On abnormal *Carcinoscorpius rotundicauda* (Latreille, 1802) (Chelicera: Xiphosurida) from the Indian Sundarbans and possible conservation directions

Об аномальных *Carcinoscorpius rotundicauda* (Latreille, 1802) (Chelicera: Xiphosurida) из индийского Сундарбана и возможных направлениях охраны этого вида

Swati Das¹², Basudev Tripathy¹, K.A. Subramanian³, Russell D.C. Bicknell⁴*

Свати Дас¹², Басуенду Трипати¹, К.А. Субраманиян³, Р.Д.К. Бикнелл⁴*

¹ Zoological Survey of India, M- Block, New Alipore, Kolkata 700053, West Bengal India.
² Department of Zoology, University of Madras, Chennai 600025 India.
³ Zoological Survey of India, Southern Regional Centre, 130, Santhome High Road, Chennai, Tamil Nadu 600028 India.
⁴ Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351 Australia.
*Corresponding author: rdcbicknell@gmail.com; rbickne2@une.edu.au

KEY WORDS: Abnormalities, Xiphosura, horseshoe crabs, *Carcinoscorpius rotundicauda*, Indian Sundarbans, conservation.

КЛЮЧЕВЫЕ СЛОВА: Аномалии, Xiphosura, мечехвосты, *Carcinoscorpius rotundicauda*, индийский Сундарбан, охрана.

ABSTRACT. Xiphosurida are iconic group of marine chelicerates that have been subject to more than 200 years of neonatological and palaeontological scrutiny. However, recent studies have identified that there is very little data concerning abnormal specimens, and even less data on wild populations. The present study aims to rectify this dearth of information by documenting abnormal *Carcinoscorpius rotundicauda* from the Indian Sundarbans. We illustrated 36 abnormal specimens and attribute the abnormalities to injuries. Morphological differences between injured relative to non-injured individuals are considered and possible causes for injuries are discussed. Major anthropogenic threats are highlighted, with the aim of illustrating the key directions needed to conserve the unique mangrove horseshoe crab in the Indian Sundarbans.

How to cite this paper: Das S., Tripathy B., Subramanian K.A., Bicknell R.D.C. 2021. On abnormal *Carcinoscorpius rotundicauda* (Latreille, 1802) (Chelicerata: Xiphosurida) from the Indian Sundarbans and possible conservation directions // Arthropoda Selecta. Vol.30. No.1. P.63–88, Supplemental Data 1. doi: 10.15298/arthsel.30.1.06

РАЗУМЕНИЕ. Мечехвосты (Xiphosurida) — группа морских хелицеровых, которые более 200 лет служат объектом классических неонатологических и палеонтологических исследований. Тем не менее, выяснилось, что данные об аномальных экземплярах, тем более из диких популяций, крайне немногочисленны. Задача настоящей работы — пополнить недостаток информации сведениями об аномальных *Carcinoscorpius rotundicauda* из индийской части Сундарбана, зоны мангровых лесов в устье Ганга. Описано 36 аномальных экземпляров, аномалии которых привязаны к определенным повреждениям. Рассмотрены morphological differences between injured relative to non-injured individuals and possible causes for injuries are discussed. Major anthropogenic threats are highlighted, with the aim of illustrating the key directions needed to conserve the unique mangrove horseshoe crab in the Indian Sundarbans.

Introduction

Xiphosurida, the so-called horseshoe crabs, are extant marine chelicerates that survived the major Phanerozoic mass extinctions [Rudkin et al., 2008; Bicknell, Pates, 2020a]. Their fossil record extends back at least 480 million years [Van Roy et al., 2010] and members of the group show little morphological change between the Jurassic and extant taxa [Bicknell et al., 2019b; Bicknell, Pates, 2020a]. Despite an exceptional palaeontological record of diversity and disparity
[Naugolnykh, 2018; Bicknell, 2019c; Bicknell, Pates, 2020a; Bicknell et al., 2020], there are only four extant horseshoe crab species. These are the American horseshoe crab — Limulus polyphemus (Linnaeus, 1758), a species found along the eastern North America coast — and the three species restricted to Indo-Pacific region: Tachypleus tridentatus (Leach, 1819), T. gigas (Müller, 1785), and Carcinus maenas (Linnaeus, 1758). The north-eastern Indian coast is a preferred breeding and spawning ground for T. gigas and C. rotundicauda. These co-occurring species have a distribution from the West Bengal to Odisha coasts, and possibly into the northern Andhra Pradesh [Tripathy et al., 2018]. Of these areas, the Odisha coast represents the main habitat for horseshoe crabs in India, especially T. gigas. This region has therefore been more thoroughly studied than the West Bengal population (Table 1).

The world’s largest mangrove delta — the Indian Sundarbans — represents a dynamic ecosystem that covers 9630 km² and is characterised by innumerable rivers, rivulets, creeks, river estuaries, and unique salt tolerant mangrove trees like Avicennia sp., Bruguiera sp., Rhizophora sp., Ceriops sp., and is an environment where fresh- and seawater regular mix [Nandi et al., 2015]. The Indian Sundarbans are located within the Bay of Bengal, a delta where the Ganges, Brahmaputra and Meghna rivers terminate; extending from south-west Bangladesh to south West Bengal [Ghosh et al., 2015]. The Indian Sundarbans mudflats represent ideal conditions for juvenile horseshoe crabs to forage and therefore breeding grounds [Sekiguchi et al., 1988; Chen et al., 2004; Almendral, Schoppe, 2005]. As such, both Carcinus maenas and Tachypleus gigas are known to the Indian Sundarbans mudflats [Tripathy et al., 2018]. Of these two, C. rotundicauda is more common, but has been understudied, despite the iconic nature of horseshoe crabs in general (Table 1). This is striking as C. rotundicauda is unique amongst extant xiphosurids: it is the smallest species (average adult size 28.0–33.5 cm long), can inhabit freshwater and marine conditions, and spawns in the mangroves.

Research into horseshoe crab ecology has recently turned to consider injuries and other abnormal developments. Understanding abnormalities can inform our understanding of recovery from injuries and present insight into poor environmental or ecological conditions [Bicknell, Pates, 2019a]. Presently, the key studies of abnormal xiphosurids are van der Meer Mohr [1935], Shuster Jr. [1982], Jell [1989], Bicknell et al. [2018], and Bicknell & Pates [2019a]. However, most of these studies have considered museum collections and only Bicknell & Pates [2019a] documented abnormal Carcinus maenas and consider the probable causes therefrom. We illustrate the main anthropogenic threats require mitigation for effective conservation of C. rotundicauda within the Indian Sundarbans.

Studied Region

The Bengal Plain of India is characterised by extensive coastal tract bordered by the southern Bay of Bengal and is the world’s largest active delta [Umitsu, 1993; Rudra, 2014; Jana, 2019] and formed during the last 11,000 years [Kuehl et al., 2005; Mikhailov, Dotenko, 2007; Jana, 2019]. It consists of two contrasting coastal environments: the macro-tidal Hooghly estuary and the mesotidal Midnapore Coastal plain [Mondal et al., 2015]. Within Indian Sundarbans, there are 102 islands, 54 of which have human habitation and the other 48 are covered by mangrove forest [Nandi et al., 2015]. Our study was conducted in two main areas within the Indian Sundarbans in the South 24 Parganas district of West Bengal: Sagar Island and Patiboni in Frezerganj (Fig. 1). Sagar Island is the largest island of the Sundarban deltaic complex and characterised by numerous tidal creeks, canals, mud flats/salt marshes, mangroves, and sandy beaches/dunes. The Patiboni area in Frezergani is located east of Sagar Island and has a sandier substrate than Sagar Island. These two areas were selected as study sites as they both have significant mangrove cover. Neither the Royal Bengal Tiger (Panthera tigris tigris) nor salt water crocodiles (Crocodylus porosus) are known to these areas, and these regions are outside protected area boundaries.

Methods and Materials

A field survey was conducted between March 2019 and July 2020. Specimens were identified during full and new moon periods to maximise the exposed intertidal zone. Four sites on Sagar Island were selected: Koshtola, Krishnagar, Bankimnagar, and Mayagoal inir Ghat. The Frezerganj surveys were conducted about Patibonia. Study areas were divided into ten 100 m x 100 m grids. Each grid was randomly sampled for horseshoe crabs for ~20 minutes. Size measurements and the gender of any identified specimens were gathered for Supplemental Data 1 (see Fig. 2 for gathered measurements). Occasionally, the complete suite of measurements could not to be gathered, reflecting constraints on data collection time. When abnormal individuals were identified, the GPS location, size data, and abnormality data were documented. Amplexed pairs were noted, but morphometric and injury data were only gathered if the pair separated. Abnormal individuals were photographed with a Nikon 5600 DSLR (18–55 mm or 75–300 mm lens). Photographs were stacked using Adobe Photoshop 7.0 software. Five abnormal specimens were collected for this study and placed in 70% ethanol solution for photography in lab with a Nikon 5600 DSLR (18–55 mm lens). Specimens were considered abnormal if they had deformed/missing exoskeleton sections, malformed growths and generally non-standard exoskeletal morphologies [sensu Owen, 1985; Bicknell et al., 2018; Bicknell, Pates, 2019a,
Citation	Studied horseshoe crab species	Area considered	Main points
Annandale [1909]	*Limulus moluccanus* and *L.*	Malay Peninsula and Bengal	First report of horseshoe crabs from the Indian region
	(*Carcinoscorpius rotundicauda*)		
Roonwal [1944]	*Tachypleus gigas*	Chandipore beach, Odisha	Details breeding biology and eggs of *Tachypleus gigas*
Rao, Rao [1972]	*Tachypleus gigas* and	Odisha and West Bengal	Details general ecology and epifaunal interactions of *Tachypleus gigas* and *Carcinoscorpius rotundicauda*
	Carcinoscorpius rotundicauda		
Sekiguchi et al. [1976]	*Tachypleus gigas*	Bay of Bengal and Gulf of Siam	Details morphological variation and distribution of *Tachypleus gigas*
Sekiguchi et al. [1978]	*Carcinoscorpius rotundicauda*		Details morphological variation of *Carcinoscorpius rotundicauda*
Saha [1987]	*Tachypleus gigas* and	Odisha and West Bengal	Details habitat, breeding biology, and distribution of *Tachypleus gigas* and *Carcinoscorpius rotundicauda*
	Carcinoscorpius rotundicauda		
Chatterji et al. [1988]	*Carcinoscorpius rotundicauda*	Canning, West Bengal	Details length-weight relationship for male and female *Carcinoscorpius rotundicauda*
Debnath, Choudhury [1988a]	*Carcinoscorpius rotundicauda*	Sundarban, West Bengal	Details length-weight relationship for male and female *Carcinoscorpius rotundicauda*
Debnath, Choudhury [1988b]	*Tachypleus gigas*	Chandipur, Odisha	Details *Tachypleus gigas* population estimation using capture and release. Also documented sexual selection and dispersal patterns
Debnath, Choudhury [1988c]	*Tachypleus gigas*	Chandipur, Odisha; Digha, West Bengal	Details records of *Tachypleus gigas* being subject to predation by crows
Debnath, Choudhury [1989]	*Tachypleus gigas* and	Sundarban, West Bengal; Dhamra, Odisha	Details the geographic distribution of *Tachypleus gigas* and *Carcinoscorpius rotundicauda*, noting where the two are sympatric
	Carcinoscorpius rotundicauda		
Debnath et al. [1989]	*Tachypleus gigas*	Digha, West Bengal	Details the digestive biology of *Tachypleus gigas*
Chaudhuri et al. [1991]	*Carcinoscorpius rotundicauda*	Sagar Island, West Bengal	Details the central nervous system of *Carcinoscorpius rotundicauda* and the distribution of neurosecretory cells
Debnath [1991]	*Tachypleus gigas* and	Chandipur and Dhamra; Digha, Junput, Sagar Island, and the Prentice-Luthian complex, West Bengal	Details the morphological and sexually dimorphic differences between *Tachypleus gigas* and *Carcinoscorpius rotundicauda*
	Carcinoscorpius rotundicauda		
Debnath, Choudhury [1991]	*Tachypleus gigas*	Chandipur, Odisha; Digha, West Bengal	Details the conditions of two *Tachypleus gigas* populations
Chatterji, Panulekar [1992]	*Carcinoscorpius rotundicauda*	Port Canning, West Bengal	Details the fecundity of *Carcinoscorpius rotundicauda* and relates this to specimen size
Chatterji et al. [1992a]	*Tachypleus gigas*	Balaramgadi, Odisha	Details the differences in haemolymph of male and female *Tachypleus gigas* under different salinity conditions and seasons
Citation	Studied horseshoe crab species	Area considered	Main points
--------------------------	--	--	---
Chatterji et al. [1992b]	Tachypleus gigas	Balaramgadi, Odisha	Details the spawning timing and conditions for Tachypleus gigas
Chatterji et al. [1992c]	Tachypleus gigas	Bay of Bengal	Details the feeding behaviour and preferences of Tachypleus gigas
Debnath, Choudhury [1992]	Tachypleus gigas	Digha, West Bengal	Details length-weight relationship between male and female Tachypleus gigas
Mishra et al. [1993]	Tachypleus gigas	North-east Indian coast	Details the fusion of two larval Tachypleus gigas individuals during development
Chatterji, Abidi [1993]	Tachypleus gigas and Carcinoscorpius rotundicauda	General discussion, no populations considered	Details the importance of both species, with more focus on Tachypleus gigas
Chatterji et al. [1994]	Tachypleus gigas	Balaramgadi, Odisha	Details length-weight relationships between male and female Tachypleus gigas
Debnath, Choudhury [1996]	Carcinoscorpius rotundicauda	Sagar Island, West Bengal	Details aspects of amplexus and mating in Carcinoscorpius rotundicauda, with reference to tandem amplexus
Chatterji et al. [1996a]	Tachypleus gigas	Balaramgadi, Odisha	Details behaviour, timing and conditions for Tachypleus gigas nesting
Chatterji et al. [1996b]	Tachypleus gigas	Balaramgadi, Odisha	Details energy source in the developing eggs of Tachypleus gigas
Chatterji [1999]	Tachypleus gigas and Carcinoscorpius rotundicauda	Odisha and West Bengal	Details the sympatric distribution of Tachypleus gigas and Carcinoscorpius rotundicauda, focusing on relationship between seasonal patterns for both species
Mitra et al. [2000]	Carcinoscorpius rotundicauda	Indian Sundarbans, West Bengal	Details the copper concentration in Carcinoscorpius rotundicauda and water to inform conditions in the mangrove ecosystem
Patil, Chatterji [2000]	Tachypleus gigas	Burhabalanga, Odisha	Details the distribution of epibiotic community on horseshoe crab carapaces
Vijaykumar et al. [2000]	Tachypleus gigas	Balaramgadi, Odisha	Details morphometric relationships between male and female Tachypleus gigas and relates this to ontogeny
Khan [2003]	Carcinoscorpius rotundicauda	Indian Sundarbans, West Bengal	Details the distribution, habitat, occurrence, and reproductive activity of Carcinoscorpius rotundicauda
Chatterji et al. [2004a]	Tachypleus gigas	Balaramgadi, Odisha	Details the recovery of the gill lamellae of Tachypleus gigas under laboratory conditions
Chatterji et al. [2004b]	Tachypleus gigas	Balaramgadi, Odisha	Details the influence of salinity on Tachypleus gigas larval growth
Citation	Studied horseshoe crab species	Area considered	Main points
-------------------	---	---------------------------------------	--
Itow et al. [2004]	Tachypleus gigas and Carcinoscorpius rotundicauda	Indian Sundarbans and Bangladesh	Details evolution, distribution, and ecology of Tachypleus gigas and Carcinoscorpius rotundicauda
Chatterji, Shaharom [2009]	Tachypleus gigas	Balaramgadi coast, Odisha	Details spawning behaviour of Tachypleus gigas after tsunami disturbance and the response to the event
Mishra [2009a]	Tachypleus gigas and Carcinoscorpius rotundicauda	West Bengal, Orisha, Andhra Pradesh	Details status of Tachypleus gigas and Carcinoscorpius rotundicauda in India and the need for conservation
Mishra [2009b]	Tachypleus gigas	Balaramgadi coast, Odisha	Details the moulting behaviours of Tachypleus gigas under laboratory conditions
Mirshahi et al. [2011]	Tachypleus gigas	Balaramgadi, Odisha	Details the importance of peri-vitelline fluid of fertilized horseshoe crab eggs in increasing wound recovery in humans
Sahu, Dey [2013]	Tachypleus gigas	Balasore coast, Odisha	Details the spawning density and morphometric characteristics of Tachypleus gigas and the relationships between exoskeletal lengths and weights
Tripathy et al. [2013]	Tachypleus gigas and Carcinoscorpius rotundicauda	Odisha and West Bengal	Details the population status and current threats to Tachypleus gigas and Carcinoscorpius rotundicauda
Tripathy et al. [2018]	Tachypleus gigas and Carcinoscorpius rotundicauda	Odisha and West Bengal	Details the status of horseshoe crabs along the east coast of India

Data presented in chronological order. See Tripathy et al. [2014] for further discussion on the topic.
2020b; Bicknell, Holland, 2020]. Only five abnormal specimens were collected for in-lab consideration as we wanted to avoid impacting the already fragile population. Anthropological activities at study sites were documented to illustrate possible human influences on the population. The dataset of measurements and injured/not injured specimens were plotted to determine whether patterns injury was influenced by size or gender. Supplemental Data 1 were imported into R [R Core Team, 2020] and the measurements were log normalised to account for allometry within the population. The log normalised data for prosomal (=cephalothoracic) and thoracetron (=opistosomal) measurements were plotted. Plots were colour coded for injured and non-injured specimens and for the gender/ juvenile assignment.

Results

A total of 46 abnormal *Carcinoscorpius rotundicauda* individuals (18 adult males, 18 adult females and 10 juveniles) were identified within the sampled 181 specimens (87 females, 63 males and 31 juveniles). The most common abnormalities were prosomal \((n=19)\), thoracetron \((n=15)\), and telsonic \((n=10)\). There were rare examples of lateral compound eye \((n=3)\) and appendage \((n=2)\) abnormalities. The majority of abnormal individuals were located in the Patiboni area \((n=17)\), Bankimnagar \((n=13)\), and Mayagoalinir Ghat \((n=10)\); with limited numbers in Kashtola \((n=5)\) and Beguakhali \((n=1)\). A large selection \((n=36)\) of the abnormal specimens are figured and described below (Figs 3–17).

An adult female with a malformed prosoma (Fig. 3A–C). An indentation slightly posterior to the anterior-most section of the prosomal rim and malformed genal spines are observed. The left genal spine is rounded, while the right genal spine has two ‘U’-shaped indentations.

A juvenile specimen with a deformed thoracetron (Fig. 3D–F). On the left pleural lobe, the two posterior-most moveable and fixed spines are missing. On the right pleural lobe, the third moveable spine is missing, but the fixed spines are present and not malformed.
An adult female with a malformed right genal spine and two abnormalities on the thoracetron (Fig. 4A–D). The distal edge of the genal spine is rounded and there are multiple rounded bulges on the dorsum of the spine. The left thoracetronic pleural lobe shows two movable spines within the same spine notch. Furthermore, the three posterior-most spines on the left pleural lobe are stunted, showing reduced fixed spines and associated notches. The right pleural lobe has five movable spines and the posterior-most movable spine, and associated spine notch, are absent.

A juvenile with malformed genal spines (Fig. 4E–G). There is a ‘U’-shaped indentation on both genal spines, proximal to the ophthalmic ridges. A scar extending into the left genal spine is also noted. A hole is present on right genal spine, near the ‘U’-shaped indentation.

An adult male with a highly malformed genal spine and thoracetron (Fig. 5A, B). Left genal spine has a serrated border proximal to the thoracetron and at least three ‘V’-shaped indentations. Left lateral compound eye is damaged. The left thoracetronic pleural lobe lacks anterior movable spines and associated spine notches. The border of this section is smooth and potentially cicatrised. Posterior movable spines are either shortened, or absent.

An adult female with a malformed prosomal rim, thoracetronic border and telson (Fig. 5C–E). The prosomal rim has multiple shallow ‘U’-shaped indentations on the right side. These indentations extend into the right genal spine tip. Telson is short, blunt and has a cicatrised hole within the last fifth of the spine length. Posterior movable spines on both thoracetronic pleural lobes are missing and terminal thoracetronic spines are stunted.

A large adult female with a distorted prosoma (Fig. 5F). The prosoma appears to be completely collapsed from the left ophthalmic ridge through to the anterior border on the right side.

An adult male with a malformed prosoma and telson spine (Fig. 5G). The anterior prosomal rim on the ventral side has a circular depression anterior to the mesial spine. This same specimen lacks a telson.

An adult male specimen with a malformed prosoma and thoracetron (Fig. 6A). The anterior prosomal rim on the ventral side has a circular depression anterior to the mesial spine. This same specimen lacks a telson.

An adult female specimen with a severely damaged left prosoma and thoracetron (Fig. 6B, C). The left genal spine shows extensive cicatrised along the posterior border and is missing the left lateral compound eye. Anterior section of thoracetron shows a ‘W’-shaped abnormality with a cicatrised edge and butterfly spawning scars.

A male with a malformed prosoma and thoracetron on the right side (Fig. 6D, E). The thoracetron has a large, irregular section removed that is not cicatrised and a hole within the posterior quarter. Recovered holes are noted on the right ophthalmic ridge, proximal to the prosomal-thoracetron hinge.

A juvenile specimen with malformations on both thoracetronic pleural lobe (Fig. 6F). On the right side, all movable spines and associated spine notches are absent. ‘W’- and ‘V’-shaped indentations are also present. On the left pleural lobe, the posterior section lacks moveable spines and there is a deep ‘V’-shaped indentation. Furthermore, the telson is shorter and more blunt than would be expected for a specimen this size.

An adult male with a deformed genal spine on the left side (Fig. 7A, B). The genal spine is blunt and has a ‘V’-shaped indentation proximal to the sagittal line of the individual.
Fig. 3. *Carcinoscorpius rotundicauda* with prosomal and thoracetic abnormalities. A–C — an adult female from the Patiboni region with malformed prosoma: A — complete specimen; B — close-up of malformations on the left prosomal side. An indentation is observed near anterior prosomal rim (white arrows) and the genal spine is rounded compared to the right side (grey arrows); C — close-up of right genal spine showing ‘U’-shaped indentations (white arrows). D–F — juvenile from the Patiboni region with abnormal movable spines: D — complete specimen; E — close-up of missing moveable spines on the left side (white arrows); F — close-up of missing moveable spine on the right side (white arrow).

An adult male with a malformed left genal spine (Fig. 7C, D). There are two ‘V’-shaped indentations along the genal spine length. A ‘U’-shaped indentation is noted on the posterior border of the spine, proximal to the body.

A juvenile specimen with a deformed right thoraceticronic pleural lobe (Fig. 7E, F). The lobe lacks anterior movable spines and associated spine notches. The malformed border is cicatrised and lacks indentations. The posterior-most movable spines are stunted and all show a kink half way along the spine length.

An adult male with three prosomal abnormalities (Fig. 8A–D). The left anterior side shows a ‘U’-shaped indentation with exoskeletal breakage. A hole is noted in the exoskeleton proximal to the prosomal-thoraceton hinge, suggesting carapace decay. A ‘U’-shaped inden-
An adult female with thoracetonic and telson abnormalities (Fig. 8E, F). The distal section of the telson is broken and rounded. Butterfly spawning scars are noted half way along thoracetonic midline.

An adult female with genal spine and thoracetonic abnormalities (Fig. 9A–D). The right genal spine is truncated and rounded. Distal edge has a slight ‘U’-shaped indentation and the area proximal to the midline has a pronounced ‘V’-shaped indentation. Genal spine point shows evidence of recovering but is more rounded than the left genal spine. Both the thoracetonic pleural lobes have stunted fixed and move-
Fig. 5. *Carcinoscorpius rotundicauda* with prosomal, thoracetronic, and telson abnormalities. A, B — adult male from the Mayagoalinir Ghat region with highly malformed genal spine and thoracetronic abnormalities: A — complete specimen; B — close-up of injured lateral compound eye (yellow arrow), a serrated genal spine border (white arrows) and a ‘V’-shaped indentation with missing movable spines (grey arrow). C–E — adult male from the Patiboni region with prosomal, thoracetronic, and telson abnormalities: C — complete specimen detailing thoracetronic injuries (white arrows); D — close up of multiple ‘U’-shaped indentations on right side of prosoma (white arrows); E — close-up of stunted telson (white arrows); F — adult female from the Bankimnagar region with distorted prosoma (white arrows); G — adult male from the Mayagoalinir Ghat region in ventral view with circular depression in prosoma (box) and heavily reduced telson spine (white arrow).

Рис. 5. *Carcinoscorpius rotundicauda* с аномалиями просомы, торацетрона и тельсона. A, B — взрослый самец из района Mayagoalinir Ghat с сильно измененным щёчным углом и аномалиями торацетрона: A — экземпляр целиком; B — крупный план поврежденного бокового сложного глаза (желтая стрелка), зубчатый край щёчного угла (белые стрелки) и ‘V’-образное вдавление с отсутствующими подвижными шипами (серая стрелка). C–E — взрослый самец из района Патибони с аномалиями просомы, торацетрона и тельсона: C — экземпляр целиком, показаны повреждения торацетрона (белые стрелки); D — крупный план множественных ‘U’-образных вдавлений на правой стороне просомы (белые стрелки); E — крупный план уменьшенного тельсона (белые стрелки); F — взрослая самка из района Банкимнагар с искривлённой просомой (белые стрелки); G — взрослый самец из района Mayagoalinir Ghat вентрально с округлым углублением на просоме (обведено квадратом) и сильно редуцированным шипом тельсона (белая стрелка).

An adult male with an abnormal right thoracetron and telson (Fig. 10A–C). The right thoracetronic pleural lobe has a large ‘U’-shaped indentation that is showing limited cicatrisation along the posterior margin. The telson is curved to the right and with increased truncation in the last fifth of spine length.

An adult male with an abnormal right thoracetron and telson (Fig. 10A–C). The right thoracetronic pleural lobe has a large ‘U’-shaped indentation that is showing limited cicatrisation along the posterior margin. The telson is curved to the right and with increased truncation in the last fifth of spine length.
An adult male with a malformed prosomal shield and thoracetrone (Fig. 10D–F). Left prosomal side has a ‘V’-shaped indentation that slightly deforms the exoskeleton. The left thoracetrone pleural lobe has three types of abnormalities. The free lobe is folded back over itself, the anterodistal section of the pleural lobe lacks any movable and fixed spines, and the posterior three movable spines are stunted.

An adult male with a malformed thoracetrone and telson (Fig. 11A–D). The moveable and fixed spines on both thoracetrone pleural lobes are either stunted or entirely missing. This is especially notable in the more posterior sections. The telson is stunted, with a rounded terminus and is curved to the right. A small projection is noted where the curve begins.
Fig. 7. *Carcinoscorpius rotundicauda* with prosomal and thoracetronic abnormalities. A, B — adult male from the Patiboni region with malformed left genal spine: A — complete specimen; B — close-up of blunt left genal spine with ‘V’-shaped indentation (white arrow). C, D — adult male from Patiboni region with malformed left genal spine: C — complete specimen; D — close-up of ‘U’-shaped (white arrow) and ‘V’-shaped (grey arrows) indentations. E, F — juvenile from the Patiboni region with thoracetronic abnormalities: E — complete specimen; F — close-up of right thoracetronic pleural lobe showing cicatrised border (white arrows) and stunted movable spines.

Rис. 7. *Carcinoscorpius rotundicauda* с аномалиями просомы и торацетрона. A, B — взрослый самец из района Патибони с видоизмененным левый щёчным углом: A — экземпляр целиком; B — крупный план притупленным левый щёчным углом с ‘V’-образным вдавлением (белая стрелка). C, D — взрослый самец из района Патибони с видоизмененным левым щёчным углом: C — экземпляр целиком; D — крупный план ‘U’-образного (белая стрелка) и ‘V’-образных (серые стрелки) вдавлений. E, F — ювениль из района Патибони с аномалиями торацетрона: E — экземпляр целиком; F — крупный план правой плевральной доли торацетрона с зарубцованным краем (белые стрелки) и уменьшенными подвижными шипами.

An adult male specimen with two prosomal abnormalities (Fig. 11E, F). A small ‘U’-shaped indentation is noted on the left genal spine lateral border and a ‘V’-shaped indentation is noted on the left genal spine posterior margin. This indentation also shows a hypertrophied the genal spine point.

An adult male with a highly malformed thoracetron (Fig. 12A, B). The anterior section of the right thoracetronic pleural lobe lacks spines and is cicatrised. Only one movable and fixed spine is noted on the posterior section of the right pleural lobe; both are reduced. A ‘W’-shaped indentation and an irregular hole in the exoskeleton are noted on the posterior right pleural lobe margin.

An adult male with an abnormal right genal spine (Fig. 12C, D). The genal spine point is rounded when compared to the left side. Furthermore, an additional projection is noted along the posterior margin of the right genal spine.

A large juvenile with an abnormal thoracetron (Fig. 13A). The left thoracetronic pleural lobe has a ‘W’-shaped indentation that is slightly cicatrised. There are no moveable and fixed spines along the injury margin.
Fig. 8. *Carcinoscorpius rotundicauda* with prosomal and telson abnormalities. A–D — adult male from the Patiboni region showing three prosomal abnormalities: A — complete specimen; B — close-up of U'-shaped indentation (white arrow) on left side of prosomal shield; C — close-up of hole close to prosomal-thoracetron hinge (grey arrow); D — close-up of 'U'-shaped indentation on the posterior margin of right genal spine (white arrow). E, F — adult female from the Bankimnagar region with butterfly spawning scars and telson abnormality: E — complete specimen showing spawning scars (white arrows); F — close-up of broken telson. Images converted to greyscale.

Рис. 8. *Carcinoscorpius rotundicauda* с аномалиями просьмы и тельсона. A–D — взрослый самец из района Патибони с тремя аномалиями просьмы: A — экземпляр целиком; B — крупный план U'-образного вдавления (белая стрелка) на левом крае щита просьмы; C — крупный план углубления близко к сочленению просьмы и торацетрона (серая стрелка); D — крупный план 'U'-образного вдавления на заднем крае правого щёчного угла (белая стрелка). E, F — взрослая самка из района Банкимнagar с бабочковидными нерестовыми рубцами и аномалией тельсона: E — экземпляр целиком с нерестовыми рубцами (белые стрелки); F — крупный план обломанного тельсона. Иллюстрации преобразованы из цветных в градации серого.

A juvenile with a malformed prosoma and telson (Fig. 13B). The prosoma has at least two small ‘V’-shaped indentations on the anterior border and a large ‘V’-shaped indentation on the right genal spine. The most posterior telsonic section has a slight kink to the right of the specimen’s long axis.

A juvenile with a malformed telson (Fig. 13C). The telson is stunted, with a rounded terminus and is curved to the left of the specimens’ long axis.

A juvenile with a malformed telson (Fig. 13D, E). The telson is kinked to the right of the long axis.

An adult male with a deformed genal spine and thoracetron (Fig. 14A–C). The right genal spine has a rounded edge and is approximately half the length of
the left genal spine. The left thoracetronic pleural lobe has two movable spines in the anterior-most spine notch. The posterior-most fixed and movable spines are absent and the terminal thoracetronic spine is blunt.

A juvenile with a malformed telson (Fig. 14D, E). The telson is approximately 50% the length of a non-injured individual and has a broken terminus.

An adult female with a malformed thoracetron and telson (Fig. 15A, B). The anterior-most movable spine on the right thoracetronic pleural lobe is ~50% smaller than the corresponding spine on the left side. The two posterior-most movable and fixed spines on the right thoracetronic pleural lobe are apparently absent. A ‘W’-shaped abnormality is noted on the left thoracetronic pleural lobe and the posterior most movable spines on the right thoracetronic pleural lobe are absent and lack associated spine notches. Finally, the telson is short and has a blunt terminus.

An adult female with malformations on the prosoma, thoracetron and telson (Fig. 15C-F). A depression is noted on the ventral prosomal surface, anterior to the mesial spine. The left thoracetronic pleural lobe has at least two ‘V’-shaped indentations and two ‘W’-shaped
Fig. 10. *Carcinoscorpius rotundicauda* with prosomal, thoracetic, and telson abnormalities. A–C — adult male from Patiboni region with abnormal right thoracetic and telson: A — complete specimen; B — close-up of telson showing decrease of telson width at the distal section (white arrow); C — close-up of right thoracetic pleural lobe with large ‘U’-shaped indentation (white arrow). D–F — adult male from the Patiboni region with abnormal prosoma and left thoracetic side: D — complete specimen; E — close-up of left prosoma with ‘V’-shaped indentation (white arrow); F — close-up of abnormalities on the thoracetic. The posteriorly folded free lobe (white arrow) and the anterior thoracetic border lacking fixed and moveable spines (grey arrows).

Indentations. The pleural lobe is half the length of the right pleural lobe. Only the three anterior-most movable spines are noted and these are stunted. Two spines are orientated laterally, as opposed to being posterolaterally. The posterior-most movable and fixed spines are absent. The right thoracetic pleural lobe has stunted moveable and fixed spines in the posterior-most section. The terminal thoracetic spine is curved...
Fig. 11. *Carcinoscorpius rotundicauda* with prosomal, thoracetic, and telson abnormalities. A–D — adult male from the Bankimmagar region with malformed thoracetron and telson: A — complete specimen; B — close-up of left thoracetronic pleural lobe showing stunted (white arrows) and missing moveable spines (grey spines); C — close-up of telson with small projection half way along spine (white arrow); D — close-up of right thoracetronic pleural lobe showing stunted (white arrows) and missing moveable spines (grey arrows). E, F — adult male from the Patiboni region with abnormal prosoma: E — complete specimen showing ‘V’-shaped indentation on posterior margin of left genal spine (grey arrow); F — close-up of left genal spine showing ‘U’-shaped indentation (white arrow).

A juvenile with a malformed thoracetron and telson (Fig. 16A–D). The left thoracetronic pleural lobe has three moveable spines and four moveable spine notches. The right thoracetronic pleural lobe is missing the anterior-most movable. The telson is kinked at two points and has a slightly rounded terminus.
On abnormal *Carcinoscorpius rotundicauda* from the Indian Sundarbans

Fig. 12. *Carcinoscorpius rotundicauda* with prosomal and thoracetronic abnormalities. A, B — adult male from the Patiboni region with abnormal right thoracetron: A — complete specimen; B — close-up of malformed thoracetron showing cicatrised region lacking movable spines (white arrow) and a W'-shaped indentation next to hole in exoskeleton (grey arrow). C, D — adult male from the Patiboni region with abnormal right genal spine: C — complete specimen; D — close-up of rounded genal spine showing posteriorly directed projection (white arrow).

Рис. 12. *Carcinoscorpius rotundicauda* с аномалиями просомы и торацетрона. A, B — взрослый самец из района Патибони с аномалиями правой части торацетрона: A — экземпляр целиком; B — крупный план видоизмененного торацетрона с зарубленной областью с отсутствующими подвижными шипами (белая стрелка) и W'-образным вдавлением рядом с углублением в экоскеле (серая стрелка). C, D — взрослый самец из района Патибони с аномальным правым щёчным углом: C — экземпляр целиком; D — крупный план закругленного щёчного угла с направленными назад выступом (белая стрелка).
Fig. 13. *Carcinoscorpius rotundicauda* juveniles showing prosomal, thoracetronic and telson abnormalities. A — specimen from the Beguakhali region with a ‘W’-shaped indentation on left thoracetronic pleural lobe (white arrow). B — specimen from the Patiboni region with ‘V’-shaped indentations on prosoma (white arrows) and a kinked telson (grey arrow). C — specimen from the Patiboni region with a stunted and curved telson (white arrow). D, E — specimen from Jharkhali region with a malformed telson (white arrows), in lateral (D) and dorsal (E) views.

Рис. 13. Ювенили *Carcinoscorpius rotundicauda* с аномалиями просомы, торацетрона и тельсона. A — экземпляр из района Бегуакхали с ‘W’-образным вдавлением на левой плевральной долье торацетрона (белая стрелка). B — экземпляр из района Патибони с ‘V’-образными вдавлениями на просоме (белые стрелки) и перекрученным тельсоном (серая стрелка). C — экземпляр из района Патибони с недоразвитым и изогнутым тельсоном (белая стрелка). D, E — экземпляр из района Джхаркхали с видоизмененным тельсоном (белые стрелки), латерально (D) и дорсально (E).
On abnormal *Carcinoscorpius rotundicauda* from the Indian Sundarbans

Fig. 14. *Carcinoscorpius rotundicauda* with prosomal, thoracetronic and telson abnormalities. A–C — adult male from the Patiboni region showing deformed genal spine and thoracetron in ventral view: A — complete specimen; B — close-up of left thoracetronic pleural lobe with two moveable spines at the same notch (white arrow) and missing spines and spine notches (grey arrows); C — close-up of right genal spine with rounded edge (white arrows). D, E — juvenile specimen from the Patiboni region with malformed telson: D — complete specimen; E — close-up of broken telson (white arrow). D and E are converted to grayscale.

Рис. 14. *Carcinoscorpius rotundicauda* с анамалиями просомы, торацетрона и тельсона. A–C — взрослый самец из района Патибони с деформированными щёчным углом и торацетроном, вентрально: A — экземпляр целиком; B — крупный план левой превральной доли торацетрона с двумя подвижными шипами в одной выемке (белая стрелка) и отсутствующими шипами и их выемками (серые стрелки); C — крупный план правого щёчного угла с закругленным краем (белые стрелки). D, E — ювенильный экземпляр из района Патибони с видоизмененным тельсоном: D — экземпляр целиком; E — крупный план обломанного тельсона (белая стрелка). Рисунки D и E преобразованы в градации серого.

An adult male with a deformed thoracetron (Fig. 16E, F). The left thoracetronic pleural lobe has a cicatrisised edge and a ‘W’-shaped indentation along the posterior margin. Furthermore, only one small movable spine and spine notch are noted.

An adult male with malformed appendages (Fig. 17). The distal sections of the first left leg are missing and the damaged section is cicatrisised. The distal region of the coxal section on the left pushing leg has a hole. Finally, the posterior sections of the genital opercular have ‘U’-shaped indentations on both sides.

Both malformed and normal specimens fall into similar spaces for the prosomal and thoracetronic datasets when considering the distribution of specimens in log-normalised bivariate space (Fig. 18). The malformed specimens have a slightly coarser frequency distribution, likely reflecting the smaller counts, relative to normal individuals. Specimens with a slightly wider than long prosoma are more likely to show some form of abnormality (Fig. 18A). Thoracetronic measurements show that those individuals with a smaller thoracetron are likely to show an abnormality (Fig. 18B). Overall, these data also show clear clusters in bivariate space, suggesting a possible record of ontogenetic change.

Anthropogenic pressures that negatively impact xiphosurids were observed during the study. We noted that telsons are often gathered and used as amulets. Furthermore, a subset of the local people consume *Carcinoscorpius rotundicauda* as a food source. Beyond these uses, iron rods, fish nets, boats in the Patiboni, Bankimnagar, and Mayagoalinir Ghat regions interact and impact the local *C. rotundicauda* populations. Grazing livestock were observed in association with horseshoe crab populations, an interaction that may also impact the xiphosurids as well. Finally, the mangroves are often harvested for fuel, so habitat modification will have influenced the species.
Fig. 15. *Carcinoscorpius rotundicauda* with thoracetronic and telson abnormalities. A, B — adult female from the Bankimnagar region with malformed thoracetron and telson in ventral view: A — complete specimen showing deformed moveable spines on right thoracetronic pleural lobe (white arrows) and broken telson; B — close-up of left thoracetronic pleural lobe showing ‘W’-shaped abnormality (white arrows). C–F — adult male from the Kostola region with thoracetronic and telson abnormalities in ventral view: C — complete specimen showing circular depression in prosoma (white arrow); D — close-up of right-kinked telson; E — close-up of stunted moveable spines on right thoracetronic pleural lobe (white arrows); F — close-up of ‘V’-shaped (grey arrows) and ‘W’-shaped (white arrows) indentations on right thoracetronic pleural lobe.

Discussion

Comparing the documented abnormalities to other malformed horseshoe crabs [Shuster Jr., 1982; Bicknell *et al*., 2018; Bicknell, Pates, 2019] and to trilobites — organisms with a morphologically comparable body plan [Owen, 1985; Babcock, 1993; Bicknell *et al*., 2019d; Bicknell, Pates, 2020] — we conclude that the majority of abnormalities documented here represent injuries. The ‘V’, ‘U’, and ‘W’-shaped indentations on prosomal and thoracetronic sections likely
On abnormal *Carcinoscorpius rotundicauda* from the Indian Sundarbans

Fig. 16. *Carcinoscorpius rotundicauda* with thoracetic and telson abnormalities. A–D — juvenile specimen from the Patiboni region with malformed thoracetractor and telson in ventral view: A — complete specimen; B — close-up of right thoracetic pleural lobe showing missing moveable spine (white arrow); C — close-up of left thoracetic pleural lobe showing missing moveable spines (white arrow); D — close-up of telson abnormality showing kinked areas (white arrows). E, F — adult male from the Patiboni region with thoracetic abnormality: E — complete specimen; F — close-up of the deformed left thoracetic pleural lobe showing missing moveable spines (white arrows) and a stunted moveable spine (grey arrow).

Fig. 16. *Carcinoscorpius rotundicauda* с анамалиями теракетрона и тельсона. A–D — ювенильный экземпляр из района Патибони с видоизмененными теракетроном и тельсоном, вентрально: A — экземпляр целиком; B — крупный план правой плевральной доли теракетрона с отсутствующим подвижным шипом (белая стрелка); C — крупный план левой плевральной доли теракетрона с отсутствующими подвижными шипами (белая стрелка); D — крупный план анамалий тельсона с областями скручивания (белые стрелки). E, F — взрослый самец из района Патибони с анамалией теракетрона: E — экземпляр целиком; F — крупный план деформированной левой плевральной доли теракетрона с отсутствующими подвижными шипами (белые стрелки) и уменьшенным подвижным шипом (серая стрелка).

record mechanical damage to the exoskeleton. The shallower ‘U’- and ‘V’-shaped injuries record possible tearing of softer exoskeleton after moulting and/or an injury that has recovered during more recent moulting events [Pates, Bicknell, 2019]. Further, those specimens showing cicatrisation represent definite evidence of recovery from the injury event.

The causes of these injuries should be considered. The most extreme records of damage (e.g. Figs 5A, B; 9 A; 15C, F) may reflect interactions with boats and
Fig. 17. Adult male *Carcinoscorpius rotundicauda* from the Patiboni region with malformed appendages. The first male leg on the left side is stunted (grey arrow), the coxal section of the left pushing leg is damaged (yellow arrow) and there are ‘U’-shaped indentations are noted on both sides of the genital opercula (white arrows).

Acknowledgements. This research is part of the doctoral thesis of Swati Das. Our sincere thanks to the Director of the Zoological Survey of India for providing all necessary permission to carry out the field work and fellowship to Swati Das. We are grateful to all field staff at the Forest Department for logistics. Russell Dean Christopher Bicknell is funded by a University of New England Postdoctoral Fellowship. Finally, we thank Serge Naugolnykh for his review that improved the flow and use of the text.

Author contributions. S.D. collected data, wrote the first version of the text. B.T. conceived the initial idea and

livestock that now co-occur with horseshoe crabs. Select injuries could be considered bite marks (Figs 7B, 10A) and they are likely record of predator-prey interactions. The local people suggest rats are possible culprits for such injuries. As turtles and gulls are known to cause injuries to *Limulus polyphemus* [Keinath, 2003; Bicknell *et al*., 2018], similar predators may also have contributed to the records observed here.

There is an array of morphologies that reflect abnormal recovery from injuries. The rounded genal spines (Figs 4A, 9A, 12C, 14A) undoubtedly reflect regeneration from an injury, but a lack of sufficient moulting events to completely recover the spine. The condition where two moveable spines are noted within the same thoracetronic spine notch (Figs 4B, 12B) likely reflects a developmental malfunction during recovery of an injury to the thoracetronic margin. An unequal number of moveable and fixed spines indicates an injury that resulted in the removal of a spine and this removal has not completely recovered (Figs 3D, 11A, 15A, 16A). Finally, stunted, kinked or absent telson spines (Figs 7B, D, 9B, D, 10D, 13B, E, F, 14F) likely reflect deformation of the spine through mechanical damage and the propagation of the malformation during subsequent moults [Bicknell *et al*., 2018].

Previous studies of horseshoe crab abnormalities [Shuster Jr., 1982; Botton, Loveland, 1989; Bicknell *et al*., 2018] suggested that telson abnormalities were the most documented examples of horseshoe crab malformations. However, the studied *Carcinoscorpius rotundicauda* populations illustrate that prosomal and thoracetronic injuries are most abundant. This suggests that, as Bicknell & Pates [2019] postulated, there may be species-specific patterns of injuries. Alternatively, the prevalence of injury locations is dictated by the ecological conditions imposed on a given population. Regardless, further research into injury patterns is needed; specifically using living populations. Such studies will likely identify those populations with abundant injuries and ideally help inform conservation efforts that are direly needed to prevent the extinction of these iconic organisms.
Fig. 18. Bivariate plots sampled horseshoe crabs coded for gender and the presence of absence of an abnormality. A — plot of log-normalised prosomal measurements with groups bound by convex hulls. Malformed specimens generally fall within the convex hull of normal specimens. Both groups have a similar frequency plot, with abnormal specimens peaking more along the prosomal length axis; B — plot of log-normalised thoracetic measures with groups bound by convex hulls. Malformed specimens fall within the convex hull of normal specimens. Both groups have a similar frequency plot, although the malformed specimens have a lower resolution distribution, reflecting the limited population relative to normal specimens. The data associated with these plots are found in Supplemental Data 1.
Fig. 19. Illustrations of anthropogenic activities that negatively impact horseshoe crabs at the study sites. A, D — fishing nets (Bet jals) at the intertidal zone to collect small and medium sized fish during low tide; B — the collection of decapod crustaceans in mud-flats using iron rods; C — livestock grazing on the mudflats; E — anchors located on the mudflats; F — Carcinoscorpius rotundicauda telson spines that are broken and collected by local people; G — destruction of mangrove trees for fuel and food; H — a horseshoe crab entangled in abandoned fish net; I — trade of horseshoe crabs at a local market of Kolkata, West Bengal.

supported the logistics for field work. K.A.S. guided the work of S.D. as part of her doctoral thesis. S.D. and R.D.C.B. designed the study and the figures. R.D.C.B. analysed the measurement data, edited the text, and developed ideas. All authors read and contributed the final draft.

Compliance with ethical standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: No ethical issues were raised during our research.

Supporting Information

Additional supporting information can be found online.

Supplemental Data 1. Morphometric and gender data used in Figure 18.

References

Almendral M.A., Schoppe S. 2005. Population structure of Tachypleus tridentatus (Chelicerata: Merostomata) at a nursery beach in Puerto Princesa City, Palawan, Philippines // Journal of Natural History. Vol.39. No.25. P.2319–2329.

Annandale N. 1909. The habits of Indian king crabs // Record of the Indian Museum. Vol.3. P.294–295.

Babcock L.E. 1993. Trilobite malformations and the fossil record of behavioral asymmetry // Journal of Paleontology. Vol.67. No.2. P.217–229.

Bicknell R.D.C., Pates S. 2019a. Abnormal extant xiphosurids in the Yale Peabody Museum Invertebrate Zoology collection // Bulletin of The Peabody Museum of Natural History. Vol.60. No.1. P.41–53.

Bicknell R.D.C., Brougham T., Charbonnier S., Sautereau F., Hitij T., Campione N.E. 2019b. On the appendicular anatomy of the xiphosurid Tachypleus syriacus and the evolution of fossil horseshoe crab appendages // The Science of Nature. Vol.106. No.7. P.38.

Bicknell R.D.C., Naugolnykh S.V., Brougham T. 2020. A reappraisal of Paleozoic horseshoe crabs from Russia and Ukraine // The Science of Nature. Vol.107. P.46.

Bicknell R.D.C. 2019c. Xiphosurid from the Upper Permian of Tasmania confirms Palaeozoic origin of Austrolimulidae // Palaeontologia Electronica. Vol.22. No.3. P.1–13.

Bicknell R.D.C., Paterson J.R., Hopkins M.J. 2019b. A trilobite cluster from the Silurian Rochester Shale of New York: preda-
tion patterns and possible defensive behavior // American Mu-
seum Novitates. Vol.39. No.3937. P.1–16.
Bicknell R.D.C., Pates S. 2020a. Pictorial atlas of fossil and extant horse-
shoe crabs, with focus on Xiphosurida // Frontiers in Earth Science. Vol.8. No.98. P.60.
Bicknell R.D.C., Pates S. 2020b. Exploring abnormal Cambrian-
aged trilobites in the Smithsonian collection // PeerJ. Vol.8. P.e8453.
Bicknell R.D.C., Holland B. 2020. Injured trilobites within a col-
lection of dinosaurs: Using the Royal Tyrrell Museum of Palae-
onontology to document Cambrian predation // Palaeontologia Electronica. Vol.23. No.2. P.33.
Bicknell R.D.C., Pates S., Botton M.L. 2018. Abnormal xiphos-
surid trilobites with possible application to Cambrian trilobites. Palaeo-
onontology Electronica. Vol.21. No.2. P.1–17.
Botton M.L., Loveland R.E. 1989. Reproductive risk: high mortal-
ity associated with spawning by horseshoe crabs (Limulus polyphemus) in Delaware Bay, USA // Marine Biology. Vol.101. No.2. P.143–151.
Chatterji A., Rathod V., Parulekar A.H. 1988. Growth and mor-
phometric characteristics in the horse-shoe crab, Carinisco-
scorpius rotundicuca (Latreille) from Canning (West Bengal), India // Pakistan Journal of Scientific and Industrial Research. Vol.31. No.5. P.352–353.
Chatterji A., Parulekar A.H. 1992. Feecundity of the Indian horse-
shoe-crab, Cariniscoecorius rotundicuca (Latreille) // Tropi-
cal Ecology. Vol.33. No.1. P.97–102.
Chatterji A., Rathod V., Parulekar A.H. 1992a. Seasonal variation in the volume of haemolymph & body weight of Tachypleus gigas (Müller) // Pakistan Journal of Scientific and Industrial Research, Vol.35. P.495–498.
Chatterji A., Rathod V., Parulekar A.H. 1992b. Spawning migra-
tion of the horseshoe crab, Tachypleus gigas (Müller), in rela-
tion to lunar cycle // Asian Fisheries Science. Vol.5. P.123–
128.
Chatterji A., Mishra J.K., Parulekar A.H. 1992c. Feeding behav-
iour and food selection by Tachypleus gigas (Müller) // Hydro-
biology. Vol.146. P.41–48.
Chatterji A., Abidi S.A.H. 1993. The Indian horseshoe crab: A living fossil // Journal of Indian Ocean Studies. Vol.1. No.1. P.43–48.
Chatterjee A., Mishra J.K., Vijayakumar R., Parulekar A.H. 1994. Length-weight relationship of the Indian horseshoe crab Tachypleus gigas (Müller) // Indian Journal of Fisheries. Vol.41. No.2. P.111–113.
Chatterji A., Parulekar A.H., Qasim S.Z. 1996a. Nesting behaviour of the Indian horseshoe crab, Tachypleus gigas (Müller) (Xiph-
osphora) // Qasim S.Z., Roonwal G.S. (eds.). India’s Exclusive Economic Zone: Resources, Exploitation, Management. New Delhi: Omega Scientific Publication. P.142–152.
Chatterji A., Aguiar Q., Saldanha C. 1996b. Energy source in the developing eggs of the Indian horseshoe crab, Tachypleus gigas (Müller) // Journal of Aquaculture in Tropics. Vol.11. P.271–276.
Chatterji A. 1999. New record of the sympatric distribution of two Asian species of the horseshoe crab // Current Science. Vol.77. P.746–747.
Chatterji A., Alam H., Joshi B.K., Bhonde R.R. 2004a. Regenera-
tion of gill lamellae of the Indian horseshoe crab, Tachypleus gigas (Müller) // Current Science. Vol.87. No.11. P.1511–
1512.
Chatterji A., Kotnala S., Mathew R. 2004b. Effect of salinity on larval growth of horseshoe crab, Tachypleus gigas (Müller) // Current Science. Vol.87. No.2. P.248–250.
Chatterji A., Shaharom F. 2009. Unusual spawning behaviour of the horseshoe crab (Tachypleus gigas, Müller) after the tsunami along Orissa coast, India // Pertanika Journal of Science and Technology. Vol.17. P.263–268.
Chaudhuri P.S., Nanda D.K., Deb Nath R. 1991. Cytomorphic stud-
ies on the neurosecretory cells in the central nervous system of the Indian horseshoe crab Cariniscoecorius rotundicuca (Latreille) // Functional and Developmental Morphology. Vol.1. No.1. P.13–16.
Chen C.P., Yeh Y.H., Lin P.F. 2004. Conservation of the horseshoe crab at Kinmen, Taiwan: strategies and practices // Biodiversi-
ty and Conservation. Vol.13. No.10. P.1889–1904.
Debnath R., Choudhury A. 1988a. Length–weight relationship of the living-fossil Cariniscoecorius rotundicuca (Latreille) (Merostomata: Xiphosura) of Sundarbans Estuary, India // En-
vironment and Ecology. Vol.6. No.4. P.923–927.
Debnath R., Choudhury A. 1988b. Population estimation of horse-
shoe crab Tachypleus gigas by capture-recapture method at Chandipur sea shore (Odisha), India // Indian Association for Marine Biol-
ogy Association of India. Vol.30. No.1–2. P.8–12.
Debnath R., Choudhury A. 1988c. Predation of Indian horseshoe
crab, Tachypleus gigas by Corvus splendens // Tropical Ecolo-
gy. Vol.29. No.2. P.86–89.
Debnath R., Choudhury A. 1989. Geographic distribution of Indi-
an horseshoe crabs (Merostomata: Xiphosura) in the coastal water of Bay of Bengal, India // Journal of Bengal Natural History Society. Vol.8. No.2. P.30–35.
Debnath R., Choudhury A. 1991. Comparative assessment of two breeding populations of crabs Tachypleus gigas (Müller) (Merostomata: Xiphosura) // Environment & Ecology. Vol.9. No.1. P.163–166.
Debnath R., Choudhury A. 1992. Length–weight relationship of the
living fossil, Tachypleus gigas (Merostomata: Xiphosura) // Acta Zoológica Bulgarica. Vol.44. P.70–74.
Debnath R., Choudhury A. 1996. Rare occurrence of tandem am-
plesus by male Indian horseshoe crabs, Cariniscoecorius ro-
tundicuca, with a comment on mating in Limaludae (Meros-
tomata: Xiphosura) // Advances in Biosciences. Vol.15. P.103–107.
Debnath R., Nag S.K., Choudhury A., Dasgupta R., Sur R.K. 1989. Feeding habit and digestive physiology of the Indian horseshoe crab, Tachypleus gigas (Müller) // Indian Journal of Physio-
logical & Allied Science. Vol.43. No.2. P.44–49.
Debnath R. 1991. Studies on species morphology and sexual di-
morphism of Indian horseshoe crabs // Geobios New Reports. Vol.10. P.128–131.
Ghosh A., Schmidt S., Fickert T., Nüsser M. 2015. The Indian Sundarbans mangrove forests: history, utilization, conserva-
tion strategies and local perception // Diversity. Vol.7. No.2. P.149–169.
Ito T., Mishra J.K., Ahmed A.T. 2004. Horseshoe crab (King
Crab) in the Bay of Bengal, South Asia // Bulletin of the
Education Society, Shizuuka University, Natural Science Se-
ries. Vol.54. P.13–30.
Jana S. 2020. Micro-level coastal vulnerability assessment in rela-
tion to post-Aila landscape alteration at the fragile coastal
stretch of the Sagar Island, India // Regional Studies in Marine
Science. Vol.33. P.100898.
Jell P.A. 1989. Some aberrant exoskeletons from fossil and living arthropods // Memoirs of the Queensland Museum. Vol.27. No.2. P.491–498.
Keinath JA. 2003. Predation of horseshoe crabs by loggerhead
turtles // Shuster C.N., Jr., Barlow R.B., Brockmannn H.J. (eds.). The American Horseshoe Crab. Cambridge: Harvard
Press. P.152–153.
Khan R.A. 2003. Observation on some aspects of the biology of
horseshoe crab, Cariniscoecorius rotundicuca (Latreille) on mud
flats of Sundarbans Estuarine Region // Records of the
Zoological Survey of India. Vol.101. P.1–23.
Kuelsh S.A., Allison M.A., Goodbred S.L., Kudrass H.E. 2005. The
Ganges-Brahmaputra Delta: Xiphosura) // Advances in Biosciences. Vol.29. No.2. P.41–48.
Laurentius Salvius. 823 p.
Roonwal M.L. 1944. Some observations on the breeding biology, Rama Rao K.V., Surya Rao K.V. 1972. Studies on Indian King
Mishra J.K., Chatterji A., Parulekar A.H. 1993. A freak twin trilobite larva of the Indian horseshoe crab Tachypleus gigas (Müller) // Journal of Bombay Natural History Society. Vol.90. No.1. P.116–117.
Mishra J.K. 2009a. Horseshoe crabs, their eco-biological status along the northeast coast of India and the necessity for ecological conservation // Tanacredi J.T., Botton M.L., Smith D.R. (eds.), Biology and Conservation of Horseshoe Crabs. Boston, MA: Springer. P.89–96.
Mishra J.K. 2009b. Larval culture of Tachypleus gigas and its molting behaviour under laboratory condition // Tanacredi J.T., Botton M.L., Smith D.R. (eds.), Biology and Conservation of Horseshoe Crabs. Boston, MA: Springer. P.513–519.
Mitra A.S., Srimal K.L., Choudhury A., Bhattacharyya D.P. 2000. Copper concentration in water, sediment and haemolymph of horseshoe crab in deltaic Sundarban, India // Proceedings of the Zoological Society of Calcutta. Vol.53. No.2. P.84–87.
Mondal I., Bandopadhyay J., Chakraborti P., Santra D. 2015. Morphodynamic change of Fraserganj and Bakkhal coastal stretch of Indian Sundarbans, South 24 Parganas, West Bengal, India // International Journal of Remote Sensing Applications. Vol.5. P.1–10.
Müller O.F. 1785. Entomostraca seu Insecta Testacea. P.124–126.
Mondal I., Bandyopadhyay J., Chakrabarti P., Santra D. 2015. Morphodynamic change of Fraserganj and Bakkhal coastal stretch of Indian Sundarbans, South 24 Parganas, West Bengal, India // International Journal of Remote Sensing Applications. Vol.5. P.1–10.

Sahu A.C., Dey L. 2013. Spawning density and morphometric characteristics of the horseshoe crab Tachypleus gigas (Müller) on the Balsore coast of Bay of Bengal, India // Science Vision. Vol.13. No.2. P.76–84.
Sekiguchi K., Nakamura K., Sen T.K., Sugita H. 1976. Morphological variation and distribution of a horseshoe crab, Tachypleus gigas, from the Bay of Bengal and the Gulf of Siam // Proceedings of the Japanese Society of Systematic Zoology. Vol.12. P.13–20.
Sekiguchi K., Nakamura K., Seshimo H. 1978. Morphological variation of a horseshoe crab, Carcinoscorpius rotundicauda, from the Bay of Bengal and the Gulf of Siam // Proceedings of the Japanese Society of Systematic Zoology. Vol.15. P.24–30.
Sekiguchi K., Seshimo H., Sugita H. 1988. Post-embryonic development of the horseshoe crab // The Biological Bulletin. Vol.174. No.3. P.337–345.
Shuster C.N., Jr. 1982. A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae // Progress in Clinical and Biological Research. Vol.81. P.1–52.
Tripathy B., Sivakumar K., Sajjan J., Satyaranjan B., Choudhury B.C. 2013. Assessment of the population status and threats to the horseshoe crabs along the northern east coast of India // Venkataraman K., Sivaperuman C., Raghunathan C.(eds.). Ecol-ogy and Conservation of Tropical Marine Faunal Communities. Berlin, Heidelberg: Springer. P.137–146.
Tripathy B., Sivakumar K.S., Sett T. 2014. Biology and conservation of horseshoe crabs of India – A bibliographical review for identifying gap areas of research. Kolkata: Zoological Survey of India.
Tripathy B., Mohapatra A., Mukhopadhyay A.K. 2018. Status survey of horseshoe crabs along the East Coast of India // Status Survey Report, Published by the Director, Zoological Survey India, Kolkata. Vol.13. P.1–109.
Umitsu M. 1993. Late Quaternary sedimentary environments and landforms in the Ganges Delta // Sedimentary Geology. Vol.83. No.3–4. P.177–186.
van der Meer Mohr J.C. 1935. Sur quelques malformations chez la limule, Tachypleus gigas // Miscellanea Zoologica Sumatrana. Vol.87. P.1–3.
Van Roy P., Orr J.P., Botting J.P., Muir L.A., Vinther J., Lefebvre B., El Hariri K., Briggs D.E.G. 2010. Ordovician faunas of Burgess Shale type // Nature. Vol.465. No.7295. P.215–218.
Vijayakumar R., Das S., Chatterji A., Parulekar A.H. 2000. Morphometric characteristics in the horseshoe crab Tachypleus gigas (Arthropoda: Merostomata) // Indian Journal of Marine Sciences. Vol.29. P.333–335.