Yu Song, Yu Yan, Hua Zhang, and Xiuyan Wang*

Synthesis and structural characterization of a novel 2D supramolecular lead coordination polymer with phenanthroline derivate and adipic acid

https://doi.org/10.1515/mgmc-2021-0025
received April 15, 2021; accepted June 28, 2021

Abstract: A new metal-organic coordination polymer, \([\text{Pb}(\text{L})(\text{adip})_{0.5}] (1)\) was synthesized under hydrothermal conditions by using 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol (HL) and adipic acid (H_2adip). The complex 1 was characterized by diffraction and elemental analyses. In complex 1, the binuclear [Pb,L]_2 units were formed by the OH-deprotonation bridging neighboring Pb(II) atoms, and the adipate linked the binuclear [Pb,L]_2 units to form a symmetric one-dimensional chain. The 1D chain was further extended to the 2D supramolecular layer structure through \(\pi-\pi\) interactions between the L ligands.

Keywords: lead(II) complex, phenanthroline derivate, \(\pi-\pi\) stacking, crystal structure

Recently, the designing assemblies of polymeric coordination complexes have attracted considerable attention and a variety of remarkable complexes have been prepared so far (Li et al., 2012, 2020; Tang et al., 2006), owing to their fascinating architectures and more to their potential applications in a number of fields, such as magnetism, asymmetric catalysis, gas storage, electric conductivity, and photoluminescence (Cai et al., 2012; Hu et al., 2021; Senthilkumar et al., 2017). The multifunctional organic ligands can be used as linkers to connect the adjacent metal centers for coordination bonding to assemble polymers (Gotthardt et al., 2012; Lan et al., 2019). It is well known that the typical N-donor ligands (such as 1,10-phenanthroline and 2,2-bipyridine) have witnessed an upsurge in interest due to their free conformation and coordination versatility can give rise to diverse structural motifs (Schöne et al., 2018; Takeuchi et al., 2020; Zhang et al., 2020). Especially, 1,10-phenanthroline (phen) as the bidenate chelating reagent can display interesting supramolecular interactions such as aromatic stacking due to the plane conjugation of its multiple large rings. Our group used the heterocyclic nitrogen-derivative ligands, 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl) naphthalen-2-ol (HL), to synthesis the 2D coordination polymer (Kong et al., 2019).

Based on, we report a new 2D supramolecular lead coordination polymer \([\text{Pb}(\text{L})(\text{adip})_{0.5}] (1)\) with adipic acid (H_2adip) and the derivative 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl) naphthalen-2-ol (HL), to synthesis the 2D coordination polymer (Kong et al., 2019).

As shown in Figure 1, the asymmetric unit of 1 contains one unique Pb(II) atom, one L ligand and one half unique adipate ligand. Each Pb(II) atom adopts a distorted \([-\text{Pb}(\text{L})(\text{adip})_{0.5}]\) octahedral geometry coordinated by two N atoms from one L ligands, one oxygen atom from another deprotonated OH group and two O atoms of the one half adipate ligand (Yang et al., 2007). Two nitrogen atoms (N(1), N(2)) and two O atoms (O(2), O(3)) make up the basal plane, and axial position...
is occupied by the lone pair of electrons and one O atom (O(1)). The Pb–N distances are 2.487(4) and 2.598(4) Å, and the Pb–O varies from 2.313(3) to 2.715(4) Å (Table 1). The Pb–N and Pb–O bond lengths are similar to those found in other crystallographically characterized Pb(II) complex (Wang et al., 2011). As illustrated in Figure 2, the deprotonated OH groups bridge neighboring Pb(II) atoms to form a binuclear [Pb$_2$L$_2$] unit with the Pb⋯Pb separation of 9.581 Å. Further link of these [Pb$_2$L$_2$] units by adipate ligand forms a one-dimensional chain with equatorial plane symmetry along the a axis. As seen in Figure 3, the conjugated L ligands from the chains furnish strong π-π stacking interactions between the L ligands of neighboring chains [N(1)/C(1)–C(5), C(18)–C(23) at (x, −y+1/2, z+1/2), centroid-to-centroid distance of 3.746(3) Å and face-to-face distance of 3.5680(19) Å, and dihedral angle of 0.8(3)°], generating a two-dimensional supramolecular layer structure.

In conclusion a novel 2D supramolecular polymer [Pb(L)(adip)$_{0.5}$] (1) has been successfully synthesized and characterized under hydrothermal conditions. The central Pb(II) ion in 1 shows a distorted octahedral coordination environment, in which the lone pair of Pb occupies additional position. And adipate ligands link the binuclear [Pb$_2$L$_2$] units forming a symmetric one-dimensional chain. Finally, the π-π stacking interactions among the neighboring chains extend the chains into a 2D supramolecular layer structure.

Table 1: Selected bond lengths (Å) and angles (°) for the complex 1

Bond/Angle	Value
Pb(1)–N(1)	2.487(4)
Pb(1)–N(2)	2.598(4)
Pb(1)–O(1)	2.374(3)
Pb(1)–O(2)	2.715(4)
Pb(1)–O(3)	2.313(3)
O(1)–Pb(1)–O(3)	82.90(11)
N(1)–Pb(1)–O(3)	79.23(12)
N(1)–Pb(1)–O(1)	85.77(11)
N(2)–Pb(1)–O(1)	136.60(11)
N(2)–Pb(1)–O(2)	71.93(12)
N(1)–Pb(1)–N(2)	64.49(11)
O(2)–Pb(1)–O(3)	112.55(12)
O(1)–Pb(1)–O(2)	50.66(11)
N(1)–Pb(1)–O(2)	129.98(12)
N(2)–Pb(1)–O(2)	77.78(13)

Symmetry codes: 1−x+2, −y, −z; 2−x+1, −y, −z.

Figure 1: View of the coordination environment of the Pb(II) atom of 1.

Figure 2: View of the 1D chain structure of 1.
Experimental

All reagents and solvents used in the synthesis procedure were bought from the commercial companies (Shanghai yiyan biological technology Co. Ltd and Tianjin Yuzhou Chemical Sales Co., Ltd, China). Elemental analyses for C, H, and N were performed on a Perkin-Elmer 240 CHN elemental analyzer (Perkin Elmer, North Waltham, USA).

Preparation of [Pb(L)(adip)$_{0.5}$] (1)

Pb(NO$_3$)$_2$ (0.066 g, 0.2 mmol), H$_2$adip (0.029 g, 0.2 mmol), HL (0.036 g, 0.1 mmol), and 9 mL H$_2$O were added to the 50 mL beaker, while stirring. And the pH value of the solution was adjusted to 4-5 with 1 mol L$^{-1}$ NaOH aqueous solution (about 0.45 mL). The solution is weakly acidic, and the hydroxyl groups on the naphthalene rings of the HL ligands are partially deprotonated. Then the mixture was transferred to the sealed 15 mL Teflon-lined Parr and heated at 195°C for 5 days. After being cooled to room temperature, the light yellow block-shaped crystalline products of 1 were obtained and washed the products repeatedly with water until free from impurities (4 times by 15 mL). The yield was 0.025 g (ca. 39%, based on the L). Analytical calculated for C$_{26}$H$_{17}$N$_4$O$_3$Pb, %: C, 48.75; H, 2.67; N, 8.75; Found %: C, 48.01; H, 2.61; N, 8.59.

X-ray crystallography

The structure was solved by direct methods using SIR2014 (Burla et al., 2014) and refined by a full-matrix least squares technique on F2 using SHELXL2018/3 program (Sheldrick, 2015). All H atoms were found by generated calculations with refining as riding, and the non-hydrogen atoms were refined with anisotropic temperature parameters. The crystallographic parameters and refinements are summarized in Table 2. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 2076592.

Table 2: Crystalline data and refinement parameters for complex 1

Property	Value
Empirical formula	C$_{26}$H$_{17}$N$_4$O$_3$Pb
Formula weight	640.62
Crystal system	Monoclinic
Space group	P$_2_1_1$/c
a (Å)	12.342(2)
b (Å)	11.797(2)
c (Å)	16.324(3)
β (°)	111.995(2)
Volume (Å3)	2203.6(7)
Z	4
D$_m$ (g·cm$^{-3}$)	1.931
μ (mm$^{-1}$)	7.694
F(000)	1228
θ range (°)	1.780 to 25.037
Crystal size (mm)	0.208 × 0.185 × 0.171
Tot. reflections	11101
Uniq. reflections, R$_{int}$	3887, 0.0315
GOF on F2	0.966
R$_1$ indices (I>2σ(I))	0.0259
wR$_2$ indices (all data)	0.0578
Δρ$_{min}$, Δρ$_{max}$ (e·Å$^{-3}$)	-0.425, 0.982
CCDC No.	2076592

Funding information: This research was supported by the National Natural Science Foundation of China (No. 21607051) and the Graduate Innovation Project of Jilin Normal University (No. 202030).

Author contributions: Yu Song: writing – original draft, writing – review and editing, data curation; Yu Yan: data curation, writing – review and editing; Hua Zhang: data curation, writing – review and editing; Xiuyan Wang: visualization, software, writing – review and editing.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: All data generated or analysed during this study are included in this published article.
References

Burla M.C., Caliandro R., Carrozzini B., Cascarano G.L., Cuocci C., Giacovazzo C., et al., Crystal structure determination and refinement via SIR2014. J. Appl. Cryst., 2015, 48, 306-309, DOI: 10.1107/S1600576715001132.

Cai S.L., Zheng S.R., Wen Z.Z., Fan J., Wang N., Zhang W.G., Two types of new three-dimensional d-f heterometallic coordination polymers based on 2-(pyridin-3-yl)-1H-imidazole-4,5-dicarboxylate and oxalate ligands: syntheses, structures, luminescence, and magnetic properties. Cryst. Growth Des., 2012, 12, 4441-4449, DOI: 10.1021/cg300613t.

Hu S.W., Xu D., Zhou Z.S., Du S.N., Zhao K., Li H.X., et al., A simple coordination complex-derived NiS nanocatalyst for reduction of 4-nitrophenol and methyl orange. Inorg. Chem. Commun., 2021, 125, 108428-108439, DOI: 10.1016/j.inoche.2020.108428.

Gotthardt J.M., White K.F., Abrahams B.F., Ritchie C., Boskovic C., Fluorite topology in lanthanoid coordination polymers with di- and trimetallic building blocks. Cryst. Growth Des., 2012, 12, 4425-4430, DOI: 10.1021/cg3006103.

Kong Z.G., Han Q., Zhang L., Liu D.X., Hu B., Wang X.Y., A new Cd(II) coordination polymer constructed by 1,10-phenanthroline derivative: syntheses, structure, physical properties and theoretical calculation. Chinese J. Struct. Chem., 2019, 38(12), 2141-2147, DOI: 10.14102/j.cnki.0254-5861.2011-2476.

Kong Z.G., Wang W., Zhang S.Q., Zhao F.W., Wang X.Y., Synthesis, crystal structure, physical properties and theoretical calculations of a new one-dimensional Ni(II) coordination polymer constructed by 1,10-phenanthroline derivative ligand and sulfate. J. Inorg. Organomet. Polym., 2015, 25, 1441-1447, DOI: 10.1007/s10904-015-0257-7

Lan G.X., Quan Y.J., Wang M.L., Nash G.T., You E., Song Y., et al., Metal–organic layers as multifunctional two-dimensional nanomaterials for enhanced photoredox catalysis. J. Am. Chem. Soc., 2019, 141(40), 15767-15772, DOI: 10.1021/jacs.9b08956.

Li J.R., Sculley J., Zhou H.C., Metal–organic frameworks for separations. Chem. Rev., 2012, 112, 869-932, DOI: 10.1021/cr200190s.

Li X.M., Pan Y.R., Liu B., Zhou S., Synthesis, structural characterization and fluorescent properties of a cadmium coordination polymer with 4-nitrophthalate and 1,4-bis(midazol-1-yl)benzene. Chinese J. Struct. Chem., 2020, 39(5), 955-959, DOI: 10.14102/j.cnki.0254-5861.2011-2518.

Schöne S., Radoske T., März J., Stumpf T., Ikeda-Ohno A., Synthesis and characterization of heterometallic Iron-uranium complexes with a bidentate n-donor ligand (2,2΄-bipyridine or 1,10-phenanthroline). Inorg. Chem., 2018, 57(21), 13318-13329, DOI: 10.1021/acs.inorgchem.8b01868.

Senthil Kumar S., Goswami R., Obasi N.L., Neogi S., Construction of pillar-layer metal–organic frameworks for CO₂ adsorption under humid climate: high selectivity and sensitive detection of picric acid in water. ACS Sustain. Chem. Eng., 2017, 5, 11307-11315, DOI: 10.1021/acssuschemeng.7b02087.

Sheldrick G.M., Crystal structure refinement with SHELXL. Acta Cryst., 2015, C71, 3-8, DOI: 10.1107/S2053229614024218.

Takeuchi K., Kim K.W., Kim Y.J., Fukaya N., Sato K., Choi J.C., Synthesis and structure of multinuclear Pd(II) complexes bridged by phosphide or azide ligands, ACS Omega, 2020, 5(46), 29706-29713, DOI: 10.1021/acsomega.0c03317.

Tang Y.Z., Wang X.S., Zhou T., Xiong R.G., A novel 2D manganese(II) coordination polymer exhibiting ferromagnetic interaction. Cryst. Growth Des., 2006, 6(1), 11-13, DOI: 10.1021/cg050222e.

Wang X.Y., Guo J., Wang H.L., Wang Q.W., Synthesis and crystal structure of a new Pb(II) coordination polymer constructed by a 1,10-phenanthroline derivative and a flexible dicarboxylate. J. Naturforsch., 2011, 66b(6), 647-650. DOI: 10.1515/znb-2011-0614.

Yang J., Ma J.F., Liu Y.Y., Ma J.C., Batten S.R., Organic-acid effect on the structures of a series of lead(II) complexes. Inorg. Chem., 2007, 46(16), 6542-6555, DOI: 10.1021/ic700613c.

Zhang H., Xu T.T., Xing T.Y., Wang X.Y., Zuo J.M., Kong Z.K., Two new coordination complexes based on 2,2΄-H₂biimidazole: synthesis, structure, luminescent property and theoretical calculation. Chinese J. Struct. Chem., 2020, 39(8), 1451-1457, DOI: 10.14102/j.cnki.0254-5861.2011-2711.