Oxidative coupling of methane—comparisons of MnTiO$_3$–Na$_2$WO$_4$ and MnO$_x$–TiO$_2$–Na$_2$WO$_4$ catalysts on different silica supports

Worapinit Tiyatha1,2, Thanaphat Chukeaw1,2, Sarannuch Sringam1,2, Thongthai Witoon1,2,3, Metta Chareonpanich1,2,3, Günther Rupprecht4 & Anusorn Seubsai1,2,3

The oxidative coupling of methane (OCM) converts CH$_4$ to value-added chemicals (C$_2$+), such as olefins and paraffin. For a series of MnTiO$_3$–Na$_2$WO$_4$ (MnTiO$_3$-NW) and MnO$_x$–TiO$_2$–Na$_2$WO$_4$ (Mn-Ti-NW), the effect of loading of MnTiO$_3$ or MnO$_x$ on two different supports (sol–gel SiO$_2$ (SG) and commercial fumed SiO$_2$ (CS)) was examined. The catalyst with the highest C$_2$+ yield (21.6% with 60.8% C$_2$+ selectivity and 35.6% CH$_4$ conversion) was 10 wt% MnTiO$_3$-NW/SG with an olefins/paraffin ratio of 2.2. The catalyst surfaces with low oxygen-binding energies were associated with high CH$_4$ conversion. Stability tests conducted for over 24 h revealed that SG-supported catalysts were more durable than those on CS because the active phase (especially Na$_2$WO$_4$) was more stable in SG than in CS. With the use of SG, the activity of MnTiO$_3$-NW was not substantially different from that of Mn-Ti-NW, especially at high metal loading.

Methane (CH$_4$) is a major chemical feedstock with a tetrahedral structure. The primary chemical conversions of CH$_4$ include oxidation, syngas reforming, and halogenation1, which are difficult to control. The lifetime of CH$_4$ in the environment is much shorter than that of CO$_2$, but CH$_4$ traps radiation more efficiently than CO$_2$. Therefore, CH$_4$ has a greater impact on global warming than the same amount of CO$_2$. Indeed, the cumulative influence of CH$_4$ over 100 years is estimated to be 25 times greater than that of CO$_2$.1 In recent years, the total CH$_4$ emissions have been found to result from natural gas and petroleum systems (30%), enteric fermentation (27%), landfills (17%), manure management (9%), and coal mining (7%), and others (10%)3. Processes for an efficient conversion of CH$_4$ to useful chemicals are, therefore, of great interest to reduce the amount of CH$_4$ released to the atmosphere.

Methane can be used both indirectly and directly to produce high-value hydrocarbons, such as olefins and paraffin = C$_2$+. The indirect methods use methane steam reforming, dry reforming, or partial oxidation as the first process for the production of synthesis gas (CO and H$_2$). Subsequently, Fischer–Tropsch and methanol synthesis processes are applied to generate value-added products4. The indirect methods are currently commercially applied in the petrochemical industry5, but direct methods would be clearly beneficial.

A feasible route is the direct conversion of methane to C$_2$+ via oxidative coupling of methane (OCM) either by heterogeneous catalytic or homogeneous non-catalytic processes. The OCM reaction occurs at high temperatures (700–900 °C) at atmospheric pressure and requires only oxygen as the co-reactant in an inert gas (such as nitrogen) feed. As the non-catalytic process suffers from low methane conversion and selectivity, a heterogeneous catalytic process is desirable. Therefore, having a suitable solid catalyst is a prerequisite for the catalytic OCM process before commercialization to become industrially viable.

The OCM reaction is capable of generating C$_2$+, specifically ethylene (C$_2$H$_4$), but yields below 20% prevent commercial OCM. Under appropriate process conditions, yields of 30% have been reported in laboratory tests.

1Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand. 2Center of Excellence on Petrochemical and Materials Technology, Kasetsart University, Bangkok 10900, Thailand. 3Research Network of NANOTEC–KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok 10900, Thailand. 4Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria. *email: fengasn@ku.ac.th
with a minimum \(\text{C}_2 \text{H}_4 \) yield of 25% required to make the method economically feasible (35–50% would be more practical)\(^\text{2}\). Generally, to be commercially attractive, \(\text{C}_2 \) selectivity and \(\text{CH}_4 \) conversion in OCM must exceed 80% and 30%, respectively\(^\text{2}\), which has stimulated research for many years\(^\text{3}\). However, despite exhaustive efforts, the OCM reaction still lacks a highly active and stable catalyst with high performance for \(\text{C}_2 \) formation.

Previous studies have indicated that NaN\(_2\)WO\(_4\)-MnO\(_x\)-SiO\(_2\)-based catalysts were among the most active ones that yielded high \(\text{C}_2 \) selectivity at high \(\text{CH}_4 \) conversions, resulting in a \(\text{C}_2 \) yield of 10–35%\(^\text{9-19}\). The high performance of these catalysts resulted from a complex combination of several factors, as inferred from literature. Some interesting facts on the active components are detailed as follows:

i. Na atoms are necessary for the phase transition of amorphous SiO\(_2\) to crystalline α-cristobalite at low calcination temperature (800 °C)\(^\text{20,21}\). It is noteworthy that the usual temperature for this phase change is approximately 1500 °C\(^\text{22}\). Additionally, the mobility of Na\(^+\) species during OCM at high temperatures (750–850 °C) can create active sites on the catalyst surface, facilitating hydrogen abstraction of CH\(_4\)\(^\text{23}\). Moreover, it was suggested that Na\(^+\) aids in the stability of the active WO\(_x\) phase\(^\text{9,24}\). Furthermore, it was claimed that active NaO species can be generated in small amounts in the catalytically relevant temperature regime (above 600 °C), and these NaO species are responsible for high activity and \(\text{C}_2 \) selectivity\(^\text{25}\).

ii. In a study of NaN\(_2\)WO\(_4\)/SiO\(_2\), using temporal analysis of products (TAP) and steady-state OCM reaction studies, the Na-WO\(_4\) sites on the surface were indicated to be responsible for the selective activation of CH\(_4\) to C\(_2\)H\(_6\) and over-oxidization of CH\(_4\) to CO\(_2\). On the other hand, the molten NaN\(_2\)WO\(_4\) phase promotes the oxidative dehydrogenation of C\(_2\)H\(_6\) to C\(_2\)H\(_4\), but it is also responsible for the over-oxidation of CH\(_4\) to CO\(_2\)\(^\text{26}\).

iii. WO\(_4\) and MnO\(_x\) are the crucial active components for the generation of C\(_2\) products. They cooperate during the reaction as follows. Initially, the O\(^{2-}\) species associated with the surface WO\(_4\) (W\(^{6+}\)) sites, especially the tetrahedral form\(^\text{27}\), activates CH\(_4\) into a gaseous methyl radical. As a result, the W\(^{5+}\) center is transformed to W\(^{4+}\) with one chemical bond of \(\text{W}–\text{OH} \). Thereafter, the oxidation of W\(^{5+}\) to W\(^{6+}\) occurs through electron transfer from W\(^{6+}\) to Mn\(^{3+}\), subsequently reducing Mn\(^{3+}\) to Mn\(^{2+}\). Finally, the oxidation of Mn\(^{2+}\) to Mn\(^{3+}\) occurs via reaction with gaseous oxygen, which generates an OH radical and an active oxygen atom\(^\text{28-30}\). In other words, the MnO\(_x\) species boosts the oxygen mobility in the catalyst, resulting in an improved exchange of gaseous and surface oxygen\(^\text{31}\). Additionally, an in-depth study of Mn addition to 5NaN\(_2\)WO\(_4\)/SiO\(_2\) catalyst revealed that Mn enhances the formation of both dissolved O\(_2\) and lattice atomic O species, which are responsible for catalyzing the OCM reaction. Therefore, the CH\(_4\) conversion toward C\(_2\) formation is improved\(^\text{32,33}\).

iv. The addition of TiO\(_2\) into the MnO\(_x\)-Na\(_2\)WO\(_4\)/SiO\(_2\) catalyst further reduces the temperature of CH\(_4\) activation in the OCM reaction to approximately 650–720 °C. This is probably due to the formation of a MnTiO\(_3\) phase that enables the transition of Mn\(^{2+}\) to Mn\(^{3+}\) at a lower temperature than that of the MnO\(_x\) phase\(^\text{34}\).

v. The α-cristobalite SiO\(_2\) is considered to assist CH\(_4\) activation (although the underlying mechanism is unclear)\(^\text{15,20}\), but upon calcination (starting with amorphous SiO\(_2\)), the surface area of the support declines substantially\(^\text{14,35}\). Accordingly, some reports have shown that the phase transformation during the reaction causes catalyst deactivation\(^\text{27,36}\). Other causes for catalyst deactivation may include the decomposition of active phases (such as NaN\(_2\)WO\(_4\))\(^\text{37-39}\) and/or loss of NaO due to sublimation during the reaction\(^\text{25}\).

In several other studies, catalysts containing Mn, Na, Ti, W, and/or mesoporous SiO\(_2\) have been claimed as highly active for OCM with MnTiO\(_3\), MnO\(_x\), and TiO\(_2\) components being recommended as critical active phases for CH\(_4\) activation. Many studies have attempted to further improve the C\(_2\) selectivity and CH\(_4\) conversion of NaN\(_2\)WO\(_4\)-MnO\(_x\)-SiO\(_2\)-based catalysts by understanding the mechanism over the surface. For example, a study on the addition of H\(_2\)O to the testing system revealed that H\(_2\)O did not change the overall scheme of product formation but it was able to reduce the contribution of direct oxidation of CH\(_4\) to CO\(_2\)\(^\text{37}\). The effect of pressure was studied on the performance of MnNa\(_2\)WO\(_4\)/SiO\(_2\), which revealed that the increase of pressure leads to higher C\(_2\) selectivity and can accelerate unselective gas-phase reactions more than surface catalyzed processes\(^\text{39}\). It is also possible that the CH\(_4\) conversions of 60–75% range could be obtained at a maximized C\(_2\) yield in each specific reactor setup\(^\text{37}\). Our previous investigation of MnTiO\(_3\) and Na\(_2\)WO\(_4\) on different silica-based supports (fumed SiO\(_2\), MCM-41, and SBA-15) showed that the presence of MnTiO\(_3\) and Na\(_2\)WO\(_4\) on SBA-15 substantially increased CH\(_4\) activation of CH\(_3\) and H radicals, causing the OCM reaction to efficiently generate C\(_2\) hydrocarbons\(^\text{40}\). However, the MnTiO\(_3\) nanocomposite has been less studied than the MnO\(_x\) + TiO\(_2\) nanocomposite. Furthermore, the preparation of sol-gel SiO\(_2\) has never been combined with such catalysts. We have speculated that a catalyst prepared using the sol-gel SiO\(_2\) may resist catalyst deactivation better when fumed SiO\(_2\) is used. Therefore, the current study aimed for a systematic comparison of the activity/selectivity of MnTiO\(_3\)-Na\(_2\)WO\(_4\) and MnO\(_x\)-TiO\(_2\)-Na\(_2\)WO\(_4\) supported on different silica-based supports (sol-gel SiO\(_2\) and commercial fumed SiO\(_2\)). The results should reveal: (i) Whether the MnTiO\(_3\) phase indeed functions better in the OCM reaction than the nanocomposite mixture of MnO\(_x\) and TiO\(_2\), and (ii) Whether the type of SiO\(_2\) support has a substantial influence on catalytic performance.

Results and discussion
Activity of catalysts in the OCM reaction. The nanocomposite MnTiO\(_3\)-NW/CS, MnTiO\(_3\)-NW/SG, and Mn-Ti-NW/SG catalysts, containing 0–20 wt% of MnTiO\(_3\) or Mn-Ti, respectively, were tested for the OCM reaction (Table 1, Supplementary Figure S1). Considering the catalyst performance in terms of C\(_2\) yield per catalyst mass, when the amount of MnTiO\(_3\) or Mn-Ti increased from 0 to 5 or 10 wt%, respectively, the corresponding activities suddenly increased, but then maintained the maximum values for higher loadings. The high-
est C₂+ yields achieved were 20.6% (58.0% C₂+ selectivity with 35.5% CH₄ conversion) for 5 wt% MnTiO₃-NW/CS, 21.6% (60.8% C₂+ selectivity with 35.6% CH₄ conversion) for 10 wt% MnTiO₃-NW/SG, and 21.5% (60.5% C₂+ selectivity with 35.5% CH₄ conversion) for 20 wt% Mn-Ti-NW/SG. The activity of MnTiO₃-NW/CS gradually diminished as the MnTiO₃ loading exceeded 10 wt%, whereas the activities of MnTiO₃-NW/SG and Mn-Ti-NW/SG (both with the sol–gel SiO₂ support) hardly changed.

For the OCM reaction, designing a catalyst with high olefin selectivity is still challenging. Olefins, especially ethylene and propylene, have been important raw chemicals since the beginning of the chemical industry in the 1920s. Various downstream products of olefins, such as polyethylene, propylene, polyvinyl chloride, and ethanol, are utilized worldwide⁴⁴. In Table 1, the catalytic performance is presented in terms of olefins/paraffin selectivity and olefins/paraffin ratio. It is important to note that the number (5, 10, 15, and 20) preceding each catalyst name refers to the loading of MnTiO₃ or Mn-Ti, with “0wt%” omitted. The results indicated that NW/CS and NW/SG had relatively low olefins/paraffin ratios of 1.3 and 1.2, respectively. The 5MnTiO₃-NW/CS and 10MnTiO₃-NW/CS catalysts had relatively high olefins/paraffin ratios of 2.1 and 2.2, respectively, with the highest C₂+ yield of 20.6%. When the MnTiO₃ amount increased over 10 wt%, the olefins/paraffin ratio slightly decreased, corresponding to a higher COₓ selectivity. For MnTiO₃-NW/SG and Mn-Ti-NW/SG, the olefins/paraffin ratios changed negligibly (2.2–2.3) as the amount of MnTiO₃ and Mn-Ti increased. The difference in the behaviors of olefins/paraffin ratio at high loadings could be related to the distribution of the active metals on each support. The active metals of the catalysts using SG could be more well-dispersed due to the high porosity of the SG (see more detail in the discussion of Scheme 1). Considering the performance between MnTiO₃-NW and Mn-Ti-NW on SG, at the same loading, the performance between these two had no significant difference, except at 5wt% loading 5MnTiO₃-NW/SG exhibited a slightly lower performance. The catalysts producing the maximum yield in each group (5MnTiO₃-NW/CS, 10MnTiO₃-NW/SG, and 20Mn-Ti-NW/SG) exhibited high levels of dehydrogenation resulting in olefins/paraffin ratios of 2.1–2.3. However, when considering the C₂⁺ formation rate (τC₂⁺)—total moles of C₂⁺ per total moles of MnTiO₃ or (Mn + Ti) and Na₂WO₄ per h—of each catalyst (see Table 1), 5MnTiO₃-NW/CS, 5MnTiO₃-NW/SG, and 5Mn-Ti-NW/SG exhibited the highest τC₂⁺, in each group. This suggests that the accessible active sites of the catalysts at high loadings (>5 wt%) are limited, possibly because of the low surface area and lack of pores of the catalysts. Nonetheless, this present work considers the catalyst performance in terms of C₂⁺ yield per catalyst mass, and thus 5MnTiO₃-NW/CS, 10MnTiO₃-NW/SG, and 20Mn-Ti-NW/SG were chosen for further characterization.

Table 1. Performance of OCM catalysts. Testing conditions: 50 mg catalyst, gas feed of CH₄:O₂:N₂ = 3:1:4, reactor temperature = 700 °C, atmospheric pressure, total gas flow rate = 50 mL min⁻¹ (GHSV = 30,588 h⁻¹).

Catalyst	Olefins selectivity (%)	Paraffins selectivity (%)	Olefins/paraffins (mol/mol)	C₂⁺ selectivity (%)	CH₄ conversion (%)	C₂⁺ yield (%)	rC₂⁺ *
NW/CS	18.2	13.7	1.3	33.1	21.9	21.9	7.2
5MnTiO₃-NW/CS	37.2	17.6	2.1	58.1	35.5	20.6	0.60
10MnTiO₃-NW/CS	37.6	17.0	2.2	57.8	35.7	20.6	0.40
15MnTiO₃-NW/CS	34.2	17.5	2.0	54.7	34.4	18.8	0.28
20MnTiO₃-NW/CS	27.6	15.2	1.8	45.0	31.7	14.4	0.17
NW/SG	14.5	12.1	1.2	27.5	20.5	20.5	5.6
5MnTiO₃-NW/SG	32.2	18.8	1.7	53.8	28.9	16.2	0.47
10MnTiO₃-NW/SG	39.1	18.1	2.2	60.8	35.6	21.6	0.42
15MnTiO₃-NW/SG	39.0	18.0	2.2	60.5	35.5	21.4	0.31
20MnTiO₃-NW/SG	39.6	18.1	2.2	61.3	35.3	21.6	0.25
5Mn-Ti-NW/SG	38.5	17.0	2.3	59.0	35.4	20.9	0.60
10Mn-Ti-NW/SG	37.9	17.1	2.2	58.5	35.4	20.7	0.40
15Mn-Ti-NW/SG	38.3	17.6	2.2	59.3	35.0	20.8	0.30
20Mn-Ti-NW/SG	39.4	17.5	2.3	60.5	35.5	21.5	0.24

Catalyst characterization. The most promising catalysts from Sect. “Activity of catalysts in the OCM reaction” were further analyzed to explain their performance via their properties. The selected catalysts included the basic catalysts (NW/CS and NW/SG), the catalysts producing the maximum yield in each group (5MnTiO₃-NW/CS, 10MnTiO₃-NW/SG, and 20Mn-Ti-NW/SG), and one other catalyst from each group (20MnTiO₃-NW/CS, 20MnTiO₃-NW/SG, and 5Mn-Ti-NW/SG). The XRD patterns of these catalysts are collected in Supplementary Figure S2, with the assignment of XRD peaks to crystalline phases summarized in Supplementary Table S1. The catalysts producing the maximum yield in each group (5MnTiO₃-NW/CS, 10MnTiO₃-NW/SG, and 20Mn-Ti-NW/SG) exhibited high levels of dehydrogenation resulting in olefins/paraffin ratios of 2.1–2.3. However, when considering the C₂⁺ formation rate (τC₂⁺)—total moles of C₂⁺ per total moles of MnTiO₃ or (Mn + Ti) and Na₂WO₄ per h—of each catalyst (see Table 1), 5MnTiO₃-NW/CS, 5MnTiO₃-NW/SG, and 5Mn-Ti-NW/SG exhibited the highest τC₂⁺, in each group. This suggests that the accessible active sites of the catalysts at high loadings (>5 wt%) are limited, possibly because of the low surface area and lack of pores of the catalysts. Nonetheless, this present work considers the catalyst performance in terms of C₂⁺ yield per catalyst mass, and thus 5MnTiO₃-NW/CS, 10MnTiO₃-NW/SG, and 20Mn-Ti-NW/SG were chosen for further characterization.
characteristic of Na2WO4 and α-cristobalite. This confirmed the transformation of amorphous SiO2 to α-cristobalite assisted by Na atoms, in line with the previous reports20,23,45. Nevertheless, crystalline Mn3O4, Mn2O3, and TiO2 were also detected, indicating that the MnTiO3 particles partially decomposed into MnOx and TiO2 during catalyst preparation. The crystalline Mn3O4, Mn2O3, and TiO2 phases were observed for the catalysts prepared with Mn and Ti. The MnTiO3 phase was detected in all catalysts that were prepared with MnTiO3. Weak signals of the α-tridymite phase in all catalysts and strong signals of quartz were perceived in 10wt% and 20wt%MnTiO3-NW/SG. The catalytic tests (Table 1) indicate that the catalysts containing MnTiO3, MnOx, TiO2, and α-cristobalite had high C2+ yields; thus, these crystalline phases seem essential in enhancing C2+ formation.

The morphology of the catalysts imaged by FE-SEM is presented in Fig. 1 and the average particle size of each catalyst determined using ImageJ software is presented in Supplementary Figure S3–S12 and Table S2–S11. The CS support appeared spherical with an average particle size of 34 nm (Fig. 1a), whereas SG contained multiple layers (average thinness of 0.4 µm) with porosity (Fig. 1e). All prepared catalysts had similar coral-like particles. However, the average width of particles of catalysts prepared from CS (approximately 0.3–0.5 µm) was somewhat smaller than those from SG (approximately 0.4–0.6 µm). Upon the addition of different quantities of MnTiO3 or Mn-Ti to the catalysts, the particle size and shape on the micrometer-scale changed negligibly. The elemental distribution and amount of Mn, Ti, Na, W, and Si in 10MnTiO3-NW/SG (Fig. 2) and the other selected catalysts (Supplementary Table S12) were examined by FE-SEM with EDX. Each element was well-dispersed over the surface of the catalysts, which facilitated the activation of CH4 19.
The structural morphologies of 10MnTiO₃-Na₂WO₄/SG were characterized using HR-TEM as shown in Fig. 3. As seen in Fig. 3, the active sites were distributed throughout the SG. The Si/SiO₂ had a lattice d-spacing of 0.36 nm, corresponding to the Si crystal lattice [1 1 0]⁴⁶. The lattice d-spacings of 0.20 and 0.27 nm corresponded to the crystal plane of MnTiO₃ [1 1 0]⁴⁷ and TiO₂ [1 0 1]⁴⁷, respectively. The WO₃/W had a lattice d-spacing of 0.21 nm, relating to the lattice plane of WO₃/W [2 0 1]⁴⁸. The Mn₂O₃ and Mn₃O₄ had a lattice d-spacing of 0.23 nm, corresponding to the crystal plane of Mn₂O₃ [1 1 1]⁴⁹ and Mn₃O₄ [0 1 0]⁵₀. The HR-TEM results confirm that the active phases distributed throughout the SG support and 10MnTiO₃-Na₂WO₄/SG are nanocomposite due to the nano-scale structures⁵¹.

The BET surface area, pore-volume, and pore size of all catalysts determined by N₂-physisorption are presented in Table 2 (isotherms are shown in Supplementary Figure S13). SG had the highest BET surface area (409.2 m² g⁻¹), followed by CS (89.6 m² g⁻¹). After using the supports for catalyst preparation, the BET surface areas were largely reduced (0.7–5.7 m² g⁻¹). The surface area of similar catalysts was also reduced after calcination (2.9–8.6 m² g⁻¹; amorphous SiO₂ support 89.6 m² g⁻¹)⁴⁸,⁵⁸. The tremendous reduction of the surface area of the supports (i.e., SG and CS) generally occurs when preparing a catalyst containing Na₂WO₄/SiO₂. This is because the structure of the support (e.g., porous material and/or nanoparticle) has completely changed from...
nanoparticles (30–50 nm) to large grain sizes (approximately 0.2–1.0 μm) as indicated by the SEM images in Fig. 1 of an α-cristobalite-containing catalyst without internal pores (i.e., non-porous material)27,52. Thus, a very small surface area (e.g., < 6 m2/g) is obtained. The catalysts containing MnTiO\textsubscript{3} exhibited smaller surface areas, pore-volumes, and pore sizes than those without MnTiO\textsubscript{3}. Similarly, the addition of Mn + Ti produced catalysts with a small surface area (3.2–3.4 m2/g), but still larger than those containing MnTiO\textsubscript{3}. Nevertheless, there was a negligible difference between the pore volumes and pore sizes of catalysts with and without Mn + Ti. Moreover, the increased loading of MnTiO\textsubscript{3} from 10 to 20 wt% on NW/SG or Mn + Ti from 5 to 20 wt% on NW/SG did not significantly change the surface area. Based on the N\textsubscript{2}-physisorption isotherm analysis in Supplementary Figure S13, and according to the IUPAC classification, the SG support is specified as type IV (mesoporous material, containing pore size of 5–10 nm) with H1 hysteresis, while the CS support and all the prepared catalysts showed an indistinct hysteresis loop. However, after careful analysis of the plots shown as inserts of Supplementary Figure S13 and the SEM images (Fig. 1), the CS support and the catalysts appeared to be non-porous with rough surfaces, which would be classified as type II (nonporous material).

The FTIR patterns of selected catalysts producing the maximum yield in each group (5MnTiO\textsubscript{3}-NW/CS, 10MnTiO\textsubscript{3}-NW/SG, and 20Mn-Ti-NW/SG) are displayed in Fig. 4. The FTIR peaks at 970, 880, and 740 cm-1 correspond to Si–O–(H–H\textsubscript{2}O)28, Si–OH53, and Si–O–C54,55 bonds, respectively. The FTIR peak at 622 cm-1 for all

Catalyst	BET surface area (m2/g)	Pore volume (cm3/g)	Pore size (nm)
CS	89.6	-	-
NW/CS	5.7	-	-
5MnTiO\textsubscript{3}-NW/CS	3.2	-	-
20MnTiO\textsubscript{3}-NW/CS	0.7	-	-
SG	409.2	0.545	5–10
NW/SG	3.8	-	-
10MnTiO\textsubscript{3}-NW/SG	1.7	-	-
20MnTiO\textsubscript{3}-NW/SG	1.8	-	-
5Mn-Ti-NW/SG	3.2	-	-
20Mn-Ti-NW/SG	3.4	-	-

Table 2. BET surface area, pore volume, and pore size of catalysts.

Figure 4. FTIR spectra of selected catalysts.
catalysts characterizes α-cristobalite SiO$_2$. Previous studies suggested that the amorphous SiO$_2$ can transform to the α-cristobalite SiO$_2$ at 800 °C if Na is present during the calcination 20,21. To confirm that, CS, Na/CS, and NW/CS were prepared using the same procedure as 5MnTiO$_3$-NW/CS and analyzed using FTIR as shown in Supplementary Figure S14. The peak at 622 cm$^{-1}$ that specifies the α-cristobalite SiO$_2$ phase was also observed when Na was present (i.e., Na/CS and NW/CS). This is in good agreement with the reports 21. An FTIR peak at 695 cm$^{-1}$ was only observed for 10MnTiO$_3$-NW/SG, indicating the presence of quartz (SiO$_2$) 56. The FTIR peak at 525 cm$^{-1}$ is associated with the bending vibration mode of O–Mn–O 57, indicating the presence of MnO$_2$. The intense peak at 590 cm$^{-1}$ originates from the vibration of the O–Ti–O bond 58, which was detected in the TiO$_2$-containing catalyst. The peak at 1632 cm$^{-1}$ was assigned to the O–H bending mode, due to moisture 59.

The surface composition of the catalysts was analyzed by XPS (Supplementary Table S13 and Supplementary Figure S15–S19). The curve-fitted and quantified XPS peaks of Na 1s, W 4f, Si 2p, Ti 2p, and Mn 2p are presented in Supplementary Table S13. The XPS peaks were considered as a mixture of Gaussian and Lorentzian functions (80:20 ratio) 60. Na is a component of Na$_2$WO$_4$ (Supplementary Figure S15). The binding energies of W 4f$_{7/2}$ and W 4f$_{5/2}$ (Supplementary Figure S16) in every catalyst indicated the presence of WO$_4^{2-}$ 22,23. The peaks of Si 2p (Supplementary Figure S17) correspond to SiO$_2$. The binding energies of Mn 2p (Supplementary Figure S18) and Ti 2p (Supplementary Figure S19) for nanocomposite MnTiO$_3$-NW/CS and MnTiO$_3$-NW/SG were different from those of nanocomposite Mn-Ti-NW/SG.

In the OCM mechanism, the oxygen species are crucial for CH$_4$ activation. The XPS spectra and the O 1 s binding energies of the different catalysts are presented in Fig. 5 and Table 3, respectively. Overall, three types...
of oxygen species were identified: oxygen of M–O species at 530.5–530.9 eV, oxygen of Si–O at 532.7–532.9 eV, and O_2^- at 533.3–533.6 eV. M–O represents the oxygen species of Na–O at 530.8 eV, W–O at 530.6 eV, and Mn–O at 530.3 eV, and Ti–O showing two peaks at 530.0 and 531.8 eV. The peaks around 530.5–530.9 eV for M–O in NW/CS and NW/SG were relatively small (as NW/CS and NW/SG had no components of Mn–O and Ti–O), while relatively large peaks were observed for MnTiO3-NW/CS, MnTiO3-NW/SG, and Mn-Ti-NW/SG. The O_- and O_2^- lattice species are essential for CH4 activation, whereas the O_2^- lattice species leads to complete oxidation of hydrocarbon products to COx. Based on the activity results in Fig. 5, catalysts containing M–O (i.e., XPS peak around 530.5–530.9 eV) exhibited high CH4 conversion. This implied that a catalyst with this specific oxygen species promotes CH4 activation as the lattice oxygen of the catalyst surface is easily reacted and re-populated (high oxygen mobility).

Stability of catalysts in the OCM reaction. The stability of 10MnTiO3-NW/CS, 5MnTiO3-NW/SG, and 20Mn-Ti-NW/SG, catalysts that had produced the highest C2+ yields, was further tested for over 24 h (Fig. 6). The three catalysts had similar performance with the maximum C2+ yield (~ 21–23%) obtained within 3–4 h. After that, performance slightly diminished, especially for CH4 conversion and C2+ yield. The reduction levels in terms of C2+ yield for MnTiO3-NW/CS (Fig. 6a), MnTiO3-NW/SG (Fig. 6b), and Mn-Ti-NW/SG (Fig. 6c) were 15.3%, 8.4%, and 10.5%, respectively. Moreover, 20wt% Mn-Ti-NW on CS (20Mn-Ti-NW/CS) was prepared and tested for reaction to compare its performance with that of 20Mn-Ti-NW/SG (see Supplementary Figure S20). As observed, the activity of Mn-Ti-NW/CS decreased faster than the other catalysts, similar to the previous reports. This confirms that the MnTiO3-NW/SG catalyst was the most active and durable catalyst among all prepared.

The XRD patterns of fresh and used catalysts are presented in Fig. 7 (for peaks assignments see Supplementary Table S1). Some XRD peaks indicated changes. First, the Na2WO4 peaks in used MnTiO3-NW/CS and Mn-Ti-NW/SG catalysts had disappeared, which could be a result of the destruction of crystalline Na2WO4. This may be related to the reduction in catalytic activity. Second, the quartz phase was found in the used MnTiO3-NW/CS catalyst and the presence of α-tridymite became more pronounced in the used Mn-Ti-NW/SG. Thus, the activity of the catalysts was reduced, because these two phases do not promote methane activation. For the
MnTiO$_3$-NW/SG catalyst, the XRD peaks after reaction remained practically unaffected, confirming the excellent catalytic stability of MnTiO$_3$-NW/SG with no activity loss as changes in crystalline phases were absent.

The morphologies of fresh and used catalysts once more analyzed by FE-SEM (Fig. 8) and the average particle size of used catalysts were determined using ImageJ software and is presented in Supplementary Figure S21–S23 and Table S14–S16. The metal distribution of each catalyst was also characterized by FE-SEM with EDX (Supplementary Table S12). When the FE-SEM images of fresh and used (24 h) catalysts were compared, the particle shapes appeared very similar. Nevertheless, the particle size of each used catalyst (approximately 1.2–1.6 µm) was more than double of each fresh catalyst (approximately 0.3–0.6 µm). This is paralleled by a reduction in

Figure 7. XRD patterns of fresh and used (24 h) catalysts.

Figure 8. FE-SEM images of fresh and used catalysts: (a) Fresh MnTiO$_3$-NW/CS, (b) Fresh MnTiO$_3$-NW/SG, (c) Fresh Mn-Ti-NW/SG, (d) Used MnTiO$_3$-NW/CS, (e) Used MnTiO$_3$-NW/SG, and (f) Used Mn-Ti-NW/SG.
surface area, so that performance in OCM decreased after testing for several hours. Moreover, the increase in particle size may also result in a partial loss of the catalytic interface between the active components for activating methane (i.e., Na$_2$WO$_4$ and Mn$_2$O$_3$)68,69, thereby causing decreased catalytic activity. The EDX images of the used catalysts (Supplementary Table S12) indicated the presence of Mn, Ti, Na, and W elementals on the catalyst surface. The distribution and concentration of the active elements did not significantly change, in good accordance with the stability tests.

Another reason why the catalysts prepared using SG were more stable than those using CS is presented in Scheme 1. According to the textural properties in Table 2, SG has a larger surface area with high porosity, while CS has no internal pores. Thus, during impregnation, the active components were impregnated inside the pores of SG before the transformation of amorphous SiO$_2$ to α-cristobalite, so that the active components were widely dispersed inside the catalyst’s pores. In contrast, the active components impregnated on CS were dispersed only over the surface of CS (like a thin film coating69), since it is non-porous (see CS in Scheme 1). According to some reports, the crystalline phase of Na$_2$WO$_4$ disappeared due to slow evaporation within several hours of the stability test11,68,69 and/or it transforms to another phase (MnWO$_4$)68. Notably, the melting temperature of Na$_2$WO$_4$ is 698 °C, while the reaction temperature for OCM is over 700 °C due to exothermicity11. Therefore, it seems easier to lose Na$_2$WO$_4$ from the CS-supported than from the SG-supported catalyst.

The FTIR spectra of fresh and used catalysts are shown in Fig. 9. After the catalysts had been used, the FTIR peak of Si–O–H (H–H$_2$O) disappeared, suggesting that the H$_2$O attached to Si–O–H was removed. Additionally, there was an FTIR peak appearing at 695 cm$^{-1}$, indicating the presence of quartz (SiO$_2$)56. The quartz phase was detected in the fresh Mn$_x$Ti$_{1-x}$O$_y$/SG and was clearly visible in all used catalysts, which is in good agreement with the XRD results in Fig. 7. This suggested that the α-cristobalite phase slowly transformed into the quartz phase. The FTIR peak at 524 cm$^{-1}$ was assigned to the bending vibration of O–Mn–O57 and it was detected in each catalyst. The intense peak at 590 cm$^{-1}$ was the vibration of the O–Ti–O bond58, which was also perceived in each catalyst.

The plausible mechanism of this reaction over Mn$_x$Ti$_{1-x}$O$_y$/SG is illustrated in Scheme 2. The most possible active site for the CH$_4$ activation is the lattice oxygens of WO$_4$2,30. During the CH$_4$ activation to CH$_3$ radical by the lattice oxygens, W$^{6+}$ is reduced to W$^{5+}$30. The CH$_3$ radical is then coupled with another CH$_3$ radical to yield C$_2$H$_6$ in the gas phase, which can further generate C$_2$H$_4$ and other hydrocarbons via the C–H activation and dehydrogenation over the catalyst surface. However, the oxidation of CH$_4$ can occur at the same temperature.

![Figure 9. FTIR spectra of fresh and used catalysts: (a) 5Mn$_x$Ti$_{1-x}$O$_y$/CS, (b) 10Mn$_x$Ti$_{1-x}$O$_y$/SG, and (c) 20Mn$_x$Ti$_{1-x}$O$_y$/SG.](https://doi.org/10.1038/s41598-022-06598-6)
(600–1,000 ºC) to produce CO and CO2. A sketch of the mechanisms and series of OCM reaction, CH4 oxidation, and dehydrogenation are presented in Supplementary Information equations (S1)–(S14). At the same time, due to the facile mobility of the lattice oxygen of Mn–O species, the lattice oxygen from MnTiO3 is transferred to the WO4$^{2-}$ species. As a result, Mn$^{2+}$ is oxidized to Mn$^{3+}$. After that, the O2 molecule from the gas phase is adsorbed onto the surface of MnTiO3 and the OH radical is released from the WO4$^{2-}$ surface. An electron exchange from W$^{5+}$ to Mn$^{3+}$ simultaneously occurs, which regenerates W$^{6+}$ and Mn$^{2+}$, and is ready for the new cycle of the reaction.

A survey of various catalysts reported in the literature for the OCM reaction is presented in Fig. 10, with the details of each catalyst described in Supplementary Table S17. The activity of OCM catalysts should be over 30% CH4 conversion and 80% C2+ selectivity to have the potential for commercial exploitation (indicated by the gray area in Fig. 10). The catalysts studied herein are outside the required area; specifically, as their C2+ selectivity is below 80%. Several reported catalysts also had a CH4 conversion above 30% with a C2+ selectivity below 80%, however, all of them were used at a temperature above 750 ºC. Thus, in light of the lower temperature (700 ºC), our present catalysts exhibited good performance. Nevertheless, further improvement is necessary, especially...
increasing C₂ selectivity above 80% while maintaining the CH₄ conversion. Some Mn-Na-W/Si and X-Na-W/Si catalysts have a C₂ selectivity of around 80% at a reaction temperature of 725–775 °C, but they have low CH₄ conversions (4.4–20.2%)⁴⁵–⁴⁷. No catalyst based on Na, W, and/or Mn can provide a C₂ selectivity above 81%, implying that improving the C₂ selectivity while maintaining the CH₄ conversion above 30% is very challenging. Remarkably, one report in 1998 showed that an Mn-Na-W/Si catalyst performed well in the OCM reaction, producing C₂ selectivity of 80% and CH₄ conversion of 33% (for a yield of 26.4%) at a reaction temperature of 850°C⁴⁸. Nevertheless, thereafter such high performance of the same catalyst was not reported. The addition of additives to Mn-Na-W/Si (as X-Mn-Na-W/Si) can improve the C₂ selectivity to about 62–75% with a CH₄ conversion above 30%. When X = NaCl, the highest C₂ yield reported was 34.6% (62.9% C₂ selectivity and 55% CH₄ conversion)⁴⁷, but the catalysts were not stable for long periods due to a loss of chloride. The performance of our catalysts containing Mn, Na, and W components upon using SiO₂ as catalyst support has been improved, identifying several key factors, but a viable catalyst for industrial use is still at large.

Conclusion

Different loadings of nanocomposite MnTiO₃-NW or MnO₅-TiO₂-NW supported on silica (CS and SG) were successfully prepared and tested in the OCM reaction. The highest C₂ yields were obtained for 10MnTiO₃-NW/SG (21.6%), followed by 20Mn-Ti-NW/SG (21.5%), and 5MnTiO₃-NW/CS (20.6%). These catalysts produced high levels of dehydrogenation, generating olefins/paraffin ratios of 2.1–2.3. Catalysts characterization by XRD detected MnTiO₃, MnO₅, TiO₂, and α-cristobalite phases, while using XPS identified oxygen species of M–O (M = Na, W, Mn, and Ti) that were strongly related to high CH₄ conversion and high C₂ yield. Considering the catalytic activity between MnTiO₃-NW and Mn-Ti-NW on the same support (i.e., SG), a small activity difference was observed between these two when the metal loading at 5wt%, in which the activity of 5Mn-Ti-NW/SG was lower than that of 5Mn-Ti-NW/CS, while they perceived no substantial difference in the activity at the higher loadings. Comparing the type SiO₂ support, the activity results presented that the catalysts with porous SG support were more stable than those with non-porous CS as support. The gradual catalyst deactivation observed during the stability test, especially for the catalyst with Cs, was mainly due to the destruction of crystalline Na₂WO₄. Therefore, further improvement of catalytic performance seems to require an alternative active component that is retained under harsh operating conditions.

Methods

Catalysts preparation. Preparation of MnTiO₃ nanocatalysts. The MnTiO₃ catalyst was prepared using the stearic acid gel method⁴⁹. In the first step, stearic acid (0.4 mol, C₁₈H₃₆O₂, 98%, PanReac AppliChem) was heated in a beaker at 90 °C until it melted. After that, manganese acetate (0.1 mol, Mn(OOCCH₃)₂·4H₂O, Mn≥ 99.0%, Aldrich) was added to the mixture followed by continuous stirring for 4 h at 40 °C. After transferring the stearic acid gel mixture to a transparent bottle, DI water (101 mL) with concentrated HCl (6.72 mL, 37%, Rankem) was added into the bottle with continuous stirring, and then the mixture was stirred at room temperature for 1 h. Finally, the mixture was dried in an oven at 100 °C for 12 h. The dried gel was calcined in four stages in the air (KJ-M1200-27L, Kejia furnace). In the first stage, the dried gel was heated to 400 °C with a heating rate of 1 °C min⁻¹. Second, the temperature was held at 400 °C for 40 min. Third, the temperature was ramped up to 800 °C with a heating rate of 3 °C min⁻¹. Finally, the temperature was held at 800 °C for 2 h and then slowly cooled down to room temperature⁵⁰. The crystalline MnTiO₃ sample was ground to obtain a fine powder.

Preparation of the sol–gel SiO₂ support. Pluronic P123 (0.0005 mol, with an average molecular weight of ~ 5800, Aldrich) was dissolved in DI water (101 mL) with concentrated HCl (6.72 mL, 37%, Rankem). The mixture was continuously stirred at 40 °C until a clear solution was obtained. Then, tetraethyl orthosilicate (TEOS; 0.03 mol, (C₂H₅)₄O, Si ≥ 99.0%, Aldrich) was added to the mixture followed by continuous stirring for 4 h at 40 °C. After that, the mixture was stirred overnight in a hot-air oven at 100 °C. Next, the dried sample was washed with DI water (150 mL) and dried again in a hot-air oven at 100 °C for 12 h. Finally, the dried sample was calcined in air at 550 °C for 3 h with a heating rate of 3 °C min⁻¹. The calcined sample was used as the sol–gel SiO₂ support.

Preparation of MnTiO₃-Na₂WO₄ nanocomposites on silica. The silica-supported MnTiO₃-Na₂WO₄ catalyst was prepared using the impregnation method. The synthesized sol–gel SiO₂ support and a commercial fumed silica (c-SiO₂, amorphous, a specific surface area of 350–420 m² g⁻¹, Alfa Aesar) were used. Initially, sodium tungsten hydrate (Na₂WO₄·2H₂O, Na₂WO₄·2H₂O, 98.0–101.0%, Daejung) was dissolved in DI water to have a concentration of 0.05 M. The prepared catalysts had loadings of 0.05 mol of Na₂WO₄ and MnTiO₃-NW/CS to check if the C₂ selectivity can be improved. Accordingly, different amounts of Na₂WO₄ and fine MnTiO₃ powder were loaded on each support. After mixing, the solution was continuously stirred at room temperature for 1 h. Then, the mixture was dried in an oven at 100 °C for 1 h. The dried mixture was finally calcined in the air furnace at 800 °C for 4 h with a heating rate of 2 °C min⁻¹. The obtained catalysts were MnTiO₃-Na₂WO₄/c-SiO₂ (denoted as MnTiO₃-NW/CS) and MnTiO₃-Na₂WO₄/sol–gel SiO₂ (denoted as MnTiO₃-NW/SG). A commercial fumed silica with a surface area of 350–420 m² g⁻¹ was purchased and used to prepare a parallel catalyst with 5MnTiO₃-Na₂WO₄/CS to check if another amorphous fumed silica having a specific surface area greater than 85–115 m² g⁻¹ gives different performance. The performance test results of two catalysts having the same active components and loading but different in the specific surface areas (see Supplementary Table S18) showed no significant difference in the OCM performance.

Preparation of MnO₂-TiO₂-Na₂WO₄ nanocomposites on sol–gel SiO₂. The MnO₂-TiO₂-Na₂WO₄ nanocomposite supported on the synthesized sol–gel SiO₂ was also prepared using the impregnation method. The sodium
Catalyst activity testing. The catalytic activity of each prepared catalyst in the OCM reaction was evaluated in a plug flow reactor. A catalyst (50 mg) was packed in a borosilicate glass tube with an inner diameter of 5 mm and sandwiched between layers of quartz wool. The feed gases were methane (CH₄, 99.999% HP, Labgaz), oxygen (O₂, 99.999% HP, Linde), and nitrogen (N₂, 99.999% UHP, Labgaz). The feed gas ratio of CH₄:O₂:N₂ was 3:1:4 at a total feed flow rate of 50 mL min⁻¹ (GHSV = 30,558 h⁻¹), which was fed into the plug flow reactor (Keijia furnace KJ-TI200). All flow rates were controlled using mass flow controllers (Aalborg GFC17) and double-checked using a bubble flow meter. The operating conditions were atmospheric pressure and a reactor temperature of 700 °C. The catalyst activity was evaluated 1 h after the system had reached the established conditions.

The quantification of the gas products was carried out by gas chromatography (SHIMADZU, GC-14A) using Unibead C column connected with a thermal conductivity detector (TCD) for determining CO, CO₂, and CH₄ and Porapak Q column connected with a flame ionization detector (FID) for determining C₂H₄, C₂H₆, C₃H₆, and C₄H₁₀. A standard calibration curve for each product was established using five calibration points with a coefficient of determination (R²) > 0.995. The activity of each catalyst is presented in terms of %CH₄ conversion, %C₂+ selectivity, %COₓ selectivity, %C₂+ yield, olefins/paraffin ratio (mol/mol), and C₂+ formation rate (rC₂⁺), which were calculated using Eqs. (1)–(6), respectively:

\[
\% \text{CH}_4 \text{ conversion} = \frac{2(n\text{C}_2\text{H}_4 + n\text{C}_2\text{H}_6) + 3(n\text{C}_3\text{H}_6 + n\text{C}_3\text{H}_8) + 4(n\text{C}_4\text{H}_{10}) + n\text{CO} + n\text{CO}_2}{2(n\text{C}_2\text{H}_4 + n\text{C}_2\text{H}_6) + 3(n\text{C}_3\text{H}_6 + n\text{C}_3\text{H}_8) + 4(n\text{C}_4\text{H}_{10}) + n\text{CO} + n\text{CO}_2} \times 100
\]

(1)

\[
\% \text{C}_2^+ \text{ selectivity} = \frac{2(n\text{C}_2\text{H}_4 + n\text{C}_2\text{H}_6) + 3(n\text{C}_3\text{H}_6 + n\text{C}_3\text{H}_8) + 4(n\text{C}_4\text{H}_{10})}{2(n\text{C}_2\text{H}_4 + n\text{C}_2\text{H}_6) + 3(n\text{C}_3\text{H}_6 + n\text{C}_3\text{H}_8) + 4(n\text{C}_4\text{H}_{10})} \times 100
\]

(2)

\[
\% \text{CO}_x \text{ selectivity} = \frac{n\text{CO} + n\text{CO}_2}{2(n\text{C}_2\text{H}_4 + n\text{C}_2\text{H}_6) + 3(n\text{C}_3\text{H}_6 + n\text{C}_3\text{H}_8) + 4(n\text{C}_4\text{H}_{10}) + n\text{CO} + n\text{CO}_2} \times 100
\]

(3)

\[
\% \text{C}_2^+ \text{ yield} = \frac{\% \text{CH}_4 \text{ Conversion} \times \% \text{C}_2^+ \text{ Selectivity}}{100}
\]

(4)

\[
\frac{\text{Olefin}}{\text{Paraffin}} = \frac{2(n\text{C}_2\text{H}_4) + 3(n\text{C}_3\text{H}_6)}{2(n\text{C}_2\text{H}_4) + 3(n\text{C}_3\text{H}_6)}
\]

(5)

\[
r_{\text{C}_2^+} = \frac{2(n\text{C}_2\text{H}_4 + n\text{C}_2\text{H}_6) + 3(n\text{C}_3\text{H}_6 + n\text{C}_3\text{H}_8) + 4(n\text{C}_4\text{H}_{10})}{\text{(Total moles of MnTiO}_2\text{or (Mn + Ti) and Na}_2\text{WO}_4)} \times h
\]

(6)

where n is the number of moles. The reported data is an average obtained from at least three separate catalytic tests. An example of carbon balance checks is shown in Supplementary Information Table S19.

Catalyst characterization. The morphology and metal dispersion of the catalysts were analyzed by field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy (FE-SEM/EDS, FE-SEM: JEOL JSM7600F). Before the measurements, each catalyst was sputter-coated with platinum to increase the contrast for imaging.

The structural properties of each catalyst were examined by Fourier-transform infrared spectroscopy (FTIR; PerkinElmer Spectrum 400 FT-IR/FT-FIR). For each spectrum, 32 scans were collected over a spectral range of 400–4,000 cm⁻¹ at a resolution of 4 cm⁻¹.

The crystal structure of each catalyst was analyzed by powder X-ray diffractometry (XRD; Bruker D8 Advance), using Cu-Kα radiation at 45 kV and 40 mA with a step size of 0.02° and a step time of 0.5 s.

The surface area, pore size, and pore volume of each catalyst were measured by an N₂-adsorption analyzer (3Flex Physisorption Micromeritics), following the Brunauer–Emmett–Teller (BET) method being conducted at −196 °C.

X-ray photoelectron spectroscopy (XPS; Kratos Axis Ultra DLD) was used to characterize the elements in each catalyst, namely sodium (Na 1 s), tungsten (W 4f.), manganese (Mn 2p), titanium (Ti 2p), silicon (Si 2p), and oxygen (O 1 s). The binding energy of C 1 s (285.0 eV) was used as a standard for all other binding energies.

The particle size distribution of the samples was analyzed using high resolution–transmission electron microscopy with energy-dispersive X-ray spectroscopy (HR-TEM: JEM-2100). Each sample was suspended in ethanol...
References

1. Holmen, A. Direct conversion of methane to fuels and chemicals. Catal. Today 142, 2–8 (2009).
2. IPCC. Climate Change 2013: The Physical Science Basis. (Geneva, Switzerland, 2013).
3. United States Environmental Protection Agency. Overview of Greenhouse Gases. https://www.epa.gov/ghgemissions/overview-greenhouse-gasesCH4-reference (2019).
4. Makaryan, B. I., Sedov, L. & Savchenko, V. Platinum group metal-catalysed carbonylation as the basis of alternative gas-to-liquids processes. Johnson Matthey Technol. Rev. 59, 14–25 (2015).
5. Sun, L., Wang, Y., Guan, N. & Li, L. Methane activation and utilization: Current status and future challenges. Energy Technol. 8, 201900826 (2019).
6. Karakaya, C., Zha, H., Loebick, C., Weissman, J. G. & Kee, R. J. A detailed reaction mechanism for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst for non-isothermal conditions. Catal. Today 312, 10–22 (2018).
7. Zavyalova, U., Holena, M., Schöglo, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3, 1935–1947 (2011).
8. Godini, H. R. et al. A multi-perspective analysis of methane oxidative coupling process based on miniplant-scale experimental data. Chem. Eng. Res. Des. 151, 56–69 (2019).
9. Li, S. et al. Surface WO3 tetrahedron: the essence of the oxidative coupling of methane over Mo-W-Mn/SiO2 catalysts. J. Catal. 220, 47–56 (2003).
10. Wang, J. et al. Comparative study on oxidation of methane to ethene and ethylene over Na2WO4-Mn2SiO5 catalysts prepared by different methods. J. Mol. Catal. A 245, 272–277 (2006).
11. Chua, Y. T., Mohamed, A. R. & Bhatia, S. Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO2). Appl. Catal. A Gen. 343, 142–148 (2008).
12. Malekzadeh, A., Dalai, A. K., Khodadadi, A. & Mortazavi, Y. Structural features of Na2WO4-MOx/SiO2 catalysts in oxidative coupling of methane reaction. Catal. Commun. 9, 960–965 (2008).
13. Yildiz, M. et al. Enhanced catalytic performance of MnO2-Na2WO4/SiO2 for the oxidative coupling of methane using an ordered mesoporous silica support. Chem. Commun. 50, 14440–14442 (2014).
14. Yildiz, M. et al. Support material variation for the MnO2-Na2WO4/SiO2 catalytic. Catal. Today 228, 5–14 (2014).
15. Yildiz, M. et al. Silica material variation for the MnO2-Na2WO4/SiO2. Appl. Catal. A Gen. 525, 168–179 (2016).
16. Unumolu, C., Leba, A. & Yildirim, R. Oxidative coupling of methane over Mn-Na2WO4/SiO2 catalyst supported by monolithic SiO2. Appl. Catal. A Gen. 547, 22–29 (2017).
17. Hiyoshi, N. & Ikeda, T. Oxidative coupling of methane over alkali chloride-Mn-Na2WO4/SiO2 catalysts: promoting effect of molten alkali chloride. Fuel Process. Technol. 133, 29–34 (2015).
18. Aseem, A., Jebra, G. G., Conato, M. T., Rimer, J. D. & Harold, M. P. Oxidative coupling of methane over mixed metal oxide catalysts: steady state multiplicity and catalyst durability. Chem. Eng. J. 331, 132–143 (2018).
19. Beck, B. et al. Oxidative coupling of methane: a complex surface/gas phase mechanism with strong impact on the reaction engineering. Catal. Today 228, 212–218 (2014).
20. Palermo, A., Vázquez, J. P. H., Titkoh, M. S. & Lambert, R. M. Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane. Catal. J. 177, 259–266 (1998).
21. Shahri, S. M. K. & Pour, A. N. Ce-promoted Mn-Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmospheric pressure. J. Nat. Gas Chem. 19, 47–53 (2010).
22. Reka, A., Pavlovski, B., Anovski, T., Bogoevski, S. & Boškovski, B. Phase transformations of amorphous SiO2 in diatomite at temperature range of 1000–1200 °C. Geol. Maced. 9, 29–37 (2015).
23. Jiang, Z. C., Yu, C. J., Fang, S. P., Li, S. B. & Wang, H.-L. Oxide/support interaction and surface reconstruction in the sodium tungstate (Na2WO4)/mesoporous silica system. J. Phys. Chem. A 97, 12470–12475 (1993).
24. Elkins, T. W. & Hagemann-Wenner, H. E. Characterization of Mn-Na2WO4/SiO2 and Mn-Na2WO4/MgO catalysts for the oxidative coupling of methane. Appl. Catal. A Gen. 3, 108–116 (2015).
25. Werny, M. J., Wang, Y., Girgsdies, F., Schöglo, R. & Trunschke, A. Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane. Angew. Chem. Int. Ed. 59, 14921–14926 (2020).
26. Sourav, S. et al. New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2 catalysts. Angew. Chem. Int. Ed. 60, 21502–21511 (2021).
27. Chukeaw, T. et al. Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts. Process Saf. Environ. Prot. 148, 1110–1122 (2021).
28. Ramalla, I., Gupta, R. K. & Bansal, K. Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability. Int. J. Eng. Technol. 4, 509–519 (2015).
29. Fleischer, V. et al. Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments. J. Catal. 360, 102–117 (2018).
30. Kiani, D., Sourav, S. & Wacha, I. E. Oxidative coupling of methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na. ACS Catal. 9, 5912–5928 (2019).
31. Malekzadeh, A. et al. Correlation of electrical properties and performance of OCM Mo2O5/Na2WO4/SiO2 catalysts. Catal. Commun. 2, 241–247 (2001).
32. Sourav, S. et al. Resolving the types and origin of active oxygen species present in supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane. ACS Catal. 11, 10288–10293 (2021).
33. Takahashi, K. et al. Integrated in situ characterization of a molten salt catalyst surface: evidence of sodium peroxide and hydroxyl radical formation. Angew. Chem. Int. Ed. 56, 10493–10497 (2017).
34. Wang, P., Zhao, G., Liu, Y. & Lu, Y. TiO2-doped MnO2-Na2WO4/SiO2 catalyst for oxidative coupling of methane: solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Appl. Catal. A Gen. 544, 77–83 (2017).
35. Sadjadi, S. et al. Feasibility study of the Mn-Na2WO4/SiO2 catalytic system for the oxidative coupling of methane in a fluidized-bed reactor. Catal. Sci. Technol. 5, 942–952 (2015).
36. Mahmodi, S., Ehsani, M. R. & Ghoreishi, S. M. Effect of promoter in the oxidative coupling of methane over synthesized Mn/SiO2 nanocatalysts via incipient wetness impregnation. J. Ind. Eng. Chem. 16, 923–928 (2010).
37. Chukeaw, T., Sringam, S., Chareonpanich, M. & Seubsai, A. Screening of single and binary catalysts for oxidative coupling of methane to value-added chemicals. Mol. Catal. 470, 40–47 (2019).
38. Kidamorn, P. et al. Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4-TiO2-MnO2/SiO2 catalysts with alkali or alkali earth oxide additives. ACS Omega 5, 13612–13620 (2020).
39. Sringam, S., Kidamorn, P., Chukeaw, T., Chareonpanich, M. & Seubsai, A. Investigation of metal oxide additives onto Na2WO4-TiO2/SiO2 catalysts for oxidative coupling of methane to value-added chemicals. Catal. Today 358, 263–269 (2020).
40. Aydin, Z. et al. Revisiting activity- and selectivity-enhancing effects of water in the oxidative coupling of methane over MnO2-Na2WO4/SiO2, and proving for other materials. ACS Catal. 10, 8751–8764 (2020).
41. Ren, Y. et al. Metallic-based olefin/paraffin separations. Adv. Sci. 7, 2001398. https://doi.org/10.1002/advs.202001398 (2020).
42. Werny, M. J., Wang, Y., Girgsdies, F., Schlogl, R. & Trunschke, A. Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane. Angew. Chem. Int. Ed. 59, 14921–14926 (2020).
43. Aydin, Z. et al. Revisiting activity- and selectivity-enhancing effects of water in the oxidative coupling of methane over MnO2-Na2WO4/SiO2, and proving for other materials. ACS Catal. 10, 8751–8764 (2020).
44. Ren, Y. et al. Metallic-based olefin/paraffin separations. Adv. Sci. 7, 2001398. https://doi.org/10.1002/advs.202001398 (2020).
45. Yunarti, R. T.
46. Gholipour, Z., Malekzadeh, A., Hatami, R., Mortazavi, Y. & Khodadadi, A. Oxidative coupling of methane over (Na2WO4+Mn or Ce)/SiO2 catalysts: In situ measurement of electrical conductivity. J. Nat. Gas Chem. 19, 35–42 (2010).
47. Wang, P., Zhao, G., Wang, Y. & Lu, Y. MnTiO3-doped low-temperature oxidative coupling of methane over TiO2-doped MnO2-Na2WO4/SiO2 catalyst. Sci. Adv. 3, e1603180. https://doi.org/10.1126/sciadv.1603180 (2017).
48. Werny, M. J., Wang, Y., Girgsdies, F., Schlogl, R. & Trunschke, A. Fluctuating storage of the active phase in a Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane. Angew. Chem. Int. Ed. 59, 14921–14926 (2020).

Acknowledgements
This work was financially supported by the Office of the Ministry of Higher Education, Science, Research and Innovation, Thailand; the Thailand Science Research and Innovation through the Kasetsart University Reindevelopment University Program 2021; the National Research Council of Thailand (NRCCT-SRA63002-11); and the Kasetsart University Research and Development Institute (KURDI), Thailand. Instrumental access was in part supported by the Austrian Science Fund (FWF) via grant SFB TACO (F81-P08).

Author contributions
W.T., T.C., S.S., and A.S. conducted the experiments and wrote the manuscript text. T.W. and M.C. consulted the results and provided funding. G.R. provided an access to use equipment and proofread the manuscript. A.S. managed the research. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.
