Background and Aim
Pregnancy and exercise training are associated with changes in the cardiovascular anatomy and physiology. There is a few studies on this issue in Iran. In this regard, the aim of this study is to assess the effect of a combined exercise training program on blood pressure and heart rate variability of pregnant women.

Methods & Materials
This randomized clinical trial was conducted in Shahid Akbarabadi Hospital in Tehran, Iran in 2019. Participants were 10 healthy pregnant women with a gestational age of 24-26 weeks in the interventional group and 10 healthy pregnant women in the control group. The interventional group received 8 weeks of combined exercise training at moderate intensity. The blood pressure measurement, electrocardiogram and aerobic and resistant exercise tests of samples were performed before and after training. AST3000 Avicenna software was used to analyze the heart rate variability parameters, and for statistical analysis, paired and independent t-tests, Mann Whitney U, and Wilcoxon tests were used.

Ethical Considerations
This study with registered clinical trial Code IRCT20190227042856N1 was approved by the Research Ethics Committee of Islamic Azad University of Science and Research Branch in Tehran, Iran (Code: IR.IAU.SRB.REC.1397.101).

Results
The mean systolic and diastolic blood pressure levels were lower in the interventional group by the 34th week of pregnancy compared to the control group (P<0.05). The mean of time-domain parameters in the interventional group were higher by the 34th week of pregnancy compared to the control group (P<0.05).

Conclusion
Combined exercise training can improve autonomic and parasympathetic nervous systems in pregnant women.

Key words:
Combined exercise training, Blood pressure, Heart rate variability, Pregnancy

Extended Abstract

Introduction
Pregnancy and exercise training are associated with changes in the cardiovascular anatomy and physiology. Today, the demand of pregnant women to participate in exercise activities has increased, and various studies have emphasized the combination of different types of exercises, especially aerobic and resistance exercises, to obtain better results [3]. The effect of exercise on the cardiovascular system of the mother and fetus according to their different protocols and the main criteria of prescribing exercise has not been adequately investigated with appropri-
ate methodology in the world and especially in Iran. Moreover, in previous limited studies, contradictory results have been reported on cardiovascular hemodynamic changes and parameters of maternal and fetal heart rate variability following exercise training [5, 6]. In this regard, this study aimed to investigate the effect of a combined aerobic and resistance exercises training program on blood pressure and heart rate variability in pregnant women.

Methods and Materials

This study is a single-blind, parallel-group, two-stage randomized clinical trial. The study population consisted of all healthy pregnant women referred to Shahid Akbarabadi Hospital in Tehran, Iran in 2019. Inclusion criteria for participants were: Age 20 to 35 years, singleton pregnancy, body mass index of 18.5-25, pregnancy frequency less than 5, and blood pressure <140/90. Cardiovascular and orthopedic diseases, pregnancy complications and having a history of high risk pregnancy were exclusion criteria. Based on these criteria, 20 samples were selected and randomly divided into two groups of exercise (n=10) and control (n=10). The exercise group received combined exercise training for 8 weeks, 3 sessions per week at moderate intensity from the week 24-26 of gestation. Exercise tests, anthropometric measurements, blood pressure, and electrocardiogram test were performed before and after intervention. AST3000 Avicenna software was used to analyze the heart rate variability parameters. For statistical analysis, paired and independent t-tests, Mann Whitney U, Fisher’s test, Shapiro-Wilk test and Wilcoxon tests were used in SPSS V. 24 sofwtare.

Results

According to the findings, there was no statistically significant difference in age, height, weight, body mass index, body fat percentage, maximum oxygen consumption, education, number of deliveries, and physical activity between the exercise and control groups (P>0.05). Before combined exercise, resting heart rate, systolic and diastolic blood pressures were similar in the two groups (P>0.05), but the mean of these variables were significantly lower in the exercise group after eight weeks of combined exercise training (P<0.05). Moreover, in both groups, the mean diastolic and systolic blood pressures were significantly higher at 34-36 weeks of gestation than at 24-26 weeks (P<0.05) (Table 1). Comparing the results of the exercise group before and after intervention, the Standard Deviation of NN intervals (SDNN) in pregnant women at 34-36 weeks of gestation was higher than that at 24-26 weeks of gestation (P<0.05). The mean of time-do-

Table 1. Heart rate and blood pressure level of participants
Variables
24-26 Weeks
Heart rate (bpm)
Diastolic blood pressure (MmHg)
Systolic blood pressure (MmHg)

*Paired t-test; **Independent t-test; ***Wilcoxon test

Table 2. Time-domain parameters of heart rate variability in participants at 34-36 weeks of gestation
Parameter
SDNN (ms)
RMSSD (ms)

* Mann Whitney U test
main parameters including SDNN and Root Mean Square of Successive Differences (RMSSD) in the exercise group were higher at the 34th week of pregnancy compared to the control group (P<0.05) (Tables 2 and 3).

Discussion

Based on the findings of this study, the mean of heart rate, systolic blood pressure and diastolic blood pressure in pregnant women received 8 weeks of combined exercise were lower than in controls. Decreased vasomotor tone, increased parasympathetic neural activity, and mediators such as nitric oxide following exercise may be the reasons for lower blood pressure and heart rate in the exercise group than in the control group [15].

Increased SDNN parameter in the exercise group compared to the control group indicates that combined exercise improves the autonomic nervous system balance. However, in pregnancy, the parameters of heart rate variability decrease or do not change with increasing gestational age and increasing weight of pregnant women [4]. In this study, the RSMMD parameter was higher in trained pregnant women and in 34-36 weeks of pregnancy compared to the control group. This difference was statistically significant. In other words, combined exercise resulted in the relatively high parasympathetic nerve activity in the exercise group [5]. May et al. also reported the mean increase in heart rate variability of pregnant women performed exercise training [5, 20]. Their study was a case-control study, so there was a possibility of confounding effects. In Satyapriya et al.’s study, two groups of pregnant women with different exercises were studied. In two groups, HF increased and LF and LF / HF decreased; however, no control group was included in their study [22]. The reason for the discrepancies between the results of this study and others can be the difference in the number of samples, the order of exercise, body weight, and gestational age [5, 6].

Conclusion

The combined exercise training group can improve heart rate, blood pressure and heart rate variability in pregnant women. Further studies are recommended to investigate the effects of combined exercises with different intensity and the mechanism of their effects on blood pressure and heart rate variability.

Ethical Considerations

Compliance with ethical guidelines

This study with registered clinical trial code IRCT20190227042856N1 was approved by the Research Ethics Committee of Islamic Azad University of Science and Research Branch in Tehran, Iran (Code: IR.IAU.SRB.REC.1397.101).

Funding

This study was extracted from thesis of the first author, Khadijeh Ahrari, approved by the Department of Physical Education and Sports Science, Islamic Azad University, Science and Research Branch.

Authors’ contributions

All authors met the standards of writing based on the recommendations of the International Committee of Medical Journal Editors (ICMJE).

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the faculty professors, the staff of Perinatology Clinic and Clinical Research Development Unit of Shahid Akbarabadi Hospital in Tehran.
تأثیر تمرین ترکیبی هوازی و مقاومت بر فشار خون و تغییرپذیری ضربان قلب در زنان باردار: یک مطالعه آزمایشگاه‌ی باز

ماندانا غلامی*

کلیه‌های: تمرین ورزشی ترکیبی، مطالعات اجتماعی، بارداری و تمرین ورزشی

مقدمه

تمرینات ورزشی بدلیل تغییرات فیزیولوژیکی مناسب، اثرات پیشرفته‌ای در تناسب اندام و امکانات می‌دهد. همچنین اثرات مثبت این تمرینات بر فشار خون بالا، دیابت نوع ۲، چاقی و افسردگی داشته‌اند.[1،۲] در دوران بارداری از تمرینات کم‌مدت و پایداری برای سلامتی، سازگاری و درمان بیماری‌هایی مانند فشار خون بالا، افسردگی، ترکیبی، نوزادان غیر بارداری و بارداری استفاده می‌شود.[3] پژوهش‌هایی مبنایی بر روی اثرات تمرین ترکیبی بر فشار خون و ضربان قلب در زنان باردار انجام نشده است.

مطالعه

در این مطالعه، هدف بررسی تاثیر تمرین ترکیبی بر فشار خون و پذیرایی ضربان قلب مادر باردار است. این مطالعه کارآزمایی بالینی تصادفی شده در سال ۱۳۹۸ در بیمارستان شهید اکبرآبادی تهران انجام شد. ۴۷ زن باردار سالم در گروه کنترل قرار داشتند و ۲۴ زن باردار ترکیبی در تمرین ترکیبی با شدت متوسط شرکت کردند. قبل و بعد از دوره تمرین اندازه‌گیری فشار خون و الکتروکاردیوگرافی، و تست‌های ورزشی و مقاومتی در زنان باردار کمک شد جهت اندازه‌گیری و تحلیل اندازه‌گیری‌های تناسب اندام قلب و توانایی آن در استراحت، فعالیت و زمان بعد از آن مورد بررسی قرار گرفت. جهت تجزیه و تحلیل داده‌ها، نرم‌افزارهای Minitab و Avicenna و چکیده‌گر آماری و نرم‌افزارهای Hello Software و Astyx AS3000 مورد استفاده قرار گرفتند.

نتایج

بزرگسالان، جهت تشخیص و پیش‌بینی سلامتی دستگاه قلبی و عروقی از جمله اندازه‌گیری فشار خون و تغییراتی که در فناوری الکتروکاردیوگرافی و تست‌های ورزشی و مقاومتی در زنان باردار شناسایی می‌شود، از تکنیک‌های فناوری استفاده می‌شود. در کمیته اخلاق پژوهش دانشگاه آزاد اسلامی واحد علوم و تحقیقات، مطالعه به ثبت رسید. (IR.IAU.SRB.REC.1397.101) تحقیق وکیل و قوام‌النیا یکی از کارآزمایی‌های بالینی در زنان باردار در این مطالعه به صورت معنی‌داری کمتر از زنان باردار گروه کنترل، میانگین فشار خون سیستولی و دیاستولی در زنان باردار تمرین کرده در هفته یافته‌ها بیشتر از گروه کنترل بوده و معنی‌داری برای این تفاوت وجود داشته است.

نتیجه‌گیری

به منظور تجزیه و تحلیل پارامترهای تغییرپذیری ضربان قلب، نرم‌افزارهای تست‌های تی زوجی و مستقل، یو من ویتیس، و ویلکاکسون مورد استفاده قرار گرفتند. در کمیته اخلاقی، تحقیق وکیل و قوام‌النیا به ثبت رسید. (IR.IAU.SRB.REC.1397.101) در کلیه‌های شناختی و پژوهشی مدارک و روش‌های دسترسی برای اجرای مطالعه، گزارش‌های مورد نیاز از طرف جلسه‌های اخلاقی صورت گرفته و تفاوت معنی‌داری بین فشار خون و ضربان قلب در زنان باردار تمرین کرده و گروه کنترل وجود داشته است. به‌طور کلی، تمرین ترکیبی می‌تواند بهبود سیستم عصبی خود مختار قلبی و برتری سیستم عصبی پاراسمپاتیک در زنان باردار بیشتری را ایجاد کرده، از پوکی استخوان جلوگیری می‌کند و اثرات سودمندی دارد.

کلیدواژه‌ها: تمرین ورزشی ترکیبی، فشار خون، ضربان قلبی بارداری
جلسه تمرین شرکت کردن و تمرین بررسی‌های سریع به هدف پژوهش را در مرحله قابل و بعد از تمرین تقریبی انجام داده تعلق دید و یا خروج از مطالعه تشخیص عورت بارداری، عدم تمامی برای آن اطلاعات نموده و تعدادی از شرکت‌کننده در این جلسه عورت بارداری و بعد از تمرین تقریبی و بدین‌نامه به دلایل اصلی آن و بررسی فشار خون، ضربان قلب و حاویت فشار خون در بخش نشسته بودند. فشار خون با فاصله دو دقیقه از ورود آنها به بیمارستان قد و وزن، چین می‌خوردند، اما فاصله صبحانه با تست از دو ساعت کمتر بود. ساعت قبل از تست مصرف نشده بود. تمامی زنان باردار صبحانه وجود نداشت و دمای محیط مطبوع بود. کافئین در طی دو ظهر انجام شد. محل انجام تست، نور شدید و یا سر و صدا قلب زمان استراحت، ضربان قلب هدف در شدت‌های مختلف % ضربان قلب ذخیره محاسبه شد و با جمع آنها با ضربان قلب به معادله کارونن

ضربان قلب نشانه = درصد شدت

و ضربان قلب هدف تنظیم شد. میزان اکسیژن مصرفی حداکثر شد. شدت تمرین بر اساس معیار بورگ، بر آورد یک تکرار بیشینه در زنان باردار تنظیم و اجرا گردید. کالج امریکایی زنان و زایمان اصلاح یافته و تست برآورد یک تکرار بیشینه انجام و برنامه پوستی (قارچه، فشارخون، تست الکتروکاردیوگرام و تست ورزش بوکس) انجام شدند. پیامدهای فعالیت‌های فیزیکی و تغذیه تکمیل شد و اندازه‌گیری شد. به منظور کاهش نوسانات ترکیبی، با تمرین ترکیبی گروه تمرین و گروه کنترل با گروه تمرین رضایت نامه کتبی انجام شد. زنان باردار گروه مداخله به مدت هشت هفته، سه روز در هر هفته در این مطالعه که در بیمارستان شهید اکبرآبادی تهران انجام شد، ت자는 نارسایی دهانه رحم، رشد-گیاهی، بیماری‌های قلبی و عروقی، مصرف های ناشتا توجه داشتند. جهت بررسی همگنی دو گروه مداخله و کنترل، عدد بدست آمده و در نظر گرفتن فاصله بدست آمده، آزمودنی را نیز به سه روزه یا بیشتر قرار داد. ابتدا به عدد کوچکتر از عدد بدست آمده انتخاب گردید. جهت تصادفی شدن توزیع آزمودنی ها تعداد زنان واجد شرایط برای انتخاب انتخاب شدند. جهت کاهش نوسانات ترکیبی، بر اساس معیار بورگ، بر آورد یک تکرار بیشینه درگروه مداخله و گروه کنترل با گروه تمرین رضایت نامه کتبی انجام شد. زنان باردار گروه مداخله به مدت هشت هفته، سه روز در هر هفته در این مطالعه که در بیمارستان شهید اکبرآبادی تهران انجام شد، ت loạn و افزایش اکسیژن خون بالا، بیماری‌های قلبی و عروقی و تومورهای داخلی می‌تواند افزایش باید یک یا دو گروه کنترل گروه تمرین در میابد. به‌طور کلی، بیماری‌های قلبی و عروقی و تومورهای داخلی می‌تواند افزایش باید یک یا دو گروه و در نهایت نتایج ضدونقیضی در مورد تغییرات همودینامیک قلبی و عروقی و پارامترهای تیروئیدی ضرر بارداری مادر و وابستگی به فشار خون و تغییرات ضربان قلبی در این تحقیق مشاهده شد. به‌طور کلی، بیماری‌های قلبی و عروقی و تومورهای داخلی می‌تواند افزایش باید یک یا دو گروه و در نهایت نتایج ضدونقیضی در مورد تغییرات همودینامیک قلبی و عروقی و پارامترهای تیروئیدی ضرر بارداری مادر و وابستگی به فشار خون و تغییرات ضربان قلبی در این تحقیق مشاهده شد.
دوره من ویتنی، ویلکاکسون، فیشر، آزمون پارامتری تی زوجی، تی توسط پژوهشگر به زنان باردار در بیمارستان آموزش داده می‌شود. تمرینات و آموزش نکات ایمنی در هنگام تمرین، تغذیه مناسب، همراه متخصصین زنان و زایمان و قلب و عروق در اجرای آزمون انجام می‌شود. سایر عناصر شاخص بهترین کیفیت ارائه می‌شود.

برای تعیین فعالیت بدنی، به‌کارگیری پرسشنامه بررسی فعالیت بدنی (PQ) با استفاده از پرسشنامه بررسی فعالیت بدنی (PQ) و اندازه‌گیری سطح فشار خون (RMSSD) به کمک سخت‌کاری کانادایی و همکاران. این پژوهش بررسی تأثیر تمرین ترکیبی هوازی و مقاومتی بر فشار خون و تغییرات ضربان قلب در زنان باردار است. برای تعیین فعالیت بدنی، به‌کارگیری پرسشنامه بررسی فعالیت بدنی (PQ) با استفاده از پرسشنامه بررسی فعالیت بدنی (PQ) و اندازه‌گیری سطح فشار خون (RMSSD) به کمک سخت‌کاری کانادایی و همکاران. این پژوهش بررسی تأثیر تمرین ترکیبی هوازی و مقاومتی بر فشار خون و تغییرات ضربان قلب در زنان باردار است. به‌طور کلی، پژوهشگران پرسشنامه بررسی فعالیت بدنی (PQ) و اندازه‌گیری سطح فشار خون (RMSSD) به کمک سخت‌کاری کانادایی و همکاران. این پژوهش بررسی تأثیر تمرین ترکیبی هوازی و مقاومتی بر فشار خون و تغییرات ضربان قلب در زنان باردار است.
کمتر بودن فشار خون و ضربان قلب در گروه تمرین نسبت به گروه کنترل باشد. همچنین احتمال افزایش واسطه‌هایی مانند اکسید نیتریک که اثر مثبت بر افزایش تونوسیته واگی دارند در گروه تمرین می‌تواند علت تغییرات فشار خون باشد. تحقیقات گذشته حاکی از آن هستند که تمرین منجر به بهبود دسترسی زیستی.

تحقیقات حاکی از آن هستند که میزان بالای کراتین کیناز (CPK) بافتی قبل از شروع فشار خون بالا وجود دارد و درمان ضد فشار خون منجر به کاهش کراتین کیناز می‌شود. کران‌الاکزیت یک آنتی‌پدیاکسیدانت، واکنشی مثبت بر فشار خون می‌باشد. اکسید نیتریک و کراتین کیناز بالا می‌تواند منجر به افزایش ظرفیت بافری بالاتر متعاقب آن افزایش قدرت انقباضی قلبی، افزایش مقاومت عروقی، کاهش دسترسی زیستی اکسید نیتریک و احتباس سدیم در دو گروه در هفته cpk. در این پژوهش میزان Crp (C- Reactive protein) در گروه Crp یکسان بود. اما میزان پروتئین واکنشی سی (CRP) کمتر از گروه کنترل بود و این تفاوت به لحاظ آماری معنی‌دار بود. به عبارت دیگر، پروتکل تمرین ترکیبی در گروه مداخله صورت گرفت. صورت گرفت.

_completion

مرحله می‌تواند مقایسه	RPE	HRR
مرحله اول: گرم کردن راه رفتن (با در نظر گرفتن 13-14 رنگ تراباند)	10-12	6-8
مرحله دوم: تمرین مقاومتی	12-13	6-8
مرحله سوم: تمرین هوازی (بعد از دو دقیقه استراحت)	12-13	6-8
مرحله چهارم: تمرین کششی به مدت 5 دقیقه در هفته	12-13	6-8

نتیجه گیری: نتایج این تحقیق نشان داد که تمرینات ترکیبی با ویژگی‌های مختلف در زنان باردار می‌تواند منجر به افزایش ظرفیت بافری و افزایش مقاومت عروقی و کاهش دسترسی زیستی اکسید نیتریک و احتباس سدیم شود. اکسید نیتریک که اثر مثبت بر تونوسیته واگی دارند در گروه تمرین می‌تواند علت تغییرات فشار خون باشد. تحقیقات گذشته حاکی از آن هستند که تمرین منجر به بهبود دسترسی زیستی.

3. Creatine phosphokinase
4. C- Reactive protein
5. RPE
6. HRR
7. SDNN
8. RMSSD
9. RSDNN
10. RSDMMD
11. RPEHRR
12. Creatine phosphokinase
13. C- Reactive protein
بهمن و اسفند 1398 دوره 22 شماره 6

خودیجه افریقی و همکاران. تاثیر تمرین ترکیبی هوازی و مقاومتی بر فشار خون و تغییرپذیری ضربان قلب در زنان باردار: یک مطالعه کلیه بالینی

جدول 1. ویژگی‌های نمونه‌گیری کلیه زنان باردار مراجعه‌کننده به بیمارستان شهید اکبرآبادی تهران در هفته‌های 24-26 بهمن و اسفند 1398

جدول 2. تغییرات میانگین و انحراف معیار فشار خون و ضربان قلب زنان قبل و بعد از تمرین ترکیبی.

آزمون آماری: **آزمون تی مستقل؛ ****آزمون ویلکاکسون؛ ***آزمون یو من ویتنی

جدول 3. ویژگی‌های آنتروپومتری و حداقل اکسیژن مصرفی زنان باردار مراجعه‌کننده به بیمارستان شهید اکبرآبادی تهران در هفته‌های 24-26 بهمن و اسفند 1398

سیستولیک

ویژگی	گروه مداخله	گروه کنترل	تعداد	درصد
سن (سال)	28±7	29±3	50	40
فعالیت فیزیکی (ساعت در هفته)	19±6	19±3	50	40

سیستولیک

ویژگی	گروه مداخله	گروه کنترل	تعداد	درصد
قند (کیلوگرم)	161/70	160/50	50	40
وزن (کیلوگرم)	65/62	66/42	50	40
شاخص توده بدن (کیلوگرم بر متر مربع)	25/38	25/93	50	40
چربی (درصد)	29/79	31/67	50	40

سیستولیک

ویژگی	گروه مداخله	گروه کنترل	تعداد	درصد
حداقل اکسیژن مصرفی (میلی لیتر در کیلوگرم در دقیقه)	22/09	21/90	50	40

آزمون آماری: **آزمون تی مستقل؛ **** آزمون فیشر

واژه‌های کلیدی: تمرین ترکیبی، زنان باردار، فشار خون، ضربان قلب، شاخص توده بدن، کیفیت زندگی.

مجله دانشگاه علم پزشکی اراک
تمارین ترکیبی هوازی و مقاومتی بر فشار خون و تغییرپذیری ضربان قلب زنان باردار: یک مطالعه کلینیکال بالینی

جلوه‌های مالیه‌های پایه‌زایی زمینه تیپ‌های پلاسمایتیک در گروه تمرین شد. در حالی که در برداری طبیعی افزایش سیستم عصبی سمپاتیک نسبت به سیستم عصبی پاراسمپاتیک گزارش شده است. در حال حاضر بحث داغی بر پاراسمپاتیک گزارش شده است. منشأ احتمالی اثرات تمرین بر فعالیت پاراسمپاتیک و برادیکاردی وجود دارد و احتمالا نقش مهم باز می‌گیرد [19]. استنادات مهمی برای این نظر وجود دارند مبنی بر اینکه باز می‌گیرند الکتریکی گره سینوسی.

جدول ۱. مقایسه پارامترهای زمانی تغییر پذیری ضربان قلب زنان باردار در هفته‌های ۲۴-۲۶ و ۳۴-۳۶ بارداری

پارامترهای زمانی تغییر پذیری	هفته بارداری	گروه کنترل	گروه تمرین	گروه کنترل*	گروه تمرین*
SDNN میلی ثانیه	74/2 ± 7/22	51/80 ± 13/87	64/30 ± 12/14	74/2 ± 7/22	64/30 ± 12/14
RMSSD میلی ثانیه	54/10 ± 48/53	27/70 ± 31/01	48/54 ± 29/07	48/10 ± 27/61	48/54 ± 29/07

جدول ۶. مقایسه پارامترهای فرکانسی تغییر پذیری ضربان قلب زنان باردار در هفته‌های ۲۴-۲۶ و ۳۴-۳۶ بارداری

پارامترهای فرکانسی	هفته بارداری	گروه کنترل	گروه تمرین	گروه کنترل*	گروه تمرین*
LF میلی ثانیه	356 ± 319/66	126/70 ± 152/82	300/72 ± 488/99	300/72 ± 488/99	300/72 ± 488/99
HF میلی ثانیه	169/33 ± 147/56	124/50 ± 105/45	124/50 ± 105/45	124/50 ± 105/45	124/50 ± 105/45
LF/HF	2/57 ± 1/68	1/78 ± 2/21	2/59 ± 3/40	2/59 ± 3/40	2/59 ± 3/40

آزمون آماری ویلکاکسون

5. Remodeling
در پژوهش حاضر تعدادی زن در سن بارداری بالا (سال 34-50) وارد مطالعه شدند که عوارض بارداری به صورت خوبی رخ نداشتند. علت عدم هم‌سایگی نتایج تحقیقات می‌تواند تعداد افراد محاسبه شده باشد. البته تعداد زنان باردار در هر گروه مداخله و کنترل برابر نبود. تاکنون بیش از 1600 مطالعه در این زمینه انجام شده است که نشان دهنده اثر پزشکی بر تغییرات همودینامیک جنین است.

تabel

متغیر	مطالعه GL	تحقیق LF	مطالعه HF	تحقیق HF
간ه	LF	LF/HF	LF	LF/HF
طول مدت بارداری	LF	LF/HF	LF	LF/HF
سن بارداری	LF	LF/HF	LF	LF/HF
وزن بارداری	LF	LF/HF	LF	LF/HF
نرخ نیاز بارداری	LF	LF/HF	LF	LF/HF
نرخ نیاز جنین	LF	LF/HF	LF	LF/HF

نتایج

نتایج تحقیق حاضر نشان می‌دهد که تمارین با شدت متوسط و منظم بیشترین نتایج را داشته و با تدریج تحقق حاضر معنی‌دار برای مدت زمانی 20/14 تمارین حاکی از افزایش میانگین پارامترهای جسمانی و همچنین نوع، شدت و مدت تمرین می‌باشد. از جمله این میانگین پارامترهایی که تغییر آنها در مادر و جنین مشاهده شده است، عبارتند از: میزان افزایش سطح معنی‌داری در پارامترهای سینتیک و پاراسمینتیک قلبی و تغییرات ضربان قلب و فشار خون. البته مطالعه آتی حاکی از این نتایج می‌باشد که تمرین با شدت متوسط و منظم بیشترین نتایج را داشته و با تدریج تحقق حاضر معنی‌دار برای مدت زمانی 20/14 تمارین حاکی از افزایش میانگین پارامترهای جسمانی و همچنین نوع، شدت و مدت تمرین می‌باشد.
نتیجه‌گیری
در مجموع در یکی از جامعات حاضر نمایندگان دانشجویان که تمرینات ترکیبی در زنان باردار می‌تواند کمک به بهبود عملکرد سیستم عصبی خود مخترع قلب و برتری نسبی فعالیت عصبی پارااسمپاتیک نسبت به فعالیت عصبی سمپاتیک شود. در خانم‌های باردار دارای تمرینات ترکیبی در زنان باردار کمتر از زنان باردار کنترل بود و پارامترهای زمانی تفسیری‌های خون در گروه زنان باردار کنترل بیشتر از زنان باردار کنترل بود.

ملاحظات اخلاقی
یک مطالعه با کد اخلاقی IR.IAU.SRB.REC.1397.101 در کمیته تخصصی پژوهش‌های تحقیقاتی و سازمان‌های علمی و پژوهشی تهران و کد RCT2019022704256N1 مرکز تحقیقات کارآزمایی بالینی به ثبت رسید.

حاصل‌خالی
این مطالعه بر روی‌گرفته از رساله احترام خدیجه احراری دانشجوی دکتری گروه تربیت بدنی و علوم ورزشی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران است.

مشارکت‌کنندگان
تمامی تلاش‌ها در پیشنهاد استانداردهای تولیدکننده بر اساس ICMJE (پیشنهادات کمیته بین‌المللی ناشران مجلات پزشکی بین‌المللی) صورت گرفت.

تعارض منافع
بدین وسیله تولیدگان تصریح می‌کنند که منابعی که هرچگونه تفاوت یا تفاوت‌های مالی وجود دارد.

تشکر و قدردانی
لپارداکن مردان تحقیقات شدید را از استادان و پژوهشگران پژوهش‌هایی در زنان باردار و پیشکشی و توجه به ارزش‌های تحقیقاتی مداوم دارند.

خلیلی‌خیام، نگین‌کامی، خانم خدیجه احراری و همکاران. تاثیر تمرین ترکیبی هوایی و مقاومتی بر فشار خون و تغییرات ضربان قلب در زنان باردار. یک مطالعه کارآزمایی بالینی
References

[1] Hanson M, Gluckman P. Developmental origins of health and disease: global public health implications. Best Pract Res Clin Obstet Gynaecol. 2015; 29(1):24-31. [DOI:10.1016/j.earlhhumdev.2014.06.007] [PMID]

[2] Perales M, Artal R, Lucia A. Exercise during pregnancy. JAMA. 2017; 311(1):1113-4. [DOI:10.1001/jama.2017.0593] [PMID]

[3] May LE, Allen JJ, Gustafson KM. Fetal and maternal cardiac responses to physical activity and exercise during pregnancy. Early Hum Dev. 2016; 1(4):49-52. [DOI:10.1016/j.earlhhumdev.2016.01.005] [PMID]

[4] Davis G, Graham K, Michael S. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—a review. Systolic time intervals—a review. Front Physiol. 2017; 8(7):301. [DOI:10.3389/fphys.2017.00301] [PMID] [PMCID]

[5] Dietz P, Watson ED, Sattler MC, Ruf W, Titze S, van Poppel M. The influence of physical activity during pregnancy on maternal, fetal or infant heart rate variability: A systematic review. BMC Pregnancy Childbirth. 2016; 16(1):326.e1. [DOI:10.1186/s12884-016-1121-7] [PMID] [PMCID]

[6] Roldan-Reoyo O, Pelaez M, May L, Barakat R. Influence of maternal physical exercise on fetal and maternal heart rate responses. Ger J Exerc Sport Res. 2019; 5(2):1-8.

[7] O’Connor PJ, Poudaveigne MS, Cress ME, Mott RW, Clapp JP. Safety and efficacy of supervised strength training adopted in pregnancy. J Phys Act Health. 2011; 8(3):309-20. [DOI:10.1123/jpah.8.3.309] [PMID]

[8] Smith KM, Campbell CG. Physical activity during pregnancy: Impact of applying different physical activity guidelines. J Pregnancy. 2013; 2013: 165617. [DOI:10.1155/2013/165617] [PMID] [PMCID]

[9] VanVoorhis CW, Morgan BL. Understanding power and rules of thumb for determining sample sizes. Tutor Quant Methods Psychol. 2007; 3(2):43-50. [DOI:10.20982/tqmp.03.2.p043]

[10] Gregg VH, Ferguson JE. Exercise in pregnancy. Clin Sports Med. 2017; 36(4):741-52. [DOI:10.1016/j.csm.2017.05.005] [PMID]

[11] Van Leeuwen P, Gustafson KM, Cysarz D, Geue D, May LE, Grönemeyer D. Aerobic exercise during pregnancy and presence of fetal-maternal heart rate synchronization. PLOS One. 2014; 9(8):103-6. [DOI:10.1371/journal.pone.0106036] [PMID] [PMCID]

[12] Satyapriya M, Nagendra HR, Nagarathna R, Padmalatha V. Effect of integrated yoga on stress and heart rate variability in pregnant women. Int J Gynaecol Obstet. 2009; 104(3):218-22. [DOI:10.1016/j.ijgo.2008.11.013] [PMID]

[13] Silva JR, Rumpf MC, Hertzog M, Castagna C, Farooq A, Girard O, et al. Acute and residual soccer match-related fatigue: A systematic review and meta-analysis. Sports Med. 2018; 48(3):539-83. [DOI:10.1007/s40279-017-0798-8] [PMID]

[14] Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J Am Coll Cardiol. 2005; 45(10):1563-9. [DOI:10.1016/j.jacc.2004.12.077] [PMID]

[15] Boyett MR, Yang W, Nakao S, Ariyaratnam J, Hart G, Monfredi O, et al. Point: Exercise training-induced bradycardia is caused by changes in intrinsic sinus node function. J Appl Physiol. 2017; 123(3):684-5. [DOI:10.1152/japplphysiol.00604.2017] [PMID] [PMCID]

[16] May LE, Knowlton J, Hanson J, Suminski R, Paynter C, Fang X, et al. Effects of exercise during pregnancy on maternal heart rate and heart rate variability. PMR. 2016; 6(7):511-7. [DOI:10.1016/j.pmrj.2015.11.006] [PMID]

[17] O'Connor PJ, Poudevigne MS, Cress ME, Motl RW, Clapp JF. Safety and efficacy of supervised strength training adopted in pregnancy. J Phys Act Health. 2011; 8(3):309-20. [DOI:10.1123/jpah.8.3.309] [PMID]

[18] Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review. J Am Coll Cardiol. 2005; 45(10):1563-9. [DOI:10.1016/j.jacc.2004.12.077] [PMID]

[19] Boyett MR, Yang W, Nakao S, Ariyaratnam J, Hart G, Monfredi O, et al. Point: Exercise training-induced bradycardia is caused by changes in intrinsic sinus node function. J Appl Physiol. 2017; 123(3):684-5. [DOI:10.1152/japplphysiol.00604.2017] [PMID] [PMCID]

[20] May LE, Knowlton J, Hanson J, Suminski R, Paynter C, Fang X, et al. Effects of exercise during pregnancy on maternal heart rate and heart rate variability. PMR. 2016; 6(7):511-7. [DOI:10.1016/j.pmrj.2015.11.006] [PMID]

[21] Van Leeuwen P, Gustafson KM, Cysarz D, Geue D, May LE, Grönemeyer D. Aerobic exercise during pregnancy and presence of fetal-maternal heart rate synchronization. PLOS One. 2014; 9(8):103-6. [DOI:10.1371/journal.pone.0106036] [PMID] [PMCID]

[22] Satyapriya M, Nagendra HR, Nagarathna R, Padmalatha V. Effect of integrated yoga on stress and heart rate variability in pregnant women. Int J Gynaecol Obstet. 2009; 104(3):218-22. [DOI:10.1016/j.ijgo.2008.11.013] [PMID]

[23] Silva JR, Rumpf MC, Hertzog M, Castagna C, Farooq A, Girard O, et al. Acute and residual soccer match-related fatigue: A systematic review and meta-analysis. Sports Med. 2018; 48(3):539-83. [DOI:10.1007/s40279-017-0798-8] [PMID]