Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The gendered impact of the COVID-19 pandemic on academics working in medical imaging and radiation therapy

K. O'Donoghue, C. Malamateniou, L. Walton, A. England, N. Moore, M.F. McEntee*

The Discipline of Medical Imaging and Radiation Science, School of Medicine, UGF 12 ASSERT, Brookfield Health Sciences, University College Cork, College Road, Cork, T12 AK54, Ireland

Abstract

Introduction: Healthcare workers have been particularly impacted by the COVID-19 pandemic, as have those educating them, albeit differently. Several papers have identified a gendered difference in the impact of the pandemic. This study aims to determine impact of COVID-19 on the health and wellbeing of Medical Imaging and Radiation Therapy (MIRT) academics.

Methods: An electronic survey was designed in English on Qualtrics and distributed via email and online platforms to MIRT academics. Fifty-one questions were used; demographic (n=9), work patterns (n=11), general health (n=8), mental health (n=2), physical health (n=10), and workload (n=11). Overall, 46 were quantitative and five were qualitative ‘open-ended’ questions. The survey was open between 3rd March 2021 to 1st May 2021. Quantitative analysis was carried out using MS Excel v16.61.1ss and SPSS v26.

Results: The survey reached 32 countries globally and 412 participants; 23.5% identified as men (n=97) and 76.5% as women (n=315). Women reported worse sleep quality than men and overwhelmingly felt they would not like to work remotely again if given a choice. A higher percentage of males, 73% versus 40.5% of females reported getting outdoors less. The CORE-10 validated questionnaire found that 10.3% of males (n=42) and 2.7% of females (n=11) experienced severe psychological distress the week immediately before the survey was conducted.

Conclusion: While the study has identified some gender-related differences in the impact of COVID-19 on the mental and physical health of MIRT academics, both males and females have experienced significant deterioration in health and wellbeing due to the pandemic.

Implication for practice: Developing mental health support for MIRT academics and defining optimum methods for raising awareness is recommended.

© 2022 Published by Elsevier Ltd on behalf of The College of Radiographers.

Introduction

Medical Imaging and Radiation Therapy academics have been adapting teaching and research practice to the global pandemic since March 2020, when a worldwide pandemic was declared by the World-Health-Organisation. After the first cases of COVID-19 were reported in Wuhan, China, in December 2019, the rapid spread of the virus and the lack of knowledge about its symptoms and transmission led to the implementation of Public Health measures, including face mask-wearing, social distancing, travel restrictions, working from home and national lockdowns. Restrictions on public activity were applied at different time points worldwide to coincide with the virus peak in each country. Teaching in-person was stopped, learning moved on-line, research labs were inaccessible, international students were stranded, arranged collaborations and conferences cancelled.

Society has experienced “an unprecedented crisis in our interconnected world where health and wellbeing, security, and economy affect populations across borders” Globally, as of 3 June 2022, there have been 528,816,317 confirmed cases of COVID-19, including 6,294,969 deaths, reported to WHO. Adapting to new ways of living and compliance with ever-
changing guidelines and restrictions has become a new way of life for many.

The lives of many frontline healthcare workers, including radiographers, have been impacted by the COVID-19 pandemic.12,13 Healthcare professionals have faced particular challenges concerning their well-being and workflow- or workload-related.9 Radiographers, radiation therapists, sonographers, nuclear medicine technologists have worked extra hours, often without taking any leave, wearing heavy, multi-layer Personal Protective Equipment (PPE) while caring for the unwell patients. Many radiographers contracted the virus, became unwell, and some have died. Some healthcare workers have lived with “long COVID” for prolonged timeframes following their incentive infection.10 The rest worked with the fear of becoming unwell themselves; despite all these challenges, radiographers have faced the pandemic with remarkable bravery and altruism.

Although radiography academics and researchers were instructed to work from home during the pandemic, they have faced different challenges. Employment uncertainty has impacted many radiographers in academia. A sharp fall in the number of placement patterns quickly, online curricula, reformulate research projects, design new ways of remote teaching and learning, redesign teaching spaces and resources, and offer emotional support and personal tutoring for many more students working on the frontline. Working antisocial hours, teaching online, and offering round the clock support to students became the “new normal”, leaving little personal time. A significant number of factors dividing gender roles while working from home during the pandemic have been identified in the literature, including parenting, caring responsibilities, household chores, pay gaps and expectations and leadership differences.15,16 Most recent research suggests that the pandemic has contributed to the burnout of academics and researchers, impacting their mental and physical health and capacity to work for the longer term.17-19

A small cohort of female academics was studied in Michigan. Results showed that “these women were able to balance career and family demands but only at the expense of becoming accustomed to little sleep”.21 Amid the pandemic, more than 1.5 billion children were out of school. Due to the closure of childcare facilities, many families had no choice but to home-school and make adjustments to facilitate remote-working for at least one, if not both, of the parents. A recent study on the effect of the pandemic on remote working suggests that in terms of their most popular occupations by gender, men were more likely to adapt to the new work environment during the pandemic.22

As conclusive evidence has not yet been compiled on the impact of the pandemic, much more research is required. Therefore, this study aims to investigate the effect of the COVID-19 pandemic on the mental and physical health of MIRT academics.

Methods

A prospective qualitative and quantitative questionnaire-based study was approved by University College Cork Social Research Ethics Committee (CT-SREC-2020-35) and was conducted among medical imaging and radiation therapy (MIRT) academics globally. The online survey was disseminated online via email to personal contacts of the researchers’ professional networks (Twitter accounts, Facebook pages, LinkedIn posts) and through the European Federation of Radiographer Societies (EFRS) Research Hub held at the European Congress of Radiology 2022. Snowballing occurred whereby shared posts on social media were liked and re-shared. The survey was advertised and disseminated among attendees at the online European Congress of Radiology, which took place online between the 3rd and 7th March 2021 and online via social media. Attendees also include those working outside of Europe and, together with advertising, respondents could access the survey from outside of Europe. The online survey deployment coincided with periods of extended national lockdowns for many countries in the northern hemisphere23,24 which ensured the currency and relevance of the responses.

The study was aimed at all MIRT academics globally, working in research, teaching or another academic capacity in this field during the pandemic. MIRT academics include radiation therapists, a.k.a therapeutic radiographers, diagnostic radiographers also known as radiological or radiation technologists, nuclear medicine...
technologists, and (ultra)sonographers. The age of study participants was restricted to those over 18 years old. Emeritus or retired academics or those with honorary academic contracts were asked not to participate due to the perception that the work patterns of honorary, emeritus or retired academics may vary from that of the population of interest.

A variety of questions were selected; these were specific to mental and physical health and were relevant to the target population of MIRT academics. Responses were requested based on participants’ own experiences of their health during the COVID-19 pandemic. Fifty-one questions were used in the survey; six were demographic, 11 were based on work patterns, eight were on general health, two were on mental health (with ten sub-questions), ten were on physical health, and 11 were on workload. Overall, 46 were quantitative ‘tick-box style’, and five were qualitative ‘open-ended’ questions used for deeper analysis with no word limits imposed.

The first part of the questionnaire captured demographic statistics to determine the population of interest, including age, gender, residence and remote-working. The second section addressed participants’ mental health using the CORE-10. The CORE-10 is a ten statement Likert scale survey and was used to identify perceptions of mental health in males and females since they started working remotely and within the week before completing the survey. The validated psychometric screening tool is used widely for mental health screening purposes. Ten statements indicate responses scoring an overall level of psychological distress. Participants were scored on a scale of 0–40, negative factors scoring 0–1 and positive factors scoring 4–0 (Fig. 1). There was an overall score for the CORE-10, a maximum of 40 and a minimum of 0.

The CORE-10 model, a psychometric Likert scale, allowed respondents to rate on a 5-point scale how well they had been sleeping for the week before commencing the survey. The CORE10 measurement tool measured psychological distress for the week

| CORE-10 Scoring System. Participants were scored on a scale of 0–40, with negative factors scoring 0–1 and positive factors scoring 4–0 (25) |
|---|---|---|---|---|---|
| Over the last week... | Not all | Only occasionally | Sometimes | Often | Most or all of the time |
| 1 | I have felt tense, anxious or nervous | 0 | 1 | 2 | 3 | 4 |
| 2 | I have felt I have someone to turn to for support when needed | 4 | 3 | 2 | 1 | 0 |
| 3 | I have felt able to cope when things go wrong | 4 | 3 | 2 | 1 | 0 |
| 4 | Talking to people has felt too much for me | 0 | 1 | 2 | 3 | 4 |
| 5 | I have felt panic or terror | 0 | 1 | 2 | 3 | 4 |
| 6 | I made plans to end my life | 0 | 1 | 2 | 3 | 4 |
| 7 | I have had difficulty getting to sleep or staying asleep | 0 | 1 | 2 | 3 | 4 |
| 8 | I have felt despairing of hopeless | 0 | 1 | 2 | 3 | 4 |
| 9 | I have felt unhappy | 0 | 1 | 2 | 3 | 4 |
| 10 | Unwanted images or memories have been distressing me | 0 | 1 | 2 | 3 | 4 |

Figure 1. CORE-10 Scoring System. Participants were scored on a scale of 0–40, with negative factors scoring 0–1 and positive factors scoring 4–0.

Table 1

Demographic information.	Count (%)
Gender	
Female	315 (76.5%)
Male	97 (23.5%)
Total	412 (100%)
Age (years)	
20–29	59 (14.3%)
30–39	112 (27.2%)
40–49	107 (26.0%)
50–59	104 (25.2%)
60–69	28 (6.8%)
70+	2 (0.5%)
Total	412 (100%)
Country of residence	
Canada	246 (59.7%)
United Kingdom and Northern Ireland	65 (15.8%)
United States of America	22 (5.3%)
Republic of Ireland	19 (4.6%)
Rest of the world*	50 (14.6%)
Total	412 (100%)

Percentage values are representative of the proportion of the sample responding to the specific question.
* There were 27 countries represented by “other”, 17 of which were European, 10 were from Australasia and Africa.
before completing the survey and before participants started working remotely. Participants were asked to choose from a selection of five different health states, ranging from healthy to severe psychological distress.

Within the study, a CORE-10 overall score was calculated. This was calculated by adding all ten numbers to score between 0 and 40 (total score). A CORE-10 score estimates the level of psychological distress and indicates mental health. Broad interpretations of the total score are 0–5 healthy; >5 to 10 low-level problems; >10 to 15 mild psychological distress; >15 to 20 moderate distress; >20 to 25 moderately severe distress and >25 to 40 severe psychological distress. Statistical analysis

The survey was designed and deployed using the Qualtrics XM software platform (Qualtrics, London, UK). The inferential and descriptive statistical analysis used the statistical software SPSS Version 26 (IBM Inc, Armonk, NY) and Excel 2016 (Microsoft Corp, Redmond, WA). Statistical analysis of the data was carried out using the Chi-squared test, Wilcoxon test and Mann–Whitney U test. Microsoft Excel was used to calculate individual scores from the CORE-10 survey. Statistical significance was assumed where p values were less than 0.05. Results

The survey reached 32 countries and 412 participants; 23.5% were male (n = 97) and 76.5% were female (n = 315). Of those who started the survey, only 7% of participants failed to complete all responses; therefore, the survey achieved an overall completion rate of 93% (n = 383). Participants’ demographics are shown in Table 1; these are broken down by gender, age and country of residence. Table 2 shows the responses of 215 participants indicating their living environment, their working status, and their work from home situation. Not all respondents to the questionnaire answered this question. Of particular note, when respondents were asked, ‘At any stage in the years 2020 or 2021, have you been asked to work from home?’ Male and female results were opposite, with 62% of males indicating that they had been asked to work from home while only 31% of female respondents indicated they had been asked to work from home (Fig. 2).

The results from the CORE-10 survey are summarised in Fig. 3, and an overview is available in Table 3. Overall, males and females showed very similar responses to the CORE-10 questions. Significant differences in the ratings of answers are shown in Table 3. Very similar frequencies were found in healthy, low and mild psychological distress states. However, there was a significant difference in the higher CORE-10 scores, with 10.3% males and 2.7% females reporting that they experienced severe psychological distress in the week before completing the survey (Fig. 4).

With regard to the questions on physical health that participants answered (Table 4). Working hours increased in males (61.9%) compared with females (48.5%). Males (12.4%) also had better quality sleep than females (1.8%). However, a much higher percentage of males (73%) reported getting outdoors less during the pandemic than females (40.5%). As seen in Fig. 5, almost twice as many females (53.8%) as males (27.4%) chose ‘very unlikely’ to work remotely again. Changes to sleep habits are seen in Fig. 6, whereby 55.5% of females who chose ‘very unlikely’ also report sleeping worse.

Table 2

Describes the type of residence that participants were living in, the type of work they were carrying out, and their working from home circumstances.

In what type of residence do you live?	Male (%)	Female (%)
Own house	60 (19.7)	245 (80.3)
Own apartment	15 (38.5)	24 (61.5)
Shared accommodation (renting)	14 (33.3)	28 (66.7)
Living with family	17 (24.6)	52 (75.4)
Living with friend(s)	3 (75.0)	1 (25.0)
Living alone	5 (29.4)	12 (70.6)
Other	0 (0%)	1 (100%)

Which of the following best describes your work?	Male (%)	Female (%)
Full time	80 (25.6)	233 (74.4)
Part time (%)	16 (16.3)	82 (83.7)
Research only	1 (50.0)	1 (50.0)
Teaching only	7 (36.8)	12 (63.2)
Diagnostic Radiography Academic	35 (40.7)	51 (39.3)
Therapeutic Radiography Academic	7 (31.8)	15 (68.2)
Nuclear Medicine Academic	6 (42.9)	8 (57.1)
Research and Teaching	23 (46.0)	27 (54.0)

Which best describes your working from home situation?	Male (%)	Female (%)
Young child (ren) in the home	23 (40.4)	34 (59.6)
Caring for elderly parent/relative	3 (25.0)	9 (75.0)
Partner also working remotely	28 (35.9)	50 (64.1)
Housemates also working remotely	5 (50.0)	5 (50.0)
Working remotely alone	23 (39.7)	35 (60.3)

The table is broken down by gender, and statistically significant differences are demonstrated with an Asterix (*).
Results for changes in sleep habits (Fig. 6), reflecting the CORE-10 question, 'I have had trouble getting to sleep or staying asleep', which yielded a statistically significant effect (p = 0.039). Of those females indicating that they were very unlikely to work from home, 55.4% indicated sleeping worse.

With the use of open-ended questions, participants were given the opportunity to comment on the advantages and disadvantages of working-remotely during the Covid-19 pandemic. Figs. 7 and 8 represent the most common answers demonstrated by the participants. The larger fonts represent the most frequent answers and the smaller fonts represent the less recurrent answers.

Discussion

The mental and physical health of MIRT academics has been affected by the COVID-19 pandemic. This study has identified gendered differences in the health and wellbeing of MIRT academics. Although we cannot yet confirm causation, there is plenty of scope for further research to examine discrepancies identified in the survey. Although many researchers and academics previously worked as healthcare workers and are therefore considered “highly resilient people”, new ways of living and remote-working have been difficult to adapt to.

Table 3

CORE-10 Question	Not at all	Occasionally	Sometimes	Often	Most/all of the time	Median	Mode	SD	Mean
I have felt tense, anxious or nervous	M 23 (25.6%)	22 (24.4%)	21 (23.3%)	19 (21.1%)	5 (5.6%)	2.5	1.0	1.2	2.6
	F 55 (19.2%)	73 (25.5%)	81 (28.3%)	65 (22.7%)	12 (4.2%)	3.0	3.0	1.2	2.7
I have felt I have someone to turn to for support when needed	M 17 (18.8%)*	18 (20%)*	20 (22.2%)	22 (24.4%)	13 (14.4%)	3.0	4.0	1.3	3.0
	F 21 (7.3%)	39 (13.6%)	69 (24.1%)	84 (29.4%)	73 (25.5%)*	4.0	4.0	1.2	3.5*
I have felt able to cope when things go wrong	M 12 (13.3%)*	9 (10%)*	17 (18.9%)	38 (42.2%)	14 (15.6%)	4.0	4.0	1.3	3.4
	F 10 (3.5%)	14 (4.9%)	68 (23.8%)	119 (41.6%)*	75 (26.2%)*	4.0	4.0	1.0	3.8
Talking to people has felt too much for me	M 42 (46.7%)	20 (22.2%)	14 (15.6%)	11 (12.2%)	3 (3.3%)	2.0	1.0	1.2	2.0
	F 119 (41.6%)	57 (19.9%)	83 (29%)	119 (41.6%)	75 (26.2%)*	4.0	4.0	1.0	3.8
I have felt panic or terror	M 62 (68.9%)	11 (12.2%)	11 (12.2%)	5 (5.6%)	1 (1.1%)	1.0	1.0	1.0	1.6
	F 164 (57.3%)	62 (21.7%)	45 (15.7%)	11 (3.8%)	4 (1.4%)	1.0	1.0	1.0	1.7
I have made plans to end my life	M 79 (87.8%)	6 (6.7%)*	3 (3.3%)	1 (1.1%)	1 (1.1%)	1.0	1.0	0.7	1.2
	F 227 (79.4%)	3 (1%)	3 (1%)	0 (0.0%)	3 (1%)	1.0	1.0	0.5	1.1
I have felt difficulty getting to sleep or staying asleep	M 33 (36.7%)*	21 (23.3%)	16 (17.8%)	14 (15.6%)	6 (6.7%)	2.0	1.0	1.3	2.3
	F 59 (20.6%)	79 (27.6%)	59 (21.6%)	56 (24.9%)*	33 (11.5%)	3.0	2.0	1.3	2.7*
I have felt despairing or hopeless	M 55 (61.1%)	14 (15.6%)	11 (12.2%)	7 (7.8%)	4 (4.4%)	1.0	1.0	1.2	1.8
	F 154 (53.8%)	62 (21.7%)	49 (17.1%)	16 (5.6%)	3 (1.3%)	1.0	1.0	1.0	1.8
I have felt unhappy	M 24 (26.7%)	37 (41.1%)	15 (16.7%)	8 (8.9%)	6 (6.7%)	2.0	2.0	1.2	2.3
	F 56 (19.6%)	105 (36.7%)	79 (27.6%)	37 (18.9%)*	9 (3.1%)	2.0	2.0	1.0	2.4
Unwanted images or memories have been distressing me	M 54 (60%)	15 (16.7%)	14 (15.6%)	6 (6.7%)	1 (1.1%)	1.0	1.0	1.1	1.7
	F 167 (58.4%)	59 (20.6%)	38 (13.3%)	15 (5.2%)	7 (2.4%)	1.0	1.0	1.0	1.7

The table is broken down by gender, and statistically significant differences are demonstrated with an Asterix (*).
Interestingly 62% of males indicated that they had been asked to work from home, while only 31% of female respondents indicated they had been asked to work from home (Fig. 2). As all respondents are doing academic work, this finding raises the potential for either differential treatment of genders by employers or a pre-existing difference in work patterns preceding the pandemic. Previous research has demonstrated a difference in the proportions of men and women working from home varies per country but is roughly 12% for both across the EU30.30

Women are generally reported to have better sleep quality than men, with longer sleep times, shorter sleep-onset latency and higher sleep efficiency.30,31 However, similar to the findings of the current study, recent work found that “men, but not women, are sleeping more than they did prior to the pandemic.”32 Sufficient rest and sleep are vital in ensuring good health.33 Sleep has been identified as an important factor impacting the perception of working from home for females in this survey. Further work is needed to investigate the causes of sleep differences in the gender impact of the pandemic on MIRT. Factors such as childcare and carer responsibilities may be important and findings suggest that this was more dominant within females within this study.

The CORE-10 survey identified that females, despite feeling more “tense, anxious or nervous”, seem to have overall better mental health than males. Males (10.3%) have roughly four times higher severe psychological distress than females (2.7%). The significant difference in genders may be due to the ability of females to access support networks or knowing when and how to ask for help.34 More females than males have had someone to turn to for support and feeling able to cope when things go wrong. Masculine behaviours could serve as a barrier to seeking help for males and therefore needs to be addressed.35

A Dutch study found that social loneliness increased among respondents who were “personally affected by being outdoors less”.36 A much higher percentage of males are not getting outdoors less often (73.0%) compared to females (40.5%). The result could be linked to the higher level of psychological distress in males in the CORE-10 study, but again more research needs to be done to explore any causation.

The recession following the pandemic has disproportionately impacted females more than male employees, and this contrasts with how recessions usually affect the workforce, with women being more resilient regarding employment status (37). A more
A comprehensive, longer-term study is needed to understand the reasons behind this for radiographer academics.

Limitations

- The data was collected during the specified time frame, during the pandemic rather than later. Therefore, the experience is fresh in participants’ minds, and they find it easier to recall events and feelings at the time of the pandemic. However, this could also be a potential limitation to the study as participants may have still felt pressure with their duties and may have viewed the survey as a chore. Similarly, due to social distancing measures and lockdowns, it was not possible to carry out any other method of data collection such as face-to-face focus groups or interviews, which may have been beneficial for the study outcome.
- The average time to complete the online survey was roughly 20 min. Participants may not be willing to remain engaged for more than 8–10 min and may not expand in great detail on open-ended questions as a result. Participants may have given up early due to too much time typing or giving very brief answers, which may not contribute much to the research.
- The distribution method for the survey may be another potential issue. If it is poorly designed, it could lead to biased results. Responses were received by participants from 32 countries worldwide. The survey distribution was open to a risk of geographical bias as Canadian MIRT academics alone contributed to over half [246 of 412] of the responses.

Recommendations

- Given the results of the study, two primary interventions are proposed. Developing mental health support directed at MIRT academics and defining methods for raising awareness of these issues is highly recommended. Institutions are encouraged to reach out to their employees and encourage them to seek mental health support if needed. It is recommended that more extensive research is carried out on the database to ensure all data is scrutinised efficiently.
- Further research in a qualitative interview or focus group is recommended for more accurate participant experiences.

As this study is the first of its kind to recognise the impact of the COVID-19 pandemic on the health of MIRT academics and researchers, it has the potential to open the doors to further research.

Table 4

Since the pandemic;	Gender	Degree of change, Count (%)		
		Increased	Decreased	Not changed
My energy levels have	Male	4 (4.5%)	22 (24.7%)	63 (70.8%)
	Female	13 (4.6%)	69 (24.3%)	202 (71.1%)
My activity levels have	Male	11 (12.4%)	17 (19.1%)	61 (68.5%)
	Female	47 (16.5%)	70 (24.6%)	167 (58.8%)
My snacking has	Male	37 (41.6%)	12 (13.5%)	40 (44.9%)
	Female	152 (53.5%)	21 (7.4%)	111 (39.1%)
My weight has	Male	38 (42.7%)	15 (16.9%)	36 (40.4%)
	Female	152 (53.5%)	33 (11.6%)	99 (34.9%)
My water intake has	Male	19 (21.3%)	21 (23.6%)	49 (55.1%)
	Female	38 (16.5%)	89 (31.3%)	157 (55.3%)
My caffeine intake has	Male	30 (33.7%)	10 (11.2%)	49 (55.1%)
	Female	106 (37.3%)	17 (6.0%)	161 (56.7%)
My alcohol intake has	Male	25 (28.4%)	20 (22.7%)	43 (48.9%)
	Female	85 (30.0%)	43 (15.2%)	155 (54.8%)
My workload has	Male	58 (70.2%)	13 (13.1%)	14 (16.7%)
	Female	184 (70.2%)	30 (11.5%)	48 (18.3%)
My working hours	Male	52 (61.9%)*	8 (9.5%)	24 (28.6%)
	Female	127 (48.5%)*	18 (6.9%)	117 (44.7%)*

My diet quality has	Male	19 (21.3%)	34 (38.2%)	36 (40.4%)
	Female	38 (13.4%)	140 (49.3%)	106 (37.3%)
My sleep quality has	Male	11 (12.4%)*	38 (42.7%)	40 (44.9%)
	Female	5 (1.8%)	126 (44.4%)	153 (53.9%)
My sitting practices have	Male	4 (4.5%)	46 (51.7%)	39 (43.8%)
	Female	11 (3.9%)	122 (43.0%)	151 (53.2%)

| I have been getting outdoors | Male | 11 (12.4%) | 65 (73.0%)* | 13 (14.6%) |
| | Female | 73 (25.7%)* | 115 (40.5%) | 96 (33.8%)* |

Statistically significant differences are demonstrated with an Asterix (*).
on this cohort of the population. Our healthcare systems are reliant on research and academia for identifying best practice and supply of newly qualified practitioners.

Conclusion

While both males and females have experienced important health and well-being deterioration due to the pandemic, our study has identified some gendered differences in the impacts of COVID-19 on the mental and physical health of MIRT academics concerning sleep patterns, willingness to return to remote working, psychological distress and remedial mechanisms to compensate for it. Further in-depth research into the health of MIRT academics and researchers is encouraged to enhance this research and identify additional indicators of mental and physical health declined during the COVID-19 pandemic.

Conflict of interest statement

There are no conflicts of interest.

Acknowledgements

We want to thank the College of Radiographers in the UK for the CoRIPS funding of this project, the EFRS Research Hub for facilitating data collection and the hundreds of radiographers that gave up their time in the middle of a pandemic to support this work. We salute you.

The work was sponsored by a College of Radiographers Industry Partnership Scheme (CoRIPS) research grant.

Data was collected via the European Federation of Radiographer Societies Research hub at ECR 2021.

References

1. Ciotti M, Ciccozzi M, Terrinoni A, Jiang W-C, Wang C-B, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci 2020;57(6):365–88.
2. Organization WH. Coronavirus disease (COVID-19). 2020.
3. Giovanetti M, Benvenuto D, Angeletti S, Ciccozzi M. The first two cases of 2019-nCoV in Italy: where they come from. J Med Virol 2020;92(5):518–21.
4. Gabster BP, van Daalen K, Dhar R, Barry M. Challenges for the female academic during the COVID-19 pandemic. Lancet 2020;395(10242):1968–70.
5. https://covid19.who.int/accessed 3rd June 2022.
6. Kwong ASF, Pearson RM, Adams MJ, Northstone K, Tilling K, Smith D, et al. Mental health before and during the COVID-19 pandemic in two longitudinal UK population cohorts. Br J Psychiatry 2021;218(6):334–43.
7. Lewis S, Mull D. Diagnostic radiographers’ experience of COVID-19, gauteng South Africa. Radiography 2021;27(2):346–51.
8. Foley SJ, O’Loughlin A, Creedon J. Early experiences of radiographers in Ireland during the COVID-19 crisis. Insights into imaging 2020;11(1):1–8.
9. Miyamoto I. COVID-19 healthcare workers: 70% are women: Daniel K. Inouye Asia-Pacific Center for Security Studies.; 2020.
10. Mahase E. Covid-19: what do we know about long covid? BMJ 2020;370.
11. Burchell B, Wang S, Kamerade E, Bessa I, Rubery J. Cut hours, not people: no work, furlough, short hours and mental health during COVID-19 pandemic in the UK. 2020.
12. Baker E, Bentley R, Beer A, Daniel L. Renting in the time of COVID-19: understanding the impacts. 2020.
13. Goodman L, Magder D. Avoiding a COVID-19 disaster for renters and the housing market. Washington, DC: Urban Institute; 2020.
14. Rij C, Fenter F. The academic response to COVID-19. Front Public Health 2020;8:797.
15. Daraba D, Wirawan H, Salam R, Faisal M. Working from home during the corona pandemic: investigating the role of authentic leadership, psychological capital, and gender on employee performance. Cogent Business & Management 2021;8(1):1885573.
16. Lopez-Leon S, Forero DA, Ruiz-Díaz P. Recommendations for working from home during the COVID-19 crisis. Mental health before and during the COVID-19 pandemic. 2020.
17. Mahase E. Covid-19: what do we know about “long covid”? BMJ 2020;370.
18. https://doi.org/10.1111/bjso.12457.
19. Barkham M, Bewick B, Mullin T, Gilbody S, Connell J, Cahill J et al. The CORE-10: a short measure of psychological distress for routine use in psychological therapies. Counsell Psychother Res J 2013;13(1):3–13.
20. Puhjola V, Kunttu K, Virtanen Jl. Psychological distress, dental health, and dental fear among Finnish university students: a national survey. Int J Environ Res Publ Health 2021;18(19).
21. Duncan C, Raymond B, Kenrick J, Cooper M. Counselling for young people and young adults in the voluntary and community sector: an overview of the demographic profile of clients and outcomes. Psychol Psychother 2020;93(1):36–53.
22. Mulligan K, McBain H, Lamontagne-Godwin F, Chapman J, Flood C, Haddad M, et al. Barriers to effective diabetes management — a survey of people with severe mental illness. 2018. p. 165.
23. Alon TM, Doepke M, Olmstead-Rumsey J, Tertitk M. The impact of COVID-19 on gender equality. National Bureau of economic research; 2020. Report No.: 0898-2937.
24. Rossi R, Socci V, Talevi D, Mensi S, Niolu C, Pacitti F, et al. COVID-19 pandemic and lockdown measures impact on mental health among the general population in Italy. Front Psychiatr 2020;11:790.
25. Barkham M, Bewick B, Mullin T, Gilbody S, Connell J, Cahill J et al. The CORE-10: a short measure of psychological distress for routine use in psychological therapies. Counsell Psychother Res J 2013;13(1):3–13.
26. Puhjola V, Kunttu K, Virtanen Jl. Psychological distress, dental health, and dental fear among Finnish university students: a national survey. Int J Environ Res Publ Health 2021;18(19).
27. Duncan C, Raymond B, Kenrick J, Cooper M. Counselling for young people and young adults in the voluntary and community sector: an overview of the demographic profile of clients and outcomes. Psychol Psychother 2020;93(1):36–53.
28. Mulligan K, McBain H, Lamontagne-Godwin F, Chapman J, Flood C, Haddad M, et al. Barriers to effective diabetes management — a survey of people with severe mental illness. 2018. p. 165.