Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions

Sandhya Chandrasekaran1,2, Sergio Espeso-Gil1,2, Yong-Hwee Eddie Loh2,3, Behnam Javidfar1,2, Bibi Kassim1,2, Yueyan Zhu4, Yuan Zhang4,5, Yuhao Dong4, Lucy K. Bicks1,2, Haixin Li6,7, Prashanth Rajarajan1,2, Cyril J. Peter1,2, Daijing Sun4, Esperanza Agullo-Pascual2, Marina Iskhakova1,2, Molly Estill2, Bluma J. Lesch6,8, Li Shen2, Yan Jiang4,9✉ & Schahram Akbarian1,2,9✉

Regulatory mechanisms associated with repeat-rich sequences and chromosomal conformations in mature neurons remain unexplored. Here, we map cell-type specific chromatin domain organization in adult mouse cerebral cortex and report strong enrichment of Endogenous Retrovirus 2 (ERV2) repeat sequences in the neuron-specific heterochromatic B2NeuN+ megabase-scaling subcompartment. Single molecule long-read sequencing and comparative Hi-C chromosomal contact mapping in wild-derived SPRET/EiJ (Mus spretus) and laboratory inbred C57BL/6J (Mus musculus) reveal neuronal reconfigurations tracking recent ERV2 expansions in the murine germline, with significantly higher B2NeuN+ contact frequencies at sites with ongoing insertions in Mus musculus. Neuronal ablation of the retrotransposon silencer Kmt1e/Setdb1 triggers B2NeuN+ disintegration and rewiring with open chromatin domains enriched for cellular stress response genes, along with severe neuroinflammation and proviral assembly with infiltration of dendrites. We conclude that neuronal megabase-scale chromosomal architectures include an evolutionarily adaptive heterochromatic organization which, upon perturbation, results in transcriptional dysregulation and unleashes ERV2 proviruses with strong neuronal tropism.
R epeat-rich sequence blocks, considered major determinants for 3D folding and structural genome organization in the cell nucleus in all higher eukaryotes, are critically involved in a wide range of genomic functions, from lineage-specific gene expression programs in fungi to X-inactivation in early mammalian development\(^5\). Repetitive DNA may also be important for spatial genome organization in the brain. For example, monoclonal neurodegenerative and neurodevelopmental diseases could result from abnormal locus-specific expansion of short-tandem repeats (STR) at the periphery of topologically-associating domains (TADs), a type of conformation defined by chromosomal loop extrusions normally constrained by strong boundary elements at TAD peripheries. However, the relationship between the 3D genome (3DG) and DNA repeat organization in brain cells, including potential implications for neuronal health and function, remains unexplored.

Here, we apply Hi–C, an established method for genome-wide chromosomal conformation mapping including the spatial organization of open (‘A-compartment’) and closed (‘B-compartment’) chromatin\(^4\), to show that megabase-scale chromatin domains and compartment organization in adult mouse cerebral cortex is linked, in highly cell type-specific fashion, to multiple retrotransposon superfamilies which comprise the vast majority of ‘mobile’ DNA elements in the murine genome\(^3\). Specifically, we identify a neuronal megadomain subtype for which species-specific interaction frequencies track the dramatic reconfiguration of the retrotransposon landscape in Mus musculus-derived inbred lines, primarily due to ongoing germine expansions of Endogenous Retroviruses (ERVs), a group of retroelements regulated in highly tissue-specific manner\(^6\), with neuroinflammatory and neurodegenerative potential\(^7\), and detrimental effects on cognition upon de-repression\(^8\). We show that neuronal deficiency for Kmt1e/Sedd1 histone methyltransferase, critical to the KMT1E-KAP1-Zinc finger and retrotransposon silencer complex\(^9,10\), triggers massive megabase-scale disintegration and rewiring of chromosomal interactions among chromatin domains anchored in ERV-rich genomic loci. This was associated with retrotransposon un-silencing and severe neuroinflammation and activation of cellular stress genes, intriguingly in close physical proximity to ERV-enriched megadomains, with the endomembrane system of susceptible Sedd1-deficient neurons hijacked for provirus assembly generating provirus-like particles. Our findings provide an example of how 3DG compartmentalization in the mature mouse brain is critically shaped by mobile DNA elements in strictly cell-type fashion, uncovering a distinct heterochromatic regulome in neurons which, upon perturbation, could robustly unleash ERV proviruses.

Results

Megadomain organization in adult mouse cerebral cortex. To study neuronal megadomain organization in adult mouse cerebral cortex, we prepared in situ Hi–C libraries from neuronal (NeuN\(^+\)) and, for comparison, non-neuronal (NeuN\(^−\)) nuclei from \(N=4\) (2F/2M mice) and sorted HiC Pro (v2.9) chimeric reads from autosomal sequences by k-means clustering at 250 kb resolution (Fig. 1a, Data S1)\(^11\). We identified 4 large chromosomal subcompartments in each population (Figs. S1 and S2), reproducible across replicates (Fig. S3), comprising 2.46 Gb of sequence, or >99.9% of the autosomal murine reference genome mm10, in NeuN\(^+\) (range: 104-1460 Mb/subcompartment) and in NeuN\(^−\) (range: 95-1452 Mb/subcompartment) (Data S2, S3). We assigned identifiers to each first according to minority (A) or majority (B) fractional concordance with heterochromatic, nuclear lamina-associated domain (LAD) sequences, and then numbered based on decreasing size (Fig. 1b). Interestingly, for subcompartments A1, A2, and B1, >60% of loci in NeuN\(^+\) and NeuN\(^−\) nuclei matched (Fig. 1b). However, within B2, the fractional concordance between neuronal and non-neuronal chromatin dropped to <20% (Fig. 1b), suggesting that in NeuN\(^+\), B\(_2\)NeuN\(^+\) interact in a unique manner as compared to NeuN\(^−\).

Next, to test whether this neuron-specific subcompartment organization is reproducible across independently generated Hi–C datasets, we applied our k-based subcompartment mapping to three published neuron-specific Hi–C data sources from adult mouse cerebral cortex and hippocampus\(^12,13\), and from neuronal culture differentiated in vitro\(^14\) (Data S4–S6). In fact, B\(_2\)NeuN\(^+\) loci reproducibly clustered together specifically in 3/3 of these previously published neuronal Hi–C datasets (Fig. S4). In striking contrast, Hi–C maps generated from mouse embryonic stem cells (ESCs)\(^14\) completely lacked k-clustering of B\(_2\)NeuN\(^+\) sequences (Data S7). Furthermore, trans interaction frequencies among B\(_2\)NeuN\(^+\) were consistently high in each dataset generated from mature neurons from adult forebrain, while their surrounding non-neuronal cells (B\(_2\)NeuN\(^−\)), like ESC or immature neurons, showed markedly weaker B\(_2\) interactions, in contrast to otherwise similar interaction profiles for the remaining subcompartments (Figs. 1c and S4). These findings taken together confirm that the neuronal 3D genome includes a cell-type specific B compartment subtype with high inter-chromosomal contact frequencies in mature brain.

Of note, chromatin profiling (mouseENCODE\(^15\)) identified two subcompartments in NeuN\(^+\) (A\(_1\)NeuN\(^+\) and A\(_2\)NeuN\(^+\)) and NeuN\(^−\) (A\(_1\)NeuN\(^−\) and A\(_2\)NeuN\(^−\)) with high fractional concordances for enhancers and chromatin marks broadly associated with actual or potential transcription (Fig. 1d). Uniquely, B\(_2\)NeuN\(^+\) revealed a high (60.1%) fractional concordance with the H3K9me3 repressive histone mark, unseen in B\(_2\)NeuN\(^−\) (Fig. 1d). In fact, neuronal B\(_2\)NeuN\(^+\) megadomain sequences showed a highly specific, significant association (\(p=3.36 \times 10^{-41}\), Fisher’s 2 \(\times\) 2 exact test) with adult cortex NeuN\(^+\) H3K9me3, but not with active histone marks (Fig. 1e, f and Table S1)\(^16\), also unseen in NeuN\(^−\) nuclei. In addition, we noticed that 89.6 Mb (86.2%) of B\(_2\)NeuN\(^+\) sequences anchored most neuron-specific inter-autosomal contacts (\(p<10^{-50}\), Homer v4.8, binomial testing, 1 Mb resolution) were not shared with non-neuronal cells (Fig. S5 and Data S8, S9). As a result, trans contact maps diverged by cell type, with striking consistency across the 4 animals (Pearson’s \(r\) range: NeuN\(^+\) [0.81–0.95] and NeuN\(^−\) [0.95–0.99]) (Fig. 1g). Interestingly, neuron-specific trans interactions predominantly involved B\(_2\)NeuN\(^+\) loci, while non-neuron-specific trans interactions primarily involved A\(_1\)NeuN\(^−\) and A\(_2\)NeuN\(^−\) (Figs. S4 and S6), with sharply divergent, highly cell-type specific trans-contact profiles as illustrated in the 50 Mb wide browser windows from several chromosomes (Fig. 1h and Figs. S6 and S7). Importantly, loci comprising B\(_2\)NeuN\(^+\) interacted significantly more frequently within NeuN\(^+\) as compared to NeuN\(^−\) nuclei (Fig. S8). Notably, several gene clusters, including protocadherins, vometronal receptors, and cytochrome p450 enzymes, are encompassed within B\(_2\)NeuN\(^+\) megadomain interactions (Fig. S9). Robust interchromosomal Hi-C contacts of olfactory receptor gene clusters were previously reported in olfactory sensory neurons\(^17\).

Neuron-specific megadomain organization tracks recent expansions in ERV genomic landscapes. Transposable elements, simple repeats and other types of repetitive DNA comprise up to 45% of the mouse genome\(^18\). Therefore, we asked whether our megadomain subcompartments show repeat-specific enrichment. We screened our four subcompartments against 10 broad classes of repeat categories (Data S10). Indeed, B\(_2\)NeuN\(^+\) showed a significant (\(p=2.13 \times 10^{-35}\), Fisher’s 2 \(\times\) 2 exact test) enrichment for hotspots (99th percentile densities) of the Endogenous Retrovirus subtype
ERV2 (Fig. 2a). The ERVs are a vertebrate-specific RNA-based ('copy-and-paste') retrotransposon family defined by long-terminal repeats (LTRs) flanking the core gag-pol-env viral coding domains19,20; as a class, ERVs colonize ~10% of the mouse genome (ERV2 specifically comprises 3.14%)21. Remarkably, none of the remaining neuronal subcompartments and none of the non-neuronal subcompartments showed ERV2 enrichment. However, both A1 NeuN+ and A2 NeuN− showed significant enrichment ($p = 2.47 \times 10^{-55}$ (NeuN+), $p = 3.11 \times 10^{-42}$ (NeuN−), Fisher’s 2 × 2 exact test) for SINE (Short-Interspersed Nucleotide Elements) non-autonomous retroelements19 previously linked to domain boundaries and inter-chromosomal interactions in some metazoan systems22–24, serving as CTCF binding scaffolds (Fig. S10). The A1 subcompartment in both cell types was significantly enriched for the
largely fossilized ERV3 TEs \((p = 6.34 \times 10^{-26} \text{ (NeuN)}^+, p = 6.39 \times 10^{-15} \text{ (NeuN)}^-, \text{ Fisher’s } 2 \times 2 \text{ exact test})\). Furthermore, \textit{LINE} (Long-interspersed Nucleotide Element) TEs showed strong enrichment for the B1 compartment for both cell types \((p = 2.37 \times 10^{-10} \text{ (NeuN)}^+, p = 5.26 \times 10^{-8} \text{ (NeuN)}^-, \text{ Fisher’s } 2 \times 2 \text{ exact test})\). Thus, each major type of TE shows unique subcompartment-specific enrichment patterns in brain, with neuron-specific \(B_2\text{NeuN}^+\) megadomains tagged with high levels of H3K9me3 and enriched for ERV2 elements.

Of note, a subset of ERVs with preserved retrotransposition capacity, including intracisternal A particles (IAPs), continue to invade the murine germline, accelerating their expansion within \textit{Mus musculus}-derived inbred lines. As a result, IAPs comprise >80% of all ERVs genome-wide in \textit{C57BL/6J} laboratory inbred mice, in stark contrast to the very low (<10%) phylogenetic conservation of those IAPs in the genomes of wild-derived \textit{SPRET/EiJ} mice. We wondered whether inter-chromosomal contacts, comprising the defining feature of the \(B_2\text{NeuN}^+\) subcompartment, occur in reduced frequencies in \textit{Spret/Eij} vs. \textit{C57BL/6J} neurons. To explore, we prepared Hi-C libraries from sorted adult cortex \textit{NeuN}^+ and \textit{NeuN}^- nuclei of both mouse strains in parallel \((n = 2)\) (Figs. 2a, b). Indeed, hotspots of ERV2 repeats \((n = 101 \text{ 250 kb bins})\, \text{defined as } >99\% \text{ percentile densities of ERV2 in the mm10 reference genome, interacted less frequently in Spret/Eij versus C57BL/6J NeuN}^+ (p = 2.25 \times 10^{-18}, \text{ Wilcoxon sum-rank testing}); in comparison, interaction frequencies at these loci minimally differed in \textit{NeuN}^- nuclei across the two strains \((p = 0.001, \text{ Wilcoxon sum-rank testing})\) (Fig. 2c), supporting a role for ERV2 densities in shaping the 3D \textit{NeuN}^- genome. Furthermore, overall intra- and inter-chromosomal connectivity across the 4 neuronal subcompartments showed minimal changes between \textit{Spret/Eij} and \textit{C57BL/6J} (Fig. S11). We conclude that \(B_2\text{NeuN}^+\) megadomain conformations in mature cortical neurons show ‘dosage-sensitivity’ for phylogenetically young ERV2 sequences.

We suspected that many IAP integration sites in our profiled mouse brains are, in fact, not represented in the reference genome due to a variety of factors including residual genetic contribution from non-\textit{C57BL/6J} lines, genetic drift, or somatic retrotransposition in stem cells and progenitor cells during early embryogenesis or in the developing brain. To explore whether the observed IAP/ERV2 enrichment of the \(B_2\text{NeuN}^+\) subcompartment is preserved beyond the retroelement sequences annotated in \textit{mm10}, we used biotinylated oligonucleotides to capture 10-15 kb sized DNA fragments carrying phylogenetically young and retrotransposition-competent IAP subtype IAPEzi (6481 bp) together with surrounding flanking sequences for genomic annotation (Fig. 3a, b). We ran single molecule PacBio SMRT-sequencing (SMRT-seq) on captured DNA of sorted \textit{NeuN}^+ neuronal and, separately, \textit{NeuN}^- non-neuronal nuclei collected from adult cerebral cortex from two independent mouse colonies, generating \(2.64-4.70 \times 10^6\) high fidelity (HiFi, >99.9% accuracy) circular consensus sequences (CCS) for a total of 8 cell-type-specific samples (5 \textit{NeuN}^+, 3 \textit{NeuN}^-) passing QC metrics and sent for next-generation sequencing (Tables S2 and S3, Data S11, see Methods section). For each sample, the overwhelming majority of IAPEzi sequences (83–94%) expectedly annotated to IAPEzi GRCh38/mm10 sites (Repeatmasker).

However, each of the eight profiled samples identified 209–684 proviral (non-solo-LTR) IAPEzi integration sites not found in \textit{mm10}, including 2–44 sites/animal harboring full-length IAPEzi. Strikingly, proviral (non-solo LTR) sequences, especially full-length non-\textit{mm10} IAPEzi, showed a significant 2.5- to 4-fold enrichment for \(B_2\text{NeuN}^+\) sequences compared to the remaining subcompartments \((p = 0.0391, \text{ paired Wilcoxon sum-rank testing, } B_2\text{all vs. } B_2\text{full})\) (Figs. 3c, d and S12, and Data S12). We conclude that full-length, potentially retrotransposition-competent IAP elements continue to preferentially insert into genomic loci ‘destined’ to assemble as \(B_2\text{NeuN}^+\) subcompartment.

Importantly, the number of IAPEzi genome integration sites in cortical \textit{NeuN}^+ neurons was only minimally different from the corresponding counts in the non-neuronal (\textit{NeuN}^-) nuclei (Fig. 3c and Data S12). To examine this further, we conducted additional SMRT-seq of IAPEzi integration sites from two samples of male germ cells, prepared as post-meiotic round spermatid cultures. These experiments revealed an additional set...
of 439–488 proviral (non-solo-LTR) IAPEni sites not found in mm10, including 47–59 sites/culture harboring full-length IAPEni. Strikingly, de novo integration sites from these germ cell samples, compared to IAPEni SMRT-seq integration sites identified in brain cells, showed a very similar type of enrichment for sequences assembling as B2NeuN+ (Fig. 3c, d). These findings, taken together, effectively rule out neuron-specific retrotransposition as a driver for the observed cell type-specific chromosomal interactions in neuronal nuclei, including B2NeuN+.

Neuronal megadomain reorganization upon ablation of Setdb1 methyltransferase. Next, we generated CamK-Cre+, Setdb12lox/2lox conditional mutant mice for neuron-specific ablation of the Kmt11/12Setdb1 histone methyltransferase, an essential regulator for ERV repression in stem cells and somatic tissues9 and part of a repressor complex with SMARCAD1 chromatin remodeler and KRAB-associated protein 1 (KAP1)-KRAB zinc-finger proteins10. Visual inspection of histological sections from mutant and wild-type adult cerebral cortex processed by DNA-FISH with a 300 bp IAPEni gag probe and counterstained with NeuN immuno-fluorescence and the nucleophilic dye, DAPI, revealed patch-like accumulations of ERV/IAP-containing genomic sites, with some of the largest densities most prominently visible in wildtype NeuN+ nuclei (Fig. S13), consistent the high physical interaction frequencies of ERV-rich chromosomal loci in Hi–C. Therefore, in order to test whether Setdb1 could exert a broad regulatory footprint of Setdb1 on ERV-rich megadomains, including compartmental organization and chromosomal connectivity of neuronal B2NeuN+, we generated two NeuN+ libraries to supplement the two previously published cell-type Hi–C chromosomal contacts maps from adult CamK-Cre+, Setdb12lox/2lox with littersmate controls (CamK-Cre+, Setdb12lox/2lox) (N = 4/group (2M/2F))27 (Figs. 4a and S14). Differential analysis by genotype revealed widespread megadomain rewiring in mutant neurons -- n = 446 significant decreases in pairwise trans interactions, the vast majority (60.76%) of which reflected loss of B2–B2 trans, and another n = 196 significant pairwise increases, of which 72.45% represented gains in B1NeuN+–B2NeuN+ trans (p = 0.05, DESeq2 negative binomial testing, 1 Mb bins) (Fig. 4b, Data S13, S14). Furthermore, mutant neurons showed significant shifts in intrachromosomal cis Hi–C interactomes, overwhelmingly driven by ERV-enriched subsequence compartments (42.4% of N = 4066 representing involving B2NeuN+ contacts). This included significant losses in cross-compartmental A1NeuN–B2NeuN+ contacts (N = 3.79 cis contacts/per 10 Mb A1NeuN+) in 2-fold enrichment as compared to A1NeuN–B2NeuN+ contacts (N = 2.05 cis contacts/per 10 Mb A1NeuN+) in 0.4 A1NeuN–B2NeuN+ cis contacts after neuronal Setdb1 ablation was highly specific because only 0.4 A1NeuN–B2NeuN+ cis contacts/10 Mb A1NeuN+ showed mutant-specific gain, while the number of A1NeuN–B2NeuN+ cis contacts gained was 3.01 cis contacts/10 Mb A1NeuN+.
Importantly, both trans and cis Hi-C alterations upon Setdb1 ablation were significantly associated with ERV2 hotspots (trans losses, $p = 2.95 \times 10^{-30}$; cis gains, $p = 2.62 \times 10^{-27}$; cis losses, $p = 2.63 \times 10^{-23}$; Fisher’s 2 x 2 exact testing) (Fig. 4c). To examine whether these changes in compartment-specific chromosomal conformations are associated with transposon silencing, we RNA-seq profiled the cortical transcriptome of adult mutant and control mice ($N = 6$/group) (Table S4). Importantly, comparison of subcompartment-specific expression of ERV2s and other repeat classes in mutant and control cortex revealed that increased ERV2 expression in Setdb1-deficient mice primarily originated within B2NeuN+, while the remaining subcompartments showed minimal alterations in transposon expression in comparison to control animals (Fig. 4d).

Fig. 3 Cell-type specific long read sequencing of a mobile ERV2 element. a Schematic of PacBio SMRT circular consensus sequence (CCS) long-read sequencing workflow. De novo reads identified by evaluating BLAST bit scores between alignment to the IAPEzi consensus and the IAP-masked reference genome. b (Top) PacBio biotinylated oligonucleotide probe design. The probe sequences are the most divergent regions of IAPEzi across other repetitive elements with detectable homology (<10%, dfam.org). (Middle) Real time qPCR plot of genomic DNA vs. IAPEzi-captured DNA. (Bottom) Box and whisker plot documenting significant IAPEzi enrichment as compared to fossilized IAPEY3 repeat element ($n = 6$ biologically independent samples) ($p = 0.008$, Student’s t test, two-sided). c Subcompartment box-and-whiskers observed/expected plot (top) and mean observed/expected heatmap for IAPEzi de novo integration sites (bottom). Data shown for eight mouse cortical NeuN+ and NeuN− samples, and two round spermatid samples (totaling $n = 10$) from $n = 7$ biologically independent samples, as indicated. ‘Full’ de novo reads refer to de novo reads with >90% (5833/6481 bp) match with the IAPEzi consensus sequence length (dfam.org). Filled boxes refer to ‘all’ de novo, while outlined boxes refer to ‘full’ de novo. d Genome browser shot of chr4 with de novo IAPEzi insertions for each of 10 profiling adult cortex neuronal and non-neuronal samples and round spermatids, as indicated. Subcompartment designations as indicated. Arrows point to representative full-length de novo insertions in close genomic range of each other across different samples. Specific coordinates corresponding to all (green) vs. full (black) de novo in Data S12) Letters refer to de novo insertions labeled in Data S12 for reference. Source data, included mean ± SEM for the included boxplots, are provided as a Source Data file.
Furthermore, expression of the 764 unique autosomal gene transcripts significantly up-regulated in mutant cortex (\(p_{\text{adj}} < 0.05\), DESeq2 negative binomial testing) largely originated in \(A_2^{\text{NeuN^+}}\) (\(p = 3.56 \times 10^{-35}\), Fisher’s \(2 \times 2\) test), the A subcompartment that not only preferentially lost cis contacts with \(B_2^{\text{NeuN^+}}\) (as mentioned prior), but also most frequently neighbors \(B_2^{\text{NeuN^+}}\) genome-wide (Fig. 4e, f). These strong, megadomain-specific biases were not mirrored in the fraction of 324 unique gene transcripts significantly down-regulated in Setdb1-deficient cortex (Fig. 4f). Of note, of the 764 unique upregulated autosomal gene transcripts, only a very small subset of 46 genes (6%), of which 36 were located in \(B_2^{\text{NeuN^+}}\), had shown significant NeuN^+ specific H3K9me3 enrichment at baseline (\(p < 0.001\), diffReps negative binomial testing) (Fig. S15). These findings, taken
together, strongly suggest that genes with increased expression after Setdb1 ablation are primarily affected by loss of chromosomal interactions with repressive B_2NeuN$^+$ chromatin but are unlikely to be regulated by Setdb1 at the site of the gene body. Importantly, despite the spatial colocalization of the increased genomic transcription in A_2NeuN$^+$ and the known ERV2 hotspots in B_2NeuN$^+$, we observed no fusion transcripts in any of the profiled RNA-seq samples (Table S5). Together, these findings strongly suggest that Setdb1-dependent epigenomic regulation of neuronal megadomains critically regulates A_2NeuN$^+$ and B_2NeuN$^+$ on a genome-wide scale (Fig. 4g).

Gliosis and genomic activation of microglia associated with IAP invasion of neuronal somata and processes. We next asked whether the disintegration of B_2NeuN$^+$ chromosomal connectivity, including ERV2 de-repression, in our Setdb1-deficient mice could affect neuronal health and function. To this end, analysis of the RNA-seq from Setdb1 mutant as compared to control cortex revealed that the top 10 ranking gene ontology groups of up-regulated genes included regulators of ribosomal protein synthesis, the endoplasmic reticulum/endomembrane (ER/EM) stress response, ATP-dependent metabolism and the complement cascade (Figure S16, Data S15), potentially indicating a hypermetabolic state in response to an inflammatory stimulus. Strikingly, the cerebral cortex and striatal areas of CamK-Cre$^+$,Setdb1$^{2lox/2lox}$ conditional mutant mice were affected by gliosis and exhibited upregulation of the astrocytic marker, glial fibrillary acid protein (GFAP) (Fig. 5a, b). Similarly, Iba1 immunostaining marker revealed proliferative and reactive microglia in mutant hippocampus, although labeling of the cortex overlying the hippocampus was not significantly different from control (Fig. 5a, c, d). Nonetheless, given the central role of microglia in brain inflammation, we conducted cell-type specific microglial ChIP-sequencing (Fig. 5e) and RNA-seq transcriptome (Fig. 5f) profiling on immuno-panned microglia extracted from adult mutant forebrain of neuronal Setdb1-deficiency and controls ($N = 3$/group). Expression of Setdb1 transcript, including the λoxP flanked exon 6 subjected to neuron-specific deletion in the mutant cortex, was completely preserved in the microglia from CamK-Cre$^+$,Setdb1$^{2lox/2lox}$ mice (Fig. S17). Furthermore, the overwhelming majority of retrotransposon transcripts, including the entire set of ERV2s, did not show elevated expression in microglia from mutant cortex (Data S16); these findings were expected given that Setdb1 ablation is restricted to neurons in our conditional mouse model. We identified 840 (629 up, and 211 down) differentially regulated microglia-specific transcripts after neuronal Setdb1 ablation (Fig. 5f, Data S17). Among these were 629 up-regulated transcripts, for which gene ontology analyses indicated robust activation of interferon and cytokine signaling pathways and blood vessel formation including many genes associated with autoimmune and neuroinflammatory disease (Fig. 5f, Data S17). In contrast, no pathway enrichment was observed for the group of 211 microglial genes downregulated in mutant cortex. Next, given that the microglial genomic response to inflammatory stimuli also involves widespread changes in chromatin accessibility, we profiled open chromatin landscapes on a genome-wide scale using Assay for Transposase Accessible Chromatin (ATAC-seq) on CD11b-immunopanned microglia from mutant and control forebrain ($N = 3$/group) (Fig. 5e, Data S18). We identified 4154 open chromatin regions differentially regulated between two groups. Strikingly, microglial open chromatin region (OCR) upregulated after neuronal Setdb1 ablation showed the strongest enrichment ($p < 10^{-43}$, HOMER binomial testing) for binding motifs of Signal transducer and activator of transcription 2 (Stat2), a regulator of gene expression highly sensitive to activation by interferon and antiviral response pathways in brain and other tissues. Furthermore, nuclear factor κB (NF-κB), a key factor in mediating the microglial genomic response to neuronal injury and inflammation, was among the top 5 ranking motifs in OCR upregulated in microglia from cortex with neuronal Setdb1-deficiency (Fig. 5e). These findings, taken together, suggest that neuron-specific epigenomic unsilencing of ERV retrotransposons could trigger an inflammatory response with astrocytosis and microglial activation.

Studies in mice with severe immunodeficiencies and in genetically engineered cell lines suggest that the un-silencing of ERVs triggers an immune response primarily via RNA-sensing associated with the mitochondrial antiviral signaling protein (MAVS) and the Stimulator of Interferon Genes (STING) signaling pathways. We observed that in our CamK-Cre$^+$,Setdb1$^{2lox/2lox}$ mice with neuronal Setdb1 deleted, there was increased transcription specifically of ERV2s, in conjunction with significantly decreased H3K9me3 levels at ERV2 sequences in neuronal chromatin ($p = 0.02366$, Linear regression) (Figs. 6a and S18). In contrast, non-neuronal chromatin from CamK-Cre$^+$,Setdb1$^{2lox/2lox}$ mice showed complete preservation of ERV2-bound H3K9me3 (Fig. S19 and Data S19, S20). In addition to these RNA-seq based studies, we also observed increased transcription of IAP-gag in cortical neurons by RNA FISH (Fig. 6b). To assess the viral burden in our mouse model, we next monitored protein expression and found that mutant, but not control cortex showed robust neuronal expression of the IAP Gag protein critical for retroviral assembly (Fig. 6c, d). Electron microscopy confirmed dramatically increased numbers of mutant particles.
neurons with the presence of immature and mature IAP provirus in close proximity to cisterna-like membranous spaces compared to controls \((p = 3.69 \times 10^{-5}, \text{Student's two-sided } t\text{-test})\). In addition, counts of IAP particles (within the subset of IAP + neurons in both genotypes) were much higher in mutants compared to controls \((p = 0.008, \text{Wilcoxon sum-rank testing})\) (Fig. 6e). Strikingly, a subset of neurons showed dramatic proviral proliferation with encroachment into neuronal somata, dendrites, and even spines in a subset of cortical neurons (Fig. 6f). We conclude that the rewiring and epigenomic reorganization of ERV2-enriched neuronal megadomain sequences upon Setdb1 ablation results in IAP retrotransposon escape from silencing. In addition to the robust increase in IAP transcript and protein levels, we observed proviral assembly and potentially dramatic accumulation of such particles in susceptible neurons resulting in viral hijacking of endomembrane systems, an ER/EM stress response, and ultimately neuroinflammation.

Discussion

We report that megadomain organization in the adult brain involves a unique, neuron-specific signature, including a B-type subcompartment encompassing 104 Mb of neuronal chromatin (B_NeuN\^+) composed of comparatively 'small' (1–12 Mb) heterochromatic 'islands' engulled by A_Neuron and other A-compartment-associated megadomains. Comparison of cell-type
specific S Pret/Eij vs. C57Bl/6J Hi-C maps, including mice with neuronal Kmt1e/Setdb1 ablation, strongly points to epigenomic regulation of (germline-fixed) ERV2 transposable element sequences as a major driver for the B2 NeuN+ -to-B2 NeuN+ and B2 NeuN+ -to-A1 NeuN+ contact patterning.

Importantly, despite widespread rewiring and disruption of compartment-specific chromosomal patterning, Setdb1-deficient neurons only show few changes in the topologically-associating domain (TAD) landscape, with the notable exception of the clustered Protocadherin locus and a few additional genomic sites. Although speculative at this point, this apparent phenotypic dichotomy in the Setdb1 deficient mice, with widespread compartment alterations but much more limited changes in TAD landscapes, could reflect non-overlapping regulatory mechanisms governing these two types of chromosomal conformations. For example, phase separation, as a molecular force, shapes compartments but do not affect non-overlapping regulatory mechanisms.

Our study strongly suggests that the reorganization of higher order chromatin in adult cortical neurons tracks the dramatic expansion of IAPs and other ERV2 transposable elements in Mus musculus-derived inbred lines, as compared to the wild-derived S Pret/Eij inbred strain harboring the 1.5 million year evolutionarily divergent Mus spretus genome. Previous studies linked a small subset of these newly inserted ERV sequences to strain-specific differences in gene expression, pathogenic mutations and neoplasms, thereby providing ‘seeds’ for ongoing phylogenesis in line with the repurposing of even more ancient Gag and Env sequences into the Arc early response and synaptic plasticity gene and the placental Syncytin. Our findings point to much broader role of ERVs for cell-type specific adaptations in genome organization and function, including a partial remodeling of the chromosomal interaction map in mature cortical neurons. The functional importance of proper heterochromatic organization in neurons is underscored by the massive proliferation of IAP particles following the destruction of B2 NeuN+ in susceptible Kmt1e/Setdb1 mutant neurons. This, in turn, is likely to cause proteotoxic stress, with the two top ranking GO categories in the differential RNA-seq analysis (Fig. S16), ‘Endoplasmic Reticulum (ER) stress response’ and ‘cytosolic ribosomal protein’, reflecting the cell’s transcriptional response to excessive translational demand. Furthermore, double-stranded viral IAP RNAs could trigger neuroinflammation, including astrocytosis and microglial activation of immune and interferon response genes (Fig. 5), followed by a more generalized hypermetabolic response in the inflamed brain.

Importantly, we note that, according to the cell-type specific single DNA molecule sequencing of the present study, Setdb1-deficient neurons do not show a detectable increase in IAP/ERV2 de novo insertions (Supplemental Data S11), suggesting the dramatic observed ‘neuronal hijacking’ by the IAP proviral machinery is primarily driven by un-silencing of preexisting retrotransposon copies as opposed to excessive somatic retrotransposition events. The findings are also of interest from the viewpoint of the potential neurotoxic effects of ERV2-like transcripts and proteins in human and invertebrate neurons, including potential links to tau- and TDP-43 associated neurodegenerative disease and recent reports on increased HERV activation in the adolescent non-human primate brain exposed to maternal immune activation during prenatal development. Interestingly, a subset HERVs and other repeat elements are reportedly overexpressed in Alzheimer’s brain. Furthermore, Alzheimer-related neurodegenerative phenotypes are encountered in mouse models exposed to specific types of HERV-K RNAs.

Moreover, HERV-Ks—which, like the murine ERV2s, are members of the betaretrovirus-like supergroup of LTR retrotransposons—have been linked to amyotrophic lateral sclerosis (ALS) or motor neuron disease (but see also Garson et al.) including some cases infected with the Human Immunodeficiency Virus (HIV), an exogeneous LTR retrovirus. In addition,
the genetic risk architecture of ALS shows a modest association with genomic loci harboring HERV insertions53. Interestingly, we observed that genomic loci harboring HERV-Ks are significantly enriched in trans chromosomal Hi-C contacts in human neurons ($p = 1.42 \times 10^{-16}$, Fisher’s 2 × 2 exact testing), an effect driven primarily by sequences with strong synteny with murine B2 megadomains (Figs. S20 and S21). These findings, taken together, strongly suggest that compartment-specific enrichment of ERV2/HERV-K sequences occurs in parallel across different mammalian lineages, pointing to a type of heterochromatic organization highly adaptive to species- and strain-specific reconfiguration of the ERV retrotransposon landscape, thereby maintaining a defensive shield to protect neurons from the detrimental effects of LTR retrotransposons.
Fig. 6 IAP proliferation in Setdb1-deﬁcient neurons. a Scatterplots of log2FoldChange (H3K9me3 KO vs. WT, x-axis) vs. log2FoldChange (RNA KO vs. WT, y-axis) for each of ten repetitive element categories (Repbase) (n = 6/group). The intracisternal A particles (IAPs) are labeled in red and overlaid on the ERV2 plot. The signiﬁcance of the linear regression is included (p = 0.02366b). b IAP gag RNA FISH signal in coronal sections (30 μm) across multiple cortical layers in KO vs. WT. Counterstained with NeuN (green) and DAPI (blue). c Representative immunofluorescence of WT (left) and KO (right) cortical cross sections stained for IAP-gag (pink) and NeuN (green), and DAPI counterstain. Scale bar, 50 μm. Cortical layers, Roman numerals I–VI. d Western blotting using the anti-IAP-gag antibody for full-length Gag (73 kDa) and cleaved, processed mature forms (41kDa and 24kDa) in WT and KO mouse cortical tissue. b-actin included as loading control. e (Left) Cortical layers II/III electron microscopy (EM) images of KO (top) and WT (bottom) neurons imaged at 15 and 30k resolution. (Middle) Quantitation of binned counts of randomly imaged neurons (n = 50 or 35) with >1 IAP particle present (IAP + neurons) (n = 4 mice/genotype. (genotype [0 IAPs,1 IAPs]; WT1 [31,4]; WT2 [32,3]; WT3 [47,4]; WT4 [51,0]; KO1 [20,15]; KO2 [21,14]; KO3 [28, 23]; KO4 [26,28]), Student’s two-sided t-test (p = 3.69 × 10⁻⁵). (Right) Number of IAPs imaged within the IAP + neurons, Wilcoxon sum-rank testing (p = 0.008). f (Left) Sample neuron at low- and high-resolution with intracisternal proviral packaging and assembly hub marked with yellow dashed line; m mitochondria, nucleus cell nucleus. (Right, top) neuronal dendrites at 15k, 30k resolution. (Right, bottom) Low- and high-resolution images of IAPs at synaptic spine. Red arrows mark individual proviral particles. Scale bars as indicated. Source data are provided as a Source Data file.

Methods

Mouse handling. All mouse work detailed below was approved by the Institutional Animal Care and Use Committee of the Icahn School of Medicine at Mount Sinai. Mice were housed under speciﬁc pathogen-free conditions with food and water being supplied ad libitum in an animal facility with a reversed 12 h light-dark cycle (lights off at 7:00 a.m.) under constant conditions (21 ± 1°C, 60% humidity). All mice were supplied ad libitum in an animal facility with a reversed 12 h light-dark cycle (lights off at 7:00 a.m.) under constant conditions (21 ± 1°C, 60% humidity). All mice were

Cell cultures. Male germ cells were isolated by the STA-PUT method. A linear gradient was generated containing 350 ml of 4% BSA and 350 ml of 0.5% BSA solution and loaded to the sedimentation chamber. After 3 h of sedimentation in the sedimentation chamber, 60 fractions were collected in 15 ml centrifuge tubes and numbered sequentially 1–60. Cells from each fraction were collected by centrifugation at 500 × g for 5 min and resuspended in 0.2 ml cold medium. An aliquot of each fraction was stained with Hoechst dye (Invitrogen, H3570) and examined thoroughly by eye under phase-contrast and ﬂuorescence microscopes to assess cellular integrity and identify cell types. Fractions containing >80% of cells of appropriate size and morphology were pooled as round spermatids.

Cell-type speciﬁc Hi-C. Fluorescence activated nuclear sorting. Cortical tissue was prepped for ﬂuorescence activated nuclear sorting (FANS) as follows. Briefly, the dissected tissue was homogenized in a hypotonic lysis solution and ﬁxed in 1% formaldehyde for 10 min at room temperature. The cross-linking reaction was quenched with 125 mM glycine. The nuclei were then puriﬁed by centrifugation at 4000 × g and resuspended in 1.1 solution of the hypotonic lysis solution and a 1.8 sucrose solution prior to re-centrifugation at 4000 × g to isolate out cortical nuclei. The pellet was then resuspended in Dulbecco’s phosphate buffered saline (DPBS) containing 0.1% BSA and 1:1000 anti-NeuN antibody (clone A60, Alexa Fluor 488 conjugated, EMD Millipore Corp., MAB377X). Samples were incubated for 45 min while rotation and protected from light at 4°C. DAPI (Invitrogen) was added immediately before sorting to label all nuclei. Sorting was performed at the Flow Cytometry CoRE at the Icahn School of Medicine at Mount Sinai. Nuclei were collected as NeuN+ and NeuN− populations following serial gating and pelleted for downstream experimental processing.

in situ Hi-C. Nuclei were digested with 100U Mbo1, and the restriction fragment ends were labeled using biotin nucleotides and re-labeled. After reverse transcription, linked DNA was puriﬁed and sheared to a length of ~400 bp by sonication, and the biotin-tagged ligation junctions were subsequently pulled down with streptavidin beads (Invitrogen, Dynabeads MyOne Streptavidin T1, Catalog No. 65602) and prepared into libraries for next-generation illumina sequencing (HiSeq 2500). For the SPRET/Eij and matched C57BL/6J studies, the Arima Hi-C kit (Arima Genomics, San Diego) was used according to the manufacturer’s instructions.

Hi-C bioinformatics. Hi-C-Pro. The ‘pre-truncation method’ using Hi-C-Pro(v2.9) was used for quality control purposes. Libraries were mapped to the *Mus musculus* reference genome (GRCh38.p5_M13) using bowtie2.2. Artiﬁcial and other common statistics are available as Supplementary Information. Hi-C-Pro results were piped to Juicer to produce an input data set containing the processed output. These files, which contain compressed contact matrices at varying resolutions, were then processed into fnal matrix-balanced normalized contact maps with Juicebox.

Subcompartment calling. We adapted a previously published k-means clustering algorithm to identify subcompartments within our datasets of interest. In short, a 250 kb autosomal resolution map was constructed from validPairs.hic ﬁles generated with Hi-C-Pro(v2.9). The matrices were normalized with matrix-balancing and processed as observed/expected matrices. Speciﬁcally, a subset of inter-chromosomal contact data was extracted using hic-dump and stitched together, with 250 kb loci on odd-numbered chromosomes serially appearing as rows and 250 kb loci on even-numbered chromosomes serially appearing as columns. Odd chromosomal loci were ﬁrst clustered using the kmeans function in R 3.6.0 and RStudio (v1.4.63), and even chromosomal loci were similarly clustered after transposing the stitched matrix. Several values for the clustering parameter “k” were tested, ranging from k = 2 to k = 10 to forcibly organize the genomic loci across these chromosomes into k number of clusters. In NeuN+ and NeuN− (present study), for odd chromosomes, a cluster number of k = 6 was determined as the best ﬁt by visual inspection with the generated Hi-C raw read contact matrix. Similarly, for even chromosomes, a cluster number of k = 5 was determined as optimal. Within each of these cluster sets, clusters consisting of <5% of the genome were disregarded. This ultimately resulted four clusters for the odd and even chromosome sets, that were merged in order of size to represent four subcompartments for the entire genome. Clusters for the genome12–14 were determined based on optimal overlap with the NeuN+ reference, with clusters consisting of <5% of the genome disregarded (Data S4–S7). Subcompartment designations for the independent datasets (‘A1’, ‘A2’, ‘B1’, ‘B2’) were assigned based on the value of the Chi-squared residual when compared to the reference NeuN+ subcompartments.

Subcompartment characterization. To appropriately classify these subcompartments as active (‘A’) or inactive (‘B’), we leveraged publicly accessible data from the mouse ENCODE project (led by the Mouse ENCODE Consortium). The database is a curation of numerous epigenetic proﬁles, including transcription factor and polymerase occupancy (http://genome.ucsc.edu/mouse/download.html), Dnase hypersensitivity, histone modiﬁcations, and RNA transcription. Strikingly, our results showed a clear dichotomy with respect to overlap with lamin-associated domains, where two subcompartments exhibited a majority overlap with LADs (‘B’), and two did not (‘A’).Euchromatin-associated epigenetic features, such as active and facultative enhancers (CTCF, H3K4me2, H3K4me3, H3K4me1, H3C3K27ac, H3K4me2 (ENCFF667TTRK), H3K9ac (ENCFF540IHT), H3K4me1 (ENCFF224LTF), H3K27ac (ENCFF667TSTV), RNApolII, and H3K36me3 (ENCFF999HG4)), showed a near complete overlap with the subcompartments. These datasets12 were tested, ranging from k = 2 to k = 10 to forcibly organize the genomic loci across these chromosomes into k number of clusters. In NeuN+ and NeuN− (present study), for odd chromosomes, a cluster number of k = 6 was determined as the best ﬁt by visual inspection with the generated Hi-C raw read contact matrix. Similarly, for even chromosomes, a cluster number of k = 5 was determined as optimal. Within each of these cluster sets, clusters consisting of <5% of the genome were disregarded. This ultimately resulted four clusters for the odd and even chromosome sets, that were merged in order of size to represent four subcompartments for the entire genome. Clusters for the genome12–14 were determined based on optimal overlap with the NeuN+ reference, with clusters consisting of <5% of the genome disregarded (Data S4–S7). Subcompartment designations for the independent datasets (‘A1’, ‘A2’, ‘B1’, ‘B2’) were assigned based on the value of the Chi-squared residual when compared to the reference NeuN+ subcompartments.
Hi-C trans and cis calculations. The aforementioned 250 kb autosomal, matrix-balanced resolution maps of observed/expected Hi-C interaction frequencies were used for downstream analyses; each locus bin within the axes of the matrix was then labeled according to its NeuN− sub-compartment identifier (A1, A2, B1, B2). For trans, Hi-C values from combinations of pairwise interactions involving loci of specific sub-compartment designations on different chromosomes were extracted and populated into a vector; for cis, these values were extracted for loci on the same chromosome, excluding the diagonal.

SPRET/Eij vs. C57BL/6j Hi-C comparison. Hi-C libraries were generated for sorted NeuN+ and NeuN− populations from SPRET/Eij and C57BL/6j mice (age- and sex-matched) using the Hi-C Next Generation Sequencing Kit (Arima Genomics) according to the manufacturer’s protocol. Next, 250 kb autosomal resolution maps were constructed for using valid pairs generated from the Hi-C-Pro (v2.9) pipeline following alignment to the mm10 reference genome. The matrices were normalized with matrix-balancing and processed as observed/expected matrices. Each locus along the axes of the matrix was then labeled according to its NeuN− sub-compartment identifier (A1, A2, B1, B2) and ERV2 count (as determined from UCSC Repeatmasker). A value of 101 was calculated to reflect a locus harboring the 99th percentile of ERV2s as compared to the rest of the genome, and loci with ≥99th percentile of ERV2s were retained for downstream analyses, generating a reduced Hi-C matrix of 101 × 101 loci for each sample. Samples were combined by cell type and strain, resulting in four final matrices representing SPRET/Eij NeuN+, C57BL/6j NeuN+, SPRET/Eij NeuN−, and C57BL/6j NeuN−. Statistical significance was performed using Wilcoxon sum-rank testing (paired, two-sided).

Differential trans- and cis-analysis. Raw in situ Hi-C matrices (20 kb resolution) were binned into 1 Mb segments genome-wide, and DISEq2 was used to determine window-specific differential read scores in trans (\(FDR < 0.05\)) by comparing anchors and targets were classified by sub-compartment based on percentage of the bin that encompassed sub-compartment loci; in the event of a tie, the assignment was made hierarchically in order of sub-compartment size, smallest to largest. Expected values of interactions for sub-compartment anchor-target combinations were calculated from reference genes with the relative sizes of the sub-compartment of interest and Pearson’s residuals for differential were calculated by subtracting the residuals of decreased Hi-C interactions.

Chromatin immunoprecipitation studies

Native CHIP-seq (NCHIP-seq). 106 NeuN+ and NeuN− nuclei were pelleted after FANS, resuspended in 300 µl of micrococcal nuclease digestion buffer (10 mM Tris pH 7.5, 4 mM MgCl2, and 1 mM CaCl2) and digested with 2 µl of MNase (0.2 U/µl) for 5 min at 28°C to obtain mononucleosomes. The reaction was quenched with 50 mM EDTA pH 8. Chromatin was released from nuclei with the addition of hypotonic buffer (0.2 mM EDTA pH 8, containing PMSE, DTT, and benzamidine). Chromatin was incubated with the appropriate antibodies (anti-H3K9me3 (Abcam, ab8898; 2 µg/3 × 106 nuclei), anti-H3K27ac (Active Motif, #39133; 5 µg/3 × 106 nuclei)) overnight at 4°C. The DNA-protein antibody complexes were captured by Protein A/G Magnetic Beads (Thermo Scientific 88003) by incubation at 4°C for 2 h. Magnetic beads were sequentially washed with low-salt buffer, high-salt buffer, and TE buffer. DNA was eluted from the beads, treated with RNase A, and digested with Proteinase K prior to phenol-chloroform extraction and ethanolation. For library preparation, CHIP DNA was end-repaired (End-it DNA Repair kit; Epicentre) and A-tailed (Exo-mo Novus; Epicentre). Adapters (Illunia) were ligated to the CHIP DNA (Fast-Link kit; Epicentre) and PCR amplified using the Illumina TrueSeq CHIP Library Prep Kit. Libraries with the expected size (~275 bp) were submitted to the New York Genomics Center for next-generation Illumina sequencing (HiSeq 2500, 75 bp, paired-end).

Bioinformatic analyses. To perform these bioinformatic analyses, we first aligned the raw.fastq reads to the Mus musculus reference genome (mm10) using bowtie2. Only concordant reads were compressed into aligned.bam files then sorted and indexed using the samtools 0.1.19 suite, and following PCR duplicate removal, were converted into.bed files for further processing.

Cell-type specific histone profiling. We performed diffReps\(^{58}\) differential analysis at a 1 kb resolution for each histone mark of interest at a statistical significance threshold of \(p < 0.001\), with NeuN+ histone modification profiles as our treatment group, and NeuN− histone modification profiles as our control group. Significantly called regions (spanning a length of one kilobase of genome or greater) were labeled as NeuN+ enriched or NeuN− enriched according to their log2FoldChange values.

Genome association testing. The Mus musculus mouse (mm10) reference genome was divided into 250 kb bins using tileGenome() in the GenomicRanges R package. diffReps output files were overlapped with these bins using the sum(countOverlap) function to determine the number of diffReps within each 250 kb bin. The two considered variables for the Fisher’s testing were (1) the sub-compartment identifier of the 250 kb bin and (2) the classification of the 250 kb bin as ‘high’ or ‘low’ as it pertained to epigenetic feature enrichment. The threshold distinguishing ‘high’ and ‘low’ was set as the 99th percentile of diffReps loci (or repetitive elements) within each autosomal reference genome. Fisher’s testing was performed using the exact2x2 R package. For association with Hi-C interaction changes, bins involved as anchors or targets in the interactions were grouped as the reference genome set. For RNA association testing, no percentile threshold was used for filtering ‘high’ and ‘low’; instead, any bin with altered RNA (either increased or decreased) was considered ‘high’, with bins harboring no altered RNA designated ‘low’. PacBio SRMT sequencing

Library preparation. SMRTbell libraries were constructed from IAPen-int xGen Lockdown probe-captured DNA for sequencing using a PacBio Sequel II System. In short, genomic DNA was isolated from FACS-sorted NeuN+ or NeuN− nuclei of adipose mouse cerebral cortex or round spermatids, using phenol chloroform extraction and was subsequently sheared to ~10 kb using U Tube microcentrifuge tubes (Covaris, 010145). End-repair, A-tailing, adapter ligation (barcoding) and PCR amplification with the universal primer were performed according to protocol, and fragments were appropriately size-selected using AMPure SPRI Select Beads. Samples were then pooled prior to hybridization with biotinylated Gen€\# Lockdown\# designed against the consensus sequences (dfam.org). PacBio SRMT was performed using the SMRTbell library preparation. Following AMPure purification and size selection, SMRTbell libraries were annealed and bound to the barcode tagged sequencing adapters for PacBio Sequel II HiFi sequencing (Geneviz, 30 h movies). Oligonucleotides used for this preparation are included as Supplementary Tables.

Bioinformatics. Bioinformatics processing was performed with SMRT Link v5.1.0, run with default parameters, unless otherwise indicated. Files were first demulti-plexed within a lane and circular consensus sequences (CCSs) were generated with ccs for filtered sequences with matching paired-end adapters. CCS reads were then mapped to the IAPen consensus sequence (dfam.org) using phredline. Passing reads were subsequently mapped to the mouse reference genes using bwa split mapping and filtered based on mapping score \((\text{mapq} \geq 60)\). Reads were then assigned as autosomal IAPen or non-IAPen based on the reference genome, were then blasted against the IAPen consensus sequence and IAP masked reference genome in parallel using BLAST+ (v2.7.1); reads with higher hit scores for the IAPen blast than the reference genome were defined as de novo. Full-length de novo insertions were defined as fragments representing >3833 bp (0.9 × 6481 bp), with average full-length IAPen lengths being 6481 bp (dfam.org).

Cortical transcriptomics

RNA-seq. Total RNA was first extracted from the prefrontal mouse cortices (n = 12, 6WT/6KO), and prepared with RNeasy Lipid Tissue Mini kit (with on-column DNasel treatment). The quantity and quality of RNA was checked using a bioanalyzer (Agilent). In all, 1.5 µg of RNA from each sample was submitted to the Genomics Co&E Facility at Mount Sinai for RNA-seq library generation with RiboZero treatment, and were subsequently sequenced on the Illumina HiSeq 2500, 100 bp, paired-end.

Bioinformatics. Read pairs were aligned to the Mus musculus mouse reference genome (mm10) TopHat2 short-read aligner. Reads were counted using HTSeq against the Genocode vM4 Mouse annotation. Genes were filtered based on the criteria that all replicates in either condition must have at least five reads per gene. On the resulting filtered transcript, a pairwise differential analysis between Setdb1 conditional mutant vs control cortex was performed using the voomllimma R package\(^9\) which converts counts into precision weighted log2 counts per million and determines differentially expressed genes using a linear model. Significantly differentially expressed genes were identified using a cutoff of Benjamin–Hochberg adjusted \(p < 0.05\). Discordant pairs were extracted from aligned.bam files using samtools with the following command: samtools view -b -F 2 and reads identifiable with specific flags were quantified and categorized.

Subcompartment neighbor testing. Subcompartment bins (250 kb) were first determined and reduced using GenomicRanges into contiguous segments of similar identity. The percent of all boundaries by different combinations of sub-compartment boundaries were calculated as the observed values. For expected values, genes were reconstructed using the 250 kb blocks and reduced as above. The percent of boundaries by different combinations of subcompartment boundaries were calculated as \(100 \times \text{permutations using regionER resampleRegions}\) (mean + standard deviation).

GO enrichment. Gene ontologies for gene sets of interest were determined using the ClueGO (v2.5.1) application through Cytoscape (v3.6.1). All available ontologies/pathways (CORUM, Chromosomal-Location, GO, INTERPRO, KEGG, REACTOME, WikiPathways) were considered, and the chosen network specificity was
Microglial studies

Microglia isolation. Single-cell suspension from adult brain tissues was prepared using Miltenyi’s Adult Brain Dissociation Kit (Miltenyi Biotec, 130-107-677) and Debris Removal Solution Kit (Miltenyi Biotec, 130-109-398) according to manufacturer instruction with minor modifications. In brief, total brain tissues, except olfactory bulb and cerebellum, were collected quickly and washed with ice cold 1x HBSS. After chopped into small pieces using sharp blade, the brain tissues were transferred into the C-tube containing 150 µl of Enzyme mix 1 and 30 µl of Enzyme mix 2 from the kit and incubated on Miltenyi’s gentle MACS Octo Dissociator with Heaters using program 37 °C ABDK_1 for 30 min. Afterwards, the digested tissue homogenate gently went through a 70 µm cell strainer. Cells were collected via centrifuged at 300g for 10 min at 4 °C and resuspended in ice cold 1x HBSS. Debris Removal Solution was then added and overlayed with ice cold 1x HBSS. After centrifugation, three phases in the tube were clearly visualized, from top to bottom: 1x HBSS solution, debris and myelin layer, and single-cell suspension. Discard the top two phases completely, wash the cells in 1x HBSS, centrifuge to collect the cells, and then resuspended the cell pellet in 1 ml of 1x HBSS containing 1% fetal bovine serum. In order to minimize the unwanted microglia activation, single cell suspension was incubated in Fc receptor blocking Reagent (Miltenyi Biotec, 130-092-575) for 10 min, and then the cell suspension was incubated with CD11b-microbeads (Miltenyi Biotec, 130-093-634) for 10 min at 4 °C in the dark, followed by positive selection with LS separation column (Miltenyi Biotec, 130-042-401). Flow cytometry analysis was performed to check the cell purity. The three different groups of cells (no enrichment, target and non-target cell population) with FITC Monoclonal Antibody (M170) (Biolegend, 11-0112-81) at 1:200 dilution for 30 min at 4 °C in the dark. Stained cells were examined using the Beckman flow cytometer.

Immunostaining. The coronal sections (30 µm) were washed with 1x PBS containing 0.5% Triton X-100 and 3% goat serum, followed by primary antibodies incubation for anti-Iba1 (Abcam, ab187886, 1:1000 dilution), anti-GFAP (Abcam, ab4674, 1:2000 dilution), and Tomato-lectin (Vector, DL-1174, 1:1000 dilution) at 4 °C overnight. Sections were incubated with fluorescence-labeled secondary antibodies (goat anti-chicken Alexa488 (Jackson, 103-545-155, 1:1000 dilution); goat anti-rabbit-Alexa594 (Jackson, 111-585-003, 1:1000 dilution) at room temperature for 2 h in the dark. Images were captured with a fluorescence microscope (Olympus VS120). Analysis was performed using NIH Image J software.

RNA-seq. Total RNA was extracted by using Direct-zol RNA MicroPrep (Zymo research, R2060). Library was prepared using QIAseq FastSelect RNA Removal Kit (Qiagen, 333180-24) and QIAseq Stranded Total RNA Lib Kit (Qiagen, 180743) following manufacturer’s instruction. In brief, 200–500 ng total RNA was used for each reaction. 1µl rRNA removal reagent was added into 28 µl of RNA sample, plus 5 µl of RT buffer, followed by incubation for 3 min at 95 °C, and then went through reverse annealing using PCR programming. After fragmention and RNA removal, reverse transcription, second-strand synthesis, end-repair, A-addition, and strand-specific ligation with selected adapter (1:25 dilution) were performed, followed by CleanStart library amplification. Library DNA was then purified and size selected for around 500 bp fragments, and checked with Qubit and Agilent 4200 TapeStation.

ATAC-seq. Cells were collected and nuclei were extracted by douncing directly in lysis buffer (0.32 M sucrose, 5 mM CaCl2, 3 mM Mg(Ace)2, 0.1 mM EDTA, 10 mM Tris-HCl pH = 8, 0.1% NP-40). In all, 50,000 nuclei were used for each reaction. Library was prepared using TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme, TD501-02) following manufacturer’s instruction with minor modifications. In brief, nuclei were treated with Tn5 at 37 °C for 30 min, and then DNA was purified with MinElute Gel Extraction Kit (Qiagen, 28604), and elute in 25 µl of EB buffer. PCR was then setup by the mixture of 20 µl DNA sample, 10 µl TAb, 5 µl PPM, and selected adaptors (5 µl NSX and 5 µl N7XX) (TD202), followed by PCR amplification. Library DNA was purified by using SPRAttract beads (Beckman, B23318) for 1.05 µl followed by 1.15 two steps size selection, and then checked with Agilent and Agilent 4200 TapeStation.

Microglial data analysis.

RNA-seq. Sequencing was performed on Illumina XTen (PE150). Before analyzed the data, FastQC was first used for quality control analysis, and Trim-galore was used to remove low-quality reads. Paired-end clean data was then aligned to reference genome (M. musculus, UCSC mm10) using Bowtie2 v2.3.4.3. Samtools v1.9 was used to sort and build the alignment files index after removing duplications. MACS2 was used for peak calling (-shift -100 --extsize 200 --nomodel). DiffBind was used to generated differential change peaks. R packages “ChIPseeker”, “clusterProfiler” “org.Mm.eg.db” “TxBDb.musculus.ucsc.ucsc.mm10.hg19” were used for peak annotation. Significant differential peaks that are located on gene promoters were extracted to generate Gene Ontology Enrichment Analysis by using ShinyGO v0.61 (http://bioinformatics.sdstate.edu/go/). Deeptools was used to generate normalized bigwig and visualized on IGV.

RNAS and DNA in situ hybridization of IAP-gag probes. Coronal mouse brain slices (10 µm) were collected using a freezing microtome and mounted onto Superfrost Plus slides (VWR). DNA FISH sense and antisense probes, targeting 340 nt of the IAP-gag sequence (bp 1547-1914)29 was used for 24 h at 40 °C. Amplifiers were polymerized into the slides using a programmable hybridization oven. The slides were incubated in NeuN–AlexaFluor488 antibody (1:200 in 1xPBS; MARB377X; EMD Millipore) for 2 h at room temperature and cover-slipped with DAPI Fluoromount (SouthernBiotech). Imaging was performed on a Zeiss LSM780 confocal microscope.

Protein expression. Immunohistochemistry and western blotting. For GEPF IHC, coronal sections from perfusion-fixed (by phosphate-buffered 4% paraformaldehyde) adult mouse brains coronal sections from perfusion-fixed (by phosphate-buffered 4% paraformaldehyde) adult mouse brains were processed for anti-GFP immunoreactivity and detected with diaminobenzidine (DAB) using the ABC kit (VectorLabs) according to the manufacturer’s protocol.

For GFP immunoblotting, protein was extracted from homogenized adult mouse cortical (Cx), hippocampal (Hipp), striatal (Str), and cerebellar (Cbl) tissue, and 100 µg total protein was loaded in each lane. The membrane was blotted with either anti-GFP (Abcam, ab6748, 1:3000 dilution) or anti-beta (Sigma, A2066, 1:2000 dilution) and probed with either goat anti-chicken IgH & IgL (Abcam, ab17577, 1:1000 dilution) or TUBB-conjugated AffiniPure goat anti-rabbit IgG(H + L) (Proteintech, SA00012-1, 1:1000 dilution) for 1 h at room temperature prior to detection.

For IAP immunohistochemistry, adult conditional Setdb1 mutant and control mice - approximately 6 months old - were anesthetized with a terminal overdose of ketamine/xylazine mixture (IP: 200 and 300 mg/kg, respectively). Transcardial perfusion was performed with 100 ml of 10% sucrose followed by 200 ml of 4% paraformaldehyde in PBS. Brains were removed and placed in 4% formaldehyde overnight at 4 °C, followed by incubation in 30% sucrose until isotonic. After embedding in OCT compound (Tissue-Tek), the brains were cut on a freezing microtome (Leica SM2010 R) into 30 µm coronal sections and placed in 1x PBS. Staining for IAP protein was performed as follows: coronal sections containing prefrontal cortex were blocked and permeabilized with 10% BSA and 0.05% Triton X-100 in 1x PBS for 1 h at room temperature, followed by incubation with the rabbit anti-IAP antibody (see paragraph above) (1:100 in 1x PBS; and 0.01% Triton X-100 overnight at room temperature. The sections were washed for 5 minutes in PBS followed by incubation in anti-rabbit Alexa Fluor 647 secondary antibody for 1 h at room temperature. Sections were washed briefly in PBS before being mounted on Superfrost Plus slides (Fisherbrand) with DAPI Fluoromount-G media (SouthernBiotech). Imaging was done using a Zeiss CLSM780 upright microscope equipped to the probes and treated with Opal 570 dye. Z-stack was removed, and placed in immersion Oil 1.400 Medium in the inverted microscope (Leica TCS-SP5, Leica Microsystems, Buffalo Grove, IL). The confocal microscope was used to capture images (Z-stack).

Electron microscopy. Adult mice (N = 4 conditional Setdb1 mutants and N = 4 control animals) were anesthetized and perfused using a peristaltic pump at a flow rate of 35 ml/min with 1% paraformaldehyde/phosphate buffered saline (PBS), pH 7.2, and immediately followed with 2% paraformaldehyde and 2% glutaraldehyde/ PBS, pH 7.2 at the same flow rate for an additional 10–12 min. The animal’s brain was removed and placed in 1% OsO4 in a 1:1:1 mixture of 0.1 M cacodylate buffer and 2% paraformaldehyde. Brains were fixed for a minimum of 1 week at 4 °C. Fixed brains were sectioned using a Leica VT1000S vibratome (Leica Biosystems Inc., Buffalo Grove, IL) and coronal slices (400 µm)
containing the frontal cortex were removed and embedded in EPON resin (Electron microscopy Sciences [EMS], Hatfield, PA). Briefly, sections were rinsed in buffer, fixed with 2% glutaraldehyde and 2% paraformaldehyde, dehydrated through a series of ethanol and embedded in Epon 812 resin. Sections were stained with toluidine blue in 1% sodium carbonate and viewed with an Olympus BX40 microscope.

Data availability

The sequencing data for genome-scale analysis (Hi-C, ChIP-seq, RNA-Seq, and PacBio SMRT-Seq) generated in this study have been deposited in the European Nucleotide Archive (ENA) under the study accession PRJEB42852 and Project accession PRJEB42852.

References

1. Winter, D. J. et al. Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae. *PloS Genet.* 14, e1007467 (2018).
2. Giorgetti, L. et al. Structural organization of the inactive X chromosome in mouse. *Nature* 353, 575–579 (2016).
3. Sun, J. H. et al. Disease-associated short tandem repeats co-localize with chromatin domain borders. *Cell* 175, 224–238 e215 (2018).
4. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. *Science* 326, 289–293 (2009).
5. Mouse Genome Sequencing, C. et al. Initial sequencing and comparative analysis of the mouse genome. *Nature* 420, 520–562 (2002).
6. Sharp, J., Shinkai, Y. & Koseki, H. Is there a role for endogenous retroviruses to mediate long-term adaptive phenotypic response upon environmental inputs? *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 368, 20110340 (2013).
7. Romer, C. Viruses and endogenous retroviruses as roots for neuroinflammation and neurodegenerative diseases. *Front. Neurosci.* 15, 648629 (2021).
8. Sankowski, R. et al. Endogenous retroviruses are associated with hippocampus-based memory impairment. *Proc. Natl Acad. Sci. USA* 116, 25982–25990 (2019).
9. Kato, M., Takemoto, K. & Shinkai, Y. A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing. *Nat. Commun.* 9, 1683 (2018).
10. Sachs, P. et al. SMABCAD1 ATPase activity is required to silence endogenous retroviruses in embryonic stem cells. *Nat. Commun.* 10, 13335 (2019).
11. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell* 159, 1665–1680 (2014).
12. Espeso-Gil, S. et al. Environmental enrichment induces epigenomic and genome organization changes relevant for cognition. *Front. Mol. Neurosci.* 14, 158 (2021).
13. Fernandez-Albert, J. et al. Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus. *Nat. Neurosci.* 22, 1718–1730 (2019).
14. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. *Cell* 171, 557–572.e524 (2017).
15. Mouse, E. C. et al. An atlas of mouse DNA elements (Mouse ENCODE). *Genome Biol.* 13, 418 (2012).
16. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. *Nature* 518, 317–330 (2015).
17. Monahan, K., Horta, A. & Lomvardas, S. LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. *Nature* 565, 448–453 (2019).
18. de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. *PLoS Genet.* 7, e1002384 (2011).
19. Elbarbary, R. A., Lucas, B. A. & Maquat, L. E. Retrotransposons as regulators of gene expression. *Science* 351, aaq7247 (2016).
20. Gifford, R. J. et al. Nomenclature for endogenous retrovirus (ERV) loci. *Retrovirology* 15, 59 (2018).
21. Stocking, C. & Kozak, C. A. Murine endogenous retroviruses. *Cell Mol. Life Sci.* 65, 3383–3398 (2008).
22. Kaufmann, S. et al. Inter-chromosomal contact networks provide insights into mammalian chromatin organization. *PLoS ONE* 10, e0126125 (2015).
23. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. *Nature* 485, 376–380 (2012).
24. Courcana, A., Koszul, R. & Moziovinczak, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. *Nucleic Acids Res.* 44, 245–255 (2016).
25. Nellaker, C. et al. The genomic landscape shaped by selection on transposable elements across 18 mammalian genomes. *Genome Biol.* 13, R45 (2012).
26. Ravirala, R. et al. Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. *Genome Biol.* 19, 216 (2018).
27. Jiang, Y. et al. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. *Nat. Genet.* 49, 1239–1250 (2017).
28. Przanowski, P. et al. Open chromatin landscape of rat microglia upon proinvasive or inflammatory stimuli. *Science* 367, 75–80 (2019).
29. Campbell, I. L. Cytokine-mediated inflammatory diseases. *Curr. Pharm. Des.* 23, 245–258 (2017).
30. Reik, W. et al. The genomic landscape shaped by selection on transposable elements across 18 mammalian genomes. *Genome Biol.* 13, R45 (2012).
31. Poppole, P., Kliem, S., Baus, D. & Litterst, C. M. The role of STATs in inflammation, tumorigenesis, and disease-associated Jak/Stat/SoCs signaling circuits in the CNS. *Brain Res. Brain Res. Rev.* 48, 166–177 (2005).
32. Pfisterer, E., Kliem, S., Baus, D. & Litterst, C. M. The role of STATs in inflammation and inflammatory diseases. *Curr. Pharmacol. Des.* 10, 2839–2850 (2004).
33. Popiolek-Barczyk, K. & Mika, J. Targeting the microglial signaling pathways: new insights in the modulation of neuropathic pain. *Curr. Med. Chem.* 23, 2908–2928 (2016).
34. Tie, C. H. et al. KAP1 regulates endogenous retroviruses in adult human cells and contributes to innate immune control. *EMBO Rep.* 19, e45000 (2018).
35. Nuebler, J., Fudenberg, G., Imaoka, M., Abendnur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. *Proc. Natl Acad. Sci. USA* 115, E6697–E6706 (2018).
36. Singh, P. B. & Newman, A. G. On the relations of phase separation and Hi-C maps to epigenetics. *R. Soc. Open Sci.* 7, 191976 (2020).
35. Erdel, F. & Rippe, K. Formation of chromatin subcompartments by phase separation. Biophys. J. 114, 2262–2270 (2018).
36. Zhou, L. et al. Spatially coordinated heterochromatinization of distal short tandem repeats in fragile X syndrome. bioRxiv https://doi.org/10.1101/2021.04.23.441217 (2021).
37. Mager, D. L. & Stoye, J. P. Mammalian endogenous retroviruses. Microbiol. Spectr. 3, MDNA3-0009-2014 (2015).
38. Chat, D. Y. H., Veeling, J., Miller, K. A., Wolff, G. L. & Barsh, G. S. Neomorphic agouti mutations in obese yellow mice. Nat. Genet. 8, 59–65 (1994).
39. Hantak, M. P., Einstein, J., Kearns, R. B. & Shepherd, J. D. Intercellular communication in the nervous system goes viral. Trends Neurosci. 44, 248–259 (2021).
40. Lavialle, C. et al. Paleovirology of ‘synaptins’, retroviral env genes exapated for a role in placentation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 2012007 (2013).
41. Lemmer, I. L., Willemsen, N., Hilal, N. & Bartelt, A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol. Metab. 47, 101169 (2021).
42. Chiappinelli, K. B. et al. Inhibiting DNA methylating causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).
43. Brendel, M. et al. Time courses of cortical glucose metabolism and microglial activity across the life span of wild-type mice: a PET study. J. Nucl. Med. 58, 1984–1990 (2017).
44. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).
45. Ochoa Thomas, E., Zuniga, G., Sun, W. & Frost, B. Awakening the dark side: retrotransposon activation in neurodegenerative disorders.Curr. Opin. Neurobiol. 61, 65–72 (2020).
46. Guo, C. et al. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 23, 2874–2880 (2018).
47. Chang, D. Y. H. & Veeling, J. The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila model of neurodegeneration. Curr. Biol. 29, 3135–3152 e3134 (2019).
48. Dembny, P. et al. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 5, e131093 (2020).
49. Li, W. et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 307ra153 (2015).
50. Page, N. F. et al. Alterations in retrotransposition, synaptic connectivity, and myelination implicated by transcriptomic changes following maternal immune activation in non-human primates. Biol. Psychiatry 89, 896–910 (2021).
51. Tam, O. H., Ostrow, L. W., Gale & Hammell, M. Diseases of the nERvous system: retrotransposon activity in neurodegenerative disease. Mol. Biochem. 10, 32 (2019).
52. Garcia-Montoyo, M., Doucet-O’Hare, T., Henderson, L. & Nath, A. Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit. Rev. Microbiol. 44, 715–738 (2018).
53. Jones, A. R. et al. A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex. Sci. Rep. 11, 14283 (2021).
54. Garson, J. A. et al. Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 7, 45 (2019).
55. Bowen, L. N. et al. HIV-associated motor neuron disease: HERV-K activation and response to antiretroviral therapy. Neurology 87, 1756–1762 (2016).
56. Bellve AR. Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol 225, 84–113 (1993).
57. Peric-Hupkes, D. et al. Maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38, 603–613 (2010).
58. Shen, L. et al. dill: detecting differential chromatin modification sites from ChiP-seq data with biological replicates. PLoS One 8, e65598 (2013).
59. Mietz, J. A., Grossman, Z., Lueders, K. K. & Kuff, E. L. Nucleotide sequence of a complete mouse intracisternal A-particle genome: relationship to known aspects of particle assembly and function. J Virol 61, 3020–3029 (1987).

Acknowledgements

The authors thank all members of the Akbarian lab for constructive comments and discussions; E.X., C.R. and A.C. for generous access to sequencing equipment; L.W. and staff at the New York Genome Center for logistical support; M.S. and D.S. for guidance on the PacBio SMRT-Seq protocol; and L.M. for his insights into human retrovirology. Nuclei sorting was performed at the Flow Cytometry Core at the Icahn School of Medicine at Mount Sinai. Microscopy preparation and imaging was performed at the Microscopy Core at the Icahn School of Medicine at Mount Sinai. RNA-seq library preparation and next-generation sequencing was performed at the Genomics Core at the Icahn School of Medicine at Mount Sinai. We thank Dr. B.R. Cullen (Duke University) for the anti-IAP antibody gift. This work was supported by grants R01MH106076 (S.A.), R01MH117790 (S.A.), and P50MH096890 (S.A.), National Natural Science Foundation of China 81971272 (Y.J.), and T32-AG049688 (S.C.).

Author contributions

S.C., B.J., B.K., Y.D., Y.Z., L.K.B., P.R., C.J.P., D.J., E.A.-P. and M.I. performed experiments; S.C. and S.A. conceived and designed experiments; S.C. performed statistical analyses; S.C., S.E.-G., Y.-H.E.L., Y.D., B.J.L. and H.L. provided resources. M.E. and L.S. performed bioinformatics and genomic analyses; Y.J. and S.A. supervised the research; S.C. and S.A. wrote the paper, with contributions from all co-authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-26862-z.

Correspondence and requests for materials should be addressed to Yan Jiang or Schahram Akbarian.

Peer review information Nature Communications thanks Patricio Huerta, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.