INFLUENCE OF ORGANIC MANURES (BIOFERTILIZERS) ON SOIL MICROBIAL POPULATION IN THE RHIZOSPHERE OF MULBERRY (MORUS INDICA L.)

L. Christilda Louis Mary*, R. Sujatha, A.J. Chozhhaa and P. Mohideen Askar Navas
PG & Research Department Of Zoology, Periyar EVR College, Trichy, Tamil Nadu, India.
Corresponding author’s email: christilda_63@live.com

Abstract
The effect of different kinds of organic manures on soil microbial population and mulberry production was assessed. A field experiment was carried out at Periyar EVR College, Tamil Nadu, India in basic soil to study the influence of organic manures on soil bacterial population and mulberry production. The 4 groups of mulberry plants of MR2 variety were biofertilized with FYM, Azospirillum, Phosphobacteria and Vermicompost respectively. The biofertilizers lodged bacteria on the rhizosphere of mulberry plants. When the root microorganisms are analyzed, farmyard manure biofertilized mulberry plant root tips had Gluconococcus diazotrophicus, Bacillus pumilus, Pseudomonas putida; Bacillus coagulans, Bacillus sonorensis, Azotobacter chrococcum; Azospirillum biofertilized mulberry plants root tips had Bacillus coaculans, Azotobacter chrococcum, Azotobacter vinelandii, Bacillus subtilis and Azospirillum brasilense. Phosphobacteria biofertilized mulberry plant root tips had Pseudomonas putida, Bacillus stearothermophilus, Brevibacillus borstelansis and Streptomyces thermonitrificans and vermicompost biofertilized mulberry plant root tips had lodged bacteria like Bacillus megaterium, Bacillus subtilis, Gluconococcus diazotrophicus, Pseudomonas putida, Azotobacter chrococcum, Azotobacter vinelandii, Bacillus stearothermophilus, Brevibacillus borstelansis and Bacillus sonorensis. Microbiology work reveals luxuriant growth of bacteria in all the biofertilizer treated rhizosphere in the order FYM < Azospirillum < Phosphobacteria < Vermicompost. Increased availability of NPK and other micronutrients were noticed in T4 treated plants compared to other treatments.

Key words: Azospirillum; Phosphobacteria; Vermicompost; Biofertilizers; Mulberry.

Introduction
Organic agriculture is a production system which avoids largely excludes the use of synthetically compounded fertilizers, pesticide, fungicides, growth regulators and livestock feed activities (Lampkin, 1990). The organic matter of a particular material may be of the beneficial effects of organic matter on improvement of soil properties and productivity (Dahama, 1999). The organic production system aims at largely to utilize the available biomass of the farm to enrich soil fertility, to supply balanced nutrients to the plants and also to reduce the cost production as well as the environmental pollution (Ramakrishna et al., 2002). Organic amendments not only support sustained crop production, but also improve the soil microbial activity (Dagar and Gautam, 2002). The mulberry leaf yield and quality depends on the soil type, plant variety, availability of plant nutrients and agro-ecological conditions, which reflects on the quality of silk production. Mulberry leaf productivity is highly dependent on plant nutrients like NPK and known to respond well to the addition of organic manures. The chemical fertilizers are becoming costlier day by day due to escalating costs and scarce availability of commodities. The highly intensive mulberry cropping system causes depletion of nutrients in soil and excess usage of inorganic fertilizers and pesticides caused deleterious effect on soil health.

In this context, supply of major nutrients to mulberry through organic manures and biofertilizers is highly imperative. Organic manures are bulky in nature which supplement the crop with small amounts of major nutrients like NPK and other minor nutrients required by the crop and encourages the proliferation of soil microflora (Lakshmi, V et al., 1977). Introduction of crop benefiting microbial inoculants in the soil play a significant role in the mobilization of various nutrients needed by the crop (Kumar and John, 1990) reported that, application of microbial inoculants in conjunction with organic manures has significantly increased the productivity of mulberry leaf.

With this background the present investigation was carried out to know the effect of major nutrients supplied through organic sources on soil microflora and fertility status of mulberry garden under irrigated condition.
Materials and Methods
A field experiment was carried out during 2012-2013 in an established irrigated MR2 Mulberry garden planted at a spacing of 50 cm x 50 cm. The experiment was laid out with 4 treatment of 3 replications each. After the establishment period of mulberry plantation, biofertilizers were applied at 20 Kg/ha/yr.

T1: MR2 variety of mulberry biofertilized with FYM
T2: MR2 variety of mulberry biofertilized with Azospirillum
T3: MR2 variety of mulberry biofertilized with Phosphobacteria
T4: MR2 variety of mulberry biofertilized with vermicompost.

Each treatment consisted of 125 plants. The biofertilizers were used by mixing with powdered FYM and applied near the rhizosphere of mulberry by making 8 to 10 inch deep furrows. Soil nutrient status of different biofertilizers treated mulberry plants were estimated. The soil P, Organic Carbon (OC), Electric conductivity (EC), available Phosphorus (P), Potassium (K), available Zinc (Zn), available Copper (Cu), available Iron (Fe), available Manganese (Mn), were recorded as per the standard analytical methods. The microbial inoculants in the rhizosphere of all the four treatments were found out by pour plate method and streak culture method (Fig. 1).

Results and Discussion
Soil microbes in the rhizosphere of mulberry
Biochemical tests for microbial identification revealed that the FYM biofertilized rhizosphere had Gluconacetobacter diazotrophicus, Bacillus pumilus, Bacillus coagulans and Azotobacter chrococcum. Azospirillum biofertilized rhizosphere had Bacillus coagulans, Azotobacter chrococcum, Azotobacter vinelandii, Bacillus subtilis and Azospirillum brasilense. Phosphobacteria biofertilized mulberry rhizosphere had Bacillus steaothermophilus, Bravibacillus borstelensis, Pseudomonas putida and Streptomyces thernonitrificans. Vermicompost biofertilized rhizosphere had Gluconacetobacter diazotrophicus, Pseudomonas putida, Azotobacter chrococcum, Bacillus steaothermophilus, Azotobacter vinelandii, Bacillus megaterium, Bravibacillus borstelensis and Bacillus subtilis (Table 1.).

Yadav and Nagendra Kumar (1989) also opined better N fixing ability of Azospirillum contributing to nitrogen economy and soil fertility. Goswami (1997) had also reported that 20 to 400 kg/ha of N can be added to the soil by N fixing bio-inoculants. Similar results were also obtained earlier by Rashmi et al. (2007) and Murali et al. (2006) who have asserted increased availability of NPK when biofertilizer were integrated with different types of organics. According to Alemu and Bayu (2005) four years application of FYM at the rate of 10 and 15 kg/ha had increased total N of the soil, organic carbon, available P, K and Mg when compared to the plants lacking FYM application in the 0–20 cm soil depth. Similarly Sori et al. (2008) found that the mulberry gardens treated with bio-inoculants at 20 kg/ha of Azotobacter +25 kg/ha of A. awamori + 20 kg/ha of T. harzianum + 75% recommended nitrogen and phosphorus each through chemical fertilizer with full recommended dose of FYM and K had recorded maximum available NPK.

Fig. 1: Streak cultures of mulberry rhizosphere revealed luxuriant growth of bacteria in vermicompost biofertilized soil.

The application of bacterial inoculants as biofertilizers has been reported to result in improved plant growth and increased yield (Bashan and Holguin, 1998 and Vessay, 2003). Gupta et al., (1995) reported that the inoculation with Azospirillum sp., Azotobacter chrococcum and Pseudomonas fluorescence significantly improved seedling emergence rate. A. chrococcum was most effective in increasing the total dry weight of root and shoot length.

Gluconacetobacter diazotrophicus is a variety of diazotrophic bacteria have been isolated from rhizosphere and roots of sugarcane plants. In 1998, Cavalcante and Dobereiner reported an acid-tolerant N-fixing bacterium Acetobacter diazotrophicus, associated with sugarcane which contributed abundant N to sugarcane crop with a capability to excrete almost half of the fixed N in a form that is potentially available in plants. G. diazotrophicus is a gram-negative, acid-tolerant, obligate aerobe and the cells are straight rods with rounded ends (0.7 – 0.9 μm by 1 – 2 μm). The cells can be seen under 48 microscope as single, pair or chain like structures without endospores. Recent studies on association of G. diazotrophicus with rice seedlings seem to be encouraging, where a substantial increase in growth of rice plants (ponni) was recorded.
Table 1: Dominant Bacterial species in the Rhizosphere of Biofertilized Mulberry plants

Organism	Bio-fertilizers			
	FYM	Azospirillum	Phosphobacteria	Vermicompost
Gluconactobacter diazotrophicus	+	-	-	+++
Bacillus pumilus	+	-	-	-
Pseudomonas putida	+	-	+++	+++
Bacillus coagulans	+	+	-	-
Azotobacter chroococcum	+	+++	-	+
Bacillus stearothermophilus	-	-	+	+
Azotobacter vinelandii	-	+	-	+
Bacillus megaterium	-	-	-	+++
Brevibacillus borstelensis	-	-	+++	+
Bacillus sonorensis	-	-	-	+
Bacillus subtilis	-	+	-	-
Azospirillum brasiliense	-	+	-	+++
Streptomyces thermonitrificans	-	-	+++	-

+ Present; - Absent; +++ Dominant; ++++ Abundant

With the increasing cost of chemical fertilizers and concern about environmental pollution, the role of biological nitrogen fixation (BNF) in supplying plants with needed N, which can make agriculture more productive and sustainable without harming the environment has to be harnessed efficiently. As BNF is not restricted to legumes only, for sustainable agriculture it becomes necessary to increase the amount of biologically fixed N in non-legume crops also. Significant nitrogen input into the global nitrogen cycle, has been reported through the Azolla-Anabaena symbiosis (Plazinski, 1989), nitrogen fixation by free living cyanobacteria, Azotobacter, Azospirillum and Pseudomonas species (Krotzky et al., 1987; Cavalcante et al., 1998).

Studies indicate that rhizosphere, roots, stems and leaves of even healthy plants harbour diverse microbial communities that include N fixing bacteria (Boddey et al., 1991) and part of the N accumulated by non-leguminous plants was proved to have been fixed by the root-zone bacteria (Loganathan et al., 1999). A special term diazotrophic associative symbiosis, was suggested to describe the process of N fixation in the plant root zone (Vose and Ruschel, 1982).

Pseudomonas putida is a rod shaped, flagellated, gram negative bacterium that is found in most soil and water habitats where there is oxygen. The surface of the root, rhizosphere, allows the bacteria to thrive from the root nutrients. In turn, the *Pseudomonas putida* induces plant growth and protects the plants from pathogens because *P. putida* assist in promoting plant development, researchers use it in bioengineering research to develop biopesticides and to improve plant health (Espinosa-Urgel et al., 2000).

Azotobacter vinelandii is a diazotroph that can fix nitrogen while grown aerobically. It is a free living N\(_2\) fixer which is known to produce many phytochromes and vitamins in the soil.

Azotobacter chroococcum, was discovered and described in 1901 by the Dutch Microbiologist and Botanist, Martinus Beijerinck. They are found in neutral and alkaline soils (Gandora et al., 1998). *Azotobacter* synthesize some biologically active substances, including some phytohormones such as auxins (Ahmad et al., 2005). They also facilitate the mobility of heavy metals in the soil and thus enhance bioremediation of soil form heavy metals, such as cadmium, mercury and lead (Chen et al., 1995).
Table 2: Data on soil nutrient status of different biofertilizer treated mulberry plots

Name of the parameter	Biofertilizer used	F Test			
	FYM	Azospirillum	Phosphobacteria	Vermicompost	
pH	7.06	7.59	7.16	6.89	**
Electrical Conductivity (dsm-1)	0.26	0.36	0.22	0.16	*
Organic carbon (%)	0.22	0.42	0.45	0.56	*
Organic matter (%)	0.44	0.90	0.84	1.03	*
Available nitrogen (kg/ac)	87.6	103.9	106.2	118.5	**
Available phosphorus (kg/ac)	3.56	4.26	6.39	4.78	**
Available potassium (kg/ac)	105	125	146	178	***
Available zinc (ppm)	0.96	1.20	1.26	1.36	**
Available copper (ppm)	0.56	0.85	0.89	1.09	**
Available iron (ppm)	4.58	5.20	5.63	6.25	**
Available manganese (ppm)	2.63	3.20	3.26	3.45	*
Cation exchange capacity (C.mole proton+ / kg)	22.6	28.1	28.9	29.6	*

Exchangeable bases (C. mole proton +/kg)

	Calcium	Magnesium	Sodium	Potassium
Calcium	9.6	6.9	1.26	0.21
Magnesium	12.8	8.9	1.58	0.28
Sodium	13.0	9.2	1.67	0.29
Potassium	13.6	9.6	1.68	0.32

F value marked with *, ** and *** are significant at 0.05, 0.01 and 0.001 levels respectively.

Similar results were also obtained earlier by Rashmi et al. (2007) and Murali et al. (2006) who have established the increased availability of NPK when biofertilizers were integrated with different types of organics.

Soil nutrient status of different biofertilizer treated mulberry plots

The results of the present investigation revealed that the pH of FYM soil was 7.06 and pH of biofertilized mulberry plots ranged between 6.89–7.59. This may be due to interaction of biofertilizers in the rhizosphere of soil. Significant variations in mineral nutrients were found. They were found to be highest in vermicompost biofertilized soil, higher in phosphobacteria biofertilized soil, high in azospirillum biofertilized soils and low in FYM biofertilized soils. Available nitrogen ranged 87.6 – 118.5 kg/ac, available phosphorus 3.56 – 6.39 kg/ac and potassium105 – 178 kg/ac. Available manganese ranged 2.63 – 3.45 ppm, available iron ranged 4.58 – 6.25 ppm (Table 2), available zinc ranged 0.96 – 1.36 ppm, available copper ranged 0.56 – 1.09 ppm (Table 2). The data revealed that the microbial inoculants in the biofertilizers influenced the available nutrients status in the rhizosphere of soil. Similar results were reported by Sharma et al. (2002).

According to Alemu and Bayu (2005), four years application of FYM at the rates of 10 and 15 t ha-1 increased the soil total N, organic carbon, available P, K and Mg compared to the plot lacking FYM application in the 0–20 cm soil depth. Similarly, according to Sori et al. (2008) the mulberry gardens treated with bio-inoculants at 20 kg/ha of Azotobacter + 25 kg/ha of A. awamori + 20 kg/ha of T. harzianum + 75 percent recommended nitrogen and phosphorus each through chemical fertilizer with full recommended dose of FYM and K has recorded maximum available NPK. The increased availability of NPK in soil may be attributed to better nitrogen fixing capacity of Azotobacter, solubilisation and mobilization by A. awamori.
and *T. harzianum* in the presence of FYM and Inorganic Fertilizer (IF).

Conclusion

From the above findings it is concluded that application of different biofertilizers plays a significant role in enhancing the soil fertility in terms of macro-nutrients, secondary nutrients and microbial population. The microbial population helped in enriching the soil with major nutrients like N and P which are mainly essential for luxuriant growth of plants.

References

Ahmad F, Ahmad I and Khan MS (2005) Indole Acetic Acid Production by the Indigenous Isolates of *Azotobacter* and fluorescent Pseudomonas in the presence and absence of tryptophan. *Turkish Journal of Biology* 29: 29 – 34.

Alemu and Bayu W (2005) Effects of farm yard manure and combined N and P fertilizers on Sorghum and soil characteristics in Northen Ethiopia. *Journal of Sustainable Agriculture* 26(2): 23 - 41. DOI: 10.1300/J064v26n02_04

Bashan Y and Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria into two classification biocontrol PGPR (Plant Growth Promoting Bacteria) and PGPR. *Soil Biochem.* 30: 1225 -1228. DOI: 10.1016/S0038-0717(97)00187-9

Boddey RM, Urquiaga S, Reis V and Dobereiner J (1991) Biological nitrogen fixation associated with sugar cane. *Plant and Soil.* 137: 111 –117. DOI: 10.1007/BF02187441

Cavalcante V and Dobereiner J (1998) A new acid tolerant nitrogen-fixing bacterium associated with the sugarcane. *Plant and Soil* 108: 23 – 31. DOI: 10.1007/BF02370096

Chen JH, Czaika DR, Lion LW, Shuler ML and Ghiorse WC (1995) Trace metal mobilization in soil by bacterial polymers. *Environmental Health Perspectives* 103(1): 53 – 58. DOI: 10.1289/ehp.95103s153

Dagar JC and Gautam A (2002) Organic Amendments in Saline Agriculture, Financing Agriculture. *An In house Journal of Agricultural Finance Corporation Ltd* 4: 31 - 37.

Dahama AK (1999) Organic farming for Sustainable Agriculture. *Agro Botanica* 294.

Espinosa Urgel M, Salido A and Ramos J (2000) Genetic analysis of functions involved in adhesion of *Pseudomonas putida* to seeds. *Journal of Bacteriology* 182: 2363 – 2369. DOI: 10.1128/JB.182.9.2363-2369.2000

Gandora V, Gupta RD and Bhardwaj KKR (1998) Abundance of *Azotobacter* in great soil groups of North West Himalayas. *Journal of Indian Society of Soil Sciences*, 46(3): 379 – 383.

Goswami NN (1997) Concept of balanced fertilization its relevance and practical limitations. *Fertilizer News* 42: 15 - 19.

Gupta S, Arora DK, Srivasthava AK and Gupta S (1995) Growth promotion of tomato plants by Rhizobacteria and imposition of energy stress on *Rhizocotonia solani*. *Soil Biology Biochemistry*, 27(8): 1051 –1058. DOI: 10.1016/0038-0717(95)00011-3

Hien NT (2008) The product of Bio Gro and improvement in its performances Kennedy IR Choudhury ATMA Keckes Ml and Rose MT(Eds.) Efficient nutrient using rice production in Vietnam achieved using inoculant biofertilizers Proceedings of a project (SMCW/2002/073) Workshop held in Hanoi, Vietnam, 12-13 October 2007, ACIAR Proceedings, No. 130, p. 137.

Jeyasekara APDA, Seneviratne G, De Silva MSDL, Jayasinghe LASP and Promatunga P (2008). Preliminary investigations on the potential applications of biofilmed biofertilizers for tea nurseries. In:Nainayake, N.P.A.D., Everard, J.M.D.T.(eds.), Proceedings of the second symposium on plantation crop research, export competitiveness through quality improvements. Coconut Research institute, Lunewila, Sri Lanka, pp. 170 - 175.

Khan SA, Mulvaney RL, Ellsworth TR and Boost CW (2007) The myth of nitrogen fertilizing for soil carbon sequestrations. *Journal of Environmental Quality* 36: 1821- 1832. DOI: 10.2134/jeq2007.0099

Krotzky A and Werner D (1987) Nitrogen fixation in *Pseudomonas stutzeri*. *Arch Microbiol.* 147: 48 – 57. DOI: 10.1007/BF00492904

Kumar AS and John PS (1999) Integrated Nutrient Management for Sustainable Mulberry Protection in humid Tropics National Seminar on Tropical Sericulture Chinnaswamy KP Govindan R Krishnaprasad NK and Reddy DNR (Eds.) University of Agricultural Sciences, Bangalore, p. 11.

Lakshmi V Sathyanarayanaarao A Vijayalakshmi M Lakshminikumari M Tilak KBVR and Subba Rao NS (1977) Establishment and Survival of *Spirillum lipoforum*. *Proceedings of Indian Academy of Science* 86(8): 397 - 404.

Lampkin N (1990) Organic farming Farming Press Books IPSWITCH UK

Lauffer MA (1943) Ultracentrifugation studies on the blood of normal and jaundice diseased silkworm. *Proc. Soc. Exp. Biol. Med.* 52: 330 – 332.

Lazcano C, Gomez Brandon M and Dominguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. *Chemosphere* 72: 1013 – 1019. DOI: 10.1016/j.chemosphere.2008.04.016

Loganathan P, Sunitha R, Parida AK and Nair S (1999) Isolation and characterization of two genetically distant groups of *Azotobacter diazotrophicus* from a new host plant *Eleusine coracana* L. J. *Appl. Microbiol* 87: 167 – 172. DOI: 10.1046/j.1365-2672.1999.00804.x

Murali Sreeramu KR, Narayanaswamy TK, Sanger MA and Sreekantiaah M (2006) Effect of bioinoculants and organic manures on soil microflora and fertility status of *S. mulberry* garden. National seminar on Soil Health and Water Management for sustainable Sericulture, Regional Sericulture Research Station (A unit of CSB), Bangalore, India, p. 90.
Plazinski (1989) In the molecular biology of symbiotic nitrogen fixation, Gresshoff, P.M. (Ed.), CRC Press, Boca Raton, Florida, pp. 51 – 76.

Ramakrishna Naika, Sannapa B and Govindan R (2002) Organic Sericulture. Seri Scientific Publishers, Bangalore, India, pp. 3.

Rashmi K, Sankar MA, Narayanaswamy TK, Sreeramula KR and Rajegowda (2007) Impact of organic mulberry cultivation practices on soil microbes and fertility of Mulberry garden. *Journal of Ecobiology* **21**: 113-116.

Seneviratne G, Thilakaratne RMMS, Jeyasekara APDA, Seneviratne KACN, Padmathilake KRE and De Silva MSDL (2009) Developing beneficial microbial biofilms on roots of nonlegumes: A novel biofertilizing technique. In: Khan MS, Zaidi A and Musarrat J (Eds.). Microbial strategies for Crop Improvement, Springer- Verlag, Germany.

Sharma SD, Bhutan VP and Awasthi RP (2002) Effect of vesicular arbuscular mycorrhiza and phosphorus of leaf and soil mineral nutrient status of apple seedlings. *Indian J. Hort.* **59**: 141 – 144.

Sori W, Bhaskar RW, Sudhir K, Shashithar KR and Sarithakumari S (2008) Influence of Bio- inoculants on available NPK content of Mulberry garden under Rainfed Condition. In: Moriculture, Jaiswal, K, Trivedi SP, Pandey BN and Khatri RK (Eds.), A.P.H Publishing Corporation, New Delhi, p. 165.

Vessey KJ (2003) Plant growth promoting rhizosphere as biofertilizers. *Plant and Soil* **255**: 571 – 586. DOI: 10.1023/A:1026037216893

Vose PB and Ruschel AP (1982) Discussion on Terminology: Associative *N*–Fixation. CRS Press, Boca Raton, Florida, Vol.1, p. 241.

Yadev RD and Nagendra Kumar, T.D. (1989). *Azospirillum*- a low input biofertilizer technology for Mulberry. *Indian Silk*, **28**(1): 31- 33.