Supplemental information

Neurexin1α differentially regulates synaptic efficacy within striatal circuits

M. Felicia Davatolhagh and Marc V. Fuccillo
Figure S1. Nrx1α heterozygous and homozygous animals display altered spontaneous synaptic transmission without a change in overall number of excitatory synapses (related to Fig.1)

(A and C) Representative traces of mEPSCs WT, Nrx1α Het, and Nrx1α KO cells (top), cumulative distribution of mEPSC amplitude (lower left; inset shows average mEPSC amplitude), and cumulative distribution of inter-event intervals (lower right; inset shows average mEPSC frequency) in WT (n = 23; N = 7), Nrx1α Het (n = 18; N = 6) or Nrx1α KO (n = 24; N = 7) dSPNs (A) and WT (n = 20; N = 9), Nrx1α Het (n = 15; N = 6), and Nrx1α KO (n = 22; N = 7) iSPNs (C).

(B and D) Representative confocal images of Alexa 488 fluorescence of fixed SPNs (left) and secondary dendrites from WT (top), Nrx1α Het (middle), and Nrx1α KO (bottom). Summary of spine density of dSPN (B) and iSPN (D) spines. Mature spines were morphologically classified as stubby and mushroom (example mature spine denoted with blue arrow) while immature include filopodia (example immature spine denoted with red arrow). Each point represents a neuron. Z-stacks were acquired on a confocal at 40x magnification and quantified in Image J.

Data are means ± SEM; *significant difference between groups (ANOVA).
Figure S2. Inhibitory spontaneous synaptic transmission is unaltered in Nrxn1α mutants (related to Fig.1).

(A and B) Representative traces of mIPSCs WT, Nrxn1α Het, and Nrxn1α KO cells (top), cumulative distribution of mIPSC amplitude (lower left; inset shows average mIPSC amplitude), and cumulative distribution of inter-event intervals (lower right; inset shows average mIPSC frequency) in WT (n = 20; N = 5), Nrxn1α Het (n = 16; N = 4) or Nrxn1α KO (n = 18; N = 5) dSPNs (A) and WT (n = 17; N = 5), Nrxn1α Het (n = 16; N = 5), and Nrxn1α KO (n = 16; N = 5) iSPNs (C).

Summary data are mean ± SEM
Figure S3. Measurement of striatal field recordings (related to Figs. 1, 3, and 5)

(A) Field recording from Figure 2G showing placement of cursors (typically from ~3.5ms – 5ms after light stimulation) for analysis of fiber volley. (B) Field recording overlayed with recordings done at different LED intensities ranging from low LED (light gray) to higher LED intensities (black) and the change in fiber volley amplitude. (C) Measurement of field slope taken from 10-90% of the rising phase of the second negativity component of the field.
Figure S4. Optical EPSC amplitude reduced at dPFC-iSPN synapses in Nrnx1α heterozygotes and knockout (related to Fig1).

Maximal optical EPSC amplitudes from dPFC projection (taken from input-output measurements in Figure 1) were similar across genotypes onto (A) dSPNs and was significantly reduced onto (B) iSPNs, regardless of normalization to the field fiber volley.

Data are means ± SEM; *significant difference between groups (ANOVA)
Figure S5. Probability of release is unchanged at dPFC-dSPN synapses regardless of external calcium levels and spot illumination measurements (related to Fig.1).

(A) Plot of paired-pulse ratio across multiple ISIs for optical stimulation of dPFC-dSPN synapses using a 50μM spot (Mightex Optical Systems) and full field illumination. Further recordings were done using an ISI of 50ms (B).

(C) Graph of paired-pulse ratio, 50ms ISI, at external calcium levels of 1.3mM and 2.5mM employing 50μM spot illumination.

(D) Plot of paired-pulse ratio across multiple ISIs for 50μM optical stimulation of dPFC-dSPN at external calcium levels of 1.3mM in Nrxn1α WT and KO.

(E) Plot of frequency trains across multiple frequencies (right; 10Hz; 20Hz; 50Hz from left to right) recorded onto dSPNs in Nrxn1α WT and KO.

Summary data are mean ± SEM
Figure S6. Altered NMDAR decay at thalamic projections onto iSPNs in Nrxn1α KO (related to Fig4).

(A, left) Representative traces across genotypes of NMDA currents measured at +40mV in the presence of 100μM picrotoxin at dPFC-dSPN and dPFC-iSPN synapses. Traces are rescaled to same amplitude for comparison of decay time constants. Summary graph of weighted NMDAR decay values calculated from a biexponential fit for (A) dSPNs (B) and iSPNs. (C, left) Representative NMDA currents for PFas-dSPN and PFas-iSPN synapses. Summary graph of weighted NMDAR decay values calculated from a biexponential fit for (C) dSPNs (D and iSPNs.

Fast and slow decay components are used to calculate the weighted decay time constant using the equation $\tau_w = \left[\frac{A_f}{A_f + A_s} \right] \times \tau_f + \left[\frac{A_s}{(A_f + A_s)} \times \tau_s \right]$, A_f = fast component amplitude and A_s = slow component amplitude.

Summary data are mean ± SEM, *significant difference between groups (ANOVA)
Figure S7. Initial EPSP amplitude and recording duration are similar in Nrxn1α WT and KO (related to Fig6 and Fig7).

(A) Frequencies represented in an in vivo modeled optical stimulus pattern represented as 500ms windows and their corresponding local frequencies.

(B, D) Plot of initial EPSP (averaged 10 traces) recorded at “down-state” membrane potential of -80mV on x-axis and overall spiking efficiency on y-axis for (B) dSPNs and (D) iSPNs across genotypes for dPFC projection.

(C, E) Plot of spiking efficiency across recording duration of 5 minutes consisting of 10 unique optical patterns, binned in 10-second intervals for (C) dSPNs and (E) iSPNs recorded in Nrxn1α WT, Het, and KO from dPFC projection.

(F, H) Plot of initial EPSP (averaged 10 traces) recorded at “down-state” membrane potential of -80mV on x-axis and overall spiking efficiency on y-axis for (F) dSPNs and (H) iSPNs across genotypes for PFas projection.

(G, I) Plot of spiking efficiency across recording duration of 5 minutes consisting of 10 unique optical patterns, binned in 10-second intervals for (G) dSPNs and (I) iSPNs recorded in Nrxn1α WT and KO from PFas projection.

Summary data are mean ± SEM.
Table S1. Student’s t-test values, related to Figures 3, 5, 6, and S7.

Figure	Test	t and p values
3C	Two-tailed Student’s t-test	t_{31} = 0.07521, p = 0.9405
3E	Two-tailed Student’s t-test	t_{26} = 1.157, p = 0.2578
5B	Two-tailed Student’s t-test	t_{29} = 1.173, p = 0.2504
5D, left	Two-tailed Student’s t-test (Paired)	t_{18} = 3.052, p = 0.0069
5D, right	Two-tailed Student’s t-test (Paired)	t_{21} = 0.1329, p = 0.8955
5E	Two-tailed Student’s t-test	t_{39} = 2.193, p = 0.0343
5F	Two-tailed Student’s t-test	t_{31} = 2.044, p = 0.0495
5G	Two-tailed Student’s t-test	t_{31} = 2.159, p = 0.0387
6B	Two-tailed Student’s t-test	t_{33} = 0.7286, p = 0.4714
6D	Two-tailed Student’s t-test	t_{27} = 2.411, p = 0.0230
7A	Two-tailed Student’s t-test	t_{34} = 1.597, p = 0.1196
7C	Two-tailed Student’s t-test	t_{29} = 1.454, p = 0.1567
Table S2. One-way ANOVA values, related to Figures 1, 2, 4, 6, S1, S2, S4, and S6.

Figure	F value	DF	P value	Post-hoc test	Comparison	Adjusted P value
1F	1.352	50	0.2683	Dunnett’s	WT v. Het	0.0059
					WT v. KO	0.0166
1H	5.816	43	0.0060	Dunnett’s	WT v. Het	0.1639
					WT v. KO	0.0080
2C	2.433	59	0.0968	Dunnett’s	WT v. Het	0.3180
					WT v. KO	0.0029
2F	1.234	61	0.2986	Dunnett’s	WT v. Het	0.0232
					WT v. KO	0.0349
4C	4.532	59	0.0149	Dunnett’s	WT v. Het	0.2039
					WT v. KO	< 0.0001
4F	5.767	51	0.0056	Dunnett’s	WT v. Het	0.0213
					WT v. KO	0.0349
6B	0.4497	48	0.6406	Dunnett’s	WT v. Het	0.0029
6D	4.233	43	0.0213	Dunnett’s	WT v. Het	0.0213
					WT v. KO	0.0349
S1A, Left	0.4396	64	0.6463	Dunnett’s	WT v. Het	0.2039
S1A, Right	10.31	64	0.0001	Dunnett’s	WT v. KO	< 0.0001
S1B, Left	0.06115	44	0.9408			
S1B, Right	0.146	44	0.8646			
S1C, Left	0.8491	56	0.4334			
S1C, Right	2.896	56	0.0639			
S1D, Left	2.69	32	0.0843			
S1D, Right	0.6891	32	0.5098			
S2A, Left	0.5944	54	0.5556			
S2A, Right	1.698	54	0.1930			
S2B, Left	1.713	48	0.1916			
S2B, Right	0.2970	48	0.7445			
S4A	0.6478	50	0.5277			
S4B	6.793	43	0.0028	Dunnett’s	WT v. Het	0.0075
					WT v. KO	0.0035
S6A	0.7301	59	0.4863			
S6B	2.634	66	0.0796			
S6C	3.871	54	0.0271	Dunnett’s	WT v. Het	0.0634
					WT v. KO	0.7600
S6D	6.542	49	0.0031	Dunnett’s	WT v. Het	0.8297
					WT v. KO	0.0118
Table S3. Two-way ANOVA values, related to Figures 2, 4, 6, and 7.

Figure	Test	Source of Variation	F value	Comparison	DF	P value
2A	ANOVA	Interaction	1.614		8	0.1215
		ISI	144.3		4	< 0.0001
		Genotype	1.46		2	0.2405
2B (10Hz)	ANOVA	Interaction	0.8324		6	0.5466
		Pulse #	17.56		3	< 0.0001
		Genotype	1.57		2	0.2182
2B (20Hz)	ANOVA	Interaction	2.026		6	0.0655
		Pulse #	36.11		3	< 0.0001
		Genotype	0.5166		2	0.5997
2B (50Hz)	ANOVA	Interaction	4.479		6	0.0003
		Pulse #	325		3	< 0.0001
		Genotype	1.465		2	0.2407
2D	ANOVA	Interaction	1.594		8	0.1286
		ISI	175.1		4	< 0.0001
		Genotype	4.372		2	0.0178
	Dunnett's	ISI 20, WT v. Het	28.13			0.2012
		ISI 20, WT v. KO	26.08			0.0187
		ISI 50, WT v. Het	29.84			0.0160
		ISI 50, WT v. KO	28.88			0.0298
		ISI 100, WT v. Het	28.83			0.0811
		ISI 100, WT v. KO	28.39			0.2015
		ISI 200, WT v. Het	30.49			0.2436
		ISI 200, WT v. KO	30.7			0.2598
		ISI 500, WT v. Het	31			0.0771
		ISI 500, WT v. KO	32.46			0.0354
2E (10Hz)	ANOVA	Interaction	0.8491		6	0.5342
		Pulse #	87.51		3	< 0.0001
		Genotype	5.553		2	0.0068
	Dunnett’s	Pulse 2/1, WT v. Het	29.22			0.0113
		Pulse 2/1, WT v. KO	23.27			0.0838
		Pulse 3/1, WT v. Het	27.95			0.0086
		Pulse 3/1 WT v. KO	23.99			0.1225
		Pulse 4/1, WT v. Het	28.81			0.0255
		Pulse 4/1, WT v. KO	26.65			0.0901
		Pulse 5/1, WT v. Het	26.01			0.0124
		Pulse 5/1, WT v. KO	21.33			0.1328
2E (20Hz)	ANOVA	Interaction	2.605		6	0.0200
		Pulse #	133.4		3	< 0.0001
		Genotype	5.845		2	0.0054
	Dunnett’s	Pulse 2/1, WT v. Het	29.36			0.0234
		Pulse 2/1, WT v. KO	21.91			0.0161
		Pulse 3/1, WT v. Het	29.99			0.0197
		Pulse 3/1 WT v. KO	27.02			0.1101
		Pulse 4/1, WT v. Het	30			0.0149
		Pulse 4/1, WT v. KO	24.76			0.1149
		Pulse 5/1, WT v. Het	28.97			0.0053
2E (50Hz)	Dunnett’s					
---	---	---	---	---	---	---
ANOVA	Interaction 1.221	Pulse 2/1, WT v. KO 24.63		Genotype 8.012		< 0.0001
ANOVA	Pulse 427	Pulse 2/1, WT v. KO 28.16		Genotype 0.1525		0.2991
ANOVA	Genotype 2.00	Pulse 2/1, WT v. KO 29.49		Genotype 0.0010		0.0016
ANOVA	Pulse 427	Pulse 2/1, WT v. KO 29.49		Pulse 2/1, WT v. KO 29.77		0.0041
ANOVA	Genotype 0.1525	Pulse 3/1, WT v. KO 21.99		Genotype 0.0297		0.0057
ANOVA	Pulse 427	Pulse 3/1, WT v. KO 29.77		Genotype 0.0028		0.0057
ANOVA	Genotype 2.00	Pulse 4/1, WT v. KO 25.25		Pulse 4/1, WT v. KO 25.25		0.0512
ANOVA	Pulse 427	Pulse 4/1, WT v. KO 25.25		Pulse 4/1, WT v. KO 25.25		0.0512
ANOVA	Genotype 0.1525	Pulse 5/1, WT v. KO 27.98		Pulse 5/1, WT v. KO 27.98		0.1281
ANOVA	Pulse 427	Pulse 5/1, WT v. KO 27.98		Pulse 5/1, WT v. KO 27.98		0.1281

4A	ANOVA	Interaction 1.373		Genotype 0.4059		0.2456
ANOVA	ISI 11.36		Genotype 0.4059		0.2456	
ANOVA	Genotype 0.4059		0.5276		0.5276	
4B (10Hz)	ANOVA	Interaction 0.632		Pulse # 120.9		0.5950
---	---	---	---	---	---	---
ANOVA	Genotype 0.2746		0.6032		0.6032	
4B (20Hz)	ANOVA	Interaction 0.8874		Genotype 0.4443		0.4499
---	---	---	---	---	---	---
ANOVA	Pulse # 200		0.4499		0.4499	
4B (50Hz)	ANOVA	Interaction 1.962		Genotype 1.891		0.1769
---	---	---	---	---	---	---
ANOVA	Pulse # 258.7		0.1235		0.1235	
4D	ANOVA	Interaction 0.543		Genotype 1.098		0.3026
---	---	---	---	---	---	---
ANOVA	ISI 13.53		0.5090		0.5090	
ANOVA	Genotype 0.9886		0.3267		0.3267	
4E (10Hz)	ANOVA	Interaction 0.632		Genotype 1.098		0.3026
---	---	---	---	---	---	---
ANOVA	Pulse # 119.3		0.3026		0.3026	
4E (20Hz)	ANOVA	Interaction 1.953		Genotype 2.062		0.1607
---	---	---	---	---	---	---
ANOVA	Pulse # 201.2		0.1262		0.1262	
4E (50Hz)	ANOVA	Interaction 2.032		Genotype 0.5889		0.4485
---	---	---	---	---	---	---
ANOVA	Pulse # 249.9		0.1146		0.1146	
5C	ANOVA	Interaction 0.7454		Genotype 0.5422		0.4659
---	---	---	---	---	---	---
ANOVA	Time 149.9		0.4659		0.4659	
ANOVA	Genotype 0.5422		0.4659		0.4659	
6C	ANOVA	Interaction 0.6695		Genotype 0.6145		0.4387
---	---	---	---	---	---	---
ANOVA	Frequency 27.32		0.4387		0.4387	
ANOVA	Genotype 0.6145		0.4387		0.4387	
6E	ANOVA	Interaction 1.074		Genotype 6.328		0.0181
---	---	---	---	---	---	---
ANOVA	Frequency 32.09		0.0181		0.0181	
ANOVA	Genotype 6.328		0.0181		0.0181	
7B	ANOVA	Interaction 0.9941		Genotype 2.545		0.1199
---	---	---	---	---	---	---
ANOVA	Frequency 4.055		0.1199		0.1199	
ANOVA	Genotype 2.545		0.1199		0.1199	
7D	ANOVA	Interaction 0.6737		Genotype 5.226		0.0013
---	---	---	---	---	---	---
ANOVA	Frequency 5.226		0.0013		0.0013	
	Genotype	Interaction	Time	Genotype		
--------	----------	-------------	------	----------		
S7C	1.980	0.8359	22.05	0.8708		
	1	58	29	2		
S7E	0.8052	0.8359	58	0.4254		
		29				
S7G	0.0130	4.836	29	0.0966		
		29				
S7I	0.0938	0.7191	29	0.08618		
		29				
	1.395	29		1		
	1	29		0.2472		
Table S4. Pearson correlation values, related to Figure S7.

Figure	Test	Pearson r	P value
S7B (WT D1; dPFC)	Pearson; Two-tailed	-0.0096	0.9730
S7B (Het D1; dPFC)	Pearson; Two-tailed	0.3841	0.1751
S7B (KO D1; dPFC)	Pearson; Two-tailed	-0.3056	0.1901
S7D (WT D2; dPFC)	Pearson; Two-tailed	0.2893	0.3158
S7D (Het D2; dPFC)	Pearson; Two-tailed	-0.0052	0.9855
S7D (KO D2; dPFC)	Pearson; Two-tailed	-0.4258	0.1135
S7F (WT D1; PFas)	Pearson; Two-tailed	-0.1150	0.6604
S7F (KO D1; PFas)	Pearson; Two-tailed	-0.0518	0.8329
S7H (WT D2; PFas)	Pearson; Two-tailed	-0.1517	0.6379
S7H (KO D2; PFas)	Pearson; Two-tailed	0.3607	0.1293