REMARK ON MEROMORPHIC FUNCTIONS THAT SHARE
FIVE PAIRS

NORBERT STEINMETZ

Abstract. We determine all pairs \((f, g)\) of meromorphic functions that share
four pairs of values \((a_\nu, b_\nu)\), \(1 \leq \nu \leq 4\), and a fifth pair \((a_5, b_5)\) under some
mild additional condition.

1. Introduction

Meromorphic functions \(f\) and \(g\) are said to share the pair \((a, b)\) of complex numbers
(including \(\infty\)), if \(f - a\) and \(g - b\) (\(1/f\) and \(1/g\), if \(a = \infty\) and \(b = \infty\), respectively)
have the same zeros. Czubiak and Gundersen [1] proved that meromorphic func-
tions \(f\) and \(g\) that share six pairs \((a_\nu, b_\nu)\) are Möbius transformations of each
other, hence share all pairs \((a, L(a))\) for some Möbius transformation \(L\). On the
other hand, the functions

\[\hat{f}(z) = \frac{e^z + 1}{(e^z - 1)^2}\quad\text{and}\quad \hat{g}(z) = \frac{(e^z + 1)^2}{8(e^z - 1)}\]

share the values \(\infty, 0, 1,\) and \(-\frac{1}{2}\) with different multiplicities, and the pair \((-\frac{1}{2}, \frac{1}{4})\)
counting multiplicities. Thus

\[f(z) = \frac{1}{\hat{f}(z) + \frac{1}{2}}\quad\text{and}\quad g(z) = \frac{1}{\hat{g}(z) - \frac{1}{4}}\]

are not Möbius transformations of each other and share the pairs \((0, 0), (2, -4),\)
\((\frac{2}{3}, \frac{1}{3})\) and \((\frac{4}{3}, -\frac{2}{3})\) with different multiplicities, and the value \(\infty\) (the pair \((\infty, \infty))\)
counting multiplicities. Moreover, \(f\) and \(g\) have common counting function of poles
\(N(r, \infty) = T(r) + S(r)\), where \(T(r)\) and \(S(r)\) denote the common Nevanlinna char-
acteristic and remainder term of \(f\) and \(g\) (for notations and results of Nevanlinna
theory the reader is referred to Hayman’s monograph [5]), and \(f\) and \(g\) parametrise
the algebraic curve

\[4x^2 + 2xy + y^2 - 8x = 0.\]

Gundersen’s example \(\hat{f}, \hat{g}\) was the first to show that in Nevanlinna’s Four Value
Theorem [7] one cannot dispense with the condition ‘counting multiplicities’ for
each of the four values. This is possible for one value (Gundersen [2]) and also for
two of the values (Gundersen [3], Mues [6]), while the case of three such values
is still open. The state of art is outlined in [10]. Gundersen’s example also has
another characterisation due to Reinders [8, 9]: If \(f\) and \(g\) share four values \(a_\nu,\)

2000 Mathematics Subject Classification. 30D35.
Key words and phrases. Nevanlinna theory, value- and pair-sharing, four-value-theorem, five-
pairs-theorem.

1
and if \(f^{-1}(a) \subset g^{-1}(b) \) holds for some pair \((a,b)\) \((a,b \neq a_\nu)\), then either \(f\) and \(g\) are Möbius transformations of each other or else \(f = T \circ \hat{f} \circ h\) and \(g = T \circ \hat{g} \circ h\) holds for some Möbius transformation \(T\) and some non-constant entire function \(h\).

In [4], Gundersen considered functions \(f\) and \(g\) that share five pairs and are not Möbius transformations of each other. He proved several sharp inequalities for the corresponding Nevanlinna functions, including \(T(r,f) = T(r,g) + S(r)\) and
\[
\overline{N}(r; a_\nu, b_\nu) \geq \frac{1}{2}T(r) + S(r),
\]
where \(\overline{N}(r; a_\nu, b_\nu)\) denotes the counting functions of common \((a_\nu, b_\nu)\)-points of \((f,g)\), not counting multiplicities, and \(T(r)\) and \(S(r)\) denote the common Nevanlinna characteristic and remainder term, respectively.

2. Main result

The aim of this paper is to prove

Theorem 1. Suppose that meromorphic functions \(f\) and \(g\) share four pairs \((a_\nu, b_\nu)\), and a fifth pair \((a_5, b_5)\) counting multiplicities and such that
\[
m(r, 1/(f - a_5)) + m(r, 1/(g - b_5)) = S(r)
\]
holds. Then either \(f\) and \(g\) are Möbius transformations of each other or else \(f = T \circ \hat{f} \circ h\) and \(g = T \circ \hat{g} \circ h\) holds for suitably chosen Möbius transformations \(T\) and \(S\) and some non-constant entire function \(h\).

Proof. We note that (5) is automatically fulfilled if \(a_\nu = b_\nu\), \(1 \leq \nu \leq 4\). Three of the pairs \((a_\nu, b_\nu)\) may be prescribed. We will assume \((a_1, b_1) = (0, 0)\), \((a_2, b_2) = (2, -4)\), and, in particular, \(a_5 = b_5 = \infty\), to stay as close as possible with the modified example of Gundersen. Then \(f\) and \(g\) have the same poles counting multiplicities, and such that
\[
m(r, f) + m(r, g) = S(r)
\]
holds. We also assume that \(f\) and \(g\) are not Möbius transformations of each other.

Similar to the approach in [4] we consider
\[
P(x, y, \xi) = c_1x^2 + c_2xy + c_3y^3 + c_4x + c_5y.
\]
Then there are at least two linear independent vectors \(\xi = (c_1, \ldots, c_5) \in \mathbb{C}^5\) such that
\[
P(a_\nu, b_\nu, \xi) = 0 \quad (1 \leq \nu \leq 4)
\]
holds, that is, \(P(z) = P(f(z), g(z), \xi)\) vanishes whenever \(f(z) = a_\nu\) and \(g(z) = b_\nu\).

If \(P\) does not vanish identically, this yields
\[
\sum_{\nu=1}^{4} \overline{N}(r; a_\nu, b_\nu) \leq \overline{N}(r, 1/P) \leq T(r, P) + O(1) \leq 2T(r) + S(r);
\]
for the last inequality the additional hypothesis \((\nu)\) is used. On the other hand it follows from the Second Main Theorem that
\[
\sum_{\nu=1}^{4} \overline{N}(r; a_\nu, b_\nu) + \overline{N}(r, \infty) \geq 3T(r) + S(r),
\]
hence $T(r) \leq N(r, \infty) + S(r)$. Thus, still assuming $P \neq 0$, it follows that
\[
N(r, 1/P) = N(r, 1/P) + S(r) = 2T(r) + S(r)
\]
\[
m(r, 1/P) = S(r)
\]
\[
\sum_{\nu=1}^{4} N(r, a_{\nu}, b_{\nu}) = \sum_{\nu=1}^{4} N(r, 1/P) + S(r)
\]
\[
T(r) = N(r, \infty) + S(r).
\]

In particular, the quotient $\chi(z) = P(z; \bar{c})/P(z; c)$ satisfies $T(r, \chi) = S(r)$. In other words, f and g parametrise the algebraic curve
\[
F(x, y; z) = \chi_1 x^2 + \chi_2 yx + \chi_3 y^2 + \chi_4 x + \chi_5 y = 0 \quad (\chi_k = \chi c_k - \tilde{c}_k)
\]
over the field $\mathbb{C}(\chi)$. This is also true if $P(z; c)$ or $P(z; \bar{c})$ vanishes identically. It is obvious that $\chi_1 \chi_3 \neq 0$, since otherwise g [resp. f] would be a Möbius transformation or a rational function of f [resp. g] of degree two over the field $\mathbb{C}(\chi)$. In the first case it would follow that g is an ordinary Möbius transformation of f, while in the second case we would obtain a contradiction: $T(r, g) = 2T(r, f) + S(r)$.

The algebraic curve (8) has the rational parametrisation (set $x = ty$)
\[
x = \frac{p(z, t)}{s(z, t)} = -\frac{t(\chi_4 t + \chi_5)}{\chi_1 t^2 + \chi_2 t + \chi_3}, \quad y = \frac{q(z, t)}{s(z, t)} = -\frac{\chi_4 t + \chi_5}{\chi_1 t^2 + \chi_2 t + \chi_3}
\]
with $t = x/y$. In terms of f and g this yields
\[
f(z) = \frac{p(z, t(z))}{s(z, t(z))} = -\frac{t(z)(\chi_4 t(z) + \chi_5)}{\chi_1 t(z)^2 + \chi_2 t(z) + \chi_3}
\]
\[
g(z) = \frac{q(z, t(z))}{s(z, t(z))} = -\frac{\chi_4 t(z) + \chi_5}{\chi_1 t(z)^2 + \chi_2 t(z) + \chi_3}
\]
with $t(z) = \frac{f(z)}{g(z)}$.

Since by (4), f and g have 'many' zeros, there are three possibilities to be discussed: The zeros correspond to the

a) poles of t, in which case $\chi_4 \equiv 0$ and 'almost all' zeros of f are simple, while the zeros of g have order two. Moreover, t has 'almost no' zeros $(N(r, 1/t) = S(r))$.

b) zeros of t, in which case $\chi_5 \equiv 0$ and 'almost all' zeros of g are simple, while the zeros of f have order two. Moreover, t has 'almost no' poles $(N(r, t) = S(r))$.

c) zeros of $\chi_4(z)H(z) + \chi_5(z)$ with $\chi_4 \chi_5 \neq 0$. Then 'almost all' zeros of f and g are simple, and t has 'almost no' zeros and poles $(N(r, 1/t) + N(r, t) = S(r))$.

Taking all pairs (a_{ν}, b_{ν}) (1 $\leq \nu \leq 4$), into account, the following holds: for every ν there exist $\phi_{\nu}, \psi_{\nu}, \alpha_{\nu}, \beta_{\nu}, \tilde{\beta}_{\nu} \in \mathbb{C}(\chi)$ such that $p(z, t) - a_{\nu}s(z, t) = \phi_{\nu}(t - \alpha_{\nu})(t - \beta_{\nu})$ and $q(z, t) - b_{\nu}s(z, t) = \psi_{\nu}(t - \alpha_{\nu})(t - \tilde{\beta}_{\nu})$, respectively; occasionally the factor $(t - \beta_{\nu})$ and $(t - \tilde{\beta}_{\nu})$ corresponding to $\beta_{\nu} \equiv \infty$ and $\tilde{\beta}_{\nu} \equiv \infty$, respectively, might be missing. The functions\(^{1}\) α_{ν} are mutually distinct, and the same is true for β_{ν} and also $\tilde{\beta}_{\nu}$. It is also obvious that $\beta_{\nu} \neq \tilde{\beta}_{\nu}$, and that both functions are exceptional for t, except when one of them coincides with α_{ν}. Since t has at most two exceptional functions, we obtain the following picture:

\(^{1}\)At first glance one would expect that $\alpha_{\nu}, \beta_{\nu}, \tilde{\beta}_{\nu}$ are algebraic over $\mathbb{C}(\chi)$. But this is not the case, since analytic continuation which permutes α_{ν} and β_{ν} would also permute α_{ν} and $\tilde{\beta}_{\nu}$, in contrast to $\beta_{\nu} \neq \tilde{\beta}_{\nu}$.
For $\nu = 1$ and $\nu = 4$, say, we have $\beta_\nu \equiv \alpha_\nu$, that is, the pairs (a_ν, b_ν), are attained by (f, g) in a $(2 : 1)$ manner, while for $\nu = 2$ and $\nu = 3$ this happens the other way $(1 : 2)$. This means that, in addition to \((5)\), that also

\[(9) \quad F_y(a_\nu, b_\nu; z) \equiv 0 \quad (\nu = 1, 4) \quad \text{and} \quad F_x(a_\nu, b_\nu; z) \equiv 0 \quad (\nu = 2, 3)\]

holds. To stay close with the modified example of Gundersen we assume $\chi_3 \equiv 1$ (this is possible since $\chi_3 \not\equiv 0$ is already known). From \((9)\), that is

\[\chi_5 = 4\chi_1 - 4\chi_2 + \chi_4 = 2\chi_1 a_3 + \chi_3 b_3 + \chi_4 = \chi_2 a_4 + 2b_4 = 0,\]

one can compute the coefficients χ_k in terms of a_3, b_3, a_4, b_4, namely

\[(10) \quad \chi_1 = \frac{b_4(b_3 + 4)}{a_4(a_3 - 2)}, \quad \chi_2 = -\frac{2b_4}{a_4}, \quad \chi_3 = 1, \quad \chi_4 = \frac{2b_4(2b_3 + 4a_3)}{a_4(2 - a_3)}.\]

In particular, the functions χ_k are constant, and f and g are rational functions (now over \mathbb{C}) of the meromorphic function $t = f/g$. Having determined the coefficients \((10)\) we now use \((8)\) to express b_3 and b_4 in terms of a_3 and a_4. The solutions to $F(a_\nu, b_\nu; z) = 0$ for $\nu = 2, 4$ are given by \((4)\)

- $b_4 = 2a_4 - 8$ and $b_3 = \frac{2(8 - 4a_4 + a_4a_3)}{a_4 - 4}$.

Since, however, $F(a_3, b_3; z) = \frac{32(a_3 - 2)(a_3 - 2)(a_3 - a_4 + 2)}{(a_4 - 4)^2}$ also has to vanish, we just have to discuss the sub-case $a_3 = a_4 - 2$, since $a_3 = 2$ and also $a_4 = 2$ would contradict $a_2 = 2$. Thus $a_3 = a_4 - 2$, $b_3 = 2a_4 - 4$ and $b_4 = 2a_4 - 8$, and (a_1, a_2, a_3, a_4) and (b_1, b_2, b_3, b_4) have the same cross-ratio $\frac{a_2 - a_3}{a_2 - a_4} : \frac{a_1 - a_4}{a_2 - a_4} = \frac{b_2 - b_3}{b_2 - b_4} : \frac{b_1 - b_4}{b_2 - b_4} = \frac{(a_4 - 2)^2}{a_4(a_4 - 3)}$. In other words, there exists some M"obius transformation L such that f and $L \circ g$ share four values a_1, a_2, a_3, a_4 and the pair $(\mathcal{X}, L(\mathcal{X}))$. By Reinders' characterisation this implies $f = T \circ \hat{f} \circ h$ and $g = S \circ \hat{g} \circ h$, where S and T are suitably chosen M"obius transformations, and h is some non-constant entire function. \square

Final remark. It remains open whether or not—and how—the hypothesis \((8)\) may be relaxed. Is it sufficient to assume that the pair (a_5, b_5) is shared 'counting multiplicities' by f and g? Is it even true that functions sharing five pairs are either M"obius transformations of each other or else have the form $f = T \circ \hat{f} \circ h$ and $g = S \circ \hat{g} \circ h$?

References

[1] T. P. Czubiak & G. G. Gundersen, *Meromorphic functions that share pairs of values*, Complex Variables 34 (1997), 3546.

[2] G. G. Gundersen, *Meromorphic functions that share three or four values*, J. London Math. Soc. 20 (1979), 457-466.

\(^2\)We note that *maple* was not able to determine all solutions to the system \((7)\), but note also that the coefficients χ_k are functions of the a_ν, b_ν; to get an impression: one has to solve

$$(b_3 + 4)b_4 + (8 - 4a_3)a_4 = a_3^2b_4(3a_3 + 4) + b_3^2(2 - a_3) = a_4(b_3 + 4) + a_3(8 - b_4) + 2b_4 + 4a_3 = 0$$

for b_3, b_4.
[3] G. G. Gundersen, *Meromorphic functions that share four values*, Trans. Amer. Math. Soc. 277 (1983), 545-567. *Correction to “Meromorphic functions that share four values”,* Trans. Amer. Math. Soc. 304 (1987), 847-850.

[4] G. G. Gundersen, *Meromorphic functions that share five pairs of values*, Complex Variables and Elliptic Equations 56 (2011), 93-99.

[5] W. K. Hayman, *Meromorphic functions*, Oxford Clarendon Press 1975.

[6] E. Mues, *Meromorphic functions sharing four values*, Complex Variables 12 (1989), 169-179.

[7] R. Nevanlinna, *Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen*, Acta Math. 48 (1926), 367-391.

[8] M. Reinders, *A new characterisation of Gundersen’s example of two meromorphic functions sharing four values*, Results Math. 24 (1993), 174-179.

[9] M. Reinders, *Eindeutigkeitssätze für meromorphe Funktionen, die vier Werte teilen*, Mitt. Math. Sem. Giessen 200 (1991), 15-38.

[10] N. Steinmetz, *Reminiscence of an open problem: Remarks on Nevanlinna’s Four-Value-Theorem*, South East Asian Bull. Math. 36 (2012), 399-417.

Institut für Mathematik · TU Dortmund · D-44221 Dortmund · Germany

E-mail address: stein@math.tu-dortmund.de