Back to Event Basics: Self-Supervised Learning of Image Reconstruction for Event Cameras via Photometric Constancy

Federico Paredes-Valles and Guido C. H. E. de Croon
(Poster Session Three, ID: 8305)

Code and models: mavlab.tudelft.nl/ssl_e2v/
Problem formulation

Event cameras and image reconstruction:

![Diagram showing the process of event camera and image reconstruction]

- **Brightness** → **Event camera** → **Event stream**
- **Event camera** → **NN** → **Brightness**
Problem formulation

Event cameras and image reconstruction:

Minimal training pipeline:
- Rebecq et al., TPAMI’19
- Stoffregen et al., ECCV’20
Problem formulation

Event cameras and image reconstruction:

Our goal:
To leverage our knowledge of the inner workings of event cameras to learn, in a self-supervised fashion, to perform image reconstruction without the need for any ground-truth or synthetic data.
Related work

Flow - Brightness
- Kim *et al.* (JSSC’08, ECCV’16)
 - EKF + Poisson int.
- Cook *et al.* (IJCNN’11)
 - Variational opt.
- Bardow *et al.* (CVPR’16)
 - Variational opt.

 - Joint estimation of flow and brightness
 - Computationally expensive
 - Hand-crafted regularizers

Event integration
- Reinbacher *et al.* (IJCV’18)
 - Manifold regularization
- Scheerlinck *et al.* (ACCV’18)
 - High-pass filter

Machine learning
- Rebecq *et al.* (TPAMI’19)
 - Synthetic labeled data
 - E2VID: Recurrent CNN
- Stoffregen *et al.* (ECCV’20)
 - Refined data augmentation
 - E2VID
 - State-of-the-art
 - Among many others...

TU Delft
Related work

Flow - Brightness
- Kim et al. (JSSC’08, ECCV’16)
 - EKF + Poisson int.
- Cook et al. (IJCNN’11)
 - Variational opt.
- Bardow et al. (CVPR’16)
 - Variational opt.

+ Joint estimation of flow and brightness
- Computationally expensive
- Hand-crafted regularizers

Event integration
- Reinbacher et al. (IJCV’18)
 - Manifold regularization
- Scheerlinck et al. (ACCV’18)
 - High-pass filter

+ Computationally efficient
- Artifacts due to unknown sensor parameters

Machine learning
- Rebecq et al. (TPAMI’19)
 - Synthetic labeled data
 - E2VID: Recurrent CNN
- Stoffregen et al. (ECCV’20)
 - Refined data augmentation
 - E2VID
 - State-of-the-art
- Among many others...
Related work

Flow - Brightness
- Kim et al. (JSSC’08, ECCV’16)
 - EKF + Poisson int.
- Cook et al. (IJCNN’11)
 - Variational opt.
- Bardow et al. (CVPR’16)
 - Variational opt.
 - Joint estimation of flow and brightness
 - Computationally expensive
 - Hand-crafted regularizers

Event integration
- Reinbacher et al. (IJCV’18)
 - Manifold regularization
- Scheerlinck et al. (ACCV’18)
 - High-pass filter
 + Computationally efficient
 - Artifacts due to unknown sensor parameters

Machine learning
- Rebecq et al. (TPAMI’19)
 - Synthetic labeled data
 - E2VID: Recurrent CNN
- Stoffregen et al. (ECCV’20)
 - Refined data augmentation
 - E2VID
 - State-of-the-art
 + Computationally efficient
 + High reconstruction accuracy
 - Sim-to-real gap

Among many others...
Related work

Flow - Brightness
- Joint estimation of flow and brightness
- Computationally expensive
- Hand-crafted regularizers

Cook et al. (IJCNN’11)
- Variational opt.

Bardow et al. (CVPR’16)
- Variational opt.

Event integration
- Computationally efficient
- Artifacts due to unknown sensor parameters

Reinbacher et al. (IJCV’18)
- Manifold regularization

Scheerlinck et al. (ACCV’18)
- High-pass filter

Machine learning
- Computationally efficient
- High reconstruction accuracy
- Sim-to-real gap

Rebecq et al. (TPAMI’19)
- Synthetic labeled data
- E2VID: Recurrent CNN

Stoffregen et al. (ECCV’20)
- Refined data augmentation
- E2VID
- State-of-the-art

Among many others...

We propose to come back to the theoretical basics of event cameras with a machine learning approach that leverages the optical flow - image brightness relation to learn to perform image reconstruction from real unlabeled event data while remaining computationally efficient.
Proposed framework
Self-supervised image reconstruction

Proposed training pipeline:
- FlowNet learns to estimate event-based optical flow by compensating for the motion blur in the input events (Zhu et al., CVPR’19).
- ReconNet learns to perform image reconstruction by predicting the brightness frames that best satisfy the input events and the estimated optical flow.

Self-supervised learning of optical flow via contrast maximization:
Proposed framework
Self-supervised image reconstruction

Measured brightness increment

\[\Delta L = \sum_{e_i \in \Delta t} p_i C \]

The brightness change encoded in the events...

...is caused by the displacement of the spatial gradients of the brightness signal.

Predicted brightness increment

\[\Delta L \approx \frac{\partial L}{\partial t} \Delta t \]

\[\frac{\partial L}{\partial t} + \nabla L \cdot u = 0 \]

\[\Delta L \approx -\nabla L \cdot u \Delta t \]

Generative model

\(L \doteq \log(I) \)

\(I \): image intensity
The brightness change encoded in the events...

\[\sum_{e_i \in \Delta t} p_i C \approx -\nabla L \cdot u \Delta t \]

...is caused by the displacement of the spatial gradients of the brightness signal.

Proposed framework
Self-supervised image reconstruction
Training details

Loss function:

\[\mathcal{L}_{\text{ReconNet}} = \sum_{k=0}^{S} \mathcal{L}_{\text{model}} + \lambda_2 \sum_{k=S_0}^{S} \mathcal{L}_{\text{TC}} + \lambda_3 \sum_{k=0}^{S} \mathcal{L}_{\text{TV}} \]

Architectures:

Input representation: voxel grid (Zhu, CVPR’19)

FlowNet:
- EV-FlowNet (Zhu et al., RSS’18)
- FireFlowNet (Ours)

ReconNet:
- E2VID (Rebecq et al., TPAMI’19)
- FireNet (Scheerlinck et al., WACV’20)

Dataset: UZH-FPV Drone Racing Dataset (Delmerico, ICRA’19).
Results

Event-Camera Dataset (Mueggler, IJRR’17)

Method	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.08	0.54	0.37
FireNet (Scheerlinck, WACV’20)	0.06	0.57	0.29
E2VID+ (Stoffregen, ECCV’20)	**0.04**	**0.60**	**0.27**
FireNet+ (Stoffregen, ECCV’20)	0.06	0.51	0.32
E2VID_E (Ours)	0.07	0.52	0.38
E2VID_F (Ours)	0.06	0.55	0.37
FireNet+ (Ours)	0.06	0.52	0.38
FireNet_E (Ours)	0.06	0.51	0.41

High Quality Frames (Stoffregen, ECCV’20)

Method	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV’20)	0.07	0.48	0.42
E2VID+ (Stoffregen, ECCV’20)	**0.03**	**0.57**	**0.26**
FireNet+ (Stoffregen, ECCV’20)	0.05	0.47	0.36
E2VID_E (Ours)	0.07	0.44	0.47
E2VID_F (Ours)	0.06	0.48	0.47
FireNet+ (Ours)	0.06	0.46	0.47
FireNet_E (Ours)	0.06	0.46	0.51

Subscripts “F” and “E” indicate whether our networks were trained together with FireFlowNet or EV-Flownet.

Close to SOTA performance!
Results

Event-Camera Dataset (Mueggler, IJRR’17)

Model	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.08	0.54	0.37
FireNet (Scheerlinck, WACV’20)	0.06	0.57	0.29
E2VID+ (Stoffregen, ECCV’20)	0.04	0.60	0.27
FireNet+ (Stoffregen, ECCV’20)	0.06	0.51	0.32
E2VID_F (Ours)	0.07	0.52	0.38
E2VID_E (Ours)	0.06	0.55	0.37
FireNet_F (Ours)	0.06	0.52	0.38
FireNet_E (Ours)	0.06	0.51	0.41

High Quality Frames (Stoffregen, ECCV’20)

Model	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV’20)	0.07	0.48	0.42
E2VID+ (Stoffregen, ECCV’20)	0.03	0.57	0.26
FireNet+ (Stoffregen, ECCV’20)	0.05	0.47	0.36
E2VID_F (Ours)	0.07	0.44	0.47
E2VID_E (Ours)	0.06	0.48	0.47
FireNet_F (Ours)	0.06	0.46	0.47
FireNet_E (Ours)	0.06	0.46	0.51

Subscripts “F” and “E” indicate whether our networks were trained together with FireFlowNet or EV-Flownet.
Results

Event-Camera Dataset (Mueggler, IJRR’17)

Method	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.08	0.54	0.37
FireNet (Scheerlinck, WACV’20)	0.06	0.57	0.29
E2VID+ (Stoffregen, ECCV’20)	0.04	0.60	0.27
FireNet+ (Stoffregen, ECCV’20)	0.06	0.51	0.32
E2VID_F (Ours)	0.07	0.52	0.38
E2VID_E (Ours)	0.06	0.55	0.37
FireNet_F (Ours)	0.06	0.52	0.38
FireNet_E (Ours)	0.06	0.51	0.41

High Quality Frames (Stoffregen, ECCV’20)

Method	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV’20)	0.07	0.48	0.42
E2VID+ (Stoffregen, ECCV’20)	0.03	0.57	0.26
FireNet+ (Stoffregen, ECCV’20)	0.05	0.47	0.36
E2VID_F (Ours)	0.07	0.44	0.47
E2VID_E (Ours)	0.06	0.48	0.47
FireNet_F (Ours)	0.06	0.46	0.47
FireNet_E (Ours)	0.06	0.46	0.51

Subscripts “F” and “E” indicate whether our networks were trained together with FireFlowNet or EV-Flownet.

Close to SOTA performance!
Results

Event-Camera Dataset (Mueggler, IJRR’17)

Model	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.08	0.54	0.37
FireNet (Scheerlinck, WACV’20)	0.06	0.57	0.29
E2VID+ (Stoffregen, ECCV’20)	**0.04**	**0.60**	**0.27**
FireNet+ (Stoffregen, ECCV’20)	0.06	0.51	0.32
E2VID_F (Ours)	0.07	0.52	0.38
E2VID_E (Ours)	0.06	0.55	0.37
FireNet_F (Ours)	0.06	0.52	0.38
FireNet_E (Ours)	0.06	0.51	0.41

High Quality Frames (Stoffregen, ECCV’20)

Model	MSE	SSIM	LPIPS
E2VID (Rebecq, TPAMI’19)	0.14	0.46	0.45
FireNet (Scheerlinck, WACV’20)	0.07	0.48	0.42
E2VID+ (Stoffregen, ECCV’20)	**0.03**	**0.57**	**0.26**
FireNet+ (Stoffregen, ECCV’20)	0.05	0.47	0.36
E2VID_F (Ours)	0.07	0.44	0.47
E2VID_E (Ours)	0.06	0.48	0.47
FireNet_F (Ours)	0.06	0.46	0.47
FireNet_E (Ours)	0.06	0.46	0.51

Subscripts “F” and “E” indicate whether our networks were trained together with FireFlowNet or EV-Flownet.

Close to SOTA performance!
Conclusion

- We presented the first self-supervised learning-based approach to event-based image reconstruction.

- The framework can be extended in multiple ways (architectures, losses, optical flow algorithms, etc.).
 - Architectures
 - Optical flow algorithms
 - Other regularizers