Signatures of \tilde{R}_2 class of Leptoquarks at the upcoming ep colliders

Rojalin Padhan,1,2,* Sanjoy Mandal,1,2,† Manimala Mitra,1,2,‡ and Nita Sinha3,2,§

1Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
2Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, India
3The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600 113, India

We explore the signatures of the \tilde{R}_2 class of leptoquark (LQ) models at the proposed $e^- p$ and $e^+ p$ colliders. We carry out an analysis for the proposed colliders LHeC and FCC-eh with center of mass (c.m.) energy 1.3 TeV and 3.46 TeV, respectively. For \tilde{R}_2 class of LQ models, there are a number of final states that can arise from LQ production and its subsequent decay. In this report we do a detailed cut-based analysis for the $l^{\pm} j$ final state. We also discuss the effect of polarized electron and positron beams on LQ production and in turn on $l^{\pm} j$ production. At LHeC, the final state $l^+ j$ has very good discovery prospects. We find that, only 100 fb$^{-1}$ of data can probe LQ mass up to 1.2 TeV with 5σ significance, even with a generic set of cuts. On the contrary, at FCC-eh, one can probe LQ masses up to 2.2 TeV (for e^- beam) and 3 TeV (for e^+ beam), at more than 5σ significance with luminosity 1000 fb$^{-1}$ and 500 fb$^{-1}$, respectively.

INTRODUCTION

LQs are hypothetical particles which can emerge from the unification of quarks and leptons in the Pati-Salam model [1]. LQs also exist in grand unified theories based on $SU(5)$ [2] and $SO(10)$ [3–5]. TeV scale LQs can also exist in extended technicolor models [6–9]. Under the Standard Model (SM) representation, there are twelve types of LQs, six of them are scalar, while the other six are vector type of LQs [10]. We consider the scalar LQ \tilde{R}_2 charged as $(3,2,1/6)$ under SM gauge group. The advantage with \tilde{R}_2 type of scalar LQ is that in addition to the coupling with the lepton and jet, the model also has right handed (RH) neutrinos coupled to the LQ. Hence, this model provides unique signatures, that can be tested in different collider and non-collider experiments. Moreover, the \tilde{R}_2 also allows for matter stability [11]. LQs can be most easily tested at ep colliders. At ep colliders such as LHeC [12, 13] and FCC-eh [13, 14], LQs can be resonantly produced. LHeC and FCC-eh are the proposed ep colliders, planned to operate with c.m. energies $\sqrt{s} = 1.3$ TeV and $\sqrt{s} = 3.46$ TeV, respectively. LHeC (FCC-eh) will use electron and possibly positron beam of 60 GeV, to collide with the 7 TeV (50 TeV) proton beam. There are number of important phenomenological beyond standard model studies for ep colliders which have been listed in Ref. [15].

For the specific type of LQ model, that we consider in this paper, the LQ can decay to a lepton and jet, as well as, to a jet and RH neutrino. The decay of LQ into a lepton and a jet, and the decay to a jet and RH neutrino with the subsequent decays of RH neutrino in different SM states give rise to many possible final states. In this work, we have studied in detail the final state $l^{\pm} j$. We have considered both the scenarios of electron and positron beams. We show that with judicious application of selection cuts, final state $l^{\pm} j$ has very good discovery prospects at LHeC and FCC-eh colliders. We find that, we can probe the LQ mass up to 1.2 TeV at more than 5σ significance with e^+ beam at LHeC. For FCC-eh, we can easily probe LQ mass up to 2.2 TeV (3 TeV) with e^- (e^+) beam.

The paper is organized as follows: First we review the model and the existing constraints on LQ. Following this, we discuss the production of LQ at an ep collider and compare with the LHC. In the subsequent sections, we present a detailed collider analysis and discuss the discovery prospects of the final state $l^{\pm} j$. Finally, we conclude.

MODEL

We consider an extension of the SM with a single scalar LQ, $\tilde{R}_2(3, 2, 1/6) = (\tilde{R}_2 \frac{2}{\sqrt{3}}, \tilde{R}_\nu \frac{2}{\sqrt{3}})^T$. This is a genuine LQ ($F = 3B + L = 0$). The superscript of \tilde{R}_2 denotes the electromagnetic (em) charge. In the presence of the RH neutrinos $N_R (1,1,0)$, the LQ has additional interaction [10, 16, 17],

$$\mathcal{L} = -Y_{ij} d_R \tilde{R}_2 e^{ab} L^j_L + Z_{ij} Q_L \tilde{R}_2 N_R^j + h.c.,$$ \hspace{1cm} (1)
where \(a, b = 1, 2\) are \(SU(2)_L\) indices. Upon expansion, the Lagrangian becomes

\[
\mathcal{L} = -Y_{ij} \bar{d}_i R^j \tilde{R}^{2/3} + (Y_{\text{PMNS}})_{ij} \bar{d}_i \nu_L \tilde{R}^{-1/3} + (V_{\text{CKM}} Z)_{ij} \bar{u}_i L \tilde{R}^{2/3} + Z_{ij} \bar{d}_i N_R \tilde{R}^{-1/3} + \text{h.c.,}
\]

where \(i, j = 1, 2, 3\) are flavor indices. \(Y\) and \(Z\) are the Yukawa couplings. \(U_{\text{PMNS}}\) and \(V_{\text{CKM}}\) represent the Pontecorvo-Maki-Nakagawa-Sakata and the Cabibbo-Kobayashi-Maskawa matrices. For simplicity, we assume that both the Yukawa couplings are diagonal, \(Y_{ij} = \delta_{ij} Y_{ii}\) and \(Z_{ij} = \delta_{ij} Z_{ii}\), where \(i, j = 1, 2, 3\).

Hence in our model \(LQ\) couples to the same generation of lepton and quark. Although, most of the collider bounds on \(LQ\) mass and coupling are derived assuming only one generation is present at a time, our model can have non-zero couplings of \(LQ\) to fermions of more than one generation. In the next section, we review the existing constraints on \(LQ\) mass and couplings.

CONSTRAINTS ON LQ MASS AND COUPLINGS

Tight constraints exist on \(\tilde{R}_2\) type of scalar \(LQ\)’s mass and coupling from both the collider experiments as well as low energy experiments such as atomic parity violation and lepton flavour violating decays, \(K_L \rightarrow \mu^- e^+\) etc. Below, we summarize present bounds on \(LQ\) mass and couplings.

Atomic Parity Violation

There are tight bounds on Yukawa couplings \(Y_{de}\) and \(Y_{ue}\) from atomic parity violation (APV) experiments. Following Ref. [18], the present bound on the coupling \(Y\) from atomic parity violation are \(Y_{de} < 0.34 \frac{M_{LQ}}{\text{TeV}}\) and \(Y_{ue} < 0.36 \frac{M_{LQ}}{\text{TeV}}\). Hence for larger \(LQ\) mass the allowed values of Yukawa couplings will also be large. Note that, these bounds are derived with the assumption that only one of the Yukawa coupling is present at a time.

\[K_L \rightarrow \mu^- e^+\]

The tree level lepton flavour violating (LFV) process \(K_L \rightarrow \mu^- e^+\) gives tight constraints on the diagonal couplings of \(\tilde{R}_2\). Specifically this tree level process constrains the product of Yukawa couplings \(|Y_{\mu\mu} Y_{\nu e}^*|\). Following Refs. [18, 19], the experimental upper bound on the decay mode \(K_L \rightarrow \mu^- e^+\) results in the bound on the product of Yukawas and is given by \(|Y_{\mu\mu} Y_{\nu e}^*| \leq 2.1 \times 10^{-3} \frac{M_{LQ}}{\text{TeV}}\). Therefore, couplings of first two generations are tightly constrained.

Collider bounds

The present tightest collider bounds on \(LQs\) come from LHC [20–25]. LHC has specifically looked for the final states \(pp \rightarrow LQ LQ \rightarrow \ell j \ell j\) with the assumption that \(LQ\) decays to the final state \(\ell j\) with 100% branching ratio. LHC constrains first [25], second [21] and third generation [20] of \(LQ\) considering \(\ell\) to be \(e, \mu\) or \(\tau\). From the non-observation of any new physics at LHC, the \(LQs\) mass up to 1.435 TeV at 95% C.L [25] has been ruled out for the first generation. In Fig. 1, we have shown the Feynman diagrams for \(LQ\) pair productions at LHC. For smaller values of Yukawa coupling \(Y\), \(LQ\) pair production is dominated by the gluon-initiated diagrams, whereas for relatively larger Yukawa coupling \(Y\), the \(t\)-channel quark-initiated diagram can dominate.
In Fig. 2, we have shown present limit on scalar LQ pair-production times branching fraction to ej final state as a function of mass for first generation LQs from CMS experiment with $\sqrt{s} = 13$ TeV and luminosity 35.9fb^{-1}. The red and black lines are the expected and observed limits. The green line is the theory prediction.

In the next section, we discuss about the LQ production at colliders.

LQ PRODUCTION

At an ep collider, scalar LQs can be resonantly produced through s-channel process, as shown in the upper panel of Fig. 3. LQs can also mediate t-channel process $ep \rightarrow lj$, as shown in the lower panel of Fig. 3. Single or pair production of LQs is also possible at pp colliders such as LHC. We have shown the feynman diagrams for pair production and single production of LQs at LHC in Fig. 1 and Fig. 4, respectively. We compare the production of LQ at e^-p collider with that at LHC. For comparison of production cross-section of LQ at LHeC and LHC, we have shown the production cross-section of single LQ at LHeC, as well as that for both the single and pair production at LHC, in the upper panel of Fig. 5 for varying LQ mass. For this comparison, electron and proton beams are fixed at 60 GeV and 7 TeV, respectively. For LQ mass upto 1.2 TeV, the single LQ production at ep collider clearly dominates over the single and pair production of LQ at LHC. For LQ mass $M_{LQ} > 1.2$ TeV, single LQ production at LHC dominates. In the lower panel of Fig. 5, we have given the comparison of single LQ production at e^-p and e^+p colliders. For this comparison we have fixed the electron or positron beam at 60 GeV and for proton beam we have taken 7 TeV and 50 TeV. From this plot, it is evident that LQ production at e^+p collider is larger than that at the e^-p collider for the chosen mass range. This occurs as the Z charged LQ couples with $e^-\bar{d}$ and $e^+\bar{d}$, respectively and a quark parton distribution function is larger than that for anti-quark.

We also compute the production cross-section for the channel lj with both polarised and unpolarised elec-

TABLE I. Values of different model parameters used in the analysis for $M_{LQ} = 1$ TeV.

Benchmarks	M_{LQ}	M_{N_1}	Y	Z
BP_1	1000	100	(0.34, 0, 0)	(1.03, 0, 0)

TABLE II. LQ mass, corresponding to the maximum allowed value of Y_{11} consistent with APV and lower bound on Z_{11} according to LHC constraint.

M_{LQ}	Y_{11}	Z_{11}
687	0.233	1.29
860	0.29	1.27
1000	0.34	1.03
1110	0.377	0.84
1204	0.41	0.65

FIG. 2. Present limit on scalar LQ pair-production times branching fraction to $eejj$ final state as a function of mass for first generation LQs from CMS experiment with $\sqrt{s} = 13$ TeV and luminosity 35.9fb^{-1}. The red and black lines represent observed and expected limits. Note that, Ref. [25] also studies the $evjj$ channel. For $\beta = 0.5$, using the $evjj$ channel alone, LQ masses are excluded below 1.195 TeV. It also gives limit on LQ mass combining both the channels $eejj$ and $evjj$. In our analysis we have chosen the values of Yukawa couplings and LQ mass according to this combined limit presented in Fig. 9 of Ref. [25].

Note that, assuming 100% branching ratio to ej final state (which implies $Z_{11} = 0$), bound on LQ mass is 1.435 TeV. If the branching ratio β to ej is less than 100% (which is of course possible if LQ has additional interactions such as $LQ_{-j}\nu j$, $LQ_{-j}N_1$), the bound on LQ mass can be lowered. For example, to be consistent with LHC, flavour and APV constraints, for LQ mass 1 TeV, one can choose the coupling $Y_{11} = 0.34$ and $Z_{11} = 1.03$. We have shown this benchmark BP_1 in Table I. For different LQ masses we have chosen different benchmark points consistent with all the existing constraints, which we summarize in Table II.
FIG. 3. Feynman diagram for the ℓj production in $e^- p$ collider.

FIG. 4. Single LQ production at LHC.

FIG. 5. Upper Panel: comparison of single LQ production at LHeC with respect to single or pair production of LQ at LHC. Lower Panel: cross section for single LQ production at $e^+ p$ and $e^- p$ collider for various proton beam energies. The electron or positron beam has been fixed at 60 GeV. In both these cases, the coupling Y_{dc} has been varied as $0.34 \frac{M_{LQ}}{1\text{ TeV}}$, in agreement with the APV constraints. For these plots we have considered $Z_{11} = 0$.

tron and positron beams to show how much the cross-sections differ. There is a relative enhancement in $l^- j$ ($l^+ j$) production cross-sections at $e^- p$ ($e^+ p$) collider when the electron (positron) beam is dominantly left (right)-polarised. We have shown our results in Fig. 6 for both LHeC and FCC-eh case. We can see that the production rates improve by almost a factor of 2 over the entire range of the LQ mass in the case of polarised electron or positron beams. This enhancement occurs due to the couplings $e_L^- - \tilde{R}_2^\pm - \tilde{d}$ and $e_R^+ - \tilde{R}_2^\pm - d$ at $e^- p$ and $e^+ p$ colliders, respectively. Hence at $e^- p$ and $e^+ p$ colliders, LQ predominantly couples with left polarized electron and right polarized positron, respectively.

In Fig. 7 we present a densityplot which shows the variation of cross-section for the process $e^- p \rightarrow l^- j$ with the variation of $R_2 - e - d$ coupling (Y_{11}) and mass of the LQ (M_{LQ}). Here the $R_2-N_R - u$ coupling (Z_{11}) is fixed to 1.03 and mass of the right-handed neutrino...
FIG. 6. Production cross-section of l^-j (l^+j) with and without 80% left(right)- polarised electron (positron) beam. The dotted and solid lines represent the variation of production cross-section with and without the polarised electron or positron beam. Upper panel is for LHeC and lower panel is for FCC-eh. In both these cases, the coupling Y_{de} has been varied as $0.34 - 0.62$, in agreement with the APV constraints and we have fixed $Z_{11} = 0.62$.

FIG. 7. Variation of $\sigma(e^-p \rightarrow l^-j)$ in $Y_{11} - M_{LQ}$ plane. Blue region is disallowed from atomic parity violation. The upper region corresponding to each of the dashed ($Z_{11} = 0.42$), dotted ($Z_{11} = 0.62$), and dotted-dashed ($Z_{11} = 1.03$) line is disallowed from 13 TeV LHC search [25], where we consider the combined limit on branching ratio from [25]. The colour bar indicates the cross-section for $e^- p \rightarrow l^- j$ for 60 GeV electron and 7 TeV proton beam. We consider BP 1 for this plot.

(M_{N_L}) is assumed to be 100 GeV. The dashed curves represent the constraints on Y_{11}, for Z_{11} equal to 0.42, 0.62 and 1.03, from LHC search [25]. Region below each dashed curve is allowed for respective value of Z_{11}. Blue region in $Y_{11} - M_{LQ}$ plane is disallowed due to limit on Y_{11} from APV. Here we considered c.m. energy $\sqrt{s} = 1.3$ TeV. As we can see, a 700 GeV mass LQ is still allowed, for $Y_{11} = 0.238$ and $Z_{11} = 1.03$. Finally, in the next section we present our analysis for the model signature $ep \rightarrow lj$.

ANALYSIS

We consider the process $e^\pm p \rightarrow l^\pm j$ as the signal. The dominant background for this process comes from the SM processes $e^\pm p \rightarrow l^\pm j$, $l^\pm jj$. The analysis is carried out with $\sqrt{s} = 1.3$ TeV LHeC and $\sqrt{s} = 3.46$ TeV FCC-eh. To simulate the signal samples, we implement the model in FeynRules(v2.3) [26]. The UFO output is then fed in MadGraph5_aMC@NLO(v2.6) [27] that generates the parton-level events. We perform parton showering and hadronization with Pythia6 [28] and carry out the detector simulations with Delphes(v3.4.1) [29]. Finally data analysis and plotting is done in ROOT(v6.14/04) [30].

We apply the following basic cuts $P_T(l) > 10$ GeV, $P_T(j) > 20$ GeV, $|\eta(l)| < 5$, $|\eta(j)| < 5$, $\Delta R_{ll} > 0.4$, $\Delta R_{jj} > 0.4$, $\Delta R_{lj} > 0.4$ for event generation in MadGraph5.

Figs. 8 and 9 show the normalised distributions of different kinematical variables (transverse momentum of the leading lepton, leading jet, as well as the invariant mass distribution of the leading jet and leading lepton) for LHeC and FCC-eh, respectively. We have shown these distributions for BP 1. For LHeC and FCC-eh, the distributions of background sample are similar for both the e^- and e^+ case. For LHeC, the distributions of signal sample for e^- and e^+ beam are different. For e^- beam there are two peaks, one lies in the lower p_T region and the other in the higher p_T region. The peak lying in the lower p_T region corresponds to the off-shell production of LQ. For e^+ beam there is no second
FIG. 8. Normalised distribution of transverse momentum of leading lepton $p_T(l_1)$, leading jet $p_T(j_1)$, invariant mass of leading lepton and jet $M(l_1,j_1)$ for both signal and background with c.m.energy $\sqrt{s} = 1.3$ TeV. Here the parameter set given in Table. I is considered.

FIG. 9. Normalised distribution of transverse momentum of leading lepton $p_T(l_1)$, leading jet $p_T(j_1)$, invariant mass of leading lepton and jet $M(l_1,j_1)$ for both signal and background with c.m.energy $\sqrt{s} = 3.46$ TeV. Here the parameter set given in Table. I is considered.
peak which implies that the off-shell production of LQ is less than that in case of e^- beam. This occurs since for $e^- p \rightarrow e^+ p$ collider, LQ couples to $e^- - d$ ($e^+ - d$). The d quark carries greater fraction of proton momentum. From Fig. 9 it is evident that for FCC-eh there are no such differences between the use of $e^- $ and e^+ beams due to availability of enough c.m. energy for LQ mass 1 TeV.

$e^- p \rightarrow l^+ j \quad e^+ p \rightarrow l^+ j$	σ^{sig} [fb]	σ^{bkg} [fb]	σ^{sig} [fb]	σ^{bkg} [fb]		
before cut	4.016	2180	39.23	1440		
$c_1 : N_j \geq 1 \quad N_l \geq 1$	3.01	1644	29.85	1079		
$c_2 : N_j + p_T(l_1) \geq 400$	0.365	13.98	11.77	6.54		
$c_3 : N_j + p_T(l_1) \geq 400$	0.275	9.51	8.92	4.48		
$c_4 : N_j +	M_{LQ} - M_Z	\leq 100$	0.25	5.13	8.3	2.534
Significance for $L = 1$ fb$^{-1}$	0.107	2.5				

TABLE III. Signal ($e^+ p \rightarrow l^+ j$) and background cross-sections after different selection cuts at LHeC for BP$_1$.

$e^- p \rightarrow l^+ j \quad e^+ p \rightarrow l^+ j$	σ^{sig} [fb]	σ^{bkg} [fb]	σ^{sig} [fb]	σ^{bkg} [fb]		
before cut	395.08	10900	1246.4	9597		
$c_1 : N_j \geq 1 \quad N_l \geq 1$	354.41	9836.93	1119.03	8652.58		
$c_2 : N_j + p_T(l_1) \geq 400$	180	839.141	578.13	611.459		
$c_3 : N_j + p_T(l_1) \geq 400$	129.97	618.963	417.26	441.812		
$c_4 : N_j +	M_{LQ} - M_Z	\leq 100$	119.9	141.112	383.59	90.279
Significance for $L = 1$ fb$^{-1}$	7.42	17.6				

TABLE IV. Signal ($e^+ p \rightarrow l^+ j$) and background cross-sections after different selection cuts at FCC-eh for BP$_1$.

In Table. III, we have shown the variation of signal and background cross-sections after applying different selection cuts one by one at LHeC for BP$_1$. Before applying any selection cuts, the signal and background cross-sections for the channel $e^- p \rightarrow l^- j$ ($e^+ p \rightarrow l^+ j$) are 4.0164 fb (39.23 fb) and 2180 fb (1440 fb)1, respectively. Note that due to the initial and final state radiations, additional jets will be present in the final states considered. For signal selection we demand at least one lepton and one jet in the final state. Then we impose a cut on transverse momentum of leading jet and lepton i.e. $p_T(j_1) \geq 400$ GeV and $p_T(l_1) \geq 400$ GeV. This significantly reduces the background cross-section. Finally we select the signal events by demanding a window on lepton-jet invariant mass in between $M_{LQ} \pm 100$GeV. After imposing all cuts the signal cross-section for the channel $e^- p \rightarrow l^- j$ ($e^+ p \rightarrow l^+ j$) is reduced to one sixteenth (one fifth) of its initial value. Similarly Table. IV represents the result for FCC-eh. We calculate the statistical significance using the expression: $S = \frac{\sqrt{s} - \sqrt{b}}{\sqrt{s} + \sqrt{b}}$, where s and b are number of signal and background events after all cuts, respectively.

RESULTS

We discuss the discovery prospects of LQ at LHeC and FCC-eh in the mass range 700 GeV-1200 GeV and 1 TeV-3 TeV, respectively. In the upper panel of Figs. 10 and 11, we have shown the signal cross-section after all the cuts at LHeC and FCC-eh, respectively. In the lower panel of Fig. 10, we have shown the required luminosity (\mathcal{L}) to achieve 3σ and 5σ significance versus M_{LQ} for LHeC. Yukawa coupling Y_{l1} has been fixed to its upper limit, $0.34 \frac{M_{LQ}}{\sqrt{s}}$ for a given M_{LQ} according to APV constraint. Z_{11} has been fixed to its lower limit for given M_{LQ} and Y_{l1}, according to the upper-bound from LHC search. For $M_{LQ} \geq 1$ TeV, we use the same selection cuts as given in Table. III. For $M_{LQ} < 1$ TeV, we again apply the same set of cuts except the cuts c_2 and c_3. Here cuts c_2 and c_3 are defined as $c_1 + p_T(l_1) \geq 300$ GeV and $c_2 + p_T(l_1) \geq 300$ GeV, respectively.

Similarly, Fig. 11 shows the variation of required luminosity (\mathcal{L}) to achieve 3σ and 5σ significance, as a function of M_{LQ} for FCC-eh. For $M_{LQ} < 2$ TeV, we use same selection cuts as given in Table. IV. For $M_{LQ} \geq 2$ TeV, we define c_2 and c_3 as $c_1 + p_T(l_1) \geq 800$ GeV and $c_2 + p_T(j_1) \geq 800$ GeV, respectively.

We find that, this final state has reasonably good discovery prospect even after giving a generic set of cuts. For LHeC with e^- beam, its difficult to probe LQ due to small cross-section. From the lower panel of Fig. 10, it is evident that to probe higher LQ masses with 5σ significance, the required luminosity is very high in spite of smaller SM background, as the signal cross section is itself small for higher LQ masses. On the contrary, for LHeC with e^+ beam, due to larger signal cross-sections, it is possible to probe the LQ mass upto 1.2 TeV at more than 5σ significance with integrated luminosity less than 100 fb$^{-1}$.

For FCC-eh, even with e^- beam, we can probe LQ mass upto 2.3 TeV at more than 5σ significance with lin-

\footnote{Note that, for the SM background, at the event generations level we impose two additional cuts on transverse momentum of leading lepton and jet, which are $p_T(l_1) > 200$ GeV and $p_T(j_1) > 200$ GeV to have better statistics as the SM background cross-section is very large.}
FIG. 10. Upper Panel: Signal cross-section after cut. Lower Panel: Required luminosity to reach 3σ and 5σ significance versus mass of the LQ with c.m.energy 1.3 TeV. Since at LHeC c.m.energy is low to get a better signal cross-section we use the optimum values of the couplings for a given LQ mass, which are given in Table. II.

Finally, we would like to point out that as with the polarized electron or positron beams, $l\bar{l}$ production cross-sections are enhanced by almost a factor of two, we can probe even higher LQ masses compared to the case of unpolarized beams. We evaluate the asymmetry between the production cross-section of LQ at e^+p and e^-p colliders, which is defined as $A_{ep} = \frac{\sigma(e^p) - \sigma(e^-p)}{\sigma(e^p) + \sigma(e^-p)}$. It is found to be positive (which is evident from the upper panel of Figs. 10 and 11), consistent with the fermion number of \tilde{R}_2 LQ.

FIG. 11. Upper Panel: Signal cross-section after cut. Lower Panel: Required luminosity to reach 3σ and 5σ significance versus mass of the LQ with c.m.energy 3.46 TeV. In this case we consider the same couplings for all LQ masses as given in Table. I for $M_{LQ}=1$ TeV.

CONCLUSIONS

In this work we study the discovery prospect of \tilde{R}_2 class of LQ model at the proposed ep colliders such as LHeC and FCC-eh. This type of LQ can be copiously produced at ep colliders, due to its interaction with the electron and down type quarks. There are many possible final states for this type of LQ model. We specifically focus on LQ production and its decay to a lepton and a jet. For this final state, we expect higher statistical significance at an ep collider compared to pp collider due to higher production cross-section as well as lower SM backgrounds. We find that at LHeC with...
beam, we can probe the LQ mass up to 1.2 TeV at more than 5σ significance. For FCC-eh, with e^+ beam we can probe LQ mass up to 3 TeV with 5σ significance, but the required luminosity is large. On the contrary, at FCC-eh with e^- beam, we can easily probe the LQ mass up to 3 TeV at more than 5σ significance with nominal integrated luminosity. Note that at an ep collider, polarization of the electron or positron beams can result in a substantial increase in the LQ production and the resulting lepton-jet production cross-sections.

[1] J. C. Pati and A. Salam, “Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions,” *Phys. Rev.* **D8** (1973) 1240–1251.
[2] H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,” *Phys. Rev. Lett.* **32** (1974) 438–441.
[3] H. Fritzsch and P. Minkowski, “Unified Interactions of Leptons and Hadrons,” *Annals Phys.* **93** (1975) 193–266.
[4] R. N. Mohapatra and B. Sakita, “SO(2n) Grand Unification in an SU(N) Basis,” *Phys. Rev.* **D21** (1980) 1062. [Erratum: Phys. Rev. D21 (1980) 555].
[5] F. Wilczek and A. Zee, “Families from Spinors,” *Phys. Rev.* **D25** (1982) 553.
[6] S. Dimopoulos and L. Susskind, “Mass Without Scalars.” *Nucl. Phys.* **B155** (1979) 257–258.
[7] S. Dimopoulos, “Technicolored Signatures,” *Nucl. Phys.* **B168** (1980) 69–92.
[8] E. Farhi and L. Susskind, “Technicolor,” *Phys. Rept.* **74** (1981) 277.
[9] H. Georgi and S. L. Glashow, “Unextended Technicolor and Unification,” *Phys. Rev. Lett.* **47** (1981) 1511.
[10] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, “Physics of leptoquarks in precision experiments and at particle colliders,” *Phys. Rept.* **641** (2016) 1–68, arXiv:1603.04993 [hep-ph].
[11] J. M. Arnold, B. Fornal, and M. B. Wise, “Simplified models with baryon number violation but no proton decay,” *Phys. Rev.* **D87** (2013) 075004, arXiv:1212.4556 [hep-ph].
[12] LHec Study Group Collaboration, J. L. Abelleira Fernandez et al., “A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector,” *J. Phys.* **G39** (2012) 075001, arXiv:1206.2913 [physics.acc-ph].
[13] G. Azuelos, M. D’Onofrio, O. Fischer, and J. Zurita, “BSM physics at the LHec and the FCC-eh,” *PoS* **DIS2018** (2018) 190, arXiv:1807.01618 [hep-ph].
[14] F. Zimmermann, M. Benedikt, D. Schulte, and J. Wenninger, “Challenges for Highest Energy Circular Colliders,” in *Proceedings, 5th International Particle Accelerator Conference (IPAC 2014): Dresden, Germany, June 15-20, 2014*, p. MOXAA01. 2014.
http://jacow.org/IPAC2014/papers/moxaa01.pdf.
[15] https://twiki.cern.ch/twiki/bin/viewauth/LHeC/LHeCCehBSM.
[16] W. Buchmuller, R. Ruckl, and D. Wyler, “Leptoquarks in Lepton - Quark Collisions,” *Phys. Lett.* **B191** (1987) 442–448. [Erratum: Phys. Lett. B448,320(1999)].
[17] W. Buchmuller and D. Wyler, “Constraints on SU(5) Type Leptoquarks,” *Phys. Lett.* **B177** (1986) 377–382.
[18] I. Dorsner, S. Fajfer, and A. Greljo, “Cornering Scalar Leptoquarks at LHC,” *JHEP* **10** (2014) 154, arXiv:1406.4831 [hep-ph].
[19] I. Dorsner, J. Drobnak, S. Fajfer, J. F. Kamenik, and N. Kosnik, “Limits on scalar leptoquark interactions and consequences for GUTs,” *JHEP* **11** (2011) 002, arXiv:1107.5393 [hep-ph].
[20] CMS Collaboration, A. M. Sirunyan et al., “Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV,” *JHEP* **07** (2017) 121, arXiv:1703.03995 [hep-ex].
[21] ATLAS Collaboration, M. Aaboud et al., “Search for scalar leptoquarks in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment,” *New J. Phys.* **18** no. 9, (2016) 093016, arXiv:1605.06035 [hep-ex].
[22] CMS Collaboration, A. M. Sirunyan et al., “Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at $\sqrt{s} = 13$ TeV,” *Phys. Rev.* **D98** no. 3, (2018) 032005, arXiv:1805.10228 [hep-ex].
[23] CMS Collaboration, A. M. Sirunyan et al., “Search for a singly produced third-generation scalar leptoquark decaying to a τ lepton and a bottom quark in proton-proton collisions at $\sqrt{s} = 13$ TeV,” *JHEP* **07** (2018) 115, arXiv:1806.03472 [hep-ex].
[24] CMS, ATLAS Collaboration, F. Romeo, “Searches for new physics in lepton plus jet final states in ATLAS and CMS,” in *2017 International Workshop on Baryon and Lepton Number Violation: From the Cosmo to the LHC (BLV 2017)* Cleveland, Ohio, USA, May 15-18, 2017. arXiv:1709.00229 [hep-ex].
[25] CMS Collaboration, A. M. Sirunyan et al., “Search for pair production of first-generation scalar leptoquarks at $\sqrt{s} = 13$ TeV,” *Phys. Rev.* **D99** no. 5, (2019) 052002, arXiv:1811.01197 [hep-ex].
[26] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, “FeynRules 2.0 - A complete toolbox for tree-level phenomenology,” *Comput. Phys. Commun.* **185** (2014) 2250–2300, arXiv:1310.1921 [hep-ph].
[27] J. Abellán-Rodríguez, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer,
P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” *JHEP* **07** (2014) 079, arXiv:1405.0301 [hep-ph].

[28] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” *JHEP* **05** (2006) 026, arXiv:hep-ph/0603175 [hep-ph].

[29] **DELPHES 3** Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” *JHEP* **02** (2014) 057, arXiv:1307.6346 [hep-ex].

[30] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,” *Nucl. Instrum. Meth.* **A389** (1997) 81–86.