Electronic Supplementary Information (ESI)

Brønsted acidic ionic liquids for cellulose hydrolysis in aqueous medium: Structural effects on acidity and glucose yield

Shiori Suzuki,¹ Yuko Takeoka, Masahiro Rikukawa and Masahiro Yoshizawa–Fujita*

Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan. E-mail*: masahi.f@sophia.ac.jp

¹ Now at Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

The file includes: Supporting Fig. S1–S3 and Table S1–S2
Electronic Supplementary Information (ESI)

- Instrument: TG-DTA 7200 (Hitachi High-Technologies, Co. Ltd.)
- Apparatus: open-type aluminum pan
- Sample loading: 10 mg
- Heating rate: 10 °C min⁻¹
- N₂ flow: 200 mL min⁻¹

Fig. S1 TG curves of zwitterions.

Table S1 Thermal property of zwitterions

Zwitterion	\(T_{d-5\%} \) / °C
Mimps	326
Mims	302
Imds	226

* Prior to TG measurement, each zwitterion was dried at 120°C for 1 h under N₂.
* \(T_{d-5\%} \): 5% weight loss temperature.

Fig. S2 Optimized molecular structures of BAILs with mono— or disulfuric acid groups using B3LYP/6-311G++(d, p).
Electronic Supplementary Information (ESI)

Table S2 Residual amount of residue after cellulose hydrolysis (160 °C, 15 min) in 1 M BAILs aqueous solution

Zw/a	HX	Glucose yield / %	Residue c / wt.%
Mim ps	H₂S O₄	32.3±2.2	5.6
Bimp s	30.7±2.2	19	
Oimp s	36.3±3.8	21	
Mim ps	HCl	23.7±0.3	24
Bimp s	26.0±1.5	30	
Oimp s	27.7±1.2	26	

a Zw: zwitterion. b HX: kinds of acid used to prepare BAILs called as Zw/HX; X is corresponded to anion species. c Represented as wt.% to the starting weight of cellulose (10 mg).
Fig. S3 (1) Optimized molecular structures of BAILs with HSO₄ anion using B3LYP/6-311G++(d, p).
Fig. S3 (2) Optimized molecular structures of BAILs with Cl anion using B3LYP/6-311G++(d, p).
Fig. S3 (3) Optimized molecular structures of BAILs with sulfonic acid anion or carboxylic acid anion using B3LYP/6-311G++(d, p).
Fig. S3 (4) Optimized molecular structures of BAII with TFSI anon or phosphoric acid anion using B3LYP/6-311G++(d, p).