Non-Abelian Vortex in Four Dimensions as a Critical String on a Conifold

P. Koroteev, M. Shifman and A. Yung
1 Introduction

It is believed that confinement in QCD is due to formation of confining vortex strings.

Nambu, Mandelstam and 't Hooft 1970’s:
Confinement is a dual Meissner effect upon condensation of monopoles.

Monopoles condense \rightarrow electric Abrikosov-Nielsen-Olesen flux tubes are formed \rightarrow electric charges are confined
Hadron spectrum is well described by linear Regge trajectories. However in all known examples the Regge trajectories show linear behavior only at asymptotically large spins.

Examples:

- Abrikosov-Nielsen-Olesen (ANO) vortex in weakly coupled Abelian-Higgs model
- Seiberg-Witten confinement in $\mathcal{N} = 2$ super-Yang-Mills theory

Length of the rotating string:

$$ L^2 \sim \frac{J}{T} $$

Transverse size of the string is given by the inverse mass of the bulk fields forming the string:

$$ m \sim g\sqrt{T} $$
String length \gg its transverse size:

\[mL \gg 1, \quad J \gg \frac{1}{g^2} \]

We expect
In the real world Regge trajectories are linear at $J \sim 1$

Can we find any example of 4D theory where confining string remains thin at $J \sim 1$?

Thin string condition:

$$T \ll m^2$$
2 Thin string regime

How the problem of ”thick” string is seen in the world sheet effective theory?

ANO string: Nambu-Goto action

\[S_{NG} = T \int d^2 \sigma \left\{ \sqrt{h} + O \left(\frac{\partial^n}{m^n} \right) \right\} \]

where

\[h = \text{det} (\partial_{\alpha} x^\mu \partial_{\beta} x_\mu) \]

Polchinski-Strominger, 1991: Without higher derivative terms the world sheet theory is not UV complete
Higher derivative terms at weak coupling, $g \ll 1$

$$O \left(\frac{\partial^n}{m^n} \right), \quad m \sim g\sqrt{T}$$

At $J \sim 1 \quad \partial \rightarrow \sqrt{T}$

Thus higher derivative terms

$$\rightarrow \left(\frac{T}{m^2} \right)^n$$

blow up at weak coupling!

Polyakov: string surface become ”crumpled”.
We want to find a regime in which the string remains thin. This means that the higher derivative corrections should be parametrically small. The low-energy world-sheet theory should be UV complete. This leads us to the following necessary conditions to have such a regime:

(i) The low-energy world-sheet theory on the string must be conformally invariant;
(ii) It must have the critical value of the Virasoro central charge.

- Bosonic string $D=26$
 - Superstring $D=10$
- ANO string in $D=4$ is not critical
Non-Abelian vortex strings

Non-Abelian strings were suggested in $\mathcal{N} = 2$ U(N) QCD:

- Hanany, Tong 2003
- Auzzi, Bolognesi, Evslin, Konishi, Yung 2003
- Shifman Yung 2004
- Hanany Tong 2004

\mathbb{Z}_N Abelian string: Flux directed in the Cartan subalgebra, say for $SO(3) = SU(2)/\mathbb{Z}_2$

$$\text{flux} \sim \tau_3$$

Non-Abelian string: Orientational zero modes

Rotation of color flux inside SU(N).
Idea:

Non-Abelian string has more moduli than ANO string.

It has translational + orientational moduli

Shifman and Yung, 2015:

Non-Abelian vortex in $\mathcal{N} = 2$ supersymmetric QCD can behave as a critical superstring

We can fulfill the criticality condition: The solitonic non-Abelian vortex must have six orientational moduli, which, together with four translational moduli, will form a ten-dimensional space.
3 Non-Abelian vortex strings

For $U(N)$ gauge group in the bulk we have 2D $CP(N - 1)$ model on the string

$CP(N - 1) == U(1)$ gauge theory in the strong coupling limit

\[
S_{CP(N-1)} = \int d^2x \left\{ \left| \nabla_\alpha n^P \right|^2 + \frac{e^2}{2} \left(|n^P|^2 - 2\beta \right)^2 \right\},
\]

where n^P are complex fields $P = 1, ..., N$,

Condition

\[
|n^P|^2 = 2\beta = \frac{4\pi}{g^2},
\]

imposed in the limit $e^2 \to \infty$
More flavors ⇒ semilocal non-Abelian string

The orientational moduli described by a complex vector \(n^P \) (here \(P = 1, \ldots, N \)),
\[
\tilde{N} = (N_f - N) \text{ size moduli are parametrized by a complex vector } \rho^K (K = N + 1, \ldots, N_f).
\]

The effective two-dimensional theory is sigma model with the target space \(O(-1)^{\oplus (N_f - N)}_{CP^1} \) (\(N = (2, 2) \) weighted CP model)

\[
S_{WCP} = \int d^2 x \left\{ |\nabla_\alpha n^P|^2 + |\tilde{\nabla}_\alpha \rho^K|^2 + \frac{e^2}{2} (|n^P|^2 - |\rho^K|^2 - 2\beta)^2 \right\},
\]

\(P = 1, \ldots, N, \quad K = N + 1, \ldots, N_f. \)

The fields \(n^P \) and \(\rho^K \) have charges +1 and −1 with respect to the auxiliary U(1) gauge field
\[
e^2 \to \infty
\]
4 From non-Abelian vortices to critical strings

String theory

\[
S = \frac{T}{2} \int d^2 \sigma \sqrt{h} h^{\alpha \beta} \partial_\alpha x^\mu \partial_\beta x_\mu \\
+ \int d^2 \sigma \sqrt{h} \left\{ h^{\alpha \beta} \left(\tilde{\nabla}_\alpha \tilde{n}_P \nabla_\beta n^P + \nabla_\alpha \tilde{\rho}_K \tilde{\nabla}_\beta \rho^K \right) \\
+ \frac{e^2}{2} \left(|n^P|^2 - |
ho^K|^2 - 2\beta \right)^2 \right\} + \text{fermions},
\]

where \(h^{\alpha \beta} \) is the world sheet metric. It is independent variable in the Polyakov formulation.
What about necessary conditions for thin string?

- **Conformal invariance**

\[b_{WCP} = N - \tilde{N} = 0 \Rightarrow N = \tilde{N}, \quad N_f = 2N \]

- **Critical dimension = 10**

Number of orientational + size degrees of freedom

\[= 2(N + \tilde{N} - 1) = 2(2N - 1) \]

\[4 + 2(2N - 1) = 4 + 6 = 10, \quad \text{for } N = 2 \]

Our string is BPS so we have \(\mathcal{N} = (2, 2) \) supersymmetry on the world sheet.

For these values of \(N \) and \(\tilde{N} \) the target space of the weighted \(CP(2, 2) \) model is a non-compact Calabi-Yau manifold studied by Witten and Vafa, namely conifold.
Given that for non-Abelian vortex low energy world sheet theory is critical

Conjecture:

Thin string regime

\[T \ll m^2 \]

is actually satisfied at strong coupling \(g_c^2 \sim 1 \).

\[m(g) \to \infty, \quad g^2 \to g_c^2 \]

Higher derivative corrections can be ignored
Strings in the $U(N)$ theories are stable; they cannot be broken. Thus, we deal with the closed string.

For closed string moving on Calabi-Yau manifold $\mathcal{N} = (2, 2)$ world sheet supersymmetry ensures $\mathcal{N} = 2$ supersymmetry in 4D.

This is expected since we started with 4D QCD with $\mathcal{N} = 2$ supersymmetry.

Type IIB string is a chiral theory and breaks parity while Type IIA string theory is left-right symmetric and conserves parity.

Our bulk theory conserves parity \Rightarrow we have Type IIA superstring
There is self-duality in 4D bulk theory

\[\tau \to \tau_D = -\frac{1}{\tau}, \quad \tau = \frac{4\pi i}{g^2} + \frac{\theta_{4D}}{2\pi}, \]

We conjectured that the string becomes thin at \(g^2 \to g_c^2 \sim 1 \).

It is natural to expect that \(g_c^2 = 4\pi = \text{self-dual point} \).

\[m^2 \to T \times \begin{cases}
 g^2, & g^2 \ll 1 \\
 \infty, & g^2 \to 4\pi \\
 16\pi^2/g^2, & g^2 \gg 1
\end{cases} \]

In 2D theory on the string self-dual point is \(\beta = 0 \)

Conifold develops conical singularity.
5 4D Graviton

Our goal:

Study massless states of closed string propagating on

\[R_4 \times Y_6, \quad Y_6 = \text{conifold} \]

and interpret them as hadrons in 4D \(\mathcal{N} = 2 \) QCD.

Massless 10D graviton

\[
\delta G_{\mu\nu} = \delta g_{\mu\nu}(x) g_6(y), \quad \delta G_{\mu i} = B_\mu(x) g_i(y), \quad \delta G_{ij} = g_4(x) \delta g_{ij}(y)
\]

Lichnerowicz equation

\[
(\partial_\mu \partial^\mu + \Delta_6) g_4(x) g_6(y) = 0
\]
Expand $g_6(y)$ in eigenfunctions

$$-\Delta_6 g_6(y) = \lambda_6 g_6(y), \quad \lambda_6 = \text{mass}$$

Consider massless states $\lambda_6 = 0$

$$-\Delta_6 g_6(y) = 0.$$

Solutions of this equation for Calabi-Yau manifolds are given by elements of Dolbeault cohomology $H^{(p,q)}(Y_6)$, where (p, q) denotes numbers of holomorphic and anti-holomorphic indices in the form. The dimensions of these spaces $h^{(p,q)}$ are called Hodge numbers for a given Y_6.
For 4D graviton $g_6(y)$ is scalar

$$-D_i \partial^i g_6 = 0$$

The only solution is

$$g_6(y) = \text{const}$$

Non-normalizable on non-compact conifold Y_6.

No 4D graviton == good news!

We do not have gravity in our 4D $\mathcal{N} = 2$ QCD
6 Kahler form deformations

Consider 4D scalar fields

Lichnerowicz equation on Y_6

$$D_k D^i \delta g_{ij} + 2 R_{ikjl} \delta g^{kl} = 0.$$

Solutions = Kahler form deformations or complex structure deformations.

Kahler form deformations = variations of 2D coupling β

D-term condition in weighted CP(2,2) model

$$|n_P|^2 - |\rho^K|^2 = \beta, \quad P = 1, 2, \quad K = 1, 2$$

Resolved conifold
The effective action for $\beta(x)$ is

$$S(\beta) = T \int d^4x \, h_\beta (\partial_\mu \beta)^2,$$

where

$$h_\beta = \int d^6y \sqrt{g} g^{li} \left(\frac{\partial}{\partial \beta} g_{ij} \right) g^{jk} \left(\frac{\partial}{\partial \beta} g_{kl} \right)$$

Using explicit Calabi-Yau metric on resolved conifold we get

$$h_\beta = (4\pi)^3 \frac{5}{6} \int dr \, r = \infty$$

β - non-normalizable mode
Physical nature of non-normalizable modes

Gukov, Vafa, Witten 1999: Non-normalizable moduli = coupling constants in 4D

- 4D metric do not fluctuate. It is fixed to be flat. ”Coupling constants.”

- 2D coupling β is related to 4D coupling g^2. Fixed. Non-dynamical.

Another option:

Large $y_i \Rightarrow$ large n^P and ρ^K

Non-normalizable modes are not localized on the string.

Unstable states. Decay into massless perturbative states.

Higgs branch: $\dim \mathcal{H} = 4N\tilde{N} = 16$.
7 Deformation of the complex structure

D-term condition

$$|n^P|^2 - |
ho^K|^2 = \beta, \quad P = 1, 2, \quad K = 1, 2$$

Construct U(1) gauge invariant "mesonic" variables"

$$w^{PK} = n^P \rho^K.$$

$$\det w^{PK} = 0$$

Take $\beta = 0$

Complex structure deformation \Rightarrow Deformed conifold

$$\det w^{PK} = b$$
\(b \) – complex modulos

The effective action for \(b(x) \) is

\[
S(\beta) = T \int d^4 x \ h_b (\partial_\mu b)^2 ,
\]

where

\[
h_b = \int d^6 y \sqrt{g} g^{li} \left(\frac{\partial}{\partial b} g_{ij} \right) g^{jk} \left(\frac{\partial}{\partial \bar{b}} g_{kl} \right)
\]

Using explicit Calabi-Yau metric on deformed conifold we get

\[
h_b = (4\pi)^3 \frac{4}{3} \log \frac{T^2 L^4}{|b|}
\]

For Type IIA string \(b \) is a part of hypermultiplet. Another complex scalar \(\tilde{b} \) comes from 10D 3-form.

\[
S(b) = T \int d^4 x \left\{ |\partial_\mu b|^2 + |\partial_\mu \tilde{b}|^2 \right\} \log \frac{T^4 L^8}{|b|^2 + |\tilde{b}|^2}
\]
8 Monopole-monopole baryon

Weak coupling

Strings in the $U(N)$ theories are stable; they cannot be broken. Thus, we deal with the closed string.

Quarks are condensed in the bulk theory. Therefore, monopoles are confined.

In $U(N)$ gauge theories the confined monopoles are junctions of two non-Abelian vortex strings.

Monopole-antimonopole meson Monopole-monopole baryon

Stringy states are massive, with mass $\sim \sqrt{T}$.
Strong coupling

Global group of the 4D QCD:

\[SU(2) \times SU(2) \times U(1) \]

U(1) - ”baryonic” symmetry.

\(b\)-hypermultiplet: (1, 1, 2)

Logarithmically divergent norm == Marginal stability at \(\beta = 0\)

\(b\)-state can decay into massless bi-fundamental (screened) quarks living on the Higgs branch.
9 Conclusions

• In $\mathcal{N} = 2$ supersymmetric QCD with gauge group U(2) and $N_f = 4$ quark flavors non-Abelian BPS vortex behaves as a critical fundamental superstring.

• Massless closed string state b associated with deformations of the complex structure of the conifold \Rightarrow monopole-monopole baryon.

• Successful tests of our gauge-string duality:
 • $\mathcal{N} = 2$ supersymmetry in 4D QCD
 • Absence of graviton and unwanted vector fields.
 • Massless monopole-monopole baryon is present only at $\beta = 0$ and cannot be continued to weak coupling.