random-interaction study on linear systematics of $I^π = 11/2^-$ electromagnetic moments in Cd isotope chain

Z. Z. Qin (秦珍珍) and Y. Lei (雷杨)*

1School of Science, Southwest University of Science and Technology, Mianyang 621010, China
2Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

(Dated: July 25, 2017)

In the random-interaction ensembles, electromagnetic moments of Cd $I^π = 11/2^-$ isomers predominately present linear systematics as changing the neutron number, which has been reported in realistic nuclear system. Quadrupole-like and δ-like pn interaction are responsible for such linear systematics of quadrupole and magnetic moments, respectively.

PACS numbers:

Keywords:

I. INTERACTION

The low-lying spectra and magnetic properties of doubly even nuclei are highly regulated with simple patterns. For examples, they always have $I^π = 0^+$ ground states, and $I^π = 2^+$ second excited states with few exceptions; their quadrupole moments of 2^+_1 and 2^+_2 states generally present a strong correlation with similar magnitudes and different signs across the whole nuclide chart [1]. On the other hand, these two regularities robustly exist in an ensemble of nuclear models with random numbers as two-body interaction matrix elements [2]. These two and other robust regularities in the random-interaction ensemble demonstrates how simple regularity emerges out of complex nuclear system, even with interactions mostly deviating from reality [1][8].

Recently, it was reported that the $I^π = 11/2^-$ electromagnetic moments of neutron rich Cd isotopes are also simply regulated with an obvious linear systematics as changing neutron number [3]. Several theoretical investigations tried to understand this linear systematics based on the BCS [11], density functional theory [11], and schematic Shell Model [12]. However, it’s still the challenge to explain how such simplicity survives out of the complex nuclear structure [13]. We believe that the random-interaction ensemble may provide some clue. Furthermore, most previous random-interaction works focused on the robust properties of a single doubly even nucleus. It’s novel to apply random interaction to a nuclear-systematics study on an odd-mass isotope chain. Therefore, our work aims to probe and understand the robustness of such linear systematics in the random-interaction ensemble.

II. CALCULATION FRAMEWORK

Our random-interaction calculations covers $^{112-130}$Cd, whose single-particle orbits are limited to $^π0g9/2, v2s_{1/2}, v1d_{3/2}$ and $v0h_{11/2}$ with $Z = 40 \sim 50$ and $N = 64 \sim 82$ shell closures. No further truncation is introduced. Single-neutron energies are set to be degenerated, almost as reality. The two-body interaction is randomized within the two-body random ensemble (TBRE) [14][15]. In other words, any two-body interaction element denoted by $V_{jj',jj''}$ follows the Gaussian distribution with $(\mu = 0, \sigma^2 = 1 + \delta_{jj',jj''})$, where j_1, j_2, j_3 and j_4 represent the four single-particle orbits, and the superscript J labels the rank.

We generate 3 000 000 sets of two-body interaction elements, and input them into the shell-model code [17]. With each set of two-body interaction elements, we first calculate corresponding low-lying spectra of even-mass Cd. If the calculation produces $I^π = 0^+$ ground states for all the even-mass Cd isotopes, we further calculate the $I^π = 11/2^-$ electromagnetic moments of odd-mass Cd with the same set of elements. To simplify our description, these quadrupole and magnetic moments are denoted by Q and μ, respectively. For Q calculations, effective charges are set as $e_π = 1.5e$ and $e_ν = 0.5e$; For μ calculations, single-particle g factors are set as $g_π = 5.586 \times 0.7\mu_N$, $g_{1l} = 1\mu_N$, $g_{νs} = -3.826 \times 0.7\mu_N$ and $g_{νl} = 0$, where the spin g factors are conventionally quenched by 0.7.

To quantitatively describe the Q and μ systematics, we introduce the Pearson correlation coefficient (denoted by $ρ$) [18] as a measure of linear correlation between electromagnetic moment and neutron number. This coefficient has a value between ±1, where 1, 0 and -1 correspond to totally positive linear correlation, no linear correlation, and totally negative linear correlation, respectively. For instance, according to Table I of Ref. [9], the experimental Q values present $ρ = 0.997$ linear systematics, and $μ$ values present $ρ = 0.862$ smaller than Q. Thus, the Q linearity is more evident than $μ$ one as observed.
this more straightforwardly, we compare the background of our analysis in Fig. 1. From the normal distribution, we perform a sampling in the TBRE before the Q systematics and 0^+ ground states for all the even-mass Cd isotopes. Sampling (I) corresponds to the sampling with $\rho > 0.9$ Q systematics and 0^+ g.s. sampling are relatively more attractive for each single even-mass Cd isotope in the TBRE. The error bar is determined by statistic error.

III. INTERACTION PROPERTY WITH $I^\pi = 0^+$ GROUND STATES

Our Q and μ calculations are based on the interactions, which can provide $I^\pi = 0^+$ ground states (denoted by 0^+ g.s.) for all the even-mass Cd isotopes. In other words, we perform a sampling in the TBRE before the Q and μ calculations. Only $\sim 1\%$ interactions can survive such sampling, although 0^+-g.s. predominance is still preserved for each single even-mass Cd isotope in the TBRE. We present $V_{J_1J_2J_3J_4}^{J}$ average values (denoted by $\langle V_{J_1J_2J_3J_4}^{J} \rangle$) after this 0^+-g.s. sampling as the background of our analysis in Fig. 1.

According to Fig. 1 all the $\langle V_{J_1J_2J_3J_4}^{J} \rangle$ values with $J = 0$ after the 0^+-g.s. sampling are relatively more attractive than others, corresponding to the short-range property of nuclear force in realistic nuclear system. To visualize this more straightforwardly, we compare the $\langle V_{g_2g_2g_2g_2}^{J} \rangle$ and $\langle V_{h_1h_1h_1h_1}^{J} \rangle$ values with two-body interactions elements of a typical short-range interaction, i.e. the δ force, in Fig. 2. The similarity between them is obvious. Therefore, we conclude that even through the interaction origin of the 0^+-g.s. predominance for a single nucleus in the TBRE is unclear, the short-range property of nuclear force is still the key to keep all the doubly even nuclei have 0^+ g.s. in both TBRE and realistic nuclear system.

IV. Q LINEARITY

After the 0^+-g.s. sampling, we calculate the ρ distribution of the Q systematics after the 0^+-g.s. sampling and in the whole TBRE compared with the background distribution (denoted by P_{bkg}, see text for definition). The error bar is determined by statistic error.
where the predominance of the Q linearity is more obvious with $P(\rho > 0.9)/P_{bkg} \simeq 300$.

One may argue that, the linear Q systematics out of the 0^+-g.s. sampling is trivial, because the 0^+-g.s. sampling favors the δ-like interaction, and thus should enhance the seniority scheme, which has been proposed to be the origin of the linearity of Q systematics in Ref. [3].

To examine this argument, we also calculate the ρ distribution of the Q systematics in the whole TBRE without the 0^+-g.s. sampling as shown in Fig. 3(b) $P(\rho > 0.9)$ with the 0^+-g.s. sampling is 3 times of that without this sampling according to Fig. 3(a), which agrees with the claim in Ref. [3], that the seniority scheme indeed enhances the linearity of the Q systematics. However, in Fig. 3(b), the predominance of $P(\rho > 0.9)/P_{bkg}$ is still obvious, even without the 0^+-g.s. sampling. This means that the Q linearity is robust in the whole TBRE, which can not be totally attributed to the seniority scheme here.

To search the origin of this Q linearity in the TBRE, we perform two additional samplings:

(I) the sampling with $\rho > 0.9$ and 0^+ ground states for all the even-mass Cd isotopes;

(II) the sampling with $\rho > 0.9$ regardless of even-mass Cd ground states.

The $\langle V_{j_i j_2 j_3 j_4} \rangle$ values of these two samples are presented in Fig. 4 compared with those after the 0^+-g.s. sampling. Sampling (I) and the 0^+-g.s. sampling share the same short-range property of like-nucleons interaction, i.e., relatively attractive interaction elements with rank $J = 0$, which can be trivial, because sampling (I) is actually based on the 0^+-g.s. sampling. Furthermore, after sampling (I), the proton-neutron (pn) interaction elements between $\pi_0 g_9/2$ and $\nu_0 h_{11/2}$ orbits obviously follow the parabolic rule [14], as increasing rank J, corresponding to the quadrupole interaction [21]. Sampling (II) also favors a quadrupole-like pn interaction, even though the rank $J = 0$ interaction elements after this sampling present not short-range property. Therefore, we conclude that the quadrupole pn interaction is responsible to induce the Q linearity, and the seniority scheme is a boost to this linearity in random-interaction ensemble.

V. μ LINEARITY

In Fig. 4 we present ρ distributions of the μ systematics with the 0^+-g.s. sampling and in the whole TBRE, normalized with P_{bkg}. Here P_{bkg} for μ systematics should be the same as that for Q. In the TBRE, $P(\rho)/P_{bkg}$ is always close to 1, which demonstrates that the TBRE does not characterize the μ systematics. However, after the 0^+-g.s. sampling, relatively larger possibility for $|\rho| > 0.9$ emerges ($\sim 1\%$ in the 0^+-g.s. sample), corresponding to the the predominance of the μ linearity.

It seems that the μ linearity requires even-mass Cd 0^+ ground states, i.e. the seniority scheme as we have explained. However, pure seniority scheme can only provide a constant μ as agued in Ref. [3]. Thus, we need to further probe other origin of the μ linearity beside the seniority scheme. We perform a sampling for $\rho > 0.9$ μ systematics based on the 0^+-g.s. sampling, and present $\langle V_{j_i j_2 j_3 j_4} \rangle$ values after such sampling in Fig. 5.

In Fig. 6 the $\rho > 0.9$ sampling and the 0^+-g.s. sampling share the short-range property of the like-nucleon interaction, which means that the seniority scheme is still
important for the μ linearity. Furthermore, the $\rho > 0.9$ sampling presents additional structure of $\langle V_{g_2 h_{11/2} g_2 h_{11/2}} \delta \rangle$.

We replot the detail of $\langle V_{g_2 h_{11/2} g_2 h_{11/2}} \rangle$ of the $\rho > 0.9$ sample in Fig. 6. The even-J behavior of $\langle V_{g_2 h_{11/2} g_2 h_{11/2}} \rangle$ is different from odd-J one: the even-J $\langle V_{g_2 h_{11/2} g_2 h_{11/2}} \rangle$ values present an obvious parabolic evolution, while those with odd J seem less regulated. This odd-even difference also characterizes the pn interaction governed by the δ force. More specifically, the evolution of even-J interaction between $\pi 0 g_9/2$ and $\nu 0 h_{11/2}$ orbit are only attributed to the $T = 0$ δ force as

$$V_{g_2 h_{11/2} g_2 h_{11/2}}^{J=\text{even}} \propto \left(\frac{9}{2} \begin{array}[]{c} 11/2 \\ 1/2 \\ -1/2 \\ 0 \end{array} \right)^2 \times V^{T=0} \left\{ \frac{1 + 121}{J(J+1)} \right\},$$

while the odd-J δ interaction elements have both $T = 0$ and $T = 1$ contributions as

$$V_{g_2 h_{11/2} g_2 h_{11/2}}^{J=\text{odd}} \propto \left(\frac{9}{2} \begin{array}[]{c} 11/2 \\ 1/2 \\ -1/2 \\ 0 \end{array} \right)^2 \times \left\{ V^{T=1} + V^{T=0} \right\} \frac{1}{J(J+1)}.$$

VI. SUMMARY

To summarize, the random-interaction ensemble predominantly reproduces the linear Q and μ systematics in the Cd isotopes chain. The pn interaction is the key to linearize the the Q and μ systematics, although the seniority scheme is a significant boost. For the Q linearity, the pn interaction presents quadrupole-like feature. For the μ linearity, the δ-like pn interaction is required with repulsive $T = 1$ and attractive $T = 0$ components.

Our work also emphasizes that the short-range interaction between like nucleons is responsible to reproduce the $I^\pi = 0^+$ ground states for all the even-mass nuclei in both TBRE and realistic nuclear system, which may provides a new viewpoint to understand the predominance of $I = 0$ ground states in the TBRE.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11647059, 11305151, the Research Fund for the Doctoral Program of the Southwest University of Science and Technology under Grant No. 14zx7102, and the Graduate Education Reform Project of the Southwest University of Science and Technology under Grant No. 17sxb119.

[1] J. M. Allmond, Phys. Rev. C 88, 041307 (2013).
[2] C. W. Johnson, G. F. Bertsch, and D. J. Dean, Phys. Rev. Lett. 80, 2749 (1998).
[3] Y. Lei, Phys. Rev. C 93, 024319 (2016).
[4] V. K. B. Kota, Phys. Rep. 347, 223 (2001).
[5] V. Zelevinsky and A. Volya, Phys. Rep. 391, 311 (2004).
[6] Y. M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rep. 400, 1 (2004).
[7] H. Weidenmüller and G. E. Mitchell, Rev. Mod. Phys. 81, 539 (2009).
[8] V. K. B. Kota, *Embedded Random Matrix Ensembles in Quantum Physics* (Springer, Heidelberg, 2014).
[9] D. T. Yordanov, *et al.*, Phys. Rev. Lett. 110, 192501 (2013).
[10] N. B. de Takacsy, Phys. Rev. C 89, 034301 (2014).
[11] P. W. Zhao, S. Q. Zhang, and J. Meng, Phys. Rev. C 89, 011301 (2014).
[12] Y. Lei, H. Jiang, and S. Pittel, Phys. Rev. C 92, 024321 (2015).
[13] J. Wood, Physics 6, 52 (2013).
[14] J. B. French and S. S. M. Wong, Phys. Lett. B 33, 449 (1970).
[15] O. Bohigas and J. Flores, Phys. Lett. B 34, 261 (1971).
[16] S. S. M. Wong and J. B. French, Nucl. Phys. A 198, 188 (1972).
[17] E. Caurier and F. Nowacki, Acta Phys. Pol. 30, 705 (1999).
[18] K. Pearson, Proc. R. Soc. London 58, 240 (1895).
[19] V. Paar, Nucl. Phys. A 331, 16 (1979).
[20] R. F. Casten, in *Nuclear Structure From A Simple Perspective*, edited by P. E. Hodgson (Oxford University Press, 1990).