Abstract: The dendrochronological climate signal of Norway spruce (Picea abies), European larch (Larix decidua), and European beech (Fagus sylvatica), among others, depends on altitude, therefore we have to collect dendrochronological data systematically for each species along altitude gradients. To this end, we established local tree-ring chronologies for the three species along two elevation gradients: (1) Kokra – Jezersko with sites at 750, 780, 950, 1200, 1250, 1380, 1600 m a.s.l., and (2) Bled – Radovna – Krma with sites at 518, 550, 580, 700, 750, 900, 950, 1000, 1200, 1400, 1600, 1760, 1900, 2040 m a.s.l. We present the main characteristics of the chronologies and the results of the dendroclimatological analyses, which show how the climatic factors influence the variation of the tree rings in dependence of altitude and species. We also present the agreement of the different chronologies in terms of standard dendrochronological parameters such as the t-value and discuss the potential use of the presented database.

Keywords: Norway spruce (Picea abies), European larch (Larix decidua), European beech (Fagus sylvatica), tree rings, dendrochronology, altitudinal gradients, climate, Slovenia

1 INTRODUCTION

Norway spruce (Picea abies), European larch (Larix decidua), and European beech (Fagus sylvatica) in Slovenia have particular species-specific tree-ring characteristics in relation to climatic factors which affect the importance of each species in dendrochronology. Since the climatic signal depends on altitude, the construction of local chronologies of trees from known sites along altitudi-
nal gradients represents an important step in their dendrochronological characterization, including the issues of teleconnection (similarity of the dendrochronological signal of the same species over longer distances) and heteroconnection (similarity of the dendrochronological signal between different species).

European beech has a wide natural range and grows on a great variety of sites (Euforgen, 2022), and is important for dendroecological studies throughout Europe (e.g., Di Filippo et al., 2007; Martinez del Castillo et al., 2022). The dendrochronological signal of beech shows a variable response to climatic factors depending on altitude and latitude (Čufar et al., 2008; Di Filippo et al., 2007; Martinez del Castillo et al., 2018). In temperate zones of Central Europe, including Slovenia, lowland beech responds mainly negatively to hot and dry late spring and early summer (May, June, July) weather, while at higher elevations and cold sites it responds positively to summer temperatures (e.g., Čufar et al., 2008; Di Filippo et al., 2007). Numerous studies have also shown that frequent climatic extremes such as ice storms, late frosts, and excessive summer heat negatively affect beech growth (Bascietto et al., 2018; Decuyper et al., 2020; Gazol et al., 2019; Martinez del Castillo et al., 2022; Roženbergar et al., 2020). It is thus assumed that beech might decline at numerous sites as climate change progresses (Martinez del Castillo et al., 2022).

Beech is currently the most common forest tree species in Slovenia, accounting for 32.9% in the wood stock (ZGS, 2021). Its wood is highly valued for its high density and durable heartwood (Čufar, 2006; Gričar & Prislan, 2021). However, detailed studies in Slovenia have shown that its dendrochronological signal along elevational gradients is particularly important.

Norway spruce is one of the most important coniferous tree species with a wide distribution area (Euforgen, 2022). Basically, it is a species of cold environments, which has been widely artificially spread in Central Europe (including Austria, Germany, Czech Republic, Switzerland, Slovenia) even in lowland areas (e.g., Caudullo et al., 2016; Jansen et al., 2017; Kolář et al., 2020; Marincek et al., 2003). It is an important wood species for various uses (Straže et al., 2022), wood formation and dendroecology (e.g., Kolář et al., 2020; Martinez del Castillo et al., 2018), dendrochronology and for dating historical objects, including musical instruments (Bernabei et al., 2017; Cherubini, 2021; Wilson et al., 2004).

Norway spruce is currently the second most common forest tree species in Slovenia, accounting for 30.2% of the wood stock (ZGS, 2021). Its natural range in Slovenia is restricted to high altitudes, mainly in the Alps and the Dinaric Mountains (Brus, 2012; ZGS, 2022). Since the early 19th century, the species has been artificially spread throughout Slovenia, including the lowlands (ZGS, 2022), where it is currently severely affected by climate change and associated bark beetle infestations (e.g., de Groot et al., 2021).

The dendroclimatological signal of spruce is strongly influenced by local climatic conditions and varies considerably with altitude. This variability is particularly high in Slovenia, where we lack an adequate collection of chronologies for dating historical objects (e.g., Bernabei et al., 2018; Čufar et al., 2020). In Slovenia, spruce is found in numerous objects that are often difficult to date, therefore the knowledge of its signal along elevational gradients is particularly important.

European larch is a pioneer tree species, able to colonize open land on disturbed soils; it can tolerate very cold temperatures during winter. Its natural range is mainly limited to high mountains, especially the Alps (Euforgen, 2022). In Slovenia it has a share of 1.2% in the wood stock (ZGS, 2021). Its wood is highly valued for its high density and durable heartwood (Čufar, 2006; Gričar & Prislan, 2021). It is and was valued for modern and historical constructions, and can be found in many prominent buildings of the Venetian Republic (Levanič et al., 2001). Therefore, long composed tree-ring chronologies have been constructed for this species, based on wood from trees and historical constructions (Bebber, 1990; Nicolussi, 1995; Siebenlist-Kerner, 1984). Using subfossil stems preserved in bogs and glaciers it was possible to construct one of the longest multimillennial chronologies of conifers, including Larix decidua, Pinus cembra and Picea abies, spanning 9,111 years (7109 BC to AD 2002) (Nicolussi et al., 2009).

Larch from high elevation shows excellent teleconnection over larger areas (Levanič, 2005a; Levanič et al., 2001). However, detailed studies in Slovenia have shown that its dendrochronological
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Tree-ring chronologies of Picea abies, Larix decidua and Fagus sylvatica along altitudinal gradients

signal also depends on altitude (Levanič, 2005b) which often makes the dating of historical objects made of “lowland larch” extremely difficult.

The main objective of this study is to present the tree-ring chronologies of Norway spruce (Picea abies), European larch (Larix decidua), and European beech (Fagus sylvatica) along two altitudinal gradients in the Kamnik-Savinja Alps and the Julian Alps, starting from the lowlands to the altitudinal limit of species distribution in the studied areas. We present (1) the constructed tree-ring chronologies and their main characteristics, (2) how climatic

Figure 1. Sampling areas with (a) map of Slovenia, (b) Kokra – Jezersko, and Bled – Radovna – Krma with sampling locations and (c) detailed views of site locations along the altitudinal gradients for three tree species: European beech (Fagus sylvatica) – FASY; European larch (Larix decidua) – LADE; and Norway spruce – (Picea abies), PCAB. For details see Tables 1 and 2.

Source of maps: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AaeroGrid, IGN, and the GIS User Community.

Slika 1. Mesta vzorčenja (a) zemljevid Slovenije, (b) Kokra – Jezersko in Bled – Radovna – Krma z oznakami lokacij vzorčenja ter (c) mesta vzorčenja vzdolž višinskih gradientov za tri vrste: navadna bukev (Fagus sylvatica)–FASY, evropski macesen (Larix decidua)–LADE in navadna smreka (Picea abies)–PCAB. Za podrobnosti primerjajte preglednici 1 in 2.

Vir zemljevidov: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGrid, IGN, and the GIS User Community.
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Kronologije širin branik drevesnih vrst Picea abies, Larix decidua in Fagus sylvatica vzdolž gradientov nadmorske višine

Influence factors influence tree-ring variations, (3) the variation of their dendrochronological signal, and (4) the potential of the database for future studies addressing various issues related to ecology, climate, and cultural heritage.

2 MATERIALS AND METHODS
2 MATERIAL IN METODE
2.1 STUDY SITES AND TREES
2.1 RAZISKOVALNE PLOSKVE IN DREVESA

The experimental design was based on a selection of mature dominant or codominant trees of Norway spruce, European larch, and European beech felled in the areas of Kokra – Jezersko, between the Karawanks and Kamnik-Savinja Alps, and Bled – Radovna – Krma, Julian Alps in northwestern Slovenia (Figure 1).

The sampling area Kokra – Jezersko is orientated south-east in the Kamnik-Savinja Alps. The sampling was performed on localities at 750, 780, 950, 1200, 1250, 1380, 1600 m a. s. l. (Figures 1, 2a, Table 1).

The area Bled – Radovna – Krma included localities on 518, 550, 580, 700, 750, 900, 950, 1000, 1200, 1400, 1600, 1760, 1900, 2040 m a. s. l. (Figures 1, 2b, Table 2).

2.2 SAMPLE COLLECTION AND PREPARATION
2.2 VZORČENJE IN ODBELAVA VZORCEV

The fieldwork with the collection of samples was carried out from March until November 2019 in cooperation with forest owners, the Slovenia Forest Service, local foresters, the Triglav National Park in the area Bled – Radovna – Krma, and the Municipality of Jezersko in the area Kokra – Jezersko with corresponding permissions. We aimed to collect 15 trees per site. After regular felling we collected discs at the lower part of the trees (mainly 4 m above ground level). If the number of felled trees was not sufficient, additional samples were collected by coring from the nearby living trees. For this purpose, two cores per tree were extracted at the breast height, perpendicular to the tree axis from the bark to the pith using a Haglöf increment corer combined with a Haglöf increment borer chuck and a cordless drilling machine (Milwaukee, M18 FDD2-502X FUEL-135 Nm).

The samples were labelled with the identifying system of the codes, which contained information on sampling site, tree species, tree number and the radius.

The sampled discs and cores fixed on wooden supports were transported to the workshop and air dried. Their transversal surfaces were sanded with the belt sander using progressively finer sandpaper, from 80, 120, 180, 220, 280, and 360 grit until the tree rings and individual cells in the wood on the transversal section were perfectly visible under a stereo microscope.

The wood surface was scanned with a Mustek S-series 2400 Plus flatbed scanner with the resolution set at 1200 dpi and the images were processed with Adobe Photoshop Elements 2020. In the case of extremely narrow rings the structure of
wood was additionally checked under an Olympus stereo microscope S2 11 or images were obtained with the help of confocal laser scanning microscope CLSM (Balzano et al., 2019).

2.3 DATA ACQUISITION AND PROCESSING

2.3 ZAJEM IN OBDELAVA PODATKOV

Tree-ring widths were measured using calibrated high-resolution digital photos along two radii of each tree, to the nearest 0.01 mm using the CDendro / CooRecorder 9.5 image analysis program (Cybis Elektronik, 2022 http://www.cybis.se/forfun/dendro/helpcoorecorder7/index.php). The TSAP-Win program (Frank Rinn, Heidelberg, Germany) and R Studio program using the dplR library (Bunn, 2010) were used for visual and statistical cross-dating and verification.

Cross-dated tree-ring series were assembled into local chronologies using R Studio and the dplR package (Bunn, 2008).

2.4 TREE RING CHRONOLOGIES AND CLIMATE

2.4 KRONOLOGIJE ŠIRIN BRANIK IN KLIMA

The climatic influence on tree growth was analysed using the residual version of each chronology with R Studio. For this purpose, the original tree-ring width series were standardized in a two-step procedure. First, the long-term trend was removed by fitting a negative exponential function (regression line) to each tree-ring series. Second, more flexible detrending was carried out by applying a cubic smoothing spline with a 50% frequency response of 30 years to further reduce non-climatic variance. Subsequently, autoregressive modelling of the residuals and bi-weight robust estimation of the mean were applied (Cook & Peters, 1997).

Local climatic data for calculation were obtained from the SLOCLIM data base (Škrk et al., 2021) which is a publicly available modelled climatic database which contains a daily gridded dataset of maximum and minimum temperature and precipitation data with 1x1 km spatial resolution covering the entire territory of Slovenia from 1950 to 2018. The data are available on zenodo (Škrk et al., 2020, 2021) and on the web page www.sloclim.eu. For each sampling location we extracted the climatic data of the nearest grid point and aggregated the daily data into monthly mean values.

Pearson correlation function coefficients (CFC) were calculated by using the residual version of each tree-ring chronology as a dependent variable and the regressors monthly minimum and maximum temperatures and the monthly sums of precipitation for each biological year from the previous January to current December, as well as for the past and current spring, summer, autumn and current winter for the period 1950-2018. The climate and growth relationships were calculated using the program packages library(“dplR”), library(“stringr”), and library(“plyr”). The CFC values were considered statistically significant when p<0.05.

2.5 TELECONNECTION AND HETEROCONNECTION

2.5 TELEKONEKCIJA IN HETEROKONEKCIJA

To test the potential of the chronologies with regard to establishing regional chronologies for dating purposes, we made basic comparisons among the chronologies by calculating standard statistical values, including the t-value after Baillie and Pilcher (tBP) and sign test (Gleichläufigkeit–Glk) using the TSAP-Win program.

We also tested the chronologies for teleconnection (agreement between the chronologies of the same species from different sites) and for heteroconnection (agreement between different tree species from the same site).

3 RESULTS AND DISCUSSION

3 REZULTATI IN RAZPRAVA

3.1 TREE-RING DATA AND THE CHRONOLOGIES

3.1 KRONOLOGIJE ŠIRIN BRANIK

The database consists of 47 chronologies of three species along two altitudinal gradients in the Alps of Slovenia. We present their locations and time spans (Table 1 and 2). The local chronologies had average lengths of 156 (69-296) years for European beech, 139 (57-355) years for Norway spruce, and 191 (56-378) years for European larch.

At Kokra – Jezersko the corresponding averages (minimum-maximum) for seven beech chronologies were 133 (69-296) years, for seven spruce chronologies 135 (57-246) years, and for six larch chronologies 156 (56-214) years (Table 1).

At Bled – Radovna – Krma the averages (minimum-maximum) for seven beech chronologies...
were 179 (69-296) years, for 11 spruce chronologies 142 (81-355) years, and for nine larch chronologies 215 (84-378) years. The oldest trees were sampled in Krma (KR*) (Table 2).

3.2 TREE-RINGS AND CLIMATE

3.2 ŠIRINE BRANIK IN KLIMA

Correlation function coefficients (CFCs) for residual chronologies and monthly minimum (Tmin) and maximum temperatures (Tmax) and precipitation (PCP) (Figures 3 and 4) from the previous January to current December and from the previous and current spring, summer, autumn and current winter show that each of the species has a unique response to climate and that the response varies with elevation.

For example, in Kokra – Jezersko (Figure 3) beech shows a negative response to June temperatures (especially Tmax) and a positive response to June precipitation. The values of the CFCs generally decrease from lower to higher altitude, while at 1600 m a.s.l. we observe a positive response to temperatures in July, August and September. Spruce shows a negative response to temperatures in July and August and a positive response to precipitation in July at the same gradient, while at 1600 m a.s.l. a positive response to temperatures in May and August is observed. Larch shows a negative response to Tmax in March and a positive response to summer temperatures, while at altitudes above 1250 m a.s.l. we observe a positive response to May temperatures, especially Tmax, and a pos-

Table 1. Kokra – Jezersko, basic information on the sites and chronologies along the gradient (short code, species, altitude, latitude, longitude, number of trees, useful length of the chronology and its start and end date) for three tree species: European beech (Fagus sylvatica) – FASY: European larch (Larix decidua) – LADE, and Norway spruce (Picea abies) – PCAB.

Code / Koda	Species / Drevesna vrsta	Altitude / Nadmorska višina	Latitude / Zemljepisna širina	Longitude / Zemljepisna dolžina	Number of trees / Število dreves	Chronology Length / Kro­nologija Razpon	Start / Za­če­tek	End / Kone­c	Years / leto	Year / leto	Year / leto
J01A	FASY	750	46.380118°	14.457731°	18	145.7731°	2020				
J01B	FASY	780	46.389231°	14.483326°	10	122.3326°	2019				
J02	FASY	950	46.410676°	14.505766°	12	78.505766°	2018				
J12	FASY	1200	46.378934°	14.530259°	18	130.530259°	2019				
J03	FASY	1250	46.411992°	14.49444°	8	151.49444°	2018				
J04	FASY	1280	14.49931°	14.49931°	11	169.49931°	2018				
J06	FASY	1600	14.413493°	14.413493°	10	160.413493°	2018				
J01B	LADE	780	46.389231°	14.483326°	10	162.483326°	2018				
J02	LADE	950	46.410676°	14.505766°	5	163.505766°	2018				
J03	LADE	1250	46.411992°	14.49444°	4	153.49444°	2018				
J04	LADE	1380	14.49931°	14.49931°	10	214.49931°	2018				
J06	LADE	1600	14.413493°	14.413493°	13	189.413493°	2020				
J24	LADE	1600	14.396635°	14.550305°	10	56.550305°	2019				
J01A	PCAB	750	14.457731°	14.457731°	18	145.457731°	2018				
J01B	PCAB	780	14.483326°	14.483326°	15	174.483326°	2018				
J02	PCAB	950	14.505766°	14.505766°	30	89.505766°	2018				
J12	PCAB	1200	14.530259°	14.530259°	17	138.530259°	2019				
J03	PCAB	1250	14.49444°	14.49444°	14	133.49444°	2018				
J04	PCAB	1380	14.49931°	14.49931°	15	97.49931°	2018				
J06	PCAB	1600	14.413493°	14.413493°	12	246.413493°	2019				
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Tree-ring chronologies of Picea abies, Larix decidua and Fagus sylvatica along altitudinal gradients

...ive response to August temperatures with lower values of correlation coefficients.

Species responses along the Bled – Radovna – Krma slope differ from those at Jezersko. Beech shows a negative response to June temperatures in Hom (518 a.s.l.), while the Radovna and Krma sites respond mainly positively to May temperatures and negatively to March temperatures. Spruce at lower elevations shows a positive influence of January, February and March temperatures, while at elevations above 1000 m a positive influence of May temperatures is observed. Larch shows a negative response to Tmax in March and a positive response to temperatures in May.

Code / Koda	Species / Drevesna vrsta	Altitude / Nadmorska višina	Latitude / Zemljepisna širina	Longitude / Zemljepisna dolžina	Number of trees / Število dreves	Chronology length / Kronologija razpon	Start / Začetek	End / Konec
HOM	FASY	518	46.359262°	14.110083°	11	110	1900-2040	2019
RA01	PCAB	580	46.399197°	14.117837°	12	98	1922	2019
RA02	PCAB	700	46.430571°	13.950266°	10	150	1913	2019
RA03	PCAB	750	46.423824°	13.938677°	12	155	1864	2018
RA04	PCAB	900	46.435654°	13.928797°	7	84	1936	2019
KR01	PCAB	1000	46.386683°	13.907620°	18	239	1780	2018
KR02	PCAB	1200	46.370348°	13.888781°	10	198	1822	2019
KR03	PCAB	1400	46.366540°	13.879257°	10	296	1724	2019
KR04	PCAB	1600	46.366383°	13.869982°	7	328	1692	2019
KR05	PCAB	1760	46.368392°	13.867702°	12	378	1642	2019
KR06	PCAB	1900-2040	46.370559°	13.861593°	12	303	1717	2019
BLS	PCAB	580	46.399197°	14.117837°	12	98	1922	2019
RA01	PCAB	700	46.430571°	13.950266°	10	150	1913	2019
RA02	PCAB	750	46.423824°	13.938677°	12	155	1864	2018
RA03	PCAB	900	46.435654°	13.928797°	7	84	1936	2019
PER	PCAB	950	46.402138°	14.021151°	15	81	1939	2019
KR01	PCAB	1000	46.386683°	13.907620°	19	164	1855	2018
KR02	PCAB	1200	46.370348°	13.888781°	9	172	1848	2019
KR03	PCAB	1400	46.366540°	13.879257°	15	116	1904	2019
KR04	PCAB	1600	46.366383°	13.869982°	11	355	1665	2019
KR05	PCAB	1760	46.368392°	13.867702°	4	95	1925	2019

Table 2. Bled – Radovna – Krma, basic information on the sites and chronologies along the gradient (short code, species, altitude, latitude, longitude, number of trees, useful length of the chronology and its start and end date) for three tree species: European beech (Fagus sylvatica) – FASY, European larch (Larix decidua) – LADE, and Norway spruce (Picea abies) – PCAB.
Figure 3. Kokra-Jezerško correlation function coefficients between tree-ring width indices and climate variables (for details, see Figure 4 caption).

Slika 3. Kokra – Jezersko korelacijski koeficienti med indeksi širin branik in klimatskimi spremenljivkami (za podrobnosti glejte napis pod sliko 4).
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Tree-ring chronologies of Picea abies, Larix decidua and Fagus sylvatica along altitudinal gradients
The presented complex response to climatic parameters with similarities and differences among species and sites requires confirmation with further studies using principal component analysis (e.g., Čufar et al., 2014, 2008) or other methods.

3.2 COMPARISONS OF CHRONOLOGIES

The comparison of chronologies using tBP values shows that at the Kokra – Jezersko gradient most of the chronologies of the same species showed tBP≥4, which is considered to indicate statistically significant similarity (Table 3). Comparison of the chronologies J2, J3, J4 and J6 from locations on the same slope (Figure 2a) showed the highest similarity between nearby altitudes and smallest between the two extreme altitudes at 950 and 1600 m a.s.l. Heteroconnection, i.e. similarity between the chronologies of different species, is observed only occasionally (Table 3).

The cross-correlations at the Bled – Radovna – Krma gradient of the same species generally show some similarity between nearby locations and no similarity between lowest and highest elevations (Table 4). Highest similarity between the chronologies KR1, KR2, KR3 and KR4 could be partly explained by the location of the sites in the valley (Figure 2b) Heteroconnection is observed only occasionally (Table 4).

4 CONCLUSIONS

The 47 tree-ring chronologies of Norway spruce (Picea abies), European larch (Larix decidua), and European beech (Fagus sylvatica) for two altitudinal ranges in the Kamnik-Savinja Alps and the Julian Alps, starting from the lowlands to the altitudinal limit of species distribution, show variability in tree-ring response to climate.

Correlation function coefficients (CFCs) for residual chronologies and monthly minimum (Tmin) and maximum temperatures (Tmax) and precipitation (PCP) from the previous January (01p) to current December (12) and the past and current spring (pSPR, SPR), summer (pSUM, SUM), autumn (pAUT, AUT) and current winter (WIN) for the period 1950-2018. CFC values are statistically significant (p<0.05) if >0.2084 or <-0.2084 (for legend, see Figure 3).
Standard dendrochronological parameters (tBP) calculated between the chronologies from the Kokra–Jezersko gradient showed that most of the chronologies of the same species along the gradient showed similarity (tBP≥4). In the subset of chronologies from locations on the same slope the greatest similarity was found between the nearby altitudes and smallest between the two extreme altitudes at 950 and 1600 m a.s.l. Heteroconnection, i.e. similarity between the chronologies of different species, was observed only occasionally. The relationships between the Bled – Radovna – Krma chronologies seem to be more complex, and require a detailed study.

The presented results show that the relationship between tree growth and climate is not only affected by altitude and the corresponding climatic conditions. The complex relationships need to be further investigated with an appropriate methodology, such as principal component analysis.

The database shows great potential for future studies of spruce, larch, and beech from cold environments in the southern Alps in a time of changing climate. The local chronologies with average lengths of 156 (69-296) years for beech, 139 (57-355) years for spruce, and 191 (56-378) years for larch also provide a basis for the construction of master chronologies for dating cultural heritage objects. In Slovenia and in the surrounding areas such...
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Kronologije širin branik drevesnih vrst Picea abies, Larix decidua in Fagus sylvatica vzdolž gradientov nadmorske višine

Table 4. Cross-correlation values of tBP (t-value after Baillie and Picher) between Bled – Radovna – Krma raw chronologies (HOM-KR6, common period 1900–2020) of Norway spruce, Picea abies, PCAB, European larch, Larix decidua, LADE, and European beech, Fagus sylvatica, FASY, from different altitudes. Values of tBP≥4 with statistically significant similarity are marked.

Preglednica 4. Korelacijske vrednosti tBP (t-vrednost po Baillieju in Picherju) med surovimi kronologijami Bled – Radovna – Krma (HOM-KR6, skupno obdobje 1900–2020) smreke, Picea abies, PCAB, evropskega macesna, Larix decidua, LADE, in evropske bukve, Fagus sylvatica, FASY, z različnih nadmorskih višin. Vrednosti tBP≥4 so statistično značilne in so označene.

| HOM | BL5 | RA1 | RA2 | RA3 | PER | KR1 | KR2 | KR3 | KRS | PCAB | FASY | LADE | HOM | RA1 | RA2 | RA3 | PER | KR1 | KR2 | KR3 | KRS | PCAB | FASY | LADE |
|-----|
| 100 | 2.2 |
| 500 | 2.2 |
| 750 | 2.2 |
| 900 | 2.2 |
| 1000| 2.2 |
| 1200| 2.2 |
| 1400| 2.2 |
| 1600| 2.2 |
| 1750| 2.2 |
| 1900| 2.2 |
| 2000| 2.2 |

Table 4. Cross-correlation values of tBP (t-value after Baillie and Picher) between Bled – Radovna – Krma raw chronologies (HOM-KR6, common period 1900–2020) of Norway spruce, Picea abies, PCAB, European larch, Larix decidua, LADE, and European beech, Fagus sylvatica, FASY, from different altitudes. Values of tBP≥4 with statistically significant similarity are marked.

Preglednica 4. Korelacijske vrednosti tBP (t-vrednost po Baillieju in Picherju) med surovimi kronologijami Bled – Radovna – Krma (HOM-KR6, skupno obdobje 1900–2020) smreke, Picea abies, PCAB, evropskega macesna, Larix decidua, LADE, in evropske bukve, Fagus sylvatica, FASY, z različnih nadmorskih višin. Vrednosti tBP≥4 so statistično značilne in so označene.

chronologies are particularly needed for spruce (e.g., Bernabei et al., 2017; Čufar et al., 2020).

The sampling material and data are stored in the archive of the Chair for Wood Science at the Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana.

5 SUMMARY

5 POVZETEK

Predstavljamo mrežo lokalnih kronologij na-vadne smreke (Picea abies), evropskega macesna (Larix decidua) in navadne bukve (Fagus sylvatica) vzdolž dveh gradientov nadmorskih višin na območju Kokra – Jezersko v Kamniško Savinjskih Alpah in Bled – Radovna – Krma v Julijskih Alpah v Sloveniji.

Vsaka od izbranih vrst ima svoje posebnosti z vidika dendrokrnologije. Buvev, ki je v Evropi in Sloveniji zelo razširjena, pogosto uporabljamo kot modelno vrsto v dendroekologiji ter za proučevanje učinkov klimatskih sprememb na vegetacijo (npr. Čufar et al., 2008; Di Filippo et al., 2007; Martínez del Castillo et al., 2019, 2022). Redkeje se srečamo z bukovimi predmeti iz preteklih obdobij, ki bi jih želeli dendrokrnološko datirati (Čufar et al., 2012). Smreka je prav tako zelo razširjena v Evropi in Sloveniji. V splošnem je to vrsta hladnih okolij, ki so jo v zadnjih dvseto letih razširili tudi na manj primerna rastišča na nižjih nadmorskih višinah. Pogosto jo proučuje-mo kot modelno drevesno vrsto v dendroekologiji (npr. Martinez del Castillo et al., 2018). Smreka je pogosta v zgodovinskih konstrukcijah, predmetih
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Tree-ring chronologies of Picea abies, Larix decidua and Fagus sylvatica along altitudinal gradients

in glasbenih inštrumentih. Dendrokronološki signal smreke po Sloveniji zelo variira, ker je v veliki meri odvisen od nadmorske višine, zato za Slovenijo še nismo uspeli sestaviti dobrih referenčnih kronologij za datiranje (npr. Bernabei et al., 2017; Čufar et al., 2020). Macesen je v Sloveniji manj razširjen kot bukev in smreka (ZGS, 2021), a je pomemben z vidika uporabe lesa, ter tudi za dendrokronološke raziskave. Kot cenjena lesna vrsta je pogost tudi v predmetih kulturne dediščine. Macesen z visokih nadmorskih višin, ki je bil uporabljen za prestižne konstrukcije Benečanov, ima dobro telekonekcijo (Levanič et al., 2001). Tudi dendrokronološki signal macesna je zelo odvisen od nadmorske višine, zato za nižje nadmorske višine še nimamo ustreznih kronologij za datiranje.

Cilj te študije je bil predstaviti (1) kronologije in njihove glavne značilnosti, (2) kako podnebni dejavniki vplivajo na variiranje širin branik, (3) kako se dendrokronološki signal posamezne vrste spremeni z nadmorsko višino in (4) kakšen potencial ima predstavljena podatkovna zbirka za bodoče raziskave na področju ekologije in kulturne dediščine.

Vzorce lesa za raziskave smo pridobili na različnih nadmorskih višinah: (1) Kokra – Jezersko, na 750, 780, 950, 1200, 1250, 1380 in 1600 m in (2) Bled – Radovna – Krma z rastišči na 518, 550, 580, 700, 750, 900, 950, 1000, 1200, 1400, 1600, 1760, 1900, 2040 m n. v.

Na vsakem rastišču smo v času redne sečnje iz posekanih dreves na nivoju 4 m od baze drevesa odžagali kolut. V kolikor število posekanih dreves ni bilo zadostno, smo iz rastočih dreves na posameznem rastišču odvzeli izvrtke.

Prečne prereze vzorcev smo gladko zbrusili in jih skenirali pri ločljivosti 1200 dpi. Na slikah smo izmerili širine branik s programom CDendro / Cooo Recorder 9.5 (Cybis Elektronik, 2022 http://www.cybis.se/forfun/dendro/helpcoorecorder7/index.php). Za vizualno in statistično sinhronizacijo smo uporabili program TSAP-Win (Frank Rinn, Heidelberg, Nemčija) in paket dplR v programu R Studio (Bunn, 2010).

Sihronizirana in datirana zaporedja širin branik smo uporabili za sestavo lokalnih kronologij s programom R Studio z uporabo paketa dplR (Bunn, 2008). Izračunali smo tri različice kronologij: kronologijo širin branik ter standardno in rezidualno kronologijo. Za proučevanje vpliva klime na rast dreves smo uporabili rezidualno kronologijo z uporabo programa R Studio. Lokalni vremenski podatki za izračune so bili pridobljeni iz podatkovne baze SLOCLIM (Škrk et al., 2021).

Opravili smo osnovne primerjave med kronologijami z izračunom standardnih statističnih vrednosti (predvsem t-vrednost Baillie in Pilcher, tBP) s programom TSAP-Win.

Kronologije smo testirali tudi z vidika telekonekcije (ujemanje med kronologijami iste vrste z različnih lokacij) in heterokonekcije (ujemanje med kronologijami različnih drevesnih vrst z istega območja).

Za vseh 47 kronologij za 3 drevesne vrste smo predstavili natančne zemljepisne koordinate, število dreves, uporabno dolžino ter prvo in zadnje leto kronologije (preglednica 1 in 2).

Za vseh 47 kronologij 3 drevesnih vrst smo predstavili korelacijske koeficiente (CFC) med indekski širin branik (rezidualne kronologije) ter mesečnimi minimalnimi (Tmin) in maksimalnimi temperaturami (Tmax), padavinami (PCP) od preteklega januarja do decembra tekočega leta, ter za preteklo in tekočo pomlad, poletje, jesen in zimo za obdobje 1950–2018.

Rezultati za Kokro – Jezersko (slika 3) kažejo, da se bukev negativno odziva na junijske temperature zažesti (zlasti Tmax), pozitivno pa na junijske temperature. Smreka se negativno odziva na temperature julija in avgusta ter pozitivno na padavine julija na večini gradienta, medtem ko je na nadmorski višini 1600 m opazno pozitiven odziv na temperature v juliju, avgustu in septembru. Smreka se negativno odziva na temperature julija in avgusta ter pozitivno na padavine julija na večini obdobja, medtem ko je na 1600 m nadmorske višine opazen pozitiven odziv na temperature v maju in avgustu. Macesen kaže negativni odziv na Tmax v marcu in pozitiven odziv na poletne temperature, medtem ko na nadmorski višini nad 1250 m opazamo pozitiven odziv na majsko podnebje, zlasti Tmax, in pozitiven odziv na avgustovske temperature z nižjimi vrednostmi korelacijskih koeficientov.

Rezultati na območju Bled – Radovna – Krma se razlikujejo od rezultatov na Jezerskem. Buveka kaže negativni odziv na junijske temperature na Homu (518 m n. v.), medtem ko se na rastiščih v Radovni in Krmni drevesa odzivajo večinoma pozitivno na majske temperature in negativno na majeve temperature in vnetine
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Kronologije širin branik drevesnih vrst Picea abies, Larix decidua in Fagus sylvatica vzdolž gradientov nadmorske višine

Smreka na nižjih nadmorskih višinah kaže pozitiven odziv na januarske, februarske in marčevske temperature, medtem ko je na nadmorskih višinah nad 1000 m opazen pozitiven vpliv majskih temperaturev. Macesen kaže negativen odziv na Tmax in pozitiven odziv na temperature v marcu. Ker je odziv različnih vrst na različnih nadmorskih višinah na dveh območjih zelo kompleksen, bi dobili deležni velike podpore posameznikov, ustanov in podjetij, ki so jim zahvaljujemo za njihovo izjemno pomoč. Zahvaljujemo se tudi za finančno podporo projekta.

Navzkrižne korelacije z izračunom parametra tBP (kjer tBP ≥ 4 pomeni statistično značilnost), kažejo, da je na Jezerskem večina kronologij vsaj v določeni meri podobna (tBP ≥ 4) (preglednica 3). Primerjava kronologij J2, J3, J4 in J6 z lokacij z enako ekspanzijo (slika 2a) je pokazala največjo podobnost med bližnjimi nadmorskimi višinami in najmanjšo med dvema skrajnima nadmorskima višinama na 950 in 1600 m. Heterokonekcija, tj. primerjava kronologij različnih vrst, je pokazala, da imajo različne vrste na isti lokaciji podoben dendrokronološki signal samo v posameznih primerih (preglednica 3).

Korelacije med kronologijami vzdolž gradienta Bled – Radovna – Krma kažejo nekaj podobnosti iste vrste na bližnjih lokacijah. Med kronologijami z najnižjih in najvišjih nadmorskih višin pa ni bilo podobnosti v dendrokronološkem signalu (preglednica 4). Najbolj so bile podobne kronologije KR1, KR2, KR3 in KR4, kar bi lahko delno pojasnilo z lisi (slika 2b). Podobnost dendrokronoloških signalov med vrstami (heterokonekcija) je bila zabeležena le v nekaj primerih (preglednica 4).

Predstavljeni rezultati kažejo, da na rast (viriiranje širin branik) ne vplivajo le nadmorska višina in pripadajoče podnebne razmere. Kompleksne odnose med kronologijami bi bilo treba dodatno raziskati.

Prikazani rezultati kažejo na velik potencial podatkovne zbirke za prihodnje študije dendrokronoloških posebnosti vrst Picea abies, Larix decidua in Fagus sylvatica iz hladnih okoli in južnih Alpah v spreminjajočem se podnebju. Lokalne kronologije, ki so v povprečju dolgje 156 (69-296) let za bukev, 139 (57-355) let za smreko in 191 (56-378) let za macesen, predstavljajo tudi osnovo za izdelavo sestavljenih referenčnih kronologij, ki jih zlasti za smreko potrebujemo za datiranje lesenih predmetov kulturne dediščine (prim. Čufar et al., 2020).

Vzorci za to raziskavo in podatki so shranjeni v arhivu Katedre za tehnologijo lesa na Oddelku za lesarstvo Biotehniške fakultete Univerze v Ljubljani.

Pri terenskem in laboratorijskem delu smo bili deležni velike podpore posameznikov, ustanov in podjetij, ki so jim zahvaljujemo za njihovo izjemno pomoč. Zahvaljujemo se tudi za finančno podporo projekta. Podrobnosti so navedene v zahvali.

ACKNOWLEDGEMENTS AND FUNDING
ZAHVALA IN FINANCIRANJE

We would like to thank the numerous individuals, organizations, and companies who assisted us in conducting this research:

Jeles, proizvodnja in trgovina z lesom (Rok Jelenc and Peter Mohorič), Triglav National Park, Oddelek za varstvo narave (Andrej Arh and Tanja Menegali), Slovenia Forest Service, Območna enota Bled (Janja Lukanc, Rudi Kunstelj and his son Peter, Ferdinand Koka), Slovenski državni gozdovi (SiDG) (Štefan Bezovnik) and Gozdno gospodarstvo Bled (Iztok Soklić, Uroš Ambrožič and Matija Benedičič), Novomeška nadškofija (Iztok Soklić, Uroš Ambrožič and Matija Benedičič), Posek in spravilo lesa Gozd Kokra (Anton Povšnar).

We would like to thank Miha Rakar for processing the majority of the samples, the members of the Chair for Wood Science for their co-operation and continuous support, Luka Krže, Aleš Staže, Maks Merela, Denis Plavčak, Angela Balzano, Željko Gorišek, Jože Planinšič, Daša Krapež Tomec and the staff of the Department of Wood Science and Technology BF UL for their great support.
Funding. This study was supported by the project of Ad-Futura (Raziskovalno gostovanje v okviru Javnega razpisa sofinanciranja gostovanj na slovenskih visokošolskih zavodih, 257. JR) and project “Researchers-2.1-UL-BF-952011”, co-financed by the Ministry of Education, Science, and Sport of the Republic of Slovenia and the EU European Regional Development Fund and by the Slovenian Research Agency (ARRS) Programs P4-0015 (Wood and lignocellulosic composites) and P4-0430 (Forest timber chain and climate change: the transition to a circular bio-economy) and the research project CRP, V4-2016 LesGoBio supported by the Ministry of Agriculture, Forestry and Food of the Republic of Slovenia (MKGP) and ARRS. International cooperation was supported by the by the LLP ERASMUS bilateral agreement between the University of Ljubljana and the University of Alicante.

REFERENCES

VIRI

Balzano, A., Novak, K., Humar, M., & Čufar, K. (2019). Application of confocal laser scanning microscopy in dendrochronology. Les/Wood, 68(2), 5–17.

Bascietto, M., Bajocco, S., Mazzenga, F., & Matteucci, G. (2018). Assessing spring frost effects on beech forests in Central Apennines from remotely-sensed data. Agricultural and Forest Meteorology, 248, 240–250. DOI: https://doi.org/10.1016/j.agrformet.2017.10.007

Bebber, A. E. (1990). A tree ring chronology for larch (Larix decidua) from the eastern Italian Alps. Dendrochronologia, 8, 119–139.

Bernabei, M., Bontadi, J., Čufar, K., & Baici, A. (2017). Dendrochronological investigation of the bowed string instruments at the Theatre Museum Carlo Schmidl in Trieste, Italy. Journal of Cultural Heritage, 27(1296), S55–S62. DOI: https://doi.org/10.1016/j.culher.2016.11.010

Brus, R. (2012). Drevesne vrste na Slovenskem. (T. Wraber & F. Batič, ed.) Second ed.). Ljubljana: Samozaložba.

Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115–124.

Bunn, A. G. (2010). Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 28(4), 251–258.

Caudullo, G., Tinner, W., & de Rigo, D. (2016). Picea abies in Europe: distribution, habitat, usage and threats. V J. San-Miguel-Ayaz, D. De Rigo, G. Caudullo, T. Houston Durrant in A. Mauri (ed.), European atlas of forest tree species (str. 114–116). Luxembourg: Publication Office of the European Union.

Cherubini, P. (2021). Tree-ring dating of musical instruments. Science, 373, 1434–1436.

Cook, E. R., & Peters, K. (1997). Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene, 7(3), 361–370.

Čufar, K., Čurčič, J., & Prislan, P. (2012). Zgradba in nastajanje lesa in skorje bukve ter dendrokonologija. Bukovi gozdoi v Sloveniji: ekologija in gospodarjenje, 115–124.

Čufar, K. (2006). Anatomija lesa: [univerzitetni učbenik]. Biotehniška fakulteta, Oddelek za lesarstvo.

Čufar, K., De Luis, M., Horvat, E., & Prislan, P. (2008). Main patterns of variability in beech tree-ring chronologies from different sites in Slovenia and their relation to climate. Zbornik gozdarstva in lesarstva, (87), 123–134.

Čufar, K., Eržen, T. D., Križo, L., & Merela, M. (2020). Dendrokonoloske raziskave poslikanih kmečkih skrinj iz zbirkre Gorenejskega muzeja v Kranju. Les/Wood, 69(1), 33–45.

Čufar, K., Gorišek, Ž., Merela, M., Kropivšek, K., Gornik Bučar, D., & Straže, A. (2017). Lastnosti bukove in njena raba. Les/Wood, 66(1), 27–39. DOI: https://doi.org/10.26614/leswood.2017.v66n01a03

Čufar, K., Grabner, M., Morgós, A., Martínez del Castillo, E., Merela, M., & de Luis, M. (2014). Common climatological signals affecting oak tree-ring growth in SE Central Europe. Trees–Structure and Function, 28(5), 1267–1277. DOI: https://doi.org/10.1007/s00468-013-0972-z

de Groot, M., Diaci, J., Kanadre, K., Krajnc, N., Pisek, R., Ščap, Š., ... Ogris, N. (2021). Private forest owner characteristics affect European spruce bark beetle management under an extreme weather event and host tree density. Forests, 12(3), 1–19. DOI: https://doi.org/10.3390/f12030346

Decuyper, M., Chávez, R. O., Čufar, K., Estay, S. A., Clevers, J. G. P. W., Prislan, P., ... Sass-Klaassen, U. (2020). Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – An integrated approach using remote sensing and tree-ring data. Agricultural and Forest Meteorology, 287, 107925. DOI: https://doi.org/10.1016/j.agrformet.2020.107925

Di Filippo, A., Biondi, F., Čufar, K., De Luis, M., Grabner, M., Mauge, M., ... Piovesan, G. (2007). Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography, 34(11), 1873–1892. DOI: https://doi.org/10.1111/j.1365-2699.2007.01747.x

Euforgen. (2022). Distribution maps of species. Pridobljeno s https://www.euforgen.org/species/

Gazol, A., Camarero, J. J., Colangelo, M., de Luis, M., Martínez del Castillo, E., & Serra-Maluquer, X. (2019). Summer drought and spring frost, but not their interaction, constrain European beech and silver fir growth in their southern distribution limits. Agricultural and Forest Meteorology, 278, 107695. DOI: https://doi.org/10.1016/j.agrformet.2019.107695

Grčar, J., & Prislan, P. (2021). Makroskopske in mikroskopske značilnosti lesa: evropski macesen (Larix decidua Mill.). Gozdarski vestnik, 79, 7–8.
Novak, K., de Luis, M., Škrk, N., Straže, A., & Čufar, K.: Kronologije širin branik drevesnih vrst Picea abies, Larix decidua in Fagus sylvatica zvzdolž gradientov nadmorske višine

Jansen, S., Konrad, H., & Geburek, T. (2017). The extent of historic translocation of Norway spruce forest reproductive material in Europe. Annals of Forest Science, 74(3), 56.

Kolaj, T., Čermák, P., Trinka, M., Koňasová, E., Sochová, I. & Rybiček, M. (2020). Dendroclimatic study of a mixed spruce-fir-beech forest in the Czech Republic. Les/Wood, 69(1), 21–32.

Levanič, T. (2005a). Kronologija macesna (Larix decidua Mill.) za območje jugovzhodnih Alp. Zbornik gozdarstva in lesarstva, (76), 39–70.

Levanič, T. (2005b). Vpliv kline na debelinsko rast macesna (Larix decidua Mill.) na zgornji gozdnii meji v JV Alpah. Zbornik gozdarstva in lesarstva, (78), 29–55.

Martinez del Castillo, E., Prislan, P., Gričar, J., Gryc, V., Merela, M., Giagli, K., ... Čufar, K. (2018). Challenges for growth of beech and co-occurring conifers in a changing climate context. Dendrochronologia, 52, 1–10. DOI: https://doi.org/10.1016/j.dendro.2018.09.001

Nicolussi, K., Kaufmann, M., Melvin, T. M., Van Der Plicht, J., Schießling, P., & Thurner, A. (2009). A 9111 year long conifer tree-ring chronology for the European Alps: a base for environmental and climatic investigations. The Holocene, 19(6), 909–920.

Nicolussi, K. (1995). Dendrochronologische Untersuchungen zur mittelalterlichen Baugeschichte von Schloß Tirol. Tiroler Heimat, 59, 19–43.

Roženbergar, D., Pavlin, J., & Nage, T. A. (2020). Short-term survival and crown rebuilding of european broadleaf tree species following a severe ice storm. Canadian Journal of Forest Research, 50(11), 1131–1137. DOI: https://doi.org/10.1139/cjfr-2020-0063

Siebenlist-Kerner, V. (1984). Der Aufbau von Jahrringchronologien fuer Zirbelkiefer, Laerche und Fichte eines alpinen Hochgebirgsstandortes. Dendrochronologia, 2, 9–29.

Škrk, N., de Luis, M., Čufar, K., Črepinšek, Z., Kajfež Bogataj, L., & Serrano-Notivoli, R. (2020). SLOCLIM: A high-resolution daily gridded precipitation and temperature dataset for Slovenia [Dataset]. DOI: https://doi.org/10.5281/zenodo.4108543

Škrk, N., Serrano-Notivoli, R., Čufar, K., Merela, M., Črepinšek, Z., Kajfež Bogataj, L., & de Luis, M. (2021). SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia. Earth System Science Data, 13(7), 3577–3592. DOI: https://doi.org/10.5194/essd-13-3577-2021

Wilson, R. J. S., Esper, J., & Luckman, B. H. (2004). Utilising historical tree-ring data for dendroclimatology: A case study from the Bavarian Forest, Germany. Dendrochronologia, 21(2), 53–68. DOI: https://doi.org/10.1078/1125-7865-00041

ZGS. (2021). Poročilo zavoda za gozdove Slovenije o gozdovih za leto 2020. Zavod za gozdove Slovenije. Ljubljana.

ZGS. (2022). Karte. Pridobljeno s http://www.zgs.si/gozdovi_slovenije/o_gozdovih_slovenije/karte/index.html (20.5.2022)