Nephrocan, a Novel Member of the Small Leucine-rich Repeat Protein Family, Is an Inhibitor of Transforming Growth Factor-β Signaling*

Yoshiyuki Mochida1, Duenpim Parisuthiman1, Masaru Kaku1, Jun-ichi Hanaï, Vikas P. Sukhatme5, and Mitsuo Yamauchi1

From the 1Dental Research Center, University of North Carolina, Chapel Hill, North Carolina 27599-7455 and 6Divisions of Nephrology and Hematology-Oncology, Departments of Medicine and Pathology, Center for Study of the Tumor Microenvironment, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215

Received for publication, May 18, 2006, and in revised form, August 29, 2006 Published, JBC Papers in Press, September 21, 2006, DOI 10.1074/jbc.M604787200

In a search of new, small leucine-rich repeat proteoglycan/protein (SLRP) family members, a novel gene, nephrocan (NPN), has been identified. The gene consists of three exons, and based on the deduced amino acid sequence, NPN has 17 leucine-rich repeat motifs and unique cysteine-rich clusters both in the N and C termini, indicating that this gene belongs to a new class of SLRP family. NPN mRNA was predominantly expressed in kidney in adult mice, and during mouse embryogenesis, the expression was markedly increased in 11-day-old embryos at a time when early kidney development takes place. In the adult mouse kidney, NPN protein was located in distal tubules and collecting ducts. When NPN was overexpressed in cell culture, the protein was detected in the cultured medium, and upon treatment with N-glycosidase F, the molecular mass was lowered by ~14 kDa, indicating that NPN is a secreted N-glycosylated protein. Furthermore, transforming growth factor-β (TGF-β)-responsive 3TP promoter luciferase activity was down-regulated, and TGF-β-induced Smad3 phosphorylation was also inhibited by NPN, suggesting that NPN suppresses TGF-β/Smad signaling. Taken together, NPN is a novel member of the SLRP family that may play important roles in kidney development and pathophysiology by functioning as an endogenous inhibitor of TGF-β signaling.

Leucine-rich repeat (LRR)2 is a highly conserved motif from bacteria to mammals, and LRR proteins have diverse structural, biological, and cellular functions such as matrix organization, host defense, inflammation, and cell death (1–3). LRR is composed of 20–29 amino acid residues rich in hydrophobic amino acids such as leucine, isoleucine, and valine. Recently, the three-dimensional structures of several LRR proteins such as human ribonuclease inhibitor, light chain 1 of dynein, plague virulence protein, YopM, etc. have been determined (4–6), and all of the structures reported have significant similarities forming a curved shape with a parallel β-sheet on the concave side and helical elements primarily on the convex side. This specific structure has been thought to be a conformation ideal for binding to other proteins (5). In addition, recent structural studies on LRR proteins support the characteristic horseshoe structure (7, 8) with more variations (9).

Small leucine-rich proteoglycans/proteins (SLRPs) are an evolutionarily conserved family of secreted proteins that are synthesized as a core protein containing 6–20 LRR motifs and post-translationally modified with glycosaminoglycan chain(s), N-glycosylation, and/or tyrosine sulfation (10). It has been suggested that SLRP family members play important roles in collagen fibrillogenesis, cellular proliferation, cell differentiation, and migration in various tissues (11, 12). They are divided into several subclasses depending on numbers of exons, interspersed amino acids within the N-terminal cysteine cluster, and LRR motifs. Decorin (DCN), a prototype member of the SLRP family, belongs to class I and is composed of a characteristic N-terminal cysteine cluster (CX3CX2CX6C), a central region containing 10 LRR motifs, and a C-terminal cysteine cluster. DCN is ubiquitously expressed, and it has been extensively characterized as a collagen-binding protein (13–17) modulating collagen fibrillogenesis (18, 19). DCN has also been shown to inhibit cell growth as a putative tumor suppressor (20, 21) and to bind to transforming growth factor-β (TGF-β) as a regulator of growth factor functions (22, 23). At present, 15 SLRP members have been cloned and partially characterized, and most are located in clusters on human and mouse chromosome (24). Here we present a new member of the SLRP family identified by bioinformatics approach using DCN as a query protein sequence. Because this protein appears to be specifically expressed in kidney, it is named as “nephrocan (NPN”). Its gene structure, mRNA expression pattern, distribution, cellular
localization, effects on TGF-β activity, and potential functions are described in this study.

**EXPERIMENTAL PROCEDURES**

**Cell Culture**—Human embryonic kidney 293 cells were purchased from Clontech and maintained in Dulbecco’s modified Eagle’s medium (Invitrogen) containing a high concentration of glucose (4.5 mg/ml), supplemented with 10% fetal bovine serum (Sigma), 100 units/ml penicillin, and 100 μg/ml streptomycin in a 5% CO₂ atmosphere at 37 °C.

**Molecular Cloning of Mouse Nephrocan cDNA**—To identify a new member of the SLRP family, we first obtained the orelchromis niloticus (nile tilapia) ortholog of DCN (GenBankTM accession number; AF247822) as a query protein sequence and performed a BLAST search of the mouse genome. The candidate sequences were then obtained, and the PSORT II program was used to predict the subcellular localization. This computational screening identified a probable extracellular molecule, NPN, that has a signal peptide sequence but lacks a transmembrane domain. Next we searched its tissue distribution based on the expressed sequence tags (EST) data base sequences. According to that computational information, NPN mRNA was expressed in kidney (EST sequence numbers CA668708.1, AW611331.1, and BX512695.1), aorta (BB224812.1 and BB223005.1), pancreas (BM057538.1), and 8-day-old embryos (AV311419.1). The cDNA derived from kidney was therefore used as a template. The CDNAs containing the coding sequence of NPN were isolated by RT-PCR using Hotstar TaqDNA polymerase (Qiagen). The sequences of the primers were as follows: forward primer, 5’-GCAATGCACGCTTTGGCTTTTC-3’, and reverse primer, 5’-ATCTATTACATAATCGTTTC-3’.

**PCR**—A DC protein assay kit (Bio-Rad). The samples with equal amounts of proteins were then subjected to Western blot analysis with anti-NPN antibody, preimmune serum, or anti-V5 antibody (Invitrogen) as described below.

**Purification of NPN-V5/His Fusion Protein**—pcDNA3.1-NPN-V5/His vector was transfected into 293 cells using FuGENE 6 transfection reagent (Roche Diagnostics) according to the manufacturer’s instructions, and the cells were cultured in the presence of 400 μg/ml of G418 (Invitrogen) for 3–4 weeks to select stably transfected clones. Positive clones derived from G418-resistant cells were then isolated by cloning rings and further grown in the same conditions. Equal numbers of cells in each clone were plated onto 6-well culture plates at a density of 3 × 10⁵ cells/well and cultured for 3 days. Cultured media were then collected and subjected to Western blot analyses with anti-V5 antibody to assess the NPN-V5/His protein levels synthesized by the clones. The clone that synthesized the highest level of NPN-V5/His protein was further cultured for 6 days, and the cultured medium was collected. NPN-V5/His fusion protein was purified using a nickel-nitrilotriacetic acid-agarose resin (Qiagen), and purified proteins were pooled, dialyzed against distilled water, and lyophilized. Aliquots of dried samples were dissolved in lysis buffer containing 150 mM NaCl, 20 mM Tris-HCl, pH 7.5, 10 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 1.5% aprotinin, and 1 mM phenylmethylsulfonyl fluoride and centrifuged, and the protein concentrations in the supernatants were measured by a plate reader using a DC protein assay kit (Bio-Rad). The samples with equal amounts of proteins were then subjected to Western blot analysis with anti-NPN antibody, preimmune serum, or anti-V5 antibody (Invitrogen) as described below.

**Tissue Distribution Determined by RT-PCR and Real Time PCR**—RT-PCR was performed using the mouse MTC panel I (BD Biosciences) containing cDNA of heart, brain, spleen, lung, liver, skeletal muscle, kidney, testis, 7-, 11-, 15-, and 17-day-old embryo as templates. The sequences of primers for NPN were designed as follows: forward primer, 5’-CAGAACTGCTGT-GCTCTATCCCTC-3’ and reverse primer, 5’-CACACTTG-TGTTAAGACAGTGGAC-3’. RT-PCR using gyceraldehyde-3-phosphate dehydrogenase (GAPDH) control primers provided with the MTC panel I was also performed with the same templates. The PCR conditions were as follows: 15 min at 95 °C, 30 s at 95 °C, and 3 min at 68 °C for 38 cycles (NPN) or for 22 cycles (GAPDH) primers were analyzed on a 1.2% agarose gel.

To quantitatively analyze the expression levels of NPN, aliquots of cDNA of mouse MTC panel I were also used as templates for NPN (ABI assay number Mm00481816_m1) or GAPDH (ABI assay number 4308313). Real time PCR was performed in triplicate using the ABI Prism 7000 sequence detection system (Applied Biosystems). The mean fold changes in the expression of NPN relative to that of GAPDH were calculated using the values of the expression of either mouse heart or 7-day-old embryo cDNA as a calibrator by means of 2^-ΔΔCt method as described previously (25).

**Generation and Characterization of Anti-NPN Antibody**—A polyclonal NPN antibody was generated by immunizing rabbits with a synthetic peptide corresponding to the sequence in the 4th LRR region of NPN, i.e. 112SALPANLEVKLNDNAIC129 (Alpha Diagnostic International Inc., San Antonio, TX). Both preimmune serum and anti-NPN polyclonal antibodies were then further affinity-purified with ImmunoPure (A Plus) IgG purification kit (Pierce) and used for Western blot analyses. The heart, lung, liver, brain, and kidney tissues obtained from Harlan Sprague-Dawley mice (8–12 weeks) were pulverized and then extracted with 6 M guanidine-HCl, pH 7.4, for 2 days at 4 °C, and the supernatants were separated from the insoluble residues by centrifugation (15,000 × g) for 30 min, dialyzed against distilled water, and lyophilized. Aliquots of dried samples were dissolved in lysis buffer containing 150 mM NaCl, 20 mM Tris-HCl, pH 7.5, 10 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 1.5% aprotinin, and 1 mM phenylmethylsulfonyl fluoride and centrifuged, and the protein concentrations in the supernatants were measured by a plate reader using a DC protein assay kit (Bio-Rad). The samples with equal amounts of proteins were then subjected to Western blot analysis with anti-NPN antibody, preimmune serum, or anti-V5 antibody (Invitrogen) as described below.

**Molecular Cloning of Mouse Nephrocan cDNA**—To identify a new member of the SLRP family, we first obtained the orelchromis niloticus (nile tilapia) ortholog of DCN (GenBankTM accession number; AF247822) as a query protein sequence and performed a BLAST search of the mouse genome. The candidate sequences were then obtained, and the PSORT II program was used to predict the subcellular localization. This computational screening identified a probable extracellular molecule, NPN, that has a signal peptide sequence but lacks a transmembrane domain. Next we searched its tissue distribution based on the expressed sequence tags (EST) data base sequences. According to that computational information, NPN mRNA was expressed in kidney (EST sequence numbers CA668708.1, AW611331.1, and BX512695.1), aorta (BB224812.1 and BB223005.1), pancreas (BM057538.1), and 8-day-old embryos (AV311419.1). The cDNA derived from kidney was therefore used as a template. The CDNAs containing the coding sequence of NPN were isolated by RT-PCR using Hotstar TaqDNA polymerase (Qiagen). The sequences of the primers were as follows: forward primer, 5’-GCAATGCACGCTTTGGCTTTTC-3’, and reverse primer, 5’-ATCTATTACATAATCGTTTC-3’. The PCR product was then ligated into the pcDNA3.1-V5/His-TOPO mammalian expression vector and expressed in kidney (EST sequence numbers CA668708.1, AW611331.1, and BX512695.1), aorta (BB224812.1 and BB223005.1), pancreas (BM057538.1), and 8-day-old embryos (AV311419.1). The cDNA derived from kidney was therefore used as a template. The CDNAs containing the coding sequence of NPN were isolated by RT-PCR using Hotstar TaqDNA polymerase (Qiagen). The sequences of the primers were as follows: forward primer, 5’-GCAATGCACGCTTTGGCTTTTC-3’, and reverse primer, 5’-ATCTATTACATAATCGTTTC-3’. The PCR product was then ligated into pcDNA3.1-V5/His-TOPO vector (Invitrogen) and sequenced.

**Purification of NPN-V5/His Fusion Protein**—pcDNA3.1-NPN-V5/His vector was transfected into 293 cells using FuGENE 6 transfection reagent (Roche Diagnostics) according to the manufacturer’s instructions, and the cells were cultured in the presence of 400 μg/ml of G418 (Invitrogen) for 3–4 weeks to select stably transfected clones. Positive clones derived from G418-resistant cells were then isolated by cloning rings and further grown in the same conditions. Equal numbers of cells in each clone were plated onto 6-well culture plates at a density of 3 × 10⁵ cells/well and cultured for 3 days. Cultured media were then collected and subjected to Western blot analyses with anti-V5 antibody to assess the NPN-V5/His protein levels synthesized by the clones. The clone that synthesized the highest level of NPN-V5/His protein was further cultured for 6 days, and the cultured medium was collected. NPN-V5/His fusion protein was purified using a nickel-nitrilotriacetic acid-agarose resin (Qiagen), and purified proteins were pooled, dialyzed against distilled water, and lyophilized, and kept at −20 °C until use. To determine the purity of NPN-V5/His protein, aliquots of the dried samples were dissolved in distilled water, and protein concentration was measured using a DC protein assay kit (50 ng/μl), solubilized in SDS sample buffer (100 mM Tris-
Nephrocan Is a Novel SLRP Family Member

HCl, pH 8.8, 0.01% bromphenol blue, 36% glycerol, 4% SDS) in the presence of 10 mM dithiothreitol, and separated by 4–12% SDS-PAGE. The samples were analyzed by Coomassie Brilliant Blue R-250 staining and Western blotting using anti-NPN antibody or anti-V5 antibody as described below.

Immunohistochemistry—To determine the distribution of NPN within kidney, immunohistochemical staining was performed using Vectastain Elite ABC kit (Vector Laboratories Inc.). Formalin-fixed paraffin-embedded sections of nondiseased control adult mouse kidney or liver were deparaffinized with xylene and graded ethanol and treated with 20 µg/ml proteinase K (Roche Diagnostics) for 10 min. The sections were then incubated with 0.3% H₂O₂ in methanol for 30 min, followed by incubation with anti-NPN antibody (diluted in 1:200) overnight at 4 °C. After washing with phosphate-buffered saline (PBS) several times, sections were further incubated with biotinylated IgG for 20 min and subsequently with avidin and biotinylated horseradish peroxidase for 20 min. Following several washes with PBS, 3,3’-diaminobenzidine nickel substrate (Vector Laboratories Inc.) was applied, and the sections were also counterstained with hematoxylin (Sigma).

To verify the specificity of the anti-NPN antibody, the effect of the synthetic peptide used for immunization on the immunoreactivity was evaluated. The anti-NPN antibody with or without the synthetic peptide was incubated overnight at 4 °C and subjected to immunostaining in the same manner as described above. Purified preimmune serum described above was used as a negative control. The immunoreactivities of specimens visualized were photographed under a light microscope (Nikon-FXA) at a magnification of ×20.

Immunoprecipitation and Western Blot Analysis—To examine the subcellular localization of NPN, 293 cells were plated onto 6-well culture plates at a density of 3 × 10⁵ cells/well and transfected with an empty pcDNA3.1-V5/His A vector (Invitrogen) or pcDNA3.1-NPN-V5/His vector using FuGENE 6 transfection reagent. After 72 h, the cultured medium was collected, and the transfected cells were washed with PBS and lysed with the lysis buffer. The cultured medium and the lysate were then incubated with anti-V5 antibody. After addition of protein A-Sepharose 4B conjugate (Zymed Laboratories Inc.), the samples were incubated for an additional 30 min, and the beads were washed twice with the lysis buffer, solubilized in SDS sample buffer in the presence of 10 mM dithiothreitol, and separated by 4–12% SDS-PAGE. The proteins were transferred to a polyvinylidene fluoride membrane (Immobilon-P; Millipore), reacted with anti-V5 antibody, and detected by alkaline phosphatase conjugate substrate kit (Bio-Rad). As for Smad3 phosphorylation, 293 cells were treated with 10 ng/ml of human TGF-β1 (R&D Systems) with or without purified NPN-V5/His fusion protein and incubated for 24 h. Cell lysate was used for Western blotting with anti-phospho-Smad3 antibody (BIOSOURCE). Equal protein loading was confirmed using anti-actin antibody (Sigma). Three independent experiments were performed, and the results were essentially identical.

N-Glycosylation Analysis—To examine whether or not NPN is N-glycosylated, 293 cells were plated onto 6-well culture plates at a density of 3 × 10⁵ cells/well and transfected with the pcDNA3.1-NPN-V5/His vector. After 72 h, the cultured medium was immunoprecipitated with anti-V5 antibody, and the immunocomplex was collected using protein A-Sepharose beads. Aliquots of the samples were then treated with N-glycosidase F enzyme (Prozyme Inc., San Leandro, CA) for 24 h at 37 °C, subjected to Western blot analysis in the same manner as described above, and compared with the untreated samples.

RESULTS

NPN Belongs to a New Class of the SLRP Family—Based on the predicted amino acid sequences, NPN is a 512-amino acid-long protein and shares some structural characteristics with other SLRP members, i.e. it has a putative signal peptide sequence, a characteristic cysteine cluster (CXₓCₓCₓCₓ) in the N terminus (Fig. 1A), 17 LRR motifs (Fig. 1B), and 3 exons (Fig. 1C). However, NPN has several features distinct from other SLRP members, including four cysteine residues in the C-terminal flanking domain, five potential N-glycosylation sites, and a polyacrylic amino acid tail (DDDDDDYED) at the C terminus (Fig. 1A). Characterization of the LRR motif was based on the general consensus sequence (2, 26, 27) for type T (zzxxxxFxxaxxLxxLxxNxLxxxxFxxaxxLxxLxxNxL) and type S (xpxpxpxxxLxxLxxNxLxxxxFxxaxxLxxLxxNxL). In both types of LRR motifs, “x” is generally a frequent; “a” indicates variable residues; “a” is valine, leucine, or isoleucine; and I is isoleucine or leucine. In NPN, of 17 LRR motifs, there are 11 type T and 6 type S present (Fig. 1B). Based on these criteria (27), class I and II SLRPs have 12 LRR motifs composed of four tandem STT “super-motifs,” i.e. (STT)₄. Class III SLRPs, including epiphycan and osteoglycin, have 7 LRRs composed of (STT)₂(STT)₂. Chondroadherin, a representative of class IV member, contains 10 type T LRRs. Although the conserved asparagine residues of LRR1 and LRR2 in NPN are substituted asparagine residues of LRR1 and LRR2 in NPN are substituted with serine (LRR1) and glutamic acid (LRR2), the organization of LRRs in NPN is unique, i.e. (STT)₂(STT)₂. The NPN gene is localized on mouse chromosome locus 10 in silico and spans over 1.4 kb (Fig. 1C). Phylogenetic tree analysis of NPN together with the known SLRP members was performed using the ClustalW server and ClustalX program (28) (Fig. 1D). The mouse protein sequences used in this study were obtained from the public data base deposited as NCBI reference sequences. These results indicate that NPN belongs to a new class of the SLRP family (2, 10, 12, 26, 27).
Tissue Distribution of NPN mRNA expression, both RT-PCR and real time PCR analyses were performed. The results also demonstrated that the expression level in kidney was the highest (~6-fold of that in heart) among the tissues tested in adult mice, and that during the embryonic development, the expression was highest at day 11 (~2-fold of that in embryonic day 7), a time critical for kidney development (29) (Fig. 2B). The results were further confirmed by analyzing another set of mouse MTC panel I (data not shown).

Localization of NPN Protein—To determine the tissue distribution of NPN protein, an anti-NPN antibody was generated, and its specificity was characterized. To confirm the NPN-V5/His protein was purified, the protein was stained by Coomasie Brilliant Blue R-250 (Fig. 3A, lane 2), and a single band was observed at the expected molecular weight size. The same protein was further analyzed by Western blotting using anti-NPN antibody and anti-V5 antibody (Fig. 3A, lanes 1 and 3), and it was immunoreactive to both antibodies. Because the epitope for the former resides in the N-terminal region of NPN, and the V5 tag was fused to the C terminus of NPN, these results demonstrate that the full-length NPN-V5/His protein was successfully purified (Fig. 3A) and that anti-NPN antibody recognizes NPN. The tissue distribution of NPN was then examined by Western blot analysis with this antibody using the protein lysates derived from heart, lung, liver, brain, and kidney. The purified NPN-V5/His fusion protein was used as a positive control. The results demonstrated that the endogenous NPN protein (an ~70-kDa band in Fig. 3B) was detected in kidney and, to a lesser extent, in heart, lung but not in liver and brain (Fig. 3B, left panel, lanes 1–5). The immunoreactive bands were observed as a doublet in kidney possibly because of the varied extent of post-translational modifications, the presence of a splicing variant, or protein processing/degradation (Fig. 3B, left panel, lane 5). This tissue distribution was
consistent with its mRNA expression pattern (Fig. 2). The purified NPN-V5/His fusion protein (pNPN) was detected at a slightly higher molecular weight position likely because of the presence of V5/His tag (~5 kDa) (Fig. 3, left panel, lane 6). When Western blot analysis was done with either preimmune serum or anti-V5 antibody, there were no immunoreactive bands corresponding to the expected sizes in the tissue lysates (Fig. 3, middle panel, lanes 7–12, and right panel, lanes 13–17). An intense immunoreactive band was detected for NPN-V5/His fusion protein when incubated with anti-V5 antibody (Fig. 3, right panel, lane 18).

Using anti-NPN antibody we further examined the distribution of NPN protein in adult mouse kidney. As shown in Fig. 4, the epithelial cells, but not fibroblasts, of distal tubules and collecting ducts were extensively stained (A), and proximal epithelial cells were slightly stained (C). There was no significant staining in glomeruli (C). The immunoreactivities were not observed using anti-NPN antibody in the presence of the synthetic peptide (B and D). Preimmune serum was also used as a negative control, and no immunoreactivities were observed (E). In liver, no immunoreactivities were observed (F). The specimens were observed and photographed under a light microscope at a magnification of ×20.
NPN Is a Secreted Glycoprotein—Because many SLRP family members were secreted as proteoglycans with various types of glycosaminoglycan chains, i.e. chondroitin/dermatan sulfate (CS/DS) or keratan sulfate (10), we next determined whether NPN is secreted in the extracellular space as predicted by the PSORT II program and post-translationally modified. As shown in Fig. 5, NPN was detected only in the cultured medium fraction but not in the cell lysate, demonstrating that NPN is a secreted protein (Fig. 5, lanes 3 and 6). The treatment with chondroitinase ABC or endo-β-galactosidase did not change the migration position of the NPN band on the gel, indicating the absence of glycosaminoglycan chains in NPN (data not shown). However, when treated with N-glycosidase F, the NPN band was shifted from ∼80 to ∼66 kDa (Fig. 5, lane 4) confirming the presence of N-glycosylation in NPN as the amino acid sequence suggested (Fig. 1A).

NPN Inhibits TGF-β/Smad Signaling—It has been reported that several SLRP members, including DCN, interact with a number of growth factors such as TGF-β (22, 23), platelet-derived growth factor (30), and insulin-like growth factor-1 (31), and modulate their activities. Because we have identified the NPN gene based on the structural similarity to DCN, we investigated the possible regulatory function of NPN in TGF-β signaling. First, the effects of NPN on TGF-β-responsive luciferase promoter (3TP) activity were analyzed by overexpression or exogenous addition of NPN. As shown in Fig. 6A, overexpression of NPN inhibited 3TP promoter activity in 293 cells, and moreover, as shown in Fig. 6B, exogenous addition of NPN protein inhibited the activity in a dose-dependent manner. Second, the effects of NPN on Smad3 phosphorylation were analyzed by TGF-β stimulation with or without NPN (Fig. 6C) in 293 cells. Smad3 is a direct substrate of TGF-β and modulates their activities. First, the effects of NPN on TGF-β-mediated Smad3 phosphorylation were analyzed by overexpression or exogenous addition of NPN. As shown in Fig. 6A, overexpression of NPN inhibited 3TP promoter activity in 293 cells, and moreover, as shown in Fig. 6B, exogenous addition of NPN protein inhibited the activity in a dose-dependent manner. Second, the effects of NPN on Smad3 phosphorylation were analyzed by TGF-β stimulation with or without NPN (Fig. 6C) in 293 cells. Smad3 is a direct substrate of TGF-β and is known to be phosphorylated upon TGF-β stimulation. As shown in Fig. 6C, NPN clearly down-regulated the Smad3 phosphorylation, indicating that NPN may function as an endogenous inhibitor of the TGF-β/Smad3 signaling pathway, upstream of Smad3 phosphorylation.

**FIGURE 5.** NPN is a secreted glycoprotein. The 293 cells were transfected with either an empty vector (EV) or pcDNA3.1-NPN-V5/His vector (NPN or N). After the cultured medium (Medium) or cell lysate (Lysate) was collected, the samples were immunoprecipitated (IP) with anti-V5 antibody (V5). The immunocomplex was treated with or without N-glycosidase F and detected by Western blotting (WB) using anti-V5 antibody. Markers of molecular mass are shown on the left. Note that NPN was detected only in the cultured medium fraction and not in the cell lysate, and the NPN band was shifted upon N-glycosidase F treatment.

**FIGURE 6.** NPN inhibits TGF-β/Smad signaling. A, overexpression of NPN inhibits TGF-β-responsive luciferase activity. The 293 cells were transfected with an empty vector (−), pcDNA3-NPN-V5/His vector (V5), or pcDNA3.1-NPN-V5/His vector (V5) together with 3TP luciferase reporter plasmid and pRL-TK vectors. Cells were treated with 10 ng/ml human TGF-β (−) and the luciferase activities in the cell lysates were measured. The values indicated represent normalized luciferase activities and are shown as mean ± S.D. based on assays done in triplicate. B, the addition of NPN protein inhibits TGF-β-responsive luciferase activity in a dose-dependent manner. The 293 cells were transfected with 3TP luciferase reporter plasmid and pRL-TK vectors and treated with 10 ng/ml human TGF-β and/or purified NPN-V5/His fusion protein (− 50 ng/μl) as indicated. The luciferase activities were determined in the same manner as in A. C, NPN inhibits Smad3 phosphorylation induced by TGF-β. The 293 cells were treated with human TGF-β1 with or without purified NPN-V5/His fusion protein, and Western blotting (WB) was performed using anti-phospho-Smad3 antibody (anti-pSmad3). Equal protein loading was confirmed using anti-actin antibody.

**DISCUSSION**

Here we have reported identification and partial characterization of a new member of the SLRP family, NPN. It was identified by employing a bioinformatics approach based on its structural similarity to DCN. DCN, together with biglycan and asporin, is a member of class I SLRP subfamily; they all have eight exons in each gene, identical numbers of interspaced amino acids in the N-terminal cysteine cluster (CX₆CX₃CX₃C), and 10 LRRs in each core protein. Both DCN and biglycan, but not asporin, usually carry CS or DS glycosaminoglycan chains. In comparison with these characteristics of class I molecules, NPN has several distinct features; its gene has three exons, and the protein contains uniquely interspaced amino acids (CX₆CX₃CX₃C) in the N terminus (residues 21–35) and has 17 LRRs as shown in Fig. 1. In extracellular...
proteins, LRR motifs are often flanked by cysteine clusters at both N- and C-terminal domains. The most common C-terminal flanking domain of SLRP members contains two cysteine residues (5); however, NPN has four cysteine residues (Fig. 1A, indicated by double underlines). In addition, class I SLRP members typically contain a propeptide that may function as a recognition sequence for xylosyltransferase that catalyzes the initial step of the biosynthesis of CS or DS glycosaminoglycan chains (32). However, NPN contains neither this conserved propeptide region nor serine-glycine (SG) sequence required for the O-linked glycosaminoglycan attachment. Therefore, NPN is likely not a proteoglycan but a glycoprotein (Fig. 5). According to NetNGlyc 1.0 Server program, the potential for glycosylation for all five asparagine residues in NPN was indeed above threshold (= 0.5) (amino acid 66 NFT 68; potential 0.6848, 88 NDT 90; potential 0.5676, 256 NLS 258; potential 0.6271, 278 NLT 280; potential 0.6336, 428 NCT 430; and potential 0.5281, respectively). Some of the SLRP members, e.g. asporin (33), osteoglycin (34), tsukushi (35), and podocan (36), are also known to be glycoproteins but not proteoglycans.

Another unique motif found in NPN is a polyacadic tail (DDDDDDYEID) at the C terminus. The tyrosine residue in this sequence is likely sulfated, because it resides next to acidic amino acids (37). The computational prediction using a Sulfinator program (38) also supports this notion (E value) (52). Therefore, an apparent molecular weight of NPN that is higher than the expected value (~58 kDa) (Figs. 3 and 5) is likely because of those extensive post-translational modifications.

In our attempt to identify NPN homologs among different species, putative NPN gene orthologs were found in pig (EST sequence number BE015058.1), dog (NCBI reference sequence number XM_541218), rat (NCBI reference sequence number XM_228174), and chicken (NCBI reference sequence number XM_426175), and interestingly, those are only conserved among higher animals. In addition, we cloned and sequenced a dog ortholog of NPN (GenBank™ accession number; DQ233647) using the dog kidney cDNA (BioChain Institute, Inc., Hayward, CA), and we found that the dog ortholog possesses a gene structure similar to that of mouse. At this point, it is not clear if the human counterpart of NPN gene exists. Although similar nucleotide sequences to mouse exon 2 and exon 3 were identified (GenBank™ accession number AL589939) in the human genomic cDNA library, exon 1 of human was not identified. The possible reasons are as follows: 1) the exon 1 of the human counterpart may have lesser homology with that of other animals, which makes the computational search difficult; and 2) during evolution, this gene might have become a pseudogene, accumulating mutations such as frame-shifts, in-frame stop codons, or interspersed repeats in the original protein-coding sequence (39). The latter is less likely because the NPN gene appears to be well conserved among higher animals as we identified NPN genes in both mouse and dog. The search conditions may need to be modified to identify human NPN.

In the process of renal fibrosis, the trans-differentiation process referred to as the epithelial-mesenchymal transition (EMT), a process whereby epithelial cells lose cell adhesion, and the cell layers lose polarity and cell-cell contacts, is one of the essential mechanisms. TGF-β is a well characterized inducer of EMT, and it has been shown that this transition relies on Smad3-dependent transcription (40). It has been generally accepted that TGF-β, especially TGF-β1 isofrom, is a predominant cytokine that causes renal fibrosis and plays an important role in the pathological accumulation of extracellular matrix proteins and degradation leading to kidney dysfunction (41). Interestingly, a potential regulatory function of DCN in the progression of renal fibrosis has been suggested. It has been demonstrated that the administration of DCN in vivo can antagonize the action of TGF-β on the accumulation of pathological matrix proteins in experimental kidney disease (42). However, DCN has been shown to be present in many tissues and organs such as heart, lung, liver, kidney, spleen, bone, and skin (43) and thus not specific to kidney. The ability of NPN to inhibit the TGF-β/Smad3 signaling pathway raises the possibility that NPN might be another regulatory protein responsible for converting EMT activities by TGF-β and controlling matrix accumulation in kidney. Interestingly, the transformation of mesenchyme to epithelium (MET), the reverse of EMT, occurs during kidney embryonic development. The cardinal feature of kidney development is the formation of epithelial tubules from nonepithelial mesenchymal cells. This conversion of cell type, MET, is controlled by factors secreted from the ureteric bud (29, 44, 45) at around embryonic day 10.5 to 11 in the mouse, and these epithelial inducers have been purified from ureteric bud cell lines (46) and show EMT converting activities in development and in cell culture (47). In this study, we showed that NPN is expressed in adult kidney. Moreover, NPN is up-regulated in 11-day-old embry (Fig. 2B), a critical time for MET, suggesting its importance in kidney development. It would be of interest to investigate whether or not NPN is one of the endogenous epithelial inducers secreted by the ureteric bud.

TGF-β is known as a multifunctional growth factor with potential effects on growth, differentiation, extracellular matrix accumulation, and the immune system. In kidney, it is known that TGF-β contributes to renal fibrosis (48). NPN protein in adult mice kidney was mainly observed in distal tubules and collecting ducts (Fig. 4, A and C), indicating those cells synthesize and/or uptake NPN protein. In particular, the expression of NPN found in distal nephron is intriguing (Fig. 4). Fibrotic change in this area is common in chronic renal disease, and the pathology in the interstitium correlated with renal function. Therefore, NPN, as a TGF-β signaling inhibitor, may serve as an anti-fibrotic function.

At this point, it is still unclear how NPN inhibits TGF-β signaling. TGF-β is synthesized as a homodimeric proprotein, and dimeric propeptide is intracellularly cleaved. TGF-β propeptide, called LAP, has high affinity to mature TGF-β, and this tight complex is secreted together with latent TGF-β-binding protein(s) as a large molecular weight complex (49). Therefore, the dissociation from this complex is a central regulatory mechanism for the activation of TGF-β. Because the data demonstrated that NPN is a secreted protein (Fig. 5), the inhibitory effect(s) is likely through the extracellular interaction with the following: 1) mature TGF-β to inhibit the ligand-receptor(s) complex; 2) LAP and/or latent TGF-β-binding proteins to form a complex to inhibit the dissociation of mature TGF-β; and/or 3) TGF-β type I and/or type II receptor to block the binding of
Nephrorcan Is a Novel SLRP Family Member

Given that the predominant expression of NPN is in kidney and that it can inhibit the TGF-β/Smad3 signaling pathway, NPN could be an effective target molecule to prevent renal fibrosis. Thus, further studies on the mechanisms by which NPN inhibits TGF-β activities may potentially lead to the development of a strategy for the treatment of this disorder.

Acknowledgment—We thank Dr. Hidenori Ichijo for providing vectors.

REFERENCES

1. Bell, J. K., Mullen, G. E., Leifer, C. A., Mazzoni, A., Davies, D. R., and Segal, D. M. (2003) Trends Immunol. 24, 528–533
2. Hocking, A. M., Shinomura, T., and McQuillan, D. J. (1998) Matrix Biol. 17, 1–19
3. Inohara, N., and Nunez, G. (2003) Nat. Rev. Immunol. 3, 371–382
4. Evdokimov, A. G., Anderson, D. E., Routzahn, K. M., and Waugh, D. S. (2004) J. Biol. Chem. 279, F50–F61
5. Weber, I. T., Harrison, R. W., and Iozzo, R. V. (1996) Nat. Struct. Biol. 3, 575–597
6. Scott, J. E. (1996) Biochemistry 35, 8795–8799
7. Scott, P. G., McEwan, P. A., Dodd, C. M., Bergmann, E. M., Bishop, P. N., and Bella, J. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 15633–15638
8. Iozzo, R. V. (1998) Annu. Rev. Biochem. 67, 609–622
9. Iozzo, R. V. (1997) Crit. Rev. Biochem. Mol. Biol. 32, 141–174
10. Iozzo, R. V. (1999) J. Biol. Chem. 274, 18843–18846
11. Keene, D. R., San Antonio, J. D., Mayne, R., McQuillan, D. J., Sarris, G., Santoro, S. A., and Iozzo, R. V. (2000) J. Biol. Chem. 275, 21801–21804
12. Kresse, H., Liszio, C., Schonherr, E., and Fisher, L. W. (1997) J. Biol. Chem. 272, 18404–18410
13. Schonherr, E., Haussler, H., Beavan, L., and Kresse, H. (1995) J. Biol. Chem. 270, 8877–8883
14. Svensson, L., Heinegard, D., and Oldberg, A. (1995) J. Biol. Chem. 270, 20712–20716
15. Tenni, R., Viola, M., Welser, F., Sini, P., Giudici, C., Rossi, A., and Tira, M. E. (2002) Eur. J. Biochem. 269, 1428–1437
16. Sini, P., Denti, A., Tira, M. E., and Balduini, C. (1997) Glycoconjug. J. 14, 871–874
17. Vogel, K. G., Paulsson, M., and Heinegard, D. (1984) Biochem. J. 223, 587–597
18. Reed, C. C., Gauldie, J., and Iozzo, R. V. (2002) Oncogene 21, 3688–3695
19. Santra, M., Eichtester, I., and Iozzo, R. V. (2000) J. Biol. Chem. 275, 35153–35161
20. Hildebrand, A., Romaris, M., Rasmussen, L. M., Heinegard, D., Twardzik, D. R., Border, W. A., and Ruoslahti, E. (1994) Biochem. J. 302, 527–534
21. Takeuchi, Y., Kodama, Y., and Matsumoto, T. (1994) J. Biol. Chem. 269, 32634–32638
22. Tasheva, E. S., Klocke, B., and Conrad, G. W. (2004) Mol. Cell. Biol. 20, 758–772
23. Matsushima, N., Ohyangi, T., Tanaka, T., and Kretsingr, R. H. (2000) Proteins 38, 210–225
24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) Nucleic Acids Res. 25, 4876–4882
25. Vainio, S., and Lin, Y. (2002) Nat. Rev. Genet. 3, 533–543
26. Niì, N., Cheema, A. N., Giordano, F. J., Barolet, A. W., Babei, S., Hickey, R., Eskandarian, M. R., Smeets, M., Butany, J., Pasterkamp, G., and Strauss, B. H. (2003) Am. J. Pathol. 163, 869–878
27. Schonherr, E., Sunderkotter, C., Iozzo, R. V., and Schaefer, L. (2005) J. Biol. Chem. 280, 15767–15772
28. Wilson, I. B. (2004) Cell. Mol. Life Sci. 61, 794–809
29. Lorenzo, P., Aspberg, A., Onnerfjord, P., Bayliss, M. T., Neame, P. J., and Heinegard, D. (2001) J. Biol. Chem. 276, 12201–12211
30. Chen, X. D., Fisher, L. W., Robey, P. G., and Young, M. F. (2004) FASEB J. 18, 948–958
31. Ohita, K., Lupo, G., Kuriyama, S., Keynes, R., Holt, C. E., Harris, W. A., Tanaka, H., and Ohnuma, S. (2004) Dev. Cell 7, 347–358
32. Shimizu-Hirota, R., Sasamura, H., Kuroda, M., Kobayashi, E., and Saruta, T. (2004) FEBS Lett. 563, 69–74
33. Onnerfjord, P., Heathfield, T. F., and Heinegard, D. (2004) J. Biol. Chem. 279, 26–33
34. Monigatti, F., Gasteiger, E., Bairoch, A., and Jung, E. (2002) Bioinformatics (Oxf.) 18, 769–770
35. Zhang, Z., and Gerstein, M. (2004) Curr. Opin. Genet. Dev. 14, 328–335
36. Zeisberg, M., Hanai, J., Sugimoto, H., Yamamoto, S., Charytan, D., Strutz, F., and Kalluri, R. (2003) Nat. Med. 9, 964–968
37. Yu, L., Border, W. A., Huang, Y., and Noble, N. A. (2003) Kidney Int. 64, 844–856
38. Border, W. A., Noble, N. A., Yamamoto, T., Harper, J. R., Yamaguchi, Y., Pierschbacher, M. D., and Ruoslahti, E. (1992) Nature 360, 361–364
39. Scholzen, T., Solursh, M., Suzuki, S., Reiter, R., Morgan, J. L., Buchberg, A. M., Siracusa, L. D., and Iozzo, R. V. (1994) J. Biol. Chem. 269, 28270–28281
40. Barasch, J., Yang, J., Ware, C. B., Taga, T., Yoshida, K., Erdjument-Bromage, H., Tempst, P., Parravicini, E., Malach, S., Aranoff, T., and Oliver, J. A. (1999) Cell 99, 377–386
41. Plisov, S. Y., Yoshino, K., Dove, L. F., Higinbotham, K. G., Rubin, J. S., and Heinegard, D. (2003) J. Biol. Chem. 278, 1042–1046
42. Border, W. A., and Noble, N. A. (1994) N. Engl. J. Med. 331, 1286–1292
43. Miyazono, K., Olofsson, A., Colosetti, P., and Heldin, C. H. (1991) EMBO J. 10, 1091–1101
44. Kizawa, H., Hou, I., Iida, A., Sudo, A., Miyamoto, Y., Fukuda, A., Mabuchi, A., Kotani, A., Kawakami, A., Yamamoto, S., Uchida, A., Nakamura, K., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005) Nat. Genet. 37, 138–144