Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO₂ inhalation in a female rat model of panic disorder

Luana Tenorio-Lopes, Stéphanie Fournier, Mathilde S. Henry, Frédéric Bretzner and Richard Kinkead

Abstract

Panic disorder (PD) is ~2 times more frequent in women. An excessive ventilatory response to CO₂ inhalation is more likely during the premenstrual phase. While ovarian hormones appear important in the pathophysiology of PD, their role remains poorly understood as female animals are rarely used in pre-clinical studies. Using neonatal maternal separation (NMS) to induce a “PD-like” respiratory phenotype, we tested the hypothesis that NMS disrupts hormonal regulation of the ventilatory response to CO₂ in female rats. We then determined whether NMS attenuates the inhibitory actions of 17-β estradiol (E₂) on orexin neurons (ORX). Pups were exposed to NMS (3 h/day; postnatal day 3–12). The ventilatory response to CO₂-inhalation was tested before puberty, across the estrus cycle, and following ovariectomy. Plasma E₂ and hypothalamic ORXA were measured. The effect of an ORX₁ antagonist (SB334867; 15 mg/kg) on the CO₂ response was tested. Excitatory postsynaptic currents (EPSCs) were recorded from ORX neurons using whole-cell patch-clamp. NMS-related increase in the CO₂ response was observed only when ovaries were functional; the largest ventilation was observed during proestrus. SB334867 blocked this effect. NMS augmented levels of ORX₆ in hypothalamus extracts. EPSC frequency varied according to basal plasma E₂ levels across the estrus cycle in controls but not NMS. NMS reproduces developmental and cyclic changes of respiratory manifestations of PD. NMS disrupts the inhibitory actions of E₂ on the respiratory network. Impaired E₂-related inhibition of ORX neurons during proestrus is a novel mechanism in respiratory manifestations of PD in females.

Introduction

Many panic disorder (PD) patients experience respiratory symptoms, including hyperventilation, sleep apnea, chest pain, and dyspnea. According to Klein’s “False suffocation alarm hypothesis”, excessive sensitivity to respiratory stimuli is at the core of PD. CO₂ inhalation can trigger intense fear, autonomic, and ventilatory responses and the probability of experiencing the panicogenic effects of CO₂ is greater in PD patients than healthy subjects. Located in a hypothalamic region initially known as the “panic area”, orexin-producing neurons (ORX) regulate arousal and the intensity of respiratory reflexes. ORX concentration in the cerebrospinal fluid of PD patients is higher than in healthy subjects and activation of ORX neurons and ORX-1 receptors are both necessary to observe a panic-prone state in rats and in humans.

Early life adversities are an important risk factor for PD; clinical and pre-clinical data show that unstable parental conditions or experimental disruption of maternal care augment respiratory and behavioral responses to CO₂.
Much like chronic stress, neonatal maternal separation (NMS) augments ORX function. Together, these data strongly argue that NMS-related dysregulation of ORX function is an important mechanism in excessive ventilatory response to CO₂ inhalation in PD patients. The mechanisms responsible for abnormal ORX-modulation of the ventilatory control system are not fully understood, but to make significant progress that will ultimately influence clinical practice, pre-clinical research requires animal models that are close to the clinical reality.

The prevalence of PD is 2–3 fold greater in women than in men, yet most of our basic knowledge arises from experiments performed on males despite strong evidence indicating that endocrine regulation of ORX neurons is sex-specific. This is an important issue because clinical observations point to an important role of ovarian hormones in the pathophysiology of PD. The incidence of PD rises at puberty and in adult women, the responsiveness to CO₂ inhalation is highest during the premenstrual phase. Together, these observations suggest that PD patients are more sensitive to hormonal fluctuations than healthy subjects. To address this issue, we first tested the hypothesis that early life adversities (in the form of NMS) disrupts hormonal regulation of the ventilatory response to CO₂. Specifically, we determined whether NMS-related increase in the responsiveness to CO₂ inhalation evolves with reproductive status of females. Non-invasive respiratory measurements were performed prior to puberty, across each phase of the estrus cycle, and following ovariectomy. We then used a pharmacological approach to determine whether activation of ORX₁-receptors is necessary to NMS-induced enhancement of the CO₂ response. The evidence indicating that 17β-estradiol (E₂) inhibits ORX neurons being indirect, we then used whole-cell patch-clamp recordings to assess E₂’s effects on green fluorescent protein (GFP)-labeled ORX neurons in females. Finally, we tested the hypothesis that NMS disrupts E₂’s inhibitory actions on the ORX system and its influence on CO₂-induced respiratory manifestation of PD in females.

Methods

Animals and ethical approval

Experiments were performed on sexually mature female Sprague–Dawley rats and pre-pubertal rat pups (14–15 days old) of both sexes. Rats were preferred to mice because, unlike mice, enhancement of the CO₂ response due to early life adversities is sex-specific in this species. Details about age, body weight, and animal distribution amongst the experimental groups are reported in Supplemental Table 1 and in the figures. All animals were born and raised in our animal care facilities. Rats were supplied with food and water ad libitum and maintained in standard conditions (21°C, 12:12-h dark–light cycle: lights on at 06:00 and off at 18:00). Animal Care Committee of Université Laval approved all the experimental procedures and protocols, which were in accordance with the guidelines of the Canadian Council on Animal Care.

Neonatal maternal separation (NMS)

The NMS protocol was identical to the one used in our previous studies. Briefly, virgin females were mated and 3 days after delivery, each litter was separated daily from their mother 3 h/day (09:00–12:00) from postnatal day 3–12. Control animals were undisturbed during the same period; see the Supplement for details. Rats were weaned and raised under standard animal care conditions until experiments were performed. For each group, rats originated from multiple litters to avoid litter-specific effects.

Whole-body plethysmography and tissue sampling

Ventilatory variables were measured in unrestrained, unanesthetized rats using whole-body plethysmography according to standard procedures. 45 to 60 min prior to the recording, females were injected either with vehicle or with the selective ORX₁ receptor antagonist (SB334867; 15 mg/kg). Ventilation was recorded at rest (room air) followed by hypercapnic exposure (5% CO₂, balance air; 10 min). CO₂ levels used to assess ventilatory and behavioral responsiveness varies between 5 and 35% in animals and humans. The level chosen here ensured a robust ventilatory response with minimal change in behavior to avoid movement artefacts that interfere with respiratory measurements. At the end of the experiment, rats were deeply anesthetised; as NMS increases vaginal sensitivity, determination of the estrus cycle by vaginal smear was performed only at this time to avoid influencing results. Blood and brains were then harvested to obtain post-CO₂ samples immunohistochemistry and quantification of plasma E₂ levels. Experiments were performed between 13:00 and 15:00. Note that blood and brains were also obtained from a distinct group exposed to room air to obtain baseline data for E₂ and quantification of ORXA in hypothalamus extracts. For setup, protocol, and data collection details, see the Supplement.

Ovariectomy and 17β-estradiol (E₂) replacement

Ovariectomy (OVX) was used to reduce circulating ovarian hormones chronically; surgery was performed according to standard procedures. Two weeks after surgery, the CO₂ response was measured and compared between NMS and controls. A distinct group of OVX females received either vehicle (peanut oil; 100 µl) or one E₂ injection (3 or 10 µg) every 4 days to restore E₂ level within physiological range and mimic cyclic fluctuations. The effects of higher E₂ supplementation was tested in
another group of OVX females by injecting with 25 µg. The last injections were performed on the day of the experiments. Based on the evidence suggesting that E₂ inhibits ORX neurons27,28, only E₂ was used in the replacement.

c-Fos/orexin-A immunohistochemistry

We first used c-Fos protein expression to determine whether NMS augments neuronal activation of ORX neurons in females. Based on ventilatory measurements, this initial evaluation was performed during the proestrus phase only. 40 µm coronal brain sections were double-labeled with primary antibodies against c-Fos and ORX_A to confirm cell phenotype. Since the physiological function of ORX neurons differs between hypothalamic subregions35--37, single (ORX_A only) and double-labeled cells were counted in the dorsomedial and lateral hypothalamus (DMH and LH, respectively) and the perifornical area (PeF). See Supplement for details.

Whole-cell patch-clamp recording of orexin neurons

Identification of orexin neurons with an adeno-associated virus (AAV)

Four weeks-old females were injected with an AAV construct that expresses a green fluorescent protein (GFP) under the control of an ORX promoter. During surgery, rats received unilateral injections (1 µl/side) of the ORX: GFP virus in the following stereotaxic coordinates (from Bregma: RC: -2.6 mm; ML: 1.2 mm; DV: -9.0 mm). A 4-week recovery period ensured consistent GFP labeling; the intensity of GFP labeling observed in the PeF area was more apparent than in adjacent areas.

Slice electrophysiology

Hypothalamic slices (300 µm) containing GFP-labeled ORX neurons were used for whole-cell patch-clamp recording of basic electrophysiological properties, excitatory postsynaptic currents converging onto ORX neurons, and responses to E₂ application (100 nM; 10 min). E₂ concentration was based on the literature38. Slice preparation and recording procedures were performed as described previously39,40. Since ORX neurons of the LH do not contribute to cardiorespiratory regulation37, recordings were performed in the PeF/DMH. The estrus cycle was determined after the brain was harvested; data were compared between NMS and controls. See the Supplement for details.

Statistics

Multifactorial analysis of variance (ANOVA) assessed the effects of NMS and estrous cycle on respiratory variables, 17β-estradiol (E₂), immunohistochemical, and electrophysiological data. CO₂ exposure was also considered for analyses of respiratory data and E₂; a repeated measures design was used when appropriate; equality of variance was tested. The relationship between E₂ and the ventilatory response to CO₂ was assessed using analysis of co-variance (ANCOVA) and a correlation z-test. Since patch-clamp data often originate from multiple cells from the same animal, a mixed ANOVA model (mixed-effect model) was used to ensure that between-group differences were not attributable to a specific subject41. ANOVA results are reported in the figures for clarity and conciseness. All data are presented as means ± SEM. A significant ANOVA results ($P ≤ 0.05$) was followed by a post hoc test (Fisher’s least significant difference) to identify specific differences; a Bonferroni correction was applied when multiple comparisons were performed. Analyses were performed using Statview 5.0 (SAS Institute, Cary, NC, USA) and JASP (version 0.13; University of the Netherlands).

Results

The ventilatory response to CO₂ and 17β-estradiol (E₂) levels across the female’s reproductive status

CO₂ inhalation induced a rapid and robust hyperpnoea, which was greater in NMS females than controls (Fig. 1A, B). The intensity of the respiratory frequency and minute ventilation responses varied across the different phases of the estrus cycle and the largest difference between NMS and controls was observed during proestrus (Fig. 1A, B and Supplementary Fig. 1B). Baseline E₂ levels fluctuated across the estrus cycle and peaked during proestrus; NMS did not affect those values (Fig. 1C). During proestrus, CO₂ exposure augmented E₂ levels in control, but not NMS females (Fig. 1D). The E₂ levels measured following CO₂ exposure during proestrus were inversely correlated with the intensity of the breathing frequency response in NMS but not controls (Fig. 1E).

Prior to puberty, the hypercapnic ventilatory response was modest42; the response did not differ between sexes and was unaffected by NMS (Fig. 2A and see Supplementary Fig. 1C, D for effects on other respiratory variables). In adults, OVX reduced E₂ levels (Supplementary Fig. 2) and the CO₂ response such that the intensity of the hyperpnoea was now similar between groups (Fig. 2B). In OVX females, the first E₂ supplementation protocol restored plasma E₂ to physiological levels (Fig. 3C) and increased the respiratory frequency response in NMS but not controls. In both groups, the response was directly proportional to E₂ levels (Fig. 2B, C and Supplementary Fig. 1). While the E₂ levels achieved with the second supplementation protocol exceed normal values (Fig. 2D), this treatment demonstrated that at that elevated E₂ inhibits the ventilatory response to CO₂ (Fig. 2D and Supplementary Fig. 1E, F).

None of the ventilatory variables and other indicators of metabolism measured at rest differed between
Fig. 1 Comparison of the hyperventilatory response to CO₂ inhalation (5% CO₂; 10 min) between adult females raised under standard conditions or subjected to neonatal maternal separation (NMS) across the different phase of the estrus cycle. A Original plethysmographic recording comparing ventilatory activity at rest and at the onset of CO₂ inhalation (blue arrow) in a female raised under control conditions (top trace) versus a female subjected to neonatal maternal separation (bottom trace; NMS: 3 h/day; postnatal days 3–12). B The breathing frequency response expressed as a percentage change from baseline (room air). 17β-estradiol (E₂) levels across the estrus cycles measured C while breathing room air (baseline) and D 30 min following CO₂ inhalation test (5% CO₂; 10 min). E Regression analysis comparing the relationship between E₂ levels during proestrus (post-CO₂; blue box) and the intensity of the breathing frequency response to CO₂ between NMS (red circles) and control females (white circles). Box plots: the top and bottom boundaries of the box indicate the 25th and 75th percentile, respectively. Within the box, the black bar indicates the median; the other bar (red or white) indicate the mean. The error bars indicate the 10th and 90th percentiles. The numbers in brackets below the boxes indicate the number of replicates in each group. Post hoc pairwise comparisons were performed only when warranted by ANOVA. *Indicates a value different from corresponding proestrus value at \(P < 0.05 \). † Indicates a value different from corresponding control value at \(P < 0.05 \).
Breathing frequency of “resting” OVX females was slightly higher than intact females but this was not sufficient to augment minute ventilation (Supplementary Table 1).

Excessive ORX modulation contributes to NMS-related increase in CO₂ response

Anomalies in ORX neurotransmission contributes to the pathophysiology of a panic-prone state in rats and in
humans11–13. To determine whether enhanced ORX contributes to NMS-related increase in CO\textsubscript{2} responsiveness in females, we first quantified ORX\textsubscript{A} levels in hypothalamus extracts from females subjected to neonatal maternal separation (NMS; red bars) or raised under control conditions (white bars). Data were obtained from different each phase of the estrus cycle; however, data are pooled since the effect of ovarian status was not significant. B Effect of pre-treatment with SB334867 on the breathing frequency response of control females and C females subjected to NMS. Data were obtained during each phase of the estrus cycle; breathing was measured at the end of the CO\textsubscript{2} inhalation test (5% CO\textsubscript{2}; 10 min) and expressed as a percentage change from baseline (room air). Data from SB334867-treated rats (15 mg/kg; I.P.; blue bars) are compared with those that received an injection of vehicle (50 mM HP-β-CD—10% + DMSO—2%) 45–60 min before start the plethysmography recordings. Box plots, the top and bottom boundaries of the box indicate the 25th and 75th percentiles, respectively. Within the box, the black bar indicates the median; the other bar (red, white, or blue) indicate the mean. The error bars indicate the 10th and 90th percentiles. The numbers in brackets below the boxes indicate the number of replicates in each group. Post hoc pairwise comparisons were performed only when warranted by ANOVA. *Indicates a value statistically different from corresponding proestrus value at \(P < 0.05\). †Indicates a value different from corresponding control value at \(P < 0.05\). #Indicates a value different from corresponding vehicle value at \(P < 0.05\).
control during proestrus. Since OVX increased this ratio only in controls, the level achieved was now similar between groups (Fig. 4D). While a similar trend was observed in the PeF, neither NMS nor OVX affected the number of double-labeled cells in the LH (Fig. 4E and F, respectively).

Neonatal maternal separation disrupts E₂ regulation of orexin neurons of the PeF/DMH

As our data indicate that NMS-related potentiation of ORX action on respiratory control is the greatest during proestrus, we then used whole-cell patch-clamp recording to assess the impacts of NMS and E₂ on ORX neurons. In naturally cycling females, membrane potential (Vₘ) did not change across the estrus cycle and values recorded in NMS females were slightly lower than controls. However, OVX augmented cell capacitance and the resting Vₘ of ORX neurons in NMS but not controls (Supplementary Table 2). None of the other basic cell properties was influenced by NMS or ovarian function (Supplementary Table 2). Ovarian status influenced the excitatory postsynaptic currents (EPSC) frequency, especially in controls (Fig. 5A, C). In those females, EPSC frequency was inversely proportional to the basal level of E₂ associated with each phase of the estrus cycle (Fig. 5C). In contrast with controls, ORX neurons from NMS females had the highest EPSC frequency during proestrus, when E₂ levels peaked (Fig. 5A, C). EPSC amplitude was not affected by NMS or the estrus cycle (Fig. 5A, E). Bath application of
E2 reduced EPSCs frequency in both control and NMS; however, the largest drop was observed during proestrus in NMS females (−0.63 versus −4.09 Hz for control and NMS, respectively). E2 reduced EPSC amplitude in ORX cells from control but not NMS (Fig. 5F, G).

Discussion

Puberty and cyclic fluctuations in ovarian hormones are normal physiological processes but in a subpopulation of women, these events contribute to the onset and cyclic exacerbation of PD. E2 reduced EPSCs frequency in both control and NMS; however, the largest drop was observed during proestrus in NMS females (−0.63 versus −4.09 Hz for control and NMS, respectively). E2 reduced EPSC amplitude in ORX cells from control but not NMS (Fig. 5F, G–I).

E2 reduced EPSCs frequency in both control and NMS; however, the largest drop was observed during proestrus in NMS females (−0.63 versus −4.09 Hz for control and NMS, respectively). E2 reduced EPSC amplitude in ORX cells from control but not NMS (Fig. 5F, G–I).

Discussion

Puberty and cyclic fluctuations in ovarian hormones are normal physiological processes but in a subpopulation of women, these events contribute to the onset and cyclic exacerbation of PD. Thus, elucidating how ovarian function affects respiratory manifestations of PD is of utmost importance to our understanding of the pathophysiology of this disorder. Early life adversities are a significant risk factor for PD and the sex-specific enhancement of the ventilatory response to CO2 inhalation in rats is an attractive model to address this question. Here, we show that in NMS females endogenous release of E2 during CO2 inhalation is insufficient to maintain the ventilatory response within a normal range. These data support our main hypothesis and indicate that mature (functional) ovaries are necessary to observe an excessive ventilatory response to CO2 inhalation in NMS females. This, and the involvement of the ORX system in
this process strengthens the model and our demonstration that NMS disrupts E2 regulation of ORX neurons point to a novel mechanism in the pathophysiology of PD in females.

Neonatal maternal separation affects E2 signaling regulating the response to CO2 inhalation

Progesterone and E2 both fluctuate across the estrus cycle. However, the largest NMS-related increase in CO2 response coincided with the peak in E2 (proestrus) and following OVX, restoring normal E2 levels alone was sufficient to reinstate an excessive ventilatory response in NMS rats. We, therefore, conclude that E2 plays a primary role in the enhanced response to CO2. NMS does not affect the cyclic changes in E2 or progesterone under basal conditions (Fig. 1C;56) but attenuates E2 release following CO2 exposure, especially during proestrus. The sympathetic system regulates ovarian E2 secretion57, and ovarian aromatase expression peaks during proestrus48. Since plasma E2 closely reflects brain levels49, such impairment in E2 signalling within the brain of NMS females is likely. The inability of NMS females to augment E2 in response to CO2 during proestrus suggests that NMS reduced E2 synthesis capacity and thus compromise the response to an acute challenge. The relationships between E2 levels and the intensity of the ventilatory response suggest that impairment of E2 signalling contributes to the abnormal respiratory phenotype of NMS females. Experiments performed on OVX females show that E2 can attenuate the excessive CO2 response of NMS females; however, higher levels are necessary.

Neonatal maternal separation augments ORX activation under basal conditions

Having previously shown that NMS does not affect the carotid body’s response to CO2 in male and female rats50, our investigation focused on central mechanisms regulating the ventilatory response to CO2. Orexin neurons project to key medullary areas regulating breathing, including those that generate respiratory rhythm and contribute to CO2 chemosensitivity58. The clinical evidence implicating ORX in PD is important11,54 and our results showing that NMS augments ORX levels in the hypothalamus are consistent with clinical and preclinical data. A similar increase has been reported in males18 but since regulation of ORX neurons likely differs between sexes19,53,20 testing this effect in females was necessary. ORX synthesis is activity-dependent and highly plastic52. In light of the close relationship between the hypothalamo-pituitary adrenal (HPA) axis and the ORX system19,53, the enhancement of basal HPA activity commonly reported in animals and humans who experienced early life adversities could explain the higher ORX level in hypothalamic extracts54–56. In adult rats, however, disruption of HPA axis function by NMS is significant only in males57,58. Thus, another mechanism should be considered to explain this result.

In control females, comparison of c-Fos expression between females experiencing high (proestrus) and low (OVX) E2 clearly supports an inhibitory action of estrogens on ORX neurons. Conversely, the high c-Fos/ORX4 ratio observed in NMS females, regardless of the ovarian function, suggests a generally higher degree of basal activity and a reduced sensitivity to E2 and/or insufficient levels. This result therefore provides a plausible explanation for greater level of ORX during inhalation. The latter interpretation is supported by fact that NMS augmented the c-Fos/ORX ratio in PeF/DMH areas that, unlike the LH, regulate cardiorespiratory homeostasis57. Moreover, pre-treatment with SB334867 prevented NMS-related increase in the ventilatory response to CO2.

Neonatal maternal separation disrupts E2 regulation of ORX neurons

ORX neurons are essential to several homeostatic functions. To the best of our knowledge, this is the first study documenting the impact of natural fluctuations in ovarian hormones (and OVX) on basic properties and excitatory synaptic inputs in females. While natural fluctuations in ovarian hormones have no impact on basic properties, the Vm and capacitance values obtained during the natural E2 nadir (metestrus) differs from those recorded following OVX. While OVX is the gold standard in preclinical research for evaluating gonadal hormone effects in females59, these results remind us that the changes induced by OVX may be more complex than a simple reduction of circulating hormones. Keeping that limitation in mind, the opposing effects of OVX on Vm between NMS and controls nonetheless indicate that NMS affects the way ovarian hormones influence this important property of ORX neurons.

Orexin neurons are the target of multiple afferent signals form diverse origins10,60,61. The frequency and amplitude of spontaneous EPSC’s reflect the number and the strength of excitatory synaptic inputs acting on ORX neurons, respectively. E2 acts via both membrane and nuclear receptors and the results reported here provide valuable insights into the mechanisms by which endogenous E2 contributes to inhibition of ORX neurons. EPSC frequencies measured in controls were inversely related to basal plasma E2 levels associated with natural cyclic fluctuations or OVX; exogenous E2 elicited a similar decrease in frequency in the minutes that followed its application onto slices. This implies that both E2 receptor types could regulate the number of synapses converging onto ORX neurons. Conversely, the fact that
only acute E$_2$ reduced EPSCs amplitude suggests that regulation of synaptic strength by E$_2$ signalling is rapid but transient. E$_2$ is generally known to promote dendritic spine formation, potentiate excitatory synaptic transmission, and reduce the efficacy of GABAergic inhibition$^{60–62}$. In the cortex and the hippocampus, however, application of LY 3201 (a selective agonist of the nuclear receptor ERβ) can elicit an opposite response by reducing dendritic spines and increasing expression of glutamic acid decarboxylase (GAD)66. This increase in GAD expression, combined with a reduction in the expression of NMDA receptors shifts the balance between excitatory and inhibitory neurotransmission in favor of inhibition66. Together, these effects explain the anxiogenic and anxiolytic actions of ERα and ERβ, respectively67. Since E$_2$ inhibits expression of ERα,68 region-specific changes in the relative expression of ERs and ERβ likely contribute to the phase-dependent effects reported here. While NMS affects ERβ expression in the hippocampus of males69, its impact in females is yet to be tested.

At the system level, the CO$_2$ responses measured in controls indicate that as E$_2$ declines across the cycle, the increased activation of ORX cells is dampened to prevent excessive hyperpnea. Obviously, this mechanism is not fully functional in NMS females. Regulation of ORX neurons is a complex process that involves an important local network of neurons and astrocytes60 but obviously, NMS reduces E$_2$’s actions on these cells. In fact, the CO$_2$ response following E$_2$ replacement in OVX NMS females suggests that depending on the concentration administered, E$_2$ may have excitatory or inhibitory effects. Interestingly, PD is rare following menopause but E$_2$ replacement therapy has been linked with the development of panic attacks in some patients70.

Limitations and conclusion

Inadequate modeling of human disease hinders translation of basic knowledge into effective treatment for human21. While our study shows that NMS closely reproduces developmental and cyclic changes in the respiratory manifestations of PD and enhancement of ORX modulation, we must keep in mind that animal research cannot reproduce the complex psychosocial reality often associated with PD. Furthermore, the estrus cycle in rodents is not equivalent to the menstrual cycle in humans20. That being said, NMS nonetheless meets key criteria expected from an animal model, including time-dependent and sex-specific effects on respiration66,71. The results reported here, therefore, offer valuable insights into the basic mechanism in this neurological disorder affecting female rats. Our demonstration that NMS disrupts the inhibitory actions of E$_2$ on respiratory control are significant as they offer new avenues to alleviate PD.

Acknowledgements

L.T.L. was supported by National Council for Scientific and Technological Development CNPq-Brazil (206239/2014-9-PDE) and an operating grant from the Canadian Institutes of Health Research (MOP 133686 to R.K. and F.B.) and the fondation de l’Institut Universitaire en Cardiologie et Pneumologie de Québec (R.K.). The authors acknowledge the technical support of Dr. R. Gulenetrova, Dr. Olivier Pothier-Piccinin, Agathe Bernet, and Anabel Buteau-Poulin in this research. We also acknowledge the generous intellectual contributions and guidance offered by Dr. G. Drolet.

Author details

1Hotchkiss Brain Institute; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada. 2Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (R.K.). The authors acknowledge the technical support of Dr. R. Gulenetrova, Dr. Olivier Pothier-Piccinin, Agathe Bernet, and Anabel Buteau-Poulin in this research. We also acknowledge the generous intellectual contributions and guidance offered by Dr. G. Drolet.

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

accompanies this paper at (https://doi.org/10.1038/s41398-020-01076-x).

Received: 25 September 2020 **Revised**: 1 October 2020 **Accepted**: 20 October 2020

Published online: 10 November 2020

References

1. Grassi, M. et al. Are respiratory abnormalities specific for panic disorder? A meta-analysis. Neuropsychobiology. **70**, 52–60 (2014).
2. Su, V. Y.-F. et al. Sleep apnea and risk of panic disorder. *Ann. Fam. Med*. **13**, 325–330 (2015).
3. Freire, R. C. et al. Clinical features of respiratory and nocturnal panic disorder subtypes. *Psychiatry Res*. **152**, 287–291 (2007).
4. Klein, D. F. False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. *Arch. Gen. Psychiatry*. **50**, 306–317 (1993).
5. Vollmer, L. L., Stravan, J. R. & Sah, R. Acid-base dyregulation and chemosensory mechanisms in panic disorder: a translational update. *Transl Psychiatry* **5**, e572 (2015).
6. Coryell, W., Pine, D., Fyer, A. & Klein, D. Anxiety responses to CO$_2$ inhalation in subjects at high-risk for panic disorder. *J. Affect Disord.* **92**, 63–70 (2006).
7. Gorman, J. M. et al. Anxiogenic effects of CO$_2$ and hyperventilation in patients with panic disorder. *Am. J. Psychiatry* **151**, 547–553 (1994).
8. Carne, P. & Kuwaki, T. In Current Topics in Behavioral Neurosciences (eds Lawrence, A. J., & de Lecea, L.), vol. 33, 157–196 (Springer, 2017).
9. Gestreau, C., Bevengut, M. & Dutschmann, M. The dual role of the orexin/hypocretin system in modulating wakefulness and respiratory drive. *Curr. Opin. Pulm. Med.* **14**, 512–518 (2008).
10. Li, A. & Nattie, E. E. Orexin, cardio-respiratory function and hypertension. *Front. Neurosci.* **8**, 22 (2014).
11. Johnson, P. L. et al. A key role for orexin in panic anxiety. *Nat. Med.* **16**, 111–115 (2010).
12. Johnson, P. L. et al. Orexin 1 and 2 receptor involvement in CO$_2$-induced panic-associated behavior and autonomic responses. *Depress Anxiety* **32**, 671–683 (2015).
13. Johnson, P. L. et al. Activation of the orexin 1 receptor is a critical component of CO$_2$-mediated anxiety and hypertension but not bradycardia. *Neuropsychopharmacology* **37**, 1911–1922 (2012).
14. Aserlamm, E. et al Assessing the interplay of childhood adversities with more recent stressful life events and conditions in predicting panic pathology.
among adults from the general population. J. Affect Disord. 225, 715–722 (2018).

15. Battaglia, M., Ogliari, A., D’Amato, F. & Kinkead, R. Early-life risk factors for panic and separation anxiety disorders: insights and outstanding questions arising from human and animal studies of CO2 sensitivity. Neurosci. Biobehav. Rev. 46, 465–464 (2014).

16. Ogliari, A. et al. The relationships between adverse events, early antecedents, and carbon dioxide reactivity as an intermediate phenotype of panic disorder: a general population study. Psychopharmacology. 79, 48–55 (2010).

17. Sargi, D. The role of the orexin system in stress response. Neuropharmacology 154, 66–78 (2019).

18. Feng, P., Vutucic, D., Wu, Z. & Stohl, K. P. Brain orexins and wake regulation in rats exposed to maternal deprivation. Brain Res. 1154, 163–172 (2007).

19. Grafe, L. A. & Bhattacharjee, S. Orexins and stress. Front. Neuroendocrinol. 51, 132–145 (2018).

20. Scheinberg, L. C. Towards a translational model of panic attack. Psychol. Neurosci. 3, 9–37 (2010).

21. Fournier, S., Gulemetova, R., Baldy, C., Joseph, V. & Kinkead, R. Neonatal stress model for panic. Neuroscience 46, 572 (2011).

22. Nillini, Y. I., Pines, S. L., Rohen, K. J., Zulenchek, M. J. & Rasmussen, A. M. The influence of the menstrual cycle on reactivity to a CO2 challenge among women with and without premenstrual symptoms. Cogn. Behav. Ther. 46, 239–249 (2017).

23. Reardon, L. E., Leen-Feldner, E. W. & Hayward, C. A critical review of the empirical literature on the relation between anxiety and puberty. Clin. Psychol. Rev. 29, 1–23 (2004).

24. Nillini, Y. I., Teoufoss, D. J. & Rohen, K. J. Anxiety sensitivity, the menstrual cycle, and panic disorder: a putative neuroendocrine and psychological interaction. Clin. Psychol. Rev. 31, 1183–1191 (2011).

25. Russell, S. H. et al. Orexin A interactions in the hypothalmo-pituitary gonadal axis. Endocrinology 142, S29–S32 (2001).

26. El-Sediek, M., Korsh, A. A. & Dees, M. M. Plasma orexin-A levels in postmenopausal women: possible interaction with estrogen and correlation with cardiovascular risk status. J. of OBG. 117, 488–492 (2010).

27. Genest, S. E., Guermetova, R., Laforest, S., Drolet, G. & Kinkead, R. Neonatal maternal separation induces sex-specific augmentation of the hypercapnic ventilatory response in awake rat. J. Appl. Physiol. 102, 1416–1421 (2007).

28. Tenorio-Lopes, L. et al. Neonatal maternal separation opposes the facilitatory activity of nucleus tractus solitarus neurons in rat pups. J. Neurosci. 32, e12550 (2013).

29. Leibold, N. K. et al. Carbon dioxide inhalation as a human experimental model of panic: the relationship between emotions and cardiovascular physiology. Biol. Psychiatry 94, 331–340 (2013).

30. Preece, A. N., Ryals, J. M., Wang, R. & Christianson, J. A. Vaginal hyperventilation and hyperventilatory-feeding stress axis dysfunction as a result of neonatal maternal separation in female mice. Neuroscience 263, 216–230 (2014).

31. Zhang, W., Zhang, N., Sakurai, T. & Kuwaki, T. Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminals. Brain Res. 1262, 25–37 (2009).

32. Harris, G. C., Wimmer, M. & Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556–559 (2005).

33. Sunanaga, J., Deng, B. S., Zhang, W., Kammura, Y. & Kuwaki, T. CO2 activates orexin-containing neurons in mice. Respiratory Physiol. Neurobiol. 166, 184–186 (2009).

34. Oberlander, J. G. & Woolley, C. S. 17β-Estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J. Neurosci. 37, 12314–12327 (2017).

35. Fournier, S. et al. Distinct dampening effects of progesterone on the activity of nucleus tractus solitarius neurons in rat pups. Exp. Physiol. 104, 463–468 (2019).

36. Baldy, C., Chamberland, S., Fournier, S. & Kinkead, R. Sex-specific consequences of neonatal stress on cardio-respiratory inhibition following laryngeal stimulation in rat pups. eLife 4, ENEURO3999-172017 (2017).

37. Fournier, S. et al. Gestational stress promotes pathological apneas and sex-specific disruption of respiratory control development in newborn rat. J. Neurosci. 33, 563–573 (2013).

38. Putnam, R. W., Conrad, S. C., Gdovin, M. J., Erlichman, J. S. & Lester, J. C. Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respir. Physiol. Neurobiol. 149, 165–179 (2005).

39. Reid, V. & Wittchen, H. U. DSM-IV panic attacks and panic disorder in a community sample of adolescents and young adults: how specific are panic attacks? J. Psychiatr. Res. 32, 335–345 (1998).

40. Lovick, T. A. Sex determinants of experimental panic attacks. Neurosci. Biobehav. Rev. 469, 465–471 (2014).

41. Gorman, J. M. et al. Physiological changes during carbon dioxide inhalation in patients with panic disorder, major depression, and premenstrual dyphoric disorder: evidence for a central fear mechanism. Arch. Gen. Psychiatry 58, 125–131 (2001).

42. Dumont, F. S., Biancardi, V. & Kinkead, R. Hypercapnic ventilatory response of anesthetized female rats subjected to neonatal maternal separation: insight into the origins of panic attacks? Respiratory Physiol. Neurobiol. 175, 288–295 (2011).

43. Uchida, S. & Kagitan, F. Neural mechanisms involved in the novel stress-induced inhibition of ovarian estradiol secretion. Anat. Rec. 302, 904–911 (2019).

44. Kobayashi, H., Yoshida, S., Sun, Y.-J., Shirasawa, N. & Naito, A. Changes of gastric acidoma and portal venous 17β-estradiol during the postnatal development and estrus cycle in female rats. Endocrine 46, 605–614 (2014).

45. Sae, Y., Gill, A. C. & Brunton, P. J. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J. Neuroendocrinol. 30, e12644 (2018).

46. Soliz, J., Tarn, R. & Kinkead, R. Neonatal maternal separation augments carotid body response to hypoxia in adult males but not female rats. Front. Physiol. 7, 432 (2016).

47. Flores, A., Saravia, R., Maldonado, R. & Berrendero, F. Orexins and fear implications for the treatment of anxiety disorders. Trends. Neurosci. 38, 550–559 (2015).

48. Gao, X.-B. & Wang, A. H. Experience-dependent plasticity in hypocretin/orxin neurons: re-setting arousal threshold. Front. Neurosci. 33, 502 (2010).

49. Winck-Somermer, R. et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci. 24, 11439–11448 (2004).

50. Chintaramani, K., Buder, E. D. & Raff, H. Programming of the hypothalamic-pituitary-adrenal axis by neonatal intermittent hypoxia: effects on adult male ACTH and corticosterone responses are stress specific. Endocrinology 155, 1765–1770 (2014).

51. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

52. de Koer, E. R., Sibug, R. M., Helmerhorst, F. M. & Schmidt, M. Stress, genes and the mechanism of programming the brain for later life. Neurosci. Biobehav. Rev. 29, 271–281 (2005).

53. Wijgers, A. & Neumman, I. D. Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol. Behav. 66, 293–302 (1999).

54. Genest, S. E., Guermetova, R., Laforest, S., Drolet, G. & Kinkead, R. Neonatal maternal separation and sex-specific plasticity of the hypoxic ventilatory response in awake rat. J. Physiol. 554, 543–557 (2004).

55. Kooij, S. V. & Bimonte-Nelson, H. A. Modeling menopause: The utility of rodents in translational behavioral endocrinology research. Maturitas 87, 5–17 (2016).

56. Bart, J., Albert, C. O., Parsons, M. P. & Hirasea, M. Local network regulation of orexin neurons in the lateral hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R572–R580 (2011).

57. Sakurai, T. The role of orexin in motivated behaviours. Nat. Rev. Neurosci. 15, 719–731 (2014).

58. Woolley, C. S. Acute effects of estrogen on neuronal physiology. Annu. Rev. Pharmacol. Toxicol. 47, 657–680 (2007).
63. Woolley, C. & McEwen, B. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. **12**, 2549–2554 (1992).

64. Smejkalova, T. & Woolley, C. S. Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. J. Neurosci. **30**, 16137–16148 (2010).

65. Mukherjee, J. et al. Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABAA receptors at inhibitory synapses. Proc. Natl Acad. Sci. USA **114**, 11763–11768 (2017).

66. Tan, X.-j et al. Reduction of dendritic spines and elevation of GABAergic signaling in the brains of mice treated with an estrogen receptor β ligand. Proc. Natl Acad. Sci. USA **109**, 1706–1712 (2012).

67. Wall, A. A. & Frye, C. A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology **31**, 1097–1111 (2006).

68. Murata, T., Narita, K. & Ichimaru, T. Rat Uterine Oxytocin Receptor and Estrogen Receptor α and β mRNA Levels are Regulated by Estrogen Through Multiple Estrogen Receptors. J. Reprod. Dev. **60**, 55–61 (2014).

69. Wang, H., Meyer, K. & Korz, V. Stress induced hippocampal mineralocorticoid and estrogen receptor β gene expression and long-term potentiation in male adult rats is sensitive to early-life stress experience. Psychoneuroendocrinology **38**, 250–262 (2013).

70. Kunte, H., Harms, L., Plag, J., Hellweg, R. & Kronenberg, G. Acute onset of panic attacks after transdermal estrogen replacement. Gen. Hospital Psychiatry **36**, e7 (2014).

71. Moreira, F. et al. Modeling panic disorder in rodents. Cell Tissue Res. **354**, 1–7 (2013).

72. Paxinos, G. & Watson, C. The rat brain in stereotaxic coordinates. 4th Edition edn. (Academic Press, San Diego, 1998).