On Menelaus’ and Ceva’s theorems in Nil geometry *

Jenő Szirmai
Budapest University of Technology and Economics Institute of Mathematics,
Department of Geometry
Budapest, P. O. Box: 91, H-1521
szirmai@math.bme.hu

October 19, 2021

Abstract

In this paper we deal with Nil geometry, which is one of the homogeneous Thurston 3-geometries. We define the “surface of a geodesic triangle” using generalized Apollonius surfaces. Moreover, we show that the “lines” on the surface of a geodesic triangle can be defined by the famous Menelaus’ condition and prove that Ceva’s theorem for geodesic triangles is true in Nil space. In our work we will use the projective model of Nil geometry described by E. Molnár in [6].

1 Introduction

In this article, I deal with the generalization and extension of classical Euclidean concepts and theorems to Thurston geometries. It is very interesting to find theorems that are true in a form in all Thurston geometries.

*Mathematics Subject Classification 2010: 53A20, 53A35, 52C35, 53B20.
Key words and phrases: Thurston geometries, Nil geometry, geodesic triangles, Menelaus’ and Ceva’s theorems
In our previous paper [17], we generalized the Menelaus’ and Ceva’s theorems in $S^2 \times \mathbb{R}$ and $H^2 \times \mathbb{R}$ spaces and now we proceed to examine these theorems in Nil geometry using the notion of the generalized Apollonius surfaces.

The classical definition of the Apollonius circle in the Euclidean plane E^2 is the set of all points of E^2 whose distances from two fixed points are in a constant ratio $\lambda \in \mathbb{R}^+$. This definition can be extended in a natural way to the Thurston geometries

$$E^3, S^3, H^3, S^2 \times \mathbb{R}, H^2 \times \mathbb{R}, \text{Nil}, \widetilde{\text{SL}}_2 \mathbb{R}, \text{Sol}.$$

Definition 1.1 The Apollonius surface in the Thurston geometry $X \in \{E^3, S^3, H^3, S^2 \times \mathbb{R}, H^2 \times \mathbb{R}, \text{Nil}, \widetilde{\text{SL}}_2 \mathbb{R}, \text{Sol}\}$ is the set of all points of X whose geodesic distances from two fixed points are in a constant ratio $\lambda \in \mathbb{R}^+$.

Remark 1.2 A special case of Apollonius surfaces is the geodesic-like bisector (or equidistant) surface ($\lambda = 1$) of two arbitrary points of X. These surfaces have an important role in structure of Dirichlet-Voronoi (briefly, D-V) cells and so in the packing and covering problems. In [11], [12], [13] we studied the geodesic-like equidistant surfaces in $S^2 \times \mathbb{R}, H^2 \times \mathbb{R}$ and Nil geometries, and in [23], [26] the translation-like equidistant surfaces in Sol and Nil geometries.

In the present paper, we are interested in geodesic triangles and their surfaces, generalized Menelaus’ and Ceva’s theorems in Nil space [16, 25].

In Section 2 we describe the projective model and the isometry group of the considered geometry, moreover, we give an overview about its geodesic curves.

In Section 3 we define the surfaces of geodesic triangles and their lines, furthermore we examine whether the theorems of Menelaus’ and Ceva’s are true in Nil space. We prove that the Menelaus’ theorem does not follow from the structure of Nil geometry, but plays an important role in defining the surface line, and we show that the Ceva’s theorem is true for geodesic triangles in Nil space.

The computation and the proof is based on the projective model of Nil geometry described by E. Molnár in [6].

2 Projective model of Nil geometry

E. Molnár has shown in [6], that the homogeneous 3-spaces have a unified interpretation in the projective 3-sphere $PS^3(V^4, V_4, \mathbb{R})$. In our work we shall
On Menelaus’ and Ceva’s theorems in Nil geometry

use this projective model of Nil geometry. The Cartesian homogeneous coordinate simplex is given by $E_0(e_0), E_{1}^\infty(e_1), E_{2}^\infty(e_2), E_{3}^\infty(e_3)$, \(\{e_i\} \subset V^4\) and with the unit point $E(e = e_0 + e_1 + e_2 + e_3)$. Moreover, $y = cx$ with $0 < c \in \mathbb{R}$ (or $c \in \mathbb{R} \setminus \{0\}$) defines a point $(x) = (y)$ of the projective 3-sphere P^S_3 (or that of the projective space P^3 where opposite rays (x) and $(-x)$ are identified). The dual system \(\{(e^i)\} \subset V^4\) describes the simplex planes, especially the plane at infinity $(e^0) = E_{1}^\infty E_{2}^\infty E_{3}^\infty$, and generally, $v = u^\perp_c$ defines a plane $(u) = (v)$ of $P S^3$ (or that of P^3). Thus $0 = x u = y v$ defines the incidence of point $(x) = (y)$ and plane $(u) = (v)$, as $(x) 1(u)$ also denote it. Thus, Nil can be visualized in the affine 3-space A^3 (so in E^3) as well.

2.1 Geodesic curves and spheres in Nil space

In this section we recall the important notions and results from the papers [6], [11], [18], [21], [24].

Nil geometry is a homogeneous 3-space derived from the famous real matrix group $L(\mathbb{R})$, used by W. Heisenberg in his electro-magnetic studies. The Lie theory with the method of projective geometry makes possible to describe this topic.

The left (row-column) multiplication of Heisenberg matrices

\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & a + x & c + xb + z \\
0 & 1 & b + y \\
0 & 0 & 1 \\
\end{pmatrix}
\] \quad (2.1)

defines ”translations” $L(\mathbb{R}) = \{(x, y, z) : x, y, z \in \mathbb{R}\}$ on the points of $\text{Nil} = \{(a, b, c) : a, b, c \in \mathbb{R}\}$. These translations are not commutative, in general. The matrices $K(z) \triangleleft L$ of the form

\[
K(z) \equiv
\begin{pmatrix}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\Rightarrow (0, 0, z)
\] \quad (2.2)

constitute the one parametric centre, i.e., each of its elements commutes with all elements of L. The elements of K are called fibre translations. Nil geometry of the Heisenberg group can be projectively (affinely) interpreted by the “right
translations” on points as the matrix formula

\[
(1; a, b, c) \rightarrow (1; a, b, c) \begin{pmatrix} 1 & x & y & z \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & x \\ 0 & 0 & 0 & 1 \end{pmatrix} = (1; x + a, y + b, z + bx + c)
\] (2.3)

shows, according to (2.1). Here we consider \(L \) as projective collineation group with right actions in homogeneous coordinates.

In this context E. Molnár [6] has derived the well-known infinitesimal arc-length-square, invariant under translations \(L \) at any point of \(\text{Nil} \) as follows

\[
(dx)^2 + (dy)^2 + (-xdy + dz)^2 = (dx)^2 + (1 + x^2)(dy)^2 - 2x(dy)(dz) + (dz)^2 =: (ds)^2
\] (2.4)

Hence we get the symmetric metric tensor field \(g \) on \(\text{Nil} \) by components \(g_{ij} \), furthermore, its inverse:

\[
g_{ij} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + x^2 & -x \\ 0 & -x & 1 \end{pmatrix}, \quad g^{ij} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & x \\ 0 & x & 1 + x^2 \end{pmatrix}
\] (2.5)

with \(\det(g_{ij}) = 1 \).

The translation group \(L \) defined by formula (2.3) can be extended to a larger group \(G \) of collineations, preserving the fibering, that will be equivalent to the (orientation preserving) isometry group of \(\text{Nil} \). In [8] E. Molnár has shown that a rotation trough angle \(\omega \) about the \(z \)-axis at the origin, as isometry of \(\text{Nil} \), keeping invariant the Riemann metric everywhere, will be a quadratic mapping in \(x, y \) to \(z \)-image \(\overline{z} \) as follows:

\[
\mathbf{r}(O, \omega) : (1; x, y, z) \rightarrow (1; \overline{x}, \overline{y}, \overline{z}); \\
\overline{x} = x \cos \omega - y \sin \omega, \quad \overline{y} = x \sin \omega + y \cos \omega, \\
\overline{z} = z - \frac{1}{2}xy + \frac{1}{4}(x^2 - y^2) \sin 2\omega + \frac{1}{2}xy \cos 2\omega.
\] (2.6)
This rotation formula, however, is conjugate by the quadratic mapping

\[M : x \rightarrow x', \ y \rightarrow y', \ z \rightarrow z' = z - \frac{1}{2}xy \]

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \omega & \sin \omega & 0 \\
0 & -\sin \omega & \cos \omega & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[(1; x', y', z') \rightarrow (1; x'', y'', z'') = (1; x'''', y'''', z''''), \quad (2.7) \]

with \(x''' \rightarrow x'''', \ y''' \rightarrow y'''', \ z''' \rightarrow z''' + \frac{1}{2}x''''y'''' \),

i.e. to the linear rotation formula. This quadratic conjugacy modifies the Nil translations in (2.3), as well. This can also be characterized by the following important classification theorem.

Theorem 2.1 (E. Molnár [8] modified)

1. Any group of Nil isometries, containing a 3-dimensional translation lattice, is conjugate by the quadratic mapping in (2.5) to an affine group of the affine (or Euclidean) space \(\mathbb{A}^3 = \mathbb{E}^3 \) whose projection onto the (x,y) plane is an isometry group of \(\mathbb{E}^2 \). Such an affine group preserves a plane → point null-polarity.

2. Of course, the involutive line reflection about the y axis

\((1; x, y, z) \rightarrow (1; -x, y, -z) \),

preserving the Riemann metric, and its conjugates by the above isometries in 1 (those of the identity component) are also Nil-isometries. There does not exist orientation reversing Nil-isometry.

Remark 2.2 We obtain a new projective model of Nil geometry from the above projective model, derived by the above quadratic mapping \(M \). This is the linearized model of Nil space (see [8]) that seems to be more advantageous to the future investigations. But we remain in the classical so called Heisenberg model in this paper.

2.2 Geodesic curves and spheres

The geodesic curves of the Nil geometry are generally defined as having locally minimal arc length between their any two (near enough) points. The equation systems of the parametrized geodesic curves \(g(x(t), y(t), z(t)) \) in our model (now
by (2.4)) can be determined by the Levy-Civita theory of Riemann geometry. We can assume, that the starting point of a geodesic curve is the origin because we can transform a curve into an arbitrary starting point by translation (2.1);

\[
\begin{align*}
 x(0) &= y(0) = z(0) = 0; \\
 \dot{x}(0) &= c \cos \alpha, \\
 \dot{y}(0) &= c \sin \alpha, \\
 \dot{z}(0) &= w; \\
 -\pi &\leq \alpha \leq \pi.
\end{align*}
\]

The arc length parameter \(s \) is introduced by

\[
s = \sqrt{c^2 + w^2 \cdot t}, \quad \text{where} \quad w = \sin \theta, \quad c = \cos \theta, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},
\]

i.e. unit velocity can be assumed. The equation systems of a helix-like geodesic curves \(g(x(t), y(t), z(t)) \) if \(0 < |w| < 1 \):

\[
\begin{align*}
 x(t) &= \frac{2c}{w} \sin \frac{wt}{2} \cos \left(\frac{wt}{2} + \alpha\right), \\
 y(t) &= \frac{2c}{w} \sin \frac{wt}{2} \sin \left(\frac{wt}{2} + \alpha\right), \\
 z(t) &= wt \cdot \left\{1 + \frac{c^2}{2w^2} \left[\left(1 - \frac{\sin(2wt + 2\alpha) - \sin 2\alpha}{2wt}\right) + \right.
ight. \\
 &\quad + \left.\left(1 - \frac{\sin(2wt)}{wt}\right) - \left(1 - \frac{\sin(2wt + 2\alpha) - \sin 2\alpha}{2wt}\right)\right]\right\} = \\
 &= \frac{2c^2}{2w^2} \left[\left(1 - \frac{\sin(wt)}{wt}\right) + \left(1 - \frac{\cos(2wt)}{wt} \right) \sin(wt + 2\alpha)\right].
\end{align*}
\]

In the cases \(w = 0 \) the geodesic curve is the following:

\[
\begin{align*}
 x(t) &= c \cdot t \cos \alpha, \quad y(t) = c \cdot t \sin \alpha, \quad z(t) &= \frac{1}{2} c^2 \cdot t^2 \cos \alpha \sin \alpha. \quad (2.9)
\end{align*}
\]

The cases \(|w| = 1 \) are trivial: \((x, y) = (0, 0), \quad z = w \cdot t. \)

Definition 2.3 The distance \(d(P_1, P_2) \) between the points \(P_1 \) and \(P_2 \) is defined by the arc length of geodesic curve from \(P_1 \) to \(P_2 \).

Definition 2.4 The geodesic sphere of radius \(R \) with centre at the point \(P_1 \) is defined as the set of all points \(P_2 \) in the space with the condition \(d(P_1, P_2) = R \). Moreover, we require that the geodesic sphere is a simply connected surface without selfintersection in the Nil space.

Remark 2.5 We shall see that this last condition depends on radius \(R \).
Definition 2.6 The body of the geodesic sphere of centre P_1 and of radius R in the Nil space is called geodesic ball, denoted by $B_{P_1}(R)$, i.e., $Q \in B_{P_1}(R)$ iff $0 \leq d(P_1, Q) \leq R$.

We proved in [19, 21] the following important theorems:

Theorem 2.7 ([21]) The geodesic sphere and ball of radius R exists in the Nil space if and only if $R \in [0, 2\pi]$.

Theorem 2.8 ([19]) The geodesic Nil ball $B(S(R))$ is convex in affine-Euclidean sense in our model if and only if $R \in [0, \frac{\pi}{2}]$.

2.3 Some properties of geodesic curves and spheres

In the following, we determine some important properties of geodesic curves and spheres, which we will use in the following sections.

1. Consider points $P(x(t), y(t), z(t))$ lying on a sphere S of radius R centred at the origin. The coordinates of P are given by parameters $(\alpha \in [-\pi, \pi), \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}], R > 0)$ (see (2.8), (2.9)).

We obtain directly from the equations (2.8) and (2.9) the following

Lemma 2.9 (a)

\[x(t)^2 + y(t)^2 = \frac{4c^2}{w^2} \sin^2 \frac{wt}{2}, \]

that means, that if $\theta \neq \pm \frac{\pi}{2}$ and $t = R$ is given and $\alpha \in [-\pi, \pi)$ then the endpoints P of the geodesic curves lie on a cylinder of radius $r = \left| \frac{4c}{w} \sin \frac{wR}{2} \right|$ with axis z. Therefore, we obtain the following connection between parameters θ and R:

\[R = 2 \cdot \arcsin \left[\frac{\sqrt{x^2(R) + y^2(R)}}{2 \cdot \cot \theta} \right] \frac{1}{\sin \theta} \] \hspace{1cm} (2.10)

(b) If $\theta = \pm \frac{\pi}{2}$ then the endpoints $P(x(R), y(R), z(R))$ of the geodesics $g(x(t), y(t), z(t))$ lie on the z-axis thus their orthogonal projections onto the $[x, y]$-plane is the origin and $x(R) = y(R) = 0, z(R) = d(O, R) = R$.

Moreover, the cross section of the spheres S with the plane $[x, z]$ is given by the following system of equation:

$$X(R, \theta) = \frac{2c}{w} \sin \frac{wR}{2} = 2 \cos \frac{\theta}{\sin \theta} \sin \frac{R \sin \theta}{2},$$
$$Z(R, \theta) = wR + \frac{c^2 R}{2w} - \frac{c^2}{2w^2} \sin wR = R \sin \frac{\theta}{\sin \theta} + R \cos \frac{\theta}{\sin \theta} \sin \left(R \sin \theta, \; \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}\right);$$

if $\theta = 0$ then $X(R, 0) = R, \; Z(R, 0) = 0.$

(2.11)

Remark 2.10 The parametric equations of the geodesic sphere of radius R can be generated from (2.1) by Nil rotation (see (2.6)).

2. We introduce the usual notion of the fibre projection P that is a projection parallel to fibre lines (parallel to z-axis), onto the $[x, y]$ plane. The image of a point P is the intersection with the $[x, y]$ base plane of the line parallel to fibre line passing through $P,$ $\mathcal{P}(P) = P^*.$

Analysed the parametric equations of the geodesic curves $g(x(t), y(t), z(t))$ with starting points at the origin we get the following

Lemma 2.11 If $0 < |w| < 1$ for geodesic curve $g(x(t), y(t), z(t))$ ($t \in [0, R]$) then the fibre projection \mathcal{P} of the geodesic curves onto the $[x, y]$ plane is an Euclidean circle arc where it is contained by a circle with equation

$$\left(\frac{x(t) + \frac{c}{w} \sin \alpha}{\frac{2}{2\sin \theta}}\right)^2 + \left(\frac{y(t) - \frac{c}{w} \cos \alpha}{\frac{2}{2\sin \theta}}\right)^2 = \left(\frac{c}{w}\right)^2 = \cot^2 \theta. \quad (2.12)$$

If $w = 0$ then fibre projection \mathcal{P} of the geodesic curves $g(x(t), y(t), z(t))$ ($t \in [0, R]$) onto the $[x, y]$ plane is a segment with starting point at the origin where it is contained by the straight line with equation

$$y = \tan \alpha \cdot x. \quad (2.13)$$

If $w = 1$ then the fibre projection \mathcal{P} of the geodetic curves $g(x(t), y(t), z(t))$ ($t \in [0, R]$) onto the $[x, y]$ plane is the origin.

We get directly from the equation (2.12) the following
Corollary 2.12
(a) If we know the equation of the circle that contains the orthogonal projected image OP^* of a geodesic curve segment $g_{OP} = g(x(t), y(t), z(t)) (t \in [0, R])$ onto the $[x, y]$ plane where $0 < |w| < 1$ is a known real number and the coordinates of $P^* = (x(R), y(R), 0)$ then the parametric equation of the geodesic curve segment g_{OP} is uniquely determined. That means that there is one-to-one correspondence between the circle arcs OP^* and the geodesic curve segments OP by the above sense.

(b) If $w = 0$ then the fibre projection \mathcal{P} of the geodetic curves is a segment with starting point at the origin where it is contained by the straight line $y = \tan \alpha \cdot x$, therefore in this situation it is one-to-one correspondence between the projected image OP^* and the geodesic curve segments OP, too.

(c) If $w = 1$ then the fibre projection \mathcal{P} of the geodetic curves is the origin so here it is also a one-to-one correspondence between the projected image and the above geodesic curves.

3 Geodesic triangles and their surfaces

We consider 3 points A_0, A_1, A_2 in the Heisenberg model of Nil space (see Section 2). The geodesic segments a_k between the points A_i and $A_j (i < j, i, j, k \in \{0, 1, 2\}, k \neq i, j)$ are called sides of the geodesic triangle with vertices A_0, A_1, A_2. It can be assumed by the homogeneity of the Nil geometry that $A_0 = (1, 0, 0, 0)$. However, defining the surface of a geodesic triangle in Nil space is not straightforward. The usual geodesic triangle surface definition is not possible because the geodesic curves starting from different vertices and ending at points of the corresponding opposite edges define different surfaces, i.e. geodesics starting from different vertices and ending at points on the corresponding opposite side usually do not intersect (see Fig. 2). We use for the definition of surfaces of geodesic triangles similarly to the $S^3 \times \mathbb{R}$ and $H^2 \times \mathbb{R}$ spaces (see [17]) the generalization of the Apollonius surfaces.

The extension of the classical definition of the Apollonius circle of the Euclidean plane E^2 to Thurston geometries is the following

Definition 3.1 The Apollonius surface $\mathcal{A}\mathcal{S}_{P_1 P_2}^X(\lambda)$ in the Thurston geometry X is the set of all points of X whose geodesic distances from two fixed points are in a constant ratio $\lambda \in \mathbb{R}^+_0$ where $X \in \{E^3, S^3, H^3, S^2 \times \mathbb{R}, H^2 \times \mathbb{R}, \text{Nil}, \widetilde{\text{SL}_2} \mathbb{R}, \text{Sol}\}$.
Figure 1: Two different views of geodesic triangle with vertices \(A_1 = (1, 0, 0, 0), \ A_2 = (1, 1/2, -1, 1), \ A_3 = (1, 1/3, 2, 1). \)

\[\text{i.e. } AS^{X}_{P_1P_2}(\lambda) \text{ of two arbitrary points } P_1, P_2 \in X \text{ consists of all points } P' \in X, \text{ for which } d^{X}(P_1, P') = \lambda \cdot d^{X}(P', P_2) (\lambda \in [0, \infty) \text{ where } d^{X} \text{ is the corresponding distance function of } X. \text{ If } \lambda = 0, \text{ then } AS^{X}_{P_1P_2}(0) := P_1 \text{ and it is clear, that in case } \lambda \to \infty \text{ then } d(P', P_2) \to 0 \text{ therefore we say } AS^{X}_{P_1P_2}(\infty) := P_2. \]

We introduce a new definition of the surface \(S_{A_0A_1A_2} \) of the geodesic triangle by the following steps:

Definition 3.2

1. We consider the geodesic triangle \(A_0A_1A_2 \) in the projective model of Nil space and consider the Apollonius surfaces \(AS_{A_0A_1}(\lambda_1) \) and \(AS_{A_2A_0}(\lambda_2) (\lambda_1, \lambda_2 \in [0, \infty), \lambda_1^2 + \lambda_2^2 > 0). \) It is clear, that if \(Y \in C(\lambda_1, \lambda_2) := AS_{A_0A_1}(\lambda_1) \cap AS_{A_2A_0}(\lambda_2) \text{ then } \frac{d(A_0,Y)}{d(Y,A_1)} = \lambda_1 \text{ and } \frac{d(A_2,Y)}{d(Y,A_0)} = \lambda_2 \Rightarrow \frac{d(A_2,Y)}{d^{X}(Y,A_1)} = \lambda_1 \cdot \lambda_2 \text{ for parameters } \lambda_1, \lambda_2 \in (0, \infty) \text{ and if } \lambda_1 = 0 \text{ then } C(\lambda_1, \lambda_2) = A_0, \text{ if } \lambda_2 = 0 \text{ then } C(\lambda_1, \lambda_2) = A_2.

2. \(P(\lambda_1, \lambda_2) := \{ P \in \text{Nil} \mid P \in C(\lambda_1, \lambda_2) \text{ and } d(P, A_0) = \min_{Q \in C(\lambda_1, \lambda_2)} (d(Q, A_0)) \text{ with given real parameters } \lambda_1, \lambda_2 \in [0, \infty), \lambda_1^2 + \lambda_2^2 > 0 \} \)
On Menelaus’ and Ceva’s theorems in Nil geometry

3. The surface $S_{A_0 A_1 A_2}$ of the geodesic triangle $A_0 A_1 A_2$ is

$$S_{A_0 A_1 A_2} := \{ P(\lambda_1, \lambda_2) \in \text{Nil}, \text{ where } \lambda_1, \lambda_2 \in [0, \infty), \lambda_1^2 + \lambda_2^2 > 0 \}. \quad (3.11)$$

We introduce the following notations:

1. If the vertices of the geodesic triangle are contained by a Euclidean plane parallel to fibre lines (parallel to the z axis) then the triangle is called fibre type triangle.

2. In other cases the triangle is in general type.
4 On Menelaus’ and Ceva’s theorems in Nil space

First we recall the usual definition of simply ratios in Euclidean plane E^2 plane.

Definition 4.1 If A, B and P are distinct points on a line in the Euclidean plane E^2, then their simply ratio is $s^E(A, P, B) = d^E(A, P)/d^E(P, B)$, if P is between A and B, and $s^E(A, P, B) = -d^E(A, P)/d^E(P, B)$, otherwise where d^E denotes the Euclidean distance function.

Note that the value of $s^E(A, P, B)$ determines the position of P relative to A and B.

Theorem 4.2 (Menelaus’ theorem for triangles in E^2 plane) If is a line not through any vertex of a triangle ABC such that l meets BC in Q, AC in R, and AB in P, then

$$s^E(A, P, B)s^E(B, Q, C)s^E(C, R, A) = -1.$$ □

Theorem 4.3 (Ceva’s theorem for triangles in E^2 plane) If T is a point not on any side of a triangle ABC such that AT and BC meet in Q, BT and AC in R, and CT and AB in P, then

$$s^E(A, P, B)s^E(B, Q, C)s^E(C, R, A) = 1.$$ □

Remark 4.4 The converses of Menelaus’ and Ceva’s theorems are also true.

4.1 How to define the notion of lines on the surfaces of geodesic triangles?

If we want to discuss on Menelaus’ and Ceva’s theorems, we must first clarify what we consider to be a line on the surface of a geodesic triangle and what is the definition of the simple ratio.

Let $S_{A_0A_1A_2}$ be the surface of the geodesic triangle $A_0A_1A_2$ and $P_1, P_2 \in S_{A_0A_1A_2}$ two given points. Natural requirements for a line through points P_1 and P_2 lying on $S_{A_0A_1A_2}$:

1. Two surface points uniquely determine one line (connecting curve) $G_{P_1P_2}^{S_{A_0A_1A_2}}$.

2. Any two points on a surface line $G_{P_1P_2}^{S_{A_0A_1A_2}}$ define the same one.
3. The surface *line* determined by two points of a geodesic curve lying on the surface $S_{A_0A_1A_2}$ coincide with the geodesic curve.

Remark 4.5 An obvious option for definition of a line (connecting curve) $g_{P_1P_2}^{S_{A_0A_1A_2}}$ would be the fibre projection of the geodesic curve $g_{P_1P_2}$ into the surface $S_{A_0A_1A_2}$ but it is clear, that this definition does not satisfy the requirement 2.

We consider a *geodesic triangle* $A_0A_1A_2$ in the projective model of Nil space (see Section 3). Without limiting generality, we can assume that $A_0 = (1, 0, 0, 0)$. The geodesic lines that contain the sides A_0A_1 and A_0A_2 of the given triangle can be characterized directly by the corresponding parameters θ_i and α_i ($i = 1, 2$) (see (2.8) and (2.9)). The geodesic curve including the side segment A_1A_2 is also determined by one of its endpoints and its parameters. In order to determine the corresponding parameters of this geodesic line we use e.g. a Nil translation $T(A_1)$, as elements of the isometry group of Nil geometry, that maps the $A_1 = (1, x_1, y_1, z_1)$ onto $A_0 = (1, 0, 0, 0)$ (up to a positive determinant factor).

Remark 4.6 Because of the results of Theorem 2.4, we assume, that the surface $S_{A_0A_1A_2}$ of the geodesic triangle $A_0A_1A_2$ is contained in a geodesic Nil sphere of radius π.

First we generalize the notion of simple ratio to the point triples lying on geodesic lines of the Nil space:

Definition 4.7 If A, B and P be distinct points on a geodesic curve in the Nil space then their simply ratio is

$$s^N(A, P, B) = \frac{d(A, P)}{d(P, B)},$$

if P is between A and B, and

$$s^N(A, P, B) = -\frac{d(A, P)}{d(P, B)},$$

otherwise, where d is the distance function of Nil geometry.

Let A, B and P be distinct points on a non-fibrum-like geodetic curve in the Nil and let A^*, B^* and P^* their projected images by \mathcal{P}. The geodesic curve segment g_{AB} also determined by parameters (t, θ, α) (see (2.8), (2.9)) and the parameters of geodesic curve segment g_{AP} are $(t_p, \theta_p = \theta, \alpha_p = \alpha)$. Their images A^*P^* and A^*B^* by fibre projection are circle arcs or/and line segments that are determined by parameters $(t_p \cdot \cos \theta, \theta, \alpha)$ and $(t \cdot \cos \theta, \theta, \alpha)$ (see Lemma 2.6, Lemma 2.8 and Corollary 2.9).
Lemma 4.8 The Euclidean length $C(A^*, P^*)$ of circle arc or line segment A^*P^* satisfy the following equations

$$C(A^*, P^*) = d(A, P) \cdot \cos \theta, \quad C(P^*, B^*) = d(P, B) \cdot \cos \theta. \quad (4.1)$$

Therefore, the projection P preserves the ratio of lengths by the above sense.

Definition 4.9 Let $S_{A_0A_1A_2}$ be the surface of the geodesic triangle $A_0A_1A_2$ and $P_1, P_2 \in S_{A_0A_1A_2}$ two given point.

1. If the points P_1 and P_2 lie on a fibre line then the connecting curve $G_{P_1P_2}^{S_{A_0A_1A_2}} \subset S_{A_0A_1A_2}$ is coincides with the P_1P_2 segment on the fibre line.

2. In other cases the line (connecting curve) $G_{P_1P_2}^{S_{A_0A_1A_2}}$ is the image g' of a geodesic curve g into the surface $S_{A_0A_1A_2}$ by fibre projection. g' is given by the following requirements:

 a. First we assume that the point P_1 is inner point of the geodesic segment A_iA_j and P_2 is inner point of the geodesic segment A_iA_k ($i, j, k \in \{0, 1, 2\}$, $i \neq j, k, j \neq k$). Furthermore, we assume that there can be no midpoints at the same time. In this case their connecting line $G_{P_1P_2}^{S_{A_0A_1A_2}}$ is the fibre projected image g' of the geodesic curve g into the surface $S_{A_0A_1A_2}$ where g is determined by the points $P_1^* = P(P_1), P_2^* = P(P_2)$ and $P_3^* \in \mathcal{P}(g_{A_jA_k})$. P_3^* is given by the generalized simple ratio (see Lemma 2.11 and Corollary 2.12). This is hereinafter referred to as the Menelaus’ condition:

$$s^N(A_j, P_3, A_k) = \frac{d(A_j, P_3)}{d(P_3, A_k)} = \frac{-1}{s^N(A_j, P_1, A_i) \cdot s^N(A_i, P_2, A_k)}. \quad (4.2)$$

(P_3 does not lie between the two points A_j and A_k). The points P_1^*, P_2^*, P_3^* determine a circle or a straight line in the $[x, y]$ base plane and so the corresponding surface F_g (cylinder or a plane) of which surface contains the geodesic curve g, g' is $S_{A_0A_1A_2} \cap F_g$.

Remark 4.10 In the previous point in formula (4.2), we chose the traditional constant -1 for the Menelaus’ condition, but here another negative real number may be a suitable choice, within certain limits.

b. If P_1 and P_2 are the midpoints of the geodesic segments $g_{A_iA_j}$ and $g_{A_jA_k}$, respectively then their connecting line $G_{P_1P_2}^{S_{A_0A_1A_2}}$ is the fibre projected image g' of the geodesic curve g into the surface $S_{A_0A_1A_2}$ where the θ_g parameter of the geodesic line g is equal to the $\theta_{g_{A_jA_k}}$ parameter of the geodesic line $g_{A_jA_k}$.
c. In that case if \(P_1 \) or \(P_2 \) or both points are inner points of the surface \(S_{A_0A_1A_2} \) then their connecting line is derived similarly to 2.a. configuration.

d. If \(P_1 \) or \(P_2 \) coincides with a vertex of the geodesic triangle \(A_0A_1A_2 \), e.g. \(P_1 = A_i \) and \(P_2 \) is an inner point of the geodesic triangle \(A_0A_1A_2 \) or lies on the geodesic line \(g_{A_iA_k} \) then the line (connecting curve) \(\mathcal{G}_{P_1P_2}^{S_{A_0A_1A_2}} \) is the image \(g' \) of a geodesic curve \(g \) into the surface \(S_{A_0A_1A_2} \) by fibre projection. \(g' \) is derived by the following steps:

(a) It is a natural requirement that the requirements described in 2.a.b.c be true for new sub-triangles formed by former geodesic sides and by new surface lines in the triangle (see Fig. 3). Let \(T \) be an inner point not on any side of the surface geodesic triangle \(A_0A_1A_2 \) \((T \in S_{A_0A_1A_2})\). The surface lines \(\mathcal{G}_{A_0T}^{S_{A_0A_1A_2}}, \mathcal{G}_{A_1T}^{S_{A_0A_1A_2}}, \mathcal{G}_{A_2T}^{S_{A_0A_1A_2}} \) have to satisfy, that there are uniquely common inner points with the opposite geodesic side segments. The curve \(\mathcal{G}_{A_0T}^{S_{A_0A_1A_2}} \) and \(g_{A_1A_2} \) meet in \(P_{12}, \mathcal{G}_{A_1T}^{S_{A_0A_1A_2}} \) and \(g_{A_0A_2} \) in \(P_{02} \) and \(\mathcal{G}_{A_2T}^{S_{A_0A_1A_2}} \) and \(g_{A_0A_1} \) in \(P_{12} \) lying on the geodesic segment \(g_{A_1A_2} \) and a point \(P_{02} \) on the geodesic segment \(g_{A_0A_2} \). Therefore, the location of the inner point \(T \) is uniquely determined by surface lines e.g. \(\delta_1 := s^N(A_1, P_{12}, A_2) = \frac{d(A_1, P_{12})}{d(P_{12}, A_2)} \) and
\[
\delta_2 = s^N(A_2, P_{02}, A_0) = \frac{d(A_2, P_{02})}{d(P_{02}, A_0)}
\]
where \(d \) is the distance function of Nil geometry.

(b) The projected images \(A_0^*P_{12}^*, A_1^*P_{02}^* \) and \(A_2^*P_{01}^* \) of the above curves \(\mathcal{G}_{A_0P_{12}}^{S_{A_0A_1A_2}}, \mathcal{G}_{A_1P_{02}}^{S_{A_0A_1A_2}}, \mathcal{G}_{A_2P_{01}}^{S_{A_0A_1A_2}} \) are circle arcs or line segments in the “base plane” of Nil, similarly to the projected images of the geodesic segments (sides of geodesic triangle \(A_0A_1A_2 \)) \(g_{A_0A_1}, g_{A_1A_2}, g_{A_2A_0} \). Moreover, \(T^* \) is the common point of circle arcs or line segments \(A_0^*P_{12}^*, A_1^*P_{02}^* \) and \(A_2^*P_{01}^* \). We note here, the simple ratio on a fibre projected surface line (connecting curve) \(g' = \mathcal{G}_{P_1P_2}^{S_{A_0A_1A_2}} \) of geodesic curve \(g \) is defined by the corresponding simple ratio determined on the geodesic curve \(g \).

Applying the Menelaus’ condition to the sub-triangles we obtain, that the Ceva’s theorem must be satisfied (see Theorem 4.11) i.e.
\[
s^N(A_1, P_{12}, A_2) \cdot s^N(A_2, P_{02}, A_0) \cdot s^N(A_0, P_{01}, A_1) = 1.
\]
Using the Lemma 4.8 follows that the corresponding Ceva’s theorem true for the projected configuration, too i.e. for the triangle $A_0^*A_1^*A_2^*$ and the points $T^*, P_{01}^*, P_{12}^*, P_{02}^*$ (see Theorem 4.12). Moreover, other consequence of the Menelaus’ condition and the Lemma 4.8 that the simple ratios of the (projected) circle arcs or/and line segments

$$s^c(A_0^*, T^*, P_{12}^*) := \frac{\widetilde{A_0^* T^*}}{T^* P_{12}^*}, \quad s^c(A_1^*, T^*, P_{02}^*) := \frac{\widetilde{A_1^* T^*}}{T^* P_{02}^*},$$

$$s^c(A_2^*, T^*, P_{01}^*) := \frac{\widetilde{A_2^* T^*}}{T^* P_{01}^*},$$

are also determined by the ratios δ_1 and δ_2.

(c) Therefore, location of the points $T^*, P_{01}^*, P_{12}^*, P_{02}^*$ uniquely determined thus the circle arcs or line segments $A_0^*T^* P_{12}^*, A_1^*T^* P_{02}^*, A_2^*T^* P_{01}^*$ and by the Lemma 4.8. the surface lines $G_{A_0 A_1 A_2}^{S_{A_0 A_1 A_2}}, G_{A_0 A_1 A_2}^{S_{A_0 A_1 A_2}}, G_{A_1 A_2}^{S_{A_0 A_1 A_2}}$ are given, respectively.

![Figure 3: Projected image of surface line (connecting curve) $G_{A_0 A_1 A_2}^{S_{A_0 A_1 A_2}}$ and the projected image of a Ceva’s configuration.](image)

Corollary 4.11 Based on all this, it can be seen that Menelaus’ theorem does not follow from the structure of Nil geometry. However, as can be seen above, the Menelaus’ condition plays an important role in defining lines on surfaces by geodesic lines given triangle.
Using the above Menelaus’ condition, similar to the Euclidean proof, we obtain the Nil Ceva’s theorem:

Theorem 4.12 If T is a point not on any side of a geodesic triangle $A_0A_1A_2$ in Nil space such that the curves $G^{S_{A_0A_1A_2}}_{A_0T}$ and $g_{A_1A_2}$ meet in P_{12}, $G^{S_{A_0A_1A_2}}_{A_2T}$ and $g_{A_0A_2}$ in P_{02}, and $G^{S_{A_0A_1A_2}}_{A_1T}$ and $g_{A_0A_1}$ in P_{01}, then

$$s^N(A_0, P_{01}, A_1)s^N(A_1, P_{12}, A_2)s^N(A_2, P_{02}, A_0) = 1.$$

□

Using the Lemma 4.8 follows that the corresponding Ceva’s theorem true for the projected configuration too i.e. for the triangle $A_0^*A_1^*A_2^*$ and the points T^*, P_{01}^*, P_{12}^*, P_{02}^*.

Theorem 4.13 If T^* is a point not on any side of circle arc triangle (the projected image of a geodesic triangle in general type) $A_0^*A_1^*A_2^*$ in the base plane of the Nil space such that the arcs (or line segments) $A_0^*T^*$ and $A_1^*A_2^*$ meet in P_{12}^*, $A_1^*T^*$ and $A_0^*A_2^*$ in P_{02}^*, and $A_2^*T^*$ and $A_0^*A_1^*$ in P_{01}^*, then

$$s^c(A_0^*, P_{01}^*, A_1^*)s^c(A_1^*, P_{12}^*, A_2^*)s^c(A_2^*, P_{02}^*, A_0^*) = 1.$$

□

Remark 4.14 Using the previous notions and theorems, similar to Euclidean concepts, we can define, for example, the circumscribed circle of a geodesic triangle and their centres, the centroid of a geodesic triangle as the point where the three medians of the triangle meet. (a median of a geodesic triangle $A_0A_1A_2$ in the Nil space is a surface line $S_{A_0A_1A_2}$) from one vertex to the mid point on the opposite side of the triangle). But we will examine these in a forthcoming paper.

Similar problems in other homogeneous Thurston geometries represent another huge class of open mathematical problems. For Sol, $\widetilde{\text{SL}_2\mathbb{R}}$ geometries only very few results are known [2], [7], [9], [18], [19], [22], [23], [24], [26]. Detailed studies are the objective of ongoing research.
References

[1] Cheeger, J. – Ebin, D.G., *Comparison Theorems in Riemannian Geometry*. American Mathematical Society, (2006).

[2] Csima, G., Szirmai, J. *Interior angle sum of translation and geodesic triangles in SL_2\mathbb{R} space*. Filomat, **32/14**, (2018) 5023–5036.

[3] Kobayashi, S. – Nomizu, K., *Fundation of differential geometry, I*. Interscience, Wiley, New York (1963).

[4] Kurusa, Á., Ceva’s and Menelaus’ theorems in projective-metric spaces. *J. Geom.*, **110/2**, DOI: 10.1007/s00022-019-0495-x (2019).

[5] Milnor, J., Curvatures of left Invariant metrics on Lie groups. *Advances in Math.*, **21**, 293–329 (1976).

[6] Molnár, E., The projective interpretation of the eight 3-dimensional homogeneous geometries. *Beitr. Algebra Geom.*, **38** No. 2, 261–288, (1997).

[7] Molnár, E. – Szirmai, J., Symmetries in the 8 homogeneous 3-geometries. *Symmetry Cult. Sci.*, **21/1-3**, 87-117 (2010).

[8] Molnár, E.: On projective models of Thurston geometries, some relevant notes on Nil orbifolds and manifolds. *Sib. Electron. Math. Izv.*, **7** (2010), 491–498, http://mi.mathnet.ru/semr267

[9] Molnár, E. – Szirmai, J., Classification of Sol lattices. *Geom. Dedicata*, **161/1**, 251-275 (2012).

[10] Molnár, E., Szirmai, J.: On Nil crystallography, *Symmetry Cult. Sci.*, **17/1-2** (2006), 55–74.

[11] Pallagi, J. – Schultz, B. – Szirmai, J., Visualization of geodesic curves, spheres and equidistant surfaces in $S^2 \times \mathbb{R}$ space. *KoG*, **14**, 35-40 (2010).

[12] Pallagi, J. – Schultz B. – Szirmai, J., Equidistant surfaces in Nil space, *Stud. Univ. Zilina, Math. Ser.*, **25**, 31–40 (2011).

[13] Pallagi, J. – Schultz, B. – Szirmai, J., Equidistant surfaces in $H^2 \times \mathbb{R}$ space. *KoG*, **15**, 3-6 (2011).
On Menelaus’ and Ceva’s theorems in Nil geometry

[14] Papadopoulos, A. – Su, W., On hyperbolic analogues of some classical theorems in spherical geometry. (2014), hal-01064449.

[15] Schultz, B., Szirmai, J.: On parallelohedra of Nil-space, Pollack Periodica, 7. Supplement 1 (2012): 129-136.

[16] Scott, P., The geometries of 3-manifolds. Bull. London Math. Soc. 15, 401–487 (1983).

[17] Szirmai, J., Apollonius surfaces, circumscribed spheres of tetrahedra, Menelaus’ and Ceva’s theorems in $S^2 \times \mathbb{R}$ and $H^2 \times \mathbb{R}$ geometries. Q. J. Math., to appear, (2021), DOI: 10.1093/qmath/haab038.

[18] Szirmai, J., A candidate to the densest packing with equal balls in the Thurston geometries. Beitr. Algebra Geom., 55(2), 441–452 (2014).

[19] Szirmai, J.: On lattice Coverings of Nil space by Congruent Geodesic Balls. Mediterr. J. Math. 10, 953–970 (2013).

[20] Szirmai, J., Nil geodesic triangles and their interior angle sums. Bulletin of the Brazilian Mathematical Society, New Series, 49, 761.773, (2018), DOI: 10.1007/s00574-018-0077-9.

[21] Szirmai, J.: The densest geodesic ball packing by a type of Nil lattices. Beitr. Algebra Geom. 48(2), 383–398 (2007)

[22] Szirmai, J.: Lattice-like translation ball packings in Nil space. Publ. Math. Debrecen 80(3-4), 427–440 (2012)

[23] Szirmai, J., Bisector surfaces and circumscribed spheres of tetrahedra derived by translation curves in Sol geometry. New York J. Math., 25, 107–122 (2019).

[24] Szirmai, J. Simply transitive geodesic ball packings to $S^2 \times \mathbb{R}$ space groups generated by glide reflections, Ann. Mat. Pur. Appl., 193/4 (2014), 1201-1211, DOI: 10.1007/s10231-013-0324-z.

[25] Thurston, W. P. (and Levy, S. editor), Three-Dimensional Geometry and Topology. Princeton University Press, Princeton, New Jersey, vol. 1 (1997).

[26] Vránics, A. – Szirmai, J., Lattice coverings by congruent translation balls using translation-like bisector surfaces in Nil Geometry. KoG, 23, 6-17 (2019).