OMEGA-LIMIT SETS CLOSE TO SINGULAR-HYPERBOLIC ATTRACTION

C. M. CARBALLO AND C. A. MORALES

ABSTRACT. We study the omega-limit sets $\omega_X(x)$ in an isolating block U of a singular-hyperbolic attractor for three-dimensional vector fields X. We prove that for every vector field Y close to X the set $\{x \in U : \omega_Y(x) \text{ contains a singularity} \}$ is residual in U. This is used to prove the persistence of singular-hyperbolic attractors with only one singularity as chain-transitive Lyapunov stable sets. These results generalize well known properties of the geometric Lorenz attractor [GW] and the example in [MPu].

1. Introduction

The omega-limit set of x with respect to a vector field X with generating flow X_t is the accumulation point set $\omega_X(x)$ of the positive orbit of x, namely

$$\omega_X(x) = \left\{ y : y = \lim_{t_n \to \infty} X_{t_n}(x) \text{ for some sequence } t_n \to \infty \right\}.$$

The structure of the omega limit sets is well understood for vector fields on compact surfaces. In fact, the Poincaré-Bendixon Theorem asserts that the omega-limit set for vector fields with finite many singularities in S^2 is either a periodic orbit or a singularity or a graph (a finite union of singularities an separatrices forming a closed curve). The Schwartz Theorem implies that the omega-limit set of a C^∞ vector field on a compact surface either contains a singularity or an open set or is a periodic orbit. Another result is the Peixoto Theorem asserting that an open dense subset of vector fields on any closed orientable surface are Morse-Smale, namely their nonwandering set is formed by a finite union of closed orbits all of whose invariant manifolds are in general position. A direct consequence this result is that, for an open-dense subset of vector fields on closed orientable surfaces, most omega-limit sets are contained in the attracting closed orbits. This provides a complete description of the omega limit sets on closed orientable surfaces.

The above results are known to be false in dimension > 2. Hence extra hypotheses to understand the omega-limit sets are needed in general. An important one is the hyperbolicity introduced by Smale in the sixties. Recall that a compact
invariant set is hyperbolic if it exhibits contracting and expanding direction which together with the flow’s direction form a continuous tangent bundle decomposition. This definition leads the concept of Axiom A vector field, namely the ones whose non-wandering set is both hyperbolic and the closure of its closed orbits. The Spectral Decomposition Theorem describes the non-wandering set for Axiom A vector fields, namely it decomposes into a finite disjoint union of hyperbolic basic sets. A direct consequence of the Spectral Theorem is that for every Axiom A vector field X there is an open-dense subset of points whose omega-limit set are contained in the hyperbolic attractors of X. By attractor we mean a compact invariant set Λ which is transitive (i.e. $\Lambda = \omega_X(x)$ for some $x \in \Lambda$) and satisfies $\Lambda = \cap_{t \geq 0} X_t(U)$ for some compact neighborhood U of it called isolating block. On the other hand, the structure of the omega-limit sets in an isolating block U of a hyperbolic attractor is well known: For every vector field Y close to X the set

$$\{x \in U : \omega_Y(x) = \cap_{t \geq 0} Y_t(U)\}$$

is residual in U. In other words, the omega-limit sets in a residual subset of U are uniformly distributed in the maximal invariant set of Y in U. This result is a direct consequence of the structural stability of the hyperbolic attractors.

There are many examples of non-hyperbolic vector fields X with a large set of trajectories going to the attractors of X. Actually, a conjecture by Palis [P] claims that this is true for a dense set of vector fields on any compact manifold (although he used a different definition of attractor). A strong evidence is the fact that there is a residual subset of C^1 vector fields X on any compact manifold exhibiting a residual subset of points whose omega-limit sets are contained in the chain-transitive Lyapunov stable sets of X ([MPa2]). We recall that a compact invariant set Λ is chain-transitive if any pair of points on it can be joined by a pseudo-orbit with arbitrarily small jump. In addition, Λ is Lyapunov stable if the positive orbit of a point close to Λ remains close to Λ. The result [MPa2] is weaker than the Palis conjecture since every attractor is a chain-transitive Lyapunov stable set but not vice versa.

In this paper we study the omega-limit sets in an isolating block of an attractor for vector fields on compact three manifolds. Instead of hyperbolicity we shall assume that the attractor is singular-hyperbolic, namely it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction [MPP1]. These attractors were considered in [MPP1] for a characterization of C^1 robust transitive sets with singularities for vector fields on compact three manifolds (see also [MPP3]). The singular-hyperbolic attractors are not hyperbolic although they have some properties resembling the hyperbolic ones. In particular, they do not have the pseudo-orbit tracing property and are neither expansive nor structural stable.

The motivation for our investigation is the fact that if U is an isolating block of the geometric Lorenz attractor with vector field X then for every Y close to X the set $\{x \in U : \omega_Y(x) = \cap_{t \geq 0} Y_t(U)\}$ is residual in U (this is precisely the
same property of the hyperbolic attractors reported before). It is then natural to believe that such a conclusion holds if \(U \) is an isolating block of a singular-hyperbolic attractor. The answer however is negative as the example [MPu, Appendix] shows. Despite we shall prove that if \(U \) is the isolating block of a singular-hyperbolic attractor of \(X \), then the following alternative property holds: For every vector field \(Y \) close to \(X \) the set

\[
\{ x \in U : \omega_Y(x) \text{ contains a singularity} \}
\]

is residual in \(U \). In other words, the positive orbits in a residual subset of \(U \) look to be "attracted" to the singularities of \(Y \) in \(U \). This fact can be observed with the computer in the classical polynomial Lorenz equation [L]. It contrasts with the fact that the union of the stable manifolds of the singularities of \(Y \) in \(U \) is not residual in any open set. We use this property to prove the persistence singular-hyperbolic attractors with only one singularity as chain-transitive Lyapunov stable sets.

Now we state our result in a precise way. Hereafter \(M \) denotes a compact Riemannian three manifold unless otherwise stated. If \(U \subset M \) we say that \(R \subset U \) residual if it realizes as a countable intersection of open-dense subsets of \(U \). It is well known that every residual subset of \(U \) is dense in \(U \). Let \(X \) be a \(C^r \) vector field in \(M \) and let \(X_t \) be the flow generated by \(X \), \(t \in \mathbb{R} \). A compact invariant set is singular if it contains a singularity.

Definition 1.1 (Attractor). An attracting set of \(X \) is a compact, invariant, non-empty, set of \(X \) equals to \(\cap_{t>0} X_t(U) \) for some compact neighborhood \(U \) of it. This neighborhood is called isolating block. An attractor is a transitive attracting set.

Remark 1.2. [Hu] calls attractor what we call attracting set. Several definitions of attractor are considered in [Mi].

Denote by \(m(L) \) and \(Det(L) \) the minimum norm and the Jacobian of a linear operator \(L \) respectively.

Definition 1.3. A compact invariant set \(\Lambda \) of \(X \) is partially hyperbolic if there is a continuous invariant tangent bundle decomposition \(T_\Lambda M = E^s \oplus E^c \) and positive constants \(K, \lambda \) such that

1. \(E^s \) is contracting: \(\| DX_t(x)/E^s_x \| \leq Ke^{-\lambda t} \), for every \(\forall t > 0 \) and \(x \in \Lambda \);
2. \(E^s \) dominates \(E^c \): \(\frac{\| DX_t(x)/E^c_x \|}{m(DX_t(x)/E^c_x)} \leq Ke^{-\lambda t} \), for every \(\forall t > 0 \) and \(\forall x \in \Lambda \).

We say that \(\Lambda \) has volume expanding central direction if

\[
| Det(DX_t(x)/E^c_x) | \geq K^{-1} e^{\lambda t},
\]

for every \(t > 0 \) and \(x \in \Lambda \).

A singularity \(\sigma \) of \(X \) is hyperbolic if its eigenvalues are not purely imaginary complex number.
Definition 1.4 (Singular-hyperbolic set). A compact invariant set of a vector field \(X \) is singular-hyperbolic if it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction \([MPP1]\). A singular-hyperbolic attractor is an attractor which is also a singular-hyperbolic set.

Singular-hyperbolic attractors cannot be hyperbolic and the most representative example is the geometric Lorenz \([GW]\). Our result is the following.

Theorem A. Let \(U \) be an isolating block of a singular-hyperbolic attractor of \(X \). If \(Y \) is a vector field \(C^r \) close to \(X \), then \(\{ x \in U : \omega_Y(x) \text{ is singular} \} \) is residual in \(U \).

This result is used to prove

Theorem B. Singular-hyperbolic attractors with only one singularity in \(M \) are persistent as chain-transitive Lyapunov stable sets.

The precise statement of Theorem B (including the definition of chain transitive set, Lyapunov stable set and persistence) will be given in Section 7. This paper is organized as follows. In Section 2 we give some preliminary lemmas. In particular, Lemma 2.1 introduces the continuation \(A_Y \) of an attracting set \(A \) for nearby vector fields \(Y \). In Definition 2.3 we define the region of weak attraction \(A_w(Z, C) \) of \(C \), where \(C \) is a compact invariant sets of a vector field, as the set of points \(z \) such that \(\omega_Z(z) \cap C \neq \emptyset \). Lemma 2.4 proves that if \(U \) is a neighborhood of \(C \) and \(A_w(Z, C) \cap U \) is dense in \(U \), then \(A_w(Z,C) \cap U \) is residual in \(U \). We finish this section with some elementary properties of the hyperbolic sets. We present two elementary properties of singular-hyperbolic attracting sets in Section 3.

In Section 4 we introduce the Property (P) for compact invariant sets \(C \) all of whose closed orbits are hyperbolic. It requires that the unstable manifold of every closed orbit in \(C \) intersect transversely the stable manifold of a singularity in \(C \). This property has been proved for all singular-hyperbolic attractors \(\Lambda \) in \([MP1]\). In Lemma 4.3 we prove that it is open, namely it holds for the continuation \(A_Y \) of \(\Lambda \). The proof is similar to the one in \([MP1]\).

In Section 5 we study the topological dimension \([HW]\) of the omega-limit sets in an isolating block \(U \) of a singular-hyperbolic attracting set with the Property (P). In particular, Theorem 5.2 proves that if \(x \in U \) then the omega-limit set of \(x \) either contains a singularity or has topological dimension one provided the stable manifolds of the singularities in \(U \) do not intersect a neighborhood of \(x \). The proof uses the methods in \([M1]\) with the Property (P) playing the role of the transitivity. We need this theorem to apply the Bowen’s theory of one-dimensional hyperbolic sets \([Bo]\).

In Section 6 we prove Theorem A. The proof is based on Theorem 6.1 where it is proved that if \(U \) is an isolating block of a singular-hyperbolic attracting set with the Property (P) of a vector field \(Y \), then \(A_w(Y, Sing(Y, U)) \cap U \) is dense in \(U \) (here \(Sing(Y, U) \) denotes the set of singularities of \(Y \) in \(U \)). The
proof follows applying the Bowen’s theory (that can be used by Theorem 5.2 and the arguments in [MPa1, p. 371]. It will follow from Lemma 2.4 applied to \(C = \text{Sing}(Y, U)\) that \(A_w(Y, \text{Sing}(Y, U)) \cap U\) is residual in \(U\). Theorem A follows because \(\omega_Y(x)\) is singular \(\forall x \in A_w(Y, \text{Sing}(Y, U)) \cap U\). In Section 7 we prove Theorem B (see Theorem 7.5).

2. Preliminary lemmas

We state some preliminary results. The first one claims a sort of stability of the attracting sets. It seems to be well known and we prove it here for completeness.

\textbf{Lemma 2.1} (Continuation of attracting sets). Let \(A\) be an attracting set containing a hyperbolic closed orbit of a \(C^r\) vector field \(X\). If \(U\) is an isolating block of \(A\), then for every vector field \(Y\) \(C^r\) close to \(X\) the continuation

\[A_Y = \cap_{t \geq 0} Y_t(U) \]

of \(A\) in \(U\) is an attracting set with isolating block \(U\) of \(Y\).

\textit{Proof.} Since \(A\) contains a hyperbolic closed orbit we have that \(A_Y \neq \emptyset\) for every \(Y\) close to \(X\) (use for instance the Hartman-Grobman Theorem dMP). Since \(U\) is compact we have that \(A_Y\) also does. Then, to prove the lemma, we only need to prove that if \(Y\) is close to \(X\) then \(U\) is a compact neighborhood of \(A_Y\). For this we proceed as follows. Fix an open set \(D\) such that

\[A \subset D \subset \text{clos}(D) \subset \text{int}(U) \]

and for all \(n \in \mathbb{N}\) we define

\[U_n = \cap_{t \in [0,n]} X_t(U). \]

Clearly \(U_n\) is a compact set sequence which is nested \((U_{n+1} \subset U_n)\) and satisfies \(A = \cap_{n \in \mathbb{N}} U_n\). Because \(U_n\) is nested we can find \(n_0\) such that \(U_{n_0} \subset D\). In other words

\[\cap_{t \in [0,n_0]} X_t(U) \subset D. \]

Taking complement one has

\[M \setminus D \subset \cup_{t \in [0,n_0]} X_t(M \setminus U). \]

But \(X_t(M \setminus U)\) is open \((\forall t)\) since \(U\) is compact and \(X_t\) is a diffeomorphism. Hence \(\{X_t(M \setminus U) : t \in [0,n_0]\}\) is an open covering of \(M \setminus D\). Because \(D\) is open we have that \(M \setminus D\) is compact and so there are finitely many \(t_1, \ldots, t_k \in [0,n_0]\) such that

\[M \setminus D \subset X_{t_1}(M \setminus U) \cup \cdots \cup X_{t_k}(M \setminus U). \]

By the continuous dependence of \(Y_t(U)\) on \(Y\) (with \(t\) fixed) one has

\[M \setminus D \subset Y_{t_1}(M \setminus U) \cup \cdots \cup Y_{t_k}(M \setminus U) \]

\textbf{Remark.} This lemma generalizes a fact in [MPa1] where \(A\) is a hyperbolic attractor and \(X\) is a \(C^1\) vector field.
for all Y close to X. By taking complement once more we obtain
\[Y_{t_1}(U) \cap \cdots \cap Y_{t_k}(U) \subset D. \]
As $t_1, \cdots, t_k \geq 0$ one has $\cap_{t \in [0,n_0]} Y_t(U) \subset Y_{t_1}(U) \cap \cdots \cap Y_{t_k}(U)$ and then
\[\cap_{t \in [0,n_0]} Y_t(U) \subset D \]
for every Y close to X. On the other hand, it follows from the definition that $A_Y \subset \cap_{t \in [0,n_0]} Y_t(U)$ and so $A_Y \subset D$ for every Y close to X. Because $\text{clos}(D) \subset \text{int}(U)$ we have that $A_Y \subset \text{int}(U)$. This proves that U is a compact neighborhood of A_Y and the lemma follows. □

Remark 2.2. The above proof shows that the compact set-valued map $Y \rightarrow A_Y$ is continuous in the following sense: For every open set D containing A one has $A_Y \subset D$ for every Y close to X. Such a continuity is weaker than the continuity with respect to the Hausdorff metric. It follows from the above-mentioned continuity that if A is a singular-hyperbolic attracting set of X and Y is close to X, then the continuation A_Y in U is a singular-hyperbolic attracting set of Y.

The following definition can be found in [BS, Chapter V].

Definition 2.3 (Region of attraction). Let C be a compact invariant set of a vector field Z. We define the region of attraction and the region of weak attraction of C by
\[A(C) = \{ x \in M : \omega_X(p) \subset C \} \quad \text{and} \quad A_w(C) = \{ z : \omega_Y(z) \cap C \neq \emptyset \} \]
respectively. We shall write $A(Z, C)$ and $A_w(Z, C)$ to indicate dependence on Z.

The region of attraction is also called stable set. The inclusion below is obvious
\[A(Z, C) \subset A_w(Z, C). \]

The elementary lemma below will be used in Section 6. Again we prove it for the sake of completeness.

Lemma 2.4. If C a compact invariant set of a vector field Z and U is a compact neighborhood of C, then the following properties are equivalent:
1. $A_w(Z, C) \cap U$ is dense in U
2. $A_w(Z, C) \cap U$ is residual in U.

Proof. Clearly (2) implies (1). Now we assume (1) namely $A_w(Z, C) \cap U$ is dense in U. Defining
\[W_n = \{ x \in U : Z_t(x) \in B_{1/n}(C) \text{ for some } t > n \} \quad \forall n \in \mathbb{N} \]
one has
\[A_w(Z, C) \cap U = \cap_n W_n. \]
In particular $A_w(Z, C) \cap U \subset W_n$ for all n. Hence W_n is dense in U (for all n) since $A_w(Z, C) \cap U$ does. On the one hand, W_n is open in U [Tubular Flow-Box Theorem] because $B_{1/n}(T)$ is open. This proves that W_n is open-dense in U and the result follows. \hfill \Box

Next we state the classical definition of hyperbolic set.

Definition 2.5 (Hyperbolic set). A compact, invariant set H of a C^1 vector field X is hyperbolic if there are a continuous, tangent bundle, invariant, splitting $T_x M = E^s \oplus E^X \oplus E^u$ and positive constants C, λ such that $\forall x \in H$ one has:

1. E^s_x is the direction of $X(x)$ in $T_x M$.
2. E^s is contracting: $\| DX_t(x)/E^s_x \| \leq C e^{-\lambda t}$, $\forall t \geq 0$.
3. E^u is expanding: $\| DX_t(x)/E^u_x \| \geq C^{-1} e^{\lambda t}$, $\forall t \geq 0$.

A closed orbit of X is hyperbolic if it is hyperbolic as a compact, invariant set of X. A hyperbolic set is saddle-type if $E^s \neq 0$ and $E^u \neq 0$.

The Invariant Manifold Theory [HPS] says that through each point $x \in H$ pass smooth injectively immersed submanifolds $W^{ss}(x), W^{uu}(x)$ tangent to E^s_x, E^u_x at x. The manifold $W^{ss}(x)$, the strong stable manifold at x, is characterized by $y \in W^{ss}(x)$ if and only if $d(X_t(y), X_t(x))$ goes to 0 exponentially as $t \to \infty$. Similarly $W^{uu}(x)$, the strong unstable manifold at x, is characterized by $y \in W^{uu}(x)$ if and only if $d(X_t(y), X_t(x))$ goes to 0 exponentially as $t \to -\infty$. These manifolds are invariant, i.e. $X_t(W^{ss}(x)) = W^{ss}(X_t(x))$ and $X_t(W^{uu}(x)) = W^{uu}(X_t(x))$, $\forall t$. For all $x, x' \in H$ we have that $W^{ss}(x)$ and $W^{ss}(x')$ either coincides or are disjoint. The maps $x \in H \to W^{ss}(x)$ and $x \in H \to W^{uu}(x)$ are continuous (in compact parts). For all $x \in H$ we define

$$W^s_X(x) = \cup_{t \in \mathbb{R}} W^{ss}(X_t(x)) \quad \text{and} \quad W^u_X(x) = \cup_{t \in \mathbb{R}} W^{uu}(X_t(x)).$$

Note that if $O \subset H$ is a closed orbit then

$$A(X, O) = W^s_X(O)$$

but $A_w(X, O) \neq W^s_X(O)$ in general. If H is saddle-type and $dim(M) = 3$, then both $W^s_X(x), W^u_X(x)$ are one-dimensional submanifolds of M. In this case given $\epsilon > 0$ we denote by $W^{ss}_X(x, \epsilon)$ an interval of length ϵ in $W^{ss}_X(x)$ centered at x (this interval is often called the local strong stable manifold of x).

Definition 2.6. Let $\{O_n : n \in \mathbb{N}\}$ be a sequence of hyperbolic periodic orbits of X. We say that the size of $W^s_X(O_n)$ is uniformly bounded away from zero if there is $\epsilon > 0$ such that the local strong stable manifold $W^s_X(x_n, \epsilon)$ is well defined for every $x_n \in O_n$ and every $n \in \mathbb{N}$.

Remark 2.7. Let O_n be a sequence of hyperbolic periodic orbits of a vector field X. It follows from the Stable Manifold Theorem for hyperbolic sets [HPS] that the size of $W^s_X(O_n)$ is uniformly bounded away from zero if all the periodic orbits O_n ($n \in \mathbb{N}$) are contained in the same hyperbolic set H of X.
3. Two Lemmas for Singular-Hyperbolic Attracting Sets

Hereafter we denote by M a compact three manifold. Recall that $\text{clos}(\cdot)$ denotes the closure of (\cdot). In addition, $B_\delta(x)$ denotes the (open) δ-ball in M centered at x. If $H \subset M$ we denote $B_\delta(H) = \cup_{x \in H} B_\delta(x)$. For every vector field X on M we denote by $\text{Sing}(X)$ the set of singularities of X and if $B \subset M$ we define $\text{Sing}(X, B) = \text{Sing}(X) \cap B$.

Lemma 3.1. Let Λ be a singular-hyperbolic attracting set of a C^r vector field Z on M. Let U be an isolating block of Λ. If $x \in U$ and $\omega_Z(x)$ is non-singular, then every $k \in \omega_Z(x)$ is accumulated by a hyperbolic periodic orbit sequence $\{O_n : n \in \mathbb{N}\}$ such that the size of $W^s_Z(O_n)$ is uniformly bounded away from zero.

Proof. For every $\epsilon > 0$ we define

$$\Lambda_\epsilon = \cap_{t \in \mathbb{R}} Z_t(\Lambda \setminus B_\epsilon(\text{Sing}(Z, \Lambda))).$$

Clearly Λ_ϵ is either \emptyset or a compact, invariant, non-singular set of Z. If $\Lambda_\epsilon \neq \emptyset$, then Λ_ϵ is hyperbolic [MPP2]. Observe that $\omega_X(x)$ is non-singular by assumption. Then, there are $\epsilon > 0$ and $T > 0$ such that

$$Z_t(x) \notin \text{clos}(B_\epsilon(\text{Sing}(Z, U))), \quad \forall t \geq T.$$

It follows that $\omega_Z(x) \subset \Lambda_\epsilon$ and so $\Lambda_\epsilon \neq \emptyset$ is a hyperbolic set. In addition, for every $\delta > 0$ there is $T_\delta > 0$ such that

$$Z_t(x) \in B_\delta(\Lambda_\epsilon),$$

for every $t > T_\delta$. Pick $k \in \omega_Z(x)$. The last property implies that for every $\delta > 0$ there is a periodic δ-pseudo-orbit in $B_\delta(\Lambda_\epsilon)$ formed by paths in the positive Z-orbit of x. Applying the Shadowing Lemma for Flows [HK, Theorem 18.1.6 pp. 569] to the hyperbolic set Λ_ϵ we arrange a periodic orbit sequence $\{O_n : n \in \mathbb{N}\}$ accumulating k. Then, Remark 2.7 applies since $H = \Lambda_{\epsilon/2}$ is hyperbolic and contains O_n (for all n). The lemma is proved.

The following is a minor modification of [M2, Theorem A].

Lemma 3.2. If U is an isolating block of a singular-hyperbolic attractor of a C^r vector field X in M, then every attractor in U of every vector field C^r close to X is singular.

Proof. Let Λ be the singular-hyperbolic attractor of X having U as isolating block. By [M2, Theorem A] there is a neighborhood D of Λ such that every attractor of every vector field Y C^r close to X is singular. By Remark 2.2 we have that $\cap_{t \geq 0} Y_t(U) \subset D$ for all Y close to X. Now if $A \subset U$ is an attractor of Y, then $A \subset \cap_{t \geq 0} Y_t(U)$ by invariance. We conclude that $A \subset D$ and then A is singular for all Y close to X. This proves the lemma.
4. Property (P)

First we state the definition. As usual we write $S \pitchfork S' \neq \emptyset$ to indicate that there is a transverse intersection point between the submanifolds S, S'.

Definition 4.1 (The Property (P)). Let Λ be a compact invariant set of a vector field X. Suppose that all the closed orbits of Λ are hyperbolic. We say that Λ satisfies the Property (P) if for every point p on a periodic orbit of Λ there is $\sigma \in \text{Sing}(X, \Lambda)$ such that

$$W^u_Y(p) \pitchfork W^s_Y(\sigma) \neq \emptyset.$$

The lemma below is a direct consequence of the classical Inclination-lemma [dMP] and the transverse intersection in Property (P).

Lemma 4.2. Let Λ a compact invariant set with the Property (P) of a vector field Z in a manifold M and I be a submanifold of M. If there is a periodic orbit $O \subset \Lambda$ of Z such that $I \pitchfork W^s_Z(O) \neq \emptyset$, then

$$I \cap \left(\bigcup_{\sigma \in \text{Sing}(Z, \Lambda)} W^s_Z(\sigma) \right) \neq \emptyset.$$

The Property (P) was proved in [MPa1, Theorem 5.1] for all singular-hyperbolic attractors. Here we prove that such a property is open, namely it holds for the continuation in Lemma 2.1 of a singular-hyperbolic attractor.

Lemma 4.3 (Openness of the Property (P)). Let U be an isolating block of a singular-hyperbolic attractor of a C^r vector field X on M. Then, the continuation

$$\Lambda_Y = \cap_{t \geq 0} Y_t(U)$$

has the Property (P) for every vector field Y C^r close to X.

Proof. By Lemma 2.1 we have that Λ_Y is an attracting set with isolating block U since Λ has a hyperbolic singularity. Now let p be a point of a periodic orbit $\gamma \subset \Lambda_Y$ of Y. Then

$$\text{clos}(W^u_Y(p)) \subset \Lambda_Y$$

since Λ_Y is attracting. We claim

$$\text{clos}(W^u_Y(p)) \cap \text{Sing}(Y, U) \neq \emptyset.$$

Indeed suppose that it is not so, i.e. there is Y C^r close to X such that $\text{clos}(W^u_Y(p)) \cap \text{Sing}(Y, U) = \emptyset$ for some p in a periodic orbit of Y in U. It follows from [MPP2] that $\text{clos}(W^u_Y(p))$ is a hyperbolic set. Since $W^u_Y(p)$ is a two-dimensional submanifold we can easily prove that $\text{clos}(W^u_Y(p))$ is an attracting set of Y. This attracting set necessarily contains a hyperbolic attractor A of Y. Since $A \subset \text{clos}(W^u_Y(p)) \subset \Lambda_Y \subset U$ we conclude that $A \subset U$. By Lemma 3.2 we have that A is singular as well. We conclude that A is an attracting singularity of Y in U. This contradicts the volume expanding condition at Definition 1.4 and
the claim follows. One completes the proof of the lemma using the claim as in [MPa1, Theorem 5.1]. □

5. Topological dimension and the Property (P)

We study the topological dimension of the omega-limit set in an isolating block of a singular-hyperbolic attracting set with the Property (P). First of all we recall the classical definition of topological dimension [HW].

Definition 5.1. The topological dimension of a space E is either -1 (if $E = \emptyset$) or the last integer k for which every point has arbitrarily small neighborhoods whose boundaries have dimension less than k. A space with topological dimension k is said to be k-dimensional.

The result of this section is the following.

Theorem 5.2. Let U be an isolating block of a singular-hyperbolic attracting set with the Property (P) of a C^r vector field Y on M. If $x \in U$ and there is $\delta > 0$ such that $B_\delta(x) \cap (\cup_{\sigma \in \text{Sing}(Y,U)}W^s_Y(\sigma)) = \emptyset$, then $\omega_Y(x)$ is either singular or a one-dimensional hyperbolic set.

Proof. Let Λ_Y be the singular-hyperbolic attracting set of Y having U as isolating block. Obviously $\text{Sing}(Y,U) = \text{Sing}(Y,\Lambda_Y)$. Let x, δ be as in the statement. Define

$$H = \omega_Y(x).$$

We shall assume that H is non-singular. Then H is a hyperbolic set by [MPP2]. To prove that H is one-dimensional we shall use the arguments in [M1]. However we have to take some care because Λ is not transitive. The Property (P) will supply an alternative argument. Let us present the details.

First we note that by Lemma 3.1 every point $k \in H$ is accumulated by a periodic orbit sequence O_n satisfying the conclusion of that lemma. Second, by the Invariant Manifold Theory [HPS], there is an invariant contracting foliation \{\mathcal{F}^s(w) : w \in \Lambda_Y\} which is tangent to the contracting direction of Y in Λ_Y. A cross-section of Y will be a 2-disk transverse to Y. When $w \in \Lambda_Y$ belongs to a 2-disk D transverse to Y, we define $\mathcal{F}^s(w, D)$ as the connected component containing w of the projection of $\mathcal{F}^s(w)$ onto D along the flow of Y. The boundary and the interior of D (as a submanifold of M) are denoted by ∂D and $\text{int}(D)$ respectively. D is a rectangle if it is diffeomorphic to the square $[0,1] \times [0,1]$. In this case ∂D as a submanifold of M is formed by four curves $D^h_v, D^v_h, D^l_v, D^r_v$ (v for vertical, h for horizontal, l for left, r for right, t for top and b for bottom). One defines vertical and horizontal curves in D in the natural way.

Now we prove a sequence of lemmas corresponding to lemmas 1-4 in [M1] respectively.
Lemma 5.3. For every regular point \(z \in \Lambda_Y \) of \(Y \) there is a rectangle \(\Sigma \) such that the properties below hold:
1. \(z \in \text{int}(\Sigma) \);
2. If \(w \in \Lambda_Y \) then \(F^s(w, \Sigma) \) is a horizontal curve in \(\Sigma \);
3. If \(\Lambda_Y \cap \Sigma^h \neq \emptyset \) then \(\Sigma^h = F^s(w, \Sigma) \) for some \(w \in \Lambda_Y \cap \Sigma \);
4. If \(\Lambda_Y \cap \Sigma^b \) then \(\Sigma^b = F^s(w, \Sigma) \) for some \(w \in \Lambda_Y \cap \Sigma \).

Proof. The proof of this lemma is similar to [M1, Lemma 1]. Observe that the corresponding proof in [M1] does not use the transitivity hypothesis. \(\square \)

Definition 5.4. If \(w \in H \cap \Sigma \) we denote by \((H \cap \Sigma)_w\) the connected component of \(H \cap \Sigma \) containing \(w \).

With this definition we shall prove the following lemma.

Lemma 5.5. If \(w \in H \cap \Sigma \) and \((H \cap \Sigma)_w \neq \{w\}\), then \((H \cap \Sigma)_w\) contains a non-trivial curve in the union \(F^s(w, \Sigma) \cup \partial \Sigma \).

Proof. We follow the same steps of the proof of Lemma 2 in [M1]. First we observe that \((H \cap \Sigma)_w \cap (\text{int}(\Sigma) \setminus F^s(x, \Sigma)) \neq \emptyset \). Hence we can fix \(w' \in (H \cap \Sigma)_w \cap (\text{int}(\Sigma) \setminus F^s(x, \Sigma)) \). Clearly \(F^s(w', \Sigma) \) is a horizontal curve which together with \(F^s(w, \Sigma) \) form the horizontal boundary curves of a rectangle \(R \in \Sigma \). One has that \(H \cap \text{int}(B) \neq \emptyset \) for, otherwise, \(w \) and \(w' \) would be in different connected components of \(H \cap \Sigma \) a contradiction. Hence we can choose \(h \in H \cap \text{int}(B) \). Since \(H = \omega_Y(y) \) we have that there is \(y' \) in the positive \(Y \)-orbit of \(y \) arbitrarily close to \(h \). In particular, \(y' \in \text{int}(B) \). By the continuity of the foliation \(F^s \) we have that \(F^s(y', \Sigma) \) is a horizontal curve separating \(\Sigma \) in two connected components containing \(w \) and \(w' \) respectively. Since \(w, w' \) belong to the same connected component of \(H \cap \Sigma \) we conclude that there is \(k \in F^s(y', \Sigma) \cap H \neq \emptyset \).

On one hand, by Lemma 5.4, \(k \in H \) is accumulated by a hyperbolic periodic orbit sequence \(O_n \) such that the size of \(W^s_Y(O_n) \) is uniform bounded away from zero. On the other hand \(y' \) belongs to the positive orbit of \(y \) and \(y \in B_\delta(x) \). By the uniform size of \(W^s_Y(O_n) \) one has \(B_\delta(x) \cap W^s_Y(O_n) \neq \emptyset \) for some \(n \in \mathbb{N} \). Since \(B_\delta(x) \) is open we conclude that
\[
B_\delta(x) \cap W^s_Y(O_n) \neq \emptyset
\]
Then,
\[
B_\delta(x) \cap \left(\bigcup_{\sigma \in \text{Sing}(Y,U)} W^s_Y(\sigma) \right) \neq \emptyset
\]
by Lemma 4.2 since \(\Lambda_Y \) has the Property (P). This is a contradiction which proves the lemma. \(\square \)

Lemma 5.6. For every \(w \in H \) there is a rectangle \(\Sigma_w \) containing \(w \) in its interior such that \(H \cap \Sigma_w \) is 0-dimensional.

Proof. This lemma corresponds to Lemma 3 in [M1] with similar proof. Let \(\Sigma_w = \Sigma \) where \(\Sigma \) is given by Lemma 5.5. Let \(J \subset F^s(w, \Sigma) \cap \partial \Sigma \) be the curve
in the conclusion of this lemma. We can assume that \(J \) is contained in either \(F^s(w, \Sigma) \) or \(\partial \Sigma \). If \(J \subset F^s(w, \Sigma) \) we can prove as in the proof of [M3, Lemma 3] that \(y \in H \) and so \(y \) is accumulated by periodic orbits whose unstable and stable manifolds have uniform size. We arrive a contradiction by Lemma 4.3 as in the last part of the proof of Lemma 5.5. Hence we can assume that \(J \subset \partial \Sigma \). We can further assume that \(J \subset \Sigma_{w} \) (say) for otherwise we get a contradiction as in the previous case. Now if \(J \subset \Sigma_{w} \) then we can obtain a contradiction as before again using the Property (P) and Lemma 4.2. This proves the result. □

The following lemma corresponds to [M1, Lemma 4].

Lemma 5.7. \(H \) can be covered by a finite collection of closed one-dimensional subsets.

Proof. If \(w \in H \) we consider the cross-section \(\Sigma_{w} \) in Lemma 5.7. By saturating forward and backward \(\Sigma_{w} \) by the flow of \(Y \) we obtain a compact neighborhood of \(w \) which is one-dimensional (see [HW, Theorem III 4 p. 33]). Hence there is a neighborhood covering of \(H \) by compact one-dimensional sets. Such a covering has a finite subcovering since \(H \) is compact. Such a subcovering proves the result. □

Theorem 5.2 now follows from Lemma 5.7 and [HW, Theorem III 2 p. 30]. □

6. **Proof of Theorem A**

The proof is based on the following result.

Theorem 6.1. Let \(U \) be an isolating block of a singular-hyperbolic attracting set with the Property (P) of a vector field \(Y \) on \(M \). Then \(A_w(Y, \text{Sing}(Y, U)) \cap U \) is residual in \(U \).

Proof. By Lemma 2.4 it suffices to prove that \(A_w(Y, \text{Sing}(Y, U)) \cap U \) is dense in \(U \). Let \(\Lambda_Y \) be the singular-hyperbolic attracting set of \(Y \) having \(U \) as isolating block. Obviously \(\text{Sing}(Y, U) = \text{Sing}(Y, \Lambda_Y) \). To simplify the notation we write \(R_Y = A_w(Y, \text{Sing}(Y, U)) \cap U \). Suppose by contradiction that \(R_Y \) is not dense in \(U \). Then, there is \(x \in U \) and \(\delta > 0 \) such that \(B_{\delta}(x) \cap R_Y = \emptyset \). In particular, \(\omega_Y(x) \cap \text{Sing}(Y, U) = \emptyset \) and so \(\omega_Y(x) \) is non-singular. Recalling the inclusion Eq.(1) at Section 2 one has

\[
U \cap \left(\bigcup_{\sigma \in \text{Sing}(Y, U)} W^s_Y(\sigma) \right) \subset R_Y.
\]

Thus

\[
B_{\delta}(x) \cap \left(\bigcup_{\sigma \in \text{Sing}(Y, U)} W^s_Y(\sigma) \right) = \emptyset.
\]

(2)

It then follows from Theorem 5.2 that \(H = \omega_Y(x) \) is a one-dimensional hyperbolic set. This allows to apply the Bowen’s Theory of one-dimensional hyperbolic sets. More precisely there is a family of (disjoint) cross-sections \(S = \{S_1, \cdots, S_r\} \) of small diameter such that \(H \) is the flow-saturated of \(H \cap \text{int}(S') \), where \(S' = \cup S_i \).
exists because

large. Now, by Lemma 3.1, I

point of sequence S

R

This contradiction proves that there is x in the positive orbit of x contained in the interior of Jn. We can fix S = Si ∈ S in order to assume that Jn ⊂ S for every n. Let w ∈ S be a limit point of x. Then w ∈ H ∩ int(S′). Because I is tangent to E′ the interval sequence Jn converges to an interval J ⊂ WY,w (w) in the C1 topology (WY,w (w) exists because w ∈ H and H is hyperbolic). J is not trivial since the length of Jn is ≥ δ′. It follows from this lower bound that Jn intersects WY,w (w) for some n large. Now, by Lemma 3.1 w is accumulated by periodic orbits O n satisfying the conclusion of this lemma. The continuous dependence in compact parts of the stable manifolds implies Jn ∩ WY,w (O n) ≠ ∅. Since Jn is in the positive orbit of I and I ⊂ Bδ(x) we obtain

Bδ(x) ∩ WY,w (O n) ≠ ∅.

Then,

Bδ(x) ∩ (∩σ∈Sing(Y;U) WY,σ (σ)) ≠ ∅

by Lemma 4.2 since AY has the Property (P). This is a contradiction by Eq. (2). This contradiction proves that RY is dense in U for all Y C′ close to X.

Proof of Theorem A: Let U be an isolating block of a singular-hyperbolic attractor of a C′ vector field X on M. By Lemma 2.1 we have that AY = ∩l>0 Yl(U) is a singular-hyperbolic attracting set with isolating block U for all vector field Y C′ close to X. In addition, AY has the Property (P) by Lemma 4.3. It follows from Theorem 6.1 that Aw(Y, Sing(Y, U)) ∩ U is residual in U. The result follows because ωY(x) is singular ∀x ∈ Aw(Y, Sing(Y, U)) ∩ U (recall Definition 2.3).

Remark 6.2. Let Y be a vector field in a manifold M. In [BS, Chapter V] it was defined a weak attractor of Y as a closed set C ⊂ M such that Aw(Y, C) is a neighborhood of C. Similarly one can define a generic weak attractor of Y as a closed set C ⊂ M such that A(Y, C) ∩ U is residual in U for some neighborhood U of C (compare with the definition of generic attractor [Mi, Appendix 1 p.186]). A direct consequence of Theorem 6.1 is that the set of singularities of a singular-hyperbolic attractor of Y is a generic weak attractor of Y.
7. Persistence of singular-hyperbolic attractors

In this section we prove Theorem B as an application of Theorem A. The idea is to address the question below which is a weaker local version of the Palis’s conjecture [P].

Question 7.1. Let \(\Lambda \) an attractor of a \(C^r \) vector field \(X \) on \(M \) and \(U \) be an isolating block of \(\Lambda \). Does every vector field \(C^r \) close to \(X \) exhibit an attractor in \(U \)?

This question has positive answer for hyperbolic attractors, the geometric Lorenz attractors and the example in [MPu]. In general we give a partial positive answer for all singular-hyperbolic attractors with only one singularity in terms of chain-transitive Lyapunov stable sets.

Definition 7.2. A compact invariant set \(\Lambda \) of a vector field \(X \) is **Lyapunov stable** if for every open set \(U \supset \Lambda \) there is an open set \(\Lambda \subset V \subset U \) such that \(\bigcup_{t>0} X_t(V) \subset U \).

Recall that \(B_\delta(x) \) denotes the (open) ball centered at \(x \) with radius \(\delta > 0 \).

Definition 7.3. Given \(\delta > 0 \) we define a \(\delta \)-chain of \(X \) as a pair of finite sequences \(q_1, ..., q_{n+1} \in M \) and \(t_1, ..., t_n \geq 1 \) such that
\[
X_{t_i}(B_\delta(q_i)) \cap B_\delta(q_{i+1}) \neq \emptyset, \quad \forall i = 1, \cdots, n.
\]
The \(\delta \)-chain joins \(p, q \) if \(q_1 = q \) and \(q_{n+1} = p \). A compact invariant set \(\Lambda \) of \(X \) is **chain-transitive** if every pair of points \(p, q \in \Lambda \) can be joined by a \(\delta \)-chain, \(\forall \delta > 0 \).

Every attractor is a chain-transitive Lyapunov stable set but not vice versa. The following generalizes the concept of robust transitive attractor (see for instance [MPa4]).

Definition 7.4. Let \(\Lambda \) be a chain-transitive Lyapunov stable set of a \(C^r \) vector field \(X \), \(r \geq 1 \). We say that \(\Lambda \) is **\(C^r \) persistent** if for every neighborhood \(U \) of \(\Lambda \) and every vector field \(Y \) \(C^r \) close to \(X \) there is a chain-transitive Lyapunov stable set \(\Lambda_Y \) of \(Y \) in \(U \) such that \(A(Y, \Lambda_Y) \cap U \) is residual in \(U \).

Compare this definition with the one in [Hu] where it is required the continuity of \(Y \to \Lambda_Y \) (with respect to the Hausdorff metric) instead of the residual condition of the stable set. Another related definition is that of \(C^r \) weakly robust attracting sets in [CMP]. The result of this section is the following one. It is precisely the Theorem B stated in the Introduction.

Theorem 7.5. Singular-hyperbolic attractors with only one singularity for \(C^r \) vector fields on \(M \) are \(C^r \) persistent.

Proof. Let \(\Lambda \) be a singular-hyperbolic attractor of a \(C^r \) vector field \(X \) on \(M \). Suppose that \(\Lambda \) contains a unique singularity \(\sigma \). Let \(U \) be a neighborhood of \(\Lambda \).
We can suppose that U is an isolating block. Let $\sigma(Y)$ the continuation of σ for every vector field Y close to X. Note that $\sigma(X) = \sigma$. Clearly $\text{Sing}(Y,U) = \{\sigma(Y)\}$ for every Y close to X.

For every vector field $Y \in C^\alpha$ close to X one defines

$$\Lambda(Y) = \{q \in \Lambda_Y : \forall \delta > 0 \exists \delta\text{-chain joining } \sigma(Y) \text{ and } q\}.$$

Recall that Λ_Y is the continuation of Λ in U for Y close to X as in Lemma 2.1.

We note that $\Lambda(Y) \neq \Lambda_Y$ in general [MPu].

To prove the theorem we shall prove that $\Lambda(Y)$ satisfies the following properties ($\forall Y \in C^\alpha$ close to X):

1. $\Lambda(Y)$ is Lyapunov stable.
2. $\Lambda(Y)$ is chain-transitive.
3. $A(Y,\Lambda(Y)) \cap U$ is residual in U.

One can easily prove (1). To prove (2) we pick $p,q \in \Lambda(Y)$ for Y close to X and fix $\delta > 0$. By Theorem A there is $x \in B_\delta(p)$ such that $\omega_Y(x)$ contains $\sigma(Y)$. Hence there is $t > 1$ such that $X_t(x) \in B_\delta(\sigma)$. On the other hand, since $q \in \Lambda(Y)$, there is a δ-chain $\{(t_1, \cdots, t_n), \{q_1, \cdots, q_{n+1}\}\}$ joining σ to q. Then (2) follows since the δ-chain $\{(t, t_1, \cdots, t_n), \{x, q_1, \cdots, q_{n+1}\}\}$ joints p and q. To finish we prove (3). It follows from well known properties of Lyapunov stable sets [BS] that $\Lambda(Y) = \cap_n O_n$ where O_n is a nested sequence of positively invariant open sets of Y. Obviously we can assume that $O_n \subset U$ for all n. Clearly the stable set of O_n is open in U. Let us prove that such a stable set is dense in U. Let O be an open subset of U. By Theorem 5.2 there is $x \in O$ such that $\omega_Y(x)$ contains $\sigma(Y)$. Hence there is $t > 0$ such that $X_t(x) \in O_n$. The last implies that x belongs to the stable set of O_n. This proves that the stable set of O_n is dense for all n. But the stable set of $\Lambda(Y)$ is the intersection of $W_s^Y(O_n)$ which is open-dense in U. We conclude that the stable set of $\Lambda(Y)$ is residual and the proof follows.

Theorem 7.5 gives only a partial answer for Question 7.1 (in the one singularity case) since chain-transitive Lyapunov stable set are not attractors in general. However a positive answer for the question will follow (in the one singularity case) once we give positive answer for the questions below.

Question 7.6. Is a singular-hyperbolic, Lyapunov stable set an attracting set?

Question 7.7. Is a singular-hyperbolic, chain-transitive, attracting set a transitive set?

As it is well known these questions have positive answer replacing singular-hyperbolic by hyperbolic in their corresponding statements. Besides it, a positive answer for Question 7.6 holds provided the two branches of the unstable manifold of every singularity of the set are dense on the set [MPa3].
References

[Bo] Bowen, R., Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460.
[BS] Bhatia, N., Szego, G., Stability theory of dynamical systems, Die Grundlehren der
mathematischen Wissenschaften, Band 161 Springer-Verlag, New York-Berlin (1970).
[CMP] Carballo, C., Morales, C., Pacifico, M., Maximal transitive sets with singularities for
generic C^1 vector fields, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 287-303.
[dMP] de Melo, W., Palis, J., Geometric theory of dynamical systems. An introduction., Translated from the Portuguese by A. K. Manning. Springer-Verlag, New York-Berlin, 1982
[GW] Guckenheimer, J., Williams, R., Structural stability of Lorenz attractors, Publ Math
HES 50 (1979), 59-72.
[HPS] Hirsch, M., Pugh, C., Shub, M., Invariant manifolds, Lec. Not. in Math. 583 (1977), Springer-Verlag.
[HW] Hurewicz, W., Wallman, H., Dimension Theory, Princeton Mathematical Series 4, Princeton University Press, Princeton, N. J., (1941).
[Hu] Hurley, M., Attractors: persistence, and density of their basins, Trans. Amer. Math. Soc. 269 (1982), no. 1, 247-271.
[HK] Hasselblatt, B., Katok, A., Introduction to the modern theory of dynamical systems.
With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Math-
ematics and its Applications, 54. Cambridge University Press, Cambridge (1995).
[L] Lorenz, E., Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20 (1963),
130-141.
[M] Milnor, J., On the concept of attractor, Comm. Math. Phys. 99 (1985), no. 2, 177-195.
[M1] Morales, C., Singular-hyperbolic sets and topological dimension, Dyn. Syst. 18 (2003),
no. 2, 181-189.
[M2] Morales, C., The explosion of singular-hyperbolic attractors, Preprint (2003). On web
http://front.math.ucdavis.edu/math.DS/0303253
[MPa1] Morales, C., Pacifico, M., Mixing attractors for 3-flows, Nonlinearity, 14 (2001), 359-378.
[MPa2] Morales, C., Pacifico, M., Lyapunov stability of ω-limit sets, Discrete Contin. Dyn. Syst. 8 (2002), no. 3, 671-674.
[MPa3] Morales, C., Pacifico, M., A dichotomy for three-dimensional vector fields, to appear
in Ergodic Theory Dynam. Systems.
[MPa4] Morales, C., Pacifico, M., Sufficient conditions for robustness of attractors, Preprint IMPA Serie A 2003/211. On web
http://www.preprint.impa.br/cgi-bin/MMMbrowse.cgi.
[MPP1] Morales, C., Pacifico, M., Pujals, E., On C^1 robust singular transitive sets for three-
dimensional flows, C. R. Acad. Sci. Paris, 326 (1998), Série I, 81-86.
[MPP2] Morales, C., Pacifico, M., Pujals, E., Singular Hyperbolic Systems, Proc. Amer. Math. Soc. 127 (1999), 3393-3401.
[MPP3] Morales, C. A., Pacifico, M. J., Pujals, E. R., Robust transitive singular sets for 3-flows
are partially hyperbolic attractors or repellers, to appear in Annals of Math..
[MPu] Morales, C., Pujals, E., Singular strange attractors on the boundary of Morse-Smale systems, Ann. Ec. Norm. Sup., 30, (1997), 693-717.
[P] Palis, J., A global view of dynamics and a conjecture on the denseness of finitude of attractors, Geometrie complexe et systemes dynamiques (Orsay, 1995). Asterisque 261 (2000), xiii-xiv, 335-347.
[PT] Palis, J., Takens, F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifur-
cations (1993), Cambridge Univ. Press.
C. M. Carballo
Departamento de Matematica
Universidade Federal de Minas Gerais, ICEx - UFMG
Av. Antonio Carlos, 6627
Caixa Postal 702
Belo Horizonte, MG
30123-970
E-mail: carballo@mat.ufmg.br

C. A. Morales
Instituto de Matemática
Universidade Federal do Rio de Janeiro
P. O. Box 68530
21945–970 Rio de Janeiro, Brazil
E-mail: morales@impa.br