Efficiency Increase of Sowing Complexes

G V Redreev¹, V V Kachurin², O V Myalo¹

¹FSBEI of Higher Education «Omsk State Agrarian University named after P.A. Stolypin», Omsk
²FSBEI of Higher Education «South-Ural State Agrarian University», Chelyabinsk

Abstract. The sowing combined machine-tractor units and complexes have a great potential for productivity. However, in practice, the potential implementation remains at the level of 45-55%. The reason for this is the low reliability of agricultural machines that are part of the units. At the same time, the high cost of complexes causes it to belong to large agricultural associations and holdings that have significant acreage and correspondingly long distances to repair and maintenance facilities. In this case, the task of ensuring the required level of reliability of sowing complexes can be successfully solved by mobile service units. To do this, it is necessary to determine the causes of downtime of sowing units and complexes and set the optimal values for the parameters of the processes of using the units and restoring its operability. The reasons for downtime of aggregates were established by time-based monitoring in several agricultural holdings in the Chelyabinsk region. The controlled seed aggregates and complexes were divided into three groups according to the degree of realization of its productivity potential. For each group of units, the qualitative and quantitative parameters of spare parts stocks of agricultural machines were determined; modes of operation of mobile units for maintenance and repair of crop complexes, elimination of its malfunctions and breakdowns, assistance to drivers of units in eliminating the consequences of failures. The measures are proposed to reduce downtime of sowing complexes for organizational and other reasons. This made it possible to increase the degree of realization of the potential of sowing units and complexes.

1. Introduction

The potential productivity of combined machine-tractor units (MTU) is 150-200 ha/day at two-shift work, and its seasonal production is in the range of 2-3 thousand hectares of crops in one complex [1–2]. Due to technical and technological failures, most often agricultural machinery aggregates, the coefficient of use of working time by the sowing complex (SC) does not exceed 0.45...0.55 [3–4].

The operational reliability of modern tractors, including imported ones, is relatively high. Their operating time for failure of the II and III groups of complexity is 300-600 hours [5–6]. At the same time, failures of working machines in complexes occur in an order of magnitude more often, its time to failure is, on average, 15-25 hours [7–8]. Despite the low complexity of eliminating the consequences of failures of agricultural machines (within 0.5...1.5 people/h), the frequency of its occurrence and, most importantly, the waiting for the machine component part (MCP) or exchange node to restore the SC performance [9] determine the long downtime of complexes.

It is obvious that the implementation of potential possibilities of modern sowing combined units requires organizations farms agricultural holdings functioning of the processes of recovery of unit mobile units [10–14]. The combination of the necessary equipment and materials, the working capital of spare parts and exchange units, the required nomenclature for eliminating the consequences of failures...
of machines and aggregates will allow the staff of locksmiths, using mobile repair shops (MRS-A), to restore the operability of mechanized complexes in a timely manner.

At the same time there is a problem of establishing indicators of the use of imported and domestic sowing combined aggregates in the conditions of the southern Urals and Western Siberia during the spring cycle of field work [15–17].

To solve the problem, it is important:
- to identify the main causes of in-shift downtime of combined sowing units during the implementation of the sowing cycle of grain crops;
- to identify ways to improve the processes of using and ensuring the performance of combined sowing units.

2. Materials and methods

The timing observations over sowing combined aggregates in accordance with the developed technique of experimental researches were conducted in farms of OOO «Agro-Sitno» (Agapovsky region), OOO «Burannoe» (Burannoe village), OAO «Uralskoe» (Nagaybasky region, Gumbeysky village), OOO «Znamenskoe» (Fershampenuaz village), OAO «Balkans» (Balkans village), OOO «OstrolenSkoe» (OstrolenSkoe village), OOO «Kasselskoe» (Kasselskoe village), OAO «Polotsky» (Kizil’skiy region, Polotskoe village), OOO «The Way of October» (Way of October village). The farms are located in the southern part of the Chelyabinsk region. The observations were used to determine the coefficient of use of the working time of a shift (day) of sowing complexes.

For the period of time-keeping observations in the spring cycle of work on farms, 30 combined units were used. Depending on the name, composition and year of production, the combined units were divided into three groups (Table 1).

Group	Unit name	Qty
1	K-700A+5C3TC-2,1	19
	K-701+5C3TC-2,1	
2	K-744P1+5CKII-2,1	6
	CASE315+Maxim II	
3	CASE310+Morris Concept 2000	5
	CASE530+Morris Concept 2000	

The main norm-forming factor is the use of shift time (days) and the sowing period [18–19]. To assess the level of utilization of the potential of combined structurally complex, high-speed technological machines in complexes, this method is quite accessible and does not require complex equipment.

To substantiate the technical norm by means of time-based observations, an observer was located next to the machine operator in the cab of the tractor, who had a tablet with a chronocar and a watch. During the day, depending on the number of shifts, monitoring of the unit was carried out, working hours were recorded, time for turns and crossings, to eliminate the consequences of failures, etc. [20–22]. At the end of the shift, the observer measured the fuel in order to determine its consumption, as well as compiled a summary of observations for the day.

During the observations, the timekeeper was constantly near the unit and entered all the elements of the shift time in the order of its sequence from the moment the performers arrived at its workplace in the observation sheet (chronocar). It recorded the reason for each stop and indicates whether the engine was running or stopped [23].
First of all, the timekeeper recorded the start time of the shift in the chrono card. Then he/she filled out the main form of the card, i.e. indicated the elements of working time, current time, and so on.

Recording in the observation list was stopped only when the last operation was completed or the unit was idle at the end of the shift. Before the beginning or at the end of the shift, all additional columns of the observation sheet were filled in, i.e., unit indicators for the shift, and then for the day.

The observation sheet indicated the name of the machines in the unit, its number, brand and design width of the unit. The actual width of the unit, the sowing rate, and the sowing depth are measured by the machine operator. Moreover, the rate of sowing, the depth of sowing timekeeper checked three times per shift, then recorded in the column of the observation sheet average, and at the end of the shift made a reconciliation with the indicators of the accountant and agronomist.

To measure the width of the unit's grip we measured the width of the treated area for 10 passes of the unit and took the average width value.

The information about the characteristics of the site was recorded according to the data of the agronomist and clarified by the observer on the spot. The processed area measurement during the shift was given, indicating its main dimensions. The actual production was determined by the timekeeper together with the accountant by measuring the processed area, as well as by the order sheets, pick-up lists.

The processed data of all chrono cards were entered in a summary table and the average values were determined. Then these indicators were carefully analyzed, as a result of which the appropriate conclusions were determined about the productivity of the unit, the shift rate of production.

The analysis of the unit summary sheet for a single day allowed us to evaluate the unit's performance, specific reasons for downtime, actual performance, and so on.

3. Results

On average during the sowing period the main downtime for the first group of sowing units consisted of the time spent on:

- maintenance (79 minutes);
- filling with grain (67 minutes);
- meal (44 minutes);
- work on the paddock (54 minutes);
- unit movement to the field (10 minutes);
- unit turns (8.25 minutes)
- downtime due to technical failures (148 minutes);
- downtime for organizational reasons (81.5 per minute).

The percentage distribution of the main causes of downtime is shown in the diagram (Figure 1).
Figure 1. Time change structure of sowing combined units of the first group.

As you can see from figure 1, only 29% of the time was working time, 21% of the shift time was downtime due to technical failures; 11% - downtime for organizational reasons; 9% - loading the unit with seeds; 7% - the duration of the unit's operation in the paddock; 4% - unit turns; 3% - meal of the machine operator.

The results of statistical processing show that the level of use of sowing combined aggregates of the first group is not high and is at the level of 0.29. In fact, 71% of the shift combined units are idle.

The summary performance indicators of combined sowing units of the second and third groups are shown in Figures 2 and 3.

Figure 2. Time change structure of sowing combined units of the second group.
As can be seen from Figures 1-3, the largest share of downtime occurred for organizational reasons, namely, the timely delivery of machine components to eliminate the consequences of failures of sowing combined units.

Also, the significant downtime of the third group of aggregates (Figure 3) occurred due to the untreated field from the straw of the previous crop, which resulted in 8% of the total time of use of the sowing complex.

The analysis showed that the largest share of technical failures occurs in agricultural machinery: paw, rack, Coulter screen, Coulter diffuser, Coulter shield, high-pressure sleeves, spacer sleeve, seed lines front and middle, etc. The technical failures of sowing machines are caused by the ingress of foreign objects (stones, earth) into it. The duration of tractor downtime associated with repairs (replacement of the cylinder-piston group, replacement of injectors) is explained by the long delivery of spare parts.

4. Conclusion
Analyzing the results obtained we can recommend the following measures to reduce downtime and increase the productivity of combined sowing units:

– to move operations related to technical support and fueling beyond the shift;
– special attention should be paid to restoring the performance of agricultural machines, eliminating failures in the shortest possible time; to do this, organize a mobile link for maintenance and repair of crop complexes, eliminate its malfunctions and breakdowns, and assist machine operators in eliminating the consequences of failures;
– to organize a spare part fund of agricultural machines that most often fail;
– to clear the fields of odd objects.

5. References
[1] Plaksin A M, Gritsenko A V 2015 Resources crop production. Power engineering of machine-tractor units: Monograph. 2nd ed., reprint. and add (Chelyabinsk: South-Ural State Agrarian University) P 307
[2] Chekusov M S 2019 Evaluation of the effectiveness of machine technologies for spring wheat cultivation in the forest-steppe of Western Siberia Bulletin of Omsk State Agrarian University 4(36) pp 185-192
[3] Ovsyannikov A A, Petukhov D A 2011 Reliability of domestic and foreign seeding machines *Machiney and equipment for the village* 1 pp 37-38
[4] Demchuk E V 2017 Comparative analysis of operational characteristics of crop complexes in Western Siberia *Bulletin of Omsk State Agrarian University* 2(26) pp 99-105
[5] Gulyareno A A 2012 Substantiation of requirements for failure-free and maintainability of tractors when used in crop production in Northern Kazakhstan (on the example of tractors of 5 – 8 traction class): Thesis. Cand.Tech.science (Chelyabinsk) p 318
[6] Kachurin V V 2014 Substantiation of the number of mobile links for restoring the performance of combined sowing units: thesis ... Cand. Tech. science (Chelyabinsk) p 150
[7] Research on the effectiveness of using imported tillage complexes in the poultry farm of OAO «Chelyabinsk Poultry Farm» Research Report (Chelyabinsk Chau) 2005; 2006; 2007
[8] Shakhov V A, Aristanov M G, Larionov E P 2010 Reliability of foreign tillage equipment in the conditions of the Orenburg region *Machine-technological station* 6 pp 23-24
[9] Redrееv G V 2016 Machine–Tractor Aggregates Operation Assurance by Mobile Maintenance Teams IOP Conference Series: Materials Science and Engineering, Vol. 221 conference 1 p 01 URL https://iopscience.iop.org/article/10.1088/1757-899X/221/1/012016
[10] Myalo O V 2019 Toward the construction of a technical service structure for agricultural enterprises in the Omsk Region *Bulletin of Omsk State Agrarian University* 3(35) pp 102-110
[11] Okunev G A 2018 Ensuring the efficiency of equipment in the implementation of flow processes in agriculture *Bulletin of Omsk State Agrarian University* 2(30) pp 124-130
[12] Buraev M K 2019 Ensuring the operability of automotive equipment for correcting the consumption of spare parts during technical service *Bulletin of East Siberian State University of Technology and Management* 3(74) (Irkutsk) pp 69-76
[13] Shisteev A V 2017 Ensuring the efficiency of imported agricultural machinery *Bulletin of East Siberian State University of Technology and Management* 4(67) (Irkutsk) pp 107-113
[14] Khabarov V N 2016 Mathematical description of technical maintenance of machines taking into account working conditions in the field *Bulletin of East Siberian State University of Technology and Management* 1(58) (Irkutsk) pp 107-113
[15] Nekhoroshev D D 2019 Features of improving the operation of the machine-tractor unit by reducing load fluctuations Proceedings of the Lower Volga agrodiversity complex: Science and higher professional education 1(53) pp 41-45
[16] Shchitov S V 2018 Increasing the performance indicators of tractor-transport aggregates when using loading devices *Far Eastern Agranarian Bulletin* 3(47) pp 132-141
[17] Kamaletdinov R R, Mudarisov S G 2018 Entropic methods for evaluating the quality and stability of technological operations of agricultural machines *Bulletin of Kazan State Agricultural University* 3(50) pp 85-89
[18] Kem A A, Yushkevich L V 2008 Influence of seeding methods on the yield of grain crops in Western Siberia International scientific-practical conference, dedicated to the 100th anniversary of the birth A. I. Selivanov (Krasnoobsk village, June 9-11, 2008) Russian Agricultural Academy Siberian department Siberian Research Institute of Agricultural Mechanization and Electrification (Novosibirsk) pp 469-476
[19] Kem A A, Yushkevich L V 2009 Productivity of grain crops depending on the modeling of the sowing method *Siberian Bulletin of Agricultural Science* 11 pp 92-97
[20] Ivanov A I, Kulikov A A, Tretyakov B S 1987 Control and measuring devices in agriculture Reference book (M.: Rosselkhoznadzor) p 352
[21] Listopad I A 1989 Planning an experiment in research on the mechanization of agricultural production (M.: Agropromizdat) p 88
[22] Toibert P 1988 Estimation of accuracy of measurement results Translated from German (M.: Energoatomizdat) p 88
[23] Matveev V A, Pustovalov I I 1979 Technical regulation of repair works in agriculture (M.: Kolos) p 288