Data Article

Morphotypes and pigment profiles of halophilic bacteria: Practical data useful for novelty, taxonomic categorization and for describing novel species or new taxa

Bhagwan N. Rekadwad a,b,*, Chandrahasya N. Khojragade b

a National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
b School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India

A R T I C L E I N F O

Article history:
Received 8 March 2017
Received in revised form 2 May 2017
Accepted 21 June 2017
Available online 30 June 2017

Keywords:
Bergey’s manual
Coastal region
Hydrocarbon degrader
Oil spill
Pigment producer
Taxonomic classification of bacteria

A B S T R A C T

Halophilic bacteria were isolated from oil spill samples collected from West-coast of Goa. Bacteria were isolated from oil studded soil, salt marsh and offshore samples (A, A7, CSM, CB and CM) collected along the West coastline in Goa (India) i.e. Arambol beach, Calangute beach, Candolim beach and Colva beach on Zobell Marine agar, R2A agar, Mannitol salt agar and Blood agar at temperature 22 to 24 °C. Isolates showed growth in the presence of hydrocarbons (1% phenanthrene and 2% bitumen). Diverse profiles of pigments were observed on different nutrient medium. Color of pigments produced on agar media recorded as per standard color chart. All isolates showed different growth pattern. Isolate no 11 (GOACSMMS-11) showed three different morphological features/growth patterns in the presence of hydrocarbons. Results obtained yield new information which gives a clear idea about morphological features and pigmented profiles of hydrocarbon resistant morphotypes in the presence different media compositions. The presented datasets will be useful for studies on bacterial species showing high sequence similarity. Hence, generated...
data serves as a benchmark for to distinguish between genetically similar bacteria and for further research in phenotype based microbial diversity, microbial ecology of microorganisms and microbial systematics and taxonomy in addition to genotype data.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Microbiology
Type of data	Table, figure
How data was acquired	Visual, Microscope, Laboratory tests
Data format	Raw, analyzed
Experimental factors	Isolation and pure culture of microorganisms
Experimental features	Hydrocarbon (phenanthrine and bitumen) were used for the studies on morphological features of bacteria
Data source location	NCMR, NCCS, Pune (India)
Data accessibility	Data incorporated within this article

Value of the data

- Data is given in the paper help to describe the morphological features and diversity of bacteria.
- Data presented in this paper acts as key features for determining novelty of species if microorganism showing more genomic similarity i.e. for taxonomic categorization and classification of bacteria.
- Data generated serves as the benchmark for further research in microbial diversity, microbial ecology of microorganisms and microbial systematic and taxonomy.

1. Data

The data described in this paper highlights morphological features of halophilic bacteria (morphotypes). Bacterial species and their pigmented morphotypes were isolated from oil studded soil, salt marsh and offshore samples (A, A7, CSM, CB and CM) collected along the West coastline in Goa (India) i.e. Arambol beach, Calangute beach, Candolim beach and Colva beach on Zobell Marine agar, R2A agar, Mannitol salt agar and Blood agar. Isolated bacterial colonies showing diverse morphological features were chosen for further study. Selected bacteria were sub-cultured and pure cultures are stored in refrigerator at 4 °C on continuous cycle. Isolated halophiles have optimum temperature 22 ± 2 °C. All isolates luxuriant growth in the presence of 20% salt concentration. Morphological features were recorded as per Bergey’s Manual of Systematic Bacteriology and the International Code of Nomenclature of Bacteria (ICNB).
2. Experimental design, materials and methods

2.1. Isolation cultivation of microorganism

Isolation of halophilic bacteria was carried out from samples- A, A7, CSM, CB and CM (approximately 100 g each)- collected from oil studded soil, salt marsh and offshore along West coastline in Goa (India) i.e. Arambol beach, Calangute beach, Candolim beach and Colva beach (Fig. 1). Nineteen bacterial species were isolated on separately spread Zobell Marine agar, R2A agar, Mannitol salt agar and Blood agar with and without 1% phenanthrene in triplicates at temperature 22 °C [1–4]. Selected bacterium was streaked on same media used in former step for obtaining bacterial cultures in pure form. Phenanthrene (1%) was dissolved in acetone (HiMedia, AR grade) while bitumen (2%) was dissolved in chloroform (HiMedia, AR grade). Phenanthrene and bitumen solutions were spread separately on plates in triplicates. Dissolving solvents were allowed evaporate at 40 °C aseptically. All halophilic bacteria were allowed to grow on Zobell Marine agar for confirmation of growth in the presence hydrocarbons- 1% phenanthrene and 2% bitumen- in the separate experiments. Zobell Marine Agar 2216 (M384) and R2A agar (M1743) were used as encrypt medium for cultivation and preservation of microorganisms in later experiments [5–7]. Medium M384 and M1743 were slightly modified and glycerol (4%) for preservation of bacteria at 4 °C. M384 medium was used for studies on morphological features and pigment production ability/tests. These hydrocarbon containing plates were used for isolation and cultivation of microorganisms in later experiments. Selected species were also checked for the production of pigments in Zobell Marine broth. All isolates incubated at 22 °C for 24–96 h. Results were recorded in lab notebook for the experiments (morphological features, biochemical tests, hydrocarbon tolerance/resistance and pigment production ability of isolated bacteria.

2.2. Interpretation of results as per obtained results shown table and figures

Isolates showed growth in the presence of hydrocarbons (1% phenanthrene and 2% bitumen). Diverse profiles of pigments were observed on different medium. Color of pigments produced on agar media recorded as per standard color chart were Antique white, Misty rose, Papaya white, Ghost
white, Gainsboro, Light Golden Rod, Moccasin, Lemon Chiffon, Ivory, Mint cream, White smoke, Light orange, Wheat, Floral white, Old lace, Pink etc. All isolates showed different growth pattern. Isolate no 11 (GOACSMMS-11) showed three different morphological growth patterns on Zobell Marine Agar and R2A medium in the absence and presence of hydrocarbons. Isolate no. 19 showed Pink color on Medium M384 (Table 1; Figs. 2–5).

This phenotypic data will have use in future to distinguish genetically similar bacterial group such as Bacillus and Bacillus-like bacteria for describing novel species and new taxa as per International Code of Nomenclature of Bacteria (ICNB) or Bacteriological Code (BC).

Table 1
Phenotypes of halophiles isolated from samples collected at Arambol beach, Calangute beach, Candolim beach and Colva beach in Goa (India).

Isolate code on plate	Strain designation for correct identity	Strain designation for convenience	Color of pigment produced on Zobell Marine Agar (Medium no. M384)	Color of pigment produced on R2A Agar (Medium no.)	Growth on 1% Phenanthrene containing agar plate	Growth on 2% Bitumen (1 mL) containing agar plate
1 GOAAR2-1 BNR-1	BNR-1	Antique White 1 White 1	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	
2 GOAAR2A-2 BNR-2	Misty Rose 1	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
3 GOAAR2A-3 BNR-3	Papaya whip/Wheat 1 Light Orange	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
4 GOAAMS-4 BNR-4	Pale golden rod/Light golden rod 1	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
5 GOAAMS-5 BNR-5	Ghost White	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
6 GOA7MS-6 BNR-6	Ghost White	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
7 GOAAR2A-7 BNR-7	Floral White	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
8 GOA7R2A-8 BNR-8	Light Golden Rod 1 Wheat	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
9 GOACSMR2A-9 BNR-9	Ghost White	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
10 COACSMMS-10 BNR-10	Ghost White	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
11 GOACSMMS-11 BNR-11	Mint Cream	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
12 GOACBR2A-12 BNR-12	Ivory 2	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
13 GOAAR2A-13 BNR-13	Ivory 2	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
14 GOA7MS-14 BNR-14	Light Golden Rod 1 Old lace	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
15 GOA7R2A-15 BNR-15	Lemon Chiffon 1 White Smoke	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
16 GOACSMMS-16 BNR-16	Ghost White	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
17 GOA7R2A-17 BNR-17	Floral white	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
18 GOA7R2A-18 BNR-18	Wheat 1/Light orange	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
19 GOABTMNBNR-19	Pink	Gainsboro Light Golden Rod/Moccasin	Yes	Yes	Yes	
Fig. 2. Phenotype of halophiles on medium M384 in the presence of 1% phenanthrene.
Fig. 3. Phenotype of halophiles on medium M1743 in the presence of 1% phenanthrene.
Fig. 4. Phenotype of halophiles on medium M384 in presence of 2% Bitumen (1 mL).
Fig. 4. (continued)

Fig. 5. Yellow pigment produced by bacteria in Zobell Marine broth (M384).
Acknowledgements

BNR is thankful to University Grants Commission, New Delhi (India) for the financial support in the form postdoctoral fellowship (Award letter no. PDFSS-2013-14-ST-MAH-4350). BNR is grateful to Dr. Kamlesh Jangid (Scientist C) and Dr. Yogesh S. Shouche (Scientist “G” and Principal Investigator), National Centre for Microbial Resource (formerly Microbial Culture Collection), National Centre for Cell Science (NCCS), Pune (India) for permission and providing all necessary facilities at NCMR, NCCS, Pune (India).

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.06.039.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.06.039.

References

[1] T.J. McGenity, B.D. Folwell, B.A. McKew, G.O. Sanni, Marine crude-oil biodegradation: a central role for interspecies interactions, Aquat. Biosyst. 28 (2012) 10. http://dx.doi.org/10.1186/2046-9063-8-10.

[2] V. Elango, M. Urbano, K.R. Lemelle, J.H. Pardue, Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment, Front. Microbiol. (2014). http://dx.doi.org/10.3389/fmicb.2014.00161.

[3] B.N. Rekadwad, C.N. Khobragade, A case study on effects of oil spills and tar-ball pollution on beaches of Goa (India), Mar. Pollut. Bull. 100 (2015) 567–570. http://dx.doi.org/10.1016/j.marpolbul.2015.08.019.

[4] R. Bargiela, F. Mapelli, D. Rojo, B. Chouaia, J. Tornés, S. Borin, M. Richter, M.V.D. Pozo, S. Cappello, C. Gertler, M. Genovese, R. Denaro, M. Martínez-Martínez, S. Fodelianakis, R.A. Amer, D. Bigazzi, X. Han, J. Chen, T.N. Chernikova, O.V. Golyshina, M. Mahjoubi, A. Jaouani, F. Benzha, M. Magagnini, E. Hussein, F. Al-Horani, A. Cherif, M. Blaghen, Y.R. Abdel-Fattah, N. Kalogerakis, C. Barbas, H.I. Malkawi, P.N. Golyshin, M.M. Yakimov, D. Daffonchio, M. Ferrer, Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature, Sci. Rep. 5 (2015) 11651. http://dx.doi.org/10.1038/srep11651.

[5] B.N. Rekadwad, C.N. Khobragade, Microbial diversity of oil spills and tar resistant bacteria isolated from beaches of Goa (India), Sci. J. Microbiol. 5 (2016) 75–80. http://dx.doi.org/10.14196/sjm.v5i1.2096.

[6] B.N. Rekadwad, A.P. Pathak, First report on revelatory prokaryotic diversity of Unkeshwar hot spring (India) having biotechnological potential, Indian J Biotechnol. 15 (2016) 195–200.

[7] B.N. Rekadwad, C.N. Khobragade, Is the increase in oil pollution a possibility of the presence of diverse microorganisms? An experimental dataset on oil prevalent areas of Goa, India, Data Brief 9 (2016) 8–12. http://dx.doi.org/10.1016/j.dib.2016.07.0483/8/2017;5/2/2017;6/21/2017.