Abstract

Mycobacterium tuberculosis has the ability to survive for extended periods of time under conditions of low oxygen, low pH, low iron and low nutrients. The mycobactins (*M. tuberculosis* siderophores) play a key role in scavenging iron from the environment and are induced in response to low iron in an IdeR-regulated manner. We demonstrate that the promoters of two myobactin gene (*mbt*) operons are also expressed during adaptation to low oxygen, and that this expression is dependent on the DosR regulator. Up-regulation of *mbt* operons induced by low iron was not DosR-dependent. DosR is a member of a two component regulatory system which responds to oxygen availability. Deletion of the DosR regulator led to increased expression of bacterioferritin and increased capacity to grow under iron depletion. These data provide a link between the mycobacterial response to two conditions likely to be encountered in vivo, low iron and low oxygen.

Introduction

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a disease which kills over one million people a year [1]. A major concern is the ability of *M. tuberculosis* to persist as a latent infection without causing symptoms for decades, facilitating dissemination to distant locations and new hosts [2]. Understanding the mechanisms *M. tuberculosis* utilises to persist within the host are critical for determining new strategies to combat this highly successful pathogen.

Granulomas are the hallmark of TB, and are formed by infected and activated macrophages and other key host immune components, which results in isolating infected human cells and minimizing bacterial replication [3–6]. Within this highly organized environment bacterial growth is limited through deprivation of oxygen and nutrients, acidification and production of host factors such as nitric oxide [7,8]. *In vitro* models of hypoxia have demonstrated that bacterial replication decreases and the bacilli enter a relatively quiescent and antibiotic-tolerant state where they can remain viable for years [9,10]. The DosR-DosS/DosT two component regulatory system plays a pivotal role in mediating the adaptive response to hypoxia [11–15], regulating numerous genes [14,16–18].

The uptake of iron is tightly controlled in prokaryotes, as failure to regulate intracellular iron would be lethal due to the ability of ferric iron to catalyse the production of oxygen radicals [19]. Iron is an essential element for growth and *M. tuberculosis* produces high-affinity iron siderophores (mycobactins) to sequester iron from the environment [20,21]. Mycobactins are produced in response to iron limitation [22]; the mycobactin synthetic operon comprises 10 genes (*mbtA* to *mbtI*), whose expression is up-regulated and induced in response to low iron in *M. tuberculosis*, as well as in activated macrophages [23]. Mycobactins are essential for virulence and survival, since disruption of their synthesis leads to impaired growth in macrophages or low iron medium [24,25].

In *M. tuberculosis*, the key regulator of iron-dependent genes is IdeR, a member of the diphtheria toxin repressor (DtxR) family. IdeR is essential for *M. tuberculosis* survival in macrophages [22]. IdeR controls both the uptake of iron, by up-regulating *mbt* expression, and the intracellular storage of iron, by controlling expression of the bacterioferritin BfrA [21,26,27].

The mycobactin synthetic gene cluster is comprised of ten genes (*mbtA*-f putatively arranged as three transcriptional units. *MbtB*-H are divergently transcribed from *mbtAf*, whereas *mbtI* is independently transcribed convergently with *mbtAf*. The promoters upstream of *mbtB* and *mbtI* have been mapped by primer extension and functional IdeR boxes (to which IdeR binds) are located within each of these promoters [21]. No IdeR boxes or promoter motifs are found within the proposed operons, suggesting strongly that these are true transcriptional units.

We previously demonstrated that *Pmbt* was active during hypoxic culture in *M. tuberculosis* [28], with high activity during adaptation to hypoxia (non-replicating phase stage 1; NRP1), but with activity decreasing over time as cells entered into non-replicating phase stage 2 (NRP2) [29]. Since MbtI is also involved in mycobactin synthesis, we wanted to see if it was under the same
regulatory control as the mbtB operon. Our previous work had suggested that Pmbt was induced two-fold by addition of tryptophan to the medium [30], but we had no data for hypoxia.

We were interested in the regulation of mbtB and mbtI promoters in M. tuberculosis in response to limited iron and to hypoxia. In this study we confirmed that up-regulation of activity is seen in response to iron limitation, and demonstrated that both promoters are active during adaptation to hypoxia. Surprisingly, the activity of both promoters was dependent on DosR under hypoxic conditions, but not under iron-limiting conditions, suggesting that dual regulation occurs. A DosR deletion mutant showed an increased ability to replicate under iron-limiting conditions and higher expression levels of bacterioferritin, suggesting that the intracellular iron storage levels are increased. These data suggest a link between two conditions, low oxygen and low iron, that are present in vivo.

Materials and Methods

Bacterial strains and culture conditions

M. tuberculosis H37Rv (ATCC 25618) was grown in Middlebrook 7H9 medium plus 10% AD (5% w/v bovine serum albumin, 2% w/v glucose) and 0.05% w/v Tween 80, (7H9-AD-Tw) or on Middlebrook 7H10 agar (Becton Dickinson) plus 10% v/v OADC (oleic acid, albumin, dextrose, catalase) supplement (Becton Dickinson). Aerobic growth was measured in 3 mL 7H9-AD-Tw in 16×125 mm glass culture tubes with 8 mm magnetic stirrer bars stirring at 150 rpm. Low iron medium (MMT) was prepared containing 6 g L⁻¹ NaH₂PO₄, 3 g L⁻¹ KH₂PO₄, 0.5 g L⁻¹ NaCl, 1 g L⁻¹ NH₄Cl and 0.0147 g L⁻¹ CaCl₂ supplemented with 0.05% w/v Tween 80 and 2% v/v glycerol and treated overnight with 5 g L⁻¹ Chelex 100 (Sigma-Alrich), 2 mM MgSO₄ was added and the medium was filter-sterilised [21]. Medium for the Wayne model (DTA) was Dubos Broth Base (Becton Dickinson) supplemented with 10% v/v Dubos Medium Albumin (Becton Dickinson). Streptomycin was used at 40 μg mL⁻¹ as required. The DosRA and DosRA complemented strains are described in [13].

Promoter activity assays

The *M. tuberculosis* Pmbt-lacZ construct contained the 0.2 kb upstream region of mbtB gene in the pSM128 vector upstream of the lacZ reporter [28,31]. The Pmbt-lacZ construct contained 0.8 kb upstream of mbtI (bfpE2) gene in pSM128 [30]. *M. tuberculosis* was electroporated with 1 μg plasmid DNA [32] and transformants selected on plates containing streptomycin. Cell-free extracts and β-galactosidase assays were carried out as described [33].

Iron depletion

M. tuberculosis cultures were grown to an OD₅₆₀ of ~1.0 in 100 mL MMT. To achieve iron starvation bacteria were harvested, washed in MMT, and sub-cultured into 100 mL MMT to an OD₅₆₀ of 0.05 (10⁶ CFU/mL). Cells were grown to late log phase (OD₅₆₀ 0.4–1.0) and sub-cultured to an OD₅₆₀ of 0.05 for a minimum of two passages [21].

Hypoxic cultures

M. tuberculosis strains were grown in oxygen-depleting conditions using the Wayne model of hypoxia [34]. Briefly, *M. tuberculosis* was grown in DTA to an OD₅₆₀ of 0.4 and used to inoculate 17 mL of DTA in 20×125 mm glass culture tubes containing 8 mm magnetic stirrer bars to a theoretical OD₅₆₀ of 0.004. Cultures were incubated at 37°C with stirring at 120 rpm. Methylene blue (0.1% w/v) was added to one culture tube per strain as an indicator of oxygen depletion.

Quantitative RT-PCR

RNA was extracted from *M. tuberculosis* [35] WT, DosRA and DosR C’, and cDNA synthesised using random primers. Expression levels of bfrA and bfrB were determined using a TaqMan quantitative PCR assay. 7500 System SDS Software was used for the data analysis. The following primer/probe combinations were used. BfrA: primer pair bfrAF 5’ GTT GCT GGA TGG TTT GOC GAA CT 3’ and bfrAR 5’ TCT GGC GAT CGA ATA CGA CGT GTF and probe A 5’ TCG GCC AGA CGC TCC GCC GGA A 3’. BfrB: primer pair bfrBF 5’ TGT CGA AAT TCC CGG CGT AGA CA 3’ and bfrBR 5’ AGG AAC GCA CAG TCA CGG ACC A 3’ and probe B 5’ GCC CCCAG GAC CAC TGG CGC GC T. SigA: primer pair sigAF 5’ AAG CGG GGA GCC AAG AG 3’ and sigAR 5’ TCG AGT CGG TGA CCT CCA 3’ and probe S 5’ TTG GCC GCC GGC CGC TTG GCC T. Standard curves using genomic DNA were generated and used to calculate copy numbers. Relative gene expression for bfrA and bfrB was normalised to sigA copy number and assayed in biological triplicate for each strain.

Results and Discussion

PmbtB and PmbtI are expressed during adaptation to hypoxia

We determined if Pmbt activity was dependent on oxygen status using the Wayne model of hypoxia. We compared promoter activity from both PmbtB and PmbtI using the same LacZ reporter gene to allow for a direct comparison of promoter strength. Our previous work suggested that LacZ was not a sensitive reporter for the early stages of hypoxia when cell numbers were limited, so we focused on measuring promoter activity after 7 days, after which time sufficient cells were present for the assay. We assayed activity over 42 days (14 days longer than previously assessed for Pmbt [28]).

Both promoters were active during NRP1 (~7 days), with decreasing activity over time as strains entered NRP2 (~14 days) (Figure 1). As previously noted PmbtB was highly active during NRP1 (>400 Miller units) (MU), which was reduced approximately four-fold as cells entered NRP2, although the promoter was still active during this latter phase. Pmbt had a similar pattern of activity although the level of expression was about two-fold lower than PmbtB. The basal level of expression in late log phase in DTA was 259±7 for PmbtB and 210±3 for Pmbt (2 independent transformants), confirming that expression during adaptation was maintained and even transiently induced for Pmbt. These data suggest a transient requirement for mycobactin synthesis during the adaptation phase with down-regulation to a basal level not being complete until 28 days. No appreciable loss of cell viability was seen during the first 28 days (as measured by CFU – data not shown).

PmbtB and PmbtI activity during hypoxia are DosR-dependent

The DosRST regulatory system controls the expression of many genes in response to hypoxia, and in particular the expression of genes during adaptation to hypoxia [7]. Since both mycobactin promoters were highly active during NRP1, we determined whether their activity was DosR-dependent. We used a deletion strain of DosR previously constructed, as well as a complemented strain – the deletion was an in-frame, unmarked deletion in DosR.
Interestingly, expression of both promoters was reduced in the DosRΔ strain; both promoters retained activity, but were expressed at a basal level (100 MU) (Figure 2). Complementation restored activity and the expression pattern to wild-type levels confirming that promoter activity is DosR-dependent (Figure 2).

Up-regulation of \(P_{\text{mbtB}} \) and \(P_{\text{mbtI}} \) in response to iron limitation is not DosR-dependent

Since we had seen unusual regulation in response to hypoxia, we wanted to confirm that our promoter constructs showed iron-dependent expression. We measured promoter activity during iron depletion over five passages (115 days) in iron-free medium (Figure 3). Promoter activity was measured before each passage when cells were harvested for extracts and sub-cultured at the same time. Both promoters were induced in response to iron limitation after two passages (Figure 3) and activity remained at the induced level during subsequent passaging in iron-free medium. Activity in aerobic culture (7H9 medium) was 218±10 for \(P_{\text{mbtB}} \) and 402±15 for \(P_{\text{mbtI}} \) (two independent transformants); by passage 1, promoter activity was already being induced for \(P_{\text{s}} \) (708 Miller units) with maximal induction of 26-fold for \(P_{\text{mbtB}} \) and 3.3-fold for \(P_{\text{mbtI}} \). Once again, \(P_{\text{mbtB}} \) had much higher activity than \(P_{\text{mbtI}} \) although they showed similar trends of induction. In comparison to hypoxia, the induced levels were much higher - 6000 MU for \(P_{\text{mbtB}} \) and 1550 MU for \(P_{\text{mbtI}} \) as compared to the maximal levels under hypoxia of 415 and 230 MU respectively (in DTA medium).

We determined whether any aspect of iron regulation for \(P_{\text{mbtB}} \) or \(P_{\text{mbtI}} \) was dependent on DosR. We measured promoter activity in the DosRΔ and DosR CΔ strains under iron limitation (Figure 4). In both strains, significant increases in promoter activity were seen after the second passage (day 49) which were comparable to the levels seen in the wild-type. The maximal level of \(P_{\text{mbtB}} \) in the DosRΔ strain did not reach as high as the wild-type, but since the peak level is transient, we considered this was not a true difference and could result from a slightly earlier or later peak expression (since activity could only be assayed at the point of passage). For \(P_{\text{mbtI}} \), induction was seen in both strains after two passages to a similar extent and with the same pattern as the wild-type strain. These data confirmed that DosR was not required for iron-dependent expression of either promoter.

DosR deletion leads to increased growth during iron depletion

Although DosR status did not affect iron-dependent expression of mycobactin genes, we were interested to see if it had any effect on growth during iron limitation. Earlier studies suggested differences in growth of \(M. tuberculosis \) mutants under different conditions, such as low iron and pH [36,37].

We passaged the DosRΔ strain in low iron medium and measured growth rate over several passages (Figure 5). The wild-type and complemented strains showed a decrease in growth rate during passaging, taking longer to reach the same OD with each passage. This reduction in growth rate was less marked in the DosRΔ strain, which grew significantly faster than the wild-type after extended iron depletion. Cultures were grown under highly aerated conditions (in roller bottles) and passaged before reaching stationary phase; no difference was seen in the growth rate.
between early and late log phase, making it unlikely that oxygen limitation was a factor.

Bacterioferritin expression is elevated in the DosRD strain

One possibility for this increased capacity to withstand iron depletion of the DosRD strain is that intracellular iron storage levels are higher, such that internal iron depletion takes longer (more cell divisions can occur before iron is limiting). \textit{M. tuberculosis} has two bacterioferritins (BrfA and BrfB), which play an important role in iron storage and homeostasis \cite{26}. We measured the expression levels of \textit{bfrA} and \textit{bfrB} in WT, DosRD and DosRC \textit{M. tuberculosis} grown under iron-replete conditions (Table 1). We selected this condition as being representative of the initial inoculum for the iron depletion experiment, if cells had higher levels of iron at the beginning, they might be expected to sustain growth for longer. We saw similarly low expression levels of \textit{bfrA} in all three strains. However, the level of \textit{bfrB} expression differed, with the expression levels in DosRD being significantly higher than in the WT and complemented strains. This suggests a greater capacity for iron storage in the DosRD strain, as compared to the WT strain (Table 1).

\textbf{Conclusions}

IdeR is the major regulator of iron-dependent gene expression and controls the expression of the \textit{mbt} operons in response to iron availability. We have demonstrated a second level of regulation mediated by DosR in response to oxygen availability. It is not clear whether this is mediated directly by DosR as transcriptional regulator, although there are no “Dos” motifs located upstream of the \textit{mbt} promoters, so it seems unlikely that DosR would regulate at this level. Analysis of the regulatory networks of \textit{M. tuberculosis} using TB Database \cite{38} reveals a possible connection between DosR and IdeR, but only at the fourth level. However, there is a direct link between DosR and Rv2034, a member of the IdeR regulon. Future work could help to elucidate the regulatory mechanism involved.

An alternative hypothesis is that the internal levels of iron differ between WT and DosRA \textit{M. tuberculosis}. The higher level of activity of both promoters in the deletion strain suggests that there may be higher levels of mycobactin, and by extension more acquisition of iron from the environment. The high level of \textit{bfrB} in DosRD, suggests a greater potential for storing iron and could explain the increased survival and growth in iron-depleted medium. This ability may also partly explain the increased virulence of DosRD \cite{13}, as the mutated strain might better survive \textit{in vivo} with a larger iron reservoir.
Table 1. Expression of bfrA and bfrB in M. tuberculosis strains.

Strain	bfrA	bfrB
WT	2.1+/−0.5	6.2+/−1.6
DosR	2.9+/−0.2	35.4+/−9.5
C’ DosR	3.0+/−0.3	18.7+/−3.9

RNA was isolated from M. tuberculosis strains grown under aerobic, iron-replete conditions. Levels of bfrA and bfrB expression were measured using quantitative PCR and normalised to to SigA expression. Data are the mean and standard deviation (SD) from three independent transformations.

doi:10.1371/journal.pone.0107283.t001

Author Contributions
Conceived and designed the experiments: LJS TP. Performed the experiments: LJS. Analyzed the data: LJS TP. Contributed reagents/materials/analysis tools: LJS TP. Contributed to the writing of the manuscript: LJS TP.

Acknowledgments
We thank Yoann Persone, Amanda Brown, Paul Carroll and Julian Muwanguzi for technical assistance and helpful discussion.

References
1. WHO (2013) Global tuberculosis report 2013. Geneva: World Health Organization. Available: WHO/HTM/TB/2013.15 http://www.who.int/tb/publications/global_report/en/. Accessed 2014 Aug 21.

2. Zumla A, Ravignione M, Halter R, von Reyn CF (2013) Tuberculosis. N Engl J Med 368: 745–755.

3. Saunders BM, Frank AA, Orme IM (1999) Granuloma formation is required to contain bacillus growth and delay mortality in mice chronically infected with Mycobacterium tuberculosis. Immunology 98: 324–328.

4. Lugo-Villarino G, Hudtriner D, Benard A, Neyrolles O (2013) Emerging trends in the formation and function of tuberculosis granulomas. Front Immunol 3: 405.

5. Russell DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5: 39–47.

6. Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12: 352–366.

7. Rustad TR, Harrell MI, Liao R, Sherman DR (2008) The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3: e1502.

8. Chim N, Johnson PM, Goulding CW (2013) Insights into redox sensing metalloproteins in Mycobacterium tuberculosis. J Inorg Biochem.

9. Wayne LG, Sohasky CD (2001) Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55: 139–163.

10. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64: 2062–2069.

11. Boon C, Dick T (2002) Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184: 6760–6767.

12. Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR (2004) Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279: 23082–23087.

13. Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, et al. (2004) Two-component regulatory systems increase the virulence of Mycobacterium tuberculosis. Infect Immun 72: 1134–1140.

14. Fang X, Wallepyt A, Reifman J (2012) Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia. PLoS Comput Biol 8: e1002688.

15. Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, et al. (2005) Rs/3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48: 843–853.

16. Dhingra S, Kaur K, Tanuja NK, Tyagi JS (2012) DevR/DosR binding peptide inhibits adaptation of Mycobacterium tuberculosis under hypoxia. FEBS Lett 580: 330–336.

17. Trauner A, Lougheed KE, Bennett MH, Hingley-Wilson SM, Williams HD (2012) The dormancy regulator DosR controls ribosome stability in hypoxic mycobacteria. J Biol Chem 287: 24053–24060.

18. Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, et al. (2013) The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499: 178–185.

19. Haimke K (2003) Iron and metal regulation in bacteria. Curr Opin Microbiol 6: 172–177.

20. Ghosh S, Prasad KV, Vishvshwara S, Chandra N (2011) Rule-based modelling of iron homeostasis in tuberculosis. Mol BioSyst 7: 2730–2768.

21. Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I (2001) The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls expression of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42: 851–867.

22. Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70: 3371–3381.

23. Schnappinger D, Ehr T, Voskuil MI, Liu Y, Mangan JA, et al. (2003) Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 198: 693–704.

24. Reddy PV, Puri RV, Chauhan P, Kar R, Rohilla A, et al. (2013) Disruption of myobactin biosynthesis leads to attenuation of Mycobacterium tuberculosis for growth and virulence. J Infect Dis 208: 1255–1265.

25. De Vos JJ, Rutter K, Schroeder BG, Su H, Zhi Y, et al. (2000) The salicylate- derived myobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97: 1252–1257.

26. Pandey R, Rodriguez GM (2012) A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infect Immun 80: 3650–3659.

27. Reddy PV, Puri RV, Kherra A, Tyagi AK (2012) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 194: 567–575.

28. Carroll P, Schreuder IJ, Muwanguzi-Karugaba J, Wiles S, Robertson BD, et al. (2010) Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 5: e9823.

29. Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T (2004) Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. Microbiology (Edimh) 150: 239–246.

30. Parish T (2005) Starvation survival response of Mycobacterium tuberculosis. J Bacteriol 187: 6792–6706.

31. Dussurget O, Tsim J, Gomez M, Gold B, Yu S, et al. (1999) Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181: 3492–3501.

32. Parish T, Stoker NG (1998) Electroporation of mycobacteria. Methods Mol Biol 101: 129–144.

33. Carroll P, James J (2009) Assaying promoter activity using LacZ and GFP as reporters; Parish T, Brown AC, editors: Humana Press.

34. Wayne LG, Marras SA, Pentecost M, Smith I (2001) The mycobacterial RNA. Methods Mol Biol 465: 13–21.

35. Rustad TR, Roberts DM, Liao RP, Sherman DR (2009) Isolation of sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 5: e9823.

36. De Vos JJ, Rutter K, Schroeder BG, Su H, Zhi Y, et al. (2000) The salicylate- derived myobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97: 1252–1257.

37. Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98: 4026–4031.

38. TB Database tbdb.org. Accessed 2014 Aug 21.

39. TB Database tbdb.org. Accessed 2014 Aug 21.

40. TB Database tbdb.org. Accessed 2014 Aug 21.

41. TB Database tbdb.org. Accessed 2014 Aug 21.

42. TB Database tbdb.org. Accessed 2014 Aug 21.

43. TB Database tbdb.org. Accessed 2014 Aug 21.

44. TB Database tbdb.org. Accessed 2014 Aug 21.