Anisotropic Percolation on Slabs

Rodrigo G. Couto *, Bernardo N. B. de Lima †, Rémy Sanchis ‡

May 11, 2014

Abstract

We consider anisotropic independent bond percolation models on the slab $\mathbb{Z}^2 \times \{0, \ldots, k\}$, where we suppose that the axial (vertical) bonds are open with probability p, while the radial (horizontal) bonds are open with probability q. We study the critical curves for these models and establish their continuity and strict monotonicity.

Keywords: long range percolation; percolation threshold
MSC numbers: 60K35, 82B41, 82B43

1 Introduction and Main Result

Given $k \in \mathbb{N}$, let $S^k = (\mathbb{V}, \mathbb{E})$ be the slab of thickness k, the graph where the vertex set is $\mathbb{V} = \mathbb{Z}^2 \times \{0, 1, \ldots, k\}$ and the set of bonds is $\mathbb{E} = \{(x = (x_1, x_2, x_3), y = (y_1, y_2, y_3)) : x, y \in \mathbb{V}, \|x - y\|_1 = 1\}$, where $\|x - y\|_1 = \sum_{i=1}^3 |x_i - y_i|$ is the usual graph distance in \mathbb{Z}^3. The set \mathbb{E} is naturally partitioned in two disjoint subsets \mathbb{E}_h and \mathbb{E}_v. Namely, $\mathbb{E}_h = \{(x, y) \in \mathbb{E} : x_3 = y_3\}$ and $\mathbb{E}_v = \{(x, y) \in \mathbb{E} : x_1 = y_1, x_2 = y_2\}$. We say that e is a radial or axial edge according to $e \in \mathbb{E}_h$ or \mathbb{E}_v, respectively.

Given two parameters $p, q \in [0, 1]$, we consider a bond anisotropic percolation model on S^k. We associate to each bond $e \in \mathbb{E}$, the state open or closed independently, where each bond is open with probability p or q, if it belongs to \mathbb{E}_h or \mathbb{E}_v, respectively. Thus, this model is described by the probability space $(\Omega, \mathcal{F}, \mathbb{P}_{p,q})$ where $\Omega = \{0, 1\}^{\mathbb{E}}$, \mathcal{F} is the σ-algebra generated by the cylinder sets in Ω and $\mathbb{P}_{p,q} = \prod_{e \in \mathbb{E}} \mu(e)$ is the product of Bernoulli measures, where $\mu(e)$ is the Bernoulli measure with parameter p or q acording to $e \in \mathbb{E}_h$ or $e \in \mathbb{E}_v$, respectively. We denote a typical element of Ω by ω. When $\omega(e) = 1$ we say that e is open, if $\omega(e) = 0$, e is closed.

Given two vertices $x, y \in \mathbb{V}$ we say that x and y are connected in the configuration ω if there exists a finite path of open edges connecting x to y. We will use the short notation $\{x \leftrightarrow y\}$ to denote the set of configurations where x and y are connected.

Given the vertex x, the cluster of x in the configuration ω is the set $C_x(\omega) = \{y \in \mathbb{V} ; x \leftrightarrow y \ on \ \omega\}$. We say that the vertex x percolates when the cardinality of $C_x(\omega)$ is infinite; we will use the following standard notation $\{x \leftrightarrow \infty\} := \{\omega \in \Omega ; \|C_x(\omega)\| = \infty\}$, where $\|C_x(\omega)\|$ is the number of vertices in $C_x(\omega)$. We define the percolation probability as the function $\theta(p, q) : [0, 1]^2 \rightarrow [0, 1]$ with $\theta(p, q) = \mathbb{P}_{p,q}(0 \leftrightarrow \infty)$. Consider the box $B(n) = [-n, n]^2 \times \{0, 1, \ldots, k\}$, denote by $\partial B(n) = \{y = (y_1, y_2, y_3) \in B(n) ; \max\{\|y_1\|, \|y_2\|\} = n\}$

*Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627 C.P. 702 CEP30123-970 Belo Horizonte-MG, Brazil and Departamento de Matemática, Universidade Federal de Ouro Preto, Rua Diogo de Vasconcelos 122 CEP35400-000 Ouro Preto-MG
†Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627 C.P. 702 CEP30123-970 Belo Horizonte-MG, Brazil
the boundary of $B(n)$ and $A_n = \{ 0 \leftrightarrow \partial B(n) \}$ the event where 0 is connected to $\partial B(n)$. Denoting by

$$\theta_n(p,q) = \mathbb{P}_{p,q}(A_n)$$

we observe that $\{ 0 \leftrightarrow \infty \} = \cap_{n \geq 1} A_n$ and $\theta_n(p,q) \downarrow \theta(p,q)$ as n goes to infinity.

Observe that if $q = 1$ the model is equivalent to the bond percolation on \mathbb{Z}^2 with parameter s satisfying

$$1 - s = (1 - p)^{k+1}.$$ In this case we denote the horizontal critical value by p_k where $p_k = 1 - \frac{1}{k+1}$. Therefore, a simple domination argument shows that $\theta(p,q) = 0$ for all $p \leq p_k$ and $q \in [0,1]$.

If $q = 0$ we have $k + 1$ disjoint copies of \mathbb{Z}^2. Then the critical value in this case is $\frac{1}{2}$ and if $p > \frac{1}{2}$ there is percolation, regardless the value of q. Using a standard coupling argument we have that $\theta(p,q)$ is non-decreasing function in the parameters p and q. Then we define the function $q^k_c : [p_k, \frac{1}{2}] \mapsto [0,1]$ by

$$q^k_c(p) = \sup \{ q \in [0,1]; \theta(p,q) = 0 \}.$$ We will show that $q^k_c(\frac{1}{2}) = 0$ and $q^k_c(p_k) = 1$. As $\theta(p,q)$ is non-decreasing in p then $q^k_c(p)$ is non-increasing.

In this note we prove that the critical curve $q^k_c(p)$ (that divides the regions $\theta(p,q) > 0$ and $\theta(p,q) = 0$) is continuous and strictly decreasing. Analogously we define the function $p^k_c : [0,1] \mapsto [p_k, \frac{1}{2}]$ where

$$p^k_c(q) = \sup \{ p \in [0,1]; \theta(p,q) = 0 \}. \quad (1.1)$$

We will omit the index k when it is not necessary and we will write $q_c(p)$ and $p_c(q)$.

Observe that given some vertex $x \in \mathbb{V}$ the percolation function $\mathbb{P}_{p,q}(x \leftrightarrow \infty)$ is, in general, different from $\theta(p,q)$ but the critical functions $q_c(p)$ and $p_c(q)$ are the same. Now we can state the main result of this paper:

Theorem 1. The functions $q_c : [p_k, \frac{1}{2}] \mapsto [0,1]$ and $p_c : [0,1] \mapsto [p_k, \frac{1}{2}]$ are decreasing, continuous and q_c is the inverse of p_c. Moreover, for a compact $[a,b] \subset (p_k, \frac{1}{2})$, there exists positive constants $c(a,b)$ and $C(a,b)$ such that

$$c(a,b)|p' - p| \leq |q_c(p') - q_c(p)| \leq C(a,b)|p' - p| \quad (1.2)$$

for all $p', p \in [a,b]$.

Remarks: 1) All the results of this paper can be generalized, with some minor modifications, for anisotropic percolation in the whole graph \mathbb{Z}^3. 2) Given any $p,p' \in [0,1]$, $p \geq p'$, using the results of Grimmett and Marstrand (see [3], they are still valid for anisotropic percolation), it may be shown that for all sufficiently large k we have $\theta(p,p') \geq \theta(p',p)$, which says that the slab S^k percolates better when the greater parameter is on radial bonds. We expect that this behavior is true for any k. Simulations in [4] indicates that, in anisotropic \mathbb{Z}^3, $q_c(p)$ is convex. If such fact is indeed true for S^k, by Theorem 1 we have that, if $p > p'$ and $\theta(p,p') = 0$ then $\theta(p',p') = 0$.

In the next section, we state three Lemmas and prove Theorem 1. In Section 3, we will prove the Lemmas stated in Section 2.

2 Preliminary Lemmas and proof of Theorem 1

The first lemma proves that for $p < \frac{1}{2}$ and q small enough, we have exponential decay of the radius of the open cluster. As a consequence we have that $q_c(p) > 0$ for all $p \in [p_k, \frac{1}{2}]$.

Lemma 1. Fixed $p < \frac{1}{2}$, there exists $\delta = \delta(p) > 0$ with the following property: For any $0 \leq q < \delta$, there exists a constant $c = c(p,q) > 0$ such that

$$\mathbb{P}_{p,q}(|C_0| \geq n) \leq e^{-cn}, \ \forall n \geq 1.$$ Where C_0 is the open cluster of the origin in S^k.

2
Lemma 2. For all \(p \in (p_k, \frac{1}{2}) \), we have that \(q_c(p) < 1 \). Moreover, it holds that \(\lim_{p \uparrow \frac{1}{2}} q_c(p) = q_c(\frac{1}{2}) = 0 \).

Combining this result with Lemma 1, we have that \(0 < q_c(p) < 1 \) for all \(p \in (p_k, \frac{1}{2}) \).

Lemma 3. Given \(\delta > 0 \), there are \(\phi = \phi(\delta), \psi = \psi(\delta) \in (0, \frac{\pi}{2}) \) such that \(\forall (p, q) \in [\delta, 1-\delta]^2 \) the function \(\theta(p, q) \) is non-decreasing in the directions of \((\cos \phi, -\sin \phi)\) and \((-\cos \psi, \sin \psi)\).

As a consequence of this last lemma, we can see that \(\lim_{p \uparrow \frac{1}{2}} q_c(p) = q_c(p_k) = 1 \). In fact, suppose that \(q_c(p_k) < 1 \) there exists \(\bar{q} \) such that \(\theta(p_k, \bar{q}) > 0 \). Taking \(\delta = \min\left\{ \frac{1-\bar{q}}{\sqrt{2}}, \frac{\bar{q} - 2p_k}{\sqrt{2}} \right\} \), we obtain from Lemma 3 that \(\theta(p, q) \) is non-decreasing in the direction \((-\cos \psi, \sin \psi)\). Therefore, it must be a pair \((p, q) \in [\delta, 1-\delta]^2\) with \(p < p_k \) and \(\theta(p, q) > 0 \), a contradiction, because there is no percolation if \(p < p_k \). Then, \(q_c(p_k) = 1 \). In the same manner we show that \(\lim_{p \downarrow \frac{1}{2}} q_c(p) = 1 \).

In resume, we have that \(\lim_{p \uparrow \frac{1}{2}} q_c(p) = q_c(p_k) = 1 \), \(\lim_{p \downarrow \frac{1}{2}} q_c(p) = q_c(\frac{1}{2}) = 0 \) and \(0 < q_c(p) < 1 \), \(\forall p \in (p_k, \frac{1}{2}) \). In analogous way, for the function \(p_c : [0, 1] \mapsto [p_k, 1/2] \) defined in Equation (1.1), we have by the facts above that \(p_c(0) = 1/2 \), \(p_c(1) = p_k \) and \(p_c(q) \) is non-increasing in \(q \), then \(p_c(q) \in [p_k, \frac{1}{2}] \), \(\forall q \in [0, 1] \).

Now, we are able to prove Theorem 1.

Proof of Theorem 1. First we will show (2.2). Fixed \([a, b] \subset (p_k, \frac{1}{2})\) we have \(0 < q_c(b) \leq q_c(a) < 1 \), so take \(\delta = \delta(a, b) > 0 \) such that the square \([2\delta, 1-2\delta]^2\) contains the points \((a, q_c(a))\) and \((b, q_c(b))\). As \(q_c \) is non increasing we have \((p, q_c(p)) \in [2\delta, 1-2\delta]^2\), \(\forall p \in [a, b] \). Let \(\phi = \phi(\delta) \) and \(\psi = \psi(\delta) \) be given by Lemma 3 and take \(\epsilon = \frac{\delta}{2} \min\{\tan^{-1}\phi, \tan^{-1}\psi\} \). Consider then \(p < p' \in [a, b] \) with \(|p' - p| \leq \epsilon \).

We observe that \(\forall 0 < \eta < \frac{\delta}{2} \)

\(i) \) \((p, q_c(p) + \eta), (p', q_c(p) + \eta - |p' - p| \tan \phi) \in [\delta, 1-\delta]^2 \) and

\[
(p', q_c(p) + \eta - |p' - p| \tan \phi) = (p, q_c(p) + \eta) + \frac{|p' - p|}{\cos \phi} (\cos \phi, -\sin \phi)
\]

(2.1)

\(ii) \) \((p, q_c(p) - \eta), (p', q_c(p) - \eta - |p' - p| \tan \psi) \in [\delta, 1-\delta]^2 \) and

\[
(p', q_c(p) - \eta - |p' - p| \tan \psi) = (p, q_c(p) - \eta) + \frac{|p' - p|}{\cos \psi} (\cos \psi, -\sin \psi)
\]

(2.2)

By Lemma 3 and (2.1) we have that \(\theta(p', q_c(p) + \eta - |p' - p| \tan \phi) \geq \theta(p, q_c(p) + \eta) > 0 \), so \(q_c(p') \leq q_c(p) - \eta - |p' - p| \tan \phi, \forall 0 < \eta < \frac{\delta}{2} \), we get

\[
|q_c(p') - q_c(p)| \geq |p' - p| \tan \phi
\]

(2.3)

Again, by Lemma 3 (using the consequence that \(\theta(p, q) \) is non-decreasing in the direction \((\cos \psi, -\sin \psi)\)) and (2.2), we have that \(\theta(p', q_c(p) - \eta - |p' - p| \tan \psi) \leq \theta(p, q_c(p) - \eta) = 0 \), so \(q_c(p') \geq q_c(p) - \eta - |p' - p| \tan \psi, \forall 0 < \eta < \frac{\delta}{2} \), we get

\[
|q_c(p') - q_c(p)| \leq |p' - p| \tan \psi
\]

(2.4)

We proved above the inequalities in (1.2) with the restriction \(|p' - p| \leq \epsilon \). Using that \(q_c \) is non-increasing we have that the second inequality in (1.2) is true for all \(p', p \in [a, b] \). So, take \(C(a, b) = \tan \psi \). For the first inequality, observe that if \(p' - p > \epsilon \), by taking \(p \leq p_1 < p_2 \leq p' \) with \(p_2 - p_1 = \epsilon \) we have

\[
|q_c(p') - q_c(p)| \geq |q_c(p_2) - q_c(p_1)| \geq \frac{|p_2 - p_1| |p' - p| \tan \phi}{|p' - p|} \geq \frac{\epsilon |p' - p| \tan \phi}{|b - a|}
\]

(2.5)
so, take \(c(a, b) = \frac{\epsilon \tan \phi}{b - a} \).

The argument above shows that \(q_c \) is Lipschitz-continuous and strictly decreasing on any compact \([a, b] \subset (p_k, \frac{1}{2})\). Combining with \(\lim_{p \uparrow p_k} q_c(p) = q_c(p_k) = 1 \) and \(\lim_{p \downarrow p_k} q_c(p) = q_c(\frac{1}{2}) = 0 \), we have that \(q_c \) is strictly decreasing and continuous in the whole interval \([p_k, \frac{1}{2}]\).

Analogously we can prove that \(p_c(q) \) is strict decreasing and continuous for \(q \in [0, 1] \).

Now, we will show that the function \(q_c \) is the inverse function of \(p_c \). Given any \(p \in (p_k, \frac{1}{2}) \), as \(q_c(p) \) is strict decreasing, it holds that \(\forall \epsilon > 0, \theta(p - \epsilon, q_c(p)) = 0 \) (so \(p_c(q_c(p)) = p \)) and \(\theta(p + \epsilon, q_c(p)) > 0 \) (so \(p_c(q_c(p)) \leq p \)). Whence we conclude that \(p_c(q_c(p)) = p \). In the same manner we show that \(q_c(p_c(q)) = q \).

That is, \(q_c \) is the inverse function of \(p_c \).

\[\square \]

3 Proofs of the Lemmas

Proof of Lemma 1

We adapt to \(S^k \) the ideas contained in Section 3.5 of [1]. The key idea for this proof is the Lemma 11 of Section 3.5 in [1], which is a consequence of a general result of [2] comparing \(l \)-independent measures with product measures.

Let \(G \) be a graph, and let \(\tilde{P} \) be a site percolation measure on \(G \), i.e., a probability measure on the set of assignments of states (open or closed) to the vertices of \(G \). The measure \(\tilde{P} \) is \(l \)-independent if, whenever \(U \) and \(V \) are sets of vertices of \(G \) whose graph distance is at least \(l \), the states of the vertices in \(U \) are independent of the states of the vertices in \(V \). Observe that if \(\tilde{P} \) is 1-independent, it means that \(\tilde{P} \) is a product measure.

Given an integer \(m > 0 \), denote by \(C_m(A) \) the event where some vertex in \(A \) is connected by an open path to a vertex at distance \(m \) from \(A \), where the distance is given by the maximum norm. Given \(m > k \) an integer, consider the box \(S_m = [0, m - 1]^2 \times \{0, 1, ..., k\} \) in \(S^k \). We will show first that given \(\epsilon > 0 \) (to be chosen later) and \(p < \frac{1}{2} \) there are \(m \) and \(\delta > 0 \) such that \(\mathbb{P}_{p,q}(C_m(S_m)) < \epsilon, \forall q \in [0, \delta] \).

For all \(i \in \{0, 1, ..., k\} \), we define \(P^i \) as the plan \(\mathbb{Z}^2 \times \{i\} \), \(S_m^i = [0, m - 1]^2 \times \{i\} \subset P^i \). Let \(Q(S_m) \) be the event where all vertical bonds of the box \(\tilde{S}_m = [-m, 2m - 1]^2 \times \{0, ..., k\} \) are closed.

Observe that \(C_m(S_m) \cap Q(S_m) \subset \bigcup_{i=0}^k C_m(S_m^i) \). Since the events \(C_m(S_m^i) \) have the same probability, we have \(\mathbb{P}_{p,q}(C_m(S_m) \cap Q(S_m)) \leq (k + 1)\mathbb{P}_{p,q}(C_m(S_m^0)) \). As \(p < \frac{1}{2} \), we use the exponential decay in the subcritical phase of \(Z^2 \simeq Z^2 \times \{0\} \) (see Theorem 5.4 in [3]). Then, there is some constant \(\psi(p) > 0 \) such that \(\mathbb{P}_p(0 \leftrightarrow [-n, n]^2) \leq e^{-\psi(p)n} \), where \(\mathbb{P}_p \) is the probability measure for ordinary bond Bernoulli percolation with parameter \(p \) on \(Z^2 \). Then

\[
\mathbb{P}_{p,q}(C_m(S_m^0)) = \mathbb{P}_p(C_m(S_m^0)) \leq \sum_{v \in S_m^0} \mathbb{P}_p(v \leftrightarrow \partial B(v, m)) \leq m^2 e^{-\psi(p)m} \xrightarrow{m \to \infty} 0,
\]

where \(B(v, m) \) is the ball of center \(v \) and radius \(m \) in the maximum norm in \(\mathbb{Z}^2 \times \{0\} \). Then, we can take \(m \) large enough such that \(\mathbb{P}_{p,q}(C_m(S_m^0)) \leq \frac{1}{2k+1} \). Thereby \(\mathbb{P}_{p,q}(C_m(S_m) \cap Q(S_m)) \leq \frac{1}{2} \).

Observing that \(\mathbb{P}_{p,q}(Q(S_m)) = (1 - q)^N \) where \(N = k(3m)^2 \) is the number of vertical bonds in \(\tilde{S}_m \), we can choose \(\delta > 0 \) small enough such that \(\mathbb{P}_{p,q}(Q(S_m)) > 1 - \frac{\epsilon}{2} \) for all \(p \in [0, 1] \) and \(q \in [0, \delta] \).

Then fixed \(p < \frac{1}{2} \) and \(q \in [0, \delta] \), it holds that

\[
\mathbb{P}_{p,q}(C_m(S_m)) = \mathbb{P}_{p,q}(C_m(S_m) \cap Q(S_m)) + \mathbb{P}_{p,q}(C_m(S_m) \cap Q(S_m)^c) \leq \frac{\epsilon}{2} + \mathbb{P}_{p,q}(Q(S_m)^c) \leq \epsilon.
\]
Now, we will define a site percolation measure $\tilde{\mathbb{P}}$ on \mathbb{Z}^2. We declare each vertex $v = (x, y) \in \mathbb{Z}^2$ as open if and only if the event $C_m(S_{v,m})$ holds for the m by m square $S_{v,m} = [mx+1, mx+m] \times [my+1, my+m] \times \{0, ..., k\}$.

More formally, let $f : \Omega \mapsto \{0, 1\}^{\mathbb{Z}^2}$ be the function defined as $f(\omega) = (f_v(\omega))_{v \in \mathbb{Z}^2}$ where

$$
f_v(\omega) = \begin{cases} 1, & \text{if } \omega \in C_m(S_{v,m}) \\ 0, & \text{if } \omega \notin C_m(S_{v,m}). \end{cases} \quad (3.1)
$$

The function f and the measure $\mathbb{P}_{p,q}$ induce a probability measure $\tilde{\mathbb{P}}$ on $\{0, 1\}^{\mathbb{Z}^2}$ given by $\tilde{\mathbb{P}}(\mathcal{A}) = \mathbb{P}_{p,q}(f^{-1}(\mathcal{A}))$ for any $\mathcal{A} \in \mathcal{A}$, where \mathcal{A} is the σ-algebra generated by the cylinder sets of $\{0, 1\}^{\mathbb{Z}^2}$. This measure $\tilde{\mathbb{P}}$ give us a site percolation model on $(0, 1)^{\mathbb{Z}^2}$.

Since the event $C_m(S_{v,m})$ depends only on the states of sites within distance (in the graph distance) m of $S_{v,m}$, then the measure $\tilde{\mathbb{P}}$ is 5-independent. Furthermore, each vertex $v \in \mathbb{Z}^2$ is open with probability $\tilde{\mathbb{P}}(v \text{ is open}) = \mathbb{P}_{p,q}(C_m(S_{v,m})) \leq \epsilon$.

From Lemma 11 of Section 3.5 in [1], we can take $\epsilon > 0$ and $a > 0$ (the constants k and Δ in Lemma 11 are 5 and 4, respectively) such that if $\tilde{\mathbb{P}}(v \text{ is open}) \leq \epsilon$, then

$$
\tilde{\mathbb{P}}(|\check{C}_v| \geq n) \leq e^{-an}, \quad \forall n \geq 1.
$$

Where \check{C}_v is the open cluster of the vertex v in this 5-independent model induced on \mathbb{Z}^2.

If $|C_0| \geq (k+1)(4m+1)^2$ this implies that every site $u \in C_0$ is connected by an open path to some site at distance at least $2m$ from u, then $C_m(S_{v,m})$ occurs for every vertex $v \in S_{v,m} \cap C_0$, that is, the site v is open in the 5-independent model induced on \mathbb{Z}^2, in particular $v \in \check{C}_0$. Hence, as each $S_{v,m}$ contains $(k+1)m^2$ sites, if $n \geq (k+1)(4m+1)^2$ we have

$$
\mathbb{P}_{p,q}(|C_0| \geq n) \leq \tilde{\mathbb{P}}\left(|\check{C}_0| \geq \frac{n}{(k+1)m^2}\right) \leq e^{\frac{-an}{(k+1)m^2}}.
$$

We conclude the proof of Lemma 1 taking $\epsilon = \frac{q}{(k+1)m^2}$.

Proof of Lemma 2 First we will prove that $q_c(p) < 1$ for $p \in (p_k, 1/2]$. Since q_c is non-increasing in p, it is sufficient to show that $q_c(p) < 1$ for p close to p_k. Given any $\epsilon > 0$, we will show that there exists $q < 1$ such that que $\theta(p_k + \epsilon, q) > 0$, therefore $q_c(p_k + \epsilon) \leq q < 1$.

Let $u_1 = (1, 0, 0), u_2 = (0, 1, 0)$ and $u_3 = (0, 0, 1)$ be the unitary vectors. Consider the graph G obtained from S^k replacing each vertical bond $f_v = \langle v, v + u_3 \rangle$, with $v \in \mathbb{Z}^2 \times \{0, 1, ..., k-1\}$, by 4 parallel bonds (denoted by f^{V}_v, f^I_1, f^I_2 and f^d_1) connecting the vertices v and $v + u_3$ and declaring each of these new bonds open with probability \tilde{q} where $1 - q = (1 - \tilde{q})^4$. It means that each vertical bond in S^k is closed if and only if the respective 4 parallel bonds of G are closed. Observe that G and S^k have the same vertex set and this replacement does not affect the connective functions involving the vertices of S^k. We have that $\mathbb{P}_{p,q}(0 \leftrightarrow \partial B(n) \text{ in } S^k) = \mathbb{P}_{p,q}(0 \leftrightarrow \partial B(n) \text{ in } G)$ and $\theta^n(p, q) = \theta^G(p, \tilde{q})$.

We will define a bond percolation process on \mathbb{Z}^2 which is stochastically dominated by the bond percolation process on G, such that percolation on \mathbb{Z}^2 imply percolation on G. To simplify the notation we identify \mathbb{Z}^2 with $\mathbb{Z}^2 \times \{0\} \subset G$. To each bond $\langle v, v + u_1 \rangle$ of \mathbb{Z}^2 we define the paths c^0_{v,u_1} on G, with $i \in \{0, 1, ..., k\}$ where c^0_{v,u_1} is the bond $\langle v, v + u_1 \rangle$ and c^i_{v,u_1}, for $i = 1, \ldots, k$ is the path on G that starts at v, takes the vertical path using the bonds $f^v_{v+ju_1}$, with $0 \leq j \leq i-1$, until the vertex $v + iu_3$, takes the bond $\langle v + iu_3, v + iu_3 + u_1 \rangle$, and get down vertically until the vertex $v + u_1$ using the bonds $f^d_{v+ju_3}$, with $0 \leq j \leq i-1$. Analogously we define the paths c^i_{v,u_2} to the bond $\langle v, v + u_2 \rangle$, using the vertical bonds $f^v_{v+ju_3}$ and $f^d_{v+ju_3 + u_1}$. Declare each bond $e = \langle v, v + u_1 \rangle$ of \mathbb{Z}^2 as open if at least one of the respective paths c^i_{v,u_1} is open. Analogously, we
do the same for the bond $e = (v, v + u_2)$ and the paths c_i^{v, u_2}. Observe that these paths were chosen in such way that we have an independent bond percolation process on \mathbb{Z}^2, with parameter $\mathcal{p} = \mathcal{p}(p, q)$ defined as:

$$
\mathcal{p} = \mathcal{p}(p, q) = p \sum_{j=0}^{k} \frac{[(1-p)q]^j}{1 - (1-p)q^k}
$$

reminding that $\hat{q} = 1 - (1-q)^{\frac{1}{k}}$. Taking $p = p_0 + \epsilon$ and $q = 1$ (so $\hat{q} = 1$) we get $\mathcal{p}(p_0 + \epsilon, 1) = 1 - (1 - \sqrt[1-k]{\hat{q}}\epsilon)^{k+1} > \frac{1}{2}$. As $\mathcal{p}(p, q)$ is a continuous function, there is $\delta > 0$ such that $\mathcal{p}(p_0 + \epsilon, q) > \frac{1}{2}$, for all $q \in (1 - \delta, 1]$. Then,
we chose $q < 1$ such that $\mathcal{p}(p_0 + \epsilon, q) > \frac{1}{2}$. Therefore $\theta^{\mathcal{p}}(p, q) = \theta^{\mathcal{p}}(p, q) \geq \theta^{\mathcal{p}}(\mathcal{p}(p_0 + \epsilon, q)) > 0$.

To show that $\lim_{p \uparrow +} q_c(p) = 0$, we can suppose that $k = 1$ since q_c^k is non-increasing in k. As $\hat{q} > 0$ is equivalent to $q > 0$, we have that for $q > 0$ and $p = \frac{1}{2}$, $\mathcal{p} = \frac{1}{2} + \frac{\epsilon^2}{4} > \frac{1}{2}$. Fixed $q = \epsilon > 0$, as \mathcal{p} is a continuous function of p, we have that $\mathcal{p}(p, \epsilon) > \frac{1}{2} \forall p \in (\frac{1}{2} - \frac{\epsilon^2}{4}, \frac{1}{2}]$. Therefore, $\theta^{\mathcal{p}}(p, \epsilon) = \theta^{\mathcal{p}}(p, \epsilon) \geq \theta^{\mathcal{p}}(\mathcal{p}(p, \epsilon)) > 0$ and $q_c(p) \leq \epsilon \forall p \in (\frac{1}{2} - \frac{\epsilon^2}{4}, \frac{1}{2}]$. We have then $\lim_{p \uparrow +} q_c(p) = 0$ and $q_c(\frac{1}{2}) = 0$.

Proof of Lemma 3 To prove this lemma we enunciated two classical results (without proof) which are adaptations to \mathbb{R}^k of the Russo’s formula (see Theorem 2.25 in [2]) and, as consequence, an analogue of Lemma 3.5 of [2].

Given a configuration ω, we consider the configurations ω_e and ω^c that coincide with ω if $f \neq e$, but $\omega_e(e) = 0$ and $\omega^c(e) = 1$. We say that e is pivotal for an increasing event A in the configuration ω if $\mathcal{I}_A(\omega_e) = 0$ but $\mathcal{I}_A(\omega_e) = 1$. We denote by $(e$ is pivotal for $A)$ the set of such configurations. Thus, as A_0 is an increasing event, e is pivotal for A_0 if and only if A_0 does not occur when e is closed but A_0 does occur when e is open.

Proposition 1. (Russo’s formula) Consider the function $\theta_n(p, q)$, then

$$
\frac{\partial}{\partial p} \theta_n(p, q) = \sum_{f \in \mathcal{E}_n \cap B(n)} \mathbb{P}_{p, q}(e \text{ is pivotal for } A_n)
$$

and

$$
\frac{\partial}{\partial q} \theta_n(p, q) = \sum_{f \in \mathcal{E}_n \cap B(n)} \mathbb{P}_{p, q}(f \text{ is pivotal for } A_n)
$$

Proposition 2. There exists a positive integer N and a continuous function $\beta : (0, 1)^2 \mapsto (0, \infty)$ such that $\forall p, q \in (0, 1)$ and $n \geq N$, it holds that

$$
\beta^{-1}(p, q) \frac{\partial}{\partial p} \theta_n(p, q) \geq \beta(p, q) \frac{\partial}{\partial q} \theta_n(p, q) \geq \beta(p, q) \frac{\partial}{\partial q} \theta_n(p, q).
$$

We show the existence of ϕ, the proof for ψ is analogue. By the first inequality in Proposition 2, $\frac{\partial}{\partial p} \theta_n(p, q) \geq \beta(p, q) \frac{\partial}{\partial q} \theta_n(p, q)$ for all large n, where $\beta(p, q)$ is continuous in $(0, 1)^2$. Therefore, given $\delta > 0$ take $m > 0$ such that $\beta(p, q) \geq m$ in $[\delta, 1 - \delta]^2$, and in this case $\frac{\partial}{\partial p} \theta_n(p, q) \geq m \frac{\partial}{\partial q} \theta_n(p, q)$. Take then $\phi \in (0, \pi/2)$ such that $\tan \phi = m$. Therefore

$$
\nabla \theta_n(p, q) \cdot (\cos \phi, -\sin \phi) = \frac{\partial}{\partial p} \theta_n(p, q) \cos \phi - \frac{\partial}{\partial q} \theta_n(p, q) \sin \phi =
$$

$$
= \cos \phi \left(\frac{\partial}{\partial p} \theta_n(p, q) - \frac{\partial}{\partial q} \theta_n(p, q) \tan \phi \right) \geq \cos \phi \left(m \frac{\partial}{\partial q} \theta_n(p, q) - \frac{\partial}{\partial q} \theta_n(p, q) \tan \phi \right) = 0
$$

(3.3)
since that \(m = \tan \phi \).

Let \((p', q') = (p, q) + a(\cos \phi, -\sin \phi)\) such that \((p, q)\) and \((p', q')\) are in \([\delta, 1-\delta]^2\). Let \(\alpha : [0, a] \rightarrow [\delta, 1-\delta]^2\),
\(\alpha(t) = (p, q) + t(\cos \phi, -\sin \phi)\) the linear path joining \((p, q)\) to \((p', q')\). Integrating along the path \(\alpha\) we get
\[
\theta_n(p', q') - \theta_n(p, q) = \int_0^a \frac{d}{dt}\theta_n(\alpha(t))dt = \int_0^a \nabla \theta_n(p, q) \cdot (\cos \phi, -\sin \phi)dt \geq 0.
\]

Taking the limit as \(n \rightarrow \infty\) we have
\[
\theta(p', q') = \lim_{n \rightarrow \infty} \theta_n(p', q') \geq \lim_{n \rightarrow \infty} \theta_n(p, q) = \theta(p, q)
\]

So \(\theta(p, q)\) is non-decreasing in the direction \((\cos \phi, -\sin \phi)\).

\(\square\)

Acknowledgments. B.N.B. de Lima and R. Sanchis are partially supported by CNPq. R. Sanchis is partially supported by FAPEMIG (Programa Pesquisador Mineiro)

References

[1] Bollobás B., Riordan O., *Percolation*, 1nd edition, Cambridge University Press, New York, 2006.

[2] Grimmett G., *Percolation*, 2nd edition, Springer-Verlag, Berlin, 1999.

[3] Grimmett,G.R. and Marstrand J.M., *The Supercritical Phase of Percolation is Well Behaved*, Proc. Roy. Soc. London Ser A 430, 439-457 (1990).

[4] Guyon, E., Clerc J.P., Giraud G. and Roussenq J. *A network simulation of anisotropic percolation*, J. Physique. 42, 1553-1557 (1981).

[5] Liggett T.M., Schonmann R.H., Stacey A.M. *Domination by product measures*, Ann. Probab. 25, 71-95 (1997).