Opções terapêuticas endovasculares para o tratamento dos aneurismas aortoilíacos

Endovascular therapeutic options for the treatment of aortoiliac aneurysms

Bernardo Massière¹,²; Arno von-Ristow¹; Alberto Vescovi¹; Daniel Leal¹; Lea Mirian Barbosa Fonseca².

INTRODUÇÃO

O envolvimento das artérias ilíacas comuns ocorre em 20% dos pacientes portadores de aneurisma de aorta abdominal (AAA) e constitui um desafio ao tratamento endovascular por comprometer o selamento e a fixação distal das endopróteses¹. Diversas técnicas foram desenvolvidas para atingir o objetivo de selar o saco aneurismático, no entanto, a eficácia, em longo prazo, do tratamento é dependente da seleção cuidadosa². O objetivo dessa revisão é discutir as opções técnicas endovasculares de preservação da perviedade das artérias ilíacas internas no tratamento dos aneurismas aortoilíacos (AOI).

Embolização da artéria ilíaca interna

A embolização da artéria ilíaca interna (AII) previne o endoleak tipo 2 resultante do fluxo retrógrado da AII ao saco do aneurisma. Molas oclusoras são implantadas na AII previamente ao implante de uma endoprótese para cobrir sua origem e estender-se à artéria ilíaca externa (AIE)³,⁴. Também pode ser empregado um oclusor (plug de nitinol) em substituição às molas, sendo relatada melhor relação custo-eficácia e menor incidência de complicações pelo maior controle do posicionamento durante a liberação⁵. As complicações deste procedimento são decorrentes dos efeitos isquêmicos da embolização da AII. A claudicação glútea é o sintoma predominante, podendo manifestar-se com diferentes intensidades e, eventualmente, regredir ao longo do tempo. Sua incidência varia de 13% a 50% e o risco é menor quando as molas são posicionadas proximalmente à bifurcação da AII³,⁴,⁶. Na literatura, também são relatadas como complicações da embolização da AII, disfunção sexual, déficit neurológico, retenção urinária, necrose glútea e isquemia colônica⁶,⁷.

Cerclagem da artéria ilíaca comum

Puech-Leão⁸, em 2000, reportou o tratamento dos AOI adaptando a técnica descrita previamente⁹ de cerclagem da artéria ilíaca comum (AIC) para o tratamento do endoleak em pacientes submetidos ao tratamento endovascular do AAA (Figura 1). Inicialmente, realiza-se acesso cirúrgico extraperitoneal à AIC. A artéria é dissecada cranialmente à sua bifurcação, em uma extensão de 2 a 3 cm e duas fitas cardíacas são passadas ao redor do vaso com uma distância de 1 cm entre elas. Após a conclusão da abordagem retroperitoneal, realiza-se incisões inguinais para exposição das artérias femorais. Procede-se à introdução da endoprótese e uma pinça é posicionada ao nível da fita cardíaca mais caudal, para ser utilizada como...
referência radiopaca à fluoroscopia. Após o posicionamento e a expansão do dispositivo, um cateter balão do mesmo diâmetro da endoprótese é introduzido sob fluoroscopia e insuflado ao nível da extremidade caudal da endoprótese. As duas fitas cardíacas são amarradas até que a resistência promovida pelo balão seja percebida. Então, o balão é desinflado e retirado para realização de angiografia de controle.

Ramos ilíacos em Bell-Bottom
A técnica de bell-bottom (boca de sino) foi originalmente descrita com a utilização de uma extensão proximal aórtica (cuff) selecionado com base no diâmetro da artéria ilíaca e posicionado com pelo menos 1 cm de sobreposição dentro do ramo ilíaco distal e por pelo menos 1 cm em uma área da AIC ectasiada ou aneurismática (Figura 2A)10. A presença de trombo no segmento ectasiado consiste em uma contraindicação à realização dessa técnica. Os cuffs descritos nessa configuração são expandidos para adaptarem-se ao ramo ilíaco, promovendo o selamento distal adequado na AIC ectasiada ou aneurismática. Posteriormente, ramos ilíacos de diâmetro largo, especificamente desenvolvidos para esse fim, tornaram-se disponíveis para serem utilizados na técnica de bell-bottom11. Não existe na literatura um consenso sobre o diâmetro limite da AIC recomendado para a utilização dessa técnica. Estudo analisando artérias ilíacas comuns de até 30 mm de diâmetro submetidas ao implante de endopróteses bell-bottom demonstrou resultado satisfatório em longo prazo (endoleak tipo 1B em 4% dos casos)11. Análise comparativa evidenciou não haver diferen-

\textbf{Sanduíche}
A técnica de sanduíche para o tratamento dos aneurismas aortoilíacos foi inicialmente descrita por Lobato17. Essa técnica é composta pelos seguintes passos: 1) implante por via femoral de endoprótese bifurcada, com posicionamento do ramo ilíaco contralateral a 1 cm cranial ao óstio da AIC; 2) cateterismo da AII através de acesso braquial esquerdo; 3) implante de stent autoexpansível revestido na AII com sobreposição adequada no ramo ilíaco, seguida de implante de ramo ilíaco da en-

\textbf{Figura 1.} Técnica de cerclagem ilíaca. Esquema representativo da utilização da técnica de cerclagem no tratamento dos aneurismas aortoilíacos.

\textbf{Figura 2.} Técnicas endovasculares para o tratamento dos aneurismas aortoilíacos. A) bell-bottom; B) endoprótese ramificada ilíaca; C) sanduíche; D) revascularização endovascular retrógrada da artéria ilíaca interna.
doprótese; 4) modelamento do ramo ilíaco e expansão do stent empregando cateteres balão; 5) implante do ramo ilíaco contralateral (Figura 2C)\(^\text{18}\). Lobato\(^\text{17}\) indica a realização de sobreposição superior a 6cm entre as endopróteses para minimizar a formação de goteiras e o risco de vazamento. As limitações dessa técnica incluem a necessidade de utilização de endopróteses ilíacas longas, o risco potencial de compressão de uma das endopróteses paralelas e a ausência de dados controlados com longo período de acompanhamento\(^\text{1}\). Apesar dessas considerações, a técnica é utilizada em diversos centros com relatos de pequenas taxas de oclusão das próteses e de vazamentos\(^\text{19-22}\). Lobato descreve uma série com 40 pacientes, com tempo médio de acompanhamento de 12 meses, observando taxas de sucesso técnico de 100%, perviedade primária de 93,8% e endoleak tipo 3 (associado à técnica) de 2,5%\(^\text{23}\).

Endoprótese ramificada de artéria ilíaca interna

A técnica de ramificação da AII consiste no implante de uma endoprótese ilíaca bifurcada combinada a um stent recoberto de ligação entre essa e a AII. A endoprótese ZBIS\(^\text{\circledast}\) está disponível com ramos externos nas configurações helicoidal e reta, sendo essa última a mais empregada. Esse dispositivo é geralmente combinado a uma endoprótese implantada na aorta abdominal (Figura 2B)\(^\text{18,24}\). Massière et al.\(^\text{24}\) desenvolveram dispositivo ramificado bifurcado baseado na plataforma Apolo. Nesse relato foi utilizado como stent de ligação o Viabahn\(^\text{\circledast}\).

São descritos os seguintes critérios morfológicos para o emprego dessa técnica utilizando-se o dispositivo ZBIS: a presença de um segmento da AIE não aneurismático com pelo menos 20mm de comprimento e diâmetro compreendido entre 8 e 11 mm, comprimento da AIC superior a 50mm, diâmetro luminal da AIC superior a 16mm e presença de um segmento da AII não aneurismático com pelo menos 10mm de comprimento e diâmetro compreendido entre 6 e 9 mm\(^\text{18,25}\). Utilizando esses critérios, estudo realizado em 51 pacientes submetidos ao tratamento de aneurismas AOI, determinou que apenas 38% dos pacientes analisados preencheram totalmente os requisitos determinados pelo fabricante\(^\text{26}\).

Ferreira et al.\(^\text{27}\) publicaram estudo investigando 47 dispositivos bifurcados implantados em 37 pacientes com tempo médio de acompanhamento de 11,6 meses. Foi obtido sucesso técnico em 97,3% dos casos e perviedade secundária em 22 meses de 85,4%. Foi observada a oclusão do stent de ligação em cinco pacientes (10,6%), claudicação glútea em um caso (2,7%) e não foram observados endoleaks. A incidência de complicações associadas ao dispositivo, avaliada pela incidência combinada de endoleak tipo 1, endoleak tipo 3 e oclusão de ramo, variou, na literatura, de 7% a 13,8%. A incidência de claudicação glútea varia de 2,7 a 5,6%\(^\text{26-31}\). A principal limitação a essa técnica são os pré-requisitos anatômicos necessários ao implante do dispositivo\(^\text{32}\).

Meta-análise analisando o desempenho de 236 stents recobertos de conexão em cinco estudos de endoprótese ramificada reportou incidência de oclusão em 6% dos casos e de claudicação glútea em 3,4%, tendo como principais causas o diâmetro pequeno da AII, dissecação peroperatória da AII por dilatação excessiva, emprego de stents longos, concomitância de doença ateroesclerótica da AII e compressão associada a utilização do dispositivo ramificado de modelo helicoidal. Foi observada menor taxa de oclusão nos casos em que o stent balão expansível foi utilizado como stent de ligação, no entanto, métodos estatísticos não puderam ser empregados devido à heterogeneidade dos estudos\(^\text{31}\).

Até o momento de submissão desse artigo, apenas resultados iniciais da utilização da endoprótese ramificada ilíaca Excluder\(^\text{\circledast}\) foram publicados\(^\text{32}\).

Revascularização endovascular retrógrada da artéria ilíaca interna

A técnica de revascularização endovascular retrógrada da artéria ilíaca interna (REAIR) foi, inicialmente, descrita por Hoffer et al.\(^\text{33}\). Ela consiste no implante de uma endoprótese cônsica aortouni-ilíaca, seguida de confecção de uma ponte fêmoro-femoral cruzada e implante contralateral de stent revestido, estendendo-se da AIE à AII com o objetivo de preservar a perfusão pélvica (Figura 2D).

Massière et al.\(^\text{34}\) descreveram série de 21 pacientes submetidos à técnica de revascularização endovascular retrógrada da artéria ilíaca interna para tratamento de aneurismas aortoilíacos complexos, com impossibilidade de serem submetidos a outra técnica endovascular e com elevado risco cirúrgico, utilizando
como stent de ligação o Viabahn®. O tempo médio de acompanhamento foi 52 meses com sucesso técnico em todos os casos, endoleak associado ao stent de ligação em um paciente (4,7%), endoleak tipo IB em um paciente (4,7%) e oclusão do stent revestido em um caso (4,7%), em 30 dias. A necessidade da realização de ponte extra-anatômica configura uma limitação a esta técnica, pelo risco de infecção e trombose, ficando reservada a casos selecionados. No entanto, não foram observadas complicações associadas à ponte cruzada e a técnica possibilita o tratamento de casos com anatomia complexa oferecendo poucas restrições anatômicas ao seu emprego.

CONCLUSÃO

As diversas técnicas endovasculares disponíveis para o tratamento dos aneurismas aortoilíacos apresentam individualmente limitações anatômicas. A complexidade desses casos exige adequada seleção da técnica que permitirá a exclusão do aneurisma oferecendo menor risco e melhor resultado no longo prazo.

ABSTRACT

About 20% of patients with abdominal aortic aneurysms have associated iliac aneurysms. Distal sealing during the endovascular treatment of aortic-iliac aneurysms is a challenge that has led to the emergence of several technical options to achieve this goal over the years. Internal iliac artery embolization is associated with the risk of ischemic complications, such as gluteal necrosis, lower limb neurological deficit, colonic ischemia, impotence and gluteal claudication. This article summarizes the technical options for endovascular treatment of aortoiliac aneurysms with different approaches to preserving the patency of internal iliac arteries.

Keywords: Aortic Aneurysm. Iliac Artery. Endovascular Procedures.

REFERÊNCIAS

1. Brunkwall J, Hauksson H, Bengtsson H, Berqqvist D, Takolander E, Bergentz SE. Solitary aneurysms of the iliac arterial system: an estimate of their frequency of occurrence. J Vasc Surg. 1989;10(4):381-4.
2. Fatima J, Correa MP, Mendes BC, Oderich GS. Pelvic revascularization during endovascular aortic aneurysm repair. Perspect Vasc Surg Endovasc Ther. 2012;24(2):55-62.
3. Criado FJ, Wilson EP, Velazquez OC, Carpenter JP, Barker C, Wellons E, et al. Safety of coil embolization of the internal iliac artery in endovascular grafting of abdominal aortic aneurysms. J Vasc Surg. 2000;32(4):684-8.
4. Cynamon J, Lerer D, Veith FJ, Taragin BH, Wahl SI, Lautin JL, et al. Hypogastric artery coil embolization prior to endoluminal repair of aneurysms and fistulas: buttock claudication, a recognized but possibly preventable complication. J Vasc Interv Radiol. 2000;11(5):573-7.
5. Vandy F, Criado E, Upchurch GR Jr, Williams DM, Rectenwald J, Eliason J. Transluminal hypogastric artery occlusion with an Amplatzer vascular plug during endovascular aortic aneurysm repair. J Vasc Surg. 2008;48(5):1121-4.
6. Farahmand P, Becquemin JP, Desgranges P, Allaire E, Marzelle J, Roudot-Thoraval F. Is hypogastric artery embolization during endovascular aortoiliac aneurysm repair (EVAR) innocuous and useful? Eur J Vasc Endovasc Surg. 2008;35(4):429-35.
7. Engelke C, Elford J, Morgan RA, Belli AM. Internal iliac artery embolization with bilateral occlusion before endovascular aortoiliac aneurysm repair-clinical outcome of simultaneous and sequential intervention J Vasc Interv Radiol. 2002;13(7):667-76.
8. Puech-Leao P. Banding of the common iliac artery: an expedient in endoluminal correction of aortoiliac aneurysms. J Vasc Surg. 2000;32(6):1232-4.
9. Chuter TA, Risberg B, Hopkinson BR, Wendt G, Scott RA, Walker PJ, et al. Clinical experience with a bifurcated endovascular graft for abdominal aortic aneurysm repair. J Vasc Surg. 1996;24(4):655-66.
10. Karch LA, Hodgson KJ, Mattos MA, Bohannon WT, Ramsey DE, McLafferty RB. Management of ectatic, nonaneurysmal iliac arteries during endoluminal aortic aneurysm repair. J Vasc Surg. 2001;33(2 Suppl):S33-8.
Opções terapêuticas endovasculares para o tratamento dos aneurismas aortoilíacos

11. Torsello G, Schönfeld E, Osada N, Austermann M, Pennekamp C, Donas KP. Endovascular treatment of common iliac artery aneurysms using the bell-bottom technique: long-term results. J Endovasc Ther. 2010;17(4):504-9.
12. Naughton PA, Park MS, Kheirelseid EA, O’Neill SM, Rodriguez HE, Morasch MD, et al. A comparative study of the bell-bottom technique vs hypogastric exclusion for the treatment of aneurysmal extension to the iliac bifurcation. J Vasc Surg. 2012;55(4):956-62.
13. Kritpracha B, Pigott JP, Russell TE, Corbey MJ, Whalen RC, DiSalle RS, et al. Bell-bottom aortoiliac endografts: an alternative that preserves pelvic blood flow. J Vasc Surg. 2008;31(4):723-7.
14. England A, Butterfield JS, McCollum CN, Ashleigh RJ. Endovascular aortic aneurysm repair with the talent stent-graft: outcomes in patients with large iliac arteries. Cardiovasc Intervent Radiol. 2011;34(5):874-81.
15. Alvarez Marcos F, Garcia de la Torre A, Alonso Pérez M, Llanesa Coto JM, Camblor Santervas LA, Zanabili Al Sibbai AA, et al. Use of aortic extension cuffs for preserving hypogastric blood flow in endovascular aneurysm repair with aneurysmal involvement of common iliac arteries. Ann Vasc Surg. 2013;27(2):139-45.
16. Kirkwood ML, Saunders A, Jackson BM, Wang GJ, Fairman RM, Woo EY. Aneurysmal iliac arteries do not portend future iliac aneurysmal enlargement after endovascular aneurysm repair for abdominal aortic aneurysm. J Vasc Surg. 2011;53(2):269-73.
17. Lobato AC. Sandwich technique for aortoiliac aneurysms extending to the internal iliac artery or isolated common/internal iliac artery aneurysms: a new endovascular approach to preserve pelvic circulation. J Endovasc Ther. 2011;18(1):106-11.
18. Geisbüsch P, Attigah N, Hyhlik-Dürr A, Hakimi M, Müller-Eschner M, Böckler D. Decision-making and techniques in hypogastric artery revascularization. J Cardiovasc Surg (Torino). 2013;54(1 Suppl 1):71-9.
19. Friedman SG, Wun H. Hypogastric preservation with Viabahn stent graft during endovascular aneurysm repair. J Vasc Surg. 2011;54(2):504-6.
20. Mosquera Arocena N, Rodriguez Feijoo G, Carballo Fernandez C, Molina Herrero F, Fernandez Lebrato R, Barrios Castro A, et al. Use of modified Sandwich-graft technique to preserve hypogastric artery in EVAR treatment of complex aortic aneurysm anatomy. J Cardiovasc Surg (Torino). 2011;52(5):643-9.
21. Heckenkamp J, Brunkwall J, Luebke T, Aleksic M, Schöndube F, Stojanovic T. Novel chimney-graft technique for preserving hypogastric flow in complex aortoiliac aneurysms. J Cardiovasc Surg (Torino). 2012;53(6):773-6.
22. Yoshida Rde A, Yoshida WB, Kolvenbach R, Vieira PR. Modified “stent-graft sandwich” technique for treatment of isolated common iliac artery aneurysm in patient with Marfan syndrome. Ann Vasc Surg. 2012;26(3):419.e7-9.
23. Lobato AC, Camacho-Lobato L. The sandwich technique to treat complex aortoiliac or isolated iliac aneurysms: results of midterm follow-up. J Vasc Surg. 2013;57(2 Suppl):265-345.
24. Massière B, von Ristow A, Cury J, Gress M, Vescovi A, Marques M. Internal iliac artery branch stent grafting for aortoiliac aneurysms using the Apollo branched device. Ann Vasc Surg. 2010;24(3):417. e15-8.
25. Physician’s pocket reference guide. Zenith® Endovascular Grafts. Queensland, Australia: Cook Medical; 2012. p. 45-50.
26. Karthikesalingam A, Hinchliffe RJ, Malkawi AH, Holt PJ, Loftus IM, Thompson MM. Morphological suitability of patients with aortoiliac aneurysms for endovascular preservation of the internal iliac artery using commercially available iliac branch graft devices. J Endovasc Ther. 2010;17(2):163-71.
27. Ferreira M, Monteiro M, Lanzotti L. Technical aspects and midterm patency of iliac branched devices. J Vasc Surg. 2010;51(3):545-50.
28. Karthikesalingam A, Hinchliffe RJ, Holt PJ, Boyle JR, Loftus IM, Thompson MM. Endovascular aneurysm repair with preservation of the internal iliac artery using the iliac branch graft device. Eur J Vasc Endovasc Surg. 2010;39(3):285-94.
29. Donas KP, Torsello G, Pitoulias GA, Austermann M, Papadimitriou DK. Surgical versus endovascular repair by iliac branch device of aneurysms involving the iliac bifurcation. J Vasc Surg. 2011;53(5):1223-9.
30. Parlani G, Verzini F, De Rango P, Brambilla D, Cos-
carella C, Ferrer C, et al. Long-term results of iliac aneurysm repair with iliac branched endograft: a 5-year experience on 100 consecutive cases. Eur J Vasc Endovasc Surg. 2012;43(3):287-92.

31. Donas KP, Bisdas T, Torsello G, Austermann M. Technical considerations and performance of bridging stent-grafts for iliac side branched devices based on a pooled analysis of single-center experiences. J Endovasc Ther. 2012;19(5):667-71.

32. Ferrer C, De Crescenzo F, Coscarella C, Cao P. Early experience with the Excluder® iliac branch endoprosthesis. J Cardiovasc Surg (Torino). 2014;55(5):679-83.

33. Hoffer EK, Nicholls SC, Fontaine AB, Glickerman DJ, Borsa JJ, Bloch RD. Internal to external iliac artery stent-graft: a new technique for vessel exclusion. J Vasc Interv Radiol. 1999;10(8):1067-73.

34. Massière B, von Ristow A, Vescovi A, Pedron C, Fonseca LM. Management of aortoiliac aneurysms by retrograde endovascular hypogastric artery preservation. Vascular. 2014;22(2):116-20.

Recebido em: 12/07/2016
Aceito para publicação em: 26/09/2016
Conflito de interesse: nenhum.
Fonte de financiamento: nenhum.

Endereço para correspondência:
Bernardo Massière
E-mail: bvm200@gmail.com
drbernardocentervasc.com.br