Electronic Supplementary Information (ESI†)

Naphthalimide–coumarin conjugate: ratiometric fluorescent receptor for self-calibrating quantification of cyanide anion in cells

Yasuhiro Shiraishi, a,b* Naoto Hayashi, a Masaki Nakahata, c Shinji Sakai c and Takayuki Hirai a

a Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
b PRESTO, JST, Saitama 332-0012, Japan
c Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

shiraish@cheng.es.osaka-u.ac.jp

CONTENTS

Table/FIG.	Description	Page
Table S1	TD-DFT calculation results for 1′ and [1′–HCN]−	2
Fig. S1	1H NMR chart of 1	3
Fig. S2	13C NMR chart of 1	4
Fig. S3	FAB-MS chart of 1	5
Fig. S4	Time-dependent change in fluorescence spectra of 1	6
Fig. S5	pH-Dependent change in the fluorescence intensity of 1	7
Fig. S6	1H–1H COSY chart of 1	8
Fig. S7	1H–1H COSY chart of [1′–HCN]−	9
Fig. S8	FAB-MS chart for the product obtained by the reaction of 1 with CN−	10
Fig. S9	Absorption spectra of 1 and [1′–HCN]−	11
Fig. S10	Cell viability	11
Cart. x	Cartesian coordinates for respective compounds	12
Table S1. Calculated excitation energy (E), wavelength (λ), and oscillator strength (f) for low-lying singlet state (Sn) of 1′ and [1′–HCN].

Compound	Main Orbital Transition (CIC\(^a\))	E (eV) [λ (nm)]	f
\(S_0 \rightarrow S_1\)	HOMO–1→LUMO (0.1274) HOMO→LUMO (0.66351)	2.0822 eV [595.45 nm]	0.2709
\(S_0 \rightarrow S_2\)	HOMO–2→LUMO (–0.13519) HOMO–1→LUMO+2 (0.11064)	2.4022 eV [516.12 nm]	0.1303
\(S_0 \rightarrow S_3\)	HOMO–1→LUMO (0.11524) HOMO–1→LUMO+2 (–0.118) HOMO→LUMO+1 (–0.1104)	2.9877 eV [414.99 nm]	0.3544
\(S_0 \rightarrow S_4\)	HOMO–3→LUMO (0.68930) HOMO–2→LUMO+1 (0.54394) HOMO→LUMO+2 (0.3419)	3.1157 eV [397.93 nm]	0.1713
\(S_0 \rightarrow S_5\)	HOMO–2→LUMO (0.59954) HOMO→LUMO+1 (0.12527) HOMO→LUMO+2 (–0.18121)	3.2612 eV [380.17 nm]	0.0172
\(S_0 \rightarrow S_6\)	HOMO–3→LUMO (–0.18455) HOMO–2→LUMO+2 (–0.12133)	3.3726 eV [367.62 nm]	0.1713
\(S_0 \rightarrow S_1\)	HOMO→LUMO (0.70568)	2.2116 eV [560.61 nm]	0.0003
\([1′–HCN]\)	HOMO–1→LUMO (0.64000) HOMO–1→LUMO+3 (–0.11607)	2.8779 eV [430.82 nm]	0.3315
\(S_0 \rightarrow S_3\)	HOMO–2→LUMO (0.68930) HOMO→LUMO+1 (–0.11225)	3.2806 eV [377.93 nm]	0.0067
\(S_0 \rightarrow S_4\)	HOMO–2→LUMO (0.12200) HOMO→LUMO+1 (0.61102)	3.4332 eV [361.13 nm]	0.2942
\(S_0 \rightarrow S_5\)	HOMO–3→LUMO (0.70271)	3.6106 eV [343.39 nm]	0.0021
\(S_0 \rightarrow S_6\)	HOMO→LUMO+2 (0.70471)	3.7164 eV [333.61 nm]	0.0032

\(^a\) CI expansion coefficients for the main transitions.
Fig. S1 1H NMR chart of 1 (10 mM, DMSO–d$_6$, 400 MHz).
Fig. S2 13C NMR chart of 1 (30 mM, CDCl$_3$, 100 MHz).
Fig. S3 FAB-MS chart of 1.

[1 + H+]\(^+\) m/z 455.1601
(Calculated: [1 + H]\(^+\) m/z 455.1605)
Fig. S4 (a) Time-dependent change in fluorescence spectra of 1 (10 μM), measured with 40 μM of CN\(^{-}\) in a buffered water/MeCN mixture (1/1 v/v; HEPES 0.1 M, pH 7.0) at 25°C. (b) Change in the ratio of fluorescence intensity (Fl\(_{444}/\text{Fl}_{533}\)), where Fl\(_{444}\) is the intensity at \(\lambda_{\text{em}} = 444\) nm and Fl\(_{533}\) is the intensity at \(\lambda_{\text{em}} = 533\) nm, respectively. (c) Pseudo-first-order kinetic plot of the normalized fluorescence increase of 1 (10 μM) with 40 μM of CN\(^{-}\).
Fig. S5 pH-Dependent change in the fluorescence intensity at 444 nm and 533 nm of 1 (10 μM) measured in water/MeCN mixtures (1/1 v/v) at 25 °C with different pH (a) without and (b) with 200 equiv of CN⁻. (c) Change in the ratio of the fluorescence intensity (FI444/FI533) of 1 (10 μM) measured in water/MeCN mixtures (1/1 v/v) with different pH at 25 °C, (white) without and (black) with CN⁻.
Fig. S6 1H-1H COSY chart of 1 (30 mM, DMSO–d$_6$, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.
Fig. S7 ¹H-¹H COSY chart of 1:1 association species for 1 and CN⁻ (30 mM, DMSO-d₆, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.
Fig. S8
FAB–MS chart of 1:1 association species for I and CN-

[1' + HCN]– m/z 481.1638
(Calculated: [1' + HCN]– m/z 481.1638)
Fig. S9 Change in the absorption spectra of **1** (10 μM) in a buffered water/MeCN mixture (1/1 v/v; HEPES 0.1 M, pH 7.0) at 25°C.

Fig. S10 Viability of HeLa cells determined before and after 20 min incubation with DMF containing **1** (100 μM) at 37°C.
Cartesian Coordinates (in Å) of I’ (DFT/B3LYP/6-31+G*)

Atom	C	C	C	C	C	C	C	C	C	C	C	C
	3.097334	2.92449	-0.88103	1.772245	3.3787	-0.99741	0.721157	2.601123	-0.53239	0.963309	1.341692	0.06247
	0.958726	-0.82762	0.985532	4.98023	0.015239	0.485087	4.769491	1.2432	-0.15856	5.27005	1.89259	-0.58616
	4.264314	-1.89689	1.519495	-1.39494	1.001802	0.388567	-2.40941	0.210392	0.185319	-3.78506	0.612631	0.152331
	-4.21684	2.01629	0.3249	-5.65807	2.255645	0.218509	-6.55799	1.257958	-0.00461	-6.15235	-0.10798	0.16271
	-4.77186	-0.37902	-0.08078	-7.05358	-1.19378	-0.39549	-6.56864	-2.47192	-0.53521	-5.16521	-2.76508	-0.45407
	-4.32796	-1.66804	-0.22366	-8.54017	-0.94394	-0.48917	-5.63299	1.50520	0.09538	5.16521	2.76508	0.45407

S12/S13
Cartesian Coordinates (in Å) of [1′−HCN]$^-$ (DFT/B3LYP/6–31+G*)

C	3.208333	2.962385	-0.46945	O	-2.88919	2.761697	0.332131															
C	1.877622	3.404258	-0.52087	H	4.031708	3.622184	-0.72497															
C	0.840279	2.542783	-0.19196	H	1.654728	4.424806	-0.81987															
C	1.094	1.208945	0.20369	H	-0.17825	2.916087	-0.24501															
C	2.450855	0.758399	0.256073	H	-0.38903	-1.72934	1.238273															
C	3.495509	1.658612	-0.08677	H	1.95852	-2.44742	1.280952															
C	0.02828	0.280532	0.552424	H	-2.31684	-1.11494	0.483674															
C	0.381245	-1.02604	0.943233	H	-5.1703	3.464648	-0.68409															
C	1.712684	-1.43409	0.977378	H	-6.9812	1.919768	-1.33534															
C	2.757831	-0.57356	0.642116	H	-7.40572	-2.94597	-1.16691															
C	4.140175	-1.04239	0.695939	H	-8.77565	0.263585	-1.0282															
N	5.145974	-0.10123	0.362076	H	-8.07767	0.139346	-2.64485															
C	4.907242	1.21546	-0.0427	H	-8.87516	-1.26959	-1.91682															
O	5.846107	1.956792	-0.34313	H	-1.5189	1.691219	0.383982															
O	4.467222	-2.18904	1.010999	C	-2.56786	-0.16547	2.325124															
N	-1.25715	0.694915	0.465742	N	-2.67195	-0.23624	3.48062															
C	-2.42784	-0.08533	0.83878	C	6.545761	-0.55053	0.427047															
C	-3.68263	0.507245	0.205779	H	6.598427	-1.30861	1.210652															
C	-3.81492	1.936587	0.022947	H	7.146299	0.315799	0.712642															
C	-5.06108	2.391696	-0.55058	C	7.046972	-1.12789	-0.90277															
C	-6.06183	1.523686	-0.91023	H	6.410147	-1.97684	-1.18415															
C	-5.92959	0.117825	-0.74676	H	6.942845	-0.36455	-1.685															
C	-4.71421	-0.34311	-0.17997	C	8.50941	-1.58438	-0.81908															
C	-6.92132	-0.84953	-1.1052	H	9.139157	-0.73384	-0.51891															
C	-6.6778	-2.18602	-0.90379	H	8.61013	-2.33889	-0.0251															
C	-5.44607	-2.66722	-0.33623	C	9.03303	-2.16291	-2.13941															
O	-4.5118	-1.68882	0.017777	H	10.07972	-2.48098	-2.05151															
C	-8.23408	-0.40802	-1.70646	H	8.443457	-3.03528	-2.44975															
O	-5.13239	-3.82868	-0.13186	H	8.975768	-1.42051	-2.94605															