Tackling problems, harvesting benefits –
A systematic review of the regulatory debate around AI

by Anja Folberth1,2, Jutta Jahnel1, Jascha Bareis1,
Carsten Orwat1, Christian Wadephul1
1 Karlsruhe Institute of Technology, Institute for Technology Assessment and Systems Analysis (AF and CW until 2021)

2 Institute for Political Science, University of Heidelberg

Funding
This work was supported by the German Federal Ministry of Education and Research (Grant number 01IS19020B, research project “Governance von und durch Algorithmen” (GOAL)). The funding is gratefully acknowledged.

Address
Institute for Technology Assessment and Systems Analysis (ITAS)
P.O. Box 3640
76021 Karlsruhe
Germany
https://www.itas.kit.edu/

Suggested citation
Folberth, Anja; Jahnel, Jutta; Bareis, Jascha; Orwat, Carsten; Wadephul, Christian (2022): Tackling problems, harvesting benefits – A systematic review of the regulatory debate around AI; KIT Scientific Working Papers No. 197, Karlsruhe: Karlsruhe Institute of Technology (KIT), Institute for Technology Assessment and Systems Analysis (ITAS)

Impressum
Karlsruher Institut für Technologie (KIT)
www.kit.edu

This document is licensed under the Creative Commons Attribution – Share Alike 4.0 International License (CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

2022

ISSN: 2194-1629
Abstract
How to integrate an emerging and all-pervasive technology such as AI into the structures and operations of our society is a question of contemporary politics, science and public debate. It has produced a considerable amount of international academic literature from different disciplines. This article analyzes the academic debate around the regulation of artificial intelligence (AI). The systematic review comprises a sample of 73 peer-reviewed journal articles published between January 1st, 2016, and December 31st, 2020.

The analysis concentrates on societal risks and harms, questions of regulatory responsibility, and possible adequate policy frameworks, including risk-based and principle-based approaches. The main interests are proposed regulatory approaches and instruments. Various forms of interventions such as bans, approvals, standard-setting, and disclosure are presented. The assessments of the included papers indicate the complexity of the field, which shows its prematurity and the remaining lack of clarity. By presenting a structured analysis of the academic debate, we contribute both empirically and conceptually to a better understanding of the nexus of AI and regulation and the underlying normative decisions. A comparison of the scientific proposals with the proposed European AI regulation illustrates the specific approach of the regulation, its strengths and weaknesses.

Keywords
Artificial Intelligence, Artificial Intelligence Act (AIA), Automated Decision-Making, Risk Regulation, Systematic Review
Table of contents

1 Introduction.. 2
2 Background – towards a working definition of regulation and a concept for regulating AI 2
 2.1 Regulation.. 2
 2.2 Risk-based regulation – a prominent concept for the regulation of AI.. 3
3 Methodology .. 3
 3.1 Collection and selection of papers .. 3
 3.2 Methodological limitations ... 6
4 Results.. 6
 4.1 Regulation object – in need of specification of AI.. 7
 4.2 Reasons for regulatory action – problems addressed .. 7
 4.3 Regulatory approaches and responsibilities ... 8
 4.4 Regulation instruments.. 10
 4.4.1 Bans, approvals and standard-setting – regulatory actions for safety and accountability .. 10
 4.4.2 Disclosure, labeling and information – regulatory actions for transparency 12
 4.4.3 Procedural instruments – regulatory actions for the inclusion of actors 13
 4.5 Existing regulations .. 13
5 Discussion... 15
6 Conclusion.. 18

References... 19

Appendix – Search operator.. 24

List of tables

Table 1: Innovative proposals for regulatory instruments.. 13

List of figures

Figure 1: Article selection process ... 4
Figure 2: Keywords for search operators ... 5
Figure 3: Number of articles related to the topic of the review ... 6
1 Introduction

Nowadays, Artificial Intelligence (AI) penetrates all spheres of life, ranging from product recommendation engines, speech and image recognition (Lauterbach, 2019: 241), to spam filtering, traffic planning, logistics management, and diagnosing diseases (Zuiderveen Borgesius, 2020: 1572), as well as the prediction of criminal behavior, and court decisions (Bloch-Wehba, 2020: 1267).

Publicly discussed incidents connected to discrimination, breach of confidentiality and financial loss, unravel how data processing activities can infringe upon basic rights and values. This confronts political stakeholders with ever more urgency to advance a regulatory framework. Recent European AI policy proposals explicitly aim at closing this regulatory gap (European Commission, 2021b). Further, the technological and economic potentials of AI, together with the multidimensional risks, have provoked a considerable amount of scholarly work in recent years. Nevertheless, Robles Carrillo lamented that there is still “relatively limited research on the overall panorama of the ethical or legal problems posed by AI” (Robles Carrillo, 2020: 2).

There is published work on systematizing proposals of ethical guidelines and principles (e.g., Jobin et al., 2019; Rudschies et al., 2021), but it does not focus on encompassing regulatory proposals. Furthermore, a recently published review analyzes existing regulatory approaches and models, including laws and governmental strategies for the development of an integrative process framework for the governance of AI (de Almeida et al., 2021). Its framework is based on a broad strategy embedding political and social actors and introducing a new regulatory agency. In this review, we aim to enlarge the discussion by focusing on concrete regulatory instruments. By conducting a systematic review of peer-reviewed journal articles, we map the academic debate and give an overview of proposed regulatory instruments.

We firstly point out to the debate of the term ‘regulation’ and present the European Proposal for a Regulation on Artificial Intelligence (Artificial Intelligence Act, hereinafter: proposed AIA) (European Commission 2021b) as an example of regulating AI (Section 2). Section 3 describes the methodological approach and the sample selection, including methodological limitations. We present the specific results of the analysis in Section 4 and follow up with an overarching discussion considering the proposed AIA (Section 5). Finally, we present our conclusions in Section 6.

2 Background – towards a working definition of regulation and a concept for regulating AI

2.1 Regulation

Broad scholarly interest and research reinforce the contestation and confusion around concept of regulation (Black, 2002: 11; Black and Murray, 2019: 9). Some authors even state that it might be impossible to come to a single definition of the term regulation (Baldwin, 1998: 2). However, analyzing 101 articles from different social science disciplines, Koop and Lodge conclude that there is an implicitly shared minimal understanding of regulation as “intentional intervention in the activities of a target population”. This understanding includes direct and indirect regulation as well as governmental and self-regulation frameworks (Koop and Lodge, 2017: 104).
We follow such minimal consensus, as it encompasses a broad spectrum of policy measures from different regulatory fields targeting AI, such as governmental interventions (e.g., via bans or moratoria), and corporate self-regulatory frameworks, but also public participatory initiatives.

2.2 Risk-based regulation – a prominent concept for the regulation of AI

Currently, one prominent approach we see when bringing together regulation and AI is the risk-based approach that focuses on handling the adverse potential impacts of technology applications. Not only parts of the academic debate refer to risk-based approaches (e.g. German Data Ethics Commission, 2019; Krafft et al., 2020), but also policy-makers such as the European Commission (2021b) with the proposed AIA. The risk-based approach provides a decision-making framework and procedures to prioritize regulatory activities and the deployment of resources according to the risk levels ascribed to different regulatory objects (Black, 2010).

Within the proposed AIA, the risk-based approach attributes different levels of risks of AI applications to corresponding regulatory measures. AI systems with ‘unacceptable’ risk levels, i.e., certain manipulative systems, social scoring systems, or some remote biometric identification systems, would be prohibited (Art. 5 proposed AIA). Providers of ‘high risk’ AI systems would have to establish and operate various regulatory means. This includes a quality management system with a documented risk management system, data management practice, and obligations on accuracy, robustness and cybersecurity. Furthermore, technical documentation and logging for traceability, provision of information to users, human oversight, conformity assessment as a form of self-assessment by the providers, a CE marking of conformity, the registration of the systems and a post-market monitoring are proposed. A third-party conformity assessment by notified bodies is stipulated for some systems for biometric identification and categorization of natural persons as well as for AI systems that are safety components of products covered by certain EU safety legislations that usually require conformity assessments by notified bodies (Chapter 2 and 3 proposed AIA). For AI applications with a risk level deemed as ‘limited’ risk, such as AI systems that interact with natural persons, emotion recognition systems, biometric categorization systems, or ‘deep fake’ systems, there would only be a duty to inform about the operation of the system or to disclose that the content is manipulated (Art. 52 proposed AIA). Additionally, the voluntary application of codes of conduct is suggested for AI systems with ‘minimal’ risks (Art. 69 proposed AIA). A further regulatory measure is continuous market surveillance and control, both as post-market monitoring by providers (Art. 61 proposed AIA) and by market surveillance authorities (MSAs). For MSAs, the proposal provides certain means of access to data and the source code as well as means to evaluate AI systems, to require appropriate corrective measures, to prohibit or restrict AI systems being made available on the market, and to withdraw or recall them (Art. 63-68 proposed AIA).

3 Methodology

3.1 Collection and selection of papers

To collect our sample, we scanned five databases: Web of Science, Scopus, Worldwide Political Science Abstracts, PAIS Index, and Sociological Abstracts (see Figure 1). We designed the following search terms to include publications aiming at the intersection of regulation and AI.
(Figure 2; for detailed search operators see supplementary Appendix): "regulat\textasciitilde\textasciitilde", "governance", "policy mak\textasciitilde\textasciitilde", "politic\textasciitilde\textasciitilde", "legislat\textasciitilde\textasciitilde", and "AI", "artificial intelligen\textasciitilde\textasciitilde", "algorithm\textasciitilde\textasciitilde", "ADM", "automated decision", "machine learning", "ML", "deep learning", "intelligent system", "autonomous system", "expert system".

Figure 1: Article selection process

Further inclusion criteria were: (1) English language; (2) peer-reviewed journal articles; (3) papers published between January 1st, 2016, and December 31st, 2020. To narrow down the outcome to relevant results we excluded some subjects (exact selection depending on database design, see Appendix). Subsequently, we sorted the remaining results manually on the basis of title, abstract, and full-text reading (Figure 1). The sample selection process, as well as the other methodological features of the systematic review, follow the PRISMA-P 2015 checklist (Moher et al., 2015: 5).
We focused on broad, horizontal concepts of regulating AI as a reaction to the currently limited research on an overall picture in this area, that results in “a sectorial and fragmented perspective prevail[ing] over the integral and holistic overview” (Robles Carrillo, 2020: 2). Therefore, we did not include articles that were particularly concerned with regulating specific sectors (e.g., health, education, work, etc.) or salient issues such as autonomous driving, lethal autonomous weapon systems, deep fakes, or robotics. These issues are widely discussed and need targeted systematic reviews.

Out of 4,370 search results, we excluded 909 duplicates in the first step. In the second step, the first author excluded articles based on titles that did not refer to a political dimension of regulation (e.g., chemical processes, medical research, engineering issues, mathematical models) and accidental matches concerned with issues that do not match the topic of the review.

In the third step, the first author excluded articles that did not give a broad view on regulating AI out of the remaining 559 articles by reading the abstracts. Articles that did not precisely fit the exclusion criteria were included in the next selection step. In the final step, four of the authors excluded another 76 of 147 articles based on full-text reading. Only articles which proposed regulatory instruments were included in the final sample of 73 articles.

We analyzed our final sample with MAXQDA, a software specialized for qualitative research. Our procedure followed deductive reasoning as we implemented a preliminary code structure before starting to code. During this procedure we developed the detailed structure inductively by adjusting and adding further important dimensions. Three of the authors coded the same seven articles separately to compare and combine prioritization and to develop the first structure together. Afterwards, four authors coded articles openly.

Figure 2: Keywords for search operators
3.2 Methodological limitations

We chose a two-eyes-principle instead of the recommended four-eyes-principle in selecting relevant articles based on title and abstracts, as there were more than 4,000 results. To prevent subjective bias and missing relevant articles, we always included ambiguous cases in the next selection step. National discourses may have been missed, as we only analyzed articles published in English due to language knowledge of the author team. Additionally, we focused on peer-reviewed articles and did not include book sections or reports and grey literature that might add even more details and ideas to the discourse.

4 Results

In this section, we present our results starting with some general remarks on our final sample. A first finding points to the increasing relevance of regulating AI during our research sample period (see Figure 3). We started the review with articles published in 2016, a year where AI related affairs were trending in the news. The AI system AlphaGo defeated Fan Hui, the established champion of the complex game Go (Nindler, 2019: 12). Joshua Brown’s death in an accident caused by his semi-autonomous Tesla vehicle fueled the public discussion on safety of autonomous driving (Abdul Manap and Abdullah, 2020: 187). In the judiciary field, Angwin et al. (2016) showed that the COMPAS system applied in US jurisdiction discriminates against black people. Besides to the public debate, politics started to address AI systems. While the White House published a first report on AI, the negotiations on the General Data Protection Regulation (GDPR) in the European Union entered the final phase. The final version published in April 2016 allows automated decision-making and profiling only under specific conditions.

This topical trend around AI set our starting point, and we found 11 articles of interest in the academic debate of 2016, but most of them were concerned with particular problems. In addition, we found widespread mapping of problematizations that did not yet include regulative

Figure 3: Number of articles related to the topic of the review
proposals (Zarsky, 2016; Ziewitz, 2016). Only one article from 2016 was included in the final sample (Hirsch, 2016), followed by an increasing number of articles the following years (Figure 3). We conclude that 2016 is a starting point of a bigger regulatory debate.

4.1 Regulation object – in need of specification of AI

Our findings show that there is a need to define the regulation object, as a third of the papers problematize the terminology around AI as fuzzy. Most of the articles relate to automated decision-making (ADM) or machine learning (ML) systems explicitly, some do not specify AI at all. Only a few papers attempt a clear-cut definition of terms. Some definitions derive from reports or policy documents, like the OECD Recommendations (Gacutan and Selvadurai, 2020: 208), the EU High Level Expert Group on Artificial Intelligence (Bannister and Connolly, 2020: 471-472; Smuha, 2020: 1), or the GDPR (Goodman and Flaxman, 2017: 1; Brkan, 2019: 93). Others refer to short dictionary definitions (Brand, 2020: 117-118; Butcher and Beridze, 2019: 88, Cerrillo i Martínez, 2019: 16) or make their own attempts to define AI (Abdul Manap and Abdullah, 2020: 191) and related terms (Bannister and Connolly, 2020: 471; Mann and Matzner, 2019: 1).

In the regulation debate, further scrutiny in differentiating between a general AI definition and the regulation object is pivotal. Targeting the regulation object often narrows down to classifications of AI systems to determine what kind of systems and applications need to be regulated. Robles Carrillo states that there is not enough attention to the difference in typologies of AI systems, which “cannot be explained or treated equally” (Robles Carrillo, 2020: 9). The review results show very few articles that try to circumscribe a regulation object. Bannister and Connolly demand a regulation for “decision-making algorithms which have the potential to materially affect citizens, business or other organisations on a continuing basis” which excludes “for example, decision support systems or models built for one-off decisions” (Bannister and Connolly, 2020: 487). Brkan distinguishes between high impact ADM systems: “when a decision is binding for individuals and affects their rights”, e.g. concerning credit, tax return or employment, and low impact: “If the automated decision-making does not have any binding effect on data subjects and does not deprive them of their legitimate rights” (Brkan, 2019: 93-94).

4.2 Reasons for regulatory action – problems addressed

The results show a considerable number of problems and risks, which are described and characterized as giving reasons for possible levels of regulatory action. There is not one article that failed to address various types of problems and challenges which the use of AI or ADM entails. Even innovation-oriented articles which warned that “governmental or even self-imposed controls [...] limit or slow down development of AI” (Etzioni and Etzioni, 2017: 33) and instead demanded the regulation of AI “by a policy regime of permissionless innovation” (O’Sullivan and Thierer, 2018: 33) express concerns. The most prominent concerns in the academic discourse are the infringement of rights, such as illegal discrimination or privacy concerns, and technical issues such as the complexity or inaccuracy of automated decisions. Especially the problem of opacity, also known as the "black box problem", is widely discussed. This problem arises when an algorithmic system makes decisions which are extremely difficult to explain to
an average person. Furthermore, authors are concerned when it comes to the question of accountability for decisions, and the necessity of human control in supervising ADM systems. In addition, the degree of social agreement, or disagreement, that characterizes the normative context under examination are attributed as challenges for policymakers (e.g., Black and Murray, 2019: 11; Coglianese and Lehr, 2019: 8; Lauterbach, 2019: 238; Calo, 2017: 415; Gasser and Almeida, 2017: 59). An extensive body of research has also examined the impact of AI on the transformation of employment, and the potential influence on vulnerable groups by disrupting political discourses with implications for democracy, identity, and culture (e.g., Wang and Siau, 2019: 68; Bellanova, 2017: 333; Dignam, 2020: 48; Floridi et al., 2018: 692). The literature indicates that AI applications will tremendously transform human life (Nindler, 2019: 9). These concerns could be attributed to different kinds of possible risks as issues for regulation: more traditional risks of physical or financial harm, and specific new kinds of psychological or broader social risk, such as the general transformation of the societal structure. The various risks depend on the application context and are partly overlapping; especially the “black box issue” could be characterized as a systemic risk (Black and Murray, 2019: 7). Related to this, the analysis also shows that risks unfold at different target levels, as they are not limited to individuals but also relate to groups, systems (economic, political or science) and/or to the society in general (e.g., Lauterbach, 2019: 244; Bellanova, 2017: 333; Gasser and Almeida, 2017: 59; Calo, 2017: 431). Nindler even stated that AI in an advanced state (so-called strong AI) “could also pose an existential risk to humankind” (Nindler, 2019: 13).

The discussion shows a context-dependent and fragmented puzzle, rather than a clear-cut regulation trajectory with definite starting points and detailed strategies on how to handle risks and problems related to AI. However, despite the diversity of professional backgrounds and argumentation perspectives of the authors, there seems to be no disagreement that AI needs to be regulated.

4.3 Regulatory approaches and responsibilities

Most of the reviewed papers state that the appropriate form of regulation will vary depending on the societal deployment of AI. The suggested regulatory approaches mainly address the aforementioned problems and risks with a risk-based regulation, especially in the case of traditional risks (e.g., physical or financial). Some authors propose a more precautionary-oriented approach for cases of high risks and harms (Black and Murray, 2019: 13; Clarke, 2019: 406; Mannes, 2020: 65).

Regarding the normative justification of a regulation, questions arise concerning the adequate consideration of specific new types of risks posed by AI, e.g., mental or social risks through discrimination or the violation of human dignity. Some papers propose additional horizontal ethical rules and core principles based on common values and good governance, such as privacy, transparency, accountability, autonomy, prevention of harm, fairness and justice (Brkan, 2019: 93; Floridi et al., 2018: 696; Allen and Masters, 2020: 596; Cerrillo i Martínez, 2019: 15). According to Kozuka these principles should form the basic framework for the governance of AI (Kozuka, 2019: 328), which “are not a policy instrument or a legally binding regulation; but they appear to be […] a kind of state-induced self-regulation” (Kozuka, 2019: 321).
Others propose that existing individual rights to get knowledge about automated decisions and options to redress (e.g., in the GDPR) should be complemented by collaborative governance (Kaminski, 2019: 1578), or through a "deontological approach to information privacy protection" (Gacutan and Selvadurai, 2020: 212). In particular, international human rights and fundamental rights are explicitly referred to (Black and Murray, 2019: 10; Feldstein, 2019: 50; Smuha, 2020: 595; Donahoe and Metzger MacDuffee, 2019: 116). For example, Brkan underlines the demand for a high level of transparency of data processing to achieve compatibility with the EU Charter of Fundamental Rights, in particular that "the data subject should have the right to know the reasons behind the decision" (Brkan, 2019: 120).

With regard to governance approaches, some authors explicitly recommend hybrid governance frameworks combining legal and non-legal norms, including additional regulatory players besides the governmental regulator (discussed with the terms “corporate governance” (Kozuka, 2019: 329; Felzmann et al., 2019: 10), “collaborative governance” (Kaminski, 2019: 1559), “co-regulatory framework”, where “the detailed obligations are developed through a consultative process among advocates for stakeholders” (Clarke, 2019: 398; Carter, 2020: 3), or “multistakeholder governance” (Madhavan et al., 2020: 106; Munoko et al., 2020: 226; Brand, 2020: 122)). Hybrid governance structures are located on a spectrum between traditional governmental command-and-control regulation and voluntary private structuring and self-regulation, where law, soft law, and related policy mechanisms are deployed together (Kozuka, 2019: 316). It is argued that these governance structures should be enforced on a global level "to bridge gaps across different national legal systems" (Gasser and Almeida, 2017: 58).

This broad regulatory framework is specified by some authors: “Accountability for Reasonableness Framework” (Wong, 2019), "Polycentric Systems Framework" (Black and Murray, 2019: 14), framework to establish "Social Governance” (Lauterbach, 2019: 259) or a modular “Layered Governance Model” with social and legal, ethical and technical foundations (Gasser and Almeida, 2017: 60). Pure self-regulation is evaluated as ineffective by most of the reviewed papers, while some propose pure governmental regulation through existing hard law, or by creating new legislations or governmental oversight (Etzioni, 2018: 32; Kim, 2020: 931; Abdul Manap and Abdullah, 2020: 189; Abiteboul and Stoyanovich, 2019: 8). The formation of one or more special regulatory or advisory agencies on the national level which bring together “diverse stakeholders—from the open source community to commercial firms, to customers, to potential victims” (Tutt, 2017: 109) is considered to be a promising measure to allocate responsible actors and is proposed by many different authors (Abdul Manap and Abdullah, 2020: 191; Bannister and Connolly, 2020: 487; Butcher and Beridze, 2019: 88; Calo, 2017: 429; Cerrillo i Martinez, 2019: 22; Dignam, 2020: 48; Floridi et al., 2018: 403; Smith and Desrochers, 2020: 567; Treleaven et al., 2019: 39; Tutt, 2017: 90; Wirtz et al., 2020: 825). For instance, this special agency could be responsible for submitting AI products for testing and licensing (Dignam, 2020: 48). Other authors demand a new global or EU oversight body (Butcher and Beridze, 2019: 95; Cihon et al., 2020: 546; Donahoe and Metzger MacDuffee, 2019: 116; Gasser and Almeida, 2017: 61; Haenlein and Kaplan, 2019: 8; Nindler, 2019: 129; Robles Carrillo, 2020: 13; Floridi et al., 2018: 703), while Mannes (2020: 66) states that the expertise of already existing agencies should be increased.
4.4 Regulation instruments

Our key interest is to look at concrete regulatory instruments proposed due to the lack of adequate provisions or ineffective and unclear existing legislations.

Similarly to Favaretto et al. (2019: 15-16) in their systematic review on big data and discrimination, we identified some technical solutions suggested. Thirteen papers demanded an improvement of either the algorithm or the training data, and ten suggested the implementation of software to control the AI system’s output, following the logic that “the first step to remove discrimination, according to this line of reasoning, is to increase the algorithm’s accuracy” (Cofone, 2019: 1415). Most of the authors see technical improvement as one additional tool to prevent harm. Only very few papers, like Etzioni and Etzioni (2017), focus on finding technical solutions. Many others state that the challenges of AI cannot predominantly be solved with technical tools (Kaminski, 2019: 1584; Gasser and Almeida, 2017: 60; Floridi et al., 2018; Black and Murray, 2019; Kroll et al., 2017: 682). Butcher underlines, for example, to “ensure that effective governance is achieved, a mixture of technical tools and consensus-driven standards is required” (Butcher and Beridze, 2019: 96). The call for technical solutions is mostly recognized as a specific intervention in combination with standard-setting, certification or other instruments focusing on the measurement, evaluation and control of the accuracy of outcomes.

In the following subchapters, we clustered the variety of proposed regulatory instruments regarding different purposes.

4.4.1 Bans, approvals and standard-setting – regulatory actions for safety and accountability

Bans and approvals are among the most restrictive pre-market measures, also called “ex ante regulation”. Eighteen articles suggest bans of technology applications, either explicitly or implicitly, if their implementation is not deemed appropriate. Some papers suggest bans of applications as a general tool (Krafft et al., 2020: 14; Lauterbach, 2019: 244; Mann and Matzner, 2019: 7; Smith and Desrochers, 2020: 572; Strandburg, 2019: 1881; Treleaven et al., 2019: 33; Turner Lee, 2018: 7). Others take bans of concrete technology applications into account, like biometric recognition systems (Bannister and Connolly, 2020: 474), "fully autonomous passenger flights" (Clarke, 2019: 406), autonomous weapon systems (Calo, 2017: 415; Etzioni, 2018: 31; Floridi et al., 2018: 698; Shin et al., 2019: 376), or AI systems that could be confused with humans due to their design, such as chatbots or voice assistance systems (Hoffmann and Hahn, 2019: 642).

Furthermore, we see proposals of pre-market approval that imply standards and requirements for technologies or applications to be adopted by developers and providers of AI systems. Only those systems which meet these provisions would then be permitted on the market. Some authors suggest pre-market approval without specifying the regulatory responsibility (Black and Murray, 2019: 13; Dignam, 2020: 39), while others directly connect pre-market approval to the duties of a special agency (Bannister and Connolly, 2020: 487; Smith and Desrochers, 2020: 571; Tutt, 2017: 111). Tutt (2017: 111) describes pre-market approval as “the most aggressive” position of a regulatory agency. Another suggestion is to combine pre-market approval with real-life laboratory testing of AI applications (Abdul Manap and Abdullah, 2020: 192; Floridi et al., 2018: 704; Lauterbach, 2019: 260).

One of the most prominent suggestions of further pre-market tools is standard setting for safe operation of ADM systems. In analyzing the details, we saw three main dimensions of
standard setting: (1) design, (2) liability, and (3) performance. Design standards include debates around fairness, privacy, and responsibility by design. While design and performance standards aim at the accuracy of outcomes, liability standards regulate who is responsible for the prevention of possible harms. The proposals of liability standards are not discussed extensively in the context of AI regulation. There is no consensus or clear demand on who should be the responsible entity during the entire AI life cycle, reaching from the development stage to market placement and private usage, including developers, providers, natural, or legal persons. The papers only generally state that there is a need for a clear liability (Bannister and Connolly, 2020: 486; Brand, 2020: 121; Carter, 2020: 640; Hoffmann and Hahn, 2019: 636; Kaminski, 2019: 1573; Kozuka, 2019: 325; Treleaven et al., 2019: 39; Tutt, 2017: 109; Kim, 2020: 874). Mannes (2020: 65) differentiates between mandatory and voluntary standards, which have to be evaluated by an appropriate agency. Floridi et al. (2018: 702-703) put forward the idea of an insurance system to use market mechanisms and strengthen public trust in AI applications. Clarke expects “much more careful risk assessment and risk management” when “applying strict liability” (Clarke, 2019: 401). Rahwan argues in the same vein when expecting humans to avoid mistakes if they know they would bear the consequences. Therefore, he demands a human in the loop to “provide an accountable entity in case the system misbehaves” (Rahwan, 2018: 7).

Among those who suggest liability standards, some also demand easy access for complaints by affected individuals to challenge or dispute automated decisions (Allen and Masters, 2020: 597; Bannister and Connolly, 2020: 487; Carter, 2020: 6; Clarke, 2019: 406; Edwards and Veale, 2018: 13; Floridi et al., 2018: 702; Hoffmann and Hahn, 2019: 637; Smith and Desrochers, 2020: 571; Wong, 2019: 234). While setting standards on liability is a restrictive ex ante proposal, we also found suggestions to establish ex post liability regimes (Black and Murray, 2019: 13; Mannes, 2020: 65; Buiten, 2019: 56) through monitoring, controls, and auditing of permitted applications. AI systems would be allowed to enter the marketplace, with regulatory actions only needed in cases of failures.

Some papers also suggest certification to demonstrate compliance with existing regulations or standards. Systems that show the highest prospects for “catastrophic and deadly failures, such as aircraft” should undergo rigorous certification before real-world employment is permitted (Mannes, 2020: 65). In general, algorithms could be certified as software objects, by technology-based standards, and/or by performance-based standards. Another possibility is a certification of the legal person or the whole process which applies the system to make decisions. The advantage of certification standards lies in the sector-specific basis, which is already common in other areas, such as environmental sustainability standards (Edwards and Veale, 2018: 10). However, the value of the certificate as a guarantee of trustworthiness remains questionable in the domain of self-regulation, which is based on economic self-interests (Edwards and Veale, 2018: 10). Therefore, Kaminski (2019: 1568) only sees a possible effective compliance culture by structuring industry self-assessment through independent compliance officers and internal reports, or by involving independent oversight over a company’s behavior, such as third-party auditors or civil society assessments.

Another part of the discussion about standard setting is the inclusion of ethics in developing and providing AI technologies. Many of the included papers refer to ethics guidelines, and some suggest implementing ethical codes of conduct, ethics by design, or normative standards. Many
suggestions aim at self-regulation by implementing ethical principles, but there are also demands to impose obligations like ethical training for software engineers (Donahoe and Metzger MacDuffee, 2019: 124; Orr and Davis, 2020: 722; Truby, 2020: 955). However, others evaluate this kind of soft regulation as ineffective (Black and Murray, 2019: 8; Hoffmann and Hahn, 2019: 636; Shin et al., 2019: 376). Calo even warns that the “AI policy community must maintain a healthy dose of skepticism toward “ethical codes of conduct” developed by industry” (Calo, 2017: 424).

4.4.2 Disclosure, labeling and information – regulatory actions for transparency

Many included papers react to the problem of opacity and demand different levels of disclosure. Some consider a hard revelation of technical details, such as training data and models as pivotal (e.g., Buiten, 2019: 54; Hoffmann and Hahn, 2019: 637; Ienca, 2019: 275; Johnson, 2019: 1243; Krafft et al., 2020: 10; Tutt, 2017: 111). Others demand only a soft revelation, which means an explanation of the function of the algorithm that does not have to reveal code or training data details (e.g., Cofone, 2019: 1439; Coglianese and Lehr, 2019: 39; Strandburg, 2019: 1882; Zerilli et al., 2019: 676). In some articles, the issue of disclosure is related to the sector of deployment of AI. Those authors differentiate between private and public sector applications and demand the disclosure of the algorithmic code in public systems (Bannister and Connolly, 2020: 481; Cerrillo i Martinez, 2019: 18; Zuiderveen Borgesius, 2020: 1584). Bannister and Connolly (2020: 487) even request a prescription of open-source decision-making software for the public sector.

At the same time, disclosure is considered as controversial. Most papers discuss to what extent a reasonable disclosure should be implemented. One consideration is “that there does not exist a credible mechanism by which individuals can readily understand how decisions are being made about them” (Allen and Masters, 2020: 597). Authors share concerns that revealing does not equally mean an understanding of the algorithmic decision at hand (Brand, 2020: 120; Katyal, 2019: 123; Kroll et al., 2017: 638; Rahwan, 2018: 11; Liu et al., 2019: 136). Bloch-Wehba summarizes: "First, disclosure is not only ineffective, it is also legally precluded because these materials are the proper subject of trade secret protections. Second, simply disclosing information about how an algorithm reaches a decision is insufficient to make that information meaningful to the subjects.” (Bloch-Wehba, 2020: 1270)

Gacutan and Selvadurai (2020: 201) as well as Cerrillo i Martinez (2019: 21) combine this critique with the demand for a "right to explanation". Others point to the right to explanation mentioned in Recital 71 of the GDPR (e.g., Goodman and Flaxman, 2017: 6; Pagallo, 2018: 517; Truby, 2020: 952). Some take it as a role model for legislations that do not guarantee such a right in practice (Hoffmann and Hahn, 2019: 637; Ouchchy et al., 2020: 934; Zerilli et al., 2019: 664; Gacutan and Selvadurai, 2020: 206), others demand a more substantial right to explanation in the EU legislation (Brkan and Bonnet, 2020: 23; Edwards and Veale, 2018: 3; Felzmann et al., 2019: 3).

Furthermore, we see suggestions of regulatory instruments like labeling combined with the general provision of information for and education of consumers. Attached to labeling there is another dimension of disclosure, namely, the disclosure of where AI is used (Carter, 2020: 6; Etzioni, 2018: 31; Hoffmann and Hahn, 2019: 642; Ienca, 2019: 275; Kim, 2020: 932; Redden, 2018: 10).
4.4.3 Procedural instruments – regulatory actions for the inclusion of actors

There is a demand to include consumers and affected persons, going beyond information and education. Almost half of the papers point to the need to encourage the public debate (e.g., Kroll et al., 2017: 637; Madhavan et al., 2020: 105; Ouchchy et al., 2020: 932; Redden, 2018: 4; Winter and Davidson, 2019: 289; Wong, 2019: 226) and demand the inclusion of consumers and affected persons in decision-making processes of where, how, or in which designs AI should be implemented (e.g., Feldstein, 2019: 50; Ienca, 2019: 275; Kaminski, 2019: 1567-1568; Rahwan, 2018: 9; Smith and Desrochers, 2020: 573). These are very broad demands that need further specification. The proposals of how to design inclusion differ substantially: Felzmann et al. (2019: 11) suggest organizing “meeting spaces”, and Floridi et al. (2018: 704) consider public consultations to inform policymakers. Shin et al. (2019: 380) and Shneiderman (2020: 6) suggest implementing user experience of system designs.

Besides the regulatory instruments described above in the three subchapters we also identify special and innovative proposals of instruments in the literature. An impressive list of examples is given in Table 1.

Table 1: Innovative proposals for regulatory instruments

Instrument	Addressed problem(s)	Regulatory Responsibility	Author(s)
Policy Hacking	Overall regulation	Co-Regulation	(Abdul Manap & Abdullah 2020, p. 194)
		Local affairs and companies	(Lauterbach 2019, p. 260)
Increase gender diversity in developing teams	Bias and discrimination	Self-regulation	(Johnson 2019, p. 1228)
		(Developers)	(Orr & Davis 2020, p. 732)
			(Turner Lee 2018, p. 6)
Whistleblower protection	Information asymmetry	Government	(Katyal 2019, pp. 127-128)
	Opacity and accountability		
Investigative journalism	Information asymmetry	Journalists	(Rahwan 2018, p. 11)
	Opacity and accountability		
Financial incentives (surprisingly, as this is a traditional tool of indirect regulation)	Overall regulation	Government	(Kaminski 2019, p. 1575; Floridi et al. 2018, p. 794; Allen & Masters 2020, p. 592)
Charter of rights against ADM	Overall regulation	Government	(Bannister & Connolly 2020, p. 487)

4.5 Existing regulations

Although the issues posed by AI entail different possible regulatory instruments, it is important to highlight that the academic debate does not take place in a regulatory vacuum. According to the broad definition of regulation mentioned above, nearly half of the papers review existing provisions related to AI. Firstly, there are legal rules and principles for all human and social
activities, including the development of AI. These comprise human rights law, anti-discrimination law, data protection law as well as general values, ethic guidelines and principles. Secondly, regulations with concrete provisions for the protection of affected actors, particularly consumer rights laws, copyright, patent laws, criminal law and tort regulatory systems were mentioned as mandatory rules and principles whose application can be extended to AI through the principle of analogy (Clarke, 2019: 401; Tutt, 2017: 83; Brkan, 2019: 19; Bloch-Wehba, 2020: 1271; Zuiderveen Borgesius, 2020: 1583). In cases where AI software is embedded in devices, product liability is deemed as most important (Clarke, 2019: 402). Thirdly, existing technology-specific laws have been discussed, mainly around industrial robotics or autonomous motor vehicles (Clarke, 2019: 401; Cerrillo i Martinez, 2019: 23; Lauterbach, 2019: 252; Kozuka, 2019: 325; Wang and Siau, 2019: 70; Robles Carrillo, 2020: 7).

Only a few papers identify regulations that are specifically developed for AI, such as particular non-governmentally developed ‘Asilomer AI principles’ or IEEE standards, ethic guidelines and national strategies (e.g., Clarke, 2019: 401; Floridi et al., 2018: 695; Lauterbach, 2019: 252; Kozuka, 2019: 319-320; Pagallo, 2018: 510; Dignam, 2020: 45). European ethics guidelines „include regulation, standardization, accountability governance, codes of conduct, education, and awareness to foster an ethical mind-set, stakeholder and social dialogue, as well as diversity and inclusive design teams” (Kozuka, 2019: 327).

Ethical AI principles are criticized, because they are “rather vague and fail to give detailed guidance” (Zuiderveen Borgesius, 2020: 1583). Human rights, which are based on more established legal interpretations and practice, at both the universal and national level, should replace ethics as the dominant framework for debate (Robles Carrillo, 2020: 13).

Most authors consider technology-neutral regulations such as the GDPR, that was mentioned in more than half of the papers. This regulation is designed to uphold data protection rights under Article 8 of the EU Charter of Fundamental Rights. It includes a range of measures dealing with the rights of data subjects (individual persons), in particular the right to information, right to access, right not to be subject to automated decisions or to obtain an explanation of decisions reached (e.g., Articles 15, 22 and Recital 71 of the GDPR) (e.g., Brand, 2020: 125; Gasser and Almeida, 2017: 62; Lauterbach, 2019: 251; Zuiderveen Borgesius, 2020: 1579; Kozuka, 2019: 319; Pagallo, 2018: 515; Brkan, 2019: 93; Brkan and Bonnet, 2020: 19; Strandburg, 2019: 1853; Kaminski, 2019: 1551). However, some authors express doubts concerning the effectiveness of the GDPR (Edwards and Veale, 2018: 2; Mann and Matzner, 2019: 3; Goodman and Flaxman, 2017: 5; Treleaven et al., 2019: 34). Brkan focuses on the argument that a right to explanation does not expressly appear in the text of the GDPR, only in the legally non-binding Recital 71 (Brkan, 2019: 115). Zuiderveen Borgesius (2020: 1580) used other words for this inconsistency, and points out that Article 22 of the GDPR is sometimes called the “Kafka provision”.

According to some authors, the existing regulations for a disruptive technology such as AI are not well-fitted in principle, because the laws predominantly address specific socio-technical contexts without comprehensive knowledge of new and future challenges (Clarke, 2019: 402; Buiten, 2019: 45; Abdul Manap and Abdullah, 2020: 185; Brand, 2020: 114). Furthermore, existing regulations and the application of laws such as tort and criminal law appear to be inadequate to cope with the substantial threats provoked through AI (Clarke, 2019: 402; Tutt, 2017: 83).
According to Tutt (2017: 83) only a centralized agency would overcome a piecemeal approach, and would be able to deal with the existing “difficult regulatory puzzles”.

Conclusively, many authors argue that existing rules and principles for AI applications need to be revised to better manage the unique characteristics of AI. In particular, data protection (Allen and Masters, 2020: 596; Gurumurthy and Bharthur, 2018: 46; Mann and Matzner, 2019: 3; Bellanova, 2017: 340; Winter and Davidson, 2019: 287), anti-discrimination, human and civil rights (Mann and Matzner, 2019: 2; Cofone, 2019: 1408; Donahoe and Metzger MacDuffee, 2019: 124; Katyal, 2019: 99), and the rules for an explanation (Edwards and Veale, 2018: 4; Brkan and Bonnet, 2020: 23) need to be strengthened and clarified. Some papers propose the introduction of additional new aspects, such as a ‘right’ to a human decision (Jones, 2017: 219; Johnson, 2019: 1241; Floridi et al., 2018: 697).

Clarke laments that disruptive technologies such as AI genuinely “have features that render existing laws ambiguous and ineffective” and that even “judicial calisthenics” could not solve this problem in a satisfactory manner (Clarke, 2019: 402). Together with others, Clarke requests additional “ex novo” regulatory and normative creations, often expressed as a new coherent and holistic framework (Clarke, 2019: 402; Tutt, 2017: 107-108; Black and Murray, 2019: 16; Floridi et al., 2018: 702-703; Gasser and Almeida, 2017: 61-62; Robles Carrillo, 2020: 15; Wong, 2019: 240; Abdul Manap and Abdullah, 2020: 195).

5 Discussion

In the previous chapter we reviewed suggestions for separate aspects of a possible regulation system for AI. In the following analysis we bring together the fragmented pieces of research by providing some overarching observations and evaluations.

First, we observe that the arguments and evaluations of the reviewed papers do not make connections between individual proposed regulatory measures in different application contexts to create a concise and holistic regulation model. The included papers either concentrate on single and heterogenous aspects with contradictory assessments or propose broad meta-models which cannot be implemented easily in practice.

Second, the academic discussion is centered on industrial states, with only a few exceptions, e.g., Malaysia (Abdul Manap and Abdullah, 2020). We go along with Smith who laments “that the research is primarily American-based and positions a regulatory approach to algorithms within an American administrative framework” (Smith and Desrochers, 2020: 579), but would add to this view that many authors also refer to EU legislation. Regulatory perspectives from the Global South on the global phenomenon of AI could give valuable insights for an effective regulatory framework.

Third, the academic discourse on regulating AI is a highly interdisciplinary research domain. In our final sample, we included articles from law, philosophy, computer science, political science, sociology, and further STEM subjects. Some articles are collective interdisciplinary works, e.g., Floridi et al. include various disciplines in their paper on regulating AI (Floridi et al., 2018). Robles Carrillo stated that only a comprehensive and mutual understanding of the manifold applications, properties and consequences of AI allows decisions about the best possible regu-
ulatory action, which “must be approached from an interdisciplinary perspective” (Robles Carrillo, 2020: 15). Many authors support this position and explicitly demand an increase in (interdisciplinary) research on the societal consequences (e.g., Benkler, 2019: 161; Brkan, 2019: 121; Calo, 2017: 429; Butcher and Beridze, 2019: 88; Cihon et al., 2020: 545; Mannes, 2020: 62). Hence, effective regulation relies on knowledge of the technical specifics as much as on the striking or more subtle societal impacts.

As shown in the analysis of the results we identified recurring topics and salient challenges that come up in the regulatory discussions. We want to reflect some important points by comparing them with the chosen regulatory pathway of the proposed AIA:

First, the academic articles point out to the core challenge of a shared understanding of AI, given the different manifestation of applications, as well as the various types of impacts and risks. In Section 4.1 we observe that many authors are aware of the importance of a shared understanding of AI. However, defining AI solely from a technologically based systematization does not frame the regulation object in a sufficient manner, as the choice of a regulatory instrument depends on the dimensions of the risks including the size of the population affected and the severity of harms. In addition, the wide diversity of possible technologies is hard to integrate into a single comprehensive definition or regulation (Robles Carrillo, 2020: 9). In the proposed AIA, the problem of specifying the regulation object was solved by establishing a list of AI technologies and approaches (Annex I) or high-risk AI systems (Annex III) as regulatory objects. According to this approach the regulation of AI will depend on the nature of applications and use cases and its estimated risks. However, further interdisciplinary research could give advice by systematically analyzing AI applications and their risks to fundamental rights and further societal implications. This seems to be a more fruitful approach for advancing the regulatory process, especially to understand the types and dimensions of risks and, thus, to sharpen and extend the scope of regulatory objects, than further engaging in debates about definitions.

Second, there is consensus among the included papers that existing regulations are not adequate for the substantial and new challenges of AI, regardless of nation or geographic area, either due to the lack of AI-specific provisions or due to the ineffectiveness of existing regulations, such as data protection law. Here, it must be weighed carefully whether efforts should be invested in improving and tightening existing regulation, or if the drafting of new laws is necessary. This weighing should depend on the perspective of the persons affected and the protection goals of fundamental rights. From this perspective, many deficits of the data protection and anti-discrimination law result from their approach of responsibilities for affected individuals to identify and prove harms and take remedial steps. This approach is no longer feasible in the face of the opacity, adaptability and, partially, technical autonomy of AI systems and the personalization of AI-based services and products. These deficits justify regulatory tasks for agencies as well as holding developers and providers more to account. Both is foreseen in the proposed AIA (see below). However, the GDPR and anti-discrimination legislation can be seen as a catch-all for AI systems that fall through the cracks of the proposed AIA, as it focuses primarily on high-risk applications. However, to fulfil such a task the existent legislation has to amend the included individual rights and be extended by strengthening relevant authorities.

Third, the academic debate about specific regulatory instruments shows parallels to the European approach with the proposed AIA. Similarly, both aim to address the fundamental rights
and safety risks specific to AI systems through a set of complementary, proportionate, and flexible rules. But we find significant deviations in the elaboration of the instruments. The standard instruments identified in the review are pre-market conformity assessment and transparency instruments, which are also included in the European approach. In the literature, restrictive pre-market tools were often considered for specific single applications with defined responsible regulatory actors or bodies. However, there is no consensus whether governmental agencies or market-oriented instruments should control regulatory effectiveness and conformity. This controversy is also salient when looking at the aspect of increased compliance in the case of certification. While some authors generally welcome this instrument, others demand independent oversight and audit for critical control of self-regulation (Kaminski, 2019: 1568).

The proposed AIA combines self-assessment and self-certification by providers, voluntary codes-of-conduct with post-market monitoring and controls through providers and MSAs. The European Commission neither took up the scientific argumentation for a single agency (instead made self-regulation by providers a central element for high-risk AI systems), nor even considers it as an option that would have been assessed and compared to other options (European Commission, 2021a: 36-88). It also discarded an option of a regulation of all AI system independent of the risk level, pointing to its estimated high regulatory costs, although the European Commission has stated that this would serve more to protect fundamental rights (European Commission, 2021a: 64-78). Although the MSAs have far-reaching competences, given their wide-ranging tasks their personnel resources envisaged by the European Commission (2021a: Annex 3, 25) seem to be insufficient (Veale and Zuiderveen Borgesius, 2021: 111). Another difference between the scientific literature and the proposed AIA concerns transparency. In the reviewed literature, transparency is most often foreseen as informing affected persons about processes, criteria or impacts of decisions. That information should enable affected persons to take up remedial actions against discriminations or other unjustified treatments. Such a form of disclosure to affected persons is not included in the proposed AIA, nor are individual rights provided for access to adequate information and for correction and redress of unjust treatments. Only AI systems with limited risks require transparency for affected persons in the limited form of information about the existence of the systems, their interaction or about manipulated content (Art. 52 proposed AIA). The publicly accessible EU database, to which providers of high-risk AI systems must register and submit certain information (Art. 60 proposed AIA), will also not contain further information. Additionally, the CE marking (Art. 49 proposed AIA) will not provide such information.

Fourth, in the reviewed literature we often see a missing link between single proposed instruments for specific AI applications and responsibilities and overall regulatory frameworks. Only some authors propose broad hybrid governance frameworks with legal and non-legal dimensions including different regulatory players. They have clear structural ideas of polycentric or layered models, but it remains unclear how to implement different regulatory measures in those metasystems in a robust, holistic, and coherent way. The proposed AIA can also be seen as a hybrid governance framework including monitoring and interventions by governmental agencies, ‘regulated self-regulation’ approaches in form of standardized self-assessment and self-certification by providers of AI systems, labelling and information instruments, and voluntary codes-of-conduct. It is unclear whether the combination of various elements in the context
of the existing legislation can achieve an effective realization of the protection goals. The uncertainty lays within the several objectives of the proposed AIA, in particular, to ensure the internal market and harmonized market rules and at the same time to protect fundamental rights. The coherence of the emerging framework, the interaction of their elements, prevention of regulatory gaps or extensive overlaps and overregulation will remain a continuous task for research.

6 Conclusion

This systematic review focuses on the academic debate and the current proposals for the regulation of AI. It provides an overarching regulatory picture by synthesizing the proposals and assessments stemming from literature across different disciplines. Beyond the prevalent assessment that existing legislations are not appropriate for the wide range of AI applications, the results show a partly fragmented, heterogeneous or unspecified field of ideas, and uncovers uncertainty and ambiguities which should serve as a focal point both for further research and political negotiations. Our review did not aim to develop an ideal regulatory model including responsible actors, processes, and instruments. Instead, we have shown that there is already a rich source of scientific knowledge which can be transferred and adopted for regulatory purposes. This stock of knowledge is a viable basis for further research and public discussions that are necessary in many respects, in particular for the evaluation of the emerging regulatory frameworks with respect to effectivity, legitimacy or coherence. Furthermore, the emergence of new AI applications with specific risks requires continuous adaptations of the regulatory frameworks.

In conclusion, we state that the contribution of unfolding the academic debate lies in evolving, strengthening, or criticizing innovative ideas and approaches regarding regulatory instruments, or to support political decisions and the information flow between separate domains. Many questions surrounding the implementation and regulation of AI remain open, as they are fundamental normative decisions of how societies should handle the benefits and harms that result from AI applications. Many authors of the reviewed articles request a widening of narrow discussions, the encouragement of public debate and the inclusion of affected persons in the process for (further) developing regulatory actions. Only by doing justice to the technical as well as the normative and procedural issues we will achieve the often-proclaimed AI for public good.
References

Abdul Manap N and Abdullah A (2020) Regulating artificial intelligence in Malaysia: The two-tier approach. *UUM Journal of Legal Studies* 11(2): 183-201.

Abiteboul S and Stoyanovich J (2019) Transparency, Fairness, Data Protection, Neutrality: Data Management Challenges in the Face of New Regulation. *Journal of Data and Information Quality* 11(3): 1-9.

Allen R and Masters D (2020) Artificial Intelligence: the right to protection from discrimination caused by algorithms, machine learning and automated decision-making. *ERA Forum* 20(4): 585-598.

Angwin J, Larson J, Mattu S and Kirchner L (2016): Machine Bias. There’s software used across the country to predict future criminals. And it’s biased against blacks. Available at: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (accessed 24 Sept 2021).

Baldwin R, Scott C and Hood C (1998) Introduction. In: Baldwin R, Scott C and Hood C (eds) A Reader on Regulation, Oxford: Oxford University Press

Bannister F and Connolly R (2020) Administration by algorithm: A risk management framework. *Information Polity* 25(4): 471-490.

Bellanova R (2017) Digital, politics, and algorithms: Governing digital data through the lens of data protection. *European Journal of Social Theory* 20(3): 329-347.

Benkler Y (2019) Don’t let industry write the rules for AI. *Nature* 569(7755): 161.

Black J (2002) Critical reflections on regulation. *Australasian Journal of Legal Philosophy*: 1-35.

Black J (2010) Risk-based Regulation: Choices, Practices and Lessons Being Learnt. In: OECD (ed.) *Risk and Regulatory Policy: Improving the Governance of Risk*; OECD Reviews of Regulatory Reform, Paris: Organisation for Economic Co-Operation and Development (OECD): 185-236.

Black J and Murray A (2019) Regulating AI and Machine Learning: Setting the Regulatory Agenda. *European Journal of Law and Technology* 10(3).

Bloch-Wehba H (2020) Access to Algorithms. *Fordham Law Review* 88(4): 1265-1314.

Brand DJ (2020) Algorithmic Decision-making and the Law. *eJournal of eDemocracy and Open Government* 12(1): 115-132.

Brkan M (2019) Do algorithms rule the world? Algorithmic decision-making and data protection in the framework of the GDPR and beyond. *International Journal of Law and Information Technology* 27(2): 91-121.

Brkan M and Bonnet G (2020) Legal and Technical Feasibility of the GDPR’s Quest for Explanation of Algorithmic Decisions: of Black Boxes, White Boxes and Fata Morgana. *European Journal of Risk Regulation* 11(1): 18-50.

Buiten MC (2019) Towards Intelligent Regulation of Artificial Intelligence. *European Journal of Risk Regulation* 10(1): 41-59.

Butcher JG and Beridze I (2019) What is the State of Artificial Intelligence Governance Globally? *RUSI Journal* 164(5-6): 88-96.

Calo R (2017) Artificial Intelligence Policy: A Primer and Roadmap. *UC Davis Law Review* 51(2): 399-434.
Carter D (2020) Regulation and ethics in artificial intelligence and machine learning technologies: Where are we now? Who is responsible? Can the information professional play a role? Business Information Review 37(2): 60-68.

Cerrillo i Martínez A (2019) How can we open the black box of public administration? Transparency and accountability in the use of algorithms. Revista Catalana de Dret Public 2019(58): 13-28.

Cihon P, Maas MM and Kemp L (2020) Fragmentation and the Future: Investigating Architectures for International AI Governance. Global Policy 11(5): 545-556.

Clarke R (2019) Regulatory alternatives for AI. Computer Law & Security Review 35(4): 398-409.

Cofone IN (2019) Algorithmic Discrimination Is an Information Problem. Hastings Law Journal 70(6): 1389-1444.

Coglianese C and Lehr D (2019) Transparency and Algorithmic Governance. Administrative Law Review 71(1): 1-56.

de Almeida PGR, dos Santos CD and Farias JS (2021) Artificial Intelligence Regulation: a framework for governance. Ethics and Information Technology 23: 505-525.

Dignam A (2020) Artificial intelligence, tech corporate governance and the public interest regulatory response. Cambridge Journal of Regions, Economy and Society 13(1): 37-54.

Donahoe E and Metzger MacDuffee M (2019) Artificial Intelligence and Human Rights. Journal of Democracy 30(2): 115-126.

Edwards L and Veale M (2017) Slave to the Algorithm? Why a ‘Right to an Explanation’ is Probably not the Remedy you are Looking for. Duke Law & Technology Review 16: 18-84.

Edwards L and Veale M (2018) Enslaving the Algorithm: From a ”Right to an Explanation” to a ”Right to Better Decisions”? IEEE Security & Privacy 16(3): 46-54.

Etzioni A and Etzioni O (2017) Should Artificial Intelligence Be Regulated? Issues in Science and Technology 33(4): 32-36.

Etzioni O (2018) Point/Counterpoint Point: Should AI Technology Be Regulated? Yes, and Here’s How. Communications of the ACM 61(12): 30-32.

European Commission (2021a) Impact Assessment Accompanying the Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts; 24.4.2021, SWD(2021) 84 final. Report. Brussels: European Commission.

European Commission (2021b) Proposal 2021/0106 (COD) of the 21.4.2021 for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. European Commission, Brussels. Report. Brussels: European Union.

Favaretto M, De Clercq E and Elger BS (2019) Big Data and discrimination: perils, promises and solutions. A systematic review. Journal of Big Data 6(1): 1-27.

Feldstein S (2019) The Road to Digital Unfreedom: How Artificial Intelligence is Reshaping Repression. Journal of Democracy 30(1): 40-52.

Felzmann H, Fosch Villaronga E, Lutz C and Tamo-Larrieux A (2019) Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data & Society 6(1): 1-14.
Floridi L, Cowls J, Beltrametti M, Chatila R, Chazerand P, Dignum V, Luetge C, Madelin R, Pagallo U, Rossi F, Schafer B, Valcke P and Vayena E (2018) AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. *Minds and Machines* 28(4): 689-707.

Gacutan J and Selvadurai N (2020) A statutory right to explanation for decisions generated using artificial intelligence. *International Journal of Law and Information Technology* 28(3): 193-216.

Gasser U and Almeida VAF (2017) A Layered Model for AI Governance. *IEEE Internet Computing* 21(6): 58-62.

German Data Ethics Commission (2019) *Opinion of the Data Ethics Commission*. Report. Berlin: Data Ethics Commission of the Federal Government; Federal Ministry of the Interior, Building and Community; Federal Ministry of Justice and Consumer Protection.

Goodman B and Flaxman S (2017) European Union regulations on algorithmic decision-making and a “right to explanation”. *AI Magazine* 38(3): 50-57.

Gurumurthy A and Bharthur D (2018) Democracy and the Algorithmic Turn: Issues, Challenges and the Way Forward. *SUR* 15(27): 39-50.

Haenlein M and Kaplan A (2019) A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. *California Management Review* 61(4): 5-14.

Hirsch PB (2016) The Caliphate of numbers. *Journal of Business Strategy* 37(6): 51-55.

Hoffmann CH and Hahn B (2019) Decentered ethics in the machine era and guidance for AI regulation. *AI & Society* 35(3): 635-644.

Ienca M (2019) Democratizing cognitive technology: a proactive approach. *Ethics and Information Technology* 21(4): 267-280.

Jobin A, Ienca M and Vayena E (2019) The global landscape of AI ethics guidelines. *Nature Machine Intelligence* 1(9): 389-399.

Johnson KN (2019) Automating the Risk of Bias. *George Washington Law Review* 87(5): 1214-1271.

Jones ML (2017) The right to a human in the loop: Political constructions of computer automation and personhood. *Social Studies of Science* 47(2): 216-239.

Kaminski ME (2019) Binary Governance: Lessons from the GDPR’S Approach to Algorithmic Accountability. *Southern California Law Review* 92(6): 1529-1616.

Kaplan A and Haenlein M (2019) Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. *Business horizons* 62: 15-25.

Katyal SK (2019) Private Accountability in the Age of Artificial Intelligence. *UCLA Law Review* 66(1): 54-141.

Kim PT (2020) Manipulating Opportunity. *Virginia Law Review* 106(4): 867-935.

Koop C and Lodge M (2017) What is regulation? An interdisciplinary concept analysis. *Regulation & Governance* 11: 95-108.

Kozuka S (2019) A governance framework for the development and use of artificial intelligence: lessons from the comparison of Japanese and European initiatives. *Uniform Law Review* 24(2): 315-329.
Krafft TD, Zweig KA and König PD (2020) How to regulate algorithmic decision-making: A framework of regulatory requirements for different applications. Regulation & Governance 16: 1-18.

Kroll JA, Huey J, Barocas S, Felten EW, Reidenberg JR, Robinson DG and Yu HL (2017) Accountable Algorithms. University of Pennsylvania Law Review 165(3): 633-705.

Lauterbach A (2019) Artificial intelligence and policy: quo vadis? Digital Policy, Regulation and Governance 21(3): 238-263.

Lehr D and Ohm P (2017) Playing with the data: what legal scholars should learn about machine learning. UC Davis Law Review 51: 653-717.

Liu H-W, Lin C-F and Chen Y-J (2019) Beyond State v Loomis: artificial intelligence, government algorithmization and accountability. International Journal of Law and Information Technology 27(2): 122-141.

Madhavan R, Kerr JA, Corcos AR and Isaacoff BP (2020) Toward Trustworthy and Responsible Artificial Intelligence Policy Development. IEEE Intelligent Systems 35(5): 103-108.

Mann M and Matzner T (2019) Challenging algorithmic profiling: The limits of data protection and anti-discrimination in responding to emergent discrimination. Big Data & Society 6(2): 1-11.

Mannes A (2020) Governance, Risk, and Artificial Intelligence. AI Magazine 41(1): 61-69.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P and Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews 4(1): 1-9.

Munoko I, Brown-Liburd HL and Vasarhelyi M (2020) The Ethical Implications of Using Artificial Intelligence in Auditing. Journal of Business Ethics 167: 209-234.

Nindler R (2019) The United Nation’s Capability to Manage Existential Risks with a Focus on Artificial Intelligence. International Community Law Review 21(1): 5-34.

Orr W and Davis JL (2020) Attributions of ethical responsibility by Artificial Intelligence practitioners. Information Communication and Society 23(5): 719-735.

O’Sullivan A and Thierer A (2018) Counterpoint: Regulators Should Allow the Greatest Space for AI Innovation. Communications of the ACM 61(12): 33-35.

Ouchchy L, Coin A and Dubljević V (2020) AI in the headlines: the portrayal of the ethical issues of artificial intelligence in the media. AI & Society 35: 927–936.

Pagallo U (2018) Algo-Rhythms and the Beat of the Legal Drum. Philosophy and Technology 31(4): 507-524.

Rahwan I (2018) Society-in-the-loop: programming the algorithmic social contract. Ethics and Information Technology 20(1): 5-14.

Redden J (2018) Democratic governance in an age of datafication: Lessons from mapping government discourses and practices. Big Data & Society 5(2): 1-13.

Robles Carrillo M (2020) Artificial intelligence: From ethics to law. Telecommunications Policy 44(6): 1-16.

Rudschie C, Schneider I and Simon J (2021) Value Pluralism in the AI Ethics Debate – Different Actors, Different Priorities. The International Review of Information Ethics 29.

Shin D, Fotiadi A and Yu H (2019) Prospectus and limitations of algorithmic governance: an ecological evaluation of algorithmic trends. Digital Policy, Regulation and Governance 21(4): 369-383.
Shneiderman B (2020) Bridging the Gap Between Ethics and Practice: Guidelines for Reliable, Safe, and Trustworthy Human-centered AI Systems. *ACM Transactions on Interactive Intelligent Systems* 10(4): 1-31.

Smith RA and Desrochers PR (2020) Should algorithms be regulated by government? *Canadian Public Administration* 63(4): 563-581.

Smuha NA (2020) Beyond a Human Rights-Based Approach to AI Governance: Promise, Pitfalls, Plea. *Philosophy and Technology*: 1-18.

Strandburg KJ (2019) Rulemaking and Inscrutable Automated Decision Tools. *Columbia Law Review* 119(7): 1851-1885.

Treleaven P, Barnett J and Koshiyama A (2019) Algorithms: Law and Regulations. *Computer* 52(2): 32-40.

Truby J (2020) Governing Artificial Intelligence to benefit the UN Sustainable Development Goals. *Sustainable Development* 28(4): 946-959.

Turner Lee N (2018) Detecting racial bias in algorithms and machine learning. *Journal of Information, Communication and Ethics in Society* 16(3): 252-260.

Tutt A (2017) An FDA for Algorithms. *Administrative Law Review* 69(1): 83-123.

Veale M and Zuiderveen Borgesius F (2021) Demystifying the Draft EU Artificial Intelligence Act - Analysing the good, the bad, and the unclear elements of the proposed approach. *Computer Law Review International* 22(4): 97-112.

Wang W and Siau K (2019) Artificial Intelligence, Machine Learning, Automation, Robotics, Future of Work and Future of Humanity: A Review and Research Agenda. *Journal of Database Management* 30(1): 61-79.

Winter JS and Davidson E (2019) Governance of artificial intelligence and personal health information. *Digital Policy, Regulation and Governance* 21(3): 280-290.

Wirtz BW, Weyerer JC and Sturm BJ (2020) The Dark Sides of Artificial Intelligence: An Integrated AI Governance Framework for Public Administration. *International Journal of Public Administration* 43(9): 818-829.

Wong P-H (2019) Democratizing Algorithmic Fairness. *Philosophy and Technology* 33(2): 225-244.

Zarsky T (2016) The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine Efficiency and Fairness in Automated and Opaque Decision Making. *Science, Technology, & Human Values* 41(1): 118-132.

Zerilli J, Knott A, Maclaurin J and Gavaghan C (2019) Transparency in Algorithmic and Human Decision-Making: Is There a Double Standard? *Philosophy and Technology* 32(4): 661-683.

Ziewitz M (2016) Governing Algorithms: Myth, Mess, and Methods. *Science, Technology, & Human Values* 41(1): 3-16.

Zuiderveen Borgesius FJ (2020) Strengthening legal protection against discrimination by algorithms and artificial intelligence. *International Journal of Human Rights* 24: 1-22.
Appendix – Search operator

Selection of keywords in the search terms is based on an initial study of the literature and on previous research.

Data base	Search term	Function
SCOPUS	(TITLE-ABS-KEY ('regulat*' OR 'governance' OR "policy mak*") OR "politic" OR "legislat"))	Covering articles about regulation
	TITLE-ABS-KEY ('AI' OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system")	Covering articles about AI
	AND NOT TITLE-ABS-KEY ('Bio' OR "astro" OR "math" OR "genetic" OR 'physics' OR 'sensor' OR "cancer" OR 'hardware')	Excluding results that are concerned with other issues
	AND (EXCLUDE (SUBJAREA, "BIOC") OR EXCLUDE (SUBJAREA, "MATH") OR EXCLUDE (SUBJAREA, "MEDI") OR EXCLUDE (SUBJAREA, "ENER") OR EXCLUDE (SUBJAREA, "AGRI") OR EXCLUDE (SUBJAREA, "PHAR") OR EXCLUDE (SUBJAREA, "MATE") OR EXCLUDE (SUBJAREA, "PHYS") OR EXCLUDE (SUBJAREA, "ENVI") OR EXCLUDE (SUBJAREA, "NEUR") OR EXCLUDE (SUBJAREA, "CHEM") OR EXCLUDE (SUBJAREA, "CENG") OR EXCLUDE (SUBJAREA, "PSYC") OR EXCLUDE (SUBJAREA, "IMMU") OR EXCLUDE (SUBJAREA, "EART") OR EXCLUDE (SUBJAREA, "DENT") OR EXCLUDE (SUBJAREA, "VETE") OR EXCLUDE (SUBJAREA, "HEAL") OR EXCLUDE (SUBJAREA, "NURS") OR EXCLUDE (SUBJAREA, "ENGI") OR EXCLUDE (SUBJAREA, "Undefined")	Excluding subjects that are concerned with other issues
	AND (LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016))	Limit results to research period January 1st, 2016, to December 31st, 2020
	AND (LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO (SRC-TYPE,"j"))	Limit results to English-language peer-reviewed articles
Web of Science	((TI=("regulat" OR "governance" OR "policy mak" OR "politic" OR "legislat")) OR (AB=("regulat" OR "governance" OR "policy mak" OR "politic" OR "legislat")) OR (KP=("regulat" OR "governance" OR "policy mak" OR "politic" OR "legislat"))))	Covering articles about regulation
	AND ((TI=("AI" OR "artificial intellig" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system")) OR (AB=("AI" OR "artificial intellig" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system")) OR (KP=("AI" OR "artificial intellig" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system"))))	Covering articles about AI
NOT ((TI=("Bio*" OR "astro*" OR 'math*' OR 'genetic' OR 'physics' OR "sensor*" OR 'cancer*' OR 'hardware')) OR (AB=("Bio*" OR "astro*" OR 'math*' OR 'genetic' OR 'physics' OR "sensor*" OR 'cancer*' OR 'hardware')) OR (KP=("Bio*" OR "astro*" OR 'math*' OR 'genetic' OR 'physics' OR "sensor*" OR 'cancer*' OR 'hardware')))

AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)

Excluding results that are concerned with other issues

Refined by: PUBLICATION YEARS: (2020 OR 2019 OR 2018 OR 2017 OR 2016)

Limit results to English-language peer-reviewed articles

Refined by: WEB OF SCIENCE CATEGORIES: (COMPUTER SCIENCE ARTIFICIAL INTELLIGENCE OR LAW OR POLITICAL SCIENCE OR COMPUTER SCIENCE SOFTWARE ENGINEERING OR SOCIOLOGY OR SOCIAL SCIENCES INTERDISCIPLINARY OR ROBOTICS OR ETHICS OR SOCIAL ISSUES OR PHILOSOPHY OR PSYCHOLOGY SOCIAL OR SOCIAL SCIENCES BIOMEDICAL)

Including relevant subjects

Worldwide Political Science Abstracts

ti(("regulat*" OR "governance" OR "policy mak*" OR "politic*" OR "legislat*") AND ("AI" OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system") OR mainsubject(("regulat*" OR "governance" OR "policy mak*" OR "politic*" OR "legislat*")

Covering articles about regulation

AND ("AI" OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system")

Covering articles about AI

Via filter option

Excluding results that are concerned with other issues

Via filter option

Limit results to English-language peer-reviewed articles

Via filter option

Limit results to research period January 1st, 2016, to December 31st, 2020

Via filter option

Including relevant subjects

PAIS Index

ti("regulat*" OR "governance" OR "policy mak*" OR "politic*" OR "legislat*") AND ("AI" OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system")

Covering articles about regulation
AND ("AI" OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system")) OR ab("regulation OR "governance" OR "policy making" OR "politics" OR "legislation") AND ("AI" OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system"))

Filter Option	Description
Via filter option	Covering articles about AI
Via filter option	Excluding results that are concerned with other issues
Via filter option	Limit results to English-language peer-reviewed articles
Via filter option	Limit results to research period January 1st, 2016, to December 31st, 2020
Via filter option	Including relevant subjects

Sociological Abstracts

| ti("regulation" OR "governance" OR "policy making" OR "politics" OR "legislation") AND ("AI" OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system")) OR ab("regulation" OR "governance" OR "policy making" OR "politics" OR "legislation") AND ("AI" OR "artificial intelligence" OR "algorithm" OR "ADM" OR "automated decision making" OR "automated decision-making" OR "machine learning" OR "ML" OR "deep learning" OR "intelligent system" OR "autonomous system" OR "expert system"))

Filter Option	Description
Via filter option	Covering articles about regulation and AI
Via filter option	Excluding results that are concerned with other issues
Via filter option	Limit results to English-language peer-reviewed articles
Via filter option	Limit results to research period January 1st, 2016, to December 31st, 2020
Via filter option	Including relevant subjects
