ENERGY EFFICIENCY CRITERIA FOR COMMON BUILDING STRUCTURE SYSTEMS: AN OVERVIEW

S. Balubaid1*, R. M. Zin2, J. S. Hassan3, Samihah Mardzuki4
1,2,3,4 Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

b2003alubaid@yahoo.com, roslizin@utm.my, hassansuleimani@gmail.com

*Corresponding author: b2003alubaid@yahoo.com

ABSTRACT

Making decisions about the selection of energy efficiency building construction is one of the sustainable construction key. Therefore it is crucial to identify criteria that can influence the choice of energy efficient common building structure systems. The main purpose of this paper explores the energy efficiency criteria for common building structure systems. Thus, the paper adopts a conceptual approach by using current literature on energy efficiency. The paper shows a wide range for the energy efficiency criteria for common building structure systems. This range in reported figures is due to the use of common different building structure systems through different LCA methodologies and different boundaries. For that reason, this paper contributes to the literature by providing deeper insights into the energy efficiency criteria influencing the selection of energy efficiency common building structure systems. The paper also present a new approach that will support energy efficiency termed ‘energy efficiency common building structure systems’. And this will opens several interesting avenues for future research.

Keywords: Energy efficiency, Environmental impact, Constructive system, Embodied energy.

1. INTRODUCTION

Nowadays, it is becoming increasingly difficult to ignore the Climate Change issues. It quickly becoming a global issue for the United Nations. Many researchers recognised Climate Change as major issues in sustainable development [1-5]. Energy efficiency plays significant roles towards sustainable development [6-8]. Since building sector is one of the most widely energy consuming. Buildings consume 40% of overall energy consumption [2, 9-13]. In order to promote the energy efficient buildings. We must link the energy efficiency to the actual energy consumption [14]. Thus it is important to design the building to be more efficient.

Building construction can be built of several element (e.g. Structural Frame, Slab, Roof, Internal Wall, External Wall and Staircase). However, all these element can be constructed with deferent type of construction systems such as Precast Concrete, Structural Steel, and Cast In-Situ Concrete etc. Therefore the major question in this paper is: What are the criteria that having a strong influence on the choice of energy efficient of common building structural systems? In order to defining energy efficiency criteria, a combination of reviewing academic research, existing methods and energy codes. Assigning energy efficiency criteria related to the common building structural systems in whole building life cycle. Thus the paper aims to identify energy efficiency criteria of common building structural systems and explore the alternative of common building structural systems in order to reduce the environment effect.

2. COMMON BUILDING STRUCTURAL SYSTEMS

The common building structural systems mean existing building structural in large numbers. Construction systems can be grouped based on the interest of construction users [15]. Thus, this stage replies the question “what are the Structural systems that commonly used” Therefore, we need the data related to the construction industry including the building Structural systems. Balubaid, Zin [16] published a paper in which they described and answered that question as shown in Table:
Table 1 common building Structural systems in Malaysia [(surce Balubaid et al 2014)16]

Group	Sub-group
Structural frame	Cast in-situ concrete frame
	In-situ concrete load bearing wall
	Precast concrete frame
	Structural steel frame
Slab	In-situ RC flat slab
	In-situ RC slab
	Precast slab with in-situ topping
	Steel deck with in-situ concrete topping
Internal wall	Cast in-situ concrete wall
	Light weight brick
	Light weight panel
	Precast concrete wall
	Traditional brick and plaster wall
External Wall	Block wall with applied finished
	Brick wall with applied finished
	In-situ concrete wall
	Metal cladding
	Precast concrete wall with Pre-installed windows and finishes
Roof	In-situ concrete roof
	Prefabricated steel roof truss
	Steel decking with in-situ Concrete topping
	Steel truss roof with Composite decking
	Timber truss with roof tiles
Staircase	Cast-in-place
	Prefabricated
	Steel

3. DEVELOPMENT OF CONCEPT OF ENERGY EFFICIENCY (EE)

It is necessary here to clarify exactly what is meant by Energy Efficiency (EE). Various definitions of efficiency are found. This shows a need to be explicit about exactly what is meant by the word efficiency. The word efficiency have been widely used in different fields (sociology, economy, engineering, etc.) with different meanings [7]. The word efficiency generally means achieve a desired result within minimum resources [4]. The term efficiency can be defined as any stimulus that can be doing more with less [17]. In broad of engineering terms, efficiency can be defined as “the ratio of the desired output (useful effect) to the required input (used resources) of any system” [7, 18].

Thus, the definition of energy efficiency is, the ratio of the energy you get from energy transformation process to the energy used by that process [4, 7, 19]. It can be referring to use less energy (input) in order to produce the same amount of services (output) [7, 20, 21]. Basically, the energy efficiency of a building is difficult to be calculated or measured or quantify, since a building is not an energy transformation process and consist a multiple services [7, 22]. Thus, a broader definition could be used, which is amount of energy used to provide a given construction system.

4. ENERGY CONSUMPTION IN BUILDING

Generally, there are two types of energy consumption in buildings. The first one is embodied energy, which goes into production, fabricating, transportation, and erecting of the building materials. The second type is the energy for operate, maintenance/servicing of a building during its useful life [23, 24]. Since this research deal with the construction systems so it will be link with the first type.
5. ENERGY EFFICIENCY CRITERIA FOR COMMON BUILDING STRUCTURAL SYSTEMS

A great deal of energy efficiency criteria is understanding and suggesting solutions to suite deferent structural systems. Deferent structural systems has deferent energy efficiency criteria. In fact, each structural system have their own energy efficiency criteria. However, solutions cannot be suggested unless the problem is fully analysed, and this involves a thorough understanding of the common energy efficiency criteria for most of structural systems. Some of the common energy efficiency criteria that may find useful for explaining the common structural systems is listed below:

Table 2 energy efficiency criteria for common building Structural systems

References	low embodied energy material	Reducible structure material	Reusable structure material	Recyclable structure material	Durability structure material	Use of local structure material	Usage structure efficiency	Produce less waste	Adopting an efficient technology and construction technique	Simplifies the production process	Transportation of building structure material to the site
Chen, Okudan [9]	Y	Y	Y	Y	Y	Y					
Bakhoum and Brown [25]	Y	Y	Y	Y	Y	Y					
Riduan. Yunus [26]	Y	Y	Y	Y	Y	Y					
Sattary and Thorpe [2]	Y	Y	Y	Y	Y	Y					
Šijanec Završ, Žarnić [27]	Y	Y	Y	Y	Y	Y					
Yang, Li [28]	Y	Y	Y	Y	Y	Y					
Burdová and Vilčeková [24]	Y	Y	Y	Y	Y	Y					
Natee, Pheng [29]	Y	Y	Y	Y	Y	Y					
Yunus and Yang [30]	Y	Y	Y	Y	Y	Y					

5.1. Low Embodied Energy Material

Embodied energy comprises energy inputs that needed to extract, process, manufacture and transport the materials emblems of the Building structural [31-37]. It consist all types of the indirect energy (such as energy used during manufacture of structural materials) and direct energy (such as energy used during transportation and installation of structural materials) [3, 13, 38-43]. The embodied energy has been suggested in a building structural materials in Australia. It is contained 20 to 50 times
the annual operational energy needed for the building structural materials [44]. Sattary and Thorpe (2011) argues that the embodied energy in in building structural materials is a significant component of the overall energy reduction in the building life cycle. Further associated studies have illustrated that low embodied energy material is an important issue in the climate system [43, 45, 46], it is linked with reducing carbon emissions of construction materials. Thus it is plays a key role in reducing energy consumption. [9, 25, 26, 47]. Low embodied energy materials can be achieved by:

- using long life materials,
- Less energy intensive and
- Engineering structural solutions.

5.2. Reducible Structure Material

According to Green Building Council of Australia, Building waste in Australia 40% [47]. Using new method of reinforcing and new materials (such as eco-cement concrete) will reduce wastage of construction materials and this will lead to reduce the cost. Reducible element means reduce resource requirements which will lead to reduce the embodied energy that needed to extract, process, manufacture and transport the materials emblements of the Building structural [9, 25, 26].

5.3. Reusable Structure Material

By understanding similarities and differences between structural systems, we can increase our understanding and learn more about structural systems. This usually involves a process of analysis, in which we compare the specific parts as well as whole [2]. Comparison may also be a preliminary stage of evaluation. For example, by comparing reusable elements of Precast concrete frame and Structural steel frame, we can decide which is more reusable [9, 25, 26].

5.4. Recyclable Structure Material

Recyclable structure material has a significant impact on the comparability of the structure material energy. Recycle resource requirements which will lead to reduce the embodied energy that needed to extract, process, manufacture and transport the materials emblements of the Building structural [2, 9, 25, 26].

5.5. Durable Structure Material

In reviewing the literature, use of structure materials with less embodied energy and use of durable materials are the most important factors for reduce embodied energy. Buildings will not be durable in the future unless improved the durability of building structure materials which will result in reduced embodied energy [47].

5.6. Use of Local Structure Material

Building structural with local materials means to reduce the environmental impact of construction. Morel, Mesbah [48] found that the energy used in building will be decreased up to 215% just by using local materials.

5.7. Produce Less Waste

In order to reduce the impact of the waste of building structural materials, the best way is simply to avoid producing waste [30, 49-53]. All the studies reviewed on waste minimization so far, however, suffer from the fact that building structural materials have many types and shapes.
5.8. **Adopting an Efficient Technology and Construction Technique**

Using new and energy efficient technology of construction could affect energy values and could bring large differences to embodied energy [13, 54]. We need to rethink the way we consume energy of construction. Using energy efficient technology and machines in construction become as one of energy efficiency measures [8]. Adopting energy efficient technology of construction industry has a positive implications beyond energy savings such as [8]:

- Increased productivity,
- Reduced production costs (including labor, raw materials),
- Reduced waste disposal costs
- Improved worker safety (will result in reduced insurance costs).
- Reduced operations and maintenance,
- Improved product quality,
- Improved capacity utilization.

5.9. **Simplifies the production process**

A considerable amount of literature has shown that the embodied energy of construction processes is almost equivalent to 15 years of operating energy. Thus, simplifies the production process in the construction process has now come into focus as a way of reducing carbon dioxide emissions and global warming. Impacts generated by production processes of construction such as energy consumption, raw material use, waste generation, water use and land use; and are significant [2]. Development and simplifies the production process to map energy usage for better understanding input, output, for each process at a relatively early stage [8].

5.10. **Transportation of building structure material to the site**

Meanwhile, Transport the materials emblems of the building structural and construction methods mostly play a role for selecting building structural materials [9, 30]. Take, for instance, vehicles have greater fuel efficiency and a different fuel structure.

6. **CONCLUSION**

The selection of building construction system has to be made carefully as each construction system has different impact on energy efficiency. Development of tools to select energy efficient construction systems is considered timely as it may help less experienced designer with limited energy efficiency knowledge to make decisions in the same way as experts. This paper reported an on-going research aimed to develop a decision support model for selecting energy efficiency structural system. From the perspective of the designer by examining the relationship between energy efficiency criteria and common building structural systems. The next stage of this research will evaluate energy efficiency criteria and common building structural systems using Analytic Hierarchy Process (AHP) Method.

7. **ACKNOWLEDGEMENT**

The authors gratefully acknowledge the support of this research from MOSTI, MOHE, Universiti Teknologi Malaysia grant (Vote: 4S085), MOHE, Universiti Teknologi Malaysia grant Vot (06H43), Research Management Centre, Construction Research Alliance, Construction Research Centre, Faculty of Civil Engineering UTM.
8. REFERENCES

1. Stern, N.H., G. Britain, and H. Treasury, *Stern Review: The economics of climate change*. Vol. 30. 2006: HM treasury London.

2. Sattary, S. and D. Thorpe, *Reducing embodied energy in Australian building construction*. in *Proceedings of the 27th Annual Conference of the Association of Researchers in Construction Management (ARCOM 2011)*. 2011. Association of Researchers in Construction Management (ARCOM).

3. Moncaster, A. and J. Song, *A comparative review of existing data and methodologies for calculating embodied energy and carbon of buildings*. International Journal of Sustainable Building Technology and Urban Development, 2012. 3(1): p. 26-36.

4. Pérez-Lombard, L., J. Ortiz, and D. Velázquez, *Revisiting energy efficiency fundamentals*. Energy Efficiency, 2013: p. 1-16.

5. Schnapp, R. *Energy statistics for energy efficiency indicators*. in *Joint Rosstat—IEA Energy Statistics Workshop Moscow*. 2012.

6. Ganda, F. and C.C. Ngwakwe, *Role of energy efficiency on sustainable development*. 2014.

7. Pérez-Lombard, L., et al., *Constructing HVAC energy efficiency indicators*. Energy and Buildings, 2012. 47(0): p. 619-629.

8. Darabnia, B., *An Interactive Decision Support System for Energy Management in Process Industry*. 2013. Politecnico di Torino.

9. Chen, Y., G.E. Okudan, and D.R. Riley, *Sustainable performance criteria for construction method selection in concrete buildings*. Automation in construction, 2010. 19(2): p. 235-244.

10. US. Department of Energy, *Buildings Data Book*. 2011 [cited 2014 16 December]; Available from: http://buildingsdatabook.eren.doe.gov/ChapterIntro1.aspx.

11. International Energy Agency, *IEA statistics for energy balance*. 2014 [cited 2014 16 December]; Available from: http://www.iea.org/.

12. Pérez-Lombard, L., J. Ortiz, and C. Pout, *A review on buildings energy consumption information*. Energy and buildings, 2008. 40(3): p. 394-398.

13. Dixit, M.K., et al., *Identification of parameters for embodied energy measurement: A literature review*. Energy and Buildings, 2010. 42(8): p. 1238-1247.

14. González, A.B.R., et al., *Towards a universal energy efficiency index for buildings*. Energy and Buildings, 2011. 43(4): p. 980-987.

15. Warszawski, A., *Industrialized and Automated Building Systems: A Managerial Approach*. 2004: Taylor & Francis.

16. Balubaid, S., et al., *Embodied Energy in Building Construction*. Jurnal Teknologi, 2014. 70(7).

17. European Commission (2005). *Doing more with less: green paper on energy efficiency*, in EU Directorate-General for Energy and Transport.: European Communities.

18. KILGORE, W., *Measuring Energy Efficiency in the United States Economy: A Beginning*. DOE/EAII. 555(95): p. 2.

19. Ang, B., *Monitoring changes in economy-wide energy efficiency: from energy–GDP ratio to composite efficiency index*. Energy Policy, 2006. 34(5): p. 574-582.

20. Patterson, M.G., *What is energy efficiency?: Concepts, indicators and methodological issues*. Energy Policy, 1996. 24(5): p. 377-390.

21. Sorrell, S., *The Rebound Effect: an assessment of the evidence for economy-wide energy savings from improved energy efficiency*. 2007: UK Energy Research Centre London.

22. Roulet, C.-A., et al., *Multicriteria analysis of health, comfort and energy efficiency in buildings*. Building research and information, 2006. 34(5): p. 475-482.

23. Radhi, H., *On the optimal selection of wall cladding system to reduce direct and indirect CO2 emissions*. Energy, 2010. 35(3): p. 1412-1424.

24. Burdová, E.K. and S. Viščeková, *Energy performance indicators developing*. Energy Procedia, 2012. 14(0): p. 1175-1180.
25. Bakhoum, E.S. and D.C. Brown, *A hybrid approach using AHP–TOPSIS–entropy methods for sustainable ranking of structural materials*. International Journal of Sustainable Engineering, 2013. 6(3): p. 212-224.

26. Riduan. Yunus, J.Y., *Critical sustainability factors in industrialised building systems*. Construction Innovation, 2012. 12(4): p. 447-463.

27. Šijanje Zavrl, M., R. Žarnić, and J. Šelih, *Multicriterial sustainability assessment of residential buildings*. Technological and economic development of economy, 2009. 15(4): p. 612-630.

28. Yang, Y., B. Li, and R. Yao, *A method of identifying and weighting indicators of energy efficiency assessment in Chinese residential buildings*. Energy Policy, 2010. 38(12): p. 7687-7697.

29. Natee, S., et al., *Criteria for Architects and Engineers to Achieve Sustainability and Buildability in Building Envelope Designs*. Journal of Management in Engineering, 2013.

30. Yunus, R. and J. Yang, *Sustainability Criteria for Industrialised Building Systems (IBS) in Malaysia*. Procedia Engineering, 2011. 14(0): p. 1590-1598.

31. Newton, P., S. Tucker, and M. Ambrose, *Housing form, energy use and greenhouse gas emissions*. Achieving sustainable urban form, 2000: p. 74-83.

32. Thiel, C.L., et al., *A Materials Life Cycle Assessment of a Net-Zero Energy Building*. Energies, 2013. 6(2): p. 1125-1141.

33. Stephan, A., R.H. Crawford, and K. de Myttenaere, *A comprehensive assessment of the life cycle energy demand of passive houses*. Applied Energy, 2013. 112: p. 23-34.

34. Stephan, A., R.H. Crawford, and K. De Myttenaere, *Towards a comprehensive life cycle energy analysis framework for residential buildings*. Energy and buildings, 2012.

35. Stephan, A., R.H. Crawford, and K. De Myttenaere, *Towards a more holistic approach to reducing the energy demand of dwellings*. Procedia engineering, 2011. 21: p. 1033-1041.

36. Airaksinen, M. and P. Matilainen, *Energy and primary energy use, as well as the CO2 equivalent emissions of different design options*. International Journal of Sustainable Building Technology and Urban Development, 2012. 3(1): p. 37-42.

37. Foraboschi, P., M. Mercanzin, and D. Trabucco, *Sustainable structural design of tall buildings based on embodied energy*. Energy and Buildings, 2014. 68: p. 254-269.

38. Davies, P.J., S. Emmitt, and S.K. Firth, *On-site energy management challenges and opportunities: a contractor’s perspective*. Building Research & Information, 2013. 41(4): p. 450-468.

39. Holton, I., J. Glass, and A. Price, *Developing a successful sector sustainability strategy: six lessons from the UK construction products industry*. Corporate Social Responsibility and Environmental Management, 2008. 15(1): p. 29-42.

40. Mari, T.S. *Embodied energy of building materials A comparative analysis of terraced houses in Malaysia*. in 41st Annual Conference of the Architectural Science Association ANZAScA 2007. Deakin University.

41. Moncaster, A.M. and K.E. Symons, *A method and tool for ‘cradle to grave’ embodied carbon and energy impacts of UK buildings in compliance with the new TC350 standards*. Energy and Buildings, 2013. 66(0): p. 514-523.

42. Treloar, G.J., *A comprehensive embodied energy analysis framework*. 1998, Faculty of Science and Technology, Deakin University.

43. Omar, W.M.S.W., et al., *Assessment of the embodied carbon in precast concrete wall panels using a hybrid life cycle assessment approach in Malaysia*. Sustainable Cities and Society, 2014. 10: p. 101-111.

44. Crawford, R.H. and G.J. Treloar. *Validation of the use of Australian input-output data for building embodied energy simulation*. in IBPSA 2003: Proceedings of the Eighth International Building Performance Simulation Association Conference on Building Simulation: For better Building Design. 2003. IBPSA.

45. Haynes, R., *Embodyed Energy Calculations within Life Cycle Analysis of Residential Buildings*. 2010.
46. Han, M., et al., *Embodied energy consumption of building construction engineering: Case study in E-town, Beijing*. Energy and Buildings, 2013.

47. Harrison, J. *The role of materials in sustainable construction*. in *Materials Forum*. 2006.

48. Morel, J., et al., *Building houses with local materials: means to drastically reduce the environmental impact of construction*. Building and Environment, 2001. 36(10): p. 1119-1126.

49. Jaillon, L., C.-S. Poon, and Y. Chiang, *Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong*. Waste management, 2009. 29(1): p. 309-320.

50. Zhang, X., Y. Wu, and L. Shen, *Application of low waste technologies for design and construction: A case study in Hong Kong*. Renewable and Sustainable Energy Reviews, 2012. 16(5): p. 2973-2979.

51. Wang, J., Z. Li, and V.W. Tam, *Critical factors in effective construction waste minimization at the design stage: a Shenzhen case study, China*. Resources, Conservation and Recycling, 2014. 82: p. 1-7.

52. Yuan, H. and L. Shen, *Trend of the research on construction and demolition waste management*. Waste management, 2011. 31(4): p. 670-679.

53. Llatas, C., *A model for quantifying construction waste in projects according to the European waste list*. Waste management, 2011. 31(6): p. 1261-1276.

54. Pears, A. *Practical and policy issues in analysis of embodied energy and its application*. in *proceedings of embodied energy seminar: current state of play, Deakin University*. 1996.