Lifting Constructions of PDAs for Coded Caching With Linear Subpacketization

V. R. Aravind®, Pradeep Kiran Sarvepalli®, and Andrew Thangaraj®, Senior Member, IEEE

Abstract—Coded caching is a technique where multicasting and coding opportunities are utilized to achieve better rate-memory tradeoff in cached networks. A crucial parameter in coded caching is subpacketization, which is the number of parts a file is to be split into for coding purposes. The Maddah-Ali-Niesen scheme has order-optimal rate, but the subpacketization is exponential in the number of users for certain memory regimes. In contrast, coded caching schemes designed using placement delivery arrays (PDAs) can have linear subpacketization with a penalty in rate. In this work, we propose several constructions of efficient PDAs through lifting, where a base PDA is expanded by replacing each entry by another PDA. By proposing and using the notion of Blackburn-compatibility of PDAs, we provide multiple lifting constructions with increasing coding gains. We compare the constructed coded caching schemes with other existing schemes for moderately high number of users and show that the proposed constructions are versatile and achieve a good rate-memory tradeoff at low subpacketizations.

Index Terms—Coded caching, placement delivery arrays, lifting construction, Blackburn-compatibility, broadcast channels.

I. INTRODUCTION

COMMUNICATION networks get overburdened with data traffic during peak hours and underutilized in off-peak hours. Caching is a technique to alleviate the high transmission load of a server in a communication network during peak hours, and it involves prefetching popular content and storing it nearer to or at the user’s device during off-peak hours. Depending on the limitations on memory, a part of these files would be prefetched and once the user makes a demand, the rest of the requested file will be transmitted. The fundamental problem in caching is the optimal tradeoff between the cache memory with each user versus the transmission load.

Maddah-Ali and Niesen had shown that coding can achieve significant gain over uncoded caching by making use of multicast opportunities [1]. They showed their scheme to be order optimal with an information-theoretic lower bound on the number of files needed to be transmitted (known as rate). This scheme achieves a coding gain (also known as global caching gain) in addition to the caching gain. Asymptotically, its coding gain is proportional to the number of users and that results in a rate independent of the number of users. A version of Maddah-Ali-Niesen (MN) scheme, optimal for uncoded prefetching, was presented in [2]. Though the exact capacity expression for rate of coded caching is still an open problem, several bounds have been presented in [3], [4], [5], [6], and [7]. The problem has been studied in several settings like decentralized caching [8], non-uniform demands [9], hierarchical caching [10], coded prefetching [11], [12], [13], content security [14], [15], demand privacy [16], [17], [18] to name a few.

An important parameter of interest in coded caching is subpacketization. It is the number of parts a file will be split into, for the purpose of coding. In the standard Maddah-Ali-Niesen scheme [1] for $\frac{1}{K} < \frac{M}{N} < \frac{K-1}{K}$, the subpacketization, denoted f, grows exponentially with K and is given by $f = (\frac{K}{KM/N}) \approx 2^{KH(M/N)}$. This limits the utility of the scheme in practical scenarios where there may be a large number of users (large K). Hence, reducing subpacketization is important in coded caching schemes. It was shown in [19] that for rate independent of the number of users, the subpacketization should be superlinear in the number of users. A few other bounds relating subpacketization with other parameters were proposed in [20] and [21]. The pursuit towards lower subpacketization had led to formulating coded caching in combinatorial frameworks. Under certain constraints, the coded caching problem is equivalent to the design of placement delivery arrays [22], caching matrices [23], partial Latin rectangles with Blackburn property [19], [24], certain 3-uniform 3-partite hypergraphs [19], resolvable designs from linear block codes [25], induced matchings of a Ruzsa-Szeméredi graph [26], [27], strong edge coloring of the bipartite graph [28] or a clique cover for the complement of the square of the associated line graph [29]. These frameworks require the cache contents to be uncoded and symmetric with respect to all files. When the number of users is very large, rate of $O(K^\delta)$ for small δ is achievable with linear subpacketization (in K) from schemes based on dense Ruzsa-Szemerédi graphs [26], [30]. Some of the constructions for reducing subpacketization in practical scenarios, built based on the combinatorial frameworks are summarised in Table I.

Since the first version of our manuscript, there have been several works on coded caching with linear subpacketization. Notable references include [31], [32], [33], [34], [35], [36]. They utilize concepts like Hamming distance [35], [36].
In this work, we present a few construction schemes for placement delivery arrays or PDAs. PDA developed in [22] captures the placement and delivery schemes as non-integer and integer entries in an array that satisfies some conditions. The number of columns of a PDA indicates the number of users while the number of rows indicates the subpacketization. We focus on PDAs where the number of rows is linear with the number of columns. Drawing inspiration from the lifting constructions for low-density parity-check codes [38], we propose lifting constructions for PDAs, where we use PDAs of small size to obtain larger PDAs. We introduce a new technical notion of Blackburn-compatibility for PDAs that enable these lifting constructions. We propose a variety of constructions for PDAs which satisfy this constraint. This includes algebraic and randomized constructions. With the lifting constructions using these PDAs, we obtain good memory-rate tradeoffs with linear subpacketization. In particular, when the number of users has many divisors or is a power of 2, the memory-rate tradeoffs are close to that of [1]. The random construction ensures PDAs satisfying Blackburn-compatibility with good performance for arbitrary parameters. Our methods perform well both in terms of obtaining good coding gains and versatility. Our specific contributions are as follows:

i) We present a basic lifting construction that takes any two PDAs to construct larger PDAs with higher coding gain.

ii) We propose the notion of Blackburn-compatibility between PDAs and present a general lifting construction that uses a base PDA and a set of Blackburn-compatible PDAs.

iii) We present several constructions of Blackburn-compatible PDAs for the lifting constructions which includes both algebraic and randomized constructions.

iv) Using a combination of the constructions we propose, we demonstrate that significant coding gain and good memory-rate tradeoffs can be achieved with linear subpacketization.

The proposed coded caching schemes target the moderate (non-asymptotic) regime of parameters and are shown to be competitive with other existing schemes, particularly in terms of subpacketization. We recently became aware of some existing works [34], [39] that also combine PDAs to obtain new PDAs. Our constructions are more general and follow a different approach.

The rest of the paper is organized as follows. In Section II, we describe the system setup and the problem statement. In Section III, we propose the basic and general lifting constructions for PDAs. In Section IV, we propose several constructions for Blackburn-compatible PDAs which are the building blocks for the lifting constructions. We present our results and compare them with existing works in Section V and conclude in Section VI. An extended version of this paper is available at [40]. A summary of the constructions for Blackburn-compatible PDAs is provided in Table III of the extended version [40].

II. PRELIMINARIES

A. Coded Caching

Consider a server, holding N files W_i, $i \in [N] \triangleq \{0, 1, \ldots, N - 1\}$, of F bits each, connected to K users via a multicast link. User k, $k \in [K]$, has a cache Z_k of size MF bits. Coded caching works in two phases. In the first phase, called the placement phase, the cache Z_k of User k is populated with content by the server, while being unaware of the files demanded by the users. In the second phase, called the delivery phase, User k demands file $D_k \in [N]$ from the server. Let $D = (D_0, D_1, \ldots, D_{K-1})$. Based on the demands and stored cache contents, the server multicasts packets of the same size. The entire multicast transmission from the server is denoted X^D for a demand vector D, and we suppose that the length of X^D is RF bits. The quantities M and R are measures of cache size and rate of transmission, respectively.
The main requirement in a coded caching scheme is that User k should be able to decode the file W_{D_k} using Z_k and X^D. We denote a coded caching scheme with K users, N files, local cache size M, and rate R as a $(K, N; M; R)$ coded caching scheme, or as a (K, N) scheme.

B. Coded Caching Schemes From PDAs

We use the framework of placement delivery arrays for centralized coded caching schemes [22]. For positive integers K, f, Z, and a set of integers S, a (K, f, Z, S) placement delivery array is an $f \times K$ matrix $P = [p_{j,k}], j \in [f], k \in [K]$, containing either a “$\star$” or integers from S in each array cell such that they satisfy the following conditions.

C1. The symbol \star appears Z times in each column.

C2. Each integer $s \in S$ occurs at least once in the array.

C3. (Blackburn property) If the entries in two distinct cells p_{j_1,k_1} and p_{j_2,k_2} are the same integer $s \in S$, then $p_{j_1,k_1} = p_{j_2,k_2} = \star$.

If there is no ambiguity, we will use the notation (K, f, Z, S) for the PDA corresponding to a subfile label and if $s \in S$ then $p_{j,k} = s$.

We propose several deterministic and a randomized construction for lifted LDPC codes, we start with a base PDA, and replace each integer or a \star in the base PDA are called constituent PDAs.

III. LIFTING OR PROTOGRAPH-TYPE CONSTRUCTIONS

Constructions of PDAs with coding gain 2 are generally simple and several constructions exist with low subpacketization. To increase coding gain and obtain g-regular $f \times K$ PDAs for $2 < g < K$ without a significant increase in subpacketization, we employ the idea of lifting or protograph construction. Similar to the popular notion of protograph or lifted LDPC codes, we start with a base PDA, and replace each entry with another PDA. The PDAs that replace an integer or a \star in the base PDA are called constituent PDAs.

An important requirement when lifting PDAs is that we have to ensure that the Blackburn property is preserved during the lifting. For this purpose, we define a constraint called Blackburn-compatability which needs to be satisfied by the constituent PDAs for the lifting to be valid.

We propose several deterministic and a randomized construction for lifting of PDAs and compare them with other existing PDAs in terms of their memory-rate tradeoff and subpacketization.

A. Notation for PDAs

The following PDAs are used repeatedly in lifting constructions.

1) For an integer t, $I_n(t)$ denotes the $(n, n, n - 1, 1)$ PDA with the integer t on the main diagonal and \star in all other cells. $\overline{I}_n(t)$ denotes the $(n, n, n - 1, 1)$ PDA with the integer t on the main anti-diagonal and \star in all other cells.

2) The M-N scheme [1] for $t = \frac{KN}{M} = 1$ results in dense 2-PDAs. For a set $S = \{s_1, \ldots, s_m\}$, $m = n(n - 1)/2$, the following are $2-(n, n, n(n - 1)/2)$ PDAs:

$$
G_n(S) = \begin{bmatrix}
1 & \cdots & \cdots & \star \\
\vdots & \ddots & \ddots & \vdots \\
\star & \cdots & \cdots & \star \\
\star & \cdots & \cdots & \star \\
\star & \cdots & \cdots & \star \\
\end{bmatrix}
$$

$$
H_n(S) = \begin{bmatrix}
1 & \cdots & \cdots & \star \\
\vdots & \ddots & \ddots & \vdots \\
\star & \cdots & \cdots & s_{m-1} \\
\star & \cdots & \cdots & \star \\
\star & \cdots & \cdots & \star \\
\end{bmatrix}
$$

3) For a set S of n^2 integers, $J_n(S)$ denotes the $(n, n, 0, S)$ PDA obtained by filling all the cells in the array with distinct integers from S row-wise in the specified order.

B. Basic Lifting

In the basic lifting method, we start with a base PDA and replace \star’s with all-\\star array, and replace integers with PDAs that contain disjoint sets of integers. A more general case of the following theorem and corollary are proved later in the paper as Theorem 3 and Corollary 2.

Theorem 2 (Basic lifting): Let P_0 be a (K, f, Z, S_0) PDA. Let $P = \{P_i : i \in S_0\}$, where P_i is an (m, n, c, S_i) PDA and S_i, S_j are disjoint if $i \neq j$. Let an array $B_P(P_0)$ be defined as
follows: (a) Each \ast in P_0 is replaced by a $n \times m$ all-\ast array. (b) Each integer $i \in S_0$ is replaced by $P_i \in P$. Then, $B_P(P_0)$ is a $(Km, f_n, Z_n + (f - Z)c, S)$ PDA, where $S = \bigcup_{i \in S_0} S_i$.

Example 1: Let $P_0 = \tilde{I}_2(1)$ with 1 replaced by $G_2(\{0, 1, 2\})$ resulting in a 4-regular $(6, 6, 4, 3)$ PDA \(\prod_{i,j} G_2(\{0, 1, 2\}) \).

The basic lifting construction is simple, and provides PDAs of various sizes with higher coding gains in a direct manner. Note that a lifting construction where each integer in a base PDA was replaced by $I_{s}(t)$ was proposed in [34]. The simplest g-regular construction by basic lifting is captured in the following corollary to Theorem 2.

Corollary 1: Let P_0 be a g_0-regular $(K_0 f_b Z_b, K_0 (f_b - Z_b))$ PDA. Let P_1 be a g_1-regular $(m, n, e, m(n-e))$ PDA, and $P = \{P_i : i \in \{K_0 (f_b - Z_b)\}\}$, where P_i are copies of P_1 with its integers replaced by another disjoint set of integers. Then, $B_P(P_0)$, which is denoted simply as $B_P(P_0)$ in this case, is a $g_0 g_1$-regular $(K_0 m, f_b n, Z_b n + (f_b - Z_b) e, K_0 (f_b - Z_b) m(n-e))$ PDA.

C. General Lifting

In basic lifting, every \ast in the base PDA is replaced with the all-\ast array. For coded caching schemes with low cache memory, since we need the number of \asts in each column in the lifted PDA to be low, replacing \asts in the base PDA with non-trivial PDAs is beneficial. However, to ensure that the Blackburn property for the lifted PDA is not violated, the constituent PDAs that are used to replace the integers and \asts need to satisfy some additional constraints. We introduce the notion of Blackburn-compatibility of PDAs to capture such constraints on the constituent PDAs.

1) Blackburn-Compatibility: Two $n \times n$ PDAs $P_0 = [p_{ij}^{(0)}]$ and $P_1 = [p_{ij}^{(1)}]$ are said to be Blackburn-compatible with respect to (w.r.t.) a third $n \times n$ PDA $P_3 = [p_{ij}^{(3)}]$ if, whenever $p_{ij}^{(0)} = p_{ij}^{(1)} \neq \ast$, we have $p_{ij}^{(3)} = \ast$. In other words, if two entries in P_0 and P_1 are a common integer s, the mirrored locations of s in P_3 are \asts. For $g \geq 2$, we say P_0, \ldots, P_{g-1} are Blackburn-compatible w.r.t. P_3 when they are pairwise Blackburn-compatible with P_3.

To see the connection between Blackburn- and lifting, consider an integer s occurring g times in a base PDA. The rows and columns containing s in the PDA, after permutations, can be rearranged into the PDA $I_g(s)$. So, any valid lifting of the base PDA needs to necessarily include a valid lifting of $I_g(s)$. Validity of a certain lifting of $I_g(s)$ and Blackburn-compatibility are shown to be equivalent in the following lemma.

Lemma 1 (Equivalence between Blackburn-compatibility and lifting): Suppose $P_0, P_1, \ldots, P_{g-1}$ are PDAs of the same size. Let $P_s^{(i,j)}$ for $i, j = 0, 1, 2, \ldots$ be copies of P_i containing integers that are disjoint from each other and from the integers in P_0, \ldots, P_{g-1}. Then, the set $\mathcal{P} = \{P_0, \ldots, P_{g-1}\}$ is a set of PDAs Blackburn-compatible w.r.t. P_3 if and only if the following lifting of I_g is a valid PDA:

\[
L_{P, s}(I_g) \triangleq \left(\begin{array}{cccc}
P_0 & P_s^{(0,1)} & \cdots & P_s^{(0,g-1)} \\
P_s^{(1,0)} & P_1 & \cdots & P_s^{(1,g-1)} \\
\vdots & \vdots & \ddots & \vdots \\
P_s^{(g-1,0)} & P_s^{(g-1,1)} & \cdots & P_{g-1} \\
\end{array} \right)
\]

Proof: The conditions for validity of the above PDA and the definition of Blackburn-compatibility are readily seen to be equivalent. Because of the disjointness properties of the integers in $P_s^{(i,j)}$, no additional conditions arise. □

The above lemma, beyond establishing the connection between lifting and Blackburn-compatibility, provides a way to visualize the mirrored locations and aids in constructions of Blackburn-compatible PDAs. We see that any two PDAs are Blackburn-compatible w.r.t. the trivial all-\ast PDA. If P_3 is not all-\ast, the Blackburn-compatibility needs to be established more carefully. Before presenting tests for Blackburn-compatibility and general constructions, we show some illustrative examples.

Example 2: $P_0 = \left(\begin{array}{cc} 0 & 2 \\ 0 & 1 \\ 3 & 1 \\ 3 & 0 \end{array} \right)$, $P_1 = \left(\begin{array}{cc} 1 & 2 & \ast \\ 3 & 2 & \ast \end{array} \right)$ are Blackburn-compatible w.r.t. $I_g(t)$ for $t \notin [4]$. We see that $L_{(p_0, p_1), I_3}(I_2) = \left(\begin{array}{c} I_3(t_0) \\ I_3(t_1) \\ I_3(t_2) \\ I_3(t_3) \end{array} \right)$ is a $(6, 6, 3, 6)$ 3-PDA.

Example 3: Let

\[
P_3\{t_0, t_1, t_2, t_3\} = \left(\begin{array}{c} J_3(t_0) \\ J_3(t_1) \\ J_3(t_2) \\ J_3(t_3) \end{array} \right)
\]

\[
P_0 = \left(\begin{array}{c} H_{3,0}(9, 13, 17) \\ H_{3,1}(10, 14, 15) \\ H_{3,2}(11, 12, 16) \\ H_{3,3}(2, 3, 7) \end{array} \right), \quad P_1 = \left(\begin{array}{c} H_{3,0}(0, 4, 8) \\ H_{3,1}(1, 5, 6) \\ H_{3,2}(2, 3, 7) \end{array} \right)
\]

P_0 and P_1 are Blackburn-compatible w.r.t. P_3 for $t_0, t_1, t_2, t_3 \notin [18]$ and $L_{(p_0, p_1), I_3}(I_2)$ is a $(6, 24, 11, 20)$ 3-PDA.

The above examples are for two PDAs Blackburn-compatible w.r.t. a third non-trivial PDA. When P_3 is all-\ast, an arbitrary number of copies of a PDA, $\{P, P, \ldots\}$, are Blackburn-compatible w.r.t. the all-\ast array, and this is used in the basic lifting of Theorem 2. However, for a general P_3, we require integer-disjoint copying of PDAs to ensure Blackburn-compatibility. Since this is a repeatedly occurring step in constructions, we record it as a lemma.

Lemma 2 (Replication of Blackburn-compatible PDAs): Given a set \mathcal{P} of b PDAs Blackburn-compatible w.r.t. P_3, the set of mb PDAs formed by m integer-disjoint copies of the PDAs in \mathcal{P} is Blackburn-compatible w.r.t. P_3, for any integer $m > 0$.

Proof: The proof is immediate by the disjointness of the integers. □

2) General Lifting Theorem: Using Blackburn-compatible PDAs, a generalization of basic lifting is presented in the following theorem.
Theorem 3 (General lifting): Let P_b be a (K, f, Z_b, S_b) PDA. Let g_s be the frequency of integer s in P_b. For $s \in S_b$ and $t \in \{1, \ldots, g_s\}$, let $P_{s,t}$ be an $(m, n, Z_s, S_{s,t})$ PDA such that for any s, $P_{s,1}, \ldots, P_{s,g_s}$ are Blackburn-compatible w.r.t. an (m, n, Z, S) PDA P_s, and, for distinct integers $s, s' \in S_b$, $S_{s,t}$ and $S_{s',t'}$ are disjoint. Let $P_{s,t}, r \in [KZ_b]_g$, be integer-disjoint copies of P_s, which are integer-disjoint with $P_{s,t}$ as well. Let an array P be defined as follows:

1) r-th s in P_b is replaced by $P_{g,r}$ for $r \in [KZ_b]_g$.
2) t-th occurrence of integer $s \in S_b$ in P_b is replaced by $P_{s,t}$ for $t = 1, \ldots, g_s$.

Then, P is a $(Km, fn, Z_bZ_s + (f - Z_b)Z_n, S)$ PDA, where $S = \bigcup_{r \in [KZ_b]} S_{s,r} \bigcup \{\sum_{s \in S_b} \sum_{t \in [g_s]} S_{s,t}\}$, and $S_{s,t}$ is the set of integer-disjoint copies of P_s.

Proof: Clearly, P is an $fn \times Km$ array. Each column of P_b has Z_b elements and $f - Z_b$ integers. So, each column of P has $Z_bZ_s + (f - Z_b)Z_n$ elements satisfying S_b. Since P_b is a PDA, P has all integers in S occurring at least once, satisfying S_b. Finally, we need to verify the Blackburn property for P. Let $P_{i,j}$ and $q_{i,j}$ denote the (i,j)-th elements of P_b and P, respectively. Let i/n denote the quotient when i is divided by n, and let j/m be defined similarly. If $q_{i_1,j_1} = q_{i_2,j_2} = s$ is in the lifted PDA, we necessarily have $p_{i_1/n,j_1/m} = p_{i_2/n,j_2/m}$ in the base PDA P_b. Because different integers are expanded to PDAs containing disjoint sets of integers, we have $p_{i_1/n,j_1/m} = p_{i_2/n,j_2/m}$ is $\forall s$ by the Blackburn property. Since an s is replaced by $P_{s,t}$ and an entry in $P_{s,t}$ is $\exists s$ if the corresponding entry in P_b is $\exists s$, $q_{i_1,j_1} = q_{i_2,j_2}$ implies P_b is due to the Blackburn-compatibility of the PDAs replacing an integer w.r.t. $P_{g,r}$. Hence, the Blackburn property C_3 is satisfied.

Clearly, basic lifting is a special case of general lifting, where P_b is the all-s array and $P_{s,t}$ are arbitrary PDAs. However, if a non-trivial P_b is to be used, then we require as many Blackburn-compatible PDAs w.r.t. P_b as the largest integer frequency of the base PDA. We will see general methods to construct Blackburn-compatible PDAs in the next sections.

The following corollary of the above general lifting theorem presents a sufficient condition for regular lifting using Blackburn-compatibility. We skip the proof as the parameters are easy to verify.

Corollary 2 (General regular lifting): Let P_b be a (K_b, f_b, Z_b, S_b) PDA. Let P_b be an $(m, n, Z_s, m(n - Z_s)/g_r)$ g-PDA. Let P_b be a $(m, n, Z_s, m(n - Z_s)/g_r)$ g-PDA. Let $P = \{P_0, P_1, \ldots, P_{g-1}\}$ be a set of $n \times m$ PDAs satisfying the following conditions:

- the number of s's in every column of every P_i is equal to e, an integer occurring in any one P_i occurs a total of g times across all P_i's, P is Blackburn-compatible w.r.t. P_b. For $s \in [K (f - Z_b)/g_s]$ let $P_s = \{P_s,0, \ldots, P_{s,g_s-1}\}$ be an integer-disjoint copy of P_b. Let the lifting of P_b using Theorem 3 with $P_{s,t}$ as constituent PDAs be denoted $L_{P,P'}(P_b)$.

Then, $L_{P,P'}(P_b)$ is a g-regular $(K,m, f_m, Z_bZ_s + (f_b - Z_b)c, Z_bZ_s - (f_b - Z_b)c)$ PDA.

A crucial requirement for lifting with P_s not being all-s is sets of Blackburn-compatible PDAs. Integer-disjoint copying is one simple method for constructing any number of Blackburn-compatible PDAs w.r.t. any P_s. For specific choices of P_s, other methods of construction could improve upon integer-disjoint copying, and we consider such constructions next.

IV. CONSTRUCTIONS OF BLACKBURN-COMPATIBLE PDAS

We will present some general constructions for Blackburn-compatible PDAs using the following ideas - (1) permutation of integer indices and blocks to ensure mirrored locations are $\forall s$, (2) tiling of identity/regular PDAs, (3) recursive methods, and (4) a randomized construction.

One strategy to construct Blackburn-compatible PDAs is to use existing PDAs from Section III-A for P_b and P_0 and obtain the rest of P_i's by transforming P_0 using permutations, transpose etc. In Corollary 2, when P_b is g_r-regular and each P_i in P is g_i-regular with same set of integers, we have $g = g_0g_i$. One natural choice for P_s is $I_g(t)$ since it is a linear PDA with high coding gain. In most cases, we will consider the choice of P_s as $I_g(t)$. The following lemma provides a test for Blackburn-compatibility of PDAs with respect to $I_g(t)$.

Lemma 3 (Test for compatibility w.r.t. $I_g(t)$): Two $g \times g$ PDAs P_0 and P_1 are Blackburn-compatible with $I_g(t)$ for t not appearing in P_0 or P_1 iff $p_{1,1}^{(0)} = p_{1,1}^{(1)} \neq \exists s$ implies $i_0 \neq j$ and $i_1 \neq j_0$. In words, mirrored locations of integers should be off-diagonal.

Proof: If $p_{1,1}^{(0)} = p_{1,1}^{(1)} \neq \exists s$ implies $i_0 \neq j$ and $i_1 \neq j_0$, then for no $i \in [g]$ we need $p_{1,i}^{(0)} \neq \exists s$. Hence P_b and P_1 are Blackburn-compatible w.r.t. any $g \times g$ PDA which has integers only in its diagonal. Now, let P_b and P_1 are Blackburn-compatible w.r.t. $I_g(t)$. Assume that $s \in S_b \cap S_1$ such that $p_{1,i_0}^{(1)} = p_{1,i_j}^{(1)} = s$ and $i_0 = j_1$. This implies that cell (i_0, i_0) of $I_g(t)$ is $\exists s$. But this is a contradiction. Hence $i_0 \neq j_1$. Similarly we can prove that $i_1 \neq j_0$.

A. Permutation Constructions

Now we introduce two permutation operations to obtain P_i's for $i > 0$ from P_0 when P_0 is either a 1-PDA or a 2-PDA as defined in Section III-A. These P_i's will be Blackburn-compatible w.r.t. $I_g(t)$. The first permutation construction uses cyclic rotation of diagonal or anti-diagonal elements, for which, we need the following notation. Given an $n \times n$ PDA $P = [p_{ij}]$, where i and j take values from 0 to $n - 1$, a PDA $\pi_{D,1}(P)$ is defined as

$$\pi_{D,1}(P) = [p_{i+1,j}] = \begin{cases} p_{i,j}, & i = j, i = 1 \mod n \newline p_{i,j - 1}, & i \neq j \end{cases} .$$

Basically, $\pi_{D,1}(P)$ is identical to P except for the diagonal entries, which are cyclically shifted down by one position. For an integer l, $\pi_{D,1}^{l}(P)$ denotes the PDA obtained by l applications of $\pi_{D,1}$ on P. For negative l, the diagonal entries are shifted up l times. A similar cyclic rotation of anti-diagonal elements in P is denoted by $\pi_{D,1}^{l}(P)$, where (i,j) on the
anti-diagonal goes to \((i - 1, j + 1)\) mod \(n\) and all other locations are retained.

Given a \(2n \times 2n\) PDA \(P = \left(P_{11}, P_{12}, P_{21}, P_{22} \right)\), where \(P_{ij}\) are \(n \times n\) blocks, a PDA \(\pi_{D,2}(P)\) is defined as

\[
\pi_{D,2}(P) = \left(\pi_{D,1}(P_{11}), \pi_{D,1}(P_{12}), \pi_{D,1}(P_{21}), \pi_{D,1}(P_{22}) \right).
\]

\(\pi_{D,2}(P)\) is identical to \(P\) except for the \(2n\) diagonal entries - the first \(n\) are circularly shifted down by one position, and the second \(n\) are circularly shifted up by one position. A similar cyclic rotation of anti-diagonal elements in \(P\) is denoted by \(\pi_{AD,2}(P)\).

Lemma 4 (Cyclic rotation): 1) (Construction C1)

-a) Given a 1-PDA \(P\), \(\{P, \pi_{D,1}(P)\}\) is Blackburn-compatible w.r.t. \(I_g(t)\), and \(\{P, \pi_{AD,1}(P)\}\) w.r.t. \(I_g(t)\).

-b) Letting \(P = J_g(g^2)\), \(\mathcal{P}_D = \{P, \pi_{D,1}(P), \ldots, \pi_{D,1}^{-1}(P)\}\) is a set of \(g\) 1-PDAs Blackburn-compatible w.r.t. \(I_g(t)\), and \(\mathcal{P}_AD = \{P, \pi_{AD,1}(P), \ldots, \pi_{AD,1}^{-1}(P)\}\) w.r.t. \(I_g(t)\).

-c) \(L_{\mathcal{P}_D} I_g(t)\) and \(L_{\mathcal{P}_AD} I_g(t)\) are regular \(g\)-regular \((g^2, g^2, g^2 - 2g + 1, g(2g - 1))\) PDAs.

2) (Construction C2)

-a) Letting \(Q_0 = G_{2g}(g(2g - 1))\) and \(Q_1 = H_{2g}(g(2g - 1))\), \(\{Q_0, \pi_{D,2}(Q_0)\}\) is Blackburn-compatible w.r.t. \(I_g(t)\), and \(\{Q_1, \pi_{AD,2}(Q)\}\) w.r.t. \(I_g(t)\).

-b) Then \(\mathcal{Q}_D = \{Q_0, \pi_{D,2}(Q_0), \ldots, \pi_{D,2}^{-1}(Q_0)\}\) is a set of \(g\) 2-PDAs Blackburn-compatible w.r.t. \(I_g(t)\), and \(\mathcal{Q}_AD = \{Q_1, \pi_{AD,2}(Q_1), \ldots, \pi_{AD,2}^{-1}(Q_1)\}\) w.r.t. \(I_g(t)\).

-c) \(L_{\mathcal{Q}_D} I_g(t)\) and \(L_{\mathcal{Q}_AD} I_g(t)\) are regular \(g\)-regular \((g^2, 2g^2, 2g^2 - 3g + 2, g(3g - 2))\) PDAs.

The integer \(t\) is chosen to be disjoint from the integers in \(P\), \(Q_0\), or \(Q_1\).

Proof: We prove Part 1(a) as follows. Suppose \([P]_{ij} = \pi_{D,1}(P)_{ij} \neq \ast\) for \(i \neq j\) (off-diagonal). Then, the corresponding mirrored \((i, j)\)-th entry of \(I_g(t)\) for \(i \neq j\) is \(\ast\). Suppose \([P]_{ii} = \pi_{D,1}(P)_{ii} \neq \ast\) (diagonal). Then, \(i \neq j\) because of the rotation, and the mirrored \((i, j)\)-th entry of \(I_g(t)\) for \(i \neq j\) is \(\ast\). The claim for \(P\) and \(\pi_{AD,1}(P)\) can be proved in a similar fashion. Part 1(b) uses Part 1(a) with \(P = J_g(g^2)\). Part 1(c) can be verified by a straightforward calculation. C2 can be proved in a similar way and we skip the details.

Example 4: For \(g = 3\), a set of 3 PDAs \(\mathcal{P}_3 = \{P_0, P_1, P_2\}\) that are pairwise Blackburn-compatible w.r.t. \(P_\ast = I_3(t)\) constructed using C1 is shown below.

\[
P_\ast = I_3 = \begin{pmatrix} t & \ast & \ast \\ \ast & t & \ast \\ \ast & \ast & t \end{pmatrix}, \quad P_0 = J_3 = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{pmatrix},
\]

\[
P_1 = \begin{pmatrix} 8 & 1 & 2 \\ 3 & 0 & 5 \\ 6 & 7 & 4 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 4 & 1 & 2 \\ 3 & 8 & 5 \\ 6 & 7 & 0 \end{pmatrix}.
\]
Construct P_i, $i = 1, \ldots, d-1$, as a block-wise concatenation of $F_i^{(j,k)}$ defined as follows.

$$P_i^{(j,k)} = \begin{cases}
\pi_{AD,2}(P_0^{(j,j)}), & j = k, \\
\pi_{AD,1}(P_0^{(j,k)}), & j > k, \\
(P_i^{(k,j)})^T, & j < k.
\end{cases}$$

We claim that $\mathcal{P} = \{P_0, \ldots, P_{d-1}\}$ is the desired set. Within P_i, Blackburn-compatibility is satisfied by Construction T1. Between P_i and P_j, we consider the diagonal case and two off-diagonal cases separately: (1) Two diagonal blocks $P_i^{(j,j)}$ and $P_j^{(j,j)}$ share the same set of integers only when $j \neq j'$, which means that the mirrored locations fall in an off-diagonal block I_{2d} of P_i. So, by Construction C1, Blackburn-compatibility is satisfied for diagonal blocks. (2) Two off-diagonal blocks $P_i^{(j,k)}$ and $P_j^{(k,j)}$, $j \neq k$, share the same set of integers and have mirrored locations falling on diagonal blocks of P_i, which have \mathcal{V}s on all even diagonals. So, by Construction T2, Blackburn-compatibility is satisfied. (3) Two off-diagonal blocks $P_i^{(j,k)}$ and $P_j^{(k,j)}$, $j \neq k$, share the same set of integers, and the mirrored locations fall in an off-diagonal block I_{2d} of P_i. So, by Construction C1, Blackburn-compatibility is satisfied.

Example 6: Let $g = 4$ and $d = 2$. P_x is as defined in Lemma 7.

$$P_0 = \begin{pmatrix}
\star & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & \star & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 8 & \star & 13 & 18 & 19 & 20 & 21 \\
3 & 9 & 14 & 18 & \star & 22 & 23 & 24 \\
4 & 10 & 15 & 19 & 22 & \star & 25 & 26 \\
5 & 11 & 16 & 20 & 23 & 25 & \star & 27 \\
6 & 12 & 17 & 21 & 24 & 26 & 27 & \star
\end{pmatrix}$$

$$P_1 = \begin{pmatrix}
\star & 22 & 23 & 25 & 3 & 4 & 5 & 15 \\
22 & \star & 24 & 26 & 9 & 10 & 18 & 12 \\
23 & 24 & \star & 27 & 14 & 6 & 16 & 17 \\
25 & 26 & 27 & \star & 11 & 19 & 20 & 21 \\
3 & 9 & 14 & 11 & \star & 0 & 1 & 7 \\
4 & 10 & 6 & 19 & 0 & \star & 2 & 8 \\
5 & 18 & 16 & 20 & 1 & 2 & \star & 13 \\
15 & 12 & 17 & 21 & 7 & 8 & 13 & \star
\end{pmatrix}$$

For the next blockwise construction, we consider $P_{x} = \mathcal{B}_{H_{g/d}^{-1}}(I_{d})$ to be a $g \times g$ PDA constructed by basic lifting of I_{d} using $H_{g/d}((g/2(1-1)))$, for integers g, d such that $d|g$. Therefore, it has $H_{g/d}$ repeated along the diagonal blocks and all-\mathcal{V} blocks appearing in the off-diagonal blocks.

Lemma 8 (Construction BW3): For positive integers g and d such that $d|g$, there exist a set \mathcal{P} of d-regular $(g, g, 1, g(2g-1))$ PDAs that are Blackburn-compatible w.r.t $P_{x}^{(i, j, k)} = L_{P_{x}, P_{x}}(I_{d})$, such that $L_{P_{x}, P_{x}}(I_{d})$ is a $2d$-regular $(gd, gd, gd, g + d - 2g + g/d, g(2g - d - g/d)/2)$ PDA.

Proof: Consider the $2g \times 2g$ 2-PDA P_0 defined in the proof of Lemma 6 and its $2g^2 \times 2g^2$ blocks $P_0^{(j,k)}$, $j, k \in [d]$. Construct P_i, $i \in [d] \setminus \{0\}$ with blocks $P_i^{(j,k)}$ defined as follows.

$$P_i^{(j,k)} = \begin{cases}
\pi_{AD,2}(P_0^{(j,j)}), & j = k, \\
\pi_{AD,1}(P_0^{(j,k)}), & j > k, \\
(P_i^{(k,j)})^T, & j < k.
\end{cases}$$

The main difference, when compared to Construction BW1, is the rotation of the diagonal blocks.

We claim that $\mathcal{P} = \{P_0, \ldots, P_{d-1}\}$ is the desired set, and skip the proof details, which are largely similar to the previous proof of Construction BW2.
Example 7: Let $g = 6$ and $d = 2$.

$$P_e = \begin{pmatrix} H_b & H_e \\ H_e & H_b \end{pmatrix}, \quad P_0 = \begin{pmatrix} \ast & 0 & 1 & 2 & 3 & 4 \\ 0 & \ast & 5 & 6 & 7 & 8 \\ 1 & 5 & \ast & 9 & 10 & 11 \\ 2 & 6 & 9 & \ast & 12 & 13 \\ 3 & 7 & 10 & 12 & \ast & 14 \\ 4 & 8 & 11 & 13 & 14 & \ast \end{pmatrix}.$$

Finally, consider a P, whose diagonal blocks contain one \ast per column and off-diagonal blocks are copies of I_g. Let $T = H_{2n}([n(2n-1)])$ be the $2n \times 2n$ 2-PDA as in (2). Then we set $P_s^{(n)} = L_{\pi_{AD,2}(H_{2n})} :I_{2n}$ (1)). All the diagonal blocks of $P_s^{(n)}$ have \asts on the diagonals, all off-diagonal blocks have \asts on all even diagonals, and every column has $1 + (n-1)$ $(2n - 1) = 2n^2 + 3n + 2$ \asts.

Lemma 9: (Construction BW4) For an integer n, there exist a set \mathcal{P} of $2n$ $(2n^2, 2n^2, 0, 4n^3)$ 1-PDAs that are Blackburn-compatible w.r.t. $P_s^{(n)}$ (defined above) such that $L_{\mathcal{P}, P_s^{(n)}}(I_{2n})$ is a 2n-regular $(4n^3, 4n^3, 4n^3 - 8n^2 + 7n - 2, 2n^2(8n^2 - 7n + 2))$ PDA.

Proof: Consider the $2n^2 \times 2n^2$ 1-PDA P_0 defined as a blockwise concatenation of $2n \times 2n$ blocks. The (j, k)-th block, $j, k \in [n]$, $P_0^{(j,k)} = J_{2n}(S_{j,k})$, where $S_{j,k} = \{4n^2(nj + k), 4n^2(nj + k - 1)\}$ is a partition of the set $[4n^2]$ consisting of disjoint subsets of $4n^2$ consecutive integers.

Construct P_i and \tilde{P}_i, $i = [n]$, as a blockwise concatenations of $2n \times 2n$ PDAs $P_i^{(j,k)}$, $j, k \in [n]$, defined as follows:

$$P_i^{(j,k)} = \begin{cases} P_{AD,1}(P_i^{(j-1,k)} \mod n, j-1 \mod n), & j = k, \\ P_{AD,1}(P_i^{(j,k)}), & j \neq k, \end{cases}$$

$$\tilde{P}_i^{(j,k)} = \begin{cases} (P_i^{(j,j)})^T, & j = k, \\ P_{AD,1}(P_i^{(j,k)}), & j \neq k. \end{cases}$$

When going from P_{i-1} to P_i, a diagonal block is cyclically shifted down, and its anti-diagonal is cyclically shifted twice. An off-diagonal block has its anti-diagonal cyclically shifted twice. When going from P_i to \tilde{P}_i, diagonal blocks are transposed. An off-diagonal block has its anti-diagonal cyclically shifted once.

We claim that $\mathcal{P} = \{P_0, \ldots, P_{n-1}, \tilde{P}_0, \ldots, \tilde{P}_{n-1}\}$ is Blackburn-compatible w.r.t. $P_s^{(n)}$. To prove the claim, we will consider multiple cases where two blocks of the PDAs in \mathcal{P} share integers. (1) $P_i^{(j,k)}$ and $\tilde{P}_i^{(j',k')}$, $i \neq i'$, share integers if $j \neq k$, $P_i^{(j,k)}$ and $\tilde{P}_i^{(j',k')}$, $j \neq j'$, share integers only if $j \neq j'$. In both cases, the mirrored locations are an off-diagonal block of P_e, which is I_{2n}. By C1, Blackburn-compatibility follows. The same argument holds when P is replaced with \tilde{P} in this case. (2) $P_i^{(j,k)}$ and $\tilde{P}_i^{(j',k')}$ share integers. Mirrored locations are on diagonal blocks of P_e, which have \asts on the diagonal. Blackburn-compatibility follows by T1. (3) $P_i^{(j,k)}$ and $\tilde{P}_i^{(j,k)}$ share integers if $j \neq k$, $P_i^{(j,j)}$ and $\tilde{P}_i^{(j,j)}$, $i \neq i'$, share integers only if $j \neq j'$. Mirrored locations are an off-diagonal block of P_s, which is \tilde{I}_{2n}. By C1, Blackburn-compatibility follows.

Example 8: For $n = 2$, the following set of 8×8 PDAs can be constructed using Lemma 9.

$$P_s = \begin{pmatrix} H_4(2:7) \\ I_4(1) \end{pmatrix},$$

$$P_0 = \begin{pmatrix} P_0^{(0,0)} & P_0^{(0,1)} \\ P_0^{(1,0)} & P_0^{(1,1)} \end{pmatrix},$$

$$\tilde{P}_0 = \begin{pmatrix} (P_0^{(0,0)})^T & P_{AD,1}(P_0^{(0,1)}) \\ P_{AD,1}(P_0^{(1,0)}) & (P_0^{(1,1)})^T \end{pmatrix},$$

$$P_1 = \begin{pmatrix} P_{AD,1}(P_0^{(1,1)}) & P_1^{(0,1)} \\ P_{AD,1}(P_1^{(0,1)}) & (P_1^{(1,1)})^T \end{pmatrix}.$$

B. Tiling Construction

The next lemma provides a tiling construction for regular Blackburn-compatible PDAs, and characterizes a tradeoff between the number of \asts per column and the number of integers.

Lemma 10 (Tiling): For a positive integer g and a divisor d of g, there exists a set \mathcal{P} of $(d, g, g - d, d^2)$ (g/d)-PDAs that are Blackburn-compatible w.r.t. $I_g(t)$ (when t does not appear in any PDA in \mathcal{P}). $L_{\mathcal{P}, I_g}(I_d)$ is a g-regular $(dg, dg, dg - 2d + 1, d^2(2d - 1))$ PDA.

Proof: Let P_0, \ldots, P_{d-1} be $(d, d, 0, d^2)$ 1-PDAs Blackburn-compatible w.r.t. $I_g(t)$ obtained using the first part of Lemma 4. Each of these PDAs has d integers per column. Let $g = d/d$. Replace an integer s in P_i with $I_0(s)$ to obtain a $(g, g, g - d, d^2)$ PDA, which we denote as P_i. It is easy to see that $\mathcal{P} = \{P_0, \ldots, P_{d-1}\}$ is a set of PDAs Blackburn-compatible w.r.t. $I_g(t)$. $L_{\mathcal{P}, I_g}(I_d)$ has P_i, $i \in [d]$, on the diagonal and P_s is I_g as off-diagonal blocks. Each integer in $[d^2]$ occurs q times in every P_i, which adds up to a total of $qg = q$ times in L. I_g, by definition, contains one integer appearing q. Each column of L_i has P_i with d integers on the diagonal and I_g with one integer on $d - 1$ off-diagonal positions. So, each column has $d + d - 1 = 2d - 1$ integers, or $gd - (2d - 1)$ \asts. So the parameters of L are as claimed.

Using integer-diisjoint copying, the d PDAs obtained from Lemma 10 can be replicated to obtain a set of $mg(g,g,g-d,d^2)(g/d)$-PDAs. This idea is captured in the following corollary.

Corollary 3 (Tiling): For positive integers g, b and $d = \gcd(g, b)$, there exists a set \mathcal{P} of $(b, g, g - d, d^2)$ (g/d)-PDAs that are Blackburn-compatible w.r.t. $I_g(t)$ (when t does not appear in any PDA in \mathcal{P}). Then $L_{\mathcal{P}, I_g}(I_b)$ is a g-regular $(bg, bg, bg - b - d + 1, b(b + d - 1))$ PDA.

Proof: Obtain d PDAs using Lemma 10. Since d/b, the d PDAs can be replicated with disjoint sets of integers to obtain b
PDAs with the same parameters. The parameters of $L_{P', I_6}(I_6)$ are easy to verify.

Example 9: For $n = 6$, $b = 4$, we have $d = 2$, $q = 3$ and obtain $Q = \{Q_0, Q_1, Q_2, Q_3\}$ shown below. Then note that $L(Q, I_6)$ is a 6-regular $(24, 24, 19, 20)$ PDA.

$$Q_0 = \left(I_3(0) I_3(1)\right), \quad Q_1 = \left(I_3(3) I_3(1)\right), \quad Q_2 = \left(I_3(4) I_3(5)\right), \quad Q_3 = \left(I_3(6) I_3(4)\right).$$

C. Recursive Construction

Repeated application of lifting can result in larger Blackburn-compatible PDAs starting from small-sized base PDAs. The following lemma is an important step in such recursive constructions.

Lemma 11: Let $P = \{P_0, \ldots, P_{g-1}\}$ be a set of $g \times n \times n$ PDAs Blackburn-compatible w.r.t. a PDA P_* with S as its set of integers. For sets of disjoint integers $S_j, j \in [g(n-1)] \cup \{t\}$, with $|S_j| = |S|$, let $P_*(S_j)$ indicate the PDA constructed by replacing integers in P_* with those in S_j. Let $\pi(l) = (l + 1) \mod g$ be the cyclic shift permutation on $[g]$. For $i \in [g]$, let

$$P'_i = P_*(S_0) \cdots P_*(S_{g-2}) \quad (6)$$

Then, $P' = \{P'_0, \ldots, P'_{g-1}\}$ is a set of $g \times n \times n$ PDAs Blackburn-compatible w.r.t. P'_*. If $L_{P, P_0}(I_6)$ is a g_0-regular $ng \times ng$ PDA, then $L_{P', P'_*}(I_6)$ is a gg_0-regular $ng^2 \times ng^2$ PDA.

Proof: A $P_*(S_i)$ block appears off-diagonal at the same location in all P'_i. This does not violate Blackburn-compatibility w.r.t. P'_*. If $P_*(S_i)$ has all-π arrays as off-diagonal blocks, a block that appears in the diagonal of P'_i at its k-th position will be $P_{\pi'(k)}$ and that of P'_j will be $P_{\pi'(k)}$. Since $\pi'(k) \neq \pi'(k)$ for $i \neq j$, these blocks do not violate Blackburn-compatibility with P'_*. Finally, we prove the regularity claim. If $L_{P_0}(I_6(s))$ is g_0-regular, then $P_*(S_i)$ is g_0-regular, and so is $P_*(S_i)$ for every i. So, P'_i is gg_0-regular, which implies that $L_{P_0}(I_6(s))$ is gg_0-regular in the off-diagonal blocks. Since every P'_i is a diagonal-block-permuted version of $L_{P_0}(I_6(s))$, P'_i (which is a diagonal block in $L_{P_0}(I_6(s))$) is g_0-regular as well. Since the same set of integers appear in every P'_i, the diagonal blocks of $L_{P_0}(I_6(s))$ together are gg_0-regular.

We illustrate how to apply the above lemma repeatedly to construct larger PDAs. Consider the two 1-PDAs, $A_2(x)$ and $A_2'(x)$, which are Blackburn-compatible w.r.t. $I_2(t)$ for $t \notin \{x, x+1, x+2, x+3\}$ and obtained using C1 for $g = 2$. They are given by

$$A_2(x) = \begin{pmatrix} x & x+1 \\ x+2 & x+3 \end{pmatrix}, \quad A_2'(x) = \begin{pmatrix} x+3 & x+1 \\ x+2 & x \end{pmatrix}. \quad (7)$$

Lemma 12: Consider the following $2^r \times 2^r$ PDAs for $r > 1$.

$$A_2(x) = \begin{pmatrix} A_{2r-1}(x+2) & A_{2r-1}(x) \\ A_{2r-1}(x+1) & A_{2r-1}(x+2) \end{pmatrix}, \quad \text{and } A_2'(x) = \begin{pmatrix} A_{2r-1}(x+2) & A_{2r-1}(x) \\ A_{2r-1}(x+1) & A_{2r-1}(x+2) \end{pmatrix}, \quad (8)$$

where $A_2(x)$ and $A_2'(x)$ are as defined in (7). Let S be the set of integers in $A_2(x)$ and $A_2'(x)$. For $r \geq 1$ and $t \notin S$, $A = \{A_2(x), A_2'(x)\}$ is a set of two Blackburn-compatible PDAs w.r.t. $I_2(t)$, and $L_A(I_2(s))$ is a 2^r-regular $(2^r+1, 2^r+1, 2^r+1 - r - 2, 2r + 4)$ PDA.

Proof: Let $P_1 = A_2, P_2 = A_2'(x)$ and apply Lemma 11 $(r - 1)$ times recursively.

D. Randomized Construction

For positive integers b, r, e, α, η, we propose a randomized algorithm $\text{RandBC}_{b, e, \alpha, \eta}$ that, when successful, will construct $\pi \times \alpha \times \eta$ PDAs $P_i, i \in [b]$, satisfying the following conditions:

- every P_i contains $\pi \times \alpha \times \eta$ per column, $L_{(P_0, \ldots, P_{b-1})}(I_6)$ is r-regular,
- the set $\{P_0, \ldots, P_{b-1}\}$ is Blackburn-compatible w.r.t. $I_{r}(t, 1, \alpha)$,

$$P_1 = \begin{pmatrix} I_{r}(t, 1, \alpha) & \cdots & I_{r}(t, 1, \alpha) \\ \vdots & \ddots & \vdots \\ I_{r}(t, \eta, 1) & \cdots & I_{r}(t, \eta, 1) \end{pmatrix},$$

where $t_{j,k}$ are integers not occurring in the P_i’s.

A pseudocode for the random construction is given in Algorithm 1. The algorithm cycles through the P_i, starting with P_0, and adds integer v, one at a time, starting with $v = 1$. Each integer is added r times. Free locations for adding v in P_i are identified, and a penalty term is calculated for each free location. The penalty tends to favour locations that minimize “wasting” of cells in other $P_j, j \neq i$, and those that improve column and row spread of the integers in P_i. If no free locations are found at any point, the algorithm fails. Since all conditions are maintained throughout, the algorithm outputs the required PDAs, if successful. Results of successful runs of $\text{RandBC}_{b, e, \alpha, \eta}$ are given in Table II. From the table, we observe that the randomized algorithm succeeds for a wide range of parameters of interest.

V. Results

We present lifted PDAs and corresponding coded caching schemes using the Blackburn-compatible PDAs constructed in the previous sections. One of the advantages of our work compared to previous works is the range of parameters supported by our constructions. To bring out the versatility of the lifting procedure, we present lifted PDAs constructed for a given number of users K and a wide range of memory sizes and rates.
Algorithm 1 RandBC$^{h,r}_{\alpha,\eta}$

1. function CHECK($[P_i]_{x,y} \leftarrow v$): return TRUE, if setting
 (x, y)-th position of P_i as v does not violate PDA, number
 of \ast's per column and Blackburn-compatibility conditions.
 else return FALSE
2. define FREE(P_i, v) = \{(x, y) : $[P_i]_{x,y} = \ast$; CHECK($[P_i]_{x,y} \leftarrow v$) = TRUE\}
3. P_i \leftarrow all-\ast for all i, s \leftarrow $b\alpha(\eta r - e)$ (s: number of integers
 occurring in all P_i)
4. $i = 0$ (start with P_0)
5. for $v \in \{1, \ldots, s\}$ do
6. loop r times
7. if FREE(P_i, v) is empty then declare FAILURE and
 exit
8. For $(x, y) \in$ FREE(P_i, v), PENALTY(x, y) = $N_r + N_c + w_r + w_c$, where (1) N_r and N_c are the number
 of rows and columns of all other P_j, $j \neq i$, invalidated under
 Blackburn-compatibility by setting (x, y)-th position of P_i
 as v, respectively. (2) w_r and w_c are the number of integers
 in x-th row and y-th column of P_i, respectively.
9. $(x^*, y^*) =$ arg min$_{(x,y)\in\text{FREE}(P,v)}$ PENALTY(x, y)
 (if multiple, pick one at random)
10. Set $[P_i]_{x^*, y^*} \leftarrow v$, Move to next $i = i + 1 \ mod b$

TABLE II

EXAMPLES OF SUCCESSFUL RANDOM GENERATION OF $b \eta r \times \alpha r$ PDAS
WITH e \astS PER COLUMN IN EACH PDA AND EACH INTEGER
OCCURRING r TIMES ACROSS ALL PDAS

η	α	(r, e)	b
1	1	(3,2), (4,1), (5,3), (6,4), (8,5), (10,8), (12,9), (15,14), (16,14), (20,18), (25,24), (30,28), (32,30), (50,48), (125,225)	2
1	1	(3,0), (4,0), (5,0), (6,3), (10,6), (12,9), (25,22)	5
1	1	(3,2), (5,1)	20
2	1	(5,6), (10,16), (25,47), (125,248)	2
2	1	(5,1), (10,11), (25,44), (50,98)	5
2	1	(5,1)	50
4	1	(5,12), (10,32), (25,96), (50,196), (125,496)	2
4	1	(5,2), (10,21), (25,89), (50,194)	5
4	1	(5,2)	50

A. K Is a Small Multiple of a Power of 2

Starting with 2-PDAs, we consider lifting to obtain PDAs
with a coding gain of 2^r, $r = 2, 3, \ldots$

Theorem 4 (2^r-lifting):

1. Given a 2-regular (K_b, f_b, Z_b, S_b) PDA P_b, there exists
a 2^r-regular $(2^r K_b, f_b 2^r, (2^r - r - 1) f_b + r Z_b, (2 + 2^r) S_b + K_{Z_b})$ PDA.
2. For coded caching with K users, if $2^r | K$ for an
integer r, the memory-rate pair $(2^r K(1 - 2^{-r}(r + 1)) + r, 2^{-2r} K(r + 1) - 2^{-r} r)$ is achievable with linear
subpacketization.

Proof: For the first part, use Corollary 2 to lift the given
2-regular base PDA P_0 using the Blackburn-compatible PDAs
obtained from Lemma 12 as constituent PDAs. Since $I_{2^r}(t)$
has $(2^r - 1) \ast$'s per column and $A_{2^r}(x_1)$, $A_{2^r}(x_2)$ have
$(2^r - r - 1) \ast$'s per column, the number of \ast in each column
of the lifted PDA is $(Z)(2^r - 1) + (f_b - Z_b)(2^r - r - 1) =
(2^r - r - 1) f_b + r Z$. The other parameter values are easy
to establish.

For the second part, let $q = \frac{K}{2^r}$. Construct a $(q, q, 1, q(q-1)/2)$ 2^r-PDA using the construction in (2). Lift this
PDA using the above first part of the theorem to obtain a
$(K, K(1 - (r + 1) 2^{-r}) + r, 2^{-2r} K(r + 1) - 2^{-r} K(r + 1) - 2^{-r} r)$
2^r-PDA. This results in the claimed memory-rate pair. □

The memory-rate and memory-subpacketization tradeoff for
$K = 64$ using the lifting schemes BW2, C2 and 2^r-lifting is
compared with others in Figs. 1a and 1b. When $\frac{K}{2^r} = \frac{M}{N}$
or $\frac{K}{2^r} = \frac{M}{N}$, the PDAs from MN scheme provide the best
coding gain with linear subpacketization. For our schemes,
minimum values of Z obtained for each coding gain g are
highlighted in red and are labelled using (Z, g). For the points
highlighted in solid red, details of lifting construction are
provided in Table III. We see that the lifting scheme has better
rate than the grouping scheme with $c = 8$ for all memory.
For memory ratios $0.71 < M/N < 1$, lifting has better rate than
grouping with $c = 4$. In Fig. 1b, we see that for most values of
TABLE III
LIFTING CONSTRUCTIONS OF SOME OF THE PDAs FROM FIG. 1 AND 2

K	Example 1	Example 2
84	$\frac{(6,6)^2_{13}}{BW3}$	$\frac{(3,3)^2_{13}}{C_2}$
64	$\frac{(8,8)^4_{12}}{BW2}$	$\frac{(2,2)^2_{C_2}}{(8,8)^4_{C_2}}$
	$\frac{(4,4)^2_{12}}{(16,10)^{11,15}}{(64,64)^{14}}$	$\frac{(4,4)^2_{C_2}}{(2,2)^2_{C_2}}{(64,64)^{12}}$
240	$\frac{(10,10)^2_{12}}{(240,240)^{16}_{22}}{BW5}$	$\frac{(4,4)^2_{C_2}}{(2,2)^2_{C_2}}{(64,64)^{20}}$
	$\frac{(5,5)^2_{12}}{(50,50)^{20}_{30}}{BW3}$	$\frac{(5,5)^2_{C_2}}{(10,20)^2_{13}}{(250,250)^{22}_{452}}$

Fig. 2. Memory-rate tradeoff for $K = 84, 240, 250$.

cache memory ratio, the subpacketization of lifting schemes is noticeably better than other comparable schemes, except for the grouping scheme with $c = 8$ and the scheme from [35]. Also, our schemes provide a wide range of intermediate points without an increase in subpacketization.

B. K With Many Divisors

When K has many small divisors, lifting can be applied in multiple ways. A good approach is to consider as many possibilities of lifting as possible and find constructions that achieve the best tradeoff between cache memory and rate. In this section, we present illustrative memory-rate tradeoffs of various lifting constructions for $K = 84, 240, 250$ in Fig. 2. Memory-rate tradeoff of the coded caching schemes obtained from our constructions is compared with uncoded and Maddah-Ali-Niesen (MN) schemes. For $K = 84$, our schemes are also compared with existing schemes [19], [28], [31], [36] with linear subpacketization, i.e., $f = \Theta(K)$. We have included schemes with $f < 5K$ for the plots in Fig. 2. All existing schemes with linear subpacketization have restrictions on the values that K can take. However, we noticed that for $K = 84$ some of the previous works have achievable schemes and hence chose this value for K to compare our schemes with them. In these figures, (M,R)-pairs obtained by our constructions are shown in light blue and minimum values of Z obtained for each coding gain g are highlighted in red. It can be seen from Fig. 2a that our schemes exist in the range $\frac{M}{N} < 0.33$ and compare favourably to other schemes for $\frac{M}{N} \geq 0.33$. In Fig. 2b and Fig. 2c, the highlighted points are labeled with (Z,g) when $f = K$ and (Z, g) when $f \neq K$. Our PDA-based schemes are close to the MN scheme at different parts of the rate versus memory tradeoff curve. For selected points, description of the lifting construction is given in Table III. The notation $(K_b,f_b)^g_b{(m,n)}_{Z_b}^X$ denotes the lifting of a g_b-regular $(K_b,f_b,Z_b)^g_b$ PDA to a g-regular $(K,f,Z)^g_X$ PDA using a set of $m \times n$ Blackburn-compatible PDAs having Z_c's per column and P_c's per column. Here, X denotes the construction method. Table III provides a sample of how a multitude of lifting sequences are possible when K has many small divisors. For instance, in Example 1 for $K = 240$, a 2-regular 5×5 base PDA is first lifted to a 4-regular 30×30 PDA, which is in turn lifted to an 8-regular 240×240 PDA. The two liftings use Blackburn-compatible PDAs from Constructions BW3 and C2, respectively.
TABLE IV
RANDOMIZED CONSTRUCTION

K	f	Gain	Construction	M/N	R
250	250	125	(2, 2)\(125,125,124,128\) (250, 250)\(125,250,248\)	0.992	0.016
250	250	10	(5, 5)\(5,5,4\) (25, 25)\(5,16\) (10, 10)	0.792	5.2
256	256	4	(64, 64)\(4,4,1,3\) (256, 256)\(4,26\)	0.2578	47.5
250	500	125	(2, 4)\(2,2\) (125,125,124,128) (250, 500)\(125,250,500,246\)	0.992	0.016
250	500	10	(5, 5)\(5,5,4\) (25, 25)\(5,16\) (10, 20)11,18	0.774	5.65
256	512	4	(64, 128)\(4,4,1,3\) (256, 512)\(4,32\)	0.2578	47.5
250	1000	125	(2, 8)\(2,8\) (125,125,124,128) (250, 1000)\(125,250,1000,246\)	0.992	0.016
250	1000	10	(5, 5)\(5,5,4\) (25, 25)\(5,16\) (10, 40)25,36	0.765	5.875
256	1024	4	(64, 256)\(4,4,1,3\) (256, 1024)\(4,64\)	0.2578	47.5

Fig. 3. Memory-rate tradeoff for coded caching schemes from PDAs lifted using randomly constructed Blackburn-compatible PDAs. The red curve added for comparison in the first plot is the MR tradeoff obtained using \(2^r\)-lifting for \(K = f = 256\).

C. Randomized Construction: \(f = K, f = 2K, f = 4K\)

To obtain subpacketization as a small multiple of the number of users, randomized construction of Blackburn-compatible PDAs shown in Algorithm 1 can be used. For \(K = 250\) and \(K = 256\), Table IV shows some of the resulting lifting constructions. The memory-rate tradeoffs are shown in Fig. 3. We observe that a wide variety of memory vs rate tradeoffs are obtained by lifting with Blackburn-compatible PDAs obtained using the randomized algorithm. For \(K = f = 250\), we have added the memory-rate tradeoff obtained by deterministic \(2^r\)-lifting for \(K = f = 256\) (red line) for comparison. We see that the randomized method provides tradeoffs that are comparable with the deterministic one.

To summarize, we have demonstrated the versatility of the lifting construction. For a given number of users, lifting can provide multiple lifting constructions for PDAs offering a range of tradeoffs between cache memory size and rate at very low subpacketization.

VI. CONCLUSION

We propose several constructions for coded caching schemes with subpacketization linear with the number of users using the framework of placement delivery arrays. We introduced the notion of Blackburn-compatibility of PDAs and used this concept for a several lifting constructions of PDAs for a wide range of coding gains. We showed that new Blackburn-compatible PDAs can be built from existing sets of Blackburn-compatible PDAs through our blockwise and recursive constructions. We also proposed an algorithm to randomly construct Blackburn-compatible PDAs for any arbitrary setting. In many regimes, our lifting constructions are shown to perform better compared to other existing schemes for lower subpacketization.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.
[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff for caching with uncoded prefetching,” IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1281–1296, Feb. 2018.
[3] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of storage-rate tradeoff for caching via new outer bounds,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015, pp. 1691–1695.
[4] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4388–4413, Jul. 2017.
[5] C.-Y. Wang, S. H. Lim, and M. Gastpar, “A new converse bound for coded caching,” in Proc. Inf. Theory Appl. Workshop (ITA), Jan. 2016, pp. 1–6.
[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory tradeoff in cache networks within a factor of 2,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 647–663, Jan. 2019.
[7] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded cache placement,” in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016, pp. 161–165.
[8] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1029–1040, Aug. 2015.
[9] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” *IEEE Trans. Inf. Theory*, vol. 63, no. 2, pp. 1146–1158, Feb. 2017.

[10] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hierarchical coded caching,” *IEEE Trans. Inf. Theory*, vol. 62, no. 6, pp. 3212–3229, Jun. 2016.

[11] L. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: Improved bounds for users with small buffers,” *IET Commun.*, vol. 10, no. 17, pp. 2315–2318, Nov. 2016.

[12] C. Tian and J. Chen, “Caching and delivery via interference elimination,” *IEEE Trans. Inf. Theory*, vol. 64, no. 3, pp. 1548–1560, Mar. 2018.

[13] J. Gómez-Vilardebó, “Fundamental limits of caching: Improved rate-memory tradeoff with coded prefetching,” *IEEE Trans. Commun.*, vol. 66, no. 10, pp. 4488–4497, Oct. 2018.

[14] A. Sengupta, R. Tandon, and T. C. Clancy, “Fundamental limits of caching with secure delivery,” *IEEE Trans. Inf. Forensics Security*, vol. 10, no. 2, pp. 355–370, Feb. 2015.

[15] V. Ravindrakumar, P. Panda, N. Karamchandani, and V. Prabhakaran, “Fundamental limits of secretive coded caching,” in *Proc. IEEE Intl. Symp. Inf. Theory (ISIT)*, Jul. 2016, pp. 425–429.

[16] K. Wan and G. Caire, “On coded caching with private demands,” *IEEE Trans. Inf. Theory*, vol. 67, no. 1, pp. 358–372, Jan. 2021.

[17] V. R. Aravind, P. K. Sarvepalli, and A. Thangaraj, “Subpacketization in coded caching with demand privacy,” in *Proc. Nat. Conf. Commun. (NCC)*, Feb. 2020, pp. 1–6.

[18] S. Kamath, J. Ravi, and B. K. Dey, “Demand-privacy coded caching and the exact trade-off for \(N = K = 2 \),” in *Proc. Nat. Conf. Commun. (NCC)*, Feb. 2020, pp. 1–6.

[19] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching schemes: A hypergraph theoretical approach,” *IEEE Trans. Inf. Theory*, vol. 64, no. 8, pp. 5755–5766, Aug. 2018.

[20] M. Cheng, Q. Yan, X. Tang, and J. Jiang, “Coded caching schemes with low rate and subpacketizations,” 2017, arXiv:1703.01548.

[21] H. S. Chittoor, P. Krishnan, K. V. S. Sree, and B. Mamillapalli, “Subexponential and linear subpacketization coded caching via projective geometry,” *IEEE Trans. Inf. Theory*, vol. 67, no. 9, pp. 6193–6222, Sep. 2021.

[22] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery array design for centralized coded caching scheme,” *IEEE Trans. Inf. Theory*, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[23] S. Agrawal, K. V. Sushena Sree, and P. Krishnan, “Coded caching based on combinatorial designs,” in *Proc. IEEE Intl. Symp. Inf. Theory (ISIT)*, Jul. 2019, pp. 1227–1231.

[24] I. M. Wanless, “A partial Latin squares problem posed by Blackburn,” Bull. Inst. Combinat. Appl., vol. 42, pp. 76–80, 2004.

[25] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced subpacketization from linear block codes,” *IEEE Trans. Inf. Theory*, vol. 64, no. 4, pp. 3099–3120, Apr. 2018.

[26] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching with linear subpacketization is possible using Ruzsa-Szemerédi graphs,” *IEEE Trans. Inf. Theory (ISIT)*, Jun. 2017, pp. 1237–1241.

[27] K. Shanmugam, A. G. Dimakis, J. Llorca, and A. M. Tulino, “A unified Ruzsa-Szemerédi framework for finite-length coded caching,” in *Proc. 51st Asilomar Conf. Signals, Syst., Comput.*.

[28] J. Michel and Q. Wang, “Placement delivery arrays from combinations of strong edge colorings,” in *IPN Prog. Rep.*, vol. 42, no. 154, pp. 42–154, 2003.

[29] V. R. Aravind, P. K. Sarvepalli, and A. Thangaraj, “Lifting constructions of PDAs for coded caching with linear subpacketization,” 2020, arXiv:2007.07475.

Pradeep Kiran Sarvepalli received the B.Tech. degree in electrical engineering from the Cochin University of Science and Technology, Kochi, India. He is currently pursuing the doctoral degree with the Department of Electrical Engineering, IIT Madras. He was a Software Engineer at Compro Technologies, New Delhi, India. His research interests include information theory, error correcting codes, and coded caching and privacy.

Andrew Thangaraj (Senior Member, IEEE) received the B.Tech. degree in electrical engineering from IIT Madras and the master's degree in electrical engineering and the Ph.D. degree in computer science from Texas A&M University. He was a Post-Doctoral Fellow at the University of British Columbia and the Georgia Institute of Technology. He was an IC Design Engineer at Texas Instruments India, Bengaluru. He is currently an Associate Professor with the Department of Electrical Engineering, IIT Madras. His research interests include quantum and classical error correcting codes, quantum cryptography, quantum computation, and coding for distributed storage.

V. R. Aravind received the B.Tech. degree in electronics and communication engineering from the Cochin University of Science and Technology, Kochi, India. He is currently pursuing the doctoral degree with the Department of Electrical Engineering, IIT Madras. He was a Software Engineer at Compro Technologies, New Delhi, India. His research interests include information theory, error correcting codes, and coded caching and privacy.