Orientations, Lattice Polytopes, and Group Arrangements II: Modular and Integral Flow Polynomials of Graphs

Beifang Chen · Richard P. Stanley

Received: 4 May 2007 / Revised: 28 December 2010 / Published online: 26 August 2011
© Springer 2011

Abstract We study modular and integral flow polynomials of graphs by means of subgroup arrangements and lattice polytopes. We introduce an Eulerian equivalence relation on orientations, flow arrangements, and flow polytopes; and we apply the theory of Ehrhart polynomials to obtain properties of modular and integral flow polynomials. The emphasis is on the geometrical treatment through subgroup arrangements and Ehrhart polynomials. Such viewpoint leads to a reciprocity law on the modular flow polynomial, which gives rise to an interpretation on the values of the modular flow polynomial at negative integers and answers a question by Beck and Zaslavsky.

Keywords Subgroup arrangement · Hyperplane arrangement · Orientation · Totally cyclic orientation · Directed Eulerian subgraph · Eulerian equivalence relation · Flow polytope · Integer flow · Modular flow · Flow polynomial · Dual flow polynomial · Characteristic polynomial · Tutte polynomial · Reciprocity law

Mathematics Subject Classification (2000) 05A99 · 05C15 · 05C20 · 05C21 · 05C31 · 52B20.

Research of the B. Chen is supported by RGC Competitive Earmarked Research Grants 600703, 600506, and 600608.

B. Chen (✉)
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
e-mail: mabfchen@ust.hk

R. P. Stanley
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: rstan@math.mit.edu
1 Introduction

The flow polynomial $\varphi(G, t)$ of a graph G was introduced by Tutte [22] as a conceptual dual to the chromatic (or tension) polynomial of G. When G is a planar graph, $\varphi(G, t)$ is essentially the chromatic polynomial $\chi(G^*, t)$ of the dual graph G^* in the sense that $\chi(G^*, t) = t^{c(G)} \varphi(G, t)$, where $c(G)$ is the number of connected components of G. The historic Four-Color Conjecture of the time was made by Tutte into the Five-Flow Conjecture: each bridgeless graph admits a nowhere-zero integer 5-flow. Both conjectures stimulate decades of studies on chromatic and flow polynomials and the latter is still open. In a seminal paper [17], Rota introduced characteristic polynomial for posets and observed that $\varphi(G, t)$ is the characteristic polynomial of the circuit lattice of G. Greene and Zaslavsky [13] made Rota’s connection transparent between the flow polynomial and the characteristic polynomial by using hyperplane arrangements. As a special case of Zaslavsky’s formula [23], the absolute value $|\varphi(G, -1)|$ counts the number of totally cyclic orientations of G, which is a dual analogue of Stanley’s result on the chromatic polynomial: $|\chi(G, -1)|$ counts the number of acyclic orientations of G. However, Stanley’s result [19] includes an interpretation of the values of $\chi(G, t)$ at negative integers, known as the Reciprocity Law of chromatic polynomials. More recently, Kochol [15] showed that the number of integer-valued q-flows is a polynomial function of q and introduced the integral flow polynomial $\varphi_\mathbb{Z}(G, t)$; Beck and Zaslavsky [1] studied the modular and integral flow polynomials of graphs and signed graphs, using Ehrhart polynomials of lattice polytopes. The present paper, as a sequel of [11], is to associate flow group arrangements with graphs, and to obtain a clear picture of the relation between the integral flow polynomial and the modular flow polynomial. The byproduct of this association is a generalization of the Reciprocity Law about the chromatic and tension polynomials to about the modular and integral flow polynomials, and the interpretation of the values of the modular and integral flow polynomials at zero and negative integers. The geometric method of our exposition may be modified to obtain analogous results on the Tutte polynomial.

Let $G = (V, E)$ be a finite graph with possible loops and multiple edges. We write $V = V(G)$, $E = E(G)$. For each edge subset $X \subseteq E$, we denote by $G|X$ the induced subgraph (V, X). An orientation on G is a (multivalued) function $\varepsilon : V \times E \to \{-1, 0, 1\}$ such that (i) $\varepsilon(u, e)$ has the ordered double-value ± 1 or ∓ 1 if e is a loop at a vertex v and has a single-value otherwise, (ii) $\varepsilon(v, e) = 0$ if v is not an end-vertex of e, and (iii) $\varepsilon(u, e)\varepsilon(v, e) = -1$ if e has two distinct end-vertices u, v. Pictorially, if e is a non-loop edge with distinct end-vertices u, v, then $\varepsilon(u, e) = -\varepsilon(v, e) = 1$ (or $\varepsilon(v, e) = -\varepsilon(u, e) = 1$), and it means that e is assigned an arrow from u to v, which contributes exactly one out-degree at u and one in-degree at v. If e is a loop at a vertex v, then $\varepsilon(v, e) = \pm 1$ or ∓ 1, and it means that the loop e is assigned an arrow, pointing away and to the vertex v, which contributes exactly one out-degree and one in-degree at v. A graph G together with an orientation ε is called a digraph, denoted (G, ε). A digraph is said to be directed Eulerian if its in-degree equals its out-degree at every vertex.

Let (G, ε) be a digraph throughout the whole paper. Associated with (G, ε) is the incidence matrix $M = M(G) := [m_{v,e}]_{v \times E}$, where $m_{v,e} = 0$ if the edge e is a loop and $m_{v,e} = \varepsilon(v, e)$ if e is not a loop. Let A be an abelian group. A flow of (G, ε)...
with values in A, or an A-flow, is a function $f : E \to A$, satisfying the Circulation Property:

$$
\sum_{e \in E} m_{v,e}(v, e) f(e) = 0 \quad \text{i.e.} \quad \sum_{e \in E} \varepsilon_v(e) f(e) = 0, \quad v \in V.
$$

(1.1)

where $\varepsilon_v(e)$ is counted twice in the second sum as -1 and 1 if e is a loop at its unique end-vertex v. A flow f is said to be nowhere-zero if $f(e) \neq 0$ for all $e \in E$. We denote by $F(G, \varepsilon; A)$ the abelian group of all A-flows of (G, ε). The flow arrangement of (G, ε) with the abelian group A is the group arrangement $A_{FL}(G, \varepsilon; A)$ of $F(G, \varepsilon; A)$, consisting of the subgroups

$$
F_e := \{ f \in F(G, \varepsilon; A) \mid f(e) = 0 \}, \quad e \in E.
$$

(1.2)

Coincidentally, we shall see that the characteristic polynomial $\chi(A_{FL}(G, \varepsilon; A), t)$ is equal to the (modular) flow polynomial $\varphi(G, t)$, defined for $t = q$ as the number of nowhere-zero flows of (G, ε) with values in an abelian group of order q. The polynomial $\varphi(G, t)$ is independent of the chosen orientation ε and the abelian group structure of A; see Rota [17] and Tutte [21]. For more information about modular and integer flows, we refer to the book of Zhang [25].

Recall that a cut of G is a nonempty edge subset of the form $[S, S^c]$, where $S \subset V$ is a nonempty proper subset, $S^c := V - S$ is the complement of S, and $[S, S^c]$ is the set of all edges between the vertices of S and the vertices of S^c. Let $U = [S, S^c]$ be a cut. A direction of U is an orientation ε_U on the induced subgraph (V, U) such that the arrows of the edges in U are either all from S to S^c or all from S^c to S; the cut U together with a direction ε_U is called a directed cut, denoted (U, ε_U). If (U, ε) is a directed cut, we call (U, ε) a directed cut of both (G, ε) and ε, and say that the cut U is directed in (G, ε). Let $O(G)$ denote the set of all orientations on G. We denote by $O_{TC}(G)$ the set of all orientations without directed cut (also known as totally cyclic orientations, as they are the orientations in which every edge belongs to a directed circuit).

Let $\varphi_\mathbb{Z}(G, q)$ denote the number of nowhere-zero integer-valued flows f of (G, ε) such that $0 < |f(e)| < q$ for all $e \in E$. As pointed out by Beck and Zaslavsky [1], the function $\varphi_\mathbb{Z}(G, q)$ was never mentioned to be a polynomial until Kochol [15]. If ε is totally cyclic, we introduce the counting functions

$$
\varphi_\varepsilon(G, q) := \# \{ f \in F(G, \varepsilon; \mathbb{Z}) \mid 0 < f(e) < q, \ e \in E \},
$$

(1.3)

and the relatively open 0-1 polytope

$$
\Delta^+_{FL}(G, \varepsilon) := \{ f \in F(G, \varepsilon; \mathbb{R}) \mid 0 < f(e) < 1, \ e \in E \}.
$$

(1.5)
The closure $\overline{\Delta}^+_{\text{FL}}(G, \varepsilon)$ is a 0-1 polytope (whose vertices are 0-1 vectors), and is the convex hull of all 0-1 flows of (G, ε) in \mathbb{R}^E (flows whose values are either 0 or 1), called the flow polytope of (G, ε). We introduce the counting function

$$\tilde{\varphi}(G, q) := \# \{ (\rho, f) \mid \rho \in \Omega_{\text{TC}}(G), f \in F(G, \rho; \mathbb{Z}), 0 \leq f(e) \leq q, e \in E \}. \quad (1.6)$$

We shall see that $\varphi(Z, q), \varphi(Z, q)$ are polynomial functions of positive integers q, that $\tilde{\varphi}(G, q), \tilde{\varphi}(Z, q)$ are polynomial functions of nonnegative integers q, and that $\varphi(Z, q)$ is independent of the chosen orientation ε. The corresponding polynomial $\varphi(Z, t)$ is called the (dual) integral flow polynomial of G, and $\varphi(Z, t)$ (or $\tilde{\varphi}(G, t)$) the local (dual) flow polynomial with respect to the orientation ε. The names and notations are so selected in order to easily recognize these polynomials.

We first reproduce a result due to Kochol [15] about Eq. (1.8), and due to Beck and Zaslavsky [1] about the combinatorial interpretation (1.10) on the values of $\varphi(Z, t)$ at nonpositive integers.

Theorem 1.1 (Kochol [15], Beck and Zaslavsky [1]) Let $G = (V, E)$ be a finite bridgeless graph with possible loops and multiple edges.

(a) If the orientation ε is totally cyclic, then $\Delta^+_{\text{FL}}(G, \varepsilon)$ is a relatively open 0-1 polytope in \mathbb{R}^E of dimension $n(G)$; $\varphi(Z, t)$ and $\varphi(Z, t)$ are Ehrhart polynomials of $\Delta^+_{\text{FL}}(G, \varepsilon)$ and $\Delta^+_{\text{FL}}(G, \varepsilon)$ respectively, and satisfy the Reciprocity Law:

$$\varphi(Z, -t) = (-1)^{n(G)} \tilde{\varphi}(Z, t), \quad (1.7)$$

where $n(G) = |E| - r(G)$ and $r(G)$ is the number of edges of a maximal spanning forest of G. Moreover,

$$\varphi(Z, 0) = (-1)^{n(G)}, \quad \tilde{\varphi}(Z, 0) = 1.$$

(b) The integral flow polynomials $\varphi(Z, t)$ and $\tilde{\varphi}(Z, t)$ can be written as

$$\varphi(Z, t) = \sum_{\rho \in \Omega_{\text{TC}}(G)} \varphi_{\rho}(G, t), \quad (1.8)$$

$$\tilde{\varphi}(Z, t) = \sum_{\rho \in \Omega_{\text{TC}}(G)} \tilde{\varphi}_{\rho}(G, t), \quad (1.9)$$

and satisfy the Reciprocity Law:

$$\varphi(Z, -t) = (-1)^{n(G)} \tilde{\varphi}(Z, t). \quad (1.10)$$

In particular, $|\varphi(Z, 0)|$ counts the number of totally cyclic orientations of G.

 Springer
The present paper is to extend the results of Theorem 1.1 to the modular flow polynomial $\varphi(G, t)$. To do this we need to introduce an equivalence relation on the set $\mathcal{O}(G)$ of all orientations on G. Two orientations $\varepsilon_1, \varepsilon_2$ on G are said to be Eulerian equivalent, written $\varepsilon_1 \sim \varepsilon_2$, if the spanning subgraph induced by the edge subset

$$\{e \in E \mid \varepsilon_1(v, e) \neq \varepsilon_2(v, e)\}$$

is a directed Eulerian subgraph with respect to the orientation either ε_1 or ε_2. We shall see that \sim is indeed an equivalence relation on $\mathcal{O}(G)$. Moreover, if an Eulerian equivalence class intersects the set $\mathcal{O}_{TC}(G)$ of totally cyclic orientations, the whole equivalence class is contained in $\mathcal{O}_{TC}(G)$. So \sim induces an equivalence relation on $\mathcal{O}_{TC}(G)$. Let $\text{Rep}[\mathcal{O}_{TC}(G)]$ denote a set of distinct representatives, exact one representative from each equivalence class of \sim on $\mathcal{O}_{TC}(G)$. We introduce the following counting function

$$\bar{\varphi}(G, q) := \#\{(\rho, f) \mid \rho \in \text{Rep}[\mathcal{O}_{TC}(G)], f \in F(G, \rho; \mathbb{Z}), 0 \leq f(e) \leq q, e \in E\}. \quad (1.11)$$

We next produce the following Theorem 1.2, which answers a question by Beck and Zaslavsky [1] about the combinatorial interpretation on the values of the modular flow polynomial $\varphi(G, t)$ at zero and negative integers.

Theorem 1.2 Let $G = (V, E)$ be a finite bridgeless graph with possible loops and multiple edges. Then $\varphi(G, q) (\bar{\varphi}(G, q))$ is a polynomial function of degree $n(G)$ of positive (nonnegative) integers q, and satisfy the Reciprocity Law:

$$\varphi(G, -t) = (-1)^{n(G)} \bar{\varphi}(G, t). \quad (1.12)$$

Moreover,

$$\varphi(G, t) = \sum_{\rho \in [\mathcal{O}_{TC}(G)]} \varphi_{\rho}(G, t), \quad (1.13)$$

$$\bar{\varphi}(G, t) = \sum_{\rho \in [\mathcal{O}_{TC}(G)]} \bar{\varphi}_{\rho}(G, t). \quad (1.14)$$

In particular, $|\varphi(G, -1)|$ counts the number of totally cyclic orientations of G, and $|\varphi(G, 0)|$ counts the number of Eulerian equivalence classes of totally cyclic orientations.

Equation (1.13) is recently obtained by Kochol [15] in a different approach. The combinatorial interpretation of $|\varphi(G, -1)| = T_G(0, 2)$ is due to Las Vergnas [16], see also Brylawski and Oxley [6]. At the moment of the second revising, we noticed a paper by Breuer and Sanyal [5] on modular flow reciprocity, which is quite different from our Reciprocity Law (1.12). The difference lies in that the result of [5] on
\[\varphi(G, -q) \] for a positive integer \(q \) involves the counting of flows modulo \(q \), whereas our result only involves nonnegative integer flows bounded by \(q \), and that the bijection between the two counting sets is nontrivial; see Sect. 5 for the detailed discussion. The proof of Theorem 1.2 is rigorous and self-contained. The following corollary is an immediate consequence of Theorem 1.2.

Corollary 1.3 The value \(T_G(0, 1) \) of the Tutte polynomial \(T_G(x, y) \) counts the number of Eulerian equivalence classes of totally cyclic orientations on \(G \).

2 Characteristic Polynomials of Group Arrangements

Let \(\Omega \) be a finitely generated abelian group. By a flat of \(\Omega \) we mean a coset of a subgroup of \(\Omega \). For a subgroup \(\Gamma \subseteq \Omega \), we denote by \(\text{Tor}(\Gamma) \) the torsion subgroup of \(\Gamma \) and write \(|\Gamma| := |\text{Tor}(\Gamma)|^{\text{rank}(\Gamma)}. \) By a subgroup arrangement (or just arrangement) of \(\Omega \) we mean a finite collection of flats of \(\Omega \). Associated with a subgroup arrangement \(\mathcal{A} \) is the semilattice \(\mathcal{L}(\mathcal{A}) \), whose members are nonempty sets obtained from all possible intersections of flats in \(\mathcal{A} \). The characteristic polynomial of \(\mathcal{A} \) is defined as

\[
\chi(\mathcal{A}, t) = \sum_{X \in \mathcal{L}(\mathcal{A})} \frac{|\text{Tor}(\Omega)|}{|\text{Tor}(\Omega/(X))|} \mu(X, \Omega) t^{\text{rank}(X)},
\]

where \(\mu \) is the Möbius function of the poset \(\mathcal{L}(\mathcal{A}) \), whose partial order is the set inclusion, \((X) := \{x - y \mid x, y \in X\} \).

Let \(\mathcal{B}(\Omega) \) be the Boolean algebra generated by cosets of all subgroups of \(\Omega \), i.e., every member of \(\mathcal{B}(\Omega) \) is obtained from cosets of subgroups of \(\Omega \) by taking unions, intersections, and complements finitely many times. A valuation on \(\Omega \) with values in an abelian group \(A \) is a map \(\nu : \mathcal{B}(\Omega) \to A \) such that

\[
\nu(\emptyset) = 0,
\nu(X \cup Y) = \nu(X) + \nu(Y) - \nu(X \cap Y)
\]

for \(X, Y \in \mathcal{B}(\Omega) \). A valuation \(\nu \) is said to be translation invariant if

\[
\nu(S + x) = \nu(S)
\]

for all \(S \in \mathcal{B}(\Omega) \) and \(x \in \Omega \); and \(\nu \) is said to satisfy multiplicativity if

\[
\nu(A + B) = \nu(A) \nu(B)
\]

for subgroups \(A, B \subseteq \Omega \) such that \(A + B \) is a direct sum of \(A \) and \(B \), and the subgroup \(A + B \) is a direct summand of \(\Omega \).

Theorem 2.1 (Chen [11]) For each finitely generated abelian group \(\Omega \), there exists a unique translation invariant valuation \(\lambda : \mathcal{B}(\Omega) \to \mathbb{Q}[t] \) such that the multiplicativity
is satisfied and

$$\lambda(\Omega) = |\text{Tor}(\Omega)| t^{\text{rank}(\Omega)} = |\Omega|.$$

In particular, $$\lambda(\Gamma) = \frac{|\Omega|}{|\Omega/\Gamma|}$$ for each subgroup $$\Gamma \subseteq \Omega$$; and for each subgroup arrangement $$\mathcal{A}$$ of $$\Omega$$,

$$\lambda \left(\Omega - \bigcup_{X \in \mathcal{A}} X \right) = \chi(\mathcal{A}, t).$$

The analogue of Theorem 2.1 for vector spaces was obtained by Ehrenborg and Readdy [12]. Let $$V$$ be a vector space over an infinite field. Let $$\mathcal{L}(V)$$ be the lattice of all affine subspaces of $$V$$, and $$\mathcal{B}(V)$$ the Boolean algebra generated by $$\mathcal{L}(V)$$. A subspace arrangement of $$V$$ is a finite collection $$\mathcal{A}$$ of affine subspaces of $$V$$. The torsion of each subspace is just the zero space. Then the characteristic polynomial $$\chi(\mathcal{A}, t)$$ of a subspace arrangement $$\mathcal{A}$$ can be defined by the same formula (2.1) for subgroup arrangement.

Theorem 2.2 (Ehrenborg and Readdy [12]) For any finite-dimensional vector space $$V$$ over an infinite field $$\mathbb{K}$$, there exists a unique translation invariant valuation $$\lambda : \mathcal{B}(V) \to \mathbb{Z}[t]$$ such that $$\lambda(W) = t^{\dim W}$$ for all subspaces $$W \subseteq V$$. Moreover, for each subspace arrangement $$\mathcal{A}$$ of $$V$$,

$$\lambda \left(V - \bigcup_{X \in \mathcal{A}} X \right) = \chi(\mathcal{A}, t).$$

One may combine Theorems 2.1 and 2.2 by considering arrangements of affine submodules. Let $$M$$ be a finitely generated left $$R$$-module over a commutative ring $$R$$; we restrict $$R$$ to the cases of $$\mathbb{R}$$, $$\mathbb{Z}$$, and $$\mathbb{Z}/q\mathbb{Z}$$. By a flat of $$M$$ we mean a subset of the form $$a + N = \{a + x \mid x \in N\}$$, where $$N$$ is a submodule of $$M$$. Let $$\mathcal{L}(M)$$ be the lattice of all flats of $$M$$, and $$\mathcal{B}(M)$$ the Boolean algebra generated by $$\mathcal{L}(M)$$. For each subset $$S \subseteq M$$, we denote by $$1_S$$ the characteristic function of $$S$$.

Let $$\mathcal{A}$$ be a finite collection of flats of $$M$$, called a submodule arrangement of $$M$$. Let $$\mathcal{L}(\mathcal{A})$$ be the poset whose members are nonempty sets obtained by taking all possible intersections of flats in $$\mathcal{A}$$, and whose partial order $$\leq$$ is the set inclusion. For each $$X \in \mathcal{L}(\mathcal{A})$$, we define

$$X^\circ := X - \bigcup_{Y \in \mathcal{L}(\mathcal{A}), Y \prec X} Y.$$

Clearly, $$\{X^\circ \mid X \in \mathcal{L}(\mathcal{A})\}$$ is a family of disjoint subsets of $$M$$. Then

$$1_X = \sum_{Y \in \mathcal{L}(\mathcal{A}), Y \leq X} 1_Y, \quad X \in \mathcal{L}(\mathcal{A}).$$
By the Möbius inversion,

\[1_{X^o} = \sum_{Y \in \mathcal{L}(A), Y \leq X} \mu(Y, X) 1_Y, \quad X \in \mathcal{L}(A). \]

In particular, \(M^o = M - \bigcup A = M - \bigcup_{X \in A} X \) and

\[1_{M - \bigcup A} = \sum_{Y \in \mathcal{L}(A)} \mu(Y, M) 1_Y. \quad (2.2) \]

Thus for each valuation \(\nu \) on \(\mathcal{B}(M) \), we have the inclusion–exclusion formula:

\[\nu \left(M - \bigcup A \right) = \sum_{X \in \mathcal{L}(A)} \mu(X, M) \nu(X). \quad (2.3) \]

This is a prototype of many existing formulas when \(\nu \) is taken to be various valuations; see [8,12,24].

Let \(M \) be the Euclidean \(n \)-space \(\mathbb{R}^n \). One has half-spaces \(\{ x \in \mathbb{R}^n \mid f(x) \leq c \} \) (with linear functionals \(f : \mathbb{R}^n \to \mathbb{R} \) and constant real numbers \(c \)), convex polyhedra (intersections of half-spaces), and the Boolean algebra \(\mathcal{B}(P^n) \) (generated by half-spaces by taking intersections, unions, and relatively complements finitely many times). There are two valuations \(\chi \) and \(\bar{\chi} \) on \(\mathcal{B}(P^n) \), both are referred to the Euler characteristic (see [7,18,24], for example), such that for each relatively open convex polyhedron \(P \),

\[\chi(P) = (-1)^{\dim P}, \quad \bar{\chi}(P) = \lim_{r \to \infty} \chi(P \cap [-r, r]^n). \]

By Groemer’s extension theorem [14], \(\chi \) and \(\bar{\chi} \) can be extended to be linear functionals on the functional space spanned by characteristic functions of convex polyhedra. Now let \(\mathcal{A} \) be a hyperplane arrangement of \(\mathbb{R}^n \). Evaluating \(\chi \) and \(\bar{\chi} \) on both sides of (2.3), one obtains Zaslavsky’s first and second counting formulas (see [8,12,23,24]):

\[|\chi(\mathcal{A}, -1)| = \text{number of regions of } \mathbb{R}^n - \bigcup \mathcal{A}, \quad (2.4) \]

\[|\chi(\mathcal{A}, 1)| = \text{number of relatively bounded regions of } \mathbb{R}^n - \bigcup \mathcal{A}. \quad (2.5) \]

3 Modular Flow Polynomials

Let \((H_i, \varepsilon_i)\) be subdigraphs of the graph \(G = (V, E), i = 1, 2 \). The coupling of \(\varepsilon_1 \) and \(\varepsilon_2 \) is a function \([\varepsilon_1, \varepsilon_2] : E \to \{-1, 0, 1\}\), defined for each edge \(e \in E \) (at its one end-vertex \(v \)) by

\[\mathcal{B} \text{ Springer} \]
\[[\varepsilon_1, \varepsilon_2](e) = \begin{cases} 1 & \text{if } e \in E(H_1) \cap E(H_2), \varepsilon_1(v, e) = \varepsilon_2(v, e), \\ -1 & \text{if } e \in E(H_1) \cap E(H_2), \varepsilon_1(v, e) \neq \varepsilon_2(v, e), \\ 0 & \text{otherwise}. \end{cases} \] (3.1)

It is useful to notice that \([\varepsilon_1, \varepsilon_2](e) = \varepsilon_1(v, e)\varepsilon_2(v, e)\), where \(v\) is an end-vertex of the edge \(e\); and whenever \(e\) is a loop, the product is taken to be that of the corresponding components of double-values. The following proposition is straightforward.

Proposition 3.1 (Berge [2])

(a) A function \(f : E(G) \to A\) is a flow of \((G, \varepsilon)\) if and only if for each directed cut \((U, \varepsilon_U)\),

\[\sum_{e \in U} [\varepsilon, \varepsilon_U](e) f(e) = 0. \]

(b) In particular, the digraph \((G, \varepsilon)\) is directed Eulerian if and only if for each directed cut \((U, \varepsilon_U)\),

\[\sum_{e \in U} [\varepsilon, \varepsilon_U](e) = 0. \]

(c) The graph \(G\) is Eulerian if and only if every cut \(U\) contains even number of edges.

Let \(F_{nz}(G, \varepsilon; A)\) denote the set of all nowhere-zero flows with values in the abelian group \(A\), i.e.,

\[F_{nz}(G, \varepsilon; A) := \{ f \in F(G, \varepsilon; A) \mid f(e) \neq 0, e \in E \}. \]

If \(|A| = q\) is finite, it is well known (see [25]) that the counting function

\[\varphi(G, q) := |F_{nz}(G, \varepsilon; A)| \] (3.2)

is a polynomial function of \(q\), depending only on the order \(|A|\), but not on the chosen orientation \(\varepsilon\) and the group structure of \(A\). The polynomial \(\varphi(G, t)\) is called the modular flow polynomial of \(G\).

For two orientations \(\rho, \sigma \in \mathcal{O}(G)\), there is an involution \(P_{\rho,\sigma} : A^E \to A^E\), defined by

\[(P_{\rho,\sigma} f)(e) = \begin{cases} f(e) & \text{if } \rho(v, e) = \sigma(v, e), \\ -f(e) & \text{if } \rho(v, e) \neq \sigma(v, e). \end{cases} \] (3.3)

In fact, \(P_{\rho,\varepsilon} f = [\rho, \varepsilon] f\). Obviously, \(P_{\rho,\rho}\) is the identity map, \(P_{\rho,\sigma} P_{\sigma,\varepsilon} = P_{\rho,\varepsilon}\).

Lemma 3.2 The involution \(P_{\rho,\varepsilon}\) is a group isomorphism. Moreover,

\[P_{\rho,\varepsilon} F(G, \varepsilon; A) = F(G, \rho; A), \]

\[P_{\rho,\varepsilon} F_{nz}(G, \varepsilon; A) = F_{nz}(G, \rho; A). \]
Proof It is clear that $P_{\rho,\varepsilon}$ is invertible and $P_{\rho,\varepsilon}^{-1} = P_{\rho,\varepsilon}$. Let $f \in A^E$. The group isomorphism follows from the fact that at each vertex v,

$$\sum_{e \in E} \rho(v, e)(P_{\rho,\varepsilon} f)(e) = \sum_{e \in E} \rho(v, e)[\rho, \varepsilon](e) f(e) = \sum_{e \in E} \varepsilon(v, e) f(e).$$

Since $P_{\rho,\varepsilon} f(e) \neq 0$ is equivalent to $f(e) \neq 0$, it follows that $P_{\rho,\varepsilon} F_{nz}(G, \varepsilon; A) = F_{nz}(G, \rho; A).$

Let T be a maximal forest of G in the sense that every component of T is a spanning tree of a component of G. For each edge e of the complement $T^c := E - E(T)$, let C_e denote the unique circuit contained in $T \cup e$, and let ρ_e be a direction of C_e (i.e. (C_e, ρ_e) is directed Eulerian) such that $\rho_e(e) = \varepsilon(e)$. It is easy to see that $[\varepsilon, \rho_e]$ is a flow of (G, ε).

Lemma 3.3 (Berge [2]) Let T be a maximal spanning forest of G. Then each flow f of the digraph (G, ε) can be expressed uniquely as the linear combination

$$f = \sum_{e \in T^c} f(e)[\varepsilon, \rho_e].$$

(3.4)

The system (1.1) for a flow f, whose equations are indexed by vertices $v \in V$, is equivalent to the system (3.4), which can be written as

$$f(x) = \sum_{e \in T^c} f(e)[\varepsilon, \rho_e](x), \quad x \in T,$$

(3.5)

whose equations are indexed by edges $x \in T$. In other words, the values $f(e)$ for all $e \in T^c$ can be arbitrarily specified, and $f(x)$ for each $x \in T$ is determined by (3.5).

Let $n(G)$ denote the cycle rank of G. If T is a maximal spanning forest of G, then $n(G)$ is the number of edges of T^c. Note that

$$n(G) = |E| - |V| + c(G),$$

where $c(G)$ is the number of connected components of G. Lemma 3.3 shows that the abelian group $F(G, \varepsilon; A)$ is of rank $n(G)$. The flow arrangement of the digraph (G, ε) with the abelian group A is the subgroup arrangement $A_{FL}(G, \varepsilon; A)$ of $F(G, \varepsilon; A)$, consisting of the subgroups

$$F_e \equiv F_e(G, \varepsilon; A) := \{ f \in F(G, \varepsilon; A) \mid f(e) = 0 \}, \quad e \in E.$$

(3.6)

The semilattice $\mathcal{L}(A_{FL}(G, \varepsilon; A))$ consists of the subgroups

$$F_X \equiv F_X(G, \varepsilon; A) := \{ f \in F(G, \varepsilon; A) \mid f(x) = 0, \; x \in X \}, \quad X \subseteq E.$$
Then $F ≡ F_∅ = F(G, ε; A)$. Using (3.5), it is easy to see that the arrangement $\mathcal{A}_{FL}(G, ε; A)$ is isomorphic to the arrangement $\mathcal{A}_{FL}(G, T, ε; A)$ of $A^{E(T^c)}$, consisting of the subgroups

$$H_e := \begin{cases} \{ f ∈ A^{E(T^c)} | f(e) = 0 \} & \text{if } e ∈ T^c, \\ \{ f ∈ A^{E(T^c)} | \sum_{x ∈ T^c}[ε, ρ_x](f(x) = 0) \} & \text{if } e ∈ T. \end{cases}$$

The isomorphism is given by the restriction $f ↦ f|_{E(T^c)}$, sending F_e to H_e.

Lemma 3.4 The abelian group $F(G, ε; A)$ is isomorphic to the product group $A^n(G)$. Moreover, for each subset $X ⊆ E$, the subgroup $F_X(G, ε; A)$ is isomorphic to the product group $A^n(G|X^c)$. In particular, if $|A| = q$ is finite, then

$$|F(G, ε; A)| = q^n(G), \quad |F_X(G, ε; A)| = q^n(G|X^c). \quad (3.7)$$

Proof Trivial \qquad \Box

Theorem 3.5 Let A be an abelian group such that either $|A| = q$ is finite, or $A = \mathbb{Z}$, or A is an infinite field. Then

$$\varphi(G, q) = \lambda \left(F(G, ε; A) - \bigcup_{e ∈ E} F_e \right)_{t=q} = \chi(\mathcal{A}_{FL}(G, ε; A), q). \quad (3.8)$$

Moreover, $|\varphi(G, -1)|$ counts the number of totally cyclic orientations of G.

Proof Let $X, Y ⊆ E$. If $|A| ≥ 2$ (including $|A| = \infty$), then the containment $F_X(G, ε; A) ⊆ F_Y(G, ε; A)$ is equivalent to that the circuits of $G|X^c$ are contained in $G|Y^c$. Thus the map $F_X(G, ε; A) ↦ F_X(G, ε; \mathbb{R})$ is an isomorphism from $\mathcal{L}(\mathcal{A}_{FL}(G, ε; A))$ to $\mathcal{L}(\mathcal{A}_{FL}(G, ε; \mathbb{R}))$. Consequently, we have the same Möbius function

$$\mu(F_X(G, ε; A), F_Y(G, ε; A)) = \mu(F_X(G, ε; \mathbb{R}), F_Y(G, ε; \mathbb{R})).$$

If A is infinite, applying the valuation λ to both sides of (2.2), we have

$$\lambda \left(F - \bigcup_{e ∈ E} F_e \right) = \sum_{F_X ∈ \mathcal{L}(\mathcal{A}_{FL}(G, ε; A))} \mu(F_X, F)t^n(G|X^c).$$

If A is finite and $|A| = q$, applying the counting valuation $#$ to both sides of (2.2), we have

$$\varphi(G, q) = \sum_{F_X ∈ \mathcal{L}(\mathcal{A}_{FL}(G, ε; A))} \mu(F_X, F)q^n(G|X^c).$$

The identity (3.8) follows immediately for positive integers q. \qquad \Box
For \(q = 1 \), we have \(A = \{0\} \) and \(F_{\text{nz}}(G, \varepsilon; A) = \emptyset \). Hence \(\varphi(G, 1) = 0 \). Since the hyperplane arrangement \(\mathcal{A}_{\text{FL}}(G, \varepsilon; \mathbb{R}) \) is central (all hyperplanes pass through the origin), there is no relatively bounded region. Zaslavsky’s second counting formula (2.5) confirms that \(\chi(\mathcal{A}_{\text{FL}}(G, \varepsilon; \mathbb{R}), 1) = 0 \).

Finally, by Zaslavsky’s counting formula (2.4), \((-1)^{n(G)}\varphi(G, -1)\) counts the number of regions of the complement \(F - \bigcup_{e \in E} F_e \). By Lemmas 4.2 and 4.3, the regions of the complement \(F(G, \varepsilon; \mathbb{R}) - \bigcup \mathcal{A}_{\text{FL}}(G, \varepsilon; \mathbb{R}) \) correspond bijectively to the totally cyclic orientations on \(G \).

4 Integral Flow Polynomials

In this section we apply the Ehrhart polynomial theory to study integral flow polynomials. Let us recall some facts about lattice polytopes and Ehrhart polynomials. Let \(P \) be a relatively open lattice polytope of \(\mathbb{R}^n \), i.e., \(P \) is open in the flat that \(P \) spans, and the vertices of \(P \) are points of the lattice \(\mathbb{Z}^n \). The closure of \(P \) is denoted by \(\bar{P} \). A bounded lattice polyhedron is a disjoint union of finitely many relatively open lattice polytopes. Let \(X \) be a bounded lattice polyhedron and \(q \) a positive integer. The dilatation of \(X \) by \(q \) is the polyhedron \(qX := \{qx \mid x \in X\} \). Let

\[
L(X, q) := \#(qX \cap \mathbb{Z}^n).
\]

It is well-known that \(L(X, q) \) is a polynomial function of degree \(\dim X \) in the positive integer variable \(q \), called the Ehrhart polynomial of \(X \). Moreover, the leading coefficient of \(L(X, t) \) is the volume of \(X \); the constant term \(L(X, 0) \) is the Euler characteristic \(\chi(X) \). In particular, if \(X = P \) is a relatively open lattice polytope, then \(L(P, q) \) and \(L(\bar{P}, q) \) satisfy the Reciprocity Law:

\[
L(P, -t) = (-1)^{\dim P} L(\bar{P}, t);
\]

the constant term of \(L(\bar{P}, t) \) is 1, and the constant term of \(L(P, t) \) is \((-1)^{\dim P} \). All these and other related properties about Ehrhart polynomials can be found in [9,10,20].

Flows with values in \(\mathbb{R} \) are called real flows; and flows with values in \(\mathbb{Z} \) are called integer flows. A flow \(f \in F(G, \varepsilon; \mathbb{R}) \) is called a \(q \)-flow if \(|f(e)| < q \) for all \(e \in E \). We define the set of all real \(q \)-flows of \((G, \varepsilon)\) as

\[
F(G, \varepsilon; q) := \{f \in F(G, \varepsilon; \mathbb{R}) : |f(e)| < q, \ e \in E\}.
\]

We denote by \(F_{\mathbb{Z}}(G, \varepsilon; q) \) the set of all integer \(q \)-flows of \((G, \varepsilon)\), and by \(F_{\text{nz}\mathbb{Z}}(G, \varepsilon; q) \) the set of all nowhere-zero integer \(q \)-flows, i.e.,

\[
F_{\text{nz}\mathbb{Z}}(G, \varepsilon; q) := \{f \in F_{\mathbb{Z}}(G, \varepsilon; q) \mid f(e) \neq 0, \ e \in E\}. \tag{4.1}
\]

Clearly, \(F_{\text{nz}\mathbb{Z}}(G, \varepsilon; q) \) is the set of lattice points of the dilatation \(q\Delta_{\text{FL}}(G, \varepsilon) \) (dilated by \(q \)) of the nonconvex polyhedron

\[
\Delta_{\text{FL}}(G, \varepsilon) := \{f \in F(G, \varepsilon; \mathbb{R}) : 0 < |f(e)| < 1, \ e \in E\}. \tag{4.2}
\]
It follows from Lemma 4.3 that the counting function

\[\varphi_\mathbb{Z}(G, q) := |F_{nz\mathbb{Z}}(G, \varepsilon; q)| = L(\Delta_{FL}(G, \varepsilon), q) \]

(4.3)

is an Ehrhart polynomial of degree \(\dim \Delta_{FL}(G, \varepsilon) \) in the positive integer variable \(q \). In fact, we shall see that \(|F_{nz\mathbb{Z}}(G, \varepsilon; q)| \) is independent of the chosen orientation \(\varepsilon \). We call \(\varphi_\mathbb{Z}(G, t) \) the integral flow polynomial of \(G \).

Lemma 4.1 The involution \(P_{\rho, \varepsilon} \) is a group isomorphism from \(\mathbb{R}^E \) to itself. Moreover,

\[
P_{\rho, \varepsilon} \Delta_{FL}(G, \varepsilon) = \Delta_{FL}(G, \rho),
\]

\[
P_{\rho, \varepsilon} F_{nz\mathbb{Z}}(G, \varepsilon; q) = F_{nz\mathbb{Z}}(G, \rho; q).
\]

Proof Let \(A = \mathbb{R}, f \in \mathbb{R}^E, e \in E \). Note that \(0 < |P_{\rho, \varepsilon} f(e)| < 1 \) is equivalent to \(0 < |f(e)| < 1 \). Hence \(P_{\rho, \varepsilon} \Delta_{FL}(G, \varepsilon) = \Delta_{FL}(G, \rho) \). Similarly, \(P_{\rho, \varepsilon} f(e) \in \mathbb{Z} \) is equivalent to \(f(e) \in \mathbb{Z} \); and \(0 < |P_{\rho, \varepsilon} f(e)| < q \) is equivalent to \(0 < |f(e)| < q \). Thus \(P_{\rho, \varepsilon} F_{nz\mathbb{Z}}(G, \varepsilon; q) = F_{nz\mathbb{Z}}(G, \rho; q) \).

Let \(A = \mathbb{R} \). The subgroup arrangement \(A_{FL}(G, \varepsilon; \mathbb{R}) \) is a hyperplane arrangement of \(F(G, \varepsilon; \mathbb{R}) \). The complement of \(A_{FL}(G, \varepsilon; \mathbb{R}) \) is the set

\[
F(G, \varepsilon; \mathbb{R}) - \bigcup A_{FL}(G, \varepsilon; \mathbb{R}) = \{ f \in F(G, \varepsilon; \mathbb{R}) | f(e) \neq 0, e \in E \}.
\]

For each edge \(e \in E \) with end-vertices \(u, v \), the nonzero condition \(f(e) \neq 0 \) can be split into two inequalities:

\[
f(e) > 0 \quad \text{and} \quad f(e) < 0;
\]

the former can be interpreted as an orientation of \(e \) agreeing with \(\varepsilon(u, e) \), and the latter is interpreted as an orientation of \(e \) opposite to \(\varepsilon(u, e) \).

For each orientation \(\rho \in \mathcal{O}(G) \), we introduce the open convex cone

\[
C^\rho(G, \varepsilon) := \{ f \in F(G, \varepsilon; \mathbb{R}) | [\rho, \varepsilon](e) f(e) > 0, e \in E \}.
\]

The complement \(F(G, \varepsilon; \mathbb{R}) - \bigcup A_{FL}(G, \varepsilon; \mathbb{R}) \) is a disjoint union of these open convex cones, some of them may be empty. By Lemma 4.2 below, the cone \(C^\rho(G, \varepsilon) \) is isomorphic to the open convex cone

\[
C^+(G, \rho) := \{ f \in F(G, \rho; \mathbb{R}) | f(e) > 0, e \in E \}.
\]

We introduce the relatively open polytopes

\[
\Delta_{FL}^+(G, \rho) := \{ f \in F(G, \rho; \mathbb{R}) | 0 < f(e) < 1, e \in E \},
\]

(4.4)

\[
\Delta_{FL}^\rho(G, \varepsilon) := \{ f \in F(G, \varepsilon; \mathbb{R}) | 0 < [\rho, \varepsilon](e) f(e) < 1, e \in E \}.
\]

(4.5)
If $\Delta^+_{FL}(G, \rho) \neq \emptyset$ (equivalent to that ρ is totally cyclic), then the closure of $\Delta^+_{FL}(G, \rho)$ is the polytope

$$\tilde{\Delta}^+_{FL}(G, \rho) := \{ f \in F(G, \rho; \mathbb{R}) \mid 0 \leq f(e) \leq 1, \ e \in E \}. \quad (4.6)$$

Whether the orientation ρ is totally cyclic or not, the set $\tilde{\Delta}^+_{FL}(G, \rho)$ is always a polytope, and is called a flow polytope of G with respect to ρ.

Lemma 4.2

$$P_{\rho, \epsilon} \Delta^0_{FL}(G, \epsilon) = \Delta^+_{FL}(G, \rho), \quad (4.7)$$

$$\Delta_{FL}(G, \epsilon) = \bigsqcup_{\rho \in \mathcal{O}(G)} \Delta^0_{FL}(G, \epsilon) \quad \text{(disjoint union).} \quad (4.8)$$

Proof Since $P_{\rho, \epsilon} f = [\rho, \epsilon] f$ for $f \in \mathbb{R}^E$, then the first identity is trivial by definitions of $\Delta^0_{FL}(G, \epsilon)$, $\Delta^+_{FL}(G, \rho)$, and Lemma 4.1.

Let $f \in \Delta_{FL}(G, \epsilon)$. We define an orientation ρ on G as follows: for each edge e at its one end-vertex v, set $\rho(v, e) = \epsilon(v, e)$ if $f(e) > 0$ and $\rho(v, e) = -\epsilon(v, e)$ if $f(e) < 0$. Then $f \in \Delta^0_{FL}(G, \epsilon)$. Conversely, each $\Delta^0_{FL}(G, \epsilon)$ is obviously contained in $\Delta_{FL}(G, \epsilon)$. The union is clearly disjoint.

Notice that the open convex cone $C^+(G, \epsilon)$ may be empty for the given orientation ϵ. If (G, ϵ) contains a directed cut, it is impossible to have positive real flows by Proposition 3.1(a); hence $C^+(G, \epsilon) = \emptyset$. To have $C^+(G, \epsilon) \neq \emptyset$, the orientation ϵ must be totally cyclic.

Lemma 4.3 (a) $\Delta^+_{FL}(G, \epsilon) \neq \emptyset$ if and only if $\epsilon \in \mathcal{O}_{TC}(G)$.

(b) The polytope $\Delta^+_{FL}(G, \epsilon)$ is a 0-1 polytope, i.e., all its vertices are flows of (G, ϵ) with values in $\{0, 1\}$.

(c) Every flow of (G, ϵ) with values in $\{0, 1\}$ is a vertex of $\tilde{\Delta}^+_{FL}(G, \epsilon)$.

Proof (a) Trivial.

(b) Let f be a vertex of $\tilde{\Delta}^+_{FL}(G, \epsilon)$. It is enough to show that f is integer-valued. By the theory of Linear Programming, the vertex vector $[x_e = f(e) : e \in E]$ is a unique solution of a linear system of the form

$$\sum_{e \in E} m_{v,e} x_e = 0, \ v \in V,$$

$$x_e = a_e, \ e \in E_f,$$

where $a_e = 0$ or 1, E_f is an edge subset, $|E_f| = |E| - n(G)$. The system is equivalent to the linear system

$$\sum_{e \in E_f} m_{v,e} x_e = b_v, \ v \in V,$$
where $E'_f := E - E_f$, $b_v \in \mathbb{Z}$, and the rank of the matrix $[m_{v,e}]_{V \times E'}$ is $n(G)$. Since the incidence matrix $M = [m_{v,e}]_{V \times E}$ is totally unimodular (see [4], p.35), the submatrix $[m_{v,e}]_{V \times E'}$ is row equivalent to the matrix $\begin{bmatrix} I \\ 0 \end{bmatrix}$ over \mathbb{Z}, where I is the identity matrix if V is linearly labeled. It then follows that the solution $[x_e = f(e) : e \in E]$ is an integer vector.

(c) Notice that a flow of (G, ε) with values in $\{0, 1\}$ is just the characteristic function of the edge set of a directed Eulerian subgraph of (G, ε). Let f be a flow with values in $\{0, 1\}$. Clearly, $f \in \tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon)$. Suppose f is not a vertex of $\tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon)$. Then there exist vertex vectors f_i of $\tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon)$ such that $f = \sum_{i=1}^k a_i f_i$ with $k \geq 2$, where a_i are positive real numbers and $\sum_{i=1}^k a_i = 1$. Note that f_i are 0-1 flows of (G, ε) by the part (b). Let e be an edge such that $f(e) = 1$. Then $f_i(e) = 1$ for all i; otherwise, say, $f_i(e) = 0$, then $f(e) = \sum_{i=1}^k a_i f_i(e) \leq \sum_{i=2}^k a_i < 1$, which contradicts $f(e) = 1$. Thus $f_i = f$ for all i; this is contradictory to the distinctness of f_i. □

Recall that $\varphi_\varepsilon(G, q)$ for a positive integer q is the number of integer flows of (G, ε) with values in $\{1, 2, \ldots, q - 1\}$. In other words, $\varphi_\varepsilon(G, q)$ is the number of integer flows of (G, ε) with values in the open interval $(0, q) := \{x \in \mathbb{R} \mid 0 < x < q\}$. Clearly, $\varphi_\varepsilon(G, q)$ counts the number of lattice points of the dilatation $q\tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon)$, i.e.,

$$\varphi_\varepsilon(G, q) = L(\tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon), q).$$

(4.9)

We call $\varphi_\varepsilon(G, q)$ the local flow polynomial of G with respect to ε. Analogously, let $\tilde{\varphi}_\varepsilon(G, q)$ denote the number of integer flows of (G, ε) with values in $\{0, 1, \ldots, q\}$. In other words, $\tilde{\varphi}_\varepsilon(G, q)$ is the number of integer flows of (G, ε) with values in the closed interval $[0, q]$. Then $\tilde{\varphi}_\varepsilon(G, q)$ counts the number of lattice points of $q\tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon)$, i.e.,

$$\tilde{\varphi}_\varepsilon(G, q) = L(\tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon), q).$$

(4.10)

We call $\tilde{\varphi}_\varepsilon(G, q)$ the local dual flow polynomial of G with respect to ε. Now we denote by $\varphi_\mathbb{Z}(G, q)$ the number of pairs (ρ, f), where ρ is a totally cyclic orientation on G and f is an integer flow of (G, ρ) with values in $\{0, 1, \ldots, q\}$. We call $\varphi_\mathbb{Z}(G, q)$ the dual integral flow polynomial of G.

Proof of Theorem 1.1 (a) By Lemma 4.3, the closure $\tilde{\Delta}^+_\mathcal{FL}(G, \varepsilon)$ of the open polytope $\Delta^+_\mathcal{FL}(G, \varepsilon)$ is the convex hull of the lattice points $f \in \mathbb{Z}^E$ such that $f(e) \in \{0, 1\}$ for all $e \in E$ and satisfying the Circulation Property (1.1). The Reciprocity Law (1.7) and the interpretation of the constant term follow from the properties of Ehrhart polynomials.

(b) Note that $F_{n\mathbb{Z}}(G, \varepsilon; q) = q\Delta_{\mathcal{FL}}(G, \varepsilon) \cap \mathbb{Z}^E$. By Lemma 4.2, we have the disjoint union

$$q\Delta_{\mathcal{FL}}(G, \varepsilon) = \bigcup_{\rho \in \mathcal{O}_{TC}(G)} q\Delta^\rho_{\mathcal{FL}}(G, \varepsilon),$$

(4.11)

where each lattice open polytope $\Delta^\rho_{\mathcal{FL}}(G, \varepsilon)$ is isomorphic to the 0-1 open polytope $\Delta_{\mathcal{FL}}^+(G, \rho)$ by the unimodular linear transformation $P_{\rho, \varepsilon}$. Then (1.8) follows
immediately from (4.11); (1.9) follows from the definition of $\bar{\varphi}_Z(G, q)$. The Reciprocity Law (1.10) follows from (1.7)–(1.9). The interpretation of the constant term $\varphi_Z(G, 0)$ follows from (1.8) and $\varphi_{\epsilon}(G, 0) = (-1)^{n(G)}$. □

5 Interpretation of Modular Flow Polynomial

This section is devoted to interpreting the values of the modular flow polynomial in a way similar to how the modular tension polynomial was interpreted in [11]. For the graph $G = (V, E)$ and a positive integer q, there is the modulo-q map

$$
\text{Mod}_q : \mathbb{R}^E \rightarrow (\mathbb{R}/q\mathbb{Z})^E, \quad (\text{Mod}_q f)(x) = f(x) \pmod{q}, \quad f \in \mathbb{R}^E.
$$

Then $\text{Mod}_q(\mathbb{Z}^E) = (\mathbb{Z}/q\mathbb{Z})^E$ is a subgroup of the toric group $(\mathbb{R}/q\mathbb{Z})^E$, and $\text{Mod}_q(F(G, \epsilon; Z))$ is a subgroup of $\text{Mod}_q(\mathbb{Z}^E)$.

Given orientations $\rho, \sigma \in O(G)$; there is an involution $Q_{\rho, \sigma} : [0, q]^E \rightarrow [0, q]^E$ defined by

$$(Q_{\rho, \sigma} g)(e) = \begin{cases}
g(e) & \text{if } \rho(v, e) = \sigma(v, e), \\
q - g(e) & \text{if } \rho(v, e) \neq \sigma(v, e),
\end{cases}$$

where $g \in [0, q]^E$ and v is an end-vertex of the edge e. Clearly, $Q_{\rho, \sigma}$ is a bijection from $[0, q]^E$ to $[0, q]^E$, and is also a bijection from $(0, q)^E$ to $(0, q)^E$. Moreover, $Q_{\rho, \sigma} Q_{\sigma, \epsilon} = Q_{\rho, \epsilon}$.

Recall that two orientations $\epsilon_1, \epsilon_2 \in O(G)$ are said to be Eulerian equivalent, written $\epsilon_1 \sim \epsilon_2$, if the induced spanning subdigraph by the edge subset

$$E(\epsilon_1 \neq \epsilon_2) := \{ e \in E \mid \epsilon_1(v, e) \neq \epsilon_2(v, e), \ v \text{ is an end-vertex of } e \}$$

is a directed Eulerian subgraph with the orientation either ϵ_1 or ϵ_2.

Lemma 5.1 (a) The relation \sim is an equivalence relation on $O(G)$.
(b) Let $\rho, \sigma \in O(G)$ be Eulerian equivalent. If ρ is totally cyclic, so is σ.
(c) Let $\rho, \sigma \in O(G)$ and $\rho \sim \sigma$. Then $Q_{\rho, \sigma} : q \tilde{\Delta}_{\text{T}}(G, \sigma) \rightarrow q \tilde{\Delta}_{\text{T}}(G, \rho)$ is a bijection, sending lattice points to lattice points. In particular,

$$Q_{\rho, \sigma}(q \tilde{\Delta}_{\text{T}}(G, \sigma)) = q \tilde{\Delta}_{\text{T}}(G, \rho),$$

$$\varphi_{\rho}(G, q) = \varphi_{\sigma}(G, q),$$

$$\bar{\varphi}_{\rho}(G, \epsilon; q) = \bar{\varphi}_{\sigma}(G, q).$$

Proof (a) The reflexivity and the symmetric property are obvious. It is straightforward to verify the transitivity. Note that a digraph (H, ρ) is Eulerian if and only if for all $v \in V(H)$,

$$\sum_{e \in E(H)} \rho(v, e) = 0.$$
Let \(\varepsilon_i \in \mathcal{O}(G) \ (i = 1, 2, 3) \) be such that \(\varepsilon_1 \sim \varepsilon_2 \) and \(\varepsilon_2 \sim \varepsilon_3 \). Let \(v \) be a vertex of \(G \). Then

\[
\sum_{e \in E(\varepsilon_1 \neq \varepsilon_2)} \varepsilon_2(v, e) = \sum_{e \in E(\varepsilon_2 \neq \varepsilon_3)} \varepsilon_2(v, e) = 0.
\]

Thus

\[
\sum_{e \in E(\varepsilon_1 \neq \varepsilon_3)} \varepsilon_1(v, e) = \sum_{e \in E(\varepsilon_1 = \varepsilon_2 \neq \varepsilon_3)} \varepsilon_1(v, e) + \sum_{e \in E(\varepsilon_1 \neq \varepsilon_2 = \varepsilon_3)} \varepsilon_1(v, e)
= \sum_{e \in E(\varepsilon_1 = \varepsilon_2 \neq \varepsilon_3)} \varepsilon_2(v, e) - \sum_{e \in E(\varepsilon_1 \neq \varepsilon_2 = \varepsilon_3)} \varepsilon_2(v, e)
= \sum_{e \in E(\varepsilon_1 = \varepsilon_2 \neq \varepsilon_3) \cup E(\varepsilon_1 \neq \varepsilon_2 = \varepsilon_3)} \varepsilon_2(v, e)
- \sum_{e \in E(\varepsilon_1 \neq \varepsilon_2 = \varepsilon_3) \cup E(\varepsilon_1 \neq \varepsilon_2 \neq \varepsilon_3)} \varepsilon_2(v, e)
= \sum_{e \in E(\varepsilon_1 \neq \varepsilon_3)} \varepsilon_2(v, e) - \sum_{e \in E(\varepsilon_1 \neq \varepsilon_2)} \varepsilon_2(v, e) = 0.
\]

This means that \(\varepsilon_1 \) is Eulerian equivalent to \(\varepsilon_3 \).

(b) Suppose \((G, \sigma) \) contains a directed cut \((U, \varepsilon_U) \), where \(U = [S, S^c] \) with \(S \subseteq V \). Since the subgraph induced by the edge set \(E(\rho \neq \sigma) \) is directed Eulerian with the orientation \(\rho \), then by Proposition 3.1(b),

\[
\sum_{x \in U \cap E(\rho \neq \sigma)} [\rho, \varepsilon_U](x) = 0.
\]

Since \([\sigma, \varepsilon_U] = 1 \) on \(U \), then \([\rho, \varepsilon_U] = -1 \) on \(U \cap E(\rho \neq \sigma) \). Thus \(U \cap E(\rho \neq \sigma) = \emptyset \). This means that \(\rho(v, e) = \sigma(v, e) \) for all edges \(e \in U \), where \(v \) is an end-vertex of \(e \) and \(v \in S \). So \((U, \varepsilon_U) \) is a directed cut of \((G, \rho) \). This is a contradiction.

(c) For a flow \(f \in q\Delta^+_{\mathrm{FL}}(G, \sigma) \ (f \in q\Delta^+_{\mathrm{FL}}(G, \sigma)) \), we have

\[
\sum_{e \in E(v)} \rho(v, e)(Q_{\rho, \sigma} f)(e) = \sum_{e \in E(v)} \sigma(v, e) f(e) + q \sum_{e \in E(\sigma \neq \rho)} \rho(v, e) = 0.
\]

This shows that \(Q_{\rho, \sigma} f \in q\Delta^+_{\mathrm{FL}}(G, \rho) \) \((Q_{\rho, \sigma} f \in q\Delta^+_{\mathrm{FL}}(G, \rho))\). Clearly, \(Q_{\rho, \sigma} \) sends lattice points to lattice points by definition. Therefore, \(\bar{\varphi}_{\rho}(G, q) = \bar{\varphi}_{\sigma}(G, q) \) and \(\varphi_{\rho}(G, q) = \varphi_{\sigma}(G, q) \).

For two Eulerian equivalent orientations \(\rho, \sigma \), we have seen that having no directed cut in the digraph \((G, \rho) \) is equivalent to having no directed cut in \((G, \sigma) \). This means that \(\sim \) induces an equivalence relation on \(\mathcal{O}_{TC}(G) \); and each equivalence class of \(\sim \) in \(\mathcal{O}_{TC}(G) \) is an equivalence class of \(\sim \) in \(\mathcal{O}(G) \). We denote by \([\mathcal{O}_{TC}(G)]\) the set of
Eulerian equivalence classes of $O_{TC}(G)$. For each $\rho \in O_{TC}(G)$, let $[\rho] \in [O_{TC}(G)]$ denote the equivalence class of ρ, and define
\[
\varphi_{[\rho]}(G, q) = \varphi_{\rho}(G, q) \quad \text{and} \quad \tilde{\varphi}_{[\rho]}(G, q) = \tilde{\varphi}_{\rho}(G, q).
\]

The following nontrivial lemma is due to Tutte. It is crucial to the proof of our main result Theorem 1.2; so we present a proof with our notations.

Lemma 5.2 (Tutte [21]) The map $\text{Mod}_q : F_{\mathbb{Z}}(G, \varepsilon; q) \to F(G, \varepsilon; \mathbb{Z}/q\mathbb{Z})$ and its restriction $\text{Mod}_q : F_{nz\mathbb{Z}}(G, \varepsilon; q) \to F_{nz}(G, \varepsilon; \mathbb{Z}/q\mathbb{Z})$ are surjective.

Proof We need only to prove the second part of the lemma because it implies the first part. In fact, every flow $f \in F(G, \varepsilon; \mathbb{Z}/q\mathbb{Z})$ can be viewed as a nowhere-zero flow $f|_{E_f}$ on the subdigraph (V, E_f, ε), where $E_f := \{e \in E \mid f(e) \neq 0\}$. Let g_1 be a nowhere-zero integer q-flow on (V, E_f, ε) such that $\text{Mod}_q(g_1) = f|_{E_f}$. Then g_1 can be extended to an integer q-flow g on (G, ε) by setting $g = 0$ on $E - E_f$. Clearly, $\text{Mod}_q(g) = f$.

Now for each $f \in F_{\mathbb{Z}}(G, \varepsilon; q)$ we write $\hat{f} = \text{Mod}_q f$. We identify $\mathbb{Z}/q\mathbb{Z}$ with the set $\{0, 1, \ldots, q - 1\}$ and view each modular flow $g \in F(G, \varepsilon; \mathbb{Z}/q\mathbb{Z})$ as an integer-valued function $g : E \to \{0, 1, \ldots, q - 1\}$. Then the map $Q_{\rho, \varepsilon}$ sends $F_{nz\mathbb{Z}}(G, \varepsilon; \mathbb{Z}/q\mathbb{Z})$ to $F_{nz\mathbb{Z}}(G, \rho; \mathbb{Z}/q\mathbb{Z})$. For each function $g \in [0, q]^E$ and each orientation $\rho \in O(G)$, we define
\[
\eta(g, \rho) := \sum_{v \in V} \sum_{e \in E} \rho(v, e)g(e).
\]

Fix a modular flow $\hat{f} \in F_{nz\mathbb{Z}}(G, \varepsilon; \mathbb{Z}/q\mathbb{Z})$. Let ρ^* be a particular orientation on G such that
\[
\eta(Q_{\rho^*, \varepsilon}\hat{f}, \rho^*) = \min\{\eta(Q_{\rho, \varepsilon}\hat{f}, \rho) \mid \rho \in O(G)\}.
\]

We write $f^* := Q_{\rho^*, \varepsilon}\hat{f}$ and define $f := P_{\varepsilon, \rho^*}f^*$.

If $\eta(f^*, \rho^*) = 0$, then $\sum_{e \in E} \rho^*(v, e)f^*(e) = 0$ for all $v \in V$. This means that f^* is a nowhere-zero integer q-flow of (G, ρ^*). Whence f is a nowhere-zero integer q-flow of (G, ε) by Lemma 4.1. A straightforward calculation (by the definitions of P_{ε, ρ^*} and $Q_{\rho^*, \varepsilon}$) shows that
\[
f(e) = \begin{cases}
\hat{f}(e) & \text{if } \varepsilon(v, e) = \rho^*(v, e) \\
\hat{f}(e) - q & \text{if } \varepsilon(v, e) \neq \rho^*(v, e)
\end{cases}
\]

for all $e \in E$.

The surjectivity of $\text{Mod}_q : F_{nz\mathbb{Z}}(G, \varepsilon; q) \to F_{nz}(G, \varepsilon; \mathbb{Z}/q\mathbb{Z})$ follows immediately.
We now claim that $\eta(f^*, \rho^*) = 0$. Suppose $\eta(f^*, \rho^*) > 0$. Then there exist a vertex $u \in V$ and an integer k such that

$$\sum_{e \in E} \rho^*(u, e)f^*(e) = kq > 0 \quad (< 0). \quad (5.1)$$

Note that for each function $g : E \to A$, where A is an abelian group, and for each orientation $\rho \in O(G)$, we have

$$\sum_{v \in V} \sum_{e \in E} \rho(v, e)g(e) = 0.$$

In particular, for the function f^* and the orientation ρ^*, we have

$$\sum_{v \in V} \sum_{e \in E} \rho^*(v, e)f^*(e) = 0.$$

Since (5.1) and f^* is a modular flow, there exists a vertex w such that

$$\sum_{e \in E} \rho^*(w, e)f^*(e) = -lq < 0 \quad (> 0).$$

Thus there is a path $P = v_0e_1v_1 \cdots e_nv_n$ with $v_0 = u$ and $v_n = w$, such that $\rho^*(v_0, e_1) = 1, \rho^*(v_n, e_n) = -1$, and $\rho^*(v_i, e_i)\rho^*(v_i, e_{i+1}) = -1$, where $1 \leq i \leq n - 1$. Let ρ^{**} be an orientation on G given by

$$\rho^{**}(v, e) = \begin{cases} -\rho^*(v, e) & \text{if } e = e_i \text{ for some } 1 \leq i \leq n, \\ \rho^*(v, e) & \text{otherwise}. \end{cases}$$

We write $f^{**} := Q_{\rho^{**}, \rho^*}f^*$. Then $f^{**} = Q_{\rho^{**}, \rho^*}Q_{\rho^*, \varepsilon}\tilde{f} = Q_{\rho^{**}, \varepsilon}\tilde{f}$.

Notice that at each vertex $v \in V$, we have

$$\sum_{e \in E} \rho^{**}(v, e)f^{**}(e) = \sum_{e \in E} \rho^*(v, e)f^*(e) - q \sum_{e \in E(\rho^* \neq \rho^{**})} \rho^*(v, e).$$

In particular, for the vertices u, w, and other vertices v different from u and w, we have

$$\sum_{e \in E} \rho^{**}(u, e)f^{**}(e) = \sum_{e \in E} \rho^*(u, e)f^*(e) - q = (k - 1)q,$$

$$\sum_{e \in E} \rho^{**}(w, e)f^{**}(e) = \sum_{e \in E} \rho^*(w, e)f^*(e) + q = (1 - l)q,$$

$$\sum_{e \in E} \rho^{**}(v, e)f^{**}(e) = \sum_{e \in E} \rho^*(v, e)f^*(e).$$
It follows that
\[\eta(f^{**}, \rho^{**}) = \eta(f^*, \rho^*) - 2q < \eta(f^*, \rho^*). \]

This is contradictory to the selection of \(\rho^* \) that \(\eta(f^*, \rho^*) \) is minimum. \qed

For each real-valued function \(f : E \to \mathbb{R} \) and each orientation \(\rho \) on \(G \), we associate with \(f \) and \(\rho \) an orientation \(\rho_f \), defined for each \((v, e) \in V \times E\) by
\[
\rho_f(v, e) = \begin{cases}
\rho(v, e) & \text{if } f(e) > 0, \\
-\rho(v, e) & \text{if } f(e) \leq 0.
\end{cases} \tag{5.2}
\]

For two orientations \(\rho, \sigma \in O(G) \), we associate a symmetric difference function \(I_{\rho, \sigma} : E \to \{0, 1\} \), defined for each edge \(e \in E \) (and its one end-vertex \(v \)) by
\[
I_{\rho, \sigma}(e) = \begin{cases}
0 & \text{if } \rho(v, e) = \sigma(v, e), \\
1 & \text{if } \rho(v, e) \neq \sigma(v, e). \tag{5.3}
\end{cases}
\]

Lemma 5.3 Let \(f_1, f_2 \in F(G, \varepsilon; q) \). If \(f_1(e) \equiv f_2(e) \pmod{q} \) for all edges \(e \in E \), then \(\varepsilon_{f_1} \) and \(\varepsilon_{f_2} \) are Eulerian equivalent.

Proof Let us simply write \(\varepsilon_i := \varepsilon_{f_i}, i = 1, 2 \). It suffices to show that at each vertex \(v \),
\[
\sum_{e \in E \left(\varepsilon_{1} \neq \varepsilon_{2} \right)} \varepsilon_{2}(v, e) = 0. \tag{5.4}
\]

Since \(f_1(e) \equiv f_2(e) \pmod{q} \) for all \(e \in E \), then
\[
f_1(e) = f_2(e) + a_e q, \quad e \in E,
\]
where \(a_e \in \{-1, 0, 1\} \). More precisely, for each edge \(e \) at its one end-vertex \(v \),
\[
f_1(e) = \begin{cases}
f_2(e) & \text{if } \varepsilon_1(v, e) = \varepsilon_2(v, e), \\
f_2(e) - q & \text{if } \varepsilon_1(v, e) \neq \varepsilon_2(v, e) = \varepsilon(v, e), \\
f_2(e) + q & \text{if } \varepsilon_1(v, e) \neq \varepsilon_2(v, e) \neq \varepsilon(v, e).
\end{cases}
\]

Let \(g_i = P_{\varepsilon_i, \varepsilon f_i}, i = 1, 2 \). Then \(g_i \) are real \(q \)-flows of \((G, \varepsilon_i)\), and for an edge \(e \) at its one end-vertex \(v \),
\[
g_1(e) = \begin{cases}
g_2(e) & \text{if } \varepsilon_1(v, e) = \varepsilon_2(v, e), \\
q - g_2(e) & \text{if } \varepsilon_1(v, e) \neq \varepsilon_2(v, e).
\end{cases}
\]

Note that at each vertex \(v \in V \),
\[
\sum_{e \in E} \varepsilon_i(v, e) g_i(e) = 0, \quad i = 1, 2. \tag{5.5}
\]
Now consider the case of $i = 1$ in (5.5). Replace $g_1(e)$ by $g_2(e)$ if $\varepsilon_1(v, e) = \varepsilon_2(v, e)$ and by $q - g_2(e)$ if $\varepsilon_1(v, e) \neq \varepsilon_2(v, e)$; we obtain

$$
\sum_{e \in E(\varepsilon_1 = \varepsilon_2)} \varepsilon_2(v, e)g_2(e) - \sum_{e \in E(\varepsilon_1 \neq \varepsilon_2)} \varepsilon_2(v, e)(q - g_2(e))
$$

$$
= \sum_{e \in E} \varepsilon_2(v, e)g_2(e) - q \sum_{e \in E(\varepsilon_1 \neq \varepsilon_2)} \varepsilon_2(v, e) = 0.
$$

Applying (5.5) for $i = 2$, we see that (5.4) is true.

Lemma 5.4 Let $\rho, \sigma, \omega \in O_{TC}(G)$ be Eulerian equivalent orientations, and let $f \in q\Delta^\rho_{FL}(G, \varepsilon)$ be a real-valued q-flow. Then

(a) $\varepsilon_f = \rho$.

(b) $P_{\varepsilon, \sigma}Q_{\sigma, \rho}P_{\rho, \varepsilon}(q\Delta^\rho_{FL}(G, \varepsilon)) = q\Delta^\sigma_{FL}(G, \varepsilon)$.

(c) $P_{\varepsilon, \sigma}Q_{\sigma, \rho}P_{\rho, \varepsilon}f = P_{\varepsilon, \omega}Q_{\omega, \sigma}P_{\sigma, \rho}f$ if and only if $\sigma = \omega$.

(d) $F(G, \varepsilon; q) \cap \Mod^{-1}_q(\Mod_q f) = \{P_{\varepsilon, \alpha}Q_{\alpha, \rho}P_{\rho, \varepsilon}f \mid \alpha \sim \rho\}$.

Proof (a) By the definition of $\Delta^\rho_{FL}(G, \varepsilon)$ and the fact $f \in q\Delta^\rho_{FL}(G, \varepsilon)$, we have $[\rho, \varepsilon](e)f(e) > 0$ for all $e \in E$. So for each edge e at its one end-vertex v, $\rho(v, e) = \varepsilon(v, e)$ if $f(e) > 0$, and $\rho(v, e) = -\varepsilon(v, e)$ if $f(e) < 0$. By definition of ε_f, we see that $\varepsilon_f = \rho$.

(b) Recall Lemmas 4.2 and 5.1(c) that

$$
P_{\rho, \varepsilon}(q\Delta^\rho_{FL}(G, \varepsilon)) = q\Delta^\rho_{FL}(G, \rho), \quad Q_{\sigma, \rho}(q\Delta^\rho_{FL}(G, \sigma)) = q\Delta^\sigma_{FL}(G, \sigma).
$$

Since $P_{\varepsilon, \sigma}$ is an involution, then $P_{\varepsilon, \sigma}(q\Delta^\rho_{FL}(G, \sigma)) = q\Delta^\sigma_{FL}(G, \varepsilon)$. The identity follows immediately by composition.

(c) The sufficiency is trivial. For necessity, let us write $g := P_{\varepsilon, \sigma}Q_{\sigma, \rho}P_{\rho, \varepsilon}f$ and $h := P_{\varepsilon, \omega}Q_{\omega, \sigma}P_{\sigma, \rho}f$. Since $g \in q\Delta^\sigma_{FL}(G, \varepsilon)$ and $h \in q\Delta^\sigma_{FL}(G, \varepsilon)$, we have $\varepsilon_g = \sigma$ and $\varepsilon_h = \omega$. Clearly, if $g = h$, then $\sigma = \omega$.

(d) Let us write $g := P_{\varepsilon, \alpha}Q_{\alpha, \rho}P_{\rho, \varepsilon}f$ for an orientation α such that $\alpha \sim \rho$. By definition of $P_{\varepsilon, \alpha}$, $Q_{\alpha, \rho}$, $P_{\rho, \varepsilon}$, we have $g \in \Delta^\alpha_{FL}(G, \varepsilon)$ and

$$
g(e) = f(e) + a_e q, \quad e \in E,
$$

where $a_e \in \{-1, 0, 1\}$. Clearly, $g(e) \equiv f(e)(\mod q)$ for all $e \in E$; namely, $g \in \Mod^{-1}_q(\Mod_q f)$. Conversely, let $h \in F(G, \varepsilon; q)$ be such that $\Mod_q h = \Mod_q f$. We have

$$
h(e) = f(e) + b_e q, \quad e \in E,
$$

where $b_e \in \{-1, 0, 1\}$.
where $b_e \in \{-1, 0, 1\}$. By definition of ε_f and ε_h, a straightforward calculation shows that for each non-loop edge e (and its one end-vertex v),

$$h(e) = \begin{cases}
 f(e) & \text{if } h(e) > 0, f(e) > 0 \iff \varepsilon_h(v, e) = \varepsilon_f(v, e) = \varepsilon(v, e), \\
 f(e) & \text{if } h(e) \leq 0, f(e) \leq 0 \iff \varepsilon_h(v, e) = \varepsilon_f(v, e) \neq \varepsilon(v, e), \\
 f(e) - q & \text{if } h(e) \leq 0, f(e) > 0 \iff \varepsilon_h(v, e) \neq \varepsilon_f(v, e) = \varepsilon(v, e), \\
 f(e) + q & \text{if } h(e) > 0, f(e) \leq 0 \iff \varepsilon_h(v, e) \neq \varepsilon_f(v, e) \neq \varepsilon(v, e).
\end{cases}$$

By definition of $P_{\varepsilon, \varepsilon_h}, Q_{\varepsilon_h, \varepsilon_f}, P_{\varepsilon_f, \varepsilon}$, another straightforward calculation shows that for each non-loop edge e (and its one end-vertex v),

$$(P_{\varepsilon, \varepsilon_h} Q_{\varepsilon_h, \varepsilon_f} P_{\varepsilon_f, \varepsilon})(e) = \begin{cases}
 f(e) & \text{if } \varepsilon_h(v, e) = \varepsilon_f(v, e) = \varepsilon(v, e), \\
 f(e) & \text{if } \varepsilon_h(v, e) = \varepsilon_f(v, e) \neq \varepsilon(v, e), \\
 f(e) - q & \text{if } \varepsilon_h(v, e) \neq \varepsilon_f(v, e) = \varepsilon(v, e), \\
 f(e) + q & \text{if } \varepsilon_h(v, e) \neq \varepsilon_f(v, e) \neq \varepsilon(v, e).
\end{cases}$$

This means that $h = P_{\varepsilon, \varepsilon_h} Q_{\varepsilon_h, \varepsilon_f} P_{\varepsilon_f, \varepsilon}$. Since $\varepsilon_f = \rho$ by Part (a), thus $h = P_{\varepsilon, \alpha} Q_{\alpha, \rho} P_{\rho, \varepsilon}$ with $\alpha = \varepsilon_h$. \hfill \square

Proposition 5.5 The number of orientations on G that are Eulerian equivalent to ε is the number of 0-1 flows of (G, ε), i.e.,

$$\#[\varepsilon] = \bar{\varphi}_\varepsilon(G, 1) = |\tilde{\Delta}_E^+(G, \varepsilon) \cap \mathbb{Z}^E|. \quad (5.6)$$

Proof It is enough to show that the following map

$$[\varepsilon] = \{ \rho \in \mathcal{O}(G) \mid \rho \sim \varepsilon \} \to \tilde{\Delta}_E^+(G, \varepsilon) \cap \mathbb{Z}^E, \quad \rho \mapsto I_{\rho, \varepsilon},$$

is a bijection. Fix an orientation ρ that is Eulerian equivalent to ε. Note that $I_{\rho, \varepsilon}$ is the characteristic function of the edge subset $E(\rho \neq \varepsilon)$. Since $E(\rho \neq \varepsilon)$ is directed Eulerian with the orientation ε, the function $I_{\rho, \varepsilon}$ is a flow of (G, ε) with values in $\{0, 1\}$. So the map $\rho \mapsto I_{\rho, \varepsilon}$ is well-defined, and is clearly injective. Conversely, given a 0-1 flow f of (G, ε). Let ρ be an orientation on G defined by $\rho(v, e) = \varepsilon(v, e)$ if $f(e) = 0$ and $\rho(v, e) = -\varepsilon(v, e)$ if $f(e) = 1$, where v is an end-vertex of the edge e. Then $E(\rho \neq \varepsilon) = \{ e \in E(G) \mid f(e) = 1 \}$, which is directed Eulerian with the orientation ε. This means that $\rho \sim \varepsilon$ and $I_{\rho, \varepsilon} = f$. Hence the map is surjective.

Proof of Theorem 1.2 It has been shown that $\varphi(G, q)$ is a polynomial function of degree $n(G)$. Fix an orientation $\rho \in \mathcal{O}(G)$. For each orientation σ Eulerian equivalent to ρ and each $f \in q \Delta_\mathcal{TC}^+(G, \varepsilon)$, we have

$$|F(G, \varepsilon; q) \cap \text{Mod}_q^{-1}(\text{Mod}_q, f)| = \#[P_{\varepsilon, \alpha} Q_{\alpha, \rho} P_{\rho, \varepsilon} f \mid \alpha \sim \sigma] = \#[\sigma] = \#[\rho]. \quad (5.7)$$
Now apply Parts (b) and (d) of Lemma 5.4; we have the disjoint unions

\[
\bigcup_{\sigma \in [\rho]} q \Delta_{\text{FL}}^\sigma(G, \varepsilon) = \bigcup_{\sigma \in [\rho]} P_{\varepsilon, \sigma} Q_{\sigma, \rho} P_{\rho, \varepsilon} (q \Delta_{\text{FL}}^\rho(G, \varepsilon)) = \bigcup_{\sigma \in [\rho], f \in q \Delta_{\text{FL}}^\rho(G, \varepsilon)} \{ P_{\varepsilon, \sigma} Q_{\sigma, \rho} P_{\rho, \varepsilon} f \} = \bigcup_{f \in q \Delta_{\text{FL}}^\rho(G, \varepsilon)} F(G, \varepsilon; q) \cap \text{Mod}_{q}^{-1}(\text{Mod}_{q} f) = F(G, \varepsilon; q) \cap \text{Mod}_{q}^{-1}\text{Mod}_{q} (q \Delta_{\text{FL}}^\rho(G, \varepsilon)).
\]

Note that the above orientation \(\rho\) can be replaced by an arbitrary orientation \(\sigma\) that is Eulerian equivalent to \(\rho\). We further have

\[
\bigcup_{\sigma \in [\rho]} q \Delta_{\text{FL}}^\sigma(G, \varepsilon) = F(G, \varepsilon; q) \cap \text{Mod}_{q}^{-1}\text{Mod}_{q} \left(\bigcup_{\sigma \in [\rho]} q \Delta_{\text{FL}}^\sigma(G, \varepsilon) \right). \quad (5.8)
\]

On the one hand, recall \(\varphi_{\sigma}(G, q) = \varphi_{\rho}(G, q)\) whenever \(\sigma \sim \rho\) (see Lemma 5.1); then the number of lattice points in the left-hand side of (5.8) is

\[\varphi_{\rho}(G, q) \cdot \#[\rho].\]

On the other hand, (5.7) implies that the number of lattice points of the right-hand side of (5.8) is

\[\#\text{Mod}_{q} \left(\bigcup_{\sigma \in [\rho]} q \Delta_{\text{FL}}^\sigma(G, \varepsilon) \cap \mathbb{Z}^E \right) \cdot \#[\rho].\]

It then follows that

\[\#\text{Mod}_{q} \left(\bigcup_{\sigma \in [\rho]} q \Delta_{\text{FL}}^\sigma(G, \varepsilon) \cap \mathbb{Z}^E \right) = \varphi_{\rho}(G, q).\]

Note that (4.8) implies the disjoint decomposition

\[F_{m\mathbb{Z}}(G, \varepsilon; q) = \bigcup_{\rho \in [\mathcal{O}_{\text{TC}}(G) \setminus [\rho]} \bigcup_{\sigma \in [\rho]} q \Delta_{\text{FL}}^\sigma(G, \varepsilon) \cap \mathbb{Z}^E.\]
Applying the map Mod_q, we obtain the following disjoint decomposition

$$F_{nz}(G, \varepsilon; \mathbb{Z}/q\mathbb{Z}) = \text{Mod}_q(F_{nz\mathbb{Z}}(G, \varepsilon; q))$$

$$= \bigsqcup_{[\rho] \in [\mathcal{O}_{TC}(G)]} \text{Mod}_q \left(\bigsqcup_{\sigma \in [\rho]} q \Delta_{FL}^\sigma(G, \varepsilon) \cap \mathbb{Z}^E \right). \quad (5.9)$$

The first equation follows from the surjectivity of Mod_q by Lemma 5.2. To see the disjointness of the union in the second equation, suppose the union is not disjoint. This means that there exist integer flows $f_i \in q \Delta_{FL}^\sigma(G, \varepsilon)$ and orientations ρ_i such that $\sigma_i \sim \rho_i$ ($i = 1, 2$), $[\rho_1] \neq [\rho_2]$, and $\text{Mod}_q(f_1) = \text{Mod}_q(f_2)$. Then Lemma 5.4(a) implies that $\varepsilon_{f_1} = \varepsilon_{f_2}$, and Lemma 5.3 implies that $\varepsilon_{f_1} \sim \varepsilon_{f_2}$. It follows that $\rho_1 \sim \rho_2$ by the transitivity of \sim, i.e., $[\rho_1] = [\rho_2]$. This is a contradiction.

Counting the number of elements of both sides of (5.9), we obtain

$$\varphi(G, q) = \sum_{[\rho] \in [\mathcal{O}_{TC}(G)]} \varphi_\rho(G, q).$$

The Reciprocity Law (1.12) follows from the Reciprocity Law (1.7) and the definition of $\tilde{\varphi}(G, q)$.

Let $q = 0$. We have $\varphi(G, 0) = (-1)^{n(G)} \tilde{\varphi}(G, 0)$ by (1.12). Since $\tilde{\varphi}_\rho(G, 0) = 1$ for all $\rho \in \mathcal{O}_{TC}(G)$, we see that $\tilde{\varphi}(G, 0) = \#[\mathcal{O}_{TC}(G)]$ by (1.14). Hence $\varphi(G, 0) = (-1)^{n(G)} \#[\mathcal{O}_{TC}(G)]$.

Searching online we found a result on modular flow reciprocity by Breuer and Sanyal [5], which states that $(-1)^{n(G)} \varphi(G, -q)$ counts the numbers of pairs (f, σ), where f is a flow of (G, ε) modulo q and σ is a totally cyclic reorientation of the digraph $G/\text{supp } f, \varepsilon$. The result can be written as the sum

$$\varphi(G, -q) = (-1)^{n(G)} \sum_{X \subseteq E} \varphi(G|X, q) \#[\mathcal{O}_{TC}(G|X)], \quad (5.10)$$

where G/X is the graph obtained from G by contacting the edges of X. The term $\varphi(G|X, q) \#[\mathcal{O}_{TC}(G|X)]$ in (5.10) is nonzero if and only if the graphs $G|X$ and G/X are bridgeless. The formula (5.10) can be argued straightforward as follows.

Notice the trivial fact that each flow f corresponds to a nowhere-zero flow on its support $\text{supp } (f) := \{e \in E \mid f(e) \neq 0\}$. This means that

$$t^{n(G|X)} = \sum_{Y \subseteq X} \varphi(G|Y, t), \quad X \subseteq E.$$

The Möbius inversion implies

$$\varphi(G|X, t) = \sum_{Y \subseteq X} (-1)^{|X-Y|} t^{n(G|Y)}, \quad X \subseteq E.$$
In particular, for $X = E$ and $t = -q$, we have

$$
\varphi(G, -q) = \sum_{Y \subseteq E} (-1)^{|E - Y| + n(G|Y)} q^{n(G|Y)}
= \sum_{Y \subseteq E} (-1)^{|E - Y| + n(G|Y)} \sum_{X \subseteq Y} \varphi(G|X, q)
= \sum_{X \subseteq E} \varphi(G|X, q) \sum_{X \subseteq Y \subseteq E} (-1)^{|E - Y| + n(G|Y)}.
$$

Since $n(G|Y) = n(G|X) + n((G|Y)/X)$ for all edge subsets Y of G such that $X \subseteq Y$, we see that for each fixed edge subset $X \subseteq E$,

$$
\sum_{X \subseteq Y \subseteq E} (-1)^{|E - Y| + n(G|Y)} = \sum_{X \subseteq Y \subseteq E} (-1)^{|E - Y| + n(G|X) + n((G|Y)/X)}
= (-1)^{n(G|X)} \sum_{Z \subseteq E} (-1)^{|E(G/X) - Z| + n(G|Z)}
= (-1)^{n(G|X) + n(G/Z)} |\mathcal{O}_{TC}(G/X)|.
$$

The above last equality follows from the Zaslavsky formula (2.4) about the flow arrangement $\mathcal{A}_{FL}(G, \varepsilon; \mathbb{R})$, i.e.,

$$
\varphi(G, -1) = \sum_{Z \subseteq E} (-1)^{|E - Z| + n(G|Z)} = (-1)^{n(G)} |\mathcal{O}_{TC}(G)|.
$$

Now the identity (5.10) follows immediately.

6 Connection with the Tutte Polynomial

The Tutte polynomial (see [3], p.337) of a graph $G = (V, E)$ is a polynomial in two variables, which may be defined as

$$
T_G(x, y) = \sum_{X \subseteq E} (x - 1)^{r(G) - r(G|X)} (y - 1)^{n(G|X)}, \quad (6.1)
$$

where $r(G) = |V| - c(G)$, $r(G|X) = |V| - c(G|X)$, $n(G|X) = |X| - r(G|X)$. The polynomial $T_G(x, y)$ satisfies the deletion–contraction relation:

$$
T_G(x, y) = \begin{cases}
 xT_{G/e}(x, y) & \text{if } e \text{ is a bridge}, \\
 yT_{G-e}(x, y) & \text{if } e \text{ is a loop}, \\
 T_{G-e}(x, y) + T_{G/e}(x, y) & \text{otherwise}.
\end{cases}
$$

It is well-known that the flow polynomial $\varphi(G, t)$ is related to $T_G(x, y)$ by

$$
\varphi(G, t) = (-1)^{n(G)} T_G(0, 1 - t). \quad (6.2)
$$

© Springer
Thus
\[
\bar{\varphi}(G, t) = (-1)^{n(G)} \varphi(G, -t) = T_G(0, t + 1).
\]

We conclude the information as the following proposition.

Proposition 6.1 The Tutte polynomial \(T_G\) is related to \(\varphi\) and \(\bar{\varphi}\) as follows:

\[
T_G(0, t) = \bar{\varphi}(G, t - 1) = (-1)^{n(G)} \varphi(G, 1 - t).
\]

(6.3)

In particular, \(T_G(0, 1) = |\varphi(G, 0)| = \bar{\varphi}(G, 0)\) counts the number of Eulerian equivalence classes of totally cyclic orientations on \(G\).

Example 6.2 Let \(B_n(u, v)\) be a graph with two vertices \(u, v\), and \(n\) multiple edges \(e_1, \ldots, e_n\) between \(u\) and \(v\). Let \(\varepsilon\) be an orientation of \(B_n(u, v)\) such that all edges have the direction from \(u\) to \(v\). The number of integer flows \(f\) of \(B_n(u, v)\) such that \(|f| < q\) is equal to the number of integer solutions of the linear inequality system

\[
x_1 + \cdots + x_n = 0, \quad -(q - 1) \leq x_i \leq q - 1.
\]

Let \(x_i = y_i - (q - 1)\). The above system reduces to

\[
y_1 + \cdots + y_n = n(q - 1), \quad 0 \leq y_i \leq 2q - 2.
\]

(6.4)

Recall that the number of nonnegative integer solutions of \(y_1 + \cdots + y_n = r\) is

\[
\langle n \rangle := \binom{n + r - 1}{r} = \binom{n + r - 1}{n - 1}.
\]

So the number of nonnegative integer solutions of \(y_1 + \cdots + y_n = n(q - 1)\) is

\[
\binom{nq - 1}{n - 1},
\]

which includes the number of integer solutions of (6.4) and the number of nonnegative integer solutions having at least one \(y_i \geq 2q - 1\).

Let \(s_n(q)\) denote the number of integer solutions of (6.4). To figure out \(s_n(q)\), let \(Y\) be the set of nonnegative integer solutions of \(y_1 + \cdots + y_n = n(q - 1)\), \(Y_i\) the set of nonnegative integer solutions of \(y_1 + \cdots + y_n = n(q - 1)\) with the \(i\)th variable \(y_i \geq 2q - 1\), and \(Y_0\) the set of solutions of (6.4). Then \(Y_0 = Y - \bigcup_{i=1}^{n} Y_i\). Consider the case where \(j\) variables are greater than or equal to \(2q - 1\), say, \(y_{n-j+1}, \ldots, y_n\); then \(y_1 + \cdots + y_{n-j} \leq n(q - 1) - j(2q - 1)\). The number of such solutions is equal to the number of nonnegative integer solutions of the equation \(y_1 + \cdots + y_{n-j} + y' = n(q - 1) - j(2q - 1)\), which is given by

\[
\binom{n-j+1}{n(q-1) - j(2q-1)} = \binom{(n-2j)q}{n(q-1) - j(2q-1)} = \binom{(n-2j)q}{n-j}.
\]
Applying the inclusion–exclusion principle,

\[
 s_n(q) = \#(Y) + \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|} \# \left(\bigcap_{i \in I} Y_i \right)
\]

\[
 = \binom{nq - 1}{n - 1} + \sum_{j=1}^{\left\lfloor \frac{n(q-1)}{2q-1} \right\rfloor} (-1)^j \left(\binom{n - 2j}{n - j} \right).
\]

We list \(s_1, s_2, s_3, s_4\) explicitly as follows:

\[
 s_1(q) = 1, \quad s_2(q) = 2q - 1, \quad s_3(q) = 3q^2 - 3q + 1, \quad s_4(q) = \binom{4q - 1}{3} - 4 \left(\binom{2q}{3} \right) = \frac{1}{3} (2q - 1)(8q^2 - 8q + 3).
\]

Let \(s_0(q) (\equiv 1)\) denote the number of zero flows of \(B_n(u, v)\). Then \(\varphi_Z(B_4, q)\), defined as the number of nowhere-zero integer \(q\)-flows of \(B_4(u, v)\), counts the number of integer flows \(f\) such that \(0 < |f| < q\), and is given by

\[
 \varphi_Z(B_4, q) = \# \left([1 - q, q - 1]^{E(B_4)} \cap F(B_4, \varepsilon; \mathbb{Z}) - \bigcup_{e \in E(B_4)} F_e \right)
\]

\[
 = s_4(q) - 4s_3(q) + 6s_2(q) - 4s_1(q) + s_0(q)
\]

\[
 = \frac{2}{3} (q - 1)(8q^2 - 22q + 21). \quad (6.5)
\]

Likewise, the number of flows of \(B_n(u, v)\) modulo \(q\) is \(q^n - 1\), \(n \geq 1\). Thus \(\varphi(B_4, q)\), defined as the number of nowhere-zero flows of \(B_4(u, v)\) modulo \(q\), is given by

\[
 \varphi(B_4, q) = \# \left(F(B_4, \varepsilon; \mathbb{Z}/q\mathbb{Z}) - \bigcup_{e \in E(B_4)} F_e \right)
\]

\[
 = q^3 - 4q^2 + 6q - 4 + 1
\]

\[
 = (q - 1)(q^2 - 3q + 3). \quad (6.6)
\]

In particular,

\[
 |\varphi_Z(B_4, 0)| = |\varphi(B_4, -1)| = 14, \quad |\varphi(B_4, 0)| = 3.
\]

There are 14 totally cyclic orientations on \(B_4(u, v)\) by Theorem 1.1. The 14 orientations can be grouped into 3 Eulerian equivalence classes by Theorem 1.2; see Fig. 1.

Let \(\varepsilon_k\) be an orientation on \(B_n(u, v)\) such that the arrows of the edges \(e_1, \ldots, e_k\) point from \(u\) to \(v\), and the arrows of the edges \(e_{k+1}, \ldots, e_n\) point from \(v\) to \(u\). If a 0-1 flow \(f\) of \((B_n, \varepsilon_k)\) has value 1 on exact \(j\) edges of \(e_1, \ldots, e_k\), then \(f\) must have value
Fig. 1 The three Eulerian equivalence classes of $O_{TC}(B_4)$

Fig. 2 The other two Eulerian equivalence classes of orientations of B_4 with directed cut

1 on exact j edges of e_{k+1}, \ldots, e_n. Thus by Lemma 5.5, $\bar{\varphi}_{\varepsilon_k}(B_n, 1)$ is the number of 0-1 flows of (B_n, ε_k), and is given by

$$\bar{\varphi}_{\varepsilon_k}(B_n, 1) = \min(k, n-k) \sum_{j=0}^{\min(k, n-k)} \binom{k}{j} \binom{n-k}{j}.$$

For the case $n = 4$, we see that $\bar{\varphi}_{\varepsilon_0}(B_4, 1) = 1$, $\bar{\varphi}_{\varepsilon_1}(B_4, 1) = 4$, $\bar{\varphi}_{\varepsilon_2}(B_4, 1) = 6$, $\bar{\varphi}_{\varepsilon_3}(B_4, 1) = 4$, and $\bar{\varphi}_{\varepsilon_4}(B_4, 1) = 1$. According to Theorem 1.2, $\bar{\varphi}_{\varepsilon_k}(B_4, 1)$ counts the number of orientations of B_4 that are Eulerian equivalent to ε_k. Indeed, there are 4 orientations Eulerian equivalent to ε_1 and ε_3 respectively, and 6 orientations Eulerian equivalent to ε_2. These orientations are listed in Fig. 1. However, the Eulerian equivalence classes for ε_0 and ε_4 are singletons; the integral and modular flow polynomials with respect to these orientations are the zero polynomial. We list the two orientations in Fig. 2.

Remark The coefficients of the integral flow polynomial $\varphi_Z(G, t)$ are not necessarily integers as shown in Example 6.2. The combinatorial interpretation on the coefficients of $\varphi_Z(G, t)$ is particularly wanted.

Acknowledgments We thank the referees, in particular the second referee, for carefully reading the manuscript and offering several valuable comments.
References

1. Beck, M., Zaslavsky, T.: The number of nowhere-zero flows of graphs and signed graphs. J. Combin. Theory Ser. B 96, 901–918 (2006)
2. Berge, C.: Graphs and Hypergraphs. American Elsevier, New York (1973)
3. Bollobás, B.: Modern Graph Theory. Springer, Berlin (2002)
4. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)
5. Breuer, F, Sanyal, R.: Ehrhart theory, modular flow reciprocity law, and the Tutte polynomial. Math. Z. (2010). doi:10.1007/s00209-010-0782-6
6. Brylawski, T., Oxley, J.G.: The Tutte polynomial and its applications. In: Matroid Applications, Encyclopedia Math. Appl., vol. 40, pp. 123–225, Cambridge University Press, Cambridge (1992)
7. Chen, B.: On the Euler characteristics of finite unions of convex sets. Discret. Comput. Geom. 10, 79–93 (1993)
8. Chen, B.: On characteristic polynomials of subspace arrangements. J. Combin. Theory Ser. A 90, 347–352 (2000)
9. Chen, B.: Lattice points, Dedekind sums, and Ehrhart polynomials of lattice polyhedra. Discret. Comput. Geom. 28, 175–199 (2002)
10. Chen, B.: Ehrhart polynomials of lattice polyhedral functions. In: Barvinok, A., et al (eds.) Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization, Contemp. Math., vol. 374, pp. 37–63. Amer. Math. Soc., Providence, RI (2005)
11. Chen, B.: Orientations, lattice polytopes, and group arrangements I: Chromatic and tension polynomials of graphs. Ann. Comb. 12, 425–452 (2010)
12. Ehrenborg, R., Readdy, M.A.: On valuations, the characteristic polynomial, and complex subspace arrangements. Adv. Math. 134, 32–42 (1998)
13. Greene, C., Zaslavsky, T.: On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs. Trans. Amer. Math. Soc. 280, 97–126 (1983)
14. Groemer, H.: On the extension of additive functionals on the classes of convex sets. Pacif. J. Math. 75, 397–410 (1978)
15. Kochol, M.: Polynomials associated with nowhere-zero flows. J. Combin. Theory Ser. B 84, 260–269 (2002)
16. Las Vergnas, M.: Extensions normales d’un matroïde, polynôme de Tutte d’un morphisme. C. R. Acad. Sci. Paris Sr. A-B 280 (22), 1479–1482 (1975)
17. Rota, G.-C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Z. Wahrsch. Verw. Gebiete 2, 340–368 (1964)
18. Schanuel, S.: Negative sets have Euler characteristic and dimension. In: Category Theory, pp. 379–385. Lecture Notes in Math., vol. 1488. Springer, Berlin (1991)
19. Stanley, R.P.: Acyclic orientations of graphs. Discret. Math. 5, 171–178 (1973)
20. Stanley, R.P.: Enumerative Combinatorics I. Cambridge Univ. Press, Cambridge (1997)
21. Tutte, W.T.: On the embedding of linear graphs in surfaces. Proc. Lond. Math. Soc. Ser. (2) 51, 474–483 (1950)
22. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)
23. Zaslavsky, T.: Facing up to Arrangements: Face-count Formulas for Partitions of Space by Hyperplanes. Mem. Amer. Math. Soc. 1 (154) (1975)
24. Zaslavsky, T.: A combinatorial analysis of topological dissections. Adv. Math. 25, 267–285 (1977)
25. Zhang, C.-Q.: Integer Flows and Circuit Covers of Graphs. Marcel Dekker, New York (1997)