Generic twisted T-adic exponential sums of binomials

LIU ChunLei1 & NIU ChuanZe2,*

1Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China; 2School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Email: cliu@sjtu.edu.cn, niuchuanze@mail.bnu.edu.cn

Received January 11, 2009; accepted August 19, 2010; published online March 23, 2011

Abstract The twisted T-adic exponential sum associated with $x^d + \lambda x$ is studied. If $\lambda \neq 0$, then an explicit arithmetic polygon is proved to be the Newton polygon of the C-function of the twisted T-adic exponential sum. It gives the Newton polygons of the L-functions of twisted p-power order exponential sums.

Keywords twisted, T-adic exponential sums, binomials

MSC(2000): 11L07, 14F30

Citation: Liu C L, Niu C Z. Generic twisted T-adic exponential sums of binomials. Sci China Math, 2011, 54(5): 865–875, doi: 10.1007/s11425-011-4203-z

1 Introduction

1.1 Classical twisted exponential sums

Let p be a fixed prime number, \mathbb{Z}_p the ring of p-adic integers, \mathbb{Q}_p the field of p-adic numbers, and $\overline{\mathbb{Q}}_p$ a fixed algebraic closure of \mathbb{Q}_p. Let $q = p^a$ be a power of p, \mathbb{F}_q the finite field of q elements, \mathbb{Q}_q the unramified extension of \mathbb{Q}_p with residue field \mathbb{F}_q, and \mathbb{Z}_q the integer ring of \mathbb{Q}_q.

Let $f(x) \in \mathbb{F}_q[x]$ be a polynomial of degree d. Let μ_{q-1} be the group of $(q-1)$-th roots of unity in \mathbb{Z}_q and $\chi = \omega^{-u}$ with $u \in \mathbb{Z}/(q-1)$ a fixed multiplicative character of \mathbb{F}_q^\times into μ_{q-1}, where $\omega : x \to \hat{x}$ is the Teichmüller character. Let ψ be a character of \mathbb{Z}_p of order p^m and $\pi_\psi = \psi(1) - 1$.

Definition 1.1. The sum

$$S_{f,u}(k, \psi) = \sum_{x \in \mathbb{F}_{q^k}^\times} \chi(\text{Norm}_{\mathbb{F}_{q^k}/\mathbb{F}_q}(x))\psi(\text{Tr}_{\mathbb{Q}_{q^k}/\mathbb{Q}_p}(\hat{f}(\hat{x}))) \in \mathbb{Z}_q[\pi_\psi]$$

is called a twisted p^m-order exponential sum. And the function

$$L_{f,u}(s, \psi) = \exp\left(\sum_{k=1}^{\infty} S_{f,u}(k, \psi) \frac{s^k}{k}\right) \in 1 + s\mathbb{Z}_q[\pi_\psi][[s]]$$

is called an L-function of a twisted p^m-order exponential sum.

The L-function $L_{f,u}(s, \psi)$ is well known to be rational in s. However, if f is non-degenerate, then it is a polynomial of degree $p^{m-1}d$, as was shown by Adolphson-Sperber [3,4] for $m = 1$ and Liu [6] for all m.

*Corresponding author
1.2 Twisted T-adic exponential

Let T be a variable. We now define the twisted T-adic exponential sum and then state our main results.

Definition 1.2. The sum

$$S_{f,u}(k,T) = \sum_{x \in \mathbb{Z}_{q^k}} \chi(\text{Norm}_{F_{q^k}/F_q}(x))(1 + T)^{Tr\gamma_{q^k}/q^m}(f(x)) \in \mathbb{Z}_q[[T]]$$

is called a twisted T-adic exponential sum. And the function

$$L_{f,u}(s,T) = \exp\left(\sum_{k=1}^{\infty} S_{f,u}(k,T) \frac{s^k}{k}\right) \in 1 + s\mathbb{Z}_q[[T]][[s]]$$

is called an L-function of a twisted T-adic exponential sum.

Definition 1.3. The function

$$C_{f,u}(s,T) = \exp\left(\sum_{k=1}^{\infty} -(q^k - 1)^{-1} S_{f,u}(k,T) \frac{s^k}{k}\right),$$

is called a C-function of a twisted T-adic exponential sum.

The L-function and the C-function determine each other:

$$L_{f,u}(s,T) = C_{f,u}(s,T)^{-1}$$

and

$$C_{f,u}(s,T) = \prod_{j=0}^{\infty} L_{f,u}(q^j s,T).$$

By the last identity, one sees that

$$C_{f,u}(s,T) \in 1 + s\mathbb{Z}_q[[T]][[s]].$$

The T-adic exponential sums were first introduced by Liu-Wan [10] and the theory of twisted T-adic exponential sums was developed by Liu [7]. We view $L_{f,u}(s,T)$ and $C_{f,u}(s,T)$ as power series in the single variable s with coefficients in the T-adic complete field $\mathbb{Q}_q(T)$. The C-function $C_{f,u}(s,T)$ was shown to be T-adic entire in s by Liu-Wan [10] for $u = 0$ and Liu [6] for all u.

Let ζ_p be a primitive p^n-th root of unity, and $\pi_m = \zeta_p^m - 1$. Then $L_{f,u}(s,\pi_m) = L_{f,u}(s,\psi)$ is the classical L-function of the p-power order exponential sums $S_{f,u}(k,\pi_m)$ studied by Adolphson-Sperber [1–4] for $m = 1$, by Liu-Wei [9] and Liu [6] for $m \geq 1$. By a result of Li [8], we see that if $p \nmid d$, then $L_{f,u}(s,\pi_m)$ is a polynomial of degree $p^{m-1}d$.

Let b be the least positive integer such that $p^b u \equiv u \pmod{q - 1}$. Let $a = \log_p q$. Write $u = u_0 + u_1 p + \cdots + u_{b-1} p^{b-1}$ with $0 \leq u_i \leq p - 1$. Then we have

$$\frac{u}{q - 1} \equiv -(u_0 + u_1 p + \cdots), \quad u_i = u_{b+i}.$$

Definition 1.4. The infinite u-twisted Hodge polygon $H_{\infty,0,d,u}$ is the convex function on $[0, +\infty)$ with initial point 0 which is linear between consecutive integers and whose slopes are

$$\frac{u_0 + u_1 + \cdots + u_{b-1}}{b(d(p - 1))} + \frac{l}{d}, \quad l = 0, 1, \ldots$$

Write NP for the short of Newton polygon. As was shown by Liu [6], we have

$$T\text{-adic NP of } C_{f,u}(s,T) \geq \text{ord}_p(q)(p - 1)H_{\infty,0,d,u},$$

i.e., the infinite u-twisted Hodge polygon is a lower bound of the T-adic Newton polygon of $C_{f,u}(s,T)$.

In the rest of this paper, $f(x) = x^d + \lambda x \in \mathbb{F}_q[x]$, where $\lambda \in \mathbb{F}_q^*$. We fix $0 \leq u \leq q - 1$. We shall study the twisted exponential sum of $f(x)$.