The immunoregulatory mechanisms of carcinoma for its survival and development

Caigan Du1,2,3*, Yuzhuo Wang1,3,4

Abstract

The immune system in patients detects and eliminates tumor cells, but tumors still progress persistently. The mechanisms by which tumor cells survive under the pressure of immune surveillance are not fully understood. This review is to present the evidence from clinical studies, showing a significant correlation of clinicopathological features of carcinoma with: (1) the loss of classical human leukocyte antigen class I, (2) the up-regulation of non-classical human leukocyte antigen class I, pro-apoptotic Fas ligand and receptor-binding cancer antigen expressed on SiSo cells I, and (3) the formation of immunosuppressive microenvironment by up-regulation of transforming growth factor-beta, Galectin-1, inhibitory ligand B7s, indoleamine 2,3-dioxygenase and arginase, as well as by recruitment of tumor-induced myeloid-derived suppressor cells and regulatory T cells. All of these factors may together protect carcinoma cells from the immune-cytotoxicity.

Introduction

Carcinoma is the most commonly type of cancer transformed from epithelial cells. It has been noted for a while that the immune-mediated spontaneous regression of cancer occurs in patients [1]. Recent clinical studies have demonstrated that anti-carcinoma immunity is activated along with rise and progression of carcinoma, indicated by: (1) the tumor-infiltrating immune cells (TICs), including T, B and natural killer (NK) cells, are activated [2-4], and the number of these lymphocytes and macrophages positively correlates with cancer-specific survival rate in patients with various carcinomas [5-7]; (2) both carcinoma antigen-specific cytotoxic T lymphocytes (CTLs) [8-10] and antibodies [11-13] have been identified in cancer patients; and (3) spontaneous regression has been noted in many patients with carcinoma cancers, in which the number of infiltrating immune cells, including activated CD3+ T cells, NK cells, antigen presenting cells (APCs), is significantly higher than that in non-regressing controls [14-16]. Therefore, the number of infiltrating immune cells becomes a reliable biomarker for predicting cancer relapse [17,18]. All these studies suggest that the immune surveillance against carcinoma is active in patients, but how carcinoma cells still can survive and grow in some patients is not fully understood. In this review, we attempted to summarize the evidence of anti-immune functions of carcinoma from both clinical and experimental studies.

Avoidance of cytotoxic lymphocyte stimulation by attenuation of human leukocyte antigen class (HLA) molecules

Loss of HLA class I for avoidance of CD8+ CTL activation

Classical HLA class I constitutively expresses on epithelial cells and many carcinoma cell lines, such as non-small cell lung cancer (NSCLC) [19]. Given a central role of HLA class I in the restriction of CD8+ CTL recognition of carcinoma-specific antigens, loss of HLA class I expression undoubtedly becomes a major escape pathway for the evasion of CD8+ CTL surveillance, by which any HLA class I deficient carcinoma variants can develop to more aggressive or invasive phenotypes without stimulation of primary anti-carcinoma immunity, CD8+ T cell response. Indeed, as listed in Table 1, the total loss of HLA class I expression is more frequently noted with more aggressive or metastatic stages and poor differentiation phenotypes as compared to those with early stages and well to moderately differentiated lesions in patients.

A higher level of HLA class I expression in bladder carcinoma is significantly associated with a longer...
survival rate in patients [21], and tumors with a normal level of HLA class I harbor more CD8+ T cells than those with altered HLA class I in renal cell carcinomas (RCC) [30] and cervical carcinoma [31,32]. In addition, a decrease in HLA class I expression has been noted as early as in normal mucosa surrounding the tumor or in situ lesion, and is significantly associated with subsequent development to a new primary tumor lesion [33,34]. These data indicate that the avoidance strategy may occur at early stages of carcinoma development, and suggest that by loss of HLA class I expression to avoid NK cell cytotoxicity. A clinical study with oral squamous cell carcinomas shows that HLA class I, one has to knowledge that other strategies are seen to avoid CD8+ CTL seems critical for the development of carcinoma in patients.

Heterogeneous expression of HLA class I in inactivation of NK cell cytotoxicity

Although loss of HLA class I may benefit to carcinoma resistance to CD8+ CTL as discussed above, it could increase the susceptibility to cytotoxicity of natural killer (NK) cells [35] because HLA class I is a ligand for inhibitory receptor family, killer cell immunoglobulin-like receptor (KIR) of NK cells [36]. Thus, loss of HLA class I expression could favor the escape of antigen-dependent cytotoxicity of CD8+ CTL, but at the same time carcinoma cells may become a target of NK cell cytotoxicity. To date, it is not completely clear how carcinoma cells can survive under the selection of both CD8+ CTLs and NK cells simultaneously. It has been suggested that carcinoma cells find a balance between maintenance of HLA class I expression for inhibition of NK cell cytotoxicity and loss of its expression for the escape from CD8+ CTL responses. Indeed, the complete loss of HLA class I is barely seen in carcinomas, which may be explained by its need for inhibition of NK cell activity. The heterogeneous losses of HLA class I either positively or negatively correlate with carcinoma stages or grades in patients [24,27,28], reflecting exactly the situation of carcinoma cells; if carcinoma cancer faces more severe cytotoxicity from NK cells versus CD8+ CTL, certain levels of HLA class I inactivation of both CD8+ CTL and NK cells more than NK cells, then partial loss of HLA class I becomes a key for survival, as indicated by Table 1.

In addition to heterogeneous expression of HLA class I, one has to knowledge that other strategies are seen to avoid NK cell cytotoxicity. A clinical study with oral squamous cell carcinomas shows that HLA class I expression is either weak or absent for not stimulation of CD8+ CTL, but there is still no a clear correlation of HLA class I expression loss with a relative proportion of NK cells, indicating that the local factors seem to down-regulate the final outcome of the cytotoxic immune response of NK cells [33]. Indeed, reduced expression of natural cytotoxicity receptor, NKG2D ligand UL16 binding protein 1 and Inter-Cellular Adhesion Molecule 1 has been seen on tumor cells [37,38], which may specifically prevent NK cell activation.

Non-classical HLA-G in inhibition of both CD8+ CTLs and NK cells

HLA-G is a non-classical class I antigen, originally detected in trophoblastic cells [39], where it is proposed to suppress maternal immune response against the semi-allogeneic fetus. It binds to the inhibitory receptors Ig-like transcript (ILT) 2, ILT4 or KIR2DL4, resulting in suppression of cytotoxicity of both CD8+ CTL and NK cells [40,41]. The protective role of HLA-G in

Table 1. The association of deficient HLA class I expression in carcinoma with its progression in patients

Carcinoma type	Antibodies for immunohistochemical staining	Distribution of total HLA class I expression loss (% of negative staining)*	References
Bladder	W6/32 and GRH1	The altered of HLA class I including total losses associates with higher grade lesions and tumor recurrence	[20]
A-072	1) 16.6% in G1, 38.5% in G2, and 57.1% in G3; 2) 5-year survival 74% with positive versus 36% with negative staining	[21]	
Gastric	A-072	0% in T1 (mucosa & submucosa) versus 100% in T2-3 (muscle and fat invasion)	[22]
Esophageal	W6/32	0%: normal and benign versus 40.5% carcinoma lesions	[23]
Bronchogenic	W6/32 and HC-10	1) 13% of Diploid versus 45% of Aneuploid; 2) 17.3% in G1-2 versus 69% in G3	[24]
NSCLC	W6/32	1) 26.8% in T1-2 versus 35% in T3; 2) 20.7% in G1-2 versus 39.3% in G3, 3) 24.1% in N0 versus 34.5% in N1-2	[25]
Breast	HC-10	0% in low-grade versus 67.6% in high-grade lesions	[26]
	W6/32	24% in primary versus 64% in corresponding LN samples	[27]
Pancreatic	W6/32 and 246-E8E7	1) 6% in primary versus 43% in metastatic tumors; 2) 0% in G1, 33% in G2 and 67% in G3	[28]
Prostate	A-072	1) 0% in Benign, 41% in primary and 66% in LN metastases; 3) 33% in low-grade versus 50% in high grade lesions	[29]

*The cutoff line for negative staining or total loss is 5 to 25% of cells stained with antibodies. W6/32 monoclonal antibody (mAb) detects monomorphic epitope of HLA class I antigen (HLA-ABC); 246-E8E7, HC-10 and GRH1 are anti-beta-2-microglobulin (β2-m) mAbs; rA-270 is rabbit polyclonal anti-HLA-G antibody (DAKO).
carcinoma survival under immune surveillance is demonstrated in many studies with patients; in contrast to its null expression in normal epithelial cells and benign adenomas, a high percentage (30-90%) of carcinoma cells expresses HLA-G in a variety of cancerous lesions, and its levels have been found to be significantly associated with clinicopathological features and shorter survival time of patients [42-45]. All these data indicate that carcinoma-expressing HLA-G could be one of important mechanisms for inhibition of both CD8+ CTL and NK cell mediated anti-carcinoma immunity.

Induction of TIC apoptosis by expression of pro-apoptotic ligands

Fas ligand (FasL)

FasL binding to death receptor Fas triggers apoptosis of Fas-expressing cells including TICs. Two patterns of Fasl expression on carcinoma cells have been shown by immunohistochemical staining: (1) up-regulation of FasL expression on carcinoma is positively associated with clinicopathological features in patients, shown by that FasL expression is an early event in epithelial cell transformation (adenoma), followed by an increase in the percentage of Fasl-expressing carcinoma cells in high-stage or -grade lesions, and the poorer survival of patients with high levels of FasL expression (Table 2); and (2) high levels of FasL expression have been seen as an independent factor for clinicopathological features, indicated by the positive staining of persistent FasL expression regardless of tumor stage, histologic grade, invasion and metastasis in many studies [47,58-61]. All of these observations suggest that FasL expression is critical for carcinoma survival by induction of TIC apoptosis. Indeed, the pro-apoptotic function of FasL on carcinoma cells has been demonstrated in both in vitro and in vivo; in co-cultures with a variety of carcinoma cell lines, FasL expressed on carcinoma cells induce apoptosis of lymphocytes in Fas-dependent manner [49,51,62-66], and in carcinoma biopsies from patients, the present of FasL on carcinoma cells is in parallel with apoptosis of TICs [53,60,67-69] or reduced number of TICs [70,71]. In the experimental studies with animal models, down-regulation of FasL expression in carcinoma significantly reduces tumor development in syngeneic immunocompetent mice [72], while persistent expression of Fas enhances tumor growth along with an increase in lymphocyte apoptosis [73,74], and is acquired for survival from active specific immunotherapy [75].

Receptor-binding cancer antigen expressed on SiSo cells (RCAS)

RCAS1 is a recently characterized human tumor-associated antigen expressed in a wide variety of cancer tissues, and induces cell cycle arrest and/or apoptosis in RCAS1 receptor-expressing immune cells. Like FasL on carcinoma cells, RCAS1 is expressed in a high percentage of carcinoma cells (30-100%) and is significantly correlated with clinicopathological features including a shorter survival time for patients, and with apoptosis or reduction of TICs [76-81]. In co-cultures of interleukin (IL)-2 activated peripheral blood lymphocytes with human oral squamous cell carcinomas cell line (KB cells), lymphocyte apoptosis is associated with the presence of soluble RCAS1 in the medium [77]. In addition,

Table 2 FasL expression in carcinoma cancers

Carcinoma type	Distribution of high FasL expression	References
Colorectal	19% in adenomas, 40% of stage I-II, 67% of stage III and 70% of stage IV of carcinoma	[46]
	40% in adenoma versus 80.8% in carcinoma	[47]
	Higher incidence of metastases and poorer patient survival associate with Fasl positive carcinomas	[48]
	0 positive in normal epithelial cells, 2/7 positive in primary tumors, 4/4 positive in hepatic metastatic tumors	[49]
Adrenocortical	37.7% in adenomas versus 100% in the carcinoma	[50]
Bladder transitional cell	1) 0% in normal urothelium, 0% in G1, 14% in G2, and 75% in G3.	[51]
	2) 13% in superficial Ta-T1 versus 81% in invasive T2-T4	
	0% in normal urothelium, 19% in T1, 21% in T2 and 49% in T3	[52]
Pancreatic ductal	1) 82% in primary versus 100% in hepatic metastases	[53]
	2) Shorter survival for patients associates with Fasl positive tumors	
Nasopharyngeal	1) 0% in stage I, 57% in stage II, 58% in stage III and 82% in stage IV;	[54]
	2) A lower rate of disease-free and overall survival for patients associates with positive Fasl expression.	
Gastric	36.2% in adenomas, 68.8% in early carcinoma, and 70.4% in advanced carcinoma	[55]
Cervical	1) 5/14 in inner 2/3 stromal invasion versus 10/10 outer 2/3 stromal invasion;	[56]
	2) 7/15 without LN metastasis versus 8/9 with LN metastasis;	
	3) Reduced survival times in patients with FasL-expressing tumors	
Esophageal	1) Higher incidence of LN metastasis associates with the tumors containing >25% FasL expression;	[57]
	2) All cancer metastases in LN express Fasl. in >50% of the cells	

LN: lymph nodes.
similar to FasL and RCAS1, CD70 overexpressed on RCC promotes lymphocyte apoptosis by binding to its receptor CD27, indicating a proapoptotic role of CD70 in the elimination of TICs as well [82]. All these observations suggest that the direct induction of TIC apoptosis by persistent expression of FasL, RCAS1 or perhaps other apoptosis-inducing ligands (e.g. CD70) on carcinoma cells plays a role in the ability of carcinoma cells to escape from the anti-carcinoma immunity.

Suppression of TIC activity by molecular and cellular factors

Immunoregulatory cytokine/cytokine-like: Transforming growth factor (TGF)-β1 and Galectin-1 (Gal-1)

TGF-β1 is a multifunctional cytokine involved in immunosuppression. Numerous clinical studies have demonstrated that a higher level of TGF-β1 expression is significantly associated with an invasive phenotype of tumors or metastases in patients [83-86]. In vitro a significant amount of TGF-β1 is produced in the poorly differentiated prostate carcinoma cell lines but not in well-differentiated cells [87]. These data imply that TGF-β1 may increase metastasis by a paracrine matter, such as suppression of local immune response or increased angiogenesis. Indeed, in the biopsies of cervical carcinoma tumors, an inverse relationship between TGF-β1 expression in tumor cells and the extent of TICs is demonstrated [88]. This clinical observation is further confirmed by several experimental studies. In a mouse skin explant model, TGF-β1 is produced by pro-signer types but not regressor squamous cell carcinoma lines, and this tumor-derived cytokine inhibits migration of professional APCs, Langerhans cells (LCs), and keeps them in an immature form [89], or transgenic expression of TGF-β1 enhances growth of regressor squamous carcinoma cells in vitro and in vivo just like regressor phenotype, and reduces the number of infiltrating LCs, CD4+ and CD8+ T cells [90]. A further study with invasive colon carcinoma U9A cell line shows that decreasing TGF-β1 expression by antisense reduces the invasive activity and metastasis of tumor cells to the liver [91]. All these studies suggest that carcinoma-derived TGF-β1 plays an important role in the tumor metastasis, which may be caused by its immune suppressive function.

Gal-1 is a member of β-galacosidase binding protein family (galectins), and is a recently identified immunoregulatory cytokine-like molecule in cancer [92]. It has been documented that Gal-1 exhibits immunoregulatory effects by which it controls immune cell trafficking, regulates activation of dendritic cells (DCs) and induces T-cell apoptosis [93]. Up-regulation of Gal-1 expression has been seen in a variety of carcinoma biopsies, particularly in tumor-associated stroma, and is associated with tumor invasiveness or worse prognoses [94-97] and with reduced infiltrating T cells [98], suggesting that Gal-1, produced by carcinoma and/or stromal cells surrounding the tumor, may take a part in the carcinoma immune-escape by regulation of T cell homeostasis. This hypothesis is supported by a recent study showing that tumor cell-expressing Gal-1 induces T cell apoptosis in a co-culture system [99].

Immune inhibitory ligands: B7 family members (B7-H1, -H3 and -H4)

B7-H1 (PD-L1) is a ligand for the receptor PD-1 on T cell, and is known to negatively regulate T-cell activation [100]. Similar to B7-H1, B7-H3 or -H4 ligation of T cells has a profound inhibitory effect on Th1 differentiation [101], as well as the proliferation, differentiation and cytotoxicity of T cells [102]. Over-expression of these B7 family members (B7-H1, -H3 or -H4) has been documented in various types of carcinoma as compared to healthy controls: (1) H7-H1 in pancreatic tumors [103,104], RCC [105,106], human hepatocellular carcinoma (HCC) [107,108], urothelial cell carcinoma (UCC) [109] and NSCLC [110]; (2) B7-H3 in UCC [111]; and (4) H7-H4 in NSCLC [112], breast cancer [113,114] and ovarian cancer [115]. Tumor B7-H1 expression is significantly associated with less TICs including PD-1 positive immune cells, poor tumor differentiation, advanced tumor stage and poorer survival of patients [103,104,106-110,115]. Similar correlation of B7-H4 with clinicopathological features has been reported as well [111-114].

In parallel with up-regulation of B7-H1, the number of PD-1+ CD8+ cells increases in tumor tissues, such as HCC [108,116] and prostate cancer [117], and these tumor-infiltrating CD8+ cells have been shown to be impaired in the granule and cytokine productions [108,117-119]. In addition, blocking the interaction of B7-H1 with PD-1 using neutralizing antibody restores the effector function of tumor-infiltrating T cells [108,119] and in a mouse model of pancreatic cancer, the antibody therapy, combined with gemcitabine, induces a complete regression of tumor growth [104]. All these studies indicate that up-regulation of B7 inhibitory molecules acts as an immunosuppressive strategy for carcinoma to escape from anti-carcinoma immunity during cell-cell contact with T cells.

Depletion of amino acids enzymes: indoleamine 2,3-dioxygenase (IDO) and arginase (ARG)

The mechanisms by which IDO induces immunosuppression have been recently reviewed [120]. IDO is a tryptophan-catabolising enzyme. Up-regulation of its synthesis has been documented in IFN-γ-stimulated cultures of KB oral carcinoma and WiDr colon adenocarcinoma [121], pancreatic carcinomalous cells [122], hepatocellular carcinoma cell lines [123], and colorectal carcinoma cell lines [124]. Over-expression of IDO protein is reported in the cancerous lesions, and significantly correlates with
carcinoma metastasis and poor prognosis in patients with a variety of carcinoma cancers [122-126]. The up-regulation of IDO is associated with a significant reduction of CD3⁺ TICs [124], or with an increased number of regulatory T (Treg) cells in the metastatic carcinoma in lymph nodes (LNs) [122]. Ectopic expression of IDO enhances tumor growth of the human endometrial carcinoma cell line AMEC and suppresses cytotoxicity of NK cells in a mouse xenograft model [127]. All these observations suggest that IDO-high expression in carcinoma cells in primary tumors may defeat the invasion of effector T cells and NK cells via local tryptophan depletion as well as production of proapoptotic tryptophan catabolites. Also, IDO in metastatic carcinoma cells may enhance the differentiation of Treg cells as a potent immunosuppressive strategy.

ARG is an arginine-metabolic enzyme converting L-arginine into L-ornithine and urea [128]. It has been suggested that arginine is one of essential amino acids for T cell activation and proliferation [129], and the depletion of extracellular arginine by ARG results in the inhibition of T cell activation [130]. A significantly high level of ARG activity has been demonstrated in the carcinomas of the prostate [131], the gallbladder [132] and the lung [133,134], but the evidence for the contribution of ARG activity to tumor immune escape is still weak; ARGII and NOSII together has been shown to participate in local peroxynitrite dependent immune suppression of prostate cancer [135], but not seen in lung cancer [136]. However, this enzyme may play a critical role in the immunosuppressive activity of tumor-induced myeloid-derived suppressor cells (MDSCs) as discussed below. Immunosuppressive cells: CD4⁺CD25⁺Foxp3⁺ regulatory T (Treg) cells and Tumor-induced myeloid-derived suppressor cells (MDSCs)

Treg cells can inactivate both effector/helper T and B cells. After activation, Treg cells not only produce abundant anti-inflammatory cytokine IL-10 and TGF-β, but also express cell surface CTLA-4, which binds to B7 molecules on APCs, resulting in suppression of effector T cells and their dependent B cells. Numerous studies with cancer patients have demonstrated that the prevalence of Treg cells is significantly high in cancerous lesions as compared to those in healthy controls [136-141], and the percentage of Treg cells among TICs positively correlates with a significantly lower survival rate [138,139,142]. In mice challenged with pancreas adenocarcinoma cells (Pan02), depletion of Treg cells promotes a tumor-specific immune response, and significantly associates with smaller size of tumor and longer survival [143]. All these studies suggest that an increase in Treg cells in TICs may play a central role in self-tolerance to carcinoma cells, which may “hijack” these Treg cells as an effective strategy for immunoescape by suppression of anti-carcinoma immunity.

However, the mechanism of elevation of Treg cells in TICs is not fully clarified, but may be due to their local proliferation/differentiation or recruitment from circulation to cancerous lesion or to both. Indeed, the presence of Treg cells in carcinoma lesions is in conjunction with immature DCs, Th2 cytokine dominant microenvironment, prostaglandin E2 (PGE2) and IDO activity [122,144,145] or is required the function of CCL22 [146] and/or CCL5 [147]. Chemokine CCL22 and CCL5 mediate trafficking of Treg cells to the tumors, whereas immature DCs, Th2 cytokines and PGE2 favor Treg cell proliferation and/or differentiation.

MDSCs represent a heterogeneous population of immunosuppressive cells expressing a variety of surface markers, such as CD11c⁺, CD11b⁺, CD33⁺, CD34⁺ and CD15⁺. In patients with all different types of carcinomas, an increasing number of MDSCs have been found in peripheral blood [148-150] and/or intratumor lesions [151-153]. The frequency of these cells also positively correlates with the incidence of recurrence or metastatic disease in patients [153,154]. Experimental studies show that MDSCs can function as potent suppressors of cytotoxicity of both effector CD8⁺ T-cells [155] and NK cells [156]. The immunosuppressive activities of MDSCs may depend on the activity of ARG and/or reactive oxygen species they produce [150,157,158] or the induction of Foxp3⁺ Treg cells [159]. All these studies suggest that MDSCs may be one of important factors responsible not only for systemic immune dysfunction in cancer patients but also for local carcinoma immune escape.

Conclusions

The evidence from the limited literature we reviewed clearly indicates that carcinoma development in patients closely correlates to its ability to inactivate effector cytotoxic lymphocytes (i.e. CD8⁺ CTL and NK cells), to induce TIC apoptosis and/or to suppress the anti-carcinoma immune response, as indicated by: (1) down-regulation of antigen-presenting protein HLA class I; (2) up-regulation of immunosuppressive proteins, such as cell surface FasL, HLA-G, immune inhibitory ligand B7 family members, secreted cytokine TGF-β and Gal-1, enzyme IDO and perhaps ARG, and (3) induction/expansion of immunosuppressive cells: MDSCs and/or Foxp3⁺ Treg cells (Figure 1). Thus, it must be acknowledged that carcinoma develops multiple adaptation mechanisms against immune surveillance, but different types of carcinoma cancer may use different anti-immune strategies depending on the spectrum of host anti-carcinoma immunity in patients. Further understanding of these mechanisms by which
carcinomas cells resist to anti-carcinoma immunity will lead to develop more effective immunotherapy

Abbreviations
APC: Antigen presenting cell; ARG: Arginase; CTL: Cytotoxic T lymphocyte; DC: Dendritic cell; Galect: Galectin; HCC: human hepatocellular carcinoma; HLA: Human leukocyte antigen; HNSCC: head and neck squamous cell carcinoma; IDO: Indoleamine 2,3-dioxygenase; ILT: Ig-like transcript; KIR: Killer cell immunoglobulin-like receptor; LC: Langerhans cell; MDCS: Tumor-induced myeloid-derived suppressor cell; NK: Natural killer; NSCLC: Non-small cell lung cancer; PGE2: Prostaglandin E2; RCAS1: Receptor-binding cancer antigen expressed on SiSo cells; RCC: Renal cell carcinomas; TGF: Transforming growth factor; TIC: Tumor-infiltrating immune cell; Treg: Regulatory T cell; UCC: Urothelial carcinoma.

Acknowledgements
The authors would like to thank Dr. Michael E. Cox (Vancouver Prostate Centre, BC) for constructive comments, and want to apologize to those authors important contributions to this field are not mentioned in this review because of the length limitation.

Funding
This work was supported by the start-up funding from the University of British Columbia and the Vancouver Coast Health Research Institute (C.D.) and a grant from the Canadian Institutes of Health Research (Y.Z.).

Author details
1Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada. 2Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V8H 3Z9, Canada. 3Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada. 4Living Tumor Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.

Authors’ contributions
YW initiated the concept. CD drafted the manuscript. Both authors participated in writing, read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Figure 1 Diagram for the expression of immunoregulatory molecules during the transformation of epithelial cells to carcinoma tumor cells under the pressure from immune surveillance. Loss of classical and/or up-regulation of non-classical HLA class I expressions may be able to avoid the stimulation of cytotoxic CD8+ T cells and NK cells; Up-regulation of pro-apoptotic ligands, such as Fas L and RCAS1 may directly induce anti-carcinoma immune cell death. Secretion of TGF-beta1 and Gal-1, expression of immune inhibitor ligands (B7-H1 -H3 and -H4), up-regulation of IDO and/or ARG activity and/or expansion of cellular immunosuppression by MDCSs and Foxp3 Treg cells could generate an immunosuppressive microenvironment, protecting carcinoma cells from immune surveillance.

References
1. Cole WH: Relationship of causative factors in spontaneous regression of cancer to immunologic factors possibly effective in cancer. J Surg Oncol 1976, 8:391-411.
2. Whiteside TL: The role of immune cells in the tumor microenvironment. Cancer Treat Res 2006, 130:103-124.
3. Maccalli C, Scaramuzza S, Pamigiani G: TNK cells (NKKG2D+ CD8+ or CD4+ T lymphocytes) in the control of human tumors. Cancer Immunol Immunother 2009, 58:801-809.
4. Nelson BH: CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 2010, 185:4977-4982.
5. Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, Hida Y, Oshikiri T, Kurokawa T, Suzuki M, Nakakubo Y, Hiraoka K, Murakami S, Shinohara T, Itoh T, Okuhisa S, Kondo S, Katoh H: CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 2003, 63:1555-1559.
6. Eerola AK, Soni Y, Paakko P: Tumour infiltrating lymphocytes in relation to tumour angiogenesis, apoptosis and prognosis in patients with large cell lung carcinoma. Lung Cancer 1999, 26:73-83.
7. Oberg A, Samii S, Stenling R, Lindmark G: Different occurrence of CD8+, CD45R0+, and CD8+ immune cells in regional lymph node metastases from colorectal cancer as potential prognostic predictors. Int J Colorectal Dis 2002, 17:25-29.
8. Chikamatsu K, Eura M, Nakano K, Masuyama K, Ishikawa T: Functional and T cell receptor gene usage analysis of cytotoxic T lymphocytes in fresh tumor-infiltrating lymphocytes from human head and neck cancer. Jpn J Cancer Res 1995, 86:477-483.
9. Houssiau F, Zeliszewski D, Ruy M, Paradis Y, Richon S, Ricour A, Bougaran J, Prapotnic D, Vallancien G, Benoit G, Desportes L, Bedossa P, Hercend T, Bidart JM, Bellet D: MHC-dependent cytolysis of autologous tumor cells by lymphocytes infiltrating urothelial carcinomas. Int J Cancer 1997, 71:585-594.
10. Verdegaal EM, Hoogstraten C, Sandel MH, Kuppen PJ, Brink AA, Claas FH: Antigen recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker. Int J Cancer 2002, 109:909-918.
11. Mosolits S, Steinitz M, Hamenberg U, Ruden U, Eriksson E, Melstedt H, Fagerberg J: Immunogenic regions of the GA733-2 tumour-associated antigen recognised by autoantibodies of patients with colorectal carcinoma. Cancer Immunol Immunother 2002, 51:209-218.
12. Zeng G, Aldridge ME, Wang Y, Pantuck AJ, Wang AY, Liu YX, Han Y, Yuan YH, Robbins PF, Dubinett SM, deKernion JN, Beldeguen AS: Dominant B cell epitope from NY-ESO-1 recognized by sera from a wide spectrum of cancer patients: implications as a potential biomarker. Int J Cancer 2005, 114:268-273.
13. Ken KM, Johnson SK, King G, Kennedy MM, Weir J, Jeffrey R: Partial regression in primary carcinoma of the lung: does it occur? Histopathology 1998, 33:55-63.
14. Patel A, Halliday GM, Barnetson RS: CD4+ T lymphocyte infiltration correlates with regression of a UV-induced squamous cell carcinoma. J Dermatol Sci 1995, 9:12-19.
15. Patel A, Halliday GM, Cooke BE, Barnetson RS: Evidence that regression in keratoacanthoma is immunologically mediated: a comparison with squamous cell carcinoma. Br J Dermatol 1994, 131:789-798.
16. Nedergraaf BS, Ladekarl M, Thomsen HF, Nyengaard JR, Nielsen K: Low density of CD3+, CD4+ and CD8+ cells is associated with increased risk of relapse in squamous cell cervical cancer. Br J Cancer 2007, 97:1135-1138.
17. Ovstead IT, Gudaugsson E, Sköldand I, Malpica A, Kruse AI, Janssen EA, Baik JP: Local immune response in the microenvironment of CIN2-3 with and without spontaneous regression. Mod Pathol 2010, 23:1231-1240.
18. Wróblewski JM, Bixby DL, Borowski C, Yannelli JR: Characterization of human non-small cell lung cancer (NSCLC) cell lines for expression of
MHc, co-stimulatory molecules and tumor-associated antigens. Lung Cancer 2001, 33:181-194.
20. Cabrera T, Pedrajas G, Cozar JM, Garrido A, Vicente J, Tallada M, Garrido F: HLA class I expression in bladder carcinomas. Tissue Antigens 2003, 62:334-337.
21. Levin I, Klein T, Goldstein J, Kuperman O, Kanetti J, Klein B: Expression of class I histocompatibility antigens in transitional cell carcinoma of the urinary bladder in relation to survival. Cancer 1991, 68:2591-2594.
22. Klein B, Klein T, Nyka A, Shapira A, Figner F, Schwartz A, Rakovsky E, Livni E, Lutte H: Expression of HLA class I and class II in gastric carcinoma in relation to histopathologic stage. Tumour Biol 1991, 12:68-74.
23. Rockett JC, Darnton SJ, Crocker J, Matthews HR, Morris AG: Expression of HLA-ABC, HLA-DR and intercellular adhesion molecule-1 in oesophageal carcinoma. J Clin Pathol 1995, 48:539-544.
24. Redondo M, Concha A, Olidvrela A, Cuevo A, Gonzalez A, Garrido F, Ruiz-Cabello F: Expression of HLA class I and II antigens in bronchogenic carcinomas: its relationship to cellular DNA content and clinical-pathological parameters. Cancer Res 1991, 51:4948-4954.
25. Posslick B, Pantel K, Kubuschok B, Angstwurm M, Neher A, Thetter O, Schweiberer L, Ibicki JR: Expression of MHC molecules and ICAM-1 on non-small cell lung carcinomas: association with early lymphatic spread of tumour cells. Eur J Cancer 1996, 32A:141-145.
26. Tencle M, Rezzani R, Rodella L, Zauli G, Grippiato P, Cadi M, Hicklin DJ, Ferrone S: HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast cancer lesions. Cancer Res 1998, 58:737-742.
27. Saito M, Teicher M, Campbell G, Feiner H, Delgado Y, Frey AB: Immunocytochemical demonstration of down regulation of HLA class-I molecule expression in human metastatic breast cancer. Clin Exp Metastasis 2004, 21:243-249.
28. Rischel E, Notzel T, Hinz U, Autschbach F, Ferguson J, Simon J, Weitz J, Frohlich B, Klar E, Buchler MW, Schmidt J: Control of T-cell-mediated immune response by HLA class I in human pancreatic cancer. Clin Cancer Res 2005, 11(2):498-504.
29. Shlatte JC, Abel PO, Gilberton JA, Brawn P, Foster CS: Modulated expression of human leucocyte antigen class I and class II determinants in hyperplastic and malignant human prostatic epithelium. Br J Urol 1994, 74:609-616.
30. Brasanac D, Markovic-Lipovski J, Hadzi-Djilovic J, Muller GA, Muller CA: Immunohistochemical analysis of HLA class II antigens and tumor infiltrating mononuclear cells in renal cell carcinoma: correlation with clinical and histopathological data. Neoplasma 1999, 46:173-178.
31. Hilders CG, Houbiers JG, van Ravenswaay Claasen HH, Veldhuizen RW, Fleuren GJ: Association between HLA-expression and infiltration of immune cells in cervical carcinoma. Lab Invest 1993, 69:651-659.
32. Hilders CG, Munoz IM, Nooyen Y, Fleuren GJ: Altered HLA expression by metastatic cervical carcinoma cells as a factor in impaired immune surveillance. Gynecol Oncol 1995, 57:366-374.
33. Cruz I, Meijer CJ, Voutsinas G, Thomas-Tsagli E, Kapralos P, Reilly RJ, Dupont B, Collins JK, Shanahan F: Expression of Fas-ligand expression in nasopharyngeal carcinoma. J Pathol 1999, 181:198-205.
34. Okazaki M, Kase S, Kondo I, Watanabe M, Adachi H, Ito H: Expression of Fas ligand in human gastric carcinomas and intestinal-type adenocarcinomas: correlation with proliferation and apoptosis. Gastro Cancer 2001, 4:198-205.
35. Gatt A, Da Rocha S, Guerra N, Escuder B, Moretta A, Chouaib S, Angevin E, Rouas-Freiss N: Human urinary bladder adenocarcinoma-surface expression of human leucocyte antigen class I and II molecules expressing colon adenocarcinoma. J Immunol 2000, 164:2137-2144.
36. Du and Wang Journal of Experimental & Clinical Cancer Research 2011, 30:12
Page 7 of 10
http://www.jeccr.com/content/30/1/12
58. Bennett MW, O'Connor J, O'Sullivan GC, Roche D, Brady C, Kelly J, Collins JK, Shanahan F: Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer. Gut 1999, 44:156-162.
37. Bernstein WV, Glickman JM, Odze RD, Farrey FA, Joo HG, Goedegebuure PS, Eberlein TJ: Fas (CD95/APO-1) and Fas ligand expression in normal pancreas and pancreatic tumors. Implications for immune privilege and immune escape. Cancer 2002, 94:2552-2560.
Overexpression of galec tin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral Oncol 2008, 44:325-334.

Le QT, Shi G, Gao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, OByrne KJ, Giaccia AJ, Koong AC. Galec tin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005, 23:8932-8941.

Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J, Szébeni GJ, Krenacs L, Uher F, Tubak V, Kiss R, Manostoj O. Mechanism of tumor cell-inhibitory role of cell-mediated apoptosis mediated by galec tin-1. Immunol Lett 2010, 127:108-118.

Dong H, Zhu G, Tamada K, Chen L: Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: 104. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Geng L, Huang D, Liu J, Qian Y, Deng J, Li D, Hu Z, Zhang J, Jiang G, Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, Wang X: 103. Receptor CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/indoleamine 2,3-dioxygenase. Clin Cancer Res 2007, 13:1749-1756.

Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: Characteristics of tumor-infiltrating lymphocytes and their PD-1 expression. Int J Cancer 2007, 116:1325-1331.

Le QT, Shi G, Gao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, OByrne KJ, Giaccia AJ, Koong AC. Galec tin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005, 23:8932-8941.

Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J, Szébeni GJ, Krenacs L, Uher F, Tubak V, Kiss R, Manostoj O. Mechanism of tumor cell-inhibitory role of cell-mediated apoptosis mediated by galec tin-1. Immunol Lett 2010, 127:108-118.

Dong H, Zhu G, Tamada K, Chen L: Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: 104. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Geng L, Huang D, Liu J, Qian Y, Deng J, Li D, Hu Z, Zhang J, Jiang G, Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, Wang X: 103. Receptor CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/indoleamine 2,3-dioxygenase. Clin Cancer Res 2007, 13:1749-1756.

Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: Characteristics of tumor-infiltrating lymphocytes and their PD-1 expression. Int J Cancer 2007, 116:1325-1331.

Le QT, Shi G, Gao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, OByrne KJ, Giaccia AJ, Koong AC. Galec tin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005, 23:8932-8941.

Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J, Szébeni GJ, Krenacs L, Uher F, Tubak V, Kiss R, Manostoj O. Mechanism of tumor cell-inhibitory role of cell-mediated apoptosis mediated by galec tin-1. Immunol Lett 2010, 127:108-118.

Dong H, Zhu G, Tamada K, Chen L: Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: 104. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Geng L, Huang D, Liu J, Qian Y, Deng J, Li D, Hu Z, Zhang J, Jiang G, Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, Wang X: 103. Receptor CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/indoleamine 2,3-dioxygenase. Clin Cancer Res 2007, 13:1749-1756.

Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: Characteristics of tumor-infiltrating lymphocytes and their PD-1 expression. Int J Cancer 2007, 116:1325-1331.

Le QT, Shi G, Gao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, OByrne KJ, Giaccia AJ, Koong AC. Galec tin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005, 23:8932-8941.

Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J, Szébeni GJ, Krenacs L, Uher F, Tubak V, Kiss R, Manostoj O. Mechanism of tumor cell-inhibitory role of cell-mediated apoptosis mediated by galec tin-1. Immunol Lett 2010, 127:108-118.

Dong H, Zhu G, Tamada K, Chen L: Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: 104. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Geng L, Huang D, Liu J, Qian Y, Deng J, Li D, Hu Z, Zhang J, Jiang G, Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, Wang X: 103. Receptor CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/indoleamine 2,3-dioxygenase. Clin Cancer Res 2007, 13:1749-1756.

Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: Characteristics of tumor-infiltrating lymphocytes and their PD-1 expression. Int J Cancer 2007, 116:1325-1331.

Le QT, Shi G, Gao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, OByrne KJ, Giaccia AJ, Koong AC. Galec tin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005, 23:8932-8941.

Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J, Szébeni GJ, Krenacs L, Uher F, Tubak V, Kiss R, Manostoj O. Mechanism of tumor cell-inhibitory role of cell-mediated apoptosis mediated by galec tin-1. Immunol Lett 2010, 127:108-118.

Dong H, Zhu G, Tamada K, Chen L: Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: 104. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Geng L, Huang D, Liu J, Qian Y, Deng J, Li D, Hu Z, Zhang J, Jiang G, Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, Wang X: 103. Receptor CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/indoleamine 2,3-dioxygenase. Clin Cancer Res 2007, 13:1749-1756.

Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J: Characteristics of tumor-infiltrating lymphocytes and their PD-1 expression. Int J Cancer 2007, 116:1325-1331.

Le QT, Shi G, Gao H, Nelson DW, Wang Y, Chen EY, Zhao S, Kong C, Richardson D, OByrne KJ, Giaccia AJ, Koong AC. Galec tin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005, 23:8932-8941.

Kovács-Sólyom F, Blaskó A, Fajka-Boja R, Katona RL, Végh L, Novák J, Szébeni GJ, Krenacs L, Uher F, Tubak V, Kiss R, Manostoj O. Mechanism of tumor cell-inhibitory role of cell-mediated apoptosis mediated by galec tin-1. Immunol Lett 2010, 127:108-118.
134. Suer Cokmen S, Yoruk Y, Caiker E, Yomaiza M, Gulen S. Arginase and ornithine, as markers in human non-small cell lung carcinoma. Cancer Biochem Biophys 1997, 17:1-131.

135. Bronte V, Kaist T, Gri G, Gallana K, Borsellino G, Marigo I, Battistini L, Iafredo M, Pravet-Galleti T, Pagano F, Viola A. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 2005, 201:1257-1268.

136. Esendagli G, Budrecek K, Goldmann T, Busche A, Branscheid D, Vollmer E, Brandau S. Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer 2008, 59:32-40.

137. Griffths RW, Eikord E, Gilham DE, Ramani V, Clarke NL, Hewkins RE. Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunol Immunother 2007, 56:1743-1753.

138. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006, 12:5423-5434.

139. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanay Y, Kosuge T, Nakajima A, Hirohashi S. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 2007, 13:902-911.

140. Ljanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002, 169:2765-2761.

141. Schwarz S, Butz M, Morsczeck C, Reichert TE, Driemel O. Increased number of CD25 FoxP3 regulatory T cells in oral squamous cell carcinomas detected by chromogenic immunohistochemical double staining. J Oral Pathol Med 2008, 37:485-489.

142. Siddiqui SA, Frigola X, Bonne-Annee S, Mercader M, Kuntz SM, Krambeck AE, Sengupta S, Dong H, Cheville JC, Lohse CM, Roco CJ. Tumor infiltrating Foxp3+CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res 2007, 13:2075-2081.

143. Viehl CT, Moore TT, Ljanage UK, Frey DM, Ehlers JP, Eberlein TJ, Goedegebuure PS, Linehan DC. Depletion of CD4+FoxP3 regulatory T cells promotes a tumor-specific immune response in pancreatic cancer-bearing mice. Ann Surg Oncol 2006, 13:1252-1258.

144. Kaporis HG, Guttman-Yassky E, Lowes MA, Haider AS, Fuentes-Duculan J, Darabi K, Wynnnot-Entett J, Katcharcanian A, Cardinale I, Novitskaya I, Krueger JG, Carucci JA. Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J Invest Dermatol 2007, 127:2391-2398.

145. Sharma S, Yang SC, Zhu L, Reckemp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer. Cancer Res 2005, 65:5211-5220.

146. Curiel TJ, Coukos G, Zhou L, Alvarez X, Cheng P, Motttram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burrow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Dissi ML, Knutsen KL, Chen L, Zou H. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004, 10:942-949.

147. Tan MC, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, Eberlein TJ, Hiseh CS, Linehan DC. Disruption of CCRS-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 2009, 182:1746-1755.

148. Almirand B, Reiser JR, Lindman B, Nadaf S, Clark II, Kwon ED, Carbone DP, Gabrilovich DI. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000, 6:1755-1766.

149. Gannity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR. Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 1997, 73:663-669.

150. Schmiedel J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 2001, 61:4756-4760.

151. Bluth MJ, Zaba L, Moussali D, Suarez-Farinas M, Kaporis H, Fan L, Pierson KC, White TR, Pitts-Kiefer A, Fuentes-Duculan J, Guttman-Yassky E, Krueger JG, Lowes MA, Carucci JA. Myeloid dendritic cells from human cutaneous squamous cell carcinoma are poor stimulators of T-cell proliferation. J Invest Dermatol 2009, 129:2451-2462.

152. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1995, 1:95-103.

153. Young MR, Wright MA, Lozano Y, Matthews JP, Benefield J, Prechel MM. Mechanisms of immune suppression in patients with head and neck cancer: influence on the immune infiltrate of the cancer. Int J Cancer 1996, 67:333-338.

154. Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. J Surg Oncol 1996, 64:1-9.

155. Noran LA, Rodriguez PC, D’Mara LA, Zabala J, Ochoa AC, Cella M, Allen PK. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res 2009, 69:3086-3094.

156. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelslashvili J, Zhao F, Wedemeyer H, Lehrer F, Manns MP, Greten TF, Korangy F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the Nkp30 receptor. Hepatology. 2009, 50:799-807.

157. Kusmartsev S, Su Z, Heiser A, Dannull J, Eralváníková E, Kuklík H, Yancey D, Dahn P, Viehweg J. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 2008, 14:8270-8278.

158. Zea AH, Rodrigues PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiçena D, Youmans A, O’Neill M, Mier J, Ochoa AC. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005, 65:3044-3048.

159. Hoechst B, Ormandy LA, Ballmaier M, Lehrer F, Krueger C, Manns MP, Greten TF, Korangy F. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells. Gastroenterology 2008, 135:234-243.

Cite this article as: Du and Wang. The immunoregulatory mechanisms of carcinoma for its survival and development. Journal of Experimental & Clinical Cancer Research 2011 30:12.