ROOT CLOSED FUNCTION ALGEBRAS
ON COMPACTA OF LARGE DIMENSION

N. BRODSKIY, J. DYDAK, A. KARASEV, AND K. KAWAMURA

(Communicated by Alexander N. Dranishnikov)

Abstract. Let X be a Hausdorff compact space and let $C(X)$ be the algebra of all continuous complex-valued functions on X, endowed with the supremum norm. We say that $C(X)$ is (approximately) n-th root closed if any function from $C(X)$ is (approximately) equal to the n-th power of another function.

We characterize the approximate n-th root closedness of $C(X)$ in terms of n-divisibility of the first Čech cohomology groups of closed subsets of X. Next, for each positive integer m we construct an m-dimensional metrizable compactum X such that $C(X)$ is approximately n-th root closed for any n. Also, for each positive integer m we construct an m-dimensional compact Hausdorff space X such that $C(X)$ is n-th root closed for any n.

1. Introduction

Relations between algebraic closedness of the algebra of continuous bounded complex-valued functions $C(X)$ on a space X and topological properties of X have been studied since the 1960s [5]. Recall that the algebra $C(X)$ is called algebraically closed if each monic polynomial with coefficients in $C(X)$ has a root in $C(X)$. For a locally connected compact Hausdorff space, the algebra $C(X)$ is algebraically closed if and only if $\dim X \leq 1$ and $H^1(X; \mathbb{Z}) = 0$ [8], [13], where $H^1(X; \mathbb{Z})$ denotes the first Čech cohomology group of X with the integer coefficient (see section 2). It is proved in [13] that for a first-countable compact Hausdorff space X, algebraic closedness of $C(X)$ is equivalent to a weaker property of square root closedness. The latter means that every function from $C(X)$ is a square of another function. It should be noted that this property appears in the study of subalgebras of $C(X)$ [4].

An even weaker property of approximate square root closedness was introduced by Miura [12] and was proved to be equivalent to the square root closedness when the underlying compact Hausdorff space X is locally connected.

There is a nice characterization of algebraic closedness of $C(X)$ when X is a metrizable continuum. Namely, in this case $C(X)$ is algebraically closed if and only if X is a dendrite (i.e. a Peano continuum containing no simple closed curves) [10], [13].
The approximate n-th root closedness of $C(X)$ was studied by Kawamura and Miura and was proved to be equivalent to n-divisibility of $H^1(X;\mathbb{Z})$ under the additional assumption $\dim X \leq 1$. The universal space for metrizable compacta with the approximately n-th root closed $C(X)$ is constructed in [3].

In this paper we characterize the approximate n-th root closedness of $C(X)$ for any Hausdorff paracompact space X. Namely, $C(X)$ is approximately n-th root closed if and only if the group $H^1(A;\mathbb{Z})$ is n-divisible for every closed subset A of X. If $\dim X \leq 1$, then the n-divisibility of $H^1(X;\mathbb{Z})$ implies the n-divisibility of $H^1(A;\mathbb{Z})$, so this generalizes Theorem 1.3 of [10]. Further, for each positive integer m we construct an m-dimensional metrizable compactum X such that $C(X)$ is approximately n-th root closed for any n. Note that such examples were known in dimension 1 only. Also, for each positive integer m we construct an m-dimensional compact Hausdorff space X such that $C(X)$ is n-th root closed for any n. This example solves the problem posed in [10]: for a compact Hausdorff space X, does square root closedness of $C(X)$ imply $\dim X \leq 1$?

2. Notations, definitions, and ideas of constructions

All maps considered in this paper are continuous. For spaces X and Y, we denote the set of all maps from X to Y by $C(X,Y)$. As usual, by \mathbb{Z}, \mathbb{Q}, and \mathbb{C} we denote the integers, the rational numbers, and the complex numbers, respectively. We let $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ be the multiplicative subgroup of \mathbb{C}. An inverse spectrum over a directed partially ordered set (\mathcal{A},\prec) consisting of spaces X_α, $\alpha \in \mathcal{A}$, and projections $p_\alpha^\beta : X_\beta \to X_\alpha$, $\alpha, \beta \in \mathcal{A}$, $\beta \succ \alpha$, is denoted by $\{X_\alpha, p_\alpha^\beta, \mathcal{A}\}$. Throughout this section $n > 1$ denotes an integer.

By $H^k(X;G)$ we denote the k-th Čech cohomology group of the space X with an abelian coefficient group G. Note that in the case when X is a Hausdorff paracompact space the Čech cohomologies are naturally isomorphic to the Alexander-Spanier cohomologies [14, p. 334]. Note also that due to the Huber’s theorem [9] for a Hausdorff paracompact space X there exists a natural isomorphism between the group of all homotopy classes of maps from X to $K(G,k)$ and the group $H^k(X;G)$ if G is countable. Here $K(G,k)$ denotes the Eilenberg-MacLane complex.

For a space X, by $C(X)$ we denote the algebra of all bounded complex-valued functions on X, endowed with the supremum norm. We say that $C(X)$ is approximately n-th root closed if for every $f \in C(X)$ and every $\varepsilon > 0$ there exists $g \in C(X)$ such that $||f - g^n|| < \varepsilon$. The algebra $C(X)$ is said to be n-th root closed if any $f \in C(X)$ has an n-th root, which means that there exists $g \in C(X)$ such that $f = g^n$. Note that if $C(X)$ is (approximately) n-th root closed, then $C(A)$ is also (approximately) n-th root closed for any closed subset A of X.

We consider $C(X,\mathbb{C}^*)$ as a multiplicative subgroup of $C(X)$ with a metric inherited from $C(X)$. We say that $C(X,\mathbb{C}^*)$ is (approximately) n-th root closed if any $f \in C(X,\mathbb{C}^*)$ has an (approximate) n-th root in $C(X,\mathbb{C}^*)$.

The basic idea explored in this paper — the construction of a projective n-th root resolution — is outlined as follows. The simplest case has been known in the theory of uniform algebra, and it is called the Cole construction (cf. [15], Chapter 3, §19, pp. 194-197).

Given a space X and a function $f : X \to \mathbb{C}$ it is not always possible to solve, even approximately, the problem of finding an n-th root of f (consider for instance any homotopically non-trivial map from a circle S^1 to \mathbb{C}^*). Nevertheless, it is
always possible to solve the n-th root problem \textit{projectively} in the following sense.

There exists a space denoted $R_n(X,f)$ and a map $\pi^f: R_n(X,f) \to X$ such that the composition $f \circ \pi^f$ has an n-th root. The space $R_n(X,f)$ is simply the graph of the (multivalued) n-th root of f,

$$R_n(X,f) = \{ (x,z) \mid f(x) = z^n \} \subset X \times \mathbb{C},$$

and the map π^f is the natural projection on X. Obviously, the projection of $R_n(X,f)$ to \mathbb{C} is an n-th root of the composition $f \circ \pi^f$. We say that the space $R_n(X,f)$ together with the map π^f resolve the n-th root problem for f projectively.

Given any family of maps $\mathcal{M} \subset C(X)$ we can projectively resolve the n-th root problem for all maps from \mathcal{M} simultaneously by using the space

$$R_n(X,\mathcal{M}) = \{ (x,(z_f)_{f \in \mathcal{M}}) \mid f(x) = z_f^n \ \forall f \in \mathcal{M} \} \subset X \times C^\mathcal{M}$$

and defining $\pi^\mathcal{M}: R_n(X,\mathcal{M}) \to X$ to be the natural projection. Let A and B be two subsets of $C(X)$ such that $A \subset B$. There is a natural projection $\pi^A_B: R_n(X,B) \to R_n(X,A)$ defined by $\pi^A_B[(x,(z_f)_{f \in B})] = (x,(z_f)_{f \in A})$. We let $R_n(X,\emptyset) = X$ and $\pi^\emptyset_B = \pi^B$.

We outline the ideas of our constructions in Sections \[\] and \[\]. Suppose that we want to construct a space X with n-th root closed $C(X)$. Take any space X_1 and resolve the n-th root problems for X_1 projectively using the space $X_2 = R_n(X_1, C(X_1))$. Then resolve all n-th root problems for X_2 projectively using X_3, and so on. This way we obtain an inverse spectrum of spaces X_λ and define X to be the inverse limit of this spectrum. To guarantee that the n-th root problems for X can be solved, we need this spectrum to be \textit{factorizing} in the following sense: for any map $f: X \to \mathbb{C}$ there exist a space X_λ in the spectrum and a map $f_\lambda: X_\lambda \to \mathbb{C}$ such that $f = f_\lambda \circ p_\lambda$, where $p_\lambda: X_\lambda \to X$ is the limit projection. Then the projective resolution of the n-th root problem for f_λ gives us a solution of the n-th root problem for f. In order to obtain a factorizing spectrum we make its length uncountable. Namely, we construct the spectrum over ω_1, the first uncountable ordinal.

The space described above is not metrizable for two reasons. First, the length of the spectrum used is not countable. Second, for a metric compactum X_λ and a subset $\mathcal{M} \subset C(X_\lambda)$, the space $R_n(X_\lambda, \mathcal{M})$ is metrizable if and only if the set \mathcal{M} is countable. If we want $C(X)$ to have just the \textit{approximate} n-th root property, it is enough to construct a countable spectrum and for each space X_λ to resolve the projective n-th root problem for a countable dense set of maps from $C(X_\lambda)$. Then the limit space X is a metrizable compactum, if we start with a metrizable compactum X_1.

To guarantee that for the limit space $X = \lim \{ X_\lambda, p^\mu_\lambda, \Lambda \}$ we can (approximately) solve the n-th root problem for any function from $C(X)$ and for any $n > 1$, we represent the index set Λ as the union of disjoint cofinal subsets $\{ \Lambda_n \}_{n=2}^\infty$. Then we construct the spectrum by transfinite induction so that the space $X_{\lambda+1}$ and the projection $p^\lambda_{\lambda+1}$ resolve projectively (almost) all n-th root problems on X_λ, where $\lambda \in \Lambda_n$. Since every set $\{ \Lambda_n \}$ is cofinal, for any n and any α, (almost) every n-th root problem on X_α will be projectively resolved at some level $\lambda > \alpha$ where $\lambda \in \Lambda_n$.

To guarantee that the limit space X has dimension $\dim X \geq m$, we start the construction with the space X_1 homeomorphic to the m-dimensional sphere S^m. Then we show that the homomorphism $(p_1)^*: H^m(S^m; \mathbb{Q}) \to H^m(X; \mathbb{Q})$ induced
by the limit projection is a monomorphism. Therefore the mapping \(p_1 : X \rightarrow S^m \) is essential and hence \(\dim X \geq m \). To prove that the homomorphism above is a monomorphism, we use a construction called transfer, that briefly can be described as follows. Suppose \(G \) is a finite group acting on a compact Hausdorff space \(Y \). Let \(Y/G \) be the quotient space and let \(\pi : Y \rightarrow Y/G \) be the natural projection. Then there exists a homomorphism \(\mu^* : H^*(Y; \mathbb{Q}) \rightarrow H^*(Y/G; \mathbb{Q}) \) such that the composition \(\mu^* \pi^* \) is the multiplication by the order of \(G \) in the group \(H^*(Y/G; \mathbb{Q}) \). Therefore \(\pi^* \) is a monomorphism. See Chapter II, §19 of [1] for more information on transfers.

3. Projective resolutions

In this section we establish some properties of projective resolutions needed for our constructions in Sections 5 and 6. We begin with a summary of basic properties of the space \(R_n(X, M) \).

Proposition 3.1. Let \(X \) be a space, let \(M \) be a subset of \(C(X) \), and let \(n > 1 \) be an integer.

(a) \(R_n(X, M) \) is the pull-back in the following diagram:

\[
\begin{array}{ccc}
R_n(X, M) & \longrightarrow & \mathbb{C}^M \\
\downarrow \pi^M & & \downarrow N \\
X & \longrightarrow & \mathbb{C}^M \\
\end{array}
\]

where \(F : X \rightarrow \mathbb{C} \) is defined by \(F(x) = (f(x))_{f \in M} \) and \(N : \mathbb{C}^M \rightarrow \mathbb{C}^M \) is defined by \(N((z_f)_{f \in M}) = (z_f^n)_{f \in M} \).

(b) For any \(f \in M \) there exists \(g \in C(R_n(X, M)) \) such that \(f \circ \pi^M = g^n \).

(c) If \(X \) is a compact Hausdorff space, then \(R_n(X, M) \) is also a compact Hausdorff space and \(\dim R_n(X, M) \leq \dim X \).

Proof. The statement (a) is obvious. To prove (b) we just let \(g([x, (z_h)_{h \in A}]) = z_f \). To verify (c) we note first of all that \(R_n(X, M) \) is a subset of the product \(X \times \prod_{f \in M} \{z \mid z^n \in f(X)\} \) of compact Hausdorff spaces. Moreover, \(R_n(X, M) \) is closed in this product due to (a), and the compactness follows. For the dimension part, observe that \(\pi^M \) has zero-dimensional fibers and apply [7, Theorem 3.3.10].

In what follows we shall omit the index \(n \) when this does not cause ambiguities.

Proposition 3.2. For any space \(X \) and any two subsets \(A \) and \(B \) of \(C(X) \) there exists a natural homeomorphism \(h : R(R(X, A), B \circ \pi^A) \rightarrow R(X, A \cup B) \), where \(B \circ \pi^A = \{f \circ \pi^A \mid f \in B\} \). This homeomorphism makes the following diagram commutative:

\[
\begin{array}{ccc}
R(R(X, A), B \circ \pi^A) & \xrightarrow{h} & R(X, A \cup B) \\
\downarrow \pi_{B \circ \pi^A} & & \downarrow \pi^{A \cup B} \\
R(X, A) & \xrightarrow{\pi^A} & X \\
\end{array}
\]
Proof. Note that both $R(X, A \cup B)$ and $R(R(X, A), B \circ \pi^A)$ can be viewed as subsets of $X \times \mathbb{C}^A \times \mathbb{C}^B$. Namely,

$$R(X, A \cup B) = \{(x, (z_f)_{f \in A}, (z_g)_{g \in B}) \mid z_f^n = f(x), z_g^n = g(x)\},$$

$$R(R(X, A), B \circ \pi^A) = \{(x, (z_f)_{f \in A}, (z_{g \circ \pi^A})_{g \in B}) \mid z_f^n = f(x), z_{g \circ \pi^A}^n = (g \circ \pi^A)([(x, (z_f)_{f \in A})])\}.$$

It remains to note that these subsets coincide since

$$(g \circ \pi^A)([(x, (z_f)_{f \in A})]) = g(x)$$

by the definition of π^A. \hfill \Box

Proposition 3.3. Let X be a compact Hausdorff space and let S be a subset of $C(X)$. Let A be a family of subsets of S, partially ordered by inclusion. Assume that A is a directed set with respect to this order and that $\bigcup A = S$. Then $R(X, S)$ is naturally homeomorphic to the limit of the inverse spectrum $\{R(X, A), \pi_S^A, \{\}\}$.

Proof. Put $\mathcal{R} = \operatorname{lim}(R(X, A), \pi_S^A, \{\})$. Define $h_A: R(X, S) \rightarrow R(X, A)$ for each $A \in \mathcal{A}$ letting $h_A = \pi_S^A$. The family of maps $\{h_A \mid A \in \mathcal{A}\}$ induces the limit map $h: R(X, S) \rightarrow \mathcal{R}$. We claim that h is a homeomorphism. Since both $R(X, S)$ and \mathcal{R} are Hausdorff compacta, it is enough to check that h is surjective. Since all maps π_S^A are surjective, h is surjective by Theorem 3.2.14 in [6].

To verify the injectivity, it is enough, for any two distinct points from $R(X, S)$, to find $A \in \mathcal{A}$ such that the images of these two points under h_A are distinct. Let $y = (x, (z_f)_{f \in S})$ and $y' = (x', (z'_f)_{f \in S})$ be two distinct points from $R(X, S)$. If $x \neq x'$, then any $A \in \mathcal{A}$ will do. Otherwise there exists $f \in S$ such that $z_f \neq z'_f$. Since $\bigcup \mathcal{A} = S$ there exists $A \in \mathcal{A}$ such that $f \in A$, and one can easily see that $h_A(y) \neq h_A(y')$. \hfill \Box

Later we use the following special case of Corollary 14.6 from [1].

Proposition 3.4. Let $S = \{X_\alpha, p^3_\alpha, A\}$ be an inverse spectrum consisting of Hausdorff compact spaces. Then there exists a natural isomorphism

$$\operatorname{lim} H^*(X_\alpha; \mathbb{Q}) \cong H^*(\operatorname{lim} S; \mathbb{Q}).$$

Proposition 3.5. Let X be a compact Hausdorff space and let S be any subset of $C(X)$. Then for any integer $n > 1$

$$(\pi^S)^*: H^*(X; \mathbb{Q}) \rightarrow H^*(R_n(X, S); \mathbb{Q})$$

is a monomorphism.

Proof. (i) First, we prove the proposition for any space X and a set S consisting of a single function f. There is an action of \mathbb{Z}_n on $R_n(X, f)$ whose orbit space is X, with π^f being the quotient map. Namely, represent \mathbb{Z}_n as the group of n-th roots of 1 and put $g \cdot (x, z_f) = (x, g \cdot z_f)$. The proposition now follows from Theorem 19.1 in [1]. Repeating the argument and applying Proposition 3.2 finitely many times, we see that the proposition holds for every finite set S.

(ii) Finally, let S be any subset of $C(X)$. Let S_{fin} denote the set of all finite subsets of S, partially ordered by inclusion. Proposition 3.3 implies that $R_n(X, S)$ is the limit of the inverse spectrum $\{R_n(X, A), \pi_{S_{\text{fin}}}^A, \{\}\}$. We apply step (i) of this proof to conclude that $(\pi_{S_{\text{fin}}}^A)^*: H^*(R_n(X, A); \mathbb{Q}) \rightarrow H^*(R_n(X, B); \mathbb{Q})$ is a monomorphism for all $A \subset B$ in S_{fin}. An application of Proposition 3.4 completes the proof. \hfill \Box
4. Characterizations

Lemma 4.1. If a map \(f : X \to \mathbb{C}^* \) has an \(n \)-th root, then any map \(g : X \to \mathbb{C}^* \) which is homotopic to \(f \) also has an \(n \)-th root.

Proof. Apply the homotopy lifting property to the \(n \)-th degree covering map \(\mathbb{C}^* \to \mathbb{C}^*, z \mapsto z^n \).

\[\square \]

Lemma 4.2. Let \(X \) be a normal space. The following conditions are equivalent:

(a) \(C(X) \) is approximately \(n \)-th root closed.

(b) \(C(A, \mathbb{C}^*) \) is approximately \(n \)-th root closed for any closed subset \(A \) of \(X \).

(c) \(C(A, \mathbb{C}^*) \) is \(n \)-th root closed for any closed subset \(A \) of \(X \).

Proof. For a positive number \(r \), let \(A(0, r) = \{ z \in \mathbb{C} : |z| \geq r \} \) and \(B(0, r) = \{ z \in \mathbb{C} : |z| \leq r \} \). Let \(\rho_z : \mathbb{C}^* \to A(0, \varepsilon) \) be the radial retraction. Note that \(\rho_z \) is homotopic to the identity map of \(\mathbb{C}^* \).

(a) \(\Rightarrow \) (b) Take \(\varepsilon > 0 \) and consider a closed subset \(A \) of \(X \). Pick \(f \in C(A, \mathbb{C}^*) \) and put \(h = \rho_z \circ f \). Extend \(h \) to a function \(F \) on \(X \), applying the hypothesis (a) to find an \(n \)-th root \(g \), and restricting \(g \) to \(A \), we obtain a function \(g : A \to \mathbb{C}^* \) such that \(||h - g^n|| < \varepsilon/2 \). This condition guarantees that \(g \in C(A, \mathbb{C}^*) \). It is easy to see that \(||f - g''|| < \varepsilon + \varepsilon/2 < 2\varepsilon \).

(b) \(\Rightarrow \) (c) Again, consider \(f \in C(A, \mathbb{C}^*) \), where \(A \) is a closed subset of \(X \), and put \(h = \rho_z \circ f \). Note that \(h \) is homotopic to \(f \). Find \(g : A \to \mathbb{C}^* \) such that \(||h - g^n|| < \varepsilon/2 \). This condition guarantees that \(g^n \) is homotopic to \(h \) and hence to \(f \). An application of Lemma 4.1 completes the proof.

(c) \(\Rightarrow \) (a) Take \(f \in C(X) \) and fix \(\varepsilon > 0 \). Consider \(A = f^{-1}(A(0, \varepsilon)) \) and \(B = f^{-1}(B(0, \varepsilon)) \). Find \(g \in C(A, \mathbb{C}^*) \) such that \(f|_A = g^n \). Note that \(g(A \cap B) \subset B(0, \sqrt[2n]{\varepsilon}) \), and we can extend \(g \) over \(X \) to \(\overline{g} \) such that \(\overline{g}(B) \subset B(0, \sqrt[n]{\varepsilon}) \). It is easy to check that \(\|f - \overline{g}''\| < 2\varepsilon \).

We let \(S^1 = \{ z \in \mathbb{C} : |z| = 1 \} \). Suppose \(Y \) is a Hausdorff paracompact space. Huber’s Theorem \[9\] implies the existence of a canonical isomorphism \(H^1(Y; \mathbb{Z}) \cong [Y, S^1] \). Here \([Y, S^1] \) denotes the group of all homotopy classes of maps from \(Y \) to \(S^1 \) with the group operation induced by the multiplication of maps in \(C(Y, S^1) \). We denote the homotopy class of a map \(f \in C(Y, S^1) \) by \([f] \).

Theorem 4.3. Let \(X \) be a Hausdorff paracompact space. Then \(C(X) \) is approximately \(n \)-th root closed iff \(H^1(A; \mathbb{Z}) \) is \(n \)-divisible for every closed subset \(A \) of \(X \).

Proof. Consider a closed subset \(A \) of \(X \). First, suppose that \(C(X) \) is approximately \(n \)-th root closed. Let \(f : A \to S^1 \) be a representative of an arbitrary element of \(H^1(A; \mathbb{Z}) \). By condition (c) of Lemma 4.2 there exist \(g : A \to S^1 \) such that \(g^n = f \) and hence \(n[g] = [f] \) in \(H^1(A; \mathbb{Z}) \).

In order to prove the converse part, we verify condition (c) of Lemma 4.2. Pick \(f \in C(A, \mathbb{C}^*) \). Then \(f \) is homotopic to a map \(\tilde{f} : A \to S^1 \). Since \([\tilde{f}] \in H^1(A; \mathbb{Z}) \) is divisible by \(n \) there exists \(h : A \to S^1 \) such that \(h^n \) is homotopic to \(f \) and hence to \(f \). Lemma 4.1 implies that \(f \) has an \(n \)-th root.

\[\square \]

5. Compacta with approximately root closed \(C(X) \)

Lemma 5.1. Let \(S = \{ X_i, p_i^{i+1} \} \) be an inverse sequence of compact metrizable spaces and let \(X = \lim S \). Consider the following two conditions.

(a) $C(X)$ is approximately n-th root closed.

(b) For any i, any closed subset A_i of X_i and any map $h: A_i \to \mathbb{C}^*$, there exists $j > i$ such that the map $h \circ p^j_i: A_j \to \mathbb{C}^*$ has an n-th root, where $A_j = (p^j_i)^{-1}(A_i)$.

Condition (b) implies condition (a). Moreover if all projections of S are surjective, then the converse implication (a)→(b) also holds.

Proof. Put $X = \lim S$. First, we show that $C(X)$ is approximately n-th root closed by checking condition (b) of Lemma 6.4. Let A be a closed subset of X and let $f \in C(A, \mathbb{C}^*)$ be a function. Take any $\varepsilon > 0$. There exist i and a mapping $f_i: p_i(A) \to \mathbb{C}^*$ such that $f_i \circ p_i|_A$ is ε-close to f. Let $A_i = p_i(A)$ and find $j > i$ such that the map $f_i \circ p^j_i: A_j \to \mathbb{C}^*$ has an n-th root. Then $g = h \circ f_j$ is an n-th root of $f_i \circ p_i|_A$. Obviously, $\|f - g^n\| < \varepsilon$.

Conversely, suppose $C(X)$ is approximately n-th root closed and all projections of S are surjective. Pick i and consider a closed subset A_i of X_i and a map $h: A_i \to \mathbb{C}^*$. Let $\varepsilon = \min\{|h(x)|: x \in A_i\}$. Put $A = (p_i)^{-1}(A_i)$. There exists $g: A \to \mathbb{C}^*$ such that g^n is ε-close to $h \circ p_i|_A$. We can find $j > i$ and a map $g_j: p_j(A) \to \mathbb{C}^*$ such that $(g_j \circ p_j)^n$ is ε-close to g^n. Let $A_j = (p^j_i)^{-1}(A_i)$. Since all projections of S are surjective, $p_j(A) = A_j$. Using this, it is not hard to verify that $(g_j)^n$ is $\varepsilon/2$-close, and hence homotopic to $h \circ p^j_i$. Lemma 6.4 implies that $h \circ p^j_i$ has an n-th root.

Theorem 5.2. For every positive integer m there exists an m-dimensional compact metrizable space X such that $C(X)$ is approximately n-th root closed for all positive integers n.

Proof. We obtain X as the inverse limit of a sequence $S = \{X_i, p^{i+1}_i\}$, consisting of m-dimensional metrizable compacta. The sequence is constructed by induction as follows. Represent the set of all positive integers as a union of disjoint infinite subsets $\{\Lambda_n\}_{n=2}^{\infty}$. Put $X_1 = S^{m_1}$, the m-dimensional sphere. Suppose the space X_k has already been constructed. Fix a countable collection B_k of closed subsets of X_k such that for each closed subset A of X_k and for any open neighborhood U of A, there exists $B \in B_k$ such that $A \subset B \subset U$. For each $B \in B_k$ fix a family F_B of maps from B to \mathbb{C}^* which is dense in the space $C(B, \mathbb{C}^*)$. For every map from the family F_B, we fix its extension to a map from X_k to \mathbb{C} and denote the family of these extensions by F_B. Let $\Phi_k = \bigcup\{F_B \mid B \in B_k\}$. Define $X_{k+1} = R_n(X_k, \Phi_k)$ where n is such that $k \in \Lambda_n$, and let $p^{k+1}_k = \pi_{\Phi_k}$.

Put $X = \lim S$. To verify that $C(X)$ is approximately n-th root closed for each $n > 1$, it is enough to show that condition (b) of Lemma 6.4 is satisfied for the inverse sequence S. Fix $n > 1$. Pick i and consider a closed subset A_i of X_i and a function $h: A_i \to \mathbb{C}^*$. Take a number $j > i$ such that $j - 1 \in \Lambda_k$. Let $A_j = (p^j_i)^{-1}(A_i)$. We show that the map $h \circ p^j_i: A_j \to \mathbb{C}^*$ has an n-th root. Put $A_{j-1} = (p_i^{j-1})^{-1}(A_i)$. Let g be an extension of the map $h \circ p_i^{j-1}: A_{j-1} \to \mathbb{C}^*$ to some neighborhood U of A_{j-1}. There exists $B \in B_k$ and a function $f: B \to \mathbb{C}^*$ such that $A_{j-1} \subset B \subset U$ and the restriction $g|B$ is homotopic to f. Let $\tilde{f}: B \to \mathbb{C}$ be the extension of f that belongs to the family Φ_k. Since the map p_i^{j-1} resolves the projective n-th root problem for \tilde{f}, the map $f \circ p_i^{j-1}|_{A_j}$ has an n-th root.
By Lemma 4.1 the map \(g \circ p_j^j|_{A_j} \) has an \(n \)-th root. It remains to note that
\[h \circ p_j^j|_{A_j} = g \circ p_j^j|_{A_j}. \]

Note that \(\dim X \leq m \) since all \(X_k \) are at most \(m \)-dimensional. Proposition 3.5 implies that
\((p_{k+1}^k)^*: H^m(X_k; \mathbb{Q}) \rightarrow H^m(X_{k+1}; \mathbb{Q}) \) is a monomorphism. Applying
Proposition 3.3 we conclude that \((p_1)^*: H^m(S^m; \mathbb{Q}) \rightarrow H^m(X; \mathbb{Q}) \) is a monomorphism. Thus the limit projection \(p_1: X \rightarrow S^m \) is essential and therefore \(\dim X \geq m \).

Let \(\mathcal{K} \) be a class of spaces. A space \(Z \in \mathcal{K} \) is called a universal space for the class
\(\mathcal{K} \), if every space in \(\mathcal{K} \) is topologically embedded in \(Z \). For a positive integer \(n \) and
\(\tau \geq \omega \), let \(\mathcal{A}_\tau(n) \) (\(\mathcal{A}_\tau \) resp.) be the class of all compact Hausdorff spaces \(X \) such
that \(w(X) \leq \tau \) and \(C(X) \) is \(n \)-th root closed (\(C(X) \) is \(n \)-th root closed for each \(n > 1 \) resp.). It was shown in [3, Corollary 1.3], that
\(\mathcal{A}_\tau(n) \) contains a universal space for any \(\tau \geq \omega \) and any \(n > 1 \). Using the idea of
the proof of Theorem 1.2 from [3] one can show that \(\mathcal{A}_\tau \) also contains a universal space.

Corollary 5.3. Let \(Y \) be a universal space with respect to the class \(\mathcal{A}_\omega \) or \(\mathcal{A}_\omega(n) \).
Then \(Y \) is infinite dimensional.

Hence, any universal space for the class \(\mathcal{A}_\tau(n) \) (\(\mathcal{A}_\tau \) resp.) must be infinite
dimensional for any \(\tau \geq \omega \).

Also we may consider the subclass \(\mathcal{A}_{m,\tau}(n) \) (\(\mathcal{A}_{m,\tau} \) resp.) consisting of all spaces
in \(\mathcal{A}_\tau(n) \) (\(\mathcal{A}_\tau \) resp.) of dimension at most \(m \). Theorem 1.2 of [3] also proves
that the class \(\mathcal{A}_{1,\tau}(n) \) contains a universal space. A similar proof, based on the
Marden factorization theorem [11], works to prove that the class \(\mathcal{A}_{m,\tau}(n) \) (\(\mathcal{A}_{m,\tau} \)
resp.) contains a universal space.

6. Compacta with root closed \(C(X) \)

In this section, for any positive integer \(m \) we construct a compact Hausdorff
space \(X \) with \(\dim X = m \) such that \(C(X) \) is \(n \)-th root closed for all \(n \). Note that
for a metrizable continuum \(Y \) the algebra \(C(Y) \) is square root closed if and only if
\(Y \) is a dendrite, and therefore \(\dim Y \leq 1 \) [10], [13]. This forces the space \(X \) above
to be non-metrizable.

Lemma 6.1. Let \(S = \{ X_\alpha, p_\alpha^\beta, \mathcal{A} \} \) be a factorizing spectrum. In order for \(C(\lim S) \)
to be \(n \)-th root closed it is sufficient that for any \(\alpha \in \mathcal{A} \) and any function \(h \in C(X_\alpha) \)
there exists \(\beta > \alpha \) such that \(h \circ p_\alpha^\beta \) has an \(n \)-th root. If all limit projections of \(S \)
are surjective, the above condition is also necessary.

Proof. Put \(X = \lim S \). Consider \(f \in C(X) \). Since \(S \) is factorizing there exists \(\alpha \)
and \(f_\alpha \in C(X_\alpha) \) such that \(f = f_\alpha \circ p_\alpha \). By the condition of the lemma we can
find \(\beta > \alpha \) and \(g_\beta: X_\beta \rightarrow \mathbb{C} \) such that \((g_\beta)^n = f_\alpha \circ p_\beta^\alpha \). It is easy to verify that
\(g = g_\beta \circ p_\beta \) is an \(n \)-th root of \(f \).

Now suppose that all limit projections of \(S \) are surjective and \(C(X) \) is \(n \)-th root closed. Consider \(\alpha \in \mathcal{A} \) and \(h \in C(X_\alpha) \). There exists \(g \in C(X_\alpha) \) such that
\(g^n = h \circ p_\alpha \). Since \(S \) is factorizing, there exists \(\beta > \alpha \) and \(g_\beta: X_\beta \rightarrow \mathbb{C} \) such that
\(g = g_\beta \circ p_\beta \). Since the projection \(p_\beta \) is surjective, \((g_\beta)^n = h \circ p_\beta^\alpha \).

Theorem 6.2. For each positive integer \(m \), there exists a compact Hausdorff space
\(X \) with \(\dim X = m \) and such that \(C(X) \) is \(n \)-th root closed for any \(n \).
Proof. Represent the ordinal ω_1 as the union of countably many disjoint uncountable subsets $\{\Lambda_n\}_{n=2}^\infty$. Starting with $X_0 = S^m$, where S^m denotes an m-dimensional sphere, by transfinite induction we define an inverse spectrum $S = \{X_\alpha, p_\alpha, \omega_1\}$ as follows. If $\beta = \alpha + 1$, then define $X_\beta = R_n(X_\alpha, C(X_\alpha))$, where n is such that $\alpha \in \Lambda_n$, and let $p_\alpha^\beta = \pi^{C(X_\alpha)}$. If β is a limit ordinal, then define $X_\beta = \lim\{X_\alpha, p_\alpha^\beta, \alpha < \beta\}$ and, for $\alpha < \beta$, let p_α^β be the limit projection.

Put $X = \lim S$. To verify that $C(X)$ is n-th root closed for each $n > 1$, it is enough to check the condition of Lemma 6.1 for the spectrum S. Consider $n > 1$. Since the spectrum S has length ω_1, it is factorizing [2 Corollary 1.3.2]. Consider a function $h: X_\alpha \to \mathbb{C}$ and take an ordinal $\gamma > \alpha$ such that $\gamma \in \Lambda_n$. Since the map $p_\gamma^{\gamma+1}$ resolves the projective n-th root problem for $h \circ p_\alpha^\gamma$, the map $h \circ p_\gamma^{\gamma+1}$ has an n-th root.

Note that $\dim X_\alpha \leq m$ for each α and hence $\dim X \leq m$. We claim that $(p_\beta^\alpha)^* : H^*(X_\alpha; \mathbb{Q}) \to H^*(X_\beta; \mathbb{Q})$ is a monomorphism for all $\alpha < \beta < \omega_1$. Indeed, in the case $\beta = \alpha + 1$ it follows from Proposition 3.4, and then in a general case it is due to Proposition 3.4. Finally, again with the help of Proposition 3.4 we conclude that $p_0^*: H^m(S^m; \mathbb{Q}) \to H^m(X; \mathbb{Q})$ is a monomorphism and hence the map $p_0 : X \to S^m$ is essential. This implies $\dim X \geq m$. \hfill \Box

It is not hard to verify that if $C(Y)$ is n-th root closed for some (completely regular) space Y, then $C(\beta Y)$ is also n-th root closed. Here by βY we denote the Stone-Čech compactification of Y.

Corollary 6.3. There exists an infinite-dimensional compact Hausdorff space X such that $C(X)$ is n-th root closed for all n.

Proof. For each m, let X_m denote compactum provided by Theorem 6.2. We put $X = \beta(\bigoplus\{X_m \mid m \in \omega\})$. \hfill \Box

References

[1] G. Bredon, *Sheaf theory*, McGraw-Hill, New York, 1967. MR0221500 (36:4552)

[2] A. Chigogidze, *Inverse Spectra*, North Holland, Amsterdam, 1996. MR1406565 (97g:54001)

[3] A. Chigogidze, A. Karasev, K. Kawamura, and V. Valov, *On commutative and noncommutative C^*-algebras with the approximate γ-th root problem*, preprint.

[4] E.M. Ćirić, *Approximation of continuous functions by functions holomorphic on Jordan arcs in \mathbb{C}*, Soviet Math. 7 (1966), 336–338.

[5] R.S. Countryman, *On the characterization of compact Hausdorff X for which C(X) is algebraically closed*, Pacific J. Math. 20 (1967), 433–438. MR0208410 (34:8220)

[6] R. Engelking, *General Topology. Revised and completed edition*, Sigma Ser. in Pure Math. 6, Heldermann Verlag, 1989. MR1039321 (91c:54001)

[7] R. Engelking, *Theory of Dimensions. Finite and Infinite*, Sigma Ser. in Pure Math. 10, Heldermann Verlag, 1995. MR1363947 (97j:54033)

[8] O. Hatori and T. Miura, *On a characterization of the maximal ideal spaces of commutative C^*-algebras in which every element is the square of another*, Proc. Amer. Math. Soc. 128 (1999), 239–242. MR1690991 (2000k:46072a)

[9] P.J. Huber, *Homotopical cohomology and Čech cohomology*, Math. Ann. 144 (1961), 73–76. MR0133821 (24:A3646)

[10] K. Kawamura and T. Miura, *On the existence of continuous (approximate) roots of algebraic equations*, preprint.

[11] S. Mardešić, *On covering dimension and inverse limit of compact spaces*, Illinois J. of Math. 4 (1960), 278–291. MR0116306 (22:7101)

[12] T. Miura, *On commutative C^*-algebras in which every element is almost the square of another*, Contemporary Mathematics 232 (1999), 239–242. MR1678337 (2000k:46072b)
[13] T. Miura and K. Niijima, On a characterization of the maximal ideal spaces of algebraically closed commutative C^*-algebras, Proc. Amer. Math. Soc. 131 (2003), 2869–2876. MR 1974344 (2004c:46094)

[14] E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)

[15] E.L. Stout, The theory of uniform algebras, Bogden-Quigley, 1971. MR 023083 (54:11066)

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
E-mail address: brodskiy@math.utk.edu

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
E-mail address: dydak@math.utk.edu

Department of Mathematics, Nipissing University, North Bay, Ontario, Canada P1B 8L7
E-mail address: alexandk@nipissingu.ca

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305-8071, Japan
E-mail address: kawamura@math.tsukuba.ac.jp