Endoscopic ultrasound guided liver biopsy for parenchymal liver disease

Aun Raza Shah, Muhannad Al-Hanayneh, Monica Chowdhry, Mohammad Bilal, Shailendra Singh

ORCID number: Aun Raza Shah (0000-0002-9877-8659); Muhannad Al-Hanayneh (0000-0001-7387-5201); Monica Chowdhry (0000-0001-9559-1173); Mohammad Bilal (0000-0002-1784-212X); Shailendra Singh (0000-0001-9505-4842).

Author contributions: Bilal M and Singh S designed the outline for the manuscript; Shah AR, Al-Hanayneh M, Chowdhry M and Bilal M wrote critical portions of the initial manuscript; Bilal M and Singh S provided expert opinion, and edited the final version of the manuscript.

Conflict-of-interest statement: The authors report no conflict of interest and have no financial disclosures with respect to this manuscript.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: December 28, 2018
Peer-review started: December 29, 2018

Abstract

Liver biopsy plays an essential role in the diagnosis, evaluation and management of a vast proportion of liver diseases. Conventionally, percutaneous and transjugular approaches have been used to obtain liver biopsies. Endoscopic ultrasound guided liver biopsy (EUS-LB) has emerged as a safe and effective alternate in the past two decades. EUS-LB carries a role in evaluation of both benign and malignant diseases of the liver. It can offer higher resolution imaging of the liver and can detect smaller lesions than computed tomography scan of the abdomen or ultrasound scans with the option for doppler assistance to reduce complications. Current evidence demonstrates the superiority of EUS-LB for a targeted approach of focal lesion and there is also evidence of less sampling variability in heterogeneous parenchymal pathologies. These advantages combined with an improved safety profile had led to the rapid progress in the development of new techniques, equipment and procedures for EUS-LB. We provide a comprehensive review of EUS-LB for parenchymal liver disease.

Key words: Liver biopsy; Endoscopic ultrasound; Endoscopic ultrasound guided liver biopsy; Liver disease

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this review, we provide a comprehensive discussion on the role of Endoscopic ultrasound guided liver biopsy (EUS-LB) in parenchymal liver disease. This article summarized the technical aspects of EUS-LB; as well as debated its advantages and disadvantages. We also highlight new advancements and recently reported research.
INTRODUCTION

Liver biopsy plays an essential role in the diagnosis, evaluation and management of a vast proportion of liver diseases. History, physical exam, laboratory testing and radiological exams continue to be the mainstay in diagnosis of disease, however, the use of these modalities without liver biopsy can miss up to one-third cases of cirrhosis\(^1\). Histological examination of biopsy samples can not only help identify the underlying pathophysiology of liver disorder but also quantify its severity. This has a significant impact on the management of as many as one-fifth of all patients with liver disease\(^6\). In the past, liver biopsy was performed via the percutaneous route without image guidance\(^5\). However this has now been largely replaced by ultrasound-guided or computed tomography (CT) guided biopsy to limit potential complications\(^6\). When a percutaneous biopsy is not feasible a trans-jugular approach is used. Open or laparoscopic surgical biopsy is usually last resort. Endoscopic ultrasound guided liver biopsy (EUS-LB) is a technique that has recently gained popularity since it offers certain advantages over the traditional methods of obtaining tissue samples. Endoscopic ultrasound is an established imaging modality that is essential in the assessment of a broad array of luminal, hepatobiliary, and pancreatic disorders. It provides high resolution images of both lobes of the liver, hence allowing a potentially easier and safer biopsy technique whilst providing the opportunity to target focal hepatic lesions\(^7\). The choice of technique is eventually based upon expertise of the operator, anatomical barriers and risk profile of the patient (coagulopathy, hepatic vascularity and presence of ascites). In this review, we provide a detailed comparison between EUS-LB and traditional modalities of liver biopsy.

APPROACHES TO LIVER BIOPSY

The advent of liver biopsies is dated back to the 19th century, with Paul Ehrlich reporting the first successful liver aspiration in 1883\(^2\). However, it wasn’t until four decades later that the first percutaneous liver biopsy was successfully performed in Germany in 1923\(^3\). Even a century later this remains the preferred approach to obtaining hepatic parenchymal tissue\(^3\). Over time, advances in imaging modalities have led to the addition of ultrasound and CT scan guided liver biopsy\(^4\). Image-guidance, either by ultrasonography or CT scan\(^4\), is now the mainstay in diagnosis of disease, however, the use of these modalities without liver biopsy can miss up to one-third cases of cirrhosis\(^1\). Histological examination of biopsy samples can not only help identify the underlying pathophysiology of liver disorder but also quantify its severity. This has a significant impact on the management of as many as one-fifth of all patients with liver disease\(^6\). In the past, liver biopsy was performed via the percutaneous route without image guidance\(^5\). However this has now been largely replaced by ultrasound-guided or computed tomography (CT) guided biopsy to limit potential complications\(^6\). When a percutaneous biopsy is not feasible a trans-jugular approach is used. Open or laparoscopic surgical biopsy is usually last resort. Endoscopic ultrasound guided liver biopsy (EUS-LB) is a technique that has recently gained popularity since it offers certain advantages over the traditional methods of obtaining tissue samples. Endoscopic ultrasound is an established imaging modality that is essential in the assessment of a broad array of luminal, hepatobiliary, and pancreatic disorders. It provides high resolution images of both lobes of the liver, hence allowing a potentially easier and safer biopsy technique whilst providing the opportunity to target focal hepatic lesions\(^7\). The choice of technique is eventually based upon expertise of the operator, anatomical barriers and risk profile of the patient (coagulopathy, hepatic vascularity and presence of ascites). In this review, we provide a detailed comparison between EUS-LB and traditional modalities of liver biopsy.

The advent of liver biopsies is dated back to the 19th century, with Paul Ehrlich reporting the first successful liver aspiration in 1883\(^2\). However, it wasn’t until four decades later that the first percutaneous liver biopsy was successfully performed in Germany in 1923\(^3\). Even a century later this remains the preferred approach to obtaining hepatic parenchymal tissue\(^3\). Over time, advances in imaging modalities have led to the addition of ultrasound and CT scan guided liver biopsy\(^4\). Image-guidance, either by ultrasonography or CT scan\(^4\), is now the mainstay in diagnosis of disease, however, the use of these modalities without liver biopsy can miss up to one-third cases of cirrhosis\(^1\). Histological examination of biopsy samples can not only help identify the underlying pathophysiology of liver disorder but also quantify its severity. This has a significant impact on the management of as many as one-fifth of all patients with liver disease\(^6\). In the past, liver biopsy was performed via the percutaneous route without image guidance\(^5\). However this has now been largely replaced by ultrasound-guided or computed tomography (CT) guided biopsy to limit potential complications\(^6\). When a percutaneous biopsy is not feasible a trans-jugular approach is used. Open or laparoscopic surgical biopsy is usually last resort. Endoscopic ultrasound guided liver biopsy (EUS-LB) is a technique that has recently gained popularity since it offers certain advantages over the traditional methods of obtaining tissue samples. Endoscopic ultrasound is an established imaging modality that is essential in the assessment of a broad array of luminal, hepatobiliary, and pancreatic disorders. It provides high resolution images of both lobes of the liver, hence allowing a potentially easier and safer biopsy technique whilst providing the opportunity to target focal hepatic lesions\(^7\). The choice of technique is eventually based upon expertise of the operator, anatomical barriers and risk profile of the patient (coagulopathy, hepatic vascularity and presence of ascites). In this review, we provide a detailed comparison between EUS-LB and traditional modalities of liver biopsy.
most commonly reported adverse events. EUS was developed in the 1980s and has been gaining popularity. This was further revolutionized in the early 1990s with the advent of Fine Needle Aspiration (FNA). Significant advances have been made since then and now EUS is widely used as both a diagnostic and therapeutic modality. EUS-LB has recently emerged as another technique for obtaining liver tissue. Although as described earlier; several approaches and techniques are there for obtaining a liver biopsy, EUS-LB offers several advantages over conventional approaches. EUS offers a more precise localization and characterization of target tissue which helps to improve diagnostic yield. More so, it is arguably a less invasive and better tolerated approach than conventional methods. It offers the advantage of good access to both the lobes of liver and the presence of doppler assistance decreases the chances of complications. Other important considerations for choosing EUS-LB over conventional methods of liver biopsy include contraindications to percutaneous biopsy.

EUS GUIDED SAMPLING TECHNIQUES FOR PARENCHYMAL LIVER DISEASE

Since the onset of EUS-LB, multiple needle types and techniques have been reported for its use. In the next few segments, we review the historic timeline for various needle types and discuss the different techniques used to help in increasing the diagnostic yields of EUS-LB. Core sample obtained via EUS-LB is shown in Figure 1.

How is a good quality liver biopsy defined?

The criteria for an adequate liver biopsy had been well defined. Per the American Association for the Study of Liver Disease (AASLD), adequacy of samples are defined as number of complete portal triads (CPTs) to be 11 and total sample length (TSL) of 30 mm, and with no or minimum fragmentation of the sample. However, the definition of adequacy for liver biopsy sample remains controversial in the literature.

Needle types

Tru-cut biopsy: In 2002, the initial experience with EUS-LB was in swine models using Tru-Cut biopsy needles. In a study by Wiersema et al., they performed EUS-LB of multiple peri-gastric organs using a 19 gauge Tru-Cut needle. The median TSL was 4 mm for liver samples and 78% had fragmentation, however the number of CPT was not reported. They reported difficulty in the procedure due to the use of the stiff needle since problems were encountered in making the needle bend to traverse through the flexible endoscope. They concluded that the method is safe and feasible, however did not meet criteria for adequate liver biopsy samples and were technically difficult. Due to the aforementioned reasons this method was not widely used.

However, in 2009, Gleeson et al. also reported outcomes using the Tru-Cut needle. They reported that results of EUS Tru-Cut needle biopsy are comparable to those of trans-jugular liver biopsy. In their small study with the use of Tru-Cut needle on 9 patients, they reported the TSL of 16.9 mm and a median of 7 CPTs. Although the results do not suffice the criteria of having at least 11 CPT per AASLD, they were able to reach a histopathologic diagnosis in all 9 patients. However, the study was retrospective and only included 9 patients. Overall, the EUS Tru-Cut biopsy did not gain wide spread popularity for diagnosing parenchymal liver disease and more novel needles and techniques emerged which made Tru-Cut biopsies fall out of favor.

19 Gauge FNA “non-tru-cut” needle: Several studies reported using 19 gauge FNA needle, with the first one published in 2012. In this study, Stavropoulos et al. performed EUS-LB on patient undergoing EUS to rule out biliary obstruction when the exam was unrevealing. The median length of obtained specimens was 36.9 mm ranging from 2 to 184.6 mm, nine complete portal tracts (range: 1-73), diagnostic adequacy of 91%, and no post-procedure complications. The outcomes showed comparable biopsy quality results to percutaneous and trans-jugular liver biopsies. They concluded that for patients being investigated by endoscopic ultrasound for biliary obstruction; EUS-LB was a safe, reliable and cost-effective option to diagnose parenchymal disease.

In one large study published in 2015 by Diehl et al., liver biopsy specimens obtained via EUS were sufficient for pathological diagnosis in 98% of the cases. The aggregate length of tissue acquired ranged from 0 to 203 mm with a median of 38 mm. A total of 0 to 68 CPTs were obtained and the median was 14. This led the authors to conclude that EUS-LB using a 19 gauge FNA needle, is a safe technique yielding
adequate tissue for pathological diagnosis in 98% of the patients. This needle provides a higher diagnostic yield and is less technically challenging to use in comparison with the Tru-Cut biopsy needle. However, the ideal technique has not been yet defined and larger studies are needed. Different biopsy techniques are discussed in the next section.

19 Gauge Fine Needle Biopsy needle: A new 19 gauge fine needle biopsy (FNB) needle has shown promising results and a higher diagnostic yield. Schulman et al. compared the different needle types and biopsy techniques. They studied 6 different needle types (four EUS-LB needles and two percutaneous needles) on human cadaveric tissue and had a total of 288 liver samples. They concluded that a novel 19 gauge needle (SharkCore 19 gauge FNB needle) had significantly better diagnostic yield compared to all other needle types in the study including the second FNB needle used in the study, the ProCore FNB (Echo Tip HD ProCore).

In this study four discrete suction techniques were used in addition to one fanning pass vs three fanning pass patterns of needle excursion. Analysis of the subgroups showed that three fanning pass needle excursion pattern was an independent prognosticator of CPT, however the suction techniques had no effect on the adequacy of the tissue sample when other variables were controlled. This type of needle also had overall less tissue fragmentation rates compared to the other needles with an 84% mean of core samples from tissue obtained using this needle. This study was double blinded and randomized, however more studies need to be done on non-cadaveric diseased liver with comparison to other biopsy modalities to confirm its superiority and overall cost-effectiveness.

Biopsy techniques
Several techniques have been used to increase the diagnostic yield of EUS-LB. The technique for performing EUS-LB is demonstrated in Video 1. Diehl et al. reported performing multiple movements with the needle “fanning technique” in which the needle is advanced to-and-fro at different areas to obtain tissue samples.

Most endoscopists use full suction with needle aspiration as well. Suction techniques include ten-/twenty-/thirty-mL method. Alternatively, a slow-pull technique may be used where the stylet is drawn out from the needle once it is in the desired location.

More recently, newer techniques have emerged in attempts to increase the diagnostic yields of EUS-FNB including the use of “wet suction”. In this technique a heparinized needle is used to reduce chances of coagulation and hence, improve tissue retrieval whilst minimizing comminution of tissues samples. A recent study by Mok et al. compared this method to both “dry heparin” and “dry needle” technique. This was a prospective study on 40 patients, were they all had 3 EUS-FNA liver biopsies using the 3 different methods. In this method, needles are heparinized till drops are seen at the needle-point while ensuring no air is pushed through. Two milliliters of water are then drawn into the syringe and a twenty-milliliter vacuum-syringe is connected. They concluded that “wet suction” technique had better tissue
yield in comparison to “dry needle” method. However, the question remains if this technique is necessary or even useful when using the more novel FNB needles as these needles provided superior results regardless if wet suction was used or not.

Another recently described technique is the “modified 1-pass 1 actuation wet suction technique [EUS-modified liver biopsy sampling (EUS-MLB)]”. This was described in a study by Nieto et al[33] They used the FNB-needle (SharkCore) which was prepped normal saline. Suction was applied to the FNB-needle at a depth of seven cm into the hepatic parenchyma. Large vessels were avoided using Doppler assistance. Both right and left lobes were sampled via a “rapid-puncture” and one actuation for each lobe. The authors concluded that “EUS-MLB” was effective and safe in evaluation of inexplicable liver disease. The median TSL in their study was 6 cm, and the median number of CPTs per TSL was 18.

ADVANTAGES OF EUS-GUIDED BIOPSY

Historically percutaneous liver biopsy was done “blind”, however in present times this has largely been replaced by image guided biopsy. Image guidance is postulated to help increase sampling adequacy and more importantly reduce complications[40]. There is some controversy regarding this and conflicting data have been reported[4,34]. In 1991, Vautier et al[4] reported that ultrasound guidance does not reduce bleeding complications from PC-LB and concluded that image guided liver biopsy may not be safer than blind biopsy. A retrospective analysis looked at the complications and safety profile of PC-LB biopsy in patients enrolled in the HALT-C trial[34]. All the patients included in this trial had advanced chronic liver disease. A total of 2740 liver biopsies were performed and 90% were ultrasound guided. 16 of the total 29 cases of significant adverse events were from bleeding complications. EUS guidance aims to mitigate these complications further by better anatomical definition and doppler assistance.

Linear echoendoscopes were first introduced in the 1990s[36]. Linear echoendoscopes allowed the use of doppler ultrasound and the ability to track needles in real-time. Combined with high resolution imaging, the intrahepatic vessels and major bile ducts can be easily identified and avoided during biopsy, hence reducing potential complications[31].

Commonly a sixteen-gauge needle is used for percutaneous liver biopsy. On the contrary using nineteen-gauge needles for EUS-LB reduces possible complications. A large trial comprising over a hundred patients studied the diagnostic yield and safety of EUS-FNA using a 19-gauge needle[43]. Reported diagnostic yield was 98% as measured by the tissue sample length and presence of complete portal tracts. Serious adverse event was reported in one patient who developed a sub-capsular hematoma that required only conservative management. The authors concluded that EUS-LB was a safe technique with comparable diagnostic accuracy to PC-LB. Adler et al[35] performed a multicenter retrospective review of 210 patients, specifically looking at safety and performance when sampling solid lesions. They reported excellent diagnostic yield at 98.5%, however 6.5% of the patients needed a repeat procedure at some point. No adverse event was identified in the population. Table 1 summarizes the diagnostic accuracy and adverse event rates of EUS-LB.

EUS guidance has the benefit to sample and evaluate both lobes of the liver, hence achieving more accurate representation of liver histology, potentially addressing concerns about sampling error[36]. PC-LB and transjugular biopsies are both subject to sampling variability due to heterogeneity of parenchymal diseases[37]. This variability can be reduced by sampling both the liver lobes. EUS-LB allows easier access to the right and left lobe of liver; thus minimizing this variability[37].

For Pancreatic lesions EUS guided biopsy has proven superiority as an imaging modality for as it allows greater anatomical definition and higher resolution with the ability to sample ascites, local lymphatic structures and small liver nodules[4]. There is some evidence suggesting that for smaller liver lesions EUS-LB is indeed also superior and safer than PC-LB with CT or ultrasound guidance[40].

Other advantages of EUS-LB include a much shorter recovery time (about 4 h) than that of PC-LB (commonly at least 10 h)[35,43]. Another potential benefit is that patients are sedated for the EUS procedure, thus EUS-LB is better tolerated in most instances as compared with PC-LB[40]. However, it is important to remember that the benefits of sedation and anesthesia must be balanced against risk of respiratory depression. As described for trans-jugular biopsy, EUS-LB also has the potential advantage in patients with morbid obesity, large ascites, peliosis hepatis, and coagulopathy[3,4].
Table 1 Current evidence of diagnostic accuracy and adverse event rates of endoscopic ultrasound guided liver biopsy

Study	Sample size	Diagnostic yield	Serious adverse events
Gleeson et al[28], 2009	9	0%	0%
Schulman et al[30], 2017	288	84%	NA (cadaveric tissue)
Stavropoulos et al[24], 2012	22	91%	0%
Diehl et al[29], 2015	110	98%	0.9%
Mok et al[32], 2018	40	98% (wet suction)	0%
Nieto et al[33], 2018	165	> 90%	1.8%
Adler et al[38], 2018	200	98.5%	0%

DISADVANTAGES

Despite its advantages over the other liver biopsy techniques, the application of EUS-LB in everyday practice has yet to reach its full potential. One of the barriers to this is the relative novelty of the technique. PC-LB and trans-jugular approaches have been used in clinical practice much longer than EUS-LB and hence operators have more experience with these. The conventional techniques are also easier and require less technical expertise. This is especially true with the use of Tru-Cut needle for biopsy which is more technically demanding and may have variable sample yield[46]. Tru-Cut needles have been largely replaced with more flexible needles that can be navigated with more ease[27,47].

Left lobe of the liver can be approached through the gastric wall, whilst the right lobe is accessed via the duodenum. Right Hepatic Lobe sampling can be difficult in some cases due to difficulty in navigating the biopsy needle at sharp angles across the duodenum[15,48]. This again is more of an issue with Tru-Cut needles which have limited flexibility[47].

Another important consideration is the cost of procedure. EUS-LB has a much higher cost when compared to PC-LB and this can be prohibitive to the widespread use[15,39]. However, this drawback is offset in patients who are undergoing an endoscopy for another indication (such as esophageal varices screening). EUS-LB may be done during the same session with little additional time and risk. Patients intolerant or non-compliant of pre-procedure preparation can also prove to be a challenge to successful EUS-LB. Table 2 summarizes the comparison between PC-LB and EUS-LB.

CONCLUSION

Liver biopsy remains essential in diagnosis, evaluation and management of numerous liver diseases. Whilst percutaneous biopsy remains the test of choice, it has its drawbacks; and hence EUS guided liver biopsy has emerged over the resent past as a safe and effective alternative. Advantages of EUS-LB include easier access to both lobes of liver and improved diagnostic accuracy in heterogeneous parenchymal diseases as well as detecting multiple focal lesions. Procedure and recovery times are shorter with less reliance on patient cooperation. Additionally, the use of doppler assistance helps avoid blood vessels reducing risk of hemorrhage; which is the most common complication of liver biopsy.

Techniques of obtaining liver samples with EUS guidance and the equipment used, such as types of needles; is constantly changing. However, current evidence on EUS-LB techniques is conflicting and there is no consensus on the best technique and type of needle used. Nevertheless, most centers have published positive results from their individual experiences. Despite these advances cost barriers and sparsity of technical expertise continue to remain limiting factors for the wide spread use of EUS-LB.
Table 2 Comparison of percutaneous liver biopsy with endoscopic ultrasound guided liver biopsy

	PC-LB	EUS-LB
Anatomical definition	Likely improved with ultrasound guidance	Better than PC-LB and the addition of Doppler reduces complications
Imaging resolution	Lower	Higher
Diagnostic yield/accuracy	Lower	Comparable
Sampling error	Higher	Lower
Access to liver lobes	Predominantly right lobe sampling	Can easily sample both right and left lobes
Average recovery time	10 h	4 h
Technical difficulty	Lower	High
Cost	Low	High

PC-LB: Percutaneous liver biopsy; EUS-LB: Endoscopic ultrasound guided liver biopsy.

REFERENCES

1. Skelly MM, James PD, Ryder SD. Findings on liver biopsy to investigate abnormal liver function tests in the absence of diagnostic serology. J Hepatol 2001; 35: 195-199 [PMID: 11580141 DOI: 10.1016/S0168-8278(01)00094-0]
2. Sorbi D, McGill DB, Thistle JL, Therneau TM, Henry J, Lindor KD. An assessment of the role of liver biopsies in asymptomatic patients with chronic liver test abnormalities. Am J Gastroenterol 2000; 95: 3206-3210 [PMID: 11095343 DOI: 10.1111/j.1572-0241.2000.03293.x]
3. Gilmore IT, Burroughs A, Murray-Lyon IM, Williams R, Jenkins D, Hopkins A. Indications, methods, and outcomes of percutaneous liver biopsy in England and Wales: an audit by the British Society of Gastroenterology and the Royal College of Physicians of London. Gut 1995; 36: 437-441 [PMID: 7698705 DOI: 10.1136/gut.36.3.437]
4. Grant A, Neuberger J. Guidelines on the use of liver biopsy in clinical practice. British Society of Gastroenterology. Gut 1999; 45 Suppl 4: IV1-IV11 [PMID: 10485854 DOI: 10.1136/gut.45.2008.iv1]
5. Strassburg CP, Manns MP. Approaches to liver biopsy techniques—revisited. Semin Liver Dis 2006; 26: 318-327 [PMID: 17051446 DOI: 10.1055/s-2006-951599]
6. Saraireh HA, Bilal M, Singh S. Role of endoscopic ultrasound in liver disease: Where do we stand in 2017? World J Hepatol 2017; 9: 1013-1021 [PMID: 28932347 DOI: 10.4245/wjh.v9.24.1013]
7. Felz L. Diagnostic liver puncture in the work of Paul Ehrlich. Med Monatschr 1965; 19: 357-359 [PMID: 5326954]
8. Abdi W, Millan JC, Mezei E. Sampling variability on percutaneous liver biopsy. Arch Intern Med 1979; 139: 667-669 [PMID: 443790]
9. Perrault J, McGill DB, Ori BJ, Taylor WF. Liver biopsy: complications in 1000 inpatients and outpatients. Gastroenterology 1978; 74: 103-106 [PMID: 618417]
10. Janes CH, Lindor KD. Outcome of patients hospitalized for complications after outpatient liver biopsy. Ann Intern Med 1993; 118: 96-98 [PMID: 8416324]
11. Dotter CT. Catheter biopsy. Experimental technic for transvenous liver biopsy. Radiology 1964; 82: 312-314 [PMID: 14113171 DOI: 10.1148/82.2.312]
12. Kalambokis G, Manousou P, Vlithakorn S, Marelli L, Cholongitas E, Senoulo M, Patch D, Burroughs AK. Transjugular liver biopsy—indications, adequacy, quality of specimens, and complications—a systematic review. J Hepatol 2007; 47: 284-294 [PMID: 17561303 DOI: 10.1016/j.jhep.2007.05.001]
13. Sue M, Caldwell SH, Dickson RC, Macalindong C, Rouk RM, Charles C, Doobay R, Cambridge SL, Barratt AS, McCallum RW. Variation between centers in technique and guidelines for liver biopsy. Liver 1996; 16: 267-270 [PMID: 8877999]
14. Behrens G, Ferral H. Transjugular liver biopsy. Semin Intervent Radiol 2012; 29: 111-117 [PMID: 23729981 DOI: 10.1055/s-0032-1312572]
15. Parekh PJ, Majithia R, Diehl DL, Baron TH. Endoscopic ultrasound-guided liver biopsy. Endosc Ultrasound 2015; 4: 85-91 [PMID: 26020041 DOI: 10.4103/2305-9027.156711]
16. Friedberg SR, Lachter J. Endoscopic ultrasound: Current roles and future directions. World J Gastroint Endosc 2017; 9: 499-505 [PMID: 29085560 DOI: 10.4253/wjge.v9.s1.499]
17. Meng FS, Zhang ZH, Ji F. New endoscopic ultrasound techniques for digestive tract diseases: A comprehensive review. World J Gastroenterol 2015; 21: 4809-4816 [PMID: 25944994 DOI: 10.3748/wjg.v21.i16.4809]
18. Mekky MA, Abbs WA. Endoscopic ultrasound in gastroenterology: from diagnosis to therapeutic implications. World J Gastroenterol 2014; 20: 7801-7807 [PMID: 24976718 DOI: 10.3748/wjg.v20.i24.7801]
19. Deprez PH. Future directions in EUS-guided tissue acquisition. Gastroint Endosc Clin N Am 2014; 24: 143-149 [PMID: 24215762 DOI: 10.1016/j.gence.2013.08.004]
20. Sharmas V, Rana SS, Bhaisin DK. Endoscopic ultrasound guided interventional procedures. World J Gastroint Endosc 2015; 7: 628-642 [PMID: 26078831 DOI: 10.4253/wjge.v7.i6.628]
21. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD. American Association for the Study of Liver Disease. Liver biopsy. Hepatology 2009; 49: 1017-1044 [PMID: 19243040 DOI: 10.1002/hep.22742]
22. Dewitt J, McGreedy K, Cummings O, Sherman S, Leblanc JK, McHenry L, Al-Haddad M, Chalasani N. Initial experience with EUS-guided Tru-Cut biopsy of benign liver disease. Gastroint Endosc 2009; 69: 535-542 [PMID: 19231495 DOI: 10.1016/j.gie.2008.09.056]
23. Gor N, Salem SB, Jakate S, Patel R, Shah N, Patil A. Histological adequacy of EUS-guided liver biopsy when using a 19-gauge non-Tru-Cut FNA needle. Gastroint Endosc 2014; 79: 170-172 [PMID: 243729981 DOI: 10.1055/s-0032-1312572]
Shah AR et al. Endoscopic ultrasound guided liver biopsy

24 Stavropoulos SN, Im GY, Jlayer Z, Harris MD, Pitea TC, Turi GK, Malet PF, Friedel DM, Grendell JH. High yield of same-session EUS-guided liver biopsy by 19-gauge FNA needle in patients undergoing EUS to exclude biliary obstruction. Gastrointest Endosc 2012; 75: 310-318 [PMID: 22248599 DOI: 10.1016/j.gie.2011.09.043]

25 Gleeson FC, Clayton AC, Zhang L, Clain JE, Gores GJ, Rajan E, Smyrk TC, Topazian MD, Wang KK, Wiersema MJ, Levy MJ. Adequacy of endoscopic ultrasound core needle biopsy specimen of nonmalignant hepatic parenchymal disease. Clin Gastroenterol Hepatol 2008; 6: 1437-1440 [PMID: 19081572 DOI: 10.1016/j.cgh.2008.07.015]

26 Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 2001; 344: 495-500 [PMID: 11172192 DOI: 10.1056/nejm200102133440706]

27 Wiersema MJ, Levy MJ, Harewood GC, Vazquez-Sequeiros E, Jondal ML, Wiersema LM. Initial experience with EUS-guided trucut needle biopsies of perigastric organs. Gastrointest Endosc 2002; 56: 275-278 [PMID: 12145612]

28 Gleeson FC, Levy MJ. EUS Trucut biopsy liver parenchyma acquisition and yield are comparable to that of a transjugular liver biopsy. Gastrointest Endosc 2009; 70: 1046; author reply 1046-1047; author reply 1047 [PMID: 19879418 DOI: 10.1016/j.gie.2009.03.036]

29 Diehl DL, Johal AS, Khara HS, Stavropoulos SN, Al-Haddad M, Ramesh I, Varadarajulu S, Aslanian H, Gordon SR, Shich FK, Pineda-Bonilla JJ, Dunkelberger T, Gondim DD, Chen EZ. Endoscopic ultrasound-guided liver biopsy: a multicenter experience. Endosc Int Open 2015; 3: E210-E215 [PMID: 26171433 DOI: 10.1055/s-0034-1391412]

30 Schulman AR, Thompson CC, Odze R, Chan WW, Ryoo M. Optimizing EUS-guided liver biopsy sampling: comprehensive assessment of needle type and tissue acquisition technique. Gastrointest Endosc 2017; 85: 419-426 [PMID: 27530070 DOI: 10.1016/j.gie.2016.07.065]

31 Ekberg O, Bergenfeldt M, Aspelin P, Genell S, Lindholm K, Nilsson P, Szigurdsson S. Reliability of ultrasound-guided fine-needle biopsy of pancreatic masses. Acta Radiol 1988; 29: 535-539 [PMID: 3048349]

32 Mok SRS, Diehl DL, Johal AS, Khara HS, Confer BD, Mudireddy PR, Kirchner HL, Chen ZE. A prospective pilot comparison of wet and dry heparinized suction for EUS-guided liver biopsy (with videos). Gastrointest Endosc 2018; 88: 919-925 [PMID: 30120956 DOI: 10.1016/j.gie.2018.07.036]

33 Nieto J, Khaleel H, Chiluizza Y, Jimenez M, Baron TH, Walters L, Hathaway K, Patel K, Lankarani A, Herman M, Holloman D, Saab S. EUS-guided fine-needle core liver biopsy sampling using a novel 19-gauge needle with modified 1-pass, 1 actuation wet suction technique. Gastrointest Endosc 2018; 87: 469-475 [PMID: 28551024 DOI: 10.1016/j.gie.2017.05.013]

34 Vautier G, Scott BI, Jenkins D. Liver biopsy: blind or guided? BMJ 1994; 309: 1455-1456 [PMID: 7860634]

35 Seefelt LB, Everson GT, Morgan TR, Curto TM, Lee WM, Ghany MG, Shiffman ML, Fontana RJ, Di Biesegel AM, Bonkovsky HL, Dienstlag JL, HALL-T Trial Group. Complication rate of percutaneous liver biopsies among persons with advanced chronic liver disease in the HALT-T trial. Clin Gastroenterol Hepatol 2010; 8: 877-883 [PMID: 20362695 DOI: 10.1016/j.cgh.2010.03.025]

36 Gregg FS. The Early History of Interventional Endoscopic Ultrasound. Gastrointest Endosc Clin N Am 2017; 27: 547-550 [PMID: 28918797 DOI: 10.1016/j.giec.2017.09.015]

37 ASGE Technology Committee: Tierney WM, Adler DG, Chand B, Conway JD, Croffie JM, DiSario JA, Mishkin DS, Shah RJ, Somogyi L, Wong Kee Song LM, Petersen BT. Echoendoscopes. Gastrointest Endosc 2009; 66: 435-442 [PMID: 17640635 DOI: 10.1016/j.gie.2007.05.028]

38 Adler DG, Mulhassany VR, Ehrlich DS, Parasher G, Thosani NC, Chen A, Buscaglia JM, Appannagari A, Quiñonez E, Aslanian H, Taylor LJ, Siddiqui A. A multicenter evaluation of a new EUS core biopsy needle: Experience in 200 patients. Endosc Ultrasound 2018 [PMID: 29623911 DOI: 10.4103/eus.eus.53.17]

39 Nguyen P, Feng JC, Chang KJ. Endoscopic ultrasound (EUS) and EUS-guided fine-needle aspiration (FNA) of liver lesions. Gastrointest Endosc 1999; 50: 357-361 [PMID: 10462656 DOI: 10.1016/S0016-5107(99)70205-6]

40 Suzuki R, Iriasa A, Bhutani MS, Ikhihi T, Takagi T, Shibukawa G, Sato A, Sato M, Ikeda T, Watanabe K, Nakamura J, Annping T, Obara K, Ohtera H. An automated spring-loaded needle for endoscopic ultrasound-guided abdominal paracentesis in cancer patients. World J Endoscopy 2014; 6: 55-59 [PMID: 24567793 DOI: 10.4253/wje.v6.i2.55]

41 Singh P, Mukhopadhyay P, Bhatt B, Patel T, Kiss A, Gupta R, Bhat S, Erickson RA. Endoscopic ultrasound versus CT scan for detection of the metastases to the liver: results of a prospective comparative study. J Clin Gastroenterol 2009; 43: 367-373 [PMID: 18981929 DOI: 10.1097/MCG.0b013e318186768c]

42 Dumonceau JM, Deprez PH, Jenssen C, Larghi A, Vanbriuillet G, Aithal GP, Arcidiacoongo PG, Bastos P, Carrara S, Fockens P, Hareff RF, Hassan C, Villmann P, van Hoeof JE, Polkowski M, Iglesias-Garcia J, Czakó L, Fernández-Esparrach G, Giné S. Indications, results, and clinical impact of endoscopic ultrasound-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline - Updated January 2017. Endoscopy 2017; 49: 695-714 [PMID: 28511234 DOI: 10.1055/s-0043-160021]

43 Takyar V, Etzion O, Hoffer T, Kleiner DE, Rotman Y, Ghany MG, Fryzek N, Williams VH, Rivera E, Auh S, Liang TJ, Hoofngale JH, Koh C. Complications of percutaneous liver biopsy with Klatskin needles: a 36-year single-centre experience. Aliment Pharmacol Ther 2017; 45: 744-753 [PMID: 28074540 DOI: 10.1111/apt.13939]

44 tenBerge J, Hoffmann BJ, Hayes RH, Van Enckevort C, Giovannini M, Erickson RA, Catalano MF, Fogel R, Mallory S, Faigel DO, Ferrari AP, Waxman I, Palazzo L, Ben-Menachem T, Jowell PS, McGrath KM, Kowalski TE, Nguyen CC, Wassell WF, Yamao K, Chak A, Greenwald BD, Woodward TA, Villmann P, Saggub L, Wallace MB. EUS-guided fine needle aspiration of the liver: indications, yield, and safety based on an international survey of 167 cases. Gastrointest Endosc 2002; 55: 859-862 [PMID: 12024141]

45 Villmann P, Krasnik M, Larsen SS, Jacobsen GK, Clemensen P, Transephyaleal endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) and endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) biopsy: a combined approach in the evaluation of mediastinal lesions. Endoscopy 2005; 37: 833-839 [PMID: 16161334 DOI: 10.1055/s-2005-870278]

46 Cazauc IM, Luzuriaga Chavez AA, Salfoin A, Villmann P, Bhutani MS. A quarter century of EUS-FNA: Progress, milestones, and future directions. Endosc Ultrasound 2018; 7: 141-160 [PMID: 29941723 DOI: 10.1055/s-0038-1719856]
Shah AR et al. Endoscopic ultrasound guided liver biopsy

10.4103/eus.eus_19_18

DeWitt J, Cho CM, Lin J, Al-Haddad M, Canto MI, Salamone A, Hruban RH, Messallam AA, Khashab MA. Comparison of EUS-guided tissue acquisition using two different 19-gauge core biopsy needles: a multicenter, prospective, randomized, and blinded study. *Endosc Int Open* 2015; 3: E471-E478 [PMID: 26528504 DOI: 10.1055/s-0034-1392222]

Shah ND, Sasatomi E, Baron TH. Endoscopic Ultrasound-guided Parenchymal Liver Biopsy: Single Center Experience of a New Dedicated Core Needle. *Clin Gastroenterol Hepatol* 2017; 15: 784-786 [PMID: 28126424 DOI: 10.1016/j.cgh.2017.01.011]
