Chapter 7

Summary
Membranes are one of the defining characteristics of living organisms. They separate the environment from the cytosol, where most chemical reactions necessary to sustain life happen. Molecules in solution, such as nutrients, need to cross the phospholipidic bilayer in order to be metabolized. The passage of such molecules is regulated by membrane proteins known as transporters which expose the substrate-binding site to the extracellular or the intracellular solution, separated by a barrier formed between the two domains in the protein. Most transporters alternate the access of solute to the binding site by either a rocking-bundle or a rocker-switch mechanism [1]. In these mechanisms access to the binding site is alternated by the disrupting and recreating the barrier between the two domains [2] in a so-called moving barrier model. In the past decade a new mechanism has been proposed in which the substrate binding site is mostly coordinated by residues of a single domain that slides through the membrane along a rigid scaffold domain (the elevator mechanism) [1,3]. This is the case of the transporters GltTk and CitS discussed in this thesis. In recent years the amount of structural data on these transporters rapidly increased, however the underlying kinetic mechanism remained mostly unexplored.

In an attempt to fill this gap in chapter 2 we analysed the transport rates of L-aspartate uptake in liposome-reconstituted GltTk. Since the dissociation constant (K_d) deviates considerably from the Michaelis constant (K_M) the analysis has been carried out in the context of the steady state assumption introduced in chapter 1. In the analysis of transport rates it is important to take into account that purified membrane proteins are often inserted in mixed orientation as a result of the reconstitution process, which could lead to misinterpretations in the analysis of transport rates. To overcome this problem we used synthetic nanobodies (Sybody) which bind specifically on the extracellular side of the transporter [4]. Sybodies offer some advantages compared to their natural counterpart, such as the possibility to push the selection towards specific protein conformations by altering buffer conditions or by exposing the preferred epitope during the immobilization step during the ribosome and phage display selections. Overall, the creation of a sybody library is also quicker compared to nanobodies. The transport rate analysis of the inside-out oriented protein can be directly compared with previously published pre-equilibrium binding study on detergent-solubilized GltPh in which the kinetic mechanism of binding of Na$^+$ ions and aspartate were determined and the the rate constants for dissociation and association were estimated [5]. The results presented in chapter 2 are consistent with the findings reported in pre-equilibrium binding study [6]. In addition, the adopted method allowed the determination of the association rate constant for aspartate ($k_a = 1.3 \times 10^4$ M$^{-1}$s$^{-1}$) without relying on the notoriously error prone protein concentration determination in proteoliposomes, and the turnover number ($k_{cat} = 0.95$) calculated from v_{max}. When compared to the k_a obtained in GltPh (1.2×10^4 M$^{-1}$s$^{-1}$) the two constants are comparable, this is consistent in the context of the binding site structure which is virtually identical. Differently from k_a, which only considers the aspartate association step, k_{cat} is composed by the rate contribution of multiple events that take place between the binding of the last Na$^+$ ion and the binding of the first Na$^+$ ion in the next transport cycle. The difference in k_{cat} between GltPh and GltTk (0.14 s$^{-1}$ and 0.95 s$^{-1}$ respectively) can be addressed to small structural differences outside the substrate binding site.

The kinetic analysis of CitS could not rely on previous studies to corroborate the sequence of binding events, however it was possible to determine the kinetic mechanism from the transport rate analysis in proteoliposomes. Differently from GltTk, the dissociation constant (K_d) of citrate in CitS appears to be comparable to the K_M thus allowing to establish the kinetic mechanism via a model developed for rapid equilibrium kinetics [7]. In chapter 3 we measured the citrate transport rates in an array of conditions by varying citrate and Na$^+$ concentrations in order to determine v_{max} and K_M for both citrate and Na$^+$ dependent uptakes (superscript Cit and Na respectively). The analysis of the dependency of v_{max} (K_M) against the concentration of Na$^+$ and citrate respectively revealed that the values are co-dependent, indicating that the last binding event in the kinetic scheme is a random step between citrate and sodium. The analysis of the dependency of the K_M (app) against the Na$^+$ concentration indicates that one sodium ion binds to the transport domain prior to the binding step involving citrate. Similar to GltTk, we tested whether the direction of transport influences the kinetic mechanism, thus the inside out fraction of the reconstituted protein was inactivated by modifying the naturally present cysteines with a membrane-impermeable maleimide-based compound (AMdiS) [8]. The analysis of v_{max} dependency confirmed a random binding step as last event for the right-side oriented transport.

The kinetic mechanism was not the only aspect that needed to be characterized in CitS, in fact the elevator mechanism was inferred from the crystal structures but never experimentally proven. In chapter 4 we used HS-ASM to directly observe the vertical displacement of the transport domain of CitS inserted in a lipid bilayer. To achieve high density reconstitution necessary for HS-AFM measurement we adapted a method previously used to obtain 2D crystals that...
yielded an electron crystallography structure \[9\]. The measurements were performed in presence of Na\(^+\) only, in presence of Na\(^+\) and citrate and in absence of both substrates. The analysis of the height traces revealed that the transport domain transitions between three states of height \(-1.6\) nm, \(-1.0\) nm and \(-0.5\) nm, we named them elevated, intermediate and down state respectively. All states are visited by the transport domain both in presence of Na\(^+\) and citrate and Na\(^+\) only, however the transport domain visits more frequently and for longer time the intermediate state when both citrate and Na\(^+\) are present. The transport domain can move across the lipid bilayer in presence of Na\(^+\) alone, although it is unlikely that it does so while Na\(^+\) is bound. Our interpretation is that the binding of the substrates occurs at the elevated and down state when the binding site is fully exposed to the solution. Only the fully bound or empty transporter can then traverse the membrane from elevated to down state passing through the meta-stable intermediate state. When the transport domain finally reaches the opposite side of the membrane the substrate are released in solution. The position of one transport domain does not seem to affect the position of the other during transport, therefore we conclude that there is no cooperativity between protomers.

Proteins are usually stereoselective in ligand recognition, this characteristic is exploited in synthetic chemistry to selectively produce a preferred stereoisomer. The architecture of the binding pocket normally allows the binding of a molecule in a specific mode making it inaccessible for molecules that have different three-dimensional structure. Nonetheless some proteins are able to bind both stereoisomers of a molecule in the same site but with different orientation. For example, Glt\(_{1}\) is able to transport both L- and D-aspartate with similar affinity \(K_M\). In chapter 5 we solved the crystal structure of Glt\(_{1}\) in complex with D-aspartate and investigated the binding and transport of the amino acid. The crystal structure reveals that D- and L-aspartate are bound by the same network of contacts but the angles of the hydrogen bonds differ substantially between the two stereoisomers. The difference in hydrogen bonds angles is reflected in a higher \(K_M\) value \((\sim 380\) nM\) which is probably caused by a higher \(k_{on}\) rate in comparison to L-aspartate. The stoichiometry of Na\(^+\) and D-aspartate symport was tested by measuring the equilibrium potential and indicates that 3 Na\(^+\) ions are co-transported with D-aspartate, which is the same ratio as L-aspartate. These conclusions indicate that the mechanism of D- and L-aspartate transport is essentially identical.

The mechanism by which Glt\(_{1}\) achieves strict Na\(^+\) coupling during aspartate transport is still debated. A conserved methionine in position 314 is involved in the coordination of a Na\(^+\) ion and mutations of this residue diminish the binding cooperativity between aspartate and Na\(^+\) \[10\]. To assess whether the reduced cooperativity caused by this mutation is ascribable to altered stoichiometry or a disruption that slows down the rate of Na\(^+\) binding, in chapter 6 we measure the reversal potential for aspartate transport. Knowing the reversal potential allows to calculate the stoichiometry of transport in electrogenic secondary active transporters \[11\]. The methionine 314 was mutated into cysteine, serine and alanine and the mutated Glt\(_{1}\) was reconstituted in proteoliposomes. The flux of aspartate was measured at three membrane potentials which correspond to the reversal potential for stoichiometries 4:1, 3:1 and 2:1 Na\(^+\):aspartate \((-78.06\) mV, \(-39.03\) mV and \(-26.02\) mV respectively) for each mutant. The reversal potential resulted into equilibrium at the value expected for the 3:1 stoichiometry in all mutants.

Perspectives

In this thesis, we present the kinetic mechanism of the reverse transport of Glt\(_{1}\) which only represents half of the complete transport cycle. While from our analysis it appears that both reverse and forward transport share the same mechanism, it would be interesting to provide experimental proof of it by performing the same analysis by blocking the reverse transport. To do so, it will be necessary to select a new sybody (or more generally an antibody) by optimizing the selection condition directed towards the binding of the intracellular side of Glt\(_{1}\). Likewise, the reverse transport of citrate by CitS remains unexplored. Unfortunately, the endogenous cysteines in this transporter only allow the blocking of the reverse transport, therefore a selection for a side specific inhibitor will be necessary. In addition, the rate constants for CitS still need to be calculated. In order to do this, the \(K_s\) of citrate binding needs to be accurately determined.

While we proved by HS-AFM that CitS catalyses the transport of citrate via an elevator mechanism, this technique still lacks a method to introduce a gradient of substrates across the membrane. In these years I had the privilege to discuss this aspect with leading scientists in the field and steps are being made in order to solve this problem, that is not (only) limited to studying transport proteins. Being able to establish a (even a temporary) gradient across membrane patches...
will allow a more physiological estimate of the energetic barriers between transport states.

The structure of GltK in complex with D-aspartate is, indeed, an important breakthrough in the structural understanding of the binding mechanism of the amino acid, however the mechanism of transport is only speculated to be the same as the one for L-aspartate. The small difference in K_m between the stereoisomers might hide kinetic aspects not predictable from the structure. Extrapolating the rate constants, as was done in chapter 2, might give insight on which steps of the kinetic mechanism are affected and to which magnitude. The same analysis could also be applied for the mutants of the methionine at position 314. Even though we excluded that the residue is essential to maintain the transport stoichiometry, a full transport rate analysis will elucidate the role of this conserved methionine or other residues that, when mutated, either block or accelerate the transport reaction.

Chapter 7. Summary
Nederlandse samenvatting

Biologische membranen zijn een van de meest belangrijke kenmerken voor levende organismen. Ze zorgen ervoor dat er een binnenkant en een buitenkant van de cel is. Door deze scheidingswand worden moleculen dicht bij elkaar gebracht en kunnen de (bio)chemische reacties van het leven plaats vinden in de cel. Moleculen in oplossing aan de buitenkant of binnenkant van de cel, zoals voedingstoffen, moeten over deze bilaag van lipiden heen getransporteerd kunnen worden om deel te nemen aan het metabolisme van de cel. Andersom moeten sommige overtollige, of (giftige) afval-producten ook weer de cel uit getransporteerd kunnen worden. Deze processen worden verzorgd en gereguleerd door membraan eiwitten, zogenaamde transporteurs. Deze eiwitten hebben een meestal een bindingsplek voor het substraat aan de buitenkant of binnenkant van de cel, en twee domeinen van het eiwit vormen een barrière voor het substraat zodat het niet direct door het eiwit heen kan gaan. Door het bewegen van de domeinen kan het substraat getransporteerd worden, de bindingsplek van het substraat komt dan aan de andere kant van de membraan beschikbaar. Hier kunnen de processen ook weer losgelaten worden. Dit gebeurt via het zogenaamde rocking-bundle of rocker-switch mechanisme [1]. Rocking-bundle betekent dat een groep van eiwitdomeinen met elkaar bewegen zodat de bindingsplek van het substraat aan de andere kant van de membraan beschikbaar wordt. Rocker-switch is vergelijkbaar, maar de bindingsplek van het substraat kan dan aan de andere kant van de membraan worden door een beweging van het eiwit die lijkt op het bewegen van een tuimelschakelaar. Dat de substraat bindingsplek afwisselend aan beide kanten van de membraan beschikbaar is komt doordat de barrière in het eiwit verdwijnt en weer terugkomt, dit wordt ook wel het bewegende barrière model genoemd [2]. Een ander mechanisme is het zogenaamde lift-mechanisme (elevator-mechanism) waarbij een domein van het eiwit met het substraat als een lift langs een ander domein van het eiwit op en neer beweegt [1,3]. Dit mechanisms wordt gebruikt door de membraan eiwitten die ook in dit proefschrift worden besproken, namelijk de transporteurs GltTk en CitS. Recentelijk onderzoek heeft veel inzichten in de 3D structuren van deze eiwitten opgeleverd, maar het onderliggende kinetische mechanisme is vooralsnog onderbelicht geweest.

Om de kinetiek van GltTk beter te begrijpen hebben we in hoofdstuk 2 de transport snelheden van dit eiwit voor het substraat L-aspartaat gemeten. Hiervoor hebben we dit eiwit gezuiverd en weer gereconstueerd in lipiden die laagvormen (liposomes). Omdat de dissociatie constante \(K_d \) erg verschilt van de Michaelis constante \(K_M \) is de analyse uitgevoerd in de context van de steady state assumption die geïntroduceerd is in hoofdstuk 1. Dat wil zeggen dat we de veronderstelling hebben aangenomen dat de concentraties gelijk blijven. Het gezuiverde eiwit kan in beide oriëntaties gereconstrueerd zijn in de liposomen, en dat zou tot misinterpretatie van de data kunnen leiden. Daarom hebben we met behulp van kleine eiwitten (nanobodies) één van de oriëntaties geblokkeerd [4]. We hebben gekozen voor een synthetische variant van nanobodies die ook wel Sybodies worden genoemd. Voordelen van de Sybodies zijn onder andere dat je tijdens de selectie meer druk kan uitoefenen om juist één conformatie van het eiwit door het kleine Sybody eiwit te laten herkennen, bovendien gaat het sneller dan het generen van natuurlijke nanobodies. De transport snelheden die we op deze manier gemeten hebben kunnen direct vergeleken worden met een eerder gepubliceerde studie over bindingen aan GltPh opgelost met detergent [5]. In deze studie is de kinetiek van Na⁺ ionen en aspartaat binding bepaald en aan de hand daarvan zijn de associatie en dissociatie constantes geschat. De resultaten uit hoofdstuk 2 komen overeen met een pre-evenwicht bindings studie [6]. Bovendien hebben we op deze manier de associatie constante \(k_3 \) voor aspartaat (\(k_3 = 1.3×10^{6} \text{M}^{-1}\text{s}^{-1} \)) zonder te hoeven vertrouwen op de fouitgevoelige eiwit concentratie bepaling in liposomen en hebben we het omzettingsgetal (turnover number) \((k_{\text{cat}} = 0.9\text{s}^{-1}) \) uitgerekt van \(v_{\max} \). De \(k_3 \) voor GltPh (\(1.2×10^{6} \text{M}^{-1}\text{s}^{-1} \)) ligt heel dicht bij de \(k_3 \) van GltTk, wat ook weer overeenkomt met het feit dat in de 3D structuren van beide eiwitten de bindingsplekken van het substraat identiek zijn.

Anders dan bij \(k_3 \) wordt bij de \(k_{\text{cat}} \) niet alleen de aspartaat associatie meegenomen maar meerdere gebeurtenissen die plaatsvinden tussen de binding van het laatste Na⁺ ion en het eerste ion van de volgende transport cyclus. De relatief kleine verschillen tussen de \(k_{\text{cat}} \) van GltTk en GltPh (\(0.145 \text{s}^{-1} \) en \(0.95 \text{s}^{-1} \) respectievelijk) kunnen worden verklaard door kleine verschillen in de 3D structuren van beide eiwitten buiten de substraat bindingsplek.

Voor de kinetische analyse van CitS konden we geen eerder gepubliceerde studies gebruiken om de juiste volgorde van bindingen van substraten te weten. Maar dat is ons wel gelukt om het mechanisme te bepalen door wederom
gebruik te maken gereconstitueerd eiwit in liposomen. In tegenstelling tot GltTk is de K_v van CitS wel vergelijkbaar met de K_v waardoor we wel gebruik kunnen maken van het rapid equilibrium model [7]. In hoofdstuk 3 hebben we transportneltenden voor citroenzuur gemeten in verschillende condities. De concentratie citroenzuur en Na⁺ ionen zijn aangepast zodat we v_{max} voor zowel citroenzuur als Na⁺ afhankelijke opnames kunnen bepalen (respectievelijk superscript Cit en Na). De analyse van de afhankelijkheid van v_{max} voor zowel citroenzuur als Na⁺ afhankelijke opnames heeft laten zien dat de waardes mede-afhankelijk zijn, dit geeft aan dat de laatste bindings stap in het kinetische schema een willekeurige stap tussen citroenzuur en Na⁺ is. De K_vCit(app) is afhankelijk van de concentratie Na⁺ ionen, en we hebben laten zien dat één Na⁺ ion eerst bindt voordat citroenzuur bindt. Net zoals voor GltTk hebben we gecontroleerd of de richting van het transport invloed heeft op het kinetische mechanisme. Dit keer hebben we de eiwitten die met de cytosolische kant naar de buitenkant van de liposomen gereconstitueerd waren gebleekt. Hiervoor hebben we de cysteines die van nature aanwezig in CitS laten reageren met een membraan-impermeabel stofje gebaseerd op maleimdie (AMdiS) [8]. Op deze manier zijn alleen de eiwitten met deze orientatie geïnactiveerd. De analyse van de v_{max} heeft inderdaad een willekeurige binding stap als laatste stap in het kinetische mechanisme bevestigd.

De bestaande 3D eiwitstructuren van CitS suggereren dat dit eiwit substraten over de membraan kan transporteren via het lift-mechanisme, maar dit is nog niet experimenteel bewezen. In hoofdstuk 4 hebben we HS-ASM gebruikt om de verticale beweging die bij dit mechanisme hoort te kunnen visualiseren. Hiervoor hebben we een methode gebruikt waarbij we eerst 2D kristallen van de verticale beweging die bij dit mechanisme hoort te kunnen visualiseren. Deze eigenschap van eiwitten komt doormidden met een andere stereoisomer in de bindingsplek van het eiwit past. Er zijn eiwitten waarvoor dit niet het geval is, en de bindingsplek verschillende stereoisomen toe laat om te binden. GltTk kan bijvoorbeeld zowel L- als D- aspartaat symporteren, maar dit verlies in samenwerking komt precies overeen met L-aspartaat transport. Daarom concluderen we in hoofdstuk 5 het mechanisme van transport van D-aspartaat, maar met een andere hoek van de waterstofbruggen. Deze andere hoek zorgt voor een andere K_v waarde (~ 380 nM) die waarschijnlijk komt door een hogere koff vergelijk met L-aspartaat. De stoichiometrie van Na⁺ en D-aspartaat symport was gecontroleerd met behulp van evenwichtspotentiaal experimenten. Deze experimenten hebben laten zien dat 3 Na⁺ ionen tegelijkertijd getransporteerd worden met 1 molecule D-aspartaat. Dit komt precies overeen met L-aspartaat transport. Daarom concluderen we in hoofdstuk 5 dat het mechanisme van transport van D- en L-aspartaat in wezen identiek is.

Het mechanisme hoe GltTk transport van Na⁺ aan transport van aspartaat koppelt is nog niet helemaal duidelijk. Een geconserveerde methionine op plek 314 is betrokken bij de coördinatie van een Na⁺ ion en mutaties van deze methionine leiden tot het verlies van samenwerking om aspartaat en Na⁺ te binden [10]. Om te controleren of dit verlies in samenwerking komt door een andere stoichiometrie of door langzamere binding van Na⁺ hebben we in hoofdstuk 6 de omgekeerde potentiaal van aspartaat transport gemeten. Als je de omgekeerde potentiaal weet kun je de stoichiometrie uitlezen [11]. Hiervoor hebben we de methionine op plek 314 gemuteerd naar een cysteine, serine, of een alanine en het gemuteerde eiwit gereconstitueerd in liposomen. We hebben de flux van aspartaat gemeten bij drie verschillende membraan potentialen die corresponderen met drie verschillende omgekeerde potentialen
voor stoïchiometrie ratio's van 4:1, 3:1 en 2:1 Na+:aspartaat (−78.06 mV, −39.03 mV en −26.02 mV respectievelijk). Voor alle drie de mutanten kwamen we uit op een 3:1 stoïchiometrie.

Perspectieven

In dit proefschrift presenteren we het kinetische mechanisme van het omgekeerde transport van Glt₉₀ wat overkomt met een halve transport cyclus. Het lijkt erop dat zowel omgekeerd als normaal transport hetzelfde mechanisme gebruiken, toch zou het interessant zijn om te kijken of dit daadwerkelijk zo is en dat we bijvoorbeeld vergelijkbare experimenten maar dan juist omgekeerd transport te blokkeren. Hiervoor zouden we nieuwe Sybodies kunnen genereren, en dan voor binding aan de intracellulaire kant van Glt₉₀ te selecteren. Vergelijkbaar voor CitS, is het omgekeerde transport nog niet goed bestudeerd. Helaas lukt het als je gebruik maakt van de van nature aanwezige cysteines alleen om omgekeerd transport te blokkeren. Een specifieke remmer zou hierbij kunnen helpen. Bovendien moeten voor CitS de snelheden nog berekend worden, hiervoor moet eerst de K_d precies bepaald worden.

We hebben laten zien met HS-AFM dat CitS citroenzuur transporteert via het lift-mechanisme, maar met deze methode is het niet mogelijk om daadwerkelijk een gradient te creëren. Afgelopen jaren heb ik hier veel over gediscussieerd en vooraanstaande wetenschappers zijn bezig dit probleem op te lossen. Dit is niet alleen van belang voor membraan eiwitten. Als het lukt om een (tijdelijke) gradiente te creëren zou de methode een grote sprong vooruit nemen omdat het dan een stapje dichterbij fysiologische omstandigheden komt.

De structuur van Glt₉₀ met gebonden D-aspartaat is een grote stap voorwaarts omdat we hiermee meer inzicht in binding van verschillende stereoisomeren van hetzelfde aminozuur hebben gekregen. Maar het mechanisme van transport voor D-aspartaat is nog niet helemaal bestudeerd, we speculeren alleen dat het hetzelfde is als voor L-aspartaat. Ondanks het kleine verschil in K_m tussen deze twee stereoisomeren zou het kunnen dat er toch verschillende kinetische aspecten zijn en dat we die niet gezien hebben in de structuur. Het zou interessant zijn om de snelheden van transport beter te bestuderen en daaruit meer informatie te halen zoals gedaan in hoofdstuk 2. Dezelfde analyse zou ook toegepast kunnen worden op de verschillende mutanten van methionine 314. Ondanks dat we zeker weten dat dit aminozuur niet essentieel is om de stoïchiometrie te behouden, zou een complete analyse van transport meer kunnen vertellen over de rol van dit aminozuur, bijvoorbeeld of mutanten de transport reactie blokkeren of versnellen.
Referenties

1. Drew, D., Boudker, O.: Shared Molecular Mechanisms of Membrane Transporters. *Annu Rev Biochem* 2016, 85:543–572.
2. Mitchell, P.: A general theory of membrane transport from studies of bacteria. *Nature* 1957, 180:134–136.
3. Garaeva, A.A., Slotboom, D.J.: Elevator-type mechanisms of membrane transport. *Biochem Soc Trans* 2020, 48:1227–1241.
4. Zimmermann, I., Egloff, P., Hutter, C.A.J., Kuhn, B.T., Newstead, S., Dawson, R.J.P., Geertsma, E.R., Seeger, M.A.: Generation of synthetic nanobodies against delicate proteins. *Nat Protoc* 2020, doi:10.1038/s41596-020-0304-x.
5. Akyuz, N., Altman, R.B., Blanchard, S.C., Boudker, O.: Transport dynamics in a glutamate transporter homologue. *Nature* 2013, 502:114–118.
6. Oh, S., Boudker, O.: Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh. *Elife* 2018, 7:1–20.
7. Lolkema, J.S., Slotboom, D.J.: Models to determine the kinetic mechanisms of ioncoupled transporters. *J Gen Physiol* 2019, 152:363–380.
8. Sobczak, I., Lolkema, J.S.: Accessibility of cysteine residues in a cytoplasmic loop of CitS of Klebsiella pneumoniae is controlled by the catalytic state of the transporter. *Biochemistry* 2003, 42:9789–9796.
9. Kebbel, F., Kurz, M., Arheit, M., Gritter, M.G., Stahlberg, H.: Structure and substrate-induced conformational changes of the secondary citrate/sodium symporter CitS revealed by electron crystallography. *Structure* 2013, 21:1243–1250.
10. Verdon, G., Oh, S.C., Serio, R., Boudker, O.: Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. *Elife* 2014, 2014:1–23.
11. Fitzgerald, G.A., Mulligan, C., Mindell, J.A.: A general method for determining secondary active transporter substrate stoichiometry. *Elife* 2017, 6:1–15.