Deep sequencing of \textit{SMPD1} gene revealed a heterozygous frameshift mutation (p.Ser192Alafs) in a Palestinian infant with Niemann–Pick disease type A: a case report

Abedelmajeed Nasereddin1,2*, and Suheir Ereqat3

\textbf{Abstract}

\textbf{Background:} Niemann–Pick disease is caused by reduced level of the lysosomal enzyme acid sphingomyelinase. Children can survive between 2 and 12 years based on the disease type. Two main types are well known: type A and B. Niemann–Pick disease type A is characterized by severe central nervous system deterioration and hepatosplenomegaly while type B is a progressive hypersplenism accompanied with gradual deterioration of pulmonary function.

\textbf{Case presentation:} We describe an 11-month-old Palestinian baby boy with hepatosplenomegaly, hypotonia, delayed motor development, laryngomalacia, bilateral cherry-red spots, and failure to thrive. Metabolic screening, blood count, differential tests, immunology screen, infectious disease screen, urine, biochemical tests as well as molecular diagnosis were performed. The molecular diagnosis was done by amplifying the whole sphingomyelin phosphodiesterase 1 (\textit{SMPD1}) gene, followed by deep sequencing. The obtained sequences were aligned, \textit{de novo} assembled and compared to human reference gene (GenBank GeneID: NG_011780.1, Ensembl version ENSG00000166311 and protein identified as UniProtKB–P17405).

Two known mutations were identified in our patient: the pathogenic frameshift mutation NM_000543.4(SMPD1):c.573delT (p.Ser192Alafs) and the benign polymorphism NM_000543.4(SMPD1):c.107T>C (p.Val36Ala). The enzyme study showed a very low level of enzymatic activity of acidic sphingomyelinase (0.1 nmol/ml per hour). Correlations between clinical findings, laboratory data, and sequence analysis are presented.

\textbf{Conclusions:} In conclusion, this is the first report about a heterozygote frameshift p.Ser192AlafsX65 in a Palestinian patient with Niemann–Pick disease type A, emphasizing the importance of deep sequencing in genetic diagnosis of this rare inherited disease.

\textbf{Keywords:} Sphingomyelinase deficiency, Niemann–Pick disease type A, Mutation, Palestinian child.
The use of advanced technology, for example, next-generation sequencing (NGS), plays a crucial role in sensitive and accurate diagnostic procedures including heterozygote identification, whereas searches for a specific point mutation using Sanger sequencing or enzymatic assays have a limited sensitivity, when compared to NGS. Thus, NGS is recommended for simultaneous mutation detection in multiple exons/introns. Conley and Casanova [4] described the use of NGS in identifying more than 34 new gene defects in autosomal dominant immunodeficiencies with variable penetrance, and revealed de novo mutations in disorders with a severe phenotype. This method was a powerful tool in identifying disease-causing gene mutations in different patients.

Recent developments in molecular biology have identified more than 100 mutations in SMPD1 found in patients with NPD type A/B, which are listed in the Human Gene Mutation Database (HGMD). Most of these mutations are missense (65.4%) or frameshift (19%) mutations. A deletion mutation NM_000543.4 (SMPD1):c.1829_1831delGCC(p.Arg610del) was considered the most frequent reported mutation worldwide, which was associated with an attenuated phenotype worldwide. This method was a powerful tool in identifying disease-causing gene mutations in patients with NPD type B. The p.Phe572Leu retained a residual enzymatic activity higher than 5% of wild type. Eleven of them were found in patients with NPD type B. The p.Phe572Leu retained a residual activity of 30% of wild type. This mutation was found in a patient with NPD type A with compound heterozygosity along with p.Gly247Ser mutation [6, 7]. Six mutations were reported to be associated with type A disease [8–11]. Of them, three mutations were identified in Jewish Ashkenazi patients where the disease is relatively frequent [8–11]. Gluck and colleagues [12] studied 12 Arab Israeli families with NPD type A disease who live in lower Galilee and the West Bank, Palestine. Molecular analysis of these patients identified a novel single base pair (bp) deletion in the SMPD1 gene 677delT [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene 677delT [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene 677delT [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene 677delT [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene [12]. In 1977 [13], NPD type A was identified a novel single base pair (bp) deletion in the SMPD1 gene [12].

Case presentation

An 11-month-old Palestinian baby boy presented with distended abdomen, hepatomegaly, and splenomegaly. On evaluation, his body weight was 8.2 kg (third percentile), height 76 cm, (75th percentile), and head circumference 45.8 cm (75th percentile). His parents are first-degree cousins; our patient has three female siblings. All are healthy of Arab Muslim descent, from Seer village-Qalqilya district, Palestine.

Full metabolic screening, blood count, differential tests, immunity screen, infectious disease screen, urine and biochemical tests, as well as amino acid screening were performed as shown in Table 1.

Deoxyribonucleic acid (DNA) extraction and deep sequence analysis

Genomic DNA was extracted from our patient and his mother’s blood using NucleoSpin® Blood DNA extraction method (MACHEREY-NAGEL, Germany). His father’s blood sample could not be analyzed due to inaccessibility. The entire SMPD1 gene including the exons and introns were sequenced by Sanger sequencing.

Table 1 Blood tests and laboratory analysis

Metabolic test	Unit	Result	Reference
Sphingomyelinase	nmol/mL per hour	0.1	≥2.5
Acid beta-glucosidase		22.8	≥1.8
Acid alpha-glucosidase		8.1	≥3
Galactocerebrosidase		1.4	≥0.4
Alpha-galactosidase		1.5	≥2.8
Alpha-l-iduronidase		9.5	≥2.0
C20 lysophosphatidylcholine	mcg/mL	0.39	≤1.00
C22 lysophosphatidylcholine		0.11	≤0.25
C24 lysophosphatidylcholine		0.11	≤0.30
C26 lysophosphatidylcholine		0.13	≤0.30
Free carnitine plasma	Umol/L	28	29–43
Total carnitine plasma		33	40–56
Aspartylglucoseamine urine		Normal	
Alpha mannosidosis urine		Normal	
Fucosidosis		Normal	
GM1 gangliosidosis		Normal	
Sialyloligosaccharide		Normal	
Sialic acid	u mol/mmol	86.6	<95.0
Creatinine	mmol/L	1.69	
Cholesterol total	mmol/L	4.84	1.15–4.70
HDL		0.16	0.91–2.12
LDL		3.07	≤2.59
Triglyceride		3.51	0.25–0.85
Cholesterol/HDL		30.25	≤4.5
Amino acids			
Methionine	Umol/L	63	18–40
Threonine		216	106–164
ALK phosphatase	IU/L	303	40–129
ALT		224	≤41
AST		220	≤40
CRP	mg/L	11.25	≤5

Not normal levels are in bold. ALK alkaline, ALT alanine aminotransferase, AST aspartate aminotransferase, CRP C-reactive protein, HDL high-density lipoprotein, LDL low-density lipoprotein.
Hyperlipidemia was evident, that is, high total cholesterol, low-density lipoprotein (LDL), and triglycerides, while high-density lipoprotein (HDL; 0.16 mmol/L) showed a lower level than normal (Table 1). Cholesterol/HDL ratio (30.25) was significantly high compared to the normal ratio (≤ 4.5).

Amino acid screening showed high level of methionine (63 Umol/L) and threonine (216 Umol/L). Serum alkaline (ALK) phosphatase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and C-reactive protein (CRP) were above normal limits (Table 1).

Metabolic screening
Several metabolic enzymes were tested and shown to be normal (Table 1). The alpha-galactosidase was slightly low but not in disease range.

Physiological oligosaccharide in urine does not evoke an oligosaccharidosis (Table 1). A sialic acid assay was conducted, and no increase of free N-acetylneuraminic acid (NANA) storage or excretion was noted, thus, Salla disease was excluded. Free and total plasma carnitine was examined, with slight decrease in free and total carnitine noticed. Sphingomyelinase activity showed remarkable reduction of 0.1 nmol/ml per hour (reference, > 2.5 nmol/ml per hour). Based on clinical findings and laboratory tests, our patient was diagnosed as having NPD. Hence, genetic analysis of SMPD1 gene sequence was needed to ascertain the pathogenic mutations underlying the molecular basis of this disease.

Deep sequencing of the whole SMPD1 gene
As expected, the amplified product of the two DNA samples (from our patient and his mother) showed bands of approximately 4276 bp using the two primers SMPD1-P1F and SMPD1-P4R (Fig. 1). The obtained DNA sequences were aligned, de novo assembled, and compared to the published gene sequence (GenBank GeneID: NG_011780.1, Ensembl version ENSG0000166311 and protein identified as UniProtKB – P17405). A DNA sequence of 4225 and 4229 bp was obtained from mother and patient samples, respectively. The whole gene showed depth of >3000X.

SMPD1 sequence analysis of the samples of our patient and his mother revealed the same two heterozygous mutations: a deletion of one base, thymidine, in exon 2 at position 573 of the coding sequence (Fig. 2a) and a substitution mutation at position 107 (T>C) in exon 1. The nucleotides were numbered according to reference sequence (GenBank GeneID: NG_011780.1, Ensembl version ENSG0000166311 and protein identified as UniProtKB – P17405). The NGS identified four sequence variants: single nucleotide polymorphism (SNP) 579C/T was detected in variant 1. Variant 2 was shown to be normal and a frameshift c.573delT (NM_000543.4(SMPD1):c.573delT (p.Ser192Alafs) was detected in variant 3 (Fig. 2a and b).
The fourth variant was c.107 leading to conversion of valine to alanine at position 36 (NM_000543.4(SMPD1):c.107T>C (p.Val36Ala)). Notably, our patient and his mother shared these two variants as shown in Fig. 3a and b. To rule out the presence of other possible causal SMPD1 variants, nucleotide sequences of 863 and 408 bp upstream and downstream from the SMPD1 coding region were amplified using two sets of forward and reverse specific primers, followed by sequencing.

The primer sequences for the upstream and downstream flanking regions were: (smpd5_2F: CTCATCCCTTCGGTCTGTGT, smpd5_2R: GGACACCCGATTACCTTCTCT) and (Smpd_3F: AAGGGTGAAAAAGCCCAT, Smpd_3R: AAGATCTCCTTGCCCTGCT), respectively. DNA sequence analyses revealed no pathogenic variants in these regions.

Discussion and conclusions

Most of SMPD1 mutations are highly heterogeneous and found in compound heterozygosity mainly in single families. Thus, the genotype cannot be easily correlated with the phenotype. However, some assumptions can be made based on functional analysis of single mutants and for recurrent mutations found in homozygosity [5]. NPD type A was previously described in two studies in the Palestinian community. One study did not conduct a genetic investigation [13] whereas the second study reported a novel single nucleotide deletion 677delT in the SMPD1 gene in patients with NPD type A deriving from 12 Muslim Arab families [12]. These families live in Galilee and in the West Bank regions. In that study, the delT mutation resulted in a frameshift in the open reading frame and a premature termination at codon number 254 rather than the normal 629. This mutation corresponded to complete absence of sphingomyelinase activity explaining the severity of type A phenotype in these patients.
In our case study, there was a combination of hepatomegaly, elevated liver enzymes activity, and high levels of methionine and threonine with no lymphadenopathy underlying metabolic or hematological disorder [16, 17]. However, the reduced enzymatic activity of sphingomyelinase and hyperlipidemia confirmed the diagnosis of metabolic disease.

NGS has become increasingly common and cost-effective. Analysis of sequencing data is becoming crucial in clinical use in order to discover novel variants that may play a role in disease pathology. Applying direct deep sequencing for the SMPD1 gene with depth of >3000X for each nucleotide of approximately 5 kilo base pairs (kbp) was very efficient in our case. A previous analysis described the use of too many direct Sanger sequencings targeting the exons and the splicing sites of the introns which may increase the chance of DNA sequencing errors, as several rounds of amplifications and sequencing are needed [14].

Here we report on a case with abnormal clinical and laboratory findings of NPD type A in a heterozygous individual who carried only one pathogenic mutation in the SMPD1 gene (NM_000543.4(SMPD1):c.573delT (p.Ser192-Alafs) which is an unusual finding for an autosomal recessive disease. A similar condition was reported by Lee et al. [18] showing that some carrier individuals for ASM-deficiency exhibited clinical phenotypes of NPD type A. Moreover, Simonaro et al. [19] demonstrated that the SMPD1 gene is paternally imprinted and is preferentially expressed from the maternal chromosome and thus distinct clinical presentations were correlated with the amount of residual ASM activity expressed from the mutant maternal allele [14] as shown with p.His461Val mutation in patient number 8 in Zhang and colleagues’ [14] study. Although the father’s DNA of our case was not evaluated in this study, we predict, based on SMPD1 analysis of our patient’s mother’s sample, that the extremely deficient ASM (0.1 nmol/ml per hour) might be due to inheritance of a single, severe frameshift mutation (p.Ser192Alafs) on the preferentially expressed maternal chromosome. This mutation was first identified by Gluck and colleagues [12]; however, it has not been reported in the Arab population. This deletion leads to a new reading frame (p.Ser192AlafsX65) due to change of codon serine 192 to alanine creating a premature stop codon at position 65. Thus, loss of normal protein function due to protein truncation is expected. Unfortunately, the frameshift mutation p.Ser192AlafsX65 has not been expressed in vitro but its occurrence in homozygosity in patients with NPD type A strongly suggests its severity [5, 6].

The non-synonymous SNP c.107T>C (NM_000543.4(SMPD1):c.107T>C (p.Val36Ala)) was found in our patient and his mother. NM_000543.4(SMPD1):c.107T>C (p.Val36Ala) missense mutation was first reported in two Iranian patients of whom one was proved homozygous and the other heterozygous. In that study, bioinformatics analysis to predict protein stability of homozygous p.Val36Ala mutation caused reduction in ASM stability [20]. However, this non-synonymous SNP (rs1050228) is considered a benign polymorphism based on HGMD and ClinVar data. Another SNP (579C/T, refSNP: rs1477363633) was identified in our patient; however, this SNP did not affect the final amino acid product in the translation process.

The regulatory region upstream of the SMPD1 coding sequence, which contains putative promoter elements, and nucleotide sequence downstream from SMPD1 coding region were analyzed. No other pathogenic variants were found, confirming that the (p.Ser192Alafs) mutation is most likely to be responsible for the reduced ASM activity in our patient. Our findings are consistent with previous studies showing a deficiency in ASM enzyme activity in patients with NPD type A. However, in vitro studies are
still needed to confirm the functional effect of p.Ser192AlafsX65 mutation on catalytic activity, protein stability, and/or expression of ASM gene.

In conclusion, this is the first report about a heterozygote frameshift p.Ser192AlafsX65 in a Palestinian patient with NPD type A. The advanced technology used in this study facilitates the definition of disease-related mutations with whole gene coverage saving time and effort. Screening of this mutation in addition to the c.677delT mutation, which was previously reported in Palestinian patients, should be considered in any local NPD preventive program. This is of particular importance to identify heterozygotes in high-risk families since consanguineous marriages are customary practice in our region. Genetic counseling and prenatal diagnosis would be of considerable value for future family planning.

Acknowledgements
We thank the patient and his mother for giving consent for publication. The authors would like to thank Dr Arthur Saniotis, Al-Quds University for proof-reading and revising our manuscript.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Authors’ contributions
AN and SE wrote the manuscript, coordinated the research, performed the experiments, and analyzed the data. Both authors read and approved the final manuscript.

Ethics approval and consent to participate
The study protocol was approved by the ethics committee of Al-Quds University Ref. no. 25/REC/2017.

Consent for publication
Written informed consent was obtained from the patient’s legal guardian(s) for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Al-Quds Nutrition and Health Research Institute, Faculty of Medicine-Al-Quds University, P.O. Box 20760, Abu-Di-Est East Jerusalem, Palestine. 2 Genomics Applications Lab, The Core Research Facility, Faculty of Medicine, The Hebrew University, Jerusalem, Israel. 3 Biochemistry and Molecular Biology Department, Faculty of Medicine-Al-Quds University, Abu Dis-East Jerusalem, Palestine.

Received: 10 April 2018 Accepted: 16 August 2018
Published online: 18 September 2018

References
1. Schuchman EH, Wassef MP. Types A and B Niemann-Pick disease. Pediatr Endocrinol Rev. 2016;13(Suppl):1164–81.
2. Schuchman EH, Wassef MP. Types A and B Niemann-Pick disease. Best Pract Res Clin Endocrinol Metab. 2015;29(2):237–47.
3. Schuchman EH, Desnick RJ. Types A and B Niemann-Pick disease. Mol Genet Metab. 2017;120(1–2):27–33.
4. Corley ME, Casanova JL. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol. 2014;30:17–23.
5. Zampieri S, et al. SMPD1 mutation update: database and comprehensive analysis of published and novel variants. Hum Mutat. 2016;37(2):139–47.
6. Dardis A, et al. Functional in vitro characterization of 14 SMPD1 mutations identified in Italian patients affected by Niemann-Pick type B disease. Hum Mutat. 2005;26(2):164.
7. Toth B, et al. Molecular genetic characterization of novel sphingomyelin phosphodiesterase 1 mutations causing Niemann-Pick disease. JIMD Rep. 2012;1:125–9.
8. Levran O, Desnick RJ, Schuchman EH. Type A Niemann-Pick disease: a frameshift mutation in the acid sphingomyelinase gene (c.677delT) occurs in Ashkenazi Jewish patients. Hum Mutat. 1993;2(4):317–9.
9. Levran O, Desnick RJ, Schuchman EH. Identification and expression of a common missense mutation (L302P) in the acid sphingomyelinase gene of Ashkenazi Jewish type A Niemann-Pick disease patients. Blood. 1992;80(8):2081–7.
10. Levran O, Desnick RJ, Schuchman EH. Niemann-Pick type B disease. Identification of a single codon deletion in the acid sphingomyelinase gene and genotype/phenotype correlations in type A and B patients. J Clin Invest. 1991;88(3):806–10.
11. Levran O, Desnick RJ, Schuchman EH. Niemann-Pick disease: a frequent missense mutation in the acid sphingomyelinase gene of Ashkenazi Jewish type A and B patients. Proc Natl Acad Sci U S A. 1991;88(8):3748–52.
12. Gluck L, et al. Niemann Pick disease type A in Israeli Arabs: 677delT, a common novel single mutation. Mutations in brief no. 161. Online. Hum Mutat. 1998;12(2):136.
13. Zelkovic I, et al. Type A Niemann-Pick disease in a female Arab infant. Harefuah. 1977;93(9):239–42.
14. Zhang H, et al. Identification of a distinct mutation spectrum in the SMPD1 gene of Chinese patients with acid sphingomyelinase-deficient Niemann-Pick disease. Orphanet J Rare Dis. 2013;8:15.
15. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16(22):10881–90.
16. Grasso Y, et al. A novel missense SMPD1 gene mutation, T460P, and clinical findings in a patient with Niemann-Pick disease type B presenting to a lipid disorders clinic. Ann Clin Biochem. 2014;51(Pt 5):615–8.
17. McGovern MM, et al. Lipid abnormalities in children with types A and B Niemann-Pick disease. J Pediatr. 2004;145(1):177–81.
18. Lee CY, et al. Compound heterozygosity at the sphingomyelin phosphodiesterase-1 (SMPD1) gene is associated with low HDL cholesterol. Hum Genet. 2003;112(5–6):552–62.
19. Simonaro CM, et al. Imprinting at the SMPD1 locus: implications for acid sphingomyelinase-deficient Niemann-Pick disease. Am J Hum Genet. 2006;78(5):865–70.
20. Manshadi MD, et al. Four novel p.N385K, p.V36A, c.1033-1034insT and c.1417-1418delCT mutations in the sphingomyelin Phosphodiesterase 1 (SMPD1) gene in patients with types A and B Niemann-Pick disease (NPD). Int J Mol Sci. 2015;16(4):6668–76.