Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells*

Alberto Valdés‡, Virginia García-Canías‡¶, Konstantin A. Artemenko§, Carolina Simó‡, Jonas Bergquist§, and Alejandro Cifuentes‡

Carnosic acid (CA) and carnosol (CS) are two structurally related diterpenes present in rosemary herb (*Rosmarinus officinalis*). Although several studies have demonstrated that both diterpenes can scavenge free radicals and interfere in cellular processes such as cell proliferation, they may not necessarily exert the same effects at the molecular level. In this work, a shotgun proteomics study based on stable isotope dimethyl labeling (DML) and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) has been performed to identify the relative changes in proteins and to gain some light on the specific molecular targets and mechanisms of action of CA and CS in HT-29 colon cancer cells. Protein profiles revealed that CA and CS induce different Nrf2-mediated response. Furthermore, examination of our data revealed that each diterpene affects protein homeostasis by different mechanisms. CA treatment induces the expression of proteins involved in the unfolded protein response in a concentration dependent manner reflecting ER stress, whereas CS directly inhibits chymotrypsin-like activity of the 20S proteasome. In conclusion, the unbiased proteomics-wide method applied in the present study has demonstrated to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model.

From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain; §Analytical Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden

© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

This paper is available on line at http://www.mcponline.org

1 The abbreviations used are: CA, carnosic acid; AMC, 7-amino-4-methylcoumarin; BOG, n-octyl-β-D-glucopyranoside; CS, carnosol; DML, dimethyl labeling; ER, endoplasmic reticulum; ERAD, ER-associated degradation; FDR, false discovery rate; GI50, 50% growth inhibition; IC50, 50% inhibitory concentration; IPA, Ingenuity Pathway Analysis; ISR, integrated stress response; LC50, 50% lethal concentration; nano-LC-MS/MS, nano-liquid chromatography-tandem mass spectrometry; Rb, retinoblastoma; ROS, reactive oxygen species; RT-qPCR, quantitative reverse transcription PCR; Suc-LLVY-AMC, N-Succinyl-Leu-Leu-Val-Tyr-AMC; TGI, total growth inhibition; UPR, unfolded protein response; UR, upstream regulator.
tion, invasiveness, tumorigenesis, and survival of cancer cells. Although CA and CS seem to share comparable antiproliferative potency they may not necessarily exert the same exact effects at the molecular level (7–11). Indeed, the wide spectrum of molecular targets of CA and CS in cancer cells has been recently reviewed by Petiwala and Johnson (12). For instance, CS has been shown to target Bcl-2 (13), CREB-binding protein/p300 (14), NF-kB and c-Jun (15), β-catenin (16), p21 (9), ERK1/2 (17), Jak2/Src-STAT3 (18), AMPK-mTOR (19), androgen receptor and estrogen receptor α (20, 21), among others. In the case of CA, its anticancer activity has also been linked to different molecular targets. For example, CA blocked the epithelial to mesenchymal transformation by inhibiting Akt phosphorylation and the secretion of several proteins involved in the invasiveness of melanoma (18) and colon adenocarcinoma cells (22). In another work, CA induced apoptosis through reactive oxygen species mediated p38 activation in neuroblastoma cells (4). In human prostate carcinoma cells, CA increased PP2A activity, leading to Akt and NF-kB signaling inhibition and induction of apoptosis (23). In addition, CA has been shown to sensitize human renal carcinoma Caki cells to TRAIL-induced apoptosis through downregulation of c-FLIP and Bcl-2 at the post-translational levels and induction of DR5, Bim and PUMA transcription, events that were attributed to the up-regulation of CHOP and ATF4 typically observed in cells under ER stress (24). Recent works have reported the involvement of autophagy cell death in the antiproliferative activity of CS and CA in different cancer cell lines (17, 25). In this regard, CA-induced autophagic cell death has been closely linked to negative regulation of the Akt/mTOR pathway in human hepatoma cells (25). Furthermore, blockage of Akt signaling by PTEN expression seems to be a part of the causative mechanism for the antiproliferative effect of CA in leukemia cells (26). CS has been also implicated in the inhibition of PI3K/Akt and mTOR signaling pathway mediated by AMPK activation in G2 phase-arrested prostate cancer cells (19). Taken together, all the reported pleiotropic cellular and molecular effects conferred to these rosemary diterpenes support the notion that the underlying mechanisms of action of these compounds are complex and diverse. Recently, foodomics has demonstrated to be a useful strategy to cover the identification of a wide range of molecular changes induced by rosemary compounds in in vitro cell models. In this line of work, comprehensive transcriptomic and metabolomic analyses helped on identifying global changes induced by rosemary polyphenols on colon cancer and leukemia cells (27–29). As an example, previous results obtained in our laboratory have shown that a CA-enriched rosemary extract transcriptionally trigger a strong Nrf2-mediated antioxidant response in addition to the unfolded protein response (UPR) to alleviate ER stress (29). Furthermore, the recent application of comprehensive proteomics based on nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) combined with stable isotope dimethyl labeling (DML) has generated new insights regarding the role of autophagy and proteostasis in the cellular response to rosemary polyphenols, demonstrating the suitability of this proteomics strategy for the investigation of the mechanisms of action of dietary compounds in cancer cells (30). In the present work, we have applied DML and nano-LC-MS/MS to investigate global protein changes in HT-29 colon cancer cells in response to individual rosemary diterpenes, CA and CS. The objectives of this study were to: (i) identify changes in relative abundance of proteins altered by CA and CS exposures over the time; and (ii) detect differences between the protein profiles obtained in CA- and CS-treated cells in order to shed light on the specific molecular targets and mechanisms of action of each diterpene in colon cancer cells.

EXPERIMENTAL PROCEDURES

Chemicals—ACN, methanol (MeOH), formic acid (FA), ammonia solution, NaCl and urea were obtained from Merck (Darmstadt, Germany). Ethanol was provided by VWR Chemicals (Fontenay-sous-Bois, France). Acetone, EDTA, protease inhibitor mixture, PBS, n-octyl-β-D-glucopyranoside (BOG), triethyl ammonium bicarbonate (TEAB), sodium metavanadate (NaVO₃), NaF, β-Glycerophosphate, sodium pyrophosphate, (37%, v/v), iodoacetamide (IAA), DTT, CA, CS, sucrose, MgCl₂, KCl, adenosine 5′-triphosphate disodium salt hydrate (ATP), digitonine and MG-132 were purchased from Sigma Aldrich (St. Louis, MO), Trypsin/Lys-C Mix (Mass Spec Grade V5072) was purchased from Promega (Madison) and deuterated formalde-hyde CD₃O (20% (v/v)) was obtained from ISOTEC (Miamisburg, OH). Sodium cyanoborohydride (NaBH₄-CN) was purchased from Fluka (Buchs, Switzerland). Ultrapure water was prepared by Milli-Q water purification system (Milliipore, Bedford, MA). N-Succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (Suc-LLVY-AMC) chymotrypsin-like substrate and purified human erythrocytes 20S proteasome were purchased from Enzo Life Sciences (Plymouth Meeting, PA).

Cell Culture—Colon adenocarcinoma HT-29 cells obtained from ATCC (American Type Culture Collection, LGC Promochem, UK) were grown in McCoy’s 5A supplemented with 10% (v/v) heat-inactivated FBS, 50 U/ml penicillin G, and 50 U/ml streptomycin at 37 °C in humidified atmosphere and 5% CO₂. When cells reached ~50% confluence, they were tryspinized, neutralized with culture medium, seeded at 10, 000 cells/cm² in 78 cm² cell culture dishes and allowed to adhere overnight at 37 °C for 24 h.

Flow Cytometry Analysis—To study the cell cycle distribution, HT-29 cells were treated with cytostatic concentrations of CA or CS in complete culture medium for 24 h. After the treatment, cells were tryspinized, washed with PBS, and fixed with 70% (v/v) cold ethanol at −20 °C for at least 24 h. Then, fixed cells were resuspended in 0.5 ml of PI/RNase staining buffer (BD Pharmingen, San Diego, CA), incubated for 15 min in the dark, and analyzed on a Gallios flow cytometer equipped with a blue (488 nm) laser (Beckman Coulter, Miami, FL). Events were gated for peak width and area to exclude subcellular debris and aggregates. A total of 10,000 events were recorded for each sample and a frequency histogram of peak area was generated and analyzed using Cychred (V.1.0.0.1) software (University of Wales College of Medicine, Cardiff, U.K.). Results are provided as the mean ± S.E. of three independent experiments.

Western Blot Analysis—For Western blot analysis, 40 μg of protein lysates from HT-29 cells treated for 24 h with different concentrations of CA (G50, TGI or LC50) or vehicle (0.2% (v/v) DMSO) were separated in 12% Bis-Tris SDS-polyacrylamide gels by electrophoresis,
and transferred to nitrocellulose membranes using Trans-Blot® Semi-Dry Transfer Cell (Bio-Rad Laboratories, Hercules, CA). The membranes were blocked for 1 h at room temperature with 5% (v/v) nonfat dry milk in TBST (20 mM Tris, 150 mM NaCl and 0.1% (v/v) Tween 20). Incubation with specific primary antibodies against HSPA5 protein (dilution 1:500) from Cell Signaling (Danvers, MA) (Cat# 3177) and β-actin protein (dilution 1:10000) from Sigma (Cat# A2066) was performed in blocking buffer overnight at 4 °C. Horseradish peroxidase-conjugated anti-IgG from Sigma (Cat# A1961) was used as secondary antibody. The specific proteins were detected using an enhanced chemiluminescence kit (GE Healthcare, U.K.) according to the manufacturer’s instructions. Results are shown as the expression ratio of HSPA5 normalized to β-actin between the treated and control samples, and a two-sample t test was applied considering significant differences when p value < 0.05.

Detection of 26S and 20S Proteasome Activity—To determine the 26S and 20S proteasome chymotrypsin-like activity after diterpene treatment, HT-29 cells were incubated with cytostatic concentrations of CA, CS, or vehicle (0.2% (v/v) DMSO) for different times. As a positive control, cells were incubated with 1 μM of MG-132, a specific inhibitor of the proteasome activity. After the treatment, the 20S and 26S proteasome activities were measured as previously described (31). Cells were trypsinized, washed with PBS and divided equally into two aliquots. To evaluate the 20S proteasome activity, one aliquot was resuspended in 300 μl of lysis buffer (50 mM Tris titrated by HCl to pH 7.5, 250 mM sucrose, 5 mM MgCl₂, 1 mM DTT, 0.5 mM EDTA, and 0.025% digitonin). To evaluate the 26S activity, the second aliquot was resuspended in lysis buffer containing 2 mM ATP.

ATP prevents dissociation of the 26S proteasome into its components and ensures its maximal activity. Cells were incubated on ice for 5 min, followed by centrifugation at 20,000 × g for 15 min at 4 °C. The supernatants were collected and the protein concentration in the cell lysates was determined using Bio-Rad DC™ assay. To measure the 20S proteasome chymotrypsin-like activity, 4 μg of protein extract were incubated in 200 μl of assay buffer (50 mM Tris titrated by HCl to pH 7.5, 40 mM KCl, 5 mM MgCl₂, 1 mM DTT), for 45 min at 37 °C with 100 μM Suc-LLVY-AMC in 200 μl of 5% (v/v) FA. The resulting pellets were dissolved in 20 μl of 1% (w/v) BSA in 0.1 M TEAB, and the proteins were reduced with 10 μl of 200 mM DTT at 56 °C for 15 min and alkylated with 10 μl of 100 mM iodoacetamide for 15 min. For protein digestion, samples were incubated at 37 °C overnight in darkness with 0.5 μg of LysC/trypsin solution (5% w/w, of total protein content). Samples were dried in SpeedVac to remove ACN, resuspended in 70 μl of 0.1 M TEAB and water saturated ethyl-acetate was used to extract BOC (33). The tryptic peptide mixtures were reconstituted in 70 μl of 0.1 M TEAB and dimethyl labeling was performed as previously described (34). Briefly, 4 μl of regular formaldehyde CH₂OH (4%, v/v) was added to control samples and 4 μl of deuterated formaldehyde CD₂O (4%, v/v) was added to treated samples, marking them as light and medium respectively. After vortexing, 4 μl of freshly prepared 0.6 M NaBH₄ON solution was added to each sample and incubated for 60 min at room temperature with mild agitation. The reaction was finished by adding 16 μl of 1% (v/v) ammonia solution and 8 μl of 5% (v/v) FA was added to consume the excess of the labeling reagents. Finally, light and medium samples were mixed together and desalted on Isolute C18 solid phase extraction columns (1 ml, 50 mg capacity, Biotage, Uppsala, Sweden). After desalting, peptides were dried in a SpeedVac and redissolved in 0.1% (v/v) FA to a concentration of 1 μg/μl prior to nano-LC-MS/MS.

Quantitative Reverse Transcription PCR (RT-qPCR)—To determine the expression ratios of PSMC1 gene in response to CS treatment, HT-29 cells were incubated with a cytostatic concentration of CS or vehicle (0.2% (v/v) DMSO) for different times (2, 6 or 24 h). After the treatment, RNA was isolated from cells using TRIzol Plus RNA Kit (Invitrogen, Spain) according to manufacturer’s protocol. Starting amounts of 0.5 μg of total RNA were reverse transcribed using Transcriptor First Strand cDNA Synthesis kit with oligo(dT) primers (Roche Diagnostics, Barcelona, Spain). Quantitative PCR was performed using LightCycler® 480 Real-Time PCR and LightCycler® 480 SYBR Green I (Roche Diagnostics). The primer sequences (5’-3’ used for PSMC1 transcript detection were PSMC1-F: TCTCCAGTCTGCTGAAGAAC, and PSMC1-R: ATCCATCAACTGTTCCAGC (32); and for GAPDH transcript detection were GAPDH-F: ATCCATCACAATGGTTCCAGC and GAPDH-R: ATCCATCACTGTTCCAGC (29). Results are shown as the expression ratio of PSMC1 normalized to GAPDH between the treated and control cells, and a two-sample t test was applied considering significant differences when p value < 0.05.

Experimental Design and Sample Preparation for Proteomics Analysis—For proteomic experiments, HT-29 cells were incubated with different concentrations (G105, 50% growth inhibition; TGI, total growth inhibition, LCS0, 50% lethal concentration) of two polyphenols (CA, CS) or vehicle (0.2% (v/v) DMSO), for 2, 6, or 24 h. Three biological replicates were used in the experiments, obtaining a total of 63 samples. After incubation, cells were trypsinized and washed with 1 ml of cold PBS, and 1 × 10⁶ cells were lysed with 300 μl of lysis buffer (6 μl urea, 1% BOC, 1.3 mM EDTA, 1 mM NaVO₄, 5 mM NaF, 2.5 mM sodium-pyrophosphate, and 5 mM β-Glycerophosphate in PBS) supplemented with 10 μl of protease inhibitor mixture. The samples were incubated for 60 min at 4 °C during mild agitation, sonicated for 30 min at 0 °C in water bath (Elma, Singen, Germany) and centrifuged at 10,000 × g at 4 °C for 15 min (Sigma, Osterode am Harz, Germany). Protein concentration was measured using Bio-Rad DC™ assay and 10 μg of proteins were incubated at 4 °C for 90 min in 500 μl of ice-cold tributylyphosphate/acetone/methanol mixture (1:12:1, v/v/v). The precipitate was centrifuged for 15 min (3,000 × g at 4 °C), washed with 1 ml cold acetone, and finally air-dried. The resulting pellets were dissolved in 20 μl of 1% (w/v) BOC with 20% (v/v) ACN in 0.1 M ACN in 0.1 M TEAB, and the proteins were reduced with 10 μl of 45 mM DTT at 56 °C for 15 min and alkylated with 10 μl of 100 mM iAA for 15 min in the dark. For protein digestion, samples were incubated at 37 °C overnight in darkness with 0.5 μg of LysC/trypsin solution (5% w/w, of total protein content). Samples were dried in SpeedVac to remove ACN, resuspended in 70 μl of 0.1 M TEAB and water saturated ethyl-acetate was used to extract BOC (33). The tryptic peptide mixtures were reconstituted in 70 μl of 0.1 M TEAB and dimethyl labeling was performed as previously described (34). Briefly, 4 μl of regular formaldehyde CH₂OH (4%, v/v) was added to control samples and 4 μl of deuterated formaldehyde CD₂O (4%, v/v) was added to treated samples, marking them as light and medium respectively. After vortexing, 4 μl of freshly prepared 0.6 M NaBH₄ON solution was added to each sample and incubated for 60 min at room temperature with mild agitation. The reaction was finished by adding 16 μl of 1% (v/v) ammonia solution and 8 μl of 5% (v/v) FA was added to consume the excess of the labeling reagents. Finally, light and medium samples were mixed together and desalted on Isolute C18 solid phase extraction columns (1 ml, 50 mg capacity, Biotage, Uppsala, Sweden). After desalting, peptides were dried in a SpeedVac and redissolved in 0.1% (v/v) FA to a concentration of 1 μg/μl prior to nano-LC-MS/MS.
Results and Discussion

CA and CS Treatments, Protein Identification, and Quantification—The antiproliferative activity of CA and CS was previously determined and reported in (10). The response parameters GI50 and TGI, indicators for cytostaticity, and LC50, indicative for cytotoxicity, were used as reference to prepare the working concentrations in the proteomics experiments. Based on reported data, GI50, TGI and LC50 were 33.3 ± 2.8, 47.7 ± 2.9, and 69.1 ± 3.9 μM for CA, and 41.6 ± 1.7, 52.7 ± 3.0, and 70.6 ± 4.0 μM for CS, respectively.

The study of cell cycle distribution can provide useful information to determine the mechanism by which both diterpenes induce growth inhibition. The effect of rosemary diterpenes in cell cycle progression has shown to be cell type- and concentration-dependent. For instance, it has been reported that CA and CS induce G2/M phase arrest in Caco-2 cells (9), but CA and CS block cell cycle before and after prometaphase, respectively. A recent study in our laboratory suggested that the effects of a CA-enriched rosemary extract on cell cycle distribution are highly dependent on the extract concentration (11). In the present work, we used the maximum cytostatic concentration (TGI) calculated for CA and CS to investigate the possible changes on HT-29 cell cycle distribution exerted by these compounds using flow cytometry analysis. As shown in Fig. 1, incubation of exponentially growing HT-29 cells with TGI concentrations of each diterpene for 24 h resulted in a substantial inhibition of cell cycle progression at different cell cycle phases. Namely, CA induced an accumulation of cells in the G1 phase (67.6% ± 1.6, respectively). On the other hand, CS induced a comitant decrease in the percentage of cells in the G2/M phase (10.5% ± 1.5) with respect to untreated control cells (57.0% ± 1.5 and 17.3% ± 1.6, respectively). On the other
side, CS caused G2/M arrest as observed by the significant increase in the cell population in that phase (42.8% ± 3.9), with a simultaneous decrease in the percentage of cells in the G1 (46.5% ± 3.6) and S phases (10.8% ± 0.3). These results give evidences that the molecular and cellular mechanisms underlying the antiproliferative activity of CA and CS are potentially distinct in HT-29 cell line.

To get insights into the antiproliferative activity of CA and CS, the global protein changes in HT-29 cells in response to each diterpene were investigated using quantitative proteomics platform based on DML combined with nano-LC-MS/MS. We aimed at identifying temporal changes in protein levels in HT-29 cell lysates in response to different cytostatic and cytotoxic concentrations of diterpenes. To achieve this, cells were incubated with three different concentrations of the CA and CS corresponding to the three different response parameters, GI50, TGI, and LC50, as well as with the vehicle (0.2% (v/v) DMSO, as controls) for different times (2, 6 and 24 h). In these proteomic experiments, quantitative comparison based on stable isotope dimethyl labeling was performed on the eighteen sets of experiments, using “light” for control cells and “medium” labels and CA- or CS-treated cells (Fig. 2). Using three biological replicates per group, equal protein amounts of light-labeled and medium-labeled samples were mixed to generate 54 samples for further analysis. All mixtures were then analyzed using nano-LC-MS/MS analysis. MS raw data files were then simultaneously processed with the MaxQuant software for FDR-controlled peptide and protein identification and dimethyl labeling-based quantification (the identification and quantification of the peptides and proteins are found in supplemental Tables S1 and S2, respectively). A total of 1952 distinct proteins were identified (protein level FDR < 1%) with an average of 697 quantified proteins after performing all the analyses (see supplemental Table S3). The number of proteins identified in common across the 18 experimental conditions was 248. Relative abundance ratios were calculated for all proteins to screen the significantly altered proteins in each experimental condition, considering all the combinations of three variables (diterpene type, concentration and exposure time; see supplemental Tables S4 and S5). In addition, and although the aim of the present work is not the study of the phosphoproteome, 226 phosphorylated peptides (after excluding reverse and potential contaminants, phosphosite assignment is as reported by Andromeda) were detected without performing any phosphopeptide enrichment (supplemental Table S6). In this study, the restrictive criterion to consider a protein as significantly changed upon diterpene exposure included a 1.5-fold change cutoff in relative protein abundance, equivalent to log2 fold change of ±0.585; and a p value < 0.05 (one sample t test). According to this, the total number of proteins displaying significant changes upon CA and CS treatments was 76 and 57, respectively (Table I and Table II). Among them, a cluster of 26 proteins were common to both treatments.

Then, the concordance of a protein data set obtained in the present study and microarray data obtained under identical

![Scheme of the DML method and nano-LC-MS/MS analysis followed for the proteomics study. HT-29 cells were incubated with different concentrations (GI50, TGI, LC50) of two polyphenols (CA, CS) or vehicle for 2, 6, or 24 h. After protein extraction and enzymatic digestion, peptides from control and treated samples were labeled as “light” and “medium” respectively, and mixed 1:1 prior to nano-LC-MS/MS analysis.](image)
Log₂ ratio of the significantly altered proteins after the incubation of HT-29 cells with GI50, TGI and LC50 concentrations of CA and CS for 2 and 6 hours

Gene name	log₂ ratio						
CA	EFHD2	TGI 2h	SLC25A3	GI50 6h	SQSTM1	LC50 6h	SQSTM1
	-0.63		0.59	-0.61	0.68		0.68
CS	HMOX1	TGI 6h	SDHA	MISP	RPS24	LC50	HMOX1
	3.46		0.80	-0.61	0.68		2.26
	HSPA1A	TGI 6h	RPS26		HMOX1	LC50	3.04
	1.22		0.63		3.54		1.73
	SQSTM1	TGI 6h	DNAJB1	HSPA1A	HSPA1A	LC50	0.92
	0.67		1.70		1.53		1.73
	PSMC4	TGI 6h	HSPH1	SQSTM1	SQSTM1	LC50	0.91
	0.63		0.88		0.63		0.68
	POF1B	TGI 6h	SLC2A1		SLC3A2	LC50	
	-0.88		0.63		0.60		

Early Changes in HT-29 Proteome Upon Diterpene Exposure—In order to study the dynamic of protein expression in HT-29 cells during the course of CA and CS treatments, the ratio of the significantly changed proteins obtained at different incubation times were examined. Three exposure duration times of 2, 6, and 24 h were chosen in order to analyze very early, early, and late proteomic perturbations, respectively, occurring in treated cells with different concentrations of individual diterpenes (Table I and Table II). Most of the changes were detected after 24 h incubations with CA and CS. Indeed, none of the significantly altered proteins (p value < 0.05) after 2 h treatment with GI50 concentration of CA passed the log fold change threshold established in the present study, and only EFHD2 and SLC25A3 were significantly altered by using the TGI and LC50 concentrations of CA, respectively. Interestingly, CS did not induce detectable significant changes in the relative abundance of any protein after 2 h; however, after 6 h of treatment, all the tested CS concentrations up-regulated the protein markers for the Nrf2-mediated antioxidant response (HMOX1 and SQSTM1), as well as three cytosolic chaperones, DNAJB1, HSPH1, and HSPA1A, being the latter accumulated in a concentration-dependent fashion (Table I). In contrast, only the highest concentration of CA altered the levels of the oxidative stress markers, HMOX1 and SQSTM1 in HT-29 cells. Altogether, these results suggest that HT-29 cells trigger the antioxidant response upon exposure to both diterpenes, CA and CS; however, the observed different temporal and concentration effect of CS versus CA on markers for Nrf2-signaling might be accounted for a faster activation in cells treated with CS. In addition, the early up-regulation of different cytosolic chaperones in CS-treated cells may be indicative of proteotoxic stress at very early exposure times.

CA and CS Induce Different Pattern of Nrf2-dependent Proteins in HT-29 Cells—In order to identify the molecular and cellular functions that might be altered in response to each diterpene, functional enrichment analysis was performed on the protein data sets using IPA. These results (supplemental Fig. S3) indicated that the most significant (Fisher’s exact test p value <0.05) over-represented molecular and cellular functions in data sets obtained in CA treatments were associated with cell death and survival, whereas a significant number of proteins related to cellular compromise was identified in the data set obtained from CS-treated cells. Next, causal upstream regulator analyses of the protein profiles obtained after 24 h exposures to CA and CS were performed using IPA bioinformatics tool to obtain a broader picture of the potential transcriptional regulators that could be operating in the response of HT-29 cells to diterpenes. In agreement with the well-known ability of CA and CS to activate Nrf2 signaling (3,
Table II

Name	CA	TGI	LC50	GI50	TGI	LC50
Antioxidant defence						
Unfolded Protein Response (tRNA charging and AAs metabol.)						
GCLCa 0.92 1.23 1.29	0.62 0.96 1.53	1.03 1.19 1.19	0.98 1.00 1.00			
c						
Chromatin						
GCLMa – 1.37 1.53	n.s. 1.54 1.56	1.94 1.96 1.96				
n.s. n.s. n.s.						
Other functions						
SRXN1a – – 2.63	– 0.60 –	– n.s. –				
c						
NADPH generation						
SLC1A5c n.s. n.s. n.s.	n.s. n.s. n.s.	n.s. n.s. n.s.				
c						
Other functions						
SLC2A1 n.s. 0.94 n.s.	n.s. n.s. n.s.	n.s. n.s. n.s.				
c						
Detoxification metabolism						
AKR1B10a 1.52 1.82 1.61	1.37 1.58 1.47	1.58 1.60 1.60				
c						
E2F-targets						
G6PDa n.s. 0.68 n.s.	n.s. n.s. n.s.	n.s. n.s. n.s.				
d						
Proteins whose expression is regulated by: aNrf2; bXBP1; cATF4; dE2F1. n.s., not significant.						

Proteomics Profiling of CA and CS Effects in Cancer Cells
4), causal analysis predicted significant activation of Nrf2 under most of the tested conditions with both diterpenes (Table III). To further determine whether Nrf2 activation by CA and CS follows the same transcriptional program, the relative abundance of the proteins that support Nrf2 activation by both diterpenes was examined (Table II). In general, CA exerted changes that were slightly higher in SQSTM1 (also known as p62), as well as in molecules related with the antioxidant response and detoxication metabolism. In addition, a greater number of proteins related with NADPH generation were altered by CA treatments when compared with those affected by CS. On the other side, only CS-treated cells showed altered levels of eight different proteins belonging to 19S and 20S proteasome complexes. The results obtained suggest that although both diterpenes appear to affect antioxidant endogenous defenses, CA and CS induce different Nrf2-mediated response, revealing potential relevant differences in their mode of action. Nrf2 signaling pathway has become the subject of an intense research in last years (40). Recent evidences highlight the complexity of Nrf2 signaling pathway, such as for example the crosstalk with other pathways such as UPR or autophagy (41, 42). Thus, depending on the cellular context and type of activation, Nrf2 signaling can be prolonged by different mechanisms other than the classical Nrf2-Keap1, such as for example Keap1 sequestration by p62, that may have profound biological consequences (43).

CA Activates UPR Proteins and Downregulates Proteins Transcriptionally Controlled by E2F1—A detailed examination of the proteomic profiles obtained after 24 h treatments and IPA results (Tables II and III) showed other interesting differences on the cellular response to both diterpenes. Specifically, CA treatment caused up-regulation of proteins transcriptionally controlled by ATF4 and XBP1, along with ER chaperones. Proteins supporting activation of XBP1 and ATF4 included relevant molecules involved in ER-associated degradation (ERAD) system, ER chaperones with key role in UPR, amino-acyl tRNA synthetases related with tRNA charging function, and molecules involved in essential amino acid uptake and metabolism (Table II). Among the altered proteins, the glucose-regulated protein of 78 kDa (also known as HSPA5/Bip/GRP78) was found up-regulated in a concentration dependent manner after 24-h exposure with CA. It has been well established that up-regulation of HSPA5 is a marker of ER stress and a central regulator of the activation of UPR transducers (44). The elevation in HSPA5 relative abundance in cells treated with the different CA concentrations compared with control cells was confirmed by Western blot using commercially available antibodies against HSPA5 protein and β-actin (supplemental Fig. S4). Consistent with the quantification by mass spectrometry, the relative levels of HSPA5 protein were significantly increased in CA-treated cells with TGI and LC50 concentrations at 24 h of treatments. It is well recognized that ATF4 can be activated/induced independently of the UPR. For instance, ATF4 activation is an important
event within the integrated stress response (ISR) that can be triggered by amino acid starvation, heavy metals and heme deficiency, and viral infection, as well as ER stress (45). However, the ISR does not seem to involve XBP1 activation. In our study, the coincident activation of ATF4 and XBP1, which are respective regulators of two independent signaling branches of UPR, in CA-treated cells is coherent with UPR activation.

Until recently, activation of the UPR signaling was unequivocally indicative of ER-luminal sensing of unfolded or misfolded protein accumulation. However, some recent works have described an alternative activation of the UPR that involves other types of signals, such as some mitogenic hormones, that do not originate in the ER lumen (46, 47). This alternative UPR activation appears to act in an “anticipatory” mode to cope with a future requirement for increased protein folding capacity because of protein secretion or cell proliferation, instead of the more classical “reactive” mode of UPR aimed at alleviating pre-existing ER stress (48). In the anticipatory mode of UPR pathway, hormones induce a moderate and transient increase in intracellular calcium that results in weak activation of the UPR (does not strongly activate PERK-ATF4 signaling). In our study, such UPR signaling pattern does not seem compatible with the observed elevated levels of the eleven ATF4-regulated proteins in CA-treated cells. In support of the activation of the reactive mode of UPR by CA treatment, several published studies suggest that CA induces ER stress in various cell types (21, 24, 29, 49). Also, it has been shown that the UPR contributes signals to cell death pathways in CA-treated cells as consequence of severe or unresolved ER stress that determine cell fate (21, 24), a mechanism that does not occur in the anticipatory UPR (48). It has been suggested that this effect was caused by a redox imbalance because of the elevation of intracellular reactive oxygen species (ROS) levels, a condition that is generally believed to alter ER homeostasis (24). In this regard, high concentrations (>30 μM) of CA have been shown to induce ROS generation in HT-29 and other cell types (4, 11). Numerous environmental, physiological and pathological insults, as well as nutrient fluctuations, disrupt the ER protein-folding environment to cause ER stress (50). Recent studies carried out in our laboratories have demonstrated that a CA-enriched rosemary extract also induces intracellular ROS and UPR activation in colon cancer cells (29, 30). Our present results suggest that CA is one of the bioactive compounds in the extract contributing to the activation of such response to stress. However, further detailed investigation of this aspect will be required to elucidate how this diterpene can contribute to ER stress.

Furthermore, IPA causal analysis predicted deactivation of E2F1 transcription factor in cells treated with TGI concentration of CA (Table III). E2F1 belongs to the E2F family of transcription factors that, in combination with retinoblastoma (Rb) family tumor suppressor proteins, controls DNA replication and cell cycle progression. The Rb/E2F pathway plays a pivotal role in regulating the initiation of DNA replication, and disruption of the pathway is common in virtually all human cancers (51). Although E2F is involved in a variety of cellular activities, the best understood function of E2F is to regulate transcription of genes involved in the transition from G1 to S phase, regulators of S phase entry and components of the DNA replication machinery. Our observations indicate that transcriptional targets of E2F1 essential for DNA synthesis (RRM1, TOP2A) and cell cycle progression (COPS8, RBBP4) were down-regulated in CA-treated cells (Table II). In support of a decreased E2F1 transcriptional activity, our data shows that the tumor suppressor SERPINB5 (also known as maspin) was up-regulated in CA-treated cells. Published data suggest that maspin controls cell cycle; specifically, it has been shown that maspin down-regulation by E2F1 activation accelerates cell cycle progression in gastric cancer (52). CA treatment additionally induced down-regulation of various proteins directly involved in the generation of pyrimidine (CAD) and purine (GMPS, HPRT1) nucleotides needed for DNA synthesis, as well as proteins involved in DNA replication (NAP1L1, NASP) and cell proliferation maintenance (MKI67), suggesting that CA treatment attenuates all these cellular processes. In agreement with previous transcriptomic studies carried out on CA-enriched extracts (29), our data show that the response mediated by down-regulation of E2F1 transcriptional activity constitutes a reasonable link to the G1 phase arrest observed in CA-treated cells, and provides a potential explanation for the inhibitory effect of this diterpene on HT-29 cell proliferation. Also, connected with some of these observations, the expression levels of TOP2A, MKI67 and E2F1 have recently shown to provide valuable prediction in the prognosis of cancer (53). Our data also showed that CS down-regulated various proteins, such as CBX3, HIST1H2AJ, and HMGN2, with recognized key roles in epigenetic control of chromatin structure and gene expression. Particularly, CBX3 has recently shown to promote colon cancer growth by directly repressing expression of p21, an inhibitor of cellular proliferation in response to DNA damage (54).

Rosemary Diterpenes Altered Cell Adhesion and Cytoskeletal Proteins—Other findings of our present study revealed the alteration of proteins with a key role in cell adhesion and colorectal cancer (Table II). For instance, LC50 CA treatment caused substantial increase in the relative abundance of GCNT3, a protein that has been shown to suppress cell adhesion, motility, and invasion of colon cancer cells (55). GCNT3 is frequently expressed at low levels in the majority of colorectal carcinomas whereas its overexpression dramatically inhibits colon cancer cell growth in vitro and in vivo. Such effects have been associated with its ability to induce carbohydrate changes on the cells surface affecting cell-extracellular matrix interactions. In recent years, GCNT3 expression has gained relevance and it has been recently proposed as a promising biomarker for colon cancer to monitor the response to chemotherapy (56). The GCNT3 up-regulation in CA-
treated cells observed in the present study is coincident with other published data associating the GCNT3-inducing effect of CA and CA-enriched rosemary extracts with their antitumor effect on colon and pancreatic cancer cell lines (56). In contrast, the relative abundance of CD44 and MUC5AC proteins significantly decreased in CS-treated cells with LC50. CD44 is a cell surface marker for cancer stem cells in various tumors and a major adhesion molecule for the extracellular matrix. It has been implicated in tumor cell invasion and metastasis (57) and its ablation triggers growth arrest in proliferative tumor cells (58). De novo synthesis of MUC5AC, a secreted gel-forming mucin normally found in the stomach, has been reported in colon carcinomas (59). This mucin is involved in the formation of a biological inhibitory complex toward E-cadherin, a key component for the maintenance of cell-cell adhesion. In HT-29 cells, the loss of MUC5AC expression has been linked with a gain of function of E-cadherin, resulting in the loss of their invasiveness (60). Among the altered cytoskeletal proteins, it is interesting to note the down-regulation of SLC9A3R1 by CA and CS treatments. This protein is a known scaffold for epidermal growth factor receptor (EGF-R), and has also been suggested as marker of colorectal cancer progression on the basis of its expression and subcellular localization (61). Specifically, this marker appears to play a central role in maintaining the integrity and capacity of EGF-R proliferative signaling pathways in HT-29 cells (62). SLC9A3R1 downregulation has been reported to shut down the entire pathway and the cells revert to a less proliferative phenotype. Taken together, our results show that CA and CS treatments modulate proteomic changes that affect cytoskeleton, cell-surface and secreted molecules. The observed changes suggest that rosemary diterpenes affect cell adhesion to extracellular matrix, and therefore, reduce the invasive potential of HT-29 cells. Similarly, Barni et al. have demonstrated that CA inhibited the cell adhesion and migration functions in Caco-2 cells; although in that case the effects were associated to the decreased activity of secreted proteases and down-regulation of COX-2 expression (22).

CS Inhibits Proteasome Activity in HT-29 Cells—As mentioned above, our data obtained at 24 h indicate that CS modulates the levels of various protein subunits which are critical for 26S proteasome functions. The 26S proteasome is a multienzymatic protease complex with a central role in the ubiquitin-proteasome system, which is responsible for turnover and removal of intracellular abnormal proteins (63) and has a pivotal role in the regulation of many cellular processes including signal transduction, transcription, stress responses, cell differentiation, and metabolic adaptation (64–66). The 26S proteasome consists of one 20S core proteasome with multicatalytic activity and two 19S regulatory caps (67–69). The 19S regulatory caps contain the lid, which is responsible for recognition and docking of polyubiquitinated proteins into the 20S complex, and the base, which has ATPase activity needed for the unfolding and linearization of proteins (70). The 20S core can also exist in a free form that is often referred to as the 20S proteasome, and in contrast with the 26S proteasome, the 20S proteasome functions independently of ATP and is unable of degrading polyubiquitylated proteins (71).

Unlike normal cells, several cancer cells show aberrant increased proteasomal activity that promotes the degradation of tumor suppressor proteins and cell cycle proteins favoring cancer cell survival, high proliferation rates, and development of drug resistance (72–82). In our present work, to further examine whether the changes in the relative abundance of proteasome subunits induced by CS accounted for changes in the proteasome activity, the chymotrypsin-like activity of the proteasome was assessed in cells after diterpenes exposure for different times (2, 6 and 24 h). MG-132, a well-known proteasome inhibitor was used as positive control. After incubations, 26S and 20S proteasome activities were assayed in cell extracts with the Suc-LLVY-AMC labeled peptide under ATP-stimulated and ATP-independent conditions, respectively. Data revealed that CS treatment decreased both proteasome activities at the earliest time assayed (2 h) in HT-29 cells (Fig. 3A and 3B). Proteasome activity further decreased down to 50.5% upon exposure to CS for 6 h, but it increased in the window from 6 to 24 h to levels close below those detected in untreated control cells. In contrast, CA treatment did not induce significant changes in either 26S or 20S proteasome activity. We therefore hypothesize that CS directly inhibits the 20S proteasome catalytic activity. To test this hypothesis, rosemary diterpenes were tested for their capacity to inhibit chymotrypsin-like activity in 20S purified proteasome. As shown in Fig. 3C, the profile of proteasome inhibition shows that CA failed to inhibit proteasome activity when tested to concentrations up to 50 μM whereas CS inhibited proteasomal function with an IC50 value of 16.5 μM (Fig. 3D). Compared with the stronger inhibitory activity of MG-132 (IC50 ~70 nm, Fig. 3E), CS was ~200-fold less potent, suggesting that CS is a weak inhibitor of 20S proteasome activity. The inhibitory activity of CS observed in HT-29 cells and the successive activity recovery correlated with proteasome subunit up-regulation detected at 24 h. To investigate whether the changes in the relative abundance of proteasome subunits were determined by gene expression, the transcriptional profile of PSMC1 gene, that encodes a 19S proteasome subunit, was analyzed over the time course of the experiment using RT-qPCR (see supplemental Fig. S5). Gene expression data indicated a strong induction (more than 2-fold) of PSMC1 gene at 6 h after initial exposure to CS that was sustained until 24 h. As mentioned above, proteomic data revealed a significant increase (0.73 as log2 ratio, equivalent to 1.7-fold) in the relative abundance of PSMC1 protein at 24 h, suggesting that the observed change in the proteasome subunit is related with changes in gene expression. These results are in full agreement with other recent works evidencing that cells increase the expression of proteasome subunits in response to partial
Proteasome inhibition as a compensatory mechanism to raise proteasome content (83, 84). Although reversible proteasome inhibition by CS cannot be discarded in the present study, the detected elevation of proteasome abundance provides reasonable evidence to explain, at least in part, the observed recovery of proteasome activity after 24 h of exposure to CS. In this regard, different reports suggest that Nrf1 and Nrf2 transcription factors control the induction of proteasome subunits genes in several cell types (85, 86). However, it appears that only Nrf1 up-regulates proteasome genes upon proteasome inhibition (32). It has been recently observed that the compensatory response mediated by proteasome inhibition and Nrf1 also involves the up-regulation of VCP (also known as p97), a protein with a key role in the Nrf1 translocation for subsequent processing and activation (84, 87). Consistent with Nrf1 activation, our proteomic data indicated increased levels of VCP/p97 suggesting that up-regulation of proteasome subunits in CS-treated cells could be potentially mediated by Nrf1 transcriptional activity. Proteasome inhibition frequently results in G2/M phase cell-cycle arrest and, ultimately, in cell death (72, 88–90), which is in good agreement with the observed effects induced by CS in our present study. Such deleterious effects induced by proteasome inhibition, are frequently more significant in neoplastic cells than in normal cells (91). In last years, the proteasome has emerged as an attractive therapeutic target for the treatment of cancer (92). Some proteasome inhibitors have shown to be particularly effective in the sensitizing drug-resistant tumors (78, 93). However, their clinical use is limited by their typical elevated toxicity. It has been suggested that proteasome inhibitors from natural food sources with low toxicity can be potential anticancer agents (93). According to our results, CS could be a promising proteasome inhibitor of comparable potency to other dietary polyphenols, such as genistein, kaempferol, quercetin, and myricetin, with reported inhibitory effects on the 20S proteasome proteolytic activity (94, 95). With regard to their chemical structures, CA and CS are very similar in that they are ortho-diphenolic diterpenes with abietane carbon skeleton containing hydroxyl groups at positions C-11 and C-12. The only existing structural difference is that CS has a

![Inhibition of the proteasome activity in HT-29 cells after incubation with TGI concentration of CA or CS for 2, 6 and 24 h. A, 26S proteasome activity; B, 20S proteasome activity. Concentration dependent inhibition of the chymotrypsin-like activity of the purified 20S proteasome. C, Carnosic acid; D, Carnosol; E, MG-132.](image_url)
lactone moiety across the B ring, whereas CA has a free carboxylic acid group. Thus, it may be reasonable that proteasome inhibitory activity exerted by CS may be linked to the lactone moiety. In this regard, a nonpeptide inhibitor bearing a β-lactone moiety was reported to irreversibly react with the proteasome’s active site threonines and inhibit its chymotrypsin-like activity (96). Following a similar mechanism, the ester bond in (-)epigallocatechin-3-gallate and other green tea polyphenol derivatives was found to have high susceptibility toward a nucleophilic attack by the proteasome leading to the acylation of the reactive site threonine and subsequent inhibition of the catalytic activity (97). This allows us to speculate that the ester bond found in the lactone moiety of CS may be involved in its inhibitory activity. However, further research will help to elucidate the structure-activity relationship of CS with proteasome inhibition activity.

Our proteomics data also indicated a strong pattern of HSPA1A and HSP90AA1 accumulation in CS-treated cells compared with control (Table I and II), suggesting the activation of cytoprotective heat shock response to alleviate loss of protein homeostasis in the cytosolic compartment. Interestingly, HSPA1A gene expression is controlled via rapid activation of heat shock factor-1 (HSF1) and is normally induced by proteasome inhibitors (98). Recent data suggest that HSPA1A overexpression protects cancer cells from proteasome inhibitors toxicity by promoting lysosomal integrity (99). To target this survival response, chaperone inhibitors alone or in combination with proteasome inhibitors have been widely investigated as a therapeutic strategy in some cancers; however, because of the induction of other chaperones as compensatory mechanisms, this approach has not progressed to clinical trials. This is in line with recent strategies that highlight the advantage of targeting the master transcription factor HSF1 to enhance the impact of proteasome inhibition (100).

CONCLUSIONS

Collectively, our results suggest that although both CA and CS activate the Nrf2 pathway, they induce distinct Nrf2-mediated transcriptional programs that may potentially constitute different mechanisms of action. The proteomic study carried out in the present work suggests that CA and CS cause cellular stress by negatively altering cell proteostasis. However, a detailed examination of our data reveals that each diterpene affects protein homeostasis by different mechanisms. Thus, cellular response to CA involved reactive UPR activation, a signaling network commonly triggered by ER stress. On the other hand, HT-29 cells activated the cytoprotective heat shock response, constituted by increased levels of cytosolic chaperones that potentially alleviate the loss protein homeostasis upon CS-mediated proteasome inhibition. In our present work, we have successfully demonstrated that CS directly inhibits chymotrypsin-like activity of the 20S proteasome. Other concurrent protein changes affecting DNA synthesis and replication, cell cycle progression, cell adhesion and cytoskeleton functions, among others, corroborate the “pleiotropic” character of the effects exerted by both diterpenes at the molecular level. In summary, our unbiased proteome-wide strategy has proven to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model.

Acknowledgments—A.V. thanks the Ministerio de Economía y Competitividad for his FPI pre-doctoral fellowship (BES-2012-057014).

* This work was supported by the project AGL2014-53609-P (Ministerio de Economía y Competitividad, Spain) and S2013/ABI-2728 (Comunidad de Madrid). The Swedish Research Council (Vetenskapsrådet), 2011-4423 and 2015-4870 to J.B. is acknowledged for financial support.

This article contains supplemental material.

To whom correspondence should be addressed: Bioactivity and Food Analysis Institute, Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain. Tel.: 0034-910017950; E-mail: virginia.garcia@csic.es.

The authors declare that there is no conflict of interest.

Supplemental Data Related To This Article: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD004253.

REFERENCES

1. González, M. A. (2015) Aromatic abietane diterpenoids: their biological activity and synthesis. Nat. Prod. Rep. 32, 684–704
2. Aruoma, O. I., Halliwell, B., Aeschbach, R., and Lölliger, J. (1992) Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica 22, 257–268
3. Satoh, T., Kosaka, K., Itoh, K., Kobayashi, A., Yamamoto, M., Shimojo, Y., Kitajima, C., Cui, J., Kamins, J., Okamoto, S., Izumi, M., Shirasawa, T., and Lipton, S. A. (2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cyteines on Keap1. J. Neurochem. 104, 1116–1131
4. Tsai, C. W., Lin, C. Y., Lin, H. H., and Chen, J. H. (2011) Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem. Res. 36, 2442–2451
5. Satoh, T., McKercher, S. R., and Lipton, S. A. (2013) Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic. Biol. Med. 65, 645–657
6. González-Vallinas, M., Reglero, G., and Ramírez de Molina, A. (2015) Rosemary (Rosmarinus officinalis L.) extract as a potential complementory agent in anticancer therapy. Nutr. Cancer 67, 1221–1229
7. Takahashi, T., Tabuchi, T., Tamaki, Y., Kosaka, T., Takikawa, Y., and Satoh, T. (2009) Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem. Biophys. Res. Commun. 382, 549–554
8. Tamaki, Y., Tabuchi, T., Takahashi, T., Kosaka, K., and Satoh, T. (2010) Activated glutathione metabolism participates in protective effects of carnosic acid against oxidative stress in neuronal HT22 cells. Planta Med. 76, 683–688
9. Visani, J. M., Thompson, D. G., and Padfield, P. J. (2006) Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 237, 130–136
10. Valdés, A., García-Canñas, V., Simó, C., Ibáñez, C., Micó, V., Ferragut, J. A., and Cifuentes, A. (2014) Comprehensive Foodomics study on the mechanisms of action at various molecular levels in cancer cells in response to individual rosemary polyphenols. Anal. Chem. 86, 9807–9815
Proteomics Profiling of CA and CS Effects in Cancer Cells

11. Valdés, A., García-Cañas, V., Kočak, E., Simó, C., and Ciftuentes, A. (2016) Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the anti-proliferative activity of rosemary polyphenols against HT-29 cells. *Electrophoresis* 37, 1–10

12. Petiwala, S. M., and Johnson, J. J. (2015) Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. *Cancer Lett.* 367, 93–102

13. Dörrie, J., Sapala, K., and Zunino, S. J. (2001) Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. *Cancer Lett.* 170, 33–39

14. Subbaramaiah, K., Cole, P. A., and Dannenberg, A. J. (2002) Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. *Cancer Res.* 62, 2522–2530

15. Kisselev, A. F., Balasubramanian, C., Ciftuentes, V. M., Segura-Carretero, A., Ibáñez, E., Ferragut, J. A., and Ciftuentes, A. (2012) Effect of dietary polyphenols on human colorectal cancer cells. *Foodomics* 3, 735–747

16. Moran, A. E., Carothers, A. M., Weyant, M. J., Redston, M., and Bertaglia, S. (2014) Carnosic acid induces mettaloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. *Biochem. Pharmacol.* 69, 221–232

17. Dörrie, J., Sapala, K., and Zunino, S. J. (2001) Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. *Cancer Lett.* 170, 33–39

18. Valdés, A., Garcia-Canas, V., Kocak, E., Simó, C., Ciftuentes, A. (2012) Anticipatory UPR Activation: A Protective Pathway and Target in Cancer. *Cancer Prev. Res.* 5, 1735–1747

19. Min, K. J., Jung, K. J., and Kwon, T. K. (2014) Carnosic acid induces ROS-mediated beclin1-independent autophagy and apoptosis in triple negative breast cancer. *PLoS ONE* 9:e109630.

20. Park, K. W., Kundu, J., Chae, I. G., Kim, D. H., Yu, M. H., Kundu, J. K., and Chun, K. S. (2014) Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. *Int. J. Oncol.* 44, 1309–1315

21. Johnson, J. J., Syed, N. D., Heren, C. R., Suh, Y., Adhami, V. M., and Mukhtar, H. (2008) Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5′-AMP-activated protein kinase (AMPK) pathway. *Pharmac. Res.* 25, 2125–2134

22. Barni, M. V., Carioli, M. J., Cafferata, E. G., Puricelli, L., and Moreno, S. (2012) Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. *Oncol. Rep.* 27, 1041–1048

23. Kar, S., Palit, S., Ball, W. B., and Das, P. K. (2012) Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. *Apoptosis* 17, 735–747

24. Min, K. J., Jung, K. J., and Kwon, T. K. (2014) Carnosic acid induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress induction in human renal carcinoma Caki cells. *J. Cancer Prev.* 19, 170–178

25. Gao, Q., Liu, H., Yao, Y., Geng, L., Zhang, X., Jiang, L., Shi, B., and Yang, F. (2015) Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. *J. Appl. Toxicol.* 35, 485–492

26. Wang, R., Cong, W. H., Guo, G., Li, X. X., Chen, X. L., Yu, X. N., and Li, H. (2012) Synergism between carnosic acid and arsenic trioxide on induction of acute myeloid leukemia cell apoptosis is associated with modulation of PTEN/Akt signaling pathway. *Chin. J. Integr. Med.* 18, 934–941

27. Valdés, A., Simó, C., Ibáñez, C., Rocamora-Reverte, L., Ferragut, J. A., García-Cañas, V., and Ciftuentes, A. (2012) Effect of dietary polyphenols on K562 leukemia cells: A Foodomics approach. *Electrophoresis* 33, 2314–2327

28. Ibáñez, C., Valdés, A., García-Cañas, V., Simó, C., Celebier, M., Rocamora-Reverte, L., Gómez-Martínez, A., Herrero, M., Castro-Puyana, M., Segura-Carretero, A., Ibáñez, E., Ferragut, J. A., and Ciftuentes, A. (2012) Global Foodomics strategy to investigate the health benefits of dietary constituents. *J. Chromatog. A* 1248, 139–153

29. Valdés, A., Sullini, G., Ibáñez, E., Ciftuentes, A., and García-Cañas, V. (2015) Rosemary polyphenols induce unfolded protein response and changes in cholesterol metabolism in colon cancer cells. *J. Funct. Foods* 15, 429–439

30. Valdés, A., Artemenko, K. A., Bergquist, J., García-Cañas, V., and Ciftuentes, A. (2016) Comprehensive proteomics study of the antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using nanoliquid chromatography-orbitrap MS/MS. *J. Proteome Res.* DOI: 10.1021/acs.jproteome.6b00154

31. Kisselev, A. F., and Goldberg, A. L. (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. *Methods Enzymol.* 398, 364–378

32. Kar, S., Palit, S., Ball, W. B., and Das, P. K. (2012) Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. *Apoptosis* 17, 735–747

33. Yeung, Y. G., and Stanley, E. R. (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. *Curr. Protoc. Protein Sci.* 16, 13.12.1–13.12.7

34. Wek, R. C., Jiang, H. Y., and Anthony, T. G. (2006) Coping with stress: an overview of the unfolded protein response. *Cold Spring Harb. Perspect. Biol.* 8, 1–11

35. Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/Bip as a monitor of endoplasmic reticulum stress. *Methods* 35, 373–381

36. Wacker, T., Ling, L. Y., and Anthony, T. G. (2006) Coping with stress: eIF2 kinases and translational control. *Biochem. Soc. Trans.* 34, 7–11

37. Yu, L., Andruska, N., Zheng, X., and Shapiro, D. J. (2016) Anticipatory activation of the unfolded protein response by epidermal growth factor is required for immediate early gene expression and cell proliferation. *Mol. Cell Endocr.* 422, 31–41

38. Andruska, N., Zheng, X., Yang, X., Helfrich, W. G., and Shapiro, D. J. (2015) Anticipatory estrogen activation of the unfolded protein response is linked to cell proliferation and poor survival in estrogen receptor alpha-positive breast cancer. *Oncogene* 34, 3760–3769

39. Shapiro, D. J., Livezy, M., Yu, L., Zheng, X., and Andruska, N. (2016) Anticipatory UPF Activation: A Protective Pathway and Target in Cancer. *Trends Endocrinol. Metab.* 27, 731–741

40. Yan, M., Li, G., Petiwala, S. M., Householter, E., and Johnson, J. J. (2015) Standardized rosemary (Rosmarinus officinalis) extract in-
duces Nr2f2/sestrin-2 pathway in colon cancer cells. J. Funct. Foods 13, 137–147

Wang, M., and Kaufman, R. J. (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581–597

Nevins, J. R. (2001) The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–702

Kim, M., Ju, H., Lim, B., and Kang, C. (2012) Maspin genetically and functionally associates with gastric cancer by regulating cell cycle progression. Carcinogenesis 33, 2344–2350

Malhotra, S., Lapointe, J., Salari, K., Higgins, J. P., Ferrari, M., Montegomery, K., van de Rijin, M., Brooks, J. D., and Pollack, J. R. (2011) A tri-marker proliferation index predicts biochemical recurrence after surgery for prostate cancer. PLoS ONE 6, e20293

Liu, M., Huang, F., Zhang, D., Ju, J., Wu, X. B., Wang, Y., Wang, Y., Wu, Y., Nie, M., Li, Z., Ma, C., Chen, X., Zhou, J. Y., Tan, R., Yang, B. L., Zen, K., Zhang, C. Y., Chen, Y. G., and Zhao, Q. (2015) Heterochromatin protein HP1γ promotes colorectal cancer progression and is regulated by miR-30a. Cancer Res. 75, 4593–4604

Huang, M. C., Chen, H. Y., Huang, H. C., Huang, J., Liang, J. T., Shen, T. L., Lin, N. Y., Ho, C. C., Cho, I. M., and Hsu, S. M. (2006) C2GFT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene 25, 3267–3276

González-Vallinas, M., Molina, S., Vicente, G., Zarza, V., Martín-Hernández, R., García-Risco, M. R., Fornari, T., Reglero, G., and Ramírez de Rozas, J. (2014) Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer. PLoS ONE 9, e89556

Xu, X., Tian, Y., Yuan, X., Wu, H., Liu, Q., Pestell, R. G., and Wu, K. (2015) The role of CD44 in epithelial-mesenchymal transition and cancer cell development. Onco Targets Ther. 8, 3783–3792

Ishimoto, T., Nagano, O., Yae, T., Tamada, M., Motohara, T., Oshima, H., Oshima, M., Ikeda, T., Asaba, R., Yagi, H., Masuko, T., Shimizu, T., Ishikawa, T., Kai, K., Takahashi, E., Imamura, Y., Baba, Y., Ohmura, M., Suenatsu, M., Baba, H., and Saya, H. (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xC- and thereby promoting cancer cell growth. Cancer Cell 19, 387–400

Bara, J., Chastre, E., Mahiou, J., Singh, R. L., Forgue-Laflitte, M. E., Hollande, E., and Godeau, F. (1998) Gastric M1 mucin, an early oncofetal marker of colon carcinogenesis, is encoded by the MUC5AC gene. Int. J. Cancer 75, 767–773

Truant, S., Bruyneel, E., Gouyer, V., De Wever, O., Pruvot, F. R., Mareel, M., and Huet, G. (2003) Requirement of both mucins and proteoglycans in cell adhesion processes: effects of rosiglitazone treatment. J. Biol. Chem. 278, 44316–44325

Nevins, J. R. (2001) The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–702

Kwak, M. K., Cho, J. M., Huang, B., Shin, S., and Kensler, T. W. (2007) BH3 Profiling Identifies Three Distinct Classes of Apoptotic Block Predicts to Predict Response to ABT-737 and Conventional Chemotherapy in Cancer Cell 12, 171–185

Shen, M., Schmitt, S., Buac, D., and Dou, Q. P. (2013) Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin. Ther. Targets 17, 1091–1108

Coupé, O., Tanaka, K., and Goldberg, A. L. (1996) Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847

Adams, J. (2002) Proteasome inhibition: a novel approach to cancer therapy. Trends Mol. Med. 8, 549–555

An, B., Goldfarb, R. H., Simon, R., and Dou, Q. P. (1998) Novel dipeptidyl protease inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ. 5, 1062–1075

Lopes, U. G., Erhardt, P., Yao, R., and Cooper, G. M. (1997) p53-dependent induction of apoptosis by proteasome inhibitors. J. Biol. Chem. 272, 12894–12898

Nam, S., Smith, D. M., and Dou, Q. P. (2001) Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiol. Biomarkers Prev. 10, 1083–1088

Wada, M., Kosaka, M., Saito, S., Tanaka, K., and Ichihara, A. (1993) Serum concentration and localization in tumor cells of proteasome inhibitors in patients with hematologic malignancy and their pathophysiology. J. Clin. Cancer Med. 12, 215–231

Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., Tachikawa, T., Shin, S., and Ichihara, A. (1990) Abnormally high expression of proteasomes in human leukemic cells. Proc. Natl. Acad. Sci. U.S.A. 87, 7071–7075

Kisselev, A. F., and Goldberg, A. L. (2001) Proteasome inhibitors: from discovery to clinical candidates. Chem. Biol. 8, 739–758

Afjehi-Sadat, L., Gruber-Olipitz, M., Felizardo, M., Slavc, I., and Lubeck, G. (2004) Expression of proteasomal proteins in ten different tumor cell lines. Amino Acids 27, 129–140

Ishibashi, Y., Hanyu, N., Suzuki, Y., Yanai, S., Tashiro, K., Usaba, T., Iwabuchi, S., Takahashi, T., Takada, K., Ohkawa, K., Urashima, M., and Yanaga, K. (2004) Quantitative analysis of free ubiquitin and ubiquitin chain in colorectal cancer. Cancer Lett. 211, 111–117

Marfella, R., D’Amico, M., Esposito, K., Baldi, A., Di Filippo, C., Siniscalchi, M., Sasso, F. C., Portoghese, M., Cirillo, F., Cacciapuoti, F., Carbonara, O., Crescenzi, B., Baldi, F., Ceriello, A., Nicoletti, G. F., D’Andrea, F., Verza, M., Coppola, L. R., Rossi, F., and Giugliano, D. (2006) The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes 55, 622–632

Deng, J., Carlson, N., Takeyama, K., Dai Cin, P., Shipp, M., and Letai, A. (2012) BH3 Profiling Identifies Three Distinct Classes of Apoptotic

Radhakrishnan, S. K., den Besten, W., and Deshaies, R. J. (2014) p97-dependent retrotranslocation and proteolytic processing govern formation of active Nr1f1 upon proteasome inhibition. Elife 3, e01856

Dou, Q. P., and Li, B. (1999) Proteasome inhibitors as potential novel anticancer agents. Drug Resist. Updat. 2, 215–223

Gottschalk, S., Wickner, S., and Mauritz, M. R. (1997) Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823

Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555

Kazi, A., Daniel, K. G., Smith, D. M., Kumar, N. B., and Dou, Q. P. (2003) Inhibition of the proteasome activity, a novel mechanism associated

Molecular & Cellular Proteomics 16.1
with the tumor cell apoptosis-inducing ability of genistein. Biochem. Pharmacol. 66, 965–976
92. Landis-Piwowar, K. R., Milacic, V., Chen, D., Yang, H., Zhao, Y., Chan, T. H., Yan, B., and Dou, Q. P. (2006) The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist. Updat. 9, 263–273
93. Shen, M., Chan, T. H., and Dou, Q. P. (2012) Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer Agents Med. Chem. 12, 891–901
94. Chen, D., Daniel, K. G., Chen, M. S., Kuhn, D. J., Landis-Piwowar, K. R., and Dou, Q. P. (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69, 1421–1432
95. Shim, S. H. (2011) 20S proteasome inhibitory activity of flavonoids isolated from Spatholobus suberectus. Phytother. Res. 25, 615–618
96. Dick, L. R., Cruikshank, A. A., Destree, A. T., Grenier, L., McCormack, T. A., Melandri, F. D., Nunes, S. L., Palombella, V. J., Parent, L. A., Plamondon, L., and Stein, R. L. (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272, 182–188
97. Nam, S., Smith, D. M., and Dou, Q. P. (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J. Biol. Chem. 276, 13322–13330
98. Akerfelt, M., Trouillet, D., Mezger, V., and Sistonen, L. (2007) Heat shock factors at a crossroad between stress and development. Ann. N.Y. Acad. Sci. 1113, 15–27
99. Qi, W., White, M. C., Choi, W., Guo, C., Dinney, C., McConkey, D. J., and Siefker-Radtke, A. (2013) Inhibition of inducible heat shock protein-70 (hsp72) enhances bortezomib-induced cell death in human bladder cancer cells. PLoS ONE 8, e69509
100. Shah, S. P., Lonal, S., and Boise, L. H. (2015) When Cancer Fights Back: Multiple Myeloma, Proteasome Inhibition, and the Heat-Shock Response. Mol. Cancer Res. 13, 1163–1173