Distribution of bipartite entanglement for random pure states

Olivier Giraud

Laboratoire de Physique Théorique, UMR 5152 du CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 4, France
E-mail: giraud@irsamc.ups-tlse.fr

Received 29 November 2006, in final form 1 February 2007
Published 28 February 2007
Online at stacks.iop.org/JPhysA/40/2793

Abstract
We calculate analytic expressions for the distribution of bipartite entanglement for pure random quantum states. All moments of the purity distribution are derived and an asymptotic expansion for the distribution itself is deduced. An approximate expression for moments and distribution of Meyer–Wallach entanglement for random pure states is then obtained.

PACS numbers: 03.67.Mn, 03.67.-a

(Some figures in this article are in colour only in the electronic version)
by tracing over one subsystem. Rather than the von Neumann entropy itself, one often prefers to consider the purity R, which corresponds (up to constants) to the so-called linear entropy, that is the first-order term in the expansion of the von Neumann entropy around its maximum. To quantify the degree of entanglement of multipartite pure states, one measure commonly used, based on purity, is the measure proposed by Meyer and Wallach in [17]. Meyer–Wallach entanglement Q can be defined as the average of the bipartite entanglement of one qubit with all others, measured by the purity (see equation (18)) [18]. Meyer–Wallach entanglement was used e.g. to quantify entanglement generation for pseudo-random operators [4] or intermediate or chaotic quantum maps [7, 19, 20].

The study of purity or Meyer–Wallach entanglement is of particular interest for random quantum states. Random pure states as column vectors of random unitary matrices distributed according to the invariant Haar measure can be shown to be entangled with high probability. Various analytical calculations have been carried out to characterize entanglement properties of random states. Expressions for the first moment of the purity have been obtained by Lubkin [21]; the second and third moments have been derived in [6], following earlier work [23]. The average entropy has been obtained in [22]. Statistical properties of entanglement measures for random density matrices were obtained in [25–28]. The average value for each Schmidt coefficient of a random pure state has been calculated in [29]. In [30], the average entropy of a subsystem was obtained from the average Tsallis entropy [31].

To further characterize entanglement of random pure states, our aim here is to give an exact expression for all moments of the probability density distribution $P(R)$ of the purity for a bipartite random pure state. Since the probability distribution $P(R)$ is defined over a bounded interval (R is bounded), the knowledge of all moments determines uniquely the probability distribution [32]. There are various techniques to obtain a function approximating the exact probability density distribution in a controlled way (that is, by an expansion where the error can be bounded) from the knowledge of its moments. In [33], an algorithm was given to construct polynomials converging to the probability distribution. We will rather follow [34], where the asymptotic expansion for nearly Gaussian distributions is calculated at all orders. In section 1 the moments $\langle R^n \rangle$ for the distribution $P(R)$ are calculated, and the construction of the asymptotic expansion of $P(R)$ at all orders from its moments is recalled. In section 2 the approximate moments $\langle Q^n \rangle$ for the distribution $P(Q)$ are derived. For both distributions, the moments are expressed as sums involving a finite number of combinatorial terms and can be easily calculated effectively. As an illustration, we give the first values of the cumulants and calculate the probability density distribution expansion for Meyer–Wallach entanglement.

1. Bipartite entanglement for random pure states

Let Ψ be a pure state belonging to a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$, where \mathcal{H}_A and \mathcal{H}_B are spanned respectively by $\{|a_i\rangle\}_{1 \leq i \leq p}$ and $\{|b_i\rangle\}_{1 \leq i \leq q}$. We assume that $p \leq q$. Let x_i be the Schmidt coefficients for Ψ. That is, the state Ψ has a Schmidt decomposition (see e.g. [35])

$$|\Psi\rangle = \sum_{i=1}^{p} \sqrt{x_i} |a_i \rangle \otimes |b_i \rangle. \quad (1)$$

The bipartite entanglement measure for Ψ can be expressed through Schmidt coefficients x_i. The entropy of entanglement is the Shannon entropy of the x_i: $S(\Psi) = - \sum_{i=1}^{p} x_i \ln x_i$. The purity $R(\Psi)$ of the state Ψ can be expressed as

$$R(\Psi) = \sum_{i=1}^{p} x_i^2. \quad (2)$$
For random states the Schmidt coefficients are distributed according to the density

\[P(x_1, \ldots, x_p) = N \prod_{1 \leq i < j \leq p} (x_i - x_j)^2 \prod_{1 \leq k \leq p} x_k^{q-p} \delta \left(1 - \sum_{i=1}^{p} x_i \right) \]

(3)

for \(x_i \in [0, 1] \), with some normalization factor \(N \) [38, 6]. The nth moment of the purity is then given by

\[
\langle R^n \rangle = N \int_0^1 \prod_{1 \leq i < j \leq p} (x_i - x_j)^2 \\
\times \prod_{1 \leq k \leq p} x_k^{q-p} \left(x_1^2 + x_2^2 + \cdots + x_p^2 \right)^n \delta \left(1 - \sum_{i=1}^{p} x_i \right).
\]

(4)

The calculation of \(\langle R^n \rangle \) requires the evaluation of integrals of the form

\[
I(n) = \int_0^1 \prod_{1 \leq i < j \leq p} (x_i - x_j) \left(x_1^2 + x_2^2 + \cdots + x_p^2 \right)^n \left(1 - \sum_{i=1}^{p} x_i \right) f_n(x),
\]

(5)

where \(r = q - p, \mathbf{x} = (x_1, \ldots, x_p) \) and \(n = (n_1, \ldots, n_p) \). The function \(f_n(x) = \{x_1^{n_1} x_2^{n_2} \cdots x_p^{n_p} \text{ all permutations of the } n_i \} \) is a symmetric function of the \(x_i \) and \(V \) is the Vandermonde determinant

\[
V(x) = \prod_{1 \leq i < j \leq p} (x_i - x_j).
\]

(6)

The integral \(I(n) \) is evaluated in the appendix and yields

\[
I(n) = \frac{p! \prod_{i=1}^{p} (r + n_i + i - 1)!}{(p^2 + rp + \sum_i n_i - 1)!} \prod_{i<j} (n_j - n_i + j - i) + \text{perm},
\]

(7)

where ‘+ perm’ indicates that expression (7) is a sum over all permutations of the \(n_i \). Now the function \(f \) for a given \(\langle R^n \rangle \) is obtained by multinomial expansion of the term

\[
(x_1^2 + \cdots + x_p^2)^n = \sum_{n_1 + n_2 + \cdots + n_p = n} \frac{n!}{n_1! n_2! \cdots n_p!} x_1^{2n_1} x_2^{2n_2} \cdots x_p^{2n_p}.
\]

(8)

The normalization constant \(N \) in (4) is given by the choice \(n = 0 \) in (5), i.e. \(N = 1/I(0) \). This leads to

\[
\langle R^n \rangle = \frac{(p^2 + rp - 1)!}{(p^2 + rp + 2n - 1)!} \sum_{n_1 + n_2 + \cdots + n_p = n} \frac{n!}{n_1! n_2! \cdots n_p!} \prod_{i<j} (r + 2n_i + j - i - 1)! \prod_{i=1}^{p} (r + i - 1)! \prod_{1 \leq i < j \leq p} \frac{2n_j - 2n_i + j - i}{j - i}.
\]

(9)

Replacing \(r \) by its value \(q - p \) and correspondingly changing all indices \(i \) to \(p + 1 - i \) (and \(n_i \) to \(n_{p+1-i} \)), one finally obtains

\[
\langle R^n \rangle = \frac{(pq - 1)!}{(pq + 2n - 1)!} \sum_{n_1 + n_2 + \cdots + n_p = n} \frac{n!}{n_1! n_2! \cdots n_p!} \prod_{i=1}^{p} \frac{(q + 2n_i - i)!}{(q - i)!} \prod_{1 \leq i < j \leq p} (2n_j - i - 2n_i + j).
\]

(10)
Note that one can cast (10) into an expression more symmetric in \(p \) and \(q \) by noting that
\[
\prod_{i,j}(2n_i - i - 2n_j + j) \prod_{i=1}^p \frac{1}{(2n_j)!} \prod_{i=1}^j \left(1 - \frac{2n_j}{2n_i + j - i}\right),
\]
yielding
\[
\langle R^n \rangle = \frac{(pq - 1)!}{(pq + 2n - 1)!} \sum_{n_1, n_2, \ldots, n_p=0}^n n! \prod_{i\neq j} \frac{(q + 2n_i - i)! (p + 2n_i - i)!}{(q - i)! (p - i)! (2n_i)!} \prod_{j=1}^{j-l} \left(1 - \frac{2n_j}{2n_i + j - i}\right).
\]
Equation (10) is a closed expression, involving only a finite sum over partitions of \(n \) yielding \(\kappa_n \), where
\[
\kappa_n = n! \sum_{k_1, k_2, \ldots} (-1)^{r-1} (r-1)! \prod_{m=1}^n \frac{1}{k_m!} \left(\mu_m/m^{k_m}\right)^{k_1 + 2k_2 + \cdots + nk_n},
\]
where \(r = k_1 + \cdots + k_n \), and the sum runs over all \(k_i \geq 0, 1 \leq i \leq n \) such that \(k_1 + 2k_2 + \cdots + nk_n = n \). As an example, the first five cumulants read
\[
\begin{align*}
\kappa_1 &= \frac{p + q}{1 + pq} \\
\kappa_2 &= \frac{2(p^2 - 1)(q^2 - 1)}{(1 + pq)^2(2 + pq)(3 + pq)} \\
\kappa_3 &= \frac{8(p^2 - 1)(q^2 - 1)(p + q)(-5 + pq)}{(1 + pq)^3(2 + pq)(3 + pq)(4 + pq)(5 + pq)} \\
\kappa_4 &= \frac{48(p^2 - 1)(q^2 - 1)(p + q - 3) A_{p,q}}{(1 + pq)^3(2 + pq)(3 + pq) \prod_{i=1}^q (i + pq)} \\
\kappa_5 &= \frac{384(p^2 - 1)(q^2 - 1)(p + q) B_{p,q}}{(1 + pq)^4(2 + pq)(3 + pq) \prod_{i=1}^q (i + pq)},
\end{align*}
\]
where \(A_{p,q} \) and \(B_{p,q} \) are polynomials in \(p \) and \(q \) defined by \(A_{p,q} = 28 - 112p^2 - 153pq - 79p^3q - 112q^2 - 98pq^3 - 11p^2q^2 - 79pq^3 - 3p^3q^3 + p^2q^4 + p^3q^2 - 11p^2q^4 + 4p^3q^2 + p^3q^3 \) and \(B_{p,q} = 3528 - 6552p^2 - 6343pq - 449p^3q - 6552q^2 + 1545p^2q^2 + 1237p^3q^2 - 449pq^3 + 1164p^3q^3 + 132p^3q^3 + 1237p^3q^3 - 274pq^4 - 132p^3q^3 - 132p^3q^3 - 93p^5q^5 + 9p^6q^6 + 9p^6q^6 + 9p^6q^6 \).

As expected, \(\kappa_1 \) corresponds to Lubkin’s expression [21] for the average purity. For \(n = 2, 3 \), one recovers the expressions derived in [6]. For larger \(n \) it is easy to generate the exact value for each cumulant.

In the case \(p = 2 \), the analytic expression for the probability distribution \(P(R) \) can easily be obtained analytically directly from (2), (3). It reads
\[
P(R) \, dR = A(1 - R)^{n-2}\sqrt{2R - 1} \, dR
\]
(15)
for \(1/2 \leq R \leq 1\), 0 otherwise (\(A\) is the normalization factor). For \(p \geq 3\), the asymptotic expansion of the distribution can be obtained (see [34] and references therein) by Edgeworth expansion as a function of the normal distribution \(Z(x) = \exp(-x^2/2)/\sqrt{2\pi}\), the mean \(\mu = \kappa_1\), the variance \(\sigma^2 = \mu_2 - \mu^2_1 = \kappa_2\) and rescaled cumulants \(\gamma_r = \kappa_r/\sigma^{2r-2}\):

\[
P(R) = \frac{1}{\sigma} Z \left(\frac{R - \mu}{\sigma} \right) \left[1 + \sum_{s=1}^{\infty} \sigma^s \sum_{\{k_s\}} \frac{R - \mu}{\sigma} \prod_{m=1}^{s} \frac{1}{k_m!} \left(\frac{\gamma_{m+2}}{(m+2)!} \right)_{k_m} \right].
\]

(16)

For each \(s\), the sum runs over \(k_1 \geq 0\) such that \(\sum_j jk_j = s\), and \(t\) is defined by \(t = \sum_j k_j\). \(\text{He}_n(x)\) are Chebyshev–Hermite polynomials defined by \(\text{He}_n(x) = (-1)^n e^{x^2/2} \partial^n e^{-x^2/2}\) (here \(\partial\) is the differential operator with respect to \(x\)) and correspond to rescaled Hermite polynomials:

\[
\text{He}_n(x) = n! \sum_{k=0}^{[n/2]} (-1)^k \frac{x^{n-2k}}{k!(n-2k)!2^k}.
\]

(17)

Equations (13)–(17) together with the knowledge of the moments (10) allow us to obtain explicitly the asymptotic expansion of the probability density distribution at any order. The error on the expansion is of the order of the last term included.

2. Multipartite entanglement

The Meyer–Wallach entanglement of a pure \(M\)-dimensional state \(\Psi\) coded on \(m\) qubits (with \(M = 2^m\)) can be defined by

\[
Q(\Psi) = 2 \left(1 - \frac{1}{m} \sum_{i=1}^{m} R_i \right).
\]

(18)

where \(R_i\) is the purity (2) of the \(i\)th qubit [18]. In order to calculate \(Q(\Psi)\) for bipartite random pure states we need to calculate the average purity of a bipartite system belonging to a Hilbert space \(\mathcal{H}_A \otimes \mathcal{H}_B\), where \(\mathcal{H}_A\) has dimension \(p = 2\) and \(\mathcal{H}_B\) has dimension \(q = 2^{m-1} = M/2\). The moments \(\langle R^n \rangle\) can be obtained in this case either from equation (10) or directly from the distribution (15). In both cases it leads to

\[
\langle R^n \rangle = \frac{\Gamma(q + \frac{1}{2})}{\sqrt{\pi}^{2n-1}} \sum_{k=0}^{n} \frac{n!}{k!(q - k - \frac{1}{2})!} \langle R^{k_1} \rangle \langle R^{k_2} \rangle \ldots \langle R^{k_m} \rangle.
\]

(19)

The calculation of the moments \(\langle Q^n \rangle\) involves terms of the form \(\langle \sum_i R_i \rangle^k\). These terms depend on correlations between the purities \(R_i\). However, if we make the approximation that for two different qubits \(i \neq j\) we have \(\langle R_i R_j \rangle = \langle R_i \rangle \langle R_j \rangle\) (and more generally \(\langle \prod_i R_i \rangle = \prod_i \langle R_i \rangle\) for products over distinct qubits), we get a distribution \(P(Q)\) which turns out to be very close to the numerical distribution obtained by generating random matrices. Making this approximation we get

\[
\left(\sum_{i=1}^{m} R_i \right)^k = \sum_{k_1+k_2+\ldots+k_m=k} \frac{k!}{k_1!k_2!\ldots k_m!} \langle R^{k_1} \rangle \langle R^{k_2} \rangle \ldots \langle R^{k_m} \rangle.
\]

(20)

The \(n\)th moment is then

\[
\langle Q^n \rangle = 2^n \sum_{k=0}^{n} \binom{n}{k} (-1)^k \sum_{k_1+k_2+\ldots+k_m=k} \frac{\langle R^{k_1} \rangle \langle R^{k_2} \rangle \ldots \langle R^{k_m} \rangle}{k_1!k_2!\ldots k_m!}.
\]

(21)
Gathering together terms having the same exponents, we finally get

\[\langle Q^n \rangle = 2^n \sum_{k=0}^{n} \binom{n}{k} \left(-1 \right)^k \frac{1}{m^k} \sum_{\{r_i\}} \frac{m!}{r_1! \ldots r_k!(m-r)!} \prod_{i=1}^{k} \frac{\langle R^i \rangle}{i!}, \]

(22)

where \(r \equiv \sum r_i \) and \(\langle R^n \rangle \) is given by (19). The sum runs over all \(r_i \geq 0 \) such that \(\sum r_j = k \). From equations (19) and (22) one can now obtain the cumulants for the distribution \(P(Q) \) for an \(m \)-qubit system \((M = 2^m) \). The first ones read

\[
\begin{align*}
\kappa_Q^1 &= \frac{M - 2}{M + 1} \\
\kappa_Q^2 &= \frac{6(M - 2)}{(M + 1)^2(M + 3)m} \\
\kappa_Q^3 &= \frac{24(-M^2 + 7M - 10)}{(M + 1)^3(M + 3)(M + 5)m^2} \\
\kappa_Q^4 &= \frac{144(M^4 - 12M^3 + 6M^2 + 133M - 210)}{(M + 1)^4(M + 3)^2(M + 5)(M + 7)m^3} \\
\kappa_Q^5 &= \frac{-1152(1890 - 1763M + 337M^2 + 78M^3 - 23M^4 + M^5)}{(M + 1)^5(M + 3)^2(M + 5)(M + 7)(M + 9)m^5}
\end{align*}
\]

(23)

We can use these approximate cumulants to obtain an analytical formula for \(P(Q) \). Calculating the first terms in the asymptotic expansion (16) we obtain (the first terms can be found...
in [39])

\[P(Q) \sim \frac{1}{\sigma} Z \left(\frac{Q - \mu}{\sigma} \right) \left\{ 1 + \frac{\tau_3}{6} \text{He}_3 \left(\frac{Q - \mu}{\sigma} \right) + \left[\frac{\tau_4}{24} \text{He}_4 \left(\frac{Q - \mu}{\sigma} \right) + \frac{\tau_3^2}{72} \text{He}_6 \left(\frac{Q - \mu}{\sigma} \right) \right] \right. \\
+ \left[\frac{\tau_5}{5!} \text{He}_5 \left(\frac{Q - \mu}{\sigma} \right) + \frac{\tau_3 \tau_4}{144} \text{He}_7 \left(\frac{Q - \mu}{\sigma} \right) \right] \\
+ \left. \frac{\tau_3^3}{1296} \text{He}_9 \left(\frac{Q - \mu}{\sigma} \right) \right\} + \cdots \]

(24)

with \(\mu = \kappa^{Q}_1, \sigma = \sqrt{\kappa^{Q}_2} \) and \(\tau_i = \kappa^{Q}_i/\sigma^i, i \geq 3 \). Figure 1 displays the probability density function \(P(Q) \) for \(m = 10 \) qubits as obtained by averaging over numerically generated random matrices, together with the plot of analytical expression (24) truncated at order 0 (Gaussian), 1 (first line of (24)), 2 (two first lines of (24)) and 3 (expression (24)), using the cumulants (23). The tails of the distribution are reproduced with increasing accuracy when the number of terms in the analytic expansion is increased. Figure 2 displays the same for \(m = 11 \).

It is to be noted that techniques similar to those used to derive \(\langle R^n \rangle \) and \(P(R) \) in section 1 can be applied to derive distributions for random states drawn from orthogonal or symplectic matrix ensembles, since the joint probability distribution for Schmidt coefficients is of the same form as the distribution (3).

Acknowledgments

The author thanks CalMiP in Toulouse and Idris in Orsay for access to their supercomputers, and Bertrand Georgeot for reading the manuscript. This work was supported by the Agence
The aim of this appendix is to evaluate integrals of the form $I(n)$ given by equation (5). The Vandermonde determinant (6) can be written as

$$V(x) = \sum_\sigma \epsilon_\sigma x_{\sigma(1)}^0 \ldots x_{\sigma(p)}^{p-1}, \quad (A.1)$$

where the sum runs over all permutations on p elements and ϵ_σ is the signature of the permutation σ. For any function ψ symmetric under permutations of the x_i, we have

$$\int_0^1 dx_1 \ldots dx_p V(x)^2 \psi(x) = \sum_{\sigma,\sigma'} \epsilon_\sigma \epsilon_{\sigma'} \int_0^1 dx_1 \ldots dx_p x_{\sigma(1)}^0 x_{\sigma'(1)}^0 \ldots x_{\sigma(p)}^{p-1} x_{\sigma'(p)}^{p-1} \psi(x)$$

$$= \sum_{\sigma,\sigma'} \epsilon_\sigma \epsilon_{\sigma'} \int_0^1 dx_1 \ldots dx_p x_{\sigma(1)}^0 x_{\sigma'(1)}^0 \ldots x_{\sigma(p)}^{p-1} x_{\sigma'(p)}^{p-1} \psi(x)$$

$$= p! \int_0^1 dx_1 \ldots dx_p x_{\sigma(1)}^1 x_{\sigma'(1)}^1 \ldots x_{\sigma(p)}^{p-1} V(x) \phi(x), \quad (A.2)$$

with $x = (x_1, \ldots, x_p)$. Integral (5) becomes $I(n) = \sum_\tau J(\tau(n))$ where the sum runs over all permutations of the n_i, with

$$J(n) = p! \int_0^1 dx_1 \ldots dx_p V(x) \prod_{i=1}^p x_{\sigma(i)}^{n_i+i-1} \delta \left(1 - \sum_{i=1}^p x_i \right). \quad (A.3)$$

Using the fact that

$$\int_0^1 dx x^a(1-x)^b = \frac{a! b!}{(a+b+1)!}, \quad (A.4)$$

a recurrence on the number of integrals shows that

$$\int_0^1 dx_1 \ldots dx_p x_{1}^{a_1} \ldots x_{p}^{a_p} \delta \left(1 - \sum_{i=1}^p x_i \right) = \frac{a_1! a_2! \ldots a_p!}{(\sum_{i=1}^p a_i + p - 1)!}. \quad (A.5)$$

The Vandermonde determinant (A.1) can be written as

$$V(x) = \sum_\sigma \epsilon_\sigma x_{\sigma(1)}^{(1)-1} \ldots x_{\sigma(p)}^{(p)-1}. \quad (A.6)$$

Inserting this expression in integral (A.3) leads to a sum of integrals of the form (A.5), which can be cast under

$$J(n) = \frac{p! \prod_{i=1}^p (r + n_i + i - 1)!}{(p^2 + rp + \sum_{i=1}^p n_i - 1)!} \Delta(n), \quad (A.7)$$

with $\Delta(n)$ a determinant defined by

$$\Delta(n) = \begin{vmatrix} 1 & r + n_1 + 1 & (r + n_1 + 1)(r + n_1 + 2) & \cdots \\ 1 & r + n_2 + 2 & (r + n_2 + 2)(r + n_2 + 3) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ 1 & r + n_p + p & (r + n_p + p)(r + n_p + p + 1) & \cdots \end{vmatrix}. \quad (A.8)$$
The determinant can be evaluated by recurrence. It finally yields
\[
J(n) = p! \prod_{i=1}^{p} (r + n_i + i - 1)! \prod_{i<j} (n_j - n_i + j - i),
\]
which in turn gives \(I(n) \) as a sum over permutations of the \(n_i \) of \(J(n) \).

References

[1] Harrow A, Hayden P and Leung D 2004 Phys. Rev. Lett. 92 187901
[2] Hayden P, Leung D, Shor P and Winter A 2004 Commun. Math. Phys. 250 371
[3] DiVincenzo D P, Leung D W and Terhal B M 2002 IEEE Trans. Inf. Theory 48 580–98
[4] Weinstein Y S and Hallberg C S 2005 Phys. Rev. Lett. 95 030501
 Weinstein Y S and Hallberg C S 2005 Phys. Rev. A 71 014303
 Weinstein Y S and Hallberg C S 2004 Phys. Rev. A 69 062301
 Weinstein Y S and Hallberg C S 2005 Phys. Rev. A 72 022331
[5] Bandwopadhyay J N and Lakshminarayan A 2002 Phys. Rev. Lett. 89 060402
[6] Scott A J and Caves C M 2003 J. Phys. A: Math. Gen. 36 9553–76
[7] Giraud O and Georgeot B 2005 Phys. Rev. A 72 042312
[8] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[9] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[10] Wehner S and Winter A 1997 Phys. Rev. A 56 4452
[11] Wehner S and Winter A 1998 Phys. Rev. A 57 1619
[12] Weinberg S and Christensen N 2001 Phys. Rev. A 63 044301
[13] Hill S and Wootters W K 1999 Phys. Rev. Lett. 83 4222
[14] Bennett C H, Bernstein H, Popescu S and Schumacher A 1996 Phys. Rev. A 53 2046
[15] Popescu S and Rohrlich D 1997 Phys. Rev. A 56 R3319
[16] Donald M J, Horodecki M and Rudolph O 2002 J. Math. Phys. 43 4252
[17] Meyer A D and Wallach N R 2002 J. Math. Phys. 43 4273
[18] Brennen G K 2003 Quantum Inf. Comput. 3 619
[19] Scott A J 2004 Phys. Rev. A 69 052330
[20] Zanardi P, Zanetti A and Faoro L 2000 Phys. Rev. A 62 030301
[21] Racah E 1978 J. Math. Phys., NY 19 1028
[22] Page D N 1993 Phys. Rev. Lett. 71 1291
[23] Sen S 1996 Phys. Rev. Lett. 77 1
[24] Zyczkowski K and Sommers H-J 2001 J. Phys. A: Math. Gen. 34 7111–25
[25] Sommers H-J and Zyczkowski K 2004 J. Phys. A: Math. Gen. 37 8457–66
[26] Zyczkowski K and Bengtsson I 2006 Preprint quant-ph/0606228
[27] Cappellini V, Sommers H-J and Zyczkowski K 2006
 http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0605251
[28] Facchi P, Florio G and Pascazio S 2006 Phys. Rev. A 74 042331
[29] Zupancic M 2006 Preprint quant-ph/0611226
[30] Malacarne L C, Mendes R S and Lenz I E K 2002 Phys. Rev. E 65 046131
[31] Tsallis C 1988 J. Stat. Phys. 52 479
[32] Hausdorff F 1921 Math. Zeitschr. 9 74–109, 280–99
[33] Garev G 1982 Numer. Math. 39 231–8
[34] Blinnikov S and Moessner R 1998 Astron. Astrophys. Suppl. Ser. 130 193–205
[35] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[36] Vidal G 2000 J. Mod. Opt. 47 355–76
[37] Mehta M L 1991 Random Matrices (New York: Academic)
[38] Lloyd S and Pagels H 1988 Ann. Phys., NY 188 186
[39] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)