Universal Dependencies v1: A Multilingual Treebank Collection

Joakim Nivre*, Marie-Catherine de Marneffe*, Filip Ginter*, Yoav Goldberg†
Jan Hajic‡ Christopher D. Manning*, Ryan McDonald*, Slav Petrov§
Sampo Pyysalo*, Natalia Silveira*, Reut Tsarfaty*, Daniel Zeman†

*Uppsala University joakim.nivre@lingfil.uu.se †The Ohio State University mcdm@ling.ohio-state.edu
‡Bar-Ilan University yoav.goldberg@gmail.com §Stanford University {hajic,zeman}@ufal.mff.cuni.cz
§Google Inc. {ryanmcd,slav}@google.com ¶University of Cambridge sampo@pyysalo.net
␠The Open University of Israel reutts@openu.ac.il

Abstract

Cross-linguistically consistent annotation is necessary for sound comparative evaluation and cross-lingual learning experiments. It is also useful for multilingual system development and comparative linguistic studies. Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. In this paper, we describe v1 of the universal guidelines, the underlying design principles, and the currently available treebanks for 33 languages.

Keywords: treebanks, dependency, annotation, multilingual, cross-linguistic, universal.

1. Introduction

Multilingual research on syntax and parsing has for a long time been hampered by the fact that annotation schemes vary enormously across languages, which has made it virtually impossible to perform sound comparative evaluations and cross-lingual learning experiments. A striking illustration of this problem can be found in Figure 1, which shows three parallel sentences in Swedish, Danish and English, annotated according to the guidelines of the Swedish Treebank (Nivre and Megyesi, 2007), the Danish Dependency Treebank (Kromann, 2003), and Stanford Typed Dependencies (de Marneffe et al., 2006), respectively. The syntactic structure is identical in the three languages, but the percentage of shared dependency relations across pairs of languages is at most 40% (and 0% across all three languages). As a consequence, a parser trained on one type of annotation and evaluated on another type will be found to have at least a 60% error rate when it functions perfectly.

The Universal Dependencies (UD) project seeks to tackle this problem by developing cross-linguistically consistent treebank annotation for many languages, aiming to capture similarities as well as idiosyncracies among typologically different languages (e.g., morphologically rich languages, pro-drop languages, and languages featuring clitic doubling). In this way, we hope to be able not only to support comparative evaluation and cross-lingual learning but also to facilitate multilingual natural language processing and enable comparative linguistic studies. To serve all these purposes, the framework needs to have a solid linguistic foundation and at the same time be transparent and accessible to non-specialists.

Several separate initiatives exist to build consistent resources for many languages, and the UD project is a merger of some of the initiatives. It combines the (universal) Stanford dependencies (de Marneffe et al., 2006; de Marneffe and Manning, 2008; de Marneffe et al., 2014), the universal Google dependency scheme (Universal Dependency Treebanks) (McDonald et al., 2013), the Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tag sets (Zeman, 2008) used in the HamleDT treebanks (a project that transforms existing treebanks under a common annotation scheme, Zeman et al. 2012). UD is thus based on common usage and existing de facto standards, and is intended to replace all the previous versions by a single coherent standard.¹ The general philosophy is to provide a universal inventory of categories and guidelines to facilitate consistent annotation of similar constructions across languages, while allowing language-specific extensions when necessary.

In this paper, we present version 1 of the universal guidelines and explain the underlying design principles. We give an overview of the 37 treebanks that constitute the latest release (v1.2), representing 33 different languages, and conclude with a few words about the future of the project. Guidelines for specific languages can be found at http://universaldependencies.org.

¹The UDT project has been deprecated and redirects to UD. HamleDT still exists as an independent project but uses the UD standard from version 3.0.
UD comprises two layers of annotation with diverse origins. The Google universal tag set used in the morphological layer grew out of the cross-linguistic error analysis based on the CoNLL-X shared task data by McDonald and Nivre (2007). It was initially used for unsupervised part-of-speech tagging by Das and Petrov (2011), and has been adopted as a widely used standard for mapping diverse tag sets to a common standard. The morphological layer also builds on Interset (Zeman, 2008), which started as a tool for conversion between morphosyntactic tag sets of multiple languages. It dates back to 2006 when it was used in the first experiments with cross-lingual delexicalized parser adaptation (Zeman and Resnik, 2008). The Stanford dependencies, used in the syntactic layer, were developed for English in 2005 and eventually emerged as the de facto standard for dependency analysis of English. They have since been adapted to a number of different languages (Chang et al., 2009; Bosco et al., 2013; Haverinen et al., 2013; Seraji and Resnik, 2014).

These resources have featured in other attempts at universal standards. The Google Universal Dependency Treebank (UDT) project (McDonald et al., 2013) was the first attempt to combine the Stanford dependencies and the Google universal part-of-speech tags into a universal annotation scheme: treebanks were released for 6 languages in 2013 (English, French, German, Spanish, Swedish and Korean) and for 11 languages in 2014 (Brazilian Portuguese, English, Finnish, French, German, Italian, Indonesian, Japanese, Korean, Spanish and Swedish). The first proposal for incorporating morphology was made by Tsarfaty (2013). The second version of HamleDT (Rosa et al., 2014) provided Stanford/Google annotation for 30 languages by automatically harmonizing treebanks with different native annotations. These efforts were followed by the development of the universal Stanford dependencies (USD), revising Stanford Dependencies for cross-linguistic annotations in light of the Google scheme (de Marneffe et al., 2014).

UD is the result of merging all these initiatives into a single coherent framework, based on the universal Stanford dependencies, an extended version of the Google universal tag set, a revised subset of the Interset feature inventory, and a revised version of the CoNLL-X format (which we call CoNLL-U). The first version of the annotation guidelines were released in October 2014. There have been three releases of treebanks, for 10 languages (January 2015), 18 languages (May 2015), and 33 languages (November 2015), respectively.

2. History

UD comprises two layers of annotation with diverse origins. The Google universal tag set used in the morphological layer grew out of the cross-linguistic error analysis based on the CoNLL-X shared task data by McDonald and Nivre (2007). It was initially used for unsupervised part-of-speech tagging by Das and Petrov (2011), and has been adopted as a widely used standard for mapping diverse tag sets to a common standard. The morphological layer also builds on Interset (Zeman, 2008), which started as a tool for conversion between morphosyntactic tag sets of multiple languages. It dates back to 2006 when it was used in the first experiments with cross-lingual delexicalized parser adaptation (Zeman and Resnik, 2008). The Stanford dependencies, used in the syntactic layer, were developed for English in 2005 and eventually emerged as the de facto standard for dependency analysis of English. They have since been adapted to a number of different languages (Chang et al., 2009; Bosco et al., 2013; Haverinen et al., 2013; Seraji and Resnik, 2014).

These resources have featured in other attempts at universal standards. The Google Universal Dependency Treebank (UDT) project (McDonald et al., 2013) was the first attempt to combine the Stanford dependencies and the Google universal part-of-speech tags into a universal annotation scheme: treebanks were released for 6 languages in 2013 (English, French, German, Spanish, Swedish and Korean) and for 11 languages in 2014 (Brazilian Portuguese, English, Finnish, French, German, Italian, Indonesian, Japanese, Korean, Spanish and Swedish). The first proposal for incorporating morphology was made by Tsarfaty (2013). The second version of HamleDT (Rosa et al., 2014) provided Stanford/Google annotation for 30 languages by automatically harmonizing treebanks with different native annotations. These efforts were followed by the development of the universal Stanford dependencies (USD), revising Stanford Dependencies for cross-linguistic annotations in light of the Google scheme (de Marneffe et al., 2014).

UD is the result of merging all these initiatives into a single coherent framework, based on the universal Stanford dependencies, an extended version of the Google universal tag set, a revised subset of the Interset feature inventory, and a revised version of the CoNLL-X format (which we call CoNLL-U). The first version of the annotation guidelines were released in October 2014. There have been three releases of treebanks, for 10 languages (January 2015), 18 languages (May 2015), and 33 languages (November 2015), respectively.

3. Annotation Guideline Principles

The syntactic annotation in UD is based on dependency, which is widely used in contemporary NLP, both for treebank annotation and as a parsing representation. It is also based on lexicalism, the idea that words are the basic units of grammatical annotation. Words have morphological properties and enter into syntactic relations, which is what the UD annotation is primarily meant to capture. To arrive at an adequate grammatical representation, it is important to note that syntactic wordhood does not always coincide with whitespace-separated orthographic units, and another important design consideration is that there should be a transparent relation between the original textual representation and the linguistically motivated word segmentation. We call this the recoverability principle.

To obtain a cross-linguistically consistent and transparent annotation, we want to maximize the parallelism between languages and make sure that the same construction is annotated in the same way across languages. At the same time, we do not want to go too far and, in particular, we do not want to annotate things that do not exist in a language simply because they exist in other languages. The idea is to use a universal pool of structural and functional categories that languages select from. Moreover, it should be possible to refine the analysis by adding language-specific subtypes of universal categories.

Figure 2 uses the French sentence Toutefois, les filles adorent les desserts au chocolat (However, the girls love chocolate desserts) to exemplify the different UD annotation layers, which are described in more detail in the following sections.

3.1. Word Segmentation

Following the lexicalist view, the basic annotation units in UD are syntactic words (not phonological or orthographic words). Concretely, clitics are split off (e.g., Spanish dámelo ‘give me it’ = dà me lo) and contractions are undone (e.g., French au = à le; see Figure 2) when this is necessitated by the syntactic analysis, but for recoverability the original tokens are included as well. UD currently does not allow words with spaces, and even though the lexicalist view could be taken to imply that multiword expressions should be treated as single words, multiword expressions are annotated using special dependency relations, rather than by collapsing multiple tokens into one.

3.2. Morphology

The morphological specification of words in UD consists of three levels of information: a lemma, a part-of-speech
Table 1: Part-of-speech tags in UD v1. (Bold indicates addition to the original Google tag set, including AUX and PROPN which were added in UDT.)

Open class words	Closed class words	Other
ADJ adjective	ADP preposition/postposition	PUNCT punctuation
ADV adverb	AUX auxiliary	SYM symbol
INTJ interjection	CONJ coordinating conjunction	X unspecified POS
NOUN noun	DET determiner	
PROPN proper noun	NUM numeral	
VERB verb	PART particle	
PRON pronoun	SCONJ subordinating conjunction	

Table 2: Morphological features in UD v1.

Lexical	Inflectional
PronType	(Nominal)
Gender	VerbForm
NumType	(Verbal)
Animacy	Mood
Poss Number	Tense
Reflex Case	Aspect
Definite	Voice
Degree Person	Negative

3.3. Syntax

In v1, UD contains 40 grammatical relations between words, listed in Table 3.

Grammatical Relations

The organization of the relations distinguishes between three types of structure: nominals, clauses and modifier words. The scheme also makes a distinction between core arguments (e.g., subject and object) and other dependents, but does not attempt to distinguish complements vs. adjuncts. By design, UD indicates in the dependency labels whether dependents are phrases or clauses, thus distin-
The UD scheme has a rich taxonomy of noun dependents inherited from the Stanford dependencies, as well as relations to capture phenomena appearing in non-edited or informal texts (such as goes with connect multiple tokens that correspond to a single standard word (e.g., “hand some” for “handsome”) or replandum to indicate disfluencies overridden in a speech repair).

UD differentiates compounding from modification or complementation, and there are three relations for compounding. We use mwe for fixed grammaticized expressions with function words, left-headed (e.g., instead of: mwe(instead of, of), de facto: mwe(de, facto)). We use name for names constituted of multiple proper nouns, left-headed. That is, name would be used between the words of Hillary Rodham Clinton but not to replace the usual relations in a phrasal or clausal name like The Lord of the Rings. And we use compound to label other types of multi-word lexemes, with headedness according to the language and/or compound type. Thus, compound is used for any kind of X^0 compounding; noun compounds (e.g., phone book), but also verb and adjective compounds that are more common in other languages (such as Persian or Japanese light verb constructions); for numbers (e.g., three thousand books gives compound(thousand, three)); for particles of phrasal verbs (e.g., put up: compound(put, up)).

Relations between Content Words

Each word depends either on another word in the sentence or on a notional “root” of the sentence, following three principles: content words are related by dependency relations; function words attach to the content word they further specify; and punctuation attaches to the head of the phrase or clause in which it appears, as illustrated in Figure 2. Giving priority to dependency relations between content words increases the probability of finding parallel structures across languages, since function words in one language often correspond to morphological inflection (or nothing at all) in other languages.

These principles lead to the following treatment of copulae and auxiliaries: they are not the head of a clause, but depend on a lexical predicate, as in (1a) and (2a). Such treatment maximizes the parallelism between dependency trees in different languages: compare (1a) and (1b) where Russian does not have an overt copula. Similarly, compare (2a) and (2b) where the future tense in French can be marked morphologically.

To have relations between content words, any case-marking element (including prepositions, postpositions, and clitic case markers) is treated as a dependent of the noun it attaches to or introduces. As can be seen in (3a) and (3b), nmod labels the relation between the two content words office and Chair, whereas the preposition or the possessive marker is a case depending on its complement. In general, nmod expresses some form of oblique or adjunct relation which can be further specified by the case or be morphologically marked as in (3c). Coordination follows a similar treatment: the leftmost conjunct is the head, and other conjuncts as well as the coordinating conjunction depend on it, as in (4).

Example Sentences

(1) a. Ivan is the best dancer
 b. Russian:

 Ivan lučšij tancor

(2) a. Ivan will participate in the show
 b. French:

 Ivan participera au spectacle

(3) a. the Chair’s office
 b. the office of the Chair
 c. Greek:

 to the-NOM
 grafeio
 tou
 proédrou

(4) gold, silver and bronze

These principles provide parallelism between different constructions across and within languages, as emphasized in (3) where the different constructions of possessive (possessive clitic, preposition or morphologically marked) are all parallel. For instance in English, we also obtain parallel representations between prepositional phrases and subordinate clauses, which are in practice often introduced by a preposition, as in (5).

(5) a. Sue left after the rehearsal

```latex
\[
\text{Chair Scheme for UGT}\]
\text{relations between noun dependents}
```

(1a)	Ivan is the best dancer
(2a)	Ivan will participate in the show
(3a)	the Chair’s office
(4)	gold, silver and bronze
(5a)	Sue left after the rehearsal
The choice to make content words the backbone of the syntactic representations may seem to be at odds with the strong tendency in modern syntactic theory to give priority to functional heads, a tendency that is found in both constituency-based and dependency-based approaches to syntax (Brugé et al., 2012; Osborne and Maxwell, 2015). We believe, however, that this conflict is more apparent than real. The UD view is that we need to recognize both lexical and functional heads, but in order to maximize parallelism across languages, only lexical heads are inferable from the topology of our tree structures. Functional heads are instead represented as specifying features of content words, using dedicated relation labels, features which can alternatively be specified through morphological processes. In the dependency grammar tradition, this is very close to the view of Tesnière (1959), according to whom dependencies hold between nuclei that always contain a content word, and where function words combine with content words to form dissociated nuclei. Moreover, it seems highly compatible with the view dominant in typologically grounded syntactic theories such as that of Dixon (2009).

Enhanced Representation

The basic dependency structure is assumed to form a (possibly non-projective) tree but UD also allows additional dependencies in an enhanced dependency representation.2 The idea behind the enhanced dependency representation is to explicitly mark external subjects and the external role in relative clauses as well as to propagate relations over conjunctions, as shown in (6) where additional dependencies are indicated with dashed arrows below the sentence.

Language-specific Relations

In addition to universal relations, UD allows the use of language-specific subtypes to capture special phenomena in different languages. For instance, while the universal UD scheme has a single relation acl for adnominal clauses, several languages make use of the subtype acl:relcl to distinguish relative clauses as an important subtype of adnominal clauses. By design, we can always map back to the core label set by stripping the specific relations that appear after the colon. For a complete list of currently used language-specific relations, we refer to the UD website.

2Complete guidelines for the enhanced representations have not been worked out yet, and only one treebank (Finnish) uses them so far, but see Schuster and Manning (2016) for a concrete proposal for English.
Figure 3: The French sentence from Figure 2 in CoNLL-U format.

Figure 4: Examples of annotation visualization from UD documentation.

(Stenetorp et al., 2012). Figure 4 shows an example of the visualization. The treebanks can also be queried online using the SETS and PML TreeQuery tools (Luoto-lahti et al., 2015; Štěpánková and Pajas, 2010). These tools allow querying any of the UD treebanks, freely combining restrictions on the existence or absence of wordforms, lemmas, POS tags, morphological features, dependency labels, and subtrees. The results are shown in a graphical form in the browser, with the relevant tokens highlighted, or as a summary table with frequency counts.

4. Existing Treebanks

The release of UD treebanks in November 2015 (v1.2) comprises 37 treebanks representing 33 languages, listed in Table 4. All treebanks contain annotation of parts-of-speech and dependency relations. Most treebanks in addition provide lemmas and morphological features. There is variation in the treebank sizes. The treebanks are listed with descriptive statistics in Table 4, which gives the number of sentences (ranging from 600 sentences to almost 90,000), unsegmented tokens (ranging from about 9,000 tokens to well over 1.5 million tokens), segmented tokens (syntactic words), unique lemmas, unique part-of-speech tags, unique morphological Feature=Value pairs, unique dependency relations, and unique language-specific dependency relations. Zeros in the table indicate annotation layers that are still missing rather than language-specific properties. Similarly, some treebanks have not yet produced the syntactic word segmentation, resulting in identical numbers of unsegmented and segmented tokens.

Figure 5 is a screenshot from the web documentation of the UD treebanks in March 2016 (treebanks included in v1.2, as indicated by the check mark in the 7th column, as well as in progress and scheduled to be released in the future). Table 5 gives the mapping for genre icons used in Figure 5. Most treebanks are constituted of different genres. While newswire is quite present, there are other genres well represented in several languages such as web data (reviews, blogs), fiction and legal documents. As indicated in Figure 5, the extent to which the data has been manually annotated or automatically converted from existing treebanks varies, and there is a continuing effort to further improve the consistency of the annotation across languages.

5. Conclusion

The UD project aims at developing cross-linguistically consistent treebank annotation for many languages in order to support multilingual parsing research, as well as practical development of multilingual NLP systems and comparative linguistic studies of syntax. To date, we have produced a first version of the universal guidelines and released 37 treebanks where the guidelines have been applied to 33 different languages. According to Wikipedia, these languages cover almost 35% of native speakers in the world (adding Chinese would bring us up to almost 60%). Although there is still a strong bias towards contemporary Indo-European

Table 5: Genres present in the UD treebanks.

Icon in Figure 5	Genre
🌟	bible
🌟	blog
🌟	fiction
🌟	grammar examples
🌟	legal text
🌟	medical text
🌟	news
🌟	non-fiction
🌟	reviews
🌟	spoken
🌟	social (other user-generated content)
🌟	web
🌟	wikipedia

Figure 5: The French sentence from Figure 2 in CoNLL-U format.
languages in the sample, we are starting to see the emergence of treebanks for other language families as well as treebanks for classical languages.

We plan to continue with treebank releases twice a year to keep up the momentum of the project. In the near future, our main priority is to improve the consistency and completeness of annotations for all languages, but we are also eager to expand the sample of languages and welcome all new contributors to the project. As a medium-term goal we envisage an improved version of the universal guidelines, based on an analysis of issues that have arisen in the work on improving consistency across languages. Ideally, the next version of the guidelines should also cover the enhanced dependencies. In parallel to the development of guidelines and annotated corpora, finally, we hope to be able to release tools for tokenization, morphological analysis and syntactic parsing for all languages, as well as large-scale parsebanks (automatically parsed corpora).

Acknowledgements
We thank all contributors working on annotated corpora under the UD guidelines, to whom we owe a substantial part of the success and momentum achieved within the UD project so far: Željko Agić, Riyaz Ahmad, Maria Jesus Aranzabe, Masayuki Asahara, Aitziber Atutxa, Miguel Ballesteros, Cristina Bosco, Giuseppe G. A. Celano, Jinho
References

Bosco, C., Montemagni, S., and Simi, M. (2013). Converting Italian treebanks: Towards an Italian Stanford dependency treebank. In LAW & Interoperability with Discourse

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell, Oxford.

Laura Brugé, et al., editors. (2012). Functional Heads. The Cartography of Syntactic Structures, Volume 7. Oxford University Press.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual dependency parsing. In CoNLL, pages 149–164.

Chang, P.-C., Tseng, H., Jurafsky, D., and Manning, C. D. (2009). Discriminative reordering with Chinese grammatical relations features. In SSST, pages 51–59.

Das, D. and Petrov, S. (2011). Unsupervised part-of-speech tagging with bilingual graph-based projections. In ACL, pages 600–609.

de Marneffe, M.-C. and Manning, C. D. (2008). The Stanford typed dependencies representation. In Workshop on Cross-framework and Cross-domain Parser Evaluation. de Marneffe, M.-C., MacCartney, B., and Manning, C. D. (2006). Generating typed dependency parses from phrase structure parses. In LREC.

de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., and Manning, C. D. (2014). Universal Stanford dependencies: A cross-linguistic typology. In LREC, pages 4585–4592.

Dixon, R. M. (2009). Basic Linguistic Theory. Volume 1: Methodology. Oxford University Press.

Haverinen, K., Nyblom, J., Viljanen, T., Laippala, V., Kohonen, S., Missiliä, A., Ojala, S., Salakoski, T., and Ginter, F. (2013). Building the essential resources for Finnish: the Turku dependency treebank. Language Resources and Evaluation. In press. Available online.

Kromann, M. T. (2003). The Danish Dependency Treebank and the DTAG treebank tool. In TLT, pages 217–220.

Lipenkova, J. and Souček, M. (2014). Converting Russian dependency treebank to Stanford typed dependencies representation. In EACL.

Luotolahti, J., Kanerva, I., Pyysalo, S., and Ginter, F. (2015). SETS: scalable and efficient tree search in dependency graphs. In NAACL Demo, pages 51–55.

McDonald, R. and Nivre, J. (2007). Characterizing the errors of data-driven dependency parsing models. In Proceedings of EMNLP-CoNLL, pages 122–131.

McDonald, R., Nivre, J., Quirbach-Brundage, Y., Goldberg, Y., Das, D., Ganchev, K., Hall, K., Petrov, S., Zhang, H., Täckström, Ö., Bedini, C., Bertomeu Castelló, N., and Lee, J. (2013). Universal dependency annotation for multilingual parsing. In ACL.

Nivre, J. and Megyesi, B. (2007). Bootstrapping a Swedish treebank using cross-corpus harmonization and annotation projection. In TLT, pages 97–102.

Osborne, T. and Maxwell, D. (2015). A historical overview of the status of function words in dependency grammar. In Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015), pages 241–250.

Petrov, S., Das, D., and McDonald, R. (2012). A universal part-of-speech tagset. In LREC.

Pyysalo, S. and Ginter, F. (2014). Collaborative development of annotation guidelines with application to Universal Dependencies. In SLTC.

Rosa, R., Mašek, J., Mareček, D., Popel, M., Zeman, D., and Žabokrtský, Z. (2014). HamleDT 2.0: Thirty dependency treebanks stanfordized. In LREC, pages 2334–2341.

Schuster, S. and Manning, C. D. (2016). Enhanced english universal dependencies: An improved representation for natural language understanding tasks. In Proceedings of the 10th International Conference on Language Resources and Evaluation.

Seraji, M., Jahani, C., Megyesi, B., and Nivre, J. (2013). Uppsala Persian dependency treebank annotation guidelines. Technical report, Uppsala University.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii, J. (2012). Brat: a web-based tool for NLP-assisted text annotation. In ACL Demo, pages 102–107.

Štěpánek, J. and Pajas, P. (2010). Querying diverse treebanks in a uniform way. In LREC.

Tesnière, L. (1959). Éléments de syntaxe structurale. Editions Klincksieck.

Tsarfaty, R. (2013). A unified morpho-syntactic scheme of Stanford dependencies. In ACL.

Zeman, D. and Resnik, P. (2008). Cross-language parser adaptation between related languages. In IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 35–42.

Zeman, D., Mareček, D., Popel, M., Ramasamy, L., Štěpánek, J., Žabokrtský, Z., and Hajić, J. (2012). HamleDT: To parse or not to parse? In LREC, pages 2735–2741.

Zeman, D. (2008). Reusable tagset conversion using tagset drivers. In LREC, pages 213–218.