Unmasking the constitution and bonding of the proposed lithium nickelate "Li₃NiPh₃(solv)₃": revealing the hidden C₆H₄ ligand†

Rosie J. Somerville, †‡a Andryj M. Borys, †b Marina Perez-Jimenez, †a†b Ainara Nova, †a c David Balcells, †b c Lorraine A. Malaspina, †b Simon Grabowsky, †b Ernesto Carmona, †a Eva Hevia †b*c and Jesús Campos †a*c

More than four decades ago, a complex identified as the planar homoleptic lithium nickelate "Li₃NiPh₃(solv)₃" was reported by Taube and co-workers. This and subsequent reports involving this complex have lain dormant since; however, the absence of an X-ray diffraction structure leaves questions as to the nature of the Ni–PhLi bonding and the coordination geometry at Ni. By systematically evaluating the reactivity of Ni(COD)₂ with PhLi under different conditions, we have found that this classical molecule is instead a unique octanuclear complex, [Li₃(solv)₂Ph₃Ni]₂(μ-H₂C₆H₄)₂ (5). This is supported by X-ray crystallography and solution-state NMR studies. A theoretical bonding analysis from NBO, QTAIM, and ELI perspectives reveals extreme back-bonding to the bridging C₆H₄ ligand resulting in dimetallabicyclobutane character, the lack of a Ni–Ni bond, and pronounced σ-bonding between the phenyl carbanions and nickel, including a weak C–Li₃NiPh₃(solv)₃ Li bond acting as a σ-donor. Employing PhNa led to the isolation of [Na₂(solv)₂Ph₃Ni(COD)]₂ (7) and [Na₂(solv)₂Ph₃(NaC₈H₁₁)Ni(COD)]₂ (8), which lack the benzyne-derived ligand. These findings provide new insights into the synthesis, structure, bonding and reactivity of heterobimetallic nickelates, whose prevalence in organonickel chemistry and catalysis is likely greater than previously believed.

Introduction

During the last decade, organonickel chemistry has undergone a period of rapid growth, particularly when it comes to the development of new reactions that take advantage of nickel’s accessible one-electron mechanistic steps, the often favorable oxidative addition of strong bonds to nickel, and its lower cost compared to platinum-group metals. As this chemistry progresses, it remains based on fundamental knowledge, be it in understanding mechanistic steps, ligand choices, or the nature of the bonding interactions. A key aspect of the latter is the work that was carried out around half a century ago involving low-

†Electronic supplementary information (ESI) available. CCDC 2127441 and 2127151. For ESI and crystallographic data in CIF or other electronic format see https://doi.org/10.1039/d2sc01244h
††These authors contributed equally to this work.
phenyllithium molecules to a Ni(0) centre might imply multitemple-electron interactions, suggested by Jonas and co-workers,26–28 that can now be investigated by computational methods. With the above in mind, we aimed to investigate the existence of “Li2NiPh3(solv)3” and to explore its structure, bonding and reactivity. Overall, our results do not support the existence of “Li2NiPh3(solv)3,” and instead reveal a unique dinickel complex \([\text{Li}_3\text{NiPh}_3(\text{THF})_3]\) containing a bridging benzyne-type moiety (Scheme 1). Experimental and computational studies have been performed to understand the nature of the bonding and the structural features of this and related alkali-metal nickelates. Preliminary investigations into the reactivity and catalytic activity of this exotic complex are also provided.

Results and discussion

Taube’s initial report presented us with two synthetic routes to “Li2NiPh3(THF)+,”: (i) ligand substitution from Ni(COD)2 (COD = 1,5-cyclooctadiene) via “Li2NiPh3(COD)” and; (ii) reduction of Li2NiPh3(THF)+ with excess PhLi.13,16,18 However, the exact experimental conditions necessary for the synthesis and isolation of “Li2NiPh3(THF)+” from either route were not specified, so each route was investigated in turn. The first route involves the formal displacement of COD by PhLi. Following pioneering work from Jonas,26,29 Borys and Hevia treated Ni(COD)2 with PhLi in THF and obtained three isolable COD complexes (1-3) depending on the stoichiometry and crystallisation conditions (Fig. 1A).4 When a similar reaction is performed with PhLi prepared from PhBr and BuLi, which gives \([\text{PhLi}\cdot\text{Et}_2\text{O}]\text{LiBr}\)29, the lithium nickelate obtained, \([\text{Li}_3(\text{Et}_2\text{O})\text{LiBr}\text{Ph}_2\text{Ni}]\cdot\text{COD}\) (4), contains co-complexed LiBr (Fig. 1B; see ESIT for full details and solid-state structure). No spectroscopic evidence for Taube’s proposed planar complex was observed in these experiments. Following Taube’s ligand substitution route, we envisioned that we could displace the COD ligands by treating intermediate complexes 1, 2 or 4 with additional PhLi, or, more conveniently, by treating Ni(COD)2 directly with excess PhLi. Thus, Ni(COD)2 was treated with donor-free PhLi (5 equiv.) and refluxed in a mixture of THF and hexane as described by Taube. A deep red solution was obtained as indicated in Taube’s reports. However, signals originally attributed to “Li2NiPh3(THF)+” were not detected by 1H and 13C NMR spectroscopy.

Nickelate intermediate 2 was the major product of these reactions. We found that the choice of solvent was crucial for converting 2 to a COD-free nickelate. Employing Et2O with gentle heating for 22 hours also gave a characteristic deep red solution; however, in this case a crystalline solid identified as \([\text{Li}_3(\text{Et}_2\text{O})_2\text{Ph}_2\text{Ni}]_2(\mu-\eta^2:\eta^2-\text{C}_6\text{H}_6)\) (5) could be isolated in low but reliable yields (10–25%) (Fig. 1C). These are lowered as removing the excess PhLi was challenging due to its similar solubility to the reaction product. Although the well-resolved 1H NMR spectrum of this material indicated a diamagnetic complex as anticipated for “Li2NiPh3(solv)+,” our attention was drawn to an unexpected doublet-of-doublets at 5.77 ppm (JHH = 5.5 Hz, 2.2 Hz, 20 °C, THF-d8) correlated to a signal at 6.70 ppm. This indicated the presence of a disubstituted arene, which would be inconsistent with Taube’s original structure. Also consistent were two sets of Ni–Ph signals and a complex, broad, 7Li{1H} resonance from −0.40 to 1.0 ppm that upon cooling resolved into three signals at 1.28, 0.85, and −0.68 ppm (−80 °C, THF-d8, Fig. S67). A discussion of the available NMR data (13C only) of Taube’s “Li2NiPh3(THF)+” indicates the presence of just four aromatic signals at 111.6, 142.2, 125.0 and 120.3 ppm.34 Notably, the ipso-carbon was assigned as having the lowest chemical shift (111.6 ppm)30 which is inconsistent with the downfield signals reported for other phenyl-nickelate complexes (cf. 192.0 ppm for 1).36 Additional signals at 115, 125, and 127 ppm are noted and were attributed to a side product, “Li2NiPh3(\(\eta^2-\text{C}_6\text{H}_6\))”.31 Our experiments instead showed that the signal found at 115.5 ppm is correlated to the previously mentioned doublet-of-doublets at 5.77 ppm. This experiment was unavailable to Taube and demonstrates that we have isolated the same complex that was misidentified as “Li2NiPh3(THF)+,” and that this formula is inconsistent with its true composition.

We observed identical spectroscopic signatures following Taube’s second synthetic route, the treatment of Li2NiPh4(THF)+ with two equivalents of PhLi. These were accompanied by a large amount of biphenyl and minor unidentified species due to the competing thermal decomposition of Li2NiPh4(THF)+ (Fig. 1e and S1, S2†). A final attempt was made to target Taube’s proposed “Li2NiPh3(THF)+” complex. Treating Ni(COD)2 with 3 equivalents of [PhLi][THF]+ in toluene at room temperature afforded the heptametallic lithium nickelate, \([\text{Li}_3(\text{THF})_2\text{Ph}_2\text{Ni}]_2(\mu-\eta^2:\eta^2-\text{C}_6\text{H}_6)\) (5) in 50% yield (Fig. 1d). It is important to note that in all attempted syntheses of COD-free nickelates the exclusion of dinitrogen is required. During our studies we crystallographically characterised a tetranickel dinitrogen structure (Fig. S22†) related to “side-on” dinitrogen complexes reported by Jonas, Krüger and co-workers, obtained by treating Ni(CDT) (CDT = trans, trans, trans-cycloocta-2,4,6-trien-1-ol) with excess PhLi or PhNa under a N2 atmosphere.26–28

The inconsistencies between the original formulation and our complete set of NMR data were resolved with the aid of single-crystal X-ray diffraction studies. Dark red crystals of 5 and 6 were obtained from Et2O and revealed an unusual polynuclear cluster containing numerous interactions between C, Li and Ni atoms (Fig. 2 and 3). As these complexes are structurally very similar, we focus our discussion on complex 5. The complex
that is bridged by a perpendicular C6H4 moiety sandwiched between two PhLi molecules. The PhLi molecules interact with the C8H4 moiety though the Li atoms, with Li–centroid distances of 1.958 and 1.968 Å for complex 5. The distances between the Ni centres and the two closest C atoms of the C6H4 moiety have an average value of 1.96 Å, indicating the presence of Ni–C bonds. Compared to COD complexes 2 and 4, the Li–Cipso and Ni–Li distances found in 5 are longer (ca. 0.12 Å).

Importantly, the bridging C–C bond in the C6H4 moiety (1.449(6) Å) is significantly longer than the analogous bond in a previously reported 4,5-difluorobenzyne complex [[(PET)3Ni]2(μ-η2:η2-C6H4-2,5-F2)] (1.390(3) Å) and the mononuclear Ni-benzene complex [[CyPCH2CH2PCy2Ni(η2-C6H4)] (1.331(3) Å) (Scheme 2). Compared to dinickel complexes, where Ni–Ni bond distances tend to be around 2.5 Å, and in a rare case 2.6027(16) Å, the Ni⋯Ni distance of 2.7117(8) Å is very long and is similar to the 2.7242(3) Å observed in [[(PET)3Ni]2(μ-η2:η2-C6H4-2,5-F2)]2. In that case, Ni⋯Ni interactions were not studied.

Computational studies on the entire complex 5 were performed to analyse the bonding. First, we aimed to understand the Ni⋯Ni interaction (if any), then we investigated the nature of the C8H4 moiety bridging the Ni atoms and the bonding of the phenyl ligands. We also compared the bonding in 5 to that in the related COD complex 2 (see ESI† for further details).

The electronic structure of 5 was investigated by means of DFT calculations at the MN15/MN15L/def2SVP level. Three different electron configurations, namely the closed-shell singlet, the open-shell singlet and open-shell triplet were computed. The triplet state converged at an energy level +25.6 kcal mol⁻¹ above the closed-shell singlet, whereas the open-shell singlet was unstable. Electronic states with localized unpaired electrons, including Ni(↑)Ni(↓) and Ni(↑)Ni(↑) configurations, were thus excluded. The fully optimised geometry of the lowest-energy state, i.e. the closed-shell singlet, agreed with the crystal structure (RMSD = 0.023 Å, for all Ni–C distances). In contrast, the triplet state yielded a larger RMSD of 0.084 Å. These results are consistent with the diamagnetic nature of the complex as observed by NMR spectroscopy.

Natural bond orbital (NBO) calculations, including second-order perturbation analysis, were carried out to explore the electronic structure of the complex, with a particular focus on the nature of the bimetallic core. First, the presence of a Ni–Ni bond was not reflected in the molecular orbitals. Any relevant d-orbital combinations that we found were either non-bonding or antibonding. There is a weak dNi → sNi interaction between the two nickel atoms, however the stabilisation energy (SE) of this interaction, which measures its strength, is only 1.9 kcal mol⁻¹. The absence of a Ni–Ni bond is consistent with the comparatively long Ni⋯Ni distance discussed above.

Subsequent topological analyses of the real-space functions electron density (according to the quantum theory of atoms in molecules, QTAIM) and electron localisability indicator (ELI), add a complementary view of the bonding. These were conducted at the B3LYP/def2-TZVP level including empirical GD3BJ dispersion corrections. The same potential energy minimum was found as for the MN15/MN15L/def2SVP calculations (confirmed by frequency analyses). In the electron density, neither a bond path for the Ni⋯Ni contact, nor an ELI basin was found. This confirmed that no bonding interaction is...
present. However, the delocalisation index (related to QTAIM, measure of the bond order) between the two Ni atomic basins is 0.20, which is consistent with the very weak charge transfer between these two atoms as also found in the NBO analysis. This is the basis of our choice to depict a Ni–Ni interaction as a dashed line in schemes and figures.

The strongest interaction found in the NBO analysis of 5 was the backdonation from a Ni d orbital to a π^* orbital of the C6H4 bridging fragment. This is consistent with the considerable elongation of the C–C bond in the C6H4 moiety and its low natural bond order (1.12). The stabilisation energy of this interaction is 474.1 kcal mol$^{-1}$, and the shape and symmetry of the orbitals involved can be seen in the associated natural localised molecular orbital (NLMO) and schematic (Fig. 4a and b).

Electron donation to the empty s orbital of nickel is also relevant, with the spC orbitals of the phenyl ligands making the

![Scheme 2](image_url)
strongest contribution (SE = 50.4 kcal mol⁻¹, on average). The π_C=C system also makes a notable contribution (SE = 29.3 kcal mol⁻¹), whereas that of the σ_C=C orbital is weaker (SE = 3.4 kcal mol⁻¹). The shapes and symmetries of these different contributions can be observed in the NLMO plot of the empty σSo orbital (Fig. 4c and d). Interestingly, when this NLMO was augmented to visualise the weakest interactions, as shown in Fig. 4c, we found a σ_C−Li → σSo interaction (SE = 2.1 kcal mol⁻¹) in which the Ph−Li moiety acts as an electron donor to the nickel centre. The HOMO and LUMO orbitals did not show any other additional interactions (Fig. S26†).

The overall electron distribution was quantified with a combined ELI and QTAIM analysis. Fig. 5 shows ELI localisation domains, electron populations of the respective bond basins and QTAIM delocalisation indices for these bonds. We start from an isolated benzene molecule (Fig. 5a) to better understand the impressive backdonation upon bonding to nickel (Fig. 5b). In the benzene molecule there are 3.56 electrons in the putative triple bond with a bond order of 2.25.

Aside from 3.56 electrons located in a Ni p-orbital (HOMO in Fig. S26†), there is strong directed σ-bonding from the six phenyl groups to Ni, each with between 3.8 and 4.0 electrons in the ELI bond basin and only a minor contribution from the Li atoms (less than 0.2 electrons charge transfer between each Ni and Li pair). This is consistent with the NLMO depicted in Fig. 4c and d.

Given that we showed that Taube’s proposed “Li₃NiPh₃(solv),” complex instead corresponds to a more complicated dinickel structure, we naturally had questions about why the simpler complex does not form. We attribute this to the carbanionic phenyl ligands being such strong donor ligands that the Ni(0) centre cannot accept the electron density that would be required in “Li₃NiPh₃(solv),”. An indication of the donor properties of the phenyl ligands is already seen in the elongation of the C=C bond distance of the coordinated COD ligand in 1 (1.448(3) Å) and 4 (1.445(6) Å) (c.f. 1.439(5) Å in [Ni(dcpp)]_2(COD))⁴⁰ (dcpp = 1,2-bis(dicyclohexylphosphino)propane) and 1.425(4) Å in [Ni(NHC)₂]₂(COD)⁴¹ (NHC = 1,3-diiisopropylimidazole-2-ylidene). We postulate that the approach of the third PhLi molecule to the Ni centre might induce the insertion of extremely electron-rich Ni into a C−H bond. Subsequently, release of LiH may occur to form benzene. This reaction might involve a bimetallic mechanism with participation of two Ni centres.⁴²

We attempted to trap the plausible LiH byproduct by the addition of benzophenone to the reaction mixture (see ESI† for further details). The product of hydrolithiation, Ph₃CHOH, was not observed. Instead, the reaction is accompanied by a dramatic colour change to deep blue which suggested the formation of the benzophenone ketyl radical anion. This can be attributed to complex redox processes that, alongside the expected reactivity of the PhLi groups with benzophenone, made it difficult to rule out or confirm the formation of LiH. Experiments with [[¹³C₆PhLi·Et₂O]₃·LiBr] and unlabelled COD-
bearing intermediate 4 showed that, as expected, the 13C-labelled PhLi ends up in the C$_6$H$_4$ moiety. However, the PhLi-13C$_6$ was also observed to be in exchange with the other phenyl ligands (vide infra) making it difficult to determine the mechanism by experimental means. Although small amounts of C$_6$H$_6$ were detected due to decomposition of the nickelate species, likely via hydrolysis from trace water, an alternative mechanism via deprotonization was discarded. It does not account for the overall charge balance and Li(0) was not observed as a precipitate during the course of the reaction.

Beyond the mechanism by which compound 5 is formed, we were also interested in understanding its dynamic behaviour in solution. NMR spectroscopy experiments reveal that although the pseudo-C_{2v} symmetry of 5 appears to be retained when it is dissolved in THF-d$_8$, the PhLi molecules that are coordinated to the C$_6$H$_4$ moiety in the solid state dissociate. This is supported by 1H DOSY NMR studies which reveal two major independent species that do not co-diffuse, with an estimated molecular weight suggesting a composition of “[Li$_3$(THF)$_4$Ph$_2$Ni]_2(μ-$η^5$:C$_6$H$_4$)” (Fig. 6). 1H-1H NOE and 1H-1H EXSY NMR studies (Fig. S2 and S3) also demonstrate that the free PhLi is in rapid exchange with the Ni-bound phenyl ligands, which is consistent with our observations reacting 4 with 13C-labelled PhLi (see ESI† for further details). Variable temperature NMR studies of 5 in a mixture of toluene-d$_8$ and Et$_2$O suggest that the dissociation of PhLi is hampered at lower temperatures, since at -80 °C the 7Li NMR spectrum contains five unique signals in an approximately 1 : 2 : 1 : 1 : 1 ratio (Fig. S9†).

Compound 6 displays similar solution-state behaviour to 5 as illustrated by its apparent symmetric structure in THF-d$_8$ due to dissociation of PhLi. As for 5, variable temperature NMR studies also revealed that rotation about the C$_{ipso}$-Ni bonds could be frozen out upon cooling to -80 °C (Fig. S5†).

To further explore the nature of compound 5 we performed reactivity studies. Taube reported the formation of biphenyl when the purported “Li$_3$NiPh$_3$(THF)$_3$” was reacted with I$_2$. Upon addition of excess I$_2$ to 5, we observed the complete disappearance of signals related to 5 and the appearance of biphenyl and ortho-terphenyl in a 3 : 1 ratio after quenching the reaction (Scheme 3a). The formation of ortho-terphenyl is interesting as it suggests sequential reductive elimination reactions involving the C$_6$H$_4$ moiety. Moreover, when 5 was reacted with MeI, we observed the complete disappearance of 5 and the appearance of toluene and methyl-biphenyl in a 2 : 1 ratio by 1H NMR alongside biphenyl (Scheme 3b). Since the former triple bond in the bridging C$_6$H$_4$ moiety has been diminished by the significant Ni \rightarrow π* back-bonding to merely a single bond (bond order 1.12), typical benzylene reactivity was not observed. We did not detect cycloaddition products upon reaction of 5 with either anthracene or furan. These exploratory tests, along with the previously discussed computational studies, suggest that the nature of the bridging C$_6$H$_4$ fragment is rather that of a dimetallobicyclobutane.

Studies using compounds 2 and 5 as pre-catalysts for Ni-catalysed cross-coupling reactions were also conducted (Scheme 4). The ability of 5 to act as a pre-catalyst for the Csp3–Csp3 Kumada coupling shown in Scheme 4a is significant as this reaction was investigated in the context of Ni(0)-ate complexes such as Li$_3$[THF$_4$Ni(COD)]$_2$. Highly electron-rich complexes 2 and 5 gave improved yields compared to the <6% yield reported when Ni(COD)$_2$ was used as the pre-catalyst (74% and 43%, respectively). A Buchwald–Hartwig coupling reaction that involves a Ni(i)/Ni(III) mechanism was also explored (Scheme 4b). The desired amine was obtained in rather lower yields than previously reported pre-catalysts (28% with 2, 22% with 5) or with Ni(COD)$_2$ alone (52%). This is likely due to the nickelates lacking the robust NHC or bidentate phosphine ligands necessary for nickel intermediates to withstand the harsh reaction conditions. Compound 5 is also a competent pre-catalyst in the Ni-catalysed cross-coupling of 2-methoxynaphthalene with PhLi (46% yield of 2-phenylnaphthalene), albeit with a slight reduction in yield compared to 2 (Scheme 4c).

Having explored the structure, bonding, and reactivity of 5, we next investigated whether this chemistry could be extended to PhNa. Although we did not observe any analogous sodium nickelates containing the C$_6$H$_4$ ligand, the species that were obtained do provide some insight into how the polynuclear lithium nickelates 5 and 6 may be constructed. Treating Ni(COD)$_2$ with 2 equivalents of PhNa in Et$_2$O at -30 °C followed by crystallisation from THF/hexane afforded the 2 : 1 sodium nickelate, [Na$_2$(THF)$_3$Ph$_2$Ni(COD)]$_2$ (7) (Fig. 7a). Although the
structure of compound 7 was unambiguously determined by single crystal X-ray diffraction, 1H and 13C NMR spectroscopic analysis of the isolated material indicated a bulk constitution of [Na$_2$(THF)$_n$Ph$_2$Ni(C$_2$H$_4$)]$_2$, a previously reported compound.\(^7\,^8\)

The ethene ligands of this compound are proposed to originate from cleavage of the ethereal solvent (Et$_2$O or THF),\(^4\) a process that is also observed when PhNa is dissolved in THF. Compound 7 exists as a discrete dimeric structure that contains an 8-membered ring of alternating carbon and sodium atoms akin to that found in lithium nickelates 5 and 6 (Fig. 7b).

Conclusions

In conclusion, we have demonstrated that the proposed hexagonal planar, homoleptic complex “Li$_3$Ni$_2$(solv)$_3$” is instead a unique dinickel complex [{Li$_3$(solv)$_2$Ph$_3$Ni}$_2$(m-η^2-C$_6$H$_4$)] containing a C$_6$H$_4$ unit that is formally derived from a molecule of benzyne. By analysing the bonding in 5 by NBO, QTAIM, and ELI techniques, we have shown that remarkably strong d(Ni)/p*$C^\equiv C$ backbonding supported by p*$C^\equiv C$/s(Ni) charge transfer depletes the triple bond to only a single bond with a bond order of 1.12. Strong σ-bonding of the remaining phenyl carbanionic ligands to the Ni atoms was also detected with very weak contributions from the Li atoms. Preliminary reactivity studies revealed the formation of 1,2-disubstituted

Since organosodium compounds tend to form higher aggregates compared to their lithium congeners,\(^4\) we propose that during the synthesis of 5 in Et$_2$O a lithium-containing analogue of 7 may form. This electron-rich dinickel intermediate could then react with additional PhLi via a bimetallic mechanism as discussed previously to give the corresponding C$_6$H$_4$ complex. When Ni(COD)$_2$ is treated with a greater excess of PhNa (3–5 equiv.) significant decomposition is observed due to competing deprotonative sodiation of 1,5-cyclooctadiene. In one case, an octanuclear sodium nickelate [Na$_2$(Et$_2$O)$_2$Ph$_2$(NaC$_8$H$_11$)Ni(COD)$_2$] (8) was identified from the reaction mixture by single-crystal X-ray diffraction (Fig. 7a and c). Attempts to isolate this in pure form however were unsuccessful. Compound 8 can be viewed as a co-complex of 7 and NaC$_8$H$_11$, with the Na$_3$ atoms indicated in Fig. 7c solvated solely by numerous interactions to allyl, aryl and alkenyl carbons (Na···C range = 2.506(3)–2.952(3) Å).

Scheme 4 Use of lithium nickelates 2 and 5 as pre-catalysts in various cross-coupling reactions: (a) Csp2–Csp2 Kumada cross-coupling; (b) C–N Buchwald–Hartwig cross-coupling; (c) cross-coupling of aryl ethers.

Fig. 7 (a) Reactions of Ni(COD)$_2$ with PhNa for the synthesis of [Na$_2$(THF)$_2$Ph$_2$Ni(olefin)]$_2$ (7) and identification of [Na$_2$(Et$_2$O)$_2$Ph$_2$(NaC$_8$H$_11$)Ni(COD)$_2$] (8); (b) solid-state structure of 7. Thermal ellipsoids shown at 30% probability. Hydrogen atoms omitted and THF rings drawn as wireframes for clarity; (c) solid-state structure of 8. Thermal ellipsoids shown at 30% probability. Hydrogen atoms omitted and Et groups drawn as wireframes for clarity.
benzene compounds that formally derive from PhLi. We have also uncovered an interesting alkali-metal effect, where using PhNa gives new nickelate species that do not contain the C6H4 ligand. Looking at the broader implications of these findings, since many Ni(0)-catalysed transformations involve the use of Ni(COD)2 with a large excess of ArLi or other polar organometallic reagents, it cannot be discarded that compounds similar to 4–8 can also be formed or even be involved in some of these processes.

Data availability
Synthetic procedures, NMR spectra, and supplementary computational details are included as ESL†

Author contributions
R. J. S., A. M. B. and M. P.-J. synthesised and characterised all new complexes and carried out reactivity studies. A. N., D. B., L. A. M. and S. G. carried out computational studies. E. C., E. H. and J. C. supervised the overall project. R. J. S. and A. M. B. wrote the original draft and all authors contributed to review and editing.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work has been supported by the European Research Council (ERC Starting Grant, CoopCat, 756575), the Spanish Ministry of Science and Innovation (Project PID2019-110856GA-I00) and Junta de Andalucía (P18-FR-4688). The authors gratefully acknowledge the financial support provided by the Swiss National Science Foundation (SNSF) (Award 188573 to EH). A. N. and D. B. acknowledge the support from the Norwegian Research Council through the Hylleraas Centre for Quantum Molecular Sciences (Project 262695) and the Norwegian Metacenter for Computational Science (NOTUR; Grant nn4654k). The Rigaku Synergy-S instrument used for X-ray diffraction studies was purchased through the SNSF R’Equip grant 206021_177033.

Notes and references
1 J. B. Diccianni and T. Diao, Trends Chem., 2019, 1, 830–844.
2 S. Z. Tasker, E. A. Standley and T. F. Jamison, Nature, 2014, 509, 299–309.
3 K. Jonas and C. Krüger, Angew. Chem., Int. Ed., 1980, 19, 520–537.
4 L. Nattmann, S. Lutz, P. Ortsack, R. Goddard and J. Cornella, J. Am. Chem. Soc., 2018, 140, 13628–13633.
5 S. Lutz, L. Nattmann, N. Nöthling and J. Cornella, Organometallics, 2021, 40, 2220–2230.
6 A. M. Borys and E. Hevia, Angew. Chem., Int. Ed., 2021, 60, 24659–24667.
7 B. D. J. Brauer, C. Krüger, P. J. Roberts and Y.-H. Tsay, Angew. Chem., Int. Ed., 1976, 15, 48–49.
8 K. Jonas, Angew. Chem., Int. Ed., 1976, 15, 47.
9 K. Jonas, K. R. Pörschke, C. Krüger and Y.-H. Tsay, Angew. Chem., Int. Ed., 1976, 15, 621–922.
10 K.-R. Pörschke, K. Jonas, G. Wilke, R. Benn, R. Mynott and R. Goddard, Chem. Ber., 1985, 118, 275–297.
11 K.-R. Pörschke, K. Jonas and G. Wilke, Chem. Ber., 1988, 121, 1913–1919.
12 R. Taube and G. Honymus, Angew. Chem., Int. Ed., 1975, 14, 261–262.
13 R. Taube and N. Stransky, Z. Chem., 1979, 19, 412–413.
14 T. A. Bagenova, A. K. Shilova, E. Deschamps, M. Gruselle, G. Leny and B. Tchoubar, J. Organomet. Chem., 1981, 222, 2–5.
15 R. Taube and N. Stransky, Z. Anorg. Allg. Chem., 1982, 490, 91–100.
16 R. Taube, Pure Appl. Chem., 1983, 55, 165–176.
17 T. A. Bazhenova, R. M. Lobkovskaya, R. P. Shibaeva, A. E. Shilov, A. K. Shilova, M. Gruselle, G. Leny and B. Tchoubar, J. Organomet. Chem., 1983, 244, 265–272.
18 R. Taube, Comments Inorg. Chem., 1984, 3, 69–81.
19 R. Taube, D. Steinborn, H. Drevs, P. Nguyen Chuong, N. Stransky and J. Langlotz, Z. Chem., 1988, 11, 381–396.
20 J. Wei, W.-X. Zhang and Z. Xi, Angew. Chem., Int. Ed., 2015, 54, 5999–6002.
21 S. U. Koschmieder and G. Wilkinson, Polyhedron, 1991, 10, 135–173.
22 M. Garçon, C. Bakewell, G. A. Sackman, J. P. Andrew, R. I. Cooper, A. J. Edwards and M. R. Crimmin, Nature, 2019, 574, 390–396.
23 I. M. Riddlestone, J. A. B. Abdalla and S. Aldridge, Adv. Organomet. Chem., 2015, 63, 1–38.
24 M. J. Butler and M. R. Crimmin, Chem. Commun., 2017, 53, 1348–1365.
25 M. Perez-Jimenez, N. Curado, C. Maya, J. Campos, J. Jover, S. Alvarez and E. Carmona, J. Am. Chem. Soc., 2021, 143, 5222–5230.
26 K. Jonas, Angew. Chem., Int. Ed., 1973, 12, 997–998.
27 C. Krüger and Y.-H. Tsay, Angew. Chem., Int. Ed., 1973, 12, 998–999.
28 K. Jonas, D. J. Brauer, C. Krüger, P. J. Roberts and Y.-H. Tsay, J. Am. Chem. Soc., 1976, 98, 74–81.
29 H. Hope and P. P. Power, J. Am. Chem. Soc., 1983, 105, 5320–5324.
30 Taube compared the chemical shifts of “Li3NiPh3(THF)” to that of PhLi which was assigned as having a chemical shift of 121.7 ppm for the ipso-carbon.4H. J. Reich, D. P. Green, M. A. Medina, W. S. Goldenberg, B. O. Gudmundsson, R. R. Dykstra and N. H. Phillips, J. Am. Chem. Soc., 1998, 120, 7201–7210 This is inconsistent with reports by Reich which shows that for PhLi in Et2O, the ipso-carbon has a chemical shift of 187.0 ppm (dimer) or 174.0 ppm (tetramer), ref. 31 also mentions this incorrect assignment. 31 J. Langlotz, PhD thesis, Technische Hochschule Carl Schorlemmer, Merseburg, 1989.
32 A. L. Keen and S. A. Johnson, *J. Am. Chem. Soc.*, 2006, **128**, 1806–1807.

33 M. A. Bennett, T. W. Hambley, N. K. Roberts and G. B. Robertson, *Organometallics*, 1985, **4**, 1992–2000.

34 P. A. Cleave, A. J. Ayres, L. Vondung, J. C. Stewart, P. J. Cobb, A. J. Woole and S. T. Liddle, *Organometallics*, 2020, **39**, 4735–4746.

35 F. Weinhold and C. R. Landis, *Discovering Chemistry with Natural Bond Orbitals*, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012.

36 R. F. W. Bader, *Atoms in Molecules: A Quantum Theory*, Clarendon Press, Oxford, 1995.

37 M. Kohout, *Int. J. Quantum Chem.*, 2004, **97**, 651–658.

38 S. Grabowsky, *Complementary Bonding Analysis*, De Gruyter, 2021.

39 P. Prieto, A. De La Hoz, I. Alkorta, I. Rozas and J. Elguero, *Chem. Phys. Lett.*, 2001, **350**, 325–330.

40 F. D’Accriscio, A. Ohleier, E. Nicolas, M. Demange, O. Thillaye Du Boulay, N. Saffon-Merceron, M. Fustier-Boutignon, E. Rezabal, G. Frison, N. Nebra and N. Mézailles, *Organometallics*, 2020, **39**, 1688–1699.

41 T. Schaub and U. Radius, *Chem. – Eur. J.*, 2005, **11**, 5024–5030.

42 B. J. Graziano, M. V. Vollmer and C. C. Lu, *Angew. Chem., Int. Ed.*, 2021, **60**, 15087–15094.

43 T. Inatomi, Y. Fukahori, Y. Yamada, R. Ishikawa, S. Kanegawa, Y. Koga and K. Matsubara, *Catal. Sci. Technol.*, 2019, **9**, 1784–1793.

44 A. Bismuto, P. Müller, P. Finkelstein, N. Trapp, G. Jeschke and B. Morandi, *J. Am. Chem. Soc.*, 2021, **143**, 10642–10648.

45 R. E. Mulvey, V. L. Blair, W. Clegg, A. R. Kennedy, J. Klett and L. Russo, *Nat. Chem.*, 2010, **2**, 588–591.

46 A. Harrison-Marchand and F. Mongin, *Chem. Rev.*, 2013, **113**, 7470–7562.