The top eigenvalue of the random Toeplitz matrix and the Sine kernel

Arnab Sen Bálint Virág

September 27, 2011

Abstract

We show that the top eigenvalue of an $n \times n$ random symmetric Toeplitz matrix, scaled by $\sqrt{2n \log n}$, converges to the square of the $2 \to 4$ operator norm of the Sine kernel.

1 Introduction

An $n \times n$ symmetric random Toeplitz matrix is given by

$$
T_n = \begin{bmatrix}
 a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\
 a_1 & a_0 & a_1 & \cdots & a_{n-2} \\
 \vdots & a_1 & a_0 & \ddots & \vdots \\
 a_{n-2} & \vdots & \ddots & \ddots & a_1 \\
 a_{n-1} & a_{n-2} & \cdots & a_1 & a_0
\end{bmatrix} = \left((a_{i-j}) \right)_{0 \leq i, j \leq n}.
$$

where $(a_i)_{0 \leq i \leq n-1}$ is a sequence of independent random variables. This article establishes the law of large numbers for the maximum eigenvalue of this matrix as $n \to \infty$. The study deterministic Toeplitz operators has a rich theory. See the classical book by Grenander and Szegő (1984) or more recent ones by Bottcher et. al. (1999, 2000, 2006). In contrast, the study of random Toeplitz matrices is a relatively new field of research. The question of establishing the limiting spectral distribution of random Toeplitz matrices with independent entries was first posed in the review paper by Bai (1999). The answer was given by Bryc, Dembo and Jiang (2006) using method of moments. Since then the study of asymptotic distribution of eigenvalues of Toeplitz matrices has attracted considerable attention e.g., see Hammond and Miller (2005), Bose and Sen (2008), Kargin (2009), Chatterjee (2009) and the references therein.
The problem of studying the maximum eigenvalue of random Toeplitz matrices is raised in [Bryc et al. 2006 Remark 1.3]. Bose and Sen (2007) established the law of the large numbers for the spectral norm of Toeplitz matrix when the entries are i.i.d. with some positive mean and finite variance. But pinpointing the exact limit for the spectral norm of the Toeplitz matrix when there is no perturbation, that is, when the entries are mean zero turned out to be much more challenging. This is partly due to the fact unlike the Wigner case where the limiting spectral distribution, the semicircular law, has a compact support and the top eigenvalue converges to the right end point of the support (this was proved by Bai and Yin 1988), the limiting spectral distribution of Toeplitz matrices has infinite support. As a result, there is no natural guess to begin with. Another difficulty is that currently there are no useful estimates available for the trace of high powers of the Toeplitz matrix $\text{tr}(T_n^k)$ when $k = k(n)$ goes to infinity.

Meckes (2007) showed that if the entries have zero mean and uniformly subgaussian tail then the expected spectral norm of an $n \times n$ random Toeplitz matrix is of the order of $\sqrt{n \log n}$, a significant departure from the standard \sqrt{n} scaling of the Wigner case. Adamczak (2010) shows concentration, more precisely result that the random Toeplitz matrix divided by the expected spectral norm converges almost surely to 1 if the entries are i.i.d. with zero mean and finite variance. Bose, Subhra Hazra and Saha (2010) gave an upper bound and a lower bound for the right tail probability of the spectral norm of Toeplitz matrix scaled by $n^{1/\alpha}$ when the entries are i.i.d. random variables belonging to the domain of attraction of an α-stable random variable with index $0 < \alpha < 1$.

Throughout the paper, we will have the following standing assumption on the entries of our random Toeplitz matrix.

Assumption. $(a_i)_{0 \leq i \leq n-1}$ is a triangular array of independent random variables (we suppress the first index). There exists constants $\gamma > 2$ and C finite so that for each variable

$$Ea_i = 0, \quad Ea_i^2 = 1, \quad \text{and} \quad E|a_i|^{\gamma} < C.$$

Define the integral operator corresponding to the sine kernel by

$$\text{Sin}(f)(x) := \int_{\mathbb{R}} \frac{\sin(\pi(x-y))}{\pi(x-y)} f(y)dy \quad \text{for} \quad f \in L^2(\mathbb{R}),$$

and its $2 \to 4$ operator norm as

$$\|\text{Sin}\|_{2 \to 4} := \sup_{\|f\|_2 \leq 1} \|\text{Sin}(f)\|_4$$
where \(\|f\|_p := (\int_{\mathbb{R}} |f(x)|^p)^{1/p} \) denotes the standard \(L^p \)-norm. \(\|\text{Sin}\|_{2\rightarrow4}^2 \) is the solution of the convolution optimization problem (see the Appendix):

\[
\sup\{\|f \ast f\|_2 : f \text{ even of } L^2\text{-norm 1 supported on } [-1/2, 1/2]\} \tag{1}
\]

For a Hermitian matrix \(A \), we denote by \(\lambda_1(A) \) and \(\lambda_n(A) \) the maximum and minimum eigenvalue of \(A \) respectively. The following theorem is the main result of our paper.

Theorem 1. Let \(T_n \) be a sequence of \(n \times n \) symmetric random Toeplitz matrix as defined above with its entries satisfying the above assumption. The \(\lambda_1(T_n) \sqrt{2n \log n} \rightarrow \|\text{Sin}\|_{2\rightarrow4}^2 = 0.8288 \ldots \) as \(n \rightarrow \infty \).

Remark 2. Note that \(L^\gamma \) convergence is as best as we can hope for in Theorem 1. This is because of the fact that maximum eigenvalue of a symmetric matrix dominates the diagonal entries. So \(\lambda_1(T_n) \geq a_0 \) and \(\mathbb{E}|\lambda_1(T_n)|^p \) can be infinite for any \(p > \gamma \).

By symmetry, the same theorem holds for \(-\lambda_n \) and so for the spectral norm \(\|T_n\|_{sp} = \max(\lambda_1, -\lambda_n) \) as well.

1.1 Connection between Toeplitz and Circulant matrices

The starting point our analysis of the maximum eigenvalue is a connection between a Toeplitz matrix and a circulant matrix twice its size.

Observe that \(T_n \) is the \(n \times n \) principal submatrix of a \(2n \times 2n \) circulant matrix \(C_{2n} = (b_{j-i \mod 2n})_{0 \leq i,j \leq 2n-1} \), where \(b_j = a_j \) for \(0 \leq j < n \) and \(b_j = a_{2n-j} \) for \(n < j < 2n \). We hope to relate the spectrum of Toeplitz matrix to that of the present circulant matrix twice its size which can be easily diagonalized as follows:

\[
(2n)^{-1/2} C_{2n} = U_{2n} D_{2n}^l U_{2n}^*
\]

where \(U_{2n} \) is the discrete Fourier transform, i.e. a unitary matrix given by

\[
U_{2n}(j, k) = \frac{1}{\sqrt{2n}} \exp\left(\frac{2\pi i j k}{2n}\right), \quad 0 \leq j, k \leq 2n - 1
\]

and \(D_{2n}^l = \text{diag}(d_0, d_1, \ldots, d_{2n-1}) \), where

\[
d_j = \frac{1}{\sqrt{2n}} \sum_{k=0}^{2n-1} b_k \exp\left(\frac{2\pi i j k}{2n}\right) = \frac{1}{\sqrt{2n}} \left[a_0 + (-1)^j b_n + 2 \sum_{k=1}^{n-1} a_k \cos\left(\frac{2\pi j k}{2n}\right)\right]. \tag{2}
\]
Clearly, $d_j = d_{2n-j}$ for all $n < j < 2n$. If we write

$$Q_{2n} = \begin{pmatrix} I_n & 0_n \\ 0_n & 0_n \end{pmatrix}$$

then T_n and $Q_{2n}C_{2n}Q_{2n}$ have same nonzero eigenvalues by our observation. Moreover, the matrix $(2n)^{-1/2}Q_{2n}C_{2n}Q_{2n}$ has the same eigenvalues as its conjugate

$$(2n)^{-1/2}U_{2n}^* Q_{2n}C_{2n}Q_{2n}U_{2n} = P_{2n}D_{2n}^\dagger P_{2n}$$

where

$$P_{2n} := U_{2n}^* Q_{2n}U_{2n}$$

Consequently, we have a useful representation of the maximum eigenvalue of the Toeplitz matrix

$$\lambda_1(n^{-1/2}T_n) = \sqrt{2}\lambda_1(P_{2n}D_{2n}^\dagger P_{2n}).$$

as long as the right-hand side is not zero. We point out here that the matrix $Q_{2n}C_{2n}Q_{2n}$ (and so $P_{2n}D_{2n}^\dagger P_{2n}$) does not depend on the value of b_n. For notational simplification, we will drop the subscript $2n$ from the relevant matrices unless we want to emphasize the dependence on n.

We have thus reduced our problem to studying the maximum eigenvalue of the matrix $PD^\dagger P$ where P is a deterministic Hermitian projection operator and D^\dagger is a random multiplication operator defined on \mathbb{C}^{2n}. One can view this representation as a discrete analogue for Toeplitz operator defined on the Hardy space \mathcal{H}^2.

As we will see in Section 2 that (after suitably choosing the auxiliary random variable b_n and the variance of a_0) the algebraically diagonal entries of D^\dagger are uncorrelated. In the Gaussian case we get independence, which makes the analysis much easier. In the general case, to analyze the lower bound, we need to use an invariance principle. The difficulty is that the top eigenvalue does not come from the usual central limit theorem regime of D^\dagger, but from moderate deviations. We overcome this by extending the invariance principle of Chatterjee (2005) (based on Lindeberg’s approach to the CLT) to the realm of moderate deviations.

1.2 Heuristics and conjectures

We first give a heuristic description of the origin of the limiting constant. Since P is a convolution with a decaying function, the matrix PDP in many ways behaves a like the
diagonal matrix D itself. In particular, its top eigenvalue comes from a few nearby extreme values of D. We can partition of the interval into short enough sections J, and show that the top eigenvalue is close to the maximum top eigenvalue of blocks $P[J]D[J]P[J]$. This likes to be large when the entries of $D[J]$ are large. By large deviations theory, the real constraint on the best $D[J]$ is that the ℓ^2-norm the vector of entries is bounded by $\sqrt{2 \log n}$.

Now the top eigenvalue is an ℓ^2 optimization problem, but now we have another ℓ^2 optimization over the entries of $D[J]$. Thus an ℓ^4-norm appears, and that the solution of these two problems together are asymptotically given by the $2 \to 4$ norm of the limiting operator of P_{2n}, which we then relate to the well-known Sine kernel. The relation is natural, since P_{2n} and the Sine kernel are both projections to an interval conjugated by a Fourier transform.

Before we prove Theorem 1, let us state some conjectures and open questions. Each of these conjectures can be split into parts (a) the Gaussian case, and (b) the general case where suitable moment conditions have to be imposed.

Conjecture 1. Let v_n be the top eigenvector of $PD^\dagger P$. Then there exist random integers K_n so that for each $i \in \mathbb{Z}$ we have $v_n(K_n + i) \to \hat{g}(i)$, where \hat{g} is the Fourier transform of the function $g(x) = \sqrt{2} f(2x - 1/2)$ and f is the (unique) optimizer in (1).

Conjecture 2. With high probability, all eigenvectors of $PD^\dagger P$ are localized: for each eigenvector, there exists a set of size $n^{o(1)}$ that supports $1 - o(1)$ proportion of the ℓ^2-norm.

Question 3. What is the behavior of $n^{-1/2} \lambda_1(T_n) - \sqrt{2 \log n} \|\text{Sin}\|_{2 \to 4}^2$?

Conjecture 4. The top of the spectrum of T_n, suitably shifted, and normalized, converges to a Poisson process with intensity $ce^{-\eta x}$ for some $c, \eta > 0$.

Related to this, we have the following.

Conjecture 5. The top eigenvalue of T_n, suitably shifted and normalized, has a limiting Gumbel distribution.

Conjecture 6. The eigenvalue process of T_n, away from the edge, after suitable normalization, converges to a standard Poisson point process on \mathbb{R}.

1.3 The proof of Theorem 1

In this section, we break the proof of Theorem 1 into its components. This also serves as a guide to the rest of the paper.
Proof of Theorem 1. We start with the representation (4)

\[\lambda_1(n^{-1/2}T_n) = \sqrt{2}\lambda_1(P_{2n}D_{2n}^\dagger P_{2n}). \]

In formula (2) for diagonal entries of \(D_{2n}^\dagger \), we replace \(a_0 \) by \(\sqrt{2}a_0 \) (this is legal via Lemma 5) and choose \(b_n = \sqrt{2}a_n \) where \(a_n \) is an identical copy of \(a_0 \) independent of \((a_i)_{0<i<n} \) (recall \(P_{2n}D_{2n}^\dagger P_{2n} \) does not depend on \(b_n \)) to obtain a new diagonal matrix \(D_{2n} \).

In Section 2, Corollary 6 we show that we can assume that the \(a_n \) are bounded by \(n^{1/\gamma} \). In Lemma 7, we establish tightness, so it suffices to show convergence in probability. In Section 3 equation (15) we introduce a sparse version \(D^\epsilon \) of the diagonal matrix \(D \), whose top eigenvalue is close:

\[|\lambda_1(PDP) - \lambda_1(PD^\epsilon P)| \leq \epsilon \sqrt{2 \log n}. \]

The matrix \(D^\epsilon \) is sparse enough that the whole question can be reduced to a block-diagonal version, where the blocks are determined by a random partition \(\Lambda \) of \(\{1 \ldots 2n\} \). This is done in Lemma 9 with high probability,

\[\left| \lambda_1(PDP) - \max_{J \in \Lambda: J \cap S \neq \emptyset} \lambda_1(P[J]D^\epsilon[J]P[J]) \right| = O(1), \]

where the parameter \(J \) refers to the minor corresponding to the subset of indices \(J \). In Propositions 10 and 14 (Sections 4, 5) we then establish the asymptotic upper and lower bounds for the for the block diagonal version. Together, they give that with high probability, there exists \(\epsilon_n \to 0 \) so that

\[\max_{J \in \Lambda: J \cap S \neq \emptyset} \lambda_1(P[J]D^\epsilon[J]P[J]) = \sqrt{2 \log n}||\Pi||^2_{2 \to 4} + o(1) \]

where \(\Pi \) is the \(n \to \infty \) limit of \(P \) introduced in (13). Finally, in the Appendix, Lemma 19 we identify \(||\Pi||^2_{2 \to 4} = \frac{1}{\sqrt{2}}||\text{Sin}||^2_{2 \to 4} \). This completes the proof of Theorem 1. \(\square \)

1.4 Notation

We write that a sequence of events \((E_n)_{n \geq 1} \) occurs \textit{with high probability} (with high probability) when \(P\{E_n\} \to 1 \). Let \(\ell^2(\mathbb{C}) \) (resp. \(\ell^2(\mathbb{R}) \)) be the space of square summable sequences of complex (resp. real) numbers indexed by \(\mathbb{Z} \). For square matrix \(A \) and a subset \(T \) of the index set, we denote by \(A[T] \), the principal submatrix of \(A \) which is obtained by keeping those rows and columns of \(A \) whose indices belong to \(T \). We consider \(n \) as an asymptotic parameter tending to infinity. We will use the notations \(f(n) = \Omega(g(n)) \) or \(g(n) = O(f(n)) \).
to denote the bound \(g(n) \leq Cf(n) \) for all sufficiently large \(n \) and for some constant \(C \).
Notations such as \(f(n) = \omega(g(n)) \) or \(g(n) = o(f(n)) \) means that \(g(n)/f(n) \to 0 \) as \(n \to \infty \).
We write \(f(n) = \Theta(g(n)) \) if both \(f(n) = O(g(n)) \) and \(g(n) = O(f(n)) \) hold.

2 Truncation and Tightness

2.1 Truncation and changing the diagonal term

For \(n \geq 1 \), define two arrays of truncated random variables by
\[
\tilde{a}_i = a_i^{(a)} := a_i \mathbf{1}_{|a_i| \leq n^{1/\gamma}} - \mathbb{E}[a_i \mathbf{1}_{|a_i| \leq n^{1/\gamma}}], \quad 0 \leq i \leq n - 1
\]
and
\[
\bar{a}_i = a_i^{(n)} := \text{Var}(\tilde{a}_i)^{-1/2} \tilde{a}_i, \quad 0 \leq i \leq n - 1.
\]
We sometimes write \(T_n(a) \) for \(T_n \) to emphasize its dependence on the underlying sequence of random variables \((a_i)_{0 \leq i \leq n-1} \). Thus \(T_n(\tilde{a}) \) and \(T_n(\bar{a}) \) denote the Toeplitz matrices built with random variables \((\tilde{a}_i)_{0 \leq i \leq n-1} \) and \((\bar{a}_i)_{0 \leq i \leq n-1} \) respectively.

The next lemma says that the above truncation and the rescaling of the underlying random variables has a negligible effect in the study of the maximum eigenvalue of Toeplitz matrix.

Lemma 3. We have, as \(n \to \infty \),

(a) \[
\frac{\lambda_1(T_n(a)) - \lambda_1(T_n(\tilde{a}))}{\sqrt{n \log n}} \overset{L^1}{\to} 0,
\]

(b) \[
\frac{\lambda_1(T_n(\bar{a})) - \lambda_1(T_n(\bar{a}))}{\sqrt{n \log n}} \overset{L^1}{\to} 0.
\]

Proof. Define
\[
\hat{a}_i := a_i \mathbf{1}_{|a_i| \leq n^{1/\gamma}}, \quad 0 \leq i \leq n - 1.
\]
Recall that for a matrix \(A \), its spectral norm satisfies
\[
\|A\|^2_{sp} \leq \max_k \sum_l |A(k,l)| \times \max_l \sum_k |A(k,l)|. \tag{5}
\]
In the special case when \(A \) is Hermitian, the above bound reduces to
\[
\|A\|_{sp} \leq \max_k \sum_l |A(k,l)|. \tag{6}
\]
Then we have
\[
\left| \frac{\lambda_1(T_n(a)) - \lambda_1(T_n(\hat{a}))}{\sqrt{n \log n}} \right| \leq \frac{\|T_n(a) - T_n(\hat{a})\|_{sp}}{\sqrt{n \log n}} \leq 2 \sum_{i=0}^{n-1} |a_i| \mathbf{1}_{\{|a_i| > n^{1/\gamma}\}}.
\]
which follows from the bound (6) and from the fact \(\ell^1 \) norm of the each row of the Toeplitz matrix \(T_n(a) - T_n(\hat{a}) \) is bounded by \(2 \sum_{i=0}^{n-1} |a_i| \mathbf{1}_{\{|a_i| > n^{1/\gamma}\}} \). We quote a standard moment bound for sum of independent nonnegative random variables, commonly known as Rosenthal’s inequality in the literature (see, e.g., [Latała 1997 Corollary 3]) which says that if \(\xi_1, \ldots, \xi_n \) are independent nonnegative random variables and \(p \geq 1 \), then there exists a universal constant \(C_p \) such that
\[
\mathbb{E}\left[\left(\sum_{i=1}^{n} \xi_i \right)^p \right] \leq C_p \max \left(\left(\sum_{i=1}^{n} \mathbb{E}[\xi_i] \right)^p, \sum_{i=1}^{n} \mathbb{E}[\xi_i^p] \right).
\]
Clearly, \(\mathbb{E}[|a_i|^{\gamma} \mathbf{1}_{\{|a_i| > n^{1/\gamma}\}}] \leq \mathbb{E}[|a_i|^\gamma] \leq C \). On the other hand, by Hölder’s inequality
\[
\mathbb{E}[|a_i|^\gamma \mathbf{1}_{\{|a_i| > n^{1/\gamma}\}}] \leq (\mathbb{E}[|a_i|^\gamma])^{1/\gamma} \cdot (\mathbb{P}\{|a_i|^\gamma > n\})^{1-1/\gamma}
\]
and by Markov’s inequality, this is bounded above by
\[
(\mathbb{E}[|a_i|^\gamma])^{1/\gamma} (\mathbb{E}[|a_i|^\gamma/n])^{1-1/\gamma} = \mathbb{E}[|a_i|^\gamma/n]^{-1+1/\gamma} \leq C n^{-1+1/\gamma}.
\]
Therefore, by Rosenthal’s inequality,
\[
\mathbb{E}\left[\sum_{i=0}^{n-1} |a_i| \mathbf{1}_{\{|a_i| > n^{1/\gamma}\}} \right]^\gamma = O(n).
\]
Combining (7) and (9), we obtain
\[
\mathbb{E} \left| \frac{\lambda_1(T_n(a)) - \lambda_1(T_n(\hat{a}))}{\sqrt{n \log n}} \right|^\gamma = \frac{O(n)}{(n \log n)^{\gamma/2}} \to 0.
\]
Next we see that
\[
\mathbb{E} \left| \frac{\lambda_1(T_n(\hat{a})) - \lambda_1(T_n(\hat{a}))}{\sqrt{n \log n}} \right|^\gamma \leq \frac{\mathbb{E}[\|T_n(\hat{a}) - T_n(\hat{a})\|_{sp}^\gamma]}{(n \log n)^{\gamma/2}} \leq 2 \sum_{i=0}^{n-1} \mathbb{E}[|a_i| \mathbf{1}_{\{|a_i| > n^{1/\gamma}\}}]^{\gamma} \leq \frac{O(n)}{(n \log n)^{\gamma/2}} \to 0,
\]
which completes the proof of part (a).

For part (b) we want to bound
\[
\left| \frac{\lambda_1(T_n(\hat{a})) - \lambda_1(T_n(\hat{a}))}{\sqrt{n \log n}} \right| \leq \frac{\|T_n(\hat{a}) - T_n(\hat{a})\|_{sp}}{\sqrt{n \log n}} \leq \sqrt{2} \cdot \frac{\|P(D^\dagger(\hat{a}) - D(\hat{a}))P\|_{sp}}{\sqrt{\log n}}.
\]
Here we use the representation (11). Since \(P \), being Hermitian projection matrix, has spectral norm equal to one, with \(a^* = \tilde{a} - \bar{a} \) we have

\[
\| P (D^\dagger (\tilde{a}) - D(\bar{a})) P \|_{sp} = \| PD^\dagger (a^*) P \|_{sp} \leq \| D^\dagger (a^*) \|_{sp} = \max_{0 \leq j \leq n} |d_j(a^*)|.
\]

We have

\[
1 - \text{Var}(\tilde{a}_i) = \mathbb{E}[a_i^2 1_{\{|a_i| > n^{1/\gamma}\}}] + (\mathbb{E}[a_i 1_{\{|a_i| > n^{1/\gamma}\}}])^2.
\]

We apply (5), and the similarly derived

\[
\mathbb{E}[a_i^2 1_{\{|a_i| > n^{1/\gamma}\}}] \leq C n^{-1+2/\gamma}
\]

to get \(1 - \text{Var}(\tilde{a}_i) = O(n^{-1+2/\gamma}) \) uniformly in \(i \). Note that \(a_i^* = (1 - \text{Var}(\tilde{a}_i))^{-1/2} \tilde{a}_i \) which implies \(\mathbb{E} a_i^* = 0 \) and \(\text{Var}(a_i^*) = O(n^{-1+2/\gamma}) \) and \(|a_i^*| \leq 4 n^{1/\gamma} \).

Using the union bound and the identity \(\mathbb{E}[X] = \int_0^\infty \mathbb{P}\{X > t\} dt \) which holds for any nonnegative random variable \(X \), we can write

\[
\mathbb{E} \left[\max_{0 \leq j \leq n} |d_j(a^*)|^\gamma \right] \leq 1 + \int_1^{\infty} \mathbb{P} \left\{ \max_{0 \leq j \leq n} |d_j(a^*)| > t \right\} dt
\]

\[
\leq 1 + (n + 1) \max_{0 \leq j \leq n} \int_1^{\infty} \mathbb{P} \left\{ |d_j(a^*)| > t^{1/\gamma} \right\} dt.
\]

If \(\xi_1, \xi_2, \ldots, \xi_n \) be independent mean zero random variables, uniformly bounded by \(M \), then the classical Bernstein inequality gives the following tail bound for their sum,

\[
\mathbb{P}\{\sum_{k=1}^n \xi_k > t\} \leq \exp \left(-\frac{t^2/2}{\sum_{k=1}^n \text{Var}(\xi_k) + Mt/3} \right) \quad \forall t > 0.
\]

Using Bernstein’s inequality, we obtain

\[
(10) \leq 1 + (n + 1) \int_1^{\infty} 2 \exp \left(-\frac{t^{2/\gamma} (\sqrt{n})^2}{n \cdot O(n^{-1+2/\gamma}) + t^{1/\gamma} \sqrt{n} O(n^{1/\gamma})} \right) dt
\]

\[
\leq 1 + 2(n + 1) \int_1^{\infty} \exp \left(-t^{1/\gamma} \cdot \Omega(n^{1/2-1/\gamma}) \right) dt = 1 + n \cdot n^{\gamma/2-1} e^{-\Omega(n^{1/2-1/\gamma})}.
\]

Hence, \((\log n)^{-1/2} \| D(a^*) \|_{L^\gamma}^\gamma \rightarrow 0 \) and so, \(\left| \frac{\lambda_1(T_\tilde{a}(a)) - \lambda_1(T_\tilde{a}(0))}{\sqrt{n \log n}} \right|_{L^\gamma} \rightarrow 0 \). This completes the proof of part (b) of the lemma.

\[\square\]

Definition 4. Let \(T_n^0 \) be the symmetric Toeplitz matrix which has \(\sqrt{2} a_0 \) on its diagonal instead of \(a_0 \).

Lemma 5. We have, as \(n \rightarrow \infty \),

\[
\frac{\lambda_1(T_n^0) - \lambda_1(T_n)}{\sqrt{n \log n}} \xrightarrow{L^\gamma} 0.
\]
Proof. The proof is immediate from the following fact

\[\mathbb{E}\|T_n^0 - T_n\|_{sp}^\gamma \leq (\sqrt{2} - 1)^\gamma \mathbb{E}[|a_0|^\gamma] = O(1). \]

\[\square \]

Corollary 6. It suffices to prove Theorem 7 for the symmetric random Toeplitz matrix \(T_n^0 \) defined in 4 where the random variables \(a_i \) are independent mean zero, variance one and bounded by \(n^{1/\gamma} \).

Proof. The proof is immediate from Lemma 3 and Lemma 5.

Following (4), we can write

\[\lambda_1(n^{-1/2}T_n^0) = \sqrt{2}\lambda_1(PDP), \]

with \(P \) as before and the entries of the diagonal matrix \(D = \text{diag}(d_0, d_1, \ldots, d_{2n-1}) \) given by

\[d_j = \frac{1}{\sqrt{2n}} \left[\sqrt{2}a_0 + (-1)^j \sqrt{2}a_n + 2 \sum_{k=1}^{n-1} a_k \cos \left(\frac{2\pi jk}{2n} \right) \right], \quad 0 \leq j < 2n, \]

where \(b_n := \sqrt{2}a_n, a_n \) being an independent copy of \(a_0 \). The reason for choosing the ‘right’ variance for diagonal and the ‘right’ auxiliary variable \(b_n \) is that now the variables \(d_j, 0 \leq j \leq n \) becomes uncorrelated (see Lemma 18). Thus in the special case when \(\{a_j : 0 \leq j \leq n\} \) are i.i.d. Gaussian random variables with mean 0 and variance 1, it follows that \(\{d_j : 0 \leq j \leq n\} \) are again independent Gaussian with mean 0 and have variance 1 except for \(d_0 \) and \(d_n \) who have variance 2.

2.2 Tightness

Lemma 7. For each \(n \geq 1 \), let \(a_0, a_1, \ldots, a_{n-1} \) be a sequence of independent random variables that have mean zero, variance one and are bounded by \(n^{1/\gamma} \). For any \(p > 0 \), we have

\[\sup_{n \geq 1} \mathbb{E} \left[\left(\frac{\lambda_1(T_n^0)}{\sqrt{2n \log n}} \right)^p \right] < \infty. \]

Proof. The proof is a direct application of Bernstein’s inequality similar to what we did in the proof of part (b) of Lemma 3. From the representation (III), we know that \(n^{-1/2}\lambda_1(T_n^0) \) is bounded above by \(\sqrt{2} \cdot \max_{0 \leq j \leq n} |d_j| \). Therefore, for any \(\alpha > 0 \),

\[\mathbb{E} \left[\left(\frac{\lambda_1(T_n^0)}{\sqrt{2n \log n}} \right)^p \right] \leq \mathbb{E} \left[\left(\frac{\max_{0 \leq j \leq n} |d_j|}{\sqrt{\log n}} \right)^p \right] \leq \alpha + (n+1) \max_{0 \leq j \leq n-1} \int_0^{\infty} \mathbb{P} \left\{ \frac{|d_j|}{\sqrt{\log n}} > t^{1/p} \right\} dt. \]
By the Bernstein inequality, for \(n \) sufficiently large,
\[
\max_{0 \leq j \leq n} \mathbb{P} \left\{ \frac{|d_j|}{\sqrt{\log n}} > t^{1/p} \right\} \leq 2 \exp \left(-\frac{1}{2} \frac{\log n \cdot t^{2/p}}{2 + \frac{1}{3} \sqrt{2} \gamma^{1/2} \sqrt{\log n} \cdot t^{1/p}} \right)
\]
which implies that there exists a constant \(c > 0 \) such that each \(n \) and each \(0 \leq j \leq n \),
\[
\int_{t_n}^{\infty} \mathbb{P} \left\{ \frac{|d_j|}{\sqrt{\log n}} > t^{1/p} \right\} dt \leq \int_{t_n}^{\infty} \exp \left(-ct^{2/p} \cdot \log n \right) dt + \int_{t_n}^{\infty} \exp \left(-ct^{1/p} \right) dt
\]
where \(t_n := n^{\gamma/2-1}(\log n)^{-\gamma/2} \). The second integral above goes to zero faster than any polynomial power of \(n \) whereas by choosing \(\alpha \) sufficiently large we can make the first integral \(O(n^{-1}) \). The claim of the lemma follows. \(\square \)

3 Reduction to block diagonal form

3.1 Some facts about \(P \)

By the definition \(P : \mathbb{C}^{2n} \rightarrow \mathbb{C}^{2n} \) is a Hermitian projection matrix. The action of operator \(P \) can be described by the composition of the following three maps: For \(x \in \mathbb{C}^{2n} \), we first take discrete Fourier transform of \(x \), then project it to the first \(n \) Fourier frequencies and finally do the invert discrete Fourier transform.

The entries of \(P \) are given by
\[
P(k, l) = \begin{cases}
\frac{1}{2} & \text{for } k = l, \\
0 & \text{for } k \neq l, |k - l| \text{ is even}, \\
\frac{1}{n} \times \frac{1}{1 - \exp \left(-\frac{2\pi i (k-l)}{2n} \right)} & \text{for } |k - l| \text{ is odd}.
\end{cases}
\]

Note that \(P(k, l) \) is a function of \((k-l) \) only and that \(|P(k, l)| \leq C_1 \min (|k-l|, 2n - |k-l|)^{-1} \), \(k \neq l \) for some constant \(C_1 \). Hence, the maximum of \(\ell^1 \) norms of the rows or the columns of \(P \) has the following upper bound:
\[
\max_k \sum_{l=0}^{2n-1} |P(k, l)| \leq C_2 \log n, \quad \max_l \sum_{k=0}^{2n-1} |P(k, l)| \leq C_2 \log n, \quad \text{(12)}
\]
where \(C_2 \) is some suitable constant.

Limiting operator for \(P \)

Let \(T \) be unit circle parametrized by \(T = \{ e^{2\pi ix} : x \in (-1/2, 1/2] \} \) and \(L^2(T) := \{ f : [-1/2, 1/2] \rightarrow \mathbb{C} : f(-1/2) = f(1/2) \text{ and } \int_0^1 |f(x)|^2 dx < \infty \} \). We define an projection
operator $\Pi : \ell^2(\mathbb{C}) \to \ell^2(\mathbb{C})$ as the composition of the following operators:

$$\Pi : \ell^2(\mathbb{C}) \xrightarrow{\psi} L^2(\mathbb{T}) \xrightarrow{\chi_{[0,1/2]}} L^2(\mathbb{T}) \xrightarrow{\psi^{-1}} \ell^2(\mathbb{C}),$$

where $\psi : \ell^2(\mathbb{C}) \to L^2(\mathbb{T})$ is the Fourier transform which sends the coordinate vector $e_m, m \in \mathbb{Z}$ to the periodic function $x \mapsto e^{2\pi imx} \in L^2(\mathbb{T})$, ψ^{-1} is the inverse map of ψ and $\chi_{[0,1/2]} : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ is the projection map given by $f \mapsto f \cdot 1_{[0,1/2]}$. The operator Π is Hermitian and is defined on the entire $\ell^2(\mathbb{C})$ and hence is self-adjoint. It is easy to check that for any $k, l \in \mathbb{Z}$,

$$\langle e_k, \Pi e_l \rangle =: \Pi(k, l) = \begin{cases} \frac{1}{2} & \text{if } k = l \\ 0 & \text{if } k \neq l, |k - l| \text{ is even} \\ \frac{-i}{\pi (k-l)} & \text{if } |k - l| \text{ is odd.} \end{cases}$$

Here $\langle \cdot, \cdot \rangle$ denotes the usual inner product on $\ell^2(\mathbb{C})$.

Define $2 \to 4$ operator norm of Π as

$$\|\Pi\|_{2\to4} := \sup\{\|\Pi v\|_4 : v \in \ell^2(\mathbb{C}), \|v\|_2 \leq 1\},$$

where for any vector $v \in \ell^2(\mathbb{C})$ and $p \geq 1$, $\|v\|_p$ denotes the standard ℓ^p norm of v.

Check that for any $0 \leq k, l < 2n$ satisfying $|k - l| = O((\log n)^3)$, $|P_{2n}(k, l) - \Pi(k, l)|$ converges to 0 as $n \to \infty$. Moreover, using the fact that the following limit exists and is finite

$$\lim_{x \to 0} \frac{1}{x} \left[\frac{x}{1 - e^{-ix}} + i \right] = \lim_{x \to 0} \frac{1 - \sin x/x + i(1 - \cos x)/x}{(1 - \cos x) + i \sin x} = \frac{1}{2},$$

one can deduce that the rate of convergence

$$|P_{2n}(k, l) - \Pi(k, l)| = O(n^{-1}) \text{ as } n \to \infty \text{ and } |k - l| = O((\log n)^3).$$

(14)

3.2 Allowing ϵ room

As one might guess, the diagonal entries of D which have small absolute value should not have too much influence on determining the value of $\lambda_1(PDP)$. In this subsection, we will make the idea precise. For $\epsilon > 0$, consider the random set

$$S = \{0 \leq j \leq 2n - 1 : |d_j| \geq \epsilon \sqrt{2 \log n}\},$$

let $R := \text{diag}(1_{j \in S})$, and let $D^* := DR$. Then

$$\left| \lambda_1(PDP) \sqrt{\frac{2 \log n}{\sqrt{2 \log n}}} - \lambda_1(PD^*P) \sqrt{\frac{2 \log n}{\sqrt{2 \log n}}} \right| \leq \|P(D - D^*)P\|_{sp} \sqrt{\frac{2 \log n}{\sqrt{2 \log n}}} \leq \|P\|_{sp} \|D - D^*\|_{sp} \|P\|_{sp} \sqrt{\frac{2 \log n}{\sqrt{2 \log n}}} \leq \epsilon.$$

(15)
3.3 Random partition of the interval

For a set B, we denote by $\#B$ the cardinality of B.

Set $r = \lceil \log n \rceil^3$, and let $m = \lfloor n/r \rfloor - 1$. Divide the interval $\{0, 1, 2, \ldots, 2n - 1\}$ into $2m + 1$ consecutive disjoint subintervals (called bricks) $L_{-m}, \ldots, L_{-1}, L_0, L_1, \ldots, L_m$ in a way that

- the length of each L_i is between r and $4r$; and
- the subdivision is symmetric: $L_i = 2n - 1 - L_{-i}$.

Let \mathcal{L} be the collection of nonempty sets consisting the intervals formed by taking union at most $M = M(\epsilon) := 4 + 12/\epsilon^2$ consecutive intervals either from $L_{-m+1}, L_{-m+2}, \ldots, L_{-1}$ or from $L_1, L_2, \ldots, L_{m-1}$. We will call an element of \mathcal{L} as an admissible block. Note that if $L \in \mathcal{L}$, then size of L is bounded below and above by r and Mr respectively.

We define a brick L_k to be visible if $L \cap S \neq \emptyset$. Otherwise L_k is called invisible. Clearly, for $1 \leq k < m$, L_k is visible if and only if L_{-k} is visible. Partition the set $\{0, 1, \ldots, 2n - 1\}$ into disjoint random intervals $J \in \Lambda$ by subdividing it between each pair of consecutive invisible bricks. Note that in this random partition, each interval starts and ends with a “gap” of size at least $(\log n)^3$. More precisely, for any $[a, b] \in \Lambda$, we have $[a, a + (\log n)^3] \cap S = \emptyset$ (unless $a = 0$) and $[b - (\log n)^3, b] \cap S = \emptyset$ (unless $b = 2n - 1$).

Proposition 8. With high probability, the following holds:

1. If $J \in \Lambda$, and $J \cap S \neq \emptyset$, then $J \in \mathcal{L}$ and
2. $\#(J \cap S) \leq M$ for all $J \in \mathcal{L}$.

Proof. For any fixed $s \geq 1$ and $0 \leq j_1 < j_2 < \ldots < j_s \leq n$,

$$
\mathbb{P}\{|d_{j_i}| > \epsilon \sqrt{2 \log n}, 1 \leq i \leq s\} \leq \sum_{\beta_i \in \{-1, +1\}} \mathbb{P}\{\sum_{i=1}^{s} \beta_i d_{j_i} > s \epsilon \sqrt{2 \log n}\} \\
\leq 2^s \exp \left(-\frac{\epsilon^2 s^2 \cdot \log n}{\text{Var}(\sum_{i=1}^{s} \beta_i d_{j_i}) + O(sn^{1/\gamma - 1/2}) \cdot s \epsilon \sqrt{2 \log n}}\right) \\
\leq O(n^{-se^2/3}).
$$

The second inequality in (16) is a consequence of Bernstein’s inequality and for third inequality above we used the fact that $\text{Var}(\sum_{i=1}^{s} \beta_i d_{j_i}) = \sum_{i=1}^{s} \text{Var}(d_{j_i}) \leq (s + 2)$ (by Lemma 13).

Note that if 1 or 2 fails, then one of the following events holds.
(i) either of the bricks L_0 and L_{-m} is visible.

(ii) there exists a stretch of M consecutive bricks from $L_{-m+1}, L_{-m+2}, \ldots, L_{-1}$ such that at least $\lfloor M/2 \rfloor - 1$ of them are visible.

(iii) there exists a stretch of M consecutive bricks (say, $L_a, L_{a+1}, \ldots, L_{a+M-1}$) from $L_{-m+1}, L_{-m+2}, \ldots, L_{-1}$ such that $\sum_{i=0}^{M-1} \#(L_{a+i} \cap S) \geq M$.

By (16), we have $P\{\text{event (i)}\} = O(n^{-2/3})$. We observe that the events (ii) and (iii) are both contained in the following event.

(iv) there exists a stretch of M consecutive bricks (say, $L_a, L_{a+1}, \ldots, L_{a+M-1}$) from $L_{-m+1}, L_{-m+2}, \ldots, L_{-1}$ such that $\sum_{i=0}^{M-1} \#(L_{a+i} \cap S) \geq \lfloor M/2 \rfloor - 1$.

Again by (16), if we fix a position of such M consecutive blocks $L_a, L_{a+1}, \ldots, L_{a+M-1}$ and then fix $s = \lfloor M/2 \rfloor - 1$ positions j_1, j_2, \ldots within the blocks $L_a, L_{a+1}, \ldots, L_{a+M-1}$, the probability that $j_1, j_2, \ldots, j_s \in S$ is bounded above by $O(n^{-sc^2/3}) = O(n^{-2})$. Hence by union bound, $P\{\text{event (iv)}\} = O(n(\log n)^{M^r} n^{-2})$. This implies that the probability that either of the events (i) or (iv) happens goes to 0 as $n \to \infty$. This completes the proof.

3.4 Reduction to a block diagonal form

Let B be the following block diagonal form of the matrix P,

$$B(k, l) = \begin{cases} P(k, l) & \text{if } k, l \in J \text{ for some } J \in \Lambda, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 9. The following holds with high probability,

$$\left| \lambda_1(PD^*P) - \max_{J \in \Lambda: J \cap S \neq \emptyset} \lambda_1(P[J]D^*[J]P[J]) \right| = O(1).$$

Proof. The maximum above equals $\lambda_1(BD^*B)$, so the left hand side is bounded above by

$$\|PD^*P - BD^*B\|_{sp} \leq \|(P - B)D^*P\|_{sp} + \|BD^*(P - B)\|_{sp} \leq \|(P - B)D^*\|_{sp} \|P\|_{sp} + \|B\|_{sp}\|D^*(P - B)\|_{sp}.$$

Note that since P is a projection matrix $\|P\|_{sp} = 1$ and by block-diagonality we have $\|B\|_{sp} = \max_{J \in \Lambda} \|P[J]\|_{sp}$. The matrix $P[J]$ is just P conjugated by a coordinate projection, so it has norm at most 1.
Since $D' = RD$ we first bound the spectral norm of $(P - B)R$. The maximal column sum of this matrix is bounded above by the maximal absolute row sum of P, which by (12) is at most $C_2 \log n$. Note that $((P - B)R)(k, l) = 0$ unless k, l are in different parts of Λ. This gives the upper bound for the maximal absolute row sum

$$\max_{J \in \Lambda, k \in J} \sum_{l \notin J} R(l, l) |P(k, l)| \leq C \sum_{k=1}^{\#\Lambda - 1} \frac{2M_k (\log n)}{k (\log n)^3} = O((\log n)^{-2}).$$

which holds with high probability. We used the fact that with high probability each part in Λ has at most M elements J where $R(l, l)$ is nonzero (Proposition 8), and different parts have gaps of size $(\log n)^3$ in between them. Since the spectral norm is bounded above by the geometric mean of the maximal row and column sums, we get $\|(P - B)R\|_{sp} = O((\log n)^{-1/2})$.

By Bernstein’s inequality, we can find a constant C_3 such that with high probability

$$\|D\|_{sp} = \max_j |d_j|$$

is at most $C_3 \sqrt{\log n}$. Therefore, $\|D'(P - B)\|_{sp}^2 = O(1)$ with high probability, which yields the desired result.

\[\square\]

4 Proof of the upper bound

Assume that a_0, a_1, \ldots, a_n are independent mean zero, variance one random variables which are uniformly bounded by $n^{1/\gamma}$. This section consists of the proof of the lower bound

Proposition 10. With high probability

$$\max_{J \in \Lambda, J' \neq \emptyset} \frac{\lambda_1(P[J]D'[J]P[J])}{\sqrt{2 \log n}} \leq \|\Pi\|_{2 \to 4}^2 + o(1).$$

Lemma 11. Fix $k \geq 1$ and $\delta_1, \delta_2, \ldots, \delta_k \geq 0$. Then for sufficiently large n and for any $0 < j_1 < j_2 < \ldots < j_k < n$, we have

$$\mathbb{P}\{|d_{j_1}| > \delta_1 \sqrt{2 \log n}, |d_{j_2}| > \delta_2 \sqrt{2 \log n}, \ldots, |d_{j_k}| > \delta_k \sqrt{2 \log n}\} \leq 2^{k+1} n^{-(\delta_1^2 + \delta_2^2 + \ldots + \delta_k^2)}.$$

Proof. Let $\|\delta\|_2 := (\delta_1^2 + \ldots + \delta_k^2)^{1/2}$. To avoid triviality, assume that $\|\delta\|_2 > 0$. Clearly,

$$\mathbb{P}\{|d_{j_1}| > \delta_1 \sqrt{2 \log n}, \ldots, |d_{j_k}| > \delta_k \sqrt{2 \log n}\} \leq \sum_{\beta_1 \in \{\pm 1\}} \mathbb{P}\left\{\left(\sum_{i=1}^{k} \beta_i \delta_i d_{j_i}\right)/\|\delta\|_2 > \|\delta\|_2 \sqrt{2 \log n}\right\}.$$

By Lemma 18, for any choice of $\beta_i \in \{\pm 1\}$, the sum $(\beta_1 \delta_1 d_{j_1} + \ldots + \beta_k \delta_k d_{j_k})/\|\delta\|_2$ has variance one and can be expressed as a linear combination independent random variables as
\[\sum_{i=0}^n \theta_i a_i \] for suitable real coefficients \(\theta_i \) with \(|\theta_i| \leq 2kn^{-1/2} \) and \(\sum_{i=0}^n \theta_i^2 = 1 \). Recall that \(|a_i| \leq n^{1/\gamma} \) so that we can apply Bernstein’s inequality to obtain

\[
\Pr \left\{ \left(\sum_{i=1}^k \beta_i \delta_i d_{j_i} \right) / \|\delta\|_2 > \|\delta\|_2 \sqrt{2 \log n} \right\} \leq \exp \left(-\frac{\|\delta\|_2 \log n}{1 + \|\delta\|_2 \sqrt{2 \log n} \cdot 2kn^{1/\gamma - 1/2}/3} \right)
\]

\[
\leq 2n^{-\|\delta\|_2},
\]

for sufficiently large \(n \). This completes the proof of the lemma. \(\square \)

Lemma 12. Fix \(\eta > 0, k \geq 1 \) and \(\delta_1, \delta_2, \ldots, \delta_k \geq 0 \). Then there exists a constant \(C_4 = C_4(\eta, k) \) such that for sufficiently large \(n \) and for any \(0 < j_1 < j_2 < \ldots < j_k < n \), we have

\[
\Pr \left\{ |d_{j_1}| > \delta_1 \sqrt{2 \log n}, |d_{j_2}| > \delta_2 \sqrt{2 \log n}, \ldots, |d_{j_k}| > \delta_k \sqrt{2 \log n} \right\} \leq C_4 n^{-(1+\eta/2)}.
\]

Proof. Construct an \(\frac{n}{4(1+\eta)k} \)-net \(\mathcal{N} \) for the interval \([0, 1+\eta]\) by choosing \(\left\lceil \frac{4(1+\eta)k}{n} \right\rceil + 1 \) equally spaced points in \([0, 1+\eta]\) including both endpoints 0 and 1 + \(\eta \). Therefore, given any \(\delta_1, \ldots, \delta_k \in [0, 1+\eta] \), we can find \(\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathcal{N} \) such that \(\delta_i - \frac{n}{4(1+\eta)k} \leq \alpha_i \leq \delta_i \) for each \(i \). This implies that \(\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_k^2 \geq 1 + \eta/2 \). Clearly, the event \(\{|d_{j_1}| > \alpha_1 \sqrt{2 \log n}, \ldots, |d_{j_k}| > \alpha_k \sqrt{2 \log n}\} \) where the union is taken over for all possible choices of \(\alpha_i \in \mathcal{N} \) for all \(i \) such that \(\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_k^2 \geq 1 + \eta/2 \). Now we use the union bound and Lemma 11 to conclude the probability of the given event is bounded by \(2^{k+1}(\#\mathcal{N})^k n^{-(1+\eta/2)} \). We complete the proof by taking \(C_4 = 2^{k+1}(\#\mathcal{N})^k \). \(\square \)

Corollary 13. For every \(\eta > 0 \), with high probability, for all admissible blocks \(L \in \mathcal{L} \) and all distinct \(j_1, \ldots, j_M \in L \) we have \(d_{j_1}^2 + \ldots + d_{j_M}^2 \leq 1 + \eta \).

Proof. For a fixed admissible block and points \(j_i \) the probability that the claim is violated is at most \(C_4 n^{-(1+\eta/2)} \) by the Lemma. By union bound, the probability that the claim is violated is at most \(n^{M(\log n)^3} \cdot C n^{-(1+\eta/2)} = O((\log n)^{3M} n^{-\eta/2}) \).

By part 2 of Proposition 8 with high probability, \(D^c \) contains at most \(M \) nonzero entries in every admissible block, it follows that for each \(\eta > 0 \) with high probability for all \(L \in \mathcal{L} \)

\[
\sum_{j \in L} (D^c_{jj})^2 \leq 1 + \eta.
\]
Therefore, we have
\[
\max_{J \in \Lambda: J \not= \emptyset} \frac{\lambda_1(P[J]D[J]P[J])}{\sqrt{2 \log n}} \leq \sup \left\{ \lambda_1(P[L] \text{Diag}(\delta_1, \delta_2, \ldots, \delta_{\#L})P[L]) : L \in \mathcal{L}, \sum_{j=1}^{\#L} \delta_j^2 \leq 1 + \eta \right\}. \tag{17}
\]

Now by (14), we have \(\max_{L \in \mathcal{L}} \|P[L] - \Pi[L]\|_{sp} = O \left(\frac{(\log n)^3}{n} \right) \). Therefore, if we take \(q = q(n) := M \lceil \log n \rceil^3 \) and \(H = [1, q] \cap \mathbb{Z} \), then (17) can be bounded by
\[
(17) \leq \sup \left\{ \lambda_1\left(\Pi[H] \text{Diag}(\delta_1, \delta_2, \ldots, \delta_q)\Pi[H] \right) : \sum_{j=1}^{q} \delta_j^2 \leq 1 \right\} + O \left(\frac{(\log n)^3}{n} \right).
\]

By Rayleigh’s characterization of the maximum eigenvalue of Hermitian matrices, the above supremum equals
\[
\sup \left\{ \left\langle v, \Pi[H] \text{Diag}(\delta_1, \delta_2, \ldots, \delta_q)\Pi[H]v \right\rangle : \sum_{j=1}^{q} \delta_j^2 \leq 1, v \in \mathbb{C}^q, \|v\|_2 \leq 1 \right\}.
\]

Denote by \(\delta \) the infinite dimensional vector \((\ldots, \delta_{-1}, \delta_0, \delta_1, \ldots)\) in \(\ell^2(\mathbb{R}) \). Now extending the range of optimization we get the upper bound
\[
\sup \left\{ \left\langle v, \Pi \text{Diag}(\delta)\Pi v \right\rangle : \delta \in \ell^2(\mathbb{R}), \|\delta\|_2 \leq 1, v \in \ell^2(\mathbb{C}), \|v\|_2 \leq 1 \right\}. \tag{18}
\]

Now note that (with \(\odot \) denoting coordinate-wise multiplication)
\[
\left\langle v, \Pi \text{Diag}(\delta)\Pi v \right\rangle = \left\langle \Pi v, \text{Diag}(\delta)\Pi v \right\rangle = \left\langle \delta, \Pi v \odot \Pi v \right\rangle
\]
so if we fix \(v \), this is maximized when \(\delta \) equals \(\Pi v \odot \Pi v \) divided by its length. The maximum, for \(v \) fixed is \(\|\Pi v \odot \Pi v\|_2 = \|\Pi v\|_4^2 \), so the expression (18) equals \(\|\Pi\|_{2 \rightarrow 4}^2 \). This completes the proof of Proposition 10.

5 Proof of the lower bound

Assume that \(a_0, a_1, \ldots, a_n \) are independent mean zero, variance one random variables which are uniformly bounded by \(n^{1/\gamma} \). This section consists of the proof of the lower bound.
Proposition 14. For $\tau > 0$ there exists $\epsilon > 0$ so that with high probability

$$\max_{J \in A: J \cap S \neq \emptyset} \frac{\lambda_1(P[J]D'[J]P[J])}{\sqrt{2 \log n}} \geq \|\Pi\|_{2 \rightarrow 4}^2 - 2\tau.$$

Let G_0, G_1, \ldots, G_n be i.i.d. standard Gaussians independent of $(a_i)_{0 \leq i \leq n}$. Recall

$$d_j(a) = \frac{1}{\sqrt{2n}} \left[\sqrt{2a_0} + (-1)^j \sqrt{2a_n} + 2 \sum_{k=1}^{n-1} a_k \cos \left(\frac{2\pi j k}{n} \right) \right], \quad 0 \leq j < 2n.$$

We will use $d_j(G)$ to refer to the above sum with a_i being replaced by G_i for each $0 \leq i \leq n$. Suppose we are given some nonzero real numbers u_1, u_2, \ldots, u_k for some fixed $k \geq 1$ such that $u_1^2 + u_2^2 + \ldots + u_k^2 < 1$. Fix any $\eta > 0$ small such that $\eta < |u_i|$ for each i and if we set $u_i' := |u_i| - \eta > 0$ for $1 \leq s \leq k$, then $(u_1')^2 + \ldots + (u_k')^2 < 1$. Take $p = p(n) := 7[\log n]^3, b = b(n) := 3[\log n]^3$ and $N = N(n) := \lfloor n/2p \rfloor$. For $1 \leq i \leq N$, define the intervals

$$I_j = \begin{cases}
(-\epsilon, \epsilon) & \text{for } -b + 1 \leq j \leq 0 \\
(u_{j - \eta}, u_{j + \eta}) & \text{for } 1 \leq j \leq k \\
(-\epsilon, \epsilon) & \text{for } k + 1 \leq j \leq k + b
\end{cases}$$

And let A_i to be the event that $d_{ip+j} \in \sqrt{2 \log n} I_j$ for all $j = -b + 1, \ldots, b + k$.

Proposition 15. Let A_i be as above. Then as $n \to \infty$, the probability that at least one of the events A_1, A_2, \ldots, A_N happens converges to one.

Proof. The proof is based on the second moment method. First of all, fix any smooth function $\psi : \mathbb{R} \to [0, 1]$ such that $\psi(x) = 0$ for $x \leq 0$ and $\psi(x) = 1$ for $x \in [1, \infty)$. For any reals $a < b$, the indicator function of the interval $(a\sqrt{2 \log n}, b\sqrt{2 \log n})$ can be bounded below by the smooth function

$$1_{(a\sqrt{2 \log n}, b\sqrt{2 \log n})}(x) \geq \zeta_{(a,b)}(x) := \psi(x - a\sqrt{2 \log n})\psi(b\sqrt{2 \log n} - x).$$

For a fixed $a < b$, the first, second and third derivatives of the function $\zeta_{(a,b)}$ are all bounded by some constant in the supremum norm. Define, for each i in $1 \leq i \leq N$

$$W_i = \prod_{j = -b + 1}^{b+k} \zeta_{t_j}(d_{ip+j})$$

(19)

Clearly, for each i, $W_i \leq 1_{A_i}$. Thus by the Paley-Zygmund inequality,

$$\mathbb{P}\{\sum_{i=1}^N 1_{A_i} \geq 1\} \geq \mathbb{P}\{\sum_{i=1}^N W_i > 0\} \geq \frac{\mathbb{E}[(\sum_{i=1}^N W_i)^2]}{(\mathbb{E} \sum_{i=1}^N W_i)^2}.$$
So, the proposition follows if we can show \(\mathbb{E}[(\sum_{i=1}^{N} W_i)^2] = (1 + o(1))(\mathbb{E} \sum_{i=1}^{N} W_i)^2 \). The rest of the proof is devoted to establishing this.

We will write \(W_i^G \) to denote the random variable corresponding to \((19) \) with \(d_j(G) \) in place of \(d_j(a) \) for all \(j \). Recall that \((d_j(G))_{0 < j < n} \) is a sequence of i.i.d. standard Gaussian random variables. Using the following well known Gaussian tail estimates,

\[
\frac{x}{x^2 + 1} e^{-x^2/2} \leq \mathbb{P}\{G_0 > x\} \leq \frac{1}{x^2} e^{-x^2/2}, \quad x > 0,
\]

we obtain, for all large \(n \),

\[
\mathbb{E} W_i^G = \prod_{j=-b+1}^{b+k} \mathbb{E} \zeta_{I_j}(d_{ip+j}(G)) = (1 - O(n^{-\frac{\epsilon}{2}}))^\frac{k}{2} \prod_{s=1}^{k} \Omega \left(\frac{1}{\sqrt{\log n} \cdot n^u_s} \right)
\]

\[
= \Omega \left((\log n)^{-k/2} \cdot n^{-(u_s')^2 + \ldots + (u_s')^2} \right),
\]

uniformly over \(1 \leq i \leq N \), which implies that \(\sum_{i=1}^{N} \mathbb{E} W_i^G \to \infty \) as \(n \to \infty \). Since the random variables \(W_i^G \) are bounded by 1, we have

\[
\sum_{i=1}^{N} \text{Var} W_i^G \leq \sum_{i=1}^{N} \mathbb{E}[(W_i^G)^2] \leq \sum_{i=1}^{N} \mathbb{E} W_i^G = o\left(\left(\sum_{i=1}^{N} \mathbb{E} W_i^G \right)^2 \right).
\]

For any \(1 \leq i \neq i' \leq N \), the two subsets of indices \(\{ip - b + 1, \ldots, ip + k + b\} \) and \(\{i'p - b + 1, \ldots, i'p + k + b\} \) are disjoint. Hence, \(W_i^G \) and \(W_i'^G \) are independent of each other and therefore,

\[
\mathbb{E}[W_i^G W_i'^G] = \mathbb{E}[W_i^G] \mathbb{E}[W_i'^G].
\]

Now (21) and (22) yield

\[
\mathbb{E}[(\sum_{i=1}^{N} W_i^G)^2] = (1 + o(1))(\mathbb{E} \sum_{i=1}^{N} W_i^G)^2.
\]

Our next goal is to show that the differences \(\mathbb{E} W_i - \mathbb{E} W_i^G \) and \(\mathbb{E}[W_i W_i'] - \mathbb{E}[W_i^G W_i'] \) are of smaller order for each \(i \neq i' \) using the invariance principle given in Lemma 17.

We apply Lemma 17 with \(r = n + 1, m = k + 2b, X = (a_0, \ldots, a_n), Y = (G_0, \ldots, G_n), f = (d_{ip-b+1}, \ldots, d_{ip+k+b}) \) and

\[
g(z) = \prod_{j=-b+1}^{b+k} \zeta_{I_j}(z_{b+j})
\]

where \(z = (z_1, z_2, \ldots, z_{2b+k}) \) to obtain

\[
|\mathbb{E}[W_i] - \mathbb{E}[W_i^G]| \leq \sum_{j=1}^{r} \mathbb{E}[R_j] + \sum_{j=1}^{r} \mathbb{E}[T_j],
\]

19
where \(R_j \) and \(T_j \) are as defined in Lemma 17. We will first find an upper bound for \(\mathbb{E}[R_j] \).

The bound for \(\mathbb{E}[T_j] \) will be similar. Note that \(||\partial_\ell f_t||_\infty \leq 2n^{-1/2} \) for each \(\ell \) and \(t \). Since each function \(f_t \) is linear, its higher derivatives all vanish. Also, \(||\partial_\ell \partial_{t'} \partial_{t''} g(z)||_\infty = O(1) \) for each \(\ell, \ell' \) and \(\ell'' \) and \(\partial_\ell \partial_{t'} \partial_{t''} g(z) \neq 0 \) only if \(z_{b+j} \in \sqrt{2 \log n} I_j \) for \(j = 1 \ldots k \). For \(x \in \mathbb{R} \), define a random vector \(\hat{Z}^{(j)}(x) := (a_0, \ldots, a_{j-2}, x, G_j, \ldots, G_n) \). Therefore, we have

\[
\mathbb{E} R_j \leq \frac{cm^3}{n^{3/2}} \mathbb{E} \left[|a_{j-1}|^3 \sup_{x:|x|\leq|a_{j-1}|} 1 \left\{ |d_\ell p + s(\hat{Z}^{(j)}(x))| \leq \sqrt{2 \log n} \right\} \right] \quad (25)
\]

Note that \(d_j \) depends on \(a_{j-1} \) linearly with absolute coefficient at most \(\sqrt{2/n} \), and that the random variable \(a_{j-1} \) is bounded by \(n^{1/\gamma} \). Thus the supremum above is at most

\[
1 \left\{ |d_\ell p + s(\hat{Z}^{(j)}(0))| \geq (|u_s| - \eta) \sqrt{2 \log n} - \sqrt{2n^{1/\gamma-1/2}}, 1 \leq s \leq k \right\}
\]

which is independent of \(a_{j-1} \). Since \(\mathbb{E} a_{j-1}^2 = 1 \), we have, with \(u_s' = |u_s| - \eta \)

\[
(25) \leq \frac{cm^3}{n^{3/2-1/\gamma}} \mathbb{P} \left\{ |d_\ell p + s(\hat{Z}^{(j)}(0))| \geq u_s' \sqrt{2 \log n} - \sqrt{2n^{1/\gamma-1/2}}, 1 \leq s \leq k \right\} \quad (26)
\]

Note that if we truncate the random variables \(G_j, \ldots, G_n \) at level \(n^{1/\gamma} \), then we can bound (26) using Bernstein’s inequality exactly as we did in proving Lemma 11. Towards this end, we define

\[
\hat{Z}^{(j)} = (a_0, \ldots, a_{j-2}, 0, G_j 1_{|G_j| \leq n^{1/\gamma}}, \ldots, G_n 1_{|G_n| \leq n^{1/\gamma}}).
\]

Then

\[
(26) \leq \frac{cm^3}{n^{3/2-1/\gamma}} \left[\mathbb{P} \left\{ |d_\ell p + s(\hat{Z}^{(j)})| \geq u_s' \sqrt{2 \log n} - \sqrt{2n^{1/\gamma-1/2}}, 1 \leq s \leq k \right\} + \mathbb{P}\{ |G_\ell| > n^{1/\gamma} \text{ for some } \ell \} \right]
\]

\[
\leq \frac{cm^3}{n^{1/2-1/\gamma}} \left[O(n^{-(u_1')^2+...+(u_k')^2}) + O \left(n \exp \left(-n^{2/\gamma}/2 \right) \right) \right]. \quad (27)
\]

Hence, by combining (25), (26) and (27), we obtain

\[
\sum_{j=1}^r \mathbb{E}[R_j] \leq O((\log n)^9 n^{1/\gamma-1/2} \cdot n^{-(u_1')^2+...+(u_k')^2}),
\]

where the constant hidden inside the big-\(O \) notation above does not depend on \(i \). Similar computation yields the same asymptotic bound for \(\sum_{j=1}^r \mathbb{E}[T_j] \). Therefore, by (24) and (20), we have

\[
\mathbb{E}[W_i] = \mathbb{E}[W_i^G] + O((\log n)^9 n^{1/\gamma-1/2} \cdot n^{-(u_1')^2+...+(u_k')^2}) = (1 + o(1))\mathbb{E}[W_i^G], \quad (28)
\]

\[
\mathbb{E}[W_i] = \mathbb{E}[W_i^G] + O((\log n)^9 n^{1/\gamma-1/2} \cdot n^{-(u_1')^2+...+(u_k')^2}) = (1 + o(1))\mathbb{E}[W_i^G], \quad (28)
\]

20
which hold uniformly in $1 \leq i \leq N$. By similar argument as above, we can also show that

$$\mathbb{E}[W_iW_{i'}] = \mathbb{E}[W_i^GW_{i'}^G] + O((\log n)^9 n^{1/\gamma-1/2} \cdot n^{-2(u_i'\ldots+u_k')^2}) = (1+o(1))\mathbb{E}[W_i^GW_{i'}^G],$$

uniformly in $1 \leq i \neq i' \leq N$. From (28) arguing similarly as we did in (21), we deduce

$$\sum_{i=1}^N \text{Var}[(W_i)^2] = o\left(\sum_{i=1}^N \mathbb{E}[(W_i)]^2\right).$$

Finally, combining (22), (29) and (30) together, we have

$$\sum_{i,i'=1}^N \mathbb{E}[W_iW_{i'}] = (1+o(1))\left(\sum_{i=1}^N \mathbb{E}[W_i]\right)^2.$$

This implies that $\mathbb{P}\{ \sum_{i=1}^N 1_{A_i} \geq 1 \} = 1 - o(1)$ which completes the proof.

For any finite $k \geq 1$, we write Π_k as a shorthand for $k \times k$ matrix $\Pi[\{1, 2, \ldots, k\}]$. Arguing along the line of the proof of the fact $\|\Pi\|_{2\rightarrow 4}^2 = \sup\{ \langle v, \Pi\text{diag}(\delta)\Pi v \rangle : \delta \in \ell^2(\mathbb{R}),\|\delta\|_2 \leq 1, v \in \ell^2(\mathbb{C}),\|v\|_2 \leq 1 \}$, we can also show that

$$\|\Pi_k\|_{2\rightarrow 4}^2 = \sup\{ \lambda_1(\Pi_k\text{diag}(\delta)\Pi_k) : \delta \in \mathbb{R}^k,\|\delta\|_2 \leq 1 \}.\tag{31}$$

Next we prove

Lemma 16. $\lim_{k \to \infty} \|\Pi_k\|_{2\rightarrow 4} = \|\Pi\|_{2\rightarrow 4}$.

Proof. Since the operators $\psi, \psi^{-1}, \chi_{[0,1/2]}$ are all bounded and the inclusion map $\iota : \ell^2(\mathbb{C}) \to \ell^4(\mathbb{C})$ is also a bounded operator, we have $\|\Pi\|_{2\rightarrow 4} < \infty$.

It will be convenient to think of Π_{2k+1} as a linear operator acting on the space $\ell^2(\mathbb{C})$ with the representation $\Pi_{2k+1}(i,j) = \Pi(i,j)$ for $|i|,|j| \leq k$ and 0 otherwise. Clearly, $\|\Pi_k\|_{2\rightarrow 4}$ is increasing and bounded above by $\|\Pi\|_{2\rightarrow 4}$.

For the other direction, Consider a sequence of unit vectors $v_m \in \ell^2(\mathbb{C})$ supported on $[-m,m]$ so that $\|\Pi v_m\|_4 \to \|\Pi\|_{2\rightarrow 4}$. Then for $k \geq m$ we have

$$\|\Pi v_m\|_4^4 - \|\Pi_{2k+1}v_m\|_4^4 = \sum_{i:|i|>k} |\Pi v_m(i)|^4 = \sum_{i:|i|>k} \sum_{j:|j|\leq m} \Pi(i,j)v_m(j)\tag{4}$$

Since $|\Pi(i,j)| \leq |i-j|^{-1}$ and $|v_m(j)| \leq 1$, the inside sum is bounded above by $(2m+1)(i-m)^{-1}$. This gives the upper bound

$$(2m+1)^4 \sum_{\ell:|\ell|>k-m} \frac{1}{\ell^4} \to 0, \quad \text{as } k \to \infty.$$

Letting $k \to \infty$ and then $m \to \infty$ completes the proof.
Given $\tau > 0$, by (31) and Lemma 16, we can find $k \geq 1$ sufficiently large and a vector $u = (u_1, u_2, \ldots, u_k) \in \mathbb{R}^k$ with $\|u\|_2 < 1$ such that $\lambda_1(\Pi_k \text{diag}(u) \Pi_k) > \|\Pi\|_{2 \rightarrow 4}^2 - \tau/2$. By perturbing the coordinates a little, if necessary, we can also assume $u_s \neq 0$ for each $1 \leq s \leq k$. Now choose $\eta > 0$ sufficiently small such that

1. $0 \notin (u_s - \eta, u_s + \eta)$ for each $1 \leq s \leq k$.
2. If $v = (v_1, v_2, \ldots, v_k) \in [u_1 - \eta, u_1 + \eta] \times \ldots \times [u_k - \eta, u_k + \eta]$, then $\lambda_1(\Pi_k \text{diag}(v) \Pi_k) > \|\Pi\|_{2 \rightarrow 4}^2 - \tau$.
3. $\sup\{\|v\|_2 : v \in [u_1 - \eta, u_1 + \eta] \times \ldots \times [u_k - \eta, u_k + \eta]\} < 1$.

Finally choose $\epsilon > 0$ small such that $[-\epsilon, \epsilon] \cap (u_s - \eta, u_s + \eta) = \emptyset$ for each $1 \leq s \leq k$.

By Proposition 15 we know that one of the events $A_i, 1 \leq i \leq N$ happens with high probability. If A_i occurs, then the points $ip - [\log n]^3, \ldots, ip + k - [\log n]^3$ is contained in a single partition block $J \in \Lambda$. This is because when A_i occurs, $d_{ip+j} \in (u_s - \eta, u_s + \eta)$ and hence $|d_{ip+j}| > \epsilon$ for each $j = 1, \ldots, k$ and the property of our random partition which guarantees that each (random) partition block always has a padding of two invisible bricks of length $[\log n]^3$ from each side. On the other hand, since two consecutive empty bricks can not belong to the same partitioning block, J has no other point from S except the k points $ip + 1, ip + 2, \ldots, ip + k$. Write $F := \{ip + 1, ip + 2, \ldots, ip + k\}$. Therefore, if A_i happens, then

$$\frac{\lambda_1(P[J]D[J]P[J])}{\sqrt{2 \log n}} \geq \inf \left\{\lambda_1\left(P[F]\text{diag}(v)P[F]\right) : v \in [u_1 - \eta, u_1 + \eta] \times \ldots \times [u_k - \eta, u_k + \eta]\right\}$$

By the convergence (14) of P to Π this equals

$$\inf \left\{\lambda_1\left(\Pi_k \text{diag}(v) \Pi_k\right) : v \in [u_1 - \eta, u_1 + \eta] \times \ldots \times [u_k - \eta, u_k + \eta]\right\} - O(n^{-1}) \geq \|\Pi_k\|_{2 \rightarrow 4}^2 - \tau - O(n^{-1}).$$

So, by Lemma 16 we get with high probability,

$$\max_{J \in \Lambda : J \cap S \neq \emptyset} \frac{\lambda_1(P[J]D[J]P[J])}{\sqrt{2 \log n}} \geq \|\Pi_k\|_{2 \rightarrow 4}^2 - \tau - O(n^{-1}) = \|\Pi\|_{2 \rightarrow 4}^2 - \tau - o(1).$$

This yields the claim of Proposition 14.
6 Appendix

6.1 Invariance Principle

Let $X = (X_1, \ldots, X_r)$ and $Y = (Y_1, \ldots, Y_r)$ are two vectors of independent random variables with finite second moments, taking values in some open interval I and satisfying, for each i, $E[X_i] = E[Y_i]$ and $E[X_i^2] = E[Y_i^2]$. We shall also assume that X and Y are defined on the same probability space and are independent. The following lemma is an immediate generalization of Theorem 1.1 of Chatterjee (2005) (based on Lindeberg’s approach to the CLT). We need this more detailed version because we will use the invariance principle under the moderate deviation regime.

Lemma 17. Let $f = (f_1, f_2, \ldots, f_m) : I^r \to \mathbb{R}^m$ be thrice continuously differentiable. If we set $U = f(X)$ and $V = f(Y)$, then for any thrice continuously differentiable $g : \mathbb{R}^m \to \mathbb{R}$,

$$|E[g(U)] - E[g(V)]| \leq \sum_{i=1}^{r} E[R_i] + \sum_{i=1}^{r} E[T_i],$$

where

$$R_i := \frac{1}{6}|X_i|^3 \times \sup_{x \in [\min(0,X_i), \max(0,X_i)]} |h_i(X_1, \ldots, X_{i-1}, x, Y_{i+1}, \ldots, Y_r)|,$$

$$T_i := \frac{1}{6}|Y_i|^3 \times \sup_{y \in [\min(0,Y_i), \max(0,Y_i)]} |h_i(X_1, \ldots, X_{i-1}, y, Y_{i+1}, \ldots, Y_r)|,$$

$$h_i(x) := \sum_{\ell, p, q=1}^{m} \partial \ell \partial p \partial q g(f(x)) \partial \ell f_\ell(x) \partial p f_p(x) \partial q f_q(x) + 3 \sum_{\ell, p=1}^{m} \partial \ell \partial p g(f(x)) \partial \ell^2 f_\ell(x) \partial p f_p(x)$$

$$+ \sum_{\ell=1}^{m} \partial \ell g(f(x)) \partial \ell^3 f_\ell(x).$$

Proof. The lemma can be proved by merely imitating the steps of Chatterjee (2005 Theorem 1.1) but we include a proof here for sake of completeness. Let $H : I^r \to \mathbb{R}$ be the function $H(x) := g(f(x))$. It is a routine computation to verify that $\partial_i^3 H(x) = h_i(x)$ for all i. For $0 \leq i \leq r$, define the random vectors $Z_i := (X_1, X_2, \ldots, X_{i-1}, X_i, Y_{i+1}, \ldots, Y_n)$ and $W_i := (X_1, X_2, \ldots, X_{i-1}, 0, Y_{i+1}, \ldots, Y_n)$ with obvious meanings for $i = 0$ and $i = r$. For $1 \leq i \leq r$, define

$$\text{Error}_i^{(1)} = H(Z_i) - X_i \partial_i H(W_i) - \frac{1}{2} X_i^2 \partial_i H(W_i)$$

and

$$\text{Error}_i^{(2)} = H(Z_{i-1}) - Y_i \partial_i H(W_i) - \frac{1}{2} Y_i^2 \partial_i H(W_i).$$

23
Hence, by Taylor’s remainder theorem and the above observation about the third partial derivatives of H, it follows that

$$|\text{Error}_i^{(1)}| \leq R_i \quad \text{and} \quad |\text{Error}_i^{(2)}| \leq T_i.$$

For each i, X_i, Y_i and W_i are independent. Hence,

$$E[X_i \partial_i H(W_i)] - E[Y_i \partial_i H(W_i)] = E[X_i - Y_i] \cdot E[H(W_i)] = 0.$$

Similarly, $E[X_i^2 \partial_i H(W_i)] = E[Y_i^2 \partial_i H(W_i)]$. Combining all these ingredients, we obtain

$$|E[g(U)] - E[g(V)]| = \left| \sum_{i=1}^{r} (E[H(Z_i)] - E[H(Z_{i-1})]) \right|$$

$$\leq \left| \sum_{i=1}^{r} E[X_i \partial_i H(W_i)] + \frac{1}{2} X_i^2 \partial_i H(W_i) + \text{Error}_i^{(1)} \right|$$

$$- \left| \sum_{i=1}^{r} E[Y_i \partial_i H(W_i)] + \frac{1}{2} Y_i^2 \partial_i H(W_i) + \text{Error}_i^{(2)} \right|$$

$$+ \sum_{i=1}^{r} E[R_i] + \sum_{i=1}^{r} E[T_i],$$

which completes the proof.

\[\square\]

6.2 Covariances between the eigenvalues of random circulant

Lemma 18. Let a_0, a_1, \ldots, a_n be independent mean zero, variance one random variables. Define

$$d_j = \frac{1}{\sqrt{2n}} \left[\sqrt{2a_0} + (-1)^j \sqrt{2a_n} + 2 \sum_{k=1}^{n-1} a_k \cos \left(\frac{2\pi j k}{2n} \right) \right], \quad 0 \leq j < 2n.$$

Then $d_j = d_{2n-j}$ for $0 < j < 2n$. Moreover, the random variables $d_j, 0 \leq j \leq n$ have mean 0 and their covariances are given by

$$E[d_j d_k] = \begin{cases}
2 & \text{if } j = k \in \{0, n\}, \\
1 & \text{if } 0 < j = k < n, \\
0 & \text{if } 0 \leq j \neq k \leq n.
\end{cases}$$

Proof. The fact that $d_j = d_{2n-j}$ for $0 < j < 2n$ and zero mean property is immediate from the definition of d_j. Since a_0, a_1, \ldots, a_n be independent with variance one,

$$E[d_j d_k] = \frac{1}{2n} \left[2 + 2(-1)^{j+k} + 4 \sum_{\ell=1}^{n-1} \cos \left(\frac{2\pi j \ell}{2n} \right) \cos \left(\frac{2\pi k \ell}{2n} \right) \right]$$

$$= \frac{1}{2n} \left[2 + 2(-1)^{j+k} + 2 \sum_{\ell=1}^{n-1} \cos \left(\frac{2\pi (j-k) \ell}{2n} \right) + 2 \sum_{\ell=1}^{n-1} \cos \left(\frac{2\pi (j+k) \ell}{2n} \right) \right].$$
Plugging in \(x = \frac{2\pi m}{2n}, m = 0, 1, 2, \ldots, 2n \) in the well known Dirichlet kernel formula
\[
1 + 2 \sum_{\ell=1}^{n-1} \cos(\ell x) = \frac{\sin((n-1/2)x)}{\sin(x/2)} ,
\]
we obtain
\[
\sum_{\ell=1}^{n-1} \cos \left(\frac{2\pi m\ell}{2n} \right) = -1 + (-1)^m ,
\]
unless \(m = 0 \) or \(2n \) when the sum equals to \((n-1) \). Using the above formula, the covariances \(\mathbb{E}[d_j d_k] \) can be easily computed. \(\square \)

6.3 Optimisation problem and connection to the Sine kernel

For any \(\delta > 0 \), let \(\nu_\delta \) be the indicator function \(1_{[-\delta/2,\delta/2]} \). For a complex valued function \(f \) defined on \(\mathbb{R} \), we define the involution \(f^* \) by \(f^*(x) = \overline{f(-x)} \). Given two functions \(f \) and \(g \) on \(\mathbb{R} \) their convolution \(f \ast g \) is defined as \((f \ast g)(x) = \int_{\mathbb{R}} f(x-y)g(y)dy \) provided the integral makes sense. Let \(f_\ast g \)(\(x \)) = \(\int_{-1/2}^{1/2} \hat{f}(x-y)\hat{g}(y)dy \) denote the convolution of the two functions \(f \) and \(g \) are in \(L^2(\mathbb{T}) \) where \(\hat{f} \) and \(\hat{g} \) are the periodic extension of \(f \) and \(g \) respectively on the whole real line. Let \(\hat{f}(t) = \int_{\mathbb{R}} e^{-2\pi i xt} f(x)dx \) be the usual Fourier transform of \(f \in L^2(\mathbb{R}) \).

Recall that \(\psi^{-1} \) is the discrete Fourier transform of from \(L^2(\mathbb{T}) \) to \(\ell^2(\mathbb{C}) \). Below we collect some basic facts of the usual and discrete Fourier transform which we will need later.

1. \(\psi^{-1} : L^2(\mathbb{T}) \to \ell^2(\mathbb{C}) \) and \(\hat{\cdot} : L^2(\mathbb{R}) \to L^2(\mathbb{R}) \) are isometries.
2. \(\overline{\psi^{-1}(f)} = \psi^{-1}(f^*) \) and \(\hat{\bar{f}} = \hat{f}^* \).
3. \(\psi^{-1}(f \ast_T g)(k) = \psi^{-1}(f)(k)\psi^{-1}(g)(k) \) for all \(k \in \mathbb{Z} \) and for all \(f, g \in L^2(\mathbb{T}) \). When \(f, g \in L^2(\mathbb{T}) \), then \(f \ast g = \hat{f} \cdot \hat{g} \).
4. If \(f \) and \(g \) are supported on \([0, 1/2]\) then \(f \ast_T g = f \ast g \).
5. \(\hat{\nu}_1(t) = \frac{\sin(\pi t)}{\pi t} \)

Note that \(\text{Sin}(f)(x) = \hat{\nu}_1 \ast f(x) \) for \(f \in L^2(\mathbb{R}) \). The next lemma establishes the connection between the \(2 \rightarrow 4 \) norm of the operator \(\Pi \) and the \(2 \rightarrow 4 \) norm of the integral operator \(\text{Sin} \).

Lemma 19. The following holds true.
\[
\|\Pi\|_{2 \rightarrow 4}^2 = \frac{1}{\sqrt{2}} \|\text{Sin}\|_{2 \rightarrow 4}^2 .
\]
Let us define for $\delta > 0$,

$$K_\delta := \sup \left\{ \| (fv_\delta)^* (fv_\delta) \|_2 : f \in L^2(\mathbb{R}), \| f \|_2 \leq 1 \right\}. \tag{32}$$

Lemma 20. Let K_δ be as above. Then $K_\delta = \delta^{1/2} K_1$.

Proof of Lemma 20. For any $f \in L^2(\mathbb{R})$,

$$\| (fv_\delta)^* (fv_\delta) \|_2^2 = \int \left| \int f v_\delta(x + t) \overline{f v_\delta(t)} \, dt \right|^2 \, dx$$

After a change of variables $s = t/\delta$ and $y = x/\delta$ the above integral is same as

$$\frac{\delta^3}{2} \int \left| \int f v_\delta(\delta(s + y)) \overline{f v_\delta(\delta s)} \, ds \right|^2 \, dy. \tag{33}$$

Keeping in mind that $v_\delta(\delta s) = v_1(s)$ and replacing f by $g(x) := \delta^{1/2} f(\delta x)$ in (33), we obtain

$$(33) = \delta \int \left| \int g v_1((s + y)) \overline{f v_1(s)} \, ds \right|^2 \, dy.$$

Since $\| g \|_2 = \| f \|_2$, it follows that $K_\delta^2 = \delta K_1^2$, which completes the proof of the lemma. \square

Proof of Lemma 19. The proof consists of a series of elementary steps. Let κ be the indicator function $1_{[0,1/2]}$. Applying the Fourier transform from $\ell^2(\mathbb{Z})$ to $L^2(\mathbb{T})$, we get

$$\| \Pi \|_{2 \rightarrow 4}^2 = \sup \left\{ \| \Pi v \odot \Pi v \|_2 : v \in \ell^2(\mathbb{Z}), \| v \|_2 \leq 1 \right\}$$

$$= \sup \left\{ \| \psi^{-1}(f \cdot \kappa) \odot \psi^{-1}(f \cdot \kappa) \|_2 : f \in L^2(\mathbb{T}), \| f \|_2 \leq 1 \right\}$$

The properties of the Fourier transform further imply

$$\overline{\psi^{-1}(f \cdot \kappa)} \odot \psi^{-1}(f \cdot \kappa) = \psi^{-1}((f \cdot \kappa)^*) \odot \psi^{-1}(f \cdot \kappa) = \psi^{-1}((f \cdot \kappa)^* \star_T (f \cdot \kappa)),$$

and since we convolve functions supported on $[0,1/2]$ we might as well do the entire optimization on the real line to get

$$\| \Pi \|_{2 \rightarrow 4}^2 = \sup \left\{ \| (f \cdot \kappa)^* (f \cdot \kappa) \|_2 : f \in L^2(\mathbb{R}), \| f \|_2 \leq 1 \right\}$$

By translating the function $f \in L^2(\mathbb{R})$ via the map $f \mapsto f(\cdot + 1/4)$ in the above optimization problem, we see that $\| \Pi \|_{2 \rightarrow 4}^2 = K_{1/2}$. This equals $K_1/\sqrt{2}$ by Lemma 20. Now note that

$$\| (fv_1)^* (fv_1) \|_2 = \| fv_1 \cdot \overline{fv_1} \|_2 = \| \overline{fv_1} \|_4^2 = \| \text{Sin}(\hat{f}) \|_4^2$$

and so

$$K_1 = \sup \left\{ \| \text{Sin}(\hat{f}) \|_4^2 : \hat{f} \in L^2(\mathbb{R}), \| \hat{f} \|_2 \leq 1 \right\} = \| \text{Sin} \|_{2 \rightarrow 4}^2.$$

This completes the proof of the lemma. \square
As far as we know, the explicit value of constant K_1 of (32) is not known in the literature. However, the maximization problem given in (32) has been studied in Garsia, Rodemich and Rumsey (1968/69). We list below some of the interesting results from Garsia et al. (1968/69).

- $K_1 = \sup \left\{ \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x+t)f(t)dt \right)^2 dx \right)^{1/2} : f \in \mathcal{F} \right\}$ where \mathcal{F} is the class of all real-valued functions f satisfying $f(x) \geq 0, f(x) = f(-x)$ for all $x \in \mathbb{R}$, $f(x) \geq f(y)$ for $0 \leq x \leq y$ and $f(x) = 0$ for $|x| \geq 1/2$ and $\int_{-1/2}^{1/2} f^2(x)dx = 1$.

- There exists a unique $f \in \mathcal{F}$ such that $\left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x+t)f(t)dt \right)^2 dx \right)^{1/2} = K_1$.

- $K_1^2 = 0.686981293033114600949413 \ldots$!

Acknowledgments

A.S. thanks Manjunath Krishnapur for pointing out the usefulness of the invariance principle in the world of random matrices. Most of the research has been conducted while A.S. visited University of Toronto and Technical University of Budapest in June 2010 and July 2011 respectively. B.V. thanks Máté Matolcsi for many interesting discussions about the final optimization problem. We also thank him and Mihalis Kolountzakis for the reference Garsia et al. (1968/69). AS is supported by the EPSRC grant EP/G055068/1.

References

Adamczak, R. (2010). A few remarks on the operator norm of random Toeplitz matrices, *J. Theoret. Probab.* 23(1): 85–108.

Bai, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review, *Statist. Sinica* 9(3): 611–677. With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author.

Bai, Z. D. and Yin, Y. Q. (1988). Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix, *Ann. Probab.* 16(4): 1729–1741.

Bose, A. and Sen, A. (2007). Spectral norm of random large dimensional noncentral Toeplitz and Hankel matrices, *Electron. Comm. Probab.* 12: 29–35 (electronic). Paging changed to 21-27 on journal site.
Bose, A. and Sen, A. (2008). Another look at the moment method for large dimensional random matrices, *Electron. J. Probab.* **13**: no. 21, 588–628.

Bose, A., Subhra Hazra, R. and Saha, K. (2010). Spectral norm of circulant type matrices with heavy tailed entries, *Electron. Commun. Probab.* **15**: 299–313.

Böttcher, A. and Grudsky, S. M. (2000). *Toeplitz matrices, asymptotic linear algebra, and functional analysis*, Birkhäuser Verlag, Basel.

Böttcher, A. and Silbermann, B. (1999). *Introduction to large truncated Toeplitz matrices*, Universitext, Springer-Verlag, New York.

Böttcher, A. and Silbermann, B. (2006). *Analysis of Toeplitz operators*, Springer Monographs in Mathematics, second edn, Springer-Verlag, Berlin. Prepared jointly with Alexei Karlovich.

Bryc, W., Dembo, A. and Jiang, T. (2006). Spectral measure of large random Hankel, Markov and Toeplitz matrices, *Ann. Probab.* **34**(1): 1–38.

Chatterjee, S. (2005). A simple invariance theorem. Unpublished, available at Arxiv math 0508213.

Chatterjee, S. (2009). Fluctuations of eigenvalues and second order Poincaré inequalities, *Probab. Theory Related Fields* **143**(1-2): 1–40.

Garsia, A., Rodemich, E. and Rumsey, H. (1968/69). On some extremal positive definite functions, *J. Math. Mech.* **18**: 805–834.

Grenander, U. and Szegő, G. (1984). *Toeplitz forms and their applications*, second edn, Chelsea Publishing Co., New York.

Hammond, C. and Miller, S. J. (2005). Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices, *J. Theoret. Probab.* **18**(3): 537–566.

Kargin, V. (2009). Spectrum of random Toeplitz matrices with band structure, *Electron. Commun. Probab.* **14**: 412–421.

Latala, R. (1997). Estimation of moments of sums of independent real random variables, *Ann. Probab.* **25**(3): 1502–1513.
Meckes, M. W. (2007). On the spectral norm of a random Toeplitz matrix, *Electron. Comm. Probab.* **12**: 315–325 (electronic).

Arnab Sen
Statistical Laboratory
Center for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge, UK CB3 0WB
a.sen@statslab.cam.ac.uk

Bálint Virág
Departments of Mathematics and Statistics
University of Toronto
Toronto ON
M5S 2E4, Canada
balint@math.toronto.edu