Diversity of Butterfly species (Lepidoptera: Rhopalocera) attracted to Carrion Trap at Harau Valley Nature Reserve

E Bibas¹, H Herwina¹, Dahelmi¹, M N Janra¹, A K Amanda¹

¹Animal Taxonomy Laboratory, Biology Department, Faculty of Mathematics and Sciences, Universitas Andalas, Indonesia

Corresponding author’s e-mail address: hennyherwina@sci.unand.ac.id

Abstract. Butterflies are important insect used as bioindicator in addition to their attractiveness in nature. In the wild, butterflies actually use broad spectrum of food sources rather than just sipping nectar as commonly known. This study aimed to collect butterflies that may use substances produced by decaying carrion. It used Carrion Bite Traps baited with decaying fishes or shrimps and set at Harau Valley Nature Reserve areas from April to June 2019. The traps were checked every 24 hours for seven consecutive days at valley site, conservation site sites and plantations site. A total 35 butterfly species that belong to 24 genera and four families identified from 90 collected individuals. Nymphalidae became butterfly family with the highest species number observed (30), while three other families with few species recorded, i.e. Hesperidae with three species, Lycaenidae and Pieridae with one species each. This result might suggest specific trophic of Nymphalidae compared to other butterfly families. Species diversity for butterflies in relation to decaying carrion was high (3.24), indicating the effectiveness of carrion as bait for butterflies in biodiversity rapid assessment.

Keywords: Butterflies; Carrion Trap; Diversity; Family; Nature Reserve

1. Introduction

Indonesia is one of the countries that included in the areas for conservation priority as it has high species diversity and endemism [1]; one of this biodiversity is butterfly [2,3,4,5]. Butterflies in Indonesia are continuously threatened due to habitat destruction resulting from land change severely impacting into fragmented, degraded and decreased of butterfly habitat [6,7,8,9,10,11]. Threats to butterfly’s habitats and diversity can be minimized by carrying out conservation management which designed after monitoring on diversity, abundance and distribution. In addition, condition of habitat and bieology of butterflies are also important factors to know prior to conservation efforts [12,13,14,15,16,17,18].

The diversity of butterflies can be raised by increasing the variability and availability of nectar plants and forage plants for larvae. The disappearance of larval food plants can lead to the extinction of butterflies [19,20,21,22,23]. Abiotic factors such as temperature, humidity and light intensity greatly affect the diversity of butterflies in the tropics. The increasing of temperature and light intensity positively affect diversity, abundance and distribution of butterflies [24,25,26,27,28]. Light intensity and humidity determine puddling behaviour of butterflies, as more butterflies gathered when these two factors increased [29].

Traps are frequently used to collect and study tropical butterflies, including the carrion baited trap [30,31]. Carrion used as bait commonly made from decaying shrimp and fish. Butterflies sampling used carrion-baited trap was said to be better in describing species diversity and richness, as it is effective to
lure out species that are sensitive to disturbance [32,31,33]. Harau Valley has been subjected for many butterfly researches, yet none that use carrion trap. Therefore, applying this method may result in different perspective regarding butterfly diversity at Harau Valley Nature Reserve and its surroundings. Hence, it gives contribution in laying foundation for planning butterfly conservation efforts and managing Harau Valley Nature Reserve area in general.

2. Methods

2.1 Study Area and Sampling Methods

Butterflies sampling had been conducted from April to June 2019 at Harau Valley Nature Reserve, Lima Puluh Kota Regency, West Sumatra. General topography of this area is hilly, with sloping and steep cliffs, interspersed with valley area designated for tourism attraction. It has non-dipterocarp mixed rainforest ecosystem, dominated by highland plants. Portion around the protected area have been converted into plantations by local residents, especially for gambier.

The research used bait traps, cameras, compass, GPS, thermohygrometers, luxmeters, plastic collections for plant sampling, triangle papers for storing butterfly samples, stationery and rope. The traps used decaying carrion made from fishes and shrimps. Fishes and shrimps were mashed before mixed with water (ratio 1: 1) and let decomposed for 13-18 days prior to use [34]. The baited traps were set along the 1 km transects established in three types of area, namely valley area, protected area and gambier plantations (Figure 1). Ten carrion traps were set along the transect line with approximate distance of 100 meters from one to another, each placed 1-2 meters above ground level. At protected area, couple traps were placed 16 meters above the ground at canopy level [35]. Approximately 200 ml bait was put in each trap, replaced with new bait in every morning at 09.00. The checking was started after 24 hours, repeated daily for seven days.

![Figure 1. Map of Research Location in Harau Valley Nature Reserve (Google earth, 2020)](image)

Observations were only taken during sunny weather conditions. Collected butterflies were recorded for their species and total individual number. Specimen then brought to the Research Laboratory of Invertebrate Animal Taxonomy to be stretched, preserved and photographed. Upon the identification finalized, the butterflies stored in the repository of laboratory.
2.2 Identification Samples
Species identification was guided with relevant literatures for Sumatra [36,37,38,39,40,41]. Identification was keyed by looking into specific signs in butterflies and typical for species determination.

2.3 Data Analysis
Identified butterflies were then grouped according to their taxonomical orders, i.e. species, genus and family, with number of collected individual was also detailed. Butterfly diversity was calculated using the Shannon diversity index with the formula below:

\[H' = -\sum (p_i \ln p_i) \]

\(H' \): species diversity index, \(p_i \): the proportion of individuals of species-i to all species \((p_i = n_i/N) \), ln: natural logarithm, \(n_i \): number of individuals-i and \(N \): total individuals of all species [42]. The result was then presented descriptively using tables.

3. Results and Discussion
This study listed a total of 35 butterfly species through the use of carrion trap method. These species belong to 23 genera and 4 families; all of which identified from 90 vouchered specimens. Nymphalidae became the most common family with 30 species identified from this study, while the other three families represented by much less species; Hesperidae with 3 species, Lycaenidae and Pieridae with one species respectively. Nymphalidae is known as family with numerous members and widely distributed [4,37,43,44]. Aside from using flowering plants as source of nectar, food that is commonly associated with butterflies, some species also use resource on rotten fruit [32,34,45,46]. Decaying carcasses, as seen used as bait in this study, also became food source for many butterflies, especially those of Nymphalids.

Table 1. Taxonomy of butterflies collected with carrion bait method at Harau Valley Nature Reserve, West Sumatra. VA: Valley Area, PA: Protected Area, GA: Gambier Plantation, * = Species recently observed in study, after compared with previous studies in Sumatra.

No	Family	Genus	Species	Number of Individuals	Total		
				VA	PA	GA	
1	Hesperida	Bibasis	Bibasis etelka (Hewitson, 1871)*	2	1		3
2			Bibasis harisa (Moore, 1866)*	1		1	
3	Lycaenida	Udaspes	Udaspes folus (Cramer, 1775)*	1		1	
4		Nacabuda	Nacaduba heroe (C.&R. Felder, 1865)	1			1
5	Nymphalida	Agatasa	Agatasa calydonia (Hewitson, 1855)*	2		2	
6			Athyma asura Moore, 1858	2		2	
7			Athyma nefte (Cramer, 1780)	3	2	1	6
8	Charaxes		Charaxes bernardus (Fabricius, 1793)	1			1
9	Dichorragia		Dichorragia nesimachus (Doyere, 1840)	2	1	3	
10	Discophora		Discophora necho C.&R. Felder, 1867	3	6		9
11			Discophora sondaica Boisduval, 1836*	2		2	
12. **Elymnias**
 Elymnias panthera (Fabricius, 1787)
 Elymnias penanga
 (Westwood, 1851)

13. **Laringa**
 Laringa castelnaui (C.&R. Felder, 1860)

14. **Lethe**
 Lethe chandica (Moore, 1858)
 Lethe europa (Fabricius, 1775)
 Lethe minerva (Fabricius, 1775)*

15. **Lexias**
 Lexias dirtea (Fabricius, 1793)

16. **Melanitis**
 Melanitis phedima (Cramer, 1780)

17. **Mycalesis**
 Mycalesis horfieldii Moore, 1892
 Mycalesis janardana Moore, 1857
 Mycalesis mnasicles
 Hewitson, 1864
 Mycalesis orseis Hewitson, 1864

18. **Neorina**
 Neorina lowii (Doubleday, 1849)

19. **Polyura**
 Polyura athamas (Drury, 1773)
 Polyura hebe (Butler, 1866)
 Polyura schreiber (Godart, 1824)

20. **Prothoe**
 Prothoe franck (Godart, 1824)

21. **Ragadia**
 Ragadia makula (Horsfield, 1829)

22. **Vindura**
 Vindula dejone (Erichson, 1834)

23. **Ypthima**
 Ypthima pandocus
 Moore, 1857

24. **Zeoxydia**
 Zoeuxidia amethystus Butler
 1865
 Zoeuxidia doubledayii
 Westwood, 1851 *

25. **Pieridae**
 Eurema
 Eurema hecabe (Linnaeus, 1758)

Number of Individuals	33	45	12	90
Number of Species	17	19	9	35
Number of Genus	14	14	9	23
Number of Family	3	2	3	4
Shannon-Wiener Index	2.72	2.63	2.09	3.24

Prothoe franck (Nymphalidae) was recorded with most individuals (10). This species was collected from protected area (9 individuals) and gambier plantation (1 individual). Morphologically, *Prothoe franck* has dark coloration on wings which thought to be an adaptation to its preferred habitat. Hence,
this species was found at shaded area like protected forest, where the temperature and light intensity were low [47]. This type of habitat help it camouflaged well.

There were seven butterfly species that need to be highlighted in this study, as they were not recorded from previous studies in Sumatra (Table 1). These species were observed existing in current study, probably as result from the typicality of current location and habitat [48]. The diversity of butterfly species was influenced by the presence of factors that support reproduction and development of butterflies. These include variety of host plants favorable to butterflies as well as environmental factors such as temperature and humidity. As diurnal organisms, which were active during the day, these factors are prominent during the daylight and therefore significantly affect the life of butterflies.

Valley area was indicated as habitat with the highest butterfly species diversity (2.72), followed by protected area (2.63) and gambier plantation (2.09). The high species diversity at valley area might hint the high suitability of this area for butterflies. Harau Valley, in general, has been enriched with various flowering plants to support its main function as tourism destination [21,49]. Some spots, such as ones near waterfalls and along the rivers are heavily shaded with thick canopy and connected to forest edge, providing protection to butterflies within the considerable open valley area [49].

Table 2. Inventory of flowering plants found along the sampling transects

Area	# Transect point	Species	Total
Valley	1	Melastoma malabathricum, Elephantopus tomentosus,	7
		Stachyapheta jamaicensis, Mikania micrantha, Spilanthes	
		paniculata, Borreria laevis dan Clidemia hirta	
	2	Mikania micratha, Bidens pilosa, Ageratum conyzoides, Emilia sonchifolia,	5
		Stachyapheta jamaicensis dan Asystasia gangetica	
	3	Mikania micratha, Bidens pilosa, Ageratum conyzoides,	7
		Stachyapheta jamaicensis, Spilanthes paniculata, Asystasia gangetica dan	
		Borreria laevis	
	4	Melastoma malabathricum, Bidens pilosa, Ageratum conyzoides,	12
		Asystasia gangetica, Sphagneticola trilobata, Zinnia elegans,	
		Wedelia biflora, Cosmos caudatus, Tagetes erecta, Rosa hybrida,	
		Clerodendrum paniculatum dan Tagetes patula	
	5	Melastoma malabathricum, Mikania micrantha, Elephantopus tomentosus,	12
		Ageratum conyzoides, Urena lobata, Solanum torvum,	
		Crassocephalum crepidioides, Stachyapheta jamaicensis,	
		Borreria laevis, Clidemia hirta, Leea sp. dan Clibadium surinamense	
	6	Melastoma malabathricum, Chromolaena odorata, Elephantopus tomentosus,	8
		Urena lobata, Crassocephalum crepidioides,	
		Stachyapheta jamaicensis, Mikania micrantha dan Spilanthes paniculata	
	7	Elephantopus tomentosus, Bidens pilosa Ageratum conyzoides,	10
		Spilanthes paniculata, Borreria laevis, Clidemia hirta, Asystasia	
		gangetica, Sphagneticola trilobata, Hibiscus arceri dan Sirobilanthes sp.	
	8	-	-
	9	Melastoma malabathricum, Mikania micrantha Elephantopus tomentosus,	9
		Bidens pilosa Ageratum conyzoides, Emilia sonchifolia,	
		Stachyapheta jamaicensis, Spilanthes paniculata dan Clibadium surinamense	
	10	Austroepaturium livolium, Ageratum conyzoides, Urena lobata, Emilia	8
		sonchifolia, Mikania micrantha, Spilanthes paniculata, Clidemia hirta	
		dan Clibadium surinamense	
The valley area had higher diversity of flowering plants compared to the monoculture gambier plantation, which mean more food resource available there. While at the protected area, the flowering plants were shifted with high trees that were not ideal as nectar source for butterflies. With total 29 species of flowering plants identified from the transect in valley area, averagely there were 8 plant species per 100 meter transect that became nectar source for butterflies (Table 2). Much less flowering plants were identified from transect in gambier plantation, with total 11 species gave it an average one species of flowering plant exist in this type of habitat. Butterflies may primarily use nectar as their main diet, but there are various minerals and substances that can only be supplied by non-plant source. Decaying process is essentially a breakdown of complex structures of animal carcass into much more simple substances (including minerals) that might be essential for some organisms, including butterflies. Hence, the use of carrion trap in an area that densely populated by flowering plants can still yield a prominent result.

4. Conclusion

Carrion traps effectively collected 35 butterfly species from four families at three locations in Harau Valley Nature Reserve. Nymphalidae became family with the most species collected. The valley area was observed to have higher species diversity than the protected area and gambier plantation due to higher diversity of flowering plants therein. The effectiveness of carrion trap for butterfly diversity study may encourage the use of this method along with insect net and fruit trap to improve the result.

Acknowledgements

Nature Reserve	Gambier plantation	
	Melastoma malabathricum, Mikania micrantha	2
	Melastoma malabathricum	1
	Melastoma malabathricum, Mikania micrantha, Uncaria gambir, Polygala paniculata, Elephantopus tomentosus, Bidens pilosa, Ageratum conyzoides, Urena lobata, Solanum torvum dan Emilia sonchifolia	10
	Melastoma malabathricum, Uncaria gambir dan Elephantopus tomentosus	3
	Melastoma malabathricum dan Uncaria gambir	2
	Melastoma malabathricum	1
	Melastoma malabathricum	1
	Melastoma malabathricum	1
	Melastoma malabathricum, Mikania micrantha, Uncaria gambir, Polygala paniculata, Bidens pilosa, Ageratum conyzoides, Urena lobata, Emilia sonchifolia dan Stachytarpheta jamaicensis	9
	Melastoma malabathricum	1
This research was funded by the Master Course Research Funding from The Ministry of Research and Technology of the Republic of Indonesia 2020 with contract no: T/34/UN.16.17/PT.0. 1.03/PTMPangan/2020 (Team Leader: Henny Herwina)

References

[1] Myers N, Mittermeier R A, Mittermeier C G, Fonseca G A B and Kent J 2000 Biodiversity hotspots for conservation priorities, NATURE, 403(2) 853–8.

[2] Collins N M and Morris M G 1985 Threatened Swallowtail Butterflies ofthe World: The IUCN Red Data Book (Gland, Switzerland: IUCN)

[3] New T R and Collins N M 1991 Swallowtail Butterflies: An Action for their Conservation (Gland, Switzerland: IUCN)

[4] Vane-Wright R I and de Jong R 2003 The butterflies of Sulawesi: annotated checklist for a critical island fauna Zool. Verh. Leiden 343 3–267.

[5] Peggie D 2011 Precious and Protected Indonesian Butterflies (Indonesia: Bidang Zoologi)

[6] Dunn R R 2004 Managing the tropical landscape: a comparison of the effects of logging and forest conversion to agriculture on ants, birds, and lepidoptera Forest Ecology and Management, 191 215–24.

[7] Posa M R C and Sodhi N S 2006 Effects of anthropogenic land use on forest birds and butterflies in Subic Bay Philippines Biological Conservation 129 256–70.

[8] Cleary D F R and Genner M J 2006 Diversity Patterns of Bornean Butterfly Assemblages. Biodiversity and Conservation 15 517-38.

[9] Koh L P 2007 Impacts of land use change on South-east Asian forest butterflies: A review. Journal of Applied Ecology 44: 703–13.

[10] Sodhi N S, Lee T M, Koh L P and Brook B W 2009 A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas Biotropica 41 103–9.

[11] Thomas J A 2016 Butterfly communities under threat. Science 353 216-18.

[12] Kremen C, Colwell R K, Erwin T L, Murphy D D, Noss R F and Sanjayan M A 1993 Terrestrial Arthropod Their Use in Assemblages: Conservation Planning Conservation Biology 7(4): 796–808.

[13] New T R, Pyle R M, Thomas J A, Thomas C D and Hammond P C 1995 Butterfly conservation management Ann Rev Entomol 40 57–83.

[14] Margules C R and Pressey R L 2000 Systematic conservation planning NATURE, 405(5) 243–53.

[15] Sutherland W J 2000. The conservation handbook research, management and policy (UK: Blackwell Science Ltd)

[16] Samways M J, McGeoch M A and New T R 2010 Insect Conservation - A Handbook of Approaches and Methods (New York: Oxford University Press Inc.)

[17] Bonebrake T C, Ponisio L C, Boggs C L and Ehrlich P R 2010 More than just indicators: A review of tropical butterfly ecology and conservation Biological Conservation 143(8): 1831–41.

[18] Rosin Z M, Myczko L, Skorka P, Lenda M, Moron D, Sparks T H and Tryjanowski P 2012. Butterfly responses to environmental factors in fragmented calcareous grasslands J Insect Conserv 16 321–29.

[19] Giuliano W M, Accamando A K and Meadams E J 2004 Lepidoptera-habitat relationships in urban parks Urban Ecosystems 7(4) 361–70.

[20] Koh L P, Sodhi N S and Brook B W 2004 Co-extinctions of tropical butterflies and their hostplants Biotropica 36 272–4.

[21] Kitahara M, Yumoto M and Kobayashi T 2008 Relationship of butterfly diversity with nectar plant species richness in and around the Aokigahara primary woodland of Mount Fuji, central Japan Biodiversity and Conservation 17(11) 2713–34.
[22] Nimbalkar R K, Chandekar S K and Khunte S P 2011 Butterfly diversity in relation to nectar food plants from Bhor Tahsil, Pune District, Maharashtra, India Journal of Threatened Taxa 3(3) 1601–09.
[23] Ferrer-Paris J R, Sánchez-Mercado A, Viloria Á L and Donaldson J 2013 Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels PLoS ONE 8(5)
[24] Pinheiro C E G and Ortiz J V C 1992 Communities of fruit-feeding butterflies along a vegetation gradient in central Brazil J Biogeografi 19 505-11.
[25] Sparrow H R, Sisk T D, Ehrlich P R and Murphy D D 1994 Techniques and Guidelines for Monitoring Neotropical Butterflies Conservation Biology 8(3) 800-09.
[26] Hill J, Hamer K, Tangah J and Dawood M 2001 Ecology of tropical butterflies in rainforest gaps. Oecologia 128(2) 294–302.
[27] Ribeiro D B and Freitas V L 2010 Differences in thermal reponses in a fragmented landscape: temperature affects the sampling of diurnal, but no nocturnal fruit-feeding Lepidoptera Journal of Research on the Lepidoptera 42 1-4.
[28] Cormont A, Malinowska A H, Kostenko O, Radchuk V, Hemerik L, WallisDeVries M F and Verboom J 2011 Effect of local weather on butterfly flight behaviour, movement, and colonization: Signification for dispersal under climate change Biodiversity and Conservation 20(3) 483–503.
[29] Phon C-K, Kirton L G and Yusoff N R 2017 Monitoring butterflies using counts of puddling males: A case study of the Rajah Brooke's Birdwing (Trogonoptera brookiana albescens). PLoS ONE 12(12) 1-15.
[30] Kral K, Harmon J, Limb R and Hovick T 2018 Improving our science: the evolution of butterfly sampling and surveying methods over time Journal of Insect Conservation 22(1).
[31] Freitas L A V, Agra Iserhard C, Pereira Santos J, Oliveira Carreira J Y, Bandini Ribeiro D, Alves Melo D H and Uehara-prado M 2014 Studies with butterfly bait traps: an overview. Revista Colombiana de Entomologia 40(2) 203–12.
[32] Hamer K C, Hill J K, Benedick S, Mustaffa N, Chey V K and Maryati M 2006 Diversity and ecology of carrion- and fruit-feeding butterflies in Bornean rain forest Journal of Tropical Ecology 22(1) 25–33.
[33] Whitworth A, Pillco H R, Gonzalez M H, Braunholtz L D and MacLeod R 2018 Food for thought Rainforest carrion-feeding butterflies are more sensitive indicators of disturbance history than fruit feeders Biological Conservation 217 383–90.
[34] Checa M F, Donoso D A, Rodriguez J, Levy E, Warren A and Willmott K 2018 Combining sampling techniques to monitoring of tropical butterflies Insect Conservation and Diversity 11(1): 1-11.
[35] Whitworth A, Villacampa J, Brown A, Huarcaya R P, Downie R and MacLeod R 2016 Past Human Disturbance Effects upon Biodiversity are Greatest in the Canopy; A Case Study on Rainforest Butterflies PLoS ONE 11(3) 1-20
[36] Corbet A S and Pendlebury H M 1956 The Butterfly of Malaya Peninsula (London: Oliver Boyd Edinburg)
[37] Otsuka K 1988 Butterflies of Borneo Vol. I. (Tokyo: Tobishima)
[38] Tsukada E 1982 Butterflies of the South East Asian Vol. III. Satyrinae, Libytheiidae (Tokyo: Plapac.Ltd)
[39] Tsukada E 1982 Butterflies of the South East Asian Vol. V. Nymphalidae II (Tokyo: Plapac Ltd.)
[40] Tsukada E 1985 Butterflies of the South East Asian Island Part 2 Pieridae-Danainidae. (Tokyo: Plapac Ltd.)
[41] Tsukada E and Nishiyama 1982 Butterflies of the South East Asian Island Vol. I. Papilionidae (Tokyo:Plapac Ltd.)
[42] Magurran A E 2004 Measuring Biological Diversity (Oxford: Blackwell Science Ltd.)
[43] Corbet A S and Pendlebury H M 1992 The Butterflies of the Malay Peninsula.4th edition. Revised by J N Eliot (Kuala Lumpur: Malayan Nature Society)
Marchant N C, Purwanto A, Harsanto F A, Boyd N S, Harrison M E and Houlihan P R 2015. 'Random-flight' dispersal in tropical fruit-feeding butterflies? High mobility, long lifespans and no home ranges Ecological Entomology 40 (6): 696-706.

Freitas A V L and Brown K S 2004 Phylogeny of the Nymphalidae (Lepidoptera). Systematic Biology 53(3): 363–83.

Holloway J D, Barlow H S, Loong H K and Khen C V 2013 Sweet or Savoury? Adult Feeding Preference of Lepidoptera Attracted to Banana and Prawn Baits in The Oriental Tropics the Raffles Bulletin of Zoology 29: 71-90.

Indriani Y, Ginoga L N dan Masy’ud B. 2010 Butterflies species diversity in some habitat types in Pondok Ambung Tanjung Puting National Park, Central Kalimantan Media Konservasi 15: 1-12.

Dewi B, Hamida A dan Siburian J 2016 Keanekaragaman dan Kelimpahan Jenis Kupu-kupu (Lepidoptera; Rhopalocera) di Sekitar Kampus Pinang Masak Universitas Jambi. Biospecies 9(2): 32-8.

Munyuli M B T 2013 Drivers of species richness and abundance of butterflies in coffee–banana agroforests in Uganda International Journal of Biodiversity Science Ecosystem Services & Management 9(4): 298-310.