Degrees in random uniform minimal factorizations

Etienne Bellin *
CMAP - Ecole Polytechnique

We are interested in random uniform minimal factorizations of the n-cycle which are factorizations of $(1 \ldots n)$ into a product of $n-1$ transpositions. Our main result is an explicit formula for the joint probability that 1 and 2 appear a given number of times in a uniform minimal factorization. For this purpose, we combine bijections with Cayley trees together with explicit computations of multivariate generating functions.

1 Introduction

Consider the cycle permutation $(1 \ldots n)$ for $n \geq 2$. A minimal factorization is a $(n-1)$-tuple of transpositions $(\tau_1, \ldots, \tau_{n-1})$ such that $\tau_{n-1} \cdots \tau_1 = (1 \ldots n)$. We denote by \mathcal{M}_n the set of all minimal factorizations of the cycle $(1 \ldots n)$. Dénes [De59] first showed that \mathcal{M}_n has cardinality n^{n-2} and several bijective proofs followed afterwards (see [MOS89], [GP93], [GY02] and [Bia04]). Minimal factorizations are linked to other combinatorial objects such as non-crossing partitions [Bia97] and parking functions [Bia02] and more general factorizations have deep connections with enumerative geometry (see e.g. [ACEH18]).

Let $(\tau_1^{(n)}, \ldots, \tau_{n-1}^{(n)})$ be a random minimal factorization chosen uniformly at random in \mathcal{M}_n. The study of the behaviour of such a randomly picked minimal factorization is recent (see [FK18], [FK19] and [The20]) and has a rich probabilistic structure: for instance, it is shown in [The20] that such minimal factorizations have connections with Aldous-Pitman fragmentation of the Brownian continuum random tree. Here we are interested in the law of the number of times 1 and 2 appear in $(\tau_1^{(n)}, \ldots, \tau_{n-1}^{(n)})$. In [FK19 Corollary 1.2 (iv)] it was obtained that:

$$\mathbb{P}\left(\Upsilon_1^{(n)} = i, \Upsilon_2^{(n)} = j \right) \xrightarrow{n \to \infty} e^{-2} \frac{n^{i+j-2}}{(i+j-1)!} i^{j-1},$$

where $\Upsilon_1^{(n)} = \#\{1 \leq \ell \leq n-1 : \tau_\ell^{(n)}(k) \neq k\}$ is the number of time k appears in a transposition. We refine this result by finding explicitly the joint distribution for fixed n:

Theorem 1. For $i, j \geq 1$ and $n \geq i + j$:

$$\mathbb{P}\left(\Upsilon_1^{(n)} = i, \Upsilon_2^{(n)} = j \right) = \frac{n!(n-1)^{n-i-j-1}}{(n-i-j)!(n+1)^{i+j-1}} \frac{(i+j-2)(n-1)}{(i+j-1)(n-i-j+1)} + \frac{i+j-1}{i+j} \frac{(i+j-1)}{(i+j)!}.$$

To show Theorem 1 we explicitly compute the exponential generating function of the (normalized) trivariate generating function G_n defined by

$$G_n(x, y, z) = n^{n-2}E\left[x^{\Upsilon_1^{(n)}} y^{\Upsilon_2^{(n)}} z^{\Upsilon_3^{(n)}} \right]$$

where $\Upsilon_3^{(n)} = \#\{1 \leq \ell \leq n-1 : \tau_1^{(n)}(k) \cdots \tau_{\ell-1}^{(n)}(k) \neq \tau_\ell^{(n)}(k) \cdots \tau_{n-1}^{(n)}(k)\}$ is the number of transpositions that affect the trajectory of k, and then extract the coefficient $[x^iy^jz^k]G_n(x, y, z)$. To this end, there are 4 main steps. First, using a known bijection between minimal factorizations and Cayley trees, we reformulate the problem in terms of a generating function of a trivariate statistic on Cayley trees (Section 2). To compute this generating function, we actually start by computing another generating function F_n obtained by changing one of the three statistics (Section 3). This also yields a result of independent interest by confirming a conjecture [Car19] involving distributional symmetries in uniform Cayley trees (Corollary 10). Finally, we show bijectively that $G_n(x, y, z) = G_n(y, x, z)$ (Section 11), and by combining this with the explicit formula of F_n we get the exponential generating function of G_n (Section 12) and Theorem 1 follows (Section 13).

*etienne.bellin@polytechnique.edu
2 Bijection between minimal factorizations and Cayley trees

2.1 The bijection

Here we explain how to associate a labeled tree with a minimal factorization which will be an essential tool for us. We refer to [FK19] for details and proofs. Fix an integer $n \geq 2$.

Definition 2. For $(\tau_1, \ldots, \tau_{n-1}) \in \mathcal{M}_n$, we define a labeled tree $F(\tau_1, \ldots, \tau_{n-1})$ with n vertices labeled from 1 to n where an edge labeled l is drawn between the vertices labeled a and b if and only if $\tau_l = (a, b)$ (see figure 1 for an example).

![Figure 1](image1.png)

Figure 1: Representation of F on the left and E on the right when $n = 10$ for the minimal factorization $((9 \ 10), (7 \ 9), (1 \ 5), (2 \ 5), (3 \ 5), (8 \ 9), (4 \ 5), (1 \ 6), (1 \ 7))$ of $(1 \ldots 10)$. The double circle represents the root of the tree E.

Clearly F is injective since a minimal factorization can be easily read on its associated tree. Actually the tree F gives too much information, indeed it is still possible to retrieve the associated minimal factorization when we erase the vertex-labels and keep only the edge-labels. More precisely we have:

Definition 3. If $(\tau_1, \ldots, \tau_{n-1}) \in \mathcal{M}_n$, then we construct a rooted, edge-labeled tree $E(\tau_1, \ldots, \tau_{n-1})$ by doing the following on the tree $F(\tau_1, \ldots, \tau_{n-1})$:

- We root the tree at the vertex labeled 1.
- We erase all the vertex-labels (and keep only the edge-labels).

Proposition 4. The map E gives a bijection between the set \mathcal{M}_n and the set \mathcal{C}_n' of rooted trees with $n-1$ edges labeled from 1 to $n-1$.

The set \mathcal{C}_n' is clearly in bijection with the set \mathcal{C}_n of Cayley trees with n vertices (i.e. trees with n vertices labeled from 1 to n). Indeed if $t \in \mathcal{C}_n$ we create $\alpha(t) \in \mathcal{C}_n'$ by rooting the tree t at the vertex labeled 1, then by pulling all the vertex-labels (except 1 which is erased from $\alpha(t)$) towards the root into the nearest edge. We then subtract 1 from all the labels (see figure 2 for an example). The map α is clearly a bijection.

![Figure 2](image2.png)

Figure 2: A tree $t \in \mathcal{C}_6$ on the left transformed into $\alpha(t) \in \mathcal{C}_6'$ on the right by pulling the vertex-labels towards the root and subtracting 1.

In particular \mathcal{M}_n has the same cardinality as the set of Cayley trees with n vertices \mathcal{C}_n which is known to be n^{n-2}. This explains the renormalizing term in the definition of G_n. In the article [FK19] the authors
For example, applying \(\text{Find}_{10} \) to the tree on the right of figure 1 gives back the vertex-labels on the left of figure 1.

Proposition 6. For \(t = E(f) \in \mathcal{C}_n' \):
\[
\text{Find}_n(t) = F(f).
\]

2.2 Reformulation in terms of Cayley trees

In order to prove Theorem 1, we start with rewriting the generating function \(G_n \) defined in the Introduction in terms of Cayley trees. To this purpose we introduce some notation. For \(A \) a subset of \(\{1, \ldots, n\} \) we denote by \(\mathcal{C}_A \) the set of trees with \(|A|\) vertices labeled in a one-to-one manner with the elements of \(A \). Notice that if \(A = \{1, \ldots, n\} \) then \(\mathcal{C}_A = \mathcal{C}_n \) is the set of Cayley trees with \(n \) vertices. If \(t \in \mathcal{C}_A \) and \(i \in A \), we denote by \(\text{deg}_i(t) \) the degree of the vertex \(i \) (where "the vertex labeled \(i \)" has to be understood as "the vertex labeled \(i \)" in the tree \(t \)). Similarly, we denote by \(\text{deg}_i(t) \) the set of vertices composing this path but without including the first one which is the vertex \(i \) (see figure 1 for an example).

Definition 7. For \(t \in \mathcal{C}_A \) and \(i \in A \) we consider the longest path of vertices, starting from \(i \), such that each vertex of the path has the smallest label among the ones that are both adjacent to the previous vertex on the path and have a greater label than the label of the previous vertex on the path. We denote by \(L_i(t) \) the set of vertices composing this path but without including the first one which is the vertex \(i \) (see figure 1 for an example).

Definition 8. For \(t \in \mathcal{C}_n \) we denote by \(\text{deg}_2(t) \) the degree, in \(t \), of the last vertex of the path \(L_i(t) \) (see figure 1 for an example).

Recall from Section 2.1 the bijection \(\mathcal{E} \) between \(\mathcal{M}_n \) and \(\mathcal{C}_n' \) as well as a bijection \(\alpha \) from \(\mathcal{C}_n \) to \(\mathcal{C}_n' \) (illustrated in figure 2). Notice that if \(f \in \mathcal{M}_n \) and \(t = \alpha \circ \mathcal{E}(f) \) then
\[
(\mathcal{M}_1(f), \mathcal{M}_2(f), \mathcal{M}_3(f)) = (\text{deg}_1(t), \text{deg}_2(t), |L_1(t)|).
\]

where \(\mathcal{M}_i(f) \) is the number of times \(i \) appears in \(f \) and \(\mathcal{M}_j(f) \) is the number of transpositions in \(f \) that affect the trajectory of \(j \). The last identity allows us to reformulate the definition of \(G_n \) for \(n \geq 2 \):
\[
G_n(x, y, z) = \sum_{t \in \mathcal{C}_n} x^{\text{deg}_1(t)} y^{\text{deg}_2(t)} z^{|L_1(t)|}.
\]

In the next Section, in order to compute \(G_n \), we introduce another generating function \(F_n \) whose definition is similar to (2) except that \(\text{deg}_2 \) is replaced with \(\text{deg}_2 \).
With this in mind we can decompose the quantity in distinct ways to attach the tree to a real-valued function. It is obviously true for \(n \geq 2 \).

The last equality is a well known result on Cayley trees. Actually, it turns out we have an explicit formula for \(F_n(x, y, z) \).

Proposition 9. For \(n \geq 3 \),

\[
F_n(x, y, z) = xyz \left[x(n - 2 + x)^{n-3} \left(1 - \frac{yz}{z + y - 1} \right) + (x + y + z + n - 3)^{n-3} \left(n - 2 + y + z + \frac{xyz}{z + y - 1} \right) \right].
\]

Formula (3) still holds in the cases \(y = 1 \) and \(z = 1, n = 1 \). Proposition 9 implies that \(F_n \) is symmetric in \(y \) and \(z \) thus we have the following Corollary which confirms a conjecture made by Caraceni [Car19]:

Corollary 10. Let \(T_n \) be a random uniform Cayley tree with \(n \) vertices, then \((\deg_1(T_n), |L_1(T_n)|, \deg_2(T_n)) \) and \((\deg_1(T_n), \deg_2(T_n), |L_1(T_n)|) \) have the same law.

It would be very interesting to obtain a direct bijective proof of Corollary 10. Formula (3) with \(y = 1 \) was first conjectured in [FK19] Conjecture 1.4 and was proved by O. Angel & J. Martin [AM19]. Below, we give Angel and Martin’s proof of the case \(y = 1 \) which will be useful to deduce the general case.

Proof of Proposition 9 for \(y = 1 \). We show by induction on \(n \geq 2 \) that \(F_n(x, 1, z) = xz f_n(x + z) \) where \(f_n \) is a real-valued function. It is obviously true for \(n = 2 \) with \(f_2 = 1 \). Suppose that is true for all \(2 \leq k \leq n - 1 \) with \(n \geq 3 \).

We denote by \(\mathcal{P}_n \) the set of couples \((A, B)\) with \(A \) and \(B \) two subsets of \(\{1, \ldots, n\} \) such that \(A \cup B = \{1, \ldots, n\}, A \cap B = \varnothing, 1 \in A \) and \(n \in B \). Let \(t \in \mathcal{C}_n \), set the vertex 1 to be the root of \(t \). Consider cutting the tree \(t \) by removing the edge between the vertex \(n \) and its parent to end up with two trees \(t_1 \in \mathcal{C}_A \) and \(t_2 \in \mathcal{C}_B \) for some \((A, B) \in \mathcal{P}_n \). Actually given two trees \(t_1 \in \mathcal{C}_A \) and \(t_2 \in \mathcal{C}_B \) with \((A, B) \in \mathcal{P}_n \) there are \(|A| \) distinct ways to attach \(t_2 \) to \(t_1 \) by joining the vertex \(n + 1 \) of \(t_2 \) to one of \(t_1 \)’s vertices to obtain a tree \(t \in \mathcal{C}_n \).

With this in mind we can decompose the quantity \(F_n(x, 1, z) \) depending on where \(t_2 \) is attached to \(t_1 \):

\[
F_n(x, 1, z) = xz + \sum_{(A,B) \in \mathcal{P}_n} \sum_{\substack{|A| \geq 1 \\atop t_1 \in \mathcal{C}_A \\atop t_2 \in \mathcal{C}_B}} (|A| - 2)x^{\deg_1(t_1)}z^{\deg_2(t_1)} + x^{\deg_2(t_2)+1}z^{\deg_1(t_2)} + x^{\deg_1(t_1)}z^{\deg_2(t_1)+1}.
\]
The first term corresponds to the case where \(t_1 \) has only 1 vertex (i.e. \(|A| = 1 \)). If \(|A| > 1 \) then the vertex 1 and the last vertex of the path \(L_1(t_1) \) are distinct in \(t_1 \) and we have to consider three cases: 1) we attach \(t_2 \) to a vertex of \(t_1 \) which is neither 1, nor the last vertex of \(L_1(t_1) \). 2) We attach \(t_2 \) to the vertex 1. 3) We attach \(t_2 \) to the last vertex of \(L_1(t_1) \). We then have:

\[
F_n(x, 1, z) = xz + \sum_{a=2}^{n-1} \binom{n-2}{a-1} F_a(x, 1, z)(a-2 + x + z).
\]

By induction we conclude that:

\[
F_n(x, 1, z) = xz + xz \sum_{a=2}^{n-1} \binom{n-2}{a-1} f_a(x+z)(a-2 + x + z).
\]

So \(F_n(x, 1, z)/(xz) \) depends only on \(x + z \), thus induction is shown. We then just need to take \(z = 1 \) and use the case \(y = z = 1 \) to conclude.

To prove the general case of Proposition \(\text{[9]} \) we will use the particular cases \(y = 1 \) and \(z = 1 \). We will also use the following Abel’s binomial Theorem \(\text{[Rio79, p. 18]} \).

Proposition 11. For every integer \(n \geq 0 \) the following identity holds:

\[
\sum_{k=0}^{n} \binom{n}{k} x(x - k z)^{k-1} (y + k z)^{n-k} = (x + y)^n.
\]

Three useful variants can be deduced from this identity.

Corollary 12. For every integer \(n \geq 0 \),

\[
\begin{align*}
\text{Variant 1} & \quad \sum_{k=0}^{n} \binom{n}{k} (x + k)^{k-1} (y - k)^{n-k} = \frac{(x + y)^n}{x}; \\
\text{Variant 2} & \quad \sum_{k=0}^{n} \binom{n}{k} (x + k)^{k} (n - k + y)^{n-k-1} = \frac{(x + y + n)^n}{y}; \\
\text{Variant 3} & \quad \sum_{k=0}^{n} \binom{n}{k} (x + k)^{k-1} (n - k + y)^{n-k-1} = \frac{x + y}{xy} (x + y + n)^{n-1}.
\end{align*}
\]

Proof. Taking \(z = -1 \) in Abel’s binomial formula gives the first variant. Doing the change of index \(k \to n - k \) and the change of variables \(y \to x + n \) and \(x \to y \) in variant 1 gives variant 2. To get variant 3 we begin by differentiating variant 1 with respect to \(y \), so we have:

\[
\sum_{k=0}^{n} \binom{n}{k} (n - k)(x + k)^{k-1} (n - k + y)^{n-k-1} = n \frac{(x + y + n)^{n-1}}{x}.
\]

Denote by \(A \) the left side of variant 3 which we want to compute, then:

\[
nA - n \sum_{k=1}^{n} \binom{n-1}{k-1} (x + k)^{k-1} (n - k + y)^{n-k-1} = n \frac{(x + y + n)^{n-1}}{x}.
\]

By doing the change of index \(k \to k + 1 \) in the last sum and using variant 2 for the resulting sum we get:

\[
nA - n \frac{(x + y + n)^{n-1}}{y} = n \frac{(x + y + n)^{n-1}}{x}.
\]

The expression of \(A \) can be deduced from the last display and thus variant 3 is shown.

Proof of Proposition [9] in the general case. Assume \(n \geq 3 \). Once again we will use a "tree-cutting" argument but instead of cutting at vertex \(n \), we cut at vertex 2. More precisely, we denote by \(Q_n \) the set of all couples \((A, B)\) with \(A \) and \(B \) two subsets of \{1, . . . , n\} such that \(A \cup B = \{1, . . . , n\}, A \cap B = \emptyset, 1 \in A \) and \(2 \in B \). Once again, we decompose the quantity \(F_n(x, y, z) \) depending on where \(t_2 \) is attached to \(t_1 \):

\[
F_n(x, y, z) = \sum_{(A, B) \in Q_n} \sum_{t_2 \in E_A} \left[(|A| - 1)x^{\deg_1(t_1)}y^{\deg_2(t_2)+1}z^{|L_1(t_1)|} + x^{\deg_1(t_1)+1}y^{\deg_2(t_2)+1}z^{|L_2(t_2)|+1} \right].
\]
The first term appearing after the sums corresponds to attaching t_2 to a vertex which is not 1 in t_1 and the second term corresponds to attaching t_2 to the vertex 1. We then have:

$$F_n(x, y, z) = \sum_{a=2}^{n-1} \binom{n-2}{a-1} (a-1)yF_a(x, 1, z)F_{n-a}(y) + \sum_{a=1}^{n-1} \binom{n-2}{a-1} xyzF_a(x)F_{n-a}(y, 1, z).$$

Now we can use the cases $y = 1$ and $y = z = 1$ to replace the occurrences of F_a in the last display. Let’s compute the first sum which we call $A_n(x, y, z)$, afterwards we will compute the second one, $B_n(x, y, z)$.

$$A_n(x, y, z) = \sum_{a=2}^{n-1} \binom{n-2}{a-1} (a-1)xy^2z(a-2+x+z)^{a-2}(n-a-1+y)^{n-a-2}$$

$$= (n-2)\sum_{a=0}^{n-3} \binom{n-3}{a} xy^2z(a+x+z)^a(n-a-3+y)^{n-a-4}$$

$$= (n-2)xyz(x+y+z+n-3)^{n-3}. $$

The second equality comes from the fact that $(a-1)\binom{n-2}{a-1} = (n-2)\binom{n-3}{a}$. The last equality comes from variant 2 of Abel’s binomial formula. Now for $B_n(x, y, z)$ we need to be careful and isolate the case $a = n-1$ because formula 3 doesn’t apply in the case $(y = 1, n = 1)$.

$$B_n(x, y, z) - x^2yz(x+n-2)^{n-3} = \sum_{a=0}^{n-3} \binom{n-2}{a} x^2y^2z^2(a+x)^{a-1}(n-a-3+y+z)^{n-a-3}$$

$$= \sum_{a=0}^{n-4} \binom{n-3}{a} x^2y^2z^2(a+1+x)^a(n-a-4+y+z)^{n-a-4}$$

$$+ \sum_{a=0}^{n-3} \binom{n-3}{a} x^2y^2z^2(a+x)^{a-1}(n-a-3+y+z)^{n-a-3}.$$

The second equality comes from the fact that $\binom{n-2}{a} = \binom{n-3}{a-1} + \binom{n-3}{a}$. The last one comes from variants 1 and 2 of Abel’s binomial Theorem. The desired formula follows easily.

$$\square$$

4 A second generating function on Cayley trees and Proof of Theorem 1

The goal now is to compute the exponential generating function of G_n:

$$\sum_{n\geq 1} \frac{G_{n+1}(x, y, z)}{n!}.$$

Then by identifying coefficients in formula 4, we will be able to prove Theorem 1. The first step is to establish a symmetry property of G_n with a bijective approach.

4.1 A symmetry result

Before computing the exponential generating function of G_n we first state a useful symmetry result.

Proposition 13. For all $n \geq 2$:

$$G_n(x, y, z) = G_n(y, x, z).$$

Proof. We will prove it by finding a bijection ϕ in \mathfrak{M}_n which exchanges \mathbb{I}_1 and \mathbb{I}_2 and keeps \mathbb{I}_1 unchanged. For $1 \leq k \leq n$ we set $\gamma(k) = 3 - k \mod n$ so γ is a permutation and $\gamma^{-1} = \gamma$. For $(\tau_1, \ldots, \tau_{n-1}) \in \mathfrak{M}_n$ we define $\phi(\tau_1, \ldots, \tau_{n-1}) = \gamma \circ \tau_1 \circ \cdots \circ \tau_{n-1} \circ \gamma$. Notice that for any transposition $\tau = (a, b)$, $\gamma \circ \tau \circ \gamma = (\gamma(a) \gamma(b))$
hence \(\phi(\tau_1, \ldots, \tau_{n-1}) \) is a product of \(n-1 \) transpositions. To see that \(\phi \) has the expected property, we interpret the action of \(\phi \) on the tree \(\mathcal{F} \). The tree \(\mathcal{F} \circ \phi \) is obtained from \(\mathcal{F} \) by relabelling the vertex-labels according to the permutation \(\gamma \) and the edge-labels according to the permutation \(i \mapsto n-i \). Such an edge-relabelling implies that \(\text{Find}_n \) reads through \(\mathcal{E} \circ \phi \) in the exact opposite order than in \(\mathcal{E} \). Thus we easily check that \(\phi(\tau_1, \ldots, \tau_{n-1}) \) sends 2 on 3, 3 on 4, \ldots, \(n \) on 1 and 1 on 2 so \(\phi(\tau_1, \ldots, \tau_{n-1}) \) is a minimal factorization of \((1 \ldots n) \).

4.2 Computation of the exponential generating function of the second generating function

Before computing the exponential generating function of \(G_n \) let’s introduce the Lambert \(W \) function (see e.g. [JK97]). It is by definition the solution (in the sense of formal series) of \(W(z)e^{W(z)} = z \). Using Lagrange inversion, one can show that

\[
e^{-rW(-z)} = \left[\frac{-W(-z)}{z} \right]_r = \sum_{n \geq 0} \frac{r(n+r)^{n-1}}{n!} z^n
\]

with the convention that \(0 \times 0^{-1} = 1 \). These properties of \(W \) will be useful when proving Proposition 14 and Theorem 11.

Proposition 14. The following identity on formal series holds:

\[
e^n(y-x) \sum_{n \geq 1} \frac{G_{n+1}(x, y, z)}{n!} r^n = \frac{xyz(x-1)}{x+1-1} e^{-yW(-t)} - \frac{xyz(y-1)}{y+1-1} e^{-zW(-t)} + \frac{xyz^2(y-x)}{(x+z-1)(y+z-1)} e^{-(x+y+z-1)W(-t)}.
\]

Proof. Fix \(n \geq 1 \). As in the proof of Proposition 9 in the case \(y = 1 \), we denote by \(\mathcal{P}_{n+1} \) the set of couples \((A, B)\) with \(A \) and \(B \) two subsets of \(\{1, \ldots, n+1\} \) such that \(A \cup B = \{1, \ldots, n+1\}, A \cap B = \emptyset, 1 \in A \) and \(n+1 \in B \). Then with a similar “tree-cutting” argument that led to (4) we have:

\[
G_{n+1}(x, y, z) = xyz \sum_{t \in \mathcal{E}_n} y^\deg S_1(t) + \sum_{\substack{(A, B) \in \mathcal{P}_{n+1} \\mid |A| > 1}} \sum_{\substack{t_1 \in \mathcal{E}_A \\mid \deg L_1(t_1) \neq 0 \\mid \deg L_1(t_1) = 0 \\mid \deg L_1(t_1) = 1 \\mid \deg L_1(t_1) = 2}} \frac{[|A| - 2] x^{\deg S_1(t_1)} y^{\deg S_2(t_1)} z^{\deg L_1(t_1)}}{x^{\deg S_1(t_1)} + y^{\deg S_2(t_1)} + z^{\deg L_1(t_1)}} + x^{\deg S_1(t_1)} y^{\deg S_2(t_1)} + z^{\deg L_1(t_1)}
\]

The first term corresponds to the case where \(t_1 \) has only 1 vertex (i.e. \(|A| = 1 \)). If \(|A| > 1 \) then the vertex 1 and the last vertex of the path \(L_1(t_1) \) are distinct in \(t_1 \) and we have to consider three cases: 1) we attach \(t_2 \) to a vertex of \(t_1 \) which is neither 1, nor the last vertex of \(L_1(t_1) \). 2) We attach \(t_2 \) to the vertex 1. 3) We attach \(t_2 \) to the last vertex of \(L_1(t_1) \). Then we have:

\[
G_{n+1}(x, y, z) = xyzF_n(y) + \sum_{a=2}^n \binom{n-1}{a-1} ((a-2)G_a(x, y, z) + xG_a(x, y, z) + yzF_a(x, 1, z)F_{n+1-a}(y)).
\]

By Proposition 13 we get:

\[
G_{n+1}(x, y, z) = xyzF_n(x) + \sum_{a=2}^n \binom{n-1}{a-1} [(a-2)G_a(x, y, z) + yG_a(x, y, z) + xzF_a(y, 1, z)F_{n+1-a}(x)]
\]

Now if we make the difference between the last two equations, we obtain:

\[
0 = xyz(F_n(y) - F_n(x)) + (x - y) \sum_{a=2}^n \binom{n-1}{a-1} G_a(x, y, z) + z \sum_{a=2}^n \binom{n-1}{a-1} [yF_a(x, 1, z)F_{n+1-a}(y) - xF_a(y, 1, z)F_{n+1-a}(x)]
\]
If \(n \geq 2 \), by using the third variant of Abel’s binomial formula and Proposition \([9]\) we get:

\[
\sum_{a=2}^{n} \binom{n-1}{a-1} F_a(x, 1, z) F_{n+1-a}(y) = xz \frac{\frac{x+y+z-1}{x+z-1} (x+y+z+n-2)^{n-2}}{y+z-1} - xyz (x+n-1)^{n-2} y+z-1
\]

and

\[
\sum_{a=2}^{n} \binom{n-1}{a-1} F_a(y, 1, z) F_{n+1-a}(x) = yz \frac{\frac{x+y+z-1}{y+z-1} (x+y+z+n-2)^{n-2}}{x+z-1} - xyz (y+n-1)^{n-2} x+z-1.
\]

So, finally,

\[
0 = (x-y) \sum_{a=2}^{n} \binom{n-1}{a-1} G_a(x, y, z) + u_{n-1}(x, y, z),
\]

where

\[
u_{n-1}(x, y, z) = \frac{xy^2z(x-1)}{x+z-1} (y+n-1)^{n-2} - \frac{x^2yz(y-1)}{y+z-1} (x+n-1)^{n-2} + \frac{xyz^2(y-x)(x+y+z-1)}{(x+z-1)(y+z-1)} (x+y+z+n-2)^{n-2}.
\]

Thus, by Pascal’s inversion formula,

\[
(y-x) G_{n+1}(x, y, z) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} u_k(x, y, z). \tag{7}
\]

Now define for \(n \geq 0 \) the polynomials \(P_n \) by

\[
P_n(u) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} (k+u)^{k-1}. \tag{8}
\]

Their exponential generating function is given by

\[
\sum_{n \geq 0} \frac{P_n(u)}{n!} t^n = \sum_{k \geq 0} u^k (k+u)^{k-1} \sum_{n \geq k} \binom{n}{k} (-1)^{n-k} \frac{1}{n!} t^{n-k} = uc^{-t} \sum_{k \geq 0} \frac{(k+u)^{k-1} t^k}{k!} = e^{-t-uW(-t)}.
\]

This, combined with \((7)\), readily gives the desired result.

\[\square\]

4.3 Proof of Theorem \([1]\)

To simplify notation, for \(n \geq 2 \), set

\[
p_{i,j}^n = \delta \left(\deg_1(T_n) = i, \deg_2(T_n) = j \right)
\]

so that

\[
p_{i,j}^n = \frac{1}{n^{n-2}} [x^i y^j] G_n(x, y, 1).
\]

Proof of Theorem \([7]\) Fix \(i, j \geq 1 \). We take the formula of Proposition \([14]\) with \(z = 1 \) and divide it by \((y-x)\) to get:

\[
e^t \sum_{n\geq1} \frac{G_{n+1}(x, y, 1)}{n!} t^n = \frac{xy}{y-x} \left[e^{-yW(-t)} - e^{-xW(-t)} \right] + \frac{1}{y-x} \left[xe^{-xW(-t)} - ye^{-yW(-t)} \right] + e^{-(x+y)W(-t)}.
\]
We shall identify the coefficient in front of x^iy^j (which is a polynomial in t) in this formula. On the left of
this equality, the coefficient is:

$$e^t \sum_{n \geq 1} p_{i,j}^{n+1} \frac{(n+1)^{n-1}}{n!} t^n.$$

Using the identity $y^k - x^k = (y-x)(y^{k-1} + y^{k-2}x + \cdots + x^{k-1})$ we deduce the coefficient on the right:

$$\frac{(-W(-t))^{i+j}}{i!j!} + \frac{(-W(-t))^{i+j-1}}{(i+j-1)!} + \frac{(-W(-t))^{i+j}}{(i+j)!}.$$

Therefore

$$\sum_{n \geq 1} p_{i,j}^{n+1} \frac{(n+1)^{n-1}}{n!} t^n = e^{-t} \frac{(-W(-t))^{i+j}}{i!j!} + e^{-t} \frac{(-W(-t))^{i+j-1}}{(i+j-1)!} + e^{-t} \frac{(-W(-t))^{i+j}}{(i+j)!}.$$

We now fix $n \geq i+j$ and identify the coefficient associated with t^n in the above formula. Fix $1 \leq \ell \leq n$. By
using formula (8) we obtain:

$$[t^n]e^{-t}(-W(-t))^\ell = \ell \sum_{k=\ell}^n \frac{(-1)^{n-k} k^{k-1-\ell}}{(n-k)! (k-\ell)!}.$$

Recall the definition of P_n in (8). Taking $y = z = 1$ in equation (7) gives:

$$G_{n+1}(x,1,1) = F_{n+1}(x) = P_n(x+1) - P_n(1).$$

In particular,

$$P_n^{(\ell)}(x+1) = F_n^{(\ell)}(x) = x \frac{(n-1)!}{(n-1-\ell)!} (n+x)^{n-1-\ell} + \ell \frac{(n-1)!}{(n-\ell)!} (n+x)^{n-\ell},$$

with the convention that $1/(-1)! = 0$. On the other hand, by definition of P_n,

$$P_n^{(\ell)}(x) = x \sum_{k=\ell+1}^n (-1)^{n-k} \binom{n}{k} \frac{(k-1)!}{(k-1-\ell)!} (k+x)^{k-1-\ell} + \ell \sum_{k=\ell}^n (-1)^{n-k} \binom{n}{k} \frac{(k-1)!}{(k-\ell)!} (k+x)^{k-\ell}. $$

We finally obtain:

$$\ell \sum_{k=\ell}^n \frac{(-1)^{n-k} k^{k-1-\ell}}{(n-k)! (k-\ell)!} = \frac{1}{n!} P_n^{(\ell)}(0) = (n-1)^{n-1-\ell} \frac{\ell - 1}{(n-\ell)!}.$$

Formula (11) then follows.

\[\square \]

References

[ACEH18] A. Alexandrov, G. Chapuy, B. Eynard, and J. Haranad. Weighted Hurwitz numbers and topological recursion: An overview. *Journal of Mathematical Physics*, 59(8):081102, Aug 2018.

[AM19] O. Angel and J. Martin. 14th probability and combinatorics workshop. Private communication, Barbados 2019.

[Bia97] P. Biane. Some properties of crossings and partitions. *Discrete Math.*, 175:41–53, 1997.

[Bia02] P. Biane. Parking functions of types A and B. *Electron. J. Combin.*, 9, 2002.

[Bia05] P. Biane. Nombre de factorisations d’un grand cycle. *Sem. Lothar. Combin.*, 51, 2004/2005.

[Car19] A. Caraceni. 14th probability and combinatorics workshop. Private communication, Barbados 2019.

[CJK97] R. Corless, D. Jeffrey, and D. Knuth. A sequence of series for the lambert w function. *ISSAC ’97: Proceedings of the 1997 international symposium on Symbolic and algebraic computation*, pages 197–204, 1997.
[Dé59] J Dénes. The representation of a permutation as the product of a minimal number of transpositions, and its connection with the theory of graphs. *Magyar Tud. Akad. Mat. Kutato Int. Kozl.*, 4:63–71, 1959.

[FK18] V Féray and I Kortchemski. The geometry of random minimal factorizations of a long cycle via biconditioned bitype random trees. *Ann. H. Lebesgue*, 1:149–226, 2018.

[FK19] V Féray and I Kortchemski. Trajectories in random minimal transposition factorizations. *Lat. Am. J. Probab. Math. Stat.*, 16:759–785, 2019.

[GP93] I P Goulden and S Pepper. Labelled trees and factorizations of a cycle into transpositions. *Discrete Math.*, 113:263–268, 1993.

[GY02] I Goulden and A Yong. Tree-like properties of cycle factorizations. *J. Combinatorial Theory ser. A*, 98:106–117, 2002.

[Mos89] P Moszkowski. A solution to a problem of Dénes: a bijection between trees and factorizations of cyclic permutations. *European J. Combin.*, 10:13–16, 1989.

[Rio79] J Riordan. *Combinatorial Identities*. New York: Wiley, 1979.

[The20] P Thevenin. A geometric representation of fragmentation processes on stable trees. arXiv:1910.04508, 2020.