Excited K meson, $K_c(4180)$, with hidden charm as a $D\bar{D}K$ bound state

Tian-Wei Wu, Ming-Zhu Liu, and Li-Sheng Geng

1 School of Physics, Beihang University, Beijing 102206, China
2 School of Space and Environment, Beihang University, Beijing 102206, China
3 Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
4 Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191
5 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China

(Dated: September 2020)

Motivated by the recent discovery of two new states in the $B^+ \rightarrow D^+ D^- K^+$ decay by the LHCb Collaboration, we study the $D\bar{D}K$ three-body system by solving the Schrödinger equation with the Gaussian Expansion Method. We show that the $D\bar{D}K$ system can bind with quantum numbers $I(J^P) = \frac{1}{2}(0^-)$ and a binding energy of $B_{3}(D\bar{D}K) = 48.9^{+1.4}_{-2.4}$ MeV. It can decay into $J/\psi K$ and $D_s D^*$ via triangle diagrams, yielding a partial decay width of about 1 MeV. As a result, if discovered, it will serve as a highly nontrivial check on the nature of the many exotic hadrons discovered so far and on non-perturbative QCD as well. Assuming heavy quark spin symmetry, the same formalism is applied to study the $D^*\bar{D}K$ system, which is shown to also bind with quantum numbers $I(J^P) = \frac{1}{2}(1^-)$ and a binding energy of $B_{3}(D\bar{D}^* K) \approx 77.5^{+3.1}_{-6.6}$ MeV, consistent with the results of previous works.

Introduction: Starting from 2003 [1, 2], many exotic hadronic states have been discovered experimentally. Most of them cannot easily fit into the conventional quark model picture, i.e., baryons consisting of qqq and mesons of $q\bar{q}$. As a result, they have attracted a lot of attention and inspired intensive discussions about their true nature. Among the many possible interpretations, the molecule picture has been widely employed to interpret some of these exotic states (for recent comprehensive reviews, see, e.g., Refs. [3–10]). Nonetheless, it is difficult if not impossible to distinguish different scenarios because there are always some free parameters in each model to fit the experimental data. In this letter, we propose to study the existence of a three-body $D\bar{D}K$ bound state to decisively confirm or refute the molecular picture, with the assumption that $D^*_0(2317)$ and $D_{s1}(2460)$ are predominantly DK and $D^* K$ bound states.

Being about 160 and 70 MeV lower than the corresponding $c\bar{s}$ states predicted by the naive quark model, $D^*_0(2317)$ and $D_{s1}(2460)$ can be naturally interpreted as DK and $D^* K$ bound states [11–15]. If this is the case, in the sense that the deuteron is a bound state of proton and neutron, a naive but straightforward question to ask is whether $DD\bar{K}$ can form 3-body bound states? A number of recent studies showed that they indeed bind [16–20]. Lately, the Belle Collaboration has performed the first experimental search for the existence of the $DD\bar{K}$ bound state and reported an upper limit for its production yield [21].

Leading order chiral perturbation theory dictates that in the isospin zero channel, the $D\bar{K}$ and $D^* K$ interactions are only half those of the DK and $D^* K$ interactions [22]. In addition, both $X(3872)$ and $Z_c(3900)$ can be explained as $D\bar{D}^*$ molecule [23] which implies that the $D\bar{D}^*$ interaction is attractive as well, but not as strong as the DK and $D^* K$ interactions. A recent lattice QCD study shows that the DD interaction is attractive such that a shallow DD bound state exists, consistent with the early theoretical results [30] and more recent analysis of the $\gamma \gamma \rightarrow DD$ reaction [31]. Motivated by these facts, the existence of a three-body $DD^* K$ bound state has been studied. In Ref. [32], the authors studied the $D^* K$ system using the Born-Oppenheimer approximation via delocalized π bond. A bound state with the quantum numbers of K^* and a mass of $4317.92^{+6.13}_{-6.55}$ MeV was found. In Ref. [33], using the so-called fixed-center approximation in coupled channels, the authors solved the Faddeev equation and found a heavy hidden charm K^* meson with a mass about 4307 ± 2 MeV, consistent with Ref. [32].

Lately, the LHCb Collaboration found two new states in the $B^+ \rightarrow D^+ D^- K^+$ decay [34, 35], namely $X_0(2866)$ and $X_1(2000)$. The former has been interpreted as a $D^* K^*$ bound state of spin zero [36, 43]. Although a $DD\bar{K}$ bound state can not be found in the $D^+ D^- K^+$ invariant mass spectrum, the recent experimental discovery indicates that a three-body $DD\bar{K}$ bound state, if it exists, could have been formed already and remain to be discovered at the current facilities. Motivated by these theoretical and experimental works, we study the strange hidden charm $DD\bar{K}$ system using the Gaussian Expansion Method (GEM) [44]. We indeed find a $D\bar{D}K$ bound state as well as its heavy quark spin symmetry partner, a $D\bar{D}^* K$ bound state.

1 Corresponding author. lisheng.geng@buaa.edu.cn
2 More specifically, $X(3872)$ is a shallow bound state of DD^* with isospin zero [23, 26] but $Z_c(3900)$ is a resonant state of $D\bar{D}^*$ with isospin 1 [27, 29].
Theoretical framework: There exist several widely used approaches to solve three-body problems, such as the Faddeev equation \[45\], the Gaussian expansion method \[44\], the stochastic variational method \[40\], and the hyperspherical harmonic expansion method \[47\]. With the same inputs, the results of all these methods agree very well with each other as shown in the benchmark study \[38\]. In this work, we utilize the Gaussian expansion method to study the $D\bar{D}^{(*)}K$ three-body systems, which has been widely used to solve three-, four- and even five-body problems \[49\], because of its high precision and rapid convergence. Namely, we study the three-body $D\bar{D}^{(*)}K$ systems by solving the following Schrödinger equation

$$\hat{H}\Psi = E\Psi,$$

where the Hamiltonian \hat{H} includes the kinetic term and three two-body interaction terms

$$\hat{H} = T + V_{DK} + V_{D(\star)K} + V_{D\bar{D}(\star)}.$$

In order to solve the Schrödinger equation, we have to first specify the two-body interactions.

For the DK interaction, we refer to chiral perturbation theory, in which the most important contribution is the leading order Weinberg-Tomozawa (WT) term \[22\]

$$V_{DK}(q) = -\frac{C_W(I)}{2f^2},$$

where the pion mass decay constant $f_\pi = 130$ MeV and $C_W(I)$ represents the strength of the WT interaction with $C_W(0) = 2$ for the isospin 0 and $C_W(1) = 0$ for the isospin 1 configurations, respectively. This DK potential can be rewritten in coordinate space by Fourier transformation and we use the same form of the DK interaction as that adopted in Ref. \[18\], which explicitly reads

$$V_{DK}(r; R_c) = C(R_c)e^{-\frac{(r/R_c)^2}{2}}.$$

Here R_c is a coordinate space cutoff representing the effective interaction range. In this work, we choose R_c ranging from 0.5 to 2.0 fm to study the related uncertainties. The $C(R_c)$ is a running constant related to R_c, which can be determined by reproducing the $D_0^*(2317)$ state.

The DK interaction can be related to the DK interaction in chiral perturbation theory, where the leading order DK potential is half of the DK interaction in the isospin zero channel \[22\]. Thus we take the DK potential to have the same form as that of Eq. (4) but multiplied with 1/2. Assuming heavy quark spin symmetry, the \bar{D}^*K interaction is the same as the DK interaction.

For the $D\bar{D}$ interaction, there is no concrete experimental data and we have to resort to phenomenological models, e.g., the one boson exchange model of Ref. \[50\]. In Ref. \[18\], the DD OBE potential has been derived with the exchange of σ, ρ and ω mesons. According to G-parity, the only difference between the $D\bar{D}$ potential and the DD potential in the OBE model is the sign of the ω exchange potential. The explicit form of the DD interaction can be found in Ref. \[18\]. For the $D\bar{D}^*$ interaction, one can also exchange a π in addition to the σ, ρ and ω exchanges. We use the DD^* OBE potential of Ref. \[50\] which reproduces the well-known X(3872) state as a molecular state. We choose a cutoff $\Lambda = 1.01$ GeV to reproduce the binding energy 4.0 MeV of X(3872) with respect to the DD^* threshold. It should be mentioned that whether the $D\bar{D}$ system can form a bound state is still under discussion \[30\] \[31\] \[51\]. In Ref. \[30\], the authors found a very narrow heavy scalar with mass around 3700 MeV ($\text{Re}(\sqrt{s})=3698 \pm 35$ MeV, $\text{Im}(\sqrt{s})=-0.10 \pm 0.06$ MeV). In Ref. \[51\], the authors found a shallow DD bound state with a binding energy $-4.0_{-5.0}^{+3.7}$ MeV in lattice QCD. In Ref. \[51\], the authors claimed that the S-wave $D\bar{D}$ final state interaction can produce a bound state around 3720 MeV with $I = 0$ by investigating the $\gamma\gamma \to D\bar{D}$ reaction. In our model, with a cutoff $\Lambda = 1.01$ GeV, the $D\bar{D}$ system can not form a bound state with the OBE potential, but will do so if a larger cutoff is adopted.\[3\]

In the following, consistent with the $D\bar{D}^*$ case, we choose $\Lambda = 1.01$ GeV for the $D\bar{D}$ OBE potential.

As all the two-body interactions have been specified, we use the GEM to solve the Schrödinger equation. The three-body wave functions can be constructed in Jacobi coordinates as

$$\Psi = \sum_{c=1}^{3} \Psi(r_c, R_c),$$

More concretely, with a cutoff of 1.415 GeV, one can obtain a binding energy of 4 MeV for the $D\bar{D}$ system. The resulting $D\bar{D}K$ three-body bound state will have a binding energy of 20 MeV larger.
where $c = 1 - 3$ is the label of the Jacobi channels shown in Fig. 1. In each Jacobi channel the wave function $\Psi(r_c, R_c)$ reads

$$\Psi(r_c, R_c) = C_{c,\alpha} H_{i,T}^c \Phi_{lL,\lambda}(r_c, R_c) \quad (6)$$

where $C_{c,\alpha}$ is the expansion coefficient and the $\alpha = \{nN, tT, lL\}$ labels the basis number with the configuration sets of the Jacobi channels. $H_{i,T}^c$ is the three-body isospin wave function where i is the isospin of the subsystem in Jacobi channel c and T is the total isospin. Considering that the isospin 1 DK interaction is 0 in our model, the isospin t_{DK} of the DK subsystem should be 0 and thus the total isospin T of the $DDK(DD^*K)$ system is 1/2.

The three-body spatial wave function $\Phi(r_c, R_c)$ is constructed by two two-body wave functions as

$$\Phi_{lL,\lambda}(r_c, R_c) = \left[\phi_{n_l,c}(r_c) \psi_{N,L}(R_c) \right] \lambda,$$

$$\phi_{n_l,c}(r_c) = N_l n_l e^{-\nu_l r_c^2} \hat{Y}_{l} \left(r_c \right),$$

$$\psi_{N,L}(R_c) = N_{NL} R_c^{L} e^{-\lambda_a R_c^2} \hat{Y}_{LM} \left(R_c \right). \quad (7)$$

Here $N_{nl}(N_{NL})$ is the normalization constant of the Gaussian basis, $n(N)$ is the number of Gaussian basis used and $l(L)$ is the orbital angular momentum corresponding to the Jacobi coordinates $r(R)$. Since only S-wave interactions are considered, the total orbital angular momentum is $\lambda = 0$ and thus the quantum numbers $I(J^P)$ of this DDK three-body system are $1/2(0^-)$, while those for DD^*K are $1/2(1^-)$.

With the constructed wave functions, the Schrödinger equation can be transformed into a generalized matrix eigenvalue problem with the Gaussian basis functions

$$[T_{aa'}^{ab} + V_{aa'}^{ab} - EN_{aa'}^{ab}] C_{b,a'} = 0, \quad (8)$$

where $T_{aa'}^{ab}$ is the matrix element of kinetic energy, $V_{aa'}^{ab}$ is the matrix element of potential energy, and $N_{aa'}^{ab}$ is the normalization matrix element.

Predictions and discussions: We first study whether the three-body DDK and DD^*K systems bind in the theoretical framework and with the two-body interactions specified above.

The DDK system is found to bind with quantum numbers $I(J^P) = 1/2(0^-)$ and a three-body binding energy

$$B_3(DDK) \approx 48.9_{-1}^{+4} \text{ MeV}. \quad (9)$$

The results are weakly cutoff dependent, and therefore we vary the cutoff R_c from 0.5 to 2.0 fm to estimate the uncertainties originating from the DK and DDK interactions. More concretely, the central value of the binding energy is obtained with $R_c = 1.0$ fm while the uncertainties are taken from $R_c = 0.5$ and 2.0 fm in the specific numerical calculations.

Assuming heavy quark spin symmetry, the same formalism is applied to study the DD^*K system, where a bound state is found as well, with quantum numbers $I(J^P) = 1/2(1^-)$ and a binding energy

$$B_3(DD^*K) \approx 77.3_{-6}^{+3} \text{ MeV}. \quad (9)$$

The binding energy of the DD^*K bound state is larger than the one of DDK mainly due to the more attractive DD^* interaction.

As mentioned earlier, the DD^*K state has been studied using other methods. In Table [5], we compare our predictions with those of two earlier studies.
TABLE I. Masses and binding energies (in units of MeV) of the $D\bar{D}K$ and $D\bar{D}^*K$ bound states, in comparison with the results of other works.

State	This work	Ref. [52]	Ref. [53]
$\frac{3}{2}(0^-)\ D\bar{D}K$	$1418.1^{+1.4}_{-0.6}(B_3 \approx 48.9^{+2.2}_{-1.4})$	$-$	$-$
$\frac{1}{2}(1^-)\ D\bar{D}^*K$	$1294.1^{+6.6}_{-3.1}(B_3 \approx 77.3^{+3.1}_{-1.4})$	$4317.92^{+6.13}_{-6.55}(B_3 \approx 53.52^{+6.55}_{-6.13})$	$4307 \pm 2(B_3 \approx 64 \pm 2)$

FIG. 2. RMS radii of subsystems in the $D\bar{D}K$ (left), $D\bar{D}^*K$ (middle), and $D\bar{D}K$ [18] bound states with a cutoff $R_c =$ 1.0 fm.

It is clear that although there are some differences in detail, the existence of a $D\bar{D}^*K$ bound state seems to be a robust prediction.

In Fig. 2, we show the root mean square (RMS) radii of the three subsystems in the $D\bar{D}K$ and $D\bar{D}^*K$ bound states. With a cutoff of $R_c =$ 1.0 fm, the RMS radius of the DK subsystem in the $D\bar{D}K$ bound state is predicted to be 1.26 fm, while those of the $\bar{D}K$ and $D\bar{D}$ subsystems are much larger due to the less attractive interactions with respect to the DK one, yielding 2.27 and 2.10 fm, respectively. For the $D\bar{D}^*K$ bound state, the RMS radii for DK, D^*K, and $D\bar{D}^*$ are 1.15, 1.27, and 0.93 fm, respectively. The later two are much smaller compared to the ones of DK and $D\bar{D}$ in the $D\bar{D}K$ bound state. It can be easily understood because the $D\bar{D}^*K$ bound state has a much larger binding energy. In Fig. 2, we also show the RMS radii of the $D\bar{D}K$ bound state taken from Ref. [18], of which the DK one is about 1.32 fm and the DD one is about 1.36 fm.

FIG. 3. Strong decays of $K_c(4180)$ to $J/\psi K$ and $D_s\bar{D}^*$ via triangle diagrams.

Following Refs. [19,52] where the decays of the $D\bar{D}K$ and $D^*\bar{D}K$ bound states via triangle diagrams have been estimated, in the following we compute the decay of the $D\bar{D}K$ state, which for convenience will be denoted by $K_c(4180)$. The decay of K_c can proceed via its coupling to D_{s0} and \bar{D}, and then decays to $J/\psi K$ and $D_s{\bar{D}}^*$ via triangle diagrams as shown in Fig. 3. We employ the effective Lagrangian approach to calculate the amplitudes of these hadronic loops.

The interaction between $K_c(4180)$ and its components is described by the following effective Lagrangian

$$\mathcal{L}_{K_c}(x) = g_{K_c,D_{s0}\bar{D}}K_c^T(x) \int dy \Phi_{K_c}(y^2)D_{s0}(x+\omega \bar{y})\bar{D}(x-\omega D_{s0}y) + H.c.,$$

where $\omega_i = m_i/(m_i + m_j)$ is a kinematical parameter with m_i and m_j being the masses of the components of K_c, $\Phi(y)$ is a form factor which we take a Gaussian form and $g_{K_c,D_{s0}\bar{D}}$ is the coupling constant between K_c and its components. We can determine the value of $g_{K_c,D_{s0}\bar{D}}$ by the compositeness condition, see, e.g., Refs. [19,53,54]. In studies of hadronic molecules, the cutoff in the form factor is often chosen to be about 1 GeV, and the corresponding coupling is found to be 5.38 GeV. The Lagrangians describing the interaction between $D_{s0}(2317)$ and $DK/D_{s}\eta$ have the following form

$$\mathcal{L}_{D_{s0}DK} = g_{D_{s0}DK}D_{s0}DK,$$
$$\mathcal{L}_{D_{s0}D_s\eta} = g_{D_{s0}D_s\eta}D_{s0}D_s\eta,$$
where \(g_{D_\alpha D K} \) and \(g_{D_\alpha D_\alpha \eta} \) denote the \(D_\alpha^*(2317) \) coupling to \(DK \) and \(D_\alpha \eta \) with \(g_{D_\alpha D K} = 10.21 \text{ GeV} \) and \(g_{D_\alpha D_\alpha \eta} = 6.40 \text{ GeV} \), respectively. The effective Lagrangian between \(J/\psi \) and \(D_\alpha \), and that between \(\eta \) and \(D_\alpha \bar{D}^* \) can be written as

\[
\mathcal{L}_{J/\psi D\bar{D}} = -i g_{J/\psi D\bar{D}} \psi_\mu (\partial^\mu D^\dagger - D\partial^\mu D^\dagger),
\]

\[
\mathcal{L}_{\eta D_\alpha D_\alpha \bar{D}^*} = -i g_{\eta D_\alpha D_\alpha \bar{D}^*} (\bar{D}^\dagger \partial^\mu \eta \bar{D}^* - \bar{D} \partial^\mu \eta \bar{D}^*),
\]

where \(g_{J/\psi D\bar{D}} = m_\psi / f_\psi \) with \(f_\psi = 0.426 \text{ GeV} \) and \(g_{\eta D_\alpha D_\alpha \bar{D}^*} = g / (\sqrt{3} f_\pi) \) with \(g = 1.097 \text{ GeV} \) and \(f_\pi = 0.0924 \text{ GeV} \).

With the above Lagrangians, the amplitudes of the two triangle diagrams of Fig. 3 can be straightforwardly calculated

\[
iM_{K \to J/\psi K} = g_{J/\psi D\bar{D}} g_{D_\alpha D K} g_{K_\alpha D_\alpha D} D \int \frac{d^4q}{(2\pi)^4} \Phi([k_1 \omega_D - 2k_2 \omega_{D_\alpha}]) \frac{1}{q^2 - m_D^2} \frac{k_1^2 - m_{D_\alpha}^2}{k_2^2 - m_{D_\alpha}^2} \frac{1}{1 - s/m^2} (q^\mu - k_1^\mu) \cdot \epsilon_\mu^D,
\]

\[
iM_{K \to D_\alpha D^*} = g_{\eta D_\alpha D_\alpha \bar{D}^*} g_{D_\alpha D_\alpha \eta} g_{K_\alpha D_\alpha D_\alpha D} D \int \frac{d^4q}{(2\pi)^4} \Phi([k_1 \omega_D - 2k_2 \omega_{D_\alpha}]) \frac{1}{q^2 - m_\eta^2} \frac{k_1^2 - m_{D_\alpha}^2}{k_2^2 - m_{D_\alpha}^2} \frac{1}{1 - s/m^2} q^\mu \cdot \epsilon_\mu^D,
\]

where \(k_2 \) and \(k_1 \) are the momenta of \(\bar{D} \) and \(D_\alpha^*(2317) \), \(q \) the intermediate momenta, and \(\epsilon_\mu^\psi \) and \(\epsilon_\mu^{D^*} \) are the polarization vectors of \(\psi \) and \(D^* \).

With these amplitudes, the decay width can be easily obtained

\[
\Gamma[K \to J/\psi K] = \frac{1}{2j + 1} \frac{1}{32\pi^2} \frac{1}{m_{K_\alpha}^2} |\mathcal{M}|^2 d\Omega,
\]

where \(p_\alpha \) is the 3-momenta of either final state in the rest frame of \(K_\alpha \) and \(m_{K_\alpha} \) is the mass of the \(DD\bar{K} \) bound state. With a cutoff of 1 GeV for the form factor \(\Phi_K(y^2) \), the decay width of \(K_{\psi}(4180) \) to \(J/\psi K \) and \(D_\alpha \bar{D}^* \) are found to be 0.5 MeV and 0.2 MeV, respectively, which indicates that this state is very narrow. Compared to the \(DD\bar{K} \) bound state \(R(4140) \), for which \(\Gamma \simeq 2 - 3 \text{ MeV} \), the relative smallness of the decay width of \(K_{\psi}(4180) \) is mainly due to the suppression of the \(D \) exchange contribution in comparison with the corresponding \(K \) exchange contribution.

Summary: We employed the Gaussian expansion method to study the \(DD\bar{K} \) system with the leading order \(DK \) and \(D \bar{K} \) potentials obtained in chiral perturbation theory and the \(DD \) potential from the OBE model. We found the existence of a \(DD \) bound state with a binding energy about 49 MeV. It is interesting to note that the predicted \(DD\bar{K} \) three-body bound state is only 4 MeV below the respective \(DD^* \bar{K} \) threshold, though its binding could increase by 20 MeV if the \(DD \) interaction is strong enough to generate a bound state as claimed by the recent lattice QCD study. We also studied its heavy quark spin partner, the \(DD^* \bar{K} \) system, in the same framework, and we found a \(DD^* \bar{K} \) bound state with a binding energy about of 77 MeV, consistent with the results of earlier works.

We studied the decays of the \(DD\bar{K} \) bound state via triangle diagrams and found that its partial decay widths to \(J/\psi K \) and \(D_\alpha \bar{D}^* \) are about 0.5 MeV and 0.2 MeV, respectively. Different from the \(DD \) bound state, these two exotic states are more likely to be discovered at the current facilities because of their hidden charm nature. It is interesting to note that a recent study in QCD sum rules does not find a \(DD^* \bar{K} \) bound state \([55]\), consistent with the present picture that the \(K_{4180} \) state is a three-body molecule. As a result, we strongly encourage our experimental colleagues to search for it.

Acknowledgments: This work was partly supported by the National Natural Science Foundation of China (NSFC) under Grants Nos. 11975041, 11735003, and 1196114004.
