Motivation

Verification of infinite-state FIFO systems

- Model defined in 1970 for communication protocols.
- Difficult to verify since reachability is undecidable.
- Used for choreography, contract, interfaces, web services, ...
- Reachability is decidable for interesting subclasses.
- Interesting papers about synchronizability (more or less correct).
A FIFO system from (LY 2019) with 3 processes P, Q, R and 4 channels: pq, pr, qp, rq

(a) Process P
A FIFO system from (LY 2019) with 3 processes \(P, Q, R \) and 4 channels: \(pq, pr, qp, rq \)

(a) Process \(P \)
(b) Process \(Q \)
A FIFO system from (LY 2019) with 3 processes P, Q, R and 4 channels: pq, pr, qp, rq
Introduction and motivation
Words and FIFO loops
Complexity for Flat FIFO Systems
Construction of an Equivalent Counter System
Conclusion and perspectives

process P

process Q

process R
Introduction and motivation

Words and FIFO loops

Complexity for Flat FIFO Systems

Construction of an Equivalent Counter System

Conclusion and perspectives

Process \(P \)

- \(pq!a_1 \) to \(pr!c \)
- \(pq!a_2 \) to \(pr!c \)
- \(qp?b \) to \(pq!a_2 \)
- \(pq!y \) to \(qp?x \)

Process \(Q \)

- \(pq?a_1 \) to \(rq?d \)
- \(pq?a_2 \) to \(rq?d \)
- \(qp!b \) to \(pq?a_2 \)
- \(qp?y \) to \(qp!x \)

Process \(R \)

- \(pr?c \) to \(rq!d \)

\(!c \) to \(?c \), \(!d \)
What is mainly known about FIFO systems?

- Reachability and boundedness are **undecidable** for
 - one FIFO automata
 - two communicating machines (2-CFSM)
What is mainly known about FIFO systems?

- Reachability and boundedness are **undecidable** for
 - one FIFO automata
 - two communicating machines (2-CFSM)
- The reachability set is **recognizable** for
 - synchronous systems of CFSM
 - \(k \)-bounded systems (\(k \geq 0 \))
 - half-duplex systems of 2-CFSM (not for 3-CFSM).
 - lossy/insertion systems and variants with time, data and priority (but not perfect FIFO) but boundedness is still undecidable.
What is mainly known about FIFO systems?

- Reachability and boundedness are **undecidable** for
 - one FIFO automata
 - two communicating machines (2-CFSM)
- The reachability set is **recognizable** for
 - synchronous systems of CFSM
 - k-bounded systems ($k \geq 0$)
 - half-duplex systems of 2-CFSM (not for 3-CFSM).
 - lossy/insertion systems and variants with time, data and priority (but not perfect FIFO) but boundedness is still undecidable.
- Reachability is **decidable** for
 - recognizable systems
 - 1-existential bounded systems
 - flat systems.
What precisely about Flat FIFO systems (FFS) ?

Known results

- The reachability set can be effectively represented by \((A, \phi)\) where \(A\) is a flat automaton, \(\phi\) Presburger formula (BH’99).
- By analysing the proof, reachability is in 2-EXPTIME.
- Control-state reachability is NP-complete (EGM’12).
What precisely about Flat FIFO systems (FFS) ?

Known results
- The reachability set can be effectively represented by \((A, \phi)\) where \(A\) is a flat automaton, \(\phi\) Presburger formula (BH’99).
- By analysing the proof, reachability is in 2-EXPTIME.
- Control-state reachability is NP-complete (EGM’12).

Open complexity and decidability problems
- Reachability: decidable but exact complexity unknown
- Repeated reachability ?
- (letter)-Boundedness ?
- Termination ?
- LTL, CTL*, equivalences ?
Our contributions

- Most reachability problems are NP-complete
 - Reachability
 - Repeated reachability
 - (letter)-channel boundedness
 - Termination
Our contributions

- **Most reachability problems are NP-complete**
 - Reachability
 - Repeated reachability
 - (letter)-channel boundedness
 - Termination
- **Flat FIFO systems are flat counters systems**
 - FFS are bisimilar to FCS
 - The reachability set is semilinear (also in BH'99)
 - FFS are trace-flattable
 - LTL and CTL^* are decidable.
Outline

1. Introduction and motivation
2. Words and FIFO loops
3. Complexity for Flat FIFO Systems
 - NP Upper Bound
 - NP Lower Bound
 - NP -complete results
4. Construction of an Equivalent Counter System
 - The synchronized counter system
 - The synchronized counter system is trace-flattable
 - LTL and CTL^* are decidable
5. Conclusion and perspectives
Two useful lemmas

Lemma

Let \(x, y \in \Sigma^+ \) and \(w \in \Sigma^* \).

The equation \(x^w = wy^w \) holds iff \(\exists z \neq \epsilon, z \) primitive and \(\exists x', x'' \) such that \(w \in x^*x' \) and \(x = x'x'' \) and \(x''x' \in z^* \) and \(y \in z^* \).

Proof.

By using Levi’s Lemma.
Two usefull lemmas

Lemma

Let \(x, y \in \Sigma^+ \) and \(w \in \Sigma^* \).

The equation \(x^\omega = wy^\omega \) holds iff \(\exists z \neq \epsilon, z \text{ primitive and } \exists x', x'' \) such that \(w \in x^*x' \) and \(x = x'x'' \) and \(x''x' \in z^* \) and \(y \in z^* \).

Proof.

By using Levi’s Lemma.

Lemma

An elementary loop labeled by \(\sigma \) is infinitely iterable from \((q,w) \) iff for every channel \(c \), \(x_c^\sigma = \epsilon \) or \(\sigma \) is fireable at least once from \((q,w) \) and \((x_c^\sigma)^\omega = w(c) \cdot (y_c^\sigma)^\omega \) and \(|x_c^\sigma| \leq |y_c^\sigma| \)

where \(x_c^\sigma \) is the word consummed by \(\sigma \) from channel \(c \).
Path Schemas

(a) Flat FIFO system

(b) Path schema denoted by $p_0(\ell_1)^* p_1(\ell_2)^* p_2$

Figure: Example flat FIFO system and path schema
Reachability to Control State Reachability

Theorem (Theorem 3, Theorem 7 in EGM’12)

Let $S = p_0(\ell_1)^* p_1 \cdots (\ell_k)^* p_k$ be a FIFO path schema. We can compute in polynomial time an existential Presburger formula $\phi(x_1, \ldots, x_k)$ such that: there is a run $r = p_0(\ell_1)^{n_1} p_1 \cdots (\ell_k)^{n_k} p_k$ of S iff $\phi(n_1, \ldots, n_k)$ is true. Hence control-state reachability is decidable.

Corollary

Reachability is in NP.

$(q, w(1), w(2), \ldots, w(p))$ is reachable iff q_{stop} is reachable.
Proposition

The repeated control state reachability problem is in \(NP\).

Proof.

Let \(q\) be in an elementary loop labeled with \(\sigma\) in system \(S\)(else...).

\(q\) is infinitely repeated iff \(\forall c \ [x^c_\sigma = \epsilon] \) or \(\exists w (q, w) \xrightarrow{\sigma}\) and \((x^c_\sigma)^\omega = w(c) \cdot (y^c_\sigma)^\omega\) and \(|x^c_\sigma| \leq |y^c_\sigma|\) (from Lemma 2)

1. Verify that for every channel \(c\), \(|x^c_\sigma| \leq |y^c_\sigma|\)

2. Verify \(\exists (q, w)\) s.t. \((q, w) \xrightarrow{\sigma}\) and \(\forall c\) s.t. \(x^c_\sigma \neq \epsilon\), \((x^c_\sigma)^\omega = w(c) \cdot (y^c_\sigma)^\omega\).

3. For verifying \((x^c_\sigma)^\omega = w(c) \cdot (y^c_\sigma)^\omega\) (Lemma 1), one guesses \(x'_c, x''_c, z_c \in M^*\) such that \(x^c_\sigma = x'_c x''_c\) and \(x''_c x'_c, y^c_\sigma \in z^*_c\).

4. Remark that \(|x'_c|, |x''_c| \leq |x^c_\sigma|\) and \(|z_c| \leq |y^c_\sigma|\)

5. It remains to verify \(\exists (q, w)\) s.t. \(\forall c, w(c) \in (x^c_\sigma)^* x'_c\) and \((q, w) \xrightarrow{\sigma}\).

6. To do that, we add a channel \(c'\) for every channel \(c\) in system \(S\).
Recall, we have:

- q is reached repeatedly in S iff
- $\exists w(c) \text{ s.t. } w(c) \in (x_c^\sigma)^* x'_c$ and $(q, w) \xrightarrow{\sigma} \text{ iff}$
- $\exists w'(c') \text{ s.t. } w'(c') \in (x_c^\sigma)^* x'_c$ and $(q', w') \xrightarrow{\sigma'} \text{ iff}$
- q' is reachable in S' and $(q', w') \xrightarrow{\sigma'} \text{ iff}$
- q_f is reachable in S'.

Hence repeated control state reachability reduces to control-state reachability.
For flat FIFO systems, the non-termination and unboundedness problems are in \(\mathsf{NP} \).

Proof.

- Termination reduces to repeated control-state reachability since a flat system is non-terminating iff there is an infinite run \(r \) that visits at least one control state infinitely often.

- The effect of a loop \(\ell \) labeled with \(\sigma \) is \(v_\ell \in \mathbb{Z}^F \) s.t. \(\forall c \in F \)
 \[
 v_\ell(c) = |x_c^\sigma| - |y_c^\sigma|.
 \]

- Unboundedness reduces to repeated control-state reachability since a flat FIFO system is unbounded iff there is at least one infinitely iterable loop \(\ell \) with \(v_\ell \geq 0 \) and \(v_\ell(c) \geq 1 \) for some \(c \).
Proposition

The problem of checking whether a letter \(a \) is unbounded in channel \(c \) is in \(\mathsf{NP} \).

Proof.

In the proceedings.
Theorem

For flat FIFO systems, reachability, repeated control-state reachability, non-termination, unboundedness, channel-unboundedness and letter-channel-unboundedness are NP-hard.

Proof.

We reduce 3-SAT to reachability. Given a 3-CNF formula \(\text{clause}_1 \land \cdots \land \text{clause}_m \) over variables \(x_1, \ldots, x_n \), we construct a flat FIFO system with \(2n + m \) channels: \(\{x_i, \hat{x}_i \mid i \in [1, n]\} \cup \{c_i \mid i \in [1, m]\} \).

- Channel \(x_i \) is used to keep a guess of the truth assignment to \(x_i \).
- Channel \(\hat{x}_i \) is a “control channel” that ensures that only one guess is made.
- Channel \(c_i \) is used to verify that \(\text{clause}_i \) is satisfied.

The given 3-CNF formula is satisfiable iff the last control state of the cleanup gadget for variable \(x_n \) can be reached with all channels being empty. \(\square \)
The gadget for the example clause $c_1 = x_1 \lor \neg x_2 \lor x_3$

(a) Gadget for variable x_i

(b) Gadget for clause $c_1 = x_1 \lor \neg x_2 \lor x_3$

(c) Gadget for cleaning up variable x_i
Theorem (Most properties are NP-complete)

For flat FIFO systems, the 7 reachability properties are NP-complete:

1. reachability
2. repeated reachability
3. repeated control-state reachability
4. termination
5. boundedness
6. channel-boundedness
7. letter-channel-boundedness.

Cyclicity can be decided in linear time.
After reachability properties, model checking

- model-checking with atomic formula $\#_c^a \geq k$
- not a consequence of the previous results (BH’99, EGM’12)
- translate a flat FIFO system into a flat counter system
- to use the existing counter systems tools
Counting abstraction system S_{count}:

- **count perfectly** the number of (letter \times transition) sent and received
- **loose** the order of letters.
- $(a, t_1)^{++}$ is the incrementation of counter (a, t_1)
- $(a, t_3)^{--}$ is the decrementation of counter (a, t_3).

(a) Flat FIFO system

(b) Counting abstraction system S_{count}
Order system S^c_{order}:

- is almost a finite automaton (it don’t modify counters but makes zero-tests) that respects the **FIFO policy** of sent (hence received) letters.
- (b, t_2) is the label of transition from q_2 to q_1 that don’t modify counters.
- its language is the sequences of sent letters : $[(a, t_1).(b, t_2)]^*.(a, t_3)^*$
- don’t count so **loose** the number of letters.
- $(a, t_1) + (b, t_2) = 0$ means that it leaves a loop ℓ only if all letters sent by ℓ have been consumed.

![Diagram](attachment:diagram.png)

(a) **Order system S^c_{order}**
Synchronized counter system

- \(S_{\text{count}} \) is synchronized with \(S_{\text{order}}^c \) by rendez-vous on transition labels.
- A decrementation \((a, t_1)^{-}\) in \(S_{\text{count}} \) is synchronized with the label \((a, t_1)\) in \(S_{\text{order}}^c \); this insures that receptions follows the FIFO ordering.
- Incrementations in \(S_{\text{count}} \) are not synchronized since sending is free.

\[
(a, t_1) + (b, t_2) = 0
\]

(a) Synchronized counter system
Proposition

The synchronized counter system S_{sync} is (weakly) bisimilar to the flat FIFO system.

Proof.

Prove the weak bisimulation by routine induction on the length of the run of S_{sync} reaching the configuration (\overline{q}, ν). Modify the synchronized system S_{sync} to obtain a bisimulation.
Proposition

The synchronized counter system S_{sync} is trace-flattable (hence, for example, the tool FAST will terminate).

Remark

S_{count} is not flat in general.
Proof.

Suppose a run is visiting states q_3, q_4 of S_{count} and states q_3, q_4 of S_{order}^c. (grey part no longer reachable).

(a) (possibly reachable) non flat S_{count}

(b) (possibly reachable) S_{order}^c
Part of synchronized counter system still reachable

Proof.

The part of synchronized counter system still reachable is flat.

\[(q_4, q_3) \]
\[(a, t_3)^++ \]
\[(a, t_3)^-- \]
\[(q_3, q_3) \]
\[\tau \]
\[(q_3, q_4) \]
Theorem

LTL and CTL^* are decidable for flat FIFO systems.

Proof.

Trace-flattening preserves LTL and bisimulation preserves CTL^*.

□
Open problems

Still open

- Collect case studies.
- Build and experiment a tool that flatten FIFO systems.
- Solve many open complexity problems: LTL, CTL^*, equivalences for FFS.

Info

- The paper, with complete proofs, is on HAL.
- https://hal.archives-ouvertes.fr/hal-02267453
Open post-doc

- Post-doc positions are available at LSV.
- To make theory and/or a tool for counter/FIFO systems.
- Collaborations with many researchers in LSV (ENS Paris-Saclay), LaBRI (Univ. Bordeaux), Canada, India (Chennai, Bombay), Germany,...
Thank you