Genetic parameters of F\textsubscript{6} upland rice with lodging resistance derived from landraces x national varieties

E D Mustikarini, G I Prayoga*, R Santi, and H Hairul

Department of Agrotechnology, Universitas Bangka Belitung, Propinsi Kepulauan Bangka Belitung, Indonesia

Email: gigihbnuprayoga@gmail.com

Abstract. Developing rice varieties with lodging resistance is important to maintain yields. The selection of lodging resistance lines should be related to genetic parameters to determine the genetic character of plants. This study aimed to determine the variability, heritability, and genetic advances of 6\textsuperscript{th} generation [F\textsubscript{6}] upland rice “padi gogo” and selected the promising lines that can be used as candidates for new superior varieties. The research was held in Experiment and Research Garden, Universitas Bangka Belitung. The study used an experimental method with a randomized block design. The treatment consisted of 10 F\textsubscript{6} genotypes, 4 parental plants, and 3 check plants, with 2 replications. Quantitative data were analyzed by calculating the values of variability, heritability, and expected genetic advance. The results showed broad phenotypic variability and high heritability for all characters. The expected genetic advance showed low criterion except for the number of grain filled. The F\textsubscript{6} lines that can be used as candidates for new superior varieties are 23A-56-20-07-20 and 23A-56-22-20-05 lines that have better lodging resistance scores and higher production than parental and check varieties.

Keywords: genetic advance, heritability, lodging resistance, red rice, variability

1. Introduction

Rice is a major staple food and strategic commodities of Indonesian and other Asian countries. Rice production in Indonesia in 2018 amounted to 56.54 million tons [1]. Meanwhile, rice imports in 2017 amounted to 305.3 thousand tons and 2.2 million tons in 2018 [2]. Another effort that can be made is to develop local rice. Three varieties of local rice in Yogyakarta have good stability and adaptation in a less than optimal environment [3]. However, there are also some disadvantages in local rice, including long harvest age, low productivity, and lack of lodging resistance [4]. Bangka’s local rice crop has an average plant height of more than 100 cm which is at risk of high levels of lodging [5].

Lodging of the paddy plants causes a decrease in production. The rice yield loss due to lodging is 0-30\% [6], in several studies reported that the yield could decrease up to 50\% [7-8]. The solution is to develop rice varieties that are resistant to lodging through hybridization between local rice and national superior varieties. One of the ways to develop the new varieties is hybridization, which combines superior characters from the parental to acquire new genotypes [9].

The lines of rice used was the F\textsubscript{6} line from crossing between mutant red rice M8-GR150-1-9-13 X Inpago 8, M8-GR150-1-9-13 X Banyuasin, Banyuasin X Balok, Balok X Inpago 8, and Inpago 8 X Balok. Banyuasin and Inpago 8 varieties have been used as a parental donor for lodging resistant traits [10]. M8-GR150-1-9-13 was chosen because this rice has early maturity character and high yielding [11]. Balok accession is Bangka landrace red rice with lodging resistance trait and high yielding [12].
Rice crops from crosses need to be selected to get offspring with superior character. Genetic parameter analysis is carried out on the characteristics that affect yield potency and lodging resistance. The selection of characters is determined based on the value of variability, heritability, and expected genetic advances [13]. Therefore, this research needs to be done to measure the value of the genetic parameter of the $F_6$ generation to obtain a superior variety candidate.

2. Materials and Methods

The Materials used are $F_6$ rice seeds, Balok, M8-GR150-1-9-13, Inpago 8 variety, Banyuasin variety, and check varieties seeds [Inpago 12 Agritan, Danau Gaung, and Rindang 1 Agritan]. The research was carried out in the Experimental and Research Garden, Universitas Bangka Belitung. The design used was a Randomized Block Design [RBD]. The treatment consists of 17 lines with 2 repeats and a total of 34 experimental units.

The procedure includes land preparation, seed preparation, planting and harvesting, maintenance, harvesting, and post-harvest observation. The character observed are quantitative [grain weight/plot, filled grains, panicles numbers, leaf length, flowering time, plant height, tillers numbers], and qualitative [lodging index] [14]. Quantitative data were analyzed by calculating the values of variability, heritability, and expected genetic advance.

Formula calculation of variability [15];

$$\sigma^2_y = \frac{MS_g - MSE}{r}$$

where, $\sigma^2_y$ = genotypic variance; $\sigma^2_e$ = environmental variance; $\sigma^2_f$ = phenotypic variance

The standard calculation formula for genotypic and phenotypic errors;

$$\sigma_{\sigma^2_g} = \sqrt{\frac{2}{r^2} \left( \frac{MS_g^2}{Dbg+2} + \frac{MSe^2}{Db+2} \right)}$$

$$\sigma_{\sigma^2_f} = \sqrt{\frac{2}{r^2} \left( \frac{MS_g^2}{Dbg+2} \right)}$$

where, $\sigma_{\sigma^2_g}$ = Standard error genotypic variance; $\sigma_{\sigma^2_f}$ = Standard error phenotypic variance

The criteria of heritability value are:

Genotypic variability:
- $\sigma^2_g \geq 2 [\sigma_{\sigma^2_g}]$ = wide
- $\sigma^2_g < 2 [\sigma_{\sigma^2_g}]$ = narrow

Phenotypic variability
- $\sigma^2_f \geq 2 [\sigma_{\sigma^2_f}]$ = wide
- $\sigma^2_f < 2 [\sigma_{\sigma^2_f}]$ = narrow

Calculation of heritability based on variance analysis [16];

$$H = \frac{\sigma^2_g}{\sigma^2_f}$$

where, H = Heritability; $\sigma^2_g$ = genotypic variance; $\sigma^2_f$ = phenotypic variance
The heritability criteria are [17]:

\[ H < 0.20, \text{Low}; \ 0.20 \leq H \leq 0.50, \text{Moderate}; \ 0.50 < H, \text{High} \]

The calculation formula for Expected Genetic Advance [18];

\[ EGA = i \cdot H \cdot \sigma_p \]

\[ \%EGA = \frac{EGA}{\sigma_p} \times 100\% \]

where, \( GA = \) genetic advance, \( i = \) selection intensity [the value is 1.76 at 10%], \( H = \) broad sense heritability, \( \sigma_p = \) phenotypic standard deviation, \( \mu = \) mean of population.

The criteria of \( EGA \) value are:

\[ 0 < EGA < 3.3\% = \text{low} \]
\[ 3.3\% < EGA < 6.6\% = \text{quite low} \]
\[ 6.6\% < EGA < 10\% = \text{quite high} \]
\[ EGA > 10\% = \text{high} \]

3. Result and Discussion

Genotypic variability of \( F_6 \) lines varied criteria while phenotypic variability includes broad criteria as displayed in Table 1. The criterion of heritability is high and the value of expected genetic advance is varied. Lines 23A-56-20-07-20 and 23A-56-22-20-05 can be used as candidates for superior varieties. The lodging index of red rice is a resistant criterion while the lodging index of Balok and M8-GR150-1-9-13 is quite sensitive criteria.

| Quantitative character       | \( \sigma^2_g \) | \( 2[\sigma^2_g] \) | Criteria  | \( \sigma^2_f \) | \( 2[\sigma^2_f] \) | Criteria  |
|------------------------------|-----------------|-------------------|-----------|-----------------|-------------------|-----------|
| Flowering time [dap]         | 24,37           | 21,24             | Wide      | 24,90           | 21,24             | Wide      |
| Tillers numbers              | 160,08          | 148,19            | Wide      | 173,26          | 147,76            | Wide      |
| Plant height [cm]            | 50,17           | 50,57             | Narrow    | 58,69           | 50,05             | Wide      |
| Leaf length [cm]             | 81,72           | 81,74             | Narrow    | 94,93           | 80,96             | Wide      |
| Panicles numbers             | 134,64          | 120,31            | Wide      | 140,93          | 120,19            | Wide      |
| Grain weight/plot [kg]       | 2,71            | 3,17              | Narrow    | 3,61            | 3,07              | Wide      |
| Filled grains                | 178274,12       | 164947,55         | Wide      | 192866,87       | 164477,42         | Wide      |

Description: Genotypic variability \( \sigma^2_g \geq 2\{\sigma^2_g\} \) = wide; \( \sigma^2_g < 2\{\sigma^2_g\} \) = narrow; Phenotypic variability \( \sigma^2_f \geq 2\{\sigma^2_f\} \) = wide; \( \sigma^2_f < 2\{\sigma^2_f\} \) = narrow; \( \sigma^2_g = \) Standard error genotypic variance, \( \sigma^2_f = \) Standard error phenotypic variance.

The character of flowering time, tillers numbers, panicles numbers, filled grains indicate the genotypic variability is wide criteria and phenotype variability shows wide criteria in all characters [Table 1]. The wider the genetic variety/phenotypic, the higher the chance of lines with superior traits [19]. The selection could be performed and will be more effective for characters with wide variability [20], while it will be less effective for characters with narrow variability because the offspring are in a population that tends to be homogeneous [21].

The heritability of \( F_6 \) lines is included in the high criteria and Expected Genetic Advance has varied criteria [Table 2]. The highest heritability value is the height of plants at 97.87%. The high value of heritability indicates the presence of genetic influence on the character of plants [22] and the selection will be efficient because of fewer environmental effects [23]. The high value of EGA should also be
considered in selecting a population. The character of the filled grains indicates high EGA criteria. High genetic advances have the opportunity to improve the character's traits through selection [24]. The characters with high heritability that are associated with high genetic advance indicates that selection would be more effective [12].

Table 2. Heritability [%] and EGA [%] of F₆ lines

| Quantitative character | Hbs [%] | Criteria | % EGA | Criteria |
|------------------------|---------|----------|-------|----------|
| Flowering time [dap]   | 97.87   | High     | 0.24  | Low      |
| Tillers numbers        | 92.39   | High     | 4.70  | Quite low|
| Plant height [cm]      | 85.49   | High     | 0.44  | Low      |
| Leaf length [cm]       | 86.07   | High     | 1.47  | Low      |
| Panicles numbers       | 95.53   | High     | 5.03  | Quite low|
| Grain weight/plot [kg] | 75.32   | High     | 0.39  | Low      |
| Filled grains          | 92.43   | High     | 169.69| High     |

Description: Low = Hbs < 20 %; moderate= 20 % ≤ Hbs ≥ 50 %; high=Hbs > 50 %; Hbs = heritability of broad. EGA Criteria Low = 0 < EGA < 3.3%; quite low = 3.3% < EGA< 6.6%; quite high =  6.6 %< EGA< 10%; High = EGA> 10%.

The lodging index [%] of F₆ lines is varied criteria [Table 3]. All of the F₆ lines showed resistance to lodging [6.24-10.62 %] while the lodging index of Balok [66.09 %] and M₈-GR₁₅₀-1-9-13 [78.12 %] is quite sensitive. Plants that have above-average plant height cause lodging [26]. Lodging tolerance index was positively correlated with plant height and bending moment [27].

Table 3. Lodging Index [%] of F₆ lines

| Lines                  | Lodging Index [%] | Description  |
|------------------------|-------------------|--------------|
| 23A-56-20-07-20        | 10.62             | Resistant    |
| 23A-56-24-22-13        | 6.24              | Resistant    |
| 23 A-56-13-25-13       | 6.24              | Resistant    |
| 23A-56-22-20-05        | 7.18              | Resistant    |
| 191-06-30-17-11        | 7.18              | Resistant    |
| 23F-04-10-18-18        | 7.38              | Resistant    |
| 21B-57-21-21-23        | 9.52              | Resistant    |
| 191-06-09-23-3         | 7.49              | Resistant    |
| 23A-56-30-25-12        | 7.65              | Resistant    |
| 21B-57-21-21-25        | 7.81              | Resistant    |
| Inpago 8               | 10.78             | Resistant    |
| Banyuasin              | 11.24             | Resistant    |
| M₈-GR₁₅₀-1-9-13        | 78.12             | Quite sensitive |
| Balok                  | 66.09             | Quite sensitive |
| Danau Gaung            | 22.34             | Quite resistant |
| Inpago 12              | 10.77             | Resistant    |
| Rindang 1              | 11.87             | Resistant    |

Description: Plants no crumbs [very resistant], plants <20% [resistant], plants 21-40% [quite resistant], plants 41-60% [moderate], plants 61-80% [quite sensitive] and plants crumbs >80% [sensitive].
### Table 4. Quantitative character LSI Test

| Lines | Flowering time [dap] | Tillers numbers | Plant height [cm] | Leaf length [cm] | Panicles numbers | Grain weight/plot [kg] | Filled grains |
|-------|----------------------|-----------------|-------------------|-----------------|-----------------|-----------------------|--------------|
| 19I-06-30-17-11 [axc] | 79.7[^e] | 16.4[^e] | 86.3[^efg] | 40.1 | 11.8 | 3.8[^e] | 457.6[^e] |
| 23A-56-13-25-13 [bxd] | 63.4[^bddefh] | 21.4[^de] | 73.1[^defg] | 37.1[^b] | 16.5[^de] | 3.5 | 538.6[^b] |
| 19I-06-09-23-3 [axc] | 71.0[^cefg] | 18.7[^ee] | 82.1[^bcefg] | 45.5[^a] | 15.9[^e] | 4.9[^e] | 785.5[^cees] |
| 21B-57-21-21-23 [axd] | 77.9[^defgh] | 17.1[^e] | 96.6[^bdefg] | 48.6[^ab] | 13.3[^c] | 5.6[^a] | 550.2 |
| 23F-04-10-18-18 [axd] | 73.6[^adefgh] | 24.1[^defg] | 88.2[^bdefg] | 33.1 | 16.3[^de] | 5.6[^a] | 549.9 |
| 21B-57-21-21-25 [axd] | 73.3[^adefgh] | 17.9[^e] | 86.8[^bdefg] | 44.4[^a] | 12.3[^e] | 2.8 | 494.9[^b] |
| 23A-56-30-25-12 [bxd] | 75.5[^bdth] | 17.1[^b] | 88.9[^gdef] | 40.5[^b] | 13.7[^e] | 4.2[^b] | 652.9[^b] |
| 23A-56-20-07-20 [bxd] | 71.8[^bddefgh] | 44.2[^bddefgh] | 92.3[^defg] | 36.5[^b] | 35.5[^bddefgh] | 6.3[^b] | 1676.5[^bddefgh] |
| 23A-56-24-22-21-23 [bxd] | 75.8[^bdth] | 24.1[^bdefg] | 75.7[^defg] | 34.1[^b] | 17.8[^bde] | 5.1[^b] | 655.5[^b] |
| 23A-56-22-20-05 [bxd] | 80.7[^b] | 54.8[^bddefgh] | 76.3[^bdefg] | 30.1 | 47.7[^bddefgh] | 9.5[^bch] | 1522.8[^bddefgh] |
| Inpago 8+ LSI [a] | 77.1 | 26.3 | 82.6 | 42.9 | 20.2 | 5.5 | 676.1 |
| Banyuasin+LSI [b] | 84.5 | 22.8 | 56.8 | 32.5 | 17.3 | 3.8 | 381.4 |
| M$_{4}$-GR$_{150}$-1-9-13+LSI [c] | 86.9 | 17.9 | 151.4 | 63.1 | 14.6 | 3.6 | 388.5 |
| Balok +LSI [d] | 78.6 | 19.6 | 141.2 | 62.5 | 15.5 | 9.9 | 1302 |
| Danau gaung+LSI [e] | 75.2 | 15.9 | 114.9 | 54.3 | 11.9 | 6.9 | 774.7 |
| Inpago 12+LSI [f] | 77.8 | 21.9 | 103.7 | 51.5 | 18.5 | 13.2 | 1594.4 |
| Rindang 1+LSI [g] | 74.6 | 21.6 | 103.6 | 54.6 | 18.0 | 11.5 | 1286.4 |
| $\bar{x}$g +LSI [h] | 78.1 | 33.7 | 72.5 | 46.4 | 26.3 | 8.1 | 1003.5 |
| LSI | 3.9 | 8.2 | 12.1 | 7.5 | 6.1 | 2.9 | 315.1 |

Description: 1. $\bar{x}$g = The average lines of offspring; 2. The lowercase behind the number indicates better than parent/check plant; 3. Character of flowering age and height of plants, lines is better if the value of ≤ check value – LSI.
4. Conclusion
The wide phenotypic variability and high heritability were found for all characters observed. The high expected genetic advance was only found for filled grains characters. All of the F_6 lines showed resistance to lodging. Two genotypes i.e. 23A-56-20-07-20 and 23A-56-22-20-05, have better results for tiller numbers, panicle numbers, and filled grains than other genotypes and check varieties. From the selection process, 23A-56-20-07-20 and 23A-56-22-20-05 genotypes can be used as candidates for new superior varieties.

References
[1] [BPS] Badan Pusat Statistik. 2018. Luas Panen Produksi dan Produktivitas Padi. https://www.bps.go.id/dynamictable/2019/04/15/1608/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi-2018.html. [Accessed 28 August 2019].
[2] [BPS] Badan Pusat Statistik. 2019. Impor Beras Menurut Negara Asal Utama, 2000-2018. https://www.bps.go.id/statichtable/2014/09/08/1043/impor-beras-menurut-negara-asal-utama-2000-2018.html. [Accessed 14 November 2019].
[3] Kristamtini, E. Sutarno, W. Wiranti, and S. Widyayanti. 2016. Kemajuan Genetik dan Heritabilitas Karakter Agronomi Padi Beras Hitam pada Populasi F2. Penelit. Pertan. Tanam. Pangan, 35[2] 119–124.
[4] Riyanto A, Suwarto and Haryanto T A D 2011 Yield and Yield Component of 14 Upland Rice Genotypes in Banjarnegara Regency Agronomika 11 111–121.
[5] Prayoga, GI., ED. Mustikarini, and D. Pradika. 2017. Seleksi Aksesi Padi Lokal Bangka melalui Pengujian Variabilitas dan Heritabilitas. AGROSAINSTEK: Jurnal Ilmu dan Teknologi Pertanian, 1[2]:56–67.
[6] Dulbari, E. Santosa, Y. Koesmaryono, and E. Sulistyono. 2018. Pendugaan Kehilangan Hasil pada Tanaman Padi Rebah Akibat Terpaan Angin Kencang dan Curah Hujan Tinggi. Agron Indonesia, 46[1]:17–23.
[7] Zhu G, Li G, Wang D, Yuan S, and Wang F 2016 Changes in The Lodging Related Traits along with Rice Genetic Improvement in China PloS one 11 e0160104.
[8] Lang Y Z, Yang X D, Wang M E, and Zhu Q S 2012 Effects of Lodging at Defferent Filling Stages on Rice Yield and Grain Quality Rice Science 19 315-319.
[9] Biswas M K, Mondal M A A, Hossain M and Islam R 2008 Utilization of Genetic Diversity and its Association with Heterosis for Progeny Selection in Potato Breeding Programs American-Eurasian J. Agric. & Environ. Sci 3 882–887.
[10] Setyono A, Indrasari S D, Lesmana O S and Sembiring H 2009 Description of Rice Varieties. [Subang: Indonesian Center for Rice Research].
[11] Mustikarini E D 2016 Adaptation of Red Rice Rice Mutants and Upland Rice Varieties in the Three Sub-Optimal Lands in Indonesia J. Lahan Suboptimal 5 17–25.
[12] Mustikarini E D, Prayoga G I, Santi R, Nurqirani Z, Saragi H. Genetic Parameter Contributing to Lodging Resistance of F2 Population in Red Rice. In IOP Conference Series: Earth and Environmental Science 2019. 334, No. 1, p. 012066.
[13] Sunarya S., H. Murdaningsih, N. Rostini, and Sumadi. 2017. Variabilitas Genetik, Kemajuan Genetik dan Pola Klaster Populasi Tegakan Benih Paraserianthes alcataria [1] nielson setelah Seleksi Massa Berdasarkan Marka Morfologi. J. Cultivasi, 16[1]: 279–286.
[14] [IRRI] International Rice Research Institute. 2013. Descriptors for Rice Oryza sativa L. Manila: The International Rice Research.
[15] Ismail A., N. Wicaksana, and Z. Daulati. 2015. Heritabilitas, Variabilitas dan Analisis Kekerasatan Genetik pada 15 Genotip Pisang [Musa paradisiaca] Varietas Ambon Asal Jawa Barat Berdasarkan Karakter Morfologi di Jatinangor. J. Kultivasi, 4[1]:9–16.

[16] Jameela H., A. Sugiharto, and A. Soegianto. 2014. Keragaman Genetik dan Herita-bilitas Karakter Komponen Hasil pada Populasi F2 Buncis [phaseolus vulgaris L] Hasil Persilangan. J. Produksi Tanam, 2[4]: 324–329.

[17] Aryana I G P M Test of Uniformity, Heritability and Genetic Gain of Red Rice Obtained from Back Cross Selection in a Dryland Environment 2010 J. Crop Agro 3 13–20.

[18] Widyawati Z., I. Yulianah, and Respatijarti. 2014. Heritabilitas dan Kemajuan Genetik Harapan Populasi F2 pada Tanaman Cabai Besar [Capsicum annuum L.]. J. Produksi Tanam, 2[3]: 247–252.

[19] Opalofia L. 2017. Keragaan Galur-galur Harapan Generasi F6 Padi Merah Hasil Persilangan Kultivar Karajut dengan Varietas Unggul Fatmawati pada Lahan Sawah di Kota Padang. [Thesis] Andalas University. Padang [Indonesia].

[20] Yenny R F 2010 Genetic Variability of Seed Sizes of F2 Soybean [Glycine max L.] J. Agroekotek 2 49–52.

[21] Waqar-Ul-Haq. Malik M F, Rashid M, Munir M Q and Akram Z 2008 Evaluation and Estimation of Heritability and Genetic Advancement for Yield Related Attributes in Wheat Lines Pakistan Journal of Botany 20 1699–1702.

[22] Wardana C., A. Karyawati, and S. Sitompul. 2015. Keragaman Hasil, Heritabilitas dan Korelasi F3 Hasil Persilangan Kedelai [Glycine max L. Merril] Varietas Anjasmoro dengan Varietas Tanggamus, Grobogan, Galur AP Dan UB. J. Produksi Tanaman, 3[5]:182–188.

[23] Kristamtini, Sutarno, Wiranti E W and Setyorini W 2016 Genetic Advance and Heritability of Agronomic Characters of Black Rice in F2 Population J. Penelitian Pertanian Tanaman Pangan 35 119–124.

[24] Wulandari J., I. Yulianah, and D. Saptadi. 2016. Heritabilitas dan Kemajuan Genetik Harapan Empat Populasi F2 Tomat [Lycopersicum esculentum Mill.] pada Budidaya Organik. J. Produksi Tanaman, 4[5]: 361–369.

[25] Zen S. Galur Harapan Padi Sawah Dataran Tinggi Berumur Genjah. J. Penelitian. Terapan, 13[3]:197–205.

[26] Arinta K, and I. Lubis. 2018. Pertumbuhan dan Produksi Beberapa Kultiver Padi Lokal Kalimantan. Bul. Agrohorti, 6[2]: 270–280.

[27] Yang H, Yang R, Li Y, Jiang Z, and Zheng J 2000 The Relationship Between Culm Traits and Lodging Resistance of Rice Cultivars Fujian Journal of Agricultural Sciences 15 1-7.

Acknowledgement
Thanks to Universitas Bangka Belitung for the land facilities and equipment used in the research. The Research is listed in the Chairman’s decrees LPPM Universitas Bangka Belitung number: 17/UN50.3.1/PP/2020.