This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/100775/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Trent, Simon ORCID: https://orcid.org/0000-0001-9563-4281, Phillip, Barnes, Hall, Jeremy ORCID: https://orcid.org/0000-0003-2737-9009 and Thomas, Kerrie ORCID: https://orcid.org/0000-0003-3355-9583 2017. AMPA receptors control fear extinction through an Arc-dependent mechanism. Learning and Memory 24, pp. 375-380. 10.1101/lm.045013.117 file

Publishers page: http://dx.doi.org/10.1101/lm.045013.117 <http://dx.doi.org/10.1101/lm.045013.117>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Activity-regulated cytoskeleton-associated protein (Arc) plays a key role in balancing both synaptic and structural plasticity (Peebles et al. 2010). Arc supports the maintenance of long-term potentiation (LTP) by stabilizing the actin cytoskeleton (Messaudoi et al. 2007) and supports mGluR-dependent long-term depression (LTD) and homeostatic plasticity by regulating AMPAR endocytosis (Chowdhury et al. 2006; Plath et al. 2006; Rial Verde et al. 2006; Shepherd et al. 2006; Park et al. 2008; Waung et al. 2008). Functionally, Arc activity in the hippocampus is required for the consolidation of spatial and contextual memories (Guzowski et al. 2000, 2001b).

We have recently shown Arc in the hippocampus plays an important role in the maintenance of conditioned fear memories (CFM) after recall (Trent et al. 2015). Specifically, we showed that knockdown of Arc levels in the hippocampus with targeted ASO cDNA (ARCASO) at retrieval resulted in a loss of conditioned fear responses. The ability to recover the memory at a later point indicated the ARCASO was not blocking the recall-dependent reconsolidation of memory, which predicts a persistent amnesia, but instead shows that Arc was part of a molecular process that acts to constrain the extinction of the fear memory. Extinction is a learning process that involves the encoding of a new contingency when a conditioned stimulus (CS) no longer predicts an event (Pavlov 1927) and at recall, the extinction memory competes directly with the original excitatory memory resulting in the weakening of the behavioral conditioned response (CR) (Myers and Davis 2007). We also showed that Arc expression was greater under conditions of recall (a 2 min short recall session (SR)) that does not lead to extinction compared with another (a 10 min long recall session (LR)) that did. These data highlight the inverse correlation between Arc levels and extinction (Barnes and Thomas 2008). Furthermore, they suggest a key role for Arc in CFM extinction, alongside its well-established role of CFM consolidation, although the precise role for Arc in the two memory processes may differ.

Here we have investigated the role of Arc in extinction further by using the AMPA/kainate receptor antagonist CNQX to increase hippocampal Arc protein levels. This approach leverages a previously characterized mechanism whereby AMPAR activity is known to negatively regulate activity-dependent Arc gene expression by decreasing the rate of Arc gene transcription and reduce Arc protein levels (Rao et al. 2006). We hypothesize that ectopically increasing hippocampal Arc levels using CNQX after prolonged CFM would impair extinction. We also investigated a mechanism by which Arc may be acting. Extinction is impaired by the actin-destabilizing agent cytochalasin D indicating that extinction is dependent on actin rearrangements (Fischer et al. 2004). It is also known that Arc is necessary for the synaptic plasticity mechanisms that rely on stabilizing actin dynamics (Messaudoi et al. 2007). Thus we predict that the direct role of Arc in controlling actin dynamics after recall would be demonstrated by a CNQX-mediated rescue of extinction after destabilization of the actin network with cytochalasin D.

In a first experiment we used the AMPA/kainate receptor antagonist CNQX to test the hypothesis that the infusion of CNQX into the dorsal hippocampus immediately after LR would be able to prevent the extinction-associated reduction in Arc protein levels. Rats were cannulated and CNQX or PBS was infused directly into the hippocampus after SR or LR (see Supplemental Methods for details, (Izquierdo et al. 1993, 2000)). Extinction induced by a 10 min LR exposure to a fear-conditioned context (Fig. 1A) was correlated with a decrease in Arc protein in CA1 of PBS-infused animals (Fig. 1B), as we have observed before (Barnes and Thomas 2008). However, this decrease in Arc was prevented with the infusion of CNQX following extinction (Fig. 1B). Therefore, AMPA/kainate receptors regulate Arc levels in an activity-dependent manner in vivo, and in extinction, CNQX treatment prevents the reduction in Arc levels.

Corresponding author: ThomasKL5@cf.ac.uk

Article is online at http://www.learnmem.org/cgi/doi/10.1101/lm.045013.117.

© 2017 Trent et al. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Learning & Memory

24:375–388; Published by Cold Spring Harbor Laboratory Press
ISSN 1549-5485/17; www.learnmem.org
Next, we used a behavioral procedure in which all rats were fear conditioned in two different contexts so that the two CFMs could be separately retrieved and extinguished by LR, one associated with CNQX treatment and the other not. A separate group of rats underwent the same procedure but using a SR session which does not produce extinction. This protocol provides a powerful method of investigating the effects of CNQX on extinction and memory stability after recall and to determine whether CNQX selectively impacted on a recalled memory (Fig. 1C). Rats were fear conditioned to two different contexts (A and B) by presenting a short unsignaled footshock in each of the contexts 2 min into a 3 min conditioning trial on consecutive days. The following day, rats underwent extinction training whereby each rat simply received either a 2 min exposure to each context 24 h apart (no extinction, SR group) or for 10 min to each context (extinction training, LR group). CNQX or PBS were infused into the dorsal hippocampus of each rat immediately after the recall sessions in a counterbalanced way such that each rat received CNQX following exposure to one of the contexts and PBS after exposure to the other context.

All rats discriminated conditioned to both contexts and showed robust CFM during the first 2 min of the extinction training (Fig. 1D). CNQX had no effect on CFM in the SR group measured during a test session 2 d later. However, under the key conditions of extinction (LR), high levels of freezing behavior were observed when the LR rats were reexposed to the CNQX-associated context, consistent with CNQX blocking the consolidation of extinction (Fig. 1D). Notably, CNQX did not result in any sensorimotor impairment apparent during observation of the rats’ behavior. Thus hippocampal CNQX has no effect on CFM stability associated with SR that does not lead to extinction, but it prevented the extinction of CFM caused by prolonged context exposure, LR. Furthermore, the blockade of extinction by CNQX is selective for the recalled fear memory because reduced freezing at test shows intact extinction of the memory recalled in Context A (PBS-associated) either 24 h before or after. Therefore, these results show that hippocampal infusions of CNQX that are associated with the maintenance of higher Arc levels, also results in an impairment of extinction after LR.

We next investigated whether CNQX-mediated extinction blockade acts specifically by maintaining elevated Arc levels. This was determined by investigating whether the CNQX-induced block on extinction was overcome by reduction of Arc levels with ARCASO. We have previously shown that intrahippocampal ARCASO administered 1.5 h before recall reduces Arc levels in CA1 (Trent et al. 2015). During a standard single contextual fear conditioning (CFC) paradigm, rats received intrahippocampal infusions of either ARCASO or ARCMSO, 1.5 h before a 10 min reexposure to the conditioned context. This was followed by the immediate infusion of CNQX and subsequent test sessions 2 and 21 d later (LTM1 and 2). CNQX blocked extinction of the CFM in control animals receiving ARCMSO, replicating the findings from the two-context paradigm (see Fig. 2 and Fig. 1D). However, the CNQX-induced block...
Extinction control: AMPARs, Arc, and the actin cytoskeleton

Here we have shown the AMPA/kainate receptor antagonist CNQX maintains elevated levels of hippocampal Arc during extinction training and blocks the consolidation of extinction. We confirm that CNQX acts through elevated Arc levels during extinction.

on extinction was rescued in animals given ARCASO (Fig. 2), demonstrating that the pharmacological blockade of AMPA/kainate receptors with CNQX prevents extinction through the specific downstream regulation of Arc levels.

Previous studies using direct infusions of cytochalasin D have shown that hippocampal actin rearrangements are required for the extinction of context-dependent fear (Fischer et al. 2004). Here we have shown the AMPA/kainate receptor antagonist CNQX maintains elevated levels of hippocampal Arc during extinction training and blocks the consolidation of extinction. We confirm that CNQX acts through elevated Arc levels during extinction.

Figure 2. Intrahippocampal ARCASO rescues extinction after CNQX. Two days after CFC groups of rats received either ARCASO (n = 6) or ARCMSO (n = 9) min prior to 10 min nonreinforced recall and all animals received CNQX immediately afterward. Fear memory was tested after 2 d (LTM 1) and 23 d (LTM 2). There was no effect of Group on CFC (F(1,10) = 4.086, P = 0.071, repeated-measures ANOVA) or conditioned freezing during the recall (F(3,09,30.093) = 2.44, P = 0.083, repeated-measures ANOVA) indicating that both ARCASO and ARCMSO groups showed the same within-session extinction behavior (F(3,09,30.093) = 14.573, P = 0.000, repeated-measures ANOVA). During the LTM tests, extinction was only observed in the ARCASO group while in comparison the ARCMSO group showed higher conditioned freezing behavior (F(1,9) = 17.918, P = 0.002, Group between-subjects contrast, repeated-measures ANOVA). NB: One rat was excluded from this analysis because it died between LTM 1 and LTM 2. Results are presented as the Mean ± SEM. Behavioral data for 2 min bins during recall is shown.

(∗) P < 0.05 (∗∗) P < 0.01 compared with ARCMSO.

Figure 3. Infusions of CNQX into the hippocampus overcomes the extinction deficit caused by cytochalasin D. (A) Cytochalasin D (CytoD) infusion into the dorsal hippocampus prior to extinction training (10 min exposure to the conditioned context) had no effect on within-session extinction compared with PBS-infused rats (F(2,810,30.934) = 0.430, P = 0.519, e = 0.703, repeated-measures ANOVA, n = 6/7 per group). CytoD impaired the reduction in conditioned freezing at the LTM1 retrieval test 2 d after extinction training (F(1,6) = 34.232, P = 0.002, repeated-measures ANOVA) but not at LTM2, 23 d later. All rats showed successful CFC and LTM in a new context (context B) subsequently (Conditioning, F(1,935,21,317) = 15.478, P = 0.000, e = 0.969; Conditioning × Group interaction, F(1,935,21,317) = 2.513, P = 0.104, e = 0.969, repeated-measures ANOVAs). (∗∗) P < 0.01 freezing behavior of CytoD/PBS at LTM1 compared with last 2 min of Recall. (B) In a separate cohort of rats, CytoD again prevented between-session extinction assessed at LTM1 but not LTM2, with no effect on within-session extinction (Training × Group interaction, F(2,934,35.453) = 2.513, P = 0.104, e = 0.739, repeated-measures ANOVA, n = 7 per group). Infusion of CNQX immediately after extinction training rescued the deficit in extinction recall tests LTM1 (Test × Group interaction, F(1,1,2) = 7.616, P = 0.017, repeated-measures ANOVA). All rats showed successful CFC and LTM in a new context (context B) subsequently (Conditioning, F(1,822,20.045) = 20.624, P = 0.000, e = 0.968; Conditioning × Group interaction, F(1,822,20.045) = 0.901, P = 0.363, e = 0.968, repeated-measures ANOVAs, n = 6/7 per group). Results are presented as the Mean ± SEM. Behavioral data for 2 min bins during recall is shown. (∗) P < 0.05 compared with PBS/CNQX.
extinction because reducing hippocampal Arc with targeted ARCASO infusions rescues extinction in the presence of CNQX. Therefore, the consolidation of extinction of CFM is dependent on hippocampal AMPA/kainate receptor activity (Dalton et al. 2008), with AMPA/kainate receptor-mediated decreases in Arc necessary for extinction consolidation. In addition, increasing Arc levels using CNQX overcomes the detrimental F-actin-destabilizing properties of cytochalasin D and thus promotes the consolidation of extinction.

In our extinction experiments, CNQX was given immediately after reexposure to the conditioned fear context, so its effect on extinction recall could not have been mediated by within-session reductions in conditioned response (CR) associated during LR (Myers and Davis 2007). Therefore, the high level of CR at subsequent tests following CNQX treatment indicates that CNQX specifically impairs the consolidation of extinction. The two-context fear memory experiment further shows the selectivity of the CNQX effect to the consolidation of extinction, as CNQX neither impaired the extinction of nonrecalled memories (i.e., extinction of the second PBS context ± 1 d was intact) or memories recalled for a short period of time (i.e., SR group). This demonstrates that the actions of CNQX on memory are recall- and activity-dependent. The effects of CNQX are selective because AMPAR activation associated with recall is necessary for extinction but not the maintenance of an established memory, consistent with the previous observations of AMPAR antagonism in the amygdala (Ben Mamou et al. 2006).

Extinction training was associated with a decrease in Arc protein in the CA1 6 h later and reductions in Arc were prevented by the AMPA/kainate receptor antagonist CNQX suggesting they are mediated by the receptor activity associated with LR and extinction. Previously we showed that a short 2 min recall of CFM does not change CA1 Arc protein levels (Barnes and Thomas 2008), while a long recall decreases Arc levels (Barnes and Thomas 2008) and ectopically reducing hippocampal Arc levels with ARCASO precipitated extinction (Trent et al. 2015). These data suggest that under native recall conditions Arc can act to constrain extinction. Indeed we now show that extinction impaired by CNQX and correlated with increased basal Arc levels, can be reinstated using ARCASO. The specificity of the ARCASO rescue effect is important given the broad pharmacological effects of CNQX on AMPA/kainate receptor-signaling (Stein et al. 1992; Malenka and Nicoll 1999; Armstrong and Gouaux 2000; Jin et al. 2003; Fleming and England 2010) and the subsequent complexity of signaling cascades downstream from these receptors that are relevant to plasticity, yet discrete from Arc itself (Rao et al. 2006; Rao and Finkbeiner 2007). Therefore, it appears that Arc is part of a pivotal mechanism that regulates fear extinction and that following retrieval of CFM, decreases in Arc protein in the hippocampus mediated through AMPA/kainate receptor activation are necessary for extinction.

Other studies have uniformly reported elevated hippocampal Arc expression with the retrieval of hippocampal-dependent memories during single brief recall sessions (Guzowski et al. 2001a, 2006; Chia and Otto 2013) that are not associated with extinction (Trent et al. 2015). In contrast, following extinction, while mRNA levels are maintained to baseline levels (Trent et al. 2015), protein levels decrease below baseline (Fig. 1B; Barnes and Thomas 2008). This demonstrates the exquisite regulation of Arc levels by the exact conditions of recall. Since the activity-dependent translation of Arc is under the tight control of nonsense-mediated mRNA decay (Giorgi et al. 2007), and there are independent mechanisms controlling the transcription and translation of Arc with synaptic activity (Panja et al. 2009), one may not expect to observe a strict stoichiometric concordance between measurable mRNA and protein levels (McIntyre et al. 2005). Notwithstanding, there appears to be a tight inverse correlation between Arc expression and extinction. Since the dendritic targeting of Arc mRNA (Steward et al. 1998; Steward and Worley 2001) and spatially restricted translation are coupled via local synaptic activity (Farris et al. 2014), future investigations of the temporal and spatial regulation of Arc expression should reveal the precise contribution of Arc to different plasticity and memory processes.

We confirmed a requirement of actin cytoskeleton rearrangements in the hippocampus in the extinction of CFM as shown by others (Fischer et al. 2004). Additionally, we observed that CNQX could fully restore the extinction impaired by cytochalasin D. These results suggest that increasing Arc levels using CNQX overcomes the F-actin-destabilizing properties of cytochalasin D and thus promotes the consolidation of extinction. This is consistent with a role for Arc in stabilizing the actin cytoskeleton, a role established for Arc in the maintenance of hippocampal LTP (Messaudi et al. 2007).

Our results show two important contributions of Arc to extinction. First, that high levels of Arc-associated with recall constrain extinction and second that Arc plays a role in maintaining extinction by stabilizing the actin cytoskeleton in the rearrangements necessary for extinction. These roles may appear to be paradoxical. However, the resolution is very likely to reside in the coordinated functions of Arc at active, and potentially inactive synapses. A decrease in Arc expression and levels may contribute to the decreased stability of the cytoskeleton associated with activity (Lynch and Baudry 1984; Ouyang et al. 2005; Lynch et al. 2007; Rex et al. 2009). A reduction in Arc levels but not loss at active synapses would present a permissive environment in which other functions of Arc, for example, Arc-dependent AMPA receptor endocytosis required for synaptic and structural plasticity (Rial Verde et al. 2006; Shepherd et al. 2006; Waung et al. 2008; Peebles et al. 2010), can occur prior to the restabilization of the actin cytoskeletal partly orchestrated by Arc. A similar model for the coordinated depolymerization and polymerization of the actin cytoskeleton in memory consolidation has been suggested (Rudy 2014). Such a model would be consistent with data that show a time-limited labilization process that is required for memory updating and extinction associated with retrieval (Ben Mamou et al. 2006; Lee 2009). This scenario would also be consistent with the view of Arc being localized to inactive synapses (Okuno et al. 2012) and acting as an inverse tag for local plasticity events and acting to maintain information already stored in neuronal circuits. Thus, a persistent or mis-timed alteration in actin cytoskeleton is likely to disrupt memory consolidation and extinction processes associated with a specific experience.

In summary, these findings shed further light on the molecular and cellular mechanisms for the formation of extinction memory with Arc centrally placed to orchestrate the consolidation of extinction. We have observed that Arc gates extinction at recall, with high, sustained levels of Arc (through CNQX administration) constraining extinction and decreases in Arc (through Arc antisense administration) facilitating premature extinction. Moreover, our data expand the known molecular milieu within which Arc regulates extinction, placing AMPA and/or kainate receptors as an upstream mediator of extinction-relevant Arc levels and actin cytoskeleton rearrangements as a likely downstream effector role for Arc. Increased understanding of the molecular mechanisms involved in fear extinction can inform our understanding of human disorders of impaired fear extinction such as post-traumatic stress disorder, social phobia, panic disorder, and schizophrenia (Anderson and Insel 2006; Holt et al. 2009, 2012; Myers and Carlezen 2010; Myers et al. 2011). Moreover, Arc-associated pathways are implicated in increased susceptibility to neuropsychiatric disorders (Kirov et al. 2012; Fromer et al. 2014; Hall et al. 2015) and can be selectively targeted in these disorders.
by drug compounds (Zhang et al. 2015). Therefore, Arc-directed treatments may represent a novel and tractable therapeutic strategy for ameliorating a key underlying molecular process in fear memory extinction.

Acknowledgments

This work was supported by the BBSRC (BB/C00583X), a Wellcome Trust Institutional Strategic Support Fund (504182), a Wellcome Trust Strategic Award (503147), and a Medical Research Council Centre Grant (G0801418).

Competing Interest Statement: The authors declare no competing financial interests.

References

Anderson KC, Insel TR. 2006. The promise of extinction research for the prevention and treatment of anxiety disorders. Biol Psychiatry 60: 319–321.

Armstrong N, Gouaux E. 2000. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluK2 ligand binding core. Neuron 28: 163–181.

Barnes P, Thomas K. 2006. ProtoDNE is a key regulator in the formation of memory. PLoS One 3: e3248.

Ben Mamou C, Gamache K, Nader K. 2006. NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat Neurosci 9: 1237–1239.

Chia C, Otto T. 2013. Hippocampal Arc (Arg3.1) expression is induced by memory recall and required for memory reconsolidation in trace fear conditioning. Learn Mem 20: 48–51.

Chowdhury SA, Rendell JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Miyashita T, Chawla MK, Sanderson J, Maes LI, Houston FP, Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ruderfer D, Myers KM, Carlezon WA Jr. 2010. Extinction of drug- and withdrawal-paired cues in animal models: relevance to the treatment of addiction. Neurosci Biobehav Rev 34: 285–302.

This work was supported by the BBSRC (BB E3248).
Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF. 2006. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52: 475–484.
Stein E, Cox JA, Seeburg PH, Verdoorn TA. 1992. Complex pharmacological properties of recombinant α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtypes. Mol Pharmacol 42: 864–871.
Steward O, Worley PF. 2001. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30: 227–240.
Steward O, Wallace CS, Lyford GL, Worley PF. 1998. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21: 741–751.

Trent S, Barnes P, Hall J, Thomas KL. 2015. Rescue of long-term memory after reconsolidation blockade. Nat Commun 6: 7897.
Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM. 2008. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59: 84–97.
Zhang W, Wu J, Ward MD, Yang S, Chuang YA, Xiao M, Li R, Leahy DJ, Worley PF. 2015. Structural basis of arc binding to synaptic proteins: implications for cognitive disease. Neuron 86: 490–500.

Received January 14, 2017; accepted in revised form April 21, 2017.
AMPA receptors control fear extinction through an Arc-dependent mechanism

Simon Trent, Philip Barnes, Jeremy Hall, et al.

Learn. Mem. 2017 24: 375-380
Access the most recent version at doi:10.1101/lm.045013.117