Insights from experiment and \textit{ab initio} calculations into the glass-like transition in the molecular conductor κ-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl

Elena Gati1, Stephen M. Winter1,2, John A. Schlueter3,4, Harald Schubert1, Jens Müller1, and Michael Lang1

1Physikalisches Institut, J.W. Goethe-Universität Frankfurt(M), SFB/TR49, D-60438 Frankfurt(M), Germany
2Institut für Theoretische Physik, J.W. Goethe-Universität Frankfurt(M), SFB/TR49, D-60438 Frankfurt(M), Germany
3Division of Materials Research, National Science Foundation, Arlington, VA 22230, USA
4Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

(Dated: October 25, 2017)

We present high-resolution measurements of the relative length change as a function of temperature of the organic charge-transfer salt κ-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl. We identify anomalous features at $T_g \approx 63$K which can be assigned to a kinetic glass-like ordering transition. By determining the activation energy E_A, this glass-like transition can be related to conformational degrees of freedom of the ethylene endgroups of the organic building block BEDT-TTF. As opposed to other κ-(BEDT-TTF)$_2X$ salts, we identify a peculiar ethylene endgroup ordering in the present material in which only one of the two crystallographically inequivalent ethylene endgroups is subject to glass-like ordering. This experimental finding is fully consistent with our predictions from \textit{ab initio} calculations from which we estimate the energy differences ΔE and the activation energies E_A between different conformations. The present results indicate that the specific interaction between the ethylene endgroups and the nearby anion layers leads to different energetics of the inequivalent ethylene endgroups, as evidenced by different ratios $E_A/\Delta E$. We infer that the ratio $E_A/\Delta E$ is a suitable parameter to identify the tendency of ethylene endgroups towards glass-like freezing.

PACS numbers: 64.70.kt, 64.70.P-, 65.40.De, 64.70.Q-

I. INTRODUCTION

Organic charge-transfer salts are considered as model systems in the study of the physics of strongly correlated electron systems in low dimension.$^{[1,2]}$. They are outstanding by the variety of intriguing ground states, including superconductivity,$^{[3,4]}$ Mott insulating$^{[5,6]}$, multiferroic$^{[7,8]}$ and spin-liquid states$^{[9,10]}$. This diversity reflects a high tunability of interaction strength and frustration which can be accessed in laboratory environments by the application of moderate pressures or slight chemical modifications.$^{[11,12]}$. Besides that, organic charge-transfer salts are available in very clean single-crystalline form, as evidenced by the observation of quantum oscillations in low fields.$^{[13,14]}$. Nevertheless, these systems tend to be susceptible to intrinsic disorder which arises from structural degrees of freedom of the large-sized molecular building blocks.$^{[15,16]}$. This type of intrinsic disorder occurs whenever a certain structural unit can adopt two different orientations which are almost degenerate in energy. In this situation, the structural elements often cannot order for kinetic reasons and instead, tend to undergo glass-like transitions around a characteristic temperature T_g. The properties of this “glass-like” state in otherwise well-ordered solids are found to be similar$^{[17,18]}$ to conventional glass formers$^{[19]}$, i.e., undercooled liquids, such as glucose. The term glass implies that the relaxation of the structural degrees of freedom becomes so slow that thermal equilibrium cannot be reached and short-range structural order with residual disorder is “frozen”. An important characteristic of this glass-like behavior is that the conditions of the non-equilibrium state depend on the cooling rate.$^{[20]}$. Conversely, the amount of frozen disorder can be very well controlled in a reversible way by varying the cooling rate. Thus, the organic charge-transfer salts have been identified as a suitable test ground to investigate the delicate interplay between strong electronic correlations and disorder effects$^{[21,22]}$, a problem that is relevant for any solid-state realization of a strongly correlated electron system and treated in theoretical models, such as the Mott-Anderson model.$^{[23,24]}$

Particularly well-suited materials for these investigations are members of the widely studied family of κ-(BEDT-TTF)$_2X$ charge-transfer salts (X represents a monovalent anion, see Fig. 1) for the following reasons. First, this material class reflects the rich phenomenology associated with strong correlations$^{[25]}$, as represented by the multiferroic Mott insulators$^{[26]}$, $X = Cu[N(CN)$_2$]Cl$, the superconductors$^{[27]}$ $X = Cu[N(CN)$_2$]Br$ and $Cu(SCN)$_2$ and the spin-liquid candidate system$^{[28]}$, $X = Cu$_2(CN)_3$. Second, structural degrees of freedom, susceptible to glass-like ordering, are inherent to the molecular building block BEDT-TTF which stands for C_8H_8$[C$_2(CN)_2$]$_2$ (bis-ethylenedithio-tetrathiafulvalene). Here, the ethylene endgroups $[C$_2(CN)_2$]$ (abbreviated as EEG hereafter) can adopt two different relative orientations (see Fig. 1 (c)), either an eclipsed (E) or a staggered (S) one when viewed along the central C=C bond. The population of these two conformations is often thermally disordered at room temperature, with a tendency to adopt one of the configurations upon lowering the temperature T (see Refs. 21 22 for an overview). Whereas the salt $X = Cu$_2(CN)_3$ does not reveal any signatures of a glass-like ordering$^{[29,30]}$ of the EEGs at low T, despite thermal disorder at room temperature, the

\begin{align*}
T_g &\approx 63 \text{K} \\
E_A &\approx 1 \text{K} \\
\Delta E &\approx 0.1 \text{K}
\end{align*}
three other salts mentioned above all undergo glass-like transitions27–30 around $T_g \approx 70$ K. Various experiments demonstrated that the dynamics of the EEG40 strongly affect the ground-state properties of these salts. In particular, the properties of the two superconducting salts $X = \text{Cu[N(CN)\textsubscript{2}]Br}$ and Cu(SCN)$_2$, including their critical temperature T_c, were found to be strongly sensitive on the cooling procedure through T_g. In case of the former salt $X = \text{Cu[N(CN)\textsubscript{2}]Br}$, it was even possible to reversibly tune the system from a metal to a Mott insulator41,42 by increasing the cooling rate q. Recently, it was argued that this large effect cannot solely be attributed to the effects of disorder, but also to changes of the interaction strengths43 which result from different hopping energies in the eclipsed and staggered configuration.

This strong influence of the orientational degrees of freedom of the EEGs on the physical properties motivates the interest in understanding and modeling the EEG behavior. It is likely and also found experimentally that the details of the EEG ordering depend on the specific system. This concerns not only the preferred orientation at low T, but also the occurrence of a glass-like transition: As indicated by the examples given above, only a few, but not all κ-(BEDT-TTF)$_2X$ salts undergo a glass-like transition. In a comparative experimental and theoretical \textit{ab initio} study by Müller \textit{et al.}20 on a wide range of κ-(BEDT-TTF)$_2X$ salts, it was argued that the distinct behavior can be explained consistently by considerations of the energetics of the different conformations. Importantly, the energies are mostly determined by the specific anion-EEG interaction. This emphasizes that not only EEG degrees of freedom are involved in the glass-like ordering process, but also their coupling to the anions22 leading to a collective motion of EEG and anion molecules that freezes at T_g20. For the first time, these calculations allow to make predictions on the occurrence of a glassy EEG state in the κ-(BEDT-TTF)$_2X$ salts.

In this paper, we apply these theoretical methods to the charge-ordered25 ferroelectric26 salt κ-(BEDT-TTF)$_2\text{Hg(SCN)}\textsubscript{2}Cl$ and identify it as a special candidate for understanding the mechanisms of glass-like EEG ordering. We predict only half of the EEGs undergo a glass-like transition, whereas the other half is predicted to order smoothly. Such a distinct behavior in one single system was not resolved yet for any other κ-(BEDT-TTF)$_2X$ salt. In order to verify this theoretical prediction for κ-(BEDT-TTF)$_2\text{Hg(SCN)}\textsubscript{2}Cl$, we conduct measurements of the thermal expansion coefficient on this salt to unravel the potential glass-like EEG ordering. This technique was successfully used in the past to identify glass-like ordering in κ-phase organic charge-transfer salts30. The high sensitivity of this method is due to its inherent sensitivity to structural variations.

II. METHODS

Single crystals of κ-(BEDT-TTF)$_2\text{Hg(SCN)}\textsubscript{2}Cl$ were synthesized by the standard electrocrystallization technique. We followed the strategy reported in Ref.44 however with minor modifications of the synthesis route, as follows. Pure TCE (1,1,2-Trichloroethane) was employed as a solvent with a mixture of Hg(SCN)$_2$ and PPNCl (bis(triphenylphosphoranylidene)ammonium chloride) in a molar ratio of 1:1 serving as the electrolytes. The electrolyte was given in a ten-fold excess to the solution in relation to the BEDT-TTF. This results in a typical composition of 75 mg of BEDT-TTF, 642 mg of Hg(SCN)$_2$ and 1132 mg of PPNCl in 100 ml solvent. A constant current of 0.2 μA was applied to platinum electrodes, resulting in a voltage of 0.1 V – 0.3 V. Crystal growth was performed at a temperature of 20$^\circ$C and crystals were collected after 4-5 weeks. Crystals were characterized by means of resistance measurements in order to identify the characteristic metal-insulator transition45 in this compound at $T_{MI} \approx 30$ K. For the thermal expansion measurements, the crystals were oriented by eye resulting in a maximum misalignment of 5$^\circ$.

Measurements of the relative length change $\Delta L_i(T)/L_i$ ($i = a, b, c$), with $\Delta L_i(T) = L_i(T) - L_i(T_0)$ and T_0 a reference temperature (here chosen to be $T_0 = 200$ K), were performed by using a home-built capacitive dilatometer. The design of this dilatometer is similar to the one described in Ref.42 and reaches a maximum sensitivity of $\Delta L/L \approx 10^{-10}$. The thermal expansion coefficient

$$\alpha_i(T) = \frac{1}{L_i} \frac{dL_i}{dT} \quad (1)$$

$$\approx \frac{1}{L_i(300 \text{K})} \frac{\Delta L_i(T_2) - \Delta L_i(T_1)}{T_2 - T_1} \quad (2)$$

with $T = (T_1 + T_2)/2$ and $i = a, b, c$ \quad (3)

was calculated numerically from the $\Delta L_i(T)/L_i$ data using the following procedure: The $\Delta L_i(T)/L_i$ data were divided into equidistant intervals of typically $\Delta T = 0.3$ K. In each of these intervals the mean slope was determined from a linear regression. The mean slope together with the mean temperature in this interval correspond to one data point in the α_i vs. T representation. Measurements of $\Delta L_i(T)/L$ (and correspondingly $\alpha_i(T)$) were performed upon warming and cooling in the temperature range 5 K $\leq T \leq 200$ K. The temperature was controlled by a LakeShore 340 controller using a heating rate of $q_h = +1.5$ K/h and cooling rates ranging between (1.20 \pm 0.05) K/h $\leq |q_c| \leq (20.7 \pm 0.3)$ K/h.

\textit{Ab initio} calculations were performed using ORCA53 at the B3LYP/def2-SV(P) level, based on the structural data at $T = 300$ K reported in Ref.48 and following the procedure from Ref.20. The interaction between the dimer and anion layer were approximated via the OPLS-aa forcefield43, with Lennard–Jones parameters from the GROMACS set55. The anion charge distribution was estimated from Mulliken analysis of B3LYP/def2-SV(P)
calculations on small fragments. For transition state calculations, ORCA’s hessian mode following algorithm was employed. In each conformation, the coordinates of the EEG of interest were relaxed, along with the two bonded sulfur atoms.

III. THEORY: AB INITIO CALCULATIONS

A two-level model is often used to describe glass-like transitions\(^{(23)}\) (see Fig. 2 (a)). In this model, two states with energy difference \(2\Delta E\) are separated by an activation barrier of size \(E_A\) leading to a thermally-activated relaxation time \(\tau \propto \exp(E_A/(k_BT))\). In the following, we discuss possible conformations of the EEGs in \(\kappa\)-(BEDT-TTF)\(_2\)Hg(SCN)\(_2\)Cl and our computational results on the energy scheme in a simple two-level model, including \(2\Delta E\) and \(E_A\). Whereas in the \(\kappa\)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)Z salts with \(Z = \text{Br} \) and Cl, all EEGs are crystallographically equivalent, the symmetry of the space group of \(\kappa\)-(BEDT-TTF)\(_2\)Hg(SCN)\(_2\)Cl is lowered resulting in two inequivalent EEGs. We distinguish the inequivalent EEGs by their distance to the anion layer (see Fig. 1 (a)): The outer EEGs (containing carbon atoms C9 and C10) almost penetrate the anion layer, whereas the inner ones (carbon atoms C7 and C8) are shifted away from the anion layer. According to results from structure determinations\(^{(15)}\), both the inner and outer EEGs are disordered at room temperature. This gives rise to in total four possible conformations. The majority conformation at room temperature is a staggered conformation which we denote as \(S(1)\) and which is shown in Fig. 1 (a). The other three conformations are labeled with \(E(1), \ E(2)\) and \(S(2)\) and are obtained by changing the orientation of the inner (\(E(1)\)), the outer (\(E(2)\)) (see Fig. 2 (b)) or both EEGs (\(S(2)\)). According to recent structural investigations\(^{(15)}\), the inner EEGs are significantly more disordered at room temperature than the outer EEGs: This results in distinctly higher occupancies of the conformations \(S(1)\) and \(E(1)\) of 43% and 35% (\(>25\%\)), respectively, compared to occupancies of 12% for \(E(2)\) and 10% for \(S(2)\) (\(<25\%)\).

In agreement with the results from this structure determination\(^{(15)}\), our calculations yield that \(S(1)\) is the most stable conformation. For the remaining three conformations, with corresponding energies \(E_i\), \(i = E(1), \ E(2)\) and \(S(2)\), we find energy differences \(2\Delta E_i\) (see Fig. 2 (c)):

\[
\begin{align*}
2\Delta E_{E(1)} &= |E_{E(1)} - E_{S(1)}| = 330 \text{ K} \\
2\Delta E_{E(2)} &= |E_{E(2)} - E_{S(1)}| = 1570 \text{ K} \\
2\Delta E_{S(2)} &= |E_{S(2)} - E_{S(1)}| = 1920 \text{ K}.
\end{align*}
\]

These values \(2\Delta E_i\) (and \(E_{A,i}\), see below) are in line with the experimentally determined occupancies of the different conformations; those conformations with lower experimental room temperature occupancy are found to have higher energies.

The relative stability of the different conformations is strongly influenced by the interactions of the EEGs with the nearby anion layer. In \(\kappa\)-(BEDT-TTF)\(_2\)Hg(SCN)\(_2\)Cl, the non-planar polymeric anions (see Fig. 1 (b)) form a chain-like structure that consists of Hg\(^{2+}\) coordination polymers with bridging (SCN)\(^-\) ligands and short-side chains formed by the terminal ligand Cl\(^-\) coordinated to each Hg\(^{2+}\). The two inequivalent EEGs of each BEDT-TTF molecule are embedded in a distinct local environment leading to different coupling paths between the EEGs and the anions (see Fig. 3 (a)). The inner EEGs (with carbon atoms C7 and C8) possess only close (SCN)\(\cdots\)H contacts. In contrast, the outer EEGs couple to the anion via (SCN)\(\cdots\)H and Cl\(\cdots\)H contacts. The large \(2\Delta E_i\) values for \(i = E(2)\) and \(S(2)\) which both involve a change of the orientation of the outer EEGs suggest that this EEG conformation is rigidly confined by the coupling to the anion layer. In contrast, the (SCN)\(\cdots\)H interaction to the inner EEGs seems to be rather ineffective in energetically distinguishing the two orientations, as represented by a comparably small \(2\Delta E_{E(1)}\) = 330 K. Thus, the inner EEGs are closer to a metastable state than the outer EEGs.

From transition state calculations, we estimate activation energies (see Fig. 2 (c)) for the transition from \(S(1)\) to \(E(1)\) to be \(E_{A,1} = 2210 \text{ K}\) and for the transi-
FIG. 2. (a) Schematic two-level system in which two states with energy difference \(2\Delta E\) are separated by an activation barrier \(E_A\); (b) View on BEDT-TTF molecules in three different ethylene endgroup (EEG) conformations, which can be realized in \(\kappa-(BEDT-TTF)_2Hg(SCN)_2Cl\). The major conformation is a staggered conformation, labeled as \(S(1)\). The configuration \(E(1)\) (\(E(2)\)) is obtained from \(S(1)\) by changing the orientation of the inner EEGs containing carbon atoms C7 and C8 (outer EEGs containing carbon atoms C9 and C10); (c) Computed energy values \(2\Delta E\) and \(E_A\) for the processes \(S(1)\leftrightarrow E(1)\) and \(S(1)\leftrightarrow E(2)\) in \(\kappa-(BEDT-TTF)_2Hg(SCN)_2Cl\). The green background color indicates that our calculations predict a glass-like transition for this process, the red background color indicates that no glass-like transition is predicted.

![Diagram](image.png)

FIG. 3. Preferred ethylene endgroup (EEG) conformation (staggered \(S(1)\)) relative to the nearby anion layer for \(\kappa-(BEDT-TTF)_2Hg(SCN)_2Cl\) viewed within the \(a'c\) plane (a) and the \(ab\) plane (b). \(a'\) indicates a small rotation of the \(a\) axis around the \(c\) axis. Green and brown dashed lines indicate close contacts of the outer EEGs (labeled with C9 and C10) to the Cl and (SCN) ligands in the nearby anion layer. Orange lines indicate close contacts of the inner EEGs (labeled with C7 and C8) to the (SCN) ligands in the nearby anion layer.

![Diagram](image.png)

IV. EXPERIMENT: THERMAL EXPANSION MEASUREMENTS

A. Phenomenology of glass-like transitions in thermal expansion measurements

Before discussing the salient results of our thermal expansion studies on the organic charge-transfer salt \(\kappa-(BEDT-TTF)_2Hg(SCN)_2Cl\), we first introduce the main signatures of glass-like transitions in thermodynamic quantities (see also Ref. 23 for a detailed discussion). In order to study thermal equilibrium properties, the experimental observation time \(\Delta t\) has to be much larger than the relaxation time of the system \(\tau\), i.e., \(\Delta t \gg \tau\). If this criterion is violated, non-equilibrium phenomenon are observed. This is the case for glass (and glass-like) transitions in which the relaxation time of a system slows down so dramatically with lowering \(T\) that the relaxation time \(\tau\) can reach the value of the observation time \(\Delta t\). Then equilibrium conditions cannot be reached anymore and a glass transition into a metastable state with short-range order occurs at \(T_g\). The long relaxation time of the system beyond experimental obser-
viation times affects thermodynamic properties in the following ways:

1. As the associated motion is frozen on experimental timescales below \(T_g \), it does not contribute to thermodynamic quantities, such as the specific heat \(C(T) \) or the thermal expansion coefficient \(\alpha(T) \). In contrast, above \(T_g \) these degrees of freedom can be thermally excited and therefore contribute additionally to \(C(T) \) and \(\alpha(T) \). As a consequence, a step-like increase of \(C(T) \) and step-like changes of \(\alpha(T) \) at \(T_g \) are expected upon warming.

2. In contrast, the cooling behavior of a glass-forming system is expected to be distinctly different from the warming behavior resulting in a strong thermal hysteresis. Whereas upon cooling a smooth anomaly is expected, the discontinuous step-like feature upon warming is usually accompanied by characteristic over- and undershoots. This behavior reflects the strong tendency of a system to achieve an equilibrium state as soon as \(T_g \) is approached from below.

3. Last, the behavior of the system is strongly dependent on the cooling rate. In particular, the glass transition temperature \(T_g \) is strongly affected. On the one hand, the faster a system is cooled, the smaller is the experimental observation time \(\Delta t \). On the other hand, the relaxation time increases with lowering \(T \). Correspondingly, the criterion \(\Delta t \approx \tau \) is fulfilled at higher temperatures and \(T_g \) increases with cooling rate \(|q|\). Given the definition of \(q = \Delta T/\Delta t \), the glass transition temperature can be defined based on the criterion \(\Delta t \approx \tau \) as follows,

\[
-|q| \cdot \frac{dT}{d\tau} \bigg|_{T_g} \approx 1. \tag{4}
\]

The three main characteristics listed above clearly discriminate a glass transition from a thermodynamic phase transition which takes place in equilibrium.

B. Results

Now we will turn to the experimental results of the relative length change \(\Delta L_i(T)/L_i \) and the thermal expansion coefficient \(\alpha_i(T) = L_i^{-1} dL_i/dT \) on \(\kappa\)-(BEDT-TTF)\(_2\)Hg(SCN)\(_2\)Cl. Figure 3 shows \(\Delta L_i(T)/L_i \) (a) and \(\alpha_i(T) \) (b) along all three crystallographic axes \(i = a, b, c \) over a wide temperature range \(5K \leq T \leq 200 K \), taken upon warming. At low temperatures \(T \approx 30K \), \(\Delta L_i(T)/L_i \) shows a jump of the length in all crystallographic directions, implying a diverging \(\alpha_i(T) \). At this temperature, \(\kappa\)-(BEDT-TTF)\(_2\)Hg(SCN)\(_2\)Cl undergoes a transition from a low-temperature charge-ordered insulating state to a high-temperature metallic state. Accordingly, we assign this feature to the signature of the metal-insulator transition and label this transition temperature with \(T_{MI} \). However, the study of the metal-insulator transition is not in the focus of the present work and will be discussed in detail elsewhere.

Upon warming, a second anomaly can be identified at \(T \approx 63K \). At this temperature, we observe kink-like anomalies in \(\Delta L_i(T)/L_i \) along all three crystallographic axes. These anomalies are reflected by step-like features in \(\alpha_i(T) \) (see Fig.4(b)). As will be discussed below, the anomalies in \(\alpha_i(T) \) can be assigned to glass-like ordering of the EEGs around a characteristic temperature of \(T_g \approx 63K \). We note that our directional-dependent studies of \(\Delta L_i(T)/L_i \) and \(\alpha_i(T) \) reveal a strongly anisotropic behavior around \(T_g \). The expansivities \(\alpha_a \) and \(\alpha_b \) are positive below and above \(T_g \). This corresponds to an unusual increase of the length with increasing \(T \), however with an abrupt change of slope around \(T_g \) (see Fig.4(a)). In contrast, the length along the \(c \) axis is increasing with increasing temperature for \(T < T_g \) and decreasing with temperature for \(T > T_g \), giving rise to a sign change of \(\alpha_c(T) \) around \(T_g \). The unusual decrease of \(\Delta L_c/L_c \) with increasing \(T \) is commonly called “negative thermal expansion”, abbreviated as NTE. It persists up to \(T \approx 140K \), as revealed by a turning point in \(\Delta L_c(T)/L_c \), tantamount to the sign change in \(\alpha_c(T) \). A possible origin for this phenomenon in the present salt will be discussed below. First, we present further experimental data on the anomalous contribution to \(\alpha_i(T) \) around \(T_g \approx 63K \).

Figure 5 (a) shows a closer look on the thermal expansion coefficient \(\alpha_c(T) \), which demonstrates the strongest effect around the glass-like transition around \(\alpha_c(T) \approx 63K \). This data set was collected upon slowly warming \((q_\alpha = +1.5K/h) \) after cooldown with \(q_c = -3K/h \), red closed circles) as well as upon slowly cooling \((q_c = -1.2K/h, \) blue open circles). Upon warming, the step-like feature discussed above is accompanied by characteristic over- and undershoots of \(\alpha_c \) at the low- and high-temperature flank of the anomaly, respectively. In contrast, these over- and undershoots are absent upon cooling. Instead, \(\alpha_c(T) \) shows a strongly broadened step-like increase. Further away from \(T_g \), the data taken upon warming and cooling fall on top of each other. The thermal hysteresis observed here marks an important experimental proof for the glassy nature of the anomaly and rules out a thermodynamic phase transition.

Furthermore, another characteristic aspect for glass-forming systems is the dependence of the expansivity on the cooling \(q_c \) and warming \(q_\alpha \) rates. This relates on the one hand to (i) the explicit form of the anomaly and on the other hand to (ii) the \(T_g(q) \) dependence. Concerning aspect (i), we present in Fig.5(b) two data sets of \(\alpha_c(T) \) which were measured upon heating \((q_\alpha = 1.5K/h) \) after distinctly different cooldown procedures, i.e., after slow cooling with \(q_c = -3K/h \) (red closed circles) and after comparably fast cooling with \(q_c = -20.7K/h \) (black open circles). Both data sets reveal a step-like anomaly with over- and undershoot characteristics. Besides the significant shift of the anomaly to higher temperatures upon increasing \(|q_c| \) (aspect (ii)) which will be discussed in more detail below, the overshoot behavior at the low-temperature side of the anomaly is distinctly larger after
FIG. 4. Relative length change $\Delta L_i(T)/L_i$ normalized to the reference temperature $T_0 = 200\,\text{K}$ (a) and thermal expansion coefficient $\alpha_i(T) = L_i^{-1}dL_i/dT$ (b) of the organic charge-transfer salt κ-(BEDT-TTF)$_2\text{Hg(SCN)}_2\text{Cl}$ upon slow warming ($q_b = +1.5\,\text{K/h}$) after slow cooling ($q_c = -3\,\text{K/h}$). Red line corresponds to data taken along the out-of-plane $i = a$ axis, green and blue line to data along the in-plane $i = b$ and c axis, respectively. The anomalous kinks in $\Delta L_i(T)/L_i$ and the step-like features in $\alpha_i(T)$ at $T_g \approx 63\,\text{K}$ can be assigned to signatures of the glass-like transition (see main text for a detailed discussion). The jumps in $\Delta L_i/L_i$ and the divergent behavior in $\alpha_i(T)$ at $T_{MI} \approx 30\,\text{K}$ are related to a charge-order metal-insulator transition the investigation of which is not in the focus of the present study and will be discussed in detail elsewhere.

Fast cooling with $|q_c| = 20.7\,\text{K/h}$ than after slow cooling with $|q_b| \lesssim |q_c| = 3\,\text{K/h}$. This is a direct signature of the relaxational phenomena close to T_g, which are more pronounced when the glass-forming system is cooled fast $|q_c| \gg q_b$ and the low-T frozen state is, thus, more disordered.

Finally, in order to discuss aspect (ii), i.e., the cooling-rate dependence of T_g, we present in Fig. 6 (a) data of $\alpha_i(T)$ upon cooling using different cooling rates in the range $-1.2\,\text{K/h} \leq q_c \leq -20.7\,\text{K/h}$. It is evident that the anomalous sign change of α_c at $T = T_g$ (see Fig. 5 (a)), shifts to higher T with increasing $|q_c|$. This is expected for a glass-forming systems in which the relaxation time τ increases with lowering T. To evaluate this shift quantitatively, we determine T_g at a given q_c by using the midpoint of the broad step-like features and include the information of the inverse glass-transition temperature T_g^{-1} (or $|q| = \ln|q|$) in an Arrhenius-like fashion in Fig. 6 (b). In this representation, the data follow a linear behavior indicating a thermally-activated relaxation time $\tau \propto \exp(E_A/(k_B T))$. The slope of a linear fit to the present data set can be related to the size of the activation energy barrier E_A in a simple two-level model with thermally-activated relaxation time τ, as outlined in Refs. 39 and 58 via

$$\ln|q| = -\frac{E_A}{k_B T_g} + \text{const.} \quad (5)$$

In the present case, a linear fit (see red line in Fig. 6 (b)) yields an estimate of the activation barrier energy $E_A = (2800 \pm 300)\,\text{K}$.

V. DISCUSSION

The results of the thermal expansion measurements, in particular the step-like contribution to $\alpha_i(T)$ at $T_g \approx 63\,\text{K}$, the thermal hysteresis and the strong cooling-rate dependence of T_g, provide clear evidence for a glass-like transition in κ-(BEDT-TTF)$_2\text{Hg(SCN)}_2\text{Cl}$. From the determination of the activation energy $E_A = (2800 \pm$
We note that for the conformations, presented above, in which we identified that only one glass-like transition is fully consistent with the computed value of $E_A = 2210$ K for the process $S(1) \leftrightarrow E(1)$. Our directional-dependent thermal expansion studies $\alpha_i(T)$ with $i = a, b, c$ reveal that the freezing of the inner EEGs is accompanied by strongly anisotropic lattice responses, which are particularly pronounced along the out-of-plane a and the in-plane c axis. The anomalous lattice contributions $\Delta \alpha_i(T_g) = \alpha_i(T \rightarrow T_g) - \alpha_i(T \rightarrow T_g)$ (see Fig. 5(b)) amount to $\Delta \alpha_a(T_g) = +(31 \pm 2) \cdot 10^{-6}$/K, $\Delta \alpha_b(T_g) = +(13 \pm 4) \cdot 10^{-6}$/K and $\Delta \alpha_c(T_g) = -(42 \pm 2) \cdot 10^{-6}$/K. From a thermodynamic point of view, the $\Delta \alpha_i(T_g)$ values are related to the change of entropy associated with the EEG freezing S_{ethy} upon application of uniaxial pressure along the i axis via

$$\frac{\partial S_{ethy}}{\partial p_i} \bigg|_{T_g} = -V_{mol} \Delta \alpha_i(T_g).$$

By using the molar volume $V_{mol} = 519$ cm3, we expect the strongest response of S_{ethy} for uniaxial pressures along the in-plane c axis, for which $\frac{\partial S_{ethy}}{\partial p_c} = +(2.1 \pm 0.1)$ J/(mol K kbar) corresponding to an increase of ethylene disorder for increasing uniaxial pressure p_c. We note that in a simple two-level model the entropy is $S_{ethy}^{max} = 11.6$ J/(mol K) at maximum, implying that the entropy is increased by 20% of S_{ethy}^{max} by a uniaxial pressure of 1 kbar. This extraordinary pressure sensitivity of S_{ethy} emphasizes the strong metastability of the inner EEG conformation which is suggested by the large $E_A/\Delta E$ obtained in our calculations.

The relative ordering of $|\Delta \alpha_i|$ (with $|\Delta \alpha_a| > |\Delta \alpha_c| > |\Delta \alpha_b|$) is likely related to the directional nature of the short contacts between the inner EEGs and (SCN)$^-$ ligands. The displacement vectors associated with these contacts have components primarily in the ac-plane, such that application of pressure along the a or c axis more strongly influences the EEG-anion interactions, and thus the relative stability of the various conformations. This observation strengthens the viewpoint that the coupling to the anions plays an important role in selecting the preferred EEG conformation.

The negative thermal expansion along the c axis (along the anionic chain direction) that precedes the glass-like transition is also particularly remarkable. A similar effect was also reported for the glass-forming salt κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br24,59. A plausible scenario is that transverse displacements of the ligands within the ab-plane – away from the chain axis – cause a shrinkage along the length of the chain28,31. This behavior is commonly known as the Poisson effect. We note that the NTE along the c axis is accompanied by an increase in length upon warming along the other two axes, thus indicating that transverse displacements take place. Taken together with the absence of a NTE below T_g, the observation of the NTE above T_g supports the notion that the collective EEG-anion motion23 freezes.
out at T_g rather than an individual EEG rotation. This finding is consistent with insights from fluctuation spectroscopy experiment, which revealed non-Arrhenius-like slow dynamics, characteristic for a fragile glass former. It was argued that this implies a significant cooperativity between the EEGs which is most likely mediated by EEG-anion interactions.

VI. SUMMARY

In conclusion, by employing measurements of the thermal expansion, we provide clear evidence for a glass-like ordering transition at $T_g \approx 63 \text{K}$ in the organic charge-transfer salt κ-(BEDT-TTF)$_2\text{Hg(SCN)}_2\text{Cl}$. Similar to other κ-(BEDT-TTF)$_2X$ salts, orientational degrees of freedom of the ethylene endgroups (EEGs) of the BEDT-TTF molecule were identified to be responsible for the glassy behavior. In this regard, the present salt κ-(BEDT-TTF)$_2\text{Hg(SCN)}_2\text{Cl}$ is special as the two inequivalent EEGs behave distinctly different, as one of them orders smoothly, whereas the other one freezes in a glassy manner. This result is consistent with ab initio calculations, which estimate energy differences ΔE and activation energies E_A for the different conformations. Distinctly different interactions between the inequivalent EEGs and the anions lead to one metastable state, as evidenced by a large ratio $E_A/\Delta E$, and one strongly confined state with small $E_A/\Delta E$. Thus, our results confirm the concept proposed in Ref.[26] that $E_A/\Delta E$ is a suitable parameter to quantify the tendency of a system towards glass-like ordering. The identification of the peculiar EEG ordering in κ-(BEDT-TTF)$_2\text{Hg(SCN)}_2\text{Cl}$ confirms that the interaction between the EEGs and the anions is the decisive factor for the occurrence of glass-like freezing in the κ-(BEDT-TTF)$_2X$ organic charge-transfer salts. As the EEG vibrational degrees of freedom are known to couple strongly to the electronic degrees of freedom in this material class, it is interesting to investigate in the future how ground state properties of the strongly correlated electron system in κ-(BEDT-TTF)$_2\text{Hg(SCN)}_2\text{Cl}$ are influenced by the presence of two EEG subsystems with distinctly different temperature-dependent vibrational properties.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Benedikt Hartmann. Research performed in Frankfurt was supported by the German Science Foundation via the Transregional Collaborative Research Center SFB/TR49: Condensed Matter Systems with Variable Many-Body Interactions. SMW thanks NSERC Canada for a post-doctoral fellowship. JAS acknowledges support from the Independent Research and Development program while serving at the NSF.
27 J. G. Analytis, A. Ardavan, S. J. Blundell, R. L. Owen, E. F. Garman, C. Jeynes, and B. J. Powell, Phys. Rev. Lett. 96, 177002 (2006).
28 T. Sasaki, N. Yoneyama, Y. Nakamura, N. Kobayashi, Y. Ikemoto, T. Moriwaki, and H. Kimura, Phys. Rev. Lett. 101, 206403 (2008).
29 K. Sano, T. Sasaki, N. Yoneyama, and N. Kobayashi, Phys. Rev. Lett. 104, 217003 (2010).
30 S. Diehl, T. Methfessel, U. Tutsch, J. Müller, M. Lang, M. Huth, M. Jourdan, and H.-J. Elmers, J. Phys.: Condens. Matter 27, 265601 (2015).
31 H. Shinaoka and M. Imada, Phys. Rev. Lett. 102, 016404 (2009).
32 H. Shinaoka and M. Imada, J. Phys. Soc. Jpn. 78, 094708 (2009).
33 K. Byczuk, W. Hoftetter, and D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005).
34 K. Miyagawa, A. Kawamoto, Y. Nakazawa, and K. Kanoda, Phys. Rev. Lett. 75, 1174 (1995).
35 R. S. Manna, M. de Souza, A. Brühl, J. A. Schlüter, and M. Lang, Phys. Rev. Lett. 104, 016403 (2010).
36 H. O. Jeschke, M. de Souza, R. Valentí, R. S. Manna, M. Lang, and J. A. Schlüter, Phys. Rev. B 85, 035125 (2012).
37 K. Saito, H. Akutsu, and M. Sorai, Solid State Commun. 111, 471 (1999).
38 H. Akutsu, K. Saito, and M. Sorai, Phys. Rev. B 61, 4346 (2000).
39 J. Müller, M. Lang, F. Steglich, J. A. Schlüter, A. M. Kini, and T. Sasaki, Phys. Rev. B 65, 144521 (2002).
40 Y. Kuwata, M. Itaya, and A. Kawamoto, Phys. Rev. B 83, 144505 (2011).
41 X. Su, F. Zuo, J. A. Schlüter, A. M. Kini, and J. M. Williams, Phys. Rev. B 58, R2944 (1998).
42 T. F. Stalcup, J. S. Brooks, and R. C. Haddon, Phys. Rev. B 60, 9309 (1999).
43 O. J. Taylor, A. Carrington, and J. A. Schlüter, Phys. Rev. B 77, 060503 (2008).
44 B. Hartmann, D. Zielke, J. Polzin, T. Sasaki, and J. Müller, Phys. Rev. Lett. 114, 216403 (2015).
45 J. Müller, B. Hartmann, and T. Sasaki, Philosophical Magazine 0, 1 (2017).
46 D. Guterding, R. Valentí, and H. O. Jeschke, Phys. Rev. B 92, 081109 (2015).
47 A. U. B. Wolter, R. Feyerherm, E. Dudzik, S. Süßow, C. Strack, M. Lang, and D. Schweitzer, Phys. Rev. B 75, 104512 (2007).
48 N. Drichko, R. Beyer, E. Rose, M. Dressel, J. A. Schlüter, S. A. Turunova, E. I. Zhilyaeva, and R. N. Lyubovskaya, Phys. Rev. B 89, 075133 (2014).
49 E. Gati, J. Fischer, P. Lunkenheimer, D. Zielke, S. Köhler, F. Kolb, H.-A. K. von Nidda, H. Schubert, H.-A. K. von Nidda, J. A. Schluter, et al., manuscript in preparation (2017).
50 S. V. Konovalikhin, G. V. Shilov, O. A. D’yachenko, R. N. Lyubovskaya, M. Z. Aldoshina, and R. B. Lyubovskii, Bulletin of the Russian Academy of Sciences, Division of chemical science 41, 704 (1992).
51 S. Yasin, E. Rose, M. Dunn, N. Drichko, M. Dressel, J. Schlüter, E. Zhilyaeva, S. Turunova, and R. Lyubovskaya, Physica B: Condensed Matter 407, 1689 (2012).
52 R. Pott and R. Schezyk, J. Phys. E. Sci. Instrum. 16, 444 (1983).
53 F. Neese, Wiley Interdisciplinary Reviews: Computational Molecular Science 2, 73 (2012).
54 W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988).
55 S. Pronk, S. Pääl, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, et al., Bioinformatics 29, 845 (2013).
56 W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988).
57 We note that a step-like increase in $C(T)$ is related to a step-like change of $\alpha_i(T)$ via the Gruneisen relation. However, the sign of the anomalous contribution to $\alpha_i(T)$ is given by the Gruneisen parameter, i.e., the pressure dependence of the corresponding energy scale.
58 P. Nagel, V. Pasler, C. Meingast, A. I. Rykov, and S. Tajima, Phys. Rev. Lett. 85, 2376 (2000).
59 M. de Souza and L. Bartosch, J. Phys.: Condens. Matter 27, 053203 (2015).
60 A. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove, J. S. O. Evans, D. A. Keen, L. Peters, and M. G. Tucker, Science 319, 794 (2008).
61 A. L. Goodwin and C. J. Kepert, Phys. Rev. B 71, 140301 (2005).