INTRODUCTION

Cross-sectional imaging, including multi-detector computed tomography (MDCT), magnetic resonance imaging (MRI), and magnetic resonance cholangiopancreatography (MRCP), have been widely used to evaluate the pancreaticobiliary system. In detecting pancreatic and biliary disease, MDCT and MRI have a sensitivity of 70%–95% and 85%–96% and a specificity of 75%–85% and 89%–98%, respectively.\(^1\)\(^-\)\(^5\) Despite their excellent diagnostic performance, the evaluation of the distal bile duct or ampullary area is often limited. In asymptomatic patients, dilated common bile ducts (CBDs) on imaging may be influenced by age, sex, body mass index, and cholecystectomy history. The common pathological causes of CBDs dilatation are choledocholithiasis, periampullary carcinoma, and benign biliary stricture (BBS); however, these lesions can be missed by MDCT, MRI, and MRCP.\(^6\)\(^-\)\(^12\) Endoscopic retrograde cholangiopancreatography (ERCP) has historically been one of the most accurate diagnostic procedures for pancreatic and biliary diseases. However, it should only be done for therapeutic purposes due to its invasive nature and potential lethal complications, such as post-ERCP pancreatitis, bleeding, and...
perforation. Endoscopic ultrasonography (EUS) has evolved as a tool for evaluating hepatobiliary and pancreatic diseases. There is a dearth of literature regarding the utility of EUS in outlining a dilated CBDs.13 This study aimed to evaluate the diagnostic yield of EUS in dilated CBDs without identifiable causes on MDCT or MRI with or without MRCP findings.

MATERIALS AND METHODS

Study population
The 2012–2017 EUS database at a tertiary care center was retrospectively reviewed. The study protocol was approved by the institutional review board and was adapted to the ethical guidelines of the Declaration of Helsinki. Patients who underwent EUS due to CBDs dilatation without definite etiology detected by MDCT or MRI with or without MRCP were identified. The inclusion criteria were as follows: 1) CBDs dilatation, defined as CBDs diameter ≥ 7 mm in patients with gall bladder in situ or ≥ 10 mm in post-cholecystectomy patients and 2) no causes of CBDs dilatation identified by MDCT or MRI with or without MRCP. The exclusion criteria were as follows: 1) patients with definite causes of CBDs dilatation identified by cross-sectional imaging and 2) patients without available MDCT, MRI, or MRCP for review.

Clinical, laboratory, and radiological data
All EUS procedures were performed with either a radial (GF-UE160-AL5; Olympus, Tokyo, Japan) or linear (GF-UC140P-AL5; Olympus, Tokyo, Japan) echoendoscope by an experienced endoscopist who had performed more than 2,000 EUS procedures. Demographic data, clinical presentations, laboratory results, radiological findings, EUS findings, cytopathological results, and follow-up data of all included patients were collected. The definite diagnosis was determined by the results of ERCP, cytology, or histology obtained from EUS-guided tissue acquisition (EUS-TA), surgical pathology, and clinical, laboratory, and radiological follow-up for at least 12 months.

Definition
Cholelithiasis was determined by visualization of the stones in the CBDs during ERCP. Malignancy was confirmed by cytology or histology obtained by EUS-TA, or surgical pathology. If the tissue diagnosis could not be obtained, clinical, laboratory, and radiological follow-up was required for at least 12 months. BBS was defined as narrowing of the distal CBDs diameter without visualization of stones or masses and negative cytology or histology obtained by EUS-TA or ERCP, combined with no progression of bile duct dilatation and interval symptoms during a 12-month follow-up of clinical condition, laboratory, and radiological studies. If surgical pathology was available, BBS was defined as the absence of malignancy. CBDs dilatation without pathological causes was determined by the absence of progression of bile duct dilatation and interval symptoms during a 12-month follow-up of clinical condition, laboratory, and radiological studies.

Statistical analysis
Descriptive statistics were computed for demographic, clinical, and laboratory data. For normally distributed quantitative variables, results are expressed as means and standard deviations; otherwise, medians and ranges are reported. Qualitative variables were summarized as counts and percentages. The area under the receiver operating characteristic curve (AUROC) was calculated to evaluate the overall accuracy of EUS for identifying the causes of bile duct dilatation. The predictive ability was further analyzed by calculating the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, positive predictive value (PPV), and negative predictive value (NPV) with their 95% confidence interval (CI). Logistic regression models were used to evaluate the relationship between baseline characteristics and the presence or absence of pathology. All statistical tests were performed at the conventional two-tailed α-level of 0.05. SPSS Statistics (version 18.0; SPSS Inc., Chicago, IL, USA) was used for all analyses.

RESULTS

Characteristics of the study cohort
The EUS database showed that 2,954 patients underwent diagnostic EUS during the study period. A total of 175 patients underwent EUS for CBDs dilatation without identifiable causes. Forty-four patients were excluded because of unavailable radiological studies for review. Among the 131 included patients, the mean age was 63.2 ± 14.1 years, 47.3% were male, and the most common clinical manifestations were abnormal liver function tests (85.5%), jaundice (48.9%), and abdominal pain (48.1%). The mean CBDs diameter was 12.2 ± 4.1 mm, and 58% had coexisting intrahepatic duct (IHD) dilatation. Among abnormal liver function tests, elevated total bilirubin (median, 2.3 mg/dL; range, 0.2–37.8), aspartate aminotransferase (median, 66 IU/L), alanine aminotransferase (ALT) (median, 66 IU/L), and alkaline phosphatase (ALP) (median, 249 IU/L) were detected (Table 1).

Definite etiology of CBD dilatation
EUS detected the causes of CBDs dilatation in 88 of 131 patients (67%). Among the 131 patients, 41 patients (31%) had
malignancy, consisting of distal cholangiocarcinoma (51.2%),
ampullary adenocarcinoma (24.3%), pancreatic adenocarci-
oma 19.5%), gallbladder carcinoma (2.5%), and duodenal ade-
ocarcinoma (2.5%). A total of 24 (18.3%), 23 (17.6%), and 43 (33%) patients had choledocholithiasis, BBS, and dilated CBDs
without a pathological cause of obstruction, respectively.

Diagnostic performance of EUS
The diagnostic performance of EUS in detecting the causes
of CBDs dilatation was evaluated, as shown in Table 2. EUS
had an excellent diagnostic performance for identifying the
etiology of CBDs dilatation with an AUROC, sensitivity,
specificity, PPV, and NPV of 0.98 (95% CI, 0.95–1.00), 100%
(95% CI, 95.8–100), 95.6% (95% CI, 84.9–99.5), 97.7% (95% CI,
92.0–99.7), and 100% (95% CI, 91.8–100), respectively. Furth-
more, we assessed the diagnostic accuracy of EUS for
each diagnosis. Among all the diagnoses, EUS performed the
best in detecting choledocholithiasis with an AUROC, sensi-
tivity, and specificity of 1.00 (95% CI, 1.00–1.00), 100% (95% CI,
85.8–100), and 100% (95% CI, 96.6–100), respectively. For
malignancy, EUS was 82.9% (95% CI, 67.9–92.8) sensitive
and 98.9% (95% CI, 94.0–100) specific with an AUROC of
0.91 (95% CI, 0.85–0.97). For BBS, EUS had an AUROC of
0.93 (95% CI, 0.87–0.99) with a high NPV of 98.1% (95% CI,
93.2–99.8).

Predictors for determining the presence of
pathological obstruction
Multivariate analysis showed that male sex, ALT ≥ 3 × the
upper limit of normal (ULN), ALP ≥ 3 × the ULN, and IHD
dilatation were significant predictors for pathological obstruc-
tion, with odds ratios of 5.46 (95% CI, 1.74–17.1), 5.02 (95% CI,
1.48–17.0), 4.63 (95% CI, 1.1–19.6) and 4.03 (95% CI, 1.37–11.8), respectively (Table 3).

Table 1. Baseline Characteristics of the Study Population

Baseline Characteristics	Values
Number	131
Male gender	62 (47.3)
Age (years)	63±14.1
Body mass index (kg/m²)	21.8±3.5
History of cholecystec-	
tomy	19 (14.5)

Data are presented as the number (%) or mean±standard deviation.
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CA, carbohydrate antigen.

Table 2. Diagnostic Performance of Endoscopic Ultrasonography for Identifying Causes of Common Bile Duct Dilatation

Definite diagnosis	AUROC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)	LR+ (95% CI)	LR- (95% CI)	PPV (95% CI)	NPV (95% CI)
Pathological obstruction	0.98 (0.95–1.00)	100 (95.8–100)	95.6 (84.9–99.5)	22.5 (5.81–87.2)	0	97.7 (92.0–99.7)	100 (91.8–100)
Choledocholithiasis	1.00 (1.00–1.00)	100 (85.8–100)	96.6 (96.6–100)	–	0	100 (85.8–100)	100 (96.6–100)
Malignancy	0.91 (0.85–0.97)	82.9 (67.9–92.8)	98.9 (94.0–100)	74.6 (10.6–527)	0.17	97.1 (85.1–99.9)	92.7 (85.6–97.0)
Benign biliary stricture	0.93 (0.87–0.99)	91.7 (73.0–99.0)	94.4 (88.3–97.9)	16.5 (751–362)	0.09	78.6 (59.0–91.7)	98.1 (93.2–99.8)

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; LR+, positive likelihood ratio; LR-, negative like-
lihood ratio; NPV, negative predictive value; PPV, positive predictive value.
DISCUSSION

CBDs dilatation without a discernible cause is not an unexpected finding on cross-sectional imaging. EUS is generally performed in cases of unexplained CBDs dilatation to evaluate the distal bile duct and ampullary area. Nonetheless, evidence-based guidelines have not been established for this clinical setting because of a lack of data. Retrospective studies have evaluated the diagnostic yield of EUS for causes of dilated CBDs, particularly in asymptomatic patients with unexplained CBDs dilatation with both normal and elevated serum liver enzymes. EUS was able to detect bile duct pathologies, including dilated CBDs with no obvious etiology, in cross-sectional imaging studies of 6%–21% of asymptomatic patients with normal liver chemistry. For those with combined CBDs dilatation and abnormal liver chemistry, 50%–100% had pathologies detected by EUS. These results emphasized the importance of EUS in this setting; nonetheless, the diagnostic accuracy is yet to be explored.

In the current study, approximately 50% of the patients were symptomatic, and the majority had abnormal liver chemistry. EUS detected bile duct pathologies in 67% of the patients with inconclusive MDCT or MRI with or without MRCP, and the diagnostic performance of EUS in detecting pathologic lesions was excellent, with an AUROC of 0.98. In contrast to other studies, the most common pathologic etiology in our study was malignant obstruction, accounting for one-third of the cohort, with distal cholangiocarcinoma being found in 51%. Choledocholithiasis was the second most common etiology, accounting for 18.3%, while most studies showed that choledocholithiasis was the most common cause, with rates up to nearly 40%, followed by malignancy. We hypothesized that the discrepancy between our results and those of other studies could be attributed to the differences in patient characteristics, including presenting symptoms and the degree of liver chemistry abnormalities. Studies in asymptomatic patients with normal liver chemistry have demonstrated a lower percentage of abnormalities and malignancies detected by EUS. In contrast, 49% of our patients presented with jaundice and a mean total bilirubin level of 5 mg/dL, suggesting underlying pathological bile duct obstruction. Furthermore, the most common malignancy was distal cholangiocarcinoma, which could be difficult to identify using a MDCT scan or MRI. EUS has increasingly become the imaging tool of choice of malignant etiology in dilated CBDs due to its high sensitivity and accuracy, especially in patients with distal biliary obstruction. Prior studies have reported a sensitivity of EUS in detecting biliary malignancy, including hilar cholangiocarcinoma, ranging from 40%–90%. In addition, there has been a report of EUS detection of distal CBD tumor, whereas CT scan and MRCP suggested stone formation. The current study underscores the excellent diagnostic performance of EUS in diagnosing malignancy as a

Table 3. Predictive Factors for Pathological Obstruction and No Pathological Lesion Among Patients with Common Bile Duct Dilatation

Variables	Univariate analysis	Multivariate analysis		
	OR (95% CI)	p-value	OR (95% CI)	p-value
Pathological obstruction				
Male gender	4.10 (1.79–8.97)	0.001	5.46 (1.74–17.1)	0.004
History of cholecystectomy	0.38 (0.14–1.01)	0.052		
Jaundice	20.9 (6.80–64.2)	<0.001		
Abdominal pain	2.24 (1.05–4.76)	0.036		
Fever	10.8 (1.39–83.9)	0.023		
Constitutional symptoms	4.91 (1.18–22.3)	0.040		
Total bilirubin >5 mg/dL	5.41 (2.05–14.3)	0.001		
AST >3 x ULN	2.57 (1.06–6.27)	0.038		
ALT >3 x ULN	4.06 (1.62–10.2)	0.003	5.02 (1.48–17.0)	0.009
ALP >3 x ULN	8.17 (2.33–28.7)	0.001	4.63 (1.10–19.6)	0.037
Intrahepatic biliary dilatation	2.83 (1.33–5.99)	0.007	4.03 (1.37–11.8)	0.011
Intraabdominal lymphadenopathy	7.36 (0.92–58.8)	0.060		

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI, confidence interval; OR, odds ratio; ULN, upper limit of normal.
cause of bile duct dilatation with an AUROC of 0.91 and specificity of 98.9%.

The exceptional diagnostic accuracy of EUS in detecting choledocholithiasis has been widely accepted. Although EUS and MRCP were comparable in terms of sensitivity, specificity, and accuracy for detecting choledocholithiasis, EUS has detected very small choledocholithiasis missed by MDCT and MRCP with 100% diagnostic accuracy, avoiding unnecessary ERCP and surgery. Scheiman et al. suggested that implementing the initial EUS strategy to evaluate patients with suspected biliary disease had the greatest cost-utility, resulting in less unnecessary ERCPs and ERCP-related complications. Similarly, our results showed that EUS performed the best in detecting choledocholithiasis with the AUROC of 1.0. It is important to point out that EUS detection of choledocholithiasis has been reported in CBDs dilatation of unknown etiology in patients with both normal and abnormal liver chemistry, highlighting the necessity of EUS in managing this clinical scenario. Factors that may help predict pathological obstruction are male sex, serum ALT level ≥ 3 × the ULN, serum ALP ≥ 3 × the ULN, and IHD dilatation. Thus, when the dilated bile duct was noted on cross-sectional imaging along with the above parameters, further investigation with EUS is warranted. In contrast, clinical follow-up without further invasive investigations might be sufficient in patients without these parameters. Oppong et al. reported that a history of cholecystectomy, which was identified in 36% of the cases, is a causative factor for non-obstructive CBDs dilatation. In contrast, only 14% of our patients had prior cholecystectomy.

This study was limited by its retrospective nature and the need to use clinical follow-up as part of the definite diagnosis instead of undergoing ERCP or surgery in all cases. However, the strength of the study was high-quality radiologic imaging in all recruited patients and a long-term follow-up of at least 12 months.

In conclusion, EUS is a useful modality for evaluating CBDs dilatation in inconclusive MDCT, MRI, or MRCP. It should be routinely performed for clinically or biochemically indicated pancreatobiliary diseases. The excellent diagnostic performance of EUS could help avoid unnecessary ERCP or surgery in clinical practice.

Conflicts of Interest
The authors have no potential conflicts of interest.

Funding
None.

Author Contributions
Conceptualization: Nonthalee Pausawasdi, Phunchai Charatcharoenwitthaya

Data curation: Penprapai Hongrisuwon
Formal analysis: NP, PH, PC
Investigation: NP, PH
Methodology: NP, PH
Project administration: NP
Supervision: NP
Validation: NP
Visualization: NP
Writing-original draft: PH, Lubna Kamani, Kotchakon Maipang
Writing-review and editing: NP, KM, PC

REFERENCES
1. Singh A, Mann HS, Thukral CL, Singh NR. Diagnostic accuracy of MRCP as compared to ultrasound/CT in patients with obstructive jaundice. J Clin Diagn Res 2014;8:103-107.
2. Polistina FA, Frego M, Bisello M, Manzi E, Vardanega A, Perin B. Accuracy of magnetic resonance cholangiography compared to operative endoscopy in detecting biliary stones, a single center experience and review of literature. World J Radiol 2015;7:70-78.
3. Morris S, Gurusamy KS, Sheringham J, Davidson BR. Cost-effectiveness analysis of endoscopic ultrasound versus magnetic resonance cholangiopancreatography in patients with suspected common bile duct stones. PLoS One 2015;10:e0121699.
4. Giljaca V, Gurusamy KS, Talkoingi Y, et al. Endoscopic ultrasound versus magnetic resonance cholangiopancreatography for common bile duct stones. Cochrane Database Syst Rev 2015;CD011549.
5. Kondo S, Isayama H, Akahane M, et al. Detection of common bile duct stones: comparison between endoscopic ultrasonography, magnetic resonance cholangiography, and helical-computed tomography cholangiography. Eur J Radiol 2005;54:271-275.
6. Sotosudehmanesh R, Nejati N, Farzinnejad M, Kolahdoozan S. Efficacy of endoscopic ultrasonography in evaluation of undetermined etiology of common bile duct dilatation on abdominal ultrasonography. Middle East J Dig Dis 2016;8:267-272.
7. Visrodia KH, Tahibian JH, Baron TH. Endoscopic management of benign biliary strictures. World J Gastrointest Endosc 2015;7:1003-1013.
8. Bruno M, Brizzi RF, Mezzabotta L, et al. Unexplained common bile duct dilatation with normal serum liver enzymes: diagnostic yield of endoscopic ultrasonography and follow-up of this condition. J Clin Gastroenterol 2014;48:e67-e70.
9. Strongin A, Singh H, Eloubeidi MA, Siddiqui AA. Role of endoscopic ultrasonography in the evaluation of extrahepatic cholangiocarcinoma. Endosc Ultrasound 2013;2:71-76.
10. Zepeda-Gómez S, Baron TH. Benign biliary strictures: current endoscopic management. Nat Rev Gastroenterol Hepatol 2011;8:573-581.
11. Rösch T, Meining A, Frühmorgen S, et al. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. Gastrointest Endosc 2002;55:870-876.
12. Rana SS, Bhasin DK, Sharma V, Rao C, Gupta R, Singh K. Role of endoscopic ultrasound in evaluation of unexplained common bile duct dilatation on magnetic resonance cholangiopancreatography. Ann Gastroenterol 2013;26:66-70.
13. Kim JE, Lee JK, Lee KT, et al. The clinical significance of common bile duct dilatation in patients without biliary symptoms or causative lesions...
on ultrasonography. Endoscopy 2001;33:495-500.
14. Oppong KW, Mitra V, Scott J, et al. Endoscopic ultrasound in patients with normal liver blood tests and unexplained dilatation of common bile duct and or pancreatic duct. Scand J Gastroenterol 2014;49:473-480.
15. Malik S, Kaushik N, Khalid A, et al. EUS yield in evaluating biliary dilatation in patients with normal serum liver enzymes. Dig Dis Sci 2007;52:508-512.
16. Singh A, Gelnud A, Agarwal B. Biliary strictures: diagnostic considerations and approach. Gastroenterol Rep (Oxf) 2015;3:22-31.
17. Ding H, Zhou P, Xu M, et al. Combining endoscopic ultrasound and tumor markers improves the diagnostic yield on the etiology of common bile duct dilation secondary to periampullary pathologies. Ann Transl Med 2019;7:314.
18. Fritscher-Ravens A, Broering DC, Knoefel WT, et al. EUS-guided fine-needle aspiration of suspected hilar cholangiocarcinoma in potentially operable patients with negative brush cytology. Am J Gastroenterol 2004;99:45-51.
19. Eloubeidi MA, Chen VK, Jhala NC, et al. Endoscopic ultrasound-guided fine needle aspiration biopsy of suspected cholangiocarcinoma. Clin Gastroenterol Hepatol 2004;2:209-213.
20. Lee JH, Salem R, Aslanian H, Chacho M, Topazian M. Endoscopic ultrasound and fine-needle aspiration of unexplained bile duct strictures. Am J Gastroenterol 2004;99:1069-1073.
21. Hashmi MAK, Jun LZ. Role of endoscopic ultrasound (EUS) in uncertain diagnosis of distal common bile duct lesions: a case study. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) 2018;17:72-75.
22. Ledro-Cano D. Suspected choledocholesolithiasis: endoscopic ultrasound or magnetic resonance cholangio-pancreatography? A systematic review. Eur J Gastroenterol Hepatol 2007;19:1007-1011.
23. de Ledinghen V, Lecesne R, Raymond JM, et al. Diagnosis of choledocholithiasis: EUS or magnetic resonance cholangiography? A prospective controlled study. Gastrointest Endosc 1999;49:26-31.
24. Scheiman JM, Carlos RC, Barnett JL, et al. Can endoscopic ultrasound or magnetic resonance cholangiopancreatography replace ERCP in patients with suspected biliary disease? A prospective trial and cost analysis. Am J Gastroenterol 2001;96:2900-2904.