On fatigue life scatter under variable-amplitude load history

L Y Xie1,* and B Qin1

1Northeastern University, Shenyang 110819, China

E-mail: lyxie@me.neu.edu.cn

Abstract. Fatigue life scatter under a variable amplitude load history is determined by many factors such as the amplitudes of the individual load cycles, the number of the load cycles with different load levels, and the differences between the load levels as well. Besides an brief overview on the studies and experiments on the scatter of fatigue life under variable amplitude load histories, the present paper conducted a series of fatigue tests, demonstrates the life scatters under different load histories, and discusses the dominant factors of fatigue life scatter. It shows that all the load cycles play their roles for the life scatter.

1. Introduction

Fatigue life is a random variable even under a deterministic load history \cite{1}. For probabilistic fatigue life predictions, P-S-N (stress - probabilistic life) curve based methods are usually applied \cite{2-5}. Such methods implicitly assume that the scatter of fatigue life associated with any of the stress levels in a variable amplitude load history exclusively depends on the individual stress level itself.

Fatigue life distribution of a structure under a variable amplitude load history (VAL) is considerably different from the fatigue life distribution under a constant amplitude load history (CAL) \cite{6-7}. A series of tests about fatigue life scatter under CAL and VAL of riveted lap joints illustrate that the standard deviation of the logarithmic life under CAL, \(\sigma_{\log N, CAL} \) is a function of the fatigue life \(N \) \cite{6}. The value of \(\sigma_{\log N, CAL} \) under CAL obviously increases for an increasing fatigue life. However, the results for the VAL tests illustrate that all values of \(\sigma_{\log N, VAL} \) for the VAL tests is of the same order of magnitude as \(\sigma_{\log N, CAL} \) in the CAL tests for the largest amplitude of the VAL loading. It suggests that the highest amplitude of the load spectrum is responsible for the amount of scatter \cite{6}. Similar observations on fatigue life scatter in tests with random or programmed sequences were reported \cite{8-9}.

2. Experiment results of fatigue life

To study fatigue life scatter under variable amplitude stress histories, fatigue life tests are conducted with specimens of T6-aluminum alloy. Tested fatigue life data are listed in Table 1 and Table 2. Where, \(s \) stands for the amplitude of the fully reversed cyclic stress applied to the specimens in the tests, \(\bar{N} \) stands for the mean of the sample lives, \(\sigma \) stands for the standard deviation, \(\bar{N}_{\log} \) and \(\sigma_{\log} \) stand for the mean and standard deviation of the logarithmic lives, respectively.
Table 1. Fatigue life (number of stress cycles) test results under constant amplitude cyclic stress.

s_1=110MPa	s_1=120MPa	s_1=130MPa
769910	557459	308178
624380	522350	431678
569366	439991	363086
913500	464849	279024
979900	443776	390145
2129232	720648	267924
764900	676961	405001
1003100	705894	294558
747900	701234	291682
1209610	706700	276299
1571600	741700	453721
1175200	971300	299652
636294	569300	981000
981000	351700	338300
925674	465200	461289

In Table 2, the stress history composed by 100 cycles of s_3 and subsequent cycles of s_1 (Figure 1a) is denoted by s_3-s_1-100, that composed by 1000 cycles of s_3 and subsequent cycles of s_1 (Figure 1b) is denoted by s_3-s_1-1000, and that composed by the blocks of “1000 cycles of s_3 - 1000 cycles of s_2 - 1000 cycles of s_1” (Figure 1c) is denoted by s_3-s_2-s_1-1000-....

Table 2. Fatigue life (number of stress cycles) test results under variable amplitude cyclic stress.

s_3-s_1-100	s_3-s_1-1000	s_3-s_2-s_1-1000-....
1265100	2823283	434842
1572400	952459	663826
1078400	935230	516081
1262600	833013	577579
1350900	1139520	683739
720372	1055669	522651
1084101	816340	417702
1263499	953100	417591
876939	869500	396786
1825076	1124800	564243
600168	883100	862723
851955	1178400	615395
1246100	1615900	324360
2406100	1480700	414791

$N_{log} = 6.068, \sigma_{log} = 0.158$ $N_{log} = 6.048, \sigma_{log} = 0.146$ $N_{log} = 5.711, \sigma_{log} = 0.111$
The relationships between fatigue life/standard deviation and stress level, fitted with the test results, are shown in Table 3.

Table 3. Life-stress relations fitted from test data.

Relationship	Regression equation	Correlation coefficient
cyclic stress - mean life	$s = 1332.6 \times (2N)^{0.173}$	0.9999
cyclic stress - mean log-life	$s = -47.6 N_{log} + 394.4$	0.9999
cyclic stress - std of log-life	$\sigma_{log} = 0.491-0.003s$	0.9978

3. Fatigue life scatter analysis
The test results show that the fatigue life scatter, characterized by the standard deviation of the logarithmic life, under variable amplitude history, is different from that under any of the constant amplitude load histories. Shown in Table 4 are the standard deviations of the logarithmic lives under different load histories, and the Std ratios as well.

Table 4. Standard deviation of logarithmic life under different load history.

Load history	Std of log-life	Std rate
$s_1=110$MPa	Std=0.154	Std/Std=0.72
$s_2=120$MPa	Std=0.126	Std/Std=0.88
$s_3=130$MPa	Std=0.093	Std/Std=1.19
$s_3(100C)-s_1$	Std=0.158	Std/Std=1.03
$s_3(1000C)-s_1$	Std=0.146	Std/Std=0.95
$s_3-s_2-s_1$,...	Std=0.111	Std/Std=1.19

For the load history $s_3-1000>s_1$, the log-life scatter (standard deviation of logarithmic life) 0.111 is between that associated with load history s_2 (0.126) and that associated with s_3 (0.093). It illustrates that the higher level stress cycles dominate the life scatter, noticing that the cycle numbers
associated with the three cyclic stress levels are the same (1/3 of the total cycles each) in the load history. This experiment result is different from that described in the literature [6], as the standard deviation associated with the highest cyclic stress s_3 is 0.093, while the standard deviation of logarithmic life under the variable amplitude load history is 0.111. Especially, the effect of the limited number of high stress cycles s_3 on fatigue life scatter is slight in the load history $s_3(100)s_1$ and $s_3(1000)s_1$. For both of these two load histories, the log-life scatters are more or less the same as that under the dominant low level stress cycles of the cyclic stress s_1.

![Figure 2. Standard deviation of fatigue life - cyclic stress level.](image)

![Figure 3. Standard deviation of fatigue life – mean life.](image)

Figure 2 shows the relationship (the dotted line) between the standard deviation of fatigue life and the cyclic stress level under constant amplitude load history, as well as the standard deviations of the fatigue lives under the variable amplitude load histories with different high stress cycle numbers in term of the highest cyclic stress level, it demonstrates that the fatigue life scatter is not exclusively determined by the highest stress level in the load history.

Shown in Figure 3 are the relationship (the dotted line) between the standard deviation of fatigue life and the fatigue life associated with the constant amplitude load history, as well as the standard deviations
of the fatigue lives under the variable amplitude load histories with different high stress cycle numbers in term of the life cycles, it demonstrates that the fatigue life scatter is largely determined by the fatigue life, no matter of the highest stress level in the load history.

4. Conclusions
High cycle fatigue life experiment results of the 6T-aluminum alloy illustrate that, under a variable amplitude load history, fatigue life scatter is jointly determined by all the stress cycles. The situation is that all the cyclic stress levels are far below the material elasticity limit, and the fatigue lives are in the range of 2×10^5–3×10^6 cycles. The fitted relations show that the fatigue life scatter is dominated by the life cycles, instead of the highest cyclic stress level.

Acknowledgement
This research is subsidized by the Natural Science Foundation of China and Liaoning Province (Grant No. U1708255).

References
[1] Bucar T, Nagode M, Fajdiga M 2007 An improved neural computing method for describing the scatter of S–N curves Int. J. Fatigue 29 2125–2137.
[2] Noel M 2019 Probabilistic fatigue life modeling of FRP composites for construction Constr. Build. Mater. 206 279–86.
[3] Lan C, Bai N, Yang H T et al. 2018 Weibull modeling of the fatigue life for steel rebar considering corrosion effects Int. J. Fatigue 111 134-43.
[4] Lan CM, Xu Y, Liu CP et al. 2018 Fatigue life prediction for parallel-wire stay cables considering corrosion effects Int. J. Fatigue 114 81-91.
[5] Liao D, Zhu S P, Keshtegar B et al. 2020 Probabilistic framework for fatigue life assessment of notched components under size effects Int. J. Mech. Sci. 181 105685.
[6] Schijve J 2009 Fatigue of Structures and Materials. 2nd Edition, Springer Netherlands
[7] Agerskov H, Nielsen J A 1999 Fatigue in steel highway bridges under random loading J. Struct. Eng. 166 152-162
[8] Mann J Y 1981 Scatter in fatigue life – A materials testing and design problem. ed Sherratt E and Sturgeon J B. Materials, Experimentation and Design in Fatigue. West Bury House p.390–423.
[9] Jacoby G H and Nowack H 1972 Comparison of scatter under program and random loading and influencing factors ASTM STP 511 61–72.