Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating?

Williara Queiroz de Oliveira a,*, Paulo Henrique Machado De Sousa b, Glaucia Maria Pastore a

a Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
b Department of Food Technology, Federal University of Ceará, Av. Mister Hull, 2977, Pici University Campus, Fortaleza, Ceará, ZIP 60356-000, Brazil

ARTICLE INFO

Keywords
Anosmia
Ageusia
Encapsulation
Food
Sensory
Texture

ABSTRACT

Background: Recently, anosmia and ageusia (and their variations) have been reported as frequent symptoms of COVID-19. Olfactory and gustatory stimuli are essential in the perception and pleasure of eating. Disorders in sensory perception may influence appetite and the intake of necessary nutrients when recovering from COVID-19. In this short commentary, taste and smell disorders were reported and correlated for the first time with food science.

Scope and approach: The objective of this short commentary is to report that taste and smell disorders resulted from COVID-19 may impact eating pleasure and nutrition. It also points out important technologies and trends that can be considered and improved in future studies.

Key findings and conclusions: Firmer food textures can stimulate the trigeminal nerve, and more vibrant colors are able to increase the modulation of brain metabolism, stimulating pleasure. Allied to this, encapsulation technology enables the production of new food formulations, producing agonist and antagonist agents to trigger or block specific sensations. Therefore, opportunities and innovations in the food industry are wide and multidisciplinary discussions are needed.

1. Introduction

COVID-19, caused by the SARS-CoV-2 virus, led to a pandemic in March 2020 and a global health crisis (Oliveira, Azeredo, Neri-Numa, & Pastore, 2021; World Health Organization, 2020; Zhou et al., 2020). Due to the high rates of disease transmission, there were more than 100 million deaths worldwide in early 2021, as reported by World Health Organization (WHO) (World Health Organization, 2021). The following symptoms were initially reported: fever, dry cough, headache, nasal congestion, fatigue, breathing difficulties (dyspnea), pneumonia, and, in severe cases, progressive respiratory failure, alveolar damage, and death (Lee et al., 2021; Velavan & Meyer, 2020; Zhou et al., 2020). Only later was the association between COVID-19 and smell and taste disorders during and after the coronavirus infection described (Daher et al., 2020; Giacomelli et al., 2020; Heidari et al., 2020; Lechien et al., 2020; Parma et al., 2020; Russell et al., 2020; Yan, Faraji, Prajapati, Boone, & DeConde, 2020). After reports from countries and regions, such as Brazil, China, Argentina, Chile, South Korea, Iran, Italy, France, Finland, the United Kingdom, and the United States, the WHO considered the loss of smell (anosmia) and taste (ageusia) as a potential marker of the SARS-CoV-2 infection (Lozada-Nur, Chainani-Wu, Fortuna, & Sroussi, 2020; OPAS, 2021; Parma et al., 2020; Zhang, Shan, Abdollahi, & Nace, 2020). Some patients also reported dysgeusia, which is a distortion of the sense of taste (Lozada-Nur, Chainani-Wu, Fortuna, Sroussi, & Oral Surgery Oral Medicine Oral Pathology and Oral Radiology, 2020; Russell et al., 2020). It is noteworthy that another type of coronavirus (SARS-CoV) has presented persistent anosmia as a symptom (Boscolo-Rizzo et al., 2020; Hopkins & Kelly, 2021; Soler, Patel, Turner, & Holbrook, 2020). For SARS-CoV-2, persistent anosmia and ageusia (or variations) even after recovering from COVID-19 has been recently reported (Hopkins & Kelly, 2021; Santos et al., 2021; Soler et al., 2020). There may be a relation between smell and taste disorders with neurological sequelae of the disease, however, further investigations are required (Baig, 2020; Lozada-Nur et al., 2020; Yasuda, 2021).

Olfactory and gustatory stimuli are essential in food perception (Coppin, 2020). Good taste experience while eating relies on smell,

* Corresponding author. Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Monteiro Lobato Street, 80, 13083-862, Campinas, São Paulo, Brazil.
E-mail addresses: williaraqueiroz@gmail.com, w229276@dac.unicamp.br (W.Q. Oliveira).

https://doi.org/10.1016/j.tifs.2022.01.022
Received 31 May 2021; Received in revised form 3 January 2022; Accepted 10 January 2022
Available online 13 January 2022
0924-2244/© 2022 Elsevier Ltd. All rights reserved.
taste, and chemesthesis (Mastrangelo, Bonato, & Cinque, 2021; Parma et al., 2020). If the sense of smell is lost or compromised, for example, it can lead to microbial risks or food poisoning due to the difficulty in detecting spoiled foods. Besides, it can also cause embarrassment in social environments, which can lead to changes in mood and depression (Coppin, 2020; Croy & Hummel, 2017; Thomas, Baddireddy, & Kohil, 2020). On the other hand, for the recovery of COVID-19 and the well-being of patients, adequate nutrition is required when the senses of smell and taste are preserved (Heier, Chaaban, & Andersen, 2021). Thus, the objective of this short commentary is to present a brief emerging view on the main disorders of smell and taste resulting from COVID-19. Also, it explores, for the first time, how trends and existing technologies in the food industry can help this new consumer regain the pleasure of eating. Databases such as Google Scholar, PubMed, Scielo, Sciencedirect, Scopus, and Web of Science were searched using the following search terms: (i) COVID-19 OR SARS-CoV-2 AND food AND anosmia OR dysosmia OR ageusia OR dysgeusia; (ii) COVID-19 OR food OR sensory food AND texture OR natural dye OR encapsulation; (iii) dysgeusia AND undesirable odors OR undesirable flavors OR encapsulation, in the title, abstract and keywords. As a result, 75 studies published in 2020–2021 were included.

2. COVID-19: olfactory and taste disorders

Anosmia is the complete loss of smell, while hyposmia is the partial or reduced ability to smell and detect odors (Desai & Oppenheimer, 2021). Anosmia is commonly associated with viral infections of the upper respiratory tract, e.g., common cold, influenza: (i) influenza virus, (ii) parainfluenza, and (iii) rhinovirus (Soler et al., 2020). Anosmia caused by SARS-CoV-2 has also been reported (Hwang, 2006). A previous epidemiological study showed that 85.6% of 417 patients with COVID-19 had olfactory dysfunctions (Lechien et al., 2020). Yan et al. (2020) analyzed a larger group of 858 patients with COVID-19 and reported that 68% had anosmia as a symptom. In healthy people, olfactory chemosensation is mediated by the olfactory nerve (CN I) and the trigeminal nerve (CN V) (Thomas et al., 2020). Briefly, the detection of chemosensation is mediated by the olfactory nerve (CN I) and the trigeminal nerve (CN V). Through primary afferent neurons until it reaches the olfactory bulb, there is a synapse with second-order neurons responsible for taking smell, to perceive flavor dimensions of food or drinks (Croy et al., 2014; Thomas et al., 2020; Santos et al., 2021; Soler et al., 2020; Yasuda, 2021). Through olfactory sensory neurons in the nasal cavity, the olfactory system detects volatile chemical compounds in two ways: (i) odor, to detect smell from the external environment; (ii) retronasal smell, to perceive flavor dimensions of food or drinks (Croy et al., 2014; Kang, Cho, Lee, Kim, & Park, 2020). The gustatory system, in turn, perceives the tastes of sweet, salty, bitter, sour, kokumi, and umami (Mastrangelo et al., 2021; Novaleski et al., 2021). The receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2), found in the epithelium of the taste buds and the salivary glands (H. Xu et al., 2020). Therefore, human salivary glands are affected early by the SARS-CoV-2 infection, resulting in their dysfunction and subsequent impairment of the salivary flow (Lozada-Nur et al., 2020). The gustatory system can be affected by the viral lytic pathway in two ways, namely: (i) with direct damage to the ACE2 cells in the taste buds and peripheral neurosensory chemoreceptors, or (ii) with direct damage to any of the nerves that supply the taste buds (CN VII, IX or X), resulting in damage to the taste perception during COVID-19 (Finsterer & Stollerberger, 2020).

Dysgeusia (synonym: parageusia) is another taste disorder, often unpleasant, which causes distortion in the quality of taste and has also been related to COVID-19 (Desai & Oppenheimer, 2021; Frank & Barry, 2016; Lozada-Nur et al., 2020). As already mentioned, SARS-CoV-2 binds to ACE2 receptors on the oral mucosa, triggering an inflammatory response (Lozada-Nur et al., 2020; Xu et al., 2020). In turn, the inflammatory response of taste cells is expressed by signaling inflammatory cytokines, such as interferon (IFN) (Hong, Wang, Zhou, Brand, & Huang, 2009). IFN can trigger apoptosis and cause abnormal renewal in the taste buds, leading to the development of taste dysfunction (Lozada-Nur et al., 2020). In addition, the immaturity of newly formed neural networks can also lead to parageusia (Mastrangelo et al., 2021). Studies correlating dysgeusia and COVID-19 are still scarce; however, it has been recently reported that 62% of 217 patients infected with SARS-CoV-2 showed dysgeusia symptoms, with an average recovery of 12 days (Sheng et al., 2021). There are reports of delayed dysgeusia after COVID-19 due to the association of these disorders with neurological sequelae, yet further investigations are required (Lozada-Nur et al., 2020; Santos et al., 2020; Soler et al., 2020; Yasuda, 2021).

3. Relating COVID-19 with food sensation

Anosmia or ageusia (and their variations) resulting from COVID-19 brought a global awareness of the loss of sensory senses, including those directly linked to food-evoked emotions (Coppin, 2020). It is known that smell and taste detect chemical stimuli and convert them into electrical energy to be perceived by the central nervous system. They also contribute to a complete sensation of taste (Thomas et al., 2020). Through olfactory sensory neurons in the nasal cavity, the olfactory system detects volatile chemical compounds in two ways: (i) odor, to detect smell from the external environment; (ii) retronasal smell, to perceive flavor dimensions of food or drinks (Croy et al., 2014; Kang, Cho, Lee, Kim, & Park, 2020). The gustatory system, in turn, perceives the tastes of sweet, salty, bitter, sour, and umami from
Trends in Food Science & Technology 122 (2022) 104–109

W.Q. Oliveira et al.

non-volatile compounds, and the chemesthesis detects sensations such as burning, cooling, or tingling, e.g., in herbs or spices (Kang et al., 2020; Parmar et al., 2020). Notably, in individuals with loss of the retronasal smell, the hedonic value of food is drastically reduced (Coppin, 2020). As reported by Coppin (2020), when eating a strawberry, for example, an individual with anosmia may perceive sweet/sour taste (due to the gustatory input), but the complete and synthetisthatic natural flavor of strawberry will not be perceived, due to the lack of retronasal olfactory input. Taste tests have shown the worst overall rates for sweet and bitter taste perception in patients with COVID-19 (Desai & Oppenheimer, 2021; Soler et al., 2020).

Taste perception is also closely associated with the metabolic action of peptidases, such as ACE2 and APN (amino and carboxypeptidases, respectively) (Ardō, 2006; Luchiari, Giordano, Sidman, Pasqualini, & Arap, 2020; Hongliang Wang et al., 2008). ACE2 and APN promote proteolytic cleavage of proteins, leading to the formation of different amino acids. Each has specific flavors (e.g., glutamate has umami flavor and l-amino acids that trigger bitter taste) (Choudhuri, Delay, & Delay, 2015). According to Luchiari et al. (2020), since SARS-CoV-2 binds to ACE2, the virus enters the cell, causing: (i) reduced availability of ACE2 in the cell membrane, (ii) inactivation of taste receptors. In other words, the internalization of the receptor (ACE2) by the coronavirus infection in the taste buds leads to the loss of taste (Luchiari et al., 2020). Likewise, APN is also expressed in the tongue and is associated with taste transduction (Yoshida et al., 2018). As SARS-CoV-2 infects nasal and oral epithelia, other molecules involved in flavor processing and signal transduction can be impaired in infected cells, leading to ageusia in COVID-19 patients (Luchiari et al., 2020).

Loss of taste and/or smell can affect the quality of life, nutrition, and safety (Desai & Oppenheimer, 2021). The importance of sensory properties for the hedonic perception of food is evident and proven by a wide range of studies and models (Aguayo-Mendoza, Chatondi, Piqeras-Fiszman, & Steiger, 2021; Jürkenbeck & Spiller, 2021; Yang et al., 2021). For example, memories and emotions are closely linked to smell. They also play an important role in the wellbeing, reducing stress and depression (Coppin, 2020; Oleszkiewicz, Kunkel, Larsson, & Hummel, 2020; Olofsson, Ekström, Larsson, & Nordin, 2021; Rabin, 2021; Willander & Larsson, 2007). Sensory dysfunction can cause a decrease in appetite and the intake of essential nutrients for a rapid recovery of COVID-19, leading to weight loss, malnutrition, and excessive intake of salt or sugar (Häser et al., 2021; Soler et al., 2020; Thomas et al., 2020).

In addition, smell disorders decrease the ability to detect food safety hazards, such as spoiled food, especially stored food (Desai & Oppenheimer, 2021; Moini & Piran, 2020). Some solutions to improve the quality of life in patients with anosmia and parosmia after COVID-19 have been proposed, such as olfactory training, which involves actively sniffing the same scents in order to train the brain and induce the ability to identify odors (Walsh-Mesinger, 2021). For example, the meta-analysis by Sorokowska, Drechsler, Karpowski, and Hummel (2017) suggested that smell training was useful for improving general olfactory function. The method is also promising for the recovery of parosmia (Li et al., 2021). However, there are still few discussions and trends specifically proposed by the food sectors aimed at patients with smell and taste disorders.

4. Recreating sensory texture for patients with anosmia and ageusia

Understanding the association between food rheological behaviors and sensory experience is one of the main challenges in food research (Bolhuis & Forde, 2020; Joyner, 2018). Food texture (which includes viscosity, hardness, elasticity, among others) is a set of mechanical, geometric, and superficial attributes that can be perceived through mechanical, tactile, and, when appropriate, visual, and auditory modalities. They are also perceived during the conversion of the food structure into bolus through a complex series, which involves ingestion, processing, lubrication, and swallowing (Joyner, 2018; van Eck & Steiger, 2020). Unlike aroma and taste, which are associated with specific molecular structures, food texture is a cognitive property based on the interaction of different senses (touch, hearing, and vision) (Pascua, Koç, & Foegeding, 2013; van Eck & Steiger, 2020).

It has been previously reported that harder foods, for example, can help prolong chewing and taste, which can be positive for patients with anosmia and ageusia (de Graaf, 2020; Joyner, 2018; Laguna, Fiszman, & Tarrega, 2021). In addition, these foods increase chewing, reduce overeating rates and promote satiety (Bolhuis & Forde, 2020; Ohkuma et al., 2015; Robinson et al., 2014). Investing in firm, crunchy food textures that stimulate the trigeminal nerve during ingestion can increase appetite and pleasure (Franselli & Hummel, 2007; Häser et al., 2021). However, it is noteworthy that texture preferences can be different due to regional variation of taste. In general, crunchy solid foods (e.g., grains, cereals, hard vegetables, and crispy snacks) are good options for individuals with anosmia and ageusia since prolonged taste and crunchy can stimulate and make eating more satisfying (Morrisson, 2021; Zhang, 2021). Another option is to consume foods with different textures in order to improve tactile interaction and pleasure, instead of consuming more foods or adding sugar, salt, or fat to the diet (Burgess Watson et al., 2020; van Eck & Steiger, 2020). Different textures lead to continuous transitions of food structures, resulting in intraoral sensory variety during intake and consumer appreciation (van Eck & Steiger, 2020). The addition of hydrocolloids, such as proteins and polysaccharides, can help obtain textures that result in enhanced palatability (Seisun & Zalesny, 2021). Grains and dry foods can be added to the food matrix for a wide diversity of textures (Barrett, Foster, & Beck, 2020). Therefore, consuming different textures can lead to a more satisfying and nutritious eating experience (Morrisson, 2021).

In this scenario, the food industry must adapt and create opportunities, investing in different food textures combined with strong flavors (e.g., pepper, wasabi, ginger, and others) (Morrisson, 2021; Zhang, 2021). Particularly, spices (e.g., cinnamon, vanilla, chili, jambu - Acmella oleracea, wasabi, and others) can also add complexity to the eating experience (Bolhuis & Forde, 2020; Morrisson, 2021).

5. Challenges and future trends

Some existing trends and technologies in the food industry can improve the food experience, such as the use of natural dyes. The sense of sight mediated by attention, pleasure, and reward systems, plays an important role in eating (Spence, Okajima, Cheok, Petit, & Michel, 2016). In this sense, the use of dyes (mainly natural) can increase acceptability and add functional properties to foods (Isabel, Neves, Silva, & Meireles, 2021). Natural dyes can contribute to enhancing the colors of foods, such as (i) iridoid blue (from Gigipam americana L.) (Neri-Numa, Angolini, Bocos, Ruiz, & Pastore, 2018) (ii) bixin (Bachtler & Bart, 2021; Beni et al., 2020; Xu & Kong, 2017), (iii) anthocyanins (Becerril, Nerín, & Silva, 2021; Coelho Leandro et al., 2021), (iv) betalains (Lima et al., 2020; Shunun, Yu, Guan, & Zhou, 2021; Sravan Kumar, Singh Chauhan, & Giridhar, 2020), (v) chlorophylls (Ribeiro & Veloso, 2021), (vi) caramel (Beata Olas, Urbanska, & Brys, 2020), (vii) curcumin (Song & McClements, 2020; Tian Jiang, Raja Ghosh, 2021), (viii) carminic acid (Neves et al., 2021), (ix) lycopene (Allison & Simmonds, 2017; Paturo, Carullo, Falcone, & Ferrari, 2020) e (x) carotenoids (Rodríguez-Amaya, 2019), among others. A previous study reported that colorful foods increased the modulation of brain metabolism by 24% and stimulated eating (Spence et al., 2016). Vibrant colors can have a direct positive effect on mood in people with olfactory and gustatory disorders (Moini & Piran, 2020). A diet rich in colorful foods improves nutrition which is important for the recovery from COVID-19 (Jalil, Yunus, & Said, 2012).

As previously reported, dysosmia and dygeusia are unpleasant disorders that cause distortion or error in the original quality of aroma and taste, respectively. In this context, the encapsulation of flavor and aroma
of foods can be an important technology since it successfully masks flavor and aroma compounds (de Oliveira et al., 2021; Oliveira et al., 2020; Saifullah, Shishir, Ferdowsi, Tanver Rahman, & Van Vuong, 2019). Some foods or their volatile compounds have already been encapsulated to mask undesirable flavors and odors: (i) pea protein (Cui, Kimmel, Zhou, Rao, & Chen, 2020); (ii) oils in general (fish, shrimp, cod liver, garlic, green coffee, etc.) (Gulzar & Benjakul, 2020; Moros & Elsabbagh, 2021; Oliveira et al., 2020; Pourashouri, Shanabpour, Heydari, & Raeisi, 2021; Raeisi, Ojagh, Pourashouri, Salain, & Quek, 2021; Serfert, Drusch, & Schwarz, 2010); (iii) astaxanthin (Martínez-Álvarez, Calvo, & Gómez-Estaca, 2020); (iv) catechin (Astray, Mejuto, & Simal-Gandara, 2020); (v) bitter acids (caffeine, quinine, and chlorogenic) (Astray et al., 2020); (vi) bioactive peptide powder (Wang & Selomulya, 2020), among others. Currently, there are no products developed by the industry or described in the literature concerning flavor and aroma encapsulation for consumers with dysosmia and dysgeusia. Given that such disorders impact each individual differently, the food industry can explore trends and discoveries in encapsulation to produce agonist and antagonist agents to trigger or block specific sensations. Understanding dysosmia and dysgeusia, as well as providing personalized recommendations, will be one of the challenges for the future of nutrition.

6. Conclusion

Healthcare professionals, food science and technology, tasting and somatosensory areas play an important role in creating opportunities and designing specific foods to regain the pleasure of eating not only in individuals infected with COVID-19 but also in other patients suffering from smell and taste disorders (e.g., Alzheimer’s and Parkinson diseases, traumatic brain injury, brain tumors, Kallma syndrome and Huntington disease, multiple sclerosis, among others) (Antonini, Leta, Teo, & Chaudhuri, 2020). Future research should combine existing and industrially viable approaches. They can be important innovative tools to stimulate sensory pleasure in patients with olfactory and gustatory disorders. It is too early to say that patients will be completely recovered from such disorders after COVID-19. However, opportunities and innovations in the food industry are wide. Besides, this is the beginning of pioneering multidisciplinary discussions aimed at developing solutions to help individuals regain the pleasure of eating.

Credits authorship contribution statement

Williara Queiroz de Oliveira: Conceptualization, writing - review and editing. Paulo Henrique Machado de Sousa: Review and editing. Glauca Maria Pastore: Supervision and funding acquisition.

Ethical approval

This letter does not contain any studies with human participants or animals performed by any of the authors.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Acknowledgments

The authors thank the National Council for Scientific and Technological Development (CNPq), grant numbers 406820/2018-0; 159123/2019-4, São Paulo Research Foundation (FAPESP, grant numbers 2021/03295-8) and Coordination for the Improvement of Higher Education Personnel (CAPES) – Finance Code 001 for their financial support. Williara Queiroz de Oliveira thanks National Council for Scientific and Technological Development (CNPq, grant number 142316/2019-9).

References

Agayu-Mendoza, M. G., Chatonodi, G., Piqueras-Fiszman, B., & Steiger, M. (2021). Linking oral processing behavior to holus properties and dynamic sensory perception of processed cheeses with bell pepper pieces. Food Quality and Preference. https://doi.org/10.1016/j.foodqual.2020.10480

Allison, B. J., & Simmons, C. W. (2017). Valorization of tomato pomace by sequential lyocropene extraction and anaerobic digestion. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2017.07.019

Antonini, A., Leta, V., Teo, J., & Chaudhuri, K. R. (2020). Outcome of Parkinson’s disease patients affected by COVID-19. Movement Disorders. https://doi.org/10.1002/mds.28104

Ardo, Y. (2006). Flavour formation by amino acid catalysis. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2005.11.005

Astray, G., Mejuto, J. C., & Simal-Gandara, J. (2020). Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2020.105882

Bachtiler, S., & Bart, H. J. (2021). Increase the yield of bioactive compounds from elder bark and annatto seeds using ultrasound and microwave assisted extraction technologies. Food and Bioproducts Processing. https://doi.org/10.1016/j.fbp.2020.10.009

Baiq, A. M. (2020). Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neuroscience and Therapeutics. https://doi.org/10.1111/cns.13572

Barrett, E. F., Foster, S. I., & Beck, E. J. (2020). Whole grain and high-fibre grain foods: How do knowledge, perceptions and attitudes affect food choice? Appetite. https://doi.org/10.1016/j.appet.2020.104630

Becerril, R., Nerin, C., & Silva, F. (2021). Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2021.02.042

Benitez, A. A., Rodrigues, R. F., Costa, L., Costa, I. F., Delalibera, É. Á., Roehrs, M., et al. (2020). Dietary supplementation with annatto food-coloring extracts increases the resistance of human erythrocytes to hemolysis. Nutrition Research. https://doi.org/10.1016/j.nutres.2020.02.003

Bolhuis, D. P., & Forde, C. G. (2020). Application of food texture to moderate oral processing behaviors and energy intake. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2020.10.021

Boscolo-Rizzo, P., Borsetto, D., Fabbri, C., Spinato, G., Frezza, D., Menegaldo, A., et al. (2020). Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngology - Head and Neck Surgery. https://doi.org/10.1001/jamaoto.2020.1379

Burges Watson, D. L., Campbell, M., Hopkins, C., Smith, B., Kelly, C., & Deary, I. V. (2020). Altered smell and taste in COVID-19 and the impact of long Covid-19. medRxiv. https://doi.org/10.1101/2020.11.26.20239152

Choudhuri, S. P., Delay, R. J., & Delay, E. R. (2015). L-amino acids elicit diverse response patterns in taste sensory cells: A role for multiple receptors. PLoS One. https://doi.org/10.1371/journal.pone.0130985

Coelho Leandro, G., Capello, C., Luiza Koop, B., Garcez, J., Rodrigues Monteiro, A., & Ayala Valencia, G. (2021). Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: Kinetic models, physicochemical characterization, and functional properties of bioblendies. Food Research International. https://doi.org/10.1016/j.foodres.2020.109903

Coppin, G. (2020). The COVID-19 may help enlightening how emotional food is. Npj Science of Food. https://doi.org/10.1038/s41538-020-00071-2

Croy, I., & Hummel, T. (2017). Odorant as a marker for depression. Journal of Neurology. https://doi.org/10.1007/s00415-016-8227-8

Croy, I., Schulz, M., Blumrich, A., Hummel, C., Gerber, J., & Hummel, T. (2014). Human olfactory lateralization requires trigeminal activation. NeuroImage. https://doi.org/10.1016/j.neuroimage.2014.05.004

Cui, L., Kimmel, J., Zhou, L., Rao, J., & Chen, B. (2020). Combining solid dispersion-based spray drying with cyclodextrin to improve the functionality and mitigate the beany odor of pea protein isolate. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2020.116546

Daher, V. B., Soares Oliveira, D. S., Daher Júnior, M. F., Júnior de Melo Fernandes, E., Bomtempo de Castro, J. V., Moya, M. I., et al. (2020). Anosmia: A marker of infection with the new corona virus. Respiratory Medicine Case Reports. https://doi.org/10.1016/j.rmcr.2020.101129

Desai, M., & Oppenheimer, J. (2021). The importance of considering olfactory dysfunction during the COVID-19 pandemic and in clinical practice. Journal of Allergy and Clinical Immunology: In Practice. https://doi.org/10.1016/j.jaip.2020.10.036

Doty, R. L. (2014). Aguesia. In Encyclopedia of the neurological sciences. https://doi.org/10.1016/B978-0-12-385157-4.01112-X

Doty, R. L., & Bromley, S. M. (2007). Cranial nerve i: Olfactory nerve. In Textbook of clinical neurology (3rd ed.). https://doi.org/10.1097/01.000000000000004
Thomas, D. C., Baddreddy, S. M., & Kohli, D. (2020). Anosmia: A review in the context of coronavirus disease 2019 and orofacial pain. Journal of the American Dental Association. https://doi.org/10.1016/j.tjd.2020.06.039

Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine and International Health. https://doi.org/10.1111/tmi.13383

Julie Walsh-Messinger. (2021). Anosmia, the loss of smell caused by COVID-19, doesn’t always go away quickly—but smell training may help. https://thecommersion.com/anosmia-the-loss-of-smell-caused-by-covid-19-doesnt-always-go-away-quickly-but-smell-training-may-help-154140

Wang, Y., & Selomulya, C. (2020). Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Advanced Powder Technology. https://doi.org/10.1016/j.apt.2019.10.034

Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., et al. (2008). SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Research. https://doi.org/10.1038/cr.2008.15

Wang, H., Zhou, M., Brand, J., & Huang, L. (2009). Inflammation and taste disorders: Mechanisms in taste buds. In Annals of the New York academy of sciences. https://doi.org/10.1111/j.1749-6632.2009.04480.x

Willander, J., & Larsson, M. (2007). Olfaction and emotion: The case of autobiographical memory. Memory & Cognition. https://doi.org/10.3758/BF03193499

World Health Organization. (2020). Q&A on coronaviruses (COVID-19). WHO. https://www.who.int/zh/news-room/q-a-detail/q-a-coronaviruses

World Health Organization. (2021). WHO coronavirus disease (COVID-19) dashboard. Retrieved January 29, 2021, from https://covid19.who.int/

Xu, Z., & Kong, X. Q. (2019). Bixin ameliorates high fat diet-induced cardiac injury in mice through inflammation and oxidative stress suppression. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2017.02.052

Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., et al. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science. https://doi.org/10.1038/s41368-020-0074-x

Yan, C. H., Faraji, F., Prajapati, D. P., Boone, C. E., & DeConde, A. S. (2020). Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. International Forum of Allergy and Rhinology. https://doi.org/10.1002/air.22579

Yang, F., Gao, H., Gao, P., Yu, D., Xu, Y., Jiang, Q., & Xia, W. (2021). Comparison of methodological proposal in sensory evaluation for Chinese mitten crab (Eriocheir sinensis) by data mining and sensory panel. Food Chemistry, 356(March). 129698. https://doi.org/10.1016/j.foodchem.2021.129698

Yanuds, C. (2021). Covid-19 may alter the brain’s functional connectivity pattern (Preliminary Results). Retrieved from https://www.braincongress.com/#/

Yoshida, R., Takai, S., Sanematsu, K., Margolskee, R. F., Shigemura, N., & Ninomiya, Y. (2020). Bitter taste responses of gustducin-positive taste cells in mouse fungiform and circumvallate papillae. Nature neuroscience.2017.10.047

Yuusefi-Koma, A., Haseli, S., Bakhshayeshkaram, M., Raad, N., & Karimi-Galougahi, M. (2021). Multimodality imaging with PET/CT and MRI reveals hypometabolism in the basal ganglia and thalamus of patients with COVID-19. AJR. https://doi.org/10.2214/AJR.21.22578

Yousefi-Koma, A., Haseli, S., Bakhshayeshkaram, M., Raad, N., & Karimi-Galougahi, M. (2021). Multimodality imaging with PET/CT and MRI reveals hypometabolism in the basal ganglia and thalamus of patients with COVID-19. Academic Radiology, 19(1), 1-3. https://doi.org/10.1016/j.acra.2021.01.031

Zhang, J. G. (2021). We asked people who lost their taste to COVID: What do you eat in a day? Retrieved April 4, 2021, from https://www.nature.com/articles/s41598-022-07667-7

Zhang, Q., Shan, K. S., Abdolahi, S., & Nace, T. (2020). Anosmia and ageusia as the only indicators of coronavirus disease 2019 (COVID-19). Cureus. https://doi.org/10.7759/cureus.7918

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. https://doi.org/10.1038/s41586-020-2127-7

W.Q. Oliveira et al.