Data Article

Data on a temperature-dependent thermic and electrical properties of a novel blend polymeric system based on poly(vinyl alcohol), chitosan and phosphoric acid

Jonathan Veraa, Edgar Mosqueraa, b, Jesús Evelio Diosaa, b, *

a Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia
b Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, A.A. 25360, Cali, Colombia

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 16 May 2019
Accepted 20 January 2020
Available online 27 January 2020

\textbf{Keywords:}
Polymer electrolytes
Phosphoric Acid
DC conductivities
Thermal properties

\textbf{A B S T R A C T}

In this work, data on a temperature-dependent thermic and electrical properties in a novel blend polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and chitosan (CS) doped with H\textsubscript{3}PO\textsubscript{4} at different concentrations were prepared by solution casting method. Their phase behavior and ionic conductivity were studied by DSC, TGA and IS. These membranes exhibit good proton conductivity of the order of \(10^{-2} \text{ Scm}^{-1}\) at \(200 \text{ C}\) and the understanding of the H\textsubscript{3}PO\textsubscript{4} at different concentrations effect in the polymer electrolyte membranes is crucial for possible applications in fuel cells. The data have not been reported nor discussed in the research paper to be submitting.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The DC conductivity, σ_0, can be determined from the resistance of the volume of the sample obtained from the impedance graphs, Nyquist plots ($-\text{Im}Z$ vs $\text{Re}Z$), by extrapolating the circular part of the spectrum to the real axis Z'', using $\sigma_0 = \frac{d}{AR}$, where R is the intercept with the Z'' axis, d is the thickness of the membrane and A the contact area of the sample with the electrodes. It is also possible to determine σ_0 from the adjustment of the experimental data to the Jonscher model [4],

$$\sigma'(\omega) = \sigma_0 + A\omega^n$$

where σ_0 is the DC conductivity (independent of the frequency), A is a pre-exponential factor related to the frequency of regime change, ω_p, as $A = \frac{\sigma_0}{(\omega_p)^n}$ and n is a value between 0 and 1, where the values of n close to zero indicate that the correlation between the ions is greater than for the values close to 1, which would be the case where the ionic jumps are random (Debye model). From the impedance data, $Z'(\omega)$ and $Z''(\omega)$, the values of the real conductivity, σ' were obtained using the relation,

$$\sigma'(\omega) = \frac{Z''}{Z'^2 + Z''^2}$$

The experimental data (TGA, DSC and IS) are reported in Tables 1–6.

- The Table 1 shows the weight percent loss in three different temperature regions for all the membranes.
Table 1
Weight percent loss in three different temperature regions.

Solution	(30–170) °C	(170–450) °C	(310–450) °C
PVA	4.89%	68.22%	8.82%
CS	10.88%	33.69%	15.94%
(PVA:CS) (80:20)	8.34%	52.13%	21.81%
(PVA:CS) + 10% H₃PO₄	21.69%	14.74%	10.19%
(PVA:CS) + 20% H₃PO₄	9.78%	32.03%	10.01%
(PVA:CS) + 30% H₃PO₄	10.58%	27.74%	9.31%
(PVA:CS) + 40% H₃PO₄	13.31%	23.97%	11.07%

Table 2
Characteristic values of the membranes using the DSC.

Solution	T_g (°C)	T_m (°C)	ΔH (J/g)	T_d (°C)	ΔH (J/g)
PVA	67	203	62.43	273	791.30
CS	67	203	62.43	273	791.30
(PVA:CS) (80:20)	53	194	38.66	288	532.80
(PVA:CS) + 10% H₃PO₄	56	190	79.24	217	300.00
(PVA:CS) + 20% H₃PO₄	41	156	25.11	199	113.00
(PVA:CS) + 30% H₃PO₄	37	153	13.09	185	83.63
(PVA:CS) + 40% H₃PO₄	20	152	57.14	202	12.74

Table 3
Resistance values of the membranes extrapolated from the Nyquist diagrams.

Temperature (°C)	R (Ω) 80%	R (Ω) 100%	R (Ω) 200%	R (Ω) 300%	R (Ω) 400%
30	303.15	1.11 x 10⁶	5.3 x 10⁵	5.08 x 10⁴	1.47 x 10³
40	313.15	3.40 x 10⁵	2.78 x 10⁴	3.52 x 10³	7.93 x 10²
50	323.15	6.76 x 10⁴	1.62 x 10³	2.55 x 10²	3.81 x 10¹
60	333.15	7.92 x 10³	8.92 x 10²	1.99 x 10¹	4.54 x 10⁰
70	343.15	1.20 x 10²	5.79 x 10¹	1.66 x 10⁰	3.28 x 10⁰
80	353.15	1.83 x 10¹	1.62 x 10⁰	2.55 x 10⁹	3.81 x 10⁸
90	363.15	8.42 x 10⁹	4.00 x 10⁸	1.37 x 10⁷	2.61 x 10⁶
100	373.15	5.01 x 10⁸	2.66 x 10⁷	1.08 x 10⁶	2.01 x 10⁵
110	383.15	3.37 x 10⁷	2.03 x 10⁶	9.73 x 10⁵	1.56 x 10⁵
120	393.15	2.49 x 10⁶	1.55 x 10⁵	7.84 x 10⁴	1.17 x 10⁴
130	403.15	1.84 x 10⁵	1.25 x 10⁴	7.54 x 10⁴	9.54 x 10³
140	413.15	1.55 x 10⁴	9.61 x 10³	6.17 x 10³	6.26 x 10²
150	423.15	1.30 x 10⁴	7.21 x 10²	5.83 x 10²	5.08 x 10¹
160	433.15	1.12 x 10⁴	5.36 x 10¹	4.51 x 10¹	2.39 x 10⁰
170	443.15	9.31 x 10³	3.90 x 10³	4.51 x 10²	4.09 x 10¹
180	453.15	9.14 x 10³	4.30 x 10³	4.02 x 10²	3.73 x 10¹
190	463.15	7.41 x 10³	3.55 x 10³	3.47 x 10²	3.41 x 10¹

- Table 2 shows the characteristic values of the membranes using DSC.
- Tables 3 and 4 show the resistance values of the membranes extrapolated from the Nyquist diagrams in relation to the temperature and concentration of phosphoric acid.
- Table 5 shows the membrane parameters and activation energies for two temperature regions using the Arrhenius model.
- Table 6 shows the parameters obtained from Jonscher model adjustment to the membranes with (PVA:CS) + 10% H₃PO₄.
Table 4
Conductivity values of the membranes obtained from Table 3 and \(d_0 = d/AR \).

\(T(\degree C) \)	\(T(K) \)	\(\sigma(\Omega cm)^{-1} \) \(30 \times 10^{-20} \)	\(\sigma(\Omega cm)^{-1} \) \(10\% \)	\(\sigma(\Omega cm)^{-1} \) \(30\% \)	\(\sigma(\Omega cm)^{-1} \) \(40\% \)
30	303.15	1.12 \times 10^{-8}	4.48 \times 10^{-6}	1.27 \times 10^{-5}	2.01 \times 10^{-4}
40	313.15	2.20 \times 10^{-8}	6.69 \times 10^{-6}	1.53 \times 10^{-5}	2.32 \times 10^{-4}
50	323.15	4.21 \times 10^{-8}	9.65 \times 10^{-6}	2.84 \times 10^{-5}	3.22 \times 10^{-4}
60	333.15	7.24 \times 10^{-8}	1.33 \times 10^{-5}	4.75 \times 10^{-4}	
70	343.15	1.31 \times 10^{-7}	1.71 \times 10^{-5}	4.96 \times 10^{-4}	1.14 \times 10^{-3}
80	353.15	2.02 \times 10^{-7}	2.05 \times 10^{-5}	6.85 \times 10^{-4}	8.95 \times 10^{-4}
90	363.15	2.93 \times 10^{-7}	2.48 \times 10^{-5}	8.63 \times 10^{-4}	1.15 \times 10^{-3}
100	373.15	4.41 \times 10^{-7}	3.15 \times 10^{-5}	1.12 \times 10^{-4}	1.37 \times 10^{-3}
110	383.15	5.78 \times 10^{-7}	3.50 \times 10^{-5}	1.44 \times 10^{-4}	1.62 \times 10^{-3}
120	393.15	7.53 \times 10^{-7}	4.34 \times 10^{-5}	1.92 \times 10^{-4}	2.04 \times 10^{-3}
130	403.15	9.35 \times 10^{-7}	4.51 \times 10^{-5}	2.36 \times 10^{-4}	2.49 \times 10^{-3}
140	413.15	1.15 \times 10^{-6}	5.08 \times 10^{-5}	2.93 \times 10^{-4}	2.95 \times 10^{-3}
150	423.15	1.22 \times 10^{-6}	5.51 \times 10^{-5}	3.59 \times 10^{-4}	3.44 \times 10^{-3}
160	433.15	1.62 \times 10^{-6}	5.84 \times 10^{-5}	4.43 \times 10^{-4}	4.29 \times 10^{-3}
170	443.15	1.64 \times 10^{-6}	6.35 \times 10^{-5}	4.99 \times 10^{-4}	5.14 \times 10^{-3}
180	453.15	3.00 \times 10^{-6}	7.54 \times 10^{-5}	5.49 \times 10^{-4}	6.48 \times 10^{-3}
190	463.15	2.72 \times 10^{-6}	8.47 \times 10^{-5}	6.03 \times 10^{-4}	7.60 \times 10^{-3}
200	473.15	3.30 \times 10^{-6}	9.79 \times 10^{-5}	6.60 \times 10^{-4}	9.45 \times 10^{-3}

Table 5
Membrane parameters and activation energies for two temperature regions using the Arrhenius model.

Solution	Area (cm²)	Thickness (cm)	\(E_a (eV) \) (30--90°C)	\(E_a (eV) \) (100--200°C)
PVA				
CS				
(PVA:CS) (80:20)	1.66	0.03	0.63	0.27
(PVA:CS)+ 10% H₃PO₄	1.71	0.02	0.24	0.14
(PVA:CS)+ 20% H₃PO₄	1.62	0.06	0.13	0.07
(PVA:CS)+ 30% H₃PO₄	1.78	0.04	0.14	0.12
(PVA:CS)+ 40% H₃PO₄	1.62	0.02	0.13	0.12

Table 6
Parameters obtained from Jonscher model adjustment to the membranes with (PVA:CS) + 10% H₃PO₄.

\(T(\degree C) \)	\(n \)	A	\(\alpha_0 [\text{Scm}^{-1}] \)
30	0.5655	2.62E-11	1.62E-08
40	0.5316	5.71E-11	3.18E-08
50	0.5616	5.24E-11	6.20E-08
60	0.5406	8.43E-11	1.05E-07
70	0.6119	3.88E-11	1.91E-07
80	0.6602	2.12E-11	2.96E-07
90	0.6469	2.95E-11	4.18E-07
100	0.6293	4.25E-11	6.19E-07
110	0.6555	3.05E-11	8.14E-07
120	0.7031	1.58E-11	1.06E-06
130	0.7519	5.46E-12	1.42E-06
140	0.4840	3.51E-10	1.68E-06
150			
160	1.1209	2.24E-14	2.38E-06
170			
180	0.9956	2.21E-13	3.86E-06
190	0.3864	2.44E-09	3.99E-06
200	0.1956	6.49E-08	4.46E-06
2. Experimental design, materials, and methods

Hydrolyzed poly(vinyl alcohol) (PVA, Mw: 31,000–50,000 g/mol), Chitosan (CS) and phosphoric acid (H₃PO₄, Mw: 98g/mol) were obtained from Sigma Aldrich, and used as received without any further purification. A solution of acetic acid at 2% by volume of distilled and deionized water was prepared. Then, a solution of PVA and CS was established at the weight ratio of 80:20. Thus, PVA:CS (80:20) and phosphoric acid at concentrations from 10% to 40% was defined in the mixture of acetic acid and distilled and deionized water.

TGA (Q500, TA Instruments) was used to investigate sample weight changes as a function of time and temperature under a N₂ atmosphere at a flow rate of 50 ml/min. DSC (Q100, TA Instruments) was used to measure the enthalpies, and temperatures of the various thermal events that might occur in the membranes when they are thermally treated. The electrical characterization of the membranes was done by impedance spectroscopy (IS) using a Wayner Kerr impedance analyzer at an excitation signal of 100 mV and 20 Hz–5 MHz frequency range. The dc conductivity, \(\sigma \), was calculated from the Nyquist plots (\(-\text{Im}Z \) vs \(\text{Re}Z \)). The bulk resistance, \(R_{\text{bulk}} \), was obtained from the intercept of the circular arc of the spectra with the real axis, and using the formula \(\sigma = d/AR \), where \(d \) is the thickness and \(A \) the contact area of the sample.

2.1. Impedance spectroscopy results

Fig. 1 shows the Nyquist diagrams for (PVA:CS) + 30% H₃PO₄ to isotherms between 30 °C and 200 °C, where a semicircle is observed at high frequencies, and which is associated with the electrical response in the volume of the sample. At low frequency regime there is a linear tendency associated with the effects of the interface with the electrodes. The resistance and conductivity values of all membranes is show in Tables 3 and 4.

Fig. 2a shows the logarithm of the real part of the AC conductivities obtained from ec (2) as a function of the logarithm of the frequency (20 Hz–5 MHz) at several isotherms for (PVA:CS) + 10% H₃PO₄. In solid line the fit for typical curves obtained from ec (1) (Fig. 2b) and the parameters are show in Table 6. The DC conductivity (\(\sigma_0 \)) values are in agreement with those calculated from Nyquist plots (see Table 4). On the other hand, the n-exponent parameter, except for 160 °C, takes values between 0 and 1; values greater than 1 could be associated with high values of energy storage in the collective movements of the short-range ions and which cannot be explained by Jonscher model.
Acknowledgments

The authors thanks to Universidad del Valle for their support during the realization of this work under the Project C.I.1128.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] M. Benítez, J.E. Diasa, R.A. Vargas, Effect of H₃PO₄ on the mechanical, thermal, and electrical properties of polymers based on poly (vinyl alcohol) (PVA) and chitosan (CS), Ionics 24 (7) (2018) 2029, https://doi.org/10.1007/s11581-018-2465-y.
[2] D.A. Quintana, E. Baca, E. Mosquera, R.A. Vargas, J.E. Diosa, Improving the ionic conductivity in nanostructured membranes based on poly(vinyl alcohol) (PVA), chitosan (CS), phosphoric acid (H3PO4), and niobium oxide (Nb2O5), Ionics 25 (3) (2019) 1131–1136, https://doi.org/10.1007/s11581-018-2764-3.

[3] J. Vera, E. Mosquera and J. E. Diosa, Temperature-dependent thermic and electrical properties of a novel blend polymeric system based on poly(vinyl alcohol), chitosan and phosphoric acid. to be submitted.

[4] A. K- Jonscher, Universal Relaxation Law, Chelsea Dielectric Press, London, 1996.