Portable Ultrasonography in Mass Casualty Incidents: The CAVEAT Examination

Stanislaw P. Stawicki
James M. Howard
John P. Pryor
David P. Bahner
Melissa L. Whitmill

Wright State University, melissa.whitmill@wright.edu

See next page for additional authors

Follow this and additional works at: http://corescholar.libraries.wright.edu/surg

Part of the Surgery Commons

Repository Citation
Stawicki, S. P., Howard, J. M., Pryor, J. P., Bahner, D. P., Whitmill, M. L., & Dean, A. J. (2010). Portable Ultrasonography in Mass Casualty Incidents: The CAVEAT Examination. World Journal of Orthopedics, 1 (1), 10-19.
http://corescholar.libraries.wright.edu/surg/474

This Article is brought to you for free and open access by the Surgery at CORE Scholar. It has been accepted for inclusion in Department of Surgery Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact corescholar@wwwlibraries.wright.edu.
Authors
Stanislaw P. Stawicki, James M. Howard, John P. Pryor, David P. Bahner, Melissa L. Whitmill, and Anthony J. Dean
Portable ultrasonography in mass casualty incidents: The CAVEAT examination

Stanislaw Peter Stawicki, James M Howard, John P Pryor, David P Bahner, Melissa L Whitmill, Anthony J Dean

Abstract

Ultrasonography used by practicing clinicians has been shown to be of utility in the evaluation of time-sensitive and critical illnesses in a range of environments, including pre-hospital triage, emergency department, and critical care settings. The increasing availability of lightweight, robust, user-friendly, and low-cost portable ultrasound equipment is particularly suited for use in the physically and temporally challenging environment of a multiple casualty incident (MCI). Currently established ultrasound applications used to identify potentially lethal thoracic or abdominal conditions offer a base upon which rapid, focused protocols using hand-carried emergency ultrasonography could be developed. Following a detailed review of the current use of portable ultrasonography in military and civilian MCI settings, we propose a protocol for sonographic evaluation of the chest, abdomen, vena cava, and extremities for acute triage. The protocol is two-tiered, based on the urgency and technical difficulty of the sonographic examination. In addition to utilization of well-established bedside abdominal and thoracic sonography applications, this protocol incorporates extremity assessment for long-bone fractures. Studies of the proposed protocol will need to be conducted to determine its utility in simulated and actual MCI settings.

© 2010 Baishideng. All rights reserved.

Key words: Focused Assessment with Sonography in Trauma; Chest, abdomen, vena cava, and extremities for acute triage; Ultrasonography; Disaster; Field triage; Pre-hospital care; Mass casualty incident

Peer reviewers: Philipp Kobbe, MD, Assistant Professor, Department of Orthopaedic Trauma, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Yen-Jen Chen, MD, Assistant Professor, Orthopedic Department, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 404, Taiwan, China

Stawicki SP, Howard JM, Pryor JP, Bahner DP, Whitmill ML, Dean AJ. Portable ultrasonography in mass casualty incidents: The CAVEAT examination. World J Orthop 2010 November 18; 1(1): 10-19 Available from: URL: http://www.wjgnet.com/2218-5836/full/v1/i1/10.htm DOI: http://dx.doi.org/10.5312/wjo.v1.i1.10
INTRODUCTION

Bedside ultrasonography performed by practicing clinicians has gained widespread acceptance over the past two decades[2-8]. Its use has been described as an adjunct in a wide variety of commonly encountered clinical settings[9-18]. In fact, the use of ultrasonography has been described at almost every tier of emergency and critical care management from field evaluation and triage, to transport, emergency departments, surgical suites, and critical care units[8-18]. Ultrasound has also been shown to be of utility to providers with differing levels of training, background, and clinical focus[19-26]. One of the areas in which its use has been most extensively investigated is ‘Traumatology’[27-29]. The Focused Assessment with Sonography in Trauma (FAST) examination has become the standard of care for the diagnosis of post-traumatic pericardial tamponade and intraperitoneal bleeding, which essentially eliminates diagnostic peritoneal lavage from most trauma care protocols[29]. More recently described applications allow emergency personnel to use ultrasound in the diagnosis of chest and extremity trauma, as well as in the evaluation of shock states, particularly intravascular volume depletion[30-34].

Mass casualty incidents (MCIs) are unique clinical situations that call for quick and reliable triage of large numbers of injured patients, usually in a setting of severely limited resources[10]. A rapidly deployable, flexible, resource-sparring emergency medical response might be the key element to improve the chance for survival of victims during MCIs[6,30-39]. In MCIs, the ability to identify injured patients who could benefit from early intervention is often undermined by the relative lack of healthcare personnel, a chaotic environment, and the lack of a stable social infrastructure (structural integrity, shelter from the elements, sanitation, electricity, skilled technical personnel)[35-37]. This severely limits the availability of most modern diagnostic tools, especially imaging modalities, because they are resource intensive, and require a high degree of infrastructural integrity[38]. Thus, in an MCI, responders could be forced to rely solely on traditional clinical evaluation based mainly upon the history and physical examination - a relatively time-consuming and often inaccurate approach in this setting[40-43].

Technological advances have made modern ultrasound equipment increasingly portable, robust, easy to use, and inexpensive[44,45]. These advances allow ultrasound to be brought to the patient to obtain diagnostic information in real time[46-48]. Clinician-performed ultrasonography obviates the need for specially trained technicians to obtain images, facilities to process and store them, and for specialist physicians to interpret them[45,46]. There is extensive literature that describes the use of ultrasound by clinicians with diverse backgrounds and training who are managing a variety of diseases at all levels of the healthcare system[44,49,50]. In addition, a number of reports have described its use in remote, austere, and resource-poor settings, including outer space, high altitudes, areas of extreme poverty, and combat settings[49,51-54]. These qualities of ultrasonography make it uniquely suited for deployment in the care of patients in the setting of a MCI.

In this review, we discuss current uses of ultrasound in disaster and MCI settings. We then present the concept of a comprehensive sonographic examination in the evaluation of chest, abdomen, vena cava, and extremities in acute triage (CAVEAT). We conclude with a description of the proposed CAVEAT protocol for the use of ultrasound in civilian and combat disaster triage.

PORTABLE ULTRASONOGRAPHIC TECHNOLOGY

As noted previously, technological advances have increased the clinical utility of ultrasound in a variety of ways. Among these advances is miniaturization[55,56]. Many battery-powered devices with excellent imaging quality and Doppler capabilities weigh less than 5 kg. Several have been designed to meet stringent military specifications for durability. Some models that weigh as little as 500 g have appeared on the market[57,58]. The use of digital hand-held sonographic units allows for early performance of FAST and extended-FAST (E-FAST, incorporating thoracic windows for the assessment of pneumothorax) examinations and can accurately and safely improve the traditional clinical evaluation[59-61]. Portable ultrasound has also been found to be of benefit during ground/aeromedical trauma transport, as well as in forward deployed medical/surgical teams and combat support where it has been reported to be a useful adjunct in the field triage of injured soldiers[5,6,10,16,59,60].

In MCIs caused by a natural disaster, the deployment of portable ultrasound with its ability to identify life-threatening injuries in the field or in pre-designated staging areas could help to increase triage accuracy, and enhance the efficiency of scarce personnel utilization, patient transport, and directing medical resources to patients who stand to most benefit from these resources[61,62].

Recent technological advances in telesonography could probably extend the usefulness of ultrasonography in MCIs. Recent studies have shown how portable ultrasound images can be safely transmitted for remote viewing by experts[62-67]. With this technology, it might be possible for mobile triage units equipped with portable ultrasound equipment, basic medical supplies, and limited medical training to be deployed to a remote MCI site, to obtain sonographic images for transmission to experts who could interpret them and make decisions about triage, in situ treatment, and/or evacuation. Commercial satellite[68] and low-bandwidth internet links[69] have been used to transmit ultrasound images for real-time interpretation, and have also been transmitted from the International Space Station to Earth for interpretation at the Mission Control Center[20].

DISASTER TRIAGE

Disasters that result in large numbers of deaths and injuries
Table 1 Classification of multiple casualty incidents

Natural disasters	Man-made disasters
Causes of large scale physical destruction	Hazardous material incidents and Industrial accidents
to manmade objects and infrastructure	
Earthquakes	Radiological exposure
Volcanoes	Chemical exposure
Mudslides	Inhalation injury
Avalanches	Explosive disasters
Floods	
Tsunami	Transportation accidents
Tropical storms, hurricanes, tornadoes	Aircraft
Climatic	Marine
Extreme heat, cold	Railroad
Famine	Highway
Fire related	War related
Thermal injury	Military casualties
Inhalation injury	Civilian casualties
Infrastructure, agriculture, and domiciliary damage	Innocent bystanders
	Military targets
	Terrorism
	Mass casualty
Epidemics	Bioterrorism
	Genocide
	Major societal dislocations
	and refugee populations
	Malnutrition, epidemics

Disasters that cause gross physical damage (most likely to cause injuries identifiable by ultrasound) are in bold: There can be a certain degree of overlap between the two categories (“gross physical trauma” and “no gross physical trauma”). Detailed history of the incident should be gathered to determine whether “physical trauma” is present alone, in combination with other factors, or not at all.

can be categorized in several ways (Table 1). Ultrasound images provide diagnostic information about anatomical structures, therefore, their utility is primarily in MCI settings with gross physical trauma. However, ultrasound is also of utility in diagnosis and management of secondary conditions such as volume depletion or visceral changes caused by sequelae of some types of MCI (e.g. pleural effusion, pulmonary consolidation, or ascites).

By definition, an MCI is an event in which two or more patients are injured and present with a severity of illness that exceeds the resources of the treatment facility. This categorization depends solely on an imbalance between patient needs and available resources. Thus, by this definition, the terrorist attack on the World Trade Center in 2001 was not an MCI, because the rescue and hospital resources exceeded the numbers of injured survivors. Triage and medical care during MCIs require a significant deviation from customary medical prioritization in which the goal for each patient is definitive care, with delivery prioritized by the severity of illness. During MCIs, the available medical resources are allocated with the goal of salvaging the greatest number of victims, with the understanding that this will result in the loss of some patients with extreme, complex, and/or resource-intensive injuries. In such situations, critically ill patients receive lower priority than those with less severe, but more easily treated injuries.

Current disaster triage schemes rely on information obtained by history (medical and mechanic) and the physical examination to make triage decisions. The most commonly used MCI triage classification in the United States involves assignment of patients to one of the four color-coded categories based on his or her vital signs and ability to breathe, talk, and walk (Table 2). Red category indicates patients who require immediate medical attention and can probably be stabilized and survive with immediate limited interventions. Yellow designation pertains to patients who require medical attention within 1 h. Green indicates patients who are deemed medically non-urgent. Patients who are placed into the black (expectant or dead) category are treated last.

The benefit of such disaster triage classifications is that they can be easily and rapidly applied in adverse circumstances. However, because they are based on somewhat crude clinical parameters, it is likely that they could result in inappropriate triage. Over-triage can be defined as allocation of medical resources for a patient who is eventually found to be without significant injuries. Under-triage occurs when a patient does not receive medical resources for injuries that without treatment will lead to deterioration of his or her condition. Both over- and under-triage are difficult to study scientifically in the MCI setting because detailed data and outcomes are difficult to obtain and/or record. One report has identified an over- and under-triage rate of 12% and 4% for trauma patients transported to a major trauma center. In a recent simulation study of FAST ultrasound used as an adjunct to triage using the START (simple triage and rapid treatment) mass casualty system, it was estimated that secondary triage using ultrasound technology might have identified nearly 7% of patients with evidence of delayed hemorrhage. Any rapidly and easily deployable tool that could be used to increase the accuracy of triage decisions probably could, for a priori reasons, enhance patient care in the MCI setting.

CIVILIAN DISASTER EXPERIENCE

Despite numerous recent natural MCIs, there is scant literature to describe the specific role of ultrasonography during the medical response to these events. This might be due to the inherent difficulties of studying any aspect of medical care in the MCI setting, or due to the relative novelty of both clinician-performed ultrasonography and of portable ultrasound equipment. In one study, ultrasound was performed by relief teams after the 1988 Armenian earthquake as a primary screening procedure in 400 of 750 injured MCI patients admitted to a large hospital within 72 h of the event. The average time spent on evaluation of a single patient was approximately 4 min. Traumatic injuries of the abdomen were detected in 12.8% of the patients, with few false-negative (1%) and no false-positive examinations. In another study, ultrasonography was used after an MCI in Guatemala in which the dead far outnumbered the injured. In that setting, ultrasound was useful for excluding internal trauma, and the
Localized injuries without immediate systemic implications. With minimal care, these patients are expectant.

Injuries have systemic effects or implications, but the patient is not yet in life-threatening shock or hypoxia. Despite the chance that systemic decline may ensue, this group can likely withstand a 45- to 60-min wait without immediate risk. Patient likely to survive if given appropriate care.

Localized injuries without immediate systemic implications. With minimal care, these patients are expectant. Most severely injured patients who have poor chance for survival regardless of care rendered. No need for treatment.

Pre-hospital use of sonography in triage relies on pre-hospital personnel trained in basic ultrasound techniques. Several studies have suggested that non-physicians are able to perform the FAST examination reliably. In one, flight nurses, technologists, emergency physicians and emergency medicine residents were assessed for their ability to evaluate real and simulated patients with the FAST examination under different aeromedical conditions. No significant obstacles in accomplishing sonographic examinations were noted, and the pilots did not report any adverse effect of in-flight sonography on flight safety. Conversely, several studies have suggested that, in 16%-34% of cases during aeromedical transport, significant impediments to ultrasonography could exist due to technological, environmental, or operator problems. In experimental weightlessness simulated via parabolic-flight patterns, 80% of images obtained by in-flight sonographers were considered determinate. Similarly, FAST examinations that have been successfully performed by non-physician crew members of the International Space Station under the direction of a ground-based sonographer, suggest that appropriately trained non-physicians could perform guided sonography in remote locations.

COMPONENTS OF THE CAVEAT EXAMINATION

In view of the extensive literature that describes the utility of ultrasonography in a variety of austere, remote, and MCI situations, we propose a protocol for the evaluation of the CAVEAT in such settings. The sonographic assessments of each of the four anatomical regions are presented individually, and then an integrated algorithm is suggested.

Chest

Ultrasonographic imaging of the chest allows for the identification of many of the most time-critical internal injuries associated with blunt truncal trauma, including pericardial tamponade, massive hemothorax, pneumothorax, and tension pneumothorax. Its accuracy in the diagnosis of these conditions might exceed that of plain-film roentgenography, which is not usually available in MCI settings. Timely chest sonography probably allows for more rapid triage and performance of life-saving procedures including tube thoracostomy, pericardiocentesis, evacuation, and/or operative intervention for chest injuries. In addition to the traditional FAST and E-FAST studies,
Hemothorax can be found in Figures 1 and 2, respectively.

The FAST examination is based on the assumption that abnormal fluid collections tend to accumulate as the interrogation of the potential spaces where fluid is directed to detection of fluid in the pericardial and peritoneal spaces. With regard to the CAVEAT protocol, the standard FAST protocol is utilized in diagnosis of traumatic hemothorax. Sonographic examples of pneumothorax and hemothorax can be found in Figures 1 and 2, respectively.

Abdomen

The FAST examination is based on the assumption that the majority of clinically significant abdominal injuries result in hemoperitoneum. The standard FAST protocol is directed to detection of fluid in the pericardial and peritoneal spaces. With regard to the CAVEAT protocol, the current section is limited to the discussion of intraperitoneal hemorrhage. Although frequently described in terms of four “windows”, the FAST is more accurately conceptualized as the interrogation of the potential spaces where abnormal fluid collections tend to accumulate in a supine position. Excluding the three spaces in the chest (bilateral pleural spaces and the pericardium), there are a total of seven potential spaces in the peritoneum. The three in the right upper quadrant (from superior to inferior) are the subphrenic, the hepatorenal, and the space around the inferior pole of the kidney (continuous with the hepatorenal space). In the left upper quadrant, the three analogous spaces are: the subphrenic, the splenorenal, and the space around the inferior pole of the kidney (continuous with the splenorenal space). The seventh potential space is in the pelvis (rectouterine in the female; rectovesicular in the male).

The sonographic threshold for detection of hemoperitoneum is subject to dispute. Some studies have shown that as little as 30-70 mL of blood can be detected ultrasonographically. Other studies have suggested that a small anechoic stripe in the Morison’s pouch represents approximately 250 mL of fluid, while 0.5 and 1 cm stripes represent approximately 500 mL and 1 L of free fluid, respectively. McKenney et al. have proposed a clinically practical hemoperitoneum score that helps predict the need for abdominal surgical intervention, and appears to be a better predictor of a “positive” laparotomy than initial blood pressure and/or base deficit. To increase the diagnostic yield of FAST, the examination can be performed serially, which allows for reassessment of patients with unanticipated changes of condition, or those who are being managed non-operatively.

Reported sensitivities for ultrasound in detecting the hemoperitoneum vary, with ranges of 42%-99%. On a cautionary note, one study has found that 29% of patients with confirmed abdominal injury had no reported hemoperitoneum on FAST or CT scanning. In another study, 27% of patients with negative FAST required laparotomy for intra-abdominal injuries. Thus, the reliance of hemoperitoneum as the sole indicator of abdominal visceral injury limits the utility of FAST as a diagnostic screening tool in hemodynamically stable patients with blunt abdominal trauma. To identify subsets of patients who would most benefit from the FAST examina-
tion, Rozycki et al. have found that ultrasound was most sensitive and specific in patients with penetrating chest wounds or in hypotensive blunt abdominal trauma patients (sensitivity and specificity nearly 100%).

Although CT imaging is optimal for stable patients with potential internal injury after trauma, this resource is rarely available in the MCI setting. In such situations, stable patients with a negative FAST examination should receive ongoing observation, serial abdominal examinations, and repeat FAST examination, tailored to available resources. Injuries that are commonly associated with false-negative FAST include retroperitoneal hemorrhage and hollow viscus perforation. Few false-negative results have been reported with significant intraperitoneal bleeding. Diagnostic options available in this situation include repeat FAST, diagnostic peritoneal lavage, laparoscopy, exploratory laparotomy, and CT, although of these, only the serial FAST is likely to be available in the setting of MCI.

EVALUATION OF INTRAVASCULAR VOLUME BY INFERIOR VENA CAVA ASSESSMENT

Intravascular volume status can be estimated by evaluation of the inferior vena cava (IVC). The vessel is usually evaluated in real-time in both the longitudinal and transverse planes. As a component of the CAVEAT examination, sonographic IVC evaluation is most probably directed towards the rapid identification of hypovolemia, which, with experience, can be quickly and effectively accomplished by a purely qualitative assessment of the size, shape, and collapsibility of the vessel. If measurements are made, they should be obtained in diastole (i.e. the moment when the IVC is smallest in the cardiac beat-to-beat cycle), and taken just inferior (1.3 cm) to the junction of the hepatic veins (Figure 3). The traditional window has been subxiphoid, although recent reports have suggested that equivalent results can be obtained using a right intercostal view with the liver as a sonographic window. This approach is especially useful if the subxiphoid window is obstructed by bowel gas or dressings. Longitudinal and transverse planes are equivalent for measurement of the IVC; however, each has mutually complementary advantages and disadvantages, so the IVC should be assessed in both planes.

An extensive body of literature describes a relationship between the sonographic appearance of the IVC and intravascular volume and cardiac filling pressures. Assessment of the IVC might be made qualitatively (shape), and quantitatively (absolute size and collapse index). There is strong evidence that, in any given patient, increasing intravascular volume results in an expanding IVC diameter and a diminution of the percentage variation in diameter related to the respiratory cycle (i.e. the IVC collapsibility index, Figure 3). Decreasing intravascular volume will have the opposite effects. A wide range of normal and abnormal values for these parameters has been reported. This is consistent with the role of the IVC as a capacitance vessel. Volume overload states are unlikely to be of concern in the MCI setting, and the key question to be answered in evaluation of the IVC is whether the vessel demonstrates adequate intravascular volume or not. Thus, the basic sonographic skill to be mastered by the sonographer who performs the CAVEAT examination is accurate identification of the vessel, and familiarity with the spectrum of IVC findings in normovolemic patients, to recognize the presence of a grossly collapsed or underfilled VC. If measurements are made, an adequate central venous pressure (CVP) can be predicted by an inspiratory IVC diameter > 10-12 mm, whereas an IVC diameter < 5 mm suggests abnormally low CVP. Of note, IVC diameters in most normovolemic patients vary between 10 and 20 mm. Although the sensitivity and specificity of IVC assessment for estimation of intravascular volume are still poorly defined, an IVC collapsibility index of > 60%–70% predicts hypovolemia and helps identify patients who are likely to respond to intravascular volume expansion. Finally, the correlation between IVC characteristics and vital signs traditionally used in triage (heart rate and blood pressure) is poor (our unpublished observations), which highlights the clinical challenges associated with failure to identify early compensated hypovolemic/hemorrhagic shock by heart-rate- or blood-pressure-based criteria. According to recent studies, bedside assessment of the IVC typically requires < 5 min.

Extremities

Ultrasonography has been used to identify fractures of the femur, humerus and ribs. In a prospective study of 158 examinations performed on 95 patients, 94% of patients with extremity injuries were accurately identified, with no false-positive results. Portable ultrasound is more accurate in the recognition of fractures in midshaft locations and less so in the metacarpal and
metatarsal anatomical areas. Ultrasonography can also demonstrate occult fractures that are not readily identifi-
dable by traditional radiography. Rapid ultrasound
assessment of the extremities as a component of the
CAVEAT examination is likely to result in more accurate
reduction and stabilization of major fractures, prioritized
utilization of radiographic resources, and more accurate
triage of multiply injured patients. Of note, extremity
assessment should be considered an optional part of the
sonographic assessment paradigm and should be utilized
mainly as a secondary (versus initial/primary) triage tool.

Figure 4 demonstrates the appearance of a midshaft, dis-
placed femoral fracture, along with correlation to plain
extremity radiograph.

CAVEAT protocol
The CAVEAT protocol is an integrated sonographic survey
to be used as an adjunct in disaster and combat care triage
diagnosis. The suggested order of the component parts of
the ultrasound examination are listed in rough order of
clinical priority of diagnosis and by required skill level
(Table 3). With increasing skill, the sonologist will be able to
deviate from this suggested order based on the individual
patient's injuries. The authors anticipate that the comple-
tion of the entire CAVEAT protocol by a proficient so-
notologist will take approximately 5 min longer than the per-
formance of the traditional FAST examination. Additional

time might be spent, at the discretion of the sonographer,
during the secondary triage assessment. However, such
secondary examinations (including detailed extremity scans)
are optional and based on resource/time availability.

The examination begins with a sonographic evalua-
tion of the pleura to identify the presence of pneumo-
thorax. The examiner then performs a complete FAST
examination, to include assessment of the costophrenic
recesses bilaterally for identification of hemothorax. After
the FAST examination, the IVC is assessed to determine
gross perturbations of intravascular volume; in particular,
volume depletion (see previous section). The theoreti-
cal possibility of identifying retroperitoneal injuries with
sonographic contrast material is not practical in the MCI
setting. The CAVEAT examination concludes with an
ultrasound examination of the long bones, with particu-
lar attention to regions of pain, tenderness, or deformity.
Of note, the extremity assessment is not mandatory, and
has been included in the proposed protocol mainly as an
adjunct to secondary patient assessment (Table 3). In this
role, extremity sonography could be performed as a sec-
ondary triage tool at a later time to help direct appropriate
resources to orthopedic injuries that are not immediately
life threatening but require prompt attention, and might be
otherwise undetected in a resource-limited environment.

LIMITATIONS AND NEED FOR FURTHER
STUDIES
The CAVEAT examination will not detect most intracra-
nial, pulmonary, retroperitoneal, or pelvic injuries. Except
in the hands of the most experienced sonologists, it will
miss most solid organ and great vessel injuries that do not
cause frank internal hemorrhage. Although the benefit
of the CAVEAT protocol is yet to be established, as this
review suggests, there is extensive scientific literature to

Table 3 The chest, abdomen, vena cava, and extremities for acute triage protocol summary

Description	Identification of immediately and potentially life-threatening injuries (FAST + pneumothorax)	Intravascular status evaluation (IVCCI)	Hemothorax assessment	Extremity assessment (lower → upper extremity sonography)
Skill level	Easy	Intermediate	Difficult	
Urgency	Primary triage & assessment (Mandatory)	Secondary triage & assessment (Optional)		

The protocol is divided into two-tiered system of urgency (primary and secondary) and three skill levels (basic, intermediate, and advanced). Note that the chest, abdomen, vena cava, and extremities for acute triage examination can be performed after the primary survey, with the serial assessment performed, as indicated at a later time. FAST: Focused Assessment with Sonography in Trauma; IVCCI: Inferior vena cava collapsibility index.
support the utility of its component parts. Studies are needed within the pre-hospital and emergency department environments to establish the feasibility of the CAVEAT protocol, and whether the addition of sonographic information improves triage accuracy. A significant potential impediment to the CAVEAT protocol, shared with other applications of clinician-performed ultrasonography, is the need for sonologist training. It is hoped that as ultrasonography is incorporated in both undergraduate and graduate medical training, care providers in MCI settings will increasingly possess the skills needed for the CAVEAT examination.

CONCLUSION

Ultrasonography has a wide range of applications in diagnostic imaging and procedural guidance, without the delterious effects of ionizing radiation. Recent technological advances have resulted in increasingly affordable, robust, portable, and user-friendly equipment. Many modern ultrasound units are battery-powered, and store images digitally, which allows for electronic and/or wireless data transfer. These advances make ultrasound increasingly suited to the rapid evaluation of the critically ill, particularly in remote, austere, and resource-poor settings. We have reviewed applications of portable ultrasonography in military and civilian mass casualty settings. Similar to other algorithms for the use of ultrasound in the assessment of the critically ill, the CAVEAT protocol seeks to integrate diverse uses of ultrasonography in a systematic coordinated way. The CAVEAT protocol proposes a graduated approach based on a combination of urgency, sonographic skill-sets, and technical difficulty of the examination.

REFERENCES

1. Kendall JL, Hoffenberg SR, Smith RS. History of emergency and critical care ultrasound: the evolution of a new imaging paradigm. Crit Care Med 2007; 35: S126-S130
2. Brooks A, Davies B, Smithhurst M, Connolly J. Prospective evaluation of non-radiologist performed emergency abdominal ultrasound for haemoperitoneum. Emerg Med J 2004; 21: e5
3. Kirkpatrick AW, Sirois M, Laupland KB, Liu D, Rowan K, Ball CG, Hameed SM, Brown R, Simons R, Dulchavsky SA, Hamilton DR, Nicolaou S. Hand-held thoracic sonography for detecting post-traumatic pneumothoraces: the ExtendedFocused Assessment with Sonography for Trauma (EFAST). J Trauma 2004; 57: 288-295
4. Stawicki SP, Braslow BM, Panbeinialo NL, Kirkpatrick JN, Gracias VH, Hayden GE, Dean AJ. Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg 2009; 209: 55-61
5. Carr BG, Dean AJ, Everett WW, Ku BS, Mark DG, Okusanya O, Horan AD, Gracias VH. Intensivist bedside ultrasound (INBU) for volume assessment in the intensive care unit: a pilot study. J Trauma 2007; 63: 495-500; discussion 500-502
6. Einav S, Aharonson-Daniel I, Weissman C, Freudent H, Peleg K. In-hospital resource utilization during multiple casualty incidents. Ann Surg 2006; 243: 533-540
7. Bremer R. Policy development in disaster preparedness and management: lessons learned from the January 2001 earthquake in Gujrat, India. Prehosp Disaster Med 2003; 18: 372-384
8. Kendall JL, Blaivas M, Hoffenberg S, Fox JC. History of emergency ultrasound. J Ultrasound Med 2004; 23: 1130-1133; author reply 1133-1135
9. Melanson SW, McCarthy J, Strosmski CJ, Kostenbader J, Heller M. Aeromedical trauma sonography by flight crew with a miniature ultrasound unit. Prehosp Emerg Care 2001; 5: 399-402
10. Stinger H, Rush R. The Army forward surgical team: update and lessons learned, 1997-2004. Mil Med 2006; 171: 269-272
11. Sosna J, Sella T, Shaham D, Shapiro SC, Rivkind A, Bloom AI, Libson E. Facing the new threats of terrorism: radiologists’ perspectives based on experience in Israel. Radiology 2005; 237: 28-36
12. Walcher F, Weinlich M, Conrad G, Schweigkofler U, Breitkreutz R, Kirschnign T, Marzi I. Prehospital ultrasound imaging improves management of abdominal trauma. Br J Surg 2006; 93: 238-242
13. Lapostolle F, Petrovic T, Lenoir C, Catanieau J, Galinski M, Metzger J, Chanzy E, Andinet F. Usefulness of hand-held ultrasound devices in out-of-hospital diagnosis performed by emergency physicians. Am J Emerg Med 2006; 24: 237-242
14. Busch M. Portable ultrasound in pre-hospital emergencies: a feasibility study. Acta Anaesthesiol Scand 2006; 50: 754-758
15. Price EA, Rush LR, Perper JA, Bell MD. Cardiopulmonary resuscitation-related injuries and homicidal blunt abdominal trauma in children. Am J Forensic Med Pathol 2001; 20: 307-310
16.ousignant C. Transesophageal echocardiographic assessment in trauma and critical care. Can J Surg 1999; 42: 171-175
17. Sarkisian AE, Khondkarian RA, Amirkheir NA, Baganarian NB, Khojayan RL, Oganesian YT. Sonographic screening of mass casualties for abdominal and renal injuries following the 1988 Armenian earthquake. J Trauma 1991; 31: 247-250
18. Legome E, Pancu D. Future applications for emergency ultrasound. Emerg Med Clin North Am 2004; 22: 817-827
19. Nelson BP, Chason K. Use of ultrasound by emergency medical services: a review. Int J Emerg Med 2008; 1: 253-259
20. Strode CA, Rubal BJ, Gerhardt RT, Bulgrin JR, Boyd SY, Wireless and satellite transmission of prehospital focused abdominal sonography for trauma. Prehosp Emerg Care 2003; 7: 375-379
21. Sargsyan AE, Hamilton DR, Jones JA, Melton S, Whitson PA, Kirkpatrick AW, Martin D, Dulchavsky SA. FAST at MACH 20: clinical ultrasound aboard the International Space Station. J Trauma 2005; 58: 35-39
22. Koenig KL, Dinerman N, Kuehl AE. Disaster nomenclature -a functional impact approach: the PICE system. Acad Emerg Med 1996; 3: 723-727
23. Pryor JP. The 2001 World Trade Center disaster - summary and evaluation of experiences. Int J Disaster Med 2003; 1: 56-68
24. Bowra J, Forrest-Horder S, Caldwell E, Cox M, D’Amours SK. Validation of nurse-performed FAST ultrasound. Injury 2010; 41: 484-487
25. Rao S, van Holsbeck L, Musial JL, Parker A, Bouffard JA, Bridge P, Jackson M, Dulchavsky SA. A pilot study of comprehensive ultrasound education at the Wayne State University School of Medicine: a pioneer year review. J Ultrasound Med 2008; 27: 745-749
26. Dean AJ, Breyer MJ, Ku BS, Mills AM, Pines JM. Emergency ultrasound usage among recent emergency medicine residency graduates of a convenience sample of 14 residencies. J Emerg Med 2010; 38: 214-220; quiz 220-221
27. Hoffmann R, Nerlich M, Muggia-Sullam M, Pohlemann T, Wippermann B, RegEL G, Tscherner H. Blunt abdominal trauma in cases of multiple trauma evaluated by ultrasonography: a prospective analysis of 291 patients. J Trauma 1992; 32: 452-458
28. Boede P, Edwards M, Krij I, van Vught AB. Sonography in a clinical algorithm for early evaluation of 1671 patients with blunt abdominal trauma. AJR Am J Roentgenol 1999; 172: 905-911
29. Rozyczki GS. Surgeon-performed ultrasound: its use in clinical practice. Ann Surg 1998; 228: 16-28
30. Moore CL. Surgeon-performed ultrasound for pneumothorax in the trauma suite. J Trauma 2004; 57: 681-682
design to safely reduce overtriage: a prospective study. Arch Surg 2009; 144: 853-858

75 Dean AJ, Ku BS, Zeserson EM. The utility of handheld ultrason in an austere medical setting in Guatemala after a natural disaster. Am J Disaster Med 2007; 2: 249-256

76 Parker PJ, Adams SA, Williams D, Shepherd A. Forward surgery set on Operation Telic–Iraq 2003. J R Army Med Corps 2005; 151: 186-191

77 Arbelite P, Capri A, Ayoub J, Kieffer V, Georgescu M, Poisson G. Use of a robotic arm to perform remote abdominal telesonography. AJR Am J Roentgenol 2007; 188: W317-W322

78 Price DD, Wilson SR, Murphy TG. Trauma ultrasound feasibility during a mass casualty incident. Air Med J 2000; 19: 144-146

79 Kirkpatrick AW, Hamilton DR, Nicolau S, Sargsyan AE, Tiling T, Reardon R, Brook A, Davies B, Smethurst M, Connolly J. Emergency ultrasound in blunt abdominal trauma. In: Border JR, All Artif Organs 1990: 415-433

80 Polk JD, Fallon WF Jr, Kovach B, Mancuso C, Stephens M, Malangoni MA. The "Aimedical F.A.S.T." for trauma patients—the initial report of a novel application for sonography. Aviat Space Environ Med 2001; 72: 432-436

81 Ma OJ, Mateer JR. Trauma ultrasound examination versus chest radiography in the detection of hemotherax. Ann Emerg Med 1997; 29: 312-315; discussion 315-316

82 Carrillo EH, Schirmer TP, Sideman MJ, Wallace JM, Spain DA. Blunt hemopericardium detected by surgeon-performed sonography. J Trauma 2000; 48: 971-974

83 Brooks A, Davies B, Smethurst M, Connolly J. Emergency ultrasound in the acute assessment of haemothorax. Emerg Med J 2004; 21: 44-46

84 Reardon R, Joing S. Hemotherax after a stab wound to the chest, with clear breath sounds and a normal radiograph. Acad Emerg Med 2006; 13: 786

85 Tiling T, Bouillon B, Schmid A, Schweins M, Steffens H. Ultrasound in blunt abdominal trauma. In: Border JR, All Tiling T, Reardon R, Brook A, Davies B, Smethurst M, Connolly J. Emergency ultrasound in blunt abdominal trauma. In: Border JR, All 217-220

86 Goldberg BR, Clearfield HR, Goodman GA, Morales JO. Ultrasonic determination of ascites. Arch Intern Med 1973; 131: 861-869

87 Huang MS, Liu M, Wu JK, Shih HC, Ko TJ, Lee CH. Ultrasonography for the evaluation of hemoperitoneum during resuscitation: a simple scoring system. J Trauma 1994; 36: 173-177

88 Mckenney KL, Mckenney MG, Cohn SM, Compton R, Nunez DB, Dolich M, Namias N. Hemoperitoneum score helps determine need for therapeutic laparotomy. J Trauma 2001; 50: 650-654; discussion 654-656

89 Scalea TM, Rodriguez A, Chioc WH, Bремене NF, Fallon WF Jr, Kato K, Mckenney MG, Nerlich ML, Ochsner MG, Yoshii H. Focused Assessment with Sonography for Trauma (FAST): results from an international consensus conference. J Trauma 1999; 46: 466-472

90 Nordenholz KE, Rubin MA, Gularte GG, Liang HK. Ultrason in the evaluation and management of blunt abdomi nal trauma. Ann Emerg Med 1997; 27: S41-S51

91 Blackburne LH, Soffer D, Mckenney M, Amortegui J, Schulman CI, Crookes B, Habib F, Benjamin R, Lopez PP, Namias N, Lynn M, Cohn SM. Secondary ultrasound exami nation increases the sensitivity of the FAST exam in blunt trauma. J Trauma 2004; 57: 934-938

92 Rozycki GS, Ballard RB, Feliciano DV, Schmid AJ, Pennington SD. Surgeon-performed ultrasound for the assessment of truncal injuries: lessons learned from 1540 patients. Ann Surg 1998; 228: 557-567

93 Chiu WC, Cushing BM, Rodriguez A, Ho SM, Mirvis SE, Shanmuganathan K, Stein M. Abdominal injuries without hemoperitoneum: a potential limitation of focused abdom inal sonography for trauma (FAST). J Trauma 1997; 42: 617-623; discussion 623-625

94 Bollanger BR, Kearney PA, Treg B, Ochoa JB. The routine use of sonography in penetrating torso injury is beneficial. J Trauma 2001; 51: 320-325

95 Miller MT, Pasquale MD, Bromberg WJ, Water TE, Cox J. Not so FAST. J Trauma 2003; 54: 52-59; discussion 59-60

96 Demetriades D, Velnahos G. Technology-driven triage of abdominal trauma: the emerging era of nonoperative management. Ann Surg 2003; 3: 1-15

97 Ballard RB, Rozycki GS, Newman PG, Cubillos JE, Salomone JP, Ingram WL, Feliciano DV. An algorithm to reduce the incidence of false-negative FAST examinations in patients at high risk for occult injury. Focused Assessment for the Sonographic Examination of the Trauma patient. J Am Coll Surg 1999; 189: 145-150; discussion 150-151

98 Stawicki SP. Trends in nonoperative management of traumatic injuries: A synopsis. OPUS 12 Scientis 2007; 1: 19-35

99 Hayden GE, Everett W, Mark D, Fields J, Lee P, Dean AJ. The right intercostal window in bedside ultrasonography for IVC measurements is an alternative to traditional subxiphoid view. Ann Emerg Med 2007; 50: 527-531

100 Hayden GE, Everett W, Mark D, Pascuzzi A, Gracias VH, Kirkpatrick JK, Dean AJ. The right intercostal window for IVC measurement in critically ill patients is an alternative to subxiphoid views. Acad Emerg Med 2007; 14: S102

101 Kazmers A, Groehn H, Meeke C. Duplex examination of the inferior vena cava. Ann Surg 2000; 26: 896-899

102 Hayden GE, Everett W, Mark D, Fields J, Lee P, Dean AJ. Transverse and longitudinal inferior vena cava measurements are equally accurate and useful. Ann Emerg Med 2007; 50: 57-66

103 Ando Y, Yanagiba S, Asano Y. The inferior vena cava diameter as a marker of dry weight in chronic hemodialyzed patients. Artif Organs 1999; 23: 1237-1242

104 Cherien EC, Leunissen KM, Jansen JH, Mooy JM, van Hooff JP. Echography of the inferior vena cava: a simple and reliable tool for estimation of 'dry weight' in haemodialysis patients. Nephrol Dial Transplant 1989; 4: 563-568

105 Stawicki SP, Peanezzi NL, Kirkpatrick JK, Gracias VH, Hayden GE, Dean AJ. Intensivist use of hand-carried ultrasound to measure E/e' and IVC collapsibility in estimating volume status: Correlations with pulmonary artery and central venous pressures. South Med J 2008; 101: 861-868

106 Patten RM, Mack LA, Wang KY, Lingle J. Nondisplaced fractures of the greater tuberosity of the humerus: sonographic detection. Radiology 1992; 182: 201-204

107 Grechenig W, Clement HG, Fellinger M, Seggel W. Scope and limitations of ultrasonography in the documentation of fractures—an experimental study. Arch Orthop Trauma Surg 1998; 118: 368-372

108 Steinor GM, Sprigg A. The value of ultrasound in the assessment of bone. Br J Radiol 1992; 65: 589-593

109 Noble VE, Legome E, Marshburn T. Long bone ultrasound: making the diagnosis in remote locations. J Trauma 2003; 54: 800

110 Sempelles S. Pocket-size ultrasound device could speed access to images and information. J Clin Eng 2008; 33: 2-3

111 Valentino M, Serra C, Zironi G, De Luca C, Pavlica P, Barozzi L. Blunt abdominal trauma: emergency contrast-enhanced sonography for detection of solid organ injuries. AJR Am J Roentgenol 2006; 186: 1361-1367

S-Editor Cheng JX L-Editor Kerr C E-Editor Lin YP

WJO | www.wjgnet.com

November 18, 2010 | Volume 1 | Issue 1 |