Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics

Abhishek D. Garg,1,2,3, Santek More,4 Nicole Rufo,5 Odeta Mece,6,7, Maria Livia Sassano,8 Patrizia Agostinis,9,10
Laurence Zitvogel,11,12, Guido Kroemer,12,13,14, and Lorenzo Galluzzi15,16,17,18,19,20

1Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium; 2Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; 3INSERM, Villejuif, France; 4Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France; 5Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France; 6Université Paris Descartes/Paris V, Paris, France; 7Université Pierre et Marie Curie/Paris VI, Paris, France; 8Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; 9INSERM, Paris, France; 10Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; 11Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden; 12Pôle de Biologie, Hôpital Européen George Pompidou, Paris, France; 13Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; 14Sandra and Edward Meyer Cancer Center, New York, NY, USA

ABSTRACT

The expression “immunogenic cell death” (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as “damage-associated molecular pattern” molecules. Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.

Introduction

The possibility that cancer cells might undergo an immunogenic form of regulated cell death (RCD) in response to selected stimuli has been proposed for the first time more than 10 years ago.1 Since then, considerable efforts have been dedicated to the elucidation of the molecular and cellular mechanisms underlying immunogenic cell death (ICD), defined as a functionally distinct form of regulated cell death that facilitates (instead of suppressing) an adaptive immune response specific for dead cell-derived antigens.1-7 Based on the available data, it is clear that ICD can facilitate T cell responses against a wide-spectrum of differentiation, over-expressed, and mutated tumor-associated antigens (TAAs).1-10,11 However, the predominance of a fraction of TAA-specific T cells in driving ICD-based immunity might be regulated by: (1) the spatiotemporal expression patterns of specific TAAs within a tumor,14-20 (2) the overall coverage of various TAAs by central or peripheral tolerance,21-23 (3) the overall avidity of the T cell receptor (TCR) for specific TAAs,24-32 and (4) the general cellular and metabolic health of effector or memory T cell fractions.33-38 Operationally, two experimental procedures have been established over the years to identify bona fide ICD inducers in vivo. First, bona fide ICD inducers display elevated efficacy against malignant cells growing in immunocompetent hosts, but are largely ineffective when the same tumors are established in immunocompromised animals.39-43 Second, cancer cells succumbing to bona fide ICD in vitro are able to vaccinate syngeneic immunocompetent hosts against a subsequent challenge with living cancer cells of the same type.1,3,39-44 Although the former approach (therapeutic setting) is rather convenient, it is intrinsically unable to discriminate between bona fide ICD inducers and molecules that exert other on-target immunostimulatory effects or drive off-target immunostimulation.45-47 Thus, the only gold-standard approach to identify immunogenic instances of cell death relies on the latter approach (vaccination setting).39 Since vaccination tests can only be performed with murine cancer cells and immunocompetent syngeneic hosts, however, surrogate approaches have been developed.3-39,46 On the one side, surrogate biomarkers of ICD can be measured in (human and murine) cancer cells responding to putative ICD inducers.2,44-48 On the other side, malignant cells succumbing to a putative ICD inducer can be fed to dendritic cells (DCs),2,44,52-55 followed by (1) phagocytosis assays,56-62, (2) assessment of activation markers on the DC surface (e.g., CD80, CD86, MHC Class II) and functional markers in conditioned media (e.g., interleukin-6 or IL6, IL1β, IL12p70),34,63-72, or (3) functional cross-
A number of mechanisms regulate the capacity of a particular agent to drive bona fide ICD and the ability of the host to perceive such an instance of cell death as immunogenic, and hence respond with potentially curative TAA-specific adaptive immunity. \(^3\) At the level of cancer cells, ICD depends upon the timely emission of a constellation of immunomodulatory damage-associated molecular patterns (DAMPs). \(^{40,83}\) In the case of chemotherapy-induced ICD, these include (but may not be limited to): (1) surface-exposed endoplasmic reticulum (ER) chaperones including calreticulin (CALR)\(^{84-86}\), (2) extracellular ATP; \(^{87-93}\) (3) extracellular high mobility group box 1 (HMGB1)\(^{13,92}\); (4) extracellular annexin A1 (ANXA1)\(^5\); (5) calreticulin (CALR)\(^84\), (6) extracellular nucleic acids. \(^7\) That said, ICD triggered by stimuli other than chemotherapy (e.g., radiation therapy, photodynamic therapy) is not necessarily associated with the same DAMPs. \(^{3,40,98,99}\) Moreover, new DAMPs underlying the immunogenicity of specific instances of RCD are continuously being uncovered (see below).

When emitted in a proper spatiotemporal pattern, in combination with TAAs, and in the context of a tumor milieu amenable to immune intervention, \(^83,100-104\) these DAMPs can efficiently recruit antigen-presenting cells including DCs to the tumor bed, facilitate the engulfment of dying cells or their corpses (along with their TAA-laden cargo) in the context of immunostimulatory signals (which promote DC maturation). \(^{13,41,44,93,99}\) Mature DCs acquire therefore the ability to cross-present processed TAAs to CD4\(^+\) and CD8\(^+\) T cells along with suitable co-stimulation, thereby resulting in engagement of TAA-specific immunity. \(^105-110\) Accordingly, RCD can no longer be perceived as immunogenic when: (1) the intracellular stress responses regulating the emission of ICD-associated DAMPs are pharmacologically or genetically ablated in cancer cells; or (2) when the molecular machinery dedicated to DAMP detection is inhibited or ablated. \(^13,44,84,91,93,97\) Moreover, ICD-driven immunity can no longer operate in the presence of general immunological defects, \(^111\) such as (1) an intrinsically low antigenicity of cancer cells, owing to low levels of TAAs or downregulation of MHC Class I molecules \(^112-119\); (2) an increased immunological tolerance of the host, secondary to increased amounts of immunosuppressive cytokines. \(^120-128\) or inhibitors of chemotaxis, \(^129-134\) increased tumor infiltration by immunosuppressive cell populations, \(^135-145\) or robust immune checkpoint activation; \(^126,130,136-138,146\) (3) a reduced persistence of TAA-specific CD8\(^+\) memory T cells due to peripheral tolerance; \(^21,23,144,147-149\) and (4) an intrinsically elevated resistance of cancer cells to lysis by immune effectors. \(^136,147,150,151\) Additional details about ICD-associated signaling pathways and resistance mechanisms can be found in various publications from us and others. \(^7-4,7,40,152-155\)

Of note, only a limited number of cell death inducers can elicit bona fide ICD, and this capacity cannot be predicted on the basis of structural or functional similarities. Thus, while cisplatin and oxaliplatin both induce RCD at least in part by forming inter- and intra-strand DNA adducts, \(^156\) only the latter induces ICD. \(^157\) Similarly, even though both melphalan and cyclophosphamide efficiently kill cancer cells by operating as DNA alkylating agents, only the latter drives ICD. \(^158\) In both examples, the ability of a specific agent (e.g., oxaliplatin, cyclophosphamide) but not one of its alike (e.g., cisplatin, melphalan) to drive ICD can be explained by the differential activation of ER stress (and hence differential exposure of CALR in the course of RCD). \(^100,157-159\) Well-established ICD inducers include commonly employed anticancer chemotherapeutics such as: (1) doxorubicin, an anthracycline approved by the US Food and Drug Administration (FDA) for treating acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), small cell lung carcinoma, breast carcinoma, neuroblastoma, lymphoma, thyroid carcinoma, soft tissue and bone sarcomas, multiple myeloma (MM), gastric cancer, ovarian carcinoma, transitional cell bladder carcinoma and Wilms tumor; \(^1,84,160-166\) (2) epirubicin, an anthracycline licensed for use in breast carcinoma patients; \(^1,84,167,168\) (3) idarubicin, an anthracycline generally employed against AML, \(^84,167-169\) (4) mitoxantrone, an anthrancenedione approved for the treatment of prostate carcinoma, AML, non-Hodgkin’s lymphoma (NHL) and breast carcinoma; \(^1,84,167,168\) (5) bleomycin, a glycopeptide antibiotic approved for the treatment of patients with NHL, testicular cancer, Hodgkin’s lymphoma, penile cancer and squamous carcinomas of the cervix, head and neck or vulva; \(^157,167,168\) (6) bortezomib, a proteasomal inhibitor approved for the therapy MM and mantle cell lymphoma (MCL); \(^171-181\) (7) cyclophosphamide, a DNA-alkylating agent approved for use in patients with chronic myeloid leukemia (CML), AML, ALL, chronic lymphocytic leukemia, MM, ovarian carcinoma, breast carcinoma, mycosis fungoides, lymphoma, neuroblastoma, and retinoblastoma; \(^177,182-191\) and (8) oxaliplatin, a platinum-derivative licensed for the therapy of advanced colorectal carcinoma in combination with 5-fluorouracil and folinic acid. \(^198,199\) Moreover, there is some evidence that microtubule-targeting agents including taxanes and vinca alkaloids (which are commonly used for the treatment of multiple carcinomas) can stimulate ICD. \(^191-199\)

Along the lines of our Trial Watch series, here we discuss recent preclinical and clinical advances in the development of ICD-inducing chemotherapeutic regimens. \(^200\) Several other interventions that trigger bona fide ICD, such as radiation therapy administered according to specific regimens, \(^94,201-203\) high hydrostatic pressure, \(^3,4\) oncolytic virotherapy \(^204-208\) and photodynamic therapy, \(^44,86,98,99\) are not discussed here in further detail.

Recent preclinical developments

A high amount of preclinical and/or translational studies on chemotherapy-induced ICD has been published since the latest Trial Watch dealing with this topic (April 2015). \(^50\) Of such an abundant scientific production from us and others, we found of particular significance the following works.

We documented that anthracycline-induced ICD critically relies on the release of ANXA1 by cancer cells, driving the late-stage phases of DC chemotaxis in a formyl peptide receptor 1 (FPR1)-dependent manner. \(^55\) Accordingly, a loss-of-function single-nucleotide polymorphism in FPR1 was found to be associated with poor prognosis in cohorts of breast and colorectal
carcinoma patients undergoing anthracycline or oxaliplatin-based chemotherapy.55 Moreover, we found that combining chemotherapy-induced ICD with short-term fasting or caloric restriction mimetics (CRMs)90 like hydroxyurea or spermidine, boosts the efficacy of mitoxantrone and oxaliplatin in mice, a therapeutic improvement that is accompanied by decreased tumor infiltration by immunosuppressive CD4+CD25+FOXP3+ regulatory T (T\textsubscript{REG}) cells.209 Along similar lines, Di Biase et al. (from University of Southern California, Los Angeles, CA, USA) observed that the combination of doxorubicin with a fasting-mimicking diet strongly delays breast cancer and melanoma progression as it increases the amounts of tumor-infiltrating cytotoxic T lymphocytes (CTLs) while concomitantly decreasing the expression levels of the immunosuppressive enzyme heme oxygenase-1 (HMOX1; also known as HO1).210 We also discovered that cancer cells undergoing mitoxantrone-induced ICD trigger a pathogen response-like chemokine (PARC) signature characterized by the co-release of C-X-C motif chemokine ligand 1 (CXCL1), C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 10 (CXCL10) (or homologues thereof), in thus far mimicking bacterial or virus infected cells.97 Such a chemokine mixture is particularly efficient at recruiting neutrophils towards the dying cells (a process that appears to be evolutionarily conserved), paving the way to the CALR-dependent phagocytosis of dying cancer cells or corpses thereof, and the cytotoxic targeting of residual malignant cells.97 We characterized a naturally-occurring preclinical model of cancer that exhibits intrinsic resistance against mitoxantrone-induced ICD in vivo secondary to a defect in CALR expression,199 and we documented that anthracyclines and oxaliplatin can trigger a necrototic variant of ICD211-215 in cancer cells expressing receptor interacting serine/threonine kinase 3 (RIP3K) and the pseudokinase mixed lineage kinase domain-like (MLKL).215 Finally, we found that an engineered oncolytic vaccinia virus216 can induce ICD-dependent antitumor immunity, which can be further potentiated by the co-administration of ICD-inducing chemotherapy or immune checkpoint blockers (ICBs),216 and that pharmacological inhibition of signal transducer and activator of transcription 3 (STAT3)217 signaling boosts the therapeutic efficacy of anthracyclines upon increased type I interferon (IFN) secretion.217

Pfrschke and co-authors (from Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA) found that autochthonous tumors lacking tumor-infiltrating lymphocytes (TILs) can be sensitized to immunological rejection via a Toll-like receptor 4 (TLR4)-dependent mechanism when suitable ICD inducers like oxaliplatin or cyclophosphamide are combined with ICBs targeting programmed cell death 1 (PDCD1; best known as PD-1)218 and/or cytotoxic T-lymphocyte associated protein 4 (CTLA4).218 Similarly, Stewart and colleagues (from MedImmune Ltd, Cambridge, United Kingdom) characterized a novel antibody directed against CD274 (best known as PD-L1) (MEDI4736), specifically engineered to prevent antibody-dependent cell-mediated cytotoxicity (ADCC),219 which exhibits potent antitumor activity when combined with oxaliplatin (only in immunocompetent mice).219 In a multi-modal combinatorial study, Rios-Doria and collaborators (from MedImmune, Gaithersburg, MD, USA) documented that liposomal doxorubicin induces potent ICD-associated innate and adaptive immune responses, in vivo, and effectively controls tumor growth, especially in combination with ICBs against CTLA4, PD-1, or its main ligand PD-L1 or with immunostimulatory fusion proteins targeting TNF receptor superfamily, member 4 (TNFRSF4; best known as OX40) or TNF receptor superfamily member 18 (TNFRSF18; best known as GITR).220 In a slightly different approach, Evans et al. (from Vaccinex, Inc., Rochester, NY, USA) reported that semaphorin 4D (SEMA4D) expression at the tumor invasive margin facilitates pro-tumorigenic inflammation, and that combining anti-SEMA4D monoclonal antibodies (mAbs) with ICBs or cyclophosphamide promotes immunological rejection in murine colorectal carcinoma models.221 Finally, Blake et al. (from QIMR Berghofer Medical Research Institute, Herston, Australia) observed that inhibiting CD96 – a negative regulator of natural killer (NK) cell activity212 – with ICBs or doxorubicin exerts superior antimetastatic effects in the lung.223

Musahl et al. (from Max Planck Institute for Molecular Genetics, Berlin, Germany) observed that the long non-coding RNA, ncRNA-RB1, positively regulates overall CALR expression levels so that, following anthracyclines-induced ICD, ncRNA-RB1 supports surface-exposed CALR driven phagocytosis.224 In a similar fashion, Colangelo and co-authors (from University of Sannio, Benevento, Italy) found that the microRNA miR-27a specifically suppresses the exposure of CALR by mitoxantrone and oxaliplatin in colorectal cancer cells by negatively affecting the intracellular CALR trafficking pathway.225 In a study exploring novel combinatorial regimens, Lu and colleagues (from University of Alabama, Birmingham, AL, USA) documented that combining an inhibitor of thrombospondin 1 (THBS1; also known as TSP1) and transforming growth factor beta 1 (TGFβ1) signaling, i.e., SR131277, with bortezomib mediates superior anti-neoplastic effects as compared to either agents alone.226 In a different combinatorial approach, Hsu and colleagues (from National Yang-Ming University, Taipei, Taiwan) revealed that pre-conditioning with low-dose doxorubicin or paclitaxel before adoptive cell transfer (ACT) significantly improves antitumor immunity upon inhibition of NF-κB-regulated immunosuppressive factors.227 Similarly, Koo and collaborators (from Catholic University of Korea, Bucheon, Republic of Korea) found that X-shaped double-stranded oligodeoxynucleotide molecules (so-called “X-DNA”) that bind TLR9228 greatly enhance the antitumor efficacy of doxorubicin against colitis-associated colorectal carcinoma, via a mechanism that depends on DCs and T cells.229 Finally, Monk et al. (from University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA) documented that combining pegylated liposomal doxorubicin with a TLR8 agonist, i.e., motolimod, retards the growth of patient-derived ovarian carcinoma cells implanted in humanized mice.230

In a study exploring resistance mechanisms, Buondonno et al. (from University of Torino, Torino, Italy) documented that treating osteosarcoma cells that overexpress ATP binding cassette subfamily B member 1 (ABCB1) – a plasma membrane transporter that actively extrudes several chemotherapeutics including doxorubicin – with mitochondria-targeted
doxorubicin overcomes chemoresistance to restore ICD and associated immune responses \textit{in vivo}.234 Finally, Shalapour and co-authors (from University of California San Diego, San Diego, CA, USA) reported that B cells producing class A immunoglobulins (IgAs), IL10 and PD-L1 in a TGFB1-dependent fashion act as immunsuppressive plasmocytes and prevent oxalatin-driven tumor rejection in different murine models of prostate cancer.232 Thounaojiam and colleagues (from Meharry Medical College, Nashville, TN, USA) found that bortezomib suppresses the growth of various solid tumors by upregulating the expression of various components of the Notch signaling pathway in lymphoid tissues including CD8⁺ CTLs, resulting in increased cytotoxic functions.219,233 Guillerey and collaborators (from QIMR Berghofer Medical Research Institute, Herston, Australia) observed that anti-myeloma immune response elicited by bortezomib or cyclophosphamide critically relies on CD226, which is crucial for the effector and cytotoxic functions of NK and CD8⁺ T cells.234 Finally, Wong and collaborators (from National University of Singapore, Singapore) screened a library of chemotherapeutically active platinum derivatives and characterized a Pt(II) N-heterocyclic carbene complex as a putative inducer of ICD (pending \textit{in vivo} validation), based on its capacity to trigger oxidative ER stress, CALR exposure, ATP secretion, and HMGBl release.235

Taken together, these findings exemplify the attention currently focused around the molecular and cellular mechanisms through which the death of cancer cells responding to some (but not all) chemotherapeutics initiates a therapeutically relevant tumor-specific immune response.

Completed clinical trials

Since the publication of the latest Trial Watch dealing with this topic (April 2015), multiple peer-reviewed articles documented the outcome of clinical trials evaluating the efficacy of \textit{bona fide} ICD-inducing chemotherapeutics (\textit{i.e.}, doxorubicin, epirubicin, idarubicin, mitoxantrone, bortezomib, bleomycin, cyclophosphamide or oxaliplatin) along with ICD-associated immunological biomarkers.236,237 These publications were acquired from PubMed (http://www.ncbi.nlm.nih.gov/pubmed), and the initial list was manually curated to ensure relevance for this Trial Watch.

Several clinical studies demonstrated the beneficial immunostimulatory effects of ICD induction by chemotherapy. Loi \textit{et al.} (from Peter MacCallum Cancer Centre, Melbourne, Australia) documented that increased tumor infiltration by T cells is associated with improved prognosis in patients affected by triple-negative breast cancer (TNBC) with residual disease following neoadjuvant chemotherapy (consisting of doxorubicin, cyclophosphamide, and in some cases paclitaxel).238 Cornelissen and collaborators (from Erasmus MC Cancer Institute, Rotterdam, Netherlands) reported that combining DC-based vaccines with metronomic cyclophosphamide (which efficiently reduces circulating T\textsubscript{REG} cells) resulted in radiographic tumor control (and increased overall survival) in 8 out of 10 patients with malignant pleural mesothelioma patients.239 Schijns and colleagues (from Wageningen University, Wageningen, Netherlands) found that individuals with recurrent glioblastoma multiforme (GBM) receiving a vaccine composed of autologous antigens in combination with cyclophosphamide, experienced improved overall survival.240 Klein and co-authors (from Ludwig Institute for Cancer Research, Heidelberg, Australia) reported that cyclophosphamide promoted TAA-specific CD4⁺ T cell responses driven by a peptide-based vaccine targeting cancer/testis antigen 1B (CTAG1B; best known as NY-ESO-1)241 in patients with advanced melanoma, in the absence of T\textsubscript{REG} cell depletion.238 Murahashi \textit{et al.} (from Kyushu University, Fukuoka, Japan) evaluated a multipeptide-based vaccine combined with escalating doses of cyclophosphamide in patients with locally advanced, metastatic and/or recurrent gastrointestinal, lung or cervical cancer, achieving increased overall survival accompanied by increased TAA-specific T cells and peripheral T\textsubscript{REG} cell depletion.242 Tanis and collaborators (from The Netherlands Cancer Institute, Amsterdam, Netherlands) found that patients with liver metastases from colorectal carcinoma obtain a survival benefit from the FOLFOX therapeutic regimen (consisting of folinic acid, fluorouracil and oxaliplatin), which is accompanied by increased amount of CTLs at invasive tumor margin, as well as with mast cell infiltration.243 Collectively, these reports demonstrate that ICD-inducing chemotherapeutic regimens can prolong the survival of some cancer patients, and this often correlates with biomarkers of ongoing antigenicity.

Alongside, a few articles documented negative immunological consequences of chemotherapeutic regimens (at least potentially) triggering ICD, such as the R-CHOP regimen (consisting of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone). Specifically, Ito \textit{et al.} (from Fujita Health University Hospital, Aichi, Japan) found that diffuse large B-cell lymphoma (DLBCL) patients receiving R-CHOP experienced immunosuppression for two or more years following treatment, mainly manifesting with marked decrease in circulating CD20⁺ B cells and CD4⁺ T cells.244 Brown and collaborators (from University of Oxford, John Radcliffe Hospital, Oxford, UK) reported that patients with DLBCL receiving R-CHOP exhibited decreased levels of major histocompatibility complex, class II, DR alpha (HLA-DRA) on DLBCL cells, correlating with inferior overall survival.245 On a relatively conciliatory note though, Wu and co-authors (from The Second Hospital of Lanzhou University, Lanzhou, China) found that the low circulating levels of monocytes and monocytic myeloid-derived suppressor cells (MDSCs) have profound positive prognostic impact on the overall survival of DLBCL patients treated with R-CHOP.246 It is tempting to speculate, yet remains to be formally investigated, that the immunosuppressive effects of R-CHOP originate from prednisone.247 It would therefore be interesting to see whether an “R-CHO” regimen deprived of prednisone might exert superior immunostimulatory and therapeutic effects.

Ongoing clinical trials

Official sources list no less than 58 clinical trials evaluating the clinical efficacy of \textit{bona fide} ICD-inducing chemotherapeutic regimens in conjunction with relevant immune biomarkers.
initiated after April 2015 (since the publication of the latest Trial Watch dealing with this topic) (Fig. 1, Tables 1 and 2). These studies were retrieved from the ClinicalTrials.gov database (http://www.clinicaltrials.gov/), and the initial list was manually curated to ensure relevance for this Trial Watch.

Our survey revealed that multiple ICD-relevant biomarkers are being investigated as immunological outcomes across recently initiated clinical trials based on ICD-inducing chemotherapeutic regimens (Fig. 1A). These immunological biomarkers include: (1) parameters of broad T cell immunophenotyping, such as the so-called “Immuno-score” and the abundance of tumor-infiltrating or circulating CD3+ , CD4+ or CD8+ T cells, amongst others;251-253 (2) the circulating levels of multiple cytokines, such as interferon, gamma (IFNG; best known as IFN-γ);254 IL6,255 and tumor necrosis factor (TNF);256-258 (3) the amounts of TAA-specific T cells (via tetramer assays);259,260 (4) the tumor mutational load and/or the abundance of predicted neo-antigens (via genome or whole-exome sequencing);115,138,261-265 and (5) the levels of circulating biomarkers of ICD (via proteomic or metabolomic assays).49,266 Alongside, several immunological biomarkers with indirect relevance for ICD and its therapeutic outcomes are also being tested, including the abundance of circulating or tumor-infiltrating NK cells, MDSCs and TREG cells, as well as the expression levels and activation status of immune checkpoints.4,261,267-273 In this setting, the profiling of TREG cells is being performed in most cases to estimate the ability of cyclophosphamide to specifically target these immunosuppressive cells.274-276 It will be interesting to see whether the peripheral profile (in terms of abundance and activation status) of CD4+ and/or CD8+ T cells can serve as reliable biomarker for the immunological consequences of chemotherapy.4,277 Preclinical and (mostly retrospective) clinical data advocate that tumor-infiltrating T cells provide superior prognostic and/or predictive information,251,267,278 but the identification of a reliable circulating biomarker would be a major asset for immunomonitoring.

A majority of the clinical trials surveyed here aim at testing cyclophosphamide, epirubicin, doxorubicin or oxaliplatin, typically as on-label therapeutic interventions and often as part of gold standard chemotherapeutic regimen (Fig. 1B, Tables 1 and 2). In some cases, the ICD-inducing potential of the chemotherapeutic regimen of choice was cited as part of the rational to the study. However, we were unable to identify any clinical trial specifically comparing the ICD-inducing potential of these agents with a relevant non-immunogenic chemotherapeutic. In a majority of cases, cyclophosphamide is administered with the primary aim of inhibiting or depleting (systemic) TREG cells. However, considering the wide array of immunological biomarkers monitored in these clinical trials (Fig. 1A), the ICD-inducing potential of cyclophosphamide may also become apparent.

Figure 1. Current clinical trials testing immunogenic cell death (ICD)-inducing chemotherapies in oncological indications. A. Distribution by immunological biomarker (biomarkers directly relevant for ICD are in bold). B. Distribution by main chemotherapeutic agent. C. Distribution by oncological indication. D. Number of clinical trials currently testing ICD-inducing chemotherapeutic regimens in combination with immunotherapy. CIK, cytokine-induced killer; CSF1, colony stimulating factor 1; DC, dendritic cell; mAb, monoclonal antibody; MDSC, myeloid-derived suppressor cell; NK, natural killer; TAA, tumor-associated antigen; TLR, Toll-like receptor; TREG regulatory T.
As for oncological indication, the studies we retrieved are currently enrolling patients with breast carcinoma (16 trials), lung cancer (in particular non-small cell lung carcinoma, NSCLC) (5 trials), colorectal carcinoma (3 trials), prostate cancer (3 trials), and other cancer types (31 trials) (Fig. 1C, Table 1 and 2). In general, solid tumors (51 trials) are preferred to hematological malignancies (8 trials). Possibly, this reflects, (1) the high sensitivity of several hematological tumors to standard-of-care treatments, and/or (2) the fact that hematological malignancies often stem from components of the immune system, resulting in compromised immune functions and limited susceptibility to multiple forms of immunotherapy and immunologic chemotherapies.\(^{279,280}\) In multiple clinical studies, bona fide ICD-inducing chemotherapeutic regimens are combined with agents that elicit ICD per se, such as radiation therapy (2 trials), or considerably boost the immunogenicity of cancer cells, such as taxanes or zoledronic acid (10 trials). Finally, in a limited amount of trials, ICD inducers are combined with targeted anticancer agents, including the inhibitor of JAK kinases ruxolitinib (1 trial) and the inhibitor of mechanistic target of rapamycin kinase (MTOR) rapamycin\(^{281,282}\) (also known as sirolimus, or its derivative everolimus) (2 trials) (Tables 1 and 2).

Fitting well within the current oncology landscape, a majority of clinical trials surveyed for this Trial Watch combine ICD-inducing chemotherapeutic regimens with bona fide immunotherapies (Fig. 1D, Tables 1 and 2). These include: (1) immunostimulatory cytokines such as granulocyte-macrophage colony stimulating factor (GM-CSF), IL2, IFN-α and IRX-2, a cell-free mixture of cytokines encompassing IL1, IL2, IL6, IL8, IL10, IL12, TNF, IFN-γ and colony stimulating factor 1 (CSF1, also called macrophage colony stimulating factor 1 or M-CSF); (2) ICBS such as the PD-1-targeting agents pembrolizumab\(^{283}\) and SHR-1210,\(^{284}\) and the PD-L1-targeting agents avelumab\(^{285}\) (3) the inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1);\(^{138,285}\) (4) adoptively transferred T cells, often CD8+ T cells or PD-1-de\(^\text{+}\) T cells;\(^{286}\) (5) tumor-targeting mAbs, such as the CD20-targeting rituximab,\(^{287}\) the vascular endothelial growth factor (VEGF)-targeting mAb bevacizumab,\(^{288}\) and various molecules targeting HER2,\(^{289}\) (6) anticancer vaccines,\(^{12,53,290,291}\) and (7) oncolytic viruses\(^{292,293}\) (Fig. 1D, Table 1 and 2).

Finally, most of the clinical trials we surveyed are ongoing (i.e., either actively recruiting or initiated/registered but not yet recruiting), with a few notable exceptions. NCT03050814 (a Phase 2 study testing oxaliplatin-based chemotherapy in combination with PD-L1 blockade or bevacizumab in colorectal carcinoma patients) has been suspended pending further discussion with the US FDA, because an unspecified number of individuals died within 30 days of treatment. On a different note, NCT02419170 (a Phase I study testing DC-based vaccination plus cyclophosphamide in NSCLC patients) has been withdrawn prior to enrollment because the investigator manufacturing the vaccines left the concerned institution. Finally, NCT02461121 (a Phase III trial comparing cyclophosphamide-containing versus cyclophosphamide-free preconditioning in patients with acute myeloid leukemia allocated to transplantation) and NCT02655458 (a Phase I study involving cyclophosphamide-containing preconditioning in multiple

Table 1. Current clinical trials evaluating the therapeutic and immunological profile of ICD-inducing chemotherapeutic regimens.\(^*\)

Drug	Indication(s)	Phase	Status	Notes	Ref.
Bleomycin	Rectal cancer	II	Recruiting	As single agent in the context of electro-chemotherapy	NCT03040180
Bortezomib	Lung cancer	I	Not yet recruiting	Combined with a DRibble vaccine and DC/CIK therapy	NCT03057340
Doxorubicin	Breast carcinoma	I/II	Recruiting	Combined with epirubicin, cyclophosphamide, fluorouracil or methotrexate	NCT02897700
			Recruiting	Combined with debatine, cyclophosphamide and paclitaxel	NCT02957968
			Recruiting	Combined with erubulin and cyclophosphamide	NCT02623972
			Recruiting	Combined with cyclophosphamide, ruxolitinib and paclitaxel	NCT02876302
Epirubicin	Pediatric solid tumors	I	Recruiting	As lypo-thermosensitive liposomal doxorubicin	NCT02536183
			Recruiting	Combined with doxorubicin, cyclophosphamide, fluorouracil or methotrexate	NCT02897700
			Recruiting	Combined with paclitaxel, cyclophosphamide and MEDI4736	NCT02685059
			Recruiting	Combined with docetaxel, cyclophosphamide/ capcitabine or fluorouracil/cyclophosphamide	NCT02897050
			Recruiting	Combined with cyclophosphamide, fluorouracil, trastuzumab or pertuzumab	NCT03144947
Idrubicin + mitoxantrone	Acute promyelocytic leukemia	III	Recruiting	Combined with arsenic trioxide, tretinoin, cytarabine, mercaptopurine and methotrexate	NCT02688140
Oxaliplatin	Colorectal carcinoma	n.s.	Recruiting	Combined with 5-fluorouracil and bevacizumab	NCT02817718
			Recruiting	Combined with trifuridine, bevacizumab and nivolumab	NCT02846443
			Recruiting	Combined with 5-fluorouracil, leucovorin, bevacizumab, capcitabine, Ad-CEA vaccine and avelumab	NCT03050814
Gastrointestinal cancer	IV	Not recruiting	Combined with cinobufotalin	NCT02860429	
Gastric cancer	II	Recruiting	Combined with capcitabine, epirubicin and pembrolizumab	NCT02918162	
Pancreatic cancer	I	Recruiting	Combined with folic acid, rituximab, 5-fluorouracil, paclitaxel, gemcitabine and a DC-based vaccine	NCT02548169	

Abbreviations: Ad-CEA, adenovirus vector encoding carcinoembryonic antigen; CIK, cytokine-inducer killer; DC, dendritic cell; n.s., not specified; *Initiated between 1st April 2015 and 30th June 2017.*
myeloma patients) have been completed. However, to the best of our knowledge, the results of these studies have not been released yet.

Concluding remarks

A number of ICD-inducing chemotherapeutic regimens are currently approved by the US FDA or equivalent regulatory agencies worldwide for use in cancer patients. However, the widespread use of these treatments has been implemented mostly on empirical (rather than immunological) grounds.\(^{300,296–300}\) Indeed, the possibility that chemotherapy and other forms of treatment (including radiotherapy and photodynamic therapy) might promote an immunogenic form of cancer cell death has been overlooked for several decades.\(^{301–303}\) Thus, current anticancer drugs have been developed in immunodeficient preclinical models and in clinical trials devoid of any form of immunomonitoring, mainly most often aimed at identifying maximum tolerated doses (MTDs).\(^{298,304}\) Nonetheless, a majority of currently available anticancer agents mediate on-target or off-target immunostimulatory effects, which strongly argues against an irrelevant role for the immune system in the therapeutic effects of these treatments.\(^{305–308}\)

Moreover, in various cases, chemotherapeutics applied through multiple treatment cycles may negatively affect the immune system, by causing lymphopenia or leukopenia, thereby further compromising antitumor immune responses.\(^{44,53,34}\) One of the major challenges for the future will be to identify doses and administration schedules that mediate maximal immunostimulatory effects.\(^{297,309,310}\) Accumulating evidence suggest indeed that metronomic chemotherapy and hypofractionated radiation (rather than chemotherapy at the MTD and high single-dose radiation) exerts superior immunostimulatory (and hence therapeutic, at least in some settings) effects.\(^{311–314}\) Alongside, it will be important to devise highly efficient combinatorial regimens that harness not only the ability of some treatments to drive ICD, but also the off-target immunostimulatory effects of a variety of agents. We are convinced that conventional therapeutic regimens – if properly employed – are a very powerful and relatively economical tool to drive clinically relevant antitumor immune responses.

Table 2. Current clinical trials evaluating the therapeutic and immunological profile of cyclophosphamide-based chemotherapy.\(^{2}\)

Indication(s)	Phase	Status	Notes	Ref.
Acute lymphoblastic leukemia	II	Recruiting	Combined with standard-of-care chemotherapy	NCT02823558
Acute myeloid leukemia	III	Completed	Combined with standard-of-care chemotherapy and anti-lymphocyte globulin	NCT02461121
B-cell lymphoma	I/I	Recruiting	Combined with fludarabine and CD19-specific CAR-T cells	NCT03146533
Breast carcinoma	I	Unknown	Combined with radiotherapy	NCT03441270
	II	Recruiting	Combined with indomethacin, omeprazole, dietary supplements (e.g.,	NCT02950259
			multivitamins) and IRX-2	
Chronic lymphocytic leukemia	II	Not recruiting	Combined with peptide vaccination	NCT03012100
DLBCL	I	Recruiting	Combined with fludarabine and CD19-specific CAR-T cells	NCT02431988
EBV-associated malignancies\(^{2*}\)	I/I	Recruiting	Combined with fludarabine and PDCD1-deficient EBV-specific CTLs	NCT03044743
Esophageal cancer	I	Recruiting	Combined with PDCD1-deficient CTLs and IL2	NCT03081715
Gastrointestinal cancer	I	Not recruiting	Combined with ACT, IL2 and pembrolizumab	NCT02757391
Gynecological tumors	II	Recruiting	Combined with epacadostat and DPX-Survivac	NCT02785250
Gastrointestinal cancer	II	Recruiting	Combined with pembrolizumab and bevacizumab	NCT02853318
Hematological malignancies\(^{2*}\)	I/I	Not recruiting	Combined with a DC-based vaccine and GM-CSF	NCT02790993
Hepatocellular carcinoma	I/I	Not recruiting	Combined with IMA970 A plus C8102	NCT03203005
Lung cancer	I	Withdrawn	Combined with DC-based vaccine	NCT02419170
Melanoma	I/I	Recruiting	Combined with polyICLC and MHP vaccine	NCT02425306
Mesothelioma	I/I	Recruiting	Combined with pembrolizumab and ONCOS-102	NCT03003676
Multiple myeloma	I	Completed	Combined with lenalidomide and elotuzumab	NCT02655458
Neuroendocrine tumors	I	Recruiting	Combined with IFN-\(\gamma\)	NCT02838342
Osteosarcoma	I	Recruiting	Combined with sirolimus, methotrexate and zoledronic acid	NCT02517918
Prostate cancer	I	Recruiting	Combined with DNA-based vaccine	NCT02390063
Renal cell carcinoma	I	Not recruiting	Combined with PDCD1-deficient CTLs and IL2	NCT02867345
Sarcoma	II	Recruiting	Combined with pembrolizumab	NCT02867332
Solid tumors	I/I	Not recruiting	Combined with a TLR8 agonist and pegfilgrastim	NCT02606536
		Recruiting	Combined with a DC-based vaccine and GM-CSF	NCT02705703
		Recruiting	Combined with fludarabine, neoaigntin-specific T cells, PDCD1 inhibition and IL2	NCT03171220

Abbreviations: ACT, adoptive cell transfer; CAR, chimeric antigen receptor; CTL, cytotoxic T lymphocyte; DC, dendritic cell; DLBCL, diffuse large B-cell lymphoma; DPX, DepoVax\(^{2*}\); EBV, Epstein-Barr virus; GM-CSF, granulocyte-macrophage colony stimulating factor; IFN, interferon; IL, interleukin; MHP, melanoma helper peptides; polyICLC, polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose; TAA, tumor-associated antigen; TLR, Toll-like receptor \(^{1*}\)Initiated between 1\(^{1*}\) April 2015 and 30\(^{1*}\) June 2017 \(^{2*}\)Including gastric carcinoma, nasopharyngeal carcinoma, T-cell lymphoma, Hodgkin lymphoma and DLBCL.
Acknowledgments

ADG is a recipient of FWO Postdoctoral (Renewal) Fellowship from FWO-Vlaanderen, Belgium and the POR award funds from KU Leuven. NR, SM, MLS are funded by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant (Agreement no. 642295 for NR and 675448 for SM/MLS). PA is supported by grants from FWO (G060713 N, G076617 N) and KU Leuven (C16/15/073). GK is supported by Ligue contre le Cancer (équipe labellisée); Agence Nationale de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immunocyto-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). LG is supported by WCMC (intra-mural funds) and Sotio a.c. (Prague, Czech Republic).

Abbreviations

ACT: adoptive cell transfer
DAMP: damage-associated molecular pattern
DC: dendritic cell
ER: endoplasmic reticulum
FDA: Food and Drug Administration
GM-CSF: granulocyte-macrophage colony-stimulating factor
ICB: immune checkpoint blocker
ICD: immunogenic cell death
IFN: interferon
IL: interleukin
mAb: monoclonal antibody
MTD: maximum tolerated dose
NSCLC: non-small cell lung carcinoma
RCD: regulated cell death
TAA: tumor-associated antigen
TIL: tumor-infiltrating lymphocyte
TLR: Toll-like receptor

ORCID

Abhishek D. Garg http://orcid.org/0000-0002-9976-9922
Odeta Mece http://orcid.org/0000-0001-6817-9383
Lorenzo Galluzzi http://orcid.org/0000-0003-2257-8500

References

1. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubb S, Obeid M, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691–701. doi:10.1084/jem.20050915.
2. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. doi:10.1146/annurev-immunol-032712-100008.
3. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi:10.1038/nri.2016.107 10.1038/nri.2017.48.
4. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Broude D, Chaurio R, Cirone M, et al. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front Immunol. 2015;6:588. doi:10.3389/fimmu.2015.00588.
5. Ciccheleri I, Denies S, Devriendt B, de Rooster H, Sanders NN. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells? OncoImmunology. 2015;4:e104813. doi:10.1080/2162402X.2015.1048413.
6. Garrido G, Rabasa A, Sanchez B, Lopez MV, Blanco R, Lopez A, Hernandez DR, Perez R, Fernandez LE. Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody. J Immunol (Baltimore, Md: 1950). 2015;195:4954–66. doi:10.4049/jimmunol.195.3.477.
7. Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol. 2015;59:131–40. doi:10.1387/ijdb.150061pa.
8. Paroli M, Bellati F, Videtta M, Focaccetti C, Mancone C, Donato T, Antonilli M, Perniola G, Accapezzato D, Napoliolo C, et al. Discovery of chemotherapy-associated ovarian cancer antigens by interrogating memory T cells. Int J Cancer. 2014;134:1823–34. doi:10.1002/ijc.28515.
9. Palombo F, Focaccetti C, Barnaba V. Therapeutic implications of immunogenic cell death in human cancer. Front Immunol. 2014;4:503. doi:10.3389/fimmu.2013.00503.
10. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor cells enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Onco Targets. 2014;4:403–16. doi:10.18632/oncotarget.1719.
11. Garg AD, Gallerani N, Neamati A, Cimino G, Parenti P, Agostinis P. Immunogenic cell death: a pan-cancer analysis. Lancet Oncol. 2017;18:1009–18. doi:10.1016/S1470-2045(17)30516-8.
12. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Gameiro SR. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer. 2013;133:624–36. doi:10.1002/ijc.28070.
13. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Cirolo A, Mignot G, Mairui MC, Ulrich E, Saulnier P, et al. Toll-like receptor 4-dependent contribution of the immune system to anticaner chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9. doi:10.1038/nm1622.
14. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JL, Lee W, Yuen J, Wong P, Ho TS, et al. Cancer immunology: The landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8. doi:10.1126/science.aab1348.
15. Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, Sommer L, Boyman O. The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy. Cell Rep. 2017;20:854–67. doi:10.1016/j.celrep.2017.07.007.
16. Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, Wong YNS, Rowan A, Kanu N, Al Bakir M, et al. Insertion- and deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2018;19:1009–21. doi:10.1016/S1470-2045(17)30516-8.
17. Parakh S, Gan HK, Parslow AC, Burvenich JIG, Burgess AW, Scott AM. Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat Rev. 2017;59:1–21. doi:10.1016/j.ctrv.2017.06.005.
18. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem S, Maloney E, Shen A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:eaaa1348. doi:10.1126/scitranslmed.aaaa1348.
19. Jimenez-Sanchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, Gill MB, Park KJ, Zivanovic O, Konner J, et al. Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient. Cell. 2017;170:927–38 e20. doi:10.1016/j.cell.2017.07.025.
20. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–81. doi:10.1038/nature13988.
21. Ott PA, Hu Z, Keshin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al. An immunogenic
personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–21. doi:10.1038/nature22991.

22. Leonard JD, Gilmore DC, Dileepan T, Nawrocka WI, Chao JL, Schoenbach MJ, Jenkins MK, Adams EJ, Savage PA. Identification of natural regulatory T cell epitopes reveals convergence on a dominant autoantigen. Immunity. 2017;47:107–17 e8. doi:10.1016/j.immuni.2017.02.001.

23. Kumai T, Fan A, Harabuchi Y, Celis E. Cancer immunotherapy: moving forward with peptide T-cell vaccines. Curr Opin Immunol. 2017;47:57–63. doi:10.1016/j.coi.2017.07.003.

24. Nakagawa H, Mizukoshi E, Kobayashi E, Tamai T, Hamana H, Ozawa T, Kishi H, Kitahara M, Yamashita T, Arai K, et al. Association Between High-Avidity T-Cell Receptors, Induced by alpha-Feto-protein-Derived Peptides, and Anti-Tumor Effects in Patients With Hepatocellular Carcinoma. Gastroenterology. 2017;152:1395–406. e10. doi:10.1053/j.gastro.2017.02.001.

25. Segal G, Prato S, Zehn D, Minter JD, Villadangos JA. Target Density, Not Affinity or Avidity of Antigen Recognition, Determines Adoptive T Cell Therapy Outcomes in a Mouse Lymphoma Model. J Immunol (Baltimore, Md: 1950). 2016;196:3935–42. doi:10.4049/jimmunol.1502187.

26. Jaigirdar A, Rosenberg SA, Parkhurst M. A High-avidity WT1-reactive T-Cell Receptor Mediates Recognition of Peptide and Processed Antigen but not Naturally Occurring WT1-positive Tumor Cells. J Immunol (Baltimore, Md: 1950). 2016;39:105–16.

27. Zhao Q, Ahmed M, Tassev DV, Hasan A, Kuo TY, Guo HF, O'Reilly RJ, Cheung NK. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential. Leukemia. 2015;29:2238–47. doi:10.1038/leu.2015.125.

28. Tassev DV, Hasan A, Kuo TY, Guo HF, O'Reilly RJ, Cheung NK, et al. Quantitative TCRpMHC Dissociation Rate Assessment by NTAmers Reveals Antimelanoma T Cell Repertoires Enriched for High Functional Competence. Leukemia. 2015;195:356–66.

29. Palmer DC, Guittard GC, Franco Z, Crompton JG, Eil RL, Patel SJ, Ji Y, Van Panhuys N, Klebanoff CA, Sukumar M, et al. Cish actively silences TCR signaling in CD8(+T) cells to maintain tumor tolerance. J Exp Med. 2015;212:2095–113. doi:10.1084/jem.20150304.

30. Nakatsugawa M, Yamashita Y, Ochi T, Tanaka S, Chamoto K, Guo T, Butler MO, Hirano N. Specific roles of each TCR hemichain in generating functional chain-centric TCR. J Immunol (Baltimore, Md: 1950). 2015;194:3847–50. doi:10.4049/jimmunol.1401717.

31. Hebeisen M, Schmidt J, Guillaume P, Baugaertner P, Speiser DE, Luessch E, Ufer N. Identification of Rare High-Avidity, Tumor-Reactive CD8(+) T Cells by Monomeric TCR-Ligand Off-Rates Measurements on Living Cells. Cancer Res. 2015;75:1983–91. doi:10.1158/0008-5472.CAN-14-3516.

32. Oren R, Hod-Marco M, Haus-Cohen M, Thomas S, Blat D, Durvshani N, Denkberg G, Elbaz Y, Bencherit F, Eshhar Z, et al. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds. J Immunol (Baltimore, Md: 1950). 2014;193:5733–43. doi:10.4049/jimmunol.1301769.

33. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30. doi:10.1038 nature21349.

34. Patsouki N, Weaver JD, Strauss L, Herbel C, Seth P, Boussiotis VA. Immunomodulatory Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. European J Immunol. 2017;8330.

35. Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. European J Immunol. 2017;47:946–33. doi:10.1002/eji.201646837.

36. Gerritsen B, Pandit A. The memory of a killer T cell: models of CD8 (+) T cell differentiation. Immunol Cell Biol. 2016;94:236–41. doi:10.1038/icip.2015.118.

37. Dogra P, Ghoneim HE, Abdelsamed HA, Youngblood B. Generating long-lived CD8(+) T-cell memory: Insights from epigenetic programs. European J Immunol. 2016;46:1548–62. doi:10.1002/eji.201545550.
induced antitumor immunity requires formyl peptide receptor 1. Sci. 2013;350:972–8. doi:10.1126/science.aad0779.

56. Di Blasio S, Wortel IMN, van Bladel DAG, de Vries LE, Duiveman-de Boer T, Worah K, de Haas N, Buschow SJ, de Vries IIJ, Fidgor CG, et al. Human CD1c+ DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology. 2014;3:e258324. doi:10.4161/onci.258324.

57. Garg AD, Romano E, Rufo N, Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ. 2016;23:938–51. doi:10.1038/cdd.2016.5.

58. Lukasci S, Naghizadeh AR, Erdesi A, Sandor N, Bajta Y. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol Lett. 2017;189:64–72. doi:10.1016/j.imlet.2017.05.014.

59. Ligeon LA, Romao S, Munz C. Analysis of LC3-Associated Phagocytosis and Antigen Presentation. Methods Mol Biol. 2017;1519:145–68. doi:10.1007/978-1-4939-6581-6_10.

60. Olihinson SM, Pettersson A, Olihinson S, Selga D, Bengtsson AA, Sojór-Andersen M, Hällmark T. Phagocytosis of apoptotic cells by macrophages in anti-neutrophil cytoplasmic antibody-associated systemic vasculitis. Clin Exp Immunol. 2012;170:47–56. doi:10.1111/j.1365-2249.2012.04633.x.

61. Choi SC, Simhadri VR, Tian L, Gil-Krzewska A, Krzewski K, Borrego V, Gruden KL, Munz C, Ligeon LA, Romao S, et al. Analysis of LC3-Associated Phagocytosis and Antigen Presentation. Methods Mol Biol. 2017;1519:145–68. doi:10.1007/978-1-4939-6581-6_10.

62. Lukasci S, Naghizadeh AR, Erdesi A, Sandor N, Bajta Y. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol Lett. 2017;189:64–72. doi:10.1016/j.imlet.2017.05.014.

63. Ligeon LA, Romao S, Munz C. Analysis of LC3-Associated Phagocytosis and Antigen Presentation. Methods Mol Biol. 2017;1519:145–68. doi:10.1007/978-1-4939-6581-6_10.

64. Boudewijns S, Koornstra RHT, Westdorp H, Schreibert G, van den Bergh J, Willeme Y, Vanacker H, De Reu H, Vandenberghe J, Willems Y. Identification of a novel regulatory mechanism in dendritic cell cross-priming of antitumor immunity. J Immunol (Baltimore, Md: 1950). 2015;195:9397–47. doi:10.4049/jimmunol.1500089.

65. Osmond TL, Farrand KJ, Painter GF, Ruedd C, Petersen TR, Hermans IF. Activated NKT Cells Can Condition Different Splenic Dendritic Cell Subsets To Respond More Effectively to TLR Engagement and Enhance Cross-Priming. J Immunol (Baltimore, Md: 1950). 2015;195:821–31. doi:10.4049/jimmunol.1401751.

66. Leavy O. Cell death: Pathways for cross-priming. Nat Rev Immunol. 2015;15:725. doi:10.1038/nri3933.

67. Watkinson MK, Locksley RM, Wherry EJ, Ahmed R. Cross-priming of CD8+ T cells. J Immunol (Baltimore, Md: 1950). 2013;189:251–60. doi:10.4049/jimmunol.1300997.

68. Watson AM, Mylin LM, Thompson MM, Schell TD. Modification of a tumor antigen determinant to improve peptide/MHC stability is associated with increased immunogenicity and cross-priming of tumor cells. Cancer Res. 2015;75:6986–95. doi:10.1158/0008-5472.CAN-15-0658.

69. Deswarte K, Vanheerswynghels M, De Prijck S, Waegemans G, Janssen S, Brouwers P. T cell recognition of murine melanoma antigen A380 by CD8+ T cells does not require CD81-mediated transport. J Immunol (Baltimore, Md: 1950). 2015;194:7214–25. doi:10.4049/jimmunol.1500089.
86. Garg AD, Elsen S, Krysko DV, Vandenabeele P, de Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget. 2015;6:26841–60. doi:10.18632/oncotarget.4754.

87. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RJ, Ostankovich M, Sharma P, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6. doi:10.1038/nnature08296.

88. Chekeni FB, Elliott MR, Sandilos JG, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, et al. Pannexin 1 channels mediate find-me signal release and membrane permeability during apoptosis. Nature. 2010;467:863–7. doi:10.1038/nature09413.

89. Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, Kepp O, Métrivet D, Galluzzi L, Perretti JL, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21:79–91. doi:10.1038/cdd.2013.75.

90. Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemothero and radiation therapy. Nat Rev Clin Oncol. 2017;14:247–58. doi:10.1038/nrclinonc.2016.183.

91. Garg AD, Krysko DV, Vandenabeele P, Agostinis P. Extracellular ATP and P2(X)(7) receptor exert context-specific immunogenic effects after immunogenic cancer cell death. Cell Death Dis. 2016;7:e2097. doi:10.1038/cddis.2015.411.

92. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5. doi:10.1038/nature00858.

93. Sistigu A, Yamazaki T, Vacchelli E, Chab K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédiños C, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–9. doi:10.1038/nm.3708.

94. Vanpouille-Box C, Alard A, Aryanakalyal SJ, Sarraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Terc1 regulates radiotherapy-induced tumour immuno-negativity. Nat Commun. 2017;8:15618. doi:10.1038/s41467-017-05683-6.

95. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–70. doi:10.1038/nature23470.

96. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:50–5. doi:10.1038/nature23449.

97. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DCsign. Cancer Res. 2010;70:4335–45. doi:10.1158/0008-5472.CAN-09-3767.

98. Keller AM, Schildknecht A, Xiao Y, van den Broek M, Borst J. Expression of costimulatory ligand CD70 on steady-state dendritic cells breaks CD8+ T cell tolerance and permits effective immunity. Immunity. 2008;29:934–46. doi:10.1016/j.immuni.2008.10.009.

99. Sharma P, Hu-Lieskovsk S, Wargo JA, Ribas A, Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017;168:707–23. doi:10.1016/j.cell.2017.01.017.

100. Lampen MH, van Hall T. Strategies to counteract MHC-I defects in tumors. Curr Opin Immunol. 2011;23:293–8. doi:10.1016/j.coi.2010.12.005.

101. Schmid DA, Irving MB, Posevitz V, Hebeisen M, Posevitz-Fejfar A, Sarria JC, Gomez-Erland R, Thome M, Schumacher TN, Romero P, et al. Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. J Immunol (Baltimore, Md: 1950). 2008;181:7660–9. doi:10.4049/jimmunol.181.11.7660.

102. Meije CB, Swart GW, Leposo C, Das PK, Van den Oord JJ. Antigenic profiles of individual-matched pairs of primary and melanoma metastases. Hum Pathol. 2009;40:399–407. doi:10.1016/j.humpath.2008.11.018.

103. Gubin MM, Artymov MM, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125:3413–21. doi:10.1172/JCI80008.

104. Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, Filisio M, et al. Pannexin 1 channels mediate anti-tumour immune effector functions. Cancer Immunol Immunother. 2015;64:831–9. doi:10.1007/s00262-015-1688-2.

105. Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, Schuler G, Schaft N, Dörrie J. Targeting of DEC-205 on human dendritic cells results in effective MHC class II restricted antigen presentation. Blood. 2010;116:2277–85. doi:10.1182/blood-2010-02-268425.

106. Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H, Watanabe K, Niki T, Katoh S, Miyake M, et al. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. J Immunol (Baltimore, Md: 1950). 2008;181:7660–9. doi:10.4049/jimmunol.181.11.7660.

107. Schmid DA, Irving MB, Posevitz V, Hebeisen M, Posevitz-Fejfar A, Sarria JC, Gomez-Erland R, Thome M, Schumacher TN, Romero P, et al. Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. J Immunol (Baltimore, Md: 1950). 2010;184:4936–46. doi:10.4049/jimmunol.1000173.
119. Araki K, Morita M, Bederman AG, Konieczny BT, Kissick HT, Sonenberg N, Ahmed R. Translation is actively regulated during the differentiation of CD8+ effector T cells. Nat Immunol. 2017;18:1046–57.

120. Li T, Zhang Q, Yang T, Yu J, Hu Y, Mou T, Chen G, Li G. Gastric cancer cells inhibit natural killer cell proliferation and induce apoptosis via prostaglandin E2. Oncoimmunology. 2016;5:e1069936. doi:10.1080/2162402X.2015.1069936.

121. Strannegård O, Thoren FB. Opposing effects of immunotherapy in melanoma using multisubtype interferon-alpha – can tumor immune escape after immunotherapy accelerate disease progression? Oncoimmunology. 2016;5:e1091147. doi:10.1080/2162402X.2015.1091147.

122. Chung EY, Liu J, Homma Y, Zhang Y, Brendolan A, Saggese M, Han J, Silverstein R, Selleri L, Ma X. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeo-domain proteins Pbx1 and Prep-1. Immunity. 2007;27:952–64. doi:10.1016/j.immuni.2007.11.014.

123. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PW. Cell death in the maintenance and abrogation of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology. 2016;5:e1295903. doi:10.1080/2162402X.2017.1295903.

124. Kutkite M, Sahin E, Pisoni J, Percig S, Vogel A, Kraemmer D, Hanzl L, Brunner JS, Paar H, Soukop K, et al. Myeloid PTEN deficiency impairs tumor-immune surveillance via immune-checkpoint inhibition. Oncoimmunology. 2016;5:e1164918. doi:10.1080/2162402X.2016.1164918.

125. Wu MZ, Cheng WC, Chen SF, Nieh S, O’Connor C, Liu CL, Tsai WW, Wu CJ, Martin L, Lin YS, et al. miR-25-93 mediates hypoxia-induced immunosuppression by repressing GAS. Nat Cell Biol. 2017;19(10):1286–96. doi:10.1038/nccell.3615.

126. Garg AD, Vandenberk L, Van Woensel M, Belmans J, Schaaf M, Boon L, De Vleeschouwer S, Agostinis P. Preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology. 2017;6:e1295903. doi:10.1080/2162402X.2017.1295903.

127. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunology: to understand the immune responses that fight cancer. Nature. 2012;484:43–52. doi:10.1038/nature10937.

128. Hader F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, Schulz D, Araki K, Morita M, Bederman AG, Konieczny BT, Kissick HT, Waterhouse CC, Beck PL, Muruve DA, Kubes P. Intravascular damped T cell function and antitumor immunity. Oncoimmunology. 2016;5:e1085146. doi:10.1080/2162402X.2016.1085146.
Seeigel R, Searles S, Bui JD. Mechanisms regulating immune surveil-

lance of cellular stress in cancer. Cell Mol Life Sci. 2017. doi:10.1007/

s00018-017-2597-7.

Tsuchikawa T, Takeuchi S, Nakamura T, Shichinohe T, Hirano S. Clinical impact of chemotherapy to improve tumor microenviron-

ment of pancreatic cancer. World J Gastroint Oncol. 2016;8:786–

92. doi:10.4253/wjgo.v8.i11.786.

Terzeni A, Pirker C, Kerpller BK, Berger W. Anticancer metal drugs

and immunogenic cell death. Mol Cell Life Sci. 2016;165:71–9.

Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al.

Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83. doi:10.1038/onc.2011.384.

Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S,

Michaud M, Menger L, Gdoura A, Tajeddine N, et al. Restoration of

the immunogenicity of cisplatin-induced cancer cell death by endo-

plasmic reticulum stress. Oncogene. 2013;30:1147–58. doi:10.1038/
onc.2010.500.

Dudek-Peric AM, Ferreira GB, Muchowicz A, Wouters J, Prada N,

Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. T

suchikawa T, Takeuchi S, Nakamura T, Shichinohe T, Hirano S.

Sun F, Shi J, Geng C. Dextrazoxane improves cardiac autonomic

function in epirubicin-treated breast cancer patients with type 2 dia-

betes. Medicine. 2016;95:e5228. doi:10.1097/MD.0000000000005228.

Hemdan T, Johansson R, Johnson R, Hellstrom P, Tasdemir I, Malm-

strom PU. 5-Year outcome of a randomized prospective study compar-

ing calcium-Guetier with epirubicin and interferon-

alpha2b in patients with T1 bladder cancer. J Urol. 2014;191:1244–9.
doi:10.1016/j.juro.2013.11.005.

Fucikova J, Kralikova P, Fialova A, Brnticky R, Rob L, Bartunkova J,

Spisek R. Human tumor cells killed by anthracyclines induce a
tumor-specific immune response. Cancer Res. 2011;71:4821–33.
doi:10.1158/0008-5472.CAN-11-0950.

Bugazhv H, Bruchard M, Benzer H, Derangere V, Odoul L,

Euvrard R, et al. Bleomycin exerts ambivalent antitumor immune
effect by triggering both immunogenic cell death and prolifera-
tion of regulatory T cells. PLoS One. 2013;8:e65181. doi:10.1371/journal.
pone.0065181.

Attal M, Lauwers-Cances V, Hulin C, Leux X, Caillot D, Escoffre M,

Arnulf B, Macro M, Belhadj K, Garderet L, et al. Lenalidomide, Bor-

tezomib, and Dexamethasone with Transplantation for Myeloma. N

Eng J Med. 2017;376:1311–20. doi:10.1056/NEJMoa1611750.

Palumbo A, Chan-an Khan A, Weisk L, Nooka AK, Massi T, Beksc

alpha2b in patients with T1 bladder cancer. J Urol. 2014;191:1244–9.
doi:10.1016/j.juro.2013.11.005.

Baz RC, Martin TG, 3rd, Lim HY, Zhao X, Shain KH, Cho HJ, Wolf JL,

Mahindra A, Chari A, Sullivan DM, et al. Randomized multicen-
ter phase 2 study of pomalidomide, cyclophosphamide, and dexa-

methasone in relapsed/refractory multiple myeloma. Blood. 2016;

128:2415–22. doi:10.1182/blood-2016-05-717769.

Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S,

Fenske TS, Shah NM, Kim KM, Saha S, Zhang C, Baim AE, Farnen

JL, Mahindra A, Chari A, Sullivan DM, et al. Randomized multicen-
ter phase 2 trial of isoxazomib and dexamethasome in relapsed multiple myeloma

not refractory to bortezomib. Blood. 2016;128:2415–22. doi:10.1182/
blood-2016-05-717769.

Offner F, Spisek R, Mazumder A, Osmanov E, Eom HS, Baim AE, Farnen

JL, Mahindra A, Chari A, Sullivan DM, et al. Randomized multicen-
ter phase 2 trial of isoxazomib and dexamethasome in relapsed multiple myeloma

not refractory to bortezomib. Blood. 2016;128:2415–22. doi:10.1182/
blood-2016-05-717769.

Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S,

Bhandarkar MV. Bortezomib enhances dendritic cell (DC)-mediated

induction of immunity to human myeloma via exposure of cell surface

heat shock protein 90 on dying tumor cells: therapeutic implica-
tions. Blood. 2007;109:4839–45. doi:10.1182/blood-2006-10-054221.

Demaria S, Santorri FR, Ng B, Liebes L, Formenti SC, Vukmanovic S.

Select forms of tumor cell apoptosis induce dendritic cell maturation.

J Leukoc Biol. 2005;77:361–7. doi:10.1182/jleu.2005.03.0065.

Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S,

Bhandarkar MV. Bortezomib enhances dendritic cell (DC)-mediated

induction of immunity to human myeloma via exposure of cell surface

heat shock protein 90 on dying tumor cells: therapeutic implica-
tions. Blood. 2007;109:4839–45. doi:10.1182/blood-2006-10-054221.
184. Rossi D, Terzi-di-Bergamo L, De Paoli L, Cerri M, Ghilardi G, Chiar- enza A, Bulian P, Visco C, Mauro FR, Morabito F, et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood. 2015;126:1921–4. doi:10.1182/blood-2015-05-647925.

185. Pagnoux C, Quemeneur T, Ninet J, Driot E, Kyndt X, de Wazieres B, Pagnoux C, Quemeneur T, Ninet J, Driot E, Kyndt X, de Wazieres B, et al. A multicenter, open-label, randomized controlled trial of corticosteroid and cyclophosphamide-based induction therapy. Arthritis Rheumatol (Hoboken, NJ). 2015;67:1117–27. doi:10.1002/art.39011.

186. Leone F, Artale S, Marino D, Cagnazzo C, Cescini S, Pinto C, Fornarini G, Tampellini M, Di Fabio F, Sartore-Bianchi A, et al. Panitumumab in combination with infusional oxaliplatin and oral capcitabine for conversion therapy in patients with colon cancer and advanced liver metastases. The MetaPan study. Cancer. 2013;119:4329–35. doi:10.1002/cncr.28223.

187. Kim EJ, Ben-Josef E, Herman JM, Bekaii-Saab T, Dawson LA, Griffith KA, Francis IR, Greenson JK, Simeone DM, Lawrence TS, et al. A multi-institutional phase 2 study of neoadjuvant gemcitabine and oxaliplatin with radiation therapy in patients with pancreatic cancer. Cancer. 2013;119:2692–700. doi:10.1002/cncr.28117.

188. Geisler CH, van T
189. Abrisqueta P, Villamor N, Terol MJ, Gonzalez-Barca E, Gonzalez M, Urso MT, Belardelli F, et al. Cyclophosphamide-interleukin-2 therapy for treatment of Waldenstrom macroglobulinemia: final analysis of a phase 2 study. Blood. 2015;126:1392–4. doi:10.1182/blood-2015-03-647420.

190. Brown JR, O’Brien S, Kingsley CD, Eradat H, Pagel JM, Lymph J, Hirata J, Kipps TJ. Obinutuzumab plus fludarabine/cyclophosphamide or bendamustine in the initial therapy of CLL patients: the phase 1b GALTON trial. Blood. 2015;125:2779–85. doi:10.1182/blood-2014-12-613570.

191. Schiavoni G, Sistigu A, Valentini M, Mattei F, Sestili P, Spadaro F, Ferra C, Abella E, Delgado J, Garcia-Martinez E, Symeonidis A, Repoussis P, Michalis E, Delimpasi S, Tsatalas K, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of systemic necrotizing vasculitides in patients aged sixty-five years or older: results of a multicenter, open-label, randomized controlled trial of corticosteroid and cyclophosphamide-based induction therapy. Arthritis Rheumatol (Hoboken, NJ). 2015;67:1117–27. doi:10.1002/art.39011.

192. Kidwell KM, Yothers G, Ganz PA, Land SR, Ko CY, Cecchini RS, Kopetz JA, Wolmark N. Long-term neurotoxicity effects of oxaliplatin added to fluorouracil and leucovorin as adjuvant therapy for colon cancer: results from National Surgical Adjuvant Breast and Bowel Project trials C-07 and LTS-01. Cancer. 2012;118:5614–22. doi:10.1002/cncr.27593.

193. Dionysiou N, Delimpasi S, Giannakopoulos S, Delimpasi E, Symeonidis A, Repoussis P, Michalis E, Delimpasi S, Tsatalas K, et al. Treatment of systemic necrotizing vasculitides in patients aged sixty-five years or older: results of a multicenter, open-label, randomized controlled trial of corticosteroid and cyclophosphamide-based induction therapy. Arthritis Rheumatol (Hoboken, NJ). 2015;67:1117–27. doi:10.1002/art.39011.

194. Leone F, Artele S, Marino D, Cagnazzo C, Cescini S, Pinto C, Fornarini G, Tampellini M, Di Fabio F, Sartore-Bianchi A, et al. Panitumumab in combination with infusional oxaliplatin and oral capcitabine for conversion therapy in patients with colon cancer and
213. Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, metabolism and disease. Nat Rev Mol Cell Biol. 2017;18:127–36. doi:10.1038/nrm.2016.149.

214. Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A, Albert ML. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. Sci Transl Med. 2015;7:328–34. doi:10.1126/scitranslmed.aad3985.

215. Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vaccelli E, Soquere S, Sautav A, et al. Contribution of RIP1 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology. 2016;5:e1149673. doi:10.1080/2162402X.2016.1149673.

216. Fend L, Yamazaki T, Remy C, Fahrner C, Gantzer M, Nourtier V, Yang H, Yamazaki T, Pietrocola F, Zhou H, Zitvogel L, Ma Y, Klein C, et al. X-shaped DNA potentiates therapeutic efficacy in colitis-associated colon cancer through dual activation of TLR9 and inflammasomes. Mol Cancer. 2015;14:104. doi:10.1186/s12943-015-0369-2.

217. Monk BJ, Facciabene A, Brady WE, Aghajanian CA, Fracasso PM, Walker JL, Lankes HA, Manjarrez KL, Danet-Desnoyers GH, Bell-McGuinn KM, et al. Integrative Development of a TLR8 agonist for Ovarian Cancer Chemotherapy. Cancer Res. 2017;73:1955–66. doi:10.1158/0008-5472.CAN-16-1453.

218. Buondonno I, Gazzano E, Jean SR, Audrito V, Kopecka J, Fanelli M, Salaroiglio IC, Costamagna C, Roato I, Munz E, et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol Cancer Ther. 2016;15:2640–52. doi:10.1158/1535-7163.MCT-16-0048.

219. Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dharia D, Wilkomsy-Chis-ammarante M, Strasner A, Hansel DE, et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic cancer therapy. Nature. 2015;521:94–8. doi:10.1038/nature14395.

220. Thounaojam MC, Dudimah DF, Pelmom ST Jr, Uzhachenko RV, Carbonio DP, Dikov MM, Shanka A, Bortezomb enhances expression of effector molecules in anti-tumor CD8(+) T lymphocytes by promoting Notch-nuclear factor-kappaB crosstalk. Oncotarget. 2015;6:32439–55. doi:10.18632/oncotarget.5857.

221. Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngio SF, Yong MC, Teng MW, Colonna M, Ritchie DS, Chesi M, et al. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Invest. 2015;125:2077–89. doi:10.1172/JCI82646.10.1172/JCI77181.

222. Dong Y, Ong WW, Ang WH. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angew Chem Int Ed. 2015;54:8483–7. doi:10.1002/anie.201509934.

223. Ladero S, Enot D, Andre F, Zitvogel L, Kroemer G. Immunogenic cell death-mediated biomarkers: Impact on the survival of breast cancer patients after adjuvant chemotherapy. Oncoimmunology. 2016;5:e1082706. doi:10.1080/2162402X.2015.1082706.

224. Goswami S, Sharma P. Genetic biomarker for cancer immunotherapy. Science. 2017;357:358. doi:10.1126/science.aao1894.

225. Loe S, Dushyantith S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rim DL, Giltman JM, Estrada MV, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEG and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 2016;22:1499–509. doi:10.1158/1078-0432.CCR-15-1125.

226. Cornelissen R, Hegmans JP, Maat AP, Kaijen-Lambers ME, Bezemer R, Diritti E, Huijgen P, Cribier F, et al. Antibody Blocking of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:1052–62. doi:10.1158/2326-6066.CIR-14-0191.

227. Evans EE, Jonason AS Jr, Bussler H, Torno S, Veeraraghavan J, Reilly C, Doherty MA, Seils J, Winter LA, Mallow C, et al. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:1052–62. doi:10.1158/2326-6066.CIR-14-0191.

228. Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of Metastasis by NK Cells. Cancer Cell. 2017;32:135–54. doi:10.1016/j.ccell.2017.06.009.

229. Blake SJ, Stannard K, Liu J, Allen S, Yong MC, Mittal D, Aguilerx AR Miles J, Lutzky VF, de Andrade LF, et al. Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy. Cancer Discov. 2016;6:446–59. doi:10.1158/2326-6066.CIR-15-0944.

230. Musahl AS, Huang X, Rusakiewicz NT, Ntini E, Marsico A, Kroemer G, Kepp O, Ørom UA. A long non-coding RNA links calreticulin-mediated immunogenic cell removal to RB1 transcription. Oncogene. 2015;34:5046–54. doi:10.1038/onc.2014.424.

231. Colangelo T, Polcari G, Ziccardi P, Muccillo L, Galigni M, Pucci B, Milone MR, Buell A, Santopolo M, Mazzoccoli G, et al. The mir-27 a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108. doi:10.1038/cddis.2016.29.

232. Lu A, Pallero MA, Lei W, Hong H, Yang Y, Suto MJ, Murphy-Ullrich JE. Inhibition of Transforming Growth Factor-beta Activation Diminishes Tumor Progression and Osteolytic Bone Disease in Mouse Models of Multiple Myeloma. Am J Pathol. 2016;186:687–90. doi:10.1016/j.ajpath.2015.11.003.

233. Hsu FT, Chen TC, Chung HY, Chang YF, Hwang JJ. Enhancement of adoptive T cell transfer with single low dose pretreatment of doxorubicin or paclitaxel in mice. Oncotarget. 2015;6:44134–50. doi:10.18632/oncotarget.6628.
cy clophosphamide in advanced solid tumors. Clin Immunol. 2016;166:67–48. doi:10.1016/j.clim.2016.03.015.

243. Tanis E, Julie C, Emile JF, Mauer M, Nordlinger B, Aust D, Roth A, Lutz MP, Gruenberger T, Wira F, et al. Prognostic impact of immune response in resectable colorectal liver metastases treated by surgery alone or surgery with perioperative FOLFOLX in the randomised EORTC study 40983. Eur J Cancer. 2015;51:2708–17. doi:10.1016/j.ejca.2015.08.014.

244. Ito K, Okamoto M, Inaguma Y, Okamoto A, Ando M, Ando Y, Tsuge M, Tomono A, Kakumy U, Hayashi T, et al. Influence of R-CHOP Therapy on Immune System Restoration in Patients with B-Cell Lymphoma. Oncology. 2016;91:302–10. doi:10.1159/000449251.

245. Brown PJ, Wong KK, Felce SL, Lyne L, Spearman H, Soilleux EJ, Johanns TM, Ward JP, Wilson C, Kobayashi DK, Bender AM, Kirilovsky A, Lagorce C, Bindea G, Ferariu D, et al. Prognostic impact of regulatory T cell in the peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+ CD25+ regulatory T cells in the CD25+ T lym

Glioblastoma Models Using a Cancer Immunogenomics Approach. Cancer Immunol Res. 2016;4:1007–15. doi:10.1158/2326-6066.CIR-16-0156.

246. de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, Crookewit S, Britten CM, Torenisma R, Adema GJ, et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res. 2009;15:5901–10.

247. Chabanon RM, Pedroso M, Lefebvre C, Marabelle A, Soria JC, Postel-Vinay S. Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Clin Cancer Res. 2016;22:4309–21. doi:10.1158/1078-0432.CCR-16-0903.

248. Braun DA, Burke KP, Van Allen EM. Genomic Approaches to Understanding Response and Resistance to Immunotherapy. Clin Cancer Res. 2016;22:5642–50. doi:10.1158/1078-0432.CCR-16-0066.

249. Geller D, Bassani-Sternberg M, Schmidt J, Luescher IF. Current tools for predicting cancer-specific T cell immunity. Oncoimmunology. 2015;4:e1177691. doi:10.4167/2162402X.2016.1177691.

250. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74. doi:10.1126/science.aac971.

251. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Frische C, Weinschek T, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515:572–6. doi:10.1038/nature14001.

252. Liikanen I, Koski A, Merisalo-Sokkeli M, Hemminki O, Oksanen M, Kairemo K, Joensuu T, Kanerva A, Hemminki A. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncoimmunology. 2015;4:e989771. doi:10.4161/2162402X.2014.989771.

253. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355:eaaf8399.

254. Heine A, Held SAE, Schulze-Schrepping J, Wolff JFA, Klee K, Ulas T, Schmacke NA, Daecke SN, Riethausen K, Schulze JL, et al. Generation and functional characterization of MDSC-like cells. Oncoimmunology. 2016;5:e1295203. doi:10.1080/2162402X.2017.1295203.

255. Gunaydin G, Keski-Sarja G, Duc D. Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. Oncoimmunology. 2015;4:e1034918. doi:10.1080/2162402X.2015.1034918.

256. Danelli L, Fossi B, Pacilio CE. Mast cell/MDSC a liaison immunosuppressive for tumor microenvironment. Oncoimmunology. 2015;4:e1001232. doi:10.4161/2162402X.2014.1001232.

257. Ortner D, Tripp CH, Komenda K, Dubrav S, Zelger B, Hermann M, Doppler W, Tymoszuk PZ, Boon L, Clausen BE, et al. Langerhans cells and NK cells cooperate in the inhibition of chemical skin carcinogenesis. Oncoimmunology. 2017;6:e1260215. doi:10.1080/2162402X.2016.1260215.

258. Semeraro M, Rusakiewicz S, Zitvogel L, Kroemer G. Natural killer cell mediated immunosurveillance of pediatric neuroblastoma. Oncoimmunology. 2015;4:e1042202. doi:10.1080/2162402X.2015.1042202.

259. Vacchelli E, Semeraro M, Enot DP, Chaba K, Poirier-Colame V, Darbich J, Nalcioglu O, et al. TNF superfamily receptor OX40 triggers an immunogenic response in the classi
cation of malignant tumours. J Immunol. 2015;195:34–60. doi:10.4049/jimmunol.1500209.

260. Postel-Vinay S. Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Clin Cancer Res. 2016;22:4309–21. doi:10.1158/1078-0432.CCR-16-0903.

261. Illumina. Data analysis and quality control of next-generation DNA sequencing data. Novo Nordisk. 2009;6:387–47. doi:10.1080/2162402X.2009.104196.

262. Audia S, Nicolais A, Cathelin D, Larmion N, Ferrand C, Foucher P, Fanton A, Bergoin E, Maynadie M, Arnold L, et al. Increase of CD4+ CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+ CD25+ T lymphocytes. Clin Exp Immunol. 2007;150:523–30. doi:10.1111/j.1365-2494.2007.03521.x.
T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56:641–8. doi:10.1007/s00262-006-0225-8.

277. Garg AD, Dudek-Peric AM, Agostinis P. Melphalan, Antimetanoma Immunology, and Inflammation–Response. Cancer Res. 2015;75:4-000-1. doi:10.1158/0008-5472.CAN-15-2061.

278. Hsu MS, Sedigheh S, Wang T, Antonios JP, Everson RG, Tucker AM, Du L, Emerson R, Yusko E, Sanders C, et al. TCR Sequencing Can Identify and Track Gliona-Infiltrating T Cells after DC Vaccination. Cancer Immunol Res. 2016;4:412–8. doi:10.1158/2326-6066.CIR-15-0240.

279. Lim WA, June CH. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 2016;167:215–40. doi:10.1016/j.cell.2017.01.016.

280. Topalian SL, Wolchok JD, Chan TA, Mellman I, Palucka K, Banchereau J, Rosenberg SA, Dane Wittrup K. Immunotherapy: The path to win the war on cancer? Cell. 2015;161:55–67. doi:10.1016/j.cell.2015.03.045.

281. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36:1181–36. doi:10.15252/embj.201796697.

282. Galluzzi L, Bravo-San Pedro JM, Levine B, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511. doi:10.1038/nrd.2017.22.

283. Garon EB, Rizvi NA, Hui R, Lonig H, Nivsarkar AK, Hwu J, Horn L, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28. doi:10.1056/NEJMoa1501824.

284. Kourie HR, Awada A, Awada AH. Learning from the “tsunami” of immune checkpoint inhibitors in 2015. Crit Rev Oncol Hematol. 2016;101:213–20. doi:10.1016/j.critrevonc.2016.03.017.

285. Opitz CA, Liljendahl UM, Opitz U, Sahm F, Ochs K, Lutz C, Wick W, Platten M. The indoleamine-2,3-dioxygenase (IDO) inducer 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One. 2011;6:e19823. doi:10.1371/journal.pone.0019823.

286. Kakarla S, Gottschalk S. CAR T cells for solid tumors: armed and ready to go? Cancer J. 2014;20:151–5. doi:10.1097/PO.0000000000000032.

287. Zhao T, Ren H, Wang X, Liu P, Yan F, Jiang L, Li Y, Ji J, Gribben JG, Jia L, et al. Rituximab-induced HMGB1 release is associated with T-cell infiltration T Cells after DC Vaccination. Cancer Immunol Res. 2016;4:412–8. doi:10.1158/2326-6066.CIR-15-0240.

288. Schreibelt G, Bol KF, Westdorp H, Wimmers F, Aarntzen EH, Duijvestijn P, Reardon DA, De Groot JF, Colman H, Jordan JT, Daras M, Clarke JL, Delamarre L, Mellman I, Yadav M. Cancer immunotherapy. Neo•Immuno. 2016;7:110. doi:10.3389/fimmu.2016.00110.
311. Kikuchi M, Clump DA, Srivastava RM, Sun L, Zeng D, Diaz-Perez JA, Anderson CJ, Edwards WB, Ferris RL. Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology. 2017;6:e1329071. doi:10.1080/2162402X.2017.1329071.

312. Dovedi SJ, Illidge TM. The antitumor immune response generated by fractionated radiation therapy may be limited by tumor cell adaptive resistance and can be circumvented by PD-L1 blockade. Oncoimmunology. 2015;4:e1016709. doi:10.1080/2162402X.2015.1016709.

313. Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met O, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology. 2016;5:e1207842. doi:10.1080/2162402X.2016.1207842.

314. Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JJ, Morse MA, Pejovic T, Bentley J, Buyse M, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529. doi:10.1080/2162402X.2015.1026529.