Manganese oxides-based composite electrodes for supercapacitors

Dongyun Su¹,³, Jun Ma², Mingyu Huang³, Feng Liu², Taizhou Chen², Chao Liu², Hongjun Ni³,*

¹ Nantong Vocational University, Nantong, Jiangsu Province 226007, China
² Nantong Science and Technology College, Nantong, Jiangsu Province 226007, China
³ Nantong University, Nantong, Jiangsu Province 226007, China

*Corresponding author e-mail: ni.hj@ntu.edu.cn

Abstract. In recent, nanostructured transition metal oxides as a new class of energy storage materials have widely attracted attention due to its excellent electrochemical performance for supercapacitors. The MnO₂ based transition metal oxides and their composite electrode materials were focused in the review for supercapacitor applications. The researches on different nanostructures of manganese oxides such as Nano rods, Nano sheets, nanowires, nanotubes and so on have been discovered in recent years, together with brief explanations of their properties. Research on enhancing materials’ properties by designing combination of different materials on the micron or Nano scale is too limited, and therefore we discuss the effects of different components’ sizes and their synergy on the performance. Moreover, the low-cost and large-scale fabrication of flexible supercapacitors with high performance (high energy density and cycle stability) have been pointed out and studied.

1. Introduction

Supercapacitors are regarded as a new promising type of device for energy storage and conversion, due to its high power density, rapid charging and discharging, and long cycle life. In the actual research, however, those problems such as low energy density and low capacitance is the bottleneck, limiting its development. Therefore, it’s essential to develop new type of supercapacitor electrode materials to resolve these problems [1-3]. Transition metal oxides (e.g. MnO₂) are regarded as the most promising supercapacitor materials due to their high theoretical capacitances, excellent cycling performance, abundance, low cost and environment friendliness. But weak conductivity and low specific surface area of the materials make their capacities far less than the theoretical values. Usually designing a unique morphology is used to increase the materials’ specific surface area, and inducing other highly conductive materials is used to enhance the conductivity [4-6]. However, most of the reports only focus on the influence of one of these two factors. These researches are rare that enhance materials’ property by designing the combination between capacitor materials with different activity under the micro or Nano scale, therefore it’s still not clear about the synergy effect of different components neither size effect on the performance[7-8]. It is a great challenge to realize low-cost and large-scale fabrication of flexible SCs with high performance.
2. MnO₂ and MnO₂-based composite electrode materials

2.1. MnO₂ electrode material

A great deal of studies has been attained in developing fabrication different types of MnO₂ nanostructures. The key factors influencing the electrochemical capacitance are conductivity and specific surface area. However, MnO₂ has poor conductivity which couldn’t be changed. So designing different nanostructures of MnO₂ electrode materials is the key to improve the capacitance. A summary of pure MnO₂ obtained with different nanostructures and their supercapacitor performances are discussed in Table 1.

As show in Table 1, MnO₂ can be synthesized in dozens of crystalline and disordered forms with variety structures, which were determined by the synthesis methods and nanostructures. Various MnO₂ with different crystalline structures, morphologies, pore structures, microstructures, and unique architectures have been synthesized by changing the parameters or using different reactions. Also, the specific capacitance of MnO₂ could be affected by its specific surface area, such as, Nano flake, particle size, urchin-like nanostructures with different specific surface area, contributing to various specific capacitances.

Synthesis methods	Nanostructure	Capacitance	Ref.
Carboxylic acid-mediated	Hollow sphere amorphous	281 F g⁻¹ at 0.5 mA cm⁻²	6
Template engaged redox	Hollow structures	366 F g⁻¹ at 5 mV s⁻¹	7
Hydrothermal	Hierarchical Nano flower	347 F g⁻¹ at 5 mV s⁻¹	8
Hydrothermal route	Crystalline porous	275 mAh g⁻¹ at 40 mA g⁻¹	9
Chemical deposition	Mesoporous	173 F g⁻¹ at 0.25 A g⁻¹	10
Microwave-assisted reflux	Urchin-like nanostructures	311 F g⁻¹ at 0.2 A g⁻¹	11
hydrothermal method	Nano flake films	2.3 mF cm⁻² at 0.025 mA cm⁻²	12

2.2. MnO₂-based composite electrode materials

According to the categories of electrode materials, different types like carbon materials, transition metal oxides and conductive polymers also can be used as the doping materials with MnO₂, which has been widely reported, as shown in Table 2.

In addition, there are also many reports about some other metal oxides doped with MnO₂, as shown in Figure 1. Zhu et al [21] reported that hierarchically porous yet densely packed MnO₂ microspheres doped with Fe₃O₄ nanoparticles via a one-step and low-cost ultrasound assisted method. The results show that single-crystalline Fe₃O₄ particles of 3-5 nm in diameter are homogeneously distributed throughout the spheres and none are on the surface. The specific capacitance is optimized at an Fe/Mn atomic ratio of r = 0.075 to be 448 F/g at a scan rate of 5 mV/s, which is nearly 1.5 times that of the extremely high reported value for MnO₂ nanostructures. MnO₂ based with polymer such as PPy also has been studied. The composites formed by electrochemical polymerization of pyrrole deposited onto MnO₂ particles, have a big specific surface area for excellent performance.

In terms of materials design and preparation of MnO₂, the high specific surface area and good conductivity should be taken into the consideration. However, many reports only focus on the influence of one of these two factors, which improves the capacitance in limitation. Therefore, the choice of doped materials and design of nanostructure are very important for the capacitance improvement.

In addition, electrolyte optimization has been emphasized consistently for enhancing capacitance. The choice of electrolyte is much close to the increase of potential window, which can achieve highly desirable resulting in higher energy density and power density. Up to now, the electrolyte becomes the major cost factor and limitation of the next generation of supercapacitors.
In summary, choosing suitable component and reaction methods to build composite structures with rational design has a pivotal role in electrochemical properties. The synergistic effect and unique structure of composites should be taken full advantages. Due to the pure MnO₂-based pseudo capacitor with poor conductivity and cycle performance, supercapacitor materials should be designed basing on synergistic effect between the electrical double layer capacitor component and pseudo-capacitor component.

Table 2. Methods and performances of MnO₂-based composites electrodes

Synthesis methods	Nanostructure	Composite materials	Capacitance	Ref.
Vacuum filtration	Ultrathin Nano sheets	MnO₂/Graphene	267 F/g at 0.2 A/g	13
Hydrothermal	Core-shell	PPy/MnO₂	141.6 F g⁻¹ at 2 mA cm⁻²	14
Wet chemical	Core-Shell Nanowire	α-Fe₂O₃/MnO₂	838 F g⁻¹ 2 mV s⁻¹	15
Chemical agents	Nano needle structure	Graphene/MnO₂	327.5 F g⁻¹ 10 mV s⁻¹	16
Hydrothermal	Core/Shell Nano sheet	Co₃O₄ Nanowire@MnO₂	480 F g⁻¹ 2.67 A g⁻¹	17
Hydrothermal	Core/shell Nano sphere	Carbon@MnO₂	175 F g⁻¹ 100 mV s⁻¹	18
Hydrothermal	Core/porous	MnO₂/CNT	205 F/g 2 mV/s	19
Hydrothermal	Nano architectures	Co₃O₄@MnO₂	1224 F/g 5 mV/s	20

Figure 1. Scheme of the composites of MnO₂ and other metal oxides

3. Summary

In this review, we have systematically pointed out that the recent researches and progress on MnO₂ and MnO₂-based composites as energy storage materials for supercapacitors. And the important of synergistic effect and size effect have been given an explanation. It is crucial to synthesize materials with suitable morphology and good conductivity since that have a profound influence on the storage capacity. So, the further detail explanations for the relationship between different materials should be researched in future.

Acknowledgments

This work was jointly supported by the Qing Lan Project, the Advanced Access Engineers for Higher Vocational Colleges Teachers of Jiangsu Province (2015FG032), the Natural Science Foundation of Jiangsu Province (BK20161289), the Research Innovation Program for College Graduates and Students of Jiangsu Province (KYZZ15_0043), the Foundation of Nantong Vocational University
1512102), the College Students Innovation and Entrepreneurship Training Program of Jiangsu Province, Nantong Research Project (GY12015020).

References

[1] J. Liu, D. Xue, Thermal Oxidation Strategy towards Porous Metal Oxide Hollow Architectures, Adv. Mater. 20 (2008) 2622–2627.

[2] M. Olivares-Marin, J.A. Fernández, M. Lázaro, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, F. Stoeckli, T.A. Centeno, Cherry Stones as Precursor of Activated Carbons for Supercapacitors, Mater. Chem. Phys. 114 (2009) 323–327.

[3] M.T. Lee, J.K. Chang, Y.T. Hsieh, W.T. Tsai, Annealed Mn-Fe Binary Oxides for Supercapacitor Applications, J. Power Sources 185 (2008) 1550–1556.

[4] T. Lu, Y.P. Zhang, H.B. Li, L.K. Pan, Y.L. Li, Z. Sun, Electrochemical Behaviors of Graphene-ZnO and Graphene-SnO2 Composite Films for Supercapacitors, Electrochim. Acta 55 (2010) 4170–4173.

[5] K.R. Prasad, N. Miura, Electrochemically Synthesized MnO2-Based Mixed Oxides for High Performance Redox Supercapacitors, Electrochem. Commun. 6 (2004) 1004–1008.

[6] J. Ma, H.J. Ni, D.Y. Su, X.K. Meng, Bioelectricity generation from pig farm wastewater in microbial fuel cell using carbon brush as electrode, International Journal of Hydrogen Energy. 41 (2016) 16191–16195.

[7] S. Dhibar, C.K. Das, Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode, Ind. Eng. Chem. Res. 53 (2014) 3495–3508.

[8] J. Ma, S.C. Tang, J.A. Syed, X.K. Meng, Asymmetric hybrid capacitors based on novel bearded carbon fiber cloth–pinhole polyaniline, RSC Adv. 6 (2016) 82995–83002.

[9] Y.M. Dai, S.C. Tang, S. Vongehr, X.K. Meng, Silver Nanoparticle-Induced Growth of Nanowire-Covered Porous MnO2 Spheres with Superior Supercapacitance, ACS Sustainable Chem. Eng. 2 (2014) 692–698.

[10] Y. Munaiah, B. Gnanasundara Raj, Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior, J. Mater. Chem. A. 1 (2013) 4300-4306.

[11] G. Yan, J.W. Cai, Preparation and capacitance behavior of manganese oxide hollow structures with different morphologies via template-engaged redox etching, Journal of Power Sources. 239 (2013) 347-355.

[12] G. Zhu, L.J. Deng, Hydrothermal preparation and the capacitance of hierarchical MnO2 nanoflower, Physicochem. Eng. Aspects. 434 (2013) 42-48.

[13] L.L. Peng, X. Peng, Ultrathin two-dimensional MnO2 /Graphene hybrid nanostructures for high-performance flexible planar supercapacitors, Nano Lett. 13 (2013) 2151–2157.

[14] A. Bahloul, B. Nessark, Polypyrrole-covered MnO2 as electrode material for supercapacitor, Journal of Power Sources. 240 (2013) 267-272.

[15] S. Debasish, G.K. Gobinda, High-Performance Pseudocapacitor Electrodes Based on α-Fe2O3/MnO2 Core–Shell Nanowire Heterostructure Arrays, J. Phys. Chem. C. 117 (2013) 15523–15531.

[16] K. Myeongjin, H. Yongseon, Graphene/MnO2-based composites reduced via different chemical agents for supercapacitors, Journal of Power Sources. 239 (2013) 225-233.

[17] J.P. Liu, J. Jiang, Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials, Adv. Mater. 23 (2011) 2076-2081.

[18] Y. Zhao, Y. Meng, Carbon@MnO2 cores/shell nanospheres for flexible high-performance supercapacitor electrode materials, Journal of Power Sources. 259 (2014) 219-226.

[19] H. Xia, Y. Wang, J. Lin Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/nanocrystalline MnO2 sheath hierarchy architecture for supercapacitors, Nanoscale Research Letters. 6 (2011) 1-10.
[20] J. Ma, H.J. Ni, D.Y. Su, M.Y. Huang, X.X. Wang, The research status of Nafion ternary composite membrane, International Journal of Hydrogen Energy. 37 (2012) 13185–13190.

[21] J. Zhu, S.C. Tang, Hierarchically Porous MnO2 Microspheres Doped with Homogeneously Distributed Fe3O4 Nanoparticles for Supercapacitors, ACS Appl. Mater. Interfaces. 6 (2014) 17637-17646.