Genome-resolved metagenomics reveals novel archaeal and bacterial genomes from Amazonian forest and pasture soils

Andressa M. Venturini1,2,*, Júlia B. Gontijo1, Jéssica A. Mandro1, Fabiana S. Paula1,3, Caio A. Yoshiura1, Aline G. da França1 and Siu M. Tsai1

Abstract

Amazonian soil microbial communities are known to be affected by the forest-to-pasture conversion, but the identity and metabolic potential of most of their organisms remain poorly characterized. To contribute to the understanding of these communities, here we describe metagenome-assembled genomes (MAGs) recovered from 12 forest and pasture soil metagenomes of the Brazilian Eastern Amazon. We obtained 11 forest and 30 pasture MAGs (≥50% of completeness and ≤10% of contamination), distributed among two archaeal and 11 bacterial phyla. The taxonomic classification results suggest that most MAGs may represent potential novel microbial taxa. MAGs selected for further evaluation included members of Acidobacteriota, Actinobacteriota, Desulfobacterota_B, Desulfobacterota_F, Dorrmbacterota, Eremiobacterota, Halobacterota, Proteobacteria, and Thermoproteota, thus revealing their roles in carbohydrate degradation and mercury detoxification as well as in the sulphur, nitrogen, and methane cycles. A methane-producing Archaea of the genus Methanosarcina was almost exclusively recovered from pasture soils, which can be linked to a sink-to-source shift after the forest-to-pasture conversion. The novel MAGs constitute an important resource to help us unravel the yet-unknown microbial diversity in Amazonian soils and its functional potential and, consequently, the responses of these microorganisms to land-use change.

DATA SUMMARY

The metadata, metagenomic reads, and the sequences of the metagenome-assembled genomes are available on the KBase platform at https://www.doi.org/10.25982/91640.61/1870603 and on NCBI under the umbrella project PRJNA842732 at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA842732. The metadata and the raw forward metagenomic reads can also be found under the project “Metagenomic sequencing of forest and pasture soils of Eastern Amazon under different treatments - Forward reads” (mgp83208) in the MG-Rast server 4.0.3. at https://www.mg-rast.org. Other supporting data are available in the Supplementary Material of this article.

INTRODUCTION

Soil microorganisms play crucial roles in below- and above-ground ecosystems, including the formation and stabilization of soil aggregates, carbon storage, organic matter decomposition, nutrient cycling, soil fertility, plant growth and health [1, 2], and even the production and consumption of greenhouse gases, such as methane (CH4) and nitrous oxide (N2O) [3, 4]. Soil microbes are also considered important components of soil health and have been used as bioindicators in soil-health evaluations [2, 5]. However, despite their ecological and economic impacts, assessments on biodiversity have neglected soil macro- and microorganisms [6].
Impact Statement

The soil microbial communities of the Amazon rainforest have been evaluated in the context of deforestation and land-use change, but their diversity remains largely unknown. In this paper, 41 metagenome-assembled genomes (MAGs) (≥50% of completeness and ≤10% of contamination) were recovered from forest and pasture soils and characterized. The MAGs were spread over 11 bacterial and two archaeal phyla, 90% and 29% of which could not be assigned to any known species and genus, respectively. Gene annotations indicated their potential roles in biogeochemical cycling, mercury detoxification, and the degradation of complex carbohydrates, revealing distinct functional patterns between forest and pasture soil microbial communities.

From both diversity and functional perspectives, soils from tropical and subtropical regions are even less studied [6, 7], including the Amazon rainforest.

The Amazon is one of the most important reservoirs of biodiversity on Earth [8]. Due to the increase in deforestation in recent years [9] and the international concern regarding the future of this rainforest, several studies have been carried out to examine the effects of forest clearing and conversion on its soil physical, chemical, and biological attributes. These studies have revealed that the forest-to-pasture conversion alters the abundance, taxonomic and functional profiles of soil microbial communities [e.g. 10, 11, 12], therefore impacting several environmental processes, such as the soil CH₄ cycling and fluxes [e.g. 13, 14, 15]. Nevertheless, to date, the identity and metabolic potential of a considerable fraction of the Amazonian soil microbial communities remain unknown, which limits our understanding of land-use impacts on these organisms and the biogeochemical cycles they drive.

In this context, genome-resolved metagenomics can be used to assemble overlapping short reads into longer contiguous sequences (contigs) and group them (binning) into putative metagenome-assembled genomes (MAGs) [16]. MAGs can then be taxonomically classified and functionally annotated using curated databases, helping us identify and understand the potential roles of yet-to-be cultivable microorganisms in the environment. This approach has expanded the known microbial phylogenetic diversity [e.g. 17, 18, 19], thus rapidly transforming the field of microbiology. Nevertheless, only a small number of studies have used this method so far to recover archaeal and bacterial MAGs from Amazonian soils [20, 21].

In this study, we used genome-resolved metagenomics to assemble and recover archaeal and bacterial MAGs from forest and pasture soils of the Brazilian Eastern Amazon. This approach was carried out using shotgun metagenomic sequencing data from a microcosm experiment in which soil moisture levels were increased. This experiment was previously conducted to evaluate the combined effects of forest-to-pasture conversion and increased moisture on soil CH₄ microbial communities [15]. The genomes described here provide an important resource for the characterization of the microbial communities in Amazonian soils and, consequently, for our understanding of their responses to land-use changes and other environmental disturbances.

METHODS

Site description, soil sampling, and microcosm experiment

The soil sampling was carried out in July 2015 in a pristine forest of the Tapajós National Forest (3°17'44.4"S 54°57'46.7"W) and an active cattle pasture (3°18'46.7"S 54°54'34.8"W), in the state of Pará, in the Brazilian Eastern Amazon. Following the removal of the litter layer, soil samples from 0 to 10 cm depth were collected in three sampling points per site, each separated by 50 m. Samples from each land-use treatment were combined, sieved through a 5 mm mesh sieve, and subjected to a microcosm experiment under increasing soil moisture levels. The microcosms were maintained and monitored for 30 days at 25 °C in a Biochemical Oxygen Demand incubator. Moisture treatments were established in triplicate for each land use using 1.5 litre glass jars filled with 350 g of soil each. These treatments included the original soil gravimetric moisture of each site (22% for forest and 24% for pasture) and 100% of gravimetric moisture at field capacity (50% for forest and 63% for pasture). Soil samples from each microcosm were frozen in liquid nitrogen at the end of the experiment and stored at −80 °C.

DNA extraction, quantification, and sequencing

Forest and pasture soil samples under original soil moisture and at 100% field capacity were DNA-extracted in duplicate using the PowerLyzer PowerSoil DNA Isolation Kit (QIAGEN, Hilden, North Rhine-Westphalia, Germany), totaling 12 DNA samples, following a protocol optimized for Amazon soils [22]. DNA samples were checked using 1% agarose gel electrophoresis and a Nanodrop 2000c spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and stored at −20 °C. Paired-end shotgun metagenomic sequencing (2x150 bp) was performed on an Illumina HiSeq platform (Illumina, Inc., San Diego, CA, USA) at Novogene Co., Ltd. (Beijing, China), using the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, Inc., Ipswich, MA, USA) for library construction. Detailed information about the sites, their soil physicochemical properties, the design of the microcosm experiment, and DNA extraction and sequencing was previously reported [15, 21].
Recovery and characterization of MAGs

The bioinformatics analysis was performed on the KBase platform [23]. Metagenomic sequences were uploaded to the platform and imported into a narrative as paired-end reads using the KBase apps File Upload to Staging from File to FASTQ/SRA File as Reads from Staging Area [23], respectively. Paired-end reads were quality-checked with FastQC v0.11.5 [24] and, outside KBase [23], with MultiQC [25]. Based on the results, reads were cleaned from adaptors, trimmed, and filtered using Trimmomatic v0.36 (altered parameters: adapters, TruSeq3-PE-2; sliding window minimum quality, 20; head crop length, 10; minimum read length, 50) [26]. The remaining paired-end reads from each land use (regardless of the soil moisture treatment) were again quality-checked with FastQC [24] and MultiQC [25] and merged into one object using the KBase app Merge Reads Libraries v1.0.1 [23].

Bins from each land use were recovered through co-assembly using MEGAHIT v1.2.9 (altered parameter: preset, meta-large) [27] and binning using MetaBAT2 v1.7 [28], MaxBin2 v2.2.4 (altered parameters: marker set, both 107 and 40 marker genes; minimum contig length, 2500 bp; plot markers per contig) [29], and CONCOCT v1.1.10 [30]. The resulting bins of each land use were optimized using the app DAS Tool v1.1.2 [31]. DAS Tool bins were quality-checked (altered parameter: reference tree, full tree) and filtered (altered parameters: reference tree, full tree; completeness, ≥50%; contamination, ≤10%) using CheckM v1.0.18 apps to keep only bins with moderate/substantial/near completeness and medium/low contamination, as defined by Parks et al. [32]. Based on these scores, the quality of each bin (completeness − 5 × contamination) was calculated. The remaining bins were taxonomically classified using Classify Microbes with GTDB-Tk v1.7.0 (release R06-RS202) [33]. If necessary, bins were additionally compared against closely related genomes using the app Compute ANI with FastANI v0.1.3 [34].

Bins with the values of completeness (>90%) and contamination (<5%) for high-quality drafts of the Minimum Information about a Metagenome-Assembled Genome (MIMAG) standards [35] were selected for further analysis and extracted as assemblies using the KBase app Extract Bins as Assemblies from BinnedContigs v1.0.2 [23]. Two pasture MAGs (Bin.006_Pasture of the family Binataceae and Bin.035_Pasture of the genus Methanosarcina) that did not meet these criteria were also selected due to the relevance of both groups in the CH4 cycle [36, 37], totaling 12 MAGs selected for additional exploration. The relative abundance of each selected bin in both merged forest and pasture metagenomes (defined as the number of mapped reads divided by the number of reads in the metagenome) was estimated using Bowtie2 v2.3.2 (altered parameter: alignment type preset options, very-sensitive) [38].

A set with all the selected bins was created using the KBase app Build AssemblySet v1.0.1 [23]. Bins were annotated by the beta app Annotate and Distill Assemblies with DRAM (Distilled and Refined Annotation of Metabolism) [39]. DRAM provides annotations of MAGs using multiple databases and then summarizes the results to facilitate the exploration of their functional and structural traits, also using functional marker genes to infer metabolic descriptors of MAGs [39]. More detailed information about the functioning of DRAM can be found here: https://github.com/WrightonLabCSU/DRAM/wiki/1.-How-DRAM-Works. The presence of 23S, 16S, and 5S ribosomal RNA (rRNA) genes and transfer RNAs (tRNAs) in each MAG was also checked by DRAM. Figures were generated using the packages ggplot2 3.3.5 [40] and ggalluvial 0.12.3 [41] in R 4.0.2 [42].

RESULTS AND DISCUSSION

Sequencing and co-assembly statistics

The shotgun metagenomic sequencing of the 12 DNA samples from forest and pasture soils resulted in 594.9 million paired-end reads of 150 bp in length, with an average of 49.6 million per sample, ranging from 39.9 to 79.9 million across samples. After our quality control, 529.9 million paired-end reads from 50 to 140 bp in length were kept, with an average of 44.2 million per sample, ranging from 34.8 to 72.9 million. After merging the reads per land use, the forest and pasture libraries had 273.3 and 256.6 million paired-end reads, respectively.

The co-assembly of the forest paired-end reads generated a total of 367892 contigs (374273 bp in the largest contig), with N50 of 3480 bp and L50 of 106965 bp, while for pasture, it produced 366749 contigs (515562 bp in the largest contig), with N50 of 4207 bp and L50 of 89012 bp. A total of 19 forest and 39 pasture bins resulted from DAS Tool [31], in which 11 and 30, respectively, passed our quality filter (≥50% of completeness and ≤10% of contamination) (Fig. 1 and Table S1, available in the online version of this article). We also recovered archaeal bins from the phyla Halobacteriota and Thermoproteota. Only four bins could be classified at the species level. In fact, 10 bacterial bins could not be assigned at the genus level and two at the family level, thus demonstrating the potential of this approach to reveal the yet-unknown microbial diversity of Amazonian soils. It is important to mention that, using other bioinformatics tools,
Lemos et al. [21] previously recovered and characterized two patescibacterial MAGs from our high-moisture pasture soils, and additional tests based on the average nucleotide identity (ANI) indicated that two of our genomes belong to those species (99.9% for Bin.036_Pasture and WARW01000000 (used as reference and available at https://www.ncbi.nlm.nih.gov/nuccore/WARW00000000.1/), and 99.9% for Bin.038_Pasture and WARV01000000 (used as reference and available at https://www.ncbi.nlm.nih.gov/nuccore/WARV00000000)).

A total of 12 MAGs were selected and extracted as assemblies for further analysis due to their completeness (>90%) and contamination (<5%) scores or environmental importance: three MAGs from the forest and nine from the pasture (Table 1). Proteobacterial high-quality MAGs belonged to the classes **Alphaproteobacteria** (Bin.027_Pasture and Bin.031_Pasture) and **Gammaproteobacteria** (Bin.013_Forest). The classes **Acidimicrobiia** from Actinobacteriota (Bin.002_Pasture), Acidobacteria from Acidobacteriota (Bin.001_Pasture), **Binnia** from Desulfovibacterota_B (Bin.006_Pasture), Desulfuromonadota from Desulfobacterota_F (Bin.003_Forest), **Dormibacteria** from Dormibacterota (Bin.020_Pasture), Eremiobacteria from Eremiobacterota (Bin.004_Forest and Bin.005_Pasture), **Methanosarcinia** from Halobacteriota (Bin.035_Pasture), and Nitrososphaeria from Thermoproteota (Bin.034_Pasture) were also found. Bin.013_Forest had the highest relative abundance in our merged forest metagenome, and Bin.031_Pasture in the pasture metagenome (Table 1 and Fig. 2).

Despite their near-completeness (>90% of completeness and <5% of contamination), our selected bins did not meet all MIMAG standards for high-quality drafts due to the absence of certain rRNA genes or tRNAs [35] (Table 1). However, four MAGs possessed the 16S rRNA gene; nine, the 5S rRNA gene; and nine, tRNAs for at least 18 amino acids. No sequences of the 23S rRNA gene could be found in the MAGs.

Functional characterization of MAGs and biogeochemical relevance

Genes related to glycolysis (Embden-Meyerhof pathway), pentose phosphate pathway (pentose phosphate cycle), citrate (TCA or Krebs cycle), glyoxylate, reductive pentose phosphate (Calvin cycle), reductive citrate (Arnon-Buchanan cycle), and

Fig. 1. Taxonomic classification (at the domain and phylum levels) and quality (based on completeness and contamination scores) of the metagenome-assembled genomes (MAGs) from the merged forest and pasture metagenomes.
Table 1. Detailed information (taxonomic classification, completeness, contamination, GC content, genome size, number of contigs, relative abundance in relation to its merged metagenome of origin, number of 5S and 16S rRNA genes, number of tRNAs and tRNAs for different amino acids) of the selected forest and pasture metagenome-assembled genomes (MAGs).

MAG	Site	GTDB classification	Completeness (%)	Contamination (%)	GC content (%)	Genome size (bp)	No. of contigs	Relative abundance (%)	No. of 5S rRNA	No. of 16S rRNA	No. of tRNAs	No. of tRNAs for different amino acids
Bin.003_Forest	Forest	d_Bacteria p_Desulfo bacterota_F c_Desulfuromonadina o_Geo bacterales f_Geobacteraceae	95.7	1.9	59.0	4438015	103	0.11	2	0	50	18
Bin.004_Forest	Forest	d_Bacteria p_Eremiobacterota c_Eremiobacteria o_Baltobacterales f_Baltobacteraceae g_Aquilonibacter	93.8	3.5	59.3	3739922	442	0.09	1	0	39	18
Bin.013_Forest	Forest	d_Bacteria p_Proteobacteria c_Gammaproteobacteria o_Burkholderiales f_Burkholderiaceae g_Para burkholderia sp00492475	95.7	3.8	63.5	5591535	78	0.16	0	0	48	18
Bin.001_Pasture	Pasture	d_Bacteria p_Acidobacteriota c_Acidobacteriaceae o_Acidobacteriales f_Acidobacteraceae	91.2	2.7	63.6	3575390	349	0.05	0	1	21	14
Bin.002_Pasture	Pasture	d_Bacteria p_Actinobacteriota c_Actinomycetia o_Actinomycetia e_1MCC26256	97.4	2.1	69.5	4392436	177	0.14	1	1	48	20
Bin.005_Pasture	Pasture	d_Bacteria p_Eremiobacterota c_Eremiobacteria o_Baltobacterales f_Baltobacteraceae g_Cybele a	93.5	0.9	62.3	2468445	164	0.07	1	1	32	15
Bin.006_Pasture	Pasture	d_Bacteria p_Desulfo bacterota_B c_Binatia o_Binatales f_Binataceae	90.7	6.0	57.4	4826547	379	0.07	0	1	34	18

Continued
MAG Site GTDB classification Completeness (%) Contamination (%) GC content (%) Genome size (bp) No. of contigs Relative abundance (%) No. of 5S rRNA No. of 16S rRNA No. of tRNAs No. of tRNAs for different amino acids

MAG	Site	Complete	Contamination	GC content	Genome size (bp)	No. of contigs	Relative abundance (%)	No. of 5S rRNA	No. of 16S rRNA	No. of tRNAs	No. of tRNAs for different amino acids
Bin.020_Pasture Pasture	d_Bacteria p_Dormibactera c_Dormibacteria o_Dormibacterales f_Dormibacteraceae g_4CM-4-65-16	100.0	0.9	67.1	3021951	46	0.10	1	0	71	20
Bin.027_Pasture Pasture	d_Bacteria p_Proteobacteria c_Alphaproteobacteria o_Rhizobiales f_Hyphomicrobiaceae g_AWTPI-13	93.5	4.4	64.4	4444876	388	0.10	1	0	21	13
Bin.031_Pasture Pasture	d_Bacteria p_Proteobacteria c_Alphaproteobacteria o_Acetobacterales f_Acetobacteraceae g_Palsa-883	99.3	2.2	63.2	6420847	156	0.26	1	0	45	19
Bin.034_Pasture Pasture	d_Archaean p_Thermoproteota c_Nitrososphaeriales o_Nitrososphaerales f_Nitrososphaeraceae g_UBA10452 s_UBA10452 sp009898475	95.2	1.0	40.5	1180365	33	0.03	1	0	39	18
Bin.035_Pasture Pasture	d_Archaean p_Halobacteriota c_Methanosarciniales o_Methanosarcinales f_Methanosarcinaceae g_Methanosarcina	78.4	0.7	39.9	2614668	335	0.03	1	0	44	18

MAGs selected based on their completeness (>90%) and contamination (<5%) scores. Bin.006_Pasture and Bin.035_Pasture were also included due to their environmental relevance.
dicarboxylate-hydroxybutyrate cycles were found in all selected MAGs (Fig. 3). Some of them featured the full pathways for relevant metabolisms, including glycolysis, pentose phosphate, and Entner-Doudoroff pathways – this alternative pathway to glycolysis is most common in Gram-negative bacteria [43], and it was detected in the proteobacterial MAG from the family Burkholderiaceae (Bin.013_Forest, genus Paraburkholderia) – as well as citrate and glyoxylate cycles. The latter allows organisms...
to grow on acetate or fatty acids as sole carbon sources [44]. Several electron transport chain complexes (I - V), associated with aerobic respiration, have also been found to be fully covered in the MAGs. No complete carbon fixation pathways were annotated in our genomes.

Previous studies have reported a CH$_4$ sink-to-source shift after forest-to-pasture conversion in the Amazon [13, 15, 45–48], also revealing that pasture soils usually harbour a higher abundance of CH$_4$-producing archaea (methanogens) than forest soils [13–15]. Furthermore, using our microcosm experiment dataset, we demonstrated that increased soil moisture intensified soil CH$_4$ emissions and related microbial responses driven by forest-to-pasture conversion [15]. In consequence, here, we were able to recover a MAG of the genus *Methanosarcina* from the pasture (Bin.035_Pasture), a group of strictly anaerobic CH$_4$-producing archaea [36], which was much more abundant in our pasture soils than in the forest (Fig. 2). As expected, the methanogenesis pathway was fully detected in this novel genome.

The degradation of organic molecules by soil microbial communities is a crucial step in the carbon cycle [49]. We further investigated the presence of carbohydrate-active enzymes (CAZymes) genes in the MAGs, revealing genes related to the cleavage of polyphenolics and complex carbohydrates, such as chitin, amorphous cellulose, xylans, mixed-linkage glucans, and starch (Fig. 4). The pasture MAGs from the classes *Acidimicrobiia* (Bin.002_Pasture), *Acidobacteriae* (Bin.001_Pasture), *Dormibacteria* (Bin.020_Pasture), and *Eremiobacteria* (Bin.005_Pasture) were found to have the potential to degrade the highest number of substrates. In fact, Silva-Olaya et al. [50] suggested a higher mineralization potential by the soil microbiota in pastures compared to forest soils of the Colombian Amazon. Understanding the different microbial strategies to convert biomass in Amazonian soils is essential to unveil their potential ecosystem services in these environments.

Regarding other fundamental biogeochemical cycles, sulphur is considered one of the most important elements for life, and its related microbial oxidation and reduction processes occur in several ecosystems [51]. Genes associated with the thiosulphate reduction to sulphite (*rdlA* gene) [52] and thiosulphate oxidation to sulphate through the sulphur oxidation (Sox) enzyme system (*soxXYZABCD* genes) [53, 54] have also been found in some MAGs (Fig. 4). The alphaproteobacterial MAGs of the *Hyphomicrobiaceae* and *Acetobacteraceae* families possess five and six Sox genes, respectively (*soxA*, *soxB*, *soxX*, *soxY*, and *soxZ* in Bin.027_Pasture; and *soxA*, *soxC*, *soxD*, *soxX*, *soxY*, and *soxZ* in Bin.031_Pasture).

Genes related to nitrogen-transforming processes – such as nitrogen fixation, nitrification, denitrification, and dissipamitory nitrate reduction to ammonium (DNRA) – could also be detected in the MAGs, including *nifD*, *nifH*, and *nifK* for nitrogenase in Bin.003_Forest and Bin.035_Pasture; *narK/nrtP/nasA* for nitrate/nitrite transporter, *narG/narZ/nxrA* and *narH/narY/nxrB* for nitrate reductase/nitrite reductase in Bin.004_Forest, Bin.013_Forest, and Bin.031_Pasture; *nasA* for assimilatory nitrate reductase in Bin.013_Forest; *nrfA* and *nrfH* for cytochrome c nitrite reductase in Bin.003_Forest; *nirB* and *nirD* for nitrite reductase (NADH) in Bin.013_Forest; *hao* for hydroxylamine dehydrogenase (HAO) in Bin.003_Forest.
and Bin.001_Pasture; and nirK for nitrite reductase (NO-forming) in Bin.013_Forest, Bin.006_Pasture, and Bin.034_Pasture. It is worth mentioning that the nirK gene of Bin.034_pasture may be related to nitrification, as it has been reported that this gene may oxidize hydroxylamine to N₂O in ammonia-oxidizing archaea, functioning as a bacteria-like HAO [55, 56].

The nitric oxide reductase, responsible for the microbial reduction of nitric oxide (NO) to N₂O – the main source of this greenhouse gas [57], was detected in three bacterial MAGs from the families Geobacteraceae (Bin.003_Forest with norB), Burkholderiaceae (Bin.013_Forest with norB and norC), and Acetobacteriaceae (Bin.031_Pasture with norB). On the other hand, a nitrous oxide reductase (nosZ) that reduces N₂O to dinitrogen [4] is encoded by the Burkholderiaceae MAG. In previous studies in the Amazon region, this important gene for N₂O consumption was found in higher abundance in forests in comparison with pasture soils [48, 58].

Methane/ammonia monooxygenase genes were detected in our archaea from the Nitrosophaeraeaceae family (Bin.034_Pasture with pmoA-amoA and pmoB-amoB). Members of this family are capable of oxidizing ammonia, with a few soil isolates [59–63]. The pasture MAG from the class Binatia (Bin.006_Pasture, order Binatales) also contains pmoA-amoA, pmoB-amoB, and pmoC-amoC. Binatia is a yet-uncultured, poorly characterized candidate phylum, but some of its members have been recently suggested to be involved in CH₄ oxidation [37]. This recent study revealed that 11 MAGs – of the orders Bin18 and Binatales – from a total of 108 encode copper membrane monooxygenases (CuMMOs), an enzyme family that includes the particulate methane monooxygenase (pMMO) [37]. Therefore, these microorganisms, not yet considered in studies on the Amazonian soil CH₄ cycle but more abundant in our pasture soils, may potentially be related to the consumption of this greenhouse gas.

Still considering the CH₄ cycle, as expected, the pasture Methanosarcina MAG (Bin.035_Pasture) possesses the genes (mcrA, mcrB, and mcrG) for the methyl-coenzyme M reductase (MCR), the terminal enzyme of the methanogenesis process that catalyses the formation of CH₄ from methyl-coenzyme M [64]. The genus Methanosarcina is composed of versatile organisms that can produce CH₄ through the main methanogenic pathways (hydrogenotrophic, acetoclastic, and/or methylotrophic) [36] and, in addition to other methanogenesis-related genes, this genome codes for heterodesulfide reductases (Hdr, genes hdrB1, hdrB2, hdrC1, hdrC2, hdrD, and hdrE). It also carries mtaA, mtaB, and mtaC genes (for [methyl-Co(III) methanol/glycine betaine-specific corrinoid protein]:coenzyme M methyltransferase, methanol--→5-hydroxybenzimidazolylcobamide Co-methyltransferase, and methanol corrinoid protein, respectively) and mtcB (for dimethylamine corrinoid protein), considered molecular markers for methylo trophic methanogenic archaea [65]. Lastly, the genome from the Koribacteraceae family of Acidobacteriota (Bin.003_Pasture) possesses the mttB gene (for trimethylamine--→coordin enzyme Co-methyltransferase).

Amazonian soils are naturally rich in mercury [66] and, along with numerous other relevant functions observed in the genomes (Fig. 4), the forest MAG from the Geobacteraceae family of Desulfovibriothea _F (Bin.003_Forest) also encodes a mercuric reductase, related to mercury detoxification, an important feature for the bioremediation of contaminated environments [67]. Furthermore, genes associated with acetate metabolism – a short-chain fatty acid used as an energy and carbon source for several microorganisms [68], including certain Methanosarcina species [36] – were also present in the MAGs (most notably, acs for acetyl-CoA synthetase, ackA for acetate kinase, and pta for phosphatase acetyltransferase in Bin.003_Forest, Bin.013_Forest, and Bin.031_Pasture, and ACH1 for acetyl-CoA hydrolase in Bin.003_Forest).

CONCLUSION

In conclusion, genome-resolved metagenomics revealed potentially novel genomes from forest and pasture soils of the Eastern Amazon. This approach can expand our knowledge about the microbial communities from Amazonian soils and reveal the functional potential of novel or underrepresented microbes, thus helping us to understand their ecological roles in this environment. Considering the relationship of these genomes with critical and closely linked biogeochemical cycles, our results also constitute an important resource for further studies on the functional responses of Amazonian soil microbial communities in light of land-use and climate change.

Funding information
This work was supported by the São Paulo Research Foundation (FAPESP, grant numbers #2014/50320-4, #2015/08564-6, #2015/13546-7, #2015/19979-2, #2015/23758-1, #2017/09643-2, #2017/26138-0, #2018/14974-0, #2019/25929-1, #2019/25931-3, and #2019/26029-1), the National Council for Scientific and Technological Development (CNPq, grant numbers #149662/2014-9, #140032/2015-0, #133769/2015-1, #311008/2016-0, #130292/2019-2, and #314806/2021-0), the Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) - Finance Code 001. A.M.V.'s research is currently funded by the Fung Global Fellows Program of the Princeton Institute for International and Regional Studies (PIIIRS, Princeton University).

Acknowledgements
The soil sampling was authorized through the Biodiversity Information and Authorization System (SISBIO, authorization #68862-1). The authors thank the private landowners of the pasture site, the managers of the Tapajós National Forest, and Wagner Piccinini for the assistance during the sampling. We also thank the Large-Scale Biosphere-Atmosphere Program (LBA), coordinated by the National Institute for Amazon Researchers (INPA), for the logistical support and infrastructure during field activities.
Authors and contributors
A.M.V. and S.M.T. designed the research with contributions from J.B.G. and J.A.M. A.M.V. previously collected the soil samples and conducted the microbiome experiment and molecular analyses with the help of J.B.G., C.A.Y., and A.G.F. A.M.V. performed the bioinformatics analyses with the help of J.B.G. and J.A.M. A.M.V. discussed the results with J.B.G., J.A.M., F.S.P., C.A.Y., A.G.F., and S.M.T. S.M.T. contributed with reagents, materials, and analytic tools. A.M.V. wrote the article with contributions from J.B.G., J.B.G., J.A.M., F.S.P., C.A.Y., A.G.F., and S.M.T. critically revised the manuscript.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Verstraete W, Mertens B. Chapter 5 The key role of soil microbes. In: Doelman P and Eijsackers, H.J.P (eds). Developments in Soil Science. Elsevier; 2004, pp. 127–157.
2. Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem 2021;153:108111.
3. Jansson, JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol 2020;18:35–46.
4. Stein LY. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol 2020;28:500–511.
5. Lehmann J, Bossio DA, Kögel-Knabner I, Rillig MC. The concept and future prospects of soil health. Nat Rev Earth Environ 2020;1:544–553.
6. Cameron, EK, Martins IS, Lavelle P, Mathieu J, Tedersoo L, et al. Global gaps in soil biodiversity data. NatEcolEvol 2018;2:1042–1043.
7. Guerra CA, Heintz-Buschart A, Sikorski J, Chatzinotas A, Guerrero-Ramírez N, et al. Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 2021;11:3870.
8. Kroeger ME, Delmont TO, Eren AM, Meyer KM, Guo J, et al. New biological insights into how deforestation in Amazonia affects soil microbial communities using metagenomics and metagenome-assembled genomes. Front Microbiol 2018;9:1635.
9. Lemos LN, Manoharan L, Mendes LW, Venturini AM, Pyro VS, et al. Metagenome-assembled-genomes reveal similar functional profiles of CPR/patescibacteria phyla in soils. Environ Microbiol Rep 2012:651–655.
10. Venturini AM, Nakamura FM, Gontijo JB, da França AG, Yoshiura CA, et al. Robust DNA protocols for tropical soils. Helicyon 2020;6:e03830.
11. Arking AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 2018;36:566–569.
12. Andrews S. FastQC: A quality control tool for high throughput sequence data, 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
13. Kayes P, Magnusson M, Lundin S, Käller M, MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016;32:3047–3048.
14. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120.
15. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–1676.
16. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.
17. Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016;32:605–607.
18. Alineberg BJ, Bjarnason BS, de Brujin I, Schirmer M, Quick J, et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014;11:1144–1146.
19. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018;3:836–843.
20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055.
21. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDBTk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;35:1925–1927.
22. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018;9:5114.
23. Bowers RM, Kyprides NC, Stepanauskas R, Harmon-Smith M, Doud D, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017;35:725–731.
24. Wagner D. Methanosarcina. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B and Kämpfer P (eds), Bergey’s Manual of Systematics of Archaea and Bacteria. 2020. pp. 1–23.
37. Murphy CL, Sheremet A, Dunfield PF, Spear JR, Stepmanauskas R, et al. Genomic analysis of the yet-uncultured Binatota reveals broad methylo trophic, alkane-degradation, and pigment production capacities. mBio 2012;12:e00985-21.

38. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–359.

39. Shaffer M, Morton MA, McGivern BB, Zayed AA, La Rosa SL, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 2020;48:8883–8900.

40. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Cham: Springer-Verlag; 2016.

41. Brunson JC, Read GD. ggalluvial: Alluvial plots in “ggplot2”. R package version 0.12.3, 2020. http://corybrunson.github.io/ggalluvial/ (accessed 18 May 2022).

42. R Core Team. R: A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria; 2020. https://www.R-project.org/ (accessed 2 November 2021).

43. Conway T. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 1992;9:1–27.

44. Kornberg HL, Krebs HA. Synthesis of cell constituents from C₂-units by a modified tricarboxylic acid cycle. Nature 1957;179:988–991.

45. Steudler PA, Melillo JM, Feigl BJ, Neil C, Piccolo MC, et al. Con sequence of forest-to-pasture conversion on CH₄ fluxes in the Brazilian Amazon Basin. J Geophys Res 1996;101:18547–18554.

46. Verchot LV, Davidson EA, Cattáneo JH, Ackerman IL. Land use change and biogeochemical controls of methane fluxes in soils of Eastern Amazonia. Ecosystems 2000;3:41–56.

47. Fernandes SAP, Bernoux M, Cerri CC, Feigl BJ, Piccolo MC. Seasonal variation of soil chemical properties and CO₂ and CH₄ fluxes in unfertilized and P-fertilized pastures in an Ultisol of the Brazilian Amazon. Geoderma 2002;107:227–241.

48. Lammel DR, Feigl BJ, Cerri CC, Nüsslein K. Specific microbial gene abundances and soil and litter chemistry drive bacterial community structures in samples of the rainforest and Cerrado (Brazilian Savannah) biomes in Southern Amazonia. Eur J Soil Biol 2015;66:32–39.

49. Kim J-G, Jung M-Y, Park S-J, Rijpstra WIC, Sinninghe Damsté JS, et al. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ Microbiol 2012;14:1528–1543.

50. Stieglmeyer M, Klingl A, Alves RJ, Rittmann SK-MR, Melcher M, et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 2014;64:2738–2752.

51. Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FAO, et al. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS ONE 2014;9:e101648.

52. Kerou M, Schleper C. Nitrososphaeraceae. In: Trujillo ME, Dedys S, DeVos P, Hedlund B and Kämpfer P (eds). Bergey’s Manual of Systematics of Archaea and Bacteria. 2016. pp. 1–2.

53. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, et al. Isolation of “Candidatus Nitrosocomius frankslandus”, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 2016;92:fiw057.

54. Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology (Reading) 2002;148:3521–3530.

55. Dziewit L, Pyszik A, Romanuk K, Sobczak A, Szczesny P, et al. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol 2015;6:694.

56. Siqueira GW, Aprile F, Irion G, Braga ES. Mercury in the Amazon basin: human influence or natural geological pattern? J South Am Earth Sci 2018;86:193–199.

57. Barkay T, Miller SM, Summers AO. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 2003;27:355–384.

58. Zhuang G-C, Peña-Montenegro TD, Montgomery A, Montoya JP, Joyce SB. Significance of acetate as a microbial carbon and energy source in the water column of Gulf of Mexico: implications for marine carbon cycling. Global Biogeochem Cycles 2019;33:223–235.