The Impact Factor of Colon Polyp

Zheng Zhou (✉ 312461649@qq.com)
Anhui Provincial Children's Hospital https://orcid.org/0000-0001-9733-8064

Guangming Wang
Yan an People's Hospital: Yan'an People's Hospital

Research

Keywords: Helicobacter pylori, Colonic polyp, Recurrence, Impact factor.

DOI: https://doi.org/10.21203/rs.3.rs-659158/v1

License: ☕️ 🔐 This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objective: To evaluate the relationship between Helicobacter pylori and colonic polyp.

Methods: The clinical data of 850 patients who underwent both colonoscopy and Helicobacter pylori check were collected in our hospital from January 2018 year to January 2019 year. Patients were divided into polyp group and control group. To analyze the helicobacter pylori infection of two groups, and the relationship among helicobacter pylori infection, eradication treatment and recurrence of colonic polyp. Further to analyze the impact factor of the recurrence of colonic polyp.

Results: There were no significant difference in sex and age aspects of two groups. Through SPSS software analysis, the infection rate of helicobacter pylori was higher in polyp group than in control group. The recurrence rate of helicobacter pylori positive patients were more higher than helicobacter pylori negative patients. The recurrence rate of helicobacter pylori eradication group was lower than helicobacter pylori no eradication group. the impact factor of the recurrence of colonic polyp include helicobacter pylori infection, pathological type of polyp and the number of polyps.

Conclusion: The helicobacter pylori infection rate of colonic polyp group were more higher. The impact factor of colonic polyp recurrence include helicobacter pylori infection, pathological types of polyp and polyp number.

Background

The polyp of large intestine is a kind of common digestive tract lesion, and a mass formed by the proliferation of the large intestine mucosa into the intestinal cavity. Pathologically, it can be divided into proliferative polyp, inflammatory polyp, adenomatous polyp, hamartoma polyp and so on. Hyperplastic polyps and inflammatory polyps generally have no cancerous tendency, adenomatous polyps and hamartomatous polyps have certain cancerous tendency. Recently, the incidence of colorectal cancer have decreased due to increased precancerous lesion screening and resection of early colorectal lesions[1,2]. The incidence of colorectal cancer is related to diet structure, environmental changes, genetic factors, oncogene imbalance and other factors, and there is no definite and effective prevention method at present. Helicobacter pylori is a class of gram-negative microaerobic bacteria. Helicobacter pylori is associated with peptic diseases such as gastritis and peptic ulcer. It is the first carcinogen of gastric cancer. In addition, Helicobacter pylori is also associated with iron deficiency anemia, idiopathic thrombocytopenic purpura, diabetes and other extragastric diseases. Studies have shown that Helicobacter pylori is associated with the risk of colorectal polyps[3,4].

In this study, through compared helicobacter pylori infection of large intestine polyp group with control group, and compared helicobacter pylori infection of different pathological types of polyp and control group, we analyze the relationship between helicobacter pylori and polyp of large intestine.

1. Objects And Methods
1.1 Objects: The clinical data of 850 patients who underwent both colonoscopy and Helicobacter pylori check were collected in our hospital from January 2018 year to January 2019 year. Exclusion of ulcerative colitis, Crohn's disease, systemic lupus erythematosus, familial polyposis, familial cancer hereditary disease.

1.2 Material: Colonoscope. Olympus CF-H260AZI. Biopsy forceps. Nanjing minimally invasive Medical Technology Co.Ltd. Carbon 14 breath detector. Single endoscopic biopsy sampling needle. Electron microscope.

1.3 Methods:

1. Colonoscopy: All colonoscopy achieved ileocecal site. All polyps were biopsied and sent to pathology during the examination.

2. Size of lesion: The criterion follow as maximum opening of biopsy forceps (about 0.6cm) or maximum diameter of tissue after resection by measurement.

3. Groups and methods: Patients were divided into polyp group and control group. Normal colonoscopy was the control group. The colonic polyp as polyp group. To analyze the helicobacter pylori infection of two groups, and the relationship among helicobacter pylori infection, eradication treatment and recurrence of colonic polyp. Further to analyze the impact factor of the recurrence of colonic polyp.

4. Helicobacter pylori tests are based on carbon 14 breath test and pathology.

5. All patients were followed up for one year.

1.4 Statistical analysis:

Data collected were analysed using SPSS17.0. The measurement data use t test. The count data use chisquare test. P<0.05 was statistically significant.

2. Results

2.1 Patient's clinical data:

We collected the clinical data of 850 patients who underwent both colonoscopy and Helicobacter pylori in endoscopic room of our hospital from January 2018 year to January 2019 year. Among these patients, there were 420 males, 430 females. 304 patients were helicobacter pylori positive, and 546 patients were helicobacter pylori negative. Among helicobacter pylori positive patients, there were 162 patients have helicobacter pylori eradicated, and 142 patients have not eradicated. In control group, there were 213 patients who's age over 60 years, and 202 patients who's age less than 60 years. In polyp group, there were 220 patients who's age over 60 years, and 215 patients who's age less than 60 years. In Table 1, there were no significant difference in sex and age aspects of two groups.

Table 1 The comparison of sex and age aspects between two groups
2.2 The colonic polyp and Helicobacter pylori infection

The polyp group have 435 patients, in which there were 192 helicobacter pylori positive patients, and 243 helicobacter pylori negative patients. The percentage of helicobacter pylori positive was 44.1% in polyp group. The control group have 415 patients, in which there were 112 helicobacter pylori positive patients, and 303 helicobacter pylori negative patients. The percentage of helicobacter pylori positive was 36.9% in control group. Through SPSS software analysis, the infection rate of helicobacter pylori was higher in polyp group, and there was significant difference. The results shown in Table 2.

	Control group	Polyp group	chisquare	P value
Sex				
male	205	215	0.000	0.994
female	210	220		
Age				
>60 years	213	220	0.048	0.827
≤60 years	202	215		

2.3 The relationship among helicobacter pylori infection, eradication treatment and recurrence of colonic polyp.

Through SPSS software analysis, the recurrence rate of helicobacter pylori positive patients were more higher than helicobacter pylori negative patients. The recurrence rate of helicobacter pylori eradication group was lower than helicobacter pylori no eradication group, and there was significant difference. The results shown in Table 3.

Table 3 The relationship among helicobacter pylori infection, eradication treatment and recurrence of colonic polyp.
2.4 The impact factor of the recurrence of colonic polyp.

Through SPSS software analysis, the impact factor of the recurrence of colonic polyp include helicobacter pylori infection, pathological type of polyp and the number of polyps. There was significant difference. The recurrence rate of helicobacter pylori positive, adenomatous polyps and multiple polyps were more higher.

The results were shown in Table 4.

Table 4 The impact factor of the recurrence of colonic polyp.

	recurrence	chsiquare	P value		
HP infection		26.552	0.000		
positive	158				
negative	185				
HP positive		13.034	0.000		
eradication	75				
No eradication	95				
	recurrence	No recurrence	chsiquare	P value	
--------------------------	------------	---------------	-----------	---------	
Sex	male	205	215	0.286	0.593
	female	202	228		
Age	≤60 years	125	282	1.726	0.189
	>60 years	118	325		
Polyp size			0.270	0.603	
diameter<1cm		210	250		
diameter≥1cm		185	205		
Helicobacter pilori			83.500	0.000	
positive		202	102		
negative		185	361		
Polyp site			0.701	0.983	
Ileocecus		62	77		
Colon ascendens		53	68		
Colon transversum		75	86		
Colon descendens		65	72		
Colon sigmoideum		78	85		
Rectum		60	69		
pathological type			6.913	0.032	
Inflammation polyp		92	150		
Hyperplasia polyp		120	176		
Adenomatous polyp		152	162		
Number of polyps			28.394	0.000	
Single		182	268		
Multiple		235	165		

3. Discussion

With the popularization of colonoscopy, the detection rate of colorectal polyps increased gradually. The colonic polyps are precancerous lesions of colon carcinoma. The cancertration rate of colonic polyps range from 1.4–9.2%[5]. More than 80% of colonic cancers developed from colonic adenomas. The
colonic adenomas have cancerous tendency. The incidence of colonic cancer decreased more than 75% after adenomatous polyp resection[6]. Research shows that helicobacter pylori infection have relationship with the development of colonic polyp[7, 8].

The infection rate of helicobacter pylori in polyp group was higher in this study. The positive rate of helicobacter pylori was 44.1% in polyp group, and 36.9% in control group, there was significant difference between polyp group and control group. Research shows that helicobacter pylori infection have relationship with the recurrence of colonic polyp[9, 10]. Helicobacter pylori eradication significantly reduces the risk of colonic polyp recurrence. This study found that the impact factor of colonic polyp recurrence include helicobacter pylori infection, pathological types of polyp and polyp number. The colon polyp recurrence rate of helicobacter pylori positive patients was 66.4%, the helicobacter pylori negative patients was 33.9%, inflammation polyp was 38%, hyperplasia polyp was 40.5%, adenoma polyp was 48.4%, single polyp was 40.4%, and multiple polyp was 58.7%. The recurrence rate of colon polyp were more higher in helicobacter pylori positive, adenoma polyp and multiple polyp group. In addition, the helicobacter pylori eradication therapy drugs include amoxicillin, clarithromycin, proton pump inhibitor and colloidal bismuth pectin in our study[11]. Compared with helicobacter pylori no eradication group, the recurrence rate of helicobacter pylori eradication group was 31.6%, helicobacter pylori no eradication group was 40.1%. It is indicated that the recurrence rate of helicobacter pylori eradication group was more lower than helicobacter pylori no eradication group. This shows that helicobacter pylori eradication can significantly decrease the recurrent risk of colonic polyp, which indicated that helicobacter pylori eradication may be the effective approach to prevent the recurrence of colonic polyp[12, 13].

Conclusion: The helicobacter pylori infection rate of colonic polyp group were more higher. The impact factor of colonic polyp recurrence include helicobacter pylori infection, pathological types of polyp and polyp number. The recurrence rate of colon polyp were more higher in helicobacter pylori positive, adenoma polyp and multiple polyp group. Therefore, endoscopic treatment in time and helicobacter pylori eradication can decrease the recurrent risk of colon polyp.

Declarations

Ethics approval and consent to participate:

The clinical research was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of Xuancheng People's Hospital. Written informed consent was obtained from individual or guardian participants.

Consent for publication:

Not applicable.
Availability of data and material:
All data generated or analysed during this study are included in this published article.

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable.

Authors' contributions
Guangming Wang performed the data collection of colon polyp. Zheng Zhou analyzed and interpreted the patient data regarding the impact factor of colon polyp, and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We appreciated all authors for analyzed and written the manuscript.

Authors' information:
Zheng Zhou, Department of Gastroenterology, The People's Hospital of Xuancheng City in Anhui Province, 242000 China E-mail:312461649@qq.com.

Guangming Wang, Department of Gastroenterology, The People's Hospital of Xuancheng City in Anhui Province, 242000 China E-mail: xcsywgm@163.com.

References
1. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics [J]. Ca A Cancer Journal for clinicians. 2017, 67(3): 177–193.
2. Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics [J]. Ca A Cancer Journal for clinicians. 2016, 66(4): 271–289.
3. Changxi Chen, Yushman Mao, Juan Du, et al. Helicobacter pylori infection associated with an increased risk of colorectal adenomatous polyps in the Chinese population. BMC Gastroenterology. 2019, 19:14.
4. Hassan Brim, Marwah Zahaf, Adeyinka O, Laiyemo, et al. Gastric helicobacter pylori infection associates with an increased risk of colorectal polyps in African Americans. BMC Cancer. 2014, 14:296.
5. Azeem S, Gillani SW, Siddiqui A, et al. Diet and colorectal cancer risk in Asia—a systematic review [J]. Asian Pac J Cancer Prev. 2015, 16(13): 5389–96.

6. Chengfeng Fu, Tieli Peng. Relationship between Helicobacter pylori and colorectal polyps occurrence, recurrence and carcinogenesis. Jinan University [D]; 2018.

7. Kim TJ, Kim ER, Chang DK, et al. Helicobacter pylori infection is an independent risk factor of early and advanced colorectal neoplasm [J]. Helicobacter. 2017, 22(3).

8. Lee JY, Park HW, Choi JY, et al. Helicobacter pylori infection with Atrophic Gastritis is an independent risk factor for advanced colonic neoplasm [J]. Gut liver. 2016, 10(6): 902–909.

9. Kim TJ, Kim ER, Chang DK, et al. Helicobacter pylori infection is an independent risk factor of early and advanced colorectal neoplasm [J]. Helicobacter. 2017, 22(3).

10. Yu L, Xiwen Qiu, Yonglin Luo, et al. The recent factor analysis of colorectal adenomatous polyps recurrence after endoscopic treatment [J]. Anhui Medical and Pharmaceutical Journal. 2015, 19(10): 1959–1961.

11. Rina Z, Josef Bautista, Katherine Sapra, et al. Combination of Triple Therapy and Chronic PPI Use May Decrease Risk of Colonic adenomatous polyps in helicobacter pylori infection [J]. Gastroenterol Res Pract. 2015, 2015: 638547.

12. Zhan T, Hielscher T, Hahn F, et al. Risk factors for local recurrence of large, flat colorectal polyps after endoscopic mucosal resection [J]. Digestion. 2016, 93(4): 311–317.

13. Inoue I, Kato J, Yoshimura N, et al. Elevated risk of recurrent colorectal neoplasia with helicobacter pylori-associated chronic atrophic gastritis: A follow-up study of patients with endoscopically resected colorectal neoplasia [J]. Mol Clin Oncol. 2013, 1(1): 75–82.