HOW IMPORTANT ARE ELECTRON BEAMS IN DRIVING CHROMOSPHERIC EVAPORATION IN THE 2014 MARCH 29 FLARE?

Marina Battaglia1,, Lucia Kleint1, Säm Krucker1,2, and David Graham3

\begin{itemize}
\item[1] Institute of 4D Technologies, School of Engineering, University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch, Switzerland; marina.battaglia@fhnw.ch
\item[2] Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA
\item[3] INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy
\end{itemize}

Received 2015 April 4; accepted 2015 October 9; published 2015 November 4

ABSTRACT

We present high spatial resolution observations of chromospheric evaporation in the flare SOL2014-03-29T17:48. Interface Region Imaging Spectrograph observations of the Fe\textsubscript{XXI} λ1354.1 line indicate evaporating plasma at a temperature of 10 MK along the flare ribbon during the flare peak and several minutes into the decay phase with upflow velocities between 30 and 200 km s-1. Hard X-ray (HXR) footpoints were observed by the Ramaty High Energy Solar Spectroscopic Imager for two minutes during the peak of the flare. Their locations coincided with the locations of the upflows in parts of the southern flare ribbon but the HXR footpoint source preceded the observation of upflows in Fe\textsubscript{XXI} by 30–75 s. However, in other parts of the southern ribbon and in the northern ribbon, the observed upflows were not coincident with an HXR source in time or space, most prominently during the decay phase. In this case evaporation is likely caused by energy input via a conductive flux that is established between the hot (25 MK) coronal source, which is present during the whole observed time-interval, and the chromosphere. The presented observations suggest that conduction may drive evaporation not only during the decay phase but also during the flare peak. Electron beam heating may only play a role in driving evaporation during the initial phases of the flare.

Key words: Sun: chromosphere – Sun: flares – Sun: UV radiation – Sun: X-rays, gamma rays

1. INTRODUCTION

In the standard solar flare model beams of accelerated electrons propagate from the acceleration site in the corona to the dense chromosphere where they deposit their energy and produce hard X-ray (HXR) bremsstrahlung. The deposited energy heats up the chromospheric plasma, causing it to expand upward into the loop where it becomes visible in soft X-ray (SXR) and extreme ultra-violet (EUV) emissions. This process has been termed chromospheric evaporation. It can be observed indirectly by comparison of SXR and HXR time evolution. If the observed SXR emission is a consequence of energy input by particle beams, then the time-integrated HXR emission should follow the SXR emission. This “Neupert effect” (Neupert 1968) has been observed in many flares (e.g., Dennis & Zarro 1993; McTiernan et al. 1999; Veronig et al. 2005). Direct observations of evaporating plasma were made early on in the form of upflows of hot plasma detected in SXR emission lines (e.g., Acton et al. 1982; Antonucci & Dennis 1983) and EUV (Czaykowska et al. 2001; Brosius & Phillips 2004; Milligan et al. 2006a, 2006b). Depending on the beam power it is generally distinguished between explosive and gentle evaporation. Fisher et al. (1985b) showed that there is a threshold flux of \(\sim 10^{10}\) erg cm-2 s-1 above which evaporation will be explosive, and otherwise gentle. Explosive evaporation occurs on timescales of \(< 1\) s. Due to large overpressure, heated plasma is driven up into the corona at up to several hundreds of km s-1 (Fisher 1987), while upflows from gentle evaporation are generally slower (of the order of tens of km s-1 up to \(\sim 200\) km s-1, e.g., Pallavicini et al. 1983; Zarro & Lemen 1988). However, absolute velocities alone cannot be used for an unambiguous distinction between explosive and gentle evaporation since the velocities are temperature dependent, i.e., higher temperature plasma tends to have higher velocities. The overpressure during explosive evaporation causes a downward motion of the lower chromospheric layer (Fisher et al. 1984, 1985b). In explosive evaporation, lines that are formed at upper chromospheric and transition region temperatures (up to \(\sim 1\) MK) are thus redshifted, while lines formed at higher temperatures are blueshifted (e.g., Fisher et al. 1985a; Brosius & Phillips 2004; Milligan et al. 2006a; Brosius 2009). In the case of gentle evaporation, both the lower temperature and the higher temperature lines will be blueshifted (e.g., Zarro & Lemen 1988; Zarro et al. 1988; Milligan et al. 2006b; Brosius 2009). Observations of emission lines that form at different altitudes in the chromosphere are thus needed for unambiguous distinction.

Chromospheric evaporation can also be triggered by a conductive energy flux in the absence of electron beams. This is the most likely mechanism leading to chromospheric evaporation in the decay phase of solar flares (e.g., Antiochos & Sturrock 1978; Zarro & Lemen 1988; Czaykowska et al. 2001), when a conductive flux is established between the hot post-flare loops and the cooler chromosphere. Conductively driven evaporation is also one explanation for the observations of increasing SXR emission and coronal density in the absence of HXR emission in the early phases of some flares (Battaglia et al. 2009).

For the case of electron beam driven evaporation, Fisher (1987) showed that there is a transition from explosive to gentle evaporation if the conductive flux out of the explosively heated plasma becomes comparable to the energy flux in the electron beam. This transition occurs on timescales from a few seconds to a few tens of seconds. Brosius (2009) present the analysis of such a transition in a flare observed by the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO; Harrison et al. 1995). More detailed
studies of chromospheric evaporation became possible with the higher resolution and more complete temperature coverage of Hinode/EIS (Culhane et al. 2007). Milligan & Dennis (2009) and Watanabe et al. (2010) observed explosive evaporation in C-class flares with and without additional Ramaty High Energy Solar Spectroscopic Imager (RHESSI; Lin et al. 2002) observations. Graham et al. (2011) analyzed a C-class flare using Hinode/EIS and RHESSI HXR observations. They find signatures of chromospheric evaporation but the RHESSI observations do not allow them to distinguish between electron-beam energy input or a purely thermal scenario.

Here we present EUV observations of the Fe XXI λ1354.1 line (formed at ∼10 MK, Jordan (1970) and first observed in solar flares by Doschek et al. (1975)). Combined observations were made with the Interface Region Imaging Spectrograph (IRIS; De Pontieu et al. 2014), RHESSI, and EIS during the X-flare on 2014 March 29. The high spatial resolution of IRIS allows for tracing the location, velocity, and timing of hot evaporated plasma along the flare ribbon. Combining these observations with RHESSI imaging and spectroscopy, it is possible to investigate the type of energy input that causes evaporation (electron-beam versus conductive energy input) and its nature (explosive versus gentle).

2. OBSERVATIONS AND DATA ANALYSIS

The GOES X1 flare occurred on 2014 March 29 with the HXR rise starting at 17:44 UT and peaking at 17:47 UT. RHESSI imaging and spectroscopy give the timing, location, and amount of electron-beam deposited energy.

IRIS observations of the Fe XXI λ1354.1 line give the location, speed, and intensity of evaporating material at a temperature of ∼10 MK. The IRIS data were obtained during a coordinated flare observing campaign on 2014 March 29 with the observation lasting from 14:09 to 17:54 UT (Kleint et al. 2015). A total of 180 8-step rasters with a cadence of 75 s were performed. In the paper we refer to the raster numbers of the Level 2 filenames (starting at raster 000 to raster 179), for which all relevant calibrations, such as flat-fielding, dark-correction, geometric correction, and wavelength correction, have already been applied (De Pontieu et al. 2014). Each raster had a field of view of 14″ × 17″. During the X1 flare, the western ribbon and a small part of the eastern ribbon were caught during several rasters (compare Figure 1). The far-UV (FUV, 1332–1358/1389–1407 Å) data had an exposure time of 8 s and a dispersion of 25.46 mÅ pixel⁻¹ with a plate scale of 0.″166 pixel⁻¹. The Fe xxi spectral window which we analyze here was not overexposed for the whole duration of the observations and at its blueward edge is limited to 350 km s⁻¹ from the line center at rest (compare Figure 6). In the flare presented we find that the entire Fe xxi line profile is shifted but always lies completely within this window. Here we focus on the main HXR peak when HXR emission was observed from the flare ribbons (gray area in Figure 1) and where considerable upflows were detected in Fe xxi. Figure 1 shows SXR light curves from GOES and HXR RHESSI light curves. The start times of the analyzed IRIS rasters (rasters 173, 174, 175, 176) are indicated.

2.1. X-Ray Analysis

RHESSI full-Sun spectra were fitted during the time of the main peak, using 8 s time intervals coinciding with the start and end times of the IRIS exposures at each slit position. The spectra were fitted with a thermal component at low energies and a thick-target power-law component at energies above ∼20 keV. RHESSI CLEAN (Hurford et al. 2002) images at 6–12 keV (using grids 3–6, natural weighting with a clean beam width factor of 1.4, resulting in an effective CLEAN beam of 12″8) and at 30–70 keV (using grids 1–6, natural weighting with a clean beam width factor 1.4, resulting in an effective resolution of 3″4) were made for an overview of the flare morphology. We integrated over 75 s from the start time of each IRIS raster to be consistent with the time it takes to complete one raster (except for the first raster where the RHESSI attenuator came in during the period hence the start time of the image was 17:46:02 UT). For the more detailed analysis of the time evolution, additional RHESSI images were made with the same start times as the IRIS exposures at each slit position and an 8 s time-integration. To ensure as close a representation of the true source size as possible, only grids 1–4 were used for these images with an effective resolution of 3 arcsec FWHM. These images were used in the further analysis. The RHESSI X-ray images show a SXR source near the top of a loop system that connects the two flare ribbons. The HXR footpoints coincide with the location of the flare ribbons as seen in the IRIS 2796 Å slit-jaw images (SJJ) but are less extended than the flare ribbon along the east–west direction.
and do not cover its entire length. Figure 1 shows IRIS 2796 Å SJI at selected times overlaid with the RHESSI contours at 6–12 keV and 30–70 keV. We found a ~3″ offset between the RHESSI sources and SDO images of the flare ribbons, to which IRIS was aligned. Thus we applied an empirical roll correction of 0.15 (clockwise about Sun center) to the RHESSI images, so that the HXR emission matches emission from both flare ribbons in SDO (see also Kleint et al. 2015). This correction is justified for several reasons. In addition to the pointing uncertainty of SDO, the star-field that is used by the PMTRAS (Photo-Multiplier Tube Roll Aspect System, Hurford & Curtis 2002) to determine the RHESSI roll-angle was sparse at the time of the observations, resulting in a potential error of the RHESSI roll-angle. Moreover, the correction is justified because of physical reasons. With no correction applied, the HXR footpoints would not be co-spatial with the flare ribbons as seen in IRIS SJI and they would be trailing the motion of the ribbon. In addition, the HXR sources would be located in the same magnetic polarity. All these points would be in contradiction of our understanding of flares and flare energy input.

2.2. FUV Analysis

IRIS observations of Fe xxi λ1354.1 allow for studying flows of hot (~10 MK) plasma near the loop footpoints. IRIS observations of Fe xxi were recently reported in selected events (Tian et al. 2014; Graham & Cauzzi 2015; Polito et al. 2015), including the 2014 March 29 flare observed by Young et al. (2015), who observed blueshifts from the flare ribbons “as expected from models of chromospheric evaporation” without going into quantitative detail. To find the center location of the Fe xxi line, we fitted two Gaussians, one to the Fe xxi line and the other to account for the intense C i λ1354.29 line. The fits were done automatically over time and along the slit. A rest-wavelength of 1354.064 Å, following Feldman et al. (2000), was used to calculate the Doppler-velocities. Fits that resulted in a line-width smaller than the theoretical thermal line-width, with too large χ², as well as with negative or unphysically high intensities were omitted from further analysis. As validation of the fits we also fitted a single Gaussian to the Fe xxi line, omitting contributions from C i and other, weaker lines as well as multi-Gaussian fits for selected pixels. All methods give largely consistent results (to within a few km s⁻¹), indicating that the weaker lines (originating from cool, singly ionized Fe and Si) are not important for the fit and the two-component Gaussian fit, which we use for inferring the Doppler-velocity, is justified. An example is shown in Figure 2. It shows the broad, blueshifted Fe xxi line centered 1353.6 Å, the intense, narrow C i line at 1354.35 Å, and the weaker Fe ii and Si ii lines (see Tian et al. 2015, for a more detailed discussion of the whole spectrum).

3. RESULTS

HXR footpoints can be imaged starting at 17:45:28 UT until 17:47:25 UT (compare Figure 1). Emission above ~20 keV is visible in light curves and spectra after this time but becomes increasingly dominated by pile-up (Smith et al. 2002) after ~17:49:30 UT. The RHESSI spectral fits indicate a hot coronal source with a temperature of 25 MK at the start of the analysis interval. The temperature drops to 21 MK at 17:49 UT. The total electron number flux per second above 20 keV decreases from 2 × 10³⁵ to 4 × 10³⁵ though the electron spectral index remains constant overall with δ ∼ 3.5.

The intensity enhancement in Fe xxi was first observed during the raster that started at 17:45:36 UT (number 173) and lasted well into the decay phase of the flare. Comparison of the time evolution between HXR emission and blueshifted Fe xxi emission is difficult to illustrate since one IRIS raster takes 75 s to complete and the HXR footpoint moves about 7″ over the course of the observations. As an overview we calculate the intensity in blueshifted lines as a function of time, spatially integrated over each raster. The total HXR footpoint intensity of 30–70 keV emission stronger than 50% of the maximum in each image was computed for comparison. The resulting light curves are displayed in Figure 3. The HXR footpoint emission was most intense during raster 173, when the Fe xxi intensity

Figure 2. Example of fits to the Fe xxi λ1354.1 line to infer the Doppler-velocity using two different methods (red: single Gaussian fit, blue: double-Gaussian fit). The dashed line marks the rest wavelength of Fe xxi λ1354.1.

Figure 3. Top: spatially integrated HXR footpoint intensity of 30–70 keV emission for the same time steps as IRIS. The arrows indicate a conservative upper limit of the HXR emission for the time-steps where no imaging was possible due to limited statistics, indicating that upflops were present several minutes after the end of the detectable HXR emission. Bottom: spatially integrated intensity of blueshifted Fe xxi lines, time-averaged over a whole raster (red points) and average upflop velocities (green points).
was also the most intense. However, HXR emission was not observed from raster 175 onward, while blueshifts persisted until the end of the IRIS observations. Here we focus on the four rasters where the intensity enhancement in FeXXI was most pronounced (173–176) and investigate the temporal and spatial association of Fe XXI blueshifts with HXR footpoints in detail to identify the trigger of chromospheric evaporation.

Figure 4 shows the full time evolution of HXR source locations relative to the IRIS slit-position. The IRIS slit positions are indicated with colored dashed lines. The RHESSI contours show the position of the HXR footpoint for each slit-position in the respective color. Top, other panels: Doppler-velocity maps of Fe XXI along the slit for rasters 173–176 (indicated by white numbers). Gray areas denote pixels where either no Fe XXI emission was detected or the fit was bad. The contours of the HXR footpoints observed during a given raster are overlaid in the respective colors of the slit-positions. Middle and bottom row (from left to right): individual slit positions relative to HXR footpoint location during rasters No. 173 and 174, overlaid on IRIS 2796 and 1400 Å slit-jaw images (raster steps where no HXR footpoints were observed or no 2796 and 1400 Å images were available are omitted).

Figure 4. Top left: IRIS 2796 Å slit-jaw image overlaid with 50%, 70%, and 90% contours from RHESSI CLEAN images at 6–12 keV (black) and 30–70 keV (colors, 70% contours only). The slit positions are indicated with colored dashed lines. The RHESSI contours show the position of the HXR footpoint for each slit-position in the respective color. Top, other panels: Doppler-velocity maps of Fe XXI along the slit for rasters 173–176 (indicated by white numbers). Gray areas denote pixels where either no Fe XXI emission was detected or the fit was bad. The contours of the HXR footpoints observed during a given raster are overlaid in the respective colors of the slit-positions. Middle and bottom row (from left to right): individual slit positions relative to HXR footpoint location during rasters No. 173 and 174, overlaid on IRIS 2796 and 1400 Å slit-jaw images (raster steps where no HXR footpoints were observed or no 2796 and 1400 Å images were available are omitted).

3.1. Spatial Association of HXR Footpoint Emission with Fe XXI Blueshifts

An example for this case is shown in panel one of Figure 5 for slit position 5 of raster 174. The blueshifts were observed at
17:47:28 UT. The HXR source at the same location was observed ~56 s earlier, at 17:46:32 UT. Near the time of the IRIS observation, the HXR footpoint was ~5 arcsec away to the south-west. For other slit positions, HXR footpoints preceded the appearance of blueshifts at a given slit-position by 30–60 s on average. The velocities in all such regions were between −30 and −100 km s$^{-1}$. Corrected for line of sight, this gives a maximum velocity of ∼120 km s$^{-1}$. The location of the most pronounced upflows is co-spatial with the location of the ribbons in SJI at 2796 Å supporting the notion that the observed blueshifts are indeed due to chromospheric evaporation of 10 MK plasma.

3.2. Co-temporal Observation of HXR Emission and Upflows

During raster 173, the slit crossed the HXR footpoint at positions 4 and 5. An example is given in the second panel of Figure 5. The HXR footpoint is located at ∼[519, 262.5] arcsec. In a beam-driven evaporation model, blueshifts are expected from that same location. However upflows are observed 2–3 arcsec further north but not from the location of the HXR footpoint.

3.3. Upflows without Association with HXR Emission

There are regions that display blueshifts in Fe xxi but no corresponding RHESSI HXR source at any time, namely, at slit-positions 7 and 8, and the northern ribbon (compare with Figure 4). An example is given in the third panel of Figure 5. The velocities are similar to the velocities at the other locations with a maximum upflow velocity of −110 km s$^{-1}$ (−132 km s$^{-1}$ line of sight corrected) in the northern ribbon and up to −200 km s$^{-1}$ in the southern ribbon.

4. DISCUSSION AND CONCLUSIONS

The observations show evidence of chromospheric evaporation of plasma at a temperature of 10 MK from both flare ribbons. In a standard scenario, chromospheric evaporation is the consequence of energy deposition by a non-thermal electron beam. The timing of observed upflows in Fe xxi, their location, and the measured velocities all point toward gentle evaporation in the presented case, yet the HXR observations suggest a large energy input by a non-thermal beam. In the following, we investigate whether the non-thermal energy deposition is large enough to trigger explosive evaporation, followed by a discussion of the three cases presented above and how evaporation is produced in each case.

4.1. Energy Deposition by Non-thermal Particle Beams

The total non-thermal power in a beam of accelerated electrons with flux distribution $F(E)$ is given as

$$P_{\text{tot}} = \int EF(E)dE.$$ \hspace{1cm} (1)

For a power-law spectrum $F(E) = AE^{-\delta}$ above a cut-off energy E_c this gives

$$P_{\text{tot}} = \frac{A}{\delta - 2} E_c^{-(\delta - 2)} \text{erg s}^{-1}$$ \hspace{1cm} (2)

or, expressed through the total electron flux per second F_{tot} found from a thick-target model fit:

$$P_{\text{tot}} = \frac{\delta - 1}{\delta - 2} F_{\text{tot}} E_c \text{erg s}^{-1}.$$ \hspace{1cm} (3)

For the time-step starting at 17:46:04 UT, the total electron flux from the thick-target fit was 2.3×10^{35} s$^{-1}$, electron spectral index $\delta = 3.9$, and cut-off energy $E_c = 20$ keV. This gives a total non-thermal power of $P_{\text{tot}} = 1.1 \times 10^{28}$ erg s$^{-1}$. At 17:47:10 UT, the non-thermal power had dropped to $P_{\text{tot}} = 5.5 \times 10^{27}$ erg s$^{-1}$. Since the fits were made on full-Sun spectra, these values include emission from both footpoints. RHESSI images suggest that the southern footpoint
was more intense than the northern footpoint during most of the flare. Assuming that they were of roughly equal intensity gives a lower limit on the electron flux into the southern footpoint of \(P_{\text{net}} = 5.5 \times 10^{27} \, \text{erg s}^{-1} \) and \(P_{\text{net}} = 2.8 \times 10^{27} \, \text{erg s}^{-1} \), respectively. The footpoint area, estimated from IRIS 2796 Å images is \(\approx 10^3 \, \text{cm}^2 \). A similar value is found from the 50% contour in RHESSI CLEAN images. This is an upper limit, since the IRIS images were partially saturated and source sizes with RHESSI tend to be over-estimated (e.g., Dennis & Pernak 2009; Warmuth & Mann 2013). However, this estimate is sufficient here, since we are interested in a lower limit of the energy input. The total energy flux amounts are \(5.5 \times 10^{10} \, \text{erg s}^{-1} \, \text{cm}^{-2} \) initially and \(2.8 \times 10^{10} \, \text{erg s}^{-1} \, \text{cm}^{-2} \) by 17:47:10 UT.

4.2. Spatial Association of HXR Footpoint Emission with Fe xxI Blueshifts

According to the above calculation, the non-thermal power input is big enough to trigger explosive evaporation. According to Fisher (1987), explosive evaporation ceases and becomes gradual once the conductive flux out of the evaporated plasma becomes comparable to the beam flux. The change occurs at temperatures around \(\approx 10 \, \text{MK} \) over timescales of a few seconds to a few tens of seconds. In the presented event, the timescale would be of the order of 10 s. This scenario could explain blueshifts that are still observed long after the HXR source since gentle evaporation will continue as long as there is a temperature gradient. Gentle evaporation is further supported by the observed velocities of less than 200 km s\(^{-1}\). Thus the observations described in Section 3.1 can be explained with energy input by a non-thermal electron beam resulting in explosive evaporation followed by a transition to gentle evaporation whose signatures are observed once the IRIS slit covers the respective area.

4.3. Co-temporal Observation of HXR Emission and Upflows

If energy input by electron beams is indeed the initial cause of the evaporation, as assumed in the scenario discussed above, a question immediately arises. Why are no blueshifts observed when the IRIS slit is co-spatial with the location of the HXR footpoint? In other words, why is there no high temperature signature of evaporation for the case described in Section 3.2? One potential explanation could be the delayed onset of EUV emission due to the ion equilibration time. Heating by beam-energy input is almost instantaneous. However, when neutral Fe is heated quickly from 10,000 K to 10 MK it takes a certain time to reach ionization equilibrium, depending on the ambient density. Bradshaw (2009) showed that for densities \(> 10^{12} \, \text{cm}^{-3} \), this timescale is shorter than one second. For densities of \(10^{10} \, \text{cm}^{-3} \), equilibration takes the order of 100 s. In a standard thick target, assuming an exponential density, the bulk of 20 keV electrons will reach heights between 1000 and 1400 km, corresponding to densities between \(10^{12} \) and \(5 \times 10^{13} \, \text{cm}^{-3} \) (Brown et al. 2002; Battaglia & Kontar 2011), and thus this effect can be ignored and one should expect signatures of evaporation in an 8 s integrated spectrum. However, it is likely that the Fe xxI emission is obscured by chromospheric lines in the spectral window. As shown by Graham & Cauzzi (2015), the earliest, and most shifted, instances of the Fe xxI line can be extremely weak at the footpoints. Due to the small spatial scales investigated here, accurate co-alignment between instruments is crucial. For the reasons explained in Section 2.1, we are confident that the alignment adopting a minimum 0°15 rotation is correct. If no such corrections were applied, the HXR footpoint would cover the southern edge of the blueshifted area in Figure 5 (middle) but would still not cover it fully. Thus an error in co-alignment alone cannot account for the observed offset.

4.4. Upflows without Association with HXR Emission

Chromospheric evaporation in the absence of HXR emission can most readily be attributed to energy input by thermal conduction from a hot coronal source. The conductive energy input from classical Spitzer conductivity (Spitzer 1965) is given as

\[
L_{\text{cond}} = 10^{-6} Y T^{5/2} \nabla T \, \text{erg s}^{-1} \, \text{cm}^{-2}.
\]

This is usually approximated to

\[
L_{\text{cond}} = 10^{-6} \, \frac{Y T^{7/2}}{L_T}
\]

with \(L_T \) the temperature scale-length. The RHESSI spectra indicate a hot (\(> 25 \, \text{MK} \)) coronal source that persists during much of the decay phase. The temperature scale-length is the loop-half length which is approximated from the footpoint separation, assuming a semi-circular loop. For a footpoint separation of 21.4 arcsec this gives \(L_T \approx 1.2 \times 10^3 \, \text{cm} \). The resulting conductive flux is then \(L_{\text{cond}} \approx 2.9 \times 10^9 \, \text{erg cm}^{-2} \, \text{s}^{-1} \). In typical flare conditions, the heat flux is expected to saturate (Battaglia et al. 2009). Campbell (1984) showed that this can be accounted for by a reduction factor that only depends on the electron mean free path and the temperature scale length. In the present case, this factor amounts to \(0.85 \) resulting in a reduced conductive flux of \(\approx 2.2 \times 10^9 \, \text{erg cm}^{-2} \, \text{s}^{-1} \) as a lower limit. Such a conductive energy input would be sufficient to drive the observed evaporation. Another possibility is electron beams whose signatures are not observed due to RHESSI dynamic range (about 10:1). A source whose intensity at a given energy is less than ten percent of the peak intensity cannot be imaged. Assuming an electron beam with the same low-energy cutoff and spectral index as used above but tens times less flux would result in a total power input reduced by about one order of magnitude, enough to lead to gentle evaporation.

4.5. Other Flow Velocities in IRIS and EIS

An unambiguous distinction between gentle and explosive evaporation is not possible based on the observation of the velocities at one temperature alone, but could be made via Doppler analysis of, in particular, the O iv line which forms at \(T \approx 0.16 \, \text{MK} \). For gentle evaporation one would expect to see blueshifts in the O iv line (Brosius & Phillips 2004), while redshifts are expected for explosive evaporation. However, the data from IRIS are inconclusive showing very low velocities (10 km s\(^{-1}\)) in the O iv line, as well as mixed up- and downflows at locations where evaporation is seen in Fe xxI.

Figure 6 shows a selection of five spectral windows taken by IRIS at 17:46:32 UT (solar \(X \approx 524 \) arcsec). The third panel shows the rather broad Fe xxI emission with its rest wavelength 1354.06 Å indicated by the dashed line. The central part (\(Y \approx \text{...} \)

THE ASTROPHYSICAL JOURNAL, 813:113 (8pp), 2015 November 10

BATTAGLIA ET AL.
As expected, the upflows are rather sparse and do not provide full temperature coverage. The line selection was much higher than found by Milligan & Dennis (2009). It is interesting that there should be downflows at these locations, which correspond to leading edges of flare ribbons. It is possible that Fe XXI has not formed yet there, which would indicate densities of the order of \(10^{10}\) cm\(^{-3}\) according to the equilibrium time (see Section 4.3). Or, Fe XXI could simply be too faint to be visible at these locations. The flare was also observed by \textit{Hinode}/EIS and twice (\(~17:46:28\) UT and \(~17:48:52\) UT) the EIS slit was at the same location as the IRIS slit. The line selection was rather sparse and does not provide full temperature coverage. As expected, the upflow velocities in EIS Fe XXII (12.5 MK) are higher than those seen in Fe XXI in IRIS. However, analysis of the other available data suggests redshifts in Fe XVII (2.8 MK) and potentially in Fe XVIII (5.6 MK) at both observed times. It is interesting that there should be downflows at temperatures much higher than found by Milligan & Dennis (2009). For the time at \(17:48:52\) UT this would indicate that evaporation is explosive even long after particle acceleration has ceased but no definite statement can be made from the available data.

In summary, for parts of the presented flare, the timing, location, and velocities of the observed signatures of chromospheric evaporation with IRIS and \textit{RHESSI} can be explained with conductive energy input due to the temperature gradient between the chromosphere and evaporated, 10 MK plasma in the loop, as well as the hot coronal SXR source. It is intriguing however, that upflows are not observed from the same location as the HXR source where the IRIS slit was co-planar with the HXR source. On the other hand, the EIS data could be interpreted as showing explosive evaporation even at times when no HXR emission was observed.

Future combined high-spatial resolution flare observations, including lower temperature lines such as O iv and Si iv and in combination with \textit{Hinode}/EIS, should help shed some light on the matter.

This work was supported by the Swiss National Science Foundation (200021-140308) and through NASA contract NAS 5-98033 for \textit{RHESSI}. L.K. was supported by a Marie Curie Fellowship. D.G. acknowledges support by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 606862 (F-CHROMA). We would like to acknowledge the International Space Science Institute (ISSI) for facilitating the collaboration on this work.

REFERENCES

Acton, L. W., Leibacher, J. W., Canfield, R. C., et al. 1982, \textit{ApJ}, 263, 409
Antiochos, S. K., & Sturrock, P. A. 1978, \textit{ApJ}, 220, 1137
Antonucci, E., & Dennis, B. R. 1983, \textit{SolPh}, 86, 67
Battaglia, M., Fletcher, L., & Benz, A. O. 2009, \textit{A&A}, 498, 891
Battaglia, M., & Kontar, E. P. 2011, \textit{ApJ}, 735, 42
Bradshaw, S. J. 2009, \textit{A&A}, 502, 409
Brosius, J. W. 2009, \textit{ApJ}, 701, 1209
Brosius, J. W., & Phillips, K. J. H. 2004, \textit{ApJ}, 613, 580
Brown, J. C., Aschwanden, M. J., & Kontar, E. P. 2002, \textit{SolPh}, 210, 373
Campbell, P. M. 1984, \textit{PhRvA}, 30, 365
Culhane, J. L., Harra, L. K., James, A. M., et al. 2007, \textit{SolPh}, 243, 19
Czaykowska, A., Alexander, D., & De Pontieu, B. 2001, \textit{ApJ}, 552, 849
Dennis, B. R., & Pernak, R. L. 2009, \textit{ApJ}, 698, 2131
Dennis, B. R., & Zarro, D. M. 1993, \textit{SolPh}, 146, 177
De Pontieu, B., Title, A. M., Lemen, J. R., et al. 2014, \textit{SolPh}, 289, 2733
Doschek, G. A., Dere, K. P., Sandlin, G. D., et al. 1975, ApJL, 196, L83
Feldman, U., Curdt, W., Landi, E., & Wilhelm, K. 2000, ApJ, 544, 508
Fisher, G. H. 1987, ApJ, 317, 502
Fisher, G. H., Canfield, R. C., & McClymont, A. N. 1984, ApJL, 281, L79
Fisher, G. H., Canfield, R. C., & McClymont, A. N. 1985a, ApJ, 289, 434
Fisher, G. H., Canfield, R. C., & McClymont, A. N. 1985b, ApJ, 289, 425
Graham, D. R., & Cauzzi, G. 2015, ApJL, 807, L22
Graham, D. R., Fletcher, L., & Hannah, I. G. 2011, A&A, 532, A27
Harrison, R. A., Sawyer, E. C., Carter, M. K., et al. 1995, SoPh, 162, 233
Hurford, G. J., & Curtis, D. W. 2002, SoPh, 210, 101
Hurford, G. J., Schmahl, E. J., Schwartz, R. A., et al. 2002, SoPh, 210, 61
Jordan, C. 1970, MNRAS, 148, 17
Kleint, L., Battaglia, M., Reardon, K., et al. 2015, ApJ, 806, 9
Lin, R. P., Dennis, B. R., Hurford, G. J., et al. 2002, SoPh, 210, 3
McTiernan, J. M., Fisher, G. H., & Li, P. 1999, ApJ, 514, 472
Milligan, R. O., & Dennis, B. R. 2009, ApJ, 699, 968
Milligan, R. O., Gallagher, P. T., Mathioudakis, M., et al. 2006a, ApJL, 638, L117
Milligan, R. O., Gallagher, P. T., Mathioudakis, M., & Keenan, F. P. 2006b, ApJL, 642, L160
Neupert, W. M. 1968, ApJ, 153, L59
Pallavicini, R., Peres, G., Serio, S., et al. 1983, ApJ, 270, 270
Polito, V., Reeves, K. K., Del Zanna, G., Golub, L., & Mason, H. E. 2015, ApJ, 803, 84
Smith, D. M., Lin, R. P., Turin, P., et al. 2002, SoPh, 210, 33
Spitzer, L. 1965, Physics of Fully Ionized Gases (2nd rev. ed.; New York: Interscience)
Tian, H., Li, G., Reeves, K. K., et al. 2014, ApJL, 797, L14
Tian, H., Young, P. R., Reeves, K. K., et al. 2015, ApJ, 811, 139
Veronig, A. M., Brown, J. C., Dennis, B. R., et al. 2005, ApJ, 621, 482
Warmuth, A., & Mann, G. 2013, A&A, 552, A86
Watanabe, T., Harra, H., Sterling, A. C., & Harra, L. K. 2010, ApJ, 719, 213
Young, P. R., Tian, H., & Jaeggli, S. 2015, ApJ, 799, 218
Zarro, D. M., & Lemen, J. R. 1988, ApJ, 329, 456
Zarro, D. M., Slater, G. L., & Freeland, S. L. 1988, ApJL, 333, L99