Fine-tuning in GGM and the 126 GeV Higgs particle

Marek Lewicki

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw

SUSY 2013, 27 Aug 2013, Trieste

based on: Z. Lalak and ML, arXiv:1302.6546 (JHEP 1305)

The project “International PhD Studies in Fundamental Problems of Quantum Gravity and Quantum Field Theory” is realized within the MPD programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.
SUSY breaking mediation

- Supergravity
 - No control over mixing between families \rightarrow large FCNC

- Gauge mediation
 - SUSY is spontaneously broken \rightarrow singlet $\langle X \rangle = X + \theta^2 F$
 - breaking is transmitted through messengers $W = \lambda \bar{\Phi} X \Phi$
 - messengers $\bar{\Phi}, \Phi$ interact with MSSM fields only via gauge interactions

Diagram:
- Hidden sector
- Visible sector
- $\bar{\Phi}, \Phi$
- X
- MSSM
Gauge mediated soft terms

\[\lambda \xrightarrow{\phi} \lambda \quad \xrightarrow{\phi} \quad M_i = \frac{\alpha_i}{4\pi} \frac{F}{X} \]

\[\tilde{f} \quad + \quad \tilde{f} \quad + \ldots \]

\[\Rightarrow m_f^2 = 2 \sum_i C_i(f) \left(\frac{\alpha_i}{4\pi} \right)^2 \left| \frac{F}{X} \right|^2 \]
GGM soft terms

Meade, Shih and Seiberg 0801.3278
Gauge mediated soft terms can be expressed by just six parameters

- Three gaugino masses
 \[M_1 = \frac{\alpha_1}{4\pi} m_Y, \quad M_2 = \frac{\alpha_2}{4\pi} m_w, \quad M_3 = \frac{\alpha_3}{4\pi} m_c, \]

- Three parameters determining scalar masses \(\Lambda_c^2, \Lambda_w^2, \Lambda_Y^2 \)
 which give

 \[m_f^2 = 2 \left[C_3(f) \left(\frac{\alpha_3}{4\pi} \right)^2 \Lambda_c^2 + C_2(f) \left(\frac{\alpha_2}{4\pi} \right)^2 \Lambda_w^2 + C_1(f) \left(\frac{\alpha_1}{4\pi} \right)^2 \Lambda_Y^2 \right], \]

- Only negligible A-terms are generated.
Two specific models Carpenter et al. 0805.2944

- GGM1
 \[W_{GGM1} = X_i (y^i \bar{Q} Q + r^i \bar{U} U + s^i \bar{E} E), \]
 with three independent parameters \(\Lambda_Q, \Lambda_U, \Lambda_E \)

- GGM2
 \[W_{GGM2} = X_i (y^i \bar{Q} Q + r^i \bar{U} U + s^i \bar{E} E + \lambda^i_q \bar{q} q + \lambda^i_l \bar{l} l), \]
 with five independent parameters \(\Lambda_Q, \Lambda_U, \Lambda_E, \Lambda_q, \Lambda_l \)
fine-tuning definition

- fine-tuning from parameter a

$$
\Delta_a = \left| \frac{\partial \ln m^2_Z}{\partial \ln a} \right|.
$$

- fine-tuning coming from a whole set of parameters a_i

$$
\Delta = \max_{a_i} \Delta_{a_i}.
$$
FT in mSUGRA

\[\Delta \]

\[\Delta m_h \]

\[\Delta \]

\[m_h \text{ [GeV]} \]

\[\Delta \]

\[\Delta \]
FT in GGM

\[\Delta = \Delta_{fullGGM} \]

\[\Delta = \Delta_{GGM2} \]

\[\Delta = \Delta_{GGM1} \]

\[m_h [\text{GeV}] \]
reducing fine-tuning

Assuming that parameters are not independent of each other, but instead are functions of some fundamental parameters. For example, if gaugino masses M_i are given functions of parameter $M_{\frac{1}{2}}$ we obtain

$$M_i = f_i(M_{\frac{1}{2}}),$$

$$\Delta M_{\frac{1}{2}} = \left| \frac{\partial \ln M^2_Z}{\partial \ln M_{\frac{1}{2}}} \right| = \left| M_{\frac{1}{2}} \frac{f'_i(M_{\frac{1}{2}}) \partial \ln M^2_Z}{f_i(M_{\frac{1}{2}}) \partial \ln M_i} \right|. $$

If f_i are simply proportional to $M_{\frac{1}{2}}$ one finds

$$\Delta M_{\frac{1}{2}} = \left| \sum_{i=1}^{3} \frac{\partial \ln M^2_Z}{\partial \ln M_i} \right|. $$

If these functions were logarithms

$$M_i(M_{\frac{1}{2}}) = \tilde{m} \ln \frac{M^2_{\frac{1}{2}}}{Q}, \quad \Delta M_{\frac{1}{2}} = \left| \sum_{i=1}^{3} \frac{\tilde{m} \partial \ln M^2_Z}{M_i \partial \ln M_i} \right|. $$
$\Lambda_i \propto \Lambda_j \propto \mu$

$\Delta_{fullGGM}$
Δ_{GGM2}
Δ_{GGM1}
fine-tuning from only gauge mediated soft terms

Brummer and Buchmuller 1201.4338
discrepancy between measurement and SM prediction:

\[\delta a_\mu = a_\mu^{\text{EXP}} - a_\mu^{\text{SM}} = (2.8 \pm 0.8) \times 10^{-9}. \]

The simplest approximation of SUSY contribution

\[\delta a_\mu^{\text{SUSY}} \approx \left(\frac{g_1^2 - g_2^2}{192\pi^2} + \frac{g_2^2}{32\pi^2} \right) \frac{m_\mu^2}{M_{\text{SUSY}}^2} \tan \beta, \]

Problem: We need heavy superpartners \((M_{\text{SUSY}})\)
$g_\mu - 2$ and FT

SUSY contribution to muon $g-2$

- $\delta a^\text{fullGGM}_{\mu}$
- $\delta a^\text{GGM2}_{\mu}$
- $\delta a^\text{GGM1}_{\mu}$

Fine-tuning

- Δ^fullGGM
- Δ^GGM2
- Δ^GGM1
Conclusions

1. GGM predicts smaller fine-tuning than mSUGRA
2. for $m_h = 126$ GeV fine-tuning always larger than 100 unless one includes only gauge mediated soft terms
3. including $g_{\mu} - 2$ raises fine-tuning about four times, but it's still possible to obtain $g_{\mu} - 2$ within 1σ bound
4. decrease of the Higgs mass down to 123 GeV reduces the fine-tuning by a factor of 2.