Group classification of Schrödinger equations with position dependent mass

A G Nikitin1,3 and T M Zasadko2

1 Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka Street, Kyiv-4, Ukraine, 01601
2 Taras Shevchenko National University of Ukraine, 64 Volodymirskaya Street, Kyiv-4, Ukraine

E-mail: nikitin@imath.kiev.ua and tacita@ukr.net

Received 7 May 2016, revised 4 July 2016
Accepted for publication 11 July 2016
Published 17 August 2016

Abstract
Maximal kinematical invariance groups of the 2d Schrödinger equations with position dependent mass (PDM) and arbitrary potential are classified. It is demonstrated that there exist seven classes of such equations possessing non-equivalent continuous symmetry group. Three of these classes include arbitrary functions while the remaining ones are defined up to arbitrary parameters. In particular, for the case of a constant mass the class missing in the Boyer classification (Boyer 1974 Helv. Phys. Acta. 47 450) is indicated. A constructive test of (non)equivalence of a PDM system to a constant mass system is proposed.

Keywords: position dependent mass, superintegrability, group classification

1. Introduction

Group classification of differential equations consists of the specification of their classes which are characterized by non-equivalent symmetry groups. It is an important research field which has both fundamental and application value.

One of the most famous results in this field is the group classification of Schrödinger equations (SEs) with arbitrary potentials, which was carried out as far back as the 1970s in [1–4]. In particular, it was shown in [1] and [2] that in addition to the Galilei invariance, the free SE admits conformal transformations of independent variables provided the wave function is multiplied by a specific phase factor dependent on these variables and transformation parameters. These results form group-theoretical grounds of quantum mechanics and give rise to many inspiring physical theories such as conformal quantum mechanics. The
complete description of possible symmetry groups of the SEs and the corresponding non-equivalent versions of these equations presented in [1–4] are a cornerstone of modern quantum physics.

More contemporary results concerning the group classification of the *nonlinear* Schrödinger and Ginsburg–Landau equations can be found in [5] and [6], higher symmetries of non-stationary linear and nonlinear SEs were discussed in [7], and Lie symmetries of supersymmetric SEs were studied in [8] and [9]. Finally, symmetries of the free SE in the non-commutative plane are presented in [10].

On the other hand, the group classification of SEs with position dependent mass (PDM) continues to be an open problem, which is a rather curious fact taking into account the fundamental role played by such equations in various branches of modern physics. A number of papers are devoted to SEs with various particular and sometimes exotic symmetries, see, e.g. [11–14]. But, to the best of our knowledge, even the standard symmetries of these equations with respect to continuous transformation groups never were investigated completely.

An attempt at a systematic study of symmetries of the PDM SEs has been made in [15] where all such (stationary) 3d equations with different symmetry groups were classified. The number of non-equivalent PDM SEs appears to be rather extended and includes 18 classes. Seven of them are defined up to arbitrary parameters while the remaining ones include arbitrary functions. Rather surprisingly one of the considered equations is invariant with respect to the six-parameter Lie group locally isomorphic to the Lorentz group.

In the present paper we make a group classification of time dependent PDM SEs with 1 + 2 independent variables, which will be referred as 2d SEs. This is not only the first step to classification of equations with higher dimensions, but also an interesting self-consistent problem. First, the planar systems are of particular interest in modern physics. Secondly, such equations naturally appear as reduced versions of multidimensional systems written in partially separated variables. One more origin of 2d SEs with PDMs are quantized versions of classical Hamiltonian systems defined in Riemannian space in two dimensions, see, e.g. [13] and references cited therein.

The classification problem in 1 + 2 dimensional space is nothing like as simple as it looks. In spite of the small number of dependent and independent variables, there are complications connected with equivalence relations which are much more powerful than in the 3d case. The considered systems include two arbitrary elements, i.e. mass and potential terms, which make the classification problem rather nontrivial.

Since the ordinary SEs with a constant mass appear in our analysis as a particular case, we revised also the classification results presented in [4]. We did not plan to verify them. However, some systems appearing in our analysis are equivalent to systems with constant masses, and willy-nilly we tried recover some such systems. To our astonishment, in this way we discovered a system missing in the list presented in [4], see section 6 below.

2. Time dependent position dependent mass Schrödinger equations

The subject of our analysis is the PDM SEs of the following generic form:

\[L\psi \equiv \left(\frac{\partial}{\partial t} - H \right)\psi = 0 \] \hspace{1cm} (1)

where \(H \) is the PDM Hamiltonian

\[H = H_k + V \] \hspace{1cm} (2)
where
\[H_k = \frac{1}{4}(m^a p^a m^b p^b + m^a p^b m^b p^a). \] (3)

Here \(p_a = -i \frac{\partial}{\partial x_a} \), \(m = m(x) \), and \(V = V(x) \) are the mass and potential depending on spatial variables \(x = (x_1, x_2, \ldots, x_n) \), and summation w.r.t. the repeating indices \(a \) is imposed over the values \(a = 1, 2, \ldots, n \). This convention will be used in all the following text.

In (2) we use the physically motivated representation (3) for the kinetic energy term, where \(\alpha, \beta \) and \(\gamma \) are the ambiguity parameters satisfying the condition \(\alpha + \beta + \gamma = -1 \) [16].

Let us note that it is not the most general form of \(H_k \) compatible with the hermicity condition; see an interesting discussion of this point in [18]. On the other hand, there are several reasons to reduce \(H_k \) to a more simple form by considering only particular values of the ambiguity parameters. Mathematically, it is possible to represent the PDM Hamiltonian in the following forms equivalent to (2):

\[H = p_a f_a p_a \] (4)

and
\[H = \sqrt{f} p_a p_a \sqrt{f} \] (5)

where
\[f = \frac{1}{2m}, \quad \tilde{V} = V + \alpha \gamma f_a f_a - \frac{\alpha + \gamma}{2} f_{aa} \] (6)

and
\[\tilde{V} = V + \left(\alpha \gamma - \frac{1}{4} \right) \frac{f_a f_a}{f} + \frac{1 - \alpha - \gamma}{2} f_{aa}. \] (7)

Here \(f_a = \frac{\partial f}{\partial x_a} \) and \(f_{aa} = \frac{\partial f}{\partial x_a}. \)

Hamiltonians (4) and (5) are simply equal to (2) but written in more compact forms convenient for the investigation of their symmetries.

Just representation (4) was first proposed in [17] as the simplest way to to ensure current conservation. Representation (4) was applied in [19] for reformulating the connection rule problem on the two sides of a heterojunction. The same representation was derived in [20] as the nonrelativistic limit of the Dirac Hamiltonian with PDM, and in [21] via a path integral evaluation.

There are also various other versions of Roos ordering (3) which are suitable for particular physical models: \(\alpha = \gamma \) [22], \(\beta = \alpha = 0 \), \(\gamma = -1 \) [23], \(\gamma = 0 \), \(\alpha = \beta = -\frac{1}{2} \) [24], \(\alpha = \gamma = -\frac{1}{2}, \beta = -\frac{1}{2} \) [25]. All the corresponding Hamiltonians (2) can be reduced to the form (4) or (5), and so are equivalent up to redefinitions of the potential given by formulae (6) and (7). On the other hand, different orderings can require different ways of introducing interaction (e.g. with the external electromagnetic field) into the corresponding models, and so they are not equivalent physically.

Representation (4) was used in [15] for classification of first order integrals of motion for PDM Hamiltonians, while representation (5) appears to be convenient for classification of second order integrals of motion [26]. Notice that all representations of Hamiltonians given above are formally self adjoint.
Finally, let us transform Hamiltonian (5) and the solutions of equation (1) in the following manner:

\[
\psi \rightarrow \tilde{\psi} = f^{-\frac{1}{2}}\psi, \quad H \rightarrow \tilde{H} = f^{-\frac{1}{2}}Hf^{\frac{1}{2}} = \int \rho \, d\nu + \tilde{V}.
\] (8)

Representation (8) was used in [26] to construct exact solutions of the corresponding eigenvalue problems.

In the present paper we restrict ourselves to group classification of equations (1) with two spatial variables. Moreover, we will study Hamiltonians in the form (4). The classification results can be easily reformulated for systems with Hamiltonians represented in (2), (5) and (8), since the relations between these representations are rather straightforward and given by formulae (6), (7) and (8).

We will not consider systems with one spatial dimension, since using the Liouville transformation they always can be reduced to systems with constant masses, see [26] for examples and references. The first steps of our analysis presented in the following section are valid for systems of arbitrary dimension \(n\).

3. Determining equations for symmetries of systems (1) with any dimension

Let us search for symmetries of equations (1) with respect to continuous groups of transformations. It can be done using the classical Lie algorithm whose contemporary version can be found in [27]. In application to the linear SE this algorithm can be reduced to searching for the first order differential operators of the following form:

\[
Q = \xi^0 \partial_t + \xi^a \partial_a + \eta \equiv \xi^0 \partial_t + \frac{1}{2} (\xi^a \partial_a + \partial_a \xi^a) + \eta
\] (9)

associated with the group generators. In (9) \(\eta = \frac{i}{2} \xi^a + \eta\). \(\xi^0, \xi^a\) and \(\eta\) are functions of independent variables, whose explicit form can be found from the following operator equation:

\[
QL - LQ = \alpha L
\] (10)

where \(\alpha\) is one more unknown function of \(t\) and \(\mathbf{x}\).

Evaluating the commutator in (10) and equating coefficients for the same differentials we come to the following system of determining equations for unknowns \(\xi^0, \xi^a, \eta, \tilde{V}\) and \(\alpha\):

\[
\xi^0 = -\alpha, \quad \xi^a = 0,
\] (11)

\[
\mathcal{F}^{ab} \equiv (\xi_i^b + \xi_i^a)J^i - \delta^{ab}(\xi_i^c - \alpha J^i) = 0,
\] (12)

\[
-i\dot{\xi}^a + \xi^c \partial_c a - 2i\eta^a + \xi^b \partial_c b - \xi^a \partial_c b - \mathcal{F}_{ab} = \alpha \partial_b,
\] (13)

\[
i(\eta^a \mathcal{F}_a) + \xi^b \mathcal{V}_a + \frac{1}{2} (\mathcal{F}^{ab} \mathcal{F}_b) + \frac{i}{2} \dot{\xi}^a - \dot{\eta} = \alpha V
\] (14)

where \(\delta^{ab}\) is the Kronecker symbol, the dot and subindices denote derivations with respect to time and spatial variables: \(\dot{x}^i = \frac{\partial}{\partial t}, f_a = \frac{\partial}{\partial x^a}\), etc.

Considering various differential and algebraic consequences of (12)–(14) it is possible to reduce this system to the following equivalent form (see appendix 1):

\[
\xi^b_a + \xi^a_b = \frac{1}{n} \delta_{ab} \xi^c = 0,
\] (15)
The system \((11), (15)–(18)\) is overdetermined but rather complicated. It can hardly be solved for arbitrary \(n\) if at all. In the following sections we present solutions of this system for \(n = 2\).

4. Reduction to the case \(n = 2\) and equivalence relations

The classification problem in 1 + 2 dimensional space is rather specific. First, the number of dependent and independent variables is relatively small. Secondly, the equivalence relations appear to be more powerful than in the cases of more extended carrier spaces.

Equation \((15)\) for \(n = 2\) is reduced to the Cauchy–Riemann conditions for functions \(\xi^1 = u\) and \(\xi^2 = v\):

\[
u_1 = v_2, \quad u_2 = -v_1.
\]

The corresponding symmetries \((9)\) can be rewritten as follows:

\[
Q = \xi^0 \partial_0 + u \partial_1 + v \partial_2 + u_1 + i \eta.
\]

The remaining equations \((16)–(18)\) take the following form:

\[
2f_{11} + \dot{u} = 0, \quad 2f_{12} + \dot{v} = 0, \quad u_{11} + v_{12} - (\alpha + 2u_1)f = 0, \quad uV_1 + vV_2 + u_{11}f_1 + v_{22}f_2 = \alpha V + \eta.
\]

Just system \((11), (19), (21)–(24)\) together with definition \((20)\) describe all possible generators of continuous symmetry groups and the corresponding PDMs and potentials present in equations \((1), (4)\) for \(n = 2\). We will classify equations \((1), (4)\) with different symmetries up to equivalence relations defined in the following.

Let us note that Hamiltonian \((4)\) is form invariant with respect to the following transformation including simultaneous changes of dependent and independent variables:

\[
x_1 \to \tilde{u}(x_1, x_2), \quad x_2 \to \tilde{v}(x_1, x_2), \quad \psi' \to \frac{1}{\sqrt{R}} \psi, \quad H \to \frac{1}{\sqrt{R}} H \sqrt{R}
\]

where \(\tilde{u}\) and \(\tilde{v}\) are arbitrary functions satisfying the Cauchy–Riemann condition \((19)\), and \(R = \sqrt{\tilde{u}_1^2 + \tilde{u}_2^2}\). Indeed, transformations \((25)\) and \((26)\) keep the generic form of the Hamiltonian but change functions \(f\) and \(V\) in \((4)\).

In addition, equation \((1)\) admits scaling and shifts of the time variable:

\[
t \to \nu t + \mu,
\]

where \(\nu \neq 0\) and \(\mu\) are arbitrary constants. Such transformations can be compensated by multiplication of \(f\) and \(V\) by \(\frac{1}{\nu}\).
It is possible to show that formulae (25)–(27) give the most general continuous transformations which keep the generic form (4) of the Hamiltonian up to change of functions f and V. The validity of this statement can be verified by a direct calculation. Notice that just transformations of type (25) correspond to generic infinitesimal operator (20) where u and v are arbitrary functions satisfying (19). And just conditions (19) are necessary and sufficient to keep the shape of the second derivative term in (4).

We will say two equations of type (1), (4) be equivalent provided they can be connected via transformations (25)–(27).

To verify whether a given Hamiltonian (4) is equivalent to a Hamiltonian with constant mass we are not supposed to search for a possibility to represent it in form (28), but can use a more convenient criteria presented in the following statement.

Proposition. Hamiltonian (4) is equivalent to a Hamiltonian with a constant mass iff the corresponding function f solves the following equation:

$$\log f_{mn} = 0$$

or, equivalently

$$ff_{mn} = f_m f_n.$$ \hspace{1cm} (31)

Proof. The generic form of Hamiltonian (4) equivalent to a constant mass Hamiltonian is given by equations (28) and (29). Function \bar{f} by construction satisfies condition (31) thus this condition is necessary.

Let equation (31) be satisfied, then representing f in the form

$$f = c \exp (\omega)$$ \hspace{1cm} (32)

we conclude that function ω should solve the 2d Laplace equation. It means that $\omega = F(x_1 + ix_2) + G(x_1 - ix_2)$. Moreover, since f by definition is real, G should be nothing but the complex conjugated function F. It means that $f = \exp (F)(\exp (F))^*$, i.e. f is a squared modulus of a complex analytical function $U = \exp (F)$. Any such function can be represented as $U = u_1 + iv_1$ with some u and v satisfying the Cauchy–Riemann condition. Thus the Hamiltonian with such f is equivalent to a Hamiltonian with constant mass.

In particular, if f depends only on one of the variables, say $f = F(x_1)$, the corresponding Hamiltonian is equivalent to a Hamiltonian with a constant mass iff $F = a \exp (bx_1)$ with some constants a and b. There is one more important case: let $f = F(x_1^2 + x_2^2)$, then it is possible to reduce it to a constant inverse mass iff F is a power function. Finally, let the
inverse mass be a product of functions depending on different variables, i.e. \(f = F(x_1)G(x_2) \). Then it can be reduced to a constant iff \(F(x_1) = C_1 \exp(\nu x_1^2 + \mu x_1) \) and \(G(x_2) = C_2 \exp(-ix_2^2 + \lambda x_2) \) with some constants \(C_1, C_2, \mu, \nu \) and \(\lambda \).

The presented equivalence criteria will be used several times in the following.

5. Classification results

We reduce the classification of symmetries of 2d quantum mechanical systems with PDMs to solutions of the determining equations (21)–(24) with functions \(u \) and \(v \) satisfying conditions (19). Using equivalence relations (25) and (26) we can simplify the determining equations to the case \(u = 0 \) and \(v = 1 \), see appendix 2. Such a system of equations is easily solvable. Its general solution gives all non-equivalent Hamiltonians (4) such that the corresponding equations (1) admit a one parametric Lie group of symmetry.

A more sophisticated problem is to classify systems admitting more extended symmetries. To do it we are supposed additionally to solve determining equations of generic form (21)–(24) which, however, include the restricted mass and potential terms found in the previous step.

Here we present the completed list of PDM Hamiltonians together with admitted symmetries, while the calculation details can be found in the appendix:

\[
H = p_a f(r)p_a + V(r),
\]

\[
Q_i = J = x_i p_2 - x_2 p_1;
\]

\[
H = p_a^2 + V(r),
\]

\[
Q_i = J, Q_2 = (x_i^2 - x_j^2 - 1)p_1 - 2x_i x_j p_2 + 2i x_i,
\]

\[
Q_3 = (x_i^2 - x_j^2 - 1)p_2 - 2x_i x_j p_1 + 2i x_j; \quad (34)
\]

\[
H = p_a^2 - 4r,
\]

\[
Q_i = J, Q_4 = (x_i^2 - x_j^2 - 1)p_1 - 2x_i x_j p_2 + 2i x_i,
\]

\[
Q_5 = (x_i^2 - x_j^2 - 1)p_2 - 2x_i x_j p_1 + 2i x_j; \quad (35)
\]

\[
H = p_a^2 F(\varphi)p_a + r^\alpha \hat{V}(\varphi),
\]

\[
Q_6 = D = i\alpha \partial_\varphi + x_1 p_1 + x_2 p_2; \quad (36)
\]

\[
H = p_a f(r)p_a + \nu \varphi + \hat{V}(r),
\]

\[
Q_7 = J + \nu t;
\]

\[
H = p_a^2 + \nu x_i^\alpha p_a, \quad \alpha \neq 1;
\]

\[
Q_8 = p_a, Q_9 = D; \quad (38)
\]

\[
H = p_a^2 + \nu x_i^\alpha p_a, \quad \alpha = 1;
\]

\[
Q_{10} = p_a + \nu t, Q_{11} = i\partial_\varphi + x_1 p_1 + x_2 p_2 \quad (39)
\]

where \(\varphi = \arctan \left(\frac{x_1}{x_2} \right) \) and \(r = \sqrt{x_1^2 + x_2^2} \). In addition, \(f(r), F(\varphi), \hat{V}(r) \) and \(\hat{V}(\varphi) \) are arbitrary functions of the arguments fixed in brackets.
Equations (33)–(39) present Hamiltonians with different symmetries, defined up to equivalence relations (25), (26) and (27). All presented systems are invariant w.r.t. shifts of the time variable. The generator of these transformations is $P_t = i\frac{\partial}{\partial t}$.

Let us note that for $F(\varphi) = \exp(\nu \varphi)$ and $\tilde{V}(\varphi) = \mu \exp(\nu \varphi)$ the system (36) admits the additional symmetry $Q = J + 2\nu tP_t$. In addition, if in equations (37) function $f(r)$ is proportional to r^2, the corresponding system admits the additional integral of motion $D_0 = x_1p_1 + x_2p_2 - \nu t$. We do not specify these systems in the list (33)–(39) since they are equivalent to systems with constant masses.

Operators Q_1, Q_2, \ldots, Q_5 given by formulae (33)–(35) commute with Hamiltonians and so are integrals of motion. In addition, they satisfy the following commutation relations:

$$[Q_1, Q_2] = iQ_3, \quad [Q_1, Q_3] = -iQ_2, \quad [Q_2, Q_3] = iQ_1$$

(40)

and

$$[Q_1, Q_4] = iQ_5, \quad [Q_1, Q_5] = -iQ_4, \quad [Q_4, Q_5] = -iQ_1$$

which specify algebras $so(3)$ and $so(1, 2)$ correspondingly.

The other symmetries which are given by equations (36)–(39) are time dependent and do not commute with Hamiltonians. However, they satisfy the following relations:

$$[Q_6, H] = 2iH,$$

(41)

$$[Q_7, H] = -\nu I, \quad [Q_7, I] = [H, I] = 0,$$

(42)

$$[Q_8, H] = 0, \quad [Q_8, H] = i\nu H, \quad [Q_9, Q_8] = iQ_8,$$

(43)

$$[Q_{10}, H] = -i\nu I, \quad [Q_{10}, I] = iH, \quad [Q_{11}, Q_{11}] = i\nu q_{10},$$

$$[Q_{10}, I] = [Q_{11}, I] = [H, I] = 0$$

(44)

where I is the unit operator.

Commutation relations (42) specify the Heisenberg algebra. In the case (44) we have the Lie algebra of the centrally extended Galilei group in 1_d space. Relations (41) and (43) characterize the two and three dimensional solvable Lie algebras.

6. New symmetry for systems with constant mass

All systems given by formulae (33)–(39) essentially differ from the systems with constant masses since the related functions f do not satisfy conditions (31) and so cannot be reduced to constants via transformations (25) and (26). However, if we suppose that arbitrary functions f present in (33) and (37) satisfy this condition and function $F(\varphi)$ in (36) is constant, we can transform the corresponding systems to constant mass ones.

Making this action with Hamiltonians (33) and (36) we come to well known systems classified in [4]. Rather surprising, it is not the case for Hamiltonian (37). Setting $f = 1$ we obtain the following Hamiltonian:

$$H = p_a p_a + \nu \arctan \left(\frac{x_2}{x_1} \right) + V(r)$$

(45)

which, in addition to the obvious invariance with respect to shifts of the time variable, admits one more symmetry whose generator is

$$Q = x_1p_2 - x_2p_1 - \nu t.$$
Hamiltonian (45) is missing in the classification results presented in [4]. Thus, our analysis of symmetries of PDM systems helped to make a small correction to this classical paper.

For completeness let us present finite group transformation generated by operator (46):

\[
\begin{align*}
 x_1 &\rightarrow x_1 \cos \theta + x_2 \sin \theta, \\
 x_2 &\rightarrow x_2 \cos \theta - x_1 \sin \theta, \\
 \psi &\rightarrow \exp(-i\theta r)\psi
\end{align*}
\]

(47)

where \(\theta \) is a real parameter. Invariance of equation (1) with Hamiltonian (45) and more general Hamiltonian (37) with respect to transformations (47) can be easily verified by direct calculation.

7. Exactly solvable system

Let us consider in more detail the system whose Hamiltonian is given by equation (34). This system admits three integrals of motion, two of which, say \(Q_1 \) and \(Q_2 \), are independent. This number of independent integrals of motion is maximal for 2\(d \) Hamiltonians and characterizes so called maximally superintegrable systems.

Let us consider the eigenvalue problem for Hamiltonian (34)

\[
\hat{H}\psi = -(\partial_r (1 + r^2)^2 \partial_r + 4r^2)\psi = E\psi,
\]

(48)

where functions \(\psi \) are supposed to be square integrable and vanishing at \(r = 0 \).

Eigenvalues \(E \) can be found algebraically. Indeed, integrals of motion commute with \(\hat{H} \) and satisfy relations (40) and so form a basis of algebra \(so(3) \). Casimir operator \(C \) of this algebra is equal to \(Q_1^2 + Q_2^2 + Q_3^2 \), or, using realization (34),

\[
C = Q_1^2 + Q_2^2 + Q_3^2 = \frac{1}{4}(H - 4).
\]

(49)

Let operators \(Q_1, Q_2 \) and \(Q_3 \) realize an irreducible representation of algebra \(so(3) \) then, in accordance with the Shurr lemma, the Casimir operator should be proportional to the unit one. In addition, eigenvalues \(c \) of \(C \) are [28]

\[
c = s(s + 1)
\]

(50)

where \(s \) are integers or half integers.

Combining (49) and (50) we find the admissible eigenvalues of the Hamiltonian in the following form:

\[
E = n^2 + 3, \quad n = 2s + 1 = 1, 2, 3, ...
\]

(51)

Let us find eigenvalues (51) and the corresponding eigenfunctions in a more standard way. Introducing in (48) the radial and angular variables \(r = (x_1^2 + x_2^2)^{1/2}, \quad \varphi = \arctan \frac{x_2}{x_1}, \) and expanding the wave function via eigenvectors of operator \(J = x_1 p_2 - x_2 p_1 = -i \frac{\partial}{\partial \varphi} \) we obtain the following equation for radial functions \(\phi_k(r) \):

\[
-(r^2 + 1)^2 \left(\frac{\partial^2}{\partial r^2} - \frac{k^2}{r^2} \right) - \frac{(1 + r^2)(1 + 5r^2)}{r} \frac{\partial}{\partial r} - 4r^2 \phi_k = E\phi_k.
\]

(53)
Let us note that it is reasonable to restrict ourselves to solutions with positive values of parameter k. Then solutions for negative k can be found by transforming $x_1 \rightarrow x_1, x_2 \rightarrow -x_2$, and

$$
\psi(x_1, x_2) \rightarrow \psi(x_1, -x_2), \quad \phi_k(r) \rightarrow \phi_{-k}(r).
$$

Square integrable solutions of equation (53) with $k \geq 0$ are

$$
\phi_k = C_k^n r^k (r^2 + 1)^{-\frac{k}{2} - \frac{n}{4}} _2F_1\left(\frac{1}{2} - \frac{1}{2} n, \frac{1}{2} + k - \frac{1}{2} n; 1 + k, -r^2\right),
$$

provided E is given by equation (51) and $k \leq n - 1$. Here $_2F_1$ is the hypergeometric function and C_k^n are integration constants.

8. Discussion

We classify all non-equivalent planar quantum mechanical systems with PDMs, which admit non-trivial Lie symmetries. In other words we describe all such symmetries which are admissible by PDM quantum mechanical systems. In this way we extend the classical results [1–3] and [4] which were restricted to constant mass systems. Moreover, we discover a system missing in the Boyer classification results [4], see section 6. Let us note that there are 3d analogues of system (45) which also are not presented in [4].

The presented results can be treated as certain group-theoretical grounds of 2d quantum mechanics with PDMs. The ad hoc notion of all potentially admissible Lie groups can be used for construction of models with a priori requested symmetries. Moreover, the PDM systems which belong (or are equivalent) to the systems classified in the above, can be effectively studied and simplified using the tools of Lie theory. In particular, for the systems equivalent to (36) and (38), it is possible to construct the similarity solutions using their invariance with respect to the scaling transformations.

The systems which admit time independent integrals of motion commuting with Hamiltonians are given in equations (33), (34) and (35). The list of such 2d PDM systems is rather short and includes only three representatives, one of which (33) includes two arbitrary functions. This result is in a good accordance with Ovsiannikov’s classification of generic linear partial differential equations of second order with two independent variables [29].

The systems whose Hamiltonians are specified in (34) and (35) are maximally superintegrable since any of them admits two independent integrals of motion. This property makes these systems exactly solvable. The solutions of one of them are presented in section 7.

Let us note that potentials present in Hamiltonians (34) and (35) do not include coupling constants. It means that the corresponding systems can be treated as purely kinetic ones. Such an interpretation can be confirmed by transformation of these Hamiltonians to the representation (5) where potential V appears to be constant and equal to 4. Since all our potentials are defined up to constant terms, in fact we deal with Hamiltonians (2) with trivial potentials, the ambiguity parameters $\alpha = \gamma = -1/2$ and masses $m = \frac{1}{\alpha^2 + \gamma^2}$. In other words, in these cases it is natural to use the Zhu–Kroemer parametrization [19]. All the other parametrizations including the Mustafa–Mazharimousavi [25] one either are equivalent to the Zhu–Kroemer ordering or lead to the presence of a potential term in the purely kinematical Hamiltonians and so are less adequate.

We recall that in the 3d case there exist much more (namely 18) non-equivalent systems admitting first order integrals of motion [15]. The essential decreasing of the number of non-equivalent systems in the 2d case is caused by the stronger equivalence relations (25) which
are defined up to an arbitrary analytic function. For 3d systems such relations are defined by transformations belonging to the 3d conformal group \(C(3) \) [15].

In the present paper we restrict ourselves to group classification of 2d systems which are not equivalent to systems with constant masses. The classification results for systems with constant masses were presented in [4], but they should be added by the system discussed in section 6.

Let us note that the results of our analysis presented in sections 2 and 3 are valid for systems with an arbitrary number of spatial variables. In particular, they can be used to classify Lie symmetries of 3d systems with PDMs. The list of 3d PDM systems with different symmetries is much more extended than the one presented in section 6 and includes tens of representatives. Work on this list is in progress.

Appendix

A.1. Simplification of determining equations

Here we prove the equivalence of systems (12)–(14) and (15)–(18).

The subsystem (15) and (16) is nothing but the traceless part and the trace of tensor \(F^{ab} \). Thus this subsystem is an algebraic consequence of (12) and vice versa.

Let us show that equation (13) can be reduced to (17). To this effect we differentiate (16) with respect to \(x_a \) and (15) with respect to \(x_b \), summing over the repeating index \(b \). As a result we obtain the following differential consequences:

\[
\xi^i_{,f_i} + \xi^i_{,f_a} - \alpha f_a - \frac{2}{n} (f_a \xi^i_{,f_i} + f^i_{,f_a}) = 0
\]

(A1)

and

\[
\frac{2 - n}{n} \xi^b_{,f_b} - \xi^a_{,f_b} = 0.
\]

(A2)

Then we multiply all terms in (15) by \(f_b \) and make a summation over index \(b \). That gives the following algebraic consequence:

\[
\frac{2}{n} \xi^1_{,f_a} - \xi^a_{,f_b} - \xi^b_{,f_b} = 0.
\]

(A3)

The sum of (13), (A1), (A2) and (A3) is nothing but equation (17). Then using (17) we can reduce (14) to equation (18).

A.2. Symmetries independent of t

Let us prove that formulae (33)–(35) present the completed list of non-equivalent Hamiltonians admitting first order integrals of motion. For this purpose we consider the important subclass of symmetry operators (9) corresponding to \(\xi^0 = \alpha = 0 \) and time independent functions \(\xi^a \) and \(\eta \). In this case our classification problem is reduced to finding all nonequivalent integrals of motion of the following form:

\[
\tilde{Q} = up_1 + vp_2 - iw_1 + \eta,
\]

(A4)

which commute with Hamiltonian (4).

The related equations (11) turn into identities, while the system (21)–(24) is reduced to the following equations:
In accordance with (A5) \(\eta \) should be a constant. The corresponding term in (A4) represents the evident constant integral of motion. We will not consider such integrals and set \(\eta = 0 \).

Let Hamiltonian (4) commute with first order differential operator (A4). Applying the transformation of generic form (25) we can reduce (A4) to the shift generator (see appendix A.3)

\[
\hat{Q} \rightarrow \hat{Q}' = -i \frac{\partial}{\partial x_2}.
\]

(A8)

The corresponding transformed Hamiltonian (28) should commute with (A8). Thus

\[
\hat{f} = \hat{f}(\tilde{x}_1), \quad \hat{V} = \hat{V}(\tilde{x}_1),
\]

(A9)

i.e. both \(\hat{f} \) and \(\hat{V} \) are arbitrary functions of \(\tilde{x}_1 \).

Let Hamiltonian (28), (A9) admit one more first order integral of motion. Its generic form can be obtained from (A4) by changing \(u_a \rightarrow \tilde{u}_a \) and setting \(\eta = 0 \):

\[
\hat{Q} = u\hat{p}_1 + v\hat{p}_2 - iu_1
\]

(A10)

where \(u \) and \(v \) are functions of \(\tilde{x}_1 \) and \(\tilde{x}_2 \) satisfying relations (19) and (A6), (A7) together with functions (A9). The latter two relations take the following forms:

\[
u f_1 = 2u_1 \hat{f},
\]

(A11)

\[
u V_1 + u_1 \hat{f}_1 = 0.
\]

(A12)

Integrating (A11) with respect to \(x_1 \) we obtain

\[
u^2 = \varphi(\tilde{x}_2) \hat{f}(\tilde{x}_1)
\]

(A13)

where \(\varphi(\tilde{x}_2) \) is a function of \(\tilde{x}_2 \). Thus \(u \) should be a product of functions dependent on \(\tilde{x}_1 \) and \(\tilde{x}_2 \):

\[
u = g(\tilde{x}_1)h(\tilde{x}_2).
\]

(A14)

In accordance with (19) \(u \) should satisfy the equation \(u_{11} + u_{22} = 0 \), i.e.

\[
g_1 h + gh_{22} = 0.
\]

Separating variables, we come to the following conditions for \(g \) and \(h \):

\[
g_1 = -\frac{h_{22}}{h} = \lambda
\]

(A15)

where \(\lambda \) is a constant.

There are three qualitatively different solutions for equations (A15) corresponding to the following versions of \(\lambda \):

\[
\lambda = 0, \quad \lambda = \omega^2 > 0, \quad \lambda = -\nu^2 < 0.
\]

(A16)

In the first case equations (A15) are solved by the following functions:

\[
g = ax_1 + b, \quad h = cx_2 + d
\]

(A17)

where \(a, b, c \) and \(d \) are integration constants. In accordance with (A12) the corresponding potential \(\hat{V} \) is constant.
Up to simultaneous shifts and scalings of independent variables \tilde{x}_1 and \tilde{x}_2 (such transformations keep the general form of Hamiltonian (28)), functions f and \tilde{V} satisfying equations (A11) and (A12) can be chosen in the form

$$f = \tilde{x}_1^2, \quad \tilde{V} = \text{Const}. \tag{A18}$$

Let $\lambda = \omega^2 > 0$, then equations (A15) are solved by the following functions:

$$g = a \sin(\omega \tilde{x}_1) + b \cos(\omega \tilde{x}_1), \quad h = c \sinh(\omega \tilde{x}_2) + d \cosh(\omega \tilde{x}_2). \tag{A19}$$

Since symmetry operator (A10) is defined up to a multiplication constant, arbitrary constants a and b can be reduced to the form $a = \cos(C)$, $b = \sin(C)$ with some constant C. Then

$$g = \cos(\omega \tilde{x}_1 - C) \equiv \cos(z_1). \tag{A20}$$

On the other hand both constants a and b in (A19) are essential, and h cannot be reduced to a form with one constant.

The corresponding functions f and \tilde{V} are obtained solving equations (A11) and (A12):

$$f = \sin^2(z_1), \quad V = f. \tag{A21}$$

These solutions generate Hamiltonians (28) which commute with the following operators:

$$Q_1 = \frac{\partial}{\partial z_2}, \quad Q_2 = \sin(z_1)\cosh(z_2)\frac{\partial}{\partial z_1} + \cos(z_1)\sin(z_2)\frac{\partial}{\partial z_2} + \cos(z_1)\cosh(z_2),$$

$$Q_3 = \sin(z_1)\sinh(z_2)\frac{\partial}{\partial z_1} + \cos(z_1)\cosh(z_2)\frac{\partial}{\partial z_2} + \cos(z_1)\cosh(z_2) \tag{A22}$$

where we denote $\omega \tilde{x}_2 = z_2$.

Analogously, considering solutions of equations (A15) corresponding to $\lambda = -\nu^2$ we obtain the following expressions for functions $g(x_1)$ and $h(x_2)$:

$$g = \cosh(z_1), \quad h = a \cos(z_2) + b \sin(z_2) \tag{A23}$$

and

$$g = \sinh(z_1), \quad h = a \cos(z_2) + b \sin(z_2) \tag{A24}$$

where $z_1 = \nu \tilde{x}_1$ and $z_2 = \nu \tilde{x}_2$. The corresponding solutions of equations (A11), (A12) are

$$\tilde{f} = \cosh^2(z_1), \quad \tilde{V} = -f \tag{A25}$$

and

$$\tilde{f} = \sinh^2(z_1), \quad \tilde{V} = -f \tag{A26}$$

respectively.

Notice that all Hamiltonians with the inverse masses given by equations (A21), (A26) and (A18) are equivalent. This equivalence is almost evident. Indeed, writing Hamiltonian (28), (A18) in circular variables $\tilde{x}_1 = z_2 \sin(z_1)$, $\tilde{x}_2 = z_2 \sin(z_1)$, we immediately reduce it to the Hamiltonian with inverse mass and potential given by equation (A26). On the other hand, introducing in (28), (A18) hyperbolical variables $\tilde{x}_1 = z_2 \sinh(z_1)$, $\tilde{x}_2 = z_2 \sinh(z_1)$ we obtain Hamiltonian (28) with constituents (A21).

Thus there are three non-equivalent Hamiltonians (28) which admit different time independent constants of motion, which correspond to the inverse masses and potentials given by equations (A9), (A25) and (A26). Just these Hamiltonians are represented in equations (33)–(35) where we introduce Cartesian variables $x_1 = \log(z_1)\cos(z_2)$ and $x_2 = \log(z_1)\sin(z_2)$.
A.3. Time dependent symmetries

Consider now determining equations (21)–(24) for the case when at least one of functions \(\alpha \) and \(\xi^0 \) is nontrivial and functions \(\eta, u \) and \(v \) can depend on time variable \(t \).

To specify the admissible dependence on \(t \) we take the following steps. Using conditions (19) which should be valid also for \(\dot{u} \) and \(\dot{v} \), and supposing \(\dot{u} \) and \(\dot{v} \) to be non-trivial we obtain the following evident differential consequences of (21) and (22):

\[
\dot{u} \frac{\partial}{\partial x^2} - \dot{v} \frac{\partial}{\partial x} - 2 \dot{u} = 0, \\
\dot{u} \frac{\partial}{\partial x} + \dot{v} \frac{\partial}{\partial x} - 2 \dot{u} + \alpha = 0
\]

(A27)

(A28)

where \(\dot{f} = \frac{d}{dt} \).

Differentiating equation (A27) with respect to \(x_2 \), equation (A28) with respect to \(x_1 \) and summing up the resulting expressions we obtain

\[
\dot{u} \frac{\partial}{\partial x_2} = 0, \quad \text{or} \quad \dot{u} (\log f)_{x_2} = 0.
\]

(A29)

It follows from (A29) that if \(u \) and \(v \) are time dependent, then the Hamiltonian admitting the corresponding symmetry should be equivalent to a constant mass one, see proposition proved in section 4.1. Thus to classify essentially PDM systems it is sufficient to restrict ourselves to equations (21)–(24) with \(u \) and \(v \) independent of \(t \). In this case equations (21) and (22) are reduced to the following conditions:

\[
u = u(x_1, x_2), \quad \nu = v(x_1, x_2), \quad \eta = \eta(t),
\]

(A30)

and the classification problem is reduced to solving equation (23) for \(f \) and then equation (24) for \(V \).

Like in the previous subsection we can reduce the terms with spatial derivatives in (A4) to the shift generator. Then generator \(Q \) takes the following form:

\[
Q = i\xi^0 \frac{\partial}{\partial t} + p_2 + \eta.
\]

In other words we start with \(u = 0 \) and \(v = 1 \) which reduce equations (23) and (24) to the following forms:

\[
\frac{\partial f}{\partial x_2} = \alpha f, \quad \frac{\partial V}{\partial x_2} = \alpha V + \eta.
\]

(A31)

In order for this system be consistent, \(\alpha \) should be a constant and \(\eta \) be a linear function of \(t \) or a constant, i.e. \(\eta = \nu t + \mu \), since \(f \) and \(V \) are time independent. Then integrating (A31) we obtain

\[
f = \exp(\alpha x_2) f(x_1), \quad V = \exp(\alpha x_2) \tilde{V}(x_1) - \frac{\nu}{\alpha}, \quad \alpha \neq 0
\]

(A32)

or

\[
f = \tilde{f}(x_1), \quad V = \mu x_2 + \tilde{V}(x_1), \quad \alpha = 0.
\]

(A33)

Let our system admit one more symmetry of generic form (20). The corresponding functions \(u \) and \(v \) should satisfy condition (23) together with functions \(f \) specified in (A32) or (A33).

Substituting \(f \) (A32) into equation (23) we obtain

\[
\dot{u} \frac{\partial}{\partial x_2} + \alpha \dot{v} \frac{\partial}{\partial x_1} = (\dot{\alpha} + 2 \dot{u}) f.
\]

(A34)
Since u, v, \tilde{f} and α are time independent, new element $\tilde{\alpha}$ corresponding to the second symmetry should be time independent too. Moreover, considering systems admitting two symmetries, we can a priori reduce one of the parameters, α or $\tilde{\alpha}$, to zero, which can be achieved by coming to linear combinations of these symmetries. We will set $\alpha = 0$, i.e. restrict ourselves to the version represented in (A33). The corresponding equations (A34) and (24) are

$$u_{1f}^\alpha = (\tilde{\alpha} + 2u_1)\tilde{f},$$
(35)

$$u\dot{\tilde{f}}_1 + \mu v + u_{11}\tilde{f}_1 = \tilde{\alpha}(\mu x_2 + \tilde{V}) + \eta.$$
(36)

Differentiating (35) with respect to x_2 we obtain the following condition:

$$u_{2f}^\tilde{f}_1 = 2u_{12}\tilde{f}.$$
(37)

Since \tilde{f} does not depend on x_2, it follows from (37) that u should have the following form:

$$u = \Phi(x_1)\Psi(x_2) + \Omega(x_1)$$
(38)

with $\Phi(x_1)$, $\Psi(x_2)$ and $\Omega(x_1)$ being functions of arguments given in the brackets. Thus $u_2 = \Phi\Psi_2$ is a product of functions of different arguments.

Since u_2 should satisfy the 2d Laplace equation, $\Phi_{11}\Psi_2 + \Phi\Psi_{22} = 0$, and so

$$\Phi_{11} = -\frac{\Psi_{11}}{\Psi_1} = \lambda$$
(39)

where λ is a parameter satisfying one of conditions (A16). Considering these conditions it is not difficult to find the corresponding functions u and then functions \tilde{f} satisfying (A28) and (38). As a result we obtain Hamiltonians and the corresponding symmetries presented in equations (36)–(39).

A.4. Reduction of symmetry operator

Let us consider the generic first order integral of motion (A4) and show a simple way to reduce it to the shift generator. The very possibility of such a reduction is an element of common knowledge, see e.g. [27]. However, we are restricted to using special changes of variables (25) which generate some specificities of this standard procedure which are presented here.

To transform a given operator Q (A4) to the simple form (A8) it is necessary to change independent variables x_1 and x_2 to new variables $\tilde{x}_1 = \varphi_1(x_1, x_2)$ and $\tilde{x}_2 = \varphi(x_1, x_2)$, satisfying the following system of partial differential equations:

$$Q\tilde{x}_1 = 0, \quad Q\tilde{x}_2 = 1.$$
(40)

However, using the fact that in our case functions \tilde{x}_1 and \tilde{x}_2 also satisfy Cauchy–Riemann conditions, it is possible to reduce (40) to the following form:

$$\frac{\partial \tilde{x}_1}{\partial x_1} = \frac{\partial \tilde{x}_2}{\partial x_2} = -\frac{u}{u^2 + v^2}, \quad \frac{\partial \tilde{x}_1}{\partial x_2} = -\frac{\partial \tilde{x}_2}{\partial x_1} = -\frac{v}{u^2 + v^2}.$$
(41)

For given functions u and v the system (41) is easily integrable. Any of its (even particular) solutions present new variables \tilde{x}_1 and \tilde{x}_2 which can be used to reduce the given operator (A4) to the simple form given by equation (A8).
References

[1] Hagen C R 1972 Scale and conformal transformations in Galilean-invariant conformal field theory Phys. Rev. D 5 377–88
[2] Niederer U 1972 The maximal kinematical invariance group of the free Schrödinger equations Helv. Phys. Acta 45 802–10
[3] Anderson R L, Kumei S and Wulfman C E 1972 Invariants of the equations of wave mechanics I Rev. Mex. Fis. 21 1–33
[4] Boyer C P 1974 The maximal kinematical invariance group for an arbitrary potential Helv. Phys. Acta 47 589–605
[5] Nikitin A G and Popovych R O 2001 Group classification of nonlinear Schrödinger equations Ukr. Math. J. 53 1255–65
[6] Nikitin A G 2006 Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix: I. Generalized Ginsburg-Landau equations J. Math Anal. Appl. 324 615–28
[7] Fushchich W I and Nikitin A G 1997 Higher symmetries and exact solutions of linear and nonlinear Schrödinger equation J. Math. Phys. 38 5944–59
[8] Beckers J, Debergh N and Nikitin A G 1997 Reducibility of supersymmetric quantum mechanics Int. J. Theor. Phys. 36 1991–2003
[9] Beckers J, Debergh N and Nikitin A G 1992 More on supersymmetries of the Schrödinger equation Mod. Phys. Lett. A 7 1609–16
[10] Carles B, Gomis J and Kamimura K 2014 Symmetries of the free Schrödinger equation in the non-commutative plane SIGMA 10 011
[11] Quesne C and Tkachuk V M 2004 Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem J. Phys. A: Math. Gen. 37 4267
[12] Quesne C 2007 Quadratic algebra approach to an exactly solvable position-dependent mass Schrödinger equation in two dimensions SIGMA 3 067
[13] Kalnins E G, Kress J M and Winternitz P 2002 Superintegrability in a two-dimensional space of nonconstant curvature J. Math. Phys. 43 970–83
[14] Heinonen R, Kalnins E G, Miller W Jr and Subag E 2015 Structure relations and Darboux contractions for 2D II order superintegrable systems SIGMA 11 043
[15] Nikitin A G and Zasadko T M 2015 Superintegrable systems with position dependent mass J. Math. Phys. 56 042101
[16] von Roos O 1983 Position-dependent effective masses in semiconductor theory Phys. Rev. B 27 7547–52
[17] BenDaniel D and Duke C 1966 Space-charge effects on electron tunneling Phys. Rev. 152 683–92
[18] Trabelsi A, Madouri F, Merdaci A and Almatar A 2013 Classification scheme for kinetic energy operators with position-dependent mass arXiv1302.3963
[19] Zhu Q and Kroemer H 1983 Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors Phys. Rev. B 27 3519–27
[20] Cavalcante F, Costa Filho R, Ribeiro Filho J, De Almeida C and Freire V 1997 Form of the spatially varying mass through path integrals Phys. Rev. A 50 104–6
[21] Morrow R A and Brownstein K R 1984 Model effective mass Hamiltonians for abrupt heterojunctions and the associated wave-function-matching conditions Phys. Rev. B 30 678–80
[22] Gora T and Williams F 1969 Theory of electronic states and transport in graded mixed semiconductors Phys. Rev. 177 1179–82
[23] Li T and Kuhn K 1993 Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile of the GaAs − Al,Ga1−xAs quantum well Phys. Rev. B 47 12760–70
[24] Mustafa O and Mazharimousavi S H 2007 Ordering ambiguity revisited via position dependent mass pseudo-momentum operators Int. J. Theor. Phys. 46 1786–96
[25] Nikitin A G 2015 Superintegrable and shape invariant systems with position dependent mass 2015 J. Phys. A: Math. Theor. 48 335201
[27] Olver P 2000 Application of Lie Groups to Differential Equations 2nd edn (New York: Springer) electronic version: PJ Olver-2000-books.google.com
[28] Gelfand I M, Minlos A P and Shapiro Z Ja 1983 Representations of the Rotation and Lorentz Groups and Their Applications vol 35 (Oxford: Pergamon)
[29] Ovsiannikov L V 2014 Group Analysis of Differential Equations (Cambridge, MA: Academic Press) ch 3, section 9