Some relations between the topological and geometric filtration for smooth projective varieties

Wenchuan Hu

March 8, 2022

Contents

1 Introduction 1

2 The Proof of the Theorem 1.3 4

3 The Proof of the Theorem 1.4 8

Abstract

In the first part of this paper, we show that the assertion “$T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q})$” (which is called the Friedlander-Mazur conjecture) is a birationally invariant statement for smooth projective varieties X when $p = \dim(X) - 2$ and when $p = 1$. We also establish the Friedlander-Mazur conjecture in certain dimensions. More precisely, for a smooth projective variety X, we show that the topological filtration $T_p H_{2p+1}(X, \mathbb{Q})$ coincides with the geometric filtration $G_p H_{2p+1}(X, \mathbb{Q})$ for all p. (Friedlander and Mazur had previously shown that $T_p H_{2p}(X, \mathbb{Q}) = G_p H_{2p}(X, \mathbb{Q})$). As a corollary, we conclude that for a smooth projective threefold X, $T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q})$ for all $k \geq 2p \geq 0$ except for the case $p = 1, k = 4$. Finally, we show that the topological and geometric filtrations always coincide if Suslin’s conjecture holds.

1 Introduction

In this paper, all varieties are defined over \mathbb{C}. Let X be a projective variety with dimension n. Let $Z_p(X)$ be the space of algebraic p-cycles.

The Lawson homology $L_p H_k(X)$ of p-cycles is defined by

\[L_p H_k(X) = \pi_{k-2p}(Z_p(X)) \quad \text{for} \quad k \geq 2p \geq 0, \]
where $Z_p(X)$ is provided with a natural topology (cf. [F1], [L1]). For general background, the reader is referred to Lawson’ survey paper [L2].

In [FM], Friedlander and Mazur showed that there are natural maps, called cycle class maps

$$\Phi_{p,k} : L_p H_k(X) \to H_k(X).$$

Definition 1.1

$$L_p H_k(X)_{\text{hom}} := \ker \{\Phi_{p,k} : L_p H_k(X) \to H_k(X)\};$$

$$T_p H_k(X) := \text{Image} \{\Phi_{p,k} : L_p H_k(X) \to H_k(X)\};$$

$$T_p H_k(X, \mathbb{Q}) := T_p H_k(X) \otimes \mathbb{Q}.$$

It was shown in [FM], §7 that the subspaces $T_p H_k(X, \mathbb{Q})$ form a decreasing filtration:

$$\cdots \subseteq T_p H_k(X, \mathbb{Q}) \subseteq T_{p-1} H_k(X, \mathbb{Q}) \subseteq \cdots \subseteq T_0 H_k(X, \mathbb{Q}) = H_k(X, \mathbb{Q})$$

and $T_p H_k(X, \mathbb{Q})$ vanishes if $2p > k$.

Definition 1.2 (FM) Denote by $G_p H_k(X, \mathbb{Q}) \subseteq H_k(X, \mathbb{Q})$ the \mathbb{Q}-vector subspace of $H_k(X, \mathbb{Q})$ generated by the images of mappings $H_k(Y, \mathbb{Q}) \to H_k(X, \mathbb{Q})$, induced from all morphisms $Y \to X$ of varieties of dimension $\leq k - p$.

The subspaces $G_p H_k(X, \mathbb{Q})$ also form a decreasing filtration (called geometric filtration):

$$\cdots \subseteq G_p H_k(X, \mathbb{Q}) \subseteq G_{p-1} H_k(X, \mathbb{Q}) \subseteq \cdots \subseteq G_0 H_k(X, \mathbb{Q}) \subseteq H_k(X, \mathbb{Q})$$

If X is smooth, the Weak Lefschetz Theorem implies that $G_0 H_k(X, \mathbb{Q}) = H_k(X, \mathbb{Q})$. Since $H_k(Y, \mathbb{Q})$ vanishes for k greater than twice the dimension of Y, $G_p H_k(X, \mathbb{Q})$ vanishes if $2p > k$.

The following results have been proved by Friedlander and Mazur in [FM]:

Theorem 1.1 (FM) Let X be any projective variety.

1. For non-negative integers p and k,

$$T_p H_k(X, \mathbb{Q}) \subseteq G_p H_k(X, \mathbb{Q}).$$

2. When $k = 2p$,

$$T_p H_{2p}(X, \mathbb{Q}) = G_p H_{2p}(X, \mathbb{Q}).$$

Question (FM, [L2]): Does one have equality in Theorem 1.1 when X is a smooth projective variety?

Friedlander [F2] has the following result:
Theorem 1.2 ([F2]) Let X be a smooth projective variety of dimension n. Assume that Grothendieck’s Standard Conjecture B ([Gro]) is valid for a resolution of singularities of each irreducible subvariety of $Y \subset X$ of dimension $k - p$, then

$$T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q}).$$

Remark 1.1 ([Lew], §15.32) The Grothendieck’s Standard Conjecture B is known to hold for a smooth projective variety X in the following cases:

1. dim$X \leq 2$.
2. Flag manifolds X.
3. Smooth complete intersections X.
4. Abelian varieties (due to D. Lieberman [Lieb]).

In this paper, we will use the tools in Lawson homology and the methods given in [H] to show the following main results:

Theorem 1.3 Let X be a smooth projective variety of dimension n. If the conclusion in Theorem 1.2 holds (without the assumption of Grothendieck’s Standard Conjecture B) for X with $p = 1, (\text{resp.} p = n - 2)$ (k arbitrary), then it also holds for any smooth projective variety X' which is birationally equivalent to X with $p = 1, (\text{resp.} p = n - 2)$.

Theorem 1.4 For any smooth projective variety X,

$$T_p H_{2p+1}(X, \mathbb{Q}) = G_p H_{2p+1}(X, \mathbb{Q}).$$

As corollaries, we have

Corollary 1.1 Let X be a smooth projective 3-fold. We have $T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q})$ for all $k \geq 2p \geq 0$ except for the case $p = 1, k = 4$.

Corollary 1.2 Let X be a smooth projective 3-fold with $H^{2,0}(X) = 0$. Then $T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q})$ for any $k \geq 2p \geq 0$. In particular, it holds for X a smooth hypersurface and a complete intersection of dimension 3.

By using the Künneth formula in homology with rational coefficient, we have

Corollary 1.3 Let X be the product of a smooth projective curve and a smooth simply connected projective surface. Then $T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q})$ for any $k \geq 2p \geq 0$.

3
Corollary 1.4 For 4-folds X, the assertion that $T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q})$ holds for all $k \geq 2p \geq 0$ is a birational invariant statement. In particular, if X is a rational manifold with $\text{dim}(X) \leq 4$, then the conclusion in Theorem 1.2 holds for any $k \geq 2p \geq 0$ without assumption of Grothendieck’s Standard Conjecture B.

Remark 1.2 A Conjecture given by Suslin (see [PHW], §7) implies that $L_p H_{n+p}(X^n) \cong H_{n+p}(X^n)$.

As an application of Theorem 1.4 and Proposition 3.1, we have the following result:

Corollary 1.5 If the Suslin’s Conjecture is true, then the topological filtration is the same as the geometric filtration for a smooth projective variety.

The main tools to prove this result are: the long exact localization sequence given by Lima-Filho in [L], the explicit formula for Lawson homology of codimension-one cycles on a smooth projective manifold given by Friedlander in [F1], (and its generalization to general irreducible varieties, see below), and the weak factorization theorem proved by Wlodarczyk in [W] and in [AKMW].

2 The Proof of the Theorem 1.3

Let X be a smooth projective manifold of dimension n and $i_0 : Y \hookrightarrow X$ be a smooth subvariety of codimension $r \geq 2$. Let $\sigma : X_Y \to X$ be the blowup of X along Y, $\pi : D = \sigma^{-1}(Y) \to Y$ the nature map, and $i : D = \sigma^{-1}(Y) \hookrightarrow X_Y$ the exceptional divisor of the blowup. Set $U := X - Y \cong X_Y - D$. Denote by j_0 the inclusion $U \subset X$ and j the inclusion $U \subset X_Y$.

Now I list the Lemmas and Corollaries given in [H].

Lemma 2.1 For each $p \geq 0$, we have the following commutative diagram

\[\cdots \to L_p H_k(D) \xrightarrow{i_*} L_p H_k(X_Y) \xrightarrow{j_*} L_p H_k(U) \xrightarrow{\delta_*} L_p H_{k-1}(D) \to \cdots \]

\[\downarrow \pi_* \quad \downarrow \sigma_* \quad \downarrow \delta \quad \downarrow \pi_* \]

\[\cdots \to L_p H_k(Y) \xrightarrow{(i_0)_*} L_p H_k(X) \xrightarrow{j_0^*} L_p H_k(U) \xrightarrow{(\delta_0)_*} L_p H_{k-1}(Y) \to \cdots \]

Remark 2.1 Since π_* is surjective (there is an explicitly formula for the Lawson homology of D, i.e., the Projective Bundle Theorem proved by Friedlander and Gabber, see [EG]), it is easy to see that σ_* is surjective.

Corollary 2.1 If $p = 0$, then we have the following commutative diagram

\[\cdots \to H_k(D) \xrightarrow{i_*} H_k(X_Y) \xrightarrow{j_*} H_k^BM(U) \xrightarrow{\delta_*} H_{k-1}(D) \to \cdots \]

\[\downarrow \pi_* \quad \downarrow \sigma_* \quad \downarrow \delta \quad \downarrow \pi_* \]

\[\cdots \to H_k(Y) \xrightarrow{(i_0)_*} H_k(X) \xrightarrow{j_0^*} H_k^BM(U) \xrightarrow{(\delta_0)_*} H_{k-1}(Y) \to \cdots \]

Moreover, if $x \in H_k(D)$ maps to zero under π_* and i_*, then $x = 0 \in H_k(D)$.
Corollary 2.2 If \(p = n - 2 \), then we have the following commutative diagram

\[
\cdots \to L_{n-2}H_k(D) \overset{i_*}{\to} L_{n-2}H_k(\tilde{X}Y) \overset{j^*}{\to} L_{n-2}H_k(U) \overset{\delta}{\to} L_{n-2}H_{k-1}(D) \to \cdots \\
\downarrow \pi_* \hspace{1cm} \downarrow \sigma_* \hspace{1cm} \downarrow \cong \hspace{1cm} \downarrow \pi_* \\
\cdots \to L_{n-2}H_k(Y) \overset{(i_0)_*}{\to} L_{n-2}H_k(X) \overset{j^*_0}{\to} L_{n-2}H_k(U) \overset{(\delta_0)_*}{\to} L_{n-2}H_{k-1}(Y) \to \cdots
\]

Lemma 2.2 For each \(p \geq 0 \), we have the following commutative diagram

\[
\cdots \to L_pH_k(D) \overset{i_*}{\to} L_pH_k(\tilde{X}Y) \overset{j^*}{\to} L_pH_k(U) \overset{\delta}{\to} L_pH_{k-1}(D) \to \cdots \\
\downarrow \Phi_{p,k} \hspace{1cm} \downarrow \Phi_{p,k} \hspace{1cm} \downarrow \Phi_{p,k} \hspace{1cm} \downarrow \Phi_{p,k-1} \\
\cdots \to H_k(D) \overset{i_*}{\to} H_k(\tilde{X}Y) \overset{j^*}{\to} H_k^BM(U) \overset{\delta}{\to} H_{k-1}(D) \to \cdots
\]

In particular, it is true for \(p = 1, n - 2 \).

Proof. See \([Li] \) and also \([FM] \).

Lemma 2.3 For each \(p \geq 0 \), we have the following commutative diagram

\[
\cdots \to L_pH_k(Y) \overset{(i_0)_*}{\to} L_pH_k(X) \overset{j^*_0}{\to} L_pH_k(U) \overset{(\delta_0)_*}{\to} L_pH_{k-1}(Y) \to \cdots \\
\downarrow \Phi_{p,k} \hspace{1cm} \downarrow \Phi_{p,k} \hspace{1cm} \downarrow \Phi_{p,k} \hspace{1cm} \downarrow \Phi_{p,k-1} \\
\cdots \to H_k(Y) \overset{(i_0)_*}{\to} H_k(X) \overset{j^*_0}{\to} H_k^BM(U) \overset{(\delta_0)_*}{\to} H_{k-1}(Y) \to \cdots
\]

In particular, it is true for \(p = 1, n - 2 \).

Proof. See \([Li] \) and also \([FM] \).

Remark 2.2 The smoothness of \(X \) and \(Y \) is not necessary in the Lemma 2.3.

Remark 2.3 All the commutative diagrams of long exact sequences above remain commutative and exact when tensored with \(\mathbb{Q} \). We will use these Lemmas and Corollaries with rational coefficients.

The following result will be used several times in the proof of our main theorem:

Theorem 2.1 (Friedlander \([F1] \)) Let \(W \) be any smooth projective variety of dimension \(n \). Then we have the following isomorphisms

\[
\begin{cases}
L_{n-1}H_{2n}(W) \cong \mathbb{Z}, \\
L_{n-1}H_{2n-1}(W) \cong H_{2n-1}(X, \mathbb{Z}), \\
L_{n-1}H_{2n-2}(W) \cong H_{n-1,n-1}(X, \mathbb{Z}) = NS(W), \\
L_{n-1}H_k(X) = 0 \quad \text{for} \quad k > 2n.
\end{cases}
\]
The proof of Theorem 1.3 (\(p = n - 2 \)):

There are two cases:

Case 1. If \(T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q}) \), then \(T_p H_k(\tilde{X}_Y, \mathbb{Q}) = G_p H_k(\tilde{X}_Y, \mathbb{Q}) \).

The injectivity of \(T_p H_k(\tilde{X}_Y, \mathbb{Q}) \rightarrow G_p H_k(\tilde{X}_Y, \mathbb{Q}) \) has been proved by Friedlander and Mazur in [FM]. We only need to show the surjectivity. Note that the case for \(k = 2p + 1 \) holds for any smooth projective variety (Theorem 1.4). We only need to consider the cases where \(k \geq 2p + 2 \). In these cases, \(k - p \geq p + 2 = n \), from the definition of the geometric filtrations, we have \(G_p H_k(\tilde{X}_Y, \mathbb{Q}) \) and \(G_p H_k(X, \mathbb{Q}) = H_k(X, \mathbb{Q}) \).

Let \(b \in G_p H_k(\tilde{X}_Y, \mathbb{Q}) \), and \(a \) be the image of \(b \) under the the map \(\sigma_* : H_k(\tilde{X}_Y, \mathbb{Q}) \rightarrow H_k(X, \mathbb{Q}) \), i.e., \(\sigma_*(b) = a \). By assumption, there exists an element \(\tilde{a} \in L_{n-2} H_k(X) \otimes \mathbb{Q} \) such that \(\Phi_{n-2,k}(\tilde{a}) = a \). Since \(\sigma_* : L_{n-2} H_k(\tilde{X}_Y) \otimes \mathbb{Q} \rightarrow L_{n-2} H_k(X) \otimes \mathbb{Q} \) is surjective ([H]), there exists an element \(\tilde{b} \in L_{n-2} H_k(X) \otimes \mathbb{Q} \) such that \(\sigma_*(\tilde{b}) = \tilde{a} \). By the following commutative diagram

\[
\begin{array}{ccc}
L_{n-2} H_k(\tilde{X}_Y) \otimes \mathbb{Q} & \xrightarrow{\sigma_*} & L_{n-2} H_k(X) \otimes \mathbb{Q} \\
\downarrow \Phi_{n-2,k} & & \downarrow \Phi_{n-2,k} \\
H_k(\tilde{X}_Y, \mathbb{Q}) & \xrightarrow{=} & H_k(X, \mathbb{Q})
\end{array}
\]

we have \(\Phi_{n-2,k}(\tilde{b}) - b \) maps to zero in \(H_k(X, \mathbb{Q}) \). By the commutative diagram in Corollary 2.1, \(j^*(\Phi_{n-2,k}(\tilde{b}) - b) = 0 \in H_k^{BM}(U, \mathbb{Q}) \). From the exactness of the upper long exact sequence in Corollary 2.1, there exists an element \(c \in H_k(D, \mathbb{Q}) \) such that \(i_*(c) = \Phi_{n-2,k}(\tilde{b}) - b \). From Theorem 2.1, we find that \(\Phi_{n-2,k} : L_{n-2} H_k(D) \otimes \mathbb{Q} \rightarrow H_k(D) \otimes \mathbb{Q} \) is an isomorphism for \(k \geq 2n - 2 \). Hence there exists an element \(\tilde{c} \in L_{n-2} H_k(D) \otimes \mathbb{Q} \) such that \(i_*(\Phi_{n-2,k}(\tilde{c})) = \Phi_{n-2,k}(\tilde{b}) - b \). Therefore \(\Phi_{n-2,k}(\tilde{b} - i_*(\tilde{c})) = b \), i.e., the surjectivity of \(T_p H_k(\tilde{X}_Y, \mathbb{Q}) \rightarrow G_p H_k(\tilde{X}_Y, \mathbb{Q}) \).

On the other hand, we need to show

Case 2. If \(T_p H_k(\tilde{X}_Y, \mathbb{Q}) = G_p H_k(\tilde{X}_Y, \mathbb{Q}) \), then \(T_p H_k(X, \mathbb{Q}) = G_p H_k(X, \mathbb{Q}) \).

This part is relatively easy. By Theorem 1.4, we only need to consider the cases that \(k \geq 2p + 2 = 2n - 2 \). Let \(a \in G_p H_k(X, \mathbb{Q}) = H_k(X, \mathbb{Q}) \). From the blow up formula for singular homology (cf. [GH]), we know \(\sigma_* : H_k(\tilde{X}_Y, \mathbb{Q}) \rightarrow H_k(X, \mathbb{Q}) \) is surjective. Then there exists an element \(b \in H_k(\tilde{X}_Y, \mathbb{Q}) \) such that \(\sigma_*(b) = a \). By assumption, we can find an element \(\tilde{b} \in L_{n-2} H_k(\tilde{X}_Y, \mathbb{Q}) \) such that \(\Phi_{n-2,k}(\tilde{b}) = b \). Set \(\tilde{a} = \sigma_*(\tilde{b}) \). Then \(\Phi_{n-2,k}(\tilde{a}) = a \) under the natural map \(\Phi_{n-2,k} \). This is exactly the surjectivity we want.

This completes the proof for a blow-up along a smooth codimension at least two subvariety \(Y \) in \(X \).

\(\square \)

The proof of Theorem 1.3 (\(p = 1 \)):

The injectivity of the map \(T_1 H_k(W, \mathbb{Q}) \rightarrow G_1 H_k(W, \mathbb{Q}) \) has been proved for any smooth projective variety \(W \) by Friedlander and Mazur in [FM]. We only need to show the surjectivity under certain assumption.
Similar to the case $p = n - 2$, we also have two cases:

Case A. If $T_1 H_k(X, \mathbb{Q}) = G_1 H_k(X, \mathbb{Q})$, then $T_1 H_k(\tilde{X}_Y, \mathbb{Q}) = G_1 H_k(\tilde{X}_Y, \mathbb{Q})$.

From Theorem 1.4, the case where $k = 3$ holds for any smooth projective variety. We only need to consider the cases where $k \geq 4$.

Let $b \in G_1 H_k(\tilde{X}_Y, \mathbb{Q})$. Denote by a the image of b under the the map $\sigma_* : H_k(\tilde{X}_Y, \mathbb{Q}) \rightarrow H_0(X, \mathbb{Q})$, i.e., $\sigma_*(b) = a$. From the blow up formula for singular homology and the definition of the geometric filtration, we have $\sigma_*(G_1 H_k(\tilde{X}_Y, \mathbb{Q})) = G_1 H_k(X, \mathbb{Q})$.

Case B. $L_1 H_k(\tilde{X}_Y) \otimes \mathbb{Q} \rightarrow L_1 H_k(X) \otimes \mathbb{Q}$ is surjective ([H]), there exists an element $\tilde{a} \in L_1 H_k(\tilde{X}_Y) \otimes \mathbb{Q}$ such that $\sigma_*(\tilde{a}) = \tilde{a}$. By the following commutative diagram

$$
\begin{array}{ccc}
L_1 H_k(\tilde{X}_Y) \otimes \mathbb{Q} & \rightarrow & L_1 H_k(X) \otimes \mathbb{Q} \\
\downarrow \Phi_{1,k} & & \downarrow \Phi_{1,k} \\
H_k(\tilde{X}_Y, \mathbb{Q}) & \rightarrow & H_k(X, \mathbb{Q})
\end{array}
$$

we have $\Phi_{1,k}(\tilde{b}) - b$ maps to zero in $H_k(X, \mathbb{Q})$. By the commutative diagram in Corollary 2.1, $j^*(\Phi_{1,k}(\tilde{b}) - b) = 0 \in H_{k+1}^{BM}(U, \mathbb{Q})$. From the exactness of the upper long exact sequence in Corollary 2.1, there exists an element $c \in H_k(D, \mathbb{Q})$ such that $i_*(c) = \Phi_{1,k}(\tilde{b}) - b$. Set $\tilde{d} = \pi_*(c) \in H_k(Y, \mathbb{Q})$. By the commutative diagram in Corollary 2.1, d maps to zero under $(i_0)_*: H_k(Y, \mathbb{Q}) \rightarrow H_k(X, \mathbb{Q})$. Hence there exists an element $e \in H_{k+1}(U, \mathbb{Q})$ such that whose image is d under the boundary map $(\delta_0)_*$. Let $\tilde{d} \in H_k(D, \mathbb{Q})$ be the image of e under this boundary map $\delta_* : H_{k+1}(U, \mathbb{Q}) \rightarrow H_k(D, \mathbb{Q})$. Therefore, the image of $c - \tilde{d}$ is zero under $\pi_* : H_k(Y, \mathbb{Q})$ and is also zero under $i_* : H_k(\tilde{X}_Y, \mathbb{Q})$. Note that D is a bundle over Y with projective spaces as fibers. From the “projective bundle theorem” for the singular homology (cf.[GH]), we have $H_k(D, \mathbb{Q}) \cong H_k(Y, \mathbb{Q}) \oplus H_{k-2}(Y, \mathbb{Q}) \oplus \cdots \oplus H_{k-2r+2}(Y, \mathbb{Q})$. From this, we have $c - \tilde{d} \in H_{k-2}(Y, \mathbb{Q}) \oplus \cdots \oplus H_{k-2r+2}(Y, \mathbb{Q})$. By the revised Projective Bundle Theorem ([FG] and [H]) the revised case essentially due to Complex Suspension Theorem ([L]) and Dold-Thom Theorem ([D]), we have $L_1 H_k(D, \mathbb{Q}) \cong L_1 H_k(Y, \mathbb{Q}) \oplus L_0 H_{k-2}(Y, \mathbb{Q}) \oplus \cdots \oplus L_{2-r} H_{k-2r+2}(Y, \mathbb{Q}) \cong L_1 H_k(Y, \mathbb{Q}) \oplus H_{k-2}(Y, \mathbb{Q}) \oplus \cdots \oplus H_{k-2r+2}(Y, \mathbb{Q})$, where r is the codimension of Y. Since $c - \tilde{d} \in H_{k-2}(Y, \mathbb{Q}) \oplus \cdots \oplus H_{k-2r+2}(Y, \mathbb{Q})$ and $L_0 H_{k-2}(Y, \mathbb{Q}) \oplus \cdots \oplus L_{2-r} H_{k-2r+2}(Y, \mathbb{Q}) \cong H_{k-2}(Y, \mathbb{Q}) \oplus \cdots \oplus H_{k-2r+2}(Y, \mathbb{Q})$, there exists an element $f \in L_1 H_k(D, \mathbb{Q})$ such that $\Phi_{1,k}(f) = c - \tilde{d}$. Therefore we obtain $\Phi_{1,k}(\tilde{b} - i_*(f)) = b$. This is the surjectivity we need.

Case B. If $T_1 H_k(\tilde{X}_Y, \mathbb{Q}) = G_1 H_k(\tilde{X}_Y, \mathbb{Q})$, then $T_1 H_k(X, \mathbb{Q}) = G_1 H_k(X, \mathbb{Q})$.

This part is also relatively easy. Note that $k \geq 4$. Let $a \in G_1 H_k(X, \mathbb{Q}) \subseteq H_k(X, \mathbb{Q})$, then there exists an element $b \in G_1 H_k(\tilde{X}_Y, \mathbb{Q})$ such that $\sigma_*(b) = a$. By assumption, we can find an element $\tilde{b} \in L_1 H_k(\tilde{X}_Y, \mathbb{Q})$ such that $\Phi_{1,k}(\tilde{b}) = b$. Set $\tilde{a} = \sigma_*(\tilde{b})$. Then $\Phi_{1,k}(\tilde{a}) = a$ under the natural transformation $\Phi_{1,k}$. This is exactly the surjectivity in these cases.
This completes the proof for one blow-up along a smooth codimension at least two subvariety Y in X. \hfill \Box

Now recall the weak factorization Theorem proved in [AKMW] (and also [W]) as follows:

Theorem 2.2 ([AKMW] Theorem 0.1.1, [W]) Let $\varphi: X \to X'$ be a birational map of smooth complete varieties over an algebraically closed field of characteristic zero, which is an isomorphism over an open set U. Then f can be factored as a sequence of birational maps

$$X = X_0 \varphi_1 \to X_1 \varphi_2 \to \cdots \varphi_{n+1} X_n = X'$$

where each X_i is a smooth complete variety, and $\varphi_{i+1} : X_i \to X_{i+1}$ is either a blowing-up or a blowing-down of a smooth subvariety disjoint from U. \hfill \Box

Remark 2.4 From the proof of the Theorem 1.3, we can draw the following conclusions:

1. If

$$T_r H_k(Y, Q) = G_r H_k(Y, Q)$$

for all k is true for algebraic r-cycles with $r \geq p$ for $\dim(Y) = n$, then

"$T_{p-1} H_k(X, Q) = G_{p-1} H_k(X, Q), \ \forall k$"

is a birationally invariant statement for smooth projective varieties X with $\dim(X) \leq n+2$.

2. If

$$T_r H_k(Y, Q) = G_r H_k(Y, Q)$$

for all k is true for r-algebraic cycles with $r \leq p$ for $\dim(Y) = n$, then

"$T_{p+1} H_k(X, Q) = G_{p+1} H_k(X, Q), \ \forall k$"

is a birationally invariant statement for smooth projective varieties X with $\dim(X) \leq n+2$.

3 **The Proof of the Theorem 1.4**

Proposition 3.1 For any irreducible projective variety Y of dimension n, we have

\[
\begin{cases}
L_{n-1} H_{2n}(X) \cong \mathbb{Z}, \\
L_{n-1} H_{2n-1}(X) \cong H_{2n-1}(X, \mathbb{Z}), \\
L_{n-1} H_{2n-2}(X) \to H_{2n-2}(X, \mathbb{Z}) \text{ is injective}, \\
L_{n-1} H_k(X) = 0 \text{ for } k > 2n.
\end{cases}
\]
Remark 3.1 When Y is smooth projective, Friedlander have drawn a stronger conclusion, i.e., besides those in the proposition, $L_{n-1}H_{2n-2}(Y) \cong H_{n-1,n-1}(X, \mathbf{Z}) = NS(X)$.

Proof. Set $S = \text{Sing}(Y)$, the set of singular points. Then S is the union of proper irreducible subvarieties. Set $S = (\cup_i S_i) \cup S'$, where $\dim(S_i) = n - 1$ and S' is the union of subvarieties with dimension $\leq n - 2$. Let $V = Y - S$ be the smooth open part of Y. According to Hironaka [Hi], we can find \tilde{V}. Let \tilde{V} be the smooth open part of Y. Denote by $i_0 : S \hookrightarrow Y$ and $i : D \hookrightarrow \tilde{Y}$ the inclusions of closed sets. Denote by $j_0 : V \hookrightarrow Y$ and $j : V \hookrightarrow \tilde{Y}$ the inclusions of open sets.

There are a few cases:

Case 1: $k \geq 2n$.

By the localization long exact sequence in Lawson homology

\[\cdots \to L_{n-1}H_k(S) \to L_{n-1}H_k(Y) \to L_{n-1}H_k(V) \to L_{n-1}H_k(S) \to \cdots, \]

we have

\[L_{n-1}H_k(Y) \cong L_{n-1}H_k(V) \quad \text{for} \quad k \geq 2n \]

since $L_{n-1}H_k(S) = 0$ for $k \geq 2n - 1$.

By the localization exact sequence in homology

\[\cdots \to H_k(S) \to H_k(Y) \to H_k^{BM}(V) \to H_{k-1}(S) \to \cdots, \]

we have

\[H_k(Y) \cong H_k^{BM}(V) \quad \text{for} \quad k \geq 2n \]

since $H_k(S) = 0$ for $k \geq 2n - 1$. Here $H_k^{BM}(V)$ is the Borel-Moore homology.

Similarly,

\[L_{n-1}H_k(\tilde{Y}) \cong L_{n-1}H_k(V) \quad \text{for} \quad k \geq 2n \]

and

\[H_k(\tilde{Y}) \cong H_k^{BM}(V) \quad \text{for} \quad k \geq 2n. \]

Since \tilde{Y} is smooth, we have $L_{n-1}H_k(\tilde{Y}) \cong H_k(\tilde{Y})$ for $k \geq 2n$(cf. [F]). This completes the proof for the case $k \geq 2n$.

Case 2: $k = 2n - 1$.

Applying Lemma 2.3 to the pair (Y, S) for $p = n - 1$, we have the commutative diagram of the long exact sequence

\[
\begin{array}{ccccccccc}
0 & \to & L_{n-1}H_{2n-1}(Y) & \overset{j_0^*}{\to} & L_{n-1}H_{2n-1}(V) & \overset{(\delta_0)^*}{\to} & L_{n-1}H_{2n-2}(S) & \overset{(i_0)^*}{\to} & L_{n-1}H_{2n-2}(Y) & \to & \cdots \\
\downarrow \Phi_{n-1,2n-1} & & \downarrow \Phi_{n-1,2n-1} & & \downarrow \Phi_{n-1,2n-2} & & \downarrow \Phi_{n-1,2n-2} & & \downarrow \Phi_{n-1,2n-2} & \\
0 & \to & H_{2n-1}(Y) & \overset{j_0^*}{\to} & H_{2n-1}^{BM}(V) & \overset{(\delta_0)^*}{\to} & H_{2n-2}(S) & \overset{(i_0)^*}{\to} & H_{2n-2}(Y) & \to & \cdots
\end{array}
\]
Similarly, applying Lemma 2.3 to the pair (\tilde{Y}, D) for $p = n - 1$, we have the commutative diagram of the long exact sequence

$$0 \to L_{n-1}H_{2n-1}(\tilde{Y}) \xrightarrow{j^*} L_{n-1}H_{2n-1}(V) \xrightarrow{\delta} L_{n-1}H_{2n-2}(D) \xrightarrow{i^*} L_{n-1}H_{2n-2}(\tilde{Y}) \to \cdots$$

\[
\downarrow \Phi_{n-1,2n-1} \quad \downarrow \Phi_{n-1,2n-1} \quad \downarrow \Phi_{n-1,2n-2} \quad \downarrow \Phi_{n-1,2n-2} \\
0 \to H_{2n-1}(\tilde{Y}) \xrightarrow{j^*} H_{2n-1}^B(V) \xrightarrow{\delta} H_{2n-2}(D) \xrightarrow{i^*} H_{2n-2}(\tilde{Y}) \to \cdots
\] (2)

Note that $\Phi_{n-1,2n-2} : L_{n-1}H_{2n-2}(\tilde{Y}) \to H_{2n-2}(\tilde{Y})$ is injective, $\Phi_{n-1,2n-1} : L_{n-1}H_{2n-1}(\tilde{Y}) \cong H_{2n-1}(\tilde{Y})$ and $\Phi_{n-1,2n-2} : L_{n-1}H_{2n-2}(D) \cong H_{2n-2}(D) \cong \mathbb{Z}^m$, where m is the number of irreducible varieties of D. From (2) and the Five Lemma, we have the isomorphism

$$\Phi_{n-1,2n-1} : L_{n-1}H_{2n-1}(V) \cong H_{2n-1}^B(V).$$

(3)

From (1), (3) and the Five Lemma, we have the following isomorphism

$$\Phi_{n-1,2n-1} : L_{n-1}H_{2n-2}(Y) \cong H_{2n-2}(Y).$$

Case 3: $k = 2n - 2$.

Now the commutative diagram (1) is rewritten in the following way:

$$\cdots \to L_{n-1}H_{2n-1}(V) \xrightarrow{\delta^0} L_{n-1}H_{2n-2}(S) \xrightarrow{(i_0)^*} L_{n-1}H_{2n-2}(Y) \xrightarrow{j^*} L_{n-1}H_{2n-2}(V) \to 0$$

\[
\downarrow \Phi_{n-1,2n-1} \quad \downarrow \Phi_{n-1,2n-2} \quad \downarrow \Phi_{n-1,2n-2} \quad \downarrow \Phi_{n-1,2n-2} \\
\cdots \to H_{2n-1}^B(V) \xrightarrow{\delta^0} H_{2n-2}(S) \xrightarrow{(i_0)^*} H_{2n-2}(Y) \xrightarrow{j^*} H_{2n-2}^B(V) \to 0
\] (4)

In the commutative diagram (2), we can show that the injective maps

$$j^* : H_{2n-1}(\tilde{Y}) \to H_{2n-1}^B(V)$$

(5)

and

$$j^* : L_{n-1}H_{2n-1}(\tilde{Y}) \to L_{n-1}H_{2n-1}(V)$$

(6)

are actually isomorphisms. Hence the commutative diagram (2) reduces to the following diagram:

$$0 \to L_{n-1}H_{2n-2}(D) \to L_{n-1}H_{2n-2}(\tilde{Y}) \to L_{n-1}H_{2n-2}(V) \to 0$$

\[
\downarrow \Phi_{n-1,2n-2} \quad \downarrow \Phi_{n-1,2n-2} \quad \downarrow \Phi_{n-1,2n-2} \\
0 \to H_{2n-2}(D) \to H_{2n-2}(\tilde{Y}) \to H_{2n-2}^B(V) \to 0
\] (7)
To see (5) are surjective, by the exactness of the rows in (2) we only need to show that the maps \(i_* : H_{2n-2}(D) \to H_{2n-2}(Y) \) are injective. Note that \(Y \) is a compact Kähler manifold, and the homology class of an algebraic subvariety is nontrivial in the homology of the Kähler manifold. From these, we get the injectivity of \(i_* \). The surjectivity of (6) follows from the same reason.

We need the following lemma.

Lemma 3.1 The natural transformation \(\Phi_{n-1,2n-2} : L_{n-1}H_{2n-2}(V) \to H_{2n-2}^{BM}(V) \) is injective.

Proof. Let \(a \in L_{n-1}H_{2n-2}(V) \) such that \(\Phi_{n-1,2n-2}(a) = 0 \in H_{2n-2}^{BM}(V) \). Since the map \(j^* : L_{n-1}H_{2n-2}(Y) \to L_{n-1}H_{2n-2}(V) \) is surjective, there exists an element \(b \in L_{n-1}H_{2n-2}(Y) \) such that \(j^*(b) = a \). Set \(\tilde{b} = \Phi_{n-1,2n-2}(b) \in H_{2n-2}(Y) \). By the commutativity of the diagram, we have \(j^*(\tilde{b}) = 0 \) under the map \(j^* : H_{2n-2}(Y) \to H_{2n-2}^{BM}(V) \). By the exactness of the bottom row in the commutative diagram (7), there exists an element \(\tilde{c} \in H_{2n-2}(D) \) such that the image of \(\tilde{c} \) under the map \(i_* : H_{2n-2}(D) \to H_{2n-2}(Y) \) is \(\tilde{b} \). Now note that \(\Phi_{n-1,2n-2} : L_{n-1}H_{2n-2}(D) \to H_{2n-2}(D) \) is an isomorphism, there exists an element \(c \in L_{n-1}H_{2n-2}(D) \) such that \(\Phi_{n-1,2n-2}(c) = \tilde{c} \). Hence \(\Phi_{n-1,2n-2}(i_*(c) - b) = 0 \). Note that \(\Phi_{n-1,2n-2} : L_{n-1}H_{2n-2}(Y) \to H_{2n-2}(Y) \) is injective since \(Y \) is smooth and of dimension \(n \) (cf. [F1]). Hence we get \(i_*(c) = b \), i.e., \(b \) is in the image of the map \(i_* : L_{n-1}H_{2n-2}(D) \to L_{n-1}H_{2n-2}(Y) \). Therefore \(a = 0 \) by the exactness of the top row of the commutative diagram (7).

\(\square \)

We need to show that \(\Phi_{n-1,2n-2} : L_{n-1}H_{2n-2}(Y) \to H_{2n-2}(Y) \) is injective. For \(a \in L_{n-1}H_{2n-2}(Y) \) such that \(\Phi_{n-1,2n-2}(a) = 0 \in H_{2n-2}(Y) \). By the commutative diagram (4) and the Lemma 3.1, the image of \(a \) under \(j_0^* : L_{n-1}H_{2n-2}(Y) \to L_{n-1}H_{2n-2}(V) \) is zero. Hence there exists an element \(b \in L_{n-1}H_{2n-2}(S) \) such that the image of \((i_0)_* : L_{n-1}H_{2n-2}(S) \to L_{n-1}H_{2n-2}(Y) \) is \(a \), i.e., \((i_0)_*(b) = a \). Set \(\tilde{b} = \Phi_{n-1,2n-2}(b) \). Then the image of \(\tilde{b} \) under the map \((i_0)_*: H_{2n-2}(S) \to H_{2n-2}(Y) \) is zero. By exactness of the bottom row in the commutative diagram (4), there exists an element \(\tilde{c} \) such that its image under the map \(H_{2n-2}^{BM}(V) \to H_{2n-2}(S) \) is \(\tilde{b} \). By the result in Case 2, \(\Phi_{n-1,2n-1} : L_{n-1}H_{2n-1}(V) \to H_{2n-1}^{BM}(V) \) is an isomorphism. Hence there exists an element \(c \in L_{n-1}H_{2n-1}(V) \) such that \(\Phi_{n-1,2n-1}(c) = \tilde{c} \). Now since \(\Phi_{n-1,2n-2} : L_{n-1}H_{2n-2}(S) \to H_{2n-2}(S) \) is an isomorphism, the image of \(c \) under the map \(L_{n-1}H_{2n-1}(V) \to L_{n-1}H_{2n-2}(S) \) is exactly \(b \). Now the exactness of the top row of the commutative diagram (4) implies the vanishing of \(a \).

The proof of the proposition is done.

\(\square \)

By using this proposition, we will give a proof of Theorem 1.4.

Proof of Theorem 1.4:
For any smooth projective variety X, the injectivity of $T_pH_{2p+1}(X, \mathbb{Q}) \to G_pH_{2p+1}(X, \mathbb{Q})$ has been proved in \cite{FM}, §7. We only need to show the surjectivity of $T_pH_{2p+1}(X, \mathbb{Q}) \to G_pH_{2p+1}(X, \mathbb{Q})$. For any subvariety $i : Y \subset X$, we denote by $V =: X - Y$ the complementary of Y in X. We have the following commutative diagram of the long exact sequences (Lemma 2.3, or \cite{Li}):

$$
\cdots \to L_pH_{2p+1}(Y) \to L_pH_{2p+1}(X) \to L_pH_{2p+1}(V) \to L_pH_{2p}(Y) \to \cdots
$$

$$
\downarrow \Phi_{p,2p+1} \quad \downarrow \Phi_{p,2p+1} \quad \downarrow \Phi_{p,2p+1} \quad \downarrow \Phi_{p,2p}
$$

$$
\cdots \to H_{2p+1}(Y) \to H_{2p+1}(X) \to H_{2p+1}^B(V) \to H_{2p}(Y) \to \cdots
$$

Obviously, the above commutative diagram holds when tensored with \mathbb{Q}. In the following, we only consider the commutative diagrams with \mathbb{Q}-coefficient.

Now let $a \in G_pH_{2p+1}(X, \mathbb{Q})$, by definition, we can assume that a lies in the image of the map $i_* : H_{2p+1}(Y, \mathbb{Q}) \to H_{2p+1}(X, \mathbb{Q})$ for some subvariety $Y \subset X$ with dimension $\dim Y = (2p + 1) - p = p + 1$. Hence there exists an element $b \in H_{2p+1}(Y, \mathbb{Q})$ such that $i_*(b) = a$. By the Proposition 3.1, we know that $\Phi_{p,2p+1} : L_pH_{2p+1}(Y) \otimes \mathbb{Q} \to H_{2p+1}(Y, \mathbb{Q})$ is an isomorphism. Therefore there exists an element $\tilde{b} \in L_pH_{2p+1}(Y) \otimes \mathbb{Q}$ such that $\Phi_{p,2p+1}(\tilde{b}) = b$. Set $\tilde{a} = i_*(\tilde{b})$. Then \tilde{a} maps to a under the map $L_pH_{2p+1}(X) \otimes \mathbb{Q} \to H_{2p+1}(X, \mathbb{Q})$. By the definition of the topological filtration, $a \in T_pH_{2p+1}(X, \mathbb{Q})$. This completes the proof of surjectivity of $T_pH_{2p+1}(X, \mathbb{Q}) \to G_pH_{2p+1}(X, \mathbb{Q})$.

\[\square\]

Remark 3.2 In the proof of the surjectivity of Theorem 1.4, the assumption of smoothness is not necessary, more precisely, for any irreducible projective variety X, the image of the natural transformation $\Phi_{p,2p+1} : L_pH_{2p+1}(X, \mathbb{Q}) \to H_{2p+1}(X, \mathbb{Q})$ contains $G_pH_{2p+1}(X, \mathbb{Q})$.

Remark 3.3 Independently, M. Warker has recently also obtained this result (\cite{Wa}, Prop. 2.5).

Now we prove the corollaries 1.2-1.5.

The proof of Corollary 1.1: By Theorem 1.1 and 1.4, Dold-Thom Theorem and Proposition 3.1, we only need to show the cases that $p = 1, k \geq 5$. Now the following commutative diagram (\cite{FM}, Prop.6.3)

$$
L_2H_k(X) \otimes \mathbb{Q} \to L_1H_k(X) \otimes \mathbb{Q}
$$

$$
\downarrow \Phi_{2,k} \quad \downarrow \Phi_{1,k}
$$

$$
H_k(X, \mathbb{Q}) \cong H_k(X, \mathbb{Q}).
$$

shows that if $L_2H_k(X) \otimes \mathbb{Q} \to H_k(X, \mathbb{Q})$ is a surjective, then $L_1H_k(X) \otimes \mathbb{Q} \to H_k(X, \mathbb{Q})$ must be surjective. Proposition 3.1 gives the needed surjectivity for $k \geq 5$ even if X is singular variety of dimension 3.

\[\square\]
The proof of Corollary 1.2: By Corollary 1.1, we only need to show that $T_1H_4(X, \mathbb{Q}) = G_1H_4(X, \mathbb{Q})$. By the assumption and Poincaré duality, $H_4(X, \mathbb{Q}) \cong H_2(X, \mathbb{Q}) \cong \mathbb{Q}$. Therefore, $G_1H_4(X, \mathbb{Q}) = H_4(X, \mathbb{Q}) \cong \mathbb{Q}$ and again by the commutative diagram

$$
\begin{array}{ccc}
L_2H_k(X) \otimes \mathbb{Q} & \rightarrow & L_1H_k(X) \otimes \mathbb{Q} \\
\downarrow \Phi_{2,k} & & \downarrow \Phi_{1,k} \\
H_k(X, \mathbb{Q}) & \cong & H_k(X, \mathbb{Q}),
\end{array}
$$

we have the surjectivity of $L_1H_4(X) \otimes \mathbb{Q} \rightarrow H_4(X, \mathbb{Q})$.

The proof of Corollary 1.3: Suppose $X = S \times C$, where S is a smooth projective surface and C is a smooth projective curve. We only need to consider the surjectivity of $L_1H_4(X) \otimes \mathbb{Q} \rightarrow H_4(X, \mathbb{Q})$ because of Corollary 1.1. Now the Künneth formula for the rational homology of $H_4(S \times C, \mathbb{Q})$ and Theorem 2.1 for S and C gives the surjectivity in this case.

The proof of Corollary 1.4: This follows directly from Theorem 1.3.

The proof of Corollary 1.5: By Theorem 1.4, we only need to show that $T_pH_k(X, \mathbb{Q}) = G_pH_k(X, \mathbb{Q})$ for $k \geq 2p + 2$. By the definition of geometric definition, an element $a \in G_pH_k(X, \mathbb{Q})$ comes from the linear combination of elements $b_j \in H_k(Y_j, \mathbb{Q})$ for subvarieties Y_j of $\dim(Y_j) \leq k - p$. From the following commutative diagram

$$
\begin{array}{ccc}
i_* : L_pH_k(Y) \otimes \mathbb{Q} & \rightarrow & L_pH_k(X) \otimes \mathbb{Q} \\
\downarrow \Phi_{p,k} & & \downarrow \Phi_{p,k} \\
i_* : H_k(Y, \mathbb{Q}) & \rightarrow & H_k(X, \mathbb{Q}),
\end{array}
$$

it is enough to show that $L_pH_k(Y) \rightarrow H_k(Y)$ is surjective for any irreducible subvariety $Y \subset X$ with $\dim(Y) = k - p$. By Suslin’s conjecture, this is true for any smooth variety Y since $\dim(Y) = k - p$. Now we need to show that it is also true for singular irreducible varieties if the Suslin Conjecture is true.

Using induction, we will show the following lemma:

Lemma 3.2 If the Suslin Conjecture is true for every smooth projective variety, then it is also true for every quasi-projective variety.

Proof. Suppose that Y is an irreducible quasi-projective variety with $\dim(Y) = m$, S is an irreducible quasi-projective variety with $\dim(S) = n < m$ and

$$
\begin{align*}
\left\{ \begin{array}{l}
L_pH_{n+p-1}(S) \rightarrow H_{n+p-1}(S) \text{ is injective}, \\
L_pH_{n+q}(S) \cong H_{n+q}(S) \text{ for } q \geq p.
\end{array} \right.
\end{align*}
$$

Denote by \overline{Y} a projective closure of Y and $S = \text{sing}(\overline{Y})$ the singular point set of \overline{Y}. Let $U = \overline{Y} - S$ Let $\sigma : \overline{Y} \rightarrow \overline{Y}$ be a desingularization of \overline{Y} and denote by $D := \overline{Y} - U$.

13
The existence of a smooth \tilde{Y} is guaranteed by Hironaka [Hi]. Then D is the union of irreducible varieties with dimension $\leq m - 1$.

By Lemma 2.3, we have the following commutative diagram

$$
\cdots \rightarrow L_pH_k(Z) \rightarrow L_pH_k(V) \rightarrow L_pH_k(U) \rightarrow L_pH_{k-1}(Z) \rightarrow \cdots \\
\downarrow \Phi_{p,k} \downarrow \Phi_{p,k} \downarrow \Phi_{p,k} \downarrow \Phi_{p,k-1} \\
\cdots \rightarrow H_k(Z) \rightarrow H_k(V) \rightarrow H_{BM}^k(U) \rightarrow L_pH_{k-1}(Z) \rightarrow \cdots,
$$

where $U \subset V$ are quasi-projective varieties of $\dim(V) = \dim(U) = m$ and $Z = V - U$ is a closed subvariety of V.

Claim: By inductive assumption, the above commutative diagram and the Five Lemma, we have the equivalence between

$$
\left\{ \begin{array}{l}
L_pH_{m+p-1}(U) \rightarrow H_{m+p-1}(U) \text{ is injective,} \\
L_pH_{m+q}(U) \cong H_{m+q}(U) \text{ for } q \geq p.
\end{array} \right.
$$

and

$$
\left\{ \begin{array}{l}
L_pH_{m+p-1}(V) \rightarrow H_{m+p-1}(V) \text{ is injective,} \\
L_pH_{m+q}(V) \cong H_{m+q}(V) \text{ for } q \geq p.
\end{array} \right.
$$

The proof of the claim is obvious.

By using the claim for finite times beginning from $V = \tilde{Y}$, we have the result for any quasi-projective variety U. The proof of Lemma 3.2 is done.

By Lemma 3.2, we know that the Suslin’s Conjecture is also true for singular varieties. This completes the proof of Corollary 1.4.

\[\Box\]

Acknowledgement

I would like to express my gratitude to my advisor, Blaine Lawson, for all his help.

References

[AKMW] Abramovich, Dan; Karu, Kalle; Matsuki, Kenji; Wlodarczyk, Jarosław, Torification and factorization of birational maps. J. Amer. Math. Soc. 15 (2002), no. 3, 531–572 (electronic).

[C] H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated. Inst. Hautes Études Sci. Publ. Math. No. 58 (1983), 19–38 (1984).

[DT] Dold, A. and Thom, R., Quasifaserungen und unendliche symmetrische Produkte. (German) Ann. of Math. (2) 67 1958 239–281.

14
[F1] Friedlander, Eric M., *Algebraic cycles, Chow varieties, and Lawson homology.* Compositio Math. 77 (1991), no. 1, 55–93.

[F2] Friedlander, Eric M., *Filtrations on algebraic cycles and homology.* Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 317–343.

[FG] Eric M. Friedlander; Ofer Gabber, *Cycle spaces and intersection theory.* Topological methods in modern mathematics (Stony Brook, NY, 1991), 325–370, Publish or Perish, Houston, TX, 1993.

[FHW] Eric M. Friedlander, Christian Haesemeyer, and Mark E. Walker, *Techniques, computations, and conjectures for semi-topological K-theory* Preprint.

[FL] Eric M. Friedlander; H. Blaine Lawson, Jr. *A theory of algebraic cocycles.* Ann. of Math. (2) 136 (1992), no. 2, 361–428.

[FM] Eric M. Friedlander; Barry Mazur, *Filtrations on the homology of algebraic varieties.* With an appendix by Daniel Quillen. Mem. Amer. Math. Soc. 110 (1994), no. 529, x+110 pp.

[GH] Griffiths, P.; Harris, J., *Principles of algebraic geometry.* Reprint of the 1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. xiv+813 pp. ISBN 0-471-05059-8

[Gro] A. Grothendieck, *Standard conjectures on algebraic cycles,* Algebraic Geometry (Bombay, 1968), Oxford Univ. Press, London, 1969, 193-199.

[Hi] H. Hironaka, *Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II.* Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 1964 205–326.

[H] W. Hu, *Birational invariants defined by Lawson homology.* arXiv:math.AG/0511722

[L1] Lawson, H.B. Jr, *Algebraic cycles and homotopy theory.* Ann. of Math. 129(1989), 253-291.

[L2] Lawson, H. B. Jr, *Spaces of algebraic cycles.* pp. 137-213 in Surveys in Differential Geometry, 1995 vol.2, International Press, 1995.

[Lew] Lewis, James D. *A survey of the Hodge conjecture.* (English. English summary) Second edition. Appendix B by B. Brent Gordon. CRM Monograph Series, 10. American Mathematical Society, Providence, RI, 1999. xvi+368 pp. ISBN 0-8218-0568-1
[Lieb] David I Lieberman, *Numerical and homological equivalence of algebraic cycles on Hodge manifolds*. Amer. J. Math. 90 1968 366–374.

[Li] Lima-Filho, P., *Lawson homology for quasiprojective varieties*. Compositio Math. 84(1992), no. 1, 1–23.

[Wa] Mark E. Walker, *The morphic Abel-Jacobi map*.

[W] Włodarczyk, J., *Toroidal varieties and the weak factorization theorem*. Invent. Math. 154 (2003), no. 2, 223–331.

Department of Mathematics,
Stony Brook University, SUNY,
Stony Brook, NY 11794-3651
Email:wenchuan@math.sunysb.edu