Complete chloroplast genome of *Camellia japonica* genome structures, comparative and phylogenetic analysis

Wei Li, Cuiping Zhang*, Xiao Guo, Qinghua Liu, Kuiling Wang*

College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China

* zcp116@126.com (CZ); kuilingwang@126.com (KW)

Abstract

Camellia is an economically, ecologically and phylogenetically valuable genus in the family Theaceae. The frequent interspecific hybridization and polyploidization makes this genus phylogenetically and taxonomically under controversial and require detailed investigation. Chloroplast (cp) genome sequences have been used for cpDNA marker development and genetic diversity evaluation. Our research newly sequenced the chloroplast genome of *Camellia japonica* using Illumina HiSeq X Ten platform, and retrieved five other chloroplast genomes of *Camellia* previously published for comparative analyses, thereby shedding lights on a deeper understanding of the applicability of chloroplast information. The chloroplast genome sizes ranged in length from 156,607 to 157,166 bp, and their gene structure resembled those of other higher plants. There were four categories of SSRs detected in six *Camellia* cpDNA sequences, with the lengths ranging from 10 to 17bp. The *Camellia* species exhibited different evolutionary routes that lhbA and orf188, followed by orf42 and psbZ, were readily lost during evolution. Obvious codon preferences were also shown in almost all protein-coding cpDNA and amino acid sequences. Selection pressure analysis revealed the influence of different environmental pressures on different *Camellia* chloroplast genomes during long-term evolution. All *Camellia* species, except *C. crapnelliana*, presented the identical rate of amplification in the IR region. The datasets obtained from the chloroplast genomes are highly supportive in inferring the phylogenetic relationships of the *Camellia* taxa, indicating that chloroplast genome can be used for classifying interspecific relationships in this genus.

Introduction

Camellia, containing about 280 species, is a genus with high economic, ecological and phylogenetic values in the family Theaceae [1, 2]. It is native to Southern, Eastern Asia and China, which possess more than 80% of the species and are the center of species diversity [3]. Besides the abundance in species diversity and phylogenetic significance, people pay more attention to this genus, for their commercial and ornamental values. For example, *C. sinensis var. sinensis* and *C. sinensis var. assamica* have the highest economic value in *Camellia*. Tea leaves have
been proven to be beneficial for human health as they contain over 700 chemical constituents [1, 4]. *Camellia* is also known as ornamental trees for urban gardening. The cultivation history of *Camellia* has been at least 1300 years in China [3]. Today, a group of yellow flowers named golden *Camellia*, e.g. *C. chrysantha*, are grown for ornamental purposes, with thirteen to sixteen petals of a flower and blooming several times in a year. Many other *Camellia* species, e.g. *C. japonica*, also had local uses. The other most economically valuable species, *C. oleifera* and *C. reticulata*, are used for edible oil and cooking in China [5, 6]. At present, more than 3 million hectares are used for *Camellia* oil production, and the yield of the *Camellia* nearly 164,000 tons of edible oil [3, 7]. Although the *Camellia* is native to Asia, because of its variety use, the cultivated species are now found all over the world [1, 8–10]. However, the genus *Camellia* is phylogenetically and taxonomically under controversial that detailed investigation is required, as a result of frequent interspecific hybridization and polyploidization. Whereas classification of the genus *Camellia* is traditionally based on morphology [11–16], the result of this systematics is often unreliable and made lots of controversy as morphology is often affected by environmental factors [2]. As a result, it is urgent to seek other methods for rebuilding the classification of *Camellia*.

Being relatively stable and not easily affected by the environment, molecular methods can provide useful information for taxonomic classification and phylogenetic. Molecular methods, e.g. DNA and RNA sequences [10, 17–24], internal transcribed spacer [10, 18], simple sequence repeats (SSR) [25, 26], ribosomal DNA [27] and several DNA loci [28], have been involved to better understand the evolution of the *Camellia*. A number of studies focus on the taxonomy, species identification and phylogenetics of the *Camellia*, but still have not get a satisfied resolution. A recent study used complete chloroplast genomes in several *Camellia* species [2, 29–31] and got more information of this species. *Camellia* japonica has been present in Qingdao, Shandong province since the tertiary, it has evolved in dependently after that. A recent research shows that the early flower development sequence placed *C. japonica* (Naidong) in a most primitive branch of the phylogenetic tree compared to other species [32]. The taxonomy of *C. japonica* with other *Camellia* species is in dispute.

In plant cells, the chloroplast is not only the most important and universal organelle, but also one of the major genetic systems (the other two are nucleus and mitochondria). It is involved in photosynthesis and associated with metabolism, such as fatty acid and amino acid synthetic pathways [33–35]. As an independent organelle, the chloroplast has its own genome. It has a covalently closed circular DNA structure and exists in multi-copies in plant cell. It has a conserved circular DNA arrangement [36]. Since the chloroplast genome is self-replicating and has a relatively independent evolutionary process, it has been used for resolving the source populations during species evolution [8, 34, 37–45].

Here, we report newly sequenced complete chloroplast genomes of *C. japonica* using next generation sequencing technology and genomic comparative analysis with other five published chloroplast genome sequence from the NCBI. This study aims to deeply analyze the chloroplast genomes of six *Camellia* species and to determine their (especially the *C. japonica*) phylogenetic positions.

Materials and methods

Ethics statement

College of Landscape Architecture and Forestry, Qingdao Agricultural University has had a permit from local forestry authorities (Qingdao forestry bureau http://ly.qingdao.gov.cn/) to collect the sample. This research was carried out in compliance with the laws of People’s Republic of China.
Plant materials and genomic DNA isolation

We collected fresh leaves from an adult *C. japonica* tree growing in the Daguan Island (Jimo District Qingdao city, Shandong, China) (N36°14′, E120°46′, Altitude 10m). The leaves were dried immediately with silicagel. Total genomic DNA was extracted according to Wiland-Szymańska [46].

Chloroplast genome sequencing, assembly and annotation

We used an ultrasonicator to randomly fragment the extracted genomic DNA into 400–600 bp. The NEBNext Ultra DNA Library Prep Kit was used to construct an Illumina paired-end cpDNA library. Paired-end sequencing (2 × 150 bp) was run on an Illumina HiSeq X Ten platform. After filtering the raw data, the cp genomes were assembled according to the following steps. Frist the clean reads were used to assembled into contigs using SOAPdenovo 2.017. Then, the contigs were aligned to the relative species (*C. sinensis* JQ975030) and get the relative location of the contig sequences and the structure diagram of cp genomes were obtained. The software Gap Closer 1.12 were used to fill the gaps. Finally, the complete cp genome sequence were obtained. The chloroplast genome sequences were annotated with CpGAVAS software and DOGMA software, and then manually corrected.

Molecular marker development

We conducted a sliding window analysis and used DnaSP (DNA Sequences Polymorphism version 5.10.01) software to calculate the nucleotide diversity (Pi) of the six complete *Camellia* chloroplast genomes [47]. We set the step size to 200 bp with a window length of 600bp.

For different lengths of SSRs, including mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, minimum numbers (thresholds) were 10, 5, 4, 3, 3, and 3, respectively. We manually verified all the repeats found, and removed unwanted results.

The mVISTA[48] program was used to compare the complete chloroplast genome of *C. japonica* to other five published chloroplast genomes of the genus *Camellia*, i.e., *C. huana* (KY_626042), *C. crapnelliana* (KF_753632), *C. azalea* (KY_856741), (KY_626042), *C. liberofilamenta* (KY_626041) with the shuffle-LAGAN mode [49], so that inter-and intra-specific variations were shown. We used Mega 6.0 software [50] to determine the variable and parsimony-informative base sites across the complete chloroplast genomes, and LSC, SSC and IR regions of the six chloroplast genomes.

DnaSP software was used for manual detection of insertions/deletions. To estimate selection pressures, the 78 protein coding genes in the chloroplast genomes were combined. We used PAML with the yn00 program to calculate the Ka and Ks rates of the combined sequences [51].

Selection pressure analysis

We used KaKs_Calculator 2.0 [52] to determine the Ka and Ks values of genes containing SNP variations, so that we can analyze how different *Camellia* have evolved under different environmental pressures. We also analyzed the codon preference, and mapped them by R software.

Phylogenies were constructed using the 19 cp genome of the *Camellia* species sequences from the NCBI Organelle Genome and Nucleotide Resources database: *C. crapnelliana* (KF_753632), *C. azalea* (KY_856741), *C. luteoflora* (KY_626042), *C. huana* (KY_626042), *C. liberofilamenta* (KY_626041), *C. oleifera* (JQ_975031), *C. taliensis* (KF_156836), *C. yunnanensis* (KF_156838), *C. cuspidate* (KF_156833), *C. reticulate* (KI_806278), *C. pitardii* (KF_156837), *C. danzaiensis* (KF_156837), *C. petelotii* (KJ_806276), *C. leptophylla* (KJ_806275), *C. impressinervis*
We implemented maximum likelihood (ML) analyses on the CIPRES cluster1 [53]. GTR+I+R was selected as the nucleotide substitution model. This model was determined from jModel Test v2.1.4 [54]. This model is used to obtain the dataset from the chloroplast genome. For protein-coding regions, it is also used as a partitioned model.

We also used PAUP v4b10 to analyze maximum parsimony (MP). We treated gaps as missing, and character states as unordered. We selected MULPARS option when performing Heuristic search. Further steps include tree bisection-reconnection branch swapping, and random stepwise addition with 1,000 replications.

Results

Basic characteristics of the Camellia chloroplast

A total of with 10.44 Gb clean data were generated by Illumina HiSeq X Ten platform. After data filtering with mean Q20 higher than 94.70% and the mean length was 150 bp. The chloroplast genome sizes of the six Camellia species ranged from 156,607 bp (C. japonica) to 157,166 bp (C. luteoflora). The structure of all chloroplast genomes is quadripartite, which is typical of angiosperm cpDNA. Each chloroplast genome consists of a large single copy region (86,258–86,719bp) and a small single copy region (18,203–18,406bp), separated by two inverted repeat regions (25,967–26,077bp) (Table 1). The GC content of three Camellia species (C. japonica, C. huana and C. liberofilamenta) was 37.32% and the others were 37.30%. The average of GC content is almost similar among the six Camellia species. The well-conserved genomic structure resembled those of other higher plants, including gene number and gene order (Fig 1 and Table 2). The complete C. japonica cp genome sequence has been submitted to GenBank with the accession number PRJNA510919.

Comparative analysis of the Camellia chloroplast genomes

Chloroplast simple sequence repeats (cpSSRs) play a crucial role in studying phylogeny and population genetics[55]. We analyzed cpSSRs in the chloroplast genomes (S1 and S2 Tables).
Fig 1. Gene map of *Camellia japonica*. The genes inside and outside of the circle are transcribed in the clockwise and counterclockwise directions, respectively. Genes belonging to different functional groups are shown in different colors. The thick lines indicate the extent of the inverted repeats (IRa and IRb) that separate the genomes into small single-copy (SSC) and large single-copy (LSC) regions.

https://doi.org/10.1371/journal.pone.0216645.g001
The number of cpSSRs ranged from 67 (C. azalea) to 74 (C. huana) among the six *camellia* taxa. The number of nucleotide repeats had no significant difference among the six *camellia* taxa (Fig 2).

The majority of the 420 SSR loci reside in LSC regions (286 loci, 68.10%). Only a minor portion are located in the SSC regions (72 loci, 17.14%) and IR regions (62 loci, 14.76%). Same as previously reported the SSR loci exhibited a significantly variable distribution among all regions in each of the six *Camellia* chloroplast genomes [34, 56]. The lowest value (17) was

Table 2. Genes identified in the chloroplast genome of *Camellia* species.

Category for genes	Group of gene	Name of gene
Genes for photosynthesis	ATP synthase	atpA, atpF (pseudogene), atpH, atpL, atpE, atpB
	NADH-dehydrogenase	ndhJ, ndhK, ndhC, ndhB, ndhF, ndhD, ndhE, ndhG
	cytochrome b/f complex	petN, petA, petL, petG, petB, petD
	photosystem I	psaB, psaA, psaL, psaD, psaC
	photosystem II	psbA, psbK, psbI, psbM, psbD, psbC, psbZ, psbL1, psbL, psbE, psbF, psbB, psbT, psbN, psbH
Rubisco	rbcL	
Transcription and translation related genes	transcription	rpoC2, rpoC1, rpoB, rpoA
ribosomal proteins	rps12, rps16, rps2, rps14, rps4, rps18, rps12, rps11, rps8, rps3, rps19, rps7, rps15, rps7, rpl33, rpl20, rpl36, rpl14, rpl16, rpl22, rpl2, rpl23, rpl32, rpl23, rpl2	
RNA genes	ribosomal RNA	rrn16S, rrn23S, rrn4.5S, rrn5S, rrn4.5S, rrn23S, rrn16S
transfer RNA	trnH-GUG, trnK-UUU, trnQ-UUG, trnS-GCU, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnS-UGA, trnG-UCU, trnM-CAU, trnG-GAG, trnT-UUG, trnL-UAA, trnF-GAA, trnV-UAC, trnM-CAU, trnW-CCA, trnA-UGG, trnL-CAU, trnL-CAC, trnV-GAC, trnL-CAU, trnA-UGC, trnR-ACG, trnN-GUU, trnL-UAG, trnN-GU, trnR-ACG, trnU-UGC, trnL-CAU, trnL-CAU, trnL-CAU, trnL-CAU	
Other genes	RNA processing	matK
carbon metabolism	cemA	
fatty acid synthesis	accD	
proteolysis	clpP	
Genes of unknown function	Conserved open reading frames	ycf3, ycf4, ycf2, ycf15, ycf15, ycf1, ycf1, ycf15, ycf15, ycf2

The number of cpSSRs ranged from 67 (*C. azalea*) to 74 (*C. huana*) among the six *camellia* taxa. The number of nucleotide repeats had no significant difference among the six *camellia* taxa (Fig 2).

The majority of the 420 SSR loci reside in LSC regions (286 loci, 68.10%). Only a minor portion are located in the SSC regions (72 loci, 17.14%) and IR regions (62 loci, 14.76%). Same as previously reported the SSR loci exhibited a significantly variable distribution among all regions in each of the six *Camellia* chloroplast genomes [34, 56]. The lowest value (17) was
between *C. huana* and *C. luteoflora*, while the highest value (58) of nucleotide substitutions was observed between *C. huana* and *C. liberofilamenta*, showing a wider range of variability according to the sequence alignment of the six chloroplast genomes (Table 3). The values of Ka/Ks ranged from 0.2342 to 0.5971. The lowest value was between *C. crapnelliana* and *C. luteoflora*. The highest value was between *C. huana* and *C. liberofilamenta* (Table 3). The result that the Ka/Ks ratio is below 1 indicated negative selection as the selection model for the related gene regions.

Chloroplast gene gain-loss events

Despite high conservation of chloroplast genome sequences, structural variations, gene loss, and metastasis occur in some species as a result of evolution. This study compared nineteen *Camellia* species (Table 4). We found that lhbA and orf188, followed by orf42 and psbZ, were readily lost during evolution. The results also showed that psal, psbF, psbH and psbZ were lost in *C. danzaeensis*, compared with the other eighteen species. Moreover, *C. japonica* had lost trnfM-CAU gene compared the other species. Gene loss events also occur in other plants, e.g. the loss of infA in the Fagales chloroplast genome [55], and the loss of rpl32 in the *Paonia obovata* chloroplast genome [57]. Among the rpsl6, ndh, infA, and ycf2 genes, some have disappeared in some angiosperms, and in some legumes, gene loss events have occurred to all of them [58].

Analysis of codon preference

69.59% of the *Camellia* chloroplast genome sequence was gene coding, of which the vast majority was protein coding. The analytic varieties provided by statistical analyses of all protein-coding cpDNA and amino acid sequences showed obvious codon preferences. It also showed the similarity of protein codons in the six *Camellia* species, of which AAA, ATT, GAA, AAT, and TTT had the highest frequencies, and the TGA, TAG, TAA, TGC, CGC had the lowest frequencies (Fig 3). The third codon showed a high A/T preference, which is a common phenomenon in higher plant chloroplast genomes [59–61].

The pattern of the codon preference has important significance in studying species evolution. We used the relative synonymous codon usage (RSCU) as a relative intuitionistic to measure the extent of codon bias [62]. The synonymous codon preference is partitioned into four models: high preference (RSCU > 1.3), moderate preference (1.2 ≤ RSCU ≤ 1.3), low preference (1.0 < RSCU < 1.2) and no preference (RSCU ≤ 1.0).

Among the protein-coding chloroplast genes in the six *Camellia* species, the 20 amino acids were encoded by 64 codons, in which most of the amino acids had codon preferences except tryptophan (Fig 4). As a total, 30 codon preferences were identified, with 18 amino acids and one stop codon involved. Among the preferred codons, 70.00% exhibited high preferences.

	C. japonica	*C. crapnelliana*	*C. azalea*	*C. luteoflora*	*C. huana*	*C. liberofilamenta*
C. japonica	35					
C. crapnelliana	0.4200					
C. azalea	0.4791	0.3613				
C. luteoflora	0.3872	0.2342	0.3663			
C. huana	0.4870	0.3610	0.5096	0.4993		
C. liberofilamenta	0.4301	0.3470	0.4450	0.4605	0.5971	

Table 3. Pairwise substitution rate between the *Camellia* chloroplast genomes based on the 78 protein-coding gene sequences.

https://doi.org/10.1371/journal.pone.0216645.t003
This result further revealed the relative conservation of *Camellia* chloroplast genomes, as high codon preference is also a common phenomenon in higher plants.

IR contraction analysis

In the chloroplast genome, the IR region is considered as the most conserved region. However, genome size variations often occur in its expansion/contraction regions among various plant lineages, which can be used to study the phylogenetic classification of plants [63]. We compared the IR-SSC and IR-LSC boundaries information of six *Camellia* were compared (Fig 5). The LSC/IRa boundaries was located within the coding region of rps 19 and created a pseudo-gene of 279bp at LSC/IRa border. The ycf1 gene spanned the IRb/SSC region and the length of ycf1 was from 936bp to 1069bp. Furthermore, the TrnH-GUG gene (75bp) was located in the LSC. However, the gene trn-GUU and ndhf was not observed in *Camellia* except *C. crapnelliana*, that means they contribute little to the overall size variations in the chloroplast genomes of *Camellia* plants.

Genome divergence between the Camellia species

A sequence identity analysis based on mVISTA was performed between six *Camellia* species, and the reference was the *C. japonica* chloroplast genome (Fig 6). The aligned sequences that exhibit high similarity showed higher conservation than the remaining sequences across the whole chloroplast genome. Lower divergence levels were exhibited in IR and coding regions than in SC and non-coding regions, respectively.

We conducted a sliding window analysis and DnaSP software to calculate the nucleotide diversity of the six complete *Camellia* chloroplast genomes (Fig 7). Among the six *Camellia* taxa, *C. japonica* had the most nucleotide substitutions and insertions/deletions, while *C. japonica*...
Fig 3. Codon distribution of all merged protein-coding genes. Color key: Red indicates a higher frequency and blue indicates a lower frequency.

https://doi.org/10.1371/journal.pone.0216645.g003

Fig 4. Codon content of 20 amino acid and stop codons in all protein-coding genes.

https://doi.org/10.1371/journal.pone.0216645.g004
huana had least nucleotide diversity, and the smallest numbers of nucleotide substitutions and insertions/deletions.

According to the chloroplast genome sequence alignment of the six Camellia taxa, six hyper-variable regions, trnS-trnR, petN-psbM, trnF-ndhJ, petA-psbJ, rpl32-trnL, ycf1 were discovered (Fig 7). These six sequences could be used as DNA markers for classification and revealing the genetic divergence of the Camellia taxa, with a high discrimination success ranging from 60% to 100% (Table 5). The sequences of the petN-psbM and ycf1 are two most rapidly evolving regions were able to discriminate all the taxa investigated in this study. In those most rapidly evolving regions, 121 and 122 variable base sites were detected, respectively, of which, 61 and 62 informative base sites, made up 2.86–2.99% in each of the sequences. Comparatively, the commonly recommended DNA fragments (rbcL and matK) achieved only 40% and 80% of discrimination success respectively.

Phylogenetic analysis

Previous studies have fairly well resolved the relationships between Camellia species, but have not well studied the position of Camellia [29, 30, 64]. Six data partitions including coding regions, large single-copy region, the small single copy region, IR region, the inverted repeat region, introns and spacers and the complete cp DNA sequences from the 19 Camellia were used for phylogenetic analyses. All six datasets produced similar phylogenetic trees with moderate to high support, whereas the IR dataset had poor support (Fig 8). The reconstructed
phylogeny divided the species into clads based on maximum likelihood (ML) and Maximum parsimony methods (MP).

The phylogenetic tree reveals that *C. japonica* is most related with *C. oleifera*. Furthermore, the phylogenetic result is consistent with the section-level classification by Raven [65]. The chloroplast resource will be helpful for the conservation, taxonomy, and breeding programs of the genus *Camellia*.

Chloroplast genome variation and evolution

In this study, Illumina next-generation technology was used to completely sequence the chloroplast genome of *C. japonica* and compared with the previously reported chloroplast genomes in *Camellia*. The chloroplast genomes of *C. japonica* displayed the typical quadripartite structure of flowering plants, were conservative in gene order and gene content, in comparison
with the most lineages of angiosperms. The chloroplast genome sizes ranged from 156,607 to 157,166 bp in length. IR regions are considered as the most conserved region, which considered to be the primary mechanisms affecting length variation of angiosperm chloroplast genomes. Only minor variations were detected at the SC/IR boundaries of six *Camellia*. Occurrence of indels was the main factor effecting the variation of the length in *Camellia* chloroplast genomes. the *Camellia* chloroplast genomes contained more AT content than GC content, which is a common phenomenon in higher plant chloroplast genomes [59–61].

SSRs are widely used in phylogenetic analyses and population genetics and polymorphism investigations. A total of 420 SSR loci were identified and the number of SSRs ranged from 67 to 74 in *Camellia*. the mono-nucleotide repeats are the most common SSRs in chloroplast genomes, which make more contributions to the genetic variation than the longer SSRs. Since the structure of chloroplast genomes are conservative, SSR primers are transferable across

![Fig 7. Sliding window analysis of the whole chloroplast genomes of six *Camellia* taxa (window length: 600 bp, step size: 200bp). X-axis, position of the midpoint of a window; Y-axis, nucleotide diversity of each window.](https://doi.org/10.1371/journal.pone.0216645.g007)

Table 5. Variability of six hyper-variable markers and universal chloroplast DNA barcodes (rbcL and matK) in *Camellia*.

Maker	length	Variable base sites	Informative base sites	Mean distance	Discrimination success (%) based on Distance method	
	Number	Percentage (%)	Number	Percentage (%)		
trnS-trnR	1024	55	29	2.78	0.0172	60
petN-psbM	2038	121	61	2.99	0.0157	100
trnF-ndhJ	867	53	25	2.88	0.0167	80
petA-psbJ	1547	86	44	2.84	0.0165	80
rpl32-trnL	2017	108	55	2.72	0.0178	80
ycfI	2168	122	62	2.86	0.0181	100
rbcL	1401	31	17	1.18	0.0063	40
matK	1535	49	26	1.66	0.0091	80

https://doi.org/10.1371/journal.pone.0216645.t005
species and genera. Information involving SSRs in this study will provide useful sources for estimating the phylogenetic relationships among species and genera.

Potential cpDNA barcodes

Camellia is the largest genus in its family, including more than 280 species all over the world. For effective exploration, conservation, and domestication, accurately identified wild species would provide a clear genetic background of this genus. However, the taxonomic inventory of...
genus *Camellia* is still under controversial, because of the vast amount of species with extensive global distribution and interspecific hybridization. DNA barcoding has been widely used in identify unknown species [66]. The *rbcL* and *matK* is considered as core universal DNA barcodes in many species. Therefore, genomic comparative researches of more complete chloroplast genome sequences have become necessary for developing variable DNA barcodes. These mutation “hotspot” regions can be used to develop novel DNA barcodes [67]. The six potential mutational hotspots (trnS-trnR, petN-psbM, trnF-ndhJ, petA-psbJ, rpl32-trnL, ycf1) identified in this study could be suitable barcodes for plant classification in *Camillia*. In previous reports, the gene ycf1 was recommended as core DNA barcode for plants because of the high divergence [68]. Ycf1 gene has been widely applied in plant phylogeny and DNA barcoding studies [69–70].

Recently, using the chloroplast genome as a super-barcode for plant species identification was discussed [71]. The analyses on chloroplast genome sequence divergence showed that it may indeed be useful as a super-barcode for species identification of *Camellia*. Further research is necessary to investigate whether these hyper-variable regions or complete chloroplast genome sequences could be used as reliable and effective DNA barcodes for species of *Camellia*. The results obtained in this study have significant value for future studies on global genetic diversity assessment, phylogeny, and population genetics of *Camellia*.

Perspectives of persimmon research in future

It is important to elucidate the genetic relationship of *Camellia* taxa for germplasm conservation, breeding strategies of *Camellia*. The accurate classification of sect. *Thea* have widely been acknowledged to be complex. For example, the taxonomy of *C. pubicosta* still has a dispute. Min et al considered that the *C. pubicosta* belongs to sect. *Corallina* [71], while Chang and Huang insisted it belongs to sect. *Thea*. [29, 72]. In our research the *C. pubicosta* was close to *C. sinensis* and *C. grandibracteata* supporting *C. pubicosta* might be classified into sect. *Thea*. Previous studies reported that species of sect. *Thea* can be divided into two groups, agreeing with the locule ovary number [73,74]. However, our results showed that the classification of this species was not entirely consistent with previous studies [74,75]. For instance, the *C. taliensis* and *C. cuspidate, C. grandibracteata* and *C. sinensis* were supported as monophyletic respectively. However, the *C. taliensis* and *C. grandibracteata* have 5 ovaries, while *C. cuspidata* and *C. sinensis* have 3 ovaries.

The *C. japonica* population in Qingdao, Shandong province is the only one in temperate areas in China. While this population has been present in this area since the tertiary, after the quaternary glacier most thermophylic species extinction or migration to warmer regions. In contrast, *C. japonica* adapted to temperate climate. Since then, it has evolved independently and no gene exchanges with the distribution center species. Zhang et al considered that the *C. japonica* was the relative evolutionary species. The results of phylogenetic analysis support that *C. japonica* and *C.oleifera* as monophyletic, However the *C. japonica* have 2–3 ovaries and the *C.oleifera* have 3–5 ovaries. Our results indicated that the classification of *Camellia* species using locule ovary number may be reconsidered. The combination of traditional classification methods, molecular markers and sequencing of more complete cp genomes of *Camellia* are necessary to solve the problem of *Camellia* classification in the future research.

Conclusions

We reported the complete chloroplast genome sequences of *C. japonica* were reported based on the Illumina HiSeq X Ten platform. *C. japonica* chloroplast genomes exhibited a typical quadripartite and circular structure with 156607bp. We investigated the variation of repeat
sequences, SSRs among the six complete Camellia cp genomes. Selection pressure analysis revealed the influence of different environmental pressures on different Camellia chloroplast genomes during long-term evolution. Obvious codon preferences were shown in almost all protein-coding cDNA and amino acid sequences. Lower divergence levels were exhibited in IR and Coding regions than in SC and Non-coding regions, respectively. The results of phylogenetic showed that C. japonica has the closest relationship with C. oleifera. Therefore, chloroplast genome resources will be helpful for taxonomic studies, conservation, and breeding programs of the genus Camellia.

Supporting information
S1 Table. Features of SSRs in each of the six Camellia chloroplast genomes.
(DOCX)
S2 Table. Distribution of each SSR type in each of the six Camellia chloroplast genomes.
(DOCX)

Author Contributions
Conceptualization: Wei Li, Cuiping Zhang.
Funding acquisition: Wei Li.
Project administration: Xiao Guo, Kuiling Wang.
Resources: Cuiping Zhang, Xiao Guo.
Supervision: Wei Li, Qinghua Liu.
Visualization: Qinghua Liu.
Writing – review & editing: Kuiling Wang.

References
1. Vijayan K, Zhang W, Tsou C. Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am J Bot. 2009; 96(7):1348–1360. https://doi.org/10.3732/ajb.0800205 PMID: 21628283
2. Yang JB, Yang SX, Li HT, Yang J, Li DZ. Comparative chloroplast genomes of Camellia species. PLoS One. 2013; 8(8):e73053. https://doi.org/10.1371/journal.pone.0073053 PMID: 24009730
3. Gao JY, Parks CR and Du YQ. Collected species of the genus Camellia and illustrated outline. Zhejiang: Zhejiang Science and Technology Press; 2005.
4. Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sciences. 2007; 81(7):519–533. https://doi.org/10.1016/j.lfs.2007.06.011 PMID: 17655876
5. Zhang D, Yu J, Chen Y, Zhang R. Ornamental Tea oil Camellia Cultivars and Their Hypocotyl Graft Propagation. SNA Research Conference. 2007; 52: 257–260.
6. Flora of China Editorial Committee. Flora of China. Beijing: Science Press; 2004.
7. Ming T. A systematic synopsis of the genus Camellia[J]. Acta Botanica Yunnanica, 1999; 21(2):149–159.
8. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA. 2010; 107(10):4623–4628. https://doi.org/10.1073/pnas.0907801107 PMID: 20176954
9. Wachira F, Tanaka J, Takeda Y. Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. J Hortic Sci Biotech. 2001; 76(5):557–563.
10. Tian M, Li JY, Ni H, Fan ZQ, Li XL. Phylogenetic Study on Section Camellia Based on ITS Sequences Data. Acta Horticulturae Sinica. 2008; 35(11):1685–1688.
11. Sealy JR. A Revision of the Genus Camellia. The Royal Horticultural Society Press; 1958.
24. Wei SJ, Lu YB, Ye QQ, Tang SQ. Population Genetic Structure and Phylogeography of Wang G, Luo Y, Hou N, Deng LX. The complete chloroplast genomes of three rare and endangered species with secretory structures based on integrated leaf characters. Plant Sys & Evol. 2010; 290(1–4):1–20.

16. Lu H, Wu J, Ghiassi M, Sean L, Mantri N. Classification of Camellia(Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques. Plos One. 2012; 7(1):e29704. https://doi.org/10.1371/journal.pone.0029704 PMID: 22235330

17. Yang J, Li H, Yang S, Li D, Yang Y. The application of four DNA sequences to studying molecular phylogeny of Camellia (Theaceae). Acta Botanica Yunnanica. 2006; 28(2):108–114.

18. Tang S, Zhong Y. A Phylogenetic Analysis of nrDNA ITS Sequences from S. Chrysanth (Sec. Chrysantha, Camellia, Theaceae). J Genet Mol Bio. 2002; 13(2):105–107.

19. Yao QY. EST SSR development and identification of candidate genes related to triacylglycerol and pigment biosynthesis and photoperiodic flowering in Camellia reticulata by RNA-seq. Thesis, The University of Yunnan. 2003.

20. Xiao TJ, Parks CR. Molecular analysis of the genus Camellia. 2003; (35):57–65.

21. Su MH, Hsieh CF, Tsou CH. The confirmation of Camellia formosensis (Theaceae) as an independent species based on DNA sequence analyses. Botanical Studies. 2011; 50(4):477–485.

22. Prince LM, Parks CR. Phylogenetic Relationships of Theaceae Inferred from Chloroplast DNA Sequence Data. J Am J Bot. 2001; 88(12):2309–2320. PMID: 21669662

23. Liu Y, Yang SX, Ji PZ, Gao LZ. Phylogeography of Camellia taliensis (Theaceae) inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation. BMC Evol Biol. 2012; 12(1):92.

24. Wei SJ, Lu YB, Ye QQ, Tang SQ. Population Genetic Structure and Phylogeography of Camellia flavida (Theaceae) Based on Chloroplast and Nuclear DNA Sequences. Front Plant Sci. 2017; 8:718. https://doi.org/10.3389/fpls.2017.00718 PMID: 28579991

25. Zhao Y, Ruan CJ, Ding GJ, Mopper S. Genetic relationships in a germplasm collection of Camellia japonica and Camellia oleifera using SSR analysis. Gene Mol Res. 2017; 16(1):1–14.

26. Zhao DW, Yang JB, Yang SX, Kato K, Luo JP. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. BMC Plant Biol. 2014; 14(1):14.

27. Xu J, Xu Y, Yonezawa T, Li L, Hasegawa M, Lu F, et al. Polymorphism and evolution of ribosomal DNA in tea (Camellia sinensis, Theaceae). Molecular Phylogenetics & Evolution. 2015; 89:63–72.

28. Fang W, Yang JB, Yang SX, Li DZ. Phylogeography of Camellia sects. Longipedicellata, Chrysantha and Longissima (Theaceae) Based on Sequence Data of Four Chloroplast DNA Loci. Acta Botanica Yunnanica. 2010; 32(1):1–13.

29. Huang H, Shi C, Liu Y, Mao SY, Gao LZ, et al. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol. 2014, 14(1):151.

30. Wang G, Luo Y, Hou N, Deng LX. The complete chloroplast genomes of three rare and endangered camellias (Camellia huana, C. liberofilamenta and C. luteoflora) endemic to Southwest China. Conserv Genet Resour. 2017:1–3.

31. Liu Y, Han Y. The complete chloroplast genome sequence of endangered Camellia (Camellia pubifurcaea). Conserv Genet Resour. 2017(15):1–3.

32. Zhang Q, Hao Q, Guo X, Liu Q, Sun Y, Liu Q, et al. Anther and ovule development in Camellia japonica (Naidong) in relation to winter dormancy: Climatic evolution considerations. Flora. 2017; 233:127–139.

33. Neuhaus HE, Emes MJ. Nonphotosynthetic metabolism in plastids. Annual Review of Plant Physiology & Plant Molecular Biology. 2000; 51(51):111–140.

34. Dong W, Xu C, Li D, Jin X, Li R, Lu Q, et al. Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae). PeerJ. 2016; 4(2):e2599.

35. Gurusamy R, Seonjoo P. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms. Front Plant Sci. 2016; 7(32).
36. Jansen RK, Raubeson LA, Boore JL, Depamphilis CW, Chumley TW, Haberle RC, et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Method in Enzymol. 2005; 395(6):348–384.

37. Small RL, Cronn RC, Wendel JF. Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot. 2004; 17(2):145–170.

38. Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, et al. ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. 2015; 5:8348. https://doi.org/10.1038/srep08348 PMID: 25672218

39. Suo Z, Chen L, Dong P, Jin X, Zhang H. A new nuclear DNA marker from ubiquitin ligase gene region for genetic diversity detection of walnut germplasm resources. Biotechnol Rep. 2015; 5:40–45.

40. Suo Z, Li WY, Jin XB, Zhang HJ. A New Nuclear DNA Marker Revealing Both Microsatellite Variations and Single Nucleotide Polymorphic Loci: A Case Study on Classification of Cultivars in Lagerstroemia indica L. Journal of Microbial & Biochemical Technology. 2016; 8(4):266–271.

41. Song Y, Dong W, Liu B, Xu C, Yao X, Gao J, et al. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front Plant Sci. 2015; 6:662. https://doi.org/10.3389/fpls.2015.00662 PMID: 26379689

42. Downie SR, Jansen RK. A Comparative Analysis of Whole Plastid Genomes from the Apiales: Expansion and Contraction of the Inverted Repeat, Mitochondrial to Plastid Transfer of DNA, and Identification of Highly Divergent Noncoding Regions. Syst Bot. 2016; 40(1):336–351.

43. Curci PL, De PD, Danzi D, Vendramin GG, Sonnante G. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. Plos One. 2015; 10(3):e0120589. https://doi.org/10.1371/journal.pone.0120589 PMID: 25774672

44. Li J, Wang S, Jing Y, Ling W. A Modified CTAB Protocol for Plant DNA Extraction. Chinese Bulletin of Botany. 2013; 48(1):72–78.

45. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013; 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197 PMID: 24132122

46. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007; 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088 PMID: 17483113

47. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom, Proteom Bioinf. 2010; 8(1):77–80.

48. Miller MA, Pfeiffer W, Schwartz T. The CIPRES Science Gateway: A Community Resource for Phylogenetic Analyses. Teragrid Conference: Extreme Digital Discovery; 2011.
58. Wolfe KH, Morden CW, Ems SC, Palmer JD. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol. 1992; 35(4):304–317. PMID: 1404416

59. Nie XJ, Lv SZ, Zhang YX, Du XH, Wang L, Biradar SS, et al. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). Plos One. 2012; 7(5):e36869. https://doi.org/10.1371/journal.pone.0036869 PMID: 22606302

60. Yi DK, Kim KJ. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum. Plos One. 2012; 7(5):e35872. https://doi.org/10.1371/journal.pone.0035872 PMID: 22606240

61. Zuo LH, Shang AQ, Zhang S, Yu XY, Ren YC, Yang MS, et al. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. Plos One. 2017; 12(2):e0171264. https://doi.org/10.1371/journal.pone.0171264 PMID: 28158318

62. Sharp PM, Li WH. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987; 15(3):1281–1295. https://doi.org/10.1093/nar/15.3.1281 PMID: 3547335

63. Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol. 2008; 8(1):36.

64. Yang JB, Yang SX, Li HT, Yang J, Li DZ. Comparative Chloroplast Genomes of Camellia Species. Plos One. 2013; 8(8):e73053. https://doi.org/10.1371/journal.pone.0073053 PMID: 24009730

65. Wu ZY, Raven PH, Hong DY. Flora of China. Vol. 12: Hippocastanaceae through Theaceae. 2007.

66. Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc Royal Soc London Series B-Biological Sciences. 2003; 270:313–21.

67. Dong WP, Liu J, Yu J, Wang L, Zhou SL. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One. 2012; 7(8):e35071. https://doi.org/10.1371/journal.pone.0035071 PMID: 22511980

68. Dong WP, Xu C, Li CH, Sun JH, Zuo YJ, Shi S, Cheng T, Guo JJ, Zhou SL. ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. 2015; 5:8348. https://doi.org/10.1038/srep08348 PMID: 25672218

69. Yang J, Vazquez L, Chen X, Li H, Zhang H, Liu Z, Zhao G. Development of plastid and nuclear DNA markers for Chinese oaks (Quercus subgenus Quercus) and assessment of their utility as DNA barcodes. Front Plant Sci. 2017; 8:816. https://doi.org/10.3389/fpls.2017.00816 PMID: 28579999

70. Dastpak A, Osalo SK, Maassoumi AA, Safar KN. Molecular phylogeny of Astragalus sect. Ammodendron (Fabaceae) inferred from chloroplast ycf1 gene. Ann Bot Fenn. 2018; 55:75–82.

71. Hernandez-Leon S, Gernandt DS, Perez de la Rosa JA, Jardon-Barbolla L. Phylogenetic relationships and species delimitation in Pinus section Trifoliae inferred from plastid DNA. PLoS One. 2013; 8: e70501 https://doi.org/10.1371/journal.pone.0070501 PMID: 23936218

72. Min TL: A revision of Camellia sect. Thea. Acta Bot Yunnanica 1992, 14:115–132.

73. Chang HD, Ren SX: Flora of China. Science Press. Tomus 1998, 49(3):1–251.

74. Chen L, Yamaguchi S, Wang PS, Xu M, Song WX, Tong QQ: Genetic polymorphism and molecular phylogeny analysis of section Thea based on RAPD markers. J Tea Sci 2002, 22:19–24.

75. Li XH, Zhang CZ, Liu CL, Shi ZP, Luo JW, Chen X: RAPD analysis of the genetic diversity in Chinese tea germplasm. Acta Hort Sin 2007, 34:507–508.