A Modified System for the Synthesis of Enantioenriched N-Arylamines through Copper-Catalyzed Hydroamination

Saki Ichikawa, Dr. Shaolin Zhu, and Prof. Dr Stephen L. Buchwald
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States

Abstract

Despite significant recent progress in the copper-catalyzed enantioselective hydroamination chemistry, the synthesis of chiral N-arylamines, which are frequently found in natural products and pharmaceuticals, has not been realized. Initial experiments with N-arylhydroxylamine ester electrophiles were unsuccessful and, instead, their reduction in the presence of copper hydride (CuH) catalysts was observed. Herein, we report key modifications to our previously reported hydroamination methods that lead to broadly applicable conditions for the enantioselective net addition of secondary anilines across the double bond of styrenes, 1,1-disubstituted olefins, and terminal alkenes. NMR studies suggest that suppression of the undesired reduction pathway is the basis for the dramatic improvements in yield under the reported protocol.

A modified system

An efficient method for the preparation of enantioenriched N-arylamines was developed by making key modifications to a previously reported hydroamination. The reaction is mediated by a copper(I)-hydride (CuH) catalyst, and wide range of olefins and N-arylhydroxylamines are compatible under the optimized conditions. Key to the successful development of this method was the addition of tBuOH and PPh₃ to the reaction mixture.

Keywords

hydroamination; copper; enantioenriched N-arylamines; asymmetric synthesis

Enantiomerically enriched N-arylamines are important synthetic targets in organic chemistry due to their prevalence in a variety of pharmaceuticals, agrochemicals, and functional materials. Consequently, their synthesis has been actively investigated over the past few decades, leading to the development of a number of useful approaches, including the
addition of nucleophiles to imines,\textsuperscript{2} reductive amination,\textsuperscript{3} and late transition metal-catalyzed hydroamination.\textsuperscript{4} In particular, the enantioselective hydroamination of alkenes and alkynes has received considerable attention due to the conceptual simplicity of this method although the substrate scope is quite limited.

The use of copper hydride (LCuH) catalysts has recently been demonstrated as a useful approach for the synthesis of chiral secondary and tertiary alkylamines.\textsuperscript{5} In reactions using these catalysts, an alkylcopper intermediate, generated through hydrocupration of an alkene, reacts with a N-alkylhydroxylamine ester to furnish the amine product. N-alkylhydroxylamine esters have previously been employed by several research groups as electrophilic nitrogen sources in transition metal catalyzed processes.\textsuperscript{6–8} In contrast, to the best of our knowledge, N-arylhydroxylamine esters have not been used in these transformations. The extension of the copper-catalyzed asymmetric hydroamination reaction to these electrophilic amine reagents would provide a versatile and flexible approach for the preparation of α-chiral arylamines.

In light of our previous studies,\textsuperscript{9} we began our investigation by exploring the reactivity of N-arylhydroxylamine esters using styrene as the model substrate, (S)-DTBM-SEGPHOS/Cu(OAc)\textsubscript{2} as the precatalyst and (MeO)\textsubscript{2}MeSiH\textsuperscript{10} as the stoichiometric reductant. We chose to employ the 4-diethylaminobenzoate ester of phenylbenzylhydroxylamine (2a) as the electrophilic amine source. In the case of aliphatic amines, reagents bearing this modified leaving group were found to possess better stability and enhanced reactivity relative to the benzoate esters (Scheme 1a).\textsuperscript{9e,f} Under these conditions, a small amount of the desired product 3a (17%) was formed in a moderately enantioselective manner (41% ee) (Scheme 1a). A significant amount of N-benzylaniline was also formed by reductive cleavage of the N–O bond of 2a (Scheme 1b).

To improve upon this result, we conducted an extensive evaluation of reaction conditions and additives (Table 1). We found that the addition of a catalytic amount of PPh\textsubscript{3} as a secondary ligand\textsuperscript{11} led to a dramatic and unexpected enhancement in yield and enantioselectivity (71% yield, 87% ee, entry 1). A non-chiral HCu-PPh\textsubscript{3} species is presumably generated and does not compete with the desired hydroamination catalyzed by the DTBM-SEGPHOS-bound copper species.\textsuperscript{11} Further improvements were made by adding a stoichiometric amount of tBuOH (1 equiv).\textsuperscript{12} In this way, 3a was obtained in high yield and with a high level of enantiomeric purity (97% yield, 91% ee, entry 2). The inclusion of both PPh\textsubscript{3} and tBuOH were necessary to achieve these results (entry 3). The use of other phosphines as additives resulted in considerably lower yields and/or enantioselectivities (entries 4–6), while the inclusion of other alcohols lowered the yield of 3a (entry 7). Alkoxides, such as LiOtBu, were also investigated and were less effective compared to tBuOH (entries 8–10). A number of electrophilic amine reagents with different leaving groups also provided the desired product with slightly lower levels of enantioselectivity (entries 11–13).

With optimized conditions in hand, we sought to explore the substrate scope of this asymmetric hydroamination process. A variety of olefins could be effectively transformed into the corresponding enantiomERICALLY enriched amines in good to excellent yields (Table
2). Products from styrene (1a) as well as from styrenes bearing both electron-donating (1b) and electron-withdrawing ring substituents (1c) were competent coupling partners using this protocol. Furthermore, the reaction could be applied to trans- (1d) and cis-β-substituted styrenes (1e), hindered β,β-disubstituted styrenes (1f), and 1,1-disubstituted alkenes (1h). Both cis- and trans-β-substituted olefins yielded the corresponding products in similar yields and in a stereoselective manner as we previously reported.[9a] Moreover, the reaction with 3-vinylpyridine provided 3g in an efficient manner. The catalyst system also achieved high levels of diastereoselectivity in the hydroamination of (R)-limonene (3i, 3i′). Terminal alkenes (1j–1l), which are relatively less reactive compared to styrene derivatives, were also competent substrates and gave the desired products in moderate yield under the reaction conditions. This protocol tolerated terminal alkenes containing a terminal epoxide (1k) and an indole (1l).

We also surveyed the scope of N-arylamine benzoate electrophiles (2b–2j) (Table 3). Electron-poor substituents on the aryl ring of the amine electrophile, including a trifluoromethyl group (2b), a fluorine (2c), and an ester (2d), were compatible with our protocol. Also, those containing an aryl chloride (2e) and bromide (2f) were suitable substrates for this process. Unfortunately, we were unable to prepare amine electrophiles in which the aryl group of the aniline had electron-donating substituents, such as a methoxy group.[13, 14] Substrates bearing heterocycles, including a pyridine (2c) and a thiophene (2g) were successfully converted into the desired products. Additionally, using arylhydroxylamine esters with primary (2h) and cyclic secondary (2i) alkyl groups or an allyl group (2j) led to good results. We have also examined the reaction in the presence of a TIPS-protected propargyl substrate and 1-methyl-1H-imidazole. In the former case, the reaction proceeded well and the latter case, no product was formed (See the Supporting Information for details).

Next, we were interested in ascertaining the origin of the beneficial effect of adding tBuOH and PPh3 to the reaction mixture. We suspected that these additives attenuated the unproductive reduction of the hydroxylamine ester reagent. N-arylhydroxylamine ester 2a was treated with solutions of (MeO)2MeSiH and copper catalyst in THF–d8 either with or without BuOH/PPh3, and the consumption of 2a was monitored by 1H NMR spectroscopy (Figure 2).[15] We found that if the amount of added PPh3 was kept constant, the addition of tBuOH resulted in significantly slower consumption of 2a. The same trend was observed when comparing the presence and absence of PPh3 while the amount of added tBuOH was kept constant. We speculate that the degradation pattern in the presence of tBuOH without PPh3 resulted from the fact that tBuOH was consumed before the reduction of 2a proceeded (see Supporting Information for details). Taken together, these data suggest that both additives play an important role in suppressing the undesired reduction of the hydroxylamine ester, 2. With both additives, less than 10% of 2 was consumed over 1 hour. In comparison, when either additive was omitted, less than 10% of the 2 remained after 50 minutes.

Additionally, we monitored the CuH-catalyzed hydroamination of styrene using 2a in the presence or absence of tBuOH/PPh3 via 1H NMR spectroscopy. We observed that the reaction rate was also significantly enhanced by the addition of tBuOH/PPh3 (Figure 3),
which is consistent with the previously proposed\textsuperscript{[12, 16]} role of tBuOH and PPh\textsubscript{3} in promoting turnover of the catalyst. It is also possible that PPh\textsubscript{3} prevents the coordination of amine electrophiles to LCuH, thereby helping to suppress its undesired reduction.

In summary, we have developed a copper-catalyzed hydroamination of alkenes with arylamine O-benzoates for the preparation of enantioenriched tertiary arylamines. The use of tBuOH, in conjunction with a catalytic amount of PPh\textsubscript{3}, was critical for enabling the use of N-arylhydroxylamine esters as the electrophilic nitrogen source. This method was successfully applied to the synthesis of $\alpha$- and $\beta$-chiral arylamines with a variety of functional groups from a diverse range of olefin substrate classes.

### Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

### Acknowledgments

Research reported in this publication was supported by the National Institutes of Health (R01-GM58160 and R35-GM122483). The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. S.I. thanks the Japan Student Services Organization (JASSO) for a graduate fellowship. We are grateful to Drs. Michael Pirnot, Yi-Ming Wang, Mycah Uehling, Koji Kubota, Andy Thomas, Scott McCann, and Christine Nguyen for their advice on the preparation of this manuscript. We thank Dr. Nootaree Niljianskul for her early work on this project.

### References

1. a) Nugent, TC., editor. Chiral Amine Synthesis: Methods, Development and Application. Wiley-VCH: Weinheim, Germany: 2010.  b) Barlaam B, Cosulich S, Degorce S, Fitzek M, Green S, Hancox U, Lambert-van der Bremp C, Lohmann J-I, Maeder M, Morgentin R, Pasquet M-I, Peru A, Ple P, Saleh T, Vautier M, Walker M, Ward L, Warin N. J Med Chem. 2015; 58:943–962.  [PubMed: 25514658]  c) Rovnyak GC, Ahmed SZ, Ding CZ, Dzwonczyk S, Ferrara FN, Humphreys WG, Grover GJ, Santafianos D, Atwal KS, Baird AJ, McLaughlin LG, Normandin DE, Sleph PG, Traeger SC. J Med Chem. 1997; 40:24–34.  [PubMed: 9016325]  d) Atwal KS, Wang P, Rogers WL, Sleph P, Monshizadegan H, Ferrara FN, Traeger S, Green DW, Grover GJ. J Med Chem. 2004; 47:1081–1084.  [PubMed: 14971888]  e) Tochowicz A, Dalziel S, Eidam O, O’Connell JD III, Griner S, Finer-Moore JS, Stroud RM. J Med Chem. 2013; 56:5446–5455.  [PubMed: 23710599]  f) Marriott JH, Neidle S, Matusiak Z, Bavetsias V, Jackman AL, Melin C, Boyle FT. J Chem Soc, Perkin Trans. 1999; 1:1495–1504.

2. For representative examples of asymmetric nucleophilic addition to imines, see: Porter JR, Traverse JF, Hoveyda AH, Snapper ML. J Am Chem Soc. 2001; 123:10409–10410.  [PubMed: 11604001]  Akullian LC, Snapper ML, Hoveyda AH. Angew Chem. 2003; 115:4376–4379.  Angew Chem Int Ed. 2003; 42:4244–4247.  Gastner T, Ishitani H, Akiyama R, Kobayashi S. Angew Chem. 2001; 113:1949–1951.  Angew Chem Int Ed. 2001; 40:1896–1898.. For representative examples of asymmetric hydrogenation of imines, see: BlaserHU, Buser HP, Haisel R, Jalett HP. J Org Chem. 2001; 621:34–38.  Dervisi A, Carcedo C, Ooi LL. Adv Synth Catal. 2006; 348:175–183.

3. For representative examples of asymmetric reductive amination, see: Blaser HU, Buser HP, Jalett HP, Pugin B, Spindler F. Synlett. 1999; 51:867–868.  Storer RI, Carrera DE, Ni Y, MacMillan DWC. J Am Chem Soc. 2006; 128:84–86.  [PubMed: 17039133]  Rubio-Pérez L, Pérez-Flores FJ, Sharma P, Velasco L, Cabrera A, Org Lett. 2009; 11:265–268.  [PubMed: 19093803]

4. For representative examples of transition metal-catalyzed hydroamination, see: Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem Rev. 2008; 108:3795–3892.  [PubMed: 18729420]  Dorta R, Egli P, Zürcher F, Togni A. J Am Chem Soc. 1997; 119:10857–10858.  Lobber O, Kawatsura M, Hartwig JF. J Am Chem Soc. 2001; 123:4366–4367.  [PubMed: 11457216]  Pan S, Endo K, Shibata

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2019 July 09.
5. For representative examples of copper-catalyzed electrophilic amination using N-alkylamine benzoate electrophiles, see: Miki Y, Hirano K, Satoh T, Miura M. Angew Chem. 2013; 125:11030–11034. Angew Chem Int Ed. 2013; 52:10830–10834. Matsuda N, Hirano K, Satoh T, Miura M. Org Lett. 2011; 13:2860–2863. [PubMed: 21548599] Matsuda N, Hirano K, Satoh T, Miura M. Angew Chem. 2012; 124:3702–3705. Angew Chem Int Ed. 2012; 51:11827–11831. Miki Y, Hirano K, Satoh T, Miura M. Org Lett. 2013; 15:172–175. [PubMed: 23256842] Berman AM, Johnson JS. J Am Chem Soc. 2004; 126:5680–5681. [PubMed: 15125656] Berman AM, Johnson JS. J Org Chem. 2005; 70:364–366. [PubMed: 15624951] Berman AM, Johnson JS. J Org Chem. 2006; 71:219–224. [PubMed: 16388639] Campbell MJ, Johnson JS. J Org Lett. 2007; 9:1521–1524. [PubMed: 17362022] Rucker RP, Whittaker AM, Dang H, Lallic G. Angew Chem Int Ed. 2012; 51:3953–3956. Rucker RP, Whittaker AM, Dang H, Lallic G. J Am Chem Soc. 2012; 134:6571–6574. [PubMed: 22469028] McDonald SL, Wang Q. Angew Chem. 2014; 126:1898–1902. Angew Chem Int Ed. 2014; 53:1867–1871. Zhou S, Yang Z, Chen X, Li Y, Zhang L, Fang H, Wang Z, Wu X, Wang S. J Org Chem. 2015; 80:6323–6328. [PubMed: 26030723] Noack M, Göttlich W. Chem Commun. 2002; 536–537. Liu S, Yu Y, Liebeskind LS. Org Lett. 2007; 9:1947–1950. [PubMed: 17444649] Liu S, Liebeskind LS. J Am Chem Soc. 2008; 130:6918–6919. [PubMed: 18465855] Narasaka K, Kitamura M. Eur J Org Chem. 2005; 4505–4519. Xiao Q, Tian L, Tan R, Xia Y, Qiu D, Zhang Y, Wang J. Org Lett. 2012; 14:4230–4233. [PubMed: 22870926] Yan X, Chen C, Zhou Y, Xi C. Org Lett. 2012; 14:4750–4753. [PubMed: 22954174] Yotphan S, Beukeaw D, Reutrakul V. Tetrahedron. 2013; 69:6627–6633. Yoon H, Lee Y. J Org Chem. 2015; 80:10244–10251. [PubMed: 26421609]

7. For representative examples of copper-catalyzed aminoboration using N-alkylamine benzoate electrophiles, see: Matsuda N, Hirano K, Satoh T, Miura M. J Am Chem Soc. 2013; 135:4934–4937. [PubMed: 23495912] Sakae R, Matsuda N, Hirano K, Satoh T, Miura M. Org Lett. 2014; 16:1228–1231. [PubMed: 24491169] Sakae R, Hirano K, Satoh T, Miura M. Angew Chem. 2015; 127:623–627. Angew Chem Int Ed. 2015; 54:613–617. Sakae R, Hirano K, Miura M. J Am Chem Soc. 2015; 137:6460–6463. [PubMed: 25951059] Nishikawa D, Hirano K, Miura M. Org Lett. 2016; 18:4856–4859. [PubMed: 27647505]

8. For representative examples of transition-metal-catalyzed (such as Pd, Rh, Ru, Fe, and Ni) electrophilic amination using N-alkylamine benzoate electrophiles, see: Dong X, Liu Q, Dong Y, Liu H. Chem Eur J. 2017; 23:2481–2511. [PubMed: 27457533] Corpet M, Gosmini C. Synthesis. 2014; 46:2258–2271.

9. a) Zhu S, Niljianskul N, Buchwald SL. J Am Chem Soc. 2013; 135:15746–15749. [PubMed: 24106781] b) Zhu S, Buchwald SL. J Am Chem Soc. 2014; 136:15913–15916. [PubMed: 25339089] c) Niljianskul N, Zhu S, Buchwald SL. Angew Chem. 2015; 127:1658–1661. Angew Chem Int Ed. 2015; 54:1638–1641. d) Shi SL, Buchwald SL. Nat Chem. 2015; 7:38–44. [PubMed: 25515888] e) Yang Y, Shi SL, Niu D, Liu P, Buchwald SL. Science. 2015; 349:62–66. [PubMed: 26138973] f) Niu D, Buchwald SL. J Am Chem Soc. 2015; 137:9716–9721. [PubMed: 26144542] g) Zhu S, Niljianskul N, Buchwald SL. Nat Chem. 2016; 8:144–150. [PubMed: 26791897]

10. For detailed information on the safe handling of (MeO)₂MeSiH (DMMS), please refer to the Supporting Information.

11. For a key paper on the effect of phosphines of CuH-catalyzed reductions, see: Lipshutz BH, Noson K, Chrisman W, Lower A. J Am Chem Soc. 2003; 125:8779–8789. [PubMed: 12862472]

12. Ascic E, Buchwald SL. J Am Chem Soc. 2015; 137:4666–4669. [PubMed: 25826004]

13. Instead, a rearrangement product was observed, which we speculated was formed via either a [3,3]-sigmatropic rearrangement process or an ion-pair mechanism.
14. Several decomposition pathways of differentially protected N-aryl-O-acyl-hydroxylamines are known. For representative examples of thermally induced [3,3]-rearrangement of N-aryl-O-acyl-hydroxylamines, see: Leffler JE, Bond WB. J Am Chem Soc. 1956; 78:335–341. Oae S, Sakurai T. Tetrahedron. 1976; 32:2289–2294. Porzelle A, Woodrow MD, Tomkinson NCO. Eur J Org Chem. 2008:5135–5143. For representative examples of photorearrangement of N-aryl-O-acyl-hydroxylamines, see: Sakurai T, Nakamura M, Hakii T, Inoue H. Bull Chem Soc Jpn. 1992; 65:2789–2793. Kaneko T, Kubo K, Sakurai T. Tetrahedron Lett. 1997; 38:4779–4782. For an example of metal-catalyzed [1,3]-rearrangement of N-aryl-O-acyl-hydroxylamines, see: Nakamura I, Owada M, Jo T, Terada M. Org Lett. 2017; 19:2194–2196. [PubMed: 28368604]

15. Formation of PhBnNH and the corresponding silylated benzoyl ester could be detected by GC/MS and $^1$H NMR spectroscopy.

16. We speculate that tBuOH promoted the catalyst turnover from LCuOR species $\text{III}$ to LCuH $\text{I}$ instead of protonating the chiral alkyl copper intermediate $\text{II}$ to give the reduced styrene.
Figure 2.
Relative rates of the reactions between LCuH and 2a. Si* = Si(OMe)$_2$Me. **Standard conditions**: 0.4 mmol 2a (1.0 equiv), Cu(OAc)$_2$ (5.0 mol%), (R)-DTBM-SEGPHOS (5.5 mol%), PPh$_3$ (10.0 mol%), tBuOH (1.0 equiv), (MeO)$_2$MeSiH (3.0 equiv), and $d_8$-THF (0.53 mL) was used. The progress of these reactions was monitored at 60 °C by $^1$H NMR spectroscopy.
Figure 3.
Reaction enhancement by the addition of tBuOH and PPh₃.
Scheme 1.
Initial result of the copper-catalyzed hydroamination of styrene 1a with N-arylhydroxylamine ester 2a.
Table 1

Reaction Optimization.[a,b,c]

| entry | X                    | PR₃  | Additive | yield (%) | ee (%) |
|-------|----------------------|------|----------|-----------|--------|
| 1     | OC(O)C₆H₄NEt₂        | PPh₃ | none     | 71        | 87     |
| 2     | OC(O)C₆H₄NEt₂        | PPh₃ | tBuOH    | 97        | 91     |
| 3     | OC(O)C₆H₄NEt₂        | none | tBuOH    | 39        | 82     |
| 4     | OC(O)C₆H₄NEt₂        | PCy₃ | tBuOH    | 45        | 30     |
| 5     | OC(O)C₆H₄NEt₂        | PCy₂ | tBuOH    | 81        | 80     |
| 6     | OC(O)C₆H₄NEt₂        | P(2-anisyl)Ph | tBuOH | 77        | 89     |
| 7     | OC(O)C₆H₄NEt₂        | PPh₃ | tPrOH    | 48        | 92     |
| 8     | OC(O)C₆H₄NEt₂        | PPh₃ | LiO₂Bu   | 76        | 87     |
| 9     | OC(O)C₆H₄NEt₂        | PPh₃ | NaO₂Bu   | 19        | 89     |
| 10    | OC(O)C₆H₄NEt₂        | PPh₃ | Mg(O₂Bu)₂ | 62       | 86     |
| 11    | OAc                  | PPh₃ | tBuOH    | 88        | 84     |
| 12    | OPiv                 | PPh₃ | tBuOH    | 88        | 84     |
| 13    | OC(O)1,3-OMeC₆H₃     | PPh₃ | tBuOH    | 95        | 88     |

[a] Reaction conditions: 0.2 mmol 1a (1.0 equiv), 2 (1.2 equiv), Cu(OAc)₂ (3.0 mol%), (S)-DTBM-SEGPHOS (3.3 mol%), PR₃ (6.0 mol%), additive (1.0 equiv), (MeO)₂MeSiH (3.0 equiv) in THF (0.1 mL) at 60 °C; see the Supporting Information for details.

[b] The yield was determined by GC analysis using n-dodecane as the internal standard.

[c] The enantioselectivity was determined by chiral HPLC analysis.
Table 2

Scope of olefins.[a,b]

| Scope of olefins | 3.0 mol % Cu(OAc)$_2$ | (R)-DTBM-SEGPHOS (3.3 mol%), PPh$_3$ (6.0 mol%), tBuOH (1.0 equiv), (MeO)$_2$MeSiH (3.0 equiv) in THF (0.25 mL) at 60 °C; see the Supporting Information for details. |
|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Styrene derivatives | 94% 99% ee$^{[2]c}$ (92% ee) | 77% 90% ee (single diastereomer) |
| 1,1-Disubstituted alkenes | 84% 99% ee$^{[2]c}$ | 64% 10% ee |
| Terminal allenes$^{[2]c}$ | 50% 30% | 64% 50% |

[a] Reaction conditions: 0.5 mmol olefin (1.0 equiv), 2a (1.2 equiv), Cu(OAc)$_2$ (3.0 mol%), (R)-DTBM-SEGPHOS (3.3 mol%), PPh$_3$ (6.0 mol%), tBuOH (1.0 equiv), (MeO)$_2$MeSiH (3.0 equiv) in THF (0.25 mL) at 60 °C; see the Supporting Information for details.

[b] After recrystallization.

[c] (±)-DTBM-SEGPHOS was used. Both starting materials were fully converted after the reaction time.
Table 3
Scope of N-arylamine benzoate electrophiles.\textit{[a, b]}\

| Reaction conditions: 0.5 mmol olefin (1.0 equiv), N-arylamine benzoate (1.2 equiv), Cu(OAc)\textsubscript{2} (3.0 mol%), (R)-DTBM-SEGPHOS (3.3 mol%), PPh\textsubscript{3} (6.0 mol% equiv), tBuOH (1.0 equiv), (MeO)\textsubscript{2}MeSiH (3.0 equiv) in THF (0.25 mL) at 60 °C; see the Supporting Information for details. | N-arylamine benzoate electrophiles bearing ortho-substituents on the aryl ring did not give products. |
|---|---|
| ![Image of chemical structures] | ![Image of chemical structures] |
| ![Image of chemical structures] | ![Image of chemical structures] |
| ![Image of chemical structures] | ![Image of chemical structures] |
| ![Image of chemical structures] | ![Image of chemical structures] |
| ![Image of chemical structures] | ![Image of chemical structures] |

\textit{[a]} N-arylamine benzoate electrophiles bearing ortho-substituents on the aryl ring did not give products.