Effect of heat treatment of beryllium bronzes on the quality of critical engineering parts

L Kartonova¹ and M Ivanova²

¹ Vladimir State University named after Alexander and Nikolay Stoletovs, 87 Gorky Street, Vladimir, 600000, Russian Federation
² V.A. Degtyarev Plant OJSC, 4 Truda st., Kovrov, 601900, Vladimir region, Russian Federation

E-mail: lkart33@gmail.com

Abstract. The paper considers the peculiarities of thermal hardening of beryllium bronzes (Cu + 2% Be) and the feasibility of stepwise aging on BrB2 alloy parts with different requirements for their geometry. The factors determining the occurrence of stresses in beryllium bronzes parts are described. Attention is drawn to the fact that stepwise aging does not help to straighten the details as it happens during aging in special devices. Studies have shown that for cylindrical parts, when controlling deviations in straightness, stepwise aging minimizes warpage even during heat treatment without special devices. For flat parts with stringent geometry requirements, the processing of which is carried out in devices, dispersion hardening in a free state is not acceptable. For parts made of BrB2 alloy, heat treatment of which is not economically feasible in devices, but the geometry is significant, it is recommended to introduce an operation to “relieve stress” at a temperature of 210±5°C for one hour (step aging) before the operation "dispersion hardening", that will minimize distortion during heat treatment without the use of special devices. It is shown that in each particular case, analysis is necessary on the feasibility of using staged aging, since in some cases its use can lead to a more expensive process without a significant effect in terms of reducing warpage of parts.

1. Introduction
Copper-based alloys are widely used as functional and structural materials [1]. At the same time, Cu-Be alloys are characterized by an attractive combination of performance properties, such as corrosion resistance, fatigue endurance, electric conductivity, etc. [2]. In addition, these alloys are characterized by a wide range of achievable level of mechanical properties, which can be controlled by selecting optimal conditions and conditions of thermal and thermomechanical processing [3-6]. As is known, a characteristic feature of beryllium bronzes is the variable beryllium in copper, which decreases with decreasing temperature, i.e. they are dispersion hardened alloys; therefore, their thermal hardening is possible [7-11].

During the heat treatment of elastic elements from beryllium bronzes, significant stresses arise, which causes deformation (warping) during the heat treatment itself and cause instability of the size and shape of the products during operation. This complicates the heat treatment technology, since the problem is solved by the use of devices during aging after hardening, in which parts are usually manually fixed [12, 13]. Stress relaxation during aging ensures the stability of the product configuration [14, 15].
One of the factors determining the occurrence of stresses is the difference in the intensity of volumetric changes in the surface and middle layers of the part already during the heat treatment [16-19]. This heterogeneity also affects the decomposition of the solid solution during aging, which is accompanied by a significant volumetric effect, even if the part has a small thickness. In the middle layers of the section of parts in which no structural changes occurred during hardening, the decay process will develop with some delay and with less intensity.

In [20], the effect on the level of residual stresses of the surface state is noted. The authors present data that aging of BrB2 beryllium bronze in vacuum at 340 °C for 20 h leads to the appearance of residual tensile stresses in the surface layers of $a = 32$ N/mm2. And under conditions of strong oxidation during aging in a furnace without a protective atmosphere, the magnitude and sign of the residual stresses change. Residual compressive stresses (rather than tensile ones) arise in the surface layers. The authors explain this by the difference in the beryllium content in the surface layer and in the middle of the part.

As a solution to the problem of deformation of parts, the following options are proposed:
- plating on parts before dispersion hardening;
- carrying out low-temperature stress relief (210 °C for 1 hour until dispersion hardening at 320 °C for 3 hours).

Since most of the BrB2 alloy parts are coated in their final form, the protective layer applied before aging can significantly reduce the surface quality of the finished parts, a decision was made to test the stepwise aging mode.

The purpose of the research was to determine the feasibility of stepwise aging on BrB2 alloy parts with different requirements for their geometry.

2. Methods
The object of the study was the BrB2 alloy parts according to the nomenclature of the V.A. Degtyarev Plant: "Piston", "Terminal" and "Ring". A piston is a cylindrical type part, made of a bar Φ10 mm. Maximum dimensions of the part: diameter 8 mm, length 34.6 mm. The terminal is a flat part, the section of which has an angle of inclination. The maximum dimensions of this part are $14.6 \times 8 \times 0.2$ mm. The ring is made by deformation along a given contour of the tape with a thickness of 0.5 mm, the maximum size is 23.5 mm. The above details were subjected to heat treatment in vacuum electric resistance furnace according to the accepted factory technology (Table 1) and proposed technology.

Material	Heat treatment	Purpose of heat treatment	Mode of heat treatment
BrB2 (Cu + 2% Be)	Dispersion hardening	Obtaining the necessary strength characteristics during the decay of the α-solution	300-350 °C for 2 hours

Hardness measurement was carried out on universal hardness testers according to the Vickers method. Visual control and monitoring was carried out using special calibres.

3. Results and Discussion
The "Piston" type part is made of a bar Φ10 mm. When the aging operation was performed according to the standard mode (see Table 1), visual control observed a deviation from straightness. The specified heat treatment process did not involve the use of devices. Bad parts are being corrected or rejected. Table 2 shows the piece withdrawal of parts according to the specified geometric parameter when performing the aging operation immediately after machining and when performing stepwise aging.
Table 2. Results of measurements of the geometry of the "Piston" type parts

Pre-treatment	Amount of parts	Total amount of parts in batch	Hardness, HV	
	Accepted	Refused		
With preliminary heat treatment	197	3	200	395
Without preliminary heat treatment	136	64	200	420

The hardness of parts after a standard aging operation and after step aging is measured on witness samples and satisfies the requirements of the design documentation in both cases (HV > 330). Studies have shown that for cylindrical parts, when controlling deviations in straightness, stepwise aging minimizes warpage even during heat treatment without special devices.

The “Terminal” type part is made of 0.2 mm tape. The design of this part has rather stringent requirements for geometry, in particular for the angle of inclination of the “antennae” of the terminal. The standard mode of heat treatment of these parts provides for the operation “aging” in devices. After heat treatment, control is provided for the angle of the calibres. The pilot batches carried out input control. Heat treatment was carried out according to a regular technological process in devices and without devices with step aging. The measurement results are summarized in Table 3 and 4.

Table 3. Results of measurements of the geometry of the “Terminal” type parts after dispersion hardening in devices

Dispersion hardening in devices	Total		
Accepted			
Refused			
Measurement of parts before heat treatment	227	73	300
Measurement of parts after heat treatment	296	4	300

Table 4. Results of measurements of the geometry of the “Terminal” type parts after dispersion hardening in a free state

Dispersion hardening in a free state using preliminary heat treatment	Total		
Accepted			
Refused			
Measurement of parts before heat treatment	248	52	300
Measurement of parts after heat treatment	172	128	300

It can be seen that stepwise aging did not bring the expected results, which was most likely because the devices during the heat treatment straighten the parts, while stepwise aging stabilizes the dimensions obtained by machining. The hardness of the parts was measured on witness samples and in both cases corresponds to the design documentation (HV > 330). Therefore, for flat parts with stringent geometry
requirements, the processing of which is carried out in devices, dispersion hardening in a free state is not acceptable.

A part of the "Ring" type is made of 0.5 mm tape. The design of the part provides for control of the non-flatness of the part. The regular technological process of aging is carried out without the use of devices. Non-flatness control is carried out on a plate using calibres. The data on the measurements of the geometry of the parts heat-treated according to the standard manufacturing process and the step-by-step aging technology are given in Table 5. The hardness of the parts complies with the design documentation and is measured on witness samples (HV> 330).

Table 5. Results of measurements of the geometry of the "Ring" type parts
Amount of parts

With preliminary heat treatment
Accepted
Refused
Total
Without preliminary heat treatment
Accepted
Refused
Total

It can be seen that in both cases, the waste of parts is a small percentage, which gives an idea of the inefficiency of step aging in relation to parts of this type.

On the basis of literature analysis and experimental studies for parts made of BrB2 alloy, heat treatment of which is not economically feasible in devices, but the geometry is significant, an operation should be introduced to “relieve stress” at a temperature of 210±5°C for one hour (step aging) before the operation "dispersion hardening". The recommended mode of heat treatment of bronze will minimize distortion during heat treatment without the use of special devices.

4. Conclusions
Thus, the analysis of the results showed that the use of stepwise aging reduces internal stresses, and also positively affects the behaviour of the part in the process of dispersion hardening, reducing its warpage. It should be noted that stepwise aging does not help to straighten parts as it happens during aging in devices.

Experimental studies have shown that for thin parts made of sheets, the use of stepwise aging was less effective, since there is no possibility of correcting the geometry defects that were obtained at earlier stages of production.

Based on the foregoing, we can conclude that in each particular case, analysis is necessary on the feasibility of using staged aging, since in some cases its use can lead to a more expensive process without a significant effect in terms of reducing warpage of parts.

References
[1] Davis J R (ed.) 2001 ASM Specialty Handbook: Copper and Copper Alloys (Ohio: ASM International)
[2] Chakrabarti D J, Laughlin D E, and Tanner L E 1987 The Be–Cu (Beryllium-Copper) system Bull Alloy Phase Diagrams 8 269 doi: 10.1007/BF02874919
[3] Zisel’man V L, Shatalov R L, and Aldunin A V 2006 Developing efficient regimes of thermomechanical treatment for obtaining quality strip made of beryllium bronzes Metallurgist 50 102 doi: 10.1007/s11015-006-0047-0
[4] Korshunov L G, Korznikov A V, and Chernenko N L 2011 Effect of the severe plastic deformation and aging temperature on the strengthening, structure, and wear resistance of a beryllium
bronze Phys Met Metallogr 111 395 doi: 10.1134/S0031918X10061018

[5] Ryou M, Lee B-S, and Kim M-H 2008 Influence of aging treatment on the mechanical and electrical properties of Cu-0.5%Be alloy J Mater Sci Technol 24 120

[6] Lomakin I, Castillo-Rodriguez M, and Sauvage X 2019 Microstructure, mechanical properties and aging behaviour of nanocrystalline copper–beryllium alloy Mater Sci Eng A 744 206 doi: https://doi.org/10.1016/j.msea.2018.12.011

[7] Martin J M 1998 Precipitation Hardening 2nd ed (Oxford: Butterworth-Heinemann)

[8] Varschavsky A, and Donoso E 1995 A differential scanning calorimetric study of precipitation in Cu-2Be Thermochim Acta 266 257 doi: https://doi.org/10.1016/0040-6031(95)02338-0

[9] Tsubakino H, Nozato R, and Yamamoto A 1993 Precipitation sequence for simultaneous continuous and discontinuous modes in Cu–Be binary alloys Mater Sci Technol 9 288 doi: 10.1179/mst.1993.9.4.288

[10] Boyer HE 2013 Heat Treating of Nonferrous Alloys Metallogr Microstruct Anal 2 190 doi: 10.1007/s13632-013-0074-8

[11] Monzen R, Watanabe C, Mino D, and Saida S 2005 Initiation and growth of the discontinuous precipitation reaction at [011] symmetric tilt boundaries in Cu–Be alloy bicrystals Acta Mater 53 1253 doi: https://doi.org/10.1016/j.actamat.2004.11.019

[12] Czerwinski F (ed.) 2012 Heat Treatment: Conventional and Novel Applications (Rijeka: InTech)

[13] Bryson W E 2015 Heat Treatment: Master Control Manual (Munich: Carl Hanser Verlag)

[14] Zhan L, Lin J, and Dean T A 2011 A review of the development of creep age forming: Experimentation, modelling and applications Int J Mach Tools Manuf 51 1 doi: https://doi.org/10.1007/j.machtools.2010.08.007

[15] Zhan L, Ma Z, Zhang J, Tan J, Yang Z, and Li H 2016 Stress relaxation ageing behaviour and constitutive modelling of a 2219 aluminium alloy under the effect of an electric pulse J Alloys Compd 679 316 doi: https://doi.org/10.1016/j.jallcom.2016.04.051

[16] Husson R, Baudouin C, Bigot R, and Sura E 2014 Consideration of residual stress and geometry during heat treatment to decrease shaft bending Int J Adv Manuf Technol 72 1455 doi: 10.1007/s00170-014-0568-8

[17] Godlewski L A, Su X, Pollock T M, and Allison J E 2013 The effect of aging on the relaxation of residual stress in cast aluminum Metall Mater Trans A Phys Metall Mater Sci 44 4809 doi: 10.1007/s11661-013-1800-1

[18] Khlybov A A 2016 Effect of Heat Treatment on Residual Stresses in the Zone of Fusion of Austenitic and Vessel Steels Met Sci Heat Treat 58 426 doi: 10.1007/s11041-016-0029-1

[19] Bai Q, Feng H, Si L-K, Pan R, and Wang Y-Q 2019 A Novel Stress Relaxation Modeling for Predicting the Change of Residual Stress During Annealing Heat Treatment Metall Mater Trans A 50 5750 doi: 10.1007/s11661-019-05454-z

[20] Vasil’ev N V 1991 Reduction in warping of beryllium bronze articles with heat treatment Met Sci Heat Treat 33 238 doi: 10.1007/BF00769352