On the Inverse Ultrahyperbolic Klein-Gordon Kernel

Kamsing Nonlaopon

Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand; nkamsi@kku.ac.th; Tel.: +668-6642-1582

Received: 30 April 2019; Accepted: 10 June 2019; Published: 11 June 2019

Abstract: In this work, we define the ultrahyperbolic Klein-Gordon operator of order \(\alpha \) on the function \(f \) by \(T^\alpha p f \), where \(\alpha \in \mathbb{C} \), \(W^\alpha \) is the ultrahyperbolic Klein-Gordon kernel, the symbol \(\ast \) denotes the convolution, and \(f \in S, S \) is the Schwartz space of functions. Our purpose of this work is to study the convolution of \(W^\alpha \) and obtain the operator \(L^\alpha = [T^\alpha]^{-1} \) such that if \(T^\alpha f = \varphi \), then \(L^\alpha \varphi = f \).

Keywords: ultrahyperbolic Klein-Gordon operator; ultrahyperbolic Klein-Gordon kernel; ultrahyperbolic kernel of Marcel Riesz; ultrahyperbolic operator; Dirac delta function

1. Introduction

Consider the linear differential equation of the form

\[\vartriangle^k u(x) = f(x), \tag{1} \]

where \(u(x) \) and \(f(x) \) are generalized functions, \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) and \(\vartriangle k \) is the \(n \)-dimensional ultra-hyperbolic operator iterated \(k \) times, which is defined by

\[\vartriangle k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \frac{\partial^2}{\partial x_{p+2}^2} - \cdots - \frac{\partial^2}{\partial x_{p+q}^2} \right)^k, \tag{2} \]

where \(p + q = n \) is the dimension of \(\mathbb{R}^n \), and \(k \) is non-negative integer.

The fundamental solution of Equation (1) was first introduced by Gelfand and Shilov [1] but the form is complicated and Trione [2] showed that the generalized function \(R^\gamma(x) \), defined by Equation (22) with \(\gamma = 2k \), is the fundamental solution of Equation (1). Later, Tellez [3] also proved that \(R^\gamma(x) \) exists only when \(p \) is odd with \(p + q = n \).

In 1997, Kananthai [4] introduced the diamond operator \(\diamond^k \) iterated \(k \) times, which is defined by

\[\diamond^k = \left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} \right)^2 - \left(\frac{p+q}{\sum_{j=p+1} \frac{\partial^2}{\partial x_j^2}} \right)^2 \right)^k, \tag{3} \]

where \(k \) is a non-negative integer and \(p + q = n \) is the dimension of \(\mathbb{R}^n \). The operator \(\diamond^k \) can be expressed as the product of the operators \(\vartriangle^k \) and \(\vartriangle k \), that is

\[\diamond^k = \vartriangle^k \vartriangle k = \vartriangle k \vartriangle^k, \tag{4} \]
where α^k is defined by Equation (2), and Δ^k is the Laplace operator iterated k times, which is defined by

$$
\Delta^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right)^k.
$$

On finding the fundamental solution of diamond operator iterated k times, Kananthai applied the convolution of functions which are fundamental solutions of the operators α^k and Δ^k. He showed that $(-1)^k S_{2k}(x) \ast R_{2k}(x)$ is the fundamental solution of the operator \bigotimes^k. That is,

$$
\bigotimes^k \left((-1)^k S_{2k}(x) \ast R_{2k}(x) \right) = \delta,
$$

where $R_{2k}(x)$ and $S_{2k}(x)$ are defined by Equations (22) and (29), respectively, with $\gamma = 2k$, and δ is the Dirac delta function. The solution $(-1)^k S_{2k}(x) \ast R_{2k}(x)$ is called the diamond kernel of Marcel Riesz. Interested readers are referred to [5–13] for some advance in the property of the diamond kernel of Marcel Riesz.

In 1978, Dominguez and Trione [14] introduced the distributional functions $H_a(P \pm i0, n)$, which is defined by

$$
H_a(P \pm i0, n) = \frac{e^{\pm \pi i / 2} e^{\pm \pi i / 2} \Gamma((n - a) / 2)(P \pm i0)^{(n-a)/2}}{2^{n/2} \pi^{n/2} \Gamma(n/2)},
$$

where

$$
P = P(x) = x_1^2 + x_2^2 + \cdots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \cdots - x_{p+q}^2,
$$

$p + q = n$, and q is the number of negative terms of the quadratic form P. The distributions $(P \pm i0)^\lambda$ are defined by

$$
(P \pm i0)^\lambda = \lim_{\epsilon \to 0} (P \pm i\epsilon|x|^2)^\lambda,
$$

where $\lambda \in \mathbb{C}, \epsilon > 0$, and $|x|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$, see [1]. They also showed the distributional functions $H_a(P \pm i0, n)$ are causal (anticausal) analogues of the elliptic kernel of Marcel Riesz [15]. Next, Cerutti and Trione [16] defined the causal (anticausal) generalized Marcel Riesz potentials of order $a, a \in \mathbb{C}$, by

$$
R^a \varphi = H_a(P \pm i0, n) \ast \varphi,
$$

where $\varphi \in \mathfrak{S}, \mathfrak{S}$ is the Schwartz space of functions [17], and $H_a(P \pm i0, n)$ is defined by Equation (7). They also studied the operator $(R^a)^{-1}$, that is the inverse operator of R^a, such that $f = R^a \varphi$ implies $(R^a)^{-1}f = \varphi$.

In 1999, Aguirre [18] defined the ultra-hyperbolic Marcel Riesz operator M^a of the function f by

$$
M^a(f) = R_\alpha \ast f,
$$

where $\alpha \in \mathbb{C}, R_\alpha$ is defined by (22), and $f \in \mathfrak{S}$. He also studied the operator $N^a = (M^a)^{-1}$ such that $M^a(f) = \varphi$ implies $N^a \varphi = f$.

In 2000, Kananthai [8] introduced the diamond kernel of Marcel Riesz $K_{a,b}$, which is given by

$$
K_{a,b} = S_\alpha \ast R_\beta,
$$

where R_β and S_α are defined by Equations (22) and (29), respectively. Next, Tellez and Kananthai [13] proved that $K_{a,b}$ exists and is in the space of tempered distributions. In addition, they also showed the relationship between the convolution of the distributional families $K_{a,b}$ and diamond operator iterated k times.

In 2011, Maneetus and Nonlaopon [19] defined the Bessel ultra-hyperbolic Marcel Riesz operator of order a on the function f by

$$
U^a(f) = R_\alpha^B \ast f,
$$

where $\alpha \in \mathbb{C}, R_\alpha^B$ is defined by Equations (22) and (29), respectively, with $\gamma = 2k$, and δ is the Dirac delta function.
where $\alpha \in \mathbb{C}, R_{n}^{B}$ is the Bessel ultra-hyperbolic kernel of Marcel Riesz, and $f \in S$. In addition, they studied the operator $E_{n}^{\alpha} = (U_{n})^{-1}$ such that $U_{n}^{\alpha}(f) = \varphi$ implies $E_{n}^{\alpha}\varphi = f$. Moreover, they defined the diamond Marcel Riesz operator of order (α, β) of the function f by

$$M^{(\alpha, \beta)}(f) = K_{\alpha, \beta} \ast f,$$

where $\alpha, \beta \in \mathbb{C}, K_{\alpha, \beta}$ is defined by (12), and $f \in S$; see [20], for more details. In addition, they have also studied the operator $N^{(\alpha, \beta)} = \left[M^{(\alpha, \beta)}\right]^{-1}$ such that $M^{(\alpha, \beta)}(f) = \varphi$ implies $N^{(\alpha, \beta)}\varphi = f$.

In 2013, Salao and Nonlaopon [21] defined the Bessel diamond kernel of Marcel Riesz by

$$K_{\alpha, \beta}^{B}(x) = S_{\alpha}^{B}(x) * R_{\beta}^{B}(x),$$

where $S_{\alpha}^{B}(x)$ and $R_{\beta}^{B}(x)$ are the Bessel elliptic kernel of Marcel Riesz and the Bessel ultra-hyperbolic kernel of Marcel Riesz, respectively. They also defined the Bessel diamond Marcel Riesz operator of order (α, β) on the function f by

$$U^{(\alpha, \beta)}(f) = K_{\alpha, \beta}^{B} \ast f,$$

where $\alpha, \beta \in \mathbb{C}, K_{\alpha, \beta}^{B}$ is defined by (15), and $f \in S$. In addition, they studied the operator $E^{(\alpha, \beta)} = \left[U^{(\alpha, \beta)}\right]^{-1}$ such that $U^{(\alpha, \beta)}(f) = \varphi$ implies $E^{(\alpha, \beta)}\varphi = f$.

In 2007, Tariboon and Kananthai [22] introduced the diamond Klein-Gordon operator $(\hat{\gamma} + m^2)^k$ iterated k times, which is defined by

$$(\hat{\gamma} + m^2)^k = \left[\left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2}\right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^2 + m^2\right]^k,$$

where $m \geq 0, k$ is non-negative integer, $p + q = n$ is the dimension of \mathbb{R}^n, for all $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. Next, Nonlaopon et al. [23] studied the fundamental solution of diamond Klein-Gordon operator iterated k times, which is called the diamond Klein-Gordon kernel, and studied the Fourier transform of the diamond Klein-Gordon kernel and its convolution [24].

In 2011, Liangprom and Nonlaopon [25] studied some properties of the distribution $e^{ax}(\hat{\gamma} + m^2)^k\delta$ and showed the boundedness property of the distribution $e^{ax}(\hat{\gamma} + m^2)^k\delta$, where $(\hat{\gamma} + m^2)^k$ is defined by Equation (17), $\alpha \in \mathbb{C}$, and δ is Dirac delta function.

In 2013, Sattaso and Nonlaopon [26] defined the diamond Klein-Gordon operator of order α on the function f by

$$D^{\alpha}(f) = T_{\alpha} \ast f,$$

where $\alpha \in \mathbb{C}$, and T_{α} is the diamond Klein-Gordon kernel. They also studied the convolution of T_{α} and obtain the operator $L^{\alpha} = [D^{\alpha}]^{-1}$ such that $D^{\alpha}(f) = \varphi$ implies $L^{\alpha}\varphi = f$.

In 1988, Trione [27] studied the fundamental solution of the ultrahyperbolic Klein-Gordon operator $(\hat{\gamma} + m^2)^k$ iterated k times, which is defined by

$$(\hat{\gamma} + m^2)^k = \left(\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} + m^2\right)^k.$$

She showed that $W_{2k}(x, m)$, defined by Equation (37) with $\alpha = 2k$, is the fundamental solution of the operator $(\hat{\gamma} + m^2)^k$, which is called the ultra-hyperbolic Klein-Gordon kernel. Next, Tellez [28] studied the convolution product of $W_{\alpha}(x, m) \ast W_{\beta}(x, m)$, where $\alpha, \beta \in \mathbb{C}$. In addition, Trione [29] has studied the fundamental $(P \pm i0)^k$-ultrahyperbolic solution of the Klein-Gordon operator iterated k
times and the convolution of such fundamental solution. She also studied the integral representation of the kernel \(W_n(x, m) \), see [30] for more details.

In this paper, we define the Klein-Gordon operator of order \(\alpha \) of the function \(f \) by

\[
T^\alpha (f) = W_n * f,
\]

where \(\alpha \in \mathbb{C}, W_n \) is the ultra-hyperbolic Klein-Gordon kernel defined by Equation (37), and \(f \in \mathcal{S} \). Our aim of this paper is to obtain the operator \(L^\alpha = [T^\alpha]^{-1} \) such that if \(T^\alpha (f) = \varphi \) then \(L^\alpha \varphi = f \).

Before we proceed to that point, we clarify some concepts and definitions.

2. Preliminaries

Definition 1. Let \(x = (x_1, x_2, \ldots, x_n) \) be a point of the \(n \)-dimensional Euclidean space \(\mathbb{R}^n \) and

\[
u = x_1^2 + x_2^2 + \cdots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \cdots - x_{p+q}^2
\]

be the non-degenerated quadratic form, where \(p + q = n \) is the dimension of \(\mathbb{R}^n \). Let \(\Gamma_+ = \{ x \in \mathbb{R}^n : x_1 > 0 \text{ and } u > 0 \} \) be the interior of a forward cone and let \(\Gamma_+ \) denote its closure. For any complex number \(\gamma \), we define

\[
R_\gamma(x) = \begin{cases} \frac{u^{(\gamma-n)/2} K_\gamma(y)}{K_n(\gamma)}, & \text{for } x \in \Gamma_+; \\ 0, & \text{for } x \notin \Gamma_+, \end{cases}
\]

where

\[
K_n(\gamma) = \frac{\pi^{(n-1)/2} \Gamma((2 + \gamma - n)/2) \Gamma((1 - \gamma)/2) \Gamma(\gamma)}{\Gamma((2 + \gamma - p)/2) \Gamma((p - \gamma)/2)}.
\]

The function \(R_\gamma(x) \), which was introduced by Y. Nozaki [31], is called the ultra-hyperbolic kernel of Marcel Riesz. It is well known that \(R_\gamma(x) \) is an ordinary function when \(\text{Re}(\gamma) \geq n \) and is a distribution of \(\gamma \) otherwise. The support of \(R_\gamma(x) \) is denoted by \(\text{supp} \Gamma_\gamma(x) \) and suppose that \(\text{supp} R_\gamma(x) \subset \Gamma_+ \), that is, \(\text{supp} R_\gamma(x) \) is compact.

By putting \(p = 1 \) in \(R_\gamma(x) \) and taking into the Legendre’s duplication formula

\[
\Gamma(2z) = 2^{2z-1} \pi^{-1/2} \Gamma(z) \Gamma(z + 1/2),
\]

we obtain

\[
I_\gamma(x) = \frac{\nu^{(\gamma-n)/2}}{H_n(\gamma)},
\]

and \(\nu = x_1^2 - x_2^2 - x_3^2 - \cdots - x_n^2 \), where

\[
H_n(\gamma) = \pi^{(n-2)/2} 2^\gamma - 1 \Gamma((\gamma + 2 - n)/2) \Gamma(\gamma/2).
\]

The function \(I_\gamma(x) \) is called the hyperbolic kernel of Marcel Riesz. From [2], the generalized function \(R_{2k}(x) \) is the fundamental solution of the operator \(\psi^k \), that is

\[
\psi^k (R_{2k}(x)) = \delta,
\]

In addition, it can be shown that

\[
R_{-2k}(x) = \psi^k \delta
\]

for \(k \) is a nonnegative integer, see [2,13].
Definition 2. Let \(x = (x_1, x_2, \ldots, x_n) \) be a point of \(\mathbb{R}^n \) and \(\omega = x_1^2 + x_2^2 + \cdots + x_n^2. \) The elliptic kernel of Marcel Riesz is defined by

\[
S_\gamma(x) = \frac{\omega^{(\gamma-n)/2}}{U_n(\gamma)},
\]

where \(\gamma \in \mathbb{C}, n \) is the dimension of \(\mathbb{R}^n, \) and

\[
U_n(\gamma) = \frac{\pi^{n/2} \Gamma(\gamma/2)}{\Gamma((n-\gamma)/2)}.
\]

Note that \(n = p + q. \) By putting \(q = 0 \) (i.e., \(n = p) \) in (22) and (23), we can reduce \(u(\gamma-n)/2 \) to \(\omega_p^{(\gamma-p)/2}, \)
where \(\omega_p = x_1^2 + x_2^2 + \cdots + x_p^2, \) and reduce \(K_\gamma(\gamma) \) to

\[
K_p(\gamma) = \frac{\pi^{(p-1)/2} \Gamma((1 - \gamma)/2) \Gamma(\gamma)}{\Gamma((p - \gamma)/2)}.
\]

Using the Legendre’s duplication formula (Equation (24)) and

\[
\Gamma(1/2 + z) \Gamma(1/2 - z) = \pi \sec(\pi z),
\]

we obtain

\[
K_p(\gamma) = \frac{1}{2} \sec(\gamma \pi/2) U_p(\gamma).
\]

Thus, for \(q = 0, \) we have

\[
R_\gamma(x) = \frac{u^{(\gamma-p)/2}}{K_p(\gamma)} = 2 \cos(\gamma \pi/2) \frac{u^{(\gamma-p)/2}}{U_p(\gamma)} = 2 \cos(\gamma \pi/2) S_\gamma(x).
\]

In addition, if \(\gamma = 2k \) for some non-negative integer \(k, \) then

\[
R_{2k}(x) = 2(-1)^k S_{2k}(x).
\]

Next, we consider the function

\[
W_\alpha(x, m) = \begin{cases} \frac{(m/2)^{1/2} \Gamma(\alpha/2)}{\Gamma(\alpha/2) \Gamma(\alpha/2)} \int_{\mathbb{R}^n} (m^2 u^{1/2}), & \text{for } x \in \Gamma_+; \\ 0, & \text{for } x \notin \Gamma_+,
\end{cases}
\]

where \(\alpha \in \mathbb{C}, n \) is defined by Equation (21), \(m \) a real non-negative number, \(n \) is the dimension of \(\mathbb{R}^n, \)
and \(J_\nu(z) \) is Bessel function of the first kind, which is defined by

\[
J_\nu(z) = \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{2k+\nu}}{k! \Gamma(k + \nu + 1)}.
\]

It is well known that \(W_\alpha(x, m) \) is an ordinary function when \(\Re(\alpha) \geq n \) and is a distribution otherwise. In addition, \(W_\alpha(x, m) \) can be expressed as an infinitely linear combination of \(R_\alpha(x) \) of different orders, that is

\[
W_\alpha(x, m) = \sum_{\nu=0}^{\infty} \frac{(-\alpha/2)^{\nu} \Gamma(\alpha/2)}{\Gamma(\nu + 1)} m^{2\nu} R_{\alpha+2\nu}(x),
\]

where \(\alpha \in \mathbb{C}, R_\alpha(x) \) is defined by Equation (22), see [27,29,30], for more details.

From Equation (37) and by putting \(\alpha = -2k, \) for \(k \) is non-negative integer, we have

\[
W_{-2k}(x, m) = \sum_{\nu=0}^{\infty} \frac{k \nu}{{\nu \choose k} m^{2\nu} R_{-2(k-\nu)}(x)}.
\]
Since the operator \((\sigma + m^2)^k \) defined by Equation (19) is linearly continuous and injective mapping of this possess its own inverse. From Equation (28), we obtain
\[
W_{-2k}(x, m) = \sum_{v=0}^{\infty} \binom{k}{v} m^{2v} \sigma^{k-v} \delta = (\sigma + m^2)^k \delta. \tag{39}
\]

Substituting \(k = 0 \) in Equation (39), yields \(W_0(x, m) = \delta \). On the other hand, by putting \(\alpha = 2k \) in Equation (37), yields
\[
W_{2k}(x, m) = \left(\frac{-k}{0}\right) m^{2(0)} R_{2k+0}(x) + \sum_{v=1}^{\infty} \binom{-k}{v} m^{2v} R_{2k+2v}(x). \tag{40}
\]

The second summand of the right-hand side of Equation (40) vanishes when \(m^2 = 0 \). Therefore, we obtain
\[
W_{2k}(x, m = 0) = R_{2k}(x),
\]
is the fundamental solution of the ultra-hyperbolic operator \(\sigma^k \). For the convenience, we will denote \(W_{\alpha}(x, m) \) by \(W_{\alpha} \).

The proof of Lemmas 1 and 2 are given in [28].

Lemma 1. The function \(W_{\alpha} \) has the following properties:

(i) \(W_0 = \delta \);
(ii) \(W_{-2k} = (\sigma + m^2)^k \delta \);
(iii) \((\sigma + m^2)^k W_{\alpha} = W_{-2k} \);
(iv) \((\sigma + m^2)^k W_{2k} = \delta \);
(v) \(W_{\alpha} \ast W_{-2k} = (\sigma + m^2)^k W_{\alpha} \).

Lemma 2. (The convolutions of \(W_{\alpha} \))

(i) If \(p \) is odd, then
\[
W_{\alpha} \ast W_{\beta} = W_{\alpha + \beta} + A_{\alpha, \beta}, \tag{41}
\]
where
\[
A_{\alpha, \beta} = \frac{i \sin(\alpha \pi/2) \sin(\beta \pi/2)}{2 \sin((\alpha + \beta)\pi/2)} \sum_{v=0}^{\infty} (m^2)^v \binom{-\alpha - \beta/2}{v} \left[H^+_{\alpha + \beta + 2v} - H^-_{\alpha + \beta + 2v} \right] \tag{42}
\]
and
\[
H^\pm_{\alpha + \beta + 2v} = H_{\alpha + \beta + 2v}(P \pm i0, n) \tag{43}
\]
as defined by Equation (7) with \(\gamma = \alpha + \beta + 2v \).

(ii) If \(p \) is even, then
\[
W_{\alpha} \ast W_{\beta} = B_{\alpha, \beta} W_{\alpha + \beta}, \tag{44}
\]
where
\[
B_{\alpha, \beta} = \frac{\cos(\alpha \pi/2) \cos(\beta \pi/2)}{\cos((\alpha + \beta)\pi/2)}. \tag{45}
\]

3. The Convolution of \(W_{\alpha} \ast W_{\beta} \) when \(\beta = -\alpha \)

In this section, we will consider the property of \(W_{\alpha} \ast W_{\beta} \) when \(\beta = -\alpha \).

From Equations (41) and (44), we immediately obtain the following properties:

1. If \(p \) is odd and \(q \) is even, then
\[
W_{\alpha} \ast W_{\beta} = W_{\alpha + \beta} + A_{\alpha, \beta}, \tag{46}
\]
where \(A_{\alpha, \beta} \) is defined by Equation (42).
2. If p and q are both odd, then
\[W_\alpha \ast W_\beta = W_{\alpha+\beta} + A_{\alpha,\beta}. \]
\[\text{Equation (46)} \]

3. If p is even and q is odd, then
\[W_\alpha \ast W_\beta = \frac{\cos(\alpha \pi/2) \cos(\beta \pi/2)}{\cos((\alpha + \beta) \pi/2)} W_{\alpha+\beta}. \]
\[\text{Equation (47)} \]

4. If p and q are both even, then
\[W_\alpha \ast W_\beta = \frac{\cos(\alpha \pi/2) \cos(\beta \pi/2)}{\cos((\alpha + \beta) \pi/2)} W_{\alpha+\beta}. \]
\[\text{Equation (48)} \]

Moreover, it follows from Equation (42) that
\[A_{\alpha,\gamma} = \lim_{\beta \to -\alpha} A_{\alpha,\beta} \]
\[= \frac{i}{2} \lim_{\gamma \to 0} \frac{\sin(\alpha \pi/2) \sin((\gamma - \alpha) \pi/2)}{\sin(\gamma \pi/2)} \sum_{v=0}^{\infty} (m^2)^v \left(-\frac{\gamma}{2} \right)^v \left[H_{\gamma+2v}^+ - H_{\gamma+2v}^- \right] \]
\[= \frac{i}{2} \lim_{\gamma \to 0} \frac{\sin(\alpha \pi/2) \sin((\gamma - \alpha) \pi/2)}{\sin(\gamma \pi/2)} \times \lim_{\gamma \to 0} \left\{ H_{\gamma+2v}^+ - H_{\gamma+2v}^- \right\} + \sum_{v=1}^{\infty} \frac{(m^2)^v}{k} \left[H_{\gamma+2v}^+ - H_{\gamma+2v}^- \right] \]
\[= \frac{i}{2} \lim_{\gamma \to 0} \frac{\sin(\alpha \pi/2) \sin((\gamma - \alpha) \pi/2)}{\sin(\gamma \pi/2)} \lim_{\gamma \to 0} \left[H_{\gamma}^+ - H_{\gamma}^- \right], \]
\[\text{Equation (49)} \]

where $\gamma = \alpha + \beta$.

On the other hand, using Equations (43) and (7), we have
\[\lim_{\gamma \to 0} [H_{\gamma}^+ - H_{\gamma}^-] = \frac{\Gamma(n/2)}{\pi^{n/2}} \left[\lim_{\gamma \to 0} e^{-\gamma n i/2} e^{\gamma n i/2} \frac{(P + i0)^{(\gamma-n)/2}}{\Gamma(\gamma/2)} - \lim_{\gamma \to 0} e^{\gamma n i/2} e^{-\gamma n i/2} \frac{(P - i0)^{(\gamma-n)/2}}{\Gamma(\gamma/2)} \right] \]
\[= \frac{\Gamma(n/2)}{\pi^{n/2}} \left[\lim_{\gamma \to 0} e^{-\gamma n i/2} e^{\gamma n i/2} \frac{\text{Res}_{\beta=-n/2} (P + i0)^{\beta}}{\Gamma(\beta + n/2)} - \lim_{\gamma \to 0} e^{\gamma n i/2} e^{-\gamma n i/2} \frac{\text{Res}_{\beta=-n/2} (P - i0)^{\beta}}{\Gamma(\beta + n/2)} \right] \]
\[\text{Equation (50)} \]

Now, taking n as an odd integer, yields
\[\text{Res}_{\lambda=-n/2-k} (P \pm i0)^{\lambda} = \frac{e^{\pm q n i/2} \pi^{n/2}}{2^{k} k! \Gamma(n/2 + k)} \delta^k. \]
\[\text{Equation (51)} \]

where δ^k is defined by (2), $p + q = n$, and k is a non-negative integer; see [32,33]. If p and q are both even, then
\[\text{Res}_{\lambda=-n/2-k} (P \pm i0)^{\lambda} = \frac{e^{\pm q n i/2} \pi^{n/2}}{2^{k} k! \Gamma(n/2 + k)} \delta^k. \]
\[\text{Equation (52)} \]
Nevertheless, if \(p \) and \(q \) are both odd, then
\[
\text{Res}_{\lambda=-n/2-k} (P \pm \imath 0)^\lambda = 0,
\]
(53)

Therefore, we have
\[
\lim_{\gamma \to 0} \left[H^+_{\gamma} - H^-_{\gamma} \right] = \frac{\Gamma(n/2)}{\pi^{n/2}} \cdot \frac{\pi^{n/2}}{\Gamma(n/2)} \cdot \left[\lim_{\gamma \to 0} e^{-\gamma \pi i/2} - \lim_{\gamma \to 0} e^{\gamma \pi i/2} \right] \delta
\]
\[
= \lim_{\gamma \to 0} \left[-2i \sin (\gamma \pi/2) \right] \delta.
\]
(54)

From Equations (50) and (53), we have
\[
\lim_{\gamma \to 0} \left[H^+_{\gamma} - H^-_{\gamma} \right] = 0
\]
(55)

if \(p \) and \(q \) are both odd \((n \text{ even}) \).

Applying Equations (54) and (55) into Equation (49), we have
\[
A_{a,-a} = \frac{i}{2} \lim_{\gamma \to 0} \frac{\sin(a \pi/2) \sin((\gamma - a) \pi/2)}{\sin(\gamma \pi/2)} \cdot \lim_{\gamma \to 0} \left[-2i \sin (\gamma \pi/2) \right] \delta(x)
\]
\[
= \sin^2 \left(a \pi/2 \right) \delta
\]
(56)

if \(p \) is odd and \(q \) is even, and
\[
A_{a,-a} = 0
\]
(57)

if \(p \) and \(q \) are both odd.

From Equations (45)–(48) and using Lemmas 1, 2 and Equations (56) and (57), if \(p \) is odd and \(q \) is even, then we obtain
\[
W_a \ast W_{-a} = W_0 + A_{a,-a}
\]
\[
= \delta + \sin^2 \left(a \pi/2 \right) \delta
\]
\[
= \left[1 + \sin^2 \left(a \pi/2 \right) \right] \delta.
\]
(58)

If \(p \) and \(q \) are both odd, then
\[
W_a \ast W_{-a} = W_0 = \delta.
\]
(59)

If \(p \) is even and \(q \) is odd, then
\[
W_a \ast W_{-a} = \frac{\cos \left(a \pi/2 \right) \cos \left(-a \pi/2 \right)}{\cos \left((a - a) \pi/2 \right)} W_0
\]
\[
= \cos^2 \left(a \pi/2 \right) \delta.
\]
(60)

Finally, if \(p \) and \(q \) are both even, then
\[
W_a \ast W_{-a} = \frac{\cos \left(a \pi/2 \right) \cos \left(-a \pi/2 \right)}{\cos \left((a - a) \pi/2 \right)} W_0
\]
\[
= \cos^2 \left(a \pi/2 \right) \delta.
\]
(61)
4. The Main Theorem

Let \(T^\alpha (f) \) be the ultrahyperbolic Klein-Gordon operator of order \(\alpha \) on the function \(f \), which is defined by

\[
T^\alpha (f) = W_\alpha \ast f,
\]

where \(\alpha \in \mathbb{C} \), \(W_\alpha \) is defined by Equation (37), and \(f \in \mathcal{S} \).

Recall that our objective is to obtain the operator \(L^\alpha = [T^\alpha]^{-1} \) such that if \(T^\alpha (f) = \varphi \), then \(L^\alpha \varphi = f \) for all \(\alpha \in \mathbb{C} \).

Theorem 1. If \(T^\alpha (f) = \varphi \), then \(L^\alpha \varphi = f \) such that

\[
L^\alpha = [T^\alpha]^{-1} = \begin{cases}
1 + \sin^2(\alpha \pi/2) \n & \text{if } p \text{ is odd and } q \text{ is even;} \\
W_{-\alpha} & \text{if } p \text{ and } q \text{ are both odd;} \\
\sec^2(\alpha \pi/2) W_{-\alpha} & \text{if } p \text{ is even with } \alpha/2 + 2s + 1
\end{cases}
\]

for any non-negative integer \(s \).

Proof. By Equation (62), we have

\[
T^\alpha (f) = W_\alpha \ast f = \varphi,
\]

where \(\alpha \in \mathbb{C} \), \(W_\alpha \) is defined by Equation (37), and \(f \in \mathcal{S} \). If \(p \) is odd and \(q \) is even, then, in view of Equation (58), we obtain

\[
\left[1 + \sin^2(\alpha \pi/2)\right]^{-1} W_{-\alpha} \ast (W_\alpha \ast f) = \left[1 + \sin^2(\alpha \pi/2)\right]^{-1} (W_{-\alpha} \ast W_\alpha) \ast f
= \left[1 + \sin^2(\alpha \pi/2)\right]^{-1} \left\{1 + \sin^2(\alpha \pi/2)\delta\right\} \ast f
= \delta \ast f = f.
\]

Therefore,

\[
\left[1 + \sin^2(\alpha \pi/2)\right]^{-1} W_{-\alpha} = [T^\alpha]^{-1} = (W_\alpha)^{-1}
\]

for all \(\alpha \in \mathbb{C} \).

Similarly, if both \(p \) and \(q \) are odd, then by Equation (59), we obtain

\[
W_{-\alpha} \ast (W_\alpha \ast f) = (W_{-\alpha} \ast W_\alpha) \ast f = \delta \ast f = f.
\]

Therefore,

\[
W_{-\alpha} = [T^\alpha]^{-1} = (W_\alpha)^{-1}
\]

for all \(\alpha \in \mathbb{C} \).

Finally, if \(p \) is even, then by Equations (60) and (61), we have

\[
\sec^2(\alpha \pi/2) W_{-\alpha} \ast (W_\alpha \ast f) = \sec^2(\alpha \pi/2) (W_{-\alpha} \ast W_\alpha) \ast f
= \sec^2(\alpha \pi/2) \left\{\cos^2(\alpha \pi/2)\delta\right\} \ast f
= \delta \ast f = f,
\]

provided that \(\beta/2 + 2s + 1 \) for any non-negative integer \(s \). Therefore,

\[
\sec^2(\alpha \pi/2) W_{-\alpha} = [T^\alpha]^{-1} = (W_\alpha)^{-1}
\]

for all \(\alpha \in \mathbb{C} \) with \(\alpha/2 \neq 2s + 1 \) for any non-negative integer \(s \).
Therefore, we have the desired results in Equations (63)–(65).

5. Conclusions

In this work, we have considered the property of convolution of the ultrahyperbolic Klein-Gordon kernel in the form \(W_\alpha \ast W_\beta \) when \(\beta = -\alpha \). We have obtained the inverse ultrahyperbolic Klein-Gordon kernel, that is, the operator \(L^\alpha = [T^\alpha]^{-1} \) such that if \(T^\alpha(f) = \varphi \), then \(L^\alpha \varphi = f \) for all \(\alpha \in \mathbb{C} \). It is expected that this work may stimulate further research in this field.

Funding: This research received no external funding.

Acknowledgments: I would like to thank the anonymous referees for their careful reading of the paper and giving of many valuable suggestions, which made the paper more elegant and readable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Gel’fand, I.M.; Shilov, G.E. Generalized Functions; Academic Press: New York, NY, USA, 1964; Volume 1.
2. Trione, S.E. On Marcel Riesz’s ultra-hyperbolic kernel. *Trab. Math.* 1987, 116, 1–12.
3. Tellez, M.A. The distributional Hankel transform of Marcel Riesz’s ultra-hyperbolic kernel. *Stud. Appl. Math.* 1994, 93, 133–162. [CrossRef]
4. Kananthai, A. On the solution of the n-dimensional diamond operator. *Appl. Math. Comput.* 1997, 88, 27–37. [CrossRef]
5. Bunpog, C. Boundary value problem of the operator \(\mathcal{G}^k \) related to the biharmonic operator and diamond operator. *Mathematics* 2018, 6, 115. [CrossRef]
6. Bupasiri, S. On the elementary solution for the partial differential operator \(\mathcal{G}^k \) related to the wave equation. *Eur. J. Pure Appl. Math.* 2018, 11, 309–399. [CrossRef]
7. Kananthai, A. On the convolution equation related to the diamond kernel of Marcel Riesz. *J. Comput. Appl. Math.* 1998, 100, 33–39. [CrossRef]
8. Kananthai, A. On the convolution of the diamond kernel of Marcel Riesz. *Appl. Math. Comput.* 2000, 114, 95–101. [CrossRef]
9. Kananthai, A. On the diamond operator related to the wave equation. *Nonlinear Anal. Theor. Meth. Appl.* 2001, 47, 1373–1382. [CrossRef]
10. Kananthai, A. On the Fourier transform of the diamond kernel of Marcel Riesz. *Appl. Math. Comput.* 1999, 101, 151–158. [CrossRef]
11. Kananthai, A. On the green function of the diamond operator related to the Klein-Gordon operator. *Bull. Calcutta Math. Soc.* 2001, 93, 353–360.
12. Sritanratana, G.; Kananthai, A. On the nonlinear diamond operator related to the wave equation. *Nonlinear Anal. Real World Appl.* 2002, 3, 465–470. [CrossRef]
13. Tellez, M.A.; Kananthai, A. On the convolution product of the distributional families related to the diamond operator. *Le Matematiche* 2002, 57, 39–48.
14. Domínguez, A.G.; Trione, S.E. On the Laplace transform of retarded invariant functions. *Adv. Math.* 1978, 30, 51–62.
15. Riesz, M. Integrale de Riemann-Liouville et le probleme de Cauchy. *Acta Math.* 1949, 81, 1–222. [CrossRef]
16. Cerutti, R.A.; Trione, S.E. The inversion of Marcel Riesz ultra-hyperbolic causal operator. *Appl. Math. Lett.* 1999, 12, 25–30. [CrossRef]
17. Schwartz, L. *Theories des Distributions; Actualites Scientifiques et Industriel and Hermann & Cie*; Paris, France, 1957 and 1959; Volumes 1 and 2.
18. Aguirre, M.A. The inverse ultrahyperbolic Marcel Riesz kernel. *Le Matematiche* 1999, 54, 55–66.
19. Maneetus, D.; Nonlaopon, K. The inversion of Bessel ultrahyperbolic kernel of Marcel Riesz. *Abstr. Appl. Anal.* 2011, 2011, 419157. [CrossRef]
20. Maneetus, D.; Nonlaopon, K. On the inversion of diamond kernel of Marcel Riesz. *Int. J. Math. Anal.* 2013, 7, 441–451. [CrossRef]
21. Salao, T.; Nonlaopon, K. On the inverse Bessel diamond kernel of Marcel Riesz. *Integral Transforms Spec. Funct.* **2013**, *24*, 129–140. [CrossRef]
22. Tariboon, J.; Kananthai, A. On the Green function of the $(\oplus + m^2)^k$ operator. *Integral Transforms Spec. Funct.* **2007**, *18*, 297–304. [CrossRef]
23. Nonlaopon, K.; Lunnaree, A.; Kananthai, A. On the solution of the n-dimensional diamond Klein-Gordon operator and its convolution. *Far East J. Math. Sci.* **2012**, *63*, 203–220.
24. Lunnaree, A.; Nonlaopon, K. On the Fourier transform of the diamond Klein-Gordon kernel. *Int. J. Pure Appl. Math.* **2011**, *68*, 85–97.
25. Liangprom, A.; Nonlaopon, K. On the convolution equation related to the diamond Klein-Gordon operator. *Abstr. Appl. Anal.* **2011**, *2011*, 908491. [CrossRef]
26. Sattaso, S.; Nonlaopon, K. On the convolution and inversion of diamond Klein Gordon kernel. *Int. J. Pure Appl. Math.* **2013**, *83*, 331–348. [CrossRef]
27. Trione, S.E. On the elementary retarded ultra-hyperbolic solution of the Klein-Gordon operator iterated k-times. *Stud. Appl. Math.* **1988**, *79*, 121–141. [CrossRef]
28. Tellez, M.A. The convolution product of $W_{\alpha}(u, m) * W_{\beta}(u, m)$. *Math. Notae* **1995–1996**, *38*, 105–111.
29. Trione, S.E. On the elementary $(P \pm i0)^{k}$ ultrahyperbolic solution of the Klein-Gordon operator iterated k-times. *Integral Transforms Spec. Funct.* **2000**, *9*, 149–162. [CrossRef]
30. Trione, S.E. The integral representation of the Riesz kernel $W_{\alpha}(u, m)$. *Integral Transforms Spec. Funct.* **1998**, *7*, 171–174. [CrossRef]
31. Nozaki, Y. On Riemann-Liouville integral of ultra-hyperbolic type. *Kodai Math. Semi. Rep.* **1964**, *6*, 69–87. [CrossRef]
32. Tellez, M.A. The expansion and Fourier’s transform of $\delta^{(k-1)}(m^2 + P)$. *Integral Transforms Spec. Funct.* **1995**, *3*, 113–134. [CrossRef]
33. Tellez, M.A.; Barrenechea, A.L. A relation between the kth derivative of the Dirac delta in $(P \pm i0)$ and the residue of the distributions $(P \pm i0)^{k}$. *J. Comput. Appl. Math.* **1999**, *108*, 31–40. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).