Abstract. The paper is devoted to the symmetry aspects of 2D nonlocal field theory, which is the simplest deformation of the conformally invariant quantum field theory with one free bosonic field. The inverse problem of representation theory is solved for q_R-conformal symmetries, which are infinite dimensional hidden symmetries of the field theory. There is developed a mathematical formalism based on the abstract categorical representation theory and sufficient for applications of symmetry methods to the investigation of processes of synthesis, decay and interaction of quasiparticles in the models of 2D nonlocal quantum field theory.

This paper being devoted to one of aspects of the inverse problem of representation theory [1] is addressed as to specialists in mathematical physics and applied mathematics involved in the analysis of hidden symmetries in quantum field models, classical and quantum dynamical and controlled systems as to mathematicians-algebraists, who are interested in new aspects of representation theory that are explicated during the investigations of concrete models and systems. An exposition of the material has its goals, in general, to show how unexpected mathematical objects appear during the analysis of concrete hidden symmetries and in what extent the modern rather abstract mathematical concepts (category theory, Grothendieck topology, theory of sheaves and topoi) may be essential for the understanding of symmetry aspects of problems of mathematical physics. It is rather convenient to remind that an initiative of the explication of such applications of modern ‘categoric-algebrogometric’ apparatus to problems of theoretical and mathematical physics belongs to Yu.I.Manin (see e.g.[2]).

The inverse problem of representation theory is to restore an abstract mathematical object (or its characteristics) by a concrete realization, for example, by a fixed set of matrices or operators in an infinite dimensional space [1]. Thus, one

1 This is an English translation of the original Russian version, which is located at the end of the article as an appendix. In the case of any differences between English and Russian versions caused by a translation the least has the priority as the original one.
may correspond a Lie algebra $\mathfrak{so}(n, \mathbb{R})$ to all real $n \times n$ skew-symmetric matrices. More complicated examples were considered, for example, in [1,3].

Often the inverse problem of representation theory means to search a representative from a fixed class of abstract algebraic structures (e.g. Lie algebras or associative algebras with quadratic relations) by its representation, it is defined at the same time what the representation of an algebraic object of this class is. Under the solution of such inverse problem as a rule new rather interesting mathematical objects appear. In this way there were unraveled, for example, quantum groups [4]; some other illustrations (Racah-Wigner algebras, U–algebras, Sklyanin algebras etc.) are contained in [1,3].

However, the inverse problem may be considered in another manner. Let us suppose that an abstract object belongs to a rather simple class of structures, for example, is a Lie algebra, but the form of representation differs from a standard one. Such formulation of a problem was proposed in [5]. Of course, methodologically the change of the foreshortening means the change of the search of similarity between the concrete and the abstract objects (the search of homomorphism of the least into the first) to the analysis of a possibility of a representation of the least by the first. That presupposes in any case a question what a representation is and what ‘to represent’ means. Therefore, the using of the abstract algebraic apparatus of the category theory is reasonable, that was done in [6]. Thus, this article, discussing how the Virasoro algebra (more precisely, the Witt algebra, whose central extension the Virasoro algebra is) appears under an application of the categoric representation theory to analysis of q_R–conformal symmetries in 2D nonlocal q_R–conformal field theory, is a systematic exposition of a material of electronic preprints [5,6].

1. q_R–CONFORMAL FIELD THEORIES AND q_R–CONFORMAL SYMMETRIES [7]

The spectrum of fields of the simplest model of conformal field theory is generated by one free bosonic field and, thus, consists of all composite fields, which are the normal ordered pointwise products of the current constructed from the free field (see a general construction of currents from Fubini-Veneziano fields in [7]) on itself. Other models of the conformal field theory, which complete description was done in [8], are received under a transition to several free fields (the so-called free field representation [9]).

The model with one free bosonic field is described by a Lagrangian

$$L = \int \varphi(z) \bar{\varphi}(\bar{z}) \, dzd\bar{z},$$

where an integration is done inside the unit complex disk. From many points of view (as theoretical as technical) it is useful to consider a nonlocal deformation (cf.[10]) of the model with a nonlocal Lagrangian

$$L_h = \int K_h(z, \bar{z}) \varphi(z) \bar{\varphi}(\bar{z}) \, dzd\bar{z},$$

where the kernel $K_h(z, \bar{z})$ is the Bergman kernfunction of the Lobachevskii metric in the unit complex disk:

$$K_h(z, \bar{z}) = (1 - z\bar{z})^{-2-2h},$$
so the nonlocal Lagrangian is invariant under all Möbius (linear-fractional) transformations of the complex disk. Note that the Lagrangian of the free bosonic field $L(\varphi)$ may be obtained from the nonlocal Lagrangians L_h as their limit at $h \to \infty$. Models of 2D quantum field theory with the Lagrangian L_h (and whose classical counterparts have the natural nonlocal nondegenerate Poisson brackets with Lagrangian L_h as a Kähler potential of the Kähler metric constructed from them) are the simplest models of nonlocal theory and at the same time they possess an interesting and nontrivial internal algebraic structure.

A language of the operator formalism of the quantum field theory was applied to these nonlocal models after their holomorphic-antiholomorphic (chiral) factorization in the author’s paper [7], where the models were called q_R-conformal field theories ($q_R = \frac{1}{2(h-1)}$). The components of operator fields of the q_R-conformal field theory, which are invariant under all complex projective transformation of the Riemann sphere, admit a realization by tensor operators in the Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ and, therefore, may be written as (generalized) differential operators, so many problems of the field theory for these models have analytic or numeric solutions and the formulation of their difference (lattice) approximations does not produce any problems (for example, the problem of integration of a quantum-field top, which was considered for the conformal field theory in [11] and for q_R-conformal theories in [12]).

An important feature of 2D conformal field theories is the presence of infinite additional symmetries, which are described by the Witt algebra or by its central extension, the Virasoro algebra $\mathbb{C}\mathfrak{vir}$ [13]. These symmetries appear as components of the decomposition of the (chirally factorized) stress-energy tensor, the square of the free bosonic field (more precisely, of the current constructed from it). Analogs of the free field representations and stress-energy tensor in the q_R-conformal case were considered in detail in the article [7]. Thus, the q_R-conformal stress-energy tensor is the generating function of the spin 2 tensor operators in the Verma module over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$. If the Verma module V_h (here h is the extremal weight [14]) over this algebra is realized in the space of all polynomials $\mathbb{C}[z]$ of a complex variable z, and the action of generators L_i ($i = -1, 0, 1; [L_i, L_j] = (i - j)L_{i+j}$) of the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ in it is written as

$$L_{-1} = z, \quad L_0 = z\partial_z + h, \quad L_1 = z\partial_z^2 + 2h\partial_z,$$

then the components of the q_R-conformal stress-energy tensor (q_R-conformal symmetries) are of the form:

$$L_{-k} = (\xi + h(k+1))\partial_z^k \quad (k \geq 0), \quad L_k = \frac{\xi + h(k+1)}{(\xi + 2h)\ldots(\xi + 2h + k - 1)} \quad (k \geq 1),$$

where $\xi = z\partial_z$.

The q_R-conformal symmetries form an infinite family. There were done several attempts to solve the inverse problem of representation theory for them, i.e. to unravel their algebraic structure. One of these attempts was described in the article [7], its result is the associative algebra $\mathbb{C}\mathfrak{vir}(q_R)$, an analog of the nonlinear \mathfrak{sl}_2 of [15]. Another approach was sketched in the electronic preprint [5] and developed in the author’s article ‘Approximate representations and the Virasoro algebra’ prepared for a publication. However, there is a necessity of the further search of other ways to solve the inverse problem of representation theory for q_R-conformal symmetries. The next paragraph id devoted to a description of one of the possible versions.
2. Algebraic structure of q_R–conformal symmetries

Definition 1 [5].

A. A linear space \mathfrak{v} is called a Lie composite iff there are fixed its subspaces $\mathfrak{v}_1, \ldots, \mathfrak{v}_n$ ($\dim \mathfrak{v}_i > 1$) supplied by the compatible structures of Lie algebras. Compatibility means that the structures of the Lie algebras induced in $\mathfrak{v}_1 \cap \mathfrak{v}_j$ from \mathfrak{v}_i and \mathfrak{v}_j are the same. The Lie composite is called dense iff $\mathfrak{v}_1 \oplus \ldots \oplus \mathfrak{v}_n = \mathfrak{v}$ (here \oplus denotes the sum of linear spaces). The Lie composite is called connected iff for all i and j there exists a sequence k_1, \ldots, k_m ($k_1 = i$, $k_m = j$) such that $\mathfrak{v}_{k_i} \cap \mathfrak{v}_{k_{i+1}} \neq \emptyset$.

B. A representation of the Lie composite \mathfrak{v} in the space H is the linear mapping $T : \mathfrak{v} \mapsto \text{End}(H)$ such that $T|_{\mathfrak{v}_i}$ is a representation of the Lie algebra \mathfrak{v}_i for all i.

C. Let \mathfrak{g} be a Lie algebra. A linear mapping $T : \mathfrak{g} \mapsto \text{End}(H)$ is called the composed representation of \mathfrak{g} in the linear space H iff there exists a set $\mathfrak{g}_1, \ldots, \mathfrak{g}_n$ of the Lie subalgebras of \mathfrak{g}, which form a dense connected composite and T is its representation.

Reducibility and irreducibility of representations of the Lie composites are defined in the same manner as for Lie algebras. One may also formulate a superanalogue of the Definition 1. The set of representations of the fixed Lie composite is closed under the tensor product and, therefore, may be supplied by the structure of a tensor category [16].

Example 1 (The Octahedron Lie Composite) [5]. Let us consider an octahedron with the vertices A, B, C, D, E, F, the edges $(AB), (AC), (AD), (AE), (BC), (BF), (CD), (CF), (DE), (DF), (EF)$, and the faces $(ABC), (ACD), (ADE), (AEB), (BCF), (CDF), (DEF), (EBF)$. Let \mathfrak{v} be a six–dimensional linear space with the basis labelled by the vertices of the octahedron, $\mathfrak{v}_1, \mathfrak{v}_2, \mathfrak{v}_3, \mathfrak{v}_4$ be four three–dimensional subspaces in \mathfrak{v} corresponded to the faces $(ABC), (ADE), (CDF), (EBF)$. All subspaces \mathfrak{v}_i are supplied by the structures of the Lie algebras isomorphic to $\mathfrak{so}(3)$ (such structures are compatible to the orientations on the faces). The pentuple $(\mathfrak{v}, \mathfrak{v}_1, \mathfrak{v}_2, \mathfrak{v}_3, \mathfrak{v}_4)$ is a dense connected Lie composite.

Proposition. Let T be an arbitrary representation of the Lie composite $(\mathfrak{v}; \mathfrak{v}_1, \mathfrak{v}_2, \mathfrak{v}_3, \mathfrak{v}_4)$ in the finite–dimensional linear space H, then H admits a representation of the Lie algebra $\mathfrak{so}(4)$. If T is an irreducible representation then there exist the real numbers $\lambda_A, \lambda_B, \lambda_C, \lambda_D, \lambda_E, \lambda_F$ such that the operators $T(A) - \lambda_A 1$, $T(B) - \lambda_B 1$, $T(C) - \lambda_C 1$, $T(D) - \lambda_D 1$, $T(E) - \lambda_E 1$, $T(F) - \lambda_F 1$ form an irreducible representation of $\mathfrak{so}(4)$.

Proof. First, note that the commutator of operators corresponded to the opposite vertices commute with operators corresponded to other four vertices. It commutes with all six operators because they may be expressed as commutators of the least four operators. So the commutator of operators corresponded to the opposite vertices belongs to the center of the Lie algebra generated by the all six operators. Let us factorize this Lie algebra \mathfrak{g} by the center. Such quotient is isomorphic to $\mathfrak{so}(4)$ (one uses the fact that formulas for commutators of all six operators are known up to the center of \mathfrak{g}). The statement of the theorem is a consequence of this result and the fact that any central extension of the semisimple Lie algebra is trivial (i.e. may be splitted – see f.e.[17]) \[\Box\]

The construction of the Octahedron Lie composite may be generalized on the
certain class of polyhedra. However, any analogs of the Proposition are not known for such general case.

Example 2 (The Witt composite) [5]. Let \(\mathfrak{w} \) be the so-called Witt algebra, which is a subalgebra of the complexification \(\mathbb{C}\text{Vect}(S^1) \) of the Lie algebra \(\text{Vect}(S^1) \) of the smooth vector fields on a circle \(S^1 \) [18]. The Witt algebra \(\mathfrak{w} \) consists of all polynomial vector fields and admits a basis \(e_k \) \((k \in \mathbb{Z}) \) with commutation relations \([e_i, e_j] = (i-j)e_{i+j} \). The Virasoro algebra \(\mathfrak{vir} \) [19] is one-dimensional nontrivial central extension of the Witt algebra.

Let us consider two subalgebras \(\mathfrak{p}_\pm \) of \(\mathfrak{w} \) generated by \(e_i \) with \(i \geq -1 \) and \(i \leq 1 \); note that \(\mathfrak{p}_+ \cap \mathfrak{p}_- = \mathfrak{sl}(2, \mathbb{C}) \). The triple \((\mathfrak{w}; \mathfrak{p}_+, \mathfrak{p}_-) \) is a dense connected Lie composite.

Each representation of the Virasoro algebra defines a representation of the Witt composite in the same space. The reciprocal statement is not correct, of course, what is shown by the following theorem.

Theorem 1A. The action of the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) in any Verma module \(V_h \) \((h \) is the highest weight) may be extended to the representation of the Lie composite \((\mathfrak{w}; \mathfrak{p}_+, \mathfrak{p}_-) \) and, hence, to the composed representation of the Witt algebra \(\mathfrak{w} \).

Proof. The Theorem follows from the explicit formulas for the spin 2 tensor operators in the Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) \((q_R–\text{conformal symmetries}) \), which realize a representation of the Witt composite. \(\square \)

Remark 1. The construction of the Witt composite may be generalized on the Riemann surfaces of higher genus in lines of I.M.Krichever and S.P.Novikov [19].

Remark 2. Generalizing the terminology of [1,3] one may say that the spin 2 tensor operators (i.e. the \(q_R–\text{conformal symmetries} \)) in the Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) form the set of hidden symmetries, whose algebraic structure is one of the Witt composite.

Note that if the hidden symmetries realize a representation of the Lie composite they should not be unpacked (a similar situation appears also in the case of the isocommutator algebras of hidden symmetries and the related Lie \(\mathfrak{g}–\text{bunches} \) [3:Topic 3;1.§2.1]).

Example 3. Let \(\mathfrak{w} \) be the Witt algebra and \((\mathfrak{w}; \mathfrak{p}_\pm) \) be the Witt composite. Let us consider the abelian extension \(\mathfrak{w}^e \) of the Witt algebra by the generators \(f_i \) \((i \in \mathbb{Z}) \) such that \([e_i, f_j] = jf_j \). The subalgebras \(\mathfrak{p}_\pm \) of \(\mathfrak{w} \) may be extended to the subalgebras \(\mathfrak{p}_\pm^e \) of \(\mathfrak{w}^e \) by the generators \(f_i \), where \(i \geq 0 \) and \(i \leq 0 \), respectively. The triple \((\mathfrak{w}^e; \mathfrak{p}_\pm^e) \) form the extended Witt composite.

Theorem 1B. The representation of the Witt composite in any Verma module \(V_h \) \((h \) is the highest weight) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) may be extended to the representation of the Lie composite \((\mathfrak{w}^e; \mathfrak{p}_\pm^e) \) and, hence, the composed representation of \(\mathfrak{w} \) in \(V_h \) may be extended to the composed representation of \(\mathfrak{w}^e \).

Proof. The additional generators \(f_i \) are represented by the tensor operators of spin 1 (the components of a decomposition of the \(q_R–\text{affine current} \) [7]), namely, \(f_i \mapsto \partial_z^i \) \((i \geq 0) \), \(f_{-i} \mapsto z_i^{(i+1/2)h} \) \((i \geq 1) \) \(\square \)

Remark 3. It is very interesting to consider the composed representations of the real semisimple Lie algebras \(\mathfrak{g} \), which unduce representations of some natural subal-
gebras (for instance, of two opposite maximal parabolic subalgebras or two opposite Borel subalgebras, perhaps plus some \(\mathfrak{sl}(2, \mathbb{C})\) imbed into \(\mathfrak{g}\), etc.).

Remark 4. Composed representations of other algebraic structures (isotopic pairs) were considered in the author’s article [20].

Thus, we established in the second paragraph that the \(q_R\)-conformal symmetries may be regarded as a realization of the same algebraic structure (the Witt algebra or the Virasoro algebra) as for the conformal symmetries, however, with a new understanding of the operation of ‘representation’ itself. Thus, it is natural to formulate a question what ‘to represent’ means and what features should the nonstandard representation have to allow to operate with them as with standard ones, and how to receive new unknown types of representations from the constructed ones. All these questions are a subject of the following paragraph, which will have a rather formal mathematical character being far from the initial formulation of the problem from the nonlocal quantum field theory.

3. CATEGORICAL REPRESENTATION THEORY AND \(q_R\)-CONFORMAL SYMMETRIES: COMPOSITE AND OVERLAY REPRESENTATIONS

3.1. Elements of the categorical representation theory [6]. We shall consider the representations of classes of objects, which constitute a category, which will be called the ground category. The categorical aspects of the standard representation theory were discussed in [16]. Some categorical generalizations were described in [21]. However, we shall formulate the most abstract settings, which are necessary for our purposes.

Definition 2A. A representation theory for the ground category \(\mathcal{A}\) is a contravariant functor \(R\) from the category \(\mathcal{A}\) to the category \(\mathcal{ABEL}\) of all small abelian categories.

Sometimes one should consider the category \(\mathcal{ADD}\) of all small additive categories instead of \(\mathcal{ABEL}\). However, we shall consider the least category for simplicity.

Often the ground category has some good properties, e.g. that for any finite family of objects there exists their coproduct, which coincides with their product. Such situation is realized for Lie algebras, Lie groups, finite groups, associative algebras, Hopf algebras and many other structures. However, the isotopic pairs (see f.e. [1§2.2;19]) and the most of other algebraic pairs do not form a category of such type. For the ground category \(\mathcal{A}\), in which products and coproducts of finite number of objects exist and coincide, we shall claim in the definition of representation theories that an associative family of imbeddings \(R(a) \times R(b) \hookrightarrow R(a + b)\) (\(a\) and \(b\) are any objects of the ground category \(\mathcal{A}\)) is defined. Such representation theories will be called quasitensorial.

Remark 5. If an object \(a\) of the ground category \(\mathcal{A}\) admits a coassociative monomorphism \(\varepsilon\) into \(a + a\) then \(R(a)\) is a tensor category iff the representation theory \(R\) is quasitensorial.

There exist non–quasitensorial representation theories even for the well–known categories of the represented objects, e.g. general \(\mathcal{HS}\)–projective representations of Lie algebras [5] or unitary \(\mathcal{HS}\)–pseudorepresentations of Lie groups are out of this class.
Definition 2B. A representation theory for the ground category \mathcal{A} is called homomorphic iff there exists a subcategory \mathcal{A}_0 of \mathcal{A} (the target subcategory) such that for any object a of \mathcal{A} the category $R(a)$ may be identified with the category $\text{Mor}(a, \mathcal{A}_0)$ of all (equivalence classes of) morphisms from a to the objects of the category \mathcal{A}_0.

For instance, theories of all linear, projective, unitary representations of Lie groups are homomorphic. Note that the target category \mathcal{A}_0 is always an additive subcategory of the ground category \mathcal{A}.

Definition 2C. A representation theory for the ground category \mathcal{A} is called hiddenly homomorphic iff there exists a homomorphic representation theory R' for a category \mathcal{K} and a functor (multi-valued in general) $\varrho : \mathcal{A} \to \mathcal{K}$ such that $R = R' \circ \varrho$.

Below we shall consider some examples and general constructions of the hiddenly homomorphic representation theories for the ground category \mathcal{LIE} of the Lie algebras inspired by the considered above solution of the inverse proble, of representation theory for qR–conformal symmetries in nonlocal quantum field theory, which are not homomorphic, and describe their interpretations in terms of the categorical representation theory.

3.2. Composed representation theories [6]. Let us formulate an abstract categorical setting for the construction of the composed representations defined in the second paragraph.

Definition 3A. Let \mathcal{A} be a topologized ground category (i.e. supplied by a structure of the Grothendieck topology [22]). Let R be a representation theory for \mathcal{A}. The composed representation theory $\mathcal{C}(R)$ for \mathcal{A} may be constructed in the following manner. Let a be an object of the ground category \mathcal{A} and $S = (s_1, s_2, \ldots, s_n)$ ($s_i \in \text{Mor}(a_i, a)$) be a cover of a then the objects of the category $\mathcal{C}(R)(a)$ consists of all data (b_1, b_2, \ldots, b_n), $b_i \in R(a_i)$ such that for any object c and monomorphisms $f \in \text{Mor}(c, a)$ and $f_i \in \text{Mor}(c, a_i)$ ($f = s_i \circ f_i$) the equality (the composite glueing rule)

$$R(f_i)^*(b_i) = R(f_j)^*(b_j)$$

holds. The morphisms in $\mathcal{C}(R)(a)$ are defined in the same manner.

For any representation theory R the composite representation theory $\mathcal{C}(R)$ is a sheaf of abelian categories over the topologized ground category \mathcal{A} [22]. It is a sheaf canonically constructed from the pre–sheaf R over the topologized ground category \mathcal{A} (note that the representation theory for the topologized ground category \mathcal{A} is just a pre–sheaf over it).

Theorem 2A [6]. The composed representations of Lie algebras form a composed representation theory $\mathcal{C}(R)$, where R is a standard representation theory of Lie algebras (the covers of the Lie algebras are defined by the dense connected Lie composites).

Note that the Grothendieck topology of the Theorem 2A differs from the usual one [21].

Remark 6. If R is the standard representation theory then the theory $\mathcal{C}(R)$ is hiddenly homomorphic, the category \mathcal{K} is one of the Lie composites, the category \mathcal{K}_0 consists of Lie algebras $\text{End}(H)$ for all linear spaces H, i.e. just the same
as for a homomorphic standard representation theory. However, if \(R \) is a general representation theory \(C(R) \) is not obligatory hiddenly homomorphic.

I suspect that the concept of the hidden homomorphicity of the composite representation theories may be somehow understood in terms of the topos theory \([22]\).

Remark 7. \(C(C(R)) = C(R) \).

3.3. Overlay representation theories [6]

The disadvantages of the composed representation theory is clearly explicated on the examples of the composed representations of the Witt algebras by the hidden infinite dimensional \((q_{R \infty}\text{-conformal})\) symmetries in the Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \). First, the tensor product of a finite number of these irreducible composed representations is irreducible. This fact contradicts to the naïve intuition. Second, the hidden symmetries do not form any representation themselves whereas intuitively they should form the adjoint representation. From the point of view of the mathematical physics all this disadvantages are essential because they do not allow to use effectively the apparatus of representation theory for the analysis of processes of decay, synthesis and interaction of quasiparticles in 2D nonlocal field theory.

So one needs some generalization of the composed representations. Let us define the operator Lie composites \(LC(H) \) as the sets of subspaces \(\text{End}(H_i) \) in the spaces \(\text{End}(H) \) \((H = H_1 + \ldots + H_m)\) with the natural structures of Lie algebras.

Definition 4.

A. An overlay representation of the Lie composite \(\mathfrak{v}\) in the space \(H\) is the homomorphism \(T\) of \(\mathfrak{v}\) into the operator Lie composite \(LC(H)\).

B. Let \(\mathfrak{g}\) be a Lie algebra. A linear mapping \(T : \mathfrak{g} \rightarrow \text{End}(H)\) is called the overlay composed representation (or simply overlay representation) of \(\mathfrak{g}\) in the linear space \(H\) iff there exists a set \(\mathfrak{g}_1, \ldots, \mathfrak{g}_n\) of the Lie subalgebras of \(\mathfrak{g}\), which form a dense connected composite and \(T\) is its overlay representation.

Remark 8. The overlay representations of any Lie algebra \(\mathfrak{g}\) form a tensor category.

The overlay representations solve the previously described difficulties.

Theorem 1C [6]. The tensor operators of spin 2 in the Verma modules \(V_h\) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) form an overlay representation of the Witt algebra, which are subrepresentations of \(\text{End}(V_h)\).

Remark 9. The tensor operators of any natural spin \(n\) in the Verma modules \(V_h\) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) (described completely in [7]) form overlay representations of the Witt algebra, which are subrepresentations of \(\text{End}(V_h)\).

Let us formulate the natural categorical settings for the construction of overlay representations.

Definition 3B. Let \(\mathcal{A}\) be a topologized ground category. Let \(\mathcal{R}\) be a homomorphic representation theory for \(\mathcal{A}\) with the target subcategory \(\mathcal{A}_0\) supplied by the Grothendieck topology induced from \(\mathcal{A}\). The overlay representation theory \(\mathcal{O}(\mathcal{R})\) for \(\mathcal{A}\) may be constructed in the following manner. Let \(a\) be an object of the ground category \(\mathcal{A}\) and \(S = (s_1, s_2, \ldots, s_n)\) \((s_i \in \text{Mor}(a, a))\) be a cover of \(a\) then the objects of the category \(\mathcal{O}(\mathcal{R})(a)\) consists of all data \((r_1, r_2, \ldots, r_n)\), \(r_i \in \text{Mor}(a, b_i)\), \(b_i\) are objects of the target subcategory \(\mathcal{A}_0\), which form a cover of the object \(b\) of the same subcategory by the monomorphisms \(t_i \in \text{Mor}(b_i, b)\), such that for any subobject \((c; p)\) of \(a\) \((p \in \text{Mor}(c, a))\) the equality (the overlay glueing rule)

\[
r_i((a_i; s_i) \cap (c; p)) \cap (b_j; t_j) = (b_i; t_i) \cap r_j((a_j; s_j) \cap (c; p))
\]
holds. The morphisms in \(\mathbf{O}(R)(a) \) are defined in the same manner.

However, I do not know a definition of the overlay representation theory \(\mathbf{O}(R) \) for the representation theory \(R \), which is not homomorphic. Note that \(\mathbf{O}(R) \) is not a sheaf of abelian categories over \(\mathcal{A} \) in general, and I do not know an abstract sheaf theoretical characterization of the overlay representation theories.

Remark 10. The overlay representation theories \(\mathbf{O}(R) \) being defined for the homomorphic representations theories \(R \) are hiddenly homomorphic.

Theorem 3B [6]. The overlay representations of Lie algebras form an overlay representation theory \(\mathbf{O}(R) \), where \(R \) is a standard representation theory of Lie algebras (the covers of the Lie algebras are defined by the dense connected Lie composites and the target subcategory \(\mathcal{A}_0 \) consists of all Lie algebras \(\text{End}(H) \)).

Note that the Grothendieck topology of the Theorem 3B differs from the usual one.

Remark 11. (A) If \(R \) is a homomorphic representation theory for the ground category \(\mathcal{A} \) then for any object \(a \) of \(\mathcal{A} \) the category \(\mathbf{C}(R)(a) \) is a subcategory of \(\mathbf{O}(R)(a) \). (B) \(\mathbf{C}(\mathbf{O}(R)) = \mathbf{O}(R) \).

Thus, the symmetry aspects of 2D nonlocal field theory, which is the simplest deformation of conformally invariant theory with one free bosonic field, are considered in the article (§1). The inverse problem of representation theory is solved for \(q_R \)-conformal symmetries, which are the infinite dimensional hidden symmetries of the theory (§2). Based on the abstract categorical representation theory the mathematical apparatus sufficient for applications of symmetry methods to investigations of processes of synthesis, decay and interaction of quasiparticles in the models of 2D nonlocal quantum field theory is developed (§3).

References

[1] Juriev D.V., An excursion into the inverse problem of representation theory [in Russian]: mp_arc/96-477.

[2] Manin Yu.I., Gauge fields and complex geometry [in Russian]. Moscow, Nauka, 1986.

[3] Juriev D., Topics in hidden symmetries. I-IV,VI: hep-th/9405050, q-alg/9610028, funct-an/9612004, funct-an/9701009, funct-an/9702002.

[4] Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., St.Petersburg Math.J. 1 (1990) 193-225; Drinfeld V.G., Zapiski Nauchn.Semin.LOMI [in Russian] 155 (1986) 19-49; Isakiev A.P., Elem.Part.Atom.Nuclei [in Russian] 26(5) (1995) 1204-1263.

[5] Juriev D., Topics in hidden symmetries. V: funct-an/9611003.

[6] Juriev D., Hidden symmetries and categorical representation theory: q-alg/9612026.

[7] Juriev D.V., Theor.Math.Phys. 101 (1994) 1387-1403.

[8] Juriev D.V., St.Petersburg Math.J. 3 (1992) 679-686.

[9] Morozov A.Yu., Elem.Part.Atom.Nuclei [in Russian] 23(1) (1992) 174-238.

[10] Nonlocal, nonlinear and nonrenormalizable field theories [in Russian], Dubna, JINR, 1970.

[11] Alekseev A., Faddeev L., Semenov-Tian-Shansky M., Commun.Math.Phys. 149 (1992) 335-345.

[12] Juriev D.V., Theor.Math.Phys. 106 (1996) 276-290.

[13] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Nucl.Phys. B241 (1984) 333-380.

[14] Zhelobenko D.P., Representations of the reductive Lie algebras [in Russian], Moscow, Nauka, 1994.

[15] Roček M., Phys.Lett. B255 (1991) 554-557.

[16] Kirillov A.A., Elements of representation theory. Springer, 1976; An introduction into the representation theory and noncommutative harmonic analysis [in Russian]. Current Math.Problems. Basic Directions 22, Moscow, VINITI, 1988.
[17] Guichardet A., Cohomologie dea groupes topologiques et des algèbres de Lie. Cedic/Fernan Nathan, Paris, 1980.

[18] Fuchs D.B., Cohomology of infinite dimensional Lie algebras [in Russian]. Moscow, Nauka, 1984.

[19] Krichever I.M., Novikov S.P., Funct.Anal.Appl. 21 (1987) 126-141; 21 (1987) 294-307; 23 (1989) 19-32; J.Geom.Phys. 5 (1988) 631-661 [reprinted in “Geometry and physics. Essays in honour of I.M.Gelfand”, Eds. S.Gindikin and I.M.Singer, Pitagora Editrice, Bologna and Elsevier Sci.Publ., Amsterdam, 1991].

[20] Juriev D.V., Theor.Math.Phys. 105 (1995) 1201-1209; 111 (1997) 511-518.

[21] Geronimus A.Yu., Funkts.anal.i ego prilozh [in Russian]. 5(3) (1971) 22-31.

[22] Théorie des topos et cohomologie étale des schémas. Berlin, Heidelberg, New York, 1972-1973; Cohomologie étale. Berlin, Heidelberg, New York, 1977.
Резюме. В работе рассмотрены симметрийные аспекты двумерной нелокальной теории поля, являющейся простейшей деформацией конформно-инвариантной квантовой теории поля с одним свободным бозонным полем. Решена обратная задача теории представлений для q_R-конформных симметрий, являющихся бесконечномерными скрытыми симметриями указанной теории. На базе абстрактно-категорной теории представлений развит математический аппарат, достаточный для применения симметрийных методов к изучению процессов синтеза, распада и взаимодействия квазичастиц в моделях двумерной нелокальной квантовой теории поля.

Данная работа, посвященная одному из аспектов обратно-задачи теории представлений [1], адресована как специалистам в математической физике и прикладной математике, занимающимся анализом скрытых симметрий в квантово-полевых моделях, классических и квантовых динамических и управляемых системах, так и математикам-алгебраистам, интересующимся тем, какие новые стороны теории представлений вскрываются при исследовании конкретных моделей и систем. Изложен материал преследует, в основном, цель показать, как при анализе конкретных скрытых симметрий возникают неожиданные математические объекты и в какой степени современные достаточно абстрактные математические концепции (теория категорий, топологии Гротендика, теория пучков и топосов) могут быть существенны для осмысления симметрийных аспектов задач математической физики. В данной связи вполне уместно напомнить, что инициатива раскрытия подобных приложений современного “категорио-алгеброгеометрического” аппарата к вопросам теоретической и математической физики принадлежит Ю.И.Манину (см.напр.[2]).

Обратная задача теории представлений заключается в восстановлении абстрактного математического объекта (или его характеристики) по конкретной реализации, например, по заданной совокупности матриц или операторов в бесконечномерном пространстве [1]. Так совокупности всех вещественных кососимметричных матриц $n \times n$ можно сопоставить алгебру Ли $\mathfrak{so}(n, \mathbb{R})$. Более сложные примеры, рассматривались, например, в [1,3].

Часто обратная задача теории представлений подразумевает поиск некоторого представителя из фиксированного класса абстрактных алгеб-
раиических структур (например, алгебр Ли или ассоциативных алгебр с квадратичными соотношениями) по его представлению, при этом, что такое представление алгебраического объекта из заданного класса уже определено. При решении подобного обратного задачи возникают, как правило, достаточно интересные новые математические объекты. На этом пути были выявлены, например, квантовые группы [4]; некоторые другие иллюстрации (алгебры Рака-Вигнера, δ-алгебры, алгебры Скалинина и т.д.) содержатся в [1,3].

Однако, обратная задача теории представлений может быть рассмотрена и в другом ракурсе. Будем предполагать, что абстрактный объект принадлежит достаточно простому классу структур, например, является алгеброю Ли, но сам способ представления отличен от стандартного. Подобная постановка задачи была сформулирована в [5]. Конечно же, методологически переход к новому ракурсу означает смену поиска подобия между конкретным и абстрактным объектами (гомоморфности первого второму) на анализ возможности представления второго первым. Это предполагает так или иначе вопрос о том, что такое представление и что значит представлять. Как следствие, привлечение абстрактного алгебраического аппарата теории категориё представляется разумным, что и было сделано в [6]. Таким образом, данная статья, посвященная тому, как алгебра Вирасоро (более точно, алгебра Витта, центральным расширением которой алгебра Вирасоро является) возникает при применении категорионой теории представлений к анализу q_R-контформных симметрий в двумерной нелокальной q_R-контформной теории поля, представляет собой систематическое изложение материала электронных предпечатей [5,6].

1. q_R-контформные теории поля и q_R-контформные симметрии [7]

Спектр полей простейших моделей контформной теории поля порождается одним свободным бозонным полем и, таким образом, состоит из составных полей, полученных при помощи нормально упорядоченного поточечного произведения постоянного по свободному полю тока (см. общую конструкцию построения тока по полю Фубини-Венецано в [7]) на себя конечное число раз. Остальные модели контформной теории поля, полное описание которых дано в [8], получаются при переходе к нескольким свободным полям (т.н. представление свободных полей [9]).

Модель с одним свободным бозонным полем описывается лагранжианом

$$L = \int \varphi(z) \bar{\varphi}(\bar{z}) \, dz d\bar{z},$$

где интегрирование ведется по внутренности комплексного диска. С многих точек зрения (как теоретических, так и технических) полезно рассматривать нелокальную деформацию (см.[10]) эти моделю с нелокальным лагранжианом

$$L_h = \int K_h(z, \bar{z}) \varphi(z) \bar{\varphi}(\bar{z}) \, dz d\bar{z},$$

где ядро $K_h(z, \bar{z})$ представляет собой функцию Бергмана метрики Лобачевского в единичном комплексном диске:

$$K_h(z, \bar{z}) = (1 - z \bar{z})^{-2 - 2h},$$
в силу чего нелокальный лагранжиан оказывается инвариантным относительно всех мебиусовых (дробно-линейных) преобразований комплексного диска. Отметим, что лагранжиан свободного бозонного поля \(L(\varphi) \) получается из нелокальных лагранжинов \(L_h \) предельным переходом \(h \to \infty \). Модели двумерного квантово-теории поля с лагранжианом \(L_h \) (и, естественными нелокальными скобками Пуассона, кэлеровым потенциалом отвечающим которым кэлеровской метрики служит лагранжиан \(L_h \)) являются простейшими моделями нелокальной теории, и в то же самое время они обладают интересной и нетривиальной внутренней алгебраической структурою.

На языке операторного формализма квантово-теории поля указанные нелокальные модели после голоморфно-антиголоморфно (кирального) факторизации были рассмотрены в работе автора [7] и названы \(q_R \)-конформными теориями поля \((q_R = \frac{1}{2h-1})\). Компоненты операторных полей \(q_R \)-конформных теорий поля, которые инварианты относительно всех комплексных проективных преобразования сферы Римана, допускают реализацию тензорными операторами в модулях Верма над алгебро \(\mathfrak{sl}(2, \mathbb{C}) \) и, как следствие, записываются (обобщенными) дифференциальными операторами, поэтому многие задачи теории поля для этих моделей допускают аналитическое или численное решения, при этом формулировка их разностных (решеточных) аппроксимаций не представляет труда (например, задача интегрирования квантово-полевого волнчика, рассматривавшегося для конформных теорий поля в [11] и для \(q_R \)-конформных теорий в [12]).

Важно особенностью двумерных конформных теорий поля является наличие бесконечных дополнительных симметрий, описываемых алгеброй Витта или её центральным расширением – алгебро Вирасоро \(\mathfrak{vir} \) [13]. Эти симметрии являются как компоненты разложения (кирально факторизованного) тензора энергии-импульса, квадрата свободного бозонного поля (более точно, построенного по нему тока). Аналоги представления свободных полей \(q_R \)-конформных конформных теорий поля в \(\mathfrak{sl}(2, \mathbb{C}) \) случае были подробно изучены в работе [7]. Так \(q_R \)-конформные тензоры энергии-импульса являются производящей функции тензорных операторов спина 2 в модуле Верма над алгебро \(\mathfrak{sl}(2, \mathbb{C}) \).

Если модуль Верма \(V_h \) \((h – экстремальный вес [14])\) над этим алгеброей реализован в пространстве многочленов \(\mathbb{C}[z] \) от одного комплексного переменного \(z \), действие генераторов \(L_i \) \((i = -1, 0, 1; \ [L_i, L_j] = (i - j)L_{i+j})\) алгебры \(\mathfrak{sl}(2, \mathbb{C}) \) в нем записывается в виде

\[
L_{-1} = z, \quad L_0 = z\partial_z + h, \quad L_1 = z\partial_z^2 + 2h\partial_z,
\]

то компоненты \(q_R \)-конформного тензора энергии-импульса \((q_R \)-конформные симметрии) имеют вид:

\[
L_{-k} = (\xi + h(k+1))\partial_z^k \quad (k \geq 0), \quad L_k = z^k \frac{\xi + h(k+1)}{(\xi + 2h)\ldots(\xi + 2h + k - 1)} \quad (k \geq 1),
\]

\[
\xi = z\partial_z.
\]

\(q_R \)-конформные симметрии образуют бесконечное семейство. Был предпринят ряд попыток решить обратную задачу теории представлению для
них, т.е. выявить их алгебраическую структуру. Одна из попыток описана в работе [7], ее результатом является ассоциативная алгебра $\mathfrak{C}vt(q_R)$, аналог нелинейного sl_2 работы [15]. Другой подход был намечен в электронном препринтне [5] и разви́т в статье в печать работе автора “Приближенные представления и алгебра Вирасоро”. Как бы то ни было, остается необходимость дальнейшего поиска иных путей решения обратной задачи теории представлений для q_R-конформных симметрий. Следующий параграф посвящен описанию одного из возможных вариантов.

2. Алгебраическая структура q_R-конформных симметрий

Определение 1 [5].

А. Линейное пространство v называется лиевским композитом, если в нем фиксированы подпространства v_1, \ldots, v_n ($\dim v_i > 1$), снабженные со-гласованными алгебрами Ли. Согласованность означает, что в каждом подпространстве $v_i \cap v_j$ корректно определена одна и та же структура алгебры Ли, индуцированная из v_i или из v_j, т.е. вложения $v_i \cap v_j$ в v_i и v_j суть вложения алгебр Ли. Лиевский композит называется плотным, если $v_1 \oplus \ldots \oplus v_n = v$ (здесь \oplus обозначает сумму линейных пространств). Лиевский композит называется связным, если для любых i и j существует последовательность k_1, \ldots, k_m ($k_1 = i, k_m = j$) такая, что $v_{k_i} \cap v_{k_{i+1}} \neq \emptyset$.

Б. Представлением лиевского композита v в пространстве H называется линейное отображение $T : v \mapsto \text{End}(H)$ такое, что $T|_{v_i}$ — представление алгебры Ли v_i при любом выборе i.

В. Пусть g — алгебра Ли. Линейное отображение $T : g \mapsto \text{End}(H)$ называется композитным представлением g в линейном пространстве H, если существует множество g_1, \ldots, g_n подалгебр Ли алгебры g, образующих плотную связную лиевский композит, и T — его представление.

Приводимость и неприводимость, разложимость и неразложимость представлений лиевского композита, а также естественные операции над ними, определяются так же как и для алгебры Ли [16]. Можно также сформулировать супераналог определения 1. Совокупность представлений фиксированного лиевского композита замкнуто относительно тензорного произведения и, следовательно, допускает структуру тензорной категории [16].

Пример 1 (Октаэдрический лиевский композит [5]). Рассмотрим октаэдр с вершинами A, B, C, D, E, F, ребрами $(AB), (AC), (AD), (AE), (BC), (BF), (CD), (CF), (DE), (DF), (EF)$, и гранями $(ABC), (ACD), (ADE), (AEB), (BCF), (CDF), (DEF), (EBC)$. Пусть v — шестимерное линейное пространство с базисом, занумерованными вершинами октаэдра, v_1, v_2, v_3, v_4 — четверка трехмерных подпространств в v, отвечающих граням $(ABC), (ADE), (CDF), (EBC)$. Все подпространства v_i снабдим структурами алгебры Ли, изоморфных алгебре $\mathfrak{so}(3)$ (эти структуры должны быть согласованы с ориентациями граней). Пятерка (v, v_1, v_2, v_3, v_4) является плотным связным композитом.

Предложение. Пусть T — произвольное представление лиевского композита $(v; v_1, v_2, v_3, v_4)$ в конечномерном линейном пространстве H, тогда H разложимо в структурное представление алгебры Ли $\mathfrak{so}(4)$. Если T — неприводимое представление, то существуют вещественные числа $\lambda_A, \lambda_B, \lambda_C,$
\(\lambda_D, \lambda_E, \lambda_F \) такие, что операторы \(T(A) - \lambda A 1, T(B) - \lambda B 1, T(C) - \lambda C 1, T(D) - \lambda D 1, T(E) - \lambda E 1, T(F) - \lambda F 1 \) образуют неприводимое представление \(so(4) \).

Доказательство. Во-первых, отметим, что коммутатор операторов, отвечающих противоположным вершинам, коммутирует с операторами, отвечающими четырем другим вершинам. Как следствие, он коммутирует со всеми шестью операторами, представляющими генераторы октаэдрического лиевского композита, поскольку они выражаются через коммутаторы упомянутых выше четырёх операторов. Итак, коммутаторы операторов, отвечающих противоположным вершинам октаэдра, лежат в центре алгебры \(\mathfrak{g} \), порожденной всеми шестью операторами, представляющими генераторы композита. Отфакторизуем алгебру \(\mathfrak{g} \) по центру. Полученная факторалгебра изоморфна \(so(4) \) (при этом используется то, что формулы для коммутаторов всех шести операторов известны с точностью до элементов центра алгебры \(\mathfrak{g} \)). Утверждение предложения есть следствие этого результата и того факта, что любое центральное расширение полупростоё алгебры \(\mathfrak{g} \) тривиально (т.е. расшипимо – см.напр.[17]) □

Конструкция октаэдрического лиевского композита обобщается на нечто иной естественный класс полизидров, однако, в общем случае аналог доказанного выше предложения неизвестен.

Пример 2 (Лиевский композит Витта [5]). Пусть \(\mathfrak{w} \) – алгебра Витта [18] (подалгебра комплексификации \(\text{CVect}(S^1) \)) лиевского \(\text{Vect}(S^1) \) гладких векторных полей на окружности \(S^1 \), порожденная всеми лорановскими полиномиальными векторными полями) с базисом \(e_k \) (к \(k \in \mathbb{Z} \)) и коммутационными соотношениями \([e_i, e_j] = (i - j)e_{i+j} \). Алгебра Вирасоро \(\mathfrak{C}_{\text{vir}} \) является одномерным нетривиальным центральным расширением алгебры Витта.

Рассмотрим две подалгебры \(\mathfrak{p}_\pm \) алгебры \(\mathfrak{w} \), порожденные \(e_i \) с \(i \geq -1 \) и \(i \leq 1 \); отметим, что \(\mathfrak{p}_+ \cap \mathfrak{p}_- = \text{sl}(2, \mathbb{C}) \). Троёка \((\mathfrak{w}; \mathfrak{p}_+, \mathfrak{p}_-) \) является плотным связным лиевским композитом, который мы будем называть композитом Витта.

Любое представление алгебры Вирасоро задает представление лиевского композита Витта в том же пространстве. Обратное, конечно же, неверно, что показывает следующая теорема.

Теорема 1А. Действие алгебры \(\mathfrak{sl}(2, \mathbb{C}) \) в любом модуле Верма \(V_h \) (\(h \) – экстремальный вес) может быть однозначно продолжено до представления лиевского композита Витта \((\mathfrak{w}; \mathfrak{p}_+, \mathfrak{p}_-) \) и, следовательно, до композитного представления алгебры Витта \((\mathfrak{w}; \mathfrak{w}) \) (и алгебры Вирасоро \(\mathfrak{C}_{\text{vir}} \)).

Доказательство. Утверждение теоремы следует из явных формул для тензорных операторов в модуле Верма над алгеброй \(\mathfrak{sl}(2, \mathbb{C}) \) синии 2 \((q_{R} – \text{конформных симметрий}) \), которые и осуществляют представление лиевского композита Витта.

Замечание 1. Конструкция лиевского композита Витта обобщается на римановы поверхности старших родов в духе И.М.Кричевера и С.П.Новикова [19].
Замечание 2. Обобщая терминологию работ [1,3] можно говорить, что тензорные операторы спина 2 (т.е. \(q_R\)-конформные симметрии) в модулях Верма \(V_h\) над алгеброй Ли \(\mathfrak{sl}(2, \mathbb{C})\) образуют семейство скрытых симметрий, в чьих алгебраических структурах есть структура лиевского композита Витта.

Отметим, что если скрытые симметрии реализуют представление лиевского композита, они не требуют "распаковывания" (подобная ситуация имеет место в случае изокоммутирующих алгебр скрытых симметрий и лиевых \(g\)-пучков [3:Топиц 3.1.2.1]).

Пример 3. Пусть \(w\) – алгебра Витта и \((w; p_{\pm})\) – лиевский композит Витта. Рассмотрим абелево (нецентрализованное) расширение \(w^e\) алгебры Витта при помощи генераторов \(f_i\) \((i \in \mathbb{Z})\) такое, что \([e_i, f_j] = j f_j\). Подалгебры \(p_{\pm}\) алгебры Ли \(w\) могут быть расширены до подалгебр \(p_{\pm}^e\) алгебры Ли \(w^e\) генераторами \(f_i\), где \(i \geq 0\) и \(i \leq 0\), соответственно. Трёх \((w^e; p_{\pm}^e)\) задает расширенный композит Витта.

Теорема 1Б. Представление композита Витта в любом модуле Верма \(V_h\) \((h – экстремальный вес) над алгеброй Ли \(\mathfrak{sl}(2, \mathbb{C})\) может быть продолжено до представления расширенного композита Витта \((w^e; p_{\pm}^e)\) и, следовательно, композитное представление алгебры Витта \(w \in V_h\) продолжается до композитного представления \(w^e\).

Доказательство. Дополнительные генераторы \(f_i\) представляются тензорными операторами спина 1 (компонентами разложения \(q_R\)-аффинного тона [7]), а именно \(f_i \mapsto \partial_i^z\) \((i \geq 0)\), \(f_{-i} \mapsto z^i \frac{1}{(\xi+2h)\ldots(\xi+2h+i-1)}\) \((i \geq 1)\)

Замечание 3. Весьма интересно было бы рассмотреть композитные представления вещественных полупростых алгебр Ли, "составленные" из обычных представлений некоторых естественных подалгебр (например, двух противоположных максимальных параболических подалгебр или двух противоположных борелевских алгебр плюс, возможно, некоторых вложенных алгебр \(\mathfrak{sl}(2, \mathbb{C})\), и т.д.).

Замечание 4. Композитные представления некоторых других алгебраических структур (изотопических пар) рассма:тривались в работе автора [20].

Итак, во втором параграфе мы выяснили, что \(q_R\)-конформные симметрии можно считать реализацией то же самое алгебраической структуры (алгебры Витта или алгебры Вирасоро), что и конформные симметрии, однако, при некотором новом понимании самой операции "представления". Таким образом, естественно поставить вопрос о том, что значит "представлять" и какими свойствами должны обладать нестандартные представления, чтобы с ними можно было работать также как с обычными, а также как получать из уже имеющихся типов представлений новые неизвестные типы. На эти вопросы призван ответить следующий параграф, который будет носить достаточно формальный математический характер, далекий от начальной постановки задачи из нелинейной квантовой теории поля.
3. Категорная теория представлений и \(q_R \)-конформные симметрии: композитные и оверлеинённые представления

3.1. Элементы категорной теории представлений [6]. Далее мы будем рассматривать представления классов объектов, образующих категорию, которую мы будем называть базовой категории. Категорные аспекты стандартной теории представлений разбирались в [16]. Некоторые категорные обобщения описаны в [21]. Однако, ниже будут сформулированы наиболее общи абстрактный формализм, который необходим для наших задач.

Определение 2А. Теория представлений базовой категории \(A \) называется контравARIANTным функтором \(R \) из категории \(A \) в категорию \(\text{ABEL} \) всех малых абелевых категорий.

Иногда следует рассматривать категорию \(\text{ADD} \) всех малых аддитивных категорий вместо \(\text{ABEL} \). Однако, для простоты будет использоваться только категория \(\text{ABEL} \).

Часто базовая категория имеет ряд хороших свойств, например, что для произвольного конечного семейства объектов существует их копроизведение, совпадающее с произведением. Эта ситуация имеет место для алгебр Ли, групп Ли, конечных групп, ассоциативных алгебр, алгебр Хопфа и многих других структур. Однако, большинство алгебраических пар (например, изотопические пары [1;\$2.2;19]) не образуют категории подобного типа. От базовой категории \(A \), в которую произведения и копроизведения конечного числа объектов существуют и совпадают, мы потребуем в определении теории представлений, чтобы было задано ассоциативное семейство вложении \(R(a) \times R(b) \hookrightarrow R(a + b) \) (а и b – произвольные объекты базовой категории \(A \)). Такие теории представлений будут называться квазитензорными.

Замечание 5. Если объект \(a \) базовой категории \(A \) допускает коассоциативный мономорфизм \(\varepsilon \) в \(a + a \), то \(R(a) \) является тензорной категорией, коль скоро теория представлений \(R \) квазитензорна.

Существуют неквазитензорные теории представлений даже для хорошо известных категорий представляемых объектов, например, обще \(\mathcal{HS} \)-проективные представления алгебр Ли [5] или унитарные \(\mathcal{HS} \)-псевдопредставления групп Ли.

Определение 2В. Теория представлений \(R \) для базовой категории \(A \) называется гомоморфной, если существует подкатегория \(A_0 \) категории \(A \) (подкатегория мишенеё) такая, что для произвольного объекта \(a \) категории \(A \) категория \(R(a) \) отождествляется с категорией \(\text{Mor}(a, A_0) \) всех (классов эквивалентности) морфизмов из \(a \) в объекты категории мишенеё \(A_0 \).

Например, теории всех линейных, проективных или унитарных представлений групп Ли гомоморфны. Отметим, что категория мишенеё \(A_0 \) всегда является аддитивной (но не обязательно абелевой) подкатегорией базовой категории \(A \).

Определение 2В. Теория представлений \(R \) для базовой категории \(A \) называется скрыто гомоморфной, если существует гомоморфная теория представлений.
ставлени\' \(R' \) для категории \(\mathcal{K} \) и функтор (как правило, многозначн\'ьи\') \(\varrho : A \mapsto \mathcal{K} \) такие, что \(R = R' \circ \varrho \).

Ниже мы приведем некоторые примеры и общие конструкции скрыто гомоморфных теори\' представлени\' для категории \(\mathcal{LIE} \) алгебр Ли, инспирированные предложенным выше решением обратн\'ей задачи теории представлени\' для \(q_R \)-конформных симметрии в нелокальн\'ей квантовой теории поля, которые не являются гомоморфными, и опишем их интерпретации в терминах категории теории представлени\'.

3.2. Композитные теории представлени\' [6]. Изложим абстрактн\'ый категорийный формализм для композитных представлени\' алгебр Ли, определенных во втором параграфе.

Определение 3А. Пусть \(A \) – топологизированная базовая категория (т.е. снабженная топологией Гроцендика [22]). Пусть \(R \) – теория представлени\' для \(A \). Композитная теория представлени\' \(C(R) \) для \(A \) может быть построена следующим образом. Пусть \(a \) – объект базовой категории \(A \) и \(S = (s_1, s_2, \ldots, s_n) \ (s_i \in \text{Mor}(a_i, a)) \) – покрытие \(a \), тогда объекты категории \(C(R)(a) \) суть наборы данных \((b_1, b_2, \ldots, b_n) \), \(b_i \in R(a_i) \) таких, что для произвольного объекта \(c \) и мономорфизмов \(f \in \text{Mor}(c, a), f_i \in \text{Mor}(c, a_i) \) \((f = s_i \circ f_i) \) выполняется равенство (композитное правило склеи\'кн): \(R(f_i)^*(b_i) = R(f_j)^*(b_j) \).

Морфизмы в \(C(R)(a) \) определяются согласованным образом.

Для любо\'и теории представлени\' \(R \) композитная теория представлени\' \(C(R) \) является пучком абелевых категори\'й над топологизированной базовой категории \(A \) [22]. Это – пучок, канонически построенный по предпучку \(R \) над топологизированной базовой категории \(A \) (отметим, что теория представлени\' для топологизированной базовой категории \(A \) есть в точности по определению предпучок над ней).

Теорема 2А [6]. Композитные представления алгебр Ли образуют композитную теорию представлени\' \(C(R) \), где \(R \) – стандартная теория представлени\' алгебр Ли (наверху алгебр Ли задаются как плотные связанные ливские композиты).

Отметим, что топология Гроцендика в теореме 2А отличается от обычн\'ой [21].

Замечание 6. Если \(R \) – стандартная теория представлени\' алгебр Ли, то композитная теория представлени\' \(C(R) \) скрыто гомоморфна, вспомогательная категория \(\mathcal{K} \) – категория ливских композитов, а подкатегория мишен\'е \(\mathcal{K}_0 \) состоит из алгебр Ли \(\text{End}(H) \) линейных операторов в линейных пространствах, т.е. та же, что и для стандартн\'ей гомоморфной теории представлени\'. Однако, если \(R \) – общая теория представлени\', то о скрытн\'е гомоморфности \(C(R) \) ничего не известно.

Я подозреваю, что понятие скрытн\'е гомоморфности композитных теори\'и представлени\' может быть понято в терминах теории топосов [22].

Замечание 7. \(C(C(R)) = C(R) \).
3.3. Оверлеёные теории представлений [6]. Ограниченность композитной теории представлений полностью выявляется на примере композитных представлений алгебры Витта скрытыми бесконечномерными \(q_R \)-конформными симметриями в модулях Верма над алгеброй Ли \(\mathfrak{sl}(2, \mathbb{C}) \). Во-первых, тензорное произведение любого числа этих неприводимых композитных представлений снова неприводимо. Этот факт резко противоречит интуиции. Во-вторых, скрытые симметрии не образуют сами никакого композитного представления алгебры Витта, в то время как интуитивно они должны образовывать "присоединенное" представление. С точки зрения математической физики перечисленные недостатки существенны, поскольку они не позволяют использовать в полной мере аппарат теории представлений для анализа процессов распада, синтеза и взаимодействия квазичастиц в двумерно нелокальной теории поля.

Таким образом, выявляется необходимость обобщения понятия композитного представления. С этой целью определим операторные лневские композиты \(LC(H) \) как наборы пространств операторов \(\text{End}(H_i) \), подпространств пространства операторов \(\text{End}(H) \) \((H = H_1 + \ldots + H_m) \), с естественными структурами алгебр Ли.

Определение 4.

A. Оверлеёным представлением лневского композита \(v \) в пространстве \(H \) называется гомоморфизм \(T \) композита \(v \) в операторный лневский композит \(LC(H) \).

B. Пусть \(g \) – алгебра Ли. Линейное отображение \(T : g \mapsto \text{End}(H) \) называется оверлеёным представлением алгебры Ли \(g \) в линейном пространстве \(H \), если существует множество \(g_1, g_2, \ldots, g_n \) подалгебры \(g \), образующих плотный связный композит, и \(T \) – его оверлеёное представление.

Замечание 8. Оверлеёные представления произвольно алгебры Ли \(g \) образуют тензорную категорию.

Оверлеёные представления решают перечисленные ранее трудности композитной теории представлений.

Теорема 1В [6]. Тензорные операторы спина 2 в модулях Верма \(V_h \) над алгеброй Ли \(\mathfrak{sl}(2, \mathbb{C}) \) образуют оверлеёные представления алгебры Витта, являющиеся подпредставлениями \(\text{End}(V_h) \).

Замечание 9. Тензорные операторы любого неотрицательного целого спина \(n \) в модуле Верма \(V_h \) над алгеброй Ли \(\mathfrak{sl}(2, \mathbb{C}) \) (описанные полностью в [7]) образуют оверлеёные представления алгебры Витта, являющиеся подпредставлениями \(\text{End}(V_h) \).

Изложим естественный категорный формализм для конструкции оверлеёных представлений алгебры Ли.

Определение 3Б. Пусть \(A \) – топологизированная базовая категория. Пусть \(R \) – гомоморфная теория представлений для \(A \) с категорией мишенёй \(A_0 \), снабжённой топологиею Гроотендика, индуцированной из \(A \). Оверлеёная теория представлений \(O(R) \) для \(A \) может быть построена следующим образом. Пусть \(a \) – объект базовой категории \(A \) и \(S = (s_1, s_2, \ldots, s_n) \) \((s_i \in \text{Mor}(a_i, a)) \) – покрытие \(a \), тогда объекты категории \(O(R)(a) \) состоять из
наборов данных \((r_1, r_2, \ldots, r_n)\), \(r_i \in \text{Mor}(a, b_i)\), \(b_i\) — объекты подкатегории мишенёв \(A_0\), задающих покрытие объекта \(b\) тое же подкатегории мономорфизмами \(t_i \in \text{Mor}(b_i, b)\), так что для любого подобъекта \((c; p)\) объекта \(a\) \((p \in \text{Mor}(c, a))\) выполняется равенство (оверлеёное правило склеёки):

\[
r_i((a_i; s_i) \cap (c; p)) \cap (b_j; t_j] = (b_i; t_i] \cap r_j((a_j; s_j) \cap (c; p)).
\]

Морфизмы в \(O(R)(a)\) определяются согласованным образом.

Как бы то ни было, мне не известны определения оверлеёной теории представлению \(O(R)\) для теории представления \(R\), которая не является гомоморфной. Отметим, что \(O(R)\) не является пучком абелевых категорий над \(A\) в общем случае, и я не знаю абстрактного описания оверлеёных теорий представлений в терминах теории пучков.

Замечание 10. Оверлеёные теории представлений \(O(R)\), определённые для гомоморфных теории представлений \(R\), являются скрыто гомоморфными.

Теорема 2Б [6]. Оверлеёные представления алгебр Ли образуют оверлеёную теорию представлений \(O(R)\), где \(R\) — стандартная теория представлений алгебр Ли (покрытия алгебр Ли задаются как плотные сеченные левеские композиты, а категория мишенёв \(A_0\) состоит из всех алгебр \(Li\ End(H)\)).

Отметим, что топология Гротендика в формулировке Теоремы 2Б отлична от стандартной.

Замечание 11. (А) Если \(R\) — гомоморфная теория представления для базового катаогр \(A\), то для любого объекта \(a\) категории \(A\) категории \(C(R)(a)\) является подкатегорией категории \(O(R)(a)\). (Б) \(C(O(R)) = O(R)\).

Итак, в работе рассмотрены симметрийные аспекты двумерной нелокальной теории поля, являющейся простейшей деформированной конформно-инвариантной теории с одним свободным бозонным полем (§1). Решена обратная задача теории представления для \(q_R\)-конформных симметрий, являющихся бесконечномерными скрытыми симметриями указанной теории (§2). На базе абстрактной категориальной теории представления развит математически аппарат, достаточный для применения симметрийных методов к изучению процессов синтеза, распада и взаимодействия квазичастиц в моделях двумерной нелокальной квантово-механической теории поля (§3).

Список литературы

[1] Юрьев Д.В., Экскурс в обратную задачу теории представлений: mp_arxiv/96-477.
[2] Манн Ю.И., Калибрровочные поля и комплексная геометрия. М.: Наука, 1986.
[3] Juriev D., Topics in hidden symmetries. I-IV, VI: hep-th/9405050, q-alg/9610028, hep-th/9611019, q-alg/9708028. On the infinite-dimensional hidden symmetries. I-III: funct-an/9612004, funct-an/9701009, funct-an/9702002.
[4] Решетников Н.Ю., Таутдаджян Л.А., Фаддеев Л.Д. // Алгебра и анализ. 1989. Т.1, вып.1. С.178-206; Дринффилд В.Г. // Записки научн. сем. ЛОМИ, 1986. Т.155. С.19-49; Исаков А.П. // ЭЧАЯ. 1995. Т.26, вып.5. С.1204-1263.
[5] Juriev D., Topics in hidden symmetries. V: funct-an/961103.
[6] Juriev D., Hidden symmetries and categorical representation theory: q-alg/9612026.
[7] Юрьев Д.В. // ТМФ. 1994. Т.101, вып.3. С.331-348.
[8] Юрьев Д.В. // Алгебра и анализ. 1991. Т.3, вып.3. С.197-205.
[9] Морозов А.Ю. // ЭЧАЯ. 1992. Т.23, вып.1. С.174-238.
[10] Нелокальные, нелинейные и нерегулярные теории поля. Дубна, ОИЯИ, 1970.
[11] Alekseev A., Faddeev L., Semenov-Tian-Shansky M. // Commun.Math.Phys. 1992. V.149. P.335-345.
[12] Юрьев Д.В. // ТМФ. 1996. Т.106, вып.2. С.333-352.
[13] Belavin A.A., Polyakov A.M., Zamolodchikov A.B. // Nucl.Phys.B. 1984. P.241. P.333-380.
[14] Желобенко Д.П., Представления редуктивных алгебр Ли. М., Наука, 1994.
[15] Roček M. // Phys. Lett. B. 1991. V.255. P.554-557.
[16] Кирilloв А.А., Элементы теории представлений. М., Наука, 1978; Введение в теорию представлений и некоммутативный гармонический анализ / Соврем. пробл.математики. Фундам.направления 22. М., ВИНТИ, 1988.
[17] Гишардэ А., Когомологии топологических групп и алгебр Ли. М., Мир, 1984.
[18] Фукс Д.Б., Когомологии бесконечномерных алгебр Ли. М., Наука, 1984.
[19] Кричевер И.М., Новиков С.П. // Функц.анал.и его прилож. 1987. Т.21, вып.2. С.46-63, Т.24, вып.4. С.47-61, 1989. Т.23, вып.1. С.1-14; Krichever I.M., Novikov S.P. // J.Geom.Phys. 1988. V.5. S.631-661 [reprinted in “Geometry and physics. Essays in honour of I.M.Gelfand”, Eds. S.Gindikin and I.M.Singer, Pitagora Editrice, Bologna and Elsevier Sci.Publ., Amsterdam, 1991].
[20] Юрьев Д.В. // ТМФ. 1995. Т.105, вып.1. С.18-28; 1997. Т.111, вып.1. С.149-158.
[21] Геронимус А.Ю. // Функц.анал.и его прилож. 1971. Т.5, вып.3. С.22-31.
[22] Théorie des topos et cohomologie étale des schémas. Berlin, Heidelberg, New York, 1972-1973; Cohomologie étale. Berlin, Heidelberg, New York, 1977.