Identification of a Non-canonical Tyrosine-based Endocytic Motif in an Ionotropic Receptor

Stephen J. Royle, Laura K. Bobanović, and Ruth D. Murrell-Lagnado‡

From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom

Rapid modulation of the surface number of certain ionotropic receptors is achieved by altering the relative rates of insertion and internalization. These receptors are internalized by a clathrin-mediated pathway; however, a motif that is necessary for endocytosis of ionotropic receptors has not yet been identified. Here, we identified a motif that is required for constitutive and agonist-regulated internalization of the ionotropic P2X4 receptor. Three amino acids in the C terminus of P2X4 (Tyr378, Gly381, and Leu382) compose a non-canonical tyrosine-based sorting signal of the form YXXGL. We found that P2X4 protein was present in clathrin-coated vesicles isolated from rat brain and that a glutathione S-transferase fusion of the P2X4 C terminus pulled down the adaptor protein-2 complex from brain extract. Mutation of either the tyrosine-binding pocket of the μ2 subunit of adaptor protein-2 or the YXXGL motif in the receptor C terminus caused a decrease in receptor internalization and a dramatic increase in the surface expression of P2X4 receptors. The YXXGL motif represents a non-canonical tyrosine-based sorting signal that is necessary for efficient endocytosis of the P2X4 receptor. Similar motifs are present in other receptors and may be important for the control of their functional expression.

A cell can sense extracellular stimuli by using receptors at the surface to transduce these messages into electrical or chemical signals. An emerging picture for ionotropic receptors is that rapid modulation of their surface number can control the response to a given stimulus. This is of considerable interest because, for ionotropic receptors in synaptic membranes, this may underlie the cycled between the plasma membrane and endosomal compartments. P2X4 receptors are rapidly internalized by a clathrin-mediated pathway. P2X4 receptors are ionotropic receptors activated by extracellular ATP. Previously, we have shown that P2X receptor trafficking is subunit-specific (7). P2X4 receptors are rapidly cycled between the plasma membrane and endosomal compartments. P2X4 receptors are, by contrast, stably expressed at the surface. Herein, we describe the endocytic motif of the P2X4 receptor. We found that it is a novel non-canonical tyrosine-based sorting signal. Mutation of the motif caused an inhibition of both constitutive and agonist-regulated endocytosis of the receptor, confirming a common mechanism for these pathways. Perturbation of P2X4 receptor endocytosis resulted in a large increase in the pool of functional receptors at the cell surface. Similar motifs are found in other receptor proteins, suggesting that this motif may be important for the constitutive internalization and modulation of the surface number of other receptor and ion channel types.

The mechanism of internalization of transmembrane proteins by clathrin-mediated endocytosis is well established. Proteins destined for internalization are concentrated in clathrin-coated pits before being “pinched off” to form an endocytic vesicle (9). Most cargo proteins are recruited to coated pits via an interaction with their intracellular domains and adaptor protein-2 (AP-2). These interactions typically involve tyrosine-based sorting signals in the intracellular domain of the cargo protein and the medium (μ2) subunit of AP-2 (10). Generally, tyrosine-based signals are of the form NPXY or YXXØ (where X is any amino acid and Ø is an amino acid with a bulky hydrophobic side chain) (11). YXXØ signals bind to μ2 in an extended conformation, with the Tyr and Ø residues fitting into two hydrophobic pockets in subdomain A of μ2 (12).

The mechanism of constitutive internalization of ionotropic receptors in neurons is thought to be similar to classical clathrin-mediated endocytosis in being dependent on both clathrin and dynamin (6, 13–15). Other molecular details of this process are less clear, however. For example, do recycling ionotropic receptors link to the endocytic pathway via canonical YXXØ motifs? Regions of the AMPA receptor protein that are important for endocytosis have been identified (14), and an interaction with AP-2 has been shown for both AMPA and γ-aminobutyric acid type A receptors (6, 8). However, endocytic motifs for these receptors have not yet been described (2). A canonical tyrosine-based sorting motif was identified for the N-methyl-D-aspartic acid receptor (16), but this receptor does not constitutively internalize in mature neurons (14, 17). The purpose of this study therefore was to analyze how a recycling ionotropic receptor links to the endocytic pathway.

P2X receptors are ionotropic receptors activated by extracellular ATP (18). Previously, we have shown that P2X receptor trafficking is subunit-specific (7). P2X4 receptors are rapidly cycled between the plasma membrane and endosomal compartments. P2X4 receptors are, by contrast, stably expressed at the surface. Herein, we describe the endocytic motif of the P2X4 receptor. We found that it is a novel non-canonical tyrosine-based sorting signal. Mutation of the motif caused an inhibition of both constitutive and agonist-regulated endocytosis of the receptor, confirming a common mechanism for these pathways. Perturbation of P2X4 receptor endocytosis resulted in a large increase in the pool of functional receptors at the cell surface. Similar motifs are found in other receptor proteins, suggesting that this motif may be important for the constitutive internalization and modulation of the surface number of other receptor and ion channel types.

EXPERIMENTAL PROCEDURES

DNA Constructs—The construction of enhanced green fluorescent protein (GFP)- and epitope-tagged P2X4 and P2X4 receptors has been

This paper is available on line at http://www.jbc.org
P2X₄ Receptor Sorting by the YXXGL Motif

P2X₄ receptors were made by two-step PCR using GFP-tagged receptors as a template. For expression of either wild-type or epitope-tagged P2X receptors, the coding sequences of P2X₄-GFP constructs were amplified to reintroduce the stop codon and an XbaI site. The subcloning of these fragments between the receptor and GFP was performed at their flanking regions in the coding sequence of GFP. The sites of crossover for P2X₂(2C) and P2X₂(4C) receptors were Leu³⁵⁹–Thr³⁵⁴ and Leu³⁵⁹–Tyr³⁵⁵ respectively. In the case of C-terminus of P2X₄, the C-terminal region of P2X₄ was amplified by PCR and subcloned into pGEX-2T at BamHI and EcoRI sites. The sequences of all amplified regions were verified by automated DNA sequencing.

Culture and Transfection—Primary cultures of olfactory bulb neurons were prepared from 3-day-old Wistar rats using a modified method for culturing hippocampal neurons (7, 20). Human embryonic kidney 293 (HEK293) cells were maintained in Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 containing 10% fetal bovine serum and 100 units/ml penicillin/streptomycin at 37°C and 5% CO₂. HEK293 cells stably transfected with μ2 constructs were cultured in the same medium supplemented with 0.6 mg/ml Geneticin sulfate (G418).

Olfactory bulb neurons were transfected at 10–21 days in vitro using a modified calcium phosphate method (7). HEK293 cells were plated onto poly-L-lysine-treated coverslips and transiently transfected 12 h later using the same method with slight modifications. The amount of DNA used to form a precipitate was 3 μg (in 100 μl of CaCl₂/100 μl of 2× HEPES-buffered saline), and cells were kept with the precipitate for 6 h. For stable transfection, HEK293 cells were transfected using the calcium phosphate method. Culture medium containing G418 was added 24 h later, and stable cell lines contained a pool of resistant colonies.

Electrophysiological Recordings—Standard whole-cell recordings (21) were performed at room temperature using an Axopatch 200A amplifier (Axon Instruments, Inc.). Patch pipettes (3–5 MΩ) were pulled from thick-walled borosilicate glass (GC150F-10, Harvard Apparatus, Inc.) and filled with solution containing 125 mm potassium gluconate, 1 mM MgCl₂, and 10 mM HEPES (pH 7.3). The extracellular solution was composed of 140 mM NaCl, 5 mM KCl, 2 mM CaCl₂, and 10 mM HEPES (pH 7.3). ATP-induced responses were measured at –30 mV.

Whole-cell currents were low pass-filtered at 2 kHz and digitized at 10 kHz. ATP was applied locally using a Picospritzer II (Parker Instruments, Inc.) and filled with solution containing 125 mM potassium gluconate, 1 mM MgCl₂, 10 mM t-glucose, and 10 mM HEPES (pH 7.3). ATP-induced responses were measured at –30 mV.

Whole-cell currents were low pass-filtered at 2 kHz and digitized at 10 kHz. ATP was applied locally using a Picospritzer II (Parker Instruments, Inc.). To ensure delivery of drug, 0.05% (w/v) fast green was used. (Local applications of 1% fast green induced no response.) To visualize cells expressing P2X receptors, cells were cotransfected with GFP (0.5 μg of pEGFP-N1 vector was included in the precipitate) and observed under a microscope with an epifluorescence attachment (Nikon Inc.). Untransfected cells and cells expressing GFP alone were found to have no inward current in response to application of ATP. Acquisition was performed using HEKA Pulse Version 8.30, and data were subsequently analyzed using IgorPRO Version 3.16. Statistical analyses were performed using Student’s unpaired t test using InStat software (Version 2.01, GraphPAD Software).

Cell Biology and Live Labeling Immunofluorescence Protocols—All cells were used 48 h post-transfection. For analysis of the subcellular distribution of GFP-tagged receptors, cells were fixed in 3% paraformaldehyde and 4% sucrose in phosphate-buffered saline (PBS; 1.5 mM Na₂HPO₄, 8 mM NaH₂PO₄, and 145 mM NaCl (pH 7.3)) for 10 min at 4°C. Cells were washed with PBS, fixed on coverslips with Vectashield (Vector Laboratories, Inc.) as a mounting medium.

The basic protocol for live labeling of A5U5-tagged receptors expressed in HEK293 cells or cultured neurons was as follows. Anti-AU5 antibody in serum- and supplement-free culture medium was applied for 30 min at 37°C. Cells were then washed five times with PBS and fixed in paraformaldehyde. In all experiments, prior to application of antibodies, nonspecific sites were blocked using PBS containing 4% normal goat serum and 5% bovine serum albumin (blocking buffer). Antibodies were applied for 3 h at room temperature. Following fixation for 1 h at their final concentration in blocking buffer, cells were used 48 h post-transfection. For analysis of the subcellular localization of transferrin receptors or of internalized AU5-labeled receptors were defined by puncta frequency, single confocal images (2-μm-thick images were taken at 0.07 μm/pixel). Identical acquisition parameters were used for image capture of individual experiments.

Tagged image file formats were imported into NIH Image Version 1.62. Cells were outlined, and mean pixel values for each channel were obtained for a region over the cell soma. Pixel values were on an 8-bit scale (2⁸ = 256, 0–255). For internalization experiments, green (FITC) fluorescence intensity indicative of internalized receptors was divided by A5U5-labeled (red + green) fluorescence intensities. Similarly for surface expression experiments, red (Cy3) fluorescence intensity indicative of surface receptors was divided by total P2X₄ (green) fluorescence intensity. For both types of experiments, measurements were normalized to control values. For analysis of puncta frequency, single confocal images (2-μm-thick images) were taken at 0.07 μm/pixel. For internalization experiments, green (FITC) fluorescence intensity indicative of internalized receptors was divided by A5U5-labeled (red + green) fluorescence intensities. Similarly for surface expression experiments, red (Cy3) fluorescence intensity indicative of surface receptors was divided by total P2X₄ (green) fluorescence intensity. For both types of experiments, measurements were normalized to control values. For analysis of puncta frequency, single confocal images (2-μm-thick images) were taken at 0.07 μm/pixel. For internalization experiments, green (FITC) fluorescence intensity indicative of internalized receptors was divided by A5U5-labeled (red + green) fluorescence intensities. Similarly for surface expression experiments, red (Cy3) fluorescence intensity indicative of surface receptors was divided by total P2X₄ (green) fluorescence intensity. For both types of experiments, measurements were normalized to control values.

Extracellular glutamate was applied for 10 min at 4°C. ATP was applied locally using a Picospritzer II (Parker Instruments, Inc.). To ensure delivery of drug, 0.05% (w/v) fast green was used. (Local applications of 1% fast green induced no response.) To visualize cells expressing P2X receptors, cells were cotransfected with GFP (0.5 μg of pEGFP-N1 vector was included in the precipitate) and observed under a microscope with an epifluorescence attachment (Nikon Inc.). Untransfected cells and cells expressing GFP alone were found to have no inward current in response to application of ATP. Acquisition was performed using HEKA Pulse Version 8.30, and data were subsequently analyzed using IgorPRO Version 3.16. Statistical analyses were performed using Student’s unpaired t test using InStat software (Version 2.01). Levels of statistical significance are indicated in the figure legends.

Western Blotting and Protein-Protein Interaction Assays—Clathrin-coated vesicles (CCVs) were prepared as described previously (22). Briefly, whole brains from adult Wistar rats were homogenized in an 8-volume buffer containing 0.1 M Tris-Cl, 1 mM EDTA, 0.5 mM MgCl₂, 0.02% sodium azide (pH 6.5), and 0.5 mM phenylmethylsulfonyl fluoride. Debris and nuclei were removed by centrifugation at 15,000 × g for 40 min. Coated vesicles were recovered from the supernatant by ultracentrifugation at 125,000 × g for 1 h. The pellet was resuspended in 4 volumes and then mixed with an equal volume of sucrose/Ficoll solution. Centrifugation at 28,000 × g for 40 min pelleted membranes and cytoskeletal elements (P9). The supernatant was diluted with 3
Antibodies and Reagents—The following primary antibodies were used: affinity-purified mouse monoclonal anti-AU5 (5 μg/ml; BAbCO) and anti-α-adaptin (clone 100/2; 1:200) and rabbit polyclonal anti-P2X4 (6 or 1.2 μg/ml for immunoblotting; Alomone), anti-P2X2 (1.5 μg/ml; Alomone), anti-P2X1 (1.5 μg/ml; Alomone), and anti-GluR1 (0.1 μg/ml; Chemical International, Inc.). FITC- or Cy3-conjugated goat anti-mouse or anti-rabbit IgG secondary antibodies (1:250; Jackson ImmunoResearch Laboratories, Inc.) were used for immunocytochemistry.

volumes of buffer and sedimented by ultracentrifugation at 125,000 × g for 1 h. Smooth vesicles were largely in the supernatant, whereas CCVs were recovered from the pellet. Fractions were separated by 10% SDS-PAGE (23), transferred to nitrocellulose membranes, and stained with Ponceau S to check equivalent loading of samples. Membranes were incubated with various primary antibodies and appropriate horseradish peroxidase-conjugated secondary antibodies, followed by detection with ECL (Amersham Biosciences, Buckinghamshire, UK). Membranes were washed with Ponceau S to check equivalent loading of samples. GST or GST-4C was expressed in *Escherichia coli* strain BL21 and purified according to standard procedures. Pull-down assays were performed using rat brain extract as described previously (8).

Identification of a Region Required for Internalization of P2X4 Receptors—P2X4 receptors undergo constitutive and regulated endocytosis, whereas P2X2 receptors do not (7). When heterologously expressed in neurons, P2X4 receptors are distributed in discrete intracellular puncta throughout neurites, whereas P2X2 receptors are more uniformly distributed at the plasma membrane. Many of the puncta of P2X4 receptors colocalize with a marker for early endosomes.

Identification of residues involved in P2X4 receptor trafficking. A, representative confocal images used for analysis of puncta frequency. Scale bar = 10 μm. B, histogram showing the mean frequency of receptor-positive puncta in neurites of transfected neurons. Puncta frequency for the GFP-tagged wild-type (WT) P2X4 receptor is shown compared with that for GFP-tagged mutant receptors (n = 4–13). The sequence of the intracellular C terminus of P2X4 is shown below. Residues that were mutated are shown in boldface, and those that produced a significant decrease in puncta frequency are overlined.

Horseradish peroxidase-conjugated anti-mouse or anti-rabbit secondary antibodies (1:10,000; Amersham Biosciences) were used for Western blotting. Unless otherwise stated, all reagents were obtained from Sigma or Invitrogen.

FIG. 1. The C terminus of P2X4 is necessary for receptor trafficking. A, schematic representation of P2X receptor constructs. The P2X4 and P2X2 sequences are shown as gray and white boxes, respectively. Black boxes represent transmembrane domains. B, subcellular distribution of GFP-tagged wild-type and chimeric receptors in neurons. Scale bars = 50 μm. C, histogram showing the mean frequency of receptor-positive puncta in the neurites of transfected neurons. Puncta frequency for wild-type P2X4 and P2X2 receptors is shown compared with that for chimeric receptors and for P2X4 receptors with deletions at the C and N termini (n = 5–10). All constructs were GFP-tagged at the C terminus. ***p < 0.001.

The following primary antibodies were used: affinity-purified mouse monoclonal anti-AU5 (5 μg/ml; BAbCO) and anti-α-adaptin (clone 100/2; 1:200) and rabbit polyclonal anti-P2X4 (6 or 1.2 μg/ml for immunoblotting; Alomone), anti-P2X2 (1.5 μg/ml; Alomone), anti-P2X1 (1.5 μg/ml; Alomone), and anti-GluR1 (0.1 μg/ml; Chemical International, Inc.). FITC- or Cy3-conjugated goat anti-mouse or anti-rabbit IgG secondary antibodies (1:250; Jackson ImmunoResearch Laboratories, Inc.) were used for immunocytochemistry.

Identification of a Region Required for Internalization of P2X4 Receptors—P2X4 receptors undergo constitutive and regulated endocytosis, whereas P2X2 receptors do not (7). When heterologously expressed in neurons, P2X4 receptors are distributed in discrete intracellular puncta throughout neurites, whereas P2X2 receptors are more uniformly distributed at the plasma membrane. Many of the puncta of P2X4 receptors colocalize with a marker for early endosomes.

To identify the molecular determinants of trafficking, we took advantage of this difference between the two receptor subtypes and generated chimeras between P2X2 and P2X4 in which the C termini were switched (Fig. 1A). GFP-tagged receptors were expressed in cultured neurons, and their subcellular distributions were visualized by confocal microscopy. Tagging the wild-type receptors with GFP at their C termini does not substantially alter their subcellular distribution or functional expression (7). The trafficking of the chimeras was largely determined by their C-terminal region, with the distribution of the P2X4(2C) chimera resembling that of P2X4 receptors and, conversely, that of the P2X2(2C) chimera resembling P2X2 receptors (Fig. 1B). The frequency of fluorescent puncta along the processes provides a comparative measure of receptor internalization. P2X4 had a frequency of 5.41 ± 0.46 puncta/10 μm (Fig. 1C), similar to that of the P2X4(2C) chimeric receptor (4.86 ± 0.37 puncta/10 μm). In contrast, the frequency of puncta for P2X2 and the P2X2(2C) chimera was much lower.
Mutation of the YXXGL motif decreases P2X₄ receptor internalization and increases surface expression. A, live labeling of P2X₄(AU5) and related mutant receptors with anti-AU5 antibody for 30 min at 37 °C. Cell-surface (left panels) and internalized (middle panels) receptors were visualized using Cy3- and FITC-conjugated secondary antibodies, before and after permeabilization, respectively. For each receptor, a vertical stack of confocal images is shown, respectively. Scale bar = 10 μm. B and C, quantification of P2X₄(AU5) and related mutant receptor internalization. The histogram in B shows the internalized fluorescence as a fraction of AU5-labeled (surface plus internalized) fluorescence, normalized to 10 μm of neurite length (n = 4–14). D, quantification of P2X₄(AU5) and related mutant receptor surface expression. The histogram shows the proportion of the total P2X₄ receptor population at the cell surface (n = 16–58). WT, wild-type. **, p < 0.01; ***, p < 0.001.

Identification of Residues Important in P2X₄ Receptor Trafficking—To identify the amino acids in this middle C-terminal region that are involved in trafficking, we individually substituted either alanine or phenylalanine for the four tyrosine residues at positions 367, 372, 374, and 378 and for the lysine residues at positions 370 and 371. Only at position 378 did the mutations substantially alter the distribution of the receptor (Fig. 2). Y378A and Y378F reduced the frequency of puncta by between 3- and 4-fold. Similarly, the Y378A mutation in the P2X₄(4C) chimeric receptor ablated the internalization conferred by the P2X₄ C-terminal region.

Alanine substitutions were made upstream and downstream of Tyr³⁷⁸ to identify other residues that might form part of a motif. Substituting alanine for Gly³⁸¹ (Y+3) and Leu³⁸² (Y+4) significantly reduced puncta frequency (2.54 ± 0.51 and 2.17 ± 0.31 puncta/10 μm, respectively; p < 0.001). In contrast, substituting alanine for Glu³⁷⁹ and Gln³⁸⁰ at Y+2 and Y+3 had no significant effect on receptor distribution, and neither did alanine substitutions at Val³⁷⁵ (Y−3) or at Glu³⁷⁶ and Asp³⁷⁷ (Y−2 and Y−1). Thus, the motif is of the form YXXGL.

Mutation of the Endocytic Motif of the P2X₄ Receptor Decreases Internalization—To directly measure the effects of the mutations on receptor internalization, GFP was removed from the C terminus, and an AU5 epitope was introduced into the extracellular loop to enable surface receptors in live neurons to be labeled. We previously showed that the introduction of this epitope produces a small shift in the concentration-effect curve for ATP, but does not otherwise alter the function or subcellular distribution of the receptor (7). Receptors at the surface and those that had subsequently been internalized were detected with Cy3- and FITC-conjugated secondary antibodies, respectively (Fig. 3A). Cells were analyzed by determining the fraction of labeled receptors that were internalized at the soma (7, 14) and by counting the number of receptor puncta that were internalized during the labeling period in neurites (24).

Mutation of Tyr³⁷⁸, Gly³⁸¹, or Leu³⁸² significantly reduced the proportion of surface receptors that were internalized. In contrast, the V375A mutation had no effect (Fig. 3B). To ensure that any decrease in internalization was not simply caused by an increase in surface expression and saturation of the endo-
cytic machinery, internalized receptor fluorescence was measured in neurons with a range of surface expression levels. For cells with similar surface staining, there was considerably less internalized receptor fluorescence in those cells expressing the Tyr378, Gly381, and Leu382 mutant receptors compared with the wild-type receptor (see Supplemental Fig. 1). The frequency of internalized puncta for the Tyr378 and Leu382 mutants was reduced by ~5-fold compared with the wild-type receptor (Fig. 3C). The more conservative Y378F mutation was as disruptive as the Y378A mutation, whereas the G381A mutation caused only a 2-fold decrease in internalized puncta frequency. Together, these results suggest that Tyr378, Gly381, and Leu382 form a non-canonical tyrosine-based endocytic motif.

Mutation of the Endocytic Motif of the P2X4 Receptor Increases Surface Expression—One of the clearest effects of the Tyr378, Gly381, and Leu382 mutations was to increase surface immunolabeling (Fig. 3A). To test whether this was caused either by an increase in the overall expression of the receptor in the cell or by an increase in the proportion of receptors at the surface, we compared surface (anti-AU5 antibody) with total (anti-P2X4 antibody) receptor immunofluorescence. Mutation of Tyr378, Gly381, or Leu382 caused between a 5- and 8-fold increase in the proportion of the total receptors that were at the surface (Fig. 3D). In fact, when we compared the mean total receptor fluorescence for the mutant and wild-type receptors, we found no significant difference in the amount of total receptor (p = 0.097, analysis of variance). Thus, mutation of the YXXGL motif increases the surface expression of P2X4 receptors; this is similar to the effect of coexpressing a dominant-negative mutant of dynamin-1 (7).

Increase in the Functional Pool of P2X4 Receptors by Mutation of the Endocytic Motif—Whole-cell patch-clamp recordings were made from HEK293 cells expressing wild-type and mutant P2X4 receptors to determine, first, whether or not the mutants were functional and, second, whether the increase in surface expression was matched by an increase in functional expression (Fig. 4). For these experiments, the receptors were not tagged with either GFP or an AU5 epitope. All of the mutants that we tested were functional, and the time courses of the inward currents in response to 100 μM ATP were similar to those of wild-type P2X4. In each case, there was a biphasic decay in the continued presence of agonist, and the time constants of the fast and slow components were not significantly altered (Fig. 4A). There was, however, a significant increase in the peak current density of the Y378A, Y378F, G381A, and L382A mutants compared with either the wild-type or V375A mutant receptor (Fig. 4B). Thus, a consequence of inhibiting receptor internalization is the increase in the functional response to application of ATP. This increase was not as great as the increase in surface expression of receptors (2.5-fold versus 5–8-fold), suggesting that the proportion of surface receptors that were functional was reduced.

Mutation of the Endocytic Motif Blocks Agonist-regulated Internalization of P2X4 Receptors—To test whether or not agonist-regulated internalization and constitutive internalization occur via a similar mechanism, we compared the effects of ATP on the wild-type and mutant AU5-tagged receptors. After labeling surface receptors with anti-AU5 antibody, neurons were incubated for 15 min at 37 °C with or without 100 μM ATP. ATP caused a 1.5-fold increase in the number of P2X4 receptors that were internalized, whereas it had no effect on the distribution of the Y378A or L382A mutant (Fig. 5). This suggests either that agonist binding promotes the interaction between the YXXGL motif and components of the endocytic machinery or that it slows the subsequent recycling of internalized receptors.

Interaction between the C Terminus of P2X4 and AP-2—Internalization of P2X4 receptors from the plasma membrane is by a dynamin-dependent mechanism (7). We next investigated whether or not P2X4 receptor internalization occurs via a clathrin- and AP-2-dependent pathway. CCVs were isolated from rat brain using an established protocol (22). We probed the CCV and smooth vesicle fractions as well as the P3 fraction, which contained membranes and cytoskeletal components, with antibodies to P2X4, P2X3, GluR1, and α-adaptin (Fig. 6A). Immunoblotting with anti-α-adaptin antibody confirmed that the CCV fraction was enriched with AP-2. P2X4 was predominantly in the CCV fraction, as was GluR1. In contrast, we found only a weak signal for P2X4 in both the smooth vesicle and CCV fractions, and there was no detectable band with anti-P2X4 antibody. All receptors were detected in the P3 fraction, suggesting that a lack of detection was not a problem with the antibodies.

To investigate the interaction of the C terminus of P2X4 with AP-2, we expressed the P2X4 C terminus as a soluble GST fusion protein (GST-4C). Purified GST or GST-4C protein was immobilized on glutathione-Sepharose beads and incubated with detergent-solubilized neonatal rat brain extracts. Associated proteins were separated by SDS-PAGE and probed using an antibody to α-adaptin (Fig. 6B). GST-4C (but not GST alone) was found to interact with α-adaptin. Together, these observations strongly suggest that P2X4 receptors are endocytosed via a clathrin-dependent pathway in situ and that AP-2 recruits P2X4 prior to internalization.

Expression of a Dominant-negative μ2 Subunit Inhibits P2X4 Receptor Internalization—Tyrosine-based sorting motifs have been shown to bind to the μ2 subunit of AP-2 (11). To test whether or not μ2 is involved in P2X4 receptor internalization, we used a dominant-negative μ2 subunit that has two mutations involving key residues necessary for binding canonical
tyrosine-based sorting motifs (D176A/W421A) (12, 19). We generated stable HEK293 cells expressing either wild-type or dominant-negative μ2 and showed that the uptake of transferrin/Alexa 568 was significantly reduced in the dominant-negative μ2-expressing cells (Fig. 7C). We then compared the subcellular distribution of P2X₄-GFP transiently transfected into the two stable cell lines. In cells expressing the dominant-negative μ2 subunit, there was considerably more P2X₄-GFP fluorescence associated with the plasma membrane (Fig. 7B). In cells expressing the wild-type μ2 subunit, the P2X₄ receptor was predominantly in intracellular compartments (Fig. 7A); this is consistent with our previous results using wild-type HEK293 cells (7). We next carried out live labeling of P2X₄(AU5) receptors expressed in the two stably transfected cell lines and found that, in the presence of dominant-negative μ2, there was a 16-fold increase in the fraction of the total receptor population that was at the surface (Fig. 7D). There was also a 3-fold decrease in the internalization of anti-AU5 antibody-labeled surface receptors (Fig. 7E). Thus, the internalization of P2X₄ receptors appears to involve an interaction between the YXXGL motif and the tyrosine-binding pocket of μ2.

DISCUSSION

The results presented here demonstrate that the ionotropic P2X₄ receptor contains a non-canonical tyrosine-based sorting motif in its C terminus, YXXGL. This sorting signal is important for constitutive internalization and agonist-regulated internalization, indicating that they involve a common mechanism. Targeted mutation of the motif or of the tyrosine-binding pocket of the μ2 subunit of AP-2 caused an increase in surface receptor number. The increase in surface receptor number with mutant P2X₄ receptors was associated with an increase in the functional pool of receptors. Thus, constitutive internalization is important for determining receptor density.

Interaction between YXXGL and the μ2 Subunit—Together, our data suggest that the C terminus of P2X₄ interacts with AP-2 via a non-canonical tyrosine-based motif of the form YXXGL by binding to the μ2 subunit. We propose that, like YXXØ motifs, Tyr²⁷⁸ and Leu²⁸² of P2X₄ fit into the two hydrophobic binding pockets on either side of strand β₁₆ (12, 25, 26). If the C terminus of P2X₄ were in an extended conformation, this fit would not be favorable. However, we found that Gly²³⁸ could not be substituted with an alanine residue without an impairment of internalization. This subtle change in side chain is predicted to greatly affect the flexibility of the peptide (27). Thus, a glycine (but not an alanine) residue at Y⁷+3 may allow Leu²⁸² to fit into the second hydrophobic pocket.

Non-canonical Tyrosine-based Sorting Motifs—Tyrosine-based sorting motifs are a family of degenerate signals that can often be minimally described by a critical tyrosine residue that cannot be substituted by alanine or phenylalanine (11). Amino acids with bulky hydrophobic side chains are also often re-
required for the interaction with μ_2, usually at Y+3. Indeed, μ_2 was identified as an interacting protein using a YXXØ signal (28). Using a combinatorial approach, Boll et al. (29) documented the preference of GST-μ_2 for peptides of the form XXXXXXXX. The optimal sequence for μ_2 binding was found to be YXR. However, the selection of glycine at Y+3 was similar to that for more bulky hydrophobic residues, whereas the selection of alanine at Y+3 was very low (29). Other studies have also shown that alanine at Y+3 is not compatible with a μ_2 interaction (28, 30).

There is a precedent for a tyrosine-based sorting motif with a bulky hydrophobic residue at Y+4. The thromboxane A$_2$ receptor is a G-protein-coupled receptor that requires a YXXX signal for tonic (but not agonist-induced) internalization (31). This signal differs from YXXGL in that it has Thr at Y+3, not Gly. It is also not established whether or not this receptor is endocytosed following an interaction with μ_2.

In the absence of a bulky hydrophobic residue at Y+3, amino acids with bulky hydrophobic side chains at Y+3 have also been reported to be important for μ_2 binding (26). However, we found that a valine residue at Y−3 in P2X$_4$ was not required for endocytosis.

It is not known exactly how selectivity for different YXXØ signals is achieved by AP-2. One hypothesis is that subtle differences in the residues at each Y+1 and Y+2 could confer selectivity (10). Indeed, there is structural evidence to indicate that Arg at Y+2 in TGN-38 makes multiple contacts with μ_2. Because of potential differences in binding, this new type of motif could provide a basis for differential selection of receptor molecules by AP-2. This raises several key questions, i.e. are YXXØ motifs and YXXGL motif-containing receptors trafficked in distinct endosomal compartments, or can they share the same clathrin-coated vesicle?

Trafﬁcking of P2X Receptors—The YXXGL motif is totally conserved among mammalian P2X$_4$ sequences (YEQL), but is absent from other P2X receptor subtypes. Of the subtypes tested so far, P2X$_4$ (but not P2X$_2$ or P2X$_3$) receptors constitutively cycle between the plasma membrane and intracellular compartments (7). P2X$_1$ receptors have been reported to undergo agonist-mediated internalization (32, 33), but it is not clear if any basal P2X$_1$ internalization occurs. In addition, the molecular requirements for P2X$_1$ endocytosis are currently unknown. For P2X$_7$ receptors, some intracellular staining for P2X$_7$ protein in neurons has been observed (34), suggesting endocytic uptake of native receptors; yet we failed to detect any P2X$_7$ immunoreactivity in the CCV fraction isolated from rat brain.

Identification of Similar Motifs in Other Receptors and Ion Channels—The YXXGL motif has been shown to be important in regulating the surface number. Table I shows selected results from a search for motifs similar to YXXGL in other membrane proteins cloned from Rattus norvegicus in the Swiss Protein Database. The search was performed with ScanProsite3 and used YXXGL (in Prosite format Y-x(2)-G-[LIVMFY]). A YXXGL sequence was found in 634 entries. Of those, 105 were transmembrane proteins, and 19 had the motif present in an intracellular domain. Of particular note are the entries for the AMPA receptor subunits GluR2 and GluR3. AMPA receptors have previously been shown to use the internalization machinery to modify surface receptor number (6, 14, 15, 35). The precise sequence requirements for AMPA receptor endocytosis are presently unknown, however (2, 14).

We propose therefore that non-canonical tyrosine-based endocytic motifs may be involved in the control of the surface number of other receptors and ion channels.

Acknowledgements—We thank Dr. D. J. Owen for discussions regarding the P2X$_2$, μ_2 interaction, Dr. M. S. Robinson for the μ_2 DNA, and Dr. F. Araujo and J. G. Carlton for help in generating the μ_2 and GST constructs.

REFERENCES

1. Carroll, R. C., Beattie, E. C., von Zastrow, M., and Malenka, R. C. (2001) Nat. Rev. Neurosci. 2, 315–324
2. Sheng, M., and Lee, S. H. (2001) Cell 105, 825–828
3. Moss, S. J., and Smart, T. G. (2001) Nat. Rev. Neurosci. 2, 240–250
4. Turigny, G. G. (2000) Nature 360, 8–8
5. Burrone, J., and Murthy, V. N. (2001) Curr. Biol. 11, R274–R277
6. Man, H. Y., Lin, J. W., Ju, W. H., Ahmadian, G., Liu, L. D., Becker, L. E., Shen, M., and Wang, Y. T. (2000) Nature 405, 649–662
7. Babinovic, L. K., Royle, S. J., and Murrell-Lagnado, R. D. (2002) J. Neurosci. 22, 4814–4824
8. Kittler, J. T., Delmas, P., Jevanojic, J. N., Brown, D. A., Smart, T. G., and Moss, S. J. (2000) J. Neurosci. 20, 7972–7977
9. Marsh, M., and McMahon, H. T. (1999) Science 285, 215–220
10. Kirchhausen, T. (1999) Annu. Rev. Cell Dev. Biol. 15, 705–732
11. Bonifacino, J. S., and Dell’Angelica, E. E. (1999) J. Cell Biol. 145, 923–926
12. Owen, D. J., and Evans, P. R. (1998) Science 237, 1327–1332
13. Carroll, R. C., Beattie, E. C., Xia, H. H., Luscher, C., Autschler, Y., Nisoll, R. A., Malenka, R. C., and von Zastrow, M. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 14112–14117
14. Lin, J. W., Ju, W., Foster, K., Lee, S. H., Ahmadian, G., Wang, Y. T., and Sheng, M. (2000) Nat. Neurosci. 3, 1283–1290
15. Wang, Y. T., and Linden, D. J. (2000) Nature 405, 655–647
16. Roche, K. W., Standley, S., McCallum, J., Dune Ly, C., Ehlers, M. D., and Wenthold, R. J. (2001) Nat. Neurosci. 4, 794–802
17. Ehlers, M. D. (2000) Nature 28, 511–520
18. Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N., and Sorkin, A. (1999) EMBO J. 18, 2489–2499
19. Khakh, B. S., Burnstock, G., Kennedy, C., King, B. F., North, R. A., and Seguela, P., Voigt, M., and Humphrey, P. P. (2001) Pharmacol. Rev. 53, 107–118
20. Nevin, A., Carter, R. E., and Sorkina, T., Gill, G. N., and Sorkin, A. (1999) EMBO J. 18, 2489–2499
21. Roche, K. W., Standley, S., McCallum, J., Dune Ly, C., Ehlers, M. D., and Wenthold, R. J. (2001) Nat. Neurosci. 4, 794–802
22. Laemmli, U. K. (1970) Nature 227, 685–688
23. Snyder, E. M., Philpot, B. D., Huber, K. M., Dong, X., Fallon, J. R., and Bear, M. F. (2001) Nat. Rev. Neurosci. 4, 1079–1085
24. Follows, E. R., McPheat, J. C., Minshull, C., Moore, N. C., Pauptit, R. A., and Lipp, P. (1999) Neuropharmacol. Rev. 53, 549–564
25. Wang, Y. T., and Linden, D. J. (2000) Nature 405, 655–647
26. Roche, K. W., Standley, S., McCallum, J., Dune Ly, C., Ehlers, M. D., and Wenthold, R. J. (2001) Nat. Neurosci. 4, 794–802
27. Marshall, M., and McMahon, H. T. (1999) Science 285, 215–220
28. Kirchhausen, T. (1999) Annu. Rev. Cell Dev. Biol. 15, 705–732
29. Bonifacino, J. S., and Dell’Angelica, E. E. (1999) J. Cell Biol. 145, 923–926
30. Owen, D. J., and Evans, P. R. (1998) Science 237, 1327–1332
31. Carroll, R. C., Beattie, E. C., Xia, H. H., Luscher, C., Autschler, Y., Nisoll, R. A., Malenka, R. C., and von Zastrow, M. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 14112–14117
32. Lin, J. W., Ju, W., Foster, K., Lee, S. H., Ahmadian, G., Wyszynski, M., Wang, Y. T., and Sheng, M. (2000) Nat. Neurosci. 3, 1283–1290
33. Wang, Y. T., and Linden, D. J. (2000) Nature 405, 655–647
34. Rose, K. W., Standley, S., McCallum, J., Dune Ly, C., Ehlers, M. D., and Wenthold, R. J. (2001) Nat. Neurosci. 4, 794–802
35. Ehlers, M. D. (2000) Nature 28, 511–520

3 Available at ca.expasy.org/tools/scenpsite.html.
30. Ohno, H., Fournier, M. C., Poy, G., and Bonifacino, J. S. (1996) *J. Biol. Chem.* **271**, 29009–29015
31. Parent, J. L., Labrecque, P., Driss Rochdi, M., and Benovic, J. L. (2001) *J. Biol. Chem.* **276**, 7079–7085
32. Li, G. H., Lee, E. M., Blair, D., Holding, C., Poronnik, P., Cook, D. I., Barden, J. A., and Bennett, M. R. (2000) *J. Biol. Chem.* **275**, 29107–29112
33. Ennion, S. J., and Evans, R. J. (2001) *FEBS Lett.* **489**, 154–158
34. Deuchars, S. A., Atkinson, L., Brooke, R. E., Musa, H., Milligan, C. J., Batten, T. F., Buckley, N. J., Parson, S. H., and Deuchars, J. (2001) *J. Neurosci.* **21**, 7143–7152
35. Luscher, C., Xia, H. H., Beattie, E. C., Carroll, R. C., von Zastrow, M., Malenka, R. C., and Nicoll, R. A. (1999) *Neuron* **24**, 649–658