Gravity is the weakest force in nature, and the gravitational interactions with all standard model (SM) particles can be well described by perturbative expansions of the Einstein-Hilbert action as an effective theory, all the way up to energies below the fundamental Planck scale. We use Vilkovisky-DeWitt method to derive the first gauge-invariant nonzero gravitational power-law corrections to the running gauge couplings, which make both Abelian and non-Abelian gauge interactions asymptotically free. We further demonstrate that the graviton-induced universal power-law runnings always assist the three SM gauge forces to reach unification at the Planck scale, irrespective of the detail of logarithmic corrections. We also compute the power-law corrections to the SM Higgs sector and derive modified triviality bound on the Higgs boson mass.

PACS: 12.10.Kt, 04.60.-m, 11.10.Hi.

1. INTRODUCTION

Although gravity, as the weakest force in nature, is more perturbative than the other three fundamental forces all the way up to energies below the Planck scale, it was found to be non-renormalizable in the conventional sense [1]. But this does not prevent the enormous range of successful physical and astrophysical applications of the Einstein general relativity of gravitation. In fact, all nature’s four fundamental forces can be well described by the modern formulation of effective field theories [2], with no exception to gravitation [3]. The leading terms in the Einstein-Hilbert action,

$$S_{EH} = \int d^4x \sqrt{-g} \kappa^{-2} (R - 2\Lambda_0),$$

are just the least suppressed operators in the effective theory of general relativity under perturbative low energy expansion, where $\kappa^2 \equiv 16\pi G \equiv 16\pi M_P^2$ is fixed by the Newton constant G (or Planck mass $M_P \simeq 1.2 \times 10^{19}$ GeV) and Λ_0 denotes the cosmological constant.

All standard model (SM) particles must join gravitational interaction with their couplings controlled by the universal Newton constant G. It is thus important to understand, under the effective theory formulation, how gravity corrects the SM observables, in connection to the three gauge forces in nature. Robinson and Wilczek [4] initiated a very interesting study of gravitational corrections to running gauge couplings, but it was then realized that their calculation by using conventional background field method (BFM) [5] is generally gauge-dependent and the net result vanishes [6, 7].

However, it is important to note that Vilkovisky and DeWitt [8] proposed a new approach over the conventional BFM, especially powerful for analyses involving gravitation, which is guaranteed to be gauge-invariant, independent of the choices of both gauge-condition and gauge-parameter [9, 10]. The Vilkovisky-DeWitt method was recently applied by Toms to study logarithmic corrections of graviton to the running coupling of QED with a nonzero cosmological constant [11] under dimensional regularization, and to scalar mass [12].

The purpose of the present work is to apply the fully gauge-invariant Vilkovisky-DeWitt method [8] for studying the gravitational corrections to the power-law running of Abelian and non-Abelian gauge couplings. We derive the first gauge-invariant nonzero power-law correction, which is asymptotically free, in support of what Robinson and Wilczek hoped. We also extend this approach for studying power-law corrections to the SM Higgs sector and derive modified triviality bound on the Higgs boson mass [13], as will be summarized in the last part of this paper. The power-law running originates from the quadratical divergences associated with graviton loop with overall couplings proportional to κ^2. The gravitational coupling κ^2 has negative mass-dimension equal -2, so the graviton induced loop contributions can generate generic dimensionless power-law corrections to a given gauge coupling g_i, of the form $g_i \kappa^2 \Lambda^2$, where Λ is the ultraviolet (UV) momentum cutoff. After renormalization one can deduce the generic form of one-loop Callan-Symanzik β function by general dimensional analysis,

$$\beta(g_i, \mu) = -\frac{b_i}{(4\pi)^2} g_i^3 + \frac{a_0}{(4\pi)^2} (\kappa^2 \mu^2) g_i,$$

where μ is the renormalization scale and the coefficient a_0 has to be determined by explicit, gauge-invariant computation of graviton radiative corrections. There is no reason a priori to expect a_0 be exactly zero (as stressed by Robinson and Wilczek). Our key point here is to extract the physical power-law corrections via a fully gauge-invariant method à la Vilkovisky-DeWitt [8]. The physical meaning of the quadratical divergences in non-
renalizmable theories was clarified in depth by Veltman [14] and he advocated to use dimensional reduction (DRED) method [15] (rather than dimensional regularization (DREG)) to consistently regularize quadratic divergences as \(d = 2 \) poles for the Higgs mass corrections in the SM. Then, Einhorn and Jones made further insight [16] that any regularization procedure which preserves the right number of spin degrees of freedom for each field should give the correct results of quadratic divergences. This includes DRED but excludes DREG, as DREG miscounts the physical spin degrees of freedom for dealing with quadratic divergences [14, 16]. For quadratically divergent integrals, except to know that a consistent regularization such as DRED exists for them, there is no need to explicitly work out these integrals until after we finish computing and summing up all their coefficients via gauge-invariant formulation. Then we can identify the remaining single divergent integral and regularize it at \(d = 4 \) by placing a common physical momentum cutoff; the renormalization will be carried out to extract the power-law corrections. (This procedure was applied to extract the gauge-invariant quadratic divergence in the Higgs boson mass and was shown to be regularization-independent [16].) We have explicitly used DRED method for our analysis (à la Veltman [14]) and checked all possible consistencies.

2. GAUGE-INARIANT VILKOVISKY-DEWITT EFFECTIVE ACTION

The Vilkovisky-DeWitt approach [8] modifies the conventional BFM in order to build a manifestly gauge invariant effective action. It is noted that a gauge transformation corresponds to a field-reparametrization in field space \(\phi_i \rightarrow \phi_i' \) (where we use the condensed notation of DeWitt [17], with the subscript \(i \) denoting all internal and Lorentz indices besides the spacetime coordinates). A variation of the gauge-fixing condition for a gauge theory is equivalent to a change in the external source term. This means that although the classical action \(S[\phi] \) is invariant under field-reparametrization, the effective action \(\Gamma[\phi] \) in the conventional BFM is not a scalar. The definition of conventional \(\Gamma[\phi] \),

\[
e^{i\alpha[\phi]} = \int d^d\phi \mu[\phi] \exp i \left[S[\phi] + \left(\delta \phi - \phi \right) \frac{\delta \Gamma[\phi]}{\delta \phi} \right],
\]

includes the external source \(\delta \Gamma[\phi]/\delta \phi \neq -J_i \), where \(\phi \) denotes the background of \(\phi \), and \(d^d\phi \mu[\phi] \) is the measure of functional integral. For a gauge theory, \(\mu[\phi] \) contains gauge-fixing condition and the corresponding DeWitt-Faddeev-Popov determinant. From the geometrical viewpoint with the field configuration space as a manifold [8], it is clear that the difference of two distinct points \(\phi - \phi' \) in (3) is not field-reparametrization co-

variant, and thus \(\Gamma[\phi] \) may depend on the choice of gauge condition.

The way out of this trouble is to replace the coordinate difference \(\phi - \phi' \) by a covariant vector \(\sigma^i[\phi, \phi'] \) as illustrated in Fig. 1, and introduce a connection \(\Gamma^i_{jk} \) in field space, we can expand \(\sigma^i \) as,

\[
\sigma^i[\phi, \phi'] = \delta^i - \frac{1}{2} \Gamma^i_{jk} (\phi - \phi')^j (\phi - \phi')^k + \cdots \quad (4)
\]

Thus, the Vilkovisky-DeWitt effective action \(\Gamma_G \) can be constructed as a scalar in field space [8],

\[
e^{i\alpha[\phi]} = \int d^d\phi \mu[\phi] \exp i \left[S[\phi] + C_{i=0}^{a} \Gamma^i_{jk} (\phi - \phi')^j (\phi - \phi')^k + \cdots \right],
\]

where \(\Gamma_G, i \equiv \delta \Gamma_G/\delta \phi \) and a subscript “comma” will be always used to denote the functional derivative. The coefficient \(C_{i=0}^{a} \) can also be expanded perturbatively,

\[
C_{i=0}^{a} = \delta^i + \frac{1}{2} \Gamma^i_{jk} (\phi - \phi')^j (\phi - \phi')^k + \cdots,
\]

where \(\Gamma^i_{jk} \) is the curvature tensor associated with connection \(\Gamma^i_{jk} \). Since the \(\Gamma^i_{jk} \)-term (or other higher order terms in the expansion) already contains two covariant vectors \(\sigma^m \) and \(\sigma^n \) (or more), it could contribute to the effective action (5) a term which is at least cubic in \(\sigma^i \), and thus will be irrelevant to the one-loop effective action.

Under perturbation expansion, we can write down the one-loop Vilkovisky-DeWitt effective action, which is also a scalar under reparametrization,

\[
\Gamma_G[\phi] = S[\phi] - i \int \mu[\phi] + \frac{i}{2} \text{Tr} \ln \nabla_m \nabla_n S,
\]

where \(\nabla_m \) is the covariant derivative associated with connection \(\Gamma_{mn} \),

\[
\frac{\delta^2 S}{\delta \phi^m \delta \phi^n} \rightarrow \nabla_m \nabla_n S = \frac{\delta^2 S}{\delta \phi^m \delta \phi^n} - \Gamma^i_{mn} (\phi) \frac{\delta S}{\delta \phi^i}.
\]

For a gauge theory, consider the infinitesimal gauge transformation,

\[
\delta \phi = K^i [\phi] \epsilon^i,
\]

with \(K^i [\phi] \) being the generators of gauge transformation and \(\epsilon^i \) the infinitesimal gauge-group parameters. Thus, for quantization the gauge-fixing condition \(\chi_\alpha (\phi) \) and

FIG. 1: Coordinates difference in field space as a manifold.
the DeWitt-Faddeev-Popov ghost term $Q_{\alpha\beta}[\bar{\varphi}] = \frac{\delta S}{\delta \varphi}$ should be introduced. So, the Vilkovisky-DeWitt effective action is given by, up to one-loop order,

$$\Gamma[\bar{\varphi}] = S[\bar{\varphi}] - \text{Tr} \ln Q_{\alpha\beta}[\bar{\varphi}] + \frac{i}{2} \text{Tr} \ln \left(\nabla_{\alpha} \nabla_{\beta} S + \frac{1}{2\xi}(\chi_{\alpha}(\lambda)_{\beta}, \chi_{\beta}(\lambda)_{\alpha}) \right),$$

which is proven to be invariant under the change of gauge condition χ_{α} and gauge-fixing parameter ξ [8, 9]. We have defined the background field $\bar{\varphi}$ and fluctuating field $\hat{\varphi}$ via $\hat{\varphi} = \bar{\varphi} + \hat{\varphi}$. For calculations in a specific gauge theory, the connection Γ^i_{jk} is very complicated and non-local. But it can be shown that, when the Landau-DeWitt gauge condition

$$\chi_{\alpha}[\bar{\varphi}, \hat{\varphi}] = K_{\alpha}[\bar{\varphi}] \hat{\varphi}^i = 0$$

is chosen, the relevant parts of connection coefficients are simply given by the Christoffel symbol associated with a metric G_{ij} in field space [18],

$$\Gamma^i_{jk} = \frac{1}{2} G^{il} (G_{lj,k} + G_{lk,j} - G_{jk,l}).$$

In summary, Vilkovisky-DeWitt effective action provides a fully gauge-invariant description of the off-shell gauge field theories, which is guaranteed to be independent of choices of both gauge-condition and gauge-parameter. In the following, we will apply this method to analyze the quantum gravity coupled to the Abel and non-Abel gauge fields, as well as the SM Higgs sector.

3. Gravitational Corrections to Abel and Non-Abel β Functions

We start from the classical action of Einstein-Maxwell theory, which consists of the Einstein-Hilbert action (1) and

$$S_{EM} = -\frac{1}{4} \int d^4x \sqrt{-g} g^{\mu\nu} F_{\mu\nu} F_{\alpha\beta}.$$

Since the Vilkovisky-DeWitt method does not require on-shell background, we expand the metric $g_{\mu\nu}$ around the Minkowski background $\eta_{\mu\nu}$,

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}. $$

We further split the gauge field A_μ as

$$A_\mu = \tilde{A}_\mu + a_\mu, $$

with \tilde{A}_μ the background field and a_μ the quantum fluctuating field. As shown in Eq. (12), the connection Γ^i_{jk} is determined from the metric G_{ij} defined in the field manifold. There is a natural choice [8] of the field-space metric G_{ij} with its nonzero components given by

$$G_{g_{\mu\nu}(z)g_{\alpha\beta}(y)} = \sqrt{-g} \left(g^{\mu\alpha} g^{\nu\beta} + g^{\mu\beta} g^{\nu\alpha} - g^{\mu\nu} g^{\alpha\beta} \right) \delta(x-y).$$

Thus, the relevant part of connection can be derived from Eq. (12) under the Landau-DeWitt gauge condition (11),

$$\Gamma^{g_{\mu\nu}(x)g_{\alpha\beta}(y)} = \frac{1}{4} g^{\mu\nu} \delta(\alpha\beta) + \frac{1}{2} g^{\alpha\beta} \delta(\mu\nu) - \delta(\alpha\nu, \beta\mu) \delta(\nu\mu, \beta^\alpha) \delta(\mu\nu, \alpha^\beta) \times \delta(x-y) \delta(x-z),$$

where we have introduced the symmetrization notation, $\delta(\alpha\beta, \gamma\delta) = \frac{1}{2} (\delta_{(\alpha, \beta)}^{\gamma, \delta} + \delta_{(\gamma, \delta)}^{\alpha, \beta})$, and so on. The Landau-DeWitt gauge correction should be determined by the gauge transformations,

$$\delta g_{\mu\nu} = -g_{\mu\sigma} \varphi_{\nu} - g_{\nu\sigma} \varphi_{\mu} - \epsilon^\alpha \delta_{\mu\nu} A_\alpha, $$

$$\delta A_\mu = -\varphi_{\mu} - \epsilon_{\mu\nu} A_\nu, $$

with ϵ^α being the infinitesimal parameter of gravitational gauge transformation and ϵ the infinitesimal parameter of $U(1)$ gauge transformation. Then, the gauge-fixing functions for photon and graviton fields are

$$\chi = \partial^\mu a_\mu, $$

$$\chi_\mu = \left(\partial^\lambda h_{\mu\lambda} - \frac{1}{2} \partial^\mu h \right) + \kappa^{\lambda} \tilde{F}_{\lambda\mu}, $$

where $\tilde{F}_{\lambda\mu} = \partial_\lambda A_\mu - \partial_\mu A_\lambda$ and an overall factor $-2/\kappa$ is factorized out in (19b) for the convenience of normalization. So the Lagrangian contains the following gauge-fixing terms,

$$L_{gf} = \frac{1}{2\zeta} \chi_{\lambda} \chi^\lambda = \frac{1}{2 \xi^2} \lambda^2, $$

where ζ (ξ) is gauge-fixing parameter for photon (graviton) field, and will be set to zero at the end of calculation, as required by imposing the Landau-DeWitt gauge condition.

Then, we consider the connection-induced terms in the Lagrangian,

$$L_{con} = -\frac{1}{2} \Gamma^{g_{\mu\nu}, A_\beta} S_{g_{\mu\nu}} a_\alpha A_\beta - \frac{1}{2} \kappa^2 a_{g_{\mu\nu}, A_\beta} S_{g_{\mu\nu}} h_{\mu\nu} h_{\alpha\beta} - \kappa \Gamma^{A_\alpha}_{A_\mu, A_\beta} S_{A_\mu} a_\alpha h_{\alpha\beta}, $$

where

$$S_{g_{\mu\nu}} | \bar{\varphi} = -\frac{\Lambda_0}{\kappa^2} \eta_{\mu\nu} - \frac{1}{8} \eta_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} + \frac{1}{2} F_{\lambda\mu} F^{\lambda\mu}, $$

$$S_{A_\mu} | \bar{\varphi} = \partial_\mu F_{\nu\mu}. $$

The ghost part of the Lagrangian is given by

$$L_{gh} = \bar{\chi}^\lambda \delta \chi^\lambda + \bar{\eta} \delta \chi, $$
where \(\delta \chi \) and \(\delta \chi^\lambda \) are the changes under gauge transformations with \(\epsilon = \eta \) and \(\epsilon^\lambda = \eta^\lambda \), and \((\eta, \eta^\lambda) \) the anti-commuting ghost fields.

With these we can sum up all required terms for computing the effective action (10),

\[
S_Q = S_{\text{EM}} + \int d^4x (\mathcal{L}_{\text{con}} + \mathcal{L}_{\text{gf}} + \mathcal{L}_{\text{gh}}).
\]

The one-loop effective action will be deduced from \(\frac{i}{2} \text{Tr} \ln(S_Q)_{i,j} \), according to Eq. (10). This has clear diagrammatic interpretation. For our purpose we are interested in all the bilinear terms of background photon fields, which correspond to the one-loop self-energy diagrams listed in Fig. 2.

![Diagrams](image)

FIG. 2: Graviton induced radiative corrections to photon self-energy, where wavy external (internal) lines stand for background (fluctuating) photon fields, double-lines for gravitons, dotted lines for photon-ghosts, and circle-dotted line for graviton ghosts.

We note that among all five diagrams in Fig. 2(a)-(e), the first two also exist in the conventional BFM or diagrammatic calculation (though the present couplings differ from the conventional ones), but the last three arise solely from the connection-induced contributions in the Vilkovisky-DeWitt formulation. We systematically compute these diagrams using the Feynman rules from Eq. (24), and extract only the quadratically divergent parts of loop integrals,

\[
\begin{align}
(a) &= (1 + 2 \zeta) \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) \mathcal{I}_2, \\
(b) &= \left(\frac{1 + \xi}{4 \zeta} - 2 - \zeta \right) \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) \mathcal{I}_2, \\
(c) &= \left(\frac{1 + \xi}{4 \zeta} + \frac{1 - \xi}{8} \right) \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) \mathcal{I}_2, \\
(d) &= -\kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) \mathcal{I}_2, \\
(e) &= 0,
\end{align}
\]

where the integral

\[
\mathcal{I}_2 = \int \frac{d^dk}{(2\pi)^d} \frac{1}{k^2}
\]

is quadratically divergent for \(d = 4 \) by power-counting and gets regularized for \(d < 2 \) via DRED with a singular pole at \(d = 2 \) [14], though we need not to explicitly work it out so far [16]. Since the external gauge fields in Fig. 2 carry Lorentz indices, we will encounter some terms containing \(k^\mu k^\nu \) in the integral of loop-momentum \(k \), where according to the DRED we symmetrize \(k^\mu k^\nu \rightarrow \eta^\mu\nu k^2/d \) with the metric \(\eta^\mu\nu \) defined at \(d = 4 \) and \(k^2/d \) at \(d \rightarrow 2 \) for identifying the \(1/(d - 2) \) poles. The physical picture of the DRED is clear [14–16]: the Lorentz indices of loop-momenta in the numerator of the integral should be separated into those of the metric \(\eta^\mu\nu \) or external momenta at \(d = 4 \) to preserve the right spin degrees of freedom for each field, and then the remaining scalar integral over the loop-momenta is regularized at \(d \) dimension (which can always be reduced to Eq. (26) for quadratical divergence). Summing up all the self-energy contributions (25a)-(25e), we find that all \(\frac{1}{d} \) poles explicitly cancel, which is a consistency check for Vilkovisky-DeWitt method, and we deduce the net result in the Landau-DeWitt gauge,

\[
(a)+(b)+(c)+(d)+(e) = -\frac{15}{8} \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) \mathcal{I}_2.
\]

As guaranteed by the Vilkovisky-DeWitt method [8, 9], this is a fully gauge-invariant result. Noting that the singular pole of the integral (26) at \(d = 2 \) just corresponds to the quadratical divergence of the same integral at \(d = 4 \) [14], now we are free to re-regularize the integral (26) at \(d = 4 \) by placing a common physical momentum cutoff \(\Lambda \),

\[
\mathcal{I}_2 = \int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2} = -i \frac{\Lambda^2}{16\pi^2}.
\]

Thus, we can deduce the QED gauge-coupling renormalization,

\[
\frac{1}{g^2(\mu)} = \frac{1}{g^2(\Lambda)} - \frac{15\kappa^2(\Lambda^2 - \mu^2)}{128\pi^2 g^2},
\]

under the minimal subtraction scheme, and the corresponding renormalization constant,

\[
Z_g = 1 - \frac{15\kappa^2(\Lambda^2 - \mu^2)}{256\pi^2},
\]

where \(g(\Lambda) = Z_g g(\mu) \) and \(\mu \) is the renormalization scale.

From Eq. (29) or Eq. (30), we finally derive the gauge-invariant gravitational power-law correction to the QED \(\beta \)-function,

\[
\Delta \beta(g, \mu) = -\frac{15}{128\pi^2} (\kappa^2 \mu^2) g,
\]

which is asymptotically free and gives \(a_0 = -\frac{15}{8} \) in Eq. (2). There is no logarithmic graviton correction to the gauge coupling \(\beta \)-function in the absence of cosmological constant [7], since dimensional counting shows that gravitational logarithmic corrections could only
contribute to dimension-6 operators such as $(D_\mu F^{\mu\nu})^2$ rather than the standard dimension-4 gauge kinetic term (13). With a nonzero cosmological constant Λ_0 in (1), the graviton-induced logarithmic correction can appear [11] since Λ_0 has mass-dimension equal 2 and thus the product $\Lambda_0\kappa^2$ provides a proper dimensionless parameter for one-loop gravitational logarithmic correction. We stress that due to the nonzero result in the above Eq. (31), the graviton-induced leading power-law correction will eventually dominate gauge coupling running at high scales and always drive gauge unification nearby the Planck scale, irrespective of the detail of all logarithmic corrections. This will be demonstrated in the next section.

For comparison, we want to clarify how our above analysis differs from that of the conventional BFM (or the equivalent diagrammatical) approach. The latter corresponds to setting all the Γ_{jk} related connection terms in Sec. 2-3 vanish. In consequence, only the diagrams (a)-(b) in Fig. 2 survive. Then, if we apply the usual naive momentum-cutoff procedure for quadratical divergence, we find that Fig. 2(a) and (b) exactly cancel with each other,

\begin{align}
(a) &= -(b) = \frac{3(1+\zeta)}{2} \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) I_2, \\
(a) + (b) &= 0.
\end{align}

This also agrees to the null result of the conventional diagrammatic calculation in the second paper of [7]. As another check, we can apply DRED method to regularize Fig. 2(a)-(b) by setting all connection terms vanish. Then we find the two diagrams no longer cancel, but their sum depends on graviton parameter ζ and thus nonphysical,

\begin{align}
(a) &= 3\zeta \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) I_2, \\
(b) &= -(3 + \zeta) \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) I_2, \\
(a) + (b) &= (-3 + 2\zeta) \kappa^2 (p^2 \eta_{\mu\nu} - p_\mu p_\nu) I_2.
\end{align}

This shows that even for well-defined gauge-invariant DRED regularization for quadratical divergence (à la Veltman [14]), it is crucial to further use the Vilkovisky-DeWitt effective action in the coordinate space and with the aid of Wick theorem. Let us define the photon and graviton propagators,

\begin{align}
\langle a_\mu(x) a_\nu(y) \rangle &= D_{\mu\nu}(x, y),
\end{align}

with

\begin{align}
D_{\mu\nu}(x, y) &= \int \frac{d^4k}{(2\pi)^4} e^{-ik(x-y)} D_{\mu\nu}(k), \\
D_{\mu\nu,\alpha\beta}(x, y) &= \int \frac{d^4k}{(2\pi)^4} e^{-ik(x-y)} D_{\mu\nu,\alpha\beta}(k).
\end{align}

Thus, we derive the effective action for gauge field,

\begin{align}
i\Gamma_A &= \langle iS_2 \rangle - \frac{1}{2} \langle S^2_1 \rangle
\end{align}

where S_1 and S_2 are the action terms containing one and two external fields, respectively. Then we compute the effective action for Landau-DeWitt gauge by using the Cadabra package [19], and deduce the gauge-part,

\begin{align}
i\Gamma_A &= -\frac{7\kappa^2}{8} I_2 \int d^4x \frac{1}{4} \bar{F}_{\mu\nu} F^{\mu\nu},
\end{align}

corresponding to diagrams in Fig. 2(a)-(c), and the sum of Eqs. (25a)-(25c). For ghost-part, we derive

\begin{align}
i\Gamma_{gh} &= \langle iS_{2gh} \rangle - \frac{1}{2} \langle S^2_{1gh} \rangle \\
&= -\kappa^2 I_2 \int d^4x \frac{1}{4} \bar{F}_{\mu\nu} F^{\mu\nu},
\end{align}

which corresponds to diagrams in Fig. 2(d)-(e), and the sum of Eqs. (25d)-(25e). With these we obtain the full one-loop effective action,

\begin{align}
\Gamma &= \Gamma_A + \Gamma_{gh} = -\frac{15\kappa^2 \Lambda^2}{128\pi^2} \int d^4x \frac{1}{4} \bar{F}_{\mu\nu} F^{\mu\nu},
\end{align}

from which we reproduce the same gauge coupling renormalization as in (29)-(30) and the same power-law correction to the β function as in (31).

Next, we discuss the extension of the above analysis to non-Abelian gauge theories coupled to Einstein gravity. We first note that a non-Abelian gauge theory adds no more graviton-induced one-loop self-energy diagram beyond those given in Fig. 2, except the couplings in these diagrams may differ from QED. So, let us inspect the possible change in each diagram of Fig. 2 for the non-Abelian case.

First, Figs. 2(a) and 2(d) contain pure gravitational interactions only, so they remain the same for non-Abelian theories. Second, Figs. 2(b) and 2(e) do not change too, since both graviton and graviton-ghost carry no gauge-charge. So both the gauge fields in and outside the loop must share the same “color” and thus no extra summation of “color” over the loop gauge-field. Third, Fig. 2(c) could receive a change due to possible “color” summation over the gauge-loop. The relevant changes would come
from two places at one-loop level. One is the gauge-fixing (19b), which contributes a term of the following form,

\[F^a_{\mu \nu} F^b_{\rho \sigma} a^a_{\alpha_{\beta}}. \]

(40)

Thus, given the two external background gauge-fields (from \(F^a_{\mu \nu} F^b_{\rho \sigma} \)) for Fig. 2(c), there is no more summation over the gauge-indices of the fluctuating gauge-field in the loop. The other contribution comes from the connection term, namely the first term in (21), which would contribute to Fig. 2(c) via the form,

\[F^a_{\mu \nu} F^a_{\rho \sigma} a^b_{\alpha} a^b_{\kappa}. \]

(41)

This allows a summation over the loop gauge-indices "\(b \)" and enhances the contribution by an overall factor of the number of non-Abelian gauge fields, which equals \(N^2 - 1 \) for the \(SU(N) \) gauge group. But our explicit calculation shows that this connection-induced contribution actually vanishes for both Abelian and non-Abelian cases. Hence, the conclusion is that our graviton induced power-law correction (31) is universal for both Abelian and non-Abelian gauge theories. This means that the same coefficient \(a_0 \) in (2) holds for all gauge couplings.

4. GRAVITY ASSISTED GAUGE UNIFICATION

Gauge coupling unification is a beautiful idea that suggests the three apparently different gauge couplings of the SM (as measured at low energies) would converge to a single coupling of the grand unification (GUT) group [20] at high scales. The evolutions of gauge couplings from low scale to GUT scale are conventionally governed by the renormalization group equations (RGEs) with logarithmic running [21]. The precision data show that logarithmic evolutions of the three gauge couplings do not exactly converge for the SM particle spectrum [22], while the convergence works fine in the minimal supersymmetric standard model (MSSM) with one-loop RG running. But more precise numerical analyses including two-loop RG running reveal that even in the MSSM the strong gauge coupling \(\alpha_3 \) does not exactly meet with the other two at the GUT scale as its value is smaller than \(\alpha_1, \alpha_2 \) by \(~3\)% (a 5\% deviation); it is necessary to carefully invoke the model-dependent one-loop threshold effects [23]. It was also argued that the gravity-induced effective higher dimensional operators can generate uncertainties larger than the usual two-loop effects of MSSM and thus significantly alter the gauge unification [24].

With the gauge-invariant gravitational power-law corrections (31), we can resolve running gauge coupling \(\alpha_i(\mu) = g_i^2(\mu)/4\pi \) from the RGE (2),

\[\frac{e^{-c\mu^2}}{\alpha_i(\mu)} - \frac{e^{-c\mu^2}}{\alpha_i(\mu_0)} = \frac{b_{0i}}{4\pi} \int_{\mu_0}^{\mu} \frac{dx}{x} e^{-cx}, \]

(42)

with \(c = |a_0|\kappa^2/(4\pi)^2 = 15/8\pi M_P^2 \). So we further deduce,

\[\alpha_i(\mu) = \frac{\alpha_i(\mu_0) e^{-c\mu^2}}{e^{-c\mu_0^2} + \frac{b_{0i}\alpha_i(\mu_0)}{4\pi} \int_{\mu_0}^{\mu} \frac{dx}{x} e^{-cx}} \]

(43a)

\[\simeq \frac{\alpha_i(\mu_0) e^{-c\mu_0^2}}{1 + \frac{b_{0i}\alpha_i(\mu_0)}{4\pi} \left[\ln \frac{\mu^2}{\mu_0^2} - c\mu^2 \right]}, \]

(43b)

where for the estimate in (43b) we have kept in mind that \(\mu_0 \ll M_P \) (such as the choice of \(\mu_0 = M_Z \) below), and we also expanded the exponential integral for \(\mu < c^{-1/2} \simeq 1.3M_P \approx 2 \times 10^{19} \text{GeV} \) (which holds for most energy regions in Fig. 3). Eq. (43) explicitly shows that the evolution of any gauge coupling \(\alpha_i(\mu) \) will be exponentially suppressed by \(\exp[-c\mu^2] \), which dominates the running behavior for high scales above \(O(10^{-2}M_P^2) \).

Hence, the universal gravitational power-law corrections will always drive all gauge couplings to rapidly converge to the UV fixed point at high scales and reach unification around the Planck scale, irrespective of the detail of their logarithmic corrections and initial values. This feature is numerically demonstrated in Fig. 3 by using the evolution equation (43a).

In Fig. 3(a)-(b), we have analyzed the gauge coupling runnings for both the SM and the MSSM, where the conventional coefficients \(b_{0i} \) in the one-loop RGEs are, \((b_{01}, b_{02}, b_{03}) = \left(-\frac{1}{3}, \frac{2}{3}, 7 \right) \) for the SM and \((b_{01}, b_{02}, b_{03}) = \left(-\frac{33}{5}, -1, 3 \right) \) for the MSSM. (Here we have adopted the conventional MSSM particle spectrum without including the superpartner of graviton – the spin-1/2 gravitino, whose potential contribution to the gauge coupling running is worth of a future study.) We have also input the initial values, \(\alpha_1^{-1} = 59.00 \pm 0.02 \), \(\alpha_2^{-1} = 29.57 \pm 0.02 \), and \(\alpha_3^{-1} = 8.50 \pm 0.14 \), at the Z-pole \(\mu_0 = M_Z \) [22].

For the graviton-induced one-loop \(\beta \)-function (2) with \(a_0 \) given in (31), we note that at the Planck scale \(\mu = M_P \), the loop-expansion parameter, \(\frac{|a_0|}{(4\pi)^2}(\kappa^2\mu^2) = 15\mu^2/M_P^2 < 0.6 \ll 1 \), and the condition \(|a_0|/(4\pi^2)(\kappa^2\mu^2) < 1 \) holds for \(\mu < 2 \times 10^{19} \text{GeV} \), which is better than the naive expectation. Fig. 3 shows that above \(10^{19} \text{GeV} \) the gauge couplings rapidly converge due to the exponential suppression in (43a); and quite before approaching the UV fixed point the three curves become indistinguishable for \(\alpha_i \lesssim 0.01 \) (SM) and \(\alpha_i \lesssim 0.02 \) (MSSM), corresponding to a scale of about \(2 \times 10^{19} \text{GeV} \). Given the experimental error of \(\alpha_3(M_Z) = (8.50 \pm 0.14)^{-1} \) and potential higher loop effects, this is enough for a possible consistent unification with a finite value of coupling and at a single scale around the Planck energy. For the perturbative one-loop running of gauge couplings, the renormalization of \(\kappa^2 \) belongs to higher order effect here and is thus not included. It is useful to note that there are clear evidences
Fig. 3 shows that for the SM gauge coupling evolution, one needs not to worry about the model-dependent threshold effects or the two-loop-induced non-convergence around the scale of 10^{16} GeV, it is quite possible that the GUT does not happen around the scale of 10^{16} GeV, as in the SM case. Instead, the real GUT would be naturally realized around the Planck scale, and thus is expected to simultaneously unify with the gravity force as well. This also removes the old puzzle on why the conventional GUT scale is about three orders of magnitude lower than the fundamental Planck scale. Furthermore, the Planck scale unification helps to sufficiently postpone nucleon decays, which explains why all the experimental data so far support the proton stability. In addition, this is also a good news for various approaches of dynamical electroweak symmetry breaking [27], such as the technicolor type of theories, which often invoke many gauge groups with new strong forces at the intermediate scales and makes one worry about whether a gauge unification could ever be realized at certain high scales in these theories. Fortunately, the universal gravitational power-law running for all gauge couplings found above should drive a final unification at the Planck scale. It suggests that the Planck scale unification may be a generic feature of all low energy gauge groups and is fully consistent with the experimental evidences of proton stability. It is also an appearing feature of having the possibility of a simultaneous unification of all four fundamental interactions around the Planck scale.

5. GRAVITATIONAL CORRECTION TO HIGGS BOSON COUPLING AND MASS

Without losing generality, we first consider a real scalar field which minimally couples to Einstein gravity,

$$S_{\phi} = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right],$$

where $V(\phi)$ is the scalar potential, $V = \frac{1}{4} m^2 \phi^2 + \frac{\lambda}{4} \phi^4$, with $m^2 > 0$ ($m^2 < 0$) corresponding to the unbroken (broken) phase. To compute the effective potential of scalar field, we expand the graviton and scalar fields around their backgrounds,

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}, \quad \phi = \bar{\phi} + \phi.$$

We impose the Landau-DeWitt gauge condition for the gauge-fixing,

$$L_{\phi} = \frac{1}{2\xi} \left(h_{\nu,\mu} - \frac{1}{2} g_{\nu\mu} \nabla_\nu \phi \right)^2.$$
Then, we derive the connection-induced terms in the graviton-scalar sector of the Lagrangian,

\[
\mathcal{L}_{\text{conn}} = \kappa^2 S_{g_{\mu\nu}} g_{\alpha\beta} g_{\rho\sigma} h_{\alpha\beta} h_{\rho\sigma} - \frac{1}{2} S_{g_{\mu\nu}} \Gamma_{\phi\mu\nu} \partial^2 - \kappa S_{\phi} \Gamma_{\phi\mu\nu} \partial_{\mu} h_{\nu}.
\]

(47)

with

\[
S_{g_{\mu\nu}} = \frac{1}{2} \partial^\mu \phi \partial^\nu \phi + \frac{1}{2} \bar{\partial}_{\mu} \partial_{\nu} \bar{\partial} \phi - V(\phi),
\]

(48a)

\[
S_{\phi} = -\partial^2 \phi - m^2 \phi - \frac{\lambda}{6} \bar{\phi}^3.
\]

(48b)

In (47) the graviton-field connection \(\Gamma_{g_{\mu\nu}}\) was given in Eq. (17), and the scalar-field related connections are,

\[
\Gamma_{\phi(x)}^{\mu\nu}(x) = \frac{\kappa^2}{4} g_{\mu\nu} \delta(x-y) \delta(x-z),
\]

(49a)

\[
\Gamma_{\phi(y)}^{\mu\nu}(x) = \frac{1}{4} g^{\mu\nu} \delta(x-y) \delta(x-z),
\]

(49b)

\[
\Gamma_{\phi(z)}^{\mu\nu}(y) = \Gamma_{\phi(z)}^{\mu\nu}(y) = 0,
\]

(49c)

which are derived from the metrics \(G_{\phi(x)\phi(y)} = \sqrt{-g} \delta(x-y)\) and \(G_{\mu\nu} = g_{\mu\nu}\) [as in Eq. (16)]. The Feynman diagrams for the graviton-induced scalar self-energy corrections and quartic vertex corrections are shown in Fig. 4 and Fig. 5, respectively.

![Fig. 4: Graviton-induced self-energy for scalar field](image)

(a) (b) (c) (d)

FIG. 4: Graviton-induced self-energy for scalar field: dashed-line is fluctuating scalar field, double-wavy-line denotes graviton, and circle-dotted-line depicts graviton-ghost.

For the scalar self-energy corrections, we compute the quadratic divergent part for each diagram in Fig. 4,

- Fig. 4(a) \(\frac{1}{2} \lambda + \kappa^2 \left(\frac{1}{8} - \frac{1}{4\xi} \right) \left(p^2 - \frac{1}{4} \kappa^2 m^2 \right) \mathcal{I}_2\), (50a)
- Fig. 4(b) \(-3\kappa^2 m^2 \mathcal{I}_2\), (50b)
- Fig. 4(c) \(\kappa^2 p^2 \mathcal{I}_2\), (50c)
- Fig. 4(d) \(\kappa^2 p^2 \mathcal{I}_2\), (50d)

where the \(\lambda\)-term in (50a) comes from the scalar quartic self-interaction alone, which we have included for the comparison with graviton induced corrections and for the convenience of analysis. We also note that unlike the case of photon self-energy, the external lines of the scalar self-energy carry no Lorentz index, so the corresponding loop integrals can be directly reduced to a scalar integral without \(k\mu k\nu\) like combination of loop-momenta, and thus no symmetrization of loop-momenta is needed.

For the graviton-induced vertex corrections in Fig. 5, only the first two diagrams have quadratic divergence,

- Fig. 5(a) \(-\frac{1}{4} \lambda \kappa^2 \mathcal{I}_2\), (51a)
- Fig. 5(b) \(-3\lambda \kappa^2 \mathcal{I}_2\), (51b)

and all other diagrams contain logarithmic divergence at most.

Summing up relevant contributions we deduce the two-point proper self-energy and four-point proper vertex for scalar field,

\[
\Gamma_2(p) = \left[\frac{1}{2} \lambda + \frac{3}{8} (p^2 - \frac{1}{4} \kappa^2 m^2) \right] \mathcal{I}_2,
\]

(52a)

\[
\Gamma_4(p) = -i \lambda \left(\frac{13}{4} \kappa^2 \mathcal{I}_2 \right),
\]

(52b)

where we do not include the graviton-induced logarithmic divergent terms (as in [12]) because they are negligible as compared to the dominant power-law corrections. Note that the sum of (50a)-(50d) explicitly proves the exact cancellation of the \(\frac{1}{2}\) gauge-parameter poles, which is a consistency check of our Landau-DeWitt gauge calculation.

To fully understand the results (52a)-(52b), we have compared them with those in the conventional BFM (or the equivalent diagrammatical) approach where all connection-induced new terms are set to zero. The findings are summarized in Table-1.
TABLE I: Graviton-induced power-law corrections to scalar self-energy and quartic vertex: Summary of the comparison between the conventional approach (with vanishing connection and with general gauge-parameter \(\zeta \)) and Vilkovisky-DeWitt approach (VDA) (with nonzero connection, and in Landau-DeWitt gauge with \(\zeta \to 0 \) in the end). In each entry of the contribution, a common factor \(\kappa^2 I_2 \) is factorized out. Our summed results of \(\Gamma_2 \) and \(\Gamma_4 \) on the 3rd column agree with Eqs. (52a)-(52b).

Graviton-Induced Corrections	Conventional Approach	Connection-Induced only (from VDA)	Sum (Our Results)
\(\text{Fig.}4(\text{a}) \)	0	\((\frac{3}{4} - \frac{1}{4})p^2 - \frac{1}{4}m^2 \)	\((\frac{3}{4} - \frac{1}{4})p^2 - \frac{1}{4}m^2 \)
\(\text{Fig.}4(\text{b}) \)	\(- (3 + 2\zeta)m^2 \)	0	\(- 3m^2 \)
\(\text{Fig.}4(\text{c}) \)	\(\zeta p^2 \)	\(- (1 + \frac{1}{3\zeta})p^2 \)	\(- (1 + \frac{1}{3\zeta})p^2 \)
\(\text{Fig.}4(\text{d}) \)	0	\(p^2 \)	\(p^2 \)

\[\Gamma_2 \approx \zeta p^2 - (3 + 2\zeta)m^2 \quad \frac{1}{\pi} p^2 - \frac{1}{4}m^2 \quad \frac{1}{4} (p^2 - 26m^2) \]

From Eqs. (52a)-(52b), we derive the renormalization for scalar coupling, \(\lambda(\mu) = Z_\phi Z_\lambda^{-1} \lambda(\Lambda) \), with the following renormalization constants,

\[
Z_\phi = 1 + \frac{1}{128\pi^2} \kappa^2 (\Lambda^2 - \mu^2),
\]

\[
Z_\lambda = 1 + \frac{13}{64\pi^2} \kappa^2 (\Lambda^2 - \mu^2),
\]

under the minimal subtraction scheme. Then, with (53) we compute the graviton-induced scalar \(\beta \)-function,

\[
\Delta \beta(\lambda, \mu) = + \frac{3\lambda}{8\pi^2} (\kappa^2 \mu^2),
\]

which is not asymptotically free, contrary to the gauge coupling \(\beta \)-function (31) we derived earlier. The pure scalar loop correction is logarithmically divergent and its renormalization gives the usual non-asymptotically free scalar \(\beta \)-function \(\beta_0 = + \frac{3\lambda^2}{16\pi^2} \).

From the two-point proper self-energy (52a), we further perform the renormalization for scalar mass in the on-shell scheme, which fixes the mass counter term,

\[
\delta m^2 = \frac{1}{32\pi^2} \left(-\lambda + \frac{25}{4} m^2 \kappa^2 \right) \Lambda^2,
\]

where we have defined the renormalized mass, \(m^2 = m_\Phi^2 - \delta m^2 \) with \(m_\Phi \) denoting the bare mass parameter in the original Lagrangian, and also included the contribution from the pure scalar loop. Comparing the two terms on the right-hand-side of (55), we note that the graviton-induced quadratical divergence is actually much softer since the product \(\kappa^2 \Lambda^2 = 16\pi (\Lambda/M_P)^2 = O(10^2) \) for an ultraviolet cutoff \(\Lambda \sim M_P \).

It is straightforward to extend the above analysis to the SM Higgs boson, since graviton coupling to scalar fields is universal. Let us write down the SM Higgs doublet,

\[
\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \pi_1 + i\pi_2 \\ \sigma + i\pi_3 \end{pmatrix},
\]

where \(\Phi^\dagger \Phi = \sigma^2 + \sum_{a=1}^{3} \pi_a^2 \) and \(\sigma = \bar{\sigma} + \tilde{\sigma} \), with \(\bar{\sigma} \) being the SM Higgs boson and \(\pi_{1,2,3} \) the would-be Goldstone bosons. The Higgs background field \(\bar{\sigma} \) will equal the vacuum expectation value (VEV), \(v \), at the minimum of Higgs potential.

Consider the SM Higgs potential, \(V = m^2 (\Phi^\dagger \Phi) + \lambda (\Phi^\dagger \Phi)^2 \), with \(m^2 < 0 \) and the VEV, \(v = \sqrt{-m^2}/\lambda \). Then we recompute the gravitational power-law corrections to Higgs boson self-energy and quartic vertex in Fig. 4-5, and deduce the following,

\[
\Gamma_{H2}(p) = \frac{1}{2} \lambda + \frac{1}{2} (p^2 - 8m_H^2) \kappa^2 I_2, \quad (57a)
\]

\[
\Gamma_{H4}(p) = -i\lambda - 24\lambda \kappa^2 I_2. \quad (57b)
\]

With these we derive the graviton-induced contributions to the Higgs boson \(\beta \)-function and the Higgs mass counter term,

\[
\Delta \beta(\lambda, \mu) = + \frac{3\lambda}{8\pi^2} (\kappa^2 \mu^2), \quad (58a)
\]

\[
\delta m^2_H = \frac{1}{32\pi^2} (12\lambda + 7m_H^2 \kappa^2) \Lambda^2, \quad (58b)
\]

where we have used \(m_H \) to denote the physical Higgs boson mass. We see that (58a) happens to be the same as in (54) while (58b) has different coefficients from (55).
As compared to the single real scalar case, the changes in the computation of (58a)-(58b) arise from two sources: (i) the Feynman rule for the quartic Higgs vertex in the SM has an extra factor 6 relative to that from the real scalar potential below Eq. (44); (ii) there are additional Goldstone loops in the SM which contribute to Fig. 4(a) and Fig. 5(a).

We see that when the right-hand-side (RHS) of (60) vanishes, the renormalized coupling \(\lambda(\mu) \) blows up at the Landau pole \(\mu = \Lambda_L \),

\[
\lambda^{-1}(\mu_0) = \tilde{b}_0 e^{-\frac{a_0}{2} \kappa^2 \mu_0^2} \int_{\mu_0}^{\Lambda_L} e^{\frac{a_0}{2} \kappa^2 x^2} \frac{dx}{x}. \tag{61}
\]

This means that the SM as an effective theory must have an UV cutoff \(\Lambda < \Lambda_L \). For a given Higgs boson mass \(m_H^2 = 2\Lambda(m_H) v^2 \), let us set \(\mu_0 = m_H \). Thus, from (61) we can derive the triviality bound for Higgs boson mass,

\[
m_H^2 < \frac{2v^2}{\tilde{b}_0} e^{\frac{a_0}{2} \kappa^2 m_H^2} \left[\int_{m_H}^{\Lambda} e^{\frac{a_0}{2} \kappa^2 x^2} \frac{dx}{x} \right]^{-1}. \tag{62}
\]

where \(e^{\frac{a_0}{2} \kappa^2 m_H^2} \simeq 1 \) holds to high accuracy due to the tiny factor \(\frac{a_0}{2} \kappa^2 m_H^2 = \frac{3}{8} \frac{m_H^2}{M_P^2} \simeq 0 \). It is clear that in the \(a_0 \to 0 \) limit, the condition (62) reduces to the familiar triviality bound in the pure SM [28],

\[
m_H^2 \ln \frac{\Lambda^2}{m_H^2} < \frac{8\pi^2 v^2}{3}. \tag{63}
\]

Keeping this in mind, it is instructive to rewrite our graviton-corrected triviality bound (62) as follows,

\[
m_H^2 \ln \frac{\Lambda^2}{m_H^2} < \frac{8\pi^2 v^2}{3(1 + X)}, \tag{64a}
\]

\[
X \equiv \int_{m_H}^{\Lambda} \left[e^{\frac{a_0}{2} \kappa^2 x^2} - 1 \right] \frac{dx}{x} \ln \frac{\Lambda}{m_H} > 0, \tag{64b}
\]

where an overall factor \(e^{\frac{a_0}{2} \kappa^2 m_H^2} \simeq 1 \) on the RHS of (64a) is safely ignored. We find that, because the integral \(X > 0 \) generally holds, the gravitational power-law corrections always reduce the RHS of (64a), and thus further tighten the triviality bound relative to (63) of the pure SM. The graviton-induced corrections play a dominant role to enhance the triviality bound for the cutoff scale \(\Lambda \sim M_P \), as clearly shown in Fig. 6. A systematical expansion of the present section (including the power-law corrections to Yukawa couplings) will be given in Ref. [13].

6. CONCLUSIONS

The fundamental gravitational force universally couples to all the SM particles and can be described by the well-defined perturbation expansion in the modern effective theory formulation [3]. The Vilkovisky-DeWitt method [8] profoundly modifies the conventional BFM, and provides the manifestly gauge-invariant effective action for reliably computing quantum gravity effects. In this work, we used the Vilkovisky-DeWitt method to derive the first gauge-invariant nonzero gravitational power-law corrections to the running of gauge couplings. We found the gravitational power-law corrections to be universal, making both Abel and non-Abel gauge couplings asymptotically free [cf. Eq. (31) and analyses at the end of Sec. 3]. We have demonstrated that the graviton-induced power-law runnings always drive the three SM gauge forces toward to the UV fixed point, reaching final unification at the Planck scale and irrespective of the detail of logarithmic corrections (cf. Fig. 3). This raises the conventional GUT scale by three orders of magnitude, and opens up a natural possibility of simultaneous unification of all four fundamental gauge forces at the Planck scale. We further analyzed the power-law corrections to the \(\beta \)-function and mass of the SM Higgs boson [cf. Eqs. (58a)-(58b)]. We found that the graviton-induced scalar \(\beta \)-function is not asymptotically free, and therefore further
tightens the triviality bound on the Higgs boson mass, as shown in Eq. (64) and Fig. 6. Further extensions of the present analysis for computing the power-law corrections will be given elsewhere [13].

Acknowledgments

This research was supported by Chinese NSF (under grants 10625522, 10635030), and by the National Basic Research Program of China (under grant 2010CB833000). XFW is supported in part by the China Scholarship Council. We thank A. G. Cohen and M. E. Peskin for stimulating discussions at the “International Conference and Summer School on LHC Physics” (August 16-25, Beijing). After we posted this paper to arXiv:1008.1839, a new paper [29] appeared; we thank D. J. Toms for kindly bringing our attention to his independent study via a very different approach (the proper-time method) which reached a similar conclusion for graviton corrections to the QED gauge coupling; we also thank him for kind discussion.

[1] G. ’t Hooft and M. J. G. Veltman, Ann. Poincare Phys. Theor. A 20, 69 (1974); S. Deser and P. van Nieuwenhuizen, Phys. Rev. D 10, 401 (1974); S. Deser, H. S. Tsao, P. van Nieuwenhuizen, Phys. Rev. D 10, 3337 (1974).

[2] For a recent review, S. Weinberg, “Effective Field Theory, Past and Future”, PoS CD09, 001 (2009) [arXiv:0908.1964], and references therein.

[3] A. G. Vilkovisky, Class. Quant. Grav. 9, 895 (1992); J. F. Donoghue, Phys. Rev. D 50, 3874 (1994); Phys. Rev. Lett. 72, 2996 (1994). For reviews, J. F. Donoghue, “The Ideas of Gravitational Effective Field Theory”, arXiv:hep-th/9409143; C. P. Burgess, “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Rel. 7, 5 (2004); and references therein.

[4] S. Robinson and F. Wilczek, Phys. Rev. Lett. 96, 231601 (2006) [arXiv:hep-th/0509050].

[5] B. S. DeWitt, in Quantum Gravity II, eds. C. J. Isham, R. Penrose, D. W. Sciama (Oxford Univ Press, London, 1981); L. Abbott, Nucl. Phys. B 185, 189 (1981).

[6] A. R. Pietrykowski, Phys. Rev. Lett. 98, 061801 (2007).

[7] D. J. Toms, Phys. Rev. D 76, 045015 (2007); D. Ebert, J. Plefka, A. Rodigast, Phys. Lett. B 660, 579 (2008).

[8] G. Vilkovisky, “The Unique Effective Action in Quantum Field Theory”, Nucl. Phys. B 234, 125 (1984); B. S. DeWitt, “The Effective Action”, in Quantum Field Theory and Quantum Statistics, vol.1, eds. I. A. Batalin, C. J. Isham, G. A. Vilkovisky (Adam Hilger, Bristol, 1987).

[9] For a monograph, L. Parker and D. Toms, “Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity”, Cambridge Univ Press, 2009.

[10] For early applications, e.g., A. O. Barvinsky and G. A. Vilkovisky, Phys. Rep. 119, 1 (1985); S. R. Huggins, G. Kunstatter, H. P. Leivo, D. J. Toms, Phys. Rev. Lett. 58, 296 (1987); Nucl. Phys. B 301, 627 (1988); I. Buchbinder, P. M. Lavrov, S. D. Odintsov, Nucl. Phys. B 308, 191 (1988); S. D. Odintsov, Fortsch. Phys. 38, 371 (1990); and references therein.

[11] D. J. Toms, Phys. Rev. Lett. 101, 131301 (2008); Phys. Rev. D 80, 064040 (2008).

[12] D. J. Toms and D. J. Toms, Phys. Lett. B 684, 251 (2010). For a related calculation of logarithmic corrections to Yukawa and scalar interactions under conventional technique, A. Rodigast, T. Schuster, Phys. Rev. Lett. 104, 081301 (2010).

[13] X.-F. Wang, Z.-Z. Xianyu, H.-J. He, work to appear.

[14] M. J. G. Veltman, Acta Phys. Polon. B 12, 437 (1981).

[15] W. Siegel, Phys. Lett. 84 B, 193 (1979); D. M. Capper, D. R. T. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980).

[16] M. B. Einhorn and D. R. T. Jones, Phys. Rev. D 46, 5206 (1992).

[17] B. S. DeWitt, “The Dynamical Theory of Groups and Fields” Gordon and Breach, New York, 1965.

[18] E. S. Fradkin and A. A. Tseytlin, Nucl. Phys. B 234, 509 (1984).

[19] K. Peeters, Comp. Phys. Commun. 176, 550 (2007); Computeralgebra Rundbrief 41, 16 (2007).

[20] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

[21] H. Georgi, H. Quinn, S. Weinberg, Phys. Rev. Lett. 33, 451 (1974); S. Dimopoulos, S. Raby, F. Wilczek, Phys. Rev. D 24, 1681 (1981).

[22] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1(2008) and http://pdg.lbl.gov.

[23] For a recent review, S. Raby, Eur. Phys. J. C 59, 223 (2009).

[24] X. Calmet, S. D. H. Hsu and D. Reeb, Phys. Rev. D 81, 035007 (2010); Phys. Rev. Lett. 101, 171802 (2008).

[25] M. R. Niedermaier, “Gravitational Fixed Points from Perturbation Theory”, Phys. Rev. Lett. 103, 101303 (2009).

[26] S. Weinberg, in the proceedings of “Understanding the Fundamental Constituents of Matter”, ed. A. Zichichi (Plenum Press, New York, 1977); and Phys. Rev. D 81, 083535 (2010); M. Shaposhnikov and C. Wetterich, Phys. Lett. B 683, 196 (2010); for a recent review, e.g., R. Percacci, arXiv:0910.5167 [hep-th], and references therein.

[27] For a review, C. T. Hill and E. H. Simmons, Phys. Rept. 381, 235 (2003) and references therein.

[28] R. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).

[29] D. J. Toms, arXiv:1010.0793 [hep-th].