Forsythiae Fructus: A Review on its Phytochemistry, Quality Control, Pharmacology and Pharmacokinetics

Zhanglu Dong, Xianyuan Lu, Xueli Tong, Yaqian Dong, Lan Tang * and Menghua Liu *

Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; m17817185212@163.com (Z.D.);
luxianyuan_@163.com (X.L.); xueli_tong@126.com (X.T.); 13246808042@163.com (Y.D.)
* Correspondence: tl405@smu.edu.cn (L.T.); menghua_liu@hotmail.com (M.L.); Tel.: +86-20-6164-8508 (M.L.); Fax: +86-20-6164-8533 (M.L.)

Received: 18 July 2017; Accepted: 24 August 2017; Published: 4 September 2017

Abstract: *Forsythiae Fructus*, as a traditional Chinese medicine, has been widely used both as a single herb and in compound prescriptions in Asia, mainly due to its heat-clearing and detoxifying effects. Modern pharmacology has proved *Forsythiae Fructus* possesses various therapeutic effects, both in vitro and in vivo, such as anti-inflammatory, antibacterial and antiviral activities. Up to now, three hundred and twenty-one compounds have been identified and sensitive analytical methods have been established for its quality control. Recently, the pharmacokinetics of *Forsythiae Fructus* and its bioactive compounds have been reported, providing valuable information for its clinical application. Therefore, this systematic review focused on the newest scientific reports on *Forsythiae Fructus* and extensively summarizes its phytochemistry, pharmacology, pharmacokinetics and standardization procedures, especially the difference between the two applied types—unripe *Forsythiae Fructus* and ripe *Forsythiae Fructus*—in the hope of providing a helpful reference and guide for its clinical applications and further studies.

Keywords: *Forsythiae Fructus*; phytochemistry; quality control; pharmacology; pharmacokinetics

1. Introduction

Forsythiae Fructus, the dried fruit of *Forsythia suspensa* (family Oleaceae), known as lianqiao in China, was first recorded in *Shenong Bencao Jing*, a prestigious monograph on traditional Chinese medicine (TCM) [1], and subsequently listed in the pharmacopoeias of the People’s Republic of China, Japan and Korea [2–4]. It has been used as a heat-clearing and detoxifying TCM for the treatment of infectious diseases, such as acute nephritis, erysipelas and ulcers, for over 2000 years [5,6]. Modern pharmacological studies have confirmed that *Forsythiae Fructus* possesses anti-inflammatory, antioxidant, antiviral, antimicrobial and antitumor activities, as well as hepatoprotective, neuroprotective and cardiovascular protective effects [7–12]. Nowadays, more than forty Chinese medicinal preparations containing *Forsythiae Fructus* are included in the Chinese Pharmacopoeia, Volume I [2]. For example, *Forsythiae Fructus* is used as a principal drug in Yinqiao Jiedu tablet exerting effects of expelling wind, relieving the exterior, clearing heat and detoxifying [2].

In the clinic two types of *Forsythiae Fructus* are used, namely the unripe *Forsythiae Fructus* (Qing qiao, UFF) and ripe *Forsythiae Fructus* (Lao qiao, RFF). Due to the different harvest times, they are distinguished as UFF and RFF collected at early September and October, respectively [6]. Although both of them have been listed as *Forsythiae Fructus* in the Chinese Pharmacopoeia, previous studies have found that the harvest time could affect the qualitative profile and relative contents of compounds in *Forsythiae Fructus*, which might further influence its pharmacological activities. For instance, Jia et al. [6] found a higher antioxidant activity for UFF than for RFF, but no significant difference in antibacterial
activities was shown, indicating the differences between UFF and RFF should be considered for their clinical efficacies.

Up to now, a large number of studies focusing on the chemical compounds, pharmacology and quantitative analysis of *Forsythiae Fructus* have been published. In 2012, a mini review [13] naming chemical constituents of plants from the genus *Forsythia* reported only one hundred and twenty-one chemical constituents in *Forsythiae Fructus*, which was much less than those we summarize herein (three hundred and twenty-one compounds). New pharmacological activities and quality control methods have been discovered, so a systematic and updated review is very necessary, as well as a comprehensive comparison between UFF and RFF. Therefore, this review aims to extensively summarize the phytochemistry, quality control data, pharmacology and pharmacokinetics of *Forsythiae Fructus*, thus providing evidence for further research and clinical applications of this plant.

2. Phytochemistry

With the analysis technologies of nuclear magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and infrared spectroscopy (IR), a total of three hundred and twenty-one compounds were identified from *Forsythiae Fructus*, including fifty-one phenylethanoid glycosides, fifty lignans, nineteen aliphatic alcohols with the C6-C2 skeleton, two iridoids, nineteen diterpenoids, twenty-seven triterpenoids, six sterols, nineteen flavonoids, fifty-two volatiles, seven alkaloids, twenty-eight organic acids, nine sugar derivatives, two allylbenzene glycosides and twenty-four others. Most of them were not mentioned whether obtained from UFF or RFF. The detailed information for these compounds is summarized in Table 1.

NO.	Compound Name	Source	Reference
	Phenylethanoid Glycosides		
1	forsythoside A (forsythiaside)	UFF, RFF	[6,14,15]
2	forsythoside C (suspensaside)	RFF	[6,16]
3	(R)-suspensaside	UFF	[17,18]
4	(S)-suspensaside	UFF	[17,18]
5	(S)-suspensaside methyl ether	N.M.	[18]
6	suspensaside B	N.M.	[16]
7	(R)-forsythoside J	N.M.	[19]
8	(S)-forsythoside J	N.M.	[19]
9	forsythoside D	N.M.	[20]
10	forsythoside E	UFF	[20,21]
11	β-methoxyforsythoside E	N.M.	[22]
12	iso-forsythoside A/forsythoside 1/lianqiaoxinside A	UFF	[17,21]
13	forsythoside A 4′-O-β-D-glucopyranoside	N.M.	[11]
14	forsytherside K (lipedsisde A)	N.M.	[22,23]
15	poliumoside	N.M.	[11]
16	acteoside	N.M.	[22]
17	forsythoside B	UFF	[17,22]
18	forsythoside G	N.M.	[22]
19	forsythoside F	UFF	[21,24]
20	angoroside A	N.M.	[11]
21	calceolariside C	UFF	[25]
22	(S)-β-hydroxycalceolariside C	N.M.	[22]
23	(R)-β-hydroxycalceolariside C	N.M.	[22]
24	(S)-β-methoxycalceolariside C	N.M.	[22]
25	(R)-β-methoxycalceolariside C	N.M.	[22]
26	calceolariside A	N.M.	[26]
27	derhamnosyl suspensaside	N.M.	[22]
28	β-methoxyacteoside	N.M.	[22]
29	caffeoyl calceolariside C	N.M.	[22]
30	isoforsythiaside	N.M.	[27]
31	β-methoxyferruginoside B	N.M.	[22]
32	β-methoxylipedsisde A	N.M.	[22]
33	calceolariside B	UFF	[21]
34	lianqiaoxinoside C	UFF	[25]
35	plantainoside A	N.M.	[24]
NO.	Compound Name	Source	Reference
-----	---	--------	-----------
36	forsythoside J	UFF	[21]
37	plantainoside B	N.M.	[24]
38	forsythoside H	UFF	[21,24,28]
39	suspensaside A isomer	N.M.	[22]
40	demethyl suspensaside A	N.M.	[22]
41	suspensaside C	N.M.	[14]
42	llaqiaoxinoside B	N.M.	[22]
43	salidroside	N.M.	[29]
44	plantainoside B	N.M.	[24]
45	arctigenin	UFF	[17,22]
46	forsythiayanoside C	UFF	[17]
47	brachynoside	N.M.	[11]
48	forsythoside H	UFF	[17]
49	forsythoside J	UFF	[17]
50	forsythiayanoside B	UFF	[17]
51	forsythiayanoside B	UFF	[17]

Lignans

NO.	Compound Name	Source	Reference
52	arctigenin	UFF	[17,22]
53	arctin	UFF	[17,22]
54	matairesinoside	N.M.	[22]
55	matairesinol	UFF	[17,22]
56	2',5'-dihydroxy-4'-caffeoyl matairesinol	N.M.	[22]
57	3',4',5'-trihydroxy-3'-methoxyl-4'-caffeoyl lignan	N.M.	[22]
58	matairesinol-4'-O-glucoside	N.M.	[31]
59	phillygenin	UFF, RFF	[15,32,33]
60	phillyrin (forsythin)	UFF, RFF	[6,17,33]
61	caffeoyl phillygenin	N.M.	[22]
62	(+)-epipinoresinol	RFF	[33]
63	7'-epi-8-hydroxyepinoresinol	N.M.	[32]
64	(+)-epipinoresinol-4'-O-β-D-glucoside	N.M.	[34]
65	(+)-8-hydroxyepipinoresinol-4'-O-β-D-glucopyranoside	N.M.	[34]
66	(+)-epipinoresinol-4'-O-β-D-glucoside	N.M.	[34]
67	forsythianalaside A	UFF	[24]
68	pinoresinol	N.M.	[32]
69	(+)-pinoresinol-β-D-glucoside	N.M.	[35]
70	(+)-pinoresinol monomethyl ether-β-D-glucoside	N.M.	[33]
71	pinoresinol diglucoside	N.M.	[22]
72	caffeoyl pinoresinol	N.M.	[22]
73	(+)-1-hydroxypinordinol/8-hydroxyepinoresinol	N.M.	[19,32]
74	(+)-1-hydroxypinordinol-4'-O-β-D-glucoside	N.M.	[19]
75	(+)-1-hydroxypinordinol-4'-O-β-D-glucoside	N.M.	[19]
76	3',4',5'-trimethoxy-4'-hydroxylignan O-glucoside	N.M.	[22]
77	syringaresinol-4'-O-β-D-glucoside	N.M.	[23]
78	isolaricresinol	UFF, RFF	[15,33,36]
79	isolaricresinol-4'-O-β-D-glucopyranoside	RFF	[36]
80	isolaricresinol-9'-O-β-D-glucopyranoside	RFF	[36]
81	isoolivil	RFF	[36]
82	cedrusin	N.M.	[32]
83	glochidioboside	N.M.	[34]
84	forsythianalaside C	N.M.	[23]
85	forsythianalaside D	N.M.	[23]
86	dihydrodihydrodiconiferyl alcohol-4'-O-β-D-glucoside	N.M.	[23]
87	icariside E4	N.M.	[23]
88	forsythianal A	N.M.	[37]
89	forsythianal B	N.M.	[37]
90	rel-(7R,8R,8S)-forsythianal C	N.M.	[38]
91	rel-(7R,8R,8AR)-forsythianal C	N.M.	[38]
92	forsythianalaside A	N.M.	[23]
93	forsythianalanside B	N.M.	[23]
94	olivil	UFF	[17,32]
95	forsythiayanoside B	N.M.	[34]
96	forsythiayanoside A	N.M.	[34]
97	3-hurane-2-(3-methoxy-4-hydroxyphenyl)-4-veratryl	N.M.	[22]
98	laticiresinol	N.M.	[32]
99	laticiresinol-4'-O-β-D-glucoside	N.M.	[24]
100	laticiresinol-4'-O-β-D-glucoside	N.M.	[24]
101	benzenebutanoic acid	N.M.	[39]
Table 1. Cont.

NO.	Compound Name	Source	Reference
	Aliphatic C6-C2 alcohols		
102	isorengyol	N.M.	[40]
103	rengyol	UFF	[6,20,40]
104	suspenol	N.M.	[41]
105	rengyolester	N.M.	[42]
106	rengyoside A	N.M.	[29]
107	rengyoside C	N.M.	[29]
108	rengynic acid	N.M.	[14,43]
109	rengynic acid-1′-O-β-D-glucopyranoside	N.M.	[44]
110	rengyolone (hallericidone)	N.M.	[20,29]
111	rengyoxide	N.M.	[20]
112	rengyoside B	N.M.	[29]
113	cornoside	RFF	[6,22]
114	forsythenside A	N.M.	[23,45]
115	forsythenside B	N.M.	[45]
116	forsythenside F	N.M.	[46]
117	forsythenside H	N.M.	[23]
118	forsythenside G	N.M.	[23]
119	forsythenside I	N.M.	[23]
120	forsythenside J	N.M.	[23]
	Iridoids		
121	adoxosidic acid	UFF, RFF	[6]
122	adoxosidic acid 10-γ-hydroxyphenylacetate	UFF, RFF	[6]
	Diterpenoids		
123	3β-hydroxylabda-8(17),13(E)-dien-15-oic acid	N.M.	[47]
124	3β-hydroxyanticopalic acid	N.M.	[46]
125	agatholic acid	N.M.	[48]
126	3-oxoanticopalic acid	N.M.	[38]
127	19-hydroxylabda-8(17),13(Z)-dien-15-oic acid	N.M.	[38]
128	19-hydroxylabda-8(17),13(E)-dien-15-oic acid	N.M.	[38]
129	19-formylabda-8(17),13(E)-dien-15-oic acid	N.M.	[38]
130	19-formylabda-8(17),13(Z)-dien-15-oic acid	N.M.	[38]
131	labda-8(17),13(Z)-dien-15,18-dioic acid	N.M.	[38]
132	labda-8(17),13(Z)-dien-15,19-dioic acid	N.M.	[38]
133	labda-8(17),13(E)-dien-15,19-dioic acid	N.M.	[38]
134	dehydropinifolic acid	N.M.	[38]
135	haploppacic acid	N.M.	[38]
136	18-hydroxy-7-oxolabda-8(9),13(E)-dien-15-oic acid	N.M.	[38]
137	17,19-dihydroxylabda-7(8),13(E)-dien-15-oic acid	N.M.	[38]
138	forsythidin A	N.M.	[38]
139	3β-hydroxy-12,13(E)-biformene	N.M.	[38]
140	3β-hydroxy-12,13(Z)-biformene	N.M.	[38]
141	19-hydroxy-8(17)(E)-13-labdadien-15-oate	N.M.	[38]
	Triterpenoids		
142	ocothillone	N.M.	[49]
143	ocothillol monoacetate	N.M.	[49]
144	garcinelliptone Q	N.M.	[38]
145	3β-acetyl-20,25-epoxydammarane-24α-ol	N.M.	[50]
146	3β-acetyl-20,25-epoxydammarane-24β-ol	N.M.	[50]
147	dammar-24-en-3β-acetoxy-20-ol	N.M.	[38,47,51]
148	3β-acetoxy-25methoxydammar-23-en-20β-ol	N.M.	[38]
149	3β-acetoxyl-20β,24R-dammarane-23-ene-24-hydroperoxy-20-ol	N.M.	[47]
150	cabralea lactone 3-acetate	N.M.	[47]
151	cabralea lactone 3-acetate 24-methyl ether	N.M.	[38]
152	3-acetylisouquercrol	N.M.	[47]
153	oleanolic acid	RFF	[35,52]
154	3β-acetyloleanolic acid	N.M.	[46]
155	β-amyrin acetate	N.M.	[47]
156	ursolic acid	RFF	[33]
157	2α,3α-hydroxyursolic acid	N.M.	[53]
158	2α,23-hydroxyursolic acid	RFF	[33]
159	3β-acetoxy-20α-hydroxyursan-28-oic acid	N.M.	[48]
160	betulinic acid	RFF	[35,52]
161	3β-acetylbetulinic acid	N.M.	[54]
162	2α-hydroxybetulinic acid	RFF	[33]
163	ambrolic acid	N.M.	[51,55]
164	morolic acid	N.M.	[47]
NO.	Compound Name	Source	Reference
-----	---	--------	-----------
165	3β-acetoxyolean-12-en-28-oic acid	N.M.	[38]
166	alphiolic acid	N.M.	[38]
167	onjissaponin F	N.M.	[53]
168	onjissaponin G	N.M.	[53]

Sterols

NO.	Compound Name	Source	Reference
169	β-sitosterol	N.M.	[56]
170	daucosterol	N.M.	[57]
171	taraxasterol acetate	N.M.	[48]
172	stigmasterol	N.M.	[48]
173	ψ-taraxasterol	N.M.	[48]
174	(6′-O-palmitoyl)-sitosterol-3-O-β-D-glucoside	N.M.	[49]

Flavonoids

NO.	Compound Name	Source	Reference
175	rutin	UFF, RFF	[6,22,58]
176	rutin-O-hexoside	N.M.	[22]
177	quercetin	UFF, RFF	[58]
178	quercetin-O-rhamnosyl hexoside	N.M.	[22]
179	trimethoxyquercetin-O-feruloyl rhamnoside	N.M.	[22]
180	isorhamnetin	N.M.	[59]
181	kaempferol	N.M.	[22]
182	hyperin	N.M.	[18]
183	kaempferol dirhamnoside	N.M.	[22]
184	kaempferol-O-rhamnosylhexoside	N.M.	[22]
185	kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside	N.M.	[11]
186	kaempferol-3-O-β-D-(2'-O-β-D-glucopyranosyl-6″-O)α-L-rhamno-pyranosylglucopyranoside	N.M.	[11]
187	wogonin-7-O-glucoside	N.M.	[60]
188	baicalin	UFF, RFF	[58]
189	hesperidin	N.M.	[18]
190	forsythoneoside A	N.M.	[11]
191	forsythoneoside B	N.M.	[11]
192	forsythoneoside C	N.M.	[11]
193	forsythoneoside D	N.M.	[11]

Volatiles

NO.	Compound Name	Source	Reference
194	β-pinene	N.M.	[61]
195	myrtenol	N.M.	[61]
196	(+)-α-pinene	N.M.	[61]
197	(−)-trans-pinocarveol	N.M.	[61]
198	sabinene	N.M.	[61]
199	pinocarvone	N.M.	[61]
200	(−)-terpinen-4-ol	N.M.	[61]
201	dipentene	N.M.	[61]
202	camphene	N.M.	[61]
203	myrcene	N.M.	[61]
204	α-terpinene	N.M.	[61]
205	O-cymene	N.M.	[61]
206	eucalyptol (1,8-cineole)	N.M.	[61]
207	γ-terpinene	N.M.	[61]
208	campholenic aldehyde	N.M.	[61]
209	(5S)-cis-verbene	N.M.	[61]
210	2,5-cyclooctadien-1-ol	N.M.	[61]
211	(1S)+(−)-verbene	N.M.	[61]
212	α-pinene	N.M.	[61]
213	β-phellandrene	N.M.	[62]
214	(+)-carene	N.M.	[62]
215	α-terpinolene	N.M.	[62]
216	1,4-cyclohexadiene	N.M.	[62]
217	4-carvomenthenol	N.M.	[62]
218	(±)-α-terpinel	N.M.	[62]
219	(−)-myrtenal	N.M.	[62]
220	2-methyl-5-(1-methylethenyl)cyclohexanol	N.M.	[62]
221	estragole	N.M.	[62]
222	1-hexanol	N.M.	[63]
223	(−)-β-pinene	N.M.	[63]
224	(+)-4-carene	N.M.	[63]
225	linalool	N.M.	[64]
226	trans-carveol	N.M.	[64]
227	p-cymen-8-ol	N.M.	[64]
Table 1. Cont.

NO.	Compound Name	Source	Reference
228	trans-nerolidol	N.M.	[64]
229	camphor	N.M.	[64]
230	β-oicimene	N.M.	[64]
231	germacrene D	UFF	[65]
232	α-terebene	UFF	[65]
233	bornyl acetate	UFF	[65]
234	cis-piperitol	UFF	[65]
235	α-pinocarvone	UFF	[65]
236	α-terpineol	UFF	[65]
237	ocimene	UFF	[62,65]
238	α-phellandrene	UFF	[65]
239	nutmeg aldehyde	RFF	[65]
240	(-)-alloaromadendren	RFF	[65]
241	cumene formaldehyde	RFF	[65]
242	3-cyclohexene-1-methanol	RFF	[65]
243	4-methylene-1-cyclohexanone	RFF	[65]
244	p-cymene	UFF	[66]
245	pipetone	UFF	[66]

Alkaloids

NO.	Compound Name	Source	Reference
246	rutaecarpine	N.M.	[57]
247	suspensine A	UFF	[67]
248	(−)-egenine	UFF	[67]
249	(−)-7′-O-methylegenine	UFF	[67]
250	(−)-bicuculline	UFF	[67]
251	bis-2-(4-aminophenyl)ethyl-β-D-glucopyranoside	N.M.	[68]
252	choline	UFF, RFF	[6]

Organic acids

NO.	Compound Name	Source	Reference
253	palmitic acid	N.M.	[56]
254	stearic acid	N.M.	[56]
255	succinic acid	UFF, RFF	[6]
256	suspenolic acid	N.M.	[45]
257	2-furancarboxylic acid	N.M.	[48]
258	chlorogenic acid	N.M.	[18]
259	anchoic acid	UFF, RFF	[58]
260	4-hydroxy-4-isopropylcyclohex-1-enecarboxylic acid	UFF, RFF	[58]
261	p-coumaric acid	UFF, RFF	[58]
262	protocatechuic acid	seeds	[69]
263	vanillic acid	N.M.	[70]
264	p-hydroxybenzoic acid	N.M.	[48]
265	benzoic acid	N.M.	[48]
266	3,4-dimethoxybenzoic acid	N.M.	[48]
267	syringic acid	N.M.	[48]
268	caffeic acid	N.M.	[70]
269	trans-coumaric acid	N.M.	[48]
270	trans-ferlic acid	N.M.	[48]
271	caffeic acid methyl ester	RFF	[36]
272	p-hydroxybenzylactic acid	N.M.	[70]
273	tannic acid	N.M.	[71]
274	gallic acid	RFF	[6]
275	3-hydroxybutyric acid	UFF	[6]
276	acetic acid	UFF	[6]
277	pyruvic acid	UFF	[6]
278	malic acid	UFF, RFF	[6]
279	fumaric acid	UFF	[6]
280	formic acid	UFF	[6]

Amino acids

NO.	Compound Name	Source	Reference
281	isoleucine	UFF	[6]
282	leucine	UFF	[6]
283	valine	UFF, RFF	[6]
284	threonine	UFF	[6]
285	alanine	UFF	[6]
286	phenylalanine	RFF	[6]
Table 1. Cont.

NO.	Compound Name	Source	Reference
287	β-xylose	UFF, RFF	[6]
288	β-glucose	UFF	[6]
289	α-glucose	UFF, RFF	[6]
290	raffinose	UFF	[6]
291	sucrose	RFF	[6]
292	α-L-rhamnose	RFF	[36]
293	lactose	N.M.	[72]
294	erythritol	N.M.	[60]
295	[4]-α-D-GalpA-(1→2)[4]-α-D-GalpA-(1→2)-α-L-Rhap-(1→2)2	N.M.	[73]

Allylbenzene glycosides

NO.	Compound Name	Source	Reference
296	forsythiayanoside D	UFF	[30]
297	sasanquin	N.M.	[23]

Other compounds

NO.	Compound Name	Source	Reference	
298	forsythanoside A	(6S,9R)-roseoside	N.M.	[48]
300	svertiamacroside	N.M.	[74]	
301	2,3,5,6-tetrahydrojarcarnnone-4-O-β-D-glucopyranoside	N.M.	[14]	
302	labda-8(17),13(E)-dien-15,18-dioic acid 15-methyl ester	N.M.	[48]	
303	β-carotene-5,6-epoxide	N.M.	[72]	
304	mutatochrome	N.M.	[72]	
305	neoxanthin	N.M.	[72]	
306	1-oxo-4-hydroxy-2(3)-en-4-ethylcyclohexa-5,8-olide	N.M.	[38]	
307	esculetin	N.M.	[48]	
308	6,7-dimethoxycouma	N.M.	[53]	
309	hydroxytyrosol	N.M.	[48]	
310	p-tirosol	N.M.	[48]	
311	4-hydroxyphenylacetic acid methyl ester	RFF	[36]	
312	4-cafeoylrutinose	N.M.	[20]	
313	protocatechualdehyde	N.M.	[48]	
314	p-hydroxyphenylethanol	UFF, RFF	[58]	
315	p-hydroxybenzylalcohol	UFF, RFF	[58]	
316	n-hentriacontane	UFF	[75]	
317	2,3-dihydroxymethyl-4-(3′,4′-dimethoxyphenyl)-γ-butyrolactone	N.M.	[57]	
318	methyl-α-D-glucopyranoside	N.M.	[48]	
319	forsytholin	N.M.	[49]	
320	4-O-demethylforsytholin	N.M.	[38]	
321	salicifoliol	N.M.	[38]	

N.M.: Compounds that have not been specifically mentioned from UFF or RFF.

2.1. Phenylethanoid Glycosides

Phenylethanoid glycosides are the major bioactive constituents of *Forsythiae Fructus* with verified anti-inflammatory, antioxidant, antibacterial and antiviral effects [27,28,76,77]. Since forsythoside A (1) was reported by Endo et al. [20] in 1984, fifty-one phenylethanoid glycosides have been isolated from *Forsythiae Fructus* and their structures were shown in Figure 1. Except for (R)-suspensaside (3), (S)-suspensaside (4), (S)-suspensaside methyl ether (5), β-methoxyforsythoside E (11), acteoside (16), forsythoside B (17), forsythoside G (18), (S)-β-hydroxycaleosidioside C (22), (R)-β-hydroxycaleosidioside C (23), (S)-β-hydroxycaleosidioside (24), (R)-β-hydroxycaleosidioside C (25), derhamnosyl suspensaside (27), β-methoxycaleoside (28), caffeoyl caleosidioside C (29), β-methoxyferruginoside B (31), β-methoxylipedoside A (32), suspensaside A isomer (40) and demethyl suspensaside A (41) tentatively identified by a HPLC/MS method [17,18,22], the remaining compounds were isolated from the 50%, 60%, 70%, 75% or 85% ethanol extract of *Forsythiae Fructus* and then confirmed by NMR [11,15,16,21,23–28,30]. In addition, forsythoside A (1) is recommended as the marker compound for the quality control of this plant in the Chinese Pharmacopoeia [2].
Compounds R

Compounds	R
Forsythoside A (1)	H
Forsythoside C (Suspensside, 2)	OH
(R)-Suspensside (3)	β-OH
(S)-Suspensside (4)	α-OH
(S)-Suspensside methyl ether (5)	α-OCH₃
Suspensside B (6)	OCH₃
(R)-Forsythoside J (7)	
(S)-Forsythoside J (8)	
Forsythoside D (9)	OH
Forsythoside E (10)	H
β-Methoxyforsythoside E (11)	OCH₃

Compounds R₁ R₂

Compounds	R₁	R₂	
Iso-forsythoside A/Forsythoside I/Lianqiaoxinside A (12)	OH	caffeoyl	
Forsythoside A-4′-O-β-D-glucopyranoside (13)	(4′-O-β-D-glu)	caffeoyl	OH
Forsythoside K (14)	coumaroyl	OH	
Poliunoside (15)	caffeoyl	O-α-L-rha	

Compounds R

Compounds	R
Acteoside (16)	OH
Forsythoside B (17)	O-api
Forsythoside G (18)	2-O-methyl-api
Forsythoside F (19)	O-β-D-xyl
Angoroside A (20)	O-arabinose

Compounds R

Compounds	R
Calceolarioside C (21)	H
(S)-β-hydroxycalceolarioside C (22)	α-OH
(R)-β-hydroxycalceolarioside C (23)	β-OH
(S)-β-methoxycalceolarioside C (24)	α-OCH₃
(R)-β-methoxycalceolarioside C (25)	β-OCH₃

Compounds R₁ R₂ R₃

Compounds	R₁	R₂	R₃
Calceolarioside A (26)	OH	OH	H
β-methoxylacteoseide (28)	OH	O-α-L-rha	OCH₃
Caffeoyl calceolarioside C (29)	O-β-D-glc	O-api	H
Isoforsythiaside (30)	O-β-L-rha	OH	H

Compounds	R₁	R₂	R₃
β-Methoxylpedoside A (32)	OH	coumaroyl	O-α-L-rha

Compounds R₁ R₂

Compounds	R₁	R₂
Calceolarioside B (33)	caffeoyl	OH
Lianqiaoxinoside C (34)	O-β-D-xyl	caffeoyl
Plantainoside A (35)	OH	caffeoyl

Figure 1. Cont.
2.2. Lignans

The lignans are another major bioactive constituents in *Forsythiae Fructus* and their structures are shown in Figure 2. They are mainly classified into six groups: seven dibenzylbutyrolactones (52–58), nineteen furufurans (59–77), four aryl naphthalenes (78–81), five benzylfurans (82–87), nine tetrahydrofurans (88–95), and one dibenzylbutane (benzenebutanoic acid, 34). Structures of these compounds were confirmed by NMR after isolation from the methanol or 50% ethyl acetate extract of *Forsythiae Fructus*. Compounds, such as arctigenin (52), arctiiin (53), matairesinide (54), matairesinol (55), 2',5'-dihydroxy-4''-caffeoyl matairesinol (56), 3',4',5'-trihydroxy-3''-methoxy-4''-caffeoyl lignin (57), caffeoyl phillygenin (61), pinoresinol diglucoside (71), caffeoyl pinoresinol (72), 3',4',5'-trimethoxy-4''-hydroxyllignan O-glucoside (76) and 3-furanone-2-(3-methoxy-4-hydroxy-phenyl)-4-veratryl (97) were tentatively identified by molecular
weight and fragmentations by a HPLC-MSn method \cite{17,22}. Among these compounds, phillyrin (60) is also recommended as the marker compound for Forsythiae Fructus in the Chinese pharmacopoeia \cite{2}.

Compounds	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}
Arctigenin (52)	OCH\textsubscript{3}	OCH\textsubscript{3}	H	OH
Arctin (53)	OCH\textsubscript{3}	OCH\textsubscript{3}	H	O-glue
Matairesinose (54)	OCH\textsubscript{3}	OH	H	O-glue
Matairesinol (55)	OCH\textsubscript{3}	OH	H	OH
2,3′-Dihydroxy-4′-caffeoyl matairesinol (56)	OCH\textsubscript{3}	OH	OH	caffeoyl
3′,4′,5′-Trihydroxy-3′-methoxy-4′-caffeoyl lignan (57)	OH	OH	OH	caffeoyl
Matairesinol-4′-O-glucoside (58)	OCH\textsubscript{3}	O-β-D-gluc	H	OH

Compounds	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}
Phillygenin (59)	OCH\textsubscript{3}	OH	H	OH
Phillyrin (forsythin) (60)	OCH\textsubscript{3}	O-β-D-gluc	H	OH
Caffeoyl phillygenin (61)	OCH\textsubscript{3}	caffeoyl	H	OH
7′-Epi-8-hydroxy pinoresinol (62)	OH	OH	H	OH
(+)-Epi pinoresinol (63)	OH	OH	O-β-D-gluc	H
(+)-8-Hydroxy pinoresinol-4-O-β-D-glucopyranoside (64)	OH	OH	O-β-D-gluc	OH
(+)-Epipinoresinol (65)	O-β-D-gluc	H	OH	OH
Forsythialanside E (66)	O-β-D-gluc	OH	OH	OH
3′,4′,5′-Trimethoxyl-4′′-hydroxylignan O-glucoside (67)	OCH\textsubscript{3}	H	H	OH
Compounds	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}
(+) Pinoresinol (68)	OH	OH	H	OH
(+) Pinoresinol-β-D-glucoside (69)	O-β-D-gluc	OH	H	OH
(+) Pinoresinol monomethyl ether-β-D-glucoside (70)	O-β-D-gluc	H	OCH\textsubscript{3}	
Pinoresinol diglucoside (71)	O-β-D-gluc	H	O-β-D-gluc	OH
Caffeoyl pinoresinol (72)	caffeoyl	H	OH	OH
(+)-1-Hydroxy pinoresinol (73)	OH	OH	O-β-D-gluc	OH
(+)-1-Hydroxy pinoresinol-4-O-β-D-glucoside (74)	OH	OH	O-β-D-gluc	
(+)-1-Hydroxy pinoresinol-4′-O-β-D-glucoside (75)	O-β-D-gluc	OH	OH	OH
Compounds	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}
3′,4′,5′-Trimethoxyl-4′-hydroxylignan O-glucoside (76)	OCH\textsubscript{3}	H	H	OH
Syringaresinol-4-O-β-D-glucoside (77)	OH	OCH\textsubscript{3}	OCH\textsubscript{3}	OH

Compounds	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}
Isolariciresinol (78)	H	H	H	OH
Isolariciresinol-4-O-β-D-glucopyranoside (79)	H	H	O-β-D-gluc	
Isolariciresinol-9′-O-β-D-glucopyranoside (80)	H	O-β-D-gluc	H	OH
Isoolivil (81)	OH	H	H	OH

Compounds	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}
Cedrusin (82)	OH	OH	OH	OH
Glochidiobioside (83)	OH	OCH\textsubscript{3}	O-gluc	OH
Forsythialanside C (84)	O-gluc	OCH\textsubscript{3}	O-pha	OH
Forsythialanside D (85)	O-pha	OCH\textsubscript{3}	O-pha	OH
Dihydrodehydrodiconiferyl alcohol-4-O-β-D-glucoside (86)	O-gluc	OCH\textsubscript{3}	OH	OH

Figure 2. Cont.
Icariside E (87)

Forsythialan A R = OH (88)

Forsythialan B R = OMe (89)

rel-(7R,8'R,8S)-Forsythialan C R = β-H (90)

rel-(7R,8'R,8R)-Forsythialan C R = α-H (91)

Forsythialanside A R1 = OMe R2 = O-gluc (92)

Forsythialanside B R1 = O-gluc R2 = OH (93)

Olivil (94)

Forsythiayanoside B (95)

Forsythiayanoside A (96)

3-Furanone-2-(3-methoxy-4-hydroxyphenyl)-4-veratryl (97)

Lariciresinol R1 = OH R2 = OH (98)

Lariciresinol-4-O-β-D-glucoside R1 = OH R2 = O-β-D-gluc (99)

Lariciresinol-4'-O-β-D-glucoside R1 = O-β-D-gluc R2 = OH (100)

Benzenebutanoic acid (101)

Figure 2. Chemical structures of lignans in *Forsythiae Fructus.*
2.3. Aliphatic C6-C2 Alcohols

To date, eighteen natural alcohols with the C\textsubscript{6}-C\textsubscript{2} skeletons have been isolated from Forsythiae Fructus, since rengyol (103), rengyolone (110) and rengyoxide (111) were first reported in 1984 by Endo et al. [20]. Subsequently, they identified isorengyol (102), rengyoside A (106) and rengyoside C (107) in 1987 and 1989 [29,40]. Compounds cornoside (113), forsythenside A (114), forsythenside B (115), forsythensides G-J (118–120), together with rengyolester (105) were obtained from 60%, 70% or 75% ethanol extract of Forsythiae Fructus [23,42,45], whereas suspenol (104), rengynic acid-1′-O-β-D-glucopyranoside (109) and forsythenside F (116) were isolated from methanol extract, aqueous extract and 50% acetone extract respectively [41,44,46]. The structures of these compounds are shown in Figure 3.

Compounds	R\textsubscript{1}	R\textsubscript{2}	R\textsubscript{3}	R\textsubscript{4}
Isorengyol (102)	H	OH	OH	H
Rengyol (103)	OH	H	OH	H
Suspenol (104)	OH	H	OH	OH
Rengyolester (105)	OH	H	O-β-D-glc	H
Rengyoside A (106)	OH	H	O-β-D-glc	H
Rengyoside C (107)	OH	H	O-β-D-glc	H

Figure 3. Cont.
2.4. Iridoids, Diterpenoids and Triterpenoids

As shown in Figure 4, two iridoids (121–122), nineteen diterpenoids (123–141) and twenty-seven triterpenoids (142–168) have been confirmed in Forsythiae Fructus. Most of them were reported by Kuo et al. [38] in 2017. The triterpenoid fraction contains eleven tetracyclic triterpenoids (142–152) and sixteen pentacyclic triterpenoids (153–157). Compounds such as ocotillone (142), ocotillol monoacetate (143) and oleanolic acid (153) were obtained from the 70% ethanol extract of Forsythiae Fructus [49,52]. Rouf et al. [50] found two new triterpenoids, namely 3β-acetyl-20,25-epoxy-dammarane-24α-ol (145) and 3β-acetyl-20,25-epoxy-dammarane-24β-ol (146) and confirmed their anti-inflammatory activities. Xue et al. [47] revealed dammar-24-en-3β-acetoxy-20-ol (147), 3β-acetoxy-20S,24R-dammarane-25-ene-24-hydroperoxy-20-ol (149) and 3-acetylisofouquierol (152) possessing strong anti-proliferative effect on MKN-45, BGC-823 and SGC-9701 cells in the 95% ethanol extract of Forsythiae Fructus.
3-Oxoanticopalic acid (126)

Compounds	R
19-Hydroxylabda-8(17),13(Z)-dien-15-oic acid	\(\text{CH}_2\text{OH}\)
19-Hydroxylabda-8(17),13(E)-dien-15-oic acid	\(\text{CH}_2\text{OCHO}\)
19-Formyllabda-8(17),13(E)-dien-15-oic acid	\(\text{CH}_2\text{OCHO}\)
19-Formyllabda-8(17),13(Z)-dien-15-oic acid	\(\text{COOH}\)
Labda-8(17),13(Z)-dien-15,18-dioic acid	

Labda-8(17),13(Z)-dien-15,19-dioic acid (132)

Labda-8(17),13(E)-dien-15,19-dioic acid (133)

Dehydropinifolic acid (134)

Haplopappic acid (135)

18-Hydroxy-7-oxolabda-8(9),13(E)-dien-15-oic acid (136)

19-Dihydroxylabda-7(8),13(E)-dien-15-oic acid (137)

Forsythidin A (138)

3β-Hydroxy-12,13(E)-biformene (139)

3β-Hydroxy-12,13(Z)-biformene (140)

Figure 4. Cont.
19-Hydroxy-8(17)(E)-13-labdadien-15-oate (141)

Ocotillone (142)

Ocotillol acetate (143)

Garcinielliptone Q (144)

3β-Acetyl-20,25-epoxydammarane-24α-ol R₁ = H, R₂ = OH (145)

3β-Acetyl-20,25-epoxydammarane-24β-ol R₁ = OH, R₂ = H (146)

Dammar-24-en-3β-acetoxy-20-ol (147)

3β-Acetoxy-25-methoxydammar-23-en-20β-ol (148)

3β-Acetoxy-20S,24R-dammarane-25-ene-24-hydroperoxy-20-ol (149)

Cabralea lactone 3-acetate (150)

Figure 4. Cont.
Cabralea lactone 3-acetate 24-methyl ether (151)

3-Acetylisofouquerol (152)

Compounds	R₁	R₂	R₃	R₄	R₅
Oleanolic acid (153)	H	β-OH	COOH	H	Me
3β-Acetyloleanolic acid (154)	H	β-OAc	COOH	H	Me
β-Amyrin acetate (155)	H	β-OAc	Me	H	Me
Ursolic acid (156)	H	β-OH	COOH	Me	H
2α,3α-Hydroxyursolic acid (157)	α-OH	α-OH	COOH	Me	H

2α,23-Hydroxyursolic acid (158)

3β-Acetoxy-20α-hydroxyursan-28-oic acid (159)

Betulinic acid R1 = H R2 = OH (160)

3β-Acetylbetulinic acid R1 = H R2 = OAc (161)

2α-Hydroxybetulinic acid R1 = α-OH R2 = OH (162)

Ambrolic acid (163)

Morolic acid (164)

3β-Acetoxyolean-12-en-28-oic acid (165)

Figure 4. Cont.
2.5. Sterols

Six sterols, namely β-sitosterol (169), daucosterol (170), taraxasterol acetate (171), stigmasterol (172), ψ-taraxasterol (173) and (6′-O-palmitoyl)sitosterol-3-O-β-D-glucoside (174), have been isolated from Forsythiae Fructus and identified by 1H- and 13C-NMR [48,49,56,57]. Their structures are shown in Figure 5.
2.6. Flavonoids

Flavonoids, represented by quercetin (177) and its derivatives (178–179), are the main types of flavonoids identified in *Forsythiae Fructus*. Forsythoneosides A–D (190–193), four unusual condensation products of flavonoids and phenylethanoid glycosides isolated from the 75% ethanolic extract, displayed neuroprotective effects on rotenone-injured PC12 cells [11]. One rutin derivative (176), two quercetin derivatives (178–179) and two kaempferol derivatives (183–184) were extracted by 50% aqueous methanol and identified by HPLC-MS, but the exact attachment positions of the saccharides were unknown [22]. In addition, wogonin-7-O-glcoside (187) and baicalin (188), belonging to flavones, were also found in *Forsythiae Fructus* [58,60]. Their chemical structures are presented in Figure 6.

Compounds	R1	R2	R3	R4	R5
Rutin (175)	OH	OH	O-β-D-glc-α-L-rha	OH	H
Quercetin (177)	OH	OH	OH	OH	H
Isorhamnetin (180)	OCH3	OH	OH	OH	H
Kaempferol (181)	OH	H	OH	OH	H
Hyperin (182)	OH	OH	O-β-D-gal	OH	H
Kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (185)	OH	H	O-β-D-glc	O-α-L-rha	H
Kaempferol-3-O-β-D-(2″-O-β-D-glucopyranosyl-6″-O-α-L-rhamnopyranosyl)glucopyranoside (186)	OH	H	O-β-D-(2″-O-β-D-glc-6″O-α-L-rha)glc	OH	H
Wogonin-7-O-glcoside (187)	H	H	H	O-β-D-glc	OMe
Baicalin (188)	H	H	H	O-glc	OH

Figure 6. Cont.
were obtained from the ethanolic extract of Forsythiae Fructus. Jiao et al. [64] developed an enzyme-assisted microwave hydro-distillation method, which reached a maximum extraction yield of 3.27%. Volatiles in Forsythiae Fructus is also rich in volatiles. A total of fifty-two compounds with anti-inflammatory, anti-oxidant and antimicrobial effects were identified in the oil by GC-MS [61–66]. β-pinene (195, 45.88%), myrtenol (196, 13.86%), (+)-α-pinene (197, 13.09%), (−)-trans-pinocarveol (198, 7.34%), sabinene (199, 6.64%) and pinocarvone (200, 4.13%) were the major volatiles of Forsythiae Fructus [61]. Zhai et al. [63] compared five methods, including ionic liquid microwave extraction, hydrodistillation, microwave hydrodistillation, solvent-free microwave extraction and improved solvent-free microwave extraction to extract volatiles, but no significant difference in the oil composition was found. Jiao et al. [64] developed an enzyme-assisted microwave hydro-distillation method, which reached a maximum extraction yield of 3.27%.

2.7. Volatiles

Forsythiae Fructus is also rich in volatiles. A total of fifty-two compounds with anti-inflammatory, anti-oxidant and antimicrobial effects were identified in the oil by GC-MS [61–66]. β-pinene (195, 45.88%), myrtenol (196, 13.86%), (+)-α-pinene (197, 13.09%), (−)-trans-pinocarveol (198, 7.34%), sabinene (199, 6.64%) and pinocarvone (200, 4.13%) were the major volatiles of Forsythiae Fructus [61]. Zhai et al. [63] compared five methods, including ionic liquid microwave extraction, hydrodistillation, microwave hydrodistillation, solvent-free microwave extraction and improved solvent-free microwave extraction to extract volatiles, but no significant difference in the oil composition was found. Jiao et al. [64] developed an enzyme-assisted microwave hydro-distillation method, which reached a maximum extraction yield of 3.27%.

2.8. Alkaloids

Alkaloids represent a relatively small class of compounds in Forsythiae Fructus. To date, seven alkaloids, namely rutaecarpine (246), suspensine A (247), (−)-egenine (248), (−)-7′-O-methylegenine (249), (−)-bicuculline (250), bis-2-(4-aminophenyl)ethyl-β-D-glucopyranoside (251) and choline (252) were obtained from the ethanolic extract of Forsythiae Fructus [6,57,67,68]. Their chemical structures are presented in Figure 7.

2.7. Volatiles

Forsythiae Fructus is also rich in volatiles. A total of fifty-two compounds with anti-inflammatory, anti-oxidant and antimicrobial effects were identified in the oil by GC-MS [61–66]. β-pinene (195, 45.88%), myrtenol (196, 13.86%), (+)-α-pinene (197, 13.09%), (−)-trans-pinocarveol (198, 7.34%), sabinene (199, 6.64%) and pinocarvone (200, 4.13%) were the major volatiles of Forsythiae Fructus [61]. Zhai et al. [63] compared five methods, including ionic liquid microwave extraction, hydrodistillation, microwave hydrodistillation, solvent-free microwave extraction and improved solvent-free microwave extraction to extract volatiles, but no significant difference in the oil composition was found. Jiao et al. [64] developed an enzyme-assisted microwave hydro-distillation method, which reached a maximum extraction yield of 3.27%.

2.8. Alkaloids

Alkaloids represent a relatively small class of compounds in Forsythiae Fructus. To date, seven alkaloids, namely rutaecarpine (246), suspensine A (247), (−)-egenine (248), (−)-7′-O-methylegenine (249), (−)-bicuculline (250), bis-2-(4-aminophenyl)ethyl-β-D-glucopyranoside (251) and choline (252) were obtained from the ethanolic extract of Forsythiae Fructus [6,57,67,68]. Their chemical structures are presented in Figure 7.

Figure 6. Chemical structures of flavonoids in Forsythiae Fructus.

Figure 7. Cont.
2.9. Others

Moreover, other compounds, including twenty-eight organic acids (253–280), six amino acids (281–286), nine sugar derivatives (287–295), two allylbenzene glycosides (296–297) and some miscellaneous compounds (298–321) were also obtained from Forsythiae Fructus [6,14,18,23,30,36,45,48,56,58,60,69–74]. Their structures are shown in Figure 8.

Figure 7. Chemical structures of alkaloids in Forsythiae Fructus.

Figure 8. Cont.
Table of Compounds

Compounds	R₁	R₂
Caffeic acid (268)	OH	OH
trans-Coumaric acid (269)	OH	H
trans-Ferulic acid (270)	OH	OMe
Caffeic acid methyl ester (271)		
p-Hydroxybenzylacetic acid (272)		
Tannic acid (273)		
Gallic acid (274)		
3-Hydroxybutyric acid (275)		
Acetic acid (276)		
Pyruvic acid (277)		
Malic acid (278)		
Fumaric acid (279)		
Formic acid (280)		
Isoleucine (281)		
Leucine (282)		
Valine (283)		
Threonine (284)		
Alanine (285)		

Figure 8. Cont.
Phenylalanine (286)

β-Xylose (287)

β-Glucose (288)

α-Glucose (289)

Raffinose (290)

Sucrose (291)

l-Rhamnose (292)

Lactose (293)

Erythritol (294)

Forsythenside L R1 = H R2 = OH (295)

Sasanquin R1 = OMe R2 = H (296)

Forsythiyanoside D (297)

(6S,9R)-Roseoside (298)

Figure 8. Cont.
Swertiamacroside (299)

2,3,5,6-Tetrahydro-jacaranone-4-O-β-D-glucopyranoside (300)

Labda-8(17),13E-dien-15,18-dioic acid 15-methyl ester (301)

β-Carotene-5,6-epoxide (302)

Mutatochrome (303)

Neoxanthin (304)

1-Oxo-4-hydroxy-2(3)-en-4-ethylcyclohexa-5,8-olide (305)

Esculetin $R_1 = \text{OH}, R_2 = \text{OH}$ (306)

6,7-Dimethoxycoumarin $R_1 = \text{OMe}, R_2 = \text{OMe}$ (307)

Hydroxytyrosol $R = \text{OH}$ (308)

p-Tyrosol $R = \text{H}$ (309)

4-Hydroxybenzylactic acid methyl ester (310)

4-Caffeoylrutinoside (312)

Protocatechualdehyde (313)

p-Hydroxyphenylethanol (314)

p-Hydroxybenzylalcohol (315)

n-Hentriacontane (316)

Figure 8. Cont.
were detected by GC [66]. Interestingly, the contents of forsythoside A (175), forsythin (182), cafferic acid (175), phillyrin (175), rutin (175), quercetin (177), hyperin (182), baicalin (188), hesperidin (189), chlorogenic acid (258) anchoic acid (259), 4-hydroxy-4-isopropylcyclohex-1-ene carboxylic acid (260), p-coumaric acid (261) p-hydroxy-benzoic acid (264), caffeic acid (268), p-hydroxyphenylethanol (314) and p-hydroxybenzyl alcohol (315) have been quantified by HPLC or HPLC-MS by different research groups [18,58,78–90]. The volatile substances, such as β-pinene (194), camphene (202), myrcene (203), α-pinene (212), α-terpineol (236), p-cymene (244) and limonene (245) were detected by GC [66]. Interestingly, the contents of forsythoside A (1), phillygenin (59), phillyrin (60), (+)-epipinoresinol (62), (+)-epi-pinoresinol-4′-O-β-D-glucoside (64), (+)-pinoresinol-β-D-glucoside (69), rutin (175), quercetin (177), hyperin (182), baicalin (188), hesperidin (189), chlorogenic acid (258) anchoic acid (259), 4-hydroxy-4-isopropylcyclohex-1-ene carboxylic acid (260), p-coumaric acid (261) p-hydroxy-benzoic acid (264), caffeic acid (268), p-hydroxyphenylethanol (314) and p-hydroxybenzyl alcohol (315) have been quantified by HPLC or HPLC-MS by different research groups [18,58,78–90]. The volatile substances, such as β-pinene (194), camphene (202), myrcene (203), α-pinene (212), α-terpineol (236), p-cymene (244) and limonene (245) were detected by GC [66]. Interestingly, the contents of forsythoside A (1), phillygenin (59), phillyrin (60), (+)-epipinoresinol (62), (+)-epi-pinoresinol-4′-O-β-D-glucoside (64), (+)-pinoresinol-β-D-glucoside (69) and rutin (175) were 0.85–15.71%, 0.02898–2.16%, 1.08–1.27%, 1.11–2.10%, 0.91–1.64%, 0.52–1.44% and 0.05–0.36%, respectively, in UFF and 0.02968–10.59%, 0.02148–2.5%, 0.08–0.54%, 0.16–0.64%, 0.22–0.58%, 0.12–0.48% and 0.0556–0.0583%, respectively, in RFF. Jia et al. [6] revealed that RFF contained much more forsythoside A, forsythoside C, rutin and phillyrin (5.07 times, 2.78 times, 2.62 times, 1.35 times, respectively) than UFF, whereas the amino acid content in the UFF was higher than that in the RFF. In addition, the volatile compounds of α-pinene and β-pinene were 0.102–0.337% and 0.342–1.024% in the UFF, respectively, which were higher than the levels in the RFF [66,91]. The harvest times could affect the contents of active compounds in Forsythiae Fructus, which should be considered when assessing their clinical efficacies. The quantitative analysis of Forsythiae Fructus are listed in Table 2.

3. Quality Control

Quality control is very important for the use of TCMs. Many rapid, sensitive and stable technologies, such as HPLC–ESI-MS/MS, LC–MS/MS and HPLC-ESI-MS have been applied for quantitative analysis of Forsythiae Fructus [18,31,58,66,78–91]. A total of twenty-nine compounds: forsythoside A (1), (+)-epi-pinoresinol-4′-O-β-D-glucoside (4), (S)-susensaside methyl ether (5), forsythoside E (10), forsythoside B (17), suspensaside A (39), arctigenin (52), mataresinol-4′-O-glucoside (58), phillygenin (59), forsythin (60), phillyrin (60), (+)-epipinoresinol (62), (+)-epi-pinoresinol-4′-O-β-D-glucoside (64), pinoresinol (68), (+)-pinoresinol-β-D-glucoside (69), rutin (175), quercetin (177), hyperin (182), baicalin (188), hesperidin (189), chlorogenic acid (258) anchoic acid (259), 4-hydroxy-4-isopropylcyclohex-1-ene carboxylic acid (260), p-coumaric acid (261) p-hydroxy-benzoic acid (264), caffeic acid (268), p-hydroxyphenylethanol (314) and p-hydroxybenzyl alcohol (315) have been quantified by HPLC or HPLC-MS by different research groups [18,58,78–90]. The volatile substances, such as β-pinene (194), camphene (202), myrcene (203), α-pinene (212), α-terpineol (236), p-cymene (244) and limonene (245) were detected by GC [66]. Interestingly, the contents of forsythoside A (1), phillygenin (59), phillyrin (60), (+)-epipinoresinol (62), (+)-epi-pinoresinol-4′-O-β-D-glucoside (64), (+)-pinoresinol-β-D-glucoside (69) and rutin (175) were 0.85–15.71%, 0.02898–2.16%, 1.08–1.27%, 1.11–2.10%, 0.91–1.64%, 0.52–1.44% and 0.05–0.36%, respectively, in UFF and 0.02968–10.59%, 0.02148–2.5%, 0.08–0.54%, 0.16–0.64%, 0.22–0.58%, 0.12–0.48% and 0.0556–0.0583%, respectively, in RFF. Jia et al. [6] revealed that RFF contained much more forsythoside A, forsythoside C, rutin and phillyrin (5.07 times, 2.78 times, 2.62 times, 1.35 times, respectively) than UFF, whereas the amino acid content in the UFF was higher than that in the RFF. In addition, the volatile compounds of α-pinene and β-pinene were 0.102–0.337% and 0.342–1.024% in the UFF, respectively, which were higher than the levels in the RFF [66,91]. The harvest times could affect the contents of active compounds in Forsythiae Fructus, which should be considered when assessing their clinical efficacies. The quantitative analysis of Forsythiae Fructus are listed in Table 2.

Figure 8. Chemical structures of other compounds in Forsythiae Fructus.
Table 2. Quantitative analysis for the quality control of *Forsythiae Fructus*.

Analytes	Method	Results	Reference
Phillyrin	LC-MS	The contents of phillyrin in *Forsythiae Fructus* and three medicinal preparations (Xiao'erqingyan granules, Niuhuangshangqing pills, Yinqiao tablets) were 1.30, 0.48, 3.36, 0.35 mg/g, respectively	[78]
Phillyrin	HPLC	The contents of phillyrin in *Forsythiae Fructus* from ten habitats were from 0.72 to 3.54 mg/g, indicating the influence of habitat on the quality of *Forsythiae Fructus*.	[79]
Phillyrin, Forsythoside A	HPLC	In four batches of UFF, the contents of phillyrin and forsythoside A were 0.73–2.16% and 0.85–1.56%, respectively. In eleven batches of RFF, the contents of phillyrin and forsythoside A were 0.57–2.50% and 0.33–0.76%, respectively.	[80]
Phillyrin, Forsythoside A	HPLC	The contents of phillyrin and forsythoside A from three batches were 3.08–4.35 mg/g and 15.89–20.76 mg/g, respectively.	[81]
Rutin, Forsythin	CE-ED	The contents of rutin and forsythin in *Forsythiae Fructus* were 2.03 mg/g and 2.95 mg/g, respectively.	[82]
Forsythoside A, Rutin, Phillyrin	HPLC	In UFF from different harvesting times, the contents of forsythoside A, rutin and phillyrin were 3.87–8.72%, 0.05–0.36% and 0.10–0.63%, respectively, which reached a peak in early July.	[83]
Forsythoside A, Phillyrin, Phillygenin	HPLC	In three batches of UFF, the average contents of forsythoside A, phillyrin and phillygenin were 3.3385, 0.2934 and 0.4873 mg/g, respectively. In the RFF, the average contents were 0.3129, 0.2228 and 0.9258 mg/g, respectively.	[84]
Rutin, Forsythoside A, Phillyrin	HPLC-PDA	The contents of rutin, forsythoside A and phillyrin in three batches of RFF were linear in the range of 0.1–2.0, 0.12–2.4 and 0.05–1.0 µg/g, respectively.	[85]
Forsythoside A, Rutin, Phillyrin	HPLC-ESI-MS	In UFF, the contents of forsythoside A, rutin and forsythin were 3.783%, 0.105% and 0.365%, respectively. In RFF, the contents were 0.257%, 0.167% and 0.043%, respectively.	[86]
(+)-Pinoresinol-β-D-glucoside, Forsythoside A, Phillyrin, Phillygenin	HPLC-PDA	In nineteen batches of UFF, the contents of (+)-pinoresinol-β-D-glucoside, forsythoside A, phillyrin and phillygenin were 3.95–6.14%, 9.15–15.71%, 0.80–1.64% and 0.70–2.10%, respectively. In nineteen batches of RFF, the contents were 3.76–5.55%, 5.91–10.59%, 0.45–1.27% and 1.40–2.00%, respectively. Apart from the harvest times, the plant origins, manufacturing methods and storage conditions also played a role in the variation of the contents of the active components.	[87]
Total flavonoids, Forsythoside A, Rutin, Quercetin	HPLC	In UFF, the contents of total flavonoids, forsythin, forsythoside A, rutin and quercetin were 1.362%, 29.95 ± 0.06 mg/g, 64.0325 ± 0.03 mg/g, 2.6075 ± 0.02 mg/g and almost 0 mg/g, respectively. In RFF, the contents of them were 1.099%, 22.975 ± 0.04 mg/g, 58.3325 ± 0.03 mg/g, 0.57075 ± 0.01 mg/g and 0.0209 ± 0.07 mg/g, respectively.	[88]
Analytes	Method	Results	Reference
----------	--------	---------	-----------
Cafferic acid, Forsythoside A, Forsythoside B, Rutin, Hyperin, Forsythin Arctigenin	RP-HPLC	The contents of cafferic acid, forsythoside A, forsythoside B, rutin, hyperin, forsythin and arctigenin in *Forsythiae Fructus* from six origins were 3.377–7.457 mg/g, 14.06–88.00 mg/g, 1.325–3.196 mg/g, 0.2682–3.1470 mg/g, 0.4109–0.7008 mg/g, 2.128–5.226 mg/g and 0.7437–3.6720 mg/g, respectively.	[89]
Chlorogenic acid, R-suspensaside, S-suspensaside, S-suspensaside methyl ether, Forsythoside, (+)-Pinoresinol-β-D-glucoside, (+)-Epipinoresinol-4′-O-glucoside, Rutin, Hesperidin, Hyperin, Phillyrin, Phillygenin, (+)-Epipinoresinol	LC-ESI-MS	The fourteen compounds from twelve batches of *Forsythiae Fructus* from nine regions were quantified and were present at 0.0004–0.0068%, 0.0098–0.0795%, 0.0167–0.1482%, 0.0100–0.4904%, 0.2076–0.8693%, 0.0086–0.2044%, 0.0070–0.0724%, 0.0742–0.2226%, 0.0041–0.0257%, 0.0100–0.0059%, 0.0200–0.4236%, 0.0448–0.1020% and 0.0024–0.1231%, respectively.	[18]
R-suspensaside, S-suspensaside methyl ether, (+)-Pinoresinol-β-D-glucoside, Forsythoside A, (+)-Epipinoresinol-4′-O-glucoside, Suspensaside A, Rutin, Phillyrin, Pinoresinol, (+)-Epipinoresinol and Phillygenin	HPLC-DAD	The levels of twelve constituents varied from 16.86 to 74.55 mg/g; rutin is the most stable, with only three-fold variation in the detected thirty-three samples. As the main compound, the contents of forsythoside A ranged from 5.15 to 55.78 mg/g.	[90]
Forsythoside E, Forsythoside A, Suspensaside A, Rutin, Baicalin, Quercetin, Phillyrin, (+)-Epipinoresinol, (+)-Pinoresinol-4-O-β-D-glucoside, (+)-Epipinoresinol-4′-O-β-D-glucoside, Chlorogenic acid, p-Hydroxybenzoic acid, p-Coumaric acid, Anchoic acid 4-Hydroxy-4-isopropylcyclohex-1-enecarboxylic acid, p-Hydroxyphenyl-ethanol, p-Hydroxybenzylalcohol	HPLC–ESI-MS/MS	In the UFF, the contents of forsythoside A, phillyrin, (+)-epipinoresinol, (+)-epipinoresinol-4-O-β-D-glucoside and (+)-pinoresinol-4-O-β-D-glucoside were 31.1–41.7, 10.8–12.7, 11.1–21.0, 9.1–16.4, 5.2–14.4 mg/g, respectively. In the RFF, the contents of them were 6.7–8.5, 0.8–5.4, 1.6–6.4, 2.2–5.8, 1.2–4.8 mg/g, respectively. Moreover, total contents of flavonoids in the UFF were higher than in the RFF, while those of phenolic acids were on the contrary. Contents of the aliphatic acids and terpenoids were not significantly different between the UFF and the RFF.	[58]
α-pinene, Camphene, β-Pinene, Myrcene, p-Cymene, Limonene α-Terpineol	GC	In the UFF from sixteen batches, the contents of α-pinene, camphene, β-pinene, myrcene, p-cymene, limonene and α-terpineol were 0.102–0.337%, 0.004–0.018%, 0.342–1.024%, 0.008–0.024%, 0.006–0.032%, 0.003–0.029% and 0.003–0.017%, respectively.	[66]
α-Pinene β-Pinene	GC	In the UFF, the contents of α-pinene and β-pinene were 0.192–0.300% and 0.556–0.934%, while the contents of them were 0.075% and 0.240% in the RFF.	[91]
(+)-Pinoresinol-β-D-glucoside, Matairesinol-4′-O-glucoside, Hyperin, Phillyrin, Phillygenin	HPLC-ESI-MS/MS	The contents of (+)-pinoresinol-β-D-glucoside, matairesinol-4′-O-glucoside, hyperin, phillyrin and phillygenin in the 75% methanol extract of *Forsythiae Fructus* were 227.00, 70.80, 2.67, 225.20 and 106.10 mg/mL, respectively.	[31]
4. Pharmacology

Forsythiae Fructus has long been used in China, Korea, Japan and other Southeast Asian countries because of its various pharmacological effects. The bioactivities of the active constituents of _Forsythiae Fructus_, including phenylethanoid glycosides, lignans and flavonoids, have been studied, but these constituents also exhibit new pharmacological activities. The pharmacological effects of this herb are listed in Table 3.
Table 3. Pharmacological effects of Forsythia Fructus.

Models	Constituent/Extract	Mechanism	Reference
Anti-inflammatory Activity			
LPS-induced liver injury in rats	Ethanol extract	The extract inhibited generation of ROS, MDA, TNF-α, IL-1β and IL-6 in serum and liver via activation of Nrf2-mediated antioxidation and inhibition of NF-κB-mediated inflammatory response.	[92]
LPS-stimulated RAW 264.7 cells	Ethyl acetate fraction of the ethanol extract	The extract at 12.5–200 µg/mL inhibited expression of COX-2, thus decreasing the levels of ROS, NO and PGE₂ dose-dependently.	[93]
LPS-stimulated BV-2 microglial cells	Aqueous extract Forsythoside A, Phillyrin, Pinoresinol, Phylligenin	The extract at 25, 50, 100, 200 and 400 µg/mL suppressed expression of chemokines (TARC, MDC and RANTES), adhesion molecules (ICAM-1 and VCAM-1) and inflammatory factors (TNF-α and IL-4) in ear tissues. It could also inhibit the production of chemokines in keratinocytes.	[97]
Soybean β-conglycinin-stimulated weaned piglets	Methanol extract	The methanol extract (100 mg/kg) reduced the levels of anaphylactic antibodies, mast cell degranulation, histamine release, T lymphocyte proliferation and IL-4 synthesis and improved intestinal microbial flora.	[96]
Dermatophagoides farinae-induced atopic dermatitis in NC/Nga mice	Ethanol extract Forsythoside A, Phillyrin, Pinoresinol, Phylligenin	Forsythoside A (15, 30 and 60 mg/kg) decreased the serum levels of ALT, AST and TNF-α, increased expression of Nrf2 and heme oxygenase-1 and inhibited NF-κB activation, thus protecting against LPS/D-galactosamine-induced acute liver injury.	[100]
Carrageenan-induced rats	Ethanol extract	The extract (5 g/kg) alleviated carrageenan-induced paw edema in rats, probably by increasing the production of COX-2 and decreasing the expression of PGE₂, PGD₂, 6-keto-PGF_{1α} and TXB₂.	[98]
Xylene-stimulated mice	Volatiles	Volatiles inhibited the ear-swelling induced by xylene at 0.12 and 0.24 mL/kg, withstood the hyperfunction of celiac capillary permeability induced by acetic acid at 0.24 mL/kg, alleviated rats paw edema induced by carrageenan at 0.12 and 0.24 mL/kg, inhibited pleuritis induced by carrageenan at 0.24 mL/kg and decreased acute lung injury induced by oleic acid at 0.12 and 0.24 mL/kg.	[99]
Anti-inflammatory Activity			
LPS/D-galactosamine-induced acute liver injury mice	Forsythoside A	Forsythoside A (15, 30 and 60 mg/kg) decreased the serum levels of ALT, AST and TNF-α, increased expression of Nrf2 and heme oxygenase-1 and inhibited NF-κB activation, thus protecting against LPS/D-galactosamine-induced acute liver injury.	[100]
LPS-stimulated RAW264.7 cells	Forsythin	Forsythin (25, 50, 100, 150 and 200 µg/mL) inhibited the production of ROS, IL-6, IL-1β, TNF-α, NO, PGE₂, iNOS and COX-2 in a dose dependent manner by suppressing JAK-STAT and p38 MAPK signaling pathway.	[101]
LPS-stimulated RAW264.7 cells	Forsythoside A	Treatment with forsythoside A in LPS-stimulated RAW264.7 cells reduced the secretion of TNF-α, IL-6 and NO via inhibition of HMGB1/TLR4/NF-κB pathway.	[102]
LPS-induced acute lung injury male BALB/c mice	Phillyrin	Phillyrin (20 mg/kg) pretreatment significantly decreased the production of IL-1β, IL-6, TNF-α and the concentration of myeloperoxidase in lung tissues via inhibition of MAPK and NF-κB pathways.	[103]
Table 3. Cont.

Models	Constituent/Extract	Mechanism	Reference
LPS-stimulated RAW264.7 cells	Arctiin	Arctiin (12.5, 25, 50 and 100 µg/mL) inhibited NF-κB pathway, thus reducing the production of IL-1β, IL-6, TNF-α and PGE₂ in a dose-dependent manner, as well as expression of co-stimulatory molecules (B7-1 and B7-2).	[104]
LPS-stimulated BEAS-2B cells	90% Forsythoside A extracts	Forsythoside A extracts (25, 50 and 100 µg/mL) significantly reduced the production of NO in a dose-dependent manner and the level of intracellular ROS in a dose-effect manner.	[105]
Bursa of Fabricius of chickens	Forsythoside A	Forsythoside A (30 and 60 mg/kg) suppressed the NF-κB-iNOS-NO signaling pathway to reduce the production of IL-6, IL-1β, TNF-α and COX-2.	[76]
Allergic dermatitis in NC/Nga mice	Ethanol extract Matairesinol	In vitro, the Forsythiae Fructus ethanol extracts at 200 µg/mL inhibited histamine to release from mast cells. Further study revealed that matairesinol suppressed inflammatory cell infiltration, IL-4 and IFN-γ mRNA expression and lowered IgE levels in vivo.	[106]

Anti-inflammatory Activity

Models	Constituent/Extract	Mechanism	Reference
COPD mice	Forsythoside A	Forsythoside A (15, 30 and 60 mg/kg) suppressed the production of IL-1β, IL-6, TNF-α and NO and reversed cigarette smoke induced GSH/GSSG ratio, which were related to activation of Nrf2 dose-dependently and inhibition of NF-κB.	[107]
Male C57LB/6 mice	Forsythin	Forsythin suppressed the production of IL-6, IL-1β, TNF in LPS/H1N1 influenza-induced lung injury and sepsis in vivo. Moreover, authors took it as a lead compound and developed three other PDE4 inhibitors with higher activities.	[108]
Male Sprague-Dawley rats RAW 264.7 cells	Arctigenin	Arctigenin (0.1–1.0 mg/ear) significantly decreased myeloperoxidase and eosinophil peroxidase activities in the arachidonic acid (AA) induced edematous tissues homogenate and silica-induced ROS production in the RAW 264.7 cell line at 0.1–10 µM, probably by inhibiting the release or production of AA metabolites and free radicals.	[109]
LPS-stimulated BV2 microglia cells nd primary microglia cells	Forsythoside A	Forsythoside A at 2.5, 5 and 10 µg/mL inhibited the production of TNF-α, IL-1β, NO and PGE₂ via inhibiting NF-κB and activating Nrf2/HO-1 signaling pathway.	[110]
PAF-stimulated rat polymophonuclear leukocytes	Suspensine A, 7′-O-methylgenine, (−)-Egenine, (−)-Bicuculline	The four alkaloids at 10 µM inhibited the release of β-glucuronidase from polymophonuclear leukocytes of rats with the rates of 39.6%, 37.7%, 36.5% and 34.8%, respectively.	[67]
Staphylococcus aureus (S. aureus)-stimulated monocyte-macrophage	Forsythin	Forsythin at 50 µg/L significantly decreased expression of IL-8, TNF-α, IL-6 and at 100 mg/L also decreased expression of macrophage colony stimulating factor-1 (MCSF-1) dose-dependently.	[111]

Antibacterial Activity

Models	Constituent/Extract	Mechanism	Reference
Escherichia coli (E. coli)	Essential oil	The essential oil changed the permeability and integrity of the cell membrane, leading to leakage of nucleic acids and proteins with MIC values of 3.13 and 1.56 mg/mL for *E. coli* and *S. aureus*, respectively.	[112]
Pneumococcus, Escherichia coli (E. coli), S. aureus, Haemophilus influenza, a beta-group Streptococcus, Yersinia enterocolitica, Klebsiella pneumonia, F’s dysentery bacillus, Salmonella typhi, Pseudomonas aeruginosa	Essential oil	The essential oil showed antibacterial activity against these ten bacteria. Particularly, β-pinene and the oil after chromatography showed a better inhibitory effect on the other bacteria, except Yersinia enterocolitica and Klebsiella pneumonia.	[113]
Models	Constituent/Extract	Mechanism	Reference
--	--	--	-----------
Escherichia coli (E. coli) (BCRC-11634)	3β-Acetoxyl-20α-hydroxyursan-28-oic acid β-Amyrin acetate, Betulinic acid ψ-Taraxasterol, 3β-Hydroxyanticyclopelic acid Agatholic acid, Phillyrin	The seven compounds showed antibacterial effect with MIC values of 4.55, 5.00, 1.20, 1.20, 3.42, 2.62 and 3.94 mg/mL, respectively.	[48]
Staphylococcus aureus (S. aureus)	Ethanol extract	The extract inhibited secretion of α-hemolysin in the range of 16–128 mg/L dose-dependently.	[114]
Escherichia coli (E. coli), Pseudomonas aeruginosa, Staphylococcus aureus (S. aureus)	Isoforsythoside A Forsythoside A	The MIC of isoforsythoside A for E. coli, Pseudomonas aeruginosa and S. aureus were 40.83, 40.83 and 81.66 µg/mL, respectively, and those of forsythoside A were 38.33, 38.33 and 76.67 µg/mL, respectively.	[27]
Escherichia coli (E. coli) K88, Staphylococcus aureus (S. aureus) Salmonella enteric 34R99	Methanol extract	The Forsythiae Fructus methanol extracts protected against E. coli K88, S. aureus and Salmonella enteric 34R99 with minimum concentrations of 25.00, 12.50 and 1.56 mg/mL, respectively.	[115]
Helicobacter pylori	Betulinic acid Oleanolic acid	The Forsythiae Fructus ethanol extracts strongly (82%) inhibited urease activity of Helicobacter pylori. Further study revealed that the active compounds were betulinic acid and oleanolic acid.	[52]
Acinetobacter baumannii	Aqueous extract	The aqueous decoction of Forsythiae Fructus inhibited the active efflux pump and induced mutations in the nucleotide sequence of the adeb gene at 2.5 and 5 mg/mL.	[116]

Antiviral Activity

H1N1-infected MDCK cells	80% Ethanol extract	The 80% ethanol extract of Forsythiae Fructus exhibited an inhibitory effect on H1N1 in a dose-dependent manner at the concentration of 1:512 to 1:8192 mg/mL.	[8]
H1N1-infected human bronchial epithelial cell line A549	95% Ethanol extract 50% Ethanol extract Aqueous extract	95% Ethanol extract, 50% ethanol extract and aqueous extract exhibited inhibitory effect on RANTES secretion with IC₅₀ values of 42 ± 6, 117 ± 15 and 232 ± 28 µg/mL, respectively. Moreover, 95% ethanol extract displayed dual regulatory effects on MCP-1 production, while 50% ethanol extract and aqueous extract increased MCP-1 production by 1.4–3.3 and 2.6–3.7 times, respectively.	[117]
C57BL/6j mice	Forsythoside A	Forsythoside A (0.4 µg/mL) inhibited influenza A virus replication by suppressing the expression of TLR7, MyD88, TRAF6, IRAK4 and NF-κB p65 mRNA in vivo.	[77]
male BALB/C mice	Phillyrin	Phillyrin at a dose of 20 mg/kg/day protected against influenza A shown by the reduction of lung index, viral titers, IL-6 levels, expression of hemagglutinin protein and the alleviated lung tissue damage.	[118]
Influenza A transfected-HeLa cells	Phillyrin	Phillyrin significantly decreased the gene expression of IAV nucleoprotein.	[119]
PRRSV-infected Marc-145 cells	Forsythoside A	Forsythoside A inhibited porcine reproductive and respiratory syndrome virus (PRRSV) RNA synthesis and promoted secretion of IFN-α. The sterilization rate reached 80% at a concentration of 60 µg/mL.	[120]
RSV-infected MDCK cells and Hep-2 cells	Calceolarioside B Forsythoside A	Calceolarioside B and forsythoside A exhibited EC₅₀ values of 3.43 and 6.72 µM for RSV, respectively.	[23]
RSV	Rengynic acid	Rengynic acid exhibited an anti-RSV effect with EC₅₀ and MIC values of 9.9 and 41.66 µg/mL, respectively.	[43]
IBV-infected primary chicken embryo kidney cells	Forsythoside A	Forsythoside A pretreatment at a dose of 0.64 mM had a direct virucidal effect on IBV, but it had no effect on IBV-infected cells.	[121]
Table 3. Cont.

Models	Constituent/Extract	Mechanism	Reference	
IBV-infected HD11 cells Forsythoside A	Forsythoside A	Exhibited an antiviral effect by significantly increasing expression of intracellular receptors (MDA5, LGP2 and NLRCS) and antiviral gene (IRF7, IFN-α, IFN-β) mRNA.	[122]	
DPPH Isoforsythoside A	Isoforsythoside A	Exhibited antioxidant activity with an IC₅₀ value of 2.74 µg/mL and Vc exhibited an IC₅₀ of 4.38 µg/mL in the DPPH assay.	[27]	
DPPH and superoxide anion Polysaccharides	Forsythosia Fructus polysaccharides	Showed significant scavenging capacity on the DPPH and superoxide anion with IC₅₀ values of 0.08 and 2.0 mg/mL, respectively.	[123]	
DPPH in vitro and diquat-stimulated male Sprague Dawley rats in vivo CH₂Cl₂ fraction of ethanol extract Forsythoside A Forsythialan A Phillygenin Phillyrin	CH₂Cl₂ fraction of ethanol extract Forsythoside A Forsythialan A Phillygenin Phillyrin	The CH₂Cl₂ fraction of ethanol extract (25, 50 and 100 mg/kg) reduced expression of TNF-α, IL-1β, IL-6, MDA and increased the activities of SOD, GSH-Px, GSH. Forsythoside A, forsythialan A, phillygenin and phillyrin may be the main active constituents with IC₅₀ values of 10.43 ± 0.15, 29.85 ± 0.43, 83.64 ± 2.70, 351.14 ± 13.15 µg/mL, respectively.	[124]	
ABTS radical cation Calceolarioside C	Calceolarioside C	Scavenged the ABTS radical cation with IC₅₀ values of 22.7 µg/mL and the Vc exhibited an IC₅₀ of 7.2 µg/mL.	[25]	
ABTS radical cation Lianqiaoxinoside B Forsythoside H	Lianqiaoxinoside B and forsythoside H scavenged the ABTS radical cation with IC₅₀ values of 15.6 and 17.7 µg/mL, respectively, while Vc exhibited an IC₅₀ of 6.8 µg/mL.	[28]		
DPPH, Fe³⁺ and Fe²⁺ Ethyl acetate extract	Ethyl acetate extract	Ethyl acetate (1.0 mg/mL) of Forsythia Fructus exhibited a scavenging rate of 71.39% on the DPPH. It also had a relatively strong ability to reduce Fe³⁺ and chelate Fe²⁺.	[125]	
Peroxynitrite-treated LLC-PK1 cell Phyllochin 8-Hydroxypinoresinol	Phillygenin and 8-hydroxypinoresinol significantly decreased the leakage of lactate dehydrogenase (LDH) at 10 µM and even reverse the LDH release induced by 3-morpholinosydnonimine, an ONOO⁻ generator, at 50 µM.		[126]	
High-density lipoprotein Pinoresinol, Phillygenin, 8-Hydroxypinoresinol, 7-Ep-8-Hydroxypinoresinol, Lariciresinol, Isolariciresinol, Olivil, Cedrusin	The lignans inhibited the generation of thiobarbituric acid-reactive substances in a dose-dependent manner with IC₅₀ values from 8.5 to 18.7 µM and thermo-labile radical initiator-induced lipid peroxidation with IC₅₀ values from 12.1 to 51.1 µM. Among them, pinoresinol and lariciresinol also exerted an inhibitory effect against Cu²⁺-induced lipid peroxidation of HDL at a concentration of 3 µM.		[32]	
D-galactose induced aging mice D-galactose induced aging mice Phillyrin	Phillyrin	A decrease in weight gain rate, spleen index, SOD, GSH-Px and T-AOC activities in serum and liver tissue and an increase in the content of MDA and MAO-B activities in brain tissue were observed after injection of 15 or 45 mg/kg phillyrin.		[127]
Antioxidant Activity Weaned piglets Ethanol extract	Dietary supplementation (100 mg/kg) of Forsythia Fructus ethanol extracts after fourteen days significantly increased glutathione peroxidase activities and serum complement 4 concentration and lowered serum endotoxin and MDA concentration. The oxidative injury disappeared after twenty-eight days.		[128]	
Corticosterone-treated broilers Methanol extract	Dietary supplementation (100 mg/kg) of Forsythia Fructus methanol extract attenuated the decrease of the total antioxidant capacity and SOD activity and increase of serum MDA.		[129]	
Arbor Acres broilers under high stocking density Methanol extract	Treatment with Forsythia Fructus methanol extract (100 mg/kg) increased serum T-AOC and SOD activity and reduced MDA expression. However, no significant differences were found in serum GSH-Px activity.		[130]	
Table 3. Cont.

Models	Constituent/Extract	Mechanism	Reference	
Rotenone-stimulated PC12 cells and male Sprague-Dawley rats	Ethanol extract	The ethanol extract (50 and 200 mg/kg) exhibited neuroprotective activity by down-regulating protein expression of p-PI3K, p-Akt, p-IκB, p-P65 and cleaving caspase 8, p-p38 and p-JNK.	[131]	
SAMP8 mice with composite Alzheimer’s disease	Forsythoside A	Forsythoside A (60, 120 and 240 mg/kg) increased the activity of SOD, ChAT, and GSH-Px inordinately and decreased the content of MDA and NO by varying degrees in a dose-dependent manner.	[132]	
SAMP8 mice	Forsythoside A	Oral administration of forsythoside A (60, 120 and 240 mg/kg) decreased the levels of IL-1β, NO, MDA and NE and increased the T-SOD and GSH-Px activities and the production of GLU and Ach.	[133]	
Scopolamine-induced learning and memory impairment in mice	Forsythoside A	Forsythoside A (200 mg/kg) ameliorated scopolamine-induced learning and memory impairment by modulating AchE activity, cAMP expression and p-ERK production and protecting against oxidation.	[134]	
Gerbils with transient cerebral global ischemia	Forsythoside A	Oral administration of forsythoside A (10 mg/kg) significantly increased the number of viable neurons and decreased degenerating neurons, activated glial cells and the expression of IL-1β and TNF-α, indicating the involvement of anti-inflammatory activities.	[135]	
Aβ25-35 oligomer-stimulated HT22 cells	Forsythoside A	Forsythoside A (25 µg/mL) significantly decreased production of NO to improve neuroinflammation in Aβ25-35 oligomer-stimulated HT22 cells.	[136]	
Neuroprotective Activity				
Glutamate or low-glucose and low-serum or Aβ25-35-stimulated PC12 cells	Forsythoside A	Forsythoside A (0.1, 1 and 5 µmol/L) improved proliferation of PC12 cells and significantly reduced cell death in vitro. Moreover, forsythoside A (0.1 and 1 µmol/L) significantly inhibited cell apoptosis induced by Aβ25-35.	[137]	
MPP⁺-stimulated SH-SY5Y neuroblastoma cells	Phillyrin	Phillyrin (1, 10 and 100 µmol/L) significantly increased cell viability and reduced leakage of LDH induced by MPP⁺.	[138]	
Rotenone-stimulated PC12 cells	Forsythoneoside B	Forsythoneoside B and forsythoneoside D at 0.1 µM inhibited PC12 cell damage induced by rotenone and increased cell viability from 53.9 ± 7.1% to 70.1 ± 4.0% and 67.9 ± 5.2%, respectively.	[11]	
Anti-tumor Activity				
The murine melanoma B16-F10 cell line and C57BL/6 mice bearing melanoma	Aqueous extract	The aqueous extract inhibited proliferation and angiogenesis of cancer cells, which were closely related to the antioxidant and anti-inflammatory activities via the MAPKs/Nrf2/HO-1 pathway.	[7]	
HeLa cells	Aqueous extract	The aqueous extract (50 µg/mL) promoted activation of the zymogen of caspase 8 to inhibit proliferation of cells in vitro time-dose-dependently, with IC₅₀ values of 93.74, 33.30 and 22.65 µg/mL for 12, 24 and 48 h, respectively.	[139]	
HeLa cells	Ethanol extract	In vitro, the ethanol extract (12.5–100 µg/mL) had an inhibitory effect on the proliferation of Hela cells in a time-dose-dependent manner with IC₅₀ values for the 12, 24 and 48 h groups of 97.68, 39.16 and 25.83 µg/mL, respectively.	[140]	
SGC7901 cells	Aqueous extract	In vitro, the aqueous extract (25–100 µg/mL) inhibited proliferation of SGC7901 cells in a time-dose-dependent manner with IC₅₀ values for the 6, 12 and 24 h of 73.27 ± 3.19, 44.63 ± 2.06 and 35.99 ± 2.43 µg/mL, respectively.	[141]	
Models	Constituent/Extract	Mechanism	Reference	
---	---------------------	---	-----------	
C57BL/6 mice injected with Lewis cells	Phillyrin	Phillyrin (5 and 10 g/kg) significantly inhibited the tumor size and tumor tissue density dose-dependently by decreasing the expression of VEGF and increasing the expression of endostatin.	[142]	
Anti-tumor Activity				
A549, Colo205, Hep-3B, HL60, and KB	(+)-8-Hydroxyepipinoresinol-4-O-β-D-glucopyranoside	(+)-8-hydroxyepipinoresinol-4-O-β-D-glucopyranoside showed significant cytotoxicity in A549, Colo205, Hep-3B, HL60 and KB cancer cell lines with IC₅₀ values of 9.48, 7.75, 0.59, 4.06 and 38.38 µM, respectively.	[34]	
MKN-45, MKN-28, SGC-7901, PNAC-1 and HepG-2	Ambrolic acid	Ambrolic acid inhibited SGC-7901 cells by affecting the S period of DNA synthesis and also reduced the levels of pro-caspase 3, 6, 8, 9 and Bax-2 proteins and increased the levels of Bax protein to induce cell apoptosis, while dammar-24-en-3β-acetoxy-20-ol only had an inhibitory effect on the cancer cells.	[51,55]	
PC3 cells of prostate cancer	Dammar-24-en-3β-acetoxy-20-ol	Dammar-24-en-3β-acetoxy-20-ol (6.25–50.0 µg/mL) increased expression of p21, TGF-β and Smad3 and decreased expression of Cyclin D1 and CDC25A to induce cell apoptosis and inhibited the activity of telomerase. Moreover, it affected the radiosensitivity of PC-3 cells of prostate cancer at 25 µg/mL.	[143]	
Hepatoprotective Activity				
CCl₄-induced toxicity in rats	Phillygenin	Phillygenin at 0.15 and 0.5 mg/kg significantly decreased the levels of ALT, AST, total bilirubin, TNF-α and IL-8 in serum and the content of MDA in liver tissue. Meanwhile, it increased the activities of SOD, GSH-Px and GSH.	[10]	
Bovine serum albumin-induced hepatic	Forsythoside A	Forsythoside A alleviated hepatic fibrosis at 0.1, 0.3 and 1.0 mg/kg by decreasing the hydroyxyproline content and the levels of layer fibronectin, hyaluronic acid, IV-collagen and procollagen III.	[144]	
fibrosis in rats				
Human normal liver cell lines LO2	Forsythin	Forsythin reversed nuclear condensation and nuclear fragmentation and decreased expression of apoptosis related proteins (PARP and caspase 3) to prevent alcoholic liver injury dose-dependently.	[145]	
Rats with severe acute pancreatitis	Aqueous extract	The aqueous extract (1.25, 2.5 and 5 g/kg) significantly reduced the serum levels of amylase, ALT and TNF-α in a dose dependent manner and expression of NF-κB mRNA and Foxp3 mRNA in liver tissue.	[146]	
Cardiovascular Protective Effect				
Streptozotocin-induced diabetic mice	Ethyl acetate extract	Oral administration of the extract (50, 100 and 200 mg/kg) after four weeks significantly decreased the levels of blood glucose, triglyceride, creatinine and so on and increased body weight, insulin secretion and glucose tolerance, which were related to inhibition of glucokinase, phosphoenolpyruvate carboxykinase, insulin-1, insulin-2 and duodenal homeobox factor-1, thus exhibiting antidiabetic and antihyperlipidemic activities.	[147]	
SD rats with atherosclerosis	Phillyrin	Phillyrin (150 mg/kg) reduced the area of AS plaques and the contents of ICAM-1, VACM-1, IL-1, IL-6 and MDA and increased the contents of NO and SOD, probably by decreasing expression of sodium hydrogen exchange protein 1 (NHE-1).	[12]	
Rat aortic rings	Forsythoside A	Forsythoside A inhibited norepinephrine-stimulated vasoconstriction by decreasing calcium influx from the extracellular space.	[148]	
Models	Constituent/Extract	Mechanism	Others	Reference
-----------------------------------	---------------------	---	--	-----------
Cisplatin-treated mice	Aqueous decoction	The aqueous decoction reduced the contents of serum gastrin and promoted gastrointestinal movement at 3, 6 and 12 g/kg, indicating its anti-vomiting activity.		[9]
HepG2 cells	Phillyrin	Phillyrin at the concentration of 1, 2.5 and 5 µM induced phosphorylation of LKB1 and activated AMPK, thus reducing expression of SREBP-1c and fatty acid synthase and avoiding accumulation of lipid.		[149]
TNF-α-stimulated 3T3-L1 adipocytes	Phillyrin	Phillyrin (40 µM) suppressed activation of I kappaB kinase and N-terminal kinase to attenuate TNF-α-mediated insulin resistance and lipolytic acceleration.		[150]
Obese C57BL/6j mice	Phillyrin	Treatment with phillyrin (15 and 45 mg/kg) significantly decreased body weight, the serum levels of TNF-α and leptin and increased expression of PPAR-β/δ, ANGPTL4 and p-AMPK-α.		[151]
Dihydrotestosterone-stimulated mice	Forsythoside A	Forsythoside A suppressed apoptosis of hair cells by reducing expression of caspase-9 by 40%, caspase-3 by 53% and increasing the Bcl-2/Bax ratio by 60%. It also retarded the entry into the catagen phase and reduced the expression of TGF-β2 by 75%.		[152]
Mice with endotoxemia	Forsythoside A	Forsythoside A (80 mg/kg) enhanced the immune function of mice with endotoxemia, which may be associated with the inhibition of TNF-α and IL-10 secretion and the gene expression of Foxp3.		[153]
Yeast-stimulated C57BL/6 mice	Forsythoside A	Forsythoside A (4 and 8 mg/kg) significantly decreased the temperature of mice by up-regulating expression of TRPA1 in the paraventricular nuclei (PVN), suprachiasmatic nucleus (SOC) and dorsal root ganglion (DRG).		[154]
Caco-2 cells	Forsythoside A	Forsythoside A inhibited P-gp ATPase activity to influence the efflux of drugs.		[155]
4.1. Anti-Inflammatory Effect

The anti-inflammatory effect of Forsythiae Fructus is its most common clinical use. According to Taiwan’s nationwide prescription database, Forsythiae Fructus has been listed in the top 10 most commonly used single herbs for the treatment of atopic dermatitis (15.9%), urticaria (11.49–13.4%) and acne (22.3%) [5,156,157]. Recently, numerous studies have found that ethanol, methanol and aqueous extracts of Forsythiae Fructus exhibited significant anti-inflammatory effects in vitro and in vivo [92–98]. In addition, its volatiles showed an anti-inflammatory effect in models of mouse ear-swelling, mouse celiac capillary permeability, rat paw-swelling, rat hind paw edema, oleic acid-stimulated acute lung injury and rat cotton pellet granuloma by inhibiting the release of prostaglandin 2 (PGE2), histamine and serotonin [99]. Forsythoside A (1), arctigenin (52), arctiin (53), matairesinol (55), phillyrin (60), forsythin (60), suspensine A (247), (−)-egenine (248), 7′-O-methyleugenine (249) and (−)-bicuculline (250) were active compounds isolated from Forsythiae Fructus and exhibited anti-inflammatory effects [67,100,101,103,104,106,109]. Forsythoside A (1) decreased the levels of pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO) and PGE2 in lipopolysaccharide (LPS)-stimulated BV2 microglia cells, RAW264.7 cells, human bronchial epithelial cells (BEAS-2B), acute liver injury mice and bursa of Fabricius of chicken, as well as in a mouse model of cigarette smoke-induced lung damage, through influencing the nuclear factor-κB (NF-κB), mitogen activated protein kinase (MAPK) and nuclear related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathways [76,100,102,105,107,110,111]. Phillyrin (60) at 20 mg/kg showed an ameliorative effect on LPS-induced alveolar hemorrhage and neutrophil infiltration in lung injury mice by decreasing the production of TNF-α, IL-1β and interleukin-6 (IL-6) through MAPK and NF-κB signaling pathways [103].

Forsythin (60), a novel PDE4 inhibitor, inhibited the expression of PDE4 and production of NO, inducible nitric oxide synthase (iNOs), Toll-like receptor 4 (TRL4), TNF-α, IL-1β in LPS-induced lung injury mice, LPS-stimulated BV2 microglial cells and Staphylococcus aureus-induced monocyte-macrophages [94,95,99,111]. Arctiin (53) exhibited an anti-inflammatory effect in LPS-damaged macrophage cells by inhibiting the production of NO, PGE2, TNF-α, IL-1β, IL-6 and the expression of COX-2 [104]. Four alkaloids, namely suspensine A (247), (−)-egenine (248), 7′-O-methyleugenine (249) and (−)-bicuculline (250), demonstrated an anti-inflammatory effect at a concentration of 10 μM by inhibiting the release of β-glucuronidase from polymorphonuclear leukocytes in the range of 34.8% to 39.6% [67]. In a word, the anti-inflammatory effects of Forsythiae Fructus and its constituents are closely related to the inhibition of pro-inflammatory mediators through activation of the Nrf2/HO-1 signaling pathway and downregulation of the NF-κB, JAK-STAT and p38 MAPK signaling pathways [101,104,107,110].

4.2. Antibacterial Effect

In vitro, the volatiles of Forsythiae Fructus exhibited good antibacterial effects against S. pneumoniae, Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Haemophilus influenza, a beta-group Streptococcus, Yersinia enterocolitica, Klebsiella pneumonia, F’s dysentery bacillus, Salmonella typhi and Pseudomonas aeruginosa, with MICs of 172.90, 172.90, 172.90, 172.90, 86.45, 172.90, 345.80, 518.70 and 864.50 μg/mL, respectively [112,113]. The mechanism might be closely related to the disruption of the cell membrane and degradation of bacterial proteins [112]. Ethanol, methanol and aqueous extracts of Forsythiae Fructus also exhibited antibacterial activity [114–116]. Li et al. [114] found that the ethanol extract remarkably decreased secretion of α-hemolysin in S. aureus at a concentration of 16–128 mg/L. Han et al. [115] demonstrated that the aqueous extract inhibited growth of E. coli, S. aureus and Salmonella in a dose-dependent manner, indicating its uses in broiler chickens as a substitute antibiotic in vivo. The active compounds of Forsythiae Fructus were assessed for their antibacterial activities by E. coli, Pseudomonas aeruginosa, S. aureus, Helicobacter pylori and Klebsiella pneumonia. As a result, the MIC values of forsythoside A (1), isoforsythoside A (30), phillyrin (60), 3β-hydroxyanticopalic acid (124), agathic acid (125), β-amyrrin acetate (155), 3β-acetoxy-20α-hydroxyursan-28-oic acid (159),
were 38.33 and 40.83 µ (MDA) was observed in plasma and the kidney [124]. Yan et al. [127] found that the anti-aging effect of Forsythia Fructus was related to its inhibitory effect on the efflux pump of bacteria, but these studies are still in a primary stage [116].

4.3. Antiviral Effect

The antiviral effect of Forsythia Fructus mainly focused on influenza A (H1N1) virus, respiratory syncytial virus (RSV) and infectious bronchitis virus (IBV). Previous studies suggested that the 80% ethanol extract of Forsythia Fructus protected H1N1-infected MDCK cells with a minimal inhibitory concentration (MIC) of 1.8192 mg/mL [8]. Ko et al. [117] found that the 95% ethanol, 50% ethanol and aqueous extracts exhibited a dual regulatory effect on H1N1-infected human bronchial epithelial cells with IC50 values of 42 ± 6, 117 ± 15 and 232 ± 28 g/mL, respectively. Four compounds from Forsythia Fructus, namely forsythoside A (1), calceolarioside B (33), phillyrin (60) and rengynic acid (108), also demonstrated significant antiviral activity. In vivo, forsythoside A (1) at 20 µg/kg was able to control H1N1 infection and relieved the symptoms by inhibiting expression of Toll-like receptor 7 (TLR7), MyD88, tumor necrosis factor receptor-associated factor 6 (TRAF6), interleukin-4 receptor-associated kinase (IRAK4) and NF-kB p65 mRNA and H1N1 replication in C57BL/6j mice [77]. Phillyrin (60) inhibited H1N1 expression by down-regulating the gene of the H1N1 nucleoprotein in vitro and in vivo [118,119]. Meanwhile, forsythoside A (1), calceolarioside B (33) and rengynic acid (108) exhibited good anti-RSV effects in multiple different cell lines [23,43,120]. In addition, forsythoside A (1) was able to inhibit IBV in primary chicken embryo kidney cells at a concentration of 0.16 to 0.64 mm and in HD11 cells at a concentration from 10 µM/L to 20 µM/L, suggesting its potential for preventing IBV infection [121,122].

4.4. Antioxidant Effect

Recently, some studies revealed the anti-oxidative effect of the Forsythia Fructus extract and its compounds in the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) assays in vitro [25,27,28,123–125]. The results indicated that forsythoside A (1), isoforsythoside A (30), phillygenin (59), phillyrin (60), forsythianal A (88) and polysaccharides exhibited strong antioxidant effects, with the DPPH IC50 values of 0.43, 2.74, 53.64, 351.14, 29.86 µg/mL and 0.08 mg/mL, respectively [27,123,124]. Calceolarioside C (21), forsythoside F (38) and lianqiaoxinoside B (43) were tested by the ABTS test and exhibited IC50 values of 22.7, 17.7 and 15.6 µg/mL, respectively [25,28]. Additionally, the ethyl acetate extract of Forsythia Fructus showed a strong antioxidant activity by the DPPH and FRAP assays [125]. Phillygenin (59) and 8-hydroxyxypinosinol (73) at 50 µM were confirmed to reverse a LLC-PK1 cell damage induced by 3-morpholinosydnonimine, an ONOO-generator [126]. In addition, eight lignans—phillygenin (59), 7′-epi-8-hydroxyxypinosinol (63), pinosinol (68), 8-hydroxyxypinosinol (73), isolaraciresinol (78), cedrusin (82), olivil (94) and lariciresinol (98) exerted inhibitory effects against lipid peroxidation of high-density lipoprotein (HDL) induced by AAPH (a thermo-labile radical generator), with IC50 values ranging from 12.1 to 51.1 µM [32]. In vivo, pretreatment with a CH2Cl2 fraction of Forsythia Fructus 80% ethanol extract inhibited oxidative stress in diquat-treated rats. The mechanism was associated with an increase in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as the levels of GSH in plasma, liver and kidney, whereas a reduction in the level of malondialdehyde (MDA) was observed in plasma and the kidney [124]. Yan et al. [127] found that the anti-aging effect of phillyrin (60) is closely related to the antioxidant effect in aging model mice. Interestingly, the Forsythia Fructus extract has been used as an animal feed additive in weaned piglets and Arbor Acre broilers, mainly due to the improvement in growth performance via the modulation of some endogenous antioxidant molecules and oxidative stress biomarkers (SOD, GSH-Px and MDA) [128–130].
4.5. Neuroprotective Effect

The neuroprotective effect is a newly established research direction for *Forsythiae Fructus*. Zhang et al. [131] found that the *Forsythiae Fructus* ethanol extract reduced rotenone toxicity and protected PC12 cells. Further in vivo study demonstrated that *Forsythiae Fructus* (50 and 200 mg/kg) exhibited a protective effect in rotenone-stimulated rats through down-regulating inflammatory and oxidation factors. Forsythoside A (1) was the main compound with neuroprotective effects reported in *Forsythiae Fructus*. It ameliorated the physiology of senescence-accelerated mouse prone (SAMP8) mice and scopolamine-induced memory deficit mice, with significant increase in total superoxide dismutase (T-SOD), choline acetyl transferase (ChAT) and GSH-Px activities; significant decrease in MDA and NO levels; inhibition of AchE activity and increase of p-ERK expression, indicating that its mechanism might be to regulate the cholinergic system and anti-oxygenation [132–134]. Furthermore, cognitive functions of gerbils with transient cerebral global ischemia were ameliorated after treatment with forsythoside A (1) at 10 mg/kg due to the inhibition of activated microglia and astrocytes [135]. In vitro, forsythoside A (1) significantly inhibited the cell apoptosis induced by Aβ25-35 in PC12 and HT22 cells, which are closely related to Alzheimer’s disease [136,137]. Moreover, phillyrin (60) protected SH-SY5Y neuroblastoma cells against MPP⁺ [138], while forsythoneoside B (191) and forsythoneoside D (193) at 0.1 µM significantly inhibited PC12 cell damage induced by rotenone and increased cell viability [11], indicating their potential toward Parkinson’s disease.

4.6. Antitumor Effect

Forsythiae Fructus aqueous extract treatment of B16-F10 melanoma-transplanted C57BL/6 mice inhibited cancer cell proliferation and angiogenesis and prolonged their survival time, indicating a noticeable antitumor activity. The results revealed that this effect has a close relationship with antioxidant and anti-inflammatory activities via the MAPKs/Nrf2/HO-1 pathway [7]. The LQ-4 extract (which contains at least twelve types of compounds) showed antitumor actions on Hela and SGC-7901 cells by inhibiting cell proliferation and inducing apoptosis, which were probably related to the decomposition of caspase-8 protease [139–141]. Phillyrin (60) exhibited an antitumor effect on Lewis lung carcinoma in vivo at three doses of 5, 10 and 20 g/kg/d by decreasing vascular endothelial growth factor (VEGF) expression and increasing endostatin expression [142]. In addition, (+)-8-hydroxyepipinoresinol-4-0-β-D-glucopyranoside (65) showed significant cytotoxicity to A549, Colo205, Hep-3B, HL60 and KB cancer cell lines with IC₅₀ values of 9.48, 7.75, 0.59, 4.06 and 38.38 µM, respectively [34]. Moreover, dammar-24-en-3β-acetoxy-20-ol (147) and ambrolic acid (163) from *Forsythiae Fructus* were tested against SGC-7901 and PC-3 cells. Both of them induced apoptosis of SGC-7901 cells dose-dependently by down-regulating the expression of caspase proteins (caspase 3, 6, 8 and 9) and up-regulating the levels of Bax [51,55], whereas, dammar-24-en-3β-acetoxy-20-ol (147) might also inhibit the activities of telomerases in PC-3 cells, thus enhancing the radiosensitivity of PC-3 cells [143].

4.7. Hepatoprotective Effect

The active compound phillygenin (59) in *Forsythiae Fructus* has been shown to exhibit a protective effect against acute liver injury induced by CCl₄ in rats at the dosages of 0.05, 0.15, 0.5 mg/kg. It increased the activities of SOD, GSH-Px and GSH; decreased MDA and reduced the levels of TNF-α and IL-8 in liver tissue [10]. Wang et al. [144] reported that Lian qiao gan yuan (phillygenin) protected against hepatic fibrosis induced by bovine serum albumin in rats. However, the author considered forsythoside A (1) to be Lian qiao gan yuan in Chinese. Forsythin (60) showed a protective capability against alcohol-induced liver injury by suppressing expression of apoptosis factors (PARP and caspase 3) [145]. Moreover, the aqueous extract of *Forsythiae Fructus* exerted a hepatoprotective effect in liver injured rats with acute pancreatitis at three dosages of 1.25, 2.5 and 5.0 g/kg. This was associated with inhibition of mRNA expression of NF-κB and Foxp3, subsequently reducing activation...
of the NF-κB signaling pathway, which plays an important role in the pathogenesis of severe acute pancreatitis [146].

4.8. Cardiovascular Protective Effect

The cardiovascular protective activity of Forsythiae Fructus and its compounds has been reported in recent years. In an in vivo study, oral administration of ethyl acetate extract at dosages of 50, 100 and 200 mg/kg improved pathological damage and increased the serum level of insulin as well as expression of pancreatic function genes (PDX-1, INS-1 and INS-2) in streptozotocin-induced diabetic mice, indicating its potency as an antihyperglycemic and antihyperlipidemic agent [147]. Treatment with 150 mg/kg phillyrin (60) for ten weeks in an atherosclerosis (AS) model noticeably reduced the area of AS plaques, improved the function of arterial condensation and inhibited expression of sodium hydrogen exchange protein 1 (NHE-1), intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VACM-1), IL-1 and IL-6 [12]. Moreover, forsythoside A (1) exhibited a vasorelaxant effect against norepinephrine-stimulated vasocontraction in rats by decreasing calcium influx from the extracellular space [148].

4.9. Others

The aqueous extract of Forsythiae Fructus reduced the serum gastrin content and promoted gastrointestinal movement, demonstrating an anti-vomiting effect in mice exposed to chemotherapy [9]. Phillyrin (60) was shown to exert a remarkable antiobesity effect in high glucose-induced lipid accumulation in HepG2 cells and 3T3-L1 adipocytes, as well as in obese mice [149–151]. The mechanism of action was possibly due to inducing the liver kinase B1 (LKB1) phosphorylation and activating AMP-activated protein kinase (AMPK), thus reducing expression of sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase. Interestingly, forsythoside A (1) exhibited antiandrogenic alopecia activity in dihydrotestosterone-stimulated mice by suppressing the apoptosis of hair cells [152]. Forsythoside A (1) also exhibited an immune regulation effect in endotoxemia mice by down-regulating mRNA expression of Foxp3 and decreasing the secretion of IL-10 and TNF-α [153]. Moreover, in yeast-stimulated pyrexia mice, forsythoside A (1) increased the expression of temperature-sensitive transient receptor potential A1 (TRPA1), thereby taking antipyretic effect [154]. Furthermore, a study demonstrated that forsythoside A inhibited P-gp ATPase activity, thus influencing the efflux of drugs [155].

5. Pharmacokinetics

Pharmacokinetic studies have provided a scientific basis for the clinical application of Forsythiae Fructus and the data were presented in Table 4. When Sprague Dawley (SD) rats were orally administrated UFF and RFF extract, the main active compounds of forsythoside A (1), phillyrin (60), rutin (175), quercetin (177) and isorhamnetin (180) showed very different pharmacokinetic parameters, including C_{max}, $AUC_{0-24\,\text{h}}$ and T_{max}. Generally, the $AUC_{0-24\,\text{h}}$ and C_{max} were much higher in the UFF group than in the RFF group. The absorption was faster after oral administration of UFF, as reflected by T_{max}, whereas quercetin (177) and isorhamnetin (180) couldn’t be detected after RFF treatment. The pharmacokinetic properties after multiple-dose treatment had significantly increased than those after single-dose treatment, indicating that the harvest times affected the contents and bioavailability of active compounds in Forsythiae Fructus [59]. Liu et al. [31] developed an HPLC-ESI-MS/MS method for the quantification of matairesinol-4′-O-glucoside (58), phillygenin (59), phillyrin (60), (+)-pinoresinol-β-D-glucoside (69) and hyperin (182) in rat bile after oral administration of 75% methanol extract of Forsythiae Fructus, revealing that bile was the major pathway for the excretion of lignans in Forsythiae Fructus. Forsythoside A (1), phillygenin (59) and phillyrin (60) were the three most studied compounds in Forsythiae Fructus for pharmacokinetics. After oral administration of forsythoside A, the absorption was fast with a T_{max} of 20 min, but the bioavailability was only 0.5% [158]. Furthermore, Chen et al. [159] revealed that most of forsythoside A (1) was excreted
through bile due to the bile-to-blood distribution ratio was 0.32 ± 0.06 after intravenous administration. Phillyrin (60) was absorbed into plasma through passive diffusion and could be influenced by P-gp, thus exhibiting a low bioavailability [160]. After oral administration, a total of thirty-four metabolites of phillyrin (60) were found in rat bile, urine and feces by UPLC-Q-TOF-MS, providing a basis for the pharmacological activities of phillyrin in vivo, and the results also revealed that deglucosidation was the main metabolic reaction for phillyrin [161]. Absorption of phillygenin (59) was linear at three dosages of 1.4, 2.8, and 5.6 mg/kg, but it showed a rapid elimination rate of approximately 6 min [162]. In addition, forsythoside A induced the activities of CYP1A2 and CYP2C11, while phillyrin induced the activities of CYP1A2 and CYP2D1, which provided very useful information about interactions in the combination drug therapy [163].
Table 4. The investigations about pharmacokinetics of *Forsythiae Fructus*.

Markers	Methods	Results	Reference
Forsythoside A, Rutin, Phillyrin, Isohamnetin and Quercetin	HPLC-MS/MS	The t_{1/2} of forsythoside A, rutin, phillyrin, quercetin and isorhamnetin after single oral administration of UFF extract were 1.91 ± 1.76 h, 1.59 ± 0.92 h, 3.52 ± 4.37 h, 2.70 ± 2.70 h and 6.32 ± 4.69 h, respectively, while those were 4.52 ± 4.77 h, 6.54 ± 8.73 h, 14.74 ± 27.34 h, not detected and not detected after single oral administration of RFF extract. The AUC_{0-24 h} of forsythoside A, rutin and phillyrin were significantly different between single oral administration of UFF and RFF extract.	[59]
(+)-Pinoresinol-β-D-glucoside, Matairesinol-4′-O-glucoside, Hyperin, Phillyrin, Phillygenin	HPLC-ESI-MS/MS	The average percentages of (+)-pinoresinol-β-D-glucoside, matairesinol-4′-O-glucoside, hyperin, phillyrin and hillygenin excreted in the bile over the dose administered (12 mL/kg body weight) were 0.002%, 0.234%, 0.116%, 0.288%, and 12.700%, respectively. Hyperin was found in plasma, urine and excrement of rat while the others were detected only in bile, indicating lignans of *Forsythiae Fructus* were excreted mainly via bile.	[31]
Forsythoside A	LC-MS/MS	Forsythoside A was rapidly absorbed into the blood with a T_{max} of 20.0 min after oral (100 mg/kg) administration, but the C_{max} was only 122.2 ± 45.4 ng/mL, indicating a quite low absolute bioavailability with a value of 0.5%.	[158]
Forsythoside A	Microdialysis coupled with HPLC	Forsythoside A went through hepatobiliary excretion and the bile-to-blood distribution ratio (AUC_{bile}/AUC_{blood}) was 0.32 ± 0.06 after the intravenous administration of 50 mg/kg.	[159]
Phillyrin	UPLC-Q-TOF-MS	A total of thirty-four metabolites of phillyrin were detected in rat bile, urine and feces and M26 was the major one. Phillyrin mainly went through hydrolysis, oxidation and sulfation to transform into the effective forms in vivo.	[161]
Phillygenin	HPLC	The elimination half-time (t_{1/2z}) of phillygenin after intravenous administration of 1.4, 2.8 and 5.6 mg/kg were 6.02 ± 1.66, 5.62 ± 0.35 and 5.79 ± 0.81 min, respectively and the AUC_(0-∞) were 166.29 ± 18.01, 242.40 ± 7.12 and 332.48 ± 23.98 mg/L min, respectively. All these results suggested the pharmacokinetics of phillygenin followed first-order kinetics.	[162]
Phillyrin and Forsythoside A	UHPLC-MS-MS	The t_{1/2} of caffeine, tolbutamide, metoprolol and dapsone in rats after intraperitoneal administration were 5.86 ± 0.83, 5.87 ± 0.83, 4.67 ± 0.63 and 1.17 ± 0.15 h, respectively. But when given a pretreatment of phillyrin and forsythoside A, the t_{1/2} of them changed into 4.63 ± 0.56 and 4.15 ± 0.54, 5.56 ± 0.72 and 4.28 ± 0.74, 3.69 ± 0.54 and 4.17 ± 0.27, 1.05 ± 0.15 and 1.02 ± 0.19 h for phillyrin and forsythoside A, respectively, indicating the inductive effect of phillyrin and forsythoside A on CYP. Further study revealed that phillyrin induced rat CYP1A2 and CYP2D1, while forsythoside A induced CYP1A2 and CYP2C11.	[163]
6. Conclusions

In Asia, *Forsythiae Fructus* is widely used in the clinic as a single drug or compound prescription. Modern pharmacology showed that it has a variety of bioactivities, including anti-inflammatory, antibacterial, antiviral, antioxidant, antitumor, antidiabetic, antihyperlipidemic, antiandrogenic alopecia, antivomiting, antiaging and anti-obesity activities, as well as neuroprotective, hepatoprotective and vasorelaxant effects. In the past few years, many sensitive analysis technologies have been used for research of this herb. Three hundred and twenty-one compounds have been identified, including fifty-one phenylethanoid glycosides, fifty lignans, nineteen aliphatic alcohols with the C6-C2 skeleton, two iridoids, nineteen diterpenoids, twenty-seven triterpenoids, six sterols, nineteen flavonoids, fifty-two volatiles, seven alkaloids, twenty-eight organic acids, six amino acids, nine sugar derivatives, two allylbenzene glycosides and twenty-four others. Among them, forty-five were from the UFF, twenty-two were from the RFF, twenty-one were from the UFF and RFF and the remaining compounds have not been mentioned from UFF or RFF.

Moreover, phenylethanoid glycosides (forsythoside A), lignans (phillyrin, arctiin) and flavonoids (rutin, forsythoneoside D) are the major constituents and exerted various bioactivities, such as anti-inflammatory, antiviral, and neuroprotective effects. Additionally, the different harvest times not only affected the contents but also the bioavailabilities of the active compounds, especially forsythoside A and phillyrin. However, few studies have reported the difference in pharmacological activities between UFF and RFF. Altogether, this review extensively summarized the phytochemistry, quality control, pharmacology and pharmacokinetics of *Forsythiae Fructus*, especially the UFF and RFF, and provided evidence for its further research and clinical applications.

Acknowledgments: The project was financially supported by the National Natural Science Foundation of China (81503376) and applied science and technology research Foundation of Guangdong Province (2016B020237005).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, L.G.; Huang, R.Q. Textual research on “Lianqiao” whose other name be “Lanhua” (cymbidium) in *Shen Nong’s Herbal*. *Lishizhen Med. Mater. Med. Res.* 2000, 11, 358–359.
2. International Pharmacopoeia Commission. Pharmacopoeia Commission of the People’s Republic of China. In *Pharmacopoeia of People’s Republic of China*; Chemical Industry Press: Beijing, China, 2015; Volume 1, pp. 1–1750, ISBN 978-7-5067-7337-9.
3. The Japan Drug Editional Commission of Administration. *Japanese Pharmacopoeia*; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2011; pp. 1–2131.
4. Korea Food and Drug Administration. *South Korean Pharmacopoeia*; Monografs Part II; Ministry of Health and Welfare: Se jong, Korean, 2015; pp. 1004–1241.
5. Chen, H.Y.; Lin, Y.H.; Huang, J.W.; Chen, Y.C. Chinese herbal medicine network and core treatments for allergic skin diseases: Implications from a nationwide database. *J. Ethnopharmacol.* 2015, 168, 260–267. [CrossRef] [PubMed]
6. Jia, J.P.; Zhang, F.S.; Li, Z.Y.; Qin, X.M.; Zhang, L.W. Comparison of Fruits of *Forsythia suspensa* at Two Different Maturation Stages by NMR-Based Metabolomics. *Molecules* 2015, 20, 10065–10081. [CrossRef] [PubMed]
7. Bao, J.L.; Ding, R.B.; Zou, L.D.; Zhang, C.; Wang, K.; Liu, F.; Li, P.; Chen, M.W.; Wan, J.B.; Su, H.X.; et al. *Forsythiae Fructus* Inhibits B16 Melanoma Growth Involving MAPKs/Nrf2/HO-1 Mediated Anti-Oxidation and Anti-Inflammation. *Am. J. Chin. Med.* 2016, 44, 1043–1061. [CrossRef] [PubMed]
8. Su, W.; Xu, H.F.; Huang, H. Effects of the extract of *Forsythia suspensa* on influenza A H1N1 infection in vitro. *J. Med. Plants Res.* 2010, 4, 1455–1458.
9. Zuo, T. Study on the Mechanism of *Forsythia Suspensa* Preventing Vomiting Effect on Chemotherapy Mice. *China J. Chin. Med.* 2015, 30, 1400–1404.
10. Feng, Q.; Xia, W.K.; Wang, X.Z.; Song, H.Y.; Yao, J.C. Protective effects of phillygenin against CCl4 induced hepatic injury in rat. *Chin. Pharmacol. Bull.* 2015, 31, 426–430.
11. Zhang, F.; Yang, Y.N.; Song, X.Y.; Shao, S.Y.; Feng, Z.M.; Jiang, J.S.; Li, L.; Chen, N.H.; Zhang, P.C. Forsythoneosides A–D, Neuroprotective Phenethanol and Flavone Glycoside Heterodimers from the Fruits of Forsythia suspensa. J. Nat. Prod. 2015, 78, 2390–2397. [CrossRef] [PubMed]

12. Zhou, N.Q.; Li, P.; Shi, W.D.; Bai, S.P. The effects and mechanism of Forsythia suspensa on Atherosclerosis Rats Model. Pharm. Clin. Chin. Mater. Med. 2016, 32, 28–33.

13. Zhang, Q.; Jia, C.H.; Xu, H.Y.; Wang, Y.F.; Zhang, M.L.; Huo, C.H.; Shi, Q.W.; Yu, S.H. Chemical Constituents of Plants from the Genus Forsythia. Mini Rev. Org. Chem. 2012, 9, 303–318.

14. Yan, X.J.; Bai, X.Y.; Liu, Q.B.; Liu, S.; Gao, P.Y.; Li, L.Z.; Song, S.J. Two new glycosides from the fruits of Forsythia suspensa. J. Asian Nat. Prod. Res. 2014, 16, 376–382. [CrossRef] [PubMed]

15. Kuang, H.X.; Xia, Y.G.; Yang, B.Y.; Liang, J.; Zhang, Q.B.; Li, G.Y. A New Caffeoyl Phenylethanoid Glycoside from the Unripe Fruits of Forsythia suspensa. Chin. J. Nat. Med. 2009, 7, 278–282. [CrossRef]

16. Ming, D.S.; Yu, D.Q.; Yu, S.S. Two New Caffeyol Glycosides from Forsythia suspensa. J. Asian Nat. Prod. Res. 1999, 1, 327–335. [CrossRef] [PubMed]

17. Ni, Y.N.; Zhuang, H.; Kokot, S. A High Performance Liquid Chromatography and Electrospray Ionization Mass Spectrometry Method for the Analysis of the Natural Medicine, Forsythia Suspensa. Anal. Lett. 2014, 47, 102–116. [CrossRef]

18. Cui, Y.; Wang, Q.; Shi, X.W.; Zhang, X.W.; Sheng, X.N.; Zhang, L.T. Simultaneous Quantification of 14 Bioactive Constituents in Forsythia suspensa by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry. Phytochem. Anal. 2010, 21, 253–260. [CrossRef] [PubMed]

19. Guo, H. Studies on the Chemical Constituents of Forsythia suspensa. Ph.D. Thesis, Peking University, Beijing, China, May 2006.

20. Endo, K.; Hikino, H. Structures of rengyol, rengyoxide, and rengyolone, new cyclohexylethane derivatives from Forsythia suspensa fruits. Can. J. Chem. 1984, 62, 2011–2014. [CrossRef]

21. Wang, F.N.; Ma, Z.Q.; Liu, Y.; Guo, Y.Z.; Gu, Z.W. New phenylethanoid glycosides from the fruits of Forsythia suspensa (Thunb.) Vahl. Molecules 2009, 14, 1324–1331. [CrossRef] [PubMed]

22. Guo, H.; Liu, A.H.; Ye, M.; Yang, M.; Guo, D.A. Characterization of phenolic compounds in the fruits of Forsythia suspensa by high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 715–729. [CrossRef] [PubMed]

23. Li, C.; Dai, Y.; Zhang, S.X.; Duan, Y.H.; Liu, M.L.; Chen, L.Y.; Yao, X.S. Quinoid glycosides from Forsythia suspensa. Phytochemistry 2014, 104, 105–113. [CrossRef] [PubMed]

24. Li, C.; Dai, Y.; Duan, Y.H.; Liu, M.L.; Yao, X.S. A new lignan glycoside from Forsythia suspensa. Chin. J. Nat. Med. 2014, 12, 697–699. [CrossRef] [PubMed]

25. Xia, Y.G.; Yang, B.Y.; Liang, L.; Kuang, H.X. Caffeoyl Phenylethanoid Glycosides from Unripe Fruits of Forsythia suspensa. Chem. Nat. Compd. 2015, 51, 656–659. [CrossRef]

26. Liu, D.L.; Zhang, Y.; Xu, S.X.; Xu, Y.; Wang, Z.X. Phenylethanoid Glycosides from Forsythia suspensa Vahl. J. Chin. Pharm. Sci. 1998, 7, 103–106.

27. Qu, H.H.; Zhang, Y.M.; Chai, X.Y.; Sun, W.J. Isoforsythiaside, an antioxidant and antibacterial phenylethanoid glycoside isolated from Forsythia suspensa. Bioorg. Chem. 2012, 40, 87–91. [CrossRef] [PubMed]

28. Kuang, H.X.; Xia, Y.G.; Liang, J.; Yang, B.Y.; Wang, Q.H. Lianqiaoxinoside B, a novel caffeoyl phenylethanoid glycoside from Forsythia suspensa. Molecules 2011, 16, 5674–5681. [CrossRef] [PubMed]

29. Seya, K.; Endo, K.; Hikino, H. Structures of rengyosides A, B, and C, three glucosides of Forsythia suspensa fruits. Phytochemistry 1989, 28, 1495–1498. [CrossRef]

30. Yan, X.J.; Wen, J.; Xiang, Z.; Cai, D.; Lv, C.N.; Zhao, Y.; Qu, Z.Y.; Liu, Y.J.; Qu, J.L. Two new phenolic acids from the fruits of Forsythia suspensa. J. Asian Nat. Prod. Res. 2016, 19, 254–259. [CrossRef] [PubMed]

31. Liu, X.Z.; Yu, S.H.; Huo, H.L.; Li, F.G.; Sheng, N.; Zhang, L.T. Hplc-Esi-Ms/Ms Quantitative Method for Simultaneous Analysis of Five Bioactive Constituents of Forsythia Suspensa in Rat Bile After. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 44–60.

32. Chang, M.J.; Hung, T.M.; Min, B.S.; Kim, J.C.; Woo, M.H.; Choi, J.S.; Lee, H.K.; Bae, K.H. Lignans from the fruits of Forsythia suspensa (Thunb.) Vahl protect high-density lipoprotein during oxidative stress. Biosci. Biotechnol. Biochem. 2008, 72, 2750–2755. [CrossRef] [PubMed]

33. Fang, Y.; Zhou, G.A.; Liu, M.W. Chemical Constituents from Forsythia suspensa. Chin. J. Nat. Med. 2008, 6, 235–236. [CrossRef]
34. Yan, X.J.; Peng, Y.; Liu, Z.X.; Chen, Y.; Liu, Q.B.; Li, L.Z.; Song, S.J. Three new lignan glycosides from the fruits of Forsythia suspensa. J. Asian Nat. Prod. Res. 2014, 16, 602–610. [CrossRef] [PubMed]
35. Liu, D.L.; Xu, S.X.; Wang, W.F. A Novel Lignan Glucoside from Forsythia suspensa Vahl. J. Chin. Pharm. Sci. 1998, 7, 49–51.
36. Feng, W.S.; Li, K.K.; Zheng, X.K. Studies on Chemical constituents in Forsythia suspensa (Thunb.) Vahl. Chin. Pharm. J. 2009, 44, 490–492.
37. Piao, X.L.; Jang, M.H.; Cui, J.; Piao, X.S. Lignans from the fruits of Forsythia suspensa. Bioorg. Med. Chem. Lett. 2008, 18, 1980–1984. [CrossRef] [PubMed]
38. Kuo, P.C.; Hung, H.Y.; Nian, C.W.; Cheng, J.C.; Kuo, D.H.; Lee, E.J.; Tai, S.H.; Wu, T.S. Chemical Constituents and Anti-inflammatory Principles from the Fruits of Forsythia suspensa. J. Nat. Prod. 2016, 12, 14–22. [CrossRef] [PubMed]
39. Takizawa, Y.; Suzuki, E.; Mitsuhashi, T. Naturally occurring antioxidant. (I). Isolation and determination of natural phenolic antioxidants from Forsythia suspensa Vahl. In Tokyo Gakugei Daigaku Kyō, Dai-4-bumon: Sugaku, Shizen Kagaku; Tokyo Gakugei Daigaku: Tokyo, Japan, 1981; Volume 33, pp. 119–123.
40. Endo, K.; Seya, K.; Hikino, H. Stereostructure of rengyol and isorengyol, phenylethanoids of Forsythia suspensa. Tetrahedron 1987, 43, 2681–2688. [CrossRef]
41. Endo, K.; Seya, K.; Hikino, H. Structure and enantioselective synthesis of suspenol, a new polyol of Forsythia suspensa. In Proceedings of the Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, Sapporo, Japan, 26–28 August 1987; Volume 69, pp. 660–667.
42. Wang, W.F.; Liu, D.L.; Xu, S.X.; Xiao, F.H. Rengyolester isolated from Forsythia suspensa Vahl. J. Shenyang Pharm. Univ. 1999, 16, 138.
43. Zhang, G.G.; Song, S.J.; Ren, J.; Xu, S.X. A New Compound from Forsythia suspensa (Thunb.) Vahl with Antiviral Effect on RSV. J. Herb. Pharmacother. 2002, 2, 35–40. [CrossRef] [PubMed]
44. Liu, Y.; Song, S.J.; Zhang, G.G.; Xu, S.X. A new compound from the fruit of Forsythia suspensa (Thunb.) Vahl. J. Shenyang Pharm. Univ. 2003, 20, 48–49.
45. Dong, S.M. New quinoid glycosides from Forsythia suspensa. J. Nat. Prod. 1998, 61, 377–379.
46. Wang, Y.Z.; Ma, Q.G.; Zheng, X.K.; Feng, W.S. A new forsythenside from Forsythia suspensa. Chin. Chem. Lett. 2008, 19, 1234–1236. [CrossRef]
47. Xue, J.; Xie, L.; Liu, B.R.; Yu, L.X. Triterpenoids from the Fruits of Forsythia suspensa. Chin. J. Nat. Med. 2010, 8, 414–418. [CrossRef]
48. Kuo, P.C.; Chen, G.F.; Yang, M.L.; Lin, Y.H.; Peng, C.C. Chemical Constituents from the Fruits of Forsythia suspensa and Their Antimicrobial Activity. BioMed Res. Int. 2014, 2014, 1–7.
49. Ming, D.S.; Yu, D.Q.; Yu, S.S.; Liu, J.; He, C.H. A new furufuran mono-lactone from Forsythia suspensa. J. Asian Nat. Prod. Res. 1999, 1, 221–226. [CrossRef] [PubMed]
50. Rouf, A.S.S.; Ozaki, Y.; Rashid, M.A.; Rui, J. Dammarane derivatives from the dried fruits of Forsythia suspensa. Phytochemistry 2001, 56, 815–818. [CrossRef]
51. Sun, J.; Zhang, B. Study on the apoptotic induction mechanism of triterpenes isolated from Forsythia suspensa in human gastric cancer cell line SGC-7901. Chin. J. Clin. Pharmacol. Ther. 2010, 15, 851–855.
52. Shin, S.J.; Park, C.E.; Baek, N.I.; Chung, I.S.; Park, C.H. Betulinic and oleanolic acids isolated from Forsythia suspensa VAHL inhibit urease activity of Helicobacter pylori. Biotechnol. Bioprocess Eng. 2009, 14, 140–145. [CrossRef]
53. Yin, J.; Guo, L.G. Modern Research and Clinical Application of Chinese Medicine (1); Academy Press: Beijing, China, 1993; pp. 356–358.
54. Lee, J.S.; Min, B.S.; Bae, K.H. Cytotoxic Constituents from the Forsythiae Fructus against L1210 and HL60 cells. Yak Hak Hoejí 1996, 40, 462–467.
55. Shi, J.M.; Sun, J.; Zhang, G.D.; Yu, L.X.; Qian, X.P.; Liu, B.R. Inhibitory effects of Ambrolic Acid on cell proliferation in human gastric carcinoma cell line SGC-7901. Acta Univ. Med. Nanjing Nat. Sci. 2009, 29, 445–449.
56. Chen, Y.J.; Xiang, J.; Xu, M.J.; Tao, L.; Gu, W. Studies on Chemical Constituents of Forsythia suspensa (Thunb.) Vahl. Chin. J. Chin. Mater. Med. 1999, 24, 296.
57. Guo, Q.; Wang, Z.M.; Lin, L.M.; Xia, B.H.; Deng, X.L. Researches on chemical constituents in medicinal plants in genus Forsythia. Chin. J. Exp. Tradit. Med. Form. 2009, 15, 74–79.
58. Qu, J.L.; Yan, X.J.; Li, C.Y.; Wen, J.; Lu, C.N.; Ren, J.G.; Peng, Y.; Song, S.J. Comparative Evaluation of Raw and Ripe Fruits of Forsythia suspensa by HPLC–ESI-MS/MS Analysis and Anti-Microbial Assay. J. Chromatogr. Sci. 2017, 55, 451–458. [PubMed]

59. Bai, Y.; Li, J.; Liu, W.; Jiao, X.C.; He, J.; Liu, J.; Ma, L.; Gao, X.M.; Chang, Y.X. Pharmacokinetic of 5 components after oral administration of Fructus Forsythiae by HPLC-MS/MS and the effects of harvest time and administration times. J. Chromatogr. B 2015, 993–994, 36–46. [CrossRef] [PubMed]

60. Liu, Y.; Song, S.J.; Xu, S.X.; Fu, X.H. Study on the chemical constituents of the fruits of Forsythia suspensa (Thunb.) Vahl. J. Shenyang Pharm. Univ. 2003, 20, 101–103.

61. Lee, H.W.; Lee, H.S. Acaricidal Abilities and Chemical Composition of Forsythia suspensa Fruit Oil against Storage and Pyroglyphid Mites. J. Appl. Biol. Chem. 2015, 58, 105–108. [CrossRef]

62. Yang, J.J.; Wei, H.M.; Teng, X.N.; Zhang, H.Q.; Shi, Y.H. Dynamic Ultrasonic Nebulisation Extraction Coupled with Headspace Ionic Liquid-based Single-drop Microextraction for the Analysis of the Essential Oil in Forsythia suspensa. Phytochem. Anal. 2014, 25, 178–184. [CrossRef] [PubMed]

63. Zhai, Y.J.; Sun, S.; Song, D.Q.; Sun, Y.; Zhang, Y.P.; Liu, H.; Zhang, H.Q.; Yu, A.M. Rapid Extraction of Essential Oil from Dried Cinnamomum cassia Presl and Forsythia suspensa (Thunb.) Vahl by Ionic Liquid Microwave Extraction. Chin. J. Food Chem. 2010, 28, 2513–2519. [CrossRef]

64. Jiao, J.; Fu, Y.J.; Zu, Y.J.; Luo, M.; Wang, W.; Zhang, L.; Li, J. Enzyme-assisted microwave hydro-distillation essential oil from Fructus Forsythia, chemical constituents, and its antimicrobial and antioxidant activities. Food Chem. 2012, 134, 235–243. [CrossRef]

65. Sun, Y.N.; Ban, R.M.; Deng, Y.H.; Wang, Z.; Ni, Y. Comparative Study on the Chemical Constitutions of Volatile Oils in Forsythia suspensa and Old F. suspensa. China Pharm. 2016, 27, 2087–2089.

66. Wei, S.; Wu, T.; Li, M.; Zhang, S.R. Analysis of Major Components and Anti-bacterial Activity of Volatile Oil from Forsythiae Fructus in Different Origins. Chin. J. Exp. Tradit. Med. Form. 2016, 22, 69–74.

67. Dai, S.J.; Ren, Y.; Shen, L.; Zhang, D.W. New alkaloids from Forsythia suspensa and their anti-inflammatory activities. Planta Med. 2009, 75, 375–377. [CrossRef] [PubMed]

68. Liu, Y.; He, J.M.; Sun, R.X.; Liu, C.; Zhang, R.P.; Shi, J.G. Simultaneous Structural Identification of Constituents in Active Herbal Extract of Forsythia Suspensa Using Nuclear Magnetic Resonance/Liquid Chromatography-Mass Spectrometry Parallel Dynamic Spectroscopy. Chin. J. Anal. Chem. 2011, 39, 323–329.

69. Cai, Q.; Liu, Y.Q.; Feng, X. Studies on the Chemical Constituents from the Seed of Forsythia suspensa. J. Chin. Med. Mater. 2009, 32, 1691–1693.

70. Ming, D.S. Studies on the Chemical Constituents and Pharmacological Activities on Forsythia suspensa and Valeriana jatamansi Jones. Ph.D. Thesis, Peking Union Medical College, Beijing, China, May 1998.

71. Chen, X.; Beutler, J.A.; McCloud, T.G.; Loehfelm, A.; Yang, L.; Dong, H.; Chertov, O.Y.; Salcedo, R.; Oppenheim, J.J.; Howard, O.M.Z. Tannic Acid Is an Inhibitor of CXCL12 (SDF-1)/CXCR4 with Antiangiogenic Activity. Clin. Cancer Res. 2003, 9, 3115–3123. [PubMed]

72. Sun, W.J.; Sheng, J.G. Concise Manual of Natural Active Ingredients; Chinese Medical Science and Technology Press: Beijing, China, 1998.

73. Wang, S.C.; Shi, S.S.; Lian, H.; Zhu, C.; Wang, H.J.; Liu, R.M.; Bligh, S.W.A. Structural Features and Anti-complement Activity of an Acidic Polysaccharide from Forsythia suspensa. J. Glycom. Lipidom. 2016, 2, 1–8.

74. Wang, Y.Q.; Guo, Z.M.; Jin, Y.; Zhang, X.L.; Li, W.; Liang, X.M. Selective enrichment with “click oligo (ethylene glycol)” column and TOF–MS characterization of simple phenylpropanoids in the fruits of Forsythia Suspensa. J. Sep. Sci. 2009, 32, 2958–2966. [CrossRef] [PubMed]

75. Kuang, H.X.; Zhang, N.; Lu, Z.B. The chemical constituents of green Forsythia suspensa. Inform. Tradit. Chin. Med. 1985, 8, 25.

76. Cheng, G.D.; Zhao, Y.L.; Li, H.; Wu, Y.; Li, X.X.; Han, Q.; Dai, C.S.; Li, Y.H. Forsythiaside attenuates lipopolysaccharide-induced inflammatory responses in the bursa of Fabricius of chickens by downregulating the NF-κB signaling pathway. Exp. Ther. Med. 2014, 7, 179–184. [CrossRef] [PubMed]

77. Deng, L.; Pang, P.; Zheng, K.; Nie, J.; Xu, H.C.; Wu, S.Z.; Chen, J.; Chen, X.Y. Forsythoside A Controls Influenza A Virus Infection and Improves the Prognosis by Inhibiting Virus Replication in Mice. Molecules 2016, 21. [CrossRef] [PubMed]
78. Chen, J.; Chen, Q.; Yu, F.; Huang, H.; Li, P.; Zhu, J.; He, X. Comprehensive Characterization and Quantification of Phillyrin in the Fruits of Forsythia suspensa and Its Medicinal Preparations by Liquid Chromatography–Ion Trap Mass Spectrometry. *Acta Chromatogr.* 2016, 28, 145–157. [CrossRef]
79. Lei, J.L.; Li, Y.T.; Nie, H.S.; Du, S.Q.; Li, F. Determination of Phillyrin in *Fructus Forsythiae* from Different Habitats by HPLC. *Clin. Artic. Tradit. Chin. Med.* 2012, 30. [CrossRef]
80. Yan, Y.L.; Liu, M.J.; Yan, H.R.; Li, X.; Xu, J.H.; Yang, J.X. Determination of phillyrin and forsythoside A in *Forsythia suspensa* from different localities by HPLC. *China Pharm.* 2015, 26, 37–39.
81. Xia, H.; Liu, F.Q.; Zhou, Y.P.; Zhang, S.L.; Zhou, X.; Han, J. Simultaneous Determination of Phillyrin and Forsythside A in *Forsythia Fructus* by HPLC. *Pharm. J. Chin. PLA* 2014, 30, 60–62.
82. Li, X.J.; Zhang, Y.P.; Yuan, Z.B. Determination of Rutin and Forsythin in *Forsythia fructus* by HPLC. *Chromatographia* 2002, 56, 171–174. [CrossRef]
83. Zhang, S.R.; Pei, X.P.; Yan, Y.; Wang, J.J. Content Comparison of Active Components in the Fruit and Folium of *Forsyxia suspensa* in Different Harvesting Time. *Chin. Pharm.* 2011, 22, 2940–2942.
84. Ye, L.H.; Gong, X.H.; Li, Y.X.; Peng, C. Comparison of the contents of multiple components derived from qingqiao and laoqiao. *Pharmacol. Chin. Clin. Mater. Med.* 2013, 4, 6–8.
85. Xia, B.; Zhu, J.J.; Wang, Z.M.; Lin, L.M.; Gao, H.M. Quantitative determination of forsythoside in *Forsythia suspensa*. *J. Chin. Med. Mater.* 2010, 35, 2110–2112.
86. Qu, H.H.; Li, B.X.; Li, X.; Tu, G.Z.; Lü, J.; Sun, W.J. Qualitative and quantitative analyses of three bioactive compounds in different parts of *Forsythia suspensa* by high-performance liquid chromatography-electrospray ionization-mass spectrometry. *Microchem. J.* 2008, 89, 159–164. [CrossRef]
87. Xia, Y.G.; Yang, B.Y.; Wang, Q.H.; Liang, J.; Wei, Y.H.; Yu, H.D.; Zhang, Q.B.; Kuang, H.X. Quantitative analysis and chromatographic fingerprinting for the quality evaluation of *Forsythia suspensa* extract by HPLC coupled with photodiode array detector. *J. Sep. Sci.* 2009, 32, 4113–4125. [CrossRef] [PubMed]
88. Zhang, Y.J. Studies on the main chemical constituents of Qinqiao and Laoqiao, and the Activity of Phillyrin and Forsythoside A. Ph.D. Thesis, Shanxi University of Chinese Medicine, Tai Yuan, Shanxi, China, June 2015.
89. Fu, Y.F.; Li, Q.; Bi, K.S. Determination of seven components in *Forsythia suspensa* by RP-HPLC. *Chin. Tradit. Herb. Drugs* 2013, 44, 1043–1046.
90. Guo, H.; Liu, A.H.; Li, L.; Guo, D.A. Simultaneous determination of 12 major constituents in *Forsythia suspensa* by high performance liquid chromatography-DAD method. *J. Pharm. Biomed. Anal.* 2007, 43, 1000–1006. [CrossRef] [PubMed]
91. Zhang, S.R.; Pei, X.L.; Wang, H.Y. Comparison of the Contents of α-pinene and β-pinene in Volatile Oil of *Forsythia suspensa* in Different Harvest Periods. *Chin. Pharm.* 2013, 24, 4469–4471.
92. Zhao, P.F.; Piao, X.S.; Pan, L.; Zeng, Z.K.; Li, Q.Y.; Xu, X.; Wang, H.L. *Forsythia suspensa* extract attenuates lipopolysaccharide-induced inflammatory liver injury in rats via promoting antioxidant defense mechanisms. *Anim. Sci. J.* 2016. [CrossRef] [PubMed]
93. Lee, S.E.; Lim, C.; Kim, H.; Cho, S. A Study of the Anti-Inflammatory Effects of the Ethyl Acetate Fraction of the Methanol Extract of Forsythia Fructus. *Afr. J. Tradit. Complement. Altern. Med.* 2016, 13, 102–113. [PubMed]
94. Sohn, S.H.; Ko, E.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. Genomewide expression profile of *Forsythia suspensa* on lipopolysaccharide-induced activation in microglial cells. *Mol. Cell. Toxicol.* 2008, 4, 113–123.
95. Wang, Y.; Zhao, H.F.; Lin, C.X.; Ren, J.; Ye, Y.Y.; Ji, Z.H.; Zhang, S.Z. The inhibitory effect of forsythin on inflammation in LPS-induced BV2 microglia cells. *J. Apoplexy Nervous Dis.* 2008, 12, 113–123.
96. Hao, Y.; Li, D.F.; Piao, X.L.; Piao, X.S. *Forsythia suspensa* extract alleviates hypersensitivity induced by soybean β-conglycinin in weaned piglets. *J. Ethnopharmacol.* 2010, 128, 412–418. [CrossRef] [PubMed]
97. Sung, Y.Y.; Yoon, T.; Jang, S.; Ho, K.K. *Forsythia suspensa* Suppresses House Dust Mite Extract-Induced Atopic Dermatitis in NC/Nga Mice. *PLoS ONE* 2016, 1–17. [CrossRef] [PubMed]
98. Yuan, A.; Luo, L.; Gong, X.H.; Li, Y.; Zhao, M.J.; Zhang, R.Q.; Li, Y.X. Effect of Forsythia Extract on Paw Edema Induced by Carrageenan and Fresh Egg White in Rats. *Liaoning Tradit. Chin. Med. Mag.* 2016, 43, 2190–2202.
99. Guo, J.; Shen, Y.J.; Xie, Y.H. The experimental study inflammation of Essential Oil from Fructus forsythia. *Sichuan Physiol. Sci. Mag.* 2005, 27, 136–137.
100. Pan, C.W.; Zhou, G.Y.; Chen, W.L.; Zhuge, L.; Jin, L.X.; Zheng, Y.; Lin, W.; Pan, Z.Z. Protective effect of forsythiaside A on lipopolysaccharide/d-galactosamine-induced liver injury. *Int. Immunopharmacol.* **2015**, *26*, 80–85. [CrossRef] [PubMed]

101. Pan, X.L.; Cao, X.; Li, N.; Xu, Y.M.; Wu, Q.Y.; Bai, J.; Yin, Z.M.; Luo, L.; Lan, L. Forsythia inhibits lipopolysaccharide-induced inflammation by suppressing JAK-STAT and p38 MAPK signalings and ROS production. *Inflamm. Res.* **2014**, *63*, 597–608. [CrossRef] [PubMed]

102. Zeng, X.Y. Experimental Study on The Effect of Anti-endotoxin of Forsythoside A through HMG1B1/TLR4/NF-kB Signaling Pathway. Ph.D. Thesis, Nanchang University, Nanchang, China, June 2016.

103. Zhong, W.T.; Wu, Y.C.; Xie, X.X.; Zhou, X.; Wei, M.M.; Soromou, L.W.; Ci, X.X.; Wang, D.C. Phillyrin attenuates LPS-induced pulmonary inflammation via suppression of MAPK and NF-kB activation in acute lung injury mice. *Fitoterapia* **2013**, *90*, 132–139. [CrossRef] [PubMed]

104. Lee, S.; Shin, S.; Kim, H.; Han, S.; Kwon, J.; Kwak, J.H.; Lee, C.K.; Ha, N.J.; Yim, D.; Kim, K. Anti-inflammatory function of arctiiin by inhibiting COX-2 expression via NF-κB pathways. *J. Inflamm.* **2011**, *8*, 1–9. [CrossRef] [PubMed]

105. Liu, J.Z.; Zhang, L.W. Anti-inflammatory Activity of *Forsythia suspensa* Extract on Human Airway Epithelial Cells Inflammation Model. *Nat. Prod. Res. Dev.* **2015**, *27*, 1248–1253.

106. Sung, Y.Y.; Lee, A.Y.; Kim, H.K. *Forsythia suspensa* fruit extracts and the constituent matairesinol confer anti-allergic effects in an allergic dermatitis mouse model. *J. Ethnopharmacol.* **2016**, *187*, 49–56. [CrossRef] [PubMed]

107. Cheng, L.; Li, F.; Ma, R.; Hu, X.P. Forsythiaside inhibits cigarette smoke-induced lung inflammation by activation of Nrf2 and inhibition of NF-κB. *Int. Immunopharmacol.* **2015**, *28*, 494–499. [CrossRef] [PubMed]

108. Coon, T.A.; McKelvey, A.C.; Weathington, N.M.; Birru, R.L.; Lear, T.; Leikauf, G.D.; Chen, B.B. Novel PDE4 Inhibitors Derived from Chinese Medicine Forsythia. *PLoS ONE* **2014**, *9*, 1–14. [CrossRef] [PubMed]

109. Kang, H.S.; Lee, J.Y.; Kim, C.J. Anti-inflammatory activity of arctigenin from Forsythiae Fructus. *J. Ethnopharmacol.* **2008**, *116*, 305–312. [CrossRef] [PubMed]

110. Wang, Y.; Zhao, H.F.; Lin, C.X.; Ren, J.; Zhang, S.Z. Forsythiaside A Exhibits Anti-inflammatory Effects in LPS-Stimulated BV2 Microglia Cells Through Activation of Nrf2/HO-1 Signaling Pathway. *Neurochem. Res.* **2016**, *41*, 659–665. [CrossRef] [PubMed]

111. Wang, J.H.; Wang, X.X.; Liu, D. Inhibitory effect of forsythia on the inflammatory responses of monocyte-macrophage induced by *Staphylococcus aureus*. *J. Xinxiang Med. Univ.* **2013**, *25*, 569–576. [CrossRef]

112. Xiao, H.M.; He, Y.; Wang, S.W.; Wang, J.B.; Xie, Y.H. Experimental study on the antibacterial activity of the Essential Oil from Forsythiae Fructus in vitro. *Inner Monog. Med.* **2011**, *15*, 99–100.

113. Li, H.; Dai, X.H.; Tian, W.L.; Zhang, H.L. Chinese herbal medicine *Fruictus forsythiae* extract inhibits *Staphylococcus aureus* alpha-hemolysin secretion activity. *Clin. J. Vet. Sci.* **2013**, *33*, 404–408.

114. Han, X.; Piao, X.S.; Zhang, H.Y.; Li, P.F.; Yi, J.Q.; Zhang, Q.; Li, P. *Forsythia suspensa* Extract Has the Potential to Substitute Antibiotic in Broiler Chicken. *Asian Australas. J. Anim. Sci.* **2012**, *25*, 569–576. [CrossRef] [PubMed]

115. Huang, R.Y.; Mu, X.P.; Bo, C.P.; Zhang, D.C.; Deng, W.Y. Effect of *Forsythia suspensa* on the adeb gene of the active efflux system of multidrug-resistant *Acinetobacter baumannii*. *J. Pathog. Biol.* **2016**, *6*, 111–114.

116. Ko, H.C.; Wei, B.L.; Chiou, W.F. Dual regulatory effect of plant extracts of Forsythia suspensa on RANTES and MCP-1 secretion in influenza A virus-infected human bronchial epithelial cells. *J. Ethnopharmacol.* **2005**, *102*, 418–423. [CrossRef] [PubMed]

117. Qu, X.Y.; Li, Q.J.; Zhang, H.M.; Zhang, X.J.; Shi, P.H.; Zhang, X.J.; Yang, J.; Zhou, Z.; Wang, S.Q. Protective effects of phillyrin against influenza A virus in vivo. *Arch. Pharm. Res.* **2016**, *39*, 998–1005. [CrossRef] [PubMed]

118. Duan, L.J.; Zhang, Q.; Wang, N.R.; Yang, B.; He, S.Q.; Sun, J. Effect of Phillyrin on Gene Expression of Influenza A Virus Nucleoprotein. *Res. Tradit. Chin. Med. West. Med.* **2012**, *15*, 2082–2084.

119. Yang, M.; Lu, Y.; Ma, Y.Y.; Wu, G.Y.; Beier, R.R.; Hou, X.L.; Wu, G.J. Inhibition of porcine reproductive and respiratory syndrome virus in vitro by forsythoside A. *Int. J. Pharmacol.* **2015**, *11*, 394–399.
121. Li, H.W.; Wu, J.F.; Zhang, Z.W.; Ma, Y.Y.; Liao, F.F.; Zhang, Y.; Wu, G.J. Forsythoside A inhibits the avian infectious bronchitis virus in cell culture. *Phytother. Res.* **2011**, *25*, 338–342. [CrossRef] [PubMed]

122. Zhang, T.; Liu, B.H.; Yang, X.L.; Lv, A.; Zhang, Z.C.; Gong, P.; Li, D.Y.; Hou, X.L. Effect of forsythoside A on expression of intracellular receptors and antiviral gene in IBV-infected cells. *J. Beijing Univ. Agric.* **2017**, *32*, 37–41.

123. Huang, C.Y.; Huang, T.Z.; Zhang, H.; Cheng, S.J.; Qi, L.Y.; Xiao, G.; Huang, S.Y. Study on Optimization of Orthogonal Design of Enzyme Extraction Craft and Antioxidant Activity of *Forsythia suspensa* Polysaccharide. *Chem. World* **2017**, *1*, 38–42.

124. Lu, T.; Piao, X.L.; Zhang, Q.; Wang, D.; Piao, X.S.; Kim, S.W. Protective effects of *Forsythia suspensa* extract against oxidative stress induced by diquat in rats. *Food Chem. Toxicol.* **2010**, *48*, 764–770. [CrossRef] [PubMed]

125. Huang, C.Y.; Zheng, H.J.; Ling, X.L.; Liang, H.Y.; Huang, C.J.; Huang, S.Y. Study of Antioxidant Property of the Extract from *Forsythia suspensa* Ethyl Acetate. *Chin. Wild Plant Res.* **2017**, *36*, 15–17.

126. Zhang, T.; Liu, B.H.; Yang, X.L.; Lv, A.; Zhang, Z.C.; Gong, P.; Li, D.Y.; Hou, X.L. Effect of forsythoside A on peroxynitrite-induced LLC-PK1 cell damage. *Phytother. Res.* **2009**, *23*, 938–942. [CrossRef] [PubMed]

127. Yan, L.Y.; Liu, M.J.; Yan, H.R.; Li, X.; Xu, J.H.; Yang, J.X. Study on Anti-aging Effects of Phillyrin on Aging Model Mice. *Chin. Pharm.* **2013**, *92*, 1774–1781. [CrossRef] [PubMed]

128. Hao, P.F.; Piao, X.S.; Zeng, Z.K.; Li, P.; Xu, X.; Zhang, H.L. Effect of *Forsythia suspensa* extract and chito-oligosaccharide alone or in combination on performance, intestinal barrier function, antioxidant capacity and immune characteristics of weaned piglets. *Anim. Sci. J.* **2016**, *39*, 105–116. [CrossRef] [PubMed]

129. Zeng, Z.K.; Li, Q.Y.; Piao, X.S.; Liu, J.D.; Zhao, P.F.; Xu, X.; Zhang, S.; Niu, S. *Forsythia suspensa* extract attenuates corticosterone-induced growth inhibition, oxidative injury, and immune depression in broilers. *Poult. Sci.* **2014**, *93*, 1774–1781. [CrossRef] [PubMed]

130. Zhang, H.Y.; Piao, X.S.; Zhang, Q.; Li, P.; Yi, J.Q.; Liu, J.D.; Li, Q.Y.; Wang, G.Q. The effect of *Forsythia suspensa* extract and berberine on growth performance, immunity, antioxidant activities, and intestinal microbiota in broilers under high stocking density. *Poult. Sci.* **2013**, *92*, 1981–1988. [CrossRef] [PubMed]

131. Yan, L.Y.; Liu, M.J.; Yan, H.R.; Li, X.; Xu, J.H.; Yang, J.X. Study on Anti-aging Effects of Phillyrin on Aging Model Mice. *Chin. Pharm.* **2013**, *92*, 1981–1988. [CrossRef] [PubMed]

132. Lin, L.X.; Zhang, L.W.; Du, H.Z. Improvement of *Forsythia suspensa* on Neuroinflammation Induced by Mice. *Chin. J. Exp. Tradit. Med. Form.* **2011**, *19*, 37–41. [CrossRef] [PubMed]

133. Sun, X.P.; Wang, Y.H.; Wang, L.W.; Qin, C.; Liu, X.M. Neuroprotective Effects of *Forsythia suspensa* on Glutamate, Low-glucose and Low Serum, Aβ25-35-induced Neurotoxicity in PC 12 Cell. *Chin. J. Exp. Tradit. Med. Form.* **2013**, *19*, 197–200. [CrossRef]

134. Zhang, M.R.; Wei, S.R.; Wu, Y.C.; Sun, F.L.; Ai, H.J.; Zhang, L.; Wang, W. Effects of Phillyrin on MPP+-induced Injury in SH-SYSY Neuroblastoma Cells. *Acta Neuropsychopharmacol.* **2011**, *1*, 12–15.

135. Lu, T.; Piao, X.L.; Zhang, Q.; Wang, D.; Piao, X.S.; Kim, S.W. Protective effects of *Forsythia suspensa* extract and berberine on growth performance, immunity, antioxidant activities, and intestinal microbiota in broilers under high stocking density. *Poult. Sci.* **2013**, *92*, 1981–1988. [CrossRef] [PubMed]

136. Lin, L.X.; Zhang, L.W.; Du, H.Z. Improvement of *Forsythia suspensa* on Neuroinflammation Induced by Mice. *Chin. J. Exp. Tradit. Med. Form.* **2011**, *19*, 37–41. [CrossRef] [PubMed]

137. Sun, X.P.; Wang, Y.H.; Wang, L.W.; Qin, C.; Liu, X.M. Neuroprotective Effects of *Forsythia suspensa* on Glutamate, Low-glucose and Low Serum, Aβ25-35-induced Neurotoxicity in PC 12 Cell. *Chin. J. Exp. Tradit. Med. Form.* **2013**, *19*, 197–200. [CrossRef]
142. Zheng, M.; Jiang, Z.M. Effects of phillyrin on VEGF and endostatin expression in Lewis lung carcinoma. *Chin. J. Pathophysiol.* 2016, 32, 167–171.

143. Wang, C.L.; Yan, H.T.; Liu, B.R. Effects of antiproliferation and radiosensitivity on PC-3 cell of prostate cancer induced by triterpenes component. *Shangdong Med.* 2011, 51, 25–27.

144. Wang, E.L.; Yao, J.C.; Liu, Z. Effect of forsythiaside on immunological hepatic fibrosis of rats. *Drug Eval. Res.* 2015, 38, 161–164.

145. Liu, Y.H.; Qi, Z.L.; Xu, G.X.; He, L.; Yang, J.H. Protective effect of forsythin on alcoholic liver injury. *Chin. Clin. Pharmacol. Ther.* 2016, 21, 6–9.

146. Fan, X.B.; Li, W.X.; Chen, B.H.; Xiong, Z.Y.; Duan, J.M. Effect of *Forsythia suspensa* on expression of NF-κB and Foxp3 during liver injury in rats with severe acute pancreatitis. *J. Clin. Hepatol.* 2013, 29, 503–507.

147. Zhang, Y.Y.; Feng, F.; Chen, T.; Li, Z.W.; Shen, Q.W.W. Antidiabetic and antihyperlipidemic activities of *Forsythia suspensa* (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. *J. Ethnopharmacol.* 2016, 192, 256–263. [CrossRef] [PubMed]

148. Iizuka, T.; Nagai, M. Vasorelaxant effects of forsythiaside from the fruits of *Forsythia suspensa*. *Yakugaku Zasshi* 2015, 125, 219–224. [CrossRef]

149. Do, M.T.; Kim, H.G.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Hwang, Y.P.; Na, M.K.; Jeong, H.G. Phillyrin attenuates high glucose-induced lipid accumulation in human HepG2 hepatocytes through the activation of LKB1/AMP-activated protein kinase-dependent signaling. *Food Chem.* 2013, 136, 415–425. [CrossRef] [PubMed]

150. Kong, P.; Zhang, L.L.; Guo, Y.L.; Lin, D.P. Phillyrin, a Natural Ligands, Attenuates Tumor Necrosis Factor α-Mediated Insulin Resistanceand Lipolytic Acceleration in 3T3-L1 Adipocytes. *Nat. Planta Med.* 2014, 80, 880–886.

151. Xiao, H.B.; Su, G.G.; Lu, X.Y. Phillyrin lowers body weight in obese mice via the modulation of PPAR-ANGPTL 4 pathway. *Obes. Res. Clin. Pract.* 2017, 2, 1–9. [CrossRef] [PubMed]

152. Shin, H.S.; Park, S.Y.; Song, H.G.; Hwang, E.; Lee, D.G.; Yi, T.H. The Androgenic Alopecia Protective Effects of Forsythiaside A and the Molecular Regulation in a Mouse Model. *Phytother. Res.* 2015, 29, 870–876. [CrossRef] [PubMed]

153. Zhang, X.R. Effect of Forsythiaside A on Immune Regulation in Endotoxemia Mice and Mechanism of Action. *Chin. Med. Guide* 2016, 22, 57–60.

154. Su, H.C.; Wang, H.Y.; Liu, C.L.; Kong, X.Y.; Lin, N. Effect of Forsythiaside A on Temperature and Expression of TRPA1 in Mice with Yeast Induced Pyrexia. *Chin. J. Exp. Tradit. Med. Form.* 2016, 22, 134–138.

155. Meng, X.L.; Guo, Y.L.; Su, C.F.; Huang, H.Y.; Gui, X.J.; Li, X.L. Discussion of Inhibitory of Forsythoside A on Efflux Function and Mechanism of P-glycoprotein in Caco-2 Cell Membrane. *Chin. J. Exp. Tradit. Med. Form.* 2015, 21, 5–8.

156. Lin, Y.H.; Chen, Y.C.; Hu, S.; Chen, H.Y.; Chen, J.L.; Yang, S.H. Identifying core herbal treatments for urticaria using Taiwan’s nationwide prescription database. *J. Ethnopharmacol.* 2013, 148, 556–562. [CrossRef] [PubMed]

157. Chen, H.Y.; Lin, Y.H.; Chen, Y.C. Identifying Chinese herbal medicine network for treating acne: Implications from a nationwide database. *J. Ethnopharmacol.* 2016, 179, 1–8. [CrossRef] [PubMed]

158. Wang, G.N.; Pan, R.L.; Liao, Y.H.; Chen, J.T.; Chang, Q. An LC-MS/MS method for determination of forsythiaside in rat plasma and application to a pharmacokinetic study. *J. Chromatogr. B.* 2010, 878, 102–106. [CrossRef] [PubMed]

159. Chu, Y.; Wang, X.Y.; Guo, J.H.; Li, W.; Ma, X.H.; Zhu, Y.H. Pharmacokinetic study of unbound forsythiaside in rat blood and bile by microdialysis coupled with HPLC method. *Eur. J. Drug Metab. Pharmacokinet.* 2012, 37, 173–177. [CrossRef] [PubMed]

160. Li, Y.X.; Ye, L.H.; Jiang, X.H.; Peng, C. Assessment and modulation of phillyrin absorption by P-gp using Caco-2 cells and MDR1-MDCKII cells. *Eur. J. Drug Metab. Pharmacokinet.* 2011, 36, 41–47. [CrossRef] [PubMed]

161. Wang, H.R.; Zhang, X.X.; Jia, P.P.; Zhang, Y.F.; Tang, S.W.; Wang, H.T.; Li, S.; Yu, X.L.; Li, Y.F.; Zhang, L.T. Metabolic profile of phillyrin in rats obtained by UPLC-Q-TOF-MS. *Biomed. Chromatogr.* 2016, 30, 913–922. [CrossRef] [PubMed]
162. Ye, L.H.; Li, Y.X.; Peng, C.; Gong, X.H.; Zheng, X.G. Determination of phillygenin in rat plasma by high-performance liquid chromatography and its application to pharmacokinetic studies. *Eur. J. Drug. Metab. Pharmacokinet.* **2013**, *38*, 201–207. [CrossRef] [PubMed]

163. Cheng, Y.W.; Liang, X.L.; Feng, L.Y.; Liu, D.; Qin, M.N.; Liu, S.; Liu, G.F.; Dong, M. Effects of phillyrin and forsythoside A on rat cytochrome P450 activities in vivo and in vitro. *Xenobiotica* **2017**, *47*, 297–303. [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).