Hidden Sector Dark Matter and LHC Signatures

Shrihari Gopalakrishna

Physics Department, Brookhaven National Laboratory, Upton, NY 11793. USA.
New address:
The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600113. India.

Abstract.
We discuss the implications of a gauged Abelian hidden-sector communicating with the Standard Model (SM) fields via kinetic mixing with the SM hypercharge gauge field, or via the Higgs quartic interaction. We discuss signatures of the hidden-sector gauge boson at the LHC in the four-lepton channel. We show that a hidden-sector fermion can be a natural dark-matter candidate with the correct relic-density, discuss direct-detection prospects, and show how Higgs signatures may be altered at the LHC.

Keywords: Hidden sector gauge symmetry, Higgs boson, LHC phenomenology

PACS: 12.60.Fr; 12.60.Cn; 14.70.Pw; 14.80.Cp

This paper summarises the analysis presented in Refs. [1] and [2] and the reader is referred to these works for more details and a fuller list of references.

The theory: The SM has two gauge invariant, flavor-neutral operators that are relevant (dimension < 4): the hypercharge field-strength tensor $B_{\mu \nu}$ and the SM Higgs mass operator $|\Phi_{SM}|^2$. Hidden sector (i.e., non-SM states with no SM charge) abelian gauge bosons X and Higgs bosons Φ_H can couple to these operators in a gauge invariant, renormalizable manner: $X_{\mu \nu} B^{\mu \nu}$, and $|\Phi_H|^2 |\Phi_{SM}|^2$. In this letter we investigate the phenomenological implications of the existence of these two operators.

We consider an extra $U(1)_X$ factor in addition to the SM gauge group. Details are presented in Refs. [1] and [2], and related aspects can also be found in Refs. [3]. We start by exploring the coupling of X_{μ} via kinetic mixing with B_{μ}. The kinetic energy terms of the $U(1)_X$ gauge group are $L_{KE}^{X} = -\frac{1}{4} \hat{X}_{\mu \nu} \hat{X}^{\mu \nu} + \frac{\chi}{2} \hat{X}_{\mu \nu} \hat{B}^{\mu \nu}$, where we take the parameter $\chi \ll 1$ to be consistent with precision electroweak constraints. Hats on fields imply that gauge fields do not have canonically normalized kinetic terms.

We introduce a new Higgs boson Φ_H in addition to the usual SM Higgs boson Φ_{SM}. Under $SU(2)_L \otimes U(1)_Y \otimes U(1)_X$ we take the representations $\Phi_{SM} : (2, 1/2, 0)$ and $\Phi_H : (1, 0, q_X)$, with q_X arbitrary. $U(1)_X$ is broken spontaneously by $\langle \Phi_H \rangle = \xi / \sqrt{2}$, and electroweak symmetry is broken spontaneously as usual by $\langle \Phi_{SM} \rangle = (0, v / \sqrt{2})$. The two real physical Higgs bosons ϕ_{SM} and ϕ_H mix after symmetry breaking, and the mass eigenstates h, H are related to the interaction states ϕ_{SM}, ϕ_H by the sine of the mixing angle denoted as s_h and the cosine as c_h.

X_{μ} signals via $pp \rightarrow h \rightarrow XX \rightarrow l\bar{l}l^l$: If the exotic gauge boson is sufficiently light, the lightest Higgs boson decays into a pair of them. The decay of the Higgs boson into two X bosons is through Higgs boson mixing. The X boson will then decay into SM fermions if there is even a tiny amount of kinetic mixing, which we assume to be the
case. We are particularly interested in leptonic final states, and we provide details of how $pp \rightarrow h \rightarrow XX \rightarrow ll'll'$ is possible within this theoretical framework, and to explore the detectability of this channel at the Fermilab Tevatron and CERN LHC.

In presenting results in this section, we will choose $\eta = 10^{-4}$, $\xi = 1$ TeV, and unless mentioned otherwise, take $c_h^2 = 0.5$. For illustration, we choose six benchmark points: Points A – F with $(M_h, M_{Z'})$ values in GeV given by (120, 5); (120, 50); (150, 5); (150, 50); (250, 5); (250, 50) respectively. For these points we compute the differential distributions, make cuts and find the significance at the Tevatron and LHC. We make use of the narrow width approximation and analyse in succession: $pp \rightarrow h$ followed by $h \rightarrow Z'Z'$ followed by $Z'\rightarrow \ell^+\ell^-$. A 120 GeV (250 GeV) Higgs boson has total width of ~ 10 MeV (~ 2.1 GeV) when $M_{Z'} = 5$ GeV and $c_h^2 = 0.5$. The Z' coupling to the SM sector is proportional to the tiny η, making the width rather small, but these are the only modes kinematically allowed for the Z' to decay into. The Z' total width for $\eta = 10^{-4}$ is 5.8×10^{-10}, 2.7×10^{-9}, 8.2×10^{-9} and 2.0×10^{-7} GeV for $M_{Z'} = 5, 20, 50$ and 100 GeV respectively.

The gluon fusion process $gg \rightarrow h$ is the largest production channel at the Tevatron ($\sqrt{s} = 1.96$ TeV) and the LHC ($\sqrt{s} = 14$ TeV). For instance, at the Tevatron, NLO $\sigma(gg \rightarrow h)$ = 0.85 pb for $M_h = 120$ GeV while the sum of the other channels gives 0.33 pb; the corresponding cross-sections at the LHC are 40.25 pb and 7.7 pb respectively. We include only gluon fusion computed at NLO using HIGLU [4]. We use MadGraph to obtain all matrix elements, and generate event samples using MadEvent [5] with CTEQ6L1 PDF [6].

After applying suitable cuts (see Ref. [1]) to maximise signal while reducing background, we find the following cross-sections for points A – F (in fb): 245, 44, 173, 57, 2.2 respectively. We thus see that the prospect of discovering the X_{μ} in this channel is excellent at the LHC.

Hidden sector fermions: We add to this theory two vector-like pairs of fermions (ψ, ψ^c) and (χ, χ^c) that carry $U(1)_X$ charges but not any SM gauge quantum numbers. Since there are no fermions charged under both the SM gauge group and $U(1)_X$, there are no mixed anomalies. The vector-like nature makes the $U(1)_X$ anomaly cancellation trivial. We add the Lagrangian terms (written with Weyl spinors)

$$\mathcal{L} \supset -\lambda_\psi \Phi_H \psi \chi - \lambda_\psi^c \Phi_H^\dagger \psi^c \chi^c - M_\psi \psi^c \psi - M_\chi \chi^c \chi + \text{h.c.}$$

(1)

where the fermion covariant derivative terms are not shown, and q_ψ represents the $U(1)_X$ charge of ψ. We assume that the vector-like masses M_ψ and M_χ are around the electroweak scale.

There is an accidental Z_2 symmetry under which ψ, ψ^c, χ, χ^c are odd, while Φ_H and all SM fields are even. This ensures the stability of the lightest Z_2 odd fermion, which we will identify as the dark-matter candidate.

In addition to the vector-like masses, $U(1)_X$ breaking by $\langle \Phi_H \rangle = \xi / \sqrt{2}$ implies the Dirac masses $m_D \equiv \lambda_\psi \xi / \sqrt{2}$ and $m'_D \equiv \lambda_\psi^c \xi / \sqrt{2}$.

We will explore the cosmological, direct-detection and collider implications of the theory we have outlined. We will restrict ourselves to the lightest (and therefore stable) hidden sector fermion (denoted as ψ henceforth). The relevant parameters are: M_ψ, κ_{11}.
the present experimental observations. In the region
graphs.
the latter two will be probed in upcoming experiments. Right panel: The
κ (the coupling of the hidden sector fermions to the hidden Higgs),
Relic density: ψψ annihilations into the W⁺W⁻, ZZ, hh, tt final states will be important
if they are kinematically accessible, and if not, the dominant channel is into bb. We
compute the annihilation cross-section in the mass basis including s, t and u-channel
graphs.
We show in Fig. 1 (left) the (0.1, 0.2, 0.3) contours of Ω_{dm0} in the M_{ψ1}−κ_{11} plane, with
the parameters not varied in the plots fixed at M_{ψ1} = 200 GeV, m_h = 120 GeV, s_h = 0.25,
κ_{11} = 2.0, κ_{3ϕ} = 1, M_H = 1 TeV, κ_{H2h} = 1 and ξ = 1 TeV. This bench-mark point results
in Ω_{dm} ≈ 0.2. We see that there exists regions of parameter space that are consistent with
the present experimental observations. In the region m_h > 2M_{ψ1}, the h → ψψ decay is
allowed, implying an invisibly decaying Higgs at a collider. This connection will be
explored in the following.
Direct detection: Many experiments are underway currently to directly detect dark
matter, and still more are proposed to improve the sensitivity. In order to ascertain
the prospects of directly observing ψ in the U(1)X framework we are considering,
we compute the elastic ψ-nucleon cross-section due to the t-channel exchange of the
Higgs boson. To illustrate, for κ_{11} = 2.0, s_h = 0.25, M_{ψ1} = 200 GeV, m_h = 120 GeV,
we find σ ≈ 1.9 × 10⁻¹⁶ GeV⁻² = 7 × 10⁻⁴⁴ cm². This is very interesting as the
presently ongoing experiments [8] are probing this range of cross-sections. With all other
parameters fixed as above, as m_h is increased to 350 GeV, the direct-detection cross-
section falls smoothly to about 10⁻⁴⁵ cm². In Fig. 1 (left) we show the direct detection
cross-section as shaded regions; from the compilation in Ref. [8], the dark-shaded region
(σ ≳ 10⁻⁴³ cm²) is excluded by present bounds from direct detection searches, while
the medium-shaded (σ ≳ 10⁻⁴⁴ cm²) and the light-shaded (σ ≳ 10⁻⁴⁵ cm²) regions
will be probed by upcoming experiments. We have defined our model into the package
MicrOMEGAs [7] and checked that our analytical results agree with the full numerical
treatment reasonably well.
Higgs Boson Decays: In addition to the usual SM decay modes, if $M_{\psi} < m_h/2$, the decay $h \rightarrow \psi \bar{\psi}$ is kinematically allowed, leading to an invisible decay mode for the Higgs boson.

We impose the requirement that the relic density should be in the experimentally measured range by scanning over $M_{\psi} \sim 60$ GeV, and show in Fig. 1 (right) the corresponding BR_{inv} as a function of κ_{11}, with $\kappa_3 = 1.0$ and $m_H = 1$ TeV held fixed. We see that a significant BR_{inv} is possible while giving the required Ω_h and being consistent with present direct-detection limits, with the general trend of increasing BR_{inv} for increasing κ_{11} or s_h. Here we have shown only the points that satisfy the direct-detection cross-section $\sigma < 10^{-43}$ cm2, to be consistent with current experimental results [8]. For a larger Higgs mass we find qualitatively similar invisible BR with larger values of κ_{11} preferred.

LHC Higgs phenomenology: The discovery significance of the light Higgs in the $gg \rightarrow h \rightarrow \gamma\gamma$, $gg \rightarrow h \rightarrow ZZ \rightarrow 4\ell$ and $gg \rightarrow h \rightarrow WW \rightarrow 2\ell 2\nu$ channels compared to those of a SM Higgs boson with the same mass is reduced appreciably, but we show that the prospects of discovering the Higgs via its invisible decay mode in the vector-boson-fusion channel becomes excellent.

The vector-boson-fusion channel has been analysed in Ref. [9], which we use to obtain significances in the $U(1)_X$ model by multiplying the signal cross-section given there by $BR_{inv} c_h^2$. The backgrounds included there are QCD and EW Zjj and Wjj. We find in the $U(1)_X$ model after suitable cuts (see Ref. [2]), for $m_h = 120, 200, 300$ GeV, that we need for 5σ significance at the LHC an integrated luminosity of $(0.44, 0.7, 1.3)/(BR_{inv} c_h^2)$ fb$^{-1}$ respectively. For example, for $m_h = 120$ GeV, $BR_{inv} = 0.75$ and $s_h = 0.5$, we would require a luminosity of 1.4 fb$^{-1}$ for 5σ statistical significance. Alternatively, with 10 fb$^{-1}$, we can probe BR_{inv} down to about 26% at 5σ. We thus see that in this channel, the prospect of discovering an invisibly decaying Higgs boson in the $U(1)_X$ scenario is excellent.

Acknowledgments: We thank the organisers of SUSY09 for a very nice conference. SG was supported in part by the DOE grant DE-AC02-98CH10886 (BNL).

REFERENCES

1. S. Gopalakrishna, S. Jung and J. D. Wells, Phys. Rev. D 78, 055002 (2008).
2. S. Gopalakrishna, S. J. Lee and J. D. Wells, arXiv:0904.2007 [hep-ph].
3. R. Schabinger and J. D. Wells, Phys. Rev. D 72, 093007 (2005); M. J. Strassler and K. M. Zurek, Phys. Lett. B 651, 374 (2007); M. J. Strassler, arXiv:0801.0629; J. Kumar and J. D. Wells, Phys. Rev. D 74, 115017 (2006); M. Bowen, Y. Cui and J. D. Wells, JHEP 0703, 036 (2007); W. F. Chang, J. N. Ng and I. M. S. Wu, Phys. Rev. D 75, 115016 (2007); J. March-Russell, S. M. West, D. Cumberbatch and D. Hooper, JHEP 0807, 058 (2008); Y. G. Kim, K. Y. Lee and S. Shin, JHEP 0805, 100 (2008).
4. M. Spira, hep-ph/9510347; A. Djouadi, hep-ph/0503172.
5. T. Stelzer, W. F. Long, Comput. Phys. Commun. 81, 357 (1994); F. Maltoni, T. Stelzer, JHEP 0302, 027 (2003).
6. J. Pumplin, A. Belyaev, J. Huston, D. Stump and W. K. Tung, JHEP 0602, 032 (2006).
7. G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 176, 367 (2007); and arXiv:0803.2560 [hep-ph].
8. Rick Gaitskell, Vuk Mandic and Jeff Filippini, http://dmtools.berkeley.edu/limitplots/.
9. O. J. P. Eboli and D. Zeppenfeld, Phys. Lett. B 495, 147 (2000).