Is sonication superior to dithiothreitol in diagnosis of periprosthetic joint infections? A meta-analysis

Konstantinos Tsikopoulos1 · Savas Ilias Christofilos2 · Dimitrios Kitridis3 · Konstantinos Sidiropoulos4 · Panagiotis N. Stoikos5 · Christoforos Gravalidis6 · Panagiotis Givissis3 · Paraskevi Papaioannidou1

Received: 16 December 2021 / Accepted: 13 February 2022 / Published online: 24 February 2022
© The Author(s) under exclusive licence to SICOT aisbl 2022, corrected publication 2022

Abstract

Purpose Even though effective techniques in diagnosis of periprosthetic joint infections (PJIs) have been developed, the optimal modality has yet to be determined. The present meta-analysis aimed to compare the diagnostic accuracy of dithiothreitol (DTT) and sonication against the Musculoskeletal Infection Society criteria in patients undergoing revision joint surgery.

Methods We searched the PubMed, Scopus, and Central Cochrane register of controlled trials as well as gray literature until the 9th of November, 2021. We included articles considering the comparative diagnostic accuracy of sonication and DTT in adult patients having revision hip and knee arthroplasty for septic or aseptic reasons. We calculated pooled sensitivity, specificity, and diagnostic accuracy of the above diagnostic techniques against the Musculoskeletal Infection Society (MSIS) criteria and created receiver operating characteristics (ROC) curves to enable comparisons between each other. The quality of included papers was evaluated utilizing QUADAS-2 and QUADAS-C tools.

Results Data from five comparative studies totaling 726 implants were pooled together. The diagnostic accuracy of DTT and sonication were 86.7% (95% CI 82.7 to 90.1) and 83.9% (95% CI 79.7 to 87.5), respectively. Pooled sensitivity and specificity showed no statistically significant differences between DTT and sonication (0.7 [95% CI 0.62 to 0.77] vs 0.72 [95% CI 0.65 to 0.78], \(p = 0.14\); and 0.99 [95% CI 0.97 to 1] vs 0.97 [95% CI 0.93 to 0.99], \(p = 5.5\), respectively).

Conclusions This meta-analysis did not identify any clinically meaningful difference between the diagnostic potential of sonication and the chemical-based biofilm dislodgment methods. This finding remained robust after adjusting for the administration of antibiotics prophylaxis, implementation of the polymerase chain reaction of sonicated fluid, and study quality.

Keywords Sonication · Dithiothreitol · DTT · Sensitivity · Specificity · Diagnostic accuracy · Meta-analysis

Konstantinos Tsikopoulos
ktsikopo@auth.gr

Savas Ilias Christofilos
savaschristofilos@gmail.com

Dimitrios Kitridis
dkitidis@gmail.com

Konstantinos Sidiropoulos
kcdroj@yahoo.gr

Panagiotis N. Stoikos
panstoikos@uth.gr

Christoforos Gravalidis
cgrava@auth.gr

Panagiotis Givissis
pgivissis@gmail.com

Paraskevi Papaioannidou
ppap@auth.gr

1 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

2 Department of Genetics, Evolution and Environment, University College London, London, UK

3 1st Orthopaedic Department, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

4 School of Medicine, University of Patras, Patras, Greece

5 School of Medicine, Faculty of Health Sciences, University of Thessaly, Volos, Greece

6 Solid State Physics Sector, Physics Department, Faculty of Exact Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Springer
Introduction

Periprosthetic joint infection (PJI) is one of the most feared complications of arthroplasty, predominantly because of antibiotic resistance issues [1]. With an estimated revision burden of 1–2% for infected primary hip replacements and up to 40% in the case of revision procedures, the socioeconomic impact is considerable [2, 3]. It is an undeniable fact that establishing the diagnosis of a PJI is not always a straightforward task [4, 5] with significant numbers of occult infections being inadequately investigated and misclassified as aseptic failures [6]. Given the increasing volume of joint replacement surgery worldwide, a growing trend in the projected number of new PJIs is more likely to be observed in the foreseeable future. Thus, properly understanding and diagnosing this condition promptly is of the essence.

Cultures have long been considered the golden standard [7] with *Staphylococcus aureus* and *S. epidermidis* [8, 9] being the most commonly isolated microorganisms. In addition, gram-negative rods such as Enterobacteriaceae, *Pseudomonas aeruginosa*, as well as slow-growing anaerobic bacteria such as *Cutibacterium acnes* can be involved to a lesser extent, whereas some patients can present with polymicrobial infections [7]. Taking into account that retrieving false-negative culture results can occur in as high as 16% of all PJI cases [8] and the fact that in the setting of prolonged antibiotic use, the sensitivity of microbial culture can also be compromised [10, 11], the need to implement more effective diagnostic techniques is of great importance.

As such, sonication [12], involving placement of the prosthesis in a sterile saline solution and sonicating for a particular amount of time, has been widely used [13, 14]. The sonicated fluid undergoes culture to ascertain the presence of a PJI [13]. While the literature on sonication has demonstrated satisfactory results especially in the setting of a non-suspected PJI and proven of superior diagnostic capacity over traditional cultures [15], the aforementioned modality does present drawbacks [7, 16, 17] including but not limited to increased cost of equipment and cross-contamination risks [17]. For that reason, chemically based biofilm dislodgement techniques (i.e., dithiothreitol [DTT]) featuring the use of a reducing agent denaturing proteins [18] have been introduced. More specifically, the above technique consists of prosthesis placement in 0.1% w/v of DTT solution followed by stirring for 15 minutes [7, 18] and fluid culture [7]. Given the controversial findings in studies assessing the diagnostic accuracy of sonication and DTT assay, we designed a meta-analysis to compare their efficacy in establishing the diagnosis of a PJI against the Musculoskeletal Infection Society (MSIS) criteria [19] in patients subjected to revision joint replacement surgery.

Methods

Eligibility criteria

Comparative articles assessing the diagnostic yield of sonication and DTT assays were considered in the systematic review. Studies considering adult patients undergoing revision hip or knee arthroplasty for septic and aseptic reasons were eligible for inclusion. Of note, animal research and in vitro laboratory studies were discarded. Additional exclusion criteria included the mechanical failure of the prosthesis and periprosthetic fracture.

Literature search and data selection process

The databases of PubMed, Scopus, and Cochrane Central Register for Clinical Trials as well as trial registries were considered with the aim to identify relevant papers published until November 9th, 2021. The search terms considered in our strategy were as follows: “periprosthetic joint infect*,” “implant infect*,” “fracture-related infect*,” “FRI,” “osteomyelitis,” “diagnosis,” “diagnostic method,” “sonication,” “DTT,” and “dithiothreitol” (Supplemental file 1).

Two authors performed the literature research independently, without language restrictions. The duplicates were removed, and the titles and abstracts were scanned for eligibility. Subsequently, the full texts were also screened. In the case of discrepancies, the study selection was resolved via discussion.

Data extraction

Two reviewers extracted information from the enrolled studies independently. Abstracted information included study design, number, and demographics of the included participants, the definition of PJI/inclusion criteria, countries where the investigations were performed, administration of antibiotics before sonication/DTT, and quality of the included studies.

Outcome assessment

Pooled sensitivity and specificity of the included tests were assessed against the Musculoskeletal Infection Society (MSIS) criteria [19], to identify which test is most accurate in diagnosis of PJIs. In addition, diagnostic accuracy, with the corresponding confidence intervals, was calculated for each diagnostic test.

Statistics

For a study of this systematic review to qualify for meta-analysis, MSIS criteria should have been followed. What is
more, sonication/DTT fluid culture was favored over fluid PCR because there is no proven diagnostic benefit when employing the latter technique [20]. To represent graphically the sensitivity and specificity of the source articles in a cumulative manner, Review Manager software (version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) was utilized to generate summary receiver operating characteristics (ROC) curves. Subsequently, pooled sensitivity and specificity were calculated, and Pearson’s chi-square was executed to compare the results between the two diagnostic techniques [21]. It should be noted that a p value of < 0.5 indicated statistical significance.

Furthermore, sensitivity analyses according to pretreatment with antibiotic administration and PCR implementation following sonication and DTT were considered. In addition, the quality of the included articles and randomization were accounted for.

Quality appraisal and certainty assessment

The methodological quality of the included studies was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies checklist (QUADAS-2) [22] and the Quality Assessment of Diagnostic Accuracy Studies-Comparative checklist (QUADAS-C) [23]. The QUADAS-2 tool consists of four separate domains (i.e., patient selection, index test, reference standard, and flow and timing). Each domain is assessed for risk of bias, and the first three domains are also assessed for concerns regarding applicability. The QUADAS-C tool was developed as an extension of QUADAS-2 to assess the risk of bias in comparative diagnostic accuracy studies, consisting of additional questions to each QUADAS-2 domain. For the reference standard domain, studies were deemed to be at low risk of bias should they assessed diagnostic accuracy against MSIS criteria. In case a source study was published before MSIS guidelines, then no additional information should have been retrieved from papers at a low, unclear, or high risk of bias. Two authors independently populated both QUADAS-2 and QUADAS-C tables and resolved any disagreement through discussion.

Results

Study selection and characteristics

The literature search yielded a total of 1484 records. Following deduplication, abstract, and full-text screening, 6 articles were eligible for inclusion in the systematic review with a total of 897 patients undergoing revision hip and knee replacements (Table 1). Of these articles, four were conducted in Europe [7, 24–26] and the other two in Asia [27, 28]. The MSIS criteria were followed in all but one study [29]. Ultimately, five articles were considered in the quantitative synthesis (that is meta-analysis) [7, 25–28] (Fig. 1).

Results of individual studies

Comparable diagnostic accuracy was demonstrated on the ROC curve (Fig. 2). In addition, the sensitivity of sonication in the individual studies varied between 0.57 and 0.93, and specificity ranged from 0.89 to 1 (Fig. 3). Likewise, for DTT, sensitivity was reported to be between 0.4 and 0.9, with specificity fluctuating around 1 (Fig. 3).

Meta-analysis results

The diagnostic accuracy of sonication and DTT against MSIS criteria was found to be 83.9% (95% CI 79.7 to 87.5%) and 86.7% (95% CI 82.7 to 90.1%), respectively. Pooled sensitivity and specificity showed no statistically significant differences between sonication and DTT (0.72 [95% CI 0.65 to 0.78] vs 0.7 [95% CI 0.62 to 0.77], p = 0.14; and 0.97 [95% CI 0.93 to 0.99] vs 0.99 [95% CI 0.97 to 1], p = 5.5, respectively). Regarding the results of our sensitivity analyses, we detected no significant differences compared to the findings of our primary analysis.

Risk of bias and level of certainty assessment

We applied the QUADAS-2 checklist and the QUADAS-C extension to assess the quality of the included studies. Overall, the quality of the studies as well as the certainty of evidence was deemed satisfactory (Table 2). More specifically, in the patient selection domain, all studies had a low risk of bias in the QUADAS-2 tool, whereas two studies had a high risk of bias [25, 26] and one had unclear risk bias [27] in the QUADAS-C tool. The limitation was that the studies either did not utilize a fully paired or randomized design or they failed to report it, respectively. For the index test domain, most of the studies were considered to have a low risk of bias, except for two studies that did not report sufficient microbiological details to enable a reliable evaluation of the implemented techniques [25, 26]. For the reference standard domain, no study was found to be at a high risk of bias. Regarding the flow and timing domain, all studies were found to have a low risk of bias. Overall, all the domains were judged to be at low risk of bias (Fig. 4).
It is undeniable that PJI represents a major cause of morbidity, leading to longer hospitalizations, implant failures, and revision joint replacement surgery [30, 31]. With the clinical presentation of PJI being variable, a high level of suspicion should be maintained by clinicians and, as such, all patients with a painful total joint arthroplasty should be considered infected unless proven otherwise [32]. To overcome the drawbacks of sonication, DTT has been introduced with satisfactory results. However, no clear evidence exists as to which of those tests yields superior diagnostic accuracy. Therefore, in the current paper, we sought to compare the diagnostic potential of sonication relative to DTT by using a meta-analysis study design. We demonstrated no statistically significant difference between the above techniques based upon pooled evidence from six papers comprising 726 implants from revision hip and knee replacements. It is worth mentioning that this finding remained unchanged when we controlled for the administration of antibiotic prophylaxis for PJI and randomization of included articles. The level of certainty provided in the present systematic review was deemed to be of moderate strength given the fact that non-randomized evidence was considered in addition to randomized data. Nevertheless, the included non-randomized papers were judged to be of high quality, thus allowing for safe conclusions to be drawn.

Establishing a PJI diagnosis

In this article, we utilized the Musculoskeletal Infection Society (MSIS) [4] criteria which represent the most widely accepted tool in this field nowadays. As per this diagnostic instrument, either one major criterion or 6 minor criteria should be fulfilled for this condition to be confirmed. In particular, either the presence of a sinus tract or at least two positive cultures of the same pathogen are necessary to establish a PJI. Due to the emergence of new diagnostic tests, an updated set of the criteria was then published by Parvizi et al. in 2018 [4], which resulted in improved sensitivity and specificity reaching 98% and 99.5%, respectively. To be more exact, elements of the revised criteria include elevated levels of serum ESR, CRP, or D-dimer, and synovial changes such as elevated CRP, A-defensin,
and leukocytosis [4]. Furthermore, inter-test interaction has been accounted for in this new set of criteria which are not merely based on intra-operative findings [33]. Despite this, the revised tool may still be inaccurate in particular subgroups including inflammatory and/or crystalline deposition arthropathy patients as well as cases secondary to adverse tissue reactions [4].

Confound factors in PJI laboratory analyses

We wish to underline that many microbiological parameters should be taken into account when comparing the diagnostic accuracy of two techniques including but not limited to the grade of infection, microbiological processing of the sonicated/chemical fluid as well as the biomaterial undergoing sonication/chemical processing. In addition, caution should be exercised when it comes to investigating spacers as the diagnostic potential of sonication in the presence of spacers appears to decrease [29, 34]. We would also like to draw readers’ attention to the fact that transportation, storage delay of samples, and/or inappropriate storage temperature do impact the detection of pathogens in PJIs [35].

Transition to clinical practice

Although this study showed no clinically meaningful difference between DTT and sonication, several parameters should be considered before making a balanced decision on which diagnostic technique should be adopted in everyday clinical practice. First of all, it is widely known that sonication is a long-lasting process requiring sophisticated equipment, not to mention the substantial risk of contamination of specimens during manual handling. Second, the cost of the devices used to mechanically dislodge bacteria from orthopaedic implants is considerable. On top of that, evidence has suggested that sonication exhibits a significant antibacterial effect in a time-dependent manner [36] which may influence the microbiological evaluation of the sonicated fluid. On the flip side, DTT is cheaper, bears a lower risk of cross-contamination, and exhibits a degree of satisfactory reproducibility [24]. More importantly, DTT is useful for biofilm dislodgement and pretreatment of biopsies due to involving chemical processing [37] of specimens. On the contrary, sonication is inherently not applicable to biopsies or liquids.

Furthermore, we underline that there is no need to omit pre-operative antibiotics when sonication has been planned, as there has been no scientific evidence to support the discontinuation of chemoprophylaxis before surgery [38]. This notion was confirmed by the present meta-analysis as we identified no significant difference when antibiotic pretreatment was accounted for in a sensitivity analysis.

What is more, avoiding common diagnostic and surgical errors such as incomplete evaluation of joint aspirate, suboptimal microbiological procedures including an insufficient number of periprosthetic samples, underdebridement, and overdebridement is crucial [39]. In tackling those technical
Fig. 2 Receiver operating characteristics curve demonstrating comparable sensitivity and specificity between sonication and dithiothreitol. DTT, dithiothreitol

Fig. 3 The sensitivity and specificity of individual studies are demonstrated. CI, confidence interval; DTT, dithiothreitol; FP, false positive; FN, false negative; TP, true positive; TN, true negative
problems, multidisciplinary (MDT) work coordinated by clinical microbiologists, orthopaedic surgeons, and infectious disease specialists is more likely to result in a successful outcome.

Emerging techniques

While the validity of diagnostic criteria for PJI has been well-documented, a diagnostic gold standard to determine the persistence of infection at reimplantation is still lacking. For that reason, there has been extensive ongoing research over the last years looking for more advantageous diagnostic techniques. To elaborate further, it has been accepted that molecular methods can lead to increased sensitivity as they require smaller microbial loads than traditional culture methods [40, 41]. This is especially true in the case of low virulence organisms [33]. However, despite the initial promising reports supporting the use of polymerase chain reaction (PCR), recent data have shown that the sensitivity of PCR might be lower compared to that of traditional cultures of sonicated fluid [20].

Looking at more modern modalities, metagenomic next-generation sequencing (mNGS) is a potentially revolutionary technique allowing for deoxyribonucleic acids sequencing from synovial fluid [42]. This innovative technique could be particularly useful not only in the setting of a culture-negative PJI but also in antimicrobial resistance characterization [42]. Early results have also indicated that mNGS yields superior results to traditional cultures of sonicated fluid [43]. However, bearing in mind the current increased cost of NGS, which can be as high as $500, its feasibility for routine use might be limited in the future.

Study limitations

We recognize that the present systematic review has a few limitations. First of all, we underline that this meta-analysis was conducted by synthesizing evidence not only from randomized but also from non-randomized research. Accordingly, the strength of recommendations provided by the present systematic review was deemed to be moderate, thus reflecting on the fact that complex data pooling does not compensate for the inclusion of level B evidence.

On top of that, clinical heterogeneity was detected given the methodological differences across the included papers. In particular, there was lack of standardization in the microbiological techniques of sonication and DTT which might have influenced the accuracy of meta-analysis results. To elaborate further, not only ultrasound parameters such as frequency [44], but also the number of cultures and growth
duration [45] varied across the source studies. With the aim to decrease the impact of clinical diversity on the results of our meta-analysis, we only pooled data from studies implementing the MSIS criteria. However, we wish to highlight that more reliable and widely accepted tools such as the WAISOT [46] and Infectious Diseases Society of America (IDSA) [47] exist. Moreover, all cases in the present retrospective paper referred to revision hip and knee joint surgery which demonstrates that evidence on fracture-related infection research is scarce and insufficient. Therefore, safe conclusions as to what the diagnostic accuracy of sonication and DTT is in the setting of fracture surgery cannot be made for the time being. Likewise, infection research on spacers appears to be limited to inform clinical decision-making.

Implications for future research

We recommend further research focused on diagnostic methods of fracture-related infection be conducted. What is more, we advocate future authors take into account the grade of infection when investigating the potential of various diagnostic techniques as there has been no sufficient literature looking at the influence of this confounding factor as of yet. Furthermore, the diagnostic outcomes in shoulder joint PJs should be further investigated as the particular clinical features and prevalence of *Cutibacterium acnes*-induced infections might exert a different influence [48].

Conclusions

It is widely accepted that both sonication and DTT are not as broadly used in the clinical practice as they should have been, despite their satisfactory diagnostic accuracy demonstrated in the present meta-analysis. The current study showed comparable diagnostic accuracy between sonication and DTT, and this conclusion was based on the certainty of moderate strength. Health policymakers should consider the ease of use, risk of contamination during manipulation, and cost, prior to determining which technique should be favored over the other by clinicians. Further optimization of the available diagnostic techniques is encouraged, given the clinical importance of correct identification of microorganisms implicated in PJs and fracture-related infections.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00264-022-05350-z.

Author contribution Mr. Tsikopoulos conceptualized the idea before conducting this study, handled the statistical software, and drafted the original manuscript. Mr. Christofilos and Mr. Gravalidis contributed to the data extraction and drafting of this meta-analysis. Mr. Sidiropoulos contributed to the literature search and quality assessment. Mr. Kitridis assessed the methodological quality of the papers and contributed to the literature search. Mr. Stoikos contributed to the data extraction and editing of the article. Professor Givissis and Professor Papioanannidou supervised and reviewed the paper. All authors have read and agreed to the current version of the manuscript. Mr Christofilos participated in this study while he was an intern at Professor Maniatis’s group at the University College London.

Data Availability Not applicable.

Declarations

Ethics approval We declare that ethical approval was not required for this study.

Consent to participate Patients’ consent to participate was not applicable.

Consent for publication Patients’ consent to publish was not applicable.

Competing interests The authors declare no competing interests.

References

1. Tsang STJ, Gwynne PJ, Gallagher MP, Simpson AHRW (2018) The biofilm eradication activity of acetic acid in the management of periprosthetic joint infection. Bone Joint Res 7(8):517–523. https://doi.org/10.1302/2046-3758.7.RJ-BJR-2018-0045.R1
2. Ahmed SS, Haddad FS (2019) Prosthetic joint infection. Bone Joint Res 8(11):570–572. https://doi.org/10.1302/2046-3758.812.BJR-2019-0340
3. Springer BD, Cahue S, Etkin CD, Lewallen DG, McGrory BJ (2017) Infection burden in total hip and knee arthroplasties: an international registry-based perspective. Arthroplasty Today 3(2):137–140. https://doi.org/10.1016/j.arth.2017.05.003
4. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, Shohat N (2018) The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 33(5):1309-1314.e2. https://doi.org/10.1016/j.arth.2018.02.078
5. Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J (2010) Prosthetic joint infection risk after TKA in the Medicare population. Clin Orthop Relat Res 468(1):52–56. https://doi.org/10.1007/s11999-009-1013-5
6. Rasouli MR, Harandi AA, Adeli B, Purtill JJ, Parvizi J (2012) Revision total knee arthroplasty: infection should be ruled out in all cases. J Arthroplasty 27(6):1239-43.e1–2. https://doi.org/10.1016/j.arth.2011.01.019
7. Sambri A, Cadossi M, Giannini S, Pignatti G, Marcacci M, Neri MP, Maso A, Storni E, Gamberini S, Naldi S, Torri A, Zannoli S, Tassinari M, Fantini M, Bianchi G, Donati D, Sambri V (2018) Is treatment with diithiothreitol more effective than sonication for the diagnosis of prosthetic joint infection? Clin Orthop Relat Res 76(1):137–145. https://doi.org/10.1007/s11999-000000000000060
8. Aggarwal VK, Bakhshi H, Ecker NU, Parvizi J, Gehrie T, Kendoff D (2014) Organism profile in periprosthetic joint infection: pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J Knee Surg 27(5):399–406. https://doi.org/10.1055/s-0033-1364102
Perioperative testing for joint infection in patients undergoing revision total hip arthroplasty. J Bone Joint Surg Am 90(9):1869–1875. https://doi.org/10.2106/BJS.G01255

10. Holinka J, Bauer L, Hirschl AM, Graninger W, Windhager R, Presterl E (2011) Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection. J Orthop Res 29(4):617–622. https://doi.org/10.1002/jor.21286

11. Trampuz A, Osmon DR, Hanssen AD, Steckelberg JM, Patel R (2005) Molecular and biofilm approaches to prosthetic joint infection. Clin Orthop Relat Res 414:69–88. https://doi.org/10.1097/01.blo.0000087324.60612.93

12. Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nisticò L, Kathju S, Stoodley P, Hall-Stoodley L, Maaø G, James G, Søtereanos N, DeMee P (2011) New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol 61(2):133–140. https://doi.org/10.1111/j.1574-695X.2010.00766.x

13. Evangelopoulos DS, Stathopoulos IP, Morassi GP, Koufos S, Albari A, Karampinas PK, Stylianakis A, Kohl S, Pneumaticos V, Wass NE. (1997) Comparing the sensitivities and specificities of Sonication of removed hip and knee prostheses for diagnosis of prosthetic joint infection. Ann Intern Med 155(8):529–35. https://doi.org/10.7326/0003-4819-155-8-201101080-00009

14. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R (2007) Sonication of removed knee and hip prostheses for diagnosis of infection. N Engl J Med 357(7):654–663. https://doi.org/10.1056/NEJMoa061588

15. Ahmed EA, Almutairi MK, Alkaseb AT (2021) Accuracy of tissue samples in osteoarticular and joint infections. J Arthroplasty 25(SUPPL. 6):103–106. https://doi.org/10.1016/j.arth.2019.05.007

16. Almamaly A, Cardenas B, Stock BF, Dallari D, D’Ambrosio A,通讯作者. (2020) Thoracic Sonication of explanted components in bags for diagnosis of prosthetic joint infection-an algorithm-based approach. J Arthroplasty 35(11):2242–2247. https://doi.org/10.1016/j.arth.2020.05.008

17. Drago L, Signori V, De Vecchi E, Vassena C, Palazzi E, Cappelletti L, Romanò D, Romanò CL (2013) Use of dithiothreitol to improve the diagnosis of prosthetic joint infections. J Orthop Res 31(11):1694–1699. https://doi.org/10.1002/jor.22423

18. Rampau TM, Molitor E, Fröschl F, Hörnau A, Kohlhof H, Scheidt S, Gravius S, Hischebeth GT (2021) The performance of a dithiothreitol-based diagnostic system in diagnosing periprosthetic joint infection compared to sonication fluid cultures and tissue biopsies. Z Orthop Unfall 159(4):447–453. https://doi.org/10.1055/a-1150-8396

19. Karbysheva S, Renz N, Yermak K, Cabric S, Trampuz A (2019) New methods in the diagnosis of prosthetic joint infection. Traumatol Orthop Russ 25(4):56–63. https://doi.org/10.21823/2311-2905-2019-25-4-56-63

20. Fang X, Zhang L, Cai Y, Huang Z, Li W, Zhang C, Yang B, Lin J, Wahl P, Zhang W (2021) Effects of different tissue specimen pretreatment methods on microbial culture results in the diagnosis of periprosthetic joint infection. Bone Joint Res 10(2):96–104. https://doi.org/10.1302/2046-3758.10.BJR-2020-0104.R3

21. Sebastian S, Malhotra R, Sreenivas V, Kapil A, Dhawan B (2021) The utility of dithiothreitol treatment of periprosthetic tissues and explanted implants in the diagnosis of prosthetic joint infection. Indian J Med Microbiol 39(2):179–183. https://doi.org/10.1016/j.jimm.2020.12.004

22. Sambri A, Maso A, Storni E, Donati ME, Pedzeroli A, Dallari D, Bianchi G, Donati DM (2019). Is sonication of antibiotic-loaded cement spacers useful in two-stage revision of prosthetic joint infection? J Microbiol Methods 81-84https://doi.org/10.1016/j.mimet.2018.12.006

23. Parviz J, Pawsarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KI (2010) Periprosthetic joint infection: the economic impact of meticillin-resistant infections. J Arthroplasty 25(SUPPL. 6):103–107. https://doi.org/10.1016/j.arth.2010.04.011

24. Walls RJ, Roche SJ, O’Rourke A, McCabe JP (2008) Surgical site infection with methicillin-resistant Staphylococcus aureus after primary total hip replacement. J Bone Joint Surg Br 90(3):292–298. https://doi.org/10.1302/0301-620X.90B3.20155

25. Ting NT, Delta Valle CJ (2017) Diagnosis of periprosthetic joint infection—an algorithm-based approach. J Arthroplasty 32(7):2047–2050. https://doi.org/10.1016/j.arth.2017.02.070

26. Morgenstern C, Cabric S, Perka C, Trampuz A, Renz N (2018) Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection. Diagn Microbiol Infect Dis 90(2):115–119. https://doi.org/10.1016/j.diagmicrobiol.2017.10.016

27. Nelson CL, Jones RB, Wingert NC, Foltzer M, Bowen TR (2014) Sonication of antibiotic spacers predicts failure during two-stage revision for prosthetic knee and hip infections. Clin Orthop Relat Res 472(7):2208–2214. https://doi.org/10.1007/s10239-014-3571-4

28. Van Cauter M, Cornu O, Yombi JC, Rodriguez-Villalobos H, Kamiński L (2018) The effect of storage delay and storage temperature on orthopaedic surgical samples contaminated by Staphylococcus Epidermidis. PLoS One 13(3):e0192048. https://doi.org/10.1371/journal.pone.0192048

29. Camineni S, Huang C (2019) The antibacterial effect of sonication and its potential medical application. SICOT J 5:19. https://doi.org/10.1016/j.sicot.2019017

30. De Vecchi E, Bortoloni M, Signori V, Romanò CL, Drago L (2016) Treatment with dithiothreitol improves bacterial recovery from tissue samples in osteoarticular and joint infections. J Arthroplasty 31(12):2867–2870. https://doi.org/10.1016/j.arth.2016.05.008

31. Stephan A, Thürmer A, Glauhe I, Nowotny J, Zwingenberger S, Stehler M (2021) Does preoperative antibiotic prophylaxis affect sonication-based diagnosis in implant-associated infection? J Orthop Res:1–7. https://doi.org/10.1002/jor.25015
39. Li C, Renz N, Trampuz A, Ojeda-Thies C (2020) Twenty common errors in the diagnosis and treatment of periprosthetic joint infection. Int Orthop 44(1):3–14. https://doi.org/10.1007/s00264-019-04426-7
40. Prieto-Borja L, Rodriguez-Sevilla G, Auñón A, Pérez-Jorge C, Sandoval E, García-Cañete J, Gadea I, Fernandez-Roblas R, Blanco A, Esteban J (2017) Evaluation of a commercial multiplex PCR (Unyvero i60®) designed for the diagnosis of bone and joint infections using prosthetic-joint sonication. Enferm Infect Microbiol Clin 35(4):236–242. https://doi.org/10.1016/j.eimc.2016.09.007
41. Tan TL, Maltenfort MG, Chen AF, Shahi A, Higuera CA, Siqueira M, Parvizi J (2018) Development and evaluation of a preoperative risk calculator for periprosthetic joint infection following total joint arthroplasty. J Bone Joint Surg Am 100(9):777–785. https://doi.org/10.2106/JBJS.16.01435
42. Indelli PF, Ghirardelli S, Violante B, Amanatullah DF (2021) Next generation sequencing for pathogen detection in periprosthetic joint infections. EFORT Open Rev 6(4):236–244. https://doi.org/10.1302/2058-5241.6.200099
43. Flurin L, Wolf MJ, Greenwood-Quaintance KE, Sanchez-Sotelo J, Patel R (2021) Targeted next generation sequencing for elbow periprosthetic joint infection diagnosis. Diagn Microbiol Infect Dis 101(2):115448. https://doi.org/10.1016/j.diagmicrobio.2021.115448
44. Dudek P, Grajek A, Kowalczewski J, Madycki G, Marczak D (2020) Ultrasound frequency of sonication applied in microbiological diagnostics has a major impact on viability of bacteria causing PJ. Int J Infect Dis 100:158–163. https://doi.org/10.1016/j.ijid.2020.08.038
45. Kheir MM, Tan TL, Ackerman CT, Modi R, Foltz C, Parvizi J (2010) Culturing periprosthetic joint infection: number of samples, growth duration, and organisms. J Arthroplasty 25(11):3531–3536.e1. https://doi.org/10.1016/j.arth.2018.06.018
46. Bozhkova S, Suardi V, Sharma HK, Tsuchiya H, Del Sel H, Hafez MA, Benzakour T, Drago L, Romanò CL (2020) The W A.I.O.T. definition of peri-prosthetic joint infection: a multi-center, retrospective validation study. J Clin Med 9(6):1965. https://doi.org/10.3390/jcm9061965
47. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR (2013) Infectious Diseases Society of America. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56(1):e1–e25. https://doi.org/10.1093/cid/cis803
48. Nelson GN, Davis DE, Nandari S (2006) Outcomes in the treatment of periprosthetic joint infection after shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 25(8):1337–1345. https://doi.org/10.1016/j.jse.2015.11.064
49. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

Prospective registration: We have registered this study to PROSPERO (CRD42021290099), and PRISMA 2020 guidelines have been followed [49].

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.