A review of air quality, biological indicators and health effects of second-hand waterpipe smoke exposure

Sumit R Kumar,1 Shelby Davies,1 Michael Weitzman,2 Scott Sherman3

ABSTRACT

Objective There has been a rapid increase in the use of waterpipe tobacco and non-tobacco based shisha in many countries. Understanding the impact and effects of second-hand smoke (SHS) from cigarette was a crucial factor in reducing cigarette use, leading to clean indoor air laws and smoking bans. This article reviews what is known about the effects of SHS exposure from waterpipes.

Data sources We used PubMed and EMBASE to review the literature. Articles were grouped into quantitative measures of air quality and biological markers, health effects, exposure across different settings, different types of shisha and use in different countries.

Study selection Criteria for study selection were based on the key words related to SHS: waterpipe, hookah, shisha and third-hand smoke.

Data extraction Independent extraction with two reviewers was performed with inclusion criteria applied to articles on SHS and waterpipe/hookah/shisha. We excluded articles related to pregnancy or prenatal exposure to SHS, animal studies, and non-specific source of exposure as well as articles not written in English.

Data synthesis A primary literature search yielded 54 articles, of which only 11 were included based on relevance to SHS from a waterpipe/hookah/shisha.

Conclusions The negative health consequences of second-hand waterpipe exposure have major implications for clean indoor air laws and for occupational safety. There exists an urgent need for public health campaigns about the effects on children and household members from smoking waterpipe at home, and for further development and implementation of regulations to protect the health of the public from this rapidly emerging threat.

INTRODUCTION

While cigarette use has decreased dramatically in recent years, there has been a marked increase in adolescent and young adult use of alternative, non-cigarette tobacco products. The total consumption of cigarettes in the USA decreased by 33% between 2000 and 2011; however, estimations from this same time period show a 123% increase in the consumption of alternative tobacco products, including hookahs (waterpipes), cigarillos, cigars, bidis, kretek and smokeless tobacco (snuff, dip, snus and chewing tobacco).1

Inhalation of second-hand smoke (SHS) by non-smokers has been associated with multiple diseases in paediatric and adult populations. Such evidence is especially troubling given the 2006 report by the US Department of Health and Human Services, which estimated that 60% of US non-smokers are exposed to SHS.2 Exposure occurs through several distinct routes: sidestream smoke, mainstream smoke, or smoke that has permeated the air of the surrounding environment. Sidestream smoke is the smoke discharged from the lit end of a burnt tobacco product; mainstream smoke is the smoke that is inhaled by a smoker and subsequently exhaled into the environment during a period of active smoking.3 Another route of exposure by non-smokers is third-hand smoke (THS), which is defined as the residual matter from tobacco smoke that collects on surfaces and in dust.4 While SHS and THS have historically been associated with cigarette smoke, there has recently been an alarming rise in alternative non-cigarette tobacco use, raising the important question of whether these products also generate harmful SHS and THS.

Hookah (also called waterpipe, nargile or hubble-bubble) is perceived to be safer and less addictive than cigarettes, despite growing evidence that hookah smoke is potentially more harmful than cigarette smoke.5-8 This is worrisome given that the 2011 National Youth Tobacco Survey (NYTS) found a 7.3% prevalence of waterpipe use among adolescents in the USA (roughly 2 million adolescents).9 This study also showed that 53.1% of adolescents living in a home with a hookah user reported trying hookah. Another recently published study using a nationally representative sample from Monitoring the Future showed that adolescents from more highly educated families and who had more discretionary money were more likely to use hookahs.10 A study of pregnant women in Jordan showed that the household accounts for nearly 49% of second-hand and third-hand waterpipe exposure, which highlights the need for additional research on home exposure and populations that may be at particular risk of exposure within the home, such as children.11

METHODS

We conducted a primary literature search in two separate databases; PubMed and EMBASE. We used the following search terms: passive smoking, second hand smoke, second hand smoker, second hand smokers, second-hand smoke, third hand smoke, waterpipe, water-pipe, water-pipes, bubble-bubble, hookah nargile, shisha, qalyan.

We combined the list of articles found from the two databases. Two reviewers went through the title and abstract of each article for relevance. We
included articles with original research on SHS or THS from waterpipes (figure 1). We excluded all review articles and original research articles that were written in languages other than English, were related to waterpipe use and pregnancy, involved animal models, studied SHS from a non-specific source, or were unrelated.

The small number of articles that we found precluded conducting a meta-analysis. Instead, we simply present them as a narrative review.

RESULTS

We found a total of 54 articles that were manually reviewed by two researchers to yield a total of 11 relevant articles. The reasons for excluding articles were: not published in the English language (n=3); focused on pregnancy and waterpipes (n=4); had a non-specific source of SHS either from cigarette, waterpipe, or other tobacco sources (n=3); were unrelated to the topic (n=26); review articles (n=3); non-human studies (n=1) and duplicate articles (n=1). See figure 1 for the search strategy algorithm. We have summarised the articles that were included in the narrative review in table 1.

Figure 1 Search strategy algorithm (SHS, second-hand smoke).
Study design	Outcomes measured	Summary	Main findings	Exclusion of other sources of second-hand smoke			
Articles obtained from the literature search							
Lead author	**Year**	**Country**	**Type and number of subjects (or target places)**	**PM with a 2.5 μm aerodynamic diameter or smaller (PM_{2.5})**		PM_{2.5} was greater in waterpipe café smoking rooms (37 μg/m³, n=17) compared with waterpipe café non-smoking rooms, cigarette smoking-permitted restaurant smoking rooms, cigarette smoking-permitted restaurant non-smoking rooms, and smoke-free restaurants	Measurements began 5 min prior to entering the venue and ended 5 min after exiting each venue to compare outdoor ambient air to the air inside the venue
Cobb et al	2013	USA	28 venues in Virginia (17 waterpipe cafes, 5 restaurants permitting cigarette smoking and 6 smoke-free restaurants (5 with valid data))	Waterpipe café smoking rooms have a hazardous level of PM_{2.5} that could be potentially harmful to customers and workers			
Daher et al	2010	Lebanon	4 repeated waterpipe-smoking sessions and 4 repeated cigarette trials	Sidestream smoke from waterpipes or cigarettes for ultrafine particles, carcinogenic polyaromatic hydrocarbons, volatile aldehydes, and CO		Smoking-machine and environmental chamber approach allowed for repeated measurements under controlled conditions and few confounding variables	
Fiala et al	2012	USA	10 indoor hookah lounges in Oregon	PM smaller than 2.5 μm in diameter		The most common places that people were exposed to hookah smoke were in the home (93.4%), coffee shops (17.1%) and restaurants (11.5%). People were exposed to environmental cigarette smoke in public vehicles (52.2%) and the home (31.3%)	
Fini et al	2013	Iran	387 total persons (172 male and 215 female)	Demographic characteristics and questions related to environmental tobacco smoke exposure		None had good air quality	
Hammal et al	2013	Canada	3 replicates of each of the 3 brands were analysed. 6 randomly selected waterpipe cafes were visited	Chemical constituents of tobacco-free products used in waterpipes, waterpipe emission under controlled conditions, and air quality markers in waterpipe cafes		Measurements taken outdoors before and after the visit for comparison	
Kassem et al	2014	USA	24 homes were visited 3 times during a 7-day period	Levels of indoor air and surface nicotine, child uptake of nicotine, the carcinogen NNK, and the toxicant acrolein by measuring corresponding metabolites cotinine, NNAL and NNAL-glucuronides and 3-HPMA		2 air samples were collected with passive diffusion monitor badges in the living room and child’s bedroom. A blank non-analysed badge was placed in a third room	
Markowicz et al	2014	Sweden	Filters from 10 replicate sessions of waterpipe smoking	Microbial compounds in waterpipe smoke			
Tamim et al	2003	Lebanon	625 students from 5 different private schools	Information on demographic, in-home smoking, and students’ respiratory tract illnesses (cough, wheezing, runny nose, or nasal congestion)		NA	

Table 1 Articles obtained from the literature search
levels in indoor air collected from the homes of daily hookah smokers were significantly higher than in the air collected from the homes of non-smokers.

Biological indicators

In contrast to studies conducted in hookah bars, we have found only one study to date that has explored hookah smoke in homes. The previously mentioned study by Kassem et al.22 explored the effects of SHS on children under 5 years of age in the homes of hookah users. The inhaled levels of the following potentially harmful chemicals found in SHS were measured in urine: nicotine, acrolein, and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These chemicals were measured according to their metabolites cotinine, 3-hydroxypropyl mercapturic acid (3-HPMA) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), respectively. Compared with homes of non-smokers, children living in homes of daily or weekly/monthly hookah smokers had significantly elevated levels of cotinine and NNAL, with children of daily smokers also having significantly elevated 3-HPMA.

Health effects of SHS exposure from waterpipes

Of course, the importance of exposure is the potential for untoward health effects. However, to date, the studies have been limited to acute effects, where as we know from a century of research on cigarettes that the most dangerous effects are long term. We found two studies from Beirut, Lebanon that reported on health effects of SHS exposure from waterpipe use. Tamim et al.22 surveyed 625 students (mean age of 13 years) for details of their exposure and respiratory symptoms. They found that 8.5% (53 students) reported being exposed to SHS from waterpipe use at home due to parental use. Of the respiratory symptoms reported, 22.6% (12/53) had wheezing or nasal congestion when exposed to SHS from waterpipe use at home, compared with 11.2% (21/187) who had no exposure to any SHS at home; 11.3% (6/53) vs 5.3% (10/187) had just wheezing; and 15.1% (8/53) vs 7.5% (14/187) had just a nasal congestion. We did not find any studies reporting on morbidity or mortality directly attributable to SHS or THS from hookah use.

As noted, there is evidence indicating that active waterpipe smoking is not as harmless as was previously believed.2,7

DISCUSSION

We found that SHS from waterpipes results in exposure to hazardous levels of PM according to the EPA’s AQI, as well as carcinogenic PAH, CO, nicotine and bacterial LPS. A recent study in New York City by Zhou et al.24 published by our research team after the original literature search) found that overall levels of indoor air pollution increased with rising numbers of active hookahs smoked and that the mean PM$_{2.5}$ level was 694 μg/m3 (AQI hazardous). This same study found a substantial number of potentially toxic exposures that were identified from air samples collected in hookah bars, such as CO, black carbon, elemental carbon, organic carbon, and nicotine, in addition to fine PM and total gravimetric PM. Furthermore, children living in the homes of hookah smokers had elevated levels of cotinine, NNAL and 3-HPMA depending on frequency of use. We did not find any studies reporting on morbidity or mortality directly attributable to SHS or THS from hookah use.

Table 1 Continued

Lead author	Type and number of subjects or target places	Study design	Outcomes measured	Summary
Zeidan et al.22	147 people surveyed	Observational	Questionnaires on sociodemographic characteristics, respiratory symptoms in 2ndhand smoke with respect to waterpipe smoking	Of the 147 surveyed, 48 were exposed to only 2ndhand waterpipe smoke. Waterpipe smoking should be eliminated from indoor and outdoor hospitality venues.
Tamim et al.22	625 students	Observational	Indoor (n=12) and outdoor (n=5) air quality was assessed in Toronto, Canada waterpipe cafes	Air quality at shisha smoking venues had an average hazardous air quality. Indoor readings were significantly higher than outdoor readings.
Zhou et al.24	People living in New York City	Observational	Indoor (n=12) and outdoor air quality was assessed in hookah bars	We found that SHS from waterpipes results in exposure to hazardous levels of PM according to the EPA’s AQI.

Note: The previously mentioned study by Kassem et al.22 explored the effects of SHS on children under 5 years of age in the homes of hookah users. The inhaled levels of the following potentially harmful chemicals found in SHS were measured in urine: nicotine, acrolein, and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These chemicals were measured according to their metabolites cotinine, 3-hydroxypropyl mercapturic acid (3-HPMA) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), respectively. Compared with homes of non-smokers, children living in homes of daily or weekly/monthly hookah smokers had significantly elevated levels of cotinine and NNAL, with children of daily smokers also having significantly elevated 3-HPMA.
Furthermore, the cancer risk profile may be different in waterpipe-exposed and cigarette-exposed populations due to production of different carcinogens. The documented health effects of SHS from cigarettes have had a profound impact on public perception of smoking as well as the passage of policies to protect non-smokers. SHS causes lung cancer and coronary artery disease in adults, as well as sudden infant death syndrome (SIDS), recurrent ear infections and asthma exacerbations, and it is also associated with numerous other health problems in the paediatric population. According to the Centers for Disease Control and Prevention (CDC), in 2000, 80% of adults recognised that SHS from cigarettes was not only harmful but they also believed that non-smokers should be protected in the workplace from such exposure. Comparable awareness and beliefs regarding hookah-related SHS are currently woefully lacking.

There is limited literature to date focusing on the impact of SHS exposure from waterpipe use on non-smokers. Further environmental measures of carcinogens and toxins are needed in homes of users as well as in venues that allow hookah use. Thus far, concentrations of CO, thiocyanate or nicotine have been proposed as indirect markers to measure SHS emitted from waterpipes. As described above, a study in 2014 of 24 households with hookah-only smokers or non-smokers found higher air nicotine levels in the homes of hookah-only smokers compared with the homes of non-smokers. Similarly, indoor environments where waterpipe was smoked had higher pollutant levels. To date, many studies have found increased pollutant levels in indoor environments where waterpipes are smoked. For example, sidestream smoke analysis showed that a single session of waterpipe use was associated with four times the carcinogenic PAH, four times the volatile aldehydes and 30 times the CO when compared with one cigarette. Additional studies are needed to further elucidate the health risk for non-smokers in close proximity to waterpipe smoke.

A number of policies currently exist that aim to control environmental tobacco exposure. These policies include, but are not limited to, smoke-free environments, the regulated sale of tobacco products and tobacco-related advertising as well as restricted sales of tobacco products to minors. In addition, increased taxation has a marked effect on cigarette smoking. The WHO Framework Convention on Tobacco Control (FCTC), which was established in 2003 in response to the global tobacco epidemic, included many of these policy initiatives. However, few pieces of waterpipe-specific regulations were included in the FCTC, and therefore waterpipe use remains largely unregulated. According to the American Lung Association, it is imperative to address the health risks to active and passive smokers secondary to waterpipe, especially considering that smoke-free laws often exempt hookah bars from regulation. As an example, the USA does not currently have federal tobacco control policies that limit waterpipe access by minors or require visible warning labels on waterpipe products. This lack of regulation may perhaps lead users to believe that waterpipe smoking is less addictive and harmful to their health.

Clearly, much more research is urgently needed to inform efforts to implement national regulations. It should focus on acute effects (such as on cardiopulmonary or inflammatory changes), chronic effects (such as cancers and long-term cardiac and pulmonary problems), and the potentially unique effects on children. On the basis of data that already exist, we believe that SHS from hookah smoking poses a threat comparable to or even greater than that emanating from cigarette smoking. New policies and legislation should be implemented to protect people from the harmful effects of SHS from waterpipes.

What this paper adds

- The recognition of this epidemic is recent, and consequently our knowledge is limited.
- To date, studies have been able to demonstrate that air in places where hookah is smoked contains high levels of dangerous compounds and that people absorb harmful substances from second-hand waterpipe smoke.
- The few existing studies suggest negative acute effects on people’s health from exposure to second-hand waterpipe smoke.

Contributors SRK and SD conducted the systemic review and drafted the manuscript. SS and MW provided revisions.

Funding This work was supported in part by the NYU/Abu Dhabi Public Health Research Center.

Competing interests None.

Provenance and peer review Commissioned; externally peer reviewed.

Data sharing statement For additional data email the corresponding author.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1. Centers for Disease Control and Prevention. Consumption of cigarettes and combustible tobacco—United States, 2000–2011. MMWR Morb Mortal Wkly Rep 2012;61:565–9.
2. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. Atlanta, GA, 2006.
3. International Agency for Research on Cancer. Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 2004;83:1–1438.
4. Slamian M, Gundel LA, Parkow JF, et al. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards. Proc Natl Acad Sci USA 2010;107:6576–81.
5. Cobb C, Ward KD, Maziak W, et al. Waterpipe tobacco smoking: an emerging health crisis in the United States. Am J Health Behav 2010;34:275–85.
6. Noonan D, Kubok PA. New tobacco trends: waterpipe (hookah) smoking and implications for healthcare providers. J Am Acad Nurse Pract 2009;21:258–60.
7. Daher N, Saleh R, Jaroudi E, et al. Comparison of carcinogens, carbon monoxide, and ultrafine particle emissions from narghile waterpipe and cigarette smoking: sidestream smoke measurements and assessment of second-hand smoke emission factors. Atmos Environ (1994) 2010;44:8–14.
8. St Helen G, Benowitz NL, Dains KM, et al. Nicotine and carciongen exposure after waterpipe smoking in hookah bars. Cancer Epidemiol Biomarkers Prev 2014;23:1055–66.
9. Amrock SM, Gordon T, Zelkoiff JT, et al. Hookah use among adolescents in the United States: results of a national survey. Nicotine Tob Res 2014;16:231–7.
10. Palamar JJ, Zhou S, Sherman S, et al. Hookah use among US high school seniors. Pediatrics 2014;134:227–34.
11. Azab M, Khabour OF, Alzoubi KH, et al. Exposure of pregnant women to waterpipe and cigarette smoke. Nicotine Tob Res 2015;15:231–7.
12. Fini AA, Aghamolaei T, Dehghani M, et al. Air Quality Index (AQI). A guide to air quality and your health. US EPA office of air quality planning and standards. Research Triangle Park, NC. Last Updated: May, 2014. http://airnow.gov/index.cfm?action=aqibrands&aqicns= (accessed 17 Sep 2014).
13. Fiala SC, Morris DS, Pawlak RL. Measuring indoor air quality of hookah lounges. Am J Public Health 2012;102:2043–5.
Kumar SR, et al. Tob Control 2015;24:i54–i59. doi:10.1136/tobaccocontrol-2014-052038