A COHOMOLOGICAL PROPERTY OF SEMI-ABELIAN p-GROUPS

MOHAMMED T. BENMOUSSA AND YASSINE GUERBOUSSA*

Abstract. We prove a cohomological property for a class of finite p-groups introduced earlier by M. Y. Xu, which we call semi-abelian p-groups. This result implies that a semi-abelian p-group has non-inner automorphisms of order p, which settles a longstanding problem for this class. We answer also, independently, an old question of M. Y. Xu about the power structure of semi-abelian p-groups.

Dedicated to Professor Ming-Yao Xu for his early work on finite p-groups.

1. Introduction

Let G be a finite p-group. Following M. Y. Xu (see [14]), we say that G is strongly semi-p-abelian, if the following property holds in G:

$$(xy^{-1})^{p^n} = 1 \iff x^{p^n} = y^{p^n} \text{ for any positive integer } n.$$

For brevity, we shall use the term semi-abelian for such a group. It is easy to see that such a group satisfies the properties:

(i) $\Omega_n(G) = \Omega_{\{n\}}(G)$,

(ii) $|G : G^{p^n}| = |\Omega_n(G)|$, and so $|G : G^{p^n}| \leq |\Omega_n(G)|$.

Hence, semi-abelian p-groups share some nice properties with the regular p-groups introduced by P. Hall (see [3] for their theory). It is not difficult to show that every regular p-group is semi-abelian; however the class of semi-abelian p-groups is much larger, and in fact every finite p-group can occur as a quotient of a semi-abelian p-group (see Section 3).

Let G be a regular p-group, and $1 < N < G$ such that G/N is not cyclic. P. Schmid showed in [12], that the Tate cohomology groups $\hat{H}^n(G/N, \mathbb{Z}(N))$ are all non-trivial; where $\mathbb{Z}(N)$ is considered as a G/N-module with the action induced by conjugation in G. Our first purpose is to show that Schmid’s result holds in a more general context.

Theorem 1.1. Let G be a semi-abelian p-group, and $1 < N < G$ such that G/N is neither cyclic nor a generalized quaternion group. Then $\hat{H}^n(G/N, \mathbb{Z}(N)) \neq 0$, for all integers n.

Let us note that P. Schmid has conjectured that Theorem [13] holds for an arbitrary finite p-group G if one takes $N = \Phi(G)$. This conjecture has been refuted by A. Abdollahi in [1]. Although, it is interesting to find other classes of p-groups

Keywords: cohomology; finite p-groups; automorphisms.

*Corresponding author.

1
which satisfy the conclusion of Theorem 1.1 (see [2] Question 1.2).

The above theorem is intimately related to studying non-inner automorphisms of finite p-groups. An abelian normal subgroup A of a group G can be seen as a G-module via conjugation, whence we can consider the group of crossed homomorphisms or derivations $\text{Der}(G, A)$. To each derivation $\delta \in \text{Der}(G, A)$, we can associate an endomorphism ϕ_{δ} of G, given by $\phi_{\delta}(x) = x\delta(x)$, $x \in G$. This map ϕ sends $\text{Der}(G, A)$ into

$$\text{End}_A(G) = \{\theta \in \text{End}(G) | x^{-1}\theta(x) \in A, \text{ for all } x \in G\}$$

and in fact it defines a bijection between the two sets $\text{Der}(G, A)$ and $\text{End}_A(G)$.

If we consider only the set of derivations $\delta : G \to A$, that are trivial on $C_G(A)$ (i.e. $\delta(x) = 1$, for $x \in C_G(A)$), which can be identified to $\text{Der}(G/C_G(A), A)$; then the map ϕ induces an isomorphism between $\text{Der}(G/C_G(A), A)$ and the group $\tilde{C}(A)$ of the automorphisms of G acting trivially on $C_G(A)$ and G/A.

It is straightforward to see that this isomorphism maps $\text{Ider}(G/C_G(A), A)$ into a group of inner automorphisms lying in $\tilde{C}(A)$, though an inner automorphism lying in $\tilde{C}(A)$ needs not necessarily be induced by an inner derivation; however this case can be avoided by assuming that $C_G(C_G(A)) = A$, as if $\phi_{\delta}(x) = x^g$ for some $g \in G$ and all $x \in G$, then $g \in C_G(C_G(A))$, so g lies in A and δ is the inner derivation induced by g^{-1}. We have established

Proposition 1.2. Let G be a group, and A be an abelian normal subgroup of G such that $C_G(C_G(A)) = A$; let $\tilde{C}(A)$ denote the group of the automorphisms of G acting trivially on $C_G(A)$ and G/A. Then there is an isomorphism from $\text{Der}(G/C_G(A), A)$ to $\tilde{C}(A)$, which maps $\text{Ider}(G/C_G(A), A)$ exactly to the inner automorphisms lying in $\tilde{C}(A)$. In particular if $\tilde{C}(A) \leq \text{Inn}(G)$, then $\tilde{H}^1(G/C_G(A), A) = 0$.

This well known fact in the literature, which can be found for instance in [3], permits to reduce the problem of existence of non inner automorphisms of some group to a cohomological problem. For instance, this allowed W. Gaschütz to prove that any non simple finite p-group has non inner automorphisms of p-power order.

It is conjectured by Y. Berkovich that a more refined version of Gaschütz’s result holds, more precisely that a non simple finite p-group has non inner automorphisms of order p (see [11] Problem 4.13). While it is not clear that a positive answer to it, has deep implications for our understanding of finite p-groups, this problem received a large interest, and its hardness may stimulates further developments of new techniques in finite p-group theory. The reader may find more information and the relevant references about this problem in [2].

Our second result settles this problem in the class of semi-abelian p-groups.

Theorem 1.3. Let G be a semi-abelian finite p-group. Then G has a non inner automorphism of order p.

Our notation is standard in the litterature. Let S be a group. For a positive integer n, we denote by $S^{(p^n)}$ the set of the p^n-th powers of all the elements of S and by S^{p^n} the subgroup generated by $S^{(p^n)}$. The subgroup generated by the elements of order dividing p^n is denoted by $\Omega_n(S)$. We denote by $\lambda^n_p(S)$ the terms of the lower p-series of S which are defined inductively by :

$$\lambda^n_1(S) = S, \text{ and } \lambda^n_{n+1}(S) = [\lambda^n_n(S), S]\lambda^n_n(S)^p.$$
If A is an S-module, then A_S denotes the subgroup of fixed elements in A under the action of S.

The remainder of the paper is divided into two sections. In Section 2, we prove Theorem 1.1 and Theorem 1.3; and in Section 3 we answer an old question of M. Y. Xu (see [13, Problem 3]) about the power structure of semi-abelian p-groups. This result follows quickly from a result of D. Bubboloni and G. Corsi Tani (see [4]), but it seems not that this link has been noted before.

2. Proofs

Let Q be a finite p-group, and A be a Q-module of p-power order. Recall that A is said to be cohomologically trivial if $\hat{H}^k(S, A) = 0$ for all $S \leq Q$ and all integers k.

It is proved by W. Gaschütz and K. Ushida (independently) that $\hat{H}^1(Q, A) = 0$ implies that $\hat{H}^k(S, A) = 0$ for all $S \leq Q$ and all integers $k \geq 1$ (see [8, Lemma 2, §7.5]). This statement can be slightly improved as noted in [9].

Proposition 2.1. Let Q be a finite p-group, and A be a Q-module which is also a finite p-group. If $\hat{H}^n(Q, A) = 0$ for some integer n, then A is cohomologically trivial.

We shall use Proposition 2.1 to reduce the proof of Theorem 1.1 to the non-vanishing of the Tate cohomology groups in dimension 0, which is easier to handle.

We need also the following result of Schmid (see [12, Proposition 1]).

Proposition 2.2. Let Q be a finite p-group, and $A \neq 1$ be a Q-module which is also a finite p-group. If A is cohomologically trivial, then $C_Q(A_K) = K$, for every $K \leq Q$.

We need also to prove the following

Lemma 2.3. Under the assumption of Theorem 1.1, set $A = \mathbb{Z}(N)$ and let S/N be a subgroup of exponent p of G/N. Then $A^p \leq A_{S/N}$, so that $C_{S/N}(A^p) = S/N$.

Proof. Let be $x \in S$ and $a \in A$. We have $x^p \in N$, hence

$$x^p = (x^p)^a = (x^a)^p = (x[a, a])^p.$$

As G is semi-abelian, we have $[x, a]^p = 1$. It follows that $(a^{-1} a [a, x])^p = [a, x]^p = 1$, and again since G is semi-abelian, we have

$$a^p = (a[a, x])^p = (a^p)^x.$$

This shows that A^p is centralized by every element of S/N. \square

Proof of Theorem 1.1. Assume for a contradiction that $\hat{H}^n(G/N, A) = 0$ for some integer n, where A denotes $\mathbb{Z}(N)$. As G/N is not cyclic and different from the generalized quaternion groups Q_{2^n}, there is in G/N a subgroup S/N of exponent p and order $\geq p^2$. It follows from Proposition 2.1 that $\hat{H}^n(S/N, A) = 0$, so A is a cohomologically trivial S/N-module. Let $K/N \leq S/N$ be a subgroup of order p. Proposition 2.1 implies that $\hat{H}^0(K/N, A) = 0$. We have $\hat{H}^0(K/N, A) = A_{K/N}/A^\tau = 0$, where A^τ is the image of A under the trace homomorphism $\tau : A \to A$ induced by K/N. As K/N is cyclic of order p, our trace map is given by

$$a^\tau = aa^x \ldots a^{xp-1}$$

for $a \in A$, and any fixed $x \in K - N$.
from which it follows

\[a^\tau = (ax^{-1})^p x^p. \]

Now as \(G \) is semi-abelian, \(a \in \ker \tau \) if, and only if \(a^p = 1 \); that is \(\ker \tau = \Omega_1(A) \). This implies that \(|A^\tau| = |A^p|\). As \(A_{K/N} = A^\tau \), and \(A^p \leq A_{K/N} \) by Lemma 2.2 we have \(A^p = A_{K/N} \). By Proposition 2.2 \(C_{S/N}(A^p) = C_{S/N}(A_{K/N}) = K/N \), however Lemma 2.2 implies that \(S/N = K/N \), a contradiction.

Before proving Theorem 1.3 we need the following reduction from [5].

Proposition 2.4. Let \(G \) be a finite \(p \)-group such that \(C_G(Z(\Phi(G))) \neq \Phi(G) \). Then \(G \) has a non inner automorphism of order \(p \).

Note that M. Ghorasi improved Proposition 2.4 in [7], where he reduced the problem of Berkovich to the \(p \)-groups \(G \) satisfying \(H \leq C_G(H) = \Phi(G) \), where \(H \) is the inverse image of \(\Omega_1(Z(G)/Z(G)) \) in \(G \). A family of examples which satisfy the condition \(C_G(Z(\Phi(G))) = \Phi(G) \) and do not satisfy Ghorashi’s condition can be found in the same paper.

Proof of Theorem 1.3. Assume for a contradiction that every automorphism of \(G \) of order \(p \) is inner. Let be \(A = Z(\Phi(G)) \). By Proposition 2.4 we have \(C_G(A) = \Phi(G) \) and so \(C_G(C_G(A)) = A \). If we prove that \(\text{Der}(G/C_G(A), A) = \text{Der}(G/\Phi(G), \Phi(G)) \) has exponent \(p \), then our first assumption together with Proposition 1.2 imply that \(H^1(G/\Phi(G), \Phi(G)) = 0 \), which contradicts Theorem 1.1. So we need only to prove, for any derivation \(\delta \in \text{Der}(G, Z(\Phi(G))) \) which is trivial on \(\Phi(G) \), that \(\delta(x)^p = 1 \), for all \(x \in G \). Indeed

\[\delta(x^p) = \delta(x)\delta(x)^2 \ldots \delta(x)x^{p-1} = (\delta(x)x^{-1})^p x^p. \]

As \(\delta \) is trivial on \(\Phi(G) \), we have \(\delta(x^p) = (\delta(x)x^{-1})^p x^p = 1 \), and since \(G \) is semi-abelian it follows that \(\delta(x)^p = 1 \). □

3. **Remarks on a particular class of semi-abelian \(p \)-groups**

M. Y. Xu proved in [13], that any finite \(p \)-group \(G \), \(p \) odd, which satisfies \(\Omega_1(\gamma_{p-1}(G)) \leq Z(G) \) is semi-abelian; and he asked if such a group must be power closed, that is every element of \(G^{p^n} \) is a \(p^n \)-th power.

A negative answer to this question will follow from the following important result of D. Bubboloni and G. Corsi Tani (see [4]).

Recall that a \(p \)-central group is a group in which every element of order \(p \) is central. D. Bubboloni and G. Corsi Tani used the term TH-group instead of \(p \)-central group, where TH-group refers to J. G. Thompson, who seems to be the first to observe the importance of \(p \)-central groups (see [10] Hilfssatz III.12.2).

Theorem 3.1. Let be \(d \) and \(n \) two positive integers, \(p \) an odd prime, and \(F \) the free group on \(d \) generators. Then \(G_n = F/\lambda_p^n(F) \) is a \(p \)-central \(p \)-group. More precisely we have \(\Omega_1(G_n) = \lambda_p^1(F)/\lambda_p^{n+1}(F) \).

Corollary 3.2. A finite \(p \)-group, \(p \) odd, which satisfies \(\Omega_1(\gamma_{p-1}(G)) \leq Z(G) \) needs not be necessarily power closed.
Proof. Obviously a p-central p-group satisfies $\Omega_1(\gamma_{p-1}(G)) \leq Z(G)$. Assume for a contradiction that the result is false. So the p-groups G_n are all power closed. Now every finite p-group is a quotient of some G_n (for appropriates n and d), and the property of being power closed is inherited by quotients. It follows that every finite p-group is power closed, which is a contradiction. □

Let us mention briefly another consequence of Theorem 3.1. It is largely believed that finite p-central p-groups are dual (in a sense) to powerful p-groups. Since the inverse limits of powerful p-groups have roughly a uniform structure (see [6, §3]), it is natural to ask if there is a restriction on the structure of a pro-p central p-group, that is an inverse limit of finite p-central p-groups.

Let F be the free group on a finite number of generators. As every normal subgroup of F of p-power index contains a subgroup $\lambda^p_n(F)$ for some n, it follows that

$$\hat{F}_p \cong \varprojlim F/\lambda^p_n(F)$$

where \hat{F}_p is the pro-p completion of F. This shows that the free pro-p group \hat{F}_p is pro-p-central, so there is no reasonable restriction on the structure of a (finitely generated) pro-p-central p-group.

Acknowledgments

This work could not be completed without the help of Daniela Bubbolon, Urban Jezernik and Andrea Caranti. We are really grateful to them.

References

[1] A. Abdollahi, Cohomologically trivial modules over finite groups of prime power order, J. Algebra 342 (2011) 154-160.
[2] A. Abdollahi, Powerful p-groups have noninner automorphisms of order p and some cohomology, J. Algebra 323 (2010) 779-789.
[3] Y. Berkovich, Groups of prime power order, vol. 1, Walter de Gruyter, 2008.
[4] D. Bubbolon, G. Corsi Tani, p-groups with all the elements of order p in the center, Algebra Colloq. 11 (2004), 181-190.
[5] M. Deaconescu, G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra 250 (2002) 283-287.
[6] J. Dixon, M. du Sautoy, A. Mann, D. Segal, Analytic pro-p Groups, second ed., Cambridge Univ. Press, 1999.
[7] M. S. Ghoraiishi, On noninner automorphisms of finite nonabelian p-groups, Bull. Austral. Math. Soc. 89 (2014) 202-209.
[8] K.W. Gruenberg, Cohomological Topics in Group Theory, Lecture Notes in Math., vol. 143, Springer-Verlag, Berlin, 1970.
[9] K. Hoechsmann, P. Roquette and H. Zassenhaus, A Cohomological Characterization of Finite Nilpotent Groups, Arch. Math. 19 (1968) 225-244.
[10] B. Huppert, Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin, 1967.
[11] V.D. Mazurov and E. I. Khukhro, The Kourovka Notebook. Unsolved Problems in Group Theory. 18th Edition, Russian Academy of Sciences, Siberian Division, Institute of Mathematics, Novosibirsk, 2014.
[12] P. Schmid, A cohomological property of regular p-groups, Math. Z. 175 (1980) 13.
[13] M.Y. Xu, A class of semi-p-abelian p-groups (in Chinese), Kexue Tongbao 26 (1981), 453-456. English translation in Kexue Tongbao (English Ed.) 27 (1982), 142-146.
[14] M.Y. Xu, The power structure of finite p-groups, Bull. Aust. Math. Soc. 36 (1987), no. 1, 1-10.
