GBF1: A Novel Golgi-associated BFA-resistant GTPase Exchange Factor That Displays Specificity for ADP-ribosylation Factor 5

Alejandro Claude,* Bao-Ping Zhao,* Craig E. Kuziemsky,* Sophie Dahan,† Scott J. Berger,‡ Jian-Ping Yan,§ Adrian D. Armold,§ Eric M. Sullivan,§ and Paul Melançon*

*Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7; †Department of Anatomy and Cell Biology, University of Colorado, Boulder, Colorado 80309

Abstract. Expression cloning from a cDNA library prepared from a mutant CHO cell line with Golgi-specific resistance to Brefeldin A (BFA) identified a novel 206-kD protein with a Sec7 domain termed GBF1 for Golgi BFA resistance factor 1. Overexpression of GBF1 allowed transfected cells to maintain normal Golgi morphology and grow in the presence of BFA. Golgi-enriched membrane fractions from such transfected cells displayed normal levels of ADP ribosylation factors (ARFs) activation and coat protein recruitment that were, however, BFA resistant. Hexahistidine-tagged–GBF1 exhibited BFA-resistant guanine nucleotide exchange activity that appears specific towards ARF-1. Cells transfected with a mutated form of GBF1 had identical sequence and, therefore, that GBF1 was naturally BFA resistant. GBF1 was primarily cytosolic but a significant pool colocalized to a perinuclear structure with the β-subunit of COP I. Immunogold labeling showed highest density of GBF1 over Golgi cis-ternae and significant labeling over pleiomorphic smooth vesiculotubular structures. The BFA-resistant nature of GBF1 suggests involvement in retrograde traffic.

Key words: Golgi complex • Brefeldin A • Sec7 • ADP-ribosylation factor • protein traffic

Brefeldin A (BFA) is a small fungal heterocyclic lactone that blocks protein secretion (Misumi et al., 1986) and induces rapid and profound morphological changes in several organelles of the secretory pathway. In most cell types, BFA causes disassembly of the Golgi complex and redistribution of Golgi resident enzymes into the ER (Klauser et al., 1992; Pelham, 1991).

The earliest documented step in BFA action is inhibition of the recruitment of members of the ADP-ribosylation factor (ARF) family of GTPases onto membranes (Donaldson et al., 1992b; Helms and Rothman, 1992; Randazzo et al., 1993). The binding of ARFs to membranes is believed to provide high affinity binding sites for the Golgi coat protein COP I (Rothman and Orci, 1996). This preassembled complex of seven polypeptides is recruited to the membrane, initiating vesicle budding. In addition, the observation that ARFs stimulate phospholipase D activity on Golgi membranes (Brown et al., 1995; Ktistakis et al., 1996) suggests that ARFs may induce remodeling of the membranes by increasing the local levels of acidic phospholipids, which in turn may modulate recruitment of coat proteins (for review see Roth and Sternweis, 1997). Inhibition of ARF recruitment onto Golgi membranes, thus, prevents the assembly of the COP I complex and readily explains the effects of BFA on the secretory apparatus.

The observation that BFA interferes with the recruitment of other proteins such as the Golgi-specific clathrin adaptors A P1 (Stamnes and Rothman, 1993; Traub et al., 1993) suggests the blocking of ARF-dependent recruitment of coat proteins as a general mechanism to explain the effects of BFA on all affected organelles.

BFA interferes with ARF recruitment by blocking the exchange of GTP for GDP, thereby preventing a conformational switch required for their association with Golgi membranes (Donaldson et al., 1992b; Helms and Rothman, 1992; Randazzo et al., 1993; Franco et al., 1995, 1996; Antonny et al., 1997; Losonczi and Prestegard, 1998). This exchange reaction is catalyzed by a membrane-associated...
guanine nucleotide exchange factor (GEF) that resists extraction with 1 M KCl and is protease sensitive (Donelson et al., 1992b; Helms and Rothman, 1992; Randazzo et al., 1993). A BFA-sensitive exchange activity has also been detected in a large (>700 kD) soluble complex (Tsai et al., 1994; Morinaga et al., 1996), indicating that a ARF-specific guanine nucleotide exchange activities (ARF-GEFs) may exist in dynamic equilibrium between membrane-bound and soluble pools.

We previously isolated several CHO mutant lines able to grow in the presence of BFA (Yan et al., 1994). Further characterization revealed that all of our mutant lines, termed BFY, had acquired Golgi-specific resistance. For example, whereas Golgi morphology and function became resistant to BFA in BFY cells, early endosomes retained their characteristic sensitivity (Yan et al., 1994). A similar study with an independently obtained collection of BFA-resistant CHO lines led to an identical conclusion (Torii et al., 1995). These results indicate that BFA acts by altering the function of related but distinct organelle specific targets that can be independently mutagenized and identified. In addition, they suggested that further analysis of BFY cells should identify a Golgi-specific BFA target.

Recently, a novel family of proteins implicated in ARF activation has been found to share the central domain of Sec7p (Sec7d). A ARF-GEF activity was first reported for ARNO and Gea1p (Chardin et al., 1996; Peyroche et al., 1996). In addition, p200/ARF-GEF, a member of a large complex identified on the basis of its GEF activity, was subsequently shown to contain a Sec7d (Morinaga et al., 1996, 1997). The defining 170 residue Sec7d is highly conserved among the various members and was shown to have intrinsic ARF-GEF activity (Chardin et al., 1996; Sata et al., 1998; Mansour et al., 1999). Structural studies with the Sec7d of ARNO and Gea2p identified a critical glutamate residue that penetrates in the GTPase active site of ARFs to perturb Mg\(^{2+}\) binding and promote dissociation of the guanine nucleotide (Beraud-Dufour et al., 1998; Goldberg, 1998). This domain appears to be a direct target of BFA since the ARF-GEF activity of purified Sec7d from several proteins is sensitive to BFA (Sata et al., 1998; Mansour et al., 1999). Furthermore, mutations of key residues in this domain can dramatically alter its BFA sensitivity (Peyroche et al., 1999).

The various members of the Sec7d family likely act on different organelles and play distinct roles in protein trafficking. To identify those members or their upstream regulators implicated in Golgi function, we used expression cloning to recover proteins relevant to growth inhibition by BFA. Here, we report the cloning and characterization of a novel Sec7d protein from a cDNA library prepared from one of our most resistant BFY lines. This 206-kD protein contains a Sec7 domain, localizes to the Golgi complex, and demonstrates BFA-resistant GEF activity that appears specific towards ARF5 at physiological Mg\(^{2+}\) concentration.

Materials and Methods

Reagents

ATP, UTP, creatine phosphate, and rabbit creatine phosphokinase were purchased from Boehringer Mannheim Biochemicals. Unless otherwise indicated, all other chemicals were obtained from Sigma Chemical Co. BFA was stored at –20°C as a stock solution of 10 mg/ml (36 mM) in either 100% ethanol or DMSO. DNA and RNA purification kits and NITRA resin were purchased from Qiagen. cDNA preparation kits were from Gibco BRL. Restriction enzymes, T4 DNA ligase, alkaline phosphatase, linker-adaptors, Taq, and Klenow DNA polymerases were from New England Biolabs Inc. The pCPE4, pRSETA, and pEBVHi-C plasmids and the TOP10 Escherichia coli strain were from Invitrogen Corp. Protein quantitation reagents and protein size markers were from Bio-Rad Laboratories. The radioactive nucleotides \(^{32}P\)GTP and \(^{35}S\)GTP were from NEN. Nitrocellulose membranes and filters were from Whatman.

Tissue Culture

Media, culture reagents, Lipofectamine, and hygromycin B were purchased from Life Technologies Inc. Disposable plasticware and culture dishes were purchased from Falcon. The CHO\(^{pro-5}\) and 293-EBNA cell lines were purchased from a American Type Culture Collection and Invitrogen Corp., respectively. The isolation of BFY-1 from the parental CHO\(^{pro-5}\) line was previously described (Yan et al., 1994). Normal rat kidney (NRK) cells were obtained from Dr. Thomas Hobman (University of Alberta, Edmonton, Alberta, Canada). The CHO\(^{pro-5}\) and BFY-1 mutant lines were maintained in suspension in α-MEM (GIBCO BRL) supplemented with 7.5% FCS (Sigma Chemical Co.), 100 μg/ml penicillin G, and 100 μg/ml streptomycin. Monolayers of 293-EBNA and NRK cells were maintained in DME supplemented with 10% FCS, 100 μg/ml penicillin G, and 100 μg/ml streptomycin.

Antibodies

The m3A5 mouse mAb that recognizes the 110-kD β-COP subunit and the antigenic serum were supplied by the late Dr. Thomas Kress (University of Geneva, Geneva, Switzerland) and Dr. E. Chan (Scrpps Institute, La Jolla, CA), respectively. Rabbit anti-mouse IgG was obtained from Boehringer Mannheim Biochemicals. HRP-conjugated goat anti-mouse and anti-rabbit IgG were obtained from Bio-Rad Laboratories and Amersham Life Science, Inc., respectively. FITC-conjugated donkey anti-mouse and Texas red-conjugated donkey anti-rabbit antibodies were from Jackson ImmunoResearch Laboratories, Inc. Goat anti-rabbit IgG-10 nm gold was from Sigma Chemical Co.

The peptide TDPITPTSEVN that corresponds to the carboxy-terminal sequence of Golgi-specific Brefeldin A resistance factor (GBF1) was synthesized by the Alberta Peptide Institute (University of Alberta) and cross-linked to keyhole limpet hemocyanin (KLH) or BSA. Female New Zealand rabbits were immunized using 200 μg of K L H-linked peptide emulsified 1:1 with Freund’s complete adjuvant (Sigma Chemical Co.) and injected subcutaneously or intramuscularly in four sites (0.25 ml/site). Booster immunizations using 100 μg of K L H-linked peptide emulsified 1:1 with Freund’s incomplete adjuvant were performed subcutaneously every 4 wk. Serum from rabbits H 133, H 134, and H 154 displayed high titer and specificity by immunoblot analysis. Serum H 133 was best for immunoelectron microscopy studies, whereas serum H 154 was chosen for indirect immunofluorescence studies (Harlow and Lane, 1988).

Immunoblots

Immunoblots were carried out essentially as described (Harlow and Lane, 1988). For determination of β-COP levels, proteins transferred to nitrocellulose were probed with mAb m3A5 and detected by the enhanced chemiluminescence method (Amerham Life Science, Inc.) and 293-EBNA and NRK cells transfected with the m3A5 mouse mAb that recognizes the 110-kD β-COP subunit and the antigenic serum were supplied by the late Dr. Thomas Kress (University of Geneva, Geneva, Switzerland) and Dr. E. Chan (Scrpps Institute, La Jolla, CA), respectively. Rabbit anti-mouse IgG was obtained from Boehringer Mannheim Biochemicals. HRP-conjugated goat anti-mouse and anti-rabbit IgG were obtained from Bio-Rad Laboratories and Amersham Life Science, Inc., respectively. FITC-conjugated donkey anti-mouse and Texas red-conjugated donkey anti-rabbit antibodies were from Jackson ImmunoResearch Laboratories, Inc. Goat anti-rabbit IgG-10 nm gold was from Sigma Chemical Co.

The peptide TDPITPTSEVN that corresponds to the carboxy-terminal sequence of Golgi-specific Brefeldin A resistance factor (GBF1) was synthesized by the Alberta Peptide Institute (University of Alberta) and cross-linked to keyhole limpet hemocyanin (KLH) or BSA. Female New Zealand rabbits were immunized using 200 μg of K L H-linked peptide emulsified 1:1 with Freund’s complete adjuvant (Sigma Chemical Co.) and injected subcutaneously or intramuscularly in four sites (0.25 ml/site). Booster immunizations using 100 μg of K L H-linked peptide emulsified 1:1 with Freund’s incomplete adjuvant were performed subcutaneously every 4 wk. Serum from rabbits H 133, H 134, and H 154 displayed high titer and specificity by immunoblot analysis. Serum H 133 was best for immunoelectron microscopy studies, whereas serum H 154 was chosen for indirect immunofluorescence studies (Harlow and Lane, 1988).

Preparation of Subcellular Fractions

CHO cells grown in suspension were homogenized by repeated passage through the narrow bore of a ball homogenizer (Bach and Rothman, 1985). For preparation of homogenates, cells grown as monolayers were washed once in cold PBS before recovery by scraping into PBS containing 1 mM EDTA. Cells were washed once in buffer H (0.25 M sucrose/10 mM Tris, pH 8) and homogenized in the same buffer by 12 slow passages.
through a 23-gauge needle. In all cases homogenization buffer was supple-mented with 1 mM PM SF and the recommended concentrations of anti-
pain, proteases, and proteinase inhibitor cocktails. Postnuclear supernatants were prepared by centrifugation of crude homogenates at 1,000 g for 10 min. Cytosols were prepared by desalting high speed (100,000 g) superna-
tants of crude homogenates over P-6-DG (Bio-Rad Laboratories). Golgi-
rich membranes were obtained from crude homogenates by float-up-on discontinue sucrose density gradients as described (Bacht et al., 1984).

To determine the distribution of GFB1, postnuclear supernatants (400 µg protein) were adjusted to 130 µl and spun at 100,000 g for 8 min in a Beckman TLA 100.2 rotor. A fraction of supernatants, pellets were washed with 3 ml buffer H and spun again. Washed microsomal pellets were resuspended in 120 µl buffer H containing 1% Triton X-100. Superna-
tants were adjusted to contain 1% Triton X-100 and 30 µl of each frac-
tion were analyzed by immuno-L Blots.

Detergent extracts were prepared either by incubating washed 150 cm² monolayers with 2.5 ml ice-cold lysis buffer (50 mM Tris, pH 8, 0.5% NaCl, 0.5% Triton X-100, 1 mM PM SF, and protease inhibitors), or by re-
suspending washed cell pellets in 4 vol lysis buffer. A fraction 5 min on ice, the lysed cells were passed 10 times through a 23-gauge needle and spun 10 min at 1,000 g at 4°C. Supernatants were stored at –70°C.

Purification of Native Bovine Brain ARFs

Partially purified ARFs were prepared from brain extracts using methods adapted from Taylor et al. (1992). In brief, bovine brain extracts were pre-
pared from frozen brains (Pel-Freeze; Rogers) and subjected to precipita-
tion with ammonium sulfate. The protein pellet was resuspended in H K M buffer (25 mM HEPES, pH 7.1, 50 mM KCl, 1 mM MgCl₂) and desalted over a P-6-DG column equilibrated in TM buffer (10 mM Tris, pH 7, 1.0 mM MgCl₂) containing 50 mM KCl. The eluate was adjusted with TM buffer to give a conductivity equivalent to 50 mM KCl before loading onto a Q-Sepharose (Pharmacia) column. The flowthrough from the Q-Sepharose col-
umn was adjusted to TM buffer to a conductivity equivalent to 20 mM KCl and run again over Q-Sepharose to allow ARF binding. ARFs were released with 50 mM KCl buffer and the eluate was concentrated by ultra-
filtration over a YM 10 membrane (Amicon). The concentrated sample was loaded onto an H·I load 16/60 Superdex-75 column (Pharmacia) and ARF-containing fractions were eluted in 10 mM Tris, pH 8.0, 50 mM KCl, 1 mM MgCl₂ and 10% glycerol. ARF fractions were identified using GTP-β-S gel blotting (see above). The purity of pooled ARF fractions was es-
timated at 30% on the basis of its specific activity in GTP-β-S gel blot analysis, us-
ing purine bovine ARF as standard. ARF 1 and ARF 3 were fully myristo-
lated and present at a ratio of 1:9, as determined by HPLC and mass spectrometry.

Purification of Recombinant Myristoylated ARFs

Cultures of BL21(DE3) harboring plasmids encoding human ARF5 (A R F5:PET21d+) (Berger et al., 1998) and yeast N-myristoyl transferase (pBB131; Duronio et al., 1990) containing 100 µg/ml ampicillin and 20 µg/ml kanamycin were induced by addition of IPTG (0.5 mM) at an O D₆₀₀ of 0.8. Bacteria were harvested by centrifugation after 4 h of growth at ambient temperature. The bacterial pellet was resuspended in 4 vol of lysis buffer (50 mM HEPES, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.02% Na₃ azide) and supplemented with chicken egg lysozyme (1 mg/ml). A fraction 30-60 min on ice, bacteria were passed three times through a French press in a chilled 1-inch cell (model FA-073; SLA/AMINCO) and cellular debris were removed by centrifugation (10,000 g, 30 min, 4°C). ARF fractions were pre-
ципitated at 4°C by gradual addition of ammonium sulfate up to 40% satu-
ration (at 0°C). Protein pellets were back extracted with 50 ml 10 mM Tris, pH 8, 1.0 mM MgCl₂ for 2 h. The solubilized protein fractions (~52 ml) were desalted on a Bio-Gel P-6 DG (Bio-Rad Laboratories) column (50 ml, 2.6 × 89 cm), equilibrated in desalting buffer (10 mM Tris, pH 8.0 at 4°C, 50 mM KCl, 1 mM MgCl₂) at 0.4 ml/min, and fractions containing protein were pooled for anion exchange chromatography. This desalted fraction was diluted with desalting buffer without KCl to a final conductivity at or below that of a 25 mM KCl standard, and then loaded onto a 175-ml Q-Sepharose fast flow column (FFQ; Pharmacia) equilibrated in desalting buffer with 25 mM KCl. ARF5 was eluted with a single-step gradient of 10 mM Tris, pH 8, 120 mM KCl, 1 mM MgCl₂.

The eluate was concentrated 10-fold over a Y M 10 membrane and the salt was adjusted to 60 mM using buffer exchange. The concentrated pro-
tein fraction was cleared by centrifugation before size exclusion chroma-
tography on a Superdex 75 column (Pharmacia HiLoad 16/60 Prep Grade) equilibrated in desalting buffer with 10% glycerol. The major ARF-con-
taining fractions were identified by SDS-PAGE and Coomassie staining, pooled, flash frozen, and stored at –70°C. HPLC analysis established that purity and extent of myristoylation were >90%.

Measurement of Membrane-associated Guanine Nucleotide Exchange Activity

ARF-GEF was measured using a filtration method adapted from the as-
say developed by D'Onofrio et al. (1992). In brief, incubations were car-
ried out in a 100-µl reaction mixture containing 25 mM HEPES, pH 8.0, 25 mM KCl, 2.5 mM MgCl₂, 1 mM DTT, 1 mM A TP, 10 µg BSA, 0.2 M sucrose, 1 µM [α-32P]GTP (1-2 × 10⁶ cpm/mmol), 5.5 µg of semi-purified ARF proteins (~30% pure) and 4 µg of Golgi-enriched membranes in the presence or absence of BFA at 37°C for 1 h. The reaction was terminated by the addition of 2 ml cold 10 mM HEPES, pH 8.0, and the amount of pro-
tein-bound nucleotide was determined by filtration through nitrocellulose filters followed by five 2-m1 washes with cold 10 mM HEPES, pH 8.0, solu-
tion. The extent of membrane-dependent nucleotide exchange occurring on ARFs specifically was calculated by correcting the signal from com-
plete reactions, using background values measured in control incubations lacking ARFs or membranes. The membranes and ARF-independent non-specific exchange corresponded to ~20-35% of the signal observed with complete reaction. BFA affected non-specific nucleotide exchange by only ~5%, irrespective of which Golgi membranes were used. The Golgi extracts were normalized by protein concentration and UDP-galactosyl transference activity (data not shown).

Measurement of Coatomer Recruitment

A assays were carried out as previously described (Yan et al., 1994). Each 200-µl coatomer binding assay contained 10 µg of Golgi-enriched mem-
brane fractions prepared from BFA-sensitive 293 or from 293 cells over-
expressing GFB1 and 90 µg of cytosol prepared from BFA-sensitive CH O bry cells. A fraction 20 min incubation at 30°C in the presence of the in-
duced BFA concentrations, membranes were collected by centrifugation and resuspended in SDS sample buffer. The complete sample was loaded on 10% SDS gel and the relative amounts of membrane-associated β-COP were determined using immunoblotting as described above.

cDNA Library Preparation

Total RNA was extracted from 10³ cells of the BYF-1 line and the parent-
line (CHO Δ μ) from which they were derived, Poly (A)⁺ mRNA was pu-
risified over oligo-dT columns (Life Technologies) and used for cDNA synthesis according to the manufacturer's instructions (Superscript II; Life Technologies, Inc.). First-strand synthesis was primed using the provided oligo-dT/NotI primer-adapter, and a partially duplex HindIII primer with 5' overhang (paGCTCGAAAGGGTTCG; New England Biolabs) was blunt-ended ligated to cDNA's following second-strand synthesis. Size analysis revealed cDNA's up to 20 kb in length, with the range of 0.5-11 kb well represented in both libraries. cDNA's were digested with NotI and digested to the pCE4 vector (digested with HindIII and NotI). The resulting li-
braries were transformed in E. coli TOP10 and displayed on plates. At least 2.5 × 10⁵ colonies for each library were grown on Luria-Bertani me-
dium (LB) plates, harvested, pooled, and stored in aliquots at –70°C.

Library Selection

Library aliquots were thawed and added to 1.5 liters of warm LB media and grown to a final O D₆₀₀ of 0.4 (two to three generations). Plasmid DNA was isolated using a maxiprep kit (Qagen). 293-EBNA cells were grown in T-175 flasks to ~60% density and transformed with 10 µg of the above libraries and 240 µg of Lipofectamine per flask, following the man-
ufacturer's instructions. FCS was added after 6 h to 10% final concentra-
tion and the cells were further incubated for 18 h. The medium was re-
placed with complete DM E containing 0.3 mg/ml hygromycin B and cells were cultured for 36 h to select transformants. At the end of this incuba-
tion, some cells were removed into the supernatants were trypano-
ticed and transferred to new flasks with complete DM E containing 0.3 mg/ml hygromy-
cin B. A fraction 24 h, the hygromycin-sensitive cells that failed to reattach were removed and the surviving successful transformants (~10-20% of in-
tial population) were recovered by trypsinization. These cells were plated on Primaria dishes (Falcon) in complete DM E with 0.3 mg/ml hygromycin B plus 0.4 µM BFA to select BFA-resistant transformants. The medium
was replaced every 24–36 h and BFA pressure was maintained until no survivors remained among control cells, transformed in parallel with empty vector. At this point (usually 3–10 d), the BFA concentration was reduced to 0.2 μM and small colonies were allowed to grow for 2 wk. Surviving colonies were pooled and the plasmid DNA was recovered (Hirt, 1967). This DNA was electrophoresed in E. coli, the successful transformants were pooled, expanded in liquid culture, and plasmid DNA recovered by M. lipid prep (QIagen). This enriched library was used in a new round of selection using the procedure described above. Since this expression system allows 50 epimorphic to be stably maintained per cell, the clone responsible for BFA resistance could be at present at a frequency of 1 in 50 and could not be directly isolated by this methodology.

A after two enrichment cycles, the recovered plasmids were electrophoresed in E. coli, and 100 colonies were selected at random and individually grown. A restriction analysis of miniprep DNA recovered from these clones showed that 33 contained inserts larger than 1 kb. Transformation of these plasmids into 293-EBNA cells, first in pools and then individually (diluted 50 times with empty vector), identified one plasmid, clone 32, that was able to confer BFA resistance. Dilution of clone 32 with empty pCEP4 was essential since transformation with pure clone 32 caused rapid death of the transformed cells. Dilution in the range between 5 to 50-fold appeared optimal since larger dilution caused a substantial decrease in the number of BFA-resistant colonies. This suggested that overexpression of the clone 32 gene product is toxic and, to survive, cells must adjust expression of this protein to provide BFA resistance while avoiding its toxic effects; this would be accomplished by altering the ratio of these two plas-mids by asymmetric segregation during cell division. Dilutions lower than fivefold yielded fewer BFA-resistant transformants, presumably because increasing numbers of cells were transformed with levels of clone 32 that were immediately toxic. DNA sequencing was performed by primer walking on both strands using the ABI (Perkin-Elmer) sequencing kit. Ambiguities were resolved by standard dideoxy sequencing.

The transfections designed to test the enrichment of the BFA resistance factor during selection were carried out essentially as described above. Nearly confluent monolayers of 293 cells (2 × 10⁷ cells) were transformed in triplicate and selection pressure was applied with 0.4 μM BFA for 1 wk and the surviving cells were transferred to new plates at various dilutions. A 1:2 dilution was performed with buffer N supplemented for 1 wk and the surviving cells were transferred to new plates at various dilutions. Nearly confluent monolayers of 293 cells (2 × 10⁷ cells) were transformed in triplicate and selection pressure was applied with 0.4 μM BFA for 1 wk and the surviving cells were transferred to new plates at various dilutions (1:2 to 1:10). A after 1 wk of double selection in the presence of 0.3 mg/ml hygromycin B and 0.4 μM BFA, the hygromycin B concentration was gradually lowered by regularly exchanging half of the medium volume with fresh medium lacking the drug. BFA was maintained at 0.4 μM. The number of surviving colonies was quantitated 2 wk later and is presented ± SD.

Cloning of GBF1 from Wild-type cDNA Library

A plasmid containing 5 × 10⁵ colonies from the CHOpCOS® CDNA library were digested on LB plates and screened by colony hybridization using standard techniques (Ausubel, 1997). A pSp65-pCCTP labeled, random primed probe was generated using a Stratagene kit and the Nhel-Scal DNA fragment of GBF1, encompassing the first 2 kb at the 5′ end of the CDNA. Positive clones were characterized by Southern blotting (Ausubel, 1997) of restriction digests followed by standard dideoxy sequencing of both strands.

Production of (His)₆-tagged GBF1

A GBF1 coding fragment was excised from pCEP4 by digestion with NotI and Spal to yield a slightly truncated form of the gene missing the first five codons. This fragment was ligated to the vector pEBV-His-C (Invitrogen) that had been digested with XhoI (single polylinker site), filled in with Klenow polymerase to produce blunt ends, and followed by digestion with NotI. The resulting plasmid encodes an N-tagged (His)₆-GBF1 containing an additional 38 residues immediately preceding residue 6 of GBF1. Transformation of 293 cells with this construct yielded BFA-resistant cells at frequencies similar to those observed with the untagged version. Dilutions were carried out essentially as described above. Nearly confluent monolayers of 293 cells (2 × 10⁷ cells) were transformed in triplicate and selection pressure was applied with 0.4 μM BFA for 1 wk and the surviving cells were transferred to new plates at various dilution (1:2 to 1:10). A after 1 wk of double selection in the presence of 0.3 mg/ml hygromycin B and 0.4 μM BFA, the hygromycin B concentration was gradually lowered by regularly exchanging half of the medium volume with fresh medium lacking the drug. BFA was maintained at 0.4 μM. The number of surviving colonies was quantitated 2 wk later and is presented ± SD.

Expression of (His)₆-tagged Sec7 Domain of Sec7p

A DNA fragment containing the Sec7 domain encoding region (codons 827–1022) from the Sec7 gene of Saccharomyces cerevisiae was recovered by PCR using pTA 33-1 (Achstetter et al., 1988) as a DNA template, Pfu DNA polymerase, and primers ySec7F (‘‘CGT GAA TGG CAA GAA–A A C CGT CTT TAC GGA A–3’’) and ySecR (‘‘G T C G A AGT CCT CAT TA TAC ACT ACT G C TA C T G C–3’’). A after 12 cycles (Taq/ 1 min, 45°C/1 min, 72°C/min 45 s) and a final extension period at 72°C for 4 min, the 0.6-kb fragment was digested with BamHI–EcoRI and subcloned into the prokaryotic expression vector pRSET-A (Invitrogen). The encoded product of 26 kD contained a hexahistidine sequence within the NH₂-terminal extension M R G S H H M H H S M T G G Q M G R D L Y–D D D K D K R W G S. The construct was introduced into BL21 DE3 pLYS-S and recombinant protein induced and purified as described (Mansour et al., 1999). Protein purity was unusually high (>90%) after Ni-NTA chromatography.

Measurement of GBF1-associated Guanine Nucleotide Exchange Activity on ARFs

The GTP exchange activity on ARF was measured as described (Paris et al., 1997). Reactions (100 μl) contained 50 mM Heps, pH 7.5, 1 mM DT T , 1 mM or 1 μM of free Mg2+ (1 mM MgCl₂ and 2 mM EDTA), 1.5 mM mgozoacline vesicles, 4 μM [35S]GTPyS (6000 cpm/ml), and 1 μM A RF1/ARF3 (purified from bovine brain) or myristoylated recombinant A RF1/ARF3 reactions received either BFA from the 10 mM stock or an equal volume D MSO. Reactions were incubated at 37°C and unless otherwise indicated, aliquots (20 μl) were taken at 30 min. The results presented here were determined by subtracting background values measured in absence of ARFs and/or GBF1. The assay of the Sec7 domain of Sec7p was identical, except that it was carried out at 30°C and in the presence of myristoylated recombinant yeast A RF2 and 1 mM of free Mg2+.

Cell Immunofluorescence

Wild-type CHO, BYF-1, and NRK cells grown to 60% confluency on fibronectin-coated glass coverslips were fixed with 3.7% formaldehyde in PBS for 20 min, permeabilized for 5 min with 0.1% Triton X-100 + 0.05% S D S in PBS, and blocked with PBS + 0.2% gelatin. Cells were single- or double-stained by first incubating with optimal dilutions of mA 3 (anti- β-COP) and/or anti-GBF1 serum (H154) followed by Texas red–conjugated donkey anti–rabbit and/or FITC-conjugated donkey anti–mouse antibodies. 293 cells were processed identically, except that fixation was in 1:1 methanol/acetone for 5 min and incubated with antigenic serum as the primary antibody. The coverslips were mounted using 80% glycerol in PBS and analyzed by standard epifluorescence using a Zeiss Axioscope microscope. Confocal analysis was performed on a Leica A Ristopan confocal laser scanning microscope (CLSM facility, University of Alberta). Images were processed for printing using A dobe Photoshop.

Immunoelectron Microscopy

Liver samples were prepared essentially as described previously (Dahan et al., 1994). In brief, livers obtained from overnight-fasted male Sprague-Dawley rats (100–125 g) were perfused first with saline and with a solution of 4% paraformaldehyde/0.5% glutaraldehyde/0.1 M phosphate buffer, pH 7.4, for 10 min. Small 1-mm³ pieces were dissected out and left in the same fixative for another hour at 4°C. Liver samples were washed four times for 15 min with ice-cold 4% sucrose/0.1 M phosphate buffer, pH 7.4, cryoprotected with several changes of 2.3 M sucrose/0.1 M phosphate buffer (−1 h) (Tokuyasu, 1980), mounted on nickel stubs, and quick-frozen in liquid N₂. Cryosectioning of liver tissues samples was based on published procedures (Tokuyasu, 1980; Gueuze et al., 1984; Griffiths et al., 1984) and was carried out as described in Dahan et al. (1994). The immunolabeling procedure consisted of incubating the sections on drops of 0.02 mM glycine in D PBS (137 mM NaCl, 2.7 mM KCl, 1.5 mM KH₂PO₄, 6.5 mM Na₂HPO₄, 1 mM CaCl₂, 0.5 mM MgCl₂, pH 7.4) for 10 min followed by incubation on primary antibody for 30 min at room temperature. Sections were washed 6×5 min in D PBS followed by blocking in D PBS–B CO (D PBS plus 2% BSA, 2% casein, and 0.5% ovalbumin) for 5 min and incubation in appropriate secondary antibodies conjugated to gold particles for 30 min. Sections were washed six times for 5 min in D PBS, six times for 5 min in H₂O, stained for 5 min with uranyl acetate–oxide solution, pH 7.0, washed two times for 15 min in H₂O, and finally transferred to drops of methyl cellulose containing 0.4%
aqueous uranyl acetate for 10 min on ice. Grids were picked up with gold loops and excess methyl cellulose was removed with filter paper. Antibodies were diluted in DPBS-BCO as follows: 1:20 for mouse anti-β-COP, 1:5 for H133, 1:2 for H134, and 1:20 for all the secondary antibodies conjugated to colloidal gold. Controls where the primary antibodies were omitted revealed negligible labeling (not shown). Sections were viewed in a Philips 400 T electron microscope operating at 80 kV.

Quantitation of gold particle labeling was essentially as described in Dahan et al. (1994). Compartments of the secretory apparatus over which gold particles were scored are defined in the legend of Table 1. The intertwining nature of vesicular/tubular profiles provided direct measurement of membrane sectional profiles in tubule-rich areas. In this case, the surface of the entire tubular region was employed, including some cytoplasmic space, which may have led to a minor underestimation of gold labeling density.

Results
To identify proteins implicated in the mechanism of action of BFA, we used expression cloning to select cDNAs whose production confers growth advantage in the presence of BFA. We chose to clone from a library prepared from a highly BFA-resistant CHO cell line (BFY-1) to increase the chances of success since such a selection could yield either a mutant protein with altered BFA sensitivity or a wild-type protein whose overexpression overcame the effects of BFA. We expected to recover GBFs, since previous studies established that targets in this organelle were relatively rare and present at <1:100,000 copies in the original libraries (not shown). We conclude that GBF1 is the most likely candidate for a BFA resistance factor encoded in the BFY-1 cDNA library.

Identification of a cDNA Encoding a GBF
To recover GBF clones, we used an expression system based on the episomal Epstein-Barr virus (EBV)-derived vector, pCEP4, and its host cell line, 293-EBNA. This system allows high frequency isolation of stable transformants that maintain expression vectors as episomes that can subsequently be readily recovered for analysis. The high sensitivity of 293 cells to BFA (LD$_{50}$ < 0.07 μM; Claude, A., and P. Melançon, unpublished observation) makes them particularly appropriate hosts for the selection procedure.

Transformation of 293 cells under standardized conditions with the BFY-1 cDNA library yielded stable transformants able to grow in the presence of 0.2 μM BFA at a frequency of ~10 \pm 3 per 108 hygromycin-resistant transformants, significantly higher than observed in parallel transfections with empty vector. Transformation of pooled plasmids recovered from BFA-resistant colonies grown to confluence (enriched libraries) yielded BFA-resistant transformants at a frequency of $1.4 \times 10^2 \pm 0.2$ per 106 hygromycin-resistant transformants, indicating a greater than 100-fold enrichment in plasmids able to promote BFA resistance (see Materials and Methods for details). These results confirmed the presence of cDNAs encoding GBFs in the BFY-1 library and demonstrated the effectiveness of our selection method. Transformation with a twice-selected library yielded a very large number of BFA-resistant transformants (Fig. 1). Screening of 100 plasmids recovered from this library, first in pools then singly, yielded clone 32. Its insert of 6.8-kb insert was designated GBF1 (Fig. 1; see Materials and Methods for details).

To determine whether the cDNA insert in clone 32, renamed pCEP4-GBF1, is the most abundant or likely candidate for encoding a BFA resistance factor, several independent BFA-resistant 293 colonies were isolated after transformation with an enriched BFY-1 library. Four such successfully expanded colonies yielded plasmid preparations that conferred BFA resistance; further analysis by restriction mapping, Southern blots, and colony hybridization demonstrated that all four plasmid preparations were similarly enriched (~1 in 45) in plasmids containing inserts that hybridized with and had the same size and restriction pattern as GBF1 cDNA (not shown). Furthermore, colony hybridization of several independently enriched BFY-1 libraries demonstrated enrichment of the same cDNA to frequencies also in the range of 1:30 to 1:60, the maximum expected with this approach. These observations did not result from a high abundance in GBF1 mRNA since Southern and Northern blot analysis indicated that it was relatively rare and present at <1:100,000 copies in the original libraries (not shown). We conclude that GBF1 is the most likely candidate for a BFA resistance factor encoded in the BFY-1 cDNA library.

GBF Is a Novel 206-kD Protein Containing a Sec7 Domain
A analysis of the predicted amino acid sequence (Fig. 2) revealed a novel 206-kD protein with significant homology to a family of proteins that contains a 170-residue domain, called Sec7 domain (Sec7d), first identified in the secretion protein Sec7p of S. cerevisiae. This homology is significant since many Sec7 domain–containing proteins have been implicated in A R F guanine nucleotide exchange (Chardin et al., 1996; Peyroche et al., 1996; Macci et al., 1997). Furthermore, the Sec7d itself has been shown to possess an intrinsic ARF-GEF activity (Chardin et al., 1996; Morinaga et al., 1997; Sata et al., 1998; Mansour et al., 1999).

The Sec7d of GBF1, highlighted in Fig. 2 A, displays an identity ranging from 38 to 45% with that of the other members and carries the two canonical motifs (boxed). More importantly, it contains the conserved glutamate of motif 1 (FRLPGEA PV1) recently implicated in the GEF activity of A R N O$^-$ (Beraud-Dufour et al., 1998; Goldberg, 1998). Multiple alignment of GBF1 with key members of this family showed most extensive similarity with the two yeast proteins, G ea1p and G ea2p (Fig. 2 B). In addition to the defining central Sec7d, these proteins share eight regions ranging from 23–38% and 44–64% in extent of identity and similarity, respectively. In contrast, p200 and Sec7p share only five and three of these regions with GBF1, respectively, and, thus, appear to fall in a separate class. Small proteins of this family, such as A R N O only share the Sec7d. Further analysis of GBF1 with computer prediction programs did not reveal additional salient features other than a hydrophobic segment between residues 1,633–1,651 and a proline-rich region at the COOH terminus starting at residue 1,778.

Overexpression of GBF1 Confers BFA Resistance Both In Vivo and In Vitro
To determine if the growth advantage resulting from GBF1 expression correlated with stabilization of the Golgi
complex, we tested the effect of BFA on the distribution of Golgi markers in control and GBF1-expressing cells. Such stable GBF1 transformants grew at BFA concentrations 10-15-fold higher than control transformants containing empty vector and maintained this level of resistance for at least 4 mo of continuous culture. Giantin, a well characterized Golgi complex marker (Linstedt and Hauri, 1993) was used to evaluate the morphology of GBF1 transformed cells. As shown in Fig. 3, expression of GBF1 allowed cells to maintain the characteristic perinuclear localization of their Golgi complex in the presence of 4 μM BFA, a concentration that led to complete dispersal in control cells.

It has been previously reported that BFA inhibits ARF activation and coat recruitment both in vivo and in vitro, indicating that BFA acts at or upstream of the ARF guanine nucleotide exchange activity (Donaldson et al., 1992b; Helms and Rothman, 1992; Randazzo et al., 1993). To test whether GBF1 acts at this level, we used cell-free assays that measure membrane-associated ARF-GEF ac-

Plasmid(s) transfected	Days of culture in presence of 0.1 μg/ml BFA
pCEP-4 (empty vector)	2
	4
	6
twice selected cDNA library	
Pool of 33 plasmids	
Clone 10	
Clone 32	

Figure 1. Isolation of a cDNA clone that allows cell growth in the presence of BFA. 293 cells were transformed as described in Materials and Methods with pCEP4 (empty vector), a twice-enriched BFY1 cDNA library, a pool of 33 plasmids derived from the twice-enriched cDNA library, clone 10 and clone 32 (both included in the pool of 33 plasmids). Transformants were selected and grown in the presence of 0.4 μM (0.1 μg/ml) BFA for 6 d. Cell growth was scored by light microscopy and photographs were taken at the indicated intervals.
activity and recruitment of COPI. Golgi-enriched membrane fractions were prepared from either control or GBF1-expressing 293 cells. GEF assays performed with native ARFs obtained from bovine brain (predominantly ARF3) established that Golgi-enriched membrane fractions prepared from 293/GBF1 cells displayed normal levels of ARF-GEF activity (Fig. 4 A). However, in contrast to that observed with control membranes, this activity was completely resistant to BFA. To establish whether the BFA-resistant ARF-GEF activity was relevant to coatomer recruitment, we compared the ability of 293 and 293/GBF1 membranes to recruit COPI components. As observed with the nucleotide exchange assay, 293/GBF1 membranes recruited levels of COPI nearly identical to those measured with control membranes (Fig. 4 B). Furthermore, COPI recruitment on these membranes was barely affected at a BFA concentration as high as 70 \(\mu M \) when recruitment to control membranes was inhibited by 50% at 7 \(\mu M \) BFA (Fig. 4 B).

To measure the extent of GBF1 overexpression and assess its distribution, we prepared and characterized several antisera raised against a peptide corresponding to the COOH terminus of GBF1 (see Materials and Methods). These antisera recognized specifically a protein of 206 kD in both CHO and 293 cells, a size similar to that predicted from the sequence of the cDNA (Fig. 5 A and data not shown). BFA-resistant 293 transformants overexpressed GBF1 six- to eightfold above the endogenous protein level (Fig. 5 A, right). As predicted, the majority of overexpressed GBF1 in 293/GBF1 cells was recovered in cytosolic extracts under conditions where microsomes were efficiently removed as established with the membrane protein calnexin (Fig. 5 B). Endogenous GBF1 in BFY-1 cells also partitioned primarily to the cytosol (Fig. 5 C); quantitation of this and similar experiments established that only a small fraction (\(\approx 10\% \)) of endogenous protein was recovered in the microsome pellet. Similar results were obtained for the endogenous protein in wild-type 293 and

Figure 3. The Golgi morphology of 293 membranes overexpressing GBF1 is resistant to BFA. 293 cells were transformed with either pCEP4 vector (control) or pCEP4-GBF1 (GBF1) and grown on coverslips. The cells were incubated in the absence (A and B) or in the presence of 4 \(\mu M \) BFA (C and D) for 20 min before fixation and staining with antigiantin serum as described in Materials and Methods. Bar, 10 \(\mu M \).
CHO cells (not shown). Our observations suggest that GBF1 is a primarily soluble protein implicated in coatamer recruitment.

GBF1 Is a BFA-resistant ARF-GEF

To confirm that GBF1 had ARF-GEF activity and determine whether this activity was sensitive to BFA, we modified GBF1 with a hexahistidine tag to facilitate its purification. Control transfection experiments established that tagging did not reduce the ability of GBF1 to cause BFA resistance (not shown). A significant fraction of GBF1 from detergent extracts of (His)$_6$-GBF1 transformants bound Ni-NTA columns and eluted at a 50 mM imidazole concentration (not shown). In contrast, endogenous GBF1 in extracts from control cells remained in the flowthrough fraction. At 1 μM of free Mg$^{2+}$, eluate fractions containing tagged-GBF1 stimulated binding of GTP on native ARFs from the bovine brain (1:9 mixture of ARF1 and ARF3), whereas those from control cells showed no activity (Fig. 6 A). This GEF activity appears specific for small GTPases of the ARF family since no such stimulation was observed with purified Sar1p or rab1b (Fig. 6 A). This GEF activity appears specific for small GTPases of the ARF family since no such stimulation was observed with purified Sar1p or rab1b (Fig. 6 A).

As predicted from the studies with Golgi-enriched fractions in Fig. 4, the GEF activity of GBF1 towards ARF1/3 is completely resistant to BFA under these conditions. Addition of 360 μM BFA to exchange assays caused no reduction in nucleotide exchange (Fig. 6 B). As a positive control to establish the activity of our BFA in vitro exchange assays, we constructed, purified, and tested a 36-kD recombinant protein containing the Sec7 domain of Sec7p. Such a truncated protein was previously shown to have BFA-sensitive ARF-GEF activity (Sata et al., 1998). BFA caused dose-dependent inhibition of our recombinant protein (Fig. 6 C), therefore, confirming the BFA-resistant nature of GBF1 observed in Fig. 6 B.
The initial characterization of GBF1 was performed at low Mg\(^{2+}\) concentrations because its GEF activity towards ARF1/3 appeared to be very poor at the higher and more physiological Mg\(^{2+}\) concentration of 1 mM. Further analysis revealed that this resulted not from an overall weak activity but rather from its specificity towards group I ARFs. As shown in Fig. 6D, GBF1 effectively promoted GTP loading on ARF5 but remained inactive on ARF1/3 at physiological Mg\(^{2+}\) concentration. Importantly, this GEF activity of GBF1 was fully resistant to 600 \(\mu\)M BFA. Consistent with the proposed ARF5-GEF activity of GBF1, neither control extracts nor heat-treated GBF1 fractions (Fig. 6D, asterisk) stimulated GTP binding. Note that although moderate, the extent of ARF loading observed here was comparable to that previously reported for other large ARF-GEFs (Peyroche et al., 1996; Mori-naga et al., 1997; Mansour et al., 1999).

Wild-type Form of GBF1 Is a Naturally Resistant ARF-GEF

To determine whether GBF1 recovered from the BFY-1 library was a mutant allele, we isolated cDNAs from a library prepared from the wild-type parental CHO line by colony hybridization. Sequencing revealed that full length cDNAs recovered from the wild-type library had sequences identical to GBF1. Deletions of 3 and 12 nucleotides were observed at positions 1,864 and 4,479, respectively (Fig. 7A), and reverse transcriptase–PCR analysis of mRNA prepared from both BFY-1 and parental CHO cells established that transcripts with and without those deletions were present at identical frequencies in both mutant and wild-type lines (not shown). Those probably arose by alternative processing. Furthermore, cDNAs identical in sequence to that shown in Fig. 7A were recovered by colony hybridization of a twice selected BFY-1 cDNA library. The fact that GBF1 transcripts with identical sequences were recovered from wild-type and BFY-1 cells indicate that wild-type GBF1 is naturally BFA resistant. As expected, transfection of the wild-type cDNA diagrammed in Fig. 7A led to recovery of BFA-resistant transformants (Table I). The human orthologue of GBF1 (Mansour et al., 1998) similarly caused BFA resistance when overexpressed (M. elanço, P., unpublished observations).

The previous results established that BFA resistance in BFY-1 cells did not arise by mutation of GBF1. To test whether BFY-1 became resistant to BFA by overexpression of this BFA-resistant GEF, several independent Triton X-100 extracts were obtained from the wild-type parental and BFY-1 cell lines and analyzed for GBF1 content by immunoblots. Lanes loaded with equal amounts of protein, as confirmed with the cytosolic marker glucose-6-phosphate dehydrogenase (G6PDH), contained nearly identical levels of GBF1 (Fig. 7B). Multiple quantitation of several independent extracts from these lines showed that endogenous GBF1 levels in those lines were within 10% of each other. This observation ruled out overexpression of GBF1 as the mechanism of resistance in BFY-1 cells.

Table I. Expression of GBF1 cDNAs Recovered from Both BFY-1 and Wild-type CHO Cells Confers Resistance to BFA

Plasmid transfected	Percent BFA-resistant cells*
pCEP4	3 ± 1.2
pCEP4-GBF1	60 ± 2
pCEP4-GBF1WT	64 ± 12

* 293 cells were transformed with empty vector (pCEP4), the plasmid first recovered from the BFY-1 cDNA library (pCEP4-GBF1) and a plasmid recovered from the wild-type cDNA library illustrated in Fig. 7A (pCEP4-GBF1WT). An equal number of hygromycin B-resistant cells were plated in the presence of 0.4 \(\mu\)M BFA and incubated for 3 d. Surviving cells were trypsinized and counted. The results ± SD are presented as a percentage of hygromycin B-resistant transformants that are BFA resistant.
GBF1 Colocalizes with \(\beta \)-COP to the Golgi Complex

The observation that GBF1 is a BFA-resistant ARF-GEF whose expression allows BFA-resistant recruitment of the COPI coat onto Golgi membranes strongly implicates it in protein traffic at the Golgi complex. To determine if GBF1 associates with the Golgi complex in vivo, we examined its intracellular distribution in CHO and NRK cells using indirect immunofluorescence with the H154 antiserum (Fig. 8).

The images shown in Fig. 8A revealed significant cytosolic staining accompanied by clear localization to a perinuclear structure reminiscent of the Golgi complex. As expected from the similar levels of expression and distribution between membrane and cytosol fractions of wild-type CHO and BFY-1 cells, comparable distribution was observed in these two cell lines. In the flatter NRK cells with better morphology, GBF1 stained a tight ribbonlike perinuclear structure, characteristic of the Golgi complex in these cells (Fig. 8A, right). To confirm the link between GBF1 and COPI, we examined by confocal microscopy the intracellular distribution of these two proteins in NRK cells stained simultaneously with H154 and m3A5, a well-characterized antibody that recognizes the \(\beta \)-subunit of COPI (Fig. 8B). The extensive overlap in the distribution of endogenous GBF1 and \(\beta \)-COP shown by the merged image in the center confirms that the primary site of membrane recruitment in the cell is the Golgi complex.

More detailed subcellular localization of GBF1 was obtained by immunoelectron microscopy. Immunolabeling of liver ultrathin cryosections was performed with several sera raised against the COOH-terminal peptide of GBF1. All sera showed similar staining of tubular elements adjacent to Golgi stacks (Fig. 9, A and B, brackets and arrows). These elements correspond to the regions of greatest antigenicity of COPI in rat liver sections (Fig. 9, C and D).
Dahan, S., and J.J.M. Bergeron, unpublished observations). Significant labeling was also observed over Golgi stacks, particularly at the electron lucent distensions (curved arrows), and on ER cisternae (arrowheads). Little staining of mitochondria and peroxisomes was observed under these conditions. Quantitative analysis of the GBF1 labeling experiments confirmed that even though a significant amount of GBF1 staining localized to peripheral tubules, the greatest concentration occurred in the Golgi region (Table II).

Discussion

An expression cloning strategy designed to identify proteins that promote Golgi-specific resistance to BFA yielded a single cDNA from a library prepared from a highly BFA-resistant CHO mutant line. This cDNA encodes a novel 206-kD Sec7 domain protein, termed GBF1, that is primarily cytosolic and displays ARF-specific and BFA-resistant GEF activity. This protein localizes to the Golgi complex, displays specificity towards ARF5, and is a strong candidate for a GEF involved in regulating ARF activation for transport within the early secretory pathway.

Identification of a Novel BFA-resistant ARF-GEF

GBF1 was identified as a resistance factor that allowed growth in the presence of BFA. This activity appears dominant as cells transfected with the cDNA grew in the presence of BFA, and Golgi membranes recovered from these cells activated ARFs and recruited COPI in a BFA-resistant manner. As expected from the presence of a Sec7 domain, GBF1 displayed guanine nucleotide exchange activity that was clearly BFA resistant. Under physiological conditions, GBF1 appeared specific towards Group II ARFs since it exhibited clear GEF activity on ARF5 and...
Table II. Labeling Density Distribution of GBF1

Compartment examined	Percent gold labeling	Labeling density gold/μm²
Golgi-stacked saccules	27.7	6.7
Golgi-associated tubules	17.7	3.1
Distal tubules	38.3	3.2
Rough ER cisternae	16.2	2.5

35 micrographs of Golgi regions from ultrathin cryosections of rat liver immunolabelled with anti-GBF1 antibody (H133 diluted 1:5) followed by goat anti-rabbit IgG-10 nm gold were analyzed for the gold particle density in the indicated compartments. Only gold particles within 20 nm of a membrane profile were scored. Percentage gold particle labeling values represent the number of gold particles over respective compartments expressed as a fraction of the total number of gold particles (912) scored in the four secretory apparatus compartments examined. Labeling density values were obtained by scoring the total number of gold particles in a given compartment and dividing by the total profile area of that compartment. Mitochondrial and peroxisomal labeling density (2.0 gold particles/μm²) in the same micrographs were used as an indicator of background labeling and were subtracted to yield the values presented.

*Includes tubular and vesicular profiles within 750 nm of a Golgi stack.

†Includes tubule profiles at least 750 nm away from Golgi stacks.

much less towards ARF1/3. Although the role of ARF5 in protein transport and secretion remains unknown, it clearly associates with Golgi structures (Tsai et al., 1992) and this interaction is largely BFA resistant (Tsai et al., 1993). This BFA-resistant binding of ARF5 to Golgi membranes is consistent with the properties of GBF1 and further experiments will clarify the relationship between ARF5, GBF1, and the secretory pathway.

The sequence of the GBF1 Sec7d is not inconsistent with the observed BFA resistance of the GEF activity. Several recent reports demonstrate that Sec7d is a direct target of BFA since purified Sec7d from multiple proteins display an ARF-GEF activity that is BFA sensitive (Sata et al., 1998; Mansour et al., 1999; Peyroche et al., 1999). A analysis of the Sec7d sequence of a variety of proteins has recently established that variation on two key amino acids within motif 2 of this domain correlates with the BFA sensitivity of each family member (Peyroche et al., 1999). The consensus motif for BFA-sensitive proteins is LSY SI-IM LNTDL and that for BFA-resistant proteins is LSFA-IM LNTSL. Mutation of FA to Y5 is sufficient to convert the ARF-GEF activity of the Sec7 domain of ARNO from BFA resistant to BFA sensitive. The fact that motif 2 of GBF1 displays a hybrid sequence (LAY A IM LNT DQ; Fig. 3 A) and contains three additional amino acids (NVP), eight residues downstream of motif 2 relative to the consensus sequence, may account for the BFA resistance and ARF specificity of this protein.

Since all previously characterized large Sec7d proteins display BFA-sensitive GEF activity (Peyroche et al., 1996; Morinaga et al., 1997), we expected the BFA resistance of GBF1 to result from mutation of a wild-type BFA-sensitive GEF. However, cloning of GBF1 cDNA from wild-type CHO cells and further characterization of BFY-1 transcripts established that processing variants in those two lines have identical sequences. Furthermore, transfection of GBF1 cDNA recovered from the wild-type library promoted growth in the presence of BFA. The BFA-resistant phenotype caused by GBF1 in transformed 293 cells must, therefore, result from overexpression of a naturally BFA-resistant protein. The observation that GBF1 levels were identical in the parental CHO and mutant BFY-1 lines, indicated that resistance in the mutant line arose from changes in a different gene product such as BFA-sensitive GBF or p200 isoforms. Our inability to identify the BFY-1 resistance factor could have resulted from the fact that this protein is part of a complex or that its cDNA is present at very low levels in the library. Alternatively, resistance in BFY cells could have arisen from mutations in more than one gene. Ongoing analysis of our BFA-resistant lines should elucidate the resistance mechanism.

GBF1 Is a Strong Candidate for a Regulator of ARF Activation during Traffic through the Early Exocytic Pathway

GBF1 manifests many of the properties of an ARF-GEF implicated in recruitment of COPI for traffic within the early exocytic pathway. First, transfection with its cDNA yielded Golgi membranes displaying normal levels of GBF1 and ARF-GEF activity that recruited COPI in a BFA-resistant manner. In addition, as expected of such an ARF-GEF, it colocalized with COPI to the Golgi complex and smooth tubules that may correspond to traffic intermediates between the ER and Golgi complex. Finally, the fact that its sequence is most similar to that of Gea1p/Gea2p further supports this model. Overexpression of either of these proteins, but not that of Sec7p, was found to suppress the dominant-negative effects of an ARF1 mutant that has reduced nucleotide binding capacity and is thought to block growth by sequestering its GEF (Peyroche, 1996).

The present experimental evidence is insufficient to define the exact role of GBF1 since it does not reveal in which direction of transport this GEF functions. The fact that BFA blocks anterograde traffic suggests that GBF1 does not normally function as the primary GEF responsible for coat recruitment for anterograde traffic. However, since retrograde traffic from the Golgi is not blocked by BFA, the naturally BFA-resistant GBF1 may well function primarily in that direction. Our results indicate that the overlap in function between GBF1 and the BFA-sensitive GEF involved in anterograde traffic is, nevertheless, sufficient to allow BFA-resistant forward traffic when GBF1 is overexpressed. This could occur by partially displacing the BFA-sensitive GEF, possibly p200 (Mansour et al., 1999), which normally regulates this process. This displacement of the normal GEF by GBF1 would explain the cytotoxicity resulting from gross overexpression after transfection of undiluted pCEP4-GBF1 (see Materials and Methods).

In contrast to Sec12p, the membrane-associated GEF for Sar1p responsible for COPII recruitment (Barlowe et al., 1994), GBF1 is primarily soluble. This suggests that this GEF is recruited only when and where needed to initiate budding. Such a regulated recruitment mechanism for a retrograde-specific GEF may be necessary if Golgi cisternae were not stable structures, but rather were constantly remodeled during the cisternal progression for which experimental evidence has been accumulating (Bonfanti et al., 1998; Glick and Malhotra, 1998). The observation that normal levels of GBF1 and ARF-GEF activity were associated with Golgi membranes despite a five- to eightfold overexpression indicates that the number of recruitment
sites may be limited. In such a model of GBF1 action membrane recruitment would most likely be accompanied by GEF activation.

Sec7d Proteins: A Family of ARF-GEFs?
The Sec7d family can be broadly separated in three classes that may have distinct but related functions. The highly similar small members (≈50 kD) were represented in Fig. 2 B by the better characterized ARNO protein. The larger and more heterogeneous members (160-210 kD), all listed in that figure, can be divided into two classes. Sequence comparison identified up to 14 regions of highly conserved sequence outside the defining Sec7 domain. The small ARNO-like proteins contain only the Sec7d and constitute a class of their own. As shown in Fig. 2 B, GBF1, Gea1/2, and to a lesser extent EM30, can be grouped in a class based on the number of shared domains. Sec7 and p200 form an apparently distinct group by default based on their low number of shared domains. At present it is not clear whether these two proteins will give rise to separate subclasses, but it is likely that this preliminary classification will be refined as more members and/or isoforms of the Sec7d family are discovered in higher eukaryotes.

The specific functions of various members of this family in protein traffic are likely determined by their specificity towards various ARFs and the intracellular membranes to which they are recruited. For example, small members of this family such as ARNO localize to the endosomal compartment and appear specific for ARF6 (Frank et al., 1998). It is interesting to note that these small Sec7d proteins all contain a pleckstrin homology domain. Such domains bind phosphoinositides (Haran et al., 1995; Rebecchi and Scarlata, 1998) and facilitate recruitment of the GEF to the membrane where it can act more effectively on its membrane-associated substrate (Chardin, 1996). The large members of the family lack this domain and may utilize a more complex mechanism to regulate membrane association through their additional domains. Interestingly, the various Sec7d proteins, being potential targets for BFA, could constitute the multiple organelle specific targets whose existence was suggested by earlier studies.

GBF1 and p200 both localize to the Golgi complex (this work and Mansour et al., 1999) and mutations in their orthologues Gea1p/Gea2p and Sec7p were found to interfere with protein secretion (Achstetter et al., 1998; Peyroche et al., 1999). Both classes of large Sec7d proteins are, therefore, implicated in the exocytic pathway. Our demonstration that these two classes of ARF-GEF may act on groups I and II ARFs selectively and, thus, have distinct specialized functions may provide a mechanism to explain how COPI could be involved in both anterograde and retrograde traffic. Further studies on GBF1 and p200 and the proteins with which they associate are certain to shed more light on these somewhat contradictory roles of ARF and COPI in movement of proteins to and from the Golgi complex.

We acknowledge Mark Kissinger and Margaret Hughes for growth and maintenance of tissue culture cell lines and Jacqueline Lavelle for preparation of CHO Golgi membranes, cytosol, and purified ARFs. We thank Dr. Tom Hobman (University of Alberta, Edmonton) and Dr. E. Chan (Scripps Institute, La Jolla, CA) for providing antibodies. Dr. Bruce Stevenson for the use of the Zeiss A xci60 scanning confocal microscope, and Dr. Vera Chumytskaya for her help and guidance in using the confocal facility. We also thank Dr. Sam Mansour (all three from University of Alberta, Edmonton) for technical advice on expression systems, for the construction, expression, and testing of the Sec7d fragment of Sec7p, and for sharing results before publication on the ability of hGBF1 overexpression to allow growth in the presence of BFA. We are especially grateful to Drs. Jim Casanova (University of California, Los Angeles, CA) for providing antibodies, Dr. Bruce Tom Hobman (University of Alberta, Edmonton) and Dr. E. Chan for stimulating discussion and critical reading of the manuscript. Part of this work was performed in the EM Center of McGill University in the Department of Anatomy and Cell Biology.

This work was supported by grants from the American Cancer Society (CB-96 to P. Melançon), the Medical Research Council of Canada, as well as an Establishment Grant from the Alberta Heritage Foundation (to P. Melançon).

Submitted: 11 February 1999
Revised: 24 May 1999
Acepted: 3 June 1999

References
Achstetter, T., A. Franzusoff, C. Field, and R. Schekman. 1988. SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J. Biol. Chem. 263:11711–11717.
Atonny, B., S. Beraud-Dufour, P. Chardin, and M. Chabre. 1997. N-terminal hydrophobic residues of the G-protein ARF-D-riboylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry. 36:4675–4684.
A usibel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl. 1997. Current Protocols Molecular Biology. John Wiley and Sons, Inc., New York. 6.21–6.49.
Balch, W.E., and J.E. Rothman. 1985. Characterization of protein transport between successive compartments of the Golgi apparatus asymmetric properties of donor and acceptor activities in a cell-free system. Arch. Biochem. Biophys. 240:413–425.
Balch, W.E., W.G. D ALLPHY, W.A. Braell, and J.E. Rothman. 1984. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 39:405–416.
Barlowe, C.L., O. Orci, T. Y eung, M. Hosobuchi, and S. Hamamoto, et al. 1994. COP II: a membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell. 77:895–907.
Beraud-Dufour, S., S. Robineau, P. Chardin, S. Paris, M. Chabre, J. Cherfils, and B. Atonny. 1998. A glutamic finger in the guanine nucleotide exchange factor ARNO displaces Mg2+ and the beta-phosphate to destabilize GDP on ARF1. EMBO J. 17:3651–3659.
Berger, S.J., A.C. Claude, and P. Melançon. 1998. A reanalysis of recombinant human ADP-ribosylation factors by reverse-phase high-performance liquid chromatography and electrospray mass spectrometry. Anal. Biochem. 264: 53–65.
Bonfanti, L., A.A. Mironov, Jr., J.A. Martinez-Menarguez, O. Martella, A. Fusella, M. Ballassarre, R. Bucicco, H.J. Geuze, A.A. A Mironov, and A. Luini. 1998. Procoagulation traverses the Golgi stack without leaving the lumen of cisterna: evidence for cisternal maturation. Cell. 95:993–1003.
Brown, H.A., S. G utowski, R.A. Kahn, and P.C. Sternweis. 1995. Partial purification and characterization of ARF-sensitive phospholipase D from porcine brain. J. Biol. Chem. 270:14935–14943.
Chardin, P., S. Paris, B. Atonny, S. Robineau, S. Beraud-Dufour, C.L. Jack- son, and M. Chabre. 1996. A human exchange factor for ARF contains sec7 and pleckstrin-homology domains. Nature. 384:481–484.
Dahan, S., J.P. Ahiwalia, L. Wong, B.J. Posner, and J.J. Bergeron. 1994. Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus sac-}

Claus et al. Expression Cloning of BFA Resistance Factor
Franco, M., P. Chardin, M. Chabre, and S. Paris. 1995. Myristoylation of ADP-ribosylation factor 1 facilitates nucleotide exchange at physiological Mg2+ levels. J. Biol. Chem. 270:1337–1341.

Franco, M., P. Chardin, M. Chabre, and S. Paris. 1996. Myristoylation-facilitated binding of the G protein ARF1 GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J. Biol. Chem. 271:1573–1578.

Frank, S., S. Uyender, S.H. Hansen, and J.E. Casanova. 1998. RNA is a guanine nucleotide exchange factor for ADP-ribosylation factor 6. J. Biol. Chem. 273:23–27.

Geuze, H.J., J.W. Slot, G.J. Strous, J. Peppard, K. von Figura, A. Haaslik, and A.L. Schwartz. 1984. Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver. Cell. 37:195–204.

Glick, B.S., and V. Malhotra. 1998. The curious status of the Golgi apparatus. Cell. 95:883–889.

Goldberg, J. 1996. Structural basis for activation of ARF GTPases: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell. 95:237–248.

G. Griffiths, G. A. McDowell, R. Back, and J. Dubochet. 1984. On the preparation of cryosections for immunocytochemistry. J. Ultrastruct. Res. 89:65–78.

Haran, J.E., H.S. Yoon, P.J. Hajduk, and S.W. Fesik. 1995. Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. Biochemistry. 34:9859–9864.

Harlow, E., and D. Lane. 1988. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 726 pp.

Helms, J.B., and J.E. Rothman. 1992. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyzes exchange of guanine nucleotide bound to ARF. Nature. 360:252–254.

Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26:365–369.

Klausner, R.D., J.G. Donaldson, and J. Lippincott-Schwartz. 1992. Brefeldin A: a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor whose Sec7 domain is targeted by the drug brefeldin A. J. Biol. Chem. 268:10820–10825.

Klausner, R.D., J.G. Donaldson, and J. Lippincott-Schwartz. 1992. Brefeldin A: a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor whose Sec7 domain is targeted by the drug brefeldin A. J. Biol. Chem. 268:10820–10825.

Klausner, R.D., J.G. Donaldson, J. Moss, and M. Vaughan. 1997. Cloning and expression of a cDNA encoding a bovine brain brefeldin A-sensitive guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl. Acad. Sci. USA. 94:12926–12931.

Klausner, R.D., J.G. Donaldson, J. Moss, and M. Vaughan. 1997. Cloning and expression of a cDNA encoding a bovine brain brefeldin A-sensitive guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl. Acad. Sci. USA. 94:12926–12931.

Franco, M., S. Beraud-Dufour, S. Robineau, J. Bigay, B. Atonny, M. Chabre, and P. Chardin. 1997. Role of protein–phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor ARNO. J. Biol. Chem. 272:22221–22226.

Pelham, H.R. 1991. Multiple targets for brefeldin A. Cell. 67:449–451.

Peyroche, A., S. Paris, and C.L. Jackson. 1996. Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature. 384:479–481.

Peyroche, A., B. Atonny, S. Robineau, J. Acker, J. Cherllis, and C.L. Jackson. 1999. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain complex: involvement of specific residues of the Sec7 domain. Mol. Cell. 3:275–285.

Randazzo, P.A., Y.C. Yang, C. Ruila, and R.A. Kahn. 1993. Activation of an ADP-ribosylation factor by Golgi membranes. J. Biol. Chem. 268:9555–9563.

Rebecchi, M.J., and S. Scarlata. 1998. Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27:503–528.

Roth, M.G., and P.C. Sternweis. 1997. The role of lipid signaling in constitutive membrane traffic. Curr. Opin. Cell Biol. 9:519–526.

Rothman, J.E., and L. Orci. 1996. Budding vesicles in living cells. Sci. Am. 274:70–75.

Sata, M., J.G. Donaldson, J. Moss, and M. Vaughan. 1998. Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc. Natl. Acad. Sci. USA. 95:4204–4208.

Sattin, M.A., and J.E. Rothman. 1993. The binding of A-P-1 clathrin adaptor particles to Golgi membranes requires a ADP-ribosylation factor, a small GTP-binding protein. Cell. 73:999–1005.

Taylor, C.T., R.A. Kahn, and P. Melançon. 1992. Two distinct members of the A-DP-ribosylation factor family of GTP-binding proteins regulate cell-free intra-Golgi transport. Cell. 70:69–79.

Tokuyasu, K.T. 1980. Immunocytochemistry on ultrathin frozen sections. His- tochem. J. 12:381–403.

Torii, S., T. Banno, T. Watanabe, Y. Ikehar, K. Murakami, and K. Nakayama. 1995. Cytotoxicity of brefeldin A correlates with its inhibitory effect on membrane binding of COP coat proteins. J. Biol. Chem. 270:11574–11580.

Traub, L.M., J.A. Ostrom, and S. Kornfeld. 1993. Biochemical dissection of A-P-1 recruitment onto Golgi membranes. J. Cell Biol. 123:561–573.

Tsai, S.C., R. A damik, R.S. Haun, J. Moss, and M. Vaughan. 1992. Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes. Proc. Natl. Acad. Sci. USA. 90:9272–9276.

Tsai, S.C., R. Damik, R.S. Haun, J. Moss, and M. Vaughan. 1993. Effects of brefeldin A and accessory proteins on association of ADP-ribosylation factors 1, 3, and 5 with Golgi. J. Biol. Chem. 268:10820–10825.

Morinaga, N., A. Takatsuki, G. Tamura, and Y. Ike hara. 1986. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261:11298–11302.

Morinaga, N., S.C. Tsai, J. Moss, and M. Vaughan. 1996. Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factor (ARF1) 1 and ARF3 that contains a Sec7-like domain. Proc. Natl. Acad. Sci. USA. 93:12866–12869.