Association Between ZFHX3 and PRRX1 Genes’ Two Common Polymorphisms and Atrial Fibrillation Susceptibility in Asians

Liting Wu
Department of Hospital

Ming Chu
Department of Hospital

Wenfang Zhuang (czwf1991@163.com)
Department of Hospital

Research

Keywords: zinc finger homeobox 3, paired related homeobox 1, atrial fibrillation, polymorphism, risk

DOI: https://doi.org/10.21203/rs.3.rs-117193/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

One of the common sustained cardiac arrhythmia disorders is atrial brillation (AF), nowadays, results concerning the associations between ZFHX3/PRRX1 genes and AF has been widely reported. A meta-analysis to confirm above associations is necessary to be carried out in time.

Methods

The PubMed, Embase and Wanfang databases were conducted for searching, covering all publications before 20th July, 2020.

Results

Overall, seven articles including 3,674 cases and 8,990 healthy controls about ZFHX3 rs2106261 and 1045 cases and 1407 controls for PRRX1 rs3903239 were included. Odds ratio (OR)[95% confidence interval (CI)] was applied to assess the associations. Publication bias was calculated by both Egger's and Begg's tests. After calculated, we found that ZFHX3 rs2106261 polymorphism potential increased AF risk in Asians (for example: allelic contrast: OR [95%CI]: 1.39[1.31-1.47], \(P < 0.001 \)). Similarly, stratified analysis by source of control and genotype method, also increased associations were detected (for example: allelic contrast: OR[95%CI] = 1.51[1.38-1.64], \(P < 0.001 \) for HB; OR[95%CI]: 1.31[1.21-1.41], \(P < 0.001 \) for PB; OR[95%CI] = 1.55[1.33-1.80], \(P < 0.001 \) for TaqMan; OR[95%CI] = 1.31[1.21-1.41], \(P < 0.001 \) for HRM). On the other hand, decreased relationship was observed between PRRX1 rs3903239 polymorphism and AF risk (C-allele vs. T-allele: OR[95%CI] = 0.83[0.77-0.99], \(P = 0.036 \); CT vs. TT: OR[95%CI] = 0.79[0.67-0.94], \(P = 0.006 \)). No obvious evidence of publication bias was found.

Conclusions

In summary, our study suggested that ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms had positive associations with AF risk, more large case-controls must be carried out to confirm above conclusions.

Background

Atrial brillation (AF) is one of the common forms of arrhythmia in clinics, about 1-2% incidence among adults worldwide[1, 2]. Previous studies have demonstrated that AF significantly increases the social and economic burden both in developed and developing countries[3]. AF is also a main cause of heart failure and stroke[4, 5]. A variety of structural heart diseases and systemic diseases are related to AF, including congestive heart failure, cardiomyopathy, pulmonary heart disease, essential hypertension, and hyperthyroidism[6, 7], while age, obesity, smoking, excessive drinking and drug use have also been contributed to the development of AF[6, 8]. So far, the exact pathogenesis of AF is still unclear. However, many evidences support that genetic factors play an important role in its occurrence and development[9]. In fact, common genetic variants (a multitude of single-nucleotide polymorphism, SNPs) associated with AF have been detected in Genome-wide association studies (GWAS)[10-12]: such as endothelial nitric oxide synthase 786T/C, CYP11B2 rs1799998, KCNE1 G38S, Caveolin-1 rs3807989[9, 13-15].

Two independent GWAS identified significant associations between rs2106261 and rs7193343 polymorphisms in zinc finger homeobox 3 (ZFHX3) gene and AF susceptibility in various populations of European ancestry[16, 17], which locates on chromosome 16q22 and encodes zinc finger homeobox 3. The specific contents were as follows: Benjamin et al.[16] indicated that rs2106261 SNP in ZFHX3 gene was associated with AF (OR = 1.19; \(P = 2.76 \times 10^{-7} \)), in the same period, Gudbjartsson et al.[17] assessed another SNP (rs7193343) in ZFHX3, which was confirmed to be related to AF in the Icelandic individuals (OR = 1.21, \(P = 1.4 \times 10^{10} \)).

The paired related homeobox 1 (PRRX1) encodes a homeodomain transcription factor that is highly expressed in the developing heart[18]. In the PRRX1 knockout mouse model, fetal lung vascular development is impaired[19]. In addition, the expression pattern of PRRX1 in the mouse atria was evaluated. Compared with the right atrium, both proteins were overexpressed in the left atrium[20]. Above results suggested PRRX1 may play a vital role in heart disease, including AF. In a subsequent meta-GWAS, PRRX1 rs3903239 variant was associated with AF risk \((P = 8.4 \times 10^{-14}) \) [21]. Taking into consideration of a more precise assessment of ZFHX3 rs2106261 and PRRX1 rs3903239 variants in AF risk, hence, we must first perform a meta-analysis of all eligible case-control studies to confirm[18, 22-27].

Methods

Identification and eligibility of relevant studies

The PubMed, Embase and Wanfang databases were selected, last search was updated on July 20, 2020, with the keywords containing 'ZFHX3' or 'zinc finger homeobox 3', 'PRRX1' or 'paired related homeobox 1', 'polymorphism' or 'variant' and 'atrial brillation'. After above search, a total of 96 publications were identified, of which 7 articles coincide following inclusion criteria.

The criteria for inclusion and exclusion

The research included in the analysis must meet all of the following conditions: (a) the study assessed the correlation between AF and ZFHX3 rs2106261 polymorphism and/or PRRX1 rs3903239 polymorphism; (b) unpaired case-control studies; (c) sufficient genotypes in cases and controls. The model number...
was for each group. Therefore, the following exclusion criteria were also applied: (a) no control group; (b) no genotype frequency was available and (c) previous publications were repeated.

Data extraction

Two of the authors extracted all data independently, complied with the selection criteria. The following items were collected: author's name, ethnicity, year of publication, total or each genotype case/control number, original, source of control, genotyping methods and Hardy-Weinberg equilibrium (HWE) of controls.

Quality score assessment (NOS)

NOS was used to assess the quality of each study and evaluate all aspects of the methodology, including case selection, comparability between groups, and exposure determination. NOS has a total score of 0 to 9 stars. Research with a score greater than 7 is considered as high-quality study[28].

Statistic analysis

Based on the genotype frequencies of the cases and controls, the probability odds ratio (OR) with 95% confidence interval (CI) was used to measure the strength of association between the polymorphism of ZFHX3 rs2106261 polymorphism and PRRX1 rs3903239 polymorphism and AF. First to conduct a subgroup analysis stratified by race. The source of the control subgroup analysis was carried out in two categories: population-based (PB) and hospital-based (HB).

The statistical significance of OR was determined by Z-test. Using fixed effects model and random effects model to calculate the combined OR. The Q-test (P ≥ 0.10) indicates that there is heterogeneity between including studies. If significant heterogeneity is detected, the random effects model (DerSimonian-Laird method) is used, but the fixed effects model (Mantel-Haenszel method) is selected [29, 30]. For ZFHX3 rs2106261, we investigated the relationship between genetic variants and AF risk in allelic contrast (A-allele versus G-allele), homozygote comparison (AA versus GG), dominant genetic model (AA+AG versus GG), heterozygote comparison (AG versus GG), and recessive genetic model (AA versus AG+GG). For PRRX1 rs3903239, C-allele vs. T-allele, CT vs. TT, CC vs. TT, CC+CT vs. TT and CC vs. CT+TT models was applied. Funnel plot asymmetry was assessed using Begg’s test and publication bias was assessed using Egger’s test [31]. The departure of frequencies of from expectation under HWE was assessed by χ² test in controls using the Pearson chi-square test (P < 0.05 was considered significant) [32]. All statistical tests for this meta-analysis were performed with Stata software (version 11.0; StataCorp LP, College Station, TX).

Gene interaction network of ZFHX3 and PRRX1 gene

In order to fully understand the role and potential and functional partners of ZFHX3 and PRRX1 in AF, respectively, String online server (http://string-db.org/) uses the gene-gene interaction network of ZFHX3 and PRRX1 genes [33] (Figure 10).

Results

Eligible studies

In total, ninety-six articles were collected from the PubMed, Embase and Wanfang databases. 89 articles were excluded (25-irrelated articles, 4-systematic/Meta-analysis, 1-only case group, 23-supplement, 30-duplication and 6-no original numbers for case/control groups) (Figure 1). Finally, seven articles were identified in current analysis, including 3,674 cases and 8,990 healthy controls related to ZFHX3 rs2106261 polymorphism and 1045 cases and 1407 controls for PRRX1 rs3903239 polymorphism. The characteristics of each included study are listed in Table 1. In addition, the Minor Allele Frequency (MAF) reported from the five main worldwide populations in the 1000 Genomes Browser are checked (https://www.ncbi.nlm.nih.gov/snp/): African; European; East Asian; American and South Asian (Figure 2), which was similar with the average level in our current case and control groups.

Meta-analysis

ZFHX3 rs2106261 polymorphism and AF risk

In the overall analysis, significantly increased associations was observed in five genetic models in Asians: in the allelic contrast (OR[95% CI] = 1.39[1.31-1.47], \(P_{\text{heterogeneity}} = 0.117, P < 0.001\), Figure 3A), the heterozygote comparison (OR[95% CI] =1.37[1.18-1.59], \(P_{\text{heterogeneity}} = 0.007, P < 0.001\), Figure 3B), AA vs. CC (OR[95% CI] = 1.96[1.73-2.21], \(P_{\text{heterogeneity}} = 0.317, P < 0.001\), Figure 3C), the dominant model (OR [95% CI] = 1.49[1.30-1.70], \(P_{\text{heterogeneity}} = 0.011, P < 0.001\), Figure 3D) and AA vs. AC +CC (OR[95% CI] = 1.70[1.52-1.90], \(P_{\text{heterogeneity}} = 0.643, P < 0.001\), Figure 3E) (Table 2).

In the subgroup analysis by source of control, ZFHX3 rs2106261 A-allele or AA genotype acted as an risk factor in both HB and PB subgroups: HB (such as: A-allele versus C-allele: OR[95% CI] = 1.51[1.38-1.64], \(P_{\text{heterogeneity}} = 0.302, P < 0.001\); AC versus CC: OR[95% CI] = 1.57[1.38-1.79], \(P_{\text{heterogeneity}} = 0.156, P < 0.001\)) and PB (such as: A-allele versus C-allele: OR[95% CI] = 1.31[1.21-1.41], \(P_{\text{heterogeneity}} = 0.321, P < 0.001\); AC versus CC: OR[95% CI] = 1.17[1.04-1.30], \(P_{\text{heterogeneity}} = 0.584, P = 0.007\)) (Figure 3A,B, Table 2).

To detect whether the association were existed between genotype methods and ZFHX3 rs2106261 polymorphism, we carried out the next step. Several positive results were found in TaqMan (in the allelic contrast (OR = 1.55, 95% CI = 1.33-1.80, P = 0.740 for heterogeneity, P < 0.001 for significant), the heterozygote comparison (OR = 1.82, 95% CI = 1.46-2.27, P = 0.668 for heterogeneity, P < 0.001), AA vs. CC (OR = 2.06, 95% CI = 1.48-2.86, \(P_{\text{heterogeneity}} = 0.884, P < 0.001\) for significant), the dominant model (OR[95% CI] = 1.87[1.52-2.30], \(P_{\text{heterogeneity}} = 0.674, P < 0.001\)) and AA vs. AC +CC (OR[95% CI] = 1.51[1.11-2.06], \(P_{\text{heterogeneity}} = 1.000, P < 0.001\)), High-Resolution Melt (HRM) (in the allelic contrast (OR = 1.31, 95% CI = 1.21-1.41, \(P_{\text{heterogeneity}} = 0.647, P < 0.001\), the
heterozygote comparison (OR =1.17, 95% CI = 1.04-1.30, P = 0.584 for heterogeneity, P = 0.007 for significant), AA vs. CC (OR = 1.81, 95% CI = 1.54-2.12, $P_{\text{heterogeneity}} = 0.417, P< 0.001$), the dominant model (OR = 1.29, 95% CI = 1.16-1.43, P = 0.655 for heterogeneity, $P< 0.001$) and AA vs. AC +CC (OR = 1.68, 95% CI = 1.45-1.94, $P_{\text{heterogeneity}} = 0.384, P < 0.001$ for significant) and Others (data not shown) (Figure 4, Table 2).

PRRX1 rs3903239 polymorphism and AF risk

Decreased associations were found in heterozygote comparison (OR[95% CI] = 0.83[0.77-0.99], $P_{\text{heterogeneity}} = 0.522, P = 0.036$, Figure 5A, Table 2) and dominant model (OR[95% CI] = 0.79[0.67-0.94], $P = 0.137$ for heterogeneity, $P = 0.006$, Figure 5B, Table 2).

Sensitivity analysis and publication bias

A Begg funnel chart and Egger test were performed to assess publication bias. The results did not show any evidence of publication bias (for example: A-allele versus G-allele, $t = 1.46, P = 0.205$ [Egger test], $z = 1.2, P = 0.23$ [Begg test] for ZFHX3 rs2106261, Figure 6; C-allele versus T-allele, $t = 0.11, P = 0.933$ [Egger test], $z = 0.0, P = 1.00$ [Begg test] for PRRX1 rs3903239, Figure 7, Table 3). A sensitivity analysis was performed to assess the impact of each individual study on the combined OR by removing individual studies one by one. The results suggested that no separate study significantly affected the overall OR for ZFHX3 rs2106261 (Figure 8).

Network of gene-gene interaction of ZFHX3 and PRRX1 gene, respectively.

The network of potential gene-gene interaction for ZFHX3 and PRRX1 genes was analyzed by String online webpage (http://string-db.org/) [33] (Figure 9). Each gene was shown ten significant related genes in the web of relationships.

Discussion

AF is considered to be the most common supraventricular arrhythmia, affecting up to 1% in the natural population[34, 35]. With the increase of age, the prevalence rate increases year by year, and the incidence of elderly cases (≥ 80 years) can reach 8%[36]. Many types of heart and medical diseases that increase the risk of AF over age, which included arterial hypertension, cardiomyopathies, obstructive sleep apnea and valve dysfunction[37, 38]. In addition, based on a recent meta-analysis of GWAS for AF[11], more than 100 AF risk genetic mutations and polymorphisms have been reported, indicating that genetics may be participate in the mechanisms of AF. More and more studies have shown that genetic variation may promote to the pathophysiology of AF by altering the structure, proteins expression and function related to various cellular activities[39].

So far, several meta-analyses about gene polymorphisms and AF susceptibility have been published: such as chromosome 4q25 variants, CYP11B2 -344T>C, mink S38G, and so on[40-43]. A growing number of papers have pointed to polymorphisms from both ZFHX3 and PRRX1 genes. ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms have been paid attention and have not reported through meta-analysis to clarify the associations to AF susceptibility.

Current analysis is the first evaluation to the associations among ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms and AF risk involving 4719 cases and 10397 controls. The main results of our analysis are that we found increased relationships between ZFHX3 rs2106261 and AF risk, on the contrary, PRRX1 rs3903239 polymorphism acted as a protective factor in AF development. In other words, individuals carried A-allele of ZFHX3 rs2106261 polymorphism may have a high possible to be get AF; individuals taken along CC or CT genotype might have a decreased risk for AF, which can give us some warnings to reduce the incidence of AF: such as early detection, healthy life, pay more attention to the prevention. Different genes or variant polymorphisms in the same genes may play multifarious functions in the progress of AF, which should be explained above conclusions.

In addition, the online analysis system-String was applied to predict the potential and functional partners, which may help to expand the range of vision of related genes. Finally, ten genes were opened up. The first three highest score of association was CDKN1A (Score = 0.921), RUNX3 (Score = 0.918) and TGFβ1 (Score = 0.900). Several studies have been focused on CDKN1A and TGFβ1, not RUNX3, in the development of AF. Further studies should be pay attention to above three potential related genes and their common polymorphisms and AF risk. On the other hand, the score of related genes for PRRX1 is general low, which should be proved and indicated in the future research.

Although positive results were found, limitations in current study should also be discussed. Beginning, the literature included is relatively new; the number of published studies remains not sufficiently larger. Second, the interactions between gene-gene/gene-environment (other covariates including family history, age, sex, disease stage and lifestyle), and even variants polymorphisms in the same genes may regulate AF risk, which must be included in further studies. Third, there are several types of AF: such as persistent, permanent, pathologic, idiopathic and paroxysmal. If enough data for one concrete AF, we should classify to one subgroup and analyze the association for ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms, which is better to offer a guide to precision in the clinic.

Conclusion

Our analysis illustrated the proof that ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms were related with conspicuous AF risk for Asians. Therefore, following well-designed and larger studies, including information about gene-gene/gene-environment interactions are recommended to confirm above conclusions.

Abbreviations
AF, atrial brillation; ZFHX3, zinc finger homeobox 3; PRRX1, paired related homeobox 1, confidence intervals; HWE, Hardy–Weinberg equilibrium; OR, odds ratio.

Declarations

Acknowledgements
Not applicable.

Author Contribution
L.W. conceived the study. M.C. searched the databases and extracted the data. W.Z. analyzed the data. L.W. wrote the draft of the paper. W.Z. reviewed the manuscript.

Funding
This article was supported by the Yangpu District Health and Family Planning Commission (YP18Q10) and Shanghai Yangpu District Key Discipline Project (YP19ZB03).

Availability of data and materials
All the data generated in the present research is contained in this manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Luo X, Li B, Zhang D, Zhu J, Qi L, Tang Y: Efficacy and safety of the convergent atrial brillation procedure: a meta-analysis of observational studies. Interactive cardiovascular and thoracic surgery 2019, 28(2):169-176.
2. Rahman F, Kwan GF, Benjamin EJ: Global epidemiology of atrial brillation. Nature reviews Cardiology 2014, 11(11):639-654.
3. Wang XJ, Ding P, Wang FZ, Liu Q: Correlations of SCN5A gene polymorphisms with onset of atrial brillation. European review for medical and pharmacological sciences 2019, 23(16):7089-7097.
4. Hu D, Sun Y: Epidemiology, risk factors for stroke, and management of atrial brillation in China. Journal of the American College of Cardiology 2008, 52(10):865-868.
5. Roberts JD, Gollob MH: Impact of genetic discoveries on the classification of lone atrial brillation. Journal of the American College of Cardiology 2010, 55(8):705-712.
6. Armaganijan L, Lopes RD, Healey JS, Piccini JP, Nair GM, Morillo CA: Do omega-3 fatty acids prevent atrial brillation after open heart surgery? A meta-analysis of randomized controlled trials. Clinics (Sao Paulo, Brazil) 2011, 66(11):1923-1928.
7. Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AH, Ellenbogen KA, Halperin JL, Kay GN, Le Huezey JY, Lowe JE et al: 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial brillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Journal of the American College of Cardiology 2011, 57(11):e101-198.
8. Saritas A, Kandis H, Baltaci D, Erdem I: Paroxysmal atrial brillation and intermittent left bundle branch block: an unusual electrocardiographic presentation of mad honey poisoning. Clinics (Sao Paulo, Brazil) 2011, 66(9):1651-1653.
9. Wang X, Li Y, Li Q: A comprehensive meta-analysis on relationship between CYP11B2 rs1799998 polymorphism and atrial brillation. Journal of electrocardiology 2019, 52:101-105.
10. Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, Herron TJ, McCarthy S, Schmidt EM, Sveinbjormsson G et al: Biobank-driven genomic discovery yields new insight into atrial brillation biology. Nature genetics 2018, 50(9):1234-1239.
11. Roselli C, Chaffin MD, Weng LC, Aeschbacher S, Aihberg G, Albert CM, Almgren P, Alonso A, Anderson CD, Aragam KG et al: Multi-ethnic genome-wide association study for atrial brillation. Nature genetics 2018, 50(9):1225-1233.
12. Wang B, Lunetta KL, Dupuis J, Lubitz SA, Trinquart L, Yao L, Ellinor PT, Benjamin EJ, Lin H: Integrative Omics Approach to Identifying Genes Associated With Atrial Fibrillation. Circulation research 2020, 126(3):350-360.
13. Jia W, Qi X, Li Q: Association Between Rs3807989 Polymorphism in Caveolin-1 (CAV1) Gene and Atrial Fibrillation: A Meta-Analysis. *Medical science monitor: international medical journal of experimental and clinical research* 2016, 22:3961-3966.

14. Jiang YF, Chen M, Zhang NN, Yang HJ, Xu LB, Rui Q, Sun SJ, Yao JL, Zhou YF: Association between KCNQ1 G388S gene polymorphism and risk of atrial fibrillation: A PRISMA-compliant meta-analysis. *Medicine* 2017, 96(25):e7253.

15. Zhang YQ, Jiang YF, Hong L, Yang HJ, Zhang JY, Zhou YF: Role of Endothelial Nitric Oxide Synthase Polymorphisms in Atrial Fibrillation: A PRISMA-Compliant Meta-Analysis. *Medical science monitor: international medical journal of experimental and clinical research* 2019, 25:2687-2694.

16. Benjamin EJ, Rice KM, Arking DE, Pfeuffer A, van Noord C, Smith AV, Schnabel RB, Bis JC, Boerwinkle E, Sinner MF et al: Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. *Nature genetics* 2009, 41(8):879-881.

17. Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, Thorgersson G, Gulcher J, Mathiesen EB, Njølstad I, Nyrnes A et al: A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. *Nature genetics* 2009, 41(8):876-878.

18. Kalinderi K, Fragakis N, Sotiariadou M, Orior DI, Katritsis D, Letsas K, Korantzopoulos P, Karamanolis A, Pagourelia E, Antoniadis AP et al: PRRX1 Rs3903239 polymorphism and atrial fibrillation in a Greek population. *Hellenic journal of cardiology: HJC = Hellenike kardiologiike epitheorese* 2018, 59(5):298-299.

19. Ihida-Stansbury K, McKean DM, Gebb SA, Martin JF, Stevens T, Nemenoff R, Akeson A, Vaughn J, Jones PL: Paired-related homeobox gene Prx1 is required for pulmonary vascular development. *Circulation research* 2004, 94(11):1507-1514.

20. Dolmatova E, Cooper RR, Ellinor PT: Prx1 Interacts with and Inhibits Pitx2 Function. *Circulation* 2012, 126:A19452.

21. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, Arking DE, Müller-Nurasyid M, Krijthe BP, Lubitz SA et al: Meta-analysis identifies six new susceptibility loci for atrial fibrillation. *Nature genetics* 2012, 44(6):670-675.

22. Huang Y, Wang C, Yao Y, Zuo X, Chen S, Xu C, Zhang H, Lu Q, Chang L, Wang F et al: *Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation*. *PLoS genetics* 2015, 11(8):e1005393.

23. Liu Y, Ni B, Lin Y, Chen XG, Chen M, Hu Z, Zhang F: The rs3807989 G/A polymorphism in CAV1 is associated with the risk of atrial fibrillation in Chinese Han populations. *Pacing and clinical electrophysiology : PACE* 2015, 38(2):164-170.

24. Liu Y, Ni B, Lin Y, Chen XG, Fang Z, Zhao L, Hu Z, Zhang F: Genetic polymorphisms in ZFHX3 are associated with atrial fibrillation in a Chinese Han population. *Plos one* 2014, 9(7):e101318.

25. Okubo Y, Nakano Y, Ochi H, Onohara Y, Tokuyama T, Motoda C, Amioka M, Hironobe N, Okamura S, Ikeuchi Y et al: Predicting atrial fibrillation using a combination of genetic risk score and clinical risk factors. *Heart rhythm* 2020, 17(5 Pt A):699-705.

26. Tomomori S, Nakano Y, Ochi H, Onohara Y, Sairaku A, Tokuyama T, Motoda C, Matsushita M, Amioka M, Hironobe N et al: Maintenance of low inflammation level by the ZFHX3 SNP rs2106261 minor allele contributes to reduced atrial fibrillation recurrence after pulmonary vein isolation. *Plos one* 2018, 13(9):e0203281.

27. Zaw KTT, Sato N, Ikeda S, Thu KS, Mieno MN, Arai T, Mori S, Furukawa T, Sasano T, Sawabe M et al: Association between KCNQ1 G388S gene variant with atrial fibrillation, cerebral infarction, and lung thromboembolism: An autopsy study. *Circulation research* 2004, 94(25):e725-730.

28. Shao HB, Ren K, Gao SL, Zou JG, Mi YY, Zhang LF, Zuo L, Okada A, Yasui T: Human methionine synthase A2756G polymorphism increases susceptibility to prostate cancer. *Aging* 2018, 10(7):1776-1788.

29. Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ et al: Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Journal of the American College of Cardiology* 2013, 61(18):1935-1944.

30. Piccini JP, Hammill BG, Sinner MF, Jensen PN, Hernandez AF, Heckbert SR, Benjamin EJ, Curtis LH: Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993-2007. *Circulation Cardiovascular quality and outcomes* 2012, 5(1):85-93.

31. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *Jama* 2001, 285(18):2370-2375.

32. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA: Independent risk factors for atrial fibrillation in a population-based cohort. *The Framingham Heart Study*. *Jama* 1994, 271(11):840-844.

33. Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, Malouf JF, Ammash NM, Friedman PA, Somers VK: Association of atrial fibrillation and obstructive sleep apnea. *Circulation* 2004, 110(4):364-367.

34. Creemers EE, Wilde AA, Pinto YM: Heart failure: advances through genomics. *Nature reviews Genetics* 2011, 12(5):357-362.

35. Fu X, Ma X, Zhong L, Song Z: Relationship between CYP11B2-344T>C polymorphism and atrial fibrillation: A meta-analysis. *Journal of the renin-angiotensin-aldosterone system : JRAAS* 2015, 16(1):185-188.
41. He J, Zhu W, Yu Y, Hu J, Hong K: Variant rs2200733 and rs10033464 on chromosome 4q25 are associated with increased risk of atrial brillation after catheter ablation: Evidence from a meta-analysis. Cardiology journal 2018, 25(5):628-638.

42. Li YY, Wang LS, Lu XZ: Mink S38G gene polymorphism and atrial brillation in the Chinese population: a meta-analysis of 1871 participants. TheScienticWorldJournal 2014, 2014:768681.

43. Rattanawong P, Chenbhanich J, Vutthikraivit W, Chongsathidkiet P: A Chromosome 4q25 Variant is Associated with Atrial Fibrillation Recurrence After Catheter Ablation: A Systematic Review and Meta-Analysis. Journal of atrial brillation 2018, 10(6):1666.

Tables

Table 1 Characteristics of studies of ZFHX3 and PRRX1 genes’ two common polymorphisms and atrial brillation risk included in our meta-analysis

Author	Year	Country	Ethnicity	ZFHX3 rs2106261 Case	Control	ZFHX3 rs2106261 SOC	HWE	Genotype	NOS
Okubo	2020	Japan	Asian	AA 289 AG 287 GG 46 143 99 32	109 146	HB 0.096	TaqMan	8	
Zaw	2017	Japan	Asian	AA 411 AG 1765 GG 54 182 175 151	725 889	HB 0.853	Illumina	8	
Huang	2015	China	Asian	AA 569 AG 1996 GG 99 237 233 216	869 911	PB 0.683	HRM	9	
Huang	2015	China	Asian	AA 641 AG 1692 GG 103 279 259 197	707 788	PB 0.048	HRM	9	
Huang	2015	China	Asian	AA 810 AG 1627 GG 128 369 313 149	726 752	PB 0.163	HRM	9	
Liu	2014	China	Asian	AA 593 AG 996 GG 110 299 184 99	446 451	PB 0.460	MassARRAY	8	
Tomomori	2018	Japan	Asian	AA 362 AG 627 GG 50 181 131 60	250 317	HB 0.298	TaqMan	8	

| PRRX1 rs39033239 | | | | | | | | | |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Okubegb| 2020 | Japan | Asian | AA 287 AG 287 GG 29 139 119 59 | 143 85 | PB 0.935 | TaqMan | 8 |
| Liu | 2015 | China | Asian | AA 591 AG 996 GG 79 263 249 155 | 463 378 | HB 0.503 | MassARRAY | 8 |

HB: hospital-based; PB: population-based; SOC: source of control; PCR-RFLP: polymerase chain reaction followed by restriction fragment length polymorphism; HRM: High-Resolution Melt; HWE: Hardy-Weinberg equilibrium of control group.

Table 2 Stratified analyses of ZFHX3 and PRRX1 genes’ two common polymorphisms on atrial brillation risk
Variables	N	Case/M-allele vs. W-allele	MW vs. WW	MM+MW vs. WW	MM vs. WW	MM vs. MW+WW								
ZFHX3 rs2106261	Control	OR(95%) CI	P											
Total	7	3674/8990	1.39(1.31-1.47) 0.117	0.000	41.1%	1.37(1.18-1.59) 0.000	66.5%	1.49(1.30-1.70) 0.000	63.6%	1.96(1.73-2.21) 0.000	14.8%	1.70(1.52-1.90) 0.000	0.0%	
SOC														
HB	4	1654/3675	1.51(1.38-1.64) 0.000	0.000	17.7%	1.57(1.38-1.79) 0.000	42.5%	1.68(1.49-1.90) 0.000	43.4%	2.20(1.82-2.66) 0.000	0.7%	1.73(1.45-2.07) 0.000	0.0%	
PB	3	2020/5315	1.31(1.21-1.41) 0.000	0.000	0.0%	1.17(1.04-1.30) 0.000	0.0%	1.29(1.16-1.43) 0.000	0.0%	1.81(1.54-2.12) 0.000	0.0%	1.68(1.45-1.94) 0.000	0.0%	
Genotype														
TaqMan	2	650/914	1.55(1.33-1.80) 0.740	0.000	0.0%	1.82(1.46-2.27) 0.668	0.000	0.0%	1.87(1.52-2.30) 0.674	0.000	0.0%	2.06(1.48-2.86) 0.884	0.000	
Other	2	1004/2761	1.47(1.21-1.80) 0.068	0.000	70.1%	1.45(1.24-1.70) 0.123	0.000	58.1%	1.59(1.19-2.12) 0.057	0.000	74.4%	1.47(1.21-1.80) 0.095	0.000	
HRM	3	2020/5315	1.31(1.21-1.41) 0.647	0.000	0.0%	1.17(1.04-1.30) 0.584	0.000	0.0%	1.29(1.16-1.43) 0.655	0.000	0.0%	1.81(1.54-2.12) 0.417	0.000	
PRRX1 rs3903239														
Total	3	1045/1407	0.82(0.63-1.07) 0.023	0.147	73.5%	0.83(0.77-0.99) 0.522	0.036	0.0%	0.79(0.67-0.94) 0.137	0.006	49.7%	0.68(0.35-1.32) 0.132	0.253	
													0.75(0.42-1.31) 0.310	0.310 73.5%

\(\hat{P} \): value of Q-test for heterogeneity test; \(P \): Z-test for the statistical significance of the OR

Table 3 Publication bias tests (Begg’s funnel plot and Egger’s test for publication bias test)

Genetic type	Coefficient	Standard error	t	P value	95% CI of intercept	z	P value
ZFHX3 rs2106261							
A-allele vs. G-allele	3.372	2.313	1.46	0.205	(-2.573-9.317)	1.2	0.23
AG vs. GG	2.523	1.507	1.67	0.155	(-1.351-6.398)	1.2	0.23
AA+AG vs. GG	2.744	1.543	1.78	0.133	(-1.223-6.712)	1.2	0.23
AA vs. GG	1.671	0.977	1.71	0.148	(-0.840-4.182)	1.2	0.23
AA vs. AG+GG	1.690	1.083	1.56	0.179	(-1.094-4.475)	1.2	0.23
PRRX1 rs3903239							
C-allele vs. T-allele	1.034	9.771	0.11	0.933	(-123.117-125.186)	0.0	1.00
CT vs. TT	0.496	7.243	0.07	0.956	(-91.538-92.531)	0.0	1.00
CC+CT vs. TT	0.471	7.530	0.06	0.960	(-95.213-96.154)	0.0	1.00
CC vs. TT	0.251	3.834	0.07	0.958	(-48.468-48.971)	0.0	1.00
CC vs. CT+TT	0.290	4.031	0.07	0.954	(-50.938-51.519)	0.0	1.00

for ZFHX3 and PRRX1 genes’ two common polymorphisms (rs2106261 and rs3903239)