Simulating the Impact of Climate Change on Maize Productivity in Trans-gangetic Plains using Info Crop Model

Baljeet Kaur, Som Pal Singh, P.K. Kingra

ABSTRACT

Background: Climate change is a nonpareil threat to the food security of hundred millions of people who depends on agriculture for their livelihood. A change in climate affects agricultural production as climate and agriculture are intensely interrelated global processes. Global warming is one of such changes which is projected to have significant impacts on environment affecting agriculture. Agriculture is the mainstay economy in trans-gangetic plains of India and maize is the third most important crop after wheat and rice. Heat stress in maize cause several changes viz. morphological, anatomical and physiological and biochemical changes.

Methods: In this study during 2014-2018, impact of climate change on maize yield in future scenarios was simulated using the InfoCrop model. Average maize yield from 2001-15 was collected for Punjab, Haryana and Delhi to calibrate and validate the model. Future climatic data set from 2020 to 2050 was used in the study to analyse the trends in climatic parameters.

Result: Analysis of future data revealed increasing trends in maximum temperature and minimum temperature. Rainfall would likely follow the erratic behaviour in Punjab, Haryana and Delhi. Increase in temperature was predicted to have negative impact on maize yield under future climatic scenario.

Key words: Climate change, Scenario, Info Crop, Temperature, Maize.

INTRODUCTION

Climate change is an unrivaled threat to the food security of hundred millions of people who depends on agriculture for their livelihood. Global mean temperature would increase by 0.3°C to 1.7°C, 1.1°C to 2.6°C, 1.4°C to 3.1°C and 2.6°C to 4.8°C under Representative Concentration Pathways (RCP) 2.6, RCP4.5, RCP6.0 and under RCP8.5. It is incontrovertible that hot and cold extremes over the land areas would occur frequently on daily and seasonal basis as a result of increase in global mean temperature (IPCC 2014). India ranked 46 in Global Climate Risk Index in 2012 but during the year 2013 series of cyclonic storms occurred over Bay of Bengal which resulted in heavy loss both in terms of agriculture and mankind (IMD 2013). A change in climate affects agricultural production as climate and agriculture are intensely interrelated global processes. Global warming is one of such changes which is projected to have significant impacts on environment affecting agriculture, including higher carbon dioxide emission, rise in atmospheric temperature, higher glacial run-off, changed precipitation and the interaction of these elements (Singh et al., 2017). Reduction in potential yield of crops is linked to negative trends in solar radiation and increasing trends in minimum temperature in Indo Gangetic Plain (Pathak 2003). Maize production for World was 1,147 million thousand tonnes and in India, production of maize was 21,810 thousand tonnes (APEDA, 2016). Maize demand will double in the developing countries by 2050. Temperature increases have multiple effects on crop growth, development and yield depending on the crop growth stage. Higher temperatures usually accelerate rates of crop development and this results in a shortened growing period and typically but not always lower crop yields (Rötter and Höhn, 2015; Rötter et al., 2015). Heat stress in maize cause several changes viz. morphological, anatomical and physiological and biochemical changes (Commuri and Jones 2001).

The yields of various cereals likely to be decrease under future scenarios (Pathak, 2003). A study therefore, has been planned to look into the climate change, its impacts on crop yield in future scenarios in trans-gangetic plain region with the objective (i) to analyse the trends in climatic parameters under future climatic scenario and (ii) prediction of maize yield under future climatic scenario.

MATERIALS AND METHODS

Location of study

The present study was carried out at Department of Climate Change and Agricultural Meteorology, Punjab Agricultural University, Ludhiana, Punjab during 2014-18.

Study area

The study area comprise of maize growing regions of trans-
gangetic plains which includes Punjab, Haryana, Delhi and northern Rajasthan. Punjab lies between 31.1°N and 75.3°E, whereas Haryana lies between 29.0°N and 76.1°E. The coordinates of Delhi are 28.7°N and 77.1°E. Northern parts of Rajasthan were not taken in present study due to non-significant maize area and yield.

Data collection

Daily weather data for the period of 2020-2025 was derived from marksim weather generator (https://gismap.ciat.cigar.org/MarksimGCM/) for the climatic scenario RCP8.5. Average maize yield data (2001-2015) for calibration and validation was collected from statistical abstracts of Punjab, Haryana and Delhi.

Future crop yield prediction

The crop yield prediction for maize has been predicted up to mid-century (2020 – 2050) using InfoCrop model for the whole states of Punjab, Haryana and Delhi. The model was first calibrated using maize yield data from 2001-10 and validated using data of 2010-15 before predicting the changes in future climatic perspectives.

Model Description

InfoCrop model is a generic crop model which simulates the effect of weather, soils, agronomic practices like planting, nitrogen, residues and irrigation and major pests on the crop growth, yield etc.

The input requirements of the model are:
- Site information
 1. Station name
 2. Latitude
 3. Longitude
 4. Altitude
- Weather data:
 1. Daily maximum temperature (°C)
 2. Daily minimum temperature (°C)
 3. Daily precipitation (mm)
 4. Daily solar radiation (MJ m⁻² day⁻¹)
- Crop/variety
 1. Thermal days
 2. Optimum temperature
 3. Maximum temperature
 4. Base temperature

Table 1: Annual and seasonal trends in weather parameters in Punjab, Haryana and Delhi.

Weather parameters	Test	Punjab	Haryana	Delhi			
		Kharif	Annual	Kharif	Annual	Kharif	Annual
Maximum Temperature (°C)	Z	7.78***	7.89***	7.87***	7.89***	7.85***	7.89***
	Sen’ slope	0.040***	0.048***	0.045***	0.050***	0.046***	0.051***
Minimum Temperature (°C)	Z	7.89***	7.89***	7.89***	7.89***	7.87***	7.87***
	Sen’ slope	0.048***	0.050***	0.049***	0.053***	0.050***	0.054***
Rainfall (mm)	Z	0.96	0.05	0.92	1.70	1.51	1.81
	Sen’ slope	0.230	-0.005	-0.015	-0.116	0.36	0.29

Z: Mann-Kendall test, Q: Sen’s slope estimator.

***Statistically significant trends at the 0.1% significance level.
seasonal basis. In Punjab, during Kharif season, maximum and minimum temperature likely to increase by 0.040°C and 0.048°C, respectively at p=.001. Maximum temperature likely to increase by 0.048°C per year and minimum temperature at 0.050°C per year on annual basis at p=.001. No significant trend was observed in rainfall in Punjab (Table 1).

Table 2: Genetic coefficients used to calibrate the InfoCrop model for maize crop (PMH 4).

Genetic Coefficients	Units	Maize
TTGERM	°C/day	55
TTVG	°C/day	730
TTGF	°C/day	950
TBASE	°C	10
TOPT	°C	20
TMAX	°C	40
RUE	g/MJ/day	2.1
RGRL	°C/day	0.008
SLA	dm²/mg	0.001

In Haryana, annual maximum and minimum temperature likely to increase by 0.050°C and 0.053°C, respectively at p=.001. During kharif season, increase in maximum and minimum temperature likely to increase at the rate of 0.045°C and 0.049°C, respectively at p=.001. No trend in rainfall was observed. Similarly, in Delhi maximum and minimum temperature was predicted to increase in future at the rate of 0.046°C and 0.050°C per year at during kharif season. On annual basis, maximum temperature likely to increase by 0.051°C and minimum temperature would increase by 0.054°C per year. The increase in temperature likely to significant at p=.001.

Crop productivity predictions in future climate perspectives

Calibration of InfoCrop model

The InfoCrop model for maize was calibrated using the observed yield data during 2001-2010 for Punjab, Haryana and Delhi except northern Rajasthan due to non significant observed yield of maize. The genetic coefficients (Table 2) were derived while calibration and later on these were used in the validation of the model. Thermal days required for germination, vegetative phase and grain filling used to calibrate were 55, 730 and 950°C/day, respectively. Base, optimum and maximum temperature during growth period was 10°C, 20°C and 40°C, respectively. Radiation use efficiency was 2.1 g/MJ/day, relative growth rate of leaves was 0.008 and specific leaf area was 0.001 dm²/mg.

Table 3: Test for the evaluation of InfoCrop model for maize grain yield.

Region	Observed (q/acre)	Simulated (q/acre)	R²	ME	d-stat
Punjab	30.2	31.8	0.84	78	0.92
Haryana	21.6	23.8	0.79	75	0.95
Delhi	19.3	18.9	0.81	80	0.81

Fig 1: validation of maize yield of (a) Punjab, (b) Haryana and (c) Delhi.
Simulating the Impact of Climate Change on Maize Productivity in Trans-gangetic Plains using Info Crop Model

Validation of Info Crop model
After calibration, the model was validated for maize yield during 2011 to 2015 (Fig 1). The validated yield of maize by the model was observed to be closely fit with the observed maize grain yield. The model was then tested to quantify the goodness of fit between observed and simulated yield as model efficiency (ME), \(R^2 \) and d-stat (Table 3). \(R^2 \) values were 0.84, 0.79 and 0.81; ME values were 78, 75 and 80; and d-stat values were 0.92, 0.95 and 0.81; respectively for Punjab, Haryana and Delhi. The results showed model performance was good.

Prediction of maize yield under future climatic scenario RCP8.5
The validated model was used to simulate maize yield under future climatic scenario with the weather data of corresponding period. Prediction of maize yield in future climatic perspectives showed that maize yield likely to followed declining trend from 2020 to 2050. Maize yield was observed to decrease at the rate of 39.04 kg/ha with \(R^2 \) value of 0.44, 42.88 kg/ha with \(R^2 \) value 0.77 and 22.14 kg/ha with \(R^2 = 0.47 \) in Punjab, Haryana and Delhi; respectively (Fig. 2). More declines in maize predicted in Haryana under future climatic scenario. Hundal and kaur (1996) also reported reduction in maize yield by 10.4, 14.6 and 21.4 per cent due to temperature increase of 1.0, 2.0 and 3.0oC, respectively.

The high temperature during kharif season increased the rate of evapo-transpiration, which increased the stress factor in plants. The water stress accompanied by the nutrient stress would result in less growth and low grain yield (Chatterjee, 1998). Similar findings on the reduction in grain yield of maize due shortening of the growing period have also been reported by Makadho (1996) and Vucetic (2011).

CONCLUSION
It is concluded that by the end of 2050, maximum and minimum temperature would likely to increase. However, rate of increase in minimum temperature is more than that of maximum temperature. Rainfall likely to show erratic behavior. Further, maize grain yield would likely to decrease under future scenarios. This decrease is mainly due to the increase in temperatures that fasten maturity and hence decrease in yields.

REFERENCES
APEDA (2016). https://apeda.gov.in/apedawebsite/SubHead_Products/Maize.htm
Chatterjee, A. (1998). Simulating the impact of increase in carbon dioxide and temperature on growth and yield of maize and sorghum. M.Sc. Thesis, Division of Environmental Sciences, IARI, New Delhi-110 012
Commuri, P.D. and Jones, R.J. (2001) High temperatures during endosperm cell division in maize: A genotypic comparison under in vitro and field conditions. Crop Sci (41): 1122 -30.
Hundal, S.S. and Kaur, P. (1996). Climate change and its impact on crop productivity in the Punjab, India’, In: Climate Variability and Agriculture [Abrol, Y.P., Gadgil, G and Pant, G B (eds.)], New Delhi, India, pp. 410
IMD (2013). Preliminary cyclonic report. Cyclonic warning division, Indian Meteorological Department, Pune, Maharashtra, India.
IPCC (2014). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working
Simulating the Impact of Climate Change on Maize Productivity in Trans-gangetic Plains using Info Crop Model

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

UNFCC Climate change: Impacts, vulnerabilities and adaptation in developing countries.

Makadho, J.M. (1996). Potential effects of climate change on corn production in Zimbabwe. Climate Research 6: 147-51.

Pathak, H. (2003). Climatic potential and on farm yield trends of rice and wheat in the Indo-Gangetic plains. Field Crop Research 80: 223-34.

Rötter, R. and Höhn, J. (2015). An overview of climate change impact on crop production and its variability in Europe, related uncertainties and research challenges. In: Elbehri A ed. Climate change and food systems: global assessments and implications for food security and trade.

Rötter, R.P., Tao, F., Höhn, J.G., Palosuo, T. (2015). Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J. Exp. Bot. 66:3463-3476. doi: https://doi.org/10.1093/jxb/erv098.

Singh, M. (2012). Challenges and opportunities for sustainable viability of marginal and small farmers in India. Agriculture Situation in India. 3: 133-42.

Singh, M., Poonia, M.K. and Kumar, B.L. (2017). Climate change: Impact, adaptation and mitigation: A review. Agricultural Reviews (38): 67-71.

Verma, S.R. and Singh, S. (2004). Long term mechanization strategy papers-agro climatic zone-vi: Trans Gangetic Plain region.

Vucetic, V. (2011). Modelling of maize production in Croatia: present and future climate. Journal of Agriculture Sciences 149: 145-57.