Co-benefits of CO₂ emission reduction from China’s clean air actions between 2013-2020

Climate change mitigation measures can yield substantial air quality improvements while emerging clean air measures in developing countries can also lead to CO₂ emission mitigation co-benefits by affecting the local energy system. Here, we evaluate the effect of China’s stringent clean air actions on its energy use and CO₂ emissions from 2013-2020. We find that widespread phase-out and upgrades of outdated, polluting, and inefficient combustion facilities during clean air actions have promoted the transformation of the country’s energy system. The co-benefits of China’s clean air measures far outweigh the additional CO₂ emissions of end-of-pipe devices, realizing a net accumulative reduction of 2.43 Gt CO₂ from 2013-2020, exceeding the accumulated CO₂ emission increase in China (2.03 Gt CO₂) during the same period.

Our study indicates that China’s efforts to tackle air pollution induce considerable climate benefit, and measures with remarkable CO₂ reduction co-benefits deserve further attention in future policy design.

With rapid economic development and urbanization, China has become the largest energy consumer in the world. The massive consumption of fossil fuels has resulted in severe air pollution and CO₂ emissions growth. To improve air quality, the Chinese government released the Air Pollution Prevention and Control Action Plan (the Action Plan) in 2013, aiming to achieve a notable decrease in the fine particulate (PM₂.₅) concentration in key regions by the end of 2017. It is followed by the Three-Year Action Plan for Winning the Blue Sky Defense Battle in 2018, the second phase of the Action Plan, that required further nationwide air quality improvements. Air quality in China was dramatically improved after eight years of efforts, driven by substantial declines in air pollutant emissions.

Clean air measures can also promote CO₂ emission mitigation by affecting local energy systems, although the original policy objective is not related to climate change. Energy-related measures in China’s clean air actions include energy use caps, energy structure adjustments, and energy efficiency improvements, which lead to a reduced fossil fuel consumption and co-benefits of CO₂ emission reduction. After decades of explosive growth, China’s CO₂ emissions surprisingly entered a four-year plateau around 2013. Current understanding of how clean air policies affect climate change focuses on the air pollution-induced climate forcing, while the effects on reducing CO₂ are poorly understood. Previous regional-focused studies have demonstrated CO₂ emission reduction co-benefits of implemented clean air action measures. However, how the different air pollution control measures in China’s two-phase clean air actions stimulated CO₂ emission reduction remains unclear, and the contributions of China’s Clean Air Action to the deceleration in the growth of China’s CO₂ emissions since 2013 have not been quantified.

In this work, the CO₂ emission reduction co-benefits of China’s clean air actions from 2013 to 2020 are quantified with the use of a modeling framework to assess the effectiveness of clean air measures on air quality improvements. Based on a thorough review of China’s clean air actions, we summarize six measures activated or strengthened by China’s Clean Air Actions and distinguish the end-of-pipe measures with the other actions that alter the energy use efficiencies.
Then, we carry out an ex-post assessment to quantify the impact of those energy-related measures on China’s energy end-use flow and CO₂ emissions according to the real implementation rate of each measure collected by the government (unpublished data). CO₂ emission reduction co-benefits of each measure were estimated by using the model of the Multi-resolution Emission Inventory of China (MEIC)⁵¹⁻⁵⁴. Details are described in the “Methods” section.

Results

Trends in emissions and air quality from 2013 to 2020

China’s anthropogenic emissions of major air pollutants and CO₂ from 2013 to 2020 were estimated through a bottom-up approach under the framework of the MEIC model. As shown in Fig. 1, emissions of SO₂, NOₓ, and primary PM₂.₅ were estimated to decline by 69%, 28%, and 44%, respectively between 2013 and 2020. As the consequence, annual average concentration of PM₂.₅ in 74 key Chinese cities decreased from 72 μg m⁻³ in 2013 to 34 μg m⁻³ in 2020⁵⁵. Although meteorological condition variations could also contribute to the changes in PM₂.₅ concentration, remarkable emission mitigation has been identified as the major driver of national air quality improvements during the clean air action period⁵⁶. Sustained gross domestic product (GDP) growth was the major driver of national air quality improvements during the clean air action period. GDP growth and a notably improved air quality may indicate a decoupling of economic growth and air pollution in China⁵⁷.

In contrast to the downward trends of air pollutant emissions, China’s energy consumption and CO₂ emissions exhibited an overall upward trend during the same period. Following a rapid increase after 2000⁵⁸, China’s CO₂ emissions reached a plateau from 2013 to 2016, which is closely related to the downward trend of coal consumption. A rebound of CO₂ emissions occurred after 2016 due to the growth of fossil fuel consumption⁵⁹,⁶⁰, which was dominated by the power sector. Thermal power generation in 2017 increased by 7.2% over the year of 2016, leading to a 220 Mt increase in CO₂ emissions in the power sector. Despite the influence of the COVID-19 pandemic, China’s CO₂ emissions did not exhibit a notable decline in 2020 as a result of effective COVID-19 control measures and the rapid recovery of economic activities after the lockdown⁶¹.

Measure-specific CO₂ reduction co-benefits

By reviewing national and regional policy packages, we summarized the five major clean air measures which may also lead to co-reductions on CO₂ emissions, i.e., upgrades on industrial boilers, phasing out small and polluting factories, phasing out outdated industrial capacity, promoting clean fuels in the residential sector, and retiring yellow-label and old vehicles. We then estimated the changes of energy use and CO₂ emissions induced by each measure (see Methods). As the end-of-pipe emission control measures may use additional energy and increase CO₂ emissions, we also quantified the CO₂ emission increase as the result of strengthening industrial emission standards. According to our estimates, the implementation of China’s Clean Air Action successfully avoided 0.57 Gt anthropogenic CO₂ emissions, which is 5.5% of the real-world emissions in 2020 (Fig. 2a). Figure 2b shows the energy end-use flows driven by five co-beneficial measures in 2020. Between 2013 and 2020, small, outdated combustion facilities were widely replaced by larger, cleaner, and more efficient infrastructures, which improved combustion efficiency and reduced energy use, especially coal use. As a result, the five co-beneficial measures provided a net energy savings of 0.25 gigaton (Gtce) in 2020 and accumulatedly saved 1.06 Gtce energy between 2013 and 2020.

Figure 2c shows the subsequent CO₂ emission reduction of each measure in 2020. The two most effective measures to reduce CO₂ emissions include phasing out outdated industrial capacities and upgrading industrial boilers (Fig. 2c), which were estimated to reduce 0.20 and 0.17 Gt CO₂ emissions, respectively, in 2020. Since 2013, outdated capacity in several industrial sectors were phased out and replaced with of advanced technologies, including a total coal-fired power plant production capacity of 45 GW, steel production capacity of 321 million tons, cement production capacity of 388 million tons and flat glass production capacity of 192 million weight boxes. Small industrial boilers with a capacity lower than 7 MW generally attain a low combustion efficiency as low as 65% and typically lack end-of-pipe pollution control. About 424 GW small coal-fired boilers were eliminated, replaced by more efficient boilers (with an efficiency as high as 94%), or were shifted to low-carbon energy sources, such as natural gas and biomass fuels.

Promoting clean fuels in the residential sector contributed 0.12 Gt CO₂ emissions reduction in 2020. Over 29 million households quit from coal-fired heating systems and shifted to natural gas and electricity under the clean air action, with more than 7.5 GW of residential coal-fired boilers eliminated. Phasing out small and polluting factories reduced emissions by another 0.07 Gt CO₂. Starting in 2016, approximately 660 thousand small and polluting factories were shut down or upgraded, including factories manufacturing brick, lime, nonferrous metals, foundry products, and other industrial products. From 2017 to 2020, over 30 million tons of scattered coal use in small industrial furnaces were eliminated due to special rectification measures. The retirement of yellow-label and old vehicles contributed 0.06 Gt to CO₂ reduction. More than 26 million yellow-label and old vehicles (i.e., gasoline vehicles that do not meet the China III emission standards and diesel vehicles that do not meet the China IV emission standards) were early retired between 2013 and 2020. On the other hand, we estimated that installing end-of-pipe control equipment have increased 0.05 Gt CO₂ in 2020, with major contribution from the power sector and the iron and steel sector (Supplementary Table 1).

Our estimates suggest that China’s clean air measures are associated with a cumulative CO₂ emission reduction of 2.66 Gt between 2013 and 2020, much larger than the cumulative CO₂ emission increase of 0.23 Gt from newly installed end-of-pipe pollution control devices (Fig. 2d). The net cumulative emission reduction reached 2.43 Gt, 3.1% of China’s CO₂ emissions between 2013 and 2020. It also surpassed the accumulated CO₂ emission increases in China (2.03 Gt CO₂) during the same period. The net emission reduction gradually increased from 2013 to 2017 due to the accelerated adjustment of energy and industrial structures. For instance, the energy savings from industrial kilns/furnaces and the residential sector rose sharply in 2017.

Fig. 1 Trends of anthropogenic emissions, annual PM₂.₅ concentration, energy consumption and GDP in China between 2013 and 2020. The annual PM₂.₅ concentration was calculated based on ground-based observations data in 74 key cities.
China (FW) are four key air pollution control regions, accounting for 53.2% of region (YRD), Pearl River Delta region (PRD) and Fenwei Plain region Fig. 3. The Beijing measures are further analyzed at the regional level and presented in intensity of co-bene...diffusive emissions such as volatile organic compounds. A lower through highly ef...measures after 2017 focused more on industrial emissions reduction...growth of CO2 emissions reduction co-bene...relatively advanced economy, large population, and high PM2.5 concentration.

Regional patterns

The co-benefits of CO2 emission reduction from air pollution control measures are further analyzed at the regional level and presented in Fig. 3. The Beijing–Tianjin–Hebei region (BTH), Yangtze River Delta region (YRD), Pearl River Delta region (PRD) and Fenwei Plain region (FW) are four key air pollution control regions, accounting for 53.2% of China’s net co-benefits of CO2 emission reduction in 2020. BTH is the largest contributor, followed by YRD, FW, and PRD. The provinces included in these key areas are mainly located in eastern China, with a relatively advanced economy, large population, and high PM2.5 concentration.

Phasing out of outdated industrial capacity led to a considerable CO2 emission reduction in all key regions, but the fraction of emission reduction introduced by each measure revealed spatial disparity given the differences in emission patterns (Supplementary Fig. I) and policy focuses. The most effective co-beneficial measures in BTH include outdated industrial capacity phase-out, clean fuel promotion in the residential sector, and industrial boiler upgrading, reflecting efforts to adjust the industrial structure and reduce scattered coal use. In YRD, industrial boiler upgrading was the most effective CO2 reduction policy. The co-benefits of phasing out small and polluting factories were also notable in YRD, reducing CO2 emissions by 12.6 Mt in 2020. While the increase in CO2 emissions originating from strengthening industrial emission standards in YRD reached 8.5 Mt CO2 emissions in 2020, which was primarily attributed to the wider application of end-of-pipe technologies in the power sector. CO2 emission reduction co-benefits in PRD were the lowest among the four regions, which may be attributed to its relatively good air quality and low CO2 emissions. It’s worth noting that retiring yellow-label and old cars ranked behind phasing out small and polluting factories. PRD is one of the three key air quality control regions since 2018, and the co-benefits of CO2 emission reduction in PRD were larger from 2018 to 2020 than those from 2013 to 2017. The ranking of the measure-specific contributions in FW exhibited similarities with that in BTH, but promoting clean fuel in the residential sector was the largest contributor in FW. Clean air action-induced electricity consumption in BTH, YRD, and PRD led to increases in carbon emissions in the other regions that provide electricity to these three regions, which are estimated to be 7.9, 1.4, and 0.2 Mt CO2 in 2020 respectively (methods are shown in Supplementary Note 2 and Supplementary Table 4). Such emission increases are smaller than the local CO2 emission reductions in these three key regions and the co-benefits are still significant.
In general, provinces with stricter pollution control policies tend to obtain higher reductions in both ambient PM$_{2.5}$ concentration and CO$_2$ emissions. Hebei, Shandong, Zhejiang, Shanxi, and Henan attained the highest CO$_2$ emission reduction due to the above co-beneficial measures, reducing local CO$_2$ emissions by 5.9% to 13.2% in 2020. Hebei and Shandong are provinces with heavy industries (e.g., iron and steel) and massive coal use in both the industrial and residential sectors. They revealed an evident policy effectiveness (i.e., policy intensity, Supplementary Note 1) of control measures and a dramatic decrease in PM$_{2.5}$ pollution, indicating that the adjustment of the industrial structure largely contributed to the attained co-benefits.

Figure 3e–f further presents CO$_2$ emission reduction co-benefits by province. In general, provinces with stricter pollution control policies tend to obtain higher reductions in both ambient PM$_{2.5}$ concentration and CO$_2$ emissions. Hebei, Shandong, Zhejiang, Shanxi, and Henan attained the highest CO$_2$ emission reduction due to the above co-beneficial measures, reducing local CO$_2$ emissions by 5.9% to 13.2% in 2020. Hebei and Shandong are provinces with heavy industries (e.g., iron and steel) and massive coal use in both the industrial and residential sectors. They revealed an evident policy effectiveness (i.e., policy intensity, Supplementary Note 1) of control measures and a dramatic decrease in PM$_{2.5}$ pollution, indicating that the adjustment of the industrial structure largely contributed to the attained co-benefits. In contrast, Tibet and Hainan did not implement stringent measures because they exhibit the best air quality in China, hence attaining the

Figure 3 | Regional patterns of CO$_2$ emission reduction co-benefits in 2020.

- **a–d** CO$_2$ emission reduction from six measures in Beijing–Tianjin–Hebei region (BTH), Yangtze River Delta region (YRD), Pearl River Delta region (PRD), and Fenwei Plain region (FW), respectively.
- **e** The provincial CO$_2$ emission reduction in 2020.
- **f** The relationship between the policy effectiveness, air quality improvement, and CO$_2$ emission reduction. Each bubble in **f** indicates a province, with the size representing the CO$_2$ emission reduction in 2020 and the color representing the proportion of CO$_2$ emission reduction to real local CO$_2$ emissions in 2020. The policy effectiveness provides a general measure of the policy intensity in a region, with the coefficient value ranging from 0 (very weak) to 1 (very strong), and more details are presented in Supplementary Note 1 and Supplementary Tables 2 and 3.
smallest reductions in CO₂ emissions among all the provinces. These results suggest that controlling air pollution is a motivational factor in reducing provincial CO₂ emissions from 2013 to 2020.

Discussion
China has aggressively targeted air quality improvement through a series of measures since 2013. We found that, although the initial goal of China’s stringent clean air targets focused solely on the air pollution caused by short-lived reactive species, the stringent air quality target of China also functioned as a strong motivating force to simultaneously transform energy systems and mitigate CO₂ emissions. Carbon-intensive infrastructures that persisted for a long time were rapidly phased out, and clean and energy-efficient factories survived in response to the implemented clean air measures. The average energy efficiency in China was thus promoted19, and the transition in China’s energy and industrial systems was accelerated.

China’s clean air policy has direct effects on the global carbon budget, and the effects continue to grow rapidly since China has dominated the global trend since 2010 and contributed 31% of the global fossil CO₂ emissions in 202032. China’s clean air actions drove a plateau in its CO₂ emissions after 2013. This plateau in China’s emissions, combined with the emission reductions in the US and EU, have counterbalanced the emissions growth that occurred in India and in the rest of the world, which is the primary driving force that pulls global CO₂ emissions off track and reaches a contemporary plateau over this period33.

Although the clean air measures implemented since 2013 have yielded remarkable achievements on CO₂ emission reduction in China, continuous efforts are needed to optimize the country’s energy system and economic structure to promote green recovery after the COVID-19 pandemic as well as further encourage green growth in the future. After the 2013–2016 emission plateau, China’s CO₂ emissions continued to grow from 2017 to 2019, reaching a new record high even larger than the 2013 emissions33,35, although the effort controlling air pollution continued. After the five-year clean air action, the energy efficiency of China’s industries has improved to a high level, with massive of the inefficient factories upgraded or phased out. Common solutions for climate change and air pollution are urgently needed, as China required all cities to meet current air quality standards before 203536,37 and pledged to realize carbon neutrality before 206038.

The average unit cost of per abated CO₂ emission of five co-beneficial measures is estimated to be 95.6 $ ton⁻¹ (methods and data are shown in Supplementary Note 3 and Supplementary Tables 5 and 6), higher than traditional CO₂ mitigation measures such as the deployment of renewable energy (11.0–12.0 $ ton⁻¹)39,40 and power plant technology upgrades (58.9 $ ton⁻¹)41. However, the economic and health benefits of air quality improvements (e.g., avoided premature deaths) compensate for or even offset such large abatement costs42, which makes the CO₂ co-benefits more attractive. The end-of-pipe control measures are effective options that improve the air quality in the short term, while the shrinking potential of end-of-pipe control may not be able to support the ambitious air quality goals in China43. A co-beneficial strategy should be adopted in future policy design to coordinate clean air measures and address climate change measures in different aspects, while measures yielding co-benefits should be prioritized. In addition to phasing out outdated capacity and eliminating scattered coal use, the development of renewable energy has also been accelerated since 2005 due to the Renewable Energy Act and contributed to considerable CO₂ emission reduction44,45. According to our estimation (Supplementary Note 4), China’s accumulated CO₂ emissions between 2013 and 2020 could be 3.78 Gt CO₂ higher than the actual emission state if the increased electricity generation from renewable energy from 2013 to 2020 was fulfilled by thermal power plants. The development of renewables was excluded from our co-benefit analysis because it was not recognized as the consequence of the clean air action (Supplementary Table 7). However, the replacement of fossil fuel use with renewable capacities is indispensable to reach CO₂ emission peaks and carbon neutrality in China.

China’s experiences with air pollution control while achieving CO₂ emission reduction co-benefits have broad implications for other developing countries, such as countries in South Asia and Africa, which host the most air-polluted cities worldwide. These countries rely heavily on fossil fuel energy and emit massive air pollutants and greenhouse gases due to their soaring economic growth and abundant fossil fuel use. Since air pollution has strong effects on public health, government tends to address the worsening air quality as a top policy priority. China’s co-beneficial measures may provide feasible mitigation options in the near term for other developing countries facing air pollution problems, as a sharp transformation toward low-carbon growth may not be realistic for these developing countries because of financial pressure and other factors43.

Methods

CO₂ emission estimates
The historical trends of CO₂ emissions in China from 2005 to 2020 were estimated through a bottom-up approach with the MEIC model. The MEIC model (http://www.meicmodel.org) is a dynamic technologist-based inventory model developed for China by Tsinghua University18–20. In this work, we used the unified source categorization, emission factor database, technology-based method, and high-resolution emission processing system on the cloud computing platform. This study estimated CO₂ emissions originating from fossil fuel combustion and cement production by multiplying activity data by corresponding emission factors:

\[E_{i,j} = A_{i,j} \times EF_{i,j} \]

where \(E_{i,j} \) denotes the CO₂ emissions of fossil fuel/industrial product \(i \) consumed or produced in sector \(j \), \(A_{i,j} \) denotes the corresponding fuel consumption/industrial production provided by MEIC, and \(EF_{i,j} \) denotes CO₂ emission factors obtained from Liu et al.44. Supplementary Fig. 2 compares CO₂ emission estimated by this study with various data sources.

Estimates of CO₂ emission reduction from five co-beneficial measures

This work carried out an ex-post assessment of the CO₂ emission reduction co-benefits of clean air measures in China from 2013 to 2020, based on the real implementation rate of each measure collected by the government afterwards. China’s top-down system used the engineering-oriented approach to set air quality targets and prescribe measures to reach the targets. The government inspected the actual progress of the measures regularly to ensure the prescribed measures were effectively implemented, and progress were summarized in statistical reports. This work collected the real implementation rate of clean air measures from provincial self-inspection reports, official news and other investigation reports. Combining the real implementation rate with the MEIC model and the Ministry of Ecology and Environment (MEE) database45, the CO₂ emission reduction co-benefits were estimated.

Here we make a more detailed explanation of selected co-beneficial measures in our assessment. Five co-beneficial measures were summarized from Air Pollution Prevention and Control Action Plan46. Three-Year Action Plan for Winning the Blue Sky Defense Battle27, and regional action plans released to address the air pollution in autumn and winter (e.g., Action Plan to Comprehensive Control Autumn and Winter Air Pollution in Beijing-Tianjin-Hebei and
The CO₂ emission reduction co-benefits were estimated with Eq. (2).

\[
\Delta E_k = \sum_{i} (\Delta A_i \times E_F) - \sum_{j} \Delta A_j \times E_F
\]

where \(\Delta E_k\) denotes the co-benefits of CO₂ emission reduction from measure \(k\), \(\Delta E_i\) denotes the reduced fossil fuel/industrial product, \(j\) denotes the increased fossil fuel, and \(\Delta A_i\) and \(\Delta A_j\) denote the energy/industrial production reduction and the energy increase, respectively, due to measure \(k\). For example, if a coal-fired boiler was replaced by a NG-fired boiler, \(\Delta A_i\) denotes the annual coal use of the coal-fired boiler, and \(\Delta A_j\) denotes the annual NG use of the new boiler. \(E_F\) was retrieved from Liu et al. The measure-specific approaches for energy flow estimation are introduced below.

(a) Upgrades on industrial boilers
Small, polluting coal-fired industrial boilers were replaced by larger boilers or shifted to cleaner energy sources, leading to energy savings attributed to energy efficiency improvement (as indicated in Supplementary Table 9). The eliminated capacities of coal-fired boilers were collected from local self-inspection reports. The coal intensity was assumed as 366 tons coal per MW and 377 tons coal per MW for coal-fired industrial boilers and heating boilers, respectively, according to the estimation of the Beijing Clean Air Action Plan. Of the 424 GW of coal-fired boilers eliminated between 2013 and 2020, 192 GW was completely eliminated, 95 GW was replaced by larger boilers (central heating), and 112 GW was shifted to NG (Supplementary Table 10). The transformation from coal to electricity and biomass mass was 5.9 GW and 18.5 GW, respectively. 63.6 Mtce coal has been saved by eliminating small coal-fired boilers in 2020.

(b) Phasing out small and polluting factories
Since implementing end-of-pipe pollution control in small and polluting factories was neither practical nor cost-effective, tremendous effort was made to eliminate polluting small factories typically comprising super-emitters. The involved sector includes lime production, brick production, and other industrial processes. These small factories were assumed to be shut down completely, and the coal intensity values of the different products were collected from relevant standards and the Ministry of Ecology and Environment (MEP) database. Phasing out small industrial furnaces (lime and brick furnaces) played a dominant role, reducing coal use by 22 Mtce in 2020. Phasing out small industrial furnaces as an example, direct CO₂ emissions are produced through chemical reactions, which can be estimated from air pollutants emission reduction and chemical equations. Choosing SO₂ reduction as an example, direct CO₂ emissions are produced through reactions between limestone or chalk lime and SO₂. Indirect CO₂ emissions are produced due to extra electricity consumption, which were estimated based on the increased capacities attributed to end-of-pipe technologies and the intensity of electricity consumption. Note that due to the similar electricity intensity of various particulate matter (PM) control technologies, the additional CO₂ emissions stemming from upgrades to PM control technologies (for example, the shift from electrostatic precipitators (ESP) to fabric filters (FAB)) were not calculated. Setting 2012 as the base year, air pollutants emission reduction and increased capacities with end-of-pipe technologies were provided by MEIC. Supplementary Table 1 lists the estimates in the key sectors.
Data availability
The data generated in this study are provided in the Supplementary Information. Data presented in all figures in the main text and the Supplementary Information are provided as Supplementary Dataset. The map used in Fig. 3e is generated from open-source data provided by Ministry of Natural Resources of the People’s Republic of China (http://bzdt.ch.mnr.gov.cn/).

Code availability
The code developed for this study is available from the corresponding author on reasonable request.

References
1. Zhang, Q. et al. Drivers of improved PM$_{2.5}$ air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 116, 24463–24469 (2019).
2. Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).
3. Sheehan, P., Cheng, E., English, A. & Sun, F. China’s response to the air pollution shock. Nat. Clim. Change 4, 306–309 (2014).
4. Xing, J. et al. The quest for improved air quality may push China to continue its CO$_2$ reduction beyond the Paris Commitment. Proc. Natl. Acad. Sci. USA 117, 29535–29542 (2020).
5. Tibrewal, K. & Venkataraman, C. Climate co-benefits of air quality and clean energy policy in India. Nat. Sustain 4, 305–313 (2020).
6. Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
7. Shan, Y. et al. China CO$_2$ emission accounts 1997-2015. Sci. Data 5, 170201 (2018).
8. Shan, Y., Huang, Q., Guan, D. & Hubacek, K. China CO$_2$ emission accounts 2016-2017. Sci. Data 7, 54 (2020).
9. The International Energy Agency. Greenhouse Gas Emissions from Energy: Overview (International Energy Agency, 2021).
10. Gilfillan, D., Marland, G., Boden T. & Andres, R. Global, Regional, and National Fossil-fuel CO$_2$ Emissions: 1751-2017 CDIAC-FF (Research Institute for Environment, Energy, and Economics, Appalachian State University, 2020).
11. Arneth, A., Unger, N., Kulmala, M. & Andreae, M. O. Atmospheric science. Clean the air, heat the planet? Science 326, 672–673 (2009).
12. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA 116, 7192–7197 (2019).
13. Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).
14. Zheng, Y., Zhang, Q., Tong, D., Davis, S. J. & Caldeira, K. Climate effects of China’s efforts to improve its air quality. Environ. Res. Lett. 15, 145052 (2020).
15. Hong, C. et al. Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality. Nat. Clim. Change 10, 845–850 (2020).
16. Lu, Z. et al. Carbon dioxide mitigation co-benefit analysis of energy-related measures in the Air Pollution Prevention and Control Action Plan in the Jing-Jin-Ji region of China. Resour. Conserv. Recycl. X 1, 100006 (2019).
17. Xu, M., Qin, Z. & Zhang, S. Carbon dioxide mitigation co-effect analysis of clean air policies: lessons and perspectives in China’s Beijing–Tianjin–Hebei region. Environ. Res. Lett. 16, 015006 (2021).
18. Zhang, Q. et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 9, 5131–5153 (2009).
19. Liu, F. et al. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1980 to 2010. Atmos. Chem. Phys. 15, 13299–13317 (2015).
20. Zheng, B. et al. High-resolution mapping of vehicle emissions in China in 2008. Atmos. Chem. Phys. 14, 9787–9805 (2014).
21. Li, M. et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmos. Chem. Phys. 14, 5617–5638 (2014).
22. Tong, D. et al. Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030. Environ. Sci. Technol. 52, 12905–12914 (2018).
23. China National Environmental Monitoring Center. Surface PM$_{2.5}$ concentration data in China during 2013-2020 (accessed 31 July 2022); http://www.cnemc.cn/.
24. Zhong, Q. et al. PM$_{2.5}$ reductions in Chinese cities from 2013 to 2019 remain significant despite the inflating effects of meteorological conditions. One Earth 4, 448–458 (2021).
25. Lu, Y. et al. Forty years of reform and opening up: China’s progress toward a sustainable path. Sci. Adv. 5, eaau4133 (2019).
26. Guan, D. et al. Structural decline in China’s CO$_2$ emissions through transitions in industry and energy systems. Nat. Geosci. 11, 551–555 (2018).
27. Friedlingstein, P. et al. Persistent growth of CO$_2$ emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2019).
28. Obadra, N. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
29. Zhang, Y. et al. Key drivers of the rebound trend of China’s CO$_2$ emissions. Environ. Res. Lett. 15, 104049 (2020).
30. Zhang, B. et al. Satellite-based estimates of decline and rebound in China’s CO$_2$ emissions during COVID-19 pandemic. Sci. Adv. 6, eaabd4998 (2020).
31. Zheng, J. et al. The slowdown in China’s carbon emissions growth in the new phase of economic development. One Earth 1, 240–253 (2019).
32. Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).
33. Peters, G. P. et al. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change 10, 3–6 (2019).
34. Crippa, M. et al. GHG Emissions of All World Countries - 2021 Report. Report No. 978-92-74-41547-3, (Publications Office of the European Union, 2021).
35. Communist Party of China Central Committee and the State Council. Circular on further promoting the nationwide battle to prevent and control pollution (accessed 31 July 2022); https://www.mee.gov.cn/zcwj/zyygwj/202111/t20211108_959456.shtml.
36. Lu, X. et al. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engin. 6, 1423–1431 (2020).
37. Communist Party of China Central Committee and the State Council. Guiding document on the country’s work to achieve carbon peaking and carbon neutrality goals under the new development philosophy (accessed 31 July 2022); http://www.gov.cn/xinwen/2021-10/24/content_5644613.htm.
38. Cui, J. et al. Economic development and emission reduction in China’s electricity sector based on LEAP software. Environ. Res. Lett. 15, 015004 (2020).
39. Liang, Y., Yu, B. & Wang, L. Costs and benefits of renewable energy development in China’s power industry. Renew. Energy 131, 700–712 (2019).
40. Zhang, Y., Wang, C., Wang, K. & Chen, J. CO$_2$ emission scenario analysis for China’s electricity sector based on LEAP software. J. Tsinghua Univ. (Sci. Technol.) 47, 365–368 (2007).
41. Zhang, J. et al. Cost-benefit analysis of China’s action plan for air pollution prevention and control. Front. Eng. Manag. 6, 524–537 (2019).
42. Yang, X. & Teng, F. The air quality co-benefit of coal control strategy in China. Resour. Conserv. Recycl. 129, 373–382 (2018).
42. Jackson, R. B. et al. Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environ. Res. Lett. 14, 121001 (2019).
43. Jakob, M. et al. Feasible mitigation actions in developing countries. Nat. Clim. Change 4, 961–968 (2014).
44. Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).
45. Zheng, B. et al. Infrastructure shapes differences in the carbon intensities of Chinese cities. Environ. Sci. Technol. 52, 6032–6041 (2018).
46. State Council of the People’s Republic of China. Notice of the general office of the state council on issuing the air pollution prevention and control action plan (accessed 31 July 2022); http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm.
47. State Council of the People’s Republic of China. Notice of the state council on issuing the three-year action plan for winning the Blue Sky defense battle (accessed 31 July 2022); http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm.
48. Ministry of Ecology and Environment of the People’s Republic of China. Notice of the state council on issuing the action plan to comprehensive control autumn and winter air pollution in Beijing-Tianjin-Hebei and surrounding regions 2017–2018 (accessed 31 July 2022); https://www.mee.gov.cn/gkml/hbb/bwj/201708/t20170824_420330.htm.
49. Ministry of Ecology and Environment of the People’s Republic of China. Notice of the state council on issuing the action plan to comprehensive control autumn and winter air pollution in Beijing-Tianjin-Hebei areas and Fenwei Plain 2020-2021 (accessed 31 July 2022); https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202011/t20201103_806152.html.
50. Chen, H. & Chen, W. Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China. Appl. Energy 236, 1049–1061 (2019).
51. Zhu, X. et al. Stacked use and transition trends of rural household energy in Mainland China. Environ. Sci. Technol. 53, 521–529 (2019).
52. Zhao, H. et al. Analysis of Co-Effects on Air Pollutants and CO2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants. Sustainability 9, 499 (2017).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (91744310, 41921005, and 41625020) and the Energy Foundation (G-2004-31249). We thank the Ministry of Ecology and Environment of China for providing the information on the actual progress of the clean air action.

Author contributions
Q.Z. designed the research. Q.S. performed the research. Y.Z., D.T., Y.L., and H.M. processed emission data. Q.S., Q.Z., B.Z., D.T., G.G., and K.H. interpreted data. Q.S., Q.Z., and B.Z. wrote the paper with input from all co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-32656-8.

Correspondence and requests for materials should be addressed to Qiang Zhang.

Peer review information Nature Communications thanks Cecilia Springer, Fabian Wagner, and Yang Xie for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022