Evaluation of Cardiovascular Biomarkers and Lipid Regulation in Lactation Friesian Holstein at Different Altitude in West Java, Indonesia

Ujang Hidayat Tanuwiria1, Iin Susilawati1, Didin Tasripin2, Lia Budimulyati Salman2, Andi Mushawwir1*

1Department of Animal Nutrition and Feed Technology, Animal Science Faculty, University of Padjadjaran, Sumedang, Indonesia
2Department of Animal Production, Animal Science Faculty, University of Padjadjaran, Sumedang, Indonesia

ARTICLE INFO

Article history:
Received May 29, 2020
Received in revised form October 11, 2021
Accepted October 21, 2021

KEYWORDS:
Altitude, cardiovascular, dairy cow, lipid

ABSTRACT

Altitude contributes and plays an important role in the development dairy cows in Indonesia. Altitude is directly related to temperature and humidity, both of which affect cardiovascular function and energy metabolism in dairy cattle. The 120 samples, consisted of 4th-5th lactation Friesian Holstein dairy cows were used in this study. The 40 samples of cattle each spread in three maintenance sites with different altitudes, namely 300 to 500 m above sea level (a.s.l.); 600-900 m a.s.l. and >1,000 m a.s.l. All the study sites located in West Java, Indonesia, to study the effect of altitude on the cardiovascular biomarker and lipid regulation in the dairy cow. Based on the result in this experiment showed that the CRP high sensitivity, H-FABP, homocysteine, and γ-Glutamyl Transpeptidase in Friesian Holstein dairy cows expressed higher levels (P <0.05) at low altitude site (300-500 m a.s.l.) than dairy cows at altitude sites higher (600-900 and >1,000 m a.s.l.). These results indicated, these compounds can be biomarkers for cardiovascular function. This study also showed, the lipid regulation also showed higher levels (P <0.05) at low altitude sites than altitude sites higher.

1. Introduction

West Java Province is a center for the development and production of milk in Indonesia. The topography of West Java varies from the lowlands to the highlands. Nevertheless, the maintenance of dairy cows is abundant in all these topographies. Previous studies have shown that the productivity of dairy cows is greatly influenced by topography or altitude.

The humidity and temperature are physical factors that play an important role in animal metabolism. Dairy cows as homoiothermal animals are very sensitive to these two climate factors (humidity and temperature). Many studies show metabolic changes during climate fluctuation. Cheng et al. (2014) and Allen et al. (2015) reported a reduction in immunity and blood profile (Roland et al. 2016). Climate changes related to the enclosure in housing. Mushawwir et al. (2010 and 2011) showed that microclimates are strongly related to NH3 levels of the cage, olfactory receptor response, and also hematologic and biochemical of blood plasma in poultry (Slimen et al. 2016; Mushawwir et al. 2018).

Altitude is closely related to the temperature and humidity of the environment. High temperatures generally occur in areas with low altitude, while high altitudes generally exposed low temperatures. Temperature and humidity that are not suitable for dairy cows cause an increase in the rate of thermoregulation.

Thermoregulation is needed to maintain a normal temperature range so that the minimum metabolic process can be maintained. This process requires a large amount of energy and interactions throughout the body’s tissues. Previously report demonstrated that heat stress increases lipid retention in beef cattle at low altitude (Nasr and El-Tarabany 2017; Jiangjing et al. 2019), in the chicken (Geraert et al. 1996; Abou-Elkhaier et al. 2014; Adriani et al. 2015; Lee et al. 2017) and pig (Qu and Ajuwon 2018). The other report showed that a high temperature or heat stress at low altitude stimulates muscle cells increase in lipolysis and triglyceride degradation (Tanuwiria et al. 2011). Based on the results of previous studies,
reports on the involvement and expression of lipid transport proteins during altitude stress in animals merely limited information.

Physiological responses related to altitude in dairy cows also have an impact on the physiology of the cardiovascular. The heart pump rate increases in high temperatures to accelerate the flow of blood to the peripheral blood vessels to be evaporated (Rejeb et al. 2016), either through sweating or by breathing evaporation (Li et al. 2016). Previous research has shown that a high pacemaker rate increases the risk of cell death (Lambertz et al. 2014), tissue damage (Kang et al. 2016), necrosis (Gernand et al. 2019), apoptosis (Chmielewski et al. 2009), also increased the risk of heart failure (Geraert et al. 1996), but no previous study showed cardiovascular biomarker associated heart physiology in the dairy cow. Therefore, this experiment was conducted to evaluate cardiovascular biomarkers and lipid regulations in Friesian Holstein lactation at different altitudes.

2. Materials and Methods

2.1. Animal Sample and Study Site

The 120 samples, consisted of 4th–5th lactation Friesian Holstein dairy cows were used in this study. The 40 samples of cattle each spread in three maintenance sites with different altitudes, namely 300 to 500 m above sea level (a.s.l.); 600–900 m a.s.l. and >1,000 m a.s.l. All the study sites located in West Java, Indonesia. Samples of Dairy cows were kept intensively, with open housing system. The ration provided consisted of grass and concentrate. Observation and blood sampling of dairy cow samples were carried out for 6 months, every 3 months during the rainy season and the dry season.

2.2. Blood and Sample Analysis

Blood samples (5 ml) were collected with EDTA tube and sterilized syringe at wk 4, 8, 12, 16, 20, and 24. The blood samples were taken in the morning before the animals were feeding, from the front tail vein. The collected blood sample was immediately put into a thermos filled with ice gel. The samples were taken to the laboratory. The blood samples were centrifuged (3,000 × g, 10 min) within 30 min after collection and the plasma was stored in a freezer at −20°C until analysis.

The bloodplasmawasusedtoanalyzecardiovascular parameters and lipid regulation profiles. All analysis procedures (reagent and absorbance) were carried out based on the user manual as stated in the biochemical kit from Randox Laboratories LTD, UK, and Biolabo Biochemistry, France.

2.3. Statistical Analysis

All data collected were presented as average (mean) ± standard error (SE). To examine differences in cardiovascular character and lipid regulation, the multivariate analysis of variance for repeated measurements (MANOVA) was used with altitude as the main factor in the model. The Wilcoxon rank test that was signed for paired samples was used to analyze the differences in the concentration of each parameter analyzed in each experimental animal in different altitude groups. All statistical analysis procedures were performed with the SPSS statistical software for Windows (Version IBM 21; SPSS Inc., Chicago, IL), with significance level was set to P <0.05 for all tests.

3. Results

The maintenance of dairy cattle at different altitudes has an impact on its physiological response. Altitude causes a difference in heart rate. A high heart rate causes a higher potential for cardiovascular cellular damage compared to a dairy cow with a normal heart rate. In Table 1, showed the response parameters associated with the physiological function of the heart of a dairy cow.

In Table 1, showed that the all cardiovascular parameters, included of CRP high sensitivity, H–FABP, homocysteine, and γ-Glutamyl transpeptidase in the Table 1. The response of dairy cattle to biomarkers of heart failure based on the altitude of the maintenance site

Cardiovascular biomarkers	CRP high sensitivity (mg/l)	H–TFABP (ng/ml)	Homocysteine (µmol/l)	γ-Glutamyl transpeptidase (IU)	sPLA2-IIA (ng/dl)
Altitude	300 to 500 m a.s.l.	600 to 900 m a.s.l.	>1,000 m a.s.l.		
CRP high sensitivity	18.83±1.34a	10.73±1.03a	9.68±1.04a	10.73±1.03a	
H–TFABP (ng/ml)	7.24±1.01a	5.62±0.62b	4.17±0.13b	5.62±0.62b	
Homocysteine (µmol/l)	16.52±3.06a	15.84±5.04a	9.23±0.16a	15.84±5.04a	
γ-Glutamyl transpeptidase	48.41±2.57a	26.46±3.07b	23.93±2.02b	26.46±3.07b	
sPLA2-IIA (ng/dl)	89.05±3.04a	46.81±2.07b	45.19±3.38a	46.81±2.07b	

Means in the same row with a different letter of superscripts are significantly different (p <0.05), values are given in Mean ± SD.
Frisian Holstein dairy cows expressed higher levels (P <0.05) at low altitude site (300-500 m a.s.l.) than dairy cows at altitude sites higher (600-900 and >1,000 m a.s.l.). In Table 1, also showed that the expression of cardiovascular biomarkers in dairy cows at an altitude of 600-900 m a.s.l. with >1,000 m a.s.l. were not significantly different (P >0.05), except CRP high sensitivity and homocysteine level higher significantly different (P <0.05) at >1,000 m a.s.l. than 600-900 m a.s.l.

The response of dairy cows on lipid regulation at different altitude site was showed in Table 2. Lipid transport protein levels include types of apolipoprotein, HDL, and LDL in the group of the dairy cow at an altitude of 300-500 m a.s.l., showed higher levels, significantly different (P <0.05) compared to the dairy cattle groups at the other two altitudes. Lipid degradation appears to be increased in dairy cows that were kept at low altitude locations (300-500). This phenomenon was indicated by a decrease in triglyceride levels and an increase in NEFA levels in their blood plasma.

The results in Table 1, as a whole also showed that the rate of lipid regulation was higher significantly different (P <0.05) in dairy cows at low altitude locations than in dairy cows at high altitude locations. The specific proteins which function as lipid transport were generally not different (P >0.05) in the group of dairy cows at altitude locations of 600 to 900 and >1,000 m a.s.l.

4. Discussion

4.1. Cardiovascular

The altitude is closely related to macroclimates, including temperature and humidity. The housing temperature environment above the comfort zone or upper thermoneutral zone causes an increase in the pacemaker rate. A high pacemaker rate every day in dairy cows has an impact on increasing cardiovascular cellular damage. Compound markers of heart damage have been reported, among others with CRP (Zhu et al. 2017). C-Reactive Protein (CRP) is a protein that is released by the liver and is produced in large amounts during infections and heat stress (Zhao et al. 2017). Conversely, in inflammation that occurs in the process of developing atherosclerosis, an increase in CRP concentration is much smaller (Wheeler et al. 2014; Xu et al. 2015). Nevertheless, the increase is quite significant when compared to normal conditions.

High-sensitivity C-reactive protein (hs-CRP) measures the low amount of CRP in the blood. In this study, this test was used to determine the risk of heart problems, especially those that were combined with other risk factors such as cholesterol (Mohammed et al. 2015), age (Kayadoe et al. 2019), blood pressure (Song et al. 2015; Tanuwiria et al. 2022). This test was used in this investigation to find out the effect of an increased risk of sudden on cardiac problems of the dairy cow, such as heat stress. Although, the relationship between high CRP levels and heart disease risk is not well understood (Kou et al. 2016).

Homocysteine is a natural amino acid, which, when in high levels in the blood, can increase the risk of clogged arteries (atherosclerosis). This condition is known as hyperhomocysteinemia (Gonzalez-Rivas et al. 2015). Based on the result of this investigation showed that dairy cow with high homocysteine levels triggers arteriosclerosis in veins, such as deep vein thrombosis (Anderson et al. 2013; Cheng et al. 2014; Fournel et al. 2017) and pulmonary embolism or in the arteries (Ikewaki 2014). It is known that a high amount of homocysteine can damage the
lining of blood vessels. This damage can cause atherosclerosis. The report of previous studies also showed a close relationship between heat stress and homocysteine levels (Kubow et al. 2015; Kang et al. 2016; Maskal et al. 2018).

Many previous studies have shown that biological markers of phospholipase A2 (PLA2) have been found to play an important role in the inflammatory pathway (Kang et al. 2016; Lee et al. 2017; Jae-Sung et al. 2020). PLA2 is classified in the acute phase protein group. PLA2 reported triggers the host's inflammatory response to infection (Pruzanski and Vadas 1991). As an inflammatory mediator, the release of arachidonic acid from the phospholipid membrane of cells catalyzed by intracellular PLA (Leach and Cowen 2014), thereby initiating prostaglandin and leukotriene synthesis (Johnson et al. 2015). As a result, this stimulated an increase in many physiological responses in animals, such as vasodilation in the heat-stressed dairy cow (Geraert et al. 2016), inhibition of platelet aggregation (Bertocchi et al. 2014).

The release of sPLA2-IIA in low altitude or high temperature can be induced by several specific proteins among other inflammatory cytokines, such as the group of interleukin (interleukin IL-6, IL-1β, and also tumor necrosis factor/TNF-α). These proteins were key factors in the process of neutrophil adhesion and migration (Jiangjing et al. 2019). While the exact role of SPLA2-IIA for livestock is still being discussed. Although, several studies have shown small clinical trials that sPLA2-IIA plasma levels show a positive correlation with stress (Lambartz et al. 2014; Roland et al. 2016; Mushawwir et al. 2021a).

The H-FABP biomarker of heart in this study was analyzed. Zhao et al. (2017) showed that heart-FABP is low molecular weight (15 kDa) cytoplasmic protein found in high concentrations in cardiac muscle tissue. Heart-FABP is released from the liver during cell necrosis faster than other markers (Zhu et al. 2017; Hernawan et al. 2017; Mushawwir et al. 2021b). Its small size and its location in the cytoplasm, it can be expelled rapidly into the bloodstream after damage to the heart muscle. Plasma H-FABP levels not only rise early but normalized after 24 hours it is possible to detect recurrent myocardial infarction (Slimen et al. 2016). The advantage of H-FABP was dominant in the early stages of myocardial infarction. The initial combination of H-FABP after the onset of symptoms of discharge, rapid screening of the kidneys from blood circulation, and high cardiac characteristics shows strong power for diagnostic tools that are useful in early detection of heart muscle damage.

4.2. Lipid Regulation

Biochemical efforts of dairy cattle to achieve homeostasis under heat stress conditions required a lot of energy. During the thermoregulation process for dairy cows at low altitudes, the site was a complicated chemical pathway in the tissue cells. In this intricate problem, dairy cows reduce feed intake to avoid metabolic heat production (Qu and Ajuwon 2018), but at the same time, the dairy cow also required high feed intake to produce milk. The involvement of lipid metabolic pathways was an alternative supply of energy precursors.

Apolipoprotein or apoprotein is known as a protein group in lipoprotein. The function of apolipoprotein is to transport fat into the blood (Sato et al. 2016; Adriani and Mushawwir 2020) because fat is not soluble in water, then the way it is transported in water-based blood, this fat will be bound by a protein which then forms a complex called a lipoprotein that can mix with water. Sierra-Johnson et al. (2009) reported that apolipoprotein consists of apolipoprotein A-I, A-II, B, C-I, C-II, and E. Apolipoprotein B (apo B), showing protein structure for particles atherogenic, VLDL, IDL, LDL, small dense LDL (sdLDL). Whereas apo A-I is the main structural protein for HDL and reflects the atheroprotective side of lipid metabolism (Yew Tan et al. 2015; Kamil et al. 2020). Both of these apolipoproteins can also indicate cardiovascular risk more accurately than LDL-C and another lipid. The apoB/apo A-I ratio is strongly associated with the risk of myocardial infarction (MI).

The level of apolipoprotein E (apoE) based on the result in this study showed also increased. This lipid transport was a protein constituent of plasma lipoprotein which has several functions including its role in cholesterol metabolism (Zahner et al. 2004) and as an important ligand in lipoprotein clearance (Kohler et al. 2013). Apolipoprotein E was first identified as a constituent of very-low-density lipoprotein (VLDL) that functions as triglyceride transport from the liver to peripheral tissue (Quispe et al. 2015).

The correlation of the lipid regulation with heart physiologic, reported by Zahner et al. (2004), demonstrated an associated lipid regulation with biomarkers of heart failure. In cattle, CRP levels increase with increasing age, indicating that high levels of apoE occur before inflammation occurs (Jiang et al. 2019; Tanuwiria et al. 2020). Previously investigated also showed that the biological activity of apoE can be influenced by modifications to its structure and or quantity (Emoto et al. 2013;
Chmielewski 2018). Structural changes can occur in the apoE polymorphism, which encodes apoE2, apoE3, and apoE4. Apolipoprotein E2 showed lower affinity to LDL receptors, resulting in apoE clearance which was slower and increases plasma apoE levels (Emoto et al. 2013; Quispe et al. 2015; Sato et al. 2016; Adriani et al. 2021). This situation will then be responded by regulating LDL receptors in the liver to reduce cholesterol levels. Apolipoprotein E4 was instead taken more efficiently, resulting in lower apoE levels and increasing cholesterol levels, and both related to altitude (Nasr and El-Tarabany 2017; Qu et al. 2018).

Therefore, variations in genetics that affect lipid metabolism will change the risk of cardiovascular disease. Although, heat stress enhanced lipid metabolism effectively. The degradation of triglycerides showed by the decrease in plasma triglycerides into NEFA, based on the results of this study, illustrated that lipid regulation was an efficient alternative to supply energy precursors.

Adiponectin was a good indicator for estimating the complications of metabolic syndrome. Many studies show the use of adiponectin in the body as a marker for metabolic syndrome (Cruzen et al. 2015; Catapano et al. 2016; Mushawwir et al. 2020). Decreased plasma adiponectin (hypoadiponectinemia) is associated with an increase in Body Mass Index (increased incidence of obesity) (Berry et al. 2002), decreased insulin sensitivity (increased incidence of obesity) (Berry et al. 2002), and unwanted fat profile, and increased risk of heart disease in claves (Roland et al. 2016).

Acknowledgements

The authors thank the Bioscience/Biolabo Analysis Laboratory, Laboratory of Animal Physiology and Biochemistry, Faculty of Animal Sciences, Padjadjaran University and Rector of Padjadjaran University with Academic Leadership Grant, (ALG), for their financial support in this experiment. Many awards were given to Bambang and Adang Sudrajat for their assistance with some equipment, calibration, and implementation of this experiment, as well as for their assistance in handling animal samples.

References

Abou-Elkhair, R., Ahmed, H.A., Selim, S., 2014. Effects of black pepper (Piper nigrum), turmeric powder (Curcuma longa), and cori-ander seeds (Coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters, and humoral immune response of broiler chickens, Asian-Australas. J. Anim. Sci. 27, 847–54. https://doi.org/10.5713/ajas.2013.13644

Adriani, L., Abun, Mushawwir, A., 2015. Effect of dietary supplementation of jengkol (Pithecellobium jiringa) skin extract on blood biochemistry and gut flora of broiler chicken. Int. J. Poult. Sci. 14, 407-410. https://doi.org/10.3923/ijps.2015.407.410

Adriani, L., Mushawwir, A., 2020. Correlation between blood parameters, physiological and liver gene expression levels in native laying hens under heat stress. IOP Conf. Series: Earth and Environmental Science. 466, 1-7. https://doi.org/10.1088/1755-1315/466/1/102015

Adriani, L., Mushawwir, A., Kumalasari, C., Nurlaeni, L., Lesmana, R., Rosani, U., 2021. Improving blood protein and albumin level using dried probiotic yogurt in broiler chicken. Jordan J. of Biological Sci. 14, 1021-1024. https://doi.org/10.54319/jpbs.140521

Allen, D., Hall, L.W., Collier, R.J., Smith, J.F., 2015. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy. Sci. 98, 118–127. https://doi.org/10.3168/jds.2013-7704

Anderson, S.D., Bradford, B.J., Harner, J.P., Collier, R.J., Smith, J.F. 2013. Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate. J. Dairy. Sci. 96, 4738–4750. https://doi.org/10.3168/jds.2012-6401

Berry, N.R., Jewel, P.L., Edwards, P.J., 2002. Selection, intake and excretion of nutrient by Scottish highland suckler beef cows and calves, and Brown Swiss dairy cows in contrasting alpine grazing systems. J. Agric. Sci. 139, 437–453. https://doi.org/10.1017/S1751731104000032

Catapano, A.L., Will, S.H., Quispe, D., 2016. ESC/EAS guidelines for the Management of Dyslipidaemias. Eur. Heart. J. 37, 2999–3058. https://doi.org/10.1093/eurheartj/ehw272

Cheng, J.B., Wang, W.Y., Zheng, N., Li, S.J., Zhang, Y.D., Wang, J.Q., 2014. Natural period change of heat stress rivals unique “heat-stressed milk protein decrease syndrome” in mid-lactation dairy cows. China. Anim. Husbandry and Veterinary Medicine. 41, 73-84. https://doi.org/10.5551/jas.2014-8347

Chmielewski, Z., 2018. The Farming Cooperative and Its Development. In: Cooperativism and Democracy, 19th edition. Leiden, koninklijke brill NV, pp. 314-329. https://doi.org/10.1163/9789004352469_020

Cruzen, S.M., Boddicker, R.L., Graves, K.L., Johnson, T.P., Arkfeld, E.K., Baumgard, L.H., Ross, J.W., Safranski, T.J., Lucy, M.C., Lonergan, S.M., 2015. Carcass composition of market weight pigs subjected to heat stress in utero and during finishing. J. Anim. Sci. 93, 2587–2596. https://doi.org/10.2527/jas.2014-8347

Emoto, T., Takahiro, S., Natsumi, M., Takako, T., Taku, W., Fumie, I., Chiaki, S., Dai, Daisuke, T., Taei M., Takao, M., Hiroshi, O., Yosuke, M., Sushi-Ku, K., Akira, T., Mitsuhiro, Y., 2013. The apolipoprotein B/A1 ratio is associated with reactive oxygen metabolites and endothelial dysfunction in statin-treated patients with coronary artery disease. J. Atheroscler. Thromb. 20, 623–629. https://doi.org/10.5551/jat.16824
Kamil, K.A., Latipudin, D., Mushawwir, A., Rahmat, D., Balia, Jiangjing, L., Virend, K.S., Francisco, L.J., John, O., Lee, D.G., Jiang, S., Virend, K.S., Francisco, L.J., John, O., Lee, D.G., Fournel, S., Veronique, O., Edith, C., 2017. Practices for

Gonzalez-Rivas, P.A., Sullivan, M., Cottrell, J.J., Leury, B.J., Caughan, J.B., Dunshea, F.R., 2016. A rumen bolus is a useful tool to monitor core body temperature in lactating dairy cows in a sub-tropical summer. J. Anim. Sci. 94, 5618. https://doi.org/10.2527/jam2016-1281

Gorniak, T., Michael, J.B., Peter, P.T., Krishnaji, R.K., 2014. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim. Nutr. 68, 358–369. https://doi.org/10.1080/174039X.2014.950451

Hernawan, E., Adriani, L., Mushawwir, A., Cahyani, C., Gorniak, T., Michael, J.B., Peter, P.T., Krishnaji, R.K., 2014. Geraert, P.A., Padilha, J.C., Guillaumin, S., 1996. Metabolic radical and antioxidant activities of heat-stressed 93, 71–81. https://doi.org/10.1079/BJN19960124

Hernandez-Rivas, P.A., Sullivan, M., Cottrell, J.J., Leury, B.J., Caughan, J.B., Dunshea, F.R., 2016. A rumen bolus is a useful tool to monitor core body temperature in lactating dairy cows in a sub-tropical summer. J. Anim. Sci. 94, 5618. https://doi.org/10.2527/jam2016-1281

Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim. Nutr. 68, 358–369. https://doi.org/10.1080/174039X.2014.950451

Jae-Sung, L., Kim, M.J., Park, S.H., Lee, S.B., Wang, T., Jung, U.S., Kim, E.K., Lee, K.W., Lee, H.G., 2020. Dietary supplementation with combined extracts from garlic (Allium sativum), brown seaweed (Undaria pinnatifida), and pinecone (Pinus koraiensis) improves milk production in Holstein cows under heat stress conditions. Asian-Australas. J. Anim. Sci. 33, 111–119. https://doi.org/10.5713/ajas.19.0536

Jiang, S., Virend, K.S., Francisco, L.J., John, O., Lee, D.G., 2019. Effects of dietary threonine supplementation on productivity and expression of genes related to protein deposition and amino acid transportation in brooder hens and yellow-feathered chicken and their offspring. J. Poultry. Sci. 1, 1-11. https://doi.org/10.3382/ps/pez420

Jiangjing, L., Virend, K.S., Francisco, L.J., John, O., Lee, D.G., 2019. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: a novel idea for monitoring and evaluation of heat stress—a review. Asian-Australas. J. Anim. Sci. 32, 1332–1339. https://doi.org/10.5713/ajas18.0743

Johnson, J.S., Sanz, M.V., Gutierrez, N.A., Patience, F.J., Ross, J.W., Gabler, N.K., Lucy, M.C., Safranski, T.J., Rhoads, R.P., Baumgard, L.H., 2015. Effects of in utero heat stress on postnatal body composition in pigs: I. Growing phase. J. Anim. Sci. 93, 71–81. https://doi.org/10.2527/jas.2014-8354

Kang, S., Jae, S.L., Hai, Chon, L., Michael, C.P., Bae, Y.K., Jeong, T.D., Dae-Seog, H., Hong, G.L., Sung, G.H., 2016. Phytocline extracted from pine-cone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J. Microbiol. Biotechnol. 26, 579–587. https://doi.org/10.4041/jmb.1510.10070

Kayadee, M., Raoudha, S., Taha, N., 2019. Effect of different feed combination on the growth development of spotted cuscus (Spilocuscus maculatus) in captivity. Biodiversitas. 20, 526–531. https://doi.org/10.3390/biodiv/d200231

Khou, H., Zhao, F., Ren, K., Wang, Z., Chen, L., Chen, X., Lu, Y., Wang, D., 2016. The progress on detection method and the regularities of body temperature and activities in dairy cows. Acta. Vet. Zootech. Sin. 47, 1306–1315.

Kubow, K.E., Martin, D., Julian, L.G., Francisco, T., 2015. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6, 8026. https://doi.org/10.1038/ncomms9026

Kohler, M., Leiber, F., Willems, H., Merbold, L., Liesegang, L., 2013. Influence of altitude on vitamin D and bone metabolism (Ca2+) exposure sheep and goats. J. Anim. Sci. 91, 5259–5268. https://doi.org/10.2527/jas.2013-6702

Lambertz, C., Sanker, C., Gauly, M., 2014. Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. J. Dairy. Sci. 97, 319–329. https://doi.org/10.3168/jds.2013-7217

Leach, M.D., Cowen, L.E., 2014. Membrane fluidity and temperature sensing are coupled via circuitry comprised of Ole1, Rsp5, and Hsf1 in Candida albicans. Eukaryot. Cell. 13, 1077–1084. https://doi.org/10.1128/EC.00138-14

Lee, J.S., Kim, M.J., Park, S.H., Lee, S.B., Wang, T., Jung, U.S., 2017. Effects of dietary mixture of garlic (Allium sativum), coriander (Coriandrum sativum) and probiotics on immune responses and caecal counts in young laying hens. J. Anim. Physiol. Anim. Nutr. 101, 122–132. https://doi.org/10.1111/jpn.12573

Li, X.J., Chen, X., Kou, H., Li, X., Wang, Y., Wang, D., 2016. Study progress on the rule of body temperature and its application in reproduction of dairy cattle. Acta. Vet. Zootech. Sin. 47, 2331–2341.

Mishawwir, A., Yong, K.Y., Adrinai, L., Hermawan, E., Kamil, K.A., 2011. Prediction models for olfactory metabolic and sows% rnareticulocyt

Mohammed, A.N., Abdel, R.L., Zeinhom, M.M.A., 2015. Exploitation of multiple approaches to adapt and mitigate the negative effects of heat stress on milk production and fertility of Fresian cows under field conditions. J. Vet. Med. Sci. 61, 33–42. https://doi.org/10.21608/avmj.2015.169784

Mishawwir, A., Yong, K.Y., Adrinai, L., Hermawan, E., Kamil, K.A., 2010. The fluctuation effect of atmospheric ammonia (NH3) exposure and microclimate on hereford bulls hematohematochemical. J. of the Indon. Tropical. Anim. Agric. 35, 232–238. https://doi.org/10.14710/jita.35.4.232-238

Mishawwir, A., Adrinai, L., Kamil, K.A., 2011. Prediction models for olfactory metabolic and sows% mareticulocyt (Rnart) by measurement of atmospheric ammonia exposure and microclimate level. J. of the Indon. Tropical. Anim. Agric. 36, 14-20. https://doi.org/10.14710/jita.36.11.4-20
