Gamov-Teller transitions from $^{14}$N ground to $^{14}$C ground and excited states

Yoshiko Kanada-En'yo  
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Tadahiro Suhara  
Matsue College of Technology, Matsue 690-8518, Japan

Gamov-Teller transitions from the $^{14}$N ground state to the $^{14}$C ground and excited states were investigated, based on the model of antisymmetrized molecular dynamics. The calculated strengths for the allowed transitions to the $0^+$, $1^+$, and $2^+$ states of $^{14}$C were compared with the experimental data measured by high-resolution charge-exchange reactions. The calculated GT transition to the $2^+_1$ state is strong while those to the $2^+_2$ and $2^+_3$ states having dominant $2\hbar\omega$ excited configurations are relatively weak. The present calculation can not describe the anomalously long life time of $^{14}$C, though the strength of the $^{14}$C ground state is somewhat suppressed because of the cluster (many-body) correlation in the ground states of $^{14}$C and $^{14}$N.

I. INTRODUCTION

In light-mass nuclei, cluster structures often appear in ground and excited states. Spatially developed cluster structures are found in excited states of stable and unstable nuclei, while cluster components are also contained in the ground states. The cluster component usually contains many-body correlation, and in terms of the spherical shell model, it is expressed by mixing of higher-shell configurations beyond the simple $0\hbar\omega$ configuration. We call the correlation in the ground state caused by the cluster component "ground-state cluster correlation".

One of the typical examples of the ground-state cluster correlation is the $3\alpha$ cluster structure in $^{12}$C; such cluster structures develop remarkably in excited states of $^{12}$C. Also in the ground state, the $3\alpha$ cluster component is significantly mixed into the $p_{3/2}$-shell closed configuration, which is the lowest state in the uncorrelated $j$-$j$ coupling state. As a result of the mixing of the cluster component, the ground band of $^{12}$C exhibits oblate deformation. This deformation can be easily understood by $3\alpha$ cluster models, while it is difficult to describe such a deformation with many-mean-field calculations such as the Hartree-Fock calculation showing the spherical ground state of $^{12}$C.

Also in $^{14}$C, various cluster structures such as $^{10}$Be+$\alpha$ and $3\alpha+2n$ have been suggested in excited states [2–6]. In our previous work [6], which employed a method of antisymmetrized molecular dynamics (AMD), we discussed not only the cluster structures in excited states but also the cluster component in low-lying states and showed that the ground and low-lying states contain the cluster component (the cluster correlation) even though $^{14}$C is a neutron $p$-shell closed nucleus.

Recently, the Gamov-Teller (GT) transition strengths for excited states of light nuclei have been extensively studied by use of experiments on high resolution charge-exchange reactions [7]. The observed $B(GT)$ values can be useful information to clarify the structure of excited states. For $A=14$ nuclei, the GT strength distributions for excited states of $^{14}$C and the mirror $^{14}$O were studied in charge-exchange reactions on $^{14}$N [8]. The measured $B(GT)$ distributions to $0^+$, $1^+$, and $2^+$ states up to the excitation energy $E_x=15$ MeV suggest the predominant strengths of $2^+$ states. In comparison with the large-scale no-core shell-model (NCSM) calculation [8], it was shown that the NCSM calculation does not reproduce the detailed GT strengths of excited $0^+$ and $2^+$ states, and the possible need to include cluster structure in these light nuclei was suggested [8].

As known from the anomalous long life time of $^{14}$C, the strong suppression of the GT transition to the ground $^{14}$C is another issue to be solved. The GT strength for the ground-ground transition from $^{14}$N to $^{14}$C is several orders smaller than the simple shell-model calculation without fine tuning of interaction [9–13]. It was suggested that the GT matrix element can vanish because of the accidental cancellation of the matrix element in the $p$-shell configurations [11]; the vanishing was demonstrated by tuning the spin-orbit and tensor forces, and also shown recently by adjusting the three-body terms in chiral effective field theory in both the conventional shell-model and large-scale shell-model calculations [9,11,16].

In spite of sophisticated works with NCSM focusing on the GT strength for the ground-ground transition, the GT transitions to excited states of $^{14}$C have not been well investigated. The large-scale NCSM calculation including $6\hbar\omega$ model space for excited states was performed by Aroua et al. [6], and it suggests that the inclusion of higher-shell configuration has significant effects on the GT strength for excited states as well as the ground state of $^{14}$C. However, the calculation neither reproduces the experimental spectra of excited $0^+$ and $2^+$ states in the $E_x=6 \sim 10$ MeV region nor describes the GT strength distributions.

In this paper, we study the GT transitions from the $1^+$ ground state of $^{14}$N to the ground and excited $0^+$, $1^+$, and $2^+$ states of $^{14}$C based on a method of AMD [17,18]. The AMD method has proven useful for describing cluster states as well as shell-model states, and it is suitable for investigating cluster structures in excited states as well as the ground-state cluster correlation. For the
study of the ground and excited states of $^{14}$C, we perform
the variation after total-angular-momentum (spin) and
parity projections in the AMD framework (AMD+VAP) [19].
We obtain the $0^+_1$, $1^+_1$, and $2^+_1$ states with domi-
nant $0\hbar\omega$ components and significant mixing of higher-
shell components coming from the cluster components.
We also obtain the $0^+_3$ and $2^+_3$ states having developed
cluster structures containing dominant $2\hbar\omega$ com-
ponents. The calculated energy spectra and GT strengths
are compared with the experimental data and also with
the large-scale NCSM calculation including $6\hbar\omega$ configu-
inations. We also apply the generator coordinate method
(GCM) [24] to the AMD model with the constraint (con-
straint AMD+GCM) of the deformation parameters $\beta$
and $\gamma$ as done in previous work [6, 20]. The contribu-
tions of the cluster correlation to the GT transitions
to the $0^+_1$ and $2^+_1$ states are discussed.

In the present work, we use a phenomenological effective
nuclear interaction consisting of central and spin-
orbit forces. The adopted central interaction is the modi-
ified Volkov force [21] supplemented by the finite-range
spin-orbit force, which successfully reproduces the energy
spectra of $^{12}$C in the AMD+VAP calculation [19, 22].
With such a simple effective interaction used in the
present work, it is difficult to describe the vanishing of
the GT strength to the $^{14}$C ground state. For the
ground state, we only show that the GT strength can
be somewhat reduced by the ground-state cluster corre-
lation but do not discuss the origin of the accidental
cancellation of GT matrix elements.

This paper is organized as follows. In the subsequent
section, the formulation and Hamiltonian of the present
calculation are explained. The results are shown in Sec-
ction III. In Section IV, structures of the ground and ex-
icted states are discussed while focusing on the cluster
correlation. The effect of the cluster correlation on the
GT strengths is also discussed on the basis of the $\beta\gamma$
constraint AMD calculation. Finally, a summary is given in
Section V.

II. FORMULATION

To describe $^{14}$C and $^{14}$N, we apply the AMD+VAP method.
We also apply the $\beta\gamma$ constraint AMD+GCM
method and obtain results similar to those for
AMD+VAP result.

The AMD+VAP method is the same one used for the
study of $^{12}$C in Refs. [19, 22], and the $\beta\gamma$ constraint
AMD+GCM is basically the same as the method used
in the previous work for $^{14}$C [6]. For the details of these
frameworks, the readers are referred to Refs. [6, 18, 20, 22].

A. AMD wave functions

In the AMD method, a basis wave function of an A-
nucleon system is described by a Slater determinant of
single-particle Gaussian wave packets,

$$
\Phi_{\text{AMD}}(Z) = \frac{1}{\sqrt{A!}} A(\varphi_1, \varphi_2, \ldots, \varphi_A).
$$

The $i$th single-particle wave function $\varphi_i$ is written as a
product of spatial, intrinsic spin, and isospin wave func-
tions:

$$
\varphi_i = \phi_{x_i, \chi_i, \tau_i},
$$

$$
\phi_{x_i, (r_j)} = \left(2\nu_j/\pi\right)^{1/4} \exp\{-\nu_j (r_j - \mathcal{X}_i)^2\},
$$

$$
\chi_i = \left(1/2 + \xi_i\right) \chi_{\uparrow} + \left(1/2 - \xi_i\right) \chi_{\downarrow}.
$$

$\phi_{x_i}$ and $\chi_i$ are the spatial and spin functions, and
$\tau_i$ is the isospin function fixed either up (proton) or
down (neutron). The width parameter $\nu$ is fixed at
the same value $\nu = 0.19 \text{ fm}^{-2}$ as that used in
the study of $^{12}$C [22]. Accordingly, an AMD wave func-
tion is expressed by a set of variational parameters $Z =
\{X_1, X_2, \cdots, X_A, \xi_1, \xi_2, \cdots, \xi_A\}$ which express Gaussian
center positions and spin orientations of $A$ nucleons.

B. AMD+VAP method

In the AMD+VAP method, the energy variation is per-
formed after the spin and parity projections in the AMD
model as done in previous work on $^{12}$C [19, 22]. For the
lowest $J^p$ state, the parameters $X_i$ and $\xi_i$ ($i = 1 \sim A$)
are varied to minimize the energy expectation value of the
Hamiltonian, $\langle \Phi | H | \Phi \rangle$, with respect to the spin-
parity eigen wave function projected from an AMD wave
function: $\Phi = P_{J^pMK} \Phi_{\text{AMD}}(Z)$. Here, $P_{J^pMK}$ is the spin-
parity projection operator. After the energy variation by
a frictional cooling method [18], the optimum AMD wave
function $\Phi_{\text{AMD}}(Z^{J^p})$ is obtained. The obtained wave
function $\Phi_{\text{AMD}}(Z^{J^p})$ approximately describes the intrinsic
wave function for the lowest $J^p$ state. For higher $J^p$
($k \geq 2$) states, the energy variation after the spin and
parity projections is performed for the component ortho-
goal to the lower $J^p$ states. Then, for each $J^p_k$,
the optimum parameter solution $Z_{J^p_k}$ is obtained. In the case
of $^{14}$C, we perform the VAP calculations for the $0^+_1$, $1^+_1$,
and $2^+_1, 2^+_3$ states and obtain seven sets of parameters $Z$.
After the VAP procedure, final wave functions are calcu-
lated by superposing the spin-parity eigen wave functions
projected from these seven AMD wave func-
tions $\Phi_{\text{AMD}}(Z^{J^p})$ obtained by the VAP. Here $\alpha$ is the la-
bel for seven VAP states, $\alpha = 0, 1, 2, 3, 1^+_1$, and $2^+_1, 2^+_3$ states.
Namely, the final wave functions for the $J^p_n$ states are expressed as

$$
|\Psi_{\text{VAP}}(J^p_n)\rangle = \sum_{K, \alpha} c_n^{J^p}(K, \alpha) |P_{MK}^{J^p} \Phi_{\text{AMD}}(Z^n)\rangle,
$$
where the coefficients $c_{n}^{J_{n}}(K, \alpha)$ are determined by diagonalization of norm and Hamiltonian matrices. For the ground state of $^{14}$N, the VAP is performed for $J^{\pi} = 1^{+}$. Then, the $^{14}$N ground state wave function is described by the spin-parity eigen state projected from the $\Phi_{AMD}(Z_{1})$ with $K$-mixing.

C. $\beta$-$\gamma$ constraint AMD+GCM

In the $\beta$-$\gamma$ constraint AMD+GCM method, the energy variation is performed after the parity projection but before the spin projection under certain constraints. Namely, we perform the energy variation for the parity projected wave function, $\Phi = P^{\pi} \Phi_{AMD}(Z)$ with the constraint on the quadrupole deformation parameters $\beta$ and $\gamma$. Here, $P^{\pi}$ is the parity projection operator. The deformation parameters $\beta$ and $\gamma$ are defined as

\begin{align}
\beta \cos \gamma &\equiv \sqrt{\frac{3}{5}} \frac{2(x^2)-(y^2)}{R^2}, \\
\beta \sin \gamma &\equiv \sqrt{\frac{3}{5}} \frac{(x^2)-(y^2)}{R^2}, \\
R^2 &\equiv \frac{2}{3} \left( \langle x^2 \rangle + \langle y^2 \rangle + \langle z^2 \rangle \right).
\end{align}

For a given set of constraint parameters $(\beta_{i}, \gamma_{i})$, we impose the constraints: $\beta \cos \gamma = \beta_{i} \cos \gamma_{i}$, $\beta \sin \gamma = \beta_{i} \sin \gamma_{i}$, and

$$\frac{(xy)}{R^2} = \frac{(yz)}{R^2} = \frac{(zx)}{R^2} = 0.$$ (9)

After the energy variation with the constraints, we obtain the optimized wave function $\Phi = P^{\pi} \Phi_{AMD}(Z(\beta, \gamma))$ for the $i$th set of deformation parameters $(\beta_{i}, \gamma_{i})$. For the constraint parameters $(\beta_{i}, \gamma_{i})$, we take the triangular lattice points with mesh size 0.05 on the $\beta$-$\gamma$ plane as done in Refs. [8, 20]. We truncate the $(\beta \cos \gamma, \beta \sin \gamma)$ region as $\beta_{i} \sin \gamma_{i} \leq -(\beta_{i} \cos \gamma_{i} - 1)/2$ and $\beta_{i} \sin \gamma_{i} \leq -(\beta_{i} \cos \gamma_{i} - 0.75)/2$ and use a total of 121 and 72 mesh points for $^{14}$C and $^{14}$N, respectively, to save numerical cost. These truncations do not affect the results of low-lying states.

To obtain the wave functions for $J_{n}^{\pi}$ states, we superpose the spin-parity projected AMD wave functions $P_{MK}^{J_{n}^{\pi}} \Phi_{AMD}(Z(\beta, \gamma))$ using GCM [24]. Then the final wave functions for the $J_{n}^{\pi}$ states are described as

$$|\Psi_{\beta \gamma}^{14^{C}}(J_{n}^{\pi})\rangle = \sum_{i, K} c_{n}^{J_{n}}(K, \beta, \gamma_{i})|P_{MK}^{J_{n}^{\pi}} \Phi_{AMD}(Z(\beta, \gamma_{i}))\rangle,$$ (10)

where the coefficients $c_{n}^{J_{n}}(K, \beta, \gamma_{i})$ are determined by solving the Hill-Wheeler equation, i.e., the diagonalization of the norm and Hamiltonian matrices. The final wave function $\Psi_{\beta \gamma}^{14^{C}}(J_{n}^{\pi})$ is the multiconfiguration (MC) state, which is expressed by the linear combination of various configurations $P_{MK}^{J_{n}^{\pi}} \Phi_{AMD}(Z(\beta, \gamma))$ obtained by the $\beta$-$\gamma$ constraint AMD.

D. Effective interactions

We use the same effective nuclear interaction as that used in the previous calculation of $^{12}$C [22]. It is the MV1 force [21] for the central force supplemented by the two-body spin-orbit force given by the two-range Gaussian form with the range parameters being the same as those of the G3RS force [22]. The Coulomb force is approximated by using a seven-range Gaussian form. The spin-orbit strengths are taken to be $\mu_{1} = -\mu_{11} = 3000$ MeV. The Majorana, Bartlett, and Heisenberg parameters in the MV1 force are taken to be (A) $m = 0.62$, and $b = h = 0.125$ as well as the parameters (B) $m = 0.62$ and $b = h = 0$ used in Ref. [22]. We also present the results with a different Majorana parameter, (C) $m = 0.58$ and $b = h = 0.125$, and (D) $m = 0.58$ and $b = h = 0$ to show that the interaction parameter dependence is minor.

In the present work, the MV1 force is adopted as the effective central interaction instead of the Volkov force used in the previous work on $^{14}$C [8]. In Ref. [11], the excitation energies calculated with the $\beta$-$\gamma$ constraint AMD using the Volkov No.2 force largely overestimate the experimental excitation energies of $^{14}$C. This may come from the overbinding problem of the Volkov force for heavier mass nuclei. The MV1 force is the interaction modified from the Volkov force, and it consists of the finite-range two-body force and the zero-range three-body term. The force reasonably reproduces the energy spectra of $p$-shell and $sd$-shell nuclei.

III. RESULTS

With the AMD+VAP method we calculate the $1^{+}$ ground state of $^{14}$N. The magnetic moment and electric quadrupole moment calculated with AMD+VAP using the set A interaction are $\mu = +0.34 \mu_{N}$ and $Q = +0.92$ (e fm$^2$). They reasonably agree with the experimental values, $\mu_{exp} = +0.40376100(6) \mu_{N}$ and $Q = +1.93(8)$ (e fm$^2$). We also apply the AMD+VAP method to the $0_{1}^{+, 2.3}, 1_{1}^{+}$, and $2_{1}^{+, 2.3}$ states of $^{14}$C and calculate the GT transition strengths from the $^{14}$N ground state to $^{14}$C states. The GT transition strength $B(\text{GT})$ is given as

$$B(\text{GT}) = \left( \frac{g_{A}}{g_{V}} \right)^{2} \frac{1}{2J_{f} + 1} \langle J_{f} || \sigma_{\tau_{z}} || J_{i} \rangle^{2}.$$ (11)

Here $g_{A}/g_{V} = 1.251$ is the ratio of the GT to Fermi coupling constant. In principle, the GT transition from the $J^{\pi} = 1^{+}$, $T = 0$ state is allowed for $J^{\pi} = 0^{+}$, $1^{+}$, and $2^{+}, T = 1$ states.

The results of $B(\text{GT})$ for the transitions from $^{14}$N($1_{1}^{+}$) to $^{14}$C($0_{1}^{+, 2.3}, 1_{1}^{+}$) and $2_{1}^{+, 2.3}$ as well as those of the excitation energies and $B(\text{E2})$ of $^{14}$C are shown in Table 1 compared with the experimental data. The theoretical values obtained by the AMD+VAP calculation using four sets of interaction parameters are listed. Properties of
TABLE I: Excitation energies and $B(E2)$ of $^{14}$C, and $B(GT)$ from $^{14}$N($1^+$). The theoretical values calculated with AMD+VAP using the interactions from sets A, B, C, and D are shown as well as those calculated with the $\beta$-$\gamma$ constraint AMD+GCM using the set A interaction. The experimental data are taken from Refs. [8, 26].

| $^{14}$C($0^+_1$) | AMD+VAP(A) | AMD+VAP(B) |
|-----------------|-------------|-------------|
| $E_s$ (MeV) | $B(GT)$ | $E_s$ (MeV) | $B(GT)$ |
| 0.07 | 0.0 | 0.0002 | 0.0003 |
| 7.9 | 2.5 | 7.5 | 2.5 |
| 12.2 | 0.2 | 12.8 | 0.22 |
| $B(E2)$ (e$^2$fm$^4$) | $B(E2)$ (e$^2$fm$^4$) |
| 6.6 | 7.3 |

| $^{14}$C($0^+_2$) | AMD+VAP(A) | AMD+VAP(B) |
|-----------------|-------------|-------------|
| $E_s$ (MeV) | $B(GT)$ | $E_s$ (MeV) | $B(GT)$ |
| 0.12 | 0.13 | 10.8 | 0.002 |
| 16.5 | 0.0001 | 17.7 | 0.0001 |
| 10.1 | 2.1 | 9.6 | 2.4 |
| 11.7 | 0.75 | 11.9 | 0.42 |
| 15.2 | 0.002 | 16.4 | 0.003 |
| 14.5 | 0.31 | 15.1 | 0.32 |
| $B(E2)$ (e$^2$fm$^4$) | $B(E2)$ (e$^2$fm$^4$) |
| 4.1 | 4.9 |

| $^{14}$C($0^+_3$) | $\beta$-$\gamma$-AMD+GCM(A) | exp. |
|-----------------|-----------------|-----|
| $E_s$ (MeV) | $B(GT)$ | $E_s$ (MeV) | $B(GT)$ |
| 0.16 | 0.90E-06 | 6.589 | 0.056 |
| 7.2 | 2.3 | 7.012 | 0.45 |
| 9.7 | 0.33 | 8.318 | 0.37 |
| 12.2 | 0.10 | 10.425 | 0.098 |
| 14.4 | 0.04 | 11.306 | 0.072 |
| $B(E2)$ (e$^2$fm$^4$) | $B(E2)$ (e$^2$fm$^4$) |
| 7.4 | 3.74 |

The ground and excited states of $^{14}$C are not strongly dependent on the interaction parameters within the present calculation. The calculated results obtained the $\beta$-$\gamma$ constraint AMD+GCM using the set A interaction are also shown in the table. They are qualitatively consistent with those obtained with the AMD+VAP calculations.

The calculated $B(GT)$ for $^{14}$C($0^+_1$) is relatively small compared with those for $J^p = 1^+_1$ and $2^+_1$ states. However, the present calculations fail to describe the vanishing of the GT strength known from the anomalously long life time of $^{14}$C. For $^{14}$C($2^+_1$), the GT strength is $B(GT) = 2 \sim 3$ in the present calculation and is larger than the experimental value $B(GT) = 0.45$ measured by charge-exchange reactions. We obtain the $0^+_2$ and $2^+_2$ states with dominant $2\hbar\omega$ neutron excited configurations around $E_x = 10$ MeV. The features of these two states, such as the $0^+ - 2^+$ level spacing and the GT transition, reasonably agree with those of the experimental $0^+_2$ and $2^+_2$ states; therefore, we assign them to the experimental $^{14}$C($0^+_2$,6.6 MeV) and $^{14}$C($2^+_2$,8.3 MeV). We also obtain the $0^+_3$ and $2^+_3$ states dominated by $2\hbar\omega$ neutron excited configurations around $E_x = 15$ MeV.

The calculated $B(GT)$ distributions for transitions from the $1^+$ ground state of $^{14}$N to $J^p = 0^+,1^+$, and $2^+$ states of $^{14}$C. (a) The theoretical values calculated with the AMD+VAP using the set A interaction, (b) those calculated with the $\beta$-$\gamma$ constraint AMD+GCM, (c) the experimental data taken from Refs. [8, 26], and (d) the theoretical results from Ref. [8] of the NCSM calculation with the $6\hbar\omega$ model space using the effective interactions derived from Argonne V8’ interaction.
C(0^+, 1^+, 2^+) obtained with the AMD+VAP and β-γ constraint AMD+GCM using the set A interaction are compared with the experimental data and the large-scale 6\hbarω NCSM calculation with AV8' interaction in Fig. 4. Qualitative features of the B(GT) distributions obtained in the present calculations are in reasonable agreement with the experimental B(GT) distributions except for B(GT) for \(^{14}\text{C}(2^+)\). The calculated B(GT) for the 2^+ state is largest and is as much as that of the NCSM calculation. In the experimental B(GT) distribution for 2^+ states, relatively larger populations were observed compared with 0^+ and 1^+ states. However, the calculations overestimate the absolute value of the experimental B(GT) for the 2^+ state. This might indicate that the description of the final state \((^{14}\text{C}(2^+))\) or/and the initial state \((^{14}\text{N}(1^+))\) is not sufficient in the present calculations.

Compared with the NCSM calculation, the present B(GT) for \(^{14}\text{C}(0^+)\) is the same order as that of the large-scale 6\hbarω NCSM calculation using the effective interaction derived from the AV8' interaction. It should be noted that the vanishing of the GT matrix element for \(^{14}\text{C}(0^+)\) has been discussed in several NCSM studies by fine-tuning of the interactions [9, 13–16]. For 0^+ and 2^+ states, the correspondence to the experimental B(GT) distributions seems better in the present result than in the NCSM calculation. In the NCSM calculation, the corresponding states might be missing or their excitation energies might be overestimated. In the present results, 0^+_1 and 2^+_2 states contain cluster correlations resulting in the mixing of higher-shell components of proton and neutron excitations. Usually, shell model calculations are not suitable for describing such cluster states.

IV. DISCUSSION

In the present result, even the ground states of \(^{14}\text{C}\) and \(^{14}\text{N}\) have significant mixing of proton and neutron excitations from the lowest 0\hbarω configuration because of the cluster correlations. In this section, we discuss intrinsic structures and cluster correlations in \(^{14}\text{C}\) and \(^{14}\text{N}\). To show the mixing of excited configurations, we analyze the probability of higher-shell components. The effect of the cluster correlations on the GT strengths for \(^{14}\text{C}(0^+\text{)}\) and \(^{14}\text{C}(2^+\text{)}\) is also discussed.

A. Intrinsic structure and cluster correlation

In the AMD+VAP calculation, the AMD wave function \(\Phi_{\text{AMD}}(Z^\alpha)\) obtained by the VAP calculation for \(\alpha = J^+_\text{min}\) is regarded as the intrinsic state of the \(J^+_\text{min}\) state. As seen in the density distributions of the intrinsic wave functions \(\Phi_{\text{AMD}}(Z^\alpha)\) for \(^{14}\text{C}\) and \(^{14}\text{N}\) in Fig. 2, \(\alpha\)-like or \(\pi\)-like cluster correlations are found even in the ground states of \(^{14}\text{C}\) and \(^{14}\text{N}\). In the excited states of \(^{14}\text{C}\), further development of cluster structures is seen.

On the basis of the spherical harmonic oscillator (HO) shell model, those states contain significant components of excited configurations because of the cluster correlations. To discuss the higher-shell components beyond the lowest 0\hbarω configurations in each state, we calculate the occupation probability of HO quanta in the final wave function \(\Psi_{\text{VAP}}^{\text{14C}}(J^+_n)\) for the \(J^+_n\) state of \(^{14}\text{C}\). The calculations of the occupation probability are done following the method proposed by Suzuki et al. [27]. The occupation probability of a definite number of total HO quanta \(Q\) is given by the expectation value \(\langle P_Q \rangle\) of the following projection operator \(P_Q\) to the eigen state of the total HO quanta operator \(\sum_i a_i^+ a_i\),

\[
P_Q = \frac{1}{2\pi} \int_0^{2\pi} d\theta \exp \left[ i\theta \left( \sum_{i=1}^{A} a_i^+ a_i - Q \right) \right]
\]

where \(Q = 2\hbar \nu/m\) (\(\nu\) is the width parameter used in AMD wave functions). The occupation probability of total proton(neutron) HO quanta is calculated similarly by using the isospin projection operator.

We calculate \(\langle P_Q \rangle\) for protons, neutrons, and total nucleons and plot the values as functions of \(\Delta Q = Q - Q_{\text{min}}\) measured from the lowest allowed HO quanta \(Q_{\text{min}}\). \(\langle P_Q \rangle\) for total nucleons stands for the component of \(\Delta Q\)-\hbarω configurations, and that for protons (neutrons) indicates the probability of proton (neutron) \(\Delta Q\)-\hbarω excitation. The results of the AMD+VAP states \(\Psi_{\text{VAP}}^{\text{14C}}(J^+_n)\) and \(\Psi_{\text{VAP}}^{\text{14N}}(1^+)\) obtained using the set A interaction are shown in Fig. 3.

It is found that the ground state \(^{14}\text{C}(0^+)\) is not only dominated by the 0\hbarω component but also contains significant components, i.e., 25% and 5% of 2\hbarω and 4\hbarω excited configurations, respectively. In the higher-shell components, the neutron excitation is dominant and the proton excitation is minor. The mixing of proton excitation is caused by the cluster correlation. Also the ground state of \(^{14}\text{N}\) contains 20% of 2\hbarω excited configurations, a significant component.

In the excited states \(^{14}\text{C}(2^+)\) and \(^{14}\text{C}(1^+)\), the 0\hbarω component is dominant but is reduced to 50% because of the larger probability of excited configurations than the ground state. \(^{14}\text{C}(2^+)\) and \(^{14}\text{C}(2^+)\) have the dominant 2\hbarω configuration with the significant mixing of 4\hbarω and 6\hbarω configurations. In addition to the major neutron excitations, they also contain a 20% component of proton excitations because of the cluster correlation.

Similar features for \(\langle P_Q \rangle\) are found in the result of the \(\beta-\gamma\) constraint AMD+GCM calculation. Namely, significant higher-shell components are contained even in the ground states of \(^{14}\text{C}\) and \(^{14}\text{N}\). As described in Section II.C, the final wave function \(\Psi_{\beta-\gamma\text{-GCM}}^{\text{14C}}(J^+_n)\) in the \(\beta-\gamma\) constraint AMD+GCM calculation is given by the superposition of various AMD configurations on the \(\beta-\gamma\) plane. In the framework of \(\beta-\gamma\) constraint AMD, the spherical \(\beta = 0\) state corresponds to a 0\hbarω configuration state,
while deformed states with finite $\beta$ and/or $\gamma$ values contain higher-shell components in terms of the spherical HO shell model. For $^{14}$C and $^{14}$N systems, the finite $\beta$ and/or finite $\gamma$ states have cluster structure containing more components of higher-shell configurations because of the cluster correlations. This means that, in the $\beta$-$\gamma$ constraint AMD+GCM, higher-shell components beyond the $0h\omega$ configuration are mixed in the ground-state wave function through the finite $\beta$ and/or finite $\gamma$ states in the superposition of basis AMD wave functions. Therefore, in this framework, the origin of the mixing of excited configurations can be understood by the deformation modes accompanied by cluster correlations.

In Fig. 4 we show the energy expectation values for the parity projected wave functions $P^{\pi}_{BMK} \Phi_{AMD}(Z^{(\beta,\gamma)})$ obtained by the $\beta$-$\gamma$ constraint AMD, and those for the spin-parity projected wave functions $P^{\pi}_{BMK} \Phi_{AMD}(Z^{(\beta,\gamma)})$. As seen in the density distributions in Figs. 5 and 6, we obtained various structures having cluster correlations in the $\beta$-$\gamma$ constraint AMD wave functions of $^{14}$C and $^{14}$N. In the energy surface before the spin projection (Fig. 5(a) and (d)), the spherical $\beta = 0$ state (Fig. 6(b) and Fig. 6(a)) is the energy minimum. On the other hand, in the $J^\pi = 0^+$ projected states of $^{14}$C (Fig. 4(b)) and the $J^\pi = 1^+$ projected states of $^{14}$N (Fig. 4(c)), the energy minima shift to the finite $\beta$ and $\gamma$ states at $\beta_{\text{min}} \cos \gamma_{\text{min}}, \beta_{\text{min}} \sin \gamma_{\text{min}} = (0.225, 0.130)$ for $^{14}$C($0^+$) and $\beta_{\text{min}} \cos \gamma_{\text{min}}, \beta_{\text{min}} \sin \gamma_{\text{min}} = (0.250, 0.087)$ for $^{14}$N($1^+$), which show $\alpha$-like or $\pi$-like cluster correlations (Fig. 5(a) and Fig. 5(a)). This indicates that the deformed states with the cluster correlations are favored in the calculation with the spin projection, though the spherical $0h\omega$ states are favored in the model space without the spin projection. Moreover, on the $\beta$-$\gamma$ plane, the $J^\pi$-projected energy surface is very soft over a wide area that covers various $\beta$-$\gamma$ states having further developed cluster structures. For example, in the case of the $J^\pi = 0^+$ energy surface of $^{14}$C, the energy soft area within a few MeV energy difference from the energy minimum covers $\beta_{\text{min}} \cos \gamma_{\text{min}}, \beta_{\text{min}} \sin \gamma_{\text{min}} = (0.4, 0.0), (0.325, 0.130), \text{ and } (0.125, 0.216)$ states [Fig. 4(c, d, e)] as well as the $\beta = 0$ state. These states have $\alpha$-like cluster structures and contribute to the significant mixing of the excited components such as the $2h\omega$ and higher-shell configurations in the final state wave functions $\Psi_{\beta\gamma-MC}(J_n^\pi)$ as well as the initial state wave function $\Psi_{\beta\gamma-MC}(J_n^\pi)$. It should be noted that, although the $^{14}$C wave functions with finite $\beta$ and $\gamma$ show $\alpha$-like cluster structures, they do not have neutron and proton excitations of equal weight but do have dominant neutron and minor proton excitations. The reason is that neutrons in the $\alpha$-like cluster are more largely affected by the antisymmetrization with neutrons inside the $^{10}$Be core and, therefore, are more likely excited to higher configurations than protons.

**B. Effect of cluster correlation on GT strength**

As discussed above, the ground-state wave functions of $^{14}$C and $^{14}$N have cluster correlations that result in significant $2h\omega$ and $4h\omega$ components in terms of spherical HO shell-model expansions. In this section, we discuss the effect of the cluster correlations on the GT strengths for $^{14}$C($0^+_1$) and $^{14}$C($2^+_1$).

In the NCSM calculation in Ref. 3, the GT matrix elements are sensitive to the model space of shell-model configurations. For example, the $B(GT)$ for the GT transition to $^{14}$C($0^+_1$) is $B(GT) = 2.518$ in the $0h\omega$ model space calculations using two-body effective interactions derived from the AV8’ force but it is reduced to $B(GT) = 0.164$ in the $6h\omega$ model space calculation. The $B(GT)$ values of the $6h\omega$ NCSM calculation for $^{14}$C($0^+_1$) and $^{14}$C($2^+_1$) are essentially comparable with the present $\beta$-$\gamma$ constraint AMD+GCM results in spite of differences in the effective interactions and the model space. Herein, we discuss the mixing effect of higher-shell components on $B(GT)$ from the standpoint of cluster correlations.
In the $\beta-\gamma$ constraint AMD and the AMD+VAP calculations, it is found that the deformed states with the cluster correlations are favored in the calculation with the spin projection though the spherical $0\hbar\omega$ states are favored in the model space without the spin projection. To see the effect of the cluster correlations in finite $\beta$ and $\gamma$ states on $B(GT)$, we show in Fig. 7 the $B(GT)$ values evaluated by the GT matrix element obtained using the single $\beta-\gamma$ constraint AMD wave function for $^{14}\text{N}$ and that for $^{14}\text{C}$, that is, the GT matrix element for the initial $1^+$ state of $^{14}\text{N}$ projected from the $\beta-\gamma$ constraint AMD wave function at the $1^+$-projected energy minimum $(\beta_{\text{min}} \cos \gamma_{\text{min}}, \beta_{\text{min}} \sin \gamma_{\text{min}}) = (0.250, 0.087)$ and the final $J^\pi = 0^+$ and $2^+$ states of $^{14}\text{C}$ projected from the $\beta-\gamma$ constraint AMD wave function $\Phi_{\text{AMD}}(Z^{(\beta,\gamma)})$. We also show the $B(GT)$ given by the GT matrix element for the case in which the initial $^{14}\text{N}$ state is the spherical $\beta = 0$ state. Here the $K$-mixing is taken into account. In both cases of initial $^{14}\text{N}$ states, the $\beta_{\text{min}} - \gamma_{\text{min}}$ and $\beta = 0$ states, the $B(GT)$ for $^{14}\text{C}(0^+)$ decreases as the deformation $\beta$ of $^{14}\text{C}$ increases. Comparing the $B(GT)$ value...
for the final $^{14}$C state at the spherical limit $\beta = 0$ with that for the $^{14}$C state at the $J^\pi = 0^+$ energy minimum $(\beta_{\text{min}} \cos \gamma_{\text{min}}, \beta_{\text{min}} \sin \gamma_{\text{min}}) = (0.225, 0.130)$, the $B(GT)$ to $^{14}$C($0^+$) is reduced by 30% because of the cluster correlation in the final $^{14}$C state. In the comparison of the $B(GT)$ for the initial $^{14}$N state with $\beta = 0$ and $\beta_{\text{min}} - \gamma_{\text{min}}$, a 50% reduction of $B(GT)$ occurs because of the cluster correlation in the initial $^{14}$N state. In contrast to the $B(GT)$ for $^{14}$C($0^+$), no reduction caused by cluster correlation is seen in the $B(GT)$ for $^{14}$C($2^+$).

As mentioned before, the present results overestimate the experimental $B(GT)$ for $^{14}$C($0^+_1$) and $^{14}$C($2^+_1$). Although the $B(GT)$ for $^{14}$C($0^+_1$) can be somewhat reduced by the cluster correlation, the possible reduction is only a factor 2–3 at most, and it is difficult to describe the anomalous suppression of the GT matrix element known from the long life time of $^{14}$C. For the transition to $^{14}$C($2^+_1$), the $B(GT)$ seems insensitive to the cluster correlation, and it is also difficult to quantitatively reproduce the experimental data in the present calculation.

V. SUMMARY

GT transitions from the $^{14}$N ground state to the $^{14}$C ground and excited states were investigated on the basis of the model of AMD. The AMD+VAP method and the $\beta$-$\gamma$ constraint AMD+GCM were applied to $0^+$, $1^+$, and $2^+$ states of $^{14}$C as well as the ground state of $^{14}$N. Both calculations show similar results.

The calculated strengths for the allowed transitions to $0^+$, $1^+$, and $2^+$ states of $^{14}$C were compared with experimental data measured by high-resolution charge exchange reactions. The calculated $GT$ transition to the $2^+_1$ state is strong, whereas those to the $0^+_2,3$ and $2^+_2,3$ states having dominant $2\hbar\omega$ excited configurations are relatively weak. The $B(GT)$ distributions to excited states of $^{14}$C in the present calculations are in reasonable agreement with the experimental $B(GT)$ distributions except for $B(GT)$ for $^{14}$C($2^+_1$). The present calculation cannot describe the anomalously long life time of $^{14}$C, though the GT strength of the $^{14}$C ground state is relatively small compared with the $2^+_1$ and $1^+_2$ states.

Compared with the large-scale NCSM calculations [9], the $B(GT)$ values for $^{14}$C($0^+_1$) and $^{14}$C($2^+_1$) in the present calculation are almost the same as those in the $6\hbar\omega$ NCSM calculations. For higher $0^+$ and $2^+$ states, the present calculation shows a better description of the experimental $B(GT)$ distributions in the $E_x \sim 10–15$ MeV region.

It was found that the ground-state wave functions of
$^{14}$C and $^{14}$N have cluster correlations that result in significant $2\hbar\omega$ and $4\hbar\omega$ components in terms of spherical HO shell-model expansion. In the excited states of $^{14}$C, further development of cluster structures is seen.

The effect of the cluster correlations on the GT strengths for $^{14}$C($0^+\!$) and $^{14}$C($2^+\!$) was discussed. Although the $B(GT)$ for $^{14}$C($0^+\!$) can be somewhat reduced by the cluster correlation, the possible reduction is only a factor of 2–3 at most, and it is difficult to describe the anomalous suppression of the GT matrix element known from the long life time of $^{14}$C.

Acknowledgments

The authors would like to thank Prof. Fujita for valuable discussions. The computational calculations in this study were performed on the supercomputers at YITP, Kyoto University. This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS). It was also supported by a Grant-in-Aid for the Global COE Program, "The Next Generation of Physics, Spun from Universality and Emergence", from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.
[14] J. W. Holt, G. E. Brown, T. T. S. Kuo, J. D. Holt and R. Machleidt, Phys. Rev. Lett. 100, 062501 (2008).
[15] J. W. Holt, N. Kaiser and W. Weise, Phys. Rev. C 81, 024002 (2010).
[16] P. Maris, J. P. Vary, P. Navratil, W. E. Ormand, H. Nam and D. J. Dean, Phys. Rev. Lett. 106, 202502 (2011).
[17] Y. Kanada-En’yo, H. Horiuchi and A. Ono, Phys. Rev. C 52, 628 (1995); Y. Kanada-En’yo and H. Horiuchi, Phys. Rev. C 52, 647 (1995).
[18] Y. Kanada-En’yo and H. Horiuchi, Prog. Theor. Phys. Suppl. 142, 205 (2001); Y. Kanada-En’yo M. Kimura and H. Horiuchi, C. R. Physique 4, 497 (2003); Y. Kanada-En’yo, M. Kimura and A. Ono, PTEP 2012 (2012) 01A202.
[19] Y. Kanada-En’yo, Phys. Rev. Lett. 81, 5291 (1998).
[20] T. Suhara and Y. Kanada-En’yo, Prog. Theor. Phys. 123, 303 (2010).
[21] T. Ando, K. Ikeda and A. Tohsaki, Prog. Theory. Phys. 64, 1608 (1980).
[22] Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007) [Erratum-ibid. 121, 895 (2009)].
[23] A. B. Volkov, Nucl. Phys. 74, 33 (1965).
[24] D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953); J. J. Griffin and J. A. Wheeler, Phys. Rev. 108, 311 (1957).
[25] N. Yamaguchi, T. Kasahara, S. Nagata and Y. Akaishi, Prog. Theor. Phys. 62, 1018 (1979); R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).
[26] F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).
[27] Y. Suzuki, K. Arai, Y. Ogawa and K. Varga, Phys. Rev. C 54, 2073 (1996).