ASSOCIAÇÃO ENTRE O TEMPO DE TELA E A APTIDÃO CARDIORRESPIRATÓRIA E A PRESENÇA DE RISCO METABÓLICO EM ESCOLARES

Association between the screen time and the cardiorespiratory fitness with the presence of metabolic risk in schoolchildren

João Francisco de Castro Silveira, Cláudia Daniela Barbiana, Leandro Tibiriçá Burgos, Jane Dagmar Pollo Renner, Dulciane Nunes Paiva, Cézane Priscila Reuter*

RESUMO

Objetivo: Verificar a associação entre tempo de tela e aptidão cardiorespiratória, de forma isolada e agrupada, e a presença de risco metabólico em escolares.

Métodos: Estudo transversal com 1.200 escolares de Santa Cruz do Sul (RS). Foram avaliados o tempo de tela e a aptidão cardiorespiratória. Foi calculado o escore de risco metabólico por meio da soma do escore Z, da circunferência da cintura, da pressão arterial sistólica, da glicose, dos triglicerídeos, do colesterol total, do colesterol da lipoproteína de baixa densidade (LDL) e do colesterol da lipoproteína de alta densidade (HDL).

Resultados: Crianças (34,3%) e adolescentes (48,2%) apresentaram elevado tempo de tela, enquanto 44,3% das crianças e 53,3% dos adolescentes foram inaptos no tocante à aptidão cardiorespiratória. Na relação tempo de tela/aptidão cardiorespiratória, 14,7% das crianças e 26,9% dos adolescentes exibiram elevado tempo de tela e baixos níveis de aptidão cardiorespiratória. A presença de risco metabólico foi evidenciada em crianças (17,1%) e em adolescentes (14,7%). A presença de risco metabólico esteve associada diretamente com baixos níveis de aptidão cardiorespiratória nas crianças e nos adolescentes no que se refere às variáveis de forma isolada. Quando analisado de modo agrupado, o risco metabólico em crianças foi 11% mais prevalente em sujeitos com baixo tempo de tela/inaptos e 12% em sujeitos com elevado tempo de tela/inaptos, enquanto em adolescentes a prevalência de risco metabólico também foi superior nos escolares com baixo tempo de tela/inaptos (8%) e elevado tempo de tela/inaptos (7%).

Conclusões: A presença de risco metabólico em crianças e adolescentes esteve associada com baixos níveis de aptidão cardiorespiratória, independentemente do tempo de tela, tanto de modo isolado quanto agrupado.

Palavras-chave: Aptidão cardiorespiratória; Estilo de vida sedentário; Saúde da criança; Saúde do adolescente.

Objective: To verify the association between screen time and cardiorespiratory fitness with the presence of metabolic risk in schoolchildren in an isolated and clustered manner.

Methods: Cross-sectional study with 1.200 schoolchildren from Santa Cruz do Sul-RS. Screen time and cardiorespiratory fitness were evaluated. The continuous metabolic risk score was calculated by summing the Z score of the waist circumference, systolic blood pressure, glucose, triglycerides, total cholesterol, low-density lipoprotein (LDL-C) and high-density lipoprotein (HDL-C).

Results: Children (34.3%) and adolescents (48.2%) had high screen time, while 44.3% of the children and 53.3% of the adolescents were unfit in relation to cardiorespiratory fitness. Regarding the relation of screen time/cardiorespiratory fitness, 14.7% of the children and 26.9% of the adolescents presented high screen time and low levels of cardiorespiratory fitness. The presence of metabolic risk was shown in children (17.1%) and adolescents (14.7%). The presence of metabolic risk was directly associated with low levels of cardiorespiratory fitness in children and adolescents. When analyzed in clusters, the metabolic risk in children was 11% more prevalent in subjects with low screen time/unfit and 12% in subjects with high screen time/unfit, whereas in adolescents, the prevalence of metabolic risk was also higher in those with low screen time/unfit (8%) and high screen time/unfit (7%).

Conclusions: The presence of metabolic risk in children and adolescents was associated with low levels of cardiorespiratory fitness, independent of screen time, in an isolated or clustered manner.

Keywords: Cardiorespiratory fitness; Sedentary behavior; Child health; Adolescent health.
INTRODUÇÃO

O Colégio Americano de Medicina Esportiva sugere que crianças e adolescentes entre seis e 17 anos de idade devam desenvolver diariamente, no mínimo, 60 minutos de atividades físicas aeróbicas de intensidade moderada a intensa, a fim de garantir benefícios à saúde. Entre esses benefícios, está incluída a melhora nos fatores de risco metabólicos, porém estudo de revisão sistemática relata que jovens brasileiros se caracterizam por adotarem comportamentos de risco à saúde, tais como inatividade física, comportamentos sedentários e alimentação inadequada, o que pode representar grave ameaça à saúde atual e futura da juventude.

Revisão sistemática que analisou o comportamento sedentário e indicadores de saúde evidenciou que indivíduos com maiores períodos despendidos em frente à televisão possuem maior propensão ao desenvolvimento de disfunções. Outros autores afirmam que a prevalência de alterações metabólicas em adolescentes é alta quando estes, além de inativos, possuem baixos níveis de aptidão cardiorrespiratória (APCR), o que por si só já é considerado um indicador de risco para a saúde.

Encontra-se amplamente difundido na literatura o papel da APCR na promoção da saúde metabólica. Esse parâmetro tem sido com frequência usado como referência em pesquisas, pois assume importante função na definição de saúde metabólica. APCR na promoção da saúde metabólica. Esse parâmetro tem sido considerado um indicador de risco para a saúde.

Diante do exposto, o presente estudo teve como objetivo avaliar a associação entre o TT e a APCR, tanto de modo isolado quanto de maneira agrupada, e a presença de risco metabólico em escolares.

MÉTODO

Estudo transversal realizado com 1.200 crianças e adolescentes de Santa Cruz do Sul (RS), estudantes das redes pública e privada. A presente pesquisa faz parte do Projeto Saúde dos Escolares, desenvolvido na Universidade de Santa Cruz do Sul e aprovado pelo Comitê de Ética em Pesquisa com Seres Humanos, sob parecer número 714.216, e Certificado de Apresentação para Apreciação Ética (CAAE) número 31576714.6.0000.5343. Os pais e/ou responsáveis dos estudantes autorizaram a participação dos escolares por intermédio da assinatura do Termo de Consentimento Livre e Esclarecido (TCLE). Os estudantes também assinaram o Termo de Assentimento.

O estudo foi desenvolvido em 25 escolas sorteadas do município, que possui o total de 50 escolas registradas e população de 17.688 escolares. Os dados coletados representam todo o município, considerando a densidade populacional de escolares de cada região (centro, norte, sul, leste e oeste), das zonas urbana e rural. O cálculo do poder amostral foi realizado no programa G*Power 3.1 (Heinrich-Heine-Universität, Düsseldorf, Alemanha). Tendo em vista o teste estatístico aplicado (regressão de Poisson) para avaliação do desfecho unicaudal (presença versus ausência de risco metabólico), foram utilizados o poder de teste (1-β)=0,95, o nível de significância de α=0,05, o tamanho de efeito de 20% (Exp B1=1,2) e a taxa de risco metabólico estimada em 15% (Base rate exp(β0)=0,15). Com base nesse cálculo e nos apontamentos de Faul et al., foi estimado o tamanho amostral mínimo de 1.013 sujeitos.

Foram convidados para participação no estudo, por meio do envio do TCLE e do Termo de Assentimento, todos os alunos das 25 escolas sorteadas no primeiro momento. A amostra inicial contou com a presença de 1.254 escolares, que tiveram o TCLE assinado pelos seus pais e/ou responsáveis e que também assinaram o Termo de Assentimento, no entanto foram excluídos 54 sujeitos, os quais não apresentavam os dados coletados de forma completa (teste de APCR, questionário referente ao TT ou coleta sanguínea). A seleção da amostra está detalhada na Figura 1.

O TT dos sujeitos foi autorrelatado mediante o preenchimento de questionário adaptado, e mais tarde essa variável foi classificada de acordo com os parâmetros da American Academy of Pediatrics: baixo tempo em frente à tela (<2 horas diárias) ou elevado tempo em frente à tela (≥2 horas diárias).
A avaliação da APCR foi realizada por meio do teste de corrida e caminhada de 6 minutos, em que a distância percorrida pelo escolar (em metros) foi utilizada para posterior categorização, conforme preconizado pelo Projeto Esporte Brasil, em: apto para bons níveis de APCR ou inapto para baixos níveis de APCR. Para a análise de forma agrupada, as variáveis TT e APCR foram unificadas originando quatro categorias:

- Baixo tempo de tela: apto.
- Baixo tempo de tela: inapto.
- Elevado tempo de tela: apto.
- Elevado tempo de tela: inapto.

Para a avaliação do risco metabólico, foi calculado o ERM, por meio da soma do escore Z dos seguintes parâmetros: circunferência da cintura, pressão arterial sistólica, glicose, triglicerídeos, colesterol total, colesterol de lipoproteína de baixa densidade (LDL) e colesterol de lipoproteína de alta densidade (HDL) (este multiplicado por -1, por indicar relação inversa com os fatores de risco cardiovasculares). Os dados foram expressos de forma contínua e categorizada, entendendo valores de ERM acima de 1 como risco metabólico.

A análise dos dados foi realizada pelo programa Statistical Package for the Social Sciences (SPSS) v. 23.0 (IBM, Armonk, NY, Estados Unidos). Empregou-se estatística descritiva (frequência absoluta e relativa; média e desvio padrão) para caracterização da amostra. Para avaliar a associação entre as variáveis independentes (TT, APCR e relação TT/APCR) e o desfecho (presença de risco metabólico), foi utilizada a regressão de Poisson, por meio dos valores de razão de prevalência (RP) e intervalos de confiança de 95% (IC95%). Foram considerados significantes os valores de p<0,05.

RESULTADOS

A Tabela 1 aponta as características descritivas dos escolares avaliados. Observa-se que tanto as crianças (34,3%) quanto os adolescentes (48,2%) apresentaram elevado TT, enquanto 44,3% das crianças e 53,3% dos adolescentes foram considerados inaptos no que se refere à APCR. Quando analisada a relação TT/APCR de forma agrupada, 14,7% das crianças e 26,9% dos adolescentes exibiram elevado TT e baixos níveis de APCR. A presença de risco metabólico foi evidenciada em 17,1% das crianças e em 14,7% dos adolescentes.

Tabela 1 Caracterização dos escolares avaliados.

	Crianças	Adolescentes
Sexo		
Masculino	161 (49,2)	384 (44,0)
Feminino	166 (50,8)	489 (56,0)
Rede escolar		
Municipal	140 (42,8)	350 (40,1)
Estadual	163 (48,9)	471 (54,0)
Particular	24 (7,3)	52 (6,0)
Zona de moradia		
Centro	65 (19,9)	200 (22,9)
Periferia	160 (48,9)	332 (38,0)
Zona rural	102 (31,2)	341 (39,1)
Nível socioeconômico		
A e B	169 (51,7)	477 (54,6)
C	149 (45,6)	370 (42,4)
D e E	9 (2,8)	26 (3,0)
Tempo de tela		
Baixo tempo de tela	215 (65,7)	452 (51,8)
Elevado tempo de tela	112 (34,3)	421 (48,2)
Aptidão cardiorrespiratória		
Apto	182 (55,7)	408 (46,7)
Inapto	145 (44,3)	465 (53,3)
Relação TT/APCR		
Baixo TT/apto	118 (36,1)	222 (25,4)
Baixo TT/inapto	97 (29,7)	230 (26,3)
Elevado TT/apto	64 (19,6)	186 (21,3)
Elevado TT/inapto	48 (14,7)	235 (26,9)
Risco metabólico		
Ausência	271 (82,9)	745 (85,3)
Presença	56 (17,1)	128 (14,7)

TT: tempo de tela; APCR: aptidão cardiorrespiratória.
A Tabela 2 demonstra que a presença de risco metabólico esteve associada diretamente com baixos níveis de APCR tanto em crianças (RP=1,09; IC95% 1,01–1,17) quanto em adolescentes (RP=1,08; IC95% 1,04–1,13), não tendo sido evidenciada associação no tocante ao TT.

A presença de risco metabólico, de acordo com a relação TT/APCR, é demonstrada na Tabela 3. Consta-se que o risco metabólico em crianças foi 11% mais prevalente em sujeitos com baixo TT/inaptos e 12% em sujeitos com elevado TT/inaptos, enquanto em adolescentes a prevalência de risco metabólico também foi superior nos escolares com baixo TT/inaptos (8%) e elevado TT/inaptos (7%).

DISCUSSÃO

A presente pesquisa avaliou as associações entre o TT e a APCR, tanto de modo isolado quanto de maneira agrupada, e a presença de risco metabólico em crianças e adolescentes, ressaltando que tal risco esteve associado, em ambas as situações, com baixos níveis de APCR, independentemente do TT. Apesar de haver escassez na literatura acerca de estudos que demonstram associação significativa entre a relação TT/APCR e alterações metabólicas em populações infantojuvenis, há algumas evidências consistentes com os resultados da presente pesquisa.

Uma investigação avaliou se adolescentes com níveis satisfatórios de APCR e baixos índices de tempo despendido em frente às telas possuíam melhor perfil metabólico em comparação àqueles com baixos níveis de APCR e grande tempo de tela. Os resultados obtidos pelos referidos autores indicaram que indivíduos com reduzido APCR e elevado TT eram três vezes mais propensos a um perfil metabólico negativo.

Um estudo transversal que avaliou, entre outros fatores, a APCR e fatores de estilo de vida, nestes incluído o tempo despendido em frente à televisão, computador e videogame, constatou que adolescentes que gastavam duas ou mais horas em frente às telas possuíam piores níveis de APCR. Supostamente, o TT atuaria como um influenciador dos níveis de APCR, ou seja, quanto maior o tempo despendido em frente às telas, menores os índices de APCR. Isso justifica-se pelo fato de que, quanto mais tempo for despendido em frente às telas, menores serão os níveis de atividades físicas.

Outro estudo avaliou as mudanças no comportamento sedentário, incluídos o TT, atividades físicas moderadas e intensas, APCR e riscos metabólicos, e após dez anos de pesquisa concluiu que a adoção de atividades físicas moderadas a intensas reduz o risco metabólico.

Tabela 2 Razão de prevalência para a presença de risco metabólico de acordo com o tempo de tela e os níveis de aptidão cardiorrespiratória de forma isolada em crianças e adolescentes*.

	Presença de risco metabólico	p-valor**
	RP (IC95%)	
Crianças		
Tempo de tela		
Baixo TT	1	
Elevado TT	1,04 (0,97–1,12)	0,271
Aptidão cardiorrespiratória		
Apto	1	0,130
Inapto	1,09 (1,01–1,17)	0,025
Adolescentes		
Tempo de tela		
Baixo TT	1	
Elevado TT	0,99 (0,95–1,03)	0,645
Aptidão cardiorrespiratória		
Apto	1	0,667
Inapto	1,08 (1,04–1,13)	<0,001

*Todos os valores foram obtidos por meio da Regressão de Poisson considerando a presença versus a ausência de risco metabólico, e as análises foram ajustadas para sexo, nível socioeconômico, rede escolar e região de moradia; **valores significativos para p<0,05; RP: razão de prevalência; IC95%: intervalo de confiança de 95%; TT: tempo de tela; APCR: aptidão cardiorrespiratória.

Tabela 3 Razão de prevalência para a presença de risco metabólico de acordo com a relação tempo de tela/aptidão cardiorrespiratória, em crianças e adolescentes*.

	Presença de risco metabólico	p-valor**
	RP (IC95%)	
Crianças		
Relação TT/APCR		
Baixo TT/apto	1	
Baixo TT/inapto	1,11 (1,02–1,21)	0,013
Elevado TT/apto	1,08 (0,98–1,18)	0,130
Elevado TT/inapto	1,12 (1,00–1,125)	0,048
Adolescentes		
Relação TT/APCR		
Baixo TT/apto	1	
Baixo TT/inapto	1,08 (1,02–1,14)	0,011
Elevado TT/apto	0,99 (0,94–1,04)	0,667
Elevado TT/inapto	1,07 (1,01–1,13)	0,020

*Todos os valores foram obtidos por meio da Regressão de Poisson considerando a presença versus a ausência de risco metabólico, e as análises foram ajustadas para sexo, nível socioeconômico, rede escolar e região de moradia; **valores significativos para p<0,05; RP: razão de prevalência; IC95%: intervalo de confiança de 95%; TT: tempo de tela; APCR: aptidão cardiorrespiratória.
intensas aliadas a níveis decrescentes de comportamentos sedentários resultam em mudanças positivas na APCR e estão aliadas a mudanças positivas na saúde metabólica. Todavia, esses fatos não explicam o porquê de a APCR estar associada, independentemente do TT, à presença de risco metabólico.

Se por um lado a literatura é escassa em avaliar a presença de risco metabólico com a relação TT/APCR, diversos estudos expõem a relação entre o risco metabólico e as variáveis TT e APCR, de modo isolado. Alguns autores indicaram que diferentes tipos de comportamento sedentário podem ter muitas consequências em variáveis indicadores de saúde. Entre os indicadores de saúde avaliados em um estudo de revisão sistemática, verificou-se que baixos níveis de atividade física e de APCR e elevado TT estavam diretamente ligados ao desenvolvimento de alterações metabólicas em adolescentes. Já em outra revisão sistemática, a maior duração do tempo gasto em frente à televisão se associou a um perfil de saúde desfavorável.

A adoção desses comportamentos caracteriza a infância e a adolescência como um período sensível para o desenvolvimento de síndrome metabólica em meados da vida adulta e acrescentam que o tempo gasto em frente à televisão deve ser reduzido logo na infância, antes que se torne um comportamento crônico, tendo em vista que períodos prolongados de tempo em frente às telas durante momentos de lazer na adolescência e o aumento da frequência diária desses comportamentos estão associados ao surgimento de fatores de risco cardiovasculares no início da vida adulta. Tais evidências corroboram as afirmações de que sujeitos que visam à redução de tempo em frente às telas somada à prática de exercícios físicos regulares durante o período da infância e adolescência são mais propensos a apresentarem melhor saúde metabólica na vida adulta.

No que se refere aos níveis de APCR, de maneira separada, com a presença de risco metabólico, está amplamente disseminada na literatura a associação inversa entre ambos os fatores. Nesse sentido, os dados obtidos no presente estudo corroboram as conclusões de autores que observaram associações entre os baixos níveis de APCR e a presença de riscos metabólicos de adolescentes do sul brasileiro e de resultados semelhantes encontrados em adolescentes europeus. Outros autores ainda relatam que o desenvolvimento de riscos metabólicos em escolares aumenta quando estes, além de possuírem baixos níveis de APCR, apresentam sobrepeso ou obesidade.

Pensando na associação da APCR, independentemente do TT, com a presença de risco metabólico em ambas as análises, é possível considerar a APCR como um sinal vital de saúde metabólica na infância e adolescência. Segundo Després, a APCR ainda deve ser prioridade em intervenções práticas e de saúde pública. No entanto, além de a APCR assumir função preventiva no possível surgimento de alterações metabólicas, também são necessárias mudanças nos hábitos comportamentais adotados a fim de prevenir futuros desfechos desfavoráveis às boas condições de saúde, conforme os dados discutidos neste estudo, uma vez que hábitos de estilo de vida incluindo comportamento sedentário, maior consumo de refrigerantes e/ou bebidas adoçadas e inatividade física ou prática aquiém dos níveis mínimos de atividade física, além de outros fatores como gênero, níveis socioeconômicos e excesso de tecido adiposo, são fatores determinantes na definição de boa ou má APCR e, consequentemente, nos níveis de saúde metabólica.

O presente estudo demonstrou que a presença de risco metabólico tanto em crianças como em adolescentes esteve associada com baixos níveis de APCR, independentemente do TT e do método (agrupado ou separado) utilizado para verificação. Alguns pontos fortes podem ser destacados no presente estudo. Primeiramente, a utilização dos mesmos profissionais durante o processo de coleta de dados, a fim de restringir os erros e evitar fatores de confusão; o tamanho amostral ser representativo para a população estudada; e, por fim, a afirmação da APCR, mais uma vez, como importante marcador de definição de saúde em populações infantojuvenis, justificando-se a importância de desenvolver intervenções focadas na melhora dos níveis de aptidão física, especialmente pertinente à APCR.

Todavia, o presente estudo também apresenta algumas limitações: por causa do delineamento transversal, não é possível estabelecer o impacto de causa e efeito entre as variáveis. Desse modo, sugere-se que futuros estudos busquem verificar as associações longitudinais, bem como o papel desempenhado pela APCR no desenvolvimento de alterações metabólicas. Outra limitação do presente estudo se encontra no fato de que os níveis de TT foram autorreferidos pelos estudantes por meio de questionários, o que pode gerar um viés no momento de classificação dos níveis de TT, uma vez que é considerado somente aquilo que foi reportado.

AGRADECIMENTOS

Agradecemos aos escolares, a suas famílias e a suas escolas a participação no presente estudo. Agradecemos a contribuição da professora doutora Miria Suzana Burgos (in memoriam) na realização deste estudo, sua dedicação com a pesquisa Saúde dos Escolares e com a Universidade de Santa Cruz do Sul. Por fim, agrademos também o apoio recebido pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Financiamento

O estudo não recebeu financiamento.

Conflito de interesses

Os autores declaram não haver conflito de interesses.
Referências

1. American College of Sports Medicine. Diretrizes do ACSM para os testes de esforço e sua prescrição. 9ª ed. Rio de Janeiro: Guanabara; 2014.

2. Barbosa Filho VC, Campos W, Lopes AS. Epidemiology of physical inactivity, sedentary behaviors, and unhealthy eating habits among Brazilian adolescents: a systematic review. Ciènc.Saude Coletiva. 2014;19:173-93. http://dx.doi.org/10.1590/1413-81232014191.0446

3. Agirbasli M, Tanrikulu AM, Berenson GS. Metabolic syndrome: bridging the gap from childhood to adulthood. Cardiovasc Ther. 2016;31:30-6. https://doi.org/10.1111/1755-5922.12165

4. Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput JP, et al. Systematic review of sedentary behavior and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(Suppl 3):S240-65. https://doi.org/10.1139/apnm-2015-0630

5. Stabelini Neto A, Sasaki JE, Mascarenhas LP, Boguszewski MC, Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness, and metabolic syndrome in adolescents: a cross-sectional study. BMC Public Health. 2011;11:674. https://doi.org/10.1038/sj.sj.ijo.0803774

6. Andersen LB, Sardinha LB, Froberg K, Riddoch CJ, Page AS, Andersen SA. Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal: The European youth heart study. Int J Pediatr Obes. 2008;3:58-66. https://doi.org/10.1080/17477160801896366

7. Reuter CP, Burgos MS, Barbiano CD, Renner JD, Franke SI, Mello ED. Comparison between criteria for metabolic syndrome in schoolchildren from southern Brazil. J Pediatr. 2018;177:1471-7. https://doi.org/10.1016/j.jpeds.2015.06.025

8. Andersen LB, Sardinha LB, Froberg K, Riddoch CJ, Page AS, Andersen SA. A new approach to define and diagnose cardiometabolic disorder in children. J Diabetes Res. 2015;2015:539835. https://doi.org/10.1155/2015/539835

9. Reuter CP, Burgos MS, Barbiano CD, Renner JD, Franke SI, Mello ED. Comparison between criteria for metabolic syndrome in schoolchildren from southern Brazil. Eur J Pediatr. 2018;177:1471-7. https://doi.org/10.1007/s00431-018-3202-2

10. Reuter CP, Andersen LB, Valim AR, Reuter EM, Borfe L, Renner JD, et al. Cutoff points for continuous metabolic risk score in adolescents from southern Brazil. Am J Hum Biol. 2019;31:e2321.11. https://doi.org/10.1002/ajhb.23211

11. Stavnsbo M, Resaland GK, Andersen SA, Steene-Johannessen J, Domazet SL, Skrede T, et al. Reference values for cardiometabolic risk scores in children and adolescents: suggesting a common standard. Atherosclerosis. 2018;278:299-306. https://doi.org/10.1016/j.atherosclerosis.2018.10.003

12. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149-60. https://doi.org/10.3758/BRM.41.4.1149

13. American Academy of Pediatrics. Committee on Public Education. American Academy of Pediatrics: children, adolescents, and television. Pediatrics. 2001;107:423-6. https://doi.org/10.1542/peds.107.2.423

14. Projeto Esporte Brasil [homepage on the Internet]. Manual 2015 [cited 2017 Jul 17]. Available from: https://www.ufrgs.br/proesp/

15. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet. 2006;368:299-304. https://doi.org/10.1016/S0140-6736(06)69075-2

16. Mota J, Santos R, Moreira C, Martins C, Gaya A, Santos MP, et al. Cardiorespiratory fitness and TV viewing in relation to metabolic risk factors in Portuguese adolescents. Ann Hum Biol. 2013;40:157-62. https://doi.org/10.3109/03014460.2012.752524

17. Gonçalves EC, Silva DA. Factors associated with low levels of aerobic fitness among adolescents. Rev Paul Pediatr. 2016;34:141-7. http://dx.doi.org/10.1016/j.rppede.2015.06.025

18. Sandorock GR, Ogunleye AA. Screen time and passive school travel as independent predictors of cardiorepiratory fitness in youth. Prev Med. 2012;54:319-22. https://doi.org/10.1016/j.ypmed.2012.03.007

19. Knaeps S, Bourgois JG, Charlier R, Mertens E, Lefèvre J, Wijndaele K. Ten-year change in sedentary behavior, moderate-to-vigorous physical activity, cardiorespiratory fitness and cardiometabolic risk: independent associations and mediation analysis. Br J Sports Med. 2016;52:1063-8. http://dx.doi.org/10.1136/bjsports-2016-096083

20. Oliveira RG, Guedes DP. Physical activity, sedentary behavior, cardiorepiratory fitness and metabolic syndrome in adolescents: Systematic review and meta-analysis of observational evidence. PLoS One. 2016;11:e0168503. https://doi.org/10.1371/journal.pone.0168503

21. Wennberg P, Gustafsson PE, Howard B, Wennberg M, Hammarström A. Television viewing over the life course and the metabolic syndrome in mid-adulthood: a longitudinal population-based study. J Epidemiol Community Health. 2014;68:928-33. https://doi.org/10.1136/jech-2013-203504

22. Grenvold A, Ried-Larsen M, Møller NC, Kristensen PL, Wedderkopp N, Froberg K, et al. Youth screen-time behavior is associated with cardiovascular risk in young adulthood: the European Youth Heart Study. Eur J Prev Cardiol. 2014;21:46-56. https://doi.org/10.1177/2047487312454760

23. Wennberg P, Gustafsson PE, Dunstan DW, Wennberg M, Hammarström A. Television viewing and low leisure-time physical activity in adolescence independently predict the metabolic syndrome in mid-adulthood. Diabetes Care. 2013;36:2090-7. https://doi.org/10.2337/dc12-1948
24. Silva DR, Werneck AO, Collings PJ, Fernandes RA, Barbosa DS, Rongue ER, et al. Physical activity maintenance and metabolic risk in adolescents. J Public Health (Oxf.). 2018;40:493-500. https://doi.org/10.1093/pubmed/fdx077

25. Silva D, Werneck AO, Collings P, Tomeleri CM, Fernandes RA, Rongue E, et al. Cardiorespiratory fitness is related to metabolic risk independent of physical activity in boys but not girl from Southern Brazil. Am J Hum Biol. 2016;28:534-8. https://doi.org/10.1002/ajhb.22826

26. Artero EG, Ruiz JR, Ortega FB, España-Romero V, Vicente-Rodríguez G, Molnar D, et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: the HELENA study. Pediatr Diabetes. 2011;12:704-12. https://doi.org/10.1111/j.1399-5448.2011.00769.x

27. Todendi PF, Valim AR, Reuter CP, Mello ED, Gaya AR, Burgos MS. Metabolic risk in schoolchildren is associated with low levels of cardiorespiratory fitness, obesity, and parents’ nutritional profile. J Pediatr (Rio J.). 2016;92:388-93. http://dx.doi.org/10.1016/j.jped.2015.10.007

28. Després JP. Physical activity, sedentary behaviours and cardiovascular health: when will cardiorespiratory fitness become a vital sign? Can J Cardiol. 2016;32:505-13. https://doi.org/10.1016/j.cjca.2015.12.006

29. Gonçalves EC, Silva AS, Nunes HE. Prevalence and factors associated with low aerobic performance levels in adolescents: a systematic review. Curr Pediatr Rev. 2015;11:56-70. https://doi.org/10.2174/1573396311666150501003435