Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation

Ryohei Furukawa1, Tsuyoshi Hachiya1,2, Hideki Ohmomo1, Yuh Shiwa1,2, Kanako Ono1, Sadafumi Suzuki3, Mamoru Satoh1,2,4,5, Jiro Hitomi6,7, Kenji Sobue8,9, Atsushi Shimizu1

古川亮平1, 八谷剛史1,2, 大桃秀樹1, 志波優1,2, 小野加奈子1, 鈴木禎史3, 佐藤衛1,2,4,5, 人見次郎6,7, 祖父江憲二8,9, 清水厚志1

1岩手医科大学 いわて東北メディカル・メガバンク機構生体情報解析部門
2岩手医科大学 いわて東北メディカル・メガバンク機構 メガバンク・データ管理部門
3慶應義塾大学 医学部 生理学教室
4岩手医科大学 いわて東北メディカル・メガバンク機構 健康情報 ICT 部門
5岩手医科大学 医歯薬総合研究所 生体情報解析部門
6岩手医科大学 医歯薬総合研究所 副機構長
7岩手医科大学 医学部 解剖学講座
8岩手医科大学 いわて東北メディカル・メガバンク機構 副機構長
9岩手医科大学 いわて東北メディカル・メガバンク機構 機構長

＜概要＞

コホート研究*1は医学研究の中でもデータの精度・信頼度が高いため、一人ひとりに合った予防や治療（個別化予防・個別化治療）の実現に必須の研究分野です。いわて東北メディカル・メガバンク機構（以下、IMM）では、IMM健康管理にご参加いただいた方の血液を用いて、DNAメチル化*2や遺伝子発現を対象としたオミックス情報をコホートに組み込んだ新しいゲノムコホート研究を遂行しています。

遺伝子の働きを調節する役割の一つである DNA メチル化は、発生の過程で変化や固定が起きることで、時期や細胞・組織に特有の DNA メチル化パターンを形成する他、環境の変化やストレスなどの外的要因によって変化する特徴も知られています。この特徴を利用して、生活習慣病やがんなど様々な疾患の発症の有無と DNA メチル化パターンの変化の関係を解析することで、疾患の要因やマーカーを明らかにしようとする研究手法が現在注目を集めています。

ゲノムコホート研究を進めることで、測定対象である生体試料（血液など）の安定性を担保することは非常に重要です。様々な刺激で変化することが知られている遺伝子発現と比べ、DNA メチル化の短期的な安定性は、これまで明らかにされていませんでした。そこで本研究では、ポ
ランティア2名の協力の下、3か月に渡り計24回の採血を行い、DNAメチル化の短期的安定性について検討しました。

まず、採取した血液から末梢血単核球（PBMC）を単離しました。PBMCは複数の血液細胞から構成されている点、DNAメチル化は細胞種ごとに異なる点から、細胞内のDNAメチル化パターンの変化とPBMC中の細胞種の存在比率の変化を区別することが難しいことが想定されました。そこで、セルソーター*3を用いて、PBMCを構成する血液細胞のうち、最も均一性の高い単球を分取し、これら2つの細胞集団を解析対象とすることで精度の高い解析を目指しました。得られたPBMC及び単球からDNAとRNAを抽出し、次世代シークエンサーを用いた遺伝子発現解析及びDNAメチル化アレイを用いたDNAメチル化解析を行いました。同時に、採血日の基礎体温と血算、ウイルス等の感染の指標となる高感度C反応性タンパク質（hsCRP）レベルも調べました。

3か月の測定期間中、どちらのボランティアにおいても、感染症による炎症が疑われるhsCRPレベルの上昇がごく短期間に観察され、それに対応した遺伝子発現変動がいくつかの炎症反応に関わる遺伝子において認められました。また、顕著な発現変動が認められた遺伝子の割合は、どちらのボランティアにおいても数％であり、その大半は、免疫応答、炎症反応に関わる遺伝子でした。

次に、顕著な遺伝子発現変動に対してDNAメチル化がどの程度影響を与えているかを調べるために、DNAメチル化と遺伝子発現の相関解析を行いました。その結果、大きな遺伝子発現変動に対するDNAメチル化変化の影響はおよそ2％程度に過ぎない、つまり数か月程度の期間では血液細胞のほとんどのDNAメチル化状態は安定であることを世界で初めて明らかにすることことができました。

〈まとめ〉

この結果は、疾患と関連のあるDNAメチル化パターンの変化を検出す際に、当日の体調や風邪など感染症の有無などの個人の短期間の体調変化を考慮する必要がない、すなわちDNAメチル化解析を取り入れたゲノムコホート研究を行うに当たり、採血日の体調に関わらず、数年に一度の採血で疾患発症のマーカーを探察する際の試料として利用できることを示しています。本研究の成果に基づき、これまでにわたって東北メディカル・メガバンク機構で収集した生体試料を用いて個人間のDNAメチル化パターンの差異について解析を進め、個別化予防・個別化医療の実現を目指します。

*1コホート研究

コホート研究は、ある集団内における疾病の発生確率を遺伝的素因や生活習慣、環境の違い等で識別する医学研究の1つです。さらに、遺伝子/ゲノムの配列の違いやオミックス情報を要因の
一つとして加えて行うのがゲノムコホート研究です。

*2 DNA メチル化
DNA のメチル化とは、DNA の遺伝情報である A・T・G・C の 4 文字（塩基）の中の主に C（シトシン）塩基にメチル基(-CH₃)が結合し、遺伝子の働きを調節する仕組みの一つです。DNA のメチル化の異常は、がんや生活習慣病など様々な疾患に関わっており、現在注目を集めている研究分野です。

*3 セルソーター
セルソーターは、機能的に異なる細胞が混在した集団から、特定の細胞集団だけを分離することができる機械です。細胞はその機能に応じて異なる目印（抗原）を持っています。抗体等で特定の目印を標識することにより、セルソーターで標識の有無を識別し、目的の細胞集団のみを分取することができます。