HIGHER RAMANUJAN EQUATIONS II:
PERIODS OF ABELIAN VARIETIES AND TRANSCENDENCE QUESTIONS

TIAGO J. FONSECA

Abstract. In the first part of this work, we have considered a moduli space \(B_g \) classifying principally polarized abelian varieties of dimension \(g \) endowed with a symplectic-Hodge basis, and we have constructed the higher Ramanujan vector fields \((v_{kl})_{1 \leq k \leq l \leq g}\) on it. In this second part, we study these objects from a complex analytic viewpoint. We construct a holomorphic map \(\varphi_g : H_g \to B_g(\mathbb{C}) \), where \(H_g \) denotes the Siegel upper half-space of genus \(g \), satisfying the system of differential equations \(\frac{1}{2\pi i} \partial \varphi_g = v_{kl} \circ \varphi_g, 1 \leq k \leq l \leq g \). When \(g = 1 \), we prove that \(\varphi_1 \) may be identified with the triple of Eisenstein series \((E_2, E_4, E_6)\), so that the previous differential equations coincide with Ramanujan’s classical relations concerning Eisenstein series. We discuss the relation between the values of \(\varphi_g \) and the fields of periods of abelian varieties, and we explain how this relates to Grothendieck’s periods conjecture. Finally, we prove that every leaf of the holomorphic foliation on \(B_g(\mathbb{C}) \) induced by the vector fields \(v_{kl} \) is Zariski-dense in \(B_g(\mathbb{C}) \). This last result implies a “functional version” of Grothendieck’s periods conjecture for abelian varieties.

Contents

1. Introduction 1
2. Analytic families of complex tori, abelian varieties, and their uniformization 8
3. Analytic moduli spaces of complex abelian varieties with a symplectic-Hodge basis 16
4. The higher Ramanujan equations and their analytic solution \(\varphi_g \) 22
5. Values of \(\varphi_g \) and transcendence degree of fields of periods of abelian varieties 29
6. Group-theoretic interpretation of \(B_g(\mathbb{C}) \) and of the higher Ramanujan vector fields 33
7. Zariski-density of leaves of the higher Ramanujan foliation 38
References 44

1. Introduction

1.1. In the first part of this work ([14]) we have considered for any integer \(g \geq 1 \) a smooth moduli stack \(B_g \) over \(\mathbb{Z} \) classifying principally polarized abelian varieties of dimension \(g \) endowed with a symplectic-Hodge basis of its first algebraic de Rham cohomology, and we have constructed a family \((v_{kl})_{1 \leq k \leq l \leq g}\) of \(g(g + 1)/2 \) commuting vector fields on \(B_g \), the higher Ramanujan vector fields. We have also proved that \(B_g \otimes \mathbb{Z}[1/2] \) is representable by a smooth quasi-projective scheme \(B_g \) over \(\mathbb{Z}[1/2] \). In particular, the set of complex points \(B_g(\mathbb{C}) \) has a natural structure of a quasi-projective complex manifold.

Date: September 18, 2018.
In this second part, we consider the differential equations defined by the higher Ramanujan vector fields, and we study their complex analytic solutions. Let

$$H_g := \{ \tau \in M_{g \times g}(\mathbb{C}) \mid \tau^T = \tau, \ \text{Im} \tau > 0 \}$$

be the Siegel upper half-space of genus g. This is a complex manifold of dimension $g(g+1)/2$ admitting the holomorphic coordinate system $(\tau_{kl})_{1 \leq k \leq l \leq g}$, where $\tau_{kl} : H_g \to \mathbb{C}$ is the holomorphic map associating to $\tau \in H_g$ its entry in the kth row and lth column. Using the universal property of $B_g(\mathbb{C})$, we shall construct a holomorphic map

$$\varphi_g : H_g \to B_g(\mathbb{C})$$

satisfying the system of differential equations

$$\frac{1}{2\pi i} \frac{\partial \varphi_g}{\partial \tau_{kl}} = v_{kl} \circ \varphi_g, \quad 1 \leq k \leq l \leq g.$$ \hspace{1cm} (1.1)

When $g = 1$, the Siegel upper half-space H_1 is the Poincaré upper half-plane $H = \{ \tau \in \mathbb{C} \mid \text{Im} \tau > 0 \}$, and the classical theory of elliptic curves provides an isomorphism

$$B_1 \otimes \mathbb{Z}[1/6] \cong \mathbb{Z}[1/6, e_2, e_4, e_6, (e_4^3 - e_6^2)^{-1}],$$

under which the vector field v_{11} becomes the “classical” Ramanujan vector field (cf. [14] Section 6)

$$v := \frac{e_2^2 - e_4}{12} \frac{\partial}{\partial e_2} + \frac{e_2 e_4 - e_6}{3} \frac{\partial}{\partial e_4} + \frac{e_2 e_6 - e_4^2}{2} \frac{\partial}{\partial e_6}. $$ \hspace{1cm} (1.2)

In this situation, the holomorphic map φ_1 gets identified with

$$\tau \mapsto (E_2(\tau), E_4(\tau), E_6(\tau)), $$

where $E_2, E_4, E_6 : H \to \mathbb{C}$ are the classical (level 1) Eisenstein series normalized by $E_{2k}(+i\infty) = 1$, and we obtain Ramanujan’s original relations between Eisenstein series:

$$\frac{1}{2\pi i} \frac{dE_2}{d\tau} = \frac{E_2^2 - E_4}{12}, \quad \frac{1}{2\pi i} \frac{dE_4}{d\tau} = \frac{E_2 E_4 - E_6}{3}, \quad \frac{1}{2\pi i} \frac{dE_6}{d\tau} = \frac{E_2 E_6 - E_4^2}{2}. $$

1.2. As explained in the introduction of [14], questions in Transcendental Number Theory constitute our main source of motivation for the study of these higher dimensional analogs of Ramanujan’s equations. We shall illustrate this point by relating the values of φ_g with Grothendieck’s periods conjecture on abelian varieties. In order to fully motivate a precise statement of our result, let us digress into a discussion of periods of abelian varieties and Grothendieck’s conjecture on the algebraic relations between them.

Let X be a complex abelian variety and $k \subset \mathbb{C}$ be the smallest algebraically closed subfield of \mathbb{C} over which there exists an abelian variety X_0 such that X is isomorphic to $X_0 \otimes_k \mathbb{C}$ as complex abelian varieties (cf. Lemma 5.1). By a period of X, we mean any complex number of the form

$$\int_{\gamma} \alpha$$

where α is an element of the first algebraic de Rham cohomology $H^1_{dR}(X_0/k)$ and $\gamma \in H_1(X_0(\mathbb{C}), \mathbb{Z})$ is the class of a singular 1-cycle. We define the field of periods $\mathcal{P}(X)$ of X as the smallest subfield
of C containing k and all the periods of X.\footnote{This definition is not standard. Usually, one starts with an abelian variety X defined over a subfield $K \subset C$, and one defines K-periods in terms of $H^1_{dR}(X/K)$. Our "absolute" definition considering a minimal algebraically closed field of definition is convenient for our purposes and will be justified in the sequel.} Equivalently, $\mathcal{P}(X)$ may be regarded as the field of rationality of the comparison isomorphism

$$H^1(X_0(C), C) = \text{Hom}(H_1(X_0(C), Z), C) \overset{\sim}{\longrightarrow} H^1_{dR}(X_0/k) \otimes k C.$$

A central problem in the theory of transcendental numbers is to determine, or simply to estimate, the transcendence degree over Q of the field of periods $\mathcal{P}(X)$.

In a first approach, one might observe that any algebraic cycle in some power X^n of X induces an algebraic relation between its periods (cf. [12] Proposition I.1.6). Broadly speaking, Grothendieck conjectured that every algebraic relation between periods of an abelian variety can be "explained" through algebraic cycles on its powers.

A convenient way of giving a precise formulation for Grothendieck's conjecture is by means of Mumford-Tate groups. Let X be a complex abelian variety, and denote by H the Q-Hodge structure of weight 1 with underlying Q-vector space given by $H^1(X_0(C), Q)$, and Hodge filtration $F^1 H$ given by $H^0(X, \Omega^1_{X_0/C}) \subset H^1_{dR}(X/C) \cong H^1(X(C), Q) \otimes Q C$. The decomposition $H_C = F^1 H \oplus F^1 H$ corresponds to the morphism of real algebraic groups

$$h : C^* \longrightarrow \text{GL}(H_R),$$

where $h(z)$ acts on $F^1 H$ by a homothety of ratio z^{-1}, and on $F^1 H$ by a homothety of ratio \overline{z}^{-1}. The Mumford-Tate group $\text{MT}(X)$ of X is defined as the smallest Q-algebraic subgroup of $\text{GL}(H)$ such that h factors through $\text{MT}(X)_R$. It can also be interpreted as the smallest Q-algebraic subgroup of $\text{GL}(H) \times G_m, Q$ fixing all Hodge classes in twisted mixed tensor powers of the Q-Hodge structure H (cf. [12] I.3).

The following formulation of Grothendieck's periods conjecture (GPC) for abelian varieties is a specialization of the "generalized Grothendieck's periods conjecture" proposed by André ([1] 23.4.1; see also [20] Historical Note pp. 40-44 and [16] footnote 10).

Conjecture (Grothendieck-André). For any complex abelian variety X, we have

$$\text{trdeg}_Q \mathcal{P}(X) \geq \dim \text{MT}(X).$$

It follows from Deligne [11] (cf. [12] Corollary I.6.4) that we always have the upper bound

$$\text{trdeg}_Q \mathcal{P}(X) \leq \dim \text{MT}(X) + \text{trdeg}_Q k,$$

where k is the smallest algebraically closed subfield of C over which X may be defined. In particular, if X is definable over the field of algebraic numbers \overline{Q} — the case originally considered by Grothendieck — the above conjectural inequality becomes the conjectural equality

$$\text{trdeg}_Q \mathcal{P}(X) \overset{?}{=} \dim \text{MT}(X).$$

In the case $g = 1$, the Mumford-Tate group of a complex elliptic curve E may be easily computed. Its dimension only depends on the existence or not of complex multiplication, and GPC predicts
that
\[
\text{trdeg}_\mathbb{Q} \mathcal{P}(E) \geq \begin{cases}
2 & \text{if } E \text{ has complex multiplication} \\
4 & \text{otherwise.}
\end{cases}
\]

Even in this minimal case, GPC is not yet established in full generality — only the complex multiplication case is understood; see below. Nevertheless, an approach that has been proved fruitful for obtaining non-trivial lower bounds in the direction of GPC relies on a modular description of the fields of periods of elliptic curves, which we now recall.

Let \(E \) be a complex elliptic curve and let \(j \in \mathbb{C} \) be its \(j \)-invariant. Then \(E \) admits a model
\[
E : \quad y^2 = 4x^3 - g_2x - g_3
\]
with \(g_2, g_3 \in \mathbb{Q}(j) \), and we can consider the algebraic differential forms defined over \(\mathbb{Q}(j) \)
\[
\omega := \frac{dx}{y}, \quad \eta := \frac{dx}{y}.
\]
They form a (symplectic-Hodge) basis of the first algebraic de Rham cohomology \(H^1_{dR}(E/\mathbb{Q}(j)) \). If \((\gamma, \delta) \) is any basis of the first singular homology group \(H_1(E(\mathbb{C}), \mathbb{Z}) \), we may consider the periods
\[
\omega_1 = \int_\gamma \omega, \quad \omega_2 = \int_\delta \omega, \quad \eta_1 = \int_\gamma \eta, \quad \eta_2 = \int_\delta \eta.
\]
We may assume moreover that the basis \((\gamma, \delta) \) is oriented, in the sense that their topological intersection product \(\gamma \cap \delta = 1 \).

The field of periods of \(E \) is given by
\[
\mathcal{P}(E) = \overline{\mathbb{Q}(j)}(\omega_1, \omega_2, \eta_1, \eta_2),
\]
where \(\overline{\mathbb{Q}(j)} \) denotes the algebraic closure of \(\mathbb{Q}(j) \) in \(\mathbb{C} \). Now, observe that \(\omega_1 \neq 0 \) and let
\[
\tau := \frac{\omega_2}{\omega_1}.
\]
As the basis \((\gamma, \delta) \) of \(H_1(E(\mathbb{C}), \mathbb{Z}) \) is oriented, the complex number \(\tau \) is in \(\mathbb{H} \). By the classical theory of modular forms, we have
\[
E_2(\tau) = -12 \left(\frac{\omega_1}{2\pi i} \right)^2, \quad E_4(\tau) = 12g_2 \left(\frac{\omega_1}{2\pi i} \right)^4, \quad E_6(\tau) = -216g_3 \left(\frac{\omega_1}{2\pi i} \right)^6.
\]
Finally, Legendre’s periods relation and the definition of \(j \) show that \(\mathcal{P}(E) \) is an algebraic extension of the field \(\mathbb{Q}(2\pi i, \tau, E_2(\tau), E_4(\tau), E_6(\tau)) \), and we obtain
\[
(1.3) \quad \text{trdeg}_\mathbb{Q} \mathcal{P}(E) = \text{trdeg}_\mathbb{Q} \mathbb{Q}(2\pi i, \tau, E_2(\tau), E_4(\tau), E_6(\tau)).
\]

In this way, the problem of estimating the transcendence degree of fields of periods of elliptic curves translates into the problem of estimating the transcendence degree of values of some analytic functions. Accordingly, the theorem of Nesterenko [29] asserts that, for any \(\tau \in \mathbb{H} \),
\[
\text{trdeg}_\mathbb{Q} \mathbb{Q} (e^{2\pi i \tau}, E_2(\tau), E_4(\tau), E_6(\tau)) \geq 3.
\]
As an immediate consequence, we obtain
\[
\text{trdeg}_\mathbb{Q} \mathbb{Q}(2\pi i, \tau, E_2(\tau), E_4(\tau), E_6(\tau)) \geq \text{trdeg}_\mathbb{Q} \mathbb{Q}(E_2(\tau), E_4(\tau), E_6(\tau)) \geq 2.
\]
for any $\tau \in \mathbb{H}$. Equivalently, by equation (1.3), for any complex elliptic curve E, we obtain the uniform bound

$$\text{trdeg}_Q \mathcal{P}(E) \geq 2,$$

which is sharp when E has complex multiplication. This last result had already been previously established by Chudnovsky (cf. [8]) via elliptic methods.\(^2\)

1.3. In this paper, we generalize the modular description (1.3). Namely, let $g \geq 1$ be an integer and, for any $\tau \in \mathbb{H}_g$, let X_τ be the complex abelian variety given by the (polarizable) complex torus $\mathbb{C}^g/(\mathbb{Z}^g + \tau \mathbb{Z}^g)$. We shall prove that, for any $\tau \in \mathbb{H}_g$, the field of periods $\mathcal{P}(X_\tau)$ is an algebraic extension of $Q(2\pi i, \tau, \varphi_g(\tau))$ (the residue field in $\mathbb{A}_Q \times Q \text{Sym}_g Q \times Q B_g, Q$ of the complex point $(2\pi i, \tau, \varphi_g(\tau))$, where Sym_g denotes the group scheme of symmetric matrices of order $g \times g$); in particular, we obtain

$$\text{trdeg}_Q \mathcal{P}(X_\tau) = \text{trdeg}_Q Q(2\pi i, \tau, \varphi_g(\tau)).$$

This generalized modular description raises the question of whether it is possible to adapt Nesterenko’s methods to this higher dimensional setting. Guided by this problem, we are naturally lead to study the higher Ramanujan foliation, namely, the holomorphic foliation on $B_g(\mathbb{C})$ generated by the higher Ramanujan vector fields.

We shall prove that every leaf of the Ramanujan foliation on $B_g(\mathbb{C})$ is Zariski-dense in $B_{g, \mathbb{C}}$. This property of a foliation plays an important role, at least in the case in which leaves are one dimensional (where it implies Nesterenko’s D-property), in the “multiplicity estimates” appearing in applications of differential equations to transcendental number theory (cf. [7], [28], [29]).

The Zariski-density of the image of $\varphi_g : \mathbb{H}_g \longrightarrow B_g(\mathbb{C})$ in $B_{g, \mathbb{C}}$ also implies the a priori stronger result that its graph

$$\{ (\tau, \varphi_g(\tau)) \in \text{Sym}_g(\mathbb{C}) \times B_g(\mathbb{C}) \mid \tau \in \mathbb{H}_g \}$$

is Zariski-dense in $\text{Sym}_g(\mathbb{C}) \times_{\mathbb{C}} B_{g, \mathbb{C}}$ (cf. [3] where a similar question is investigated in the context of Thetanullwerte). This can be seen as an analog — but not a complete generalization by the lack of the modular parameter q — of Mahler’s result [21] on the algebraic independence of the holomorphic functions $\tau, e^{2\pi i \tau}, E_2(\tau), E_4(\tau), \text{and } E_6(\tau)$, of $\tau \in \mathbb{H}$. It can also be interpreted as a “functional version” of GPC: loosely speaking, it says that there is no algebraic relation simultaneously satisfied by the periods of every (principally polarized) abelian variety other than the relations given by the polarization data.

The above Zariski-density results will rely on a characterization of the leaves of the higher Ramanujan foliation in terms of an action by $\text{Sp}_{2g}(\mathbb{C})$. In fact, from the complex analytic viewpoint, the complex manifold $B_g(\mathbb{C})$ and the higher Ramanujan vector fields admit a simple description in terms of algebraic groups.

We should also point out that the modular parameter $e^{2\pi i \tau}$, ignored in our discussion, has a geometric interpretation. Namely, it is a period of a certain 1-motive naturally attached to E. We refer to [2] (cf. [1] 23.4.3) for further discussion on these matters.
Ramanujan vector field v_{kl} is induced by the left invariant holomorphic vector field on $\text{Sp}_{2g}(\mathbb{C})$ associated to

$$\frac{1}{2\pi i} \begin{pmatrix} 0 & E^{kl} \\ 0 & 0 \end{pmatrix} \in \text{Lie} \text{Sp}_{2g}(\mathbb{C}),$$

where E^{kl} is the symmetric matrix of order $g \times g$ whose entry in the kth row and lth column (resp. lth row and kth column) is 1, and whose all other entries are 0.

Furthermore, the solution $\varphi_g : H_g \longrightarrow B_g(\mathbb{C})$ of the higher Ramanujan equations is identified to

$$\tau \mapsto \begin{pmatrix} 1_g & \tau \\ 0 & 1_g \end{pmatrix} \in \text{Sp}_{2g}(\mathbb{Z}) \setminus \text{Sp}_{2g}(\mathbb{C}),$$

where 1_g denotes the identity matrix of order $g \times g$. This enables us to obtain every leaf of the higher Ramanujan foliation as the image of a holomorphic map $\varphi_\delta : U_\delta \longrightarrow B_1(\mathbb{C}) \subset \mathbb{C}^3$ defined on some explicitly defined open subset $U_\delta \subset H_g$ obtained from φ_g via a “twist” by some element $\delta \in \text{Sp}_{2g}(\mathbb{C})$.

In the case $g = 1$, the above twisting procedure may be illustrated as follows. Let

$$\delta = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{C}),$$

and define a holomorphic map $\varphi_\delta : U_\delta \longrightarrow B_1(\mathbb{C}) \subset \mathbb{C}^3$ by

$$\varphi_\delta(\tau) = \left((c\tau + d)^2 E_2(\tau) + \frac{12c}{2\pi i}(c\tau + d), (c\tau + d)^4 E_4(\tau), (c\tau + d)^6 E_6(\tau) \right).$$

Then one may easily check that φ_δ satisfy the differential equation

$$\frac{1}{2\pi i} \frac{d\varphi_\delta}{d\tau} = (c\tau + d)^{-2} v \circ \varphi_\delta$$

where v is the classical Ramanujan vector field defined by (1.2).

1.4. As acknowledged in [14], our definition of the moduli stack B_g was inspired by Movasati’s point of view on the Ramanujan vector field in terms of the Gauss-Manin connection on the de Rham cohomology of the universal elliptic curve (cf. [24] 4.2), which corresponds to the case $g = 1$ of our construction.

After I completed a first version this article, H. Movasati has kindly indicated to me that a number of its results and constructions has some overlap with his article [25]. In this work, he considers complex analytic spaces U classifying lattices in maximal totally real subspaces of some given complex vector space V_0 (i.e. subgroups of V_0 generated by a \mathbb{C}-basis of V_0) satisfying suitable compatibility conditions with a fixed Hodge filtration F^*_0 on V_0, and a fixed polarization ψ_0; these spaces come equipped with a natural analytic right action of the complex algebraic group

$$G_0 = \{ g \in \text{GL}(V_0) \mid gF^i_0 = F^i_0 \text{ for every } i, \text{ and } g^*\psi_0 = \psi_0 \}. $$

For the particular case where $V_0 = \mathbb{C}^{2g}$,

$$F^*_0 = (F^0_0 = V_0 \supset F^1_0 = \mathbb{C}^g \times \{0\} \supset F^2_0 = 0),$$

and ψ_0 is the standard (complex) symplectic form ([25] 5.1), the space U becomes the analytic moduli space $B_g(\mathbb{C})$, investigated in the present article. Of course, the algebraic group G_0 coincides
with our $P_g(C)$, and the action of G_0 on U gets identified with the action of $P_g(C)$ on $B_g(C)$ defined in [14] under $U \cong B_g(C)$.

In [25] 3.2, Movasati also describes U as a quotient $\Gamma_Z \backslash P$, where P is the space of “period matrices” and Γ_Z is some explicitly defined discrete group. In our particular case, P may be identified with our B_g (cf. Proposition 6.6) and the action of G_0 on U gets identified with the action of $P_g(C)$ on $B_g(C)$ defined in [25] under $U \sim B_g(C)$.

In his article, Movasati explicitly states the problem of algebraizing U — i.e. finding the algebraic variety T over $\overline{\mathbb{Q}}$, in his notations — and the action of G_0. This is solved “by definition” in our construction, which also shows that T, here called B_g, is smooth and quasi-projective. Movasati actually conjectures that the complex manifold $B_g(C)$ admit a unique structure of complex algebraic variety (in analogy with the Baily-Borel theorem) and that it is actually quasi-affine. On his web page\(^3\), Movasati also indicates a construction of what we call “higher Ramanujan vector fields” with slightly different normalizations (cf. [14] Proposition 5.7).

1.5. **Acknowledgments.** This work was supported by a public grant as part of the FMJH project, and is part of my PhD thesis under the supervision of Jean-Benoît Bost. I thank Mikolaj Fraczyk for sharing his insights on Zariski-density matters and for his interest in this work. I also thank Hossein Movasati for his kind remarks on a first version of this article, and for making me aware of his work on this circle of questions.

1.6. **Terminology and notations.** Besides the terminology and notations of [14], we shall consider the following.

1.6.1. Let M be a complex manifold. Every holomorphic vector bundle $\pi : V \to M$ may be seen as a (commutative) relative complex Lie group over M. We shall occasionally identify V with its corresponding locally free sheaf of \mathcal{O}_M-modules of holomorphic sections of π.

1.6.2. If R is any ring, we denote the constant sheaf with values in R over some complex manifold M by R_M. A local system of R-modules over M is a locally constant sheaf L of R-modules over M. The dual of L is denoted by $L^\vee := \text{Hom}_R(L, R_M)$.

The étale space of a local system of R-modules L over M will be denoted by $E(L)$; this is a topological covering space over M whose fiber at each $p \in M$ is naturally identified to L_p.

1.6.3. Let $m, n \geq 1$ be integers. The set of matrices of order $m \times n$ over a ring R is denoted by $M_{m \times n}(R)$. We shall frequently adopt a block notation for elements in $M_{2n \times 2n}(\mathbb{R})$:

$$
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix} = (A \ B ; C \ D),
$$

where $A, B, C, D \in M_{m \times n}(R)$.

The transpose of a matrix $M \in M_{m \times n}(R)$ is denoted by $M^T \in M_{n \times m}(R)$. For $1 \leq i \leq n$, $\mathbf{e}_i \in M_{n \times 1}(R)$ denotes for the column vector whose entry in the ith line is 1, and all the others are

\(^3\)See “What is a Siegel quasi-modular form?” in http://w3.impa.br/~hossein/WikiHossein/WikiHossein.html.
0. The identity matrix in $M_{n \times n}(R)$ is denoted by 1_n. For every $1 \leq i \leq j \leq n$, we denote by E^{ij} the unique symmetric matrix $(E^{ij}_{kl})_{1 \leq k,l \leq n} \in M_{n \times n}(R)$ such that

$$E^{ij}_{kl} = \begin{cases} 1 & \text{if } (k, l) = (i, j) \text{ or } (k, l) = (j, i) \\ 0 & \text{otherwise.} \end{cases}$$

The symmetric group Sym_n is the subgroup scheme of $M_{n \times n}$ consisting of symmetric matrices. The symplectic group Sp_{2n} is defined as the subgroup scheme of GL_{2n} such that for every affine scheme $V = \text{Spec } R$

$$\text{Sp}_{2g}(V) = \{ M \in \text{GL}_{2n}(R) \mid MJM^T = J \}$$

where

$$J := \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}.$$

Remark 1.1. As $J^2 = -1_{2n}$, the condition $MJM^T = J$ is equivalent to $M^{-1} = -JM^TJ$; thus $MJM^T = J$ if and only if $M^TJM = J$. In particular, if we write

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_{2n \times 2n}(R)$$

for some $A, B, C, D \in M_{n \times n}(R)$, then M is in $\text{Sp}_{2n}(R)$ if and only if one of the following two conditions is satisfied

1. $AB^T = BA^T$, $CD^T = DC^T$, and $AD^T - BC^T = 1_n$.
2. $A^TC = C^TA$, $B^TD = D^TB$, and $A^TD - C^TB = 1_n$.

Finally, the Siegel parabolic subgroup P_n of Sp_{2n} consists of matrices $(A B ; C D)$ in Sp_{2n} such that $C = 0$.

1.6.4. Let K be a subfield of \mathbb{C} and X be an algebraic variety over K (i.e. a reduced separated scheme of finite type over K). For any complex point $\overline{x} : \text{Spec } \mathbb{C} \rightarrow X$, if $x \in X$ denotes the point in the image of \overline{x}, and $k(x)$ denotes its residue field, we put

$$K(\overline{x}) := k(x).$$

Let us remark that

$$\text{trdeg}_K K(\overline{x}) = \min \{ \dim Y \mid Y \text{ is an integral closed } K\text{-subscheme of } X \text{ such that } \overline{x} \in Y(\mathbb{C}) \}.$$

2. Analytic families of complex tori, abelian varieties, and their uniformization

In this section we briefly transpose some of the standard theory of complex tori to a relative situation, that is, we shall consider analytic families of complex tori. To both simplify and shorten our exposition, we shall assume that the parameter space is smooth (i.e. a complex manifold); this largely suffices our needs.

Most of the material included in here, and in the following section, is well known to experts — and may be even considered as “classical” — but we could not find a convenient reference in the literature.
2.1. **Relative complex tori.** Let M be a complex manifold.

Definition 2.1. A (relative) complex torus over M is a relative complex Lie group $\pi : X \to M$ over M such that π is proper with connected fibers. A morphism of complex tori over M is a morphism of relative complex Lie groups over M.

As any compact connected complex Lie group is a complex torus, every fiber of π in the above definition is a complex torus.

In general, for any relative complex Lie group $\pi : X \to M$ over M, we may consider its relative Lie algebra $\text{Lie}_M X$; this is a holomorphic vector bundle over M whose fiber at each $p \in M$ is the Lie algebra Lie_{X_p} of the complex torus $X_p := \pi^{-1}(p)$. Moreover, there exists a canonical morphism of relative complex Lie groups over M $\exp : \text{Lie}_M X \to X$ restricting to the usual exponential map of complex Lie groups at each fiber.

Lemma 2.2. Let $\pi : X \to M$ be a complex torus over M. Then $\exp : \text{Lie}_M X \to X$ is a surjective submersion, and the sheaf of sections of the relative complex Lie group $\ker(\exp)$ over M is canonically isomorphic to $R_1^1 \pi_* \mathbb{Z}_X := (R^1 \pi_* \mathbb{Z}_X)^\vee$.

This follows from the classical case where M is a point via a fiber-by-fiber consideration (cf. [26] I.1). Note that $R_1^1 \pi_* \mathbb{Z}_X$ is a local system of free abelian groups over M whose fiber at $p \in M$ is given by the first singular homology group $H_1(X_p, \mathbb{Z})$.

Definition 2.3. Let V be a holomorphic vector bundle of rank g over M. By a lattice in V, we mean a subsheaf of abelian groups L of $\mathcal{O}_M(V)$ such that

1. L is a local system of free abelian groups of rank $2g$,
2. for each $p \in M$, the quotient V_p / L_p is compact.

It follows from Lemma 2.2 that, for any complex torus $\pi : X \to M$ of relative dimension g, $R_1 \pi_* \mathbb{Z}_X$ may be canonically identified to a lattice in $\text{Lie}_M X$.

Conversely, if V is a holomorphic vector bundle of rank g over M and L is a lattice in V, then the étalé space $E(L)$ of L is a relative complex Lie subgroup of V over M and $X := V / E(L)$ is a complex torus over M of relative dimension g. Furthermore, the relative Lie algebra $\text{Lie}_M X$ gets canonically identified with V and, under this identification, $E(L)$ is the kernel of the exponential map $\exp : \text{Lie}_M X \to X$.

Remark 2.4. The above reasoning actually proves that the category of complex tori over M of relative dimension g is equivalent to the category of couples (V, L) where V is a holomorphic vector bundle of rank g over M and L is a lattice in V; a morphism $(V, L) \to (V', L')$ in this category is given by a morphism of holomorphic vector bundles $\varphi : V \to V'$ such that $\varphi(E(L)) \subset E(L')$.

In what follows, we shall drop the notation $E(L)$ and identify a local system with its étalé space.
2.2. **Riemann forms and principally polarized complex tori.** Let M be a complex manifold and $\pi : X \rightarrow M$ be a complex torus over M.

Definition 2.5. A *Riemann form* over X is a C^∞ Hermitian metric H on the vector bundle $\text{Lie}_M X$ over M such that

$$E := \text{Im } H$$

takes integral values on $R_1\pi_*\mathbb{Z}_X$.

Observe that E is an alternating \mathbb{R}-bilinear form. We also remark that the Hermitian metric H is completely determined by E: for any sections v and w of $\text{Lie}_M X$ we have $H(v, w) = E(v, iw) + iE(v, w)$. In particular, by abuse, we may also say that E is Riemann form over X.

Definition 2.6. With the above notations, we say that the Riemann form E is *principal* if the induced morphism of local systems

$$R_1\pi_*\mathbb{Z}_X \rightarrow (R_1\pi_*\mathbb{Z}_X)\vee \cong R_1\pi_*\mathbb{Z}_X$$

$$\gamma \mapsto E(\gamma, \)$$

is an isomorphism.

Definition 2.7. Let M be a complex manifold. A *principally polarized complex torus* over M of relative dimension g is a couple (X, E), where X is a complex torus over M of relative dimension g and E is a principal Riemann form over X.

Example 2.8. Let $g \geq 1$ and consider the Siegel upper half-space

$$\mathbb{H}_g := \{\tau \in M_{g \times g}(\mathbb{C}) \mid \tau = \tau^T, \ \text{Im } \tau > 0\}.$$

If $g = 1$, we denote $\mathbb{H} := \mathbb{H}_1$; this is the Poincaré upper half-plane. Let us consider the trivial vector bundle $V := \mathbb{C}^g \times \mathbb{H}_g$ over \mathbb{H}_g and let L be the subsheaf of $\mathcal{O}_{\mathbb{H}_g}(V)$ given by the image of the morphism of sheaves of abelian groups

$$(\mathbb{Z}^g \oplus \mathbb{Z}^g)_{\mathbb{H}_g} \rightarrow \mathcal{O}_{\mathbb{H}_g}(V) = \mathcal{O}_{\mathbb{H}_g}^{\oplus g}$$

$$(m, n) \mapsto m + \tau n$$

where m and n are considered as column vectors of order g. Then L is a lattice in V and we denote by

$$p_g : X_g \rightarrow \mathbb{H}_g$$

the corresponding complex torus over \mathbb{H}_g of relative dimension g (cf. Remark 2.4). Let E_g be imaginary part of the Hermitian metric over V given by

$$(v, w) \mapsto \overline{v}^T (\text{Im } \tau)^{-1} w.$$

One may easily verify that E_g takes integral values on L and that $\gamma \mapsto E_g(\gamma, \)$ induces an isomorphism $L \overset{\sim}{\rightarrow} L^\vee$. We thus obtain a principally polarized complex torus (X_g, E_g) over \mathbb{H}_g of relative dimension g.

The convention is that Hermitian forms are anti-linear on the first coordinate and linear on the second.
2.3. The category \mathcal{T}_g of principally polarized complex tori of relative dimension g. Let $\text{Man}_{/\mathbb{C}}$ denote the category of complex manifolds. We define a category \mathcal{T}_g fibered in groupoids over $\text{Man}_{/\mathbb{C}}$ as follows.

1. An object of the category \mathcal{T}_g consists in a complex manifold M and a principally polarized complex torus (X, E) over M of relative dimension g; we denote such an object by $(X, E)/M$.

2. Let $(X, E)/M$ and $(X', E')/M'$ be objects of \mathcal{T}_g. A morphism

$$F_f : (X', E')/M' \to (X, E)/M$$

in \mathcal{T}_g is a cartesian diagram of complex manifolds

$$\begin{array}{ccc}
X' & \to & X \\
\downarrow & & \downarrow \\
M' & \to & M
\end{array}$$

preserving the identity sections of the complex tori and such that $E' = f^*E$ under the isomorphism of holomorphic vector bundles $\text{Lie}_M'X' \cong f^*\text{Lie}_M X$ induced by F. We may also denote $(X', E') = (X, E) \times_M M'$.

3. The structural functor $\mathcal{T}_g \to \text{Man}_{/\mathbb{C}}$ sends an object $(X, E)/M$ of \mathcal{T}_g to the complex manifold M, and a morphism F_f as above to f.

Example 2.9. We define an action of $\text{Sp}_{2g}(\mathbb{Z})$ on the object $(X_g, E_g)/\mathbb{H}_g$ of \mathcal{T}_g

$$\text{Sp}_{2g}(\mathbb{Z}) \to \text{Aut}_{\mathcal{T}_g}((X_g, E_g)/\mathbb{H}_g)$$

$$\gamma \mapsto F_{\gamma, f_{\gamma}}$$

as follows. Recall that an element $\gamma = (A \ B \ ; \ C \ D) \in \text{Sp}_{2g}(\mathbb{R})$ acts on \mathbb{H}_g by

$$f_{\gamma} : \mathbb{H}_g \to \mathbb{H}_g$$

$$\tau \mapsto \gamma \cdot \tau := (A\tau + B)(C\tau + D)^{-1}.$$

For γ as above, consider the holomorphic map

$$\tilde{F}_{\gamma} : \mathbb{C}^g \times \mathbb{H}_g \to \mathbb{C}^g \times \mathbb{H}_g$$

$$(z, \tau) \mapsto ((j(\gamma, \tau)^T)^{-1}z, \gamma \cdot \tau)$$

where

$$j(\gamma, \tau) := C\tau + D \in \text{GL}_g(\mathbb{C}).$$

If $\gamma \in \text{Sp}_{2g}(\mathbb{Z})$, then for every $\tau \in \mathbb{H}_g$ we have

$$\tilde{F}_{\gamma, \tau}(Z^g + \tau Z^g) = Z^g + (\gamma \cdot \tau)Z^g,$$

so that \tilde{F}_{γ} induces a holomorphic map $F_{\gamma} : X_g \to X_g$. One easily verifies that

$$\begin{array}{ccc}
X_g & \xrightarrow{F_{\gamma}} & X_g \\
p_\gamma \downarrow & & \downarrow p_\gamma \\
\mathbb{H}_g & \xrightarrow{f_{\gamma}} & \mathbb{H}_g
\end{array}$$
is a cartesian diagram of complex manifolds preserving the identity sections and the Riemann forms E_g, i.e. it defines a morphism $F_{\gamma f} : (X_g, E_g)/H_g \rightarrow (X_g, E_g)/H_g$ in T_g. Finally, the formula

$$j(\gamma_1 \gamma_2, \tau) = j(\gamma_1, \gamma_2 \cdot \tau) j(\gamma_2, \tau)$$

implies that $F_{\gamma f}$ is in fact an automorphism of $(X_g, E_g)/H_g$ in T_g and that $\gamma \mapsto F_{\gamma f}$ is a morphism of groups.5

2.4. **De Rham cohomology of complex tori.** Let M be a complex manifold and $\pi : X \rightarrow M$ be a complex torus over M of relative dimension g.

2.4.1. For any integer $i \geq 0$, we define the ith analytic de Rham cohomology sheaf of O_M-modules by

$$\mathcal{H}^i_{dR}(X/M) := R^i\pi_* \Omega_X^{\bullet},$$

where Ω_X^{\bullet} is the complex of relative holomorphic differential forms. If M is a point, we denote $\mathcal{H}^i_{dR}(X) := \mathcal{H}^i_{dR}(X/M)$.

Remark 2.10. If M is a point, the analytic de Rham cohomology $\mathcal{H}^1_{dR}(X)$ is canonically isomorphic to the quotient of the complex vector space of C^∞ closed i-forms over X with values in C by the subspace of exact i-forms (cf. [12] I.1 p. 16).

The arguments in [5] 2.5 prove, *mutatis mutandis*, that there is a canonical isomorphism of O_M-modules given by cup product

$$\bigwedge^i \mathcal{H}^1_{dR}(X/M) \xrightarrow{\sim} \mathcal{H}^i_{dR}(X/M),$$

and that $\mathcal{H}^1_{dR}(X/M)$ is (the sheaf of sections of) a holomorphic vector bundle over M of rank $2g$. Moreover, the canonical O_M-morphism $\pi_* \Omega_X^1 \rightarrow \mathcal{H}^1_{dR}(X/M)$ induces an isomorphism of $\pi_* \Omega_X^1$ onto a rank g subbundle of $\mathcal{H}^1_{dR}(X/M)$ that we denote by $\mathcal{F}^1(X/M)$.

Analogously, it follows from the arguments of [19] that $\mathcal{H}^1_{dR}(X/M)$ is equipped with a canonical integrable holomorphic connection

$$\nabla : \mathcal{H}^1_{dR}(X/M) \rightarrow \mathcal{H}^1_{dR}(X/M) \otimes O_M \Omega_M^{\cdot 1},$$

the *Gauss-Manin connection*.

Furthermore, the formation of $\mathcal{H}^1_{dR}(X/M)$, $\mathcal{F}^1(X/M)$, and ∇, are compatible with every base change in M.

5Actually, it follows from Proposition 3.4 below (see also Remark 3.5) that $\gamma \mapsto F_{\gamma f}$ is an *isomorphism* of groups.
2.4.2. There is a canonical comparison isomorphism of holomorphic vector bundles

\[c : \text{Hom}_\mathbb{C}(R_1\pi_*\mathbb{Z}_X, \mathcal{O}_M) \cong R^1\pi_*\mathbb{Z}_X \otimes \mathcal{O}_M \rightarrow H^1_{\text{dR}}(X/M) \]

identifying the local system of \(\mathbb{C} \)-vector spaces \(\text{Hom}_\mathbb{C}(R_1\pi_*\mathbb{Z}_X, \mathcal{O}_M) \) with the subsheaf of \(H^1_{\text{dR}}(X/M) \) consisting of horizontal sections for the Gauss-Manin connection ([9] I Proposition 2.28 and II 7.6-7.7). The induced pairing

\[\alpha \otimes \gamma \mapsto c^{-1}(\alpha)(\gamma) =: \int_\gamma \alpha \]

is given at each fiber by “integration of differential forms” (cf. Remark 2.10).

Remark 2.11. In particular, for any section \(\gamma \) of \(R_1\pi_*\mathbb{Z}_X \), any \(\mathcal{C}^\infty \) section \(\alpha \) of the vector bundle \(H^1_{\text{dR}}(X/M) \), and any holomorphic vector field \(\theta \) on \(M \), we have

\[\theta \left(\int_\gamma \alpha \right) = \int_\gamma \nabla_\theta \alpha. \]

Recall that \(R_1\pi_*\mathbb{Z}_X \) may be naturally identified with a lattice in the holomorphic vector bundle \(\text{Lie}_M X \). Accordingly, the dual bundle \((\text{Lie}_M X)^\vee \) gets naturally identified with a holomorphic subbundle of \(\text{Hom}_\mathbb{C}(R_1\pi_*\mathbb{Z}_X, \mathcal{O}_M) \).

Lemma 2.12. With notations as above, the comparison isomorphism (2.1) induces an isomorphism of the holomorphic vector bundle \((\text{Lie}_M X)^\vee \) onto \(F^1(X/M) \).

This also follows from a fiber-by-fiber argument: if \(M \) is a point, by identifying \(H^1_{\text{dR}}(X) \) with the \(\mathcal{C}^\infty \) de Rham cohomology with values in \(\mathbb{C} \) (Remark 2.10), the subspace \(F^1(X) \) gets identified with the space of \((1,0)\)-forms in \(H^1_{\text{dR}}(X) \), and these correspond to \(\text{Hom}_\mathbb{C}(\text{Lie}_X, \mathcal{C}) \) under the de Rham isomorphism (cf. [4] Theorem 1.4.1).

2.4.3. If \(X \) admits a principal Riemann form \(E \), then, by linearity, we may define a holomorphic symplectic form \(\langle \ , \ \rangle_E \) on the holomorphic vector bundle \(H^1_{\text{dR}}(X/M) \) over \(M \) (cf. [14] Appendix A) by

\[\langle E(\gamma, \delta), E(\gamma, \delta) \rangle_E := \frac{1}{2\pi i} E(\gamma, \delta) \]

for any sections \(\gamma \) and \(\delta \) of \(R_1\pi_*\mathbb{Z}_X \), where \(E(\gamma, \delta) \) and \(E(\delta, \gamma) \) are regarded as sections of \(H^1_{\text{dR}}(X/M) \) via the comparison isomorphism (2.1).

Since every section of \(R^1\pi_*\mathbb{Z}_X \) is horizontal for the Gauss-Manin connection \(\nabla \) on \(H^1_{\text{dR}}(X/M) \) under the comparison isomorphism (2.1), the symplectic form \(\langle \ , \ \rangle_E \) is compatible with \(\nabla \): for every sections \(\alpha, \beta \) of \(H^1_{\text{dR}}(X/M) \), and every holomorphic vector field \(\theta \) on \(M \), we have

\[\theta \langle \alpha, \beta \rangle_E = \langle \nabla_\theta \alpha, \beta \rangle_E + \langle \alpha, \nabla_\theta \beta \rangle_E. \]
2.5. Relative uniformization of complex abelian schemes. Let U be a smooth separated \mathbb{C}-scheme of finite type and (X, λ) be a principally polarized abelian scheme over U of relative dimension g. Denote by $p : X \to U$ its structural morphism. Then the associated analytic space U^{an} is a complex manifold, and the analytification $p^{an} : X^{an} \to U^{an}$ of p is a complex torus over U^{an} of relative dimension g.

Since the analytification of the coherent \mathcal{O}_U-module $H^1_{\text{dR}}(X/U)$ is canonically isomorphic to $\mathcal{H}^1_{\text{dR}}(X^{an}/U^{an})$, the symplectic form $\langle \ , \ \rangle_\lambda$ on $H^1_{\text{dR}}(X/U)$ defined in [14] 2.2 induces a symplectic form $\langle \ , \ \rangle^an_\lambda$ on the holomorphic vector bundle $\mathcal{H}^1_{\text{dR}}(X^{an}/U^{an})$ over U^{an}.

Lemma 2.13. Let γ and δ be sections of $R_1p^{an}_*\mathcal{Z}_{X^{an}}$, and let α and β be sections of $\mathcal{H}^1_{\text{dR}}(X^{an}/U^{an})$ such that $\gamma = \langle \ , \alpha \rangle^an_\lambda$ and $\delta = \langle \ , \beta \rangle^an_\lambda$ under (the dual of) the comparison isomorphism (2.1). Then

(1) The formula
$$E(\gamma, \delta) := \frac{1}{2\pi i} \langle \alpha, \beta \rangle^an_\lambda$$

defines a Riemann form over X^{an}.

(2) The holomorphic symplectic forms $\langle
\ , \ \rangle_{E, \lambda} \text{ and } \langle
\ , \ \rangle^an_{\lambda}$ over $\mathcal{H}^1_{\text{dR}}(X^{an}/U^{an})$ coincide.

Proof. We can assume $U = \text{Spec} \mathbb{C}$, so that (X, λ) is a principally polarized complex abelian variety.

Recall from [14] 2.2 that we have constructed an alternating bilinear form Q_λ on $H^1_{\text{dR}}(X/\mathbb{C})^\vee$, and that the bilinear form $\langle
\ , \ \rangle_\lambda$ over $H^1_{\text{dR}}(X/\mathbb{C})$ is obtained from Q_λ by duality. Therefore, to prove (1), it is sufficient to prove that, under the identification of $H_1(X^{an}, \mathcal{Z})$ with an abelian subgroup of $H^1_{\text{dR}}(X/\mathbb{C})^\vee$ via (the dual of) the comparison isomorphism (2.1), for any elements γ and δ of $H_1(X^{an}, \mathcal{Z})$,

$$E(\gamma, \delta) := \frac{1}{2\pi i} Q_\lambda(\gamma, \delta)$$

is in \mathcal{Z}, and that the induced morphism

(*)
$$H_1(X^{an}, \mathcal{Z}) \to \text{Hom}(H_1(X^{an}, \mathcal{Z}), \mathcal{Z})$$
$$\gamma \mapsto E(\gamma, \)$$

is an isomorphism of abelian groups.

Note that, with this definition, (2) is automatic, since for any $\gamma, \delta \in H_1(X^{an}, \mathcal{Z})$ we have

$$\langle E(\gamma, \), E(\delta, \) \rangle_{E, \lambda} = \frac{1}{2\pi i} E(\gamma, \delta) = \frac{1}{(2\pi i)^2} Q_\lambda(\gamma, \delta) = \frac{1}{(2\pi i)^2} \langle Q_\lambda(\gamma, \), Q_\lambda(\delta, \) \rangle^an_{\lambda}$$

$$= \langle \frac{1}{2\pi i} Q_\lambda(\gamma, \), \frac{1}{2\pi i} Q_\lambda(\delta, \) \rangle^an_{\lambda} = \langle E(\gamma, \), E(\delta, \) \rangle^an_{\lambda}.$$
and the de Rham Chern class $c_{1, \text{dR}} : \text{Pic}(X) \to H^2_{\text{dR}}(X/\mathbb{C})$ (cf. [14] 2.2) are related by the following commutative diagram (cf. [10] 2.2.5.2)

$$
\begin{array}{ccc}
\text{Pic}(X) & \xrightarrow{c_{1, \text{dR}}} & H^2_{\text{dR}}(X/\mathbb{C}) \\
\downarrow c_{1, \text{top}} & & \downarrow \\
H^2(X^{\text{an}}, \mathbb{Z}) & \xrightarrow{-2\pi i} & H^2(X^{\text{an}}, \mathbb{C})
\end{array}
$$

where the arrow $H^2_{\text{dR}}(X/\mathbb{C}) \to H^2(X^{\text{an}}, \mathbb{C}) \cong \text{Hom}(H^2(X^{\text{an}}, \mathbb{Z}), \mathbb{C})$ is given by the comparison isomorphism.

If L is an ample line bundle on X inducing λ, then $Q_\lambda = c_{1, \text{dR}}(L)$ under the identification $H^2_{\text{dR}}(X/\mathbb{C})$ with the vector space of alternating bilinear forms on $H^1_{\text{dR}}(X/\mathbb{C})$ (cf. [14] proof of Lemma 2.1). By the commutativity of the above diagram, we see that $E_\lambda = -c_{1, \text{top}}(L)$ under the identification of $H^2(X^{\text{an}}, \mathbb{Z})$ with the module of alternating (integral) bilinear forms on $H_1(X^{\text{an}}, \mathbb{Z})$.

This proves that E_λ takes integral values.

To prove that (\ast) is an isomorphism, we simply use the fact that λ^{an} is an isomorphism of X^{an} onto its dual torus, hence the determinant of the bilinear form on $H_1(X^{\text{an}}, \mathbb{Z})$ induced by $c_{1, \text{top}}(L)$ is 1 (cf. [4] 2.4.9).

Thus, for any smooth separated \mathbb{C}-scheme of finite type U and any principally polarized abelian scheme (X, λ) over U of relative dimension g, the above construction gives a principally polarized complex torus $(X^{\text{an}}, E_\lambda)$ over U^{an} of relative dimension g.

Recall from [14] 3.1 that we denote by $\mathcal{A}_{g, \mathbb{C}}$ the moduli stack over \mathbb{C} of principally polarized abelian schemes of relative dimension g over \mathbb{C}-schemes. Let $\text{SmVar}_{/\mathbb{C}}$ be the full subcategory of $\text{Sch}_{/\mathbb{C}}$ consisting of smooth separated \mathbb{C}-schemes of finite type, and $\mathcal{A}^{\text{an}}_{g, \mathbb{C}}$ be the full subcategory of $\mathcal{A}_{g, \mathbb{C}}$ consisting of objects $(X, \lambda)/U$ of $\mathcal{A}_{g, \mathbb{C}}$ such that U is an object of $\text{SmVar}_{/\mathbb{C}}$.

We can summarize this paragraph by remarking that we have constructed a “relative uniformization functor” $\mathcal{A}^{\text{an}}_{g, \mathbb{C}} \to T_g$ making the diagram

$$
\begin{array}{ccc}
\mathcal{A}^{\text{an}}_{g, \mathbb{C}} & \longrightarrow & T_g \\
\downarrow & \downarrow & \\
\text{SmVar}_{/\mathbb{C}} & \longrightarrow & \text{Man}_{/\mathbb{C}}
\end{array}
$$

(strictly) commutative, where $\text{SmVar}_{/\mathbb{C}} \to \text{Man}_{/\mathbb{C}}$ is the classical analytification functor $U \mapsto U^{\text{an}}$.

Remark 2.14. One can prove that the above diagram is “cartesian” in the sense that it induces an equivalence of categories between $\mathcal{A}^{\text{an}}_{g, \mathbb{C}}$ and the full subcategory of T_g formed by the objects lying above the essential image of the analytification functor $\text{SmVar}_{/\mathbb{C}} \to \text{Man}_{/\mathbb{C}}$ (cf. [10] Rappel 4.4.3 and [6] Theorem 3.10). In particular, for any object U of $\text{SmVar}_{/\mathbb{C}}$ and any principally polarized complex torus (X', E) over U^{an} of relative dimension g, there exists up to isomorphism a unique principally polarized abelian scheme (X, λ) over U of relative dimension g such that $(X', E)/U^{\text{an}}$ is isomorphic to $(X^{\text{an}}, E_\lambda)/U^{\text{an}}$ in $T_g(U^{\text{an}})$. In this paper, we shall only need this algebraization result when $U = \text{Spec} \mathbb{C}$, which is classical (cf. [26] Corollary p. 35).
3. **Analytic moduli spaces of complex abelian varieties with a symplectic-Hodge basis**

In this section we consider some moduli problems of principally polarized complex tori, regarded as functors

\[\mathcal{T}_g^{\text{op}} \rightarrow \text{Set} \]

where \(\mathcal{T}_g \) is the category fibered in groupoids over the category of complex manifolds \(\text{Man}/\mathbb{C} \) defined in 2.3.

Recall that we denote by \(B_g \) the smooth quasi-projective scheme over \(\mathbb{Z}[1/2] \) representing the stack \(B_g \otimes_{\mathbb{Z}} \mathbb{Z}[1/2] \) (see [14] Theorem 4.1). We shall prove in particular that the complex manifold \(B_g(\mathbb{C}) = B_{\text{an}}^g/\mathbb{C} \) is a fine moduli space in the analytic category for principally polarized complex abelian varieties of dimension \(g \) endowed with a symplectic-Hodge basis.

3.1. Descent of principally polarized complex tori

Let \(M \) be a complex manifold and \((X,E)\) be a principally polarized complex torus over \(M \) of relative dimension \(g \).

If \(M_0 \) is another complex manifold and \(M \rightarrow M_0 \) is a holomorphic map, we say that \((X,E)\) descends to \(M_0 \) if there exists a principally polarized complex torus \((X_0,E_0)\) over \(M_0 \) and a morphism \((X,E)/M \rightarrow (X_0,E_0)/M_0\) in \(\mathcal{T}_g \).

Lemma 3.1. With the above notations, suppose that there exists a proper and free left action of a discrete group \(\Gamma \) on \(M \). If the action of \(\Gamma \) on \(M \) lifts to an action of \(\Gamma \) on \((X,E)/M \) in the category \(\mathcal{T}_g \), then \((X,E)/M\) descends to a principally polarized complex torus over the quotient \(\Gamma \backslash M \).

Sketch of the proof. Consider \(X \) as a pair \((V,L)\), where \(V \) is a holomorphic vector bundle over \(M \) of rank \(g \), and \(L \) is a lattice in \(V \) (cf. Remark 2.4). Then, to every \(\gamma \in \Gamma \) there is associated a holomorphic map \(\varphi_{\gamma} : V \rightarrow V \) making the diagram

\[
\begin{array}{ccc}
V & \xrightarrow{\varphi_{\gamma}} & V \\
\downarrow & & \downarrow \\
M & \xrightarrow{\gamma} & M
\end{array}
\]

commute, and compatible with the vector bundle structures. It follows from the commutativity of this diagram that the action of \(\Gamma \) on \(V \) is also proper and free. Thus, there exists a unique holomorphic vector bundle structure on the complex manifold \(\Gamma\backslash V \) over \(\Gamma\backslash M \) such that the canonical holomorphic map \(V \rightarrow \Gamma\backslash V \) induces a vector bundle isomorphism of \(V \) onto the pullback to \(M \) of the vector bundle \(\Gamma\backslash V \) over \(\Gamma\backslash M \).

Analogously, one descends the lattice \(L \) to a lattice in \(\Gamma\backslash V \) (consider the étale space, for instance), and the bilinear form \(E \) on \(V \) to a bilinear form on \(\Gamma\backslash V \), which is seen to be a principal polarization \textit{a posteriori}. ■

3.2. Integral symplectic bases over complex tori

Let \(M \) be a complex manifold and \((X,E)\) be a principally polarized complex torus over \(M \) of relative dimension \(g \). We denote by \(\pi : X \rightarrow M \) its structural morphism.
Definition 3.2. An integral symplectic basis of \((X, E)_{/M}\) is a trivializing \(2g\)-uple \((\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g)\) of global sections of \(R_1\pi_\ast Z_X\) which is symplectic with respect to the Riemann form \(E\), that is,

\[
E(\gamma_i, \gamma_j) = E(\delta_i, \delta_j) = 0 \quad \text{and} \quad E(\gamma_i, \delta_j) = \delta_{ij}
\]

for any \(1 \leq i \leq j \leq g\).

Example 3.3. Consider the principally polarized complex torus \((X_g, E_g)\) over \(H_g\) of Example 2.8 and recall that a section of \(R_1p_\ast Z_{X_g}\) is given by a column vector of holomorphic functions on \(H_g\) of the form \(\tau \mapsto m + \tau n\), for some sections \((m, n)\) of \((\mathbb{Z}^g \oplus \mathbb{Z}^g)_{H_g}\). We can thus define an integral symplectic basis

\[
\beta_g = (\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g)
\]

of \((X_g, E_g)_{/H_g}\) by

\[
\gamma_i(\tau) := e_i \quad \text{and} \quad \delta_i(\tau) := \tau e_i
\]

for any \(\tau \in H_g\).

Let \((X', E')_{/M'}\) and \((X, E)_{/M}\) be objects of \(\mathcal{T}_g\) with structural morphisms \(\pi' : X' \to M'\) and \(\pi : X \to M\). If \(F/f : (X', E')_{/M'} \to (X, E)_{/M}\) is a morphism in \(\mathcal{T}_g\), then the isomorphism of vector bundles

\[
(3.1) \quad \text{Lie}_{M'} X' \cong f^* \text{Lie}_M X
\]

induced by \(F\) identifies the lattice \(R_1\pi'_\ast Z_{X'}\) with \(f^* R_1\pi_\ast Z_X\). If \(\gamma\) is a section of \(R_1\pi_\ast Z_X\), we denote by \(F^* \gamma\) the section of \(R_1\pi'_\ast Z_{X'}\) mapping to \(f^* \gamma\) under \((3.1)\). As the isomorphism \((3.1)\) also preserves the corresponding Riemann forms, for any integral symplectic basis \((\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g)\) of \((X, E)_{/M}\), the \(2g\)-uple of global sections of \(R_1\pi'_\ast Z_{X'}\), given by

\[
F^* \beta := (F^* \gamma_1, \ldots, F^* \gamma_g, F^* \delta_1, \ldots, F^* \delta_g)
\]

is an integral symplectic basis of \((X', E')_{/M'}\).

Proposition 3.4 (cf. [4] Proposition 8.1.2). The functor \(\mathcal{T}_g^{\text{op}} \to \text{Set}\) sending an object \((X, E)_{/M}\) of \(\mathcal{T}_g\) to the set of integral symplectic bases of \((X, E)_{/M}\) is representable by \((X_g, E_g)_{/H_g}\), with universal integral symplectic basis \(\beta_g\) defined in Example 3.3.

Proof. Let \((X, E)_{/M}\) be an object of \(\mathcal{T}_g\) with structural morphism \(\pi : X \to M\), and let \(\beta = (\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g)\) be an integral symplectic basis of \((X, E)_{/M}\). Let \(W\) be the real subbundle of \(\text{Lie}_M X\) generated by \(\gamma_1, \ldots, \gamma_g\). Since \(E\) is the imaginary part of a Hermitian metric, for any nontrivial section \(\gamma\) of \(W\), we have \(E(\gamma, i\gamma) \neq 0\). As \(W\) is isotropic with respect to \(E\), it follows that \(\text{Lie}_M X = W \oplus iW\) as a real vector bundle. In particular, \(\gamma := (\gamma_1, \ldots, \gamma_g)\) trivializes \(\text{Lie}_M X\) as a holomorphic vector bundle. Hence, if \(\delta := (\delta_1, \ldots, \delta_g)\), then there exists a unique holomorphic map \(\tau : M \to \text{GL}_g(\mathbb{C})\) such that \(\delta = \gamma \tau\), where \(\gamma\) and \(\delta\) are regarded as row vectors of global holomorphic sections of \(\text{Lie}_M X\).

Let \(A := (E(\gamma_k, \delta_l))_{1 \leq k, l \leq g} \in M_{g \times g}(\mathbb{C})\). Since

\[
\delta = \gamma \Re \tau + i \gamma \Im \tau,
\]
the matrix of E in the basis β is given by
\[
\begin{pmatrix}
0 & A \text{Im} \tau \\
-(A \text{Im} \tau)^T & (\text{Re} \tau)^T A \text{Im} \tau - (\text{Im} \tau)^T A^T \text{Re} \tau
\end{pmatrix}.
\]
Using that β is symplectic with respect to E, and that A is symmetric and positive-definite (recall that E is the imaginary part of a Hermitian metric), we conclude that τ factors through $H_g \subset \text{GL}_g(\mathbb{C})$.

Finally, writing X as the quotient of $\text{Lie}_M X$ by $R_1 \pi_1 \mathbb{Z}_X$, we see that τ lifts to a unique morphism in \mathcal{T}_g
\[
F_{/\tau} : (X, E)_/M \longrightarrow (X_g, E_g)/H_g
\]
satisfying $F^* \beta_g = \beta$.

Remark 3.5. We may define a left action of the group $\text{Sp}_{2g}(\mathbb{Z})$ on the functor $\mathcal{T}_g^{op} \longrightarrow \text{Set}$ of integral symplectic bases, considered in the above proposition, as follows. Let $(X, E)_U$ be an object of \mathcal{T}_g and β be an integral symplectic basis of $(X, E)_U$. Let $\gamma = (A \ B ; C \ D) \in \text{Sp}_{2g}(\mathbb{Z})$, and consider $\beta = (\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g)$ as a row vector of order $2g$; then we define
\[
\gamma \cdot \beta := (\gamma_1 \cdots \gamma_g \delta_1 \cdots \delta_g) \begin{pmatrix}
D^T & B^T \\
C^T & A^T
\end{pmatrix}
\]
The morphism
\[
F_{/\gamma/f_\gamma} : (X_g, E_g)/H_g \longrightarrow (X_g, E_g)/H_g
\]
defined in Example 2.9 is the unique morphism in \mathcal{T}_g satisfying
\[
F^*_\gamma \beta_g = \gamma \cdot \beta_g.
\]

3.3. **Principal (symplectic) level structures.**

3.3.1. Let U be a scheme, and X be an abelian scheme over U. Recall that, for any integer $n \geq 1$, we may define a natural pairing, the so-called *Weil pairing*,
\[
X[n] \times X'[n] \longrightarrow \mu_{n,U},
\]
where $\mu_{n,U}$ denotes the U-group scheme of nth roots of unity (cf. [26] IV.20).

Fix an integer $n \geq 1$, and let $\zeta_n \in \mathbb{C}$ be the nth root of unity $e^{2\pi i/n}$. For any scheme U over $\mathbb{Z}[1/n, \zeta_n]$, and any principally polarized abelian scheme (X, λ) over U of relative dimension g, by identifying $X'[n]$ with $X[n]$ via λ, and $\mu_{n,U}$ with $(\mathbb{Z}/n\mathbb{Z})_U$ via ζ_n, we obtain a pairing
\[
e_\lambda^n : X[n] \times X[n] \longrightarrow (\mathbb{Z}/n\mathbb{Z})_U.
\]
The formation of e_λ^n is compatible with every base change in U. Moreover, e_λ^n is skew-symmetric and non-degenerate (cf. [26] IV.23).

Since, for any integer $n \geq 3$, there exists a fine moduli space $A_{g,1,n}$ over $\mathbb{Z}[1/n]$ for principally polarized abelian varieties of dimension g endowed with a full level n-structure (see [27] Theorem 7.9, and the following remark; see also [22] Théorème VII.3.2), there also exists a fine moduli space $A_{g,n}$ over $\mathbb{Z}[1/n, \zeta_n]$ for principally polarized abelian varieties (X, λ) of dimension g endowed with a symplectic basis of $X[n]$ for the pairing e_λ^n (cf. [13] IV.6). The scheme $A_{g,n}$ is quasi-projective and
smooth over $\mathbb{Z}[1/n, \zeta_n]$, with connected fibers. In the sequel, we denote the universal principally polarized abelian scheme over $A_{g,n}$ by $(X_{g,n}, \lambda_{g,n})$, and the universal symplectic basis of $X_{g,n}[n]$ by $\alpha_{g,n}$.

3.3.2. Let $(X, E)/M$ be an object of \mathcal{T}_g with structural morphism $\pi : X \to M$. For any integer $n \geq 1$, by an integral symplectic basis modulo n of $(X, E)/M$, we mean a $2g$-tuple of global sections of the local system of $\mathbb{Z}/n\mathbb{Z}$-modules

$$R_1\pi_*(\mathbb{Z}/n\mathbb{Z})_X = R_1\pi_*\mathbb{Z}_X/nR_1\pi_*\mathbb{Z}_X$$

which is symplectic with respect to the alternating $\mathbb{Z}/n\mathbb{Z}$-linear form on $R_1\pi_*(\mathbb{Z}/n\mathbb{Z})_X$ induced by E.

Remark 3.6. Every integral symplectic basis of $(X, E)/M$ induces an integral symplectic basis modulo n of $(X, E)/M$. Conversely, since the natural map $\text{Sp}_{2g}(\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/n\mathbb{Z})$ is surjective, locally on M, every integral symplectic basis modulo n of $(X, E)/M$ can be lifted to an integral symplectic basis of $(X, E)/M$.

The notion of integral symplectic bases modulo n is compatible with the notion of principal level n structures of 3.3.1 in the following sense. Let $(X, \lambda)/U$ be an object of $A^\text{an}_{g,n, \mathbb{C}}$ (see 2.5) with structural morphism $p : X \to U$. The étale space of the local system $R_1\pi^\text{an}_*(\mathbb{Z}/n\mathbb{Z})_{X^\text{an}}$ is canonically isomorphic to the n-torsion Lie subgroup $X^\text{an}[n]$ of X^an. Under this identification, the pairing e^λ_n on $X[n]$ coincides, up to a sign, with the reduction modulo n of the Riemann form E^λ (cf. [26] IV.23 and IV.24), and thus an integral symplectic basis modulo n of $(X^\text{an}, E^\lambda)/U^\text{an}$ canonically corresponds to a symplectic trivialization of $X^\text{an}[n]$ with respect to e^λ_n.

3.3.3. Let $\Gamma(n)$ the kernel of the natural map $\text{Sp}_{2g}(\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/n\mathbb{Z})$. Recall that for any $n \geq 3$ the induced action of $\Gamma(n)$ on H_g is free ([26] IV.21 Theorem 5) and proper.

The following proposition is well known.

Proposition 3.7. For any integer $n \geq 3$, the complex manifold $A_{g,n}(\mathbb{C}) = A^\text{an}_{g,n, \mathbb{C}}$ is canonically biholomorphic to the quotient of H_g by $\Gamma(n)$, and the functor $\mathcal{T}_g^{\text{op}} \to \text{Set}$ sending an object $(X, E)/M$ of \mathcal{T}_g to the set of integral symplectic basis modulo n of $(X, E)/M$ is representable by $(X^\text{an}_{g,n, \mathbb{C}}, E_{\lambda,n})/A^\text{an}_{g,n, \mathbb{C}}$.

Proof. As the action of $\Gamma(n)$ on H_g is proper and free, the quotient

$$A_{g,n} := \Gamma(n) \backslash H_g$$

is a complex manifold, and the canonical holomorphic map $H_g \to A_{g,n}$ is a covering map with Galois group $\Gamma(n)$. Moreover, since the action of $\Gamma(n)$ on H_g lifts to an action of $\Gamma(n)$ on $(X_g, E_g)/H_g$ in the category \mathcal{T}_g, the principally polarized complex torus (X_g, E_g) over H_g descends to a principally polarized complex torus $(X_{g,n}, E_{g,n})$ over $A_{g,n}$ (Lemma 3.1).

Let β_g be the integral symplectic basis modulo n of $(X_g, E_g)/H_g$ obtained from β_g by reduction modulo n. Then β_g is invariant under the action of $\Gamma(n)$, and thus it descends to an integral symplectic basis modulo n of $(X_{g,n}, E_{g,n})/A_{g,n}$, say $\beta_{g,n}$.

The object $(X_{g,n}, E_{g,n})/A_{g,n}$ of \mathcal{T}_g so constructed represents the functor in the statement with $\beta_{g,n}$ serving as universal symplectic basis modulo n. Indeed, let $(X, E)/M$ be an object of \mathcal{T}_g, and
\(\beta\) be an integral symplectic basis modulo \(n\) of \((X,E)/M\). By Remark 3.6, there exists an open covering \(M = \bigcup_{i \in I} U^i\) and, for each \(i \in I\), an integral symplectic basis \(\beta^i\) of \((X,E)/U^i\), lifting \(\beta\). By Proposition 3.4, we obtain for each \(i \in I\) a morphism \(F^i_{/f^i} : (X,E)/U^i \rightarrow (X_g,E_g)_{/H_g}\) in \(T_g\) satisfying \((F^i)^*\beta_g = \beta^i\). Finally, by construction, for any \(i,j \in I\), the compositions of \(F^i_{/f^i}\) and \(F^j_{/f^j}\) with the projection \((X_g,E_g)_{/H_g} \rightarrow (X_{g,n},E_{g,n})_{/A_{g,n}}\) agree over the intersection \(U^i \cap U^j\); hence they glue to a morphism
\[
F_{/f} : (X,E)/M \rightarrow (X_{g,n},E_{g,n})_{/A_{g,n}}
\]
satisfying \(F^*\beta_{g,n} = \beta\), and uniquely determined by this property.

To finish the proof, it is sufficient to show that \((X^a_{g,n,C},E_{\lambda_{g,n}})_{/A^a_{g,n,C}}\) is isomorphic to \((X_{g,n},E_{g,n})_{/A_{g,n}}\) in the category \(T_g\). By the compatibility of principal level \(n\) structures with integral symplectic bases modulo \(n\), there exists a unique morphism in \(T_g\)
\[
F_{/f} : (X^a_{g,n,C},E_{\lambda_{g,n}})_{/A^a_{g,n,C}} \rightarrow (X_{g,n},E_{g,n})_{/A_{g,n}}
\]
such that \(F^*\beta_{g,n}\) is the integral symplectic basis modulo \(n\) of \((X^a_{g,n,C},E_{\lambda_{g,n}})_{/A^a_{g,n,C}}\) associated to \(\alpha_{g,n}\) (the universal principal level \(n\) structure of \((X_{g,n},\lambda_{g,n})_{/A_{g,n}}\)). Since complex tori (over a point) endowed with a principal Riemann form are algebraizable (cf. Remark 2.14), the holomorphic map
\[
f : A_{g,n}(C) = A^a_{g,n,C} \rightarrow A_{g,n}
\]
is bijective. As the complex manifolds \(A_{g,n}\) and \(A_{g,n}(C)\) have same dimension, \(f\) is necessarily a biholomorphism ([15] p. 19).

3.4. Symplectic-Hodge bases over complex tori.

3.4.1. Let \(M\) be a complex manifold and \((X,E)\) be a principally polarized complex torus over \(M\) of relative dimension \(g\). As in [14] Definition 2.4, by a symplectic-Hodge basis of \((X,E)/M\), we mean a 2-guple \(b = (\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g)\) of global sections of the holomorphic vector bundle \(H^1_{dR}(X/M)\) such that \(\omega_1, \ldots, \omega_g\) are sections of the subbundle \(F^1(X/M)\), and \(b\) is symplectic with respect to the holomorphic symplectic form \(\langle , \rangle_E\).

It follows from Lemma 2.13 that this notion of symplectic-Hodge basis is compatible with its algebraic counterpart ([14] Definition 2.4) via the “relative uniformization functor” in 2.5.

3.4.2. Consider Siegel parabolic subgroup of \(Sp_{2g}(C)\)
\[
P_g(C) = \left\{ \begin{pmatrix} A & B \\ 0 & (A^T)^{-1} \end{pmatrix} \in M_{2g \times 2g}(C) \mid A \in GL_g(C) \text{ and } B \in M_{g \times g}(C) \text{ satisfy } AB^T = BA^T \right\}.
\]

Note that \(P_g(C)\) is a free and transitive group of dimension \(g(3g+1)/2\).

Let \((X,E)\) be a principally polarized complex torus of dimension \(g\). If \(b = (\omega, \eta)\) is a symplectic-Hodge basis of \((X,E)\), seen as a row vector of order \(2g\) with coefficients in \(H^1_{dR}(X)\), and \(p = (A B ; 0 (A^T)^{-1}) \in P_g(C)\), then we put
\[
b \cdot p := (\omega A \omega B + \eta (A^T)^{-1})
\]
It is easy to check that \(b \cdot p\) is a symplectic-Hodge basis of \((X,E)\), and that the above formula defines a free and transitive action of \(P_g(C)\) on the set of symplectic-Hodge bases of \((X,E)\).
3.4.3. For a complex manifold M, let us denote by $\text{Man}_{/M}$ the category of complex manifolds endowed with a holomorphic map to M.

Lemma 3.8 (cf. [14] Corollary 3.4). Let M be a complex manifold and (X, E) be a principally polarized complex torus over M of relative dimension g. The functor

$$\text{Man}_{/M}^{\text{op}} \longrightarrow \text{Set}$$

$$M' \mapsto \{\text{symplectic-Hodge bases of } (X, E) \times_M M'\}$$

is representable by a principal $P_g(C)$-bundle $B(X, E)$ over M.

Proof. Let us denote by $\pi : V \longrightarrow M$ the holomorphic vector bundle $H^1_{\text{dR}}(X/M)_{\oplus g}$ over M. For any $p \in M$, the fiber $\pi^{-1}(p) = V_p$ is the vector space of g-uples $(\alpha_1, \ldots, \alpha_g)$, with each $\alpha_i \in H^1_{\text{dR}}(X_p)$. Let B be the locally closed analytic subspace of V consisting of points $v = (\alpha_1, \ldots, \alpha_g)$ of V such that

$$L := C\alpha_1 + \cdots + C\alpha_g$$

is a Lagrangian subspace of $H^1_{\text{dR}}(X_{\pi(v)})$ with respect to $(\cdot, \cdot)_{E_{\pi(v)}}$ satisfying

$$F^1(X_{\pi(v)}) \oplus L = H^1_{\text{dR}}(X_{\pi(v)}).$$

By [14] Proposition A.7. (2), a symplectic-Hodge basis $(\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g)$ of a principally polarized complex torus is uniquely determined by (η_1, \ldots, η_g). In particular, for each $p \in M$, the fiber $B_p = B \cap V_p$ may be naturally identified with the set of symplectic-Hodge bases of (X_p, E_p).

Thus, it follows from 3.4.2 that B is a principal $P_g(C)$-bundle over M; in particular, it is a complex manifold. We also conclude from the above paragraph that B represents the functor in the statement. \hfill \blacksquare

Remark 3.9. The above construction is compatible, under analytification, with its algebraic counterpart. Namely, let U be a smooth separated C-scheme of finite type, and (X, λ) be a principally polarized abelian scheme over U. The complex manifold $\mathcal{B}(X_{\text{an}}, E_{\lambda})$ over U_{an} constructed in Lemma 3.8 is canonically isomorphic to the analytification of the scheme $\mathcal{B}(X, \lambda)$ over U constructed in [14] Corollary 3.4.

Recall that we denote by (X_g, λ_g) the universal principally polarized abelian scheme over B_g, and by b_g the universal symplectic-Hodge basis of $(X_g, \lambda_g)_{/B_g}$.

Proposition 3.10. The functor $\mathcal{T}_g^{\text{op}} \longrightarrow \text{Set}$ sending an object $(X, E)_{/M}$ of \mathcal{T}_g to the set of symplectic-Hodge bases of $(X, E)_{/M}$ is representable by $(X_{g, \text{an}}, E_{\lambda_g})_{/B_g^{\text{an}, C}}$, with universal symplectic-Hodge basis b_g.

Proof. By Lemma 3.8, there exists a complex manifold $\mathcal{B}_g := B(X_g, E_g)$ over H_g representing the functor

$$\text{Man}_{/H_g}^{\text{op}} \longrightarrow \text{Set}$$

$$M \mapsto \{\text{symplectic-Hodge bases of } (X_g, E_g) \times_{H_g} M\}$$

Let $(X_{B_g}, E_{B_g}) = (X_g, E_g) \times_{H_g} B_g$. Note that the principally polarized complex torus (X_{B_g}, E_{B_g}) over B_g is equipped with a universal symplectic-Hodge basis b_{B_g}, and with an integral symplectic
basis β_{B_g} obtained by pullback from β_g via the canonical morphism $(X_{B_g}, E_{B_g})/B_g \rightarrow (X_g, E_g)/H_g$ in T_g.

We now remark that $(X_{B_g}, E_{B_g})/B_g$ represents the functor $T_g^{op} \rightarrow \text{Set}$ sending an object $(X, E)/M$ of T_g to the cartesian product of the set of symplectic-Hodge bases of $(X, E)/M$ with the set of integral symplectic bases of $(X, E)/M$, with (b_{B_g}, β_{B_g}) serving as a universal object. Thus, for any element $\gamma \in \text{Sp}_{2g}(\mathbb{Z})$, there exists a unique automorphism $\Psi_{\gamma/\psi_\gamma}$ of $(X_{B_g}, E_{B_g})/B_g$ in T_g such that $\Psi_{\gamma}^* b_{B_g} = b_{B_g}$ and $\Psi_{\gamma}^* \beta_{B_g} = \gamma \cdot \beta_{B_g}$ (where the left action of $\text{Sp}_{2g}(\mathbb{Z})$ on integral symplectic bases is defined as in Remark 3.5).

As the functor $B_g: A_g^{op} \rightarrow \text{Set}$ is rigid over \mathbb{C} ([14] Lemma 4.3), we see that

1. $\gamma \mapsto \Psi_{\gamma/\psi_\gamma}$ is in fact an action of $\text{Sp}_{2g}(\mathbb{Z})$ on $(X_{B_g}, E_{B_g})/B_g$ in the category T_g, and

2. the action $\gamma \mapsto \psi_\gamma$ of $\text{Sp}_{2g}(\mathbb{Z})$ on the complex manifold B_g is free; it is also proper since it lifts the action on H_g.

Let M be the quotient manifold $\text{Sp}_{2g}(\mathbb{Z})\backslash B_g$ and descend (X_{B_g}, E_{B_g}) to a principally polarized complex torus (X, E) over M. Since b_{B_g} is invariant under the action of $\text{Sp}_{2g}(\mathbb{Z})$, we can descend it to a symplectic-Hodge basis b of $(X, E)/M$. As in the proof of Proposition 3.7, we may check that $(X, E)/M$ represents the functor in the statement, with b serving as universal symplectic-Hodge basis.

To finish the proof, we must prove that $(X, E)/M$ is isomorphic to $(X^{an}_{g, C}, E_{\lambda_g})/B^{an}_{g, C}$ in T_g. For this, it is sufficient to remark that, by the universal property of $(X, E)/M$, there exists a unique morphism in T_g

$$F/f : (X^{an}_{g, C}, E_{\lambda_g})/B^{an}_{g, C} \rightarrow (X, E)/M$$

satisfying $F^* b = b_g$, and that the holomorphic map

$$f : B_g(C) = B^{an}_{g, C} \rightarrow M$$

is bijective since principally polarized complex tori (over a point) are algebraizable (cf. Remark 2.14); then f is necessarily a biholomorphism ([15] p. 19).

4. The higher Ramanujan equations and their analytic solution φ_g

Fix an integer $g \geq 1$. Let us consider the holomorphic coordinate system $(\tau_{kl})_{1 \leq k \leq l \leq g}$ on the complex manifold H_g, where $\tau_{kl} : H_g \rightarrow \mathbb{C}$ associates to any $\tau \in H_g$ its entry in the kth row and lth column. To this system of coordinates is attached a family $(\theta_{kl})_{1 \leq k \leq l \leq g}$ of holomorphic vector fields on H_g, defined by

$$\theta_{kl} := \frac{1}{2\pi i} \frac{\partial}{\partial \tau_{kl}}.$$

Let $(v_{kl})_{1 \leq k \leq l \leq g}$ be the family of holomorphic vector fields on $B_g(C)$ induced by the higher Ramanujan vector fields on B_g defined in [14] 5.3.

Definition 4.1. Let U be an open subset of H_g. We say that a holomorphic map $u : U \rightarrow B_g(C)$ is a solution of the higher Ramanujan equations if

$$\theta_{kl} u = v_{kl} \circ u$$

for every $1 \leq k \leq l \leq g$.
In this section, we construct a global holomorphic solution
\[\varphi_g : H_g \rightarrow B_g(C) \]
of the higher Ramanujan equations. In view of the universal property of the moduli space \(B_g(C) \) (Proposition 3.10), the holomorphic map \(\varphi_g \) will be induced by a certain symplectic-Hodge basis of the principally polarized complex torus \((X_g, E_g) / H_g\).

4.1. **Definition of \(\varphi_g \) and statement of our main theorem.** Recall that the comparison isomorphism (2.1) identifies the holomorphic vector bundle \((\text{Lie}_{H_g} X_g)^\vee \) over \(H_g \) with \(F^1(X_g / H_g) \) (Lemma 2.12). Moreover, it follows from the construction of \(X_g \) in Example 2.8 that \(\text{Lie}_{H_g} X_g \) is canonically isomorphic to the trivial vector bundle \(C^g \times H_g \) over \(H_g \). Under this isomorphism, we define the holomorphic frame
\[(dz_1, \ldots, dz_g) \]
of \(F^1(X_g / H_g) \) as the dual of the canonical holomorphic frame of \(C^g \times H_g \).

Theorem 4.2. For each \(1 \leq k \leq g \), consider the global sections of \(H^1_{\text{dR}}(X_g / H_g) \)
\[\omega_k := 2\pi i dz_k, \quad \eta_k := \nabla_{\theta_k} \omega_k \]
where \(\nabla \) denotes the Gauss-Manin connection on \(H^1_{\text{dR}}(X_g / H_g) \). Then,
(1) The \(2g \)-uple
\[b_g := (\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g) \]
of holomorphic global sections of \(H^1_{\text{dR}}(X_g / H_g) \) is a symplectic-Hodge basis of the principally polarized complex torus \((X_g, E_g) / H_g\).
(2) The holomorphic map
\[\varphi_g : H_g \rightarrow B_g(C) \]
corresponding to \(b_g \) by the universal property of \(B_g(C) \) is a solution of the higher Ramanujan equations (Definition 4.1).

The main idea in our proof is to compute with a \(C^\infty \) trivialization of the vector bundle \(H^1_{\text{dR}}(X_g / H_g) \).

In the next subsection we develop some preliminary background.

4.2. **Preliminary results.** Consider the **complex conjugation**, seen as a \(C^\infty \) morphism of real vector bundles over \(H_g \),
\[H^1_{\text{dR}}(X_g / H_g) \rightarrow H^1_{\text{dR}}(X_g / H_g) \]
i\[\alpha \mapsto \bar{\alpha} \]
induced by the comparison isomorphism (2.1), and denote \(d\bar{z}_k := \overline{dz_k} \) for every \(1 \leq k \leq g \). We may check fiber by fiber that the \(2g \)-uple of \(C^\infty \) global sections of \(H^1_{\text{dR}}(X_g / H_g) \)
\[(dz_1, \ldots, dz_g, d\bar{z}_1, \ldots, d\bar{z}_g) \]
trivializes \(H^1_{\text{dR}}(X_g / H_g) \) as a \(C^\infty \) complex vector bundle over \(H_g \).
For $1 \leq i \leq j \leq g$ and $1 \leq k \leq g$, let us define
\[
\eta^i_j_k := \nabla_{\theta^i_j} \omega_k,
\]
so that
\[
\eta^k_k = \eta_{kk}^k.
\]

Proposition 4.3. Consider the notations in 1.6.3. For every $1 \leq i \leq j \leq g$ and $1 \leq k \leq g$, we have
\[
\eta^i_j_k = \sum_{l=1}^{g} e^i_k \bar{E}^i_j (\text{Im} \tau)^{-1} e_l \text{Im} dz_l
\]
as a C^∞ section of $H^1_{dR}(X_g/H_g)$, where $\text{Im} dz_l := (dz_l - d\bar{z}_l)/2i$.

Proof. For $1 \leq i \leq j \leq g$ and $1 \leq k, l \leq g$, let $\lambda^i_j_k$ and $\mu^i_j_k$ be the C^∞ functions on H_g with values in C defined by the equation
\[
\eta^i_j_k = \sum_{l=1}^{g} (\lambda^i_j_k dz_l + \mu^i_j_k d\bar{z}_l).
\]
We must prove that $\lambda^i_j_k + \mu^i_j_k = 0$ and that $\lambda^i_j_k = \frac{1}{2} e^i_k \bar{E}^i_j (\text{Im} \tau)^{-1} e_l$.

Let us consider the integral symplectic basis $\beta^g := (\gamma_1, ..., \gamma_g, \delta_1, ..., \delta_g)$ of $R_{1p_g}^*Z_{X_g}$ defined in Example 3.3. For every $1 \leq i \leq j \leq g$ and $1 \leq k, l \leq g$, we have (cf. Remark 2.11)
\[
\int_{\gamma_l} \eta^i_j_k = \int_{\gamma_l} \nabla \partial_{\tau^i_j} dz_k = \partial \partial_{\tau^i_j} \int_{\gamma_l} dz_k = \partial \delta_{kl} = 0
\]
and
\[
\int_{\delta_l} \eta^i_j_k = \int_{\delta_l} \nabla \partial_{\tau^i_j} dz_k = \partial \partial_{\tau^i_j} \int_{\delta_l} dz_k = \partial \tau_{kl} = E^i_j_k.
\]
Thus, by definition of $\lambda^i_j_k$ and $\mu^i_j_k$, we obtain
\[
0 = \int_{\gamma_l} \eta^i_j_k = \sum_{m=1}^{g} \left(\lambda^i_j_k \int_{\gamma_l} dz_m + \mu^i_j_k \int_{\gamma_l} d\bar{z}_m \right) = \lambda^i_j_k + \mu^i_j_k
\]
and
\[
E^i_j_k = \int_{\delta_l} \eta^i_j_k = \sum_{m=1}^{g} \left(\lambda^i_j_k \int_{\delta_l} dz_m + \mu^i_j_k \int_{\delta_l} d\bar{z}_m \right) = \sum_{m=1}^{g} \lambda^i_j_k (\tau_{ml} - \bar{\tau}_{ml}) = 2i \sum_{m=1}^{g} \lambda^i_j_k (\text{Im} \tau)_{ml}.
\]
In matricial notation, if we put $\lambda^i_j := (\lambda^i_j_k)_{1 \leq k, l \leq g} \in M_{g \times g}(C)$, then we have shown that
\[
2i \lambda^i_j \text{Im} \tau = E^i_j
\]
The assertion follows.

Specializing to the case $i = j = k$ in the above proposition, we obtain the following formulas.
Corollary 4.4. For any $1 \leq k \leq g$, we have

$$\eta_k = \sum_{l=1}^{g} ((\text{Im} \tau)^{-1})_{kl} \text{Im} dz_l.$$

In particular, η_k is the unique global section of $\mathcal{H}^1_{dR}(X_g/\mathbf{H}_g)$ satisfying

$$\int_{\gamma_l} \eta_k = 0 \quad \text{and} \quad \int_{\delta_l} \eta_k = \delta_{kl}$$

for every $1 \leq l \leq g$. In other words, η_k may be identified with $E_g(\gamma_k,)$ under the comparison isomorphism (2.1).

Since every section of $R^1p_{g*}Z_{X_g} = (R^1p_{g*}Z_{X_g})^\vee$, seen as a section of $\mathcal{H}^1_{dR}(X_g/\mathbf{H}_g)$ via the comparison isomorphism (2.1), is horizontal for the Gauss-Manin connection, we obtain the next corollary.

Corollary 4.5. For any $1 \leq k \leq g$, the global section η_k of $\mathcal{H}^1_{dR}(X_g/\mathbf{H}_g)$ is horizontal for the Gauss-Manin connection:

$$\nabla \eta_k = 0.$$

Our next goal is to use the duality given by the Riemann form E_g to express dz_l in terms of C^∞ sections of $\text{Lie}_H X_g$.

Lemma 4.6. Let $1 \leq k \leq g$, and denote by τ_k the k-th column of $\tau \in \mathbf{H}_g$. Then

$$dz_k = -E_g(i \text{Im} \tau_k,) + iE_g(\text{Im} \tau_k,)$$

as a C^∞ section of $\mathcal{H}^1_{dR}(X_g/\mathbf{H}_g)$ under the comparison isomorphism (2.1).

Proof. Note that $\text{Im} \tau_k = (\text{Im} \tau)e_k$. Let γ be a section of $R^1p_{g*}Z_{X_g}$. As $\text{Im} \tau$ is symmetric and $\gamma = \text{Re} \gamma + i \text{Im} \gamma$, we have

$$-E_g(i \text{Im} \tau_k, \gamma) + iE_g(\text{Im} \tau_k, \gamma) = -i \text{Im}(\text{Im} \tau_k^T (\text{Im} \tau)^{-1} \gamma) + i \text{Im}(\text{Im} \tau_k^T (\text{Im} \tau)^{-1} \gamma)$$

$$= \text{Im}(i e_k^T (\text{Im} \tau)(\text{Im} \tau)^{-1} \gamma) + i \text{Im}(e_k^T (\text{Im} \tau)(\text{Im} \tau)^{-1} \gamma)$$

$$= \text{Re}(e_k^T \gamma) + i \text{Im}(e_k^T \gamma)$$

$$= e_k^T \gamma = dz_k(\gamma).$$

4.3. Proof of Theorem 4.2. We prove parts (1) and (2) separately.

Proof of Theorem 4.2 (1). As each ω_k is by definition a section of $\mathcal{F}^1(X_g/\mathbf{H}_g)$, to prove that \mathbf{b}_g is a symplectic-Hodge basis of $(X_g, E_g)/\mathbf{H}_g$, it is sufficient to show that it is a symplectic trivialization of $\mathcal{H}^1_{dR}(X_g/\mathbf{H}_g)$ with respect to the holomorphic symplectic form \langle , \rangle_{E_g}. For this, we claim that it is enough to prove that

$$\langle \omega_i, \eta_j \rangle_{E_g} = \delta_{ij}$$
for every $1 \leq i \leq j \leq g$. Indeed, by Corollary 4.5 and by the compatibility (2.2), equation (\ast) implies that $\langle \eta_i, \eta_j \rangle_{E_g} = 0$ (apply ∇_{θ_i}). Since we already know that $\mathcal{F}^1(X_g/H_g)$ is Lagrangian, this proves indeed that b_g is a symplectic trivialization of $\mathcal{H}_{dR}^1(X_g/H_g)$.

Fix $1 \leq i \leq j \leq g$. By Corollary 4.4, we have

$$\eta_j = \sum_{l=1}^{g} (\text{Im} \tau_i)^{-1} j_l \text{Im} dz_l,$$

thus

$$\langle \omega_i, \eta_j \rangle_{E_g} = 2\pi i \sum_{l=1}^{g} ((\text{Im} \tau_i)^{-1}) j_l (\text{Im} dz_l)_E.$$

Now, using Lemma 4.6, we obtain

$$\langle dz_i, \text{Im} dz_l \rangle_{E_g} = (\langle -E_g(i \text{Im} \tau_i), + iE_g(\text{Im} \tau_i,), E_g(\text{Im} \tau_i,) \rangle_{E_g}$$

$$= \langle -E_g(i \text{Im} \tau_i,), E_g(\text{Im} \tau_i,) \rangle_{E_g} + i\langle E_g(\text{Im} \tau_i,), E_g(\text{Im} \tau_i,) \rangle_{E_g}$$

$$= \frac{1}{2\pi i} (-E_g(i \text{Im} \tau_i, \text{Im} \tau_l) + iE_g(\text{Im} \tau_i, \text{Im} \tau_l))$$

$$= \frac{1}{2\pi i} \text{Im}(i \text{Im} \tau_i^T (\text{Im} \tau_i)^{-1} \text{Im} \tau_l)$$

$$= \frac{1}{2\pi i} e_i^T (\text{Im} \tau)e_l = \frac{1}{2\pi i} (\text{Im} \tau)_{il}.$$

Therefore, since $\text{Im} \tau$ is symmetric,

$$\langle \omega_i, \eta_j \rangle_{E_g} = \sum_{l=1}^{g} ((\text{Im} \tau_i)^{-1}) j_l (\text{Im} \tau_i)_{li} = \delta_{ij}.$$

Let M be a complex manifold and (X, E) be a principally polarized complex torus over M of relative dimension g. Let us denote by ∇ the Gauss-Manin connection on $\mathcal{H}_{dR}^1(X/M)$. To any symplectic-Hodge basis $b = (\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g)$ of $(X, E)/M$ we can associate a morphism of \mathcal{O}_M-modules (cf. [14] Theorem 5.4)

$$c : T_M \longrightarrow \Gamma^2(\mathcal{F}^1(X/M)^\vee) \oplus \mathcal{H}_{dR}^1(X/M)^{\oplus g}$$

$$\theta \longmapsto (\kappa(\theta), \nabla_\theta \eta_1, \ldots, \nabla_\theta \eta_g)$$

where

$$\kappa : T_M \longrightarrow \Gamma^2(\mathcal{F}^1(X/M)^\vee)$$

$$\theta \longmapsto \sum_{i=1}^{g} (\theta, \eta_i)_E \otimes (\nabla_\theta \omega_i)_E$$

is the Kodaira-Spencer morphism defined as in [14] 5.1.2. 6

6Recall that $\Gamma^2(\mathcal{F}^1(X/M)^\vee)$ denotes the submodule of symmetric tensors in $\mathcal{F}^1(X/M)^\vee \otimes \mathcal{F}^1(X/M)^\vee$.

This construction is compatible with base change: if \(M' \) is another complex manifold, \((X', E')\) is a principally polarized complex torus over \(M' \) of relative dimension \(g \), and \(b' \) is a symplectic-Hodge basis of \((X', E')/M'\), then for any morphism \(F/f : (X', E')/M' \to (X, E)/M \) in \(T_g \) such that \(F^*b = b' \), the diagram

\[
\begin{array}{ccc}
T_{M'} & \xrightarrow{\partial f} & f^*T_M \\
\downarrow c' & & \downarrow f^*c \\
\Gamma^2(\mathcal{F}^1(X'/M')\otimes) \oplus \mathcal{H}^{\text{dR}}_1(X'/M') \oplus & \sim & f^*(\Gamma^2(\mathcal{F}^1(X/M)\otimes) \oplus \mathcal{H}^{\text{dR}}_1(X/M) \oplus) \\
\end{array}
\]

commutes.

Remark 4.7. Applying the above construction to the universal symplectic-Hodge basis \(b_g \) of \((X_{an}^g, E_{\lambda_g})/B_{g,C}^a\), we obtain the analytification \(c_{an}^g \) of the morphism \(c_g \) defined in [14] Theorem 5.4.

Part (2) in Theorem 4.2 will be an easy consequence of the following characterization.

Proposition 4.8. Let \(U \subset H_g \) be an open subset and \(u : U \to B_g(C) \) be the holomorphic map corresponding to a principally polarized complex torus \((X, E)\) over \(U \) endowed with some symplectic-Hodge basis \(b = (\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g) \). Then the following are equivalent:

1. \(u \) is a solution of the higher Ramanujan equations.
2. For every \(1 \leq i \leq j \leq g \), we have
 \[
 c(\theta_{ij}) = u^* c_{an}^g (v_{ij})
 \]
 where \(c : T_U \to \Gamma^2(\mathcal{F}^1(X/U)\otimes) \oplus \mathcal{H}^{\text{dR}}_1(X/U) \oplus g \) is the morphism defined above for the symplectic-Hodge basis \(b \) of \((X, E)/U\), and \(v_{ij} \) are the higher Ramanujan vector fields on \(B_g(C) \).
3. For every \(1 \leq i \leq j \leq g \), we have
 (i) \(\nabla_{\theta_{ij}} \omega_i = \eta_j, \nabla_{\theta_{ij}} \omega_j = \eta_i, \) and \(\nabla_{\theta_{ij}} \omega_k = 0, \) for \(k \notin \{i, j\} \)
 (ii) \(\nabla_{\theta_{ij}} \eta_k = 0, \) for \(1 \leq k \leq g \).

Proof. The equivalence between (1) and (2) follows from the commutativity of the diagram

\[
\begin{array}{ccc}
T_U & \xrightarrow{\partial u} & u^* T_{B_{an}^g} \\
\downarrow c & & \downarrow u^* c_{an}^g \\
\Gamma^2(\mathcal{F}^1(X/U)\otimes) \oplus \mathcal{H}^{\text{dR}}_1(X/U) \oplus g & \sim & u^*(\Gamma^2(\mathcal{F}^1(X_{an}^g/B_{an}^g)\otimes) \oplus \mathcal{H}^{\text{dR}}_1(X_{an}^g/B_{an}^g) \oplus g)
\end{array}
\]

and the injectivity of \(u^* c_{an}^g \) (cf. [14] Theorem 5.4).

The same argument in the proof of [14] Proposition 5.7 proves the equivalence between (2) and (3).

Proof of Theorem 4.2 (2). By Proposition 4.8, it is sufficient to prove that, for every \(1 \leq i \leq j \leq g \), we have

1. \(\nabla_{\theta_{ij}} \omega_i = \eta_j, \nabla_{\theta_{ij}} \omega_j = \eta_i, \) and \(\nabla_{\theta_{ij}} \omega_k = 0, \) for \(k \notin \{i, j\} \)
2. \(\nabla_{\theta_{ij}} \eta_k = 0, \) for \(1 \leq k \leq g \).

Now, (i) follows directly from Proposition 4.3, and (ii) is the content of Corollary 4.5.
4.4. The case \(g = 1 \). We now explicitly describe the holomorphic map \(\varphi_1 : \mathbf{H} \rightarrow B_1(\mathbb{C}) \). For every \(k \geq 1 \), let us denote by \(E_{2k} : \mathbf{H} \rightarrow \mathbb{C} \) the classical (level 1) Eisenstein series of weight \(2k \) normalized by \(E_{2k}(+i\infty) = 1 \).

Proposition 4.9. Let \(\varphi_1 : \mathbf{H} \rightarrow B_1(\mathbb{C}) \) be the holomorphic map defined in Theorem 4.2 for \(g = 1 \). Then

1. Under the identification \(B_1 \cong \text{Spec} \mathbb{Z}[1/2, b_2, b_4, b_6, \Delta^{-1}] \) of [14] Theorem 6.2, we have
 \[
 \varphi_1(\tau) = \left(E_2(\tau), \frac{1}{2} \theta E_2(\tau), \frac{1}{6} \theta^2 E_2(\tau) \right),
 \]
 where \(\theta = \frac{1}{2\pi i} \frac{d}{d\tau} \).

2. Under the identification of [14] Remark 6.3, we have
 \[
 \varphi_1(\tau) = (E_2(\tau), E_4(\tau), E_6(\tau)).
 \]

Proof. By the change-of-coordinates formulas in [14] Remark 6.3, it is sufficient to prove (2). For every \(\tau \in \mathbf{H} \), we denote by \(X_\tau \) the complex elliptic curve defined by the equation
 \[
 y^2 = 4x^3 - \frac{E_4(\tau)}{12} x + \frac{E_6(\tau)}{216}.
 \]
Recall that there is an isomorphism
 \[
 \Phi_\tau : X_{1,\tau} \overset{\sim}{\rightarrow} X_\tau(\mathbb{C})
 \]
 \[
 z \mapsto \begin{cases}
 \left(\left(\frac{1}{2\pi i} \right)^2 \varphi_\tau(z) : \left(\frac{1}{2\pi i} \right)^3 \varphi_\tau'(z) : 1 \right) & \text{if } z \neq 0 \\
 (0 : 1 : 0) & \text{if } z = 0
 \end{cases}
 \]
where \(\varphi_\tau \) denotes the Weierstrass \(\varphi \)-function associated to the lattice \(\mathbb{Z} + \tau \mathbb{Z} \subset \mathbb{C} \). Furthermore, we have (cf. [18] A1.3.16)
 \[
 \eta_1 = \nabla_\varphi \omega_1 = \frac{1}{2\pi i} \varphi_\tau(z) dz - \frac{E_2(\tau)}{12} \omega_1.
 \]
Let \(\varphi : \mathbf{H} \rightarrow B_1(\mathbb{C}) \) be given by \(\varphi(\tau) = (E_2(\tau), E_4(\tau), E_6(\tau)) \). Then, for every \(\tau \in \mathbf{H} \), the isomorphism
 \[
 \Phi_\tau : X_{1,\tau} \overset{\sim}{\rightarrow} X_{1,\varphi(\tau)}(\mathbb{C})
 \]
 \[
 z \mapsto \begin{cases}
 \left(\left(\frac{1}{2\pi i} \right)^2 \varphi_\tau(z) - \frac{E_2(\tau)}{12} : \left(\frac{1}{2\pi i} \right)^3 \varphi_\tau'(z) : 1 \right) & \text{if } z \neq 0 \\
 (0 : 1 : 0) & \text{if } z = 0
 \end{cases}
 \]
satisfies
 \[
 \Phi_\tau^* \left(\frac{dx}{y} \right) = \omega_1 \quad \text{and} \quad \Phi_\tau^* \left(\frac{x}{y} \right) = \eta_1.
 \]
By making \(\tau \) vary in \(\mathbf{H} \), we obtain a morphism \(\Phi_{/\varphi} : X_1 \rightarrow X_{1,\varphi}^{\text{an}} \) in \(\mathcal{T}_1 \). Since \(\Phi_\tau^*(dx/y, xdx/y) = b_1 \), we must have \(\varphi = \varphi_1 \) by definition of \(\varphi_1 \).

\(\blacksquare \)
5. VALUES OF φ_g AND TRANSCENDENCE DEGREE OF FIELDS OF PERIODS OF ABELIAN VARIETIES

Let X be a complex abelian variety (resp. a complex torus). For any subfield k of \mathbb{C}, we say that X is definable over k if there exists an abelian variety X_0 over k such that X is isomorphic to $X_0 \otimes_k \mathbb{C}$ as a complex abelian variety (resp. isomorphic to $X_0(\mathbb{C})$ as a complex torus).

Lemma 5.1. For any complex abelian variety X (resp. polarizable complex torus), there exists a smallest algebraically closed subfield k of \mathbb{C} over which X is definable.

Proof. Let g be the dimension of X, and let $\lambda : X \to X^t$ be any polarization on X (not necessarily principal). If λ is of degree d^2, then the isomorphism class of the couple (X, λ) defines a complex point $\overline{\pi} \in A_{g,d,1}(\mathbb{C})$, where $A_{g,d,1}$ denotes the coarse moduli space over \mathbb{Q} of abelian varieties of dimension g endowed with a polarization of degree d^2 (cf. [27] Theorem 7.10). Let k be the algebraic closure in \mathbb{C} of the residue field $\mathbb{Q}(\overline{\pi})$ (see 1.6.4).

It is clear that X is definable over k. To prove that k is the smallest algebraically closed subfield of \mathbb{C} with this property, let k' be any algebraically closed subfield of \mathbb{C} over which there is an abelian variety X' such that X is isomorphic to $X' \otimes_{k'} \mathbb{C}$. As k' is algebraically closed, the polarization λ on X descends to a polarization λ' on X' such that (X, λ) and $(X', \lambda') \otimes_{k'} \mathbb{C}$ are isomorphic as polarized complex abelian varieties. Thus the morphism $\overline{\pi} : \text{Spec } \mathbb{C} \to A_{g,d,1}$ factors through $\text{Spec } k'$, which implies that $\mathbb{Q}(\overline{\pi}) \subset k'$. As k' is algebraically closed, we obtain $k \subset k'$.

Definition 5.2. Let X be a complex abelian variety, k be the smallest algebraically closed subfield of \mathbb{C} over which X is definable, and fix a k-model X_0 of X. The field of periods $\mathcal{P}(X)$ of X is defined as the smallest subfield of \mathbb{C} containing k and the image of pairing

$$H^1_{\text{dR}}(X_0/k) \otimes H_1(X_0(\mathbb{C}), \mathbb{Z}) \to \mathbb{C}$$

$$\alpha \otimes \gamma \mapsto \int_\gamma \alpha$$

given by “integration of differential forms” (cf. 2.4.2).

Note that $\mathcal{P}(X)$ does not depend on the choice of X_0.

This section is devoted to the proof of the following theorem.

Theorem 5.3. Let $g \geq 1$ be an integer. With notations as in Example 2.8 and Theorem 4.2, for every $\tau \in H_g$ the field of periods $\mathcal{P}(X_{g,\tau})$ of the polarizable complex torus $X_{g,\tau} := \mathbb{C}^g/(\mathbb{Z}^g + \tau \mathbb{Z}^g)$ is an algebraic extension of $\mathbb{Q}(2\pi i, \tau, \varphi_g(\tau))$. In particular,

$$\text{trdeg}_\mathbb{Q} \mathbb{Q}(2\pi i, \tau, \varphi_g(\tau)) = \text{trdeg}_\mathbb{Q} \mathcal{P}(X_{g,\tau}).$$

5.1. Period matrices. Let us consider the general symplectic group; namely, the subgroup scheme $G_{\text{Sp}_{2g}}$ of GL_{2g} over $\text{Spec } \mathbb{Z}$ such that, for every affine scheme $V = \text{Spec } R$, we have

$$G_{\text{Sp}_{2g}}(V) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_{2g \times 2g}(R) \mid \begin{array}{c} A, B, C, D \in M_{g \times g}(R) \\ AB^T = BA^T, CD^T = DC^T, \text{ and } AD^T - BC^T \in R^x 1_g \end{array} \right\}.$$
We can define a morphism of group schemes
\[\nu : \text{GSp}_{2g} \longrightarrow G_m \]
as follows: if \(s = (A \ B ; C \ D) \in \text{GSp}_{2g}(V) \), then \(\nu(s) \in R^x \) satisfies \(AD^T - BC^T = \nu(s)1_g \). Note that \(\text{Sp}_{2g} \) is the kernel of \(\nu \).

We denote by \(\text{GSp}_{2g}^* \) the open subscheme of \(\text{GSp}_{2g} \) defined by the condition \(A \in \text{GL}_g(R) \) in the above notations.

Let \((X, E) \) be a principally polarized complex torus of dimension \(g \), and \(b = (\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g) \) (resp. \(\beta = (\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g) \)) be a symplectic-Hodge basis (resp. an integral symplectic basis) of \((X, E) \).

Definition 5.4. The period matrix of \((X, E) \) with respect to \(b \) and \(\beta \) is defined by
\[P(X, E, b, \beta) := \left(\begin{array}{cc} \Omega_1 & N_1 \\ \Omega_2 & N_2 \end{array} \right) \in M_{2g \times 2g}(C), \]
where
\[(\Omega_1)_{ij} := \int_{\gamma_i} \omega_j \quad (N_1)_{ij} := \int_{\gamma_i} \eta_j \]
\[(\Omega_2)_{ij} := \int_{\delta_i} \omega_j \quad (N_2)_{ij} := \int_{\delta_i} \eta_j. \]

Note that \(P(X, E, b, \beta) \) is simply the matrix of the comparison isomorphism (2.1) with respect to the bases \(b \) of \(\mathcal{H}_{\text{DR}}(X) \) and \((E(\gamma_1), \ldots, E(\delta_1), \ldots, E(\gamma_g), \ldots, E(\delta_g)) \) of \(\text{Hom}(H_1(X, \mathbb{Z}), C) \).

Remark 5.5. In particular, let \((X, \lambda) \) be a principally polarized complex abelian variety, \(k \) be the smallest algebraically closed subfield of \(C \) over which \(X \) is definable, and \((X_0, \lambda_0) \) be a \(k \)-model of \((X, \lambda) \). Then, if \(b \) is any symplectic-Hodge basis of \((X_0, \lambda_0) \), and \(\beta \) is any integral symplectic basis of \((X^{\text{an}}, E_{\lambda}), \) the field of periods \(\mathcal{P}(X) \) of \(X \) is generated over \(k \) by the coefficients of the period matrix \(P(X^{\text{an}}, E_{\lambda}, b, \beta) \).

Lemma 5.6. For any \((X, E, b, \beta) \) as above, we have
\begin{enumerate}
 \item \(P(X, E, b, \beta) \in \text{GSp}_{2g}(C) \) and \(\nu(P(X, E, b, \beta)) = 2\pi i \),
 \item \(\Omega^1 \in \text{GL}_g(C) \) (i.e. \(P(X, E, b, \beta) \in \text{GSp}^*_{2g}(C) \)) and \(\Omega_2 \Omega_1^{-1} \in H_g \).
\end{enumerate}

Proof. Knowing that \(P(X, E, b, \beta) \) is a base change matrix with respect to symplectic bases, (1) is simply a rephrasing of Lemma 2.13 and (2) is a particular case of the classical Riemann relations (cf. proof of Proposition 3.4).

5.2. Auxiliary lemmas. We shall need the following auxiliary results.

Lemma 5.7. The morphism of schemes
\[\text{GSp}_{2g}^* \longrightarrow G_m \times_{\mathbb{Z}} \text{Sym}_g \times_{\mathbb{Z}} P_g \]
\[s \mapsto (\nu(s), \tau(s), p(s)) \]
where
\[\tau \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) := CA^{-1} \quad \text{and} \quad p \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) := \left(\begin{array}{cc} A^{-1} & -B^T \\ 0 & A^T \end{array} \right) \]
is an isomorphism.

Proof. We simply remark that
\[\left(\lambda, Z, \left(\begin{array}{cc} X & Y \\ 0 & (X^T)^{-1} \end{array} \right) \right) \mapsto \left(\begin{array}{cc} X^{-1} & -Y^T \\ ZX^{-1} & (\lambda 1_g - ZX^{-1}Y)X^T \end{array} \right) \]
is an inverse to the morphism defined in the statement. ■

Lemma 5.8. Let \(F : (X,E) \to (X',E') \) be an isomorphism of principally polarized complex tori of dimension \(g \), \(\beta = (\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g) \) be an integral symplectic basis of \((X,E)\) and \(b' \) be a symplectic-Hodge basis of \((X',E')\). We denote by \(F_*\beta \) the integral symplectic basis of \((X',E')\) given by pushforward in singular homology. Then the symplectic-Hodge basis
\[b = (\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g) := F^*b' \cdot \left(\frac{1}{2\pi i} P(X',E',b',F_*\beta) \right) \]
of \((X,E)\) satisfy
\[\int_{\gamma_i} \eta_j = 0, \quad \int_{\delta_i} \eta_j = \delta_{ij} \]
for every \(1 \leq i, j \leq g \).

The proof of this lemma is a straightforward computation.

5.3. **Proof of Theorem 5.3.** Let \(A_g \) be the coarse moduli space associated to the Deligne-Mumford stack \(A_g \to \text{Spec} \mathbb{Z} \) (which exists as an algebraic space by the Keel-Mori theorem, cf. [31] Theorem 11.1.2). We recall that \(A_g \) is a quasi-projective scheme over \(\text{Spec} \mathbb{Z} \) (cf. [22] VII Théorème 4.2) endowed with a canonical morphism \(A_g \to A_g \) inducing, for every algebraically closed field \(k \), a bijection of \(A_g(k) \) with the set of isomorphism classes of principally polarized abelian varieties over \(k \).

Since any principally polarized complex torus \((X,E)\) of dimension \(g \) is algebraizable, \((X,E)\) defines an isomorphism class in the category \(A_g(\mathbb{C}) \) that we shall denote \([[(X,E)]\)\). Let
\[j_g : \mathbb{H}_g \to A_g(\mathbb{C}) \]
\[\tau \mapsto [[(X_{g,\tau},E_{g,\tau})]]. \]

The next result follows immediately from our proof of the Lemma 5.1.

Lemma 5.9. For any \(\tau \in \mathbb{H}_g \), the smallest algebraically closed subfield over which \(X_{g,\tau} \) is definable is given by the algebraic closure in \(\mathbb{C} \) of the residue field \(\mathbb{Q}(j_g(\tau)) \).

Proof of Theorem 5.3. Let \(\tau \in \mathbb{H}_g \) and fix any integer \(n \geq 3 \). The principally polarized complex torus \((X_{g,\tau},E_{g,\tau})\) endowed with the integral symplectic basis modulo \(n \) induced by \(\beta_{g,\tau} \) (cf. Remark 3.6) defines a complex point \(u(\tau) \in A_{g,n}(\mathbb{C}) \) in the fine moduli space \(A_{g,n} \over \mathbb{Z}[1/n,\zeta_n] \) of principally polarized abelian varieties of dimension \(g \) endowed with a symplectic basis of its \(n \)-torsion subscheme (cf. 3.3).
Let \((X_{g,n}, \lambda_{g,n})\) denote the universal principally polarized abelian scheme over \(A_{g,n}\). Then, by the remark following [14] Definition 2.4, there exists a Zariski open neighborhood \(U \subset A_{g,n,\overline{\mathbb{Q}}}\) of \(u(\tau)\) over which \((X_{g,n,\overline{\mathbb{Q}}}, \lambda_{g,n})\) admits a symplectic-Hodge basis \(b\). Let us denote by \((X, \lambda) = (X_{g,n,\overline{\mathbb{Q}}}, \lambda_{g,n}) \times_{A_{g,n,\overline{\mathbb{Q}}} U} U\) the restriction of \((X_{g,n,\overline{\mathbb{Q}}}, \lambda_{g,n})\) to \(U\).

In the following, fiber products will be taken with respect to \(\overline{\mathbb{Q}}\). The symplectic-Hodge basis \(b\) of \((X, \lambda)/U\) induces an isomorphism of principal \(P_g\)-bundles over \(U\)

\[
P_g \overline{\mathbb{Q}} \times U \xrightarrow{\sim} B(X, \lambda)
\]

\((p, u) \mapsto b_u \cdot p, \)

where \(B(X, \lambda)\) is the \(U\)-scheme defined in [14] Corollary 3.4. By composing this isomorphism with the isomorphism in Lemma 5.7, we obtain the isomorphism of \(\overline{\mathbb{Q}}\)-schemes

\[
f : GSp^*_{2g} \overline{\mathbb{Q}} \times U \longrightarrow G_{m,\overline{\mathbb{Q}}} \times \text{Sym}_{g,\overline{\mathbb{Q}}} \times B(X, \lambda)
\]

\((s, u) \mapsto (\nu(s), \tau(s), b_u \cdot p(s)). \)

Note that the canonical morphism \(h : B(X, \lambda) \longrightarrow B_{g,\overline{\mathbb{Q}}} \cong B_{g,\overline{\mathbb{Q}}}\) is quasi-finite, since it fits into the cartesian diagram of Deligne-Mumford stacks

\[
\begin{array}{ccc}
B(X, \lambda) & \xrightarrow{h} & B_{g,\overline{\mathbb{Q}}} \\
\downarrow & & \downarrow \\
U & \longrightarrow & A_{g,\overline{\mathbb{Q}}}
\end{array}
\]

where the bottom arrow \(U \longrightarrow A_{g,\overline{\mathbb{Q}}}\) is given by the composition of the open immersion \(U \subset A_{g,n,\overline{\mathbb{Q}}}\) with the (canonical) finite étale morphism \(A_{g,n,\overline{\mathbb{Q}}} \longrightarrow A_{g,\overline{\mathbb{Q}}}\).

In particular, by composing \(f\) with \(h\), we obtain a quasi-finite morphism of \(\overline{\mathbb{Q}}\)-schemes

\[
q : GSp^*_{2g} \overline{\mathbb{Q}} \times U \longrightarrow G_{m,\overline{\mathbb{Q}}} \times \text{Sym}_{g,\overline{\mathbb{Q}}} \times B_{g,\overline{\mathbb{Q}}}
\]

given on geometric points by

\[
q(s, u) = (\nu(s), \tau(s), [(X_u, \lambda_u, b_u \cdot p(s))])
\]

where \([(X_u, \lambda_u, b_u \cdot p(s))]\) denotes the isomorphism class in \(B_g(k(u))\) of \((X_u, \lambda_u, b_u \cdot p(s))\), and \(k(u)\) denotes the residue field of \(u \in U\).

Let \(F : (X_{g,\tau}, E_{g,\tau}) \xrightarrow{\sim} (X_{u(\tau)}^{\text{an}}, E_{\lambda_{u(\tau)}})\) be the isomorphism of principally polarized complex tori corresponding, by the universal property of \(A_{g,n}\), to the reduction of the integral symplectic basis \(\beta_{g,\tau}\) modulo \(n\), and put

\[
s(\tau) := \frac{1}{2\pi i} P(X_{u(\tau)}^{\text{an}}, E_{\lambda_{u(\tau)}}, b_{u(\tau)}, F^* \beta_{g,\tau}) \in GSp^*_{2g}(\mathbb{C}).
\]

It follows from Corollary 4.4 and Lemma 5.8 that \(F^* b_{u(\tau)} \cdot p(s(\tau)) = b_{g,\tau}\), so that

\[
[(X_{u(\tau)}, \lambda_{u(\tau)}, b_{u(\tau)} \cdot p(s(\tau)))] = [(X_{g,\tau}, E_{g,\tau}, b_{g,\tau})] = \varphi_g(\tau).
\]
Thus, by Lemma 5.6, we obtain

\[q(s(\tau), u(\tau)) = \left(\frac{1}{2\pi i}, \tau, \varphi_g(\tau) \right) \in G_m(C) \times \text{Sym}_g(C) \times B_g(C). \]

To finish the proof, it is sufficient to show that \(P(X_{g,\tau}) \) is an algebraic extension of \(Q(s(\tau), u(\tau)) \).

For this, let \(h : A_{g,n} \rightarrow A_{g,\mathbf{Q}} \) be the canonical map; then \(h(u(\tau)) = j_g(\tau) \). As \(h \) is finite (in fact, it identifies \(A_{g,\mathbf{Q}} \) with the quotient \(\text{Sp}_{2g}(\mathbb{Z}/n\mathbb{Z}) \backslash A_{g,n} \)), the residue field \(Q(u(\tau)) \) is a finite extension of \(Q(j_g(\tau)) \). Then, it follows from Corollary 5.9 that \(Q(u(\tau)) \) is contained in the smallest algebraically closed field of \(C \) over which \(X_{g,\tau} \) is definable (namely, the algebraic closure in \(C \) of \(Q(j_g(\tau)) \)). Finally, since \(2\pi i \in P(X_{g,\tau}) \) by Lemma 5.6 (1), the assertion follows from Remark 5.5.

\[\blacksquare \]

6. **Group-theoretic interpretation of \(B_g(C) \) and of the higher Ramanujan vector fields**

In this section we shall explain how to realize the complex manifold \(B_g(C) \) as a domain (in the analytic topology) of the quotient manifold \(\text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(C) \) (Corollary 6.7).

We shall also give an explicit expression for the higher Ramanujan vector fields, and for the holomorphic map \(\varphi_g : H_g \rightarrow B_g(C) \), under this group-theoretic interpretation. For this, recall that the Lie algebra of \(\text{Sp}_{2g}(C) \) is given by

\[\text{Lie } \text{Sp}_{2g}(C) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_{2g \times 2g}(C) \bigg| B^T = B, C^T = C, D = -A^T \right\}. \]

For \(1 \leq k \leq l \leq g \), let us consider the left invariant holomorphic vector field \(\tilde{V}_{kl} \) on \(\text{Sp}_{2g}(C) \) corresponding to

\[\frac{1}{2\pi i} \begin{pmatrix} 0 & E_{kl}^T \\ 0 & 0 \end{pmatrix} \in \text{Lie } \text{Sp}_{2g}(C); \]

it descends to a holomorphic vector field \(V_{kl} \) on the quotient \(\text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(C) \).

Theorem 6.1. Let \((v_{kl})_{1 \leq k \leq l \leq g}\) be the higher Ramanujan vector fields on \(B_g(C) \). Under the identification of \(B_g(C) \) with an open submanifold of \(\text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(C) \) of Corollary 6.7, we have:

1. For every \(1 \leq k \leq l \leq g \),
 \[v_{kl} = V_{kl}|_{B_g(C)}. \]

2. The solution of the higher Ramanujan equations \(\varphi_g : H_g \rightarrow B_g(C) \) is given by
 \[\varphi_g(\tau) = \text{Sp}_{2g}(\mathbb{Z}) \begin{pmatrix} 1_g & \tau \\ \tau & 1_g \end{pmatrix} \in \text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(C). \]

As an example of application, we shall prove the following easy consequence of the above theorem.

Corollary 6.2. The image of \(\varphi_g : H_g \rightarrow B_g(C) \) is closed for the analytic topology.
6.1. **Realization of** $B_g(C)$ **as an open submanifold of** $\text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(\mathbb{C})$. Let $B_g = B(X_g, E_g)$ be the principal $P_g(C)$-bundle over H_g associated to the principally polarized complex torus $(X_g, E_g)_{/H_g}$ as defined in Lemma 3.8, so that the fiber of $B_g \rightarrow H_g$ over $\tau \in H_g$ is given by the set of symplectic-Hodge bases of (X_g, τ, E_g, τ).

We shall first realize B_g as a “period domain” in $\text{Sp}_{2g}(\mathbb{C})$. For this, let us introduce the following convenient modification of period matrices (Definition 5.4).

Definition 6.3. Let (X,E) be a principally polarized complex torus of dimension g, and b (resp. β) be a symplectic-Hodge basis (resp. an integral symplectic basis) of (X,E). Let

$$P(X,E,b,\beta) = \begin{pmatrix} \Omega_1 & N_1 \\ \Omega_2 & N_2 \end{pmatrix} \in \text{GSp}_{2g}(\mathbb{C})$$

be the period matrix of (X,E) with respect to b and β. We define

$$\Pi(X,E,b,\beta) := \begin{pmatrix} N_2 & \frac{1}{2\pi i} \Omega_2 \\ N_1 & \frac{1}{2\pi i} \Omega_1 \end{pmatrix} \in \text{Sp}_{2g}(\mathbb{C})$$

Observe that this matrix is indeed symplectic by Lemma 5.6.

We define a holomorphic map $\Pi : B_g \rightarrow \text{Sp}_{2g}(\mathbb{C})$ as follows. Let q be a point in B_g lying above $\tau \in H_g$, and corresponding to the symplectic-Hodge basis b of (X_g, τ, E_g, τ), then

$$\Pi(q) := \Pi(X_g, \tau, E_g, \tau, b, \beta_g, \tau)$$

where β_g is the integral symplectic basis of $(X_g, E_g)_{/H_g}$ defined in Example 3.3.

Remark 6.4. Alternatively, recall that H_g may be regarded as the moduli space for principally polarized complex tori of dimension g endowed with an integral symplectic basis (Proposition 3.4). In particular, as already remarked in the proof of Proposition 3.10, points in B_g correspond to isomorphism classes $[(X,E,b,\beta)]$ of quadruples (X,E,b,β), where (X,E) is a principally polarized complex torus of dimension g, and b (resp. β) is a symplectic-Hodge basis (resp. integral symplectic basis) of (X,E). Under this identification, the map $\Pi : B_g \rightarrow \text{Sp}_{2g}(\mathbb{C})$ is given by $[(X,E,b,\beta)] \mapsto \Pi(X,E,b,\beta)$.

Let us consider the moduli-theoretic interpretation of B_g of the above remark, and recall that B_g is endowed with a natural left action of the discrete group $\text{Sp}_{2g}(\mathbb{Z})$ given by

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot [(X,E,b,\beta)] = \left[(X,E,b,\beta \cdot \begin{pmatrix} D^T & B^T \\ C^T & A^T \end{pmatrix}) \right]$$

(cf. Remark 3.5), and a right action of the Siegel parabolic subgroup $P_g(C) \leq \text{Sp}_{2g}(\mathbb{C})$ given by

$$[(X,E,b,\beta)] \cdot p = [(X,E,b \cdot p, \beta)]$$

where both β and b are regarded as row vectors of order $2g$.

Let us denote by P'_g the subgroup scheme of Sp_{2g} consisting of matrices $(A,B:C,D)$ such that $B = 0$. A simple computation proves the following equivariance properties of $\Pi : B_g \rightarrow \text{Sp}_{2g}(\mathbb{C})$.
Lemma 6.5. Consider the isomorphism of groups
\[P_g(C) \sim \rightarrow \rightarrow P'_g(C) \]
\[p = \left(\begin{array}{cc} A & B \\ 0 & (A^T)^{-1} \end{array} \right) \mapsto p' := \left(\begin{array}{cc} (A^T)^{-1} & 0 \\ 2\pi iB & A \end{array} \right). \]

Then, for any \(q \in B_g, \gamma \in \text{Sp}_{2g}(Z) \), and \(p \in P_g(C) \), we have
\[\Pi(\gamma \cdot q) = \gamma \Pi(q) \quad \text{and} \quad \Pi(q \cdot p) = \Pi(q)p' \]
in \(\text{Sp}_{2g}(C) \).

Let us now consider the Lagrangian Grassmannian, namely the smooth and quasi-projective \(C \)-scheme of dimension \(g(g+1)/2 \) obtained as the quotient of complex affine algebraic groups
\[L_g := \text{Sp}_{2g},C/P'_g,C. \]
The complex manifold \(L_g(C) = \text{Sp}_{2g}(C)/P'_g(C) \) may be naturally identified with the quotient of
\[M := \{(Z_1, Z_2) \in M_{g\times g}(C) \times M_{g\times g}(C) \mid Z_1^T Z_2 = Z_2^T Z_1, \text{rank}(Z_1 Z_2) = g\} \]
by the right action of \(\text{GL}_g(C) \) defined by matrix multiplication:
\[(Z_1, Z_2) \cdot S := (Z_1 S, Z_2 S). \]
We denote the class in \(L_g(C) \) of a point \((Z_1, Z_2) \in M \) by \((Z_1 : Z_2) \). The canonical map
\[\pi : \text{Sp}_{2g},C \rightarrow L_g \]
is then given on complex points by
\[\pi \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = (B : D). \]

Proposition 6.6. Let \(\iota : H_g \rightarrow L_g(C) \) be the open embedding given by \(\iota(\tau) = (\tau : 1_g) \). Then the diagram of complex manifolds
\[\begin{array}{ccc}
B_g & \rightarrow & \text{Sp}_{2g}(C) \\
\downarrow \Pi & & \downarrow \pi \\
H_g & \rightarrow & L_g(C)
\end{array} \]
is cartesian. That is, \(\Pi : B_g \rightarrow \text{Sp}_{2g}(C) \) induces a biholomorphism of \(B_g \) onto the open submanifold
\[\pi^{-1}(\iota(H_g)) = \left\{ \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \text{Sp}_{2g}(C) \mid D \in \text{GL}_g(C), BD^{-1} \in H_g \right\} \]
of \(\text{Sp}_{2g}(C) \), and makes the above diagram commute.

Proof. The commutativity of the diagram in the statement is easy (cf. proof of Proposition 3.4).
In particular, if \(q, q' \in B_g \) satisfy \(\Pi(q) = \Pi(q') \), then they lie above the same point \(\tau \in H_g \). Let \(b \) (resp. \(b' \)) be the symplectic-Hodge basis of \((X_{g,\tau}, E_{g,\tau}) \) corresponding to \(q \) (resp. \(q' \)). Since period matrices are base change matrices for the comparison isomorphism, and
\[\Pi(X_{g,\tau}, E_{g,\tau}, b, \beta_{g,\tau}) = \Pi(X_{g,\tau}, E_{g,\tau}, b', \beta_{g,\tau}), \]
it is clear that \(b = b' \). This proves that \(\Pi \) is injective.

Observe that \(\mathcal{B}_g \) and \(\text{Sp}_{2g}(\mathbb{C}) \) are complex manifolds of same dimension. Thus, to finish our proof, it suffices to check that \(\Pi(\mathcal{B}_g) = \pi^{-1}(\iota(\mathcal{H}_g)) \) ([15] p. 19). Let \(s \in \pi^{-1}(\iota(\mathcal{H}_g)) \), and let \(\tau \in \mathcal{H}_g \) be such that \(\iota(\tau) = \pi(s) \). Fix any \(q \in \mathcal{B}_g \) lying above \(\tau \in \mathcal{H}_g \). Then, there exists a unique \(p' \in P_g'(\mathbb{C}) \) such that \(s = \Pi(q)p' \). Hence, by Lemma 6.5, \(s = \Pi(q \cdot p) \in \Pi(\mathcal{B}_g) \). □

Recall from Proposition 3.10 that the canonical map

\[
\mathcal{B}_g \to \mathcal{B}_g(\mathbb{C})
\]

\[
[(X, E, b, \beta)] \mapsto [(X, E, b)]
\]

induces a biholomorphism

\[
\text{Sp}_{2g}(\mathbb{Z}) \backslash \mathcal{B}_g \sim \to \mathcal{B}_g(\mathbb{C}).
\]

Furthermore, note that Lemma 6.5 implies that the action of \(\text{Sp}_{2g}(\mathbb{Z}) \) on \(\text{Sp}_{2g}(\mathbb{C}) \) by left multiplication preserves the open subset \(\Pi(\mathcal{B}_g) \).

Corollary 6.7. The map \(\Pi : \mathcal{B}_g \to \text{Sp}_{2g}(\mathbb{C}) \) induces a biholomorphism of \(\mathcal{B}_g(\mathbb{C}) \) onto the open submanifold of \(\text{Sp}_{2g}(\mathbb{Z}) \) \(\backslash \text{Sp}_{2g}(\mathbb{C}) \)

\[
\text{Sp}_{2g}(\mathbb{Z}) \backslash \Pi(\mathcal{B}_g) = \{ \text{Sp}_{2g}(\mathbb{Z})s \in \text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(\mathbb{C}) \mid \pi(s) \in \iota(\mathcal{H}_g) \}\}
\]

6.2. Proof of Theorem 6.1 and of Corollary 6.2. We prove parts (1) and (2) of Theorem 6.1 separately.

Proof of Theorem 6.1 (1). It is sufficient to prove that the solutions of the differential equations defined by \(v_{kl} \) and by \(V_{kl} \) coincide. More precisely, let \(U \) be a simply connected open subset of \(\mathcal{H}_g \), and \(u : U \to \mathcal{B}_g(\mathbb{C}) \) be a solution of the higher Ramanujan equations (Definition 4.1); we shall prove that, for any lifting

\[
\tilde{u} \to \mathcal{B}_g \quad \text{and} \quad \Pi \circ \tilde{u} : U \to \text{Sp}_{2g}(\mathbb{C})
\]

of \(u \), the holomorphic map \(h := \Pi \circ \tilde{u} : U \to \text{Sp}_{2g}(\mathbb{C}) \) is a solution of the differential equations

\[
(6.2) \quad \theta_{kl} h = \tilde{V}_{kl} \circ h, \quad 1 \leq k \leq l \leq g.
\]

where \(\theta_{kl} = \frac{1}{2\pi i} \frac{\partial}{\partial t_{kl}} \).

By the universal property of \(\mathcal{B}_g \), the holomorphic map \(\tilde{u} \) corresponds to a principally polarized complex torus \((X, E) \) over \(U \), of relative dimension \(g \), endowed with a symplectic-Hodge basis \(b = (\omega_1, \ldots, \omega_g, \eta_1, \ldots, \eta_g) \) and an integral symplectic basis \(\beta = (\gamma_1, \ldots, \gamma_g, \delta_1, \ldots, \delta_g) \). For \(\tau \in U \), let us write

\[
h(\tau) = \begin{pmatrix}
N_2(\tau) & \frac{1}{2\pi i} \Omega_2(\tau) \\
N_1(\tau) & \frac{1}{2\pi i} \Omega_1(\tau)
\end{pmatrix} \in \text{Sp}_{2g}(\mathbb{C})
\]

where \(\Omega_1, \Omega_2, N_1, N_2 : U \to M_{g \times g}(\mathbb{C}) \) are holomorphic.

Now, since \(u \) is a solution of the higher Ramanujan equations, it follows from Proposition 4.8 (3) that, for every \(1 \leq i \leq j \leq g \),
(i) \(\theta_{ij} \Omega_1 = N_1 E_{ij} \), \(\theta_{ij} \Omega_2 = N_2 E_{ij} \)
(ii) \(\theta_{ij} N_1 = 0 \), \(\theta_{ij} N_2 = 0 \).

As \(U \) is connected, (ii) implies that \(N_1 \) and \(N_2 \) are constant. Thus, (i) implies that \(\frac{1}{2\pi i} \Omega_1 - N_1 \tau \) and \(\frac{1}{2\pi i} \Omega_2 - N_2 \tau \) are also constant. In other words, there exists a unique element \(s \in \text{Sp}_{2g}(\mathbb{C}) \) such that

\[
h(\tau) = s \begin{pmatrix} 1g & \tau \\ 0 & 1g \end{pmatrix}
\]

for every \(\tau \in U \). Finally, since each \(\tilde{V}_{kl} \) is left invariant, it is easy to see that \(h \) is a solution of the differential equations (6.2).

Lemma 6.8. For any \(\tau \in H_g \), we have

\[
\Pi(X_{g,\tau}, E_{g,\tau}, b_{g,\tau}, \beta_{g,\tau}) = \begin{pmatrix} 1g & \tau \\ 0 & 1g \end{pmatrix}.
\]

Proof. Let us write

\[
\Pi(X_{g,\tau}, E_{g,\tau}, b_{g,\tau}, \beta_{g,\tau}) = \begin{pmatrix} N_2(\tau) & \frac{1}{2\pi i} \Omega_2(\tau) \\ N_1(\tau) & \frac{1}{2\pi i} \Omega_1(\tau) \end{pmatrix}.
\]

By definition of \(\beta_g \) and of \(b_g \), it is clear that \(\Omega_1(\tau) = 2\pi i 1_g \) and that \(\Omega_2(\tau) = 2\pi i \tau \). That \(N_1(\tau) = 0 \) and \(N_2(\tau) = 1_g \) is a reformulation of Corollary 4.4.

Proof of Theorem 6.1 (2). By definition, \(\phi_g \) is given by the composition of

\[
H_g \longrightarrow B_g \\
\tau \longmapsto [(X_{g,\tau}, E_{g,\tau}, b_{g,\tau}, \beta_{g,\tau})]
\]

with the canonical map \(B_g \longrightarrow B_g(\mathbb{C}) \). The result now follows from Lemma 6.8.

Proof of Corollary 6.2. Consider the subgroup

\[
U_g(\mathbb{C}) := \left\{ \begin{pmatrix} 1g & Z \\ 0 & 1g \end{pmatrix} \in M_{2g \times 2g}(\mathbb{C}) \mid Z^T = Z \right\} \leq \text{Sp}_{2g}(\mathbb{C}).
\]

The statement is equivalent to asserting that the image of \(U_g(\mathbb{C}) \subset \text{Sp}_{2g}(\mathbb{C}) \) in the quotient \(\text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(\mathbb{C}) \) is closed, or, equivalently, that \(\text{Sp}_{2g}(\mathbb{Z}) \cdot U_g(\mathbb{C}) \subset \text{Sp}_{2g}(\mathbb{C}) \) is closed. Let us consider the (holomorphic) map

\[
f : \text{Sp}_{2g}(\mathbb{C}) \longrightarrow M_g(\mathbb{C}) \times M_g(\mathbb{C})
\]

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \longmapsto (A, C).
\]

Now, one simply remarks that

\[
\text{Sp}_{2g}(\mathbb{Z}) \cdot U_g(\mathbb{C}) = f^{-1}(f(\text{Sp}_{2g}(\mathbb{Z}))).
\]

Since \(f(\text{Sp}_{2g}(\mathbb{Z})) \subset M_g(\mathbb{Z}) \times M_g(\mathbb{Z}) \), and \(M_g(\mathbb{Z}) \times M_g(\mathbb{Z}) \) is a closed discrete subset of \(M_g(\mathbb{C}) \times M_g(\mathbb{C}) \) for the analytic topology, we conclude that \(\text{Sp}_{2g}(\mathbb{Z}) \cdot U_g(\mathbb{C}) \) is closed in \(\text{Sp}_{2g}(\mathbb{C}) \).
7. Zariski-denseness of leaves of the higher Ramanujan foliation

Let us denote by \(R_g \) the subbundle of the holomorphic tangent bundle \(T_{B_g}(\mathbb{C}) \) generated by the higher Ramanujan vector fields \(v_{ij}, \ 1 \leq i \leq j \leq g \). Since the vector fields \(v_{ij} \) commute ([14] Corollary 5.10), \(R_g \) is an integrable subbundle of \(T_{B_g}(\mathbb{C}) \). Hence, by holomorphic Frobenius Theorem, \(R_g \) induces a holomorphic foliation on \(B_g(\mathbb{C}) \); we call it the higher Ramanujan foliation.

Using the group-theoretic interpretation of \(B_g(\mathbb{C}) \) of Section 6, we shall also provide an explicit parametrization of every leaf \(L \subset B_g(\mathbb{C}) \)\(^8\) of the higher Ramanujan foliation (see Proposition 7.7 for a precise statement).

Our main results in this section are the following Zariski-density statements.

Theorem 7.1. Every leaf \(L \subset B_g(\mathbb{C}) \) of the higher Ramanujan foliation is Zariski-dense in \(B_{g,C} \), that is, for every closed subscheme \(Y \) of \(B_{g,C} \), if \(Y(\mathbb{C}) \) contains \(L \), then \(Y(\mathbb{C}) = B_g(\mathbb{C}) \).

In particular, we obtain that the image of the solution of the higher Ramanujan equations \(\varphi_g : H_g \rightarrow B_g(\mathbb{C}) \) is Zariski-dense in \(B_g \).

Concerning the image of \(\varphi_g \), we can actually derive the following a priori stronger result.

Corollary 7.2. The set \(\{ (\tau, \varphi_g(\tau)) \in \text{Sym}_g(\mathbb{C}) \times B_g(\mathbb{C}) \mid \tau \in H_g \} \) is Zariski-dense in \(\text{Sym}_{g,C} \times B_{g,C} \).

The proof of both Zariski-density results will rely on the following elementary lemma.

Lemma 7.3 (Fibration method). Let \(p : X \rightarrow S \) be a morphism of separated \(\mathbb{C} \)-schemes of finite type and let \(E \subset X(\mathbb{C}) \) be a subset. If, for every \(s \in p(E) \), the set \(E \cap X_s \) is Zariski-dense in \(X_s := p^{-1}(s) \), and one of the following conditions is satisfied,

(i) \(p(E) = S(\mathbb{C}) \),
(ii) \(p \) is open (in the Zariski topology) and \(p(E) \) is Zariski-dense in \(S \),

then \(E \) is Zariski-dense in \(X \).

Proof. Let \(U \) be a non-empty Zariski open subset of \(X \); we must show that \(E \cap U \) is non-empty. In both cases (i) and (ii) above, there exists a closed point \(s \in p(E) \cap p(U) \). Since \(E \cap X_s \) is Zariski-dense in \(X_s \) and \(U \cap X_s \) is a non-empty open subset of \(X_s \), there exists a closed point \(x \in E \cap U \cap X_s \subset E \cap U \). \(\blacksquare \)

7.1. Characterization of the leaves of the higher Ramanujan foliation.

7.1.1. Let \(U_g \) be the unipotent subgroup scheme of \(\text{Sp}_{2g} \) defined by

\[
U_g(R) = \left\{ \begin{pmatrix} 1_g & Z \\ 0 & 1_g \end{pmatrix} \in M_{2g \times 2g}(R) \mid Z^T = Z \right\}
\]

for any ring \(R \).

The Lie algebra of \(U_g(\mathbb{C}) \) is given by

\[
\text{Lie} \ U_g(\mathbb{C}) = \left\{ \begin{pmatrix} 0 & Z \\ 0 & 0 \end{pmatrix} \in M_{2g \times 2g}(\mathbb{C}) \mid Z^T = Z \right\},
\]

\(^8\)By definition, a leaf of the higher Ramanujan foliation on \(B_g(\mathbb{C}) \) is a maximal connected immersed complex submanifold of \(B_g(\mathbb{C}) \) that is everywhere tangent to \(R_g \).
and admit as a basis the vectors

\[
\frac{1}{2\pi i} \begin{pmatrix} 0 & E_{kl} \\ 0 & 0 \end{pmatrix} \in \text{Lie} U_g(\mathbb{C}), \quad 1 \leq k \leq l \leq g,
\]

inducing the higher Ramanujan vector fields on the quotient \(Sp_{2g}(\mathbb{Z}) \setminus Sp_{2g}(\mathbb{C})\) (Section 6). In particular, under the realization of \(B_g(\mathbb{C})\) as an open submanifold of \(Sp_{2g}(\mathbb{Z}) \setminus Sp_{2g}(\mathbb{C})\) of Corollary 6.7, the higher Ramanujan foliation on \(B_g(\mathbb{C})\) is induced by the foliation on \(Sp_{2g}(\mathbb{C})\) defined by \(U_g(\mathbb{C})\), i.e. the foliation whose leaves are left cosets of \(U_g(\mathbb{C})\) in \(Sp_{2g}(\mathbb{C})\).

It follows from the above discussion that, under the identification of \(B_g(\mathbb{C})\) with an open submanifold of \(Sp_{2g}(\mathbb{C})\), for any leaf \(L\) of the higher Ramanujan foliation on \(B_g(\mathbb{C})\), there exists \(\delta \in Sp_{2g}(\mathbb{C})\) such that \(L\) is a connected component of the image of \(\delta U_g(\mathbb{C}) \cap B_g(\mathbb{C})\) in \(B_g(\mathbb{C})\) under the quotient map \(Sp_{2g}(\mathbb{C}) \rightarrow Sp_{2g}(\mathbb{Z}) \setminus Sp_{2g}(\mathbb{C})\). We shall provide a more precise result in Proposition 7.7.

7.1.2. We may also obtain an explicit parametrization of every leaf. For this, let us consider \(\text{Sym}_g(\mathbb{C}) = \{Z \in M_{g \times g}(\mathbb{C}) \mid Z^T = Z\}\) as an open subset of the Lagrangian Grassmannian \(L_g(\mathbb{C})\) (cf. discussion preceding Proposition 6.6) via

\[
\text{Sym}_g(\mathbb{C}) \rightarrow L_g(\mathbb{C})
\]

\[
Z \mapsto (Z : 1_g),
\]

so that the embedding \(\iota : H_g \rightarrow L_g(\mathbb{C})\) defined in Proposition 6.6 is given by the restriction of \(\text{Sym}_g(\mathbb{C}) \rightarrow L_g(\mathbb{C})\) to \(H_g\). Furthermore, let \(\psi : \text{Sym}_g(\mathbb{C}) \rightarrow Sp_{2g}(\mathbb{C})\)

\[
Z \mapsto \begin{pmatrix} 1_g & Z \\ 0 & 1_g \end{pmatrix}.
\]

Remark 7.4. Under the obvious identification of \(\text{Sym}_g(\mathbb{C})\) with \(\text{Lie} U_g(\mathbb{C})\), the map \(\psi\) is simply the exponential \(\exp : \text{Lie} U_g(\mathbb{C}) \rightarrow U_g(\mathbb{C}) \subset Sp_{2g}(\mathbb{C})\).

Now, the action of \(Sp_{2g}(\mathbb{C})\) on itself by left multiplication descends to a left action of \(Sp_{2g}(\mathbb{C})\) on \(L_g(\mathbb{C})\) given explicitly by

\[
\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot (Z_1 : Z_2) = (AZ_1 + BZ_2 : CZ_1 + DZ_2).
\]

For any \(\delta \in Sp_{2g}(\mathbb{C})\), let us define \(\psi_\delta : \delta^{-1} \cdot \text{Sym}_g(\mathbb{C}) \subset L_g(\mathbb{C}) \rightarrow Sp_{2g}(\mathbb{C})\)

\[
p \mapsto \delta^{-1} \psi(\delta \cdot p).
\]

Then \(\psi_\delta\) induces a biholomorphism of \(\delta^{-1} \cdot \text{Sym}_g(\mathbb{C})\) onto the closed submanifold \(\delta^{-1} U_g(\mathbb{C}) \subset Sp_{2g}(\mathbb{C})\).

We put

\[
U_\delta := \{\tau \in H_g \mid \delta \cdot (\tau : 1) \in \text{Sym}_g(\mathbb{C}) \subset L_g(\mathbb{C})\} = (\delta^{-1} \cdot \text{Sym}_g(\mathbb{C})) \cap H_g.
\]
Equivalently, if \(\delta = (A \ B \ ; \ C \ D) \), then
\[
U_\delta = \{ \tau \in H_g \mid C\tau + D \in GL_g(C) \}.
\]

Definition 7.5. For any \(\delta \in \text{Sp}_{2g}(C) \), we define a holomorphic map \(\varphi_\delta : U_\delta \longrightarrow B_g(C) \subset \text{Sp}_{2g}(Z) \setminus \text{Sp}_{2g}(C) \) by
\[
\varphi_\delta(\tau) := \text{Sp}_{2g}(Z)\psi_\delta(\tau)
\]
for any \(\tau \in U_\delta \).

Note that \(\psi_\delta(U_\delta) = \delta^{-1}U_g(C) \cap B_g \subset \text{Sp}_{2g}(C) \) by Lemma 6.5. In particular, the image of \(\varphi_\delta \) is indeed in \(B_g(C) \). Moreover, if \(\delta \in U_g(C) \), then \(U_\delta = H_g \) and \(\varphi_\delta = \varphi_g \) (cf. Theorem 6.1 (2)).

Lemma 7.6. For any \(\delta \in \text{Sp}_{2g}(C) \), \(U_\delta \) is a dense connected open subset of \(H_g \).

Proof. Let \(\delta = (A \ B \ ; \ C \ D) \in \text{Sp}_{2g}(C) \). By definition, \(U_\delta \) is the complement in \(H_g \) of the codimension 1 analytic subset \(\{ \tau \in H_g \mid \det(C\tau + D) = 0 \} \). It is thus a dense open subset of \(H_g \). Since \(H_g \) is a connected open subset of an affine space, it follows from Riemann’s extension theorem (cf. [17] Proposition 1.1.7) that \(U_\delta \) is connected.

Proposition 7.7. For every \(\delta \in \text{Sp}_{2g}(C) \), the image of the map \(\varphi_\delta : U_\delta \longrightarrow B_g(C) \) is a leaf of the higher Ramanujan foliation on \(B_g(C) \), and coincides with the image of \(\delta^{-1}U_g(C) \cap B_g \) in \(B_g(C) \) under the quotient map \(\text{Sp}_{2g}(C) \longrightarrow \text{Sp}_{2g}(Z) \setminus \text{Sp}_{2g}(C) \). Moreover, every leaf is of this form.

Proof. Let \(\delta \in \text{Sp}_{2g}(C) \). It was already remarked above that \(\psi_\delta(U_\delta) = \delta^{-1}U_g(C) \cap B_g \); by definition, \(\varphi_\delta(U_\delta) \) is the image of \(\psi_\delta(U_\delta) \) under the quotient map \(\text{Sp}_{2g}(C) \longrightarrow \text{Sp}_{2g}(Z) \setminus \text{Sp}_{2g}(C) \). In particular, since the higher Ramanujan foliation on \(B_g(C) \) is induced by the foliation on \(\text{Sp}_{2g}(C) \) defined by \(U_g(C) \) (cf. 7.1.1), to prove that \(\varphi_\delta(U_\delta) \) is a leaf of the higher Ramanujan foliation it is sufficient to prove that it is connected. This is an immediate consequence Lemma 7.6.

Conversely, if \(L \subset B_g(C) \) is a leaf of the higher Ramanujan foliation, then it follows from 7.1.1 that there exists \(\delta \in \text{Sp}_{2g}(C) \) such that \(L \) is a connected component of the image of \(\delta^{-1}U_g(C) \cap B_g \) in \(B_g(C) \) under the quotient map \(\text{Sp}_{2g}(C) \longrightarrow \text{Sp}_{2g}(Z) \setminus \text{Sp}_{2g}(C) \). By the last paragraph, \(\delta^{-1}U_g(C) \cap B_g = \psi_\delta(U_\delta) \) is connected, and we conclude that \(L = \varphi_\delta(U_\delta) \).

Remark 7.8. The holomorphic maps \(\varphi_\delta : U_\delta \longrightarrow B_g(C) \) are immersives but not injective in general. For instance, if \(\delta = 1_{2g} \), then one easily verifies that \(\varphi_g(\tau) = \varphi_g(\tau') \) if and only if \(\tau' \in U_g(Z) \cdot \tau \). Thus \(\varphi_g \) induces a biholomorphism of the quotient \(U_g(Z) \setminus H_g \) onto the closed submanifold \(\varphi_g(H_g) \) of \(B_g(C) \).

Remark 7.9. There exist non-closed leaves of the higher Ramanujan foliation on \(B_g(C) \). Take for instance
\[
\delta = \begin{pmatrix} x 1_g & -1_g \\ 1_g & 0 \end{pmatrix}
\]
where \(x \in \mathbb{R} \setminus \mathbb{Q} \). Using the classical fact that the orbit of \((x, 1)\) in \(\mathbb{R}^2 \) under the obvious left action of \(SL_2(\mathbb{Z}) \) is dense in \(\mathbb{R}^2 \), one may easily deduce that the leaf \(L \subset B_g(C) \) given by the image of \(\delta U_g(C) \cap B_g \) under the quotient map \(\text{Sp}_{2g}(C) \longrightarrow \text{Sp}_{2g}(Z) \setminus \text{Sp}_{2g}(C) \) has a limit point in \(B_g(C) \setminus L \). In particular, the “space of leaves” of the higher Ramanujan foliation on \(B_g(C) \), which
may be identified with $\text{Sp}_{2g}(\mathbb{Z}) \backslash \text{Sp}_{2g}(\mathbb{C})/U_g(\mathbb{C})$ by Proposition 7.7, is not a Hausdorff topological space.

The dynamics of the higher Ramanujan foliation in the case $g = 1$ was thoroughly studied by Movasati in [23].

7.1.3. In the sequel, it will be useful to obtain a description of φ_δ purely in terms of the universal property of $B_g(\mathbb{C})$. Let $\delta = (A \ B ; C \ D) \in \text{Sp}_{2g}(\mathbb{C})$ and define a holomorphic map $p_\delta : U_\delta \rightarrow P_g(\mathbb{C})$ by

$$p_\delta(\tau) = p_{\delta,\tau} := \begin{pmatrix} (C\tau + D)^{-1} & -\frac{1}{2\pi i} C^T \\ 0 & (C\tau + D)^T \end{pmatrix} \in P_g(\mathbb{C}).$$

The proof of the next lemma is a straightforward computation using the equations defining the symplectic group (cf. Remark 1.1).

Lemma 7.10. For every $\tau \in U_\delta \subset H_g$, we have

$$\psi_\delta(\tau) = \psi(\tau) p'_{\delta,\tau}$$

in $\text{Sp}_{2g}(\mathbb{C})$, where $p'_{\delta,\tau}$ denotes the image of $p_{\delta,\tau}$ in $P'_g(\mathbb{C})$ under the isomorphism defined in Lemma 6.5.

In particular, by Lemma 6.5 and Lemma 6.8, if B_g is regarded as the moduli space of principally polarized complex tori of dimension g equipped with a symplectic-Hodge basis and an integral symplectic basis, we have

$$\psi_\delta(\tau) = [(X_{g,\tau}, E_{g,\tau}, b_{g,\tau}, b_{g,\tau} \cdot p_{\delta,\tau}, \beta_{g,\tau})] \in B_g$$

for every $\tau \in U_\delta$. Composing with the canonical map $B_g \rightarrow B_g(\mathbb{C})$, we obtain

$$\varphi_\delta(\tau) = [(X_{g,\tau}, E_{g,\tau}, b_{g,\tau}, b_{g,\tau} \cdot p_{\delta,\tau})] \in B_g(\mathbb{C})$$

for every $\tau \in U_\delta$.

7.2. **Auxiliary results.** Our next objective is to prove that the leaves of the higher Ramanujan foliation on $B_g(\mathbb{C})$ are Zariski-dense in $B_g(\mathbb{C})$. We collect in this subsection some auxiliary results. In the last analysis, our proof is a reduction to the fact that $\text{Sp}_{2g}(\mathbb{Z})$ is Zariski-dense in $\text{Sp}_{2g,\mathbb{C}}$ (Lemma 7.13).

Recall that for every $\tau \in H_g$ and

$$\delta = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{Sp}_{2g}(\mathbb{C})$$

we put

$$j(\delta, \tau) := C\tau + D \in M_{g \times g}(\mathbb{C}),$$

so that $U_\delta = \{ \tau \in H_g \mid j(\delta, \tau) \in \text{GL}_g(\mathbb{C}) \}$.

The proof of the next lemma is a simple computation.

Lemma 7.11. For $\delta_1, \delta_2 \in \text{Sp}_{2g}(\mathbb{C})$, we have $j(\delta_1 \delta_2, \tau) = j(\delta_1, \delta_2 \cdot \tau) j(\delta_2, \tau)$. In particular, if $\tau \in U_{\delta_2}$ and $\delta_2 \cdot \tau \in U_{\delta_1}$, then $\tau \in U_{\delta_1 \delta_2}$.

Lemma 7.12. Let $\delta \in \text{Sp}_{2g}(C)$, $\gamma \in \text{Sp}_{2g}(Z)$, and $\tau \in U_{\delta \gamma} \subset H_g$. Then $\gamma \cdot \tau \in U_{\delta}$ and $\varphi_{\delta \gamma} (\tau) = \varphi_{\delta} (\gamma \cdot \tau)$.

Proof. That $\gamma \cdot \tau \in U_{\delta}$ is a direct consequence of Lemma 7.11 and the fact that $j(\gamma, \tau) \in \text{GL}_g(C)$ (this is true for any $\gamma \in \text{Sp}_{2g}(R)$ and $\tau \in H_g$). Under the group-theoretic interpretation, we have

$$\varphi_{\delta \gamma} (\tau) = \text{Sp}_{2g}(Z) \psi_{\delta \gamma} (\tau) = \text{Sp}_{2g}(Z)(\delta \gamma)^{-1} \psi((\delta \gamma) \cdot \tau) = \text{Sp}_{2g}(Z) \delta^{-1} \psi(\delta \cdot (\gamma \cdot \tau)) = \text{Sp}_{2g}(Z) \psi_{\delta} (\gamma \cdot \tau) = \varphi_{\delta} (\gamma \cdot \tau).$$

\[\square\]

Lemma 7.13. The set $\text{Sp}_{2g}(Z) \subset \text{Sp}_{2g}(C)$ is Zariski-dense in $\text{Sp}_{2g,C}$.

Proof. Let Sp^*_g be the open subscheme of Sp_g defined by $\text{Sp}^*_g(R) = \{(A B ; C D) \in \text{Sp}_g(R) \mid A \in \text{GL}_g(R)\}$ for any ring R. We may define an isomorphism of schemes $\text{Sp}^*_g \isom \text{Sym}_g \times Z \text{Sym}_g \times Z \text{GL}_g$ by

$$\left(\begin{array}{ccc} A & B \\ C & D \end{array} \right) \mapsto (CA^{-1}, AB^T, A).$$

Since $\text{Sym}_g \times Z \text{Sym}_g \times Z \text{GL}_g$ may be identified to an open subscheme of the affine space $A^{2g^2 + g}_Z$, we see that $\text{Sym}_g(Z) \times \text{Sym}_g(Z) \times \text{GL}_g(Z)$ is Zariski-dense in $\text{Sym}_g,C \times C \text{Sym}_g,C \times C \text{GL}_g,C$. Thus $\text{Sp}^*_g(Z)$ is Zariski-dense in Sp^*_g,C. Finally, since Sp^*_g,C is an irreducible scheme, we conclude that $\text{Sp}^*_g(Z)$ is Zariski-dense in Sp^*_g,C.

\[\square\]

Lemma 7.14. Let $\tau \in H_g$ and $p \in P_g(C)$. Then there exists $\delta \in \text{Sp}_{2g}(C)$ such that $\tau \in U_{\delta}$ and $p = p_{\delta, \tau}$.

Proof. Let $A \in \text{GL}_g(C)$ and $B \in M_{g \times g}(C)$ such that

$$p = \left(\begin{array}{cc} A & B \\ 0 & (A^T)^{-1} \end{array} \right).$$

One easily verifies, using the equation $AB^T = B A^T$, that

$$\delta := \left(\begin{array}{ccc} A^T \\ -2\pi i B^T \end{array} \right) \left(\begin{array}{cc} -A^{-1} \tau & A^T \tau \\ A^{-1} & 2\pi i B^T \tau \end{array} \right) \in M_{2g \times 2g}(C)$$

is in $\text{Sp}_{2g}(C)$ and satisfies the required conditions in the statement.

\[\square\]

Lemma 7.15. For every $\delta \in \text{Sp}_{2g}(C)$ and $\tau \in H_g$, the subset

$$S_{\delta, \tau} := \{p_{\delta \gamma, \tau} \in P_g(C) \mid \gamma \in \text{Sp}_{2g}(Z) \text{ such that } j(\delta \gamma, \tau) \in \text{GL}_g(C)\}$$

of $P_g(C)$ is Zariski-dense in P_g,C.

Proof. Let V be the unique open subscheme of $\text{Sp}_{2g,C}$ such that

$$V(C) = \{\gamma \in \text{Sp}_{2g}(C) \mid j(\delta \gamma, \tau) \in \text{GL}_g(C)\}$$

and let $h : V \rightarrow P_g,C$ be the morphism of C-schemes given on complex points by $h(\gamma) = p_{\delta \gamma, \tau}$ (note that V and P_g,C are reduced separated C-schemes of finite type). It follows from Lemma 7.14 that h is surjective on complex points, thus a dominant morphism of schemes.
Now, we remark that $S_{δ,τ} = h(\text{Sp}_{2g}(\mathbb{Z}) \cap V)$. Since $\text{Sp}_{2g,C}$ is irreducible and $\text{Sp}_{2g}(\mathbb{Z})$ is Zariski-dense in $\text{Sp}_{2g,C}$ by Lemma 7.13, $\text{Sp}_{2g}(\mathbb{Z}) \cap V$ is also Zariski-dense in $\text{Sp}_{2g,C}$. Hence, as h is dominant and continuous for the Zariski topology, $S_{δ,τ}$ is Zariski-dense in $P_{g,C}$.

7.3. Proof of Theorem 7.1 and Corollary 7.2. Recall from 5.3 that we denote the coarse moduli scheme of A_g by A_g, and that we have a canonical map $j_g : H_g \rightarrow A_g(C)$ associating to each $τ \in H_g$ the isomorphism class of the principally polarized complex torus $(X,τ,\varphi_{τ})$.

Proof of Theorem 7.1. By Proposition 7.7, we must prove that, for every $δ \in \text{Sp}_{2g}(C)$, the image of $ϕ_δ : U_δ \rightarrow B_g(C)$ is Zariski-dense in $B_{g,C}$.

Let

$$w_g : B_{g,C} \rightarrow A_{g,C}$$

be the composition of the forgetful functor $π_g : B_{g,C} \cong B_{g,C} \rightarrow A_{g,C}$ with the canonical morphism $A_{g,C} \rightarrow A_{g,C}$. Note that w_g acts on complex points by sending an isomorphism class in $B_{g}(C)$ of a principally polarized complex abelian variety endowed with a symplectic-Hodge basis to the isomorphism class in $A_{g}(C)$ of the same principally polarized complex abelian variety.

By Lemma 7.3, we are reduced to proving that, for every $x \in A_{g}(C)$, the set

$$ϕ_δ(U_δ) \cap w_{g}^{-1}(x)$$

is Zariski-dense in $w_{g}^{-1}(x) \subset B_{g,C}$. Indeed, by surjectivity of w_g on the level of complex points, this proves in particular that $w_g(ϕ_δ(U_δ)) = A_g(C)$ (cf. condition (i) in Lemma 7.3).

Let $(X,λ)$ be a representative of the isomorphism class x. The set of complex points of the C-scheme $w_{g}^{-1}(x)$ can be identified with the set of isomorphism classes of objects of the category $B_{g}(C)$ lying over $(X,λ)$; we denote these isomorphism classes by $[(X,λ,b)]$. Then, we recall that C-group scheme $P_{g,C}$ acts transitively on $w_{g}^{-1}(x)$ by

$$[(X,λ,b)] \cdot p := [(X,λ,b \cdot p)].$$

Thus, if $τ \in H_g$ satisfies $j_g(τ) = x$, we can define a surjective morphism of C-schemes:

$$f_τ : P_{g,C} \rightarrow w_{g}^{-1}(x)$$

$$p \mapsto ϕ_δ(τ) \cdot p.$$

Now, let $γ \in \text{Sp}_{2g}(Z)$ be such that $j(δγ,τ) \in \text{GL}_g(C)$. By Lemma 7.12, we have $γ \cdot τ \in U_δ$ and $ϕ_δγ(τ) = ϕ_δ(γ \cdot τ)$. Thus, by formula (7.2), we obtain

$$f_τ(pδγ,τ) = ϕ_δ(τ) \cdot pδγ,τ = ϕ_δγ(τ) = ϕ_δ(γ \cdot τ).$$

This proves that

$$S_{δ,τ} = \{pδγ,τ \in P_g(C) \mid γ \in \text{Sp}_{2g}(Z) \text{ such that } j(δγ,τ) \in \text{GL}_g(C)\} \subset f_τ^{-1}(ϕ_δ(U_δ) \cap w_{g}^{-1}(x)).$$

By Lemma 7.15, $S_{δ,τ}$ is Zariski-dense in $P_{g,C}$. Hence, as $f_τ$ is surjective and continuous for the Zariski topology, we conclude that $ϕ_δ(U_δ) \cap w_{g}^{-1}(x)$ is Zariski-dense in $w_{g}^{-1}(x)$.

9Actually, as the automorphism group of a complex principally polarized abelian variety is finite ([26] IV.21 Theorem 5), the stabilizer of $ϕ_δ(τ)$ is a finite subgroup scheme of $P_{g,C}$. Therefore, $f_τ$ is a finite surjective morphism. We shall not use this fact in our proof.
Proof of Corollary 7.2. It is clear that $\text{Sym}_g(\mathbb{Z})$ is Zariski-dense in Sym_g,\mathbb{C}. Thus, by Theorem 7.1 and Lemma 7.3 (ii) applied to the projection on the second factor

$$\text{Sym}_g,\mathbb{C} \times \mathbb{C}B_g,\mathbb{C} \longrightarrow B_g,\mathbb{C},$$

it suffices to prove that for every $N \in \text{Sym}_g(\mathbb{Z})$ and $\tau \in \mathbb{H}_g$ we have $\varphi_g(\tau + N) = \varphi_g(\tau)$. This was already observed in Remark 7.8. ■

References

[1] Y. André, Une introduction aux Motifs (Motifs Purs, Motifs Mixtes, Périodes). Panoramas et Synthèses 17. Société Mathématique de France, 2004.
[2] C. Bertolin, Périodes de 1-motifs et transcendance. Journal of Number Theory 97 (2002) 204-221.
[3] D. Bertrand, V. V. Zudilin, On the transcendence degree of the differential field generated by Siegel modular forms. J. Reine Angew. Math. 554 (2003), 47-68.
[4] C. Birkenhake, H. Lange, Complex Abelian Varieties (second, augmented edition). Grundlehren der mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg (2004).
[5] P. Berthelot, L. Breen, and W. Messing, Théorie de Dieudonné cristalline II. Lecture Notes in Mathematics 930. Springer-Verlag, Berlin (1982).
[6] A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Differential Geometry 6 (1972), pp. 543-560.
[7] G. Binyamini, Multiplicity estimates, analytic cycles, and Newton polytopes. Preprint (2014). Available at https://arxiv.org/pdf/1407.1183v2.pdf.
[8] G. V. Chudnovsky, Algebraic independence of values of exponential and elliptic functions. Proceedings of the international congress of mathematicians (Helsinki 1978), Academia Scientiarum Fennica, Helsinki (1980), 339-350.
[9] P. Deligne, Equations Différentielles à Points Réguliers Singuliers. Lecture Notes in Mathematics 163. Springer-Verlag, Berlin (1970).
[10] P. Deligne, Théorie de Hodge : II. Publications mathématiques de l’IHÉS 40 (1971), p. 5-57.
[11] P. Deligne (rédigé par J.L. Brylinsky), Cycles de Hodge absolus et périodes des intégrales des variétés abéliennes. Mémoires SMF 2 (1980), 23-33.
[12] P. Deligne, J. S. Milne, A. Ogus, K. Shih, Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics 900 (1982), Springer-Verlag.
[13] G. Faltings, C-L. Chai, Degeneration of abelian varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete 22 (1990). Springer-Verlag Berlin Heildeberg.
[14] T. J. Fonseca, Higher Ramanujan equations I: moduli stacks of abelian varieties over \mathbb{Z} and higher Ramanujan vector fields. Preprint (2016).
[15] P. Griffiths, J. Harris, Principles of Algebraic Geometry. John Wiley & Sons (1978).
[16] A. Grothendieck, On the de Rham cohomology of algebraic varieties. Publications Mathématiques de l’IHÉS, tome 29 (1966), p. 95-103.
[17] D. Huybrechts, Complex Geometry: An Introduction. Springer-Verlag Berlin Heildeberg (2005).
[18] N. M. Katz, p-adic properties of modular schemes and modular forms. Lecture Notes in Mathematics 350 (1973), 69-190. Springer International Publishing.
[19] N. M. Katz, T. Oda, On the differentation of de Rham cohomology classes with respect to parameters. Kyoto Journal of Mathematics 8-2 (1968) 190-213.
[20] S. Lang, Introduction to transcendental numbers. Addison-Wesley Publishing Company (1966).
[21] K. Mahler, On algebraic differential equations satisfied by automorphic functions. Journal of Australian Mathematical Society 10 (1969), 445-450.
[22] L. Moret-Bailly, Pinceaux de variétés abéliennes. Astérisque 129 (1985). Société Mathématique de France.
[23] H. Movasati, On elliptic modular foliations. Indag. Math. (N.S.) 19 (2008), no. 2, 263-286.
[24] H. Movasati, *Quasi-modular forms attached to elliptic curves, I*. Annales mathématiques Blaise Pascal, 19 no. 2 (2012), pp. 307-377.

[25] H. Movasati, *Quasi-modular forms attached to Hodge structures*. In *Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds*. Fields Inst. Commun. 67 (2013), 567-587. Springer New-York.

[26] D. Mumford, *Abelian varieties*. Tata institute of fundamental research, Bombay. Oxford University Press (1970).

[27] D. Mumford, D. Fogarty, and J. Kirwan, *Geometric invariant theory*. Ergebnisse der Mathematik und ihrer Grenzgebiete 34 (1994). Springer-Verlag Berlin Heidelberg.

[28] Y. V. Nesterenko, *The algebraic dependence of components of solutions of systems of linear differential equations*. Izv. Akad. Navk SSSR Set. Mat. 38 (1989), 495-512.

[29] Y. V. Nesterenko, *Modular functions and transcendence questions*, Sb. Math. 187 1319, 1996.

[30] M. Olsson, *Compactifications of moduli of abelian varieties: An introduction*. “Current Developments in Algebraic Geometry”, 295–348, Math. Sci. Res. Inst. Publ., 59 (2012). Cambridge Univ. Press, Cambridge.

[31] M. Olsson, *Algebraic spaces and stacks*. American Mathematical Society Colloquium Publications, 62 (2016).

Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France.

E-mail address: tiago.jardim-da-fonseca@math.u-psud.fr