Ag$_3$VO$_4$ Nanoparticles Decorated Bi$_2$O$_2$CO$_3$ Micro-Flowers: An Efficient Visible-Light-Driven Photocatalyst for the Removal of Toxic Contaminants

Shijie Li, Shiwei Hu, Wei Jiang, Yu Liu, Yanping Liu, Yingtang Zhou, Liuye Mo and Jianshe Liu

1 Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China, 1 Department of Environmental Engineering, Zhejiang Ocean University, Zhoushan, China, 3 State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, China

Semiconductor-based photocatalysis is of great potential for tackling the environmental pollution. Herein, a novel hierarchical heterostructure of Bi$_2$O$_2$CO$_3$ micro-flowers in-situ decorated with Ag$_3$VO$_4$ nanoparticles was developed by a facile method. Various characterization techniques have been employed to study the physical and chemical property of the novel catalyst. The novel catalyst was utilized for the photocatalytic removal of industrial dyes (rhodamine B, methyl orange) and tetracycline antibiotic under visible-light irradiation. The results indicated that Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ heterojunctions showed a remarkably enhanced activity, significantly higher than those of bare Ag$_3$VO$_4$, Bi$_2$O$_2$CO$_3$, and the physical mixture of Ag$_3$VO$_4$ and Bi$_2$O$_2$CO$_3$ samples. This could be ascribed to an enhanced visible-light harvesting capacity and effective separation of charge carriers by virtue of the construction of hierarchical Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ heterojunction. Moreover, Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ also possesses an excellent cycling stability. The outstanding performance of Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ in removal of toxic pollutants indicates the potential of Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ in real environmental remediation.

HIGHLIGHTS

- Novel architectures of Ag$_3$VO$_4$ nanoparticles modified Bi$_2$O$_2$CO$_3$ micro-flowers were constructed.
- Novel Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ exhibited excellent photocatalytic activity and stability.
- Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ heterojunctions significantly promote the charge separation.

Keywords: Ag$_3$VO$_4$, Bi$_2$O$_2$CO$_3$, heterojunction, visible-light-driven, toxic pollutant removal

INTRODUCTION

Semiconductor photocatalysis has been regarded as one of the most promising nanotechnologies for the treatment of environmental pollution (Bora and Mewada, 2017; Cates, 2017; Wang W. et al., 2017; Zhang and Ma, 2017; Zhu and Wang, 2017). A significant research topic of photocatalysis is the exploration of highly active
The emergent Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} has attracted much interest for its good photocatalytic performance in the removal of toxic pollutants (Ni et al., 2016; Yu et al., 2018). However, the photocatalytic properties are still far from satisfactory owing to low solar utilization and fast recombination of electron-hole pairs. To improve the visible-light photocatalytic activity of Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3}, various strategies have been developed, such as design of microstructure (Zhao et al., 2011), deposition of metals (Yu et al., 2016), formation of heterojunction (Chen et al., 2016, 2017; Huang et al., 2016; Dong et al., 2014; Xiong et al., 2015) and doping with ions (Dong et al., 2014; Xiong et al., 2015). The rational construction of heterojunctions can effectively ameliorate the visible-light absorption ability and significantly suppress the electron-hole recombination (Han et al., 2017; Li et al., 2017b,c,e; Zhong et al., 2018). The further development of novel Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3}-based catalysts is still required to offer more potential candidates for practical application and to figure out the reasons for the synergetic effect between the components.

Ag\textsubscript{3}VO\textsubscript{4}, an active VLD photocatalyst, has drawn much attention in virtue of its unique band structures. Ag\textsubscript{3}VO\textsubscript{4} has been coupled with other semiconductors (e.g., Bi\textsubscript{2}WO\textsubscript{6} Li et al., 2017a; Zhang and Ma, 2017, BiO\textsubscript{1}Cl\textsubscript{1} Wang et al., 2015, BiOCl Wang et al., 2016, C\textsubscript{3}N\textsubscript{4} Wang et al., 2014, BiVO\textsubscript{4} Yan et al., 2016a, WO\textsubscript{3} Yan et al., 2016b) to fabricate high-performance photocatalysts. To date, researches on Ag\textsubscript{3}VO\textsubscript{4} nanoparticles decorated Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} micro-flowers for the visible-light photodegradation of toxic contaminants have not been reported.

Herein, we report Ag\textsubscript{3}VO\textsubscript{4} nanoparticles evenly deposited on the surface of Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} micro-flowers by a simple precipitation method. Ag\textsubscript{3}VO\textsubscript{4} nanoparticles can optimize the visible-light response and facilitate the separation of charge carriers, endowing the novel heterojunction with excellent visible-light photocatalytic performance. The plausible visible-light photocatalysis mechanism of Ag\textsubscript{3}VO\textsubscript{4}/Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} is also proposed.

EXPERIMENT

Chemicals

Bismuth citrate (BiO\textsubscript{2}C\textsubscript{6}H\textsubscript{5}), sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}), ethanol (CH\textsubscript{3}CH\textsubscript{2}OH), silver nitrate (AgNO\textsubscript{3}), sodium vanadate (Na\textsubscript{3}VO\textsubscript{4}), rhodamine B (Rhb), ammonium oxalate (AO), AgNO\textsubscript{3}, tetracycline hydrochloride (TC), p-benzoquinone (BQ), methyl orange (MO), and iso-propanol (IPA) were bought from Shanghai Chemical Reagent factory (China). All the reagents were analytic grade and used without further treatment.

Synthesis of Catalysts

Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} was synthesized via a hydrothermal procedure. Briefly, 2 mmol of sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}) and 2 mmol of bismuth citrate (BiO\textsubscript{2}C\textsubscript{6}H\textsubscript{5}) were sequentially dissolved in the solution containing 30 mL of deionized water and 5 mL of absolute ethanol with the assistance of ultra-sonication. The resulting solution was sealed in a 50 mL autoclave and heated at 160°C for 25 h. After the reactor system was cooled down, the precipitants were washed thoroughly with de-ionized water and dried at 80°C overnight.

Ag\textsubscript{3}VO\textsubscript{4}/Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} heterojunctions were constructed by a simple precipitation method. Briefly, an appropriate amount of Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} was ultrasonically suspended in 50 mL of H\textsubscript{2}O. Then, 3 mmol AgNO\textsubscript{3} was dissolved in the above solution under magnetic stirring. After that, Na\textsubscript{3}VO\textsubscript{4} (20 mL, 0.05 mol L-1) solution was slowly dropped into the mixture with vigorous stirring for 5 h. Lastly, the obtained solids were washed with deionized water four times and dried at 80°C for 10 h to get the Ag\textsubscript{3}VO\textsubscript{4}/Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3} heterojunctions. The heterojunctions with different Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3}/Ag\textsubscript{3}VO\textsubscript{4} weight ratios of 0.05/1, 0.10/1, 0.30/1, and 0.50/1 are labeled as AVO/BOC-5, AVO/BOC-10, AVO/BOC-30, and AVO/BOC-50, respectively. Ag\textsubscript{3}VO\textsubscript{4} was prepared in the absence of Bi\textsubscript{2}O\textsubscript{3}CO\textsubscript{3}.

Characterization of Catalysts

The scanning electron microscopy (SEM, Hitachi S-4800) and transmission electron microscopy (TEM, JEM-2100 JEOI) were applied to characterize the morphology of the samples. Bruker Quantax 400 energy-dispersive X-ray spectroscopy (EDS) was used to identify the chemical composition. Powder X-ray diffractometer (XRD, MSAL XD2) was used to get the XRD patterns of the samples. UV−Vis diffuse reflectance spectra (DRS) were obtained on a spectrophotometer (Shimadzu UV−2600). Photoluminescence (PL) spectra of the samples were recorded on a Hitachi RF-6000 spectrophotometer.

Photocatalytic Tests

Pollutant [rhodamine B (Rhb), methyl orange (MO), and tetracycline hydrochloride (TC)] removal performances were tested under visible-light irradiation, 300 W xenon lamp with filter (λ > 400 nm). The photocatalytic reaction was conducted...
Li et al. Ag$_3$VO$_4$ Nanoparticles Decorated Bi$_2$O$_2$CO$_3$ Micro-Flowers

FIGURE 2 | SEM images of pristine Bi$_2$O$_2$CO$_3$ (A,B) and AVO/BOC-30 (C,D); TEM images of AVO/BOC-10 (E,F).

FIGURE 3 | EDS spectra of AVO/BOC-10.

FIGURE 4 | The UV-Vis DRS of bare Bi$_2$O$_2$CO$_3$, Ag$_3$VO$_4$ and Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$ heterojunctions.
in a glass reactor containing 80 mL of RhB (5 mg L\(^{-1}\)), MO (5 mg L\(^{-1}\)), or TC (20 mg L\(^{-1}\)) solution, and 40 mg of catalyst. The solution was first ultrasonically dispersed for 1 min and then magnetically stirred in the dark for 1 h. 1.5 mL of solution was taken at specified time, and centrifuged to remove the solids. The pollutant concentrations were determined using a Shimadzu UV-2600 spectrophotometer. Total organic carbon (TOC) value of the pollutant solutions during reaction was detected on a Shimadzu TOC analyzer.

RESULTS AND DISCUSSION

Characterization

Figure 1 displays the XRD patterns of the as-prepared pure Ag\(_3\)VO\(_4\), Bi\(_2\)O\(_2\)CO\(_3\), and their heterojunctions (AVO/BOC-5, AVO/BOC-10, AVO/BOC-30, and AVO/BOC-50). The diffraction peaks of Ag\(_3\)VO\(_4\) and Bi\(_2\)O\(_2\)CO\(_3\) prepared match well with monoclinic phase of Ag\(_3\)VO\(_4\) (JCPDS 43-0542) and tetragonal phase of Bi\(_2\)O\(_2\)CO\(_3\) (JCPDS 41-1488), respectively. When a small amount of Ag\(_3\)VO\(_4\) was introduced, no diffraction peaks of Ag\(_3\)VO\(_4\) can be observed in the XRD pattern of AVO/BOC-50. As the Ag\(_3\)VO\(_4\) content increases, AVO/BOC-30, AVO/BOC-10, and AVO/BOC-5 show the diffraction peaks of both Bi\(_2\)O\(_2\)CO\(_3\) and Ag\(_3\)VO\(_4\), indicating the successful fabrication of Ag\(_3\)VO\(_4\)/Bi\(_2\)O\(_2\)CO\(_3\) heterojunctions.

The microstructures of Bi\(_2\)O\(_2\)CO\(_3\) and Ag\(_3\)VO\(_4\)/Bi\(_2\)O\(_2\)CO\(_3\) heterojunctions were investigated by using SEM. The SEM images in Figures 2A,B show that the obtained Bi\(_2\)O\(_2\)CO\(_3\) exhibits flower-like microspheres constructed by countless nano-plates (Zhao et al., 2011). The SEM images in Figures 2C,D show the representative AVO/BOC-10 also possesses sphere-like morphology as that for pure Bi\(_2\)O\(_2\)CO\(_3\). Of note, numerous Ag\(_3\)VO\(_4\) nanoparticles were deposited on the surfaces of AVO/BOC-10.

The more detailed microstructures of AVO/BOC-10 were studied by TEM. As shown in Figures 2E,F, AVO/BOC-10 consists of Bi\(_2\)O\(_2\)CO\(_3\) micro-flower (diameter: ∼1.1 µm) and Ag\(_3\)VO\(_4\) nanoparticles (size: ∼26 nm), and they were tightly combined with each other to generate closely hybrid hetero-structure, in favor of transfer and separation of charge carriers (Huang et al., 2015; Zhang et al., 2016; Li et al., 2017a).

The corresponding EDS spectra of AVO/BOC-10 revealed that only signals for Ag, V, Bi, C, and O elements were detected, indicating the high purity of the sample (Figure 3). The above results verified that the facile precipitation method could successfully fabricate Ag\(_3\)VO\(_4\)/Bi\(_2\)O\(_2\)CO\(_3\) heterojunctions with intimate contact between two constituents.

The sunlight absorption capability and band structures of a photocatalyst usually exert a significant effect on its photocatalytic performance. Thus, the UV–Vis DRS spectra of bare Bi\(_2\)O\(_2\)CO\(_3\), Ag\(_3\)VO\(_4\), and Ag\(_3\)VO\(_4\)/Bi\(_2\)O\(_2\)CO\(_3\) heterojunctions are measured and illustrated in Figure 4. Bi\(_2\)O\(_2\)CO\(_3\) exhibited a strong absorption in the UV region with the absorption edge at 385 nm, in accordance with the previous reports (Zhao et al., 2011; Hu et al., 2017). Ag\(_3\)VO\(_4\) performed a 575 nm absorption edge in the VL region, consistent with the reported values (Wang et al., 2015; Yan et al., 2016b; Li et al., 2017a). Intriguingly, the combination of Ag\(_3\)VO\(_4\) and Bi\(_2\)O\(_2\)CO\(_3\) substantially ameliorated the VL absorption properties of the heterojunctions, which is beneficial for the effective utilization of solar energy.

The bandgap width (\(E_g\)) was estimated according to the equation: \(E_g = \frac{1240}{\lambda} \text{eV}\), and the \(E_g\) value of Ag\(_3\)VO\(_4\) and Bi\(_2\)O\(_2\)CO\(_3\) are about 2.15 and 3.23 eV. The band positions (\(E_{VB}\) and \(E_{CB}\)) of Ag\(_3\)VO\(_4\) and Bi\(_2\)O\(_2\)CO\(_3\) can be calculated using the following formula:

\[
E_{VB} = X - E^0 + 0.5E_g
\]

\[
E_{CB} = E_{VB} - E_g
\]
Where X [ca. 6.36 eV for Ag_3VO_4 (Li et al., 2017a), and ca. 6.54 eV for $\text{Bi}_2\text{O}_2\text{CO}_3$ Liang et al., 2014] is the electronegativity of the semiconductor. E^* value equals to ~ 4.5 eV. On the basis of above data, the E_{VB} and E_{CB} of Ag_3VO_4 were determined as 0.01 and 2.14 eV, while those of $\text{Bi}_2\text{O}_2\text{CO}_3$ were 0.2 and 3.53 eV.

Photocatalytic Property

The VLD photocatalytic activity of $\text{Ag}_3\text{VO}_4/\text{Bi}_2\text{O}_2\text{CO}_3$ heterojunctions was studied through the degradation of RhB (Figure 5), MO (Figure S1), and TC (Figure 6). Figure 5A displays the concentration change of RhB dye solution under visible light with the as-prepared catalysts. The blank test conducted without the presence of catalyst showed that RhB was not degraded after 60 min of irradiation. The photocatalytic activity of pristine $\text{Bi}_2\text{O}_2\text{CO}_3$ is much lower than other samples and the RhB degradation efficiency is 31.4%, mainly due to its large bandgap (Yu et al., 2016). Only 49.8% of RhB was removed by pure Ag_3VO_4 due to the high recombination rate of charge carriers (Yan et al., 2016b). Inspiringly, when $\text{Bi}_2\text{O}_2\text{CO}_3$ was decorated with Ag_3VO_4, the catalytic activity of these heterojunctions was substantially improved. After 60 min of irradiation, the RhB degradation efficiencies by using AVO/BOC-5, AVO/BOC-10, AVO/BOC-30 and AVO/BOC-50 were 85.8, 98.4, 76.9, and 71.1%, respectively, much higher than that by using the pristine $\text{Bi}_2\text{O}_2\text{CO}_3$, Ag_3VO_4, or the mechanical mixture (91 wt% $\text{Ag}_3\text{VO}_4 + 9$ wt% $\text{Bi}_2\text{O}_2\text{CO}_3$). The activity of $\text{Ag}_3\text{VO}_4/\text{Bi}_2\text{O}_2\text{CO}_3$ increases gradually and then declines regularly, while AVO/BOC-10 has the highest photocatalytic activity, indicating the vital role of Ag_3VO_4 in enhancing the activity.

The degradation rate constants (k) of RhB were presented in Figure 5B. The photocatalytic activity of AVO/BOC-10 achieved the maximum value of $k = 0.0667 \text{ min}^{-1}$, it was about 8.9, 5.7, and 5.8-folds higher than pure $\text{Bi}_2\text{O}_2\text{CO}_3$ (0.0067 min$^{-1}$), Ag_3VO_4 (0.0100 min$^{-1}$), and the mechanical mixture (0.0098 min$^{-1}$).

![TC degradation](image1)

FIGURE 6 | Photocatalytic degradation efficiency of TC over AVO/BOC-10.

![Figure 7](image2)

FIGURE 7 | (A) TOC removal rate during RhB degradation with AVO/BOC-10; (B) The cycling performance of AVO/BOC-10.

![Figure 8](image3)

FIGURE 8 | PL spectra of pristine $\text{Bi}_2\text{O}_2\text{CO}_3$ and AVO/BOC-10.
The degradation of antibiotic TC or industrial dye MO was also performed to further test the VL photocatalysis of AVO/BOC-10 (Figure 6 and Figure S1). Apparently, AVO/BOC-10 also showed high activity in the degradation of TC and MO (Figure S1). The TC or MO degradation efficiency with AVO/BOC-10 as the catalyst was 83.7 or 94.2% after 180 min of reaction. These results demonstrate that AVO/BOC-10 exhibits extraordinary photocatalytic activity in the removal of toxic pollutants.

To assess the mineralization capability of Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$, the TOC data during RhB (50 mg L$^{-1}$) degradation over AVO/BOC-10 (200 mg) was recorded and analyzed (Figure 7A). It is found that the TOC removal efficiency of RhB with AVO/BOC-10 is 76.4% after 6 h of reaction, suggesting that AVO/BOC-10 possesses strong mineralization ability during the photocatalytic reaction.

For evaluating the stability of Ag$_3$VO$_4$/Bi$_2$O$_2$CO$_3$, six successive cycles of RhB degradation with AVO/BOC-10 as a catalyst were carried out. Inspiringly, no apparent loss of activity of the catalyst in six times of reuse was observed, and the RhB removal efficiency retained 92.1% in the sixth run (Figure 7B). In addition, the catalyst before and after six runs was characterized by XRD technique (Figure S2), and no obvious changes in the crystalline phases was detected, verifying the good stability of AVO/BOC-10. Moreover, the cycling degradation involving TC antibiotic further confirms the good stability of AVO/BOC-10 (Figure S3). The photocatalytic tests demonstrate that AVO/BOC-10 endowed with high activity and stability is a kind of promising VLD photocatalysts, exhibiting great potential for wastewater treatment.

Origin of the Improved Performance

The photocatalytic activity depends strongly on the separation efficiency of photo-induced charge carriers (Hu et al., 2017; Li et al., 2017a), thus, photoluminescence (PL) spectrum of the samples were acquired to illustrate the electron-hole separation (Figure 8). Apparently, the PL intensity of AVO/BOC-10 is much weaker than that of pristine Bi$_2$O$_2$CO$_3$. Since a weaker PL intensity signifies higher separation rate of charge carriers, AVO/BOC-10 should possess a higher separation efficiency compared with Bi$_2$O$_2$CO$_3$. That is to say, the photo-induced electron-hole pairs were efficiently separated in AVO/BOC-10 system due to
the interfacial charge transfer, resulting in the elevated photocatalytic activity.

For mechanistic study, various additives were employed to research the main active species in the photocatalytic reaction process (Figure 9) (Zhang and Ma, 2017; Li et al., 2018). When 1 mmol of BQ (benzoquinone, O_2^- scavenger) or AO (ammonium oxalate, h^+ scavenger) was introduced, the activity of AVO/BOC-10 was substantially quenched, and the RhB degradation efficiency declined from 98.4 to 29.7% or 20.2%, revealing that O_2^- and h^+ should play vital roles in the photocatalysis. On the contrary, no obvious decrease in the activity was observed with adding 1 mmol of IPA (isopropyl alcohol, \cdotOH scavenger), signifying that \cdotOH plays a minor role.

Based on this systematic investigation, a possible visible-light photocatalytic mechanism for pollutant degradation over $Ag_3VO_4/\text{Bi}_2O_3\text{CO}_3$ is proposed (Figure 10). Apparently, the position of CB and VB between Ag_3VO_4 and $\text{Bi}_2O_3\text{CO}_3$ are beneficial to achieve effective separation of photo-generated charge carriers (Wang F. F. et al., 2017; Ye et al., 2018). Photo-generated electrons and holes are produced on Ag_3VO_4 under visible-light illumination. Since the CB of $\text{Bi}_2O_3\text{CO}_3$ is lower than that of Ag_3VO_4, the electrons can be injected readily from Ag_3VO_4 to $\text{Bi}_2O_3\text{CO}_3$. The electrons on the CB of $\text{Bi}_2O_3\text{CO}_3$ can react with O_2 to form active O_2^-, degrading toxic pollutants such as RhB/\text{MO}/\text{TC}. Simultaneously, the holes with strong oxide promotion can be effectively utilized, as evidenced by the result of PL spectra of $\text{Bi}_2O_3\text{CO}_3$ and $Ag_3VO_4/\text{Bi}_2O_3\text{CO}_3$ (Figure 8). In summary, the combination of Ag_3VO_4 and $\text{Bi}_2O_3\text{CO}_3$ enhances the charge separation, leading to the high activity.

CONCLUSIONS

In this study, innovative $Ag_3VO_4/\text{Bi}_2O_3\text{CO}_3$ heterojunction photocatalysts were synthesized via a simple procedure. The $Ag_3VO_4/\text{Bi}_2O_3\text{CO}_3$ heterojunction (AVO/BOC-10) displayed the optimal photocatalytic properties toward the degradation of toxic pollutants (RhB dye, MO dye, and TC antibiotic), much higher than pristine $\text{Bi}_2O_3\text{CO}_3$ and Ag_3VO_4. The close contact and the match of bandgap structure between both constituents boost the separation of electron-hole pairs, mainly accounting for the activity enhancement. The holes and O_2^- were determined as the primary active species responsible for the efficient removal and mineralization of the toxic pollutants. Therefore, $Ag_3VO_4/\text{Bi}_2O_3\text{CO}_3$ holds huge potential for real wastewater treatment.

AUTHOR CONTRIBUTIONS

SL designed and performed the experiments, and data analysis. SH, WJ, YL, YL, ZJ, and LM assisted with some of the tests. SL wrote the main content of the paper. All authors have read and approved the paper to be submitted.

ACKNOWLEDGMENTS

This work has been financially supported by the National Natural Science Foundation of China (51708504 and 31501573), the Public Projects of Zhejiang Province (2017C32079 and LGN18E080003), the Science and Technology Project of Zouhsan (2017C41006, 2016C41012, 2015C21014, and 2015C21013), the National Key Research Development Program of China (2016YFC0400501), and the Research Startup Foundation of Zhejiang Ocean University (12215090117).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2018.00255/full#supplementary-material

REFERENCES

Adhikari, S. P., Dean, H., Hood, Z. D., Peng, R., More, K. L., Ivanov, I., et al. (2015). Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. RSC Adv. 5, 91094–91102. doi: 10.1039/C5RA13579F

Adhikari, S. P., Hood, Z. D., More, K. L., Chen, W. V., and Lachgar, A. (2016). A visible-light-active heterojunction with enhanced photocatalytic hydrogen generation. ChemSusChem 9, 1869–1879. doi: 10.1002/cssc.201600424

Adhikari, S. P., Hood, Z. D., Wang, H., Peng, R., Kralj, A., Li, H., et al. (2017). Enhanced visible light photocatalytic water reduction from a g-C3N4/5T5Ta2O6 heterojunction. Appl. Catal. B 217, 448–458. doi: 10.1016/j.apcatab.2017.05.092

Bora, L. V., and Mewada, R. K. (2017). Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew. Sustain. Energy Rev. 76, 1391–1421. doi: 10.1016/j.rser.2017.01.130

Cates, E. L. (2017). Photocatalytic water treatment: are we going with this? Environ. Sci. Technol. 51, 757–758. doi: 10.1021/acs.est.6b00635

Chen, J. L., Li, S. J., Hu, S. W., and Jiang, W. (2017). Enhanced visible-light photocatalytic activity of Ag/AgI coupled $\text{Bi}_2O_3\text{CO}_3$ micro spheres. Mater. Lett. 191, 123–127. doi: 10.1016/j.matlet.2016.12.096

Chen, J., Mei, W. G., Huang, Q. J., Chen, N. N., Lu, C. L., Zhu, H. J., et al. (2016). Highly efficient three-dimensional flower-like AgI/Ag₂O₂CO₃ heterojunction with enhanced photocatalytic performance. J. Alloys Compd. 688, 225–234. doi: 10.1016/j.jallcom.2016.07.196

Dong, F., Xiong, T., Wang, R., Sun, Y. J., and Jiang, Y. K. (2014). Growth mechanism and photocatalytic activity of self-organized N-doped (BiO)₂CO₃ hierarchical nanosheet microspheres from bismuth citrate and urea. Dalton Trans. 43, 6631–6642. doi: 10.1039/c3dt5383b

Feng, X., Zhang, W., Sun, Y., Huang, H., and Dong, F. (2017). Fe(III) decorated (BiO)₂CO₃ superstructures: in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation. Environ. Sci. Nano 4, 604–612. doi: 10.1039/c6en00637j

Han, W., Li, Z., Li, Y., Fan, X., Zhang, F., Zhang, G., et al. (2017). The promoting role of different carbon allotropes cocatalysts for semiconductors in photocatalytic energy generation and pollutants degradation. Front. Chem. 5:84. doi: 10.3389/fchem.2017.00084

Hu, J., Chen, D., Li, N., Xu, Q., Li, H., He, J., et al. (2017). In situ fabrication of $\text{Bi}_2O_3\text{CO}_3$/MoS₂ on carbon nanofibers for efficient photocatalytic removal...
Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater. Appl. Catal. B 168-169, 448-457. doi: 10.1016/j.apcatb.2014.12.047

Wang, S. M., Li, D. L., Sun, C., Yang, S. G., Guan, Y., and He, H. (2014). Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethylene dye degradation. Appl. Catal. B 144, 885–892. doi: 10.1016/j.apcatb.2013.08.008

Wang, W., Li, G., Xia, D., An, T., Zhao, H., and Wong, P. K. (2017). Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ. Sci. Nano 4, 782–799. doi: 10.1039/C7EN00063D

Xiong, T., Huang, H. W., Sun, Y. J., and Dong, F. (2015). In situ synthesis of a C-doped (BiO)2CO3 hierarchical self-assembly effectively promoting visible light photocatalysis. J. Mater. Chem. A 3, 6118–6127. doi: 10.1039/C4TA03013D

Yang, M., Wu, Y. L., Yan, Y., Yan, X., Zha, F. F., Hua, Y. Q., et al. (2016a). Synthesis and characterization of novel BiO3VO4/BiO3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes. ACS Sustainable Chem. Eng. 4, 757–766. doi: 10.1021/acssuschemeng.5b06690

Yang, M., Wu, Y. L., Zhu, F. F., Hua, Y. Q., and Shi, W. D. (2016b). The fabrication of a novel Ag3VO4/BiO3VO4 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys. Chem. Chem. Phys. 18, 3308–3315. doi: 10.1039/c5cp05599g

Ye, R., Zhao, J., Wickemeyer, B. B., Toste, F. D., and Somorjai, G. A. (2018). Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat. Catal. 1, 318–325. doi: 10.1038/s41929-018-0052-2

Yu, C. L., Zhou, W. Q., Zhu, L. H., Li, G., Yang, K., and Jin, R. C. (2016). Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/β-Bi2O3/Bi2O3 heterostructures for superior visible-light-driven photocatalysis. Appl. Catal. B 184, 1–11. doi:10.1016/j.apcatb.2015.11.026

Yu, S., Zhang, Y., Dong, F., Li, M., Zhang, T., and Huang, H. (2018). Readily achieving concentration-tunable oxygen vacancies in Bi2O3CO3: triple-functional role for efficient visible-light photocatalytic redox performance. Appl. Catal. B 226, 441–450. doi: 10.1016/j.apcatb.2017.12.074

Zhang, G. G., Lan, Z. A., and Wang, X. C. (2016). Coujugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712–15727. doi:10.1002/anie.201607375

Zhang, J., and Ma, Z. (2017). Enhanced visible-light photocatalytic performance of Ag3VO4/Bi2O3/WO3 heterojunctions in removing aqueous dyes and tetracycline hydrochloride. J. Taiwan Inst. Chem. Eng. 78, 212–218. doi: 10.1016/j.tice.2017.06.002

Zhang, L., Zhang, Q., Xie, H., Guo, J., Lyu, H., Li, Y., et al. (2017). Electrosprun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl. Catal. B 201, 470–478. doi: 10.1016/j.apcatb.2016.08.056

Zhao, T. Y., Zai, J. T., Xu, M., Zou, Q. S., Yu, Y. Z., Wang, K. X., et al. (2011). Hierarchical Bi2O3CO3 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 13, 8301-8308. doi:10.1039/C1ce00513j

Zhong, Y., Liu, Y., Wu, S., Zha, Y., Chen, H., Yu, X., et al. (2018). Facile fabrication of BiOIBiOCl immobilized films with improved visible light photocatalytic performance. Front. Chem. 6:58. doi: 10.3389/fchem.2018.00058

Zhu, S. S., and Wang, D. W. (2017). Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater 7:1700841. doi: 10.1002/aem.201700841

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Li, Hu, Jiang, Liu, Liu, Zhou, Mo and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.