The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial

Anastasia E. Metropulos,a Hidayatullah G. Munshi,a,b,c and Daniel R. Principec,d

aFeinberg School of Medicine, Northwestern University, Chicago, IL, USA
bJesse Brown VA Medical Center, Chicago, IL, USA
cUniversity of Illinois College of Medicine, Chicago, IL, USA

Summary

Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for solid tumors. However, even in cancers generally considered ICI-sensitive, responses can vary significantly. Thus, there is an ever-increasing interest in identifying novel means of improving therapeutic responses, both for cancers in which ICIs are indicated and those for which they have yet to show significant anti-tumor activity. To this end, Transforming Growth Factor β (TGFβ) signaling is emerging as an important barrier to the efficacy of ICIs. Accordingly, several preclinical studies now support the use of combined TGFβ and immune checkpoint blockade, with near-uniform positive results across a wide range of tumor types. However, as these approaches have started to emerge in clinical trials, the addition of TGFβ inhibitors has often failed to show a meaningful benefit beyond the current generation of ICIs alone. Here, we summarize landmark clinical studies exploring combined TGFβ and immune checkpoint blockade. These studies not only reinforce the difficulty in translating results from rodents to clinical trials in immune-oncology but also underscore the need to re-evaluate the design of trials exploring this approach, incorporating both mechanism-driven combination strategies and novel, predictive biomarkers to identify the patients most likely to derive clinical benefit.

Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment in the last decade and are now the preferred first-line treatment for several solid tumors. ICI-based immunotherapy consists of neutralizing antibodies against negative immune checkpoints, with most targeting either programmed cell death protein 1 (PD-1) or PD-1 ligand 1 (PD-L1), thereby impeding the ability of tumor cells to evade the cytotoxic immune program. In monotherapy, these medications are sufficient to produce objective clinical responses and achieve satisfactory disease control for many cancer types. However, despite the rapid progress in immunotherapy in recent years, several cancers appear largely refractory to ICIs, particularly as monotherapy. Thus, there is an ever-increasing interest in developing new, effective combination strategies to further enhance the efficacy of ICIs, particularly for cancers that have demonstrated poor therapeutic responses to ICIs in clinical trials.

To this end, Transforming Growth Factor β (TGFβ) is a potent and pleiotropic cytokine with complex, often contradictory roles in tumorigenesis. While the effects of TGFβ on tumor cells are varied and context-specific, the role for TGFβ signaling in immune evasion appears to be somewhat similar across a wide range of tumor types. TGFβ is a central mediator of immune tolerance, and its immunosuppressive effects are well-documented. Accordingly, TGFβ is emerging as an important and clinically actionable means of immune evasion within the tumor microenvironment (Fig. 1). Several preclinical studies have explored the combination of TGFβ and PD-1/PD-L1 inhibition as cancer therapy with uniformly positive results. However, as this approach has begun to emerge in clinical trials, progress has been difficult, with most trials failing to recapitulate the successes observed in animal models (Table 1). Here, we summarize key clinical trials exploring concomitant TGFβ and PD-1/PD-L1 signal inhibition in solid tumors. Additionally, we discuss potential reasons for the relative lack of success in translating this approach from the bench to the bedside, as well as potential strategies to improve response rates in subsequent trials.
Clinical studies exploring combined TGFβ and immune checkpoint inhibition

Given the encouraging anti-tumor effects of combined TGFβ and immune checkpoint inhibition in preclinical testing, these approaches are beginning to emerge in clinical trials, many of which have shared early results (Table 2). Here, we summarize select major trials exploring combined TGFβ and immune checkpoint. Specifically, we prioritize those with early efficacy and safety data, with a particular emphasis on the treatment-related outcomes data used to determine FDA approval and/or guide clinical decision-making.

Colorectal cancer

The combined inhibition of TGFβ and PD-1/PD-L1 signaling has shown promising anti-tumor activity in preclinical murine models of colon cancer. Accordingly, several such approaches are under clinical investigation in colorectal cancer (CRC) patients. An open-label phase 2 study is evaluating the combination of Vactosertib and the anti-PD-1 antibody Pembrolizumab in patients with previously treated microsatellite stable (MSS) CRC (NCT03724851). Though this study is ongoing, preliminary data have been reported from 33 patients. At the interim analysis, the authors noted partial responses in 5/33 patients (15.2%), with 7/33 (21.2%) showing stable disease. This approach was generally well tolerated, with only three serious adverse effects reported in the form of pneumonitis (3%), nausea (3%), and vomiting (3%). Moderate side effects were more common, including an increase in serum amylase (21.2%), pruritus (21.2%), rash (21.2%), and increased serum lipase (18.2%).

The bifunctional anti-PD-L1/TGFβ trap fusion protein Bintrafusp alfa is also under clinical investigation in CRC (NCT03436563). A recent phase 2 study of patients with microsatellite instability-high (MSI-H) metastatic solid tumors who had progressed on prior ICI has posted early results from 15 patients, 12 of whom (80%) had CRC. Of the 14 evaluable patients, three (21.4%) had stable disease, with only one deriving long-term clinical benefit. The remaining 11 (78.6%) patients had progressive disease. Safety data were available from all 15 patients, with one showing grade 3 adrenal insufficiency and one dying from hepatic failure. Interestingly, a recent study also explored Bintrafusp alfa in metastatic CRC patients with MSS, liver-limited disease, and detected circulating tumor DNA (ctDNA) following complete resection and standard-of-care therapy. Compared to a historical cohort, patients treated with Bintrafusp alfa had increased new metastases and greater tumor volumes. It is important to note that only four of 15 planned patients received Bintrafusp alfa, as this study was terminated given the above results. Hence, caution may be required when advancing Bintrafusp alfa and similar targets without a guiding
Anti-TGFβ and ICI Medications	Additional therapy	Model system(s)	Results	Notes	References
Colon cancer					
Galunisertib + anti-PD-1	–	Genetically reconstituted colon cancer metastasis	Improved anti-tumor cytotoxicity, extended survival, reduced liver metastases	7	
LY734947 + anti-PD-L1	–	CT26, MC38	Improved tumor growth inhibition, increased rate of complete regressions	8	
SARI359469 + anti-PD-1	–	MC38	Improved anti-tumor immunity and restrained tumor growth	9	
Bintrafusp alfa	–	MC38	Reduced tumor burden and metastasis, improved survival	10	
YM101	–	CT26	Increased tumor infiltrating lymphocytes and dendritic cells, and enhanced cytokine production	11	
anti-GARP:TGF-β1 + anti-PD-1	–	CT26	Increased cytokytic immune responses and improved survival	12	
Bintrafusp alfa	Oxaliplatin	MC38	Increased CTL activation, reduced tumor burden	13	
Bintrafusp alfa	NHS-muLiL2	MC38	Reduced tumor burden, improved survival	14	
Pancreatic cancer					
Galunisertib + anti-PD-1	–	KPC	Significantly improved survival and increased T-cell infiltration	15	
LY364947 + anti-PD-L1	–	KPC1	Addition of anti-PD-L1 did not improve results beyond LY364947 alone	16	
Galunisertib + siPD-L1	–	Panc02	Enhanced anti-tumor immunity and restrained tumor growth	17	
Galunisertib + anti-PD-1	Gemcitabine	KPC	Increased anti-tumor immunity and restrained tumor growth	18	
LY364947 + anti-PD-L1	Gemcitabine	KP16	Increased CTL infiltration/activation, reduced tumor burden, improved survival	19	
Bintrafusp alfa	Localized Radiotherapy	Orthotopic KPC	Reduced tumor growth	20	
Lung cancer					
Bintrafusp alfa	–	HCC4006	Transient responses observed	21	
anti-TGFβ antibodies + anti-PD-1	Radiation Therapy	Lewis Lung Carcinoma	Reduced tumor burden and improved survival	22	
YM101	–	Lung Cancer Cell Lines and 3LL Lewis Lung Carcinoma murine model	Increased complete responses and promoted immune-mediated tumor regression	23	
anti-TGFβ + anti-PD-L1	–	Lewis Lung Carcinoma	Increased rates of complete responses	24	
Breast cancer					
anti-TGFβ + anti-PD-L1	–	EMT-6	Increased rates of complete responses, enhanced CTL-mediated tumor regression	25	
Bintrafusp alfa	–	EMT-6	Enhanced activation of innate and adaptive immune systems	26	
Radiation Therapy	–	4T1	Reduced tumor burden, eradicated lung metastases, improved survival	27	
NHS-muLiL2	–	EMT-6, 4T1	Restrained tumor growth, improved survival	28	
YM101	–	EMT-6	Reduced tumor burden, restored anti-tumor immune responses	29	
SRK-181-mIgG + anti-PD-L1	–	EMT-6	Restored anti-tumor immune responses, improved Survival	30	

(Table 1 continues on next page)
biomarker, in part due to the innate tumor suppressive effects of TGFβ signaling in colon cancer.38

Pancreatic cancer

TGFβ is an established driver of immune evasion in PDAC,39,40 and TGFβ inhibition has been shown to augment therapeutic responses to ICIs in preclinical models of disease.17,19 Accordingly, combined TGFβ and PD-1/PD-L1 inhibition is now emerging in clinical trials for PDAC. A phase 1b study (NCT02734160) recently explored the combination of Galunisertib and the anti-PD-L1 antibody Durvalumab in 32 patients with metastatic PDAC that had progressed on ≤2 prior systemic regimens. In this group, one patient (3.1%) demonstrated a partial response, and seven (21.9%) had stable disease for a disease control rate of 25%. This corresponded to a median overall survival of 5.72 months and median progression-free survival of 1.87 months. This approach was generally well tolerated, with five patients (15.6%) experiencing a grade 3/4 treatment-related adverse events, including elevated serum AST/ALT.

Table 1: Abbreviated results for preclinical studies exploring combined TGFβ and immune checkpoint inhibition.

Anti-TGFβ and ICI Medications	Additional therapy	Model system(s)	Results	Notes	References
anti-CTLA-4-TGFβR2	–	Partially humanized mice w/HLA-matched MDA-MB231 xenografts	Reduced tumor growth, restored anti-tumor immune responses		26
anti-PD-L1-TGFβR2	–	Improved efficacy compared to inhibition of either TGFβ or PD-L1	Reduced Tregs, increased IFNγ production		26
Melanoma and non-melanoma skin cancers					
SRK-181-mIgG + anti-PD-1	–	SQ1	Reduced tumor burden, improved survival		25
anti-PD-L1-TGFβR2	–	Partially humanized mice w/HLA-matched melanoma xenografts	Restrained tumor growth	Superior to anti-PD-1 monotherapy	26
TGFβ depletion + anti-PD-1	LSD1	B16	Restored cytotoxic responses, eradicated tumors	Protected from tumor rechallenge	27
Vactosertib + anti-PD-1	–	Braf ΔExon 7 + Pten−/− model	Failed to improve responses beyond anti-PD-1 monotherapy	Improved responses when administered at escape from anti-PD-1	28
anti-TGFβ + anti-PD-1	–	Syngeneic tumor models derived from SCC cell lines	Increased rates of complete responses		29
LY2109561 + anti-PD-L1	–	A223	Improved efficacy in combination	Protected from tumor rechallenge	30
Bintrafus alfa	–	A223	Enhanced CD8-mediated tumor regression		30
LY215299 + anti-CTLA-4	–	Braf ΔExon 7 + Pten−/− Melanoma	Reduced primary tumor growth, inhibited distant metastases		31
anti-CTLA-4-TGFβR2	–	Partially Humanized Mice Bearing HLA-matched Melanoma Xenografts	Improved efficacy compared to CTLA-4 monotherapy		26
Vactosertib + anti-CTLA-4	–	Braf ΔExon 7 + Pten−/− Melanoma	Improved efficacy compared to CTLA-4 monotherapy		28
Urothelial cancer					
SRK-181-mIgG + anti-PD-1	–	M8T-2	Reduced tumor burden	Protected from tumor rechallenge	25
Bintrafus alfa	–	Human cell lines	Facilitated immune-mediated lysis		32
Prostate cancer					
CAR-T anti-TGFβ and anti-PD-1 Trap Cells	–	Modified PC3 cell-derived tumors	Increased CTL infiltration, reduced tumor burden	Protected from tumor rechallenge	33
Glioblastoma multiforme					
Bintrafus alfa	Localized Radiotherapy	GL261	Improved survival		21
Multiple myeloma					
anti-TGFβ or Galunisertib + anti-PD-1	–	Patient-Derived Myeloma Cells and Bone Marrow-MNCs	Increased CD8+ T-cell proliferation/activation		34

Abbreviations: Transforming Growth Factor β (TGFβ); Immune checkpoint inhibitor (ICI); Programmed cell death protein 1 (PD-1); PD-1 ligand 1 (PD-L1); Cytotoxic T-Lymphocyte (CTL); Glycoprotein A repetitions predominant (GARP); Epithelial-to-mesenchymal transition (EMT); Human leukocyte antigen (HLA); Interferon gamma (IFNγ); Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4); Type 2 TGFβ Receptor (TGFβR2); Lysine-specific demethylase 1 (LSD1); Squamous cell carcinoma (SCC); Chimeric antigen receptor-modified T cells (CAR-T); Mononuclear cells (MNCs).
Anti-TGFβ and ICI Medications	Additional therapy	NCT identifier	Phase	Sample size	Response rate	Median OS (%)	Median OS (Months)	Notes	
Colorectal cancer									
Vactosertib + Pembrolizumab	–	NCT0324851	2	33	15.2%	NR	NR	Pre-treated, ICI-naive, MSS, metastatic CRC	
NIS793 + Spartalizumab	–	NCT0294165	1b	40	5%	NR	NR	Advanced, Pre-treated, MSS CRC	
Bintrafusp alfa	–	NCT03436563	2	15	0%	NR	9.1	MSI-H CRC	
	–	–	1	4	0%	NR	NR	Liver-limited, ctDNA-positive, MSS mCRC	
Pancreatic cancer									
Galunisertib + Durvalumab	–	NCT02734160	1b	32	3.12%	NR	5.72	Heavily pre-treated, Recurrent/refractory, metastatic PDAC	
Bintrafusp alfa	–	NCT02517398	1	5	20%	NR	NR	Heavily pre-treated	
Biliary tract cancers									
Bintrafusp alfa	–	NCT02699515	1	30	20%	NR	12.7	Pre-treated	
Gastroesophageal cancers									
Bintrafusp alfa	–	NCT02699515	1	31	22.6%	NR	NR	Recurrent, locally advanced/metastatic gastric/gastroesophageal junction cancer	
Bintrafusp alfa	–	NCT02517398	1	30	20%	NR	NR	Platinum-refractory esophageal adenocarcinoma	
	–	NCT02699515	1	30	10%	NR	11.9	Heavily pre-treated esophageal SCC	
Primary lung cancers									
Galunisertib + Nivolumab	–	NCT02423343	2	25	24%	NR	11.99	Recurrent/refractory NSCLC	
Bintrafusp alfa	–	NCT02517398	1	40	27.5%	18-month: 49.7%	24-month: 39.7%	Advanced, platinum-treated NSCLC	
Cervical cancer									
Bintrafusp alfa	–	NCT02517398	1	39	30.77%	NR	13.4	Pre-treated, recurrent/metastatic cervical cancer	
	–	NCT03424141	2	39	–				
	–	NCT02424282	1	14	86%	NR	NR	Previously untreated, surgically resectable HPV-unrelated HNSCC	
Head and neck cancer									
Bintrafusp alfa	–	NCT02517398	1	32	12.5%	18-month: 44.0%	24-month: 36.0%	36-month: 24.0%	Heavily pre-treated, advanced HNSCC
	–	NCT04242822	1	14	86%	NR	NR	Previously untreated, surgically resectable HPV-unrelated HNSCC	
HPV-associated cancers									
Bintrafusp alfa	–	NCT02517398	1	39	32%	12-month: 59.7%	18-month: 51.5%	NR	Advanced, pre-treated HPV-associated cancers
	NHS-IL12	NCT03427411	2	14	71%	NR	NR	HPV-positive, relapsed or refractory advanced cancers	
	PDS0101	NCT04287868	2	14	–				
Neurologic malignancies									
Bintrafusp alfa	–	NCT02517398	1	35	5.71%	–	5.3	Recurrent GBM following radiation and Temozolomide treatment	
Multi-cancer studies									
NIS793 + Spartalizumab	–	NCT0294165	1b	120	3.33%	NR	NR	Advanced or metastatic solid tumors	

Abbreviations: Transforming Growth Factor β (TGFβ); Immune checkpoint inhibitor (ICI); Overall survival (OS); Not reported (NR); Microsatellite stable (MSS); Colorectal cancer (CRC); Metastatic CRC (mCRC); Microsatellite instability-high (MSI-H); circulating tumor DNA (ctDNA); Pancreatic ductal adenocarcinoma (PDAC); Squamous cell carcinoma (SCC); Non-small cell lung cancer (NSCLC); Head and neck squamous cell carcinoma (HNSCC); Human papillomavirus (HPV); Glioblastoma multiforme (GBM). *Denotes pathologic response rate.

Table 2: Select clinical trials exploring combined TGFβ and immune checkpoint inhibition that have shared preliminary results.
neutropenia, anemia, and lymphopenia. Though efficacy was limited in this heavily pre-treated population, given the lack of available subsequent-line therapies for PDAC patients, this approach warrants continued investigation, particularly as an earlier line of therapy and in combination with other treatments.

Data regarding Bintrafusp alfa is limited, though a recent phase 1 trial of 19 heavily pre-treated cancer patients included five with PDAC (NCT02517398). Only one patient with MSI-H, locally advanced PDAC demonstrated a partial response that persisted until disease progression after 10.5 months. Bintrafusp alfa has also been evaluated in combination with Gemcitabine. A phase 1b/2 trial included a small number of patients with heavily pre-treated PDAC. Unfortunately, all patients in this study experienced grade 3/4 adverse events, 66% in the form of anemia, 33% thrombocytopenia, and 16% developing upper GI hemorrhage, pleural effusion, or thromboembolism. This study was terminated after one patient died due to treatment-induced hepatitis (NCT03451773). Several other trials are ongoing but have yet to share results.

Biliary tract cancers

Despite a lack of preclinical data, several studies are now investigating TGFβ and PD-1/PD-L1 inhibition in biliary tract cancer, with most using Bintrafusp alfa. Phase 1 data has been encouraging, including a recent study evaluating Bintrafusp alfa in 30 patients with pre-treated biliary tract cancer (NCT02699515). Here, the objective response rate was 20% (6/30), with median progression-free and overall survival of 2.5 and 12.7 months, respectively. Interestingly, clinical activity was observed independent of either PD-L1 expression or MSI-H status. Safety data were consistent with previous reports, with 11/30 (36.7%) patients experiencing grade 3 or worse adverse events, including three patients with treatment-related death attributed to septic shock or interstitial lung disease.

However, in a phase 2 study of 159 patients (NCT03833661), the objective response rate was 10.5%. Although there was single-agent activity in some patients, this trial did not meet the pre-specified threshold for regulatory filing as a second-line treatment of patients with biliary tract cancer, marking the first major failure for Bintrafusp alfa in large-scale testing. Another flagship phase 2 trial also compared Bintrafusp alfa in combination with Gemcitabine and Cisplatin as a first-line treatment for locally advanced or metastatic biliary tract cancer (NCT04066491). Though data has not been made available to the public, per a recent press release, Bintrafusp alfa failed to meaningfully improve outcomes compared to the control arm of Gemcitabine and Cisplatin alone. Thus, this study was also discontinued, given that it was unlikely to meet its primary trial objective of improving overall survival. This marked another major failure for Bintrafusp alfa in larger-scale testing, with some calling this trial the drug’s “third strike” following another high-profile failure in NSCLC (discussed in a subsequent section). Despite this, several similar studies are ongoing.

Gastroesophageal cancers

Though not evaluated in preclinical studies, several ongoing clinical trials have also evaluated the concomitant inhibition of TGFβ and PD-1/PD-L1 in gastric and esophageal cancers. To date, only two have shared interim results. The first is a multi-cancer phase 1 trial (NCT02699515) evaluating Bintrafusp alfa monotherapy, which included 31 patients with recurrent, locally advanced, or metastatic gastric/gastroesophageal junction cancer for whom standard of care therapies have either failed or do not exist. At the time of reporting, 7/31 (22.6%) patients had objective responses, 2 (6.5%) of which were complete. Bintrafusp alfa was generally well tolerated, with 6/31 (19.4%) patients experiencing grade 3 adverse events, though one treatment-related death was attributed to the rupture of a pre-existing thoracic aortic aneurysm.

Also nested within a phase 1 pan-cancer trial (NCT02517398), Bintrafusp alfa is under evaluation in esophageal cancer patients. In this study, 30 esophageal adenocarcinoma patients were treated with Bintrafusp alfa following failure on platinum-based chemotherapy. This study reported a response rate of 20% (6/30 patients), with a median duration of 1.3–8.3 months. Importantly, 83.3% of responses were observed in tumors exhibiting an immune-excluded phenotype. This study reported safety data consistent with other trials, with 19/30 (63.3%) patients experiencing treatment-related adverse events and 7/30 (23.3%) experiencing grade 3 toxicities. No grade 4 events or treatment-related deaths were observed. A recent phase 1 study of 30 heavily pre-treated patients with esophageal SCC has also reported initial results (NCT02699515). The objective response rate in this study was 10% (3/30), with a duration of 2.8–8.3 months. Similar to the previous study, all responses were observed in patients with immune-excluded tumors, with nearly identical safety data. Additional studies are ongoing, many also evaluating Bintrafusp alfa.

Lung cancer

Following promising data in preclinical studies, the combination of TGFβ and PD-1/PD-L1 blockade is now under investigation in lung cancer. Several early-stage trials have shown promise, including a recent phase 2 study that explored the combination of Galunisertib with Nivolumab in 25 patients with recurrent/refractory NSCLC (NCT02423343, also referenced in the HCC section). This study reported an objective response rate of 24% (6/25 patients), with a median time to response of
4.2 months and a median duration of 9.0 months. Median progression-free survival and overall survival were 5.3 months and 12.0 months, respectively (https://clinicaltrials.gov). Similarly, a phase 1 pan-cancer study also evaluating Bintrafusp alfa monotherapy has recently shared data from a group of 40 patients with advanced, platinum-treated NSCLC (NCT02517398). Eleven patients (27.5%) demonstrated an objective response, with a median duration of 18 months. After two years, the authors reported progression-free and overall survival rates of 11% and 39.7%, respectively. Of the 7 patients with high PD-L1 expression, 6 (85.7%) were alive at the study endpoint.97–99 Similar trials are ongoing in NSCLC patients, though these have yet to share results.

However, these studies are all predominantly in very early-stage testing. Evaluation for Bintrafusp alfa has been more extensive in NSCLC, both as a monotherapy and in combination with other treatments. Though an ongoing phase 2/3 study is investigating neoadjuvant Bintrafusp alfa in resectable, untreated NSCLC patients (NCT04560686), this approach has recently experienced a major setback in a recent phase 3 study that has marked one of the most significant failures for Bintrafusp alfa thus far (NCT03631706). In this study, Bintrafusp alfa was directly compared with Pembrolizumab in patients with advanced, PD-L1-expressing NSCLC. Bintrafusp alfa failed to show any improvement over Pembrolizumab, though it is not known whether Bintrafusp alfa was equal to or inferior to Pembrolizumab. This study was discontinued following a preliminary assessment of patient data indicating that the co-primary endpoint of progression-free survival was unlikely to be achieved (https://www.emdgroup.com). Though much of this data has not been made public, this study marks yet another major failure for Bintrafusp alfa. It raises important questions regarding both the usefulness of combined TGFβ and PD-1/PD-L1 inhibition in lung cancer or whether Bintrafusp alfa is a truly effective means of neutralizing either target in the clinic. As with biliary cancer, despite this major setback, several trials are nevertheless still exploring Bintrafusp alfa in NSCLC.

Cervical, head & neck, and other HPV-associated cancers

Despite a lack of preclinical studies, several clinical trials are also exploring combined TGFβ and PD-1/PD-L1 inhibition in human papillomavirus (HPV)-associated cancers, particularly cervical cancer and HNSCC. Though most are early stages, some are beginning to show promise. For example, early data are now available from 39 patients with pre-treated, recurrent/metastatic cervical cancer receiving Bintrafusp alfa. This cohort was a combination of patients from a phase 1 (NCT02517398) and phase 2 study (NCT03427411), all treated with single-agent Bintrafusp alfa. In the combined cohort, the authors observed two complete (5.1%) and nine partial responses (23.1%), with a median duration of 11.7 months. One additional delayed partial response was also observed, with a duration of 23.7 months. Interestingly, responses were independent of either tumor histology or prior treatment with Bevacizumab or radiation. The median overall survival in this study was 13.4 months, with a two-year overall survival rate of 33.2%. Safety data were similar to previous studies, with 8/39 (20.5%) patients experiencing a grade 3 treatment-related adverse event and one patient (2.6%) experiencing grade 4 toxicity in the form of asymptomatic hypokalemia secondary to grade 3 gastroparesis.100

As with lung cancer and melanoma, ICIs have rapidly advanced in the treatment of head and neck squamous cell carcinoma (HNSCC).101 Accordingly, there are several ongoing trials exploring TGFβ and PD-1/PD-L1 inhibition in HNSCC patients, most often using Bintrafusp alfa. Recently, long-term survival data has been posted from the expansion cohort of a phase 1 study evaluating Bintrafusp alfa in patients with advanced, heavily pre-treated HNSCC (NCT02517398). Of the 32 patients enrolled, 4 (12.5%) had objective responses with a median duration of 21.4 months. This corresponded to a three-year overall survival rate of 24.0%.102 No new grade 3 or worse toxicities were reported, with earlier data from this cohort reporting 11 (34.4%) patients had experienced a grade 3 adverse event.102 Interestingly, responses were observed largely independent of PD-L1 status, but more commonly in HPV-positive tumors.102

Similar studies are exploring the efficacy of combined TGFβ and PD-1/PD-L1 inhibition in patients with any HPV-associated cancers, irrespective of the tumor site. While several are ongoing, others have shared results, with many showing promise. Data from a combination of patients from a phase 1 (NCT02517398) and phase 2 study (NCT03427411) have now been shared. These trials explored Bintrafusp alfa in patients with any advanced, pre-treated, HPV-associated cancers. Though early results were shared in 2020,103 long-term survival data has now been posted. The combined cohort included 39 cervical cancer patients, 19 HNSCC patients, 9 anal cancer patients, and 8 patients with non-specified HPV-associated cancers. The combined objective response rate was 28% (21/75 patients), with a median duration of 17.3 months. An additional three patients had a delayed response, increasing the overall response rate to 32%. This was associated with encouraging 12- and 18-month overall survival rates of 39.7% and 51.5%, respectively. Bintrafusp alfa was well tolerated, with five patients (6.7%) developing grade 3 anemia.104

Interestingly, a recent study explored the peripheral immunome of 65 patients across these two trials, both before and 14 days following treatment with Bintrafusp alfa.105 The authors identified several factors that were associated with therapeutic responses. Specifically, they found that higher pre-treatment sCD27:sCD40L
expression ratios and lower levels of TGFβ1 were favorable biomarkers. Similarly, lower levels of soluble factors associated with tumor mesenchymalization also correlated with improved responses, as did a higher CD8+/T-cell:MDSC ratio. Two weeks after initiating treatment, patients who would eventually develop clinical responses had fewer increases in both IL-8 levels and the neutrophil to lymphocyte ratio, as well as increased levels of HPV-16 specific CD8+ T-cells.67 Hence, these biomarkers warrant continued exploration in other cohorts.

Bintrafusp alfa is also under phase 2 investigation in patients with advanced, HPV-associated cancers in combination with NHS-IL12 and PDS0101, a micellar multi-peptide-based therapeutic vaccine targeting HPV16 E6/E7 (NCT04287868). At the time of the initial report, 10/14 patients (71.4%) achieved objective responses, five of which were ICI-naïve and five ICI-refractory. Additionally, after five months of follow-up, 90% of these responses were ongoing. This approach was generally well-tolerated, with 4/14 patients (28.6%) experiencing grade 3 treatment-related toxicities in the form of hematuria and/or AST/ALT elevation. There was a single grade 4 toxicity in the form of transient and asymptomatic neutropenia.55 This marks the most successful trial exploring combined TGFβ and PD-1/PD-L1 inhibition to date, though this approach has yet to advance to phase 3 testing.

Biomarkers, resistance mechanisms, & limitations of current studies

There have been unprecedented advances in cancer immunotherapy in the last decade. ICIs have largely replaced broad-spectrum chemotherapy as the preferred treatment for several tumor types, with many patients achieving either complete responses or long-term disease control.35-37 Despite these many successes, there are still several cancer types for which ICIs have yet to demonstrate significant therapeutic efficacy. Further, therapeutic responses can be highly variable from patient to patient, even in cancers generally considered ICI-responsive.39-42 As discussed, TGFβ signaling is emerging as a central means of immune evasion in several cancers,43-46 Accordingly, several anti-TGFβ therapies are emerging in clinical trials,47 often in combination with ICI-based immunotherapy. Though the combination of anti-TGFβ therapy and ICIs has shown near-uniform efficacy in preclinical studies, progress for such approaches in clinical trials has been more difficult. While several trials have shown encouraging results, others appear to suggest that the efficacy of this approach may be limited (recently terminated trials summarized in Table 3).

For example, despite the initial excitement surrounding Bintrafusp alfa, which was at the center of a $4.2 billion venture between Merck KGaA and GlaxoSmithKline (GSK), Bintrafusp alfa has yet to either show efficacy in phase 3 study or earn approval by the FDA for any cancer. In fact, Bintrafusp alfa has lost considerable momentum in recent years, with Merck KGaA discontinuing its phase 2 trial in biliary cancer in 2021 due to poor efficacy, as described previously. Following the failure of Bintrafusp alfa in a large-scale phase 3 trial of NSCLC patients (NCT03631706), Merck KGaA and GSK announced a mutual decision to end their deal in 2021. Similarly, despite its promise as an adjuvant to ICI in animal studies, the development of Galunisertib by Eli Lilly was halted in January 2020. Though trials using these medications are still ongoing (summarized in Table 4), these strategic realignments leave their future in question.

Anti-TGFβ and ICI medications	Additional therapy	NCT identifier	Phase	Reason for termination	Notes
Pancreatic cancer					
Bintrafusp alfa	Gemcitabine	NCT03451773	1b/2	One treatment-related death	
Biliary tract cancer					
Bintrafusp alfa	Gemcitabine	NCT04166491	2/3	Unlikely to meet survival objective	
Hepatocellular carcinoma					
Galunisertib + Nivolumab	–	NCT02423343	2	HCC cohort terminated due to low enrollment	Part of a larger multi-cancer trial
Lung cancer					
Bintrafusp alfa	–	NCT03631706	3	Unlikely to meet survival objective	
Bintrafusp alfa	Aerosolized Azacytidine	NCT04648826	1/2	Increased frequency of early progression/death	Metastatic lung lesions from other cancers
Breast cancer					
Bintrafusp alfa	BN-Brachyury Entinostat	NCT04296942	1	Slow accrual and safety concerns	

Abbreviations: Transforming Growth Factor β (TGFβ), Immune checkpoint inhibitor (ICI), Hepatocellular carcinoma (HCC).

Table 3: Recently terminated clinical trials exploring combined TGFβ and immune checkpoint inhibition.
Anti-TGFβ and ICI medications	Additional therapy	NCT identifier	Phase	Notes
Colorectal cancer				
Vactosertib + Pembrolizumab		NCT03844750	2	Post-chemotherapy, pre-operative treatment for patients with resectable liver metastases
Bintrafusp alfa	CV301 N803 NHS-IL12	NCT04491955	2	Locally advanced or metastatic MSS small intestine or colorectal adenocarcinoma ICI-naive
Pancreatic cancer				
SHR-17011	Gemcitabine/Albumin-Paclitaxel/nab-Paclitaxel/Gemcitabine	NCT04624217	1b/2	Advanced PDAC
NIS/93 + Spartalizumab		NCT04390763	2	Untreated metastatic PDAC
Bintrafusp alfa	Stereotactic Body Radiation Therapy M9241	NCT04327986	1/2	Advanced PDAC
Biliary tract cancer				
Bintrafusp alfa		NCT03833661	2	Second-line treatment in advanced disease
-		NCT04727541	2	Neoadjuvant treatment for resectable disease
Hypofractionated Radiation Therapy		NCT04708067	1	Advanced intrahepatic cholangiocarcinoma
Gastroesophageal cancers				
Vactosertib + Durvalumab	Paclitaxel	NCT04835896	1b/2	Second-line treatment for recurrent/metastatic disease
Bintrafusp alfa	Paclitaxel	NCT04595149/	2	Nonresectable esophageal or gastro-esophageal junction SCC
	Carboplatin	NCT04481256		
	Carboplatin/Paclitaxel			
	Carboplatin/Pemetrexed/Intensity Modulated Radiation Therapy			
	Carboplatin/Pemetrexed/Intensity Modulated Radiation Therapy			
	Carboplatin/Pemetrexed/Etc.	NCT03840915	1/2	Stage IV NSCLC
	Docetaxel	NCT04396535	2	Advanced NSCLC that has progressed on prior anti-PD-1/PD-L1 and chemotherapy
	Pemetrexed Carboplatin	NCT04971187	2	Nonresectable locally advanced or metastatic, Tyrosine Kinase Inhibitor-Resistant, EGFR Mutant NSCLC
	Topotecan Temozolomide	NCT03554473	2	Relapsed small cell lung cancer
	-	NCT05005429	2	Previously treated, advanced or metastatic malignant pleural mesothelioma
	Standard of Care Chemotherapy	NCT04297748	1/2	Advanced NSCLC, bio-distribution study
Primary lung cancers				
Vactosertib + Durvalumab		NCT03722274	1b/2a	Advanced, platinum-treated NSCLC
Vactosertib + Pembrolizumab		NCT04515979	2	Advanced, untreated, PD-L1-expressing NSCLC
Bintrafusp alfa	Cisplatin/Etoposide Carboplatin/Paclitaxel Carboplatin/Pemetrexed	NCT03840902	2	Nonresectable Stage III NSCLC
	Cisplatin/Pemetrexed/Intensity Modulated Radiation Therapy			
	Cisplatin Carboplatin/Pemetrexed/Etc.	NCT03840915	1/2	Stage IV NSCLC
	Docetaxel	NCT04396535	2	Advanced NSCLC that has progressed on prior anti-PD-1/PD-L1 and chemotherapy
	Pemetrexed Carboplatin	NCT04971187	2	Nonresectable locally advanced or metastatic, Tyrosine Kinase Inhibitor-Resistant, EGFR Mutant NSCLC
	Topotecan Temozolomide	NCT03554473	2	Relapsed small cell lung cancer
	-	NCT05005429	2	Previously treated, advanced or metastatic malignant pleural mesothelioma
	Standard of Care Chemotherapy	NCT04297748	1/2	Advanced NSCLC, bio-distribution study
Breast cancer				
Bintrafusp alfa		NCT04489940	2	HMGA2-expressing TNBC
		NCT03620201	1	Stage II/III HER2+ breast cancer
	Radiation Therapy	NCT03524170	1	Metastatic, HR+, HER2- breast cancer
	Eribulin Mesylate	NCT03579472	1	Metastatic TNBC
	NHS-IL12 Radiation Therapy	NCT04756505	1	Metastatic, HR+, HER2- breast cancer
Gynecologic malignancies				
Bintrafusp alfa	Cisplatin Carboplatin Paclitaxel Bevacizumab Radiation Therapy	NCT04246489/NCT04551050	2/1	Non-resectable, platinum-treated advanced cervical cancer Locally advanced/advanced disease
	Carboplatin Paclitaxel	NCT05145569	1	Advanced ovarian cancer
Anti-TGFβ and ICI medications

Additional therapy	NCT identifier	Phase	Notes
HNSCC			
Galunisertib	NCT04605562	2	High-risk, locoregionally advanced nasopharyngeal carcinoma
+ Unspecified anti-PD-1 antibodies			
Bintrafusp alfa	NCT04428047	2	Untreated, resectable HNSCC
	NCT04247282	1/2	Untreated, resectable, non-HPV-associated HNSCC
- TriAd vaccine N-803 Stereotactic Body Radiation Therapy	NCT04220775	1/2	Recurrent or second primary HNSCC
	NCT04196886	2	Previously treated, recurrent or metastatic non-keratinizing nasopharyngeal carcinoma

| **Other HPV-associated cancers** | | | |
| Bintrafusp alfa | PRGN-2009 | 1/2 | Locally advanced or metastatic HPV-positive cancers |

Urologic cancers			
Vactosertib + Durvalumab			
Bintrafusp alfa	NCT0464190	2	Urothelial cancer refractory to anti-PD-1/PD-L1
	NCT0449280	1b	Locally advanced or metastatic, platinum-treated urothelial cancer
- NHS-IL12 Stereotactic Body Radiation Therapy	NCT04878250	2	Neoadjuvant treatment for resectable urothelial carcinoma
- NHS-IL12 Docetaxel	NCT0433252	1	Metastatic, non-prostate genitourinary malignancies
			Metastatic prostate cancer
O'SORI PROSTVAC-V PROSTVAC-F	NCT03315871	2	Recurrent prostate cancer
Bintrafusp alfa	NCT04432597	1/2	Castration-resistant prostate cancer

Neurologic malignancies			
Bintrafusp alfa	NCT05012098	2	Previously treated, recurrent or metastatic olfactory neuroblastoma
	NCT04789668	1/2	Metastatic brain lesions originating from extracranial tumors

| **Thymus cancer** | | | |
| Bintrafusp alfa | NCT04417660 | 2 | Platinum-treated thymoma or thymic carcinoma |

Sarcoma			
Bintrafusp alfa	NCT04874311	2	Advanced soft-tissue sarcoma
	NCT04303117	1/2	Advanced Kaposi sarcoma

Multi-cancer studies			
SAR439459 + Cemiplimab	NCT03192345	1	Nonresectable, advanced or metastatic solid tumors
Bintrafusp alfa	NCT02517398	1	Locally advanced or metastatic solid tumors
	NCT04574583	1/2	Locally advanced or metastatic solid tumors
- SX-682 CV301 Entinostat NHS-IL12	NCT04708470	1/2	Phase 1: locally advanced or metastatic HPV-associated malignancies or MSS small bowel or colorectal cancers Phase 2: locally advanced or metastatic checkpoint-refractory HPV-associated malignancies or MSS small bowel or colorectal cancers
	NCT05061823	3	Prospective long-term safety study
	NCT04267861	-	Retrospective, observational long-term safety study

Abbreviations: Transforming Growth Factor β (TGFβ), Immune checkpoint inhibitor (ICI), Programmed cell death protein 1 (PD-1), PD-1 ligand 1 (PD-L1), Microsatellite stable (MSS), Pancreatic ductal adenocarcinoma (PDAC), Squamous cell carcinoma (SCC), Non-small cell lung cancer (NSCLC), High-mobility group AT-hook 2 (HMGA2), Triple negative breast cancer (TNBC), Human epidermal growth factor receptor 2 (HER2), Hormone receptor (HR), Head and neck squamous cell carcinoma (HNSCC), Human papillomavirus (HPV).

Table 4: Ongoing clinical trials exploring combined TGFβ and immune checkpoint inhibition that have yet to post results.
There is little explanation for the discrepancies between preclinical and clinical studies evaluating combined TGFβ and PD-1/PD-L1 inhibition in cancer. Hence, these studies underscore the difficulty of transitioning from animal models to clinical trials and affirm the need to both refine the in vivo systems used for studying immune-oncology and incorporate complementary model systems such as ex vivo slice cultures, patient-derived xenografts in partially humanized mice, and large animal models. Additionally, given the high degree of variation in responses observed in most trials, these observations also raise important questions regarding potential predictive biomarkers and combination approaches.

For example, as discussed above, a recent phase 1 study (NCT02517398) demonstrated that NSCLC patients with high PD-L1 expression were more likely to derive a long-term survival benefit from Bintrafusp alfa, with 85.7% of these patients being alive at the study endpoint compared to 39.7% for all patients. However, PD-L1 expression may not be a universal biomarker given data from biliary cancer or HNSCC patients, where responses to Bintrafusp alfa were unrelated to PD-L1 expression. In the latter study, responses to Bintrafusp alfa were closely related to HPV expression. Similarly, one of the most successful trials for Bintrafusp alfa was observed in patients with HPV-positive tumors. However, the utility of HPV expression as a biomarker may be context-specific, particularly given the early results from a cohort of 14 patients with HPV-unrelated HNSCC treated with neo-adjuvant Bintrafusp alfa in which the objective pathologic response rate was 86%. Interestingly, in this cohort, the detection of neoeptitope-specific tumor T cell responses correlated with the development of a pathologic response. Additionally, neoeptitope-specific and pathologic responses in tumors did not correlate with genomic features or tumor antigenicity but were associated with limited pre-treatment myeloid cell tumor infiltration. Hence, future trials would likely benefit from a careful re-evaluation of patients who derived clinical benefit from combined TGFβ and PD-1/PD-L1 inhibition in earlier studies.

Beyond identifying candidate biomarkers for therapeutic responses, it is also essential to further explore mechanisms of resistance to combined TGFβ and PD-1/PD-L1 blockade in order to advance more effective combination strategies in clinical trials. Though mechanistic data regarding resistance is limited, these studies are beginning to emerge, shedding new light on the potential reasons for the failure of combined TGFβ and PD-1/PD-L1 inhibition in patients. For instance, a recent preclinical study demonstrated that while the combination of TGFβ and PD-L1 inhibition was highly effective in both MC38 and EMT-6 tumor models, the combined treatment led to the upregulation of several immune response genes, including the cytokine CCL5. Intratumoral administration of CCL5 similarly enhanced responses to an anti-PD-L1 antibody in MC38 tumors, offering a potential strategy to augment responses to combined TGFβ and PD-1/PD-L1 inhibition in the clinic.

Importantly, emerging data suggest that select immune phenotypes may dictate responses to cancer immunotherapy. Though we have discussed the importance of immune excluded phenotype in select trials/tumor types, it now appears that select immune phenotypes also involve the tumor stroma. For example, a landmark study has recently identified a unique subset of TGFβ-driven, LRRRC15-expressing CAFs, which predict poor responses to anti-PD-L1 antibodies across over 600 patients across six different tumor types. This is consistent with observations supporting three non-redundant barriers to the therapeutic efficacy of ICI-based immunotherapy in urothelial cancers, notably (1) the degree of pre-existing immunity represented by PD-L1 expression on immune cells as well as surrogate biomarkers of immune function, e.g., IFNγ expression, (2) tumor mutational burden, cell proliferation, proliferation, and DNA damage responses, and (3) the degree of active TGFβ-pathway signaling measured by a gene expression profiling and SMAD2/3 phosphorylation. However, it should be noted that SMAD2/3 phosphorylation is not unique to TGFβ signaling and overlaps with the Activin signaling network, and non-canonical TGFβ signaling overlaps significantly with MAP Kinase and Receptor Tyrosine Kinase signaling pathways.

Though imperfect, the clinical trials described in this article have underscored the importance of patient selection. Hence, the above factors may be informative in identifying patients most likely to derive clinical benefit from combined TGFβ and PD-1/PD-L1 inhibition. For example, in EMT-6 mice, mice that underwent TGFβ and PD-L1 inhibition demonstrated a significant redistribution of tumor-infiltrating T-cells, which had an increased distance from the stromal border and a decreased distance from the tumor center, a phenomenon that was not observed in mice treated in either single agent arm. Additionally, mice receiving the combination treatment had a global alteration to gene expression in peritumoral CAFs, with significant repression of genes involved in canonical fibroblast function and extracellular matrix remodeling, enhancing CD8-effector function and promoting disease regression. Therefore, patients with a TGFβ-driven tumor microenvironment and associated CAF-mediated immune exclusion may be particularly sensitive to this approach, which warrants prospective evaluation. In addition to helping to identify patients who may most benefit from the addition of a TGFβ inhibitor, these and other studies may also help identify patients in which TGFβ inhibition is not necessary, thus sparing these patients the potential adverse effects of these medications, particularly given their narrow
therapeutic window combined with the inherent risks of ICI-based immunotherapy. Hence, even in patients likely to respond, these potentially overlapping issues are a barrier to efficacy and should be further evaluated.

Beyond identifying distinct immune subtypes and patient populations that may benefit from combined TGFβ and PD-1/PD-L1 inhibition, a recent study has provided additional insight into potential resistance mechanisms with possible application to patient stratification. In this study, the authors demonstrated that while the combination of LY2109761 and an anti-PD-L1 antibody was effective in the A223 model of HNSCC, treatment with Bintrafusp alfa created distinct responder and non-responder phenotypes. Subsequent analysis determined that responders had a more immune-permissive tumor microenvironment, associated with increased T-cell activation, enhanced expression of MHC Class I and II, and increased local levels of CXCR3 ligands. Accordingly, responses to Bintrafusp alfa were ameliorated by CXCR3 inhibition.

This is consistent with a study in a poorly immunogenic model of PDAC, in which long-term treatment with Gemcitabine enhanced antigen presentation, PD-L1 expression, and the synthesis of several CCL- and CXCL-family chemokines. Accordingly, Gemcitabine synergizes with Galunisertib and an anti-PD-1 antibody, standardizing the highly variable responses observed in this model. Given the synergy between Galunisertib and chemotherapy in pancreatic and colorectal cancer patients, mechanism-driven strategies combining chemotherapy with dual TGFβ and PD-1/PD-L1 inhibition should be considered for future trials. In addition to cytotoxic chemotherapy, several mechanistic studies also support the combination of TGFβ and PD-1/PD-L1 inhibition with radiation, as described in detail above. Several studies suggest that radiation can lead to extensive reprogramming of the tumor microenvironment, altering the tumor peptidome, enhancing MHC Class I expression, and cooperating with select immunotherapy regimens. Hence, as concomitant TGFβ and PD-1/PD-L1 inhibition continues to advance in clinical trials, the addition of the appropriate chemotherapy and/or radiation therapies warrants consideration and may be the most promising future direction for combined TGFβ and PD-1/PD-L1 inhibition.

Finally, though TGFβ is widely accepted as a common means of immune evasion in human cancer, one potential interpretation of these trials is that TGFβ signaling may simply be a meaningless means of resistance to ICIs. Should future trials incorporating highly potent and specific TGFβ inhibitors still demonstrate negative results, this possibility may need to be considered. Alternatively, another potential reason for the relative lack of success in clinical trials is that immune suppressive TGFβ signaling may be more nuanced than previously realized, and additional factors must be considered when designing anti-TGFβ therapies. For example, the effects of TGFβ signaling are both localized and rapid, raising important questions regarding the dose and frequency of administration to support the sustained inhibition of the TGFβ receptors and prevent the reactivation of TGFβ signals in the tumor microenvironment. This may also present a challenge when using serum levels of TGFβ as a biomarker, as some have suggested. This is further complicated by the fact that TGFβ ligands are often sequestered in fibrillin-rich microfibrils within the extracellular matrix. There, latent TGFβ is stored, where it remains biologically unavailable until its activation. Thus, there may be a significant difference between local and serum TGFβ concentrations. Similarly, the bioavailability of TGFβ may be influenced by stromal remodeling induced by other therapies, potentially requiring careful adjustments of the dose and frequency of TGFβ inhibitors. Hence, these and other factors warrant consideration as anti-TGFβ therapies continue to advance in clinical testing.

Outstanding questions
The immunosuppressive effects of TGFβ signaling are well documented, and therapies targeting the TGFβ pathway have long been proposed as a means of augmenting responses to ICI-based immunotherapy. This approach has been extensively evaluated in preclinical studies, showing almost uniformly positive results across a wide range of tumor types. However, as dual TGFβ and PD-L1/PD-1 inhibition has entered clinical evaluation, results have been more nebulous. Though some studies have shown encouraging results, others have been resoundingly negative. Importantly, the many issues described in this article suggest that the disappointment of several trials exploring combined TGFβ and PD-1/PD-L1 inhibition may be rooted in a lack of patient selection and/or mechanism-driven design. This highlights not only the difficulty in translating results from preclinical to clinical studies but also the need to re-evaluate the design of these trials to incorporate novel biomarkers to identify the patients most likely to derive clinical benefit, as well as mechanism-driven combination strategies to further potentiate drug responses.

Contributors
AEM and DRP drafted the manuscript and assembled figures/tables. HGM critically edited the manuscript. All authors read and approved the final version of the manuscript.

Data availability
Not applicable.

Search strategy and selection criteria
Studies selected for this review were identified using PubMed, Google Scholar, and/or ClinicalTrials.gov. Large-scale, advanced phase trials were prioritized, particularly those reporting high quality outcomes and/or safety data that have been published in the last five years.
Originality
All figures and tables presented in this article are original and have not been published elsewhere.

Declaration of interests
The authors have no potential conflicts to declare.

Acknowledgements
This work was supported by NIH F30CA236031 to D.R. Principe and NIH R01CA265997, NIH R21CA252591, and the Veterans Affairs Merit Award I01BX005359 to H.G. Munshi. The funding agencies had no role in the design of the study; the collection, analysis, or interpretation of the data; the preparation of the manuscript; or the decision to submit the manuscript for publication.

References
1. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–1086.
2. Darvin P, Toor SM, Sasidharan Nair V, El-Korchi E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.
3. Rihak A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–1355.
4. Principe DR, Doll JA, Bauer J, et al. TGF-beta: duality of function in the design of the study; the collection, analysis, or interpretation of the data; the preparation of the manuscript; or the decision to submit the manuscript for publication.
5. Baillie E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50(4):924–940.
6. Beck C, Schreiber H, Rowley D. Role of TGF-beta in immune evasion of cancer. Micro RNA. 2001;52(4):387–395.
7. Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFbeta drives tumor response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):538–543.
8. Holmgard RB, Schaer DA, Li Y, et al. Targeting the TGFbeta pathway with galunisertib, a TGFbetaR1 small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer. 2018;6(47).
9. Sow HS, Ren J, Camps M, Ossendorf F, Ten Dijke P. Combined inhibition of TGF-beta signaling and the PD-L1 immune check-point is differentially effective in tumor models. Cells. 2019;8(4).
10. Marthasasen S, Turley SJ, Nickles D, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–548.
11. Groes R, Qu H, Qu H, et al. Pan-TGFbeta inhibition by SAR439459 relieves immunosuppression and improves antitumor efficacy of PD-L1 blockade. Oncoimmunology. 2020;9(1):1811605.
12. Knudson KM, Hicks KC, Luo X, Chen JQ, Schlom J, Gameiro SR. A novel bifunctional anti-PD-L1/TGF-beta Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with anti-PD-L1 blockade therapy. J Immunother Cancer. 2018;6(47).
13. Lan Y, Zhang D, Xu C, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta. Sci Transl Med. 2018;10(424).
14. Yi M, Zhang J, Li A, et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-beta and PD-L1. J Hematol Oncol. 2021;14(1):27.
15. de Stell G, Bertrand C, Chalon N, et al. Selective inhibition of TGF-beta1 produced by GARP-expressing Tregs overcome resistance to PD-L1/PD-L1 blockade in cancer. Nat Commun. 2020;11(1):4545.
16. Xu C, Marelli B, Qi J, et al. NHS-IL12 and bintafusp alfa combination therapy enhances antitumor activity in preclinical cancer models. Transl Oncol. 2022;16:101322.
17. Principe DR, Park A, Dorman MJ, et al. TGFbeta blockade augments PD-1 inhibition to promote T-cell-mediated regulation of pancreatic cancer. Mol Cancer Therapeutic. 2019;18(3):613–620.
18. Wang CY, Du X, et al. Co-inhibition of the TGF-beta pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomater Sci. 2020;8(18):5121–5132.
19. Principe DR, Narbutis M, Kumar S, et al. Long-term gemcitabine treatment represses the pancreatic tumor microenvironment and sensitizes murine carcinoma to combination immunotherapy. Cancer Res. 2020;80(15):3101–3115.
20. Li D, Schaub N, Guerin TM, et al. T-cell mediated antitumor immunity cooperatively induced by TGFbetaRII and gemcitabine counteracts reformation of the stromal barrier in pancreatic cancer. Mol Cancer Therapeutic. 2021;20(10):1926–1940.
21. Lan Y, Moustafa M, Knoll M, et al. Simultaneous targeting of TGF-beta/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion. Cancer Cell. 2021;39(10):1388–1403.e10.
22. Liu D, Gameiro SR, Jochens C, et al. Dual targeting of TGF-beta and PD-L1 via a bifunctional anti-PD-L1/TGF-betaRII agent: status of preclinical and clinical advances. J Immunother Immunother. 2020;8(1).
23. David JM, Dominguencez C, McCampbell KK, Gulley JL, Schlom J, Palena C. A novel bifunctional anti-PD-L1/TGF-beta Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology. 2017;6(10):e1349589.
24. Terabe M, Robertson FC, Clark K, et al. Blockade of only TGF-beta 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncoimmunology. 2017;6(3):e1308616.
25. Martin CJ, Datta A, Littlefield C, et al. Selective inhibition of TGFbeta1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci Transl Med. 2020;12(536).
26. Ravi R, Noonan KA, Pham V, et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFbeta enhance the efficacy of cancer immunotherapy. Nat Commun. 2018;9(1):741.
27. Sheng W, Liu Y, Chakraborty D, Debo B, Shi Y. Simultaneous inhibition of LSD1 and TGFbeta enables eradication of poorly immunogenic tumors with anti-PD-1 treatment. Cancer Discov. 2021;11(8):1970–1981.
28. Zhao F, Evans K, Xiao C, et al. Stromal fibroblasts mediate anti-PD-1 resistance via MMP-9 and dictate TGFbeta inhibitor sequencing in melanoma. Cancer Immunol Res. 2018;6(12):1459–1471.
29. Dodagatta-Marri E, Meyer DS, Reeves MQ, et al. alpha-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSMD3 that are both targeted by alpha-TGFbeta antibody to promote durable rejection and immunity in squamous cell carcinomas. J Immunother Immunother. 2019;7(1):62.
30. Strait AA, Woolver RA, Hall SC, et al. Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFbeta/PD-L1 blockade-treated squamous cell carcinoma. Commun Biol. 2021;4(1):1005.
31. Hanss BO, Holthausen A, Evans K, Heid M, Blake GC. Combinatorial TGF-betaI signaling blockade and anti-CTLA4 antibody immunotherapy in a murine BRAFV600E-PTEN/- transgenic model of melanoma. J Clin Oncol. 2014;32(15_suppl):3011.
32. Grenga I, Donahue RN, Gargulak ML, et al. Anti-PD-L1/TGFbetaI fusion (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. Urol Oncol. 2018;36(11):93.e1–e11.
33. Chen X, Yang S, Li S, et al. Secretion of hispecific protein of anti-PD-1 fused with TGFbeta trap enhances antitumor efficacy of CAR-T cell therapy. Mol Ther Oncolytics. 2021;21:144–157.
34. Kwon M, Kim CG, Lee H, et al. PD-1 blockade reinvigorates bone marrow CD8(+) T cells from patients with multiple myeloma in the presence of TGFbeta inhibitors. Clin Cancer Res. 2020;26(7):1644–1655.
35. Kim TW, Lee KW, Aahn JB, et al. Efficacy and safety of vactosertib and pembrolizumab combination in patients with previously treated microsatellite unstable metastable colorectal cancer. J Clin Oncol. 2021;39(15_suppl):3573.
36. Morris VK, Lam M, Wang X, et al. Phase II trial of bintafusp alfa in patients with metastatic MSI-H cancers following progression on immunotherapy. J Clin Oncol. 2021;39(3_suppl):79.
37. Morris VK, Overman MJ, Lam M, et al. Bintafusp alfa, an anti-PD-L1/TGF-beta trap fusion protein, in pancreatic cancer: a phase I study of limited metastatic colorectal cancer. Cancer Res Comm. 2022;2(9):979–986.

www.thelancet.com Vol 86 December, 2022 13
Principe DR, DeCant B, Staudacher J, et al. Loss of TGF-beta signaling promotes colon cancer progression and tumor-associated inflammation. Oncotarget. 2017;8(3):3826–3839.

Principe DR, DeCant B, Mascarenas E, et al. TGF-beta signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res. 2016;76(9):2525–2539.

Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGF-beta signaling in the pancreatic tumor microenvironment. Cancers (Basel). 2021;13(20).

Melisi D, Oh DY, Hollebecque A, et al. Safety and activity of the TGF-beta receptor 1 kinase inhibitor galateperib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J Immunother Cancer. 2021;9(1).

Strauss J, Heery CR, Schlom J, et al. Phase I trial of M7824 (MSB0011593C), a bifunctional fusion protein targeting PD-L1 and TGF-beta, in advanced solid tumors. Clin Cancer Res. 2018;24(6):1287–1295.

Yoo C, Oh DY, Choi HJ, et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with pretreated biliary tract cancer. J Immunother Cancer. 2020;8(1).

Bang Y-J, Doi T, Kondo S, et al. Updated results from a phase I cohort of a phase 1 trial of bintrafusp alfa, a bifunctional fusion protein targeting PD-L1 and TGF-beta, in patients with pretreated recurrent or refractory gastric cancer. Ann Oncol. 2018;29:vii22–vii23.

Tan B, Khattak A, Felip E, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with esophageal adenocarcinoma: results from a phase 1 cohort. Target Oncol. 2021;16(4):435–446.

Lin CC, Doi T, Muro K, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGFbeta and PD-L1, in patients with esophageal squamous cell carcinoma: results from a phase 1 cohort in Asia. J Immunother Cancer. 2021;9(4):447–459.

Cho BC, Kim TM, Vicente D, et al. Two-year follow-up of bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, for second-line (2L) treatment of non-small cell lung cancer (NSCLC). J Clin Oncol. 2020;38(15_suppl):9558.

Paz-Ares L, Kim TM, Vicente D, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in second-line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial. J Thorac Oncol. 2020;15(7):1210–1222.

Strauss J, Gatti-Mays ME, Cho BC, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with human papillomavirus-associated malignancies. J Immunother Cancer. 2020;8(2).

Cramer JD, Floudas CS, Sater HA, et al. Phase II evaluation of the triple combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV 16 positive malignancies. J Clin Oncol. 2021;39(15_suppl):2501.

Webb ES, Liu P, Baleiro R, Lemoine NR, Yuan M, Wang YH. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2018;12(5):317–326.

Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801.

Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118(3):9–16.

Fares CM, Yan Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book. 2019;39:147–164.

Liu D, Jenkins RW, Sullivan RJ. Mechanisms of resistance to immune checkpoint blockade. Am J Clin Dermatol. 2019;20(4):41–54.

Barnuevo L, Carninero F, Cash L, Makris C, Lamichhane P, Desmulck RR. Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol. 2020;13(3):100718.

Kalbasi A, Rihas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20(1):25–39.

Tauriello DVF, Sancho E, Battle E. Overcoming TGF-beta-mediated immune evasion in cancer. Nat Rev Cancer. 2022;22(1):25–44.

Teicher BA. TGF-beta-directed therapies. 2020. Pharmacol Ther. 2021;217:107666.

Redman JM, Friedman J, Robbins Y, et al. Enhanced neoptotope-specific immunity following neoadjuvant PD-L1 and TGF-beta blockade in HPV-unrelated head and neck cancer. J Clin Invest. 2022;132(8):e141400.

Lim YW, Cai J, Siddiqui SK, Johnson DS, Adler AS, Stone EL. Single-cell transcriptomics reveals the effect of PD-L1/TGF-beta blockade on the tumor microenvironment. BMC Biol. 2021;19(1):107.

Dominguex C, Muller S, Kerthiivasan S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15(+)/myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 2020;10(2):232–253.

Bauer J, Ozden O, Akagi N, et al. Activin and TGFbeta use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182.

Zhao Y, Ma J, Fan Y, et al. TGF beta transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol Oncol. 2018;12(3):305–312.

Lee MK, Pardeux C, Hall MC, et al. TGF beta engages Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26(17):3957–3967.

Principe DR, Diaz AM, Torres C, et al. TGFbeta engages MEK/ERK to differentiate between benign and malignant pancreas cell function. Oncogene. 2017;36(10):4366–4348.

Akhurst RJ. Targeting TGF-beta signaling for therapeutic gain. Cold Spring Harb Perspect Biol. 2017;9(10).

Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer. 2017;3(1):56–71.

Teixeira AF, Ten Dijke P, Zhu HJ. On-target anti-TGF-beta therapies are not succeeding in clinical cancer treatments: what are remaining challenges? Front Cell Dev Biol. 2020;8:605.

Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the society for immunochemistry of cancer (STIC) toxicity management working group. J Immunother Cancer. 2017;5(1):95.

Derynck R, Turley SJ, Akhurst RJ. TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18(1):9–34.

Melisi D, Garcia-Carbonero R, Macarulla T, et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 2018;119(10):1208–1214.

Yamazaki T, Gunderson AJ, Gilchrist M, et al. Galunisertib plus durvalumab in metastatic pancreatic cancer. J Immunother Cancer. 2020;8(12):253.

Lee MK, Pardeux C, Hall MC, et al. TGF-beta engages Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26(17):3957–3967.

Principe DR, Diaz AM, Torres C, et al. TGFbeta engages MEK/ERK to differentiate between benign and malignant pancreas cell function. Oncogene. 2017;36(10):4366–4348.

Akhurst RJ. Targeting TGF-beta signaling for therapeutic gain. Cold Spring Harb Perspect Biol. 2017;9(10).

Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer. 2017;3(1):56–71.

Teixeira AF, Ten Dijke P, Zhu HJ. On-target anti-TGF-beta therapies are not succeeding in clinical cancer treatments: what are remaining challenges? Front Cell Dev Biol. 2020;8:605.

Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the society for immunochemistry of cancer (STIC) toxicity management working group. J Immunother Cancer. 2017;5(1):95.

Derynck R, Turley SJ, Akhurst RJ. TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18(1):9–34.

Melisi D, Garcia-Carbonero R, Macarulla T, et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 2018;119(10):1208–1214.