Oestrogen receptors in breast cancer: basic mechanisms and clinical implications

Cecilia Williams and Chin-Yo Lin

Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA

Correspondence to: Chin-Yo Lin. Email: clin23@central.uh.edu

Abstract

Since the discovery of the connection between ovarian hormones and breast cancer, endocrine therapy has been an integral adjuvant treatment for patients with hormone-dependent breast cancers. Oestrogen receptor (ER) plays a central role in mediating the effects of endogenous hormones and therapeutic agents. ER serves as a prognostic marker for responsiveness to endocrine therapy and is targeted either directly by selective oestrogen receptor modulators (SERMs) and pure antagonists or indirectly by aromatase inhibitors (AIs) that block oestrogen production. A significant number of ER-positive patients, however, fail to respond to therapy or develop resistance over time. This review focuses on the current understanding of ER functions and recent advances in genomic technologies and research that have provided a global perspective on hormone and ER activity and led to a number of significant discoveries, including the roles of co-regulatory factors and non-coding RNAs. Mechanistic insights into normal ER functions and therapeutic actions of SERMs and AIs will enable the development of better predictive markers and more effective target mechanisms and ultimately facilitate improvements in disease outcomes and patient survival.

Keywords: breast cancer, hormonal carcinogenesis, endocrine therapy, oestrogen receptor

Published: 05/11/2013
Received: 15/08/2013

ecancer 2013, 7:370 DOI: 10.3332/ecancer.2013.370

Copyright: © the authors; licensee ecancermedicalscience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

A lady with growth neoplastic
thought castration was just a bit drastic.
She preferred that her ill could be cured with a pill.
Today it's no longer fantastic.

This quatrain, composed by Elwood Jensen and V. Craig Jordan, amusingly and succinctly summarises one of the great triumphs in breast cancer research and treatment [1]. In 1896, George Beatson reported the beneficial effects of oophorectomy, the female equivalent of castration, in two of his patients with inoperable breast cancer [2]. From his earlier studies of ovulation and lactation, Beatson astutely made the connection between ovarian functions and influences, subsequently shown to be the ovarian hormone oestrogen, with phenotypic changes in mammary tissues and possible link to cancer. He took the first steps in testing this hypothesis, and his seminal discovery provided the first evidence for hormonal carcinogenesis and the potential efficacy of targeting ovarian and hormonal functions. With contributions by Jensen, Jordan, and many others, endocrine therapy, using pills that block oestrogen production or activity, is now routinely applied in the treatment of breast cancer. Other examples of targeted therapy in breast cancer include the use of monoclonal antibodies (trastuzumab) and small molecule receptor tyrosine kinase inhibitors (lapatinib) in targeting the HER2/neu growth factor receptor-positive tumours [3]. This review focuses on the role and mechanisms of action of oestrogen receptors (ERs) in mediating the effects of oestrogen and endocrine therapeutic agents and discusses current challenges and opportunities in targeting ER and oestrogen signalling in the prevention and treatment of breast cancer.

Discovery and characterisation of ERs

Jensen and Jacobson were the first to observe the retention of radiolabelled oestrogen in hormone-responsive target tissues [4]. Subsequently, work by Jensen, Gorski, and their respective groups demonstrated the existence of intracellular oestrogen-binding receptor proteins [5–8]. The ER gene was cloned by the Chambon group, and mutagenesis studies showed that the receptor consists of a DNA-binding domain containing zinc finger motifs and a ligand-binding domain, key structural elements of ligand-dependent transcription factors [9, 10]. Functional studies also identified the N-terminal activating function (AF-1) domain, which is involved in protein–protein interactions important for the transcriptional activity of ER [11]. The identification of other related receptors places ER in the nuclear receptor superfamily of transcriptional regulators [12]. Molecular characterisation of ER revealed that, upon ligand activation, ER regulates target gene expression by binding cis-regulatory elements termed oestrogen response elements (EREs; consensus 5′-GGTCAnnnTGACC-3′). This interaction is facilitated by the pioneering factor FOXA1 [13]. ER can also bind DNA indirectly by tethering to other transcription factors, including AP-1, Sp1, NFκB, and RUNX1. DNA-bound ER nucleates co-regulator complexes that modify chromatin and render the DNA accessible to the transcriptional machinery [14, 15]. ER co-regulators include those that enhance transcriptional activity by altering nucleosome spatial orientation (SWI/SNF) or by modifying histones through acetylation (SRC1, CBP/p300, p/CAF, and p/CIP/AIB1) and methylation (CARM1, PRMT1) [16–25]. Some co-regulators such as NCoR, SMRT, NRIP1, LCoR, and REA function as nuclear receptor co-repressors and play key roles in modulating receptor activity [26–31]. The combination of interactions among ligand, ER, other transcription factors, ERE sequences, differential recruitment of co-regulators, and the overall allosteric effects on receptor complexes allows for an intricate pattern of gene- and tissue-specific effects on target gene expression. In addition to its nuclear functions, ER has been shown to exert rapid non-genomic effects through interactions with cell membrane-associated growth factor receptors and components of downstream signal transduction pathways in the cytoplasm [32]. Post-translational modifications of ER provide additional regulatory mechanisms and enable integration of signals from multiple pathways with oestrogen signalling [33].

Adding to the mechanistic complexity and refinement of oestrogen signalling, a second ER gene was discovered in 1996 by Gustafsson and Kuiper and was named ERβ [34]. The original ER was renamed ERα. ERα and ERβ share a 56% similarity in their ligand-binding domains, and both bind the predominant endogenous oestrogen 17β-estradiol. The differences in their ligand-binding domains, however, also result in
selective binding of natural and synthetic ligands and allow for selective targeting of each receptor subtype. The two receptors have nearly identical DNA binding domains and share affinity for the canonical ERE. Studies of ERα-positive MCF7 breast cancer cells engineered to express ERβ have confirmed a substantial overlap of DNA-binding sites between the two receptors [35–37]. Intriguingly, their similarities in DNA binding resulted in different gene expression profiles with only a minority of ERβ-regulated genes also regulated by ERα [36, 38–41]. These functional differences may be due to the low conservation of their respective N-terminal AF-1 domains and their different abilities to interact with co-regulators [42]. When co-expressed, ERα and ERβ can function as both homodimers and heterodimers; these complexes appear to have their own transcriptional activities and regulate distinct gene sets [43, 44].

While both receptors are found in the normal breast, ERβ expression appears to be more widespread in mammary tissues [45, 46]. In both the rodent mammary gland and in the human normal breast, ERβ is found in epithelial and stromal cells, while ERα is only expressed in a subset of epithelial cells [46–48]. Nonetheless, ERα is the main mediator of the oestrogen-regulated ductal elongation and growth at puberty and during the menstrual cycle, although this is at least partly a systemic effect through the hypothalamic/pituitary axis [49, 50]. ERβ knockout mice have normal ductal and alveolar development [51], but ERβ is involved in the final terminal differentiation of the mammary gland [47].

ERα is upregulated in the majority of breast cancers, and its expression is a hallmark of hormone-dependent tumour growth. ERβ levels, in contrast, are decreased in tumour cells [52–57]. Whereas ERα is clearly linked to prognosis and response to endocrine therapy, there is no clear evidence that ERβ expression is linked to clinical parameters in breast cancer. This may be due to difficulties in accurately quantifying ERβ protein levels using existing reagents and techniques [58]. While oestrogen treatment of ERα-positive breast cancer cells stimulates proliferation, exogenously introduced ERβ in some studies suppresses ERα-induced proliferation and transcriptional activity while also inducing independent transcriptional and functional changes [40, 41, 59–62]. Related to these anti-proliferative effects, it has also been reported that ERβ-positive tumours may respond more favourably to tamoxifen, and ERβ agonist treatment of ERα-positive breast cancer cell lines appear to enhance their sensitivity to tamoxifen [63, 64]. Re-introduction of ERβ in more invasive ERα-negative breast cancers can, however, increase cell proliferation [65, 66]. The body of data correlating ERβ to both anti-proliferative and proliferative parameters suggests a bifurcated role for ERβ breast cancer biology, but the exact function of ERβ in tumourigenesis and disease progression remains to be determined [66].

Targeting ER and oestrogen signalling in breast cancer prevention and treatment

For several decades following Beatson's initial published report, castration by surgical means or by irradiation was used to treat premenopausal women with recurrent or distant metastatic breast cancer. In some postmenopausal women, high doses of androgen or, paradoxically, the synthetic non-steroidal oestrogen diethylstilbestrol was effective in the treatment of advanced diseases [67–69]. Identification of ERα and the development of methodology to detect its expression by hormone binding assays in tumour samples enabled the clinical studies required that ERα be established as a prognostic marker for response to hormone therapy, and determining the ERα-status of tumour samples is now standard practice in clinical oncology [7].

The major breakthrough in targeting oestrogen signalling and ERα came from the development of non-steroidal anti-oestrogens using derivatives of triphenylethylenes by the pharmaceutical industry. The goal of these efforts was to develop anti-oestrogenic compounds that can be used in contraception. One compound, ICI 46, 474, had modest effects on fertility but showed promise as an anti-cancer agent with comparable effects with castration or hormone therapy [70]. This compound, later named tamoxifen, was shown to bind ERα, disrupt the binding of oestrogen, and block hormone-dependent breast cancer cell proliferation and tumour formation [71–73]. Following extensive pre-clinical and clinical studies, tamoxifen was approved for the treatment of ERα-positive breast cancers and for the prevention of breast cancer in high-risk individuals.

An early concern regarding the application of anti-oestrogens is their potential impact on the beneficial effects of oestrogen on bone density and cardioprotection. Interestingly, while blocking the effects of oestrogen in breast cancer cells, tamoxifen treatment actually improved bone density and reduced circulating levels of the harmful low-density lipoproteins. One of the negative effects of this selective action is that tamoxifen increases endometrial cell proliferation and risk for endometrial cancers [74]. Another non-steroidal anti-oestrogen candidate,
keoxifene, later renamed raloxifene, was demonstrated to be effective in treating osteoporosis and was also approved for the prevention of breast cancer. Compared with tamoxifen, raloxifene does not have an effect on endometrial cell growth and proliferation. Tamoxifen and raloxifene are the first members of a class of drugs, termed selective oestrogen receptor modulators (SERMs). They exhibit both oestrogenic and anti-oestrogenic effects in a tissue-specific manner and raise the possibility of simultaneously targeting multiple endocrine-related diseases or conditions. An alternative approach for directly targeting ER in breast cancer treatment is through the use of pure anti-oestrogens. Fulvestrant, initially designated as ICI 182,780, is a steroidal compound with high affinity for ERα. In addition to blocking ER activity, treatment with fulvestrant also leads to the rapid degradation of ER proteins. Consequently, treatment completely disrupts ER activity, as compared with the SERMs. This drug is particularly effective as second-line treatment when tumour cells develop resistance to tamoxifen but still require ER for continuing proliferation [75].

As the role of oestrogen became apparent in hormonal carcinogenesis and disease progression in the majority of breast cancers, an alternative strategy for targeting oestrogen signalling and ER functions emerged. Aromatase is a key enzyme involved in the conversion of androgen to oestrogen by catalysing the aromatisation of the A ring in testosterone. Inhibition of aromatase activity indirectly targets ER functions by effectively starving hormone-dependent tumour cells of locally produced oestrogens. Steroidal (exemestane) and non-steroidal (anastrozole, letrozole) aromatase inhibitors (AIs) have been developed to selectively target aromatase enzymes. These compounds either bind and inactivate aromatase or compete with endogenous substrates to reduce oestrogen production. In clinical trials, AIs showed improved efficacy as compared with treatments with tamoxifen, and these drugs are now approved for use in the adjuvant therapy of postmenopausal patients with ER-positive tumours [76–78].

Challenges and opportunities

ERα protein level, as noted previously, is the major marker for potential response to endocrine therapy. Progesterone receptor (PR), an ERα target gene, expression is an additional marker for responsiveness. Not all tumours that are classified as ERα-positive, however, respond to treatments. Resistance to endocrine therapy is estimated at about 40% [79]. The evolutionary history and specific somatic mutations that gave rise to the primary tumours may have rendered them non-responsive prior to diagnosis and subsequent treatment. Moreover, the selective pressures of long-term endocrine treatment may drive the evolution of resistant tumour cells and recurrent tumours. Mechanisms of resistance to endocrine therapy include hypersensitivity to low levels of oestrogen following treatments with AIs, alternative activation of ERα via growth factor-mediated pathways and mechanisms, and complete oestrogen- and ERα-independent growth and proliferation of tumour cells [80]. Another challenge in the application of endocrine therapy is the treatment of premenopausal patients where disruption of hormone production and ER functions may be less effective and desirable and also introduces side effects, which may increase susceptibility to other diseases following long-term treatments [81]. In spite of the benefits of current endocrine therapeutic options, further scientific and technical breakthroughs are required to fully realise the potential of targeting endocrine-related mechanisms and reducing the morbidity and mortality associated with hormone-dependent breast cancers.

Advances in genomics and genomic technologies have contributed significantly to biomedical research in general and provided a number of mechanistic insights into ER biology in breast cancer cells. These insights have resulted in candidate markers and target mechanisms in endocrine therapy. For example, gene expression profiling studies using microarrays have identified hundreds of oestrogen responsive genes, both transcriptional targets as well as those downstream of ER-regulated signalling pathways, which can be exploited as both markers of oestrogen responsiveness in tumour cells and as targetable genes and gene networks, which specifically regulate tumour cell proliferation [82–84]. Comparative analysis of sensitive and resistant cells may further elucidate markers and mechanisms of resistance. Similar gene expression studies in clinical samples have identified gene sets and signatures that define clinical subtypes and predict response to endocrine therapy and may also suggest potential resistant mechanisms [85]. Genome-wide mapping studies of ER binding sites and computational modelling of sequence motifs have identified co-localising transcription factors such as FOXA1, GATA3, and AP-2γ that are required for ER transcriptional regulatory activity and represent additional candidate markers and therapeutic targets [13, 86, 87]. Improvements and innovations in proteomic technologies also contribute to our understanding of the ER complex, including associated co-regulators and transcription factors and may define potential markers and targets [88].
Genomic studies have also highlighted the emerging importance of non-coding RNAs in basic and translational research. Small microRNAs (miRNAs) serve as key regulators of gene expression by targeting genes for degradation or by blocking their translation. ERα-positive breast cancers display a distinct miRNA-expression profile compared with ERα-negative breast cancers [89–92]. Whether ERα directly regulates miRNA is not clear, but miRNA regulations are nonetheless likely to occur indirectly via other oestrogen-responsive genes or through ERα interaction with the miRNA processing machinery [93–95]. In addition, several miRNAs, including miR-206, have been shown to regulate ERα expression by targeting the 3’ untranslated region of its mRNA [96, 97]. Transcriptome-wide nuclear run-on studies have identified long non-coding RNAs (IncRNAs) as early targets of activated ER [98]. These transcripts share the same features as protein-coding RNAs such as capping, splice sites, and polyadenylation but encode extremely short open-reading frames. Functionally, IncRNAs participate in RNA--protein, RNA--RNA, and RNA--DNA interactions in molecular processes, including those that are involved in cancer-related functions [99, 100]. Recent report by Li and colleagues shows that a specific type of IncRNAs transcribed from enhancer regions of ER target genes and named enhancer RNAs, function in the looping of chromatin that facilitates interactions between distal regulatory sites with promoters of target genes [101]. Non-coding RNAs can be specifically targeted by complementary RNAs, and their expression and function disrupted by the cellular RNA interference mechanisms [102]. The rapid progress in understanding the roles of RNAs in oestrogen signalling and ER functions suggests the potential of applying RNA therapeutics, singly or in combination with existing chemo- and endocrine therapy drugs, in improving the specificity and efficacy of endocrine therapy in breast cancer prevention and treatment. Mechanisms of oestrogen signalling and ER action and potential markers and targets are summarised in Figure 1.

![Diagram](https://example.com/diagram.png)

Figure 1. Summary of molecular interactions and mechanisms involved in oestrogen signalling and oestrogen receptor functions. Each component represents potential markers and target mechanisms for endocrine therapy. *Targets of current endocrine therapeutics.
Conclusion

Current successes in the treatment of hormone-dependent breast cancers still leave room for significant improvements in the specificity and efficacy of current endocrine therapeutic approaches and in overcoming resistant tumours. Accumulating insights regarding oestrogen signalling and mechanisms of action of ligands and ER provide opportunities for the development of novel markers, targets, and therapeutic strategies.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

1. Jensen E (2012) A conversation with Elwood Jensen. Interview by David D. Moore Annu Rev Physiol 74 1–11 DOI: 10.1146/annurev-physiol-020911-153327 PMID: 21888507

2. Beatson GT (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases Lancet 2 104–7 DOI: 10.1016/S0140-6736(01)72307-0

3. Nielsen DL, Andersson M and Kamby C (2009) HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors Cancer Treat Rev 35(2) 121–36 DOI: 10.1016/j.ctrv.2008.09.003 PMID: 19008049

4. Jensen EV and Jacobson HI (1960) Fate of steroid estrogens in target tissues Biological Activities of Steroids in Relation to Cancer, ed G Pincus, EP Vollmer (New York: Academic Press) pp 161–74

5. Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW and DeSombre ER (1968) A two-step mechanism for the interaction of estradiol with rat uterus Proc Natl Acad Sci USA 55(2) 1574–81 DOI: 10.1073/pnas.55.6.1574 PMID: 5227676 PMCID: 224361

6. Toft D and Gorski J (1966) A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization Proc Natl Acad Sci USA 57(6) 1740–3 DOI: 10.1073/pnas.57.6.1740 PMID: 5232110 PMCID: 224541

7. O’Malley BW and Means AR (1974) Female steroid hormones and target cell nuclei Science 183(4125) 610–20 DOI: 10.1126/science.183.4125.610 PMID: 4359082

8. Kumar V, Green S, Staub A and Chambon P (1986) Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor Embo J 5(9) 2231–6 PMID: 3780678 PMCID: 1167105

9. Warnmark A, Treuter E, Wright AP and Gustafsson JA (2003) Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation Mol Endocrinol 17(10) 1901–9 DOI: 10.1210/me.2002-0384 PMID: 12893880

10. Nilsson S and Gustafsson JA (2002) Estrogen receptor action Crit Rev Eukaryot Gene Expr 12(4) 237–57 DOI: 10.1615/CritRevEukaryotGeneExpr.v12.i4.10 PMID: 12641394
13. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, et al (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1 Cell 122(1) 33–43 DOI: 10.1016/j.cell.2005.05.008 PMID: 16009131

14. Shang Y, Hu X, DiRenzo J, Lazar MA and Brown M (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription Cell 103(6) 843–52 DOI: 10.1016/S0092-8674(00)01188-4 PMID: 11136970

15. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, et al (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter Cell 115(6) 751–63 DOI: 10.1016/S0092-8674(03)00934-6 PMID: 14675539

16. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, et al (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer Science 277(5328) 965–8 DOI: 10.1126/science.277.5328.965 PMID: 9252329

17. Phelan ML, Sif S, Narlikar GJ and Kingston RE (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits Mol Cell 3(2) 247–53 DOI: 10.1016/S1097-2765(00)80315-9 PMID: 10078207

18. Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, et al (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex Embo J 15(19) 5370–82 PMID: 8895581 PMCID: 452280

19. Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C and Brown M (1994) Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription Science 264(5164) 1455–8 DOI: 10.1126/science.8197458 PMID: 8197458

20. Ogryzko VV, Schiltz RL, Russanova V, Howard BH and Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases Cell 87(5) 953–9 DOI: 10.1016/S0092-8674(00)82001-2 PMID: 8945521

21. Onate SA, Tsai SY, Tsai MJ and O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily Science 270(5240) 1354–7 DOI: 10.1126/science.270.5240.1354 PMID: 7481822

22. Sterner DE and Berger SL (2000) Acetylation of histones and transcription-related factors Microbiol Mol Biol Rev 64(2) 435–59 DOI: 10.1128/MMBR.64.2.435-459.2000 PMID: 10839822 PMCID: 989999

23. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, et al (1999) Regulation of transcription by a protein methyltransferase Science 284(5423) 2174–7 DOI: 10.1126/science.284.5423.2174 PMID: 10381882

24. Lin WJ, Gary JD, Yang MC, Clarke S and Herschman HR (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase J Biol Chem 271(25) 15034–44 DOI: 10.1074/jbc.271.25.15034 PMID: 8663146

25. Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, et al (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor Science 293(5531) 853–7 DOI: 10.1126/science.1060781 PMID: 11387442

26. Treuter E, Albrektsen T, Johansson L, Leers J and Gustafsson JA (1998) A regulatory role for RIP140 in nuclear receptor activation Mol Endocrinol 12(6) 864–81 DOI: 10.1210/me.12.6.864 PMID: 9626662

27. Hu X and Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors Nature 402(6757) 93–6 DOI: 10.1038/47069 PMID: 10573424

28. Webb P, Anderson CM, Valentine C, Nguyen P, Marimuthu A, West BL, et al (2000) The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (II/XXII) that serve as receptor interaction domains (IDs) Mol Endocrinol 14(12) 1976–85 DOI: 10.1210/me.14.12.1976 PMID: 11117528
29. Chen JD and Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors Nature 377(6548) 454–7 DOI: 10.1038/377454a0 PMID: 7566127

30. Fernandes I, Bastien Y, Wai T, Nygard K, Lin R, Cormier O, et al (2003) Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms Mol Cell 11(1) 139–50 DOI: 10.1016/S1097-2765(03)00014-5 PMID: 12535528

31. Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P and Katzenellenbogen BS (1999) An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens Proc Natl Acad Sci USA 96(12) 6947–52 DOI: 10.1073/pnas.96.12.6947 PMID: 10359819 PMCID: 22022

32. Levin ER and Pietras RJ (2008) Estrogen receptors outside the nucleus in breast cancer Breast Cancer Res Treat 108(3) 351–61 DOI: 10.1007/s10549-007-9618-4 PMID: 17592774

33. Anbalagan M, Hudson B, Murphy L and Rowan BG (2012) Post-translational modifications of nuclear receptors and human disease Nucl Recept Signal 10 e001 PMID: 22438791 PMCID: 3309075

34. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S and Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary Proc Natl Acad Sci USA 93(12) 5925–30 DOI: 10.1073/pnas.93.12.5925 PMID: 8650195 PMCID: 39164

35. Zhao C, Gao H, Liu Y, Papoutsi Z, Jaffrey S, Gustafsson JA, et al (2010) Genome-wide mapping of estrogen receptor-beta-binding regions reveals extensive cross-talk with transcription factor activator protein-1 Cancer Res 70 5174–83 DOI: 10.1158/0008-5472.CAN-09-4407 PMID: 20501845

36. Grober OM, Mutarelli M, Giurato G, Ravo M, Cicatiello L, De Filippo MR, et al (2011) Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation BMC Genomics 12 36 DOI: 10.1186/1471-2164-12-36 PMID: 21235772 PMCID: 3025958

37. Charn TH, Liu ET, Chang EC, Lee YK, Katzenellenbogen JA and Katzenellenbogen BS (2010) Genome-wide dynamics of chromatin binding of estrogen receptors alpha and beta: mutual restriction and competitive site selection Mol Endocrinol 24 47–59 DOI: 10.1210/me.2009-0252 PMCID: 2802902

38. Tee MK, Rogatsky I, Tzagarakis-Foster C, Cvoro A, An J, Christy RJ, et al (2004) Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta Mol Biol Cell 15 1262–72 DOI: 10.1091/mbc.E03-06-0360 PMID: PMC363122

39. Stossi F, Barnett DH, Frasor J, Komm B, Lyttle CR and Katzenellenbogen BS (2004) Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) {alpha} or ER{beta} in human osteosarcoma cells: distinct and common target genes for these receptors Endocrinology 145(7) 3473–86 DOI: 10.1210/en.2003-1682 PMID: 15033914

40. Chang EC, Frasor J, Komm B and Katzenellenbogen BS (2006) Impact of Estrogen receptor beta on gene networks regulated by estrogen receptor alpha in breast cancer cells Endocrinology 147(10) 4831–42 DOI: 10.1210/en.2006-0563 PMID: 16809442

41. Williams C, Edvardsson K, Lewandowski SA, Strom A and Gustafsson J-A (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells Oncogene 27 1019–32 DOI: 10.1038/sj.onc.1210712 PMID: 17700529

42. Morsel1 S, Polman J and Dijkema R (1996) ER beta: identification and characterization of a novel human estrogen receptor FEBS Lett 392(1) 49–53 DOI: 10.1016/0141-7778(96)00782-X PMID: 8769313

43. Monroe DG, SecretO FJ, Subramaniam M, Ge1z BJ, Khosla S and Spelsberg TC (2005) Estrogen receptor {alpha} and {beta} heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells Mol Endocrinol 19(6) 1555–68 DOI: 10.1210/me.2004-0381 PMID: 15802376
44. Papoutsi Z, Zhao C, Putnik M, Gustafsson J and Dahlman-Wright K (2009) Binding of estrogen receptor alpha/beta heterodimers to chromatin in MCF-7 cells J Mol Endocrinol 43(2) 65–72 DOI: 10.1677/JME-08-0177 PMID: 19376833

45. Speirs V, Skiriris GP, Burdall SE and Carder PJ (2002) Distinct expression patterns of ER alpha and ER beta in normal human mammary gland J Clin Pathol 55(5) 371–4 DOI: 10.1136/jcp.55.5.371 PMID: 11986344 PMCID: 1769648

46. Li S, Han B, Liu G, Ouellet J, Labrie F and Pelletier G (2010) Immunocytochemical localization of sex steroid hormone receptors in normal human mammary gland J Histochem Cytochem 58 509–15 DOI: 10.1369/jhc.2009.954644 PMID: 2874183

47. Cheng G, Weihua Z, Warner M and Gustafsson J-A (2004) Inaugural article: estrogen receptors ER{alpha} and ER{beta} in proliferation in the rodent mammary gland PNAS 101(11) 3739–46 DOI: 10.1073/pnas.0307864100 PMID: 14762170 PMCID: 374314

48. Palmieri C, Saji S, Sakaguchi H, Cheng G, Sunters A, O’Hare MJ, et al (2004) The expression of ERb and its variants, but not ERA, in adult human mammary fibroblasts J Mol Endocrinol 33(1) 35–50 DOI: 10.1677/jme.0.0330035 PMID: 15291741

49. Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, et al (2000) Induction of mammary gland development in estrogen receptor-a knockout mice Endocrinology 141 2982–94 DOI: 10.1210/en.141.8.2982 PMID: 10919287

50. Hennighausen L and Robinson GW (2001) Signaling pathways in mammary gland development Dev Cell 1 467–75 DOI: 10.1016/S1534-5807(01)00064-8 PMID: 11703938

51. Forster C, Makela S, Warri A, Kietz S, Becker D, Hultenby K, et al (2002) Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium Proc Natl Acad Sci USA 99 15578–83 DOI: 10.1073/pnas.192561299 PMID: 12438700 PMCID: 137759

52. Roger P, Sahla ME, Mäkelä S, Gustafsson JA, Baldet P and Rochefort H (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors Cancer Res 61(6) 2537–41 PMID: 11289127

53. Palmieri C, Cheng G, Saji S, Zelada-Hedman M, Warri A, Weihua Z, et al (2002) Estrogen receptor beta in breast cancer Endocr Relat Cancer 9(1) 1–13 DOI: 10.1677/erc.0.009001 PMID: 11914179

54. Shaaban AM, O’Neill PA, Davies MP, Sibson R, West CR, Smith PH, et al (2003) Declining estrogen receptor-beta expression defines malignant progression of human breast neoplasia Am J Surg Pathol 27 1502–12 DOI: 10.1097/00000478-200312000-00002 PMID: 14657709

55. Platet N, Cathiard AM, Gleizes M and Garcia M (2004) Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion Crit Rev Oncol Hematol 51 55–67 DOI: 10.1016/j.critrevonc.2004.02.001 PMID: 15207254

56. Saji S, Hirose M and Toi M (2005) Clinical significance of estrogen receptor beta in breast cancer Cancer Chemother Pharmacol 56 21–6 DOI: 10.1007/s00280-005-0107-3 PMID: 16273360

57. Zhao C, Dahlman-Wright K and Gustafsson JA (2008) Estrogen receptor beta: an overview and update Nucl Recept Signal 6(e003) PMID: 18301783 PMCID: 2254331

58. Haldosen LA, Zhao C and Dahlman-Wright K (2013) Estrogen receptor beta in breast cancer Mol Cell Endocrinol DOI: 10.1016/j.mce.2013.08.005 PMID: 23954741

59. Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, et al (1997) Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites Science 277 1508–10 DOI: 10.1126/science.277.5331.1508 PMID: 9278514

60. Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J and Gustafsson J-A (2004) Estrogen receptor {beta} inhibits 17{beta}-estradiol-stimulated proliferation of the breast cancer cell line T47D PNAS 101(6) 1566–71 DOI: 10.1073/pnas.0308319100

61. Hartman J, Lindberg K, Morani A, Inzunza J, Strom A, Gustafsson J-A (2006) Estrogen receptor {beta} inhibits angiogenesis and growth of T47D Breast cancer xenografts Cancer Res 66(23) 11207–13 DOI: 10.1158/0008-5472.CAN-06-0017 PMID: 17145865
62. Matthews J, Wihlen B, Tujague M, Wan J, Strom A and Gustafsson J-A (2006) Estrogen receptor (er) {beta} modulates er(alpha)-mediated transcriptional activation by altering the recruitment of c-Fos and c-Jun to estrogen-responsive promoters Mol Endocrinol 20(3) 534–43 DOI: 10.1210/me.2005-0140

63. Honma N, Horii R, Iwase T, Saji S, Younes M, Takubo K, et al (2008) Clinical importance of estrogen receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy J Clin Oncol 26(22) 3727–34 DOI: 10.1200/JCO.2007.14.2968 PMID: 1869459

64. Lattich C, Schuler S, Haring J, Skrzypczak M, Ortman O and Treeck O (2013) Effects of a combined treatment with tamoxifen and estrogen receptor beta agonists on human breast cancer cell lines Arch Gynecol Obstet DOI: 10.1007/s00404-013-2977-7 PMID: 23907354

65. Tonetti DA, Rubenstein R, DeLeon M, Zhao H, Pappas SG, Bentrem DJ, et al (2003) Stable transfection of an estrogen receptor beta cDNA isoform into MDA-MB-231 breast cancer cells J Steroid Biochem Mol Biol 87(1) 47–55 DOI: 10.1016/j.jsbmb.2003.07.003 PMID: 14630090

66. Leygue E and Murphy LC (2013) A bi-faceted role of estrogen receptor beta in breast cancer Endocr Relat Cancer 20(3) R127–39 DOI: 10.1530/ERC-12-0389 PMID: 23533249

67. Kennedy BJ (1965) Hormone therapy for advanced breast cancer Cancer 18(12) 1551–7 DOI: 10.1002/1097-0142-(196512)18:12<1551::AID-CNCR2820181206>3.0.CO;2-1 PMID: 5845796

68. Haddow A, Watkinson JM, Paterson E and Koller PC (1944) Influence of synthetic oestrogens on advanced malignant disease Br Med J 2(4368) 393–8 DOI: 10.1136/bmj.2.4368.393 PMID: 20785660 PMCID: 2286289

69. Peethambaram PP, Ingle JN, Suman VJ, Hartmann LC and Loprinzi CL (1999) Randomized trial of diethylstilbestrol vs. tamoxifen in postmenopausal women with metastatic breast cancer. An updated analysis Breast Cancer Res Treat 54(2) 117–22 DOI: 10.1023/A:1006185805079 PMID: 10424402

70. Cole MP, Jones CT and Todd ID (1971) A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474 Br J Cancer 25(2) 270–5 DOI: 10.1038/bjc.1971.33 PMID: 5115829 PMCID: 2008453

71. Gottardis MM, Robinson SP and Jordan VC (1988) Estradiol-stimulated growth of MCF-7 tumors implanted in athymic mice: a model to study the tumoristatic action of tamoxifen J Steroid Biochem 30(1–6) 311–4 DOI: 10.1016/0022-4731(88)90113-6 PMID: 3386259

72. Jordan VC and Koerner S (1975) Inhibition of oestradiol binding to mouse uterine and vaginal oestrogen receptors by triphenylethylenes J Endocrinol 64(1) 193–4 DOI: 10.1677/joe.0.0640193 PMID: 163879

73. Lippman ME and Bolan G (1975) Oestrogen-responsive human breast cancer in long term tissue culture Nature 256(5518) 592–3 DOI: 10.1038/256592a0 PMID: 170527

74. Jordan VC, Gottardis MM and Satyaswaroop PG (1991) Tamoxifen-stimulated growth of human endometrial carcinoma Ann NY Acad Sci 622 439–46 DOI: 10.1111/j.1749-6632.1991.tb37886.x PMID: 1905895

75. Osborne CK, Pippen J, Jones SE, Parker LM, Ellis M, Come S, et al (2002) Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial J Clin Oncol 20(16) 3386–95 DOI: 10.1200/JCO.2002.10.058 PMID: 12177098

76. Baum M, Budzar AU, Cuzick J, Forbes J, Houghton JH, Klijn JG, et al (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial Lancet 359(9324) 2131–9 DOI: 10.1016/S0140-6736(02)09088-8 PMID: 1209077
77. Coombes RC, Hall E, Gibson LJ, Paridaens R, Jassem J, Delozier T, et al (2004) A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer N Engl J Med 350(11) 1081–92 DOI: 10.1056/NEJMoa040331 PMID: 15014181

78. Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, et al (2003) A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer N Engl J Med 349(19) 1793–802 DOI: 10.1056/NEJMoa032312 PMID: 14551341

79. Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, et al (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling Oncogene 22(47) 7316–39 DOI: 10.1038/sj.onc.1206937 PMID: 14576841

80. Normanno N, Di Maio M, De Maio E, De Luca A, Giordano A, et al (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer Endocr Relat Cancer 12(4) 721–47 DOI: 10.1677/erc.1.00857 PMID: 16322319

81. Emens LA and Davidson NE (2003) Adjuvant hormonal therapy for premenopausal women with breast cancer Clin Cancer Res 9(1 Pt 2) 486S–94S PMID: 12538505

82. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR and Katzenellenbogen BS (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype Endocrinology 144(10) 4562–74 DOI: 10.1210/en.2003-0567 PMID: 12959972

83. Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, et al (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells Genome Biol 5(9) R66 DOI: 10.1186/gb-2004-5-9-r66 PMID: 15345050 PMCID: 522873

84. Alvarez-Baron CP, Jonsson P, Thomas C, Dryer SE and Williams C (2011) The two-pore domain potassium channel KCNK5: induction by estrogen receptor alpha and role in proliferation of breast cancer cells Mol Endocrinol 25(8) 1326–36 DOI: 10.1210/me.2011-0045 PMID: 21680658 PMCID: 3146246

85. Loi S, Piccart M and Sotiriou C (2007) The use of gene-expression profiling to better understand the clinical heterogeneity of estrogen receptor positive breast cancers and tamoxifen response Crit Rev Oncol Hematol 61(3) 187–94 DOI: 10.1016/j.critrevonc.2006.09.005 PMID: 17088071

86. Kong SL, Li G, Loh SL, Sung WK and Liu ET (2011) Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state Mol Syst Biol 7 526 DOI: 10.1038/msb.2011.59 PMID: 21878914 PMCID: 3202793

87. Tan SK, Lin ZH, Chang CW, Varang V, Chng KR, Pan YF, et al (2011) AP-2gamma regulates oestrogen receptor-mediated long-range chromatin interaction and gene transcription Embo J 30(13) 2569–81 DOI: 10.1038/emboj.2011.151 PMID: 21572391 PMCID: 3155293

88. Mohammed H, D’Santos C, Serandour AA, Ali HR, Brown GD, Atkins A, et al (2013) Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor Cell Rep 3(2) 342–9 DOI: 10.1016/j.celrep.2013.01.010 PMID: 23403292

89. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, et al (2009) Estradiol-regulated microRNAs control estradiol response in breast cancer cells Nucleic Acids Res 37(14) 4850–61 DOI: 10.1093/nar/gkp500 PMID: 19528081 PMCID: 2724297

90. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype Genome Biol 8(10) R214 DOI: 10.1186/gb-2007-8-10-r214 PMID: 17922911 PMCID: 2246288
91. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al (2005) MicroRNA gene expression deregulation in human breast cancer Cancer Res 65(16) 7065–70 DOI: 10.1158/0008-5472.CAN-05-1783 PMID: 16103053

92. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies Mol Cancer 5 24 DOI: 10.1186/1476-4598-5-24 PMID: 16784538 PMCID: 1563474

93. Katchy A, Edvardsson K, Aydogdu E, Williams C (2012) Estradiol-activated estrogen receptor alpha does not regulate mature microRNAs in T47D breast cancer cells J Steroid Biochem Mol Biol 128(3–5) 145–53 DOI: 10.1016/j.jsbmb.2011.10.008 PMID: 22079223

94. Klinge CM (2012) miRNAs and estrogen action Trends Endocrinol Metab 23(5) 223–33 DOI: 10.1016/j.tem.2012.03.002 PMID: 22503553 PMCID: 3348384

95. Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M, et al (2009) Maturation of microRNA is hormonally regulated by a nuclear receptor Mol Cell 36(2) 340–7 DOI: 10.1016/j.molcel.2009.08.017 PMID: 19854141

96. Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines Mol Endocrinol 21(5) 1132–47 DOI: 10.1210/me.2007-0022 PMID: 17312270

97. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer J Biol Chem 283(45) 31079–86 DOI: 10.1074/jbc.M806041200 PMID: 18790736 PMCID: 2576549

98. Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, et al (2011) A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells Cell 145(4) 622–34 DOI: 10.1016/j.cell.2011.03.042 PMID: 21549415 PMCID: 3099127

99. Ponting CP, Oliver PL and Reik W (2009) Evolution and functions of long noncoding RNAs Cell 136(4) 629–41 DOI: 10.1016/j.cell.2009.02.006 PMID: 19239885

100. Lipovich L, Johnson R and Lin CY (2010) MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA Biochim Biophys Acta 1799(9) 597–615 DOI: 10.1016/j.bbagrm.2010.10.001 PMID: 20951849

101. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation Nature 498(7455) 516–20 DOI: 10.1038/nature12210 PMID: 23728302 PMCID: 3718886

102. Prensner JR and Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology Cancer Discov 1(5) 391–407 DOI: 10.1158/2159-8290.CD-11-0209 PMID: 22096659 PMCID: 3215093