Generation of two iPSC lines from hypertrophic cardiomyopathy patients carrying MYBPC3 and PRKAG2 variants

Amit Manhasa,b, James W.S. Jahnga,b, Carlos D. Veraa,b, Sushma P. Shenoya,b, Joshua W. Knowlesa,b, Joseph C. Wua,b,*

aStanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA

bDivision of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA, USA

Abstract

Hypertrophic cardiomyopathy (HCM) is an inherited cardiac disorder characterized by a thick left ventricular wall and an increased risk of arrhythmias, heart failure, and sudden cardiac death. The \textit{MYBPC3} and \textit{PRKAG2} are known causal genes for HCM. Here we generated two human-induced pluripotent stem cell lines from two HCM patients carrying two heterozygous mutations in \textit{MYBPC3} (c.459delC) and \textit{PRKAG2} (c.1703C > T). Both iPSC lines expressed pluripotent markers, had a normal karyotype, and were able to differentiate into three germ layers, making them potentially valuable tools for modeling HCM \textit{in vitro} and investigating the pathological mechanisms related to these \textit{two} variants.

Keywords

Hypertrophic cardiomyopathy; Induced pluripotent stem cells; MYBPC3; PRKAG2

1. Resource table

Unique stem cell lines identifier	SCVIi036-A, SCVIi037-A
Institution	Stanford Cardiovascular Institute
Contact information of the reported cell line distributor	Dr. Joseph C. Wu; joewu@stanford.edu
Type of cell lines	iPSC
Origin	Human
Additional origin info	SCVIi036-A: Age:30, Sex: Male; Ethnicity: Southeast Asian
2. SCVIi037-A: Age:31, Sex: Male; Ethnicity: Southeast Asian |
| Cell Source | PBMCs |

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

*Corresponding author at: 265 Campus Drive, G1120B, Stanford, CA 94305, USA. joewu@stanford.edu (J.C. Wu).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
2. Resource utility

Patients carrying these two mutations, MYBPC3 (c.459delC) and PRKAG2 (c.1703C > T), showed a hypertrophic cardiomyopathy phenotype. The iPSC lines generated from these patients provide a source to differentiate into cardiomyocytes under in vitro conditions and can be used to study the pathophysiology of the disease by serving as a potential tool for drug screening.

3. Resource details

Hypertrophic cardiomyopathy (HCM) is an inherited autosomal dominant disorder characterized by intraventricular septum and left ventricular wall thickening leading to diastolic dysfunction as well as an increased risk of ventricular and atrial arrhythmias. HCM is one of the leading causes of sudden cardiac death in the US. HCM has a heterogeneous clinical presentation with symptoms ranging from asymptomatic to mild to critical heart failure (Marian and Braunwald, 2017; Lan et al., 2013). Irrespective of age and sex, HCM affects more patients than any other form of cardiomyopathy. HCM is linked to mutations in multiple genes involved in the generation of heart muscle proteins, such as β myosin heavy chain (β-MHC) and myosin-binding protein C (MYBPC3), in the energy demand regulation by AMP-activated protein kinase subunit gamma-2 (PRKAG2), and others.

Although some mutations in canonical HCM genes are definitely causal for the disease phenotype, in other cases, it can be difficult to determine if the mutation that is identified on genetic testing is causal for disease or an “innocent bystander”. These variants are referred to as “variants of uncertain significance”, and better methods and model systems to determine the pathogenicity of these variants are critical for patient care and for understanding biology.

MYBPC3 is responsible for maintaining a cardiac contraction, but its frameshift variant (c.459delC) has a direct pathogenic association with a structural component of the cardiomyocytes (Seeger et al., 2019). PRKAG2 is responsible for regulating cardiomyocyte...
energetics and known pathologic variants have been identified in HCM. Currently, the missense variant (c.1703C > T) is annotated as a variant of uncertain significance (VUS). Other PRAKG2 mutations are predicted to cause Wolff-Parkinson-White syndrome, ventricular hypertrophy, and conduction system disease (Porto et al., 2016).

With the help of patient-specific induced pluripotent stem cells (iPSCs), we can quickly develop an in vitro screening platform to mimic HCM disease phenotype with MYBPC3 (c.459delC, pathogenic) and PRAKG2 (c.1703C > T, VUS). Furthermore, these iPSCs can be differentiated into cardiomyocytes, thus providing us with a tool to conduct a relevant clinical trial in a dish.

Here, we generated iPSCs lines from a 30-year old (SCVIi036-A) and a 31-year old (SCVIi037-A) male, both individuals carrying MYBPC3 (c.459delC, coding for p.Ile154LeufsX5) and PRAKG2 (c.1703C > T, coding for p.Thr568Met) variants (Resource Table). Both patients’ peripheral blood mononuclear cells (PBMCs) were reprogrammed to iPSCs using the Sendai virus vector containing Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors). These iPSC clones showed typical morphology. The scale bar is 370 μm (Fig. 1A). The iPSC lines from these patients showed the expression of pluripotency markers OCT3/4, NANOG, and SOX2 as detected by immunostaining. The scale bar is 130 μm (Fig. 1B). These iPSC lines were able to differentiate into the three germ layers: endoderm, mesoderm, and ectoderm. The scale bar is 130 μm (Fig. 1C). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed the presence of NANOG and SOX2 at mRNA level in both lines compared to the positive control iPSC line SCVI15 (Fig. 1D). Further, we established the loss of the Sendai virus vector for these two lines (Fig. 1E). MYBPC3-specific (c.459delC) and PRKAG2-specific (c.1703C > T) heterozygous mutations were confirmed by Sanger sequencing as compared to the control iPSC line SCVI15 (Fig. 1F). All of the lines had a normal karyotype as assessed by the KaryoStat assay (Fig. 1G) and were found to be free from mycoplasma contamination. Short tandem repeat (STR) analysis proved that the genetic origin of these iPSC lines is the same as of their donor PBMCs (Submitted in the archive with journal).

4. Materials and methods

4.1. Reprogramming

PBMCs were isolated from blood using Percoll density gradient medium (#17089109, GE Healthcare), purified using DPBS, and plated in a 24-well plate as previously described (Belbachir et al., 2021). Cells were cultured in StemPro®-34 SFM medium (#10639011, Thermo Fisher Scientific) and nourished with specific supplements: SCF (100 ng/mL, #300–07, Peprotech), FLT3 (100 ng/mL, #PHC9414, Thermo Fisher Scientific), IL-3 (20 ng/mL, #200–3, Peprotech), IL-6 (20 ng/mL, #PHC0063, ThermoFisher Scientific), and EPO (20 ng/mL, #PHC9631, Thermo Fisher Scientific). PBMCs were reprogrammed according to the instructions provided with CytoTune™-iPSC 2.0 Sendai Reprogramming Kit (#A16517, Thermo Fisher Scientific). Transduced PBMCs were resuspended and plated on a Matrigel-coated plate. Cells were cultured in StemPro™-34 medium (Thermo Fisher Scientific).

On day 7, the medium was redirected to StemMACSTM iPSC-Brew XF medium (#130–104–
368, Miltenyi Biotec), and cells were maintained until days 10–15 post-transduction. Cell colonies were picked, and clones expanded as previously described (Belbachir et al., 2021).

4.2. Cell culture

iPSCs were cultured in sterile conditions using StemMACS iP-S-Brew XF medium in a humidified incubator with 5% CO$_2$ at 37 °C. A concentration of 10 μM of ROCK inhibitor (#Y27632, Selleck Chemicals) was used for the first 24 h only after every passaging. Cells were replenished with fresh medium every other day and observed until confluency.

4.3. Trilineage differentiation

To validate the inherent property of both lines, iPSCs were differentiated at passage 13 into three germ layers—endoderm, mesoderm, and ectoderm protocol (#05230, STEMCELL™ Technologies).

4.4. Immunofluorescence

The iPSCs or iPSC-differentiated germ layers (endoderm, mesoderm, and ectoderm) were fixed in 4% paraformaldehyde for 10 min at room temperature. Cells were permeabilized with 50 μg/mL digitonin (#D141, Sigma-Aldrich) for 10 min and subsequently blocked with 1% Bovine Serum Albumin (#A7030, SigmaAldrich) and 5% serum (Donkey Serum, #D9663, Sigma-Aldrich; Goat Serum, #31873, Thermo Fisher Scientific) at room temperature. After overnight incubation with specific primary antibodies (Table 2) at 4°C, cells were washed and incubated with their particular secondary antibodies (Table 2) for 30 min at room temperature. Cell nuclei were stained with the NucBlue (#R37606, Thermo Fisher Scientific) and images captured.

4.5. RT-PCR

2 × 106 iPSCs from each line at passage 12 were collected in TRIzol® and processed for total RNA extraction using Direct-zol™ RNA Miniprep Kit (#R2050, Zymo Research) according to the instructions provided in the manufacturer’s protocol. Following cDNA synthesis by using iScript™cDNA Synthesis Kit (#1708891, BioRad), RT-PCR was performed to evaluate the expression of NANOG, SOX2, SEV, and SEV-KOS using primers (Table 2) and TaqMan™ Gene Expression Assay (#4444556, Applied Biosystems™).

4.6. Karyotyping

2 × 106 iPSCs from each line were collected at passage 11 and processed for a whole-genome array to detect chromosomal abnormality by using the KaryoStat™ assay (Thermo Fisher Scientific).

4.7. Short tandem repeat analysis

To validate the origin of iPSCs lines, genomic DNA from PBMCs and iPSCs were isolated and purified by using DNeasy Blood & Tissue Kit (#69504, Qiagen). Further, CLA IdentiFiler™ Direct PCR Amplification Kit (#A44660, Thermo Fisher Scientific) was used, and amplified products were analyzed using capillary electrophoresis on ABI3130xl by the Stanford Protein Nucleic Acid (PAN) Facility.
4.8. Sequencing

To evaluate the genomic region of interest, extracted genomic DNA from iPSC lines by using DNeasy Blood & Tissue Kit (#69504, Qiagen) and performed a PCR reactions with primers (Table 2) targeting the region of interest by using the HighFidelity kit (#M0541S, New England Biolabs). PCR products were purified using the QIAquick Purification Kit (#28706, Qiagen) and subjected to sequence analysis on ABI3130xl by the Stanford PAN facility.

4.9. Mycoplasma detection

Mycoplasma contamination was assessed using the MycoAlert Detection Kit (#LT07–118, Lonza) as per the manufacturer’s protocol.

Acknowledgment

This work was supported by National Institutes of Health 75N92020D00019, R01 HL126527, R01 HL130020, and P01 HL141084 (JCW).

References

Marian AJ, Braunwald E, 2017. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res 121, 749–770. [PubMed: 28912181]

Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, Han L, Yen M, Wang Y, Sun N, Abilez OJ, Hu S, Ebert AD, Navarrete EG, Simmons CS, Wheeler M, Pruitt B, Lewis R, Yamaguchi Y, Ashley EA, Bers DM, Robbins RC, Longaker MT, Wu JC, 2013. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12, 101–113. [PubMed: 23290139]

Seeger T, Shrestha R, Lam CK, Chen C, McKeithan WL, Lau E, Wnorowski A, McMullen G, Greenhaw M, Lee J, Oikonomopoulos A, Lee S, Yang H, Mercola M, Wheeler M, Ashley EA, Yang F, Karakikes I, Wu JC, 2019. A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay. Circulation 139, 799–811. [PubMed: 30586709]

Porto AG, Brun F, Severini GM, Losurdo P, Fabris E, Taylor MRG, Mestroni L, Sinagra G, 2016. Clinical Spectrum of PRKAG2 Syndrome. Circ. Arrhythm. Electrophysiol 9, e003121. [PubMed: 26729852]

Bellbachir N, Lai C, Rhee JW, Zhuge Y, Perez MV, Sallam K, Wu JC, 2021. Generation of two induced pluripotent stem cell lines from Brugada syndrome affected patients carrying SCN5A mutations. Stem Cell Res. 57, 102605. [PubMed: 34856468]
Fig. 1.
Characterization of iPSC lines derived from hypertrophic cardiomyopathy patients carrying MYBPC3 (c.459delC) and PRKAG2 (c.1703C>T) mutations.
Table 1

Classification	Test	Result	Data
Morphology	Photography bright field	Normal	Figure 1A
Phenotype	Qualitative analysis (Immunocytochemistry)	Positive expression of pluripotency markers: Oct3/4, NANOG, SOX2	Figure 1B
Genotype	Quantitative analysis (RT-qPCR)	mRNA expression of SOX2 and NANOG	Figure 1D
	Karyotype: Whole genome array (KaryoStat™ Assay)	Normal karyotype: 46 XY for SCVIi036-A	Figure 1G
	Resolution 1–2 Mb	XY for SCVIi037-A	
Identity	Microsatellite PCR (mPCR) or STR analysis	N/A	N/A
Mutation analysis	Sequencing	Heterozygous MYBPC3 (c.459delC) Heterozygous PRKAG2 (c.1703C > T)	Figure 1F
Microbiology and virology	Mycoplasma	Luminescence: Negative	
Differentiation potential	Directed differentiation, Immunofluorescence staining for 2 markers per germ layer	Positive Immunofluorescence staining of three germ layer markers: Ectoderm: PAX6, OTX2, Endoderm: SOX17, FOXA2, Mesoderm: BRACHYURY, TBX6	Figure 1C
Donor screening	HIV 1 + 2, Hepatitis B, Hepatitis C	N/A	N/A
Genotype additional info	Blood group genotyping	N/A	N/A
	HLA tissue typing	N/A	N/A
Table 2

Reagents details.

Antibodies used for Immunocytochemistry	Antibody	Dilution	Company Cat #	RRID
Pluripotency Markers	Rabbit Anti-NANOG	1:200	Proteintech Cat# 142951-1-AP	AB_1607719
	Mouse IgG2κ Anti-OCT-3/4	1:200	Santa Cruz Biotechnology Cat# sc-5279	AB_628051
	Mouse IgG1κ Anti-SOX2	1:200	Santa Cruz Biotechnology Cat# sc-365823	AB_10842165
Ectoderm Markers	Goat Anti-OTX2	1:200	R&D Systems Cat# 963,273	AB_2157172
	Rabbit Anti-Pax6	1:100	Thermo Fisher Scientific Cat# 42-6600	AB_2533534
Endoderm Markers	Goat Anti-SOX17	1:200	R&D Systems Cat# 963,121	AB_355060
	Rabbit Anti-Foxa2	1:250	Thermo Fischer Scientific Cat# 701,698	AB_2576439
Mesoderm Markers	Goat Anti-Brachyury	1:200	R&D Systems Cat# 963,427	AB_2200235
Secondary Antibodies	Alexa Fluor 488 Goat Anti-Mouse IgG1	1:1000	Thermo Fisher Scientific #A-21121	AB_2535764
	Alexa Fluor 488 Donkey Anti-Goat IgG (H + L)	1:1000	Thermo Fisher Scientific #A-11055	AB_2534102
	Alexa Fluor 555 Goat Anti-Rabbit IgG (H + L)	1:500	Thermo Fisher Scientific #A-21428	AB_141784
	Alexa Fluor 647 Goat Anti-Mouse IgG2b	1:250	Thermo Fisher Scientific #A-21242	AB_2535811

Primers	Target	Forward/Reverse primer (5’-3’)
Sendai Virus (qPCR)	Sendai Virus genome	Mr04269880_mr
	Sendai-KLF4-KOS	Mr04421257_MR
Genotyping	MYBPC3 (c.459delC)	Fwd: GCTCTCAATGGTCCTACCCC, Rev: TCTCTCCGTGTCCTCCACGAC
	PRKAG2 (c.1703C > T)	Fwd: ACATACCGTGACTCACCCT, Rev: TACGTGGATCCAAGCTGC
House-Keeping Gene (qPCR)	GAPDH	HS02786624_g1
	18s	HS03003631_g1
	SOX2	HS04234836_s1
	NANOG	HS02387400_g1