A Density Matrix Renormalization Group Method Study of Optical Properties of Porphines and Metalloporphines

Manoranjan Kumar1,2, Y. Anusooya Pati1, and S. Ramasesha1
1Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India, 2Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

(Dated: April 28, 2013)

The symmetrized Density-Matrix-Renormalization-Group (DMRG) method is used to study linear and nonlinear optical properties of Free base porphine and metallo-porphine. Long-range interacting model, namely, Pariser-Parr-Pople (PPP) model is employed to capture the quantum many body effect in these systems. The non-linear optical coefficients are computed within correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modelled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have \(D_{4h}\) symmetry and hence have more degenerate excited states. The ground state of Metalloporphines show 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients.

I. INTRODUCTION

The electronic structure of porphyrin and metalloporphyrins has been the subject of extensive study both because of their interesting optical properties and chemical activity [1]. Metalloporphyrins are biologically important molecules, particularly those containing Fe (in Haemoglobin) and Mg (in chlorophyll) ions. The carbon atoms that form the conjugated back-bone undergo easy substitution leading to a large class of porphyrin system with interesting electronic and chemical properties. The \(\pi\)-conjugation present in these molecules gives rise to large nonlinear optic (NLO) responses, which can be tuned by peripheral substitution. Porphyrins are potentially useful in applications such as 3-D optical memory devices [2] and optical power limiting [3]. Solid porphyrins are porous and could find use as molecular sieves and shape selective catalyst [4]. Porphyrins are chemically and photochemically stable and are being used in photo-dynamic therapy [5] and antiviral therapy. Oxovanadium(IV) porphyrins are studied for their anti-HIV properties [6]. Efforts are being made to fabricate solar cells with porphyrin based materials [7], since porphyrin framework is found in chlorophylls. Closely related to porphyrins are the phthalocyanines (Pc), which have a central porphyrinic core. The Pc system has attracted a great deal of attention in recent years for both organic electronic and spintronic applications [8-11]. They have the interesting property of being adsorbed on metal surfaces in a flat orientation. Scanning tunneling microscopic studies have been able to measure spin and charge densities at various positions in the molecule.

Most of the important properties of porphyrins are dictated by their electronic structure. Hence, electronic structure of porphyrins and metalloporphyrins have been studied by many groups over several decades. Early studies by Goutermann employed a four orbital model to explain the nature of the \(Q\) band (the low-frequency weak absorption band) and the Soret (\(B\) band) (the high frequency intense absorption band) observed in porphyrins [12]. Weiss et al. used the mean field results of Pariser-Parr-Pople (PPP) model Hamiltonian to explain the nature of \(Q\) and \(B\) bands of porphyrins [13]. Christoffersen et al. have carried out \textit{ab initio} calculation to study the electronic spectra of porphyrins, metalloporphyrins and other substituted porphyrins [14]. Zerner et al. showed that the Soret band is degenerate with parallel polarization with respect to \(Q\) band, using random phase approximation within the intermediate neglect of differential overlap (INDO) method [15]. Using density functional theory, Ruth et al. have studied the singlet and triplet spectra of Zn-porphyrin and related compounds and showed that the \(B\) band consists of multiple absorption bands [16].

Several groups have computed the NLO properties of modified porphyrins. Priyadarshy \textit{et al.} [17] obtained the first hyperpolarizability of porphyrin bridged donor-acceptor molecules, wherein, the donor and acceptor molecules are attached at the meso–position. Albert \textit{et al.} [18] have shown that large 2nd order NLO response coefficients can be obtained by attaching a donor group at \(\beta\) position and an acceptor group at meso–position; this is expected to increase the difference in the dipole moment between ground and excited states, leading to large first order polarizability. Shirik \textit{et al.} have studied the optical limiting properties of lead phthalocyanine...
II. INTRODUCTION TO THE DMRG METHOD

The DMRG algorithm involves efficient and accurate ways of truncating the insignificant degrees of freedom from the Fock space of the system. The DMRG method proceeds as follows. Given a model many body Hamiltonian \hat{H} which we wish to solve for a system with total number of sites N. We start with a small lattice of $2L$ sites and obtain the Hamiltonian matrix of this lattice in the real space basis. We obtain by standard methods, the lowest or the desired eigenstates of the Hamiltonian matrix. From the eigenvector we construct the density matrix $\rho_{s,s'}^{k,L}$ of the subsystems with L sites by integrating out the states of the remaining L sites. The matrix elements of the density matrix, $\rho_{s,s'}^{k,L}$ of the L sites block in the k^{th} eigenstate is given by,

$$\rho_{s,s'}^{k,L} = \sum_{\epsilon} C_{s,e}^{k} C_{s',\epsilon}^{k}$$

where the k^{th} eigenstate of the $2L$ sites problem is expressed as

$$\psi_{k,2L} = \sum_{s} \sum_{\epsilon} C_{s,e}^{k} |s\rangle |\epsilon\rangle,$$

with $|s\rangle$ and $|\epsilon\rangle$ being the Fock space basis states of the system and environment blocks respectively and $C_{s,e}^{k}$ are the associated coefficients. The density matrix $\rho_{s,s'}^{k,L}$ is diagonalized and eigenvectors corresponding to m dominant eigenvalues of $\rho_{s,s'}^{k,L}$ are used to span the Fock space of the system block. If the order of the matrix $\rho_{s,s'}^{k,L}$ is $M \times M$, then the $m \times M$ matrix O formed from m eigenvectors as columns of the O is used for transforming all the operators of the system block, L, from the full Fock space to the truncated density matrix eigenbasis. Thus if A is an $M \times M$ matrix of an operator A defined over the M dimensional Fock space of the system block, then $\hat{A} = OAO^\dagger$ gives the renormalized $m \times m$ matrix representation of A. By interchanging the environment and system blocks, we also obtain renormalized matrix representation of all the operators in the former environment block.

We now add two new sites to the $2L$ size system at a convenient part of the system, usually in the middle. Using as basis functions, the direct product of the density matrix eigenvectors of the two blocks of the $2L$ system and the Fock states of the new sites, we can obtain a matrix representation of the $2L + 2$ site Hamiltonian. From the desired eigenstate $\psi_{k,2L+2}$ we obtain the density matrix $\rho_{s,s'}^{k,L+1}$ for the two blocks of size $(L + 1)$ of the augmented $(2L+2)$ site system and proceed as before to obtain all the renormalized operators on the $(L + 1)$ sites and iterate until the desired system size is reached. This algorithm of constructing the system is called the infinite DMRG algorithm. In this algorithm, from the eigenvectors at any system size, we can also obtain expectation values of any operator of interest. If the operator consists of product of site operators of different sites in the same block, then we need to carry through matrix representation of the product by renormalizing it at each step and use the renormalized matrix to compute the desired expectation value. If on the other hand the operator is a product of site operators of different sites on different blocks, we can use the renormalized matrix representation of the individual site operators to compute the expectation values. It is possible to target more than one low-lying state simultaneously in a DMRG procedure. This is carried out by computing the density matrix for each desired states separately and using the dominant eigenvectors of an appropriately averaged density matrix of these states. The choice of common DMRG basis for different states permits computing matrix elements such as transition dipoles between states. To access higher excited states of interest such as the 1^1B_u states in polyenes, we need to employ symmetrized DMRG procedure and compute the desired excited state as a low-lying state in an appropriate symmetry subspace. For example, we could access a triplet.
state as the lowest energy excitation in a space of odd parity, other parity symmetry corresponds to the invariance of the Hamiltonian when the spin space is rotated by \(\pi \) around the Y-axis.

For molecular systems the infinite DMRG technique is not sufficiently accurate since the density matrix of the system block does not correspond to the density matrix of the target superblock. This can be remedied by employing the finite DMRG algorithm. In this technique the infinite algorithm is employed till the desired superblock is attained. After this point, the system block is augmented by one site and the Hamiltonian matrix of the superblock is set up using the larger system block, two new site and an environment block with one fewer site generated in the infinite algorithm. From the desired eigenstate of the Hamiltonian matrix, the system block is again augmented by one site and the whole process is repeated until the environment block reduces to a single site. From here on, the environment block and system block are interchanged and the process continued until we reach the size of environment and system block achieved at the end of the infinite DMRG algorithm. This process of progressively increasing the size of the system block and decreasing the size of the environment block, back and forth is called finite DMRG algorithm \([22]\).

The DMRG technique has been shown to be highly accurate for quasi-one dimensional systems and has been widely employed in the study of the strongly correlated model Hamiltonians such as the Hubbard models \([23]\), the PPP models \([24–31]\) and the Heisenberg spin models \([28–31]\). The PPP model has long range interactions and topologically the model can be viewed as a higher dimensional model. However, the interaction terms in the PPP model are diagonal in the real space and are hence well accounted for in the DMRG method.

In this work, we report our studies on free base porphine (FBP) and metallo-porphines obtained from DMRG studies of their electronic structure. Porphine is modeled by PPP model with Ohno parametrization for the long-range interactions. We have studied the optical excitation spectrum by using symmetrized DMRG method \([32]\). We characterize optically excited states by studying various properties of the states, such as, charge densities and bond orders. We have also studied both linear and nonlinear optical properties of the system.

III. METHODOLOGY

Porphine contains 4 pyrrolic rings connected by 4 CH groups as shown in Fig. 1. Nitrogen in the pentagons are \(sp^2 \) hybridized. There are two types of nitrogen atoms in the conjugation, one is the aza nitrogen and the other is the pyrrole like nitrogen. Lone-pair of electrons on N are in the plane of the molecule in aza-ring systems and do not participate in conjugation, whereas, they are perpendicular to the plane of the ring and are involved in \(\pi \)-conjugation, in pyrrole rings. The singly occupied \(p_z \) orbital of the aza nitrogens are involved in \(\pi \)-conjugation. Each carbon atom in the conjugation contributes one electron to \(\pi \)-system. Thus, in free base porphine, 26 \(\pi \)-electrons and 24 orbitals are involved in conjugation. It has been established that PPP model is well suited for describing the electronic properties of conjugated organic molecules. The PPP model Hamiltonian is given by

\[
\hat{H} = \sum_{i,\sigma} \epsilon_i \hat{a}_{i,\sigma}^\dagger \hat{a}_{i,\sigma} + \sum_{<i,j>,\sigma} t_{ij} \hat{a}_{i,\sigma}^\dagger \hat{a}_{j,\sigma} + h.c.
\]

(3)

\[
\hat{H}_1 = \sum_{i,\sigma} \epsilon_i \hat{a}_{i,\sigma}^\dagger \hat{a}_{i,\sigma} + \sum_{<i,j>,\sigma} t_{ij} \hat{a}_{i,\sigma}^\dagger \hat{a}_{j,\sigma} + h.c
\]

(4)

Here \(H_1 \) corresponds to the one-electron part of the Hamiltonian with the orbital energy, \(\epsilon \), of \(p_z \) orbital and \(t_{ij} \), the transfer integral between the orbitals \(i \) and \(j \) on the bonded pair of atoms in conjugation. We discuss the parametrization involving N-orbitals later. We have used experimental geometry for our calculations \([32]\). The transfer integrals, \(t_{ij} \) are calculated using a linear extrapolation. i.e.

\[
t_{ij} = t_0 (1 - \frac{(\delta r)_{ij}}{\delta r_{ij}})
\]

(4)

\(t_0 \) is the transfer integral (\(-2.4eV\)) corresponding to \(C-C \) bond length of 1.397 \(\text{Å} \) in benzene and \((\delta r)_{ij} \) refer to

![FIG. 1: General structure of FBP. Sites are numbered in bold and transfer integrals (in eV) are given in blue colour. Labeling of the sites meso, \(\alpha \) and \(\beta \) are also shown in the figure. The system has \(D_3 \) symmetry and all other bond transfers are given by symmetry.](image-url)
is \((r_{ij} - 1.397) \, \AA\) where \(r_{ij}\) is the length of the bond between atoms \(i\) and \(j\).

The term \(H_2\) in the PPP Hamiltonian incorporates on-site electron-electron repulsion energy and this corresponds to Hubbard interaction. The Hubbard parameter \(U_i\) is the energy cost for creating double occupancy of the orbital \(i\). For carbon we have taken the standard value of 11.26 eV. The terms in \(H_3\) correspond to intersite coulombic interaction between electrons in orbitals \(i\) and \(j\), and we introduce local chemical potential \(z_i\) which is the occupancy of the orbital \(i\) that leaves the \(i^{th}\) site electronically neutral. The value of \(z\) for C is always 1 while that of nitrogen depends upon the occupancy of the orbital involved in conjugation, for the aza-nitrogen which contributes one electron to the \(\pi\)-conjugation, \(z\) is 1, while for the pyrrole nitrogen which contributes two electrons to the \(\pi\)-conjugation, \(z\) is 2; \(V_{i,j}\) is calculated using Ohno parametrization [34].

We have parametrized \(\epsilon\) and \(U\) for nitrogen atom to fit the experimental excitation gaps and corresponding transition dipole moments for singlets in free base porphine. The parameters which give the best fit are as follows: for aza nitrogens, \(\epsilon_{N_5} = \epsilon_{N_{20}} = -3.20\) eV and \(U_{N_5} = U_{N_{20}} = 12.34\) eV; for pyrrole nitrogens, \(\epsilon_{N_{12}} = \epsilon_{N_{13}} = -14.0\) eV and \(U_{N_{12}} = U_{N_{13}} = 15.00\) eV. The value of \(t_{CN}\) is taken to be \(-2.3\) eV and \(-2.4\) eV for C – N single and double bonds respectively. Other transfer integrals calculated from Eq. \(4\) are shown in Fig. 1. The nitrogen parameters reflect the more compact 2\(p\) orbitals of nitrogen compared to 2\(p\) orbitals of carbon.

We have employed the DMRG methods to study the ground state (gs) and low-lying states of porphine. The topology of the transfer terms in porphines is not strictly one dimensional. The porphine system can be built up from a 4-site ring, by adding two sites at a time, in many different ways. The scheme shown in Fig. 2 provides a highly accurate scheme for building up the porphine framework, besides retaining the symmetries of porphine at every stage of the DMRG implementation. We have also carried out finite DMRG sweeps to improve the accuracy. The accuracy of the DMRG scheme is benchmarked against H"uckel model results for the system. In the DMRG studies, we have retained 210 density matrix eigenvectors (DMEVs) and carried out two finite DMRG sweeps. The order of the Hamiltonian matrix is about 45,000 after using two symmetries, namely, spin invariance and \(C_2\) symmetry. The matrix is sparse and symmetric. We obtain a few low-lying states of the matrix using Davidson algorithm. Various properties such as charge and spin densities and b.o.s in different eigenstates can be computed since the matrices of the creation operators, the occupation number operators of all the sites and the b.o operators of all the bonds are renormalized at every step.

In the molecular systems with strong electron correlations, it is difficult to identify the desired excited states such as two photon states or optically allowed excited states, unless symmetry is exploited. The Hamiltonian is spin conserving, however, exploiting the conservation of both \(S^2\) and \(S^z\) (\(S\) corresponds to total spin) within a DMRG scheme is difficult. Instead we have used spin invariance symmetry and \(S^z\) conservation, to reduce the dimensionalities of the spaces. Spin invariance symmetry corresponds to invariance of the Hamiltonian when all the spins are rotated by \(\pi\) around the y-axis, within the \(M_s = 0\) (\(M_s\) is eigenvalue of \(S^z\) operator) subspace. The spin invariance operator divides the basis into two subspaces, one of even total spin and another of odd total spin. The spatial symmetry we have employed is the \(C_2\) symmetry, even though the molecule has \(D_2\) symmetry. The \(C_2\) axis chosen by us passes through the center of the molecule and is perpendicular to molecular plane. The spin invariance symmetry commutes with the \(C_2\) symmetry and the resulting group has four one dimensional representations. Optical transitions are from states which are even under \(C_2\) symmetry to those that are odd, and retain total spin. The triplet (\(S=1\)) state is targeted as the lowest state in the \(M_s = 1\) sector. Since we are dealing with a nonzero \(M_s\) subspace, the spin invariance symmetry does not exist in this case and we only employ the spatial symmetry. Besides, for computing properties such as transition dipoles and dynamic linear and nonlinear polarizabilities, we need to express states in the different symmetry subspace by using the same DMRG

FIG. 2: A highly accurate scheme for building the porphine structure for DMRG calculations. At every step of the DMRG algorithm, we add two new sites shown by filled circle. Positive integers correspond to the sites of the left block and negative integers to the sites of the right block.
basis states. In order to retain proper balance of various states, we construct an average density matrix, averaged over density matrices of several low-lying states in each subspace and employ dominant eigenvectors of the averaged density matrix. The dynamic nonlinear optics response coefficient are computed using correction vector (CV) technique \[35\].

Conventional frequency dependent linear and nonlinear optical coefficient calculations rely on the knowledge of transition dipole moments between the gs and all excited states. For exact calculation of NLO properties, the sum over states (SOS) method is most widely used. Generally, between 30 to 100 excited states, computed within a restricted CI scheme are used to obtain NLO coefficients. Soos and Ramasesha \[36\] introduced the CV method for calculating NLO coefficients within an exact diagonalization scheme which incorporates the contribution of all higher excited states, without explicitly obtaining the excited state eigenfunctions. In this method, a correction vector (CV) is obtained using the gs wavefunction and the Hamiltonian matrix. CV method involves computation of the first and second order correction vectors \(\phi_i^{(1)}(\omega_1)\) and \(\phi_{ij}^{(2)}(\omega_1, \omega_2)\), which are defined as,

\[
(H - E_G + i\Gamma)|\phi_i^{(1)}(\omega_1) > = \tilde{\mu}_i |G > \tag{5}
\]

\[
(H - E_G + i\Gamma)|\phi_{ij}^{(2)}(\omega_1, \omega_2) > = \tilde{\mu}_j |\phi_i^{(1)}(\omega_1) > \tag{6}
\]

where \(H\) is the Hamiltonian matrix in the chosen many-body basis, \(E_G\) is the gs energy, \(\omega_1, \omega_2\) are the excitation frequencies and \(\tilde{\mu}_i\) is the \(i^{th}\) component of the dipole displacement operator, \((\tilde{\mu}_i = \mu_i - <G|\mu_i|G >)\), and \(\Gamma\) is the average lifetime of the excited states. It can be shown that \(\phi_i^{(1)}(\omega_1)\) and \(\phi_{ij}^{(2)}(\omega_1, \omega_2)\) when expressed in the basis of the eigenstates of the Hamiltonian \(|R >\) are given by,

\[
|\phi_i^{(1)}(\omega_1) > = \sum_R \frac{< R|\tilde{\mu}_i|G >}{E_R - E_G + i\Gamma} |R > \tag{7}
\]

\[
|\phi_{ij}^{(2)}(\omega_1, \omega_2) > = \sum_S \sum_R \frac{< S|\tilde{\mu}_j|R > < R|\tilde{\mu}_i|G >}{(E_R - E_G + i\Gamma)(E_S - E_G + i\Gamma)} |S > \tag{8}
\]

Therefore \(|\phi_i^{(1)}(\omega_1) >\) and \(|\phi_{ij}^{(2)}(\omega_1, \omega_2) >\) can be readily used to compute linear and nonlinear frequency dependent polarizabilities. The third order NLO coefficients corresponding to sum frequency generation, in terms of these correction vectors, are given by,

\[
\Gamma_{ijkl}(-\omega; \omega_1, \omega_2, \omega_3, \gamma) = \tilde{P}_{ijkl}(<\phi_i^{(1)}(-\omega)|\mu_j|\phi_{kl}^{(2)}(-\omega_1 - \omega_2, -\omega_1) >) \tag{9}
\]

where \(\tilde{P}_{ijkl}\) generate all permutations of \((-\omega, i), (\omega_1, j), (\omega_2, k), (\omega_3, l)\) leading to 24 terms for \(\gamma\) (with \(\omega_\gamma = \omega_1 + \omega_2 + \omega_3\)). The linear polarizability components are given by

\[
\alpha_{ij}(\omega) = <\phi_i^{(1)}(\omega)|\mu_j|G > + <\phi_i^{(1)}(-\omega)|\mu_j|G > \tag{10}
\]

The \(\phi_{ij}\) are exact within the Hilbert space chosen for the Hamiltonian. The linear algebraic equations that can be solved efficiently by a small matrix algorithm developed by Ramasesha \[37\].

Ramasesha et al. incorporated the CV technique in the DMRG method and have shown it to be robust \[38\]. In the CV-DMRG procedure, the average density matrix is constructed from a weighted average of the gs and the density matrix constructed from the correction vector. We will concentrate on the spatially averaged values of first and third order optical response. The expression for these are given by,

\[
\alpha_{av} = \sum_{i=1}^3 \frac{1}{3} \gamma_{ii} \tag{11}
\]

\[
\gamma_{av} = \sum_{i,j=1}^3 \frac{1}{15} (2\gamma_{iijj} + \gamma_{ijij}) \tag{12}
\]

where \(\{i\}\)s are Cartesian indices \((x,y,z)\).

We have compared our DMRG results for the noninteracting Hamiltonian with exact Hückel MO results for porphine. In the above calculations, at each iteration, the density matrix is constructed as the weighted average of the density matrix of five lowest eigenstates. Table I compares the optical gaps and transition dipole moments between DMRG and exact calculations, in the noninteracting limit. Gaps are given in eV and transition dipoles are in a.u.

\(m = 180\)	\(m = 210\)	\text{Exact}		
\text{Gap} \(\mu_x	\	\mu_y	\)
1.67 0.17 2.74				
1.82 1.07 0.09				
1.96 0.45 2.38				
2.05 2.90 0.24				
\text{Gap} \(\mu_x	\	\mu_y	\)
1.65 0.22 2.43				
1.78 1.47 0.32				
1.95 0.65 2.36				
2.03 2.72 0.51				
\text{Gap} \(\mu_x	\	\mu_y	\)
1.56 2.37 0.52				
1.80 2.25 0.44				
1.87 0.42 2.35				

\[\]
slightly overestimate the higher excited states ($\approx 0.15 - 0.20$ eV). Due to near degeneracy in the excitation levels, the components of transition dipole moments do not agree very well with Hückel MO calculations although the magnitudes are in good agreement and the qualitative trend is maintained. All the studies that we report in this paper are based on retaining 210 density matrix eigenvectors and two sweeps of the finite algorithm.

IV. RESULTS AND DISCUSSION

This section is divided into three subsections. In the next subsection, we discuss results of our study on FBP followed by the metallo-porphine. In the last section, linear and nonlinear optic properties are discussed.

A. Free base porphine

We have obtained six lowest lying states in A and B subspaces for singlets as well as triplets of FBP using symmetrized DMRG method. In Table I we present the energies of singlets and in Table II that of triplets. The ground state energy is set to zero, so the energies reported are the excitation gaps from the gs. We have also presented experimental gaps and absorption intensities, wherever available. DMRG results correspond to isolated molecule calculations in the gs geometry. The experimental optical gaps are usually red shifted by about 0.5 eV from the gas phase values. The first peak observed in the optical spectra is at 1.98 eV while that calculated is at 1.66 eV. If we include the red shift of the theoretical gap, the agreement is off by about 0.8 eV. This suggests that the low-temperature spectra of the free base porphine shows a split in the B band with equal intensity and separated by 0.03 eV [10]. Other theoretical studies also show nearly degenerate levels at this energy. The 4.18 eV band (5^1B) corresponds to the N band while the 4.83 eV absorption to 6^1B corresponds to the weak L band transitions observed in FBP.

In Table III we give energies of several low-lying triplet states. The lowest singlet-triplet gap in the system is 1.42 eV from our calculations, experimental value is 1.58 eV, which is in fair agreement. The lowest triplet-triplet absorption, from our calculations is found at 1.67 eV, while experimentally two very close triplet-triplet absorption peaks are found at 1.58 eV and 1.65 eV [42, 43]. Our calculations show weak absorption peaks at 2.09 eV and 2.13 eV and a much stronger absorption is predicted at 2.84 eV. Experimentally two absorption peaks are seen at 2.82 and 2.96 eV, close to the theoretical values. Theory also predicts a triplet absorption at 3.41 eV while experimentally a triplet absorption is seen at 3.23 eV. Overall, we find that the DMRG results for the π-electron model are quite consistent with experimental observations.

1. Electron density and bond order analysis

We have analyzed the eigenstates by computing charge densities and b.o.s in various states. In the gs, all β car-
bon atoms have slightly more than one electron. The electron density at α carbon atoms in aza ring is 0.89 and in pyrrole ring it is 1.08 and have opposite acceptor (donor) tendencies. At meso—carbon, the charge density is 0.98. This is consistent with the earlier semi-empirical calculations which show that the Cmeso is electron deficient and Cβ is slightly electron rich [18]. Nitrogen in the aza ring has 1.41 electrons and in pyrrole ring it has 1.63 electrons. These results are in agreement with the earlier theoretical work [13]. The gs charge density and b.o. are given in Fig. 3. It is interesting to note that although aza ring nitrogen contributes only one electron to π-conjugation the electron density is 1.41.

For excited states which are Y-polarized, electron density is transferred from nitrogen in aza ring to the neighboring carbon atoms while for the the X-polarized excited state the electron is transferred from the carbon atom to the N atom. Except for the fourth and fifth excited states, for which there is considerable transition dipole moment, the change in electron density on Cα and Cβ sites are negligible. In the fourth and fifth excited states, there is considerable electron density redistribution between carbon and nitrogen atoms. The electron density at meso sites remain almost the same in all the excited states.

In pyrrole rings the opposite trend of electron transfer is observed except for the sixth excited state. The electron is transferred to N when the polarization is in Y direction and is transferred from N, when it is in X direction. The magnitude of electron distribution is maximum in second excited state. In the fifth excited state, there is hardly any change in the electron distribution at N atom, but the charge is transferred between Cα and Cβ atoms. Deviation in electron density from the gs are given in Table IV.

It is known from the literature that the porphyrin can have two conjugation pathways: an inner 18-annulene pathway and an outer 20-annulene pathway (Fig. 4). From our b.o. calculations we find that b.o.s are more low-lying states w.r.t gs in the singlet manifold are given.

Table IV: Electron density ρ for gs and difference of electron density δρ for the optically allowed states w.r.t. gs.

Site	ρ (gs (A0))	B1	B2	B3	B4	B5	B6
Cβ (aza)	1.01	-0.01	0.00	-0.00	-0.03	-0.04	-0.02
Cβ (aza)	1.01	0.00	-0.00	-0.01	-0.02	-0.05	-0.01
Cα (aza)	0.89	-0.01	0.01	-0.01	0.04	0.03	0.02
Cα (aza)	0.89	-0.01	0.02	0.01	0.05	0.05	0.01
N (aza)	1.41	-0.02	0.00	0.02	-0.11	-0.08	-0.03
Cmeso	0.98	0.01	0.00	0.03	0.03	0.03	0.01
Cmeso	0.98	0.00	-0.00	0.01	0.02	0.03	0.02
Cα (pyr)	1.08	-0.02	0.04	0.02	-0.03	-0.02	-0.04
Cα (pyr)	1.08	-0.01	0.03	-0.03	0.01	0.02	0.02
Cβ (pyr)	1.02	-0.00	0.04	-0.01	0.00	0.03	-0.00
Cβ (pyr)	1.02	0.01	0.04	-0.05	0.03	0.02	0.03
N (pyr)	1.63	0.04	-0.19	-0.05	0.06	-0.00	-0.11

Table V: Bond orders of gs and difference in b.o. for six low-lying states w.r.t gs, in the singlet manifold are given.

Bond	b.o (gs) (A1)	Δ(b.o) (A2)					
Cα - Cα	0.88	-0.01	-0.03	-0.06	-0.15	-0.16	-0.04
Cα - Cα	0.39	0.00	0.02	0.10	0.08	0.03	
Cβ - Cβ	0.38	0.00	0.01	0.11	0.08	0.02	
Cα - N (aza)	0.54	-0.01	0.02	-0.03	-0.06	-0.07	0.00
Cα - N (aza)	0.52	-0.01	-0.01	0.00	-0.02	-0.05	-0.03
Cβ - Nmeso	0.99	-0.03	-0.04	-0.02	-0.10	-0.03	-0.03
Cα - Cmeso	0.58	-0.03	0.01	0.02	-0.06	-0.02	-0.04
Cβ - Cmeso	0.55	-0.01	-0.02	-0.02	0.02	-0.04	-0.03
Cα - Cα	0.56	-0.01	-0.03	-0.06	0.00	0.00	-0.01
Cβ - Cβ	0.57	-0.01	0.03	0.04	0.02	0.06	0.02
Cα - Cα	0.55	-0.01	0.04	0.03	0.00	0.05	0.01
Cβ - Cβ	0.58	-0.04	-0.12	-0.19	-0.07	-0.14	-0.18
Cα - N (pyr)	0.37	-0.02	-0.06	-0.04	-0.05	-0.06	-0.11
Cβ - N (pyr)	0.38	-0.03	-0.03	-0.02	-0.06	-0.04	-0.09

This structure is in conformity with X-ray structure [32] as well as other theoretical work by Weiss et al. [13]. From Fig. 4 we see that pyrrole N is not strongly in-
The deviation from the g.s. bond order is given in Table V. In the first excited state, all the b.o.s become smaller compared to their values in gs geometry. The change in b.o. is only marginal in aza rings, while in pyrrole rings $C_\beta - C_\beta$ bonds become weaker. All the three $C - C$ b.o.s are uniform. The $C - N$ bonds also become weaker. The meso-b bonds connected to aza rings become weaker than those connected to pyrrole rings. Hence we expect the equilibrium geometry in the first excited state to have expansion of the whole π-system.

In the second excited state, $C_\beta - C_\beta$ bond of aza rings weakens and $C_\alpha - C_\beta$ bonds become stronger. Meso bonds connected to aza rings become weaker and the rest become stronger compared to the 1st excited state. The pyrrole ring becomes more pyrrolic, i.e. the $C_\beta - C_\beta$ b.o. reduces considerably and the $C_\alpha - C_\beta$ bond becomes a strong bond while the $C - N$ bonds get weaker. This bond pattern is in conformity with the charge distribution in the second excited state. The charge is depleted from the N and accumulated on C atoms. The b.o. pattern of third excited state is similar to that of second excited state.

In the fourth excited state, $C_\beta - C_\beta$ bonds of aza rings become very weak. The $C_\alpha - C_\beta$ and the $C - N$ bonds have almost the same b.o. (0.49 ± 0.01). This can again be attributed to the fact that in the fourth excited state, there is charge accumulation on C_α atoms and depletion at N atom. The bond alternation of the meso-b bonds reduce. In pyrrole ring, all the three $C - C$ bonds are almost uniform. Note that in both the first excited and 4th excited states, there is charge accumulation at pyrrole N and all the three $C - C$ bonds have uniform bond order.

In the fifth excited state, the aza b.o. and charge distribution pattern are same as in fourth excited state. The charge density pattern at pyrrole ring is similar to that of the third excited state and hence the b.o. pattern is similar to that of third excited state, namely alternate single-double-single bond for three $C - C$ bonds and weaker $C - N$ bonds.

In the sixth excited state, the charge depletion at aza N is not significant and the b.o. is slightly alternating for $C_\alpha - C_\beta$ and $C - N$ bonds. The $C_\beta - C_\beta$ bond is more like a double bond. The pyrrole ring is less pyrrole like and the $C - N$ bonds become weak.

In aza rings, when the charge is taken away from N, the b.o.s of $C_\alpha - C_\beta$ bonds and $C - N$ bonds would be uniform. On the other hand, when there is excess charge at N, the bonds alternate. In pyrrole rings, when there is charge accumulation at N, the three $C - C$ bonds become almost uniform and when the charge is taken away from N, $C_\alpha - C_\beta$ bonds become stronger and $C_\beta - C_\beta$ bonds become weaker. In all the excited states, either the aza $C - N$ bonds have weak bond alternation or the pyrrole $C - N$ bonds.

Spin densities, charge densities and b.o.s are shown in Fig. 5 in the lowest triplet state of FBP. The electron density on C_β and C_α carbon atoms are comparable to that in gs while it decreases on the nitrogen atom of aza-rings and remains constant for N atom on pyrrole-rings, compared to gs. At C_{meso} sites, electron
density decreases in the lowest triplet state. The values of \(C_\beta - C_\beta \), \(C_\alpha - C_\beta \) and \(C_\alpha - C_{\text{meso}} \) b.o.s in the aza-ring are almost same as in gs while \(C_\alpha - C_{\text{meso}} \) and \(C_\alpha - C_\beta \) b.o.s of pyrrole-ring increase while for \(C_\beta - C_\beta \) it decreases. \(C - N \) b.o.s in aza-rings decrease but increase in pyrrole-rings. Spin density values on \(C_\beta \) atoms in aza-ring are small but are relatively higher (0.045) in pyrrole-rings. Spin density values are very high on \(C_{\text{meso}} \) sites (0.16) and nitrogen atom (0.12) in the aza-rings while this value is very small on the nitrogen atom of pyrrole-rings.

B. Metallo-porphines

Metallic porphines are biologically important molecules. There are two categories of metallic porphines - regular and irregular porphines. In the case of regular porphines, the metals have closed shells and in the latter, they have partially filled shells. Our study concentrates on regular metallic porphines. We have placed the metal ion at the center of the porphine molecule and it acts only as a source of electric field, i.e., we have not taken the overlap of metallic \(d^- \) orbitals with porphine \(\pi \)-orbitals. The modified Hamiltonian to account for the effect of the metallic ion is given by,

\[
\hat{H} = H_{PP} + \sum q_M (\hat{n}_i - z_i)/r_M \]

where \(q_M \) is charge on the metal and \(\hat{n}_i - z_i \) is effective charge operator at site \(i \), \(r_M \) is the distance between metal at the center and \(i^{th} \) atom. In the presence of the metal ion, pyrrolic \(N \) gets deprotonated and all the four five-membered rings become equivalent and hence the bond alternation observed in the neutral porphine molecule also vanishes. So, we have taken uniform transfer integrals for all the \(C-C \) bonds and a single value of \(\epsilon_N \) and \(U_N \) for all nitrogens. The uniform \(\epsilon_N \) and \(U_N \) used in the Hamiltonian are -7.8 eV and 12.34 eV respectively. We have varied the charge on the metal ion from 1 to 5 and studied the effect of oxidation state of the metal ion on porphine spectra, ground state charge distribution and nonlinear optical properties.

1. Ground state charge density and bond orders

Charge densities on porphine for different oxidation states of the central metal ion are given in Table VI. Charge density on the \(C_\beta \) atoms decreases while it increases on \(C_\alpha \) atoms. The charge density on \(N \) atoms increases while those on \(C_{\text{meso}} \) atoms decrease.

Bond orders in gs for metallo-porphine as a function of oxidation state on the metal ion are given in Table VII. As in the FBP molecule, \(C_\beta - C_\beta \) bonds in the aza-rings are the strongest bonds except for +5 oxidation state. As the oxidation state of the metal ion increases, \(C_\beta - C_\beta \) bond order decreases and the \(C_\beta - C_\alpha \) b.o.s increase. With the increase in \(q_M \), as the charge on \(N \) reaches its maximum value, the b.o. of all \(C - N \) bonds decrease sharply. Meso-bonds show minimum change; one set of b.o.s increases while the other set decreases, leading to small alternation in the \textit{meso}--bonds. The asymmetry in the geometry of two rings reduces as the charge on the metal ion increases. The \(C - N \) bonds of aza-rings have almost same b.o.s for all oxidation state while in pyrrole rings they are of same magnitude only for higher oxidation states.

Site	Charge on metal site
\(C_\beta \) (aza)	1.01 1.04 0.99 0.94 0.87 0.80
\(C_\alpha \) (aza)	0.89 0.79 0.82 0.88 0.96 1.05
\(N \) (aza)	1.41 1.73 1.82 1.88 1.92 1.95
\(C_{\text{meso}} \)	0.98 1.08 1.04 0.99 0.93 0.88
\(C_\alpha \) (pyr)	1.08 0.78 0.82 0.89 0.97 1.06
\(C_\beta \) (pyr)	1.02 1.05 0.99 0.92 0.85 0.77
\(N \) (pyr)	1.63 1.79 1.86 1.91 1.94 1.96

TABLE VII: The variation in b.o.s of the porphine bonds with different oxidation states of the central metal ion. B.o.s of bonds for which the value is not quoted can be obtained by imposing \(D_2 \) symmetry of the porphine.

Bond	Charge on metal site
\(C_\beta - C_\beta \)	0.74 0.72 0.69 0.62 0.57
\(C_\beta - C_\alpha \)	0.47 0.50 0.54 0.59 0.62
\(C_\beta - C_\alpha \)	0.47 0.51 0.54 0.59 0.62
\(C_\alpha - N \)	0.41 0.34 0.27 0.22 0.17
\(C_\alpha - N \)	0.42 0.34 0.27 0.22 0.17
\(C_\alpha - C_{\text{meso}} \)	0.59 0.60 0.60 0.59 0.57
\(C_\alpha - C_{\text{meso}} \)	0.59 0.60 0.60 0.59 0.57
\(C_\alpha - C_{\text{meso}} \)	0.57 0.58 0.59 0.59 0.60
\(C_\alpha - C_{\text{meso}} \)	0.57 0.58 0.59 0.59 0.60
\(C_\beta - C_\alpha \)	0.55 0.57 0.58 0.61 0.62
\(C_\beta - C_\alpha \)	0.54 0.56 0.58 0.60 0.61
\(C_\alpha - N \)	0.35 0.28 0.22 0.18 0.14
\(C_\alpha - N \)	0.33 0.27 0.22 0.18 0.14
\(C_\beta - C_\beta \)	0.61 0.61 0.59 0.56 0.52
Our calculations are in good agreement with earlier semi empirical results. Poveda et al. [45] found that C_β – C_β bonds are the strongest bonds and the C_β – C_α bonds are the weakest bonds in both Mg Octaethyl tetra phenyl porphyrin (OETPP) and ZnOETPP. For charge +2 we also find that the C_β – C_β bonds are the strongest bonds and C_meso – C_α bonds are stronger than C_α – C_β bonds. The C – N bonds become wider in the presence of the metal ion. All the C – N b.o.s of FBP are always higher than those in the metallo-porphine. Pyrrolic C – N bonds have a slight alternation in bond order pattern at lower oxidation states. FBP in the excited states show alternate b.o.s for C – N bonds either in the aza rings or in the pyrrole rings. While FBP has a 18-annulenic structure, metallo-porphine shows 20-annulene like structure when the charge on the metal ion increases.

Table VIII: Excitation gaps for singlet-singlet transition of five lowest optically allowed states and transition dipole moments for different metallic charges.

q_M	Excited Optical gap (in eV)	µ\(\parallel\) (in a.u.)	
1B	1.70	0.80	
2B	2.04	0.68	
1	3B	3.94	0.66
4B	4.11	2.30	
5B	5.37	0.26	
1	1B	1.69	0.46
2B	1.97	0.16	
2	3B	4.00	2.43
4B	4.22	0.66	
5B	5.36	0.59	
1	1B	1.70	0.06
2B	1.84	0.41	
3	3B	3.87	2.53
4B	4.23	0.58	
5B	5.13	0.55	
1	1B	1.66	0.66
2B	1.73	0.71	
4	3B	3.59	2.41
4B	4.36	1.38	
5B	5.20	0.40	
5B	4.78	0.10	

2. Optical properties

The metallo-porphines have higher symmetry than FBP; former has \(D_{4h}\) point group symmetry while the point group symmetry of the latter is \(D_{2h}\). Hence the spectra of metallo-porphines have more degenerate excitations than in FBP.

The characteristic optical spectra of metallo-porphines consists of a \(Q\)-band lying between 500-600 nm. \(Q\)-bands have two nearly degenerate levels separated by 1250 cm\(^{-1}\). It was originally identified as a vibronic progression and assigned \(Q_{0→0}\) and \(Q_{0→1}\) transition [46]. \(B\)-band which is the most intense band lies between 380 and 420 nm. Other \(L\), \(M\) and \(N\) bands are comparatively weak and appear between 325 nm and 215 nm.

The five lowest excitation gaps along with transition dipole moments are given in Table VIII for five different oxidation states of the metal ion. The first allowed state lies about \(≈1.70\) eV above the gs. For \(q_M = +1\) and \(q_M = +2\) transition dipole decreases with increasing charge. The lowest level has almost no intensity for dipole transition from gs for \(q_M = +3\) and the second level has significant intensity. We find that for metal ion oxidation states upto \(q_M = +3\), \(Q\)-bands are well separated. But with increase in \(q_M\), the separation between \(Q\)-bands decreases. For \(q_M > +3\) on the metal ion, this separation is very small, and both states have large transition dipoles to the gs although with different polarizations. The intensity for second \(Q\)-band transition for \(q_M = +2\) is weak and is consistent with experimental results [47]. Experiments show that the first excited state of metallo-porphines is slightly lower in energy than in FBP, irrespective of substitutions at the \(meso\)–positions as shown in reference [48]. There is only a small variation (maximum of 0.1 eV) in optical gap for different substituents.

From our DMRG results, the strongly optically allowed band, \(B\)-band, lies between \(3.8 ± 0.2\) eV above the gs for all values of \(q_M\). These levels show red shift of about \(0.2\) eV as \(q_M\) is increased from +1 to +5. For \(q_M = +2\), the experimental gaps are about \(3.22\) eV for Zn and \(3.18\) eV for Mg(etio)Porphine [47]. Time dependent density functional theory calculation of Minaev et al. has a blue shift of \(0.23\) [49], while symmetry adapted cluster CI study of Hasegawa et al. has a blue shift of \(0.5\) eV for the \(B\) band compared to the experimental results [50]. The blue shift in our DMRG studies is 0.6 eV. Complete active space second order perturbation theory (CASPT2) calculation of Rubio et al. underestimates the experimental excitation energies by 0.3 to 0.5 eV [51].

We observe a transition of medium intensity around \(4.2 ± 0.1\) eV in all metallo-porphines, corresponding to experimental absorption peaks for \(N\)-bands of Mg(etio)Porphine and TPPMgP observed at 3.85 eV and 3.97 eV respectively. Our result overestimates this gap by \(≈0.3\) eV. There is also a weak \(L\)-band around \(5.3 ± 0.1\) eV. To the best of our knowledge, there are no experimental results for system with \(q_M ≥ 3\), for regular metalloporphines for comparison with DMRG results.
TABLE IX: Triplet state energies, T-T gaps and corresponding transition dipole moments of metallo-porphine for different oxidation state of metal ions.

qM state	Triplet index energies (eV)	T-T gaps (eV)	µ (in a.u.)	
	1	3.31	1.29	0.30
	2	3.48	1.46	0.59
	3	4.11	2.09	0.28
	4	4.91	2.89	0.17
	1	3.01	1.27	0.34
	2	3.33	1.59	0.29
	3	3.84	2.10	0.25
	4	4.41	2.67	0.19
	1	2.99	1.27	0.19
	2	3.31	1.59	0.29
	3	3.62	1.90	0.47
	4	4.23	2.51	0.12
	1	3.29	1.69	0.07
	2	3.45	1.85	0.09
	3	3.99	2.39	0.48
	4	4.11	2.51	0.24
	1	2.76	1.60	0.69
	2	3.25	2.09	0.51
	3	3.30	2.14	0.55
	4	3.73	2.57	0.26

3. Triplet-Triplet spectra

In Table IX, triplet energies and triplet-triplet (T-T) gaps and corresponding transition dipole moments are given. Goutermann et al. [52] observed a weak T-T absorption at 1.41 eV and a high energy T-T absorption at 1.58 eV with high intensity in case of TPPZn. Sapunov et al. observed a peak at 1.53 eV for the same system in dimethyl phthalate solvent [42] while Pileni et al. observed peaks at 1.48 eV and 1.68 eV in DODAC solution of TPPZn. Goutermann et al. also measured the phosphorescence of (TPP)SnCl2, which exhibits similar behavior as TPPZn. DMRG results for qM = 2 have the first T-T transition at 1.27 eV and the second at 1.59 eV. The first transition is red-shifted compared to the experimental value. In our calculation we observe that the intensity of the first peak is comparable to the second peak. Other higher excited states have relatively weak intensities.

As the oxidation state of the metal ion increases, the first T-T gap remains almost a constant at 1.27 eV up to qM = 3 and then it increases for charge qM = 4 and 5. All the T-T gaps for charge qM = +2 and qM = +3 are similar. For charge qM = 4, the first observable transition is at 2.39 eV. For qM = 5, all the T-T transitions have significant transition dipoles.

V. NONLINEAR OPTICAL PROPERTIES OF PORPHINES

Hitherto, the dynamical NLO response of porphines has been studied using a sum-over-state (SOS) method in conjunction with restricted CI studies. As has been stated before, DMRG method is far superior to other many-body technique for quasi-one-dimensional systems. Besides, the DMRG method has been combined with the CV method to bypass computing only a part of the excited state spectrum as required in the SOS method. The CV method incorporates the full excitation spectrum in the truncated DMRG basis, which in our scheme corresponds to about 45,000 excited states for the DMRG cut-off of m = 210.

We have calculated the linear and third order nonlinear optic coefficients corresponding to third harmonic generation (THG). These response coefficients have been calculated at three different frequencies. These computational results have been obtained for both FBP and regular metalloporphines.
TABLE X: Tumbling averaged THG coefficient γ_{av} in 10^3 a.u. for different excitation frequencies and oxidation states of the central metal ion.

q_M	ω	γ_{av} Real (γ)	γ_{av} Imag(γ)
0.0	0.65	158.20	0.00
0.65	1.17	220.14	0.01
1.0	0.8	1276.63	0.04
1.17	1367.07	1.05	
2.0	0.8	1122.09	0.20
1.17	1076.71	0.38	
3.0	0.8	1599.05	1.08
1.17	1117.39	0.13	
4.0	0.8	2148.68	1.32
1.17	1756.68	0.88	
5.0	0.8	3171.83	1.60
1.17	3531.41	4.75	

The accuracy is typically better than 1% for dominant components away from resonances.

As shown in the Fig. 6, tumbling averaged linear polarizability α_{av} increases quadratically with increasing oxidation state, q_M, on the metal ion at all the frequencies we have studied. However, there seems to be saturation in the α_{av} value for $q_M > 3$, at all frequencies. This trend seems to be consistent with the optical gaps and associated transition dipole moments for the low-lying states for different q_M values, although quantitative inference about α_{av} cannot be arrived at based on the few low-lying state properties we have computed.

The tumbling averaged THG coefficients (γ_{av}), are presented in Table X. The THG coefficients, at all the three frequencies we have computed are about one order of magnitude smaller for FBP than regular metalloporphines. Increase in q_M leads to increase in γ_{av}, away from resonances. γ_{av} value for $q_M = 1, 2$ and 3 are very similar and much larger than the FBP values. For $q_M > 3$, there is a large increase in γ_{av}, with q_M. Thus metallo-porphines with large oxidation state on the metal ion are expected to exhibit large THG responses.

VI. CONCLUSION

In Summary, we have employed the symmetrized DMRG method for studying the linear and nonlinear optical properties of FBP and metallo-porphines within an interacting π-electron model. We note that the computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. From our bond order calculation, we conclude that porphine has 18-annulenic structure in the ground state and the molecule gets expanded upon excitation. We have modelled the metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D_{4h} symmetry and hence more degenerate excited states. The ground state of Metalloporphines show 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients.

Acknowledgments. MK thanks UGC India for financial support. SR thanks DST India for funding through different programmes.

[1] K. S. Suslick, N. A. Rakow, M. E. Kosal, and J-H. Chou, J. Porphyrins and Phthalocyanines, 4, 407 (2000).
[2] D. A. Parthenopoulos, and P. M. Rentzepis, Science, 245, 843 (1989).
[3] J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, D. A. Parthenopoulos, and P. M. Rentzepis, Science.
[4] K. S. Suslick, S. V. D-Jeffries, In Comprehensive Supramolecular Chemistry: Bioinorganic Systems, 5, by Ed. K. S. Suslick, 733 (1996).
[5] T. S. Mang, T. J. Doughty, W. R. Potter, D. G. Boyle, S. Sommer, and J. Moan, Photochem. Photobiol., 45, 501 (1987).
[6] S.-Y. Wong, R. W.-Y. Sun, N. P. -Y. Gratzel Chung, C.-L. Lin, and C.-M Che., Chem. Commun., 28, 3544 (2005).
[7] Md. K. Nazeeruddin, R. H. Baker, D. L. Officer, W. M. Campbell, A. K. Burrell, and M. Gratzel, Langmuir, 20, 6514 (2004).
[8] M. Cinchetti, S. Neuschwander, A. Fischer, A. Ruffing, S. Mathias, J. Wstenberg and M. Aeschlimann, Phys. Rev. Lett., 104, 217602 (2010); M. Cinchetti, K. Heimer, J. Wstenberg, O. Andreyev, M. Bauer2, S. Lach1, C. Ziegler, Y. Gao and M. Aeschlimann, Nature Materials 8, 115 (2009).
[9] S. Stepanow, A. Mugarza, G. Ceballos, P. Moras, J. C. Cezar, C. Carbone, and P. Gambardella, Phys. Rev. B 82, 014405 (2010).
[10] C. Isvoranu, B. Wang, K. Schulte, E. Ataman , J. Knudsen, J. N. Andersen, M. L. Bocquet and J. Schnadt, J. Phys. Condens. Matter, 22, 472002 (2010).
[11] N. Atodiresei, V. Caciuc, P. Lazic, S. Bigel, Phys. Rev. Lett. 102, 136809 (2009); N. Atodiresei, J. Brede, P. Lazic, V. Caciuc, G. Hoffmann, R. Wiesendanger, S. Bigel, Phys. Rev. Lett. 105, 066601 (2010).
