Blow-up sets for a complex valued semilinear heat equation

Junichi Harada
Faculty of Education and Human Studies, Akita University

Abstract
This paper is concerned with finite blow-up solutions of a one dimensional complex-valued semilinear heat equation. We provide locations and the number of blow-up points from the viewpoint of zeros of the solution.

Keyword system of semilinear parabolic equation; blow-up point

1 Introduction

We study blow-up solutions of a one dimensional complex-valued semilinear heat equation:
\[
z_t = z_{xx} + z^2, \tag{1}
\]
where \(z(x, t)\) is a complex valued function and \(x \in \mathbb{R}\). If \(z(x, t)\) is written by \(z = a + ib\), where \(a, b \in \mathbb{R}\), (1) is rewritten as
\[
a_t = a_{xx} + a^2 - b^2, \quad b_t = b_{xx} + 2ab. \tag{2}
\]
This equation is a special case of Constantin-Lax-Majda equation with a viscosity term, which is a one dimensional model for the 3D Navier-Stokes equations (see [3, 4, 13, 16, 17, 3]). When \(z\) is real-valued (i.e. \(b = 0\)), (2) coincides with the so-called Fujita equation [5]:
\[
a_t = a_{xx} + a^p. \tag{3}
\]

In a recent paper [6], they clarify the difference the dynamics of solutions between (1) and (2). A goal of paper is to extend their results and to provide new properties of solutions of (1) based on results in [4]. The Cauchy problem of (1) admits an unique local solution in \(R \in C(R)\). We call a solution \(z\) blow-up in a finite time, if there exists \(T > 0\) such that
\[
\limsup_{t \to T} \|z(t)\|_{L^\infty(R)} = \limsup_{t \to T} \sqrt{\|a(t)\|_{L^\infty(R)} + \|b(t)\|_{L^\infty(R)}} = \infty.
\]

Moreover we call a point \(x_0 \in R\) a blow-up point, if there exists a sequence \(\{(x_j, t_j)\}_{j \in \mathbb{N}} \subset R \times (0, T)\) such that \(x_j \to x_0\), \(t_j \to T\) and \(|z(x_j, t_j)| \to \infty\) as \(j \to \infty\). The set of blow-up points is called a blow-up set.

We first consider an ODE solution \((a(x, t), b(x, t)) = (a(t), b(t))\) of (1). Then equation (1) is reduced to
\[
a_t = a^2 - b^2, \quad b_t = 2ab.
\]
This ODE system has an unique solution given by
\[
a(t) = \frac{T_1 - t}{(T_1 - t)^2 + T_2^2}, \quad b(t) = \frac{T_2}{(T_1 - t)^2 + T_2^2},
\]
where
\[
T_1 = \frac{a(0)}{a(0)^2 + b(0)^2}, \quad T_2 = \frac{b(0)}{a(0)^2 + b(0)^2}.
\]
Therefore this ODE solution exists globally in time, if \(b(0) \neq 0\). From this observation, we expect that the component \(b\) prevents a blow-up phenomenon in (1). In fact, the following result is given in [6].

Theorem 1.1 (Theorem 1.1 [6]). Suppose that the initial data \((a_0, b_0) \in L^\infty(R) \cap C(R)\) satisfy
\[
a_0(x) < A b_0(x) \quad \text{for all } x \in R
\]
with some constant \(A \in R\). Then the solution of (1) exists globally in time and \(\lim_{t \to \infty} (a(t), b(t)) = (0, 0)\) in \(L^\infty(R)\).

Furthermore for the case \(b_0(x) > 0\) with asymptotically positive constants, they prove that the condition \(a_0(x) < A b_0(x)\) in Theorem 1.1 is not needed to assure the same conclusion.

Theorem 1.2 (Theorem 1.4 [6]). Suppose that the initial data \((a_0, b_0) \in L^\infty(R) \cap C(R)\) satisfy
\[
0 \leq a_0 \leq M, \quad 0 \leq b_0 \leq L, \quad a_0 \neq M, \quad \lim_{|x| \to \infty} a_0(x) = M, \quad \lim_{|x| \to \infty} b_0(x) = N.
\]
for some \(L > 0\) and \(M > N > 0\). Then the solution of (1) exists globally in time and \(\lim_{t \to \infty} (a(t), b(t)) = (0, 0)\) in \(L^\infty(R)\).

Our first result is a local version of Theorem 1.2. To state our results, we assume
\[
\sup_{0 < t < T} (T - t)(\|a(t)\|_{L^\infty(R)} + \|b(t)\|_{L^\infty(R)}) < \infty. \tag{3}
\]
Theorem 1.3. Let \((a, b)\) be a solution of \((1)\) and \(T > 0\) be its blow-up time. Assume that \((3)\) holds and there exists a neighborhood \(O\) of \((x_0, T)\) in \(\mathbb{R} \times (0, T)\) such that \(b(x, t) > 0\) or \(b(x, t) < 0\) for \((x, t) \in O\). Then \(x_0\) is not a blow-up point of \((a, b)\).

Theorem 1.3 implies that if a solution \((a, b)\) blows up in a finite time, the component \(b\) must be sign changing near blow-up points. A main goal of this paper is to characterize the location and the number of blow-up points by using zeros of the component \(b\).

Theorem 1.4. Let \((a, b)\) and \(T > 0\) be as in Theorem 1.3 and \(\gamma(t)\) be a zero of \(b(t)\) (i.e. \(b(\gamma(t), t) = 0\)). Assume that \((3)\) holds and \(b_0(x)\) has exact one zero. Then \(\gamma(t)\) is continuous on \([0, T]\) and its blow-up point \(x_0 \in \mathbb{R}\) is given by \(x_0 = \gamma(T)\).

The existence of blow-up solutions are proved in \([6]\) and \([18]\). In \([6]\), they provide sufficient conditions on the initial data for a finite time blow-up by using a comparison argument in the Fourier space based on \([3]\). In particular, the exact initial data satisfying their blow-up conditions is given by (see Remark 3.3 in \([5]\))

\[
a_0(x) = (3 - 4x^2)e^{-x^2}, \quad b_0(x) = 2xe^{-x^2}.
\]

For this case, Theorem 1.4 suggests that the solution blows up only on the origin. On the other hand, they \([18]\) construct blow-up solutions with exact blow-up profiles \((a^*(x), b^*(x)) = \lim_{t \to T}(a(x, t), b(x, t))\). Two blow-up solutions constructed in \([6]\) and \([18]\) have different type of asymptotic forms.

2 Preliminary

2.1 Functional setting

To study the asymptotic behavior of blow-up solutions, we introduce a self-similar variable around \(\xi \in \mathbb{R}\) and a new unknown function \((u_\xi, v_\xi)\), which is defined by

\[
\begin{align*}
\quad u_\xi(y, s) &= (T - t)a(\xi + e^{-s/2}y, t), \quad v_\xi(y, s) = (T - t)b(\xi + e^{-s/2}y, t), \quad t = T - e^{-s}.
\end{align*}
\]

Let \(s_T = -\log(T - t)\). Then \((u, v) = (u_\xi, v_\xi)\) satisfies

\[
\begin{align*}
\frac{\partial u_\xi}{\partial s} + \frac{\partial u_\xi}{\partial y} &= \frac{y^2}{2}u_\xi - u + u^2 - v^2, \quad y \in \mathbb{R}, \quad s > s_T, \\
\frac{\partial v_\xi}{\partial s} + \frac{\partial v_\xi}{\partial y} &= \frac{y^2}{2}v_\xi - v + 2uv, \quad y \in \mathbb{R}, \quad s > s_T.
\end{align*}
\]

We here introduce functional spaces which are related to \([5]\). Put \(\rho(y) = e^{-y^2/4}\) and

\[
L^2_\rho(\mathbb{R}) = \{ f \in L^2_{\text{loc}}(\mathbb{R}); \| f \|_\rho < \infty \}, \quad H^1_\rho(\mathbb{R}) = \{ f \in L^2_\rho(\mathbb{R}); \| f \|_{H^1_\rho} = \sqrt{\| f \|_\rho^2 + \| f_x \|_\rho^2} < \infty \},
\]

where the norm of \(L^2_\rho(\mathbb{R})\) is defined by

\[
\| f \|_\rho^2 = \int_{-\infty}^{\infty} f(y)^2 \rho(y)dy.
\]

Here we recall the following inequality (see Lemma 2.1 in \([11]\) p. 430).

\[
\int_{-\infty}^{\infty} y^2e^{2\rho}dy < c\| f \|_{H^1_\rho}^2.
\]

(6)

For the convenience of the reader, we provide the proof of this inequality. Let \(g(y) = f(y)e^{-y^2/8}\). Then a direct computation shows that

\[
g^2_y = \left(f^2_y + \frac{y^2}{16}f^2 - \frac{y}{4}(f^2)_{yy} \right)e^{-y^2/4}
\]

The integration of the last term is calculated as

\[
-\int_{-\infty}^{\infty} \frac{y}{4}(f^2)_{yy}e^{-y^2/4}dy = \int_{-\infty}^{\infty} \left(\frac{y^2}{16}e^{-y^2/4} \right) f^2dy.
\]

Therefore we obtain

\[
\int_{-\infty}^{\infty} f^2_ydy + \frac{1}{4} \int_{-\infty}^{\infty} f^2_{yy}dy - \frac{1}{16} \int_{-\infty}^{\infty} y^2f^2dy > 0,
\]

which proves the desired inequality.

2.2 Boundedness of solutions in self-similar variables

We here provide some conditions for a boundedness of solutions. These conditions are useful to apply a scaling argument, which is often used in the proof of Theorem 1.3 and Theorem 1.4

Lemma 2.1. Let \((a, b)\) be a solution of \((1)\) satisfying \((3)\) and \((u_\xi, v_\xi)\) be given in \([5]\). Then there exist \(R > 0\) and \(c_0 > 0\) such that if \(\| u_\xi(s_1) \|_{L^\infty(-R, R)} + \| v_\xi(s_1) \|_{L^\infty(-R, R)} < c_0\) for some \(\xi \in \mathbb{R}\) and \(s_1 > s_T\), then \(\xi\) is not a blow-up point of \((a, b)\).
Proof. For simplicity of notations, we omit the subscript $\xi \in \mathbb{R}$. Let $M = \sup_{s \geq 0}(\|u(s)\|_{L^\infty(\mathbb{R})} + \|v(s)\|_{L^\infty(\mathbb{R})}) < \infty$ and set $F(s) = \|u(s)\|_p^2 + \|v(s)\|_p^2$. $G(s) = \|u_y(s)\|_p^2 + \|v_y(s)\|_p^2$. Multiplying (4) by u and v, we get
\[
\frac{1}{2} F_s < -G + F + c \int_{-\infty}^{\infty} (|u|^3 + |u|^2) \rho dy.
\]
We assume $\|u(s)\|_{L^\infty(-R,R)} + \|v(s)\|_{L^\infty(-R,R)} < \epsilon$. Then from (1), the last term is estimated by
\[
\int_{-\infty}^{\infty} (|u|^3 + |v|^3) \rho dy < \epsilon \int_{|y| < R} (u^2 + v^2) \rho dy + MR^{-2} \int_{|y| > R} g^2 (u^2 + v^2) \rho dy < \epsilon F + cMR^{-2}G.
\]
We now choose $R_0 > 0$ and $\epsilon_0 > 0$ such that $\epsilon_0 < 1/2$ and $cMR_0^{-2} < 1/2$, which implies $F_s(s) < 0$ if $\|u(s)\|_{L^\infty(-R_0,R_0)} + \|v(s)\|_{L^\infty(-R_0,R_0)} < \epsilon_0$. To construct a comparison function for v, we first consider
\[
w_s = w_{yy} - \frac{y}{2} w_y + (-1 + 2M) w \tau > s, \quad w(s) = |v(s)|.
\]
We easily see that
\[
\|w(\tau)\|_p^2 < e^{(-2+4M)(\tau-s)}\|v(s)\|_p^2.
\]
Next we construct a comparison function for u.
\[
z_s = z_{yy} - \frac{y}{2} z_y + (-1 + M) z + w(\tau)^2 \tau > s, \quad z(s) = |u(s)|,
\]
where $w(\tau)$ is defined above. Then we get
\[
\|z(\tau)\|_p^2 < e^{(-1+2M)(\tau-s)}\|u(s)\|_p^2 + M^2 \int_s^\tau e^{-(1+2M)(\tau-\mu)}\|w(\mu)\|_p^2 d\mu
\]
\[
< e^{(-1+2M)(\tau-s)}\|u(s)\|_p^2 + \left(\frac{M^2}{2 + 4M}\right) e^{-(3+6M)(\tau-s)}\|v(s)\|_p^2.
\]
Combining above estimates, we obtain
\[
F(\tau) < c_1 e^{cz(\tau-s)} F(s) \quad \text{for } \tau > s
\]
for some $c_1, c_2 > 0$. Furthermore by a regularity theory for parabolic equations, it holds that
\[
\|u(s)\|_{L^\infty(-R_0,R_0)} + \|v(s)\|_{L^\infty(-R_0,R_0)} < \epsilon_0 \int_{s-1}^s F(\mu) d\mu.
\]
Let $\epsilon_1 = \min\{c_1 e^{cz/2}, c_2/2\} \epsilon_0$ and $\epsilon_2 = \epsilon_1/2$. We now claim that if $F(s) < \epsilon_2$ for some $s > s_T$, then it holds that $F(\tau) < \epsilon_1$ for $\tau > s_T$. In fact, we assume that there exists $s_1 > s$ such that $F(\tau) < \epsilon_1$ for $s < \tau < s_1$ and $F(s_1) = \epsilon_1$. By definition of ϵ_1 and (7), we find that $s_1 > s + 1$. Therefore we get from definition of τ_1 and (3) that
\[
\|u(\tau)\|_{L^\infty(-R_0,R_0)} + \|v(\tau)\|_{L^\infty(-R_0,R_0)} < c_1 \epsilon_1 < \frac{\epsilon_0}{2}
\]
for $\tau \in (s+1, s_1)$. As a consequence, from definition of R_0 and ϵ_0, it follows that $F_s(s) < 0$ for $s \in (s+1, s_1)$. However this contradicts definition of τ_1, which completes the proof.

Lemma 2.2. Let (a,b) and $(\xi, \nu) \in \mathbb{R}$, $(\nu, \xi) \in \mathbb{R}$ and put $u_s(y, s) = u_s(y, s_1, s)$, $v_s(y, s) = v_s(y, s_1, s)$. Then if $(u_s, v_s) \rightarrow (U, V)$ in $L^\infty_{\text{loc}}(\mathbb{R} \times \mathbb{R})$ as $s \rightarrow \infty$ and $(U(s), V(s)) \rightarrow (0, 0)$ in $L^\infty_{\text{loc}}(\mathbb{R})$, then $\xi, \nu \in \mathbb{R}$ is not a blow-up point of (a, b) for large $i \in \mathbb{N}$.

Proof. Let $R > 0$ and $\epsilon_0 > 0$ be given in Lemma 2.1. Since $(U(s), V(s)) \rightarrow (0, 0)$, there exists $s_0 > 0$ such that $\|U(s_0)\|_{L^\infty(-2R,2R)} + \|V(s_0)\|_{L^\infty(-2R,2R)} < \epsilon_0/2$. Furthermore since $(u_s, v_s) \rightarrow (U, V)$ as $s \rightarrow \infty$, we see that
\[
\|u_s(s_0)\|_{L^\infty(-R,R)} + \|v_s(s_0)\|_{L^\infty(-R,R)} < \epsilon_0
\]
for large $i \in \mathbb{N}$. Therefore from Lemma 2.1, ξ is not a blow-up point of (a, b), which completes the proof.

Lemma 2.3. Let (a_i, b_i) be a solution of (11) and satisfies $\sup_{0 \leq t \leq 1}(a_i(x_t, t) + b_i(x_t, t)) < c/(1-t)$ for $t \in (0, 1)$. If $(a_i, b_i) \rightarrow (A, B)$ and (A, B) does not blow up on $x = x_0$ at $t = 1$, then x_0 is not a blow-up point of (a_i, b_i) at $t = 1$ for large $i \in \mathbb{N}$.

Proof. Set $1 - t = e^{-s}$, $u_i(y, s) = (1-t) a_i(x_0 + e^{-s/2}y, t)$ and $v_i(y, s) = (1-t) b_i(x_0 + e^{-s/2}y, t)$. From the assumption, we see that (u_i, v_i) is uniformly bounded on $[0, \infty)$. Since $(a_i, b_i) \rightarrow (A, B)$ and $u_i(y, 0) = a_i(x_0 + y, 0)$, $v_i(y, 0) = b_i(x_0 + y, 0)$, we see that $(u_i, v_i) \rightarrow (U, V)$ and $U(y, s) = (1-t) A(x_0 + e^{-s/2}y, t)$, $V(y, s) = (1-t) B(x_0 + e^{-s/2}y, t)$ for $s > 0$. Since $\sup_{0 \leq t \leq 1}(A(x_t, t) + B(x_t, t)) < c/(1-t)$, (A, B) does not blow up for $t \in (0, 1)$. If (A, B) does not blow up on $x = x_0$ at $t = 1$, it holds that $(U, V) \rightarrow (0, 0)$ as $s \rightarrow \infty$. Therefore by the same way as in the proof of Lemma 2.2 we conclude that x_0 is not a blow-up point of (a_i, b_i) at $t = 1$ for large $i \in \mathbb{N}$. The proof is completed.
3 Local conditions for boundedness of solutions

In this section, we provide the proof of Theorem 3.3. Let \(x_0 \in \mathbb{R} \) be a blow-up point, \(T > 0 \) be a blow-up time and \(\mathcal{O} \) be the neighborhood of \((x_0, T)\) stated in Theorem 1.2. Since the proof for the case \(b(x, t) < 0 \) for \((x, t) \in \mathcal{O}\) is the same as for the case \(b(x, t) > 0 \) for \((x, t) \in \mathcal{O}\), we here only consider the later case. For such a case, by shifting the initial time, we can assume

\[
b(x, t) > 0 \quad \text{for } x \in (L_1, L_2), \ t \in (0, T)
\]

for some \(L_1 < x_0 < L_2 \). Furthermore throughout this section, we assume \(b(x, t) > 0 \).

Lemma 3.1. Either one of the intervals \((L_1, x_0)\) and \((x_0, L_2)\) is included in the blow-up set.

Proof. Assume that their exist \(l_1 \in (L_1, x_0) \) and \(l_2 \in (x_0, L_2) \) such that \(x = l_1 \) and \(x = l_2 \) are not blow-up points. From this assumption, \(a(x, t) \) and \(b(x, t) \) are uniformly bounded on \((l_1 - \epsilon, l_1 + \epsilon)\) and \((l_2 - \epsilon, l_2 + \epsilon)\) for some \(\epsilon > 0 \). Therefore since \(b(x, t) > 0 \) in \((L_1, L_2)\), by a comparison argument, we easily see that

\[
b(l_1, t) > \delta \quad \text{for } t \in (0, T), \quad b(l_2, t) > \delta \quad \text{for } t \in (0, T), \quad b_0(x) > \delta \quad \text{for } x \in (l_1, l_2)
\]

with some \(\delta > 0 \). Set \(\gamma = a/b \). Then \(\gamma \) satisfies

\[
\gamma = \gamma_{xx} + 2\nu \gamma_x - \left(\frac{a^2 + b^2}{b} \right),
\]

where \(\nu = b_x/b \). Since \(x = l_1 \) and \(x = l_2 \) are not blow-up points, it is clear that \(M = \sup_{0 < t < T} (|a(l_1, t)| + |a(l_2, t)| + |a_0(x)|) < \infty \). Combining this fact and \(4 \), we get

\[
\gamma(l_1, t) < M/\delta \quad \text{for } t \in (0, T), \quad \gamma(l_2, t) < M/\delta \quad \text{for } t \in (0, T), \quad \gamma_0(x) < M/\delta \quad \text{for } x \in (l_1, l_2).
\]

Therefore we obtain from a maximum principle that

\[
\gamma(x, t) > M/\delta \quad \text{for } x \in (l_1, l_2), \ t \in (0, T).
\]

Let \(\lambda_i = 1/i \) and set \(a_i(x, \tau) = \lambda_i a(x_0 + \sqrt{\lambda_i x}, T - 1/i + \lambda_i \tau) \) and \(b_i(x, \tau) = \lambda_i b(x_0 + \sqrt{\lambda_i x}, T - 1/i + \lambda_i \tau) \). Then we easily see that \(3 \) is equivalent to

\[
\sup_{x \in \mathbb{R}} (|a_i(x, \tau)| + |b_i(x, \tau)|) < \frac{c_0}{1 - \tau}.
\]

Therefore by taking a subsequence, we get \((a_i, b_i) \to (A, B)\) and

\[
\sup_{x \in \mathbb{R}} (|A(x, \tau)| + |B(x, \tau)|) < \frac{c_0}{1 - \tau} \quad \text{for } \tau \in (-1, 1).
\]

Furthermore we get from \(10 \) that

\[
A(x, \tau)/B(x, \tau) < M/\delta \quad \text{for } x \in \mathbb{R}, \ \tau \in (-1, 1).
\]

Since \((A, B)\) is a solution of \(1 \), Theorem 1.1 \(2 \) stated in Introduction implies that \((A, B)\) exists globally in time. Therefore from Lemma 2.3, the origin is not a blow-up point of \((a_i, b_i)\) for large \(i \in \mathbb{N} \), which implies that \(x_0 \) is not a blow-up point of \((a, b)\). This contradicts the assumption, which completes the proof.

From Lemma 3.1, we can assume that the interval \((-L, L)\) is included in the blow-up set and \(b \) satisfies

\[
b(x, t) > 0 \quad \text{for } x \in (-L, L), \ t \in (0, T).
\]

We now introduce self-similar variables and define a new unknown function \((u, v)\) as in Section 2.1. Let \(\xi \in \mathbb{R} \) and set

\[
T - t = e^{-s}, \quad s_T = -\log(T - t),
\]

\[
u_{\xi}(y, s) = (T - t)a(\xi + e^{-s/2}y, t), \quad v_{\xi}(y, s) = (T - t)b(\xi + e^{-s/2}y, t).
\]

Then \((u, v) = (u_{\xi}, v_{\xi})\) satisfies \((5)\).

Lemma 3.2. Let \(\{\xi_i\}_{i \in N} \subset (-L/2, L/2) \) and \(\{s_i\}_{i \in N} \) be sequences. Put

\[
a_i(x, \tau) = \lambda_i a(\xi_i + \sqrt{\lambda_i x}, t_i + \lambda_i \tau), \quad b_i(x, \tau) = \lambda_i b(\xi_i + \sqrt{\lambda_i x}, t_i + \lambda_i \tau).
\]

If \((a_i, b_i) \to (A, B)\) as \(i \to \infty \) and \((A, B)\) blows up on the origin at \(\tau = 1 \), then the origin is not an isolated blow-up point of \((A, B)\).

Proof. We prove by contradiction. Assume that the origin is an isolated blow-up point of \((A, B)\). Then there exist \(\theta_1, \theta_2 \) \((0 < \theta_1 < \theta_2 < 1)\) such that

\[
\sup_{0 < \tau < 1, \theta_1 < x < \theta_2} (|A(x, \tau)| + |B(x, \tau)|) < \infty.
\]

Therefore from Lemma 2.3 there exists \(c > 0 \) such that

\[
\sup_{0 < \tau < 1, \theta_1 < x < \theta_2} (|a_i(x, \tau)| + |b_i(x, \tau)|) < c \quad \text{for } i \gg 1.
\]

Let \(\theta = (\theta_1 + \theta_2)/2 \) and

\[
\tilde{a}_i(y, s) = (1 - \tau)a_i(\theta + e^{-s/2}y, \tau), \quad \tilde{b}_i(y, s) = (1 - \tau)b_i(\theta + e^{-s/2}y, \tau),
\]

\(1 - \tau = e^{-s} \).
Then we see that

\[\tilde{u}_i(y, s) = e^{-(s+s_i)}a(\tilde{\xi}_i + e^{-(s+s_i)/2}y, T - e^{-(s+s_i)}) = u_{\xi_i}(y, s_i + s), \]

\[\tilde{v}_i(y, s) = v_{\xi_i}(y, s_i + s), \]

where \(\tilde{\xi}_i = \xi_i + \sqrt{\lambda_i} \). Put \(\Delta = (\theta_2 - \theta_1)/2 \). Then we get from (12) that

\[\sup_{|y| < c e^{s/2\Delta}} (|u_{\xi_i}(y, s_i + s)| + |v_{\xi_i}(y, s_i + s)|) = \sup_{|y| < c e^{s/2\Delta}} (|\tilde{u}_i(y, s)| + |\tilde{v}_i(y, s)|) \]

\[= \sup_{\theta_1 < x < \theta_2} e^{-s}(|a_i(x, \tau)| + |b_i(x, \tau)|) < c e^{-s} \quad \text{for } s > 0, \ i \gg 1. \]

This implies

\[\sup_{|y| < c e^{s/2\Delta}} (|u_{\xi_i}(y, s)| + |v_{\xi_i}(y, s)|) < c e^{-(s-s_i)} \quad \text{for } s > s_i, \ i \gg 1. \]

Therefore from Lemma 2.1 \(\tilde{\xi}_i \) is not a blow-up point of \((a, b)\), which contradicts that \(\tilde{\xi}_i \) is a blow-up point of \((a, b)\). \(\square \)

Lemma 3.3. For any \(R > 0 \), there exists \(\epsilon_1 > 0 \) such that if \(\inf_{-R < y < R} v_\xi(y, s) < \epsilon_1 \), then it holds that

\[\sup_{-R < y < R} |u_\xi(y, s)| = 1 \quad \text{for } s > s_T, \ \xi \in (-L/2, L/2). \]

Proof. We prove by contradiction. Assume that there exist \(R > 0, \ \{s_i\}_{i \in \mathbb{N}} \ (s_i \to \infty) \) and \(\{\xi_i\}_{i \in \mathbb{N}} \subset (-L/2, L/2) \) such that

\[\inf_{-R < y < R} v_{\xi_i}(y, s_i) < 1/i, \quad \sup_{-R < y < R} |u_{\xi_i}(y, s_i)| - 1 > 1/8. \]

Put \(\lambda_i = e^{-s_i}, \ t_i = T - \lambda_i \) and

\[a_i(x, \tau) = \lambda_i a(\xi_i + \sqrt{\lambda_i}x, t_i + \lambda_i \tau), \quad b_i(x, \tau) = \lambda_i b(\xi_i + \sqrt{\lambda_i}x, t_i + \lambda_i \tau). \]

Then we easily see from (13) that

\[|a_i(x, \tau)| + |b_i(x, \tau)| < c(1 - \tau)^{-1} \quad (14) \]

for some \(c > 0 \). Therefore by taking a subsequence, we get \((a_i, b_i) \to (A, B) \). Since \(b_i(x, 0) = v_{\xi_i}(x, s_i) \), by a strong maximum principle, \(B \) must be zero on \(\mathbb{R} \times (0, 1) \). If \(A \equiv 0, \) Lemma 2.3 implies that \((a_i, b_i) \) does not blow up on the origin. Therefore it is sufficient to consider the case \(A \neq 0 \) on \(\mathbb{R} \times (0, 1) \). We note from (3) that \(A \) exists at least until \(\tau = 1 \). Since the origin is a blow-up point of \((a_i, b_i)\) at \(\tau = 1 \), \(A \) must blow up at the origin at \(\tau = 1 \) from Lemma 2.3. Since \(B \equiv 0, \) \(A \) satisfies \(A_{t} = A_{xx} + A^2 \). From Theorem 7 p.209, there are two possibilities: (I) \(A \equiv 1 \) or (II) the origin is the isolated blow-up point. Since (II) is excluded from Lemma 3.2 (I) occurs. Therefore this contradicts (3), which completes the proof.

Lemma 3.4. Let \(v_\pm = v_\xi \) with \(\xi = \pm L/4 \). Then it holds that

\[\lim_{s \to \infty} \inf_{0 < s} v_\pm(0, s) > 0. \]

Proof. Let \(A = \partial^2_x - \frac{\xi}{2} \partial_y. \) Since the first eigenvalue of \(A \) is \(H^2_x(\mathbb{R}) \) is zero, we can choose \(R_0 > 0 \) such that the first eigenvalue of \(A |_{\text{Dirichlet}} \) in \(H^2_x((-R_0, R_0)) \) is \(\{ f \in H^2_x(\mathbb{R}); f(y) = 0 \text{ for } |y| > R_0 \} \) is less than 1/8. Put \(v_\pm = v_\xi \) with \(\xi = \pm L/4 \). From (11), we see that \(v_\pm \) is positive on \((-R_0, R_0)\) for large \(s > s_T \). Let \(\phi(y) > 0 \) be the first eigfunction of \(A |_{\text{Dirichlet}} \). Then from Lemma 3.3, if we choose \(\epsilon > 0 \) sufficiently small, \(\psi = \epsilon \phi \) becomes a subsolution of \(v_\pm \) in \((-R_0, R_0)\), which completes the proof.

Proof of Theorem 1.3. Combining Lemma 3.4 and (3), we obtain \(a(\pm L/4, t)/b(\pm L/4, t) < c' \) for some \(c' > 0 \). Therefore by the same argument as in the proof of Lemma 3.2, we see that the origin is not a blow-up point, which contradicts the assumption. The proof of Theorem 1.3 is completed.

4 Location of blow-up points

This section is devoted to the proof of Theorem 1.4. From Theorem 1.3 if a solution of (11) blows up in a finite time, \(b \) must be sign changing near the blow-up point. Here we discuss a relation between blow-up points and zeros of \(b \). Since \(b \) satisfies \(b_t = b_{xx} + 2ab \), the number of zeros of \(b(t) \) is nonincreasing in \(t \) (see e.g. (10)). Therefore from assumption of Theorem 1.3, the number of zeros of \(b(t) \) is one or zero for \(t \in (0, T) \). However since \((a,b) \) blows up at \(t = T \), \(b(t) \) has one zero for \(t < T \) from Theorem 1.3. Throughout this section, we assume that \(b(t) \) has one zero for \(t \in (0, T) \) and denote a zero of \(b(t) \) by \(\gamma(t) \). Furthermore we assume

\[b(x, t) = \begin{cases} \text{negative} & \text{if } x < \gamma(t), \\ \text{positive} & \text{if } x > \gamma(t). \end{cases} \]

Proposition 4.1. Let \(x_0 \in \mathbb{R} \) be an isolated blow-up point. Then the blow-up set on \(\mathbb{R} \) consists of \(x_0 \).
Proof. To derive contradiction, we assume that \(x_1 > x_0 \) is another blow-up point. Since \(x_0 \) and \(x_1 \) are blow-up points, we see from Theorem 1.3 that
\[
\liminf_{t \to T} \gamma(t) \leq x_0, \quad \limsup_{t \to T} \gamma(t) \geq x_1.
\]
(15)

Let \(x_2 = (x_0 + x_1)/2, \delta = (x_1 - x_0)/2 \) and set
\[
u(y, s) = e^{-s}a(x_2 + e^{-s/2}y, T - e^{-s}), \quad \nu(y, s) = e^{-s}b(x_2 + e^{-s/2}y, T - e^{-s}).
\]
Since \((a, b)\) is uniformly bounded on \((x_2 - \delta, x_2 + \delta)\), \((a, b)\) satisfies
\[
\sup_{|y| < \delta e^{-s/2}} (|u(y, s)| + |v(y, s)|) < c_1 e^{-s}
\]
for some \(c_1 > 0 \). Therefore we get from (16) and (3)
\[
\int_{-\infty}^{\infty} |u|^2 \rho dy < c_1 e^{-s} \int_{|y| < \delta e^{-s/2}} |v|^2 \rho dy + \delta^2 e^{-s} \|u\|_{L^\infty(\mathbb{R})}^2 \int_{|y| > \delta e^{-s/2}} |y|^2 |v|^2 \rho dy
\]
\[
< (c_1^2 + \delta^2) e^{-s} \|v\|_{H^2_\rho(\mathbb{R})}^2.
\]

Let \(A = \partial_y^2 - \frac{\gamma}{2} \partial_y \). Then we see that
\[
\|u_s - (A - 1)v\|_{\rho} < 2\|u\|_{\rho} < 2\sqrt{c_1^2 + \delta^2} e^{-s/2} \|v\|_{H^2_\rho(\mathbb{R})}.
\]
Therefore from Lemma A.16 [1] (see also 2 [2]), we obtain \(\|v(s)\|_{\rho} \geq c e^{-\mu s} \) for some \(\mu > 0 \). As a consequence, there exists \(k \in \mathbb{N} \) such that
\[
v(s) = \alpha_k (1 + o(1)) e^{-\lambda_k s} \phi_k \quad \text{in } L^2_\rho(\mathbb{R}).
\]
However this contradicts (15), which completes the proof. \(\square \)

Let \(x_0 \in \mathbb{R} \) be a blow-up point of \((a, b)\). If \(x_0 \) is an isolated blow-up point, Proposition 1.1 implies that no other blow-up points exist on \(\mathbb{R} \). Then we see that \(\gamma(t) \) is continuous on \([0, T]\). In fact, if \(\gamma \) is not continuous at \(t = T \), it satisfies
\[
\liminf_{t \to T} \gamma(t) < \liminf_{t \to T} \gamma(t).
\]
However by the same argument as in the proof of Lemma 1.1 we derive contradiction. Therefore if \(x_0 \) is an isolated blow-up point of \((a, b)\), the proof is completed. We here consider the case where there are no isolated blow-up points. Let \(x_1 > x_0 \) be another blow-up point. Then the interval \((x_0, x_1)\) is included in the blow-up set. By shifting the origin, we can assume that
\[
\text{the interval } (-L, L) \text{ is included in the blow-up set.}
\]
(16)

We put \(e^{-s} = T - t \) and
\[
u(y, s) = (T - t)a(e^{-s/2}y, t), \quad v(y, s) = (T - t)b(e^{-s/2}y, t).
\]
We denote a zero of \(v(s) \) by \(\Gamma(s) \), which satisfies \(\Gamma(s) = e^{s/2} \gamma(t) \).

Lemma 4.1. For any \(\epsilon_0 > 0 \) there exists \(K > 0 \) such that if \(|v(y, s)| > \epsilon_0 \) for some \(|y| < s \) and \(s \gg 1 \), then it holds that \(|y_1 - \Gamma(s)| < K \).

Proof. We prove by contradiction. Assume that there exist \(\epsilon_0 > 0 \), \(\{y_1\}_{i \in \mathbb{N}} \) and \(\{s_i\}_{i \in \mathbb{N}} \) satisfying \(|y_1| < s_i \) and \(s_i \to \infty \) such that
\[
|v(y_i, s_i)| > \epsilon_0, \quad |y_i - \Gamma(s_i)| > i.
\]
(17)

We put \(\lambda_i = e^{-s_i}, t_i = T - e^{-s_i} \) and
\[
ai(x, \tau) = \lambda_i a(\sqrt{\lambda_i} y_i + \sqrt{\lambda_i} x, t_i + \lambda_i \tau), \quad bi(x, \tau) = \lambda_i b(\sqrt{\lambda_i} y_i + \sqrt{\lambda_i} x, t_i + \lambda_i \tau).
\]
Then (3) implies
\[
\sup_{x \in \mathbb{R}} (|ai(x, \tau)| + |bi(x, \tau)|) < \frac{c_1}{1 - \tau} \quad \text{for } \tau \in (0, 1)
\]
(18)
with some \(c_1 > 0 \). Furthermore we easily see that \(ai(x, 0) = u(y_i + x, s_i) \) and \(bi(x, 0) = v(y_i + x, s_i) \). Therefore it follows from (17) that
\[
|b_i(x, 0)| > 0 \quad \text{for } |x| < i.
\]
(19)

By taking a subsequence, we get
\[
(ai, bi) \to (A, B).
\]
Then we get from (18) and (19)
\[
|B(x, 0)| > 0 \quad \text{for } x \in \mathbb{R}, \quad \sup_{x \in \mathbb{R}} (|A(x, \tau)| + |B(x, \tau)|) < \frac{c_1}{1 - \tau} \quad \text{for } \tau \in (0, 1).
\]
From Theorem 1.3 we find that \((A, B)\) does not blow up on the origin at \(\tau = 1 \). As a consequence, from Lemma 2.2 the origin is not a blow-up point of \((ai, bi)\) at \(\tau = 1 \) for large \(i \in \mathbb{N} \), which implies that \(\sqrt{\lambda_i} y_i \) is not a blow-up point of \((a, b)\) for large \(i \in \mathbb{N} \). However since \(\sqrt{\lambda_i} y_i \to 0 \) as \(i \to \infty \), this contradicts (15). \(\square \)
Lemma 4.2. For any $\delta > 0$ and $r > 0$ there exists $m_0 > 0$ such that if $\|v(s)\|_{L^\infty((-1,1))} < m_0$ for some $s \gg 1$, then it holds that
\[\sup_{-r < y < r} (|u(y, s) - 1| + |u_y(y, s)|) < \delta. \]

Proof. Since the proof of this lemma is the same as that of Lemma 3.3, we omit the detail. \qed

Lemma 4.3. $\liminf_{s \to \infty} \|v(s)\|_{L^\infty((-1,1))} = 0$.

Proof. Since the interval $(-L, L)$ is included in the blow-up set, we get from Theorem 1.3 that
\[\liminf_{t \to T} \gamma(t) \leq -L, \quad \limsup_{t \to T} \gamma(t) \geq L. \]
Therefore since $\Gamma(s) = e^s \gamma(t)$, Lemma 4.2 proves this lemma. \qed

Proposition 4.2. $\lim_{s \to \infty} \|v(s)\|_{L^\infty((-1,1))} = 0$.

The proof of this Proposition is given in Section 4.1, which is a crucial step in this paper.

4.1 Proof of Proposition 4.2

This proof is based on the argument in [1]. We carefully investigate the behavior of solutions through a dynamical system approach in $L^2_p(R)$. Since $v(s)$ has exactly one zero for $s > s_T$, we focus on the behavior of the corresponding eigenmode of $v(s)$.

4.1.1 Choice of η, ζ, δ, R

Let $A = \partial_{yy} - \frac{1}{y^2} \partial_y$. It is known that $H^1_p(R)$ is spanned by eigenfunctions $\{\phi_i\}_{i \in \mathbb{N}}$ of A. A function v in $H^1_p(R)$ is decomposed to
\[v = \alpha \phi_0 + \beta \phi_1 + \gamma \phi_2 + w. \]
Since $\phi_2(y) = c_1(y^2 - 1)$ for some $c_1 > 0$, it follows that $\phi_2(0) = -c_1$ and $\phi_2(2) = 3c_1$. Here we recall the inequality:
\[\|w\|_{L^\infty((-2,2))} < c \|w\|_{H^1_p(R)}. \]
Therefore there exists $c_1 > 0$ such that if $v \in H^1_p(R)$ satisfies $\alpha^2 + \beta^2 + \|w\|_{H^1_p(R)} < \epsilon_1 \gamma^2$, then v has at least two zeros in $(-2, 2)$. Here we fix $\eta > 0$, $\zeta > 0$ and $\bar{\epsilon} \in (0, 1/4)$ such that
\[2 \left(\frac{1}{\eta} + \frac{\zeta}{\bar{\epsilon}} + \frac{1}{\zeta} < \epsilon_1, \quad \bar{\epsilon} \left(\frac{1}{\eta} \left(\frac{1}{1 + \epsilon} + \frac{1}{\epsilon} \right) + \frac{1}{\zeta} \right) < \frac{1}{8}, \quad \left(\frac{1}{4} - 2 \bar{\epsilon} \right) \eta - (2 + \eta^2) \bar{\epsilon} > 0, \quad \bar{\epsilon} \eta < \frac{1}{8} \right) \]
(20)
Furthermore we put
\[M = \sup_{y \in \mathbb{R}, s > s_T} (|u(y, s) - 1| + |u_y(y, s)|). \]
By using [6], we can fix $\delta > 0$ and $\bar{R} > 0$ such that if $|P(y)| < \delta$ for $|y| < \bar{R}$ and $\|P\|_{L^\infty(R)} < M$, then it holds that
\[\int_{-\infty}^{\infty} P(y)^2 \left(\sum_{k=0}^{2} (|\phi_k|^2 + |\phi_k'|^2) \right) dy < \left(\frac{\epsilon}{24} \right)^2, \quad \int_{-\infty}^{\infty} |P(y)|^2 dy < \frac{\epsilon}{8} \|v\|^2_{H^1_p(R)}. \]

4.1.2 Assumptions and setting

To prove Proposition 4.2 we assume
\[m_* = \limsup_{s \to \infty} \|v(s)\|_{L^\infty((-1,1))} > 0 \]
throughout this section. Since v satisfies $v_s = A v + K(y, s)v$ with $K(y, s) = -1 + 2u$, this assumption is equivalent to $\limsup_{s \to \infty} \|v(s)\|_{\rho} > 0$. We apply Lemma 4.2 with $\delta = \delta$ and $r = \bar{R}$. Then there exists $\bar{m} \in (0, m_*)$ such that if $\|v(s)\|_{L^\infty((-1,1))} < \bar{m}$, then it holds that
\[\sup_{-\bar{R} < y < \bar{R}} (|u(y, s) - 1| + |u_y(y, s)|) < \delta. \]
From Lemma 4.3 there exists $\{s_i\}_{i \in \mathbb{N}}$ such that $\|v(s_i)\|_{L^\infty((-1,1))} \to 0$ as $i \to \infty$. By definition of m_* ($m < m_*$), we can choose s_i^{-} and s_i^{+} such that $s_i^{-} < s_i < s_i^{+}$ by
\[\|v(s_i)\|_{L^\infty((-1,1))} < \bar{m} \quad \text{for } s_i \in (s_i^{-}, s_i^{+}), \quad \|v(s_i^{+})\|_{L^\infty((-1,1))} = \bar{m}. \]
Since $\|v(s_i)\|_{L^\infty((-1,1))} \to 0$ as $i \to \infty$, we easily see that $\|v(s_i)\|_{\rho} + \|v(s_i)\|_{\rho} \to 0$ as $i \to \infty$. Therefore it follows that $s_i^{+} - s_i \to \infty$ as $i \to \infty$. Put $\Delta_i = s_i^{+} - s_i^{-}$, $\Delta_i \to \infty$ and
\[u_i(y, s) = u(y, s_i^{-} + s), \quad v_i(y, s) = v(y, s_i^{-} + s). \]
To analyze the dynamics of $v_i(s)$ in $L^2_p(R)$, we decompose a function v_i by using eigenfunctions of A.
\[v_i = \alpha_i \phi_0 + \beta_i \phi_1 + \gamma_i \phi_2 + w_i, \quad \partial_y v_i = \mu_i \phi_0 + \nu_i \phi_1 + q_i. \]
Lemma 4.4. For any $d > 0$, it holds that
\[
\liminf_{i \to \infty} \inf_{0 < s < d} \|v_i(s)\|_\rho > 0, \quad \liminf_{i \to \infty} \inf_{0 < s < d} (|\alpha_i(s)| + |\beta_i(s)|) > 0.
\]

Proof. First we assume
\[
\liminf_{i \to \infty} \inf_{0 < s < d} \|v_i(s)\|_\rho = 0.
\]
Then there exists \(\{d_i\}_{i \in \mathbb{N}} \subset (0, d) \) such that \(\|v_i(d_i)\|_\rho \to 0 \) as \(s \to \infty \). By taking a subsequence, we get \(d_i \to d_* \in (0, d] \) and \((u_i, v_i) \to (U, V) \) as \(i \to \infty \). Then by definition of \(s_i \) and \(d_i \), it follows that \(V(0) \neq 0 \) and \(V(d_*) = 0 \) holds. However since \(V \) satisfies \(V_2 = AV + (1 - 2U)V \), \(V(d_*) = 0 \) contradicts the backward uniquenes for parabolic equations, which proves the first statement. To prove the second statement, we repeat the same argument above. Assume that there exists \(\{d_i\}_{i \in \mathbb{N}} \subset (0, d) \) such that
\[
\liminf_{i \to \infty} \inf_{0 < s < d} (|\alpha_i(d_i)| + |\beta_i(d_i)|) = 0.
\]
From the first statement of this lemma and Lemma 4.1, we see that \(|\Gamma(s_i)| < K \) for some \(K > 0 \). By taking a subsequence, we get \(d_i \to d_* \), \((u_i, v_i) \to (U, V) \) and \(\Gamma(s_i) \to \Gamma_* \in (-K, K) \). Then from definition of \(\Gamma(s) \), we see that \(V(y, 0) \leq 0 \) for \(y < \Gamma_* \), \(V(y, 0) \geq 0 \) for \(y > \Gamma_* \).

Since \(V \neq 0 \) on \(\mathbb{R} \times (0, \infty) \), the number of zeros of \(V(s) \) is decreasing in \(s \). Therefore the number of zeros of \(V(d_i) \) is one or zero. On the other hand, we see from (23) that \((V(d_*), \phi_0)_\rho = 0, (V(d_*), \phi_1)_\rho = 0 \). Therefore from Corollary 6.17 \([9]\), we find that the number of \(V(d_*') \) has more than one zeros, which is contradiction. The proof is completed. \(\Box \)

4.1.3 Dynamics of \(v_i(s) \) on \(L^2_\rho(\mathbb{R}) \)
In the following argument, we always assume \(s \in (0, \Delta_i) \). Therefore it follows from definition of \(\tilde{m} \) that
\[
\sup_{-R < y < R} (|u_i(y, s) - 1| + |\partial_y u_i(y, s)|) < \tilde{\delta} \quad \text{for } s \in (0, \Delta_i).
\]
Then \(v_i \) satisfies
\[
\partial_s v_i = \partial_{yy} v_i - \frac{y}{2} \partial_y v_i + v_i + 2(u_i - 1)v_i.
\]
Multiplying equation by \(\phi_k \) \((k = 0, 1, 2) \), we get
\[
\alpha_i = \alpha_i + 2h_{0i}, \quad \beta_i = \frac{1}{2}\beta_i + 2h_{1i}, \quad \gamma_i = 2h_{2i},
\]
where \(h_{ki} \) \((k = 0, 1, 2) \) is given by
\[
h_{ki} = \int_{-\infty}^{\infty} (u_i - 1)v_i \phi_k \rho dy.
\]
Furthermore since \(w_i \) satisfies
\[
\partial_s w_i = Aw_i + w_i + 2(u_i - 1)w_i + 2(u_i - 1)(\alpha_i \phi_0 + \beta_i \phi_1 + \gamma_i \phi_2) - 2 \sum_{k=0}^2 h_{ki} \phi_k,
\]
we get
\[
\frac{1}{2} \partial_s \|w_i\|^2_\rho = -\|\partial_s w_i\|^2_\rho + \|w_i\|^2_\rho + 2 \int_{-\infty}^{\infty} (u_i - 1)w_i^2 \rho dy + 2H_i,
\]
where \(H_i \) is given by
\[
H_i = \int_{-\infty}^{\infty} (u_i - 1)(\alpha_i \phi_0 + \beta_i \phi_1 + \gamma_i \phi_2) w_i \rho dy - \sum_{k=0}^2 \int_{-\infty}^{\infty} h_{ki} \phi_k w_i \rho dy.
\]
By choice of \(R \) and \(\delta \), we see that
\[
\int_{-\infty}^{\infty} |u_i - 1|w_i^2 \rho dy < \frac{\epsilon}{8} \|w_i\|^2_{H^1_\rho(\mathbb{R})}, \quad |h_{ki}| < \left(\int_{-\infty}^{\infty} (u_i - 1)^2 \phi_k^2 \rho dy \right)^{1/2} \|w_i\|_\rho < \frac{\epsilon}{24} \|w_i\|_\rho,
\]
\[
|H_i| < \left(\int_{-\infty}^{\infty} (u_i - 1)^2 (\phi_0 + |\phi_1| + |\phi_2|)^2 \rho dy \right)^{1/2} \|w_i\|_\rho \|w_i\|_\rho + \|w_i\|_\rho \sum_{k=0}^2 |h_{ki}| < \frac{\epsilon}{24} \|w_i\|_\rho \|w_i\|_\rho + \frac{\epsilon}{8} \|w_i\|_\rho \|w_i\|_\rho = \frac{\epsilon}{6} \|w_i\|_\rho \|w_i\|_\rho.
\]
Applying these estimates in (24) and (25), we get
\[
\begin{align*}
\partial_s \left(\alpha_i^2 + \beta_i^2 \right) &> \frac{1}{2} \left(\alpha_i^2 + \beta_i^2 \right) - \varepsilon^2 \left(\gamma_i^2 + \|w_i\|_\rho^2 \right), \\
\partial_s \gamma_i^2 &< \frac{\varepsilon}{2} \left(\left(\alpha_i^2 + \beta_i^2 \right) + \gamma_i^2 + \|w_i\|_\rho^2 \right), \\
\partial_s \|w_i\|_\rho^2 &< -\frac{1}{2} \|w_i\|_\rho^2 + \varepsilon^2 \left(\left(\alpha_i^2 + \beta_i^2 \right) + \gamma_i^2 \right).
\end{align*}
\]
(26)

Next we provide estimates for $\partial_y v_i$. Let $z_i = \partial_y v_i$. Then z_i satisfies
\[
\partial_s z_i = Az_i + \frac{z_i}{2} + 2(u_i - 1)z_i + 2(\partial_y u_i)v_i.
\]

Since $z_i = \mu_i \phi_0 + \nu_i \phi_1 + q_i$, μ_i and ν_i satisfy
\[
\mu_i = \frac{1}{2} \mu_i + 2\hat{h}_{0i} - 2\hat{h}_{0i}, \quad \nu_i = 2\hat{h}_{1i} - 2\hat{h}_{1i},
\]
where \hat{h}_i and $\hat{h}_k (k = 0, 1)$ are given by
\[
\hat{h}_i = \int_{-\infty}^\infty (1 - u_i)z_i \phi_k \rho dy, \quad \hat{h}_k = \int_{-\infty}^\infty (\partial_y u_i)v_i \phi_k \rho dy.
\]
Furthermore q_i satisfies
\[
\partial_s q_i = Aq_i + \frac{1}{2} q_i + 2(u_i - 1)q_i - 2(\partial_y u_i)v_i + 2(u_i - 1)(\mu_i \phi_0 + \nu_i \phi_1) - 2(\hat{h}_{0i} - \hat{h}_{0i})\phi_0 + 2(\hat{h}_{1i} - \hat{h}_{1i})\phi_1.
\]

By the same calculation as v_i, we obtain
\[
\begin{align*}
\partial_s \mu_i^2 &> \frac{\mu_i^2}{2} - \varepsilon^2 \left(\nu_i^2 + \|q_i\|_\rho^2 + \|v_i\|_\rho^2 \right), \\
\partial_s \nu_i^2 &< \frac{\varepsilon}{2} \left(\nu_i^2 + \mu_i^2 + \|q_i\|_\rho^2 + \|v_i\|_\rho^2 \right), \\
\partial_s \|w_i\|_\rho^2 &< -\frac{1}{2} \|w_i\|_\rho^2 + \varepsilon^2 \left(\mu_i^2 + \nu_i^2 + \|v_i\|_\rho^2 \right).
\end{align*}
\]
(27)

We here put
\[
X_i = \alpha_i^2 + \beta_i^2 + \gamma_i^2, \quad Y_i = \mu_i^2 + \nu_i^2, \quad Z_i = \|w_i\|_\rho^2 + \|q_i\|_\rho^2.
\]
(28)

Since $\varepsilon < 1/2$, combining (20) and (27), we obtain
\[
\begin{align*}
\left\{
X_i > \frac{1}{4} X_i - \varepsilon(Y_i + Z_i), \\
|Y_i| < \varepsilon(X_i + Y_i + Z_i), \\
|Z_i| < -\frac{1}{4} Z_i + \varepsilon(X_i + Y_i).
\right.
\]
\]
(29)

Let $\eta > 0$ be given in (20). We define κ_i by
\[
\kappa_i = \eta X_i - Y_i - Z_i.
\]

We investigate the behavior of κ_i.
\[
\kappa_i' = \frac{\eta}{4} X_i - \eta \varepsilon(Y_i + Z_i) - \varepsilon(X_i + Y_i + Z_i) + \frac{1}{4} Z_i - \varepsilon(X_i + Y_i)
\]
\[
= \left(\frac{\eta}{4} - 2\varepsilon \right) X_i - (2 + \eta)\varepsilon Y_i + \left(\frac{1}{4} - (1 + \eta)\varepsilon \right) Z_i.
\]

Since $\kappa_i \geq 0$ is equivalent to $Y_i + Z_i \leq \eta X_i$, it holds that
\[
\kappa_i' > \left(\frac{\eta}{4} - 2\varepsilon - (2 + \eta)\varepsilon \eta \right) X_i + \left(\frac{1}{4} - (1 + \eta)\varepsilon \right) Z_i
\]
\[
= \left(\frac{1}{4} - 2\varepsilon \right) \eta - (2 + \eta^2) \varepsilon \right) X_i + \left(\frac{1}{4} - (1 + \eta)\varepsilon \right) Z_i \quad \text{if } \kappa_i > 0.
\]

Therefore from (20), we conclude
\[
\kappa_i' > 0 \quad \text{if } \kappa_i \geq 0.
\]

Since $Y_i = \gamma_i^2 + \nu_i^2 = 2\gamma_i^2$ and $Z_i = \|w_i\|_\rho^2 + \|z_i\|_\rho^2 = \|w_i\|_\rho^2$ (see Lemma 6.2 [1]), if $\kappa_i < 0$ $(\Leftrightarrow \eta X_i < Y_i + Z_i)$ and $Z_i < \eta Y_i$, it holds that
\[
\alpha_i^2 + \beta_i^2 + \|w_i\|_\rho^2 < X_i + Z_i < \left(\frac{1 + \tilde{\gamma}}{\eta} + \frac{1 + \tilde{\gamma}}{\eta} \right) Y_i = 2 \left(\frac{1 + \tilde{\gamma}}{\eta} + \frac{2}{\eta} \right) \eta^2 < \varepsilon_1 \gamma_i^2,
\]
where we use (20) in the last inequality. Therefore by definition of ϵ_1, v_i has more than one zeros if $\kappa_i < 0$ and $Z_i < \eta Y_i$. Summarizing the above estimates, we obtain the following lemma.
Lemma 4.5. If \(\kappa_i(s') \geq 0 \) for some \(s' \in (0, \Delta_i) \), then it holds that \(\kappa_i(s) > 0 \) for \(s \in (s', \Delta_i) \). Furthermore if \(\kappa_i(s) < 0 \) for some \(s \in (0, \Delta_i) \), then it holds that \(\zeta_i(s) < Z(s) \).

Lemma 4.6. Let \(\Delta_i^- = \{ s \in (0, \Delta_i); \kappa_i(s') < 0 \text{ for some } s' < (0, s) \} \). Then it holds that \(\lim_{i \to \infty} \Delta_i^- = \infty \) and \(\zeta_i(s) < Z_i(s) \) for \(s \in (0, \Delta_i^-) \).

Proof. Since the second statement is trivial from Lemma 4.5, it is enough to show the first statement. We prove by contradiction. Assume that there exists a subsequence \(\{ j \} \in \Lambda \subset \{ i \} \in \mathbb{N} \) such that \(\{ \Delta_j^- \} \in \Lambda \) is bounded. Then from Lemma 4.4 there exists \(\theta > 0 \) such that

\[
\inf_{0 < s < \Delta_i^-} (|a_j(s)| + |b_j(s)|) > \theta \quad \text{for } j \in \Lambda. \tag{30}
\]

From definition of \(\Delta_j^- \) and Lemma 4.5, we see that \(\kappa_j(s) > 0 \) for \(s \in (\Delta_j^-, \Delta_i) \). Therefore since \(X_i, Y_i \) and \(Z_i \) satisfy (29) for \(s \in (0, \Delta_i) \), we get from (29) that

\[X_i > \frac{1}{4} X_i - \bar{e} \eta X_i > \frac{1}{8} X_i \quad \text{for } s \in (\Delta_j^-, \Delta_i). \]

Since we note from (30) that \(X_j(\Delta_j^-) > \theta \) for \(j \in \Lambda \), we obtain

\[X_j(s) > \theta e^{s - \Delta_j^-} / \theta \quad \text{for } s \in (\Delta_j^-, \Delta_j). \]

However since \(\Delta_j \to \infty \) as \(j \to \infty \) and \(\Delta_j^- \) is bounded, \(X_j(s) \) becomes arbitrary large for large \(j \in \Lambda \), which contradicts a boundedness of \(X_i(s) \). \(\square \)

Proof of Proposition 4.2. From Lemma 4.3, there exists a subsequence \(\{ (u_i, v_i) \} \in \mathbb{N} \) such that

\[\eta X_i \leq Y_i + Z_i, \quad \zeta Y_i < Z_i \quad \text{for } s \in (0, \Delta_j^-), \quad \lim_{s \to \infty} \Delta_j^- = \infty. \tag{31} \]

Therefore we get from (29) that

\[\bar{Z}_i < \left(-\frac{1}{4} + \bar{e} \left(\frac{1}{\bar{\eta}} \left(1 + \frac{1}{\bar{\zeta}} \right) \right) \right) \bar{Z}_i < \frac{1}{8} \bar{Z}_i \quad \text{for } s \in (0, \Delta_j^-), \]

which implies \(Z_i < Z_i(0)e^{-s/8} \). Combining this estimate and (31), we obtain

\[\| t_i(s) \| \rho < ce^{-s/8} \quad \text{for } s \in (0, \Delta_i^-) \]

for some \(c > 0 \). As a consequence, from Lemma 4.2, there exists a positive continuous function \(F(s) \) on \(s > 0 \) such that \(F(s) \to 0 \) as \(s \to \infty \) and

\[\| u_i(s) - 1 \| \rho < F(s) \quad \text{for } s \in (0, \Delta_i^-). \]

Then by taking a subsequence, we get \((u_i, v_i) \to (U, V) \) as \(i \to \infty \). From above estimates, we see that

\[\lim_{s \to \infty} \| U(s) - 1 \| \rho = 0, \quad \| V(s) \| \rho = O(e^{-s/8}). \]

Then Lemma 4.7 implies that \(\| U(s) - 1 \| \rho = O(e^{-s/8}) \) for some \(\gamma > 0 \). Therefore we get form Lemma 4.8 that

\[|U(y, s) - 1| + |V(y, s)| < ce^{-\gamma s/2} \quad \text{for } |y| < e^{\delta s} \tag{32} \]

for some \(\theta > 0 \) and \(c > 0 \). Since \(V \) satisfies (5), it holds that

\[\| V_s - (A - 1)V \| \rho < 2\| (U - 1)V \| \rho. \]

Since \(U \) is uniformly bounded, by using (3) and (32), we get

\[\| (U - 1)V \| \rho^2 = \int_{|y|<e^{\delta s}} (U - 1)^2 V^2 \rho dy + \int_{|y|>e^{\delta s}} (U - 1)^2 V^2 \rho dy < ce^{-2\gamma s} \int_{R} V^2 \rho dy + ce^{-2\delta s} \int_{|y|>e^{\delta s}} |y|^2 V^2 \rho dy < c \left(e^{-2\gamma s} + e^{-2\delta s} \right) \| V \|_{H_i^j(R)}^2. \]

Therefore we obtain

\[\| V_s - (A - 1)V \| \rho < ce^{-\mu s} \| V \|_{H_i^j(R)}^2 \]

for some \(\mu > 0 \). Repeating the argument as in the proof of Proposition 4.1, which derives contradiction. Therefore the assumption (21) is false. \(\square \)

Lemma 4.7. If \((u_i, v_i)\) converges to some function \((U, V)\) in \(L^\infty_{loc}(\mathbb{R} \times (0, \infty)) \) satisfying \(\lim_{s \to \infty} \| U(s) - 1 \| \rho = 0 \) and \(\| V(s) \| \rho \) decays exponentially, then \(\| U(s) - 1 \| \rho \) decays exponentially.

Proof. Put \(\lambda_i = e^{-\delta s}, \quad t_i = T - \lambda_i \) and

\[a_i(x, \tau) = \lambda_i a(\sqrt{\lambda_i} x, t_i + \lambda_i \tau), \quad b_i(x, \tau) = \lambda_i b(\sqrt{\lambda_i} x, t_i + \lambda_i \tau). \]
Then we see that
\[u_i(y, s) = (1 - \tau) a_i(x, \tau), \quad v_i(y, s) = (1 - \tau) b_i(x, \tau), \]
with \(x = e^{-s/2} y \) and \(1 - \tau = e^{-\theta s} \). Therefore since \((a_i(0), b_i(0)) = (u_i(0), v_i(0))\), we get \((a_i, b_i) \to (A, B)\) and
\[U(y, s) = (1 - \tau) A(x, \tau), \quad V(y, s) = (1 - \tau) B(x, \tau). \]
Since \(|V(s)|_\rho = O(e^{-\gamma s}) \), we see from Lemma 4.5 that \(|V(y, s)| = O(e^{-\gamma s}) \) for \(|y| < e^{\theta s} \). Therefore applying the same argument as [4] with a slight modification, we find that there are two possibilities: (I) there exists \(\gamma_1 > 0 \) such that \(|u(s) - 1|_\rho = O(e^{-\gamma_1 s}) \) or (II) there exists \(\Lambda \neq 0 \) such that \(U(s) - 1 = \Lambda(1 + o(1))s^{-1}\phi_0 \) in \(L^2_\rho(\mathbb{R}) \). Assume that (II) holds. Since \(|V(y, s)| = O(e^{-\gamma_1 s})\) for \(|y| < e^{\theta s}\), the argument in the proof of Proposition 2.3 in [5] shows
\[
\lim_{s \to 0} \sup_{|y| < \sqrt{s}} \left| \int_0^s \left(U(y, s) - \left(1 + \frac{y^2}{s} \right)^{1/2} \right) d\xi = 0 \right. \quad \text{for any } l > 0
\]
with some \(c > 0 \). Furthermore applying the argument in [7], we can verify that the origin is an isolated blow-up point of \((A, B)\). Therefore (II) is excluded from Lemma 4.2 which completes the proof.

Lemma 4.8. Let \((U, V)\) be a bounded solution of (5) satisfying \(|V(s)|_\rho = O(e^{-\gamma s}) \). Then there exist \(\theta > 0 \) and \(c > 0 \) such that
\[
|V(y, s)| < e^{-\gamma s/2} \quad \text{for } |y| < e^{\theta s}.
\]
Furthermore if \(|U(s) - 1|_\rho + |V(s)|_\rho = O(e^{-\gamma s}) \). Then there exist \(\theta > 0 \) and \(c > 0 \) such that
\[
|U(y, s) - 1| + |V(y, s)| < e^{-\gamma s/2} \quad \text{for } |y| < e^{\theta s}.
\]

Proof. We apply the method given in [7]. Let \(K = 2 \sup_{s > 0} |U(s)|_{L^\infty(\mathbb{R})} \). To construct a comparison function for \(V \), we consider
\[
W = AW + KW \quad \tau > s, \quad W_0 = |V(s)|.
\]
Then this solution \(W \) is given by
\[
W(\tau) = \frac{e^{K(\tau-s)}}{2\sqrt{\pi}\sqrt{1 - e^{-(\tau-s)}}} \int_{-\infty}^\infty \exp \left(\frac{-(ye^{-(\tau-s)/2} - \xi)^2}{4(1 - e^{-(\tau-s)})} \right) W_0(\xi) d\xi.
\]
Then it holds that
\[
\int_{-\infty}^\infty \exp \left(-\frac{(ye^{-(\tau-s)/2} - \xi)^2}{4(1 - e^{-(\tau-s)})} \right) W_0(\xi) d\xi < \left(\int_{-\infty}^\infty \exp \left(-\frac{(ye^{-(\tau-s)/2} - \xi)^2}{2(1 - e^{-(\tau-s)})} \right) \right)^{1/2} \||W_0||_\rho.
\]
Since
\[
\frac{(ye^{-(\tau-s)/2} - \xi)^2}{2(1 - e^{-(\tau-s)})} + \frac{\xi^2}{4} = -\frac{1 + e^{-(\tau-s)}}{4(1 - e^{-(\tau-s)})} \left(\xi - \frac{2e^{-(\tau-s)}}{1 + e^{-(\tau-s)}} \right)^2 + \frac{e^{-(\tau-s)}}{4(1 - e^{-(\tau-s)})^2} \left(2 - e^{-(\tau-s)} \right) y^2,
\]
we obtain
\[
W(\tau) < ce^{-\gamma s/2} \exp \left(\frac{2e^{-\gamma s/2} y^2}{2(1 - e^{-(\tau-s)})^2} \right) e^{-\gamma s}.
\]
We choose \(\tau = (1 + \frac{2s}{2\sigma})s \). Since \(\tau - s = \frac{2s}{2\sigma} > \log 2 \) for large \(s \), it follows that
\[
W(\tau) < ce^{-\gamma s/2} \exp \left(\frac{2e^{-\gamma s/2} y^2}{4\pi(1 - e^{-(\tau-s)})^2} \right) e^{-\gamma s}.
\]
for \(|y| < e^{\gamma s/4K} \) and \(s \gg 1 \). Therefore the first estimate is proved. Next we provide estimates for \(U - 1 \). Let \(C = U - 1 \). Then it satisfies
\[
C_\sigma = AC + C + C^2 - V^2.
\]
By the same way as above, we consider
\[
W = AW + KW + V^2 \quad \tau > s, \quad |W_0| = |V(s)|,
\]
where \(K = 1 + \sup_{s > 0} |U(s)|_{L^\infty(\mathbb{R})} \). Then \(W \) is given by
\[
W(\tau) = \frac{e^{K(\tau-s)}}{2\sqrt{\pi}\sqrt{1 - e^{-(\tau-s)}}} \int_{-\infty}^\infty \exp \left(-\frac{(ye^{-(\tau-s)/2} - \xi)^2}{4(1 - e^{-(\tau-s)})} \right) W_0(\xi) d\xi
\]
\[
+ \int_0^\tau \frac{e^{K(\tau-\mu)}}{2\sqrt{\pi}\sqrt{1 - e^{-(\tau-\mu)}}} \int_{-\infty}^\infty \exp \left(-\frac{(ye^{-(\tau-\mu)/2} - \xi)^2}{4(1 - e^{-(\tau-\mu)})} \right) V(\xi, \mu)^2 d\xi d\mu.
\]
By the same way as above, we choose \(\tau = (1 + \frac{2s}{2\sigma})s \). Then it is enough to estimate the second term on the right-hand side. Since \(|V(\xi, s)| < ce^{-\gamma s/2} \) for \(|\xi| < e^{\theta s}\) and \(s \gg 1 \), we get
\[
\int_{-\infty}^\infty \exp \left(-\frac{(ye^{-(\tau-\mu)/2} - \xi)^2}{4(1 - e^{-(\tau-\mu)})} \right) V(\xi, \mu)^2 d\xi < \int_{|\xi| < e^{\theta s}} d\xi + \int_{|\xi| > e^{\theta s}} d\xi < ce^{-\gamma \mu} \sqrt{4\pi(1 - e^{-(\tau-\mu)})} + c \int_{|\xi| > e^{\theta s}} \exp \left(-\frac{(ye^{-(\tau-\mu)/2} - \xi)^2}{4(1 - e^{-(\tau-\mu)})} \right) d\xi.
\]
If $|y| < e^{\theta s}/2$ and $|\xi| > e^{\theta s}$, it holds that $|ge^{-(\tau-\mu)/2} - \xi| > \xi/2$. Therefore we get
\[
\int_{|\xi| > e^{\theta s}} \exp \left(-\frac{(y e^{-(\tau-\mu)/2} - \xi)^2}{4(1 - e^{-(\tau-\mu)})} \right) d\xi < e^{-\gamma s} \int_{|\xi| > e^{\theta s}} |\xi|^\theta \exp \left(-\frac{\xi^2}{16(1 - e^{-(\tau-\mu)})} \right) < c(1 - e^{-(\tau-\mu)/(\gamma^2 + \theta/28)} e^{-\gamma s}
\]
for $|y| < e^{\theta s}/2$. As a consequence, we obtain
\[
\int_s^\tau \frac{e^{K(\tau-\mu)}}{2\sqrt{\pi}} \frac{1}{1 - e^{-(\tau-\mu)}} d\mu \int_{-\infty}^{\infty} \exp \left(-\frac{(y e^{-(\tau-\mu)/2} - \xi)^2}{4(1 - e^{-(\tau-\mu)})} \right) V(\xi, \mu)^2 d\xi < c e^{K(\tau-s)} \int_s^\tau e^{-\gamma \mu} d\mu < c e^{K(\tau-s)} e^{-\gamma s} = ce^{-\gamma s/2}
\]
for $|y| < e^{\theta s}/2$, which completes the proof.

\[\square\]

4.2 Proof of Theorem 1.4

The proof of Theorem 1.4 is almost the same as that of Proposition 1.2.

Proof of Theorem 1.4. Assume that (16) holds true. Then from Proposition 1.2, $v(s)$ converges to zero in $L_\rho^2(\mathbb{R})$ as $s \to \infty$. Then we see from Lemma 1.2 that $u(s) \to 1$ in $L_\rho^2(\mathbb{R})$ as $s \to \infty$. Once $\|v(s)\|_\rho = O(e^{-\gamma s})$ for some $\gamma > 0$ is derived, by the same argument as in the proof of Proposition 1.2, we obtain contradiction. Therefore it is enough to show that $v(s)$ decays exponentially in $L_\rho^2(\mathbb{R})$. In fact, we decompose $v(s)$ as (22) and define X, Y and Z as (28). Since $(u(s), v(s)) \to (0, 1)$, repeating arguments in Section 4.3, we obtain (29). Therefore we obtain
\[\kappa(s) = \bar{\eta}_X(s) - Y(s) - Z(s) < 0, \quad \bar{\zeta}Y(s) < Z(s).
\]
This implies that $v(s)$ decays exponentially in $L_\rho^2(\mathbb{R})$, which completes the proof.

\[\square\]

Acknowledgement

The author is partly supported by Grant-in-Aid for Young Scientists (B) No. 26800065.

References

[1] N. Ackermann, T. Bartsch, Superstable manifolds of semilinear parabolic problems, J. Dynam. Differential Equations 17 no. 1 (2005) 115-173.

[2] P. J. Cohen, M. Lees, Asymptotic decay of solutions of differential inequalities, Pacific J. Math. 11 (1961) 1235-1249.

[3] P. Constantin, P. D. Lax, and A. Majda A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math. 38 no. 6 (1985) 715-724.

[4] S. Filippas, R. V. Cohn, Refined asymptotics for the blowup of $u_t - \Delta u = u^p$, Comm. Pure Appl. Math. 45 no. 7 (1992) 821-869.

[5] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966) 109-124.

[6] J. S. Guo, H. Ninomiya, M. Shimojo, E. Yanagida, Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity, Trans. Amer. Math. Soc. 365 no. 5 (2013) 2447-2467.

[7] M. A. Herrero, J. J. L. Velázquez, Blow-up profiles in one-dimensional, semilinear parabolic problems, Comm. Partial Differential Equations 17 no. 1-2 (1992) 205-219

[8] J. J. L. Velázquez, Higher-dimensional blow up for semilinear parabolic equations, Comm. Partial Differential Equations 17 no. 9-10 (1992) 1567-1596

[9] S. Kotani, H. Matano, Differential Equation and Eigenvalue problems, Iwanami-shoten (Japanese)

[10] H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 no. 2 (1982) 401-441

[11] Y. Naito, T. Suzuki, Existence of type II blowup solutions for a semilinear heat equation with critical nonlinearity, J. Differential Equations 232 no. 1 (2007) 176-211

[12] H. Ogawa, Lower Bounds for Solutions of Differential Inequalities in Hilbert Space, Proc. Amer. Math. Soc. 16 (1965) 1241-1243.
[13] R. Palais, Blowup for nonlinear equations using a comparison principle in Fourier space, Comm. Pure Appl. Math. 41 no. 2 (1988) 165-196.

[14] T. Sakajo, Blow-up solutions of the Constantin-Lax-Majda equation with a generalized viscosity term, J. Math. Sci. Univ. Tokyo 10 no. 1 (2003) 187-207.

[15] T. Sakajo, On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term, Nonlinearity 16 no. 4 (2003) 1319-228.

[16] S. Schochet, Explicit solutions of the viscous model vorticity equation, Comm. Pure Appl. Math. 39 no. 4 (1986) 531-537.

[17] Y. Yang, Behavior of solutions of model equations for incompressible fluid flow, J. Differential Equations 125 no. 1 (1996) 133-153.

[18] N. Nouaili, H. Zaag, Profile for a simultaneously blowing up solution for a complex valued semilinear heat equation, arXiv: 1306.4435.