Beauveria Bassiana as Fungal Endophyte for the Potential Control of the Potato Tuber Moth Phthorimaea Operculella on Potatoes

Mengdi Zhang
Chinese Academy of Agricultural Sciences Institute of Plant Protection

Junjie Yan
Chinese Academy of Agricultural Sciences Institute of Plant Protection

Stuart Reitz
Orgon State University

Shengyong Wu (✉ wushengyong2014@163.com)
Chinese Academy of Agricultural Sciences Institute of Plant Protection https://orcid.org/0000-0002-8403-6443

Yulin Gao
Chinese Academy of Agricultural Sciences Institute of Plant Protection https://orcid.org/0000-0001-7694-8875

Research Article

Keywords: Fungal endophytes Colonization Biological control Beauveria bassiana Phthorimaea operculella

DOI: https://doi.org/10.21203/rs.3.rs-726671/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
For submission to:

Journal of Pest Science

Beauveria bassiana as fungal endophyte for the potential control of the potato tuber moth Phthorimaea operculella on potatoes

Mengdi Zhang1, Junjie Yan1,2, Stuart Reitz3, Shengyong Wu1* and Yulin Gao 1,4*

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China

2 College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China

3 Department of Crop and Soil Sciences, Malheur Experiment Station, Oregon State University, Ontario, USA

4 National Center of Excellence for Tuber and Root Crop Research, Chinese Academy of Agricultural Sciences, Beijing, China

*Correspondence: Yulin Gao, gaoyulin@caas.cn; Shengyong Wu, sywu@ippcaas.cn
Abstract

The potato tuber moth, *Phthorimaea operculella*, is the most damaging potato pest in the world and is difficult to control as the larvae are internal feeders in the foliage or tubers. Entomopathogenic fungi (EPF) which colonize plants as endophytes, have lethal and sublethal pathological effects on insect pests. Experiments showed that *Beauveria bassiana* colonized the aerial parts of potato plants endophytically after inoculation through soil drenching. The colonization rate reached 100% for both upper and lower foliage parts one day after inoculation, and endophytic *B. bassiana* remained present for more than 21-day post inoculation. Mortality experiments indicated that *B. bassiana* and *B. bassiana*-inoculated potato plants were pathogenic against 2nd instar larvae of *P. operculella*. Development experiments showed that the weight of *P. operculella* pupae reared on *B. bassiana*-colonized potato leaves (4.25 mg) was significantly lighter than of those reared on uninoculated control plants (8.89 mg). Sublethal experiments indicated that *B. bassiana* negatively affected the growth, development and reproduction of *P. operculella*. Compared to newly eclosed larvae fed on control plants, those fed on *B. bassiana*-inoculated plants had significantly lower survival, with only 17.8% developing to the adult stage. Oviposition of *P. operculella* females reared on *B. bassiana* endophytically-colonized plants was significantly lower (35 eggs/per female) than of those reared on uninoculated plants (115 eggs/per female). This study demonstrates that endophytic *B. bassiana* can be a potential biological agent for the control and management of *P. operculella*.
Key Message

- We found that *B. bassiana* successfully established as endophytic fungi in potato leaves after artificial inoculation in the laboratory.
- Our study demonstrates for the first time that the endophytic *B. bassiana* strain reduced larval damage to potato plants and adversely affected survival of *P. operculella*.
- Mycosed larvae, pupae and adults were also found on the *B. bassiana*-inoculated plants.
- This study provides basis for further management of *P. operculella* in the field.

Author contributions

GY and WS conceived and designed research. ZM and YJ conducted the experiments. ZM and YJ analyzed the data. GY, ZM and SR wrote the manuscript. All authors read and approved the manuscript.
Introduction

The potato tuber moth, *Phthorimaea operculella* (Zeller) (Lepidoptera: Gelechiidae), is a cosmopolitan pest of solanaceous crops, especially potato, *Solanum tuberosum* L (Fenemore 1988). Larvae of this species mine leaves, stems, petioles, and excavate tunnels through potato tubers (Gao 2018). The pest infests plants throughout the growing season, however, the most significant damage results from larvae mining the tubers (Rondon et al. 2009). Tunnels left by *P. operculella* in tubers contain frass and other secondary contaminants that can be a potential source for secondary infections (Gao 2018). This moth is distributed widely in tropical and subtropical countries in South, Central and North America, Africa, Oceania and Asia. It is considered to be the most damaging insect pest of field and storage potatoes in developing countries in the tropics and sub-tropics (Gao 2018). By 2020, over 90 countries have reported the presence of this pest (Rondon 2020). Moreover, the rapid development of international trade has promoted the spread of *P. operculella* across continents (Gao and Zhou 2020).

Chemical methods are mainly used to control *P. operculella* in China. However, this has become difficult due to the rapid development of resistance to insecticides (Doğramaci and Tingey 2010). In addition, the delivery of insecticides to larvae is difficult once they tunnel into tubers. Among the non-chemical pest control methods, biological control by entomopathogenic fungi represents one of the most effective options. For example, the fungus *Muscodor albus* was developed as a microbial control agent against adult and larvae of *P. operculella* in stored potatoes (Lawrence and Neven 2006). Also, the *B. bassiana* strain, JLGZL-14, exerted sublethal effects on *P. operculella* larvae, by reducing the reproductive successes of surviving individuals and consequent population growth (Yuan et al.
2018). However, fungal conidia is highly sensitive to environmental conditions, and have to be properly dispersed and delivered to appropriate substrates for an effective pest-control (Jaronski 2009; Dara et al. 2017; Hajek et al. 2017; Van et al. 2017). Therefore, it is important to develop effective application methods that can help protect fungal conidia against adverse environmental stress, and which can also serve as a potential biocontrol agent for the management of *P. operculella*.

Beside their direct mode of action against insect pests, several fungal entomopathogens have been reported to be able to endophytically colonize plants after artificial inoculation through seed dressings, seed soaking, foliar sprays or soil drenching methods (Ownley et al. 2007; Gurulingappa et al. 2010; Sasan and Bidochka 2012; Akutse et al. 2013; Parsa et al. 2013; Mutune et al. 2016), allowing for their possible use as endophytes in plant protection measures (Schulz and Boyle 2005). Fungal endophytes are fungi that exist within the living tissues of a plant without causing any apparent deleterious effects (Petrini 1991). A number of entomopathogenic fungi, including *B. bassiana*, *Isaria farinosa*, *Clonostachys rosea*, *Chaetomium globosum* and *Metarhizium brunneum*, naturally or artificially exist in various plants as endophytes (Abou Alhamed and Shebany 2012; Murphy et al. 2015; Bamisile et al. 2018). For example, *B. bassiana* has been artificially inoculated into many important economic plants, including maize (*Zea mays*), potato (*Solanum tuberosum*), soybean (*Glycine max*), faba bean (*Vicia faba*), tomato (*Solanum lycopersicum*), cotton (*Gossypium spp*) and tobacco (*Nicotiana benthamiana*) (Vega 2018; Qin et al. 2020; Nishi et al. 2021). Moreover, *B. bassiana* has also been shown to endophytically colonize cassava roots following inoculation by soil drenching (Qin et al. 2020). One of the main reasons for the artificial introduction of *B. bassiana* into plants is to protect them against insect pests. For example, most studies conducted on the use of *B. bassiana* as endophytes reported their negative influence on the growth and reproduction of a wide
range of herbivores from different feeding guilds (Vidal and Jaber 2015; Mckinnon et al. 2016; Bamisile et al. 2018), including sucking pests (Muvea et al. 2014; Sword et al. 2017), caterpillars (Barta 2018; Sánchez-Rodríguez et al. 2018), dipterans (Akutse et al. 2013; Mutune et al. 2016), beetles and weevils (Newcombe et al. 2009; Biswas et al. 2013), and grasshoppers (Gurulingappa et al. 2010). However, the effect of *B. bassiana* as endophytes on *P. operculella* remains unknown.

The objectives of this study were therefore to determine whether the *B. bassiana* isolate, GZGY-1-3, could colonize potato plants endophytically using the soil drench method and to assess its pathogenicity as an endophyte, as well as to determine its sublethal effects on *P. operculella*.

Materials and methods

Plants

Seed-tubers of potato (cv ‘Xiabodi’) were cultivated in 15-cm plastic pots until buds grew to about 1 cm in length a walk-in growth chamber (26 ± 1 °C, 12:12 h L:D and 30% ± 10% RH). When buds grew to about 5 cm into soil, plants were inoculated with *B. bassiana* by drenching the soil with 30 ml of a conidial suspension (1.0 × 10⁸ conidia/ml). The potatoes were inoculated every day for 7 days with the soil drench. The number of *B. bassiana* colony-forming units (CFU) (2.22 × 10⁸ cfu/g) was determined following the method of Zhang et al. (2019). After one day of incubation, the potato plants were then used for the experiments. Plants treated with 30 ml 0.05% (v/v) Tween-80 for 7 days served as controls. The plants and insects used in each experiment were independent of that used in other experiments.
Insects

The initial stock of potato tuber moth was collected from potato plants in Kunming, Yunnan Province in June 2013 (E103.79, N25.51). A colony was established and maintained following the methods of Gui and Li (2003) and Rondon et al. (2020). The colony was reared in artificial environmental chambers (MLR-351H, SANYO Electric Co., Ltd., Moriguchi City, Osaka, Japan) under controlled conditions of 26 ± 1 °C, 12:12 h L:D and 70% ± 10% RH. Populations were reared for more than three generations to ensure homogeneity of cultures before their use in experiments. Neonates and 2nd instars from egg masses were collected for experimental use.

Fungal strain

The B. bassiana isolate, GZGY-1-3, was used in experiments because of its demonstrated pathogenicity against P. operculella larvae (Yuan et al. 2018). This strain is maintained at the China General Microbiological Culture Collection Center, No. 9254; GenBank Accession Number KP994951. It was derived from Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) collected in Guizhou Province, China. For experiments, the strain was maintained, and conidia were produced on PDA medium (2% corn flour, 1% wheat bran powder, 0.5% tryptone, 0.3% KH2PO4, 0.1% MgSO4.7H2O, 0.1% NH4NO3, 2% agar powder, 0.5% cicada slough powder) at 24 ± 1 °C under continuous darkness. Conidia was then harvested from 14 d cultures. Conidial concentrations were determined with a haemocytometer viewed with a 400X optical microscope (Olympus BX51, Olympus America Inc., http://www.Olympusmicro.com). Concentrations were adjusted to 1.0 × 108 conidia/ml (2.22× 108 cfu/g) with 0.05% Tween-80 in sterile water. Germination which was tested using the methods of Yuan et al. (2018) exceeded 90%.
Evaluation of endophytic colonization of potato plants by *B. bassiana*

The colonization of *B. bassiana* on potato leaves was observed at the upper (three new leaves near the apical position: the second, third and fourth leaves were collected) and lower parts (three leaves near the lowest position) (Fig. 1A). At 1-day post inoculation of the plants, sectioned parts per treatment were carefully harvested, washed with tap water, then surface sterilized in 70% ethanol for 2 min. This was followed by immersion in 1.5% sodium hypochlorite for 3 min, rinsing with sterile distilled water three times, and then drying on sterile paper towel for 30 s. They were finally cut into 1 × 1 cm pieces under a laminar flow hood before placing them on PDA plate. In addition, water from the last rinse was plated out to assess the reliability of the surface sterilization procedure (Bamisile et al. 2018). Plates were incubated at 26 ± 1 °C for 10 days, after which the presence of endophytes was observed (Bamisile et al. 2018).

The colonization of the different plant parts was recorded by counting the number of sections of the different plant parts that showed presence of inoculated fungal growth/mycelia (Muvea et al. 2014). Only the presence of *B. bassiana* endophyte that was inoculated was scored. Fungal colonies from surface-sterilized parts were characterized only when mycelia grew at the edge of leaf segments from internal tissues. To confirm whether the growing endophytes were the ones initially inoculated, slides prepared from the mother plates were used for comparison and morphological identification. The data was expressed as percent colonization. We separately observed colonization at 1, 4, 7, 14 and 21d after the soil drenching treatment. The experiments were repeated five times using eighteen plants for each treatment (Table 1). Independent batches of plants and *B. bassiana* were used in each treatment.
Effects of *B. bassiana* and *B. bassiana*-inoculated potato plants on mortality of *P. operculella*

We adopted the leaf-disc assay method to determine whether *B. bassiana* and *B. bassiana*-inoculated potato plants was pathogenic against *P. operculella* larvae. In these bioassays, four treatments were used: (1) direct exposure of larvae to a suspension of *B. bassiana*, (2) indirect exposure of larvae to *B. bassiana* by allowing larvae to feed on surface-sterilized endophytically-colonized potato leaves, (3) direct exposure of larvae to a suspension of *B. bassiana* and then allowing them to feed on potato leaves inoculated by endophytic *B. bassiana* (combination of the above two treatments), (4) control treatment without exposure to *B. bassiana*. For direct exposure (treatments 1 and 3), 2nd instars of *P. operculella* were dipped in a conidial suspension (1.0 × 10^8 conidia/ml) of *B. bassiana* for 5 s. For treatments without direct exposure (both *B. bassiana*-inoculated and control leaves) (treatments 2 and 4), 2nd instars were dipped in 0.05% Tween-80 for 5 s. The larvae were then allowed to dry on filter papers for 5 s and then transferred to Petri dishes (diameter × height = 20 cm × 3.5 cm). Each dish was placed over an arena containing potato leaves as a food source embedded in a layer of 2% agar (2% agar powder, 98% deionized water). For treatments 1 and 4, potato leaves were taken from untreated potato plants. For treatments 2 and 3, potato leaves were taken from plants that had been inoculated with *B. bassiana*, as described above. Leaves were surface-sterilized before placement in arenas.

The bioassays were carried out in an artificial environmental chamber (MLR-351H, SANYO Electric Co., Ltd., Moriguchi City, Osaka, Japan) under controlled conditions of 26 ± 1 °C, 12:12 h L:D, and 70% ± 10% RH. Mortality of *P. operculella* was recorded daily up to 13 days after
infestation. Each treatment was replicated twice, with twenty-four 2nd instars per replicate. The bioassays were repeated five times using independent batches of plants and larvae (Table 1).

Effects of B. bassiana-inoculated potato plants on pupal weight of P. operculella

To assess the effects of endophytic *B. bassiana* on pupal weight, plants were prepared as described above. Newly eclosed larvae were transferred to *B. bassiana*-inoculated and control potato plants held in nylon mesh cages (50 cm× 50 cm× 50 cm) using a soft brush and maintained in a room chamber (26 ± 1°C, 12:12 h L:D, and 30% ± 10% RH). A total of 180 larvae were placed on treated plants. Another 180 larvae were placed on untreated plants. Once larvae reached the pupal stage, 40 pupae from each treatment were collected randomly and weighed using an Electro balance (Mettler Toledo, Shanghai, China). Each repetition was made up of 40 pupae, the whole bioassays were repeated five times using independent batches of plants and pupae (Table 1).

Effects of endophytic B. bassiana on development, survival and fecundity of P. operculella

To evaluate the sublethal effects of *B. bassiana*-inoculated potato plants on the development and fecundity of *P. operculella*, another experiment was undertaken. Using a soft brush, newly eclosed larvae (total of 180) were transferred to leaves of 3 potato plants that had been inoculated with *B. bassiana* 24 h earlier, as described above. Larvae in the control group (n=180) were placed on untreated plants. Plants were held in nylon mesh cages (50 cm × 50 cm × 50 cm). Each newly hatched larva was considered as one replicate (Table 1) (Guo et al. 2020). Survival and development of larvae and pupae were observed daily following the method described by Guo et al. (2020).
After pupation, pupae were placed individually into 2 ml centrifuge tubes. After adult eclosion, individual males and females were placed together in plastic containers (height x diameter = 14 cm x 6 cm) and oviposition was recorded by counting daily the number of eggs laid on a sheet of filter paper placed at the bottom of each container. Filter papers were replaced daily. Adults were provided with a 10% sugar suspension solution for food. Observations for each mating pair were continued until female death. These mating/oviposition chambers were held in an environmental room maintained at 26 ± 1°C, 12:12 h L:D, and 30% ± 10% RH.

Statistical Analysis

Colonization frequency (CF) was calculated using the formula (Fisher and Petrini 1987):

Colonization (%) = (PF/TP) × 100

where PF = number of plant pieces colonized, TP = total number of plant pieces. The proportion of fungal colonization was independently analyzed using t-test.

One-way analysis of variance (ANOVA) and Tukey’s HSD test were used to assess virulence bioassays (mortality and LT₅₀). Mortality data were corrected using Abbott’s correction (Abbott 1925).

The median lethal times (LT₅₀) were determined by probit regression. Pupal weight was compared by t-test. Statistical analysis was performed in the R software environment (v.4.0.3).

The life history data were analyzed based on an age-stage two-sex life table (Chi 1988) constructed using the computer program TWO-SEX-MSChart (Chi 2015). The survival rate (sₓ) (x = age, j = stage) and fecundity (fₓj) were calculated following the methods of Chi and Liu (1985), based on data from the entire cohort. The age-specific survival rate (lₓ) was then calculated as follows:
The intrinsic rate of increase \((r) \) was estimated using the Euler-Lotka formula, with the age indexed from 0 as follows (Goodman 1982):

\[
\sum_{x=0}^{\infty} e^{-r(x+1)} l_x m_x = 1
\]

The finite rate of increase \((\lambda) \), the net reproductive rate \((R_0) \), and the mean generation time \((T) \) were individually calculated as follows:

\[
\lambda = e^r
\]

\[
R_0 = \sum_{x=0}^{\infty} l_x m_x
\]

\[
T = \frac{(\ln R_0)}{r}
\]

A bootstrap technique was used to estimate the variances and standard errors of the population parameters (Efron and Tibshirani 1994; Huang and Chi 2012). Differences among the treatment and control plants were estimated with a paired bootstrap test.

Results

Endophytic colonization of B. bassiana in potato plants

The surface sterilization proved successful because no *Beauveria* was detected in the last distilled water used to rinse the surface of leaves. The results showed that the potato plants were colonized endophytically by *B. bassiana* (Fig. 1B). No *B. bassiana* was isolated from the control potato plants.
At the 1-day post inoculation (dpi), all the upper (100%) and lower leaves (100%) showed high colonization of *B. bassiana*. However, at 4 dpi, the colonization of lower leaves (98.89%) was significantly higher than that of the upper parts (87.78%, *t* = -4.7135, *df* = 6.116, *P* = 0.0031 < 0.01).

At 7, 14 and 21 dpi, the colonization of lower sections was 85.55%, 70.00% and 47.78%, respectively, which was significantly higher than that of the upper ones (68.89%, *t* = -8.6597, *df* = 8; 46.66%, *t* = -8.9556, *df* = 6.6341 and 31.11%, *t* = -8.6608, *df* = 8 respectively; all *P* values < 0.001) (Fig. 1C).

Effects of *B. bassiana* on mortality of *P. operculella*

These trials confirmed that foliage of potato plants inoculated with *B. bassiana* via soil drenching were pathogenic against *P. operculella* larvae. *B. bassiana* caused significant mortality to larvae directly through exposure to a suspension of *B. bassiana* and indirectly via feeding on endophytic-colonized *B. bassiana* plants. Mortality increased over time in all *B. bassiana* treatments. However, mortality was significantly greater for larvae exposed to conidia than for larvae exposed to plant tissue inoculated by *B. bassiana*. At 3dpi, the corrected mortality was 51.22% for larvae directly exposed to conidia and 35.28% for larvae exposed to plant tissue endophytically inoculated by *B. bassiana* (Fig. 2A). At 7dpi, the corrected mortality for larvae directly exposed to conidia was 88.35% and 63.59% for larvae exposed to plant tissue inoculated by *B. bassiana*. At 8dpi, the corrected mortality of *P. operculella* exposed directly to conidial suspension reached 100%, which was significantly higher than that of larvae that fed on *B. bassiana*-inoculated potato plants (68.16%; *t* = -30.425, *df* = 9, *P* < 0.001). There was a synergistic effect from the combination of the two *B. bassiana* treatments. Mortality under the combined treatment was the highest and reached 100% at 7 days post inoculation, one day before that level was reached in the direct exposure treatment.
The results also indicated that endophytic *B. bassiana* were virulent to *P. operculella* larvae but acted at a slower rate. The LT$_{50}$ for *P. operculella* exposed to endophytic *B. bassiana* was 5.57 d, whereas it was 3.25 d when exposed to *B. bassiana* conidia, and 2.25 d when exposed to both forms of *B. bassiana* (F= 3146, df = 2, $P < 0.001$, Fig. 2B).

Effects of *B. bassiana*-inoculated potato plants on pupal weight of *P. operculella*

Endophytic *B. bassiana* reduced the pupal weight of surviving *P. operculella* larvae. The weight of pupae reared on *B. bassiana*-inoculated potato plants was less than half of the weight of those reared on untreated control plants (4.2 mg versus 8.8 mg, t = -46.366, df = 330.04, $P < 0.001$, Fig. 3).

Sublethal effects of *B. bassiana*-inoculated potato plants on development, survival and fecundity of *P. operculella*

Because newly hatched neonates were uniformly obtained from the egg paper, and egg stage was about 3-4 d, we considered the duration of the egg stage as 4 d in this trial. Larval (13.57d) and pupal stages (10.75d) developed significantly slower on *B. bassiana*-inoculated potato plants than on untreated plants (larvae: 12.30 d; pupae: 9.28 d; all P values < 0.001, Table 2). Moreover, there was a significantly smaller number of surviving larvae (60) and pupae (32) on *B. bassiana*-inoculated potatoes than on untreated plants (larvae: 92; pupae: 83) (all P values < 0.001). A significantly greater proportion of pupae reared on control plants emerged as adults (83, female: 39, male: 44) an on *B. bassiana*-inoculated plants (32, female: 9, male, 23) ($P < 0.001$). Adult longevity for both females and males was significantly shorter on *B. bassiana*-inoculated potato ($P < 0.001$). The mean fecundity of females reared on *B. bassiana*-inoculated potato plants was 35 eggs/per female. It was significantly
lower than of those reared on control plants (115 eggs/per female) ($P < 0.001$, Table 2). Moreover, visible mycosis was evident on larval, pupal and adult cadavers (Fig. 4A, 4B, 4C).

The curves of the age-stage survival rate (s_{ij}) show the probability of an individual surviving to age x and developing to stage j (Fig. 5A, 5B). Overlap of stage-specific survivorship curves is the result of variable developmental rates among individuals (Guo et al. 2020). The probability that a newly hatched neonate of *P. operculella* would survive to the adult stage differed markedly among the treated and control groups, with 46.11% on control group, and only 17.78% on *B. bassiana*-inoculated plants. A high mortality rate of 66.67% occurred in the larval stage when fed on *B. bassiana*-inoculated potato plants (Fig. 5A). The age-specific survival rate (l_i) and age-specific fecundity (m_i) are plotted in Figure 6. The l_i curve describes the change in the survival rate of the cohort with age and shows that *P. operculella* that fed on *B. bassiana*-inoculated potato plants had rapid declining survivorship beginning on the 5th day. The m_i curve shows that reproduction began at age 25 and 24 days for *P. operculella* reared on *B. bassiana*-inoculated and untreated potato plants respectively. The maximal daily oviposition rate for females reared on *B. bassiana*-inoculated potato plants was at 37 days with a mean fecundity of 3 eggs, which was significantly lower than the corresponding mean for *P. operculella* fed on untreated ones (27 days, 13 eggs, $P < 0.001$).

Population parameters of *P. operculella* fed on *B. bassiana*-inoculated potato plants

The intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R_0) and mean generation time (T) of *P. operculella* fed on *B. bassiana*-inoculated and control potato plant were calculated using the bootstrap method (Table 3). Statistical analysis showed that the r for *P. operculella* fed on *bassiana*-inoculated potato plants was 0.0181 per day, significantly lower than that
fed on control group (0.1099 per day) \((P < 0.001) \). The \(\lambda \) and \(R_0 \) for \(P. \) operculella fed on \(B.\) bassiana-inoculated potato plants were 1.0183 per day and 1.7556 offspring per female, respectively. These values were significantly lower than that on untreated ones \((\lambda = 1.1161 \text{ per day}; R_0 = 24.9222 \text{ offspring per female}) \) (all \(P \) values \(< 0.001 \)). In addition, there was no difference for \(T \) of \(P. \) operculella reared on \(B. \) bassiana-inoculated or untreated plants \((P = 0.1269) \).

Discussion

Artificial introduction of entomopathogenic fungi into plants to form endophytic associations offers a number of benefits for pest management (Qin et al. 2020). Compared to entomopathogenic fungi, endophytic ones can overcome adverse environmental stress, but also protect plants from pest damage. A previous study demonstrated that \(B. \) bassiana was able to endophytically colonize all plant vegetative tissues (Behie et al. 2015). Our results showed that the \(B. \) bassiana strain, GZGY-1-3, endophytically colonized potato plants and also had a high colonization capacity through soil drenching. The lower and upper sections of inoculated potato plants had complete colonization at 1-day post inoculation. However, percent colonization declined over time, and also differed between sections. The ability to successfully colonize may be dependent on the specific strain and host plant association (Nishi et al. 2021). The decline in percentage colonization over time may be caused by the host response to the heterotrophic fungus, expansion of leaves with maintenance of established colonies in leaves, or possible competition from other endophytes in the plant (Posada et al. 2007). Moreover, variations in colonization could also result from preferential tissue colonization within plant hosts (Akutse et al. 2013; Huang and Chi 2012; Guesmi-Jouini et al. 2014).
The results from the mortality, sublethal and development experiments showed that *B. bassiana* suppressed the population of *P. operculella*. These are in line with similar results reported from other previous studies. For example, *B. bassiana* as an endophyte adversely affected the duration of the larval stage and adult stage of the Bollworm (*Helicoverpa gelotopoeon*), as well as the total duration of its life cycle, oviposition period, fecundity and fertility on tobacco (Vianna et al. 2018). Mutune et al. (2016) reported that *B. bassiana*-inoculated beans (*Phaseolus vulgaris*) significantly reduced bean stem maggot (*Ophiomyia phaseoli*) feeding and oviposition. Sánchez-Rodríguez et al. (2018) showed that endophytic *B. bassiana* effectively controlled cotton leafworm (*Spodoptera littoralis*) larvae on wheat plants. Barta (2018) found that endophytic *Beauveria* negatively affected larvae of the horse-chestnut leaf miner (*Cameraria ohridella*). *B. bassiana*-colonized tobacco displayed higher resistance to aphids (*Myzus persicae*) (Qin et al. 2020). *B. bassiana* was effective against aphids via endophytism and delayed PLRV infection in tobacco (Fingu-Mabola et al. 2021). In our study, *B. bassiana* had high pathogenicity to *P. operculella* larvae, but also had sublethal impacts on surviving individuals. These sublethal effects included slowing the developmental rate, reducing pupal weight, and reducing the fecundity of females. These biological effects were manifested in the population parameters of *P. operculella*. Some *P. operculella* were capable of successfully developing on *B. bassiana*-inoculated plants, but their survival was significantly lower than that reared on control plants. We also found mycosed individuals on *B. bassiana*-inoculated plants, which indicated that there was also direct pathogenicity to *P. operculella*. The mechanism by which endophytic fungi interact with insects is still unclear but the involvement of metabolites/antibiosis produced by the fungi can be speculated (Vega 2018). Previously researches have suggested that endophytic fungi may also produce metabolites that act as feeding deterrents (Vega 2018; Cherry et al. 2004; Shrivastava et
al. 2015; Bing and Lewis 1991). Dispersion of such metabolites through the plant may account for insect mortality in tissues without the presence of the fungus. They may also account for the reduced developmental rate and pupal weights of surviving *P. operculella*. Bing and Lewis (1991) suggested that the reduced tunneling of the European corn borer (*Ostrinia nubilalis*), following endophyte colonization of maize by *B. bassiana*, could be due to the presence of fungal metabolites that caused feeding deterrence or antibiosis. This might explain the absence of *B. bassiana* infection (mycosis) within *O. nubilalis* individuals that fed on endophytically infected plants. A study by Cherry et al. (2004) also supported the feeding deterrence/antibiosis hypothesis since stem-borer (*Sesamia calamistis*) larvae which fed on maize plants injected with *B. bassiana* were smaller than that which fed on control plants.

The introduction of entomopathogenic fungi such as *B. bassiana* as endophytes can be a practical approach to control insect pests. *B. bassiana* is typically used as a therapeutic microbial insecticide to provide relief from existing pest populations. In our study, the endophytic behavior of the *B. bassiana* strain, GZGY-1-3, applied by soil drenching, proved useful for longer term management of *P. operculella*. Moreover, we found that *B. bassiana* remained present endophytically for more than 3 weeks after inoculation in potato plants. This persistence should provide longer-term management benefits for potato crops with no additional inputs on the part of growers.

Acknowledgements: This research was supported by the National Key Research and Development Program (2018YFD0200802).

Conflict of Interest: The authors declare that they have no conflict of interest.
Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Data Availability: the datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
Abbott WS (1925) A method for computing the effectiveness of insecticides. J Econ Entomol 18:265-267. https://doi.org/10.1093/jee/18.2.265a

Abou Alhamed MF, Shebany YM (2012) Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biol (Stuttg) 214:859–863. https://doi.org/10.1111/j.1438-8677.2012.00608.x

Akutse KS, Maniania NK, Fiaboe KKM, Van den Berg J, Ekesi S (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol 6:293–301. https://doi.org/10.1016/j.funeco.2013.01.003

Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544. https://doi.org/10.3389/fmicb.2018.00544

Barta M (2018) In planta bioassay on the effects of endophytic Beauveria strains against larvae of horse-chestnut leaf miner (Cameraria ohridella). Bio Control 121:88-98. https://doi.org/10.1016/j.biocontrol.2018.02.013

Behie SW, Jones SJ, Bidochka MJ (2015) Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol 13:112-119. https://doi.org/10.1016/j.funeco.2014.08.001
Bing LA, Lewis LC (1991) Suppression of *Ostrinia nubilalis* (Hübner) (Lepidoptera: Pyralidae) by endophytic *Beauveria bassiana* (Balsamo) Vuillemin. Environ Entomol 20:1207-1211. https://doi.org/10.1093/ee/20.4.1207

Biswa C, Dey P, Satpathy S, Satya P, Mahapatra BS (2013) Endophytic colonization of white jute (*Corchorus capsularis*) plants by different *Beauveria bassiana* strains for managing stem weevil (*Apion corchori*). Phytoparasitica 41:17-21. https://doi.org/10.1007/s12600-012-0257-x

Cherry AJ, Banito A, Djegui D, Lomer C (2004) Suppression of the stem-borer *Sesamia calamistis* (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of *Beauveria bassiana*. Int J Pest Manage 50:67-73. https://doi.org/10.1080/09670870310001637426

Chi H (1988) Life-table analysis incorporating both sex and variable development rate among individuals. Environ Entomol 17:26–31.

Chi H (2015) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. *Available on: http://140.120 197.*

Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Acad Sinica 24:225-240.

Dara SK, Goble TA, Shapiro-llan DI, Hajek AE (2017) Leveraging the ecology of invertebrate pathogens in microbial control. Ecology of invertebrate diseases pp.467-491.
Dogramaci M, Tingey WM (2010) Performance of a North American field population and a laboratory colony of the potato tuberworm, *Phthorimaea operculella*, on foliage of resistant and susceptible potato clones. J Insect Sci 10:1-11. https://doi.org/ 10.1673/031.010.8001

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Boca Raton, FL: CRC Press. https://doi.org/ 10.2307/2348146

Fenemore PG (1988) Host-plant location and selection by adult potato moth, *Phthorimaea operculella* (Lepidoptera: Gelechiidae): A review. J Insect Physiol 34:175-177. https://doi.org/ 10.1016/ 0022-1910(88)90047-9

Fingu-Mabola JC, Bawin T, Francis F (2021) Direct and indirect effect via endophytism of entomopathogenic fungi on the fitness of *Myzus persicae* and its ability to spread PLRV on tobacco. Insects 12:89. https://doi.org/ 10.3390/INSECTS12020089

Fisher PJ, Petrini O (1987) Location of fungal endophytes in tissues of *Suaeda fruticosa*: A preliminary study. Trans Bri Mycol Society 89:246-249. https://doi.org/ 10.1016/S0007-1536(87)80161-4

Gao YL (2018) Potato tuberworm: impact and methods for control–Mini Review. CAB Reviews 13:22.

Gao YL, Zhou WW (2020) Potato insect pest management. J Integr Agr 19:311-315. https://doi.org/ 10.1079/PAVSNR201813022

Goodman D (1982) Optimal life histories, optimal notation, and the value of reproductive value. Am Nat 119:803-823.

Guesmi-Jouini J, Garrido-Jurado I, López-Díaz C, Ben Halima-Kamel M, Quesada-Moraga E (2014) Establishment of fungal entomopathogens *Beauveria bassiana* and *Bionectria ochroleuca*
(Ascomycota: Hypocreales) as endophytes on artichoke *Cynara scolymus*. J Invertebr Pathol 119:1-4. https://doi.org/10.1016/j.jip.2014.03.004

Gui FR, Li ZY (2003) A method for rearing the potato tuber moth *Phthorimaea operculella* on potato. Entomol Knowledge 40:187-189.

Guo JF, Zhang MD, Gao ZP, Wang DJ, Wang ZY (2020) Comparison of larval performance and oviposition preference of *Spodoptera frugiperda* among three host plants: potential risks to potato and tobacco crops. Insect Sci 28:602-610. https://doi.org/10.1111/1744-7917.12830

Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55: 34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011

Hajek AE, Ment D, Shikano I, Glazer I (2017) Abiotic factors. John Wiley & Sons, Ltd. 5.

Huang YB, Chi H (2012) Age-stage, two-sex life tables of *Bactrocera cucurbitae* (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci 19:263-273.

Jaronski ST (2009) Ecological factors in the inundative use of fungal entomopathogens. Bio Control 55: 159-185. https://doi.org/10.1007/s10526-009-9248-3

Lawrence AL, Neven LG (2006) The potential of the fungus, *Mucodor albus*, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J Invertebr Pathol 91:195-198. https://doi.org/10.1016/j.jip.2006.01.002
Mckinnon AC, Saari S, Moran-Diez ME, Meyling NV, Raad M, Glare TR (2016) *Beauveria bassiana* as an endophyte: a critical review on associated methodology and biocontrol potential. Bio Control 62:1-17. https://doi.org/10.1007/s10526-016-9769-5

Murphy BR, Martin Nieto L, Doohan FM, Hodkinson TR (2015) Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophyte. Mycology 6:139–150. https://doi.org/10.1080/21501203.2015.1070213

Mutune B, Ekesi S, Niassy S, Matiru V, Bii C, Maniania NK (2016) Fungal endophytes as promising tools for the management of bean stem maggot *Ophiomyia phaseoli* on beans *Phaseolus vulgaris*. J Pest Sci 9: 993–1001. https://doi.org/10.1007/s10340-015-0725-4

Muvea AM, Meyhofer R, Subramanian S, Poehling HM, Ekesi S, Maniania NK (2014) Colonization of onions by endophytic fungi and their impacts on the biology of *Thrips tabaci*. Plos One 9 https://doi.org/10.1371/journal.pone.0108242

Newcombe G, Shipunov A, Eigenbrode S, Raghavendra A, Ding H, Anderson CL (2009) Endophytes influence protection and growth of an invasive plant. Commun Integr Biol 2:29-31. https://doi.org/10.4161/cib.2.1.7393

Nishi O, Sushida H, Higashi Y, Iida Y (2021) Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus *Beauveria bassiana* strain GHA. Mycology 12:39-47. https://doi.org/10.4161/cib.2.1.7393

Ownley B, Griffin M, Klingeman W, Gwinn K, Moulton J, Pereira R (2008) *Beauveria bassiana*: endophytic colonization and plant disease control. J Invertebr Pathol 98: 267–270. https://doi.org/10.1016/j.jip.2008.01.010
Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp 74: e50360. https://doi.org/10.3791/50360

Petrini O (1991) Fungal endophytes of tree leaves. Microb Ecol 9:179-197.

Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111:748-757. https://doi.org/10.1016/j.mycres.2007.03.006

Qin X, Zhao X, Huang SS, Deng J, Li XB, Luo ZB, Zhang YJ (2020) Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. J Pest Sci 77:2007-2018. https://doi.org/10.1002/PS.6229

Rondon SL, Hane DC, Brown CR, Vales MI, Dogramaci M (2009) Resistance of potato germplasm to the potato tuberworm (Lepidoptera: Gelechiidae). J Econ Entomol 102:1649-1653.

Rondon SL (2020) Decoding Phthorimaea operculella (Lepidoptera: Gelechiidae) in the new age of change. J Integr Agr 19:316-324.

Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107. https://doi.org/10.3732/ajb.1100136

Sánchez-Rodríguez AR, Raya-Díaz S, Zamarreño ÁM, García-Mina JM, Del Campillo MC, Quesada-Moraga E (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm
(Spodoptera littoralis) larvae. Biol Control 116:90-102. https://doi.org/10.1016/j.biocontrol.2017.01.012

Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661-686. https://doi.org/10.1017/S095375620500273X

Shrivastava G, Ownley BH, Augé RM, Toler H, Dee M, Vu A, Köllner TG, Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65-74. https://doi.org/10.1007/s13199-015-0319-1

Sword GA, Tessnow A, Ek-Ramos MJ (2017) Endophytic fungi alter sucking bug responses to cotton reproductive structures. Insect Sci 24:1003-1014. https://doi.org/10.1111/1744-7917.12461

Van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2017) Biological control using invertebrates and microorganisms: plenty of new opportunities. Bio Control 63:39-59. https://doi.org/10.1007/s10526-017-9801-4

Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110:4–30. https://doi.org/10.1080/00275514.2017.1418578

Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: Plant-endophyte-herbivore interactions and prospects for use in biological control. Curr Sci 109:46-54.

Vianna F, Pelizza S, Russo L, Allegrucci N, Scorsetti A (2018) Endophytic Beauveria bassiana (Ascomycota: Hypocreales) alters Helicoverpa gelotopoeon’s (D.) (Lepidoptera: Noctuidae)
Yuan HG, Wu SY, Lei ZR, Rondon SI, Gao YL (2018) Sub-lethal effects of *Beauveria bassiana* (Balsamo) on field populations of the potato tuberworm *Phthorimaea operculella* Zeller in China. *J Integr Agr* 17:911-918. https://doi.org/10.1016/S2095-3119(17)61898-7

Zhang XR, Lei ZR, Reitz SR, Wu SY, Gao YL (2019) Laboratory and greenhouse evaluation of a Granular formulation of *Beauveria bassiana* for control of western flower thrips, *Frankliniella occidentalis*. *Insects* 10. https://doi.org/10.3390/insects10020058
The experimental schedule of endophytic colonization of *B. bassiana* in potato plants, and mortality, pupal weight, sub-lethal effect of *P. operculella*. The full experiment was repeated with new inoculum and a new batch of insects.

Experiment	n	Repetition
Endophytic colonization	18	5
Mortality	24	10
Pupal weight	40	5
Sub-lethal effect	180	1

Table 2
Developmental time, longevity and mean fecundity of *P. operculella* on *B. bassiana*-inoculated and control potato plants.

Developmental stage	B. bassiana	Control	B. bassiana	Control		
	n	Developmental time (d)	Mean±SE	n	Developmental time (d)	Mean±SE
Egg	180	4.00±0.00		180	4.00±0.00	
larval	60	13.57±0.15a		92	12.30±0.11b	
Pupa	32	10.75±0.29a		83	9.28±0.079b	
Female	9	6.11±0.61b		39	10.51±0.26a	
Male	23	6.78±0.39b		44	13.50±0.29a	
Mean fecundity/egg	9	35.11±3.82b		39	115.03±3.96a	
Note: Values followed by the different lowercase letters within a row are significantly different using paired bootstrap test ($P < 0.001$). Sample sizes (n) are the number of individuals entering each life stage.

Table 3 Population parameters (Mean ± SE) of *P. operculella* on *B. bassiana*-inoculated and control potato plants

Parameter	*B. bassiana*	Control
Intrinsic rate of increase, r (d$^{-1}$)	0.0181±0.0123b	0.1099±0.0051a
Finite rate of increase, λ (d$^{-1}$)	1.0183±0.0124b	1.1162±0.0057a
Net reproductive rate, R_0 (offspring)	1.7556±0.5970b	24.9222±3.6403a
Mean generation time, T (d)	31.1005±1.8026a	29.2622±0.1458a

Note: Values followed by the different lowercase letters within a row are significantly different using paired bootstrap test ($P < 0.001$)
Fig. 1 Leaves colonization by endophytic *B. bassiana*. (A) The positions of selected leaves. (B) Recovery of endophytic GZGY-1-3 from leaf tissue fragments. (C) Mean percent colonization of different leaves parts by *B. bassiana* GZGY-1-3 at 1, 4, 7, 14 and 21 dpi. (*Indicates* *P* < 0.05, **Indicates* *P* < 0.01, ***Indicates* *P* < 0.001).

Fig. 2 Assessment of the virulence of *B. bassiana* against *P. operculella* larvae in leaf disc assays. Assays were started with 2nd instars placed on leaf discs (A) Mortality of *P. operculella* larvae over time. Mortality was corrected for control mortality. (B) LT$_{50}$ analysis of *B. bassiana* against *P. operculella* 2nd instars (*P* < 0.001).

Fig. 3 Pupal weights of *P. operculella* reared on potato plants inoculated with the *B. bassiana* strain, GZGY-1-3 and on untreated control plants. Pupae from the control plants were significantly heavier than those from treated plants (***Indicates* *P* < 0.001).
Figure 4 Visible mycosis on cadavers of *P. operculella* that fed on *B. bassiana*-inoculated potato plants.

(A) Larvae (B) Pupae (C) Adult
Figure 5 Age-stage specific survival rates (s_{xj}) of *P. operculella* reared on (A) *B. bassiana*-inoculated potato plants or (B) untreated control plants.
Figure 6 Age-specific survival rate (l_x) and fecundity (m_x) of *P. operculella*. (A) *B. bassiana*-inoculated potato plants. (B) controls