**Residual strength assessment of wind turbine rotor blade composites under combined effects of natural aging and fatigue loads**

Jian-Xiong Gao\(^{a,*}\), Zong-Wen An\(^{b,*}\), Qiang Ma\(^{b}\), Xue-Zong Bai\(^{b}\)

\(^{a}\)School of Mechanical Engineering, Post-Doctoral Research Station of Electrical Engineering, Xinjiang University, Urumqi, 830046, P. R. China

\(^{b}\)School of Mechanical and Electronic Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China

**Abstract**

In this paper, the combined effects of natural aging and fatigue loads are considered to assess the residual strength of wind turbine rotor blade composites under actual service environments. Firstly, a comprehensive environmental factor (CEF) methodology is adopted to quantify the combined effects of environmental factors on residual strength. Meanwhile, the artificial accelerated aging test data are used to determine the weight coefficients of the CEF. Subsequently, a two-variable function is presented to characterize the relationship among residual strength, aging time, and the CEF. The natural aging test data are utilized to estimate the unknown parameters of the two-variable function. Finally, the combined effects of natural aging and fatigue loads are considered, and a residual strength model is proposed to analyze the strength degradation behaviors of the wind turbine rotor blade composites. The results indicate that fatigue loads have negative effects on the residual strength, while natural aging has both positive and negative effects on the residual strength.

**Highlights**

- The relationship among residual strength, aging time, and the CEF is quantified.
- Temperature has an important influence on the residual strength of GFRP.
- A model is proposed to account for combined effects of natural aging and fatigue loads.
- Natural aging has both positive and negative effects on the residual strength of GFRP.

**Keywords**

wind turbine rotor blade, natural aging, fatigue loads, residual strength, composite material.

**Acronyms and Abbreviations**

- **GFRP**: Glass fiber reinforced polymer.
- **CEF**: Comprehensive environmental factor.

**Notations**

- \(k\): Value of CEF.
- \(T\): Temperature.
- \(H\): Heat-humidity.
- \(U\): Ultraviolet radiation.
- \(w_i\): Weight coefficient.
- \(S_0\): Initial strength.
- \(t_0\): Initial time.
- \(S_i(t,k)\): Residual strength at time \(t\).
- \(S_{1i}(t,k)\): Residual strength under natural aging.
- \(a_i\): Parameter of \(S_{1i}(t,k)\).
- \(S_{2i}(n,\sigma_{\max})\): Residual strength under fatigue loads.
- \(\alpha\): Parameter of \(S_{2i}(n,\sigma_{\max})\).
- \(\beta\): Parameter of \(S_{2i}(n,\sigma_{\max})\).
- \(m\): Parameter of \(\sigma-N\) curve.
- \(C\): Parameter of \(\sigma-N\) curve.
- \(\lambda\): Parameter related to load type.
- \(n\): Load cycles.
- \(\sigma_{\max}\): Maximum stress.
- \(N\): Fatigue life.
- \(\Delta S_1(n,k)\): Strength degradation caused by natural aging.
- \(\Delta S_2(n,\sigma_{\max})\): Strength degradation caused by fatigue loads.
- \(S_i(n,k,\sigma_{\max})\): Residual strength affected by both natural aging and fatigue loads.

**1. Introduction**

Wind energy is one of the most representative renewable energies, which plays an important role in reducing the dependency of human beings on fossil energy. In recent decades, the development of wind power generation technology enables wind energy has becoming a pillar of the energy systems in many countries [12, 27, 37].

(*) Corresponding author.

E-mail addresses: J-X Gao - jianxionggao@xju.edu.cn, Z-W An - anzw@lut.edu.cn, Q Ma - maqiang_lut@qq.com, X-Z Bai, 15101256903@163.com

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Wind turbine rotor blades, typically made by glass fiber reinforced polymer (GFRP), are the key components of wind turbines [1, 18]. Because GFRP has adequate strength and stiffness, superior durability, good damage tolerance property, it has been widely used in the fields of aerospace, mechanical, construction, and marine engineering [8, 25, 36]. Wind turbine rotor blades are long-lifetime (at least 20 years) and high-reliability components [19]. Harsh environmental conditions make the natural aging of wind turbine rotor blades inevitable. The natural aging process of GFRP is caused by oxygen, temperature, moisture, and sunlight, etc. These factors have great effects on the mechanical properties of GFRP, such as strength and stiffness degradation. Such degradations directly lead to the premature failures of wind turbine rotor blades. Moreover, the stochastic wind speed endows wind turbine rotor blades highly uncertain fatigue loads during the long periods of service [17, 28, 30]. Accordingly, fatigue damage of GFRP gradually increases over time, and fatigue failure will occur when accumulated fatigue damage reaches a certain extent. In general, fatigue fracture of wind turbine rotor blades will cause serious economic loss and catastrophic accidents.

The durability of wind turbine rotor blade composites is a serious issue from both the economic and safety point of views [11, 13, 21]. Over the past few decades, researchers have paid much attention to the natural aging and fatigue failure of composites. For instance, Vu et al. [32] carried out an artificial accelerated aging test to investigate the thermal-oxidation aging behaviors of composites from a microscopic scale, and the test results indicated that the thermal-oxidation aging process of composites strongly depends on aging time, distances between fibers and partial oxygen pressure. Mouszakis et al. [23] proposed an approach for damage assessment of composites under accelerated aging condition, and the validity of the presented approach was verified through stochastic model-based analysis. Kollia et al. [9] conducted an experiment to analyze the degradation mechanisms of composites under hydrothermal aging condition, and the experimental results indicated that the dominant degradation mechanisms include matrix cracking and fiber/matrix interface debonding. Wang et al. [33] focused on the durability of GFRP under accelerated aging condition, and found that the strength degradation of GFRP shows two distinct stages. Li et al. [14] explored the mechanical properties of GFRP under natural aging condition, and concluded that the bending strength of GFRP is the most sensitive indicator for natural aging process. Mu et al. [24] proposed a new pair of fatigue damage models based on an assumption that fatigue damage characterized by residual strength and residual stiffness are equal. Cheng and Hwu [4] proposed a residual strength model for fatigue life prediction of composites, and a fatigue reliability analysis approach was developed based on two-parameter Weibull distribution. Lambert et al. [10] investigated the failure mechanisms of GFRP based on the computed tomography, and the results showed that there is a significant correlation between the largest void and fatigue life. D’Amore et al. [5] analyzed the fatigue life data and residual strength data of composites, and concluded that both fatigue life and residual strength are related to its static strength. Paramonov et al. [25] introduced residual Daniels function and Daniels sequence to estimate the residual strength of composites, and then proved the existence of fatigue limit. Yao et al. [35] presented a residual strength model to quantify fatigue damage accumulation of composites, and the fatigue test data of fiber reinforced polymer were used to verify its validity.

The existing studies mentioned above have made progresses on the durability of composites. But it should be noted that these studies only focused on either natural aging or fatigue failure of composites. As a matter of fact, wind turbine rotor blade composites (i.e. GFRP) is subjected to both natural aging and fatigue loads during its long periods of service. To this end, the combined effects of natural aging and fatigue loads should be considered. In this paper, the concept of comprehensive environmental factor (CEF) is introduced to quantify the combined effects of temperature, ultraviolet radiation, and heat-humidity on residual strength of GFRP; Subsequently, a two-variable function is presented to characterize the relationship among residual strength, aging time, and the CEF; Finally, a residual strength model is proposed to account for the combined effects of natural aging and fatigue loads, and the strength degradation behaviors of GFRP are analyzed.

The rest of this paper is organized as follows. In Section 2, the CEF is introduced to quantify the combined effects of different environmental factors, and the strength degradation rule of wind turbine rotor blade composites (i.e. GFRP) under natural aging is analyzed. In Section 3, the evolution process of fatigue damage is elaborated, and the Yao’s model is adopted to characterize the strength degradation behavior of GFRP under fatigue loads. In Section 4, the combined effects of natural aging and fatigue loads are considered, and the strength degradation of GFRP under actual service environment is investigated. Some corresponding conclusions are presented in Section 5.

2. Residual strength affected by natural aging

When GFRP is exposed to a specific natural environment for a long period of time, its mechanical properties (such as strength and stiffness) will change over time. Under such circumstances, the durability and safety of wind turbine rotor blade will be reduced due to the effects of various environmental factors. In this section, the strength degradation behaviors of GFRP under different environmental conditions are investigated. It had been confirmed that the bending strength is the most sensitive indicator for natural aging process of GFRP [14]. In this paper, the natural aging test data and artificial accelerated aging test data are used to investigate the strength degradation rule of wind turbine rotor blade composites. The test conditions and test results are as follows [14].

2.1. Natural aging test

Natural aging test is carried out to explore the combined effects of environmental factors on composites. Generally, the specimens are exposed to the natural environment for a period of time, then the mechanical properties of these specimens will be tested. The natural aging test of GFRP is carried out according to Chinese Standard GB/T 2573-1989. The test position covers six different regions of China, namely Xishuangbanna, Wanning, Xiamen, Lasa, Mohe and Jinan, respectively. As a matter of fact, the environmental conditions of these six regions are representative in China. Firstly, the GFRP specimens are exposed to the natural environment for a period of time, and the exposure angle is 45°of the South; Subsequently, the bending strengths of these specimens are measured on the RGT-10A testing machine, and the loading rate is 2mm/min. The test results are shown in Table 1.

Table 1. Test results of natural aging

| Time (Month) | Residual strength (MPa) |
|--------------|-------------------------|
|              | XSBN | WN | XM | LS | MH | JN |
| 0            | 609  | 609 | 609| 609| 609| 609|
| 0.5          | 690  | 615 | 691| 643| 643| 636|
| 1            | 603  | 616 | 676| 616| 681| 645|
| 2            | 552  | 641 | 700| 606| 671| 652|
| 3            | 668  | 619 | 584| 621| 626| 687|
| 6            | 629  | 624 | 561| 592| 645| 573|
| 9            | 645  | 606 | 616| 609| 645| 628|
| 12           | 589  | 620 | 597| 627| 670| 560|
| 18           | 553  | 441 | 618| 545| 599| 547|
| 24           | 531  | 475 | 565| 541| 608| 599|
| 36           | 475  | 419 | 553| 500| 540| 531|
Note that the abbreviations of ‘XSBN’, ‘WN’, ‘XM’, ‘LS’, ‘MH’, and ‘JN’ represent the regions of ‘Xishuangbanna’, ‘Wanning’, ‘Xiamen’, ‘Lasa’, ‘Mohe’, and ‘Jinan’, respectively.

According to Table 1, the scatter plot of natural aging test data of wind turbine rotor blade composites (i.e. GFRP) can be obtained, as shown in Fig. 1.

Fig. 1. Scatter plot of natural aging test data of GFRP

Fig. 1 shows that the initial bending strength of GFRP is 609MPa, then it gradually changes over time. The bending strength of GFRP increases at the early stage, then it gradually decreases at the later stages. For a specific time, the bending strengths of GFRP specimens in six test positions scatter on a large range. According to the uncertainty results from material variability and usage load variation of engineering components [2, 16, 22, 38, 39], the internal defect that derived from manufacturing process is one of the main reasons, such as bubbles, inclusions, bent fibers, resin-deficient and resin-rich areas. The other reason is that the environmental conditions in these six test positions are very different.

2.2. Artificial accelerated aging test

Artificial accelerated aging test refers to the aging processes accelerated by simulation of outdoor environments in the laboratory. Many experiments had proved that temperature, ultraviolet radiation and heat-humidity are three most critical environmental factors affecting the aging process of composites [14]. However, it should be noted that these environmental factors have different effects on mechanical properties of composites. To quantify the effect of each environmental factor on the bending strength of GFRP, three kinds of artificial accelerated aging tests are carried out, namely temperature accelerated aging test, ultraviolet radiation accelerated aging test, and heat-humidity accelerated aging test, respectively.

The temperature accelerated aging test is carried out according to Chinese Standard GB/T 7141-1992, the test temperature is 80. The ultraviolet radiation accelerated aging test is carried out according to Chinese Standard GB/T 16422.2-1999, the radiation intensity is 0.50W/m² and the wavelength is 340nm. The heat-humidity accelerated aging test is carried out according to Chinese Standard GB/T 2574-1989, the test temperature is 60 and the relative humidity is 95%. When the accelerated aging test is carried out for a period of time, the bending strengths of GFRP specimens are measured on the

Table 2. Test results of artificial accelerated aging

| Temperature | Ultraviolet radiation | Heat-humidity |
|-------------|-----------------------|---------------|
| Time (h)    | Bending strength (MPa)| Time (h)      |
|             |                       | Bending strength (MPa) | Time (h) | Bending strength (MPa) |
| 0           | 609                   | 0              | 609       |
| 24          | 627                   | 50             | 596       |
| 72          | 633                   | 80             | 659       |
| 144         | 691                   | 150            | 700       |
| 240         | 675                   | 300            | 682       |
| 360         | 709                   | 500            | 658       |
| 600         | 670                   | 720            | 687       |
| 840         | 665                   | 960            | 597       |
| 1080        | 623                   | 1200           | 628       |
| 1440        | 633                   | 1500           | 593       |
| 1800        | 649                   | 1800           | 601       |

Table 3. Estimation of weight coefficients of the CEF

| Temperature | Ultraviolet radiation | Heat-humidity |
|-------------|-----------------------|---------------|
| Time (h)    | Bending strength (MPa)| Time (h)      |
|             |                       | Bending strength (MPa) | Time (h) | Bending strength (MPa) |
| 24          | 627                   | 0.7500         | 50       | 596       |
| 72          | 633                   | 0.3333         |
| 144         | 691                   | 0.5694         |
| 240         | 675                   | 0.2750         |
| 360         | 709                   | 0.2778         |
| 600         | 670                   | 0.1017         |
| 840         | 665                   | 0.0667         |
| 1080        | 623                   | 0.0130         |
| 1440        | 633                   | 0.0167         |
| 1800        | 649                   | 0.0222         |

Mean value 0.2426 Mean value 0.1410 Mean value 0.2322
RGT-10A testing machine, and the loading rate is 2mm/min. The test results are shown in Table 2.

2.3. Comprehensive environmental factor

Table 2 shows that the effects of temperature, ultraviolet radiation and heat-humidity on the bending strength of wind turbine rotor blade composites (i.e. GFRP) are different. Here, the concept of CEF is adopted to quantify the combined effects of these three environmental factors, as shown in equation (1):

$$k = f(T, H, U) = w_1T + w_2H + w_3U$$  (1)

where $k$ is the CEF; $T$ represents temperature; $H$ represents heat-humidity; $U$ represents ultraviolet radiation; $f(T, H, U)$ is a function of $T$, $H$ and $U$; $w_i$ ($i = 1, 2, 3$) is the weight coefficient and its value illustrates the importance of each environmental factor.

The effects of three environmental factors on the strength degradation rate of GFRP are different. Therefore, the weight coefficients of the CEF can be estimated based on the strength degradation rate of GFRP under each environmental factor, as shown in Table 3.

Table 3 indicates that the CEFs of the six test positions differ greatly from each other. The minimum and maximum values of the CEF are 1024.2 and 1766.1, respectively. In essence, the dispersion between the CEFs reflects the large differences between environmental conditions in these six test positions.

2.4. Strength degradation caused by natural aging

Suppose the residual strength of GFRP under natural aging conditions is denoted as $S_{g1}$. Generally, $S_{g1}$ is considered as a two-variable function of $k$ and $t$, denoted as $S_{g1}(t, k)$. The natural aging process is affected by many environmental factors, which makes the natural aging mechanisms of GFRP very complicated [20, 29, 33]. From the perspective of micro-mechanism, there are still many difficulties in establishing analytical expression of $S_{g1}(t, k)$ with clear physical meaning. In this paper, a mathematical model is proposed to quantify the relationship among residual strength, aging time and the CEF, as shown in equation (4):

$$S_{g1}(t, k) = S_0 + (a_0 + a_1 \cdot t + a_2 \cdot k) \ln(1 + k \cdot t)$$  (4)

where $a_0$, $a_1$ and $a_2$ are three undetermined parameters, which can be estimated through the regression analysis approach.

There are six groups of test data in Table 1, and each group of test data contains eleven samples. Combined with the CEFs of six test positions in Table 4, 66 sample data $(S_{g1}, t_i, k_i)$ $(i = 1, 2, 3, \ldots, 66)$ can be used to estimate the undetermined parameters in equation (4), as shown in Table 5.

$$k = 0.3939T + 0.3772H + 0.2289U$$  (3)
According to Table 5, parameters $a_0$, $a_1$ and $a_2$ can be determined through the regression analysis approach. The parameter estimation results are as follows:

$$
\begin{align*}
  a_0 &= 25.36 \\
  a_1 &= -1.30 \\
  a_2 &= -0.01
\end{align*}
$$

To verify the calculation accuracy of the proposed model, the calculation results are compared with the natural aging test data in Table 1. The comparison results are shown in Fig. 2 and Table 6.

Fig. 2 shows that the calculation results of the proposed model agree well with the natural aging test data in six test positions. According to Table 6, the average relative error of the proposed model is $4.84\% < 5\%$, while the average relative error of the existing model in Ref. [14] is $5.38\% > 5\%$. Therefore, the proposed model is more accuracy than the existing model in Ref. [14].

3. Residual strength affected by fatigue loads

Due to the cumulative damage caused by fatigue loads, the mechanical properties of wind turbine rotor blades gradually decrease during the long periods of service. In general, fatigue damage accumulation of GFRP is a complex process, which involves many different damage mechanisms, such as matrix cracking, fiber/matrix interface debonding and fiber fracture [34]. Many experiments have confirmed that the development of fatigue damage in composites con-

### Table 5. Sample data

| i | $S_i$ (MPa) | $t_i$ (Month) | $k_i$ |
|---|-------------|---------------|------|
| 1 | 609         | 0             | 1296.0 |
| 2 | 690         | 0.5           | 1296.0 |
| 3 | 603         | 1             | 1296.0 |
| ... | ...         | ...           | ...   |
| 66 | 531         | 36            | 1142.6 |

### Table 6. Calculation accuracy analysis of the proposed model

| Test positions | Aging time (Month) | Test value (MPa) | Proposed model (MPa) | Relative error (%) | Test positions | Aging time (Month) | Test value (MPa) | Proposed model (MPa) | Relative error (%) |
|----------------|--------------------|------------------|----------------------|--------------------|------------------|--------------------|-------------------|---------------------|--------------------|
| XSBN           | 0                  | 609              | 609                  | 0                  | 0                | 609                | 609               | 0                   | 0                  |
|                | 0.5                | 690              | 639                  | 7.39               | 0.5              | 643                | 627               | 2.49                |                    |
|                | 1                  | 603              | 639                  | 5.97               | 1                | 616                | 626               | 1.62                |                    |
|                | 2                  | 552              | 636                  | 15.22              | 2                | 606                | 624               | 2.97                |                    |
|                | 3                  | 668              | 633                  | 5.24               | 3                | 621                | 620               | 0.16                |                    |
|                | 6                  | 629              | 623                  | 0.95               | 6                | 592                | 609               | 2.87                |                    |
|                | 9                  | 645              | 611                  | 5.27               | 9                | 609                | 597               | 1.97                |                    |
|                | 12                 | 589              | 599                  | 1.70               | 12               | 627                | 584               | 6.86                |                    |
|                | 18                 | 553              | 574                  | 3.80               | 18               | 545                | 558               | 2.39                |                    |
|                | 24                 | 531              | 549                  | 3.39               | 24               | 541                | 532               | 1.66                |                    |
|                | 36                 | 475              | 496                  | 4.42               | 36               | 500                | 479               | 4.20                |                    |
| WN             | 0                  | 609              | 609                  | 0                  | 0                | 609                | 609               | 0                   | 0                  |
|                | 0.5                | 615              | 642                  | 4.39               | 0.5              | 643                | 645               | 0.31                |                    |
|                | 1                  | 616              | 642                  | 4.22               | 1                | 681                | 645               | 5.29                |                    |
|                | 2                  | 641              | 640                  | 0.16               | 2                | 671                | 644               | 4.02                |                    |
|                | 3                  | 619              | 638                  | 3.07               | 3                | 626                | 641               | 2.40                |                    |
|                | 6                  | 624              | 627                  | 0.48               | 6                | 645                | 631               | 2.17                |                    |
|                | 9                  | 606              | 616                  | 1.65               | 9                | 645                | 619               | 4.03                |                    |
|                | 12                 | 620              | 604                  | 2.58               | 12               | 670                | 608               | 9.25                |                    |
|                | 18                 | 441              | 579                  | 3.12               | 18               | 599                | 583               | 2.67                |                    |
|                | 24                 | 475              | 554                  | 16.63              | 24               | 608                | 558               | 8.22                |                    |
|                | 36                 | 419              | 502                  | 19.81              | 36               | 540                | 506               | 6.30                |                    |
| XM             | 0                  | 609              | 609                  | 0                  | 0                | 609                | 609               | 0                   | 0                  |
|                | 0.5                | 691              | 640                  | 7.38               | 0.5              | 636                | 642               | 0.94                |                    |
|                | 1                  | 676              | 640                  | 5.33               | 1                | 645                | 643               | 0.31                |                    |
|                | 2                  | 700              | 638                  | 8.86               | 2                | 652                | 641               | 1.69                |                    |
|                | 3                  | 584              | 635                  | 8.73               | 3                | 687                | 638               | 7.13                |                    |
|                | 6                  | 561              | 624                  | 11.23              | 6                | 573                | 627               | 9.42                |                    |
|                | 9                  | 616              | 613                  | 0.49               | 9                | 628                | 616               | 1.91                |                    |
|                | 12                 | 597              | 601                  | 0.67               | 12               | 560                | 604               | 7.86                |                    |
|                | 18                 | 568              | 576                  | 6.80               | 18               | 547                | 579               | 5.85                |                    |
|                | 24                 | 565              | 551                  | 2.48               | 24               | 599                | 554               | 7.51                |                    |
|                | 36                 | 553              | 498                  | 9.95               | 36               | 531                | 502               | 5.46                |                    |
sists of (a) transverse matrix cracking followed by longitudinal matrix cracking (Stages 1 and 2), (b) local delamination between adjacent layers (Stage 3), and (c) fiber breakage of the 0° plies (Stages 4 and 5), as shown in Fig. 3 [31].

Fig. 3 indicates that fatigue damage accumulation of composites shows a fast-slow-fast trend during the fatigue process. To quantify such characteristics of fatigue damage accumulation, the Yao’s model is adopted to characterize the strength degradation behavior of GFRP under fatigue loads, as shown in equation (6) [35]:

$$S_{2}\left(n,\sigma_{\text{max}}\right) = S_0 - (S_0 - \sigma_{\text{max}}) \left[\frac{\sin(\beta \cdot \frac{n}{N}) \cdot \cos(\beta - \alpha)}{\sin(\beta) \cdot \cos(\beta \cdot \frac{n}{N} - \alpha)}\right]$$  \hspace{1cm} (6)

where $S_{2}\left(n,\sigma_{\text{max}}\right)$ represents the residual strength under fatigue loads, which is a two-variable function of loading times $n$ and maximum stress $\sigma_{\text{max}}$; $N$ is the fatigue life under stress $\sigma_{\text{max}}$; $\alpha$ and $\beta$ are two undetermined parameters of the model. In practical applications, if the test data on residual strength of composites are not available, it is recommended that $\beta = \frac{2\pi}{3}$ and $\alpha = \frac{\beta}{2}$ [35].

To analyze the strength degradation rule of wind turbine rotor blade composites (i.e. GFRP) under fatigue loads, the fatigue life $N$ under stress $\sigma_{\text{max}}$ should be determined. Generally, fatigue life $N$ under stress $\sigma_{\text{max}}$ can be figured out based on the $\sigma$-$N$ curve. The $\sigma$-$N$ curve is usually expressed as the power law formula, as shown in equation (7) [6, 15]:

$$\sigma_{\text{max}}^m \cdot N = C$$  \hspace{1cm} (7)

where $m$ and $C$ are two undetermined parameters.

According to equation (7), fatigue life $N$ can be formulated as follows:

$$N = \frac{C}{\sigma_{\text{max}}^m}$$  \hspace{1cm} (8)

When parameters $m$ and $C$ are known, fatigue life $N$ of GFRP under stress $\sigma_{\text{max}}$ can be easily figured out. In engineering applications, when experimental data on fatigue life are not available, parameters $m$ and $C$ can be estimated through the following approach [3].

When the maximum stress $\sigma_{\text{max}}$ equals 0.9$S_0$, the corresponding fatigue life $N$ equals $10^7$ cycles; When the maximum stress $\sigma_{\text{max}}$ equals $\lambda S_0$, the corresponding fatigue life $N$ equals $10^6$ cycles. Parameter $\lambda$ is related to the loading type. $\lambda$ equals 0.29 under the torsion loading, $\lambda$ equals 0.35 under the tension or compression loading, $\lambda$ equals 0.5 under the bending loading. According to this principle and equation (7), we can get:

$$\left(0.9S_0\right)^m \times 10^3 = C$$

$$\left(\lambda S_0\right)^m \times 10^6 = C$$  \hspace{1cm} (9)

According to equation (9), parameters $m$ and $C$ can be formulated as follows:

$$m = \frac{3}{\lg(\frac{0.9}{\lambda})}$$

$$C = (0.9S_0)^m \times 10^6$$  \hspace{1cm} (10)

As mentioned above, the initial bending strength of wind turbine rotor blade composites (i.e. GFRP) is 609MPa, namely $S_0 = 609$MPa. Moreover, the $\sigma$-$N$ curve under the bending loading is needed, so $\lambda = 0.5$. According to equation (10), parameters $m$ and $C$ can be figured out:

$$m = \frac{3}{\lg(\frac{0.9}{0.5})} = 11.7521$$

$$C = (0.9 \times 609)^{11.7521} \times 10^6 = 1.5394 \times 10^{38}$$  \hspace{1cm} (11)

Equation (11) indicates that parameters $m$ and $C$ have been completely determined. Therefore, fatigue life of GFRP under any stress level can be figured out based on equation (8). For example, if the maximum stress $\sigma_{\text{max}}$ equals 400MPa, the corresponding fatigue life $N$ equals $4.0521 \times 10^7$ cycles. According to equation (6), the corresponding residual strength curve of GFRP can be obtained, as shown in Fig. 4.

Fig. 4 indicates that the strength degradation rule of wind turbine rotor blade composites (i.e. GFRP) is consistent with the development of fatigue damage shown in Fig. 3. This phenomenon indicates that the Yao’s model can accurately characterize the strength degradation rule of GFRP under fatigue loads.
4. Residual strength affected by both natural aging and fatigue loads

In practical engineering, wind turbine rotor blades are subjected to both natural aging and fatigue loads during the long periods of service. Therefore, it is necessary to account for the combined effects of natural aging and fatigue loads during the analysis process. In this section, a residual strength model is developed to quantify the combined effects of natural aging and fatigue loads.

In general, time \( t \) is a function of the number of load cycles \( n \), that is \( t = f(n) \). Therefore, equation (4) can be written as the following form:

\[
S_{n,k}(n) = S_0 + \left[ a_0 + a_1 \cdot f(n) + a_2 \cdot k \right] \times \left[ \ln[k + f(n)] \right]^{1/2}
\]  
(12)

According to equation (12), the strength degradation caused by natural aging can be formulated as follows:

\[
\Delta S_1(n,k) = S_0 - S_{n,k}(n,k)
\]  
(13)

where \( \Delta S_1(n,k) \) represents the strength degradation caused by natural aging, which is a two-variable function of the number of load cycles \( n \) and CEF \( k \).

According to equation (6), the strength degradation caused by fatigue loads can be formulated as follows:

\[
\Delta S_2(n,\sigma_{\max}) = S_0 - S(n,\sigma_{\max})
\]  
(14)

where \( \Delta S_2(n,\sigma_{\max}) \) represents the strength degradation caused by fatigue loads, which is a two-variable function of the number of load cycles \( n \) and maximum stress \( \sigma_{\max} \).

When \( \sigma_{\max} \) equals 400MPa and the loading frequency is one time per second, the residual strength curves of GFRP in six test positions can be obtained based on equation (15), as shown in Fig. 5.

Fig. 5 indicates that the residual strength under fatigue loads (i.e. the blue curves in Fig. 5) decreases monotonically with the increase of load cycles. This phenomenon indicates that fatigue loads have negative effect (i.e. damage effect) on residual strength of GFRP. The main reason is that fatigue damage accumulation of composites is an irreversible process of energy dissipation. By comparison, the residual strength under natural aging (i.e. the black curves in Fig. 5) increases at the early stage, and then decreases at the later stages. This phenomenon indicates that natural aging has both positive and negative effects (i.e. enhancement effect and damage effect) on residual strength of GFRP. The similar conclusions can also be found in Refs. [20] and [33]. The residual strength under both natural aging and fatigue loads (i.e. the red curves in Fig. 5) increases at the early stage, and then gradually decreases over time. This phenomenon characterizes the strength degradation behaviors of wind turbine rotor blade composites under the actual service environment. If the effect of natural aging is only considered, the calculation results may be risky. If the effect of fatigue loads is only considered, the calculation results may be over-conservative at the early stage, and then may be risky at the later stages.

To quantify the effects of different environmental factors on residual strength, the strength degradation curves of wind turbine rotor blade composites (i.e. GFRP) in six test positions are compared, as shown in Fig. 6.

According to equations (13) and (14), a residual strength model is established to account for the combined effects of natural aging and fatigue loads, as shown in equation (15):

\[
S_t(n,k,\sigma_{\max}) = S_0 - [\Delta S_1(n,k) + \Delta S_2(n,\sigma_{\max})]
\]  
(15)

where \( S_t(n,k,\sigma_{\max}) \) represents the residual strength affected by both natural aging and fatigue loads, which is a three-variable function of the number of load cycles \( n \), CEF \( k \) and maximum stress \( \sigma_{\max} \).
12. The enhancement effect of natural aging is mainly caused by the stress relaxation and post-curing in GFRP.

9. When GFRP is exposed to the heat-humidity environment, the micro-cracks will gradually appear and in turn degrade the bending strength of GFRP. When GFRP is exposed to the heat-humidity environment, the moisture absorption may result in plasticization in matrix and damage to crystalline structure [7]. The ultraviolet radiation can cause the breakage of some molecules of GFRP. The damage effect of natural aging is mainly caused by the degradations of matrix and fiber/matrix interface. The enhancement effect of natural aging is mainly caused by the stress relaxation and post-curing in GFRP.

Fig. 6 indicates that there are significant differences between residual strength curves of wind turbine rotor blade composites (i.e. GFRP) in six test positions. By comparison, the residual strength of GFRP in MH is the highest, while the residual strength of GFRP in LS is the lowest. The main reason is that the environmental conditions in MH and LS are very different. MH is located in the northeast of China, which has a typical inland climate and the temperature is the lowest in China. LS is located in the southwest of China, which has a typical plateau climate and the solar radiation is the strongest in China. Table 4 indicates that the average annual temperatures of MH and LS are -3.5 and 7.4, respectively. The average annual relative humidities of MH and LS are 58% and 34%, respectively. The annual total radiations of MH and LS are 4385 MJ m⁻² and 7647 MJ m⁻², respectively. When GFRP is exposed to the high-temperature environment, the micro-cracks will gradually appear and in turn degrades the bending strength of GFRP. When GFRP is exposed to the heat-humidity environment, the moisture absorption may result in plasticization in matrix and damage to crystalline structure [7]. The ultraviolet radiation can cause the breakage of some molecules of GFRP. The damage effect of natural aging is mainly caused by the degradations of matrix and fiber/matrix interface. The enhancement effect of natural aging is mainly caused by the stress relaxation and post-curing in GFRP.

5. Conclusions

In this paper, the CEF is introduced to quantify the combined effects of environmental factors, and the Yao’s model is adopted to characterize the strength degradation of wind turbine rotor blade composites (i.e. GFRP) under fatigue loads. A residual strength model is developed to account for the combined effects of natural aging and fatigue loads, and the strength degradation rule of GFRP under actual service environment is analyzed. The results indicate that the residual strength of GFRP increases at the early stage, and then gradually decreases over time. This phenomenon shows that fatigue loads have negative effect (i.e. damage effect) on residual strength of GFRP, while natural aging has both positive and negative effects (i.e. enhancement effect and damage effect) on residual strength of GFRP. Fatigue damage accumulation of GFRP is a complex process that involves many different damage mechanisms, such as matrix cracking, fiber/matrix interface debonding and fiber fracture. Essentially, fatigue damage accumulation of GFRP is an irreversible process of energy dissipation. From the perspective of fault physics, the damage effect of natural aging is mainly caused by the degradation of matrix and fiber/matrix interface. The enhancement effect of natural aging is mainly caused by the stress relaxation and post-curing in GFRP. Compared with the existing model, the proposed model has higher calculation accuracy and the average relative error is less than 5%.

Acknowledgement

This study was supported by funds from the National Natural Science Foundation of China (Grant No: 51665029), Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No: 2020D01C056), Tianchi Doctor Project of Department of Education of Xinjiang Uygur Autonomous Region, and Start-up Foundation of Xinjiang University for Doctor.
