REVIEW

Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation

Eleonora Olivotto,1 Miguel Otero,2 Kenneth B Marcu,3 Mary B Goldring2

ABSTRACT

Osteoarthritis (OA), a whole-joint disease driven by abnormal biomechanics and attendant cell-derived and tissue-derived factors, is a rheumatic disease with the highest prevalence, representing a severe health burden with a tremendous economic impact. Members of the nuclear factor κB (NF-κB) family orchestrate mechanical, inflammatory and oxidative stress-activated processes, thus representing a potential therapeutic target in OA disease. The two pivotal kinases, IκB kinase (IKK) α and IKKβ, activate NF-κB dimers that might translocate to the nucleus and regulate the expression of specific target genes involved in extracellular matrix remodelling and terminal differentiation of chondrocytes. IKKα, required for the activation of the so-called non-canonical pathway, has a number of NF-κB-independent and kinase-independent functions in vivo and in vitro, including controlling chondrocyte hypertrophic differentiation and collagenase activity. In this short review, we will discuss the role of NF-κB signalling in OA pathology, with emphasis on the functional effects of IKKα that are independent of its kinase activity and NF-κB activation.

INTRODUCTION

Osteoarthritis (OA) is the most common joint disease and the major cause of disability in the adult population; with annual costs of knee OA being immense, this continues to be a severe health burden with respect to morbidity and expense. Age is the primary OA risk factor, and ageing-related changes also contribute to pathophysiological changes triggering OA disease. In addition, individuals with other specific OA risk factors, including obesity, altered joint mechanical loading, joint injury and inflammation, as well as genetic components, may undergo an accelerated rate of changes that are similar to those associated with ageing. Although cartilage destruction is the hallmark of OA, and collagen erosion is the pivotal event that determines the irreversible progression of OA disease, it is now well established that OA is not only a disorder of cartilage homeostasis but is a whole-joint disorder involving all joint tissues, including the subchondral bone, menisci and synovial membrane. In spite of recent advances, the mechanisms leading to cartilage destruction in patients with OA are still not clearly identified and no successful therapeutic intervention exists. This brief review elaborates on how nuclear factor (NF-κB) signalling contributes to OA pathophysiology, not only by modulating stress-related processes, but also by the hypertrophic-like conversion of OA chondrocytes.

CARTILAGE DEGRADATION IN OA DISEASE: PHENOTYPIC SHIFT OF ARTICULAR CHONDROCYTES

The principal function of articular cartilage is to adjust to biomechanical forces during joint movement; a function mediated by the extracellular matrix (ECM). Cartilage homeostasis is defined by normal cartilage ECM compensating for mechanical stress without structural or cellular damage. The ECM is produced and maintained by articular chondrocytes, the unique cell type residing in articular cartilage, which are essential for maintaining structural and functional integrity of the cartilage. Mechanical, oxidative and inflammatory stresses activate signal transduction pathways in cartilage, which disseminate a phenotypic shift characterised by the release of the chondrocyte from growth arrest, imbalanced homeostasis,

To cite: Olivotto E, Otero M, Marcu KB, et al. Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open 2015;1:e000061. doi:10.1136/rmdopen-2015-000061

Prepublication history for this paper is available online. To view these files please visit the journal online (http://dx.doi.org/10.1136/rmdopen-2015-000061).

KBM and MBG contributed equally to this work.

Received 1 February 2015
Revised 20 March 2015
Accepted 22 March 2015
hypertrophic-like conversion and aberrant expression of proinflammatory and catabolic genes.6 As a result, OA chondrocytes are unable to maintain tissue homeostasis and fail to replace ECM, especially collagen, once it is degraded by metalloproteinases (MMPs), in particular by MMP-13, the major MMP responsible for remodelling type II collagen in cartilage tissue.7–9 Characteristic features of OA chondrocytes in ageing and inflammatory models include prominent epigenetic alterations10,11 leading to deregulated gene expression, exacerbated and sustained NF-xB activation, and MMP production, all of which can be modelled in vitro by interleukin 1 (IL-1β) stimulation.12

The NF-xB pathway is most prominent among the different gene signatures in human disease and different experimental OA models, suggesting a key regulatory role for stress and inflammatory signalling via the canonical NF-xB pathway in OA pathobiology.5,12–14 Abnormal NF-xB activation provokes the loss of the growth-arrested state of articular chondrocytes, accompanied by the production of procatabolobic mediators, including aggrecanases and MMPs that induce cartilage degradation, and the proinflammatory cytokines (IL-1β) and tumor necrosis factor α (TNF-α) that induce them. Further, continued NF-xB activation results in the overexpression and activation of other regulatory transcription factors, including E74-like factor 3 (ELF3) and endothelial PAS domain protein 1 (hypoxia inducible factor 2 alpha) (HIF-2α), which, in turn, further perpetuate OA disease via modulation of inflammatory and catabolic mediators15–17 and by linking hypertrophic-like conversion with inflammation.18,19 Together, these multilayered signalling networks collaborate to activate MMP13 expression and activity, and facilitate the progression of normal articular chondrocytes to a hypertrophic-like phenotype in vivo, thereby also contributing to OA onset and/or progression.6

Synovitis is a feature of the OA joint, in which the activated canonical NF-xB subunits upregulate the expression of chemokines (IL-8, chemokine (C-C motif) ligand 5 (CCL5)), cytokines (receptor activator of nuclear factor kappa B ligand (RANKL)), IL-1β, IL-6, TNF-α, cyclooxygenase 2 (COX2) and angiogenic factors (vascular endothelial growth factor, fibroblast growth factor 2).4,5 The homeostasis of the subchondral bone involves a balance between bone resorption, mediated by the receptor activator of nuclear factor kappa B (RANK)/RANKL signalling pathway that activates NF-xB transcription factors (inducing the expression of IL-1β, IL-6, prostaglandin E2 (PGE2)) and bone formation, controlled by osteoprotegerin (OPG). During OA, homeostasis is destroyed and the OPG/RANK/RANKL signalling pathway is deregulated.14

CONTRIBUTION OF THE NF-xB PATHWAY TO CARTILAGE DEGRADATION AND OA PATHOLOGY

NF-xB-mediated transcriptional control arises from the assembly of homodimers and heterodimers of five different NF-xB proteins.20 NF-xB dimers are sequenced in the cytoplasm with their transcriptional activities blocked by inhibitory IκB proteins. The two pivotal kinases IKKα and IKKβ initiate the release of active NF-xB dimers from IκB, so that specific NF-xB dimers might translocate to the nucleus and regulate the expression of specific target genes. In response to a host of proinflammatory and stress-like stimuli, IKKβ is the dominant acting IκBα kinase in vivo, controlling the so-called canonical pathway.20 However, IKKα is specifically required for the activation of the non-canonical, or alternate, NF-xB pathway, and has a number of in vivo functions as a serine–threonine kinase acting independently of NF-xB signalling (figure 1).12,21

In chondrocytes, IKKα and IKKβ have different functional roles in ECM remodelling and endochondral ossification, which are also developmental events recapitulated to a certain extent by hypertrophic-like chondrocytes in OA disease.22–24 Furthermore, in activated OA chondrocytes, the canonical NF-xB pathway is an orchestrator of gene expression programmes leading to the production of catabolic enzymes, cytokines and inflammatory mediators12,25 and it is believed to play pivotal roles in OA disease by coordinating a complex, multilayered signalling network. Table 1 summarises some of the events controlled by IKKα and IKKβ in OA disease.

CONTROL OF INFLAMMATORY/STRESS RESPONSES BY THE CANONICAL NF-xB PATHWAY

The IKKβ-driven, canonical NF-xB pathway signalling also has effects on downstream regulators of terminal chondrocyte differentiation (including HIF-2α, β-catenin and Runx2), thus linking inflammatory and oxidative stress responses, with phenotypic and functional changes in OA chondrocytes. These events further deregulate chondrocyte homeostasis and normal function (reviewed14). In OA chondrocytes, canonical NF-xB signalling acts as a sensor of exogenous and endogenous mechanical stress and inflammatory insults, and thereby coordinates the expression and activation of an abnormal cartilage catabolic pathway leading to the onset of OA disease (see reviews5,12), which also includes modulation of mitogen-activated protein kinase signalling via transcriptional control of GADD45β.44–46 In addition, NF-xB signalling plays a central role in disease progression and perpetuation, mediating a cascade of inflammatory responses triggered by advance glycation end products, Toll-like receptor ligands, or released ECM products, including fibronectin fragments, which lead to the continued expression of MMPs, aggrecanases, inflammatory cytokines and chemokines, and to an abnormal differentiation status.26–30 33–41 47

Among the downstream effectors of IKKβ-driven NF-xB signalling that play a central role in OA disease by coordinating a complex, multilayered signalling network, is HIF-2α (for review, see ref 12). HIF-2α has been shown to have central roles in OA disease by...
interconnecting inflammatory ECM degradative processes with chondrocyte hypertrophic conversion due to its control of genes involved in endochondral ossification and inflammatory factors, and its ability to trigger MMP13 via concerted actions between CCAAT-enhancer-binding protein beta (C/EBPβ) and RUNX2. ELF3 is another direct NF-kB target with central roles in cartilage catabolism and OA disease. ELF3 is an epithelium-specific member of the E26 transformation-specific sequence family of transcription factors with functional roles in epithelial cell differentiation, apoptosis and gut development. More recently, ELF3 has been shown to participate in a feedback loop with NF-kB signalling, by constitutively activating and stabilising canonical NF-kB in prostate cancer. In response to stress/inflammatory stimuli and depending, at least in part, on canonical NF-kB (p65/p50) signalling, ELF3 is induced in different tissues and cell types. Table 1

Table 1 Summary of the contribution of IKKα and IKKβ to chondrocyte catabolism and cartilage degradative processes

Contribution of IKKα and IKKβ to chondrocyte catabolism and cartilage degradation	References
Controls MMP, PGE2, COL10 and NO expression induced by RAGE	26-28
Participates in the TLR-driven MMP expression and NO production	29, 30
Regulates the expression of mediators of inflammation: ELF3, NOS2, IL-1, COX2	5, 15, 16, 25, 31
Links inflammation and hypertrophic-like conversion via HIF-2α, RUNX2, C/EBPβ	18, 19, 32
Perpetuates cartilage damage modulating signals driven by ECM products	33-38
Triggers inappropriate differentiation via IL-8 and GROα modulation	39-41
Decreases SOX9 expression and activity leading to abnormal matrix production and phenotype	42-43
Controls MAPK signalling, ECM remodelling, apoptosis and hypertrophy via GADD45β	44-46
Controls aggrecanase activity (ADAMTS5 expression) during OA development	47
Modulates collagenase activity via IKKα-mediated control of MMP10 and TIMP3*	42, 48
Hypertrophic-like conversion via IKKα control of RUNX2, COL10 and VEGF-A expression*	42, 48

*Indicates contribution of IKKα (via kinase-independent actions).

C/EBPβ, CCAAT-enhancer-binding protein beta; ECM, extracellular matrix; ELF3, E74-like factor 3; GROα, chemokine (C-X-C motif) ligand 1; HIF-2α, endothelial PAS domain protein 1 (hypoxia inducible factor 2 alpha); IKKα, IκB kinase alpha; IL-1, interleukin 1; MAPK, mitogen-activated protein kinase; MMP, metalloproteinases; NOS2, nitric oxide synthase 2, inducible; OA, Osteoarthritis; RAGE, advanced glycosylation end product-specific receptor; SOX9, SRY (sex determining region Y)-box 9; TIMP3, tissue inhibitor of MMP 3; TLR, toll-like receptor; VEGF-A, vascular endothelial growth factor A.
types, where it mediates inflammation by controlling the expression of nitric oxide synthase 2 (NOS2) or COX2, among other targets.31, 53 In chondrocytes, ELF3 expression is increased in OA cartilage and induced in vitro by IL-1β, thereby contributing to the IL-1β-mediated replication of the collagen, type II, alpha 1 (COL2A1) promoter,16 and the activation of MMP13 transcription.15

NF-κB-INDEPENDENT ACTIONS OF IKKα IN ARTICULAR CHONDROCYTES

During OA, chondrocytes undergo phenotypic modulation, and display increased expression and activities of matrix-degrading enzymes, and abnormal production of matrix structural proteins, including type X collagen. Importantly, that drive chondrocyte hypertrophy, including Notch signalling, indian hedgehog (IHH), RUNX2 and HIF-2α, have all been implicated in OA disease.12 18 19 32 54-58 The knockdown (KD) of either IKKα or IKKβ in three-dimensional cultures of human articular OA chondrocytes revealed essential and differential roles for IKKα and IKKβ on ECM remodelling and terminal differentiation.42 While the contribution of IKKβ predominantly involved downregulation of SRY (sex determining region Y)-box 9 (SOX9) expression and activity,43 surprisingly, IKKα KD led to a more pronounced alteration of the hypertrophic-like conversion of articular chondrocytes. The KD of IKKα (IKKα KD) dramatically stabilised the ECM, enhanced cell viability and strongly suppressed chondrocyte differentiation towards a hypertrophic-like state. Importantly, while IKKα loss did not modify MMP-13 protein levels, it did inhibit collagenase activity, as revealed by the markedly suppressed accumulation of type II collagen fragments containing the 3/4C neo-epitope (COL2-3/4C).42 Importantly, the functional effects of IKKα on ECM remodelling, and subsequent aspects of chondrocyte differentiation towards a hypertrophic-like state, are evolutionarily conserved between human OA chondrocytes and immature murine articular chondrocytes, indicating that these properties of IKKα are intrinsic to chondrocytes and independent of other acquired phenotypes specifically linked to OA-affected cartilage.48 IKKα does not regulate MMP-13 gene expression, but positively modulates ECM remodelling by directly upregulating the messenger RNA (mRNA) encoding the procollagenase activator MMP-10 and by post-transcriptionally suppressing TIMP (tissue inhibitor of MMP) 3 protein levels. Together, these processes maintain maximal MMP-13 activity, which is required for ECM remodelling leading to chondrocyte differentiation. Thus, IKKα directly modulates total collagenase and MMP-13 activities both in human OA and in differentiating primary murine chondrocytes.

Previous evidence revealed that IKKα is essential for keratinocyte differentiation in murine embryonic development,35 60 but independent of NF-κB activation and its kinase activity.61 The abnormal skeletal development of IKKα knockout (KO) mice was due to failed epidermal differentiation, which disrupted normal epidermal–mesodermal interactions.62 Subsequent molecular analysis uncovered the role of IKKα as a critical regulator of Smad4-independent TGFβ-Smad2/3 signalling that directly induces c-Myc antagonists, which are required for terminal epidermal cell differentiation.63 Interestingly, we also found that kinase-independent functions of IKKα are required for primary chondrocyte differentiation towards hypertrophy.48 Thus, rescuing IKKα expression in both IKKα KD human OA chondrocytes and IKKα KO murine chondrocytes using viral transduction of murine wild type IKKα or a recombinant IKKα kinase-dead mutant, IKKα(K44M), fully restored collagenase activity and the ability of articular chondrocytes to differentiate towards hypertrophy.48 Detailed analyses revealed that the enforced expression of a kinase-dead IKKα mutant (even at physiological protein levels) completely rescued the expression of markers of hypertrophy, including Runx2 and Coll10a1, to wild-type levels. Importantly, the kinase-dead mutant also reversed the accumulation of TIMP-3 in IKKα KD human OA chondrocytes and the suppression of MMP10 mRNA and protein levels in IKKα KO murine chondrocytes, both of which were associated with the recovery of type II collagen remodelling in these primary articular chondrocytes. Taken together, these observations represent strong evidence that the functional effects of IKKα in chondrocytes are independent of its serine-threonine kinase activity and thus also independent of the IKKα-dependent non-canonical NF-κB signalling pathway.48 Interestingly, TGFβ-Smad2/3 signalling has also been reported to positively regulate MMP-10 transcription in breast cancer epithelial cells, but a role for IKKα in this context was not determined.64 Future work will, in part, determine if IKKα, in a manner independent of its kinase activity, operates via TGFβ-dependent Smad2/3 signalling to activate MMP-10 transcription and simultaneously suppresses TIMP-3 levels in differentiating chondrocytes.

CONCLUSION

A better understanding of the mechanisms involved in the initiation and progression of OA disease stands essential for the development of effective, specific and successful treatment options for the disease, as well for the identification of predictive biomarkers that allow us to identify early stages of disease or individuals at high risk of developing OA. The IKKβ-driven canonical NF-κB signalling pathway coordinates mechanical, inflammatory and oxidative stress-activated events leading normal chondrocytes to become activated and hypertrophic-like. In vitro experiments with primary chondrocytes indicate that IKKβ also functions as a positive mediator of this process independent of its kinase activity. Thus, controlling the mechanisms of action of IKKα or IKKβ holds potential for the development of
therapeutic strategies to attenuate the onset and/or progression of OA disease pathology.

Novel strategies are being developed by selective inhibition of key molecules in the NF-κB pathway, in particular the canonical activation of RelA/p65 (by using small interfering RNA targeted to the RelA/p65 mRNA) or p50 (via annexin A4 modulatory effects). Indeed, non-specific therapeutic approaches that affect the NF-κB pathway are available, such as non-steroidal anti-inflammatory drugs, glucocorticoids, glucosamine, thalidomide and nutraceuticals, such as curcumin and sirtuin, as well as, potentially, anticytokine therapies such as dual acting anti-IL-1/IL-6, IL-1 receptor antagonists and anti-TNF-α. Novel strategies are being developed by selective inhibition of key molecules in the canonical NF-κB pathway. One in vitro study using human primary chondrocytes showed that NAPA (2-(N-acetyl)-a-phenylalanylamido-2-deoxy-beta-glucose), a derivative of glucosamine, inhibited IKKα kinase activity and its nuclear translocation. However, it remains to be demonstrated that NAPA does not also inhibit the nuclear translocation of specific transcription factors required for chondrocyte differentiation or other factors involved in collagen synthesis or remodelling. Importantly, there is no in vivo study linking NF-κB and IKKs to OA. Therefore, we are currently working to validate our in vitro observations in inductive OA disease models in mice to elucidate the mechanisms of action by which IKKβ and IKKα differentially drive pathways that impact on chondrocyte homeostasis to contribute to OA disease onset and/or progression.

Author affiliations
1Laboratory RAMSES—Research, Innovation & Technology Department, Rizzoli Orthopedic Research Institute, Bologna, Italy
2Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, USA
3Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, USA

Funding
Research related to this topic is supported by National Institutes of Health grants R01-AG022021 and R44-AR060546 and by the CARISBO Foundation of Bologna (Italy); POS-FESR 2007–2013, Emilia Romagna Region and a scholarship from the Osteoarthritis Research Society International

Competing interests
None declared.

Provenance and peer review
Commissioned; externally peer reviewed.

Data sharing statement
No additional data are available.

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/}

REFERENCES
1. Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development. Nat Rev Rheumatol 2012;7:50–6.
2. Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone 2012;51:249–57.
3. Heinegard D, Saxne T. The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 2011;7:50–6.
4. Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012;64:1697–707.
5. Scanzello CR, Goldring BR. The role of synovitis in osteoarthritis pathogenesis. Bone 2012;51:249–57.
6. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol 2011;23:471–8.
7. Knauper V, Lopez-Otin C, Smith B, et al. Biochemical characterization of human collagenase-3. J Biol Chem 1996;271:1544–50.
8. Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 1996;97:761–8.
9. Reboul P, Pelleiter JP, Tarditi G, et al. New collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest 1996;97:2011–19.
10. Goldring MB, Marcu KB. Epigenomic and microRNA-mediated regulation in cartilage development, homeostasis, and osteoarthritis. Trends Mol Med 2012;18:109–18.
11. Loughlin J, Reynard LN. Osteoarthritis: epigenetics of articular cartilage in knee and hip OA. Nat Rev Rheumatol 2015;11:6–7.
12. Harfou KB, Otero M, Olivotto E, et al. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 2010;11:599–613.
13. Poulet B, Ulici V, Stone TC, et al. Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis. Arthritis Rheum 2012;64:3256–66.
14. Pyöriäi S, Papawicz-AKG. The NF-kappaB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 2013;45:2580–40.
15. Otero M, Plumb DA, Tsuchimochi K, et al. E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress. J Biol Chem 2012;287:3559–72.
16. Peng H, Tan L, Osaki M, et al. ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in chondrocytes. J Cell Physiol 2008;215:562–73.
17. Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 2013;288:10061–72.
18. Saito T, Fukai A, Mabuchi A, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis. Arthritis Rheum 2010;62:876–86.
19. Yang S, Kim J, Ryu JH, et al. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 2010;16:887–93.
20. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006;25:6706–16.
21. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007;8:49–62.
22. Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 2009;11:224.
23. Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 2005;32:876–86.
24. van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil 2012;20:223–32.
25. Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritic and rheumatoid arthritis. Osteoarthr Cartil 2006;14:839–48.
26. Cecil DL, Johnson K, Rediske J, et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol 2005;175:8296–302.
27. DeGroot J, Venzil N, Wenington-van Wijk M, et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum 2004;50:1207–15.
28. Yammani RR, Carlson CS, Bresnick AR, et al. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis Rheum 2006;54:2901–11.
29. Kim HA, Cho ML, Choi HY, et al. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum 2006;54:2152–63.
30. Zhang Q, Hui W, Litherland GJ, et al. Differential Toll-like receptor-dependent collagenase expression in chondrocytes. Ann Rheum Dis 2008;67:1633–41.
31. Grall F, Gu X, Tan L, et al. Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induction of the Ets transcription factor ESE-1. *Arthritis Rheum* 2003;48:1249–60.

32. Hira G, Kugimiya F, Fukai A, et al. CEPPbeta and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2alpha as the inducer in chondrocytes. *Hum Mol Genet* 2012;21:111–23.

33. Dino L, Gue D, Homandberg GA. Fibronectin fragments mediate matrix metalloproteinase upregulation and cartilage damage through proline rich tyrosine kinase 2, c-src, NF-kappaB and protein kinase Cdelta. *Osteoarthritis Cartilage* 2009;17:1385–92.

34. Forsyth CB, Pulai L, Loeser RF. Fibronectin fragments and blockage antibodies to alpha1beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. *Arthritis Rheum* 2002;46:2368–76.

35. Loeser RF, Forsyth CB, Samarei AM, et al. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. *J Biol Chem* 2003;278:24577–85.

36. Pulakos J, Chen H, Lo Y, et al. NF-kappaB B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. *J Immunol* 2005;174:5781–8.

37. Saito S, Yamaji N, Yasunaga K, et al. C/EBPbeta and RUNX2 contribute to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. *Arthritis Rheum* 2003;48:1249–56.

38. Tsuchimochi K, Otero M, Dragomir CL, et al. Differential expression of chemokines and cytokines in human articular chondrocytes and aggrecan degradation by aggrecanases. *Biochem J* 2006;397:207–14.

39. Wei F, Zhou J, Wei X, et al. A novel role for GADD45beta as a modulator of endochondral ossification and osteoarthritis development. *PLoS ONE* 2015;10:e0123009.

40. Zhou J, Chen L, Lanzke B, et al. The nuclear hormone receptor C/EBPbeta and RUNX2 are required for cartilage development of skin and skeleton. *Nature* 2001;410:710–4.

41. Zoncu R, Polo AE, et al. Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage. *Osteoarthr Cartil* 2012;20:755–63.

42. удовлетворяет требуемым предъявляемым к нему требованиям.