Endometrial cancer is the commonest invasive gynecologic cancer in women in the United States, with nearly 40,000 new cases diagnosed each year (American Cancer Society, 2007). Birthweight and intrauterine exposures have been related to the risk of breast cancer (Michels and Xue, 2006), childhood leukaemia (McLaughlin et al, 2006) and testicular cancer (Michos et al, 2007). However, data are limited regarding the potential influence of early life exposures on endometrial cancer risk. Potential mechanisms for an association between high birthweight and increased breast cancer risk include exposure to elevated maternal pregnancy oestrogen levels (Petridou et al, 1990; Ekbom et al, 1992), and insulin-like growth factor-I levels (Yang and Yu, 2000; Ostlund et al, 2002), both of which also affect the development of endometrial cancer (Ayabe et al, 1997; Adami et al, 2002). Prenatal nutrition may regulate body size later in life by altering the number of adipocytes (Sayer and Cooper, 2005), reprogram metabolism or influence leptin resistance (Phillips et al, 1999; Breier et al, 2001). As obesity is an established risk factor of endometrial cancer for premenopausal and postmenopausal women (Adami et al, 2002), birthweight as a marker of prenatal nutrition may plausibly influence its development.

Using data from 28 years of follow-up of 71,751 women participating in the Nurses’ Health Study (NHS), we examined the association between birthweight and incidence of endometrial cancer later in life.

MATERIAL AND METHODS

The NHS was established in 1976, when 121,700 married registered nurses age 30–55 years replied to a baseline questionnaire and received questionnaires biennially by mail to update information on demographic, anthropometric, and life style factors, and on newly diagnosed disease. For the current analysis, we excluded women with missing birthweight data, prevalent cases of endometrial or other cancers, and women with hysterectomy at baseline. During follow-up, women were censored if they reported recently diagnosed in situ or invasive endometrial cancer, had a hysterectomy, died or were lost to follow-up.

In 1992, we asked participants to report their own birthweight with the following options: $<2.500, 2500–<3182, 3182–<3863, 3863–<4545, 4545g$. On each biennial questionnaire, participants were asked whether they had been newly diagnosed with endometrial or other cancers, and women with hysterectomy at baseline, as well as women with missing birthweight data, prevalent cases of endometrial cancer, had a hysterectomy, died or were lost to follow-up. For endometrial cancers reported by women or their next of kin for those who had died, permission was requested to review the relevant medical records. Study physicians reviewed all medical records and pathological reports to confirm their diagnosis. Cases included in this study were invasive epithelial endometrial cancers with stage greater than IA in the FIGO staging system.

At baseline and during follow-up, we inquired about a variety of personal characteristics including reproductive and life style factors, many being risk factors for endometrial cancer. Information on age, age at menarche, age at first birth and pregnancy height was obtained at baseline in 1976. Other early life exposures including premature birth (2+ weeks premature) and duration of having been breast-fed were assessed in 1992, and birth order was queried in 2004. Weight at age 18 was assessed in 1980. Somatotype at age 5 and 10 was assessed in 1988 by asking participants to choose from nine diagrams that best depicted their figure outline at each age. Maternal vital status and family history of endometrial cancer was asked in 1996. Other covariates were inquired and updated during follow-up.
Birthweight and endometrial cancer
F Xue et al

The association between birthweight and incidence of endometrial cancer was analysed using a Cox proportional hazards model. Three covariate-adjusted models were pursued. In the first model (model I), we adjusted only for family history of endometrial cancer and other early life exposures including birth order, duration of being breast-fed and premature birth, in addition to age. In the second (model II), we also included other established or potential risk factors for endometrial cancer. In the third (model III), we additionally adjusted for anthropomorphic factors, including somatotype at ages 5 and 10, BMI at age 18, and current BMI. Though covariate-adjusted models II and III have better goodness of fit due to additional adjustment for potential risk factors of endometrial cancer, these factors are subsequent to birthweight and could conceivably mediate the effect of birthweight on endometrial cancer risk. Therefore, adjusted model I would be the preferred model to estimate the overall effect of birthweight.

As birthweight was not assessed until 1992, we conducted a sensitivity analysis restricting follow-up to 1992–2004 and compared the results with the primary analysis using the entire follow-up. We also evaluated potential effect modification by menopausal status, anthropometric factors, and other early-life exposures.

RESULTS

During 1678,702 person-years of follow-up among 71,751 women, 676 cases of incident endometrial cancer were confirmed. Based on the eligible person-years, the follow-up rate for the entire cohort in

Table 1
Age-standardised distribution of demographic characteristics among 71,751 women according to birthweight throughout follow-up 1976–2004 (N = 1,678,702 person-years)

Birthweight (g)	<2500	2500–3182	3182–3863	≥3863
Demographic characteristics				
Family history of endometrial cancer (%)	3.4	2.9	3.0	3.7
Premature birth (%)	35.6	2.9	2.0	0.7
First born (%)	40.6	39.2	37.9	29.1
Breast fed (%)	42.4	52.0	57.0	62.3
Age at menarche (mean) (years)	12.4	12.4	12.4	12.5
BMI at age 18 (Mean) (kg m⁻²)	21.1	21.0	21.5	21.9
Height (Mean) (cm)	162	163	165	166
Nulliparous (%)	7.0	6.9	6.4	7.5
Mean number of children among parous women	3.2	3.2	3.2	3.2
Prenumopausal (%)	35.3	35.9	36.2	35.7
Ever smoked (%)	54.3	54.8	56.1	58.4
Current BMI (Mean) (kg m⁻²)	25.3	25.0	25.5	25.8

Table 2
Hazard ratio of endometrial cancer by birthweight among 71,751 participants of the Nurses’ Health Study during follow-up from 1976–2004 and from 1992–2004

Birthweight (g)	Person-years	No. of cases	Age-adjusted	Covariate –adjusted I*	Covariate –adjusted II*	Covariate –adjusted III*
Follow-up 1976–2004						
≥3863	221515	84	1.0	1.0	1.0	1.0
3182–<3863	750698	307	1.14 (0.89–1.46)	1.15 (0.90–1.47)	1.14 (0.89–1.47)	1.18 (0.92–1.51)
2500–3182	521674	208	1.10 (0.85–1.42)	1.10 (0.84–1.42)	1.08 (0.83–1.41)	1.15 (0.88–1.50)
<2500	184185	77	1.14 (0.83–1.57)	1.12 (0.79–1.57)	1.09 (0.77–1.54)	1.13 (0.79–1.60)
P for trend					0.48	0.87
Follow-up 1992–2004						
≥3863	70871	54	1.0	1.0	1.0	1.0
3182–<3863	245954	207	1.16 (0.85–1.56)	1.16 (0.86–1.58)	1.16 (0.86–1.58)	1.19 (0.87–1.61)
2500–3182	171030	123	0.99 (0.72–1.37)	1.00 (0.72–1.38)	0.98 (0.71–1.36)	1.03 (0.74–1.43)
<2500	60391	52	1.16 (0.79–1.71)	1.19 (0.79–1.81)	1.17 (0.77–1.78)	1.19 (0.78–1.82)
P for trend				0.91	0.87	0.96

*HR (95% CI) were adjusted for age (continuous), premature birth (yes, no), birth order (first, second, third, fourth or above), duration of being breast fed in infancy (no, ≤3, 4–8, ≥9 months), and family history of endometrial cancer (yes, no). "HR and 95% CI were adjusted for age (continuous), premature birth (yes, no), birth order (first, second, third, fourth or above), duration of being breast fed in infancy (no, ≤3, 4–8, ≥9 months), and BMI at age 18 (Mean) (kg m⁻²), at age 5 and at 10 (ranked from 1–9).
our study from 1976 to 2004 was 88%. Women with higher birthweight were less likely to have been prematurely delivered and to be the first born of their mother, were more likely breastfed, more likely to have ever smoked, and were slightly taller, than women with lower birthweight (Table 1).

Birthweight was not associated with endometrial cancer (HR (95% CI) = 1.14 (0.83 – 1.57), 1.10 (0.85 – 1.42), 1.14 (0.89, 1.46) for a birthweight of < 2500, 2500 – < 3182, 3182 – < 3863 g, respectively, as compared to ≥ 3863 g, P for trend = 0.52) in the age-adjusted analysis (Table 2). Results did not differ substantially after adjusting for other potential confounders (covariate-adjusted models I – III) (Table 2). When restricting the analysis to follow-up from 1992 to 2004, the effect estimates did not change substantially from the primary analysis (Table 2). A test for interaction also did not suggest significant heterogeneity with regard to period of follow-up (1976–1992 vs 1992–2004) (P = 0.80).

The association between birthweight and endometrial cancer did not vary significantly by menopausal status (P = 0.41); however, statistical power was limited for premenopausal cases (Table 3). It also did not vary by somatotype at age five, somatotype at age 10, BMI at age 18, or current BMI (all P for interaction ≥ 0.32).

DISCUSSION

In two previous prospective cohort studies, both from Sweden, the risk of endometrial cancer has been investigated in relation to birthweight. Based on 112 cases, the incidence of endometrial cancer risk of endometrial cancer has been investigated in relation to birthweight. Based on 112 cases, the incidence of endometrial cancer (HR 0.65 (95% CI 0.34 – 1.24) comparing the incidence in women with birthweight < 2500 g to that in women > 3000 g) (Lof et al, 2007). With more than triple the cases of all previous studies combined, results from the current study do not suggest an association.

Endometrial cancer involves cancerous growth of the endometrium. Unlike breast epithelium, in which terminal differentiation occurs largely during the first full-term pregnancy, the endometrial lining undergoes repeated division and differentiation throughout the reproductive life of a woman. Though birthweight has been related to a higher intrauterine exposure to oestrogen (Petridou et al, 1990) and IGF-I (Yang and Yu, 2000), the relation of birthweight to the profile of endogenous hormone later in life is less clear. In one study, birthweight was not associated with overall premenopausal sex hormone levels, but was inversely associated with luteal estrone and estrene sulphate (Tоворог et al, 2006).

Similarly, birthweight was found to be only weakly associated with serum IGF-I levels in adulthood (Schernhammer et al, 2007).

The statistical power of this study would allow us to detect a modest association, if it exists. Many risk factors for endometrial cancer and other early life exposures were assessed and accounted for in the analysis. Though birthweight was queried 16 years after the start of follow-up, when compared with the analysis restricted to prospective follow-up, results including the entire follow-up of 28 years did not differ appreciably. We have previously compared self-reported birthweight with data derived from birth certificates and found self-reported birthweight to be highly reliable (r = 0.74) (Troy et al, 1996).

Current research suggests that women can decrease their risk of endometrial cancer mainly through maintaining normal weight, modifying lifestyle, and optimal use of oral contraceptives and postmenopausal hormones (Adami et al, 2002). However, a large number of new cases of endometrial cancer, especially among younger women cannot be accounted for by known risk factors. Clarification of any association between early life exposures and endometrial cancer risk awaits further investigation.

Birthweight (g)	Person-years	No. of cases	Age-adjusted	Covariate – adjusted I	Covariate – adjusted II	Covariate – adjusted III
≥ 3863	72535	14	1.0	1.0	1.0	1.0
3182– < 3863	280538	43	0.77 (0.41 – 1.44)	0.79 (0.42 – 1.48)	0.90 (0.46 – 1.78)	0.95 (0.47–1.91)
2500– < 3182	194984	31	0.85 (0.44 – 1.63)	0.79 (0.41 – 1.54)	0.87 (0.43 – 1.76)	0.95 (0.46–1.97)
< 2500	67533	8	0.59 (0.24 – 1.42)	0.45 (0.17 – 1.19)	0.40 (0.14 – 1.15)	0.43 (0.14–1.28)
P for trend			0.37	0.18	0.17	0.27

Birthweight (g)	Person-years	No. of cases	Age-adjusted	Covariate – adjusted I	Covariate – adjusted II	Covariate – adjusted III
≥ 3863	310992	70	1.0	1.0	1.0	1.0
3182– < 3863	409653	264	1.21 (0.93 – 1.58)	1.21 (0.93 – 1.58)	1.20 (0.92–1.57)	1.23 (0.94–1.61)
2500– < 3182	284140	170	1.12 (0.85 – 1.48)	1.12 (0.85 – 1.49)	1.10 (0.83–1.46)	1.17 (0.87–1.56)
< 2500	102233	67	1.21 (0.86 – 1.69)	1.21 (0.84 – 1.74)	1.19 (0.82–1.72)	1.22 (0.84–1.77)
P for trend			0.46	0.48	0.58	0.38

*hazard ratio (HR) and 95% confidence interval (CI) were adjusted for age (continuous), premature birth (yes, no), birth order (first, second, third, fourth or above), duration of being breast fed in infancy (no, ≤ 3, 4 – 8, ≥ 9 months), and family history of endometrial cancer (yes, no). †HR and 95% CI were adjusted for age (continuous), premature birth (yes, no), birth order (first, second, third, fourth or above), duration of being breast fed in infancy (no, ≤ 3, 4 – 8, ≥ 9 months), and family history of endometrial cancer (yes, no), age at menarche (≤ 10, 11, 12, 13, 14, 15+ years), current and past contraceptive use (never, past <5 years, past ≥5 years, current <5 years, current ≥5 years), parity (1,2,3,4+), age at first birth (≤ 24, 25 – 30, 30+ years), age at last birth (≤ 24, 25 – 29, 30 – 34, 35 – 40, ≥ 40 years), physical activity (≤ 3, 3 – 8, 9 – 17, 18 – 26, 27– 41, 42+ mets per week), cigarette smoking (never, 1 – 20, 21 – 40, 41+ pack-years), tamoxifen use (never, past and <5 years, past and ≥5 years, current and <5 years, current and ≥5 years), alcohol consumption (no, < 10, 11, 12, 13, 14, 15+ g/day, current and past consumption use (never, past <5 years, past ≥5 years, current <5 years, current ≥5 years), BMI (continuous in kg/m²), BMI at age 18 (continuous in kg/m²), and somatotype at age 5 and age 10 (ranked from 1 – 9). Age at menopause (≤ 50, 50 – 52, 53+ years), and postmenopausal hormone use (never, past and <5 years, past and ≥5 years, current and <5 years, current and ≥5 years) were additionally adjusted for in the analysis of postmenopausal endometrial cancer.
ACKNOWLEDGEMENTS

The Nurses’ Health Study is supported by Grant CA87969 from the National Cancer Institute, National Institutes of Health. The current project was funded by Department of Defense Grant W81XWH-05-2-0005.

REFERENCES

Adami H, Hunter D, Trichopoulos D (2002) Textbook of Cancer Epidemiology. New York: Oxford University Press, pp 359 – 377

American Cancer Society (2007) Detailed Guide: Endometrial Cancer. American Cancer Society Inc.: Atlanta, GA http://www.cancer.org/docroot/CRI/CRI_2_3x.asp?dft =11,(accessed: 1 May 2007)

Ayabe T, Tsutsumi O, Sakai H, Yoshikawa H, Yano T, Kurimoto F, Taketani Y (1997) Increased circulating levels of insulin-like growth factor-I and decreased circulating levels of insulin like growth factor binding protein-1 in postmenopausal women endometrial cancer. Endocrinology 44: 419 – 424

Breier BH, Vickers MH, Ikenasio BA, Chan KY, Wong WP (2001) Fetal programming of appetite and obesity. Mol Cell Endocrinol 185: 73 – 79

Ekobom A, Trichopoulos D, Adami HO, Hsieh CC, Lan SJ (1992) Evidence of prenatal influences on breast cancer risk. Lancet 340: 1015 – 1018

Lof M, Sandin S, Hilakivi-Clarke L, Weiderpass E (2007) Birthweight in relation to endometrial and breast cancer risks in Swedish women. Br J Cancer 96: 134 – 136

McCormack VA, dos Santos Silva I, Koupil I, Leon DA, Lithell HO (2005) Birth characteristics and adult cancer incidence: Swedish cohort of over 11 000 men and women. Int J Cancer 115: 611 – 617

McLaughlin CC, Baptiste MS, Schymura MJ, Nasca PC, Zdeb MS (2006) Birthweight, maternal weight and childhood leukemia. Br J Cancer 94: 1738 – 1744

Michels KB, Xue F (2006) Role of birthweight in the etiology of breast cancer. Int J Cancer 119: 2007 – 2025

Michos A, Xue F, Michels KB (2007) Birthweight and the risk of testicular cancer: a meta-analysis. Int J Cancer 121: 1123 – 1131

Ostlund E, Tally M, Fried G (2002) Transforming growth factor-betal in fetal serum correlates with insulin-like growth factor-I and fetal growth. Obstet Gynecol 100: 567 – 573

Petridou E, Panagiotopoulou K, Katsouyanni K, Spanos E, Trichopoulos D (1990) Tobacco smoking, pregnancy estrogens, and birthweight. Epidemiology 1: 247 – 250

Phillips DI, Fall CH, Cooper C, Norman RJ, Robinson JS, Owens PC (1999) Size at birth and plasma leptin concentrations in adult life. Int J Obes Relat Metab Disorders 23: 1025 – 1029

Sayer AA, Cooper C (2005) Fetal programming of body composition and musculoskeletal development. Early Hum Dev 81: 735 – 744

Schernhammer ES, Tworoger SS, Eliassen AH, Missmer SA, Holly JM, Pollak MN, Hankinson SE (2007) Body shape throughout life and correlations with IGFs and GH. Endocr Relat Cancer 14: 721 – 732

Troy LM, Michels KB, Hunter DJ, Spiegelman D, Manson JE, Colditz GA, Stampfer MJ, Willett WC (1996) Self-reported birthweight and history of having been breastfed among younger women: an assessment of validity. Int J Epidemiol 25: 122 – 127

Tworoger SS, Eliassen AH, Missmer SA, Baer H, Rich-Edwards J, Michels KB, Barbieri RL, Dowsett M, Hankinson SE (2006) Birthweight and body size throughout life in relation to sex hormones and prolactin concentrations in premenopausal women. Cancer Epidemiol Biomarkers Prev 15: 2494 – 2501

Yang SW, Yu JS (2000) Relationship of insulin-like growth factor-I, insulin-like growth factor binding protein-3, insulin, growth hormone in cord blood and maternal factors with birth height and birthweight. Pediatr Int 42: 31 – 36