Supplementary material: Early carbonatite magmatism at Oldoinyo Lengai volcano (Tanzania): carbonatite–silicate melt immiscibility in Lengai I melt inclusions

Lydéric France*, a, Florian Brouillet a, b and Sarah Lang a, c

a Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France
b School of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
c Department of Earth Sciences, Sapienza - University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy

E-mails: lyderic.france@univ-lorraine.fr (L. France), fcgb1@st-andrews.ac.uk (F. Brouillet), sarah.lang@uniroma1.it (S. Lang)

* Corresponding author.
Supplementary Table S1. Bulk-rock measurements for the two phonolite lava flows studied herein. See methods section for further details

Bulk-rock measurements	Measurement no	1901739	1901740
Sample	Unit	14TG18b	14TG05B
SiO₂ (%)	46.88	50.76	
Al₂O₃ (%)	16.81	17.25	
Fe₂O₃t (%)	7.78	7.34	
MnO (%)	0.24	0.21	
MgO (%)	1.02	1.26	
CaO (%)	5.69	5.30	
Na₂O (%)	10.04	9.40	
K₂O (%)	5.00	4.75	
TiO₂ (%)	1.10	1.20	
P₂O₅ (%)	0.28	0.54	
LOI (%)	5.21	2.27	
Total (%)	100.04	100.27	
CO₂ total (%)	1.05	0.19	
FeO (%)	1.48	2.07	
S total (%)	0.03	0.02	
F (%)	0.19	0.13	
B (ppm)	4.9	3.1	
Cl (ppm)	1790	2770	
Li (ppm)	38.5	24.1	
As (ppm)	0.99	0.67	
Ba (ppm)	1404	1444	
Be (ppm)	8.96	7.01	
Bi (ppm)	0.13	0.05	
Cd (ppm)	0.35	0.25	
Co (ppm)	8.45	9.29	
Cr (ppm)	5.8	3.4	
Cs (ppm)	0.83	1.34	
Cu (ppm)	15.9	13.5	
Ga (ppm)	27.9	29.0	
Ge (ppm)	1.31	1.70	
Hf (ppm)	9.18	10.7	
In (ppm)	0.05	0.06	
Mo (ppm)	1.12	1.18	
Nb (ppm)	147	149	

Bulk-rock measurements	Measurement no	1901739	1901740
Sample	Unit	14TG18b	14TG05B
Ni (ppm)	3.1	2.4	
Pb (ppm)	50.8	15.0	
Rb (ppm)	89.5	116	
Sb (ppm)	0.33	0.38	
Sc (ppm)	1.47	1.96	
Sn (ppm)	2.01	2.42	
Sr (ppm)	2049	1970	
Ta (ppm)	3.89	7.38	
Th (ppm)	21.0	21.4	
U (ppm)	4.17	3.10	
V (ppm)	148	103	
Y (ppm)	36.4	29.7	
Zn (ppm)	197	158	
Zr (ppm)	553	605	
La (ppm)	129	124	
Ce (ppm)	182	225	
Pr (ppm)	18.5	21.4	
Nd (ppm)	60.1	73.5	
Sm (ppm)	9.73	11.4	
Eu (ppm)	2.95	3.32	
Gd (ppm)	8.03	8.52	
Tb (ppm)	1.16	1.12	
Dy (ppm)	6.69	6.03	
Ho (ppm)	1.31	1.10	
Er (ppm)	3.40	2.81	
Tm (ppm)	0.481	0.401	
Yb (ppm)	2.94	2.55	
Lu (ppm)	0.397	0.369	