Focal Onset Detection Using Parallel Genetic Naive Bayes Classifiers

Scot Davidson*, Niamh McCallan*, Kok Yew Ng†, Pardis Biglarbeigi*, Dewar Finlay*, Boon Leong Lan†, and James McLaughlin*

*NIBEC, Ulster University, Jordanstown Campus, Shore Road, Newtownabbey BT37 0QB, UK.
†Department of Electrical and Computer Systems Engineering and Advanced Engineering Platform, School of Engineering, Monash University, Bandar Sunway, Malaysia.
‡Corresponding author. Email: davidson-s18@ulster.ac.uk

Abstract—Epilepsy affects 50 million people worldwide and is one of the most common serious neurological disorders. Seizure detection and classification is a valuable tool for diagnosing and maintaining the condition. An automated classification algorithm will allow for accurate diagnosis. Utilising the Temple University Hospital (TUH) Seizure Corpus, six seizure types are compared; absence, complex-partial, myoclonic, simple partial, tonic and tonic-clonic models. This study proposes a method that utilises unique features with a novel parallel classifier — Focal Onset Detection Parallel Genetic Algorithm (FODPGA). The FODPGA algorithm searches through the features and by reclassifying the data each time, the algorithm will create a matrix for optimum search criteria. Ictal states from the EEGs are segmented into 1.8 s windows, where the epochs are then further decomposed into 13 different features from the first intrinsic mode function (IMF). The features are compared using an original Naive Bayes (NB) classifier in the first model. This is improved upon in a second model by the use of a genetic algorithm (Binary Grey Wolf Optimisation, Option 1) with a NB classifier. The third model uses a combination of the simple partial and complex partial seizures as a focal onset label for the novel classifier FODPGA. This combination of the simple partial and complex partial seizures provides the highest classification accuracy for each of the six seizures amongst the three models (20%, 53%, and 85% for first, second, and third model, respectively).

Index Terms—Electroencephalography (EEG), Epileptic Seizure, Classification, Naive Bayes, Genetic Algorithm

I. INTRODUCTION

Epilepsy is one of the most common neurological disorders in the world [1], affecting about 50 million people worldwide [2]. Epileptic seizures occur when millions of neurons are synchronously excited, resulting in a wave of electrical activity in the cerebral cortex [3]. Electroencephalography (EEG) is a noninvasive tool that measures cortical activity with millisecond temporal resolution. EEGs record the electrical potentials generated by the cerebral cortex nerve cells [4]. As a result, this tool is commonly used for the analysis and detection of seizures [5]. Epilepsy causes many difficulties in relation to the quality of life for the patient. The International League Against Epilepsy (ILAE) have outlined a list of identified seizures [6]. There are two responses on the patient, categorised as motor responses, where the seizures cause involuntary spasms, or non-motor responses, which affect the consciousness of the patient hence reducing their ability to pay attention.

Kukker et al. [7] used a fuzzy Q-learning genetic classifier to improve their original features. The signal is converted using empirical mode decomposition (EMD) where the intrinsic mode functions (IMFs) are converted using the Hilbert-Huang Transform (HHT). Nineteen features are extracted from the conversion with a distinct set of annotations created for each of the IMFs generated. The CHB-MIT dataset was used and a classification accuracy of 96.79% was achieved. Ammar et al. [8] used a particle swarm genetic algorithm for a patient specific seizure classification system. This classification model used seizure and nonseizure as their annotations. The features extracted where kurtosis, skewness, and standard deviation. A smaller dataset (Bonn) was used with a support vector machine (SVM) classifier and an accuracy of 98.89% was achieved.

These works focused primarily on the detection of seizure and nonseizure within the CHB-MIT and Bonn datasets, respectively. However, the classification of different seizure types was not investigated due to insufficient labelling as well as having limited patient-specific data found in these datasets.

This paper proposes a seizure classification system using multiclass parallel classifiers — Focal Onset De-
tection Parallel Genetic Algorithm (FODPGA) — to classify focal onset against other seizure types. As simple partial and complex partial seizures share morphology and exhibit similar responses on the patient, where the main factor being whether the patient remains conscious during the event, the proposed algorithm can discriminate these two seizure types against other seizures by combining them into a focal seizure. In addition, this algorithm is also tested against the Temple University Hospital (TUH) Seizure Corpus due to its extensive labelling of multiple seizure types as well as more patient-specific data compared to the CHB-MIT and Bonn datasets.

This paper is organised as follows: Section II explains the dataset used in this research; Section III describes the proposed FODPGA classifier algorithm; Section IV presents and discusses the results obtained; and Section V provides the conclusions.

II. DATASET

The dataset from the TUH Seizure Corpus v1.5.2 (27 May 2020) was used in this study. This dataset is a subset of a much larger EEG corpus [9], [10]. This dataset is divided by the TUH into two sets, defined as training and testing with demographics being made equal across both sets. The dataset was annotated by a team established by the university based on the signals and the neurologists’ reports.

III. FEATURE EXTRACTION AND SELECTION

A. Preprocessing of Raw EEGs

To maintain consistency in the dataset, only the 19 channels common to all the seizures defined by the International 10–20 System were used [11]. By doing so, the unwanted channels such as the electrocardiogram (ECG), electromyography (EMG), as well as photo stimulus channels are removed. The signals were resampled to 250 Hz as this is the lowest frequency common to all seizures. The 60 Hz line noise was removed with a bandstop infinite impulse response (IIR) filter. The EMD was then performed and the first IMF was taken for the analysis of the signals [7]. The signals were then divided into 1.8 s windows, which was chosen because it reflects on the shortest ictal window of all the different seizure types. Each feature was calculated for each channel of the windowed signals.

B. Time Domain Features

1) Standard Deviation: Ictal episodes have a higher energy compared to the non-ictal episodes. However, some seizures have a lower energy response such as absence, complex partial, and simple partial [12]–[14]. The standard deviation σ measures how much energy is created away from the mean, where a higher energy level would naturally produce a higher σ. The formulation for σ can be written using

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2},$$

(1)

where x_i is the preprocessed EEG time series described in Section III-A \bar{x} the mean of x_i, and N the number of samples.

2) Shannon Entropy: The Shannon entropy method is used to measure the chaotic nature of EEGs, and it can be defined using

$$H(X) = - \sum_{i=1}^{n} p(x_i) \log_2(p(x_i)), $$

(2)

where $X = \{x_1, x_2, \ldots, x_n\}$ is a set of finite discrete random variables, and $p(x_i)$ the probability of $x_i \in X$ such that $\sum_{i=1}^{n} p(x_i) = 1$ [15].

3) Kurtosis: Kurtosis γ_2 is the degree of “peakedness” of a real valued random variable, which is used to determine if σ is created from small constant deviations or if large inconsistent deviations are present in the signal [16]. The formulation for γ_2 can be written using

$$\gamma_2 = \frac{\mu_4}{\sigma^4},$$

(3)

where μ_4 is the fourth central moment.

4) Hjorth Criteria: Hjorth parameters measures a signal via three criteria: activity, mobility, and complexity. Activity uses variance as its basis and is therefore not used as a feature. However, mobility h_m and complexity h_c can be used to measure the mean frequency of a signal and deviation from a pure sine wave, respectively [17]. Both parameters can be expressed using (4)–(5),

$$h_m = \sqrt{\frac{\text{var}(\frac{dx_i}{dt})}{\text{var}(x_i)}},$$

(4)

$$h_c = \frac{h_m(\frac{dx_i}{dt})}{h_m(x_i)},$$

(5)

where $\text{var}(x_i)$ represents the variance of the EEG time series data x_i.

5) Skewness: Skewness measures the symmetry of the time series data, where it can be written using:

$$\tilde{\mu} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^3 / N}{\left[\sum_{i=1}^{N} (x_i - \bar{x})^2 / N \right]^{1.5}}.$$
C. Fractal Analysis

Fractals are used to measure the self-similarity of the given time series value. Absence, tonic, and tonic-clonic seizures have rhythms generating self similar waveforms [14], [18].

1) Higuchi Fractal Dimension: The time series data have to be firstly decomposed into a set of subseries [19], which can be defined using

\[X_{km} : x(i), x(i + k), x(i + 2k), \ldots, x(i + mk), \quad (7) \]

where \(k \) is the fractal dimension, \(X_{km} \) is the subtime series, and \(m \) is the length of the fractal series. Equation (7) denotes that a higher value of \(k \) leads to more subseries created in the fractal dimension calculation. A curve is then created to measure the similarity of the subseries. The length of the curve can be computed using

\[L_m = \frac{1}{k} \left(\sum_{i=1}^{r} |x(m + ik) - x(m + (i - 1)k)| \right) \frac{N-1}{rK} , \quad (8) \]

where \(r = \lfloor \frac{N-m}{k} \rfloor \) and \(x(i) \) is the subseries given in (7).

2) Katz Fractal Dimension: Katz utilises the same subseries defined in (7). It is another fractal estimation algorithm where the successive points are measured to compute the self-similarity such that the fractal dimension of the subseries \(X_{km} \) can be written using

\[D = \frac{\log(L/a)}{\log(d/a)} , \quad (9) \]

where \(d \) is the Euclidean distance of each point in the new time series found in (8) and \(L \) and \(a \) are the sum and average of the Euclidean distances of the sample point \(d \), respectively [20]. And since it is established that \(n = L/a \), (9) can also be expressed using

\[D = \frac{\log(n)}{\log(n) + \log(d/L)} . \quad (10) \]

D. Energy and Nonlinear Energy

The total energy of the time series data can be computed using

\[E = \sum_{i=0}^{N} x_i^2 . \quad (11) \]

Also, the mean nonlinear energy can be found using

\[\sum_{i=2}^{N-1} C(i - 1) = x_i^2 - (x_{i-1})(x_{i+1}) , \quad (12) \]

where \(C \) is the nonlinear energy.

1) Spectral Entropy: To calculate the spectral entropy of a time series data, it was initially converted to the frequency domain using fast Fourier transform, which was then further converted into power by writing

\[S(x_i) = |\text{FFT}(x_i)|^2 , \quad (13) \]

where \(\text{FFT}(x_i) \) is the fast Fourier transform of the time series \(x_i \). The entropy was then calculated using Shannon entropy as shown in (2). The mean, maximum, and minimum were then taken as the features to be fed into the FODPGA. To balance the dataset, an upsampling method was used where the least represented labels were repeated by the nearest integer factor of the largest label. In the first model, the largest label is the complex partial seizure. In the second model, the largest is the complex partial seizure. In the third model, the largest label is the focal-onset label.

E. Genetic Algorithms

Genetic algorithms are optimisation methods that mimic Darwin theory. They are exploratory procedures that seek to find the near optimal solutions to complex problems [21]. Emary et al. [22] adapted a previous genetic algorithm called Binary Grey Wolf Optimisation (BGWO) to be applied for feature selection. In this paper, BGWO Algorithm 1 from Emary et al. [22] is used because it provides the shortest compilation time and is shown below in Algorithm 1.

F. Classification

The classifier chosen is the Naive Bayes classifier. It is a probabilistic classifier based on the Bayes theorem under the assumption that any feature of a particular class is independent of any other feature. Error estimation is

\begin{algorithm}
\caption{Binary Grey Wolf Optimisation}
\end{algorithm}
computed based on the maximum likelihood [23]. To compare the features and their ability to detect the individual seizures, a parallel classification system is needed. Each of the classifiers is trained in a one vs all set up. To remove the need for six different confusion matrices, a heatmap was generated for each of the classifiers with the False Positive (FP) and the False Negative (FN) placed at the bottom of the heatmap. The True Positive (TP) is placed with the corresponding name of the classifier and the predicted name (these are the same) similar to a confusion matrix. This makes comparison between each of the individual classifiers easier.

IV. RESULTS AND DISCUSSION

The performance metrics used in this paper are shown below

\[
Accuracy = \frac{TP + TN}{TP + TN + FP + FN},
\]

\[
F1 = \frac{2TP}{TP + FP + FN}.
\]

The first model chosen is the baseline model. This model does not use the genetic algorithm and does not combine the complex partial seizure and simple partial seizure into one label. This model is a single multiclass classifier. The performance of this model is shown in Figure 1, where there is a high misclassification with the complex partial seizure being classified as simple partial seizures. It is unexpected that the simple partial and the complex partial are being misdiagnosed as a tonic-clonic seizure. A tonic-clonic seizure can have a focal onset, which can propagate into a bilateral tonic-clonic seizure [6].

The second model uses the genetic algorithm to find the features that provide the most optimum F1-score using the labels in the TUH Seizure Corpus. This is a parallel classifier and contains six NB classifiers. Figure 2 shows the performance of this model. The tonic seizure had the highest F1-score with 0.96 followed by the absence seizure with 0.93. The tonic-clonic and simple partial seizure performed poorly by having higher FPs and FNs than TPs in the system. The heatmap does highlight a large reduction in FPs. There is also an increase in the classification of myoclonic seizures by 400% compared to Figure 1.

The third model uses the genetic algorithm to find the features that provide the most optimum F1-score with the combined label of both complex partial and simple partial seizures. This is a parallel classifier and contains five NB classifiers. The performance of the third model is shown in Figure 3. Combining the complex partial seizure and the simple partial seizure label has increased the accuracy of the entire system; tonic-clonic seizures had an increase in TPs by 100% and FPs decreased by 391% compared to Figure 2. However, FNs of tonic-clonic seizures had increased by 13%. Also, combining the labels for complex partial and simple partial seizures has had a positive effect on their FNs and FPs, with a combined reduction of 88%. In Figure 2, the combined TP value for complex partial and simple partial seizures is 4654. However, in Figure 3 the combined value is 4654, which is only a decrease of < 1%.

In comparison with Kukker et al. [7] the models did not achieve the same accuracy of 96.79%. However, the proposed models have improved classification performance by using smaller time windows in the design and the multiclass classification system adopted.

Depending on the chosen classifier, an implementation of a genetic algorithm should be considered for two reasons; firstly to increase the accuracy of classification, and secondly to reduce the size of the feature array. However, using parallel classifiers for multiclass seizure classification increases the storage space required for the final implementation in comparison with having a single classifier performing multiclass detection. The processing power is also increased because of the multiple iterations performed. Having said that, this increase in resources requirements is compensated by a higher classification accuracy and an overall more robust classification system. The combination of the focal onset seizures is required to increase the systems accuracy with no real-life effects on the likelihood of the patient.

V. CONCLUSION

The implementation of a genetic algorithm can be crucial when building a machine learning platform to increase classification of seizure types. It requires more training time but further investigations can highlight which features are comparative. The value of spending increased time at the training stage will ensure that the model increases in accuracy along with combining focal onset seizures to further increase the classification rate.

To further improve the models accuracy, a new set of features that are more tailored to each seizure type can be investigated. More studies can also be carried out to balance the classification performance and the resources requirements factor.

REFERENCES

[1] M.J. Brodie, S.C. Schachter, and P. Kwan, Fast Facts: Epilepsy, Karger Medical and Scientific Publishers, 2012.
Fig. 1. Confusion matrix of the first model.

Fig. 2. A heatmap describing the performance of the second model.

[2] World Health Organisation, “Key facts: epilepsy,” 2019, accessed on: 11/06/2021.

[3] A.T. Tzallas, M.G. Tsipouras, and D.I. Fotiadis, “Epileptic Seizure Detection in EEGs Using Time–Frequency Analysis,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 5, pp. 703–710, 2009.

[4] A. Subasi and E. Ercelebi, “Classification of EEG Signals Using Neural Network and Logistic Regression,” Computer Methods and Programs in Biomedicine, vol. 78, no. 2, pp. 87–99, 2005.

[5] H. Adeli, Z. Zhou, and N. Dadmehr, “Analysis of EEG Records in an Epileptic Patient Using Wavelet Transform,” Journal of Neuroscience Methods, vol. 123, no. 1, pp. 69–87, 2003.

[6] R.S. Fisher, J.H. Cross, J.A. French, N. Higurashi, E. Hirsch, F.E. Jansen, L. Lagae, S.L. Moshé, J. Peltola, E. Roulet Perez, I.E. Scheffer, and S.M. Zuberi, “Operational Classification of Seizure Types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology,” Epilepsia, vol. 58, no. 4, pp. 522–530, 2017.

[7] A. Kukker and R. Sharma, “A Genetic Algorithm Assisted Fuzzy Q-Learning Epileptic Seizure Classifier,” Computers & Electrical Engineering, vol. 92, pp. 107154, 2021.

[8] S. Ammar, O. Trigui, and M. Senouci, “Genetic and Practical Swarm Optimisation Algorithms for Patient-Specific Seizure Detection Systems,” in 2018 4th International Conference
True Class	Absence	Focal onset	Tonic	Tonic clonic	Myoclonic
Absence	158	0	0	0	0
Focal onset	0	4654	0	0	0
Tonic	0	0	395	0	0
Tonic clonic	0	0	0	1685	0
Myoclonic	0	0	0	0	4

Predicted Class	Absence	Focal onset	Tonic	Tonic clonic	Myoclonic
Absence	15	0	0	0	0
Focal onset	0	4654	0	0	0
Tonic	0	0	395	0	0
Tonic clonic	0	0	0	1685	0
Myoclonic	0	0	0	0	4

Fig. 3. Heatmap describing the proposed FODPGA classifier with the simple partial and the complex partial seizures combined as focal-onset.

on Advanced Technologies for Signal and Image Processing (ATSIP), 2018, pp. 1–4.
[9] V. Shah, E. von Weltin, S. Lopez, J.R. McHugh, L. Veloso, M. Golmohammadi, I. Obeid, and J. Picone, “The Temple University Hospital Seizure Detection Corpus,” Frontiers in Neuroinformatics, vol. 12, pp. 83, 2018.
[10] A. Harati, S. López, I. Obeid, J. Picone, M.P. Jacobson, and S. Tofochin, “The TUH EEG CORPUS: A Big Data Resource for Automated EEG Interpretation,” in 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2014, pp. 1–5.
[11] R. Oostenve und P. Praamstraus, “The five percent electrode system for high-resolution EEG and ERP measurements,” Clinical Neurophysiology, vol. 112, no. 4, pp. 713–719, 2001.
[12] B. Weir, “The Morphology of the Spike-wave Complex,” Electroencephalography and Clinical Neurophysiology, vol. 19, no. 3, pp. 284–290, 1965.
[13] O. Devinsky, K. Kelley, R.J. Porter, and W.H. Theodore, “Clinical and Electroencephalographic Features of Simple Partial Seizures,” Neurology, vol. 38, no. 9, pp. 1347–1347, 1988.
[14] F. Gilliam, B.J. Steinhoff, H-J. Bittermann, R. Kuzniecky, E. Faught, and B. Abou–Khalil, “Adult Myoclonic Epilepsy: A Distinct Syndrome of Idiopathic Generalized Epilepsy,” Neurology, vol. 55, no. 7, pp. 1030–1033, 2000.
[15] C.E. Shannon, “A Mathematical Theory Of Communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
[16] L.R. Quitadamo, R. Mai, F. Gozzo, V. Pelliccia, F. Cardinale, and S. Seri, “Kurtosis-based Detection of Intracranial High-frequency Oscillations for the Identification of the Seizure Onset Zone,” International Journal of Neural Systems, vol. 28, no. 07, pp. 1850001, 2018.
[17] Y. Höller, E. Trinka, G. Kalss, G. Schiepek, and R. Michaelis, “Correlation of EEG Spectra, Connectivity, and Information Theoretical Biomarkers with Psychological States in the Epilepsy Monitoring Unit — A pilot study,” Epilepsy & Behavior, vol. 99, pp. 106485, 2019.
[18] K. Kobayashi, T. Inoue, Y. Watanabe, M. Oka, F. Endoh, H. Yoshinaga, and Y. Ohtsuka, “Spectral Analysis of EEG Gamma Rhythms Associated with Tonic Seizures in Lennox–Gastaut Syndrome,” Epilepsy Research, vol. 86, no. 1, pp. 15–22, 2009.
[19] T.Q.D. Khoa, V.Q. Ha, and V.V. Tô, “Higuchi Fractal Properties of Onset Epilepsy Electroencephalogram,” Computational and Mathematical Methods in Medicine, p. 461426, 2012.
[20] R. Esteller, G. Vachtsevanos, J. Echauz, T. Henry, P. Pennell, C. Epstein, R. Bakay, C. Bowen, and B. Litt, “Fractal Dimension Charactizes Seizure Onset in Epileptic Patients,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1999, vol. 4, pp. 2343–2346 vol.4.
[21] J.F. Frenzel, “Genetic algorithms,” IEEE Potentials, vol. 12, no. 3, pp. 21–24, 1993.
[22] E. Emary, H.M. Zawbaa, and A.E. Hassanien, “Binary Grey Wolf Optimization Approaches for Feature Selection,” Neurocomputing, vol. 172, pp. 371–381, 2016.
[23] A.H. Fielding, Cluster and Classification Techniques for the Biosciences, Cambridge University Press, 2006.