A Problem of W. R. Scott: Classify the Subgroup of Elements with Many Roots

Vance Faber

Abstract. Let G be an infinite group and let h and g be elements. We say that h is a root of g if some integer power of h is equal to g. We define $K(G)$ to be the subgroup of all elements of G for which the number of elements which are not roots is of smaller cardinality than the cardinality of the group. That is, each element in K has almost every element in G as a root. This paper discusses the problem: When can $K(G)$ be non-trivial?

§1. Introduction. Nearly 60 years ago in [8], W. R. Scott defined two subgroups of a given infinite group G. The first, $K = K(G)$, is defined as follows:

For $g \in G$, let $\eta(g, G)$ be the set of $h \in G$ such that $h^n = g$ has no solution for n. (In other words, $\eta(g) = \{h : g \notin h\}$.) Then

$$K(G) = \{k \in G : |\eta(k)| < |G|\}.$$

The second group, $D = D(G)$, is defined by

$$D = \cap\{H \leq G : |H| = |G|\}.$$

Scott proved several interesting theorems about D and K; the principal ones follow.

THEOREM A. If G is abelian, $D = K = E$ unless $G \cong \mathbb{Z}_{p^\infty} \times F$, F finite, in which case, $D = K \cong \mathbb{Z}_{p^\infty}$.

THEOREM B. For any G, $K \leq D$. If G is not periodic, $K = E$.

THEOREM C. For any G,

(i) $K \leq Z(G)$.

(ii) K is either cyclic of order p^n or a p^∞-group for some prime p.

(iii) K is a p^∞-group if and only if there exists a central p^∞-subgroup C such that G/C is finite. If such a C exists, then $C = K = D$.

We attack two main questions in this paper.

Question 1. Are there locally finite groups with $D > K$?
Question 2. What are the groups with non-trivial K?

We answer the first question affirmatively in Example 4.10.

Question 2 seems much more difficult to answer. For countable binary finite groups we have Corollary 4.6.

COROLLARY 4.6. If G is countable and either binary finite or a 2-group such that $K(G) \neq E$, then either (i) $G = (P \times F)c$, with F a finite group, P a p^∞-group, and $C \leq Z(F)$ a cyclic group of order a power of p, or (ii) $G = \langle x, G_1 \rangle$, where $G_1 = (P \times F)c$ with F a finite group, P a 2^∞-group, $C \leq Z(F)$ a cyclic group of order a power of 2: $x^{-1}zx = z^{-1}$ for every element z of P, $x^2 \in G_1$ and there exists an m such that $x^{2m} = a$, the unique element of P of order 2. In the first case, $K(G) = P$, and in the second case, $K(G) = \langle a \rangle$.

For uncountable groups, we have Corollary 4.9.

COROLLARY 4.9. If G is an uncountable class 2 nilpotent group, then $K(G) = E$.

Clearly in Jonsson groups [9] G, $D(G) = G$. Thus, in discussions of D we must put some restrictions on the class of groups we study, and locally finite seems a reasonable restriction since there are no uncountable locally finite Jonsson groups of regular cardinality (see [2, p.73]). However, the groups in Example 4.10 are nilpotent of class 2 and are even FC.

If G has an equipotent abelian subgroup, then by Theorem A, we know just about all there is to know about D and K, so we must expect to consider groups without equipotent abelian subgroups.

This paper is arranged as follows. Section 2 provides the notation. Section 3 gives a number of lemmas which are needed later. Section 4 provides the answer to Question 1 and concentrates on reducing Question 2 to seemingly more manageable questions.

§2. Notation. Let S and T be sets. The cardinality (power) of S is denoted by $|S|$. If S and T have the same cardinality, we say that they are equipotent. If m is an infinite cardinal, m^+ is the first cardinal greater than m; 2^m is the cardinality of the set of all subsets of a set of power m; $2^{\sum_{n \in m}} = \sum_{n \in m} 2^n$; m is regular if it is not the sum of a smaller number of smaller cardinals.

Let G be a group, H be a subgroup, and S be a subset of G. The centralizer of S in G is denoted by $C_G(S)$. We denote the center of G by $Z(G) = C_G(G)$. If $H = \{1\}$, the trivial subgroup, we often denote H by E. If $x, y \in G$, the commutator of x and y is
\[[x, y] = x^{-1}y^{-1}xy \]. The subgroup generated by \(S \) is denoted by \(<S> \). The derived (commutator) group of \(G \) is \(G' = \langle \{[x, y] : x, y \in G \} \rangle \). The index of \(H \) in \(G \) is denoted by \([G : H] \). The conjugate class of \(S \) in \(G \) is \(Cl(S) = Cl_G(S) = \{g^{-1}Sg : g \in G \} \). An element \(g \) of \(G \) is a \(p' \)-element if its order, \(|g| \), is relatively prime to the prime \(p \). The exponent of \(G \) is the smallest integer \(n \) (if one exists) such that \(g^n = 1 \) for all \(g \in G \); it is denoted \(\exp(G) \). \(G \) is nilpotent of class \(n \) if \(n \) is the length of the upper central series. A section of \(G \) is a factor group of a subgroup. \(G \) is FC if every element \(y \) has finitely many distinct conjugates \(g^{-1}yg \) for \(g \in G \). If \(G \) is a \(p \)-group, \(\Omega_1(G) \) is the group generated by the set of all elements of order \(p \). A Jonsson group is an infinite group which has no proper equipotent subgroups. \(G \) is locally (binary) finite if every finite (two-element) subset generates a finite subgroup. The cartesian product of \(H \) and \(C \leq G \) with amalgamated subgroup \(A \) is denoted by \((H \times C)_A \). Additional terminology can be found in [6] and [7].

We also have occasion to use the following construction. Let \(V \) and \(W \) be vector spaces over a field \(K \) and \(\rho : V \times V \to W \) be a nonzero alternating bilinear function. If \(\gamma : V \times V \to W \) is any bilinear function such that \(\rho(x, y) = \gamma(x, y) - \gamma(y, x) \), then \(V \times W \) can be given the structure of a nilpotent group of class 2, denoted by \(G = V\gamma W \), by defining \((x, a)(y, b) = (x + y, a + b + \gamma(x, y)) \). Note that \([(x, a), (y, b)] = (0, \rho(x, y)) \).

§3. Preliminary Lemmas. Throughout this section \(G \) is a group and \(H \) is a subgroup. If \(H < G \) and \(S \leq G \), we denote the set \(SH / H \) by \(\bar{S} \).

Lemma 3.1. [8, p.189]

(i) \(\eta(1) = \emptyset \).

(ii) \(\eta(x^{-1}) = \eta(x) \).

(iii) \(\eta(x_1x_2) \leq \eta(x_1) \cup \eta(x_2) \).

(iv) \(\eta(\sigma(x), \sigma(G)) \leq \sigma(\eta(x, G)) \) for any homomorphism \(\sigma \) of \(G \).

(v) \(\eta(h, H) = H \cap \eta(h, G) \) if \(h \in H \leq G \).

(vi) \(\eta(x) \geq G - C_G(x) \).

Lemma 3.2.

(i) \(x_1 \notin \eta(x_2) \) and \(x_2 \notin \eta(x_3) \) imply that \(x_1 \notin \eta(x_3) \).

(ii) \(g \notin \eta(y) \) and \(g \in \eta(a) \) imply that \(y \in \eta(a) \).
PROOF.
(i) If \(x_1 \not\in \eta(x_2) \), there exists an \(n \) such that \(x_2 = x_1^n \). If \(x_2 \not\in \eta(x_3) \), there exists an \(m \) such that \(x_3 = x_2^m \). Thus \(x_3 = x_2^m \), so \(x_1 \not\in \eta(x_3) \).

Of course, (ii) is a contrapositive of (i).

Lemma 3.3. Let \(K = < a >, \eta(a) = \{ g : a \not\in < g > \} \). If \(\alpha \in \text{Aut}(G) \), then
\[\alpha(\eta(a)) = \eta(a) \].

PROOF. We know by [8, p.193] that \(K \) is a characteristic subgroup. Suppose \(g \in \eta(a) \). If \([\alpha(g)]^n = a \), then \(\alpha(g^n) = a \), so \(g^n = \alpha^{-1}(a) \in K \). Since \(\alpha(K) = K \), \(\alpha^{-1}(a) \) is a generator of \(K \). Thus there exists \(m \) such that \((g^n)^m = (\alpha^{-1}(a))^m = a \), so \(g \not\in \eta(a) \). This contradiction shows that \(\alpha(g) \in \eta(a) \). Since \(\alpha^{-1} \) is also an automorphism, \(\alpha^{-1}(\eta(a)) \subseteq \eta(a) \).

Lemma 3.4. If \(H \triangleleft G \), \(|G/H| = |G| \) and \(a \in K \), then \(\alpha \in K(G/H) \).

PROOF. This follows from Lemma 3.1.(iv).

Next we generalize [8; Corollary 3].

Lemma 3.5. If \(H \trianglelefteq K(G) \) with \(H \) finite, then \(\overline{K} = K(\overline{G}) \).

PROOF. \(\overline{K} \trianglelefteq K(\overline{G}) \) by Lemma 3.4. Suppose \(\overline{a} \in K(\overline{G}) \). Then \(|\eta(\overline{a})| < |\overline{G}| \). Now
\[\eta(\overline{x}) = \{ \overline{g} : \overline{x} \not\in < \overline{g} > \} = \{ \overline{g} : x \not\in < g > \} \).

Let \(\eta = \{ g : \overline{g} \in \eta(\overline{x}) \} = \{ g : x \not\in < g > \} \). Then \(|\eta| = |H| |\eta(\overline{x})| < |G| \). If \(g \not\in \eta \cup (\cup_{h \in H} \eta(h)) \), then \(g^n = hx \) for some \(n \) and some \(h \in H \) and also \(g^m = h^{-1} \) for some \(m \). Hence \(g^{m+n} = x \), so \(g \not\in \eta(x) \). Thus
\[|\eta(x)| \leq |\eta| + \sum_{h \in H} |\eta(h)| < |G| \],

so \(x \in K \).

Lemma 3.6. Suppose \(G = C(\eta(a)) \), \(1 \neq a \in K \), \(|a| = p^n \). Then the set \(H \) of \(p^\prime \)-elements is an abelian subgroup and \(H \trianglelefteq \eta(a) \).
PROOF. Clearly if \(x \) is a \(p' \)-element, \(a \notin < x > \). Since \(\eta(a) \) is abelian, the \(p' \)-elements form an abelian group.

Lemma 3.7. Suppose \(G = C(\eta(a)) \), \(1 \neq a \in K \), \(|a| = p^n \). Then \(\bar{a} \in K(\bar{G}) \) and \(\bar{G} = G/H \) is a \(p \)-group, where \(H \) is the set of \(p' \)-elements.

Proof. This follows from Lemma 3.1.(iv) and Lemma 3.6 and its proof.

Lemma 3.8. If \([h,a] = 1\), \(h \in \eta(a) \) and \(|a| = p^n \), then \(ah \notin \eta(a) \) if and only if \((p,|< h >/(< h > \cap < a >)|) = 1 \).

Proof. Note first that \(h \in \eta(a) \) implies that \(< h > \cap < a > \leq < a^p > \). Let \(m = |(< h > \cap < a >)| \). Then \(h^m = (a^p)^s \) for some \(s \). If \(1 = p^nk + ml \), then \((ah)^{ml} = a^m h^ml = a^{l-p^k} a^p t = a^{psl+1} \). Since \((p, psl+1) = 1 \), there exists a \(t \) such that \((ah)^{mst} = (a^{psl+1})t = a \), so \(ah \notin \eta(a) \). In the other direction, if \((ah)^q = a \), then \(a^{q-1} = h^{-q} \in < h > \cap < a > \leq < a^p > \). This gives both \(p | q - 1 \) and \(m | q \), from which we conclude \((p, m) = 1 \).

Lemma 3.9. Suppose \(g \in \eta(a) \) and \(x^p = a \). Then if \(g \notin \eta(y) \), \(y \in \eta(x) \).

Proof. By Lemma 3.2 (ii), \(y \in \eta(a) \). Thus \(x^p = a \notin < y > \), so \(x \notin < y > \).

Lemma 3.10. [8; p.191]. If \(H \) is an equipotent subgroup of \(G \), then \(K(G) \leq K(H) \).

Definition. Suppose \(G \) has a normal \(p^\infty \)-subgroup \(C \) of finite index. We say

(i) \(G \) is of type \(T_1 \) for the prime \(p \) if \(C \) is central;

(ii) \(G \) is of type \(T_2 \) if \(p = 2 \), \(C \) is not central, and every element \(x \) not in \(C \) satisfies \(x^{-1}cx = c^{-1} \) for all \(c \in C \) and there exists an \(m \) such that \(x^{2m} = a \), the unique element in \(C \) of order 2.

Lemma 3.11. The group \(G \) has an infinite abelian subgroup of finite index, and \(K(G) \neq E \) if and only if one of the following holds:

(i) \(G \) is of type \(T_1 \), in this case \(K(G) = C \);

(ii) \(G \) is of type \(T_2 \), in this case \(K(G) = < a > \).
PROOF. If G has an infinite abelian subgroup of finite index, then G has an infinite normal abelian subgroup A of finite index. Now $K(G) \leq K(A) = E$ unless A has a characteristic p^n-subgroup C of finite index. Thus $C \triangleleft G$, and G is a finite extension of C. Suppose C is not central in G. Then $K = K(G) \leq C$ is central and finite and contains all the elements of C which have order p. Let x be any element in G which fails to centralize C. Then conjugation by x, α_x, is a non-trivial automorphism of C, which fixes every element of order p. By a theorem of Baer (see [6; Lemma 3.28]), α_x has infinite order unless $p = 2$. Thus we have a contradiction unless $p = 2$. For $p = 2$, we have the same contradiction if α_x fixes every element of order 4, so $\alpha_x^2 = 1$, $x^2 \in C_G(C)$ and $\alpha_x(c) = c^{-1}$ for every $c \in C$. Now $(xc)^2 = x^2(x^{-1}cx)c = x^2$ for each $c \in C$. Since $\eta(a)$ is finite where a is the element of order 2 in C, $a \in < xc >$ for all but finitely many c. Suppose that there are infinitely many $c \in C$ such that $a = (xc)^m$ for m_e odd. Then $(xc)^m = x^m c$, and since x has finite order, there are infinitely many m_e which are equal to m, some fixed integer. This gives infinitely many $c \in C$ such that $x^m c = a$ for a fixed integer m, clearly a contradiction. Thus for all but finitely many c, $a = (xc)^m$, with m_e even. For these c, $a = (xc)^m = x^m$, so, in fact, there exists an even integer $2m$ such that $a = x^{2m}$. This shows that G is type T_2. Clearly $K(G) = < a >$ since no other non-trivial element of C is central.

Conversely, if G is of type T_1, $K(G) = C$ by Theorem C(iii). If G is of type T_2, let us compute $\eta(a)$. Since each element x not in $C_G(C)$ satisfies $x^2 = a$ for some m, these x are not in $\eta(a)$. On the other hand, $C_G(C)$ is a finite central extension of a 2^m-group, so $\eta(a)$ contains only finitely many elements in $C_G(C)$. This shows that $K(G) \geq < a >$. In addition, $K(G) \leq C$, and a is the only non-trivial central element in C. Thus $K(G) = < a >$.

§4. Main Results. First we characterize the groups of type T_1 and type T_2 (see Lemma 3.11).

THEOREM 4.1.

(i) G is of type T_1 for the prime p if and only if $G = (H \times C)_A$, where H is a finite group, C is a p^n-group, and $A \leq Z(H)$ is a cyclic group of order p^n;

(ii) G is of type T_2 if and only if $G = < x, G_1 >$, where $G_1 = (H \times C)_A$ is of type T_1 for the prime 2, $x^{-1}cx = c^{-1}$ for every element c of C, $[G : G_1] = 2$ and there exists an m such that $x^{2m} = a$, the unique element of C of order 2.

PROOF.
(i) If G is of type T_1 then $G = \bigcup_{i \in \mathbb{N}} x_iC$. Let $H = \langle x_i : i \leq n \rangle$. Since G is locally finite, H is finite. Clearly $G = HC$, $H \cap C \leq Z(G)$, and is cyclic.

(ii) If G is of type T_2, then $G_1 = C_{G_1}(C)$ is of type T_1 for the prime 2. Suppose x and $y \notin C_{G_1}(C)$. Then $x^{-1}cx = c^{-1} = y^{-1}cy$ for every $c \in C$, so $yx^{-1} \in C_{G_1}(C)$. Thus $|G : C_{G_1}(C)| = 2$ and $G = \langle x, G_1(C) \rangle$ for any $x \notin C_{G_1}(C)$. In the other direction, note that for every $g \in G$ either $g^{-1}cg = c^{-1}$ for every $c \in C$ or $g \in C_{G_1}(C)$, depending upon the parity of the number of times that x appears in the word which generates g. Again, we deduce $|G : C_{G_1}(C)| = 2$, so $G_1 = C_{G_1}(C)$.

EXAMPLE 4.2.

(i) Let H be a non-abelian group of order p^3 and exponent p. Let A be the center of H. Then $G = (H \times C)_A$ is not isomorphic to $C \times F$ for any finite group F since $|G/C| = p^2$ and if, $|F| = p^2$, then $C \times F$ would be abelian.

(ii) Let $G_1 = (H \times C)_A$ be a group of type T_1. Let y be any element in $G_1 - C$ such that $y^n = a$. Suppose there exists an automorphism α of G_1 which fixes y, $\alpha(c) = c^{-1}$ for each $c \in C$ and $\alpha^2(g_1) = y^{-1}g_1y$ for every $g_1 \in G$. Then there exists a group G such that $G = \langle x, G_1 \rangle$ with $G/G_1 \cong Z_2 \times Z_2$, $x^2 = y$, $x^{-1}g_1x = \alpha(g_1)$ for every $g_1 \in G$ (see [7, 9.7.1]). If G_1 is abelian and $m = 1$, then such an α exists. One can easily construct examples with $m \neq 1$. For example, let $G_1 = \langle z \rangle \times C$, $z^2 = 1$. Then if $y = (z, a_2)$ with a_2 an element of order 4, we can define α by $\alpha(zc) = za_2^2c^{-1}$ for each $c \in C$.

Next we consider countable groups with non-trivial finite K.

THEOREM 4.3. If G is a countable group with $K(G) \cong Z_{p^m}$, then G has an infinite section H of finite index with $K(H) = \langle a \rangle \cong Z_{p^n}$, where H is a p-group and $\eta(a, H) = E$.

PROOF. First let us show that every group G which is of type T_2 has a section S of finite index which is infinite generalized quaternion, that is, $S = \langle x, C \rangle$ with $C \equiv Z_{2^m}$, $x^{-1}cx = c^{-1}$ for every element c of C, and $x^2 = a$, the unique element of C of order 2. Note that such a group S has $K(S) = \langle a \rangle$ and $\eta(a) = E$. We shall induct on the integer m in the definition of type T_2. Let $G = \langle x, G_1 \rangle$ be of type T_2 as in Theorem 4.1 (ii) with $G_1 = (H \times C)_A$, etc. Let a_2 be an element of C of order 4. Let $z = x^ma_2$. We have $z^{-1}cz = x^{-m}cx^m = c^{(-1)^m}$ for every $c \in C$ and $z^2 = (x^ma_2)^2 = x^ma_2x^{-m}a_2 = a_2^{(-1)^m}a_2a$.
If m is odd, $< z, C >$ is the desired section. If m is even, say $m = 2k$, then $S_1 \leq x, C > / N$ with $N = \{1, z, za, a\}$ has the desired generalized quaternion section by induction. To see this, note that we have shown that $(za)^2 = z^2 = 1$; $[z, c] = [x^m, c] = 1$ for every $c \in C$, $x^{-1}zx = xx^m a_x a_z = x^m a_z^{-1} = za$ so that $N \leq S_1$; $a_2 N$ is the unique element in CN / N of order 2 since $a_2 \notin N$; and finally, $x^{2k} = x^m = za z a^{-1} = za a_z$, so $x^{2k} N = a_2 N$.

Let $K(G) = \langle a \rangle \cong Z_{p^n}$. We may assume that G does not have a subgroup H_1 of finite index which is type T_2, otherwise H_1 has a subgroup H which satisfies the conditions of the theorem by the argument just given.

Since by Lemma 3.3, $\alpha(\eta(a)) = \eta(a)$ for every $\alpha \in Aut(G)$, and since $\eta(a)$ is finite, each element in $\eta(a)$ has finitely many conjugates. Thus $H = C(\eta(a))$ has finite index in G. If $C = K(H)$ were a p^{∞}-group, then since C has finite index in H by Theorem C(iii), C would have finite index in G. Since $K(G)$ is finite, C could not be central. Thus by Lemma 3.11, we would have $K(G) = E$; a contradiction. Thus $K(H)$ is finite. Since by Lemma 3.10, $K(G) \leq K(H)$, $K(H)$ is non-trivial, and we may suppose $G = C(\eta(a))$. The set N of p'-elements forms an abelian subgroup and $N \leq \eta(a)$ by Lemma 3.6. Now $\bar{a} \in K(G / N)$ by Lemma 3.7. If $P / N = K(G / N) \cong Z_{p^n}$, then $[G / N : P / N] < \infty$. Now by [7,3.2.10], P is abelian, hence $P = Q \times N$, where Q is a p^{∞}-group and N is a finite p'-group. Thus $[G : Q] < \infty$, so $K(G) \cong Z_{p^n}$; a contradiction. Thus we may assume that G is a p-group.

We have shown in Lemma 3.5 that $K(G / \langle a^n \rangle) = \langle \bar{a} \rangle$, so we may assume that $K(G) \cong Z_p$. Consider $Z(G)$. If it is infinite, then by Theorem A, $K(Z(G)) = E$ unless $Z(G) = Q \times F$, where Q is a p^{∞}-group and F is finite. If $Z(G)$ is finite, $Z(G) = Q \times F$, where Q is cyclic and F is finite. Thus $Z(G) = Q \times F$, where Q is cyclic or quasicyclic and $a \in Q$. Now $\eta(a) = \{qf : q \in Q, f \in F, |q| \leq |f|\}$.

Let us compute in $\bar{G} = G / F$. Suppose $|\eta(\bar{x})| < \infty$, with $x \notin Z(G)$. Then $|G - C(x)|$ is infinite and so is $|G - C(x) / F|$. Since $C(xf) = C(x)$ for all $f \in F$, $G - C(x) = G - C(xf) \leq \eta(xf)$. If $y \in G - C(x)$, but $y \notin \eta(\bar{x})$, then $\bar{x} = \bar{y}^n$ or $y^n = xf$ for some n and $f \in F$, contradicting $y \in \eta(xf)$. This shows that $|\eta(\bar{x})|$ is finite only if $x \in Z(G)$.

Let us show that $\eta(\bar{a}) = \{\bar{1}\}$. Suppose $\bar{z}^p = \bar{1}$, $\bar{z} \neq \bar{1}$, If $z \in \eta(a)$, then $z = qf$, with $q \in Q, f \in F, |q| \leq |f|$. Since $q^p f^p = z^p \in F, q^p = 1$, so $q \in \langle a \rangle$. Thus $< \bar{z}^p > = < \bar{a} >$. If $z \notin \eta(a)$, then since $z^p \in F \leq \eta(a), z^p = 1$. Since $z \notin F$, $< z > = < a >$ and again
$\langle \overline{z} \rangle = \langle \overline{a} \rangle$. Thus $\langle \overline{a} \rangle$ is the only subgroup of G of order p. It follows that $\eta(\overline{a}) = \{1\}$.

If $\eta(\overline{x})$ is finite, then $x \in Z(G)$, so $x = qf$ where $q \in Q$. We shall show that $\eta(q) = \langle q^p \rangle$. We have shown that $\eta(\overline{a}) = \{1\}$. Suppose that we have established the equality $\eta(q) = \langle q^p \rangle$ for all $q \in Q$ with $\langle q^p \rangle < a > < p^m$, and there is a $q \in Q$, with $q^m = a$. Suppose $\overline{y} \in \eta(q^p)$, then $\overline{y} \notin \eta(q^p)$, so $\overline{y}^n = q^p$ for some n. Since $\overline{y} \notin \eta(q^p)$, we may assume that $p \mid n$, say, $n = pl$. Thus $\overline{y}^n = (\overline{y}^l)^p = q^p$, where $\overline{z} = \overline{y}^l \in \eta(q) \subset q^p$. We have $\overline{y}^n = (\overline{y}^l)^p = 1$. Since $\overline{y} \in \eta(q)$, $\overline{z} \neq q^p$. Since $\overline{z} \in \eta(q) \subset < q^p >$, we have $\overline{z} \neq q^p$. Thus $\overline{z} \neq q^p$. We have shown that $K(G) \equiv Q$ and that $\eta(q) = \langle q^p \rangle$ for every non-trivial $q \in Q$. If Q is a p^∞-group, then $[G : K(G)] < \infty$, so $[G : Q] < \infty$, which gives $K(G) \equiv Z_{p^\infty}$, which is a contradiction. Thus there is a group G with $K(G) = \langle a >$ and $\eta(x) = \langle x^p \rangle$ for each non-trivial $x \in < a >$. Now in $\overline{G} = G/\langle a >$, $K(\overline{G}) = \langle \overline{a} > \equiv Z_p$ by Lemma 3.5 and $\eta(\overline{a}) \leq \overline{a} = \langle \overline{a}^p \rangle = \{1\}$. This proves the theorem.

We need the following lemma which is stated in [10]. The main ideas for the proof can also be found in [6; p. 70, part 1] and [2; I.G.4 and I.G.6].

Lemma 4.4. Let G be infinite and either binary finite or a 2-group. If G has a finite maximal elementary abelian subgroup, then it has an infinite abelian subgroup of finite index.

Theorem 4.5. If G is a countable group such that $K(G) \neq E$, then one of the following holds:

(i) G is of type T_1: $G = (P \times F)_C$, with F a finite group; P a p^∞-group; and $C \leq Z(F)$, a cyclic group of order a power of p. In this case $K(G) = P$.

(ii) G is of type T_2: $G = < x, G_1 >$, where $G_1 = (P \times F)_C$ with F a finite group; P a 2^∞-group; $C \leq Z(F)$, a cyclic group of order a power of 2, $x^{-1}zx = z^{-1}$ for every element z of P. $[G : G_1] = 2$ and there exists an m such that $x^{2m} = a$, the unique element of C of order 2. In this case $K(G) = < a >$.

(iii) G has an infinite section H, which is a 2-generated p-group for an odd prime p and $K(H) \equiv Z_p$.

9
PROOF. We know by Theorems C(iii) and 4.1 that \(K(G) \cong \mathbb{Z}_p \) if and only if (i) holds. On the other hand, if \(K(G) \cong \mathbb{Z}_p \) then by Theorem 4.3 there is an infinite section \(H \) with \(K(H) = \langle a \rangle \cong \mathbb{Z}_p \), with \(H \) a \(p \)-group and \(\eta(a) = \{1\} \). Clearly \(\langle a \rangle \) is a maximal elementary abelian subgroup. If \(H \) is binary finite or a 2-group, then by Lemma 4.4, \(H \) has an infinite abelian subgroup of finite index. By Lemma 3.11, this is only possible if (ii) holds. Otherwise \(p \neq 2 \) and \(H \) has an infinite subgroup \(L \) which is 2-generated with \(a \in L \) and \(K(L) \) finite. By Lemma 3.5, \(L \) has a factor group which satisfies (iii).

COROLLARY 4.6. If \(G \) is countable and either binary finite or a 2-group such that \(K(G) \neq E \), then either \(G \) is of type \(T_1 \) and \(K(G) \) is \(p^n \)-group or \(G \) is of type \(T_2 \) and \(K(G) \cong \mathbb{Z}_2 \).

REMARKS. We have not been able to improve Theorem 4.5 to include in (iii) the statement \(\langle a \rangle \cong \mathbb{Z}_p \) with \(\eta(a) = \{1\} \). Of course, the likely place to look for groups of the type described in 4.5 (iii) is a central extension of \(\mathbb{Z}_p \) by a group \(B \) which is either a Novikov-Adjan group (see [4]) or a Tarski-Monster constructed by Ol’shanskii [5]. This necessitates the study of maps \(W : B \times B \to \mathbb{Z}_p \) which satisfy

\[
W(xy, z) + W(x, y) = W(x, yz) + W(y, z),
\]

which seems quite difficult.

Now we examine some uncountable groups.

THEOREM 4.7. If \(G \) is an uncountable class 2 nilpotent \(p \)-group for \(p \) odd, then \(|\Omega_1(G)| = |G| \). For each infinite cardinal \(m \) there is a class 2 nilpotent 2-group \(G \) of power \(2^m \) such that \(|\Omega_1(G)| = 2^m \).

PROOF. Consider the tree \(T = 2^{<m} \) of functions from ordinals less than \(m \) into 2, ordered by function extension. \(T \) has \(2^{<m} \) nodes and \(2^m \) paths (a path corresponds to a function from \(m \) into 2.) Let \(V \) be the \(2^m \)-dimensional vector space over \(\mathbb{Z}_2 \) with basis \(\Sigma \), the set of paths of \(T \). Let \(W \) be the \(2^{<m} \)-dimensional vector space over \(\mathbb{Z}_2 \) with basis \(N \), the set of nodes of \(T \). We define for each \(f \) and \(g \) in \(\Sigma \), \(\rho(f, g) \) to be the largest element of \(N \) common to both \(f \) and \(g \) if \(f \neq g \) and \(\rho(f, f) = 0 \). Extend \(\rho \) by bilinearity to all of \(V \). Let \(\gamma \) be any bilinear function from \(V \times V \) to \(W \) such that \(\gamma(v, v) \neq 0 \) for \(v \in \Sigma \) and \(\rho(u, v) = \gamma(u, v) + \gamma(v, u) \). Consider the class 2 nilpotent 2-group \(G = V\gamma W \) (see [1]). If \((v, a)^2 = 1 \) with \(0 \neq v \in V \) and \(a \in W \), then \(\gamma(v, v) = 0 \). Suppose \(v = \sum_{i=1}^{n} f_i \) with
If G is an uncountable class 2 nilpotent p-group for p odd with $|\Omega_1(G)| < |G|$, then since the derived group G' is abelian, $|G'| < |G|$ (see [8; p. 184, Corollary 1]). Assume that G is an example with smallest cardinality. It is clear that $|G|$ is a successor cardinal. Since G / G' is abelian, it has an elementary abelian subgroup H / G' with $|H / G'| = |G / G'| = |G|$. If $x, y \in H$, then $[x, y] \in Z(G)$ and $x^p \in G' \leq Z(G)$, so $[x, y]^p = [x^p, y] = 1$, and hence $\exp H' = p$. Let $\{x^\alpha H'\}$ be a basis for H / H'. Since $x_\alpha^p \in H'$, there is a set T of power $|G|$ and an $a \in H'$ such that $x_\alpha^p = a$ for every $\alpha \in T$.

But then $(x_\beta^{-1} x_\alpha)^p = [x_\alpha, x_\beta^{-1}]^p [x_\beta^{-1}]^p = 1$, so $|\Omega_1(G)| = |G|$.

COROLLARY 4.8. For each infinite cardinal m there is a class 2 nilpotent 2-group G of power 2^m such that every abelian subgroup A satisfies $|A| \leq 2^m$.

PROOF. This is clear since if $|A| > 2^m$, then $|\Omega_1(G)| \geq |\Omega_1(A)| = |A| > 2^m$; a contradiction.

REMARK. The uncountable group constructed in [3] is similar.

COROLLARY 4.9. If G is an uncountable class 2 nilpotent group, then $K(G) = E$.

PROOF. If G is a counter-example of smallest cardinality and $1 \neq a \in K(G)$, then $|\eta(a)| < |G|$, so we may assume $|\eta(a)| \leq m$ and $|G| = m^+$. Thus, by arguments like those used in the proof of the theorem, we need only prove the corollary for groups G such that G / G' and G' have exponent p. If p is odd, then Theorem 4.7 gives a contradiction, so we suppose that $p = 2$. We have $a^2 = 1$, and if $x \in G - \eta(a) - \{a\}$, then $x^2 = a$. Let $\{x_\alpha\}$ be such that $\{x_\alpha G\}$ is a basis for G / G'. Let x be any fixed element of $T = \{x_\alpha\} - \eta(a)$. If $x_\alpha \in T$, then $(xx_\alpha)^2 = x^2 x_\alpha^2 [x, x_\alpha] = [x, x_\alpha]$. Thus there must be $S_0 \leq T$ such that $|S_0| = |T|$ and $[x, x_\alpha] = a$ for all $x_\alpha \in S_0$. Fix $y \neq x \in S_0$. Again there is $S_1 \leq S_0$ such that $|S_1| = |S_0|$ and $[y, x_\alpha] = a$ for all $x_\alpha \in S_1$. Fix $z \neq x, y \in S_1$ and find $S_2 \leq S_1$ such that $|S_2| = |S_1|$ and $[z, x_\alpha] = a$ for all $x_\alpha \in S_2$. Thus for each $x_\alpha \in S_2$, $(xyzx_\alpha)^2 = (xy)^2 (zx_\alpha)^2 [x, y][x, z][y, z][x, x_\alpha][y, x_\alpha] = a^6 = 1$. But $xyzx_\alpha$ are distinct members of $\eta(a)$ for $x_\alpha \in S_2$, which is a contradiction.
REMARK. Although it seems quite likely that Corollary 4.9 holds for all uncountable locally nilpotent groups, we have not even been able to extend it to class 3 nilpotent groups.

EXAMPLE 4.10. There are class 2 nilpotent p-groups with $D > K = E$. To see this, consider one of the groups G constructed (using G.C.H.) in [1]. G has the properties (p is a prime):
(i) $[G] = \lambda^+$, where λ is an infinite cardinal;
(ii) $G' = Z(G) \cong Z_p$;
(iii) if A is an abelian subgroup of G, $|A| \leq \lambda$;
(iv) $\exp(G/G') = p$.

Thus if $G_a \leq G$, where $|G_a| < |G|$, $G_a' = G'$. It follows that $D = G'$. On the other hand, we know that $K \leq G' = Z(G)$. Let $1 \neq a \in G'$. Since $\eta(a) = \{g \in G : g^p = 1\} - \langle \langle a \rangle \rangle$, if $|\eta(a)| \leq \lambda$, take $x_0 \in G - \eta(a)$, $x_0^p = a$. Then $|C(x_0) - \eta(a)| = \lambda^+$, and for every $x \in C(x_0) - \eta(a)$, $x^p = a$. Then $(x^{-1}x_0)^p = x^{-p}x_0^p = 1$, so $x^{-1}x_0 \in \eta(a)$. Thus $|\eta(a)| = \lambda^+$, and so $K = E$.

ACKNOWLEDGMENT

I wish to express my appreciation to Professor Scott for pointing out several errors in a previous version of this paper.

REFERENCES

1. A. Ehrenfeucht and V. Faber, Do infinite nilpotent groups always have equipotent Abelian subgroups? Kon. Nederl. Akad. Wet. A75 (1972), 202-209.

2. O. H. Kegel and B. A. F. Wehrfritz, Locally Finite Groups. North Holland (1973).

3. L. G. Kovacs, B. H. Neumann, and H. de Vries, Proc. Royal Soc. London A260 (1961),304-316.

4. P. S. Novikov and S. I. Adian, On infinite periodic groups (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 212-244, 251-524, 709-731. MR 29#1532 a, b, c.

5. A. Yu. Ol'shanskii, Groups of bounded period with subgroups of prime order, Algebra and Logic 21 (1982), 369-418.

6. D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Parts 1 and 2, Ergebnisse der Math. Bde. 62/63. Springer-Verlag (1972).

7. W. R. Scott, Group Theory, Prentice Hall, Englewood Cliffs (1964).
8. W. R. Scott, *Groups and cardinal numbers*, Amer. J. Math. 74 (1952), 187-197.

9. S. Shelah, "On a Problem of Kurosh, Jonsson Groups, and Applications," in Word Problems, II (Conference on Decision Problems in Algebra, Oxford, 1976), pp. 373-394, Studies in Logic and Foundations of Mathematics 95, North Holland, Amsterdam (1980).

10. V. P. Sunkov, *On periodic groups with certain finite conditions*, Soviet Math. Dokl. 11 (1970), 1684-1688.