Where silylene–silicon centres matter in the activation of small molecules

Changkai Shan, Shenglai Yao and Matthias Driess*

Small molecules such as \(\text{H}_2, \text{N}_2, \text{CO}, \text{NH}_3, \text{O}_2 \) are ubiquitous stable species and their activation and role in the formation of value-added products are of fundamental importance in nature and industry. The last few decades have witnessed significant advances in the chemistry of heavy low-coordinate main-group elements, with a plethora of newly synthesised functional compounds, behaving like transition-metal complexes with respect to facile activation of such small molecules. Among them, silylenes have received particular attention in this vivid area of research showing even metal-free bond activation and catalysis. Recent striking discoveries in the chemistry of silylenes take advantage of narrow HOMO–LUMO energy gap and Lewis acid–base bifunctionality of divalent Si centres. The review is devoted to recent advances of using isolable silylenes and corresponding silylene–metal complexes for the activation of fundamental but inert molecules such as \(\text{H}_2, \text{CO}, \text{N}_2\text{O}, \text{O}_2, \text{H}_2\text{O}, \text{NH}_3, \text{C}_2\text{H}_4 \) and \(\text{E}_2 \) (\(\text{E} = \text{P}, \text{As} \)).

1. Introduction

Nowadays, small molecules such as \(\text{H}_2, \text{CO}_x, \text{N}_2\text{O}, \text{O}_2, \text{H}_2\text{O}, \) etc. are ubiquitous as well as economically available building blocks for fundamental chemical processes in the production of value-added fine chemicals and play a pivotal role in maintaining the prospects of industrial society.\(^1\) They are very stable, that is, the activation of their relatively inert bonds for selective chemical transformations requires a suitable catalyst. Learning from biocatalysts in nature and taking advantage of new synthetic methods in organometallic and coordination chemistry have paved the way to numerous artificial molecular catalysts for selective activation and transformation of small molecules.

1.1 Activation of small molecules in nature

Nature has developed a myriad of cellular enzymes, the majority of which harbour a transition-metal cofactor and are capable of small-molecule conversion with high efficiency under mild conditions.\(^2\) For example, nitrogenase, one of the most important enzymes, allows for dinitrogen fixation and further synthesis of fundamental building blocks of cellular molecules.

Changkai Shan is currently a PhD candidate under the supervision of Prof. Matthias Driess at the Department of Metalorganics and Inorganic Materials, Technical University of Berlin. He received his MSc in organic chemistry from Xiamen University, China in 2018. His current research focuses on the synthesis of novel silylene-ligands and their reactivity towards catalysis and small molecule activation.

Shenglai Yao attained his PhD degree in 2005 at the Johannes Gutenberg University of Mainz (Germany) under supervision of Professor Karl W. Klinkhammer. Afterwards he joined the Driess group at the Department of Metalorganics and Inorganic Materials, Technical University of Berlin and works in the group as a senior researcher. His research interests lie in the coordination chemistry of low-valent main-group elements and transition metals.
The molybdenum-dependent nitrogenase consists of electron-delivery protein components and MoFe cofactor, where N₂ is reduced to NH₃. At the same time, vanadium-dependent or heterometal-independent forms show less reactivity. Hydrogenases are remarkable catalysts for reversible H₂ oxidation and proton reduction along with an energy-yielding process. They can be divided into two major classes, namely [NiFe]- and [FeFe]-hydrogenases. H₂O and O₂ are essential components in both photosystem II (PSII) and cytochromes P450 (P450). PSII, a metal-bound protein complex, catalyses the light-driven oxidation of water by taking advantage of the four-electron redox-active Mn₄CaO₅ cluster, whereas P450 catalyses the introduction of O₂ into non-activated C–H bonds with the assistance of a protein partner to deliver one or more electrons to the Fe reactive site. CO dehydrogenase (CODH) with a [NiFe-5S] or [4Fe–4S] cluster can convert CO₂ to the more valuable synthetic feedstock CO. Taking the aforementioned few examples as an inspiration for synthetic chemists, the design of artificial catalysts that are approximate to or even better than their natural counterparts is highly desirable.

1.2 Artificial transition-metal-mediated activation of small molecules

Coordination chemists were much inspired by biocatalysis and developed an enormous number of artificial metalloenzymes for small molecule activation (e.g., oxygenases, hydrogenases, carbboxydehydrogenases, nitrogenases) mimicking their counterparts in nature. To mention only a few selected ones, artificial metalloenzymes consisting of Fe or Mn centres have been synthesised for O₂ activation; for example, the well-known O₂-dependent phenol oxidase A (Fig. 1), bearing a “Due Ferri” (two-iron; DF) diiron cofactor, is capable to catalyse the oxidative transformation of 4-aminophenol to the corresponding quinone monoimine. Mimicking photosystem II (PSII), among many other examples, a molecular dinuclear Mn₄H₄L₂ cluster allows for photocatalytic oxygen evolution reaction (OER) from water oxidation. Oxidation of H₂ seems more complex than its back reaction (hydrogen evolution reaction [HER] from water reduction). In this regard, the designed diiron complex B (Fig. 1), modelling [FeFe] hydrogenase, participates in the oxidation of H₂ only with a slow conversion rate. CO₂ is the primary C₁ source in nature and the electrochemical reduction of CO₂ with, for example, [Ni⁹(cyclam)]⁺⁺ (cyclam = 1,4,8,11-tetraazacyclotetradecane) C (Fig. 1), affords CO in aqueous and dimethylformamide (DMF) solutions. Notably, many synthetic Fe–S clusters mimicking nitrogenases have been reported, and these artificial clusters may one day approximate or surpass the ability of natural nitrogenases on the fixation and conversion of N₂.

1.3 Main-group elements mimicking transition-metals in small molecule activation

The seminal review entitled “Main-Group Elements as Transition Metals” published by Power reflected a renaissance of main-group chemistry aiming at the development of even metal-free, benign catalysts as alternative mediators for the synthesis of fine chemicals compared to those relying on transition-metals. At first, the valence s or p orbitals of main-group compounds are thought to be far apart energetically. However, dozens of isolable low-coordinate main-group species exist, possessing frontier orbitals with small-energy separations, which show transition-metal-like properties towards small molecules. A striking example for the activation of H₂ was reported by Power in 2005, where a heavy alkyne analogue with Ge [Ge≡Ge; Ar = 2,6-TriP₂-C₆H₄ (Trip = 2,4,6-iPr₃C₆H₂)] splits the H–H bond at room temperature to give ArHGe≡Ge(H)Ar, Ar(H)₃Ge≡Ge(H)Ar, and ArGeH₃, respectively. Electron donation from the σ-orbital of H₂ into the LUMO of the Ge species as well as a synergistic electron donation from the π-HOMO of the Ge species into the σ*-orbital of H₂ are involved in the disruption of H–H bond, reminiscent of interactions between H₂ and a transition-metal site in complexes. Bertrand also showed that acyclic alkyl amino carbenes (aCAAC), such as [C(Bu)NPr₂], can readily break the H–H bond to give the corresponding [H₂C(Bu)NPr₂] addition product. Related stable carbenes also take part in the activation of unactivated bonds, acting also as ligands towards transition metals for the stabilisation of reactive intermediates. Stephan et al. reported the activation of H₂ by the use of frustrated Lewis pairs (FLPs). FLPs bearing both an available acceptor and donor orbitals mimic a similar function of frontier orbitals in transition-metal complexes. Singlet tetylenes, the heavy congeners of carbenes, possessing a lone pair of electrons and a vacant

Matthias Driess is a full professor of metalorganics and inorganic materials at the Department of Chemistry of Technische Universität Berlin. He obtained his PhD degree and completed his habilitation at the University of Heidelberg in Germany. He serves as a deputy of the Cluster of Excellence UniSysCat and is a Director of the UniSysCat-BASF SE joint lab BasCat, and of the Chemical Invention Factory (CIF) for Start-ups in Green Chemistry.

He is a member of the German National Academy of Sciences (Leopoldina), the Berlin-Brandenburg Academy of Sciences and Humanities, and the European Academy of Sciences.
p-orbital also show similar reactivity to transition-metal centres.16d The past three decades have witnessed tremendous advances in the development of isolable divalent silicon species (named silylenes) which show a fascinating reactivity towards small molecules and are even suitable for metal-free catalysis.

1.4 Divalent silicon employed in bond activation
Why using silicon for small-molecule activation? Silicon is the second most abundant element of the Earth’s crust, and subvalent states (e.g., SiII) are well accessible. For a long time, silylenes represented laboratory curiosities and could only be studied in argon or hydrocarbon matrices at cryogenic temperatures.21 Since the isolation of the first N-heterocyclic silylene (NHSSi) reported by West and Denk,22 a plethora of stable silylenes have been synthesised. They proved to be suitable and selectively adoptable for the activation of small molecules and metal-free catalysis. It was shown that SiII species can approximate characteristics of and even become alternatives of transition metals due to its facile availability of donor/acceptor orbitals.16 Acyclic silylenes with larger bite angles and smaller HUMO-LUMO gaps are considered as more reactive species than cyclic ones,22 at the same time, bis-silylenes show splendid reaction scope with two SiII centres synergistically interacting with substrates.23 Examples of SiII-mediated industrial transformations also show their potential for catalysis.24 Perhaps most challenging is the regeneration of a SiII site if a silylene acts as a catalyst.16d As several excellent reviews are available ranging from the synthesis to the reactivity of SiII species,16a–d,25 this review discusses most recent advances in the activation of H\textsubscript{2}, CO, CO\textsubscript{2}, N\textsubscript{2}O, O\textsubscript{2}, NH\textsubscript{3}, H\textsubscript{2}O, ethylene and P\textsubscript{2} by isolable silylenes and particular silylene–transition-metal complexes which show silicon–transition-metal cooperativity in the activation of bonds. valence electron configurations due to its inherent reluctance to undergo s,p-orbital hybridisation.26 Thus, silylenes have a singlet ground state with an in-plane non-bonding lone pair of electrons featuring a high 3s-character. Accordingly, the mostly 3p out-of-plane orbital is prone to accept electrons to obey the “octet rule”. Some strategies on thermodynamic and kinetic stabilisation of the reactive SiII atom enables access to isolable silylenes, through introduction of heteroatoms such as N, Si and P, etc. and/or sterically encumbered substituents (Fig. 3).

Indeed, the modest to narrow HOMO–LUMO energy gap can be modified by combining different steric and electronic effects by the choice of suitable substituents and adjusting the angle at the SiII atom.

2. Activation of H\textsubscript{2}
Since the germanium alkyne analogue ArGe ≡ GeAr (Ar = 2,6-(2,6-iPr\textsubscript{2}C\textsubscript{6}H\textsubscript{3})\textsubscript{2}C\textsubscript{6}H\textsubscript{3}) was shown to undergo oxidative addition with dihydrogen in 2005,17 the activation of H\textsubscript{2} by other multiply-bonded main-group compounds,15 or specific cyclic and acyclic carbenes,18 and FLP systems28 has also been accomplished successfully. Since the SiII centre in N-heterocyclic silylenes is stabilised by the adjacent N atoms of the substituents and has a relatively small endocyclic angle, it cannot add H\textsubscript{2}. In 2012, Jones and Aldridge reported the first room temperature-stable two-coordinate acyclic silylene 1, bearing the strong σ-donating and high sterically demanding B(DippCH\textsubscript{2})\textsubscript{2} substituent (Dipp = 2,6-Pr\textsubscript{2}C\textsubscript{6}H\textsubscript{3})(Scheme 1).22a This acyclic silylene undergoes facile oxidative addition of H\textsubscript{2}, being the first example of experimentally observed dihydrogen activation by a silylene. Irreversibility of this reaction suggests it to be thermodynamically strongly exergonic (\textit{DG} = −122.2 kJ mol−1), and the parallel reaction with HD gives 1-HD as the sole product in accordance with DFT calculations which indicate a concerted bimolecular process. The computed value of \textit{DG}2 (+97.2 kJ mol−1) suggests a substantially lower activation energy than for other

2. Isolable silylenes and their reactivity towards small molecules
2.1 Frontier orbitals for the activation of small molecules
In contrast to carbenes which can be in a triplet or singlet ground states, the Si atom in silylenes prefers the (3s2)(3p2)
related cyclic bis(amido)silylenes. Significant widening of the bond angle at the SiIII atom (109.7(1°)) compared to the values for N-heterocyclic silylenes revealed a narrower singlet–triplet gap (103.9 kJ mol⁻¹) and higher reactivity, which is reminiscent of transition-metals.²²

In the same year, Power reported another isolable acyclic silylene, Si(SArMe₆)₂ [ArMe₆ = C₆H₆-2,6(C₆H₂-2,4,6-Me₃)₂]. However, it does not react with H₂ at ambient reaction condition as the relatively high electronegativity of the thiolato substituents increases the energy gap between the lone pair and the vacant 3p orbitals of the Si atom, hampering this reaction to occur.²²b

By taking advantage of the robust reducing agent (thf)₂K[Si-(SiMe₃)₃], the acyclic Si[Si(SiMe₃)₃]₂[N(SiMe₃)Dipp] silylene 2 was successfully isolated as purple-coloured crystals by Aldridge and co-workers (Scheme 2).²²c Notably, the N–Si–Si bond angle of 116.91° in 2 is even larger than the corresponding N–Si–B angle of 1. The higher degree of steric crowding in 2 is evidenced from the observation of two sets of multinuclear NMR spectra in the ratio of 1 : 1, which result from conformers related by restricted rotation along the Si–N bond. One set of the ¹H NMR signals is derived from the isomer in which the Dipp group lies syn to the hypersilyl group while the other set is due to the corresponding anti one. The relatively narrow energetic gap between its singlet ground state and first excited triplet state (103.7 kJ mol⁻¹) is consistent with its reactivity towards H₂ at room temperature, affording the corresponding dihydroxosilane 2-H₂.

In 2017, the Driess group reported that the silylene–Ni⁰ complex 3 [(TMSL)ClSi₁]Ni(NHC)₂ [TMSL = N-(SiMe₃)Dipp; Dipp = 2,6-Pr₂C₆H₃, NHC = :C[(iPr)NC(Me)]₂] is also effective in a H₂ activation process (Scheme 3).³⁰ The narrow singlet–triplet gap of 77.82 kJ mol⁻¹ for 3 suggests that it may be suitable for facile dihydrogen activation. Indeed, exposure of a C₆D₆ solution of 3 to H₂ atmosphere gives immediately and quantitatively 3-H₂. Its ¹H NMR spectrum reveals the presence of both Si–H (δ = 5.69 ppm) and Ni–H (δ = 10.23 ppm, J₁²Si = 16 Hz) protons as doublets. The molecular structure of 3-H₂ and DFT calculations suggest the initial H₂ activation occurrence at the Ni centre and the following insertion of the silylene ligand into one Ni–H bond.

The Driess group also investigated the reactivity of the bis-silylene coordinated Ni complexes [SiII[Xant]SiIII]Ni(n²-1,3-cod) 4 and [SiII[Xant]SiIII]⁻Ni(PMe₃)₂ 6 towards H₂ (Scheme 4).²³f Exposure of both Ni complexes to 1 bar H₂ at room temperature affords different kinds of activation products. The reaction of 4 with H₂ affords the expected diamagnetic dinuclear Ni complex 5 as yellow-brown crystals in 67% isolated yields featuring a four-membered planar Ni₃Si₂ core with two bridging hydride atoms lying almost in the same plane, whereas the reaction of 6 in a H₂ atmosphere gives the SiIII-stabilised Ni dihydride complex 7. Upon removal of H₂ complex 7 converts to 6 in 29% NMR yields, suggesting a reversible H₂-activation process. Notably, the SiIII site plays an essential role in the activation of dihydrogen according to the DFT calculations. Indeed, the SiII and NiIII sites show not only cooperativity in H₂ activation but also in further chemoselective hydrogenation of olefins.²³f

The same group also reported cooperativity of SiIII and BIII in the activation of H₂: the N-heterocyclic silylene–borane complex 8 LSi-R-BMes₂ (L = PhC(N(Bu₂); R = 1,12-xanthendid spacer; Mes = 2,4,6-Me₃C₆H₂), bearing a Lewis acidic boryl group, enables H₂ splitting in the style of FLP chemistry, affording the silane borane 8-H₂ (Scheme 5).³¹ To gain further insights into the necessity of the intramolecular presence of SiIII and BIII the observation of two sets of multinuclear NMR spectra in the ratio of 1 : 1, which result from conformers related by restricted rotation along the Si–N bond. One set of the ¹H NMR signals is derived from the isomer in which the Dipp group lies syn to the hypersilyl group while the other set is due to the corresponding anti one. The relatively narrow energetic gap between its singlet ground state and first excited triplet state (103.7 kJ mol⁻¹) is consistent with its reactivity towards H₂ at room temperature, affording the corresponding dihydroxosilane 2-H₂.

In 2017, the Driess group reported that the silylene–Ni⁰ complex 3 [(TMSL)ClSi₁]Ni(NHC)₂ [TMSL = N-(SiMe₃)Dipp; Dipp = 2,6-Pr₂C₆H₃, NHC = :C[(iPr)NC(Me)]₂] is also effective in a H₂ activation process (Scheme 3).³⁰ The narrow singlet–triplet gap of 77.82 kJ mol⁻¹ for 3 suggests that it may be suitable for facile dihydrogen activation. Indeed, exposure of a C₆D₆ solution of 3 to H₂ atmosphere gives immediately and quantitatively 3-H₂. Its ¹H NMR spectrum reveals the presence of both Si–H (δ = 5.69 ppm) and Ni–H (δ = 10.23 ppm, J₁²Si = 16 Hz) protons as doublets. The molecular structure of 3-H₂ and DFT calculations suggest the initial H₂ activation occurrence at the Ni centre and the following insertion of the silylene ligand into one Ni–H bond.

The Driess group also investigated the reactivity of the bis-silylene coordinated Ni complexes [SiII[Xant]SiIII]Ni(n²-1,3-cod) 4 and [SiII[Xant]SiIII]⁻Ni(PMe₃)₂ 6 towards H₂ (Scheme 4).²³f Exposure of both Ni complexes to 1 bar H₂ at room temperature affords different kinds of activation products. The reaction of 4 with H₂ affords the expected diamagnetic dinuclear Ni complex 5 as yellow-brown crystals in 67% isolated yields featuring a four-membered planar Ni₃Si₂ core with two bridging hydride atoms lying almost in the same plane, whereas the reaction of 6 in a H₂ atmosphere gives the SiIII-stabilised Ni dihydride complex 7. Upon removal of H₂ complex 7 converts to 6 in 29% NMR yields, suggesting a reversible H₂-activation process. Notably, the SiIII site plays an essential role in the activation of dihydrogen according to the DFT calculations. Indeed, the SiII and NiIII sites show not only cooperativity in H₂ activation but also in further chemoselective hydrogenation of olefins.²³f

The same group also reported cooperativity of SiIII and BIII in the activation of H₂: the N-heterocyclic silylene–borane complex 8 LSi-R-BMes₂ (L = PhC(N(Bu₂); R = 1,12-xanthendid spacer; Mes = 2,4,6-Me₃C₆H₂), bearing a Lewis acidic boryl group, enables H₂ splitting in the style of FLP chemistry, affording the silane borane 8-H₂ (Scheme 5).³¹ To gain further insights into the necessity of the intramolecular presence of SiIII and BIII...
atoms for H2 activation, the electronically similar N,N'-di-tert-butyl(phenylamidinato) phenylsilylene 9 as well as the intermolecular silylene borane system Mes2BPH/9 towards dihydrogen were both investigated. However, no hydrogenation product was observed, reflecting the importance of the indispensable role of an intramolecularly pre-organised Si–B separation in 8.

Inoue and co-workers reported the highly reactive acyclic silylene 10 via a BNH-terminated amidino group and a Rh fragment (Scheme 6). It readily undergoes an intramolecular C–C insertion into its aromatic ligand framework, affording the room temperature stable silacycloheptatriene (silepin) 10. Moreover, variable temperature UV-vis measurements and DFT calculations were conducted and suggested thermally accessible interconversion between silepin and silylene at higher temperatures (e.g. 100 °C). This equilibrium was also evidenced by isolation of a silylene–borane adduct upon addition of B(C6F5)3. Therefore, silepin 10 acts as a “masked” silylene and takes part in the H–H bond activation process. The reaction of 10 and H2 is slow at room temperature but leads to full conversion upon heating to 50 °C within two days. Isolation of the silane product through recrystallisation was problematic probably due to similar solubilities of all species.

More recently, the Inoue group reported the synthesis of a novel tetrasiylidisilene 11 displaying bis(silylsilylene) reactivity. Reductive debromination of [[TMS]3Si][Bu3Si]SiBr2 with two molar equivalents of potassium graphite at low temperatures results in the formation of tetrasiylidisilene 11, the isomer of (hypersilyl)supersilylene 11 (Scheme 7). Indeed, an equilibrium between 11' and 11 in solutions is suggested, and the disilane/silylene equilibrium mixture is capable of H2 activation at low temperatures. Treatment of an n-hexane solution of 11/11' at −40 °C with H2 results in the quantitative formation of the corresponding silane, and no formation of the hypothetical disilene addition product is detectable. Although silylene 11' reacts smoothly with H2, it exhibits a sizeable HOMO–LUMO energy gap of 403.3 kJ mol⁻¹, which contradicts the assumption that a low HOMO–LUMO gap facilitates the activation of H2 for an acyclic silylene. Then, further computational calculations were performed and determined a quite low effective barrier of reaction of 1.79 kJ mol⁻¹, which rationalise the reaction between 11' and H2.

In 2019, Kato et al. isolated a cyclic (amino)metal-substituted di-coordinate silylene 12, which is stabilised by an amino group and a Rh fragment (Scheme 8). Interestingly, the molecular structure exhibits a distorted tetrahedral geometry around the rhodium atom rather than a classical square planar residue. A considerably shortened Si–Rh distance (2.138 Å) was observed compared to classical Si–Rh single bonds (ca. 2.30–2.35 Å), indicating an increased Si–Rh multiple bond character. According to theoretical calculations, geometrical deviation around the Rh centre increases the π-donating and σ-accepting character of the Rh¹ fragment, which efficiently stabilises the silylene and leads to a sizeable HOMO–LUMO energy gap. However, 12 remains highly reactive towards H–H bond insertion, affording the corresponding cyclic dihydrosilane 12-H2.

More recently, Schultz et al. reported H2 activation by an acyclic transient dimetallasilylene 14 (Scheme 9). Reduction of [(Br2Ga)12] with LiH gives a cyclic dihydrosilane product under an inert atmosphere of argon. Notably, 14 reacts with CO to form the first isolable [L(Br2Ga)Si–CO (silylene–CO) complex (see below, Scheme 13), which acts as a “masked” silylene and activates, under liberation of CO, H2 to give the same hydrogenation product 14-H2.

2.3 Activation of CO

Activation of CO has always been the domain of transition metals as the dissociation energy of C≡O (BDE = 1077 kJ mol⁻¹) is so high that scission of the strongest neutral triple bond is particularly challenging. The well-known Fischer–Tropsch synthesis with the assistance of transition-metal catalysts involves CO bond scission in the presence of H2. On the contrary, main-group elements mediated CO activation remains rare, given its limited redox capability. Examples includes activation of CO by the highly reactive cyclic and acyclic alkyl amino carbene to give ketenes, and germynes to give germiloxo
ketones. Reactions of CO with other main-group species are inaccessable, presumably due to their larger HOMO–LUMO energy gap. Surprisingly, splitting and reductive homo-coupling of CO by bis-silylene (LSi):Xant 15a [Xant = 9,9-dimethylxanthene-4,5-diyl; L = PhC(NBu)2] and (LSi):Fe 15b [Fe = 1,1'-ferrocenyl] were reported by the Driess group (Scheme 10). Exposure of Xant(LSi): 15a to CO atmosphere at room temperature for 12 hours affords Xant((LSi):O)((µ-CO)) 16a which is isolated as colourless crystals in 83% yields. A strong infrared absorption band at \(\nu = 2069 \text{ cm}^{-1} \) assignable to the C=O stretching vibration can be observed. In the case of 15b, it also splits CO smoothly to afford Fe((LSi):O)((µ-CO)) 16b as confirmed by multinuclear NMR and XRD analysis. DFT calculations reveal that the initial step of CO binding and scission involves CO as a Lewis acid (four-electron acceptor), contrary to the Lewis base (two-electron donor) role during activation processes mediated by transition metals, and both silylene units of 15a synergistically act as Lewis donors. Notably, the related bis(NHSi) dibenzofuran 15c shows no reactivity towards CO, mainly due to the long distance between two SiII atoms. In a related work, exposure of 16b to NH3 and benzylamine yields Fe-disiloxanediamines and respective acetamides.

More recently, the same group reported another example of homocoupling of CO mediated by the bis-silylene 17 \([\text{LSiC}_{2}Bu_2H]_2 \text{L} = \text{PhC}((BuN)_2)\) (Scheme 11).\(^\text{23}\) Treatment of toluene solutions of 17 to CO atmosphere results in the formation of colourless crystals in 62% yields. Although the proposed disilaketene intermediate 17* has not been isolated or even observed, DFT calculations revealed the initial formation of 17* which undergoes migration of one C cage from Si to the central Cketene to afford another intermediate 17** featuring a Si=C−C=O moiety. Head-to-tail dimerisation of 17** furnishes the final CO homo-coupling product 18.

Compared to N-heterocyclic silylenes, acyclic silylenes are thought to be more reactive SiII species due to their more obtuse angle at silicon and narrower HOMO–LUMO gap. Aldridge et al. reported the reductive coupling of CO with the boryl-substituted acyclic silylene 1, generating four- and six-membered ethynediolate 19 through the formation of intramolecular Si-O interactions (Scheme 12).\(^\text{36}\) Notably, the reductive coupling of CO to give the ethynediolate dianion \([\text{OCCO}]^-\) could only be achieved for alkali, d- and f-block metals before.\(^\text{27}\)

Recently, the Schultz group reported the aforementioned acyclic transient dimetallasilylene 14 which reacts with CO to give the first isolable silylene carbonyl complex 20 (Scheme 13).\(^\text{22}\) Reaction of \([\text{LiBr}]_2\text{SiBr}_3\ 13\) and one equivalent of LGa in benzene at 60 °C in CO atmosphere results in the formation of 20. CO serves as a mild Lewis acid in the reaction while \([\text{LiBr}]_2\text{Si} \) shows strong electron-donating properties due to the electropositive \([\text{LiBr}]_2\text{Si} \) substituents and the wide Ga–Si–Ga bond angle. DFT calculations were performed for the comparison of non-covalent \(\text{H}_2\text{C}−\text{Si}−\text{CO}\) adducts. While ketene is highly favoured for carbon (−347.69 kJ mol\(^{-1}\)), silaketene is considerably less stable than the \([\text{H}_2\text{Si}−\text{CO}]\) adduct (−44.77 versus −113.0 kJ mol\(^{-1}\)).
2.4 Activation of CO$_2$ and N$_2$O

CO$_2$ and N$_2$O activation has become a hot topic and underwent intense research due to environmental considerations. Advances involving heterogeneous, homogeneous, transition metal-free and biological catalytic systems to use CO$_2$ and N$_2$O for the formation of value-added oxygenation products have been achieved. In main-group chemistry, multiply-bonded main-group compounds, such as disilene, and low-valent p-block compounds, such as gallium species and germylene, are also developed and found to show reactivity towards CO$_2$ and N$_2$O. Meanwhile, silylenes have a high oxophilicity and thus can react very efficiently with these thermodynamically very stable species.

In 1996, Jutzi et al. reported the first reductive activation of CO$_2$ with (Me$_5$C$_5$)$_2$Si under release of CO. Stoichiometric formation of the carbodisiloxane SiIV complex and the bis-carbonato SiIV complex are obtained depending on the solvent used, respectively (Scheme 14). The pathway is proposed to undergo a reactive [2+1] cycloaddition intermediate or its ring-opened isomer, which easily releases CO.

In 2007, the Driess group reported the selective monoxygenation of the siloxysilylene by exposing a brown solution of the siloxysilylene to N$_2$O and CO$_2$ at -78°C, respectively, affording silanolic ester in 79% yields (Scheme 15). Besides, the same group reported a new NHC–silylene adduct which undergoes facile oxygenation with N$_2$O to give the first isolable NHC-supported silanone featuring an ylidic Si=O bond. No reaction occurs between silylene and N$_2$O even after several days at room temperature.

The Driess group also synthesised a Lewis-base coordinated Si=O complex which can be obtained by oxygenation of the silylene p-dimethylaminopyridine (DMAP) adduct with N$_2$O. It was further used for the activation of ammonia, affording a unique pair of the tautomer products silahemiaminal and silanolic amide with DMAP being ultimately released, respectively (Scheme 16). The two products are in equilibrium in solutions, and undergo intermolecular stabilisation via SiOH...O=Si hydrogen bond.

The ring compound featuring two four-membered disiloxane rings bridged by two oxygen atoms were synthesised by exposure of red solutions of the base-stabilised bis-silylene (LSi–SiL, L = PhC(N$_t$Bu)$_2$) in toluene to N$_2$O at room temperature (Scheme 17). A mechanism is suggested where the Si–Si bond is cleaved under insertion of an oxygen atom from N$_2$O. Then the two Si atoms bearing the lone pairs of electrons react with N$_2$O to give Si=O moieties, followed by dimerisation to give the final ring compound. Meanwhile, the reaction of monosilylene with N$_2$O affords comprising a Si$_3$O$_3$ six-membered ring. Unlike 34, compound 36 features a paddle-wheel arrangement.

Kato and Baceiredo reported the phosphine-stabilised silylene in 2011, which acts as either a sila-Wittig reagent or a nucleophilic silylene complex. It reduces CO$_2$ rapidly at room temperature, affording the original P-chiral tricyclic phosphine...
with an oxygen atom bridging Si and P (Scheme 18). The plausible mechanism involves a phosphine centred sila-Wittig type reaction. Starting from a phosphine-stabilised silylene, the same group also synthesised the donor-stabilised silacycloprop-1-ylidene, and its reaction with N₂O allows access to the silacyclopropanan-1-one, representing the smallest membered ring silaketone known to date.

The synthesis and characterisation of the first metallosilylene containing a two-coordinate silicon centre was reported by Filippou and co-workers in 2014. It shows a high reactivity towards the cleavage of the σ-bonds of H₂, H₂O, etc. due to the small HOMO–LUMO energy gap (Scheme 19). Furthermore, exposure of 41 to N₂O gives the metallosilanone product. Theoretical calculations of the σ and π NBO orbital of the Si=O bond in 42 revealed 85% of the NBO density on the O atom, suggesting a substantial contribution of a zwitterionic resonance structure (Si⁺–O/C⁰).

Kira demonstrated that the dicoordinate dialkylsilylene, 2,2,5,5-tetrakis(trimethylsilyl)-silacyclopentane-1,1-diyl, reacts with CO₂ smoothly at room temperature, followed by hydrolysis by the water contamination in MeOH, to give the corresponding bis(silyl)carbonate in high yields (Scheme 20). DFT calculations showed that the reaction involves the formation of a Si=O bonded intermediate, which is similar to that of the decamethylsilicocene reported by Jutzi et al.

As for the bis(amidinato)silylene, its reaction with an excess of N₂O at low temperatures affords the dinuclear five-coordinate Si⁴ complex, while the mononuclear six-coordinate Si⁴ complex is obtained by treatment of 43 with an excess of CO₂ at room temperature. The mechanism can be rationalised through the formation of a five-coordinate silanone species, followed by its dimerisation to give 46, or reaction with an additional equivalent of CO₂ to give 47. Similarly, treatment of the analogous bis(guanidinato)silylene with N₂O and CO₂ in toluene at low temperatures affords the six-coordinate Si⁴ complex, and the dinuclear four-coordinate Si⁴ complex, respectively. Treatment of the guanidinatosilylene with N₂O and CO₂ in toluene at low temperatures affords the unsaturated four-coordinate Si⁴ compound featuring a Si=O bond, and the five-coordinate Si⁴ five-coordinate Si⁴ complex, while the mononuclear six-coordinate Si⁴ complex is obtained by treatment of 43 with an excess of CO₂ at room temperature. The mechanism can be rationalised through the formation of a five-coordinate silanone species, followed by its dimerisation to give 46, or reaction with an additional equivalent of CO₂ to give 47. Similarly, treatment of the analogous bis(guanidinato)silylene with N₂O and CO₂ in toluene at low temperatures affords the six-coordinate Si⁴ complex, and the dinuclear four-coordinate Si⁴ complex, respectively. Treatment of the guanidinatosilylene with N₂O and CO₂ in toluene at low temperatures affords the unsaturated four-coordinate Si⁴ compound featuring a Si=O bond, and the five-coordinate Si⁴ five-coordinate Si⁴ complex, while the mononuclear six-coordinate Si⁴ complex is obtained by treatment of 43 with an excess of CO₂ at room temperature. The mechanism can be rationalised through the formation of a five-coordinate silanone species, followed by its dimerisation to give 46, or reaction with an additional equivalent of CO₂ to give 47. Similarly, treatment of the analogous bis(guanidinato)silylene with N₂O and CO₂ in toluene at low temperatures affords the six-coordinate Si⁴ complex, and the dinuclear four-coordinate Si⁴ complex, respectively. Treatment of the guanidinatosilylene with N₂O and CO₂ in toluene at low temperatures affords the unsaturated four-coordinate Si⁴ compound featuring a Si=O bond, and the five-coordinate Si⁴ five-coordinate Si⁴ complex, while the mononuclear six-coordinate Si⁴ complex is obtained by treatment of 43 with an excess of CO₂ at room temperature. The mechanism can be rationalised through the formation of a five-coordinate silanone species, followed by its dimerisation to give 46, or reaction with an additional equivalent of CO₂ to give 47. Similarly, treatment of the analogous bis(guanidinato)silylene with N₂O and CO₂ in toluene at low temperatures affords the six-coordinate Si⁴ complex, and the dinuclear four-coordinate Si⁴ complex, respectively. Treatment of the guanidinatosilylene with N₂O and CO₂ in toluene at low temperatures affords the unsaturated four-coordinate Si⁴ compound featuring a Si=O bond, and the five-coordinate Si⁴
can also be directly achieved by reaction of 10 with CO₂.²²h No dimerisation of carbamato silicon compound was observed due to the bulky protection.

The silylene borane complex 8 reported by the Driess group acts as an intramolecular FLP and allows access to the silanone–borane 64 featuring a Si═O → B interaction through reductive activation of N₂O and CO₂, respectively (Scheme 24).³¹ Notably, isolation of 64 is also possible via reaction of 8 with dioxygen.

The novel β-diketiminato-supported silaacyl chloride 66 featuring a unique Lewis-acid-free Si(O)Cl unit was synthesised by oxidation of chlorosilylene 65 with N₂O at room temperature (Scheme 25).³⁸ Treatment of 66 with sources of either H⁺ or tBuO⁻ allows access to the nucleophilic substituted silaldehyde 67 and silaester 68. Analogous to the acyl chloride chemistry, silaacyl chloride 66 offers a systematic methodology to sila-carbonyl derivatives by nucleophilic substitution at the Si centre.

Another example of reductive activation of N₂O and CO₂ by the acyclic silylene 1 shows a net oxygen atom abstraction process (Scheme 26).³⁶ The authors inferred the formation of a short-lived silanone intermediate followed by a rapid N-to-O dimerisation of carbonato silicon compound was observed due to the bulky protection.

Lewis acids or bases are often introduced for the stabilisation of some reactive species. For example, Inoue et al. isolated
the first acyclic NHC-stabilised silanoic ester 71 by exposure of the NHC-supported silylene 70 bearing two silyl groups to N₂O atmosphere (Scheme 27). Even though the exact mechanism is so far not clear yet, the authors inferred that the formation of a silanone with subsequent silyl migration, oxidation and rearrangement eventually lead to the ester product. The same group also reported the reduction of CO₂ using the corresponding silyliumylidene cations 72 and 73, resulting in the successful synthesis of silaacylium ions 73 stabilized by two NHCs (NHC = 1,3,4,5-tetramethylimidazol-2-ylidene). Computational calculations suggested strong Si–O bond character in 73. Another Lewis acid-stabilised bis-silylene 15b reported by Driess and co-workers also undergoes reductive activation of CO₂ to give silanone product 75, similar to that of intramolecular silylene borane complex 8. Without the presence of Lewis acids, with N₂O and CO₂ the 1,3,2,4-disiloxane product 76 is obtained instead.

Recently, Iwamoto et al. reported the isolation of a genuine silicon analogue of a ketone, compound 78, featuring a three-coordinate Si centre and an unperturbed Si–O bond (Scheme 28). Exposing solid silylene 77 to N₂O atmosphere at room temperature affords the silanone product 78 quantitatively as a white solid. Remarkably, coordination by Lewis bases and acids or the introduction of electron-donating groups are not indispensable for this silanone case.

In 2020, Kato and Baceiredo reported the synthesis of the N-hetero-RhI-metallacyclic silylene 79 featuring a tetrahedral Rh centre. It shows an improved stability compared with 12 and undergoes oxidation after being exposed to N₂O atmosphere at low temperatures to furnish the corresponding silanone 80 (Scheme 29). Even though silanone 80 shows a large dimerisation energy with Δ𝐺° = +360.66 kJ mol⁻¹, it displays considerable stability due to the presence of the σ- and π-donating and sterically protective Rh fragment. Cooperative involvement of both Si–O and RhI reactive sites was observed on its further reactivity towards H₂.

2.5 Activation of O₂

Activation of the O–O bond in dioxygen is non-trivial and crucial in both biology and industry. Nature has evolved several strategies to achieve this goal, such as cytochrome oxidase and metalloenzymes taking Cu₂⁺ and Fe-sites as cofactors. A lot of homo- and hetero-multinuclear metal complexes were also developed to achieve a controllable activation of O₂. As expected by the large oxophilicity of silicon, silylenes are very reactive towards O₂. The first isolable N-heterocyclic silylene 81 reacts with dry O₂ rapidly, giving rise to a colourless and insoluble polymer. At the same time, a small amount of minor product 82 could also be observed and verified by ¹H NMR data and mass spectrometry (Scheme 30). However, any further characterisation was prevented due to insufficient amounts. The proposed pathway reveals the initial formation of a transient silanone, which then undergoes dimerisation to give 82.

West et al. reported the new isolable silylenes 83a–b, rac-N,N-di-tert-butylethylene-4,5-dimethyl-1,3-diaza-2-silacyclopentane-
2-ylide (Scheme 31), which have been utilised for the reaction with a stoichiometric amount of O₂ at low temperatures, affording the corresponding 1,3,2,4-disiladioxetane. Interestingly, the meso isomer was isolated as solid, while the rac isomer being a colourless liquid.

On the exploration of isolable silanoic ester synthesis from the siloxysilylene 24, its reaction with dioxygen at −78 °C readily gives an unexpected new type of strained cyclodisilidioxane 85 featuring a remarkably clean deoxygenation process (Scheme 32). Compounds 24' and 24'' are assumed to be reactive intermediates during the formation of this cyclodisilidioxane compound.

2,3-Dioxasilirane with a SiO₂-peroxo ring has always been elusive species for a long time and could only be generated and studied in cryogenic argon matrices. This situation has changed since Driess et al. reported the isolable adducts 86 and 86a of transient dioxasilirane featuring fascinating five-coordinate square-pyramidal silicon atoms and “side-on” coordinated peroxo ligands (Scheme 33). 86 and 86a can be obtained selectively through facile O₂ activation with the NHC-stabilised silylenes 27 and 27a, respectively. Remarkably, 86 undergoes internal oxygen atom transfer at room temperature to afford a cyclourea-sila-urea adduct 87 featuring a C–O–Si–O dative interaction, which highlights the importance of donor–acceptor stabilization for the successful isolation of elusive silicon–oxygen species.

The base-stabilised silacycloprop-1-ylidene 39 was reported by Kato and Baceiredo and demonstrated to react with O₂, leading to the base-stabilised sila-β-lactone product 88 featuring a planar β-lactone four-membered ring (Scheme 34). Driven by the ring strain and the high polarity of silicarbonyl function, the reactive lactone 88 reacts with ethanol to afford donor/acceptor-stabilised silanoic acid.

As an alternative route to an acyclic silanone, Jones and Aldridge et al. treated the acyclic diaminosilylene 89 with an excess of dry O₂, leading to an unexpected unsymmetrical silanol 90 (Scheme 35). This reaction is assumed to proceed via a transient dioxasilirane followed by O–O bond cleavage and a subsequent radical-induced alkyl C–H activation, though the attempts to observe the transient silirane were unsuccessful.

2.6 Activation of H₂O, H₂O/B(C₆F₅)₃ and H₂S

Activation of water is most commonly observed in nature, existing in a series of hydrolase enzymes. H₂O and H₂S are also fundamental to our industrial society due to their inherent availability. Comparatively, introduction of hydroxy and sulfide can be easily achieved by relatively reactive isolable silylenes.

West and co-workers demonstrated that the first isolable N-heterocyclic silylene 81 inserts into O–H bonds of H₂O easily (Scheme 36). Isolation of the colourless disiloxane 91 can be achieved from the reaction of silylene 81 with H₂O. The corresponding silanol compound is proposed to be an intermediate which eventually self-condenses to the product.

Similarly, the saturated analogue of 81, silylene 92, also undergoes the same insertion into O–H bond of water,
affording disiloxane.\(^{93,72}\) Notably, the overreduction of silylene \(^{92}\) competes with the reduction of its dichloro precursors, resulting in a lower yield of silylene. The overreduction product \(^{94}\) can be trapped by proton abstraction from water, giving the dihydrido compound \(^{95}\). As for the racemic saturated silylenes \(^{83a}\) and \(^{83b}\), both \(^{rac}\) and \(^{meso}\) disiloxane isomers (\(^{96a}\) and \(^{96b}\)) are formed, resulting from the reaction of the silylenes and \(^{H_2O}\) via the corresponding silanol intermediate.\(^{68}\)

The zwitterionic silylene \(^{26}\) also undergoes \(^{H_2O}\) activation in the molar ratio of 2:1, affording solely the siloxy silylene \(^{98}\) which represents an unprecedented type of mixed-valent disiloxane compound containing di- and tetravalent silicon atoms bridged by an \(^{O}\) atom (Scheme 37).\(^{73}\) Although the mechanism is still unclear, the formation of \(^{98}\) suggests a faster proton migration from a terminal methyl group in the proposed reactive intermediate \(^{97}\) than from the \(^{OH}\) group in \(^{97}\) to the divalent silicon atom. Meanwhile, the presence of a strong Lewis acid bound to oxygen atom of water leads to the drastically increased acidity of the \(^{OH}\) group and fast proton migration from the \(^{OH}\) group to the \(^{Si}\) atom. This assumption is verified by addition of the water–borane adduct \(^{H_2O}B(C_6F_5)_3\) to \(^{26}\) in a molar ratio of 1:1, which affords exclusively the silaformamide–borane complex \(^{99}\) featuring a unique short \(^{Si=O}\) interatomic distance of 1.552(2) Å. IR measurements by means of isotope labelling experiments and DFT calculations were performed to verify the \(^{Si=O}\) bond character in \(^{99}\). The observed bands for \(^{18O}\)-labeled (1112 cm\(^{-1}\)) and \(^{16O}\)-labeled (1165 cm\(^{-1}\)) to a \(^{Si=O}\) stretching mode are far above frequencies typical for \(^{Si=O}\) single bonds (800–900 cm\(^{-1}\)). Silylene \(^{26}\) also shows reactivity towards \(^{H_2S}\) at low temperatures in the molar ratio of 1:1, resulting in the surprisingly simple formation of the donor-stabilised silathioformamide \(^{100}\).\(^{74}\)

Different from the well-studied reactions of silylene \(^{26}\) with water, the addition of \(^{H_2O}\) to complex \(^{101}\) enables the donor/acceptor abilities of the silicon ligand to be tuned while still coordinated to the \(^{Ni}\) centre and without changing its ligand sphere, affording the corresponding \(^{Si^{III}}\) hydroxide–\(^{Ni}\) complex \(^{102}\) (Scheme 38).\(^{75}\) This process is in contrast to the well-studied reactions of other metal silylene complexes with \(^{H_2O}\) where the \(^{Si=metal}\) bond is either broken by 1,1-addition to the \(^{Si^{III}}\) centre or remains intact by 1,2-addition across the \(^{Si=metal}\) bond.\(^{76}\) Besides, complex \(^{101}\) is also capable of activating \(^{H_2S}\) in the molar ratio of 1:1, solely affording the 1,4-addition product \(^{103}\) despite the high thiophilicity of nickel.\(^{74}\)

The reaction of the monochlorosilylene \(^{35}\) with \(^{H_2O}B(C_6F_5)_3\) in the presence of \(^{IPr}\) \(^{[1,3bis(2,6diisopropylphenyl)imidazol-2-ylidene]}\) leads to the formation of a stable silicon analogue of an acid anhydride \(^{106}\) featuring an \(^{O=Si-O=Si=O}\) core (Scheme 39).\(^{77}\) The presumed mechanism reveals the involvement of a silaformaldehyde \(^{104b}\) and a silacarboxylic acid \(^{105}\). The reaction of \(^{35}\) and \(^{H_2O}B(C_6F_5)_3\) affords \(^{104a}\) along with the elimination of \(^{HCl}\) as \(^{IPr-HCl}\). \(^{104b}\) is then obtained by subsequent rearrangement of \(^{104a}\) and undergoes isomerisation to give \(^{104c}\). Oxygen abstraction of cationic silicon of \(^{104c}\) affords \(^{105}\), and finally protonation of the amidinate ligand of \(^{104b}\) by \(^{105}\) affords finally the acid anhydride analogue \(^{106}\).

The first acyclic silacarbonyl halide compound \(^{108}\) stabilised by Lewis donor was reported by Roesky et al. (Scheme 40).\(^{78}\) \(^{108}\) can be prepared by insertion of silylene \(^{107}\) into the \(^{O-H}\) bond of \(^{H_2O}B(C_6F_5)_3\) adduct and subsequent elimination of \(^{HCl}\) assisted by \(^{IPr}\). The stable silacarboxylic acid \(^{108}\) features a significant \(^{Si=O}\) bond character and a distorted tetrahedral Si centre. Müller et al. have developed a previously unknown synthetic pathway for the stabilisation of silylenes by taking advantage of

\[\text{Scheme 38: Additions of H}_2\text{O and H}_2\text{S by the silylene—Ni}^{0}\text{ complex 101.}\]

\[\text{Scheme 39: Reaction of H}_2\text{O·B(C}_6\text{F}_5)_3\text{ with the monochlorosilylene 35.}\]

\[\text{Scheme 40: Reaction of H}_2\text{O·B(C}_6\text{F}_5)_3\text{ with the NHC—dichlorosilylene adduct 107.}\]
the NHC-induced fragmentation of silanorbornadiene derivatives. The new way allows the isolation and characterisation of new hydridosilylenes. The hydridosilylene 109 synthesised in this way is highly reactive and shows significant reactivity after being exposed to H2O in THF solution at low temperatures, giving cleanly the tetrahydridodisiloxane 110 as the sole product (Scheme 41).

The pre-organised intramolecular silylene borane complex 8 isolated by the Driess group acts as a FLP and undergoes unexpected metal-free dehydrogenation of H2O to give sila-none–borane 111 as an isolable product (Scheme 42). Release of H2 was observed by in situ 1H NMR measurements with a proton resonance at δ 4.46 ppm. DFT calculations suggested that initial coordination of the H2O molecule to the B centre forms 8A, which further undergoes oxidation of O–H to the Si centre to yield 8B. Subsequently, migration of OH from B to Si gives 8C, followed by dehydrogenation to form product 111 along with release of H2.

Synthesis and characterisation of the donor/acceptor complex of an aryl silaaldehyde 112 were demonstrated by Inoue (Scheme 43). 112 can be achieved by reaction of silaeylimidene complex 72a with an equivamolar amount of H2O at low temperatures in the presence of the Lewis acid GaCl3. The proton NMR spectrum of 72a shows a signal of Si-bound H at δ 4.98 ppm with a coupling constant of $J_{Si,H} = 234$ Hz.

In the absence of GaCl3, however, hydrolysis of silylimyldene 72a with the hope of isolating Lewis-acceptor free silaaldehyde resulted in the formation of a sterically hindered spiroisiloxane 113 in low yields and other unknown products.

2.7 Activation of NH3

As coordination of the Lewis base ammonia to transition-metals is more favourable, its N–H bond activation is therefore more challenging. In 2005, the first example of an intermolecular ammonia activation by a transition metal has been reported by the Hartwig group.81 Since the activation of ammonia could also be achieved by a carbene in 2007,18 low-valent group 13 to 15 compounds, such as digallene, germylene and phosphorus species featuring a bent geometry were found to activate ammonia.16a,b,d A few cyclic and acyclic silylenes also proved to be suitable for the activation of the N–H bond of ammonia. The ylide-like N-heterocyclic silylene LSi:26 (L\equivCH[(C\equivCH)2]CM[e(N,NDipp)]; Dipp = 2,6-iPr2C6H3) isolated by the Driess group in 2006,74a reacts with ammonia to afford the 1,1-addition product 114 as described by Roesky and co-workers (Scheme 44).82 Notably, the NH2 group in 114 is not involved in any kind of hydrogen bonding.

The silylene–Ni(CO)3 complex 101 is also capable of activating ammonia and amine, affording the 1,4-addition β-diketiminato SiV–Ni(CO)3 complexes 115 without rupture of the Si–Ni bond or ligand exchange at the Ni atom (Scheme 44).74 The proposed mechanism could be explained by the initial formation of an acid–base pair, increasing acidity of the N–H protons and basicity of the exocyclic methylene group. Deprotonation of N–H can then be achieved by another molecule of 101. This process may also occur simultaneously.

Acyclic low-valent group 14 species show higher reactivity towards NH3, for example, coordination of NH3 to a bis[boryl]tin(n) compound followed by N–H cleavage leads to the amidotin[n]hydride as described by Aldridge.83 Similarly, acyclic silylenes are also good candidates for NH3 activation. Reaction of acyclic dianisosilylene $Si(TBoN)$_2 (TBoN = [N(SiMe$_3$)$_2$]B[DBAB]); DAB = (DippNCH)$_2$; Dipp = 2,6-iPr$_2$C$_6$H$_4$) 89 with NH$_3$ gives a 1 : 1 mixture of the traminosilane 116 and the secondary amine, TBoNH (Scheme 45).22e The plausible mechanism reveals a transient dianisosilylene from a σ-bond...
metathesis reaction between 89 and NH₃, which adds NH₃ oxidatively to yield the triaminosilane product 116. The acyclic two-coordinate N,O-silylene 117 also cleaves N–H bond of ammonia, affording aminosilane 118 as described by Inoue very recently (Scheme 45). 84

The novel tetrasilyldisilene displaying bis(silyl)silylene activity also shows high reactivity towards NH₃. The hydrosilation is achieved by treating an n-hexane solution of 11/11’ with one molar equivalent of NH₃ along with an apparent colour change from blood red to pale yellow and the formation of 119. However, the addition product was identified by NMR spectroscopy to be only derived from tetrasilyldisilene 11 (Scheme 46). 29

In 2020, the Aldridge group investigated the hydrosilation of [(N-naenac)Si]⁺ 120 when being exposed to ammonia, representing the first example of oxidative addition at a two-coordinate silicon(n) cation (Scheme 47). 85 In the cases of Ge(n) and Sn(n), only Werner coordination complexes are obtained after being treated with tBuNH₂. Differences in EII/EIV redox chemistry on descending group 14 are inferred to account for the results.

2.8 Activation of C–H bonds

C–H bond activation is one of the most potent methodologies to achieve C–C and C–heteroatom bond formation, and recent major advancement in this area has always been the domain of transition metals. Since Arduengo reported the activation of C–H bond by carbenes, some N-heterocyclic and cyclic amino carbenes are used for this purpose. 16,28 With the establishment of low-coordinate main-group chemistry, a lot of main-group species, especially silylenes, appear to be good candidates for the activation of C–H bonds. Their activation towards organic substrates might also inspire future catalytic application and narrow the catalytic gap between silylenes and transition metals.

Kira revealed that irradiation of silylene 43 with light of wavelengths longer than 420 nm allows access to the 1,1-biradical excited state (Scheme 48). 86 Thus, irradiation of 43 in the presence of mesitylene results in the insertion to a benzylic C–H bond rather than the expected silepin compound. The formation of the latter is inferred to be hampered by the steric hindrance at C–C double bonds of mesitylene.

Though aromatic C–F bond activation by N-heterocyclic silylene 26 in the absence of any additional catalyst allows access to the preparation of silicon fluorine compounds, it reacts preferentially with partially fluorinated aromatic substrates to give 123 and 124 via C–H bond activation (Scheme 49). 87 Probably due to the weaker C–H bond.

The NHC-coordinated silylene adduct 27 (NHC = 1,3,4,5-tetramethylimidazol-2-ylidene and 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) reported by the Driess group is found to be thermo- labile and undergoes rearrangement above 20 °C, leading to the asymmetric N-heterocyclic silylcarbene 125 (Scheme 50). 88 One of the possible pathways reveals the insertion to an NMe group of NHC moiety by the reactive Si centre, followed by the cleavage of the C → Si dative bond to give the final silylcarbene product.
Two-coordinate acyclic silylenes with narrower HOMO–LUMO energy gap compared to cyclic ones are considered as more reactive species and more likely to undergo isomerisation or intramolecular C–H bond activation. As has been discussed that RSi(SiR3) type silylenes are prone to undergo rearrangement to give isomeric disilenes, the stable acyclic silylsilylene 2 isolated by Aldridge and co-workers undergoes C–H activation over five days at 80°C to give silaindoline 126 (Scheme 51).22 The bis(silyl)silylene 11' which is in equilibrium with tetrakisylidilsilene 11 via 1,2-silyl migrations mentioned above also undergoes intramolecular C–H activation over four days to give the full conversion to disiletane 127,23 Another acyclic silylsilylene 128 reported by Rivard reacts with one molar equivalent of tert-butyl isocyanide via intermolecular C–H activation, leading to the quantitative transformation of the silyl-acyanide product 129, representing an intermolecular activation of a primary C–H bond by a silylene.22

Intermolecular activation of benzylic C–H bond by silylenes is rare. Iwamoto et al. successfully realised a benzylic C–H insertion reaction with the cyclic (alkyl)(amino)silylene 130 in toluene solutions at elevated temperatures, furnishing hydridobenzylsilane 131 (Scheme 52).89 Notably, the benzylic C–H insertion also competes with dehydrogenation of 9,10- and Baceiredo (Scheme 53).32 The geometry of the Rh atom reported by Rivard reacts with one molar equivalent of tert-butyl isocyanide which reacts with ethylene to give the corresponding silirane 135 and 135a and the conversion is strongly dependent on the ethylene pressure (Scheme 54).32 Notably, the two resonance signals in the 13C NMR spectrum of 135 at δ = −0.06 and −1.68 ppm are consistent with a silirane structure rather than a η2-coordination mode. Interestingly this reaction shows reversibility by regeneration of the phosphine silylene 37 at low ethylene pressure. A small value of Gibbs free energy for the addition reaction was calculated [ΔG° = (−0.717 ± 0.452) kcal mol−1], which shows the thermo-neutrality of the reaction, in accordance with the observed reversibility of the reaction.

Reversible ethylene binding by stable, two-coordinate acyclic silylenes was also demonstrated by Power et al.22 Exposure of toluene solutions of Si(SAriPr4)2 (SAriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) 136 and Si(SAriMe6)2 (SAriMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2) 137a to ethylene atmosphere results in the formation of the corresponding silirane compounds 137 and 137a, respectively (Scheme 55). The 29Si NMR spectrum of 137a displays a signal at δ +270.7 ppm (free silylene 136a), indicating a dissociation increases the π-donating and σ-accepting character of the metal fragment, which leads to a sizeable HOMO–LUMO gap and stabilises the Si moiety. Nevertheless, 12 undergoes insertion over four days to the ortho-C–H bond of phenyl group bound to phosphine, furnishing the silane derivative 134.
equilibrium in solutions. A van’t Hoff analysis of the association of ethylene with 136 using variable-temperature ^1H NMR spectroscopy afforded $\Delta G_{\text{assn}} = -83.6(8.4)$ kJ mol$^{-1}$ and $\Delta G_{\text{assn}} = -24.9(2.5)$ kJ mol$^{-1}$ at 300 K, which is more favourable than that of phosphine silylene complex 37. A van’t Hoff analysis of the association of ethylene with 136a was hampered because of the solubility characteristics of 136a and 137a.

Rieger et al. demonstrated the first migratory insertion of ethylene into a Si–Si bond in the acyclic two-coordinate silylene 2 mimicking typical reactions of transition-metal complexes (Scheme 56).22 A quantitative conversion to the silirane product 138, Si[CH$_2$–CH$_2$]$_2$[NDipp(SiMe$_3$)]$_2$[Si(SiMe$_3$)$_3$], is achieved at room temperature from the reaction of stable, acyclic silylsilylene 2 in the presence of ethylene atmosphere. Upon being heated to 60 °C unexpected formation of the modified silirane Si[CH$_2$–CH$_2$]$_2$[NDipp(SiMe$_3$)]$_2$[Si(SiMe$_3$)$_3$] via a Si–Si bond insertion was observed. In order to investigate the mechanism, a ^1H NMR experiment using C$_2$D$_4$ was performed and suggested a migratory insertion of the coordinated ethylene of 138 into the Si–Si bond of the ligand and subsequent addition of a second ethylene molecule.

Inoue and Rieger et al. have demonstrated the reversibility between the highly reactive acyclic iminosilylsilylene 10’ and silepin 10, which can act as a “masked” silylene.22c Treatment of a freshly prepared solution of silepin 10 with ethylene at room temperature affords the corresponding silirane compound 140 (Scheme 57), even though it could not be purified by crystallisation due to its similar solubility to side products. Moreover, the silirane structure can be confirmed by observation of the coupling of the central Si to the ring-bound protons in the ^1H–^29Si HMBC spectrum.

The long-term pursued acyclic and neutrally charged siladizylone 62a was isolated by the Inoue group and found to perform rearrangement to give the acyclic two-coordinate N,O-silylene 117 bearing a siloxy ligand (Scheme 58).22c Silylene 117 undergoes irreversible transformation to give the corresponding silirane 141 when being exposed to ethylene. Irreversibility of this reaction probably benefits from the reduced steric shielding at the Si centre.57

Insights into the disilene-silylene equilibrium were also gained by the same group. Logically, exposure of 11 to ethylene results in the clean formation of the corresponding silirane 142 featuring an expansive Si–Si–Si bond angle of 131.7(1)$^\circ$ because of the steric hindrance of the silyl groups.22c

More recently, the reactivity of the silylene–Ni0 complex 3 [(TMSL)ClSiNi(NHC)$_2$] (TMSL = N-(SiMe$_3$)Dipp; Dipp = 2,6-iPr$_2$C$_6$H$_3$, NHC = :C[(iPr)NC(Me)$_2$]) towards ethylene was also investigated by the Driess group (Scheme 59).93 The addition of ethylene to 3 affords the four-membered nickelasilacyclobutane 143. Notably, the addition reaction is reversible, and a $[2+2+2]$ cycloaddition product, the six-membered metallasilacycle 144, can also be achieved via the cleavage of the Si–Ni bond. 144 is quite unstable and undergoes a consecutive β-hydride elimination/reductive elimination to give compound 145.

2.10 Degradation of P$_4$ and As$_4$

Phosphorus is one of the essential biogenic elements required by every living organism,94 and phosphorus compounds play a
significant role in the industry, including ligands design, organic synthesis, drugs, optoelectronic materials and fertilisers etc., due to their diverse array of useful chemical, physical and biological properties.95 However, these phosphorus-containing species are currently prepared via hazardous and wasteful multi-step procedures involving the initial transformation of P\textsubscript{4} to PCl\textsubscript{3} and PCl\textsubscript{5}.94 Though degradation of P\textsubscript{4} has been established by transition-metal systems,96 highly reactive main-group compounds also show reactivity towards P\textsubscript{4} for example, cyclic alkyl amino carbenes and N-heterocyclic carbenes undergo a nucleophilic attack at P\textsubscript{4} to give degradation products, low-valent aluminium and gallium compounds were also found to cleave P–P bonds.16b Silylene-mediated degradation procedures show excellent prospects due to their inherent advantages including mild conditions and easier purification processes.

In 2007, the Driess group reported the consecutive P\textsubscript{4} degradation with the zwitterionic silylene 26, which results in the formation of the first SiP\textsubscript{4} 146 and Si\textsubscript{2}P\textsubscript{4} 147 cage compounds (Scheme 60).37 146 can be synthesised by the reaction of 26 with P\textsubscript{4} in toluene in the molar ratio of 1 : 1 at room temperature and isolated in the form of colourless crystals, featuring a tricyclic SiP\textsubscript{4} core with pyramidally coordinated P and Si atoms in a tetrahedral environment. It bears three chemically different sorts of P nuclei according to the three temperature-invariant resonance signals ($\delta_X = 131.9$, $\delta_A = -342.4$, $\delta_B = -348.0$ ppm) in the 31P NMR spectrum, and the low-field resonance signal at δ_X splits into a doublet of doublets ($\frac{1}{2}$($P_X P_A$) = 146.8, $\frac{1}{2}$($P_X P_B$) = 144.7 Hz) while each of the two high-field signals shows a doublet of triplets ($\frac{1}{2}$($P_X P_A$) = 144.7, $\frac{1}{2}$($P_A P_B$) = 188.0 Hz). An X-ray diffraction analysis confirmed the molecular structure. Further reaction of 146 with silylene 26 in toluene at room temperature affords the Si\textsubscript{2}P\textsubscript{4} in the form of colourless crystals. The second insertion step is kinetically unfavourable due to steric congestion, and 147 shows two multiplets ($\delta_A = 153$, $\delta_B = 154$ ppm) in the 31P NMR spectrum, representing an AA'BB' splitting pattern of higher order with unusually small magnitudes of coupling constants.

Synthesis and characterisation of 148 featuring the planar Si–P–Si–P four-membered ring through the activation of P\textsubscript{4} by monochlorosilylene 35 were reported by Roesky and Stalke \textit{et al} (Scheme 61).89 The formation of 148 is suggested by treatment of 35 and P\textsubscript{4} in toluene overnight, and the structure of 148 shows a bis-ylide ring in which the two Si atoms are positively charged while the two P atoms carry partial negative charges. The natural charges obtained from the NBO analysis are +1.12 for the Si and −0.69 for the P atoms. The value of the four equivalent Si–P bonds (2.174 Å) is between a Si–P single (2.25 Å) and double bond (2.09 Å).99 The bis-silylene 33 bearing two lone pairs of electrons and a labile Si–Si bond also reacts with P\textsubscript{4} at room temperature in the molar ratio of 1 : 2, affording quantitatively the same product 148.98 In contrast to the four-membered ring products, a neutral acyclic P\textsubscript{4} chain species 150 could be achieved by the degradation of P\textsubscript{4} with Si10 bis(trimethylsilyl)amido silylene 149 in toluene solutions.100 Purple-coloured crystals can be obtained from concentrated toluene solutions at low-temperature featuring a neutral acyclic Si=–P–P=–P=–Si chain with 6\textpi electrons contained in a diphosphene and two phosphasilene units.101 By contrast, the reaction of 149 with As\textsubscript{4} in toluene leads to the formation of the unprecedented As\textsubscript{10} cage compound 151 featuring a nortricyclene core.102 The Si–As bond of the exocyclic substituents in 151 can be regarded as an elongated double bond or an ion compound with the negative charge localised at the As atom and the positive charge over both N atoms in the heterocycle.

Driess and West have already investigated the reactivity of tetraaryldisilenes 152a–c with white phosphorus and arsenic (Scheme 62).103 The disilenes 152a–c react with P\textsubscript{4} to give bicyclo[1.1.0] butane compounds 154a–c, while the more sterically encumbered disilene 152e reacts slowly with P\textsubscript{4} to afford two isomers 154e and 154e' \textit{via} intermediate 153. Besides, 132a reacts with arsenic to afford 155 and 156 in a ratio of about 3 : 1, 155 converts to 156 quantitatively when heated at 85 °C for 24 days. Comparatively, the N(SiMe\textsubscript{3})\textsubscript{2}-substituted disilene 157 exists in equilibrium with the corresponding silylene in solutions,104 and its reactivity towards P\textsubscript{4} was also investigated in a 1 : 1 molar ratio in toluene at ambient temperature, affording the Si–P cage compound 158 through the insertion of two molecules of silylenes into the P\textsubscript{4} tetrahedron.101 Besides, disilene 157 also reacts with As\textsubscript{4} in toluene at room temperature to give [Cp*{(SiMe\textsubscript{3})\textsubscript{2}N}SiAs] 159 containing a butterfly-like diarsadisilabicyclo[1.1.0]butane unit.102
A new isolable heterocyclic silylene 56a stabilised by an amino group and a more π-donating and electropositive phosphonium ylide moiety was reported by Kato et al. (Scheme 63). The silylene 56a shows thermal stability and a robust nucleophilic character, and its reaction with P4 occurs at room temperature via insertion of Si into the σ-P-P bond to give the SiP4 cage compound 160.

While the cyclic silylene-mediated P4 degradation is limited to the oxidative addition of a single P–P bond across the corresponding Si centre, the acyclic two-coordinate silylene 128 stabilised by a bulky vinlyc N-heterocyclic olefin ligand and the σ-donating hypersilyl group shows high reactivity towards P4 to give \((\text{MeIPrCH})\text{Si}(\text{P4})\text{Si(SiMe3)3}\) \((\text{MeIPr} = [(\text{MeCNDipp})2\text{C}]; \text{Dipp} = 2,6\text{-di-tert-butylphenyl})\) 161 as the final product (Scheme 64). The proposed mechanism probably involves the initial oxidative addition of a P–P bond followed by a subsequent 1,2-silyl migration regarding the polarised Si(II)–Si(SiMe3)3 bond.

More recently, the Driess group investigated the facile metal-free degradation of P4 to the zero-valent diphosphorus complex 162 stabilised by two cooperative divalent Si centres of the bis-silylene 15a (Scheme 65). The two lone-pairs of electrons on each P atom in 162 allow access to facile construction of P–C, P–H and P–B bonds upon its reactions with CO2, H2O and a borane. Notably, 162 also serves as a monophosphorus anion (P-) transfer reagent, leading to the phosphaketidene ligand (P–C=O) and a phosphinidene germylene complex in the presence of M(CO)6 (M = Cr, W) and LGeCl (L = PhC(NtBu)2), respectively.

2.11 A dream in Si[n] chemistry: how to achieve fixation of N2?

Activation of dinitrogen could so far be realised by natural nitrogenases with MoFeCo3 or industrial Haber–Bosch technology under extremely high pressure and temperature. Alternative (artificial) transition-metal mediated activation of N2 has always been laboratory curiosities since the synthesis and isolation of the first isolable transition-metal–dinitrogen complex with a \(\eta^1\text{-N}_2\) end-on coordination mode. By far, numerous transition-metal–N2 complexes taking advantage of Fe, Mo, W have been developed for consecutive conversion of N2 to ammonia, hydrazine and other fundamental nitrogen-containing chemicals. Main-group elements supported fixation and functionalisation of \(\text{N}_2\) is scarce, examples like borabenzene intermediate under flash-thermolysis condition, as well as phenyl cation and phenylborylene112 under cryogenic argon matrix condition were observed by IR spectroscopy and isotopic labelling experiments. Very recently, Braunschweig and co-workers have demonstrated that coordination of N2 to an empty 2p-orbital of a transient borylene complex gives rise to a borylene-N2 adduct, which either reacts with the second equivalent of borylene to afford the reductive B3N2 product, or is reduced by excess KC8 to give a nitrene-like radical followed by dimerisation to afford a \([\text{N}_2]^{2-}\) coupling product capped with two boron centres. Strong π-backbonding from boron to N2 is revealed to be critical to end-on N2 binding to boron atoms. Besides, Schulz has reported the isolation of an isolable silylene–CO adduct (CO is isolobal with N2) more recently and demonstrated that the enlarged sp2 lone pair is more available for backbonding the CO moiety \((d_{\text{Si}} \rightarrow \pi^*\text{CO})\). All above examples reveal backbonding to be a critical factor for the successful fixation of N2 as well as the weakening and functionalisation of the dinitrogen bond. Therefore, it is also inferred that modified silylenes featuring occupied and vacant orbitals proximal in space and energy can show more backbonding effects as well as play a critical role for the binding...
and activation of the non-polar and strong N–N triple bond. It remains to be seen whether this summit can be reached by new tricks in silylene chemistry!

3. Conclusions and outlook

We have discussed very recent progress in small molecule activation mediated by divalent silicon without and in the presence of a transition metal. Small molecules such as H₂, CO₂, N₂O, O₂, H₂O, C₂H₄ and NH₃ are ideal and readily available resources in synthetic chemistry but require specific activation because they are constituted by relatively strong chemical bonds. Though nature has developed numerous enzymatic systems which are capable of activating most of the aforementioned small molecules but these processes are limited to physiological reaction conditions. Inspired by the latter, artificial transition-metal complexes mimicking the characteristics of metalloenzymes were developed. With the motivation of pursuing cheaper and more sustainable catalysts, heavy main-group multiply bonded compounds, FLPs and group 14 congeners of carbenes have been introduced recently, among which silylenes show an outstanding potential for metal-free activation of small molecules. The bifunctionality at the SiII centre in silylenes originating from a vacant 3p orbital and a lone pair of electrons in a non-bonding orbital with high 3s character, as well a relatively narrow and tunable HOMO-LUMO energy gap are superior for mimicking transition-metal active sites. Even though in combination with transition-metals, divalent silicon centres are capable to cooperatively assist and boost bond activation and atom transfer which cannot be achieved by a transition-metal alone (e.g. H₂ activation and subsequent hydrogenation of olefins). Particular efforts are needed to develop suitable silylenes for the activation of extremely stable and non-polar chemical bonds, such as in N₂. Moreover, the regeneration of SiIII as active sites in many of the stoichiometric bond activation reactions, as herein discussed, remains challenging and key to achieve genuine low-valent silicon-based catalysis competitive to transition-metal systems.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2008/1-390540038. CS gratefully acknowledges financial support by the China Scholarship Council.

Notes and references

1. A. Holleman, E. Wiberg, N. Wiberg and G. Fischer, *Lehrbuch der anorganischen Chemie*. 2007.

2. Z. Thompson and J. A. Cowan, *Small*, 2020, e2000392.

3. (a) F. Mus, D. R. Colman, J. W. Peters and E. S. Boyd, *Free Radical Biol. Med.*, 2019, 140, 250–259; (b) J. W. Peters and J. B. Broderick, *Annu. Rev. Biochem.*, 2012, 81, 429–450; (c) P. E. M. Siegbahn, *Phys. Chem. Chem. Phys.*, 2019, 21, 15747–15759; (d) R. D. Milton and S. D. Minteer, *Acc. Chem. Res.*, 2019, 52, 3351–3360.

4. (a) P. M. Vignais and B. Billoud, *Chem. Rev.*, 2007, 107, 4206–4272; (b) M. J. Lacasse, S. Sebastiampillai, J. P. Cote, N. Hodkinson, E. D. Brown and D. B. Zambe, *J. Biol. Chem.*, 2019, 294, 15373–15385; (c) O. Lampret, J. Esselborn, R. Haas, A. Rutz, R. L. Booth, L. Kertess, F. Wittkamp, C. F. Meganity, F. A. Armstrong and M. Winkler, *et al.*, *Proc. Natl. Acad. Sci. U. S. A.*, 2019, 116, 15802–15810.

5. (a) I. D. Young, M. Ibrahim, R. Chatterjee, S. Gul, F. Fuller, S. Koroidov, A. S. Brewster, R. Tran, R. Alonso-Mori and T. Kroll, *et al.*, *Nature*, 2016, 540, 453–457; (b) T. Cardona, P. Sanchez-Baracaldo, A. W. Rutherford and A. W. Larkum, *Geobiology*, 2019, 17, 127–150; (c) N. Cox, D. A. Pantazis and W. Lubitz, *Annu. Rev. Biochem.*, 2020, 89, 795–820.

6. (a) D. C. Lamb, A. H. Follmer, J. V. Goldstone, D. R. Nelson, A. G. Warrilow, C. L. Price, M. Y. True, S. L. Kelly, T. L. Poulos and J. J. Stegeman, *Proc. Natl. Acad. Sci. U. S. A.*, 2019, 116, 12343–12352; (b) V. B. Uralcher and M. Girhard, *Trends Biotechnol.*, 2019, 37, 882–897.

7. (a) J. G. Rebelein, M. T. Stiebritz, C. C. Lee and Y. Hu, *Nat. Chem. Biol.*, 2017, 13, 147–149; (b) M. Yuan, M. J. Kummer and S. D. Minteer, *Chem. – Eur. J.*, 2019, 25, 14258–14266.

8. (a) F. Schweizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V. Lebrun, R. Reuter, V. Kohler, J. C. Lewis and T. R. Ward, *Chem. Rev.*, 2018, 118, 142–231; (b) J. M. Le and K. L. Boren, *ACS Energy Lett.*, 2019, 4, 2168–2180.

9. M. Guo, T. Corona, K. Ray and W. Nam, *ACS Cent. Sci.*, 2019, 5, 13–28.

10. (a) J. Kaplan and W. F. DeGrado, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, 101, 11566–11570; (b) F. Nastrì, M. Chino, O. Maglio, A. Bhagi-Damodaran, Y. Lu and A. Lombardi, *Trends Biochem. Sci.*, 2016, 45, 5020–5054; (c) B. Battistella and K. Ray, *Coord. Chem. Rev.*, 2020, 408, 213176.

11. F. Moller, S. Piontek, R. G. Miller and U. P. Apfel, *Chem. – Eur. J.*, 2018, 24, 1471–1493.

12. (a) M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois and D. L. DuBois, *Science*, 2011, 333, 863–866; (b) M. P. Stewart, M. H. Ho, S. Wiese, M. L. Lindstrom, C. E. Thogerson, S. Raugei, R. M. Bullock and M. L. Helm, *J. Am. Chem. Soc.*, 2013, 135, 6033–6046.

13. M. T. Olsen, B. E. Barton and T. B. Rauchfuss, *Inorg. Chem.*, 2009, 48, 7507–7509.

14. (a) N. S. Sickerman, K. Tanifuji, Y. Hu and M. W. Ribbe, *Chem. – Eur. J.*, 2017, 23, 12425–12432; (b) F. Mus, A. B. Allemann, N. Pence, L. C. Seefeldt and J. W. Peters, *Metalomics*, 2018, 10, 523–538.

15. P. P. Power, *Nature*, 2010, 463, 171–177.

16. (a) S. Yadav, S. Saha and S. S. Sen, *ChemCatChem*, 2016, 8, 486–501; (b) T. Chu and G. I. Nikonov, *Chem. Rev.*, 2018, 118, 3608–3680; (c) T. J. Hadlington, M. Driess and C. Jones, *Chem. Soc. Rev.*, 2018, 47, 4176–4197; (d) C. Weetman and
58 D. C. H. Do, A. V. Protchenko, M. Angeles Fuentes, J. Hicks, E. L. Kolychev, P. Vasko and S. Aldridge, Angew. Chem., Int. Ed., 2018, 57, 13907–13911.

59 S. U. Ahmad, T. Szilvási, E. Irran and S. Inoue, J. Am. Chem. Soc., 2015, 137, 5828–5836.

60 M. P. Luecke, E. Pens, S. Yao and M. Driess, Chem. – Eur. J., 2020, 26, 4500–4504.

61 R. Kobayashi, S. Ishida and T. Iwamoto, Angew. Chem., Int. Ed., 2019, 58, 9425–9428.

62 T. Kato, S. Takahashi, K. Nakaya, A. Baceiredo, N. Saffon-Merceron, S. Massou, N. Nakata, D. Hashizume, V. Branchadell and M. F. Pastor, Angew. Chem., Int. Ed., 2020, DOI: 10.1002/anie.20200688.

63 B. E. Schultz and S. I. Chan, Annu. Rev. Biophys. Biomol. Struct., 2001, 30, 23–65.

64 C. H. Kjaergaard, M. F. Qayyum, S. D. Wong, F. Xu, G. R. Hemsworth, D. J. Walton, N. A. Young, G. J. Davies, P. H. Walton and K. S. Johansen, et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 7897–8002.

65 M. Y. Pau, J. D. Lipscomb and E. I. Solomon, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 18355–18362.

54 (a) W. B. Tolman, Angew. Chem., Int. Ed., 2010, 49, 1018–1024; (b) E. I. Solomon, R. Sarangi, J. S. Woerthnik, A. J. Augustine, J. Yoon and S. Ghosh, Acc. Chem. Res., 2007, 40, 581–591.

43 R. Tacke, C. Kobelt, J. A. Baus, R. Bertermann and C. Burschka, Dalton Trans., 2015, 44, 14959–14974.

45 S. S. Sen, G. P. Tavčar, H. W. Roesky, D. Kratzert, J. Hey and H.-G. Stammler, Organometallics, 1996, 15, 753–759.

25 K. Junold, M. Nutz, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt and R. Tacke, Chem. – Eur. J., 2014, 20, 9319–9329.

53 (a) F. M. Mück, J. A. Baus, M. Nutz, C. Burschka, J. Poater, F. M. Bickelhaupt and R. Tacke, Chem. – Eur. J., 2015, 21, 16665–16672; (b) F. M. Mück, D. Kloss, J. A. Baus, C. Burschka, R. Bertermann, J. Poater, C. Fonseca Guerra, F. M. Bickelhaupt and R. Tacke, Chem. – Eur. J., 2015, 21, 14011–14021.

49 R. Rodriguez, T. Troade, D. Gau, N. Saffon-Merceron, D. Hashizume, K. Miqueu, J. M. Sotiropoulos, A. Baceiredo and T. Kato, Angew. Chem., Int. Ed., 2013, 52, 4426–4430.

30 M. Y. Pau, J. D. Lipscomb and E. I. Solomon, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 18355–18362.

26 L. Dell’Amico and X. Companyó, ChemSusChem, 2018, 11, 3056–3070; (c) X. Su, X. F. Yang, Y. Huang, B. Liu and T. Zhang, Acc. Chem. Res., 2019, 52, 656–664; (d) M. A. A. Aziz, A. A. Jalil, S. Wongsakulphasatch and D.-V. N. Vo, Catal. Sci. Technol., 2020, 10, 35–45.

52 K. Junold, M. Nutz, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt and R. Tacke, Chem. – Eur. J., 2014, 20, 9319–9329.

51 X. Liu, X.-Q. Xiao, Z. Xu, X. Yang, Z. Li, Z. Dong, C. Yan, G. Lai and M. Kira, Organometallics, 2014, 33, 5434–5439.

47 R. Rodriguez, T. Troade, D. Gau, N. Saffon-Merceron, A. Janata, R. Azhakan, S. P. Saris, P. P. Samuel, H. W. Roesky, D. Kratzert, J. Hey and H.-G. Stammler, Organometallics, 1996, 15, 753–759.

46 A. Jana, R. Azhakan, S. P. Sarish, P. P. Samuel, H. W. Roesky, C. Schulzke and D. Koley, Eur. J. Inorg. Chem., 2011, 5006–5013.

45 D. Gau, R. Rodríguez, T. Kato, N. Saffon-Merceron, A. de Cozar, F. P. Cossio and A. Baceiredo, Angew. Chem., Int. Ed., 2011, 50, 1092–1096.

44 (a) W. B. Tolman, Angew. Chem., Int. Ed., 2010, 49, 1018–1024; (b) E. I. Solomon, R. Sarangi, J. S. Woerthnik, A. J. Augustine, J. Yoon and S. Ghosh, Acc. Chem. Res., 2007, 40, 581–591.

43 R. Tacke, C. Kobelt, J. A. Baus, R. Bertermann and C. Burschka, Dalton Trans., 2015, 44, 14959–14974.

42 A. S. Sen, G. P. Tavčar, H. W. Roesky, D. Kratzert, J. Hey and H.-G. Stammler, Organometallics, 1996, 15, 753–759.

41 A. Jana, R. Azhakan, S. P. Sarish, P. P. Samuel, H. W. Roesky, C. Schulzke and D. Koley, Eur. J. Inorg. Chem., 2011, 5006–5013.

40 D. Gau, R. Rodríguez, T. Kato, N. Saffon-Merceron, A. de Cozar, F. P. Cossio and A. Baceiredo, Angew. Chem., Int. Ed., 2011, 50, 1092–1096.

39 (a) W. B. Tolman, Angew. Chem., Int. Ed., 2010, 49, 1018–1024; (b) E. I. Solomon, R. Sarangi, J. S. Woerthnik, A. J. Augustine, J. Yoon and S. Ghosh, Acc. Chem. Res., 2007, 40, 581–591.
and U. Winkler, *Organometallics*, 1996, 15, 1845–1855; (d) P. Pykkö and M. Atsumi, *Chem. – Eur. J.*, 2009, 15, 12770–12779.

100. S. S. Sen, J. Hey, R. Herbst-Irmer, H. W. Roesky and D. Stalke, *J. Am. Chem. Soc.*, 2011, 133, 12311–12316.

101. S. Khan, R. Michel, S. S. Sen, H. W. Roesky and D. Stalke, *Angew. Chem., Int. Ed.*, 2011, 50, 11786–11789.

102. A. E. Seitz, M. Eckhardt, S. S. Sen, A. Erlebach, E. V. Peresypkina, H. W. Roesky, M. Sierka and M. Scheer, *Angew. Chem., Int. Ed.*, 2017, 56, 6655–6659.

103. (a) M. Driess, A. D. Fanta, D. R. Powell and R. West, *Angew. Chem., Int. Ed. Engl.*, 1989, 28, 1038–1040; (b) A. D. Fanta, R. P. Tan, N. M. Comerlato, M. Driess, D. R. Powell and R. West, *Inorg. Chim. Acta*, 1992, 198–200, 733–739.

104. (a) P. Jutzi, A. Mix, B. Neumann, B. Rummel, W. W. Schoeller, H. G. Stammler and A. B. Rozenenko, *J. Am. Chem. Soc.*, 2009, 131, 12137–12143; (b) S. Khan, S. S. Sen, H. W. Roesky, D. Kratzert, R. Michel and D. Stalke, *Inorg. Chem.*, 2010, 49, 9689–9693.

105. I. Alvarado-Beltran, A. Baceiredo, N. Saffon-Merceron, V. Branchedall and T. Kato, *Angew. Chem., Int. Ed.*, 2016, 55, 16141–16144.

106. Y. Wang, T. Szilvási, S. Yao and M. Driess, *Nat. Chem.*, 2020, DOI: 10.1038/s41557-020-0518-0.

107. V. Smil, *Nature*, 1999, 400, 415.

108. A. D. Allen and C. V. Senoff, *Chem. Commun.*, 1965, 621–622.

109. (a) J. L. Crossland and D. R. Tyler, *Coord. Chem. Rev.*, 2010, 254, 1883–1894; (b) N. Hazari, *Chem. Soc. Rev.*, 2010, 39, 4044–4056; (c) K. C. Macleod and P. L. Holland, *Nat. Chem.*, 2013, 5, 559–565; (d) H. P. Jia and E. A. Quadrelli, *Chem. Soc. Rev.*, 2014, 43, 547–564; (e) Y. Nishibayashi, *Inorg. Chem.*, 2015, 54, 9234–9247; (f) M. J. Bezdak and P. J. Chirik, *Angew. Chem., Int. Ed.*, 2016, 55, 7892–7896; (g) Y. Tanabe and Y. Nishibayashi, *Chem. Rec.*, 2016, 16, 1549–1577; (h) P. Bhattacharya, D. E. Prokopchuk and M. T. Mock, *Coord. Chem. Rev.*, 2017, 334, 67–83; (i) M. Holscher and W. Leitner, *Chem. – Eur. J.*, 2017, 23, 11992–12003; (j) Y. Roux, C. Duboe and M. Gennari, *ChemPhysChem*, 2017, 18, 2606–2617; (k) L. J. Taylor and D. L. Kays, *Dalton Trans.*, 2019, 48, 12365–12381; (l) A. J. Kendall and M. T. Mock, *Eur. J. Inorg. Chem.*, 2020, 1358–1375.

110. G. Maier, H. P. Reisenauer, J. Henkelmann and C. Kliche, *Angew. Chem., Int. Ed. Engl.*, 1988, 27, 295–296.

111. M. Winkler and W. Sander, *J. Org. Chem.*, 2006, 71, 6357–6367.

112. K. Edel, M. Krieg, D. Grote and H. F. Bettinger, *J. Am. Chem. Soc.*, 2017, 139, 15151–15159.

113. M. A. Legare, G. Belanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels and H. Braunschweig, *Science*, 2018, 359, 896–900.

114. M. A. Legare, M. Rang, G. Belanger-Chabot, J. I. Schweizer, I. Krummenacher, R. Bertermann, M. Arrowsmith, M. C. Holthausen and H. Braunschweig, *Science*, 2019, 363, 1329–1332.