A Fully Tunable Filter with Wide Range Notch Frequency Tuning and Bandwidth Switchable

Yicheng Zhang, Yongzhong Zhu1, Zhihao Meng, Hongyan Lu, Kaiwei Zuo

Abstract A compact wideband fully tunable filter is designed based on a quarter-mode integrated waveguide resonator. With only two varactor diodes at the port gap, the notch frequency can be tuned continuously in the entire passband range, and the interference signal in the band can be flexibly suppressed. In addition, by controlling the on and off of two PIN diodes, switching between the two bandwidths of 1.7 GHz and 3.3 GHz is achieved without affecting the notch frequency tuning in the bandwidth. The notch frequency tuning range is 4 GHz to 6.4 GHz. The insertion loss at the notch frequency is -15dB to -30dB, which is sufficient to eliminate in-band noise.

key words: fully tunable, wideband, notch frequency
Classification: Microwave and millimeter wave devices, circuits, and hardware

1. Introduction

With the rapid development of wireless communication and the birth of 5G technology, broadband system has gradually become a hot research topic due to its high confidentiality, strong multipath resistance and low radiation\cite{1,2,3,4,5,6}. In broadband communication, noise is inevitably present, which interferes with the quality of communication. Therefore, the notch filter is designed to suppress in-band interference signals \cite{7,8,9,10,11,12,13}. However, most of these designs are relatively complicated and lacks dynamic tuning factors, and the noise interference in the broadband cannot be flexibly eliminated.

This paper designs a wideband fully tunable notch filter. The notch frequency can be tuned in the entire passband, which greatly improves the anti-interference ability of the filter. Bandwidth can be switched between two modes by the PIN diodes, which enhances the adaptive performance of the filter.

2. Design of the fully tunable filter

2.1 Structure of the filter

This paper uses the single-layer quarter mode integrated waveguide technology\cite{14}, and achieves a broadband filter by plating a metal layer on the upper surface. SIW has the advantages of high quality factor, small size and easy integration\cite{15,16,17,18,19,20,21,22,23}. The layout and structure of the filter are shown in Fig.1 and Fig.2. The filter consists of two layers of metal and one layer of dielectric. The via holes are sequentially arranged along the inclined sides of the metal layer, and the boundary on both sides is formed by two equivalent cuts of the full-mode substrate integrated waveguide resonator. The diameter of the metalized through holes is 0.6 mm, and the spacing between adjacent holes is 0.75mm. The remaining parameters are $L_1=17.5\text{mm}$, $L_2=4.5\text{mm}$, $L_3=15.5\text{mm}$, $L_4=2.8\text{mm}$, $L_a=1.4\text{mm}$, $L_b=2.4\text{mm}$, $G_1=1.5\text{mm}$, $G_2=1.4\text{mm}$.

![Fig. 1 Layout of the proposed tunable filter with two varactors and two capacitors.](image)

2.2 Analysis of tunable performance

![Fig. 2 Layout of the proposed tunable filter with two varactors and two capacitors.](image)
The notch filter is a special band-rejection filter that eliminates the noise interference of broadband energy by generating a very narrow resistance band [24, 25, 26]. In order to introduce an tunable notch into the wideband, two varactors \(C1 \) are loaded on the surface of the gap \(G1 \) at the two ports to be used as equivalent capacitance. By applying a bias voltage across the capacitor, a specific capacitance can be formed at the gap to produce a high impedance that suppresses the frequency noise. Thus, a narrow stop band, the notch frequency, is formed on the frequency response. It can be known from (1) that by increasing the capacitance of the varactor \(C1 \), the notch frequency \(\omega_{\text{notch}} \) can be changed from large to small, and \(L_{eq} \) is the equivalent inductance of QMSIW resonator.

\[
\omega_{\text{notch}} = \frac{1}{\sqrt{C1 L_{eq}}}
\]

(1)

When \(C1 = 1.3 \) pF, the notch frequency is 4.5 GHz and S11 and S21 are in good performance, as shown in Fig. 3. What’s more, when the varactors \(C1 \) are in the range of 0.65 pF to 1.68 pF, the notch frequency can be varied from 4 GHz to 6.3 GHz continuously. At the same time, the Q value of the filter does not vary greatly with the varactor, and the unload Q remains around 313-315.

In order to achieve bandwidth tuning, we use two PIN diodes to mount on the top metal surface. One end of the PIN diodes is connected to the protruding square at the edge of the top metal layer, and the other end is connected to the underlying metal layer through a metal via. When the PIN diodes are disconnected, the filter is in the normal bandwidth of 3.6 GHz-6.9 GHz. When the PIN diodes are connected, the upper metal is connected to the underlying metal through the PIN diode, causing a change in the electric field as shown in Fig. 4(a) and the bandwidth is reduced to 4.5 GHz-6.2 GHz. Taking \(C1 = 1.3 \) pF as example, the bandwidth is shown in Fig. 4(b).

3. Simulated and measured results

The fabricated filter is shown in the Fig. 5. The dielectric material of the filter is Rogers RO3010 (\(\varepsilon_r = 10.2 \)), and the thickness is 1 mm. The type of two varactors at port gap is SMV2020-079LF. The measured results of the filter agree well with the simulation results, as shown in Fig. 6.

In order to better demonstrate the performance of the filter, Table 1 lists the notch frequency tunable filters in recent years. Besides the wider tuning range, this filter has smaller size and fewer tuning components, which simplifies the circuit soldering process and reduces losses.

3. Conclusion

In this paper, a compact wide-band fully tunable filter is designed. The proposed filter has the advantages of simple structure and compactness, and notch frequency can be tuned in the full passband only by two varactor.
diodes. The measured results agree well with the simulation results. Compared with the previous notch tunable filter, this filter has a wider tuning range and a flexible switching mode, which can dynamically suppress noise in wide bandwidth.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61771490), National Natural Science Foundation of Shaanxi Province (No. 2018JW6055), Military theory research project management platform.

References

[1] Rappaport T S , Murdock J N , Gutierrez F . "State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications", Proceedings of the IEEE 8 (2011)19 1390(doi:10.1109/JPROC.2011.2143650)
[2] X. Li, J. Yu and G. Chang, "Photonic-Assisted Technologies for Extreme Broadband 5G Wireless Communications," in Journal of Lightwave Technology 37 (2019) 2851(doi:10.1109/JLT. 2019.2906498)
[3] Rhee C Y , Kim J H , Jung W J , et al. Frequency-Reconfigurable Antenna for Broadband Airborne Applications. IEEE Antennas and Wireless Propagation Letters, 13 (2014)189 (10.1109/ LAPW.2014.2310356)
[4] X. Li, J. Yu and G. Chang, "Photonic-Assisted Technologies for Extreme Broadband 5G Wireless Communications," in Journal of Lightwave Technology, 37 (2019) 2851(doi:10.1109/ JLT.2019.2906498)
[5] Nishimura S , Jiang H Y . Convergence Analysis of Complex Adaptive IIR Notch Filters,1997
[6] Z. Hu, M. Hou, H. Liu and F. Chen, "Investigation of All-Optical Tunable Notch Filter Based on Sum-Frequency Generation in a PPLN Waveguide," in IEEE Photonics Journal, 7 (2015) 1(doi: 10.1109/JPHOT.2015.2506346)
[10] Ablsi P P , Hryniewicz J V , Little B E , et al. Compact microring notch filters, IEEE Photonics Technology Letters, 4 (2000) 398(doi:10.1109/68.839301)
[11] Hirano K , Nishimura S , Mitra S . Design of digital notch filters, IEEE Transactions on Communications, 4 (1974) 0(doi:11.109 /tcs.1974.1083889)
[12] W. Zhang and R. A. Minasian, "Ultrawide Tunable Microwave Photonic Notch Filter Based on Stimulated Brillouin Scattering," in IEEE Photonics Technology Letters, 24 (2012) 1182(doi: 10.1109/LPT.2012.2198638)
[13] Wang S , Huang B Z . K-band CMOS LNA with interference-rejection using Q-enhanced notch filter. IEICE Electronics Express, 11 (2012) 938(doi:10.1587/elex.9.938)