Simple Summary: This study describes how simple traps can be used to study tree crowns and undergrowth at low altitudes. They are used with the bait of fermenting liquids (beer, wine) with the addition of sugar and other carbohydrates. The research was conducted in 2018-2020 in several regions of Russia. It was possible to identify 294 species from 45 Coleoptera families during this time. Simple traps have been shown to be highly effective and can be used to study insect biodiversity in forest ecosystems.

Abstract: The possibilities of applying various methods to study Coleoptera give unexpected and original results. The studies were carried out with the help of fermental crown traps in 2018-2020 on the territory of eight regions in the central part of European Russia. The biodiversity of Coleoptera that fall into crown traps includes 294 species from 45 families. The number of species attracted to the fermenting bait is about a third of the total number of species in the traps (this is 97.4% of the number of all caught specimens). The largest number of species that have been found in traps belong to the families Cerambycidae, Elateridae and Curculionidae. The most actively attracted species mainly belong to the families Cerambycidae, Nitidulidae and Scarabaeidae. Species of these families are equally attracted by baits made of beer, white and red wines. To identify the Coleoptera biodiversity of a particular biotope, two-year studies are sufficient, which should be carried out throughout the vegetation season. Especially good results can be obtained from studies of rare species that are actively attracted by such baits. It is possible to study the vertical-horizontal distribution of Coleoptera fauna in individual biotopes.

Keywords: fermental traps, beer traps, Coleoptera, fauna, biodiversity, occurrence.

1. Introduction

Forests are biologically diverse ecosystems that represent some of the richest communities of living organisms on Earth. Due to the diversity of these ecosystems, they are home to a significant species and diversity of insects [1,2,3,4,5,6,7,8]. While many insect species thrive, some forest species are on the verge of extinction due to forest degradation, pollution, fragmentation, changes in tree composition, climate change, and other factors, such as fires, tree felling, and draining [9,10,11,12,13,14,15,16]. The species diversity of Coleoptera forest ecosystems is very large, and knowledge about this biodiversity is constantly being updated through the use of a wide variety of studying methods [17,18,19,20,21,22].

Entomological net mowing, window traps, pitfall trap, light trap, and Malaise trap are key methods for studying Coleoptera biodiversity in forest systems [23,24,25,26,27,28]. Most of these methods are easy to use and therefore a huge number of studies are based on these research methods. At the same time, these methods are usually used at the level of human growth. These methods are quite accessible and are actively used to study insects of the soil and herbaceous tiers, as well as to a certain extent shrubs.
and undergrowth. In open ecosystems, such as grasslands, steppes, and deserts, these methods are sufficient to study biodiversity [29,30,31,32].

However, these methods do not always accurately assess the biodiversity of Coleoptera in individual forest areas or in specific forest tiers. This is especially true for the study of the upper tiers of the forest, which are often inaccessible to the entomologist with a net. Some collection methods are quite labor-intensive and are therefore rarely used by entomologists. Fermental crown traps with various baits are an additional and well-established method of studying the biodiversity of Coleoptera in the forest canopy [33]. Bait trapping for insects is discussed in many general entomological texts, and ranges from techniques such as ‘sugaring’ and pheromone traps to using ‘natural’ organic baits such as carrion and dung [34]. Traps with baits made of fermenting liquids, such as wine, molasses, beer, with the addition of bananas, apples, sugar and other natural fillers have proven effective in detecting many Coleoptera families [35,36,37,38,39,40,41,42,43]. Previously, a mixture of beer with sugar, honey and jam was successfully used as bait [44,45,46]. Using such original and unusual collection methods, it is possible to find new species not only for the region, but also for science [47, 48]. This study presents the results of studying Coleoptera using fermental crown traps in various regions of Central Russia and the Volga region.
2. Materials and Methods

2.1. Placement of traps

The traps are a plastic 5-liter container with a window cut out in it on one side at a
distance of 10 cm from the bottom. With the help of a load, a rope with a tied trap was
thrown onto a tree branch at a height of 5 to 12 m from the soil surface [46, 49]. As bait,
fermenting beer, white and red dry wine was used with an addition in the form of honey,
jam or sugar.

The traps were placed in eight regions: the Republic of Mordovia, Tambov, Saratov,
Ryazan, Vladimir, Nizhny Novgorod, Ulyanovsk, and Penza regions in 2018 (from June
to August), in 2019 (from April to October) and in 2020 (from April to October). The
volume of material for this article is presented in Table 1.

Region	2018	2019	2020	Total
Republic of Mordovia	1750	10617	10901	23268
Penza region	0	18	86	104
Ulyanovsk region	0	20	32	52
Nizhny Novgorod region	0	13	29	42
Vladimir region	0	0	21	21
Ryazan region	0	0	19	19
Saratov region	0	0	4	4
Tambov region	0	0	3	3
Total	83	317	420	820

Table 1. The quantity of the collected material in the regions of Russia*.

* – there is the number of traps installed above the line, there is the number of rec-
corded beetle samples below the line.

2.2. Usage of attractive liquids

In several series of experiments, the most attractive liquids for Coleoptera were de-
termined. The attractive liquids were white wine, red wine, and beer. The attraction
mixture consisted of these liquids, with or without added sugar. The following variants
of mixtures were studied:

1) beer with sugar (BS),
2) beer without sugar (B),
3) red wine with sugar (RvS),
4) red wine without sugar (Rv),
5) white wine with sugar (WvS),
6) white wine without sugar (Wv).
These experiments were carried out from April to August (they were repeated 10 times). All traps in each series of experiments were located on oak trees at the same height (5.5-6 m) at a close distance from each other (no more than 10-15 m). Each repetition of the experiment (exposure) is carried out for 7-10 days. Each repetition was carried out within one biotope (on an area of no more than 500 m²).

2.3. Calculations and used terms

Several terms were used to determine the effectiveness of traps. Occurrence – the ratio of the number of samples where a species (taxonomic group) is present to the total number of samples (expressed in %). Exposure time – the period between hanging a trap and taking samples for analysis (expressed in days). Bait – a liquid that attracts insects, located in a trap and it consists of various mixtures (beer, wine, water) and natural fillers such as solid and liquid food additives (sugar, honey, jam).

2.4. Format

The classification of the family-group taxa used in this checklist follows predominantly Bouchard et al. [50], with subsequent additions [51]. Changes from the Catalog of Palaearctic Coleoptera are taken into account [52,53,54,55,56,57,58], as well as data on the Cucujidea from the article by Robertson et al. [59], and Curculionoidea from the publication of Alonso-Zarazaga et al. [60]. To clarify the nomenclature, the cited articles were used, as well as the Catalog of Palaearctic Coleoptera [61,62]. Years of description of some species are specified by Bousquet [63].

3. Results

During the experiments in 2018-2020, more than 33,000 Coleoptera (Appendix A) specimens fell into our traps. In total, 294 species from 45 families were recorded in the traps (Fig. 1). About 1,500 specimens could not be identified to the species (mainly from the families Staphylinidae and Nitidulidae).

The largest number of species that were found in the traps belongs to the family Cerambycidae (57 species), Elateridae (33 species) and Curculionidae (31 species). However, the overwhelming number of families were represented in our catches by single species: only one species was recorded among 14 families (Staphylinidae, Hydrochidae, Monotomidae, Cucujidae, Lycidae, Brentidae, Atтелabidae, Aderidae, Lamiophloeidae, Boridae, Lymexylidae, Silvanidae, Mordellidae, Salpingidae), 2 species among 10 families (Erotylidae, Throscidae, Mycetophagidae, Scaptiidae, Pyrochroidae, Anthribidae, Cerylonidae, Melandryidae, Dytiscidae, Eucnemidae), 3 species among three families (Scirtidae, Latridiidae, Ptinidae).

Based on our long-term research, we can distinguish between species that are attracted by the mix, and random species that fall for some other random reasons (for example, they stumble on the transparent walls of the trap or fly to the water). In some cases, when installing a trap and its prolonged exposure, especially in sunny places, the processes of rotting of trapped insects can occur. This leads to the trapping of species that are attracted by carrion. We distinguish this group separately.
Thus, we conditionally distinguish 3 groups of Coleoptera species that fall into traps (Fig. 2). The number of species attracted by the mix was 29.6% of the total number of species in traps. However, they accounted for 97.4% of the number of samples that were identified. The average occurrence of these species exceeded the occurrence of random species by 21 times. The high occurrence of species that are attracted by carrion was noted. They probably react quickly enough to prey and fall into traps.

Figure 1. Distribution of families by the number of captured species in beer traps.

Figure 2. The ratio of the number of species, the number of specimens and the average occurrence of species, depending on the ability to attract to the bait.
As studies have shown (Fig. 3), the increase in the number of traps in the third year does not have the same effect as in the first two years. From 2018 to 2020, we increased the number of traps set for studying Coleoptera. We also increased the number of regions where these traps were located. It turned out that the number of species that fall into the traps increased significantly in the second year of the study with an increase in the number of traps. But in the third year of research, despite the higher number of traps, the number of new species that had not been caught before decreased. New species were trapped in 2020 due to an increase in the number of regions. Thus, in the third year, the number of new species caught in traps decreased. They already include random and/or very rare species that live in this biotope. It can be concluded that two-year studies will be sufficient to study the biodiversity of a particular biotope or a small region. We used several compositions of mixtures, in which the basis was red, white wine or beer. Sugar and yeast were added as additives to this bait.

![Figure 3. Dependence of the number of captured species on the number of traps by year.](image)

Fig. 4 shows the same direction of the effects of factors with some variance from Wv (above) to B (below all) for families and for species. It turned out that the number of Curculionidae specimens (mainly due to *Anisandrus dispar*) increases when catching white wine without sugar and to a lesser extent red wine without sugar. At the same time, the number of Nitidulidae specimens is not related to these factors, but their catchability increases with all other factors. As for the other families, they are all equally attracted to baits from different mixtures. Thus, the Dermestidae, Scarabaeidae, Staphylinidae, and Cerambycidae are similarly related to beer- and wine-based baits.
Figure 4. Canonical analysis of the number of registered specimens from different families depending on the bait composition (beer with sugar (BS), beer without sugar (B), red wine with sugar (RVs), red wine without sugar (Rv), white wine with sugar (WvS), white wine without sugar (Wv)). Families: Derm – Dermentidae, Scarab – Scarabaeidae, Staph – Staphylinidae, Nitid – Nitidulidae, Ceramb – Cerambycidae, Curcul – Curculionidae.

Figure 5 shows the number of recorded specimens of various species, depending on the composition of the bait. It turned out that Cryptarcha strigata is better caught using the largest number of mixtures (B, BS, WvS, RVs), while Wv and Rv attract Anisandrus dispar, Protaetia marmorata and Xyleborus saxesenii to a lesser extent. However, most of the studied species were almost equally lured by different mixtures.

Figure 5. Canonical analysis of the number of recorded specimens of various species, depending on the composition of the bait (see the caption to Figure 4). Species: A.schaef – Attagenus schaefferi (Dermestidae), P.marm – Protaetia marmorata (Scarabaeidae), D.marg – Dalopius marginatus (Elat eridae), C.strig – Cryptarcha strigata (Nitidulidae), G.hort – Glischrochilus hortensis (Nitidulidae),
Thus, the species composition of Coleoptera from fermental crown traps differs from those caught by other methods. Previously, such traps were recommended for use in the study of rare insect species [46]. For example, we present the results of the study of rare species of Coleoptera, which are included or recommended in the Red Books of some regions [6,64,65,66,67,68,69,70,71] and Red Data Book of Russia [72] (Table 2).

Table 2. Occurrence of rare species (numbers indicate the number of rare species found in the region according to fermental crown trap records).

Species	Red Data Book of Russia	Red Data Book							
	Vladimir Region	Ryazan Region	Republic of Mordovia	Penza Region	Nizhny Novgorod Region	Ulyanovsk Region	Saratov Region	Tambov Region	
Carabidae									
Lebia marginata (Geoffroy, 1785)	–	–	–	1 (2)*	–	–	–		
Staphylinidae									
Quedius dilatatus (Fabricius, 1787)	–	–	–	57 (10)	–	10 (5)	–		
Silphidae									
Dendroxena quadrimaculata (Scopoli, 1771)	–	0 (5)	–	10 (3)	–	–	–		
Lucanidae									
Lucanus cervus (Linnaeus, 1758)	+	0 (1)	0 (3)	0 (25)	0 (2)	3 (43)	0 (30)	0 (7)	
Scarabaeidae									
Gnorimus variabilis (Linnaeus, 1758)	–	0 (6)	0 (2)	29 (6)	2 (6)	–	0 (9)	0 (10)	0 (2)
Osmothera barnabita Motschulsky, 1845	+	0 (3)	0 (9)	3 (4)	0 (7)	0 (11)	0 (7)	0 (5)	0 (1)
Protactia fieberi (Kraatz, 1880)	+	7 (4)	5 (–)	125 (12)	48 (6)	11 (–)	40 (–)	2 (9)	1 (–)
Protactia marmorata (Fabricus, 1792)	–	–	15 (7)	–	–	–	–	–	–
Protactia speciosissima (Scopoli, 1786)	+	2 (–)	1 (2)	25 (8)	20 (11)	4 (1)	9 (25)	1 (14)	1 (4)
Elateridae									
Elater ferrugineus Linnaeus, 1758	+	–	–	6 (2)	–	–	1 (–)	0 (1)	–
Coccinellidae									
Adalia bipunctata (Linnaeus, 1758)	–	–	–	1 (4)	–	–	–	–	–
Cerambycidae									
Leptura thoracica (Creutzer, 1799)	–	–	6 (2)	–	–	–	–	–	–
Purpuricenus globulicollis Dejean, 1839	–	–	–	–	1 (1)	–	–	–	0 (1)
Purpuricenus kaehleri (Linnaeus, 1758)	–	–	1 (1)	31 (2)	–	–	–	–	1 (4)
Necydalis major Linnaeus, 1758	–	–	0 (7)	32 (8)	–	–	–	0 (8)	0 (6)
Leptura aurulenta Fabricius, 1793	–	–	3 (1)	–	–	–	–	–	–
Aromia moschata (Linnaeus, 1758)	–	–	30 (10)	–	–	–	–	0 (8)	–
Cleridae									
Allonyx quadrimaculatus (Schaller, 1783)	–	–	2 (1)	0 (2)	–	–	–	–	–
In total, 18 species of Coleoptera, which are included or are planned to be included in the Red Data Books, from nine families, were indicated in the studies. Especially significant are the results for species that actively fly into crown traps for beer baits (*Quadius dilatatus*, *Gnorimus variabilis*, *Protaetia fieberi*, *Protaetia marmorata*, *Protaetia speciosissima*, *Elater ferrugineus*, *Purpuricenus kaehleri*, *Necydalis major*, *Leptura aurulenta*, *Aromia moschata*). The number of finds of such species increases significantly with an increase in the number of traps set. The use of such baits makes it possible to clarify even the status of species that have been included in the Red Data Books, and to suggest measures for their protection.

4. Discussion

Bait traps are an effective tool for studying the insect fauna of the upper tiers of forests. Forest crowns are usually studied to a lesser extent than the soil and herbal layer [73, 74]. Forest canopies did not attract researchers for a long time due to the logistical difficulties of reaching the tree crowns and the subsequent sampling problems. However, then there were original research methods, including slingshots, crossbows, ladders, networks of cranes, towers and passages, which facilitate the work [75,76,77,78].

The active attraction of insects by baits based on fermenting beer and wine with the addition of sugar and other sweet substances, as well as fruits, can be explained. Many insects have receptors that perceive carbohydrates. According to many modern studies, insects have an excellent ability to perceive sugar [79,80,81]. Sweet carbohydrates play a crucial role in the life of insects as valuable energy and food resources. Insects always use the perception of sugars to assess the nutritional value of the feed. Sugar and its decomposition products form the primary stimulatory signal for insect nutrition [82, 83]. The use of traps with our baits is based on the perception of sugars as food components. We note that many other substances (alcohols, ketones, and other volatile substances) are released during fermentation, which can also attract insects [84, 85, 86].

However, not all insects are equally lured into such traps. There are species that are particularly common in traps with a large number of specimens from the total number of species attracted to bait in fermental crown traps.

Protaetia marmorata (Scarabaeidae) (average occurrence was 72.2% over three years). This species inhabits various types of forests, and is found in parks, shelterbelts, and other biotopes [87,88,89]. Larval development occurs in the hollows of dead deciduous trees for three years [87, 89]. In beer traps, this is the most common type. It actively flies on a fermenting bait.

Cryptarcha strigata (Nitidulidae) (average occurrence was 51.2% over three years). It inhabits deciduous and mixed forests. Imagos are often found near the effluents of the fermenting sap of *Q. robur*, where the preimaginal phases of this species develop. Occasionally they are found on the leaking sap of *P. tremula* [90]. In beer traps, it is often found, sometimes with a very significant number.

Glischrochilus grandis (Nitidulidae) (average occurrence 33.6% was over three years). It inhabits a wide variety of forest biocenoses. It is common on the leaking sap of various trees where the larvae develop. It is also known from tinder plants, from rotten berries, and develops on various decaying substrates [91,92,93,94]. It is caught in traps with vinegar bait [95]. The peak number in beer traps is typical in May–June, single specimens are caught during all seasons.

Protaetia fieberi (Scarabaeidae) (average occurrence was 30.9% over three years). It inhabits various deciduous and mixed forests, and is common in parks and deciduous
second-growth forest. The larvae of this species are supraciliary. Larvae and frass inhabit the tree hollows (Quercus, Tilia, Fagus, Salix, Populus) made by various species of woodpeckers, owls, and small mammals [96]. Previously it was considered rare. However, our studies have shown that this species occurs regularly in different biotopes in the center of European Russia [97].

Leptura quadrifasciata (Cerambycidae) (average occurrence was 30.7% over three years). It is found in a wide range of biotopes. Larvae develop in dead or rotting wood, especially in the lower parts of standing trees, stumps, fallen trunks and branches of various trees (alder, aspen, poplar, birch (birch may be preferred to other trees), hazel, oak, sallow, beech, willow, elder). It inhabits wet or dry woodlands [98].

Soronia grisea (Nitidulidae) (average occurrence was 28.6% over three years). It is confined to oak forests and mixed stands with the presence of oak, where it is often found on the sap of Q. robur, Salix [90, 93, 94]. In Turkey, it was also caught on baits with beer in mixed forests and pine forests [99]. The peak number in beer traps is typical in May–June; single specimens are caught during all seasons.

Glischrochilus hortensis (Nitidulidae) (average occurrence was 28.5% over three years). It inhabits deciduous and mixed forests. Imago are found on the fermenting sap of Q. robur and under the bark of fallen and dying trees of B. pendula, P. tremula. Larvae develop under the bark of dying and damaged trees of B. pendula, P. tremula, and Q. robur and in their fermented sap, and can also occur on fermented berries, vegetables, and mushrooms [90, 94, 100]. The peak number in beer traps is typical in May; single specimens are caught during all seasons.

Rhagium mordax (Cerambycidae) (average occurrence was 26.2% over three years). It is one of the most common species. It inhabits mixed, deciduous forests, pine forests of various types [101]. Larvae develop under the bark of dead pine and deciduous trees [102]. It is regularly found in beer traps from the end of April to July.

Leptura thoracica (Cerambycidae) (average occurrence was 25.2% over three years). It is considered a polyphage of deciduous trees (Populus, Betula, Tilia, Salix, Fagus). The larvae inhabit the dead, rotten wood of thick trunks [103, 104, 105]. It has been observed that mass collections of this species occur in places with a predominance of Betula sp. in the stand [106]. The species was previously found in single specimens when studying the territory by conventional methods (net fishing, light fishing, window fishing) [101]. The use of beer traps has shown that the species is quite common in a wide range of biotopes.

Cetonia aurata (Scarabaeidae) (average occurrence was 18.0% over three years). It inhabits a wide range of biotopes. It is often found on the flowers from the families Umbelliferae, Rosacea, Asteraceae, where they feed on pollen and nectar [107]. Larvae develop in rotting wood and decaying plant substance [108]. It is found in beer traps, which are placed at low altitudes, most often up to 5 m. It is rarely caught in very high-placed traps.

Quedius dilatatus (Staphylinidae) (average occurrence was 15.4% over three years). This species is associated with Vespa crabro nests, where its larvae feed on Diptera larvae in the nest debris [109]. Therefore, it is often found on tree trunks, near the nests of Vespa crabro, but it is often observed in other places. It inhabits forest biocenoses. It is often observed on the trunks of trees in the leaking sap [110]. In beer traps it is caught in summer.

Protaetia cuprea volhyniensis (Scarabaeidae) (average occurrence was 14.9% over three years). It inhabits a wide variety of forest biocenoses. This is a myrmecophilic species, the larvae usually develop in active and abandoned anthills, sometimes in sawdust and garbage heaps. It is quite common on flowering plants [111, 112].

All of these species were trapped annually with approximately the same occurrence. It is highly likely that they will be caught if traps with fermenting liquid are set in a certain biotope during the season of activity of these species. On the other hand, those species can be caught that are very rare in the studied territory. For example, very rare species (Allonyx quadrimaculatus, Anoplodera rufipes ventralis, Leptura aurulenta, Purpuricenus globilicollis) are practically not caught, despite the use of different methods. Other species
which are not often detected with the help of other methods (Quedius dilatatus, Protaetia affinis, Protaetia fieberi, Protaetia speciosissima, Elater ferrugineus, Ctesias serra, Globicornis emarginata, Nacerdes carniolica, Purpuricenus kaehleri, Aromia moschata, Leptura thoracica, Neocydalis major, Xylotrechus pantherinus) are well lured by wandering baits and with the help of these baits their numbers can be estimated.

The quality of the bait can affect both the number of individuals caught and the species. Many effective traps have been suggested in several studies. For example, pineapple traps attract Scyphophorus acupunctatus (Curculionidae) better than fermented maguey [113]. The vinegar-ethanol-apple mixture was much more effective in attracting Eucryptorrhynchus scrobiculatus (Curculionidae) [114]. Bardiani et al. [115] successfully used baits made from various wines, beer, and banana puree to catch Lucanus cervus (Lucanidae). Traps with baits made of beer, palm wine, and various fruits (banana, mango, papaya, or pineapple) were successfully used to catch Cetoniinae (Scarabaeidae) [116]. Other studies [117] show that there were the greatest species richness and abundance of Cetoniinae in traps with bait made from banana juice and sugar cane, pineapple and sugar cane and only sugar cane juice compared to other baits. These results showed the importance of sugar cane juice, used either in isolation or as an additive in the fruit fermentation process, for effective sampling [117]. A mixture of banana, brown sugar, molasses, and baker’s yeast was used to study the Cerambycidae fauna [118]. On the other hand, Allemand and Aberlenc [35] used a mixture of beer and red wine in equal amounts to capture beetles without adding other ingredients (fruit flavors, sugar, honey). Thus, the species composition of Coleoptera in bait traps clearly depends on the specific composition of the bait itself [119]. Different fishing methods, when used correctly, can be an effective tool, for example, in monitoring biodiversity and studying rare insect species that are difficult to detect by other methods [44,120,122].

5. Conclusions

The biodiversity of Coleoptera that fall into crown traps is large. Over a three-year period, we observed 294 species from 45 families. Most families are represented by 1-3 species. The number of species actively attracted to bait is about a third of the total number of species in traps. At the same time, they account for 97.4% of the number of specimens. Two-year studies are sufficient to identify the Coleoptera biodiversity of a particular biotope. However, they need to be conducted during the entire insect activity season. Such studies will fully characterize the Coleoptera fauna. The largest number of species found in the traps belong to the families Cerambycidae, Elateridae, and Curculionidae. However, the actively attracted species mainly belong to the families Cerambycidae, Nitidulidae and Scarabaeidae. Their species of these families are equally attracted both by baits made of beer, and white and red wines.

We recommend the use of fermental crown traps with beer and wine for ecological studies of the Coleoptera fauna. This method can be applied to study the seasonal and spatial characteristics of the fauna. Especially good results can be obtained from studies of rare species that are actively attracted by such baits. It is possible to study the vertical-horizontal distribution of fauna in individual biotopes.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table S1: title, Video S1: title.

Author Contributions: Ruchin, A.B. – conceptualization, methodology, investigation, validation, original draft preparation, funding acquisition; Egorov, L.V. – methodology, formal analysis, validation, editing; Khapugin, A.A. – software, validation, editing. All authors have read and agreed to the published version of the manuscript.

Funding: The study was partially supported by grants of RSF (project 21-14-00189).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is available upon request from the corresponding author.
Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Biodiversity and occurrence of Coleoptera from fermental traps in the European part of Russia in 2018-2020.

References

1. Lindenmayer, D.B.; Cunningham, R.B.; Donnelly, C.F.; Lesslie, R. On the use of landscape surrogates as ecological indicators in fragmented forests. *Forest Ecology and Management* **2002**, 159(3), 203-216. https://doi.org/10.1016/S0378-1127(01)00433-9

2. Mason, F.; Zapponi, L. The forest biodiversity artery: Towards forest management for saproxylous conservation. *iForest* **2015**, *ifor1657*, e1–e12. [DOI 10.3 832/ifor 1657-008](http://dx.doi.org/10.3 832/ifor 1657-008)

3. Bazhina, E.V. Siberian fir (Abies sibirica) state and chemical element allocation in tree crown in forest ecosystems of Protected Areas in south of Krasnoyarsk Region (Russia). *Nature Conservation Research* **2018**, 3(Suppl. 2), 40–53. http://dx.doi.org/10.24189/nacr.2018.064

4. Uwalaka, N.O.; Muoghalu, J.I.; Osewoloe, A.O. Species diversity and successional dynamics in the secondary forest of Obafemi Awolowo University Biological Gardens Ile-Ife, Nigeria. *Nature Conservation Research* **2018**, 3(1), 21–34. http://dx.doi.org/10.24189/nacr.2018.002

5. Rozhkov, Yu.F.; Konidakova, M.Yu. Assessment of the post-fire forest restoration dynamics in the Olekminsky State Nature Reserve (Russia) according to data of Landsat satellite images. *Nature Conservation Research* **2019**, 4(Suppl. 1), 1–10. https://doi.org/10.24189/nacr.2019.014

6. Ruchin, A.B.; Kapugin, A.A. Red data book invertebrates in a protected area of European Russia. *Acta Zoologica Academiae Scientiarum Hungaricae* **2019**, 65(4), 349–370. DOI: 10.17109/AZH.65.4.349.2019

7. Arkhipova, M.V. Forest cover changes in the center of East European plain over the last 150 years. *Russian Journal of Forest Science* **2020**, 1, 35-45. DOI: 10.31857/S0024114820010027Polevoi, 2021

8. Polevoi, A.V. Fungus gnats (Diptera: Bolitophilidae, Diadocidiidae, Keroplatidae, Mycetophilidae) in the Kostomuksha State Nature Reserve, Russia. *Nature Conservation Research* **2021**, 6(Suppl. 1), ... https://dx.doi.org/10.24189/nacr.2021.001

9. Carnus, J.M.; Parrotta, J.; Brockerhoff, E.; Arbez, M.; Jactel, H.; Kremer, A.; Walters, B. Planted forests and biodiversity. *Journal of Forestry* **2006**, 104, 65-77.

10. Cicort-Lucaciou, A.Ş. Road-killed ground beetles prove the presence of Carabus hungaricus (Coleoptera: Carabidae) in North-Western Romania. *Nature Conservation Research* **2020**, 5(3), 134–138. https://doi.org/10.24189/nacr.2020.035

11. Thuiller, W. Biodiversity–climate change and the ecologist. *Nature* **2007**, 448, 550–552.

12. Ruchin, A.B.; Egorov, L.V. Overview of insect species included in the Red Data Book of Russian Federation in the Mordovia State Nature Reserve. *Nature Conservation Research* **2017**, 2(Suppl. 1), 2–9. doi: 10.24189/nacr.2017.016 [in Russian].

13. Kovac, M.; Hladnik, D.; Kutnar, L. Biodiversity in (the Natura 2000) forest habitats is not static: its conservation calls for an active management approach. *Nature Conservation Research* **2018**, 43, 250–260. https://doi.org/10.1016/j.jnc.2017.07.004

14. Aleinikov, A.A. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: possible anthropogenic causes and long-term effects. *Nature Conservation Research* **2019**, 4(Suppl. 1), 21–34. https://doi.org/10.24189/nacr.2019.033

15. Ruchin, A.B.; Alekseev, S.K.; Kapugin, A.A. Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia). *Nature Conservation Research* **2019**, 4(Suppl. 1), 11–20. https://doi.org/10.24189/nacr.2019.009

16. Dedyukhin, S.V. Phytophagous beetles (Coleoptera: Chrysomelidae and Curculionoidea), protected and recommended for protection in the regions of the Middle Volga and the Urals. *Nature Conservation Research* **2020**, 5(2), 1–27. [https://doi.org/10.24189/nacr.2020.013] [In Russian].

17. Stork, N.E.; Grimbacher, P.S. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. *Proceedings Biological sciences* **2006**, 273(1596), 1969–1975. doi: 10.1098/rspb.2006.3521.

18. Dodds, K.J. Effects of trap height on captures of arboreal insects in pine stands of northeastern United States of America. *Canadian Entomologist* **2014**, 146(1), 80-89. https://doi.org/10.4039/tec.(2013)57

19. Skvarla, M.J.; Dowling, A.P.G. A comparison of trapping techniques (Coleoptera: Carabidae, Buprestidae, Cerambycidae, and Curculionoidea excluding Scoletinae). *Journal of Insect Science* **2017**, 17(1), 1–28. doi: 10.1093/jisesa/iexw098

20. Tomaszewska, W.; Egorov, L.V.; Ruchin, A.B.; Vlasov, D.V. First record of Clemmus troglodytes (Coleoptera: Coccinellidae, Anamorphidae) for the fauna of Russia. *Nature Conservation Research* **2018**, 3(3), 103–105. http://dx.doi.org/10.24189/nacr.2018.016

21. Volf, M.; Klimeš, P.; Lamarre, G.P.A.; Redmond, C.M.; Seifert, C.L.; Abe, T.; Auga, J.; Anderson-Teixeira, K.; Basset, Y.; Beckett, S.; Butterill, P.T.; Drozd, P.; Gonzalez-Akre, E.; Kaman, O.; Kamata, N.; Laird-Hopkins, B.; Libra, M.; Manumbor, M.; Miller, S.E.; Molem, K.; Mottl, O.; Murakami, M.; Nakaji, T.; Plowman, N.S.; Pyszko, P.; Šigut, M.; Šipoš, J.; Tropek, R.;
Weiblen, G.D.; Novotny, V. Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. *PloS ONE* **2019**, 14(10), e0222119. https://doi.org/10.1371/journal.pone.0222119

22. Bondarenko, A.S.; Zamotajlov, A.S.; Belyi, A.I.; Khomitskiy, E.E. Fauna and ecological characteristics of ground beetles (Coleoptera, Carabidae) of the Nature Sanctuaries «Prichernomorskiy» and «Tuapsinskiy» (Russia). *Nature Conservation Research* **2020**, 5(3), 66–85. https://dx.doi.org/10.24189/nccr.2020.032

23. Jackman, J.A.; Nelson, C.R. Diversity and phenology of tombing flower beetles (Coleoptera: Mordellidae) captured in a Malaise trap. *Entomological News* **1995**, 106, 97–107.

24. Leksono, A.S.; Takada, K.; Koji, S.; Nakagoshi, N.; Anggaeni, T.; Nakamura, K. Vertical and seasonal distribution of flying beetles in a suburban temperate deciduous forest collected by water pan trap. *Insect Science* **2005**, 12, 199–206

25. Marques, M.I.; Adis, J.; Brizzola dos Santos, G.; Battirola, L.D. Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil. *Revista Brasileira de Entomologia* **2006**, 50(2), 257–267. https://dx.doi.org/10.1590/S0085-56262006000200007

26. Campbell, J.W.; Hanula, J.L. Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. *Journal of Insect Conservation* **2007**, 11(4), 399–408.

27. Hodge, S.; Marshall, S.A.; Oliver, H.; Berry, J.; Marris, J.; Andrew, I. A preliminary survey of the insects collected using mushroom baits in native and exotic New Zealand woodlands. *New Zealand Entomologist* **2010**, 33(1), 43–54. DOI: 10.1080/0079962.2010.972219

28. Fagundes, C.K.; Di Mare, R.A.; Wink, C.; Manfio, D. Diversity of the families of Coleoptera captured with pitfall traps in five different environments in Santa Maria, RS, Brazil. *Brazilian Journal of Biology* **2011**, 71(2), 381–390. http://dx.doi.org/10.1590/S1559-69482011000300007

29. Schmeekl, T.C.; Millar, J.G.; Hanks, L.M. Influence of trap height and bait type on abundance and species diversity of cerambycid beetles captured in forests of East-Central Illinois. *Journal of Economic Entomology* **2016**, 109(4), 1750–1757. https://doi.org/10.1093/jee/tow102

30. Alexeev, S.V.; Alexandrov, V.V. Pitfall trap construction affects the efficacy of ground beetle counts. *Zoologicheski Zhurnal* **2017**, 96(3), 295–304. DOI: 10.7868/S0044513417010032

31. Byk A.; Węgrzynowicz P. The Structure and Seasonal Dynamics of Coprophagous Scarabaeoidea (Coleoptera) Communities in Later Developmental Stages of Pine Stands in NW Poland. *Journal of Entomol. Res. Soc.* **2015**, 17(3); 39–57

32. Kazantsev, S.V.; Egorov, L.V.; Ruchin, A.B. Discovery of Lopheros lineatus (Gorham, 1883) (Coleoptera, Lycidae) in Mordovia, Central Russia. *Entomological Review* **2019**, 99, 656–659. DOI: 10.1134/S0013873819050099

33. MacRae, T.C. (2015) Beetle Collecting 101: Fermenting bait traps for collecting longhorned beetles. Available from: https://beetlesinthebush.wordpress.com/2015/12/28/beetle-collecting-101-fermenting-bait-traps-for-collecting-longhorned-beetles/ (accessed on 10.03.2021)

34. Hodge, S.; Williams, A. Beetles collected using rotting vegetable baits in a Kent Garden. *Entomologist’s Monthly Magazine* **2011**, 146, 179–188.

35. Allemand, R.; Aberlenc, H.-P. Une méthode efficace d’échantillonnage de l’entomofaune des frondaisons: le piège attractif fermentaire. *Bulletin de la Société Entomologique Suisse* **1991**, 64, 293–305.

36. Williams, R.N.; Ellis, M.S.; Keeney, G. A bait attractant study of the Nitidulidae (Coleoptera) at Shawnee State Forest in Southern Ohio. *Great Lakes Entomologist* **1995**, 27(4), 229–234.

37. MacRae, T.C.; Rice, M.E. Distributional and biological observations on North American Cerambycidae (Coleoptera). *Coleopterists Bulletin* **2007**, 61(2), 227–263.

38. Guarnieri, F.G. A survey of longhorned beetles (Coleoptera: Cerambycidae) from Paw Paw, Morgan County, West Virginia. *Maryland Entomologist* **2009**, 5(1), 11–22.

39. Bardiani, M.; Tini, M.; Carpaneto, G.M.; Audisio, P.; Bussola, E.; Campanaro, A.; Cini, A.; Maurizi, E.; Mason, F.; Beverieri, G.S.; Roversi, P.F.; Toni, I.; Chiari, S. Effects of trap baits and height on stag beetle and lower chafer monitoring: ecological and conservation implications. *Journal of Insect Conservation* **2017**, 21(1), 157–168. https://doi.org/10.1111/jiec.12775

40. Redolfi De Zan, L.; Bardiani, M.; Antonini, G.; Campanaro, A.; Chiari, S.; Mancini, E.; Mura, M.; Sabatelli, S.; Solano, E.; Zauli, A.; Sabbatini Beverieri, G.; Roversi, P.F. Guidelines for the monitoring of Cerambyx cerdo. *Nature Conservation* **2017**, 20, 129–164. https://doi.org/10.3897/natureconservation.20.12703

41. Rukavina, I.; Kostanjšek, F.; Jerina, S.D.; Pirnat, A.; Šerić J.L. Distribution and habitat suitability of two rare saproxylic beetles in Croatia – a piece of puzzle missing for South-Eastern Europe. *iForest* **2018**, 11, 765–774. doi: 10.3832/ifor2753-011

42. Barros, R.C.; Fonseca, M.G.; Jardim, M.T.; Vendramini, V.E.; Damiani, B.C.B.; Julio, C.E.A. Species of Cerambycinae (Insecta, Coleoptera, Cerambycidae) from east Paraná State (Brazil), with new geographic records. *Zootaxa* **2020**, 4845(1), 001–025. https://doi.org/10.11646/zootaxa.4845.1.1

43. Ruchin, A.B.; Egorov, L.V.; Khapugin, A.A. Seasonal activity of Coleoptera attracted by fermental crown traps in forest ecosystems of Central Russia. *Ecological Questions* **2021**, 5(4), 65–77. https://doi.org/10.11646/zootaxa.4845.1.1

44. Dvořák, L.; Dvořáková, K.; Oboňa J.; Ruchin, A.B. Selected Diptera families caught with beer traps in the Republic of Mordovia (Russia). *Nature Conservation Research* **2020**, 5(4), 65–77. https://dx.doi.org/10.24189/nccr.2020.057

45. Ruchin, A.B.; Egorov, L.V. The beetles (Insecta: Coleoptera) of Smolny National Park (based on insect collecting by fermental crown traps in 2020). *Scientific Proceedings of the State Nature Reserve «Prisursky»* **2020**, 35, 221–225. [In Russian]

46. Ruchin, A.B.; Egorov, L.V.; Khapugin, A.A.; Vikhrev, N.E.; Esin, M.N. The use of simple crown traps for the insects collection. *Nature Conservation Research* **2020**, 5(1), 87–108. https://dx.doi.org/10.24189/nccr.2020.008
77. Nadkarni, N.M.; Parker, G.G.; Lowman, M.D. Forest canopy studies as an emerging field of science. *Annals of Forest Science* 2011, 68, 217. https://doi.org/10.1007/s13595-011-0046-6

78. Viana-Junior A.B.; Quijano-Cuervo L.G.; Ferreira J.C.; do Nascimento Reis R.R.; dos Santos L.A.; Martins M.B. Collecting arboreal arthropods: a technique for sampling plant-inhabiting arthropod communities in a tropical forest understory. *Entomologia Experimentalis et Applicata* 2021, 169(3): 312-321.

79. Sanchez-Gracia A.; Vieira F.G.; Almeida F.C.; Rozas J. Comparative genomics of the major chemosensory gene families in Arthropods. In: Encyclopedia of Life Sciences. Chichester (UK): John Wiley & Sons, Ltd. 2011. https://doi.org/10.1002/9780470015902.a0022848

80. Engsonia, P.; Sangket, U.; Chotigat, W.; Satosook C. Molecular Evolution of the Odorant and Gustatory Receptor Genes in Lepidopteran Insects: Implications for Their Adaptation and Speciation. *Journal of Molecular Evolution* 2014, 79(1-2): 21-39. https://doi.org/10.1007/s00239-014-9633-0

81. Xu W. How do moth and butterfly taste? — Molecular basis of gustatory receptors in Lepidoptera. *Insect Science* 2020, 27(6): 1148-1157. DOI 10.1111/1744-7917.12718

82. Kent L.; Robertson H. Evolution of the sugar receptors in insects. *BMC Evolutionary Biology* 2009, 9: 41. doi:10.1186/1471-2148-9-41

83. Tooming E.; Merivee E.; Must A.; Luik A.; Williams I.H. Antennal sugar sensitivity in the click beetle Agriotes obscurus. *Physiological Entomology* 2012, 37(4): 345-353.

84. Stensmyr, M.C.; Larsson, M.C.; Bice, S.; Hansson B.S. Detection of fruit- and flower-emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer *Pachnoda marginata* (Coleoptera: Cetoniinae). *Journal of Comparative Physiology A* 2001, 187, 509-519. https://doi.org/10.1007/s003590100222

85. Leroy P.D.; Heuskin S.; Sabri A.; Verheggen F.J.; Farmandjis D.; Lognay G.; Thonart P.; Wathelet J.-P.; Brostaux Y.; Haubrege E. Honeydew volatile emission acts as a kairomonal message for the Asian lady beetle *Harmonia axyridis* (Coleoptera: Coccinellidae). *Insect Science* 2012, 19(4): 498-506. https://doi.org/10.1111/j.1744-7917.2011.01467.x

86. Kirmse S.; Chaboo C.S. Flowers are essential to maintain high beetle diversity (Coleoptera) in a Neotropical rainforest canopy. *Journal of Natural History* 2020, 54, 25-26, 1661-1696.

87. Tauzin, P. Ethologie et chorologie de Protoætia (Liocola) lugubris Herbst, 1786 sur le territoire français (Coleoptera, Cetoniidae, Cetoniinae, Cetoïdinæ). *Cetoniornitinae* 2006, 3(1+2), 4–38.

88. Oleksa, A.; Chybicki, I.J.; Gawronski, R.; Svensson, G.P.; Burczyk, J. Isolation by distance in saproxylic beetles may increase with niche specialization. *Journal Insects Conservation* 2013, 17, 219–233. doi: 10.1007/s10841-012-9499-7

89. Urban, P.; Schulze, W. Ein aktueller Nachweis des Marmorierten Rosenkäfers *Protoætia marmorata* (Fabricius, 1792) in der Senne (Nordrhein-Westfalen) (Mitteilungen zur Insektenfauna Westfalens XXII), *Mitteilungen der Arbeitsgemeinschaft westfälischer Entomologen* 2017, 33(1), 15–19.

90. Kurochkin, A.S. Fauna and bionomy of sap beetles (Coleoptera, Nitidulidae) and kateretid beetles (Coleoptera, Kateretidae). *Biharean Biologist* 2013, 3 et 4, 1151-1154.

91. Alekseev, V.I.; Nikitsky, N.B. Rare and new for the fauna of the Baltic States Beetles (Coleoptera) from the Kaliningrad region. *Acta Zoologica Lituanica* 2008, 18(4), 254–259.

92. Lasoń, A.; Holly, M. Gischrochilus grandis Tournier, 1872 – new species of beetle for the Polish fauna and new data on the occurrence of genus Gischrochilus Reitter, 1873 (Coleoptera: Nitidulidae: Cryptarchinae). *Acta entomologica silesiana* 2015, 23, 1–4.

93. Nikitsky, N.B.; Osipov, I.N.; Chemeris, M.V.; Semenov, V.B.; Gusakov, A.A. The beetles of the Prioksco-Terrasny Biosphere Reserve – xylobiotones, mycetobiontes and Scarabaeidae. *Archives of zoological museum Moscow State University* 1996, XXXVI, 1–197.

94. Nikitsky, N.B.; Mamontov, S.N.; Vlasenko, A.S. New data of beetles from Tula abatis forests (Coleoptera: Nitidulidae–Scolytidae) collected in window traps. *Bulletin of Moscow Society of Naturalists, Biological series* 2016, 121(6), 25-37. [In Russian]

95. Clayhills, T. Coleoptera species new to Finland (1) (Coleoptera). *Koleopterologische Rundschau* 2011, 81, 311–319.

96. Tauzin, P. Ethologie et éco-ethologie de Protoætia (Potosia) fieberi Kraatz 1880 en France (Coleoptera, Cetoniinae, Cetoïnidæ). *Cetoniornitinae* 2007, 3 et 4, 115–146.

97. Ruchin, A.B.; Egorov, L.V.; Sazhnev, A.S.; Polumordvinov, O.A.; Ishin, R.N. Present distribution of Protoætia fieberi (Kraatz, 1880) (Insecta, Coleoptera, Scarabaeidae) in the European part of Russia. *Biharean Biologist* 2019, 13(1), 12–16.

98. Bíly, S.; Mehl, O. Longhorn beetles (Coleoptera, Cerambycidae) of Fennoscandia and Denmark. Brill, Leiden, 1989; 200 pp.

99. Avgin, S.S.; Antonini, G.; Lasoń, A.; Jansson, N.; Abacigil, T.O.; Varli, S.V.; Di Biase, A.; Audisio, P. New data on distribution, ecology, and taxonomy of Turkish Nitidulidae (Coleoptera). *Turkish Journal of Zoology* 2015, 29, 314-322. doi:10.3906/zoo-1402-27

100. Oude, J.E. Naamlijst van de glanskevers van Nederland en het omliggende gebied (Coleoptera: Nitidulidae en Braëchtyeridae). *Nederlandse Faunistische Mededelingen* 1999, 8, 11-32.

101. Ruchin, A.B.; Egorov, L.V. Fauna of longicorn beetles (Coleoptera: Cerambycidae) of Mordovia. *Russian Entomological Journal* 2018, 27(2), 161–177. doi:10.15298/rusentj.27.2.07

102. Cherepanov, A.I. The longhorn beetles of Northern Asia (Prioninae, Disteniinae, Lepturinae, Asemiae). Novosibirsk, Nauka Publ., 1979, 472 p.
103. Gutowski, J.M.; Ługowoy, J.; Maciejewski, K.H. Leptura thoracica Creutzer, 1799 (Coleoptera: Cerambycidae) in Poland. Wiad. Entomol. 1994, 13(3), 157-165. [in Polish]

104. Sama, G. Atlas of the Cerambycidae of Europe and the Mediterranean Area. Vol. I. Northern, Western, Central and Eastern Europe British Isles and Continental Europe from France (excl. Corsica) to Scandinavia and Urals. Kabourek, Zlin, 2002; 173 pp.

105. Karpinski, L.; Szczepanski, W.T.; Boldgov, B.; Walczak, M. New data on the longhorn beetles of Mongolia with particular emphasis on the genus Eodorcadion Breuning, 1947 (Coleoptera, Cerambycidae). ZooKeys 2018, 739, 107–150. https://doi.org/10.3897/zookeys.739.23675

106. Danilevsky, M.L.; Ruchin, A.B.; Egorov, L.V. Mass collection of two rare longicorn-species (Coleoptera, Cerambycidae) in Central Russia. Humanity space 2019, 8 (9), 1179–1183.

107. Karolyi, F.; Gorb, S.N.; Krenn, H.W. Trapping pollen by the moist mouth: structure and function of the mouthparts in the flower visiting Cetonia aurata (Scarabeidae, Coleoptera). Arthropod Plant Interactions 2009, 3, 1-8.

108. Landvik, M.; Niemelä, P.; Roslin, T. Mother knows the best mould: an essential role for non-wood dietary components in the life cycle of a saproxylic scarab beetle. Oecologia 2016, 182 (1), 163-176.

109. Strassen, R. Zur Ökologie des Velleius dilatatus Fabricius, eines als Raumgast bei Vespa crabro Linnaeus lebenden Staphyliniden (Insecta, Coleoptera). Zeitschrift für Morphologie und Ökologie der Tiere 1957, 46(3), 243-292. https://doi.org/10.1007/BF00383800 [in German]

110. Konwerski, S.; Melke, A.; Milkowski, M.; Ruta, R.; Sienkiewicz, P. Nowe stanowiska Velleius dilatatus (Fabricius, 1787) w Polsce (Coleoptera: Staphylinidae) oraz uwagi o jego ochronie. Chronymin Przyrode Ojczyzny 2010, 66 (2), 111-115. [in Polish]

111. Burackowski, B.; Mroczkowski, M.; Stefariska, J. Chrząszcze Coleoptera, Scarabaeoidea, Dascilloidea, Byrrhoidea i Parmenoidea. Katalog Fauny Polski 1983, 23, 9.

112. Parmentier, T.; Dekoninck, W.; Wenseleers, T. A highly diverse microcosm in a hostile world: a review on the associates of red wood ants (Formica rufa group). Insectes Sociaux 2014, 61, 229–237. https://doi.org/10.1007/s00040-014-0357-3

113. Valdés, E.M.E.; Aldana, L.L.; Figueroa, B.; Gutiérrez, M.O.; Hernández, R.M.C.; Chanelas M.T. Trapping of Sycophorus acupunctatus (Coleoptera: Curculionidae) with two natural baits in a field of Polianthes tuberosa (Liliales: Agavaceae) in the state of Morelos, México. Florida Entomologist 2005, 88(3), 338-340.

114. Yang, K.-L.; Wen, X.-J.; Zhang G.-Y.; Wen, J.-B. Evaluation of trap designs and food attractants for trapping Eucryptorrhynchus scrobiculatus (Coleoptera: Curculionidae). Biocontrol Science and Technology 2019, 29(1), 28-43. https://doi.org/10.1080/09583157.2018.1525483

115. Bardiani, M.; Chiari, S.; Maurizi, E.; Tini, M.; Toni, I.; Zauli, A.; Campanaro, A.; Carpaneto, G.M.; Audisio, P. Guidelines for the monitoring of Lucanus cervus. In: Carpaneto, G.M.; Audisio, P.; Bologna, M.A.; Roversi, P.F.; Mason, F. (Eds) Guidelines for the Monitoring of the Saproxylic Beetles protected in Europe. Nature Conservation 2017, 20, 37–78. https://doi.org/10.3897/natureconservation.20.12687

116. Mudge, A.D.; Orozco, J.; Philips, T.K.; Antoine, P. The cetonine fauna of the Upper Guinean forests and savannas of Ghana (Coleoptera: Scarabaeidae: Cetoninae). Terrestrial Arthropod Reviews 2012, 5, 113–174.

117. Correa C.M.A.; Puker A.; Lara M.A.; Rosa C.S.; Korasaki V. Evaluation of baits for trapping of Neotropical flower chafer beetles (Coleoptera: Scarabaeoidea: Cetoniinae). Entomological Sciences 2019, 22(4): 365-372. https://doi.org/10.1111/ens.12379

118. Wong, J.C.H.; Hanks, L.M. Influence of fermenting bait and vertical position of traps on attraction of cerambycid beetles to pheromone lures. Journal of Economic Entomology 2016, 109(5), 2145–2150. doi: 10.1093/jee/tow197

119. Ausden, M.; Drake, M. Invertebrates. In: Sutherland, W.J. (ed.), Ecological Census Techniques, a handbook. Second edition. Cambridge University Press, Cambridge. 2006; pp. 214-249.

120. Laaksonen, J.; Laaksonen, T.; Itämies, J.; Rytkönen, S.; Välimäki, P. A new efficient bait-trap model for Lepidoptera surveys – the «Oulu» model. Entomologica Fenmica 2006, 17, 153–160.

121. Makarkin, V.N.; Ruchin, A.B. New data on Neuroptera and Raphidioptera of Mordovia (Russia). Kavkazskij Entomologicheskij Bulletin 2019, 15(1), 147-157. DOI: 10.23885/181433262019151-147157 [In Russian].
Appendix A. Biodiversity and occurrence of Coleoptera from fermental traps in the European part of Russia in 2018-2020.

Family, species	2018	2019	2020			
	Number of specimens	Occurrence, %	Number of specimens	Occurrence, %	Number of specimens	Occurrence, %
Carabidae						
Dromius agilis (Fabricius, 1787)	1	0,24				
Dromius quadraticollis A. Morawitz, 1862	3	0,95				
Harpalus distinguendus (Duftschmid, 1812)	1	0,24				
Harpalus signaticornis (Duftschmid, 1812)	1	0,32				
Harpalus xanthopus winkleri Schaubberger, 1923	2	0,48				
Lebia marginata (Geoffroy, 1785)	1	0,32				
Limodromus assimilis (Paykull, 1790)	2	0,48				
Limodromus krynickii (Sperk, 1835)	1	0,32				
Tachyta nana (Gyllenhal, 1810)	1	0,32				
Dytiscidae						
Ilybius erichsoni (Gemminger & Harold, 1868)	1	0,24				
Ilybius fuliginosus (Fabricius, 1792)	1	0,32				
Hydrochidae						
Hydrochus brevis (Herbst, 1793)	1	0,32				
Histeridae						
Atholus duodecimstriatus (Schrank, 1781)	1	0,32				
Gnathoncus buyssoni Auzat, 1917	7	1,89	6	1,19		
Platysoma elongatum (Thunberg, 1787)	8	1,58	4	0,71		
Platysoma lineare Erichson, 1834	7	1,89	1	0,24		
Silphidae						
Dendroxena quadrimaculata (Scopoli, 1771)	3	0,95	41	5		
Necrodes littoralis (Linnaeus, 1758)	2	2,4	21	1,58	45	4,76
Nicrophorus humator (Gleditsch, 1767)	1	1,2			4	0,71
Nicrophorus interruptus Stephens, 1830			14	1,67		
Nicrophorus sepultor Charpentier, 1825			1	0,24		
Nicrophorus vespillo (Linnaeus, 1758)			1	0,24		
Nicrophorus vespilloides Herbst, 1783	20	2,4	3	0,32	4	0,71
Oiceoptoma thoracicum (Linnaeus, 1758)	11	9,5	24	4,1	13	2,62
Silpha trisitis Illiger, 1798			2	0,24		
Staphyllinidae

Genus	Species	Count	Length (mm)	Width (mm)	Height (mm)	Mass (g)	Width (mm)	Dry Weight
Staphyllinidae	sp.	13	13.1	423	22.08	252	28.57	
Philonthus	sp.	1	1.2					
Quedius dilatatus	(Fabricius, 1787)	6	6	329	23.66	221	16.67	

Lucanidae

Genus	Species	Count	Length (mm)	Width (mm)	Height (mm)	Mass (g)	Width (mm)	Dry Weight
Lucanus	cervus (Linnaeus, 1758)	4	21.4	122	17.03	635	20.48	
Platucerus	caprea (De Geer, 1774)	1	0.32					0.24
Platucerus	caraboides (Linnaeus, 1758)							0.24
Sinodendron	cylindricum (Linnaeus, 1758)	1	0.24					

Scarabaeidae

Genus	Species	Count	Length (mm)	Width (mm)	Height (mm)	Mass (g)	Width (mm)	Dry Weight
Cetonia	aurata (Linnaeus, 1758)	60	21.4	122	17.03	635	20.48	
Esymus	pusillus (Herbst, 1789)	1	0.24					
Gnornimus	variabilis (Linnaeus, 1758)	16	7.1	33	5.99	12	2.14	
Osmoderna	barnabita Motschulsky, 1845	2	0.32					
Protaetia	affinis (Andersch, 1797)	1	1.2			2	0.24	
Protaetia	fiebri (Kraatz, 1880)	56	33.3	250	30.28	617	29.29	
Protaetia	marmorata (Fabricus, 1792)	750	82.1	2443	67.51	2550	67.14	
Protaetia	speciosissima (Scopoli, 1786)	16	10.7	64	8.52	34	5	
Protaetia	cuprea volhyniensis (Gory & Percheron, 1833)	13	11.9	100	17.03	327	15.71	
Serica	brunnea (Linnaeus, 1758)	1	0.32		1	0.24		
Trichius	fasciatus (Linnaeus, 1758)	4	1.2		1	0.24		

Scirtidae

Genus	Species	Count	Length (mm)	Width (mm)	Height (mm)	Mass (g)	Width (mm)	Dry Weight
Contacyphon	padi (Linnaeus, 1758)	4	1.26					
Contacyphon	pubescens (Fabricius, 1792)	3	0.63					
Contacyphon	sp.	1	0.32	2	0.48			
Microcara	testacea (Linnaeus,1767)	2	1.2	1	0.32	3	0.71	

Buprestidae

Genus	Species	Count	Length (mm)	Width (mm)	Height (mm)	Mass (g)	Width (mm)	Dry Weight
Agrilus	sulcicollis Lacordaire, 1835	2	0.63					
Agrilus	angustulus (Illiger, 1803)	1	0.24					
Anthaxia	quadripunctata (Linnaeus, 1758)	1	0.24					
Buprestis	haemorrhoidalis Herbst, 1780	1	0.32					
Dicera	alni (Fischer von Waldheim, 1824)	1	0.32					
Phaenops	cyanea (Fabricius, 1775)	2	0.63					
Trachys	minutus (Linnaeus, 1758)	1	0.32					

Eucnemidae

Genus	Species	Count	Length (mm)	Width (mm)	Height (mm)	Mass (g)	Width (mm)	Dry Weight

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 March 2021
doi:10.20944/preprints202103.0394.v1
Species	Count	Log10	Count2	Log2						
Melasis buprestoides (Linnaeus, 1760)	1	0,24								
Otho sphondyloides (Germar, 1818)	1	0,32								
Throscidae										
Trixagus sp.	4	0,95	9	1,13						
Aulonothroscus sp.	1	0,32								
Elateridae										
Agriotes lineatus (Linnaeus, 1767)	1	0,24								
Agriotes obscurus (Linnaeus, 1758)	1	0,24								
Agrypnus murinus (Linnaeus, 1758)	7	2,21	29	5,48						
Ampedus baltatus (Linnaeus, 1758)	2	0,63	5	1,19						
Ampedus cinnabarinus (Eschscholtz, 1829)	9	2,21	97	5						
Ampedus elongatus (Fabricius, 1787)	3	0,95	1	0,24						
Ampedus nigerrimus (Lacordaire in Boisduval & Lacordaire, 1835)	1	0,24								
Ampedus nigrinus (Herbst, 1784)	1	0,32								
Ampedus nigroflavus (Goeze, 1777)	13	1,9								
Ampedus pomonae (Stephens, 1830)	1	0,32	13	1,67						
Ampedus pomorum (Herbst, 1784)	4	1,26	97	9,05						
Ampedus praeustus (Fabricius, 1792)	1	0,32	13	1,67						
Ampedus sanguinolentus (Schrank, 1776)	3	0,95	45	4,05						
Ampedus sanguineus (Linnaeus, 1758)	3	0,48								
Ampedus tristis (Linnaeus, 1758)	1	0,24								
Aplotarsus incanus (Gyllenhal, 1827)	1	0,32								
Athous haemorrhoidalis (Fabricius, 1801)	1	0,24								
Athous subfuscus (O.F. Müller, 1764)	2	0,32	2	0,48						
Athous vittatus (Fabricius, 1792)	1	0,32	4	0,95						
Cardiophorus ruficollis (Linnaeus, 1758)	1	0,32	1	0,24						
Dalopius marginatus (Linnaeus, 1758)	1	1,2	24	3,79						
Danosoma fasciatum (Linnaeus, 1758)	1	0,32								
Denticollis borealis (Paykull, 1800)	1	0,32	2	0,48						
Ectinus aterrimus (Linnaeus, 1760)	1	0,32								
Elater ferrugineus Linnaeus, 1758	2	2,4	6	1,89						
Hemicrepidius niger (Linnaeus, 1758)	1	0,24								
Lacon lepidopterus (Panzer, 1800)	1	0,24								
Limonius minutus (Linnaeus, 1758)	3	0,95	4	0,95						
Melanotus castanipes (Paykull, 1800)	8	2,52	9	1,19						
Melanotus villosus (Geoffroy, 1785)	5	0,95								
Mosotalesus nigricornis (Panzer, 1799)	3	0,63	1	0,24						
Prosternon tessilatum (Linnaeus, 1758)	1	1,2	14	3,47						
Selatosomus aeneus (Linnaeus, 1758)	1	0,32	17	1,43						
Family	Genus and Species	Count	Index	Total	Mean					
-----------------	---	-------	-------	-------	------					
Sericidae	Sericus brunneus (Linnaeus, 1758)	1	0.24							
Lycidae	Lygistopterus sanguineus (Linnaeus, 1758)	8	1.26							
Cantharidae	Cantharis flavilabris Fallén, 1807	1	0.32							
	Cantharis livida Linnaeus, 1758	12	2.4	6	1.26					
	Cantharis nigricans O.F. Müller, 1776	2	1.2	9	2.84					
	Cantharis pallida Goeze, 1777	7	0.95							
	Cantharis pellucida Fabricius, 1792	10	1.26	83	5.24					
	Cantharis rufa Linnaeus, 1758	4	0.95	1	0.24					
	Cantharis rustica Fallén, 1807	1	1.2	12	0.95					
	Malthodes guttifer Kiesenwetter, 1852	2	0.48							
	Malthodes sp.	1	0.24							
	Podabrus alpinus (Paykull, 1798)	1	0.24							
	Rhagonycha fulva (Scopoli, 1763)	1	1.2	1	0.24					
	Rhagonycha fugax Mannerheim, 1843	4	0.71							
	Rhagonycha lignosa (O.F. Müller, 1764)	4	0.95							
	Rhagonycha nigriventris Motschulsky, 1860	2	0.48							
Dermentidae	Attagenus schaefferi (Herbst, 1792)	107	4.42	16	2.38					
	Anthrenus museorum (Linnaeus, 1760)	1	0.32							
	Ctesias serr (Fabricius, 1792)	39	4.42							
	Dermestes lanarius Illiger, 1801	1	0.32							
	Dermestes lardarius Linnaeus, 1758	1	0.32	1	0.24					
	Dermestinus murinus Linnaeus, 1758	1	0.32	4	0.71					
	Globicornis emarginata (Gyllenhal, 1808)	27	2.52	17	2.14					
	Megatoma undata (Linnaeus, 1758)	1	0.32	2	0.48					
	Trogoderma glabrum (Herbst, 1783)	2	2.4	88	5.68					
Ptinidae	Dorcatoma dresdensis Herbst, 1792	1	0.32							
	Dorcatoma flavicornis (Fabricius, 1792)	1	0.32							
	Dorcatoma robusta A. Strand, 1938	6	1.58	1	0.24					
Lymexylidae	Elateroides dermestoides (Linnaeus, 1760)	1	0.24							
Cleridae	Allonyx quadrimaculatus (Schaller, 1783)	2	0.63							
Species	Genus	Year	1st	2nd	3rd	4th				
-------------------------------------	----------------	----------	-----	-----	-----	-----				
Thanasimus femoralis	Zetterstedt	1828	3	0,95	2	0,48				
Thanasimus formicarius	Linnaeus	1758	4	1,26	3	0,71				
Tillus elongatus	Linnaeus	1758	1	0,32						
Trichodes apiarus	Linnaeus	1758	1	1,2	2	0,63	3	0,71		
Melyridae										
Cordylepherus viridis	Fabricius	1787	1	0,32	3	0,71				
Dasytes niger	Linnaeus	1760	1	1,2	10	3,15	12	1,9		
Dasytes fusculus	Illiger	1801	1	0,32	7			0,95		
Malachius bipustulatus	Linnaeus	1758	5			0,95				
Erotylidae										
Triplax russica	Linnaeus	1758	2	0,63	1	0,24				
Tritoma subbasalis	Reitter	1896	2			0,48				
Monotomidae										
Rhizophagus fenestralis	Linnaeus	1758	15	2,84	39	4,29				
Nitidulidae										
Carpophilus hemipterus	Linnaeus	1758	10	2,21	2	0,48				
Carpophilus marginellus	Motschulsky	1858				0,24				
Carpophilus sp.			1		0,32					
Cryptarcha strigata	Fabricius	1787	249	60,7	1227	44,79	1406	48,09		
Cryptarcha undata	G.-A. Olivier	1790	8	3,6	14	3,78	105	8,57		
Cychramus luteus	Fabricius	1787	9	6	834	12,3	101	6,9		
Cychramus variegatus	Herbst	1792	4	1,2	56	5,05	15	1,43		
Cyllodes ater	Herbst	1792	1	1,2		1	0,24			
Epuraea sp.			8	8,3	268	15,77	437	19,52		
Glischrochilus grandis	Tournier	1872	47	25	652	25,24	4876	50,48		
Glischrochilus hortensis	Geoffroy	1785	71	25	885	28,08	783	32,38		
Glischrochilus quadriguttatus	Fabricius	1777	1	1,2	33	5,68	3	0,71		
Glischrochilus quadripunctatus	Linnaeus	1758	2	2,4	96	11,04	105	11,19		
Glischrochilus quadrisignatus	Say	1835	2	2,4	13	2,52	75	6,19		
Meligethes sp.			3		0,63	6	0,24			
Omosita discoidea	Fabricius	1775		1		0,32				
Pocadius ferrugineus	Fabricius	1775				1	0,24			
Soronia grisea	Linnaeus	1758	47	21,4	363	25,24	654	39,05		
Soronia punctatissima	Illiger	1794				3	0,95	5	0,48	
Silvanidae										
Uleiota planatus	Linnaeus	1760	1			0,32				
Family	Species	Number	Length	Width	Height					
-----------------	--------------------------------	--------	--------	-------	--------					
Cucujidae	*Pediacus depressus* (Herbst, 1797)	15	3,47	29	2,86					
Laemophloeidae	*Cryptolestes sp.*	1	0,32							
Cerylonidae	*Cerylon ferrugineum* Stephens, 1830	2	0,32							
	Cerylon histeroides (Fabricius, 1792)	1	0,32							
Latridiidae	*Corticaria sp.*	2	0,48							
	Cortinicara gibbosa (Herbst, 1793)	1	0,32	1	0,24					
	Enicmus histrio Joy & Tomlin, 1910	1	0,32							
	Stephostethus pandellei (C.N.F. Brisout de Barneville, 1863)	2	0,63							
Coccinellidae	*Adalia bipunctata* (Linnaeus, 1758)	1	0,24							
	Adalia decempunctata (Linnaeus, 1758)	1	0,24							
	Anatis ocellata (Linnaeus, 1758)	1	0,32	4	0,95					
	Calvia decemguttata (Linnaeus, 1767)	1	1,2	6	1,26					
	Calvia quatuordecimguttata (Linnaeus, 1758)	7	2,21	14	2,38					
	Chilocorus renipustulatus (L.G. Scriba, 1791)	2	0,63							
	Coccinella magnifica L. Redtenbacher, 1843	2	0,48							
	Coccinella septempunctata (Linnaeus, 1758)	1	0,24							
	Exochomus quadripustulatus (Linnaeus, 1758)	1	0,24							
	Halycia sedgecimguttata (Linnaeus, 1758)	1	1,2	5	1,58					
	Harmonia axyridis (Pallas, 1773)	1	0,24							
	Harmonia quadripunctata (Pontoppidan, 1763)	2	0,63	6	1,19					
	Hippodamia variegata (Goeze, 1777)	1	0,32	1	0,24					
	Mysia oblongoguttata (Linnaeus, 1758)	1	0,32	5	1,19					
	Oenopia conglobata (Linnaeus, 1758)	1	0,32	2	0,48					
	Propylea quatuordecimpunctata (Linnaeus, 1758)	1	0,32	1	0,24					
	Sospita vigintiguttata (Linnaeus, 1758)	1	0,32		0,24					
	Vibidia duodecimguttata (Poda von Neuhaus, 1761)	1	0,24							
Mycetophagidae	*Litargus connexus* (Geoffroy, 1785)	17	3,47	11	1,19					
	Mycetophagus quadripustulatus (Linnaeus, 1760)	1	0,32	2	0,48					
Melandryidae										
Family	Species	Count	Index	1	2					
----------------	--------------------------------	-------	-------	-------	-------					
Osphya bipunctata (Fabricius, 1775)		1	0,24							
Phloiotrya subtilis (Reitter, 1897)		1	0,24							
Mordellidae	Tomoxia bucephala A. Costa, 1854	7	1,89	1	0,24					
	Mordella sp.	3	0,63	1	0,24					
Tenebrionidae	Bolitophagus reticulatus (Linnaeus, 1767)	3	0,71							
	Corticeus unicolor Piller & Mitterpacher, 1783		2	0,48						
	Lagria hirta (Linnaeus, 1758)	19	4,73	3	0,71					
	Mycetochara axillaris (Paykull, 1799)	1	0,32							
	Mycetochara flavipes (Fabricius, 1792)	1	0,32	1	0,24					
	Upis ceramboides (Linnaeus, 1758)	4	0,95	1	0,24					
Oedemeridae	Chrysanthia geniculata W.L.E. Schmidt, 1846	6	1,19							
	Chrysanthia viridissima (Linnaeus, 1758)	2	2,4	4	0,71					
	Nacerdes carniolica (Gistel, 1834)	38	1,67							
	Oedemera femorata (Scopoli, 1763)	1	0,24							
	Oedemera virescens (Linnaeus, 1767)	1	0,24							
Boridae	Boros schneideri (Panzer, 1796)	1	0,24							
Pyrochroidae	Pyrochroa coccinea (Linnaeus, 1760)	1	0,32	9	0,71					
	Schizotus pectinicornis (Linnaeus, 1758)	1	0,32	14						
Salpingidae	Salpingidae sp.	1	0,32							
	Salpingus ruficollis (Linnaeus, 1760)	1	0,24							
Aderidae	Phytobaenus amabilis R.F. Sahlberg, 1834	1	0,24							
Scaptiidae	Anaspis frontalis (Linnaeus, 1758)	1	1,2	1	0,32					
	Anaspis thoracica (Linnaeus, 1758)	1	0,24							
Cerambycidae	Aegomorphus clavipes (Schrank, 1781)	1	1,2	1	0,32					
Species Name	Author (Year)	Males	Adults	Females	Males	Adults	Females	Males	Adults	Females
------------------------------	---------------	-------	--------	---------	-------	--------	---------	-------	--------	---------
Alosterna ingrica	Baeckmann, 1902	1	0,32		1	0,24				
Alosterna tabacicolor	De Geer, 1775				1	0,32				
Anaesthetis testacea	Fabricius, 1781				1	0,32				
Anastrangalia reyi	L. Heyden, 1889	1	0,32		2	0,48				
Anoplodera rufipes ventralis	Heyden, 1886				1	0,24				
Anoplodera sexguttata	Fabricius, 1775	1	0,32		23	3,15				
Aromia moschata	Linnaeus, 1758	23	11,9	10,09	23	3,33				
Chlorophorus herbstii	Brahm, 1790	1					0,32			
Cortodera femorata	Fabricius, 1787									
Dinoptera collaris	Linnaeus, 1758	4	1,26	0,95						
Etorofus pubescens	Fabricius, 1781	1	0,32							
Euracmaeops marginatus	Fabricius, 1866	1	0,32							
Euracmaeops septentrionis	C.G. Thomson, 1866	1	0,32							
Judolia sexmaculata	Linnaeus, 1758	1	0,32							
Leiopus linnei	Wallin, Nylander & Kvamme, 2009									
Leptura aurulenta	Fabricius, 1793	2	2,4		1	0,32				
Leptura thoracica	Creutzer, 1799	68	22,6	31,55	1113	21,43				
Leptura quadrifasciata	Linnaeus, 1758	104	35,7	37,22	433	19,29				
Leptura nigripes	De Geer, 1775	2	1,2		14	1,89				
Lepturobosca viridens	Linnaeus, 1758	5	0,48							
Mesosa myops	Dalman, 1817	5	3,6		13	2,84	1			
Molorchus minor	Linnaeus, 1758	3	0,95		12	2,38				
Monochamus sutor	Linnaeus, 1758	1	0,32							
Necydalis major	Linnaeus, 1758	9	7,1	10,73	32	5,71				
Nivellia sanguinosa	Gyllenhal, 1827	1	0,32							
Obrium cantharinum	Linnaeus, 1767	1	1,2		45	5,68	104			
Oedecnema gebleri	Ganglbauer, 1889	2	0,48							
Pachyta quadrimaculata	Linnaeus, 1758	4	3,6	1,58	3	0,71				
Phymatodes testaceus	Linnaeus, 1758	2	0,32		24	2,86				
Plagionotus arcuatus	Linnaeus, 1758	2	0,48							
Plagionotus detritus	Linnaeus, 1758	1	1,2		8	2,21	119			
Prionus coriarius	Linnaeus, 1758	1	0,32							
Purpuricenus globulicollis	Dejean, 1839	5	0,95		1	0,24				
Purpuricenus kaelesi	Linnaeus, 1758	7	7,1	11,04	167	7,62				
Rhagium inquisitor	Linnaeus, 1758	24	4,73		10	1,9				
Rhagium mordax	De Geer, 1775	49	20,2	24,29	778	34,05				
Rhemnusium bicolor	Schrank, 1781	2	2,4							
Ropalopus clavipes	Fabricius, 1775	1	1,2							
Ropalopus macropus	Germar, 1823	2	0,24							
Rutpela maculata	Poda von Neuhaus, 1761	9	7,1	3,15	16	2,38				
Species	Count	Length	Width	Height	Date	Area				
-------------------------------	-------	--------	-------	--------	-------	-------				
Saperda scalaris (Linnaeus, 1758)	1	0,24								
Spondylis buprestoides (Linnaeus, 1758)	2	0,63	1	0,24						
Stenocorus meridianus (Linnaeus, 1758)	7	8,3	93	11,67	38	1,9				
Stenurella melanura (Linnaeus, 1758)	1	0,24								
Stictoleptura maculicornis (De Geer, 1775)	2	0,63	2	0,48						
Stictoleptura rubra (Linnaeus, 1758)	2	0,63	1	0,24						
Stictoleptura variicornis (Dalman, 1817)	1	0,32								
Strangalia attenuata (Linnaeus, 1758)	8	1,89	2	0,48						
Trichoferus campestris (Faldermann, 1835)	2	2,4	7	0,95	1	0,24				
Xylotrechus antilope (Schoenherr, 1817)	17	3,47	34	4,29						
Xylotrechus arvicola (Olivier, 1795)	1	1,2	2	0,48						
Xylotrechus capricornus (Gebler, 1830)										
Xylotrechus pantherinus (Savenius, 1825)	2	0,63	1	0,24						
Xylotrechus rusticus (Linnaeus, 1758)	3	0,95	1	0,24						

Clydsomelidae

Species	Count	Length	Width	Height
Altica sp.	5	1,58	8	1,43
Aphthona sp.				0,24
Chrysomela vigintipunctata (Scopoli, 1763)	1	0,32		
Crepidodera aurata (Marsham, 1802)	1	0,32		
Crepidodera nitidula (Linnaeus, 1758)	1	0,32		
Galerucella lineola (Fabricius, 1781)	2	0,63	2	0,48
Goniocreta viminalis (Linnaeus, 1758)	1	0,24		
Hypocassida subferruginea (Schrank, 1776)	1	0,24		
Lochmaea caprea (Linnaeus, 1758)	2	0,32		
Orsodacne cerasi (Linnaeus, 1758)	2	0,48		
Phyllothere undulata Kutschera, 1860	1	0,24		
Plagiosterna aenea (Linnaeus, 1758)	1	0,32	1	0,24

Anthribidae

Species	Count	Length	Width	Height
Dissoleucas niveirostris (Fabricius, 1798)	1	0,24		
Tropideres albitrostris (Schaller, 1783)	2	0,63	5	1,19

Attelabidae

Species	Count	Length	Width	Height
Bytiscus betulae (Linnaeus, 1758)	1	0,24		

Brentidae

Species	Count	Length	Width	Height
Betulapion simile (Kirby, 1811)	1	0,32	1	0,24

Curculionidae

Species	Count	Length	Width	Height	Date	Area
Anisandrus dispar (Fabricius, 1792)	1	1,2	386	10,73	2012	17,86
Anthonomus incurvus (Panzer, 1795)	1	0,32				
Species	Count	Frequency				
---	-------	-----------				
Bagous puncticollis Boheman, 1845	1	0,32				
Brachyderes incanus (Linnaeus, 1758)	2	0,63				
Coeliodinus rubicundus (Herbst, 1795)	2	0,63				
Curculio glandium Marsham, 1802	1	0,32				
Curculio nucum Linnaeus, 1758	2	2,4				
Curculio venosus (Gravenhorst, 1807)	1	0,32				
Curculio villosus Fabricius, 1781	4	0,95				
Ellescus bipunctatus (Linnaeus, 1758)	1	0,32				
Ellescus scanicus (Paykull, 1792)	1	0,32				
Hylastes opacus Erichson, 1836	2	0,63				
Ips acuminatus (Gyllenhal, 1827)	1	0,32				
Ips typographus (Linnaeus, 1758)	1	0,32				
Orchestes rusi (Herbst, 1795)	1	0,32				
Phyllobius arborator (Herbst, 1797)	1	0,32				
Phyllobius argentatus (Linnaeus, 1758)	6	1,26				
Phyllobius maculicornis Germar, 1823	2	0,63				
Phyllobius pomaceus Gyllenhal, 1834	1	0,32				
Phyllobius pyri (Linnaeus, 1758)	4	0,63				
Pissodes piniphilus (Herbst, 1797)	1	0,32				
Polydrusus cervinus (Linnaeus, 1758)	1	0,32				
Polydrusus flavipes (De Geer, 1775)	1	1,2				
Polydrusus sp.	1	0,32				
Polydrusus tereticollis (De Geer, 1775)	1	0,32				
Polygraphus subopacus C.G. Thomson, 1871	1	0,32				
Scoytus intricatus (Ratzeburg, 1837)	1	0,32				
Sitona ambiguus Gyllenhal, 1834	1	0,32				
Sitona macularius (Marsham, 1802)	1	0,32				
Strophosoma capitatum (De Geer, 1775)	5	1,26				
Trypodendron signatum (Fabricius, 1792)	1	0,32				
Xyleborus saxesenii (Ratzeburg, 1837)	92	1,26				
TOTAL	1750	11655				

Total 19864.