Supplementary Information for

Genome-wide screens identify specific drivers of mutant hTERT promoters
Raghuvaran Shanmugam¹*, Mert Burak Ozturk¹*, Joo-Leng Low², Semih Can Akincilar¹, Joelle Yi Heng Chua¹, Matan Thangavelu Thangavelu², Giridharan Periyasamy², Ramanuj DasGupta², Vinay Tergaonkar¹,³,⁴

Vinay Tergaonkar: Email: vinayt@imcb.a-star.edu.sg;
Ramanuj Dasgupta: Email dasguptar@gis.a-star.edu.sg

This PDF file includes:

Supplementary method text
Figures S1 to S5
Tables S1 to S3
SI References
Supplementary Information

Supplementary Methods

Generation of firefly luciferase reporter cell lines
pLenti CMV Puro LUC (w168-1) was a gift from Eric Campeau & Paul Kaufman (Addgene plasmid # 17477, RRID: Addgene_17477). The firefly luciferase expression constructs and ViraSafe™ lentiviral packaging system (Cell Biolabs) were co-transfected into HEK293T cells using Lipofectamine 3000. After 24 hrs, the medium was replenished with the full growth medium and incubated for another 24 hrs to harvest the viral particles. The viral particles were collected and target cells were infected in the presence of 8 µg/mL of polybrene (Santa Cruz Biotechnology). Firefly luciferase expressing nano-luciferase (NLuc) reporter cells were selected with Puromycin (Gibco).

Whole genome siRNA screening
Silencer™ Select Human whole-genome siRNA library (Invitrogen) was used for whole-genome siRNA screening against the reporter cell lines. This library targets >21,000 human genes arrayed in microplates with each well containing a pool of 3 siRNAs targeting a particular gene. The siRNAs were first dispensed into white, 384-well plates (Corning) at a concentration of 200 nM and 5 µL per well. Silencer™ Select Negative Control No. 1 and No. 2 siRNAs (Invitrogen) were included as negative controls. Silencer™ KIF11 siRNA (Invitrogen), Silencer™ Firefly Luciferase siRNA (Invitrogen) and a customized Silencer™ Select nano-
luciferase siRNA (Invitrogen) were also included as positive controls. Each gene was tested in triplicate.

Reverse transfection was carried out by first dispensing 5 µL of Opti-MEM™ Reduced Serum Medium (Gibco) containing 0.1 µL of Lipofectamine™ RNAiMAX Transfection Reagent (Invitrogen) into each well containing siRNA. The transfection reagent and siRNAs were allowed to complex for 20 min at room temperature before addition of 50 µL per well of cells in DMEM (Gibco) containing 12% FBS (Gibco) to yield final transfection mixtures containing about 17 nM siRNA in DMEM and 10% FBS. The cell numbers used for each cell line were 2,000 cells per well for DLD-1-Mut-NLuc and HCT116-Mut-NLuc, and 4,000 cells per well for LN382-Mut-NLuc. Cell viability and nano-luciferase reporter activity were assayed 72 hr after reverse transfection. For DLD-1-Mut-NLuc cells, cell viability was measured with PrestoBlue cell viability reagent (Invitrogen) and nano-luciferase reporter activity was measured with Nano-Glo Luciferase assay system (Promega) and following the manufacturer’s protocols. For HCT116-Mut-NLuc and LN382-Mut-NLuc cells, cell viability and nano-luciferase reporter activity were measured with Nano-Glo Dual-Luciferase assay system (Promega), and following the manufacturer’s protocols. Signals were detected using Tecan Infinite M1000 or Perkin Elmer EnSpire multimode plate readers.

siRNA screening data analysis

Readouts from the whole genome siRNA screens were uploaded onto the CHiP-GIS database portal (https://www.chip-phenomics.org/portal.pl). Percentage toxicity and percentage inhibition was calculated using the following formula:
%Toxicity or %Inhibition = \left(1 - \frac{(RFU or RLU)x}{(RFU or RLU)y}\right) \times 100\%

Where x represents the signal from each well containing siRNA and y represents the median signal of the negative control siRNAs in the same plate. A cumulative plot of all the %Inhibition scores for all the siRNAs investigated was then obtained for each cell line and a %Inhibition cutoff was determined by identifying the inflection point. Genes for which the siRNAs resulted in %Inhibition score greater than or equal to the cutoff were plotted in a second cumulative plot based on their %Toxicity scores and a cutoff for %Toxicity score was determined similarly as for the %Inhibition cutoff.

Simultaneously, the readouts from the whole genome siRNA screens were analysed using GUItars, a siRNA screen analysis tool based on the SSMD method. Wells containing negative control siRNAs were selected as negative controls while wells containing KIF11 siRNAs were selected as positive controls for both cell viability and reporter inhibition. For HCT116-Mut-NLuc and LN382-Mut-NLuc cells, wells containing firefly luciferase siRNAs were also selected as a second positive control. Hits were identified based on a Toxicity cutoff of SSMD ≥ -3 and an Inhibition cutoff of SSMD < -3. Overlapping hits identified from both the analysis methods were then selected as the final hits for each cell line.

siRNA secondary screening

The siRNA secondary screening was carried out in a similar fashion to the primary whole-genome screen. The difference between the secondary screen and the
primary screen was that in the secondary screen, siRNAs against hit genes identified from the primary screen were cherrypicked and arrayed in white, 384-well plates. Cell lines used for the secondary screen include DLD-1 WT-NLuc (2,000 cells per well), and DLD-1 Mut-NLuc (2,000 cells per well). Data analysis for the secondary screen was carried out by calculating the percentage toxicity and percentage inhibition scores as per the primary screen.

Lentivirus production of sgRNA library

The Toronto KnockOut Library v3 (TKOv3) (Addgene plasmid #90294, a gift from Jason Moffat) was purchased. The library of sgRNAs were amplified followed by lentiviral preparation of the sgRNA library in 293FT cells as described (1). Briefly, 293FT cells were seeded at a density of 3×10^6 cells/10cm2 plate. The next day, cells were transfected with a mixture of pRSV-Rev (2.5 µg), pMDG.2 (2.5 µg), pMDLg/pRRE (7.5 µg), TKOv3 plasmid library (10 µg), and Lipofectamine LTX (42 µl), following the manufacturer’s protocol. At 8 hr after transfection, the medium was changed to the growth medium (DMEM, 10% FBS, 1% penicillin/streptomycin). Virus-containing medium was harvested 24 hr and 48 hr after transfection and centrifuged at 1200 rpm for 5 min. Viral titters in HCT116 cells were determined by infecting cells with a titration of TKOv3 lentiviral library in the presence of polybrene (8 µg/ml). 24 hr post infection, puromycin (2 µg/ml) containing medium was added onto cells to select the transduced cells. After 72 hours, the multiplicity of infection (MOI) of the titrated virus was determined by comparing the percent survival of infected cells to non-infected control cells.
Generation of CRISPR cell lines and screening

Target cell lines (HCT116-WT-GFP, HCT116-Mut-GFP and U251-Mut-GFP) were grown in 15cm plates and a total of \(40 \times 10^6\) cells were infected with TKOv3 lentiviral library (71,090 gRNAs) at an MOI of \(\sim 0.5\) to achieve \(\sim 200\)-fold coverage of the library after selection. Polybrene at 8 µg/ml was added to increase transduction efficiency. All screenings were performed in duplicates. After 24 hr, the virus-containing medium was removed and replaced with growth medium (DMEM, 10% FBS, 1% penicillin/streptomycin) supplemented with puromycin (1 µg/ mL) and cultured for 5 days. The cells were maintained at 20 \(\times\) 10^6 cells at each passage every 3–4 d to have \(\sim 200\)-fold coverage. Post selection, a total of 20 \(\times\) 10^6 cells were collected for genomic DNA extraction at day 0 and day 14. 20 \(\times\) 10^6 cells were fluorescence sorted by FACS (BD FACSAria II) on day14 to GFP low and GFP high. The cells were collected and grown until they reach a 20 \(\times\) 10^6 cells and were harvested for genomic DNA isolation. 20 million cells post-CRISPR screen were used to isolate genomic DNA using QIAGEN DNA Maxi kit (Qiagen), according to the manufacturer’s instruction. Concentration of the isolated DNA was quantified using Qubit 2.0 fluorometer (Thermo Fisher Scientific).

Library preparation and sequencing of CRISPR knockout libraries

To generate Illumina libraries for deep sequencing, 2 PCR reactions were performed. (1) enrich guide-RNA regions in the genome and (2) amplify guide-RNA with i5 and i7 indices. Both PCR reactions were performed using Q5 Hot Start High-Fidelity 2 × Master Mix and forward/reverse primers pair (v2.1-F1 and v2.1-
R1, Supplementary Table 2) in a 50 μl reaction. For PCR1, 40 independent PCR reactions were set up for each sample using 2.5 μg of the genomic DNA. Using this concentration, the library is maintained at 200-fold coverage. The PCR conditions were as follows: 98°C for 30 s, 98°C for 10 s, 66°C for 30 s and 72°C for 15 s (X25 cycles), and the final extension, 72°C for 2 min. The PCR products (600bp) were resolved on 1% agarose gel and individual reactions were pooled. About 5 μl of pooled PCR products from all 40 reactions and purified using QIAquick PCR purification kit (QIAGEN). The concentration of purified PCR products were quantified using the Qubit 2.0 fluorometer (Thermo Fisher Scientific). 5 μl of the PCR pooled purified product was used in a second PCR performed with 2x NEBNext Ultra II Q5 Master Mix. 2.5 μl of different i5 primer and 2.5 μl of different i7 primers (Supplementary Table 2) were used. The PCR conditions were as follows: 98°C for 30 s, 98°C for 10 s, 55°C for 30 s and 65°C for 15 s (10–12 cycles), and the final extension, 65°C for 5 min. The PCR product (200bp) was excised after running on 2% agarose gel. Finally, QIAquick Gel Extraction Kits (Qiagen) were used to purify the PCR products. Purified libraries were resuspended in 50 μl nuclease-free water and analysed using Agilent High Sensitivity DNA kit (Agilent Technologies) on Agilent 2100 Bioanalyzer (Agilent Technologies).

Purified libraries of the duplicate screens tagged with different i5 and i7 tags were pooled and sequenced at about 300x coverage on Illumina HiSeq 2500. About 30–40 million reads were obtained for each replicate.
CRISPR data processing

Quality control step was performed on sequencing reads by using Trimmomatic v0.32 to filter low-quality bases and adapter sequences. Reads that passed quality control were used as input in downstream analysis using MAGeCK v0.5.9 tool. Read counts corresponding to single-guided RNAs (sgRNAs) were first quantified and normalized using median normalization. Subsequently, the relationship of replicates was learned by mean-variance modeling and the statistical significance of each sgRNA was calculated using the learned mean-variance model. Essential genes were then positively and negatively selected (p<0.01) using robust rank aggregation (RRA) method. Essential genes identified in different cell lines and screens (CRISPR and RNAi) were compared to identify common genes. Finally, by reference to KEGG (Kyoto Encyclopedia of Genes and Genomes) database, enriched pathways (p<0.05) were identified by applying the gene set enrichment analysis (GSEA) algorithm to the ranked list of genes.

RNA isolation and gene expression analysis

Total RNA was isolated from cells after 36h of transfection by Trizol method followed by column purification (2). cDNA synthesis was performed from 1µg RNA using iScript cDNA synthesis kit, BioRad. RT-qPCR analysis was performed using diluted cDNAs (5ng/reaction) by SSO-Sybr Greener qPCR master mix (BioRAD). Expression values were normalized to actin and relative expression was calculated by delta-delta Ct method.
Chromatin Immunoprecipitation (ChIP) Assays

Cells were harvested 36h post-transfection and cross-linked for 10 minutes with 1% Formaldehyde. After isolation of nuclei fraction, sonication was performed by 30 sec on 30 sec off intervals to obtain DNA smear between 150bp - 750 bp. Soluble chromatin fraction was pre-cleared with Protein-A/G beads and incubated over-night with IgG (Sant Cruz), anti-MED12 (Bethyl A300-774A) and anti-Gabpa (Santa Cruz Biotechnology; sc-22810) antibodies. ChIP-qPCR was performed with hTERT promoter-specific primers (forward: GCGGCGCGAGTTTCAG, reverse: AGCACCTCGCGGTAGTG)

TRF Assay

TRF assay was performed in isogenic T98G cell line using TeloTAGGG telomere length assay kit (Sigma, Cat No: 12209136001) following manufacturer instruction. Briefly, the cells were harvested and counted. 2X 10^6 cell were used to lyse and extract pure genomic DNA using The Wizard® Genomic DNA Purification Kit (Promega, Cat No: A1120). The extracted DNA was quantified using Nanodrop. 4µg of total DNA was used in the assay. The telomere specific probes were used to bind to the digested DNA after they are transferred to the nylon membrane and UV-crosslinked. The DEG labelled probes are visualised using HRP substrate and the signal intensity was quantified using image J software.

Cell cycle analysis

Cell cycle analysis was performed by DNA content analysis using propidium iodide (PI)/RNase staining. Briefly, the cells were transfected with siRNA using RNAiMAX reagent. After specific time point, the cells were harvested and fixed with absolute
ethanol overnight. Next day, the cells were pelleted and washed 3 times. PI was used at 1:5000 dilution in PBS and incubated with cells for 30-60 mins. After the incubation, the cells were analysed using FACS with specific gates using 532-nm excitation with a 585/42-nm bandpass filter.

3C- chromatin interaction assay

Cells were fixed with 2% formaldehyde for 10 mins and lysed with cold lysis buffer (50mM Tris-HCL pH7.5, 150mM NaCl, 5mM EDTA, 0.5% NP-40, 1% Triton X-100) on ice for 20 mins. Isolated nuclei were resuspended in DNase-free water and chromatin was digested using HindIII enzyme for 36 hours. Fragmented chromatin was ligated overnight at 16C and after phenol-chloroform extraction, 3C template DNAs were quantified using Qubit dsDNA High Sensitivity Kit (Thermo Fischer). 3C-qPCR was performed as described previously using primers specific to hTERT promoter and the T-INT1 region (3).
Supplementary Figures

A

B

C

D

E
Supplementary Figure 1: A) Schematics of CRISPR genome editing in hTERT gene to insert GFP or NanoLuc gene. Either GFP or NanoLuc gene is inserted under the control of endogenous hTERT promoter in exon 1 with in-frame fusion. B) Gene expression of hTERT and C) telomerase activity was measured in all our reporter cell lines after successfully inserting promoter mutation (C228T/C250T) and reporter gene (GFP/NLuc). Actin was used as a control gene to normalise hTERT expression. D) Chromatogram images showing the mutated residues in the promoter of hTERT gene in GFP reporter lines (top) and NanoLuc reporter lines (bottom). E) Chromatogram images showing in-frame fusion of GFP in reporter lines HCT116-Mut-GFP and U251-Mut-GFP (top); NanoLuc gene in reporter lines LN382-Mut-NLuc, DLD-1-Mut-NLuc and HCT116-Mut-NLuc (bottom).
Supplementary Figure 2: A) Scatter plot showing signals from PrestoBlue in 3 different replicates of DLD-1-Mut-NLuc cells treated with siRNA library. B) Scatter plot showing luminescence-based NanoLuc readings (obtained using Nano-Glo luciferase assay system) from different replicates from DLD-1-Mut-NLuc cells treated with siRNA library. C-D) Scatter plot showing FLuc and NLuc activity from LN382-Mut-NLuc cells after siRNA treatment. FLuc activity (left) is a measure of cell viability while NanoLuc activity (right) is a measure of the hTERT promoter activation. E-F) Scatter plot showing FLuc and NLuc activity from HCT116-Mut-NLuc cells after siRNA treatment. FLuc activity (left) is a measure of cell viability while NanoLuc activity (right) is a measure of the hTERT promoter activation.
Supplementary Figure 3:

A) Box plot showing the sgRNA count (in log2 scale) across various conditions and harvesting days from HCT116-WT-GFP cells (left) and HCT116-Mut-GFP cells (right).

B) Box plot showing the sgRNA count (in log2 scale) across various conditions and harvesting days from U251-Mut-GFP cells (right). The sgRNA representation is equal across various days and conditions used in both cell lines.

C) Venn diagram showing the overlap of hits obtained from cell lines with the same hTERT mutation status (C228T). The common overlapped genes are listed in a yellow box. The known regulators are shown in green font while the novel hits are shown in blue.

D) Venn diagram showing the overlap of hits obtained from cell lines with different hTERT mutation statuses (C250T and C228T). The common overlap genes are listed in a yellow box. The known regulators are shown in green font while the novel hits are shown in red font.

E) Cell cycle analysis was performed in T98G isogenic cell lines after transient knockdown (with 2 siRNAs) of MED12. X-axis represents PI staining and y-axis represents cell count. For Mut-hTERT promoter cell line (T98G-C250T), the analysis was performed at early (p1) and late passage (p10) with continuous knockdown (with 2 siRNAs) of MED12.

F) Telomere length assay was performed in T98G isogenic cell lines after continuous transient knockdown (with 2 siRNAs) of MED12 for two months. The mean telomere length of each sample is indicated below (TRF: Telomere restriction fragment).
Supplementary Figure 4: A) qPCR data showing the expression of GABPA in non-reporter T98G and U251 cell lines with Mut hTERT promoter after transient knockdown (with 2 siRNAs) of MED12. B) Gene expression analysis was performed for the MED12 gene by qPCR in T98G-WT and T98G-Mut after stable MED12 knockdown (with 2 shRNAs). Ct values were normalized to actin gene. C) Western blot image shows the protein levels of MED12 in T98G-Mut lines after stable MED12 knockdown (with 2 shRNAs) and rescued with MED12 overexpression. HSP90 was used as a loading control. D) Telomerase activity assay was measured in T98G-Mut lines after stable MED12 knockdown (with 2 shRNAs) and rescued with MED12 overexpression. Error bars indicate the mean ± SD of three independent experiments. P values were calculated by Student's t-test method (*, p<0.05; **, p<0.01; ***, p<0.001). E) Image showing the colony formation by crystal violet staining of T98G-WT and T98G-Mut cells after MED12 knockdown (with 2 shRNAs) and rescued with MED12 overexpression.
Supplementary Figure 5: A-B) ChIP-qPCR was performed for MED12 and GABPA in T98G-WT (A) and BLM-WT (B) cells transfected with siControl and siMED12. Enrichment in the proximal hTERT promoter was calculated by using % input method. C) CoIP was performed in isogenic T98G lines against endogenous MED12 and IgG. The fractions were separated on SDS-PAGE and probed with anti-MED12 and anti-GABPA. D-E) ChIP-qPCR was performed for MED12, GABPA and IgG in T98G-Mut (D) and BLM-Mut (E) cells transfected with siControl and siGABPA. Enrichment in the proximal hTERT promoter was calculated by using % input method. F) Chromatin interaction frequency between Mut-hTERT promoter and T-INT1 region was analysed by 3C-qPCR in WT hTERT promoter lines transfected with siControl and siMED12. Error bars indicate the mean ± SD of three independent experiments. P values were calculated by Student's t-test method (*, p<0.05; **, p<0.01; ***, p<0.001).
Supplementary Table 1. List of hits across different cell lines used in genome wide screens

siRNA screen	CRISPR knockout screen			
DLD-1-Mut-Nluc	LN382-Mut-Nluc	HCT116-Mut-Nluc	U251-Mut-GFP	HCT116-Mut-GFP
ALDOA	ABCC10	BCL9	ABCB10	ABHD5
AMD1	ABHD9	CACNA1S	ACOT9	ACBD5
APEX1	ANKAR	S100G	ADAM19	ACCSL
CCND1	APOL4	CFL1	AGRP	ACOX1
BCL9	ARHGAP22	DPYD	ALDH5A1	ACSBG2
BGLAP	ASB14	EIF2S3	ALG2	ACSF3
BOK	ASTN2	EPHB2	API5	ACTN2
ZFP36L1	ATG3	ETU2	ARL6IP1	ACVR2B
MPPED2	ATG7	GABPA	ARMCX1	AIM1L
C11orf10	B3GAT2	GABPB1	ARMCX2	AKAP6
S100G	BCL9	GZMK	ARMCX3	AKT1
CAPN3	BGLAP	HRG	ARMCX6	AKTIP
CAPN6	C19orf18	IL17A	ASCL4	APOBEC1
CAPS	C19orf39	PDX1	ASGR2	ARL13B
RUNX1T1	C19orf44	LHX1	ATG4A	ATP13A4
CCND2	C19orf47	SMAD2	ATP1B4	B9D1
CDH8	C1orf70	MCM2	ATP6V1B2	BCL7A
CDK4	C3orf62	MYC	AWAT2	BCL7C
CDK7	C5orf22	RPL10A	BEX4	BIRC2
CDR2	C9orf135	NTF4	BEX5	C17orf82
CDX1	C9orf9	ODC1	C11orf83	C1orf137
CFL1	CACNA1S	OR1F1	C1GALT1C1	C21orf59
CHD4	CACUL1	PDK2	C3orf55	C7orf55
CNN1	CALML4	PFDN4	C9orf50	CALCRL
COL4A2	CARD8	PLN	CABIN1	CAMTA2
CPA	CASTOR1	PPP2R3A	CAPN6	CBLN1
COXI	CCDC181	CCL4	CAPRIN1	CCDC146
CSNK1A1	CCDC67	SGCD	CAST	CCDC6
CSNK1G2	CCDC88A	SLC15A2	CCDC115	CCND3
CTNNB1	CCDC92	SNRPD2	CCDC22	CD180
DAB1	CDR2L	ZNF19	CCDC83	CD4
DAZL	CHCHD5	ZNF79	CDC42BP	CD96
DBI	CHL1	CCDC6	CDC45	CDC37L1
DIO1	CHST5	PPRF18	CDC4A8	CDC4A
DPYD	CHTF18	SART1	CDX4	CDH6
DSC3	CLEC19A	NCR2	CHIC1	CHRNA6
DUSP8	COL6A6	MED27	CHRD1	CLSTN2
Gene 1	Gene 2	Gene 3	Gene 4	Gene 5
--------	--------	--------	--------	--------
E4F1	COPG1	MED7	CINP	CMIP
EEF1A1	CPLX3	SH3BP5	CITED1	CPXM1
EIF1AX	CPSF6	ZNF432	CLEC5A	CREG1
EIF2S1	CTRC	SDC3	COPA	CSTF3
EIF2S3	CXorf22	SART3	COPS5	CYP4F3
EIF5	CYBASC3	IQSEC1	CPXCR1	DAK
ELK3	DDX19B	MED6	CRB3	DAPK2
ENDOG	DDX21	AVIL	CT47B1	DEAF1
STOM	DDX43	DDX19B	CTAG2	DEPDC4
EPHB2	DEFB112	PUF60	CTDSPL2	DPYS15
ETF1	DENND1B	COTL1	CTHRC1	EPS15
EZH1	DIO1	BACE2	CUL4B	FAM111A
FAAH	DLX4	SOSTDC1	CXCRR3	FAM122A
FAH	DNAJC7	VSX1	CXorf65	FAM221A
FBN1	DOCK11	ATP6V0A4	CXorf66	FAM69A
FGB	DOK4	RNF138	DACH2	FCR1G
FGFR2	DPP9	RIN2	DCAP12L2	FLAD1
FOXF1	DPYD	CCER2	DIX	FNBP1L
FLII	DPYS12	RRN3	DDX39B	FNDC1
FLNA	EHF11	ZNF586	DDX55	FNIP2
GABPA	EIF4G3	TRPM7	DGAT2L3	FOXL1
GABPB1	EP400	SVOP	DOCK11	FRAS1
GBA	EPC1	ZNF83	DPPA3	FSD1L
GDF2	EPHB2	SLC22A11	DRP2	GAB1
GPC1	ESPNL	UBQLN4	EDA	GABBR1
HELLS	EZH1	PRDM8	EDDM3B	GDPGP1
HLA-DQB2	F11	ACN9	EFN1B	GFI1B
HRM2PH1	FAAH	C16orf62	EIF3B	GLRA4
PRMT1	FABP2	NAT14	EP300	GORASP1
HSPA5	FAM120AOS	ZNF250	ERCC3	GPR108
HSPA9	FAM98B	HERPUD2	EXOSC5	GPR135
IL5	FBXO11	MRPL36	TAM199X	GVQW1
IL18	FGFR9	ACD	FAM19A2	H2AFV
IMPDH1	FKB9	PPDPF	FAM19A3	HHEX
ITG6	FOLR4	FCRL2	FAM26F	HN1L
JARID2	GABPA	TMCO7	FAM46D	HOXB5
KCNJ15	GABPB1	SEL1L2	FBXL14	HOXD12
KRAS	GFOD2	OR2B2	FDFT1	HSPB6
KTN1	GLYATL1	SF3B5	FITM2	HYI
LLGL1	GPC1	HS6ST2	FOXK2	IKBKG
SMAD2	GPR112	ER11	FRK	IPO4
MCM2	GPT8	TMEM88	FRMD7	JPH1
MPST	GTF3C4	RG9MTD2	GABRR2	JUP
MYC	H1FOO	PLCD3	GGCX	KATNAL2
-----	-------	-------	------	---------
NCK1	HAND1	LRR1C5	GGCX	KCNA7
RPL10A	HCC1	DOCK11	GK	KCNA1B
NONO	HCN1	MDP1	GLRX3	KCTD14
NTN3	HEY1	CCDC17	GLUD2	KIAA1211L
NUP98	HEYL	FAAH2	GPC3	KIF3C
OPRK1	HIST2H3A	ZNF836	GPR174	KLHL7
P2RX3	HTT	DENND1B	GREM2	KLRG2
FURIN	IKBKG	C1orf177	GRIA3	KRIT1
PDGFRB	INPP5F	C1QL2	GRWD1	KRTAP10-4
PDK2	ISM2	OR5A51	GTF2E2	LAMB2
PGF	ISO1	RNF169	GTF2H5	LCA5
PML	ITGB6	WDR51B	H2BFM	LRFN4
POLR2C	ITSN2	NKA1N3	H2BFWT	LRRC46
POLR2E	JARID2	VN1R5	HIF1A	LRRK1
POLR2G	KCNA3	TCEAL5	HINFP	LZIC
POLR2I	KCNH2	PALM3	HIRA	MAFB
PPP2R3A	KIAA2013	OTOP3	HNRNPH2	MAPKAPK5
PRIM1	KLC4	TRIM77	HTR2C	MCOLN2
PRKAR2A	L1TD1	OR5AU1	HTR3E	MESC2
PRSS1	LAMA3	RPL18P4	IL13RA1	MEX3B
PSMA1	LCE1F	TEX19	IL13RA2	MORN3
PSMA5	LGALS9B	C14orf53	IRS4	MPND
PSMA6	LHX9	LOC646570	ITGB1BP2	MSX1
PSMA7	LIME1	LOC646872	ITM2A	MTR
PSMB3	LINC01501	RPL7P9	KAT6A	MTRR
PSMB6	LOC401442	BCL9	KCNN10	NCAN
PSMB7	LOC646570	CACNA1S	KHSRP	NDST4
PSMC1	LOC649975	S100G	KIAA2022	NFKBIB
PSMC2	LOC727894	CFL1	KLHL22	NOL7
PSMC3	LOC728685	DYPD	KLHL4	OAF
PSMC5	LOC729296	EIF2S3	KRT13	ODF3
PSMC6	LOC729421	EPHB2	LAMP2	OMP
PSMC2	LOC729823	ETV2	LDLR	OR51A7
PSMC3	LOC729827	GABPA	LMAN1	OR7D2
PSMC7	LOC730271	GABPB1	LPCAT1	OTOA
PSMC11	LOC732028	GZMK	LRRTM4	PAQR9
PSMC12	LOXL4	HRG	LSMEM2	PDS5A
PTPRB	LYZL4	IL17A	LTV1	PIM1
RFC2	MCM2	PDX1	LYPD6	PJA1
BRD2	MDS1	LHX1	MAPKAPK3	PLCE1
RPLPL1	MED6	SMAD2	MATR3	PLEKH2
RPLPL2	MPND	MCM2	MAVS	PLOD2
RPS3	MYF5	MYC	MCEE	POU2F3
-------	-------	------	-------	---------
RPS3A	NAA10	RPL10A	MED12	PPFIA3
RPS4X	NAT14	NTF4	MED19	PPM1D
RPS5	NCOA2	ODC1	MED27	PRICKLE3
RPS6	NDRG3	OR1F1	METTL23	PROM2
RPS7	NDUFS7	PDK2	MFSD12	PRPH
RPS8	NGEF	PFDN4	MPL	PSD4
RPS9	NKAIN3	PLN	MRPL41	PTGS1
RPS10	NPIPB7	PPP2R3A	MSN	PTPN22
RPS11	NRSN1	CCL4	MTMR8	PTPRZ1
RPS13	OR13G1	SGCD	MX1	RAB39B
RPS14	OR51T1	SLC15A2	NABP2	RBP3
RPS15	OR52E6	SNRPD2	NAGK	REPS2
RPS27	OR8B2	ZNF19	NDP	RGL4
RPS27A	OTOP3	ZNF79	NHSL2	RGS12
SDC4	PABPC4L	CCDC6	NSMCE2	RGS18
ST3GAL1	PAK4	PRPF18	NUTF2	RHNO1
SLC1A3	PALM3	SART1	NXF5	RND3
SLC4A2	PALMD	NCR2	NXT1	RPL12
SLC8A3	PCNT	MED27	OPHN1	S100Z
SLC15A2	PCSK2	MED7	OTOS	SAT2
SLC16A1	PHF16	SH3BP5	OTUD6A	SEMA4C
SMARCB1	PHF21A	ZNF432	P2RY10	SGPP2
SNRPD1	PHKB	SDC3	P2RY4	SKIL
SNRPD2	PIWIL2	SART3	PATL2	SLC25A43
SNRPD3	PMVK	IQSEC1	PCDH19	SLC5A5
SNRPF	PPWD1	MED6	PCDHGB1	SNAPC4
SON	PRC1	AVIL	PCGF6	SPATA24
SUPT5H	PRDM8	DDX19B	PIAS1	SPDYA
TAT	PRKAR2A	PUF60	PIGO	SPNS2
TBX1	PRPF18	COTL1	PIGV	SRSF2
TKT	PRR12	BACE2	PIN1	ST8SIA4
TPR	PRR17	SOSTDC1	PIN4	STRIP2
UBTF	PRR4	VSX1	PLA2G12A	SVOPL
UPK1B	PRRX2	ATP6V0A4	PLEKHM1	TBL2
UQCRC2	PRSS1	RNF138	PLP1	TCHHL1
WEE1	PSG1	RIN2	PNMA5	THBS3
ZNF19	PSMA7	CCSER2	PNPLA4	TICRR
ZNF79	PTPRB	RRN3	POIF1B	TLR1
ZNF84	RAD50	ZNF586	POLR2I	TMEM220
ZNF193	RAPGEF4	TRPM7	POU3F2	TMEM235
MLL2	RASGRP1	SVOP	PRPS1	TMPPE
AP3B2	RBPMS2	ZNF83	PRR7	TNNT2
Gene A	Gene B	Gene C	Gene D	Gene E
--------	--------	--------	--------	--------
SMC1A	RILP	SLC22A11	PRRG3	TSKU
SLC10A3	RNF138	UBQLN4	PSMD10	TTTL10
HIST3H3	RPLP2	PRDM8	RAB40A	UCK2
HIST1H3J	RXRG	ACN9	RAB9B	VWA3A
MAD1L1	S100G	C16orf62	RBM41	WDR41
NIPSNAP1	S100PBP	NAT14	RBMXL3	WDR86
IFITM1	SAMD13	ZNF250	RIPPLY1	XYLT1
CAMK1	SART3	HERPUD2	RNF128	YOD1
BARX2	SEC22B	MRPL36	RNPS1	ZBTB10
CGGBP1	SH3TC2-DT	ACD	RPL30	ZBTB47
CDC14B	SIGLEC12	PPDPF	RPS19	ZFP92
PRPF18	SLC43A1	FCRL2	RRN3	ZNF197
PDLIM4	SMAD2	TMCO7	RTP3	ZNF268
RUVBL1	SON	SEL1L2	S1PR2	ZNF384
NCOA1	SPINT2	OR2B2	SAPCD2	ZNF575
DDX3Y	SRMS	SF3B5	SATL1	ABCA2
EIF3A	SSTR1	HS6ST2	SEC11A	ABHD2
EIF3B	STOM	ER1I	SEC63	ACAN
EIF3C	SUCLG1	TMEM88	SEMA5B	AHNAK
EIF3G	SYNGR1	RG9MTD2	SH3BGRL	AHR
EIF3I	TCEAL6	PLCD3	SLC15A4	ALDH6A1
GALNT4	TFAP2E	LRRC15	SLC16A2	ALG14
SUCLG1	TFPI2	DOCK11	SLC25A53	ALOXE3
CES2	TMCC2	MDP1	SLC29A2	ANAPC13
TOP3B	TMEM98	CCDC17	SLC33A1	ANTXRL
HIST1H2BJ	TMEM9B	FAAH2	SLC38A10	AP1G2
SYNGR1	TMSB15A	ZNF836	SLC7A3	AP2S1
DDX21	TMTC3	DENND1B	SLK	APOO
MED14	TOMM40	C1orf177	SNRPB2	ARMC1
NDST3	TRAK1	C1QL2	SNRPD2	ASB6
MED21	TRAP1	OR5AS1	SPATA6	ATF7IP
DDX23	TRIM50	RNF169	SPINK2	ATP5A1
HAND1	TRIM68	WDR51B	SPTLC1	ATP5SL
MED17	TRPM7	NKAIR3	SRPX2	ATP6AP2
MED7	TTC22	VN1R5	STX17	BACH2
STX8	TTPAL	TCEAL5	SYMPK	BCAP29
CTR9	TUBB4B	PALM3	SYTL4	BRD2
MDC1	TUBGCP4	OTOP3	TAC1	C11orf91
ZNF432	TXLNB	TRIM77	TADA1	C16orf92
NUP93	UBXN11	OR5AU1	TAF5L	C18orf21
RAPGEF2	UGT2B15	RPL18P4	TAF9B	C19orf70
SART3	UPF1	TEX19	TBC1D12	C2orf68
CKAP5	VWF	C14orf53	TBL1X	C7orf26
Gene	Gene	Gene	Gene	Gene
---------	---------	---------	---------	---------
NUPL1	WDR51B	LOC645670	TBPL1	C8orf74
TMCC2	WFIKKN1	LOC648672	TBX22	CABP1
MED12	WIPF1	RPL7P9	TCEAL1	CAD
MED6	WNK2	TCEAL7	CAP1	
CHAF1A	YWHAB	TERT	CCDC106	
PDIA6	ZNF187	TEX11	CCDC39	
PSMD14	ZNF250	THOC6	CCT7	
PEMT	ZNF418	TIMM8A	CD6	
TOMM40	ZNF432	TMED2	CDC37	
HAX1	ZNF552	TMEM230	CDC5L	
NXF1	ZNF778	TMEM259	CDIPT	
IPO8	ZNF799	TMEM31	CDT1	
TNFSF13B	ZNF836	TMEM35	CEP57	
AVIL				
TOB2				
RUVBL2				
GPR83				
RAB10				
ERP29				
CPSF6				
OGFR				
RAPGEF4				
TOPBP1				
CLASRP				
RPL35				
DDX19B				
COPZ1				
CARD8				
TRAK1				
SEPHS1				
CDK19				
WDR43				
NUP205				
SF3B3				
SF3B1				
TMEM50A				
NUP62				
PLD3				
IL17RA				
BRD1				
MTCH2				
FBXO7				
SPDEF				
Gene 1	Gene 2	Gene 3		
--------	--------	--------		
TXN2	ZCCHC16	FBXO11		
DAK	ZNF280C	FERD3L		
ACOT11	ZNF414	GABRB1		
ATRNL1	ZRANB2	GABRB3		
SLITRK5	GDAP1L1			
GIGYF2				
CCDC9	GNB2L1			
GTPBP5	GNPDA1			
OR2F1	GRB10			
HEY1	H2AFX			
MTBP	HBZ			
CECR6	HDGF			
TRIB2				
CCDC113	HIRIP3			
NOSIP	HOXA9			
CUTC	HSPB9			
FCF1	IFNBI			
TUBD1	IGLL1			
THEM6	IL17D			
POMP	IL27			
AIG1	INO80			
ANAPC5	IPO11			
RNF138	ISCA1			
LARS	ISCU			
C14orf100				
AZIN1	KARS			
PCF11	KCNQ4			
ZNF44	KDM5C			
LUC7L3	KLF17			
SSH1	L3MBTL2			
STAG3L1	LARP4B			
CCSER2	LAT2			
SMCR7L	LCE3C			
APBB1IP	LDB3			
HES2	LECT1			
GATAD2A	MADCAM1			
TRPM7	MAML1			
C1orf26	MAP2K1			
ASPN	MCCD1			
WDR55	MDM2			
COMMMD8	MED10			
MED9	MERTK			
AKIRIN2	METTL14			
Gene 1	Gene 2			
-----------	-------------			
RBM23	MKI67IP			
CEP55	MKS1			
TYW1	MMP26			
TMEM100	MORF4L1			
DDX43	MRPL21			
SUPT20H	MRPL34			
RAB20	MRPL51			
DENND4C	MRPS23			
FRMD4A	NCL			
DOK4	NDUFA1			
MUDENG	NEK11			
SLC22A11	NID2			
PCDHGA1	NOL9			
BEX4	NUP133			
CLDND1	OR5AC2			
TMEM9B	PAFAH1B3			
UBQLN4	PALB2			
MCCC1	PARD6B			
DUSP22	PCDHA3			
XAB2	PDCL			
OTUD7B	PGD			
KIF15	PHYH			
C16orf62	PIGL			
ADAMTSL3	PLIN1			
NHSL1	PLK1			
SMAGP	PLXNB2			
NDRG3	PMVK			
GATAD2B	PNMAL2			
KIDINS220	POLD2			
STARD9	POLD3			
TMEM181	POLR1E			
WDR19	POP5			
ZNF250	POP7			
ARHGAP22	PPA1			
GNB4	PPP1R11			
PBOV1	PROM2			
AASDHPPT	PRPS2			
ELAC2	PSMD12			
RIC8A	RAB11B			
ZFAND3	RAN			
MRPL17	RASGRP1			
SH2D4A	RASSF8			
CARD9	RBM23			
EDDM3B	RHOST2			
-------	--------			
LPIN3	RIOK3			
UBE2Z	RNGTT			
CYP4F12	RPL11			
LYNX1	RPL23			
GID4	RPL35			
PDCL3	RPS2			
PPDPF	RSU1			
IRX1	RTCA			
SAP130	SAE1			
TMEM53	SAE1			
ZNF552	SCO1			
ARHGAP28	SERPINB2			
PIP4K2C	SLC25A47			
RMI1	SLC38A2			
CCDC92	SLC50A1			
ABTB1	SLX4			
KCNIP4	SMG9			
NIPA2	SMAD2			
OR2B2	SMUG1			
TTC25	SNRPD3			
PARP9	SNX12			
WDR87	SNX22			
ING5	SPC25			
C14orf142	SRPRB			
C6orf168	SRXN1			
CYorf15B	STK40			
MYO18B	SV2B			
CBX2	TAF7			
MPV17L2	TECPR1			
PARP10	TFAM			
LRP11	TFB1M			
MAEL	TLN1			
C12orf62	TMC5			
STON2	TNNT2			
WNT3A	TNPO3			
LMLN	TP53			
NAV2	TPI1			
C9orf140	TPT1			
KIAA2013	TRAIP			
DCAF15	TRIB1			
ZNF799	TRMT10C			
ANKRD40	TRPM1			
Gene	Gene	Gene		
-------	-------	-------		
RFT1	TRUB2			
IMP4	TSFM			
ZBTB47	TTC30A			
C13orf27	TWIST1			
RG9MTD2	USP34			
SERHL	WARS2			
NACC1	WDR3			
PANX3	WDR33			
OR51A7	WDR66			
AK7	WRAP53			
C19orf47	XPO1			
TPRG1L	YRDC			
C1orf216	YWHAE			
EDARADD	ZNF280C			
IQGAP3				
C1orf88				
CST9LP1				
CIB4				
SCLT1				
C9orf135				
UPRT				
GPR119				
DOCK11				
CACUL1				
RPL14L				
C13orf31				
HAPLN3				
C17orf77				
AMAC1				
C19orf84				
COMMD7				
CAMSAP1				
TTL11				
KIAA2026				
C9orf84				
PATE1				
ZNF600				
FAM47B				
CLEC4C				
GPHA2				
DAND5				
DHRS7C				
TMEM192				
Gene				

CDHR3				
NEGR1				
NALCN				
TAS2R50				
MDGA1				
WDR51B				
C11orf72				
MORN3				
LGALS9B				
BOD1P				
C19orf54				
TPRX1				
OR22Z1				
ZNF844				
FAM19A3				
ERICH2				
RPS26P40				
PRSS38				
LINC01139				
ESPNL				
KLHL38				
POTEA				
STAC2				
ZNF404				
BARHL2				
RSHL3				
ZNF322B				
TMEM212				
GRXCR1				
USP27X				
OR5B12				
LOC390335				
THA1P				
PRAMEF8				
RPS12P4				
RPS15AP17				
LOC391722				
LINC01061				
RPS26P10				
LOC401677				
RPL15P11				
OR4A47				
LOC440055				
LOC729036				
LOC729398				
LOC729592				
LOC729622				
LOC729720				
LOC729807				
LOC729833				
RPSAP19				
LOC730271				
LOC731517				
HGC6.3				
FAM196B				
TIMM23				
THEGL				
Supplementary Table 2. Primers used in CRISPR screen library amplification.

Primer name	Sequence
v2.1-F1	GAGGGCCTATTCCCCATGATTC
v2.1-R1	GTTGCAGAAAAAGAGCTTTCAGGG
D501	AATGATACGGCCACCAGGAGATCTACATACTATAGCCTACACCTTCTTCCTACCGATCTTTGTGGAAAGGACGAA CACCG
D502	AATGATACGGCCACCAGGAGATCTACATACAGGACACAGAGTCTGCAAGGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D503	AATGATACGGCCACCAGGAGATCTACACAGGACACAGAGTCTGCAAGGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D504	AATGATACGGCCACCAGGAGATCTACAGGCGAAGGACACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D505	AATGATACGGCCACCAGGAGATCTACACAGGACACAGAGTCTGCAAGGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D506	AATGATACGGCCACCAGGAGATCTACACATAGGCGAAGGACACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D701	CAAGCAGAAGACGGCATACGAGATCGAAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D702	CAAGCAGAAGACGGCATACGAGATCGAAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D703	CAAGCAGAAGACGGCATACGAGATCGAAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D704	CAAGCAGAAGACGGCATACGAGATCGAAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D705	CAAGCAGAAGACGGCATACGAGATTTTCTGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D706	CAAGCAGAAGACGGCATACGAGATTTTCTGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
D707	CAAGCAGAAGACGGCATACGAGATTTTCTGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAA AAC
Supplementary Table 3. List of secondary siRNA screen hits

Gene Symbol	Gene ID	WT Toxicity	WT Inhibition	C228T Toxicity	C228T Inhibition	Mutant specific inhibition score
C7orf26	79034	-34.43	-259.95	-44.88	-52.58	-207.36
MED12	9968	86.98	-32.70	78.53	57.02	89.71
CHD4	1108	31.35	-35.91	31.09	46.79	82.70
TNRC18P1	644962	40.19	-13.51	50.87	47.58	61.09
SNRPD2	6633	-4.68	-3.61	-34.28	51.72	55.33
TAF7	6879	-35.29	-52.09	-8.28	1.12	50.96
EIF3C	8663	75.56	4.95	70.98	54.48	49.53
GNB2L1	10399	28.93	-22.97	47.22	19.45	42.42
RG9MTD1	54931	-33.14	-45.36	-5.80	-7.80	37.57
DPP9	91039	36.92	-19.52	35.01	17.86	37.38
RPL35	11224	78.22	18.38	81.01	54.56	36.17
PSMD12	5718	65.63	9.45	60.18	42.68	33.23
Loc	Luc	98.62	-35.60	97.38	-3.64	31.96
LOC730271	730271	60.12	-5.36	37.69	25.12	30.48
SNRPD3	6634	28.23	25.87	-18.81	51.24	25.36
RAPGEF4	11069	68.29	24.99	73.93	48.80	23.81
PMVK	10654	-65.37	2.62	-32.55	25.08	22.46
MORRN3	283385	16.19	27.04	16.76	49.42	22.38
Neg1	Neg1	17.70	-13.55	-3.75	8.04	21.59
KIAA2013	90231	33.66	24.43	32.01	45.24	20.81
FAM19A3	284467	66.49	31.86	56.92	51.96	20.11
GABPA	2551	21.04	28.36	-4.95	48.42	20.07
CYP4F3	4051	-1.36	-7.75	-2.73	12.12	19.87
EDDM3B	64184	10.67	18.38	12.29	37.81	19.43
SI References

1. Mair B, et al. (2019) Essential Gene Profiles for Human Pluripotent Stem Cells Identify Uncharacterized Genes and Substrate Dependencies. Cell Rep 27(2):599-615 e512.

2. Akincilar SC, et al. (2021) NAIL: an evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFkappaB in colitis. Gut 70(10):1857-1871.

3. Akincilar SC, et al. (2016) Long-Range Chromatin Interactions Drive Mutant TERT Promoter Activation. Cancer Discov 6(11):1276-1291.