Searches for squarks and gluinos with the ATLAS detector

Kazuki Todome and on behalf of the ATLAS collaboration

INFN Bologna, V.le C. Berti Pichat 6/2, 40127 Bologna, Italy

E-mail: kazuki.todome@cern.ch

Received 29 April 2020, revised 13 July 2020
Accepted for publication 30 July 2020
Published 10 August 2020

Abstract

Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This report summarizes recent results on searches for supersymmetric squarks and gluinos, including third-generation squarks produced directly or via decay of gluinos, using data collected by the ATLAS detector at the LHC. Some models of supersymmetry, including models with R-parity violation, predict that the lightest supersymmetric particle will decay back into Standard Model particles, removing the classical missing transverse momentum signature. These more difficult signatures have also been investigated, and results from these searches are presented.

Keywords: SUSY, LHC, ATLAS, particle physics

(Some figures may appear in colour only in the online journal)

1. Introduction

The standard model (SM) is a very successful model in explaining phenomena observed in particle physics. However, there are still some observed phenomena which cannot be explained only by SM, e.g. the hierarchy problem and dark matter [1]. To explain those phenomena, many extensions to the SM have been proposed. Supersymmetry (SUSY) is one of the most promising extensions to the SM [2]. It introduces a new symmetry associating a fermion/boson Supersymmetric partner to each SM boson/fermion. This symmetry needs to be broken to explain the non-degeneracy of SM and SUSY particles, however, if it is not violated the lightest SUSY particle provides a natural candidate for dark matter, and the new symmetry between fermions and bosons may solve both issues with the SM mentioned previously.

To test SUSY models, a large number of searches for the introduced super-partners have been performed [3]. Since the mass spectrum of SUSY particles depends on the SUSY parameters, various SUSY particles have been searched for. One of the types of SUSY particle are the electroweakinos, the mixture of super-partners of Higgs and gauge bosons. Those are represented as mass eigenstates by \( \tilde{\chi}_i^0 (i = 1, 2, 3, 4) \) (neutralinos) for neutral particles and \( \tilde{\chi}_i^\pm (i = 1, 2) \) (charginos) for charged particles. The other types of SUSY particles are squarks (\( \tilde{q} \)), the super-partners of the quarks, and gluinos (\( \tilde{g} \)), the partners of the gluons. In this report, searches for the production of squarks and gluinos associated also to electroweakinos at the ATLAS experiment [4] are reported. ATLAS is a multi-purpose detector located at one of the interaction points of the Large Hadron Collider (LHC) operating at CERN\(^1\). Since 2015, the experiment has been running with a center-of-mass energy of \( \sqrt{s} = 13 \text{ TeV} \). The analyses introduced here are based on 139 fb\(^{-1}\) of proton-proton collision data collected in 2015–2018.

In SUSY searches, events are selected based on reconstructed objects characterizing the SUSY process. Since most of the SUSY models assume R-parity conservation, the lightest SUSY particle (LSP) cannot decay. In the ATLAS detector, its presence is inferred from missing transverse momentum \( p_T^{\text{miss}} \) or simply its magnitude \( E_T^{\text{miss}} \). Therefore, \( E_T^{\text{miss}} \) is one of the main discriminants used to select signal events. Very useful objects are jets: as the targets of the reported searches are strongly interacting particles, a large number of jets are expected in the final state making jet properties very useful for signal selection. In the case that a \( b \)-quark is expected in a SUSY process, \( b \)-tagged jets are also considered. For some targeted processes, the selection is

---

\(^1\) https://atlas.cern/discover/collaboration.
refined by using also the invariant mass of some of the reconstructed objects. One example is $m_{\text{eff}}$, the invariant mass of all considered objects in the analyses. In final states including leptons, the requirement of a reconstructed lepton is used to strongly reduce QCD background. Those requirements are used to construct the signal regions.

The SUSY processes sharing the same final state can be probed using a common analysis setup to evaluate backgrounds. Therefore, some analyses target several processes, while some analyses are designed to improve sensitivity for specific scenarios. In section 2, the analysis for squark\(^2\) and gluino production with final states including jets is presented. In section 3, the analysis designed for bottom, which is the super-partner of the $b$-quark, decaying to multi-$b$ quarks, is described. In contrast to the first two, the analyses reported from section 4 are for SUSY processes including lepton(s). In section 4, the analysis for SUSY processes with final states including same-sign leptons is reported. In this analysis, an R-parity violation model is also considered. Finally, the analyses reported in section 5 and section 6 are designed for stop, which is the super-partner of the top quark, decaying to a $Z$ boson and via a 3-body decay mode, respectively.

\section{2. Search for squarks and gluinos decaying to jets}

In this section, the search for squarks and gluinos decaying to jets [5] is described. In this search the five scenarios shown in figure 1 are considered as the target scenarios: 1(a) squark pair production direct decay ($\tilde{q} \rightarrow q \tilde{\chi}^0_1$), 1(b) squark pair production one step decay ($\tilde{q} \rightarrow q' \tilde{\chi}^+_1 \rightarrow qW\tilde{\chi}^0_1$), 1(c) gluino pair production direct decay ($\tilde{g} \rightarrow q\bar{q} \tilde{\chi}^0_1$), 1(d) gluino pair production one step decay ($\tilde{g} \rightarrow qg' \tilde{\chi}^+_1 \rightarrow q'W\tilde{\chi}^0_1$) and 1(e) inclusive pair production, including squark-gluino pair production, with direct decays. These scenarios share a topology with multiple jets and large $E_T^{\text{miss}}$ but no leptons in the final state. Those scenarios have been probed in the previous search using 36.1fb\(^{-1}\) of $\sqrt{s} = 13$ TeV of proton-proton collision data collected by ATLAS [6].

An advantage of this search is the large signal yields due to the high predicted production cross section. However, huge irreducible backgrounds are also expected. To handle the large backgrounds, two approaches are employed.

One approach is the multi bin search. In this approach, shapes of signal kinematics evaluated with simulation are used. Some kinematic variables, e.g. $m_{\text{eff}}$, show different shapes between the signal and the backgrounds. The multiple regions are defined by binning the kinematic space to enhance those differences. The binned multiple regions are simultaneously fitted.

Figure 2 shows the $m_{\text{eff}}$ distributions, one of the variables used for binning. This approach considers three different scenarios: 2(a) $\tilde{q} \tilde{q}$ direct decay with large $\Delta m(\tilde{q}, \tilde{\chi}^0_1)$ (MBSSd), 2(b) $\tilde{g} \tilde{g}$ direct decay with large $\Delta m(\tilde{g}, \tilde{\chi}^0_1)$ (MB-Ggd) and 2(c) inclusive scenario with compressed mass gap (MB-C). For each scenario, the region is binned based on $m_{\text{eff}}$, number of jets and $E_T^{\text{miss}}/H_T$, where $H_T$ is the scalar sum of the transverse momenta of all jets.

The other approach is based on a multivariate analysis using a Boosted Decision Tree (BDT). This approach considers the $\tilde{g} \tilde{g}$ direct decay (BDT-Ggd) and one step decay (BDT-GGo). Both scenarios categorize signal models into four groups based on the $\Delta m(\tilde{g}, \tilde{\chi}^0_1)$ of the model. Then the BDT is separately trained using up to 12 variables, selected among $E_T^{\text{miss}}$, $m_{\text{eff}}$, aplanarity, $p_T$ and $\eta$ of selected jets. Figure 3 shows distributions of BDT scores for two groups. The scores are used for the signal region definitions.

Figures 2 and 3 show the expected backgrounds and data. As shown in those figures, no significant deviation from SM expectation is found. Model-dependent fits are performed to evaluate 95% CL exclusion limits for each approach. The limits are combined by selecting the best value. Figure 4 shows the exclusion limits for the scenarios except for the inclusive production with direct decays, and figure 5 shows the exclusion limits for the inclusive production with direct decay scenario.

For the $\tilde{q} \tilde{q}$ direct decay, the limit of $m(\tilde{\chi}^0_1)$ reaches up to 850 GeV for $m(\tilde{q}) = 1300$ GeV, as shown in figure 4(a). For the massless $\tilde{\chi}^0_1$ scenario, squark masses, $m(\tilde{q})$, up to 1940 GeV are excluded by the multi bin search. For the massless $\tilde{\chi}^0_1$ scenario, the excluded limit is extended by 410 GeV from the previous search.

The limit for the $\tilde{g} \tilde{g}$ direct decay is shown in figure 4(b). The diagonal region up to gluino masses, $m(\tilde{g})$,
of about 1000 GeV are excluded by the multi bin search for the compressed mass gap scenario (MB-C). For $m(\tilde{\chi}_1^0)$ above 1160 GeV, the limit for $m(\tilde{g})$ reaches up to 1700 GeV as obtained by the BDT search. For the massless $\tilde{\chi}_1^0$ scenario, gluino masses, $m(\tilde{g})$, up to 2350 GeV are excluded by the multi bin search. For the massless $\tilde{\chi}_1^0$ scenario, the excluded limit is extended by 220 GeV from the previous search.

The limits for the $\tilde{q} \tilde{q}$ one step decay are shown in figure 4(c) with the assumption of $m(\tilde{\chi}_1^0) = (m(\tilde{q}) + m(\tilde{\chi}_1^0))/2$ and figure 4(d) with the assumption of $m(\tilde{\chi}_1^0) = 60$ GeV. The diagonal region, shown in figure 4(c), up to $m(\tilde{q})$ and $m(\tilde{\chi}_1^0)$ of about 700 GeV are excluded by the multi bin search for the compressed mass gap scenario (MB-C). For the massless $\tilde{\chi}_1^0$ scenario, squark masses, $m(\tilde{q})$, up to 1590 GeV are excluded, which is extended by 440 GeV from the previous search. With the fixed $m(\tilde{\chi}_1^0)$ assumption, squark masses, $m(\tilde{q})$, up to 1570 GeV are excluded, which is extended by 470 GeV from the previous search.

The limits for the $\tilde{g} \tilde{g}$ one step decay are shown in figure 4(e) with the assumption of $m(\tilde{\chi}_1^0) = (m(\tilde{g}) + m(\tilde{\chi}_1^0))/2$ and figure 4(f) with the assumption of $m(\tilde{\chi}_1^0) = 60$ GeV. The diagonal region, shown in figure 4(e), up to $m(\tilde{g})$ and $m(\tilde{\chi}_1^0)$ of about 900 GeV are excluded by the multi bin search for the compressed mass gap scenario (MB-C). For the massless $\tilde{\chi}_1^0$ scenario, gluino masses, $m(\tilde{g})$, up to 2190 GeV are excluded, which is extended by 210 GeV from the previous search. With the fixed $m(\tilde{\chi}_1^0)$ assumption, gluino masses, $m(\tilde{g})$, up to 2150 GeV are excluded, which is extended by 300 GeV from the previous search.

The limits for scenario 1(e) are evaluated with three assumptions of $m(\tilde{\chi}_1^0)$. For the massless $\tilde{\chi}_1^0$ and $m(\tilde{q}) = m(\tilde{g}) < 3000$ GeV are excluded, which is extended by 1000 GeV from the previous search.
In this section, the search for sbottoms decaying to multi-$b$ quarks [7] is reported. The target scenario is shown in figure 6. Those scenarios have been probed in the previous search using 20 fb$^{-1}$ of $\sqrt{s}$ = 8 TeV of proton-proton collision data and 4.7 fb$^{-1}$ of $\sqrt{s}$ = 7 TeV of proton-proton collision data collected by ATLAS [8]. The final state is characterized by the presence of multiple $b$-jets and $E_T^{miss}$ but no leptons. By requiring the presence of $b$-tagged jets, non-$b$-jet QCD backgrounds can be suppressed. However, since the expected signal yield is small, it is required to select events efficiently.

The scenarios are categorized into three cases based on kinematics, and three Signal Regions A, B and C (SRA, SRB, SRC) are designed for those cases. SRA is for events where all jets are reconstructed (figure 6(a)). However, compressed scenarios have small efficiency in SRA. For compressed scenarios, two more regions are designed. SRB is for events with small $\Delta m(\tilde{b}, \tilde{c}_R)$ and an Initial State Radiation (ISR) jet (figure 6(b)). SRC is for events with small $\Delta m(\tilde{b}, \tilde{c}_R)$ without assuming an ISR jet (figure 6(c)). SRB is designed.
assuming signal with $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130$ GeV. SRC is designed assuming signal with $m(\tilde{\chi}_1^0) = 60$ GeV.

For signals considered in SRA, two b-jets from a Higgs are specified from reconstructed b-jets including the ones from sbottoms, as described in the following. First, $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$ is computed for all the b-jet pairs, and the pair with largest $\Delta R$ is selected. This pair is most likely to have been produced by the sbottom decay, as shown in figure 6(a). Therefore, they are removed from the Higgs-decay product candidates. Then, from the remaining b-jet pairs, the one with the smallest $\Delta R$ is considered, which is the most likely to have come from the Higgs decay. An invariant mass of the second pair is used for the selection. The evaluated invariant mass, shown in figure 7(a), should be above 80 GeV. The region is then divided into three regions based on $m_{\text{eff}}$, which is shown in figure 7(b): $1.5 > m_{\text{eff}} > 1.0$ GeV (low $m_{\text{eff}}$, SRA-L), $2.0 > m_{\text{eff}} > 1.5$ GeV (medium $m_{\text{eff}}$, SRA-M) and $m_{\text{eff}} > 2.0$ GeV (high $m_{\text{eff}}$, SRA-H).

For the signal considered in SRB, the b-jet pair associated with the sbottom is boosted by ISR. To allow for boosted sbottoms, only events with leading jet $p_T$ larger than 350 GeV are considered, as shown in figure 8(a). Then, an
attempt is made to reconstruct two boosted Higgs particles. As for SRA, $\Delta R$ is evaluated for all combinations of $b$-jets. In the case of signal considered in SRB, the pair showing the largest $\Delta R$ is most likely to be $b$-jets from a Higgs. So, the selected pair is considered as a Higgs candidate. Then, from the remaining $b$-jets, the largest $\Delta R$ pair is selected. The second pair is considered as another Higgs candidate. Based on those two Higgs candidates, the average invariant mass is evaluated. As shown in figure 8(b), the average invariant mass should be within 75 GeV to 175 GeV.

In contrast to the signals considered in SRA and SRB, the $\Delta R$ base approach is not efficient for the signal interested in

Figure 7. Kinematic distributions of (a) invariant mass evaluated as a Higgs candidate and (b) $m_{\text{eff}}$. Reproduced from [7]. © 2019 CERN for the benefit of the ATLAS Collaboration.

Figure 8. Kinematic distributions of (a) $p_T$ of the leading jet for SRB, (b) average of the invariant masses evaluated as Higgs candidates for SRB, and (c) object based $E_T^{\text{miss}}$ significance $S$ for SRC. Reproduced from [7]. © 2019 CERN for the benefit of the ATLAS Collaboration.
models: 11(a) $\tilde{b}_1 \rightarrow tW_3^0$, 11(b) $\tilde{t}_1 \rightarrow tW^+(W^+)\tilde{\chi}^0_1$, 11(c) $\tilde{g} \rightarrow q\bar{q}'WZ\tilde{\chi}^0_1$ and 11(d) $\tilde{g} \rightarrow t\bar{t}' \rightarrow tq'q'$. In this search, an R-parity violation model, i.e. scenario 11(d), is also considered. Those scenarios share the final states with two same-sign leptons or three leptons. Those scenarios have been probed in the previous search using $36.1 fb^{-1}$ of $\sqrt{s} = 13$ TeV of proton-proton collision data collected by ATLAS [11]. The advantage of this search is the limited sources of background with same-sign leptons in the SM. Instead, detector backgrounds need to be considered.

The first source of detector backgrounds is charge-flip, i.e. events where an opposite-sign pair of leptons is reconstructed as a same-sign pair due to the misidentified charge of one of the two leptons. The contribution from this source is evaluated by scaling the normalisation of data events with two opposite-sign leptons using the probability of mis-measurement of lepton charge. This probability is evaluated as $O(0.1\%)$ at $p_T = 100$ GeV for central electrons ($|y| < 1.4$) using simulation of $t\bar{t}$ events. Due to the small probability of charge misidentification, the contribution of charge-flip is considered to be minor in this search.

Another source of detector background is represented by fake or non-prompt (F/NP) leptons. The main sources of F/NP leptons are electroweak decays of hadrons. The contribution is evaluated using a matrix method [12]. In this method, in addition to signal lepton selection criteria, loosened lepton selection criteria are used. The number of events with signal lepton selection criteria $S$ is related to the proportion of events with F/NP leptons $F$ as

$$S = \epsilon (1 - F) + \zeta F,$$

where $\epsilon$ and $\zeta$ are the probabilities of prompt and F/NP leptons passing the signal lepton selection criteria, respectively. Since $S$ can be measured, if $\epsilon$ and $\zeta$ are known, $F$ can be evaluated. The probability $\epsilon$ is evaluated based on $t\bar{t}$ simulation, where $\zeta$ is evaluated using data taken in a region designed to enrich events with F/NP leptons.

The evaluated contributions in the region with loose selection from charge-flip and F/NP leptons are shown in figure 12(a), with the SM expected backgrounds based on simulation. In the figure, all events are categorized based on the number of $b$-jets and lepton type. In all categories, the expected number of events including events with charge-flip or F/NP leptons is close to that observed in data. In the same manner, the detector backgrounds are evaluated in the validation regions and signal regions, as shown in figure 12(b). As shown in the figure, no significant deviation is found from the background expectation. Model-dependent fits are performed to evaluate 95% CL exclusion limits.

Figure 13 shows a variety of exclusion limits. The limit for $\tilde{b}_1 \rightarrow tW_3^0$ with the assumption of $m(\tilde{\chi}^0_1) = m(\tilde{\chi}^0_1) + 100$ GeV is shown in figure 13(a). The limit for $\tilde{t}_1 \rightarrow tW^+(W^+)\tilde{\chi}^0_1$ with the assumption of $m(\tilde{t}_1) = m(\tilde{\chi}^0_1) + m_t = m(\tilde{\chi}^0_1) + 275$ GeV and $m(\tilde{\chi}^0_1) \approx m(\tilde{\chi}^0_1)$ is shown in figure 13(b). Both scenarios are excluded up to squark masses of 750 GeV. The limit for $\tilde{g} \rightarrow q\bar{q}'WZ\tilde{\chi}^0_1$ with the assumption of $m(\tilde{\chi}^0_1) = (m(\tilde{g}) + m(\tilde{\chi}^0_1))/2$ and $m(\tilde{\chi}^0_1) = (m(\tilde{\chi}^0_1) + m(\tilde{\chi}^0_1))/2$ is shown in
Figure 10. Exclusion limits for sbottoms decaying to multi-\(b\) quarks assuming (a) \(m(\tilde{c}_L^0) = 60\) GeV and (b) \(\Delta m(\tilde{c}_L^0, \tilde{c}_L^0) = 130\) GeV Reproduced from [7]. © 2019 CERN for the benefit of the ATLAS Collaboration.

Figure 11. Feynman diagrams of target scenarios for searches for SUSY processes with final states including same-sign leptons. (a) \(\tilde{b}_1 \rightarrow tW \tilde{c}_1\), (b) \(\tilde{t} \rightarrow W^+ (W^-) \tilde{c}_1\), (c) \(\tilde{g} \rightarrow q\bar{q}' W \tilde{c}_1\) and (d) \(\tilde{g} \rightarrow t\bar{t} \rightarrow tqq'\). Reproduced from [10]. © 2020 CERN for the benefit of the ATLAS Collaboration.

Figure 12. Expected contribution from SM physics and the evaluated contribution from charge-flip and F/NP leptons (a) in the region with loose event selection, and (b) in validation and signal regions. Observed data are shown by the solid points. The ratio between observed data and total expected backgrounds are shown in the bottom plot. Reproduced from [10]. © 2020 CERN for the benefit of the ATLAS Collaboration.

5. Search for stops decaying to Z boson

In this section, the search designed for stop pair production decaying to Z bosons [13] is presented. In this search, the
mass eigenstates from a mix of left-handed and right-handed stops are considered with \( \tilde{t}_1 \) being the lighter one and \( \tilde{t}_2 \) the heavier one. The following scenarios (shown in figure 14) are considered: 14(a) pair production of a \( \tilde{t}_1 \) decaying via \( \tilde{t}_1 \to t \tilde{\chi}_2^0 \to tZ (or h) \tilde{\chi}_1^0 \), and 14(b) pair production of a \( \tilde{t}_2 \) decaying via \( \tilde{t}_2 \to Z \tilde{t} \to Z b \bar{b} f f \tilde{\chi}_2^0 \). These scenarios share the final states with at least 3 leptons, multiple jets and \( E_T^{mis} \). By requesting at least 3 leptons, \( \bar{t} \bar{t} \) events, which are the largest background contribution for other stop searches, are significantly reduced. Those scenarios have been probed in the previous search using 36.1 fb\(^{-1}\) of \( \sqrt{s} = 13 \text{ TeV} \) proton-proton collision data collected by ATLAS [14].

For each scenario, two signal regions are designed to cover the possible kinematics of the decay. For \( \tilde{t}_1 \to t \tilde{\chi}_2^0 \to tZ (or h) \tilde{\chi}_1^0 \), the regions for the scenario with large and small \( \Delta (\tilde{t}_1, \tilde{t}_2) \) are denoted SR1A and SR1B, respectively. For \( \tilde{t}_2 \to Z \tilde{t} \to Z b \bar{b} f f \tilde{\chi}_2^0 \), the regions for the scenario with small and large \( \Delta (\tilde{t}_1, \tilde{t}_2) \) are designed as SR2A and SR2B, respectively. In the case of SR1A, target signals are expected to be with large \( \tilde{\chi}_2^0 \). The region is therefore designed with a parameter correlated with \( m(\tilde{\chi}_2^0) \). In the case of SR1B, target signals are expected to be with boosted \( \tilde{\chi}_2^0 \), so large momentum of leptons from boosted Z boson decayed from \( \tilde{\chi}_2^0 \) are required. In the case of SR2A, target signals are expected to be with soft Z boson, therefore upper limits on the momentum of leptons from Z boson are required. In the case of SR2B, target signals are expected to be with boosted objects in the final state, therefore energetic products in the final state are required.

Figure 15 shows the expected background and data in each SR. The F/NP lepton contribution is estimated using a matrix method, in the same way as described in section 4. As shown in the figure, no significant deviation from SM expectation is found. Model-dependent fits are performed to evaluate 95\% CL exclusion limits for each region. The limits are combined by selecting the best value.

Figure 16 shows the evaluated exclusion limits. The limit for \( \tilde{t}_1 \to t \tilde{\chi}_2^0 \to tZ (or h) \tilde{\chi}_1^0 \) is shown in figure 16(a). For \( m(\tilde{\chi}_2^0) > 250 \text{ GeV} \), lighter top masses, \( m(\tilde{t}_1) \), up to about 1050 GeV are excluded. The limit for \( \tilde{t}_2 \to Z \tilde{t} \to Z b \bar{b} f f \tilde{\chi}_2^0 \) is shown in figure 16(b). For \( m(\tilde{\chi}_2^0) \sim 350 \text{ GeV} \), heavier top masses, \( m(\tilde{t}_2) \), up to about 875 GeV are excluded. As shown in those limit figures, the results are improved from the previous figures.
Figure 14. Feynman diagrams and kinematics of target scenarios for the search for stops decaying to Z bosons. (a) decaying via $\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0 \rightarrow tZ$ (or $h\tilde{\chi}_1^0$), (b) decaying via $\tilde{t}_2 \rightarrow Z\tilde{t} \rightarrow Zb\tilde{\chi}_1^0$. Reproduced from [13]. © 2019 CERN for the benefit of the ATLAS Collaboration.

Figure 15. Observed data and expected backgrounds for stops decaying to Z bosons. For SR1A, SR1B and SR2B, the regions are binned by $E_T^{\text{miss}}$ and $p_T$. Reproduced from [13]. © 2019 CERN for the benefit of the ATLAS Collaboration.

Figure 16. Exclusion limits for stops decaying to a Z boson. (a) $\tilde{t}_1 \rightarrow t\tilde{\chi}_2^0 \rightarrow tZ$ (or $h\tilde{\chi}_1^0$), (b) $\tilde{t}_2 \rightarrow Z\tilde{t} \rightarrow Zb\tilde{\chi}_1^0$. Reproduced from [13]. © 2019 CERN for the benefit of the ATLAS Collaboration.
6. Search for stops in the 3-body decay mode

In this section, the search for stops in the 3-body decay mode [15] is introduced. This search is dedicated to stop pair production with direct 3-body decays, as shown in figure 17(a). This scenario is realized as a direct decay scenario in the case that \( \tilde{c}_D \) is larger than the top mass (otherwise it undergoes 2-body decay, \( \tilde{c}_t \)), and smaller than the W mass and b mass (otherwise it undergoes 4-body decays, \( \tilde{c}_c \)), as shown in figure 17(b). Including 2-body decay and 4-body decay scenarios, those scenario have been probed in the previous search using 36.1 fb\(^{-1}\) of \( \sqrt{s} = 13 \) TeV proton-proton collision data collected by ATLAS [16].

This search is characterized by a signature including one leptonic decay of the W, at least 4 jets and \( E_T^{\text{miss}} \). This scenario is hard to separate from SM \( \bar{t}t \) decays, so a machine learning approach is used to achieve a better signal to background ratio. A neural network is trained using simulation samples. Then, an output score is used as a criterion to define the signal region. Figure 18(a) shows the score for signals and backgrounds. A score above 0.65 is required for the signal region, while a score between 0.6 to 0.65 is used as a validation region criterion, and a score between 0.4 to 0.6 is used as a control region criterion. The \( E_T^{\text{miss}} \) distribution of the control region and the \( m_T \) distribution of the validation region are shown in figures 18(b) and (c), respectively. In figures 18(b) and (c), data are also shown by the solid points, and good agreement between data and expected backgrounds can be seen.

Figure 19(a) shows the data in the SR, CR and VR. As shown in the figure, no significant deviation from SM expectation is found. Model-dependent fits are performed to evaluate 95% CL exclusion limits. For the limit evaluation, 2-body and 4-body scenarios are also considered.
evaluated limits are shown in figure 19(b). The limit on \( m(\tilde{t}) \) reaches up to 720 GeV, which is improved by 220 GeV form the previous search for the 3-body decay.

7. Conclusions

Five SUSY searches using 139 fb\(^{-1}\) of proton-proton collision data at a center-of-mass energy of \( \sqrt{s} = 13 \) TeV collected in 2015 – 2018 by the ATLAS detector at the LHC are introduced. No significant deviation from SM expectation in any search is observed. The first search, for the squarks and gluinos decaying to multi-jets, excludes \( m(\tilde{q}) \) up to 1940 GeV and \( m(\tilde{g}) \) up to 2350 GeV. The second search, for the sbottom decaying to multi-b quarks, excludes \( m(\tilde{b}) \) up to 1.5 TeV. The third search, for SUSY processes with final states including same-sign leptons, excludes \( m(\tilde{t}) \) up to 1140 GeV and \( m(\tilde{\chi}^0_1) \) up to 875 GeV. The fifth search, for stops via a direct 3-body decay, excludes \( m(\tilde{t}) \) up to 720 GeV. All five searches improve the exclusion limits. Especially the search for the sbottom decaying to multi-b quarks improves the limit significantly as this is the first search using \( \sqrt{s} = 13 \) TeV data. The search for stops via a direct 3-body decay also extends the limit using a machine learning approach.

ORCID iDs

Kazuki Todome © https://orcid.org/0000-0003-2445-1132

References

[1] Ade P A R et al 2016 Planck 2015 results. XIII. Cosmological parameters Astron. Astrophys. 594 A13
[2] Martin S P 2010 A Supersymmetry primer Adv.Ser.Direct. High Energy Phys. 21 1–153 arXiv:hep-ph/9709356
[3] ATLAS Collaboration Summary plots from the atlas super symmetry physics group (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/)
[4] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN large Hadron collider JINST 3 S08003
[5] ATLAS Collaboration 2019 Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb\(^{-1}\) of \( \sqrt{s} = 13 \) TeV pp collision data with the ATLAS detector (ATLAS-CONF-2019-040)
[6] ATLAS Collaboration 2018 Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb\(^{-1}\) of \( \sqrt{s} = 13 \) TeV pp collision data with the ATLAS detector Phys. Rev. D 97 112001
[7] ATLAS Collaboration 2019 Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, \( b \)-jets and missing transverse momentum J. High Energy Phys. 12 060
[8] ATLAS Collaboration 2015 ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider Eur. Phys. J. C 75 510
[9] ATLAS Collaboration 2016 ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider Eur. Phys. J. C 76 153 Erratum:
[10] ATLAS Collaboration 2019 Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods ATL-PHYS-PUB-2019-029
[11] ATLAS Collaboration 2017 Search for supersymmetry in final states with two same-sign or three leptons and jets using
36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data with the ATLAS detector. *J. High Energy Phys.* 09 084

ATLAS Collaboration 2019 Erratum to: Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data with the ATLAS detector *J. High Energy Phys.* 08 121

[12] ATLAS Collaboration 2014 Search for supersymmetry at $\sqrt{s} = 8$ tev in final states with jets and two same-sign leptons or three leptons with the atlas detector *J. High Energy Phys.* 06 035

[13] ATLAS Collaboration 2019 Search for top squarks in events with a Z boson using 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector ATLAS-CONF-2019-016

[14] ATLAS Collaboration 2017 Search for direct top squark pair production in final states with two leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector *Eur. Phys. J.* C 77 898

[15] ATLAS Collaboration 2019 Search for direct top squark pair production in the 3-body decay mode with a final state containing one lepton, jets, and missing transverse momentum in $\sqrt{s} = 13$ TeV $pp$ collision data with the ATLAS detector ATLAS-CONF-2019-017

[16] ATLAS Collaboration 2018 Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data with the ATLAS detector *J. High Energy Phys.* 06 108