Correction of the Water and Chemical Mode of Boilers Utilizers at Sharp Changes of a Boiler Water Quality, Including for Power Complexes on Recycling

E Veselovskaya1a, R Bezuglov1b, V Papin1c, S Lysenko1d

1346400, Rostov region, Novocherkassk, Prosvescheniya st., 132, Platov SRSPU, Russia

E-mail: aelenaveselovsckaja@yandex.ru, bbezuglov@srspu.ru (corresponding author), cvladimir_papin@bk.ru, dse29@inbox.ru

Abstract. The results of a research of the water and chemical mode of boiler utilizers including determination of quality of saturated steam, nutritious and boiler water are given in article. Researches were conducted at the actual loadings and pressure and the average level of boiler water in a drum. The dependence of change of controlled indicators of quality of boiler water and saturated steam of a boiler utilizer on fluctuations of a purge size a copper and the set range of change level is established, and also dynamics of salinity of saturated steam depending on salinity of nutritious and boiler waters. We developed recommendations about control of additional indicators when carrying out chemical control at threat of various violations of the water and chemical mode. We gave an assessment of extent change a quality of boiler water when using on water treatment installations of membrane methods of desalting of initial waters. Also studied water and chemical modes can be used in units for recycling.

1. Introduction

Now the recycling problem of which main share is made by municipal solid waste is particularly acute. Features when processing waste is use of a boiler utilizers. It is possible to transform the energy which is marked out when processing waste to thermal and/or electric energy.\cite{1, 2}. For boiler utilizers, as well as for any power, the question of providing optimal conditions of the water and chemical mode is particularly acute. In the course of a steam generation in boiler water there is an increase in concentration of salts as in couple they are practically not dissolved. At achievement of a certain concentration in boiler water, loss of the dissolved impurity in a deposit with formation of slime and a scum on the surfaces of heating begins. Drop ablation is resulted by transfer of salts in boiler superheaters and steam lines. Besides, the scum and slime which are deposited on walls of a boiler drum and pipes lead to their overheating. As a result of it the probability of emergencies increases and reliability of installation in general decreases.

For reliable work of a copper and ensuring the required quality of steam, it is necessary to provide constantly set intra boiler water and chemical mode. For this purpose it is necessary to maintain standard quality of boiler water. One of the rated maintenance methods of concentration the dissolved impurity in boiler water are periodic and continuous purges. Purges are carried out from the lower part of a drum where the greatest number of salts and slime concentrates.
2. Experimental Part

Object of a research was the boiler-utilizer with one-stage evaporation. Feed of a copper was carried out by the feedwater representing mix of chemically purified water and condensate, passed the deaerator. From the copper drum boiler water is pumped by circulation pumps in the reactor block in regenerator coils. As a result of heating water in a regenerator and its separation, steam-and-water mix is returned to the top part of a drum of a copper, and boiler water comes to the lower part.

In a drum there is a further separation of steam-and-water mix. As a result, separation is formed saturated steam which part goes to heat supply, part of steam is selected for own needs of knot of utilization of heat, and a part comes to the reactor block on receiving superheated steam. Productivity of a copper is 8 t/h of saturated steam with pressure of 1.2-1.3 MPas. Characteristics of a boiler-utilizer are given in tab. 1.

The continuous purge is carried out for decrease in constantly increasing salinity of boiler water and maintenance of permissible values on this indicator. For removal of the slime gathering in the lower points of a boiler the periodic purge is carried out the average duration of which is about 30-60 seconds at constant control behind water level in a boiler-utilizer drum. Sizes of constant and periodic purges need adjustment for the purpose of optimization of their values for providing the reliable indicators of quality of boiler water corresponding to the mode accepted water chemically.

Table 1. Characteristics of a boiler-utilizer.

Parameter	Value
Max pressure, kgf/cm²	32
Operating pressure, kgf/cm²	16
Maximum temperature of the environment, °C	235
Steam generating capacity, t/h	8
Maximum salinity of steam, mkg/kg	0,5
Admissible range pH steam	6,0 – 9,0

For the purpose of this adjustment a number of experiments was conducted, Results of experiments are given in a type of graphic dependences in fig. 1 - 5. The program of carrying out tests of various categories of environments is provided in tab. 2.

Table 2. The program of carrying out tests of various categories of environments of a boiler-utilizer.

The analyzed environment	Transparency on a cross	Size of the general rigidity	Alkalinity size on a fenolft aleina	Salinity size general	Concentration size turned sour sorts	free carbonic acid	oil products	pH
Feedwater	+	+	+	+	+	+	+	+
Boiler water	+	-	+	+	-	-	-	
Saturated steam	-	-	-	+*	-	+	-	+

* - conditional salinity in terms of NaCl, mkg/kg.

When carrying out experiments determination of quality of nutritious and boiler waters and saturated steam in 2 parameters specified in the tab. was carried out by standard techniques [3-8].
Figure 1. Dynamics of a boiler water salinity C_k, mg/l, from purge size p, %, by preparation of additional water by method of a two-level ionize (1) and two-level reverse osmosis (2).

Figure 2. Dynamics of conditional salinity in terms of NaCl of saturated steam $C_{\text{s.s.}}$, mkg/kg, from purge size, p, %.
Experiments showed that by preparation of additional water by method of a reverse osmosis [9, 10] any of the analyzed indicators of boiler water and saturated steam (transparency on a cross, alkalinity sizes (the general and on a fenolftaleina), sizes of salinity and pH) did not go beyond the normalized values (tables. 3,4). By preparation of additional water by method of a two-level ionirovaniye steady respect for the normalized values in controlled parameters is provided only at the increased values of purges. It happens because of fluctuations of concentration of the dissolved impurity in initial water on an entrance on water treatment installation.

Table 3. The normalized values of a boiler-utilizer water quality.

Indicator	Unit of measurement	Value
Alkalinity on a fenolftaleina	mg-equ/dm^3	not less 0,1
Salinity	mg/dm^3	no more 2500

Table 4. The normalized values of a steam quality.

Indicator	Unit of measurement	Value
Величина условного солесодержания (в пересчете на NaCl)	mg/dm^3	no more 0,5
Concentration of free carbonic acid	mg/dm^3	no more 20
pH at 25°C	ед. pH	6.0 – 9.0

3. Conclusions
The made experiments allow to draw a conclusion that the saturated steam produced by a copper utilization satisfies to norms on salinity by preparation of additional water with method of a two-level reverse osmosis. However, the quality of saturated steam at increase in salinity of boiler water to 3500 mg/dm^3 leads to an exit of pH from the recommended range from above. The value pH steadily
remains in the recommended range at increase in level of boiler water over 50% if the salinity of boiler water is in limits of 2000 mg/dm3. By preparation of additional water by method of a two-level ionirovaniye the optimum salinity of boiler water will be by results in an interval of 1,500 - 2,500 mg/dm3 if the size of a purge exceeds 5.5%. Also periodically the increased concentration of dissolved oxygen in feedwater and the lowered alkalinity were registered. These factors lead to initiation of the increased speed of various forms of corrosion of metal.

4. References

[1] J van der Geer, Hanraads J A J, Lupton R A 2000 The art of writing a scientific article J. Sci. Commun. 163 51-59 Information on http://nacep.ru/publikacii/kotel-utilizator-tverdyx-bytovyx-otxodov-s-recirkulyacie-dymovyx-gazov-kak-sposoba-sokrassheniya-vrednyx-ybrosov.html

[2] Parshukov V I, Efimov N N, Papin V V, Bezuglov R V 2018 Energy-Technological Complex, Functioning On the Basis Of Waste Processing Technologies IOP Conf. Series: Materials Science and Engineering 463

[3] Rules of technical operation of power plants and networks of the Russian Federation of the Ministry of Energy of the Russian Federation 2003 (M.)

[4] RD 24.031.121-2012 Methodical instructions "Equipment of Steam Stationary Boilers Devices for Sampling of Steam and Water" 2012 (M.)

[5] RTM 24.030.24-72 Boilers of low and average pressure Organization and methods of chemical control of the water and chemical mode

[6] RTM 108.030.114-77 Stationary boilers of low and average pressure Organization of the water and chemical mode

[7] RD 24.032.01-91 Methodical indications of standard of quality of feedwater and steam, organization of the water and chemical mode and chemical control of steam stationary coppers utilizers and power technological boilers

[8] RD 153-34.1-37.313-00 Technique of heatchemical tests of steam stationary boilers with natural circulation

[9] Veselovskaya E V, Shishlo A G 2016 Experience of use of perspective technologies of water treatment on domestic thermal power plants Izv. vuzov. North-Caucazus region, Tekhn. Sciences 2 31-34

[10] Veselovskaya E V 2014 Reproduction of make-up water of multiplu-unit chp-plant in conditions of elevated cocentration of natural organic compound European Science and Technology, materials of the IX international research and practice conference (Munich) 471-473

Acknowledgment

Article is executed with assistance of a grant of the Russian Federation President to the young scientist and graduate students who are carrying out perspective research and development in the priority directions of modernization of the Russian economy for 2018-2020 (Project No. SP-459.2018.1).