Schultz and Modified Schultz Polynomials for Vertex – Identification Chain and Ring – for Hexagon Graphs

Mahmood M. Abdullah
mmadain7@gmail.com
Ahmed M. Ali
ahmedgraph@uomosul.edu.iq

Department of Mathematics,
College of Computer Science and Mathematics,
University of Mosul, Mosul, Iraq

Received on: 09/04/2020
Accepted on: 07/05/2020

ABSTRACT

The aim of this paper is to find polynomials related to Schultz, and modified Schultz indices of vertex identification chain and ring for hexagonal rings (6 – cycles). Also to find index and average index of all of them.

Keywords: Schultz, modified Schultz, vertex identification chain and ring.

1. INTRODUCTION:

We will let all graphs in this paper to be connected, finite, undirected and simple, which means empty from loops and multiple edges. Let \(G = (V, E) \) be a connected simple graph, and \(V = V(G) \) and \(E = E(G) \) denote the sets of vertices and edges, respectively, of \(G \).

In any graph \(G \) represent the number of vertices the order of \(G \) and denoted that by symbol \(p = p(G) = |V(G)| \), and we called the number of edges the size of \(G \), and denoted that by symbol \(q = q(G) = |E(G)| \). We say for any two vertices \(u, v \) in \(G \) adjacent in \(G \) if there exists edge between them, and we write \(e = uv \), as well as we say the edge incident on \(u \) and \(v \). We called the degree of vertex \(u \) as the number of edges incident on it and denoted that by \(degu \) as such that for vertex \(v \) in \(G \) [5].

Now, we define the distance between any two vertices \(u, v \) in \(G \). The distance is the length of a shortest path that join between \(u \) and \(v \) in \(G \) which is denoted by \(d_G(u, v) \) or \(d(u, v) \). We called the maximum distance between any two vertices \(u \) and \(v \) in \(G \) the diameter and denoted that by \(diamG \) [4]. In 2005, Gutman introduced the graph...
polynomials related to the Schultz and modified Schultz indices [12], and in 2011, Behmaram et al. found the Schultz polynomials of some graph operation [3]. Farahani [9], gave Schultz and modified Schultz polynomials of some Harary graphs in 2013. Ahmed and Haitham studied Schultz and modified Schultz polynomials, indices, and index average for two Gutman’s operations [1]. Also they found general formulas for Schultz and modified Schultz polynomials, indices, and index average of cog-special graphs [2]. Also there are many studies about their applications ([6,7,8,10, 11]).

Schultz had introduced and studied in 1989 Schultz index (molecular topological index) [18]. Then, in 1997 Klavžar and Gutman introduced the modified Schultz index [17].

They have defined Schultz and modified Schultz indices, respectively, as:

\[Sc(G) = \sum_{(u,v) \in V(G)} (deg v + deg u) \ d(u, v). \]
\[Sc^*(G) = \sum_{(u,v) \in V(G)} (deg v \cdot deg u) \ d(u, v). \]

Schultz and modified Schultz polynomials are considered very important polynomials through studying some properties of their coefficients. Schultz and modified Schultz polynomials are defined, respectively, as:

\[Sc(G; x) = \sum_{(u,v) \in V(G)} (deg v + deg u) \ x^{d(u,v)}. \]
\[Sc^*(G; x) = \sum_{(u,v) \in V(G)} (deg v \cdot deg u) \ x^{d(u,v)}. \]

We can obtain the indices of Schultz and modified Schultz by taking derivative of them with respect to \(x \) at \(x = 1 \), as explained below.

\[Sc(G) = \frac{d}{dx} (Sc(G; x))|_{x=1} \text{ and } Sc^*(G) = \frac{d}{dx} (Sc^*(G; x))|_{x=1}. \]

While we can obtain the average of the Schultz and modified Schultz indices for connected graph \(G \) with order \(p(G) \) that are defined as:

\[\overline{Sc}(G) = 2Sc(G)/p(G) \ (p(G) - 1) \text{ and } \overline{Sc^*}(G) = 2Sc^*(G)/p(G) \ (p(G) - 1). \]

In any connected graph \(G \), we refer to the set of unordered pairs of vertices which are distance \(k \) apart by the symbol \(D_k(G) \) and let \(|D_k(G)| = D(G,k) \).

Now let that \(D_k(r,n) \) be the set of all unordered pairs of vertices \(u,v \) in \(G \), which are of distance \(k \) and of \(deg u = r, \ deg v = h \).

It is obvious that \(\sum_{k=1}^{diam(G)} |D_k(G)| = p(G)(p(G) - 1)/2, \) where \(D(G,k) = \overline{|D_k(G)|}. \)

Finally, Schultz indices are considered very interesting to determine some properties of chemical structures, see more ([13,14,15,16]).

2. Main Results:

2.1. The Vertex – Identification Chain (VIC) – Graphs:

Let \(\{G_1, G_2, \ldots, G_n\} \) be a set of pairwise disjoint graphs with vertices \(u_i, v_i \in V(G_i), i = 1,2,\ldots, n, n \geq 2 \), then the vertex-identification chain graph \(C_v(G_1, G_2, \ldots, G_n) \equiv C_v(G_1, G_2, \ldots, G_n; v_1 \cdot u_2; v_2 \cdot u_3; \ldots; v_{n-1} \cdot u_n) \) of \(\{G_i\}_{i=1}^{n} \) with respect to the vertices \(\{v_i, u_{i+1}\}_{i=1}^{n-1} \) is the graph obtained from the graphs \(G_1, G_2, \ldots, G_n \) by identifying the vertex \(v_i \) with the vertex \(u_{i+1} \) for all \(i = 1,2,\ldots, n - 1 \). (See Fig. 2-1)
Some Properties of Graph $C_v(G_1, G_2, ..., G_n)$:

1. $p(C_v(G_1, G_2, ..., G_n)) = \sum_{i=1}^{n} p(G_i) - (n - 1)$.
2. $q(C_v(G_1, G_2, ..., G_n)) = \sum_{i=1}^{n} q(G_i)$.
3. $n \leq diam(C_v(G_1, G_2, ..., G_n)) \leq \sum_{i=1}^{n} diam(G_i)$.

The equality of both bounds are satisfied at complete graphs, but the upper bound is satisfied at path graphs in which v_i are end-vertices of G_i for $i = 1, 2, ..., n$. If $G_i \equiv H_p$, for all $1 \leq i \leq n$, where H_p is a connected graph of order p, we denoted $C_v(H_p, H_p, ..., H_p)$ by $C_v(H_p)_n$.

Schultz and modified Schultz of $C_v(C_6)_{p/2}$

From Fig. 2-1-2, we note that $p\left(C_v(C_6)_{p/2}\right) = \frac{5p}{2} + 1$, $q(C_v(C_6)_{p/2}) = 3p$ and $diam\left(C_v(C_6)_{p/2}\right) = \frac{3p}{2}$. For all $1 \leq i, j \leq p$, $i \neq j$ and $2 \leq m, h \leq \frac{p}{2}, m \neq h$ we have:

\times	$deg_u_i = 2$	$deg_v_i = 2$	$degw_1 = 2$	$degw_{p/2+1}$	$degw_m = 4$
$deg_j = 2$	4	4	4	4	6
$degv_j = 2$	4	4	4	4	6
$degw_1 = 2$	4	4	4	4	6
$degw_{p/2+1}$	4	4	4	4	6
$degw_h = 4$	4	4	4	4	6

Table 2.1
Theorem 2.1.1: For \(p \geq 4 \), then:

1. \(Sc \left(C_p(C_6)_{\frac{p}{2}}; x \right) = 8(2p - 1)x + 24(p - 1)x^2 + 12(2p - 3)x^3 + \frac{20}{3}\sum_{k=4}^{3p} (3p - 2k)x^k + \frac{4}{3}x(3x^2 + 2x + 4) \sum_{k=1}^{\frac{p}{2}}x^k \).

2. \(Sc^* \left(C_p(C_6)_{\frac{p}{2}}; x \right) = 4(5p - 4)x + 4(7p - 8)x^2 + 4(7p - 12)x^3 + \frac{3p}{2}\sum_{k=4}^{3p} (24p - 16)x^k + 4x^3 \frac{3p}{2} \).

Proof: For all \(p \geq 8 \) and every two vertices \(u, v \in V \left(C_p(C_6)_{\frac{p}{2}} \right) \), there is \(d(u, v) = k \).

1 \leq k \leq \frac{3p}{2} \), we will have ten partitions for proof:

P1. If \(d(u, v) = 1 \), then \(|D_1| = 3p = q \left(C_p(C_6)_{\frac{p}{2}} \right) \) and we have two subsets of the edge set:

P1.1 \(|D_1(2,2)| = \left\{ (u_{2i-1}, u_{2i}), (v_{2i-1}, v_{2i}) : 1 \leq i \leq \frac{p}{2} \right\} \cup \{(w_1, u_1), (w_1, v_1), \left(u_{\frac{p}{2}+1}, w_p \right), \left(w_{\frac{p}{2}+1}, v_p \right) \} = p + 4.

P1.2 \(|D_1(2,4)| = \left\{ (u_{2i-1}, w_{2i+1}), (v_{2i-1}, w_{2i+1}), (u_{2i-1}, w_{i+1}), (v_{2i}, w_{i+1}) : 1 \leq i \leq \frac{p}{2} - 1 \right\} = 2p - 4.

P2. If \(d(u, v) = 2 \), then, we have two subsets of \(D_2 \):

P2.1 \(|D_2(2,2)| = \left\{ (u_{2i}, u_{2i+1}), (v_{2i}, v_{2i+1}), (u_{2i}, v_{2i+1}), (v_{2i}, u_{2i+1}) : 1 \leq i \leq \frac{p}{2} - 1 \right\} \cup \{(w_1, u_2), (w_1, v_2), \left(u_{\frac{p}{2}+1}, u_{p-1} \right), \left(w_{\frac{p}{2}+1}, v_{p-1} \right) \} = 3p.

P2.2 \(|D_2(2,4)| = \left\{ (u_{2i-1}, w_{2i+1}), (v_{2i-1}, w_{i+1}), (u_{2i+2}, w_{i+1}), (v_{2i+2}, w_{i+1}) : 1 \leq i \leq \frac{p}{2} - 1 \right\} = 2p - 4.

Therefore, \(|D_2| = 5p - 4 \).

P3. If \(d(u, v) = 3 \), then, we have three subsets of \(D_3 \):

P3.1 \(|D_3(2,2)| = \left\{ (u_i, u_{i+2}), (v_i, v_{i+2}), (u_i, v_{i+2}), (v_i, u_{i+2}) : 1 \leq i \leq p - 2 \right\} \cup \{(u_{2i-1}, v_{2i}), (v_{2i-1}, u_{2i}) : 1 \leq i \leq \frac{p}{2} \} = 5p - 8.

P3.2 \(|D_3(2,4)| = \left\{ (w_1, w_2), \left(u_{\frac{p}{2}+1}, w_{\frac{p}{2}} \right) \right\} = 2.

P3.3 \(|D_3(4,4)| = \left\{ (w_{i+1}, w_{i+2}) : 1 \leq i \leq \frac{p}{2} - 2 \right\} = \frac{p}{2} - 2.

Therefore, \(|D_3| = \frac{11p}{2} - 8 \).

P4. If \(d(u, v) = k \), when \(k = 3j + 4, j = 0, 1, ..., \frac{p}{2} - 3 \), then, we have two subsets of \(D_k \):

P4.1 \(|D_k(2,2)| = \left\{ (u_{2i-1}, u_{2i+\frac{k+2}{3}}), (v_{2i-1}, v_{2i+\frac{k+2}{3}}), (u_{2i-1}, v_{2i+\frac{k+2}{3}}), (v_{2i-1}, u_{2i+\frac{k+2}{3}}) : 1 \leq i \leq \frac{p}{2} - \frac{k-1}{3} \right\} \cup \{(w_1, u_{\frac{k+1}{3}}), (w_1, v_{\frac{k+1}{3}}), \left(u_{\frac{p}{2}+1}, u_{\frac{k+1}{3}} \right), \left(w_{\frac{p}{2}+1}, v_{\frac{k+1}{3}} \right) \} = 2p - \frac{4(k-4)}{3}.

P4.2 \(|D_k(2,4)| = \left\{ (u_{2i}, w_{\frac{k+2}{3}}), (v_{2i}, w_{\frac{k+2}{3}}), (u_{2i}, v_{\frac{k+2}{3}}), (v_{2i}, u_{\frac{k+2}{3}}) : 1 \leq i \leq \frac{p}{2} - \frac{k+2}{3} \right\} = 2p - \frac{4(k+2)}{3}.

28
Therefore $|D_k| = 4p - \frac{8}{3}(k - 1)$, for $k = 3j + 4, j = 0, 1, ..., \frac{p}{2} - 3$.

P5. If $d(u, v) = k$, when $k = 3j + 5, j = 0, 1, ..., \frac{p}{2} - 3$, then, we have two subset of D_k:

P5.1 $|D_k(2, 2)| = |\left\{\left(\frac{u_{2i}, u_{i+2k}}{2}, \frac{v_{2i}, v_{i+2k}}{2}, \frac{u_{2i}, u_{i+2k}}{2}, \frac{v_{2i}, v_{i+2k}}{2}\right): 1 \leq i \leq \frac{p}{2} - \frac{k+1}{3}\right\} \cup \left\{\left(\frac{w_1, u_{2i+1}}, \frac{w_{2i+1}, u_{i+2k}}{2}, \frac{w_{2i+1}, u_{i+2k}}{2}, \frac{w_{2i+1}, u_{i+2k}}{2}\right)\right\}| = 2p - \frac{4(k-2)}{3}.

P5.2 $|D_k(2, 4)| = |\left\{\left(\frac{u_{2i-1}, w_{i+2k}}{2}, \frac{v_{2i-1}, w_{i+2k}}{2}, \frac{u_{2i+2k}, w_{i+2k}}{2}, \frac{v_{2i+2k}, w_{i+2k}}{2}\right): 1 \leq i \leq \frac{p}{2} - \frac{k+1}{3}\right\}| = 2p - \frac{4(k+1)}{3}.

Thus $|D_k| = 4p - \frac{4}{3}(2k - 1)$ for $k = 3j + 5, j = 0, 1, ..., \frac{p}{2} - 3$.

P6. If $d(u, v) = k$, when $k = 3j + 6, j = 0, 1, ..., \frac{p}{2} - 4$, then, we have three subsets of D_k:

P6.1 $|D_k(2, 2)| = |\left\{\left(\frac{u_{i}, u_{i+2k}}{2}, \frac{v_{i}, v_{i+2k}}{2}, \frac{u_{i}, u_{i+2k}}{2}, \frac{v_{i}, v_{i+2k}}{2}\right): 1 \leq i \leq p - \frac{2k}{3}\right\}| = 4p - \frac{8k}{3}.

P6.2 $|D_k(2, 4)| = |\left\{\left(\frac{w_1, w_{i+2k}}{2}, \frac{w_{p+1} + k + 1, w_{i+2k}}{2}\right): 1 \leq i \leq \frac{p}{2} - \frac{k+1}{3}\right\}| = 2.

P6.3 $|D_k(4, 4)| = |\left\{\left(\frac{w_{i+1}, w_{i+2k}}{2}, \frac{w_{p+1} + k + 1}{2}\right): 1 \leq i \leq \frac{p}{2} - \frac{k+1}{3}\right\}| = \frac{p}{2} - \frac{k}{3} - 1.

Thus $|D_k| = 9p - 3k + 1$ for $k = 3j + 6, j = 0, 1, ..., \frac{p}{2} - 4$.

P7. If $d(u, v) = \frac{3p}{2} - 3$, then, we have two subsets of $D_{\frac{3p}{2} - 3}$:

P7.1 $\left|D_{\frac{3p}{2} - 3}(2, 2)\right| = |\left\{\left(\frac{u_{i}, u_{i+p+i-2}}, \frac{v_{i}, v_{i+p+i-2}}, \frac{u_{i}, u_{i+p+i-2}}, \frac{v_{i}, u_{i+p+i-2}}{2}\right): i = 1, 2\right\}| = 8.

P7.2 $\left|D_{\frac{3p}{2} - 3}(2, 4)\right| = |\left\{\left(\frac{w_1, w_{p+1}}, \frac{w_{p+1}, w_{p+1}}{2}\right)\right\}| = 2.

Therefore $\left|D_{\frac{3p}{2} - 3}\right| = 10$.

P8. If $d(u, v) = \frac{3p}{2} - 2$, then $\left|D_{\frac{3p}{2} - 2}\right| = 8$, because:

$\left|D_{\frac{3p}{2} - 2}(2, 2)\right| = |\left\{\left(\frac{u_{i}, u_{i+p+i-2}}, \frac{v_{i}, v_{i+p+i-2}}, \frac{u_{2i}, u_{i+p+i-2}}, \frac{v_{2i}, u_{i+p+i-2}}{2}\right): i = 1, 2\right\}| = 8.

P9. If $d(u, v) = \frac{3p}{2} - 1$, then $\left|D_{\frac{3p}{2} - 1}\right| = 4$, because:

$\left|D_{\frac{3p}{2} - 1}(2, 2)\right| = |\left\{\left(\frac{u_1, w_{p+1}}, \frac{u_1, w_{p+1}}, \frac{v_1, w_{p+1}}, \frac{v_1, w_{p+1}}{2}\right): 1\right\}| = 4.

P10. If $d(u, v) = \frac{3p}{2}$, then $\left|D_{\frac{3p}{2}}\right| = 1$, since $\left|D_{\frac{3p}{2}}(2, 2)\right| = |\left\{\left(\frac{w_1, w_{p+1}}{2}\right)\right\}| = 1$.

From P_1 to P_{10} and Table 2.1.1, we have:

$Sc\left(C_e(C_9)_{\frac{p}{2}}x\right) = \{4(p + 4) + 6(2p - 4)\}x + \{4(3p) + 6(2p - 4)\}x^2$

$+ \{4(5p - 8) + 6(2) + 8\left(\frac{p}{2} - 2\right)\}x^3$
Now, we find modified Shultz polynomial:

\[\text{Sc}^* \left(C_v(C_6)_{\frac{p}{2}}; x \right) = \left\{ 4(p + 4) + 8(2p - 4) \right\} x + \left\{ 4(3p) + 8(2p - 4) \right\} x^2 \]
\[+ \left\{ 4(5p - 8) + 8(2) + 16 \left(\frac{p}{2} - 2 \right) \right\} x^3 \]
\[+ \sum_{k=4,7,10,...}^{3p-5} \left\{ 4 \left(2p - \frac{4(k-4)}{3} \right) + 8(2p - \frac{4(k+2)}{3}) \right\} x^k \]
\[+ \sum_{k=5,8,11,...}^{3p-4} \left\{ 4 \left(2p - \frac{4(k-2)}{3} \right) + 8(2p - \frac{4(k+1)}{3}) \right\} x^k \]
\[+ \sum_{k=6,9,12,...}^{3p-6} \left\{ 4 \left(4p - \frac{8k}{3} \right) + 8(2) + 16 \left(\frac{p}{2} - \frac{k}{3} - 1 \right) \right\} x^k \]
\[+ \left\{ 4(8) + 8(2) \right\} x^{\frac{3p-3}{2}} + \left\{ 4(8) \right\} x^{\frac{3p-2}{2}} + \left\{ 4(4) \right\} x^{\frac{3p-1}{2}} + \left\{ 4(1) \right\} x^\frac{3p}{2}. \]
\[= 4(5p - 4)x + 4(7p - 8)x^2 + 4(7p - 12)x^3 \]
\[+ \sum_{k=4,7,10,...}^{3p-2} (24p - 16k)x^k \]
\[+ \sum_{k=5,8,11,...}^{3p-1} (24p - 16k)x^k \]
\[+ \sum_{k=6,9,12,...}^{3p} (24p - 16k)x^k \]
\[= 4(5p - 4)x + 4(7p - 8)x^2 + 4(7p - 12)x^3 \]
\[+ \sum_{k=4,7,10,...}^{3p-2} (24p - 16k)x^k + 4x^{\frac{3p}{2}}. \]

Remark:

1. \(\text{Sc}(C_v(C_6)_{\frac{p}{2}}; x) = 56x + 72x^2 + 60x^3 + 32x^4 + 16x^5 + 4x^6. \)
2. \(\text{Sc}^*(C_v(C_6)_{\frac{p}{2}}; x) = 64x + 80x^2 + 64x^3 + 32x^4 + 16x^5 + 4x^6. \)
3. \(\text{Sc}\left(C_v(C_6)_{\frac{p}{2}}; x \right) = 104x + 136x^2 + 120x^3 + 80x^4 + 64x^5 + 48x^6 + 32x^7 + 16x^8 + 4x^9. \)

Corollary 2.1.2: For \(p \geq 4 \), then we have:

1. \(\text{Sc}(C_v(C_6)_{\frac{p}{2}}) = \frac{3p}{2}(5p^2 + 3p + 10). \)
2. \(\text{Sc}^*(C_v(C_6)_{\frac{p}{2}}) = 9p(p^2 + 2). \)

Corollary 2.1.3: If \(n \) is the number of cycles \(C_6 \) in the graph \(C_v(C_6)_n \), \(n \geq 2 \), then

1. \(\text{Sc}(C_v(C_6)_n) = 6n(10n^2 + 3n + 5). \)
2. \(Sc^*(C_9(C_6)_n) = 36n(2n^2 + 1) \)

Corollary 2.1.4: For \(p \geq 4 \), then we have:

1. \(\overline{Sc}(C_9(C_6)_2) = \frac{12}{25} (5p + 1 + \frac{48}{5p+2}) \).
2. \(\overline{Sc}^*(C_9(C_6)_{p-1}) = \frac{72}{125} (5p - 2 + \frac{54}{5p+2}) \).

2.2. The Vertex – Identification Ring (VIR) – Graph:

Let \(\{G_1, G_2, \ldots, G_n\} \) be a set of pairwise disjoint graphs with vertices \(u_i, v_i \in V(G_i), i = 1, 2, \ldots, n \geq 3 \), then the vertex-identification Ring graph \(R_v(G_1, G_2, \ldots, G_n) \equiv R_v(G_1, G_2, \ldots, G_n; v_1 \cdot u_2; v_2 \cdot u_3; \ldots; v_{n-1} \cdot u_n; v_n \cdot u_1) \) of \(\{G_i\}_{i=1}^n \) with respect to the vertices \(\{v_i, u_i\}_{i=1}^n \) is the graph obtained from the graphs \(G_1, G_2, \ldots, G_n \) by identifying the vertex \(v_i \) with the vertex \(u_{i+1} \) for all \(i = 1, 2, \ldots, n \). (See Fig. 2-2) where \(u_{n+1} \equiv u_1 \).

![Fig. 2-2-1. \(R_v(G_1, G_2, \ldots, G_n) \)](image)

Some Properties of the graph \(R_v(G_1, G_2, \ldots, G_n) \):

1. \(p(R_v(G_1, G_2, \ldots, G_n)) = \sum_{i=1}^n p(G_i) - n \).
2. \(q(R_v(G_1, G_2, \ldots, G_n)) = \sum_{i=1}^n q(G_i) \).
3. \(\left\lfloor \frac{n-1}{2} \right\rfloor \leq diam(R_v(G_1, G_2, \ldots, G_n)) \leq \frac{\sum_{i=1}^n diam(G_i)}{2} \).

The equality of both bounds are satisfied at complete graphs but the upper bound is satisfied at path graphs in which \(v_i, u_i \) are end-vertices of \(G_i \) for \(i = 1, 2, \ldots, n \).

If \(G_i \equiv H_p \), for all \(1 \leq i \leq n \), where \(H_p \) is a connected graph of order \(p \), we denoted \(R_v(H_p, H_p, \ldots, H_p) \) by \(R_v(H_p)_n \).

Schultz and modified Schultz of \(R_v(C_6)_{p/2} \):

![Fig. 2-2-2. The Graph \(R_v(C_6)_{p/2} \). \(p \geq 6 \), even \(p \).](image)
From Fig. 2-2-2, we note that \(p(R_v(C_6)_{\frac{p}{2}}) = \frac{5p}{2}, q(R_v(C_6)_{\frac{p}{2}}) = 3p \) and
\[\operatorname{diam}(R_v(C_6)_{\frac{p}{2}}) = \frac{p}{2} + \left\lceil \frac{p-2}{4} \right\rceil. \]
For all \(1 \leq i, j \leq p, i \neq j \), then we have:

\(+ \)	\(\times \)	\(\text{deg}_{u_i} = 2 \)	\(\text{deg}_{v_i} = 2 \)	\(\text{deg}_{w_i} = 4 \)
\(\text{deg}_{u_j} = 2 \)	4	4	6	
\(\text{deg}_{v_j} = 2 \)	4	4	6	
\(\text{deg}_{w_j} = 4 \)	8	8	16	

Table 2.1.1

Theorem 2.1.2: For \(p \geq 8 \), then we have:

1. \(\text{Sc} \left(R_v(C_6)_{\frac{p}{2}}; x \right) = 16px + 24px^2 + 24px^3 \)

\[
+ \left\{ 20p \sum_{k=4,5,6,...}^{\frac{p}{2}+\left\lceil \frac{p-2}{4} \right\rceil} x^k + 10px^2 \left\lceil \frac{p-2}{4} \right\rceil, \text{when } p = 12, 16, 20, \ldots \right. \]

2. \(\text{Sc}^* \left(R_v(C_6)_{\frac{p}{2}}; x \right) = 20px + 28px^2 + 28px^3 \)

\[
+ \left\{ 24p \sum_{k=4,5,6,...}^{\frac{p}{2}+\left\lceil \frac{p-2}{4} \right\rceil} x^k + 12px^2 \left\lceil \frac{p-2}{4} \right\rceil, \text{when } p = 12, 16, 20, \ldots \right. \]

Proof: For all \(p \geq 12 \), and every two vertices \(u, v \in V(R_v(C_6)_{\frac{p}{2}}) \), there is \(d(u, v) = k \),
\(1 \leq k \leq \frac{3p}{2} \), we will have seven partitions for proof:

P1. If \(d(u, v) = 1 \), then \(|D_1| = 3p = q \left(R_v(C_6)_{\frac{p}{2}} \right) \) and we have two subsets of the edge set:

P1.1 \(|D_1(2, 2)| = \left\| \left\{ (u_{2i-1}, u_{2i}), (v_{2i-1}, v_{2i}); 1 \leq i \leq \frac{p}{2} \right\} \right\| = p \).

P1.2 \(|D_1(2, 4)| = \left\| \left\{ (u_{2i-1}, w_i), (v_{2i-1}, w_i), (u_{2i}, w_{i+1}), (v_{2i}, w_{i+1}); 1 \leq i \leq \frac{p}{2} \right\} \right\| = 2p \),
where \(w_{\frac{p}{2}+1} \equiv w_1 \).

P2. If \(d(u, v) = 2 \), then, we have two subsets of \(D_2 \):

P2.1 \(|D_2(2, 2)| = \left\| \left\{ (u_{2i}, u_{2i+1}), (v_{2i}, v_{2i+1}), (u_{2i+1}, v_{2i+1}), (v_{2i+1}, u_{2i}); 1 \leq i \leq \frac{p}{2} \right\} \cup \left\{ (u_i, v_i); 1 \leq i \leq p \right\} \right\| = 3p \), where \(u_{p+1} \equiv u_1 \) and \(v_{p+1} \equiv v_1 \).

P2.2 \(|D_2(2, 4)| = \left\| \left\{ (u_{2i-1}, w_{i+1}), (v_{2i-1}, w_{i+1}), (u_{2i}, w_i), (v_{2i}, w_i); 1 \leq i \leq \frac{p}{2} \right\} \right\| = 2p \),
where \(w_{\frac{p}{2}+1} \equiv w_1 \).

Thus \(|D_2| = 5p \).

P3. If \(d(u, v) = 3 \), then, we have three subsets of \(D_3 \):

P3.1 \(|D_3(2, 2)| = \left\| \left\{ (u_i, u_{i+2}), (v_i, v_{i+2}), (u_i, v_{i+2}), (v_i, u_{i+2}); 1 \leq i \leq p \right\} \cup \right\| = p \),
Schultz and Modified Schultz Polynomials for ...

\[\{(u_{2i}, v_{2i-1}), (v_{2i}, u_{2i-1}) : 1 \leq i \leq \frac{p}{2}\} = 5p, \]

where \(u_{p+a} \equiv u_a \) and \(v_{p+a} \equiv v_a, a = 1, 2. \)

P3.2 \(|D_3(4, 4)| = \left| \{(w_i, w_{i+1}) : 1 \leq i \leq \frac{p}{2}\} \right| = \frac{p}{2}, \) where \(w_{\frac{p}{2}+1} \equiv w_1. \)

Thus \(|D_3| = \frac{11p}{2}.\)

P4. If \(d(u, v) = k, \) when \(k = 3j + 4, \) and \(p = 12, 16, 20, \ldots, j = 0, 1, 2, ..., \frac{p}{4} - 2, \) and when \(p = 14, 18, 22, \ldots, j = 0, 1, ..., \frac{p-2}{4} - 2, \) then, we have two subsets of such \((u, v)\) pairs of \(D_k:\)

P4.1 \(|D_k(2, 2)| = \left| \{(u_{2i-1}, u_{2i+2(k-1)/3}), (v_{2i-1}, v_{2i+2(k-1)/3}), (u_{2i-1}, v_{2i+2(k-1)/3}), (v_{2i}, u_{2i+2(k-1)/3}) : 1 \leq i \leq \frac{p}{2}\} \right| = 2p, \)

where \(u_{p+a} \equiv u_a \) and \(v_{p+a} \equiv v_a, a = 2, 4, 6, ..., \frac{2(k-1)}{3}. \)

P4.2 \(|D_k(2, 4)| = \left| \{(u_{2i}, w_{i+k+2/3}), (v_{2i}, w_{i+k+2/3}), (u_{2i}, v_{i+k+2/3}), (v_{2i}, u_{i+k+2/3}) : 1 \leq i \leq \frac{p}{2}\} \right| = 2p, \)

where \(w_{p+b} \equiv w_b, b = 1, 2, 3, ..., \frac{k+2}{3}. \)

Thus \(|D_k| = 4p, \) \(k = 3j + 4. \)

P5. If \(d(u, v) = k, \) when \(k = 3j + 4, \) and \(p = 12, 16, 20, \ldots, j = 0, 1, 2, ..., \frac{p}{4} - 2, \) and when \(p = 14, 18, 22, \ldots, j = 0, 1, 2, ..., \frac{p-2}{4} - 2, \) then, we have two subsets of such \((u, v)\) pairs of \(D_k:\)

P5.1 \(|D_k(2, 2)| = \left| \{(u_{2i}, u_{2i+2(k-1)/3}), (v_{2i}, v_{2i+2(k-1)/3}), (u_{2i}, v_{2i+2(k-1)/3}), (v_{2i}, u_{2i+2(k-1)/3}) : 1 \leq i \leq \frac{p}{2}\} \right| = 2p, \)

where \(u_{p+a} \equiv u_a \) and \(v_{p+a} \equiv v_a, a = 1, 2, 3, ..., \frac{2k-1}{3}. \)

P5.2 \(|D_k(2, 4)| = \left| \{(u_{2i-1}, w_{i+k+1/3}), (v_{2i-1}, w_{i+k+1/3}), (u_{2i-1}, v_{i+k+1/3}), (v_{2i-1}, u_{i+k+1/3}) : 1 \leq i \leq \frac{p}{2}\} \right| = 2p, \)

where \(u_{p+a} \equiv u_a, v_{p+a} \equiv v_a, a = 2, 4, 6, ..., \frac{2(k-2)}{3} \) and \(w_{p+b} \equiv w_b, b = 1, 2, 3, ..., \frac{k+1}{3}. \)

Thus \(|D_k| = 4p, k = 3j + 5, \) for \(j = 0, 1, 2, ..., \frac{p-2}{4} - 2. \)

P6. If \(d(u, v) = k, \) when \(k = 3j + 6, \) and when \(p = 12, 16, 20, \ldots, j = 0, 1, 2, ..., \frac{p}{4} - 3, \)

and when \(p = 14, 18, 22, \ldots, j = 0, 1, ..., \frac{p-2}{4} - 2, \) then, we have three subsets of such \((u, v)\) pairs of \(D_k:\)

P6.1 \(|D_k(2, 2)| = \left| \{(u_i, u_{i+2k/3}), (v_i, v_{i+2k/3}), (u_i, v_{i+2k/3}), (v_i, u_{i+2k/3}) : 1 \leq i \leq p\} \right| = 4p, \)

where \(u_{p+a} \equiv u_a \) and \(v_{p+a} \equiv v_a \) \(a = 1, 2, 3, ..., \frac{2k}{3}. \)

P6.2 \(|D_k(4, 4)| = \left| \{(w_i, w_{i+k/3}) : 1 \leq i \leq \frac{p}{2}\} \right| = \frac{p}{2}, \)

where \(w_{p+b} \equiv w_b, b = 1, 2, 3, ..., \frac{2k-3}{3}. \)

Thus \(|D_k| = \frac{9p}{2}, k = 3j + 6, \) for \(j = 0, 1, 2, ..., \frac{p}{4} - 3. \)
P7. If \(d(u, v) = \frac{p}{2} + \left\lfloor \frac{p-2}{4} \right\rfloor \), then we have:

- If \(p = 12, 16, 20, \ldots \), then, we have two subsets of \(D_{\frac{p}{2} + \left\lfloor \frac{p-2}{4} \right\rfloor} \):

 \[
 P7.1 \left\lfloor \frac{p}{2} + \left\lfloor \frac{p-2}{4} \right\rfloor \right\rfloor (2, 2) = \left\lfloor \left(u_i, u_{i+\frac{p}{2}} \right), \left(v_i, v_{i+\frac{p}{2}} \right), \left(u_i, v_{i+\frac{p}{2}} \right), \left(v_i, u_{i+\frac{p}{2}} \right) : 1 \leq i \leq \frac{p}{2} \right\rfloor = 2p.
 \]

 Thus \(\left\lfloor \frac{p}{2} + \left\lfloor \frac{p-2}{4} \right\rfloor \right\rfloor = \frac{p}{2} \), for even \(\frac{p}{2} \).

- If \(p = 14, 18, 22, \ldots \) then, we have two subsets of \(D_{\frac{p}{2} + \left\lfloor \frac{p-2}{4} \right\rfloor} \):

 \[
 P7.2 \left\lfloor \frac{p}{2} + \left\lfloor \frac{p-2}{4} \right\rfloor \right\rfloor (4, 4) = \left\lfloor \left(w_i, w_{i+\frac{p}{2}} \right) : 1 \leq i \leq \frac{p}{4} \right\rfloor = \frac{p}{4}.
 \]

 Thus \(\left\lfloor \frac{p}{2} + \left\lfloor \frac{p-2}{4} \right\rfloor \right\rfloor = \frac{p}{4} \), for odd \(\frac{p}{2} \).

From P1 to P7 and Table 2.1.2, we have:

\[
Sc (R_2(G_2)) = \left\{ 4(p) + 6(2p) \right\} x + \left\{ 4(3p) + 6(2p - 4) \right\} x^2 + \left\{ 4(5p) + 8\left(\frac{p}{4} \right) \right\} x^3
\]

\[
\sum_{k=4,7,10,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 2} \left\{ 4(2p) + 6(2p) \right\} x^k + \sum_{k=5,8,11,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 1} \left\{ 4(2p) + 6(2p) \right\} x^k
\]

\[
\sum_{k=6,9,12,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 3} \left\{ 4(4p) + 8\left(\frac{p}{4} \right) \right\} x^k + \left\{ 4(2p) + 8\left(\frac{p}{4} \right) \right\} x^{2\left(\frac{p}{4} \right)}
\]

\[
\sum_{k=4,7,10,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 2} \left\{ 4(2p) + 6(2p) \right\} x^k + \sum_{k=5,8,11,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 2} \left\{ 4(2p) + 6(2p) \right\} x^k
\]

\[
\sum_{k=6,9,12,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 3} \left\{ 4(4p) + 8\left(\frac{p}{4} \right) \right\} x^k + \left\{ 4(2p) + 6(2p) \right\} x^{2\left(\frac{p}{4} \right)}
\]

\[
\sum_{k=4,7,10,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 2} \left\{ 4(2p) + 6(2p) \right\} x^k + \sum_{k=5,8,11,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 1} \left\{ 4(2p) + 6(2p) \right\} x^k
\]

\[
\sum_{k=6,9,12,\ldots}^{\left\lfloor \frac{p}{4} \right\rfloor - 3} \left\{ 4(4p) + 8\left(\frac{p}{4} \right) \right\} x^k + \left\{ 4(2p) + 6(2p) \right\} x^{2\left(\frac{p}{4} \right)}
\]

Now, we find modified Shultz polynomial:
\(Sc^* \left(R_v(C_6)_{p/2} | x \right) = \left\{ 4(p) + 8(2p) \right\} x + \left\{ 4(3p) + 8(2p - 4) \right\} x^2 + \left\{ 4(5p) + 16 \left(\frac{p}{2} \right) \right\} x^3 \)

\[
\begin{align*}
&\sum_{k=4,7,10,...}^{p+\left\lfloor \frac{p-2}{4} \right\rfloor -2} \{ 4(2p) + 8(2p) \} x^k + \sum_{k=5,8,11,...}^{p+\left\lfloor \frac{p-2}{4} \right\rfloor -1} \{ 4(2p) + 8(2p) \} x^k \\
&+ \sum_{k=6,9,12,...}^{\left\lfloor \frac{p-2}{4} \right\rfloor} \left\{ 4(4p) + 16 \left(\frac{p}{2} \right) \right\} x^k + \left\{ 4(2p) + 16 \left(\frac{p}{4} \right) \right\} x^2, \text{ when } p = 12,16,20, ... \\
&+ \sum_{k=4,7,10,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor -2} \{ 4(2p) + 8(2p) \} x^k + \sum_{k=5,8,11,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor -1} \{ 4(2p) + 8(2p) \} x^k \\
&+ \sum_{k=6,9,12,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor} \left\{ 4(4p) + 16 \left(\frac{p}{2} \right) \right\} x^k + \left\{ 4(2p) + 8(2p) \right\} x^2, \text{ when } p = 14,18,22, ... \\
= 20px + 28px^2 + 28px^3 \\
&+ \frac{p}{4} \sum_{k=4,7,10,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor -2} \left\{ 4(2p) + 8(2p) \right\} x^k + \frac{p}{4} \sum_{k=5,8,11,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor -1} \left\{ 4(2p) + 8(2p) \right\} x^k \\
&+ 12px^2, \text{ when } p = 12,16,20, ... \\
&+ \frac{p}{4} \sum_{k=4,7,10,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor -3} \left\{ 4(2p) + 8(2p) \right\} x^k + \frac{p}{4} \sum_{k=5,8,11,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor -2} \left\{ 4(2p) + 8(2p) \right\} x^k \\
&+ 24px^2, \text{ when } p = 14,18,22, ... \\
&+ 20px + 28px^2 + 28px^3 \\
&+ \frac{p}{4} \sum_{k=4,7,10,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor -1} \left\{ 4(2p) + 8(2p) \right\} x^k + \frac{p}{4} \sum_{k=5,8,11,...}^{3p+\left\lfloor \frac{p-2}{4} \right\rfloor} \left\{ 4(2p) + 8(2p) \right\} x^k, \text{ when } p = 14,18,22, ...
\end{align*}
\]

By simply, we can calculate:

1. \(Sc(R_v(C_6)_4 | x) = 128x + 192x^2 + 192x^3 + 160x^4 + 160x^5 + 80x^6 \).
2. \(Sc^*(R_v(C_6)_4 | x) = 160x + 224x^2 + 224x^3 + 192x^4 + 192x^5 + 96x^6 \).
3. \(Sc(R_v(C_6)_5 | x) = 160x + 240x^2 + 240x^3 + 200x^4 + 200x^5 + 200x^6 + 200x^7 \).
4. \(Sc^*(R_v(C_6)_5 | x) = 200x + 280x^2 + 280x^3 + 240x^4 + 240x^5 + 240x^6 + 240x^7 \).

Remark:

1. \(Sc(R_v(C_6)_2 | x) = 64x + 96x^2 + 56x^3 \).
2. \(Sc^*(R_v(C_6)_2 | x) = 80x + 112x^2 + 64x^3 \).
3. \(Sc(R_v(C_6)_3 | x) = 96x + 144x^2 + 144x^3 + 120x^4 \).
4. \(Sc^*(R_v(C_6)_3 | x) = 120x + 168x^2 + 168x^3 + 144x^4 \).

Corollary 2.1.2: For \(p \geq 4 \), then we have:

1. \(Sc \left(R_v(C_6)_{p/2} \right) = \left\{ \frac{p}{8} \left(45p^2 + 128 \right) \right\}, \text{ when } p = 4,8,12, ... \)
2. \(Sc^* \left(R_v(C_6)_{p/2} \right) = \left\{ \frac{p}{4} \left(27p^2 + 64 \right) \right\}, \text{ when } p = 4,8,12, ... \)

Corollary 2.1.3: If \(n \) is the number of cycles \(C_6 \) in the graph \(R_v(C_6)_n \), \(n \geq 2 \), then we have:
1. $\text{Sc}(R_v(C_6)_n) = \begin{cases} n(45n^2 + 32), & \text{when } n = 2, 4, 6, \ldots \\ 9n(5n^2 + 3), & \text{when } n = 3, 5, 7, \ldots \end{cases}$

2. $\text{Sc}^*(R_v(C_6)_n) = \begin{cases} 2n(27n^2 + 16), & \text{when } n = 2, 4, 6, \ldots \\ 2n(27n^2 + 13), & \text{when } n = 3, 5, 7, \ldots \end{cases}$

Corollary 2.1.4: For $p \geq 4$, then we have:

1. $\overline{\text{Sc}}(R_v(C_6)_p) = \begin{cases} \frac{1}{5} \left(9p + \frac{18}{5} + \frac{676}{5(p-2)}\right), & \text{when } p = 4, 8, 12, \ldots \\ \frac{3}{5} \left(3p + \frac{6}{5} + \frac{162}{5(p-2)}\right), & \text{when } p = 6, 10, 14, \ldots \end{cases}$

2. $\overline{\text{Sc}}^*(C_v(C_6)_p) = \begin{cases} \frac{2}{5} \left(27p + \frac{54}{5} + \frac{1708}{5(p-2)}\right), & \text{when } p = 4, 8, 12, \ldots \\ \frac{2}{25} \left(27p + \frac{54}{5} + \frac{1408}{5(p-2)}\right), & \text{when } p = 6, 10, 14, \ldots \end{cases}$
REFERENCES

[1] Ahmed M.A., Haitham N.M., (2017); "Schultz and Modified Schultz Polynomials of two Operations Gutman's", International Journal of Enhanced Research in Science, Technology & Engineering. 6, pp.68-74.

[2] Ahmed M.A. and Haitham N.M.; (2019), Schultz and Modified Schultz Polynomials of Some Cog-Special Graphs, Open Access Library Journal, Vol.6, pp.1-13.

[3] Behmaram, A., Yousefi-Azari, H. and Ashrafi, A.R., (2011); "Some New Results on Distance – Based Polynomials", MATH. Commun. Math. Comput. Chem. 65, pp.39-50.

[4] Buckley, F. and Harary, F.; (1990); Distance in Graphs, Addison – Wesley, Longman.

[5] Chartrand, G. and Lesniak, L.; (2016); Graphs and Digraphs, 6th ed., Wadsworth and Brooks / Cole. California.

[6] Farahaini M. R., (2013); "Hosoya, Schultz Modified Schultz Polynomials and their Topological Indices of Benzene Molecules: First Members of polycyclic Aromatic Hydro Carbons (PAHs)"; International Journal of theoretical chemistry Vol. 1, No. 2, pp. 6-9.

[7] Farahaini M.R., (2014); "Schultz and Modified Schultz Polynomials of Coronene Polycyclic Aromatic Hydro carbons", International Letters of chemistry, Physics and Astronomy, Vol. 32, pp. 1-10.

[8] Farahaini M.R.; (2013); On the Schultz Polynomial, Modified Schultz Polynomial, Hosoya polynomial and Wiener Index of Circumcoronene Series of Benzenoid. J. Appl. Math. & Informatics Vol. 31, No. 5 - 6, pp. 595 – 608.

[9] Farahani M.R., (2013); "On the Schultz and Modified Schultz Polynomials of Some Harary Graphs", International Journal of Applications of Discrete Mathematics; Vol. 1, No. 1, pp. 01-08.

[10] Farahani M.R., Wang, S., Wei, G., BING WEI4 and Jamil, M.K.; (2018); "The Hosoya Schultz and Modified Schultz of Class od Dutch Windmill Graph $D_n^{(m)}$, $\forall n$, $m \in N$ & $n \geq 4$, $m \geq 2$". Communications in Applied Analysis, 22, No. 1, pp. 43-62.

[11] Guo. H. and Zhow B.; (2017); "Properties of Degree Distance and Gutman Index of Uniform Hypergraphs" MATCH Commun. Math. Comput Chem. 78, pp. 213-220.

[12] Gutman, I. (2005), “Some Relations Between Distance- Based Polynomials of Trees”. Bull. A cod. Serbe. Sci. Arts 131, pp.1-7.

[13] Haneen, K.A.; (2017); Schultz index, Modified Schultz index, Schultz polynomial and Modified Schultz polynomial of alkanes. Global Journal of Pure and Applied Mathematics. Vol. 13, No. 9, pp. 5827-5850.

[14] Hassani, G., Iranmanesh, A. and Mirzaie, S. (2013), “Schultz and Modified Schultz Polynomials of C100 Fullerene”. MATCH Commun. Math. Comput. Chem. Vol. 69, pp. 87-92.
[15] Heydari, A., (2010), “On the Modified Schultz Index of C4C8(S) Nanotubes and Nanotours. Digest Journal of Nanomatrial and Biostructures, 5, pp. 51-56.

[16] Iranmanesh, A. and Ali zadeh, Y., (2009); Computing Szeged and Schultz Indices of HAC3C7C9 [p.q] Nanotube by Gap program. Digest Biostructures, 4, pp. 67-72.

[17] Klavžar, S. and Gutman, I., (1997); Wiener number of vertex-weighted graphs and a chemical application. Disc. Appl. Math. 80, pp.73–81.

[18] Schultz, H.P., (1989); Topological organic chemistry 1. Graph theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci. 29, pp.227–228.