Adipose tissue has emerged not just as an energy storage depot but also as an active endocrine and paracrine organ that mediates homeostatic and patho-physiological actions in health and disease. Because of its high lipid content and broad distribution in multiple depots throughout the body, it is difficult to adapt traditional techniques to modulate adipose function selectively in vivo for experimental and therapeutic applications.

Adeno-associated viruses (AAVs) are promising tools in the development of gene therapy for genetic disorders in humans and for studying disease and therapeutics in animal models. Unlike other viral vectors, such as adenoviruses, which tend to have immunogenic adverse effects, AAVs are non-pathogenic and have low immunogenicity, thus making them a safer alternative for therapeutic use in humans and suitable for chronic studies in animal models. AAVs target both dividing and quiescent cells and, despite predominantly remaining episomal in host cells, are able to induce relatively stable transgene expression. AAVs have induced sustained transgene expression in small animal models, large animal models and humans. In animal models, liver, heart and skeletal muscle have been safely and successfully targeted for gene transfer. In Europe, AAV-based gene therapy to muscle was recently approved for patients with severe lipoprotein lipase (LPL) deficiency.

Little work, however, has focused on targeting adipose. Adipose tissue is a secretory organ, and mature adipocytes are terminally differentiated, non-dividing cells, thus making adipose an attractive target for non-integrating gene expression vectors. Before AAV, a few studies used more immunogenic viruses, such as adenovirus, retrovirus and lentivirus, to target adipose or adipocytes in culture for gene transfer. More recently, a couple of groups have targeted adipose tissue with AAVs by directly injecting visceral or subcutaneous adipose in obese mice with virus in combination with Pluronics. However, local delivery is limiting for translation and, to date, no studies have used systemically administered AAV to target multiple adipose tissue depots.

In this work, we developed a systemic AAV delivered vector to selectively target multiple adipose tissue depots. We show that recombinant AAV serotype 2/8 (AAV2/8) vectors target subcutaneous, brown, gonadal and omental adipose tissues and that use of regulatory elements from the adiponectin promoter inhibits transgene expression in most other tissues that AAV2/8 transduce except for liver. Adipose specificity was further increased by inserting synthetic microRNA-122 (miR-122) target sites into the 3’ untranslated region (UTR) of the expression cassette. This liver-specific microRNA (miRNA) provides a tool for attenuation of expression of genes even when delivered to liver by AAV. As proof of principle, we show that adipose targeting via AAV2/8 vectors can deliver the leptin gene to adipose tissue in ob/ob mice and correct the metabolic defects in adipose leptin deficiency.

RESULTS

Recombinant AAV serotype 2/8 transduces adipose tissue

To test the efficacy of multiple serotypes targeting adipose tissue in vivo, we constructed an AAV2-based targeting vector containing a reporter gene regulated by a ubiquitous cytomegalovirus (CMV) promoter (Supplementary Figure 1a). For initial serotype qualitative screening, the luciferase gene was used as reporter, that is, AAV-CMV-Luciferase vector, and multiple AAV serotypes, including 2, 7 and 8 (for example, AAV2/8 where ‘8’ refers to the capsid serotype derived from AAV8), were administered to 2- to 3-month-old C57BL/6 J mice at a dose of 1 × 10^12 genome content (GC), a dose that has been shown to be safe in mice and used to target cardiac tissue. Two weeks after virus administration,
relative to other vectors, luciferase reporter activity was highest in gonadal, omental, subcutaneous and brown adipose tissues of mice that received the AAV2/8 reporter vector (Supplementary Figure 1b). As expected using a CMV promoter, luciferase activity was detected at high levels in heart, liver and other tissues (Supplementary Figure 1b). Delivery of AAV2/8-CMV-enhanced green fluorescent protein (eGFP) vector also revealed green fluorescence in subcutaneous, omental and gonadal adipose tissue and in liver (Supplementary Figure 1c). Although there was some heterogeneity in adipose depot expression of green fluorescent protein (GFP) compared with luciferase, these experiments qualitatively corroborate the findings with AAV2/8-CMV-Luciferase, and demonstrate that these vectors transduce adipose tissue.

Human adiponectin enhancer/promoter enhances selectivity for adipose tissue

To enhance adipose targeting, the promiscuous CMV promoter was replaced with an adipose-specific promoter. We cloned the adiponectin distal enhancer and proximal promoter as described and generated vector AAV2/8-Adipo-eGFP (Figure 1a). Two weeks after, C57BL/6J mice were administered with AAV2/8-Adipo-eGFP (1 × 10^{12} GC). Qualitative imaging of fresh unfixed tissue detected eGFP fluorescence in subcutaneous, brown, omental and gonadal adipose (Figure 1bi-iv, respectively). Although these data were not designed to be quantitative, compared with mice receiving AAV2/8-CMV-eGFP, those receiving AAV2/8-Adipo-eGFP still had eGFP expression in adipose tissue (Figure 1c), but eGFP was not detected in the heart (Figure 1c) or other organs, for example, lung, kidney and pancreas (Supplementary Figure 2). To our disappointment, however, eGFP expression was not suppressed in liver (Figure 1bv and Figure 1c, respectively).

MiRNA-122 eliminates hepatic transgene expression

In order to inhibit liver expression of the reporter gene, we incorporated the miR-122 target sequence (miR-122T) into the 3'UTR of the AAV2/8-Adipo-eGFP vector to make AAV2/8-Adipo-eGFPmiR-122(x) vectors, where ‘x’ is the target sequence copy number (Figure 2a). As controls, AAV2/8-Adipo-eGFPmiR-122Sc vectors were generated. Initially, eight copies of miR-122T or scrambled sequence were used. Mice were injected with AAV2/8-Adipo-eGFPmiR-122(8x), AAV2/8-Adipo-eGFPmiR-122Sc or AAV2/8-Adipo-eGFP. Transduction, based on qualitative western blot screening, with all three vectors induced eGFP expression in subcutaneous, gonadal, omental and brown adipose (Figure 2b), but eGFP was clearly not detected in livers from mice administered with AAV2/8-Adipo-eGFPmiR-122Sc (Figure 2b). These data indicate that miR-122 directly inhibited expression of the eGFP transgene in liver.

Next, we tested the ability of fewer miR-122T repeats to inhibit reporter gene expression in the liver. In mice receiving AAV2/8-Adipo-eGFPmiR-122Sc with hepatic eGFP expression was highly repressed but there still was minor residual expression (Figure 2c). Semi-quantitative densitometry analyses of western blots in Figure 2c confirmed that both 3x and 8x repeats of miR-122T highly repressed eGFP expression in the liver, whereas adipose tissue continued to express eGFP in the presence of miR-122T (Figure 2d). Adipocytes isolated from brown,
subcutaneous and gonadal adipose treated with AAV2/8-Adipo-GFPmiR-122(8x) expressed eGFP (Figure 2e). These data show that systemic delivery of an AAV2/8 vector containing a reporter gene regulated by an adiponectin enhancer/promoter and liver-specific miRNA target sites induced transgene expression selectively in mouse adipose tissue.

Adipose-targeted AAV2/8 delivery of leptin attenuates the ob/ob mouse phenotype

We replaced the eGFP gene in the AAV2/8-Adipo-eGFPmiR-122(8x) vector with human leptin (AAV2/8-Adipo-LeptinmiR-122(8x)) and administered this via tail vein injection to 9-week-old leptin-deficient ob/ob mice. Control ob/ob mice received AAV2/8-Adipo-eGFPmiR-122(8x). As expected, ob/ob mice were obese, hyperphagic and had elevated glucose and insulin levels.

Within 7 days of AAV2/8-Adipo-LeptinmiR-122(8x) administration, plasma leptin levels ranged from 0.1 to 0.4 ng ml\(^{-1}\) and then increased slightly through 42 days post viral treatment (Figure 3a). The peak average leptin level, 0.3 ± 0.05 ng ml\(^{-1}\), was approximately 7% of the level we observed in a one-time measurement of age-matched WT C57BL/6J mice (average 4.4 ng ml\(^{-1}\)) (Figure 3ai) and wild-type (WT) rodent levels reported by others (3–7 ng ml\(^{-1}\)). These leptin levels, however, were sufficient to have marked and rapid effects on appetite, weight and glucose homeostasis. By 4–7 days post virus administration, the leptin-treated group already consumed less food than control ob/ob mice (4.4 ± 0.6 g per day vs 6.7 ± 0.4 g per day, \(P < 0.001\)). After 25 days, average food consumption of the leptin-treated group had decreased to amounts near the measured range (3.5–3.9 g per day) of age-matched WT C57BL/6J mice (Figure 3b). On average, the leptin-treated ob/ob mice ate at least 2 g per day less food than the control mice. With decreased food consumption, AAV2/8-Adipo-LeptinmiR-122(8x)-treated ob/ob mice lost weight gradually, whereas control ob/ob mice continued to gain weight. After 50 days, the average weight of AAV-leptin-treated ob/ob mice average weight was 14 g less than that of control mice (36.8 ± 1.1 g vs 51.0 ± 1.1 g, \(P < 0.001\)) and 3.5 g less than baseline, whereas control ob/ob mice weighed 11.1 g more than baseline (Figure 3c).

With increasing obesity, ob/ob mice become more hyperinsulinenic and fasting insulin levels were >10-fold higher in control vector-treated ob/ob mice (36.8 ± 1.1 g vs 51.0 ± 1.1 g, \(P < 0.001\)) and 3.5 g less than baseline, whereas control ob/ob mice weighed 11.1 g more than baseline (Figure 3c).

With increasing obesity, ob/ob mice become more hyperinsulinenic and fasting insulin levels were >10-fold higher in control vector-treated ob/ob mice (1.1–6.6 ng ml\(^{-1}\)) compared with WT mice (Figure 3d). In contrast, fasting insulin levels in ob/ob mice receiving AAV2/8-Adipo-LeptinmiR-122(8x) dropped by 75–80% and approached levels observed in age-matched WT mice (0.4–0.5 ng ml\(^{-1}\) for leptin-treated vs 0.1 ng ml\(^{-1}\) for WT mice).
Before administration of AAV, glucose tolerance testing (GTT) revealed a similar degree of glucose intolerance in both groups of ob/ob mice (Figure 4a). At 2 (Figure 4b), 4 (Figure 4c) and 7 (Figure 4d) weeks after AAV, mice receiving AAV2/8-Adipo-LeptinmiR-122(8x) had improved glucose tolerance compared with control vector-treated ob/ob mice, with statistically significant improvements in glucose area under curve by 4 and 7 weeks post AAV; the GTT area under curve profile approached that of WT mice by 7 weeks post AAV.

We assessed the degree of adipose selectivity in leptin gene expression. At the time of killing, 8 weeks after AAV delivery, human leptin mRNA levels in subcutaneous, brown and omental adipose tissues were several 100-fold higher than the levels in lungs and at least 5-fold higher than levels detected in heart and skeletal muscle (Figure 5a). Biodistribution assays, which quantified average viral DNA copy number in total tissue DNA, revealed liver samples contained 100-, 280- and 220-fold more copies of AAV DNA than brown, gonadal and omental adipose samples, respectively (data not shown). Despite this vastly disparate delivery of viral DNA, relative mRNA expression in liver vs adipose was comparable to adipose tissue samples, demonstrating that, in addition to the differential activity of the adiponectin promoter/enhancer in liver vs adipose, RNA expression in liver was strongly attenuated by the miR-122T. Indeed, the amount of leptin protein, normalized to total protein per tissue, was highest in adipose tissues compared with all other tissues tested (for example, 34 and 39 pg leptin per mg protein in subcutaneous and brown fat, respectively, compared with 10 pg mg\(^{-1}\) in liver; Figure 5b). These data also show that some tissues, for example, lung, had higher leptin protein levels than expected based on mRNA expression data, suggesting the possibility of tissue contamination from circulating leptin.

DISCUSSION

Targeted genetic manipulation in adipose is important for understanding adipose physiology, its role in disease and for development of therapeutics. We tested gene transfer using several AAV types and determined that the recombinant AAV2/8 serotype was most effective at targeting adipose, but also transduced other tissues. Adipose selectivity was enhanced by incorporating proximal promoter and distal enhancer elements from the adiponectin gene into the AAV vector, yet expression persisted in liver. Addition of multiple copies of the liver-specific miR-122T into the 3'UTR of the expression cassette, however, inhibited GFP protein expression in the liver to undetectable levels. As proof of principle, the human leptin gene was inserted in the AAV expression vector and administered to ob/ob mice. Human leptin mRNA and protein were expressed in multiple adipose depots and plasma leptin was readily detectable, albeit at low levels. These levels, however, reversed weight gain, decreased hyperinsulinemia and improved glucose tolerance, indicating that in vivo AAV2/8 delivery of our adipose-targeting vector rescued metabolic phenotypes in a rodent model of human disease. These studies represent for the first time in which sustained and largely selective gene transfer to multiple adipose tissue depots was accomplished using a single dose of a systemically administered gene expression vector.
Adipose tissue is critical for normal physiology including energy intake and expenditure, thermoregulation and insulin and glucose homeostasis. The complexity of adipose biology, the gravity of pathology arising from genetic defects in adipose and the epidemic of obesity and type 2 diabetes underscore the importance of developing methods to selectively target adipose for gene transfer. Adipose targeting for genetic manipulation in vivo is challenging, however, even in mouse models and often relies on conditional knockout of genes of interest. Gene transfer with AAV offers the potential for higher throughput studies and the ability to knock down, replace or overexpress genes in adipose coupled to the unique potential for therapeutic applications. AAVs are nonpathogenic and elicit only low innate immune and inflammatory responses in animals and humans, conferring a major advantage over other viral-mediated gene therapy modalities. In fact, the Committee on Human Medicinal Products in Europe recently approved the first human gene therapy treatment, Glybera (uniQure), using AAV to deliver a variant of LPL to skeletal muscle for patients with LPL deficiency.

To confer greater adipose selectivity to the AAV2/8 vector, we included regulatory regions from the human adiponectin promoter, expressed specifically in adipocytes. To account for AAV packaging size constraints, a modified 700-bp enhancer/promoter construct from the adiponectin gene was used to increase the adipose selectivity of the AAV2/8 vector. In our initial experiments of increasing adipose selectivity, we were interested primarily in crude screening using GFP presence in adipose and other tissues, so we probed for β-actin only selectively, knowing that we were going to further modify the vectors. Despite transcriptional control by this adipose-specific enhancer/promoter, our initial targeting vector still induced significant liver transgene expression. One possibility is that the enhancer unit from the adiponectin promoter leads to expression in the liver. A similar phenomenon was observed with muscle-specific promoters with a strong myosin heavy chain enhancer. The adiponectin enhancer contains two completely conserved CCAAT boxes that bind the transcription factor CCAAT/enhancer-binding protein alpha, which regulates gene expression in many cell types including

Figure 4. Adipose-targeted AAV2/8 delivery of leptin gene in ob/ob mice improves glucose tolerance. Ob/ob mice received AAV2/8-Adipo-Leptinmir122(8x) or AAV2/8-Adipo-eGFP mir122(8x), designated as ‘Leptin’ or ‘GFP’, respectively, in legend. Glucose tolerance tests (GTT) were performed at baseline (a), 2 (b), 4 (c) and 7 (d) weeks post AAV administration on 16-h fasted mice. Data are mean ± s.e., n = 5-6. *P < 0.05 and **P < 0.01, significant difference between leptin and GFP groups.

Figure 5. Human leptin mRNA and protein expression in ob/ob mouse tissues. Eight weeks post virus administration, tissue samples from AAV2/8-Adipo-LeptinmiR122(8x)-treated mice were analyzed for human leptin mRNA and protein. Data are shown as mean ± s.e., n = 5-6. No human leptin mRNA or protein was detected in control-treated ob/ob mice. (a) Human leptin mRNA relative expression, normalized to that tissue’s respective β-actin mRNA expression. Expression in each tissue is displayed relative to lung (set to 1). (b) Human leptin protein expression in mouse tissue supernatants, normalized to the total protein in tissue supernatants.
Adipose-targeted gene therapy
SM O’Neill et al

To prevent liver transgene expression, we used miRNA-dependent knockdown, and highly abundant liver-specific miRNA. Three copies of miR-122T drastically inhibited GFP expression in liver, and eight copies reduced GFP expression to undetectable levels. It is noteworthy that increasing the copy number of miR-122T may have caused some destabilization of reporter gene mRNA. Decreases in liver expression were observed when increasing scrambled miR-T copies from three to eight, which resulted in a longer 3’UTR by approximately 130 bp. It has been previously documented that increasing the length of the 3’UTR can lead to decreased reporter gene expression and potential nonsense-mediated RNA decay because of changes in secondary structure. In studies parallel to ours, Qiao et al. and Geisler et al. used similar strategies and used miR-122T in AAV9 vectors targeting cardiac tissue to inhibit aberrant transgene expression in liver. In our studies, we did not directly examine possible toxicities, for example, hepatic steatosis, hepatitis or hepatocellular carcinoma, that have been observed in miR-122 knockout models or that, theoretically, may arise from exogenous miR-122T within a highly expressed transgene competing with endogenous miR-122T for miR-122. This possibility is, however, very unlikely because miR-122 is so abundant in the liver that saturation is improbable. Indeed, published work suggests that significant concentrations of a perfectly complementary miRNA target sequence do not appreciably affect the regulation of imperfect targets to their respective mRNA. Further, Geisler et al. found an absence of biochemical and histological liver side effects after administration of AAV-containing miR-122T and also found no change in expression of Gys1, a protein regulated by miR-122. The dose they used, 7.5 x 10^11 GC, was only 25% less than the 1.0 x 10^12 GC used in our studies, a dose that has been used in other studies without inducing significant liver toxicity. These doses in mice are approximately 35 times larger per kg body mass than a 1 x 10^12 GC per kg dose of adipogene tiparvoc (Glybeta) that was demonstrated to be safe and effective in humans, thus raising questions about the dosing of our vector that would be required for adipose-directed studies in humans and suggesting that further enhancements in vector design may be required for human translation as discussed subsequently.

Leptin mRNA expression was higher in adipose than all other tissues, indicating that the adiponectin promoter/enhancer elements in the AAV vector were able to hinder leptin expression in non-adipose tissue. Based on our vector screening data, we would have expected to still detect substantial leptin mRNA in the liver despite its transcription being suppressed by the adiponectin promoter/enhancer. However, noting that biodistribution assays revealed hundreds fold more AAV genome copies in liver compared with adipose tissues, the leptin mRNA levels in liver were remarkably low. This reduced level of human leptin mRNA indicates that miR-122T in the AAV vector leads to mRNA degradation as expected and agrees with results showing degradation of mRNA in liver when using miR-122 to increase cardiac specificity of an AAV vector. Inhibition of translation of the intact leptin mRNA in the liver also could lead to further suppression of extraneous leptin protein synthesis. Indeed, we found that subcutaneous and brown adipose expressed approximately threefold higher leptin protein than liver, suggesting possible translation inhibition of leptin mRNA. However, we recognize that liver expression was not fully ablated.

Leptin, a protein hormone with a cytokine-like structure produced almost exclusively by adipocytes, activates leptin receptors in the hypothalamus to reduce food intake and enhance thermogenesis and metabolic rate. Although rare, congenital leptin deficiencies in humans result in hyperphagia, hyperinsulinemia and severe obesity. The ob/ob mouse, which has a total loss of leptin protein, has strikingly similar phenotype to congenital leptin deficiency in humans and therefore represents a cogent model of human disease to test the therapeutic potential of our adipose-targeted AAV vector. Recombinant leptin therapy through daily subcutaneous injections significantly reduces appetite, body fat, hyperinsulinemia and hyperlipidemia in leptin-deficient humans. The phenotype of ob/ob mice is also corrected by exogenous leptin introduced through injections, transplantation of WT fat pads or systemic adenosine-mediated leptin gene transfer. In addition, AAV-mediated intramuscular leptin gene transfer rescued the obese phenotype because leptin is secreted and is biologically active even if expressed ectopically. However, no prior gene therapy-based study has sought to reintroduce the leptin gene in its native tissue.

Adipose and plasma levels of human leptin in AAV2/8-Leptin-miR-122T-treated ob/ob mice were less than 10% of leptin protein levels in WT mice and humans. However, this concentration of circulating leptin was able to correct hyperphagia, induce weight loss or prevent weight gain, alleviate hyperinsulinemia and increase glucose tolerance to near-WT levels. Similar results are observed in leptin-deficient patients when leptin levels are restored to 10% of normal levels using recombinant leptin therapy. Our data are consistent with clinical studies of genetic deficiencies in factor VIII, factor IX and LPL, where profound corrections of physiologic aberrations in response to AAV gene therapy were associated with very small corrections of physiologic levels (5–10% of normal levels) of the deficient gene product. Thus, the ability to replace a defective adipose-secreted protein and correct the physiologic defect with an adipose-targeted AAV vector in a rodent model of human disease is encouraging for translation and therapeutics.

Several challenges, however, remain for wider application. Leptin can have biological effects at levels less than 10% of the biologically normal level, whereas other defective genes may need to be replaced to a greater extent with the corrected gene product to be therapeutically beneficial. The low-expression levels of leptin that were achieved indicate that use of this AAV8 adiponectin/miR-122 vector to replace defective genes in adipose tissue to treat other diseases including different forms of lipodystrophy that result from defective transcription factors or enzymes may be limited where higher expression of the corrected gene is necessary. This current limitation of the vector may affect the ability to express adequate levels of a gene of interest or rapidly generate adipose-specific conditional knockouts (that is, expressing CRE in adipose of floxed mice) for testing biological hypotheses. Further, despite the use of eight copies of miR-122T, there was modest residual expression of the leptin transgene in the liver, as has been also observed by others. Residual ectopic expression may be difficult to eliminate but might not be essential in studying the biology or therapeutic potential of gene transfer. To address these limitations, however, future studies should assess the efficacy of AAV2/9, which may have lesser tropism for liver, add additional enhancer elements from the adiponectin promoter, and evaluate a wider range of miR-122T repeats with these alternative vectors.

This study represents the first time multiple adipose tissue depots have been targeted with selectivity for gene transfer with one systemic administration of an AAV-targeting vector. With the growing obesity epidemic, further refinement and application of adipose-targeted AAV vectors will provide tools to better understand the role of adipose in metabolic homeostasis and disease and facilitate therapeutic advances for adipose-related disorders.
MATERIALS AND METHODS
Rodent studies and in vivo gene transfer
All procedures involving the use and care of animals were performed according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health and according to guidelines set forth by the University of Pennsylvania’s Institutional Animal Care and Use Committee. For initial AAV testing, 2- to 3-month-old C57BL/6 J (Jackson Laboratories, Bar Harbor, ME, USA) male mice were injected intravenously (IV) via tail vein with 1 × 10^12 GC of AAV-containing vectors of choice in phosphate-buffered saline. After 2 weeks, mice were killed, fresh adipose and liver tissue slices were prepared for GFP fluorescent microscopy, and the remaining tissues were frozen in liquid nitrogen.

For leptin therapy studies, 6-week-old male ob/ob mice (Jackson Laboratories) were singly housed in cages and body weight and tail blood glucose levels were measured twice weekly for 3 weeks. Weight-matched ob/ob were then divided into two groups and treated with 1 × 10^12 GC of AAV-expressing leptin or eGFP (n = 5-6/group). Over 8 weeks, body weight, food intake and 5-h fasted blood glucose levels were measured twice weekly with a Contour glucometer (Bayer, Leverkusen, Germany). Retroorbital blood was obtained weekly for measurement of plasma leptin and insulin by ELISA. GTT was performed at 2-week intervals by measuring blood glucose levels over time after intraperitoneally administering D-glucose (2 g per kg body weight).

Construction of AAV packaging (cis) plasmid for AAV production
The promoter and distal enhancer of adiponectin (hAdp) were constructed by SOEing PCR (Polymerase Chain Reaction-Splicing by Overlapping Extension) using two sets of primers and human genomic DNA as template. In short, primer set Adp-Bgl-F1: 5′-AGCTAAGATCTCTTCTTCCACA TGACCCTGTCTT-3′ and Adp-SOE-R1 (5′-CTGAATTCCTTAAACGTCGCCGCCGGCT TGATGATTTGGACAAGGTTAATC-3′) was used to amplify the distal enhancer (2664 to 2507) by PCR. A second set of primers, Adp-SOE-F (5′-GTCGAATACTACACGGCAGCGCCAGCTTTAAAGATCCTCGGGCTT-3′) and Adp-Mlu-R1 (5′-AGCTAAGACCTCTTCTTCTGATGATATTCAAGCAGAGGCTT-3′) and Adp-Mlu-R1 (5′-Agctacgctctttgcccaagcaagcagctctctca-3′) were used to amplify the promoter (−540 to +77). The PCR products from these two reactions served as templates for amplification using primers: Adp-Bgl-F1 and Adp-Mlu-R1. The final SOEing PCR product was then cloned into pLacZ1.1, an AAV packaging plasmid, in between MluI and BglII sites, to replace CMV promoter to generate pEHA5A-Adp. The plasmid, pAAV, hAdp-Egrep-miR-122T.SV40, encoding the reporter eGFP (5′-TGTAGCTATTGCACAAGGTGGAAATAAC-3′) was made using the same strategy.

Recombinant AAV production
AAV vectors were generated by triple transfection using: (1) an AAV cis plasmid carrying a transgene expression cassette flanked by the viral ITRs; (2) an AAV trans plasmid encoding the AAV2 rep and AAV8 (or other serotypes) capsid genes and (3) a plasmid-encoding adenoviral genes providing helper functions for AAV replication. The plasmids were used to transfect subconfluent HEK293 cell (American Type Culture Collection, Manassas, VA, USA) grown in 6-cell stack factories using PEI-Max (Polysciences, Warrington, PA, USA) and the vectors purified from cell lysates and supernatant as described previously.

Adipocyte isolation
Adipose tissue samples from leptin- or control-treated ob/ob mice (500 mg) were prepared as described using 1 mg ml^-1 collagenase (Roche Diagnostics, Indianapolis, IN, USA; Cat #: 11213857001). Digested tissue was filtered through a 200-μm filter (Becton Dickinson, Franklin Lakes, NJ, USA) and collagenase neutralized by adding 9 ml Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum. The filtrate was centrifuged for 10 min at 500 g to separate the floating mature adipocytes from the stromal vascular fraction. The mature adipocytes were pipetted off the top, lysed with RIPA buffer and subjected to immunoblot analyses.

ELISA Analyses
Plasma levels of mouse insulin and leptin were measured by sandwich ELISA using ALPCO’s Mouse Ultrasensitive Insulin ELISA (Saleem, NH, USA) and Millipore’s Human Leptin ‘Dual Range’ ELISA (EMD Millipore, Billerica, MA, USA) according to the manufacturer’s instructions. The leptin ELISA was adapted to measure tissue leptin levels using supernatant from tissue samples homogenized with a TissueLyser (QIAGEN Sciences, Germantown, MD, USA) in RIPA buffer containing 1% Triton X-100. The lysate was placed in plasma in the ELISA kit, leptin concentrations normalized to tissue protein content and results compared with serially diluted human adipose lysate samples assayed in parallel.

Luciferase activity assay
Supernatants from tissues (25–100 mg) were homogenized in luciferase lysis buffer and analyzed for luciferase activity using the Luciferase Assay System (Promega, Madison, WI, USA) according to the manufacturer’s protocol with activity normalized to protein content.

Real-time PCR analysis
RNA was isolated from tissues using TRIzol Reagent (Invitrogen) according to manufacturer’s instructions. First, strand cDNA was reverse transcribed from 1000 ng RNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems (ABI), Foster City, CA, USA). RT reactions were performed using standard methods (ABI) and real-time PCR analysis was performed using Taqman normalized to β-actin (ABI Prism 7900 Sequence Detection System; ABI). Taqman premixed primer/probe sets were human leptin (Hs00174877_m1), mouse leptin (Mm00434759_m1) and mouse β-actin (Hs00609723_m1).

Immunoblot analysis
Tissue or cell samples (~100mg) were analyzed by standard SDS-PAGE electrophoresis immunoblotting using primary rabbit antibodies against GFP (DS.1) and β-actin (13E5; Cell Signaling Technology, Danvers, MA, USA) and secondary hpr-goat anti-rabbit antibody (Invitrogen), and visualized by chemiluminescence.

Quality control and biodistribution of AAV vectors
Genome titers (that is, GC per ml) of purified AAV vectors were determined by real-time PCR using a primer–probe set corresponding to the poly(A) region of the vector and linearized plasmid standards. The primer sequences for SV40 poly A TaqMan analysis are as follows: forward primer: 5′-AGCAATAGCATCAAAATTCTCAAA-3′, reverse primer: 5′-CCAGCATGATAAGATACATTGATGAGTT-3′, target sequence for monitoring reaction efficiency. The observed values of spiked reaction must be greater than 20% of the expected values to pass the assay acceptance criteria.

Statistical analysis
Data are expressed as mean±s.e.m. and analyzed using one-way analysis of variance (ANOVA) for grouped data with Bonferroni post-hoc tests when ANOVA revealed statistical differences between groups. For statistical significance in GTTs or time course studies, two-way ANOVA was used with Bonferroni post-hoc testing as above.
CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank the University of Pennsylvania Vector Core for providing the vectors and conducting the biodistribution analyses. This work was supported by research awards from the National Institutes of Health (NIH) to the University of Pennsylvania including R01-DK-095050 (to Muredach Reilly), a NIDDK Diabetes and Endocrine Research Center award (P20-DK-019525) and a NEDDK Molecular Therapy P30 Center Grant (P30-DK-047757). Sean O’Neill received support from a NRSA grant 5-T32-HL07748 funded by the National Heart, Lung and Blood Institute. We acknowledge the Diabetes Research Center Mouse Phenotyping Core for their work supported by P30-DK19525. Muredach Reilly is supported also by R01-HL-131147, R01-HL-111694, U01-HL108636 and K24-HL107643 from the NIH.

REFERENCES
1 Bray GA, Bellanger T. Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 2006; 29: 109–117.
2 Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444: 847–853.
3 Cao H, Molday RS, Hu J. Gene therapy: light is finally in the tunnel. Protein Cell 2008; 9: 1–13.
4 Carter BJ. Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 2004; 10: 981–989.
5 Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13714–13719.
6 Aruwa VR, Stedman HH, Nichols TC, Haskins ME, Nicholson M, Herzog RW et al. Regional intravascular delivery of AAV-2-FIX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005; 105: 3458–3464.
7 Simoniello F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2011; 19: 1079–1087.
8 Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Hum Gene Therapy 2005; 16: 635–650.
9 Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C et al. Identiﬁcation of novel distal enhancer in human adipogenin gene. J Endocrinol 2009; 200: 107–116.
10 Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA et al. Novel adenovirus-mediated preproinsulin gene transfer into adipose tissues. Gene Therapy 2006; 13: 106–110.
11 Arruda VR, Stedman HH, Nichols TC, Haskins ME, Nicholson M, Herzog RW et al. Regional intravascular delivery of AAV-2-FIX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005; 105: 3458–3464.
12 Muzikami H, Mimuru J, Ogura T, Oka T, Urobe M, Kume A et al. Adipose tissue as a novel target for in vivo gene therapy by adeno-associated viral vectors. Hum Gene Therapy 2006; 17: 921–928.
13 Zhang FL, Jia SQ, Zheng SP, Ding W. Celastrol enhances AAV1-mediated gene expression in mice adipose tissues. Gene Therapy 2011; 18: 128–134.
14 Feng C, Yuan Z, Li J, He B, Zheng H, Mayer C et al. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efﬁciently inhibits transgene expression in the liver. Gene Therapy 2011; 18: 403–410.
15 Xie C, Yuan Z, Li J, He B, Zheng H, Mayer C et al. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efﬁciently inhibits transgene expression in the liver. Gene Therapy 2011; 18: 403–410.
16 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identiﬁcation of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.
17 Gielen S, Jungmann A, Kurreck J, Poller W, Katus H, Vetter R et al. microRNA122-regulated transgene expression increases speciﬁcity of cardiac gene transfer upon intravenous delivery of AAVs vectors. Gene Therapy 2011; 18: 199–209.
18 Liu Y, Yuan Z, Li J, He B, Zheng H, Mayer C et al. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efﬁciently inhibits transgene expression in the liver. Gene Therapy 2011; 18: 403–410.
19 Kassim SH, Li H, Bell P, Somanathan S, Lugar W, Jacobs F et al. Adeno-associated virus serotype 8 gene therapy leads to signiﬁcant lowering of plasma cholesterol levels in humanized mouse models of hypercholesterolemic and atherogenic familial hypercholesterolemia. Hum Gene Therapy 2013; 24: 19–26.
20 Segawa K, Matsuoka M, Fukuhara A, Morita K, Okuno Y, Komuro R et al. Identiﬁcation of a novel distal enhancer in human adipogenin gene. J Endocrinol 2009; 200: 107–116.
21 Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al. Leptin levels in human and rodent: measurement of plasma leptin and OB RNA in obese and weight-reduced subjects. Nat Med 1995; 1: 1155–1161.
22 Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA et al. Novel adenovirus-mediated preproinsulin gene transfer into adipose tissues. Gene Therapy 2006; 13: 106–110.
23 Cao H, Molday RS, Hu J. Gene therapy: light is finally in the tunnel. Protein Cell 2008; 9: 1–13.
24 Carter BJ. Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 2004; 10: 981–989.
25 Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13714–13719.
26 Aruwa VR, Stedman HH, Nichols TC, Haskins ME, Nicholson M, Herzog RW et al. Regional intravascular delivery of AAV-2-FIX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005; 105: 3458–3464.
27 Simoniello F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.
28 Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.
29 Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efﬁciently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.
30 Brown BD, Genter B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.
31 Tanguay RL, Galle DR. Translational efﬁciency is regulated by the length of the 3’ untranslated region. Mol Cell Biol 1996; 16: 146–156.
32 Eberle AB, Stalder L, Mathys H, Orozco RZ, Muhlemann O. Posttranscriptional gene regulation by spatial rearrangement of the 3’ untranslated region. PLoS Biol 2008; 6: e92.
33 Wen J, Friedman JR. Adeno-associated virus serotype 8 efﬁciently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.
34 Brown BD, Genter B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.
35 Tanguay RL, Galle DR. Translational efﬁciency is regulated by the length of the 3’ untranslated region. Mol Cell Biol 1996; 16: 146–156.
36 Eberle AB, Stalder L, Mathys H, Orozco RZ, Muhlemann O. Posttranscriptional gene regulation by spatial rearrangement of the 3’ untranslated region. PLoS Biol 2008; 6: e92.
37 Wen J, Friedman JR. Adeno-associated virus serotype 8 efﬁciently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.
38 Brown BD, Genter B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.
39 Tanguay RL, Galle DR. Translational efﬁciency is regulated by the length of the 3’ untranslated region. Mol Cell Biol 1996; 16: 146–156.
40 Eberle AB, Stalder L, Mathys H, Orozco RZ, Muhlemann O. Posttranscriptional gene regulation by spatial rearrangement of the 3’ untranslated region. PLoS Biol 2008; 6: e92.
from the European Network of Rare Bleeding Disorders. J Thromb Haemost 2012; 10: 615–621.

46 National Research Council. Guide for the Care and Use of Laboratory Animals, 8th edn. The National Academies Press: Washington, DC, 2011.

47 Lock M, Alvira M, Vandenberghhe LH, Samanta A, Toelen J, Debyser Z et al. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Therapy 2010; 21: 1259–1271.

48 Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175–184.

Supplementary Information accompanies this paper on Gene Therapy website (http://www.nature.com/gt)