ADDENDUM TO:
Generically split projective homogeneous varieties

Viktor Petrov, Nikita Semenov*

Abstract

In this addendum we generalize some results of our article [PS10]. More precisely, we remove all restrictions on the characteristic of the base field (in [PS10] we assumed that the characteristic is different from any torsion prime of the group), and complete our classification by the last missing case, namely \(\text{PGO}_{2n}^+ \). We follow our notation from [PS10].

1 Chow rings of reductive groups

1.1. Let \(G_0 \) be a split reductive algebraic group defined over a field \(k \). We fix a split maximal torus \(T \) in \(G_0 \) and a Borel subgroup \(B \) of \(G_0 \) containing \(T \) and defined over \(k \). We denote by \(\Phi \) the root system of \(G_0 \), by \(\Pi \) the set of simple roots of \(\Phi \) with respect to \(B \), and by \(\hat{T} \) the group of characters of \(T \). Enumeration of simple roots follows Bourbaki.

Any projective \(G_0 \)-homogeneous variety \(X \) is isomorphic to \(G_0/P_\Theta \), where \(P_\Theta \) stands for the (standard) parabolic subgroup corresponding to a subset \(\Theta \subset \Pi \). As \(P_i \) we denote the maximal parabolic subgroup \(P_{\Pi\setminus\{\alpha_i\}} \) of type \(i \).

Consider the characteristic map \(c: S(\hat{T}) \rightarrow \text{CH}^*(G_0/B) \) from the symmetric algebra of \(\hat{T} \) to the Chow ring of \(G_0/B \) given in [PS10, 2.7], and denote its image by \(R^* \). According to [Gr58, Rem. 2°], the ring \(\text{CH}^*(G_0) \) can

*The authors gratefully acknowledge the hospitality and support of the Max-Planck Institute for Mathematics, Bonn.
Generically split projective homogeneous varieties

be presented as the quotient of $\text{CH}^\ast(G_0/B)$ modulo the ideal generated by the non-constant elements of R^\ast.

1.2 Lemma. The pull-back map

$$\text{CH}^\ast(G_0) \to \text{CH}^\ast([G_0, G_0])$$

is an isomorphism.

Proof. Indeed, $B' = B \cap [G_0, G_0]$ is a Borel subgroup of $[G_0, G_0]$, the map

$$[G_0, G_0]/B' \to G_0/B$$

is an isomorphism, and the map $S(\hat{T}) \to \text{CH}^\ast(G_0/B)$ factors through the surjective map $S(\hat{T}) \to S(\hat{T}')$, where $T' = T \cap [G_0, G_0]$.

Let P be a parabolic subgroup of G_0. Denote by L the Levi subgroup of P and set $H_0 = [L, L]$. We have

1.3 Lemma. The pull-back map

$$\text{CH}^\ast(P) \to \text{CH}^\ast(H_0)$$

is an isomorphism.

Proof. The quotient map $P \to L$ is Zariski locally trivial affine fibration, therefore the pull-back map $\text{CH}^\ast(L) \to \text{CH}^\ast(P)$ is an isomorphism. Since the composition $L \to P \to L$ is the identity map, the pull-back map $\text{CH}^\ast(P) \to \text{CH}^\ast(L)$ is an isomorphism as well. It remains to apply Lemma 1.2.

1.4 Lemma. The pull-back map

$$\text{CH}^\ast(G_0) \to \text{CH}^\ast(P)$$

is surjective.

Proof. Applying [Gr58, Proposition 3] to the natural map $G_0/B \to G_0/P$ we see that the map $\text{CH}^\ast(G_0/B) \to \text{CH}^\ast(P/B)$ is surjective. But the map $\text{CH}^\ast(P/B) \to \text{CH}^\ast(P)$ is also surjective by Lemma 1.3 and fits into the commutative diagram

$$
\begin{array}{c}
\text{CH}^\ast(G_0/B) \\
\downarrow \quad \downarrow
\end{array}
\begin{array}{c}
\text{CH}^\ast(P/B)
\end{array}
\begin{array}{c}
\text{CH}^\ast(G_0) \\
\downarrow
\end{array}
\begin{array}{c}
\text{CH}^\ast(P).
\end{array}
$$

\square
1.5 (Definition of σ). Now we restrict to the situation when G_0 is simple. Let p be a prime integer. Denote $\text{Ch}^*(-)$ the Chow ring with \mathbb{F}_p-coefficients. Explicit presentations of the Chow rings with \mathbb{F}_p-coefficients of split semisimple algebraic groups are given in [Kc85, Theorem 3.5].

For G_0 and H_0 they look as follows:

$\text{Ch}^*(G_0) = \mathbb{F}_p[x_1, \ldots, x_r]/(x_1^{p k_1}, \ldots, x_r^{p k_r})$ with $\deg x_i = d_i, 1 \leq d_1 \leq \ldots \leq d_r$;

$\text{Ch}^*(H_0) = \mathbb{F}_p[y_1, \ldots, y_s]/(y_1^{p l_1}, \ldots, y_s^{p l_s})$ with $\deg y_m = e_m, 1 \leq e_1 \leq \ldots \leq e_s$

for some integers $k_i, l_i, d_i,$ and e_i depending on the Dynkin types of G_0 and H_0.

By the previous lemmas the pull-back $\varphi: \text{Ch}^*(G_0) \to \text{Ch}^*(H_0)$ is surjective. For a graded ring S^* denote by S^+ the ideal generated by the non-constant elements of S^*. The induced map

$$\text{Ch}^+(G_0)/\text{Ch}^+(G_0)^2 \to \text{Ch}^+(H_0)/\text{Ch}^+(H_0)^2$$

is also surjective. Moreover, for any m with $e_m > 1$ there exists a unique i such that $d_i = e_m$. We denote $i =: \sigma(m)$. The surjectivity implies that

$$\varphi(x_{\sigma(m)}) = cy_m + \text{lower terms}, \quad c \in \mathbb{F}_p^\times.$$

2 Generically split varieties

For a semisimple group G and a prime number p denote by

$$J_\gamma(G) = (j_1(G), \ldots, j_r(G))$$

its J-invariant defined in [PSZ08].

2.1 Theorem. Let G_0 be a split simple algebraic group over k, $G = \gamma G_0$ be the twisted form of G_0 given by a 1-cocycle $\gamma \in \text{H}^1(k, G_0)$, $X = \gamma(G_0/P)$ be the twisted form of G_0/P, and $Y = \gamma(G_0/B)$ be the twisted form of G_0/B. The following conditions are equivalent:

1. X is generically split;

2. The composition map

$$\overline{\text{CH}^*}(Y) \to \text{CH}^*(G_0) \to \text{CH}^*(P)$$

is surjective;
3. For every prime p the composition map

$$\text{Ch}^1(Y) \to \text{Ch}^1(G_0) \to \text{Ch}^1(P)$$

is surjective, and

$$j_{\sigma(m)}(G) = 0 \text{ for all } m \text{ with } d_m > 1.$$

Proof. 1⇒2. The same argument as in the proof of Lemma 1.4 (with Y instead of G_0/B and X instead of G_0/P).

2⇒3. Clearly, the composition

$$\text{Ch}^* (Y) \to \text{Ch}^*(G_0) \to \text{Ch}^*(P)$$

is surjective for every p. In particular, when $d_m > 1$ $\text{Ch}^{d_m}(Y)$ contains an element of the form $x_{\sigma(m)} + a$, where a is decomposable, hence $j_{\sigma(m)}(G) = 0$.

3⇒1. $G_{k(X)}$ has a parabolic subgroup of type P; denote the derived group of its Levi subgroup by H. We want to prove that H is split. By [PS10, Proposition 3.9(3)] it suffices to show that $J_p(H)$ is trivial for every p.

Denote the variety of complete flags of H by Z. It follows from the commutative diagram

$$\text{Ch}^*(Y_{k(X)}) \longrightarrow \text{Ch}^*(Z)$$

that $j_m(H) \leq j_{\sigma(m)}(G)$ if $d_m > 1$. Therefore

$$j_m(H) \leq j_{\sigma(m)}(G_{k(X)}) \leq j_{\sigma(m)}(G) = 0$$

when $d_m > 1$. It remains to show that $\text{Ch}^1(Z)$ is rational. But this follows from the commutative diagram

$$\text{Ch}^1(Y) \longrightarrow \text{Ch}^1(Y_{k(X)}) \longrightarrow \text{Ch}^1(Z)$$

$$\text{Ch}^1(G) \longrightarrow \text{Ch}^1(H) \longrightarrow \text{Ch}^1(P).$$

\[\square\]
2.2 Remark.

- If all $e_m > 1$, then the condition on $\text{Ch}^1(Y)$ is void.

- If G_0 is different from PGO_{2n}^+ and $e_1 = 1$ (resp. $G_0 = \text{PGO}_{2n}^+$ and $e_1 = e_2 = 1$), then in view of [PS10, Proposition 4.2] it is equivalent to the fact that all Tits algebras of G are split. The latter is also equivalent to the fact that $j_1(G) = 0$ (resp. $j_1(G) = j_2(G) = 0$).

- If $G_0 = \text{PGO}_{2n}^+$ and there is exactly one m with $e_m = 1$, then there are exactly two fundamental weights among $\bar{\omega}_1, \bar{\omega}_{n-1}, \bar{\omega}_n$ whose image with respect to the composition $\text{Ch}^1(Y) \to \text{Ch}^1(G) \to \text{Ch}^1(H)$ equals y_1. Then the condition on $\text{Ch}^1(Y)$ is equivalent to the fact that at least one of the Tits algebras corresponding to these fundamental weights in the preimage of y_1 is split.

For a simple group G we denote by A_l its Tits algebra corresponding to $\bar{\omega}_l$.

2.3 Theorem. Let G be a group given by a 1-cocycle from $H^1(k, G_0)$, where G_0 stands for the split adjoint group of the same type as G, and let X be the variety of the parabolic subgroups of G of type i.

The variety X is generically split if and only if

G_0	i	conditions on G
PGL_n	any i	$\gcd(\exp A_1, i) = 1$
PGSp_{2n}	any i	i is odd or G is split
O_{2n+1}^+	any i	$j_m(G) = 0$ for all $1 \leq m \leq \frac{n+1-i}{2}$
PGO_{2n}^+	i is odd, $i < n - 1$	$[A_{n-1}] = 0$ or $[A_n] = 0$, and $j_m(G) = 0$ for all $2 \leq m \leq \frac{n+2-i}{2}$
PGO_{2n}^+	i is even, $i < n - 1$	$j_m(G) = 0$ for all $1 \leq m \leq \frac{n+2-i}{2}$
PGO_{2n}^+	$i = n - 1$ or $i = n$, n is odd	none
PGO_{2n}^+	$i = n - 1$, n is even	$[A_1] = 0$ or $[A_n] = 0$
PGO_{2n}^+	$i = n$, n is even	$[A_1] = 0$ or $[A_{n-1}] = 0$
E_6	$i = 3, 5$	none
E_6	$i = 2, 4$	$J_3(G) = (0, *)$
E_6	$i = 1, 6$	$J_2(G) = (0)$
E_7	$i = 2, 5$	none
E_7	$i = 3, 4$	$J_2(G) = (0, *, *, *)$
Generically split projective homogeneous varieties

\mathbf{E}_7	$i = 6$	$J_2(G) = (0, 0, *, *)$ if char $k \neq 2$
\mathbf{E}_7	$i = 1$	$J_2(G) = (0, 0, 0, *)$ if char $k \neq 2$
\mathbf{E}_7	$i = 7$	$J_3(G) = (0)$ and $J_2(G) = (*, 0, *, *)$ if char $k \neq 2$

\mathbf{E}_8	$i = 2, 3, 4, 5$	none
\mathbf{E}_8	$i = 6$	$J_2(G) = (0, *, *, *, *)$ if char $k \neq 2$
\mathbf{E}_8	$i = 1$	$J_2(G) = (0, 0, 0, *)$ if char $k \neq 2$
\mathbf{E}_8	$i = 7$	$J_3(G) = (0, *)$ and $J_2(G) = (0, *, *, *)$ if char $k \neq 3$, $J_2(G) = (0, 0, 0, *)$ if char $k \neq 2$
\mathbf{E}_8	$i = 8$	$J_3(G) = (0, *)$ and $J_2(G) = (0, 0, 0, *)$ if char $k \neq 3$
\mathbf{F}_4	$i = 1, 2, 3$	none
\mathbf{F}_4	$i = 4$	$J_2(G) = (0)$
\mathbf{G}_2	any i	none

("*" means "any value").

Proof. Follows immediately from Theorem 2.1 and [PSZ08, Table 4.13].

This theorem allows to give a shortened proof of the main result of [Ch10]:

2.4 Corollary. Let G be a group of type \mathbf{E}_8 over a field k with char $k \neq 3$. If the 3-component of the Rost invariant of G is zero, then G splits over a field extension of degree coprime to 3.

Proof. Let K/k be a field extension of degree coprime to 3 such that the 2-component of the Rost invariant of G_K is zero.

Consider the variety X of parabolic subgroups of G_K of type 7. The Rost invariant of the semisimple anisotropic kernel of $G_{K(X)}$ is zero. Therefore $G_{K(X)}$ splits, and, thus, X is generically split.

By Theorem 2.3, $J_3(G_K) = (0, 0)$, hence by [PS10, Proposition 3.9(3)] G_K splits over a field extension of degree coprime to 3. This implies the corollary.
References

[Ch10] V. Chernousov, *On the kernel of the Rost invariant for E_8 modulo 3*, In Quadratic Forms, Linear Algebraic Groups, and Cohomology, Developments in Mathematics, 2010, Volume 18, Part 2, 199-214.

[Gr58] A. Grothendieck, *La torsion homologique et les sections rationnelles*, Exposé 5 in *Anneaux de Chow et applications*, Séminaire C. Chevalley, 2e année (1958).

[Kc85] V. Kac, *Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups*, Invent. Math. **80** (1985), 69–79.

[PS10] V. Petrov, N. Semenov, *Generically split projective homogeneous varieties*, Duke Math. J. **152** (2010), 155–173.

[PSZ08] V. Petrov, N. Semenov, K. Zainoulline, *J-invariant of linear algebraic groups*, Ann. Sci. Éc. Norm. Sup. **41** (2008), no 6, 1023–1053.

V. PETROV
Max-Planck-Institut für Mathematik, D-53111 Bonn, Germany
E-mail: victorapetrov@googlemail.com

N. SEMENOV
Johannes Gutenberg-Universität Mainz, Institut für Mathematik, Staudingerweg 9, D-55099 Mainz, Germany
E-mail: semenov@uni-mainz.de