Low-energy 6He scattering in a microscopic model

P. Descouvemont1

1Physique Nucléaire Théorique et Physique Mathématique, C.P. 229,
Université Libre de Bruxelles (ULB), B 1050 Brussels, Belgium

A microscopic version of the Continuum Discretized Coupled Channel (CDCC) method is used to investigate 6He scattering on 27Al, 58Ni, 120Sn, and 208Pb at energies around the Coulomb barrier. The 6He nucleus is described by an antisymmetric 6-nucleon wave function, defined in the Resonating Group Method. The 6He continuum is simulated by square-integrable positive-energy states. The model is based on well known nucleon-target potentials, and is therefore does not depend on any adjustable parameter. I show that experimental elastic cross sections are fairly well reproduced. The calculation suggests that breakup effects increase for high target masses. For a light system such as 6He+27Al, breakup effects are small, and a single-channel approximation provides fair results. This property is explained by a very simple model, based on the sharp-cut-off approximation for the scattering matrix. I also investigate the 6He-target optical potentials, which confirm that breakup channels are more and more important when the mass increases. At large distances, polarization effects increase the Coulomb barrier, and provide a long-tail absorption component in the imaginary part of the nucleus-nucleus interaction.

I. INTRODUCTION

The 6He nucleus is the lightest exotic bound system. Owing to its low separation energy ($S_{6\alpha} = -0.973$ MeV), 6He presents a large radius (2.33 ± 0.04 fm) compared to the α particle (1.63 ± 0.03 fm) [1]. These observations naturally lead to consider 6He as a halo nucleus, where the α core is surrounded by two neutrons [2]. This halo structure also exists in other exotic nuclei, such as 11Li, 11Be or 14Be, but the strong binding energy of the α core makes 6He a particularly good candidate for precise theoretical models.

Since the 90’s, the availability of radioactive beams provided a rich information on the structure and properties of exotic nuclei [3, 4]. The first experiments essentially focused on reaction cross sections at high energies (see, for example, Ref. [5]). From simple semiclassical models, the radius of the projectile can be deduced from reaction cross sections [6]. These high-energy experiments have been complemented by breakup cross sections, providing E1 strength distributions. In most neutron-rich light nuclei, these E1 distributions present a peak at low energies [7].

More recently, several radioactive-beam experiments were devoted to elastic scattering at low energies, i.e. at energies around the Coulomb barrier. Typical examples are scattering experiments involving 6He, 8Li or 11Li (see references in Ref. [8]). The main purpose of these data is to provide information on the projectile structure through a reaction model. In this context, the traditional optical model presents several shortcomings, since the structure of the colliding nuclei is neglected. Although optical-model calculations may provide some information on the range of the nucleus-nucleus interaction, they are of limited use to derive properties of the projectile.

A significant step forward is provided by the CDCC (Coupled Channel Discretized Continuum) method [9, 10], where the structure of the projectile is taken into account. The CDCC formalism has been initially developed to investigate deuteron-induced reactions [9]. Although the deuteron is not considered as an exotic nucleus, its low binding energy ($B = 2.22$ MeV) makes breakup channels quite important, even for elastic scattering. In the CDCC model, the projectile breakup is simulated by a discrete number of approximate continuum states. This technique permits a strong improvement in the description of deuteron-nucleus cross sections.

In parallel with the development of radioactive beams, the CDCC theory has been abundantly used. The low binding energy of exotic nuclei makes CDCC an efficient tool, well appropriate to halo nuclei. Three-body CDCC calculations (i.e. where the projectile is defined in terms of two clusters) have been performed on systems involving various projectiles, such as 8B [11], 11Be [12] or 17F [13]. The main steps in CDCC calculations are: (1) the determination of the projectile wave functions, including approximate continuum states, referred to as pseudostates; (2) the calculation of the projectile-target coupling potentials; (3) the resolution of the coupled-channel system; (4) from the scattering matrices and/or from the wave functions, the calculation of the various cross sections (elastic scattering, breakup, fusion, etc).

The application of CDCC to three-body projectiles (i.e., to four-body systems) is, in principle, straightforward, as the calculations follow the same procedure as for two-body projectiles. In practice, however, CDCC calculations involving three-body projectiles are much more demanding. A three-body model for the projectile is obviously more complicated than a two-body model, and the level density in the continuum is much higher, leading to coupled-channel systems involving many equations (see, for example, Ref. [14]). The first application was performed on the 6He+208Bi elastic scattering [15]. Later, other reactions involving 6He [15], 9Be [14] or 11Li [16] were analyzed with $a+n+n$, $a+a+n$ or 9Li+$n+n$ descriptions of the projectile. In most cases, breakup channels play a crucial role to describe elastic scattering. Even if the ground state wave function of the projectile
accurately reproduces the halo structure, single-channel calculations are in general not able to account for the experimental scattering cross sections.

This traditional CDCC approach, where the projectile is described by a two- or by a three-body structure, faces two major problems: (1) for complex projectiles, such as ^{11}Li, the three-body model is a rather strong approximation, since it neglects the structure of the core; (2) more important, optical potentials between the target and each constituent of the projectile are often unknown, and crude approximations are sometimes necessary. These problems have been recently addressed by using a microscopic description of the projectile (MCDCC, see Refs. [17, 18]). In the MCDCC approach, the projectile wave functions are obtained from a nucleon-nucleon interaction. To describe the scattering process, only nucleon-target optical potentials are necessary. These potentials are well known over a broad range of masses and energies. A first application was performed on the ^7Li system, where it was shown that the MCDCC provides an excellent description of elastic and inelastic scattering, without any adjustable parameter. In that calculation, the 7-body wave functions of ^7Li are defined in a microscopic $\alpha+t$ cluster approximation, which has been tested on many spectroscopic and scattering properties [19].

Our aim in the present work is to extend the MCDCC to the ^6He three-cluster projectile. In the spirit of Ref. [17], I use microscopic ^6He cluster wave functions, with an exact antisymmetrization between the six nucleons. The availability of ^6He microscopic wave functions is recent [20, 21], and provides an excellent opportunity to improve the theoretical description of ^6He scattering. I will consider four systems ($^6\text{He}+^{27}\text{Al}$, $^6\text{He}+^{58}\text{Ni}$, $^6\text{He}+^{120}\text{Sn}$, and $^6\text{He}+^{208}\text{Pb}$) covering a wide range of target masses, and which have been investigated in various experiments. The present model offers the possibility of a common study with identical conditions of calculations except, of course, in the nucleon-target interaction. The ^6He nucleus is a typical three-body system, and is fairly simple since the core is an α particle, known to be strongly bound and with a spin 0^+. General conclusions drawn here can be, at least partly, extended to other weakly bound three-body systems, such as ^{11}Li or ^{14}Be, which are more difficult to describe in a microscopic approach.

An interesting issue that will be also addressed is the $^6\text{He}+\text{target}$ potential. This has been discussed in the past [22], and the conclusions are still controversial [8]. It is now accepted that single-channel calculations, using standard $^6\text{He}+\text{target}$ potentials, are not able to reproduce experimental data on elastic scattering, and that breakup channels cannot be neglected. Deducing equivalent potentials [23], including breakup effects, should bring a valuable information on the nature of the $^6\text{He}+\text{target}$ interaction, and more generally, of the interaction involving exotic nuclei.

In Sec. II, I briefly present the microscopic description of ^6He. Section III describes the MCDCC formalism. In Sec. IV, I discuss the application to the $^6\text{He}+^{27}\text{Al}$, $^6\text{He}+^{58}\text{Ni}$, $^6\text{He}+^{120}\text{Sn}$ and $^6\text{He}+^{208}\text{Pb}$ elastic scattering. I also try to derive general trends of the ^6He-target interaction, derived from the MCDCC. In particular, I discuss the role of the halo structure and of breakup in the ^6He scattering. Conclusions and outlook are presented in Sec. V.

II. MICROSCOPIC CLUSTER DESCRIPTION OF ^6He

The Schrödinger equation associated with ^6He in a partial wave with spin jm and parity π reads

$$H_0 \Psi_{jm\pi}^{(k)} = E_{jm\pi}^{(k)} \Psi_{jm\pi}^{(k)},$$

(1)

where label k refers to the excitation level. The 6-body Hamiltonian H_0 is given by

$$H_0 = \sum_{i=1}^{6} T_i + \sum_{i<j=1}^{6} (V^{N}_{ij} + V^{C}_{ij}),$$

(2)

where T_i is the kinetic energy of nucleon i, and V^{N}_{ij} and V^{C}_{ij} are the nuclear and Coulomb interactions between nucleons i and j. The nuclear term is taken as the Minnesota potential [24], involving the exchange parameter u, and complemented by a zero-range spin-orbit force [25].

Equation (1) is solved by using the cluster approximation. In other words, the ^6He nucleus is represented by a six-body wave function, but approximated by an α core and two neutrons. This leads to the Resonating Group Method (RGM, see Refs. [25, 26]) wave function

$$\Psi_{jm\pi}^{(k)} = A \sum_{\gamma} \sum_{K=0}^{\infty} \phi_{\alpha} \left[\phi_{\alpha} \otimes \phi_{\pi} \right] S \otimes Y_{\ell_x,\ell_y, K} (\Omega_\rho) \chi_{(k)\gamma K}^{(m\pi)},$$

(3)

where I use the hyperspherical formalism with ρ as hyper-radius [20, 27]. In Eq. (3), A is the six-nucleon antisymmetrizer, ϕ_{α} is a $\{0s\}^3$ shell-model wave function of the α particle, and ϕ_{π} is a spinor associated with the neutrons. The total spin $S = 0, 1$ results from the coupling of the neutron spins, and the total angular momentum ℓ from the coupling of the angular momenta ℓ_x and ℓ_y, associated with the Jacobi coordinates x and y. Index γ stands for $\gamma = (\ell_x, \ell_y, \ell, S)$, and the hypermoment K runs from zero to infinity. In practice a truncation value K_{max} is adopted. The hyperspherical functions $Y_{\ell_x,\ell_y, K} (\Omega_\rho)$ are well known (see, for example, Ref. [27]), and depend on five angles $\Omega_\rho = (\Omega_x, \Omega_y, \alpha)$, where α is the hyperangle. The hyperradial functions $\chi_{(k)\gamma K}^{(m\pi)}$ are to be determined from the Schrödinger equation (1).

As for two-cluster systems, the RGM definition clearly displays the physical interpretation of the cluster approximation. In practice, however, using the Generator Coordinate Method (GCM) wave functions is equivalent, and
is more appropriate to systematic numerical calculations [25]. In the GCM, the wave function (3) is equivalently written as

$$
\Psi_{(k)}^{j_m \pi} = \sum_{\gamma, K} \int dR f^{j_m \pi}_{(k) \gamma K}(R) \Phi^{j_m \pi}_{\gamma K}(R),
$$

(4)

where R is the generator coordinate, $\Phi^{j_m \pi}_{\gamma K}(R)$ are projected Slater determinants, and $f^{j_m \pi}_{(k) \gamma K}(R)$ are the generator functions (see Ref. [25] for more detail). In practice, the integral is replaced by a sum over a finite set of R values (typically 10 values are chosen).

After discretization of (4), the generator functions are obtained from the eigenvalue problem, known as the Hill-Wheeler equation,

$$
\sum_{\gamma, K} \left[H_{\gamma K, \gamma' K'}^{j_m \pi}(R_n, R_{n'}) - E_{(k)}^{j_m \pi} N_{\gamma K, \gamma' K'}^{j_m \pi}(R_n, R_{n'}) \right] \times f^{j_m \pi}_{(k) \gamma K}(R_n) = 0,
$$

(5)

where the Hamiltonian and overlap kernels are obtained from 7-dimension integrals involving matrix elements between Slater determinants. These matrix elements are computed with Brink's formula [28], and the main part of the numerical calculations is devoted to the multidimension integrals (see Refs. [20, 25] for detail).

In addition to the overlap and Hamiltonian kernels

$$
N_{\gamma K, \gamma' K'}^{j_m \pi}(R_n, R_{n'}) = \langle \Phi^{j_m \pi}_{\gamma K}(R_n) | \Phi^{j_m \pi}_{\gamma' K'}(R_{n'}) \rangle
$$

$$
H_{\gamma K, \gamma' K'}^{j_m \pi}(R_n, R_{n'}) = \langle \Phi^{j_m \pi}_{\gamma K}(R_n) | H | \Phi^{j_m \pi}_{\gamma' K'}(R_{n'}) \rangle,
$$

(6)

I also need matrix elements of the densities

$$
\rho_{\gamma r, \gamma' r'}^{j_m \pi, j_m' \pi'}(r, R_n, R_{n'}) = \langle \Phi^{j_m \pi}_{\gamma K}(R_n) | \sum_i \left(\frac{1}{2} \pm t_i \right) \delta(r - r_i) | \Phi^{j_m' \pi'}_{\gamma' K'}(R_{n'}) \rangle,
$$

(7)

where t_i is the isospin of nucleon i, and where the $+$ and $-$ signs correspond to the neutron and proton densities, respectively. These matrix elements are computed as explained in Ref. [29]. The proton and neutron densities are defined as

$$
\rho_{p, k'}^{j_m \pi, j_m' \pi'}(r) = \langle \Psi^{j_m \pi}_{(k)} | \sum_i \left(\frac{1}{2} \pm t_i \right) \delta(r - r_i) | \Psi^{j_m' \pi'}_{(k')} \rangle,
$$

(8)

and are determined from the generator functions and from the matrix elements (7). The sign $+$ correspond to proton (p) density, and the sign $-$ to the neutron (n) density. The densities are necessary to compute the 6He-target coupling potentials (see Sec. III). They are expanded in multipoles [29, 30] as

$$
\rho_{p, k'}^{j_m \pi, j_m' \pi'}(r) = \sum_{\lambda} \langle j' m' \lambda m - m' j m | \rho_{p, k, k'}^{j_m \pi, j_m' \pi'}(r) \rangle \times \frac{1}{2} \sum_{m} \langle \Omega_{r} | Y_{\lambda m - m' \lambda m}(\Omega_{r}) \rangle \chi_{\lambda m - m' \lambda m}(\Omega_{r}),
$$

(9)

and the normalization is such that

$$
\int \rho_{p, k}^{j_m \pi, j_m \pi}(r) dr = Z \text{ or } N. \tag{10}
$$

For the sake of clarity in the notations, I do not explicitly write indices p and n for the proton and neutron densities, respectively.

As usual in CDCC calculations, the continuum of the projectile is simulated by positive-energy wave functions, referred to as pseudostates. In other words, k values corresponding to $E^{p}_{(k)} < 0$ are physical states (for 6He only the ground state is bound), and k values corresponding to $E^{p}_{(k)} > 0$ are associated with pseudostates (or with narrow resonances).

III. OUTLINE OF THE MCDCC

The MCDCC has been presented in Refs. [17, 18] for two-cluster projectiles. I give here a brief outline, by emphasizing specificities of three-cluster projectiles. For a system involving a projectile associated with H_0 [see Eq. (1)], the total Hamiltonian is defined by

$$
H = H_0(r_i) + T_R + \sum_i v_{iT}(r_i - R),
$$

(11)

where r_i are the internal coordinates of the projectile, and R is the projectile-target relative coordinate. In the isospin formalism, the interaction between nucleon i and the target T reads

$$
v_{iT}(s) = (\frac{1}{2} - t_{i z}) \left[\frac{1}{2} I_{iT}e^{2} \right] + \left(\frac{1}{2} + t_{i z} \right) v_{iT}(s),
$$

(12)

where $Z_T e$ is the charge of the target, and $v_{iT}(s)$ and $v_{iT}(s)$ are proton and neutron optical potentials, respectively. Their imaginary parts simulate the excitation of the target.

In the CDCC formalism, the total wave function, associated with Hamiltonian (11) is expanded as

$$
\Psi^{JM \pi}(R) = \sum_{jL} \varphi_{jL}^{JM \pi}(\Omega_{R}, r_i) g_{jL}^{JM}(R),
$$

(13)

where J and π are the total angular momentum and parity, respectively. The channel functions are defined by

$$
\varphi_{jL}^{JM \pi}(\Omega_{R}, r_i) = i^L \left[\Psi_{(k)}^{J \pi}(r_i) \otimes Y_{L}(\Omega_{R}) \right]^{\gamma JM}_{jL}.
$$

(14)

In Eq. (13), the sums over k and j are truncated at a maximum energy E_{max}, and at a maximum angular momentum J_{max}, respectively (notice that I assume that the parity of the projectile is implied in J). The radial functions $g_{jL}^{JM}(R)$ (I use $c = (j, k, L)$) are given by the coupled-channel system

$$
(T_L + E_c - E) g_{jL}^{JM}(R) + \sum_c V_{c,c'}^{JM}(R) g_{c}^{JM}(R) = 0. (15)
$$
where E_c are the threshold energies, and where the kinetic operator is defined by

$$T_L = -\frac{\hbar^2}{2\mu_{PT}} \left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2} \right),$$

μ_{PT} being the reduced mass of the system.

The coupling potentials are given by the matrix elements

$$V^{J\pi}_{c,c'}(R) = \langle \varphi^{JM\pi}_c | \sum_r v_{IT}(r_i - R) | \varphi^{JM\pi}_{c'} \rangle.$$

The calculation is performed by Fourier transforms of the nucleon-target interaction, and of the GCM densities [31]. Technical details are provided in Ref. [32].

At large distances, i.e. when only the monopole Coulomb interaction remains in (17), the solutions of the coupled-channel system (15) are given by

$$g^{J\pi}_c(R) \rightarrow \begin{cases} v_c^{-1/2} \left(I_L(k_c r) \delta_{\omega 0} - O_L(k_c r) U_c^{J\pi} \right), & E > E_c \text{[18]} \\ A^2_c W_{-\omega,L+1/2}(2k_c r), & E < E_c \text{[33]}. \end{cases}$$

In these definitions, v_c and k_c are the velocity and wave number in channel c, and ω is the entrance channel. Functions $I_L(x)$ and $O_L(x)$ are the incoming and outgoing Coulomb functions [33], and $W_{-\omega,L+1/2}(x)$ is the Whittaker function [34]. Equations (18) define the scattering matrices $U^{J\pi}$, which are used to compute cross sections [35, 36]. System (15) is solved by the R-matrix technique, using a Lagrange basis [37, 38]. This method represents a useful tool to determine the scattering matrices, even for many-channel calculations. The elastic cross sections are then determined from standard formula [36].

IV. APPLICATION TO 6He SCATTERING

A. Conditions of the calculation

In the CDCC method, the first step before the cross section calculations is the determination of 6He wave functions (3, 4). I take $N = 8$ values for the generator coordinate associated with the hyperradius R ($R = 1.5$ fm to 12 fm by step of 1.5 fm). The parameters of the Minnesota interaction are $\alpha = 1.0045$ and $S_0 = 37$ MeV.fm5 which reproduce the 6He binding energy (-0.973 MeV) and the $\alpha + n$ phase shifts [39]. The oscillator parameter is chosen as $b = 1.36$ fm, a standard value for the α particle.

With these conditions, the matter and charge radii are computed as $\sqrt{<r^2>_m} = 2.35$ fm and $\sqrt{<r^2>_p} = 1.80$ fm. The matter radius is in excellent agreement with experiment (2.33±0.04 fm [1]). The charge radius has been measured with a high accuracy (2.054±0.014 fm), by using laser spectroscopy [40]. The RGM, as most cluster theories (see the discussion in Ref. [40]) slightly underestimates this value. Most likely the $t + t$ configuration might play a role to explain the experimental charge radius.

The proton and neutron monopole densities of the ground state are shown in Fig. 1 (for a spin $j = 0$, only the monopole term $\lambda = 0$ contributes to the expansion (10)). As expected, the neutron density presents a slow decrease at large distance, in agreement with the picture of a “neutron halo”. For comparison I also present in Fig. 1 the densities obtained in the Green’s-function Monte Carlo method with the Argonne v_{18} interaction [41]. The goal of the present work is not to focus on an optimal description of 6He. However, I have here a good opportunity to compare the densities of the ground state with those of an ab initio model. At large distances, the proton densities are slightly lower in the present model, as expected from the cluster approximation. However the neutron densities, accurately described by a cluster model, are very close to each other.

![FIG. 1. Proton (ρ_p) and neutron (ρ_n) monopole densities of the 6He ground state ($j\pi = 0^+, k = 1$ in Eq. (9)). The dashed lines represent densities obtained with the ab initio model of Ref. [41].](image-url)

The 6He spectrum for the $j = 0^+ - 3^-$ partial waves is shown in Fig. 2 up to 15 MeV. The only bound state is the 0^+ ground state. The 2^+ narrow resonance is predicted at an energy lower than experimentally, as already observed in previous calculations [20]. It was shown in Refs. [20, 21] that no narrow resonances are predicted in the $j = 1^-$ and $j = 3^-$ partial waves. All states in these partial waves therefore correspond to approximations of the continuum.

Notice that I only include 6He states with natural parity ($-)^j$. Other partial waves ($0^-, 1^+, 2^-, 3^+$) are not directly coupled to the ground state. They can be coupled only to partial waves with $j > 0$, and are therefore expected to play a negligible role. This will be discussed in the next subsection.
agreement is obtained from the agreement between theory and experiment, but a fair energy the convergence is slow, and using the low truncation energies close to the Coulomb barrier is well known \[43\]. Angular momenta up to \(j \) \(\approx 100 \)–\(150 \)). Many tests have been performed to check that all cross sections are numerically stable for small variations of these parameters.

I first analyze the convergence of the cross sections with the CDCC parameters \(j_{\text{max}} \) and \(E_{\text{max}} \). This is presented in Fig. 3 with the \(^{6}\text{He} + ^{208}\text{Pb}\) system, at \(E_{\text{lab}} = 22 \text{ MeV} \), where the convergence is the most critical. Figure 3(a) illustrates the convergence with \(j_{\text{max}} \). Clearly the single-channel approximation is unable to reproduce the data. This was also observed in a non-microscopic approach \[43\]. With a truncation energy \(E_{\text{max}} = 15 \text{ MeV} \), the \(j = 0^+ \) and \(j = 1^- \) breakup contributions slightly improve the agreement between theory and experiment, but a fair agreement is obtained from \(j_{\text{max}} = 2 \). The convergence is excellent up to \(\theta \approx 90^\circ \), but remains fair even at large backward angles. The slowness of the convergence at energies close to the Coulomb barrier is well known \[43\].

The lower panel of Fig. 3 displays the convergence with \(E_{\text{max}} \). Angular momenta up to \(j = 3 \) are included. Again the convergence is slow, and using the low truncation energy \(E_{\text{max}} = 5 \text{ MeV} \) overestimates the cross section near \(\theta \approx 90^\circ \). As mentioned previously, this example is the most critical for convergence. It is characterized by a heavy target, and by a low incident energy (the c.m. energy is \(E_{\text{c.m.}} = 21.4 \text{ MeV} \), which is close to the Coulomb barrier \(V_B = 18.4 \text{ MeV} \)). For the other systems considered here, the convergence with \(j_{\text{max}} \) and \(E_{\text{max}} \) is faster, and is not illustrated.

In Figures 4, 5, 6, and 7, I present the CDCC cross sections for \(^{6}\text{He} + ^{27}\text{Al}\), \(^{58}\text{Ni}\), \(^{120}\text{Sn}\), and \(^{208}\text{Pb}\), respectively. These choices are guided by several reasons: (i) covering a wide mass range, from light to heavy targets; (ii) experimental data are available; (iii) local nucleon-target interactions, i.e. specifically fitted to nucleon scattering data, have been determined \[42\].

Figure 4 shows the \(^{6}\text{He} + ^{27}\text{Al}\) system, at four energies. These energies (\(E_{\text{c.m.}} = 7.8, 9.0, 9.8, 11.0 \text{ MeV} \)) are significantly higher than the Coulomb barrier (\(V_B \approx 3.9 \text{ MeV} \)). Although a slight improvement of the theoretical results is obtained within the multi-channel calculation, the single-channel approximation is not very different. A similar conclusion has been drawn recently for the \(^{9}\text{Be} + ^{27}\text{Al}\) system, in a non-microscopic CDCC model \[45\]. This weak sensitivity to breakup channels will be
analyzed in more detail in Sec. IV.E.

In Figures 5 and 6, I present the $^6\text{He}+^{58}\text{Ni}$ and $^6\text{He}+^{120}\text{Sn}$ cross sections, respectively. Here the differences between the full calculation and the single-channel approximation are increasing. The converged results are close to those of Ref. [43], where a non-microscopic $\alpha+n+n$ description of ^6He was used. In Fig. 7, I consider the $^6\text{He}+^{208}\text{Pb}$ system, which was used as an illustration of convergence issues in Fig. 3. The strong influence of breakup channels is confirmed at the three energies. Let us emphasize that all cross sections are obtained with the same conditions of calculations. The only difference is that, of course, the choice of the neutron- and proton-target potentials is adapted to each system.

Finally, let us briefly discuss the role of non-natural-parity partial waves of ^6He ($j = 0^-, 1^+, 2^-$, etc.). These states cannot be coupled to the $j = 0^+$ ground state, but may play a role through couplings to the continuum. As a full calculation, involving all pseudostates with $j_{\text{max}} = 3$ and $E_{\text{max}} = 15$ MeV is extremely demanding in terms of computer time and memory, I have performed two calculations with $E_{\text{max}} = 10$ MeV and $j = 0^+, 1^-, 2^+$ or $j = 0^+, 1^+, 2^-$. The difference between the two cross sections should provide a fair insight on the influence of non-natural-parity states. The calculation has been done for $^6\text{He}+^{208}\text{Pb}$ at $E_{\text{lab}} = 22$ MeV. The differences in the cross sections are, however, too small to be visible on a figure. The cross sections differ by less than 0.5%, and are therefore not shown.

C. Role of the ^6He halo in elastic scattering

The role of a halo structure in nucleus-nucleus scattering takes its origin from the long range of the density in weakly bound nuclei. Quantitatively, however, this influence of the halo is more difficult to assess. In the present work, I investigate this effect by considering the short- and long-range parts of the nuclear densities. For the ^6He ground state, the proton and neutron GCM monopole densities shown in Fig. 1 can be parametrized

FIG. 4. Elastic $^6\text{He}+^{27}\text{Al}$ cross sections at different energies. The solid lines represent the full CDCC calculations, and the dotted lines represent the single-channel approximation. The data are taken from Ref. [44].

FIG. 5. Elastic $^6\text{He}+^{58}\text{Ni}$ cross sections for the full CDCC calculation (solid line) and for the single-channel approximation. The experimental data are taken from Ref. [46].

FIG. 6. Elastic $^6\text{He}+^{120}\text{Sn}$ cross sections for the full CDCC calculation (solid line) and for the single-channel approximation. The experimental data are taken from Ref. [47].
\[
\rho_p(r) \approx \rho_{0p} \exp\left[-\frac{(r/a_p)^2}{2}\right], \tag{19}
\]

with \(\rho_{0p} = 0.453 \text{ fm}^{-3} \) and \(a_p = 1.407 \text{ fm} \), and by

\[
\rho_n(r) \approx \rho_{0n} \left(\exp\left[-\frac{(r/a_n)^2}{2}\right] + \frac{0.02}{1 + \exp\left(\frac{r-0.78}{0.8}\right)} \right), \tag{20}
\]

with \(\rho_{0n} = 0.426 \text{ fm}^{-3} \) and \(a_n = 1.690 \text{ fm} \). According to Eqs. (9,10), these densities are normalized as

\[
\int \rho_p(r)r^2 dr = 2/\sqrt{4\pi},
\]

\[
\int \rho_n(r)r^2 dr = 4/\sqrt{4\pi}. \tag{21}
\]

These approximations reproduce the exact calculations by less than 1%. With the approximation (20), I can isolate the contribution from the core (first term) and the long-range part, associated with the halo component (second term).

In Fig. 8, I present calculations for the \(^{27}\text{Al}\) and \(^{208}\text{Pb}\) targets, either by including to core component only, or by including the full density. In both cases, a single-channel calculation is performed, in order to isolate halo effects from breakup effects. In both systems, the difference is small, in particular for \(^6\text{He}+^{27}\text{Al}\). Figure 8 shows, with the \(^6\text{He}+^{208}\text{Pb}\) system, that breakup effects, obtained with the full continuum, are more important than halo effects. This weak halo effect can be explained by the small differences in the folding potentials. A simple property of folding potentials is related to the volume integrals as

\[
\int V(r) dr = A \int v(r) dr, \tag{22}
\]

where \(v(r) \) is the nucleon-target interaction (this identity holds for protons and neutrons separately). In other words, changing the density does not affect the volume integral. The halo component of the neutron density (20) therefore modifies the range of the \(^6\text{He}\)-target potentials, but this effect is weak, as observed in the cross sections.

FIG. 7. Elastic \(^6\text{He}+^{208}\text{Pb}\) cross sections for the full CDCC calculation (solid line) and for the single-channel approximation. The experimental data are taken from Ref. [48] (a), (b - full circles), Ref. [49] (b - open circles), and Ref. [50] (c).

FIG. 8. (Color online). Elastic \(^6\text{He}+^{27}\text{Al}\) (a) and \(^6\text{He}+^{208}\text{Pb}\) (b) cross sections with and without the halo component in the \(^6\text{He}\) neutron density. The dashed lines represent the full CDCC calculations. Experimental data are as in Fig. 4 (a) and 7 (b).
D. Discussion of the 6He-target interaction

The present model, including breakup channels, offers the possibility to analyze equivalent 6He-target potentials. Similar studies have been done for other projectiles, in non-microscopic CDCC approaches (see, for example, Refs. [15, 22, 51, 52]).

For a given partial wave $J\pi$, the equation associated with the elastic channel is written as

$$
(T_L(R) + V_{11}^{J\pi}(R) - E) g_1^{J\pi}(R) = - \sum c_{>1} V_{ic}^{J\pi}(R) g_c^{J\pi}(R).
$$

(23)

A polarization potential V_{pol} can be defined from

$$
(T_L(R) + V_{11}^{J\pi}(R) + V_{pol}^{J\pi}(R) - E) g_1^{J\pi}(R) = 0,
$$

(24)

where

$$
V_{pol}^{J\pi}(R) = - \sum c_{>1} V_{ic}^{J\pi}(R) g_c^{J\pi}(R).
$$

(25)

With this definition, Eqs. (23) and (24) are strictly equivalent. However, the polarization potential (25) presents two disadvantages: (i) it depends on J and π; (ii) it presents singularities at the nodes of the wave function.

Thompson et al. [23] proposed an approximate, J independent, polarization potential as

$$
V_{pol}(R) = - \sum_{J\pi} V_{pol}^{J\pi}(R) \omega^{J\pi}(R) \sum_{J\pi} \omega^{J\pi}(R),
$$

(26)

where $\omega^{J\pi}(R)$ is a weight function, chosen as

$$
\omega^{J\pi}(R) = (2J + 1)(1 - |U_{11}^{J\pi}|^2) |g_1^{J\pi}(R)|^2.
$$

(27)

This choice permits to avoid singularities in the potential, and to give more weight on the important partial waves (where $|U_{11}^{J\pi}| \ll 1$). It has been abundantly used in the literature (see references in Ref. [8]). The reliability of the approximation can be tested by comparing the cross sections obtained with (24) and with the original CDCC calculation.

In Fig. 9, I present the total potential for the four systems considered here. Those potentials are determined at typical energies ($E_{c.m.} = 11.0, 11.1, 16.6, 21.4$ MeV for 6He+27Al, 6He+58Ni, 6He+120Sn and 6He+208Pb, respectively). The general trend is that the polarization potential increases for heavy systems. This is consistent with the conclusions drawn from the cross sections: breakup effects are weak for light targets, and increase for heavier targets. The real part of the polarization potential is always repulsive, as usually observed [8]. The imaginary part has a long tail, and is responsible for the long-range absorption. For the 208Pb target, the imaginary part is negative beyond $R = 11$ fm, but presents a shape different from other targets. This behaviour is expected from the strong breakup effects found with 208Pb.

The accuracy of the polarization potential has been tested by repeating the calculation for many other numerical conditions (channel radius, number of basis functions, truncation energy and angular momentum). For all reasonable choices of these parameters, the potentials are indistinguishable at the scale of the figure.

![Potential](image)

FIG. 9. (Color online). Single-channel potentials $V_{11}(R)$ (solid lines) and total potentials $V_{11}(R) + V_{pol}(R)$ (dashed lines). The upper panel (a) represents the real part, and the lower panel (b) the imaginary part.

E. Discussion of 6He breakup effects

I showed in the previous subsections that breakup effects are weak for 27Al, and increase for heavier targets. This effect can be traced in the scattering matrices $U_{11}^{J\pi}$. For a given energy, the set of scattering matrices contains the same information as the elastic cross sections. Figure 10 displays the scattering matrices for the 27Al and 208Pb targets, and for the single-channel and full calculations. They are parametrized as

$$
U_{11}^{J\pi} = |U_{11}^{J\pi}| \exp(2i\delta_1^{J\pi}).
$$

(28)

For 27Al and 208Pb, the shape are clearly different. Whereas low J values are completely absorbed by the 27Al target ($U_{11}^{J\pi} \approx 0$ for $J \leq 5$), they are still partly reflected in the 208Pb target. As a general statement,
this kind of figure presents three regions:

\[|U_{11}^{J\pi}| \approx 0 \text{ for low } J \text{ values,} \]
\[|U_{11}^{J\pi}| \approx 1 \text{ for high } J \text{ values,} \]
\[0 \leq |U_{11}^{J\pi}| \leq 1 \text{ for intermediate } J \text{ values.} \] (29)

The precise shape of the nuclear potential does not affect neither region 1, nor region 2. Figure 10 shows that region 3, where the scattering matrices are sensitive to the interaction, is much wider for \(^{208}\text{Pb}\) than for \(^{27}\text{Al}\).

In the limit of the sharp-absorption model, essentially developed by Frahn \[53\] (see also Refs. \[36, 54\]), it is assumed that the transition occurs at a grazing angular momentum \(J_g\). In other words, I have, within this approximation

\[|U_{11}^{J\pi}| = 0 \text{ for } J \leq J_g, \]
\[|U_{11}^{J\pi}| = 1 \text{ for } J > J_g. \] (30)

The model also assumes \((i)\) that the phase shifts \(\delta_{11}^{J\pi}\) are zero, \((ii)\) that summations over the angular momentum can be replaced by integrals. Even though this model has been essentially developed with the aim of investigating heavy-ion scattering at high energies, it remains valid provided the assumptions are satisfied. Our goal here is not to use Frahn’s model as a fit of the data, but to provide a simple estimate of the cross sections.

Under these conditions, the scattering cross section is given by

\[
\frac{d\sigma}{d\Omega} = \frac{1}{2} \left[\frac{1}{2} - C(w)^2 + \frac{1}{2} - S(w)^2 \right],
\] (31)

where \(w\) is related to the scattering angle by

\[
w = \left[\frac{J_g}{\pi \sin \theta_g} \right]^{1/2} (\theta - \theta_g),
\]
\[
\theta_g = 2 \arctan \left(\frac{\eta}{J_g} \right),
\] (32)

where \(\eta\) is the Sommerfeld parameter.

In (31), \(C(w)\) and \(S(w)\) are the Fresnel integrals. This simple expression can be generalized to a smooth variation of the scattering matrix (30) around \(J_g\) \[53, 54\]. Although more physical, this extension leads to cross sections more complicated than (31). As already mentioned, our aim is to provide a simple interpretation of the CDCC cross sections, and not perform optimal fits of the data.

In Fig. 11, I compare approximation (31) with the CDCC calculations, for the \(^{27}\text{Al}\) and \(^{208}\text{Pb}\) targets. The value of \(J_g\) is estimated from Fig. 10 \((J_g = 9\) for \(^{27}\text{Al}\), and \(J_g = 11\) for \(^{208}\text{Pb}\)).
Let us first discuss the ^{27}Al target, where differences between the single-channel and the full calculations are found fairly weak. Here the Frahn approximation (31) provides a good description of the data and, except for $\theta \lesssim 20^\circ$, is in reasonable agreement with CDCC. This is consistent with the scattering-matrix distribution, and explains why breakup effects play a minor role. The data on $^{6}\text{He} + ^{27}\text{Al}$ scattering are weakly sensitive to the potential. The only important parameter is the grazing angular momentum J_g which is associated with the range of the imaginary potential [54].

The situation is different for the $^{6}\text{He} + ^{208}\text{Pb}$ system. Here, approximation (31) is rather poor, as expected from the scattering matrices of Fig. 10. Therefore the experimental cross section cannot be estimated from a simple model, and is more sensitive to the optical potential, or, in other words, to the inclusion of breakup channels in the calculation.

V. CONCLUSION

In this work, I have applied the MCDCC method to the ^{6}He nucleus, considered as an $n + n + n$ three-cluster system. The theory initiated in Ref. [17] for two-cluster projectiles was extended to three-cluster nuclei. Although the main principles are identical, the numerical treatment of microscopic three-cluster projectiles is much more involved. The ^{6}He system is typical of Borromean nuclei, and is relatively simple since the core is a $(0s)^4$ wave function. The conclusions drawn can be probably extended to other nuclei such as ^{11}Li or ^{14}Be, more demanding in terms of computer times since the core (^9Li or ^{12}Be) involves p-shell orbitals.

The main advantage of the MCDCC is that it only relies on nucleon-target optical potentials, which are in general well known. I have considered four different targets, ^{27}Al, ^{58}Ni, ^{120}Sn, and ^{208}Pb, which should cover most typical masses. Around the Coulomb barrier, where experimental data are available, the elastic cross sections are fairly well reproduced by the model. In particular, the $^{6}\text{He} + ^{208}\text{Pb}$ data at large backwards angles are sensitive to the conditions of the calculations. I have shown that breakup channels are crucial to explain the large experimental cross sections. As a general statement, I find that breakup effects are weak for light targets, and increase for heavier targets. Light systems have a low Coulomb barrier. In that case, either the energy is significantly larger (say 2 or 3 times the Coulomb barrier), and the scattering matrices follow the sharp cut-off approximation, or the energy is around the Coulomb barrier, and most breakup channels are closed. As a consequence, data with light targets should be very accurate, and extend to large backwards angles to be sensitive to the model.

This property is confirmed by an analysis of equivalent potentials. The polarization potential, induced by breakup effects, is small for light targets. The general trend is that polarization effects increase the Coulomb barrier, and provide a long-range absorption in the imaginary component of the nucleus-nucleus interaction. The importance of breakup channels has been analyzed within the simple sharp cut-off approximation, where the scattering matrix is supposed to be either 0 below a grazing angular momentum, or 1 above this limit. Even if this model is very basic, it provides a reasonable first guess of the physical cross sections, and explains the weak breakup effects obtained for ^{27}Al.

The present model could be generalized in various directions. Considering other projectiles, such as ^{11}Li or ^{14}Be is a challenge for microscopic theories. The main limitation is the calculation of the GCM matrix elements (6) which involve 7-dimension integrals. If the computer times remain within reasonable limits for ^{6}He, the necessity of p-orbitals represents a huge increase in the computational issues. Other aspects of ^{6}He scattering, such as breakup or fusion cross sections, are certainly worth being investigated, and represent future applications of the MCDCC.

ACKNOWLEDGMENTS

This text presents research results of the IAP programme P7/12 initiated by the Belgian-state Federal Services for Scientific, Technical and Cultural Affairs.

[1] I. Tanihata, D. Hirata, T. Kobayashi, S. Shimoura, K. Sugimoto, and H. Toki, Phys. Lett. B 289, 261 (1992).
[2] P. G. Hansen, A. S. Jensen, and B. Jonson, Annu. Rev. Nucl. Sci. 45, 591 (1995).
[3] I. Tanihata, H. Savajols, and R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013).
[4] A. Bonaccorso, Physica Scripta 2013, 014019 (2013).
[5] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).
[6] Y. Suzuki, R. G. Lovas, K. Yabana, and K. Varga, Structure and Reactions of Light Exotic Nuclei (Taylor & Francis, London, 2003).
[7] T. Aumann and T. Nakamura, Physica Scripta 2013, 014012 (2013).
[8] L. F. Canto, P. R. S. Gomes, R. Donangelo, J. Lubian, and M. S. Hussein, Phys. Rep. 596, 1 (2015).
[9] G. H. Rawitscher, Phys. Rev. C 9, 2210 (1974).
[10] N. Austern, Y. Iseri, M. Kamimura, O. Yamakawa, G. Rawitscher, and M. S. Hussein, Nucl. Phys. A 596, 125 (1995).
[11] J. Lubian, T. Correa, E. F. Aguilera, L. F. Canto, and A. Gomez-Camacho, M. Quiroz, and P. R. S. Gomes,
