Improved Fine-tuning by Leveraging Pre-training Data: Theory and Practice

Ziquan Liu*1,2, Yi Xu*1, Yuanhong Xu1, Qi Qian1, Hao Li1, Antoni Chan2, Rong Jin1

1. Machine Intelligence Technology, Alibaba Group
2. Department of Computer Science, City University of Hong Kong

ziquanliu2-c@my.cityu.edu.hk, {yixu, yuanhong.xuyh, qi.qian, lihao.lh}@alibaba-inc.com,
abchan@cityu.edu.hk, jinrong.jr@alibaba-inc.com

*equal contribution

First Version: October 06, 2021
Second Version: November 23, 2021

Abstract

As a dominant paradigm, fine-tuning a pre-trained model on the target data is widely used in many deep learning applications, especially for small data sets. However, recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy once the number of training iterations is increased in some vision tasks. In this work, we revisit this phenomenon from the perspective of generalization analysis which is popular in learning theory. Our result reveals that the final prediction precision may have a weak dependency on the pre-trained model especially in the case of large training iterations. The observation inspires us to leverage pre-training data for fine-tuning, since this data is also available for fine-tuning. The generalization result of using pre-training data shows that the final performance on a target task can be improved when the appropriate pre-training data is included in fine-tuning. With the insight of the theoretical finding, we propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task. Extensive experimental results for image classification tasks on 8 benchmark data sets verify the effectiveness of the proposed data selection based fine-tuning pipeline.

1 Introduction

After the success on ImageNet [Deng et al., 2009], deep learning attracts much attention and improves the performance of various computer vision tasks significantly, e.g., object detection [Ren et al., 2015], semantic segmentation [Chen et al., 2017], etc. Considering that labeling is expensive, it is unlikely that we have sufficient labels for every application. Fortunately, given a model pre-trained on a large-scale data set like ImageNet, an effective model for the target data set, which may only have hundreds of examples, can be learned by fine-tuning the pre-trained model. It is because many vision tasks are related [Zoph et al., 2020] and a model learned from ImageNet that consists of more than one million examples can contain diverse semantic information and provides a better initialization than random initialization.

Fine-tuning from a pre-trained model becomes a prevalent strategy for handling small data sets, but its theoretical understanding is unclear. On the one hand, when sufficient training data is available, some recent studies [He et al., 2019] have shown that training from scratch can achieve the same accuracy as training with ImageNet pre-trained models after a period of additional training. As a warm-up of this work, we aim to understand this phenomenon from the theoretical side of generalization analysis, which is commonly explored in the learning theory literature [Hardt et al., 2016]. The analysis reveals that the final prediction precision

1
may have a weak dependency on the pre-trained model under some mild conditions, e.g., fine-tuning with long iterations. On the other hand, it is not realistic to have abundant labeled data for every target task. So in many vision applications, training from scratch never matches the performance of fine-tuning a pre-trained model. However, our theoretical result tells us that when the pre-training data are too far from the target data, the domain gap will hurt the accuracy of target tasks. These two observations lead to the following question: can we develop a new strategy of fine-tuning that achieves better generalization performance than the standard framework by reusing pre-training data in fine-tuning to reduce the domain gap?

This work will address this question with an affirmative answer. Inspired by the theoretical observation, we propose to leverage the pre-training data, which is also available for fine-tuning, for target tasks. Concretely, we propose to reuse pre-training data and optimize its task loss (e.g., cross-entropy loss for classification task) along with the target data when fine-tuning. The generalization analysis confirms that the performance on the target data can be improved when an appropriate portion of pre-training data is selected. The proposed fine-tuning process is illustrated in Figure 1. Note that including extra data for fine-tuning may increase the computational cost, but the cost is affordable when the size of examples selected from pre-training data is comparable to that of the target data.

Since target data can be from different domains, we study the reusing strategy of pre-training data for different cases. First, when the target data is closely related to the pre-training data, one can randomly sample a number of pre-training data for fine-tuning, which is referred to as random selection. Second, if the label information of pre-training data is available and the classes overlapped with target data are identifiable, one can directly use those data with overlapped classes in fine-tuning. For example, given the data set of CUB [Wah et al., 2011], which is a data set consisting of birds images, 59 bird classes [Qian et al., 2020] in ImageNet can be included in fine-tuning. This scheme is referred to as label-based selection. Finally, when the labels between pre-training and target domains cannot match exactly or pre-training data has no labels as in self-supervised pre-training, the similarity measured by representations extracted from the corresponding pre-trained model will be adopted for selection. The last setting is prevalent in real-world applications and referred to as similarity-based selection.

Given the large scale of pre-training data, the representations from the pre-trained model can capture semantic similarity [Donahue et al., 2014]. Based on this observation, we propose a novel selection algorithm to obtain a subset from pre-training data closest to the target data by solving an unbalanced optimal transport (UOT) problem. Interestingly, the proposed method performs consistently well on other scenarios, e.g., labels are overlapped, which reduces the effort of identifying overlapped pre-training classes. The main contributions of this work are summarized as follows.

- From the perspective of generalization analysis, this work explains the phenomenon that training from scratch has a similar final performance as fine-tuning the pre-trained model in some computer vision
tasks, when the training iterations is large enough or the training data in the target domain is sufficient.

- We develop the generalization analysis when pre-training and target data are used in fine-tuning simultaneously, under some mild assumptions. It demonstrates that the performance on target data will likely be improved when the pre-training data is similar to the target data.

- With the insight of generalization analysis, we propose to select a subset of pre-training data with better similarity to the target data to further boost the final performance. A novel UOT-based algorithm is developed to handle target data from different scenarios.

- The performance of the proposed fine-tuning process is evaluated on 8 benchmark data sets for image classification tasks. When a self-supervised pre-trained model is used, our method surpasses the conventional fine-tuning pipeline by a large margin of 2.93% averaged over all tasks, verifying the effectiveness of reusing pre-training data.

2 Related Work

Fine-tuning as a special case of transfer learning [Pan and Yang, 2009, Chen et al., 2019, Li et al., 2019, 2018] aims to improve the performance on the target data by transferring the knowledge from a large-scale pre-training data. For example, supervised pre-trained models on ImageNet have been extensively used in image classification [Donahue et al., 2014], object detection [Ren et al., 2015, Lin et al., 2017] and semantic segmentation [Chen et al., 2017, Long et al., 2015]. However, the empirical study in [He et al., 2019] shows that the advantage of a supervised pre-trained model over random initialization cannot be observed when the gap between pre-training and target task is large, or the target task has sufficient training data and is trained for sufficient time. Later, [Zoph et al., 2020] demonstrates that self-supervised pre-training improves upon training from scratch in object detection and other vision tasks with strong data augmentation, indicating that self-supervised pre-training learns more general visual representations. Our work considers a general pre-training paradigm including both supervised and self-supervised approaches, and explains why pre-trained models fail to significantly outperform random initialization from the view of generalization theory. Different from existing work that regularizes the fine-tuning optimization explicitly [Gouk et al., 2020, Aghajanyan et al., 2020], we propose to reuse pre-training data in target training based on the theoretical findings.

There are several existing papers that explore the source data selection [Ge and Yu, 2017, Cui et al., 2018, Chakraborty et al., 2020]. [Ge and Yu, 2017] improves fine-tuning by borrowing data from a source domain which is similar to the target domain. The difference between [Ge and Yu, 2017] and our work are two-fold: 1) our work proposes a novel pre-training and fine-tuning pipeline while [Ge and Yu, 2017] is a joint training framework without pre-training; 2) our proposed data selection is a global search method using deep features from the pre-training model while [Ge and Yu, 2017] uses low-level features and retrieves similar images with local search. This paper demonstrates the weakness of local search compared to global search in our experiment. [Cui et al., 2018, Chakraborty et al., 2020] proposed similar schemes that pre-train the model on the selected subset from the pre-training data according to a domain similarity measure, but they do not use the selected data along with target data in the fine-tuning but re-pre-train on the selected data for every target task, which is a fundamental difference between their works and this paper. It is not surprising that such a re-pre-training framework brings benefit to a target task but it costs more computational time and resources than our fine-tuning framework. Another type of works uses the relationship between source and target to improve fine-tuning [You et al., 2020, Guo et al., 2019]. [You et al., 2020] exploits the relationship between source and target labels, and [Guo et al., 2019] trains a policy network to control the gradient mask for backbone’s blocks. This paper explicitly adds a selected portion of pre-training data in fine-tuning and the selection strategy can handle self-supervised pre-training since it does not need source labels.

The most important proposed data selection scheme in this work is the one based on a variant of optimal transport (OT) optimization. General OT is often used in computer vision to estimate or/and minimize the distance between two probability measures, such as prediction probabilities in classification [Frogner et al., 2015], density maps in crowd counting [Wan et al., 2021] and the reconstruction loss in generative models.
where \(t \) is the model parameter to be learned; \((x, y)\) is the input-label pair that follows a unknown distribution \(\mathcal{P}; \) \(E_{(x,y) \sim \mathcal{P}} [\cdot] \) is the expectation that takes over a random variable \((x, y)\) while we use \(E[\cdot] \) for the sake of simplicity when the randomness is obvious; \(f(\cdot; x, y) \) is a loss function. One example of \(f \) is cross-entropy loss for \(K \)-class classification problem:
\[
 f(\theta; x, y) = \sum_{k=1}^{K} -y^{(k)} \log \left(\frac{\exp(p_k(\theta; x))}{\sum_{j=1}^{K} \exp(p_j(\theta; x))} \right)
\]

The problem (1) is known as population risk minimization (PRM) problem. Since the distribution \(\mathcal{P} \) is unknown, the explicit formulation of (1) is difficult to be obtained. In practice, a set of training data \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \) drawn from \(\mathcal{P} \) are given, where \(n \) is the sample size. A common approach is to solve the empirical risk minimization (ERM) problem [Vapnik, 2013]:

\[
 \min_{\theta \in \mathbb{R}^d} F_n(\theta) := \frac{1}{n} \sum_{i=1}^{n} f(\theta; x_i, y_i).
\]

Stochastic gradient descent (SGD) [Robbins and Monro, 1951] is a very popular algorithm for solving problem (2) in many computer vision tasks, whose updating is given by

\[
 \theta_{t+1} = \theta_t - \eta \nabla \theta f(\theta_t; x_i, y_i),
\]

where \(t = 0, 1, \ldots \) is the iteration number, \(\eta > 0 \) is the learning rate, \(\nabla \theta f(\theta; x, y) \) is the gradient of function \(f(\theta; x, y) \) with respect to variable \(\theta \). When the variable to be taken a gradient is obvious, we use \(\nabla f(\theta; x, y) \) for simplicity. We use the excess risk (ER) as the performance measurement for a solution \(\hat{\theta} \):

\[
 F(\hat{\theta}) - F(\theta^*),
\]

where \(\theta^* \) is the optimal solution of (1) and \(\hat{\theta} \) is the output of SGD.

In order to describe the pre-trained model, we denote by \(G(\theta) := E_{(x,y) \sim \mathcal{Q}} [g(\theta; x, y)] \) the objective function that the pre-trained model aims to optimize. We use a parallel notation \(G_m(\theta) := \frac{1}{m} \sum_{i=1}^{m} g(\theta; x_i, y_i) \), where \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \) is a set of training data drawn from \(\mathcal{Q} \). Usually, the sample size \(m \) is larger than that of target data, i.e., \(m \gg n \). For the sake of analysis, we let \(m \) be large enough and both the pre-trained model and the target learning task share the same set of parameters. In order to ensure that the model learned by optimizing \(G(\theta) \) will be valuable to the optimization of \(F(\theta) \), we make the following assumption about \(F(\theta) \) and \(G(\theta) \).

Assumption 1. There exists a constant \(\Delta > 0 \) such that
\[
 \| \nabla F(\theta) - \nabla G(\theta) \| \leq \Delta, \forall \theta \in \mathbb{R}^d.
\]

3.2 Value of Pre-trained Model

To see the value of a pre-trained model, we present the excess risk bounds of the pre-trained model \(\theta_p \) and the final model \(\theta_f \) after fine-tuning \(\theta_p \) for the target task in the following lemma.
Theorem 1 (Informal). Under mild assumptions and by setting an appropriate learning rate, we have the following performance guarantee for the target task $F(\theta)$ in expectation. (1) The pre-trained model θ_p provides $F(\theta_p) - F(\theta_*) \leq O(\Delta^2)$. (2) The final model θ_f after fine tuning θ_p against a set of n training examples provides

$$F(\theta_f) - F(\theta_*) \leq O\left(\frac{\log(n\Delta^2)}{n}\right).$$

First, the performance gap between pre-trained model θ_p and the optimal model θ_* is bounded by $O(\Delta^2)$, where Δ describes the approximation accuracy when replacing $\nabla F(\theta)$ with $\nabla G(\theta)$ according to Assumption 1. Second, note that Δ only appears in the logarithmic term, implying that the final performance precision has a weak dependency on the pre-trained model when n is large. That is to say, when the number of training iterations is larger, the pre-trained model has a small effect on the final performance, which is consistent with the empirical results found in [He et al., 2019].

3.3 Value of Pre-training Data

In reality, a target task often does not have enough data to fine-tune the model for a long time, so the pre-trained models are still better than random initialization in many vision tasks. Nevertheless, our theoretical understanding reveals that even n is not large, the dependency of generalization on a pre-trained model is potentially weak. This leads to a natural question: is it possible to design a better fine-tuning process that can overcome the limitation of the existing one? To this end, we develop a better approach for fine-tuning that aims to leverage the data used for the pre-trained model during the phase of fine-tuning. We note, during the phase of fine-tuning, we may have two ways of estimating the gradient $\nabla F(\theta_i)$. The first estimator is based on the samples of fine-tuning data, which provides an unbiased estimation but with a large variance. The second estimator is based on pre-training data, which provides a biased estimator with almost no variance (since the sample size of pre-training data is large enough). Our goal is to linearly combine these two estimators to provide an estimator of gradient $\nabla F(\theta_i)$ that makes the best trade-off between bias and variance. Hence, at each iteration t of fine tuning, our gradient estimator is given as

$$\nabla \tilde{f}(\theta_t) = \alpha \nabla f(\theta_t; \xi_i) + (1 - \alpha) \nabla h(\theta_t; \xi_i) \quad (5)$$

where $\alpha \in (0, 1]$, $\xi_i := (x_i, y_i)$ is a training example from target data, $\xi_i := \{(x_i, y_i), i = 1, \ldots, \tilde{m}\}$ is a set of training examples from pre-training data, and h is a loss function (e.g., cross-entropy loss) that is related to target task. Since the sample size of pre-training data is large enough, we use mini-batching stochastic gradient $\nabla h(\theta_t; \xi_i) := \frac{1}{\tilde{m}} \sum_{i=1}^{\tilde{m}} \nabla h(\theta_t; x_i, y_i)$ where \tilde{m} is the batch size. Note that the loss function h can be same as the loss function of the target task. Our solution is updated by SGD $\theta_{t+1} = \theta_t - \eta \nabla \tilde{f}(\theta_t)$. The theorem below provides a performance guarantee for using $\nabla \tilde{f}(\theta_t)$ for fine-tuning.

Theorem 1 (Informal). Under mild assumptions, by setting appropriate learning rate and using the gradient estimator in (5) for updating solutions, we have the following performance guarantee for the target task $F(\theta)$ in expectation,

$$F(\theta_{f*}) - F(\theta_*) \leq O\left(\frac{\alpha \log(n\Delta^2/\alpha)}{n} + (1 - \alpha)\delta^2\right), \quad (6)$$

where $\delta^2 := \max_{\theta, \xi_i} \{E[\|\nabla F(\theta_t) - \nabla h(\theta_t; \xi_i)\|^2] \}$ and θ_{f*} is the final model for the target task.

When δ^2 is small, by choosing appropriate $\alpha \in (0, 1]$, we may be able to further reduce the error from $F(\theta_{f*})$. When δ^2 is large, that is, when the second term of bound in (6) dominates the total error, then it would be worse than the result of standard fine-tuning a pre-trained model in Lemma 1. Therefore, our goal is to select appropriate ξ_i, the training examples from pre-training data, such that $\nabla h(\theta_t; \xi_i)$ can better approximate $\nabla F(\theta_i)$. These theoretical observations inspire us to design a selection strategy for pre-training data, that is, to select images similar to those of target data from pre-training data and use these selected images during fine-tuning. A detailed description of the data selection strategy is introduced in the next section.
4 The Proposed Data Selection Strategy

Theorem 1 shows that the benefit of a pre-trained model can be enhanced when pre-training data are used during the fine-tuning process. This inspires us to propose data selection strategies and to choose an appropriate portion of pre-training data. In experiments, we follow the standard pre-training practice in computer vision to use a deep neural network pre-trained on ImageNet, and then select data from ImageNet to help fine-tuning on target classification tasks. We summarize the proposed pre-training data reuse strategies as follows.

- **Label-based selection**: When the label information of pre-training data is available, and the overlapping classes with target data are recognizable, one can simply select the overlapping classes and use them during the fine-tuning.

- **Random selection**: When the difference between pre-training and target data sets is small (so \(\delta^2 \) is small), a simple scheme is to uniformly sample pre-training data to use them during fine-tuning.

- **Similarity-based selection**: In general cases, the third proposed selection scheme is to select similar data as target data from pre-training data.

Label-based Selection The first scheme is to select images with classes seen in target tasks. For instance, the bird images from ImageNet are all selected when fine-tuning CUB. Unfortunately, this scheme heavily depends on the label match between pre-training and target data, which may worsen the performance in some real-world applications without perfectly matched classes.

Random Selection The second data selection scheme is to choose classes with uniform sampling, referred to as random selection. This strategy can improve the performance of target tasks if the domain gap \(\delta^2 \) between pre-training and target data is small, and keep the weights close to initialization if the selected data are sufficiently large. The drawback of uniform selection is that the domain gap \(\delta^2 \) is not considered in the data reusing process, so the performance heavily depends on the inherent property of data sets.

Similarity-based Selection To reduce the domain gap, we propose the third data selection scheme, an UOT-based method, to choose data classes from the pre-training set whose distributional distance to the target data set is small. The UOT-selection method is able to handle pre-training data with and without labels. When a supervised pre-trained model is used for fine-tuning, there are class labels for pre-training images so the selection unit of UOT is class. When a self-supervised pre-trained model is used and there are no labels for pre-training images, we index the pre-training data by clustering in the feature space of the corresponding pre-trained backbone. Therefore, for unlabelled pre-training data, the selection unit is cluster.

With the labels or cluster indices, each class/cluster is represented as the mean of deep features from the pre-trained model, e.g., 512-dim features from the penultimate layer of a pre-trained ResNet18 model. Since the training set often has balanced classes, all classes or clusters are assigned with unit weights for both pre-training and target set. So we have two density measures for the target set and pre-training set, i.e. \(\{(a_i, w_i^{(f)} = 1)\}_{i=1}^{K_f} \) and \(\{(b_j, w_j^{(g)} = 1)\}_{j=1}^{K_g} \), respectively. Denote the features of target and pre-training data as \(\mathbf{v}_i^{(f)} \) and \(\mathbf{v}_j^{(g)} \), \(a_i = \sum_{y_i = 1} \mathbf{v}_i^{(f)}/n_i^{(f)} \) and \(b_j = \sum_{y_j = 1} \mathbf{v}_j^{(g)}/m_j^{(g)} \), where \(n_i^{(f)} \) is the number of images in \(i \)-th class of target data and \(m_j^{(g)} \) is defined similarly for pre-training data. In the general case where \(K_f \neq K_g \), the two measures have different total masses so we propose to compute the unbalanced OT distance between the two by a generalized Sinkhorn iteration [Peyré et al., 2019]. Specifically, the optimization objective is formulated as a UOT problem,

\[
\min_{P \in \mathbb{R}^{K_g \times K_f}} \langle P, C \rangle - \epsilon h(P) + \tau_1 KL(P^{1, w^{(g)}}) + \tau_2 KL(P^{T, w^{(f)}}),
\]

where \(C_{i, j} \) is the distance between \(a_i \) and \(b_j \); \(P \) is the transportation matrix solved by the generalized Sinkhorn iteration; \(\tau_1 \) and \(\tau_2 \) determine the constraint on the reconstruction loss of pre-training and target data.
density measures; $KL(\cdot, \cdot)$ and $h(\cdot)$ are Kullback-Leibler divergence and entropy function. Note that as a result of unbalanced total masses, we cannot perfectly reconstruct pre-training and target measures at the same time. Using this property, we can create a similarity ranking effect in the P_1 vector by using a large value for τ_2 but a small value for τ_1. P_1 is the density measure of pre-training data and P_T is the measure for target data. Since we want all classes of the target data to be covered, a large τ_2 is needed; while we need to select a subset of classes, τ_1 should be small to relax the constraint. Thus, a large $[P_1]_j$ indicates a high similarity of class-j of pre-training data to the target data. Finally by ranking the elements in P_1 and selecting top-K classes, we obtain the selected classes for a target data set. Fig. 2 visualizes the UOT selection and the similarity vector given by UOT on the CUB data set.

Gradient computation Before ending this subsection, we demonstrate how the gradient combination (5) is computed in the experiment of this work. In the case where pre-training data has labels, we add two classification heads on top of the network backbone. One classification head has K_f-dim output to predict the target data and the other has K_g-dim output to predict the pre-training data. The optimization objective for the labeled case is

$$L = \frac{1}{n} \sum_{i=1}^{n} f(\theta; x_t, y_t) + \lambda \frac{m}{\tilde{m}} \sum_{s_i=1}^{\tilde{m}} h(\theta; x_{s_i}, y_{s_i}),$$

where $\{x_t, y_t\}$ are the target data, $\{x_{s_i}, y_{s_i}\}$ are the pre-training data and \tilde{m}, \tilde{n} are batch size. λ is the weight for pre-training classification loss, which controls the weight α in (5). Although the classification heads are different for pre-training and target data, we assume the optimization variables θ in f and h are consistent since the output layers only have a small amount of parameters compared to the backbone. In the case where pre-training data has no labels, the unlabeled data is used in a semi-supervised way,

$$L = \frac{1}{\tilde{n}} \sum_{i=1}^{\tilde{n}} f(\theta; x_t, y_t) + \lambda \frac{m}{\tilde{m}} \sum_{s_i=1}^{\tilde{m}} h(\theta; \tilde{x}_{s_i}, p(y_t|x_{s_i})), \tag{8}$$

where the unlabeled pre-training data is processed with weak and strong data augmentation [Cubuk et al., 2020] respectively, and the probability prediction of weakly augmented data $p(y_t|x_{s_i})$ is taken as the soft pseudo-label for the strongly augmented data \tilde{x}_{s_i}. Note that there is only one classification head in (8) and temperature or threshold is not used in the weak-strong training.

Figure 2: Illustration of UOT selection. (a) UOT selection. Green dots denote target classes and orange dots denote pre-training classes/clusters. Blue and purple arrows show the result of UOT for b_i and b_j, where the thickness means similarity. (b) Top-100 similarity in P_1 on CUB data set. Most bird classes from ImageNet are selected in the top-100 similarity vector to CUB.
When there are no labels in the pre-training data, K-means clustering [Lloyd, 1982] is used to weight decay and λ with Nesterov Momentum. The training epochs are fixed to be 100 in our experiment for sufficient training fine-tuning process, both the backbone and randomly initialized classification heads are updated using SGD.

During the fine-tuning, with UOT being the best method. A bold number denotes the top-1 accuracy and an underlined number denotes second best accuracy.

5 Experiments

This section presents the empirical analysis of reusing pre-training data in image classification tasks. The experiment uses both supervised and self-supervised pre-trained models to fine-tune a variety of image classification data sets. First, data reusing fine-tuning schemes consistently improves the performance of vanilla fine-tuning, which corroborates our theoretical result. Second, the comparison between different data selection strategies demonstrates that the UOT selection is advantageous over random and greedy selection. Third, we simulate the situations where the training data are scarce by sub-sampling the given training data and show that as the training data get insufficient, the performance gain of the pre-training data reusing method will increase. Finally, some ablation studies on experimental settings are given.

5.1 Experiment Setup

The empirical study is done on both supervised and self-supervised pre-trained models. For the supervised training, we use the official ResNet18 [He et al., 2016] pre-trained on ImageNet. For the self-supervised training, we use the official MoCo-v2 [He et al., 2020] ResNet50 pre-trained with 800 epochs. In similarity-based selection, images are represented in the supervised pre-trained ResNet18 by 512-dim features from the penultimate layer while in MoCo-v2 by 128-dim features from the final FC layer. The pre-trained model is tested on 8 target image classification data sets, i.e. Stanford dogs (Dogs) [Khosla et al., 2011], Stanford cars (Cars) [Krause et al., 2013], Caltech-UCSD birds (CUB) [Wah et al., 2011], Oxford-IIIT Pet (Pets) [Parkhi et al., 2012], SUN [Xiao et al., 2010], FGVC-Aircraft (Aircraft) [Maji et al., 2013], Describable Textures data set (DTD) [Cimpoi et al., 2014] and Caltech101 (Caltech) [Fei-Fei et al., 2004]. During the fine-tuning process, both the backbone and randomly initialized classification heads are updated using SGD with Nesterov Momentum. The training epochs are fixed to be 100 in our experiment for sufficient training and the learning rate is divided by 10 at 60 and 80 epoch. Other hyperparameters like initial learning rate, weight decay and λ are determined by grid search for all selection methods in the comparison (details in the supp.). When there are no labels in the pre-training data, K-means clustering [Lloyd, 1982] is used to
estimate the cluster assignment with 128-dim features as input and cosine similarity as distance. The cluster number is set as 2000 and we give an ablation study in Table 2 on the cluster number.

We test 3 data selection methods: random selection, greedy selection and UOT selection, and set the number of selected classes to be 100 unless mentioned otherwise. Specifically, we use the OT-based greedy algorithm [Cui et al., 2018] for comparison. The batch size for fine-tuning data is 256, and if pre-training data are reused, the batch size keeps the same as target data which makes a total batch size of 512. In random selection, we use the uniform selection over classes or clusters to be consistent with the other data selection methods. In Greedy-OT, we use the same setting as in the original paper where C_{ij} is the l_2 distance. In UOT, we set $\epsilon = 1.0$, $\tau_1 = 1.0$ and $\tau_2 = 100.0$. The distance cost is based on the cosine similarity $C_{ij} = -\cos(a_i, b_j)+1$ with $\epsilon_c = 0.01$.

For the supervised pre-trained model, we also compare with Co-Tuning [You et al., 2020], a strong transfer learning baseline. The experiment setting follows the original paper and we search the initial learning rate from $\{1e^{-4}, 3e^{-4}, 1e^{-3}, 3e^{-3}, 1e^{-2}\}$ on a validation set and report the test accuracy trained on the original training or train+val set. Note that Co-Tuning relies on the labels and the classification head in pre-training so it is non-trivial to use Co-Tuning for a self-supervised pre-trained model.

5.2 Comparison of Data Selection Strategies

Table 1 shows the comparison between the standard fine-tuning, Co-Tuning and 3 data reuse methods on 8 image classification data sets, with supervised and self-supervised pre-trained models. To make a fair comparison, all data reuse experiments select 100 classes of ImageNet data. In the unlabeled data selection, we select 200 clusters so that the number of selected images is about the same to that in labeled data selection.

The first observation is that, since the pre-training data are large enough to have similar images to target ones, even random selection achieves better performance than the standard fine-tuning in most data sets. Secondly, the benefit of data reuse is amplified by the similarity-based data selections, as predicted by Theorem 1. Thirdly, UOT is better than Co-Tuning in 6 out of 8 data sets and its average accuracy has a clear benefit over Co-Tuning, indicating that the effectiveness of Co-Tuning is not robust to task variation. In addition, the proposed data selection is more versatile since it performs well on the self-supervised model while Co-Tuning cannot handle the self-supervised model. Finally, the comparison between Greedy-OT and UOT data selections demonstrates the advantage of the global UOT in terms of the similarity measure.

Another interesting finding is that the advantage of UOT is more evident in the self-supervised pre-training case than in the supervised pre-training one. The most considerable improvement is achieved in Dogs, Birds and Pets data sets because the animal-related classes are dominant in ImageNet (398 classes of birds, dogs, animals and mammals) and self-supervised training learns good visual features without label information. Once the label information is added to the fine-tuning process by data reuse, the model is taught to recognize those familiar features and achieves giant improvements. Note that the only data on which data reuse does not help is the Cars, indicating that the gap between ImageNet and Cars data is large when measured by the self-supervised model. When image labels in self-supervised pre-training are not available, the proposed data selection framework still outperforms the vanilla fine-tuning baseline on most data sets. Although the advantage of UOT over greedy-OT is not noticeable in terms of average accuracy, the benefit of UOT is large on Dogs and CUB data sets, indicating that UOT is still better than greedy-OT at selecting similar images from ImageNet even when label information is completely unknown.
5.3 Simulation of Low-Data Regime

To study the effect of data reusing in the scarce data scenario, we simulate low-data target tasks in this experiment by sub-sampling CUB and Caltech training data. We select these two data sets because they represent the fine-grained and general classification task, respectively. For each class of training data we randomly sample 20%, 40%, 60% and 80% of images to get class-balanced training data.

Figure 3 shows that accuracy and performance gap between vanilla and data-reusing fine-tuning when different amounts of training data are available. On both data sets, the performance gap is increased as the training data size decreases, indicating that the UOT-selection data reusing scheme helps more when the target data is insufficient. This experiment demonstrates that the proposed data reusing paradigm is particularly effective when the target task does not have enough data, which could be a typical case in real-world applications.
5.4 Ablation Study

Number of selected pre-training classes.
We investigate the effect of selected class numbers on the target classification accuracy. Figure 4 shows the performance of target tasks (CUB and Caltech) when the number of selected classes ranges from 50 to 300 in UOT selection. The increased pre-training data added in fine-tuning do not improve the performance of CUB, since there are 59 classes of birds in the ImageNet and more reused images enlarge the gap δ^2. Surprisingly, we observe that only using the bird images (blue line) is not the best strategy on CUB. It is because that there can be a certain number of related classes in ImageNet, which will help the classification of bird images. The result shows that even when labels of pre-training and target data are given and overlapped, UOT selection can achieve better performance by including extra relevant classes from pre-training data. On the general classification data set (Caltech), more reused pre-training data help gain the performance improvement because the diverse data set needs a large number of images to have a small domain gap. On both data sets, the UOT selection performs better than the random selection as the number of selected classes changes.

Distance function and ϵ_c.
To investigate the influence of different factors in the UOT selection, we define a recall rate as a metric to make the comparison. For a target data set whose classes happen to exist in ImageNet, the similarity-based data selection is expected to choose those matched classes, e.g., selecting all 59 birds classes from ImageNet when fine-tuning on CUB. Thus, the recall rate on CUB is defined as the ratio between the number of bird classes in the top-100 similar vector or EMD similarity and 59. With the performance metric, we first compare UOT with Greedy-OT using l_2 and cosine distance in Table 3. With a supervised pre-trained model, Greedy-OT is only slightly worse than UOT, while with a self-supervised model the weakness of Greedy-OT is amplified. It means that Greedy-OT heavily relies on the label information in supervised training but UOT only needs generic visual features to have a good similarity measure. In addition, the cosine distance is better than the l_2 distance, especially in the self-supervised model. The importance of cosine distance is due to the cosine similarity loss used in MoCo training. Finally, Fig. 5 shows the recall rate when using different ϵ_c. The supervised model is not sensitive to the choice of ϵ_c but a small ϵ_c is crucial to the good performance of OT-selection in the self-supervised model. Note that the recall rate of Greedy-OT does not depend on ϵ_c so the performance is worse than UOT no matter what ϵ_c is used.

Cluster number in K-means.
The cluster assignments are crucial to the performance of similarity-based selection, so we change the cluster number in the experiment and show the fine-tuning results of 8 data sets in Table 2. On most data sets, K=2000 achieves better generalization than K=1000, indicating that fine-grained clustering helps the following data selection step. However, if we further increase K, the clustering result will be quite noisy and extremely small or large clusters will be found, which makes the

K	Dogs	Cars	CUB	Pets	SUN	Aircraft	DTD	Caltech	Avg.
1000	81.02	90.86	78.48	**90.55**	63.65	89.16	**77.50**	93.09	**83.04**
2000	**81.47**	**90.91**	**78.96**	90.39	**63.68**	**89.59**	**77.07**	**93.27**	**83.17**

Table 2: Ablation study on cluster number. The test accuracy of fine-tuning when different cluster numbers are used in the K-means algorithm demonstrates that K=2000 gives better generalization than K=1000.

Method	Metric	GOT- l_2	GOT- cos	UOT- l_2	UOT- cos
Supervised	Rec.	86.44	94.92	94.92	**98.31**
	Acc.	76.92	76.67	77.08	**77.21**
Self-supervised	Rec.	16.95	38.98	16.95	**93.22**
	Acc.	78.63	79.32	78.48	**80.98**

Table 3: Ablation study on distance. The UOT-cos selection is better than Greedy-OT (GOT) selection in terms of bird classes recall rate (Rec.) and test accuracy of fine-tuning (Acc.).
Recall Rate

Figure 5: Sensitivity of recall rate to ϵ_c. On the supervised pre-trained model, the recall rate is not sensitive to ϵ_c; on the self-supervised model, when ϵ_c is small, the performance is stable.

fine-tuning result worse than K=2000.

6 Conclusion

This paper provides the generalization analysis of pre-trained models when fine-tuning on target tasks by using excess risk bound. Our result illustrates that the pre-trained model can have little positive influence on learning from target data under certain conditions. The generalization bound indicates that the performance on the target data can be improved when similar data is selected from the pre-training data for fine-tuning. Inspired by this result, a novel similarity-based selection algorithm is developed. Empirical studies on diverse data sets demonstrate the effectiveness and versatility of the proposed fine-tuning process. The main limitation of this work is that our experiment only considers image classification tasks. Our future work will further explore the data reusing strategy in other computer vision tasks.

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal Gupta. Better fine-tuning by reducing representational collapse. In International Conference on Learning Representations, 2020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-parameterization. In International Conference on Machine Learning, pages 242–252, 2019.

David Alvarez Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances in Neural Information Processing Systems, 33, 2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, pages 214–223. PMLR, 2017.

Shuvam Chakraborty, Burak Uzkent, Kumar Ayush, Kumar Tanmay, Evan Sheehan, and Stefano Ermon. Efficient conditional pre-training for transfer learning. arXiv preprint arXiv:2011.10231, 2020.

Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms that converge to global optima. In International Conference on Machine Learning, pages 745–754, 2018.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.
Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning. *Advances in Neural Information Processing Systems*, 32:1908–1918, 2019.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 3606–3613, 2014.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pages 702–703, 2020.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained categorization and domain-specific transfer learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4109–4118, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pages 248–255. Ieee, 2009.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In *International conference on machine learning*, pages 647–655. PMLR, 2014.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference on computer vision and pattern recognition workshop*, pages 178–178. IEEE, 2004.

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya-Polo, and Tomaso Poggio. Learning with a wasserstein loss. *arXiv preprint arXiv:1506.05439*, 2015.

Weifeng Ge and Yizhou Yu. Borrowing treasures from the wealthy: Deep transfer learning through selective joint fine-tuning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1086–1095, 2017.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013.

Henry Gouk, Timothy Hospedales, et al. Distance-based regularisation of deep networks for fine-tuning. In *International Conference on Learning Representations*, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. *arXiv preprint arXiv:2006.07733*, 2020.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris. Spottnet: transfer learning through adaptive fine-tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4805–4814, 2019.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In *International Conference on Machine Learning*, pages 1225–1234, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4918–4927, 2019.
Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9729–9738, 2020.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods under the polyak-lojasiewicz condition. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 795–811. Springer, 2016.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-grained image categorization: Stanford dogs. In *Proc. CVPR Workshop on Fine-Grained Visual Categorization (FGVC)*, volume 2, 2011.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In *Proceedings of the IEEE international conference on computer vision workshops*, pages 554–561, 2013.

Xiaoyu Li, Zhenxun Zhuang, and Francesco Orabona. Exponential step sizes for non-convex optimization. *arXiv preprint arXiv:2002.05273*, 2020.

Xingjian Li, Haoyi Xiong, HanChao Wang, Yuxuan Rao, Liping Liu, Zeyu Chen, and Jun Huan. Delta: Deep learning transfer using feature map with attention for convolutional networks. *arXiv preprint arXiv:1901.09229*, 2019.

Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with convolutional networks. In *International Conference on Machine Learning*, pages 2825–2834. PMLR, 2018.

Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex optimization. In *Advances in Neural Information Processing Systems*, pages 5564–5574, 2018.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *Proceedings of the IEEE international conference on computer vision*, pages 2980–2988, 2017.

Stuart Lloyd. Least squares quantization in pcm. *IEEE transactions on information theory*, 28(2):129–137, 1982.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3431–3440, 2015.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

Yurii Nesterov. *Introductory lectures on convex optimization : a basic course*. Applied optimization. Kluwer Academic Publ., 2004. ISBN 1-4020-7553-7.

Simo Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on knowledge and data engineering*, 22(10):1345–1359, 2009.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012 IEEE conference on computer vision and pattern recognition*, pages 3498–3505. IEEE, 2012.

Giorgio Patrini, Rianne van den Berg, Patrick Forre, Marcello Carioni, Samarth Bhargav, Max Welling, Tim Genewein, and Frank Nielsen. Sinkhorn autoencoders. In *Uncertainty in Artificial Intelligence*, pages 733–743. PMLR, 2020.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.
A Additional Experiment Details

Our experiment is run on 4 Nvidia V100 GPUs using PyTorch. The hyperparameters in the fine-tuning are selected by a grid search on validation sets and the hyperparameter setting with the best accuracy is reported in Table 4 and 5. The learning rate is searched over [0.1, 0.03, 0.01, 0.003, 0.001], λ is over [1.0, 0.3, 0.1], weight decay is over [10^{-4}, 10^{-5}, 0.0]. The head and backbone learning rate ratio is searched over [10.0, 1.0, 0.1] and the ratio is fixed for one data set’s experiment. In Table 4 and 5, for fine-tuning, the hyperparameter vector denotes [learning rate, weight decay]; for data reusing, the hyperparameter vector denotes [learning rate, λ, weight decay]. The hyperparameters are searched on a validation set and with the searched hyperparameters, we combine the training and validation set as the training set and report the test accuracy in Table 1. We next introduce individual data set.

Stanford Dogs. The data set contains 120 dog classes and 20580 images. We use the official train/test split in our experiment, where the training set has 12000 images with 100 images per class and the test set has 8580 dog images. The performance metric for this data set is the top-1 accuracy.

Stanford Cars. There are 196 car classes and 16185 car images. We use the official train/test split where the training set has 8144 car images and 8041 car images. The metric for the fine-tuning performance is the top-1 accuracy.
CUB. The data set has 11788 bird images of 200 bird classes and is split into 5994 training images and 5794 for test images. For the classification performance, we use top-1 accuracy as the measurement.

Pets. There are 37 pet categories with about 200 images for each class. The data set contains a training set of 3680 images and a test set of 3669 images. We use the (MPA) mean per-class accuracy as the performance metric for this data set following [Grill et al., 2020] for a consistent comparison.

SUN. The scene understanding data set has 397 scene categories. We use the first train/test split from the official data set. There are 19850 training images and 19850 test images. We report the top-1 classification accuracy.

Aircraft. There are 100 aircraft classes in the data set, where the images are split into a training set with 3334 images, a validation set with 3333 images and a test set with 3333 images. We report the MPA for this data set.

DTD. The texture classification set has 47 classes. We use the first train/val/test split in the official data set, where the training, validation and test set has the same number of images, i.e., 1880. Note that the accuracy reported in this paper is the result trained on train+val set, following [Grill et al., 2020]. We measure the classification performance using the top-1 accuracy.

Caltech. Different from the previous data sets, this data set represents a general image classification task with 101 categories. There is no official train/test splits, so we followed [Grill et al., 2020] to randomly sample 30 training images per class with the rest images used for testing. We use MPA as the classification performance metric for this data set.

In the training data sub-sampling experiment, the UOT data selection is done on the sub-sampled data. To keep the ratio between target data and pre-training data the same in different training data sizes, we sub-sample the images in each selected pre-training class with the same sub-sampling ratio as in target data. The pre-training data sub-sampling is done for both UOT and random selection.

Table 4: Hyperparameter settings on the supervised model.

Method	Fine-Tune	Random	Greedy-OT	UOT
Stanford Dogs	$0.001, 10^{-5}$	$0.001, 1.0, 10^{-4}$	$0.001, 1.0, 10^{-4}$	$0.001, 1.0, 10^{-4}$
Stanford Cars	$[0.1, 10^{-5}]$	$[0.1, 0.3, 10^{-5}]$	$[0.1, 0.1, 0.0]$	$[0.1, 0.3, 10^{-4}]$
CUB	$0.003, 10^{-5}$	$0.003, 1.0, 10^{-5}$	$0.003, 1.0, 10^{-5}$	$0.003, 1.0, 10^{-4}$
Pets	$0.001, 10^{-5}$	$0.003, 1.0, 10^{-4}$	$0.003, 1.0, 10^{-5}$	$0.001, 1.0, 0.0$
SUN	$0.001, 10^{-5}$	$0.001, 1.0, 10^{-4}$	$0.001, 1.0, 10^{-5}$	$0.001, 1.0, 10^{-5}$
Aircraft	$[0.03, 0.0, 1.0]$	$[0.03, 0.1, 10^{-5}]$	$[0.03, 0.1, 0.0]$	$[0.03, 0.3, 10^{-4}]$
DTD	$0.001, 10^{-5}$	$0.003, 0.3, 0.0$	$[0.003, 0.3, 10^{-5}]$	$[0.003, 0.3, 10^{-4}]$
Caltech	$0.003, 10^{-5}$	$0.003, 1.0, 0.0$	$[0.003, 1.0, 0.0]$	$[0.01, 1.0, 10^{-4}]$

Table 5: Hyperparameter settings on the self-supervised model.

Method	Fine-Tune	Random	Greedy-OT	UOT
Stanford Dogs	$0.003, 10^{-4}$	$0.003, 1.0, 10^{-4}$	$0.003, 1.0, 10^{-5}$	$0.003, 1.0, 0.0$
Stanford Cars	$[0.01, 0]$	$[0.01, 0.1, 10^{-5}]$	$[0.01, 0.3, 0.0]$	$[0.01, 0.3, 10^{-4}]$
CUB	$0.003, 10^{-4}$	$0.01, 0.3, 10^{-4}$	$0.01, 0.3, 10^{-5}$	$0.01, 1.0, 10^{-4}$
Pets	$0.003, 0.0$	$0.003, 0.3, 10^{-5}$	$0.003, 1.0, 0.0$	$0.003, 1.0, 10^{-4}$
SUN	$0.003, 10^{-4}$	$0.003, 1.0, 10^{-5}$	$0.003, 1.0, 10^{-4}$	$0.003, 1.0, 0.0$
Aircraft	$[0.01, 10^{-5}]$	$[0.01, 0.1, 10^{-4}]$	$[0.01, 0.1, 10^{-5}]$	$[0.01, 0.1, 10^{-4}]$
DTD	$0.001, 10^{-4}$	$0.001, 0.3, 0.0$	$0.001, 1.0, 10^{-5}$	$[0.003, 1.0, 10^{-4}]$
Caltech	$0.003, 10^{-5}$	$0.003, 1.0, 0.0$	$0.003, 1.0, 10^{-4}$	$[0.003, 1.0, 0.0]$
B Detailed Generalization Analysis

To establish the generalization bound, we first present some assumptions for problem (1) that will be used in the analysis. Specifically, we make the following two assumptions, which are widely used in the literature [Ghadimi and Lan, 2013, Wang et al., 2019, Li et al., 2020].

Assumption 2 (Unbiased and Variance Bounded). The stochastic gradient of $F(\theta)$ is unbiased, i.e., $E_{(x,y)}[\nabla f(\theta; x, y)] = \nabla F(\theta)$, and the variance of stochastic gradient is bounded, i.e., there exists a constant $\sigma^2 > 0$, such that $E_{(x,y)}[\|\nabla f(\theta; x, y) - \nabla F(\theta)\|^2] \leq \sigma^2$.

Assumption 3 (Smoothness). $F(\theta)$ is smooth with an L-Lipschitz continuous gradient, i.e., it is differentiable and there exists a constant $L > 0$ such that $\|\nabla F(\theta_1) - \nabla F(\theta_2)\| \leq L\|\theta_1 - \theta_2\|$, $\forall \theta_1, \theta_2 \in \mathbb{R}^d$.

Assumption 3 says the objective function $F(\theta)$ is smooth with module parameter $L > 0$. This assumption has an equivalent expression according to [Nesterov, 2004]: $F(\theta_1) - F(\theta_2) \leq \langle \nabla F(\theta_2), \theta_1 - \theta_2 \rangle + \frac{L}{2}\|\theta_1 - \theta_2\|^2$, $\forall \theta_1, \theta_2 \in \mathbb{R}^d$. We further assume the objective function $F(\theta)$ satisfies a Polyak-Lojasiewicz (PL) condition [Polyak, 1963] with parameter $\mu > 0$.

Assumption 4 (PL condition). There exists a constant $\mu > 0$ such that $2\mu(F(\theta) - F(\theta^*)) \leq \|\nabla F(\theta)\|^2$, $\forall \theta \in \mathbb{R}^d$, where $\theta^* \in \arg\min_{\theta \in \mathbb{R}^d} F(\theta)$ is a optimal solution.

This PL condition is widely used in the literature (e.g., [Wang et al., 2019, Karimi et al., 2016, Li and Li, 2018, Charles and Papailiopoulos, 2018]), and it has been observed in training deep neural networks both theoretically [Allen-Zhu et al., 2019] and empirically [Yuan et al., 2019].

We then state the theoretical results as follows.

Lemma 2 (Formal Version of Lemma 1, Value of Pre-trained Model). We have following results for the pre-trained model.

1. Under Assumptions 1, 3, 4, suppose the function g satisfies the condition of unbiased and bounded stochastic gradient as described in Assumption 2, by setting the learning rate $\eta = \min(1, \Delta^2/(2\sigma^2)) 1/L$ in pre-training, then the pre-trained model, denoted by θ_p, provides the following performance guarantee for the target task $F(\theta)$, $E[F(\theta_p) - F(\theta^*)] \leq \frac{\Delta^2}{\mu}$.

2. Under Assumptions 2, 3, 4, suppose the learning rate $\eta = \frac{2}{n\mu} \log \left(\frac{n\mu \Delta^2}{2L \sigma^2}\right) \leq \frac{1}{L}$ in fine-tuning, then the final model after fine tuning θ_F, against a set of n training examples, denoted by θ_F, provides the following performance guarantee for the target task $F(\theta)$, $E[F(\theta_F) - F(\theta^*)] \leq \frac{4L \Delta^2}{n\mu^2} \log \left(\frac{n\mu \Delta^2}{2L \sigma^2}\right)$.

Theorem 2 (Formal Version of Theorem 1, Value of Pre-training Data). Under Assumptions 1, 2, 3, 4, suppose the function h satisfies the condition of unbiased and bounded stochastic gradient as described in Assumption 2 and the learning rate $\eta = \frac{2}{n\mu} \log \left(\frac{n\mu \Delta^2}{2L \sigma^2}\right) \leq \frac{1}{L}$, by using the gradient estimator in (5) for updating solutions, we have

$$E[|F(\theta_F^*) - F(\theta^*)|] \leq \frac{4\alpha L \sigma^2}{n\mu^2} \log \left(\frac{n\mu \Delta^2}{2L \sigma^2}\right) + \frac{2(1-\alpha)\delta^2}{\mu},$$

where $\delta^2 := \max_{\theta_i, \xi_i} \{E[\|\nabla F(\theta_i) - \nabla h(\theta_i; \xi_i)\|^2]\}$ and θ_F^* is the final model for the target task.
B.1 Proofs

B.1.1 Proof of Lemma 2 (1)

Proof. For the sake of simplicity, let the training examples \(\xi_t := (x_{i_t}, y_{i_t}), i_t = 1, \ldots, m \) are sampled from \(Q \). By the smoothness of function \(F \) from Assumption 3, we have

\[
E[F(\theta_{t+1}) - F(\theta_t)]
\leq E[(\theta_{t+1} - \theta_t, \nabla F(\theta_t))] + \frac{L}{2}E[\|\theta_{t+1} - \theta_t\|^2]
= -\eta E[(\nabla f(\theta_t; \xi_t), \nabla F(\theta_t))] + \frac{\eta^2 L}{2}E[\|\nabla g(\theta_t; \xi_t)\|^2]
= -\frac{\eta}{2} \|\nabla F(\theta_t) - \nabla G(\theta_t)\|^2 - \frac{\eta}{2} \|\nabla F(\theta_t)\|^2 - \frac{\eta(1 - \eta L)}{2}E[\|\nabla G(\theta_t)\|^2]
\] + \frac{\eta^2 L}{2}E[\|\nabla g(\theta_t; \xi_t) - \nabla G(\theta_t)\|^2].
\] (10)

where the last inequality uses \(E[\nabla g(\theta_t; \xi_t)] = \nabla g(\theta_t) \). Due to Assumptions 1, the condition of unbiased and bounded stochastic gradient for pre-trained objective function \(G(\theta) \) and \(\eta \leq 1/L \) we have

\[
E[F(\theta_{t+1}) - F(\theta_t)] \leq \frac{\eta \Delta^2}{2} + \frac{\eta^2 L \sigma^2}{2} - \frac{\eta}{2} \|\nabla F(\theta_t)\|^2
\] (11)

Since \(F(\cdot) \) is a \(\mu \)-PL function under Assumption 4, we have

\[
E[F(\theta_{t+1}) - F(\theta_t)] \leq -\frac{\eta \mu}{2} E[(F(\theta_t) - F(\theta_*))] + \frac{\eta \Delta^2}{2} + \frac{\eta^2 L \sigma^2}{2} \] (12)

and thus

\[
E[F(\theta_{t+1}) - F(\theta_t)] \leq \exp \left(-\frac{\eta \mu}{2} \left(F(\theta_1) - F(\theta_*) \right) + \frac{\Delta^2}{2\mu} + \frac{\eta \sigma^2}{2\mu} \right). \tag{13}
\]

where \(\theta_* \in \arg \min_{\theta \in \mathbb{R}^d} F(\theta) \). By selecting that \(\eta \) is small such that \(\eta \leq \frac{\Delta^2}{2\sigma^2 L} \) and selecting that \(T \) is sufficiently large, i.e. \(\exp \left(-\frac{\eta T \mu}{2} \left(F(\theta_1) - F(\theta_*) \right) \right) \leq \frac{\Delta^2}{4\mu} \), we have the following guarantee for the pre-trained model \(\theta_p \)

\[
E[F(\theta_{p}) - F(\theta_*)] \leq \frac{\Delta^2}{\mu}.
\]

\[\square \]

B.1.2 Proof of Lemma 2 (2)

Proof. For the sake of simplicity, let the training examples \(\zeta_t := (x_{i_t}, y_{i_t}), i_t = 1, \ldots, n \) are sampled from \(\mathcal{P} \). By the smoothness of function \(F \) from Assumption 3, we have

\[
E[F(\theta_{t+1}) - F(\theta_t)]
\leq E[(\theta_{t+1} - \theta_t, \nabla F(\theta_t))] + \frac{L}{2}E[\|\theta_{t+1} - \theta_t\|^2]
= -\eta E[(\nabla f(\theta_t; \zeta_t), \nabla F(\theta_t))] + \frac{\eta^2 L}{2}E[\|\nabla f(\theta_t; \zeta_t)\|^2]
= -\eta \left(1 - \frac{\eta L}{2} \right) \|\nabla F(\theta_t)\|^2 + \frac{\eta^2 L}{2}E[\|\nabla f(\theta_t; \zeta_t) - \nabla F(\theta_t)\|^2]
\] \leq -\eta \left(1 - \frac{\eta L}{2} \right) \|\nabla F(\theta_t)\|^2 + \frac{\eta^2 L \sigma^2}{2}, \tag{14}
\]

where the second equality is due to \(E[\nabla f(\theta; \zeta)] = \nabla F(\theta) \) in Assumption 2 and the last inequality uses the fact that \(\eta \leq 1/L \) and Assumption 2. Following the similar analysis as that for Lemma 2 (1) with \(\theta_1 = \theta_p \),
for t, by using the condition that $F(\cdot)$ is a μ-PL function in Assumption 4 we have
\[\mathbb{E}[F(\theta_{t+1}) - F(\theta_t)] \leq \left(1 - \frac{\eta \mu}{2}\right) \mathbb{E}[F(\theta_t) - F(\theta_0)] + \frac{\eta^2 \sigma^2}{2} \]
and therefore
\[\mathbb{E}[F(\theta_{n+1}) - F(\theta_n)] \leq \exp\left(-\frac{\eta \mu n}{2}\right) \mathbb{E}[F(\theta_0) - F(\theta_0)] + \frac{\eta L \sigma^2}{\mu} \]
We complete the proof by plugging the bound for $F(\theta_p)$ from Lemma 2 (1), i.e.,
\[\mathbb{E}[F(\theta_{t}) - F(\theta_0)] \leq \exp\left(-\frac{\eta \mu n}{2}\right) \frac{\Delta^2}{\mu} + \frac{\eta L \sigma^2}{\mu} \] (15)
By setting $\eta = \frac{2}{n \mu} \log \left(\frac{\eta \mu \Delta^2}{2L \sigma^2}\right)$, we will have the following bound
\[\mathbb{E}[F(\theta_{t}) - F(\theta_0)] \leq \frac{4L^2 \mu^2}{\eta \mu} \log \left(\frac{\eta \mu \Delta^2}{2L \sigma^2}\right). \] (16)

B.1.3 Proof of Theorem 2

Proof. Let $\nabla H(\theta) := \mathbb{E}_i[\nabla h(\theta; \xi_i)]$. By the smoothness of function F from Assumption 3, following the standard analysis, we have
\[\mathbb{E}[F(\theta_{t+1}) - F(\theta_t)] \]
\[\leq \mathbb{E}[\|\nabla F(\theta_t) - \nabla h(\theta; \xi_i)\|^2] + \frac{L}{2} \mathbb{E}[\|\theta_{t+1} - \theta_t\|^2] \]
\[= -\eta \mathbb{E}[\langle \nabla F(\theta_t), \alpha \nabla f(\theta; \xi_i) + (1 - \alpha) \nabla h(\theta; \xi_i) \rangle] + \frac{\eta^2 L}{2} \mathbb{E}[\|\alpha \nabla f(\theta; \xi_i) + (1 - \alpha) \nabla h(\theta; \xi_i)\|^2] \]
\[\leq -\eta \mathbb{E}[\langle \nabla F(\theta_t), \alpha \nabla F(\theta_t) + (1 - \alpha) \nabla g(h(\theta; \xi_i)) \rangle] + \frac{\eta^2 L}{2} \mathbb{E}[\|\nabla F(\theta_t)\|^2 + \alpha \|\nabla F(\theta_t)\|^2] \]
\[+ \frac{\alpha \sigma^2 \eta^2 L}{2} + \frac{(1 - \alpha) \sigma^2 \eta^2 L}{2m} \]
\[= \frac{\eta(1 - \alpha)}{2} \mathbb{E}[\|\nabla F(\theta_t) - \nabla h(\theta; \xi_i)\|^2] + \left(-\alpha + \frac{\eta^2 L \alpha - \eta(1 - \alpha)}{2}\right) \mathbb{E}[\|\nabla F(\theta_t)\|^2] \]
\[+ \left(\frac{\eta(1 - \alpha)(\eta L - 1)}{2}\right) \mathbb{E}[\|\nabla H(\theta_t)\|^2] + \frac{\alpha \sigma^2 \eta^2 L}{2m} + \frac{(1 - \alpha) \sigma^2 \eta L + 1}{2m} \]
\[\leq \frac{\eta(1 - \alpha) \delta^2}{2} - \frac{\eta(1 + \alpha - \eta L \alpha)}{2} \mathbb{E}[\|\nabla F(\theta_t)\|^2] + \frac{\alpha \sigma^2 \eta^2 L}{2m} + \frac{(1 - \alpha) \sigma^2 \eta}{2m} \]
where $\delta^2 := \max_{\theta_t, \xi_i} \{\mathbb{E}[\|\nabla F(\theta_t) - \nabla h(\theta; \xi_i)\|^2]\}$; the last inequality is due to $\eta \leq 1/L$. As a result, we have
\[\mathbb{E}[F(\theta_{n+1}) - F(\theta_n)] \]
\[\leq \exp\left(-\frac{\eta \mu n}{2}\right) \mathbb{E}[F(\theta_0) - F(\theta_0)] + \frac{(1 - \alpha) \delta^2}{\mu} + \frac{\alpha \eta L \sigma^2}{\mu} + \frac{2(1 - \alpha) \sigma^2}{\mu} \] (17)
By setting $\eta = \frac{2}{n\mu} \log \left(\frac{n\mu \Delta^2}{2\alpha L \sigma^2} \right)$ and $\theta_f = \theta_{n+1}$, the inequality (17) will lead to the following bound

$$
E \left[F(\theta_f) - F(\theta_*) \right] \leq 4\alpha L \sigma^2 \frac{n\mu}{n\mu^2} \log \left(\frac{n\mu \Delta^2}{2\alpha L \sigma^2} \right) + \frac{(1-\alpha)\delta^2}{\mu} + \frac{2(1-\alpha)\sigma^2}{\bar{m} \mu}
$$

$$
\leq 4\alpha L \sigma^2 \frac{n\mu}{n\mu^2} \log \left(\frac{n\mu \Delta^2}{2\alpha L \sigma^2} \right) + \frac{2(1-\alpha)\delta^2}{\mu},
$$

(18)

where the last inequality is due to \bar{m} is large enough such that $\bar{m} \geq \frac{2\sigma^2}{\alpha}$. \qed

20