SUPPLEMENTARY INFORMATION

Decoupled evolution of floral traits and climatic preferences in a clade of neotropical Gesneriaceae.

Serrano-Serrano ML, Perret M, Guignard M, Chautems A, Silvestro D, and Salamin N.

Contents

Appendix S1. Phylogenetic analysis and relative divergence time estimation ... 2
Appendix S2. Visualization of continuous trait evolution .. 3

Table S1. List of species sampled, voucher information, Genbank accession numbers and binary trait information. ... 5
Table S2. Pollinator, locality and source of information for Nematanthus species... 6
Table S3. Mean values for floral traits .. 8
Table S4. Index Herbariorum acronyms and names .. 9
Table S5. PC loadings for morphological and climatic preferences .. 10
Table S6. AICc values for the complete set of OU models ... 11
Table S7. Model fit comparison correcting for measurement error (ME) .. 12

Figure S1. Floral measurements ... 13
Figure S2. Phylogenetic reconstruction with outgroup species .. 14
Figure S3. Ancestral state reconstructions .. 15
Figure S4. Principal component analysis for floral traits (a) and climatic preferences (b) ... 17
Figure S5. Comparison of phenotypic space and multi-rates BM model from raw and log-transformed measurements .. 18
Figure S6. Credibility tree from MrBayes with outgroup sequences included .. 19

References .. 20
Appendix S1. Phylogenetic analysis and relative divergence time estimation

The *Codonanthopsis, Codonanthe* and *Nematanthus* clade has ca. 52 species and is distributed throughout the Neotropical rainforest with a center of diversity in the Brazilian Atlantic forest (BAF). Recent phylogenetic and biogeographic analyses of the Neotropical Gesneriaceae have shown that the CCN group is divided in two sister clades (Perret et al. 2013). One is composed of *Codonanthe* sensu stricto and *Nematanthus* (39 species) that are endemic to the BAF (Chautems 2009), while the other includes *Codonanthopsis* (13 species) that occurs throughout the tropical rainforest of Central America, northern South America and Amazonia (Chautems and Perret 2013). We sampled 27 *Nematanthus*, 8 *Codonanthe* and 11 *Codonanthopsis* species, as well as 13 outgroup species representing different Episceae genera and other related Neotropical tribes such as Gesneriaeae (*Gesneria humilis*), Gloxineae (*Kohleria spicata*) and Sinningiaeae (*Sinningia schiffneri*). This taxonomic sample includes all known species in the three genera CCN except *C. anisophylla, C. chiricana, N. mirabilis, N. striatus*, and the probable hybrid species *N. kuhlmannii* and *N. mattosianus* for which plant material was not available. All sampled species were sequenced for two nuclear (ITS, ncpGS) and four plastid regions (*atpB-rbcL* spacer, *rpl16* intron, *rps16* intron, *trnL-trnF* spacer) using the procedure described in Perret et al. (2013). Voucher information and Genbank numbers for *trnL-trnF* and *rps16* sequences are published in Perret et al. (2013). Genbank numbers for other markers are provided in Table S1. We used MAFFT (Katoh and Kuma 2002) and Guidance (Penn et al. 2010) to align sequences and subsequently remove all sites with a confidence score below 0.8; the final matrix contained 4,484 bp. We identified the GTR+G model of substitution as the best model for each DNA region, using AIC method as implemented in the *phymltest* function in R (*ape* package; Paradis et al. 2004). The only exception was the *ncpGS* gene, which was modeled with HKY85+G.

We used these models in Bayesian inference (BI: MrBayes 3.2; Ronquist et al. 2012) and all model parameters were unlinked across gene partitions. We performed two runs of BI for the complete alignment matrix, where each run consisted of four chains of 10^7 generations, sampling every 10^7 steps. We determined chain convergence and burn-in length (20% of the sampled generations) by examining trace plots of each parameter in Tracer v.1.4 (Rambaut and Drummond 2007). A consensus tree was calculated by removing the burn-in period
and combining the two runs. Phylogenetic relationships and relative divergence times were estimated with a relaxed clock model applying uncorrelated log-normal prior distribution for the rates of substitution and a Yule prior on the rates of speciation using BEAST (Drummond et al. 2012). Each DNA region was treated as a separate data partition, allowing parameters of each region to be unlinked. Three independent analyses were performed by including either all 46 species sampled, the 38 species with morphological data or the 43 species with climatic data (see below). All three analyses included two independent runs of 2×10^7 generations each. The CCN clade was constrained to be monophyletic based on previous studies (Clark et al. 2012; Perret et al. 2013). Due to the absence of closely related fossils in the CCN clade, difficulties to align sequences from fast evolving genes in higher taxa, and the multiple issues of secondary calibrations (Sauquet et al. 2012), an accurate absolute divergence-time estimation for this group is problematic. However, our analyses did not require absolute times of divergence because our goal is to compare the evolution of different traits within the CCN clade. We therefore used BEAST to produce ultrametric trees by setting the prior for the time of the most recent common ancestor of CCN clade to an almost fixed root of 1 (normal distribution with mean=1, sd=1e-06). We also carried out a MrBayes (v3.2; Ronquist et al. 2012) analysis for comparison (See Figure S6). Finally, we examined the evolution of three binary traits: geographic distribution, pollination syndromes, and floral orientation (see Table S1). The biogeographic data was obtained from Perret et al. (2013), while information on pollination syndromes and resupination was obtained from available field observations of pollinators (see Table S2) and observations on living plants. Ancestral state reconstructions were performed using the Maximum Clade Credibility (MCC) tree and the function *rayDISC* (root=maddfitz) in the corHMM R package (Beaulieu et al. 2013).
Appendix S2. Visualization of continuous trait evolution

Trait simulations for each trait used the MCC tree of the BEAST analyses used the functions sim.rates (phytools R package, Revell 2012), for the multiple BM model, and OUwie.sim (Ouwie R package, Beaulieu et al. 2012) for the OU models. The sim.rates function allows for multiple BM rates of evolution, here estimated by rjMCMC (geiger R package, see above) and mapped on each branch of the phylogenetic tree. The OUwie.sim function requires OU parameters and tree painted with the defined selective regimes. All parameters were set according to the model selected for each trait (Table 1) and the root states were based on BM maximum likelihood estimation, even for OU models, because of the impossibility to estimate root state under these models.
Taxon Name	Voucher Code	Origin	tmrlF	rps16	atpB-rbcL	ITS	ncpGD	rplF	QD	FB	PQ
Nematanthus carinata	NA	Cultivated CJBG AC-3105 (Amazon)									
Nematanthus discolor	NA	Cultivated CJBG AC-3351 (Equador)									
Nematanthus eburneus	NA	Cultivated CJBG AC-3330 (Equador)									
Nematanthus gibbosa	NA	Cultivated CJBG AC-1139 (Brazil)									
Nematanthus gregarius	NA	Cultivated CJBG AC-1147 (Brazil)									
Nematanthus leonii	NA	Cultivated CJBG AC-1169 (Brazil)									
Nematanthus punctatus	NA	Cultivated CJBG AC-1355 (Papua)									
Nematanthus saccatus	NA	Cultivated CJBG AC-1301 (Equador)									
Nematanthus teixeiranus	NA	Cultivated CJBG AC-1101 (Equador)									
Nematanthus wiehleri	NA	Cultivated CJBG AC-109 (Central America & Colombia)									
Nematanthus wettsteinii	NA	Cultivated CJBG AC-2013 (Brazil)									
Peixoto	NA	Cultivated CJBG AC-605 (Equador)									
Peixoto	NA	Cultivated CJBG AC-109 (Central America & Colombia)									
Peixoto	NA	Cultivated CJBG AC-2013 (Brazil)									
Peixoto	NA	Cultivated CJBG AC-605 (Equador)									

Note: Values in italics correspond to sequences reported in Perret et al. 2013. Binary trait information for geographic distribution (GD, 0 = other biomes, 1 = BAF), pollination syndrome (PS, 0 = bee-pollinated and 1 = hummingbird-pollinated).
Species	Locality	Nematanthus-lineage	Visitors	Reference	
N. brasiliensis	Mangaratiba, Reserva Ecológica Rio das Pedras, RJ (30m)	Nematanthus-A	*Phaetornis ruber* Ramphodon naevius*	(SanMartin-Gajardo and Vianna, 2010)	
N. fissus	Caraguatatuba, SP (50-100m)	Nematanthus-A	Thalurania glaucopis*	(Buzato et al., 2000)	
N. fluminensis	Caraguatatuba SP (50-100m)	Nematanthus-A	*Phaetornis ruber*	(Buzato et al., 2000)	
N. fornix	Campos do Jordão, SP (1400-1600m)	Nematanthus-B	Leucochloris albicollis*	(Buzato et al., 2000)	
N. fornix	Itatiaia National Park (900-1200m)	Nematanthus-B	Phaethornis eurynome*	Wolowski et al. 2013	
N. fritschii	Estação Ecológica Estadual Juréia-Itatins, SP (800-900m)	Nematanthus-A	Ramphodon naevius*	(Franco and Buzato, 1992)	
N. gregarius	Boracéia forest reserve, SP (800-900m)	Nematanthus-B	Leucochloris albicollis*	Snow and Snow 1986	
N. sericeus	Cunha, SP (1000-1100m)	Nematanthus-B	Clytolaema rubricauda*		
N. strigilosus	Serra da Piedade, MG (1400-1740m)	Nematanthus-B	Colibri serriostris*	Vasconcelos & Lombardi 2001	
N. strigilosus	Serra do Caraça, MG (1200-2020m)	Nematanthus-B	Thalurania glaucopis*	Vasconcelos & Lombardi 2001	
Species	Location	Flower Type	Bird	Author	Year
------------------	-------------------------------	-------------	---------------	-------------------	-------
N. lanceolatus	Itatiaia National Park (900-1200m)	*Nematanthus-A*	*Phaethornis eurynome*	Wolowski et al.	2013
N. crassifolius	Itatiaia National Park (900-1200m)	*Nematanthus-A*	*Phaethornis eurynome*	Wolowski et al.	2013

a nectar robber

* Phaethornithinae

+ Trochilinae
Table S3. Mean values for floral traits used for the principal component analyses. Abbreviations in figure S1.

Species	obs	DIL	DOL	DVL	DOV	DTH	DTV	LTU	DRH	DRV	DNH	DNV	LAN	LST
Codonanthe arbuscens	4.0	3.3	15.2	33.0	17.3	18.0	18.0	48.8	4.7	6.1	5.7	8.5	31.1	30.0
Nematanthus australis	4.0	3.3	15.2	33.0	17.3	18.0	18.0	48.8	4.7	6.1	5.7	8.5	31.1	30.0
Nematanthus arrowifolius	5.0	3.3	15.2	33.0	17.3	18.0	18.0	48.8	4.7	6.1	5.7	8.5	31.1	30.0
Nematanthus breviceps	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Nematanthus carinatus	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Nematanthus corniculata	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Table S4. List of the herbaria where specimens have been examined for occurrence data. Acronyms follow Index Herbariorum (http://sweetgum.nybg.org/ih/).

Abbreviation	Herbarium name
B	Botanischer Garten und Botanisches Museum Berlin-Dahlem, Zentraleinrichtung der Freien Universität Berlin
BHCB	Universidade Federal de Minas Gerais
BM	British Museum of Natural History
BOTU	Herbario Irina Delanovna Gontschajnov
BR	National Botanic Garden of Belgium
CEPEC	Herbario do Centro de Pesquisas do Cacau
CESJ	Herbario Leopoldo Kiefer
E	Royal Botanic Garden, Edinburgh
ESA	Herbario Da Escola Superior de Agricultura Luiz de Queiroz
F	Herbarium Botany Department, Field Museum of Natural History
G	Conservatoire et Jardin botaniques de la Ville de Genève
GFJP	Herbario Guido F. J. Pabst, Faculdade Redentor
GH	The Gray Herbarium
GUA	Herbarío Alberto Castellanos, FEEMA, Servicio de Ecología Aplicada, DIVEA, DEP, FEEMA
HAS	Herbario Alarich Rudolf Holger Schultz, Fundação Zoobotânica do Rio Grande do Sul
HBR	Herbario Barbosa Rodrigues, Universidade Federal de Santa Catarina
HPL	Herbario, Instituto Plantarum de Estudos da Flora Ltda
HRCB	Herbario Rioclarense, Instituto de Biociências, Universidade Estadual Paulista
HUEFS	Herbario, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana
IAC	Herbario, Centro de Recursos Genéticos Vegetais e Jardim Botânico, Instituto Agronômico de Campinas
IAN	Herbario, Laboratório de Botânica, Embrapa Amazônia Oriental
IAS	Indiana Academic of Science
ICN	Herbario ICN, Departamento de Botânica
INPA	Herbario, Coordenação de Pesquisas em Botânica, Instituto Nacional de Pesquisas da Amazônia
JPB	Herbario Lauro Pires Xavier
K	Herbarium, Royal Botanic Gardens
M	Herbarium, Botanische Staatsammlung München
MBM	Herbario, Museo Botánico Municipal
MBML	Herbario, Museo de Biología Mello Leitão
MG	Herbario, Museu Paraense Emílio Goeldi
MO	Herbarium, Missouri Botanical Garden
NY	New York Botanical Garden
P	Museum National d'Histoire Naturelle
PACA	Herbario Anchieta, Instituto Anchietao de Pesquisas/UNISINOS
PEL	Herbario, Universidad Federal de Pelotas
R	Herbario, Departamento de Botánica, Museo Nacional
RB	Herbario, Instituto de Pesquisas, Jardim Botânico do Rio de Janeiro
RU	Herbarium, Agricultural Botany Department, University of Reading
S	Herbarium, Swedish Museum of Natural History
SEL	Herbario, Marie Selby Botanical Gardens
SP	Herbario, Instituto de Botânica
SPSPF	Herbario Dom Bento José Pickel, Divisão de Duasomia, Seção de Madeiras e Produtos Florestais
UB	Herbario, Universidade de Brasília
UEC	Herbario, Instituto de Biologia, Jab, Universidade Estadual de Campinas
UFP	Herbario, Universidade Federal de Pernambuco
UPCB	Herbario, Universidade Federal do Paraná
US	United States National Herbarium, Smithsonian Institution
VIC	Herbario, Universidad Federal de Vigo
VIES	Central Herbarium UFES, Federal University of Espírito Santo
W	Herbarium, Naturhistorisches Museum Wien
WAG	Nationaal Herbarium Nederland, Wageningen University branch, Wageningen University
WU	Herbarium, Faculty Center Botany, Department of Plant Systematics and Evolution, Universität Wien
Z	Joint Herbarium of the University of Zurich and the ETH Zurich
Table S5. PC loadings for morphological and climatic preferences. Description of floral morphology traits in legend of table S2.

Floral morphology	Climatic variables	PC1	PC2		
Trait	PC1	PC2	Trait	PC1	PC2
DHL	-0.245	-0.4611	Mean annual Temperature	0.8634	-0.0221
DOH	-0.261	-0.3972	Mean diurnal range	-0.1525	0.3717
DVL	-0.2837	-0.2485	Isothermality	0.8417	0.2029
DOV	-0.3023	0.0141	Temperature Seasonality	-0.8939	-0.205
DTH	-0.2518	-0.2276	Max Temperature warmest month	0.7341	-0.0214
DTV	-0.2834	0.2393	Min Temperature coldest month	0.8974	-0.0448
LTU	-0.2964	0.2212	Annual Range Temperature	-0.8103	0.0541
DRH	-0.2803	-0.2169	Mean Temperature wettest	0.6648	-0.1729
DRV	-0.2895	-0.0512	Mean Temperature driest	0.9166	0.0331
DNH	-0.2981	0.0468	Mean Temperature warmest	0.7347	-0.1172
DNV	-0.2792	0.2209	Mean Temperature coldest	0.9094	0.0338
LAN	-0.2719	0.377	Annual precipitation	0.6345	0.0668
LST	-0.2555	0.4085	Precipitation wettest month	0.5838	0.31
			Precipitation driest month	0.2853	-0.3951
			Precipitation seasonality	-0.0432	0.6337
			Precipitation wettest month	0.5802	0.2775
			Precipitation driest month	0.3482	-0.3728
			Precipitation warmest month	-0.1408	-0.0159
			Precipitation coldest month	0.6944	0.0165
			Altitude	-0.473	0.3528
Table S6. AICc values for the complete set of OU models. Regimes in pollinator type and geography are explained in the main text. Model parameters: α = selection strength, σ^2 = rate of evolution, and θ = state means. OUM assumes different θ and a single α and σ^2 acting on the selective regimes. OUMV with different θ and σ^2, OUMA with multiple α, and OUMVA with multiple α and σ^2 per selective regime. The preferred OU model for floral size was OUMV and floral shape the OUMVA, with regimes according to pollination syndromes. For mean and seasonality in temperature the model OUM and precipitation seasonality model OUM, with regimes determined by geography, were selected.

Models	Pollination syndrome	Geography						
	OUM	OUMV	OUMA	OUMVA	OUM	OUMV	OUMA	OUMVA
	AICc	AICc	AICc	AICc	AICc	AICc	AICc	AICc
Morphology PC1	189.2001	172.9199	189.5848	173.1399	195.8302	187.4603	192.4959	139.0627
Morphology PC2	88.0996	90.609	83.7823	79.5401	108.8082	103.3185	109.6878	106.0105
Climate PC1	134.387	136.9541	136.9557	142.1494	124.4231	126.9841	125.4141	126.2922
Climate PC2	102.8038	105.3339	105.2334	107.1134	100.5768	100.6149	101.8	102.9673
Table S7. Model fit comparison correcting for measurement error (ME). Bold indicate the selected model. Asterisk indicates that the error was not estimated for this type of model, but fixed with the error estimated under a single BM model.

MORPHOLOGY PC1				
	Model	AICc	AICc incorporate error	Estimated ME
BM	190.9718	190.4220	1.4296	
OU single	187.7321	190.2145	0.3425	
EB (ac)	193.3461	192.9283	0.8944	
EB (dc)	187.7321	190.2145	0.3429	
OUWie_OUM	189.2001	191.7122	0.5557	
OUWie_OUMV	172.9199	175.1343	0.3681	
OUWie_OUMA	189.5848	188.0949	2.2075	
OUWie_OUMVA	173.1399	172.0341	0.4584	
Multiple rates	**152.2585**	**160.0260**	*	

MORPHOLOGY PC2				
	Model	AICc	AICc incorporate error	Estimated ME
BM	104.3669	106.7198	0.0000	
OU single	106.6641	109.1489	0.0000	
EB (ac)	106.7412	109.2261	0.0000	
EB (dc)	106.6641	109.1489	0.0000	
OUWie_OUM	88.0996	91.8741	0.4759	
OUWie_OUMV	90.6090	94.6933	0.4646	
OUWie_OUMA	83.7823	91.1330	0.3894	
OUWie_OUMVA	**79.5401**	**83.6943**	0.1677	
Multiple rates	102.3854	102.3854	*	

CLIMATIC PREFERENCES PC1				
	Model	AICc	AICc incorporate error	Estimated ME
BM	134.5776	134.3708	0.5960	
OU single	135.6864	136.8080	0.5960	
EB (ac)	136.9015	139.3226	0.0000	
EB (dc)	136.5797	136.8080	0.5960	
OUWie_OUM	**124.4231**	**125.0787**	0.8193	
OUWie_OUMV	126.9841	127.7904	0.8193	
OUWie_OUMA	125.4141	127.2266	0.8086	
OUWie_OUMVA	126.2922	130.0933	0.8086	
Multiple rates	130.7428	131.8210	*	

CLIMATIC PREFERENCES PC2				
	Model	AICc	AICc incorporate error	Estimated ME
BM	115.0848	100.7321	0.6284	
OU single	100.5829	102.5151	0.5514	
EB (ac)	117.4086	103.1693	0.6284	
EB (dc)	100.5829	102.5151	0.5514	
OUWie_OUM	100.5768	102.8283	0.2988	
OUWie_OUMV	100.6149	106.6520	0.4666	
OUWie_OUMA	101.8000	106.6175	0.4673	
OUWie_OUMVA	102.9673	105.5555	0.0855	
Multiple rates	**95.1331**	**95.0651**	*	
Figure S1. Floral measurements used for the principal component analysis. A-C: *Nemantanthus fritschii*, D: *Codonanthe devosiana*. Photographs used with permission from Manuel Faustino. Abbreviations as follows: DHL: corolla horizontal diameter; DVL: corolla vertical diameter; DOH: horizontal diameter of the corolla opening; DOV: corolla vertical diameter at the corolla opening; DTH: Maximum horizontal tube diameter; DTV: Maximum vertical tube diameter; LTU: Dorsal tube length; DRH: Horizontal diameter of the tube constriction anterior to the nectar chamber; DRV: Vertical diameter of the tube constriction anterior to the nectar chamber; DNH: Horizontal diameter of the nectar chamber; DNV: Vertical diameter of the nectar chamber; LAN: Length from the anther base to the ovary; LST: Length from the stigma base to the ovary.
Figure S2. Phylogenetic reconstruction with outgroup species. Blue bars correspond to the 95% highest posterior density. Values above branches are Bayesian posterior probabilities. Names on bars denote tribes of the *Gesnerioideae* subfamily.
Figure S3. Ancestral state reconstructions. Maximum likelihood ancestral state reconstruction (corHMM R package), details of states in text. ER and ARD, equal rates and all rates different models, respectively.
Figure S4. Panel a) Principal component analysis of 38 CCN species based on 13 floral traits. Colors correspond to the clades according to the legend. Species names: 1, *N. punctatus*; 2, *N. Albus*; 3, *N. wiehleri*; 4, *N. fluminensis*; 5, *N. crassifolius*; 6, *N. brasiliensis*; 7, *N. corticola*; 8, *N. fritschi*; 9, *N. tessmannii*; 10, *N. villosus*; 11, *N. maculatus*; 12, *N. fissus*; 13, *N. pycnophyllus* 14 *N. monanthos*; 15, *N. jolyanus*; 16, *N. hirtellus*; 17, *N. gregarius*; 18, *N. bradei*; 19, *N. sericeus*; 20, *N. teixeiranus*; 21, *N. strigillosus*; 22, *N. serpens*; 23, *N. wettsteinii*; 24, *N. australis*; 25, *C. venosa*; 26, *C. cordifolia*; 27, *C. devosiana*; 28, *C. serrulata*; 29, *C. carnosa*; 30, *C. gracilis*; 31, *C. uleana*; 32, *C. caribaea*; 33, *C. macradenia*; 34, *C. elegans*; 35, *Codonanthopsis ulei*; 36, *N. fornix*; 37, *C. mattos-silvae*; 38, *C. corniculata*. Panel b) Principal component analysis of climatic preferences in 43 CCN species, and geographical distribution by subclade. The distribution map was produced in this study. Species names: 1 *Codonanthe calcarata*, 2 *Codonanthe caribaea*, 3 *Codonanthe carnosa*, 4 *Codonanthe cordifolia*, 5 *Codonanthe crassifolia*, 6 *Codonanthe devosiana*, 7 *Codonanthe erubescens*, 8 *Codonanthe gibbosa*, 9 *Codonanthe gracilis*, 10 *Codonanthe luteola*, 11 *Codonanthe macradenia*, 12 *Codonanthe mattos-silvae*, 13 *Codonanthe serrulata*, 14 *Codonanthe uleana*, 15 *Codonanthe venosa*, 16 *Codonanthopsis dissimulata*, 17 *Codonanthopsis ulei*, 18 *Nematanthus albus*, 19 *Nematanthus australis*, 20 *Nematanthus bradei*, 21 *Nematanthus brasiliensis*, 22 *Nematanthus corticola*, 23 *Nematanthus crassifolius*, 24 *Nematanthus fissus*, 25 *Nematanthus fluminensis*, 26 *Nematanthus fornix*, 27 *Nematanthus fristchi*, 28 *Nematanthus gregarius*, 29 *Nematanthus hirtellus*, 30 *Nematanthus jolyanus*, 31 *Nematanthus kautskyi*, 32 *Nematanthus lanceolatus*, 33 *Nematanthus maculatus*, 34 *Nematanthus monanthos*, 35 *Nematanthus punctatus*, 36 *Nematanthus pycnophyllus*, 37 *Nematanthus sericeus*, 38 *Nematanthus strigillosus*, 39 *Nematanthus teixeiranus*, 40 *Nematanthus tessmannii*, 41 *Nematanthus villosus*, 42 *Nematanthus wettsteinii*, 43 *Nematanthus wiehleri*. Photographs 3, 6, 17-20, 23, 26, 27, 30, 32 and 34 by Mauro Peixoto, photographs 2, 4, 5, 7, 9, 10-16, 22, 29, 31, 33, 35 by John Clark, photographs 1, 8, 28 by Alain Chautems, and photograph 25 by Bernard Renaud. All photographs were used under permission requests from the owners.
Figure S5. Comparison of phenotypic space and multi-rates BM model from raw (upper panel) and log-transformed (lower panel) morphological measurements.
Figure S6. Credibility tree from MrBayes with outgroup sequences included. Numbers on nodes are posterior probabilities for each clade.
References

Beaulieu, J. M., B. C. O’Meara, and M. J. Donoghue. 2013. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. Systematic Biology. 62:725–37.

Buzato, S., M. Sazima, and I. Sazima. 2000. Hummingbird-pollinated floras at three Atlantic forest sites. Biotropica 32:824–841.

Chautems, A. 1988. Révision taxonomique et possibilités d’hybridations de Nematanthus Schrader (Gesneriaceae), genre endémique de la forêt côtière brésilienne. Dissertationes Botanicae. 112:1–226.

Chautems, A. 2009. Gesneriaceae. Pp. 285–288 in J. Stehmann, R. Forzza, A. Salino, M. Sobral, D. Costa, and L. Kamino, eds. Plantas da floresta Atlântica. Rio de Janeiro.

Chautems, A., and M. Perret. 2013. Redefinition of the neotropical genera Codonanthe (Mart.) Hanst, and Codonanthopsis Mansf. (Gesneriaceae). Selbyana 31:143–157.

Clark, J. L., M. M. Funke, A. M. Duffy, and J. F. Smith. 2012. Phylogeny of a Neotropical clade in the Gesneriaceae: more tales of convergent evolution. International Journal of Plant Sciences. 173:894–916.

Drummond, A. J., M. A. Suchard, D. Xie, and A. Rambaut. 2012. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 29:1969–1973.

Franco, M. A., and S. Buzato. 1992. Biologia floral de Nematanthus fritschii (Gesneriaceae). Revista Brasileira de Biologia. 52:661–666.

Katoh, M., and M. Kuma. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 30:3059–3066.

Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20:289–290.

Penn, O., E. Privman, H. Ashkenazy, G. Landan, D. Graur, and T. Pupko. 2010. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research. 38:23–28.

Perret, M., A. Chautems, A. O. De Araujo, and N. Salamin. 2013. Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences. Botanical Journal of the Linnean Society. 171:61–79.

Rambaut, A., and A. J. Drummond. 2007. Tracer v1.4.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecoloy and Evolution. 3:217–223.

Ronquist, F., M. Teslenko, P. van der Mark, D. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M. A. Suchard, and J. Huelsenbeck. 2012. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539–542.

Rosinni, J. and Chautems, A. 2007. Codonanthe gibossa Rossini & Chautems (Gesneriaceae), a new species from the State of Espírito Santo, Brazil. Candollea. 62: 215-220.

Sanmartin-Gajardo, I., and J. R. Viana. 2010. Pollination of Nematanthus brasiliensis: An epiphytic Gesneriaceae endemic to the Southern Atlantic Forest of Brazil. Selbyana 30:216–220.

Sauquet, H., S. Y. W. Ho, M. a Gandolfi, G. J. Jordan, P. Wilf, D. J. Cantrill, M. J. Bayly, L. Bromham, G. K. Brown, R. J. Carpenter, D. M. Lee, D. J. Murphy, J. M. K. Sniderman, and F. Udovicic. 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Systematic Biology. 61:289–313.

Snow, D. W., and B. K. Snow. 1986. Feeding ecology of hummingbirds in the Serra do Mar , southeastern Brazil. Rev. Ornitolologia Neotropical. 012:286–296.

Vasconcelos, M., and J. Lombardi. 2001. Hummingbirds and their flowers in the campos rupestres of southern
Wolowski, M., T.-L. Ashman, and L. Freitas. 2013a. Community-wide assessment of pollen limitation in hummingbird-pollinated plants of a tropical montane rain forest. Annals of Botany. 112:903–10.

Wolowski, M., C. F. Saad, T.-L. Ashman, and L. Freitas. 2013b. Predominance of self-compatibility in hummingbird-pollinated plants in the Neotropics. Naturwissenschaften 100:69–79.