Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide

Melanie Miller, William E. Robinson, Ana Rita Oliveira, Nina Heidary, Nikolay Kornienko, Julien Warnan, Inês A. C. Pereira, and Erwin Reisner*

Abstract: The integration of enzymes with synthetic materials allows efficient electrocatalysis and production of solar fuels. Here, we couple formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough (DvH) to metal oxides for catalytic CO\textsubscript{2} reduction and report an in-depth study of the resulting enzyme–material interface. Protein film voltammetry (PFV) demonstrates the stable binding of FDH on metal-oxide electrodes and reveals the reversible and selective reduction of CO\textsubscript{2} to formate. Quartz crystal microbalance (QCM) and attenuated total reflection infrared (ATR-IR) spectroscopy confirm a high binding affinity for FDH to the TiO\textsubscript{2} surface. Adsorption of FDH on dye-sensitized TiO\textsubscript{2} allows for visible-light-driven CO\textsubscript{2} reduction to formate in the absence of a soluble redox mediator with a turnover frequency (TOF) of 11 ± 1 s-1. The strong coupling of the enzyme to the semiconductor gives rise to a new benchmark in the selective photoreduction of aqueous CO\textsubscript{2} to formate.

Electrocatalytic- and solar-driven fuel synthesis from the greenhouse gas CO\textsubscript{2} is a desirable approach to simultaneously produce sustainable energy carriers and combat increasing atmospheric CO\textsubscript{2} levels. Formate is a stable intermediate in the reduction of CO\textsubscript{2} and can be used as liquid energy carrier at atmospheric CO\textsubscript{2} levels. Formate is a stable intermediate in the synthesis of fine chemicals. Metals and synthetic molecular systems have been widely studied as electrocatalysts for CO\textsubscript{2} reduction to formate, but largely lack the required efficiency, selectivity or affordability to enable carbon capture and utilization technologies. There is avid research into both biological and artificial CO\textsubscript{2} fixation. Semi-artificial photosynthesis provides a common stage for these contrasting approaches as components from synthetic and biological origin can be combined in hybrid model systems. To date, enzyme-based visible-light-driven CO\textsubscript{2} reduction to formate relies on diffusional mediators, such as methyl viologen (MV2+) and nicotinamide adenine dinucleotide (NAD+). Mediated processes are inefficient as they consume energy, are kinetically slow, and cause short-circuit reactions. MV2+ is toxic to microorganisms, and NAD+ is prohibitively expensive for fuel production.

In this work, we selected wild-type formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough (DvH) as it has previously displayed robustness and high activity for the oxidation of formate in solution assays and the electrochemical reduction of CO\textsubscript{2}. Initially, protein film voltammetry (PFV) was employed to study the interfacial electron transfer between FDH and porous indium-doped tin oxide (ITO) and TiO\textsubscript{2} electrodes in the absence of a mediator. Immobilization and loading of FDH on TiO\textsubscript{2} were then investigated using a quartz crystal microbalance (QCM) and attenuated total reflection infrared (ATR-IR) spectroscopy. FDH was finally coupled directly to dye-sensitized TiO\textsubscript{2} nanoparticles for the selective photocatalytic reduction of CO\textsubscript{2} to formate in a diffusional mediator-free colloidal system (Figure 1).

[4Fe–4S] cluster.

Figure 1. Schematic CO\textsubscript{2} conversion with a dye–semiconductor–FDH photocatalyst system. Photoexcited electrons from the dye, RuP in (A) or DPP in (B), are transferred via the conduction band (CB) of TiO\textsubscript{2} across the enzyme–material interface through the intraprotein [4Fe–4S] relay to the W-active site of FDH for the reduction of CO\textsubscript{2} to formate. The oxidized dye is regenerated by triethanolamine (TEOA). A protein structure homologous to DvH FDH is shown. [5] These are not the final page numbers!
The electrocatalytic activity of FDH on metal-oxide electrodes was studied by PFV on mesoporous ITO (meso-ITO) and TiO$_2$ (mesoTiO$_2$) electrodes with a film thickness of approximately 2.5 μm (Supporting Information, Figure S1).^{[13]} FDH (21.5 μm) was activated by incubation with the reducing agent DL-dithiothreitol (DTT, 50 mM)^{[9]} and the resulting solution (2 μL) was drop-cast on the electrode surface. The FDH-modified electrode was placed in an electrolyte solution containing CO$_2$/NaHCO$_3$ and KCl at pH 6.5 under a CO$_2$ atmosphere.

Figure 2A shows the electrochemically reversible interconversion of CO$_2$ and formate by FDH immobilized on a conductive mesoITO electrode (mesoITO | FDH). The onset potential for both CO$_2$ reduction and formate oxidation was observed close to the thermodynamic potential (E^θ = −0.36 V vs. standard hydrogen electrode (SHE), pH 6.5),^{[14]} demonstrating that interfacial electron transfer by the [4Fe–4S] relays and catalysis at the W-active site are highly efficient.^{[15]} Similar electrochemically reversible characteristics have previously only been reported for FDHs from Escherichia coli and Syntrophobacter fumaroxidans on graphite electrodes.^{[16,17]}

When FDH was immobilized on a semiconducting mesoTiO$_2$ electrode (mesoTiO$_2$ | FDH), a similar onset potential for CO$_2$ reduction (−0.4 V vs. SHE) was observed and the current density reached −100 μA cm$^{-2}$ at −0.6 V vs. SHE (Figure 2B). Formate oxidation could not be observed for mesoTiO$_2$ | FDH electrodes as TiO$_2$ behaves as an insulator at the required potentials. Controlled-potential electrolysis (CPE) at −0.6 V vs. SHE for 2 h produced formate with a Faradaic efficiency of (92 ± 5)% (Figure 2B, inset). Comparison of PFV scans before and after CPE showed that approximately 90% of the initial FDH activity remains after 2 h, demonstrating the excellent stability of the immobilized enzyme.

The interaction of FDH and TiO$_2$ was quantitatively investigated with a previously described QCM cell.^{[18,19]} Upon flowing an FDH-containing solution over a planarTiO$_2$-covered quartz chip (12 nm in 100 mM TEOA), the surface of TiO$_2$ reached saturation after 1 h, resulting in approximately 3.5 pmol cm$^{-2}$ of adsorbed FDH (planarTiO$_2$ | FDH, Figure 3A). The strength of the enzyme–TiO$_2$ interaction was probed by exposing the planarTiO$_2$ | FDH electrode to buffer solutions with different ionic strengths. Rinsing the QCM cell with an enzyme-free solution for 1 h desorbed only 6% of the preloaded FDH. Upon increasing the KCl concentration to

![Figure 2](image1.png)

Figure 2. PFV (ν = 5 mV s$^{-1}$) showing A) reversible reduction of CO$_2$ to formate by mesoITO | FDH (blue trace) and B) CO$_2$ reduction by mesoTiO$_2$ | FDH before (blue) and after 2 h CPE (black). Inset: CPE at −0.6 V vs. SHE. Conditions for A and B: 43 pmol FDH (amount drop-cast), 100 mM CO$_2$/NaHCO$_3$, 50 mM KCl, 20 mM formate (only present in A), 1 atm CO$_2$, pH 6.5, 25°C, Pt counter electrode. Dashed traces show control experiments of FDH-free electrodes.

![Figure 3](image2.png)

Figure 3. A) QCM analysis of the adsorption process of FDH on a planarTiO$_2$-coated quartz chip. Conditions: 12 nm FDH, 100 mM TEOA, open circuit potential of −0.1 to 0.0 V vs. SHE, pH 6.5, 25°C, N$_2$ atmosphere, circulation (0.141 mL min$^{-1}$). Inset: Desorption of FDH by replacing the solution with fresh solution (100 mM TEOA) and subsequent increase of the ionic strength (each condition was held for 1 h). Error bars correspond to standard deviation (N = 3). B) ATR-IR absorbance spectra of the amide-band region of FDH during the adsorption process over time onto a planarTiO$_2$-coated Si prism (100 nm thickness). Arrows indicate successively recorded spectra of every 1.5 min up to 7.5 min and subsequently every 30 min. Conditions: 1.0 μM FDH, 100 mM TEOA, total volume: 150 μL, open circuit potential, pH 6.5, 25°C.
0.5–3.0 m KCl, 70–60% of FDH remained adsorbed on the TiO2 surface. The finding that 60% FDH remained adsorbed on TiO2 after multiple rinsing steps with high KCl concentrations suggests a contribution from chemisorption to the attachment of the enzyme. Amino-acid residues exposed on the FDH surface are likely involved in binding. For example, aspartic and glutamic acid have previously been suggested to form a strong interaction with TiO2.

The adsorption of FDH was also probed by surface-selective ATR-IR spectroscopy using a Si prism coated with a planar or a mesoTiO2 layer (100 or 400 nm thickness, respectively). After the addition of FDH to the buffer solution covering the planarTiO2, (Figure 3B) or mesoTiO2 (Supporting Information, Figure S2) coated prism, the two characteristic amide I and amide II bands of the protein backbone structure were detected at 1650 cm⁻¹ and 1545 cm⁻¹, respectively. The protein adsorption was monitored in situ over 2 h of incubation time and no (in the case of planarTiO2) or slight (in the case of mesoTiO2) changes to the band features in the amide-band region were observed, suggesting a mainly retained backbone structure of FDH on the surface of TiO2. During the adsorption process, amide I and amide II band intensities showed an increase over time (Figure 3B). The majority of FDH remained adsorbed on the surface of planarTiO2 (Supporting Information, Figure S3) upon increasing the ionic strength of the buffer, which agrees with the QCM experiments (Figure 3A, inset) and supports a stronger than purely electrostatic interaction between FDH and TiO2.

After establishing the strong interface between FDH and TiO2, visible-light-driven CO2 reduction to formate was investigated with FDH immobilized on dye-sensitized TiO2 nanoparticles (dye/TiO2/ FDH, Figures 1 and 4). The colloidal system was self-assembled by adding FDH (pre-activated with DTT) to a suspension of TiO2 nanoparticles containing TEOA and a phosphonate group-bearing dye, either a ruthenium tris-2,2'-bipyridine complex (RuP) or a diketopyrrolopyrrole (DPP) at pH 6.5 and 25°C under N2 atmosphere (to protect the enzyme from aerobic damage). Both dyes are known to adsorb onto TiO2 via their phosphonate-anchoring groups and DPP provides a precious-metal-free alternative to RuP. CO2 was introduced to the solution via the addition of NaHCO3. Upon UV-filtered irradiation, the photoexcited dye injects electrons into the conduction band (CB) of TiO2 (ECB(TiO2) = −0.67 V vs. SHE at pH 6.5), whereupon the electrons are conveyed to catalytic W-center of FDH to drive CO2 reduction. The oxidized dye is regenerated by the sacrificial electron donor (Figure 1).

The dye/TiO2/ FDH systems showed stable formate production for approximately 6 h (Figure 4). The formation of gaseous or dissolved side-products was not detected by gas chromatography, ion chromatography, and 1H NMR spectroscopy. The activity of RuP | TiO2 | FDH was not limited by the amount of dye or the light intensity (Supporting Information, Figures S4 and S5). A solution assay monitoring the activity of FDH by UV/Vis spectroscopy (via formate oxidation in presence of 2 mM MV⁺) showed that approximately 36 ± 7% FDH remained active after 24 h of photocatalysis (Supporting Information, Figure S6), suggesting that inactivation of FDH is likely the main reason for activity loss. The addition of MV⁺ as a soluble redox mediator to RuP | TiO2 | FDH showed that not all FDH present in the system is accessible to direct electron transfer across the enzyme–material interface (Supporting Information, Figure S7). Control experiments demonstrated that all components are essential for formate production (Supporting Information, Figures S8 and S9) and support oxidative quenching and “through-particle” electron transfer as depicted in Figure 1 (Supporting Information, Figures S10 and S11).

For photocatalytic experiments, an enzyme loading of approximately 0.03 pmol cm⁻² was calculated assuming that all FDH is adsorbed on TiO2 with a surface area of 50 m² g⁻¹. Saturation of the TiO2 surface with FDH in the QCM experiment was only observed when two orders of magnitude higher amounts of FDH were adsorbed (Figure 3A). As QCM and ATR-IR spectroscopy indicate stronger than purely electrostatic interactions, close-to-quantitative adsorption of FDH on the TiO2 nanoparticle in the colloidal system is likely. A turnover frequency (TOF) of 11 ± 1.0 and 5 ± 0.6 s⁻¹ (based on CO2 conversion after 6 h) and approximately 4.9 ± 0.2 and 2.0 ± 0.2 μmol formate (after 24 h) were observed from CO2 using RuP and DPP-sensitized TiO2, respectively (Figure 4). The results of all photocatalysis experiments are presented in Tables S1 and S2 in the Supporting Information.

Table 1 shows a comparison of state-of-the-art catalysts (enzymatic and synthetic) in combination with dye-sensitized TiO2 nanoparticles without diffusional mediators for CO2 reduction and H2 evolution. Previous studies showed that enzymes outperform the synthetic systems in terms of TOF. Among the compared systems, the presented RuP | TiO2 | FDH system exhibits the highest TOF for CO2 reduction. The DPP | TiO2 | FDH system shows that comparable activities can also be achieved in an entirely precious-metal-free
Comparison of TOFs for dye-sensitized TiO$_2$ systems with mediator-free electron transfer across the enzyme–metal–scaffold systems employing NAD$^+$-dependent FDHs for CO$_2$ reduction to formate rely on soluble redox mediators and only produced TOFs in the range of 10–20 h$^{-1}$.

In summary, FDH immobilized on metal-oxide electrodes is established as a reversible electrocatalyst for the selective conversion of CO$_2$ to formate. The porous metal-oxide scaffolds allow for high FDH loading and consequently high current densities, which makes the protein-modified electrodes not only a relevant model system for CO$_2$ utilization, but also for formate oxidation in formate fuel cells. An excellent interface between TiO$_2$ and FDH is confirmed by QCM analysis and ATR-IR spectroscopy. The direct (diffusional mediator-free) electron transfer across the enzyme–metal–oxide interface is exploited for visible-light-driven CO$_2$ reduction to formate. These results underline the importance of characterizing the interactions at the enzyme–material interface and future improvements in performance may arise from more controlled immobilization and more efficient electron transfer with the directly wired FDH.

Acknowledgements

This work was supported by an ERC Consolidator Grant “MatEnSAP” (682833), the Royal Society (NF160054, Newton fellowship), the Christian Doppler Research Association and OMV Group, SFRH/BD/116515/2016, grant PTDC/BIA-MIC/2723/2014 and R&D units UID/Multi/04551/2013 (Green-IT) and LISBOA-01-0145-FEDER-007660 (Most-Micro) cofunded by PCT/MCTES and FEDER funds through COMPETE2020/POCI and the European Union’s Horizon 2020 research and innovation programme (GA 810856). We thank Prof. J. Hirst, Dr. A. Eisenschmidt, Dr. S. Roy, A. Wagner, and D. Antón García for fruitful discussions.

Conflict of interest

The authors declare no conflict of interest.

Keywords: artificial photosynthesis · carbon dioxide fixation · formate dehydrogenase · interfaces · photocatalysis

Table 1: Comparison of TOFs for dye-sensitized TiO$_2$ systems with enzymatic and synthetic catalysts for CO$_2$ reduction and H$_2$ evolution.

reaction	dye	catalyst	TOF [h$^{-1}$]	ref.
CO$_2$ → HCO$_2$	RuP	$\text{Dy/H FDH}^{[6]}$	4.0×10^4	this work
	DPP	$\text{Dy/H FDH}^{[6]}$	1.8×10^4	this work
CO$_2$ → CO	RuP	$\text{Ch CODH}^{[6]}$	5.4×10^2	[27]
dye$^{[7]}$	$\text{Re}^{[7]}$	8.6	[28]	
H$^+$ → H$_2$	RuP	$\text{Db [NiFeSe]$_2H_2$ase}^{[6]}$	1.8×10^2	[22]
	DPP	$\text{Db [NiFeSe]$_2H_2$ase}^{[6]}$	8.7×10^2	[25]
	CN$_2$	$\text{Db [NiFeSe]$_2H_2$ase}^{[6]}$	2.8×10^2	[23]

[a] W-FDH from Dy/H. [b] Carbon monoxide dehydrogenase (CODH) from Carboxydothermus hydrogenoformans (Ch). [c] (E)-2-cyano-3-(5′-(p-(di(phenylamino)phenyl)thiophen-2-yl)thiophen-2-yl)-acrylic acid. [d] Synthetic rhenium catalyst (Re) in N,N-dimethyl formamide (DMF) and water. [e] [NiFeSe]-hydrogenase from Desulfomicrobium baculatum (Db). [f] Polyheptazine carbon nitride polymer melon (CN). [g] Synthetic nickel(II) bis(diphosphine) catalyst (Ni).

[1] D. G. Nocera, Acc. Chem. Res. 2017, 50, 616–619.
[2] A. Boddien, D. Mellmann, F. Görtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733–1736.
[3] S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature 2016, 529, 68–71.
[4] K. E. Dalle, J. Warnan, J. L. Leung, B. Reuillard, I. S. Karmel, E. Reisner, Chem. Rev. 2019, in print (DOI: 10.1021/acs.chemrev.8b00392).
[5] N. Kornienko, J. Z. Zhang, K. K. Sakimoto, P. Yang, E. Reisner, Nat. Nanotechnol. 2018, 13, 890–899.
[6] J. Kim, S. H. Lee, F. Tieves, D. S. Cnao, F. Hollmann, C. E. Paul, C. B. Park, Angew. Chem. Int. Ed. 2018, 57, 13825–13828; Angew. Chem. 2018, 130, 14021–14024.
[7] B. A. Parkinson, P. F. Weaver, Nature 1984, 309, 148–149.
[8] S. F. Rowe, G. Le Gall, E. V. Ainsworth, J. A. Davies, C. W. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Chem. Rev. 2017, 117, 839–845.
[9] D. H. Nam, J. Z. Zhang, V. Andrei, N. Kornienko, N. Heidary, A. Robinson, A. Bassegoda, C. Madden, D. W. Wakerley, J. Hirst, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 10654–10658.
[10] F. A. Armstrong, J. Hirst, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14049–14054.
[11] N. Kornienko, N. Heidary, G. Ciban, E. Reisner, Chem. Sci. 2018, 9, 5322–5333.
[12] D. H. Nam, J. Z. Zhang, V. Andrei, N. Kornienko, N. Heidary, A. Wagner, K. Nakashishi, K. P. Sokol, B. Slater, I. Zebger, et al., Angew. Chem. Int. Ed. 2018, 57, 10595–10599; Angew. Chem. 2018, 130, 10755–10759.
[13] S. Frasca, T. von Graberg, J.-J. Feng, A. Thomas, B. M. Smarsly, I. M. Weidinger, F. W. Scheller, P. Hildebrandt, U. Wollenberger, ChemCatChem 2010, 2, 839–845.
[14] H. K. Ly, M. A. Marti, D. F. Martin, D. Alvarez-Paggi, W. Meister, A. Kranich, I. M. Weidinger, P. Hildebrandt, D. H. Murgida, ChemPhysChem 2010, 11, 1225–1235.
[15] E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2009, 131, 18457–18466.
Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide

Elektro- und solargetriebene CO₂-Verwertung: Eine reversible Elektrokatalyse mit Formiat-Dehydrogenase an porösen Metalloxiden wurde entwickelt. Ein selbstorganisiertes kolloidales System, bei dem Formiat-Dehydrogenase auf Farbstoff-sensibilisiertem TiO₂ immobilisiert ist, setzt einen neuen Maßstab für die selektive Reduktion von CO₂ zu Formiat in wässriger Lösung.