Planned missing data designs and methods: options for strengthening inference, increasing research efficiency and improving animal welfare in ecological and evolutionary research

Daniel W.A. Noble¹,²,* and Shinichi Nakagawa²,*

¹ Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
² Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington NSW 2052, Sydney

* To whom correspondence should be addressed:
Daniel Noble: daniel.noble@anu.edu.au
Shinichi Nakagawa: s.nakagawa@unsw.edu.au

Abstract:
Ecological and evolutionary research questions are increasingly requiring the integration of research fields along with larger datasets to address fundamental local and global scale problems. Unfortunately, these agendas are often in conflict with limited funding and a need to balance animal welfare concerns. Planned missing data design (PMDD), where data are randomly and deliberately missed during data collection, combined with missing data procedures, can be useful tools when working under greater research constraints. Here, we review how PMDD can be incorporated into existing experimental designs by discussing alternative design approaches and demonstrate with simulated datasets how missing data procedures work with incomplete data. PMDDs can provide researchers with a unique toolkit that can be applied during the experimental design stage. Planning and thinking about missing data early can: 1) reduce research costs by allowing for the collection of less expensive measurement variables; 2) provide opportunities to distinguish predictions from alternative hypotheses by allowing more measurement variables to be collected; and 3) minimise distress caused by experimentation by reducing the reliance on invasive procedures or allowing data to be collected on fewer subjects (or less often on a given subject).

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/EVA.13273

This article is protected by copyright. All rights reserved
PMDDs and missing data methods can even provide statistical benefits under certain situations by improving statistical power relative to a complete case design. The impacts of unplanned missing data, which can cause biases in parameter estimates and their uncertainty, can also be ameliorated using missing data procedures. PMDDs are still in their infancy. We discuss some of the difficulties in their implementation and provide tentative solutions. While PMDDs may not always be the best option, missing data procedures are becoming more sophisticated and more easily implemented and it is likely that PMDDs will be effective tools for a wide range of experimental designs, data types and problems in ecology and evolution.

Keywords: data augmentation, multiple imputation, personality, quantitative genetics, mixed effects models, hierarchical models, multilevel modelling, refinement, reduction, multiple working hypotheses.
Introduction

Missing data are a widespread problem in ecological and evolutionary research (Nakagawa & Freckleton 2010; Nakagawa & Freckleton 2011; Ellington et al. 2015; Nakagawa 2017), often resulting in the exclusion of a substantial amount of available (but incomplete) data (e.g., through ‘complete case’ or ‘pairwise deletion’). This contributes to a reduction in statistical power and, if the nature of ‘missingness’ is not considered carefully can lead to biased parameter estimates (Enders 2001b; Graham 2009; Nakagawa & Freckleton 2010; Little et al. 2013). Theoretical frameworks for dealing with incomplete data have received substantial attention and missing data theory is now a well-developed field of research grounded on solid statistical theory (Graham, Hofer & MacKinnon 1996; Enders 2001a; Little & Rubin 2002; Graham 2003; Graham 2009; van Buuren 2012; Little et al. 2013). While social scientists commonly use missing data methods, these techniques remain relatively unknown, and seldom applied, in ecological and evolutionary circles (Nakagawa & Freckleton 2010).

Making use of incomplete data is seldom discussed by ecologists and evolutionary biologists despite statistical tools being more widely available and easier to use than ever. In contrast, social scientists have made use of incomplete data for a long time – even embracing missing data during the design of experiments to help address fundamental research questions (Graham et al. 2006). Planned missing data design (PMDD) is an approach that involves deliberately planning to ‘miss’ data as part of an experiment and it has a long history (e.g., see Bose 1939; and much of its development was done in the context of proficiency testing, see Johnson 1992). In other words, deliberately not collecting data on certain variables, time points or experimental subjects. While this seems like an odd thing to do, if missing data in the variables of interest is completely random, or can be made random, existing statistical frameworks are known to do an excellent job at estimating parameters and standard errors (Schafer & Graham 2002; van Buuren 2012). There are a number of potential benefits to using PMDDs in combination with missing data methods in the fields of ecology and evolution. However, ecologists and evolutionary biologists are likely unaware of their potential applications given it has developed in a disparate research field.

Here, we argue that missing data methods and PMDD have the potential to expand the scope, reduce research costs and alleviate animal welfare concerns, facilitating higher impact research. Our intention is to provide a greater appreciation for missing data at the design stages and overview some statistical tools that can be used to deal with random and non-random missing
data. The latter is known to cause bias in model estimates and inferences (Little & Rubin 2002; Nakagawa 2017). Here we briefly introduce missing data theory and then describe a few core statistical tools that can be used with incomplete data. We provide simulated case studies as supplemental examples, along with code, to show how missing data procedures can be used to yield valid inferences even with hierarchically structured data that is common in ecological and evolutionary research (Enders, Mistler & Keller 2016a; Quartagno & Carpenter 2016; Resche-Rigon & White 2018). We also describe alternative PMDDs, overviewing some of the different experimental designs that can be implemented, what they involve and important design considerations. Then, we overview some important benefits of using a PMDD and end with a discussion on some of the challenges and limitations to their use – providing suggestions for how these can be rectified.

A brief introduction to missing data theory

Missing data patterns can generally be classified as falling into one of three different types – based on the different mechanisms generating missing data – missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR) (Rubin 1976; Little & Rubin 2002; Graham 2009; Nakagawa & Freckleton 2010; van Buuren 2012; Nakagawa 2017). The distinction between these three missing data mechanisms is important to understand when implementing missing data procedures and why PMDDs can be useful. Missing data (either in response or predictor variables) are considered to be MCAR when missingness is random with respect to both observed and unobserved (i.e., not collected in the study) data (Enders 2001b; Nakagawa 2017). In other words, the observed data are simply a random sub-sample of complete data (Enders 2001b). In contrast, missing data are considered MAR when the missing values in a dataset are correlated with values of other observed variables in the dataset (Enders 2001b; Graham 2009). For example, if we were interested in understanding the correlation between survival to 1 year and mass at 6 months, we would find that individuals that die before 6 months are missing data on mass, but missing data on mass is correlated with their lifespan, which is known. Missing not at random (MNAR) occurs when missing values are correlated with unobserved (uncollected) data or the missing values themselves. For example, we may be missing behavioural data on small sized animals within a population because they tend to be ‘shy’ and difficult to capture (e.g, Biro & Dingemanse 2009), in which case we would be missing both behavioural and morphological data on a non-random sample of the population. Under these situations, dealing with incomplete data is
difficult (possibly even impossible) because statistical techniques for estimating parameters when
data are MNAR are difficult to implement given the need to explicitly model the process of
missingness (Schafer & Graham 2002).

Missing data mechanisms have different consequences for statistical results when
incomplete data are excluded prior to analysis, as is often the case (i.e., referred to as ‘complete
case’, ‘pairwise deletion’ or ‘listwise deletion’). While MCAR often results in a loss of power
when data are excluded from an analysis, it does not bias parameter estimates (Enders 2001b;
Schafer & Graham 2002; Graham 2009; Nakagawa & Freckleton 2010). In contrast, when missing
data are MAR or MNAR, excluding data will result in both a loss of power and biased parameter
estimates (sometimes severely so; Enders 2001b; Schafer & Graham 2002; Graham 2009;
Nakagawa & Freckleton 2010). To better appreciate the impact missing data can have on sample
size, assume that we have 10 variables, each containing 5% missing data, and a total complete
dataset of $n = 1000$. If we used all variables in a statistical model we may need to exclude as many
as 500 observations. Statistical techniques for dealing with missing data rely on the pattern of
missingness being MCAR or MAR, and if this assumption is met, then bias and coverage in
parameter estimates can be improved (Enders 2001b; Schafer & Graham 2002; Nakagawa &
Freckleton 2010; van Buuren 2012; Ellington et al. 2015; Nakagawa 2017).

Statistical procedures for dealing with missing data

Using incomplete data from a planned missing data design hinges on the ability of researchers to
make use of statistical procedures for handling missing data (Little & Rubin 2002; Graham et al.
2006; Enders 2010). It is therefore pertinent that we briefly review existing missing data
procedures and provide some guidance on their implementation. We do not discuss these topics in
great depth as there are a number of accessible reviews and books on these subjects already
(Schafer 1997; Enders 2001b; Little & Rubin 2002; McKnight et al. 2007; Allison 2012; van
Buuren 2012; Nakagawa 2017), but we do provide a few simulated cases studies showing readers
how to apply missing data procedures to multilevel data in the supplement (see
https://doi.org/10.17605/OSF.IO/YZHRN). It is important to recognise that missing data methods
have been around for some time. They range from quite simple approaches, such as mean
substitution or simple regression-based single imputation to more modern missing data methods
that we describe below (Graham 2009). While simple methods exist, our review focuses on

This article is protected by copyright. All rights reserved
modern missing data methods because they result in unbiased parameter estimates and suitable coverage across a diversity of contexts (McKnight et al. 2007; Graham 2009; Enders 2010).

We view missing data methods as falling under two broad categories – those implementing model-based (MB) techniques and those using multiple imputation (MI) with the help of Rubin’s rules (Rubin 1987; Enders 2010). This categorisation follows that of McKnight et al. (2007). While we acknowledge that these two categories have some overlap (e.g., MI still technically uses a model to impute missing data) we believe that they capture the major differences in the types of missing data procedures that can be applied.

Model-based procedures incorporate both observed and missing data into a single joint modelling approach. Some approaches do not actually impute missing data, but rather handle the missing data within a single model (e.g. full information maximum likelihood). Likelihood based methods use all available data to estimate parameters by defining a case-wise likelihood function that works with each row of complete data and the likelihood functions are then summed together to provide unbiased estimates of parameters and their uncertainty (Figure 1A – See Enders & Bandalos, 2001; Enders, 2009). Alternatively, some model-based procedures augment / impute data proceeding through the following steps: 1) the parameters of a model are estimated using observed data; 2) parameters estimated in step 1 are then used to augment / impute missing data and 3) model parameters are re-assessed conditional on both the observed and imputed data (Figure 1B; Nakagawa 2017). These steps are re-iterated until the model converges (Figure 1B). Model-based approaches are advantageous in that they are fast, easily implemented (often under the assumption of multivariate normality; although alternative distributions could be assumed) and result in robust parameter estimates and standard errors (McKnight et al. 2007). They are also implemented during model fitting, meaning that there are no additional steps needed to deal with the missing data.

In contrast, multiple imputation proceeds by generating a set of m complete datasets where missing data are imputed using variables of interest. These m datasets can then be analysed normally (i.e., as if a complete dataset existed) and the results (i.e., parameter estimates and standard errors) pooled (Figure 1C; Schafer 1997; Schafer & Olsen 1998; Little & Rubin 2002; van Buuren & Groothuis-Oudshoorn 2011; van Buuren 2012; Nakagawa 2017), using Rubin’s rules (Rubin, 1976). Usually $m = 40–50$ imputed datasets perform well under a variety of situations (e.g., Nakagawa 2017; Nakagawa & de Villemereuil 2019), but this will depend on the models being estimated, and a larger number of imputed datasets will result in better quality
estimates. Multiple imputation can better accommodate different error distributions (i.e., Bernoulli, Poisson etc.), and allows practitioners to analyse the data in any way they wish using any software. It also separates the imputation and analysis steps allowing for different imputation and analysis models (McKnight et al. 2007; Enders, 2010) (although some multivariate Bayesian model-based approaches exist to get around this limitation). However, it does require the additional steps of having to generate complete datasets prior to analysis followed by the need to subsequently pool the parameter estimates and standard errors. Nonetheless, with large sample sizes, and assuming statistical assumptions are met, MB and MI procedures are equally good at producing unbiased parameter estimates and their uncertainty (Allison, 2002).

Auxiliary variables to aid missing data methods

Auxiliary variables are variables that are not necessarily of interest with respect to the biological question at hand, but that are correlated with other variables and thus are predictive of missing measurements in these variables (Collins, Schafer & Kam 2001; Graham 2003). Including auxiliary variables, especially ones that are expected to be predictive of missing data, has been shown to improve the accuracy and stability of estimates and to reduce their standard error (Enders 2010; Allison 2012; von Hippel & Lynch 2013). The best auxiliary variables are those that are easy and cheap to collect and that are strongly correlated with a number of other variables within the data set (Collins, Schafer & Kam 2001; Graham 2003; von Hippel & Lynch 2013). Collins et al. (2001) have shown that auxiliary variables can be particularly useful when they change the missing data mechanism from MNAR to MAR and when the correlation between auxiliary variables and the response is high ($r > 0.7$). Adding even just 2–3 auxiliary variables can improve missing data procedures, and for the most part, an inclusive analysis strategy where a large number of auxiliary variables are included in the analysis is recommended (Enders 2010 p.g. 128). However, the inclusion of too many (> 10) can start to lead to a downward bias in regression coefficients and a decrease in precision (Hardt et al. (2012). While the number of auxiliary variables will depend on the specific study questions being asked, it is useful to include auxiliary variables with moderate to high correlations (>0.4) because they will be most effective in dealing with missing data. These will be particularly important where unplanned missing data exists (see section “Unplanned missing data” below) to increase the chances that assumptions of missing data methods are satisfied (i.e., MAR).
Experiments in ecology and evolution often collect variables that are not necessarily of interest, but can be used as auxiliary variables. Auxiliary variables, such as body dimensions, sex, age or even spatial data, can be included in missing data procedures (e.g., MI) to help deal with unplanned missing measurements. These will likely improve the performance of missing data procedures more generally. Variables do not necessarily need to be incorporated in models when testing the biological questions and hypotheses of interest (if using multiple imputation) (Graham 2003). As an illustrative example, consider a field study on birds, where the spatial position (i.e., latitude and longitude) of nest boxes is known and stable through time. Here, the spatial position may not be of interest to researchers, but it may be the case that it is correlated with behaviour (e.g., shyness) and/or body mass because sub-ordinate animals get pushed to the fringes of habitat by dominant individuals. As a consequence, they tend to be harder to recapture on repeated samples increasing the amount of missing data for these animals (Holtmann, Santos, Lara & Nakagawa, 2017). One way to use spatial coordinates might be to generate a spatial covariance matrix between observations and extract from the spatial covariance matrix its principle components (PCs). Multiple imputation could then make use of the PCs to impute missing data (e.g. using mice or mi – Table 1) for individuals that were not measured on a given sampling occasion. Similar approaches have been developed that make use of phylogenetic covariance matrices (Nakagawa & de Villemereuil 2015) as well as the relatedness matrices (Hadfield 2008).

Planned missing data designs and their application in ecology and evolution

Planned missing data designs involve deliberately collecting incomplete datasets by randomly missing measurements on subjects or missing measurement occasions from repeated observations of subjects (Graham et al. 2006; Rhemtulla & Little 2012; Little & Rhemtulla 2013). Researchers can then use model-based or multiple imputation techniques to deal with incomplete data to answer their question(s). As a recent example, Herrera (2019) applied a simple PMDD to understand changes in pollinator abundance over 21 years across 65 plant species. While the study did not use missing data procedures, Herrera (2019) did plan to deliberately, but randomly, miss specific species-year combinations when sampling pollinator abundance. Importantly, any PMDD should always conform to the MCAR assumption because missing data are random by virtue of the experimental design making it ideal for use with the various statistical methods designed to deal with incomplete data (Little & Rhemtulla 2013). While a simple PMDD could randomly miss
measurements across variables throughout the entire dataset, there are a number of alternative designs that may also be useful that we discuss below.

Subset Measurement Design

Planned missing data design was first developed to deal with participant fatigue when answering questions during research surveys. It is particularly useful when there are also logistical and financial constraints to asking many different questions (Graham, Hofer & Piccinin 1994; Graham et al. 2006). For example, a common type of PMDD called the multi-form design (MFD) involves creating alternative questionnaires that each contain overlapping questions and a sample of new questions (Graham et al. 2006; Little & Rhemtulla 2013). Combining data on participants across the questionnaires, and then treating the questions participants were not given as missing information, allows parameters to be estimated based on the covariance between known answers (Graham et al. 2006).

Questionnaires are seldom used in ecology and evolutionary biology to collect data (aside from the field of ethnobiology; see Albuquerque et al. 2014). An analogous design is what we refer to as a subset measurement design (SMD) (Figure 2A). Similar to the MFD, a SMD involves quantifying a common set of variables across all individuals (e.g., body size) and then randomly allocating subjects to be quantified on a subset of other variables (e.g., hormone concentrations, metabolism etc.) (Figure 2A). Common variables can be those that are easily or cheaply quantified, such as body size indices (e.g., mass, body / wing length). In contrast, variables that are expensive or logistically challenging to quantify (e.g., gene expression, hormone concentrations) can be randomly sampled on a subset of subjects during the experiment. When using incomplete data under a SMD one should also consider, a priori, any potential interactions (Figure 2A) of interest and whether the planned missingness provides sufficient power to test these interactions (Enders 2010).

Two-Method Design

SMD can also be applied to situations where researchers have a choice between two variables that might both be indirectly related to some response variable. For example, one variable might be more easily and cheaply quantified but has larger measurement error. In contrast, the second variable is more logistically challenging to measure but is considered the ‘gold standard’ (i.e., lower measurement error / more informative to the question). The latter
design is referred to as a two-method design (TMD) in the social sciences (Little & Rhemtulla 2013) and is used when one variable is known to be systematically biased (Graham et al. 2006). These approaches can be used to help understand the relationships between variables that are costly to collect (but often accurate) by allowing one to instead replace these measurements with cheaper (but often noisier) variables that are correlated with the expensive measurement variables. For example, we may be able to measure metabolic rate (rather cheap, but noisy) instead of concentrations of thyroxine (T4) (expensive) to understand the relationship between metabolic hormones and reactive oxygen species (ROS) (e.g., Figure 2A – where M is measured more than T4). Thyroxine concentrations are expected to have a more direct effect on ROS compared to metabolic rate because it is expected to modulate cellular metabolism directly. In contrast, metabolic rate measures aerobic respiration (i.e., often indirectly by measuring gas exchange) which can be impacted by LEAK respiration rates at the cellular level (Koch et al. 2021).

Longitudinal / Wave Missingness Designs

Longitudinal research questions, where repeated measurements on a set of independent individuals is of interest, can use a PMDD called wave missingness (Figure 2B). Here, a random group of experimental subjects are not measured at all at a given time point or measurement occasion (Little & Rhemtulla 2013; Rhemtulla et al. 2014). Waves can also be blocked such that all subjects are measured at the beginning and end measurement wave (e.g., month 1 and 6 – Figure 2B) with subsamples of animals not measured at all in middle waves (i.e., pseudo-randomised missingness; Rhemtulla & Little 2012; Rhemtulla et al. 2014; e.g., month 2–5 in Figure 2B). Wave missingness designs have the potential to drastically decrease data collection costs. For example, we may be interested in understanding seasonal changes in two hormones by sampling the same set of individuals at monthly intervals. Sampling animals across all occasions means that we would need to sample blood 120 times and run 240 different assays. In contrast, using the missingness pattern in Figure 2B, we can reduce the total number of blood samples by ~20% and run 28% fewer assays (n = 66 fewer assays). Interestingly, a TMD and SMD can also be applied in combination with longitudinal designs and simulations have shown this to be an effective PMDD (Garnier-Villarreal, Rhemtulla & Little 2014). The specific wave missingness design used will largely depend on the research question and the constraints faced in executing the study. Careful attention needs to be paid when using wave missingness designs as they may not perform well when sample sizes are small (Rhemtulla & Hancock, 2016). However, they can still
be a valuable PMDD when resources are limited and there are ethical concerns about repeated measurements on the same subjects.

Considerations when using Missing Data Designs

We have overviewed three of the more common designs that can be applied to experimental systems. However, PMDD’s can be diverse, and combinations of the designs described above are probably necessary in many real research situations (e.g. Figure 2C) (Enders 2010; Rhemtulla & Little 2012; Little & Rhemtulla 2013; Rhemtulla et al. 2014). Regardless of which PMDD is used, missing data should be avoided as much as possible in variables that are most pertinent to the specific hypothesis being tested or those that are expected to have small effect sizes (i.e., having complete measurements on these variables; Graham et al. 2006). It should be kept in mind that datasets with variables that are more strongly correlated with each other (i.e., $r > 0.5$) will also permit higher levels of missingness.

While PMDDs can be powerful tools, it is still unclear what designs work best at estimating parameters and standard errors across various situations. Despite simulations showing the benefits of PMDD, missing data itself can affect the information content in the data that is available for estimating parameters and standard errors (Rhemtulla & Hancock 2016). It is important to recognize that missing information is not a simple function of the amount of missing data, it also depends on which variables are missing and the pattern of missingness (Rhemtulla & Hancock 2016). There are many excellent resources evaluating the power and efficiency of different PMDD’s under different contexts and we refer interested readers to these for more detail (Graham et al. 2006; Enders 2010 (pg. 23–36); Rhemtulla et al. 2014; Enders, Mistler & Keller 2016a; Grund & Robitzsch 2016; Rhemtulla & Hancock 2016; Grund, Lüdtke & Robitzsch 2017; Lüdtke, Robitzsch & Grund 2017; Grund & Robitzsch 2018; Resche-Rigon & White 2018).

Benefits of a planned missing data design with missing data procedures

Planned missing data designs, combined with missing data procedures, can allow researchers to take advantage of the covariance among variables within a dataset to expand the quality and scope of a study, reduce research costs and improve animal welfare outcomes. Strategic implementation of a PMDD can allow researchers to get a ‘bigger bang for their buck’ in terms of the research cost to outcome ratio, particularly for experiments involving expensive biochemical, proteomic,
metabolomic and genomic work. Additionally, combining measurements of different variables in a single study will allow for greater power in distinguishing predictions from alternative hypotheses offsetting the “fallacy of the factorial design” problem (Betini, Avgar & Fryxell 2017).

Planned missing data design can also provide significant advantages for animal welfare, allowing researchers to minimize pain, suffering and distress caused by experimentation (Cuthill 2007). This could be achieved by using less invasive procedures, collecting data on fewer experimental subjects or less often on a given subject. The reduced burden on animals may even result in higher quality data because there is less potential to invoke stressful procedures repeatedly which may compromise animal function and impact how animals respond when re-measured at later dates. For example, carp subjected to daily handling stress are more susceptible to blood flagellate infection resulting in reduced survival (Saeij et al. 2003). Such effects could limit the types of questions that can be answered by a given study. Interestingly, application of MFDs for behavioural intervention studies in psychology have been shown to result in higher quality data by reducing respondent fatigue in repeated questionaries (Harel, Stratton & Aseltine 2015). We expect these benefits to apply when using two-method / subset measurement designs in ecology and evolutionary biology.

As mentioned above, missing data procedures can also lead to improved statistical power relative to using a complete case analysis and improve model convergence (Little & Rhemtulla 2013). Planning on missing data before embarking on an experiment can also help counteract problems associated with non-random missing data, which can cause major bias and inferential problems (Little & Rubin 2002; Nakagawa 2017). When applying missing data procedures, adding in new variables that may be correlated with missingness will result in data that is MAR. This will help to correct for non-ignorable missingness that are issues for complete case analyses.

As one example of how missing data approaches can improve coverage (i.e, estimation of standard errors) we conducted a simple simulation to compare model-based missing data methods to a complete case design under varying sample sizes and levels of missing data. Many research fields, from quantitative genetics to behavioural ecology, are regularly interested in using multivariate mixed models to estimate between-individual correlations between two phenotypic traits measured repeatedly (Dingemanse & Dochtermann 2013; Careau & Wilson 2017). Our simulation applies a simple PMDD in these contexts to understand how the between-individual correlation estimate, along with its uncertainty, is affected (Supplementary Materials Section 5 – found at https://doi.org/10.17605/OSF.IO/YZHRN). We show that, in this case, using MB
approaches can improve upon the estimation of standard errors of between-individual correlation coefficients compared to a complete case scenario (Figure S5.1). Detailed simulation studies on a range of different questions and problems have shown the circumstances under which different PMDD’s can provide statistical benefits (Graham et al. 2006; Little & Rhemtulla 2013) and where they can fail (Rhemtulla et al. 2014; Rhemtulla & Hancock 2016; Lüdtke, Robitzsch & Grund 2017). While there is no replacement to obtaining complete data, these studies will be useful for weighing up the costs and benefits of a PMDD approach for a given study.

In summary, the application of PMDD with missing data methods deviates from normal experimental design considerations (e.g., should one collect data on 10 animals 10 times or 20 animals 5 times) in that it allows researchers to take advantage of the covariance between variables within their incomplete data to: 1) incorporate more variables into a single analysis to test predictions from competing models without compromising the estimation of parameters and their uncertainty; 2) provide an ability to select less expensive (or less in invasive) variables, and substitute them with correlated variables that are easier to collect but capture the relationships of interest and 3) help overcome non-random missing data which can impact results from complete case analyses.

Challenges in implementing planned missing data designs and methods

As with any new research method, there will be challenges, particularly in establishing the most suitable approaches that work across a wide diversity of different research questions and experimental designs. In addition, PMDD can be more work to implement as careful thought needs to be given to how missing data will impact the inferences drawn. The statistical procedures to deal with missing data procedures will also mean that more work and attention needs to be paid to analysing incomplete data at the analysis stage. Finally, application of missing data procedures to PMDDs is not always going to improve statistical inferences relative to complete case designs. Some simulations show they can be less efficient and even perform more poorly (Rhemtulla & Hancock, 2016). Nonetheless, given PMDD is still new, stimulating interest in them will be the first step to identifying problems and implementing solutions to any challenges. In addition, a PMDD could still be used without applying missing data procedures – assuming the nature of missingness is random, normal statistical procedures will still apply (e.g., see Herrera 2019).

Below we discuss some of the hurdles we see to implementing a PMDD and suggest some tentative solutions.
Unplanned missing data

As with any experiment, unplanned missing data will creep into PMDD designs, such as when a piece of equipment malfunctions or when recording errors are identified leading to missing measurements that were unexpected. Random instances of missing data, even if unplanned, will not often affect statistical approaches to deal with incomplete data or the utility of PMDD unless missing data levels begin to get quite high. However, simulations show (e.g. Graham et al. 2006; Enders 2010) that missing data procedures can perform quite well even with large amounts of missing data (see also Supplement S5). Nonetheless, there are real situations where unplanned missing data can be MNAR and this will affect any experiment regardless of whether a PMDD is implemented or not. We have outlined above how data can be made MAR by collecting auxiliary variables. Unplanned missing data can then be dealt with normally, along with any planned missing data, using the same statistical methods. Collecting auxiliary variables that are cheap and easy to collect when possible may help counter unplanned missing data.

Missing data procedures with complex models

Multiple imputation and model-based procedures both work well with normally distributed data, however, in reality variables often are non-normally distributed and data are hierarchical in nature. While most statistical packages making use of MB procedures assume multivariate normality, MI procedures can also work with non-normal data fit using generalised linear mixed effect models (e.g., Poisson GLMMs) (Schafer 1997). We show an example case-study of how MI can work with multilevel count data in the supplemental examples (Section S4 – https://doi.org/10.17605/OSF.IO/YZHRN). However, implementation in the context of GLMMs is still under active development, and in many cases, is restricted to simple random effect structures (van Buuren & Groothuis-Oudshoorn 2011; Enders, Mistler & Keller 2016b; Quartagno & Carpenter 2016; Audigier & Resche-Rigon 2017). Additionally, it is important to capture the hierarchical structure (in the case of mixed models) in the data and any hypothesised interactions when applying missing data procedures which may be challenging at times (Lüdtke, Robitzsch & Grund 2017). Nonetheless, two-level random regression models can be run in a number of existing packages (e.g., mice, miceadds), however, they are currently limited to one random factor. Despite this, we believe that the capacity to run more sophisticated models will grow in the near future.
Overcoming psychological barriers to missing data

One of the biggest challenges to implementing PMDDs probably involves the need for researchers to overcome the ‘psychological taboos’ around missing data, and the suspicion of techniques for handling incomplete data (Enders 2010). Unplanned missing data are already treated with a sense of disdain and annoyance by ecologists and evolutionary biologists. Asking researchers to now plan on missing data, and then adopt missing data methods, will be hard. We can re-assure readers that missing data practices are now very well established (Graham et al. 2006; Nakagawa 2017), and are rather painlessly implemented in many commonly used statistical software such as R, SAS, SPSS, and MPlus (See Table 1 for an overview). In fact, many techniques are implemented by default when missing data are included as response variables in models for a number of mixed modelling packages (e.g. model-based procedures in ‘MCMCglimm’ and ‘ASReml’). While statistical algorithms vary across these platforms, fairly sophisticated and versatile ones are now implemented in packages for some of the most widely used platforms (e.g. ‘mice’, ‘mi’, ‘multimput’ and ‘Amelia’ in the R environment – Table 1) and are under active development (e.g., the mice package in R). Statistical procedures for missing data are still rarely taught in undergraduate and graduate level courses, so part of the solution will be to begin educating students and practitioners about how to perform statistical procedures to deal with incomplete data, explicitly highlighting some of the challenges and caveats that need to be considered. Nonetheless, there are now excellent resources for learning these methods (Gelman & Hill 2002; Schafer & Graham 2002; Graham 2009; Enders 2010; Su et al. 2011; van Buuren & Groothuis-Oudshoorn 2011; Nakagawa 2017), and we provide a few case studies in the supplement to show how they can be applied to multilevel data.

Uncertainties surrounding the best PMDD

A big challenge in implementing PMDD is the uncertainty around what the most appropriate missing data design is for a given experiment. This is particularly true in ecology and evolutionary biology because different questions, experimental systems, data structure and measurement variables will require different PMDD’s. As such, it will likely be important to test the robustness and power of any given PMDD through simulations (Rhemtulla & Hancock, 2016). With some very simple simulated data, based on effect sizes and experimental designs relevant to the question at hand, the power of different PMDD’s can be thoroughly tested during the design stage of an experiment (Enders 2010). This will require researchers to think carefully about the
model they wish to fit to their data so that simulations are realistic for their situation (Rhemtulla & Hancock, 2016). Enders (2010 p.g. 30) provide a nice introduction on how to conduct power analysis with PMDD’s using simulations. While we provide R code showing a few simulated examples and how to applying missing data procedures (see Supplemental file at https://doi.org/10.17605/OSF.IO/YZHRN), new multi-level simulation packages, such as SQuID (Allegue et al. 2017) or simsem (Pornprasertmanit et al. 2021), allow for researchers to simulate hierarchical data easily across a diversity of design situations. Data can be downloaded, and missing data introduced to evaluate the power of different PMDDs.

Conclusions and future directions

Our goal was to introduce planned missing data design (PMDD), along with missing data methods, to ecologists and evolutionary biologists. We have discussed possible missing data designs that can be implemented in research programs and provide case studies along with code to show how missing data procedures can be applied to incomplete hierarchical / multilevel data. While it is still unclear when missing data procedures and PMDD will work best, new statistical methods and a growing awareness of PMDD will likely elucidate answers to these questions (Drechsler 2015; Quartagno & Carpenter 2016; Audigier & Resche-Rigon 2017; Audigier et al. 2017). We encourage colleagues to begin thinking about PMDDs during experimental design stages to improve research quality and animal welfare while also promoting integrative, cost effective research projects in ecology and evolutionary biology.

Acknowledgements

We would like to thank the I-DEEL lab (Joel Pick, Rose O’Dea, Malgorzata Lagisz, and Fonti Kar), Diego Barneche and Corey Callaghan for feedback on previous versions of our manuscript. We would also like to especially thank the editors, Mijke Rhemtulla and six anonymous reviewers for very constructive comments that greatly improved our manuscript. DWAN was supported by an ARC Discovery Early Career Research Award (DE150101774) and SN an ARC Discovery Project (DP180100818). The authors declare no conflicts of interest.

Data Archiving Statement

The data and supplementary materials that support the findings of this study are openly available in the Open Science Framework at https://doi.org/10.17605/OSF.IO/YZHRN.
Literature Cited

Albuquerque, U.P., Ramos, M.A., Paiva de Lucena, R.F. & Alencar, N.L. (2014) Methods and techniques in ethnobiology and ethnoecology. Springer, New York.

Allegue, H., Araya-Ajoy, Y.G., Dingemanse, N.J., Dochtermann, N.A., Garamszegi, L.Z., Nakagawa, S., Réale, D., Schielzeth, H., Westneat, D.F. & Hadfield, J. (2017) Statistical Quantification of Individual Differences (SQuID): an educational and statistical tool for understanding multilevel phenotypic data in linear mixed models. Methods in Ecology and Evolution, 8, 257-267.

Allison, P.D. (2012) Handling missing data by maximum likelihood. SAS Global Forum, Statistics and Data Analysis, Statistical Horizons, Haverford, PA, USA.

Audigier, V. & Resche-Rigon, M. (2017) micemd: Multiple imputation by chained equations with multilevel data. R package version 1.1.0. https://CRAN.R-project.org/package=micemd.

Audigier, V., White, I.R., Jolani, S., Debray, T.P.A., Quartagno, M., Carpenter, J., van Buuren, S. & Resche-Rigon, M. (2017) Multiple imputation for multilevel data with continuous and binary variables. arXiv, 1–38.

Betini, G.S., Avgar, T. & Fryxell, J.M. (2017) Why are we not evaluating multiple competing hypotheses in ecology and evolution? Royal Society Open Science, 4, 160756.

Biro, P.A. & Dingemanse, N.J. (2009) Sampling bias resulting from animal personality. Trends in Ecology & Evolution, 24, 66-67.

Bose, R.C. (1939) On the construction of balanced incomplete block designs. Annals of Eugenics, 9, 353-399.

Bürkner, P.-C. (2017) brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80, 1-28.

Bürkner, P.-C. (2018) Advanced Bayesian Multilevel Modeling with the R Package brms. The R Journal, 10, 395-411.

Butler, D. (2009) asreml: asreml() fits the linear mixed model. R package version 3.0. www.vsni.co.uk.

Careau, V. & Wilson, R.S. (2017) Of Uberfleas and Krakens: Detecting Trade-offs Using Mixed Models. Integrative and Comparative Biology, 57, 362-371.

Collins, L.M., Schafer, J.L. & Kam, C.-M. (2001) A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
Cuthill, I.C. (2007) Ethical regulation and animal science: why animal behaviour is not so special. Animal Behaviour, 74, 15–22.

Dingemanse, N.J. & Dochtermann, N.A. (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. Journal of Animal Ecology, 82, 39-54.

Drechsler, J. (2015) Multiple imputation of multilevel missing data - rigor versus simplicity. Journal of Educational and Behavioral Statistics, 40, 69-95.

Drechsler, J. (2015) Multiple imputation of multilevel missing data - rigor versus simplicity. Journal of Educational and Behavioral Statistics, 40, 69-95.

Ellington, E.H., Bastille-Rousseau, G., Austin, C., Landolt, K.N., Pond, B.A., Rees, E.E., Robar, N. & Murray, D.L. (2015) Using multiple imputation to estimate missing data in meta-regression. Methods in Ecology and Evolution, 6, 153-163.

Enders, C.K. (2001a) The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352-370.

Enders, C.K. (2001b) A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modeling 8, 128-141.

Enders, C.K. (2010) Applied missing data analysis. The Guilford Press, New York, USA.

Enders, C.K., Mistler, S.A. & Keller, B.T. (2016a) Multi-level multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods, 21, 222-240.

Enders, C.K., Mistler, S.A. & Keller, B.T. (2016b) Multi-level multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Psychological Methods, 21, 222-240.

Garnier-Villarreal, M., Rhemtulla, M. & Little, T.D. (2014) Two-method planned missing designs for longitudinal research. International Journal of Behavioral Development, 38, 411–422. https://doi.org/10.1177/0165025414542711.

Gelman, A. & Hill, J. (2002) Data analysis using regression and multilevel/hierarchichal models. Cambridge University Press.

Graham, J.W. (2003) Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.

Graham, J.W. (2009) Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576.
Graham, J.W., Hofer, S.M. & MacKinnon, D.P. (1996) Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures. Multivariate Behavioral Research, 31, 197-218.

Graham, J.W., Hofer, S.M. & Piccinin, A.M. (1994) Analysis with missing data in drug prevention research. Advances in data analysis for prevention intervention research (eds L.M. Collins & L. Seitz), pp. 13–63. National Institute on Drug Abuse Research monograph series, Washington, DC, USA.

Graham, J.W., Taylor, B.J., Olchowski, A.E. & Cumsille, P.E. (2006) Planned missing data designs in psychological research. Psychological Methods, 11, 323-343.

Grund, S., Lüdtke, O. & Robitzsch, A. (2017) Multiple Imputation of Missing Data for Multilevel Models. Organizational Research Methods, 21, 111--149.

Grund, S.L.O. & Robitzsch, A. (2016) Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note. Behavior Research Methods, 48, 640--649.

Grund, S.L.u.O. & Robitzsch, A. (2018) Multiple imputation of missing data at level 2: A comparison of fully conditional and joint modeling in multilevel designs. Journal of Educational and Behavioral Statistics, doi.org/10.3102/1076998617738087.

Hadfield, J.D. (2008) Estimating evolutionary parameters when viability selection is operating. Proc Biol Sci, 275, 723-734.

Hadfield, J.D. (2010) MCMC methods for multi-response generalised linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33, 1–22.

Hardt, J., Herke, M. & Leonhart, R. (2012) Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research. BMC Biomedical Research Methodology, 12, 1–13.

Harel, O., Stratton, J. & Aseltine, R. (2015) Designed missingness to better estimate efficacy of behavioral studies-application to suicide prevention trials. Journal of Medical Statistics and Informatics, 3, 1–7.

Herrera, C.M. (2019) Complex long-term dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades. Ecological Monographs, 89, e01338.

Honaker, J., King, G. & Blackwell, M. (2011) Amelia II: A program for missing data. Journal of Statistical Software, 45, 1–47.
Johnson, E.G. (1992) The design of the National Assessment of Educational Progress. *Journal of Educational Measurement*, 29, 95-110.

Koch, R.E., Buchanan, K.L., Casagrande, S., Crino, O., Dowling, D.K., Hill, G.E., Hood, W.R., McKenzie, M., Mariette, M.M., Noble, D.W., Pavlova, A., Seebacher, F., Sunnucks, P., Udino, E., White, C.R., Salin, K. & Stier, A. (2021) Integrating mitochondrial aerobic metabolism into ecology and evolution. *Trends in Ecology & Evolution*, 36, 321-332.

Little, T.D., Jorgensen, T.D., Lang, K.M. & Moore, E.W. (2013) On joys of missing data. *Journal of Pediatric Psychology*, doi:10.1093/jpepsy/jst048, 1-12.

Little, T.D. & Rhemtulla, M. (2013) Planned missing data designs for developmental researchers. *Child Development Perspectives*, 7, 199-204.

Little, T.D. & Rubin, D.B. (2002) *Statistical analysis with missing data*. John Wiley & Sons,, New York, 2nd edition.

Lüdtke, O., Robitzsch, A. & Grund, S. (2017) Multiple imputation of missing data in multilevel designs: A comparison of different strategies. *Psychological Methods*, 22, 141–165.

McKnight, P.E., Mcknight, K.M., Sidani, S. & Figueredo, A.J. (2007) *Missing data: A gentle introduction*. The Guilford Press,, New York, USA.

Merkle, E. & Rosseel, Y. (2018) blavaan: Bayesian Structural Equation Models via Parameter Expansion. *Journal of Statistical Software*, 85 1-30. doi: 10.18637/jss.v18085.i18604.

Nakagawa, S. (2017) Missing data: mechanisms, methods, and messages. *Ecological Statistics: Contemporary Theory and Application* (eds G.A. Fox, S. Negrete-Yankelevich & V.J. Sosa), pp. 81–105. Oxford University Press,, Great Clarendon Street, Oxford, UK.

Nakagawa, S. & de Villemereuil, P. (2015) A simple and general method for accounting for phylogenetic uncertainty via Rubin’s rules in comparative analysis. *Peer J. PrePrints*, 3:e1216v1.

Nakagawa, S. & de Villemereuil, P. (2019) A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. *Systematic Biology*, 68, 632-641.

Nakagawa, S. & Freckleton, R.P. (2010) Missing in action: the dangers of ignoring missing data. *Trends in Ecology & Evolution*, 23, 592-596.

Nakagawa, S. & Freckleton, R.P. (2011) Model averaging, missing data and multiple imputation: A case study for behavioural ecology. *Behavioral Ecology and Sociobiology*, 65, 103-116.
Pornprasertmanit, S., Miller, P., Schoemann, A. & Jorgensen, T.D. (2021) simsem: SIMulated Structural Equation Modeling. *R* package version 0.5-16. https://CRAN.R-project.org/package=simsem.

Quartagno, M. & Carpenter, J. (2016) *jomo*: A package for multilevel joint modelling multiple imputation. *R* package version 2.2-0.

Resche-Rigon, M. & White, I.R. (2018) Multiple imputation by chained equations for systematically and sporadically missing multilevel data. *Stat Methods Med Res.*

Rhemtulla, M. & Hancock, G.R. (2016) Planned missing data designs in educational psychology research. *Educational Psychologist, 51*, 305–316.

Rhemtulla, M., Jia, F., Wu, W. & Little, T.D. (2014) Planned missing designs to optimize the efficiency of latent growth parameter estimates. *International Journal of Behavioral Development, 38*, 423-434.

Saeij, J.P.J., Verburg-van Kemenade, L.B.M., van Muiswinkel, W.B. & Wiegertjes, G.F. (2003) Daily handling stress reduces resistance of carp to *Trypanoplasma borreli*: in vitro modulatory effects of cortisol on leukocyte function and apoptosis. *Developmental and Comparative Immunology, 27*, 233-245.

Schafer, J.L. (1997) *Analysis of incomplete multivariate data*. Chapman & Hall / CRC Press, Boca Raton, USA.

Schafer, J.L. & Graham, J.W. (2002) Missing data: our view of the state of the art. *Psycological Methods, 7*, 147-177.

Schafer, J.L. & Olsen, M.K. (1998) Multiple imputation for multivariate missing-data problems: A data analyst's perspective. *Multivariate Behavioural Research, 33*, 545-571.
Su, Y.-S., Gelman, A., Hill, J. & Yajima, M. (2011) Multiple imputation with diagnostics (mi) in R: Opening windows into the black box. *Journal of Statistical Software, 45,* 1–31.

van Buuren, S. (2012) *Flexible imputation of missing data.* In: *The handbook of advanced multilevel analysis.* CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, pp 173-196.

van Buuren, S. & Groothuis-Oudshoorn, K. (2011) mice: Multivariate imputation by chained equations in R. *Journal of Statistical Software, 45,* 1-64.

von Hippel, P. & Lynch, J. (2013) Efficiency gains from using auxiliary variables in imputation. *Cornell University Library, arXiv:1311.5249.*
Tables and Figures

Table 1 – Examples of common packages and statistical programs that can be used to deal with missing data. Abbreviations are as follows: SA = stand-alone program; MI = multiple imputation; MB = model-based approaches; B = both, R = response, Y = yes, ? = unknown.

Package	Prog.	Algorithms	Response/Predictor	Multi-level	Reference / link
mi	R	MI	B	Y	Su et al. (2011)
mice	R	MI	B	Y	Van Buuren & Groothuis-Oudshoorn (2011)
micemd	R	MI	B	Y	Audigier & Resche-Rigon (2017)
miceadds	R	MI	B	Y	(Robitzsch & Grund 2020)
lavaan	R	MB	B	Y	(Rosseel 2012)
blavaan	R	MB	B	Y	(Merkle & Rosseel)
jomo	R	MI	B	Y	Quartagno & Carpenter (2016)
Amelia	R	MI	B	Y	Honaker et al. (2011)
multimp	R	MI	B	Y	https://github.com/inbo/multimput
JAGS	SA/R	MB	B	Y	https://mcmc-jags.sourceforge.io
MCMCglmm	R	MB	B	Y	Hadfield (2010)
brms	R	MB/MI	B	Y	(Bürkner 2017; Bürkner 2018)
ASReml	SA/R	MB	B	Y	Butler (2009)
SAS	SA	MB/MI	B	Y	https://stats.idre.ucla.edu/sas/seminars/multiple-imputation-in-sas/mi_new_1/
SPSS	SA	MB/MI	B	?	https://www.ibm.com/ken/marketplace/spss-missing-values
MPlus	SA	MB/MI	B	Y	https://www.statmodel.com/index.shtml
A) Model-Based Procedures – Full Information Maximum Likelihood

\[E(Y) = XB \]

\[\log L = \log \det \Sigma \]

\[\log \det (\Sigma + U \cdot 3) \]

\[u = [u_1, u_2, u_3] \]

\[E(Y) = XB + \epsilon \]

Unbiased estimates

Est. [95% CI]

\[B_1 = 0.65 \] [0.25 - 0.76]

\[B_2 = 0.90 \] [0.80 - 1.05]

\[B_3 = 1.20 \] [1.00 - 1.30]

B) Model-Based Procedures – Imputation / Augmentation

\[E(Y) = XB \]

Unbiased estimates

Est. [95% CI]

\[B_1 = 0.65 \] [0.25 - 0.76]

\[B_2 = 0.90 \] [0.80 - 1.05]

\[B_3 = 1.20 \] [1.00 - 1.30]

C) Multiple Imputation

Step 1 - From missing data, estimate parameters predicting each variable from complete data

\[E(Y) = XB \]

\[E(2) = XB + \epsilon \]

\[E(3) = XB + \epsilon \]

Step 2 - Impute and add error

Step 3 - Analyse and Pool Estimates

Rubin’s Rules

Unbiased estimates

Est. [95% CI]

\[B_1 = 0.65 \] [0.25 - 0.76]

\[B_2 = 0.90 \] [0.80 - 1.05]

\[B_3 = 1.20 \] [1.00 - 1.30]
Figure 1 – Two major types of missing data procedures: **A & B** model-based procedures (e.g., full information maximum likelihood, expectation maximization, MCMC) and **C** multiple imputation procedures. Each large square represents a dataset containing four variables (Y, X1, X2, X3) and n = 10 observations. White squares represent missing data and grey squares complete data. Model-based procedures can be broken into procedures that do not impute data but rather define a case-wise likelihood function \[\log L(u, \Sigma)\] for each row of data, that makes use of all available data that is present to estimate the maximum likelihood of a set of parameters \((u, \Sigma)\) (i.e., full information maximum likelihood) (**A**). Alternatively, imputation and augmentation procedures take incomplete data in the analysis under a pre-specified model \([E(Y) = X\beta]\), augment missing data, estimate parameter estimates (B1, B2, B3) and then re-iterate this process with updated parameters [different coloured B1, B2, B3 and \(E(Y) = X\beta\)] until the model converges on a set of unbiased parameter estimates (**B**). Multiple imputation (**C**) uses incomplete data and imputes missing measurements using regression equations with plausible values of missing data to generate m complete datasets. Note that all data can be used to impute missing measurements in each variable (hence, XB and Yb). To prevent downward bias in sampling variance for estimates of a given variable residual error (based on the proposed error distribution of the variable being imputed) is added to each of the imputed data points (checkered small squares in step 2). These m datasets are then analysed with a given model, which can be different from the ones (hence why \(E(Y)\) can be used for each predictor in a separate model) used to impute and parameter estimates are pooled across datasets using equations proposed by (Rubin 1987). Abbreviations are as follows: E = expectation of variable, or mean estimate of variable; X = design matrix; B = vector of parameter estimates (e.g., B1, B2, B3); u = a scalar vector describing the means for the multivariate distribution for each variable (Y, X1, X2, X3); \(\Sigma\) = the multivariate (co)variance matrix for Y, X1, X2, X3; \(\log L\) = is the log likelihood; \(\log Li\) = the log likelihood for row i of the incomplete dataset; \(\varepsilon\) = residual effect or random error.
Figure 2 – Three examples of planned missing data designs relevant for ecological and evolutionary research. In all cases, 20 individuals are shown along the rows (ID) and variables (e.g., BM) or traits (e.g., T1) measured are shown along columns. Abbreviations: BM = body mass, S = Sex, M =
metabolism; TH = thyroxine (T4), T1 = Trait 1; T2 = Trait 2. ‘Gray’ filled boxes indicate that traits on individuals are measured and ‘white’ filled boxes are missed data. A) Subset measurement designs randomize a set of variables to be measured on a sample of individuals. Body mass (BM) is strongly correlated with all three other variables, and so, is measured on all individuals in the study. Molecular determination of sex is needed with our species, and along with thyroxine, can both be costly to quantify so these traits are measured on a sample of individuals. Metabolism can also be time consuming to measure, and so, it is only quantified on a sub-sample of animals. While we can estimate all main effects (i.e., single variables of interest) with this design, if interactions are of interest then one should have a PMDD that ensures there is enough data to effectively estimate the interaction parameters.

B) Wave missing design can be applied to longitudinal data. Here, only two traits are quantified once a month on 20 individuals. In each measurement wave (i.e., a month), a random sample of individuals are completely missing data on both traits. C) Combined designs can miss certain individuals and also impose trait-level missingness.