A novel normalized subband adaptive filter algorithm based on the joint-optimization scheme

JAEWOOK SHIN, BUM YONG PARK, WON IL LEE, JINWOO YOO, AND JAEGEOL CHO,

1Department of Electronic Engineering, Kumoh National Institute of Technology 61 Daehak-ro (yangho-dong), Gumi, Gyeongbuk 39177, Republic of Korea
2Department of Automotive Engineering, Kookmin University, Seoul, 02070, Republic of Korea
3Department of Medical and Mechatronics Engineering, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea

Corresponding author: Jaegeol Cho (e-mail: jaegeolcho@sch.ac.kr).

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP; Ministry of Science, ICT & Future Planning) (No. 2020R1I1A3071734).This work was supported by the Soonchunhyang University Research Fund (No. 20180708).

ABSTRACT Herein, we propose a normalized subband adaptive filter (NSAF) algorithm that adjusts both the step size and regularization parameter. Based on the random-walk model, the proposed algorithm is derived by minimizing the mean-square deviation of the NSAF at each iteration to calculate the optimal parameters. We also propose a method for estimating the uncertainty in an unknown system. Consequently, the proposed algorithm improves performance in terms of tracking speed and misalignment. Simulation results show that the proposed NSAF outperforms existing algorithms in system identification scenarios.

INDEX TERMS Adaptive filter, normalized subband adaptive filter, variable step size, variable regularization parameter, mean-square deviation.

I. INTRODUCTION

ADAPTIVE filter algorithms have been used in a wide range of signal processing applications, such as acoustic echo cancellation, system identification, and channel equalization [1]–[5]. The normalized least-mean-square (NLMS) algorithm is one of the most widely used adaptive filter algorithms owing to its low computational complexity and ease of implementation [6], [7]. However, it exhibits substantial performance degradation in terms of the convergence rates for highly correlated input signals. To address this problem, affine projection (AP) algorithm and normalized subband adaptive filter (NSAF) algorithm were introduced [3], [8], [9]. The AP algorithm achieves fast convergence speeds using multiple input vectors; thus, its computational complexity increases for higher-order systems, such as acoustic echo cancellation. However, despite the lower computational complexity than the AP algorithm, the NSAF algorithms have better performance in terms of tracking speed owing to their self-whitening property. Moreover, some variants of the NSAF, such as sign subband adaptive filter (SSAF) and its variants [10]–[12], M-estimate NSAF [13], [14], sparsity-aware SSAF and NSAF [15], [16], and bias-compensated NSAF [17]–[19], have been proposed to improve performance.

The NSAF algorithms have two important parameters that affect the performance in terms of convergence rates and steady-state errors, i.e., step size and regularization parameter. The fixed step size and the regularization parameter lead to a trade-off between the convergence rate and misalignment in the NSAF. To control these parameters, variable step-size (VSS) algorithms and variable regularization-parameter (VR) algorithms have been proposed for the NSAF [20]–[28]. Unlike other variable parameter NSAF algorithms, the joint-optimization step size and regularization parameter NSAF (JOSR-NSAF) algorithm controls both the step size and regularization parameter [28]. The JOSR-NSAF algorithm is derived from joint-optimization (JO) scheme [29] based on minimizing the mean-square deviation (MSD). The result of the MSD analysis from the JOSR-NSAF algorithm is similar to that of the VR-NSAF algorithm developed by Jeong et al. [27] under stationary environments. However, this analysis method does not accurately reflect the change in the regularization parameters for colored input signals well [26].

In this study, we propose an NSAF algorithm that controls both the step size and regularization parameter owing to
improvements in terms of tracking speed and misalignment. The contribution of this study is threefold. First, an MSD analysis of the NSAF algorithm is provided for both the step size and regularization parameter based on the random-walk model. The proposed method is derived from a method similar to that of the adaptive regularization NSAF algorithm [26]; however, we propose a method that considers the step size and non-stationary systems to obtain both the optimal step size and regularization parameter at each iteration.

Second, an optimized NSAF algorithm is derived from the MSD analysis, which control both the step size and regularization parameter to minimize the MSD of the NSAF algorithm at each iteration. Third, a method for estimating the uncertainty of an unknown system is proposed. Simulations tested in the system identification scenario and the performance of the proposed algorithm were compared with those of existing algorithms.

The remainder of this paper is organized as follows. A brief review of the NSAF algorithm is presented in Section II. The MSD performance analysis of the NSAF algorithm is developed in Section III. Section IV introduces an optimal NSAF algorithm. Practical issues are presented for the proposed algorithm in Section V. Finally, in Section VI, the performance of the proposed NSAF algorithm is verified through various computer simulations.

II. REVIEW OF CONVENTIONAL NSAF ALGORITHM

We consider a system identification problem such as acoustic echo cancellation. The weight coefficient vector of the unknown system and input signal at the discrete-time index \(n \), are denoted by:

\[
\mathbf{w}_o = [w_0, w_1, \ldots, w_M]^T, \quad (1)
\]

\[
\mathbf{u}(n) = [u(n), u(n-1), \ldots, u(n-M+1)]^T, \quad (2)
\]

where \(M \) is filter lengths. The desired signal derived from an unknown system is

\[
d(n) = \mathbf{u}^T(n) \mathbf{w}_o + v(n), \quad (3)
\]

where \(v(n) \) represents measurement noise with zero mean and variance \(\sigma_v^2 \). Figure 1 shows the structure of the NSAF. In this figure, the desired signal, \(d_i(n) \), and input signal, \(u_i \), are derived by the analysis filter, \(H_i(z) \), which is defined as

\[
H_i(z) = \sum_{j=0}^{L-1} h_{i,j} z^{-j}, \quad i = 0, 1, \ldots, N, \quad (4)
\]

where \(N \) represents the number of subbands, \(L \) is the length of the analysis filter, and \(h_{i,j}(z) \) is the \(j \)th coefficient of the analysis filter for the \(i \)th subband. \(d_{i,D} \) and \(y_{i,D} \) are obtained by critically sub-sampling \(d_i \) and \(y_i \), respectively. Therefore, the downsampled output signal of the \(i \)th subband is defined as

\[
y_{i,D}(k) = \mathbf{u}_i^T(k) \mathbf{w}(k), \quad \mathbf{u}_i(k) = [u_i(kN), u_i(kN-1), \ldots, u_i(kN-M+1)]^T, \quad \mathbf{w}(k) = [w_0(k), w_1(k), \ldots, w_{M-1}(k)]^T \]

indicates the estimation of \(\mathbf{w}_o \) at index \(k \), and \(k \) is used to index the decimated signal. We define the decimated output error signal of the \(i \)th subband as follows:

\[
e_{i,D}(k) = d_{i,D}(k) - y_{i,D}(k) = \mathbf{u}_i^T(k) \mathbf{w}(k) + v_{i,D}(k), \quad (5)
\]

where \(\mathbf{w}(k) \triangleq \mathbf{w}_o - \mathbf{w}(k) \), and \(v_{i,D}(k) \) is the \(i \)th subband noise with zero-mean white Gaussian noise with variance \(\sigma_v^2 \). Therefore, the update equation of the conventional NSAF algorithm is:

\[
\dot{\mathbf{w}}(k) = \mathbf{w}(k-1) + \sum_{i=0}^{N-1} \mu_i \mathbf{u}_i(k) e_{i,D}(k) / \mathbf{u}_i^T(k) \mathbf{u}_i(k) + \beta_i, \quad (6)
\]

where \(\mu_i \) and \(\beta_i \) are the step size and regularization parameter of the \(i \)th subband, respectively.

III. MSD ANALYSIS OF NSAF WITH THE RANDOM-WALK MODEL

A. RANDOM-WALK MODEL

We assume that an unknown weight vector \(\mathbf{w}_o \) has the following random-walk model [29], [30]

\[
\mathbf{w}_o(n) = \mathbf{w}_o(n-1) + \mathbf{q}(n), \quad (7)
\]

\[
\mathbf{q}(k) \sim \mathcal{N}(0, \sigma_q^2), \quad \text{where } \mathbf{q}(k) \text{ is a white Gaussian noise vector with zero mean and variance } \sigma_q^2 \text{.}
\]

where \(\mathbf{q}(k) \) is a white Gaussian noise vector with zero mean and variance \(\sigma_q^2 = E\{\mathbf{q}(k) \mathbf{q}^T(k)\} \) and covariance matrix \(E\{\mathbf{q}(k) \mathbf{q}^T(k)\} = \sigma_q^2 \mathbf{I}_M \) with \(\mathbf{I}_M \) being an \(M \times M \) identity matrix. We have an unknown weight vector at the \(k \)th iteration as follows:

\[
\mathbf{w}_o(k) = \mathbf{w}_o(k-1) + \sum_{j=1}^{N} \mathbf{q}(kN - j + 1). \quad (9)
\]
B. PRELIMINARIES

Let us consider the following four assumptions as proposed in [26], [31]–[34] for analysis of the MSD performance of the NSAF with step-size and regularization parameters.

Assumption 1: The input signal vector \(u(n) \) has zero mean and an independent and identically distributed (i.i.d.) and covariance matrix:

\[
R = E\{u(n)u^T(n)\} = \mathbf{V}\Lambda\mathbf{V}^T,
\]

(10)

where \(\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_M) \) are the eigenvalues of covariance matrix \(R \), and \(\mathbf{V} = [\nu_1, \nu_2, \ldots, \nu_M] \) are the corresponding orthonormal eigenvectors (\(\mathbf{V}^T\mathbf{V} = \mathbf{I} \)).

Assumption 2: The signals \(v_{i,D}(k) \), \(u_i(k) \), \(q(k) \), and \(\tilde{w}(k) \) are statistically independent.

Assumption 3: The \(\text{th} \) subband input vector \(u_i(k) \) is the product of three independent variables \(s_i, r_i, v_i \) that are i.i.d., such that

\[
u_i(k) = s_i r_i v_i,
\]

where

\[
\begin{align*}
P(s_i = \pm 1) &= \frac{1}{2} \\
P(r_i = |u_i(k)|) &= p_j, j = 1, 2, \ldots, m
\end{align*}
\]

Here, \(r_i \sim |u_i(k)| \) indicates that \(r_i \) has the same distribution as the norm of \(u_i(k) \). Note that \(\sum_{j=1}^{m} p_j = 1 \).

C. MSD ANALYSIS OF NSAF

The NSAF update equation (6) can be rewritten in terms of \(\tilde{w} \) using (9) as follows:

\[
\tilde{w}(k) = \tilde{w}(k-1) - \sum_{i=0}^{N-1} \frac{\mu_i u_i(k)e_{i,D}(k)}{u_i^T(k)u_i(k) + \beta_i} + \sum_{j=1}^{N} q(kN + j - 1),
\]

(12)

where \(\tilde{w}(k) \triangleq w_o(k) - w(k) \). By subtracting (5) from (9), the decimated output error signals become

\[
e_{i,D}(k) = u_i^T(k)w_o(k) - u_i^T(k)\tilde{w}(k-1) + v_{i,D}(k)
\]

\[
= u_i^T(k)\tilde{w}(k-1) + u_i^T(k)\sum_{j=1}^{N} q(kN + j - 1) + v_{i,D}(k).
\]

(13)

Considering (13), we rearrange (12) as

\[
\tilde{w}(k) = \left(I_M - \sum_{i=0}^{N-1} \frac{\mu_i u_i(k)}{u_i^T(k)u_i(k) + \beta_i} \right) \tilde{w}(k-1)
\]

\[
- \sum_{i=0}^{N-1} \frac{\mu_i u_i(k)v_{i,D}(k)}{u_i^T(k)u_i(k) + \beta_i} + \sum_{j=1}^{N} q(kN + j - 1) + v_{i,D}(k).
\]

(14)

Applying Assumption 2 and 3, the covariance matrix of \(\tilde{w}(k) \) can be obtained as follows:

\[
\mathbf{P}(k) = E\{\Phi(k)\mathbf{P}(k-1)\Phi(k)^T\}
\]

\[
+ E\left\{\sum_{i=0}^{N-1} \frac{\mu_i^2 \sigma_i^2 r_i^2}{(r_i^2 + \beta_i)} v_i v_i^T \right\}
\]

\[
+ E\left\{\sum_{i=0}^{N-1} \frac{\mu_i^2 N\sigma_q^2}{(r_i^2 + \beta_i)} v_i v_i^T v_i v_i^T \right\}
\]

\[
- E\left\{\sum_{i=0}^{N-1} \frac{2\mu_i N\sigma_q^2 r_i^2}{r_i^2 + \beta_i} v_i v_i^T + N\sigma_q^2 I_M \right\},
\]

(15)

where \(\Phi(k) = I_M - \sum_{i=0}^{N-1} \frac{\mu_i r_i^2 v_i v_i^T}{r_i^2 + \beta_i} \).

If we define \(\pi_j(k) \triangleq \mathbf{v}_j^T \mathbf{P}(k) \mathbf{v}_j \), by multiplying \(\mathbf{v}_j^T \) and \(\mathbf{v}_j \) on both sides of (15), we obtain:

\[
\pi_j(k) = E\{\mathbf{v}_j^T \Phi(k)\mathbf{P}(k-1)\Phi(k)^T \mathbf{v}_j\}
\]

\[
+ E\left\{\sum_{i=0}^{N-1} \frac{\mu_i^2 \sigma_i^2 r_i^2}{(r_i^2 + \beta_i)^2} \mathbf{v}_j^T \mathbf{v}_i v_i^T \mathbf{v}_j \right\}
\]

\[
+ E\left\{\sum_{i=0}^{N-1} \frac{\mu_i^2 N\sigma_q^2}{(r_i^2 + \beta_i)} \mathbf{v}_j^T \mathbf{v}_i v_i^T \mathbf{v}_j \right\}
\]

\[
- E\left\{\sum_{i=0}^{N-1} \frac{2\mu_i N\sigma_q^2 r_i^2}{r_i^2 + \beta_i} \mathbf{v}_j^T \mathbf{v}_i v_i^T + N\sigma_q^2 \mathbf{v}_j^T \mathbf{v}_j \right\}
\]

\[
= \sum_{q=1}^{M} p_q E\left\{\mathbf{v}_j^T \left(I - \sum_{i=0}^{N-1} \frac{\alpha_i r_i^2 \mathbf{v}_q^T}{\mathbf{v}_q^T} \right) \mathbf{P}(k-1)
\]

\[
\times \left(I - \sum_{i=0}^{N-1} \frac{\alpha_i r_i^2 \mathbf{v}_q}{\mathbf{v}_q^T} \right) \mathbf{v}_j \right\}
\]

\[
+ \sum_{q=1}^{N-1} p_q E\left\{\sum_{i=0}^{N-1} \frac{\alpha_i^2 \sigma_i^2 r_i^2}{\mathbf{v}_q^T} \mathbf{v}_q^T \mathbf{v}_q \right\}
\]

\[
+ \sum_{q=1}^{N-1} p_q E\left\{\sum_{i=0}^{N-1} \frac{\alpha_i^2 N\sigma_q^2 r_i^2}{\mathbf{v}_q^T} \mathbf{v}_q^T \mathbf{v}_q \right\}
\]

\[
- \sum_{q=1}^{N-1} p_q E\left\{\sum_{i=0}^{N-1} 2\alpha_i N\sigma_q^2 r_i^2 \mathbf{v}_q^T \mathbf{v}_q + N\sigma_q^2 \right\}
\]

(16)

where \(\alpha_i \triangleq \mu_i/(r_i^2 + \beta_i) \). From [2, eq.(18) and (20)], the recursion of \(\pi_j(k) \) for the \(\text{th} \) subband can be expressed as follows:

\[
\pi_{i,j}(k) = \left[1 + \frac{N}{M} \left((\alpha_i r_i^2)^2 - 2\alpha_i r_i^2 \right) \right] (\pi_{i,j}(k-1) + N\sigma_q^2)
\]

\[
+ \frac{N\alpha_i^2 r_i^2 \sigma_q^2}{M},
\]

(17)

when \(M \gg 1 \).
To conduct the MSD analysis of the NSAF, the MSD is defined as \(\text{MSD}(k) \triangleq E(\mathbf{w}^T(k)\mathbf{w}(k)) = Tr(\mathbf{P}(k)) \). Finally, we obtain

\[
\text{MSD}(k) = Tr(\mathbf{P}(k)) = \frac{1}{N} Tr(\mathbf{V}^T\mathbf{P}(k)\mathbf{V}) = \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=1}^{M} \pi_{i,j}(k) = \frac{1}{N} \sum_{i=0}^{N-1} f_i(k),
\]

where

\[
f_i(k) \triangleq \sum_{j=1}^{M} \pi_{i,j}(k) = \left[1 + \frac{N}{M} \left((\alpha \tau_i^2 R) - 2 \alpha \tau_i^2 \right) \right] f_i(k-1) + M N \sigma_w^2 + M \alpha \tau_i^2 \sigma_v^2.
\]

IV. OPTIMIZED NSAF ALGORITHM BASED ON THE JOINT-OPTIMIZATION SCHEME

To rapidly minimize the MSD of the NSAF at each iteration, a joint-optimization strategy can be derived by \(\partial \text{MSD}(k)/\partial \mu_i(k) = \partial \text{MSD}(k)/\partial \beta_i(k) = 0 \). Therefore, we can obtain a novel update equation of the NSAF with optimal step size \(\mu_i(k) \) and regularization parameter \(\beta_i(k) \) as follows:

\[
\mathbf{\hat{w}}(k) = \mathbf{\hat{w}}(k-1) + \sum_{i=0}^{N-1} \alpha_i^*(k) \mathbf{u}_i(k) e_i(k),
\]

where

\[
g_i(k) \triangleq f_i(k-1) + M N \sigma_w^2,
\]

\[
\alpha_i^*(k) \triangleq \frac{\mu_i(k)}{r_i^2(k) + \beta_i(k)} = \frac{g_i(k)}{r_i^2 g_i(k) + M \sigma_v^2},
\]

\[
f_i(k) = \left(1 - \frac{N}{M} \left(r_i^2 \alpha_i^*(k) \right) \right) g_i(k).
\]

Substituting (21) and (22) into (23), we obtain the quadratic equation for the steady-state value of \(f_i(k) \) as follows:

\[
r_i^2 (f_{i,ss} + M N \sigma_w^2) - M^2 \sigma_v^2 f_{i,ss} + M N \sigma_w^2 = 0,
\]

where \(f_{i,ss} \triangleq \lim_{k \to \infty} f_i(k) \). Therefore, the steady-state value of MSD can be obtained as

\[
\lim_{k \to \infty} \text{MSD}(k) = \lim_{k \to \infty} Tr(\mathbf{P}(k)) = \frac{1}{N} \sum_{i=0}^{N-1} f_{i,ss},
\]

where

\[
f_{i,ss} = \frac{M^2 \sigma_w^2}{2} \left(1 - \frac{2N}{M} \right) \left(1 + \frac{4 \sigma_v^2}{M r_i^2 \sigma_w^2} \right).
\]

The performance limit of the proposed algorithm is related to the system parameters \((N, M)\), measurement noise, \((\sigma_w^2)\), and non-stationary environments, \((\sigma_v^2)\).

V. PRACTICAL CONSIDERATIONS

The proposed NSAF algorithm depends on the parameters \(r_i, \sigma_w^2, \) and \(\sigma_v^2 \). Therefore, practical considerations are necessary.

The first parameter, \(r_i \), is related to the subband input variance \(\sigma_{u_i}^2 \). Therefore, we can use the subband input variance instead of \(r_i^2 \) as follows:

\[
r_i^2 \approx M \sigma_{u_i}^2(k) = E(\mathbf{u}_i^T(k)\mathbf{u}_i(k)).
\]

Moreover, the input variance is easily estimated as follows [28], [29]:

\[
\tilde{\sigma}_{u_i}^2(k) = \frac{1}{M} \mathbf{u}_i^T(k)\mathbf{u}_i(k).
\]

The second parameter is the subband noise variance, \(\sigma_v^2 \), which can be easily estimated [31]–[34]. We assume that the subband noise variance, \(\sigma_v^2 \), is already known, because it is out of the scope of this study.

The third parameter, \(\sigma_q^2 \), denotes the uncertainties in unknown system \(\mathbf{w}_o(n) \). The performance of the proposed NSAF algorithm is affected by the value of \(\sigma_q^2 \). Therefore, it is important to estimate the value of \(\sigma_q^2 \) for implementing the proposed NSAF algorithm. A method for estimating \(\sigma_q^2 \) using the random-walk model (9) and replacing \(\mathbf{w}_o(k) \) with \(\mathbf{\tilde{w}}(k) \) as follows:

\[
\sum_{j=1}^{N} \| \mathbf{q}(kN - j + 1) \|^2 = \| \mathbf{\tilde{w}}(k) - \mathbf{\tilde{w}}(k - 1) \|^2.
\]

We define the estimated parameter, \(\sigma_{q,1}^2 \), which is estimated using the above method as

\[
\tilde{\sigma}_{q,1}^2(k) = \frac{\| \mathbf{\tilde{w}}(k) - \mathbf{\tilde{w}}(k - 1) \|^2}{NM}.
\]

When a system undergoes an abrupt change, the parameter \(\tilde{\sigma}_{q,1}^2(k) \) has large values, which provides a fast convergence speed. However, an error in the estimation of the parameter, \(\tilde{\sigma}_{q,1}^2(k) \), causes an error in deriving the optimal parameter, \(\alpha_i^*(k) \), which leads to significant misalignment. Thus, we propose a method to estimate \(\sigma_q^2 \) using multiband mean-squared error (MSE), which is defined as follows:

\[
\zeta(k) \triangleq \frac{1}{N} \sum_{i=0}^{N-1} E(\| e_{i,D}(\mathbf{k}) \|^2).
\]

Applying Assumption 2, the multiband MSE can be rewritten as

\[
\zeta(k) = \frac{1}{N} \sum_{i=0}^{N-1} E(\| \mathbf{u}_i^T(k) \mathbf{w}(k - 1) \|^2) + \frac{1}{N} \sum_{i=0}^{N-1} E(\| \mathbf{u}_i^T(k) \sum_{j=1}^{N} \mathbf{q}(kN + j - 1) \|^2) + \frac{1}{N} \sum_{i=0}^{N-1} E(\| \mathbf{v}_{i,D}(\mathbf{k}) \|^2).
\]
From [26, eq(33)]

\[
\frac{1}{N} \sum_{i=0}^{N-1} \sigma^2_k(k) = \frac{1}{N} \sum_{i=0}^{N-1} \left(\sigma^2_u(k) f_i(k-1) \right) + N M \sigma^2_{u_i}(k) \sigma^2_q(k) + \sigma^2_v(k),
\]

where \(\sigma^2_k(k) = \gamma \sigma^2_{e_i}(k-1) + (1 - \gamma) e_{i,D}(k)^2 \), and \(\gamma \) is the smoothing factor (0 \(\ll \) \(\gamma \) \(\ll \) 1). We define the estimated parameter \(\tilde{\sigma}^2_{q,2} \), which is estimated using the above equation (33) as

\[
\tilde{\sigma}^2_{q,2}(k) \triangleq \max \left\{ \frac{\sum_{i=0}^{N-1} (\sigma^2_{e_i}(k) - \sigma^2_{u_i}(k)) f_i(k-1) - \sigma^2_v(k)}{N M \sum_{i=0}^{N-1} \sigma^2_{u_i}(k)}, 0 \right\}
\]

(34)

When a system is stable in a stationary environment, the subband error variance \(\sigma^2_{e_i}(k) \) and \(\sigma^2_{u_i}(k) f_i(k-1) + \sigma^2_v \) become equal; thus, \(\tilde{\sigma}^2_{q,2}(k) \) takes small values leading to small misalignment under a stationary environment. To reduce performance degradation, the parameter \(\tilde{\sigma}^2_q(k) \) is estimated as

\[
\tilde{\sigma}^2_q(k) \triangleq \min \{ \tilde{\sigma}^2_{q,1}(k), \tilde{\sigma}^2_{q,2}(k) \}.
\]

(35)

The proposed algorithm is summarized in Table 1.

VI. SIMULATION RESULTS

Computer simulations were performed using the system identification model to verify the MSD performance of the proposed algorithm. The unknown system coefficient, \(w_o \), was randomly generated with unit variance for the MSD analysis comparison and the acoustic impulse response of a room for performance comparison. It was assumed that the adaptive filter and the unknown system have the same number of filter length, which was set \(M = 512 \) for computer simulations. The colored input signals were generated by filtering the white Gaussian noise through

\[
G_1(z) = \frac{1}{1 - 0.95 z^{-1}},
\]

(36)

\[
G_2(z) = \frac{1}{1 - 1.6 z^{-1} + 0.81 z^{-2}},
\]

(37)

which are referred to as AR1, and AR2. The signal-to-noise ratio (SNR) was set to 20dB or 30dB to add the measurement noise at the output signal \(y_i \), where the SNR is defined as

\[
\text{SNR} \triangleq 10 \log_{10} \frac{E \left\{ (u(n)^T w_o)^2 \right\}}{E \left\{ v(n)^2 \right\}}.
\]

(38)

In addition, we assumed that the noise variance was known. The measure of performance is the normalized mean squared deviation (NMSD), which is defined as:

\[
\text{NMSD} \triangleq 10 \log_{10} E \left\{ \frac{\tilde{w}^T(k) \tilde{w}(k)}{w_o^T w_o} \right\}.
\]

(39)

The simulation results were obtained by ensemble averaging over 10 trials. For the proposed algorithm, we set \(\gamma = 1 - \kappa N/M \), where \(\kappa = 2 \).

A. SELF WHITENING EFFECT DEPENDING ON THE NUMBER OF SUBBANDS

The convergence performance of the subband adaptive filter is almost same for white Gaussian input signal; the proposed NSAF algorithm is shown in Figure 2(a). However, the convergence rate of the subband adaptive filter is further improved with an increased number of subbands owing to the self-input whitening effect for colored input signals. Figure 2(b) and 2(c) show that the NMSD learning curves of the proposed NSAFs according to the number of subbands in AR1 and AR2 input environments, respectively. As can be seen, the convergence performance of the proposed NSAF is saturated at \(N = 8 \), implying that the colored input signals are sufficiently whited at \(N = 8 \).

B. MSD ANALYSIS COMPARISON

Figure 3 and 4 show the NMSD learning curves of the experimental results and theoretical analysis results for white Gaussian and colored input signals. As shown in Figure 3(a) and 4(a), the analysis methods of [28] and proposed are match well with the experimental results for white Gaussian input signals. However, Figure 3(b), 4(b), 3(c), and 4(c) show a discrepancy between the theoretical analysis results that are obtained by [28] and the experimental results for both convergence and steady-state behaviors. The proposed analysis can properly estimate the NMSD learning curves of the NSAFs that have various step sizes and regularization.
parameters in colored input environments as shown in Figure 3 and 4.

C. PERFORMANCE COMPARISON

Figure 5 and 6 show the NMSD learning curves for the conventional NSAFs, NSAF-VSS [21], AR-NSAF [26], JO-

NLMS [29], and JOSR-NSAF [28] with white Gaussian, AR1, and AR2 input signals. All algorithms needed to tune several parameters that were set according to the recommendations provided in [21], [26], [28], [29]. The NSAF-VSS algorithm controls only step-size values with zero regularization parameters and the AR-NSAF algorithm controls only regularization parameters with a unit step size. However, the

FIGURE 2. NMSD learning curves of proposed NSAFs according to the number of subbands \(N \) with sudden system change environment (SNR = 30 dB, \(L = 8 \times N \)). (a) white Gaussian input (b) AR1 input (c) AR2 input

FIGURE 3. NMSD learning curves of the experimental results (solid lines), theoretical analysis results, and the proposed method (SNR = 20 dB). (a) white Gaussian input (b) AR1 input (c) AR2
proposed algorithm and JO algorithms control both parameters. As can be seen in figure 5 and 6, the JO algorithms have low convergence rates and high misalignments than the existing VSS and VR algorithms, especially when the input signal is white Gaussian. The proposed algorithm has steady-state errors performance similar to VSS and VR algorithms, and provides faster convergence rates than existing

algorithms when the unknown system changes abruptly. In Figure 7, the proposed algorithm outperforms the existing VSS, VR, and JO algorithms in terms of the steady-state error and the convergence speed when the input signal is a speech sequence.
In this paper, we presented an NSAF algorithm that controls both the step size and regularization parameter by minimizing the MSD performance of the NSAF at each iteration. To deal with optimal parameters, the MSD analysis method for step size and regularization parameter was proposed based on the random-walk model. We then proposed an estimation algorithm for calculating the uncertainty of the unknown system to improve the performance of the proposed NSAF algorithm in terms of misalignments and convergence rates. Simulation results verified that the proposed NSAF with adjusting parameters had a fast convergence rate and low misalignment as compared with the existing algorithms in the system identification scenario.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River: NJ: Prentice-Hall, 2002.
[2] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley, 2003.
[3] K.-A. Lee, W.-S. Gan, and S. M. Kuo, Subband adaptive filtering: theory and implementation. John Wiley & Sons, 2009.
[4] G. Guo, Y. Yu, R. C. de Lamare, Z. Zheng, L. Lu, and Q. Cai, “Proximal normalized subband adaptive filtering for acoustic echo cancellation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 2174–2188, 2021.
[5] Y. Song, Y. Ren, X. Liu, W. Gao, S. Tao, and L. Guo, “A nonparametric variable step-size subband adaptive filtering algorithm for acoustic echo cancellation,” International Journal of Agricultural and Biological Engineering, vol. 13, no. 3, pp. 168–173, 2020.
[6] J. Benesty, H. Rey, L. R. Vega, and S. Tressens, “A nonparametric vss nlms
algorithm,” IEEE Signal Processing Letters, vol. 13, no. 10, pp. 581–584, 2006.

[7] C. Paleologou, S. Ciochina, and J. Benesty, “Variable step-size nlms algorithm for under-modeling acoustic echo cancellation,” IEEE signal processing letters, vol. 15, pp. 5–8, 2008.

[8] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties,” Electronics and Communications in Japan (Part I: Communications), vol. 67, no. 5, pp. 19–27, 1984.

[9] K. Lee and W. Gan, “Inherent decorrelating and least perturbation properties of the normalized subband adaptive filter,” Signal Processing, IEEE Transactions on, vol. 54, no. 11, pp. 4475–4480, 2006.

[10] J. Ni and F. Li, “Variable regularisation parameter sign subband adaptive filter,” Electronics letters, vol. 46, no. 24, pp. 1605–1607, 2010.

[11] J. Shin, J. Yoo, and P. Park, “Variable step-size sign subband adaptive filter,” IEEE Signal processing letters, vol. 20, no. 2, pp. 173–176, 2013.

[12] J. Cho, H. J. Baek, B. Y. Park, and J. Shin, “Variable step-size sign subband adaptive filter with subband filter selection,” Signal Processing, vol. 152, pp. 141–147, 2018.

[13] Z. Zheng and H. Zhao, “Affine projection m-estimate subband adaptive filters for robust adaptive filtering in impulsive noise,” Signal Processing, vol. 120, pp. 64–70, 2016.

[14] Y. Yu, H. He, B. Chen, J. Li, Y. Zhang, and L. Lu, “M-estimate based normalized subband adaptive filter algorithm: Performance analysis and improvements,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 225–239, 2019.

[15] Y. Yu, T. Yang, H. Chen, R. C. de Lamare, and Y. Li, “Sparsity-aware nsaf algorithm with individual weighting factors: Performance analysis and improvements in acoustic echo cancellation,” Signal Processing, vol. 178, p. 107806, 2021.

[16] L. Ji and J. Ni, “Sparsity-aware normalized subband adaptive filters with jointly optimized parameters,” Journal of the Franklin Institute, vol. 357, no. 17, pp. 13144–13157, 2020.

[17] Z. Zheng and Z. Liu, “Influence of input noises on the mean-square performance of the normalized subband adaptive filter algorithm,” Journal of the Franklin Institute, vol. 357, no. 2, pp. 1318–1330, 2020.

[18] Z. Zheng, Z. Liu, and X. Lu, “Robust normalized subband adaptive filter algorithm against impulsive noises and noisy inputs,” Journal of the Franklin Institute, vol. 357, no. 5, pp. 3113–3134, 2020.

[19] S. M. Jung and P. Park, “Stabilization of a bias-compensated normalized least-mean-square algorithm for noisy inputs,” IEEE transactions on signal processing, vol. 65, no. 11, pp. 2949–2961, 2017.

[20] J. Shin, N. Kong, and P. Park, “Normalised subband adaptive filter with variable step size,” Electronics Letters, vol. 48, no. 4, pp. 204–206, 2012.

[21] J. J. Jeong, K. Koo, G. T. Choi, and S. W. Kim, “A variable step size for normalized subband adaptive filters,” IEEE Signal Processing Letters, vol. 19, no. 12, pp. 906–909, 2012.

[22] J. Ni and F. Li, “A variable step-size matrix normalized subband adaptive filter,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 18, no. 6, pp. 1290–1299, 2010.

[23] P. Won and J. Zhang, “A novel variable step-size normalized subband adaptive filter based on mixed error cost function,” Signal Processing, vol. 138, pp. 48–52, 2017.

[24] T. Park, M. Lee, and P. Park, “Scheduled step-size subband adaptive filter algorithm with implemental consideration,” IEEE Access, vol. 8, pp. 199025–199033, 2020.

[25] ———, “A novel individual variable step-size subband adaptive filter algorithm robust to impulsive noises,” IEEE Access, vol. 9, pp. 112922–112929, 2021.

[26] J. Shin, J. Yoo, and P. Park, “Adaptive regularisation for normalised subband adaptive filter: mean-square performance analysis approach,” IET Signal Processing, vol. 12, no. 9, pp. 1146–1153, 2018.

[27] J. J. Jeong, K. Koo, G. Koo, and S. W. Kim, “Variable regularisation for normalized subband adaptive filters,” Signal processing, vol. 104, pp. 432–436, 2014.

[28] Y. Yu and H. Zhao, “A joint-optimization nsaf algorithm based on the first-order markov model,” Signal, Image and Video Processing, vol. 11, no. 3, pp. 509–516, 2017.

[29] S. Ciochină, C. Paleologou, and J. Benesty, “An optimized nlms algorithm for system identification,” Signal Processing, vol. 118, pp. 115–121, 2016.

[30] Z. Zheng and W. X. Zheng, “Mean-square analysis of multi-sampled multiband-structured subband filtering algorithm,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 3, pp. 1051–1062, 2018.

[31] W. Yin and A. S. Mehr, “Stochastic analysis of the normalized subband adaptive filter algorithm,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 1026–1033, 2010.

[32] D. T. Slock, “On the convergence behavior of the lms and the normalized lms algorithms,” IEEE Transactions on Signal Processing, vol. 41, no. 9, pp. 2811–2825, 1993.

[33] S. G. Sankaran and A. L. Beex, “Convergence behavior of affine projection algorithms,” IEEE Transactions on Signal Processing, vol. 48, no. 4, pp. 1086–1096, 2000.

[34] Y. Zhi, Y. Yang, X. Zheng, J. Zhang, and Z. Wang, “Statistical tracking behavior of affine projection algorithm for unity step size,” Applied Mathematics and Computation, vol. 283, pp. 22–28, 2016.
JINWOO YOO received his BS, MS, Ph.D. in electrical engineering from Pohang University of Science and Technology (POSTECH) in 2009, 2011, 2015, respectively. He was a senior engineer at Samsung Electronics from 2015 to 2019. He is currently an assistant professor in the department of automotive engineering at Kookmin University. His current research interests are signal/image processing and autonomous driving.

JAEGEOL CHO received his B.S., M.S. and Ph.D. degrees in Mechanical Engineering from Seoul National University in 1992, 1994 and 1999 respectively. From 1999 to 2016, he worked as a Principal Engineer at Samsung Electronics in Suwon, South Korea. Since 2016, he has been an Associate Professor in the Department of Medical and Mechatronics Engineering at Soonchunhyang University, Asan, South Korea. His current research interests are wearable healthcare and biomedical sensing technologies.