Development of a new gene expression vector for Thermus thermophilus using a silica-inducible promoter

CURRENT STATUS: UNDER REVIEW

Mikrobielle Zellenfabrikation

Yasuhiro Fujino
Kyushu University

Shuichiro Goda
Nagasaki University

Yuri Suematsu
Kyushu University

Katsumi Doi
Kyushu University

doi@agr.kyushu-u.ac.jp Corresponding Author
ORCID: https://orcid.org/0000-0001-5989-9936

DOI:
10.21203/rs.3.rs-18166/v1

SUBJECT AREAS
Applied & Industrial Microbiology

KEYWORDS
silica, gene expression, inducible, Thermus thermophilus
Abstract

Background Thermostable enzymes are commonly produced in mesophilic hosts for research and bioengineering purposes. However, these hosts do not overexpress the active forms of some biologically functional thermoenzymes. Therefore, an efficient thermophilic expression system is needed. Thermus thermophilus contains an easily manipulable genome and is therefore among the best candidate microbes for a “hot” expression system. We previously identified a strong and inducible promoter that was active in T. thermophilus under supersaturated silica conditions. Here, we report a new heterologous gene expression system based on a silica-inducible promoter in T. thermophilus.

Results A Thermus sp. A4 gene encoding thermostable β-galactosidase was cloned as a reporter gene into the expression vector pSix1, which contains a selection marker that confers thermostable resistance to hygromycin and a 600-bps DNA region containing a putative silica-inducible promoter. β-Galactosidase activity was 11-fold higher in the presence than in the absence of 10 mM silicic acid. SDS-PAGE revealed a prominent band corresponding to β-galactosidase, and this enzyme was expressed as an active and soluble protein (yield: 27 mg/L) in Thermus but as an inclusion body in Escherichia coli. Deletion of the promoter region improved the yield of the target protein, possibly by avoiding plasmid instability due to homologous recombination. Finally, we developed an expression vector containing the pSix1 backbone and a 100-bps DNA region corresponding to the silica-inducible promoter. We used this vector to successfully express the active form of glutamate dehydrogenase from Pyrobaculum islandicum (PisGDH) without additional treatment (yield: 9.5 mg/L), whereas the expression of active PisGDH in E. coli required heat treatment.

Conclusion We successfully expressed the thermoenzymes β-galactosidase and PisGDH in T. thermophilus and achieved the highest known protein expression levels in this species. These thermoenzymes were expressed in active and soluble forms. Our results validate the use of our silica-inducible expression system as a novel strategy for the intracellular overexpression of thermostable proteins.

Background
Enzymes from thermophiles are highly stable and have attracted significant interest in both basic research and bioengineering applications (Cava et al 2009, Niehaus et al 1999, Taylor et al 2011). Currently, thermostable enzymes used in these contexts are produced commonly in mesophilic hosts (Adams and Kelly 1998), especially Escherichia coli. These surrogate hosts can successfully express soluble forms of the target proteins. Although the ability to remove mesophilic host proteins by simple heat denaturation during the production process is advantageous, currently only a few biologically functional thermoenzymes are overexpressed in their active forms in mesophilic hosts. Moreover, these target proteins often aggregate to form “inclusion bodies” that are susceptible to misfolding when expressed at relatively lower temperatures than those experienced in their native hosts (Fernandez-Herrero et al 1995). Consequently, the use of thermophilic hosts for enzyme production requires the development of genetic tools that can overcome these limitations.

Thermus is among the most ubiquitous genera of thermophilic bacteria. Thermus species are characterized by high growth rates and cell yields in culture and a high level of natural competency, and thus exhibit strong potential for production in laboratory settings (Cava et al 2009). Although several studies have demonstrated the potential use of these organisms as cell factories (Hidalgo et al 2004, Koyama et al 1990, Moreno et al 2005, Park et al 2004, Park and Kilbane 2004), only moderate levels of protein overexpression were achieved except in studies that used the expression vector pMKE1, which utilizes the respiratory nitrate reductase operon promoter (Pnar). Moreover, despite the achievement of up to 200-fold overexpression levels with this Pnar-based expression system in facultative anaerobic derivatives of T. thermophilus HB27 (HB27::nar), the resulting proteins were almost undetectable by Coomassie brilliant blue staining. To date, successful expression at practical levels has only been achieved using pMKE2, a variation of pMKE1 that was created by modifying the sequences between Pnar and the start codon (Moreno et al 2005). Recently, Aulitto et al. achieved a high level of homologous α-galactosidase production (5 mg/L) in T. thermophilus HB27 under the control of pMKE2 (Aulitto et al 2017). However, no report has described a sufficient level of heterologous expression in Thermus cells.

Despite the noted challenges, overexpression in T. thermophilus remains a potentially useful tool for
the overexpression of thermostable enzymes or the selection of thermostable mutants from mesophilic proteins via directed evolution. We considered that these challenges might be resolved by a strong promoter that would enable more effective expression. We previously reported the expression of a specific silica-induced protein (Sip) in T. thermophilus exposed to supersaturated silica (Doi et al 2009). We further identified this Sip as a Fe$^{3+}$-binding ABC transporter encoded by a gene for which the transcription was regulated strictly by the ferric uptake regulator via a previously reported mechanism (Fujino et al 2016). Importantly, the sip promoter might be sufficiently strong to mediate heterologous expression, as indicated by the greater than 10-fold increase in Sip expression under induced conditions relative to un-induced conditions and the prominent protein band detected by Coomassie brilliant blue staining.

The production of active forms of thermoenzymes is important for both enzymological studies and industrial applications. A good example is glutamate dehydrogenase from Pyrobaculum islandicum (PisGDH). When expressed heterologously in E. coli, PisGDH was not fully active despite its status as a soluble protein. However, when the recombinant enzyme was heated at 90 °C or exposed to 5 M urea, its activity increased to a level comparable to that of the native enzyme (Goda et al 2005). PisGDH forms a hexameric structure, and heat-induced subunit rearrangement is considered essential its activation. Therefore, we would expect to observe the expression of fully active PisGDH in Thermus cells, which are cultured at a high temperature (70 °C). In this report, we describe the development of a new heterologous expression system for T. thermophilus HB27 in which supersaturated silica is used as the inducer. Furthermore, we demonstrate the expression of a sufficient amount of an active and soluble heterologous gene product. Our findings indicate the potential application of this system for the expression of thermostable enzymes at practical quantities.

Results And Discussion

Construction of a silica-inducible expression vector and reporter plasmids

We previously reported that Thermus strains produced a specific Sip in the presence of supersaturated silica. This Sip exhibited high homology with a Fe$^{3+}$-binding ABC transporter that plays a role in Fe$^{3+}$ uptake. The expression of Sip is thought to be a response to iron starvation
stress, which can be induced by the addition of supersaturated negatively charged colloidal silica that captures Fe$^{3+}$ ions (Fujino et al 2016). The ferric uptake regulator (Fur), a repressor of iron uptake-related gene expression, responds to low environmental iron levels and is released form promoter region to enhance downstream gene transcription. In a previous study, the cultivation of *Thermus* cells in medium containing 10 mM silica led to an approximately 10-fold higher Sip expression level relative to that observed in the absence of silica (Doi et al 2009). Therefore, we speculated that the *sip* promoter, which controls protein expression via a mechanism induced by silicic acid, could be utilized to express heterologous proteins in *Thermus*.

The construction of the plasmid DNA construct used in this study is illustrated in Figure 1. We inserted a multi-cloning site (MCS) and 600-bps fragment of a putative silica-inducible promoter region from *T. thermophilus* HB8 into the pYK596 plasmid, which contains a thermostable hygromycin resistance gene. Next, we eliminated the Xho I site on the pYK596 backbone was eliminated by site-directed mutagenesis to yield the plasmid pSix1. To enable a reporter assay, a thermostable β-galactosidase gene was inserted into pSix1 at the *Nde* I and Xho I sites within the MCS. All the modified regions in this new βgal/pSix1 reporter plasmid were confirmed using an ABI 3130 genetic analyzer (Applied Biosciences, Foster City, CA, USA).

Effect of supersaturated silica on the growth of T. thermophilus

As described above, the addition of silicic acid to *Thermus* cells may induce stress. Therefore, the effects of silicic acid on the growth of *Thermus* cells was monitored. Growth inhibition was observed in *T. thermophilus* HB27 cells harboring βgal/pSix1 after cultivation in medium containing various concentrations of silica, particularly those corresponding to supersaturation (>5 mM at 70 °C; Figure S1). Only slight cell growth inhibition was observed at 6.7 mM silica, whereas significant inhibition was observed at 10 mM silica, as indicated by an optical density at 600 nm (OD$_{660}$) value that was reduced to nearly half the value observed at 0 mM silica. Although growth appeared to be impeded by silica-induced iron deficiency, the lack of a severe effect of exposure to 10 mM silica on the growth of wild-type *T. thermophilus* HB27 (data not shown) suggests that the observed growth inhibition may be
attributable to the allocation of various energy resources toward protein expression rather than cell growth.

Effect of the silicic acid concentration on β-galactosidase activity

β-Galactosidase is a convenient enzyme, as its activity can be quantitated precisely in liquid assays (Miller 1972). Consequently, it has been used widely as a reporter to monitor gene expression. Approximately 30 years ago, Koyama et al. first reported the use of a thermostable β-galactosidase gene as a reporter in *Thermus* strains (Koyama et al. 1990). Since then, several researchers have attempted to use β-galactosidase assays in studies of *Thermus* (Park and Kilbane 2004, Renata Moreno 2003). However, wild-type *Thermus* cells exhibit a high level of background activity, and consequently it has been difficult to assess the precise level of promoter activity, particularly if the target promoter is relatively weak. To overcome this limitation, Fujita et al. recently developed a precise reporter assay system in which the background activity was reduced by disrupting all β-galactosidase genes in the host cells (Fujita et al. 2015).

Despite those earlier findings, we selected wild-type HB27 as the host strain in our β-galactosidase assay because a previously reported qRT-PCR analysis revealed strong sip promoter activity (16-fold increase in response to 10 mM silica) (Fujino et al. 2016). As expected, exposure to 10 mM silica-induced a sufficiently high level of β-galactosidase activity to enable a comparison between the induced and non-induced conditions. The β-galactosidase activity levels measured after a 24-h cultivation at various silica concentrations are indicated in Figure 2. Notably, the β-galactosidase activity level was negligibly lower in non-induced condition than in cells under inducing conditions. HB27 cells that harbored pSix1 empty vector exhibited an activity level <10 MU, similar to that measured in HB27 cells without plasmid (data not shown). Relative to cells harboring pSix1, cells harboring the βgal/pSix1 plasmid exhibited slightly higher levels of activity (17–26 MU) at when exposed to silica concentrations of 0–6.7 mM silica, suggesting leaky expression. However, when cultured in 10 mM silica, cells harboring βgal/pSix1 achieved β-galactosidase activity levels as high as 190 MU (11-fold higher than that observed at 0 mM silica), indicating strong sip promoter activity.

Exposure to supersaturated silica indirectly causes iron starvation, leading to induction of the sip
promoter. Therefore, we also tested direct iron starvation caused by iron chelators such as 2,2’-dipyridyl (DP) and 1,10-phenanthroline (phen). However, the addition of DP and phen (0.5–5 mM) did not have a notable effect on β-galactosidase expression (data not shown). This result implies that *Thermus* can utilize chemically masked iron species, such as siderophores (Wandersman and Delepelaire 2004). Therefore, the addition of supersaturated silica is a superior method for initiating *sip* promoter-mediated transcription.

Effect of medium exchange on gene expression

As described above, β-galactosidase activities were measured after an uninterrupted culture in medium containing various silica concentrations. However, induction during the middle or late exponential growth phase is generally much more advantageous for protein expression. Unlike IPTG, highly concentrated silica is easily precipitated. Consequently, it is difficult to achieve an appropriate silicic acid concentration when using a stock solution. We used medium exchange to achieve silica-mediated induction during the late exponential growth phase. Briefly, cells harboring βgal/pSix1 were cultivated in normal TM medium without silica until the OD$_{660}$ value reached 0.6. The cells were then collected by centrifugation and inoculated in fresh medium containing 10 mM silica. The β-galactosidase activity in the cultures increased gradually along with the duration of silica exposure, reaching a plateau at 12 h. As shown in Table S3, however, the activity levels after medium exchange were lower than those observed after uninterrupted cultivation in medium containing supersaturated silica. Although the maximum activity value achieved in a medium exchange culture was 3.6-fold higher than that observed before induction, this maximum activity was less than one-third of the value observed after an uninterrupted culture period in 10 mM silica. In a recent report, we similarly observed that medium exchange was ineffective in an *E. coli*-based protein expression system that utilizes silica as an inducer in advance (Fujino et al 2016b). As discussed in previous reports, this decrease in protein expression may be attributable to intracellular iron storage proteins. Because normal silica-free medium contains sufficient iron, cells grown in this medium can take up sufficient levels of iron to maintain growth and can store this element as bacterioferritin (Abdul-Tehrani et al 1999). As these bacterioferritin molecules are then passed to daughter cells, several
generations may be required to provoke iron starvation. Therefore, exposure to silica throughout the cultivation period resulted in much higher protein expression levels.

Immunodetection of His-tagged β-galactosidase

We next examined whether our *T. thermophilus*-based heterologous expression system could be applied for practical use. In light of our previous analysis, β-galactosidase was induced by continuous exposure to 10 mM silica. After a 48-h cultivation, the cell extracts were subjected to SDS-PAGE and Western blotting (Figure 3). In the absence of silicic acid, no protein bands corresponding to β-galactosidase were observed in either the insoluble or soluble fraction after an SDS-PAGE analysis, and no corresponding bands were detected by Western blotting. By contrast, the extracts of cells exposed to 10 mM silica produced clearly visible bands on SDS-PAGE. Bands corresponding to His-tagged β-galactosidases were also detected on Western blots. Particularly strong bands were detected in the soluble fraction, suggesting that the recombinant form of β-galactosidase expressed in *T. thermophilus* was correctly folded.

As noted previously, inclusion body formation is sometimes observed when using bacterial cell factories, especially *E. coli*, are used to produce recombinant proteins for both research and industrial applications. When we expressed recombinant β-galactosidase in *E. coli*, we found that most of the protein was expressed in the insoluble fraction, indicating the formation of inclusion bodies (right panel in Figure 3). This discrepancy in protein production between the species may be attributable to the high temperature under which *T. thermophilus* is cultivated, as thermophilic enzymes occasionally require exposure to high temperatures to achieve correct folding into catalytically active forms (Diruggiero and Robb 1995, Goda et al 2005, Schultes and Jaenicke 1991, Siddiqui et al 1998). Our successful achievement of soluble protein expression in *T. thermophilus* suggests that our expression vector can serve as a useful genetic tool for the expression of thermostable gene products that would be insoluble when produced in *E. coli*.

Previously, Moreno et al. reported the achievement of heterologous gene expression in *T. thermophilus* at a practical level (Moreno et al 2005). The system developed by these authors adopted the nitrate reductase operon (nar operon) in *T. thermophilus* HB8 (Ramirez-Arcos et al 1998),
which is strongly transcribed in response to nitrate under anoxic conditions. Therefore, their system requires the specific host strain \textit{T. thermophilus} HB27::nar (transplanted with the \textit{nar} cluster from HB8) to enable anaerobic growth in the presence of nitrate (Vazquez-Tello et al 2002). By contrast, our system, which is driven by a silica-inducible promoter, does not require a genetically modified host strain because Sip induction is common among \textit{Thermus} species and is basically controlled by ferric uptake regulators that are inherent in most microorganisms. These features may enhance the convenience of our system and its applicability to hundreds of other strains in the genus \textit{Thermus}.

The results presented herein highlight the potential use of \textit{T. thermophilus} as a host strain for the expression of thermostable proteins and other practical applications (e.g., microbial bioprocesses) that require relatively high temperatures.

Promoter deletion analysis

Next, deletion mutants of βgal/pSix1 were constructed to determine the minimum region of the active promoter. We found that 100-bp region adjacent to \textit{sip} CDS exhibited significant promoter activity, whereas a 50-bp adjacent region exhibited no activity. The 5’ region corresponding to a span of -100 to -600 bp from the start codon of \textit{sip} also did not exhibit promoter activity. Therefore, the essential \textit{sip} promoter region appeared to be contained within -100 to -50 bp upstream of the start codon (Figure 4A). Interestingly, the 100-bp promoter yielded a β-galactosidase activity level of approximately 1,200 MU, which was 6 times higher than the level achieved with the 600-bp promoter region. This phenomenon was also confirmed by SDS-PAGE, which revealed that the shorter promoter region yielded a stronger thermostable β-galactosidase band (Figure 4B). Our results suggest that the 100-bp \textit{sip} promoter region yielded much more efficient expression of the recombinant protein than the original expression vector pSix1. Consequently, we truncated the promoter region of pSix1 to 100 bp to yield pSix3 (Accession number: LC504201).

Mini-prep extraction revealed that pSix1 produced a lower yield than the original plasmid, pYK596, suggesting an issue of stability with the former construct. Because the \textit{sip} promoter regions in the plasmid DNA (derived from \textit{T. thermophilus} HB8) and in the host chromosomal DNA (\textit{T. thermophilus} HB27) are so similar (99%), we suspected that homologous recombination might have occurred.
Specifically, a single-crossover homologous recombination event would have led to the insertion of plasmid DNA into the chromosomal DNA. **Figure S2_A** presents a schematic of the gene arrangements of normal chromosomal DNA, pSix1, and chromosomal DNA in a single-crossover mutant. An analysis of total DNA against DNA from various plasmids confirmed the single-crossover homologous recombination event. As shown in **Figure S2_B**, βgal/pSix1 yielded a band that corresponded to the single-crossover region between chromosomal and plasmid DNA. No crossover associated bands were observed with any other plasmids, including pSix3, indicating the stable maintenance of these plasmids in the host cells.

In our experiments, the 100-bp promoter yielded the highest expression level. However, this promoter was also associated with a higher leaky expression level than the long promoter. We speculated that this might be attributable to a loss of Fur protein, which represses the sip gene. In a previous report, the estimated plasmid copy number of pTT8 (the precursor plasmid of pYK596) relative to chromosomal DNA was eight (Ohtani et al 2012, Takayama et al 2004). Given that 8-fold fur binding site located on plasmid DNA against single fur gene on chromosomal DNA, this leaky expression would be inevitable. Further modifications, such as an insertion of the fur gene into the expression vector, might be needed to achieve more strict expression control.

Homologous expression of β-galactosidase and heterologous expression of pisGDH via pSix3

We determined that pSix3 was most suitable for protein expression in *T. thermophilus* HB27.

Subsequently, we successfully expressed β-galactosidase from *Thermus* sp. A4 as shown in **Figure 4B**. His-tagged β-galactosidase was purified using immobilized nickel-affinity chromatography, as confirmed by the appearance of a single band on SDS-PAGE (**Figure 5A**), and yielded 27 mg/L of culture. This expression level was the highest achieved using this *T. thermophilus*-based system. However, this result should be considered homologous expression because the target gene was β-galactosidase from a *Thermus* strain.

To confirm the ability of this system to induce heterologous expression, we attempted to express glutamate dehydrogenase from the hyperthermophilic archaeon *Pyrobaculum islandicum* (pisGDH),
which requires heat treatment to reach a fully activated form. First, the original pisGDH gene was cloned into the pSix3 vector. However, this plasmid did not yield protein expression in Thermus cells, which we attributed to a codon bias between Thermus and Pyrobaculum. We then codon-optimized a pisGDH gene fragment for Thermus via artificial synthesis, which enabled the successful expression of pisGDH in Thermus cells (Figure 5B). After purification via affinity chromatography, this system yielded 9.5 mg pisGDH/L of culture. As expected, Thermus expressed a fully active form of pisGDH without any further treatment, thus emphasizing the superiority of this expression system for thermostable enzyme production. A specific activity analysis yielded a value of 4.90 µmol/min/mg for the enzymes expressed in Thermus, which was nearly identical to that of native pisGDH (3.51 µmol/min/mg).

Our findings support our speculation that fully activated thermostable enzymes could be expressed in Thermus cells cultured at high temperatures. However, we note that our original failure to express pisGDH from the original (i.e., not optimized for Thermus) sequence cannot be ignored. Thermus species have a high GC content (~70%) and therefore a very different codon usage pattern from that of other organisms. A new host strain containing tRNAs for codons that are rarely used in Thermus might be required to achieve universal translation.

Conclusion
We have reported the development of a silica-inducible promoter-based system to achieve the homologous and heterologous expression of thermostable genes in Thermus thermophilus. Notably, we successfully expressed soluble and thermostable Thermus β-galactosidase in Thermus cells and demonstrated that this system was more efficient than an E. coli-based expression system. We further optimized the promoter region via a promoter deletion assay and ultimately achieved a β-galactosidase protein yield of 27 mg/L of culture, the highest value reported for a Thermus expression system to date. Moreover, the successful use of our novel system to express the heterologous pisGDH supports our hypothesis that a Thermus-based hot expression system would enhance the production of fully active thermostable enzymes. We conclude that our novel expression system represents a substantial contribution with respect to enzymatic research and, potentially, industrial applications.
Materials And Methods

Strains and growth conditions

T. thermophilus strains HB8 (ATCC 27634) and HB27 (ATCC BAA-163) were grown in TM medium under strong aeration (i.e., rotation at 180 rpm) at 70°C (Fujino et al 2016). TM medium containing silicic acid was prepared using a 1,000-ppm sodium orthosilicate stock solution in 10 mM NaOH. Prior to use, the medium was pH-adjusted to 7.2 with HCl and autoclaved (Doi et al 2009). Hygromycin (100 µg/ml) was added to liquid or agar medium as needed.

Plasmid constructions and overexpression of β-galactosidase

The plasmids and primers used in this study are listed in Tables S1 and S2. The *Thermus* cloning vector pYK596 (7,733 bp), which carries a thermostable hygromycin resistance gene, was kindly provided by Dr. Koyama (National Institute of Advanced Industrial Science and Technology, Japan, unpublished). The pBGB3 plasmid containing thermostable β-galactosidase was kindly provided by Dr. Motoshima (Yotsuba Milk Products Co., Ltd, Japan) (Ohtsu et al 1998). The silica-inducible expression vector pSix1 and reporter plasmid βgal/pSix1 were constructed as shown in Figure 1. The putative *sip* promoter region (600 bp) was amplified from the chromosomal DNA of *T. thermophilus* HB8 using LA Taq DNA polymerase (TaKaRa-bio Inc., Japan) with the primers IFp6SF and IFp6SR. The MCS containing a C-terminus His-tag was amplified from pET21a (Novagen, United States) using the primers IFmcsF and IFmcsR. These amplified fragments were cloned into pYK596 at the *Nhe* I (2852) and *Eco* RI (992) sites using the In-Fusion HD cloning kit (TaKaRa-bio). The resultant plasmid was named pSix0 (plasmid for silica-inducible expression, 6,700 bp). The *Xho* I site at position 1,975 nt was removed by site-directed mutagenesis with the primers pSixdexhoF and pSixdexhoR, and the resultant plasmid was named pSix1 (Accession number: LC428096).

For the β-galactosidase reporter assay, a thermostable β-galactosidase gene was PCR-amplified from pBGB3 using the primers IFbgal-sixF and IFbgal-sixR. The PCR product was then cloned into linearized pSix1 and amplified by inverse PCR with the In-Fusion HD cloning kit and the primers pSix-invL and pSix-invR. The resultant plasmid was named βgal/pSix1.

To achieve the overexpression of thermostable β-galactosidase in *E. coli*, the β-galactosidase gene
was PCR-amplified from pBGB3 using the primers IFbgal-pETF and IFbgal-pETR. The PCR product was cloned into linearized pET21a (Novagen) after Nde I and Xho I digestion, using the In-Fusion HD cloning kit. The resultant plasmid, βgal/pET21a, was used to transform E. coli BL21 (DE3) Rosetta2. A single colony of freshly transformed cells was inoculated into LB medium (10 g tryptone, 5 g yeast extract, and 10 g sodium chloride per L) containing 50 µg/ml ampicillin and 50 µg/ml chloramphenicol.

Expression of β-galactosidase in T. thermophilus and E coli

The recombinant β-galactosidases were expressed in both E. coli and T. thermophilus HB27. For expression in E. coli, BL21 (DE3) Rosetta2 was transformed with the recombinant plasmid βgal/pET21a. Protein expression was induced by adding 0.5 mM of isopropyl-β-d-1-thiogalactopyranoside (IPTG) to exponentially growing cells (OD$_{660}$ = 0.6), followed by an additional 3-h culture. The cells were then collected by centrifugation and lysed in an appropriate volume of BugBuster HT reagent (Merck Millipore, USA). The soluble and insoluble fractions were subjected to 10% SDS-PAGE. For expression in T. thermophilus, 5 ml of an overnight culture of strain HB27 harboring the plasmid βgal/pSix1 were inoculated into 100 ml of freshly prepared TM medium containing 10 mM silicic acid and cultivated at 70°C. The cells were then harvested and lysed using BugBuster HT reagent. The soluble and insoluble fractions were subjected to 10% SDS-PAGE. The expression of His-tagged recombinant β-galactosidase was confirmed by Western blotting. Electrophoresed proteins were transblotted onto a polyvinylidene difluoride (PVDF) membrane for 30 min at 150 mA in transfer buffer containing 25 mM Tris (pH 8.3), 192 mM glycine, and 20% (v/v) methanol. The membrane was then incubated in blocking buffer [5% skim milk in 1× TBS (5 mM Tris, 138 mM NaCl, and 2.7 mM KCl)] for 1 h at room temperature, and then incubated with anti-His-tag mAb-HRP-DirecT (MBL; 1:5000 in blocking buffer) for 30 min. After three washes with TBS-T (0.05% Tween 20 in 1× TBS), the membrane was incubated with ImmunoStar Zeta reagent (WAKO, Japan). Specific labeled proteins were visualized using Ez-Capture MG (ATTO, Japan).

β-Galactosidase assays

β-Galactosidase assays were performed as previously described (Zhang and Bremer 1995), with slight
modification. Briefly, after measuring the \(\text{OD}_{600} \), 1-ml aliquots of the cultures were centrifuged at 10,000 \(\times g \) for 3 min. Cell pellets were resuspended in 100 \(\mu l \) of permeabilization solution (100 mM \(\text{Na}_2\text{HPO}_4 \), 20 mM KCl, 2 mM \(\text{MgSO}_4 \), 0.8 mg/ml hexadecyltrimethylammonium bromide, 0.4 mg/ml sodium deoxycholate, and 5.4 \(\mu l/ml \) \(\beta \)-mercaptoethanol) and maintained for 30 min at 70°C. Next, 900 \(\mu l \) of substrate mixture [60 mM \(\text{Na}_2\text{HPO}_4 \), 40 mM \(\text{NaH}_2\text{PO}_4 \), 1 mg/ml \(o \)-nitrophenyl-\(\beta \)-d-galactoside (ONPG), and 2.7 \(\mu l/ml \) \(\beta \)-mercaptoethanol] prewarmed to 70°C was added to initiate the reaction. After sufficient color had developed (15–60 min), the reactions were terminated by the addition of 1 ml of 1 M \(\text{Na}_2\text{CO}_3 \). The reaction mixtures were then centrifuged at 10,000 \(\times g \) for 5 min, and the \(A_{420} \) values of the supernatants were recorded. Enzyme activities are expressed in Miller units (MU) and were calculated as the \(A_{420}/\text{reaction time (min)/culture volume assayed (ml)/OD}_{600} \). In all experiments, activity was measured in three independent assays.

Promoter deletion analysis

To identify the minimal region of the \(\text{sip} \) promoter, a series of promoter deletion fragments were fused to the thermostable \(\beta \)-galactosidase gene. Specifically, the promoter region was truncated by inverse PCR of \(\beta \)gal/pSix1 with the primers listed in Table S2. \(T. \text{thermophilus} \) HB27 was transformed with these plasmids and then cultivated in TM medium containing 10 mM silicic acid at 70°C for 24 h. The \(\beta \)-galactosidase activity levels were determined as described above. Consequently, the 100-bp \(\text{sip} \) promoter region was identified as most effective. Accordingly, an expression vector containing this 100-bp \(\text{sip} \) promoter region and MCS was created in the same way. The resultant plasmid was named pSix3 and has been deposited in the DDBJ database (Accession number: LC504201).

Expression of \(\beta \)-galactosidase from pSix3

A thermostable \(\beta \)-galactosidase gene was cloned into pSix3 as described earlier in this section. His-tagged \(\beta \)-galactosidase was expressed in TM medium containing 10 mM silicic acid for 48 h. Subsequently, the cells were collected by centrifugation, resuspended in IMAC30 Buffer [20 mM Tris-HCl (pH 8.0), 300 mM NaCl, 30 mM imidazole], and disrupted using an ultrasonic disrupter. The cell debris was removed by centrifugation, and the supernatant was applied to a Ni-NTA agarose column.
(Qiagen, Germany) and eluted with IMAC250 Buffer [20 mM Tris-HCl (pH 8.0), 300 mM NaCl, 250 mM imidazole]. The purified fraction was desalted and concentrated by ultrafiltration (Merck Millipore). The final protein concentration was determined using a Quant-iT protein assay kit (Invitrogen, USA).

Heterologous expression of *PisGDH* in *Thermus* spp.

The *Pyrobaculum islandicum* glutamate dehydrogenase gene sequence was optimized for expression in *T. thermophilus* HB27 by substituting rare codons found in the latter organism (Codon Usage Database: https://www.kazusa.or.jp/codon/). The original and optimized *pisGDH* sequences are listed in Table S4. The optimized *pisGDH* sequence was synthesized artificially as a gBlock (Integrated DNA Technologies, USA). This fragment was amplified by PCR and cloned into pSix3 using the In-Fusion HD cloning kit. Fifty milliliters of a pre-culture of this transformant were inoculated into 1 L of freshly prepared TM medium containing 10 mM silica and cultivated for 48 h.

His-tagged *pisGDH* was purified as follows. First, the cells were harvested and resuspended in an appropriate volume of Binding/Wash Buffer [10 mM potassium phosphate buffer (pH 7.2), 300 mM NaCl, 20 mM imidazole, 10% Glycerol] and disrupted by ultrasonication. After removing the cell debris by centrifugation, the supernatant was applied to a Ni-NTA agarose column (Qiagen). The target protein was eluted with 300 mM imidazol, and the eluates were dialyzed against Standard Buffer [10 mM potassium phosphate buffer (pH 7.2), 1 mM EDTA, 0.1 mM DTT, 10% Glycerol]. Samples for the activity assay were further purified by size exclusion chromatography. The protein concentrations were determined using a Bio-Rad Protein Assay (Bio-Rad). The enzymatic activity of *pisGDH* was assayed spectrophotometrically by monitoring the increase of NADH at 340 nm (Kujo and Ohshima 1998).

Additional Files

Additional file 1: Table S1. Plasmids used in this study. **Table S2.** Primers used in this study.

Figure S1. Effect of silicic acid on the growth of *Thermus thermophilus* HB27 cells harboring the βgal/pSix1 plasmid. **Table S3.** β-Galactosidase activity after medium exchange. **Figure S2.** Homologous recombination between chromosomal DNA and plasmid DNA. **Table S4.** Sequence of *pisGDH* for expression in *Thermus thermophilus*.
Abbreviations

pisGDH: glutamate dehydrogenase from Pyrobaculum islandicum, ABC transporter: ATP-binding cassette transporter, Sip; silica-induced protein, MCS; multi-cloning site, OD; optical density, qRT-PCR; quantitative reverse transcription polymerase chain reaction, MU; Miller Unit, DP; 2,2’-dipyridyl, phen; 1,10-phenanthroline, IPTG; isopropyl-β-d-1-tiolgalattopiranoside, SDS-PAGE; sodium dodecyl sulfate-polyacrylamide gel, electrophoresis. CDS; coding sequence, PVDF; polyvinylidene difluoride, ONPG; o-nitrophenyl-β-D-galactoside, IMAC; immobilized metal affinity chromatography, NADH; Nicotinamide Adenine Dinucleotide – Hydrogen, EDTA: ethylenediaminetetraacetic acid; DTT; dithiothreitol

Declarations

Authors’ Contributions

YF, SG, and YS performed the experiments. SG particularly assisted with the enzymatic analysis. YF and KD supervised the project. YF drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We thank Dr. Yoshinori Koyama for providing the pYK596 plasmid and Dr. Motoshima, who kindly provided us with the pBGB3 plasmid and Thermus sp. A4 strain. The authors would also like to thank Enago (www.enago.jp) for performing the English language review.

Competing Interests

The authors declare that they have no competing interests.

Availability of data and materials

The recombinant strains described in this work will be made available upon request to the corresponding author. Data sharing is not applicable to this article, as no datasets were generated or analyzed during this study.

Funding

This study was funded by JSPS KAKENHI (grant number 23780085 and 17K15246) and by the Takahashi Industrial and Economic Research Foundation.
Ethical Approval

This article does not describe any studies involving human participants or animals that were performed by any of the authors.

References

Adams MW, Kelly RM (1998). Finding and using hyperthermophilic enzymes. *Trends in biotechnology* 16: 329-332.

Aulitto M, Fusco S, Fiorentino G, Limauro D, Pedone E, Bartolucci S et al (2017). *Thermus thermophilus* as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an alpha-galactosidase. *Microbial cell factories* 16: 28.

Cava F, Hidalgo A, Berenguer J (2009). *Thermus thermophilus* as biological model. *Extremophiles : life under extreme conditions* 13: 213-231.

Doi K, Fujino Y, Inagaki F, Kawatsu R, Tahara M, Ohshima T et al (2009). Stimulation of expression of a silica-induced protein (Sip) in *Thermus thermophilus* by supersaturated silicic acid. *Applied and environmental microbiology* 75: 2406-2413.

Fernandez-Herrero LA, Badet-Denisot MA, Badet B, Berenguer J (1995). *glmS* of *Thermus thermophilus* HB8: an essential gene for cell-wall synthesis identified immediately upstream of the S-layer gene. *Molecular microbiology* 17: 1-12.

Fujino Y, Nagayoshi Y, Iwase M, Yokoyama T, Ohshima T, Doi K (2016). Silica-Induced Protein (Sip) in Thermophilic Bacterium *Thermus thermophilus* Responds to Low Iron Availability. *Applied and environmental microbiology* 82: 3198-3207.

Fujita A, Sato T, Koyama Y, Misumi Y (2015). A reporter gene system for the precise measurement of promoter activity in *Thermus thermophilus* HB27. *Extremophiles : life under extreme conditions* 19: 1193-1201.

Goda S, Kojima M, Nishikawa Y, Kujo C, Kawakami R, Kuramitsu S et al (2005). Intersubunit interaction induced by subunit rearrangement is essential for the catalytic activity of the hyperthermophilic glutamate dehydrogenase from *Pyrobaculum islandicum*. *Biochemistry* 44: 15304-15313.

Hidalgo A, Betancor L, Moreno R, Zafra O, Cava F, Fernandez-Lafuente R et al (2004). *Thermus*
thermophilus as a cell factory for the production of a thermophilic Mn-dependent catalase which fails to be synthesized in an active form in Escherichia coli. *Applied and environmental microbiology* **70**: 3839-3844.

Koyama Y, Okamoto S, Furukawa K (1990). Cloning of alpha- and beta-galactosidase genes from an extreme thermophile, *Thermus* strain T2, and their expression in *Thermus thermophilus* HB27. *Applied and environmental microbiology* **56**: 2251-2254.

Kujo C, Ohshima T (1998). Enzymological characteristics of the hyperthermostable NAD-dependent glutamate dehydrogenase from the archaeon *Pyrobaculum islandicum* and effects of denaturants and organic solvents. *Applied and environmental microbiology* **64**: 2152-2157.

Miller JH (1972). *Experiments in Molecular Genetics*. Cold Spring Harbor Laboratory Press: NY.

Moreno R, Haro A, Castellanos A, Berenguer J (2005). High-level overproduction of His-tagged Tth DNA polymerase in *Thermus thermophilus*. *Applied and environmental microbiology* **71**: 591-593.

Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999). Extremophiles as a source of novel enzymes for industrial application. *Applied microbiology and biotechnology* **51**: 711-729.

Ohtani N, Tomita M, Itaya M (2012). The third plasmid pVV8 from *Thermus thermophilus* HB8: isolation, characterization, and sequence determination. *Extremophiles: life under extreme conditions*.

Ohtsu N, Motoshima H, Goto K, Tsukasaki F, Matsuzawa H (1998). Thermostable beta-galactosidase from an extreme thermophile, *Thermus* sp. A4: enzyme purification and characterization, and gene cloning and sequencing. *Biosci Biotechnol Biochem* **62**: 1539-1545.

Park HS, Kayser KJ, Kwak JH, Kilbane JJ, 2nd (2004). Heterologous gene expression in *Thermus thermophilus*: beta-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase. *Journal of industrial microbiology & biotechnology* **31**: 189-197.

Park HS, Kilbane JJ, 2nd (2004). Gene expression studies of *Thermus thermophilus* promoters PdnAK, Parg and Pscs-mdh. *Letters in applied microbiology* **38**: 415-422.

Ramirez-Arcos S, Fernandez-Herrero LA, Berenguer J (1998). A thermophilic nitrate reductase is
responsible for the strain specific anaerobic growth of *Thermus thermophilus* HB8. *Biochimica et biophysica acta* **1396**: 215-227.

Renata Moreno OZ, Felipe Cava, Jose Berenguer (2003). Development of a gene expression vector for *Thermus thermophilus* based on the promoter of the respiratory nitrate reductase. *Plasmid* **49**: 7.

Takayama G, Kosuge T, Maseda H, Nakamura A, Hoshino T (2004). Nucleotide sequence of the cryptic plasmid pTT8 from *Thermus thermophilus* HB8 and isolation and characterization of its high-copy-number mutant. *Plasmid* **51**: 227-237.

Taylor MP, van Zyl L, Tuffin IM, Leak DJ, Cowan DA (2011). Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts. *Microbial biotechnology* **4**: 438-448.

Zhang X, Bremer H (1995). Control of the *Escherichia coli* rrnB P1 promoter strength by ppGpp. *The Journal of biological chemistry* **270**: 11181-11189.

Figures
A) Construction of the expression vector pSix1 for Thermus strains. The plasmid pYK596,

B) putative sip promoter

Figure 1
which possesses a hygromycin resistance gene, was digested using EcoRI and Nhe I. Two
PCR-amplified fragments, a multi-cloning site derived from pET21a, and a putative silica-
inducible protein (sip) promoter region (Fujino et al. 2016) were cloned into pYK596 using an
In-Fusion cloning kit. The Xho I site on the pYK596 backbone was deleted by inverse PCR,
and the resultant plasmid was named pSix1. To complete the Miller assay, a thermostable
β-galactosidase gene from the Thermus strain A4 was cloned downstream of the sip
promoter of pSix1 to yield βgal/pSix1. B) Sequence of pSix1. The -35 and -10 regions of the
sip promoter are underlined. The experimentally determined transcription initiation site (+1)
is indicated in bold, and the putative ribosome binding site (rbs) is underlined. Restriction
sites in the multi-cloning site and 6× histidine tag sequence are indicated above the
sequence.
Induction of the sip promoter with different concentrations of silicic acid. A 5% suspension of pre-culture was inoculated in freshly prepared TM medium containing silicic acid and cultivated for 24 h. The β-galactosidase activity levels in culture are given in Miller units (MU). White bar: HB27 with pSix1 (empty vector), black bar: HB27 with βgal/pSix1. Values are expressed as means ± standard deviations (n = 3).
Figure 3

SDS-PAGE and Western blot analysis of recombinant proteins produced in T. thermophilus and E. coli. Left: Expression of His-tagged β-galactosidase in T. thermophilus HB27 in response to 0 and 10 mM silicic acid. Right: Expression of recombinant β-galactosidase in E. coli. Cells were harvested by centrifugation and disrupted by sonication. After separating the soluble and insoluble fractions by centrifugation, the protein concentrations were determined using the Qubit protein assay. Each lane contains 10 µg of total protein. His-tagged proteins were detected using anti-His-tag mAb-HRP-DirecT.
Promoter deletion analysis using a β-galactosidase reporter system. A) Schematic figure of the promoter region and β-galactosidase activity in the presence or absence of supersaturated silica. The β-Galactosidase activity levels are presented as the mean ± standard deviations of three independent experiments and are shown in Miller units. The white and black bars indicate the activity levels in response to 0 and 10 mM silica, respectively. B) Image of an SDS-PAGE analysis of expressed proteins from plasmids containing promoter deletion mutants. Cells were harvested from 24-h cultures and disrupted by sonication, after which the soluble fractions were subjected to 12% SDS-PAGE. The black and white arrowheads indicate the bands corresponding to β-galactosidase and silica-induced protein, respectively.
Figure 5

Purification of thermostable β-galactosidase and pisGDH expressed in Thermus cells. A) Purification of thermostable β-galactosidase. B) Purification of pisGDH. (-); 0 mM silica, (+); 10 mM silica. Lane P indicates the fraction purified via nickel-affinity chromatography. Lane M contains the molecular mass marker.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

SUPPL file MCF.docx