefit. The triple combination of metformin, pioglitazone, and empagliflozin seems to be at the moment the best option (Table 2) to reduce the high risk for recurrent myocardial infarction, acute coronary syndrome or stroke in patients with a history of CVD [22, 23]. In addition, such a combination would result in reduction of CV death and all-cause mortality by about one third [21]. This triple combination would be very effective in lowering HbA1c by different mechanisms – reduction of hepatic glucose production, improvement of insulin sensitivity and by the glucoretic effect [54–58] – but not inducing any risk of hypoglycaemia and offering weight neutrality. The profound effect of lowering of both BP and albuminuria – mediated by different mechanism – may be helpful to reduce the vascular burden of the high risk patients [41, 42, 58, 59]. This triple combination could also be used in patients with CKD stages 3 and 4, since a significant reduction of CV events/mortality was documented for all three compounds, for metformin [60, 61], pioglitazone [25], and empagliflozin [35]. In the presence of heart failure pioglitazone has to be stopped [31], although the well-known water retention effect of pioglitazone may be neutralized by empagliflozin (Table 2). Table 2 shows that (a) some positive or negative effects of the three individual drugs may be neutralized in combination; and (b) in addition some positive effects could also work synergistically. Unfortunately, no study will ever be done to prove our treatment concept for diabetic patients already presenting with CVD. Since in some but not in all studies DPP-4 inhibitors were associated with an increased the risk for
heart failure [62–66], these compounds may also not be used in patients with concomitant occurrence of CVD and heart failure. A recent study showed that the risk for heart failure is particularly high in the presence of CKD [67], thus patients with CVD, CKD and heart failure should be treated with SGLT2 inhibitors but not with DPP-4 inhibitors [66].

In summary, prevention of CV morbidity and mortality remains to be the key factor in the treatment of T2DM. In the early phase of T2DM multifactorial intervention is mandatory and glucose levels should be near normal, in particular in the younger patients presenting with the highest long-term CV risk. Anti-diabetic drugs without any risk for hypoglycaemia should be preferred in order to reduce clinical inertia and increase long-term adherence to the treatment. Two very recent studies [68, 69] are not in favour of a wide use of sulfonylureas or insulin. In a nationwide study [68] using Taiwan’s National Health Insurance Research Database, DPP-4 inhibitors were associated with lower risks for all-cause death (HR 0.63 [95 % CI 0.55–0.72]), MACE (HR, 0.68 [95 % CI 0.55–0.83]), ischemic stroke (HR, 0.64 [95 % CI 0.51–0.81]), and hypoglycaemia (HR, 0.43 [95 % CI 0.33–0.56]) compared with sulfonylureas as add-on therapy to metformin but had no effect on risks for myocardial infarction and hospitalization for heart failure. A recent meta-analysis [69] of randomized controlled trials evaluating the effects of insulin versus oral hypoglycaemic agents (OHAs) on all-cause mortality and CV outcomes in patients with T2DM did not show any superiority for insulin therapy concerning all-cause mortality (RR = 1.00; 95 % CI 0.93–1.07), CV death (RR = 1.00; 95 % CI 0.91–1.09), myocardial infarction (RR = 1.04; 95 % CI 0.93–1.16), angina (RR = 0.97; 95 % CI 0.88–1.06), sudden death (RR = 1.02; 95 % CI 0.66–1.56), or stroke (RR = 1.01; 95 % CI 0.88–1.15). However, insulin reduced the risk of heart failure compared with OHAs (RR = 0.87; 95 % CI 0.75–0.99). In the very high risk subgroup of secondary prevention of CVD insulin did not differ from OHAs in all-cause mortality, CV death, myocardial infarction, or stroke.

In patients presenting with CVD the best outcome may be expected with the triple oral therapy of metformin, pioglitazone and empagliflozin, although a controlled prospective study versus insulin therapy is needed to confirm the expectation.

Our recommendation for the inclusion of pioglitazone in the triple therapy in diabetic patients with a history of CVD is strongly supported by recent findings of the IRIS study [70, 71], where pioglitazone or placebo were added to non-diabetic patients after ischaemic stroke or TIA. After a treatment period of 4.8 years pioglitazone prevented stroke or myocardial infarction by 24 % relative risk reduction and by 2.9 % absolute risk reduction (p < 0.007), despite the fact that the patients were well treated according to current guidelines (antiplatelet drugs in 95 %, statins in 82 %); blood pressure values were 133/79 mmHg and LDL values 89 mg/dl. In the insulin-resistant nondiabetic patients diabetes developed in 7.7 % of the patients receiving placebo, but in only 3.8 % under pioglitazone (58 % relative risk reduction, p < 0.001). Incidence of heart failure or incident cancer were not increased in patients receiving pioglitazone, but there was more weight gain (plus 3 kg) and bone fractures under pioglitazone compared with placebo (5.1 vs. 3.2 %, p = 0.01). Since two thirds of nondiabetic patients with CVD and almost all patients with overt diabetes are insulin resistant, these data show for the first time that a therapy directed to insulin resistance can prevent cardiac and cerebrovascular events and has important clinical consequences.

Table 2 Anticipated combinatory effect of metformin, pioglitazone, and empagliflozin

Heart failure	Fluid retention	Heart failure	Weight	Blood pressure	Hba1c	LDL-cholesterol	HDL-cholesterol	Albuminuria	Insulin sensitivity
↓	↔	↔	↓	↔	↑	↓	↔	↔	↑
↓	↑	↓	↓	↓	↓	↑	↓	↓	↓
↓	↓	↔	↓	↓	↓	↑	↔	↑	↑
↓	↑	↓	↓	↑	↑	↔	↑	↑	↑

↑ lowered, ↑ elevated, ↔ unchanged

Compliance with ethical guidelines

Conflict of interest. G. Schernthaner reports receiving fees for global/EU national advisory meetings from Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Sanofi-Aventis, Servier and Takeda and honoraria for lectures from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Servier and Takeda. G.-H. Schernthaner reports receiving fees for advisory meetings from AstraZeneca, Boehringer Ingelheim, Bristol-Meyers-Squibb, honoraria for lectures from AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Meyers-Squibb, Servier, Sanofi-Aventis and Takeda.

The accompanying manuscript does not include studies on humans or animals.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Schernthaner G (2010) Diabetes and cardiovascular disease: is intensive glucose control beneficial or deadly? Lessons from aCCORD, aDVANCE, VaDIT, UKPDS, PROActive, and NICE-SUGAR. Wien Med Wochenschr 160:8–19
2. Gottein HC, Miller ME, Byington RP et al (2008) Action to control cardiovascular risk in diabetes study group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559
3. Patel A, MacMahon S, Chalmers J et al (2008) ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572
4. Duckworth W, Abrair CA, Moritz T et al (2009) Intensive glucose control and complications in American veterans with type 2 diabetes. N Engl J Med 360:129–139
5. Johnson JA, Bowker SL (2011) Intensive glycaemic control and cancer risk in type 2 diabetes: a meta-analysis of major trials. Diabetologia 54:25–31
6. Schernthaner GH, Schernthaner G (2005) Insulin resistance and inflammation in the early phase of type 2 diabetes: potential for therapeutic intervention. Scand J Clin Lab Invest Suppl 240:30–40
7. Preis SR, Hwang SJ, Coady S (2015) Impact of peripheral arterial disease in diabetes. N Engl J Med 373:232–242
8. White WB, Cannon CP, Heller SR et al (2013) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 369:1317–1326
9. Green JB, Bethel MA, Armstrong PW et al (2015) Effect of saxagliptin on cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 369:1327–1335
10. Dormandy JA, Charbonnel B, Eckland DJ et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In Macrovascular Events); a randomised controlled trial. Lancet 366:1279–1289
11. Trial Investigators ORIGIN, Gerstein HC, Bosch J et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367:319–328
12. Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326
13. White WB, Cannon CP, Heller SR et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335
14. Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 369:1317–1326
15. Pfeffer MA, Claggett B, Diaz R et al (2015) Lisinopril in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257
16. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 371:217–2128
17. Erdmann E, Dormandy JA, Charbonnel B et al (2007) The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROActive (PROActive 05) Study. J Am Coll Cardiol 49:1772–1780
18. Wilcox R, Bousser MG, Betteridge DJ et al (2007) Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROActive (PROspective pioglitAzone Clinical Trial In Macrovascular Events 04). Stroke 38:868–873
19. Dormandy JA, Betteridge DJ, Schernthaner G et al (2009) Impact of peripheral arterial disease in patients with diabetes results from PROActive (PROActive 11). Atherosclerosis 202:272–281
20. Schneider CA, Ferrarini E, Defronzo R et al (2008) Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease. J Am Soc Nephrol 19:182–187
21. Mazzone T, Meyer PM, Feinstein SB et al (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581
22. Nissen SE, Nicholls SJ, Wolski K et al (2008) Comparison of pioglitazone with glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299:1561–1573
23. Schernthaner G (2009) Pleiotropic effects of thiazolidinediones on traditional and nontraditional atherosclerotic risk factors. Int J Clin Pract 63:912–929
24. De Fonzo RA (2010) Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 53:1270–1289
25. Schernthaner G, C D C C C C C C (2013) Do we still need pioglitazone for the treatment of type 2 diabetes? A risk-benefit critique in 2013. Diabetes Care 36(Suppl 2):S155–S161
26. Ermann E, Charbonnel B, Wilcox RG (2007) Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROActive study. Diabetes Care 30:2773–2778
27. Lewis JD, Habel LA, Quesenberry CP et al (2015) Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA Intern Med 175:265–277
28. Levin D, Bell S, Sund R et al (2015) Pioglitazone and bladder cancer risk: a multipopulation pooled, cumulative exposure analysis. Diabetologica 58:493–504
29. Chilton R, Tikkanen I, Cannon CP et al (2015) Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 17:1180–1193
30. Wanner C, Lachin JM, Fitchett DH et al. (2015) Empagliflozin and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Chronic Kidney Disease. J Am Soc Nephrol 26(Suppl 1):1133
31. Nathan DM, Buse JB, Davidson MB et al (2009) (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203
32. Schernthaner G, Barnett AH, Betteridge DJ et al (2010) Is the ADA/EASD algorithm for the management of type 2 diabetes (January 2009) based on evidence or opinion? A critical analysis. Diabetologia 53:1258–1269
33. Inzucchi SE, Bergensland RM, Buse JB et al (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach. position statement of the american diabetes association (ada) and the european association for the study of diabetes (easd). Diabetologia 55:1777–1596
34. Inzucchi SE, Bergensland RM, Buse JB et al (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38:140–149
35. Schernthaner G, Schernthaner GH (2008) Metformin – From Devil to Angel. In: Pharmacotherapy of Diabetes: New Developments. In: CE Mogensen, editor. Wien: Springer; pp77–86
36. Altay CJ (2008) Metformin: effects on micro and macrovascular complications in type 2 diabetes. Cardiovasc Drugs Ther 22:215–224
37. Schernthaner G, Matthews DR, Charbonnel B et al (2004) Efficacy and safety of pioglitazone versus metformin in patients with type 2 diabetes mellitus: a double-blind, randomized trial. J Clin Endocrinol Metab 89:6068–6076
38. Deaton CF, Lebovitz HE (2015) A comparative review of DPP-4 inhibitors and Sulphonylureas. Diabetes Obes Metab. doi:10.1111/dom.12610 [Epub ahead of print]
39. Schernthaner G, Barnett AH, Patel S et al (2014) Safety and efficacy of the thiazolidinedione pioglitazone-4 inhibitor linagliptin in elderly patients with type 2 diabetes: a comprehensive analysis of data from 1331 individuals aged ≥65 years. Diabetes Obes Metab 16:1078–1086
40. Groop PH, Del Prato S, Taskinen MR et al (2014) Linagliptin treatment in subjects with type 2 diabetes with and without mild-to-moderate renal impairment. Diabetes Obes Metab 16:560–568
41. Schernthaner G, Durán-García S, Hanefeld M et al (2015) Efficacy and tolerability of saxagliptin compared with glimepiride in elderly patients with type 2 diabetes: a randomized, controlled study (GENERATION). Diabetes Obes Metab 17:630–638

Herz · 2016 | 215
47. Schernthaner G, Grimaldi A, Di Mario U et al (2004) GUIDE study: double-blind comparison of once-daily gliazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest 34:335–342

48. Schramm TK, Gislason GH, Vaag A et al (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32:1900–1908

49. Abdelmoneim AS, Eurch DT, Gamble JM et al (2014) Risk of acute coronary events associated with glyburide compared with gliazide use in patients with type 2 diabetes: a nested case-control study. Diabetes Obes Metab 16:22–29

50. Simpson SH, Lee J, Choi S et al (2015) Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol 3:43–51

51. Gross JL, Kramer CK, Leitão CB et al (2011) Effect of metformin on peripheral insulinsensitivity in non-insulin dependent diabetes mellitus. Diabetes Metab 32:346–350

52. Natali A, Ferrannini E (2006) Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49:434–441

53. Abdul-Ghani MA, Norton L, Defronzo RA (2011) Role of sodium-glucose cotransporter 2 (SGLT2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 32:515–531

54. Schernthaner G, Mogensen CE, Schernthaner GH (2014) The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system. Diab Vasc Dis Res 11:306–323

55. Roussel R, Travert F, Pasquet B et al (2010) Reduction of Atherothrombosis for continued health (ReACH) registry investigators. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med 170:1892–1899

56. Schernthaner G, Schernthaner-Reiter MH (2015) Risk of metformin use in patients with T2DM and advanced CKD. Nat Rev Endocrinol 11:697–699

57. Scirica BM, Braunwald E, Raz I et al (2014) Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 130:1579–1588

58. Wei DL, Alistrator RA, Senthilvelan A et al (2014) Sitagliptin use in patients with diabetes and heart failure: a population-based retrospective cohort study. JACC Heart Fail 2:573–582

59. Zannad F, Cannon CP, Cushman WC et al (2015) Heart failure and mortality outcomes in patients with type 2 diabetes taking alagliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 385:2067–2076

60. Fu AZ, Johnston SS, Gannam A et al (2016) Association between hospitalization for heart failure and Dipeptidyl Peptidase-4 inhibitors in patients with type 2 diabetes: an observational study. Diabetes Care. doi:10.2337/dc15-0764 [Epub ahead of print]

61. Schernthaner G, Cahn A, Raz I (2016) Is the use of DPP-4 inhibitors associated with an increased risk for heart failure – lessons from SAVOR, EXAMINE and TECOS. Diabetes Care [Epub ahead of print]

62. Udell JA, Bhatt DL, Braunwald E et al (2015) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes and moderate or severe renal impairment: observations from the SAVOR-TIMI53 trial. Diabetes Care 38:701–705

63. Ou SM, Shih CJ, Chao PW et al (2015) Effects on the clinical outcomes of adding Dipeptidyl Peptidase-4 inhibitors versus Sulfonylureas to Metformin therapy in patients with type 2 diabetes mellitus. Ann Intern Med 163:663–672

64. Li J, Tong Y, Zhang Y, Tang L et al (2016) Effects on All-cause Mortality and Cardiovascular Outcomes in Patients With Type 2 Diabetes by Comparing Insulin With Oral Hypoglycemic Agent Therapy: A Meta-analysis of Randomized Controlled Trials. Clin Ther. doi:10.1016/j.clinthera.2015.12.006 [Epub ahead of print]

65. Viscoli CM, Brass LM, Canoee A et al (2014) Pioglitazone for secondary prevention after myocardial infarction. Arch Intern Med 174:145–151

66. Viscoli CM, Brass LM, Canoee A et al (2014) Pioglitazone for secondary prevention after myocardial infarction. Arch Intern Med 174:145–151

67. Viscoli CM, Brass LM, Canoee A et al (2014) Pioglitazone for secondary prevention after myocardial infarction. Arch Intern Med 174:145–151

68. Viscoli CM, Brass LM, Canoee A et al (2014) Pioglitazone for secondary prevention after myocardial infarction. Arch Intern Med 174:145–151

69. Li J, Tong Y, Zhang Y, Tang L et al (2016) Effects on All-cause Mortality and Cardiovascular Outcomes in Patients With Type 2 Diabetes by Comparing Insulin With Oral Hypoglycemic Agent Therapy: A Meta-analysis of Randomized Controlled Trials. Clin Ther. doi:10.1016/j.clinthera.2015.12.006 [Epub ahead of print]

70. Viscoli CM, Brass LM, Canoee A et al (2014) Pioglitazone for secondary prevention after myocardial infarction. Arch Intern Med 174:145–151

71. Kerman WN, Viscoli CM, Furie KL et al (2016) Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N Engl J Med. doi: 10.1056/NEJMoa1506930

Buchbesprechung

J. Bossemayer

Wider die ärztliche Kunst?

Recht und Unrecht in der Medizin

Stuttgart: Georg Thieme Verlag 2015, 144 S., (ISBN 987-3-13-198931-4), 19.99 EUR

Medizin, Recht und das wahre Leben: Diese Kombination bildet den Stoff, den der Autor geschickt und überaus unterhaltsam in lehrreichen Kurzgeschichten für den Leser aufbereitet.

Die Grenze zwischen Recht und Unrecht ist zuweilen verwischt. Dies gilt besonders dann, wenn zusätzlich zu den allgemeinen Rechtsgrundsätzen noch Richterrecht im Bereich der Arzthaftung und ärztliches Berufsrecht Geltung beanspruchen.

Der Autor spricht insgesamt zehn medizino- legalen Problemzonen von A (Arzthaftung) bis Z (Zulassung der vertragsärztlichen Tätigkeit) an, mit denen jeder Arzt in seinem Berufsleben konfrontiert werden kann. Die zivilrechtlichen Fallstricke bei einer Berufsausübungsgemeinschaft, bei der Patientenaufklärung über Risiken und Behandlungsalternativen, bei rein kosmetischen Eingriffen, bei der Delegation ärztlicher Leistungen sowie die strafrechtlichen Konsequenzen bei einer vorwiegend wirtschaftlich ausgerichteten Indikationsstellung oder bei unzutreffender Vorgabe medizinischer Qualifikation, sogar bis zum Mordvorwurf, werden durch kleine Erzählungen dem Leser plastisch vor Augen geführt.

Wer jeweils trockene Sachverhalte in Gerichtsurteilen gelesen hat, wird deren lebendige und spannende Aufbereitungsart in diesem Buch zu schätzen wissen. Sobald der Leser eine der zehn kurzen Geschichten zu lesen begonnen hat, wird er die fesselnde Lektüre dieser Episode erneut nachlesen, um die unterschiedlichen Verstöße medizinischer Qualifikation, sogar bis zum Mordvorwurf, werden durch kleine Erzählungen dem Leser plastisch vor Augen geführt.

Wer jeweils trockene Sachverhalte in Gerichtsurteilen gelesen hat, wird deren lebendige und spannende Aufbereitungsart in diesem Buch zu schätzen wissen. Sobald der Leser eine der zehn kurzen Geschichten zu lesen begonnen hat, wird er die fesselnde Lektüre dieser Episode erneut nachlesen, um die unterschiedlichen Verstöße medizinischer Qualifikation, sogar bis zum Mordvorwurf, werden durch kleine Erzählungen dem Leser plastisch vor Augen geführt.

J. Neu (Hannover)