Whole Genome Sequencing Reveals a Chromosome 9p Deletion Causing DOCK8 Deficiency in an Adult Diagnosed with Hyper IgE Syndrome Who Developed Progressive Multifocal Leukoencephalopathy

Day-Williams, Aaron G; Sun, Chao; Jelcic, Ilijas; McLaughlin, Helen; Harris, Tim; Martin, Roland; Carulli, John P

Abstract: PURPOSE A 30 year-old man with a history of recurrent skin infections as well as elevated serum IgE and eosinophils developed neurological symptoms and had T2-hyperintense lesions observed in cerebral MRI. The immune symptoms were attributed to Hyper IgE syndrome (HIES) and the neurological symptoms with presence of JC virus in cerebrospinal fluid were diagnosed as Progressive Multifocal Leukoencephalopathy (PML). The patient was negative for STAT3 mutations. To determine if other mutations explain HIES and/or PML in this subject, his DNA was analyzed by whole genome sequencing. METHODS Whole genome sequencing was completed to 30X coverage, and whole genome SNP typing was used to complement these data. The methods revealed single nucleotide variants, structural variants, and copy number variants across the genome. Genome-wide data were analyzed for homozygous or compound heterozygous null mutations for all protein coding genes. Mutations were confirmed by PCR and/or Sanger sequencing. RESULTS Whole genome analysis revealed deletions near the telomere of both copies of chromosome 9p. Several genes, including DOCK8, were impacted by the deletions but it was unclear whether each chromosome had identical or distinct deletions. PCR across the impacted region combined with Sanger sequencing of selected fragments confirmed a homozygous deletion from position 10,211 to 586,751. CONCLUSION While several genes are impacted by the deletion, DOCK8 deficiency is the most probable cause of HIES in this patient. DOCK8 deficiency may have also predisposed the patient to develop PML.

DOI: https://doi.org/10.1007/s10875-014-0114-4
Dear Author

Here are the proofs of your article.

- You can submit your corrections online, via e-mail or by fax.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and email the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the journal title, article number, and your name when sending your response via e-mail or fax.
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- Check the questions that may have arisen during copy editing and insert your answers/corrections.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style.
- Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections within 48 hours, we will send you a reminder.
- Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
- The printed version will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL:

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information, go to:
http://www.link.springer.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us, if you would like to have these documents returned.
Metadata of the article that will be visualized in OnlineFirst

1	**Article Title**	Whole Genome Sequencing Reveals a Chromosome 9p Deletion Causing DOCK8 Deficiency in an Adult Diagnosed with Hyper IgE Syndrome Who Developed Progressive Multifocal Leukoencephalopathy						
2	**Article Sub-Title**							
3	**Article Copyright - Year**	The Author(s) 2014						
		(This will be the copyright line in the final PDF)						
4	**Journal Name**	Journal of Clinical Immunology						
5	**Family Name**	Carulli						
6	**Particle**							
7	**Given Name**	John P.						
8	**Suffix**							
9	**Organization**	Translational Sciences and Technology, Biogen Idec						
10	**Division**							
11	**Address**	Cambridge, MA, USA						
12	**e-mail**	john.carulli@biogenidec.com						
13	**Family Name**	Day-Williams						
14	**Particle**							
15	**Given Name**	Aaron						
16	**Suffix**							
17	**Organization**	Translational Sciences and Technology, Biogen Idec						
18	**Division**							
19	**Address**	Cambridge, MA, USA						
20	**e-mail**							
21	**Family Name**	Sun						
22	**Particle**							
23	**Given Name**	Chao						
24	**Suffix**							
25	**Organization**	Translational Sciences and Technology, Biogen Idec						
26	**Division**							
27	**Address**	Cambridge, MA, USA						
Author	Family Name	Particle	Given Name	Suffix	Organization	Division	Address	e-mail
--------	-------------	----------	------------	--------	--------------	----------	---------	--------
Jelcic		Ilijas			University Hospital Zurich	Department of Neurology	Frauenklinikstrasse 26, Zurich, Switzerland	
McLaughlin		Helen			Translational Sciences and Technology, Biogen Idec		Cambridge, MA, USA	
Harris		Tim			Translational Sciences and Technology, Biogen Idec		Cambridge, MA, USA	
Martin		Roland			University Hospital Zurich	Department of Neurology	Frauenklinikstrasse 26, Zurich, Switzerland	

Schedule

- Received: 19 June 2014
- Revised:
- Accepted: 23 October 2014
Abstract

Hyper IgE Syndrome - Dock8 deficiency - primary immune deficiency - Progressive Multifocal Leukoencephalopathy (PML) - JC virus

Keywords separated by ' - '

Foot note information

Aaron Day-Williams, Chao Sun and Ilijas Jelcic have contributed equally to this paper.

The online version of this article (doi:10.1007/s10875-014-0114-4) contains supplementary material, which is available to authorized users.

Electronic supplementary material

ESM 1
(DOCX 17 kb)

ESM 2
(DOCX 14 kb)

ESM 3
(XLSX 11 kb)

ESM 4
(XLSX 23 kb)
Whole Genome Sequencing Reveals a Chromosome 9p Deletion Causing DOCK8 Deficiency in an Adult Diagnosed with Hyper IgE Syndrome Who Developed Progressive Multifocal Leukoencephalopathy

Aaron Day-Williams · Chao Sun · Ilijas Jelcic · Helen McLaughlin · Tim Harris · Roland Martin · John P. Carulli

Received: 19 June 2014 / Accepted: 23 October 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract
Purpose A 30 year-old man with a history of recurrent skin infections as well as elevated serum IgE and eosinophils developed neurological symptoms and had T2-hyperintense lesions observed in cerebral MRI. The immune symptoms were attributed to Hyper IgE syndrome (HIES) and the neurological symptoms with presence of JC virus in cerebrospinal fluid were diagnosed as Progressive Multifocal Leukoencephalopathy (PML). The patient was negative for STAT3 mutations. To determine if other mutations explain HIES and/or PML in this subject, his DNA was analyzed by whole genome sequencing.

Methods Whole genome sequencing was completed to 30X coverage, and whole genome SNP typing was used to complement these data. The methods revealed single nucleotide variants, structural variants, and copy number variants across the genome. Genome-wide data were analyzed for homozygous or compound heterozygous null mutations for all protein coding genes. Mutations were confirmed by PCR and/or Sanger sequencing.

Results Whole genome analysis revealed deletions near the telomere of both copies of chromosome 9p. Several genes, including DOCK8, were impacted by the deletions but it was unclear whether each chromosome had identical or distinct deletions. PCR across the impacted region combined with Sanger sequencing of selected fragments confirmed a homozygous deletion from position 10,211 to 586,751.

Conclusion While several genes are impacted by the deletion, DOCK8 deficiency is the most probable cause of HIES in this patient. DOCK8 deficiency may have also predisposed the patient to develop PML.

Keywords HyperIgE Syndrome · Dock8 deficiency · primary immune deficiency · Progressive Multifocal Leukoencephalopathy (PML) · JC virus

The hyper IgE syndromes (HIES) are rare primary immunodeficiencies characterized by elevated serum IgE, dermatitis and recurrent skin and lung infections [1, 2]. There are two forms of HIES that are characterized based on their inheritance patterns: autosomal-dominant HIES (AD-HIES) and autosomal-recessive HIES (AR-HIES). AD-HIES is caused by dominant mutations in STAT3 and is characterized in addition to the symptoms noted above by extra-immune manifestations including skeletal, connective tissue and vascular abnormalities [1, 2]. AR-HIES is caused by homozygous or compound heterozygous mutations in DOCK8, TYK2 or STK3, and these patients do not possess any of the extra-immune manifestations found in AD-HIES [3–6]. The major manifestations of DOCK8 deficiency leading to AR-HIES are recurrent viral and bacterial infections starting early in life, extreme eosinophilia, and elevated IgE levels. The causes of DOCK8 deficiency thus far described range from point mutations to large deletions involving this gene.
mutations and small indels to large deletions of portions of
DOCK8 preventing expression of the protein [3–6]. This
report adds to the growing body of knowledge about
DOCK8-deficient AR-HIES and discovers the largest pub-
lished deletion in the region around DOCK8. In addition, we
add to the literature showing the occurrence of Progressive
Multifocal Leukoencephalopathy in DOCK8 deficient
individuals.

A 30 year old, male, Caucasian patient suffering from
eczematoid dermatitis developed impetiginization of the skin
with Klebsiella pneumonia and group A β-hemolytic strepto-
coccus species in July 2008. The patient was diagnosed with
HIES based on elevated serum IgE (26,800 kU/L) and elevat-
ed eosinophils (1.6×10⁹ /L). The patient had atopic dermatitis
that was treated with topical corticosteroids and recurrent
herpesviral skin infections from the age of 6 years. There were
no reports of any other immunosuppressive agents. The pa-
tient history revealed that his parents were first cousins, how-
ever, no immunological diseases, opportunistic infection or
childhood diseases were reported in the parent’s siblings or
their children. In September, 2008 the patient developed a left-
sided sensory hemisyndrome, which progressed to a spastic-
atactic hemiparesis within a few weeks. A cerebral MRI
showed a large confluent T2-hyperintense lesion in the frontal
parietal central region of the right cerebral hemisphere, a small
T2-hyperintense lesion in the right temporal cortex, and small
T2-hyperintense lesions in the right cerebellar hemisphere. In
October, 2008 the cerebrospinal fluid (CSF) of the patient was
positive for JC polyoma virus DNA (500 copies/mL) leading
to the diagnosis of Progressive Multifocal Leukoencephalopathy (PML). Peripheral blood analysis showed repeatedly highly increased numbers of IgE
(12,166–26,800 kU/l) and eosinophils (3,066–6,068/ul) and
decreased levels of lymphocytes (296–770/ul), CD3+ T cells
(130–265/ul), CD4+ T cells (71–169/ul), CD8+ T cells (29–
109/ul), CD19+ B cells (173–262/ul) and NK cells (10–81/ul)
(Table S1). After stimulation of lymphocytes with phyto-
agglutinin, CD3+ T cells responded adequately as shown by
intracellular production of interferon-γ (24 % of cells),
tumor necrosis factor-α (11.2 %).

A screen for STAT3 mutations in April, 2009 was negative.
The family history of first cousin parents and the absence of
STAT3 mutations lead to the refined diagnosis of AR-HIES of
unknown etiology. In August 2009, antiepileptic treatment
with 3,000 mg levetiracetam and 100 mg pregabaline daily
was started because of focal sensory epileptic seizures in the
left hemibody. MRI follow-up showed a reduced size of the
T2-lesion within the right cerebral central region, but CSF
JCV DNA copy number had increased tenfold (5,200 JCV
genomic copies/mL). Until December 2010, neurological def-
icits had progressed only mildly, but MRI showed dissemina-
tion and enlargement of the PML lesions in the left thalamic
region, left hemisphere, pons, and the right cerebellar
pedunculus. The patient’s DNA was sent for whole-genome

Fig. 1 Deletion of DOCK8 in a
patient with HIES and PML. A.
Telomeric region of chromosome
9p showing the deleted region and
the impacted genes. B. Hypothetical ploidy observed in
whole genome sequence. Note
apparent single copy coverage
near the telomere, then nearly
500 kb with no coverage, and
then diploid coverage starting at
approximately 586,000 bases.
The letters a,b,c and d show the
approximate location of PCR
primers used to confirm the nature
of the deletion. C. Results of PCR
using the primers shown in 1B.
Gel a: lanes 1,2, and 4 are
controls, lane 3 is the HIES
subject. Gels b, c and d: lane 1 is
the HIES subject, lanes 2 and 3
are control subject, lane 4 is a no
template control. Primer sets a, b,
and c produce bands from the
controls but not from the HIES
subject, and primer set d only
produces a band from the HIES
subject.
SNP analysis and sequencing in April, 2012. After this the patient was not available for follow-up of the disease course. The patient’s DNA was whole genome sequenced (WGS) by Complete Genomics Incorporated (CGI; software version 2.0) \[7, 8\] and was analyzed on the Illumina Omni 1 quad genome-wide SNP array. The WGS approach used short (31–35 base) sequence reads at >30X coverage mapped to the reference genome using methods previously described \[7\] to identify single nucleotide, copy number, and structural variants. Relative to the reference genome, the sequence of this individual included 19435 missense variants, 178 nonsense variants, 470 frameshift variants, and >100 copy number and structural variants. Single nucleotide variants (SNVs) were analyzed using the ENSEMBL Variant Effect Predictor v2.8 \[9\] on the ENSEMBL v70 database, and variant effects on the annotated canonical transcripts for all genes were assessed via PolyPhen2 \[10\] and SIFT \[11\]. A variant was considered possibly damaging if it was determined to be either ‘probably damaging’ or ‘possibly damaging’ by PolyPhen2 or ‘deleterious’ by SIFT. We examined known genes associated with immune deficiency, including the HIES genes STAT3, TYK2, STK3 and DOCK8, and observed no damaging mutations in STAT3 or STK3, heterozygosity for a possibly damaging missense variant in TYK2 (rs147991080, R448W, MAF <0.01 (http://browser.1000genomes.org/); Table S2), and large deletions on both copies of chromosome 9p in the region that includes DOCK8. The SNP array data also suggested a large deletion on chromosome 9p, with mostly non-called SNPs from approximately 194,000 to 600,000 bases (Table S3). Given the heterozygosity and ambiguous function of the TYK2 variant and the obvious deletions around DOCK8, it is clear that the DOCK8 mutation(s) contribute to the patient’s disease.

The WGS and SNP data were not clear on the exact deletion breakpoints or whether the patient was homozygous for the same deletion or had inherited two different deletions.

Table 1

Gene Symbol	GO biological process	GO function	OMIM phenotypes (MIM number)
DDX11L5	None	None	None
WASH1	GO:0006810:transport	GO:0003779:actin binding	None
	GO:0016197:endosomal transport	GO:0005515:protein binding	None
	GO:0034314:Arp2/3 complex-mediated actin nucleation	GO:0031625:ubiquitin protein ligase binding	None
	GO:0042147:retrograde transport, endosome to Golgi transport	GO:0043014:alpha-tubulin binding	None
FAM138C	None	None	None
FOXD4	GO:0006351:transcription, DNA-templated	GO:0003700:sequence-specific DNA binding transcription factor activity	None
	GO:0006355:regulation of transcription, DNA-templated	GO:0008301:DNA binding, binding	None
	GO:0043565:sequence-specific DNA binding	GO:0043565:sequence-specific DNA binding	None
CBWD1	None	GO:0000166:nucleotide binding	None
	GO:000524:ATP binding	None	None
C9orf166	None	None	None
Dock8	GO:0001771:immunological synapse formation	GO:0005085:guanyl-nucleotide exchange factor activity	Hyperimmunoglobulin E recurrent infection syndrome, autosomal recessive (243700)
	GO:0007264:small GTPase mediated signal transduction	GO:0005515:protein binding	Mental retardation, autosomal dominant 2 (614113)
	GO:0007596:blood coagulation	GO:00061485:memory T cell proliferation	None
	GO:003633:dedritic cell migration	GO:00070233:negative regulation of T cell apoptotic process	None
KANK1	None	None	Cerebral palsy, spastic quadriplegic, 2 (612900)
The WGS CNV analysis estimated that the patient was homozygous null for DOCK8 and some of KANK1, but could be hemizygous towards the telomere encompassing CBWD1, FOXD4, FAM138C, WASH1, and DDX11L5 (Fig. 1 panels A,B), and was consistent with the hypothesis that the patient had some DNA telomeric to DOCK8. The WGS analysis of the p-arm from the telomere to the DOCK8 locus is complicated by a segmental duplication that results in extremely high sequence similarity to Chromosome 2 [12, 13] and ambiguous sequence assembly. To resolve the breakpoints for the individual’s deletion(s) we designed targeted PCR around SNPs rs12353065, rs7853676 and rs11794423 which the WGS SNP analysis called high confidence SNPs, the WGS CNV analysis estimated to be hemizygous, and PCR primers unique to chromosome 9 could be designed (Fig. 1 panels B,C). Figure 1 panel C shows that the PCR with primers for the 3 SNPs (gels a, b and c) are all negative illustrating that the patient is in fact homozygous null from around the telomere into KANK1. To resolve the exact breakpoints we designed PCR primers close to the telomere and in KANK1 (PCR pair d Fig. 1 panel B,C).

Upon the successful amplification of this fragment we cloned the DNA and Sanger sequenced the fragment. We performed a global gapped alignment with the Needleman-Wunsch algorithm of the resulting DNA fragment to chromosome 9 from bases 1-700,000 (NC_000009.11) and it revealed the alignment in Supplementary Figure 1. The alignment shows a massive homozygous deletion from position 10,211 to 586,751 that makes the patient homozygous null for the genes WASH1, FAM138C, FOXD4, CBWD1, C9orf66, DOCK8 and most of KANK1.

DOCK8 deficiency is the most likely cause of HIES in this subject, and may have predisposed him to the development of PML. Among the genes in the deletion interval none of the other genes are so obviously connected to the phenotype (Table 1), and elsewhere in the genome there are no mutations consistent with known inheritance patterns for HIES. Notably, this is not the first case report of PML in DOCK8 deficiency [14]. PML has been observed in a limited subset of PID’s that includes DOCK8 deficiency, Wiskott-Aldrich Syndrome, STAT1 gain of function mutations and CD40L deficiency [15–20]. This observation highlights a new pathway by which the ubiquitous JC virus causes PML in a small fraction of individuals and further demonstrates the utility of whole genome sequencing for diagnosing diseases of unknown etiology. DOCK8 deficiency can be treated by bone marrow transplantation [21–23], and the possibility of PML in these individuals is a reason to consider early and accurate diagnosis of suspect cases by genetic analysis and treatment by transplantation.

Acknowledgments The authors would like to thank the patient and his family for participation in the study. We thank Susan Goelz, Tatiana Plavina, and Gabrielle Glick for intellectual input and operational support. This study was approved by the appropriate ethics committee and has been performed in accordance with the 1964 Declaration of Helsinki and its later amendments.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Freeman AF, Holland SM. The hyper-IgE syndromes. Immunol Allergy Clin N Am. 2008;28(2):277–91.
2. Freeman AF, Holland SM. Clinical manifestations of hyper IgE syndromes. Dis Markers. 2010;29(3–4):123–30.
3. Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, et al. Large deletions and point mutations involving the dicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124(6):1289–302 e4.
4. Sanal O, Jing H, Ozgur T, Ayvaz D, Strauss-Albee DM, Ersoy-Evans S, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol. 2012;32(4):698–708.
5. Su HC. Dicator of cytokinesis 8 (DOCK8) deficiency. Curr Opin Allergy Clin Immunol. 2010;10(6):515–20.
6. Zhang Q, Davis IC, Lambott IH, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046–55.
7. Carnevali P, Baccash J, Halpern AL, Nazarenko I, Nilsen GB, Pant KP, et al. Computational techniques for human genome resequencing using mated gapped reads. J Comput Biol J Comput Mol Cell Biol. 2012;19(3):279–92.
8. Drmanac R, Sparks AB, Callow AL, Halpern AL, Burns NL, Kermani BG, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327(5961):78–81.
9. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2012;19(3):279–92.
10. Fan Y, Newman T, Linaropoulou E, Trask BJ. Gene content and function of the ancestral chromosome fusion site in human chromosome 2q. Nature. 2002;415(6871):209–13.
11. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.
12. Yang N, Newman T, Linaropoulou E, Trask BJ. Gene content and function of the ancestral chromosome fusion site in human chromosome 2q13-2q14.1 and paralogous regions. Genome Res. 2002;12(11):1663–72.
13. Wong A, Vallender EJ, Heretis K, Ilkin Y, Lahn BT, Martin CL, et al. Diverse fates of paralogs following segmental duplication of telomeric genes. Genomics. 2004;84(2):239–47.
14. Delepine RM, Engelhardt K, Pfeifer D, Beilis L, Raimondi M, Pavesi P, et al., editor. Hyper IgE syndrome: fatal progressive multifocal leukoencephalopathy in an Italian child with DOCK8 mutation. Meeting of the European Society for Immunodeficiencies; 2010; Istanbul.
15. Aschermann Z, Gomori E, Kovacs GG, Pal E, Simon G, Komoly S, et al. X-linked hyper-IgM syndrome associated with a rapid course of multifocal leukoencephalopathy. Arch Neurol. 2007;64(2):273–6.
16. Durandy A, Kracker S, Fischer A. Primary antibody deficiencies. Nat Rev Immunol. 2013;13(7):519–33.
17. Katz DA, Berger JR, Hamilton B, Major EO, Post MJ. Progressive multifocal leukoencephalopathy complicating Wiskott-Aldrich syndrome. Report of a case and review of the literature of progressive multifocal leukoencephalopathy with other inherited immunodeficiency states. Arch Neurol. 1994;51(4):422–6.

18. McGhee SA, Chatila TA. DOCK8 immune deficiency as a model for primary cytoskeletal dysfunction. Dis Markers. 2010;29(3–4):151–6.

19. Randall KL, Lambe T, Johnson AL, Treanor B, Kucharska E, Domaschenz H, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol. 2009;10(12):1283–91.

20. Sampaio EP, Hsu AP, Pechacek J, Bax HI, Dias DL, Paulson ML, et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidiodomycosis and histoplasmosis. J Allergy Clin Immunol. 2013;131(6):1624–34.

21. McDonald DR, Massaad MJ, Johnston A, Keles S, Chatila T, Geha RS, et al. Successful engraftment of donor marrow after allogeneic hematopoietic cell transplantation in autosomal-recessive hyper-IgE syndrome caused by dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2010;126(6):1304–5 e3.

22. Metin A, Tavil B, Azik F, Azkur D, Ok-Bozkaya I, Kocabas C, et al. Successful bone marrow transplantation for DOCK8 deficient hyper IgE syndrome. Pediatr Transplant. 2012;16(4):398–9.

23. Barlogis V, Galambrun C, Chambost H, Lamoureux-Toth S, Petit P, Stephan JL, et al. Successful allogeneic hematopoietic stem cell transplantation for DOCK8 deficiency. J Allergy Clin Immunol. 2011;128(2):420–22 e2.

24. Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics. 2009;25(22):3045–6.

25. Dimmer EC, Huntley RP, Alam-Faruque Y, Sawford T, O’Donovan C, Martin MJ, et al. The UniProt-GO Annotation database in 2011. Nucleic Acids Res. 2012;40(Database issue):D565–70.
AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES.

Q1. Please check the captured set of Keywords if appropriate.
Q2. Please check if the article note is presented correctly.