Determinants of Renal Oxygen Delivery and Renal Oxygen Consumption

Renal oxygen (O$_2$) availability is determined by the balance between renal O$_2$ delivery (RDO$_2$) and renal O$_2$ consumption (RVO$_2$). RDO$_2$, in turn, is dependent on renal blood flow (RBF) and arterial O$_2$ content (CaO$_2$) (Figure 1). RBF is determined by renal perfusion pressure (in the clinical situation, this is usually estimated as mean arterial pressure [MAP] minus central venous pressure). Pressure-flow autoregulation of RBF is well developed in the kidney, and is mediated by myogenic and tubuloglomerular feedback mechanisms (1). In severe hypotension, however, the renal autoregulatory capacity is exhausted and RBF becomes pressure dependent, with a risk of renal ischemia. In patients who are at high risk, a low MAP during surgery or in the intensive care unit (ICU) is directly correlated to an increase in serum creatinine, suggesting AKI (2–4). During surgery and in the postoperative period, many patients receive artificial solutions, such as colloids and crystalloids, which induce hemodilution and a reduction in blood O$_2$ carrying capacity (CaO$_2$), which, in turn, may affect RDO$_2$ negatively. In a recent study, the differential effects of a colloid and a crystalloid fluid on systemic and renal hemodynamics were studied after cardiac surgery. Both fluids improved cardiac output and RBF, but none of the fluids increased RDO$_2$ due to hemodilution (5).

Active tubular sodium reabsorption accounts for 70%–80% of RVO$_2$ (6). If you administer furosemide (bolus of 0.5 mg/kg followed by 0.5 mg/kg per hour) to postoperative patients, RVO$_2$ will decrease by approximately 25%, and experimental studies have shown that furosemide causes an increase in medullary tissue P$_O_2$ (7), indicating an improved renal oxygenation. Tubular sodium reabsorption, in turn, is controlled by GFR (Figure 2). If GFR increases, tubular sodium load will increase, causing tubular reabsorption to also increase. It has been shown in experimental studies (8) and in patients (9) that there is a close linear correlation between GFR, renal sodium reabsorption, and RVO$_2$ (Figure 3). Thus, GFR is an important determinant of RVO$_2$. Infusion of atrial natriuretic peptide to postoperative patients, at a dose of 50 ng/kg per minute, has been shown to increase GFR by 15%, which was accompanied by a 23% increase in RVO$_2$ (10). In the treatment of AKI, the aim is, obviously, to increase GFR, but one must bear in mind that any agent that increases GFR will also increase RVO$_2$ and vice versa. It is also important to acknowledge that, unlike in other organs where an increase in blood flow will improve oxygenation, an increase in RBF augments GFR and the filtered load of sodium, resulting in an increased RVO$_2$. Due to this flow dependency of RVO$_2$, renal oxygenation will vary little, as long as RBF and GFR change in parallel.

The major determinants of GFR are the renal perfusion pressure and the pre-/postglomerular resistance ratio. A renal vasodilator that acts preferentially on the preglomerular resistance vessels increases both RBF and glomerular hydrostatic pressure and, thereby, GFR. Two vasodilatory agents have this renal vasodilatory profile: atrial natriuretic peptide, when used for treatment of AKI (11), and levosimendan in postoperative patients and in patients with cardiorenal syndrome (Figure 4) (12,13). Vasodilators—such as the inodilators dopamine, dobutamine, and milrinone—act on both pre- and postglomerular resistance vessels and will cause a substantial increase in RBF, with no major change in GFR, because dilation of the postglomerular vessels will increase the “runoff” of blood from the glomerulus, with minor changes in upstream glomerular hydrostatic pressure (13–15). The vasoconstrictor vasopressin has been introduced...
Renal perfusion pressure (MAP-CVP)
Renal vascular resistance

CaO₂
RBF

O₂ delivery
O₂ consumption

Renal tissue pO₂

Determinants of renal oxygenation

Figure 1. A schematic drawing of the determinants of renal oxygenation. Renal oxygen (O₂) availability is determined by the balance between O₂ delivery and O₂ consumption. Renal oxygen delivery is dependent on renal blood flow (RBF) and arterial oxygen content (CaO₂). RBF is determined by renal perfusion pressure and renal vascular resistance. In severe hypotension, the renal autoregulatory capacity is exhausted and RBF becomes pressure dependent. A low renal perfusion pressure (mean arterial pressure minus central venous pressure) during surgery or in the intensive care unit is directly correlated to an increase in serum creatinine. CVP, central venous pressure; MAP, mean arterial pressure.

in the clinical arena for treatment of vasodilatory shock, e.g., in patients with septic shock (16). However, the use of vasopressin in shock treatment is a double-edged sword because, in postoperative patients, vasopressin increases GFR, and thereby RVO₂, by vasoconstriction of the postglomerular resistance vessels, which is accompanied by a reduction in RBF and RDO₂. Thus, vasopressin has the potential to induce a renal O₂ supply/demand mismatch (17).

Renal O₂ Extraction Is a Direct Measure of Renal Oxygenation

Renal oxygenation is defined as the ratio between RVO₂ and RDO₂, i.e., the renal O₂ demand/supply relationship. It can easily be shown that this relationship is equivalent to the renal extraction of O₂ (RVO₂; calculated as [CaO₂ – renal vein O₂ content]/CaO₂), which requires measurements of arterial and renal vein O₂ saturations. An increase in RVO₂ means that RVO₂ has increased in relation to RDO₂ (i.e., renal oxygenation has been impaired), and vice versa. When compared with other major organs, RVO₂ is relatively high, second only to the heart. It has been shown in patients who are sedated and mechanically ventilated that RVO₂ is two thirds (10 ml/min) that of myocardial O₂ consumption (15 ml/min) (Table 1) (9). RBF, which accounts for approximately 20%–25% of cardiac output, is three times higher than myocardial blood flow in this group of patients. Therefore, RVO₂ in the nonfailing kidney is low, 10%, as compared with, e.g., the heart, in which O₂ extraction is 55% (Table 1).

The relatively high RBF is directed preferentially to the cortex, which will optimize the filtration process and solute reabsorption. The proportion of the cortical flow that is conducted to the outer and inner medulla is only approximately 40% and 20%, respectively (18). The combination of low medullary perfusion, high O₂ consumption of the medullary thick descending limbs, and the countercurrent exchange of O₂ within the vasa recta results in a poorly oxygenated outer medulla (7). The O₂ availability is, therefore, low in the outer medulla, with a tissue P₂O₂ of 10–20 mm Hg, as compared with 50 mm Hg in the cortex. Thus, because the outer medulla is already on the threshold of hypoxia under normal conditions, it is particularly sensitive to prolonged or intermittent episodes of low RDO₂ caused by hypoperfusion or hemodilution, as seen, e.g., after major surgery (especially cardiac or vascular surgery) or severe heart failure (HF)—common causes of ischemic AKI.

Renal Perfusion and Oxygenation in Clinical AKI

It has provocatively been stated that “acute renal failure is acute renal success” (19,20), because a reduction in GFR in AKI should lead to a reduction in the renal reabsorptive workload, thus preserving medullary oxygenation with a reduced risk of further aggravation of ischemia.

After surgery, in patients who are sedated, mechanically ventilated, without complications, and have no renal dysfunction, RVO₂ is approximately 10–12 ml/min (see Table 1) (13); this value is slightly lower than that which has previously been reported in conscious, healthy volunteers. This corresponds to a mean of 0.82 ml O₂/mm mol reabsorbed sodium, which is in line with findings from previous animal studies (21). In contrast, in high-risk cardiac surgery, complicated by AKI, patients consumed 1.9 ml O₂/mm mol reabsorbed sodium. Thus, the net reabsorption of a certain amount of sodium consumed 2.4 times more O₂ in the AKI group than in postoperative patients with no renal impairment (22). The correlation between GFR and RVO₂ in

Renal O₂ Extraction Is a Direct Measure of Renal Oxygenation

Renal oxygenation is defined as the ratio between RVO₂ and RDO₂, i.e., the renal O₂ demand/supply relationship. It can easily be shown that this relationship is equivalent to the renal extraction of O₂ (RVO₂; calculated as [CaO₂ – renal vein O₂ content]/CaO₂), which requires measurements of arterial and renal vein O₂ saturations. An increase in RVO₂ means that RVO₂ has increased in relation to RDO₂ (i.e., renal oxygenation has been impaired), and vice versa. When compared with other major organs, RVO₂ is relatively high, second only to the heart. It has been shown in patients who are sedated and mechanically ventilated that RVO₂ is two thirds (10 ml/min) that of myocardial O₂ consumption (15 ml/min) (Table 1) (9). RBF, which accounts for approximately 20%–25% of cardiac output, is three times higher than myocardial blood flow in this group of patients. Therefore, RVO₂ in the nonfailing kidney is low, 10%, as compared with, e.g., the heart, in which O₂ extraction is 55% (Table 1).

The relatively high RBF is directed preferentially to the cortex, which will optimize the filtration process and solute reabsorption. The proportion of the cortical flow that is conducted to the outer and inner medulla is only approximately 40% and 20%, respectively (18). The combination of low medullary perfusion, high O₂ consumption of the medullary thick descending limbs, and the countercurrent exchange of O₂ within the vasa recta results in a poorly oxygenated outer medulla (7). The O₂ availability is, therefore, low in the outer medulla, with a tissue P₂O₂ of 10–20 mm Hg, as compared with 50 mm Hg in the cortex. Thus, because the outer medulla is already on the threshold of hypoxia under normal conditions, it is particularly sensitive to prolonged or intermittent episodes of low RDO₂ caused by hypoperfusion or hemodilution, as seen, e.g., after major surgery (especially cardiac or vascular surgery) or severe heart failure (HF)—common causes of ischemic AKI.

Renal Perfusion and Oxygenation in Clinical AKI

It has provocatively been stated that “acute renal failure is acute renal success” (19,20), because a reduction in GFR in AKI should lead to a reduction in the renal reabsorptive workload, thus preserving medullary oxygenation with a reduced risk of further aggravation of ischemia.

After surgery, in patients who are sedated, mechanically ventilated, without complications, and have no renal dysfunction, RVO₂ is approximately 10–12 ml/min (see Table 1) (13); this value is slightly lower than that which has previously been reported in conscious, healthy volunteers. This corresponds to a mean of 0.82 ml O₂/mm mol reabsorbed sodium, which is in line with findings from previous animal studies (21). In contrast, in high-risk cardiac surgery, complicated by AKI, patients consumed 1.9 ml O₂/mm mol reabsorbed sodium. Thus, the net reabsorption of a certain amount of sodium consumed 2.4 times more O₂ in the AKI group than in postoperative patients with no renal impairment (22). The correlation between GFR and RVO₂ in
patients with early AKI after cardiac surgery versus those undergoing uncomplicated surgery are shown in Figure 5. From this figure it can be seen that there is a close correlation between GFR and RVO$_2$ in both groups of patients. According to the “acute renal failure is acute renal success” hypothesis (19,20), patients with AKI should fall on the lower part of the regression line of the control patients. However, the regression line of the patients with AKI is clearly shifted to the left, i.e., at a certain level of GFR, RVO$_2$ is higher (22). Thus, our findings do not support this hypothesis put forward by many investigators that acute renal failure is a renal success.

One can only speculate on the mechanism behind the increased O$_2$ utilization for sodium transport in patients with AKI. A potential explanation could be ischemia-induced loss of epithelial-cell polarization and loss of tight-junction integrity in AKI, as has been shown in experimental studies and after human renal transplantation (23,24). The tubular cells, thus, lose their ability to pump efficiently in a specific direction, from one compartment to another. Another explanation for the increased O$_2$ costs for sodium reabsorption in clinical AKI may be diminished renal generation of nitric oxide (NO) due to endothelial damage and downregulation of endothelial NO synthase (25–27). NO has been shown to directly compete with O$_2$ for mitochondrial respiration, suggesting a basal modulatory role for NO in O$_2$ consumption (28). Laycock et al. (28) showed that blockade of NO synthase increased RVO$_2$ in dogs, while reducing GFR and renal sodium reabsorption. Indeed, inhibition of NO synthesis more than doubled the RVO$_2$/renal sodium reabsorption ratio in that study.

Figure 3. | The close relationships between renal sodium reabsorption, renal oxygen consumption, and GFR in postoperative patients undergoing uncomplicated cardiac surgery. Data obtained by permission from the authors (ref. 22).
The resetting of the relationship between GFR and RVO\textsubscript{2} in clinical ischemic AKI (Figure 5) was accompanied by a severe impairment of the renal O\textsubscript{2} demand/supply relationship, as demonstrated by the 70% higher RO\textsubscript{2}Ex, which was caused by a pronounced vasoconstriction and renal hypoperfusion at a maintained RVO\textsubscript{2}, compared with controls, despite a normalized cardiac output and MAP (Table 2) (13).

Renal Perfusion and Oxygenation in Early Clinical Septic Shock

Severe sepsis and septic shock is a common cause of ICU admission and is responsible for AKI (septic AKI) in approximately 40%–50% of the critically ill population. Furthermore, septic AKI is associated with a high risk of early hospital mortality (29,30). There are divergent theories regarding the pathophysiology of septic AKI. Schrier and Wang (31) proposed, on the basis of experimental models, that the predominant early pathogenetic factor is renal vasoconstriction caused by reflex activation of renal sympathetic activity, the renin-angiotensin system, and increased levels of arginine vasopressin, which thus decreases both RBF and GFR and is induced by constriction of afferent arterioles. In contrast, in a hyperdynamic, experimental sepsis model, Langenberg \textit{et al.} (32) showed that the reduction in creatinine clearance was accompanied by an increase in RBF, and this was, therefore, explained by dilation of efferent arterioles.

Recently, we measured renal perfusion, filtration, and oxygenation in patients within 24 hours after their arrival to the ICU due to early NE-dependent septic shock (33). Renal plasma flow was measured using the infusion-clearance technique for p-aminohippuric acid (PAH), corrected by renal extraction of PAH by a renal vein catheter. Filtration fraction was measured by renal extraction of chromium-51–labeled EDTA (51Cr-EDTA). Renal oxygenation was estimated from RO\textsubscript{2}Ex (Table 3). Patients undergoing uneventful major cardiac surgery served as a comparator group. We believe the comparison between these two groups is relevant because both groups were exposed to systemic inflammation. Furthermore, both groups were sedated and mechanically ventilated during the experimental procedure.

RBF and RDO\textsubscript{2} were impaired, due to renal vasoconstriction and a redistribution of blood flow away from the kidneys, when compared with a comparator group (Table 3). This renal vasoconstriction could be explained by an

Renal Variables	Kidney	Heart
Oxygen consumption (ml/min)	10	15
Blood flow (ml/min)	750	250
Oxygen extraction (%)	10	55

Data obtained by permission from the authors (refs. 10 and 14).
increase, particularly, in the tone of the renal afferent arterioles, because renal filtration fraction (GFR/renal plasma flow) was not significantly different between the two groups, suggesting a balanced decrease in both GFR and RBF in the patients with septic shock. Such an increase in the tone of the afferent arterioles in sepsis has been demonstrated in endotoxemic animals (34). This redistribution of blood flow in septic shock impaired the renal O$_2$ supply/demand relationship, as evidenced by an increased RO$_2$Ex. Thus, these results are not in line with data from previous studies on large animals, which showed that AKI in early septic shock is accompanied by renal vasodilation and an increase in RBF (32). The lower RDO$_2$ may explain the early signs of tubular dysfunction/injury seen in the septic group, which are expressed as a pathologic elevation of the tubular injury marker N-acetyl-β-D-glucosaminidase (NAG).

Effects of Cardiopulmonary Bypass on Renal Perfusion and Oxygenation

AKI is a prevalent complication after cardiac surgery with cardiopulmonary bypass (CPB). The incidence of post–cardiac surgery AKI ranges between 15% and 30%, depending on the complexity of the procedure (35,36). Dialysis-dependent AKI, occurring in 2%–5% of patients who undergo cardiac surgery, carries a mortality of between 50% and 80% (37). Renal hypoperfusion and impaired RDO$_2$ have been considered important pathways in the development of post–cardiac surgery AKI (38,39). It has previously been shown that RBF correlates positively to MAP during hypothermic (28°C), non-pulsatile CPB, suggesting impaired autoregulation of RBF (40).

A decreased RDO$_2$ may also be caused by hemodilution due to priming the CPB circuit with cellfree solution, usually a crystalloid. It has been shown that the degree of hemodilution (38,41) and a decreased systemic O$_2$ delivery (42) are independent risk factors for the development of postoperative AKI.

To increase our understanding of the renal effects of cardiac surgery with normothermic CPB, we measured RBF, RDO$_2$, GFR, RVO$_2$, and the renal O$_2$ supply/demand relationship (RO$_2$Ex) before, during, and after open cardiac surgery using CPB (43). Despite a 33% increase in systemic perfusion flow rate compared with baseline cardiac output, CPB induced renal vasoconstriction, redistributing blood flow away from the kidneys, which, in combination with hemodilution, decreased RDO$_2$ by 20%, while GFR and RVO$_2$ were unchanged (Figure 6). Thus, RO$_2$Ex increased by 40%–45%, indicating a renal O$_2$ supply/demand mismatch.

Table 2. Renal perfusion, filtration, and oxygenation in clinical AKI after cardiac surgery

Systemic and Renal Variables	Control Group (n=37)	AKI Group (n=12)	P Value
Mean arterial pressure (mm Hg)	73.9±1.1	73.5±0.7	NS
Cardiac index (L/min per m2)	2.63±0.08	2.77±0.16	NS
Renal blood flow (ml/min)	758±40	477±54	<0.001
Renal vascular resistance (mm Hg/ml per min)	0.097±0.005	0.146±0.015	<0.01
GFR (ml/min)	74.7±4.7	32.3±3.6	<0.001
Sodium reabsorption (mmol/min)	9.7±0.7	4.0±0.4	<0.001
Renal oxygen consumption (ml/min)	10.4±0.6	11.0±1.1	NS
Renal oxygen extraction	0.097±0.004	0.163±0.009	<0.001

Values are means±SEM. Data obtained by permission from the authors (ref. 22).
during CPB. After weaning from CPB, renal oxygenation deteriorated further, because R\textsubscript{O2}Ex increased by 80% from baseline (Figure 7), due to hemodilution and an increase in R\textsubscript{VO2} (45% compared with baseline), accompanied by a peak sevenfold increase in the urinary NAG/creatinine ratio, indicating tubular injury. There was a positive correlation between the increase in R\textsubscript{O2}Ex and the urinary NAG/creatinine ratio, suggesting renal hypoxia may have a causative role in the release of the tubular injury marker. The increase in R\textsubscript{VO2} after CPB could be explained by a resetting of the relationship between renal sodium reabsorption and R\textsubscript{VO2}. Before CPB, a mean of 0.86 mmol O\textsubscript{2} was consumed per millimole of reabsorbed sodium. In contrast, after CPB, 1.31 mmol O\textsubscript{2}/mmol reabsorbed sodium was consumed. Thus, the net reabsorption of a certain amount of sodium consumed 52% more O\textsubscript{2} after CPB, as compared with before CPB. Such an increased O\textsubscript{2} utilization for tubular sodium transport has previously been described in patients with postcardiac surgery AKI and most likely reflects hypoxia-induced tubular dysfunction (see above).

Theoretically, one way to improve renal oxygenation would be to perform CPB at a higher flow rate than the one traditionally used. This concept was tested by Lanne myr et al. (44), who studied the effects of varying CPB flow rates (2.4, 2.7, and 3.0 L/min per m2) on renal oxygenation in 17 patients with normal renal function undergoing cardiac surgery with normothermic CPB. At a flow rate of 2.7 and 3.0 L/min per m2, R\textsubscript{O2}Ex was 12% and 23% lower, respectively, compared with 2.4 L/min per m2. This corresponds to a 14% and 30% improvement, respectively, of the renal O\textsubscript{2} supply/demand relationship. One could, therefore, speculate that one way to protect the kidneys during CPB would be to use higher CPB flow rates than those conventionally used. Our group has recently launched a randomized trial evaluating the renal effects of a high (3.0 L/min per m2) versus a standard CPB flow rate (2.4 L/min per m2). The primary end points are RBF, R\textsubscript{D02}, and tubular injury markers (ClinicalTrials.gov identifier, NCT04084301).

Renal Perfusion and Oxygenation after Liver Transplantation

AKI is a common complication after liver transplantation, with a reported incidence of 10%–60% (45,46). Mortality after liver transplantation is reported to be 45%–55% in patients developing AKI, compared with 2%–6% in patients not developing AKI (45). The etiology of AKI after liver transplantation is unknown, but is most likely multifactorial. Hypotension caused by intraoperative blood loss and postreperfusion syndrome (47) is presumably of importance. Furthermore, renal dysfunction may be present before transplantation, as seen in patients with hepatorenal syndrome. In patients with hepatorenal syndrome, a splanchnic vasodilation is seen. This vasodilation is accompanied by activation of the renin-angiotensin system and the sympathetic nervous system, resulting in increased renal vascular resistance. As a result, blood flow will be distributed away from the kidneys and, hence, the kidneys will receive a decreased O\textsubscript{2} delivery (48,49). This could be considered as a potential mechanism causing AKI after liver transplantation.

To gain more insight into the pathophysiologic mechanisms behind the development of AKI in liver transplanted patients, we studied renal hemodynamics, function, and

Table 3. The kidney in early clinical sepsis

Systemic and Renal Variables	Comparator Group (postoperative patients; n=58)	Early Sepsis (n=8)	P Value
Mean arterial pressure (mm Hg)	73±7	76±2	NS
Cardiac index (L/min per m2)	2.8±0.5	3.3±0.6	<0.05
Renal blood flow (ml/min)	888±281	696±166	<0.05
Renal oxygen delivery (ml/min)	122±42	93±24	<0.05
Renal vascular resistance (mm Hg/ml per min)	0.082±0.023	0.098±0.023	<0.05
GFR (ml/min)	80±24	54±18	<0.01
R\textsubscript{VO2} (ml/min)	11.4±3.1	11.4±4.0	NS
Renal oxygen extraction (%)	9.7±2.7	12.4±3.9	<0.05
R\textsubscript{VO2}/sodium reabsorption (ml/mmol)	1.2±0.3	1.6±0.7	<0.05
Urinary NAG/creatinine	—	5.4±3.4 (<1.5)	—

Values are means±SD. R\textsubscript{VO2}, renal oxygen consumption; NAG, N-acetyl-\beta-D-glucosaminidase. Data obtained by permission from the authors (ref. 33).

Figure 6. The effects of cardiopulmonary bypass (CPB) on systemic (DO\textsubscript{2}I) and renal (R\textsubscript{D02}) oxygen delivery in patients undergoing cardiac surgery. Note DO\textsubscript{2}I was well maintained whereas R\textsubscript{D02} decreased on CPB (flow rate, 2.4–2.5 L/min per m2). The decrease in R\textsubscript{D02} was caused by a decrease in arterial oxygen content, due to hemodilution, and renal vasoconstriction. Data obtained by permission from the authors (ref. 44).
Due to the decrease in renal oxygen delivery, even at 30 minutes after the start of CPB, renal oxygenation was impaired, as shown by an increase in renal oxygen extraction. Early after CPB (post CPB), renal oxygenation was further impaired due to a pronounced increase in renal oxygen consumption seen after CPB. Data obtained by permission from the authors (ref. 44). *P<0.05; **P<0.001.

Renal Perfusion and Oxygenation in Patients with Congestive HF and Chronic Renal Impairment

HF affects >26 million people worldwide and is a leading cause for hospitalization in Europe and the United States (55). Renal dysfunction caused by HF, also denoted as
cardiorenal syndrome, is independently associated with increased risk of hospitalization and cardiovascular death (56). Indeed, renal dysfunction is a stronger predictor of mortality than New York Heart Association functional class of left ventricular ejection fraction (56). However, data on renal hemodynamics, GFR, RVO$_2$, and renal oxygenation in clinical HF are scarce, and the therapeutic options for treatment of cardiorenal syndrome are limited (57).

In a recent study, Lannemyr et al. (13) measured systemic and renal hemodynamics, GFR, RVO$_2$, and renal oxygenation in 29 patients with chronic HF (left ventricular ejection fraction <40%) and impaired renal function (GFR <80 ml/min per 1.73 m2). A pulmonary artery catheter was used for measurements of systemic hemodynamics. The left renal vein was catheterized, and GFR and RBF were measured using the infusion-clearance technique for 51Cr-EDTA and PAH (corrected for renal extraction of PAH), respectively. When compared with a control group, with neither HF nor renal dysfunction (33), renal vascular resistance was 102% higher than in the comparator group, which could explain the pronounced reduction in RBF (−52%), RDO$_2$ (−46%), and GFR (−48%) in these patients (Figure 8). The RBF/cardiac index ratio was only 18% in the patients with HF compared with 31% in the comparator group, suggesting a marked redistribution of RBF away from the kidneys. The lower RBF in these patients could be caused by an increased renal vascular resistance caused by, e.g., increased renal sympathetic activity, activation of the renin-angiotensin-aldosterone system, and increased release of vasopressin, but also by increased central venous pressure (i.e., increased renal venous back pressure). Filtration fraction was moderately elevated (17%) in the patients with HF when compared with the comparator group (14%), suggesting there is a preferential increase in preglomerular vascular resistance in patients with HF compared with controls. Despite the much lower GFR, RVO$_2$ was only 22% lower than in the comparator group. RO$_2$/Ex was 15% in the patients with HF, a number considerably higher than in the comparator group (10%). In other words, the pronounced reduction in RDO$_2$ could not meet renal O$_2$ requirements, causing

Renal Variables	AKI	Early Sepsis	CPB	Liver Transplantation	CKD
Renal oxygenation	Impaired	Impaired	Impaired	Impaired	Impaired
Renal oxygen delivery	Decreased	Decreased	Decreased	Increased	Decreased
GFR	Decreased	Decreased	Unchanged	Decreased	Decreased
RVO$_2$	Unchanged	Unchanged	Increased (after CPB)	Increased (after CPB)	Not studied
RVO$_2$/sodium reabsorption	Increased	Increased	Increased (after CPB)	Increased (after CPB)	Not studied

CPB, cardiopulmonary bypass; RVO$_2$, renal oxygen consumption.
a chronic impairment of renal oxygenation in the patients with HF. It has been suggested that renal hypoxia could be the final path way for progression to CKD (54), because chronic hypoxia induces oxidative stress, production of extracellular matrix, collagen deposition, vascular rarefa-

Conclusion

In this review, we have presented data on renal hemodynamics, GFR, RVO2, and renal oxygenation from various groups of patients with renal dysfunction, such as in patients with AKI after cardiac surgery, in those with early sepsis, patients undergoing cardiac surgery with CPB, patients undergoing liver transplantation, and in patients with chronic renal failure. Irrespective of the cause of renal failure, for these groups of patients, the common denominator is that renal oxygenation is impaired (Table 5). This was caused by a lower RDO2 in all groups, except for patients undergoing liver transplantation, where impaired renal oxygenation was caused by a pronounced increase in RVO2. Finally, in all groups, there was an increased O2 utilization for tubular sodium transport, which most likely reflects hypoxia-induced tubular dysfunction.

Disclosures

L. Lannemyr reports receiving honoraria from Orion Pharma, and having consultancy agreements with XVIVO Perfusion AB. All remaining authors have nothing to disclose.

Funding

This work was supported by Swedish State Support for Clinical Research grant ALFGBG-75130.

Author Contributions

G. Bragadottir, L. Lannemyr, B. Redfors, and J. Skytte were responsible for methodology; S.-E. Ricksten wrote the original draft; and all authors reviewed and edited the manuscript.

References

1. Cupples WA, Braam B: Assessment of renal autoregulation. Am J Physiol Renal Physiol 292: F1105–F1123, 2007 https://doi.org/10.1152/ajprenal.00194.2006
2. Futier E, Lefranct JV, Guinet PG, Godet T, Lorre E, Cuvelloin P, Bertrand S, Leone M, Patene B, Piriou V, Moliex S, Albane J, Julia JM, Taveinier B, Imhofo E, Bazin JE, Constantin JM, Pereira B, Jaber S; INPRESS Study Group: Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: A randomized clinical trial. JAMA 318: 1346–1357, 2017 https://doi.org/10.1001/jama.2017.14172
3. Mathis MR, Naik BI, Freundlich RE, Shanks AM, Heung M, Kim M, Burns ML, Colquhoun DA, Ranggrass G, Janda A, Engoren MC, Saager L, Templer KK, Ketephaler S, Aziz MF, Coffman T, Durieux ME, Levy WJ, Schonberger RB, Soto R, Wilczak J, Berman MF, Berris J, Biggs DA, Coles P, Craft RM, Cummings KC, Ellis TA 2nd, Fleischut PM, Helsten DL, Jackson LC, van Keli WA, Kosei F, LaGario J, Lins S, Miller SA, Molina S, Nair B, Paganelli WC, Peterson W, Tom S, Wanderer JP, Weeden C; Multicenter Per-

operative Outcomes Group Investigators: Preoperative risk and the association between hypotension and postoperative acute kidney injury. Anesthesiology 132: 461–475, 2020 https://
doi.org/10.1097/ALN.00000000000003063
4. Khanna AK, Maheshwari K, Mao G, Liu L, Perez-Pratte SE, Chodavarupu P, Schacham YN, Sessler DI: Association between mean arterial pressure and acute kidney injury and a composite of myocardial injury and mortality in postoperative critically ill patients: A retrospective cohort analysis. Crit Care Med 47: 910–917, 2019 https://doi.org/10.1097/CCM.0000000000003763
5. Skytte Larsson J, Bragadottir G, Knumbholz V, Redfors B, Sellgren J, Ricksten SE: Effects of acute plasma volume expansion on renal perfusion, filtration, and oxygenation after cardiac surgery: A randomized study on crystalloid vs colloidid. Br J Anaesth 115: 736–742, 2015 https://doi.org/10.1093/bja/aev346
6. Kil F, Aukland K, Reusm HE: Renal sodium transport and oxygen consumption. Am J Physiol 201: 511–516, 1961 https://doi.org/10.1152/ajplegacy.1961.201.3.511
7. Brezis M, Rosen S: Hypoxia of the renal medulla--its implications for disease. N Engl J Med 332: 647–655, 1995 https://doi.org/10.1056/NEJM19950309321006
8. Torelli G, Milla E, Faelli A, Costantini S: Energy requirement for sodium reabsorption in the in vivo rabbit kidney. Am J Physiol 211: 576–580, 1966 https://doi.org/10.1152/ajplegacy.1966.211.3.576
9. Ricksten SE, Bragadottir G, Redfors B: Renal oxygenation in clinical acute kidney injury. Crit Care 17: 221, 2013 https://doi.org/10.1186/cc12530
10. Svärd K, Valsson F, Sellgren J, Ricksten SE: Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Intensive Care Med 31: 79–85, 2005 https://doi.org/10.1007/s00134-004-2490-3
11. Valsson F, Ricksten SE, Hedner T, Lundin S: Effects of atrial na-
triuretic peptide on acute renal impairment in patients with heart failure after cardiac surgery. Intensive Care Med 22: 230–236, 1996 https://doi.org/10.1007/BF01712242
12. Bragadottir G, Redfors B, Ricksten SE: Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: A randomized placebo-controlled study. Crit Care Med 41: 2328–2335, 2013 https://doi.org/10.1097/CCM.0b013e31828e946A
13. Lannemyr L, Ricksten SE, Rundqvist B, Andersson B, Bartfay SE, Ljungman C, Dahlberg P, Bergh N, Hjalmarsson C, Gilljam T, Bollano E, Karason K: Differential effects of levosimendan and dobutamine on glomerular filtration rate in patients with heart failure and renal impairment: A randomized double-blind
47. Siniscalchi A, Gambarini L, Laici C, Bardi T, Ercolani G, Lorenzini L, Faenza S: Post reperfusion syndrome during liver transplantation: From pathophysiology to therapy and preventive strategies. *World J Gastroenterol* 22: 1551–1569, 2016 https://doi.org/10.3748/wjg.v22.i4.1551

48. Arroyo V, Guevara M, Gines P: Hepatorenal syndrome in cirrhosis: Pathogenesis and treatment. *Gastroenterology* 122: 1658–1676, 2002 https://doi.org/10.1016/S0016-5085(02)02357-5

49. Ruiz-del-Arbol L, Morcillo A, Arcencio C, Valer P, Gines P, Moreira V, Milicua JM, Jiménez W, Arroyo V: Circulatory function and hepatorenal syndrome in cirrhosis. *Hepatology* 42: 439–447, 2005 https://doi.org/10.1002/hep.20766

50. Skytte Larsson J, Bragadottir G, Redfors B, Ricksten SE. Renal function and oxygenation are impaired early after liver transplantation despite hyperdynamic systemic circulation. *Crit Care* 21: 87, 2017 https://doi.org/10.1186/s13054-017-1675-4

51. Sward K, Valsson F, Sellgren J, Ricksten SE: Bedside estimation of absolute renal blood flow and glomerular filtration rate in the intensive care unit. A validation of two independent methods. *Intensive Care Med* 30: 1776–1782, 2004 https://doi.org/10.1007/s00134-004-2380-8

52. Calzavacca P, Bailey M, Velkoska E, Burrell LM, Ramchandra R, Bellomo R, May CN: Novel targets for sepsis-induced kidney injury: The glomerular arterioles and the sympathetic nervous system. *Exp Physiol* 97: 1168–1177, 2012 https://doi.org/10.1113/expphysiol.2011.061804

53. Palm F, Norquist L: Renal oxidative stress, oxygenation, and hypertension. *Am J Physiol Renal Integr Physiol* 301: R1229–R1241, 2011 https://doi.org/10.1152/ajpren.00720.2010

54. Savarese C, Lund LH: Global public health burden of heart failure. *Card Fail Rev* 3: 7–11, 2017 https://doi.org/10.15420/cfr.2016.25.2

55. Hillege HL, Nitsch D, Pfeiffer MA, Swedberg K, McMurray JJ, Yusuf S, Granger CB, Michelson EL, Ostergren J, Cornel JH, de Zeeuw D, Pocock S, van Veldhuijen DJ; Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Investigators: Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. *Circulation* 113: 671–678, 2006 https://doi.org/10.1161/CIRCULATIONAHA.105.580506

56. Hillege HL, Gines A, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, Hampton JR, van Veldhuijen DJ; Renal function, neurohormonal activation, and survival in patients with chronic heart failure. *Circulation* 102: 203–210, 2000 https://doi.org/10.1161/01.CIR.102.2.203

57. Skytte Larsson J, Bragadottir G, Redfors B, Nordquist L: Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. *Clin Exp Pharmacol Physiol* 40: 138–147, 2013 https://doi.org/10.1111/1440-1681.12036

58. Norman JT, Fine LG: Intrarenal oxygenation in chronic renal failure. *Clin Exp Pharmacol Physiol* 33: 989–996, 2006 https://doi.org/10.1111/j.1440-1681.2006.04476.x

59. Ortmann LA, Fontenot EE, Seib PM, Eble BK, Brown R, Bhutta AT: Use of near-infrared spectroscopy for estimation of renal oxygenation in children with heart disease. *Pediatr Cardiol* 32: 748–753, 2011 https://doi.org/10.1007/s00246-011-9960-5

60. Ricci Z, Halberger R, Tofani L, Romagnoli S, Favia I, Cogo P: Multisite near infrared spectroscopy during cardiopulmonary bypass in pediatric patients. *Artif Organs* 39: 584–590, 2015 https://doi.org/10.1111/aor.12424

61. Norquist L: Renal oxidative stress, oxygenation, and hypertension. *Am J Physiol Regul Integr Comp Physiol* 301: R1229–R1241, 2011 https://doi.org/10.1152/ajpren.00720.2010

62. Savarese C, Lund LH: Global public health burden of heart failure. *Card Fail Rev* 3: 7–11, 2017 https://doi.org/10.15420/cfr.2016.25.2

63. Hillege HL, Nitsch D, Pfeiffer MA, Swedberg K, McMurray JJ, Yusuf S, Granger CB, Michelson EL, Ostergren J, Cornel JH, de Zeeuw D, Pocock S, van Veldhuijen DJ; Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Investigators: Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. *Circulation* 113: 671–678, 2006 https://doi.org/10.1161/CIRCULATIONAHA.105.580506

64. Hillege HL, Gines A, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, Hampton JR, van Veldhuijen DJ; Renal function, neurohormonal activation, and survival in patients with chronic heart failure. *Circulation* 102: 203–210, 2000 https://doi.org/10.1161/01.CIR.102.2.203

65. Skytte Larsson J, Bragadottir G, Redfors B, Nordquist L: Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. *Clin Exp Pharmacol Physiol* 40: 138–147, 2013 https://doi.org/10.1111/1440-1681.12036

66. Norman JT, Fine LG: Intrarenal oxygenation in chronic renal failure. *Clin Exp Pharmacol Physiol* 33: 989–996, 2006 https://doi.org/10.1111/j.1440-1681.2006.04476.x

67. Ortmann LA, Fontenot EE, Seib PM, Eble BK, Brown R, Bhutta AT: Use of near-infrared spectroscopy for estimation of renal oxygenation in children with heart disease. *Pediatr Cardiol* 32: 748–753, 2011 https://doi.org/10.1007/s00246-011-9960-5

68. Ricci Z, Halberger R, Tofani L, Romagnoli S, Favia I, Cogo P: Multisite near infrared spectroscopy during cardiopulmonary bypass in pediatric patients. *Artif Organs* 39: 584–590, 2015 https://doi.org/10.1111/aor.12424

69. Tholén M, Ricksten SE, Lannemyr L: Renal near-infrared spectroscopy for assessment of renal oxygenation in adults undergoing cardiac surgery: A method validation study. *J Cardiothorac Vasc Anesth* 34: 3300–3305, 2020

Received: November 30, 2020 Accepted: March 2, 2021