PR55α, a Regulatory Subunit of PP2A, Specifically Regulates PP2A-mediated β-Catenin Dephosphorylation

Received for publication, April 27, 2009, and in revised form, June 24, 2009. Published, JBC Papers in Press, June 25, 2009, DOI 10.1074/jbc.M109.013698

Wen Zhang‡1, Jun Yang‡1, Yajuan Liu†, Xi Chen†, Tianxin Yu‡, Jianhang Jia‡2, and Chunming Liu‡3

From the †Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555 and the ‡Department of Molecular and Cellular Biology, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506

A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CK1ε and GSK3β, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling.

Wnt/β-catenin signaling plays essential roles in development and tumorigenesis (1–3). Our previous work found that β-catenin is sequentially phosphorylated by CK1ε and GSK3β, leading to degradation via the ubiquitination/proteasome machinery (3). Mutations in β-catenin or APC genes that prevent β-catenin phosphorylation or ubiquitination/degradation lead ultimately to cancer (1, 2).

In addition to the involvement of kinases, protein phosphatases, such as PP1, PP2A, and PP2C, are also implicated in Wnt/β-catenin regulation. PP2C and PP1 may regulate dephosphorylation of Axin and play positive roles in Wnt signaling (4). PR55α shRNA constructs were purchased from Sigma. The sequences of shRNA oligos targeting the PR55 gene are: CGCGAGGATACCCACAGGACTCTATGGGGATCTTTTT (TRCN0000002490), CCGGTCATCTACTTTTT (TRCN0000002492), and CCGGGCAAGTCATCTACTTTTT (TRCN0000002493). Clone TRCN0000002493 was used in this study (supplemental Fig. S3). The control shRNA sequence is: CCTAAGGTATCGCCCTCGTCTAGCGAGGCGACTTTACCTAGGG.

Experimental Procedures

Plasmids—Myc-tagged PR55α was cloned into CS2+MT vector. FLAG-tagged PP2Ac was cloned into pRK5 vector. β-Catenin and Axin constructs have been described previously (4). PR55α shRNA constructs were purchased from Sigma. The sequences of shRNA oligos targeting the PR55 gene are: CGCGAGGATACCCACAGGACTCTATGGGGATCTTTTT (TRCN0000002490), CCGGTCATCTACTTTTT (TRCN0000002492), and CCGGGCAAGTCATCTACTTTTT (TRCN0000002493). Clone TRCN0000002493 was used in this study (supplemental Fig. S3). The control shRNA sequence is: CCTAAGGTATCGCCCTCGTCTAGCGAGGCGACTTTACCTAGGG.

siRNA—siRNAs for PP1, PP5, and different subunits of PP2A were purchased from Qiagen (supplemental Fig. S1). The oligonucleotide sequences of these siRNAs are: AACATCGACA-ACATTATCCAA (si02225776 for PP1), ATGGAAATTCGATACTCTA (si02225783 for PP2Ac), CTGTGGAAACC-ACACTTTTT (si02225853 for PP5), CTGGCAATTTGC-GGAATGAAGTTGTTTATGGGA (si02225825 for PR55α), CAGCGATTTCCGATACTCTAA (si02225846 for PR61α), and GAAGTTGTTTATGGGA (si02225776 for PP1), ATGGAAATTCGATACTCTA (si02225783 for PP2Ac), CTGTGGAAACC-ACACTTTTT (si02225853 for PP5), CTGGCAATTTGC-GGAATGAAGTTGTTTATGGGA (si02225825 for PR55α), CAGCGATTTCCGATACTCTAA (si02225846 for PR61α).

Control siRNA was also purchased from Qiagen (1027281). siRNAs were transfected into HEK293T or SW480 cells at a final concentration of 10 nmol/liter. Cells were collected 48 h post-transfection. The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. S1–S5.
PR55α Regulates β-Catenin Dephosphorylation

centration of 10 nm, using Lipofectamine 2000. Cell lysates were analyzed after 3 days.

Cell Lines—HEK293T and SW480 cells were maintained in Dulbecco’s modified Eagle’s medium (Hyclone) containing 10% fetal bovine serum (Hyclone), 1% penicillin/streptomycin, and 1% glutamine at 37 °C in 5% CO2. HEK293 cells were cotransfected with shRNA plasmid, psPAX2 packaging plasmid, and pMD2.G envelope plasmid. Virus-containing media was harvested 48 h after transfection, followed by infection of target HEK293T and SW480 cells. Stabled cells were selected with 2 μg/ml puromycin 48 h after infection. The stabled cells from a mixed population were used in the experiments.

Immunoprecipitation, Western Blot, and Immunostaining—Cells were lysed in 1% Triton buffer or hypotonic buffer as previously described (22). Immunoprecipitation and Western blot were performed as previously described (4, 23). PP2Ac Ab (238), PR55α Ab (2290), and phospho-β-catenin Abs (9561, 9564, 9566, and 9567) were purchased from Cell Signaling Technology. Total β-catenin Ab was purchased from Sigma (c2206). Immunostaining of mammalian cells was performed as described previously (23).

Reporter Assay—Super8xTOPFlash reporter was kindly provided by Dr. Randall Moon, University of Washington. Super8xTOPFlash reporter and Renilla reporter were cotransfected into HEK293T cells using the calcium transfection method. Luciferase and Renilla activities were analyzed with the Dual-Luciferase® Reporter Assay Kit from Promega.

In Vitro Kinase and in Vitro Phosphatase Assays—Purified GST-β-catenin was phosphorylated by purified GSK3 or CKIα in 1× kinase buffer plus 0.2 mM ATP at 30 °C for 30 min. Phosphorylated β-catenin can also be immunoprecipitated from HCT116 or SW480 cell extracts. Phosphorylated β-catenin was incubated with phosphatase buffer only, or purified PP2A, PP1, or PP5 for 30 min at 37 °C. β-Catenin phosphorylation was analyzed by Western blot using phospho-specific Abs. Purified CKIα and GSK3 have been described (4). PP1 and PP2A were from New England Biolabs (P0754S) and Millipore (14-111), respectively. Recombinant human GST-PP5 was purified from bacteria. PP2A holoenzyme containing PR55α was purified from HEK293T cells as described below.

Protein Purification—GST fusion proteins have been described in our previous study (4). Histidine-tagged PP2Ac and PR55α were cloned in pET-28 vector (Novagen) and transformed into BL21(DE3). A single colony was picked up and cultured at 37 °C. Protein expression was induced by 0.4 mM isopropyl 1-thio-β-D-galactopyranoside. Bacteria was pelleted by a microcentrifuge and resuspended in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1% Triton 100, pH 8.0) and sonicated on ice for 5 × 15 s. Cleared lysate was incubated with 100 ml of nickel-nitritriacetic acid beads (Qiagen 30210) for 1 h at 4 °C. Beads were washed with 3 × 1 ml of wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, 0.1% Triton 100, pH 8.0). Recombinant protein was eluted by 100 μl of elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, 0.1% of Triton 100, pH 8.0). Protein concentration was determined by a Bio-Rad protein assay kit (500-0006).

PP2A holoenzyme containing PR55α was purified according to the method described by Adams and Wadzinski (24). FLAG-tagged PR55α was transcribed into HEK293T cells. PP2A holoenzyme was immunoprecipitated with FLAG-conjugated beads and eluted by FLAG peptides.

Drosophila Stocks and Immunostaining of Wing Discs—MS1096, act>CD2>gal4, ptc-gal4, UAS-DN-mts, UAS-mts-RNAi, UAS-mts has been described (25, 26). Standard protocols for immunofluorescence staining were used. Wing imaginal discs from late third instar larvae were immunostained with mouse anti-Arm (Developmental Studies Hybridoma Bank), rabbit anti-DI (Dr. Sean Carroll), and goat anti-SEN (Dr. Hugo Bellen) Abs.

RESULTS

PP2A Regulates β-Catenin Dephosphorylation—Our previous study (4) showed that the N terminus of β-catenin is phosphorylated by CKIα and GSK3. We further showed that Wnt inhibits GSK3 activity, resulting in a dramatic decrease of β-catenin phosphorylation and increase of stabilization (4). Because protein kinases and phosphatases often have opposing actions, to investigate whether phosphatases are involved in β-catenin dephosphorylation, and if so which phosphatases are responsible, we treated HEK293T cells with 1 nm tautomycin and 10 nm okadaic acid (OA), which preferentially inhibits PP1 and PP2A, respectively. We found that the abundance of phosphorylated β-catenin is elevated by OA but not tautomycin, suggesting that PP2A may regulate β-catenin phosphorylation (Fig. 1A, top panel).

To determine which phosphatase is responsible for β-catenin dephosphorylation, we decided to use siRNA to knockdown each of these phosphatases. However, phosphorylated β-cate-
nin is rapidly degraded in HEK293T cells. Thus, it is difficult to analyze β-catenin phosphorylation in these cells. Recently, we noted that β-catenin degradation but not phosphorylation is inhibited in the colon cancer cell line SW480 (22). When SW480 cells were treated with LiCl, which inhibits GSK3 activity, the levels of phosphorylated β-catenin were significantly decreased (Fig. 1B, top panel). Because β-catenin degradation is blocked in SW480 cells, we reasoned that the decrease in β-catenin phosphorylation is caused by phosphatase activity but not protein turnover. SW480 cells provide a good model to analyze β-catenin phosphorylation without the interference of β-catenin degradation.

To identify the phosphatase that specifically dephosphorylates β-catenin, we performed siRNA screening in SW480 cells. PP1, PP5, and the catalytic subunit of PP2A (PP2Ac) were knocked down by siRNAs (supplemental Fig. S1, A–C). The levels of both CK1ε- and GSK3-phosphorylated β-catenin were significantly increased in the PP2Ac-depleted cells (Fig. 1C, top and middle panels). Total levels of β-catenin were not changed in SW480 cells (Fig. 1C, bottom panel). These data confirmed that PP2A is required for β-catenin dephosphorylation. To determine whether PP2A can directly dephosphorylate β-catenin, phosphorylated β-catenin was immunoprecipitated from HCT116 cells and incubated with purified PP1, PP5, and PP2A holoenzyme. PP2A efficiently dephosphorylated β-catenin within 30 min (Fig. 1D). PP2A can dephosphorylate in vitro phosphorylated GST-β-catenin as well (not shown).

PP2A Is Essential for Wingless Signaling by Regulating Armadillo Levels in Drosophila—Our results and the results from a phosphatase reconstitution study (18) suggest that PP2A could dephosphorylate and stabilize β-catenin, thus playing positive roles in Wnt signaling. However, the in vitro functions of PP2A in Wnt signaling remain elusive likely due to multiple roles of PP2A in the Wnt signaling cascade. To define PP2A functions in vivo, we turned to the Drosophila wing development where Wingless (Wg), a member of the Wnt gene family, exerts a highly conserved biological influence through the canonical Wnt/β-catenin pathway. We examined the levels of β-catenin homolog Armadillo (Arm) and the expression of Wg target genes in Drosophila. We found that expressing dominant-negative PP2Ac, DN-Mts in Drosophila, by the wing-specific MS1096 gal4, caused significant reduction of Arm levels (Fig. 2B, compared with wild-type Arm staining in Fig. 2A) and severe suppression of Wg target genes such as distalless (dll) and senseless (sen) (compare Fig. 2, B', B'' with A', A''). Consistently, we found that mts RNAi blocked Arm accumulation (Fig. 2C), thus the attenuated Dll expression (Fig. 2D') in Drosophila wing discs. We also performed a gain-of-function study by using the ptc-gal4 that drives gene expression in a stripe anteriorly to the anterior/posterior boundary of the wing disc (26). We found that expressing UAS-mts by ptc-gal4 elevated Arm levels (Fig. 2E).

Identification of PR55α as the Regulator B Subunit That Controls β-Catenin Phosphorylation—PP2A holoenzyme comprises a catalytic C subunit, a scaffolding A subunit, and a regulatory B subunit, which controls substrate specificity (8–10). There are more than 20 regulatory B subunits in the human genome (9). We hypothesize that PP2A plays different roles and regulates multiple steps in the Wnt pathway through distinct regulatory B subunits. Our in vitro and in vivo studies suggest that PP2A regulates β-catenin phosphorylation. The regulatory B subunit that controls β-catenin dephosphorylation remains to be identified.

We performed another siRNA screening in SW480 cells using siRNAs targeting individual regulatory subunits of PP2A (supplemental Fig. S1, D–G). As a control, PP2Ac siRNA increased the levels of phosphorylated β-catenin (compare lane 2 with lane 1, Fig. 3A, top panel). In addition, we found that depletion of PR55α (also called B55α) significantly increased the levels of phosphorylated β-catenin (Fig. 3A). The levels of phosphorylated β-catenin were not increased by siRNAs targeting other PP2A regulatory subunits, such as PR61α (B56α), PR61β (B56δ), and PR61e (B56e), although these subunits were implicated in Wnt signaling as well (15, 17, 20).

PR55α comprises a seven-bladed β-propeller, or WD40 repeats (27). Each blade comprises four antiparallel β-strands. These domains are involved in protein-protein interactions. To analyze the binding between PR55α and PP2Ac, Myc-tagged
PR55α Regulates β-Catenin Dephosphorylation

PR55 and FLAG-tagged PP2Ac were co-transfected into HEK293T cells. As expected, PR55α forms a complex with PP2Ac (Fig. 3B). To confirm the siRNA results and further analyze the PR55α function, we generated stable SW480 cells that express PR55α shRNA (Fig. 3C and supplemental Fig. S3). PR55α was efficiently knocked down in these cells compared with the SW480 cells with control shRNA (Fig. 3C, top panel). Consistent with the siRNA result in Fig. 3A, the levels of both CKIα and GSK3-phosphorylated β-catenin were increased in SW480 cells expressing PR55α shRNA (Fig. 3C, second and third panels), with the total amount of β-catenin unchanged (Fig. 3C, bottom panel).

Although CKIα and GSK3 phosphorylate the N terminus of β-catenin and control β-catenin degradation, other kinases can also phosphorylate β-catenin. It has been shown that AKT and PKA phosphorylate β-catenin at Ser-552 and Ser-675, which regulate the activation and nuclear translocation of β-catenin (28–30). When SW480 cells were treated with 10 nM OA, the levels of Ser-552 and Ser-675-phosphorylated β-catenin were also increased (Fig. 3D, second and third panels), suggesting that these sites are also regulated by protein phosphatase. Interestingly, we found that depletion of PR55α in SW480 cells increased the abundance of β-catenin with Ser-552 and Ser-675 phosphorylation (Fig. 3C, fourth and fifth panels), suggesting that PP2A/PR55α may affect the phosphorylation of Ser-552 and Ser-675 thus the activation and nuclear translocation of β-catenin.

PR55α Interacts with β-Catenin in Mammalian Cells—We analyzed the localization of PR55α in SW480 cells. PR55α was localized in both the cytoplasm and nucleus (Fig. 4A). As a control, β-catenin localized on the membrane and in the cytoplasm and significantly accumulated in the nucleus (Fig. 4A). To test if PR55α interacts with β-catenin, endogenous PR55α protein was immunoprecipitated from SW480 cells, and the presence of β-catenin was analyzed by Western blot. We found that β-catenin indeed binds PR55α (Fig. 4B). Although several phosphatases and their subunits are involved in Wnt signaling, PR55α is the first phosphatase subunit found to bind β-catenin. To analyze which domains of β-catenin bind PR55α, we generated several β-catenin deletions (Fig. 4C). Full-length β-catenin strongly bound PR55α (Fig. 4D). The C terminus containing armadillo repeats 11–12, or the N terminus containing armadillo repeats 1–10, bound PR55α weakly, whereas the N terminus with no armadillo repeat did not bind PR55α, suggesting that PR55α may bind multiple armadillo repeats of β-catenin (Fig. 4D).

PR55α has 7 WD40 repeats. To test which WD40 repeats bind β-catenin, we generated a panel of PR55α deletions (Fig. 4E). Using the immunoprecipitation assay, we found that β-catenin binds multiple domains of PR55α (Fig. 4F). This is consistent with the result that multiple armadillo repeats of β-catenin bind PR55α (Fig. 4D).

PR55α Directly Binds Both β-Catenin and Axin—It has been reported that PP2Ac interacts with Axin (14). To test if PR55α binds Axin as well, Mmc-tagged PR55α and FLAG-tagged Axin or β-catenin were cotransfected into HEK293T cells. Using an immunoprecipitation assay, we found that PR55α not only interacts with β-catenin, but also strongly interacts with Axin (Fig. 5A, lane 2, top panel). Our data indicate that PR55α falls into the Axin-β-catenin protein complex and further suggests that PR55α acts as the PP2A regulatory subunit in regulating β-catenin phosphorylation.

Because β-catenin directly binds Axin, PR55α could bind β-catenin indirectly through Axin. To test this possibility, we purified histidine-tagged PP2Ac and PR55α from Escherichia coli BL21(DE3). These proteins were incubated with purified GST, GST-β-catenin, GST-Axin(Cat+S45K), and GST-Axin(G3+Cat) (supplemental Fig. S4). GST-Axin(Cat+S45K) interacted with CKIα and GST-Axin(G3+Cat) interacted with GSK3 (Fig. 5B, bottom two panels), as we reported previously (4). PP2Ac bound GST-Axin(Cat+S45K) (Fig. 5B, top panel), as previously reported (14). In this study, we found that PR55α binds not only GST-Axin(Cat+S45K) but also GST-Axin(G3+Cat) and GST-β-catenin (Fig. 5B, second panel, lane 4). Neither PP2Ac nor PR55α binds GST protein. These results suggest that PP2A directly binds Axin, whereas PR55α directly binds both Axin and β-catenin. PP2A and PR55α may bind distinct domains of Axin. The binding between Axin(Cat) and Axin(S45K) and Axin(G3+Cat) with PR55α was analyzed by Western blot.
PR55α was tested (supplemental Fig. S5). We found that the Axin(Cat) fragment is not sufficient for PR55α binding.

To test which WD40 repeats of PR55α bind Axin, we analyzed the binding between Axin and PR55α mutants (Fig. 4C). Using the immunoprecipitation assay, we found that unlike β-catenin, Axin only binds the PR55α fragments containing the last 3–4 WD40 repeats (Fig. 5C). To understand the function of PR55α in Wnt signaling, we performed a reporter assay in HEK293T cells using Super8xTOPFlash. PR55α alone has no significant effect on the reporter activity (not shown). However, when PR55α was cotransfected with Wnt3A, it synergized with Wnt3A and significantly increased the reporter activity (Fig. 5D). PR55α mutants PR55αΔ2 and PR55αΔ3 have less effect, whereas PR55αΔ1 has no effect on the reporter activity; this is consistent with their binding affinities to β-catenin and Axin. These results further suggest that PR55α plays a positive role in Wnt signaling.

FIGURE 4. PR55α interacts with β-catenin. A, localization of PR55α in SW480 cells. SW480 cells were stained with Abs against β-catenin (green) and PR55α (red). B, endogenous PR55α binds endogenous β-catenin. PR55α was immunoprecipitated (IP) with an anti-PR55α Ab and β-catenin was analyzed by Western blot with an anti-β-catenin Ab. The endogenous PR55α and β-catenin in the cell lysates were analyzed as control. C, schematic diagram of β-catenin deletion constructs. The black boxes are armadillo repeats. D, armadillo domains of β-catenin bind PR55α. HEK293T cells were cotransfected with Myc-tagged PR55α and Myc-tagged β-catenin or its mutants. PR55α was immunoprecipitated with an anti-PR55α Ab. β-Catenin proteins were analyzed by Western blot with an anti-Myc Ab. The levels of PR55α and β-catenin proteins in the cell lysates were analyzed as control.
PP2A/PR55α Regulates β-Catenin Degradation by Directly Dephosphorylating β-Catenin—To determine the function of endogenous PR55α on β-catenin degradation, we generated a stable HEK293T cell line that expresses PR55α shRNA. Cytoplasmic fractions were isolated from this cell line (HEK293i) and the control cell line (HEK293c). PR55α protein levels were significantly reduced by shRNA (Fig. 5E, left, top panel). PR55α depletion resulted in β-catenin degradation (Fig. 5E, left, middle panel). As a loading control, β-tubulin levels were not affected by PR55α shRNA (Fig. 5E, left, bottom panel). It is worth noting that PP2Ac depletion has similar results (14), suggesting that PR55α and PP2Ac work together in β-catenin regulation. These cells were treated with either control medium or Wnt3A-conditioned medium. Besides the above observations, we found that Wnt3A treatment increased the cytoplasmic levels of β-catenin more efficiently in HEK293c cells than that of the HEK293i cells (Fig. 5E, right, middle panel, lane 2, compared with lane 4), suggesting that PR55α enhances Wnt-regulated β-catenin stabilization by regulating β-catenin phosphorylation.

As described above (Fig. 5, A and B), both PR55α and PP2Ac bind Axin. Because Axin binds β-catenin phosphorylation, it is also possible that PR55α indirectly regulates β-catenin phosphorylation by regulating Axin. We have shown that β-catenin can be dephosphorylated by a commercial PP2A holoenzyme (Fig. 1D), but it is not clear which regulatory B subunit is presented. To test whether PR55α directly regulates β-catenin dephosphorylation, Myc-tagged PR55α and FLAG-tagged PP2Ac were cotransfected into HEK293T cells. The PR55α-PP2A complex was immunoprecipitated with FLAG-conjugated beads and incubated with phosphorylated β-catenin (Fig. 5F, left panel). Both CK1α and GSK3 phosphatase levels of β-catenin were decreased upon incubation with PR55α/PP2A, whereas total β-catenin levels remain unchanged (Fig. 5F, left panel), suggesting that the PR55α-PP2A complex can dephosphorylate β-catenin. To test if PR55α can recruit endogenous PP2A complex for β-catenin dephosphorylation, we purified PP2A holoenzyme containing PR55α with FLAG-conjugated beads, and the holoenzyme was eluted from the beads with FLAG peptides. We demonstrated that the purified PP2A holoenzyme contains both PR55α and endogenous PP2Ac, and can directly dephosphorylate β-catenin in vitro (Fig. 5F, right panel).

DISCUSSION

β-Catenin phosphorylation by protein kinases has been well studied (31). How phosphatase regulates β-catenin is less understood. PP2A has been shown to dephosphorylate β-catenin in vitro (18). However, PP2A has been suggested to play...
both positive and negative roles in Wnt signaling. Our study demonstrated that PP2A regulates β-catenin phosphorylation both in vitro and in vivo. The specificity of PP2A in Wnt signaling is regulated by the regulatory B subunit. We demonstrated that PR55α directly interacts with β-catenin and regulates PP2A-mediated β-catenin dephosphorylation.

PP2A Regulates β-Catenin Dephosphorylation—The PP2A inhibitor, OA, increased the levels of phosphorylated β-catenin in HEK293T cells (Fig. 1A). However, the levels of β-catenin are elevated rather than attenuated by OA treatment (Fig. 1A, bottom panel). This is probably because OA regulates multiple phosphatases that play different roles in β-catenin phosphorylation and degradation. For example, OA also inhibits PP1 and PP5 when used at higher concentrations. Another possibility is that PP2A may regulate the degradation of phosphorylated β-catenin (32).

Because β-catenin degradation but not phosphorylation is inhibited in colon cancer cell line SW480, the SW480 cell line provides a better model to study β-catenin phosphorylation. The siRNA experiments in SW480 cells suggests that PP2A is essential for β-catenin dephosphorylation. The in vitro phosphatase assay further demonstrated that PP2A is both necessary and sufficient for β-catenin dephosphorylation. Within 30 min, only PP2A dephosphorylated β-catenin (Fig. 1D). However, after 2 h of incubation, PP1 can also dephosphorylate β-catenin, and PP5 weakly dephosphorylated β-catenin (supplemental Fig. S2), suggesting that PP1 and PP5 are active, but not as specific as PP2A in β-catenin dephosphorylation. In addition, siRNA results suggest that PP1 and PP5 are not required for β-catenin dephosphorylation.

PP2A Function in Wingless Signaling in Drosophila—To test PP2A function in vivo, we analyzed Arm and its target genes in Drosophila. Loss-of-function of PP2A resulted in decreased levels of Arm (Fig. 2, B and C). Overexpression of PP2A resulted in increased levels of Arm (Fig. 2E). However, under such conditions, we did not observe changes in Wg target genes expression (Fig. 2E′; not shown). It could be possible that Arm dephosphorylation by PP2A was not sufficient to activate Arm, or, PP2A has additional role(s) in regulating Arm signaling activity. Our finding that PP2A plays a positive role in Wnt signaling is consistent with a previous study (11). However, PP2A also plays negative roles in other studies probably by regulating different substrates. It is important to further determine how PP2A specificity is regulated in Wnt signaling.

PP2A Regulatory Subunit, PR55α, Regulates β-Catenin Dephosphorylation—We performed siRNA screening for the regulatory B subunits of PP2A. Our result demonstrates that PR55α is required for β-catenin dephosphorylation and further suggests that PP2A regulates different steps of Wnt signaling through distinct regulatory subunits (Fig. 3A). We found that PR55α also regulates the phosphorylation of β-catenin Ser-552 and Ser-675 (Fig. 3, C and D). This may be one of the reasons why the elevation of Arm caused by overexpressing Mts did not ectopically activate Wg target genes (Fig. 2E′, data not shown). The Ser-675 site is highly conserved among species although the function of this phosphorylation has not yet been demonstrated in Drosophila or other in vivo models.

PR55α Directly Interacts with β-Catenin and Axin—PR55α but not PP2Ac directly binds β-catenin. PR55α also binds Axin. The armadillo domains of β-catenin interact with PR55α. The WD40 repeats of PR55α may have a redundant function in β-catenin binding (Fig. 4F). In contrast, only the last 3–4 WD40 repeats of PR55α bind Axin (Fig. 5C). Besides the WD40 repeats, PR55α also contains two α helices, which are localized after the fourth and fifth WD40 repeats (27). These α helices may be involved in Axin binding.

PR55α Containing PP2A Holoenzyme Dephosphorylated β-Catenin—We purified PP2A holoenzyme with FLAG-tagged PR55α. The in vitro dephosphorylation results strongly suggest that PR55α directly regulates PP2A-mediated β-catenin dephosphorylation (Fig. 5F). It will be interesting to determine whether PR55α also regulates Axin phosphorylation and whether Axin regulates PR55α/PP2A activity in future experiments.

Our mechanistic studies of β-catenin dephosphorylation by PP2A/PR55α are fully consistent with the genetic results of the PR55α mutant in Drosophila (11). The Drosophila PR55α homolog is encoded by twins (tw). In the twins wing disc, both Arm and its target genes were down-regulated, suggesting that Twins is required for Axin stabilization (11). We also found that overexpression of Twins increased Arm in the wing disc. 5

In summary, we provide first and direct evidence that PR55α regulates the specificity of PP2A-mediated β-catenin dephosphorylation. Our work further suggests that PP2A may perform different roles in Wnt signaling by taking advantage of different regulatory B subunits. These findings are not only important for cell signaling and developmental biology, but also have important implications for cancer biology. It has been reported that PR61γ (B56γ) but not PR55α suppressed human cell transformation (33), suggesting that PP2A regulatory B subunits play distinct roles in tumorigenesis. This may be partially due to their distinct roles in Wnt signaling.

Acknowledgments—We thank Tianyan Gao, Paul Evans, Timothy Hofstra, Xi He, and Mark Evers for suggestions and helpful discussions. We are grateful to Drs. Randall Moon, Xinhua Feng, Sean Carroll, Hugo Bellen, and Amita Sehgal for valuable reagents; Vienna Drosophila RNAi Center for RNAi flies; Developmental Studies Hybridoma Bank for Arm antibody; and Hongge Jia for assistance with Mts overexpression experiment.

REFERENCES

1. Clevers, H. (2006) Cell 127, 469–480
2. Logan, C. Y., and Nusse, R. (2004) Annu. Rev. Cell. Dev. Biol. 20, 781–810
3. Moon, R. T. (2005) Sci. STKE. 2005, cm1
4. Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., Zhang, Z., Lin, X., and He, X. (2002) Cell 108, 837–847
5. Liu, C., Kato, Y., Zhang, Z., Do, V. M., Yankner, B. A., and He, X. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6273–6278
6. Strobel, E. T., Wu, D., and Sussman, D. J. (2000) J. Biol. Chem. 275, 2399–2403
7. Luo, W., Peterson, A., Garcia, B. A., Coombs, G., Kofahl, B., Heinrich, R., Shanabrouzit, J., Hunt, D. F., Yost, H. J., and Virshup, D. M. (2007) EMBO J. 26, 1511–1521

5 H. Jia, Y. Liu, and J. Jia, unpublished results.

Powers, H. Jia, Y. Liu, and J. Jia, unpublished results.
8. Cho, U. S., and Xu, W. (2007) Nature 445, 53–57
9. Janssens, V., Longin, S., and Goris, J. (2008) Trends Biochem. Sci. 33, 113–121
10. Virshup, D. M. (2000) Curr. Opin. Cell. Biol. 12, 180–185
11. Bajpai, R., Makhijani, K., Rao, P. R., and Shashidhara, L. S. (2004) Development 131, 1007–1016
12. Creyghton, M. P., Roël, G., Eichhorn, P. J., Hijmans, E. M., Maurer, I., Destree, O., and Bernards, R. (2005) Genes Dev. 19, 376–386
13. Creyghton, M. P., Roël, G., Eichhorn, P. J., Vredeveld, L. C., Destree, O., and Bernards, R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 5397–5402
14. Hsu, W., Zeng, L., and Costantini, F. (1999) J. Biol. Chem. 274, 3439–3445
15. Li, X., Yost, H. J., Virshup, D. M., and Seeling, J. M. (2001) EMBO J. 20, 4122–4131
16. Ratcliffe, M. J., Itoh, K., and Sokol, S. Y. (2000) J. Biol. Chem. 275, 35680–35683
17. Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., and Virshup, D. M. (1999) Science 283, 2089–2091
18. Su, Y., Fu, C., Ishikawa, S., Stella, A., Kojima, M., Shitoh, K., Schreiber, E. M., Day, B. W., and Liu, B. (2008) Mol. Cell 32, 652–661
19. Yamamoto, H., Hinoi, T., Michiue, T., Fukui, A., Usui, H., Janssens, V., Van Hoof, C., Goris, J., Asashima, M., and Kikuchi, A. (2001) J. Biol. Chem. 276, 26875–26882
20. Yang, J., Wu, I., Tan, C., and Klein, P. S. (2003) Development 130, 5569–5578
21. Yokoyama, N., Yin, D., and Malbon, C. C. (2007) J. Mol. Signal. 2, 11