On the evolution of the quality of macromolecular models in the PDB
Supplementary Materials

Dariusz Brzezinski1,2,3,4, Zbigniew Dauter5, Wladek Minor4 and Mariusz Jaskolski1,6,*

1Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland; 2Institute of Computing Science, Poznan University of Technology, Poznan, 60-965, Poland; 3Center for Artificial Intelligence and Machine Learning, Poznan University of Technology, Poznan, 60-965, Poland; 4Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA; 5Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, USA; 6Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, 61-614, Poland;

*Correspondence e-mail: mariuszj@amu.edu.pl

Table S1. All-time journal ranking according to $P_{Q1}(t)$. The ranking includes all the journals that had at least 100 primary citations of structures in the PDB. $P_{Q1}(t)$ higher than 50\% means that the structures published in a given journal were, on average, better than 50\% of structures present in the PDB at the time of deposition. Journals with more than 1000 structures are highlighted in gray.

* Denotes journals that have average $P_{Q1}(t)$ significantly different than the expected value in the population, according to Welch’s t-test with Bonferroni correction at significance level $\alpha=0.001$.

Rank	Journal	Avg. $P_{Q1}(t)$ \([\%]\)	Avg. resolution \([\text{Å}]\)	Structure count
1	TUBERCULOSIS (EDINB)*	84.81	2.02	132
2	CHEMISTRY*	72.34	1.82	242
3	CHEM COMMUN*	71.88	1.81	280
4	CHEMBIOCHEM*	71.84	1.92	527
5	ACS INFECT DIS*	71.69	1.95	153
6	EUR J MED CHEM*	71.39	2.03	418
7	ACS CATAL*	71.33	1.94	241
8	ORG BIOMOL CHEM*	71.22	1.88	167
9	J INORG BIOCHEM*	71.11	1.78	171
10	IUCRJ*	70.62	1.95	281
11	J SYNCHROTRON RADIAT*	70.24	1.79	147
12	ACS OMEGA*	69.77	1.81	102
13	J BIOL INORG CHEM*	68.05	1.88	265
14	CHEM SCI*	67.78	1.87	268
15	J COMPUT AIDED MOL DES	67.57	1.88	115
16	ANGEW CHEM*	67.45	1.92	1065
17	NAT CHEM*	67.45	1.95	173
18	FEBS J*	66.24	2.02	1359
19	APPL ENVIRON MICROBIOL	66.00	2.01	112
20	ANTIMICROB AGENTS CHEMOTHER*	65.64	1.96	309
21	ARCH BIOCHEM BIOPHYS*	65.33	2.08	276
22	GLYCOBIOLOGY	65.13	1.96	188
23	ACS CHEM BIOL*	64.70	2.04	1104
24	CEMMEDCHEM*	64.65	1.94	556
25	BIOCHEM J*	64.32	2.11	1033
26	INT J MOL. SCI	63.83	2.12	103
	Title	Impact Factor	Citations	
---	-----------------------------	---------------	-----------	
27	ACTA CRYST F*	63.71	1466	
28	ACTA CRYST D*	63.61	4952	
29	J AM CHEM SOC*	63.37	2369	
30	PROTEIN ENG DES SEL	63.05	294	
31	TO BE PUBLISHED*	62.75	22421	
32	BIOPHYS J	62.49	199	
33	MBIO	62.04	169	
34	SCI REP*	61.27	1847	
35	NAT CHEM BIOL	61.12	1013	
36	FEBs LETT	61.10	814	
37	BIOCHEMISTRY*	60.68	8896	
38	PLOS PATHOG	60.66	656	
39	CELL CHEM BIOL	60.51	902	
40	J BIOCHEM	60.30	279	
41	PLOS ONE	60.05	2057	
42	NAT COMMUN*	60.04	3538	
43	FASEB J	60.01	161	
44	BMC STRUCT BIOL	59.69	228	
45	BIOCHIMIE	59.58	128	
46	PROTEIN SCI	59.57	2235	
47	ACS MED CHEM LETT	59.41	1062	
48	J MED CHEM	58.68	5525	
49	BIOCHEM BIOPHYS ACTA	58.15	600	
50	PROTEINS	57.97	1999	
51	BIOORG MED CHEM	57.87	659	
52	MOL MICROBIOL	57.66	412	
53	J BIOL CHEM	57.41	11055	
54	NAT MICROBIOL	56.88	111	
55	J STRUCT BIOL	56.58	1038	
56	INT J BIOL MACROMOL	56.48	168	
57	J STRUCT FUNCT GENOM	55.69	168	
58	STRUCTURE*	55.54	5348	
59	J MOL BIOL*	55.23	9507	
60	VIROLOGY	54.62	126	
61	BIOCHEM BIOPHYS RES COMMUN	54.29	976	
62	MABS	54.14	115	
63	PLANT CELL	53.65	138	
64	J BACTERIOL	53.63	371	
65	NUCLEIC ACIDS RES*	53.31	2127	
66	CELL HOST MICROBE	53.10	107	
67	J VIROL*	52.22	957	
68	PNAS*	52.17	7376	
69	SCI ADV	51.69	182	
70	MOL PHARMACOL	51.48	129	
71	RNA	51.48	245	
72	PLOS BIOL	51.12	336	
73	J EXP MED	50.54	121	
74	ELIFE*	49.25	869	
75	J IMMUNOL*	49.01	296	
76	PROTEIN CELL	48.77	178	
77	BIOORG MED CHEM LETT*	47.44	1590	
78	EMBG REP*	47.25	211	
79	CELL REP*	46.89	399	
80	GENES DEV*	46.62	279	
81	CELL. RES*	45.36	189	
82	SCIENCE*	44.98	1949	
83	NATURE*	44.77	3060	
84	NEURON*	44.65	149	
85	NAT STRUCT MOL BIOL*	44.10	2915	
86	COMMUN BIOL*	43.81	104	
87	EMBJ*	43.63	1910	
88	IMMUNITY*	43.18	265	
89	MOL CELL*	42.69	1599	
90	NAT IMMUNOL*	42.15	119	
91	CELL*	40.07	1563	
Figure S1. Histograms of quality metric values of structures found in the PDB.
Figure S2. Average $P_{Q_1}(t,d)$ of popular journals for each year.
Figure S3. Journal ranking over time according to $P_{Q_1}(t)$.
Figure S4. Journal quality over time according to $P_{Qi}(t)$.
Figure S5. Scatterplots of the values of Clashscore, Ramachandran outliers, and Rotamer outliers found in the PDB.