The inversion relation and the dilute $A_{3,4,6}$ eigenspectrum.*

Katherine A. Seaton
School of Mathematical and Statistical Sciences
La Trobe University
Bundoora VIC 3083
Australia

Murray T. Batchelor
Department of Mathematics
Australian National University
Canberra ACT 0200
Australia

Abstract

On the basis of the result obtained by applying Baxter’s exact perturbative approach to the dilute A_3 model to give the E_8 mass spectrum, the dilute A_L inversion relation was used to predict the eigenspectra in the $L = 4$ and $L = 6$ cases (corresponding to E_7 and E_6 respectively). In calculating the next-to-leading term in the correlation lengths, or equivalently masses, the inversion relation condition gives a surprisingly simple result in all three cases, and for all masses.

Keywords: Ising model in a field, dilute A model, integrable quantum field theory, mass spectrum

1 Introduction

One model in statistical mechanics which attracts perennial interest is the two-dimensional Ising model in a magnetic field. The integrable quantum field theory which describes the (massive) scaling limit of this model is the (1,2)-perturbation of $c = \frac{1}{2}$ conformal field theory due to Zamolodchikov [1] which has E_8 symmetry. Among the hierarchy of models, in their four regimes, which form the dilute A_L model [2], is a realisation of this Ising model.

*In honour of R. J. Baxter’s sixtieth birthday, this paper was presented at the conference The Baxter Revolution in Mathematical Physics.
The A_L model is an L state interaction-round-a-face model \cite{3} whose adjacency diagram is the Dynkin diagram of A_L with the additional possibility of a state being adjacent to itself on the lattice. In regime 2, the central charge is
\begin{equation}
c = 1 - \frac{6}{L(L + 1)},
\end{equation}
and for L odd the Z_2 symmetry is broken away from criticality. As well as general calculations for dilute A_L with L odd, various results have been obtained which demonstrate the Ising critical exponents \cite{4}, \cite{5} and hidden E_8 structures \cite{6}-\cite{13} in the dilute A_3 model. Further, for $L = 4$ and $L = 6$, the central charge of the E_7 and E_6 field theories \cite{14} are recovered from (1). While no complete calculation of order parameters for dilute A_L with L even has yet been carried out, there is a growing literature concerning the hidden E-type structures \cite{6}, \cite{15}, \cite{16}.

The motivation for the result presented here is a recent paper \cite{17} in which are given arguments for the higher-order terms in the scaling forms for the Ising free energy and mass spectrum, and numerical estimates for some of the corresponding amplitudes and universal amplitude ratios. In Section 2 we review our previous results for the eigenspectrum of the dilute A_L model for $L = 3, 4, 6$, or equivalently the mass spectrum for E_8, E_7 and E_6, with particular reference to the way the inversion relation of the solvable model is expressed through it. In Section 3 we calculate the first correction term for all three cases, E_6, E_7, E_8 and, as a consequence of this property of the lattice model realisation, we are able to give the coefficient very simply.

2 The mass spectra

The eigenvalues of the row-to-row transfer matrix of the dilute A models are \cite{7}
\begin{equation}
\Lambda(u) = \omega \left[\frac{\vartheta_1(2\lambda - u)}{\vartheta_1(2\lambda)} \frac{\vartheta_1(3\lambda - u)}{\vartheta_1(3\lambda)} \right]^N \prod_{j=1}^{N} \frac{\vartheta_1(u - u_j + \lambda)}{\vartheta_1(u - u_j - \lambda)}
\end{equation}
\begin{equation}
+ \left[\frac{\vartheta_1(u)}{\vartheta_1(2\lambda)} \frac{\vartheta_1(3\lambda - u)}{\vartheta_1(3\lambda)} \right]^N \prod_{j=1}^{N} \frac{\vartheta_1(u - u_j)}{\vartheta_1(u - u_j - \lambda)} \frac{\vartheta_1(u - u_j - 3\lambda)}{\vartheta_1(u - u_j - 3\lambda)}
\end{equation}
\begin{equation}
+ \omega^{-1} \left[\frac{\vartheta_1(u)}{\vartheta_1(2\lambda)} \frac{\vartheta_1(\lambda - u)}{\vartheta_1(3\lambda)} \right]^N \prod_{j=1}^{N} \frac{\vartheta_1(u - u_j - 4\lambda)}{\vartheta_1(u - u_j - 2\lambda)}
\end{equation}
where the N roots u_j are given by the Bethe equations
\begin{equation}
\omega \left[\frac{\vartheta_1(\lambda - u_j)}{\vartheta_1(\lambda + u_j)} \right]^N = -\prod_{k=1}^{N} \frac{\vartheta_1(u_j - u_k - 2\lambda)}{\vartheta_1(u_j - u_k + 2\lambda)} \frac{\vartheta_1(u_j - u_k + \lambda)}{\vartheta_1(u_j - u_k - \lambda)}
\end{equation}
and $\omega = \exp(i \pi \ell/(L+1))$ for $\ell = 1, \ldots, L$. Here the (standard) elliptic functions have nome $p = e^{-\epsilon}$ and for the regime of interest, the spectral parameter obeys $0 < u < 3\lambda$, where the crossing parameter is $\lambda = \frac{\pi^2}{r}$ and in terms of L, $s = L + 2$ and $r = 4(L + 1)$.
Based on numerical data for the string structure and positions of the Bethe ansatz roots for the dilute A_3 model [7], [8], which indicate that there are eight excitations of thermodynamic significance, recurrence relations which enable the eigenvalue expressions to be found were solved [10], [11]. The technique used is an exact perturbative approach, about the ordered limit (with N large), first developed by Baxter for the eight-vertex model [18], [3], and also applied to the cyclic solid-on-solid model [19]. In terms of the conjugate variables $w = e^{-2\pi u/\epsilon}$ and $x = e^{-\pi^2/\epsilon}$, the ordered limit is $x \to 0$ (w fixed). For the $L = 3$ case, this corresponds to the strong-field limit, while for the L even cases, this is the low-temperature situation. The elliptic functions in the conjugate modulus form of (2) are those defined below in (7), with nome $x^{2\nu}$.

The quantities actually determined are the excitations

$$r_j(w) = \lim_{N \to \infty} \frac{\Lambda_j(w)}{\Lambda_0(w)},$$

(4)
in terms of which the correlation lengths are $\xi_j = -\log r_j$. Because of the inversion and crossing relations obeyed by the model’s Boltzmann weights [4], the excitations must satisfy the inversion relation:

$$r_j(w) r_j(x^{6s}w) = 1,$$

(5)
while a consequence of (2) is the stronger relation, which implies the former,

$$r_j(w) r_j(x^{4s}w) = r_j(x^{2s}w).$$

(6)

In terms of the (conjugate modulus) elliptic functions

$$E(z, q) = \prod_{n=1}^{\infty} (1 - q^{n-1}z)(1 - q^n/z)(1 - q^n) = E(q/z, q) = -z E(1, q),$$

(7)
the expression obtained [11] is

$$r_j(w) = w^{n(a)} \prod_a \frac{E(-x^a/w, x^{60}) E(-x^{30-a}/w, x^{60})}{E(-x^a w, x^{60}) E(-x^{30-a}w, x^{60})}.$$

(8)

Apparent in this expression is the band structure of the eigenspectrum, labelled by powers of w, the power given by the number of integers $n(a)$ appearing in the product. The values a takes, arising from the calculation described above, are those given in Table I. Transforming to the original variables, appropriate for the critical limit, the leading term is

$$m_j = \xi_j^{-1} \sim 8 p^{8/15} \sum_a \sin \frac{a\pi}{30} \text{ as } p \to 0,$$

(9)
which gives the mass ratios of the E_8 field theory [1].

There is no explicit L dependence in the integers a which could be generalised to other members of the dilute A hierarchy in an immediate way. However, they have appeared in connection with E_8 in various contexts, for example [20], and with various interpretations. Most significantly, they occur in affine Toda theory, where they appear in the S-matrix for scattering from the particle labelled m_1 [21]. In the context of the dilute A_3 model, McCoy
and Orrick [9] observed them in work related to [7], and hence to the same Bethe ansatz root string structure used in the calculation of (8). Suzuki [12] has used the quantum transfer matrix (QTM) approach to recover the E_8 Bethe ansatz equation from dilute A_3 without any assumption of particular string structure, and has remarked the occurrence of the same integers in the zeroes of the fusion QTMs. This suggests that for the cases $L = 4, 6$ an expression analogous to (8) should describe the eigenspectra, since the integers of Table I have E_6 and E_7 counterparts.

In expression (8) '30' plays a distinguished role in relationship to the new nome x^{12s}, where $s = L + 2$. On the other hand, we see that in (9) it enters as the dual Coxeter number $g = 30$ of E_8. Moreover, the universal amplitude [22], [23]

$$f_s \xi^2_1 = 0.061728 \ldots$$

is obtained [10], and this relies on the power of p in the correlation length ξ_j being appropriately related to that of the singular part of the free energy of the dilute A_L model [4],

$$f_s \sim p^{r/3s} \quad \text{as} \quad p \to 0.$$ \hspace{1cm} (11)

Although (8) would obey (3) for any integer a, the stronger inversion relation (6) is satisfied because each integer a in Table I occurs together with $a + 2s = a + \frac{g}{3}$, or equivalently, from properties of the elliptic function (I), with $4s - a = \frac{2g}{3} - a$.

Gathering together these observations, it was proposed [15] that (8) is a special case of the expression

$$r_j(w) = w^{n(a)} \prod_a E(-x^{\frac{6a}{g}}/w, x^{12s}) E(-x^{\frac{6a(1-a)}{g}}/w, x^{12s}).$$ \hspace{1cm} (12)

For the dilute A_4 model, which is related to E_7, $g = 18$, while for the A_6 model the appropriate Coxeter number is that of E_6, $g = 12$.

Insisting only that the integers a appearing in (12) be such that (8) is obeyed and that they be $E_{6,7}$ analogues of those in Table I we were led to consider those in Table II and III. The mass ratios of E_7 and E_6 respectively are correctly given by the leading term when (12) is expressed in the original nome,

$$\xi_j^{-1} = m_j \sim 8 p^{r/6s} \sum_a \sin \frac{a\pi}{g} \quad \text{as} \quad p \to 0.$$ \hspace{1cm} (13)

The integers in Tables I and II correspond to scattering from particle m_2 in the S-matrix of [21], unlike those in Table I which we noted before corresponded to m_1. This appears to be related to the concrete connection drawn in [24] between Toda theory related to affine Lie algebras and integrable perturbations of conformal field theory. The additional node on the Dynkin diagram in the affine case connects to the node called m_1 (resp. m_2, m_2) in the field theory labelling of the E_8 (resp. E_7, E_6) diagram, thus distinguishing this node. We should also remark that Suzuki [16] has recently obtained these integers in analogous work to [12] for $L = 4, 6$.

The conjecture [12] has now been confirmed [26] by using the string structure for the Bethe ansatz roots for dilute A_4 [25] to perform the same type of calculation that led to (8) for the $L = 4$ case.
3 Higher-order terms

Recently, Caselle and Hasenbusch [17] have presented arguments based on the renormalization group approach to give higher-order terms appearing in the scaling form of the free energy and mass spectrum of the critical two-dimensional Ising model in a magnetic field, and have obtained numerical results for some critical amplitudes of these subleading corrections. Since the dilute A_3 model is from the same universality class, it seems pertinent to examine the higher-order terms in the mass spectrum (12), to establish both their order, and the coefficients (from which universal amplitude ratios can be constructed).

In [17], the mass spectrum is given in the form (our notation for coefficients)

$$m_j^2(h) = A_{m_j} h^{\frac{16}{15}} \left(1 + B_{m_j} h^{\frac{22}{15}} + C_{m_j} h^{\frac{30}{15}} + D_{m_j} h^{\frac{32}{15}} + \ldots \right),$$

which includes contributions from both relevant and irrelevant operators.

Now consider the dilute A expression (12) expressed in terms of the original nome, p, which plays the role of the magnetic field h for $L = 3$ (while for L even $p = 0$ corresponds to critical temperature):

$$m_j = 2 \sum_a \log \frac{\vartheta(\frac{a\pi}{2g} + \frac{\pi}{3}, p^{r/6s})}{\vartheta(\frac{a\pi}{2g} - \frac{\pi}{3}, p^{r/6s})},$$

The solvable model can be expected to agree only with terms in (14) due to relevant operators. Using the definition

$$\vartheta(u, q) = \prod_{n=1}^{\infty} (1 - 2q^{2n-1} \cos 2u + q^{4n-2}) (1 - q^{2n}),$$

and the standard expansion of $\log(1 + z)$, it is easy to see that only odd-integer powers of $p^{r/6s}$ will occur, i.e. $p^{\frac{16}{15}}$ for $L = 3$ case. At first sight it is disappointing that the first higher-order term arising from the dilute A_3 representation of the Ising model is not immediately comparable with the results of [17], since their numerics do not extend to the fifth term in (14).

Nevertheless, the coefficient of the term is interesting in its own right. Expanding (15)

$$m_j = 8 p^{\frac{16}{15}} \left\{ \sum_a \sin \frac{a\pi}{g} + 4 \left(p^{\frac{16}{15}} \right)^2 \sum_a \sin^3 \frac{a\pi}{g} + \ldots \right\},$$

and taking out the coefficient of the leading-order term (the mass amplitude) we are left to consider

$$\sum_a \sin^3 \frac{a\pi}{g} \sum_a \sin \frac{a\pi}{g},$$

which appears unwieldy, particularly since each set of possible a’s may contain a different number of values. However, the property of the sets of integers appearing in Tables I-III which caused (12) to obey the inversion relation (6), namely that a occurs together with $a + \frac{q}{3}$ (or $2a - a$), means that by applying the simple trigonometric identity

$$\sin 3z = 3 \sin z - 4 \sin^3 z,$$
we obtain

\[m_j = 8 p^{\frac{r}{\pi}} \left\{ \sum_a \sin \frac{a\pi}{g} \right\} \left\{ 1 + (p^{\frac{r}{\pi}})^2 + \mathcal{O}((p^{\frac{r}{\pi}})^4) \right\}. \]

(20)

To summarize, a consequence of the inversion relation of the dilute \(A_L \) model is that in the mass spectra, as obtained from the solvable lattice realisation, the next-to-leading correction term has the same simple coefficient in each of the cases \(E_6, E_7, E_8 \). It will be interesting to see if this value can be observed numerically for the Ising model in a magnetic field.

Acknowledgements

This research is supported by an Australian Research Council small grant. The authors are grateful to Uwe Grimm and Bernard Nienhuis for making available their unpublished numerical results. They acknowledge interesting and useful discussions with Junji Suzuki, Bernard Nienhuis, Tomoki Nakanashi, Ole Warnaar and Will Orrick.
Table I: The integers a which appear in the eigenvalue expression (8) of the dilute A_3 model.

j	$n(a)$	a
1	2	1, 11
2	2	7, 13
3	3	2, 10, 12
4	3	6, 10, 14
5	4	3, 9, 11, 13
6	4	6, 8, 12, 14
7	5	4, 8, 10, 12, 14
8	6	5, 7, 9, 11, 13, 15

Table II: The integers to appear in (12) in the $L = 4$, or equivalently E_7 case.

j	$n(a)$	a
1	1	6
2	2	1, 7
3	2	4, 8
4	2	5, 7
5	3	2, 6, 8
6	3	4, 6, 8
7	4	3, 5, 7, 9

Table III: The integers to appear in (12) in the $L = 6$ case.

j	$n(a)$	a
1	1	4
2	2	1, 5
3	2	3, 5
4	3	2, 4, 6
References

[1] A.B. Zamolodchikov, Adv. Stud. Pure Math. 19, 641-674 (1989); Int. J. Mod. Phys. A 4, 4235-4248 (1989).

[2] S. O. Warnaar, B. Nienhuis and K. A. Seaton, Phys. Rev. Lett. 69, 710-712 (1992); Int. J. Mod. Phys. B 7, 3727-3736 (1993).

[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, (1982).

[4] S. O. Warnaar, P. A. Pearce, K. A. Seaton and B. Nienhuis, J. Stat. Phys. 74, 469-531 (1994).

[5] M.T. Batchelor, V. Fridkin and Y.K. Zhou, J. Phys. A 29, L61-67 (1996).

[6] S. O. Warnaar and P.A. Pearce, J. Phys. A: Math. Gen. 27, L891-L897 (1994); Int. Journ. Mod. Phys. A 11, 291-311 (1996).

[7] V.V. Bazhanov, B. Nienhuis and S.O. Warnaar, Phys. Lett. B 322, 198-206 (1994).

[8] U. Grimm and B. Nienhuis, Phys. Rev. E 55, 5011-5025 (1997).

[9] B.M. McCoy and W.P. Orrick, Phys. Lett. A 230, 24-32 (1997).

[10] M.T. Batchelor and K.A. Seaton, J. Phys. A 30, L479-484 (1997).

[11] M.T. Batchelor and K.A. Seaton, Nucl. Phys. B 520, 697-744 (1998).

[12] J. Suzuki, Nucl. Phys. B 528, 683-700 (1998).

[13] Y. Hara, M. Jimbo, H. Konno, S. Odake and J. Shiraishi, J. Math. Phys 40, 3791-3826 (1999).

[14] V. A. Fateev and A. B. Zamolodchikov, Int. Journ. Mod. Phys. B 5, 1025-1048 (1990).

[15] M. T. Batchelor and K. A. Seaton, Eur. Phys. J. B 5, 719-725 (1998); K. A. Seaton and M. T. Batchelor, ‘Group22: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics’, Eds S P Corney, R Delbourgo and P D Jarvis (Cambridge, MA: International Press), 274-278 (1999).

[16] J. Suzuki, Hidden E type structures in dilute A models, hep-th/9909104 (1999).

[17] M. Caselle and M. Hasenbusch, Critical amplitudes and mass spectrum of the 2D Ising model in a magnetic field, hep-th/9911216 (1999).

[18] R. J. Baxter, Ann. Phys. (N. Y.) 70, 193-228 (1972).

[19] P. A. Pearce and M. T. Batchelor, J. Stat. Phys 60, 77-135 (1990).

[20] B. Kostant, Proc. Natl. Acad. Sci. USA 81, 5275-5277 (1984).
[21] H.W. Braden, E. Corrigan, P. E. Dorey and R. Sasaki, Nucl. Phys. B 338, 689-746 (1990).

[22] V.A. Fateev, Phys. Lett. B 324, 45-51 (1994).

[23] G. Delfino and G. Mussardo, Nucl. Phys. B 455, 724-758 (1995).

[24] T. J. Hollowood and P. Mansfield, Phys. Lett. B 226, 73-79 (1989).

[25] U. Grimm and B. Nienhuis, private communication.

[26] K. A. Seaton and M. T. Batchelor, in preparation.