Rainbow vertex pair-pancyclicity of strongly edge-colored graphs

Peixue Zhao Fei Huang*

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China

revisions 13th Oct. 2022, 27th Mar. 2023; accepted 1st Apr. 2023.

An edge-colored graph is rainbow if no two edges of the graph have the same color. An edge-colored graph G^c is called properly colored if every two adjacent edges of G^c receive distinct colors in G^c. A strongly edge-colored graph is a proper edge-colored graph such that every path of length 3 is rainbow. We call an edge-colored graph G^c rainbow vertex pair-pancyclic if any two vertices in G^c are contained in a rainbow cycle of length ℓ for each $3 \leq \ell \leq n$. In this paper, we show that every strongly edge-colored graph G^c of order n with minimum degree $\delta \geq \frac{2n}{3} + 1$ is rainbow vertex pair-pancyclicity.

Keywords: edge-coloring; strongly edge-colored graph; rainbow cycle; rainbow vertex pair-pancyclicity.

1 Introduction

In this paper, we only consider finite, undirected and simple graphs. Let G be a graph consisting of a vertex set $V(G)$ and an edge set $E = E(G)$. We use $d(v)$ to denote the number of edges incident with vertex v in G. A strongly edge-colored graph is a proper edge-colored graph such that every path of length 3 is rainbow. We call an edge-colored graph G^c rainbow vertex pair-pancyclic if any two vertices in G^c are contained in a rainbow cycle of length ℓ for each $3 \leq \ell \leq n$. In this paper, we show that every strongly edge-colored graph G^c of order n with minimum degree $\delta \geq \frac{2n}{3} + 1$ is rainbow vertex pair-pancyclicity.

Keywords: edge-coloring; strongly edge-colored graph; rainbow cycle; rainbow vertex pair-pancyclicity.

*Corresponding author: Fei Huang. Email: hf@zzu.edu.cn
The classical Dirac’s theorem states that every graph G is Hamiltonian if $\delta(G) \geq \frac{n}{2}$. Inspired by this famous theorem, Hendry (1990) show that every graph G of order n with minimum degree $\delta \geq \frac{n+1}{2}$ is vertex-pancyclic. During the past few decades, the existence of cycles in graphs have been extensively studied in the literatures. We recommend Abouelaoualim et al. (2010); Chen (2018); Chen and Li (2021, 2022); Chen et al. (2019); Czygrinow et al. (2021); Ehard and Mohr (2020); Fujita et al. (2019); Guo et al. (2022); Kano and Li (2008); Li et al. (2022) for more results.

For edge-colored graphs, Lo (2014) proved the following asymptotic theorem about properly colored cycles.

Theorem 1.1 (Lo (2014)) For any $\varepsilon > 0$, there exists an integer n_0 such that every edge-colored graph G^c with n vertices and $\delta^c(G) \geq \left(\frac{2}{3} + \varepsilon\right)n$ and $n \geq n_0$ contains a properly edge-colored cycle of length l for all $3 \leq l \leq n$, where $\delta^c(G)$ is the minimum number of distinct colors of edges incident with a vertex in G^c.

Cheng et al. (2019) considered the existence of rainbow Hamiltonian cycles in strongly edge-colored graph and proposed the following two conjectures.

Conjecture 1.2 (Cheng et al. (2019)) Every strongly edge-colored graph G^c with n vertices and degree at least $\frac{n+1}{2}$ has a rainbow Hamiltonian cycle.

Conjecture 1.3 (Cheng et al. (2019)) Every strongly edge-colored graph G^c with n vertices and degree at least $\frac{n}{2}$ has a rainbow Hamiltonian path.

To support the above two conjectures, they presented the following theorem.

Theorem 1.4 (Cheng et al. (2019)) Let G^c be a strongly edge-colored graph with minimum degree δ, if $\delta \geq \frac{2|V(G)|}{3}$, then G^c has a rainbow Hamiltonian cycle.

Wang and Qian (2021) showed that every strongly edge-colored graph G^c on n vertices is rainbow vertex-pancyclic if $\delta \geq \frac{2n+1}{3}$. Li and Li (2022) further considered the rainbow edge-pancyclicity of strongly edge-colored graphs and proposed the following theorem.

Theorem 1.5 (Li and Li (2022)) Let G^c be a strongly edge-colored graph on n vertices. If $\delta(G^c) \geq \frac{2n+1}{3}$, then G^c is rainbow edge-pancyclic. Furthermore, for every edge e of G^c, one can find a rainbow l-cycle containing e for each $3 \leq l \leq n$ in polynomial time.

In this paper, we consider the rainbow vertex pair-pancyclicity of strongly edge-colored graph. Our main result is as follows.

Theorem 1.6 Let G^c be a strongly edge-colored graph with n vertices and minimum degree δ. If $\delta \geq \frac{2n}{3} + 1$, then G^c is rainbow vertex pair-pancyclicity.

2 Proof of Theorem 1.6

First, we introduce some useful notations. Given a rainbow cycle C in graph G^c, a color s is called a C-color (resp., \overline{C}-color) if $s \in c(C)$ (resp., $s \notin c(C)$). Correspondingly, we call an edge e a C-color edge (resp., \overline{C}-color edge) if $c(e) \in c(C)$ (resp., $c(e) \notin c(C)$). Two adjacent vertices u and v are called C-adjacent (resp., \overline{C}-adjacent) if $c(uv) \in c(C)$ (resp., $c(uv) \notin c(C)$). For two disjoint adjacent subsets V_1 and V_2 of $V(G)$, let $E(V_1, V_2)$ denote the set of edges between V_1 and V_2. We denote the subsets
of $E(V_1, V_2)$ consisting of the C-color edges (resp., \bar{C}-color edges) by $E_C(V_1, V_2)$ (resp., $E_{\bar{C}}(V_1, V_2)$).

Similarly, for two subgraphs H_1 and H_2, we denote the set of C-color edges (resp., \bar{C}-color edges) between $V(H_1)$ and $V(H_2)$ by $E_C(H_1, H_2)$ (resp., $E_{\bar{C}}(H_1, H_2)$). For any two vertices v_i and v_j of cycle $C = v_1v_2 \ldots v_i v_1$, we identify the two subscripts i and j if $i \equiv j \pmod{l}$. Let $v_i C^+ v_j$ be the path $v_i v_{i+1} \ldots v_j v_j$ and $v_i C^- v_j$ the path $v_i v_{i-1} \ldots v_j v_j$, respectively. For any vertex $v \in V(G^c)$, let $CN(v)$ be the set of colors used by the edges incident with v.

From the definition of strongly edge-coloring, we can easily get the following observation.

Observation 2.1 Each cycle of length at most 5 in a strongly edge-colored graph is rainbow.

Proof of Theorem 1.6: Recall that the colors on the edges incident with v are pairwise distinct for each vertex v of a strongly edge-colored graph. So we do not distinguish the colors of adjacent edges in the following. If $n \leq 8$, G is complete since $\delta \geq \frac{2n}{3} + 1$, and so the result clearly holds. Thus we suppose that $n \geq 9$. Let a and b be two arbitrary vertices of G. If a and b are adjacent, then a and b are contained in a rainbow cycle of length l for each l with $3 \leq l \leq n$ from Theorem 1.5. So we consider that a and b are not adjacent. Since $\delta \geq \frac{2n}{3} + 1$, we have that a and b are contained in a 4-cycle which is rainbow from Observation 2.1. Suppose to the contrary that the result is not true. Then there is an integer l with $4 \leq l \leq n - 1$ such that there is a rainbow l-cycle containing a and b, but there is no rainbow $(l + 1)$-cycle containing both a and b. Let $C := v_1 v_2 \ldots v_l v_1$ be a rainbow l-cycle containing a and b.

Without loss of generality, we assume that $c(v_i v_{i+1}) = i$ for $1 \leq i \leq l$. For $1 \leq i \leq l$, let N_i be the set of the vertices of C which are adjacent to v_i, that is, $N_i = N(v_i) \cap V(C)$. We then proof the following claim.

Claim 1 $l \geq \frac{4n + 12}{3}$. In particular, $l \geq 7$ when $n \geq 9$.

Proof. Since G^c is strongly edge-colored, for any $v_i \in N_1$, the color j does not occur in $CN(v_1)$. So the number of C-colors not contained in $CN(v_1)$ is at least $|N_1| - 1$, and therefore, the number of C-colors contained in $CN(v_1)$ is at most $l - (|N_1| - 1)$. Since 1 and l are C-colors in $CN(v_1)$, we have that the number of C-colors contained in $E(v_1, V(G) \setminus V(C))$ is at most $l - (|N_1| - 1) = l - |N_1| - 1$. Hence, we have $|E_C(v_1, V(G) \setminus V(C))| \leq l - |N_1| - 1$. Since $|E(v_1, V(G) \setminus V(C))| \geq \delta - |N_1|$, we have that

$$|E_C(v_1, V(G) \setminus V(C))| = |E(v_1, V(G) \setminus V(C))| - |E_C(v_1, V(G) \setminus V(C))|$$

$$\geq (\delta - |N_1|) - (l - |N_1| - 1)$$

$$= \delta - l + 1.$$

Similarly, we can also deduce that $|E_C(v_i, V(G) \setminus V(C))| \geq \delta - l + 1$ for all $1 \leq i \leq l$. For any two vertices v_i and v_{i+1} with $1 \leq i \leq l$, if there exists a vertex $w \in V(G) \setminus V(C)$ such that both $v_i w$ and $v_{i+1} w$ are C-color edges, then both a and b are contained in a rainbow $(l + 1)$-cycle $C' := v_i w v_{i+1} C^+ v_i$, a contradiction. Thus, for any common neighbor $w \in V(G) \setminus V(C)$ of v_i and v_{i+1}, either $v_i w$ or $v_{i+1} w$ is not a \bar{C}-color edge. Then we have that $|E_C(v_i, w)| + |E_C(v_{i+1}, w)| \leq 1$. Therefore, we have

$$n \geq |E_C(v_i, V(G) \setminus V(C))| + |E_C(v_{i+1}, V(G) \setminus V(C))| + l \geq 2(\delta - l + 1) + l = 2\delta - l + 2.$$

Hence,

$$l \geq 2\delta - n + 2 \geq 2 \cdot \left(\frac{2n}{3} + 1\right) - n + 2 = \frac{n + 12}{3}.$$
Since

Let $H = K_k$ be the maximal rainbow complete graph in $G^c[V(G) \setminus V(C)]$ such that every edge in H is \tilde{C}-colored, and let $R = G^c[V(G) - (V(C) \cup V(H))]$. It is clearly that for any $w \in V(H)$, if there is a vertex $v_i \in V(C)$ such that v_iw is a \tilde{C}-color edge, then $c(v_iw) \notin c(H)$ since G^c is a strongly edge-colored graph.

For two \tilde{C}-color edges v_iw_1 and v_jw_2 with $w_1, w_2 \in V(H)$ and $1 \leq i < j \leq l$, if $w_1 = w_2$ and $j - i = 1$, we say v_iw_1 and v_jw_2 are forbidden pair of type 1; if $w_1 \neq w_2$, both a and b are contained in $v_iC^2v_j$, and $2 \leq j - i \leq k$, we say v_iw_1 and v_jw_2 are forbidden pair of type 2. Clearly, if $E_{\tilde{C}}(C, H)$ has a forbidden pair of type 1, then there exists a rainbow $(l+1)$-cycle $C' := v_iw_1v_jC^2v_i$ containing both a and b, and if $E_{\tilde{C}}(C, H)$ has a forbidden pair of type 2, then there exist a rainbow $(l+1)$-cycle $C' := v_iw_1Hw_2v_jC^2v_i$ containing both a and b, where w_1Hw_2 is a path of length $|E(v_iC^2v_j)| - 1$ with endpoints w_1 and w_2 in H.

Claim 2 $k \geq 3$.

Proof. For each $w \in V(H)$, let

\[
\tilde{s}_w = |E_{\tilde{C}}(w, C)|, s_w = |E_{C}(w, C)|, \\
\tilde{t}_w = |E_{\tilde{C}}(w, R)|, t_w = |E_{C}(w, R)|.
\]

We have

\[
s_w + t_w \leq l - (\tilde{s}_w + s_w),
\]

and so, we have

\[
\tilde{s}_w + 2s_w + t_w \leq l.
\]

Let $v_{i_1}, v_{i_2}, \ldots, v_{i_{\tilde{s}_w}}$ be the vertices on C which are \tilde{C}-adjacent to w. Without loss of generality, we suppose that $1 \leq i_1 < i_2 < \ldots < i_{\tilde{s}_w} \leq l$. Then $i_{j+1} - i_j \geq 2$ for each $1 \leq j \leq \tilde{s}_w - 1$ and $i_{\tilde{s}_w} - i_1 \leq l - 2$. Let $I = \{i_1 - 1, i_1, i_2 - 1, i_2, \ldots, i_{\tilde{s}_w} - 1, i_{\tilde{s}_w}\}$. Clearly, we have $|I| = 2\tilde{s}_w$ and $I \cap CN(w) = \phi$. Thus, we can deduce that

\[
2\tilde{s}_w + s_w + t_w = |I| + s_w + t_w \leq l.
\]

Since $|V(R)| = n - l - k$, we have $t_w + \tilde{t}_w \leq n - l - k$. Together with inequalities (2) and (3), we have

\[
3\tilde{s}_w + 3s_w + 3t_w + \tilde{t}_w \leq l + l + n - l - k = n + l - k.
\]

Let

\[
\tilde{S} = \sum_{w \in V(H)} \tilde{s}_w, S = \sum_{w \in V(H)} s_w, T = \sum_{w \in V(H)} \tilde{t}_w, T = \sum_{w \in V(H)} t_w.
\]

Then

\[
3\tilde{S} + 3S + 3T + \tilde{T} \leq k(n + l - k).
\]
Rainbow vertex pair-pancyclicity of strongly edge-colored graphs

Since k is maximal, each vertex of R has at most $k - 1$ number of \tilde{C}-color edges to H, which implies that
\[
\tilde{T} = \sum_{w \in V(H)} \tilde{t}_w \leq (k - 1)(n - l - k). \tag{5}
\]

Recall that $w \in V(H)$. By (1) and the arbitrariness of w, we have
\[
k\delta \leq \sum_{w \in V(H)} (\tilde{s}_w + s_w + \tilde{t}_w + t_w + (k - 1))
\[
= \tilde{S} + S + \tilde{T} + T + k(k - 1). \tag{6}
\]
Combining inequalities (4), (5) and (6), we can get the following inequality
\[
3k\delta \leq 3\tilde{S} + 3S + 3T + 3\tilde{T} + 3k(k - 1)
\]
\[
\leq k(n + l - k) + 2(k - 1)(n - l - k) + 3k(k - 1)
\]
\[
\leq n(3k - 2) + l(2 - k) - k.
\]
If $k = 1$, then $l > n$, a contradiction. If $k = 2$, then $\delta \leq \frac{2n-1}{3}$, again a contradiction. So we have $k \geq 3$. Claim 2 follows.

Since H is a rainbow complete graph, we can deduce that
\[
S + T \leq l. \tag{7}
\]

Claim 3 $\tilde{S} \geq l + 1$.

Proof. Suppose, by way of contradiction, that $\tilde{S} \leq l$. Combining with inequality (6), we can get that
\[
k\delta \leq \tilde{S} + S + \tilde{T} + T + k(k - 1) \leq l + l + (k - 1)(n - l - k) + k(k - 1),
\]
which implies that $k(n - l - \delta) \geq n - 3l$. Since $\delta \geq \frac{2n}{3} + 1$ and $l \geq \frac{n+12}{3}$ from Claim 1, we have $n - l - \delta \leq 0$. Thus we have $3(n - l - \delta) \geq k(n - l - \delta) \geq n - 3l$ from Claim 2, and therefore $\delta \leq \frac{2n}{3}$, a contradiction. Claim 3 follows.

Without loss of generality, we suppose that $a = v_1$ and $b = v_m$, where $2 \leq m \leq l - 1$, and let $P^1 = aC + b$. Then we design an algorithm to generate a sequence of disjoint sub-paths $P^1_1, P^1_2, ..., P^1_{h_1}$ of C respect to P^1 and H.

Algorithm A1

Input: a strongly edge-colored graph G^c, a rainbow cycle $C = v_1v_2\ldots v_1$, a path $P^1 = v_1v_2\ldots v_m$ and a rainbow complete subgraph $H = K_k$ of $G^c - V(C)$.

Output: a sequence of disjoint paths $P^1_1, P^1_2, \ldots, P^1_{h_1}$ such that P^1_i is a subgraph of C.

1: Set $i = 1$
2: While $V(P^1_i) \neq \phi$
 If $E_{\bar{C}}(P^1_i, H) = \phi$
 stop
 Else
 Set d be the smallest subscript such that $E_{\bar{C}}(v_d, H) \neq \phi$
 If $d + k \geq m$ then
 Set $P^1_i = v_dv_{d+1}\ldots v_m$
 stop
 Else If $|E_{\bar{C}}(v_d, H)| \geq 2$ then
 Set $P^1_i = v_dv_{d+1}\ldots v_{d+k}$
 If $|E_{\bar{C}}(v_d, H)| = 1$ then
 Set $P^1_i = v_dv_{d+1}\ldots v_{d+k+1}$
 Set $P^1_i = P^1_i \setminus P^1_i$
 stop
 $i = i + 1$
3: return $P^1_1, P^1_2, \ldots, P^1_{h_1}$

Claim 4: $|E_{\bar{C}}(P^1_i, H)| \leq |V(P^1_i)| - 1$ for any $1 \leq i \leq h_1 - 1$, $|E_{\bar{C}}(P^1_{h_1}, H)| \leq k$ if $|V(P^1_{h_1})| \in \{1, 2\}$, and $|E_{\bar{C}}(P^1_{h_1}, H)| \leq k + 1$ if $3 \leq |V(P^1_{h_1})| \leq k + 1$.

Proof. For $1 \leq i \leq h_1 - 1$, we distinguish the following two cases.

Case 1. $|E_{\bar{C}}(v_d, H)| \geq 2$. Then we have $P^1_i = v_dv_{d+1}\ldots v_{d+k}$. Let w_1 and w_2 be two vertices in H such that $v_dw_1, v_dw_2 \in E_{\bar{C}}(v_d, H)$. Since there exist no forbidden pairs of type 1 for any vertex $w \in V(H)$, then we have $|E_{\bar{C}}(v_d, H)| + |E_{\bar{C}}(v_{d+1}, H)| \leq k$. For any j with $d + 2 \leq j \leq d + k$, if w_1 and v_j are \bar{C}-adjacent, then v_jw_1 and v_dw_2 form a forbidden pair of type 2; if w_2 and v_j are \bar{C}-adjacent, then v_jw_2 and v_dw_1 form a forbidden pair of type 2; if v_j and w are \bar{C}-adjacent for some w with $w \neq w_1$ and $w \neq w_2$, then v_jw and v_dw form a forbidden pair of type 2. Therefore, we have $|E_{\bar{C}}(v_j, H)| = 0$. Thus,

$$|E_{\bar{C}}(P^1_i, H)| = \sum_{j=d}^{d+k} |E_{\bar{C}}(v_j, H)| = |E_{\bar{C}}(v_d, H)| + |E_{\bar{C}}(v_{d+1}, H)| \leq k = |V(P^1_i)| - 1.$$

Case 2. $|E_{\bar{C}}(v_d, H)| = 1$. Then we have $P^1_i = v_dv_{d+1}\ldots v_{d+k+1}$. Let w_1 be a vertex in H such that $v_dw_1 \in E_{\bar{C}}(v_d, H)$. We further distinguish the following three cases.

Case 2.1. $|E_{\bar{C}}(v_{d+1}, H)| = 0$. For any $w \in V(H) \setminus \{w_1\}$, we have that v_j and w cannot be \bar{C}-adjacent for any $d + 2 \leq j \leq d + k + 1$ since otherwise v_jw and v_dw_1 form a forbidden pair of type 2. Thus, we
have $|E_C(v_j, H)| \leq 1$ and $\sum_{j=d+2}^{d+k+1} |E_C(v_j, H)| \leq k - 1$. Therefore,

$$|E_C(P_1^1, H)| = \sum_{j=d}^{d+k+1} |E_C(v_j, H)|$$

$$= |E_C(v_d, H)| + |E_C(v_{d+1}, H)| + \sum_{j=d+2}^{d+k+1} |E_C(v_j, H)|$$

$$\leq 1 + 0 + (k - 1)$$

$$= k$$

$$\leq |V(P_1^1)| - 1.$$

Case 2.2. $|E_C(v_{d+1}, H)| = 1$. Let w_2 be a vertex in H such that $v_{d+1} w_2 \in E_C(v_d, H)$. Clearly, $w_1 \neq w_2$. If v_{d+2} and w_2 are \bar{C}-adjacent, we have that $v_{d+2} w_2$ and $v_d w_1$ form a forbidden pair of type 2, a contradiction. If v_{d+2} and w are \bar{C}-adjacent for some $w \in V(H)$ with $w \neq w_1$ and $w \neq w_2$, then $v_{d+2} w$ and $v_d w_1$ form a forbidden pair of type 2, again a contradiction. So, $|E_C(v_{d+2}, H)| \leq 1$.

For any j with $d + 3 \leq j \leq d + k + 1$, if w_1 and v_j are \bar{C}-adjacent, then $v_j w_1$ and $v_{d+1} w_2$ form a forbidden pair of type 2; if w_2 and v_j are \bar{C}-adjacent, then $v_j w_2$ and $v_{d+1} w_1$ form a forbidden pair of type 2; if v_j and w are \bar{C}-adjacent for some $w \in V(H)$ with $w \neq w_1$ and $w \neq w_2$, then $v_j w$ and $v_{d+1} w_1$ form a forbidden pair of type 2. We obtain a contradiction in the above three cases, and therefore, we have $\sum_{j=d+3}^{d+k+1} |E_C(v_j, H)| = 0$. Therefore,

$$|E_C(P_1^1, H)| = \sum_{j=d}^{d+k+1} |E_C(v_j, H)|$$

$$= |E_C(v_d, H)| + |E_C(v_{d+1}, H)| + |E_C(v_{d+2}, H)| + \sum_{j=d+3}^{d+k+1} |E_C(v_j, H)|$$

$$\leq 1 + 1 + 1 + 0$$

$$\leq k$$

$$\leq |V(P_1^1)| - 1.$$

Case 2.3. $|E_C(v_{d+1}, H)| \geq 2$. Let $Q_1^1 = P_1^1 \setminus \{v_d\} = v_{d+1}v_{d+2}...v_{d+k+1}$. Similar to the discussion of Case 1, we have that $|E_C(Q_1^1, H)| \leq |V(Q_1^1)| - 1 = (k + 1) - 1 = k$. Thus, $|E_C(P_1^1, H)| = |E_C(v_d, H)| + |E_C(Q_1^1, H)| \leq 1 + k = |V(P_1^1)| - 1$.

Then we analyse the value of $|E_C(P_{h_1}^{1}, H)|$. If $|V(P_{h_1}^{1})| = 1$, the inequality $|E_C(P_{h_1}^{1}, H)| \leq k$ clearly holds. If $|V(P_{h_1}^{1})| = 2$, that is, $P_{h_1}^{1} = v_d v_{d+1}$, we have $|E_C(v_d, H)| + |E_C(v_{d+1}, H)| \leq k$ since v_d and v_{d+1} are adjacent. Therefore, $|E_C(P_{h_1}^{1}, H)| = |E_C(v_d, H)| + |E_C(v_{d+1}, H)| \leq k$. If $3 \leq |V(P_{h_1}^{1})| \leq k + 1$, we have $|E_C(P_{h_1}^{1}, H)| \leq k$ when $|E_C(v_d, H)| \geq 2$ by the similar analysis of the above Case 1 (taking m as $d + k$), and $|E_C(P_{h_1}^{1}, H)| \leq k + 1$ when $|E_C(v_d, H)| = 1$ by the similar analysis of the above Case 2 (taking m as $d + k + 1$). The proof is thus completed.
Let \(P^2 = aC^{-}b \). Then we design another algorithm to generate a sequence of disjoint sub-paths \(P^2_1, P^2_2, \ldots, P^2_{h_2} \) of \(C \) respect to \(P^2 \) and \(H \) in the following.

Algorithm AII

Input: a strongly edge-colored graph \(G \), a rainbow cycle \(C = v_1v_2 \ldots v_lv_1 \), \(P^2 = aC^{-}b = v_{l+1}v_{l+1-1} \ldots v_m \) and a rainbow complete subgraph \(H = K_k \) of \(G^2 - V(C) \).

Output: a sequence of disjoint paths \(P^2_1, P^2_2, \ldots, P^2_{h_2} \) such that \(P^2_{i} \) is a subgraph of \(C \).

1: \(\text{Set } i = 1 \)
2: \(\text{While } V(P^2_{i}) \neq \phi \) do
 If \(E_{\tilde{C}}(P^2_{i}, H) = \phi \)
 stop
 Else Set \(d \) be the biggest subscript for which \(E_{\tilde{C}}(v_d, H) \neq \phi \)
 If \(d - k \leq m \) then
 Set \(P^2_{i} = v_d \ldots v_{d-k} \)
 stop
 Else If \(|E_{\tilde{C}}(v_d, H)| \geq 2 \) then
 Set \(P^2_{i} = v_d \ldots v_{d-k} \)
 End If
 If \(|E_{\tilde{C}}(v_d, H)| = 1 \) then
 Set \(P^2_{i} = v_d \ldots v_{d-k-1} \)
 End If
 Set \(P^2 = P^2_{i} \setminus P^2_{i} \)
 Set \(i = i + 1 \)
3: \(\text{return } P^2_{1}, P^2_{2}, \ldots, P^2_{h_2} \)

Similar to Claim 4, we can get the following Claim.

Claim 5 \(|E_{\tilde{C}}(P^2_{i}, H)| \leq |V(P^2)| - 1 \) for all \(1 \leq i \leq h_2 - 1 \), \(|E_{\tilde{C}}(P^2_{h_2}, H)| \leq k \) if \(|V(P^2_{h_2})| \in \{1, 2\} \) and \(|E_{\tilde{C}}(P^2_{h_2}, H)| \leq k + 1 \) if \(3 \leq |V(P^2_{h_2})| \leq k + 1 \).

According to the above claims, we have

\[
|E_{\tilde{C}}(C, H)| = |E_{\tilde{C}}(aC^{-}b, H)| + |E_{\tilde{C}}(aC^{-}b, H)| - |E_{\tilde{C}}(a, H)| - |E_{\tilde{C}}(b, H)|
\leq \sum_{i=1}^{h_1-1} |V(P^1_i)| - (h_1 - 1) + |E_{\tilde{C}}(P^1_{h_1}, H)|
+ \sum_{i=1}^{h_2-1} |V(P^2_i)| - (h_2 - 1) + |E_{\tilde{C}}(P^2_{h_2}, H)|
- |E_{\tilde{C}}(a, H)| - |E_{\tilde{C}}(b, H)|
\leq |l - |V(P^1_{h_1})| - |V(P^2_{h_2})| + 1| - (h_1 + h_2) + 2
+ |E_{\tilde{C}}(P^1_{h_1}, H)| + |E_{\tilde{C}}(P^2_{h_2}, H)| - |E_{\tilde{C}}(a, H)| - |E_{\tilde{C}}(b, H)|
= l - (|V(P^1_{h_1})| + |V(P^2_{h_2})|) - (h_1 + h_2) + 3
+ |E_{\tilde{C}}(P^1_{h_1}, H)| + |E_{\tilde{C}}(P^2_{h_2}, H)| - |E_{\tilde{C}}(a, H)| - |E_{\tilde{C}}(b, H)|.
\] (8)

Claim 6 \(\bar{s} \leq l + 2k - 4 \).
Proof. We show that \(\bar{S} \leq \max\{2k+2, l+k-1, l+2k-4\} \), which implies \(\bar{S} \leq l+2k-4 \) since \(l \geq 7 \) from Claim 1 and \(k \geq 3 \) from Claim 2.

Let \(h = h_1 + h_2 \). By symmetry, we suppose \(h_1 \geq h_2 \) and \(|V(P_{h_1}^1)| \geq |V(P_{h_2}^2)| \). From Claim 3, we have \(h \geq 1 \). Then we proceed our proof by distinguishing the following four cases.

Case 1. \(h_1 = 1 \) and \(h_2 = 0 \). From Algorithm AII, we have \(E_\mathcal{C}(uC \setminus v, H) = \phi \). Thus, \(E_\mathcal{C}(u, H) = \phi \) and \(E_\mathcal{C}(b, H) = \phi \). From Algorithm AI, we have \(|V(P_{h_1}^1)| \geq 2 \). If \(|V(P_{h_2}^2)| = 2 \), let \(u \) be the vertex distinct from \(b \) in \(C \) such that \(E_\mathcal{C}(u, H) \neq \phi \). Thus we have \(\bar{S} = |E_\mathcal{C}(u, H)| \leq k < 2k + 2 \). If \(|V(P_{h_1}^1)| \geq 3 \), from Claim 4, we have \(\bar{S} = E_\mathcal{C}(P_{h_1}^1, H) \leq k + 1 < 2k + 2 \). The claim follows.

Case 2. \(h_1 \geq 2 \) and \(h_2 = 0 \). From Algorithm AI and AII, we have \(E_\mathcal{C}(u, H) = \phi \), \(E_\mathcal{C}(b, H) = \phi \) and \(|V(P_{h_1}^1)| \geq 2 \). If \(|V(P_{h_1}^1)| = 2 \), since \(E_\mathcal{C}(b, H) = \phi \), we have \(|E_\mathcal{C}(P_{h_1}^1, H)| + |E_\mathcal{C}(P_{h_2}^2, H)| - |E_\mathcal{C}(b, H)| = |E_\mathcal{C}(P_{h_1}^1, H)| \leq k \). Applying inequality (8), we have \(\bar{S} \leq l - 2 - 3 + k + 0 = l + k - 1 \). If \(|V(P_{h_1}^1)| \geq 3 \), from Claim 4, we have \(\bar{S} \leq l - 2 - 3 + k + 1 = l + k - 1 \). The claim follows.

Case 3. \(h_1 = 1 \) and \(h_2 = 1 \). By Claim 4 and 5, if \(|V(P_{h_1}^1)| \in \{1, 2\} \) and \(|V(P_{h_2}^2)| \in \{1, 2\} \), we have \(\bar{S} \leq |E_\mathcal{C}(P_{h_1}^1, H)| + |E_\mathcal{C}(P_{h_2}^2, H)| \leq 2k + 2 \). If \(|V(P_{h_1}^1)| \geq 3 \) and \(|V(P_{h_2}^2)| \in \{1, 2\} \), we have \(\bar{S} \leq |E_\mathcal{C}(P_{h_1}^1, H)| + |E_\mathcal{C}(P_{h_2}^2, H)| \leq 2k + 1 < 2k + 2 \). If \(|V(P_{h_1}^1)| \geq 3 \) and \(|V(P_{h_2}^2)| \geq 3 \), we have \(\bar{S} \leq |E_\mathcal{C}(P_{h_1}^1, H)| + |E_\mathcal{C}(P_{h_2}^2, H)| \leq 2k + 2 \). The claim holds.

Case 4. \(h \geq 3 \) and \(h_2 \geq 1 \). We consider the following six cases.

Case 4.1. \(|V(P_{h_1}^1)| = 1 \) and \(|V(P_{h_2}^2)| = 1 \). It is clearly that

\[
V(P_{h_1}^1) = V(P_{h_2}^2) = \{b\}
\]

and

\[
|E_\mathcal{C}(P_{h_1}^1, H)| + |E_\mathcal{C}(P_{h_2}^2, H)| - |E_\mathcal{C}(b, H)| = |E_\mathcal{C}(b, H)| \leq k.
\]

By inequality (8), we have

\[
\bar{S} = |E_\mathcal{C}(C, H)| \leq l - 2 - 3 + k = l + k - 2 < l + k - 1.
\]

Case 4.2. \(|V(P_{h_1}^1)| = 2 \) and \(|V(P_{h_2}^2)| = 1 \). It is clearly that \(V(P_{h_2}^2) = \{b\} \). From Claim 4, we have

\[
|E_\mathcal{C}(P_{h_1}^1, H)| + |E_\mathcal{C}(P_{h_2}^2, H)| - |E_\mathcal{C}(b, H)| = |E_\mathcal{C}(P_{h_1}^1, H)| \leq k.
\]

By inequality (8) and \(h \geq 3 \), we have

\[
\bar{S} \leq l - 3 - 3 + k + 0 = l + k - 3 < l + k - 1.
\]

Case 4.3. \(|V(P_{h_1}^1)| \geq 3 \) and \(|V(P_{h_2}^2)| = 1 \). It is clearly that \(V(P_{h_2}^2) = \{b\} \). From Claim 4, we have

\[
|E_\mathcal{C}(P_{h_1}^1, H)| + |E_\mathcal{C}(P_{h_2}^2, H)| - |E_\mathcal{C}(b, H)| = |E_\mathcal{C}(P_{h_1}^1, H)| \leq k + 1.
\]

By inequality (8) and \(h \geq 3 \), we have

\[
\bar{S} = |E_\mathcal{C}(C, H)| \leq l - 4 - 3 + k = l + k - 3 < l + k - 1.
\]
Case 4.4. \(|V(P_{h_1}^1)| = 2\) and \(|V(P_{h_2}^2)| = 2\). From Claim 4 and 5, we have

\[|E_C(P_{h_1}^1, H)| + |E_C(P_{h_2}^2, H)| - |E_C(b, H)| \leq 2k.\]

By inequality (8) and \(h \geq 3\), we have

\[\tilde{S} = |E_C(C, H)| \leq l - 4 - 3 + 3 + 2k + 0 = l + 2k - 4 < l + k - 1.\]

Case 4.5. \(|V(P_{h_1}^1)| \geq 3\) and \(|V(P_{h_2}^2)| = 2\). It is clearly that

\[|E_C(P_{h_1}^1, H)| + |E_C(P_{h_2}^2, H)| - |E_C(b, H)| \leq k + k + 1 = 2k + 1.\]

By inequality (8) and \(h \geq 3\), we have

\[\tilde{S} = |E_C(C, H)| \leq l - 5 - 3 + 3 + 2k + 1 + 0 = l + 2k - 4.\]

Case 4.6. \(|V(P_{h_1}^1)| \geq 3\) and \(|V(P_{h_2}^2)| \geq 3\). From Claim 4 and 5, we have

\[|E_C(P_{h_1}^1, H)| + |E_C(P_{h_2}^2, H)| - |E_C(b, H)| \leq k + 1 + k + 1 = 2k + 2.\]

By inequality (8), we have

\[\tilde{S} = |E_C(C, H)| \leq l - 6 - 3 + 3 + 2k + 2 + 0 = l + 2k - 4.\]

The Claim follows.

From Claim 6, inequalities (5) (6) and (7), we can deduce that

\[k\delta \leq \tilde{S} + S + \tilde{T} + T + k(k - 1)\]
\[\leq l + 2k - 4 + l + (k - 1)(n - l - k) + k(k - 1)\]
\[= l + 2k - 4 + k(n - l) + 2l - n.\]

Therefore, we have \(k(n - l - \delta + 2) \geq n - 3l + 4\). Since \(l \geq \frac{n+12}{3}\) from Claim 1 and \(\delta \geq \frac{2n}{3} + 1\), we have \(n - l - \delta + 2 < 0\). Then from Claim 2, we have

\[3(n - l - \delta + 2) \geq k(n - l - \delta + 2) \geq n - 3l + 4,\]

which implies that \(\delta \leq \frac{2n+2}{3}\), a contradiction. We complete the proof of Theorem 1.6.

Acknowledgment
This research was supported by National Natural Science Foundation of China under grant numbers 11971445 and 12171440.
References

A. Abouelaoualim, K. C. Das, W. Fernandez de la Vega, M. Karpinski, Y. Manoussakis, C. A. Martinhon, and R. Saad. Cycles and paths in edge-colored graphs with given degrees. *Journal of Graph Theory*, 64(1):63–86, 2010.

J. A. Bondy and U. S. R. Murty. *Graph Theory*. Springer Graduate Texts in Mathematics, Springer, Berlin, 2008.

H. Chen. Long rainbow paths and rainbow cycles in edge colored graphs – a survey. *Applied Mathematics and Computation*, 317:187–192, 2018.

X. Chen and X. Li. Proper vertex-pancyclicity of edge-colored complete graphs without joint monochromatic triangles. *Discrete Applied Mathematics*, 294:167–180, 2021.

X. Chen and X. Li. Note on rainbow cycles in edge-colored graphs. *Discrete Mathematics*, 345(12):113082, 2022.

X. Chen, F. Huang, and J. Yuan. Proper vertex-pancyclicity of edge-colored complete graphs without monochromatic triangles. *Discrete Applied Mathematics*, 265:199–203, 2019.

Y. Cheng, Q. Sun, T. S. Tan, and G. Wang. Rainbow hamiltonian cycles in strongly edge-colored graphs. *Discrete Mathematics*, 342(4):1186–1190, 2019.

A. Czygrinow, T. Molla, B. Nagle, and R. Oursler. On odd rainbow cycles in edge-colored graphs. *European Journal of Combinatorics*, 94:103316, 2021.

S. Ehard and E. Mohr. Rainbow triangles and cliques in edge-colored graphs. *European Journal of Combinatorics*, 84:103037, 2020.

S. Fujita, B. Ning, C. Xu, and S. Zhang. On sufficient conditions for rainbow cycles in edge-colored graphs. *Discrete Mathematics*, 342(7):1956–1965, 2019.

S. Guo, F. Huang, and J. Yuan. Properly colored 2-factors of edge-colored complete bipartite graphs. *Discrete Mathematics*, 345(12):113094, 2022.

G. R. T. Hendry. Extending cycles in graphs. *Discrete Mathematics*, 85(1):59–72, 1990.

M. Kano and X. Li. Monochromatic and heterochromatic subgraphs in edge-colored graphs - a survey. *Graphs and Combinatorics*, 24:237–263, 2008.

L. Li and X. Li. Rainbow edge-pancyclicity of strongly edge-colored graphs. *Theoretical Computer Science*, 907:26–33, 2022.

L. Li, F. Huang, and J. Yuan. Proper vertex-pancyclicity of edge-colored complete graphs without monochromatic paths of length three. *Discrete Mathematics*, 345(6):112838, 2022.

A. Lo. An edge-colored version of dirac’s theorem. *SIAM Journal on Discrete Mathematics*, 28(1):18–36, 2014.

M. Wang and J. Qian. Rainbow vertex-pancyclicity of strongly edge-colored graphs. *Discrete Mathematics*, 344(1):112164, 2021.