On an Erlang(2) Process with Dependence Structure between Interclaim Arrivals and Claim Sizes

Qiao Li \(^{a \ast}\) and Zhenhua Bao \(^{a}\)

\(^{a}\) School of Mathematics, Liaoning Normal University, Dalian, China.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2022/v16i430410

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/84925

Received: 18 January 2022
Accepted: 22 March 2022
Published: 26 March 2022

Abstract

This paper considers an extension to the classical compound Poisson risk model for which an Erlang(2) process is utilized to the dependence structure between the claim sizes and interclaim times. In this framework, we derive the Lundberg generalised equation and the number of its roots, and the Laplace Transform (LT) of the expected discounted penalty function. We also show that the Gerber-Shiu function satisfies a defective renewal equation. Some explicit expressions are given to measure the impact of Erlang(2) dependence structure in the risk model on the ruin probability.

Keywords: Dependence; Gerber-Shiu penalty function; Laplace Transform; defective renewal equation; ruin probability.

1 Introduction

In the actuarial literature, many authors focus their research interests to two well-known risk models, namely the classical compound Poisson risk model and the risk model based on the renewal or the Sparre Andersen risk model. Ruin probabilities and many other ruin measures such as the marginal and the joint (defective or not) distributions of the time to ruin, the deficit at ruin and the surplus prior to ruin have been extensively studied (see Dickson and Hipp [1], Rolski et al. [2] and references

\(^{\ast}\)Corresponding author: E-mail: lq1439538754@163.com;
A unified approach to study these ruin measures with the discounted penalty function for the classical risk model has been introduced in the Gerber and Shiu [3]. Ruin problems in the generalized Erlang(n) risk model has been studied by Guan and Hu [4].

Note that, for these two risk models, it is explicitly assumed that the interarrival times between two successive claims and the claim amounts are independent. This assumption is appropriate in certain practical circumstances and has the advantage of simplifying the models. However, this assumption is inappropriate in the real world. For example, in modeling natural earthquake events, more considerable damages are expected with a longer period between claims. M. Boudreault et al. [5] studied the dependence structure among the interclaim time and the subsequent size. Stathis et al. [6] considered an extension to the renewal process by introducing a dependence structure between the claim sizes and interclaim times through a Farlie-Gumbel-Morgenstern copula. We can also see that in the H. Cossette et al. [7], Woo and Liu [8] studied a discrete-time risk model with Coxian interclaim times and time-dependent claims. Zhang and Liu [9] focused themselves on a discrete-time risk model with a mathematically tractable dependence structure.

Since then, several renewal risk models with different interclaim times have been studied by many authors. The Erlang distribution is one of the most commonly used distributions in risk and queueing theory. See the paper writing by Dickson and Hipp [1] [10], Cheng and Tang [11], Gerber and Shiu [12], Guan and Hu [13].

In this paper, we consider that the interclaim times are distributed according to an Erlang(2) and a dependence structure between the claim amount and the interclaim time.

The paper is organized as follows. In Section 2, we briefly introduce the risk model and the dependence structure of the proposed model. We analyse the generalised Lundberg equation and its roots in Section 3. The Laplace Transform (LT) of the Gerber-Shiu expected discount penalty function is given in Section 4. In Section 5, the defective renewal function is given. Finally, explicit expressions and numerical examples are given in Section 6.

2 The Risk Model and the Dependence Structure

In this section, we consider the surplus process \(\{U(t), t \geq 0\} \) defined by \(U(t) = u + ct - S(t) \), where \(u = U(0) \geq 0 \) is the initial surplus and \(c \) is the premium rate which is assumed to be a positive constant. \(S(t), t \geq 0 \) is the total claim amount process defined by \(S(t) = \sum_{i=1}^{N(t)} X_i \) and \(\sum_{i=1}^{b} X_i = 0 \) if \(b < a \). The claim number process \(\{N(t), t \geq 0\} \) is a renewal process defined by a sequence of independent and identically distributed (i.i.d.) interclaim times \(\{W_t\}_{t=1}^\infty \). We consider that the random variable (r.v.) \(W \) has an Erlang(2) distribution with probability density function (with expectation \(\beta = 2; \beta > 0 \) is a constant) given by

\[
 f_W(t) = \beta^2 t e^{-\beta t}, \quad t \geq 0.
\]

The individual claim amount \(X_j, j \in N^+ \) are assumed to be a sequence of strictly positive random variable with cumulative distribution function (c.d.f.) \(F_X(x) = 1 - F_X(x) \) and Laplace Transform \(f_X \). We assume that the claim amount and the interclaim time r.v.'s \(X_k \) and \(W_k \) is a dependence structure. We define the density of \(X_k|W_k \) as a mixture of two arbitrary density function \(f_1 \) and \(f_2 \) (with respective means \(\mu_1 \) and \(\mu_2 \)), i.e.

\[
 f_{X_k|W_k}(x) = e^{-\lambda W_k} f_1(x) + (1 - e^{-\lambda W_k}) f_2(x), \quad x \geq 0, k = 1, 2, \ldots ,
\]

where \(\lambda \) is a positive constant.

\[63\]
We let \(\tau = \inf \{ t : U_t < 0 \} \) be the time of ruin with \(\tau = \infty \) if \(U_t \geq 0 \) (i.e. ruin does not occur). The deficit at ruin is denoted by \(|U_\tau| \) and the surplus just prior to ruin is \(U_{\tau^-} \). To ensure that ruin does not almost surely occur, the premium rate \(c \) is such that
\[
E[e^{W_1 - X_1}] > 0, \quad j = 1, 2, \ldots
\]
(2.3)

providing a positive safety loading.

The Gerber-Shiu discounted penalty function \(m_\delta(u) \) is defined as
\[
m_\delta(u) = E[e^{-\delta \tau} w(U_{\tau^-} | |U_\tau|) 1_{\tau < \infty} | U_0 = u],
\]
where \(\delta > 0, w : R^+ \times R^+ \rightarrow R^+ \) is the penalty function. Especially, a special case of the Gerber-Shiu discounted penalty function is when \(w(x, y) = 1 \), for all \(x, y \geq 0 \). Then \(m_\delta(u) \) becomes the Laplace Transform (LT) of the time of ruin, denoted by \(m_r(u) \). If \(\delta = 0 \) the \(m_\delta(u) \) becomes the ruin probability \(\psi(u) = E[1_{\tau < \infty} | U(0) = u] \).

3 Lundberg’s Generalised Equation

In this section, we need to derive the Lundberg generalised equation and the number of its roots, then we can evaluate the ruin quantities and find the defective renewal equation for the Gerber-Shiu function \(m_\delta(u) \).

To obtain the equation, we consider the discrete-time process embedded in the continuous-time surplus process \(\{ U(t); t \geq 0 \} \) to be the surplus immediately after the \(k \)th claim, where \(U_0 = u \), i.e.
\[
U_k = u + \sum_{i=1}^{k} (cW_i - X_i), \quad k = 1, 2, \ldots,
\]
The process \(\{ e^{-\delta \sum_{i=1}^{k} W_i + c t U_k}, \quad k = 0, 1, 2, \ldots \} \) for \(s > 0 \) is a martingale if and only if
\[
E[e^{-\delta W} e^{s(W - X)}] = E[e^{(c-\delta)W} e^{-sx}] = 1,
\]
(3.1)

which is called the Lundberg generalised equation. Given in Equation (2.1) and (2.2), the left-hand side of Equation (3.1) can be written as
\[
E[e^{-\delta W} e^{s(W - X)}] = \int_0^{\infty} \int_0^{\infty} e^{-(\beta+\alpha)x} f_W(t)(e^{-\delta t} f_1(x) + (1 - e^{-\delta t} f_2(x))) e^{-sx} dx dt
\]
\[
= \beta^2 \hat{f}_1(s) \frac{1}{(\delta + \lambda + \beta - cs)^2} + \beta^2 \hat{f}_2(s) \frac{1}{(\delta + \beta - cs)^2}
- \beta^2 \hat{f}_2(s) \frac{1}{(\delta + \lambda + \beta - cs)^2}
\]
(3.2)

Then, Equation (3.1) reduces to
\[
\frac{\beta^2 (\frac{\lambda+\beta}{c} - s)^2 \hat{f}_1(s) + (\frac{\lambda+2\beta}{c} - s)^2 \hat{f}_2(s) - (\frac{\lambda+\beta}{c} - s)^2 \hat{f}_2(s)}{(\frac{\lambda+2\beta}{c} - s)^2 (\frac{\lambda+\beta}{c} - s)^2} = 1.
\]
(3.3)

We use Rouche’s theorem to show the numbers of roots of the generalized Lundberg equation in the following proposition.

PROPOSITION 1. For \(\delta > 0 \), Lundberg’s generalised equation in (3.3) has exactly 4 roots, say \(\rho_1(\delta), \rho_2(\delta), \rho_3(\delta), \rho_4(\delta) \), with \(\text{Re}(\rho_i(\delta)) > 0 \), \(i = 1, 2, 3, 4 \).
Proof. To prove the result, we apply Rouche’s theorem on the closed contour C, containing the imaginary axis running from $-ir$ to ir and a semicircle with radius r running clockwise from ir to $-ir$. Also let $r \to \infty$ and denote by C the limiting contour.

The generalised Lundberg Equation (3.3) can be written as

\[
\beta^2(\delta + \beta - cs)^2 \hat{f}_1(s) + \beta^2 \hat{f}_2(s)\left[\left(\delta + \lambda + \beta - cs\right)^2 - (\delta + \beta - cs)^2\right] = (\delta + \lambda + \beta - cs)^2(\delta + \beta - cs)^2.
\]
(3.4)

(1) For $Re(s) > 0$, we have $|\delta + \beta - cs| \to \infty$, $|\delta + \lambda + \beta - cs| \to \infty$ as $r \to \infty$, and thus

\[
\left|\frac{\beta^2}{(\delta + \lambda + \beta - cs)^2} \hat{f}_1(s) + \frac{1}{(\delta + \beta - cs)^2} - \frac{1}{(\delta + \lambda + \beta - cs)^2}\right| \beta^2 \hat{f}_2(s) \leq |\hat{f}_1(s)| \left|\frac{\beta^2}{(\delta + \lambda + \beta - cs)^2} + \frac{\beta^2}{(\delta + \beta - cs)^2} + \frac{\beta^2}{(\delta + \lambda + \beta - cs)^2}\right| \to 0
\]

on C. For $r \to \infty$, and hence it holds that

\[
\left|\frac{\beta^2}{(\delta + \lambda + \beta - cs)^2} \hat{f}_1(s) + \frac{1}{(\delta + \beta - cs)^2} - \frac{1}{(\delta + \lambda + \beta - cs)^2}\right| \beta^2 \hat{f}_2(s) < 1
\]
(3.5)

on C.

(2) For $Re(s) = 0$, that is, for s on the imaginary axis, similar to Cossette et al.[8], we let

\[
\hat{d}_s(s) = \frac{\beta^2}{(\delta + \beta - cs)^2} - \frac{\beta^2}{(\delta + \lambda + \beta - cs)^2}
\]

then we derive

\[
|\hat{d}_s(s)| = \beta^2 \left|\frac{(2\delta + 2\beta - 2cs)\lambda + \lambda^2}{(\delta + \beta - cs)^2(\delta + \lambda + \beta - cs)^2}\right| \leq \beta^2 \lambda \left|\frac{(2\delta + 2\beta + \lambda)^2 + (2cs)^2}{(\delta + \beta)^2(\delta + \lambda + \lambda)^2(2\delta + 2\beta + \lambda)}\right| \leq \beta^2 \lambda \left|\frac{(2\delta + 2\beta + \lambda)^2}{(\delta + \beta)^2(\delta + \lambda + \lambda)^2(2\delta + 2\beta + \lambda)}\right| = |\hat{d}_s(0)|
\]

and

\[
\left|\frac{\beta^2}{(\delta + \lambda + \beta - cs)^2} \hat{f}_1(s) + \frac{1}{(\delta + \beta - cs)^2} - \frac{1}{(\delta + \lambda + \beta - cs)^2}\right| \beta^2 \hat{f}_2(s) = \left|\frac{\beta^2}{(\delta + \lambda + \beta - cs)^2} \hat{f}_1(s) + \hat{f}_2(s) \hat{d}_s(s)\right| \leq \left|\frac{\beta^2}{(\delta + \lambda + \beta - cs)^2}\right| + |\hat{d}_s(s)| \leq \left|\frac{\beta^2}{(\delta + \lambda + \beta)^2}\right| + |\hat{d}_s(0)|
\]
(3.6)

It holds $\hat{d}_s(0) > 0$ for $\delta > 0$, then Equation (3.6) becomes

\[
\left|\frac{\beta^2}{(\delta + \lambda + \beta - cs)^2} \hat{f}_1(s) + \frac{1}{(\delta + \beta - cs)^2} - \frac{1}{(\delta + \lambda + \beta - cs)^2}\right| \beta^2 \hat{f}_2(s) \leq \left|\frac{\beta^2}{(\delta + \lambda + \beta)^2}\right| + |\hat{d}_s(0)| < 1
\]
Above all, we proved that
\[\left| \beta^2(\delta + \beta - cs)^2 \hat{f}_1(s) + \beta^2 \hat{f}_2(s) \left[(\delta + \lambda + \beta - cs)^2 - (\delta + \beta - cs)^2 \right] \right| < \left| (\delta + \lambda + \beta - cs)^2 (\delta + \beta - cs)^2 \right| \]
in both cases.

By using Rouche’s theorem, the Equation (3.4) has the same number of roots as the equation
\[(\delta + \lambda + \beta - cs)^2 (\delta + \beta - cs)^2 = 0 \]
inside \(C \). Then we deduce that Equation (3.3) has exactly 4 roots, say \(\rho_1(\delta), \ldots, \rho_4(\delta) \) with positive real parts.

In the following, for simplicity we write \(\rho_j \), for \(\rho_j(\delta), j = 1, 2, 3, 4 \), when \(\delta > 0 \).

Remark. For \(\delta = 0 \), the conditions to Rouche’s theorem are not satisfied, since
\[
\left| \frac{\beta^2}{(\delta + \lambda + \beta - cs)^2} \hat{f}_1(s) + \frac{1}{(\delta + \beta - cs)^2} - \frac{1}{(\delta + \lambda + \beta - cs)^2} \right|\beta^2 \hat{f}_2(s) = 1
\]
for \(s = 0 \). The case of \(\delta = 0 \) is important to evaluate several ruin related quantities, such as the ruin probability, being special cases of the Gerber-Shiu penalty function at \(s \).

Proposition 2. For \(\delta = 0 \), Lundberg’s generalized Equation (3.3) has exactly 3 roots, say \(\rho_1(0), \rho_2(0), \rho_3(0) \), with positive real parts and one root equals zero.

Proof. Define the contour \(D_k = s : |s| = 1 \) and let \(z = 1 - \frac{1}{s} \). In terms of \(s \), the contour \(D_k \) is a circle with origin at \(k \) and radius \(k \). Similarly as in Proposition 1, we let \(k \to \infty \) and denote by \(D \) the limiting contour. Using the same arguments as in the proof of Proposition 1, one can show that Equation (3.4) also holds on \(D \) (excluding \(s = 0 \) or equivalently \(z = 1 \)) for \(\delta = 0 \). Besides, the functions
\[
\beta^2(\delta + \beta - cs)^2 \hat{f}_1(s) + \beta^2 \hat{f}_2(s) [(\delta + \lambda + \beta - cs)^2 - (\delta + \beta - cs)^2] \text{ and } (\delta + \lambda + \beta - cs)^2 (\delta + \beta - cs)^2
\]
are continuous on \(D \). As Theorem 1 of Klimenok(2001), we need prove that
\[
\frac{d}{dz} \left\{ 1 - \frac{\beta^2}{(\lambda + \beta - ck(1-z))^2} \hat{f}_1(k - kz) - \frac{\beta^2}{(\beta - ck(1-z))^2} \hat{f}_2(k - kz) \right\} \bigg|_{z=1} > 0.
\]
The left-hand side of this relation is equal to
\[
\frac{d}{dz} \left\{ 1 - E \left[e^{(k-kz)(cW-X)} \right] \right\} \bigg|_{z=1} = kE[cW-X] > 0,
\]
where \(E[cW-X] > 0 \) given the solvability condition in Equation (2.3).

Based on Klimenok (2001), we conclude that inside \(D \), the number of roots of Equation (3.4) is equal to 3, that is, the number of roots of \((\delta + \lambda + \beta - cs)^2 (\delta + \beta - cs)^2 \) inside \(D \) minus 1. Moreover, a trivial root to Lundberg’s generalised equation (3.3) equals zero.

4 Laplace Transform of \(m_{\delta}(u) \)

In this section, we want to derive the Laplace Transform (LT) \(\hat{m}_{\delta}(s) = \int_0^\infty e^{-su} m_{\delta}(u) du \) of the Gerber-Shiu expected discount penalty function \(m_{\delta}(u) \) defined by Equation (2.4).
For $u \geq 0$, we define the following functions

$$
\sigma_{1,\delta}(u) = \int_0^u m_3(u - x)f_1(x)dx + \gamma_1(u), \quad \gamma_1(u) = \int_u^\infty f_1(x)dx \\
\sigma_{2,\delta}(u) = \int_0^u m_3(u - x)f_2(x)dx + \gamma_2(u), \quad \gamma_2(u) = \int_u^\infty f_2(x)dx
$$

(4.1)

By conditioning on the time and the amount of the first claim, we have

$$
m_3(u) = \int_0^\infty e^{-\delta t}f_W(t) \int_0^{u+ct}(m_3(u + ct - x))\left(e^{-\lambda t}f_1(x) + \left(1 - e^{-\lambda t}\right)f_2(x)\right)dxdt \\
+ \int_0^\infty e^{-\delta t}f_W(t) \int_u^{\infty} \left[e^{-\lambda t}f_1(x) + \left(1 - e^{-\lambda t}\right)f_2(x)\right]dxdt.
$$

(4.2)

Setting $y = u + ct$, and using Equation (4.1) and $f_W\left(\frac{y-u}{c}\right) = \beta^2 \left(\frac{y-u}{c}\right) e^{-\beta \left(\frac{y-u}{c}\right)}$, then Equation (4.2) yields

$$
c^2m_3(u) = \beta^2 \int_0^\infty e^{-\left(\delta + \lambda + \beta\right)\frac{y-u}{c}}(y-u)(\sigma_{1,\delta}(y) - \sigma_{2,\delta}(y))dy + \\
\beta^2 \int_0^\infty e^{-\left(\delta + \beta\right)\frac{y-u}{c}}(y-u)\sigma_{2,\delta}(y)dy.
$$

(4.3)

Taking LTs gives

$$
c^2\tilde{m}_3(s) = \beta^2 \int_0^\infty e^{-\left(\delta + \lambda + \beta\right)\frac{y-u}{c}}(\sigma_{1,\delta}(y) - \sigma_{2,\delta}(y))\int_0^y(y-u)e^{-\left(s - \frac{\delta + \lambda + \beta}{c}\right)u}dudy \\
+ \beta^2 \int_0^\infty e^{-\left(\delta + \beta\right)\frac{y-u}{c}}\sigma_{2,\delta}(y)\int_0^y(y-u)e^{-\left(s - \frac{\delta + \beta}{c}\right)u}dudy.
$$

(4.4)

It can be easily proved that for $a > 0$

$$
\int_0^y(y-u)e^{-au}du = \frac{y}{a} - \frac{1}{a^2} + \frac{e^{-ay}}{a^2}.
$$

(4.5)

Therefore, using Equation (4.5), Equation (4.4) can be written in the form

$$
c^2\tilde{m}_3(s) = \frac{\beta^2}{\left(s - \frac{\delta + \lambda + \beta}{c}\right)^2}(\tilde{\sigma}_{1,\delta}(s) - \tilde{\sigma}_{2,\delta}(s)) \\
+ \beta^2 \int_0^\infty e^{-\left(\delta + \lambda + \beta\right)\frac{y-u}{c}}(\sigma_{1,\delta}(y) - \sigma_{2,\delta}(y))\left(\frac{y}{s - \frac{\delta + \lambda + \beta}{c}} - \frac{1}{(s - \frac{\delta + \lambda + \beta}{c})^2}\right)dy \\
+ \frac{\beta^2}{\left(s - \frac{\delta + \beta}{c}\right)^2} \tilde{\sigma}_{2,\delta}(s) + \beta^2 \int_0^\infty e^{-\left(\delta + \beta\right)\frac{y-u}{c}}\sigma_{2,\delta}(y)\left(\frac{y}{s - \frac{\delta + \beta}{c}} - \frac{1}{(s - \frac{\delta + \beta}{c})^2}\right)dy \\
= \frac{\beta^2}{\left(s - \frac{\delta + \lambda + \beta}{c}\right)^2}(\sigma_{1,\delta}(s) - \sigma_{2,\delta}(s)) + \frac{\beta^2}{\left(s - \frac{\delta + \beta}{c}\right)^2} \tilde{\sigma}_{2,\delta}(s) + \tilde{B}_3(s),
$$

(4.6)

where

$$
\tilde{\sigma}_{i,\delta}(s) = \int_0^\infty e^{-uy}\tilde{\sigma}_{i,\delta}(u)du \quad i = 1, 2.
$$

(4.7)

and

$$
\tilde{B}_3(s) = \beta^2 \int_0^\infty e^{-\left(\delta + \lambda + \beta\right)\frac{y-u}{c}}(\sigma_{1}(y) - \sigma_{2}(y))\left(\frac{y}{s - \frac{\delta + \lambda + \beta}{c}} - \frac{1}{(s - \frac{\delta + \lambda + \beta}{c})^2}\right)dy \\
+ \beta^2 \int_0^\infty e^{-\left(\delta + \beta\right)\frac{y-u}{c}}\sigma_{2}(y)\left(\frac{y}{s - \frac{\delta + \beta}{c}} - \frac{1}{(s - \frac{\delta + \beta}{c})^2}\right)dy.
$$

(4.8)
Let \(\hat{\gamma}_i(s) = \int_0^\infty e^{-su} \gamma_i(u) du, \ i = 1, 2. \) Since from Equation (4.1), it holds \(\hat{\sigma}_i(s) = \hat{m}_i(s) \hat{f}_i(s) + \hat{\gamma}_i(s) \ i = 1, 2; \) the above Equation (4.6) reduces to

\[
\hat{m}_i(s) \left\{ c^2 - \frac{\beta^2}{(s - \frac{\delta + \lambda + \beta}{c})^2} (\hat{f}_i(s) - \hat{f}_2(s)) \right\} = \frac{\beta^2}{(s - \frac{\delta + \lambda + \beta}{c})^2} (\hat{\gamma}_1(s) - \hat{\gamma}_2(s)) + \frac{\beta^2}{(s - \frac{\delta + \lambda + \beta}{c})^2} \hat{\gamma}_2(s) + \hat{B}_i(s). \tag{4.9}
\]

Now using Equation (4.9), we give the following theorem about the expression for \(\hat{m}_i(s) \).

THEOREM 1. In the Erlang(2) risk process with a dependence structure, the Laplace Transform (LT) \(\hat{m}_i(s) \) of the \(m_i(u) \) is given by

\[
\hat{m}_i(s) = \frac{\hat{\beta}_{1,i}(s) + \hat{\beta}_{2,i}(s)}{\hat{h}_{1,i}(s) - \hat{h}_{2,i}(s)}, \tag{4.10}
\]

where

\[
\hat{h}_{1,i}(s) = \left(s - \frac{\delta + \lambda + \beta}{c} \right)^2 \left(s - \frac{\delta + \beta}{c} \right)^2, \tag{4.11}
\]

\[
\hat{h}_{2,i}(s) = \frac{\beta^2}{c^2} \left(s - \frac{\delta + \beta}{c} \right)^2 (\hat{f}_1(s) - \hat{f}_2(s)) + \frac{\beta^2}{c^2} \left(s - \frac{\delta + \lambda + \beta}{c} \right)^2 \hat{f}_2(s), \tag{4.12}
\]

\[
\hat{\beta}_{1,i}(s) = \frac{\beta^2}{c^2} \left(s - \frac{\delta + \beta}{c} \right)^2 (\hat{\gamma}_1(s) - \hat{\gamma}_2(s)) + \frac{\beta^2}{c^2} \left(s - \frac{\delta + \lambda + \beta}{c} \right)^2 \hat{\gamma}_2(s), \tag{4.13}
\]

and \(\hat{\beta}_{2,i}(s) \) is a polynomial in \(s \) of degree 3 or less, given by

\[
\hat{\beta}_{2,i}(s) = -\sum_{j=1}^{4} \hat{\beta}_{1,i}(\rho_j) \prod_{k=1,k \neq j}^{4} \frac{s - \rho_k}{\rho_j - \rho_k}. \tag{4.14}
\]

Proof. Multiplying both sides of Equation (4.9) by \((s - \frac{\delta + \lambda + \beta}{c})^2 (s - \frac{\delta + \beta}{c})^2 / c^2 \) and then solving the resulting equation for \(\hat{m}_i(s) \) we get immediately the equation (4.10), with

\[
\hat{\beta}_{2,i}(s) = \frac{1}{c^2} \hat{h}_{1,i}(s) \hat{B}_i(s)
\]

\[
= \frac{1}{c^2} \left(s - \frac{\delta + \lambda + \beta}{c} \right)^2 \left(s - \frac{\delta + \beta}{c} \right)^2 \left\{ \frac{\beta^2}{s - \frac{\delta + \lambda + \beta}{c}} \int_0^\infty e^{-(\delta + \lambda + \beta)/c} (\sigma_{1,i}(y) - \sigma_{2,i}(y)) dy \right\}
\]

\[
- \frac{\beta^2}{c^2} \int_0^\infty e^{-(\delta + \lambda + \beta)/c} (\sigma_{1,i}(y) - \sigma_{2,i}(y)) dy \right\}
\]

\[
+ \frac{1}{c^2} \left(s - \frac{\delta + \lambda + \beta}{c} \right)^2 \left(s - \frac{\delta + \beta}{c} \right)^2 \left\{ \frac{\beta^2}{s - \frac{\delta + \lambda + \beta}{c}} \int_0^\infty e^{-(\delta + \lambda + \beta)/c} \sigma_{2,i}(y) dy \right\}
\]

\[
- \frac{\beta^2}{c^2} \int_0^\infty e^{-(\delta + \lambda + \beta)/c} \sigma_{2,i}(y) dy \right\}
\]

\[
= \frac{\beta^2}{c^2} \left(s - \frac{\delta + \beta}{c} \right)^2 \left(s - \frac{\delta + \lambda + \beta}{c} \right)^j \hat{\mu}_j \left(\delta + \lambda + \beta \right)
\]

\[
+ \frac{\beta^2}{c^2} \left(s - \frac{\delta + \lambda + \beta}{c} \right)^2 \left(s - \frac{\delta + \beta}{c} \right)^j \hat{\delta}_j \left(\delta + \beta \right) \ (j = 0, 1). \tag{4.15}
\]
which is a polynomial in s of degree 3 or less, where
\[
\hat{\rho}_j \left(\frac{\delta + \lambda + \beta}{c} \right) = \int_0^\infty e^{-\left(\frac{\delta + \lambda + \beta}{c} \right) y/c} (\sigma_{1,j}(y) - \sigma_{2,j}(y)) y^j dy
\]
\[
\hat{\delta}_j \left(\frac{\delta + \lambda + \beta}{c} \right) = \int_0^\infty e^{-\left(\frac{\delta + \lambda + \beta}{c} \right) y/c} \sigma_{2,j}(y) y^j dy \quad (j = 0, 1).
\] (4.16)

It is easy to see that the Lundberg’s generalised equation (3.1) can be written as $\hat{h}_{1,j}(s) - \hat{h}_{2,j}(s) = 0$, which means that $\rho'_i, i = 1, \ldots, 4$ are roots of the denominator in Equation (4.10). Since $\hat{m}_3(s)$ is analytic for $Re(s) \geq 0$, this implies that $\rho'_i, i = 1, \ldots, 4$ are also roots of the numerator in Equation (4.10), and thus $\hat{\beta}_{2,j}(\rho_i) = -\hat{\beta}_{1,j}(\rho_i), i = 1, \ldots, 4$. Since $\hat{\beta}_{2,j}(s)$ is a polynomial in s of degree 3, by the Lagrange interpolation formula at the 4 points $\rho_1, \rho_2, \rho_3, \rho_4$, we have
\[
\hat{\beta}_{2,j}(s) = \sum_{j=1}^4 \hat{\beta}_{2,j}(\rho_j) \prod_{k=1, k\neq j}^4 \frac{s - \rho_k}{\rho_j - \rho_k} = -\sum_{j=1}^4 \hat{\beta}_{1,j}(\rho_j) \prod_{k=1, k\neq j}^4 \frac{s - \rho_k}{\rho_j - \rho_k},
\] (4.17)
and then the proof is completed.

5 Defection Renewal Function

PROPOSITION 3. The Laplace Transform (LT) of $m_3(u)$ is given by
\[
\hat{m}_3(s) = \frac{T_s T_{\rho_1} \cdots T_{\rho_4} \hat{\beta}_{1,4}(0)}{1 - T_s T_{\rho_1} \cdots T_{\rho_4} \hat{h}_{2,4}(0)}.
\] (5.1)

Proof. By the Lagrange interpolating formula and using the Property of the Dickson-Hipp operator of Li and Garrido [15], we have
\[
\hat{\beta}_{1,j}(s) + \hat{\beta}_{2,j}(s) = \pi_4(s) \left\{ \frac{\hat{\beta}_{1,j}(s)}{\pi_4(s)} - \sum_{j=1}^4 \frac{\hat{\beta}_{1,j}(\rho_j)}{(s - \rho_j)\pi'(\rho_j)} \right\} = \pi_4(s) T_s T_{\rho_1} \cdots T_{\rho_4} \hat{\beta}_{1,4}(0),
\] (5.2)
where $\pi_4(s) = \prod_{i=1}^4 (s - \rho_i)$, and
\[
\hat{h}_{1,j}(s) = \hat{h}_{1,j}(0) \prod_{k=1}^4 \frac{s - \rho_k}{\rho_k} + \sum_{j=1}^4 \frac{\hat{h}_{1,j}(\rho_j)}{(s - \rho_j)\pi'(\rho_j)} \prod_{k=1, k\neq j}^4 \frac{s - \rho_k}{\rho_j - \rho_k}.
\] (5.3)

Similar arguments as the Cossette et al. [16], the aforementioned relation implies that
\[
\hat{h}_{1,j}(s) - \hat{h}_{2,j}(s) = \pi_4(s) \left[\frac{\hat{h}_{1,j}(0)}{\pi_4(0)} \bigg\{ \sum_{j=1}^4 \frac{\hat{h}_{2,j}(\rho_j)}{(s - \rho_j)\pi'(\rho_j)} \bigg\} - \hat{h}_{2,j}(s) \pi_4(s) \right],
\] (5.4)
Since $\hat{h}_{2,j}(\rho_j) = \hat{h}_{1,j}(\rho_j), j = 1, \ldots, 4$, for $s=0$, we obtain
\[
\frac{\hat{h}_{1,j}(0)}{\pi(0)} + \sum_{j=1}^4 \frac{\hat{h}_{2,j}(\rho_j)}{\rho_j\pi'(\rho_j)} = \frac{(\delta + \lambda + \beta)^2}{c^4} \sum_{j=1}^4 \frac{\rho_j (s + \lambda + \beta - \rho_j)^2}{\rho_j (s + \lambda + \beta - \rho_j)^2} \prod_{k=1, k\neq j}^4 (\rho_j - \rho_k) = 1.
\] (5.5)
Then Equation (5.4) becomes
\[\hat{h}_{1,\delta}(s) - \hat{h}_{2,\delta}(s) = \pi_\delta(s) [1 - T_\pi T_{\rho_1} \ldots T_{\rho_4} h_{2,\delta}(0)]. \] (5.6)
Finally, replacing Equation (5.2) and (5.6), we obtain Equation (5.1).

PROPOSITION 4. The Gerber-Shiu discounted penalty function \(m_\delta(u) \) admits a defective renewal equation
\[m_\delta(u) = \int_0^u m_\delta(u - y) \zeta_\delta(y) dy + G_\delta(u), \quad u \geq 0 \] (5.7)
where
\[\zeta_\delta(y) = T_{\rho_1} \ldots T_{\rho_4} h_{2,\delta}(y), \]
\[G_\delta(u) = T_{\rho_1} \ldots T_{\rho_4} \beta_{2,\delta}(u). \]
Furthermore, Equation (5.7) admits the following alternative representation
\[m_\delta(u) = \frac{1}{1 + \kappa_\delta} \int_0^u m_\delta(u - y) \theta_\delta(y) dy + \frac{1}{1 + \kappa_\delta} \Lambda_\delta(u), \quad u \geq 0 \] (5.8)
where \(\kappa_\delta \) is defined as
\[\frac{1}{1 + \kappa_\delta} = T_{\rho_1} T_{\rho_2} \ldots T_{\rho_4} h_{2,\delta}(0) = m_\delta(0). \]
Besides, we have
\[\Lambda_\delta(u) = (1 + \kappa_\delta) G_\delta(u), \]
and
\[\theta_\delta(y) = (1 + \kappa_\delta) \zeta_\delta(y), \]
which is a proper density function. From this Proposition, we can get that the LT of the time to ruin \(m_\delta(u) \) is the tail of a compound geometric distribution.

PROPOSITION 5. The LT of the time to ruin \(m_\delta(u) \) satisfies the defective renewal equation
\[m_\epsilon(u) = \int_0^u m_\epsilon(u - y) \zeta_\epsilon(y) dy + \int_u^\infty \zeta_\epsilon(y) dy \]
\[= \frac{1}{1 + \kappa_\delta} \int_0^u m_\epsilon(u - y) \theta_\delta(y) dy + \frac{1}{1 + \kappa_\delta} \int_u^\infty \zeta_\epsilon(y) dy, \quad u \geq 0. \] (5.9)

6 Numberical Illustration and Impact of the Dependence Structure

In this section, we start with some example. We assume that the r.v. \(X \) representing the individual claim amount follows a mixed exponential distribution with parameter \(\lambda_1, \lambda_2 \), that is, \(f_X(t) = e^{-\lambda_2} f_1(x) + (1 - e^{-\lambda_2}) f_2(x), x > 0 \), with \(f_1(x) = \lambda_1 e^{-\lambda_1 x}, f_2(x) = \lambda_2 e^{-\lambda_2 x} \). At first, we find an explicit expression for taking LTs in both sides of the first equation in Proposition 5, we obtain that
\[\hat{m}_\delta(s) = \frac{m_\delta(0) - \hat{\zeta}_\delta(s)}{s [1 - \hat{\zeta}_\delta(s)]} = \frac{1 - \hat{\zeta}_\delta(s) - [1 - m_\delta(0)]}{s [1 - \hat{\zeta}_\delta(s)]}. \] (6.1)
From Equation (5.6) we get
\[\hat{h}_{1,\delta}(s) - \hat{h}_{2,\delta}(s) = \left[1 - \hat{\zeta}_\delta(s) \right] \prod_{i=1}^4 (\rho_i - s), \] (6.2)
and then Equation (6.1) becomes
\[\hat{m}_r(s) = \frac{\hat{h}_{1,\lambda}(s) - \hat{h}_{2,\lambda}(s) - [1 - m_r(0)] \prod_{i=1}^{4} (\rho_i - s)}{s \left[\hat{h}_{1,\lambda}(s) - \hat{h}_{2,\lambda}(s) \right]}. \] (6.3)

By the Equation (4.11), (4.12) we can get that
\[\hat{h}_{1,\lambda}(s) - \hat{h}_{2,\lambda}(s) = \frac{Q_{4,\delta}(s)}{c^4(\lambda_1 + s)(\lambda_2 + s)}, \] (6.4)

where
\[
Q_{4,\delta}(s) = (\lambda_1 + s)(\lambda_2 + s)(\delta + \beta - cs)^2(\delta + \lambda + \beta - cs)^2 \\
- \beta^2\lambda_1(\lambda_2 + s)(\delta + \beta - cs)^2 - \beta^2\lambda_2(\lambda_1 + s)(-2cs\lambda + \lambda^2 + 2\lambda(\lambda + \beta)).
\]

Since \(Q_{4,\delta}(s)\) is a polynomial of degree 4, that is \(Q_{4,\delta}(s) = 0\) has 4 roots in the complex plane.

From Proposition 1 and Equation (6.4), \(Q_{4,\delta}(s) = 0\) has 4 roots \(\rho_1, \rho_2, \rho_3, \rho_4\) with positive real part and two roots say \(-R_i = -R_i(\delta)\), where \(\text{Re}(R_i) > 0, i = 1, 2\). Thus, we can rewrite \(Q_{4,\delta}(s)\) as
\[Q_{4,\delta}(s) = c^4(s + R_1)(s + R_2) \prod_{i=1}^{4} (s - R_i). \] (6.5)

From Equation (6.4) and (6.5), Equation (6.3) yields
\[\hat{m}_r(s) = \prod_{j=1}^{2} (s + R_j) - [1 - m_r(0)](\lambda_1 + s)(\lambda_2 + s) \frac{4}{s \prod_{j=1}^{2} (s + R_j)}. \] (6.6)

When \(\hat{m}_r(s) < \infty\) for \(s \geq 0\), the numerator in Equation (6.6) is zero for \(s = 0\), that is
\[1 - m_r(0) = \frac{R_1R_2}{\lambda_1\lambda_2}, \]

and then Equation (6.6) yields
\[\hat{m}_r(s) = \left(1 - \frac{R_1R_2}{\lambda_1\lambda_2}\right) \frac{s + R_1 + R_2 - \frac{R_1R_2(\lambda_1 + \lambda_2)}{\lambda_1\lambda_2}}{(s + R_1)(s + R_2)}. \] (6.7)

We assume that \(R_1, R_2\) are distinct and we can get that
\[\hat{m}_r(s) = \sum_{j=1}^{2} \xi_{1,\delta}, \] (6.8)

where
\[\xi_{1,\delta} = \frac{R_2}{R_2 - R_1} \left(1 - \frac{R_1(\lambda_1 + \lambda_2)}{\lambda_1\lambda_2} + \frac{R_1^2}{\lambda_1\lambda_2}\right), \]
\[\xi_{2,\delta} = \frac{R_1}{R_2 - R_1} \left(1 - \frac{R_2(\lambda_1 + \lambda_2)}{\lambda_1\lambda_2} + \frac{R_2^2}{\lambda_1\lambda_2}\right). \]

Inverting \(\hat{m}_r(s)\) is
\[m_r(u) = \xi_{1,\delta}e^{-R_1u} + \xi_{2,\delta}e^{-R_2u}, u \geq 0 \] (6.9)

and by letting \(\delta \to 0\), the ruin probability \(\Psi(u)\) can be obtained.
6.1 Numberical examples of two compared models

In this subsection, we start with a numerical example. We indicate the impact of the dependence parameter λ on the ruin probability and the LT of the ruin time, where $\delta = 0$.

Here we compare the ruin probabilities calculated in an Erlang(2) risk model with those calculated by the exponential risk. Other settings for the two compared models are identical. We assume the claim amount r.v. is $f_{X|W}(x) = \lambda_1 e^{-\lambda_1 x}$, $f_2(x) = \lambda_2 e^{-\lambda_2 x}$ (the expectation is μ_1 and μ_2) for both risk model, and also assume the interclaim r.v. is $f_w(t) = \beta^2 t e^{-\beta t}$ for Erlang(2) model and $f_w(t) = \beta e^{-\beta t}$ for exponential model.

The ruin probability $\psi_p(u)$ for the Exponential Poisson risk model are taken from Cossette et al. [17]. The ruin probability $\psi(u)$ for the Erlang(2) risk model is from Equation (6.9) using $\delta = 0$. For $u \geq 0$ and for different values of the dependence parameter λ, both can be seen in Fig. 1.

Let $\lambda_1 = 3$, $\lambda_2 = 1$, $c = 1.5$, $\beta = 2$, then we have

$$\psi(u) = -0.0711385440307139 e^{-2.72611056853693 u} + 0.1583937580081028 e^{-0.8478757687088427 u} + 0.4366144680653996 e^{-0.6272051410032553 u}$$

$$\psi_p(u) = -0.15951259519348063 e^{-1.931774860594839 u} + 0.4366144680653996 e^{-0.6272051410032553 u}$$

with $\lambda = 0.5$

Fig. 1. Ruin Probabilities in corresponding risk models
with $\lambda = 0.75$

$$\psi(u) = -0.059056035582145394e^{-2.74918048198971u} + 0.21623621102415286e^{-0.790825477411941u}$$

$$\psi_p(u) = -0.1128431290755753e^{-2.010106953258826u} + 0.5464987972543871e^{-0.5084178328686777u}$$

with $\lambda = 1$

$$\psi(u) = -0.0499755210860354e^{-2.760937726766137u} + 0.26379296752529546e^{-0.7434542500799464u}$$

$$\psi_p(u) = -0.08233381334110702e^{-2.0733044134625125u} + 0.6326231557343817e^{-0.41244806273596246u}$$

with $\lambda = 2$

$$\psi(u) = -0.029493060910398744e^{-2.827448729569705u} + 0.386612094590088e^{-0.6195283091024653u}$$

$$\psi_p(u) = -0.024656360929417924e^{-2.246943956889267u} + 0.8524521929729482e^{-0.16407661550122832u}$$

Table 1 is the numerical values of these ruin probabilities in corresponding risk models.

u	$\lambda = 0.5$	$\lambda = 0.75$	$\lambda = 1$	$\lambda = 2$
	$\psi(u)$	$\psi_p(u)$	$\psi(u)$	$\psi_p(u)$
0	8.725e-02	2.771e-01	1.571e-01	5.302e-01
5	2.283e-03	1.896e-02	4.396e-02	8.044e-02
10	3.292e-05	8.244e-04	7.959e-05	1.023e-02
15	4.745e-07	3.582e-05	1.557e-04	1.652e-01
20	6.842e-09	1.550e-06	2.923e-08	1.654e-04
25	9.863e-11	6.756e-08	5.605e-10	1.651e-06
30	1.422e-12	2.940e-09	1.074e-11	2.675e-06

Fig. 1 and Table 1 both show that the ruin probabilities $\psi(u)$ for the Erlang(2) risk model are much smaller than the exponential risk model for different initial surplus u and for all $\lambda > 0$, so we see that it is worthwhile to consider Erlang(2) risk models.

6.2 Impact of the dependence parameter λ

We plot the values $\psi(u)$ calculated in Fig. 2, and we easily get that the dependence parameter λ has an impact on the ruin probabilities. It is clear that the lower the dependence parameter the lower the ruin probability is.

We may interpret the impact of the dependence relation λ as follows. When the dependence relation λ is low, the probability of having an important claim increases as the time elapsed since the last claim increases. Thus the ruin probability will be lower since the probability that the insurance company will have enough premium income to pay the claim will be higher.
Furthermore using $\delta = 0.05$ and for different values of the dependence parameter λ, we arrive the analytic expressions for the LT of the time of ruin $m_\delta(u)$ as function of the initial surplus u, ($u \geq 0$), where $\lambda_1 = 3$, $\lambda_2 = 1$, $c = 1.5$, $\beta = 2$.

with $\lambda = 0.5$

$$m_\delta(u) = -0.07128752934999309e^{-2.730709280651613u} + 0.14690015980947344e^{-0.8589112541726275u}$$

with $\lambda = 0.75$

$$m_\delta(u) = -0.05977255444977979e^{-2.7531272965384335u} + 0.20067700234772152e^{-0.8065196739719653u}$$

with $\lambda = 1$

$$m_\delta(u) = -0.05105583625093204e^{-2.7725204232005805u} + 0.2435633830399145e^{-0.7632558174934445u}$$

with $\lambda = 2$

$$m_\delta(u) = -0.031068233976860926e^{-2.829560489332212u} + 0.3547980400374833e^{-0.651126273816391u}$$
From Fig. 3, we can see that the lower the dependence parameter λ, the lower the value of the LT of time to ruin is.

7 Conclusion

In this paper, we considered a dependence structure between the claim sizes and interclaim times, which the claim inter-arrival distribution is Erlang(2). We derived the roots of the generalised Lundberg equation and the Laplace Transform(LT) of the expected discounted penalty function. In particular, some explicit expressions are obtained to show that as the dependence parameter λ is lower, the ruin probability and the value of the LT of time to ruin are both lower.

Acknowledgements

I would like to express my gratitude to all those who offer great help for my paper, especially my supervisor Professor Zhenhua Bao. He provided me with abundant suggestions and priceless criticisms for my writing of the paper. But for his constant patient guidance and enlightenment, the paper would have become an impossible mission.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Dickson DCM, Hipp C. Ruin probabilities for Erlang(2) risk processes. Insurance: Mathematics and Economics. 1998;22:251-262.

[2] Rolski T, Schmidli H, Schmidt V, Teugels J. Stochastic processes for insurance and finance. New York: Wiley; 1999.
[3] Gerber HU, Shiu ESW. On the time value of ruin. North American Actuarial Journal. 1998;2:48-78.

[4] Bergel Agnieszka I, Egdio dos Reis, Alfredo D. Ruin problems in the generalized Erlang(n) risk model. European Actuarial Journal. 2016;6(1):257-275.

[5] Boudreault M, Cossette H, Landriault D. On a risk model with dependence between interclaim arrivals and claim sizes. Scandinavian Actuarial Journal. 2006;5:265-285.

[6] Chadjiconstantinid S, Vrontos S. On a renewal risk process with dependence under a Farlie-Gumbel-Morgenstern copula. Scandinavian Actuarial Journal. 2012;4:1-34.

[7] Cossette H, Marceau E, Marri F. On the compound Poisson risk model with dependence based on a generalized Farlie Gumbel Morgenstern copula. Insurance: Mathematics and Economics. 2008;43:444-445.

[8] Woo J-K, Liu H. Discounted aggregate claim costs until ruin in the discrete-time renewal risk model. Methodology and Computing in Applied Probability. 2018;20(4):1285-1318.

[9] Zhang Lianzeng, Liu He. On a discrete-time risk model with time-dependent claims and impulsive dividend payments. Scandinavian Actuarial Journal. 2020;20:1-18.

[10] Dickson DCM, Hipp C. On the time to ruin for Erlang(2) risk processes. Insurance: Mathematics and Economics. 2001;29:333-344.

[11] Cheng Y, Tang Q. Moments of the surplus before ruin and the deficit of ruin in the Erlang (2) risk process. North American Actuarial Journal. 2003;7:1-12.

[12] Gerber H, Shiu E. The time value of ruin in a Sparre Andersen model. North American Actuarial Journal. 2005;9:49-84.

[13] Guan G, Hu X. On the analysis of a discrete-time risk model with INAR(1) processes. Scandinavian Actuarial Journal. 2021;124.

[14] Klimenok V. On the modification of Rouche’s theorem for the queuing theory problems. Queuing Systems. 2001;38:431-434.

[15] Li S, Garrido J. On ruin for the Erlang(n) risk process. Insurance: Mathematics and Economics. 2004;34:391-408.

[16] Cheung E, Landriault D, Willmot GE. Structural properties of Gerber Shiu functions in dependent Sparre Andersen models. Insurance: Mathematics and Economics. 2010;46:117-126.

[17] Cossette H, Marceau E, Marri F. Analysis of ruin measures for the compound Poisson risk model with dependence. Scandinavian Actuarial Journal. 2010;3:221-245.

© 2022 Li and Bao; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) https://www.sdiarticle5.com/review-history/84925