From taxonomic deflation to newly detected cryptic species: Hidden diversity in a widespread African squeaker catfish

Dagmar Jirsová1,2*, Jan Štefka1,2, Radim Blažek3,4, John O. Malala5, David E. Lotuliakou5, Zuheir N. Mahmoud6 & Miloslav Jirků2

Cryptic genetic diversity and erroneous morphological species determination represent frequent problems in biodiversity research. Here, examination of 138 specimens of *Synodontis* (Mochokidae, Siluriformes) from the Nile River and Lake Turkana revealed the presence of both *S*. *schall*-like and *S*. *frontosus*-like morphotypes, with a phenotypic gradient between them. We concluded phylogenetic and population genetic analyses based on two mitochondrial and one nuclear marker including 131 *coxl* (565 bp), 96 *cytb* (973 bp) and 19 *RAG2* (896 bp) sequences from the Nile-Turkana population, plus additional GenBank data of *Synodontis* spp. Whilst nuclear data were inconclusive, mitochondrial sequences suggested that both morphotypes and intermediate forms are conspecific. The results imply probable synonymy of *S*. *frontosus* with *S*. *schall*. Conversely, a strong biogeographical signal was revealed among widely distributed and supposedly conspecific *S*. *schall*-like catfish of the Nilo-Sudanian ichthyological province. *Synodontis schall* sensu stricto (=Eastern clade), as defined by type locality in the Nile, is apparently restricted to the eastern part of the Nilo-Sudanian ichthyological province (e.g. Nile, Turkana, Chad). *Synodontis schall* Western clade (Senegambia, Niger, Chad) most probably represents a cryptic taxon, unrecognized thus far due to the absence of distinctive morphological differences.

Determining and identifying independent lineages and species is critical not only for taxonomy, but also for understanding the processes leading to diversification and the origin of population structure. Due to the extensive sampling, discovering cryptic species within the scope of population genetic studies is not a rare phenomenon1–3. Traditionally, cryptic species/diversity in fishes is mostly discovered in highly variable taxa, especially in the species rich lineages of ray-finned fishes, such as the neotropical Characidae4,5 or Cichlidae6,7. Cryptic diversity was also found - albeit less frequently - in other lineages, e.g. spiny eels8 and Neotropical9–11 and African catfish12,13, including the family Mochokidae14–16. Generally, the main contributing factor to the undiscovered cryptic diversity of some species is the lack of clear distinguishing morphological features in combination with the absence of relevant molecular data3. This not only underestimates the species richness but also limits our understanding of species geographical distribution.

Within the scope of research on fish parasites in the Nile River and Lake Turkana, we examined a total of 138 *Synodontis* specimens. Two of three *Synodontis* spp. in our sample, *Synodontis nigrita* Valenciennes, 1840 and *Synodontis serratus* Rüppell, 1829 (both absent in Lake Turkana) could be readily morphologically determined. The third species *Synodontis schall* (Bloch et Schneider, 1801) showed deviation from both, the data in the literature, as well as the differential diagnosis and neotype proposed recently by Musschoot & Laléyè17. Among *Synodontis* spp. occurring in the Nile and Turkana basins, *S*. *schall* might be confused with the morphologically

1Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České, Budějovice, Czech Republic.
2Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České, Budějovice, Czech Republic.
3Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.
4Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
5Kenya Marine and Fisheries Research Institute, Lake Turkana Station, P.O. Box 205, 30500, Lodwar, Kenya.
6Department of Zoology, Faculty of Science, University of Khartoum, 111 15, Khartoum, Sudan.
7*email: dasa.jirsova@gmail.com*

Corrected: Author Correction
very similar *Synodontis frontosus* Vaillant, 1895. According to the literature, *S. schall* is common and abundant in both the Nile River and Lake Turkana18–21. Although the two species might co-occur in both basins, *S. frontosus* is considered absent in Lake Turkana itself, reportedly being restricted to its main source, the Omo River23. Diagnostic features of both species are similar and partly overlapping, therefore, distinguishing between the two in the field is difficult.

Resolving the species status of *S. schall* is important as the species has been used as a model in parasitological research23. Therefore, we decided to base the taxonomical assignment of our Nile-Turkana *S. schall* specimens on a multidisciplinary approach, particularly on molecular identification with an assessment of selected morphological traits. Herein, we assess the identity of *S. schall*-like catfish from the Nile and Turkana basins by means of phylogenetic and haplotype analyses of a representative set of *Synodontis* spp. *cox1*, *cytb* and *RAG2* sequences, revealing a previously unrecognized biogeographical pattern. To the best of our knowledge, this is the first confrontation of morphological features traditionally used for determination of *S. schall* and similar Nilo-Sudanian catfishes with molecular data to aid proper distinction of these catfishes of high significance from both an ichthyological and regional fisheries perspective.

Material and Methods

Study group.

The Mochokidae (Actinopterygii, Siluriformes) is an endemic African family of freshwater catfish containing 211 species in nine genera24. With 131 nominal species currently recognized, *Synodontis* Cuvier, 1817 is the most speciose mochokid genus widely distributed in all African ichthyological provinces except for Maghreb and South Africa18,21,25. Despite numerous studies based on genetic markers26–28 morphology remains the main classification tool for identification of *Synodontis* spp.17,29,30. Several molecular phylogenetic studies were published during the last 13 years which elucidated general biogeographic patterns and relationships within the genus26–28,30,31. *Synodontis schall* is traditionally considered widespread throughout the Nilo-Sudanian ichthyological province from the Atlantic to Indian Ocean17. Its widespread distribution, abundance and easy harvesting make it one of the most important subsistence fish species in Sub-Saharan Africa north of equator and along the whole Nile valley28,32–34. Importantly, this ecologically plastic species23 is less likely to be affected by climatic changes and anthropogenic drainage alterations, making it a prospective source for fisheries in the future35. Despite its significance for fisheries and a long taxonomical history, morphology-based distinction between *S. schall* and similar species such as *S. frontosus* remains unclear.

Sampling and fish determination.

Sampled fish were obtained in seven different localities in the Nile and Turkana basins (*S. schall* $n = 120$, *S. nigrita* $n = 8$, *S. serratus* $n = 10$, Total: 138; see Table 1 for details). The two Nile localities cover both the White (Kosti) and Blue Nile (Sennar). The five Turkana localities cover the salinity gradient present in the lake, i.e. the freshwater Omo River delta (Todonyang) and the saline (brackish) main part of the lake (central Turkana saline: Kalokol, Central Island; central Turkana freshwater refugium: Kerio River delta; south Turkana: El-Molo Bay). Fish examined were obtained in fish markets and/or from fishermen and processed under supervision of Kenya Marine and Fisheries Research Institute (KMFRI) authorities. Fish that were still alive when obtained were euthanized by dorsal pithing (spinal cord and blood vessels cut immediately behind the head), a method congruent with Kenyan, Sudanian, Czech and European legislation. Fish were destined for human consumption; therefore, no permission was needed to collect these fish. A small piece of liver tissue from each individual was cut off and preserved in 96% ethanol for molecular analyses. Fish were photo-documented and their standard length was measured. Their mouthparts including tooth plates and barbels were removed and preserved in 4% formaldehyde for further morphological examination.

Upon field examination, all fish were determined based on the following combinations of qualitative diagnostic features: *S. nigrita*: body, head and fins with black spots, inner mandibular barbels bearing thick and tuberculate ramifications, maxillary barbels with a well visible broad black membrane, short and small adipose fin; *S. serratus*:

Locality	Coordinates	n	S. schall	S. nigrita	S. serratus
Nile River					
White Nile in Kosti	13.1722 N, 32.6722 E	17	6	7	
Blue Nile in Sennar	13.5436 N, 33.6366 E	21	2	3	
Lake Turkana					
El-Molo Bay - saline	2.8322 N, 36.6958 E	45	absent	absent	absent
Kalokol - medium salinity	3.5586 N, 35.9158 E	2	absent	absent	absent
Kerio River delta - freshwater	2.9873 N, 36.1628 E	8	absent	absent	absent
Central Island - medium salinity	3.4958 N, 36.0403 E	2	absent	absent	absent
Todonyang, Omo delta - freshwater	4.4517 N, 35.9439 E	25	absent	absent	absent
Totals (n)		120	8	10	

Table 1. Sampling details.
maxillary barbels with a very large light-colored membrane, humeral process point, non-keeled, distinctive serrations on both edges of pectoral spine, prolonged rostrum20,21; for S. frontosus, see Table 2 and Results and Discussion sections. In congruence with taxonomic literature, the species identification was based on visual inspection of qualitative diagnostic features only as no relevant morphometric diagnostic traits are available for other Synodontis spp.

DNA extraction, PCR and sequencing. DNA was isolated using the phenol:chloroform:isoamyl alcohol (25:24:1) method described in Sambrook & Russell36. Two mitochondrial genes and one nuclear gene were used for phylogenetic analyses, cytochrome oxidase I (coxI), cytochrome b (cytb) and recombination activating gene 2 (RAG2), respectively (see Table S1 in Supplementary Data for a complete list of sequences and other details). Mitochondrial genes were chosen as they are known indicators of recently divided species and also because coxI and cytb are available in GenBank for a broad range of Synodontis spp. Due to the high abundance of RAG2 for genus Synodontis in GenBank, this nuclear gene was selected to supplement mtDNA data in selected Synodontis spp. specimens – 23 representatives from sampling localities in the Nile and Turkana. Amplification conditions and PCR primers FishF2 and VF2_t1 for partial sequence of coxI gene (~800 bp) were taken from Ivanova et al.27, PCR reactions contained 12.5 μl of PPP Master mix, 10.5 μl of ultra pure water, 5 pM of each PCR primer and 0.5 μl of isolated DNA (100 to 170 ng). Published primer sequences (5′-GAC-TTGAAGAACCACCGTTG-3′ forward and 5′-TTTGAATCTCAGGCCATTGGCA-3′ reverse) to amplify part of cytb (~1000 bp) according to Pinton et al.25. For RAG2 (~1100 bp) amplification primers (forward 5′-TGY TAT CTC CCA CCT CTG CGY TAC C-3′ and reverse 5′-TCA TGC TCC TCA TCA TCK TCC TCC TTG TA-3′) and reaction conditions followed those provided by Sullivan et al.38. Amplification reactions for cytb and RAG2 contained the same PCR reagents and amount of DNA as mentioned above. All products were verified on a 1% agarose gel and purified using enzymes exonuclease 1 (Exo I) and shrimp alkaline phosphatase (SAP)39. Purified fragments were directly sequenced by Macrogen Inc. (Amsterdam, Netherlands) using the same primers used for PCR amplification.

Phylogenetic, haplotype analyses and population genetic statistics. Obtained sequences were assembled and inspected for errors using the GENEIOUS Pro software package version 6.140. In addition to our original sequences (131 coxI, 96 cytb and 19 RAG2, Table S1), we used GenBank sequences of Synodontis spp. (n = 115 coxI sequences from 77 Synodontis spp., n = 80 cytb sequences from 52 taxa, and n = 102 RAG2 from 69 species) to interpret our results in a broader phylogenetic context (see Table S2 in Supplementary Data for complete list of sequences and additional information).

Alignments were constructed in MAFFT v. 6.41 and corrected manually using the GENEIOUS Pro software package version 6.1. Best-fit models of molecular evolution were selected using AIC criteria in jMODELTEST v2.1.42. Phylogenetic analyses were conducted for individual gene datasets plus a concatenated dataset of the two mtDNA genes (where data for both genes were available, see Tables S1 and S2). Phylogenetic analyses were performed using Bayesian inference (BI) in MrBayes v3.2.2.43,44 and maximum likelihood (ML) in PHYML v3.045.BI analyses were performed under the same conditions for all datasets - using 5 million MCMC replications, with four chains and three independent runs. The following nucleotide substitution models were used: GTR + I + G for coxI data, GTR + G for cytb, HKY + I + G for RAG2 and GTR + I + G for concatenated mt data. ML analyses were run using bootstrap analyses with 1000 replications and models mentioned above. Convergence for BI runs was estimated by TRACER v1.746, ESS values were assessed and found to exceed 200 for all parameters. Trees computed for cytb were rooted using Auchenoglanis occidentalis (HM880259, KY437313, EU781895) and Mochokus niloticus (KY483655) as an outgroup. The remaining trees (coxI, RAG2 and concatenated data) were rooted using GenBank sequences of Microsynodontis sp. (DQ886604 for cytb and HF565741 for RAG2). All trees were deposited in TreeBASE database (treebase.org) and are accessed under the following link http://purl.org/phylo/treebase/phylows/study/TB2:S23311.

Table 2. Distinguishing features of Synodontis schall and Synodontis frontosus; data obtained within the scope of this study compared with the following literature: 1Hopson (1982), 2Bailey (1994), 3Paugy & Roberts. (2003), 4Musschoot & Laléyé (2008). Note the intermediate states in the present Nile-Turkana sample and its overlap with literature data for both S. schall and S. frontosus.

Assessed diagnostic features	This study - Nile-Turkana (figure references given)	Literature	
	S. schall + S. frontosus + intermediate morphotypes	S. schall	S. frontosus
Humeral process ventral keel	usually present, more or less pronounced (1d–1h), sometimes absent (1f,g)	non-keeled1 vs. slightly-keeled1 vs. usually non-keeled4	non-keeled1 vs. slightly-keeled1 vs. usually non-keeled4
Humeral process surface sculpturing	granulose with striated ventral keel	striated1 vs. granulose1	granulose1,2,3
Humeral process shape	upper margin straight (1d), concave (1e) or wavy (1g), lower margin straight (1d,g,h) or convex (1f), posterior tip sometimes curved (1f)	pointed1, upper margin straight or a little concave, lower margin straight or a little convex1	deep, pointed1
Mandibular teeth	26–46 (21–40 in single row)	23–331, 24–322, 24–393, 18–324	36–481,3, 33–482
Pectoral spine anterior serrations	distinct, fine, sharp (1i), or barely discernible (1j)	Fine, sharp, obvious1,3	barely discernible1,3
Maxillary barbel membrane	none, rudimentary, or distinct dark-colored (1k–m)	none1 vs. none or hardly visible4	distinct dark-colored1,2,3
To examine the level of population variability in the dataset, statistical parsimony networks based on pairwise differences were constructed for individual *S. schall* clades revealed by phylogenetic analyses using PopART v1.747 with settings for TCS networks48. Statistics of Haplotype diversity (Hd), *Fst* values, genetic distances and differentiation were calculated using DNASP v549. Due to the limited number of GenBank sequences from the western part of *S. schall* geographic range, population statistics were performed only for *S. schall* samples obtained for this study (Nile and Turkana); data were split according to their resemblance to the *S. schall*-like and *S. frontosus*-like morphotypes (see Table S2).

Results

Morphology. Standard length of examined *S. schall* specimens ranged from 142 to 300 mm (mean ± SD; 209.8 ± 33.2 mm). Weight ranged from 75 to 783 g (mean ± SD, 227.1 ± 118.9 g). *Synodontis schall* from the Nile and Turkana showed remarkable variation in body shape, proportions, as well as coloration and other qualitative diagnostic features (see Fig. 1 and Table 2 for details). We observed a phenotypic gradient from the typical *S. schall* morphotype (Fig. 1a,d,i,k) and typical *S. frontosus* morphotype (1c,h,j,m); remaining pictures originating from different individuals show additional variation. (a) Todonyang (Omo River delta); (b) El-Molo Bay (southern Lake Turkana); (c) Todonyang; (d–h) Humeral process variants (see Table 2 for details); (i) Pectoral spine with well visible fine sharp anterior serrations (starting from small arrow towards left side of picture); (j) Pectoral spine with anterior serrations barely discernible (partly due to pigmentation); (k) Maxillary barbel without membrane; (l) Rudimentary slat-like form (arrowheads); (m) Distinct dark membrane (arrows). Note: Depicted specimens show numerous dark specks in various body parts, but specimens almost lacking specks might occur too.

![Figure 1](https://example.com/figure1.png)

Figure 1. Qualitative morphological diagnostic features in live specimens of *Synodontis schall* from Lake Turkana, Kenya. Corresponding humeral processes, pectoral spines and mouthparts are shown for two specimens representing typical *S. schall* morphotype (a,d,i,k) and typical *S. frontosus* morphotype (1c,h,j,m); remaining pictures originating from different individuals show additional variation. (a) Todonyang (Omo River delta); (b) El-Molo Bay (southern Lake Turkana); (c) Todonyang; (d–h) Humeral process variants (see Table 2 for details); (i) Pectoral spine with well visible fine sharp anterior serrations (starting from small arrow towards left side of picture); (j) Pectoral spine with anterior serrations barely discernible (partly due to pigmentation); (k) Maxillary barbel without membrane; (l) Rudimentary slat-like form (arrowheads); (m) Distinct dark membrane (arrows). Note: Depicted specimens show numerous dark specks in various body parts, but specimens almost lacking specks might occur too.
Hopson22). The two states are well demonstrated by the two specimens showing S interorbital region and orbits impinging on the lateral outline of the head in dorsal view (as in well within lateral margin of the head in dorsal view (as in S not systematically recorded. For example, pointed snout combined with narrower interorbital region and eyes parted assessment of all the focal features in some specimens). (Table S3; morphotype ratios for the Nile sample are not provided, because damage of fish from markets hampered assessment of all the focal features in some specimens).

In addition, several other features corresponding either to S schall or S frontosus have been observed, but not systematically recorded. For example, pointed snout combined with narrower interorbital region and eyes well within lateral margin of the head in dorsal view (as in S schall) vs. snout more broadly rounded with wider interorbital region and orbits impinging on the lateral outline of the head in dorsal view (as in S frontosus) (sensu Hopson23). The two states are well demonstrated by the two specimens showing S schall and S frontosus morphotype in Fig. 1a,c, respectively.

Phylogenetic analyses. In total, 131 sequences of coxI (565 bp), and two smaller sets comprising 96 cyt b (973 bp) and 19 RAG2 (896 bp) sequences were generated. Data representing individual populations obtained from the Nile River and Lake Turkana were used for phylogenetic analyses together with Synodontis spp. sequences retrieved from GenBank. The newly generated sequence data were deposited in GenBank under accession numbers coxI: KY483652-KY483782, cyt b: KY483783-KY483878, RAG2: MF136700-MF136718, MF150161- MF150164 (Table S1). As BI and ML phylogenetic analyses provided similar outcomes, only BI final trees are presented with posterior probabilities as branch supports, whereas ML trees are presented as Supplementary Data.

In coxI analysis, sequences of 131 Synodontis spp. obtained for this study and 115 sequences from GenBank were used to construct the final tree (Fig. 3). As expected, our samples of S nigrum and S serratus from the Nile clustered with conspecific sequences from GenBank (see Fig. S1 for composition of the collapsed clades). All Nile-Turkana S schall samples, i.e. S schall-like, S frontosus-like and intermediate morphotypes, clustered together and created a well-supported group. Samples from different Turkana or Nile localities did not show any geographical pattern or affiliation to their sampling localities. According to the predominant morphological patterns observed in the Nile-Turkana sample and location of the type locality of S schall in the Nile, we named this clade “S schall Eastern clade”. Importantly, all GenBank sequences labeled S frontosus (HF565883–89) and one sequence of S caudovittatus (HF565865), all from the Nile, also clustered within the Eastern clade in all analyses. In contrast, GenBank sequences labeled S schall (HF565950, HF565953-56), Synodontis ouemeensis HF565953, all from western part of Nilo-Sudanian and Eburneo-Ghanian provinces, together with sequences labeled Synodontis aff. bastiani and Synodontis aff. haugii HF565950, HF565954-56 (pet trade), created a separate group with high nodal support. Due to the clear separation of this group from the “S schall Eastern clade” and taxonomic assignment of most its sequences, we named the clade “S schall Western clade”.

Figure 2. Synodontis schall mandibular dentition, Lake Turkana, Kenya. (a) High magnification image showing new teeth emerging at the outer margin of the tooth line (arrow, only one marked), main row of fully grown teeth with sharp tips (unmarked), and old teeth that already lost their sharp tips positioned at the inner margin of the tooth row (arrowhead, only one marked); (b) Composite image showing variability of teeth arrangement and number: 28 (upper left), 37 (upper right), 39 (bottom).
The dataset for cytb included sequences representing 52 Synodontis spp. (Fig. 4). Our sequences clustered with all GenBank S. frontosus sequences (FM878850–54, HF566018–23), as well as S. schall sequences (EU781905–07, EU781915) and EU781915 from the Nile and/or Chad basin. This clade clearly corresponds with the S. schall Eastern clade, hence its name in the tree. The rest of S. schall sequences (EU781902–04, EU781908–14, EU781916) from Senegambia, Niger and Chad basin created a group corresponding to the S. schall Western clade, closely related to, but clearly distinct from the S. schall Eastern clade. Interestingly, cytb sequences of S. ouemeensis (HF566058), S. aff. bastiani (HF566004) and S. aff. haugi (HF566027) clustered with the S. schall Western clade data. This result is similar to cox1 analysis, however; with a stronger branch support and placing sequences of S. aff. bastiani and S. aff. haugi within the Western clade. In conclusion, analyses of both mitochondrial markers revealed very similar patterns with strong biogeographic signals, indicating phylogenetic distinctiveness and geographic affinity of two clades, i.e. S. schall Eastern and S. schall Western clade (Figs 3–5).

Similarly as in the tree based solely on cytb sequences, the S. schall Eastern and S. schall Western clades were clearly separated from each other in the concatenated mtDNA dataset too (Fig. S3).

The phylogenetic analysis of the nuclear gene (RAG2) was less informative compared to the clear separation of Eastern and Western clades in all analyses performed for both mitochondrial genes. A total of 19 RAG2 sequences of Synodontis spp. were analyzed (Fig. 6) together with 102 sequences from GenBank. Our S. schall Eastern clade samples from the Nile and Turkana comprised an internally unresolved cluster together with the samples of S. frontosus (HF565870-74), S. caudovittatus (HF565755), S. violacea (HF565838) and S. aff. bastiani (HF565751) from Eastern Nilo-Sudan province, as well as S. schall (HF565817-19) from Western Nilo-Sudan province. Although sequences of S. serratus from our sample and from GenBank clustered together with high support, the S. serratus branch was placed within the S. schall clade, probably as a result of low sequence variability in the whole dataset (100-94.5%).

Genetic distance. Genetic distances between S. schall Eastern clade and Western clade samples range from 5.5% to 6.4% and from 5.7% to 8.3% for cox1 and cytb, respectively (Table 3). In addition, the difference between the two S. schall clades is very similar to the distance between morphologically and molecularly well distinguished
species *S. nigrita* and *S. serratus* (from 9.6% to 10.4%, see Table 3). The coxl data showed smaller range of variability, which might be due to the shorter sequence of the gene or simply, coxl is more conservative than cytB. Nevertheless, the distinction between *S. schall* clades is still more than 5% for both coxl and cytB mitochondrial genes.
Haplotype networks. The *S. schall* Western clade produced a relatively compact network, exhibiting similar levels of diversity in both genes (Figs 7 and 8), with only a slight increase of distances between individual haplotypes in *cytb*. *CoxI* data for the Eastern clade also created a compact network, represented by one big central haplotype surrounded by derived haplotypes (Fig. 7), whereas *cytb* showed a more complicated network structure with some haplotypes divided by more than ten mutations (Fig. 8). Although the two Eastern clade networks might appear very different, similar phenomena can be seen in both datasets, most remarkably the sharing of haplotypes between the Nile and Turkana basins. The differences between structures of haplotype networks are probably due to a longer stretch of *cytb* sequence analyzed and a putatively higher mutation rate of *cytb* compared to *coxI* in vertebrates50.

Population genetic statistics of the Eastern clade. Population genetic statistics and genetic distances performed for our data did not show profound differences between the sequences of *S. schall*-like and *S. frontosus*-like specimens belonging to the Eastern clade (see Table S4). Genetic distances between the individuals...
of the same respective morphotype were similar to the distances between individuals belonging to different morphotypes (approximately 0 to 1% and 0 to 2% for coxl and cytb, respectively, see Table S4). The overall F_{ST} values between the two morphotypes were 0.08 and 0.04 for coxl and cytb, respectively. The summed chi-square values, for the test of genetic differentiation, were moderately significant for coxl sequences ($0.001 < P < 0.01$) and non-significant for cytb ($P > 0.05$). Similarly, a difference was seen in haplotype diversities for coxl, but not in cytb.

Figure 7. Haplotype networks for coxl constructed in software PopART v1.7. Networks were constructed only for samples clustering in S. schall Eastern and Western clades. Sizes of haplo-nodes are relative to the sample size. The two networks were separated by 28 steps. Accession numbers for GenBank sequences are listed in the picture along with sampling locations.

Figure 8. Haplotype networks for cytb constructed in software PopART v1.7. Networks were constructed only for samples clustering in S. schall Eastern and Western clades. Sizes of haplo-nodes are relative to the sample size. The two networks were separated by 51 steps. Accession numbers for GenBank sequences are listed in the picture along with sampling locations.
Regardless of GenBank taxonomic sequence assignment, the two well-supported clades, the genetic similarities between S. schall and S. frontosus morph-species among samples revealed herein as conspecific (see original sequence assignments retained in Fig. 4 and Table S2). This result casts doubt on features presumably differentiating S. schall and S. frontosus. Especially, the relatively frequent presence of distinct dark membranes on maxillary barbels because its "absence, or a presence of only hardly visible rudiment" (sensu Paugy & Roberts21 and Musschoot & Lalèyè17) was considered a basic feature distinguishing S. schall from S. frontosus. The genetic uniformity of the Nile-Turkana sample on one hand, and its remarkable morphological variability lead us to assume that diagnostic features of S. frontosus merely describe part of the intraspecific variability of S. schall. In other words, explicit evidence of remarkable intraspecific variability provided herein renders the two nominal species from East Africa, S. schall and S. frontosus, most probably synonymous, hence requiring taxonomical reassessment. Additionally, from a strictly phylogenetic point of view, the clustering of Synodontis sequences assigned to several species (S. ouemeensis, S. aff. bastiani, S. aff. haagi and S. schall) implies that these data might represent a single species S. schall Western clade, especially considering uncertain status of many Synodontis nominal species.

Based on the following criteria, we assign the Nile-Turkana population, i.e. S. schall Eastern clade, as represented in our sample to S. schall sensu stricto: (i) the most prevalent morphotype matching S. schall, (ii) phylogenetic affinity (see below), (iii) geographic origin matching with the type locality in the Nile and (iv) with respect to probable synonymy, the specific name S. schall has priority over S. frontosus. The interpretation is further indirectly supported by the supposed absence of S. frontosus in Lake Turkana itself, being presumably limited to Omo River (as highlighted by Hopson 1982 and other authors). Although in our Turkana sample S. frontosus morphotype was not restricted to the freshwater Omo delta, it was most prevalent here, whereas the S. schall morphotype was the most prevalent in the Turkana saline and medium salinity parts. Differences in the prevalence of morphotypes between the localities may also coincide with the moderate (intraspecific) level of genetic differentiation found in the population genetic analysis of cox1 (Snn test, Table S4). The cox1 pattern is probably caused by an ongoing process of lineage sorting. No evidence for morphotype or genetic differentiation was found in the genetically more diverse cytb.

Mitochondrial data revealed no significant differentiation between specimens representing S. schall and S. frontosus morphotypes, indicating their possible conspecificity. However, it should be noted that an alternative evolutionary scenario could generate such a genetic pattern - a complete fixation (or replacement) of mitochondrial DNA introgressed from one species to another. Unfortunately, we were not able to corroborate the mitochondrial results by an independent marker. The phylogeny based on the nuclear RAG2 gene was not informative, due to the lack of resolution in the respective part of the tree. Lack of representative data from the Western Nilo-Sudanian province, together with the generally low variability of the gene did not allow clear distinction of mitochondrial lineages in the nuclear dataset. Although generally rare, complete fixation of introgressed mitochondrial DNA was found for example in African cichlids51–53 and coral reef fish54. Analyses of more variable nuclear loci (e.g. introns or whole genome analyses) would be required to completely exclude such a possibility in S. schall-like catfishes. However, considering the weak differentiation of morphological traits defining S. schall and S. frontosus, as opposed to the high level of cytb diversity required to be introgressed between the two species across all sampled localities, we consider the “introgression and fixation” alternative to be much less probable than conspecificity.

Concurrent morphological and molecular sampling throughout the Nile basin, including terra typica of both S. schall and S. frontosus, i.e. Nile River in Assouan and in Khartoum, respectively, is necessary for sound taxonomical measures (we presume synonymy of S. frontosus and S. schall). Unfortunately, studies of other authors do not aid further resolution, because even recent taxonomic studies37,38,39 on Nilo-Sudanian Synodontis spp. lack molecular phylogenetic analyses, and vice versa, all available phylogenetic studies lack clues for the determination of sampled specimens, and/or the exact origin of the samples37,38.

The combined Nile-Turkana and GenBank dataset comprises all major limnic systems of the Nilo-Sudanian province, i.e. rivers Gambia, Senegal, Volta, Niger, Nile (including Lake Albert), endorheic basins of Chad and Turkana, as well as Eburneo-Ghanian (sub) province. As such, the presented dataset allows us to draw conclusions regarding diversity of S. schall-like catfish throughout the Nilo-Sudanian province. The results of the phylogenetic reconstruction, haplotype analyses and genetic distance recognized different S. schall clades. Phylogenetic analyses of both mitochondrial markers unequivocally revealed separate S. schall Eastern and Western clades, each comprising a mixture of samples assigned by different authors to S. schall, S. frontosus or other taxa. In addition to that, the genetic similarities between S. schall Eastern and S. schall Western clades sequences showed more than 5% divergence for both mitochondrial genes, a phenomenon generally associated with taxa recognized as distinct species55. Regardless of GenBank taxonomic sequence assignment, the two well-supported clades, S. schall Eastern and Western clade, exclusively comprise either samples from eastern part of the Nilo-Sudanian ichthyological province.
province (Nile, Turkana, Chad), or those from its western part (e.g. Senegambia, Niger, Chad), respectively. The taxonomically incongruent, but geographically non-random phylogenetic pattern reveals a strong biogeographical signal among the supposedly homogenous, conspecific and widely distributed *S. schall*-like catfish.

Synodontis schall was long considered morphologically uniform and widely distributed throughout the Nilo-Sudanian ichthyological province from the Atlantic to Indian Ocean\(^2\). In contrast, our results imply the presence of two relatively distant phylogenetic lineages hidden under this name. *Synodontis schall* sensu stricto, as defined by location of type locality in the Nile, corresponds to the Eastern clade in our analyses, and is restricted to the province's eastern part, i.e. Nile, Turkana and Chad basins, and possibly elsewhere in north-east Africa (Fig. 6). On the other hand, *S. schall*-like catfish from the western part of the Nilo-Sudanian province (*S. schall* Western clade in the present study) probably represent a cryptic species more closely related to congeners from the same region than to their eastern siblings. Interestingly, there seems to be an overlap in distribution ranges of the "Eastern clade" and the "Western clade" in the Chad basin, probably as a result of independent and temporally distinct colonization events.

The phenomenon of cryptic, geographically determined diversity in African fish described herein is not a new discovery. A similar pattern was described for African tigerfish genus *Hydrocynus*\(^9\). The cryptic diversity, i.e. presence of three lineages among *Hydrocynus vitatus* populations from three separate drainages (Zambezi, Congo and Okavango), was revealed based on a combination of morphological and molecular (cytb) data. Similarly, as in *S. schall*-like catfishes in this study, the diversity of *H. vitatus* has long been overlooked due to the absence of definitive morphological features and molecular evidence. Another possible example of overlooked diversity among African fish, but revealed morphologically in this case, might be two cyprinid species, *Labeo niloticus* and *L. senegalensis*. The two *Labeo* spp. show a distribution pattern almost identical to that of *S. schall*-like catfishes are also distinguished by subtle, sometimes overlapping morphological features. Morphological studies including samples from western (*L. senegalensis*) and eastern (*L. niloticus*) parts of Nilo-Sudan ichthyological province revealed apparent hidden diversity correlated with geographical origin of specimens\(^9,27\). However, molecular data are not yet available for *L. senegalensis* and *L. niloticus* and their species status remains to be confirmed. The multiple examples of overlooked diversity in *H. vitatus* and *Labeo* spp., as well as *S. schall*-like catfish herein, suggest that the phenomenon of hidden diversity among long known and geographically widely distributed African fishes might be more common than previously thought.

Conclusions

Synodontis schall (Bloch et Schneider, 1801), as it has been defined and recognized for more than two centuries, apparently includes two distinct phylogenetic units (Eastern and Western clades), i.e. two distinct species are hidden within this name. The Eastern clade represents *S. schall* sensu stricto sensu stricto as defined by the type locality in the Nile, while the Western clade from the western part of Nilo-Sudanian province probably represents a cryptic species, which remained unrecognized due to a lack of differentiating morphological traits. A candidate name *Synodontis gambiensis* Günther, 1864 (Terra typica: Gambia), currently considered a junior synonym of *S. schall*, is available for eventual taxonomical amendment of the Western clade. In contrast, another long-recognized nominal species, *S. frontosus* Vaillant, 1895, might be merely a junior synonym of *S. schall* sensu stricto. An interesting, rather unusual taxonomical case has emerged from this study, since concurrent taxonomical deflation (nominal species synonymisation) and taxonomical split (cryptic species formal recognition) might be inevitable in the future for the two long recognized congeners.

Received: 16 July 2018; Accepted: 16 October 2019; Published online: 31 October 2019

References

1. Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the 'mountain passes are higher in the tropics' hypothesis. *Proc. R. Soc. B Biol. Sci.* 283, 20160553 (2016).
2. Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species diversity in the neotropical skipper butterfly *Astraktes fulgerator*. *Proc. Natl. Acad. Sci.* 101, 14812–14817 (2004).
3. Jöger, K. M. & Schrödl, M. How to describe a cryptic species? Practical challenges of molecular taxonomy. *Front. Zool.* 10, 59 (2013).
4. Cooke, G. M., Chao, N. L. & Beheregaray. L. B. Divergent natural selection with gene flow along major environmental gradients in Amazonia: insights from genome scans, population genetics and phylogeography of the characin fish *Triportheus altus*. *Mol. Ecol.* 21, 2410–27 (2012).
5. Figgott, M. P., Chao, N. L. & Beheregaray. L. B. Three fishes in one: Cryptic species in an Amazonian floodplain forest specialist. *Biol. J. Linn. Soc.* 102, 391–403 (2011).
6. Poupa, C. R., de Mello Affonso, P. R. A., De Araújo Bitencourt, J., Sampaio, I. & Carneiro, P. L. S. Species validation and cryptic diversity in the *Geophagus brasiliensis* species complex. *Proc. R. Soc. B Biol. Sci.* 283, 20160553 (2016).
7. Katongo, C., Koblmüller, S., Duftner, N., Makasa, L. & Sturmbauer, C. Phylogeography and speciation in the *Pseudocrenilabrus philander* species complex in Zambian Rivers. *Hydrobiologia* 542, 221–233 (2005).
8. Day, J. J. et al. Multiple independent colonizations into the Congo Basin during the continental radiation of African *Mastacembelus* spiny eels. *J. Biogeogr.* 44, 2308–2318 (2017).
9. Martin, A. P. & Bermingham, E. Regional endemism and cryptic species revealed by molecular and morphological analysis of widespread species of Neotropical catfish. *R. Soc. 267, 1133–1141 (2009)*.
10. Souza-Sibatta, L. et al. Cryptic species of the genus *Pimelodella* (Siluriformes: Heptapteridae) from the Miranda river, Paraguay River basin, Pantanal of Mato Grosso do Sul, Central Brazil. *Neotrop. Ichthyol.* 11, 101–109 (2013).
11. Prizon, A. C. et al. Hidden diversity in the populations of the armored catfish *Ancistrus* Kner, 1854 (Loricariidae, Hypostominae) from the Paraná River basin revealed by molecular and cytogenetic data. *Front. Genet.* 8 (2017).
12. Wright, J. J. & Bailey, R. M. Systematic revision of the formerly monotypic genus *Tanganikallabes* (Siluriformes: Clariidae). *Zool. J. Linn. Soc.* 165, 121–142 (2012).
53. Koblmüller, S.

43. Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology.

44. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models.

42. Posada, D. jModelTest: Phylogenetic model averaging.

46. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

47. Leigh, J. W. & Bryant, D. Popart: Full-Feature Software for Haplotype Network Construction.

36. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual.

34. El-Kasheif, M. A., Authman, M. M. N. & Ibrahim, S. A. Environmental studies on Synodontis schall (Bloch and Schneider, 1801).

35. Gownaris, N. J., Pikitch, E. K., Ojwang, W. O., Michener, R. & Kaufman, L. Predicting species’ vulnerability in a massively perturbed system: The fishes of Lake Turkana, Kenya. PLoS One 10, 1–24 (2015).

33. Luff, R. M. & Bailey, G. The Aquatic Basis of Ancient Civilisations: the case of Synodontis schall2 and the Nile Valley. in Synodontis Afri-carinatus Lochmiller, U. R. (ed.) 100–113 (Oxbow Books, 2000).

32. Mohamed, E. H. A. Characterization of two Synodontis schall2 species in the White Nile and Lake Nuba. Environ. Biol. Fishes 88, 17–23 (2010).

31. Day, J. J., Bills, R. & Friend, J. P. Lacustrine radiations in African squeaker catfishes (Siluriformes: Mochokidae) catfish species flock from Lake Tanganyika. Biol. Lett. 2, 548–552 (2006).

30. Day, J. J. & Wilkinson, M. On the origin of the Synodontis catfish flock from Lake Tanganyika. Biol. Lett. 2, 1–7 (2006).

29. Day, J. J. & Wilkinson, M. The utility of Growth Hormone introns in species level phylogenies. Mol. Phylogenet. Evol. 79, 415–421 (2014).

28. Day, J. J. & Wilkinson, M. Continental diversification of an African catfish radiation. J. Phycol. 42, 1303–1331 (2008).

27. Day, J. J. & Wilkinson, M. Changes in the African Highveld. Biol. J. Linn. Soc. 117, 528–546 (2016).

26. Bailey, R. G. Guide to the fishes of the River Nile in the Republic of the Sudan. J. Nat. Hist. https://doi.org/10.1080/00222939407705011 (1994).

25. Froese, R. & Pauly, D. Fishbase. World Wide Web electronic publication, www.fishbase.org, version 02 (2017). (Available at, www.fishbase.org/version (02/2017).

24. Hoopman, S. K., Stafleu, J. & Jiri, M. Discordant population histories of host and its parasite: A role for ecological permeability of extreme environment? PLoS One 12, 1–25 (2017).

23. Jirsová, D., Štefka, J. & Jirků, M. Discordant population histories of host and its parasite: A role for ecological permeability of extreme environment? PLoS One 12, 1–25 (2017).

22. Hopson, A. Lake Turkana: A Report on the Finding of the Lake Turkana Project 1972–1975, Vols. 1–6. (Overseas Development Administration, London, 1982).

21. Paugy, D., Roberts, T. R. & Mochokidae, P. In C. Lévêque, D. Paugy & G. G. Téroux (eds.) Faune des poissons d’eaux douce et saumâtres de l’Afrique de l’Ouest, Tome 2. Coll. 195–268 (Faune Royal de l’Afrique Centrale, Tervuren, Belgique, Museum National d’Histoire Naturelle, Paris, France and Institut de Recherche pour le Développement, Paris, France. 815 p., 2003).

20. Bailey, R. G. Guide to the fishes of the River Nile in the Republic of the Sudan. J. Nat. Hist. https://doi.org/10.1080/00222939407705011 (1994).

19. Loyau, F., Sah, N. J., Pikitch, E. K., Ojwang, W. O., Michener, R. & Kaufman, L. Predicting species’ vulnerability in a massively perturbed system: The fishes of Lake Turkana, Kenya. PLoS One 10, 1–24 (2015).

18. Pol, M. Révision des Synodontis africains (famille Mochokidae). Ann. – Musée R. Afrique Cent. Zool. 191, 1–497 (1971).

17. Musschoot, T. & Lalèyè, P. Designation of a neotype for Altolamprologus compressiceps. Zool. Scr. 4, 127–130 (2017).

16. Morris, J. W. Various species of Altolamprologus (Cichlidae) in Lake Tanganyika, East Africa. J. Fish. Res. Board Can. 36, 104–133 (2012).

15. Schmidt, R. C., Bart, H. L., Nyingi, D. W. & Gichuki, N. N. Phylogeny of suckermouth catfishes (Mochokidae: Siluriformes) from Kenya: the utility of Growth Hormone introns in species level phylogenies. Mol. Phylogenet. Evol. 79, 415–421 (2014).

14. Schmidt, R. C., Bart, H. L. & Pezold, F. High levels of endemism in suckermouth catfishes (Mochokidae: Siluriformes) from Kenya: the utility of Growth Hormone introns in species level phylogenies. Mol. Phylogenet. Evol. 79, 415–421 (2014).

13. Barasa, J. E. et al. Genetic diversity and population structure of the African catfish, Clarias gariepinus (Burchell, 1822) in Kenya: implication for conservation and aquaculture. Belgian J. Zool. 147, 105–127 (2017).

12. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

11. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

10. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

9. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

8. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

7. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

6. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

5. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

4. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

3. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

2. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).

1. Schröder, S., Apanius, O., Buhlmann, J., Wecker, F. & Suchard, M. A. Tracer v1.7, Available from, http://beast.community/tracer (2018).
55. Bradley, R. D. & Baker, R. J. A test of the Genetic Species Concept: cytochrome-b sequences and mammals. J. Mammal. 82, 960–973 (2001).
56. Goodier, S. A. M., Cotterill, F. P. D., O’Ryan, C., Skelton, P. H. & de Wit, M. J. Cryptic diversity of African tigerfish (genus Hydrocynus) reveals palaeogeographic signatures of linked Neogene geotectonic events. PLoS One 6 (2011).
57. Paugy, D., Zaiss, R. & Troubat, J. J. ‘Faunafri’ World Wide Web electronic publication, http://www.poissons-afrique.ird.fr/faunafri/, version (09/2017) (2008).

Acknowledgements
Our thanks are due to Turkana fishermen, field assistants and chiefs, as well as Father S.J. Ochieng and Father Fernando Aguirre, Our Lady Queen of Peace Todonyang Catholic Mission. Nevertheless, we also thank members of KMFRI for the supervision and help during the fieldwork. Sampling in the Nile was possible thanks to White Nile Fisheries Research Station, Kosti. We thank Thomas Vigliotta, Cornell University, for comments on the first draft and Ashlie Hartigan (Natural History Museum London) for correction of English. Our thanks are also due to reviewers and editor, who significantly aided the final version of manuscript. Authors greatly acknowledge Czech Science Foundation (P505/12/G112, 18-13458S), Institute of Parasitology (RVO: 60077344) and Grant Agency of University of South Bohemia (037/2011/P-04-135/2010/P). Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”.

Author contributions
D.J., M.J. and J.S. designed the study, planned the fieldwork, contributed to data analyses and interpretation and revised the manuscript. J.O.M., D.E.L. and Z.N.M. collected, imaged and measured the specimens. D.J. and M.J. performed fieldwork and sample collection, D.J. performed molecular work and analyzed sequences; R.B. and M.J. obtained morphometric data. D.J., J.S. and M.J. and contributed to data analyses and interpretation and wrote the manuscript. M.J. provided financial support and necessary experience of African geography. J.S. contributed to sequence analysis and manuscript writing. R.B. and M.J. morphologically identified the samples. All authors contributed to the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-52306-2. Correspondence and requests for materials should be addressed to D.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019