Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme

K. Karlsson\textsuperscript{1,2}, F. Aryasetiawan\textsuperscript{3,4} and O. Jepsen\textsuperscript{2},

\textsuperscript{1}Department of Life Sciences, Högskolan i Skövde, 54128 Skövde, Sweden,
\textsuperscript{2}Max Planck Institut für Festkörperforschung, D-705 06 Stuttgart, Germany, Japan Science and Technology Agency, CREST, Kawaguchi 332-0012 Japan
\textsuperscript{3}Graduate School of Advanced Integration Science, Chiba University, Chiba, 263-8522 Japan, and
\textsuperscript{4}Japan Science and Technology Agency, CREST, Kawaguchi 332-0012 Japan.

(Dated:)

Abstract

We present a method for calculating the electronic structure of correlated materials based on a truly first-principles LDA+U scheme. Recently we suggested how to calculate $U$ from first-principles, using a method which we named constrained RPA (cRPA). The input is simply the Kohn-Sham eigenfunctions and eigenvalues obtained within the LDA. In our proposed self-consistent LDA+U scheme, we calculate the LDA+U eigenfunctions and eigenvalues and use these to extract $U$. The updated $U$ is then used in the next iteration to obtain a new set of eigenfunctions and eigenvalues and the iteration is continued until convergence is achieved. The most significant result is that our numerical approach is indeed stable: it is possible to find the effective exchange and correlation interaction matrix in a self-consistent way, resulting in a significant improvement over the LDA results, regarding both the bandgap in NiO and the $f$-band exchange spin-splitting in Gd, but some discrepancies still remain.
I. INTRODUCTION

The interest for a fundamental understanding of strongly correlated systems has led to the development of a number of electronic structure methods. Among the most successful are the LDA+U approach proposed by Anisimov and coworkers [1] and the dynamical mean-field theory (DMFT) proposed by Georges and coworkers [2, 3]. Very recently a new scheme, dubbed the LDA+Gutzwiller method [4], for treating strong electron correlations was introduced. In all these methods the strong Coulomb onsite correlations for electrons residing in the localized orbitals are explicitly taken care of via a set of Hubbard like parameters or the Hubbard $U$. This is evidently unsatisfactory from the point of view of quantitative prediction of materials properties, since optical and magnetic excitations are of vital importance in many technological applications such as solar cell design, optical memories, photoluminescent devices (semiconductor lasers and diodes) and photochemical reactions. Often it has been shown that by adjusting the Hubbard $U$ one can get results in good agreement with experiment but not for a good reason. Hereby lies the importance of determining $U$ entirely from first-principles.

Over the last two decades a number of methods for calculating the Hubbard $U$ from first principles have been proposed. The pioneering work may be traced back to the paper by Gunnarsson et al. [5] who proposed to calculate $U$ using the constrained LDA (cLDA) scheme. A few years ago, a new method for calculating the Hubbard $U$, named the constrained random-phase approximation (cRPA) method in analogy to the cLDA method, was proposed [6]. The method allows for a systematic and precise determination of the Hubbard $U$ entirely from first-principles from the knowledge of the bandstructure alone. The method was based on the intuitive idea that the Hubbard $U$ can be viewed as a Coulomb interaction screened by the polarization of the whole system excluding the polarization arising from a set of bands which are treated in the Hubbard model. In other words, the Hubbard $U$ when further screened by the electrons in the Hubbard model yields the screened interaction of the full system. This intuitive idea was recently shown to be rigorously correct and the cRPA is just an approximate way of calculating the screened interaction $U$ within the random-phase approximation (RPA).

By determining the Hubbard $U$ from first-principles the cRPA method offers the possibility of making methods based on the Hubbard $U$ fully first-principles schemes. The
The purpose of the present work is to develop a scheme for calculating the electronic structure of correlated materials based on a truly self-consistent first-principles LDA+U scheme. In conventional LDA+U scheme as it was originally proposed [1], the Hubbard U is taken as an adjustable parameter which is fixed for a given calculation. In our proposed self-consistent LDA+U scheme, we calculate the LDA+U eigenfunctions and eigenvalues and use these to calculate U using the cRPA method. The new U is then used in the next iteration to obtain a new set of eigenfunctions and eigenvalues and the iteration is continued until convergence is achieved. Thus, U is no longer an arbitrarily adjusted parameter like in the original LDA+U scheme but rather it is determined self-consistently within the theoretical scheme. Our first target will be to calculate the electronic structure of the transition metal oxide series and as a test case we consider NiO, which is regarded as the epitome of Mott-Hubbard insulators. We are also aiming at obtaining a more satisfactory description of the electronic structure of the 4f electron series which is highly problematic for the LDA. The path is then opened for more complex materials, such as magnetic semiconductors, for which no realistic methods are in existent at present.

In the present paper we present some results for NiO and Gd, which we believe should provide us with a stringent test of the applicability of our method. The most important finding is that our numerical approach is indeed stable i.e it is possible to find U and J self-consistently. The bandgap in NiO and the spin-splitting of the f-bands in Gd are found to compare well with experiment using our self-consistent determined values of the correlation parameters.

II. THEORY

A. Constrained RPA

We first give a short summary of the cRPA method presented in detail elsewhere [6, 7]. The fully screened Coulomb interaction is given by

\[ W = [1 - vP]^{-1}v \]  

(1)
where $\nu$ is the bare Coulomb interaction and $P$ is the non-interacting polarization given by

$$
P(r, r'; \omega) = \sum_{i} \sum_{j} \psi_i(r) \psi_j^*(r') \psi_j^*(r) \psi_j(r') \times \left\{ \frac{1}{\omega - \varepsilon_j + \varepsilon_i + i0^+} - \frac{1}{\omega + \varepsilon_j - \varepsilon_i - i0^+} \right\}.
$$

where $\{\psi_i, \varepsilon_i\}$ are one-particle Bloch eigenfunctions and eigenvalues corresponding to the system’s band structure. For systems with a narrow 3$d$ or 4$f$ band crossing the Fermi level, typical of strongly correlated materials, we may divide the polarization into $P = P_d + P_r$, in which $P_d$ includes merely the transitions within the narrow band (3$d$-3$d$ or 4$f$-4$f$ transitions) and $P_r$ be the rest of the polarization, which includes transitions from the 3$d$ band to the rest of the bands and vice-versa. It was noticed that the following quantity can be interpreted as the effective interaction among electrons living in the narrow band (Hubbard $U$):

$$
U(\omega) = [1 - v P_r(\omega)]^{-1} \nu
$$

where $U$ can be related to the fully screened interaction $W$ by the following identity:

$$
W = [1 - UP_d]^{-1} U.
$$

This identity explicitly shows that the interaction between the 3$d$ or 4$f$ electrons is given by a frequency-dependent interaction $U$. Thus the remaining screening channels in the Hubbard model associated with the localized $d$ electrons, represented by the $d-d$ polarization $P_d$, further screen $U$ to give the fully screened interaction $W$. We refer the method of calculating the Hubbard $U$ according to (3) as cRPA because we have constrained the polarization to exclude transitions within the narrow band ($d-d$ transitions). Although the formula in (3) has been obtained within the RPA, the result is actually exact provided $P_r$ is exact, as was shown recently [8].

In the following, we retain only the local components of the effective interaction on the same atomic site by taking the following matrix element:

$$
U_{L_1 L_2, L_3 L_4} = \int d^3r d^3r' \phi_{L_1}^*(r) \phi_{L_2}(r) U(r, r') \phi_{L_3}^*(r) \phi_{L_4}(r')
$$

where $\phi_\zeta$ is a $\zeta$ LMTO orbital (3$d$ or 4$f$) centered on an atomic site and the interaction $U(r, r')$ is the static ($\omega = 0$) value of Eq. (3). In calculating $U$ we have approximated $\phi_\zeta$ by the "head" of the LMTO, i.e., the solution to the Schrödinger equation inside the atomic
sphere. This is expected to be a reasonable approximation because the $\zeta$ states are rather localized. LMTO is just one possible choice for the one-particle orbitals but other choices are perfectly legitimate. For example, the newly developed NMTO (where N is the number of energies chosen to span the region of interest) \cite{10} and the recently proposed maximally localized Wannier orbitals \cite{11} are possible choices. It is worth noting that the $U$ entering the Hubbard model will inevitably depend on the choice of the one-particle basis $\phi$ defining the annihilation and creation operators, no matter what method we use to calculate $U(r, r')$, which is independent of the basis functions used in the band structure method.

\section{LDA+U}

In the spirit of the LDA+U approach\cite{1}, we introduce an orbital-dependent exchange-correlation operator

$$\hat{V}_\sigma = \sum_{RL,R'L'} |\phi_{RL\sigma}\rangle V_{RL,R'L'}^\sigma \langle \phi_{R'L'\sigma}|$$

acting among a localized set of electrons. The LMTO head is in general denoted by site index $R$, angular quantum number $L = (lm)$ and spin $\sigma$. In addition to the usual single-particle LDA Hamiltonian, we include appropriate matrix-elements of $\hat{V}_\sigma$. In the TB-representation\cite{12} we get

$$\langle \chi_{RL\sigma}^k | \hat{V}_\sigma | \chi_{R'L'\sigma}^k \rangle = \sum_{R''L''} \langle \chi_{RL\sigma}^k | \phi_{R''L''\sigma}^k \rangle V_{R''L''}^{\sigma\sigma} \langle \phi_{R''L''\sigma}^k | \chi_{R'L'\sigma}^k \rangle$$

with

$$\langle \phi_{RL\sigma} | \chi_{R'L'\sigma}^k \rangle = \delta_{RR'} \delta_{LL'} + o_{RL} h_{RL,R'L'}^k.$$

We have used $V_{RL,R'L'}^{\sigma\sigma} = V_{RL}^\sigma \delta_{RR} \delta_{LL'}$, an assumption which is confirmed numerically. Further, the diagonal overlap matrix $o$ as well as the hamiltonian matrix $h$ are given in \cite{12}. Consider next $V_{RL}^\sigma$. Assuming a spin-independent Hubbard $U$, and a diagonal spin-density matrix $n_{RL}^{\sigma\sigma} = n_{RL}^{\sigma\sigma} \delta_{LL'}\cite{13}$, we obtain:

$$V_{RL}^\sigma = \sum_{L'\sigma'} U_{LL',L'L'}^{\sigma\sigma'} n_{RL}^{\sigma\sigma'} - \sum_{L'} U_{LL',L'L}^{\sigma\sigma'} n_{RL}^{\sigma\sigma'}$$

$$= \sum_{L'} U_{LL,L'L'}^{\sigma\sigma} n_{RL}^{\sigma\sigma} + (U_{LL',L'L'} - U_{LL,L'L}) n_{RL}^{\sigma\sigma}. \quad (6)$$

Now $U_{LL,L'L'}$ is substantial for all $LL'$ in contrast to $U_{LL',L'L}$ which is rather small, except when $L = L'$. We shall use $U_{LL,L'L'} \equiv U$ independent of $L, L'$ and $U_{LL',L'L} \equiv J$ for $L \neq L'$.
which result in the simple form

\[ V_{RL}^\sigma = (U - J)[1/2 - n_{RL}^\sigma], \]

where the double counting term suggested in Ref. [1] has been added. For a fixed value of \( U \) and \( J \), the matrix-elements are evaluated and added to the LMTO-Hamiltonian prior to diagonalization. The density-matrix \( n_{RL}^\sigma \) is updated every iteration using the eigenvectors as well as the overlap matrix. The corresponding term, which has to be added to the total energy functional, is given by

\[ E^U - E_{dc} = \frac{(U - J)}{2} [N - \sum_{RL\sigma} n_{RL}^\sigma n_{RL}^\sigma] \]

where \( N = \sum_{RL\sigma} n_{RL}^\sigma \). It should be noted that already the simple form of the non-local potential gives rise to upper and lower Hubbard bands with an energy separation given by \( (U - J) \).

C. Selfconsistent LDA+U

The cRPA method requires as input eigenfunctions and eigenvalues (fixed during the calculation) and delivers as output the Hubbard \( U \) matrix. On the other hand, the LDA+U method needs a \( U \)-matrix (fixed during the calculation) as input and gives as output eigenfunctions and eigenvalues. The main point of the present work is to merge these two schemes in a selfconsistent way.

We summarize the iterative steps:

1. Firstly we do a normal cRPA calculation [7] in order to achieve the initial Hubbard \( U \) matrix (iteration one; matrix \( U_1 \)) to be used in the LDA+U calculation.

2. After the LDA+U calculation has converged we save the output LDA+U eigenfunctions and eigenvalues and use these to calculate \( U \) within cRPA (Eqs. [235]), in order to find the updated \( U \)-matrix for the next LDA+U calculation (iteration two; matrix \( U_2 \)).

3. The procedure is continued until the \( U \)-matrix is stable i.e after \( n \) iterations we have \( U_{n+1} \approx U_n \).
The size of the $U$-matrix is rather large, however many elements are related by symmetry.

III. RESULTS AND DISCUSSION

All the results presented in this paper used the simple form of the non-local potential, because a substantial number of tests have shown that more elaborate forms of the potential do not influence the final results. The most important finding in the present work is indeed the possibility to converge the $U$-matrix within the defined self-consistency cycle. In all cases studied convergency is reached within a reasonable number of iterations.

To illustrate the applicability of the present scheme to real materials we have applied the scheme to NiO, which is an epitome of the charge transfer insulators, and Gd. These two systems have been extensively studied both experimentally and theoretically. The NiO LDA band gap is known to be too small and likewise the LDA exchange splitting in 4$f$ Gd is too small. These provide a motivation for improving upon the LDA.

A summary of some results for our prototype systems: For NiO, the self-consistent determined values $U = 6.6$ eV and $J = 0.9$ eV, improves the bandgap (2.5 eV), compared with conventional LDA, though too small in comparison with experiment (4 eV). The exchange spin-splitting of the $f$-bands in Gd are found to compare rather well with experiment ($\sim 12 - 13$ eV) using our self-consistent determined values of $U = 12.4$ eV and $J = 1.0$ eV. We have also calculated the Gd (NiO) magnetic moment to be $\mu = 7.8$ (1.5), which is comparable to the experimental value $\mu = 7.6 \mu_B$ [14] (1.6-1.9 $\mu_B$), and an improvement compared to LDA.

We first discuss Gd, where the LDA+$U$ bandstructure corresponding to the self-consistent values of $U$ and $J$ are displayed in Figs. (12). The majority (spin up) $f$ bands are centred around -11 eV and the minority ones around 3 eV. The occupied spin up bands are very narrow due to shielding by the $5s$ and $5p$ electrons, due to the hybridization with other bands the unoccupied minority bands display some dispersion, making it difficult to extract the exchange splitting. However, we estimate that our calculated exchange splitting at convergency is somewhat too large by say $\sim 1 - 2$ eV.

We note that our parameters differs significantly from those previously used in literature. Harmon et al [15] found $U = 6.7$ eV and $J = 0.7$ eV using a supercell approach. The experimental gap (splitting between the PES and BIS main-peaks) is given by $E_g = E_{N+1} +$
\[ E_{N-1} - 2E_{GS} \], which from purely atomic considerations is predicted to be \( U + 6J \), using \( N = 7 \) spin-up electrons in the groundstate (GS). With the parameters of Harmon et al.\cite{15}, an underestimation is obtained, resulting in a splitting of 11 eV. As can be seen in Fig. 2, the 4f states no longer form a narrow atomic-like band but hybridized with other states in the same energy range. Thus, the atomic picture used to estimate the exchange splitting may not be valid anymore.

The frequency-dependent \( U \) from the normal cRPA calculation, i.e., from calculation starting from the LDA bandstructure, is shown in Fig. (3). We note the dramatic change in \( U \) for small energies, shooting up to the self-consistent value of \( U \) already within 2 eV. In fact, the frequency dependence would have become even stronger if we had not used a life-time broadening when calculating the response function. Using a tetrahedral method for the Brillouin zone integration without a life-time broadening would probably result in a decrease in \( U \) from its zero-energy value before it shoots up to a large value at around 1.5 eV. This behavior is in contrast to the transition-metals studied earlier\cite{7}. Towards self-consistency we noticed a significant change in \( U \) already in the second cRPA calculation (1 iteration) ; \( U \) is in fact enhanced for small energies giving rise to a quite smooth curve with weak dependency on frequency. As seen in Fig. (3), the frequency dependence of \( U \) is indeed much weaker after self-consistency, with a relatively constant value of \( U = 12 \) eV in the frequency range around 5 eV. The weakening of the energy dependence of \( U \) for small energies may be explained by the increase in the exchange splitting of the up and down 4f states. As the occupied 4f states are pushed down the excitation energies from the occupied 4f states to unoccupied states increase. Similarly, as the unoccupied 4f states are pushed up, the excitation energies from occupied states to the unoccupied 4f states increase. Thus, the peak structure in the imaginary part of the screened interaction arising from these excitations is shifted to higher energy. Through the Kramers-Kronig relation this results in much smoother behavior of \( U \) at low energy. This result is very encouraging since it gives justification for using a static value of \( U \).

Finally we consider NiO, where the LDA+U bandstructure corresponding to the self-consistent values of \( U \) and \( J \) are shown in Fig. (4). For this system cLDA calculations yields \( U = 8 \) eV and \( J = 1 \) eV \cite{1}, which is comparable to our self-consistent values of \( U = 6.6 \) eV and \( J = 0.9 \) eV. The gap obtained using the cLDA parameters is 3 eV\cite{1}, compared to the experimental gap of 4 eV\cite{16}. The difference between our and the cLDA \( U \) (1.4 eV) is
reflected in our decreased bandgap of 2.5 eV.

TABLE I: A summary of results for \( U \) and \( J \) obtained with the present method in comparison with other methods (in brackets). We compare also the magnetic moments with experimental findings (in brackets).

|        | \( U \) (eV) | \( J \) (eV) | Magnetic moment (\( \mu_B \)) |
|--------|--------------|--------------|---------------------------------|
| NiO    | 6.6 (8.0 [1])| 0.9 (1.0 [1])| 1.5 (1.6-1.9 [17, 18])         |
| Gd     | 12.4 (6.7 [15])| 1.0 (0.7 [15])| 7.8 (7.6 [14])                 |

As in the case of Gd, the Hubbard \( U \) as a function of frequency undergoes a significant change as self-consistency is achieved. Starting from the LDA bandstructure, the resulting \( U \) calculated using the cRPA method exhibits a strong energy dependence at low energy. As the band gap increases, the energy dependence of \( U \) at low energy becomes smoother. The explanation of this behavior is similar to the case of Gd, namely, as the gap increases the peak structure in the imaginary part of the screened interaction is shifted to higher energy, and through the Kramers-Kronig relation, it results in a smooth behavior of \( U \) at low energy.

The too large 4\( f \) separation obtained in the self-consistent LDA+\( U \) scheme may arise from a shortcoming of the LDA+\( U \) scheme itself rather than in the RPA used in calculating \( U \). A similar problem is also observed in the so-called Quasiparticle Self-consistent GW (QSGW) scheme [20]. As the 4\( f \) separation becomes larger, the screening associated with the 4\( f \) bands becomes weaker, which leads to a larger \( U \). This in turns tends to decrease the screening strength and so forth. This indicates a shortcoming of the theory, namely, the absence of energy-dependent self-energy and the vertex correction, the latter is also left out in the QSGW schemes.

A further problem that plagues the LDA+\( U \) scheme is the double-counting problem. This problem becomes apparent when the relative position of the correlated bands with respect
to other bands is important. This relative position is rather sensitive to the double-counting formula used in the scheme. We believe this double-counting problem is responsible for the incorrect positioning of the 4f bands in Ce as well as the 3d bands in NiO, giving a too small band gap in the latter, which has also been found in other works \[21\]. While the separation between the unoccupied $e_g$ and occupied $t_{2g}$ bands of nickel is reasonably well reproduced, the relative position of these 3d bands with respect to the oxygen 2p bands is presumably incorrect. In the case of the transition metal oxides, such as NiO, the band gap is formed between the unoccupied Ni $e_g$ band and the occupied O 2p band.

**IV. CONCLUSION**

We have developed a new self-consistent LDA+$U$ scheme, in which the important parameter $U$ is determined self-consistency using the cRPA method. As test cases we have considered NiO and Gd and it is shown that the scheme does yield converged results. The exchange splitting in Gd has been found to be too large by 1-2 eV whereas the band gap in NiO has been found to be too small, 2.5 eV compared with the experimental value of about 4.0 eV. An interesting finding is that the energy dependence of $U$ at low energy is found to be much smoother after self-consistency compared with the result obtained from the LDA bandstructure. This provides justification for using a static value of $U$. Our results indicate some short-comings of the LDA+$U$ scheme, in particular the incorrect positioning of the 4f states in Gd and the 3d states in NiO points to a problem with the double-counting term. Investigating different forms of the double-counting term within the newly developed self-consistent LDA+$U$ scheme could be a fruitful direction to pursue in the future.

**V. ACKNOWLEDGMENT**

We greatly acknowledge discussions with Olle Gunnarsson and Janusz Kanski and FA acknowledges support from the G-COE program of MEXT (G-03).

\[1\] V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B 44, 943 (1991). For a review see: V. I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, J. Phys. Cond. Matter 9, 767,
For a review see: A. Georges, G. Kotliar, W. Krauth and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

T. Pruschke et al., Adv. Phys. 42, 187 (1995).

XiaoYu Deng, Lei Wang, Xi Dai and Zhong Fang, Phys. Rev. B 79, 075114 (2009).

O. Gunnarsson, O. K. Andersen, O. Jepsen and J. Zaanen, Phys. Rev. B 39, 1708 (1989).

F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004).

F. Aryasetiawan, K. Karlsson, O. Jepsen and U. Schönberger, Phys. Rev. B 74, 125106 (2006).

F. Aryasetiawan, J. Tomczak, T. Miyake, and R. Sakuma, Phys. Rev. Lett. 102, 176402 (2009).

O. K. Andersen, Phys. Rev. B 12, 3060 (1975); O. K. Andersen, T. Saha-Dasgupta, S. Erzhov, Bull. Mater. Sci. 26, 19 (2003).

O. K. Andersen and T. Saha-Dasgupta, Phys. Rev. B 62, R16219 (2000).

N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

For all the materials studied, the off-diagonal elements of the spin-density matrix have been very small.

L. W. Roeland, G. J. Cock, F. A. Muller, C. A. Moleman, K. A. M. McEwen, R. C. Jordan and D. W. Jones, J. Phys. F 5, L233 (1975).

B. N. Harmon, V. P. Antropov, A. I. Lichtenstein, I. V. Solovyev and V. I. Anisimov, J. Phys. Chem. Solids 56, 1521 (1995).

A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984).

H. A. Alperin, J. Phys. Soc. Japan Suppl. B 17, 12 (1962)

B. E. F. Fender, A. J. Jacobson, and F. A. Wedgewood, J. Chem. Phys. 48, 990 (1968).

The exchange parameter $J$ showed a very small frequency dependency.

A. N. Chantis, M. van Schilfgaarde, and T. Kotani, Phys. Rev. B 76, 165126 (2007)

F. Tran, P. Blaha, and K. Schwarz, Phys. Rev. B, 74, 155108 (2006)

(1997).
FIG. 1: Gadolinium spin up bands using the self-consistent determined parameters: $U = 12.4$ eV and $J = 1.0$ eV.

Fermi energy at 0 eV and the directions displayed are $1/2(1,1,1) \rightarrow \Gamma \rightarrow (1, 0, 0)$. The corresponding total DOS and $f$ partial DOS are also displayed.
FIG. 2: Gadolinium spin down bands using the *self-consistent* determined parameters: $U = 12.4$ eV and $J = 1.0$ eV.

Fermi energy at 0 eV and the directions displayed are $1/2(1,1,1) \rightarrow \Gamma \rightarrow (1,0,0)$. The corresponding total DOS and $f$ partial DOS are also displayed.
FIG. 3: Frequency-dependent $U$ of gadolinium.
FIG. 4: NiO bands using the \textit{self-consistent} determined parameters: \( U = 6.6 \) eV and \( J = 0.9 \) eV. Fermi energy at 0 eV and the directions displayed are \( 1/2(1,1,-1) \rightarrow \Gamma \rightarrow 1/4(1, 1, 1) \).