Cremmer-Gervais Quantum Lie Algebra

Oleg Ogievetsky*

Centre de Physique Théorique, Luminy, 13288 Marseille, France

Todor Popov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, BG-1784, Bulgaria

Abstract

We describe a quantum Lie algebra based on the Cremmer-Gervais R-matrix. The algebra arises upon a restriction of an infinite-dimensional quantum Lie algebra.

1 Introduction

The notion of a quantum Lie algebra is a modification of the notion of a Lie algebra. Quantum Lie algebras arise as the algebras generated by the quantum analogs of vector fields in the framework of the bicovariant differential calculus on quantum groups [1] (for an introduction see e.g. [2]). Many constructions from the theory of Lie algebras can be generalized for quantum Lie algebras (for example, the standard complex, BRST operator etc. [3,4,5]).
In this Note we outline the quantum Lie algebra having the so called Cremmer-Gervais R-matrix \(^7\) as the braid matrix. This can be seen as a first step in constructing the BRST operator for the bicovariant differential calculus based on the Cremmer-Gervais R-matrix.

2 Quantum Lie Algebra

The bicovariant differential calculus is characterized by functionals \(\chi_i\) and \(f^i_j\) on a Hopf algebra \(\mathcal{A}\) ("the algebra of functions on a quantum group") satisfying the relations

\[
\begin{align*}
\chi_i \chi_j - \sigma^{kl}_{ij} \chi_k \chi_l & = C^{jk}_i \chi_k, \quad \sigma^{kl}_{ij} f^a_k f^b_l = f^k_i f^j_l \sigma^{ab}_{kl}, \\
\sigma^{kl}_{ij} \chi_k f^a_l + C^{ij}_k f^a_l & = f^k_i f^j_l C^{a}_{kl} + f^a_i \chi_j, \quad \chi_i f^a_j = \sigma^{kl}_{ij} f^a_k \chi_l.
\end{align*}
\]

The relations for \(C^{ij}_k\) and the braid matrix \(\sigma^{ij}_{kl}\) (\(C^{ij}_k\) and \(\sigma^{ij}_{kl}\) are subject to certain conditions, see below) are such that \(C^{ij}_k = \chi_k (M^i_j)\) and \(\sigma^{ij}_{kl} = f^j_l (M^i_k)\), where the matrix \(M \in \mathcal{A}\) is given by the right coaction on the space of left-invariant forms

\[\Delta_R(\omega^j) = \omega^j \otimes M^i_j, \quad M^i_j \in \mathcal{A}, \quad \omega^i \in \Gamma.\]

The algebra (1) endowed with the comultiplication \(\Delta\), counit \(\epsilon\) and antipode \(S\),

\[
\begin{align*}
\Delta f^i_j &= f^i_k \otimes f^k_j, \quad \epsilon(f^i_j) = \delta^i_j, \quad S(f^i_j) f^k_j = \delta^i_j = f^k_i S(f^j_k), \\
\Delta \chi_i &= 1 \otimes \chi_i + \chi_j \otimes f^j_i, \quad \epsilon(\chi_i) = 0, \quad S(\chi_i) = -\chi_j S(f^j_i),
\end{align*}
\]

becomes a Hopf algebra which we will be denote by \(\mathcal{L}\). The subalgebra generated by \(\chi_i\) is called quantum Lie algebra.

The relations for \(\mathcal{L}\) can be written in a concise way with the help of a single R-matrix \(^6\). Let us make a convention that the small indices \(i, j, \ldots, k\) run over a set \(\mathcal{I}\) and the capital indices \(I, J, \ldots, K\) run over the set \(\mathcal{I}_0 := 0 \cup \mathcal{I}\). Denote by \(\hat{R}\) and \(T\) the following matrices

\[
\hat{R}^{ij}_{kL} = \begin{pmatrix} \delta^j_k & C^{ij}_{kl} \\ 0 & \sigma^{ij}_{kl} \end{pmatrix}, \quad \hat{R}^{0i}_{0L} = \delta^i_L, \quad T^i_j = \begin{pmatrix} 1 & \chi_j \\ 0 & f^j_i \end{pmatrix},
\]

i.e., \(\hat{R}^{ij}_{kl} = \sigma^{ij}_{kl}, \hat{R}^{0i}_{kl} = C^{ij}_{kl}, \hat{R}^{0A}_{0B} = \delta^A_B, \hat{R}^{0A}_{0B} = \delta^A_B\) and \(T^i_j = f^j_i, T^0 = 1\) and all others entries are equal to zero. Suppose now that \(R\) is a solution of the Yang-Baxter equation

\[
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}.
\]
Then the Hopf algebra relations (1) and (2) are equivalent to

\[\hat{R}_{IJK}^{AB} T_{KL}^{AB} = T_{IL}^{JK} \hat{R}_{KL}^{AB}, \quad \Delta T_I^J = T^K_J \otimes T_I^K, \]

\[S(T_I^K) T_J^K = \delta_I^J = T_I^K S(T_J^K), \quad \epsilon(T_I^J) = \delta_I^J. \]

The Yang-Baxter relation for \(\hat{R} \) implies, for the components \(\sigma_{ij}^{kl} \) and \(C_{ij}^k \),

\[
\begin{align*}
C_{im}^k C_{sj}^m - \sigma_{ij}^{kl} C_{nk}^i C_{sl}^m &= C_{ij}^k C_{nk}^m, \\
\sigma_{ij}^{kl} \sigma_{nk}^a \sigma_{sl}^b &= \sigma_{mi}^k \sigma_{sj}^a \sigma_{kl}^b, \\
\sigma_{ij}^{kl} C_{nk}^s \sigma_{sl}^a &+ C_{ij}^l \sigma_{nl}^{am} = \sigma_{ni}^k \sigma_{sj}^a C_{kl}^m + \sigma_{ni}^m \sigma_{sj}^a C_{kl}^m, \\
C_{nk}^s \sigma_{sj}^{am} &= \sigma_{ij}^{kl} \sigma_{nk}^a C_{sl}^m.
\end{align*}
\] (4)

Here the first relation is the “braided” Jacobi identity and the second one is simply the braid relation for \(\sigma \), \(\sigma_{23} \sigma_{12} \sigma_{23} = \sigma_{12} \sigma_{23} \sigma_{12} \).

Given a braid matrix \(\sigma \) it is natural to ask if non-zero structure constants \(C_{ij}^k \) consistent with \(\sigma \) exist or is there a non-trivial quantum Lie algebra structure compatible with \(\sigma \). As we have seen this question is equivalent to finding a suitable extension (3) of the R-matrix \(\sigma \).

In this Note we obtain an infinite-dimensional R-matrix which upon restrictions yields finite-dimensional quantum Lie algebras compatible with the Cremmer–Gervais R-matrix [7].

3 Cremmer-Gervais extended

We apply the elegant method used in [8] and then in [9] where the Yang-Baxter operators are realized as operators in a certain space of functions. Finite-dimensional R-matrices arise upon a restriction of the operator domain to an appropriate invariant finite-dimensional subspace, such as the space of polynomials of bounded degree.

For a ring \(K \), let \(K(x) \) be the ring of rational functions in \(x \) with coefficients in \(K \). An endomorphism of \(K \) extends to an endomorphism of \(K(x) \) (which acts only on the coefficients of a rational function). Having an endomorphism \(\phi \in \text{End} \ C(x, y) \), introduce \(\phi_{12} \in \text{End} \ C(x, y, z) \) considering \(C(x, y, z) \) as \(C(x, y)(z) \). In the same vein, \(\phi_{13} \in \text{End} \ C(x, z)(y) \) and \(\phi_{23} \in \text{End} \ C(y, z)(x) \) and the functional Yang-Baxter equation reads \(\phi_{12} \phi_{13} \phi_{23} = \phi_{23} \phi_{13} \phi_{12} \).

Given a rational function \(F(x, y) \) with series expansion (around 0) \(F(x, y) = \sum_{i,j \in \mathbb{Z}} F_{i,j} x^i y^j \), define the operation \(\text{reg}_{x,y} \) which maps \(F(x, y) \) to the non-singu-
lar part \(f(x, y) \) of its expansion,
\[
f(x, y) = \text{reg}_{x,y} F(x, y) := \sum_{i,j \geq 0} F_{i,j} x^i y^j.
\]

Theorem 1. Let \(\hat{R} \) be the following linear operator in \(\text{End} \mathbb{C}(x, y) \)
\[
\hat{R} = P + \beta \frac{y}{x-y} (P-I) \text{reg}_{x,y} + C \frac{\text{eval}_{x=0} (P-I) \text{reg}_{x,y}}{x},
\]
\(\beta = 1 - q^{-2} \) and \(C \) are arbitrary constants. Here \(I \) stands for the identity operator, \(P \) for the permutation \((PF)(x, y) = F(y, x) \) and \(\text{eval}_{x=0} \) is the evaluation at \(x = 0 \); in other words, for an arbitrary \(F(x, y) \in \mathbb{C}(x, y) \) the result of the action of the operator \(\hat{R} \) reads
\[
(\hat{R}F)(x, y) = F(y, x) + \beta y \frac{f(y, x) - f(x, y)}{x-y} + C \frac{f(y, 0) - f(0, y)}{x}.
\]

The operator \(\hat{R} \) satisfies the braid equation
\[
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}.
\]

Proof. The braid equation for the operator \(\hat{R} \) is equivalent to the Yang-Baxter equation
\[
[\hat{R}_{12}, \hat{R}_{13}] + [\hat{R}_{12}, \hat{R}_{23}] + [\hat{R}_{13}, \hat{R}_{23}] = 0.
\]

\(4\)

Theorem 1. Let \(\hat{R} \) be the following linear operator in \(\text{End} \mathbb{C}(x, y) \)
\[
\hat{R} = P + \beta \frac{y}{x-y} (P-I) \text{reg}_{x,y} + C \frac{\text{eval}_{x=0} (P-I) \text{reg}_{x,y}}{x},
\]
\(\beta = 1 - q^{-2} \) and \(C \) are arbitrary constants. Here \(I \) stands for the identity operator, \(P \) for the permutation \((PF)(x, y) = F(y, x) \) and \(\text{eval}_{x=0} \) is the evaluation at \(x = 0 \); in other words, for an arbitrary \(F(x, y) \in \mathbb{C}(x, y) \) the result of the action of the operator \(\hat{R} \) reads
\[
(\hat{R}F)(x, y) = F(y, x) + \beta y \frac{f(y, x) - f(x, y)}{x-y} + C \frac{f(y, 0) - f(0, y)}{x}.
\]

The operator \(\hat{R} \) satisfies the braid equation
\[
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}.
\]

Proof. The braid equation for the operator \(\hat{R} \) is equivalent to the Yang-Baxter equation
\[
[\hat{R}_{12}, \hat{R}_{13}] + [\hat{R}_{12}, \hat{R}_{23}] + [\hat{R}_{13}, \hat{R}_{23}] = 0.
\]

\(4\)

Theorem 1. Let \(\hat{R} \) be the following linear operator in \(\text{End} \mathbb{C}(x, y) \)
\[
\hat{R} = P + \beta \frac{y}{x-y} (P-I) \text{reg}_{x,y} + C \frac{\text{eval}_{x=0} (P-I) \text{reg}_{x,y}}{x},
\]
\(\beta = 1 - q^{-2} \) and \(C \) are arbitrary constants. Here \(I \) stands for the identity operator, \(P \) for the permutation \((PF)(x, y) = F(y, x) \) and \(\text{eval}_{x=0} \) is the evaluation at \(x = 0 \); in other words, for an arbitrary \(F(x, y) \in \mathbb{C}(x, y) \) the result of the action of the operator \(\hat{R} \) reads
\[
(\hat{R}F)(x, y) = F(y, x) + \beta y \frac{f(y, x) - f(x, y)}{x-y} + C \frac{f(y, 0) - f(0, y)}{x}.
\]

The operator \(\hat{R} \) satisfies the braid equation
\[
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}.
\]

Proof. The braid equation for the operator \(\hat{R} \) is equivalent to the Yang-Baxter equation
\[
[\hat{R}_{12}, \hat{R}_{13}] + [\hat{R}_{12}, \hat{R}_{23}] + [\hat{R}_{13}, \hat{R}_{23}] = 0.
\]

\(4\)
Proof of the lemma. The operator in the left hand side of (8) depends only on the regular part of a function $F(x, y, z) \in \mathbb{C}(x, y, z)$ therefore it is enough to check the assertion on an arbitrary polynomial $f(x, y, z) \in \mathbb{C}[x, y, z]$. Since the coefficients β and C are arbitrary, the classical Yang-Baxter equation for r splits into three components. The component proportional to β^2 is the classical Yang-Baxter equation for ρ; it is satisfied: ρ is the classical Cremmer-Gervais r-matrix \[9, 10\]. Next, a straightforward verification shows that

$$
\rho_{13}\rho_{23} = 0, \quad \rho_{23}\rho_{13} = 0, \quad \rho_{23}\rho_{12} = 0, \quad [\rho_{12}, \rho_{13}] + \rho_{12}\rho_{23} = 0,
$$

on polynomials. The sum (with corresponding signs) of these equalities is the component proportional to βC. Finally, a straightforward verification shows that

$$
\rho_{23}\rho_{12} = 0, \quad \rho_{23}\rho_{13} = 0, \quad \rho_{12}\rho_{23} = 0, \quad \rho_{12}\rho_{13} + \rho_{12}\rho_{23} = 0
$$

on polynomials and the classical Yang-Baxter equation for the operator s (the component, proportional to C^2) follows. □

The Yang-Baxter equation for $R = I + r$ holds true if the operator r satisfies the classical Yang-Baxter equation and the Yang-Baxter equation

$$
r_{12}r_{13}r_{23} = r_{23}r_{13}r_{12}.
$$

(9)

To check this identity on an arbitrary function $F(x, y, z) \in \mathbb{C}(x, y, z)$ it is again enough to check it on an arbitrary polynomial function $f(x, y, z) \in \mathbb{C}[x, y, z]$. Now (9) splits into four components. The component proportional to β^3 vanishes (ρ satisfies a stronger equation, see \[10\]). Next, a direct verification shows that

$$
\rho_{12}\rho_{13}\rho_{23} = 0, \quad \rho_{12}\rho_{13}\rho_{23} = 0, \quad \rho_{23}\rho_{13}\rho_{12} = 0,
$$

$$
\rho_{23}\rho_{13}\rho_{12} = 0, \quad \rho_{12}\rho_{13}\rho_{23} = 0, \quad \rho_{23}\rho_{13}\rho_{12} = 0
$$

on polynomials; the vanishing of the component proportional to $\beta^2 C$ follows. Finally, each term in the components, proportional to βC^2,

$$
\rho_{12}\rho_{13}\rho_{23} = 0, \quad \rho_{12}\rho_{13}\rho_{23} = 0, \quad \rho_{12}\rho_{13}\rho_{23} = 0,
$$

$$
\rho_{23}\rho_{13}\rho_{12} = 0, \quad \rho_{23}\rho_{13}\rho_{12} = 0, \quad \rho_{23}\rho_{13}\rho_{12} = 0,
$$

5
and C^3,
\[s_{12}s_{13}s_{23} = 0, \quad s_{23}s_{13}s_{12} = 0, \]
vanishes separately, which ends the proof of the theorem. □

Let $V = \bigoplus_{i=0}^{n} C e_i$ be a finite-dimensional vector space of functions $\frac{p(x)}{x}$ where $p(x)$ is a polynomial of degree not higher than n. Identify $V \otimes V$ with the space of functions $\frac{p(x,y)}{xy}$ where $p(x,y)$ is a polynomial of degree not higher than n in x and not higher than n in y. The space $V \otimes V$ is stable under the action of the operator \hat{R}. The matrix of the restricted operator $\hat{R}(e_K \otimes e_L) = \sum_{I,J=0}^{n} e_I \otimes e_J \hat{R}_{KL}^{IJ}$ (which we denote again by \hat{R}) is given by
\[
\hat{R}(x^{K-1}y^{L-1}) = \sum_{I,J=0}^{n} \hat{R}_{KL}^{IJ} x^{I-1}y^{J-1}; \quad I, J, K, L = 0, \ldots, n.
\]
The non-vanishing entries of the matrix \hat{R}_{KL}^{IJ} read as follows
\[
\hat{R}_{KL}^{0J} = \hat{R}_{0K}^{0j} = \delta_K^J, \quad \hat{R}_{kl}^{ij} = C_{kl}^{ij} = C(\delta_l^i \delta_k^j - \delta_k^i \delta_l^j),
\]
\[i, j, k, l = 1, \ldots, n. \]

The latter submatrix \hat{R}_{kl}^{ij} is the member (with $p = 1$) of the Cremmer-Gervais family of non-unitary R-matrices
\[
(\hat{R}_{CG,1})_{kl}^{ij} = p^{k-l} \delta_l^i \delta_k^j + (1 - q^{-2}) \left(\sum_{k \leq s < l} - \sum_{l \leq s < k} \right) \delta_s^i \delta_{k+l-s}^j.
\]

We sum up these results in the following corollary.

Corollary 3. The above finite-dimensional restriction of the operator \hat{R}, defined by (5), gives rise to a quantum Lie algebra associated with the $p = 1$ member of the family of non-unitary Cremmer-Gervais R-matrices. The non-zero structure constants C_{kl}^{ij} are all equal to $\pm C$ (the constant C can be set to 1 by rescalings),
\[
C_{j1}^j = -C_{1j}^j = C, \quad j = 1 \ldots n.
\]
Remark 1. Our treatment is an extension of the construction of [9] in which the finite-dimensional Cremmer-Gervais matrices arise upon restrictions of infinite-dimensional functional R-matrices to the spaces of polynomials. The boundary (unitary) Cremmer-Gervais solution of the Yang-Baxter equation can be treated along the same lines [9]. The boundary Cremmer-Gervais R-matrix as well gives rise to a quantum Lie algebra which will be described elsewhere.

Acknowledgements

The work was partially supported by the ANR project GIMP No.ANR-05-BLAN-0029-01. T.P. thanks Centre de Physique Théorique, Luminy for the hospitality. The work of T.P. was also partially supported by the European Operational program HRD through contract BGO051PO001/07/3.3-02/53 with the Bulgarian Ministry of Education.

References

[1] S. L. Woronowicz, Comm. Math. Phys. 122 (1989) 125-170.

[2] P. Aschieri and L. Castellani, Int. J. Mod. Phys. A 8 (1993) 1667.

[3] A. P. Isaev and O. V. Ogievetsky, Theoretical and Math. Physics 129 (2001) 1558-1572.

[4] A. P. Isaev and O. V. Ogievetsky, Int. J. Math. Phys. A 19 (2004) 240-247.

[5] V. G. Gorbounov, A. P. Isaev and O. V. Ogievetsky, Theoretical and Math. Physics 139 (2004) 473-485.

[6] D. Bernard, Phys. Lett. B260 (1991) 389-393.

[7] E. Cremmer and J.-L. Gervais, Comm. Math. Phys. 134 (1990) 619-632.

[8] Y. Shibukawa and K. Ueno, Lett. Math. Phys. 25 (1992) 239-248.

[9] R. Endelman and T. Hodges, Lett. Math. Phys. 52 (2000) 225–237.

[10] O. Ogievetsky and T. Popov, R-matrices in Rime; ArXiv: 0704.1947 [math.QA]