Stereoselective Organocatalyzed Glycosylations – Thiouracil, Thioureas and Monothiophthalimide act as Brønsted acid catalysts at low loadings

G. A. Bradshaw, A. C. Colgan, N. P. Allen, I. Pongener, M. Boland, Y. Ortin, and E. M. McGarrigle*

Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland

Supporting Information

Table of Contents
General Experimental ... 2
Synthesis of Glycal precursors .. 3
Synthesis of Acceptors ... 8
Thiouracil-catalysed Glycosylations .. 14
 2-Thiouracil-Catalysed Glycosylation: Catalyst Loading, Concentration and Gram-Scale Synthesis ... 29
1,1’-Linked Disaccharides ... 31
Procedures for Benzyl group removal ... 36
Mechanistic Studies ... 38
References ... 53
NMR Spectra of Compounds ... 55
 NMR Spectra of Glycals .. 55
 NMR Spectra of Acceptors and their precursors 66
 NMR Spectra of Disaccharides .. 71
 NMR Spectra of 1,1,’-linked sugars .. 98
 NMR Spectra of Deprotected sugars 110
 NMR Spectra relating to mechanistic experiments 119
General Experimental

Chemicals were purchased and used without further purification, with the exception of boron trifluoride diethyl etherate, allyl bromide and benzaldehyde dimethyl acetal. These were distilled prior to use and stored under nitrogen (BF$_3$.OEt$_2$ was distilled from CaH$_2$).1 Thiouracil was purchased as ≥99% general purpose reagent. 2-Methyltetrahydrofuran was transferred to a Schlenk tube and dried over freshly activated 4 Å molecular sieves and stored under nitrogen.

Solvents were dried using a Grubbs type still,2 a Pure Solv-400-3-MD solvent purification system supplied by Innovative Technology Inc. design and stored in Strauss flasks over activated 4Å molecular sieves. Anhydrous DMF was purchased from commercial sources. Reactions requiring anhydrous conditions were performed under nitrogen; glassware was flame-dried immediately prior to use and allowed to cool under reduced pressure. Reactions monitoring by TLC was performed on Merck pre-coated Kieselgel 60F$_{254}$ aluminium plates. Visualization was accomplished under UV light (254 nm), staining with ninhydrin solution, and/or by charring with 10% sulfuric acid in ethanol. Flash column chromatography was performed using either silica gel [Davisil, 230-400 mesh (40-63 µm)] or using a Biotage IsoleraTM UV-VIS Flash Purification System Version 2.3.1 with SNAP Ultra (25 µm) or SNAP KP-Sil (50 µm) prepacked silica cartridges. High-resolution mass spectra were run on a Waters Micromass GCT system in electrospray ionization mode (ESI). Melting points were recorded on a Reichert thermovar, hot-stage microscope and are uncorrected. Extracts were concentrated \textit{in vacuo} using both a rotary evaporator (bath temperatures up to 50 °C), and a high vacuum line at room temperature. For the removal of DMF, a rotary evaporator (equipped with a 1 L receiving flask; cooled using liquid N$_2$) connected to a high vacuum line (equipped with an additional collection trap (cooled using liquid N$_2$) and a rotary vane vacuum pump) was used. 1H NMR and 13C NMR spectra were measured in the solvent stated at 300MHz, 400MHz or 500MHz. Chemical shifts (δ) are quoted in parts per million (ppm) referenced to residual solvent peak (e.g., CDCl$_3$: 1H – 7.26 ppm and 13C – 77.16 ppm) or TMS (1H – 0.00 ppm) and coupling constants (J) are given in Hertz. Multiplicities are abbreviated as: b (broad), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) or combinations thereof. Assignments were made, where necessary, with the aid of COSY, HSQC and HMBC NMR experiments. For α/β mixtures only peaks that can clearly be assigned have been reported. The units of the specific rotation, (deg·mL)/(g·dm), are implicit and are not included with the reported value. Concentration c is given in g/100 mL.
Synthesis of Glycal precursors

1,5-Anhydro-2-deoxy-3,4,6-tri-O-benzyl-D-lyxo-hex-1-enitol (3a)

Under a N₂ atmosphere, D-galactal (1.8 g, 12 mmol) was dissolved in anhydrous DMF (50 ml). The flask was cooled to 0 °C (50:50; ice/water), and NaH (60% dispersion in mineral oil) (2.14 g, 53.5 mmol) was added to the reaction flask. The ice bath was removed, and the reaction was left to stir at room temperature for 30 min. The flask was again cooled to 0 °C, and BnBr (5.5 ml, 46 mmol) was added dropwise to the reaction mixture. The ice bath was removed, and the reaction mixture was left to stir at room temperature for 36 h. TLC analysis (4:1 cyclohexane/ethyl acetate; H₂SO₄ stain (10−15% EtOH)) showed that the starting galactal (baseline spot) had been consumed and three spots were present in the reaction mixture (R_f = 0.67, 0.33, 0.03). The reaction was quenched with MeOH (2 ml), and the solvents were removed using rotary evaporation. The crude mixture was dissolved in cyclohexane (100 ml) and washed with 1 M HCl (2 × 30 ml), then saturated NaHCO₃ (1 × 30 ml) and deionised H₂O (30 ml). The organic layer was dried using MgSO₄, filtered using Büchner filtration, and concentrated in vacuo. Purification by column chromatography (98:2 to 85:15; cyclohexane/ethyl acetate) gave 3a as a white solid (3.7 g, 74% yield). The compound was stored in the freezer under a N₂ atmosphere.

R_f = 0.28 (9:1; cyclohexane/ethyl acetate); mp 51–53 °C (cyclohexane/ethyl acetate) (lit. 49.6–52.0 °C (cyclohexane/ethyl acetate)); ¹H NMR (400 MHz, Chloroform-d) δ 7.47–7.13 (m, 15H, Ph), 6.36 (dd, J = 6.3, 1.5 Hz, 1H, H-1), 4.90–4.83 (m, 2H, H-2, OCH₂HPh), 4.66 (d, J = 12.4 Hz, 1H, OCH₂HPh), 4.64 (d, J = 12.4 Hz, 1H, OCH₂HPh), 4.61 (d, J = 12.4 Hz, 1H, OCH₂HPh), 4.50 (d, J = 11.9 Hz, 1H, OCH₂HPh), 4.42 (d, J = 11.9 Hz, 1H, OCH₂HPh), 4.22–4.16 (m, 2H, H-3, H-5), 3.97–3.92 (m, 1H, H-4), 3.78 (dd, J = 10.2, 7.2 Hz, 1H, H-6a), 3.65 (dd, J = 10.1, 5.1 Hz, 1H, H-6b); ¹³C NMR (101 MHz, Chloroform-d) δ 144.3 (C-1), 138.6 (4° C), 138.5 (4° C), 138.1 (4° C), 128.5 (CH), 128.3 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 100.1 (C-2), 75.8 (C-3), 73.6 (PhCH₂), 73.5 (PhCH₂), 71.4 (C-4), 71.0 (PhCH₂), 70.9 (C-5), 68.6 (C-6). NMR data were consistent with literature data. 4

1,5-Anhydro-2-deoxy-3,4,6-tri-O-allyl-D-lyxo-hex-1-enitol 3b

Under a nitrogen atmosphere, D-galactal (1.47 g, 10 mmol) was added to a flame-dried flask equipped with a stirrer bar, and dried in vacuo for one hour, before being dissolved fully in anhydrous N,N'-dimethylformamide (20 mL) and subsequently cooled to 0 °C. Sodium
hydride (60 wt% in mineral oil, 2.4 g, 60 mmol) was added portionwise with vigorous stirring; upon complete addition the reaction mixture was allowed to return to room temperature and then it was left to stir for 30 minutes. The mixture was re-cooled to 0 °C and freshly distilled allyl bromide (5.2 mL, 60 mmol) was added dropwise with stirring. The mixture was left to stir at ambient temperature for 16 h, becoming dark yellow-brown in appearance. Methanol (5 mL) was added slowly to the reaction to quench the reaction and the mixture was concentrated in vacuo to a yellow residue, which was taken up in dichloromethane (20 mL) and washed with water (3 × 20 mL) and brine (3 × 20 mL). The organic phase was dried with magnesium sulfate and concentrated to a pale yellow oil in vacuo (approx. 2 g). Purification via silica gel flash chromatography (6:1 to 4:1 cyclohexane:EtOAc, \(R_f = 0.41 \)) afforded 1,2-dideoxy-3,4,6-tri-O-allyl-D-lyxo-1-hexenopyranose 3b as a slightly pale yellow oil (1.50 g, 56%).

\[^1 \text{H NMR} (400 \text{ MHz, CDCl}_3) \delta: 6.35 (dd, \text{J} = 6.3, 1.6 \text{ Hz, H}, 1\text{H}, \text{H}-1), 5.99-5.87 (m, 3\text{H}, \text{CH} = \text{CH}_2), 5.32-5.24 (m, 3\text{H}, \text{CH} = \text{CHH}), 5.21-5.15 (m, 3\text{H}, \text{CH} = \text{CHH}), 4.79 (dd, \text{J} = 6.3, 2.9, 1.3 \text{ Hz, H}, 1\text{H}, \text{H}-2), 4.33 (ddt, \text{J} = 12.8, 5.6, 1.4 \text{ Hz, H}, \text{CHH}), 4.18-3.97 (m, 7\text{H}, \text{H}-3, \text{H}-5, \text{CHH and } 2 \times \text{CH}_2), 3.87 (ddd, \text{J} = 3.9, 2.4, 1.4 \text{ Hz, H}, \text{H}-4), 3.75 (dd, \text{J} = 10.1, 7.0 \text{ Hz, H}, 1\text{H}, \text{H}-6a), 3.69 (dd, \text{J} = 10.1, 5.4 \text{ Hz, H}-6b). \]

\[^13 \text{C NMR} (101 \text{ MHz, CDCl}_3) \delta: 144.2 (C-1), 135.2 (\text{CH} = \text{CH}_2), 135.0 (\text{CH} = \text{CH}_2), 134.6 (\text{CH} = \text{CH}_2), 117.5 (\text{CH} = \text{CH}_2), 117.4 (\text{CH} = \text{CH}_2), 116.8 (\text{CH} = \text{CH}_2), 100.3 (C-2), 75.7 (C-5), 72.9 (\text{CH}_2), 72.5 (\text{CH}_2), 71.2 (C-4), 70.8 (C-3), 70.0 (\text{CH}_2), 68.4 (C-6). \]

NMR data were consistent with literature data.\(^5\)

\[1,5-\text{Anhydro}-2-\text{deoxy}-3,4-\text{di-O-benzyl-6-O-acetyl-D-lyxo-hex-1-enitol} \ 3c \]

Following a literature procedure,\(^5\) 3,4-di-O-benzyl-D-galactal\(^5\) (2.78 g, 8.52 mmol) was dissolved in anhydrous pyridine (37 ml). Acetic anhydride (19 ml, 0.20 mol) was charged to the flask under \(\text{N}_2 \) and the reaction stirred for 18 h. The reaction was diluted with \(\text{CH}_2\text{Cl}_2 \) (120 ml) and the organic layer washed with 1M HCl (30 ml × 3), \(\text{NaHCO}_3 \) (sat. aq.) (30 ml × 2) and brine (40 ml), dried over \(\text{MgSO}_4 \) and filtered. Solvent was removed under reduced pressure and the crude oil purified by column chromatography (toluene:EtOAc; 9:1) to give \(\text{3c} \) as a white solid (2.98 g, 95%).

\[R_f = 0.3 \text{ (cyclohexane:EtOAc; 1:1);} \]

\[^1 \text{H NMR} (300 \text{ MHz; CDCl}_3): \delta 7.39-7.24 (m, 10\text{H}, \text{Ph}), 6.34 (dd, \text{J} = 6.3, 1.3 \text{ Hz, H}, 1\text{H}, \text{H}-1), 4.91 (ddd, \text{J} = 6.3, 3.5, 0.9 \text{ Hz, H}, 1\text{H}, \text{H}-2), 4.84 (d, \text{J} = 11.9 \text{ Hz, H}, 1\text{H}, \text{OCH}_3\text{HPh}), 4.71 (d, \text{J} = 12.1 \text{ Hz, H}, \text{OCH}_3\text{HPh}), 4.68-4.63 (m, 2\text{H}, \text{OCH}_3\text{HPh x2}), 4.47 (dd, \text{J} = 12.1, 8.5 \text{ Hz, H}, 1\text{H}, \text{H}-6a), 4.31 (dd, \text{J} = 12.1, 3.5 \text{ Hz, H}, 1\text{H}, \text{H}-6b), 4.31-4.29 (m, 1\text{H}, \text{H}-5), 4.17-4.12 (m, 1\text{H}, \text{H}-3), 3.91 (t, \text{J} = 3.6 \text{ Hz, H}, 1\text{H}, \text{H}-4), 2.03 (s, 3\text{H}, \text{CH}_3); \]

\[^13 \text{C NMR} (125 \text{ MHz; CDCl}_3): \delta 170.9 (\text{C}=\text{O}), 144.0 (\text{C}-1), 138.6 (4\text{°C}), 138.1 (4\text{°C}), 128.6 (\text{CH}), 128.5 (\text{CH}), 128.2 (\text{CH}), 128.0 (\text{CH}), 127.8 (\text{CH}), 127.6 (\text{CH}), 99.9 (\text{C}-2), 74.4 (\text{C}-5), 72.8 (\text{OCH}_2\text{Ph}), 71.9 (\text{C}-4), 71.2 (\text{OCH}_2\text{Ph}), 69.6 (\text{C}-3), 63.0 (\text{C}-6), 21.1 (\text{CH}_3); \] Spectra were consistent with literature data.\(^5\)
1,5-Anhydro-2-deoxy-3,4,6-tri-O-tert-butylidemethylsilyl-D-lyxo-hex-1-enitol 3d

Following a modified literature procedure,\(^5\) D-galactal (811 mg, 5.55 mmol), imidazole (2.90 g, 42.6 mmol) and DMAP (64 mg, 0.53 mmol) were charged to a flame-dried RBF under N\(_2\). After dissolving with anhydrous DMF (31 ml), TBS\(_2\)Cl (4.88 g, 32.4 mmol) was added and the reaction heated to 60 °C for 36 h until TLC showed full consumption of starting material (starting material \(R_f = 0.25\); product \(R_f = 0.55\); cyclohexane:EtOAc; 17:1). The reaction was diluted with pentane (80 ml) and quenched with crushed ice (~80 ml). The layers were separated and the aqueous layer was extracted with pentane (3 × 80 ml). The organic layers were combined and washed with water (2 × 30 ml), brine (2 × 30 ml), dried over Na\(_2\)SO\(_4\) and filtered. The solvent was removed under reduced pressure to give 3d as a colourless oil which was purified by column chromatography (cyclohexane:EtOAc; 17:1) to give the product as a clear colourless oil (1.82 g, 67%).

\(R_f = 0.55\) (cyclohexane:EtOAc; 17:1); \(^{1}H\) NMR (500 MHz; CDCl\(_3\)): \(\delta\) 6.21 (d, \(J = 6.1\) Hz, 1H, H-1), 4.65 (app t, \(J = 5.2\) Hz, 1H), 4.15-3.95 (m, 4H), 3.91-3.80 (m, 1H), 0.91, 0.898, 0.896 (s x 3, 27H, SiC(CH\(_3\))\(_3\) \(\times 3\)), 0.91, 0.89, 0.896 (s x 3, 27H, SiC(CH\(_3\))\(_3\) \(\times 3\)), 0.099, 0.096 (s x 2 6H, SiCH\(_3\) \(\times 2\)), 0.07, 0.06 (s x 2, 12H, SiCH\(_3\) \(\times 4\)); \(^{13}C\) NMR (125.7 MHz; CDCl\(_3\)): \(\delta\) 142.8 (C1), 102.3 (C2), 79.8 (br), 68.8 (br), 65.2 (br), 61.1, 26.2 (SiC(CH\(_3\))\(_3\)), 26.13 (SiC(CH\(_3\))\(_3\)), 26.06 SiC(CH\(_3\))\(_3\), 18.6 (SiC(CH\(_3\))\(_3\)), 18.42 (SiC(CH\(_3\))\(_3\)), 18.35 (SiC(CH\(_3\))\(_3\)), -4.1 (SiCH\(_3\)), -4.2 (SiCH\(_3\)), -4.6 (SiCH\(_3\)), -4.8 (SiCH\(_3\)), -5.0 (SiCH\(_3\)), -5.1 (SiCH\(_3\)). Spectra were consistent with literature data.\(^5\)

1,5-Anhydro-2-deoxy-3,4,6-tri-O-acetyl-D-lyxo-hex-1-enitol 3e

Following a literature procedure,\(^5\) D-galactal (550 mg, 3.76 mmol) was dried under vacuum for 1 h in a flame-dried flask. Anhydrous pyridine (5.5 ml) and acetic anhydride (2.8 ml, 29 mmol) were charged to the flask under N\(_2\) and the reaction was stirred for 18 h. The reaction was diluted with CH\(_2\)Cl\(_2\) (55 ml) and the organic layer washed with 1M HCl (20 ml \(\times 2\)), NaHCO\(_3\) (sat. aq.) (20 ml \(\times 2\)) and brine (20 ml), dried over Na\(_2\)SO\(_4\) and filtered. Solvent was removed under reduced pressure and the crude oil purified by column chromatography (cyclohexane:EtOAc; 2:1) to give 3e as a clear colourless oil (71 mg, 69%).

\(R_f = 0.5\) (cyclohexane:EtOAc; 2:1; H\(_2\)SO\(_4\) (10-15% EtOH) stain); \(^{1}H\) NMR (300 MHz; CDCl\(_3\)): \(\delta\) 6.46 (dd, \(J = 6.3, 1.8\) Hz, 1H, H-1), 5.56 (m, 1H), 5.43 (dt, \(J = 4.4, 1.5\) Hz, 1H), 4.73 (ddd, \(J = 6.3, 2.7, 1.4\) Hz, 1H), 4.35-4.18 (m, 3H), 2.13 (s, 3H, CH\(_3\)), 2.09 (s, 3H, CH\(_3\)), 2.03 (s, 3H, CH\(_3\)); \(^{13}C\) NMR (125 MHz; CDCl\(_3\)): \(\delta\) 170.6 (C=O), 170.4 (C=O), 170.2 (C=O), 71.0 (C=O), 63.9 (C=O), 56.9 (C=O), 56.5 (C=O).
145.5 (C-1), 98.9 (C-2), 72.8, 64.0, 63.8, 62.0, 20.89 (CH$_3$), 20.83 (CH$_3$), 20.7 (CH$_3$). Spectra were consistent with literature data.5

1,5-Anhydro-2-deoxy-3,4,6-tri-O-benzyl-D-arabino-hex-1-enitol 3f

Following the same procedure used for 3a, D-glucal (0.37 g, 2.5 mmol), NaH (60% dispersion in mineral oil) (0.68 g, 17 mmol), BnBr (1.5 ml, 13 mmol) and anhydrous DMF (15 ml) were used. Purification by column chromatography (98:2 to 90:10; cyclohexane/ethyl acetate) gave 72 as a white solid (0.75 g, 72% yield). The compound was stored in the freezer under a N$_2$ atmosphere.

$^R_f = 0.42$ (9:1; cyclohexane/ethyl acetate); mp 54−56 °C (cyclohexane/ethyl acetate) (lit.6 57−58 °C (hexane/ethyl acetate); 1H NMR (500 MHz, Chloroform-d) δ 7.44 – 7.18 (m, 15H, Ph), 6.42 (dd, $J = 6.2, 1.3$ Hz, 1H, H-1), 4.87 (dd, $J = 6.1, 2.7$ Hz, 1H, H-2), 4.83 (d, $J = 11.3$ Hz, 1H, OCH/HPh), 4.64 (d, $J = 11.3$ Hz, 1H, OCH/HPh), 4.63 (d, $J = 11.7$ Hz, 1H, OCH/HPh), 4.58 (d, $J = 12.1$ Hz, 1H, OCH/HPh), 4.54 (app d, $J = 12.5$ Hz, 2H, 2 × OCH/HPh), 4.24 – 4.18 (m, 1H, H-3), 4.06 (ddd, $J = 8.3, 5.1, 2.8$ Hz, 1H, H-5), 3.86 (dd, $J = 8.7, 6.2$ Hz, 1H, H-4), 3.80 (dd, $J = 10.8, 5.1$ Hz, 1H, H-6a), 3.75 (dd, $J = 10.7, 2.8$ Hz, 1H, H-6b); 13C NMR (126 MHz, Chloroform-d) δ 144.8 (C-1), 138.5 (4° C), 138.3 (4° C), 138.1 (4° C), 128.51 (CH), 128.49 (CH), 128.47 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 127.74 (CH), 127.73 (CH), 100.0 (C-2), 76.9 (C-5), 75.8 (C-3), 74.5 (C-4), 73.8 (PhCH$_2$), 73.6 (PhCH$_2$), 70.6 (PhCH$_2$), 68.6 (C-6). Proton and carbon NMR data were consistent with literature data.7

3,4-O-Dibenzyl-L-rhamnal 3g

Following a literature procedure,7 3,4-O-diacetyl-L-rhamnal (1.00 g, 4.67 mmol) was dissolved in a solution of MeOH (8 mL), Et$_3$N (1.55 mL) and H$_2$O (1 mL) and stirred at room temperature. TLC analysis (2:1, cyclohexane/ethyl acetate, H$_2$SO$_4$ stain) after 38 h showed complete deacetylation of the starting material. The reaction mixture was concentrated in vacuo to afford L-rhamnal as a white solid. Under a N$_2$ atmosphere, L-rhamnal was dissolved in anhydrous THF (10 mL, 0.5 M). The flask was cooled to 0 °C and NaH (60% dispersion in mineral oil) (717 mg, 17.9 mmol) was added to the solution. The ice-bath was removed and the reaction was stirred at room temperature for 30 minutes. The reaction mixture was again cooled to 0 °C and treated slowly with BnBr (1.9 mL, 16 mmol). The ice-bath was removed and the reaction mixture was left to stir at room temperature. TLC analysis (3:1, cyclohexane/ethyl acetate, H$_2$SO$_4$ stain) after 18 h showed complete consumption of L-rhamnal. The reaction mixture was quenched with MeOH (4 mL), diluted with DCM (60 mL), washed with 1 M HCl (30 mL) followed by saturated NaHCO$_3$ (30 mL) and brine (30
mL). The organic layer was dried over anhydrous MgSO₄, filtered and concentrated in vacuo to give a yellow oil. Purification by column chromatography (100 to 98:2 pentane/ethyl acetate) afforded 3g as a white solid (884 mg, 61% yield over two steps).

H NMR (500 MHz, Chloroform-d): δ 7.37 – 7.26 (m, 10H, Ph), 4.88 (d, J = 11.4 Hz, 1H, OCH₂Ph), 4.86 (dd, J = 6.2, 2.5 Hz, 1H, H-2), 4.70 (d, J = 11.3 Hz, 1H, OCH₂Ph), 4.66 (d, J = 11.7 Hz, 1H, OCH₂Ph), 4.57 (d, J = 11.7 Hz, 1H, OCH₂Ph), 4.21 (ddd, J = 6.5, 2.5, 1.5 Hz, 1H, H-3), 3.95 (dq, J = 8.9, 6.4 Hz, 1H, H-5), 3.48 (dd, J = 8.9, 6.5 Hz, 1H, H-4), 1.38 (d, J = 6.4 Hz, 3H, 6-CH₃).

C NMR (101 MHz, Chloroform-d): δ 144.9 (C-1), 138.6 (4º C), 138.4 (4º C), 128.55 (CH), 128.53 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 100.3 (C-2), 79.7 (C-4), 76.6 (C-3), 74.2 (PhCH₂), 74.1 (C-5), 70.7 (PhCH₂), 17.6 (C-6). NMR data were in agreement with literature.

3,4-ODibenzyll-fucal 3h

Following a literature procedure, 3,4-ODiacetyl-L-fucal (250 mg, 1.17 mmol) was dissolved in a solution of MeOH (8 mL), Et₃N (1 mL) and H₂O (1 mL) and stirred at room temperature. TLC analysis (2:1, cyclohexane/ethyl acetate, H₂SO₄ stain) after 24 h showed complete deacetylation of the starting material. The reaction mixture was concentrated in vacuo to afford L-fucal as a white solid. Under a N₂ atmosphere, L-fucal was dissolved in anhydrous THF (3 mL, 0.4 M). The flask was cooled to 0 ºC and NaH (60% dispersion in mineral oil) (187 mg, 4.67 mmol) was added to the solution. The ice-bath was removed and the reaction was stirred at room temperature for 30 minutes. The reaction mixture was again cooled to 0 ºC and treated slowly with BnBr (0.50 mL, 4.2 mmol). The ice-bath was removed and the reaction mixture was left to stir at room temperature. TLC analysis (3:1, cyclohexane/ethyl acetate, H₂SO₄ stain) after 18 h showed complete consumption of L-fucal. The reaction mixture was quenched with MeOH (2 mL), diluted with DCM (40 mL), washed with 1 M HCl (15 mL) followed by saturated NaHCO₃ (15 mL) and brine (15 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a yellow oil. Purification by column chromatography (95:5 to 90:10 pentane/ethyl acetate) afforded 3h as a white solid (254 mg, 70% yield over two steps).

H NMR (400 MHz, Chloroform-d): δ 7.42 – 7.21 (m, 10H, Ph), 4.96 (d, J = 12.0 Hz, 1H, OCH₂Ph), 4.83 (ddd, 6.4, 2.5, 1.5 Hz, 1H, H-2), 4.72 (d, J = 11.8 Hz, 1H, OCH₂Ph), 4.69 (d, J = 11.9 Hz, 1H, OCH₂Ph), 4.62 (d, J = 12.2 Hz, 1H, OCH₂Ph), 4.25 (m, 1H, H-3), 4.05 (br q, J = 6.6 Hz, 1H, H-5), 3.70 (dt, J = 3.9, 1.7 Hz, 1H, H-4), 1.28 (d, J = 6.6 Hz, 3H, 6-CH₃). C NMR (101 MHz, Chloroform-d): δ 144.7 (C-1), 138.72 (4º C), 138.66 (4º C), 128.5 (CH), 128.37 (CH), 127.43 (CH), 127.67 (CH), 127.5 (CH), 99.6 (C-2), 73.8 (PhCH₂), 73.3 (C-4), 73.0 (C-5), 72.3 (C-3), 70.9 (PhCH₂), 16.7 (C-6). NMR data were in agreement with literature.
Synthesis of Acceptors

Methyl 4,6-\textit{O}-benzylidene-\textit{\textalpha-}D-glucopyranoside (14)

Following the literature procedure,10 a solution of methyl \textit{\textalpha-}D-glucopyranoside (10.1 g, 52.0 mmol), benzaldehyde dimethylacetal (9.5 ml, 63 mmol) and \textit{p}-TsOH.H\textsubscript{2}O (0.15 g, 0.79 mmol) in anhydrous DMF (100 ml) was heated on a rotary-evaporator (50 °C, 200 mbar) for two hours. TLC analysis (ethyl acetate; H\textsubscript{2}SO\textsubscript{4} stain (10-15% EtOH)) of the reaction mixture against a sample of pure product showed the desired product had been formed (\textit{R}\textsubscript{f} = 0.43) and that the starting material had been consumed (base-line spot). The DMF was removed using rotary evaporation. The white solid obtained was dissolved in CH\textsubscript{2}Cl\textsubscript{2} (100 ml) and washed with sat. NaHCO\textsubscript{3} solution (100 ml), followed by brine (100 ml). The organic layer was dried over Na\textsubscript{2}SO\textsubscript{4}. This was filtered using Büchner filtration and the solvent from the filtrate was removed using rotary evaporation. Purification by column chromatography (95:5; CH\textsubscript{2}Cl\textsubscript{2}/MeOH) gave 14 as a white solid (11.3 g, 77% yield).

\[\text{R}_f = 0.38 \ (95:5; \text{CH}_2\text{Cl}_2/\text{MeOH}); \text{mp} \ 164–166 ^\circ \text{C} \ (\text{lit.} \ 161–162 ^\circ \text{C} \ (\text{CH}_2\text{Cl}_2/\text{MeOH}); \text{^1H} \ \text{NMR} \ (400 \text{ MHz, Chloroform-}d) \ \delta \ 7.55 – 7.44 \ (\text{m, 2H, Ph}), 7.41 – 7.30 \ (\text{m, 3H, Ph}), 5.50 \ (\text{s, 1H, H-7}), 4.73 \ (\text{d, J = 3.9 Hz, 1H, H-1}), 4.27 \ (\text{dd, J = 9.6, 4.2 Hz, 1H, H-6a}), 3.90 \ (\text{app t, J = 9.3 Hz, 1H, H-3}), 3.82 – 3.67 \ (\text{m, 2H, H-5, H-6b}), 3.58 \ (\text{td, J = 8.6, 3.9 Hz, 1H, H-2}), 3.45 \ (\text{t, J = 9.3 Hz, 1H, H-4}), 3.42 \ (\text{s, 3H, OCH}_3), 3.40 – 3.30 \ (\text{m, 1H, OH}), 2.78 \ (\text{d, J = 8.7 Hz, 1H, OH}); \text{^13C} \ \text{NMR} \ (101 \text{ MHz, Chloroform-}d) \ \delta \ 137.2 \ (4^\circ \text{C}), 129.4 \ (\text{CH}), 128.4 \ (\text{CH}), 126.4 \ (\text{CH}), 102.0 \ (\text{C-7}), 100.0 \ (\text{C-1}), 81.1 \ (\text{C-4}), 72.9 \ (\text{C-2}), 71.6 \ (\text{C-3}), 69.0 \ (\text{C-6}), 62.5 \ (\text{C-5}), 55.6 \ (\text{OCH}_3). \text{Proton and carbon NMR data were consistent with literature data.}^5

It should be noted that at higher concentrations some peaks are subject to change e.g., anomic (4.67 ppm in 0.4M CDCl\textsubscript{3} vs. 4.81 ppm in 0.0125M CDCl\textsubscript{3}). This may be due to a complexation in solution.

Methyl 3-\textit{O}-benzyl-4,6-\textit{O}-benzylidene-\textit{\textalpha-}D-glucopyranoside 6a and Methyl 2-\textit{O}-benzyl-4,6-\textit{O}-benzylidene-\textit{\textalpha-}D-glucopyranoside 6b
Following the literature procedure, to a stirred solution of 14 (3.0 g, 11 mmol) in CH$_2$Cl$_2$ (100 ml), tetrabutylammonium hydrogensulfate (1.2 g, 3.5 mmol) was added followed by aq. NaOH (12.4 ml, 1mM). The mixture was stirred for 30 min at room temperature. BnBr (1.4 ml, 12 mmol) was then added to the reaction mixture. The mixture was heated at reflux for 3 days (time unoptimised). TLC analysis of the reaction mixture (ethyl acetate) showed a small amount of starting material remained ($R_f = 0.35$) and three new spots appeared in the reaction mixture ($R_f = 0.85, 0.75$ and 0.65). 1H NMR analysis of the reaction mixture showed that a small amount of starting material remained (~5%) and that the desired products had formed (3-OH/2-OH; 2.4:1 based on integrations of H-7). The aqueous and organic layers were separated and the aqueous layer was extracted with CH$_2$Cl$_2$ (3 × 50 ml). The combined organic layers were washed with NaHCO$_3$ (100 ml), brine (100 ml), dried over MgSO$_4$ and filtered using Büchner filtration. The solvent was removed from the filtrate using rotary evaporation which gave a brown oil (9 g). Column chromatography was performed (75:25; cyclohexane/ethyl acetate) but did not lead to the isolation of pure products ($R_f = 0.24$ (3-OH) and 0.14 (2-OH)). Concentration of the solution of the mixed fractions containing the 3-OH product and other impurities, but free of 2-OH product, allowed the desired product 6b to crystallise from the remaining ethyl acetate as a white solid (1.48 g, 37% yield). Mixed fractions containing the 2-OH product and other impurities, but free of the 3-OH product, were concentrated using rotary evaporation and dissolved using a mixture of CH$_2$Cl$_2$/cyclohexane/MeOH (4.75:0.25:5). Removal of the CH$_2$Cl$_2$ by rotary evaporation allowed the desired product 6a to crystallize from the remaining cyclohexane/methanol as a white solid (0.58 g, 15% yield). 0.5 g (13% yield) remained as mixed fractions containing the two desired products plus unidentified impurities.

Methyl 3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (6a): $R_f = 0.14$ (75:25; cyclohexane/ethyl acetate); mp 180–182 °C (lit.13 188–189 °C (EtOH)); 1H NMR (400 MHz, Chloroform-d) δ 7.54 – 7.43 (m, 2H, Ph), 7.42 – 7.26 (m, 8H, Ph), 5.57 (s, 1H, H-7), 4.96 (d, J = 11.6 Hz, 1H, OCH$_2$Ph), 4.81 (d, J = 4.0 Hz, 1H, H-1), 4.79 (d, J = 11.7 Hz, 1H, OCH$_2$Ph), 4.30 (dd, J = 9.8, 4.4 Hz, 1H, H-6a), 3.88 – 3.80 (m, 2H, H-3, H-5), 3.80 – 3.69 (m, 2H, H-2, H-6b), 3.64 (t, J = 9.2 Hz, 1H, H-4), 3.45 (s, 3H, OCH$_3$), 2.30 (d, J = 7.3 Hz, 1H, OH); 13C NMR (101 MHz, Chloroform-d) δ 138.6 (4° C), 137.5 (4° C), 129.1 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 127.9 (CH), 126.2 (CH), 101.4 (C-7), 100.0 (C-1), 82.1 (C-4), 79.0 (C-3), 75.0 (PhCH$_2$), 72.6 (C-2), 69.2 (C-6), 62.7 (C-5), 55.6 (OCH$_3$). Proton and carbon NMR data were consistent with literature data.5

Methyl 2-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside (6b): $R_f = 0.24$ (75:25; cyclohexane/ethyl acetate); mp 126–128 °C (lit.4 129.7–130.4 °C (CH$_2$Cl$_2$)); 1H NMR (400 MHz, Chloroform-d) δ 7.54 – 7.44 (m, 2H, Ph), 7.43 – 7.28 (m, 8H, Ph), 5.52 (s, 1H, H-7), 4.95 (d, J = 11.5 Hz, 1H, OCH$_2$Ph), 4.81 (d, J = 4.0 Hz, 1H, H-1), 4.79 (d, J = 11.7 Hz, 1H, OCH$_2$Ph), 4.30 (dd, J = 9.8, 4.4 Hz, 1H, H-6a), 3.88 – 3.80 (m, 2H, H-3, H-5), 3.80 – 3.69 (m, 2H, H-2, H-6b), 3.64 (t, J = 9.2 Hz, 1H, H-4), 3.45 (s, 3H, OCH$_3$), 2.28 (d, J = 7.3 Hz, 1H, OH); 13C NMR (101 MHz, Chloroform-d) δ 138.6 (4° C), 137.5 (4° C), 129.1 (CH), 128.5 (CH), 128.4 (CH), 128.1 (CH), 127.9 (CH), 126.2 (CH), 101.4 (C-7), 100.0 (C-1), 82.1 (C-4), 79.0 (C-3), 75.0 (PhCH$_2$), 72.6 (C-2), 69.2 (C-6), 62.7 (C-5), 55.6 (OCH$_3$). Proton and carbon NMR data were consistent with literature data.5
4.79 (d, J = 12.2 Hz, 1H, OCH\textsubscript{3}HPh), 4.70 (d, J = 12.2 Hz, 1H, OCH\textsubscript{3}HPh), 4.61 (d, J = 3.6 Hz, 1H, H-1), 4.26 (dd, J = 10.1, 4.7 Hz, 1H, H-6a), 4.15 (app td, J = 9.3, 1.7 Hz, 1H, H-3), 3.81 (ddd, J = 10.0, 9.7, 4.7 Hz, 1H, H-5), 3.70 (t, J = 10.2 Hz, 1H, H-6b), 3.49 (t, J = 9.3 Hz, 1H, H-4), 3.47 (dd, J = 9.2, 3.7 Hz, 1H, H-1), 3.38 (s, 3H, OCH\textsubscript{3}), 2.55 (d, J = 1.5 Hz, 1H, OH); 13C NMR (101 MHz, Chloroform-d) δ 138.0 (4° C), 137.2 (4° C), 129.3 (CH), 128.7 (CH), 128.4 (CH), 128.29 (CH), 126.5 (CH), 102.1 (C-7), 98.8 (C-1), 81.4 (C-4), 79.7 (C-2), 73.5 (PhCH\textsubscript{2}), 70.4 (C-3), 69.1 (C-6), 62.2 (C-5), 55.5 (OCH\textsubscript{3}). Proton and carbon NMR data were consistent with literature data.

Methyl 2,3-di-O-benzyl-4,6-O-benzylidene-\alpha-D-glucopyranoside 15

![Structure](image)

Under a N\textsubscript{2} atmosphere, 14 (1.99 g, 7.1 mmol) as weighed into the flask and dissolved in anhydrous DMF (70 ml). The solution was cooled to 0 °C (50:50; ice/water). NaH (60% dispersion in mineral oil) (1.19 g, 29.7 mmol) was added to the reaction mixture. The ice-bath was removed and the reaction mixture was left to stir at room temperature for 30 min. The reaction was again cooled to 0 °C and BnBr (3.5 ml, 29 mmol) was added dropwise to the reaction. The reaction was left stirring at room temperature, under a N\textsubscript{2} atmosphere, for 16.5 h (time unoptimised). TLC analysis (7:3; cyclohexane/ethyl acetate; H\textsubscript{2}SO\textsubscript{4} stain (10-15% EtOH)) against a pure sample of product showed that the starting material was consumed in the reaction and the desired product had formed (R\textsubscript{f} = 0.73). MeOH (1 ml) was added to the reaction mixture to quench the reaction. The solvents were removed using rotary evaporation which gave a yellow solid. The solid obtained was dissolved in CH\textsubscript{2}Cl\textsubscript{2} (75 ml) and washed with deionised water (2 × 75 ml). The aqueous layer was then extracted with CH\textsubscript{2}Cl\textsubscript{2} (3 × 75 ml). The organic layers were combined and washed with brine (150 ml) and then dried with MgSO\textsubscript{4}, filtered and concentrated in vacuo. Purification by column chromatography (85:15; cyclohexane/ethyl acetate) gave a white solid (2.71 g, 82% yield). A small impurity (~10%) was present in this sample following column chromatography. 1.51 g of this sample was recrystallised using n-hexanes which gave 15 as white solid (1.28 g, 39% yield).

R\textsubscript{f} = 0.29 (85:15; cyclohexane/ethyl acetate); mp; 94–95 °C (lit.4 93–95 °C (cyclohexane/ethyl acetate)). 1H NMR (400 MHz, Chloroform-d) δ 7.55 – 7.44 (m, 2H, Ph), 7.43 – 7.21 (m, 13H, Ph), 5.54 (s, 1H, H-7), 4.91 (d, J = 11.3 Hz, 1H, OCH\textsubscript{3}HPh), 4.85 (d, J = 12.1 Hz, 1H, OCH\textsubscript{3}HPh), 4.83 (d, J = 11.3 Hz, 1H, OCH\textsubscript{3}HPh), 4.69 (d, J = 12.2 Hz, 1H, OCH\textsubscript{3}HPh), 4.60 (d, J = 3.7 Hz, 1H, H-1), 4.26 (dd, J = 10.1, 4.7 Hz, 1H, H-6a), 4.05 (t, J = 9.3 Hz, 1H, H-3), 3.83 (td, J = 9.9, 4.7 Hz, 1H, H-5), 3.70 (t, J = 10.2 Hz, 1H, H-6b), 3.60 (t, J = 9.4 Hz, 1H, H-4), 3.56 (dd, J = 9.3, 3.7 Hz, 1H, H-2), 3.40 (s, 3H, OCH\textsubscript{3}); 13C NMR (101 MHz, Chloroform-d) δ 138.8 (4° C), 138.3 (4° C), 137.5 (4° C), 129.0 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.7 (CH), 126.1 (CH), 101.4 (C-7), 99.3 (C-1), 82.3 (C-4), 79.3 (C-2), 78.7 (C-3), 75.5 (PhCH\textsubscript{2}), 73.9 (PhCH\textsubscript{2}), 69.2
Proton and carbon NMR data were consistent with literature data.

Methyl 2,3,6-tri-O-benzyl-\(\alpha\)-D-glucopyranoside 6c

Based on literature procedures,\(^\text{14,15}\) 4Å molecular sieves (powdered) (450 mg) were weighed into a three-necked round bottom flask. This flask was flame-dried using a propane torch, allowed to cool under vacuum and then switched to a \(\text{N}_2\) atmosphere. The flask was equipped with a stir-bar, gas inlet and thermometer. Pyranoside 15 (1 g, 2 mmol) was added, followed by \(\text{NaCNBH}_3\) (1.0M in THF, 35 ml, 35 mmol). The mixture was cooled to 0 °C (50:50; ice/water). HCl (4.0M in dioxane, 10 ml) was added to the reaction mixture until the pH reached 1-2 and no more fizzing was observed upon addition. The reaction mixture was left to warm to room temperature. TLC analysis (4:1; cyclohexane/ethyl acetate) showed that the sugar starting material (\(R_f = 0.26\)) had been consumed in the reaction and two new spots appeared (\(R_f = 0.11\) and a baseline spot). The reaction mixture was diluted with EtOAc (40 ml) and then filtered using Büchner filtration. The filtrate was transferred to a separating funnel and sat. NaHCO\(_3\) solution (40 ml) was added. The aqueous layer was extracted with EtOAc (3 × 40 ml). The combined organic layers were washed with brine (80 ml). The organic layer was dried using \(\text{Na}_2\text{SO}_4\), filtered and concentrated \textit{in vacuo}. Purification by column chromatography (7:3; cyclohexane/ethyl acetate) gave 6c as a colourless oil (0.76 g, 76% yield).

\(R_f = 0.37\) (7:3; cyclohexane/ethyl acetate); \(^1\)H NMR (400 MHz, Chloroform-\(d\)) \(\delta\) 7.48 – 7.17 (m, 15H, Ph), 5.00 (d, \(J = 11.4\) Hz, 1H, \(\text{OC}H\text{HPh}\)), 4.77 (d, \(J = 12.2\) Hz, 1H, \(\text{OC}H\text{HPh}\)), 4.73 (d, \(J = 11.6\) Hz, 1H, \(\text{OC}H\text{HPh}\)), 4.66 (d, \(J = 12.2\) Hz, 1H, \(\text{OC}H\text{HPh}\)), 4.63 (d, \(J = 3.6\) Hz, 1H, H-1), 4.59 (d, \(J = 12.2\) Hz, 1H, \(\text{OC}H\text{HPh}\)), 4.54 (d, \(J = 12.2\) Hz, 1H, \(\text{OC}H\text{HPh}\)), 3.78 (app t, \(J = 9.1\) Hz, 1H, H-3), 3.74 – 3.65 (m, 3H, H-5, H-6a, H-6b), 3.60 (td, \(J = 9.1, 2.3\) Hz, 1H, H-4), 3.53 (dd, \(J = 9.5, 3.6\) Hz, 1H, H-2), 3.38 (s, 3H, \(\text{OCH}_3\)), 2.33 (d, \(J = 2.4\) Hz, 1H, OH) \(^13\)C NMR (101 MHz, Chloroform-\(d\)) \(\delta\) 138.9 (4° C), 138.2 (4° C), 138.1 (4° C), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 128.14 (CH), 128.10 (CH), 128.0 (CH), 127.78 (CH), 127.77 (CH), 98.3 (C-1), 81.6 (C-3), 79.8 (C-2), 75.6 (PhCH\(_2\)), 73.7 (PhCH\(_2\)), 73.3 (PhCH\(_2\)), 70.9 (C-4), 70.0 (C-5), 69.6 (C-6), 55.4 (OCH\(_3\)). Proton and carbon NMR data were consistent with literature data.\(^5\)
Phenyl 2,3,4-tri-O-benzyl-β-D-thioglucopyranoside 6d

Following modified literature procedures,5,16 16a (3.9 g, 5.7 mmol) was dissolved in methanol (150 ml) and THF (30 ml). 3M NaOHaq (24 ml) was added and the reaction was stirred for 16 h. TLC (cyclohexane:EtOAc; 2:1) showed full consumption of starting material ($R_f = 0.5$) and a new product at $R_f = 0.0$. The reaction was concentrated under reduced pressure to remove the THF and MeOH. The resulting solution was neutralised (pH 7) with 2M HCl. The aqueous layer was extracted with EtOAc (15 ml × 15) and solvent removed under reduced pressure to give crude 16b as an off-white solid (1.32 g, 88%).

$R_f = 0.0$ (cyclohexane:EtOAc; 2:1); 1H NMR (500 MHz; CDCl3): δ 7.65-7.54 (m, 2H, Ph), 7.48-7.35 (m, 3H, Ph), 3.90 (dd, $J = 12.5$, 2.2 Hz, 1H, H-6a), 3.72 (dd, $J = 12.5$, 5.5 Hz, 1H, H-6b), 3.58-3.31 (m, 4H, 4 x CH); 13C NMR (From HSQC; 125.7 MHz; CDCl3): δ 131.6 (CH), 129.3 (CH), 128.1 (CH), 87.2 (C-1), 79.2 (CH), 77.1 (CH), 71.6 (CH), 69.3 (CH), 60.6 (C-6).

Crude 16b (960 mg, 3.53 mmol) and imidazole (490 mg, 7.2 mmol) were charged to a RBF and dried under high vacuum for 3 h. Anhydrous DMF (12.5 ml) was added to the reaction and when everything was in solution TIPSCl (2 ml, 9.4 mmol) was added to the RBF under N2 and stirred for 18 h. The solution was concentrated under reduced pressure and the residue was dissolved in CH2Cl2 (50 ml), washed with water (35 ml), brine (30 ml), dried over MgSO4, filtered and concentrated under reduced pressure to give 16c. Selected peaks from 1H NMR (500 MHz; CDCl3): δ 7.55-7.50 (m, 2H, Ph), 7.31-7.26 (m, 3H, Ph), 4.55 (d, $J = 9.7$ Hz, 1H, H-1), 4.04 (dd, $J = 10.2$, 5.0 Hz, 1H), 3.93 (dd, $J = 10.3$, 6.0 Hz, 1H), 3.64-3.57 (m, 2H), 3.45 (dt, $J = 8.8$, 5.9 Hz, 1H), 3.38-3.33 (m, 1H).

The intermediate 16c was then dissolved in anhydrous DMF (16 ml) and the solution was cooled in an ice bath. NaH (60% dispersion in mineral oil) (790 mg, 19.8 mmol) was charged to the flask and the reaction was stirred for 1 h at RT. Then the reaction was cooled in an ice bath before benzyl bromide (2.3 ml, 19 mmol) was added dropwise. The reaction was left stirring under N2 at RT for 72 h. TLC analysis (cyclohexane:EtOAc; 2:1; H2SO4 (10-15% EtOH) stain) showed that intermediates were still present. NaH (60% dispersion in mineral
oil) (20 mg, 5.0 mmol) was charged to the flask and the reaction was stirred for 1 h. Benzyl bromide (0.6 ml, 5 mmol) was added dropwise and the reaction stirred overnight (time unoptimised). The reaction was quenched with MeOH (5 ml) and solvent concentrated under reduced pressure. The residue was then dissolved in CH₂Cl₂ (50 ml), washed with water (35 ml), brine (30 ml), dried over MgSO₄, filtered and concentrated under reduced pressure to give 16d. Following purification by column chromatography (cyclohexane:EtOAc; 98:2) phenyl 2,3,4-tri-O-benzyl-6-O-triisopropylsilyl-β-D-thioglucopyranoside 16d was obtained as a white solid (1.48 g, 60%).

Rf = 0.3 (cyclohexane:EtOAc; 98:2); ¹H NMR (400 MHz; CDCl₃): δ 7.62-7.49 (m, 2H, Ph), 7.42-7.19 (m, 18H, Ph), 4.90-4.56 (dd, J = 12.5, 5.5 Hz, 6H), 4.86 (dd, J = 12.5, 5.5 Hz, 1H), 4.04-3.85 (m, 2H), 3.76-3.62 (m, 1H), 3.55-3.42 (m, 1H), 3.34 (ddd, J = 9.5, 3.8, 1.8 Hz, 1H), 1.12-1.01 (m, 21H, iPr₃Si).

Intermediate 16d (1.14 g, 1.63 mmol) was charged to a round bottom flask under N₂. A 1M TBAF solution in THF (3.0 mL, 3 mmol) was added to the flask and the resulting solution stirred under N₂ at RT. After 2 h TLC showed full consumption of starting material (Rf = 0.85) and the presence of product at Rf = 0.55 (cyclohexane:EtOAc; 1:1.5). The reaction was diluted with CH₂Cl₂ (50 mL) and washed with water (25 mL), brine (25 mL), and dried over MgSO₄ and filtered. The solvent was removed under reduced pressure to give a cloudy white oil. Following purification by column chromatography (cyclohexane:EtOAc; 1:1.5), phenyl 2,3,4-tri-O-benzyl-β-D-thioglucopyranoside 6d was obtained as a white solid (600 mg, 68%).

Rf = 0.3 (cyclohexane:EtOAc; 1:1.5); ¹H NMR (500 MHz; CDCl₃): δ 7.53-7.49 (m, 2H, Ph), 7.40-7.36 (m, 2H, Ph), 7.36-7.22 (m, 16H, Ph), 4.93-4.83 (m, 4H, PhCH₂, PhCH/H × 2), 4.76 (d, J = 10.2 Hz, 1H, PhCH/H), 4.72 (dd, J = 9.8, 1.1 Hz, 1H, H-1), 4.65 (d, J = 10.9 Hz, 1H, PhCH/H), 3.87 (ddd, J = 12.0, 5.5, 2.5 Hz, 1H, H-6a), 3.73 (t, J = 9.0 Hz, 1H, H-3), 3.72-3.66 (m, H-6b), 3.58 (t, J = 9.4 Hz, 1H, H-4), 3.49 (app t, J = 9.3 Hz, 1H, H-2), 3.39 (ddd, J = 9.0, 4.5, 2.4 Hz, 1H, H-5), 2.00-1.94 (m, 1H, OH). ¹³C NMR (125.7 MHz; CDCl₃): δ 138.4 (4° C), 138.02 (4° C), 137.96 (4° C), 133.6 (4° C), 132.0 (CH), 129.2 (CH), 128.59 (CH), 128.55 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.90 (CH), 127.8 (CH), 87.7 (C-1), 86.7 (C-3), 81.2 (C-2), 79.5 (C-5), 77.7 (C-4), 75.9 (PhCH₂), 75.7 (PhCH₂), 75.2 (PhCH₂), 62.3 (C-6). Spectra were consistent with literature data.

Acceptors 6e-h were purchased from commercial suppliers and used without further purification.
Thiouracil-catalysed Glycosylations

General Procedure 1

A 5 ml RBF equipped with a stir-bar, gas-inlet and reflux condenser was set up under a N₂ atmosphere. The glycal donor (1.2 eq) was weighed into the round-bottomed flask and placed under vacuum for ca. 30 min. An anhydrous solution of acceptor (0.8M in CH₂Cl₂) was made by charging a known quantity of acceptor to a flask under N₂. Anhydrous CH₂Cl₂ was added to make up a 0.8M solution. The stock solution was dried by adding MgSO₄ (1:1 mol/mol w.r.t. acceptor) and let sit for 30 min. The stock solution of acceptor in CH₂Cl₂ (1 eq) was then decanted by syringe and added to the glycal donor under N₂. After everything was in solution, 2-thiouracil (1 mol%) was added giving a suspension. The reaction was refluxed under N₂ for 18 h or until TLC or NMR analysis showed the reaction was complete. Some solvent loss was noted over the course of the reaction and the higher concentration that results is believed to be beneficial. The solution was then concentrated under reduced pressure and purified by column chromatography.

General Procedure 2

The glycal donor (0.6 mmol) and acceptor (0.5 mmol) were weighed into a round bottomed flask equipped with a stirring bar under N₂ and put under vacuum for 40 minutes. The flask was refilled with N₂ before anhydrous CH₂Cl₂ (0.6 ml) was added to make a 0.8M solution wrt the acceptor. After everything was in solution 2-thiouracil (1 mol%) was added to the solution under N₂. The reaction was refluxed under N₂ for 18 h or until TLC or NMR analysis showed the reaction was complete. Some solvent loss was noted over the course of the reaction and the higher concentration that results is believed to be beneficial. The solution was then concentrated under reduced pressure and purified by column chromatography.

Table 1

6-O-(3,4,6-Tri-O-benzyl-2-deoxy-α-D-lyxo-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5a

Following General Procedure 1, galactal 3a (100 mg, 0.24 mmol), an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (0.8M, 0.24 ml, 0.2 mmol) and 2-thiouracil (0.3 mg, 2 μmol) were used. The mixture was heated at reflux temperature for 18 h. Following purification by column chromatography (4:1; cyclohexane/ethyl acetate) the product was obtained as a pale yellow oil (128 mg, 95% yield).
$R_f = 0.4$ (cyclohexane:EtOAc; 4:1); 1H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.09 (m, 15H, Ph), 5.52 (d, $J = 5.0$ Hz, 1H, H-1), 5.03 (d, $J = 3.3$ Hz, 1H, H-1’), 4.92 (d, $J = 11.6$ Hz, 1H, OCH/HPPh), 4.61 (d, $J = 11.4$ Hz, 1H, OCH/HPPh), 4.60 – 4.56 (m, 3H, H-3, 2 × OCH/HPPh), 4.49 (d, $J = 11.8$ Hz, 1H, OCH/HPPh), 4.42 (d, $J = 11.8$ Hz, 1H, OCH/HPPh), 4.30 (dd, $J = 5.0$, 2.4 Hz, 1H, H-2), 4.21 (dd, $J = 8.0$, 1.9 Hz, 1H, H-4), 4.01 – 3.88 (m, 4H, H-5, H-3’, H-4’, H-5’), 3.74 (dd, $J = 10.7$, 6.7 Hz, 1H, H-6a’), 3.69 – 3.64 (m, 1H, H-6b’), 3.62 (dd, $J = 9.4$, 7.6 Hz, 1H, H-6a), 3.54 (dd, $J = 9.2$, 5.6 Hz, 1H, H-6b), 2.22 (td, $J = 12.3$, 3.6 Hz, 1H, H-2a’), 2.07 – 1.95 (m, 1H, H-2b’), 1.51 (s, 3H, CH3), 1.42 (s, 3H, CH3), 1.33 (s, 6H, 2 × CH3); 13C NMR (101 MHz, Chloroform-d) δ 139.1 (4° C), 138.8 (4° C), 138.3 (4° C), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.8 (CH), 127.6 (CH), 127.4 (CH), 109.5 (O2C(CH3)2), 108.7 (O2C(CH3)2), 97.7 (C-1’), 96.5 (C-1), 74.9 (CH), 74.5 (PhCH2), 73.5 (PhCH2), 73.1 (CH), 71.2 (C-4), 70.82, 70.77 (C-2, C-3), 70.6 (PhCH2), 70.0 (CH), 69.4 (C-6), 66.0 (CH), 65.7 (C-6’), 31.8 (C-2’), 26.3 (CH3), 26.1 (CH3), 25.1 (CH3), 24.7 (CH3). Proton and carbon NMR data were consistent with literature data.5

6-O-(3,4,6-Tri-O-allyl-2-deoxy-α-d-lyxo-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-α-d-galactopyranose 5b

Following General Procedure 1, tri-O-allyl-d-galactal 3b (107 mg, 0.40 mmol) and anhydrous CH2Cl2 solution of galactose 4 (0.8M, 0.39 mL, 0.31 mmol) and 2-thiouracil (0.4 mg, 0.003 mmol, 1 mol%) for 14 h. Purification by flash chromatography (95:5 to 80:20 cyclohexane/ethyl acetate) afforded the product as a colourless oil (134 mg, 82%).

$R_f = 0.27$ (8:2; cyclohexane/ethyl acetate); 1H NMR (400 MHz, CDCl3) δ: 6.01–5.85 (m, 3H, CH=CH2), 5.52 (d, $J = 5.0$ Hz, 1H, H-1), 5.34–5.08 (m, 6H, CH=CH2), 5.00 (d, $J = 3.0$ Hz, H-1’), 4.60 (dd, $J = 8.0$, 2.4 Hz, 1H, H-3), 4.35 (ddt, $J = 12.7$, 5.6, 1.2 Hz, 1H, OCH/HPCH=CH2), 4.31 (dd, $J = 5.0$, 2.4 Hz, 1H, H-2), 4.23 (dd, $J = 7.9$, 1.9 Hz, 1H, H-4), 4.15–3.93 (m, 6H, 5 × OCH/HPCH=CH2, H-5), 3.91 (app t, $J = 6.7$ Hz, 1H, H-5’), 3.83–3.77 (m, 2H, H-3’, H-4’), 3.74 (ddd, $J = 10.6$, 6.7 Hz, 1H, H-6a), 3.68–3.59 (m, 2H, H-6a’, H-6b), 3.51 (1H, dd, $J = 9.3$, 5.6 Hz, H-6b’), 2.10 (td, $J = 12.2$, 3.5 Hz, 1H, H-2a’), 1.96 – 1.87 (m, 1H, H-2b’), 1.53 (s, 3H, CH3), 1.43 (s, 3H, CH3), 1.33 (s, 6H, 2 × CH3); 13C NMR (101 MHz, CDCl3) δ: 135.8 (CH=CH2), 135.0 (CH=CH2), 134.7 (CH=CH2), 117.2 (CH=CH2), 116.9 (CH=CH2), 116.6 (CH=CH2), 109.4 (O2C(CH3)2), 108.7 (O2C(CH3)2), 97.7 (C-1’), 96.5 (C-1), 74.1 (C-3’), 73.7 (OCH2CH2), 72.6, 72.4 (C-4’, OCH2CH), 71.2 (C-4), 70.81, 70.77 (C-2, C-3), 69.7 (C-5’), 69.4 (OCH2CH), 69.1 (C-6’), 66.1 (C-5), 65.7 (C-6), 31.3 (C-2’), 26.2 (CH3), 26.1 (CH3), 25.1 (CH3), 24.7 (CH3). Data are consistent with literature.5

S15
6-O-(6-O-Acetyl-3,4-di-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5c

Following General Procedure 1, galactal 3c (222 mg, 0.603 mmol), an anhydrous CH2Cl2 solution of galactose 4 (0.83 M, 0.6 ml, 0.5 mmol), and 2-thiouracil (0.6 mg, 5 μmol) were used. Following purification by column chromatography (pentane:EtOAc; 3:1), the product was obtained as a pale yellow oil (267 mg, 85%).

Rf = 0.3 (pentane:EtOAc; 3:1); 1H NMR (500 MHz; CDCl3): δ 7.38-7.24 (m, 10H, Ph), 5.51 (d, J = 5.0 Hz, 1H, H-1), 5.04 (d, J = 2.9 Hz, 1H, H-1'), 4.95 (d, J = 11.7 Hz, 1H, OCH/HPh), 4.65 (d, J = 11.7 Hz, 1H, OCH/HPh), 4.63-4.59 (m, 3H, H-3, OCH2Ph), 4.30 (dd, J = 5.0, 2.4 Hz, 1H, H-2), 4.21 (dd, J = 7.9, 1.9 Hz, 1H, H-4), 4.15 (dd, J = 11.2, 7.1 Hz, 1H, H-6a’), 4.11 (dd, J = 5.6 Hz, 1H, H-6b’), 3.97-3.92 (m, 3H, H-5, H-3’, H-5’), 3.83 (br s, 1H, H-4'), 3.73 (d, J = 10.7, 6.9 Hz, 1H, H-6a), 3.64 (dd, J = 10.7, 3.7 Hz, 1H, H-6b), 2.22 (td, J = 12.3, 3.7 Hz, 1H, H-2a’), 2.06-2.01 (m, 1H, H-2b’), 1.98 (s, 3H, OC(O)CH3), 1.51 (s, 3H, CH3), 1.43 (s, 3H, CH3), 1.330 (s, 3H, CH3), 1.325 (s, 3H, CH3); 13C NMR (125 MHz; CDCl3): δ 170.8 (C=O), 138.62 (4° C), 138.58 (4° C), 128.52 (4° C), 128.49 (4° C), 128.4 (CH), 127.8 (CH), 127.76 (CH), 127.4 (CH), 109.4 (O2CMe2), 108.6 (O2CMe2), 97.5 (C-1’), 96.4 (C-1), 74.9 (CH), 74.1 (PhCH2), 72.7 (C-4’), 71.3 (C-4), 70.8, 70.68, 70.66 (PhCH2, C-2, C-3), 69.1 (CH), 66.2 (CH), 65.8 (C-6), 64.1 (C-6’), 31.0 (C-2’), 26.2 (CH3), 26.1 (CH3), 25.1 (CH3), 24.6 (CH3), 21.0 (OC(O)CH3). Spectra were consistent with literature data.5

6-O-(3,4,6-Tri-O-tert-butyldimethylsilyl-2-deoxy-α-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5d

Following General Procedure 1, galactal 3d (113 mg, 0.231 mmol), an anhydrous 2-Me-THF solution of galactose 4 (0.83 M, 0.24 ml, 0.20 mmol), and 2-thiouracil (0.2 mg, 2 μmol) were
used. Following purification by column chromatography (cyclohexane:EtOAc; 19:1), the product was obtained as a pale yellow oil (102 mg, 68%).

\[R_f = 0.25 \] (cyclohexane:EtOAc; 19:1); \[^1H \text{NMR} \] (300 MHz; CDCl\(_3\)): \(\delta \) 5.50 (d, \(J = 5.0 \) Hz, \(1H, H-1 \)), 4.91 (d, \(J = 3.1 \) Hz, \(1H, H-1' \)), 4.60 (dd, \(J = 7.9, 2.4 \) Hz, \(1H, H-3 \)), 4.30 (dd, \(J = 5.0, 2.4 \) Hz, \(1H, H-2 \)), 4.20 (dd, \(J = 7.9, 1.9 \) Hz, \(1H, H-4 \)), 4.09-4.01 (m, \(1H, H-2a' \)), 1.52 (s, \(3H, CH_3 \)), 0.905, 0.899, 0.886 (s, \(27H, SiC(CH_3)_3 \)), 0.10 (s, \(3H, SiCH_3 \)), 0.082 (s, \(3H, SiCH_3 \)), 0.077 (s, \(3H, SiCH_3 \)), 0.071 (s, \(3H, SiCH_3 \)), 0.05 (s, \(6H, SiCH_3 \times 2 \)); \[^13C \text{NMR} \] (125 MHz; CDCl\(_3\)): \(\delta \) 109.4 (O\(_2\)CMe), 108.6 (O\(_2\)CMe), 97.6 (C-1'), 96.5 (C-1), 72.6 (C-5'), 71.4 (C-4), 70.9 (C-2, C-3), 70.1 (C-4'), 68.4 (C-3'), 66.7 (C-5), 65.4 (C-6), 62.2 (C-6'), 33.8 (C-2'), 26.39 (SiC(CH\(_3\))\(_3\)), 26.31 (SiC(CH\(_3\))\(_3\)), 26.27 (CH\(_3\)), 26.1 (CH\(_3\)), 26.0 (SiC(CH\(_3\))\(_3\)), 25.2 (CH\(_3\)), 24.6 (CH\(_3\)), 18.8 (SiC(CH\(_3\))\(_3\)), 18.7 (SiC(CH\(_3\))\(_3\)), 18.4 (SiC(CH\(_3\))\(_3\)), -3.8 (SiCH\(_3\)), -4.2 (SiCH\(_3\)), -4.6 (SiCH\(_3\)), -4.8 (SiCH\(_3\)), -5.1 (SiCH\(_3\)), -5.2 (SiCH\(_3\)). Spectra were consistent with literature data.

6-O-(3,4,6-Tri-O-benzyl-2-deoxy-\(\alpha/\beta \)-D-erythro-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-\(\alpha \)-D-galactopyranose 5fa and 6-O-(4,6-di-O-benzyl-2,3-dideoxy-\(\alpha/\beta \)-D-erythro-hex-2-enopyranosyl)-1,2:3,4-di-O-isopropylidene-\(\alpha \)-D-galactopyranose 5fb

Following General Procedure 1, glucal 3f (290 mg, 0.70 mmol), an anhydrous CH\(_2\)Cl\(_2\) solution of galactose 4 (0.83 M, 0.7 ml, 0.58 mmol) and 2-thiouracil (0.8 mg, 6 \(\mu \)mol) were used. Analysis of the \(^1H \) NMR spectrum of the reaction material prior to column chromatography gave an \(\alpha:\beta \) 6:1. Following purification by column chromatography (cyclohexane:EtOAc; 5:1) the products were inseparable. 5fa and 5fb were obtained as a white foam 236 mg (\(^1H \) NMR of the white foam showed 5fa:5fb = 4.6:1), yield of 5fa 46%. 5fa: \(\alpha/\beta \): 5:1; 5fb: \(\alpha/\beta \): 5:1

\[R_f = 0.3 \] (cyclohexane:EtOAc; 5:1);

\(^1H \) NMR (500 MHz; CDCl\(_3\)):

The following were observed for all four diastereomers: \(\delta \) 7.38-7.17 (m, 15 H).
5fa α-anomer: δ 5.51 (d, J = 5.0 Hz, 1H, H-1), 5.02 (br d, J = 2.8 Hz, 1H, H-1’), 4.88 (d, J = 10.8 Hz, 1H, OCH2Ph), 4.68-4.63 (m, 3H, OCH2Ph, OCH2Ph), 4.59 (m, 1H, H-3), 4.51 (app t, J = 11.4, 2H, 2 x OCH2Ph), 4.30 (dd, J = 5.0, 2.4 Hz, 1H, H-2), 4.22 (dd, J = 7.9, 1.9 Hz, 1H, H-4), 4.01-3.96 (m, 1H, H-3’), 3.94 (td, J = 6.8, 1.7 Hz, 1H, H-5), 3.81-3.76 (m, 2H, H-5’, H-6a’), 3.73 (dd, J = 10.4, 6.6 Hz, 1H, H-6a’), 3.68-3.62 (m, 3H, H-4’, H-6b, H-6b’), 2.32 (ddd, J = 13.0, 5.1, 1.4 Hz, 1H, H-2a’), 1.72 (ddd, J = 12.9, 11.6, 3.7 Hz, 1H, H-2b’), 1.51 (s, 3H, CH3), 1.43 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.32 (s, 3H, CH3).

5fa β-anomer (selected signals): δ 4.91 (d, J = 10.7 Hz, 1H, OCH2Ph), 4.08 (dd, J = 11.0 Hz, 1H, OCH2Ph), 3.53 (t, J = 9.2 Hz, 1H, CH), 3.39 (ddd, J = 9.5, 4.3, 2.3 Hz, 1H, CH), 2.2 (dd, J = 12.5, 5.0, 1.6 Hz, 1H, H-2a’), 1.69-1.62 (m, 1H, H-2b’).

5fb α-anomer (selected signals): δ 6.06 (d, J = 10.2 Hz, 1H, H-2’), 5.77 (ddd, J = 10.2, 2.6, 2.0 Hz, 1H, H-3’), 5.55 (d, J = 5.7 Hz, 1H, H-1), 5.09 (br s, 1H, H-1’), 4.43 (d, J = 11.5 Hz, 1H, OCH2Ph), 4.27 (dd, J = 7.9, 1.9 Hz, 1H), 3.86 (dd, J = 10.2, 6.1 Hz, 1H, H-6a).

5fb β-anomer (selected signals): δ 6.02 (ddd, J = 10.3, 2.9, 1.7 Hz, 1H, CH), 5.90 (dt, J = 10.1, 1.3 Hz, 1H, CH), 5.20 (dd, J = 2.8, 1.3 Hz, 1H), 4.12 (d, J = 7.2 Hz, 1H).

13C NMR (126 MHz; CDCl3):

5fa α-anomer: δ 138.8 (4°), 138.6 (4°), 138.2 (4°), 128.4 (CH), 128.3 (CH), 128.3 (CH), 127.95 (CH), 127.91 (CH), 127.6 (CH), 127.69 (CH), 109.3 (O2CMe2), 108.6 (O2CMe2), 97.3 (C-1’), 96.3 (C-1), 78.2 (C-4’), 77.6 (C-3’), 75.0 (PhCH2), 73.5 (PhCH2), 71.8 (PhCH2), 70.97 (C-4/C-5’), 70.95 (C-4/C-5’), 70.65 (C-2/C-3), 70.64 (C-2/C-3), 68.8 (C-6’), 65.7 (C-5), 65.4 (C-6), 35.4 (C-2’), 26.2 (CH3), 26.0 (CH3), 24.9 (CH3), 24.6 (CH3).

5fa β-anomer (selected signals): δ 100.4 (C-1’), 78.0 (CH), 75.1 (CH), 74.9 (PhCH2), 68.8 (PhCH2), 36.6 (C-2’).

5fb α-anomer (selected signals): δ 130.7 (C-2’), 126.5 (C-3’), 108.7 (O2CMe2), 96.4 (C-1), 95.1 (C-1’), 71.2 (PhCH2), 70.8 (CH), 70.2 (C-5’), 66.8 (C-6).

5fb β-anomer from HSQC (selected signals): δ 129.2 (C-2’), 128.3 (C-3’), 96.4 (C-1’).

Spectra were consistent with literature data; α-5fa and β-5fa;17 α-5fb and 5fb.18
Following General Procedure 3, rhamnal 3g (100 mg, 0.32 mmol), an anhydrous CH$_2$Cl$_2$ solution of galactose acceptor 4 (1.7 M, 0.16 mL, 0.27 mmol) and 2-thiouracil (0.3 mg, 2 μmol) were used. The reaction mixture was heated at reflux for 40 h. Analysis of the solution of galactose acceptor following General Procedure 3, rhamnal 5g and 4-O-(benzyl)-2,3,6-trideoxy-αβ-L-hex-2-enopyranosyl-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5gb.

1H NMR (600 MHz, Chloroform-d): The following were observed for all four diastereomers: δ 7.37 – 7.26 (m, 1H, 10H).

5ga α-anomer: δ 5.53 (dd, J = 5.1 Hz, 1H, H-1), 4.94 (d, J = 11.0 Hz, 1H, OCHHPh), 4.92 (d, J = 3.1 Hz, 1H, H-1'), 4.68–4.63 (m, 2H, 2 × OCHHPh), 4.62–4.58 (m, 2H, OCHHPh, H-3), 4.30 (dd, J = 5.1, 2.5 Hz, 1H, H-2), 4.22 (dd, J = 7.9, 1.9 Hz, 1H, H-4), 3.97–3.90 (m, 2H, H-5, H-3'), 3.81–3.77 (m, 2H, H-6a, H-5'), 3.53 (dd, J = 10.4, 6.8 Hz, 1H, H-6b), 3.13 (t, J = 9.2 Hz, 1H, H-4'), 2.35 (ddd, J = 13.1, 5.0, 1.1 Hz, 1H, H-2a'), 1.66 (ddd, J = 12.9, 11.4, 3.7 Hz, 1H, H-2b'), 1.54 (s, 3H, CH$_3$), 1.44 (s, 3H, CH$_3$), 1.33 (s, 3H CH$_3$), 1.32 (s, 3H, CH$_3$), 1.27 (d, J = 6.3 Hz, 3H, 6'-CH$_3$). Data were in agreement with literature.\(^{19}\)

5ga β-anomer (selected signals): δ 5.51 (d, J = 5.1 Hz, 1H, H-1), 4.94 (d, J = 11.0 Hz, 1H, OCHHPh), 4.47 (dd, J = 9.8, 1.8 Hz, 1H, H-1'), 4.02 (ddd, J = 8.0, 5.9, 2.1 Hz, 1H, H-5), 3.86 (dd, J = 10.1, 6.0 Hz, 1H, H-6a), 3.77–3.73 (m, 1H, H-6b), 3.62–3.58 (m, 1H, CH), 3.32 (dq, J = 9.3, 6.2 Hz, 1H, H-5'), 3.12 (t, J = 8.9 Hz, 1H, H-4'), 2.37 (m, 1H, H-2a'), 1.70–1.58 (m, 1H, H-2b'), 1.53 (s, 3H), 1.44 (s, 3H), 1.35 (s, 3H), 1.31 (d, J = 6.2 Hz, 3H, 6'-CH$_3$). Data were in agreement with literature.\(^{20}\)

The following were observed for both the major and minor products of 5gb: δ 6.04 (dt, J = 10.3, 1.3 Hz, 1H, CH=CH), 4.27 (dd, J = 8.0, 1.5 Hz, 1H, CH), 3.98–3.90 (m, 2H, H-6a, H-5'), 3.70 (dd, J = 9.1, 1.7 Hz, 1H, H-4'), 3.67–3.62 (m, 1H, H-6b), 1.29 (d, J = 6.3 Hz, 3H, 6'-CH$_3$).

5gb major (selected signals): δ 5.79 (dt, J = 10.2, 2.3 Hz, 1H, CH=CH), 4.99 (br s, 1H, H-1').

5gb minor (selected signals): δ 5.83 (dd, J = 10.3, 1.4 Hz, 1H, CH=CH), 5.20 (br d, J = 1.7 Hz, 1H, H-1').
13C NMR (151 MHz, Chloroform-d):

5ga α-anomer: δ 138.9 (4° C), 138.8 (4° C), 128.48 (CH), 128.46 (CH), 128.0 (CH), 127.8 (CH), 109.39 (O$_2$C(CH$_3$)$_2$), 108.69 (O$_2$C(CH$_3$)$_2$), 97.4 (C-1’), 96.4 (C-1), 84.4 (C-4’), 77.5 (C-3’), 75.2 (PhCH$_2$), 71.8 (PhCH$_2$), 71.3 (C-4), 70.77 (C-2 or C-3), 70.73 (C-2 or C-3), 67.4 (C-5), 67.3 (C-5’), 65.7 (C-6), 35.8 (C-2’), 26.3 (CH$_3$), 26.1 (CH$_3$), 25.1 (CH$_3$), 24.6 (CH$_3$), 18.2 (C-6’).

5ga β-anomer (selected signals): δ 109.30 (O$_2$C(CH$_3$)$_2$), 108.66 (O$_2$C(CH$_3$)$_2$), 100.3 (C-1’), 96.5 (C-1), 83.8 (C-4’), 79.4, 75.4 (PhCH$_2$), 71.5 (C-5’), 67.7 (C-6), 66.0 (C-5), 37.0 (C-2’), 18.3 (C-6’).

The following were observed for both the major and minor products of **5gb**: δ 130.7 (C-3’), 76.6 (C-4’), 71.26 (CH), 66.4 (C-6), 65.9 (C-5’), 18.31 (C-6’).

5gb major (selected signals): 127.0 (C-2’), 94.5 (C-1’)

5gb minor (selected signals): 97.4 (C-1’)

HRMS-ESI (m/z): [M + Na]$^+$ calc’d for C$_{32}$H$_{42}$O$_8$Na (5ga+Na$^+$), 593.2727; found 593.2709; calc’d for C$_{25}$H$_{34}$O$_8$Na (5gb+Na$^+$): 485.2151; found: 485.2175.

(3,4-Di-O-benzyl-2-deoxy-α/β-L-fucopyranosyl)-(1→6)-1,2,3,4-di-O-isopropylidene-α-D-galactopyranoside 5h and 3,4-Di-O-benzyl-2-deoxy-α/β-L-fucopyranosyl-(1→1)-(3’,4’-Di-O-benzyl-2-deoxy-α/β-L-fucopyranosyl 9h

Following General Procedure 3, fucal 3h (102 mg, 0.329 mmol), an anhydrous CH$_2$Cl$_2$ solution of galactose acceptor 4 (1.7 M, 0.16 mL, 0.27 mmol) and 2-thiouracil (0.3 mg, 2 μmol) were used. The reaction mixture was heated at reflux for 18 h. Analysis of the 1H NMR spectrum of the crude reaction mixture gave an α:β of 92:8. Following purification by column chromatography (95:5 to 80:10 pentane/ethyl acetate) the products α-5h and α,α-9h were inseparable and a cloudy syrup (92 mg) was obtained (1H NMR spectrum of the syrup showed α-5h:α,α-9h = 89:11); yield of α-5h 52%. β-5h was isolated with an inseparable unidentified impurity as a syrup (8 mg, 4%).

1H NMR (400 MHz, Chloroform-d): The following were observed for all four diastereomers: δ 7.44 – 7.20 (m, 10H, Ph).

5h α-anomer: δ 5.53 (d, J = 5.0 Hz, 1H, H-1), 5.00 (d, J = 3.1 Hz, 1H, H-1’), 4.97 (d, J = 11.8 Hz, 1H, OCH$_2$Ph), 4.69 (d, J = 11.8 Hz, 1H, OCH$_2$Ph), 4.62 (d, J = 11.9 Hz, 1H,
OCHHPh), 4.59 (dd, J = 7.9, 2.5 Hz, 1H, H-3), 4.58 (d, J = 11.9 Hz, 1H, OCHHPh), 4.31 (dd, J = 5.0, 2.4 Hz, 1H, H-2), 4.20 (dd, J = 7.9, 1.9 Hz, 1H, H-4), 3.96 – 3.84 (m, 3H, H-5, H-3', H-5'), 3.77 (dd, J = 10.1, 6.4 Hz, 1H, H-6a), 3.59 (br s, 1H, H-4'), 3.55 (dd, J = 10.1, 6.7 Hz, 1H, H-6b), 2.18 (td, J = 12.3, 3.7 Hz, 1H, H-2a'), 2.03 (dd, J = 12.6, 4.7 Hz, 1H, H-2b'), 1.53 (s, 3H, CH3), 1.42 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.16 (d, J = 6.5 Hz, 3H, 6'-CH3).

5h β-anomer (impure): 1H NMR (600 MHz, Chloroform-d): δ 5.49 (d, J = 5.0 Hz, 1H, H-1), 4.96 (d, J = 11.9 Hz, 1H, OCHHPh), 4.72 (d, J = 11.9 Hz, 1H, OCHHPh), 4.62 (d, J = 12.3 Hz, 1H, OCHHPh), 4.60–4.58 (m, 1H, H-3 or H-4), 4.56 (d, J = 12.2 Hz, 1H, OCHHPh), 4.41 (dd, J = 9.5, 2.2 Hz, 1H, H-1'), 4.37 (dd, J = 8.0, 1.6 Hz, 1H, H-3 or H-4), 4.28 (dd, J = 5.0, 2.3 Hz, 1H, H-2), 4.06–4.02 (m, 1H, H-5), 3.86 (dd, J = 9.8, 5.5 Hz, 1H, H-6a), 3.76 (t, J = 9.4 Hz, 1H, H-6b), 3.55 (qq, J = 11.9, 4.5, 2.6 Hz, 1H, H-3'), 3.48 (br s, 1H, H-4'), 3.35 (q, J = 6.4 Hz, 1H, H-5'), 2.11–2.07 (m, 1H, H-2a'), 2.04 (td, J = 11.9, 9.4 Hz, 1H, H-2b'), 1.51 (s, 3H, CH3), 1.44 (s, 3H, CH3), 1.35 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.18 (d, J = 6.3 Hz, 3H, 6'-CH3).

9h α,α-anomer (selected signals): δ 5.43 (d, J = 4.5 Hz, 1H, H-1), 4.05–3.99 (m, 1H, H-5), 2.30–2.23 (m, 1H, H-2a), 2.00–1.94 (m, 1H, H-2b), 1.19 (d, J = 6.5 Hz, 1H, 6'-CH3).

13C NMR:

5h α-anomer (101 MHz, Chloroform-d): δ 139.1 (4º C), 138.8 (4º C), 128.49 (CH), 128.48 (CH), 128.3 (CH), 127.58 (CH), 127.57 (CH), 127.4 (CH), 109.3 (O2C(CH3)2), 108.6 (O2C(CH3)2), 97.9 (C-1'), 96.4 (C-1), 75.9 (C-4'), 75.4 (C-3'), 74.4 (PhCH2), 71.3 (C-4), 70.76 (C-3), 70.73 (C-2), 70.5 (PhCH2), 66.9 (C-5'), 66.8 (C-5), 65.4 (C-6), 30.6 (C-2'), 26.2 (CH3), 26.1 (CH3), 25.1 (CH3), 24.7 (CH3), 17.4 (C-6').

5h β-anomer (impure) (151 MHz, Chloroform-d): δ 138.9 (4º C), 138.5 (4º C), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 127.7 (CH), 127.6 (CH), 127.4 (CH), 109.1 (O2C(CH3)2), 108.7 (O2C(CH3)2), 101.3 (C-1'), 96.4 (C-1), 78.1 (C-3'), 74.42 (PhCH2), 74.38 (C-4'), 71.01 (C-5'), 70.97 (C-2), 70.7 (C-3 or C-4), 70.6 (C-3 or C-4), 70.4 (PhCH2), 67.5 (C-6), 65.9 (C-5), 32.3 (C-2'), 26.3 (CH3), 26.1 (CH3), 25.1 (CH3), 24.6 (CH3), 17.4 (C-6').

9h α,α-anomer (101 MHz, Chloroform-d) (selected signals): δ 138.9 (4º C), 138.5 (4º C), 128.55 (CH), 128.43 (CH), 128.31 (CH), 127.70 (CH), 127.65 (CH), 127.37 (CH), 100.2 (C-1), 75.7 (CH), 74.8 (CH), 74.6 (PhCH2), 70.6 (PhCH2), 67.7 (C-5), 28.5 (C-2), 17.6 (C-6).

NMR data for 5h were in agreement with literature.21
Table 2

Methyl 3-O-benzyl-2-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-4,6-O-benzylidene-α-D-glucopyranoside 7a

In a slight modification to the general procedure 1 (due to the low solubility of 6a), galactal 3a (290 mg, 0.69 mmol), an anhydrous CH$_2$Cl$_2$ solution of glucose 6a (0.35M, 1.0 ml, 0.35 mmol) and 2-thiouracil (0.6 mg, 5 μmol) were used. Following purification by column chromatography (4:1; cyclohexane/ethyl acetate) the product 7a was obtained as a white solid (232 mg, 84% yield).

R$_f$ = 0.18 (4:1; cyclohexane/ethyl acetate); 1H NMR (400 MHz, Chloroform-d) δ 7.53 – 7.42 (m, 2H, Ph), 7.41 – 7.14 (m, 23H, Ph), 5.51 (s, 1H, H-7), 5.14 (app d, J = 3.4 Hz, 1H, H-1’), 4.85 – 4.88 (m, 2H, OCH$_2$Ph), 4.85 (d, J = 11.4 Hz, 1H, OCH$_2$Ph), 4.65 (d, J = 11.4 Hz, 1H, OCH$_2$Ph), 4.51 (s, 1H, H-7), 4.19 (t, J = 6.5 Hz, 1H, H-5’), 3.97 – 3.85 (m, 3H, H-2, H-3, H-3’), 3.80 (td, J = 9.9, 4.7 Hz, 1H, H-5), 3.75 (br s, 1H, H-4’), 3.69 (t, J = 10.2 Hz, 1H, H-6b), 3.58 (dd, J = 9.7, 6.6 Hz, 1H, H-6a’), 3.54 (t, J = 9.0 Hz, 1H, H-4), 3.45 (dd, J = 9.7, 6.5 Hz, 1H, H-6b’), 3.42 (s, 3H, OCH$_3$), 2.25 (td, J = 12.4, 3.6 Hz, 1H, H-2a’), 2.07 (dd, J = 12.7, 4.6 Hz, 1H, H2b’); 13C NMR (101 MHz, Chloroform-d) δ 138.9 (4° C), 138.8 (4° C), 138.6 (4° C), 138.53 (4° C), 137.49 (4° C), 129.0 (CH), 128.6 (CH), 128.34 (CH), 128.32 (CH), 128.31 (CH), 128.30 (CH), 128.1 (CH), 127.7 (CH), 127.63 (CH), 127.61 (CH), 127.5 (CH), 127.4 (CH), 126.1 (CH), 101.3 (C-7), 97.3 (C-1), 94.1 (C-1’), 82.3 (C-4), 77.4 (C-3), 75.5 (PhCH$_2$), 74.54, 74.45 (C-3’, PhCH$_2$), 73.1, 72.92, 72.91 (C-2, C-4’, PhCH$_2$), 70.5 (PhCH$_2$), 69.64, 69.57 (C-5’, C-6’), 69.1 (C-6), 62.5 (C-5), 55.3 (OCH$_3$), 31.0 (C-2’). Spectra were consistent with literature data.5

Methyl 2-O-benzyl-3-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-4,6-O-benzylidene-α-D-glucopyranoside 7b

Following general procedure 1, galactal 3a (250 mg, 0.60 mmol), an anhydrous CH$_2$Cl$_2$ solution of glucose 6b (0.83M, 0.6 ml, 0.50 mmol) and 2-thiouracil (0.6 mg, 5 μmol) were used. Following purification by column chromatography (81:18; cyclohexane/ethyl acetate) the product 7b was obtained as a white solid (352 mg, 89% yield).
The reaction. Column chromatography (85:15; cyclohexane/ethyl acetate) was carried out, however the desired product was not isolated. The product contained α,α-9a was not isolated. The product was obtained as a cloudy oil (184 mg, 55% yield), containing α,α-9a (17%). This result was reproduced several times and each time desired product 7c was isolated but contained α,α-9a as an impurity.

\[R_f = 0.32 \text{ (82:18; cyclohexane/ethyl acetate); } ^1H \text{ NMR (400 MHz, Chloroform-} d) \delta 7.45 - 7.38 \text{ (m, 2H, Ph), 7.37 – 7.18 (m, 23H, Ph), 5.52 (app d, J = 3.4 Hz, 1H, H-1'), 5.49 (s, 1H, H-7), 4.89 (d, J = 11.5 Hz, 1H, OCH2Ph), 4.69 (d, J = 12.2 Hz, 1H, OCH2Ph), 4.61 (d, J = 11.5 Hz, 1H, OCH2Ph), 4.58 – 4.53 (m, 2H, 2 × OCH2Ph), 4.52 (d, J = 3.7 Hz, 1H, H-1), 4.49 (d, J = 12.3 Hz, 1H, OCH2Ph), 4.42 (d, J = 11.7 Hz, 1H, OCH2Ph), 4.37 (d, J = 11.7 Hz, 1H, OCH2Ph), 4.33 – 4.25 (m, 2H, H-3, H-5'), 4.22 (dd, J = 10.0, 4.7 Hz, 1H, H-6a), 3.96 – 3.87 (m, 2H, H-3', H-4'), 3.78 (app td, J = 9.9, 4.7 Hz, 1H, H-5), 3.66 (t, J = 10.3 Hz, H-6b), 3.65 – 3.58 (m, 2H, H-6a' H-6b'), 3.54 (t, J = 9.4 Hz, 1H, H-4), 3.43 (dd, J = 9.5, 3.7 Hz, 1H, H-2), 3.32 (s, 3H, OCH3), 2.20 (app td, J = 12.3, 3.8 Hz, 1H, H-2a'), 2.06 – 1.99 (m, 1H, H-2b'). \]

\[^{13}C \text{ NMR (101 MHz, Chloroform-} d) \delta 139.1 (4° C), 138.7 (4° C), 138.6 (4° C), 138.2 (4° C), 137.3 (4° C), 129.1 (CH), 128.6 (CH), 128.5 (CH), 128.37 (CH), 128.36 (CH), 128.29 (CH), 128.27 (CH), 128.1 (CH), 128.0 (CH), 127.61 (CH), 127.57 (CH), 127.5 (CH), 127.4 (CH), 126.1 (CH), 101.4 (C-7), 99.1 (C-1), 97.9 (C-1'), 83.1 (C-4), 78.2 (C-2), 74.6, 74.4 (C-3', PhCH2), 73.6 (PhCH2), 73.2, 73.1 (C-4', PhCH2), 72.6 (C-3), 70.2 (PhCH2), 69.6 (C-5'), 69.2, 69.1 (C-6, C-6'), 62.1 (C-5), 55.3 (OCH3), 31.3 (C-2'). \]

Spectra were consistent with literature data.\(^5\)

Methyl 2,3,6-tri-O-benzyl-4-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexopyranosyl)-α-D-glucopyranoside 7c

In a slight modification to the general procedure, galactal 3a (259 mg, 0.62 mmol, 2 eq), an anhydrous CH2Cl2 solution of glucose 6c (0.83M, 0.35 ml, 0.29 mmol) and 2-thiouracil (0.4 mg, 3 μmol) were used. After 18 h \(^1H\) NMR showed the acceptor had been completely consumed in the reaction. Column chromatography (85:15; cyclohexane/ethyl acetate) was carried out, however the desired product 7c could not be isolated from a close running impurity \((R_f = 0.28\) (impurity), 0.23 (product)). Column chromatography was repeated but desired product 7c free of impurity α,α-9a was not isolated. The product 7c was obtained as a cloudy oil (184 mg, 55% yield), containing α,α-9a (17%). This result was reproduced several times and each time desired product 7c was isolated but contained α,α-9a as an impurity.

\[R_f = 0.23 \text{ (85:15; cyclohexane/ethyl acetate); } ^1H \text{ NMR (400 MHz, Chloroform-} d) \delta 7.38 – 7.09 \text{ (m, 30H), 5.47 (d, J = 3.7 Hz, 1H, H-1'), 5.00 (d, J = 10.9 Hz, 1H, OCH2Ph), 4.88 (d, J = 11.6 Hz, 1H, OCH2Ph), 4.73 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.65 (d, J = 11.0 Hz, 1H, OCH2Ph), 4.63 – 4.56 (m, 3H, H-1, 2 × OCH2Ph), 4.54 (d, J = 11.8 Hz, 1H, OCH2Ph), 4.52 (d, J = 11.9 Hz, 1H, OCH2Ph), 4.49 (d, J = 11.7 Hz, 1H, OCH2Ph), 4.38 (d, J = 12.1 Hz, 1H, OCH2Ph), 4.37 (d, J = 11.7 Hz, 1H, OCH2Ph), 4.31 (d, J = 11.7 Hz, 1H, OCH2Ph), 3.96 – 3.75 (m, 4H, H-3, H-3', H-4', H-5'), 3.75 – 3.58 (m, 4H, H-4, H-5, H-6a/b), 3.51 (dd, J = 9.5, 3.7 Hz, H-2), 3.49 – 3.42 (m, 2H, H-6a'/b'), 3.39 (s, 3H, OCH3), 2.13 (td, J = 12.4, 3.9 Hz, 1H, H-2a'), 1.87 (app, dd, J = 12.9, 4.4 Hz, 1H, H-2b'); \]

\[^{13}C\) NMR (101 MHz,
Chloroform-d δ 138.9 (4° C), 138.6 (4° C), 138.56 (4° C), 138.50 (4° C), 138.2 (4° C), 138.15 (4° C), 128.6 (CH), 128.52 (CH), 128.46 (CH), 128.4 (CH), 128.33 (CH), 128.3 (CH), 128.25 (CH), 128.1 (CH), 128.0 (CH), 127.77 (CH), 127.76 (CH), 127.72 (CH), 127.67 (2 × CH), 127.63 (CH), 127.44 (CH), 127.42 (CH), 99.8 (C-1'), 97.9 (C-1), 82.2 (C-3), 80.2 (C-2), 76.0 (C-4), 75.7 (PhCH$_2$), 74.6 (C-3'), 74.4 (PhCH$_2$), 73.6 (PhCH$_2$), 73.4 (PhCH$_2$), 73.2 (PhCH$_2$), 72.9 (C-4'), 70.8 (C-5'), 70.52 (PhCH$_2$), 70.0 (C-5), 69.72, 69.68 (C-6, C-6'), 55.34 (OCH$_3$), 31.7 (C-2'). Spectra were consistent with literature data.

Phenyl 2,3,4-tri-O-benzyl-6-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-β-D-thioglucopyranoside 7d

Following General Procedure 2, galactal 3a (200 mg, 0.48 mmol), acceptor 6d (0.217 g, 0.40 mmol), anhydrous CH$_2$Cl$_2$ (0.48 ml) and 2-thiouracil (0.5 mg, 4 μmol) were used. Following purification by column chromatography (cyclohexane:EtOAc; 4:1), the product was obtained as a white solid (315 mg, 82%).

$R_f = 0.3$ (cyclohexane:EtOAc; 4:1); 1H NMR (300 MHz; CDCl$_3$): δ 7.56-7.52 (m, 2H, Ph), 7.42-7.16 (m, 33H, Ph), 5.07 (d, $J = 3.1$ Hz, 1H, H-1'), 4.94-4.84 (m, 4H, OCH/Ph × 4), 4.79 (d, $J = 10.9$ Hz, 1H, OCH/Ph), 4.74 (d, $J = 10.3$ Hz, 1H, OCH/Ph), 4.65 (d, $J = 9.9$ Hz, 1H, H-1), 4.61 (d, $J = 11.9$ Hz, 1H, OCH/Ph), 4.58 (s, 2H, OCH$_2$Ph), 4.53 (d, $J = 10.9$ Hz, 1H, OCH/Ph), 4.46 (d, $J = 11.9$, Hz, 1H, OCH/Ph), 4.39 (d, $J = 11.9$, Hz, 1H, OCH/Ph), 3.93-3.84 (m, 3H, H-3', H-4', H-5'), 3.81 (d, $J = 11.5$, 4.4 Hz, 1H, H-6a), 3.73-3.65 (m, 2H, H-3, H-6b), 3.56-3.50 (m, 2H, H-6a', H-6b'), 3.50-3.44 (m, 3H, H-2, H-4, H-5), 2.24 (ddd, $J = 12.7$, 11.8, 3.3 Hz, 1H, H-2a'), 2.03 (dd, $J = 12.7$, 4.2 Hz, 1H, H-2b'); 13C NMR (100 MHz; CDCl$_3$): δ 139.0 (4° C), 138.6 (4° C), 138.5 (4° C), 138.4 (4° C), 138.1 (4° C), 138.1 (4° C), 133.8 (4° C), 132.1 (CH), 132.0 (CH), 129.86 (CH), 128.60 (CH), 128.59 (CH), 128.56 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.97 (CH), 127.94 (CH), 127.9 (CH), 127.88 (CH), 127.8 (CH), 127.7 (CH), 127.68 (CH), 127.61 (CH), 127.6 (CH), 127.4 (CH), 98.5 (C-1'), 87.2 (C-1), 86.9 (C-3), 80.9 (C-2), 78.6, 78.2 (C-4, C-5), 76.0 (PhCH$_2$), 75.5 (PhCH$_2$), 75.2 (PhCH$_2$), 74.7 (C-3'), 74.4 (PhCH$_2$), 73.4 (PhCH$_2$), 73.1 (C-4'), 70.5 (PhCH$_2$), 70.0 (C-5'), 69.6 (C-6'), 66.3 (C-6), 31.2 (C-2'). Spectra were consistent with literature data.
2-Deoxy-3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→O)-N-tert-butoxycarbonyl-L-serine methyl ester 7e

Following General Procedure 2, benzyl galactal 3a (148 mg, 0.355 mmol) and N-(tert-butoxycarbonyl)-L-serine methyl ester (68 mg, 0.31 mmol) and 2-thiouracil (0.4 mg, 0.003 mmol, 1 mol%) were used, and refluxed in dichloromethane for 18 h. Purification via flash chromatography (toluene:ethyl acetate 18:1, \(R_f = 0.35 \)) afforded 7e as colourless oil (185 mg, 94%).

\[^1H\text{ NMR (500 MHz, CDCl}_3 \text{)} \delta: 7.40–7.20 \text{ (m, 15H, ArH), 5.45 (d, } J = 9.0 \text{ Hz, 1H, NH), 4.95–4.87 \text{ (m, 2H, PhCHHH and H-1), 4.62–4.55 \text{ (m, 3H, 3 \times PhCHHH), 4.52 (d, 1H, } J = 11.9 \text{ Hz, PhCHHH), 4.49–4.40 (m, 2H, CHN and PhCHHH), 3.95–3.79 (m, 5H, H-3, H-4, H-5, CH$_2$CHN), 3.72 (s, 3H, OMe), 3.62–3.52 (m, 2H, H-6a, H-6b), 2.20 (td, } J = 12.4, 3.7 \text{ Hz, 1H, H-2a), 1.94 (dd, } J = 12.7, 4.5 \text{ Hz, 1H, H-2b), 1.44 (s, 9H, Boc-CH}_3\text{);} \] ^13C NMR (126 MHz, CDCl$_3$) δ: 171.2 (C=O), 155.6 (C=O), 138.9 (4°C), 138.5 (4°C), 138.1 (4°C), 128.49 (CH), 128.31 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 99.0 (C-1), 80.1 (CMe$_3$), 74.4 (C3/C4 + CH$_2$Ph), 73.6 (CH$_2$Ph), 72.8 (C3/C4), 70.5 (CH$_2$Ph), 70.4 (C5), 69.3 (C6), 68.7 (CH$_2$CHN), 54.1 (CHN), 52.52 (COCH$_3$), 31.1 (C-2), 28.4 (3 \times CH$_3$). The spectra are consistent with those in the literature although our assignments differ slightly.\(^{22}\)

2-Deoxy-3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-threonine methyl ester 7f

Following General Procedure 2, benzyl galactal 3a (250 mg, 0.60 mmol) and N-(tert-butoxycarbonyl)-L-threonine methyl ester (117 mg, 0.50 mmol) and 2-thiouracil (0.36 mg, 0.005 mmol, 1 mol%) were used, and refluxed in 2-methyl THF for 18 h. The dried residue was purified via flash chromatography (cyclohexane:ethyl acetate 4:1, \(R_f = 0.41 \)) affording 7f as a white solid (295 mg, 91%).

\[\text{MP 110–112 °C; } ^1H\text{ NMR (400 MHz, CDCl}_3 \text{)} \delta: 7.41–7.20 \text{ (m, 15H, ArH), 5.13 (d, } J = 9.8 \text{ Hz, 1H, NH), 4.93–4.88 (m, 2H, H-1, CHHPh), 4.67–4.54 (m, 3H, 3 \times CHHPh), 4.49 (d, } J = \]
11.8 Hz, 1H, CH2Ph), 4.41 (d, \(J = 11.8 \) Hz, 1H, CH2Ph), 4.33–4.23 (m, 2H, 2 × CH), 3.95–3.87 (m, 2H, H-4, H-5), 3.83 (ddd, \(J = 12.1, 4.6, 2.4 \) Hz, 1H, H-3), 3.72 (s, 3H, OCH3), 3.60–3.50 (m, 2H, H-6a, H-6b), 2.14 (td, \(J = 12.4, 3.8 \) Hz, 1H, H-2a), 1.84 (dd, \(J = 12.7, 4.5 \) Hz, 1H, H-2b), 1.48 (s, 9H, 3 × CH3), 1.24 (d, \(J = 6.3 \) Hz, CH-CH3); \(^{13}\)C NMR (101 MHz, CDCl3) δ: 171.7 (C=O), 156.1 (C=O), 138.9 (4°C), 138.5 (4°C), 138.2 (4°C), 128.6 (CH), 128.5 (CH), 128.34 (CH), 128.29 (CH), 127.8 (CH), 127.7 (CH), 127.64 (CH), 127.56 (CH), 99.5 (C-1), 80.2 (CMe2), 75.5 (CHMe), 74.42, 74.40 (C-3, CH2), 73.6 (CH2), 73.1 (C-4), 70.52, 70.49 (CH2, C-5), 69.6 (C-6), 58.5 (CHNHBoc), 52.4 (OCH3), 31.4 (C-2), 28.5 (3 × CH3), 18.7 (CHCH3); HRMS-ESI (m/z): [M + Na]⁺ calc’d for C\(_{26}\)H\(_{40}\)NO\(_{3}\)Na, 672.3144; found 672.3149. Spectra are in consistent with literature although there are minor differences in assignments of signals.\(^{23}\)

2-Deoxy-3,4,6-tri-O-benzyl-D-lyxo-hexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-tyrosine methyl ester 7g

Following General Procedure 2, galactal 3a (250 mg, 0.60 mmol), N-tert-butoxycarbonyl-L-tyrosine methyl ester (148 mg, 0.50 mmol), anhydrous CH2Cl2 (0.6 mL) and 2-thiouracil (0.6 mg, 0.5 µmol) were used. Following purification by column chromatography (cyclohexane:EtOAc 4:1), the product 7g was obtained as a colourless oil (335 mg, 94%).

R\(_f\) = 0.35 (cyclohexane:EtOAc; 4:1); \(^1\)H NMR (400 MHz; CDCl3) δ 7.41 – 7.18 (m, 15H, ArH), 7.04 – 6.92 (m, 4H, ArH), 5.65 (d, \(J = 2.7 \) Hz, 1H, H-1), 4.96 (app d, \(J = 11.4 \) Hz, 2H, NH + PhCH2), 4.71–4.59 (m, 3H, 3 × PhCH2), 4.59–4.48 (m, 1H, CHN), 4.41 (d, \(J = 11.6 \) Hz 1H, PhCH2), 4.35 (d, \(J = 11.6 \) Hz, 1H, PhCH2), 4.11 (ddd, \(J = 12.0, 4.5, 2.4 \) Hz 1H, H-3/4/5), 4.06–3.98 (m, 2H, 2 of H-3/4/5), 3.67 (s, 3H, OCH3), 3.66–3.62 (m, 1H, CH, H-6a), 3.51 (dd, \(J = 9.2, 5.5 \) Hz, 1H, H-6b), 3.03 (dd, \(J = 13.9, 5.7 \) Hz, 1H, CHCH2), 2.97 (dd, \(J = 14.1, 6.2 \) Hz, 1H, CHCH2), 2.39 (td, \(J = 12.4, 3.6 \) Hz, 1H, H-2a), 2.17 (dd, \(J = 12.4, 3.6 \) Hz, 1H, H-2b), 1.41 (br s, 9H, (CH3)3); \(^{13}\)C NMR (101 MHz, CDCl3) δ: 172.4 (C=O), 156.1 (4°C), 155.2 (4°C), 138.9 (4°C), 138.5 (4°C), 138.1 (4°C), 130.3 (CH), 129.4 (4°C), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.27 (CH), 127.8 (CH), 127.7 (CH), 127.67 (CH), 127.61 (CH), 127.4 (CH), 116.8 (CH), 96.8 (C-1), 79.9 (CMe3), 74.6, 74.5 (CH + CH2Ph), 73.4 (CH2Ph), 72.9 (CH), 70.7, 70.6 (CH + CH2Ph), 69.1 (C-6), 54.6 (CHN), 52.2 (OCH3), 37.6 (CH2CHN), 31.4 (C-2), 28.4 (3 × CH3); [\(\alpha \)]\(_D\) = +12 (c 0.18, CHCl3); IR v\(_{max}\), neat/cm\(^{-1}\): 3428 (br, N-H), 1743 (C=O), 1691 (C=O). HRMS-ESI (m/z): [M + Na\(^+\)] calc’d for C\(_{42}\)H\(_{60}\)NO\(_{9}\)Na, 734.3300; found 734.3312.

\(^{23}\)S26
In a slight modification (due to lower solubility of cholesterol) of General Procedure 2, galactal 3a (70 mg, 0.17 mmol), cholesterol (54 mg, 0.14 mmol), anhydrous CH₂Cl₂ (0.4 ml) and 2-thiouracil (0.2 mg, 1 μmol) were used. Following purification by column chromatography (cyclohexane:EtOAc; 6:1), the product 7h was obtained as a white solid (110 mg, 98%).

Rₓ = 0.5 (cyclohexane:EtOAc; 6:1); ¹H NMR (500 MHz; CDCl₃): δ 7.37-7.22 (m, 15H, Ph), 5.26 (d, J = 5.4 Hz, 1H, C=CH), 5.15 (d, J = 3.4 Hz, 1H, H-1), 4.94 (d, J = 11.6 Hz, 1H, OCH₂Ph), 4.67-4.58 (m, 3H, 3 × OCH₂Ph), 4.51 (d, J = 11.7 Hz, 1H, OCH₂Ph), 4.44 (d, J = 11.7 Hz, 1H, OCH₂Ph), 4.01 (t, J = 6.4 Hz, 1H, H-5), 3.99-3.92 (m, 2H, H-3, H-4), 3.65-3.53 (app hept, J = 6.6 Hz, 2H, H-6a/b), 3.51-3.41 (m, 1H, CH), 2.32-2.20 (m, 3H, CH₂, H-2a), 2.06-1.91 (m, 3H, CH₂, CHH), 1.90-1.78 (m, 3H, CH₂, CHH), 1.61-1.05 (m, 17H), 1.04-0.96 (m, 3H, CH, CH₂), 1.00 (s, 3H, CH₃), 0.95-0.90 (m, 1H, CH₃), 0.92 (d, J = 6.5 Hz, 3H, CH₃), 0.88 (d, J = 6.6 Hz, 3H, CH₃), 0.87 (d, J = 6.6 Hz, 3H, CH₃), 0.68 (s, 3H, CH₃); ¹³C NMR (125 MHz; CDCl₃): δ 141.0 (C=CH), 139.1 (4° C), 138.8 (4° C), 138.3 (4° C), 128.51 (CH), 128.49 (CH), 128.32 (CH), 128.31 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 127.58 (CH), 127.4 (CH), 127.0 (C=CH), 95.8 (C-1), 76.3 (CH), 75.2 (C-3), 74.4 (PhCH₂), 73.6 (PhCH₂), 73.3 (C-4), 70.6 (PhCH₂), 70.0 (C-5), 69.8 (C-6), 56.9 (CH), 56.3 (CH), 50.3 (CH), 42.5 (4° C), 40.2 (CH₂), 39.9 (CH₂), 39.7 (CH₂), 37.3 (CH₂), 36.9 (4° C), 36.3 (CH₂), 35.9 (CH), 32.09 (CH₂), 32.04 (CH), 31.8 (CH₂), 28.3 (CH₂), 28.2 (CH), 28.0 (CH₂), 24.5 (CH₂), 24.0 (CH₂), 23.0 (CH₂), 22.7 (CH₂), 21.2 (CH₂), 19.5 (CH₃), 18.9 (CH₃), 12.0 (CH₃). HRMS (ESI) for C₅₄H₇₄NaO₅⁺ (MNa⁺) calculated: 825.5434; found: 825.5438. [α]₂₀°D = +35 (c = 0.010, CHCl₃). Spectra were consistent with literature data.

Scheme 5

3,4,6-Tri-O-benzyl-2-deoxy-α/β-D-galactopyranosyl p-toluenesulphonamide 12

Following General Procedure 2, galactal 3a (230 mg, 0.55 mmol), p-toluenesulphonamide (79 mg, 0.46 mmol), anhydrous CH₂Cl₂ (0.55 ml) and 2-thiouracil (0.9 mg, 7 μmol) were used. Following purification by column chromatography (cyclohexane:EtOAc; 5:1), the product
was obtained as a white solid (240 mg, 89%, 1.0:3.6 α/β mixture). \(R_f = 0.15 \) (cyclohexane:EtoAc; 5:1);

\(^1\)H NMR (500 MHz; CDCl\(_3\)):

The following were observed for both diastereomers: δ 7.37-7.19 (m, 15 H)

\(\alpha \) anomer: δ 7.77 (d, \(J = 8.0 \) Hz, 2H, 2 × ArH), 7.17 (d, \(J = 8.2 \) Hz, 2H, 2 × ArH), 5.94-5.86 (m, 1H, NHz), 5.39 (app t, \(J = 5.4 \) Hz, 1H, H-1), 4.82 (app d, \(J = 11.6 \) Hz, 1H, OCH/HPh), 4.56-4.52 (m, 3H, OCH/HPh, OCH\(_2\)Ph), 4.24 (s, 2H, OCH\(_2\)Ph), 3.82 (br s, 1H, H-4), 3.71-3.66 (m, 1H, H-3), 3.53-3.49 (m, 1H, H-5), 3.45 (app d \(J = 8.7 \) Hz, 1H, H-6a), 2.82 (dd, \(J = 8.8 \), 5.0 Hz, 1H, H-6b), 2.34 (app td, \(J = 12.4 \), 5.2 Hz, 1H, H-2a), 2.33 (s, 3H, CH\(_3\)), 1.84 (br d, \(J = 12.6 \), 4.6 Hz, 1H, H-2b).

\(\beta \) anomer: δ 7.72 (d, \(J = 8.2 \) Hz, 2H, 2 × ArH), 7.08 (d, \(J = 8.1 \) Hz, 2H, 2 × ArH), 5.38-5.32 (m, 1H, NHz), 4.85 (d, \(J = 11.6 \) Hz, 1H, OCH/HPh), 4.77 (td, \(J = 10.7 \), 2.3 Hz, 1H, H-1), 4.58-4.54 (m, 3H, OCH/HPh, OCH\(_2\)Ph), 4.33 (d, \(J = 12.0 \) Hz, 1H, OCH/HPh), 4.30 (d, \(J = 11.9 \) Hz, 1H, OCH/HPh), 3.78 (br s, 1H, H-4), 3.56 (ddd, \(J = 11.7 \), 4.4, 2.6 Hz, 1H, H-3), 3.41 (app t, \(J = 6.3 \) Hz, 1H, H-5), 3.34 (t, \(J = 9.0 \) Hz, 1H, H-6a), 3.15 (dd, \(J = 9.2 \), 5.4, Hz, 1H, H-6b), 2.29 (s, 3H, CH\(_3\)), 2.10-2.04 (m, 1H, H-2a), 1.96 (ddd, \(J = 11.7 \), 11.6, 11.6 Hz, 1H, H-2b).

\(^1\)C NMR (125 MHz; CDCl\(_3\)):

The following were observed for both diastereomers: δ 127.8 (CH), 127.74 (CH), 127.73 (CH), 127.72 (CH).

\(\alpha \) anomer: δ 143.3 (4° C), 138.6 (4° C), 138.16 (4° C), 128.15 (4° C), 138.0 (4° C), 129.4 (CH), 128.4 (CH), 128.2 (CH), 128.0 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 79.3 (C-1, \(^{1}J_{CH1} = 168 \) Hz, from coupled HSQC), 74.2 (PhCH\(_2\)), 73.8 (C-3), 73.4 (PhCH\(_2\)), 72.4 (C-4), 70.5 (PhCH\(_2\)), 70.2 (C-5), 68.0 (C-6), 30.7 (C-2), 21.5 (CH\(_3\)).

\(\beta \) anomer: δ 143.2 (4° C), 138.6 (4° C), 138.4 (4° C), 137.94 (4° C), 137.89 (4° C), 129.2 (CH), 128.5 (CH), 128.49 (CH), 128.44 (CH), 128.3 (CH), 127.42 (CH), 127.38 (CH), 81.1 (C-1, \(^{1}J_{CH1} = 155 \) Hz, from coupled HSQC), 77.5 (C-3), 75.3 (C-5), 74.5 (PhCH\(_2\)), 73.3 (PhCH\(_2\)), 71.4 (C-4), 70.5 (PhCH\(_2\)), 68.5 (C-6), 32.9 (C-2), 21.4 (CH\(_3\)).

Spectra were consistent with literature data except our assignment of H4/5 & C3/4/5 for 12β differs from that of Colinas and Bravo.\(^{17,25}\)
2-Thiouracil-Catalysed Glycosylation: Catalyst Loading, Concentration and Gram-Scale Synthesis

General Procedure 3: 2-Thiouracil-catalysed glycosylation in a sealed vessel

The galactal donor (1.2 eq. w.r.t. acceptor) was weighed into a crimp top vial (20 ml volume) equipped with a magnetic stir-bar, followed by 2-thiouracil. The crimp top vial was sealed (crimp seal with PTFE septum) and placed under vacuum before switching to a N₂ atmosphere. In a separate flask, under a N₂ atmosphere, an anhydrous solution of acceptor was made by adding a known quantity of acceptor and dissolving in anhydrous CH₂Cl₂. The stock solution was dried by addition of MgSO₄ (1/1 mol/mol w.r.t. acceptor) and let sit for 30 min. The stock solution of acceptor in CH₂Cl₂ was then decanted by syringe and added to the sealed vial. The reaction was heated at reflux (under N₂) for 18 h or until TLC/NMR analysis showed the reaction was complete. The solution was then concentrated under reduced pressure and purified by column chromatography.

Gram-scale synthesis

Following General Procedure 3, galactal 3a (977 mg, 2.35 mmol), an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (1.7M, 1.1 ml, 1.9 mmol), and 2-thiouracil (0.246 mg, 2 μmol, 0.1 mol%) were used. Purification by column chromatography afforded the product 5a as a yellow oil (1.04 g, 78% yield). The proton and carbon NMR data were consistent with the data provided above.

Investigation of catalyst solubility

Using a volumetric flask, 2-thiouracil 2 (1.1 mg ± 0.3, 8.6 μmol) was dissolved in MeOH (10 ml; 0.86mM). Serial dilutions were made by removal of a known aliquot from the stock solution (using a pipette) and making up to a known volume using a volumetric flask. The following serial dilutions were obtained:

2.5 ml of stock solution made up to 5 ml MeOH; 0.43 mM
2.5 ml of stock solution made up to 10 ml MeOH; 0.21 mM
1.25 ml of stock solution made up to 10 ml MeOH; 0.1 mM
0.625 ml of stock solution made up to 10 ml MeOH; 0.05 mM
0.313 ml of stock solution made up to 10 ml MeOH; 0.026 mM

The solutions were analysed by reverse phase HPLC (observed at 254 nm). A calibration curve was constructed by plotting concentration of 2-thiouracil solution in MeOH (mM; x-axis) vs. area observed by HPLC (mAu; y-axis).

HPLC conditions: Phenomenex® Kinetex 5 μm polar 100 Å C18 column (250 mm length, 4.6 mm diameter; H2O/Acetonitrile (95:5); 1 ml/min; 10 min run.

![Calibration curve: concentration of 2-thiouracil solution in MeOH (mM; x-axis) vs. area observed by HPLC (mAu; y-axis)](image)

Determination of concentration of 2-thiouracil (2) in CH₂Cl₂:

2-Thiouracil 2 (150 mg, 1.17 mmol) was weighed into a Young’s flask (under a N₂ atmosphere) and anhydrous CH₂Cl₂ (10 ml) was added. The vessel was sealed and the suspension was heated at 50 °C for 1 h. The solution was filtered while hot using syringe filter (PTFE; 0.4 μm pore size) into a separate Young’s flask (under N₂). Using a pipette, 1 ml of this solution was removed and made up to 2 ml using MeOH in a volumetric flask. The sample was analysed by HPLC three times and by relation to the calibration curve above the concentration was determined (x=(y/m)×2).

Area of 2-thiouracil trace in HPLC chromatogram (observed at 254 nm):

Run 1 = 93.7832
Run 2 = 93.8652
Run 3 = 93.5310
Average area = 93.7265

\[x = \frac{93.7265}{5927.9} \times 2 = 0.032 \text{ mM} \]
Investigation of catalyst loading

2-Thiouracil: 0.1 mol% loading

In a slight modification to General Procedure 3, 2-thiouracil (from catalyst stock solution; concentration determined by HPLC as 0.032 mM) was added to the crimp top vial (13 ml, 0.42 μmol, 0.1 mol%). The anhydrous CH₂Cl₂ (from catalyst stock solution) was removed under vacuum. Galactal 3a (210 mg, 0.5 mmol), an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (2.1M, 0.2 ml, 0.42 mmol) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 18 h showed that the reaction was complete.

2-Thiouracil: 0.01 mol% loading

In a slight modification to General Procedure 3, 2-thiouracil (from stock solution; concentration determined by HPLC as 0.032 mM) was added to the crimp top vial (1.3 ml, 0.042 μmol, 0.01 mol%). The anhydrous CH₂Cl₂ (from stock solution) was removed under vacuum. Galactal 3a (210 mg, 0.5 mmol), an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (2.1M, 0.2 ml, 0.42 mmol) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 18 h showed that the reaction had proceeded but was not complete (~80% conversion of acceptor). However, when the experiment was repeated and the level of conversion (80% in 18 h) was not reproduced. The level of conversion in this reaction varied from experiment to experiment (81% conversion w.r.t. acceptor 4 after 18 h vs. 14% conversion w.r.t. acceptor 4 after 19 h).

2-Thiouracil: 0.001 mol% loading

In a slight modification to General Procedure 3, 2-thiouracil (from stock solution; concentration determined by HPLC as 0.034 mM) was added to the crimp top vial (124 μl, 0.0042 μmol, 0.001 mol%). The anhydrous CH₂Cl₂ (from stock solution) was removed under vacuum. Galactal 3a (203 mg, 0.49 mmol), an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (1.9M, 0.25 ml, 0.46 mmol) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 18 h showed only the starting materials.

1,1’-Linked Disaccharides

2,3,4,6-Tetra-O-benzyl-α-D-glucopyranoside 10

Following a modified literature procedure,26 α-D-methyl glucopyranoside (20.32 g, 0.105 mol) was charged to a dry flask under N₂. Anhydrous DMF (250 ml) was added and the solution stirred for 30 min. The solution was cooled with an ice bath and sodium hydride (60% in oil, 25.2 g, 0.63 mol) was added in 3 portions. The solution was stirred for 1 h until
all effervescence had stopped, after which benzyl bromide (74.8 ml, 0.63 mol) was added dropwise. The flask was heated to 30 °C and left to stir overnight. When TLC (cyclohexane:EtOAc; 4:1) showed no product remained, methanol (100 ml) was slowly added to the flask and the mixture was left to stir for 30 min. Then the methanol was removed on a rotary evaporator before DMF was removed by high vacuum. The crude yellow oil was extracted with CH$_2$Cl$_2$ (400 ml) and washed with water (250 ml × 2), then brine (250 ml), dried over MgSO$_4$ and concentrated. The resulting yellow oil was purified by column chromatography (cyclohexane:EtOAc; 4:1) to give the product 17 as a clear yellow oil (42.33 g, 74%).

1H NMR (500 MHz; CDCl$_3$): δ 7.43-7.24 (m, 18H, Ph), 7.17-7.12 (m, 2H, Ph), 4.99 (d, J = 10.9 Hz, 1H), 4.85-4.79 (m, 3H), 4.70-4.59 (m, 1H), 4.64 (d, J = 3.6 Hz, 1H, H-1), 4.51-4.46 (m, 2H), 4.00 (t, J = 9.3 Hz, 1H, H-3), 3.79-3.71 (m, 2H), 3.67-3.62 (m, 2H), 3.57 (dd, J = 9.7, 3.5 Hz, 1H, H-2), 3.39 (s, 3H, OCH$_3$). Spectra were consistent with literature data.

The oil 17 was dissolved in glacial acetic acid (393 ml) and solution then heated to 90 °C. After 2 h, sulfuric acid (2M, 98 ml) was slowly added and the reaction stirred overnight at 90 °C. When TLC (cyclohexane:EtOAc; 3.5:1), showed no starting material remained (R_f = 0.4), water (400 ml) was added and the solution cooled to 0 °C. A white solid precipitated. This was removed by filtration and washed with a solution of methanol (MeOH:H$_2$O; 3:1; v/v). Recrystallization from cyclohexane gave 10 as white solid (17.79 g, 45%) as an α/β mixture (1/0.40). M.p. 141-143 °C (cyclohexane) [Lit. 152-154 °C (cyclohexane)].

Setting α anomer to 1H, α:β = 1:0.40. 1H NMR (400 MHz; CDCl$_3$): δ 7.37-7.22 (m, 25.2H, Ph), 7.17-7.12 (m, 2.8H, Ph), 5.23 (t, J = 2.7 Hz, 1H, H-1α), 4.97-4.90 (m, 1.4H, CH$_2$α + CHβ), 4.86-4.66 (m, 6H, CH$_2$α × 2 + CH$_2$β + CHβ × 2 + CH$_2$β + H-1β), 4.62-4.46 (m, 4.2H, CH$_2$α + CH$_2$β + CHβ + CH$_2$β), 4.03 (ddd, J = 10.0, 3.3, 2.1 Hz, 1H, CHα), 3.96 (t, J = 9.3 Hz, 1H, CHα), 3.74-3.50 (m, 6H, CH$_2$α + CHα × 2 + CH$_2$β + CHβ × 3), 3.39 (ddd, J = 9.0, 7.7 Hz, 0.4H, CHβ), 3.08 (m, 0.4H, CHβ), 2.88 (d, J = 5.5 Hz, 0.4H, OHβ), 2.88 (d, J = 1.7Hz, 1H, OHα); 13C NMR (400 MHz; CDCl$_3$): δ 138.8 (4° C), 138.6 (4° C), 138.5 (4° C), 138.3 (4° C), 138.1 (4° C), 138.0 (4° C), 137.93 (4° C), 137.86 (4° C), 128.6 (CH), 128.51 (CH), 128.50 (CH), 128.48 (CH), 128.46 (CH), 128.24 (CH), 128.15 (CH), 128.1 (CH), 128.0 (CH), 128.97 (CH), 127.96 (CH), 127.9 (CH), 127.84 (CH), 127.81 (CH), 127.8 (CH), 127.7 (CH), 97.6 (C-1β), 91.4 (C-1α), 84.7 (CHβ), 83.2 (CHβ), 81.9 (CHα), 80.1 (CHα), 77.94 (CHβ), 77.85 (CHα), 75.82 (CH$_2$α), 75.77 (CH$_2$β), 75.11 (CH$_2$α), 75.09 (CH$_2$β), 74.82 (CH$_2$β or CHβ), 74.75 (CH$_2$β or CHβ), 73.60 (CH$_2$β), 73.57 (CH$_2$α), 73.3 (CH$_2$α), 70.3 (CHα), 69.0 (CH$_2$β), 68.7 (CH$_2$α). Spectra were consistent with literature. 26,28
Scheme 2

Synthesis of 3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1’)-3’,4’,6’-tri-O-benzyl-α-D-lyxo-hexapyranoside α,α-9a and 3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1’)-3’,4’,6’-tri-O-benzyl-β-D-lyxo-hexapyranoside α,β-9a

A 5 ml RBF equipped with a reflux condenser, stir-bar and gas-inlet was set-up under a N₂ atmosphere. Galactal 3a (202 mg, 0.49 mmol) was weighed into the reaction flask and dried under vacuum for 30 min. The flask was then switched to a N₂ atmosphere and 3a was dissolved in anhydrous CH₂Cl₂ (0.9M w.r.t H₂O, 0.3 ml). 2-Thiouracil 2 (0.30 mg, 2.4 μmol) was added to the reaction flask followed by deionised H₂O (5.0 μl, 0.27 mmol). The mixture was heated to reflux for 18 h. Some solvent loss was noted over the course of the reaction and the higher concentration that results is believed to be beneficial. Analysis of the ¹H NMR spectrum of the crude mixture showed the α,α/α,β dimer ratio to be 4.6:1. Purification by column chromatography (9:1; cyclohexane/ethyl acetate) gave the desired products as colourless oils; α,α-9a (118 mg, 57% yield); mixed fractions containing α,α/α,β-9a (47 mg, 23% yield); α,β-9a (19 mg, 9% yield).

We note that 9a underwent anomerisation under extended reaction times with the amount of α,α increasing relative to α,β over time. Thus after 112 h at reflux the α,α:α,β ratio was determined to be 13:1 by ¹H NMR spectroscopy. Some degradation was also noted. A similar time-dependent anomerisation was previously observed by Yoshimura and co-workers in their synthesis of α,α-trehalose.²⁹

3,4,6-Tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1’)-3’,4’,6’-tri-O-benzyl-α-D-lyxo-hexapyranoside (α,α-9a): Rf = 0.33 (85:15; cyclohexane/ethyl acetate); ¹H NMR (400 MHz, Chloroform-d) δ 7.43 – 7.16 (m, 15H, Ph), 5.24 (d, J = 3.3 Hz, 1H, H-1), 4.93 (d, J = 11.7 Hz, 1H, OCHPh), 4.61 (d, J = 11.7 Hz, 1H, OCHPh), 4.59 (d, J = 11.9 Hz, 1H, OCHPh), 4.55 (d, J = 11.8 Hz, 1H, OCHPh), 4.48 (d, J = 11.7 Hz, 1H, OCHPh), 4.40 (d, J = 11.7 Hz, 1H, OCHPh), 3.93 (br s, 1H, H-4), 3.88 – 3.79 (m, 2H, H-3, H-5), 3.62 (dd, J = 9.2, 7.3 Hz, 1H, H-6a), 3.53 (dd, J = 9.2, 5.7 Hz, 1H, H-6b), 2.24 (td, J = 12.4, 3.7 Hz, 1H, H-2a), 1.85 (dd, J = 12.6, 4.5 Hz, 1H, H-2b);
¹³C NMR (101 MHz, Chloroform-d) δ 139.0 (4° C), 138.6 (4° C), 138.2 (4° C), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH),
127.5 (CH), 93.5 (C-1), 74.5, 74.4 (C-3 or C-5, PhCH₂), 73.7 (PhCH₂), 73.1 (C-4), 70.6, 70.5 (C-3 or C-5, PhCH₂), 69.5 (C-6), 31.0 (C-2); ESI-HRMS for C₅₄H₃₈NaO₉⁺ (MNa⁺) calculated: 873.3979; found: 873.4015.

3,4,6-Tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1’)-3’,4’,6’-tri-O-benzyl-β-D-lyxo-hexapyranoside (α,β-9a): Rf = 0.25 (85:15; cyclohexane/ethyl acetate); ¹H NMR (400 MHz, Chloroform-d) δ 7.52 – 6.99 (m, 30H, Ph), 5.19 (d, J = 3.4 Hz, 1H, H-1(α)), 4.90 (d, J = 11.6 Hz, 1H, OCH2Ph), 4.89 (d, J = 11.6 Hz, 1H, OCH2Ph), 4.64 (d, J = 11.7 Hz, 1H, OCH2Ph), 4.61 – 4.57 (m, 2H, OCH2Ph, H-1’ (β) [HSQC shows a crosspeak for ¹³C 99.6 and ¹H 4.59 (d, J₁₁H₂ ca. 10 Hz)]), 4.57 – 4.52 (m, 4H, OCH2Ph), 4.39 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.33 (d, J = 10.6 Hz, 3H, 3 × OCH2Ph), 4.25 (app t, J = 6.7 Hz, 1H, H-5 (α)), 3.98 (ddd, J = 12.0, 4.6, 2.4 Hz, 1H, H-3 (α)), 3.93 (br, s, 1H, H-4 (α)), 3.84 (br s, 1H, H-4’ (β)), 3.67 – 3.54 (m, 2H, H-6a/a’), 3.54 – 3.44 (m, 4H, H-6b/b’, H-3’ (β), H-5’ (β)), 2.19 (td, J = 12.4, 3.5 Hz, 1H, H-2a (α)), 2.15 – 2.07 (m, 1H, H-2a’(β)), 2.06 – 1.93 (m, 2H, H-2b (α), H-2b’(β)); ¹³C NMR (101 MHz, Chloroform-d) δ 139.2 (4° C), 139.1 (4° C), 138.7 (4° C), 138.5 (4° C), 138.4 (4° C), 138.1 (4° C), 128.6 (CH), 128.52 (CH), 128.51 (CH), 128.48 (CH), 128.4 (CH), 128.30 (CH), 128.28 (CH), 127.93 (CH), 127.92 (CH), 127.83 (CH), 127.76 (CH), 127.67 (CH), 127.66 (CH), 127.63 (CH), 127.62 (CH), 127.52 (CH), 127.45 (CH), 127.43 (CH), 99.6 (C-1’ (β)), 98.2 (C-1 (α)), 77.5 (C-3’ (β)), 74.7 (C-3 (α)), 74.5 (PhCH₃), 74.4 (PhCH₂), 74.1 (C-5 (β)), 73.5 (PhCH₂), 73.3 (PhCH₂), 73.2 (C-4 (α)), 71.5 (C-4’ (β)), 70.6 (PhCH₂), 70.4 (PhCH₂), 70.2 (C-5 (α)), 69.3 (C-6 (α)), 68.8 (C-6’ (β)), 33.2 (C-2’ (β)), 31.3 (C-2 (α)); ESI-HRMS for C₅₄H₃₈NaO₉⁺ (MNa⁺) calculated: 873.3979; found: 873.3978.

Synthesis of 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-(1→1’)3’,4’,6’-tri-O-benzyl-α-D-lyxo-hexapyranoside α,α-11a and of 2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl-(1→1’)3’,4’,6’-tri-O-benzyl-α-D-lyxo-hexapyranoside α,β-11a

In a slight modification to General Procedure 1, galactal 3a (201 mg, 0.48 mmol), an anhydrous CH₂Cl₂ acceptor solution of 2,3,4,6-tetra-O-benzyl-D-glucopyranose 10 (0.36M, 1.5 ml, 0.54 mmol) and 2-thiouracil (0.60 mg, 5 μmol, 1 mol%) were used. The mixture was heated to reflux for 18 h. Analysis of the ¹H NMR spectrum of the crude mixture showed the α,α/α,β product ratio to be 1:1. Purification by column chromatography (9:1; cyclohexane/ethyl acetate) gave the desired products as colourless oils; α,α-11a (179 mg,
39% yield); mixed fractions containing α,α/α,β-11a (118 mg, 26% yield), α,β-11a (90 mg, 20% yield).

2,3,4,6-Tetra-O-benzyl-α-d-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-d-lyxo-hexapyranoside (α,α-11a):

Rf = 0.51 (85:15; cyclohexane/ethyl acetate); 1H NMR (400 MHz, Chloroform-d) δ 7.41 – 7.08 (m, 35H, Ph), 5.30 (app d, J = 3.4 Hz, 2H, H-1 (α), H-1'(α)), 4.94 (d, J = 10.9 Hz, 1H, OCH2Ph), 4.92 (d, J = 11.5 Hz, 1H, OCH2Ph), 4.83 (d, J = 10.7 Hz, 1H, OCH2Ph), 4.80 (d, J = 11.0 Hz, 1H, OCH2Ph), 4.72 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.65 – 4.57 (m, 4H, 4 × OCH2Ph), 4.55 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.48 (d, J = 10.6 Hz, 1H, OCH2Ph) 4.47 (d, J = 12.1 Hz, 1H, OCH2Ph), 4.43 (d, J = 11.8 Hz, 1H, OCH2Ph), 4.35 (d, J = 11.8 Hz, 1H, OCH2Ph), 4.21 (app t, J = 6.4 Hz, 1H, H-5'), 4.03 (ddd, J = 12.1, 4.5, 2.2 Hz, 1H, H-3'), 3.94 (t, J = 9.3 Hz, 1H, H-3), 3.92 (br s, 1H, H-4'), 3.82 – 3.61 (m, 4H, H-5, H-4, H-6a/b), 3.57 (dd, J = 9.7, 3.6 Hz, 1H, H-2), 3.55 – 3.50 (m, 2H, H-6a'b'), 2.29 (td, J = 12.4, 3.7 Hz, 1H, H-2a'), 1.91 (ddd, J = 12.7, 4.5 Hz, 1H, H-2b'); 13C NMR (101 MHz, Chloroform-d) δ 139.0 (4° C), 138.99 (4° C), 138.5 (4° C), 138.29 (4° C), 138.27 (4° C), 138.25 (4° C), 138.1 (4° C), 128.6 (CH), 128.54 (CH), 128.51 (CH), 128.50 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.0 (CH), 127.93 (CH), 127.92 (CH), 127.88 (CH), 127.82 (CH), 127.7 (CH), 127.68 (CH), 127.65 (CH), 127.61 (CH), 93.8 (C-1'), 1Jc1,h1 = 170 Hz (α, from coupled HSQC), 92.3 (C-1, 1Jc1,h1 = 170 Hz (α, from coupled HSQC), 81.8 (C-3), 79.4 (C-2), 77.8 (C-4), 75.6 (PhCH2), 75.4 (PhCH2), 74.5 (2 × C, C-3', PhCH2), 73.64 (2 × C, PhCH2), 73.72 (C-4'), 72.6 (PhCH2), 71.0 (C-5), 70.7 (PhCH2), 70.6 (C-5'), 69.8 (C-6'), 68.5 (C-6), 31.1 (C-2'); ESI-HRMS for C61H64NaO10+ (MNa+) calculated: 979.4397; found: 979.4361; [α]D = +73 (c, 1.0, CH2Cl2).

2,3,4,6-Tetra-O-benzyl-β-d-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-d-lyxo-hexapyranoside (α,β-11a):

Rf = 0.41 (85:15; cyclohexane/ethyl acetate); 1H NMR (400 MHz, Chloroform-d) δ 7.53 – 7.05 (m, 35H, Ph), 5.25 (d, J = 3.3 Hz, 1H, H-1' (α)), 4.92 (d, J = 11.6 Hz, 1H, OCH2Ph), 4.88 (d, J = 11.1 Hz, 1H, OCH2Ph), 4.79 (d, J = 11.1 Hz, 1H, OCH2Ph), 4.79 (d, J = 11.3 Hz, 1H, OCH2Ph), 4.78 (d, J = 10.8 Hz, 1H, OCH2Ph) 4.73 (d, J = 11.1 Hz, 1H, OCH2Ph), 4.61 (d, J = 11.6 Hz, 1H, OCH2Ph), 4.61 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.57 (d, J = 10.6 Hz, 1H, OCH2Ph) 4.56-4.49 (m, 3H, 2 × OCH2Ph, H-1 (β)), 4.42 (d, J = 11.8 Hz, 1H, OCH2Ph), 4.38 (d, J = 12.5 Hz, 1H, OCH2Ph), 4.35 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.28 (t, J = 6.7 Hz, 1H, H-4' or H-5'), 4.04 – 3.94 (m, 2H, H-3', H-4' or H-5'), 3.72 – 3.49 (m, 6H, H-6a/b, H-6a'b', H-3, and H-4 or H-5), 3.42 (t, J = 8.5 Hz, 1H, H-2), 3.40 – 3.34 (m, 1H, H-4 or H-5), 2.24 (td, J = 12.3, 3.7 Hz, 1H, H-2a'), 2.01 – 1.87 (m, 1H, H-2b'); 13C NMR (101 MHz, Chloroform-d) δ 139.1 (4° C), 138.7 (4° C), 138.6 (4° C), 138.5 (4° C), 138.4 (4° C), 128.6 (CH), 128.53 (CH), 128.51 (CH), 128.47 (CH), 128.44 (CH), 128.43 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.99 (CH), 127.91 (CH), 127.89 (CH), 127.88 (CH), 127.79 (CH), 127.74 (CH), 127.71 (CH), 127.68 (CH), 127.66 (CH), 127.5 (CH), 127.4 (CH), 102.3 (C-1, 1Jc1,h1 = 160 Hz (β), from coupled HSQC), 100.1 (C-1'), 1Jc1,h1 = 170 Hz (α, from coupled HSQC), 85.04 (C-3), 82.50 (C-2), 77.7 (C-4 or C-5), 75.8 (PhCH2), 75.2 (C-4 or C-5), 75.2 (PhCH2), 75.0 (PhCH2), 74.53 (C-3'), 74.48 (PhCH2), 73.7 (PhCH2), 73.5 (PhCH2), 73.0 (C-4' or C-5'), 70.6 (C-4' or C-5'), 70.57 (PhCH2), 69.3 (C-6 or C-6'), 68.8 (C-6 or C-6'), 31.4 (C-2'); ESI-HRMS for C61H64NaO10+ (MNa+) calculated: 979.4397; found: 979.4361; [α]D = +39 (c, 1.0, CH2Cl2).
Procedures for Benzyl group removal

General Procedure for removal of benzyl protecting groups by hydrogenation:

The protected 2-deoxyglycoside was weighed into a round bottom flask and dissolved in a mixture of methanol/ethyl acetate (9:1). Pd (10% on carbon) (10 mol% for each benzyl group to be removed) was then added to the solution. The atmosphere was changed to hydrogen first by placing the reaction solution under house vacuum (200 mbar), closing the reaction flask to house vacuum and then purging the flask with hydrogen (using a hydrogen balloon). The cycle was repeated three times and on the final purge with hydrogen the hydrogen balloon was left in place. The reaction was monitored using TLC. The reaction mixture was filtered using Celite®. The solution was concentrated using rotary evaporation and purified using column chromatography (8:2; dichloromethane/methanol; 2% H2O). For further purification the product isolated from column chromatography was passed through a plug of Octadecyl-C18-Silica (8:2; methanol/H2O).

2,2’-Dideoxy-lyxo-trehalose (9b)

Following the general procedure for removal of benzyl protecting groups, α,α-9a (100 mg, 0.12 mmol), Pd (10% on carbon) (96 mg, 0.09 mmol, ~60 mol%) and methanol/ethyl acetate (9:1; 7 ml) were used. 2,2'-Dideoxy-lyxo-trehalose 9b was obtained as a white solid (28 mg, 76% yield).

1H NMR (400 MHz, methanol-d_4) δ 5.29 (d, $J = 3.3$ Hz, 1H, H-1 (α)), 3.98 (ddd, $J = 12.0$, 5.0, 2.9 Hz, 1H, H-3), 3.83 – 3.72 (m, 3H, H-4, H-5, H-6a), 3.69 (dd, $J = 10.5$, 4.6 Hz, 1H, H-6b), 2.02 (td, $J = 12.6$, 3.8 Hz, 1H, H-2a), 1.77 (dd, $J = 12.9$, 5.1 Hz, 1H, H-2b); 13C NMR (101 MHz, methanol-d_4) δ 93.8 (C-1), 73.1 (C-5), 69.7 (C-4), 66.6 (C-3), 63.3 (C-6), 33.2 (C-2); ESI-MS for C$_{12}$H$_{22}$NaO$_9$ $^+$ (MNa$^+$) calculated: 333.1162; found: 333.1147.

α-D-Glucopyranosyl-(1→1')-α-D-lyxo-hexapyranoside (α,α-11b)

Following the general procedure for removal of benzyl protecting groups, α,α-11a (142 mg, 0.15 mmol), Pd (10% on carbon) (119 mg, 0.11 mmol, ~60 mol%) and methanol/ethyl acetate (9:1; 7 ml) were used. Disaccharide α,α-11b was obtained as a colourless oil (26 mg, 53% yield).
1H NMR (500 MHz, methanol-d₄) δ 5.31 (d, J = 3.4 Hz, 1H, H-1'(α)), 5.15 (d, J = 3.8 Hz, 1H, H-1(α)), 4.14 (ddd, J = 12.0, 5.0, 3.0 Hz, 1H, H-3'), 4.00 (t, J = 6.1 Hz, 1H, H-5'), 3.83 (app dd, J = 11.9, 2.4 Hz, 2H, H-4', H-6a), 3.76 (dd, J = 11.4, 7.0 Hz, 1H, H-6a'), 3.73 – 3.65 (m, 3H, H-3, H-6b', H-6b), 3.60 (ddd, J = 10.0, 5.8, 2.3 Hz, 1H, H-5), 3.49 (dd, J = 9.8, 3.8 Hz, 1H, H-2), 3.35 – 3.30 (m, 1H, H-4), 2.04 (td, J = 12.6, 3.8 Hz, 1H, H-2a'), 1.81 (dd, J = 12.9, 5.1 Hz, 1H, H-2b'); 13C NMR (126 MHz, methanol-d₄) δ 94.7 (C-1), 93.8 (C-1'), 74.8 (C-3), 74.2 (C-5), 73.1 (C-2), 72.6 (C-5'), 72.0 (C-4), 69.8 (C-4'), 66.3 (C-3'), 63.3 (C-6'), 62.7 (C-6), 33.2 (C-2'); ESI-HRMS for C₁₂H₂₂NaO₁₀⁺ (MNa⁺) calculated: 349.1111; found: 349.1104.

β-D-Glucopyranosyl-(1→1')-α-D-lyxo-hexopyranoside (α,β-11b)

Following the general procedure for removal of benzyl protecting groups, α,β-11a (63 mg, 0.066 mmol), Pd (10% on carbon) (52 mg, 0.048 mmol, ~60 mol%) and methanol/ethyl acetate (9:1; 7 ml) were used. Disaccharide α,β-11b was obtained as a colourless oil (20 mg, 91% yield).

1H NMR (500 MHz, methanol-d₄) δ 5.25 (t, J = 2.4 Hz, 1H, H-1' (α)), 4.49 (d, J = 7.9 Hz, 1H, H-1 (β)), 4.19 (dd, J = 7.7, 4.2 Hz, 1H, H-5'), 3.99 (ddd, J = 9.8, 6.9, 3.0 Hz, 1H, H-3'), 3.89 (dd, J = 11.9, 2.2 Hz, 1H, H-6a), 3.78 (dd, J = 11.4, 7.7 Hz, 1H, H-6a'), 3.77 (br s, 1H, H-4') 3.69 (dd, J = 11.4, 4.2 Hz, 1H, H-6b'), 3.63 (dd, J = 11.8, 6.8 Hz, 1H, H-6b), 3.42 – 3.34 (m, 2H, H-5, H-3 or H-4), 3.27 – 3.20 (m, 2H, H-2 and H-3 or H-4), 2.00 – 1.92 (m, 2H, H-2a'/b'); 13C NMR (126 MHz, methanol-d₄) δ 103.5 (C-1), 100.7 (C-1'), 78.3, 78.1, 75.1, 73.1 (C-5'), 71.7, 69.9 (C-4'), 66.5 (C-3'), 63.8 (C-6'), 63.1 (C-6), 33.2 (C-2'); ESI-HRMS for C₁₂H₂₂NaO₁₀⁺ (MNa⁺) calculated: 349.1111; found: 349.1102.
Mechanistic Studies

Glycosylation reactions in the absence of the catalyst

Control reaction in reflux condenser

In a slight modification to General Procedure 1, galactal donor 3a (251 mg, 0.6 mmol) and an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (0.8M 0.6 ml, 0.5 mmol) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 20 h showed only the starting materials. An analogous reaction with glucal donor 3f also showed no reaction in the absence of catalyst.

Control reaction with uracil instead of thiouracil as catalyst

In a slight modification to General Procedure 1, galactal donor 3a (200 mg, 0.48 mmol) and an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (0.83M 0.48 ml, 0.40 mmol) and uracil (0.4 mg, 4 μmol) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 19 h did not detect any disaccharide product.

Control reaction in sealed vessel

Following General Procedure 3, galactal donor 3a (201 mg, 0.48 mmol) and an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (1.8M (w.r.t. acceptor and solvent total volume), 0.25 ml, 0.5 mmol) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 18 h showed only the starting materials.

No reaction of Galactal with Water in the absence of catalyst

In a slight modification to the General Procedure 1, galactal donor 3a (255 mg, 0.6 mmol), deionised H₂O (9 μl, 0.5 mmol), and anhydrous CH₂Cl₂ (0.8M) were used. Analysis of the ¹H NMR spectrum of the crude reaction mixture after 16 h showed only the starting materials.

No reaction of galactal and p-toluenesulfonamide in the absence of catalyst:

In a slight modification to General Procedure 1, galactal 3a (200 mg, 0.48 mmol), p-toluenesulfonamide (68 mg, 0.40 mmol) and anhydrous CH₂Cl₂ (0.48 ml) were used. TLC analysis during the reaction showed no consumption of 3a. NMR analysis of the crude reaction material after 20 h showed only unreacted starting materials.

Acid Test

In a slight modification to the general procedure 1, galactal 3a (50 mg, 0.12 mmol), an anhydrous CH₂Cl₂ solution of galactose acceptor 4 (0.4M, 0.3 ml, 0.12 mmol) and Et₃N·HCl (20 mg, 0.14 mmol) (pKₐ = 9.0, DMSO).³⁰ Analysis of the ¹H NMR spectrum of the crude mixture after 4 h showed only the starting materials.
Anomerisation tests

α/β mixture of 6-O-(3,4,6-Tri-O-benzyl-D-lyxo-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose

In a slight modification to general procedure 1,31 galactal donor 3a (76 mg, 0.18 mmol), and an anhydrous CH$_3$CN solution of galactose acceptor 4 (0.25M, 0.75 ml, 0.19 mmol) and cerium ammonium nitrate (8 mg, ~8 mol%) were used. Purification by column chromatography (4:1; cyclohexane/ethyl acetate) yielded the desired product α/β-5a as a pale yellow oil (53 mg, 43% yield, α/β = 5.3:1). Relevant NMR signals: 1H NMR (500 MHz, Chloroform-d) δ 5.53 (d, J = 5.0 Hz, 0.18H, H-1 (β)), 5.51 (d, J = 5.0 Hz, 1H, H-1 (α)), 5.03 (d, J = 2.9 Hz, 1H, H-1′ (α)), 2.12 – 2.06 (m, 0.18H, H-2a’ or b’ (β)), 2.06 – 1.98 (m, 1H, H-2b’ (α)); 13C NMR (126 MHz, Chloroform-d) δ 100.9 (C-1′, 1J$_{C1,H1}$ = 160 Hz (β), from coupled HSQC), 97.6 (C-1′, 1J$_{C1,H1}$ = 170 Hz (α), from coupled HSQC), 96.5(C-1, 1J$_{C1,H1}$ = 175 Hz (α), from coupled HSQC), 32.6 (C-2′ (β anomer)), 31.1 (C-2′ (α anomer)).

Disaccharide Mixture Submitted to Standard Reaction Conditions

In a slight modification to the general procedure 1, the α/β-5a (53 mg, 0.08 mmol) was submitted to the standard 2-thiouracil-catalysed glycosylation conditions. 2-Thiouracil (0.1 mg, 1 mol%) and anhydrous CH$_2$Cl$_2$ (0.31M, 0.26 ml) were used. Analysis of the 1H NMR spectrum of the crude mixture after 16 h showed only the unchanged starting material α/β-5a (no change in the α/β ratio was observed).

3,4,6-Tri-O-benzyl-2-deoxy-α/β-D-galactopyranosyl p-toluenesulfonamide 12

Following a literature procedure,25 the sulfonamide 12 was prepared as an α/β mixture (α:β = 8:92). The title compound was subjected to the standard 2-thiouracil-catalysed conditions (General Procedure 3). The reaction mixture was heated to reflux for 18 h. Analysis of the 1H NMR spectrum of the crude reaction mixture showed no significant change in the α/β ratio.

1,1′-Linked disaccharides

We note that 1,1′-linked disaccharides did undergo anomerisation under extended reaction times with the amount of α,α increasing relative to α,β over time.
Test to probe the possibility of a reversible reaction (cross-over experiment)

In a slight modification to general procedure 1, the α/β-5a (53 mg, 0.08 mmol), phenyl 2,3,4-tri-O-benzyl-β-D-thioglucopyranoside 6d (43 mg, 0.08 mmol), 2-thiouracil (0.1 mg, 1 mol%) and anhydrous CH₂Cl₂ (0.31M, 0.26 ml) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 24 h showed only the unchanged starting materials. A new disaccharide had not been formed.

Cross-over and Catalyst poison test

In a slight modification to general procedure 1, the α/β-5a (53 mg, 0.08 mmol), 6-O-acetyl-1,2-dideoxy-3,4-di-O-benzyl-D-lyxo-hexopyranose 5c (30 mg, 0.08 mmol), phenyl 2,3,4-tri-O-benzyl-β-D-thioglucopyranoside 6d (43 mg, 0.08 mmol), 2-thiouracil (0.1 mg, 1 mol%) and anhydrous CH₂Cl₂ (0.31M, 0.26 ml) were used. Analysis of the ¹H NMR spectrum of the crude mixture after 24 h showed the disaccharide α/β-5a remained unchanged and a new disaccharide 18 had formed. Relevant signals: ¹H NMR (500 MHz, Chloroform-d) δ 5.06 (d, J = 2.6 Hz, 1H, H-1’ (α) of newly formed disaccharide 18), 4.68 (H-1 of newly formed disaccharide, observed in HSQC spectrum); ¹³C NMR (126 MHz, Chloroform-d) δ 98.3 (C-1’ of newly formed disaccharide 18, observed in HSQC spectrum), 87.1 (C-1 of newly formed disaccharide 18 observed in HSQC spectrum). These signals showed that no crossover between the disaccharides occurred (i.e., disaccharides 7d, 5c were not formed).
Investigation into the Stereochemistry of Alcohol Addition (syn vs. anti-addition)

Methyl 3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranoside (19)

In a slight modification to General Procedure 3, galactal donor 3a (250 mg, 0.6 mmol), anhydrous CH₃OH (20 μl, 0.49 mmol) and 2-thiouracil (0.7 mg, 6 μmol, 1 mol%) were weighed into a crimp top vial. The vial was sealed and the atmosphere was changed to nitrogen. The mixture was dissolved in anhydrous CH₂Cl₂ (2.5 M w.r.t. acceptor, 0.2 ml) and heated at reflux for 18 h. Purification by column chromatography (95:5 to 9:1; pentane/ethyl acetate (unoptimised)) afforded the product as a yellow oil (180 mg, 82% yield).

R_f = 0.11 (95:5; pentane/ethyl acetate); ¹H NMR (500 MHz, Chloroform-d) δ 7.39 – 7.18 (m, 15H), 4.93 (d, J = 11.7 Hz, 1H, OCH/Ph), 4.87 (d, J = 3.1 Hz, 1H, H-1), 4.62 (d, J = 11.6 Hz, 1H, OCH/PhH), 4.59 (s, 2H, 2 × OCH/PhH), 4.51 (d, J = 11.8 Hz, 1H, OCH/PhH), 4.43 (d, J = 11.8 Hz, 1H, OCH/PhH), 3.95 – 3.84 (m, 3H, H-3, H-4, H-5), 3.60 (dd, J = 9.4, 6.6 Hz, 1H, H-6a), 3.58 (dd, J = 9.4, 6.3 Hz, 1H, H-6b), 3.32 (s, 3H, OCH₃), 2.22 (td, J = 12.4, 3.6 Hz, 1H, H-2a), 1.99 (dd, J = 12.7, 4.5 Hz, 1H, H-2b); ¹³C NMR (126 MHz, Chloroform-d) δ 139.0 (4° C), 138.7 (4° C), 138.3 (4° C), 128.53 (CH), 128.51 (CH), 128.37 (CH), 128.34 (CH), 127.9 (CH), 127.8 (CH), 127.64 (CH), 127.63 (CH), 127.4 (CH), 99.1 (C-1), 74.9 (C-3 or C-4), 74.4 (PhCH₂), 73.6 (PhCH₂), 73.2 (C-3 or C-4), 70.6 (PhCH₂), 69.9 (C-5), 69.8 (C-6), 54.9 (OCH₃), 31.3 (C-2); ESI-HRMS for C₂₈H₃₂NaO₅⁺ (MNa⁺) calculated: 471.2147; found: 471.2126. Proton and carbon NMR data were consistent with the literature data with the exception of coupling constant assignments for H-6a/b (AB pattern); reported as 3.60 (dd, J = 6.4, 1.8 Hz, 2H, H-6a, H-6b) and 3.59 (dd, J = 6.5, 3.0 Hz, 2H), respectively. ¹²,¹³

Control Reaction of galactal 3a with CD₃OD in the absence of catalyst

In a slight modification to General Procedure 3, galactal donor 3a (250 mg, 0.59 mmol) and CD₃OD (20 μl, 0.49 mmol) were weighed into a crimp top vial. The vial was sealed and the atmosphere was changed to nitrogen. The mixture was dissolved in anhydrous CH₂Cl₂ (2.5 M w.r.t. acceptor, 0.2 ml) and heated at reflux for 24 h. TLC and ¹H NMR analysis of the crude reaction mixture showed the desired product had not formed and some breakdown of the galactal donor had occurred (aldehyde peak at 10.1 ppm in the ¹H NMR spectrum). The mixture was heated at reflux for a further 24 h, however TLC and ¹H NMR showed no desired product was formed and further breakdown of the galactal donor was observed.
In a slight modification to General Procedure 3, glycal donor 3a (246 mg, 0.59 mmol), CD$_3$OD (20 μl, 0.49 mmol) and 2-thiouracil (0.8 mg, 6 μmol, 1 mol%) were weighed into a crimp top vial. The vial was sealed and the atmosphere was changed to nitrogen. The mixture was dissolved in anhydrous CH$_2$Cl$_2$ (2.5M w.r.t. acceptor, 0.2 ml) and heated at reflux for 18 h. Purification by column chromatography (95:5 to 9:1; pentane/ethyl acetate (unoptimised)) afforded the products syn/anti-[²H]-19 and CD$_3$-19 as a colourless oil (130 mg, 59% yield).

Analysis of the 1H NMR spectrum showed the ratio of 2H-equatorial/2H-axial in [²H]-19 to be approximately 95:5 with deuterium incorporation at C-2 approximately 88% (ratio of [²H]-19 to CD$_3$-19) (see excerpts from spectra below).

$R_f = 0.11$ (95:5; pentane/ethyl acetate); 1H NMR (500 MHz, Chloroform-d) δ 7.37 – 7.20 (m, 15H, Ph), 4.93 (d, $J = 11.6$ Hz, 1H, OCH$_2$Ph), 4.87 (d, $J = 3.6$ Hz, 1H, H-1), 4.62 (d, $J = 11.6$ Hz, 1H, OCH$_2$Ph), 4.59 (s, 2H, 2 \times OCH$_2$Ph), 4.51 (d, $J = 11.8$ Hz, 1H, OCH$_2$Ph), 4.43 (d, $J = 11.8$ Hz, 1H, OCH$_2$Ph), 3.94 – 3.84 (m, 3H, H-3, H-4, H-5), 3.60 (dd, $J = 9.4$, 6.6 Hz, 1H, H-6a), 3.57 (dd, $J = 9.4$, 6.3 Hz, 1H, H-6b), 2.27 – 2.16 (m, 1H, H-2a, H_{ax}-CH$_{eq}$ and H_{eq}-CH$_{ax}$), 1.99 (app dd, $J = 12.8$, 4.4 Hz, 0.18H, H_{eq}-CH$_{ax}$ and H_{eq}-C[²H]$_{ax}$); 13C NMR (126 MHz, Chloroform-d) δ 139.0 (4° C), 138.7 (4° C), 138.3 (4° C), 128.53 (CH), 128.50 (CH), 128.4 (CH), 128.3 (CH), 127.9 (CH), 127.8 (CH), 127.64 (CH), 127.63 (CH), 127.41 (CH), 99.0 (C-1), 74.8 (C-3 or C-4), 74.4 (PhCH$_2$), 73.6 (PhCH$_2$), 73.1 (C-3 or C-4), 70.6 (PhCH$_2$), 69.9 (C-5), 69.8 (C-6), 54.1 (hept, $J = 21.6$ Hz, CD$_3$), 31.3 (C-2(H)), 30.9 (t, $J = 19.5$ Hz, C-2(D)); ESI-HRMS for C$_{28}$H$_{28}$²H$_4$NaO$_5$ (MNa$^+$) calculated: 475.2399; found: 475.2418.

In a slight modification to General Procedure 3, galactal donor 3a (246 mg, 0.59 mmol), CD$_3$OD (20 μl, 0.49 mmol) and Schreiner’s catalyst 1 (0.8 mg, 6 μmol, 1 mol%) were weighed into a crimp top vial. The vial was sealed and the atmosphere was changed to nitrogen. The mixture was dissolved in anhydrous CH$_2$Cl$_2$ (2.5M w.r.t. acceptor, 0.2 ml) and
heated at reflux for 21 h. Purification by column chromatography (98:2 to 4:1; cyclohexane/ethyl acetate (unoptimised)) afforded the products syn/anti-[2H]-19 and CD3-19 as a colourless oil (100 mg, 45% yield). Analysis of the 1H NMR spectrum showed the ratio of 2H-equatorial/2H-axial in [2H]-19 to be approximately 93:7 with deuterium incorporation at C-2 approximately 85% (ratio of [2H]-19 to CD3-19) (see excerpts from spectra below). The proton and carbon NMR data were consistent with the data provided above when 2-thiouracil was used as a catalyst for the reaction.

Figure S2: Excerpts from 1H NMR spectra for investigation of stereochemistry of alcohol addition (CDCl3, 500 MHz): (a) non-deuterated 19. (b) syn/anti-[2H]-19 and 19; with thiouracil as catalyst. (c) syn/anti-[2H]-19 and 19; with Schreiner’s catalyst. All 1H NMR spectra are of products following column chromatography.
Figure S3: Excerpts from 13C NMR spectra for mixture of syn/anti-[2H]-19 and CD$_3$-19 (CDCl$_3$, 151 MHz): (a) 13C NMR spectrum C-D coupled; (b) 13C NMR spectrum C-D decoupled.

Figure S4: 2H NMR spectrum (CDCl$_3$, 92.3 MHz): mixture of compounds syn/anti-[2H]-19 and CD$_3$-19
Figure S5: HSQC (500 MHz, Chloroform-d) showing the presence of syn/anti-[23H]-19 & CD$_3$-19

Probing syn/anti addition in the synthesis of 1,1'-linked disaccharides

In a slight modification to General Procedure 1, galactal 3a (251 mg, 0.603 mmol) was weighed into the reaction flask and dried under vacuum for 30 min. The flask was then switched to a N$_2$ atmosphere and 3a was dissolved in anhydrous CH$_2$Cl$_2$ (0.7M, 0.4 ml). 2-Thiouracil (0.4 mg, 3 μmol) was added to the reaction flask followed by D$_2$O (5.0 μl, 0.28 mmol). The mixture was heated to reflux for 18 h. Analysis of the 1H NMR spectrum of the crude mixture showed the reaction was ~76% complete (based on the integration of the starting galactal 3a (H-1) vs. products α,α:α,β-9a (H-1)). The α,α/α,β ratio was 1.9:1. Purification by column chromatography (95:5 to 8:2; cyclohexane/ethyl acetate) gave the
desired products as colourless oils; \(\alpha,\alpha\text{-C2}[\text{2}\text{H}]-9\text{a} \) (110 mg, 43% yield); mixed fractions containing \(\alpha,\alpha/\alpha,\beta\text{-C2}[\text{2}\text{H}]-9\text{a} \) (30 mg, 12% yield), \(\alpha,\beta\text{-C2}[\text{2}\text{H}]-9\text{a} \) (50 mg, 21% yield).

\(\alpha,\alpha\text{-C2}[\text{2}\text{H}]-9\text{a} \): \(R_f = 0.49 \) (85:15; cyclohexane/ethyl acetate); \(^1\text{H} \) NMR (500 MHz, Chloroform-\(d \)) \(\delta \) 7.43 – 7.16 (m, 15H, Ph), 5.24 (d, \(J = 3.7 \) Hz, 1H, H-1), 4.93 (d, \(J = 11.7 \) Hz, 1H, OCHHPh), 4.61 (d, \(J = 11.7 \) Hz, 1H, OCHHPh), 4.59 (d, \(J = 11.9 \) Hz, 1H, OCHHPh), 4.55 (d, \(J = 11.8 \) Hz, 1H, OCHHPh), 4.48 (d, \(J = 11.7 \) Hz, 1H, OCHHPh), 4.40 (d, \(J = 11.7 \) Hz, 1H, OCHHPh), 3.93 (br s, 1H, H-4), 3.88 – 3.79 (m, 2H, H-3, H-5), 3.62 (dd, \(J = 9.2, 7.3 \) Hz, 1H, H-6a), 3.53 (dd, \(J = 9.2, 5.7 \) Hz, 1H, H-6b), 2.22 (dd, \(J = 12.1, 3.7 \) Hz, H-2\text{ax}, \(\text{syn-syn} \ \alpha,\alpha\text{-C2}[\text{2}\text{H}]-9\text{a} \)), 1.84 (m, H-2\text{eq}, \(\text{anti-syn} \ \alpha,\alpha\text{-C2}[\text{2}\text{H}]-9\text{a} \), identified from HSQC cross-peak \(^{13}\text{C} \) 30.4 to \(^1\text{H} \) 1.84), \(^{13}\text{C} \) NMR (126 MHz, Chloroform-\(d \)) \(\delta \) 139.0 (4° C), 138.6 (4° C), 138.1 (4° C), 128.52 (CH), 128.51 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 93.47 (C-1), 74.42, 74.41 (C-3 or C-5, PhCH\(_2\)), 73.7 (PhCH\(_2\)), 73.04 (C-4), 70.6, 70.5 (C-3 or C-5, PhCH\(_2\)), 69.4 (C-6), 30.6 (br peak, C-2 (C-D)); ESI-HRMS for \(\text{C}_{54}\text{H}_{56}\text{NaO}_{9}^+ \) (MNa\(^+\)) calculated: 875.4120; found: 875.4064. The minimum level of deuterium incorporation was determined to be \(\geq 70\% \) from the combined integrations of the resonances for H-2\text{ax} of \(\text{syn-syn} \) and H-2\text{eq} of \(\text{anti-syn} \ \alpha,\alpha\text{-C2}[\text{2}\text{H}]-9\text{a} \) \(\text{vs.} \) the integration of the resonance for H-2\text{eq} of \(\alpha,\alpha\text{-C2}[\text{2}\text{H}]-9\text{a} \) in the \(^1\text{H} \) NMR spectrum. The ratio was also determined from the relative integrations of the same resonances in the HSQC spectrum and the same result was obtained; The ratio of \(\text{syn-syn}:\text{anti-syn} \ \alpha,\alpha\text{-C2}[\text{2}\text{H}]-9\text{a} \) products was determined from the relative integrations of H-2\text{ax} \(\text{syn-syn}:\text{H-2eq} \text{ anti-syn} \) in the HSQC spectrum. See below for excerpts from the NMR spectra.

Non-deuterated \(\alpha,\alpha\text{-9a} \), signals observed: \(^1\text{H} \) NMR (500 MHz, Chloroform-\(d \)) \(\delta \) 2.24 (td, \(J = 12.4, 3.7 \) Hz, 1H, H-2a), 1.85 (dd, \(J = 12.6, 4.5 \) Hz, 1H, H-2b); \(^{13}\text{C} \) NMR (126 MHz, Chloroform-\(d \)) \(\delta \) 93.50 (C-1), 74.47, 73.07 (C-4), 31.0 (C-2 (H)).
α,β-C2[2H]-9a: \(R_f = 0.32 \) (85:15; cyclohexane/ethyl acetate); \(^1\)H NMR (500 MHz, Chloroform-\(d\)) \(\delta \) 7.52 – 6.99 (m, 30H, Ph), 5.19 (d, \(J = 3.6 \) Hz, 1H, H-1(\(\alpha \))), 4.90 (d, \(J = 11.6 \) Hz, 1H, OCH/HPh), 4.89 (d, \(J = 11.6 \) Hz, 1H, OCH/HPh), 4.64 (d, \(J = 11.7 \) Hz, 1H, OCH/HPh), 4.61 – 4.57 (m, 2H, OCH/HPh, H-1’ (\(\beta \))[HSQC shows a cross-peak for \(^{13}\)C 99.5 and \(^1\)H 4.59 (d, \(J_{H1,H2} \) ca. 10Hz)], 4.57 – 4.52 (m, 4H, OCH/HPh), 4.39 (d, \(J = 12.0 \) Hz, 1H, OCH/HPh), 4.33 (app d, \(J = 10.6 \) Hz, 3H, 3 × OCH/HPh), 4.25 (app t, \(J = 6.7 \) Hz, 1H, H-5 (\(\alpha \))), 3.98 (dd, \(J = 12.0, 2.6 \) Hz, 1H, H-3 (\(\alpha \))), 3.93 (br, s, 1H, H-4 (\(\alpha \))), 3.84 (d, \(J = 2.5 \) Hz, 1H, H-4’(\(\beta \))), 3.67 – 3.54 (m, 2H, H-6/6’a’), 3.54 – 3.44 (m, 4H, H-6/b/b’, H-3’ (\(\beta \)), H-5’ (\(\beta \))), 2.18 (dd, \(J = 12.1, 3.7 \) Hz, 1H, H-2ax (\(\alpha \)), syn-syn α,β-C2[2H]-9a), 2.10 (dd, \(J = 12.2, 10.1 \) Hz, 1H, H-2ax (\(\beta \)), syn-syn α,β-C2[2H]-9a), 1.98 (m, H-2eq (\(\alpha \)), identified from HSQC cross-peak \(^{13}\)C 32.5 to \(^1\)H 2.00), 1.98 (m, H-2eq (\(\alpha \)), identified from HSQC cross-peak \(^{13}\)C 30.7 to \(^1\)H 1.98); \(^{13}\)C NMR (126 MHz, Chloroform-\(d\)) \(\delta \) 139.1 (4° C), 139.0 (4° C), 138.7 (4° C), 138.5 (4° C), 138.4 (4° C), 138.1 (4° C), 128.53 (CH), 128.46 (CH), 128.42 (CH), 128.39 (CH), 128.25 (CH), 128.24 (CH), 128.23 (CH), 128.17 (CH), 127.78 (CH), 127.71 (CH), 127.63 (CH), 127.58 (CH), 127.56 (CH), 127.47 (CH), 127.40 (CH), 127.39 (CH), 99.50 (C-1’ (\(\beta \))), 98.14 (C-1 (\(\alpha \))), 77.4 (C-3’ (\(\beta \))), 74.60 (C-3 (\(\alpha \))), 74.5 (PhCH\(_2\)), 74.4 (PhCH\(_2\)), 74.1 (C-5’ (\(\beta \))), 73.5 (PhCH\(_2\)), 73.3 (PhCH\(_2\)), 73.10 (C-4 (\(\alpha \))), 71.41 (C-4’ (\(\beta \))), 70.6 (PhCH\(_2\)), 70.3 (PhCH\(_2\)), 70.2 (C-5 (\(\alpha \))), 69.2 (C-6 (\(\alpha \))), 68.7 (C-6’ (\(\beta \))), 32.8 (br peak, C-2’ (\(\beta \))(C-D)), 30.9 (br peak, C-2 (\(\alpha \))(C-D)); ESI-HRMS for CsH\(_{56}\)HNaO\(_9\)\(^{+}\)(MNa\(^+\)) calculated: 875.4120; found: 875.4091. The minimum level of deuterium incorporation was determined to be ≥68% from the relative integrations of the resonances for H-2ax (\(\alpha \)) of syn-syn and H-2eq (\(\alpha \)) of anti-syn α,β-C2[2H]-9a vs. the resonance for H-2eq (\(\alpha \)) of α,β-C2[2H]-9a in the HSQC spectrum. It wasn’t possible to determine a ratio of syn-syn:anti-syn.

Non-deuterated α,β-9a, signals observed: \(^1\)H NMR (500 MHz, Chloroform-\(d\)) 2.19 (td, \(J = 12.4, 3.5 \) Hz, 1H, H-2a (\(\alpha \))), 2.15 – 2.07 (m, 1H, H-2a’(\(\beta \))), 2.06 – 1.93 (m, 2H, H-2b (\(\alpha \)), H-2b’(\(\beta \))); \(^{13}\)C NMR (126 MHz, Chloroform-\(d\)) \(\delta \) 99.56 (C-1’ (\(\beta \))), 98.18 (C-1 (\(\alpha \))), 77.5 (C-3’ (\(\beta \))), 74.65 (C-3 (\(\alpha \))), 73.13 (C-4 (\(\alpha \))), 71.45 (C-4’(\(\beta \))), 33.1 (C-2’ (\(\beta \))(H))), 31.3 (C-2 (\(\alpha \))),
Figure S6: Excerpts from 1H NMR spectra for investigation of stereochemistry of H₂O addition in α,α-dimer 9a formation: (CDCl₃, 500 MHz): (a) non-deuterated product α,α-9a (signal at 2.03 ppm corresponds to residual ethyl acetate); (b) deuterated products α,α-C²[D]-9a and α,α-dimer 9a.
Figure S7: Excerpts from 1H NMR spectra showing change in other 1H resonances 2H incorporation at C-2 of α,α-9a (CDCl$_3$, 500 MHz): (a) α,α-9a; (b) α,α-C2$[^2]$H-9a and α,α-dimer 9a.

Figure S8: HSQC of syn-syn, anti-syn α,α-C2$[^2]$H-9a and α,α-dimer-9a.
Synthesis of Monothiophthalimide 13

Following the literature procedure, a round bottom flask equipped with a magnetic stir-bar, a condenser and gas inlet (all flame-dried) was placed under a N₂ atmosphere. Phthalimide (3.00 g, 20.4 mmol) was weighed into the reaction flask and dissolved in anhydrous THF (45 ml). Lawesson’s reagent (8.34 g, 20.6 mmol) was added and the mixture was heated to 60 °C. The mixture was heated at 60 °C for 11 h. A strong colour change from yellow (time = 0 h) to dark purple (time = 11 h) was observed. TLC analysis (4:1; cyclohexane/ethyl acetate) showed that the phthalimide starting material ($R_f = 0.14$) remained and two new phthalimide-derived spots appeared ($R_f = 0.25, 0.18$). Several other spots related to Lawesson’s reagent were also observed ($R_f = 0.51, 0.41, 0.07$ and a baseline spot). The reaction mixture was concentrated using a rotary evaporator. The dark solid obtained was purified by column chromatography (95:5; cyclohexane/ethyl acetate) which gave the desired product as a pink solid (1.56 g, 47% yield) and dithiophthalimide as a brown solid (0.93 g, 50% yield). Analysis of the 1H NMR spectra showed low levels of impurities still present in both the mono- and di-thiophthalimide. The solids were recrystallised using toluene. Monothiophthalimide 13 was obtained as a pink solid (0.3 g, 9% yield). Dithiophthalimide 20 was obtained as a brown solid (0.15 g, 8% yield).

Monothiophthalimide (13)

$R_f = 0.25$ (4:1; cyclohexane/ethyl acetate); mp 176–177 °C (lit. 174 °C (AcOH))
1H NMR (400 MHz, Chloroform-d) δ 9.05 (s, 1H, NH), 8.05 – 7.91 (m, 1H, CH), 7.85 – 7.70 (m, 3H, CH); 13C NMR (101 MHz, Chloroform-d) δ 197.1 (C=S), 170.2 (C=O), 137.5 (4° C), 134.5 (CH), 133.9 (CH), 128.1 (4° C), 124.1 (CH), 123.2 (CH); Calc’d for C₇H₆NOS: C, 58.88; H, 3.04; N, 8.58; S, 19.93 (%); Found C, 58.49; H, 3.02; N, 8.36; S, 19.93 (%). Carbon NMR data were consistent with literature data.

Dithiophthalimide (20)

$R_f = 0.18$ (4:1; cyclohexane/ethyl acetate); mp 197–198 °C (lit. 199–201 °C (CH₂Cl₂)) 1H NMR (400 MHz, Chloroform-d) δ 9.71 (s, 1H, NH), 7.96 – 7.82 (m, 2H, CH), 7.81 – 7.65 (m, 2H, CH); 13C NMR (101 MHz, Chloroform-d) δ 197.5 (C=S), 135.2 (°C), 133.7 (CH), 123.3 (CH). Carbon NMR data were consistent with literature data.

S50
Control reaction with monothiophthalimide 13 instead of thiouracil as catalyst

In a slight modification to General Procedure 1, galactal donor 3a, an anhydrous CH₂Cl₂ solution of galactose acceptor 4 and monothiophthalimide 13 (1 mol%) were used. The disaccharide 5a was obtained in 84% yield after purification.

Probing Catalyst-Substrate Interactions using ¹H NMR spectroscopy

Under a nitrogen atmosphere, a solution of monothiophthalimide 13 (4.9 mg, 0.03 mmol) was prepared in CD₂Cl₂ (1.5 ml, concentration 0.02M) and dried over 4Å molecular sieves. An aliquot (0.7 ml) of this solution was analysed by ¹H NMR spectroscopy, the NH proton was observed at δ 8.84 ppm. A CD₂Cl₂ solution of galactal donor 3a (24.0 mg, 0.058 mmol) and 13 was prepared from the parent stock solution (0.8 ml, 0.072M w.r.t. 3a, and 0.02M w.r.t. 13) and dried over 4Å molecular sieves. The mixture of 3a and 13 was analysed by ¹H NMR spectroscopy. In the presence of galactal 3a (3.7 equiv.), a small downfield shift for the NH proton of 13 was observed in the ¹H NMR spectrum (δ 8.84 changed to 8.94 ppm).

Figure S9: ¹H NMR (300 MHz, CD₂Cl₂; 8 scans; 25 second relaxation delay); (a) 13 (0.02M); (b) 13 (0.02M) + 3a (0.073M); spectra are referenced to the CD₂Cl₂ solvent resonance (δ 5.32 ppm).

Under a nitrogen atmosphere, a solution of monothiophthalimide 13 (8.3 mg, 0.051 mmol) was prepared in CD₂Cl₂ (2.5 ml, concentration 0.02M) and dried over 4Å molecular sieves. An aliquot (0.7 ml) of this solution was analysed by ¹H NMR spectroscopy, the NH proton was observed at δ 8.86 ppm. A CD₂Cl₂ solution of diacetone galactose 4 (43.3 mg, 0.166
mmol) and 13 was prepared from the parent stock solution (1.0 ml, 0.166M w.r.t. 4, and 0.02M w.r.t. 13) and dried over 4Å molecular sieves. The solution of 13 and 4 was added (0.6 mL) to sample of 13 and the mixture was analysed by 1H NMR spectroscopy. In the presence of alcohol 4 (3.7 equiv.), a downfield shift for the NH proton of 13 was observed in the 1H NMR spectrum (δ 8.86 changed to 9.26 ppm). The OH proton also sharpened and showed a shift from 2.11 to 2.15 ppm.

Figure S10: 1H NMR (300 MHz, CD$_2$Cl$_2$; 8 scans; 25 second relaxation delay); (a) 4 (0.08M); (b) 13 (0.02M) + 4 (0.073M); (c) 13 (0.02M); spectra are referenced to the CD$_2$Cl$_2$ solvent resonance (δ 5.32 ppm).
References
1. W. L. F. Armarego, C. L. L. Chai, *Purification Of Laboratory Chemicals*; 7th ed.; Butterworth-Heinemann, Oxford, U.K., 2013; pp 717.

2. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* 1996, 15, 1518.

3. Colgan, A. C.; Müller-Bunz, H.; McGarrigle, E. M. *J. Org. Chem.* 2016, 81, 11394-11396.

4. Durantie, E.; Bucher, C.; Gilmour, R. *Chem. Eur. J.* 2012, 18, 8208–8215.

5. Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. *Angew. Chem. Int. Ed.* 2012, 51, 9152–9155.

6. Bucher, C.; Gilmour, R. *Angew. Chem. Int. Ed.* 2010, 49, 8724–8728.

7. Balmond, E. I.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C. *Angew. Chem. Int. Ed.* 2014, 53, 8190-8194.

8. Thiem, J.; Klaffke, W.; Springer, D. *Carbohydr. Res.*, 1988, 174, 201-210.

9. Hanessian, S. Rogel, O. *J. Org. Chem.*, 2000, 65, 2667-2674.

10. Roën, A.; Padrón, J. I.; Vázquez, J. T. *J. Org. Chem.* 2003, 68, 4615–4630.

11. Matwiejuk, M.; Thiem, J. *Chem. Commun.* 2011, 47, 8379.

12. Garegg, P. J.; Iversen, T.; Oscarson, S. *Carbohydr. Res.* 1976, 50 (2), C12–C14. Mydock, L. K.; Kamat, M. N.; Demchenko, A. V. *Org. Lett.* 2011, 13, 2928–2931.

13. Ogawa, T.; Kaburagi, T. *Carbohydr. Res.* 1982, 103, 53–64.

14. Wang, C.-C.; Kulkarni, S. S.; Lee, J.-C.; Luo, S.-Y.; Hung, S.-C. *Nat. Protoc.* 2008, 3, 97–113.

15. Garegg, P. J.; Hultberg, H.; Wallin, S. *Carbohydr. Res.* 1982, 108, 97–101.

16. Zhang, Z.; Yua, B.; Schmidt, R. R. *Synthesis* 2006, 8, 1301-1306; Bao, K.; Fan, A.; Dai, Y.; Zhang, L.; Zhang, W.; Cheng, M.; Yao, X. *Org. Biomol. Chem.* 2009, 7, 5084-5090.

17. Sherry, B. D.; Loy, R. N.; Toste, F. D. *J. Am. Chem. Soc.* 2004, 126, 4510–45115.

18. Kim, H.; Hongbin, M.; Lee, C., *J. Am. Chem. Soc.* 2004, 126, 1336-1337.

19. Nogueira, J. M.; Bylsma, M.; Bright, D. K.; Bennett, C. S. *Angew. Chem. Int. Ed.*, 2016, 55, 10088-10092.

20. Issa, J. P.; Bennet, C. S. *J. Am. Chem. Soc.*, 2014, 136, 5740-5744.

21. Schene, H.; Waldmann, H. *Synthesis*, 1999, 1411-1422.
22. Lin, H. C.; Pan, J. F.; Chen, Y. B.; Lin, Z. P.; Lin, C. H. Tetrahedron 2011, 67, 6362-6368.

23. Palo-Nieto, C.; Sau, A.; Williams, R.; Galan, M. C. J. Org. Chem. 2017, 82, 407–414.

24. Nogueira, A. M.; Issa, J. P.; Chu, A. A.; Sisel, J. A.; Schum, R. S.; Bennett, C. S. Eur. J. Org. Chem. 2012, 4927-4936.

25. Colinas, P. A.; Bravo, R. D. Org. Lett. 2003, 5, 4509-4511.

26. Bernardes, G. J. L.; Grayson, E. J.; Thompson, S.; Chalker, J. M.; Errey, J. C.; Oualid, F. E.; Ti, D.; Claridge, W.; Davis, B. G. Angew. Chem. Int. Ed. 2008, 47, 2244-2247.

27. Kuzuhara, H.; Fletcher, H. G. J. Org. Chem. 1967, 32, 2531-2534.

28. Jogula, S.; Dasari, B.; Khatravath, M.; Chandrasekar, G.; Kitambi, S. S.; Arya, P. Eur. J. Org. Chem. 2013, 23, 5036-5040.

29. Yoshimura, J.; Hara, K.; Sato, T.; Hashimoto, H. Chem. Lett. 1983, 12, 319–320.

30. Kolthoff, I. M.; Chantooni Jr, M. K.; Bhowmik, S. J. Am. Chem. Soc. 1968, 90, 23–28.

31. Pachamuthu, K.; Vankar, Y. D. J. Org. Chem. 2001, 66, 7511–7513.

32. Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C. Angew. Chem. Int. Ed. 2017, 56, 3640–3644.

33. Das, S.; Pekel, D.; Neudörfl, J.-M.; Berkessel, A. Angew. Chem. Int. Ed. 2015, 54, 12479–12483.

34. Yde, B.; Yousif, N. M.; Pedersen, U.; Thomsen, I.; Lawesson, S.-O. Tetrahedron 1984, 40, 2047–2052.

35. Drew, H. D. K.; Kelly, D. B. J. Chem. Soc. 1941, 625–630.

36. Leznoff, C. C.; Greenberg, S.; Khouw, B.; Lever, B. P. Can. J. Chem. 1987, 65, 1705–1713.

37. Lin, P.-Y.; Ku, W.-S.; Shiao, M.-J. Synthesis 1992, 12, 1219–1220.
NMR Spectra of Compounds

NMR Spectra of Glycals

1H NMR (400 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-d-galactal 3a

13C NMR (101 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-d-galactal 3a
1H NMR (400 MHz, CDCl$_3$), 3,4,6-tri-O-allyl-D-galactal 3b

13C NMR (101 MHz, CDCl$_3$), 3,4,6-tri-O-allyl-D-galactal 3b
1H NMR (500 MHz, CDCl$_3$), 1,5-anhydro-2-deoxy-3,4-di-O-benzyl-6-O-acetyl-D-lyxo-hex-1-enitol 3c

13C NMR (125 MHz, CDCl$_3$), 1,5-anhydro-2-deoxy-3,4-di-O-benzyl-6-O-acetyl-D-lyxo-hex-1-enitol 3c
1H NMR (500 MHz, CDCl₃), 1,5-Anhydro-2-deoxy-3,4,6-tri-O-tert-butyldimethylsilyl-D-lyxo-hex-1-enitol 3d

13C NMR (125 MHz, CDCl₃), 1,5-Anhydro-2-deoxy-3,4,6-tri-O-tert-butyldimethylsilyl-D-lyxo-hex-1-enitol 3d
1H NMR (300 MHz, CDCl$_3$), 1,5-Anhydro-2-deoxy-3,4,6-tri-O-acetyl-D-lyxo-hex-1-enitol 3e

13C NMR (125 MHz, CDCl$_3$), 1,5-Anhydro-2-deoxy-3,4,6-tri-O-acetyl-D-lyxo-hex-1-enitol 3e
1H NMR (500 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-d-glucal 3f

13C NMR (126 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-d-glucal 3f
1H NMR (500 MHz, Chloroform-d), 3,4-O-Dibenzyl-L-rhamnal 3g

![NMR Spectrum Image]

13C NMR (101 MHz, Chloroform-d), 3,4-O-Dibenzyl-L-rhamnal 3g

![NMR Spectrum Image]
COSY (400 MHz, Chloroform-\textit{d}), 3,4-\textit{O}-Dibenzyl-L-rhamnal 3g

HSQC (500 x 101 MHz, Chloroform-\textit{d}), 3,4-\textit{O}-Dibenzyl-L-rhamnal 3g
DEPT (101 MHz, Chloroform-d), 3,4-O-Dibenzyl-L-rhamnal 3g
1H NMR (500 MHz, Chloroform-d), 3,4-O-Dibenzyl-L-fucal 3h

13C NMR (101 MHz, Chloroform-d), 3,4-O-Dibenzyl-L-fucal 3h
COSY (500 MHz, Chloroform-d), 3,4-O-Dibenzyl-L-fucal 3h

HSQC (500 × 101 MHz, Chloroform-d), 3,4-O-Dibenzyl-L-fucal 3h
NMR Spectra of Acceptors and their precursors

1H NMR (400 MHz, CDCl$_3$), methyl 4,6-O-benzylidene-α-D-glucopyranoside 14

13C NMR (101 MHz, CDCl$_3$), methyl 4,6-O-benzylidene-α-D-glucopyranoside 14
1H NMR (400 MHz, CDCl$_3$), methyl 3-\textit{O}-benzyl-4,6-\textit{O}-benzylidene-\textalpha{}-D-glucopyranoside 6a

13C NMR (101 MHz, CDCl$_3$), methyl 3-\textit{O}-benzyl-4,6-\textit{O}-benzylidene-\textalpha{}-D-glucopyranoside 6a
1H NMR (400 MHz, CDCl$_3$), methyl 2-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside 6b

13C NMR (101 MHz, CDCl$_3$), methyl 2-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside 6b
1H NMR (400 MHz, CDCl$_3$), methyl 2,3-O-benzyl-4,6-O-benzyldiene-α-D-glucopyranoside 15

13C NMR (101 MHz, CDCl$_3$), methyl 2,3-O-benzyl-4,6-O-benzyldiene-α-D-glucopyranoside 15
1H NMR (400 MHz, CDCl$_3$), methyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside 6c

13C NMR (101 MHz, CDCl$_3$), methyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside 6c
NMR Spectra of Disaccharides

1H NMR (300 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5a

13C NMR (125 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5a
1H NMR (400 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-allyl-2-deoxy-α-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5b

13C NMR (101 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-allyl-2-deoxy-α-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5b
1H NMR (500 MHz, CDCl$_3$), 6-O-(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5c

13C NMR (125 MHz, CDCl$_3$), 6-O-(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5c
1H NMR (300 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-tert-butyldimethylsilyl-2-deoxy-α-D-lyxohexapranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5d

13C NMR (125 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-tert-butyldimethylsilyl-2-deoxy-α-D-lyxohexapranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5d
1H NMR (500 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-benzyl-2-deoxy-α/β-D-erythro-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fa and 6-O-(4,6-di-O-benzyl-2,3-dideoxy-α/β-D-erythro-hex-2-enopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fb

13C NMR (126 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-benzyl-2-deoxy-α/β-D-erythro-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fa and 6-O-(4,6-di-O-benzyl-2,3-dideoxy-α/β-D-erythro-hex-2-enopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fb
HSQC NMR (500 ×126 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-benzyl-2-deoxy-α/β-D-erythro-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fa and 6-O-(4,6-di-O-benzyl-2,3-dideoxy-α/β-D-erythro-hex-2-enopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fb

HMBC NMR (500 ×126 MHz, CDCl$_3$), 6-O-(3,4,6-tri-O-benzyl-2-deoxy-α/β-D-erythro-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fa and 6-O-(4,6-di-O-benzyl-2,3-dideoxy-α/β-D-erythro-hex-2-enopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5fb
1H NMR (600 MHz, Chloroform-d), (3,4-Di-O-benzyl-2,6-dideoxy-α/β-L-erythro-hexapyranosyl)-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5ga and 4-O-(benzyl)-2,3,6-trideoxy-α/β-L-hex-2-enopyranosyl-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5gb

13C NMR (151 MHz, Chloroform-d), (3,4-Di-O-benzyl-2,6-dideoxy-α/β-L-erythro-hexapyranosyl)-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5ga and 4-O-(benzyl)-2,3,6-trideoxy-α/β-L-hex-2-enopyranosyl-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5gb
COSY (600 MHz, Chloroform-d), (3,4-Di-O-benzyl-2,6-dideoxy-αβ-L-erythro-hexapyranosyl)-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5ga and 4-O-(benzyl)-2,3,6-trideoxy-αβ-L-hex-2-enopyranosyl-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5gb

HSQC (600 x 151 MHz, Chloroform-d), (3,4-Di-O-benzyl-2,6-dideoxy-αβ-L-erythro-hexapyranosyl)-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5ga and 4-O-(benzyl)-2,3,6-trideoxy-αβ-L-hex-2-enopyranosyl-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5gb
HMBC (600 × 151 MHz, Chloroform-d), (3,4-Di-O-benzyl-2,6-dideoxy-α/β-L-erythro-hexapyranosyl)-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5ga and 4-O-(benzyl)-2,3,6-trIDEOXY-α/β-L-hex-2-enopyranosyl-(1→6)-1,2;3,4-di-O-isopropylidene-α-D-galactopyranoside 5gb
1H NMR (400 MHz, Chloroform-d), (3,4-Di-O-benzyl-2-deoxy-α-L-fucopyranosyl)-(1\rightarrow6)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranoside α-5h and 3,4-Di-O-benzyl-2-deoxy-α-L-fucopyranosyl-(1\rightarrow1)-(3',4'-Di-O-benzyl-2-deoxy-α-L-fucopyranosyl) 9h

13C NMR (101 MHz, Chloroform-d), (3,4-Di-O-benzyl-2-deoxy-α-L-fucopyranosyl)-(1\rightarrow6)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranoside α-5h and 3,4-Di-O-benzyl-2-deoxy-α-L-fucopyranosyl-(1\rightarrow1)-(3',4'-Di-O-benzyl-2-deoxy-α-L-fucopyranosyl) 9h
COSY (400 MHz, Chloroform-\(d\)), (3,4-Di-\(O\)-benzyl-2-deoxy-\(\alpha\)-L-fucopyranosyl)-(1→6)-1,2:3,4-di-\(O\)-isopropylidene-\(\alpha\)-D-galactopyranoside \(\alpha\)-5h and 3,4-Di-\(O\)-benzyl-2-deoxy-\(\alpha\)-L-fucopyranosyl-(1→1)-(3',4'-Di-\(O\)-benzyl-2-deoxy-\(\alpha\)-L-fucopyranosyl) 9h

HSQC (400 \(\times\) 101 MHz, Chloroform-\(d\)), (3,4-Di-\(O\)-benzyl-2-deoxy-\(\alpha\)-L-fucopyranosyl)-(1→6)-1,2:3,4-di-\(O\)-isopropylidene-\(\alpha\)-D-galactopyranoside \(\alpha\)-5h and 3,4-Di-\(O\)-benzyl-2-deoxy-\(\alpha\)-L-fucopyranosyl-(1→1)-(3',4'-Di-\(O\)-benzyl-2-deoxy-\(\alpha\)-L-fucopyranosyl) 9h
1H NMR (600 MHz, Chloroform-d), (3,4-Di-O-benzyl-2-deoxy-β-L-fucopyranosyl)-(1→6)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranoside β-5h

13C NMR (151 MHz, Chloroform-d), (3,4-Di-O-benzyl-2-deoxy-β-L-fucopyranosyl)-(1→6)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranoside β-5h
COSY (600 MHz, Chloroform-\textit{d}), (3,4-Di-\textit{O}-benzyl-2-deoxy-\textit{\beta}-\textit{L}-fucopyranosyl)-(1→6)-1,2:3,4-di-\textit{O}-isopropylidene-\textit{\alpha}-\textit{D}-galactopyranoside \textit{\beta}-5h

HSQC (600 × 151 MHz, Chloroform-\textit{d}), (3,4-Di-\textit{O}-benzyl-2-deoxy-\textit{\beta}-\textit{L}-fucopyranosyl)-(1→6)-1,2:3,4-di-\textit{O}-isopropylidene-\textit{\alpha}-\textit{D}-galactopyranoside \textit{\beta}-5h
HMBC (600 × 151 MHz, Chloroform-\textit{d}), (3,4-Di-O-benzyl-2-deoxy-\textit{\beta}-L-fucopyranosyl)-(1→6)-1,2:3,4-di-O-isopropylidene-\textit{\alpha}-D-galactopyranoside \textit{\beta}-5h
1H NMR (400 MHz, CDCl$_3$), methyl 3-O-benzyl-2-O-(3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl)-4,6-O-benzylidene-α-D-glucopyranoside 7a

13C NMR (101 MHz, CDCl$_3$), methyl 3-O-benzyl-2-O-(3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl)-4,6-O-benzylidene-α-D-glucopyranoside 7a
1H NMR (400 MHz, CDCl$_3$), methyl 2-O-benzyl-3-O-(3,4,6-tri-O-benzyl-α-D-lyxohexapyranosyl)-4,6-O-benzylidene-α-D-glucopyranoside 7b

13C NMR (101 MHz, CDCl$_3$), methyl 2-O-benzyl-3-O-(3,4,6-tri-O-benzyl-α-D-lyxohexapyranosyl)-4,6-O-benzylidene-α-D-glucopyranoside 7b
1H NMR (400 MHz, CDCl$_3$), methyl 2,3-O-benzyl-4-O-(3,4,6-tri-O-benzyl-α-D-lyxohexapyranosyl)-α-D-glucopyranoside 7c

13C NMR (101 MHz, CDCl$_3$), methyl 2,3-O-benzyl-4-O-(3,4,6-tri-O-benzyl-α-D-lyxohexapyranosyl)-α-D-glucopyranoside 7c
1H NMR (300 MHz, CDCl$_3$), phenyl 2,3,4-tri-O-benzyl-6-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-β-D-thioglucopyranoside 7d

13C NMR (101 MHz, CDCl$_3$), phenyl 2,3,4-tri-O-benzyl-6-O-(3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl)-β-D-thioglucopyranoside 7d
1H NMR (500 MHz, CDCl$_3$), 2-deoxy-3,4,6-tri-O-benzyl-α-d-lyxo-hexopyranosyl-(1→O)-N-tert-butoxycarbonyl-ν-serine methyl ester 7e

13C NMR (126 MHz, CDCl$_3$), 2-deoxy-3,4,6-tri-O-benzyl-α-d-lyxo-hexopyranosyl-(1→O)-N-tert-butoxycarbonyl-ν-serine methyl ester 7e
gHSQC NMR (500 × 126 MHz, CDCl₃), 2-deoxy-3,4,6-tri-O-benzyl-α-D-lyxohexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-serine methyl ester 7e

![gHSQC NMR Image]

gHMBC NMR (500 × 126 MHz, CDCl₃), 2-deoxy-3,4,6-tri-O-benzyl-α-D-lyxohexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-serine methyl ester 7e

![gHMBC NMR Image]
1H NMR (400 MHz, CDCl$_3$), 2-deoxy-3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-threonine methyl ester 7f

13C NMR (101 MHz, CDCl$_3$), 2-deoxy-3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-threonine methyl ester 7f
gHSQC NMR (400 × 101 MHz, CDCl₃), 2-deoxy-3,4,6-tri-O-benzyl-α-D-lyxohexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-threonine methyl ester 7f

![gHSQC NMR graph]

gHMBC NMR (400 × 100 MHz, CDCl₃), 2-deoxy-3,4,6-tri-O-benzyl-α-D-lyxohexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-threonine methyl ester 7f

![gHMBC NMR graph]
1H NMR (400 MHz, CDCl$_3$), 2-deoxy-3,4,6-tri-O-benzyl-α-d-lyxo-hexopyranosyl-(1\rightarrowO)-N-tert-butoxycarbonyl-L-tyrosine methyl ester 7g

13C NMR (101 MHz, CDCl$_3$), 2-deoxy-3,4,6-tri-O-benzyl-α-d-lyxo-hexopyranosyl-(1\rightarrowO)-N-tert-butoxycarbonyl-L-tyrosine methyl ester 7g
gHSQC NMR (400 × 101 MHz, CDCl₃), 2-deoxy-3,4,6-tri-O-benzyl-α-d-lyxo-hexopyranosyl-(1→O)-N-tert-butoxycarbonyl-L-tyrosine methyl ester 7g
1H NMR (500 MHz, CDCl$_3$), cholesteryl (3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl) 7h

13C NMR (125 MHz, CDCl$_3$), cholesteryl (3,4,6-tri-O-benzyl-2-deoxy-α-D-lyxo-hexapyranosyl) 7h
1H NMR (500 MHz, CDCl$_3$), 3,4,6-Tri-O-benzyl-2-deoxy-α/β-D-galactopyranosyl p-toluenesulfonamide 12

13C NMR (125 MHz, CDCl$_3$) 3,4,6-Tri-O-benzyl-2-deoxy-α/β-D-galactopyranosyl p-toluenesulfonamide 12
COSY NMR (500 MHz, CDCl$_3$), 3,4,6-Tri-O-benzyl-2-deoxy-α/β-D-galactopyranosyl p-toluenesulfonamide 12

![COSY NMR spectrum](image1)

HSQC NMR (500 × 125 MHz, CDCl$_3$), 3,4,6-Tri-O-benzyl-2-deoxy-α/β-D-galactopyranosyl p-toluenesulfonamide 12

![HSQC NMR spectrum](image2)
NMR Spectra of 1,1,-linked sugars

1H NMR (400 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→1’)-3’,4’,6’-tri-O-benzyl-α-D-lyxo-hexopyranoside α_α-9a

13C NMR (101 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→1’)-3’,4’,6’-tri-O-benzyl-α-D-lyxo-hexopyranoside α_α-9a
COSY (400 MHz, CDCl₃), 3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-D-lyxo-hexapyranoside α,α-9a

gHSQC (400 × 101 MHz, CDCl₃), 3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-D-lyxo-hexapyranoside α,α-9a
gHMBC; (400 × 101 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-α-d-lyxo-hexopyranosyl-(1\rightarrow1')-3',4',6'-tri-O-benzyl-α-d-lyxo-hexopyranoside α,α-9a
1H NMR (400 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→1‘)-3‘,4’,6’-tri-O-benzyl-β-D-lyxo-hexopyranoside α,β-9a

13C NMR (101 MHz, CDCl$_3$), 3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→1‘)-3‘,4’,6’-tri-O-benzyl-β-D-lyxo-hexopyranoside α,β-9a
COSY (400 MHz, CDCl₃), 3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1')-3',4',6'-tri-O-benzyl-β-D-lyxo-hexapyranoside α,β-9a

gHSQC (400 × 101 MHz, CDCl₃), 3,4,6-tri-O-benzyl-α-D-lyxo-hexapyranosyl-(1→1')-3',4',6'-tri-O-benzyl-β-D-lyxo-hexapyranoside α,β-9a
gHMBC (400 × 101 MHz, CDCl₃), 3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranosyl-(1→1’)-3’,4’,6’-tri-O-benzyl-β-D-lyxo-hexopyranoside α,β-9a
1H NMR (400 MHz, CDCl$_3$), 2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-D-lyxo-hexapyranoside α,α-11a

13C NMR (101 MHz, CDCl$_3$), 2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-D-lyxo-hexapyranoside α,α-11a
COSY (400 MHz, CDCl₃), 2,3,4,6-Tetra-\(O\)-benzyl-\(\alpha\)-d-glucopyranosyl-(1→1′)-3′,4′,6′-tri-\(O\)-benzyl-\(\alpha\)-d-lyxo-hexapyranoside \(\alpha,\alpha\)-11a

gHSQC; (400 × 101 MHz, CDCl₃), 2,3,4,6-Tetra-\(O\)-benzyl-\(\alpha\)-d-glucopyranosyl-(1→1′)-3′,4′,6′-tri-\(O\)-benzyl-\(\alpha\)-d-lyxo-hexapyranoside \(\alpha,\alpha\)-11a
gHMBC (400 × 101 MHz, CDCl₃), 2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl-(1 → 1′)-3′,4′,6′-tri-O-benzyl-α-D-lyxo-hexapyranoside α,α-11a
1H NMR (400 MHz, CDCl$_3$), 2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-β-D-lyxo-hexapyranoside α,β-11a

13C NMR (101 MHz, CDCl$_3$), 2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-β-D-lyxo-hexapyranoside α,β-11a
COSY (400 MHz, CDCl₃), 2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-D-lyxo-hexapyranoside α,β-11a

^HSQC (400 × 101 MHz, CDCl₃), 2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-D-lyxo-hexapyranoside α,β-11a
gHMBC; (400 × 101 MHz, CDCl$_3$), 2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-α-D-lyxo-hexopyranoside α,β-11a
NMR Spectra of Deprotected sugars

1H NMR (400 MHz, CD$_3$OD), 2,2'-dideoxy-lyxo-trehalose α,α-9b

13C NMR (101 MHz, CD$_3$OD), 2,2'-dideoxy-lyxo-trehalose α,α-9b
COSY (400 MHz, CD$_3$OD), 2,2’-dideoxy-lyxo-trehalose α,α-9b

\[
\begin{align*}
\text{HO} & \quad \text{OH} \\
\text{HO} & \quad \text{O} \\
\text{O} & \quad 2
\end{align*}
\]

gHSQC (400 × 100 MHz, CD$_3$OD), 2,2’-dideoxy-lyxo-trehalose α,α-9b

\[
\begin{align*}
\text{HO} & \quad \text{OH} \\
\text{HO} & \quad \text{O} \\
\text{O} & \quad 2
\end{align*}
\]
gHMBC (400 × 100 MHz, CD$_3$OD), 2,2'-dideoxy-lyxo-trehalose α,α-9b
1H NMR (500 MHz, CD$_3$OD), α-D-glucopyranosyl-(1→1')-α-D-lyxo-hexopyranoside α,α-11b

13C NMR (126 MHz, CD$_3$OD), α-D-glucopyranosyl-(1→1')-α-D-lyxo-hexopyranoside α,α-11b
COSY (500 MHz, CD$_3$OD), α-D-glucopyranosyl-(1→1’)-α-D-lyxo-hexapyranoside α,α-11b

gHSQC (500 × 126 MHz, CD$_3$OD), α-D-glucopyranosyl-(1→1’)-α-D-lyxo-hexapyranoside α,α-11b
gHMBC (500 × 126 MHz, CD$_3$OD), α-d-glucopyranosyl-(1→1')-α-d-lyxo-hexopyranoside α,α-11b
1H NMR (500 MHz, CD$_3$OD), β-D-glucopyranosyl-(1→1')-α-D-lyxo-hexopyranoside α,β-11b

13C NMR (126 MHz, CD$_3$OD), β-D-glucopyranosyl-(1→1')-α-D-lyxo-hexopyranoside α,β-11b
COSY (500 MHz, CD$_3$OD), β-D-glucopyranosyl-(1→1’)-α-D-lyxo-hexapyranoside α,β-11b

gHSQC (500 × 126 MHz, CD$_3$OD), β-D-glucopyranosyl-(1→1’)-α-D-lyxo-hexapyranoside α,β-11b
gHMBC (500 × 126 MHz, CD$_3$OD), β-D-glucopyranosyl-(1→1')-α-D-lyxo-hexapyranoside α,β-11b
NMR Spectra relating to mechanistic experiments

1H NMR (400 MHz, CDCl$_3$), monothiophthalimide 13

13C NMR (101 MHz, CDCl$_3$), monothiophthalimide 13
1H NMR (400 MHz, CDCl$_3$), dithiophthalimide 20

13C NMR (101 MHz, CDCl$_3$), dithiophthalimide 20
Control Experiments

1H NMR (500 MHz, CDCl$_3$), α/β mixture of 6-O-(3,4,6-tri-O-benzyl-D-lyxo-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5a

13C NMR (126 MHz, CDCl$_3$), α/β mixture of 6-O-(3,4,6-tri-O-benzyl-D-lyxo-hexopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose 5a
Cross-over experiment

^{1}H NMR (400 MHz, CDCl$_3$), α/β mixture of 6-$(3,4,6$-tri-O-benzyl-d-lyxohexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-d-galactopyranose subjected to reaction conditions with phenyl 2,3,4-tri-O-benzyl-β-d-thioglycopyranose

\[\text{gHSQC (400\times 100 MHz, CDCl$_3$) α/β mixture of 6-$(3,4,6$-tri-O-benzyl-d-lyxohexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-d-galactopyranose subjected to reaction conditions with phenyl 2,3,4-tri-O-benzyl-β-d-thioglycopyranose:}\]
Catalyst poison experiment

1H NMR (500 MHz, CDCl$_3$), α/β mixture of 6-O-(3,4,6-tri-O-benzyl-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose subjected to reaction conditions with phenyl 2,3,4-tri-O-benzyl-β-D-thioglucopyranose and 6-O-acetyl-3,4-di-O-benzyl-D-lyxo-hexapyranose

gHSQC (500 × 125 MHz, CDCl$_3$), α/β mixture of 6-O-(3,4,6-tri-O-benzyl-D-lyxo-hexapyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose subjected to reaction conditions with phenyl 2,3,4-tri-O-benzyl-β-D-thioglucopyranose and 6-O-acetyl-3,4-di-O-benzyl-D-lyxo-hexapyranose
1H NMR (500 MHz, CDCl$_3$), methyl 3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranoside 19

13C NMR (126 MHz, CDCl$_3$), methyl 3,4,6-tri-O-benzyl-α-D-lyxo-hexopyranoside 19
^{1}H NMR (500 MHz, CDCl$_3$), methyl (OCD$_3$) 3,4,6-tri-O-benzyl-(2-2H)-α-D-lyxo-hexapyranoside 19

13C NMR (126 MHz, CDCl$_3$), methyl (OCD$_3$) 3,4,6-tri-O-benzyl-(2-2H)-α-D-lyxo-hexapyranoside 19
HSQC NMR (500 × 126 MHz, CDCl$_3$), methyl (OCD$_3$) 3,4,6-tri-β-benzyl-(2,3-2H)-α-D-lyxo-hexopyranoside

+ non-deuterated
COSY NMR (500 × 500 MHz, CDCl$_3$), methyl (OCD$_3$) 3,4,6-tri-β-D-benzyl-(2-2H)-α-D-lyxo-hexopyranoside
1H NMR (500 MHz; CDCl$_3$), 3,4,6-tri-O-benzyl-(2-2H)-α-D-lyxo-hexopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-(2-2H)-α-D-lyxo-hexapyranoside; 9a

13C NMR (126 MHz; CDCl$_3$), 3,4,6-tri-O-benzyl-(2-2H)-α-D-lyxo-hexopyranosyl-(1→1')-3',4',6'-tri-O-benzyl-(2-2H)-α-D-lyxo-hexapyranoside 9a
HSQC NMR (500 × 126 MHz, CDCl₃), 3,4,6-tri-O-benzyl-(2⁻²H)-α-D-lyxo-hexapyranosyl-(1→1')-3',4',6'-tri-O-benzyl-(2⁻²H)-α-D-lyxo-hexapyranoside 9a

![HSQC NMR spectrum](image-url)

Diagram:
- Two molecules of the compound are shown, one labeled as the major and the other as the minor.
- The stereochemistry at the anomeric carbon is indicated.
- Hydrogen bonds and deuterium labelling are depicted.

S129
HMBC NMR (500 × 126 MHz, CDCl₃), 3,4,6-tri-O-benzyl-(2-²H)-α-D-lyxo-hexapyranosyl-(1→1')-3',4',6'-tri-O-benzyl-(2-²H)-α-D-lyxo-hexapyranoside 9a

COSY NMR (500 × 500 MHz, CDCl₃), 3,4,6-tri-O-benzyl-(2-²H)-α-D-lyxo-hexapyranosyl-(1→1')-3',4',6'-tri-O-benzyl-(2-²H)-α-D-lyxo-hexapyranoside 9a