An Expression Profile of Active Genes in Human Colonic Mucosa

Kousaku Okubo,1* Junji Yoshii,1,2 Hideoki Yokouchi,3 Masao Kameyama,3 and Kenichi Matusbara1

Institute for Molecular and Cellular Biology, Osaka University 1-3, Yamada-oka, Suita, Osaka 565, Japan, 1
Hitachi Software Engineering, Co., Ltd. 6-81, Onoe-chou, Naka-ku, Yokohama 231, Japan, 2 and
Department of Surgery, Center for Adult Diseases Osaka 1-3-3, Nakamachi, Higashinari, Osaka 537, Japan3

(Received 2 December 1993)

Abstract

An expression profile of genes active in the human colonic mucosa was obtained by collecting 959 partial sequences from a 3'-directed cDNA library. Seven genes were found to produce mRNA each of which comprised more than 1% of total mRNA. Four of these genes are novel, and are likely to be uniquely expressed in the colonic mucosa, and the other three have been identified as genes for fatty acid binding protein, immunoglobulin lambda chain, and carcinoma-associated antigen GA733-2. In the remaining 952 clones, 310 were composed of 118 species occurred recurrently but less than 1%, and 533 clones appeared only once. Because the 3'-directed cDNA library faithfully represents the mRNA population in the source tissue, these numbers represent the relative activities of the gene expression.

Altogether 156 gene species were identified in GenBank, and a significant portion of these genes encode proteins found in Golgi apparatus and lysosomes, chromosome-encoded mitochondrial proteins, cell surface proteins, and components in the protein synthesis machinery. The types and proportions of genes identified is consistent with the known major activities of the colonic mucosa such as mucous protein production, energy-dependent water absorption, and rapid cell proliferation and turnover.

Key words: cDNA sequencing; 3'-directed cDNA library; gene signatures; novel genes; tissue specificity

1. Introduction

Gene expression profiles are a compilation of the names of all active genes in any given cell type or tissue and the relative amounts of the gene transcripts in the total mRNA. We have already begun collecting expression profiles of active genes with as many human cells or tissues as are available with the aim of constructing a body map in which we map genes to the site(s) of the body where they are active. This approach is intended to complement the structural analyses of the human genome.

The expression profile of the active genes is determined by sequencing randomly selected clones in a 3'-directed cDNA library which is free from the potential bias associated with cloning efficiencies, normalization or size fractionation. The resulting short sequences just upstream of the poly(A) tail are termed gene signatures (GSs), and are queried to the GenBank and compared within the library to identify the gene and to measure the recurrence, or abundance, of the cDNA.

In previous works, we prepared expression profiles of active genes with a cultured liver cell line (HepG2),1 a promyelocyte cell line (HL60), and the granulocytoid and monocytoid cells [manuscript in preparation] induced from the HL60. Here, we report the expression profile of the human colonic mucosa. The major functions of the colonic mucosa are to absorb large amounts of water and secrete large amounts of mucous substances. Due to the harsh conditions in the digestive gut, the cells survive only a limited period of time and undergo rapid turnover. The colonic mucosa consists mostly of goblet cells and absorptive cells. In addition, lymphoid cells and nodules with a large number of B cells are located in the loose connective tissue beneath the epithelium (lamina propria).

2. Materials and Methods

2.1. Colonic Mucosa

Mucosal tissue was peeled off from the marginal area of resected sigmoid colon of a 71-year-old male patient with primary colon cancer. This area was histologically proven to be negative for cancer invasion.

2.2. Construction of the 3'-Directed cDNA Library

Poly(A) RNA isolated from colonic mucosa (0.5 g) using the QuickPrep mRNA purification kit (Pharmacia
Uppsala, Sweden) was used for construction of the 3’-directed cDNA library in which the 3’ end fragment of MboI digested cDNAs were cloned in a PUC19-based vector primer.2

3. Sequencing and Data Analyses

A small portion of the ligation mixture was transformed into Escherichia coli DH5, and fresh transformant colonies were randomly selected, lysed and the cDNA insert moieties were amplified by polymerase chain reaction (PCR). The products were subjected to cycle sequencing using dye-labeled primers and analysed on Applied Biosystems Sequencers (Mountain View, CA, USA).3 From the sequence data, we eliminated clones with inserts shorter than 20 bp, clones having more than 5% ambiguous nucleotides, clones having mitochondrial DNA sequences, clones having Alu sequences immediately upstream of the poly(A) stretch. Sequences thus selected were then compared with each other to obtain the frequency of appearance in the library and then sent to GenBank (Re78) for gene identification using the FastA program.7 The 455 GSs newly registered in this work have been deposited in the DDBJ with locus names corresponding to gs numbers, such as HUMGS02546 for gsO2546, and with accession numbers D25548 through D26002.

4. Results and Discussion

mRNA isolated from the human colonic mucosa was used as a template for cDNA synthesis by vector-priming. The cDNA moiety was selectively cleaved by MboI, and a 3’-directed cDNA library was constructed and transformed into Escherichia coli. Although the average size of the inserts was about 250~270 bp, and a significant fraction of the clones lacked amino acid coding information, this type of library is unique in that its composition faithfully represents the mRNA population, and the short sequence data that represents the region immediately upstream of the poly(A) region can serve as a sequence tag for gene identification and to determine the abundance of gene transcripts in the mRNA population. We call these short sequences “gene signatures (GSs)”4 These GSs are different from the so-called expression sequence tags (ESTs) reported by Adams et al.5 that were obtained with a randomly primed cDNA library. With the randomly primed, non-directed cDNA library one can not tell whether two different ESTs represent two different mRNA species or whether they are derived from different parts of the same mRNA molecule. Normalized or so-called singlebook cDNA library for eliminating redundancy, and the size-fractionated cDNA library for enriching full size components are not suitable for quantitative analyses of the mRNA population.

We randomly chose transformant clones, then selectively amplified the cDNA moieties and sequenced them. Among those clones analyzed, we obtained 1161 GSs, of which 202 were identified as representing 14 species of mitochondrial transcripts. In the remaining 959 GSs, 116 GSs were attributed to 7 species that appeared 10 times or more and 310 GSs were attributed to 118 species that appeared recurrently but less than 10 times and 533 which appeared only once. Altogether, 658 species of GSs for chromosomally coded genes were represented in the collection (Table 1). The expression profile of active genes in the human colonic mucosa is shown in Table 2. For clarity’s sake only those genes whose cDNA clones appeared 3 times or more are listed in the table. Of the most redundant 7 species, genes for the fatty acid binding protein, immunoglobulin lambda chain, and carcino-associated antigen GA733-2 were identified in GenBank, and the other 4 were novel. It is interesting to note that the gene for fatty acid binding protein codes for liver type, not the intestinal type protein that is active in the small intestine.6 Although the implication of this difference awaits further study, its role in the absorption of fatty acids in the bowel is doubtful since the major function of the colon is absorption of water, not lipids and their derivatives. The presence of a significant number of B cells in the colonic mucosa is reflected by the immunoglobulin gene products, although at present we do not know why only immunoglobulin lambda chain gene products have been detected.

The expression profile of the genes in other cell types which we have analysed are listed in Table 2, including the liver-derived HepG2,1 the promyelocyte-derived HL60, and the granulocytoid and monocytoid cells each derived from HL60 by induction [manuscript in preparation]. By comparing the expression profiles, the above-mentioned four GSs representing novel genes (gs02546, gs04094, gs02123 and gs02706) are likely to appear only in the mRNA of the colonic mucosa. Although the number of cells and tissues we have analyzed is not large,
Table 2. Expression profile of active genes in colon mucosa.

GS	size	total	HepG2	HL60	granulo	mono	colon	sim%	sim size	definition
gso0196	282	41	1					40	M10617	95 liver fatty acid binding protein (L-FABP)
gso2546	102	18						18		
gso4094	255	13								
gso2842	100	12						12	M87790	98 immunoglobulin lambda chain
gso2123	188	12								
gso2706	273	11								
gso4116	212	10							M93036	97 212 carcinoma-associated antigen GA733-2
gso1190	281	8	1					7		
gso0650	273	28	14	2	6			6	L06432	97 265 18S ribosomal protein (HKE3)
gso0273	196	38	9	6	4	13		6	L13806	95 192 translationally controlled tumor protein
gso0335	176	30	1	16	4	3		6	M36072	100 165 ribosomal protein L7a (surf 3) large subunit
gso1809	258	9						3	M58485	99 258 lysosomal membrane glycoprotein CD63
gso0381	133	15	1	2	6			6		
gso0155	349	17	1	3	8			8		
gso0565	421	16	4	2	5			5	M11948	94 321 promyelocytic leukemia cell clones pH58
gso2271	301	5						5	M17987	95 419 beta-2-microglobulin
gso1766	335	11						11	V00594	93 318 metallothionein
gso0211	304	49	8	24	2	10		10	X67247	96 170 ribosomal protein S8
gso0285	190	34	6	14	1	8		8		
gso0917	68	12						12		
gso1657	42	7						7		
gso0162	329	14	1	4	3	2		2	M17887	99 312 acidic ribosomal phosphoprotein P2
gso0019	551	57	17	8	2	26		26	X16869	95 479 elongation factor 1-alpha (clone CEF4)
gso0818	124	10						10		
gso1670	33	5						5		
gso1919	137	8						8		
gso2221	69	3						3	L20636	91 69 28S ribosomal RNA pseudogene
gso4070	351	3						3	M15402	94 317 carcinoembryonic antigen
gso0804	176	10	2	1	2	2		2	M26880	99 175 ubiquitin
gso4322	417	3						3	M86400	100 415 phospholipase A2
gso1404	160	5			2			2	M39351	96 159 set gene
gso1244	266	7			3	1		1	X13585	94 262 mitochondrial ubiquinone-binding protein
gso0244	163	20			2	14	1	14	X63432	96 163 beta-actin
gso0550	56	15	6	4	1	1		1		
gso0689	237	7	1	1	2			2		
gso0932	52	5	1	1	1			1		
gso1630	52	4			1			4		
gso1794	289	4			1			4		
gso2073	332	3			1			3		
gso2177	109	3			1			3		
gso2673	326	3			1			3		
gso2801	180	3			1			3		
gso4167	125	3			1			3		
gso0586	55	3			1			3		

Abundant GSs appearing three times or more in the 959 chromosomally-coded GSs of colonic mucosa are listed in the descending order of abundance, along with their size and abundance so far obtained with libraries from HepG2 cells(1), HL60 cell(2), and granulocytoid and monocytoid cells (manuscript in preparation), each induced from HL60 by DMSO and phorbester, respectively. Gene names identified in GenBank (Re79) are listed in the far-right column. Colored rows represent those GSs that appeared 3 times or more in the colonic mucosa, but not in other libraries.
Table 3. Expression profile of active genes in colon mucosa.

Gene Set (GS)	Size	GeneBank	Genes	% Similarity	Gene Name						
Energy production											
GS001107	231	J04501	98.2	223	muscle glycogen synthase						
GS004040	374	M83088	96.2	365	phosphoglucomutase 1 (PGM1)						
GS004026	302	X05236	95	301	fibroblast aldolase A						
GS003122	240	J03544	96.6	236	brain glycogen phosphorylase						
GS000504	54	M14328	98	51	alpha enolase						
GS00422	112	M10036	91.4	105	triosephosphate isomerase						
GS000145	332	M57949	90.6	234	triose-phosphate isomerase (TPI)						
Cytoplasmic miscellany											
GS004322	417	M86400	99.8	415	phospholipase A2						
GS000272	197	J05262	100	197	farnesyl pyrophosphate synthetase						
GS004098	248	M65131	94.7	246	methylmalonyl-CoA mutase (MCM)						
GS004191	87	J03058	100	81	argininosuccinate lyase						
GS006666	216	J05016	91.6	215	deoxyxycytidine kinase (dCK kinase) gene						
GS003689	409	M88006	93.4	411	S-adenosylmethionine decarboxylase (AMD1)						
GS001995	66	X13710	96.8	63	glutathione peroxidase						
GS000586	396	M18377	95.5	396	inositol polyposphate 1-phosphatase						
GS003115	432	J03037	91.5	435	carbonic anhydrase II						
GS000196	282	M10617	94.9	274	liver fatty acid binding protein (L-FABP)						
GS001107	351	M75883	97.7	347	sterol carrier protein 2						
GS000135	373	M11147	99.1	336	ferritin L chain						
GS001766	335	V00594	93.4	318	metallothionein						
GS001919	142	J02763	99.2	125	calcyclin						
GS000851	108	D00761	100	87	calmodulin						
GS001140	165	X56976	93.3	164	ubiquitin activating enzyme E1						
GS000304	176	M26880	99.4	175	ubiquitin						
GS000716	199	X56999	96.5	199	ubiquitin-52 amino acid fusion protein						
Golgi and lysosome											
GS003227	388	M13519	96.1	387	N-acetyl-beta-glucosaminidase (HEXB)						
GS004105	233	X53578	97.4	233	"alpha(1.3/1.4)fucosyltransferase "						
GS006799	29	M29877	100	28	alpha-L-fucosidase						
GS001765	339	M84739	94.7	337	Soegren autoantigen/calreticulin of ER						
GS004061	325	M88458	94.2	325	"ELP-1, regulator of Golgi to ER traffic"						
GS001533	332	J01482	98.1	105	lamp-lencoding lysosomal membrane glycoprotein-1						
GS001809	258	M58485	98.8	258	lysosomal membrane glycoprotein CD63						
GS	size	HepG2	HL60	Granulocytoids	Monocytes	Colon mucosa	Acc. in GenBank	% similarity	size of sim.	gene name	
---------	------	-------	------	----------------	-----------	--------------	----------------	--------------	-------------	--	
GS002821 407	2	X68277	94.1	404	CL 100 protein tyrosine phosphatase						
GS006709 371	1	L15388	95.7	369	G protein-coupled receptor kinase (GRK5)						
GS001720 464	1	M14043	94.8	461	lipocortin II						
GS004131 187	2	M75099	97.3	186	rapamycin- and FK506-binding protein						
GS004134 173	1	M75099	98.3	173	rapamycin- and FK506-binding protein						
GS000270 212	1	X04526	95.2	209	beta-subunit signal transducing proteins Gs/Gi						
GS004076 415	1	X53143	98.2	273	YL8 ras-like protein						
GS002959 81	1	X02751	100	76	N-ras and flanking regions						
GS006774 278	1	L05367	98.6	77	NF1 neurofibromatosis 1 (NF1)						
GS003867 157	1	M81457	99.3	145	calpain 1 light chain						
GS000019 581	17	X16869	94.6	479	elongation factor 1-alpha (clone CEF4)						
GS006650 273	14	L06432	97.4	265	18S ribosomal protein (HKE3) sequence.						
GS000077 459	1	L20868	96.3	456	ribosomal protein L4 (RPL4)						
GS000262 220	2	M17885	98.6	210	acidic ribosomal phosphoprotein P0						
GS000163 329	1	M17886	95.7	305	acidic ribosomal phosphoprotein P1						
GS000162 329	1	M17887	98.7	312	acidic ribosomal phosphoprotein P2						
GS000512 46	2	M22146	100	43	ribosomal protein S4 (scar protein)						
GS000335 176	16	M36072	100	165	ribosomal protein L7a (surf 3) large subunit						
GS004090 267	1	M88459	99.6	264	ribosomal protein (RPS4Y)						
GS000545 516	3	M94314	93.4	439	ribosomal protein L30 (logue of yeast rpl30)						
GS000336 167	2	S45214	97	167	yeast ribosomal protein YL41 homolog						
GS000123 356	2	X55954	98.8	336	HL23 ribosomal protein homologue						
GS000519 39	3	X63527	97.2	36	ribosomal protein L19						
GS000290 184	5	X66699	98.4	184	ribosomal protein L37a						
GS000807 133	2	X69392	99.2	133	ribosomal protein L26						
GS004144 159	2	X69654	98.7	156	ribosomal protein S26						
GS000583 382	2	X73460	95.8	378	ribosomal protein L3						
GS000211 304	8	X67247	95.9	170	ribosomal protein S8						
GS002271 301	5	M34482	95.6	298	cytokeratin 8 (CK8)						
GS000243 227	1	X12881	100	225	cytokeratin 18						
GS000114 387	1	X04098	92.2	383	gamma-actin						
GS000244 163	2	X63432	95.7	163	beta-actin						
GS003121 410	2	X02344	92.9	410	beta-tubulin						
GS001808 255	6	S54005	98	253	thymosin beta-10						
GS000258 220	1	X04588	95.4	217	cytoskeletal tropomyosin TM30(sm)						
GS001154 308	2	J03191	96.7	301	profilin						
GS000595 322	2	L05491	98.4	320	T-plastin (actin binding protein)						
GS size HepG2	Mitochondria	GS000755 132	GS004165 154	GS004259 144	GS004089 270	GS000801 135	GS006480 43	GS001695 526	GS000683 247	GS001244 266	GS000799 141
---	---	---	---	---	---	---	---	---	---	---	---
size GenBank of sim.	Mitochondria	132	154	144	270	135	43	526	247	266	141
size name	132	154	144	270	135	43	526	247	266	141	
Gene name	fERG	tERG	ADP/ATP translocase	112,554	106,541	114,552	98,564	102,551	96,543	100,552	98,564
Nucleus											
GS000219 264	GS000797 150	GS001811 204	GS000172 310	GS002321 143	GS000156 369	GS004136 169	GS000136 249	GS000797 150	GS001811 204	GS000172 310	GS002321 143
size HepG2	Mitochondria	GS000029 384	GS000156 369	GS000048 370	GS000201 195	GS000351 187	GS000640 216	GS000351 187	GS000640 216	GS000351 187	GS000640 216
size name	Proteins	384	369	370	195	187	216	187	216	187	216
Gene name	D13888	J09894	M11534	J04718	M28136	J07507	M12301	J07507	M12301	J07507	M12301
Secretory											
GS003919 116	GS000565 421	GS002148 141	GS002542 100	GS000212 267	GS000173 306	GS002716 379	GS003663 49	GS000173 306	GS002716 379	GS003663 49	
size HepG2	Mitochondria	GS000029 384	GS000156 369	GS000048 370	GS000201 195	GS000351 187	GS000640 216	GS000351 187	GS000640 216	GS000351 187	GS000640 216
size name	Proteins	384	369	370	195	187	216	187	216	187	216
Gene name	L12350	M36501	M36501	M26658	X04412	Y00264	X04412	Y00264	X04412	Y00264	X04412

Gene Expression Profile in Human Colonic Mucosa

Vol. 1.
GS	size	HepG2	HL60	Granulocytoids	Monocytoids	Colon mucosa	GenBank acc.	%similarity	size of sim.	gene name
GS002931	106		1	1	1	D10653	100	100	cell surface glycoprotein	
GS001991	69		1	1	1	L06132	98.5	66	voltage-dependent anion channel 1 (VDAC)	
GS004088	272		1	1	3	M15042	94.3	317	receptor tyrosine kinase	
GS004070	351		1	1	3	M15042	94.3	317	carcinoembryonic antigen	
GS004103	238		1	1	1	X03945	96.6	237	HLA-B37 antigen	
GS004116	212		1	1	10	M03036	97.2	212	carcinoma-associated antigen GA733-2 (GA733-2)	
GS003447	364		1	1	1	S54769	96.2	234	cellular adhesion regulatory molecule	
GS002656	357		1	1	2	X00497	92.3	351	HLA-DR antigens associated invariant chain (p33)	
GS004057	332		1	1	1	X02160	100	154	insulin receptor precursor	
GS004110	239		1	1	1	X03363	99.2	236	c-erb-B-2	
GS004003	39		1	1	1	X06614	97.2	36	receptor of retinoic acid	
GS006714	231		1	1	1	X15187	97.8	231	tral homolog of murine tumor rejection antigen gp96	
GS006747	183		1	1	1	Y00815	98.8	172	LCA-homolog, LAR protein (leukocyte antigen related)	
GS000501	215		1	1	1	L00352	93.6	218	low density lipoprotein receptor	
GS001933	278		1	1	1	X60111	97.5	276	motility related protein (MRP-1) / CD9	
GS004092	257		1	1	2	M35252	98.8	250	CO-029 tumor antigen	
GS003896	433		1	1	1	D10522	96.1	407	“80K-L protein”	
GS001775	390		1	1	1	D11094	96.3	374	MSS1 Tat mediated transactivation modulator	

Surface membrane

GS	size	HepG2	HL60	Granulocytoids	Monocytoids	Colon mucosa	GenBank acc.	%similarity	size of sim.	gene name
GS004091	263		1	1	2	L08044	92.2	234	intestinal trefoil factor expressed in goblet cell	
GS001388	166		1	1	2	L10342	99.4	163	novel gene 5' to ribonucleotide reductase M1	
GS002073	196		9	6	4	L13806	94.8	192	translationally controlled tumor protein	
GS000155	349		1	3	8	M11948	93.8	321	promyelocytic leukemia cell clones pH58	
GS001960	114		1	1	1	M35252	98.8	250	CO-029 tumor antigen	
GS006764	337		1	1	1	M18217	91.4	336	DNA of undetermined origin found 5' to NCA	
GS000865	100		9	2	1	M55409	100	89	pancreatic tumor-related protein	
GS004742	148		1	1	1	M73547	95.9	148	DP1 (deleted in poliposis coli) gene	
GS000704	219		4	1	2	M77024	92.5	133	cross-reactive protein to ARF sera	
GS000078	378		1	1	1	M80783	97.6	375	B12 (TNF inducible endothelial protein)	
GS006379	296		1	1	1	M83751	94.9	296	arginine-rich gene	
GS001404	160		2	1	3	M03651	96.2	159	set gene	
GS004049	346		1	1	1	S45936	95.7	350	HTS1=HeLa tumor suppressor gene	
GS001967	95		1	1	1	X14986	100	57	t-complex TCP1 gene homologue	
GS002712	398		1	1	1	X53331	94.1	392	matrix Gl protein	
GS000503	52		1	2	1	X57346	98.1	52	HS1 protein	

Uncharacterized

"80K-L protein"
Table 3. Continued

GS	size HepG2	HL60 Granulocytes	Monocytoids	Colon Acc. in mucosa	GenBank	%similarity	size of sim.	gene name
GS000102	391	2	4	3	X64707	93.3	387	BBC1
GS002059	358	1		X67698	97.4	346	tissue specific epididymus mRNA	
GS003698	352	2		M19645	96.9	351	78 kdalton glucose-regulated protein (GRP78)	
GS00723	201	1		L10376	97	202	(clone CTG-B33) human mRNA with triplet repeat (Li et al.)	
GS003864	144	1		L13803	99.3	143	liver expressed protein fragment (Bonald et al)	
GS00464	86	1	1	D13630	98.6	74	randomly sampled cDNA clone (deposited by Nomura et al)	
GS00422	485	1		D13641	93.5	431	randomly sampled cDNA clone (deposited by Nomura et al)	
GS004100	245	1		D14658	100	243	human ORF (deposited by Nomura et al)	
GS003062	394	1		D14662	97.1	375	human ORF (deposited by Nomura et al)	
GS000555	481	1		D14662	97.5	481	human ORF (deposited by Nomura et al)	
GS000363	144	1		D14696	98.6	141	human ORF with identical sequence to HepG2 mRNA	

GSs identified in GenBank (Re78) are listed according to their function or subcellular locality. From left to right, each of the column represents GS number, size of the GS, represented frequency of the GS among about 1000 isolates from 3' directed library of HepG2(1), HL60, granulocytoids, monocytoids (manuscript in preparation), accession number of corresponding sequence in GenBank, similarity percent, size of the similar region (bp) between GS and GenBank entry found by FastA program (7) and GenBank definition.
this observation suggests that these four novel genes may code for products that are unique to the colonic mucosa and that are produced in relatively large amounts. In contrast, protein synthesis genes that are ubiquitous are active in many different cell types (Table 2). Among the other GSs whose abundance was less than 10 in Table 2, ten appeared only in the colonic mucosa mRNA. They are also likely to represent genes that act only in the colonic mucosa.

Genes for protein synthesis are unusually active in the colonic mucosa, and at least 7 such genes are listed in the top 44 in Table 2. We have observed similar properties with HepG2 and HL60, both of which are actively replicating cells. In contrast, granulocyte cells that do not divide, show significantly lowered expression of such genes [manuscript in preparation]. Epithelial cells in the colonic mucosa are known to be replaced rapidly by the newly proliferated cells and the elevated expression of genes related to protein synthesis may reflect this unique property.

The 156 identified genes, representing 307 clones (Table 1), are grouped according to their functions and cellular locations, and are listed in Table 3. In this list we can see several clones that could be expected based on the unique structure and function of the colonic mucosa. First, production of large amounts of mucus proteins is reflected by the number of clones for proteins in Golgi apparatus. Second, there are significant numbers of clones for glycolysis enzymes and mitochondrial proteins, a pattern that has not been observed with the HepG2 liver cell line. Active energy production may be coupled with the active pumping of water into the body by this tissue. The presence of a large number of mitochondria has been well known with the absorptive cells in the colon mucosa. Third, there are a number of clones for surface membrane proteins and signal transducers. In addition, there are clones for voltage-dependent anion channel, colon mucosa-associated DRA, intestinal trefoil factor of goblet cells, and the DP1 gene. Each one of these gene products plays a characteristic role in the colonic mucosa. Also listed are genes for cytokeratin 8 and 18, which are typically found in epithelial cells with well-developed desmosomes. On the other hand, the sodium pump gene has not yet been identified in the colon. Whether this gene(s) is expressed at a low level, or whether it is one of the novel genes is not yet known.

To our knowledge, this is the first systematic analysis of active genes in human colonic mucosa. Of all the genes whose clones were identified, 60% of those which appeared twice or more in this experiment are novel, reflecting the paucity of biochemical data with this tissue. As a natural consequence of these studies, detailed characterizations of such novel genes are needed, especially those whose products are likely to be specific to the colonic mucosa. As we have shown previously, random sequencing of about 1000 clones is sufficient to determine the expression profile of the genes in any given tissue, whether, ubiquitous or cell-specific, that are abundantly expressed in the tissue. On the other hand, to examine genes that are expressed at low levels, we must avoid recurring sequences of the same transcript.

The entire intestine is divided into several regions, such as the duodenum, jejunum, ileum, cecum, colon, and rectum, each of which play different roles in the body. Extending this work to the mucosa from these different regions will enrich our understanding of these tissues at the molecular level, and at the same time will enable us to identify many interesting novel genes whose functions are closely associated with the unique biological activities.

Acknowledgments: This work was supported in part by a Grant-in-Aid for Creative Basic Research (Human Genome Program) from the Ministry of Education, Science and Culture, Japan.

References

1. Okubo, K., Hori, N., Matoba, R., Niiyama, T., Fukushima, A., Kojima Y., and Matsubara, K. 1992, Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression, Nature [Genetics], 2, 173-179.
2. Okubo, K., Hori, N., Matoba, R., Niiyama, T., and Matsubara, K. 1991, A novel system for large-scale sequencing of cDNA by PCR amplification, DNA Seq., 2, 137-44.
3. Hunkapiller, T., Kaiser, R. J., Koop, B. F., and Hood, L. 1991, Large-Scale and Automated DNA Sequence Determination, Science, 254, 59-67.
4. Matsubara, K. and Okubo, K. 1993, cDNA analysis in the human genome project, Gene, 135, 265-274.
5. Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, G. M., Polymeropoulos, M. H., Xiao, H., Merrill, C. R., Wu, A., Olde, B., Moreno, R. F. et al. 1991, Complimentary DNA Sequencing: Expressed sequence Tags and the human genome project, Science, 252, 1651-1656.
6. Gordon, J. I. and Lowe, J. B. 1985, Analyzing the structures, functions and evolution of two abundant gastrointestinal fatty acid binding proteins with recombinant DNA and computational techniques, Chem. Phys. Lipids, 38, 137-58.
7. Pearson, W. R. and Lipman, D. J. 1988, Improved tools for biological sequence comparison, Proc. Natl. Acad. Sci. U.S.A., 85, 2444-2448.
