THE NATURE AND GEOMETRY OF THE LIGHT ECHO FROM SN 2006X

ARLIN P. S. CROTT AND DAVID YOURDON

Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027; arlin@astro.columbia.edu

Received 2008 April 15; accepted 2008 July 23

ABSTRACT

We report on the discovery of the geometry producing the light echo emanating from supernova 2006X, a nearby but underluminous Type Ia supernova (SN Ia) in M100 (=NGC 4321). This offers a rare chance to study the environment of a SN Ia. Contrary to previous reports, there is little evidence of a circumstellar component in the light echo morphology or in the light curve of the unresolved SN point source. Instead, the obvious and dominant echo contribution comes from what is probably a relatively thin sheet of material some 26 pc in front of SN 2006X. Of the four known SN Ia light echoes, three show no evidence of a circumstellar echo and the fourth needs to be confirmed. We consider other evidence for circumstellar material around SN Ia, which may be rare.

Subject headings: dust, extinction — galaxies: individual (NGC 4321) — galaxies: ISM — supernovae: general — supernovae: individual (SN 2006X)

1. INTRODUCTION

Intense interest is focused on Type Ia supernovae (SNe Ia) as cosmological standard candles. To isolate cosmological parameters, several such complementary probes are required, and SNe Ia comprise the best-proven, most powerful technique (Kolb 2005), and in many ways are the easiest to realize at a level needed to reveal dark energy. It is often assumed that systematic errors in SN Ia photometry will improve sufficiently for further refinement of cosmological tests to succeed; they must achieve a high level of photometric precision and insensitivity to systematic error in order to measure higher order parameters characterizing dark energy (see Linder & Huterer 2003; Tonry 2005).

While several techniques incorporate extinction corrections to predict the luminosity of SNe Ia, dust in the interstellar and circumstellar medium (ISM and CSM) can have other effects. For instance, Patat (2005) shows that light echoes from dust can introduce several percent changes into the luminosity L, particularly on the decrease from maximum light, and reducing L while increasing maximum light-curve width Δm15 in a stochastic manner depending on seemingly random placement of surrounding material.

There are many ways in which SN Ia luminosity might relate to environment. Hamuy et al. (2000) explore how SN Ia brightness is related to galaxian integrated colors and speculate that this connection proceeds via metallicity. Umeda et al. (1999) suggest that metallicity impacts the carbon fraction in C + O white dwarf (WD) stars. Recent evidence points to a relation of Δm15 to galaxy morphology (Altavilla et al. 2004; Della Valle et al. 2005), and there appears to be bimodality in progenitor age (~1 Gyr vs. a few Gyr; Mannucci et al. 2006), which is reflected in Δm15 (Hamuy et al. 1996; van den Bergh et al. 2005). These effects are sufficiently well known to SN observers but become much more difficult to treat at higher redshift where host galaxies are more elusive, e.g., Foley et al. (2008).

There are several ways to determine if substantial circumstellar effects influence SNe Ia, e.g., high-velocity and time-variable spectroscopic components (Gerardy et al. 2004; Mazzali et al. 2005; Wang et al. 2003; Quimby et al. 2006) that might be explained alternatively (Quimby et al. 2006) as structure internal to the explosion (Mazzali et al. 2005). In many or most cases such efforts fail to establish a circumstellar component, e.g., SN 2000cx (Patat et al. 2007a), and when detected sometimes involve peculiar SNe Ia (Panagia et al. 2006) or questionable (Benetti et al. 2006) SNe Ia (see also Hamuy et al. 2003; Aldering et al. 2006; Prieto et al. 2007). Hamuy et al. (2003) suggest a new class of CSM-dominated SNe Ia (for example, SNe 1997cy, 1999E, and 2002ic), but these would comprise fewer than 1% of all SNe Ia. In general only upper limits are placed on the mass-loss rate by optical (Mattila et al. 2005), radio (Panagia et al. 2006), and UV/X-ray observations (Immler et al. 2006). Likewise, theory is a poor guide, in part because SN Ia progenitors are a small and not well-isolated subcomponent of accreting WDs: SN Ia progenitors comprise probably about 15% of binaries in the appropriate initial mass range (3–8 M☉) and almost certainly 2%–40% of these (Maoz 2008). Since the last known Galactic SN Ia was in the year 1604 (and the last in the Local Group probably in 1885), detailed ground-based study of SN Ia remnants or the small fraction of SN Ia progenitors among the larger population of WD accreting binaries is not definitive in terms of their CSM.

Light echoes might easily provide decisive clues regarding interstellar versus circumstellar intervening material. We can learn about the three-dimensional distribution of scattering material by taking an image at time t after maximum light, measuring the angular radius r of an echoing cloud (e.g., in light-years), and one can directly infer the cloud’s foreground distance. Only three other SNe Ia have shown the clear evidence of light echoes (SNe 1991T, 1995E, and 1998bu). Here we report on the observations that allowed discovery of a fourth, in front of SN 2006X, as well as details of those echoes regarding interstellar or circumstellar origin.

2. OBSERVATIONS

SN 2006X is a rare, fortuitous case of a SN in a field imaged extensively by the Hubble Space Telescope (HST) before the
explosion. Furthermore the extended tail in the B-band light curve of SN 2006X strongly hinted at the presence of a light echo (see HST program GO 10991 by Crotts & Sugerman [2006]). In GO 10991 and GO 11171 we observed SN 2006X on three visits with HST after explosion. On UT 2006 May 21 we took a series of rapid exposures to avoid saturating the SN (then at $V = 17.2$) to maintain point-spread function (PSF) fitting and image subtraction efficacy (in total: 1480 s F435W, 1080 s F555W, and 1080 s F775W, in the Advanced Camera for Surveys High Resolution Channel [ACS HRC] bands closest to those from the Wide Field Planetary Camera 2 [WFPC2] above). We also took care to include in each image a bright, unsaturated stellar source for PSF comparison. The same bands were observed on UT 2006 December 24 (920 s F435W, 520 s F555W, and 520 s F775W). By the time of our third visit (GO 11171), UT 2008 January 4, ACS was unavailable, so we used the closest available bands with WFPC2 PC (1000 s F380W, 1000 s F439W, 2000 s F555W, 1000 s F702W, and 1000 s F791W). Throughout this paper we refer to epochs relative to V-band maximum on UT 2006 February 22.8 (Wang et al. 2008a), for which these HST visits occur 87, 304, and 680 days postmaximum.

For our day 304 postmaximum epoch, the extension of the image of SN 2006X beyond the PSF served as a strong clue of a light echo, since no such nebulosity was evident at this position in the pre-SN images (see GO 11171, based on GO 10991 data). Wang et al. (2008b, hereafter W08) show on the basis of these same HST images the presence of extended nebulosity consistent with a light echo, and confirm this with Keck Low Resolution Imaging Spectrometer (LRIS) and Deep Imaging Multi-Object Spectrograph (DEIMOS) spectra of this nebulosity similar to SN 2006X at maximum light, as might be expected by a light echo. While a portion of this echo is resolved by HST, W08 conclude on the basis of the strength of the echo-like component in their spectra that there is likely an additional component at smaller radii, probably circumstellar to the SN progenitor.

3. MORPHOLOGICAL ANALYSIS

Our analysis of the 2006 May 21 (87 days postmaximum) images does not indicate any deviation from a stellar PSF at a statistically significant level. The interstellar echo evident in later epochs (having $V = 21.96$) is too dim to stand out evidently against the SN point source ($V = 17.23$).

In contrast, the 2006 December 24 (304 days postmaximum) images show a significant indication of a nonstellar source, which motivated our 2008 January 4 observations (680 days postmaximum). When we subtract a maximal brightness point source from these images, this produces a circular residual with a significant depression of flux markedly similar to that found by W08 in their analysis of our images, so we will not present this again here.

The quality of information for the interstellar echo in the day 860 postmaximum data is, however, sufficiently superior that many features questionable in the 2006 data are dealt with clearly. A roughly ringlike source is seen in all five WFPC2 bands, consistent with the same morphology throughout. We present the scaled median average from the redder three of the five bands (F555W, F702W, and F791W; with 4, 2, and 2 sub-exposures apiece, summed by a CR split algorithm) in Figure 1. The pixel brightnesses actually increase, moving out from the SN position out to a radius of 0.075″. The ring is not uniformly bright; the peak in brightness occurs at P.A. 50°.

By convolving an infinitesimally thin annular ring of constant radius (but not constant azimuthal brightness profile) with the PSF and minimizing the resulting χ^2 of flux in the affected pixels once this ring is subtracted from the original image, we find a ring radius of 1.65 ± 0.1 pixels = $0.075'' \pm 0.005''$. At a distance to M100 of 15.2 Mpc (Freedman et al. 2001), this corresponds to a radius of 5.5 pc (or 18.0 lt-yr). Since the foreground distance z in front of the SN of light echoing material a radius r (perpendicular to the sight line) at time t after SN maximum light is given by

$$ z = r^2 / 2ct - ct^2 / 2,$$

which for this echo implies $z = 85.7 \pm 10.3$ lt-yr (or 26.3 pc) at $t = 1.87$ yr after SN maximum light, with an average scattering angle of 12°. The natural FWHM of this interstellar echo annulus, due to the duration of the maximum light peak, is at least 0.6 lt-yr, and probably thicker due to the finite thickness of the reflecting dust layer, but we cannot constrain this at a useful level due to the angular resolution limits of HST WFPC2 and the limited signal-to-noise ratio of the echo image. The spread in radius is fit poorly with a FWHM more than about 20% of the central value, and hence a spread in z of more than 40%, corresponding to 16 pc $\leq z \leq 36$ pc.

There is little evidence in the day 680 postmaximum morphology for the unresolved circumstellar source strongly suggested by W08. The pixel containing the SN position contains 3% of the total flux from the entire echo nebula (in the redder three bands), but 21% of any hypothetical point source there.
However, much brighter pixels centered 1–2 pixel widths away imply that 69% of this flux must come from a source outside the central pixel. The upper limit (3 σ) on a circumstellar source is therefore about 5% of the total flux of the nebula.

4. LIGHT-CURVE ANALYSIS AND MULTIBAND PHOTOMETRY

We consider the light curve in the band in which the echo is best detected, F555W, which is common to both ACS and WFPC2 images. For day 87 postmaximum we detect no deviation (over 1 σ) from the stellar PSF for SN 2006X, and so adopt the entire flux for the SN point-source value, $V = 17.23$. For day 680 postmaximum, the echo nebulosity has $V = 21.96$, of which a central point source is less than 5% (3σ), or $V > 25.2$. Implied that the extended echo itself has 21.96 $< V < 22.02$. In the case of day 304 postmaximum, the SN + echo signal corresponds to $V = 20.53$. Subtracting the SN central point source yields an echo $V \approx 22$, to within ~ 0.1 mag error due to subtraction systematics, and a SN point source $V = 20.88$. This echo magnitude is in good agreement with the day 680 postmaximum echo, as well as that found by W08 for day 304 postmaximum. There is no evidence of any change in the echo brightness between days 304 and 680 postmaximum; indeed the data are inconsistent with any change larger than $\sim 10\%$. These photometric results are summarized in Figure 2, along with various comparison V-values from ground-based photometry of SN 2006X and other normal SNe Ia. Assuming that normal SNe Ia have no significant circumstellar echoes 304 or 670 days after maximum, there is also no evidence that SN 2006X does, either.

We have compiled a library of many epochs of SN 2006X spectra taken at MDM Observatory (A. P. S. Crotts et al. 2008, in preparation) and use this to compare synthetic magnitudes for the fluence of SN light in the HST bands to the actual echo flux seen in these bands. A best-fit reflectance function to the extended echo, for the F380W, F439W, F555W, F702W, and F791W bands, corresponds to $\lambda^{-1.7}$ for a power law in wavelength (with an error of ± 0.2 in the exponent). Such reflectance wavelength dependence is consistent with Galactic dust of 0.0005–0.005 μm radius (e.g., Sugerman 2003), but not smaller dust (large cutoff at 0.01 or 0.1 μm). The echo has exceptionally high surface brightness ($\mu_V < 18.5$), indicating A_V values through the echoing cloud of at least a few (as per Sugerman [2003], assuming MR-like dust, and depending on the exact scattering phase function adopted). Wang et al. (2008a) estimate the host extinction value as $A_V = 2.24$ mag, so this strongly suggests that this interstellar echo arises from the primary source of extinction along the line of sight.

Magellan/MIKE 6 km s$^{-1}$ resolution spectra of SN 2006X taken on February 13.35 and 23.25 UT show unusually strong absorption lines in Na i, Ca ii, K i, and the CN B–X(0, 0) violet bands (Lauroesch et al. 2006; see also Patat et al. [2007b, hereafter P07] for comparable data). The Na i λ5899 equivalent width is $W_{eq} = 0.74$ Å and heavily saturated (and composed of at least two components, due to line asymmetry), and the CN $R(0)$ 387.46 nm line has an equivalent width (0.09 Å), stronger than any published strength through Galactic interstellar clouds. Based on Galactic expectation, e.g., Crutcher (1985), one should expect $A_V > 3$. These lines (at ~ 1630 km s$^{-1}$) are redshifted 72 km s$^{-1}$ versus the M100 centroid, consistent with the value of the galaxy’s rotation curve at this point. The echo, absorption strengths, and velocities of these features are all consistent with a single origin in the galaxy’s disk, suggesting that the SN 2006X progenitor sits ~26 pc behind the disk.

5. A CIRCUMSTELLAR COMPONENT?

There are several pieces of evidence suggesting a circumstellar absorption-line component or echo feature in front of SN 2006X, most notably time-variable Na i absorption lines in high-resolution spectroscopy (P07), which we discuss momentarily. Our analysis above places strong limits on the brightness of any circumstellar echo 680 days postmaximum; furthermore it shows no evidence of a circumstellar echo 304 days postmaximum brighter than $\sim 10\%$ of the SN flux, corresponding to a circumstellar echo that likely has $V \leq 24.5$. On the basis of the difference between the resolved echo brightness 304 days postmaximum and a SN maximum-like spectrum detected 1 month earlier (274 days postmaximum), W08 claim a circumstellar component to the echo which is 0.6 ± 0.3 times as bright as the $V = 22$ interstellar echo, and hence with 22.1 $< V < 23.3$. At 680 days after maximum, any such component must have dimmed to $V > 25.2$, or at least 2.6 mag fainter. Even if the echo paraboloid encounters no material after 274 days postmaximum, the echo could dim no more than 8 mag by 680 days postmaximum. (One can assume that the echoing dust, at least $\sim 10^{18}$ cm from the SN, is not destroyed.) Thus the circumstellar material might extend at undiminished density beyond the day 274 = 0.75 yr paraboloid by another 0.6 yr, corresponding to a total
radius of 0.68 lt-yr for material directly behind the SN as seen from Earth, or 1.35 lt-yr (\(1.3 \times 10^{15}\) cm) radius, 90° to one side. The detection of a circumstellar component (W08) is only a 2σ result, however, and this confidence estimate does not include several likely significant sources of systematic error. There is no evidence from the HST imaging sample that supports the existence of a circumstellar echo, and indeed this component is limited to a value of only \(\sim 10\%\) of the total echo at day 304 postmaximum, not the 60% (±30%) reported by W08 for day 274. Finally, models of circumstellar material around SNe Ia in general (Patat et al. 2006) require optically thick extinction to produce circumstellar echoes as strong as those hypothesized in W08. While dust very close to the SN (\(\lesssim 10^{17}\) cm) might be destroyed by the SN flux, the strong interstellar echo seen here is consistent with most of the extinction toward SN 2006X.

P07 describe \(\sim 6\) km s\(^{-1}\) resolution spectroscopy of SN 2006X on days \(-5, +11, +58, +102,\) and \(+118\) with respect to \(V\)-band maximum. At velocities up to \(\sim 150\) km s\(^{-1}\) blueshifted from the strong absorption line described above arise several weak Na i components that are highly variable in structure over the first three epochs. P07 explain this variability as Na i ionized by the initial SN flash. The fact that Ca ii remains unchanged during all of these epochs is explained by its higher ionization potential. Somewhat paradoxically, while most of these Na i components increase with time, those with 15 km s\(^{-1}\) < \(v\) < 55 km s\(^{-1}\) decrease after +11 days postmaximum. P07 theorize that these components are destroyed by SN ejecta, and so are at \(\sim 10^{16}\) cm from the SN, at distances less than those accessible here via light echoes. Ionization strength arguments place all time-dependent lines within a few times 10\(^{16}\) cm. In contrast, Chugai (2008) calculates that the time-variable Na i absorption components must arise at least \(10^{17}\) cm from SN 2006X, since there is no evidence of grain destruction as would be traced in Ca ii absorption-line variation.

No radio emission has ever been detected from SN 2006X, for several observations spanning from 2 days to 2 yr after the discovery date (UT 2006 February 7.1) and frequencies 4.88–22.46 GHz (Stockdale et al. 2006; Chandra et al. 2006, 2008). Scaling from Panagia et al. (2006), these limits correspond to mass-loss rates of smaller than \(10^{-8}\) to a few times \(10^{-8}\) \(M_\odot\) yr\(^{-1}\), comparable to the limits Chugai (2008) places based on the absence of Ca ii absorption components not also seen in Na i at \(10^{-8}\) \(M_\odot\) yr\(^{-1}\) for an outflow velocity of 10 km s\(^{-1}\).

Both P07 and Chugai (2008) discuss the relative merits of circumstellar versus interstellar origins of the time-variable Na i absorption components, especially considering the possible small-scale structure that might arise in such a thick interstellar cloud as the one seen at 26 pc distance, due to motion of the source against foreground absorption. The imaging and photometric data presented here have little constraint on such ISM structure (at the \(\sim 10^{13}–10^{15}\) cm level), and if these absorption lines are circumstellar, they arise at radii \(\sim 10^{16}–10^{18}\) cm where the light echo data similarly have little bearing.

6. CONCLUSIONS

In conclusion, the HST imaging 87, 304, and 680 days after \(V\)-band maximum may say little about circumstellar material closer than about \(1.3 \times 10^{15}\) cm. As in the case of SN 1991T and 1995E, no central source corresponding to a circumstellar structure, echoing or not, has ever been detected. In contrast, SN 1998bu shows a central source that has been interpreted as a circumstellar echo. We note, however, that an image subtraction comparison of the existing archival HST imaging shows very little change in this source between years 2000 and 2006. We are investigating whether spectroscopy of this source will reveal it as an echo, a supernova remnant, or some other structure (A. P. S. Crotts 2008, in preparation).

To summarize, there are a number of significant results that these new observations have produced:

1. The echo signal arises primarily from a presumably interstellar sheet of material 26.3 ± 3.2 pc in the SN foreground, and this structure likely represents the dominant portion of the large amount of extinction along the SN sight line.

2. As of 680 days after \(V\)-band maximum light there is no indication of any circumstellar echo (at any level above 5% of the total echo signal), and the imaging and photometry at 304 days is consistent with these results, both in the presence of an interstellar echo of similar geometry and brightness, and in the absence of evidence of a circumstellar echo.

3. There is no evidence of any circumstellar echo signal at any epoch in these data, but they do not bear directly on the plausibly circumstellar absorption signal seen in Na i, making SN 2006X a candidate for one of the few Type Ia supernovae in which circumstellar matter has been knowingly detected.

I thank Steve Lawrence and Ben Sugerman for helpful discussion. This work was supported by grants GO/DD-10991 and GO 11171 from STScI.

REFERENCES

Aldering, G., et al. 2006, ApJ, 650, 510
Altavilla, G., et al. 2004, MNRAS, 349, 1344
Benetti, S., et al. 2006, ApJ, 653, L129
Chandra, P., Chevalier, R., & Patat, F. 2006, ATel, 954, 1
—. 2008, ATel, 1393, 1
Chugai, N. N. 2008, Astron. Lett., 34, 389
Crotts, A. P. S., & Sugerman, B. E. K. 2006, HST Proposal ID 10911, http://www.stsci.edu/observing/phase2-public/10911.pdf
Crutcher, R. M. 1985, ApJ, 288, 604
Della Valle, M., Panagia, N., Padovani, P., Cappellaro, E., Mannucci, F., & Turatto, M. 2005, ApJ, 629, 750
Foley, R. J., et al. 2008, ApJ, 684, 68
Freedman, W. L., et al. 2001, ApJ, 553, 47
Gerardy, C., et al. 2004, ApJ, 607, 391
Hamuy, M., et al. 1996, AJ, 112, 2438
—. 2000, AJ, 120, 1479 (erratum 122, 3506 [2001])
Immler, S. I., et al. 2006, ApJ, 648, L119
Kolb, E. 2005, Report of Dark Energy Task Force to the NSF-NASA-DOE Astronomy and Astrophysics Advisory Committee (Arlington: NSF), http://www.nsf.gov/mps/ast/detf.jsp
Lair, J., Leising, M. D., Milne, P. A., & Williams, G. G. 2006, AJ, 132, 2024
Lauroesch, J. T., Crotts, A. P. S., Meiring, J., Kulkarni, V. P., Welty, D. E., & York, D. G. 2006, CBET, 421, 1
Linder, E. V., & Huterer, D. 2003, Phys. Rev. D, 67, 081303
Mannucci, F., Della Valle, M., & Panagia, N. 2006, MNRAS, 370, 773
Maoz, D. 2008, MNRAS, 384, 267
Mattila, S., et al. 2005, A&A, 443, 649
Mazzali, P. A., et al. 2005, MNRAS, 357, 200
Panagia, N., et al. 2006, ApJ, 646, 369
Patat, F. 2005, MNRAS, 357, 1161
Patat, F., Benetti, S., Cappellaro, E., & Turatto, M. 2006, MNRAS, 369, 1949
Patat, F., et al. 2007a, A&A, 474, 931
—. 2007b, Science, 317, 924 (P07)
Prieto, J. L., et al. 2007, preprint (arXiv: 0706.4088v1)
Quimby, R., et al. 2006, ApJ, 636, 400
Sparks, W., et al. 1994, HST Proposal ID 5195, http://www.stsci.edu/observing/phase2-public/5195.prop
Stockdale, C. J., et al. 2006, CBET, 396, 1
Sugerman, B. E. K. 2003, AJ, 126, 1939
Tonry, J. L. 2005, Phys. Scr., T117, 11
Umeda, H., Nonoto, K., Yamaoka, H., & Wanajo, S. 1999, ApJ, 513, 861
van den Bergh, S., Li, W., & Filippenko, A. 2005, PASP, 117, 773
Wang, L., et al. 2003, ApJ, 591, 1110
Wang, X., et al. 2008a, ApJ, 675, 626
———. 2008b, ApJ, 677, 1060 (W08)