Elbow Floating in Children: About Three Cases and Literature Review

Oumar Ndour, Awa Drame, Aimée Lakh Faye Fall, Ndye Aby Ndoye, Cheikh Diouf, Souleymane Camara, Gabriel Ngom
Department of Pediatric Surgery, Aristide Le Dantec Hospital Dakar, Dakar, Sénégal

Abstract

Purpose: The aim of this study was to determine the epidemiological, lesion, treatment and outcome of the ‘floating elbow’ in children. Observations: It was two boys and a girl with a mean age of 7 years. The average consultation time was 3.6 h. In two patients, the trauma had occurred during playful accident with fall from a height. Supracondylar fracture was associated with a fracture epiphyseal separation-type II distal end of the right radius in one case, a fracture of the distal quarter of the bones 2 of the forearm in the second patient and fracture quarter distal radius in the third patient. All fractures of the elbow were treated by osteosynthesis as well as a fracture of the distal radius ¼. The average hospital stay was 5 days. After a mean of 8 months was rated limitation of elbow flexion to 100° in a patient, an externalisation of the pins at the elbow in M3 in one patient and a limitation of elbow extension at 30° in 2 patients. One patient had a varus ulna. The pronosupination was preserved in all patients. Conclusion: The ‘floating elbow’ is unusual in children and usually occurs during a high-energy trauma. His treatment is not yet the subject of consensus. Complications often involve the elbow.

Keywords: ‘Floating elbow’ child, functional limitation, surgery

Introduction

The floating elbow is the association of a humeral supracondylar fracture and a fracture of one or both bones of the forearm.[1-3] It is rarely encountered in traumatic pathology of the child with an incidence of 3%-13%. [6-8] This disease occurs usually in children over 5 years. It occurs with the waning of a high-energy trauma. The diagnosis is clinical and radiological. Standard radiography can often make an accurate assessment of the lesions.[6,9,10] Treatment is usually surgical,[1,2,4,6,7,9,11,12] but some authors opt for orthopaedic treatment.[10,13] The evolution is usually favourable, but complications related to the fracture of the elbow and that of the forearm type of malunion, stiffness and epiphyseal closure have been reported.[2,6,11,14-17] Non-union is rare in children.[1,9,16,18] In Africa, and particularly in Senegal, few cases are reported in the[12,9,10] child. Thus, we initiated this study to determine the epidemiological, lesion, treatment and outcome of the floating elbow in three children in care in the Paediatric Surgery Department of the Hospital Aristide Le Dantec in Dakar.

Observations

Observation 1
Mr. S. D. is a boy of 8 years, right-handed, schooled, with no particular pathological history. He would be the victim of a firm traumatism of the right elbow occurred 4 h before his admission. He would have fallen from a tree with a reception on the dorsal side of his right elbow flexing hand, at the exit of the school. In the presence of a pain, and an absolute functional impotence of the right upper limb, the parents consult in our service. At admission, the clinical examination found a good general condition, well-coloured mucous membranes, apyrexia and a stable haemodynamic state. At the level of the right upper limb, functional impotence, limb edema, elbow and wrist distortion without vasculonervous disorders were noted. A standard X-ray of the elbow and the forearm, straight from the front and profile, was found: a supracondylar fracture type 3 by Rigault and Lagrange and a type II epiphyseal fracture of the distal end of the radius [Figure 1]. A suspension treatment of the limb with the zenith associated with an analgesic was initiated for 2 days. At day 3 hospitalisation, a blood reduction and a cross-socket with Kirschner pins of 18/10 and 16/10 caliber were performed at the elbow and radius [Figure 2]. Radiography of the elbow and wrist at

Address for correspondence: Prof. Oumar Ndour,
Department of Pediatric Surgery, CHU Aristide Le Dantec, Dakar. Sénégal.
E-mail: roundrouma@yahoo.fr

How to cite this article: Ndour O, Drame A, Fall AL, Ndoye NA, Diouf C, Camara S, et al. Elbow floating in children: About three cases and literature review. Afr J Paediatr Surg 2020;17:95-8.
D1 postoperative showed a reduction deemed acceptable. The discharge from the hospital was authorised on day 4 postoperatively under a BABP splint and analgesics. Wound healing was noted at post-operative day 20, and removal of the splint was performed. The measurement of the Baumann angle was 71° to M6 postoperative. Removal of osteosynthesis equipment and mobilisation of the elbow were performed at M6 postoperatively under general anaesthesia, and self-rehabilitation was advocated at home under the supervision of parents. The activities of everyday life (meals, baths and dressing) are done without help. The clinical examination performed at M7 post-operatively found a flexion limited to 100° [Figure 3], a complete extension of the elbow, a normal prognosis without deviation of axis.

Observation no. 2

L. D. is a 7-year-old right-handed boy, enrolled in the course of initiation, without any particular pathological history. The accident occurred 3 h before his visit to the surgical emergency unit of the HALD’s paediatric surgery department. It would have made a fall of a wall about 5 m of height with reception on the palm of the right hand elbow in extension. The examination at admission found a good general condition, well-coloured mucous membranes and a temperature at 36.5°C. Physical examination noted deformity, swelling of the right elbow, deformity and exquisite pain in palpation of the forearms without vasculonervous disorders. The standard radiographs of the elbow and forearm of the face/profile showed: a supracondylar fracture type 3 Rigault and Lagrange, a delamination fracture type II -épiphysaire the distal end of the radius initiated. At day 3 of hospitalisation, a reduction under general anaesthesia and under a shining amplifier and a restraint according to Blount was carried out with immobilisation by plaster cuff at the level of the forearm. Blount’s contention was accidentally defeated during the control radiography which showed a secondary displacement. A bleeding reduction with X-racking at the elbow was performed at post-traumatic J6, supplemented by a BABP fenestrated plaster at the elbow. The discharge from the hospital was authorised on D4. Wound healing of the operative wound occurred postoperatively, and a plaster cuff was performed post-operatively. The patient is lost to sight for 3 months. Subsequently, we noticed an issue of the pins through the skin, a stiffness of the elbow and deterioration of the plaster. After a control radiography showing the formation of a callus, we removed the pins and plaster and self-rehabilitated. The postoperative M7 clinical examination returned to the interrogation: A resumption of everyday activities (baths, meals and dressing) that are normally performed without help. On the other hand, the physical examination noted a limitation of the extension of the elbow to 30°. We carried out a mobilisation of the elbow under general anaesthesia with sessions of self-re-education at home. At post-traumatic M10, the clinical examination found a limitation of the extension to 15° without any notion of discomfort in the activities of the daily life (baths, dressing and meals). The measurement of the Baumann angle on the control radiograph was 74°.

Observations no. 3

A. C. is a 6-year-old girl with no previous history, right-handed, not educated. She was referred by a health centre for multiple trauma 4 h after an accident on the public highway. She was allegedly hit by a public bus called ‘fast’ when crossing the roadway without any notion of loss of initial knowledge or vomiting. The general examination found a good general condition, a clear consciousness, pale mucous membranes and a temperature of 36.6°C. Physical examination noted an absolute functional impotence with painful swelling and right
It is the existence of these complications associated with supracondylar fractures that led us to recommend the stabilisation by pinning of the floating elbow, as we noted in our study. This is what we found in our study with the conservative treatment having no place in the treatment of floating elbow as often displaced fractures, moving toward the ulna varus deformity. Harrington recommends the reduction and the first surgical stabilisation of humeral supracondylar fracture due to the potential risk of associated complications. Once the lesion stabilised, the treatment of fracture of the forearm is made, either by closed reduction followed a plaster cast or by a reduction and stabilisation by pinning. Ring considers the stabilisation by pinning of unstable fractures in children.

In children, the therapeutic methods remain floating elbow surgery for the vast majority of authors by reduction and pinning closed hearth. Templeton recommends priority the reduction and stabilisation of two outbreaks of fractures plug for quick remission of pain and edema, as well as careful management of neurovascular lesions. He believes that the conservative treatment has no place in the treatment of floating elbow as often displaced fractures, moving toward the ulna varus deformity. Harrington recommends the reduction and the first surgical stabilisation of humeral supracondylar fracture due to the potential risk of associated complications.

In our study, we have not found it necessary to make the scanner to the types of fractures seen on plain radiographs. Faced with the risk of vascular lesions, some authors as Ring perform a Doppler examination in the preoperative assessment before very displaced fractures.

In children, the therapeutic methods remain floating elbow surgery for the vast majority of authors by reduction and pinning closed hearth. Templeton recommends priority the reduction and stabilisation of two outbreaks of fractures plug for quick remission of pain and edema, as well as careful management of neurovascular lesions. He believes that the conservative treatment has no place in the treatment of floating elbow as often displaced fractures, moving toward the ulna varus deformity. Harrington recommends the reduction and the first surgical stabilisation of humeral supracondylar fracture due to the potential risk of associated complications. Once the lesion stabilised, the treatment of fracture of the forearm is made, either by closed reduction followed a plaster cast or by a reduction and stabilisation by pinning. Ring considers the stabilisation by pinning of
humeral supracondylar fracture and fracture of the forearm, provides sufficient stability. By cons, some authors opt for orthopaedic treatment by performing a reduction and containment as Blount plastered with cuff at the forearm. This cast immobilisation is controversial in the literature due to a high risk of occurrence of compartment syndrome with plaster. Suresh, the stabilisation of the reduction with plaster is only a problem in bending increases the risk of compression, in extension reduction is not controlled. We performed a suspension as the zenith waiting processing to melt the edema in all patients. In developed countries, patients are seen early, with a medical transport before installation of edema, unlike our country where patients go around structures before being supported. In our study, we have supported the elbow in priority to the severity of lesions. At the forearm, our therapeutic strategy is based on the types of lesions with orthopaedic treatment for fractures little or no displaced. Orthopaedic treatment keeps his place in paediatric fractures because the latter quickly consolidate without risk usually go.

In our study, one patient developed post-operative complications immediate type of secondary displacement and curbed infection with antibiotics. We have no neurovascular complications or compartment syndrome. Infectious complications are widely described in the case of open fractures and after open surgery which is the case of our third patient. Suppuration is responsible for secondary displacement seen late 1 month. The elbow is a hinge which stiffens rapidly with a risk of malunion described in the literature. Non-union is rarely found in children. Two of our patients had good results, and we noted a cubitus varus in our third patient. Mobilisation under general anaesthesia and self-rehabilitation enabled us to fight against stiff elbow. Ulna varus is related to the secondary displacement. Fractures of both forearm bones are consolidated on time, and we did not notice any complications. Unlike the distal end of the front-arm, bone remodelling seat can correct the defect correction, the elbow is a very fertile area where the importance of proper anatomical reduction. Despite limiting the mobility of the elbow, the essential function of the elbow is kept for autonomy in daily activities such as eating, bathing and dressing.

Conclusion
The ‘floating elbow’ is unusual in children and usually occurs during a high-energy trauma. His treatment is not yet the subject of consensus. Complications often involve the elbow.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Agarwal A. The ‘floating elbow’ in children and the additional fracture-report of two cases. J Clin Orthop Trauma 2011;2:122-3.
2. Anountou NM, Gogoua D, Obo A, Kone B, Fal A, Guedegbe F, Varango G. Coude flottants et dérives : Aspects nosologiques et résultats thérapeutiques à propos de 7cas. Rev CAMES 2006;04:13-7.
3. Chapuis M. Le coude flottant. Cahiers d’enseignement de la SOFCOT 2000;72:154-6.
4. Daunois O, Blamoutier A, Duclorey P, Carliso H. Supracondylar fractures of the humerus associated with ipsilateral fractures of the forearm. Rev Chir Orthop Reparatrice Appar Mot 1992;78:333-9.
5. El Ibrahimi A, Shimi M, Daoudi A, Elmiri A. Le coude flottant: Étude rétrospective et revue de la littérature. Chir Main 2012;31:350-4.
6. Templeton PA, Graham HK. The ‘floating elbow’ in children: Simultaneous supracondylar fractures of the humerus and the forearm in the same upper limb. J Bone Joint Surg Am 1995;77:791-6.
7. Yokoyama K, Itoman M, Kobayashi A, Shindo M, Futami T. Functional outcomes of ‘floating elbow’ injuries in adult patients. J Orthop Trauma 1998;12:284-90.
8. Williamson DM, Cole WG. Treatment of ipsilateral supracondylar and forearm fractures in children. Injury 1992;23:159-61.
9. Diémé CB, Sane AD, N’diaye A, Seye SI. Le «coude flottant» à l’hôpital Aristide Le Dantec. Aspects anatomo-cliniques et thérapeutiques. Tunisie Orthop 2010;3:61-8.
10. Kinkpe CV, Dansokho AV, Niane MM, Seye SI. Traitement orthopédique du coude flottant chez l’enfant: A propos d’un cas. Chir Main 2010;29:135-7.
11. Biyani A, Gupta SP, Sharma JC. Ipsilateral supracondylar fracture of humerus and forearm bones in children. Injury 1989;20:203-7.
12. Suresh SS. Management of ‘floating elbow’ in children. Indian J Orthop 2007;41:386-9.
13. Lamah L, Diakite SK, Kallo FO, Toure M, Diallo MM, Kourouma F, et al. Coudes flottants: Aspects anatomo cliniques et l’analyse du traitement. Mali Med 2013;28:9-12.
14. Bishop JY, Flatow EL. Pediatric shoulder trauma. J Clin Orthop 2005;432:41-8.
15. Gaussepol T, Mader K, Kirchner S, Pennig D. The ‘floating forearm’ injury in a child: A case report. Strategies Trauma Limb Reconstr 2007;2:48-54.
16. Harrington P, Sharif I, Fogarty EE, Dowling FE, Moore DP. Management of the floating elbow injury in children. Simultaneous ipsilateral fractures of the elbow and forearm. Arch Orthopa Trauma Surg 2000;120:205-8.
17. Solomon HB, Zadnik M, Eglseeder WA. A review of outcomes in 18 patients with floating elbow. J Orthop Trauma 2003;17:563-70.
18. Rogers James F, Benet James B. Management of concomitant ipsilateral fractures of the humerus and forearm. J Bone Joint Surg Am 2005;66:552-5.
19. Ring D, Waters PM, Hotchkiss RN, Kasser JR. Pediatric floating elbow. J Pediatr Orthop 2001;21:456-9.
20. Allain J, Pannier S, Goutallier D. Traumatismes du coude. Encyclopédie medico-chirurgicale 2007;24:100-28.
21. Cannata G, De Maio F, Mancini F, Ippolito E. Physeal fractures of the distal radius and ulna: Long-term prognosis. J Orthopa Trauma 2003;17:172-9.
22. Damsin JP. Bilan clinique et radiologique d’un traumatisme du cartilage de croissance. Rev Chir Orthop 1999;85:49-53.
23. Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Joint Surg Am 1963;45:587-622.
24. Pierce RO Jr., Hodurski DF. Fractures of the humerus, radius, and ulna in the same extremity. J Trauma 1979;19:182-5.
25. Powell RS, Bowe JA. Ipsilateral supracondylar humerus fracture and Monteggia lesion: A case report. J Orthop Trauma 2002;16:737-40.