Quantization of Measures and Gradient Flows: a Perturbative Approach in the 2-Dimensional Case
Emanuele Caglioti, François Golse, Mikaela Iacobelli

To cite this version:
Emanuele Caglioti, François Golse, Mikaela Iacobelli. Quantization of Measures and Gradient Flows: a Perturbative Approach in the 2-Dimensional Case. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2018, 35, pp.1531-1555. 10.1016/j.anihpc.2017.12.003 . hal-01341841

HAL Id: hal-01341841
https://polytechnique.hal.science/hal-01341841
Submitted on 5 Jul 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
QUANTIZATION OF MEASURES AND GRADIENT FLOWS:
A PERTURBATIVE APPROACH IN THE 2-DIMENSIONAL CASE.

EMANUELE CAGLIOTI, FRANÇOIS GOLSE, AND MIKAELA IACOBELLI

ABSTRACT. In this paper we study a perturbative approach to the problem of quantization of measures in the plane. Motivated by the fact that, as the number of points tends to infinity, hexagonal lattices are asymptotically optimal from an energetic point of view [9, 11, 14], we consider configurations that are small perturbations of the hexagonal lattice and we show that: (1) in the limit as the number of points tends to infinity, the hexagonal lattice is a strictly minimizer of the energy; (2) the gradient flow of the limiting functional allows us to evolve any perturbed configuration to the optimal one exponentially fast. In particular, our analysis provides a solid mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations.

1. Introduction

The term quantization refers to the process of finding an optimal approximation of a d-dimensional probability density by a convex combination of a finite number N of Dirac masses. The quality of such an approximation is measured in terms of the Monge-Kantorovich or Wasserstein metric.

The need of such approximations first arose in the context of information theory in the early 1950s. The idea was to see the quantized measure as the digitalization of an analog signal which should be stored on a data storage medium or transmitted via a channel [4, 10]. Another classical application of the quantization problem concerns numerical integration, where integrals with respect to certain probability measures needs to be replaced by integrals with respect to a good discrete approximation of the original measure [15]. For instance, quasi-Monte Carlo methods use low discrepancy sequences, and the notion of discrepancy can be regarded as one approach to the quantization problem. See [6] for an introduction to this subject, especially section 5 for a presentation of the notion of discrepancy of a sequence, and section 7 for applications in the context of rarefied gas dynamics. Moreover, this problem has applications in cluster analysis, pattern recognition, speech recognition, stochastic processes (sampling design) and mathematical models in economics (optimal location of service centers). For a detailed exposition and a complete list of references see the monograph [5].

We now introduce the theoretical setup of the problem. Given $r \geq 1$, consider ρ a probability density on an open set $\Omega \subset \mathbb{R}^d$ with finite r-th order moment,

$$\int_{\Omega} |y|^r \rho(y) dy < \infty.$$
Given \(N \) points \(x^1, \ldots, x^N \in \Omega \), we seek the best approximation of \(\rho \), in the sense of Monge-Kantorovich, by a convex combination of Dirac masses centered at \(x^1, \ldots, x^N \). Hence one minimizes

\[
\inf \left\{ MK_r \left(\sum_i m_i \delta_{x^i}, \rho(y)dy \right) : m_1, \ldots, m_N \geq 0, \sum_{i=1}^N m_i = 1 \right\},
\]

with

\[
MK_r(\mu, \nu) := \inf \left\{ \int_{\Omega \times \Omega} |x - y| \gamma(x, y) : \pi \in \Pi(\mu, \nu) \right\},
\]

where \(\Pi(\mu, \nu) \) is the set of all Borel probability measures on \(\Omega \times \Omega \) whose marginals onto the first and second component are given by \(\mu \) and \(\nu \) respectively. In other words, a Borel probability \(\pi \) measure on \(\Omega \times \Omega \) belongs to \(\Pi(\mu, \nu) \) if

\[
\int_{\Omega \times \Omega} \left(\phi(x) + \psi(y) \right) \pi(dx, dy) = \int_{\Omega} \phi(x) \mu(dx) + \int_{\Omega} \psi(y) \nu(dy)
\]

for each \(\phi, \psi \in C_c(\Omega) \) (see [2, 16] for more details on the Monge-Kantorovitch distance between probability measures).

As shown in [12], the following facts hold:

1. The best choice of the masses \(m_i \) is given by

\[
m_i := \int_{V(x^i|\{x^1, \ldots, x^N\})} \rho(y)dy,
\]

where

\[
V(x^i|\{x^1, \ldots, x^N\}) := \{ y \in \Omega : |y - x^i| \leq |y - x^j|, \ j \in 1, \ldots, N \}
\]

is the so called Voronoi cell of \(x^i \) in the set \(x^1, \ldots, x^N \).

2. The following identity holds:

\[
\inf \left\{ MK_r \left(\sum_i m_i \delta_{x^i}, \rho(y)dy \right) : m_1, \ldots, m_N \geq 0, \sum_{i=1}^N m_i = 1 \right\} = Q_N(r, x^1, \ldots, x^N),
\]

where

\[
Q_N(x^1, \ldots, x^N) := \int_{\Omega} \min_{1 \leq i \leq N} |x^i - y|^r \rho(y)dy.
\]

Assume that the points \(x^1, \ldots, x^N \) are chosen in an optimal way so as to minimize the functional \(Q_{N,r} : (\mathbb{R}^d)^N \to \mathbb{R}^+ \); then in the limit as \(N \) tends to infinity these points distribute themselves accordingly to a probability density proportional to \(\rho^{d/d+r} \). In other words, by [12, Chapter 2, Theorem 7.5] one has

\[
(1.1) \quad \frac{1}{N} \sum_{i=1}^N \delta_{x^i} \rightharpoonup \frac{\rho^{d/d+r}(x)dx}{\int_{\Omega} \rho^{d/d+r}(y)dy}
\]

weakly in the sense of Borel probability measures on \(\Omega \) as \(N \to \infty \).

These issues are relatively well understood from the point of view of the calculus of variations [12, Chapter 1, Chapter 2]. Moreover, in [5] we considered a gradient flow approach to this problem in dimension 1. Now we will explain the heuristic of the dynamical approach and the main difficulties in extending our result to higher dimensions.
1.1. A dynamical approach to the quantization problem. Given N points x_1^0, \ldots, x_N^0, we consider their evolution under the gradient flow generated by $Q_{N,r}$, that is, we solve the system of ODEs in $(\mathbb{R}^d)^N$

\begin{equation}
\begin{cases}
\dot{x}_1(t), \ldots, \dot{x}_N(t) = -\nabla Q_{N,r}(x^1(t), \ldots, x^N(t)), \\
x^1(0), \ldots, x^N(0) = (x_0^1, \ldots, x_0^N).
\end{cases}
\end{equation}

As usual in gradient flow theory, as t tends to infinity one expects that the points $(x^1(t), \ldots, x^N(t))$ converge to a minimizer $(\bar{x}^1, \ldots, \bar{x}^N)$ of $Q_{N,r}$. Hence, in view of (1.1), the empirical measure

$$\frac{1}{N} \sum_{i=1}^N \delta_{\bar{x}_i}$$

is expected to converge weakly in the sense of probability measures to

$$\int_{\Omega} \frac{\rho^{d/d+r}}{\int_{\Omega} \rho^{d/d+r}(y) dy} \, dx$$

as $N \to \infty$.

Our approach of this problem involves exchanging the limits as $t \to \infty$ and $N \to \infty$. More precisely, we first pass to the limit in the ODE above as $N \to \infty$, and take the limit in the resulting PDE as $t \to +\infty$. For this, we take a set of reference points $(\hat{x}^1, \ldots, \hat{x}^N)$ and we parameterize a general family of N points x^i as the image of \hat{x}^i via a slowly varying smooth map $X : \mathbb{R}^d \to \mathbb{R}^d$, that is

$$x^i = X(\hat{x}^i).$$

In this way, the functional $Q_{N,r}(x^1, \ldots, x^N)$ can be rewritten in terms of the map X and (a suitable renormalization of it) should converge to a functional $\mathcal{F}[X]$. Hence, we can expect that the evolution of $x^i(t)$ for N large is well-approximated by the L^2-gradient flow of \mathcal{F}.

Although this formal argument may sound convincing, already the 1-dimensional case is rather delicate. We briefly review the results of [5] below.

1.2. The 1D case. Without loss of generality let Ω be the open interval $(0, 1)$, and consider ρ a smooth probability density on Ω. In order to obtain a continuous version of the functional

$$Q_{N,r}(x^1, \ldots, x^N) = \int_0^1 \min_{1 \leq i \leq N} |x^i - y|^r \rho(y) \, dy,$$

with $0 \leq x^1 \leq \ldots \leq x^N \leq 1$, assume that

$$x^i = X\left(\frac{i - 1/2}{N}\right), \quad i = 1, \ldots, N$$

with $X : [0, 1] \to [0, 1]$ a smooth non-decreasing map such that $X(0) = 0$ and $X(1) = 1$. Then,

$$N^r Q_{N,r}(x^1, \ldots, x^N) \to C_r \int_0^1 \rho(X(\theta)) |\partial_\theta X(\theta)|^{r+1} \, d\theta := \mathcal{F}[X]$$

as $N \to \infty$, where $C_r := \frac{1}{2^r(r+1)}$.

By a standard computation, we obtain the gradient flow PDE for F for the L^2-metric,

\begin{equation}
\partial_t X(t, \theta) = C_r \left((r+1) \partial_\theta \rho(X(t, \theta)) |\partial_\theta X(t, \theta)|^{r-1} \partial_\theta X(t, \theta) \\
- \rho'(X(t, \theta)) |\partial_\theta X(t, \theta)|^{r+1} \right), \tag{1.3}
\end{equation}

coupled with the Dirichlet boundary condition

\begin{equation}
X(t, 0) = 0, \quad X(t, 1) = 1. \tag{1.4}
\end{equation}

Our main result in [5] shows that, provided that $r = 2$, that $\|\rho - 1\|_{W^{2, \infty}(0,1)} \ll 1$, and that the initial datum is smooth and increasing, the discrete and the continuous gradient flows remain uniformly close in L^2 for all times. In addition, by entropy-dissipation inequalities for the PDE, we show that the continuous gradient flow converge exponentially fast to the stationary state for the PDE, which is seen in Eulerian variables to correspond to the measure

$$\frac{\rho^{1/3}(x)dx}{\int_0^1 \rho^{1/3}(y)dy}$$

as predicted by (1.1).

1.3. The 2D case: setting and main result. Our goal is to extend the result above to higher dimensions. As a first step, it is natural to consider the quantization problem for the uniform measure in space dimension 2. The main advantage in this situation is that optimal configurations are known to be asymptotically hexagonal lattices [9, 11, 14]. (Notice however that the reference [14] considers the 2-dimensional quantization problem in the Monge-Kantorovich distance of exponent 1, i.e. with $r = 1$, at variance with our approach in the present paper which assumes $r = 2$.) Hence, it will be natural to use the vertices of the optimal, hexagonal lattice as reference points \hat{x}_i, and to assume that the time-dependent configuration of points are obtained as slowly varying deformations of the optimal configuration.

More precisely, we shall consider the following setting. Let us consider a regular hexagonal tessellation of the Euclidean plane \mathbb{R}^2. Up to some inessential displacement, one can choose the centers of the hexagons to be the vertices of the regular lattice $L := \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$ where $e_1 = (1, 0)$ and $e_2 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)$. Let Π be the fundamental domain of \mathbb{R}^2/L centered at the origin defined as follows:

$$\Pi := \{ x_1 e_1 + x_2 e_2 : |x_1|, |x_2| \leq \frac{1}{2} \}.$$

Henceforth, we consider the sequence of scaled lattices homothetic to L, of the form εL with $\varepsilon = 1/n$ and $n \in \mathbb{N}^*$.

The slowly varying deformations of L used in this work are discrete sets of the form $X_\varepsilon := X(\varepsilon L)$ with $\varepsilon = 1/n$ and $n \in \mathbb{N}^*$, where $X \in \text{Diff}^1(\mathbb{R}^2)$, i.e. X is a C^1-diffeomorphism of \mathbb{R}^2 onto itself. We shall assume that X satisfies the following properties:

(a) X is a periodic perturbation of the identity map, i.e.

$$X(x + l) = X(x) + l \quad \text{for all } x \in \mathbb{R}^2 \text{ and } l \in L;$$
(b) X is C^1-close to the identity map, i.e.,
\[\|X - \text{id}\|_{W^{1,\infty}} < \eta \quad \text{where} \quad \eta \ll 1. \]

(c) X is centered at the origin, i.e.
\[\int_{\Pi} X(x)dx = 0. \]

(This last condition does not restrict the generality of our approach: if X fails to satisfy property (c), set
\[\langle X \rangle := \int_{\Pi} X(x)dx = \int_{\Pi} (X(x) - x)dx; \]
then $\langle X \rangle < \eta$ and $\hat{X}(x) = X(x) - \langle X \rangle$ satisfies properties (a) and (c), and property (b) where η is replaced by 2η.)

If η is sufficiently small, then for every $x \in \mathcal{X}_\varepsilon$ the Voronoi cell $V(x|\mathcal{X}_\varepsilon)$ centered in x with respect to the set of points \mathcal{X}_ε is an hexagon. Indeed, the angle between two adjacent edges starting from any vertex in the deformed configuration \mathcal{X}_ε is $\pi/3 + O(\eta)$ by the mean value theorem. Hence the center of the circumscribed circle to any triangle with nearest neighbor vertices in the deformed configuration lies in the interior of this triangle, and the perpendicular bissectors of the edges of the triangle intersect at the center of the circumscribed circle with an angle $2\pi/3 + O(\eta)$. Hence the family of all such centers are the vertices of an (irregular) hexagonal tesselation of the plane, which is the Voronoi tesselation of the deformed configuration.

To avoid all difficulties pertaining to boundary conditions, we formulate our quantization problem in the ergodic setting. In other words, we consider the discrete quantization functional averaged over disks with radius $L \gg 1$:
\[G_{\varepsilon,L}(\mathcal{X}_\varepsilon) := \int_{B(0,L)} \text{dist}(y,\mathcal{X}_\varepsilon)^2dy. \]

Our first main result describes the asymptotic behavior of $G_{\varepsilon,L}$ as follows.

Theorem 1.1. Assume that $X \in \text{Diff}^1(\mathbb{R}^2)$ satisfies the properties (a-c) above, and that η is small enough. For each $\varepsilon = 1/n$ with $n \in \mathbb{N}^*$
\[\frac{1}{\pi L^2} \int_{X(\Pi)} \text{dist}(y,\mathcal{X}_\varepsilon)^2dy \to \int_{X(\Pi)} \text{dist}(y,\mathcal{X}_\varepsilon)^2dy \quad \text{as} \quad L \to \infty. \]

Moreover
\[\int_{X(\Pi)} \text{dist}(y,\mathcal{X}_\varepsilon)^2dy \sim \varepsilon^2 \mathcal{F}(X) \quad \text{as} \quad \varepsilon \to 0, \]

where \mathcal{F} is given by
\[\mathcal{F}(X) := \int_{\Pi} F(\nabla X(x))dx. \]

In this expression, the function F is defined by the formula
\[F(M) := \frac{1}{48} \sum_{\omega \in \{e_1,e_2,e_1-e_2\}} |M\omega|^4 \Phi(\omega,M)(3 + \Phi(\omega,M)^2), \]

where
\[\Phi(\epsilon,M) := \sqrt{\frac{|MRe|^2|MRTe|^2}{\frac{3}{4}|\det(M)|^2} - 1}. \]
for each invertible 2×2-matrix M with real entries and each unit vector e, and where R designates the rotation of an angle $\frac{\pi}{3}$ centered at the origin.

The proof of Theorem 1.1 occupies sections 2 and 3 below.

Observe that the integrand in the definition of F depends exclusively on the gradient of the map ∇X. In particular, the integrand in F involves the Jacobian determinant $\det(\nabla X)$ of the deformation map. However the dependence of F on $\det(\nabla X)$ becomes singular as $\det(\nabla X) \to 0$. Therefore, our analysis is restricted to small perturbations of the uniform, hexagonal tessellation of the plane. This is obviously consistent with the fact that we postulated that our configuration of points remains close to the uniform hexagonal tessellation in order to arrive at the explicit expression of F given in Theorem 1.1.

On the other hand, at variance with the 1D case, the limiting function F does not depend on X only through its Jacobian determinant. This seriously complicates the Eulerian formulation of the 2D case, which was relatively simple in the 1D case, and which we used in a significant manner in our earlier work [5].

Our second result is a simplified expression for F near the identity matrix.

Theorem 1.2. Let

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

There exists $0 < \eta_0 \ll 1$ such that, for all $M \in GL_2(\mathbb{R})$ such that $|M - I| \leq \eta_0$, one has

$$F(M) = \frac{1}{16\sqrt{3}} \det(M) \text{trace}(M^T M(2S - I)) + \frac{1}{64\sqrt{3}} \frac{\text{trace}(M^T M)^2 \text{trace}(M^T MS)}{\det(M)} - \frac{1}{192\sqrt{3}} \frac{\text{trace}(M^T M)^3}{\det(M)} - \frac{1}{48\sqrt{3}} \frac{\text{trace}(M^T MS)^3}{\det(M)}.$$

Moreover, for each 2×2-matrix N with real entries, one has

$$48F(I + \varepsilon N) = \frac{10}{\sqrt{3}} + \frac{20}{\sqrt{3}} \varepsilon \text{trace}(N) + \frac{1}{\sqrt{3}} \varepsilon^2 (14 \det(N) + 10 \text{trace}(N)^2 + 3 \text{trace}(N^T N)) + O(\varepsilon^3).$$

The proof of Theorem 1.2 is given in section 5 below.

Our third main result bears on the basic properties of the L^2-gradient flow of the asymptotic quantization functional F obtained in Theorem 1.1.

Theorem 1.3. Let $X^{in} \in \text{Diff}(\mathbb{R}^2)$ satisfy the properties (a-c) above, together with the condition

$$\|X^{in} - \text{id}\|_{W^{\sigma,p}(\Pi)} \leq \varepsilon_0,$$

with $p > 2$ and $1 + 2/p < \sigma$. Consider the PDE defining the L^2-gradient flow of F:

$$\begin{align*}
\partial_t X_j(t,x) &= -\frac{\delta F}{\delta X_j(t,x)}, & j = 1, 2, \\
X(0,x) &= X^{in}(x).
\end{align*}$$

The L^2-gradient flow of F starting from any initial diffeomorphism X^{in} satisfying the conditions above exists and is unique. In other words, the Cauchy problem (1.6) has a unique solution X defined for all $t > 0$, and $X(t, \cdot)$ satisfies properties (a-c)
for all \(t > 0 \). Besides, the solution \(t \mapsto X(t, \cdot) \) of (1.6) converges exponentially fast to the identity map as \(t \to +\infty \): for each \(X^\text{in} \) satisfying (a-c) and (1.5), there exist \(C, \mu > 0 \) (depending on \(\varepsilon_0 \)) such that
\[
\|X(t, \cdot) - \text{id}\|_{L^\infty(\Pi)} \leq Ce^{-\mu t}
\]
for all \(t > 0 \).

Since \(F \) depends on \(\det(\nabla X) \), one cannot hope that \(F \) has any convexity property. Moreover, since the dependence of \(F \) in \(\det(\nabla X) \) is singular, one cannot hope that some compensations would offset the lack of convexity coming from the determinant. For this reason, we consider initial configurations that are small perturbations of the hexagonal lattices, and we study in detail the linearization at the equilibrium configuration of the system of equations defining the gradient flow of \(F \). Combining this with some general \(\varepsilon \)-regularity theorems for parabolic systems, we prove that the nonlinear evolution is governed by the linear dynamics, and in this way we can prove exponential convergence to the hexagonal (equilibrium) configuration. As we shall see, our proof of Theorem 1.3, which occupies section 6 below, is based on tools coming from the regularity theory for parabolic systems, and this is why we need assumptions on the initial data in appropriate Sobolev spaces.

Moreover, our numerical simulations confirm the asymptotic optimality of the hexagonal lattice as the number of points tends to infinity — see Figures 1.1, 1.2, and 1.3. The colored polygons in Figures 1.1, 1.2, and 1.3 are the hexagons. Figure 1.3 suggests that the minimizers may have some small 1-dimensional defects with respect to the hexagonal lattice. This may be caused by the boundary conditions used in the the numerical simulation which are not periodic, at variance with the setting used in Theorems 1.1 and 1.3. Another possible explanation is that the particle system may remain frozen in some local minimum state. Also, the hexagonal tessellation is not the global minimizer for a finite number \(N \) of points, and this is another difference between the discrete and the continuous problems.

2. The contribution of a single Voronoi cell of the deformed lattice

From now on, we adopt the setting defined in the previous section, and we begin with some elementary geometrical observations used in computing the continuous functional \(F \). This is the first step in the proof of Theorem 1.1.

Under the assumptions of Theorem 1.1, our goal is to compute
\[
\int_{V(X(\varepsilon(k_1 e_1 + k_2 e_2)))|X_0)} |y - X(\varepsilon(k_1 e_1 + k_2 e_2))|^2 dy
\]
in terms of the displacement \(X(\varepsilon(k_1 e_1 + k_2 e_2)) \) and of the centers of the adjacent cells \(V(X(\varepsilon(k_1 e_1 + k_2 e_2)))|X_0) \), i.e.:

\[
\begin{align*}
X(\varepsilon((k_1 + 1)e_1 + k_2 e_2)), & \quad X(\varepsilon((k_1 - 1)e_1 + k_2 e_2)), \\
X(\varepsilon((k_1 - 1)e_1 + (k_2 + 1)e_2)), & \quad X(\varepsilon((k_1 + 1)e_1 + (k_2 - 1)e_2)), \\
X(\varepsilon(k_1 e_1 + (k_2 - 1)e_2)), & \quad X(\varepsilon(k_1 e_1 + (k_2 + 1)e_2)).
\end{align*}
\]

To do that, up to sets of measure zero, we can partition each hexagon into 12 right triangles, each of them similar either to \(AOK \) or to \(AOJ \) in Figure 2.1. We start integrating the function \(|y - X(\varepsilon(k_1 e_1 + k_2 e_2))|^2 \) on one of these right triangles.
Figure 1.1. 720 points at time 0

Figure 1.2. 720 points after 19 iterations

Figure 1.3. 720 points after 157 iterations
Let T be a right triangle with adjacent sides to the right angle of length h and l (see Figure 2.2).

With the notation of Figure 2.2,

$$
\int_T (x_1^2 + x_2^2)dx_1dx_2 = \int_0^h \int_0^{lx_1/h} (x_1^2 + x_2^2)dx_2dx_1 = \int_0^h \left(\frac{lx_1}{h} x_1^2 + \frac{l^3 x_1^4}{3h^3} \right) dx_1 \\
= \int_0^h x_1^3 \left(\frac{l}{h} + \frac{l^3}{3h^3} \right) dx_1 = \frac{1}{4} lh(h^2 + \frac{1}{3} l^2).
$$

Coming back to the notation of Figure 2.1, we obtain

$$
\int_{V[A]} |\vec{Ay}|^2 dy = \int_{AOK} |\vec{Ay}|^2 dy + \int_{AOJ} |\vec{Ay}|^2 dy + 10 \text{ similar terms.}
$$

Let us focus on the first term on the right hand side. We compute it in the triangle ABC.
Recalling the notation in Figure 2.3

$$\int_{AOK} |A\vec{y}|^2 dy = \frac{1}{6} c |OK| (\frac{1}{2} c^2 + \frac{1}{3} |OK|^2).$$

In the triangle ABC, we have

$$\overrightarrow{AOK} = \overrightarrow{ACB} = \gamma,$$

and

$$|OK|^2 = |OA|^2 - \frac{1}{4} c^2 = \frac{1}{4} c^2 \left(\frac{1}{\sin^2 \gamma} - 1 \right).$$

Moreover, denoting by S the surface of the triangle ABC,

$$2S = |\vec{C'A} \wedge \vec{C'B}| = ab \sin \gamma.$$

Thus,

$$|OK|^2 = \frac{1}{4} c^2 \left(\frac{a^2 b^2}{4S^2} - 1 \right),$$

so that

$$\int_{AOK} |A\vec{y}|^2 dy = \frac{1}{192} c^4 \sqrt{\frac{a^2 b^2}{4S^2} - 1} \left(\frac{1}{4} c^2 + \frac{1}{12} c^2 \left(\frac{a^2 b^2}{4S^2} - 1 \right) \right)$$

$$= \frac{1}{192} c^4 \sqrt{\frac{a^2 b^2}{4S^2} - 1} \left(\frac{a^2 b^2}{4S^2} + 1 \right).$$

In other words,

$$\int_{AOK} |A\vec{y}|^2 dy = \frac{1}{192} |AB|^4 \sqrt{\frac{|C'B|^2 |C'A|^2}{|C'A \wedge C'B|^2} - 1} \left(\frac{|C'B|^2 |C'A|^2}{|C'A \wedge C'B|^2} + 1 \right).$$
Exchanging B and C, we find by symmetry that

$$
\int_{AOJ} |\tilde{A}y|^2 dy = \frac{1}{192} |A\tilde{C}e|^4 \left(\frac{|B\tilde{C}|^2 |B\tilde{A}|^2}{|B\tilde{A} \wedge B\tilde{C}|^2} - 1 \left(\frac{|B\tilde{C}|^2 |B\tilde{A}|^2}{|B\tilde{A} \wedge B\tilde{C}|^2} + 2 \right) \right).
$$

Let us now write the latter expression for $A = X(\varepsilon(k_1 e_1 + k_2 e_2))$, where the points B and C are the centers of the Voronoi cells adjacent to the Voronoi cell centered in A. For simplicity of notation, we define

$$
X(\varepsilon(k_1 e_1 + k_2 e_2)) =: X_{k_1, k_2}.
$$

Thus, the contribution

$$
\int_{V(X(\varepsilon(k_1 e_1 + k_2 e_2))) \setminus X_0} |y - X(\varepsilon(k_1 e_1 + k_2 e_2))|^2 dy
$$

of the terms related to the triangle ABC with $A = X_{k_1, k_2}$, $B = X_{k_1+1, k_2}$ and $C = X_{k_1, k_2+1}$ is:

$$
(2.1)
\int_{AOK} |\tilde{A}y|^2 dy + \int_{AOJ} |\tilde{A}y|^2 dy
\quad
= \frac{1}{192} X_{k_1+1, k_2} - X_{k_1, k_2}^4 \left[\frac{|X_{k_1+1, k_2} - X_{k_1, k_2+1}|^2 |X_{k_1, k_2} - X_{k_1, k_2+1}|^2}{[(X_{k_1, k_2} - X_{k_1, k_2+1}) \wedge (X_{k_1+1, k_2} - X_{k_1, k_2+1})]^2} - 1 \right] \times \left(\frac{|X_{k_1+1, k_2} - X_{k_1, k_2+1}|^2 |X_{k_1, k_2} - X_{k_1, k_2+1}|^2}{[(X_{k_1, k_2} - X_{k_1, k_2+1}) \wedge (X_{k_1+1, k_2} - X_{k_1, k_2+1})]^2} + 2 \right)
\quad
+ \frac{1}{192} X_{k_1, k_2+1} - X_{k_1, k_2}^4 \left[\frac{|X_{k_1, k_2} - X_{k_1+1, k_2}|^2 |X_{k_1, k_2} - X_{k_1+1, k_2}|^2}{[(X_{k_1, k_2} - X_{k_1+1, k_2}) \wedge (X_{k_1, k_2} - X_{k_1+1, k_2})]^2} - 1 \right] \times \left(\frac{|X_{k_1, k_2} - X_{k_1+1, k_2}|^2 |X_{k_1, k_2} - X_{k_1+1, k_2}|^2}{[(X_{k_1, k_2} - X_{k_1+1, k_2}) \wedge (X_{k_1, k_2} - X_{k_1+1, k_2})]^2} + 2 \right).
$$

The total contribution of the integral on the Voronoi cell

$$
\int_{V(X(\varepsilon(k_1 e_1 + k_2 e_2))) \setminus X_0} |y - X(\varepsilon(k_1 e_1 + k_2 e_2))|^2 dy
$$

is therefore the sum of 6 terms analogous to the right hand side of (2.1).

3. **The continuous functional \mathcal{F}**

In order to derive the formula for the continuous function \mathcal{F}, we need to replace the finite differences appearing on the right hand side of (2.1) with (partial) derivatives of the deformation, i.e. of the map X. This is done by using Talor’s formula,
and we arrive at the leading order term in the form:

\[
\int_{AOK} |\tilde{A}_{y}|^2 dy + \int_{AOJ} |\tilde{A}_{y}|^2 dy \\
\sim \frac{1}{192} \varepsilon^4 |e_1 \cdot \nabla X(A)|^4 \sqrt{\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} - 1} \\
\times \left(\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} + 2 \right) \\
+ \frac{1}{192} \varepsilon^4 |e_2 \cdot \nabla X(A)|^4 \sqrt{\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} - 1} \\
\times \left(\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} + 2 \right),
\]

It can be simplified as

\[
\int_{AOK} |\tilde{A}_{y}|^2 dy + \int_{AOJ} |\tilde{A}_{y}|^2 dy \\
\sim \frac{1}{192} \varepsilon^4 |e_1 \cdot \nabla X(A)|^4 \sqrt{\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} - 1} \\
\times \left(\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} + 2 \right) \\
+ \frac{1}{192} \varepsilon^4 |e_2 \cdot \nabla X(A)|^4 \sqrt{\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} - 1} \\
\times \left(\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{|e_1 \cdot \nabla X(A)|^2 \wedge (e_2 \cdot \nabla X(A))^2} + 2 \right),
\]

as \(\varepsilon \to 0 \). This can be recast as follows:

\[
\int_{AOK} |\tilde{A}_{y}|^2 dy + \int_{AOJ} |\tilde{A}_{y}|^2 dy \\
\sim \frac{1}{192} \varepsilon^4 |e_1 \cdot \nabla X(A)|^4 \sqrt{\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{\frac{1}{2} |JX(A)|^2} - 1} \\
\times \left(\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{\frac{1}{2} |JX(A)|^2} + 2 \right) \\
+ \frac{1}{192} \varepsilon^4 |e_2 \cdot \nabla X(A)|^4 \sqrt{\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{\frac{1}{2} |JX(A)|^2} - 1} \\
\times \left(\frac{|(e_1 - e_2) \cdot \nabla X(A)|^2}{\frac{1}{2} |JX(A)|^2} + 2 \right),
\]

as \(\varepsilon \to 0 \), with the notation \(JX := \text{det}(\nabla X) \).

The total contribution of the Voronoi cell centered in \(A \) is the sum of the latter term, plus 5 analogous contributions obtained by transforming the 3 unit vectors \(e_{12} := e_1 - e_2, e_1, e_2 \) in their images under the action of the cyclic group generated by the rotation of \(\frac{\pi}{3} \).
Since each term is invariant by the symmetry centered in \(A \), we find that:

\[
\int_{V(X(\varepsilon(k_1e_1+k_2e_2)))} |y - X(\varepsilon(k_1e_1+k_2e_2))|^2 dy \\
\sim \frac{\varepsilon^4}{48} |e_1 \cdot \nabla X|^4 \Phi(e_1, \nabla X)(3 + \Phi(e_1, \nabla X)^2)(\varepsilon(k_1e_1+k_2e_2)) \\
+ \frac{\varepsilon^4}{48} |e_2 \cdot \nabla X|^4 \Phi(e_2, \nabla X)(3 + \Phi(e_1, \nabla X)^2)(\varepsilon(k_1e_1+k_2e_2)) \\
+ \frac{\varepsilon^4}{48} |e_{12} \cdot \nabla X|^4 \Phi(e_{12}, \nabla X)(3 + \Phi(e_1, \nabla X)^2)(\varepsilon(k_1e_1+k_2e_2))
\]

as \(\varepsilon \to 0 \), where

\[
\Phi(e, M) := \sqrt{\frac{|MRe|^2|MRTe|^2}{\frac{3}{4} |\det(M)|^2} - 1},
\]

and where \(R \) is the rotation of an angle \(\frac{\pi}{2^4} \).

Then the computation above can be summarized as follows:

\[
\int_{V(X(\varepsilon(k_1e_1+k_2e_2)))} |y - X(\varepsilon(k_1e_1+k_2e_2))|^2 dy \sim \varepsilon^4 F(\nabla X(\varepsilon(k_1e_1+k_2e_2)))
\]

as \(\varepsilon \to 0 \), where

\[
F(M) := \frac{1}{48} \sum_{\omega \in \{e_1, e_2, e_{12}\}} |M\omega|^4 \Phi(\omega, M)(3 + \Phi(\omega, M)^2).
\]

At this point, we recall that \(X \) satisfies property (a). Therefore for each \(\varepsilon = 1/n \) with \(n \) a positive integer, the function

\[y \mapsto \text{dist}(y, \mathcal{X}_\varepsilon) \]

is \(\mathcal{L} \)-periodic.

Indeed

\[\text{dist}(y, \mathcal{X}_\varepsilon) = y - X(\varepsilon k) \Rightarrow \text{dist}(y, \mathcal{X}_\varepsilon) = y + l - X(\varepsilon(k + nl) \geq \text{dist}(y + l, \mathcal{X}_\varepsilon) \]

for each \(y \in \mathbb{R}^2 \) and each \(l \in \mathcal{L} \). Repeating the same argument with \(y + l \) and \(-l\) instead of \(y \) and \(l \) shows that

\[\text{dist}(y, \mathcal{X}_\varepsilon) \geq \text{dist}(y + l, \mathcal{X}_\varepsilon) \geq \text{dist}(y, \mathcal{X}_\varepsilon) \]

for each \(y \in \mathbb{R}^2 \) and \(l \in \mathcal{L} \), which is precisely the \(\mathcal{L} \)-periodicity condition.

On the other hand, property (a) implies that \(X(\Pi) \) is a fundamental domain for \(\mathbb{R}^2 / \mathcal{L} \). Indeed

\[X(\Pi + l) = X(\Pi) + l, \quad l \in \mathcal{L} \]

so that

\[
\bigcup_{l \in \mathcal{L}} X(\Pi) + l = X \left(\bigcup_{l \in \mathcal{L}} \Pi + l \right) = X(\mathbb{R}^2) = \mathbb{R}^2.
\]

On the other hand

\[(X(\Pi) + l) \cap X(\Pi) = X(\Pi + l) \cap X(\Pi) = X((\Pi + l) \cap \Pi) \subset X(\partial \Pi) \]

is a set of measure 0.

Finally

\[
|X(\Pi)| = 1.
\]
By property (a), the deformation map
\[Y := X - \text{id} : x \mapsto X(x) - x =: Y(x) \]
is \(\mathcal{L}\)-periodic. We recall the following classical observation.

Lemma 3.1. Let \(Y \in C^1(\mathbb{R}^2; \mathbb{R}^2) \) be \(\mathcal{L}\)-periodic. Then
\[\int_{\Pi} \det(\nabla Y)(x) dx \wedge dy = 0. \]

Proof. If \(Y \) is of class \(C^2 \), one has
\[\det(\nabla Y) = d(Y_1 dY_2) \]
where \(Y_1(x) \) and \(Y_2(x) \) are the components of the vector \(Y(x) \). Then
\[\int_{\Pi} \det(\nabla Y) dx \wedge dy = \int_{\Pi} dY_1 dY_2 = 0 \]
because \(Y \) is \(\mathcal{L}\)-periodic.

If \(Y \) is only of class \(C^1 \), let \(\chi_\alpha \) be a regularizing sequence. Then, for each \(\alpha > 0 \), the map \(\chi_\alpha \ast Y := Y_\alpha \in C^2(\mathbb{R}^2; \mathbb{R}^2) \) is still \(\mathcal{L}\)-periodic and \(\nabla Y_\alpha \to \nabla Y \) uniformly on \(\Pi \) as \(\alpha \to 0 \). Therefore
\[\int_{\Pi} \det(\nabla Y_\alpha) dx \wedge dy = \lim_{\alpha \to 0} \int_{\Pi} \det(\nabla Y_\alpha) dx \wedge dy = 0. \]

Therefore
\[\int_{\Pi} \det(\nabla Y) dx \wedge dy = \lim_{\alpha \to 0} \int_{\Pi} \det(\nabla Y_\alpha) dx \wedge dy = 0. \]

This proves (3.3).

Thus
\[|X(\Pi)| = \int_{X(\Pi)} dy = \int_{\Pi} |\det(\nabla X(x))| dx = \int_{\Pi} \det(\nabla X(x)) dx \]
since \(X \) is \(C^1 \)-close to the identity (property (b)), and
\[\det(\nabla X) = \det(I + \nabla Y) = 1 + \text{div} \ Y + \det(\nabla Y) \]
Therefore
\[|X(\Pi)| = \int_{\Pi} (1 + \text{div} \ Y + \det(\nabla Y))(x) dx = 1 + \int_{\partial \Pi} Y \cdot nds = 0 \]
by \(\mathcal{L}\)-periodicity of \(Y \). This proves (3.3).

Set
\[B_R[\mathcal{L}] := \{ l \in \mathcal{L} \text{ s.t. } X(\Pi) + l \subset B(0, R) \}, \]
and \(\delta := \text{diam}(X(\Pi)) \). Then
\[B(0, R - \delta) \subset \bigcup_{l \in B_R[\mathcal{L}]} (X(\Pi) + l) \subset B(0, R) \]
and since the sets \(X(\Pi) + l \) are pairwise disjoint (up to sets of measure 0) as \(l \in \mathcal{L} \), we conclude from (3.3) that
\[\pi(R - \delta)^2 = |B(0, R - \delta)| \leq \#B_R[\mathcal{L}] \leq |B(0, R)| = \pi R^2 \]
so that
\[\#B_R[\mathcal{L}] \sim \pi R^2 \quad \text{as } R \to \infty. \]
Thus
\[#B_R[\mathcal{L}] \int_{X(\Pi)} \text{dist}(y, \mathcal{X}_\varepsilon)^2 dy \leq \int_{B(0,R)} \text{dist}(y, \mathcal{X}_\varepsilon)^2 dy \]
\[\leq #B_{R+\delta}[\mathcal{L}] \int_{X(\Pi)} \text{dist}(y, \mathcal{X}_\varepsilon)^2 dy , \]
and hence
\[\frac{1}{\pi R^2} \int_{B(0,R)} \text{dist}(y, \mathcal{X}_\varepsilon)^2 dy \to \int_{X(\Pi)} \text{dist}(y, \mathcal{X}_\varepsilon)^2 dy \quad \text{as} \quad R \to \infty . \]

Thus
\[\lim_{R \to \infty} \frac{1}{R^2} \int_{B(0,R)} \text{dist}(y, \mathcal{X}_\varepsilon)^2 dy = \int_{X(\Pi)} \text{dist}(y, \mathcal{X}_\varepsilon)^2 dy \]
\[= \sum_{\varepsilon \max(|k_1|, |k_2|) < 1/2} \int_{\Pi} V(X(\varepsilon(k_1 e_1 + k_2 e_2)), X_\varepsilon) \left| y - X(\varepsilon(k_1 e_1 + k_2 e_2)) \right|^2 dy \]
\[\sim \varepsilon^2 \int_{\Pi} F(\nabla X(x)) dx \]
as \varepsilon \to 0^+.

4. Gradient of the functional F

Henceforth we denote
\[\mathcal{H}_0 := \left\{ Z \in L^2(\mathbb{R}^2/\mathcal{L}; \mathbb{R}^2) \text{ s.t. } Z \text{ is } \mathcal{L}\text{-periodic and } \int_{\Pi} Z(x) dx = 0 \right\} \]
and
\[\text{id} + \mathcal{H}_0 := \{ \text{id} + Z \text{ s.t. } Z \in \mathcal{H}_0 \} . \]
The function F is obviously defined on $(\text{id} + \mathcal{H}_0) \cap \text{Diff}^1(\mathbb{R}^2)$, and we seek to compute its L^2-gradient at $X \in \text{Diff}^2(\mathbb{R}^2)$.

Let $X \in (\text{id} + \mathcal{H}_0) \cap \text{Diff}^2(\mathbb{R}^2)$ and $Y \in \mathcal{H}_0 \cap C^1(\mathbb{R}^2/\mathcal{L}; \mathbb{R}^2)$: by the implicit function theorem $X + \tau Y \in (\text{id} + \mathcal{H}_0) \cap \text{Diff}^2(\mathbb{R}^2)$ for all τ sufficiently small. With the expression for F obtained in Theorem 1.1, one anticipates that

\begin{equation}
\frac{d}{d\tau} F(X + \tau Y) \big|_{\tau = 0} = \int_{\Pi} \nabla F(\nabla_x X(x)) \cdot \nabla_x Y(x) dx \\
= -\int_{\Pi} \text{div}_x(\nabla F(\nabla_x X(x))) \cdot Y(x) dx .
\end{equation}

In order to verify the second equality above, one only needs to check that F is of class C^2 on the set of invertible matrices. Notice indeed that the boundary term coming from Green’s formula satisfies
\[\int_{\Pi} \nabla F(\nabla_x X(x)) \cdot Y(x) \otimes n_x ds(x) = 0 \]
because $\nabla_x X(x) = I + \nabla_x Z$ and Y are both \mathcal{L}-periodic. That F is of class C^2 on a neighborhood of I in $GL_2(\mathbb{R})$ follows from (3.2). Indeed, $\det(M) \neq 0$ for all $M \in GL_2(\mathbb{R})$, and one has
\[\Phi(e, M)^2 \to \Phi(e, I) = \frac{1}{3} \quad \text{for all unit vector } e \text{ as } M \to I . \]
By continuity, there exists an open neighborhood Ω of I in $GL_2(\mathbb{R})$ such that

$$\Phi(e, M)^2 > \frac{1}{4}$$

for all $(e, M) \in S^2 \times \Omega$.

Therefore $\Phi(e, \cdot)$ is of class C^2 on Ω for each unit vector e, and therefore F is of class C^2 on Ω.

Next we compute ∇F. The first step is to compute the directional derivative of $M \mapsto \Phi(e, M)$ at the point $M \in GL_2(\mathbb{R})$ along the direction $N \in M_2(\mathbb{R})$. We find that

$$\frac{d}{d\tau} \Phi(e, M + \tau N)|_{\tau=0} = \frac{1}{2\Phi(e, M)} \left[\frac{2(N R e | MR e) |MR^T e|^2}{\frac{3}{4} \det(M)^2} + \frac{2(N R^T e | MR^T e) |MR e|^2}{\frac{3}{4} \det(M)^2} \right. $$

$$\left. - \frac{2 |MR e|^2 |MR^T e|^2 \det(M) \trace(M^{-1} N)}{\frac{3}{4} \det(M)^3} \right].$$

Recalling that

$$(N u | v) = \trace(N (u \otimes v)), \quad u, v \in \mathbb{R}^2, \quad N \in M_2(\mathbb{R}),$$

and

$$\frac{d}{d\tau} \det(M + \tau N)|_{\tau=0} = \det(M) \trace(M^{-1} N), \quad M \in GL_2(\mathbb{R}), \quad N \in M_2(\mathbb{R}),$$

we obtain

$$\frac{d}{d\tau} \Phi(e, M + \tau N)|_{\tau=0} = \frac{4}{3 \Phi(e, M) \det(M)^2} \left[\trace[N(R e \otimes MR e)] |MR^T e|^2 \right.$$

$$\left. + \trace[N(R^T e \otimes MR^T e)] |MR e|^2 - |MR e|^2 |MR^T e|^2 \trace(M^{-1} N) \right].$$

Defining

$$(4.2) \quad A(e, M) := \frac{(Re \otimes MR e)}{|MR e|^2} + \frac{(R^T e \otimes MR^T e)}{|MR^T e|^2} - M^{-1},$$

we see that the map $M \mapsto A(e, M)$ is a tensor-field on $GL_2(\mathbb{R})$, homogeneous of degree -1 with respect to M. The differential of $M \mapsto \Phi(e, M)$ can be easily expressed in terms of A : multiplying and dividing each term of the latter equality by $\Phi(e, M)^2 + 1$, we get

$$d_M \Phi(e, M)[N] = \frac{\Phi(e, M)^2 + 1}{\Phi(e, M)} \trace(A(e, M) N).$$

In other words, considering the Frobenius inner product defined on $M_2(\mathbb{R})$ by

$$(M_1 | M_2) = \trace(M_1^T M_2),$$

the gradient of the map $M \mapsto \Phi(e, M)$ at the point $M \in GL_2(\mathbb{R})$ is

$$\nabla_M \Phi(e, M) = \frac{\Phi(e, M)^2 + 1}{\Phi(e, M)} A(e, M)^T.$$
Therefore
\[\nabla F(M) = 4 \sum_{\omega \in \{e_1, e_2, e_{12}\}} |M\omega|^2 \Phi(\omega, M)(3 + \Phi(\omega, M)^2)\omega \otimes (M\omega) + 3 \sum_{\omega \in \{e_1, e_2, e_{12}\}} |M\omega|^4 \frac{(1 + \Phi(\omega, M)^2)^2}{\Phi(\omega, M)} A(\omega, M)^T. \]

Inserting this expression in (4.1), we find that
\[\frac{d}{dt} F(X(t) + \tau Y) \big|_{t=0} \]
\[= -\frac{1}{12} \sum_{\omega \in \{e_1, e_2, e_{12}\}} \int_\Pi \text{div}_x (|\omega \cdot \nabla X|^2(3 + \Phi^2)\Phi(\omega, X)\omega \otimes (\omega \cdot \nabla X)) \cdot Ydx
- \frac{1}{16} \sum_{\omega \in \{e_1, e_2, e_{12}\}} \int_\Pi \text{div}_x \left(|\omega \cdot \nabla X|^4 \frac{(1 + \Phi(\omega, X)^2)^2}{\Phi(\omega, X)} A(\omega, X) \right)^T Ydx \right). \]

In other words, the L^2-gradient of F is given by the formula
\[\frac{\delta F(X)}{\delta X(x)} = -\text{div}_x (\nabla F(\nabla_x X(x))) \]
\[= -\frac{1}{12} \sum_{\omega \in \{e_1, e_2, e_{12}\}} \text{div}_x (|\omega \cdot \nabla X|^2(3 + \Phi^2)\Phi(\omega, X)\omega \otimes (\omega \cdot \nabla X))
- \frac{1}{16} \sum_{\omega \in \{e_1, e_2, e_{12}\}} \text{div}_x \left(|\omega \cdot \nabla X|^4 \frac{(1 + \Phi(\omega, X)^2)^2}{\Phi(\omega, X)} A(\omega, X) \right)^T. \]

Its i-th coordinate is given by the expression
\[\frac{\delta F(X)}{\delta X_i(x)} = -\frac{1}{12} \sum_{\omega \in \{e_1, e_2, e_{12}\}} \partial_j (|\omega \cdot \nabla X|^2(3 + \Phi^2)\Phi(\omega, X)\omega_j \omega_k \partial_k X_i) \]
\[- \frac{1}{16} \sum_{\omega \in \{e_1, e_2, e_{12}\}} \partial_j \left(|\omega \cdot \nabla X|^4 \frac{(1 + \Phi(\omega, X)^2)^2}{\Phi(\omega, X)} A_{ji}(\omega, X) \right), \]

with the usual convention of summation on repeated indices.

5. The asymptotic energy functional
for a slightly deformed hexagonal lattice

In this section we study the functional $F(X)$ near $X = \text{id}$. More precisely, we seek a rational expression of $F(M)$ (with F defined by (3.2) for $M \in GL_2(\mathbf{R})$ near I. In view of Theorem 1.1, this gives a simplified expression of $F(X)$ near $X = \text{id}$. Let
\[M_1 = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \]
be a near-identity matrix. Straightforward computations show that
\[\Phi(e_1, M_1) = \frac{1}{2\sqrt{3}} \frac{(\alpha^2 - 3\beta^2 + \gamma^2 - 3\delta^2)^2}{(\beta\gamma - \alpha\delta)^2} = \frac{-\alpha^2 + 3\beta^2 - \gamma^2 + 3\delta^2}{2\sqrt{3}(\alpha\delta - \beta\gamma)}. \]

Indeed, since $|M_1 - I| \ll 1$, one has $\alpha^2 - 3\beta^2 + \gamma^2 - 3\delta^2 < 0$.

Next, we observe that
\[
\Phi(Re, M) = \sqrt{\frac{|MR^2e|^2|Me|^2}{\frac{3}{4} \det(M)^2}} - 1 = \sqrt{\frac{|RT^MR^2e|^2|RT^MRT^2e|^2}{\frac{3}{4} \det(RT^M)^2}} - 1 = \Phi(e, RT^MR)
\]
for each $M \in GL_2(\mathbb{R})$ and each unit vector e. Indeed, the second equality above follows from the obvious identity $|Re| = |RT^\xi| = |\xi|$ for all $\xi \in \mathbb{R}^2$ when R is a rotation. Therefore
\[
\Phi(e_2, M_1) = \Phi(e_1, M_2) \quad \text{with} \quad M_2 = RTM_1R
\]
and
\[
\Phi(e_{12}, M_1) = \Phi(e_1, M_{12}) \quad \text{with} \quad M_{12} = RM_1RT
\]
since $e_2 = Re_1$ and $e_{12} = RTe_1$.

Elementary computations show that
\[
M_2 = \frac{1}{4} \begin{pmatrix}
\alpha + \sqrt{3} \gamma + \sqrt{3} \beta + 3 \delta \\
-\sqrt{3} \alpha + \gamma - 3 \beta + \sqrt{3} \delta
\end{pmatrix}
\]
and
\[
M_{12} = \frac{1}{4} \begin{pmatrix}
\alpha - \sqrt{3} \gamma - \sqrt{3} \beta + 3 \delta \\
\sqrt{3} \alpha + \gamma - 3 \beta - \sqrt{3} \delta
\end{pmatrix}
\]
and
\[
M_{12} = \frac{1}{4} \begin{pmatrix}
\alpha - \sqrt{3} \gamma - \sqrt{3} \beta + 3 \delta \\
\sqrt{3} \alpha + \gamma - 3 \beta - \sqrt{3} \delta
\end{pmatrix}
\]
and
\[
M_2 = \frac{1}{4} \begin{pmatrix}
\gamma + 3 \beta - \sqrt{3} \delta \\
3 \alpha + \sqrt{3} \gamma + \sqrt{3} \beta + \delta
\end{pmatrix}
\]
Notice that
\[
|\alpha| \ll 1 \Rightarrow |\alpha - \beta| \ll 1 \quad \text{and} \quad |\alpha - \gamma - \beta| \ll 1.
\]
Hence we can use formula (5.1) to compute $\Phi(e_2, M_1)$ and $\Phi(e_{12}, M_1)$ with the help of (5.2). We find that
\[
\Phi(M_1, e_2) = \frac{\sqrt{3} \alpha^2 - 3 \alpha \beta + \sqrt{3} \gamma - 3 \gamma \delta}{3(\alpha \delta - \beta \gamma)},
\]
and
\[
\Phi(M_1, e_{12}) = \frac{\sqrt{3} \alpha^2 + 3 \alpha \beta + \sqrt{3} \gamma - 3 \gamma \delta}{3(\alpha \delta - \beta \gamma)}.
\]
Finally, we insert the expressions found in (5.1), (5.3) and (5.4) in formula (3.2), and find that
\[
F(M_1) = \frac{1}{9939} \frac{\alpha \beta \gamma \delta}{\alpha \delta - \beta \gamma}
\]
where
\[
P(\alpha, \beta, \gamma, \delta) = -\alpha^6 + 6a^4b^2 - 9a^2b^4 - 3a^4 - 2 + 18a^2b^2 - 9a^2b^4 - 3a^2b^4 + 12\beta^2 - 3 - 36\alpha^2b^2 - 12\alpha^2b^3 - 12\alpha^2b^4 + 18a^2b^2 - 36\alpha^2b^3 - 9a^2b^4 - 9\gamma^2 - 9\gamma^2 - 9\gamma^2.
\]
We shall simplify this expression, and more precisely give an intrinsic formula for the polynomial \(P \). Set

\[
S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

Elementary (although tedious) computations show that

\[
P(\alpha, \beta, \gamma, \delta) = \frac{1}{2} (Q_+(\alpha, \beta, \gamma, \delta) + Q_-(\alpha, \beta, \gamma, \delta))
\]

with

\[
Q_+(\alpha, \beta, \gamma, \delta) := (\alpha^2 + \beta^2 + \gamma^2 + \delta^2) \left(24(\alpha\delta - \beta\gamma)^2 - (\alpha^2 + \beta^2 + \gamma^2 + \delta^2)^2 \right),
\]

\[
Q_-(\alpha, \beta, \gamma, \delta) := (\alpha^2 - \beta^2 + \gamma^2 - \delta^2) \left(12(\alpha\beta + \gamma\delta)^2 - (\alpha^2 - \beta^2 + \gamma^2 - \delta^2)^2 \right).
\]

One has

\[
(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) = \text{trace}(M_1^T M_1),
\]

\[
(\alpha^2 - \beta^2 + \gamma^2 - \delta^2) = \text{trace}(M_1^T M_1 S),
\]

while

\[
(\alpha\beta + \gamma\delta)^2 = (\alpha^2 + \beta^2)(\beta^2 + \delta^2) - (\alpha\delta - \beta\gamma)^2
\]

\[
= \text{trace}(M_1^T M_1 \frac{I+\varepsilon}{2}) \text{trace}(M_1^T M_1 \frac{I-\varepsilon}{2}) - \det(M_1)^2
\]

\[
= \frac{1}{2} \left(\text{trace}(M_1^T M_1)^2 - \text{trace}(M_1^T M_1 S)^2 \right) - \det(M_1)^2.
\]

Therefore

\[
P(\alpha, \beta, \gamma, \delta) = 6 \det(M_1)^2 \text{trace}(M_1^T M_1(2S - I))
\]

\[
+ \frac{1}{2} \text{trace}(M_1^T M_1)^2 \text{trace}(M_1^T M_1 S)
\]

\[
- \frac{1}{2} \text{trace}(M_1^T M_1)^3 - 2 \text{trace}(M_1^T M_1 S)^3.
\]

Hence

\[
F(M_1) = \frac{1}{16\sqrt{3}} \det(M_1) \text{trace}(M_1^T M_1(2S - I))
\]

\[
+ \frac{1}{64\sqrt{3}} \frac{\text{trace}(M_1^T M_1)^2 \text{trace}(M_1^T M_1 S)}{\det(M_1)}
\]

\[
- \frac{1}{192\sqrt{3}} \frac{\text{trace}(M_1^T M_1)^3}{\det(M_1)} - \frac{1}{48\sqrt{3}} \frac{\text{trace}(M_1^T M_1 S)^3}{\det(M_1)}.
\]

We finally compute the Taylor expansion of \(48F \) at order 3 near the identity matrix. Setting

\[
N = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

we find that

\[
48F(I + \varepsilon N) = \frac{10}{\sqrt{3}} + \frac{20}{\sqrt{3}} \varepsilon(a + d)
\]

\[
+ \frac{1}{\sqrt{3}} \varepsilon^2 \left(13a^2 + 3b^2 - 14bc + 3c^2 + 34ad + 13d^2 \right)
\]

\[
+ \frac{1}{\sqrt{3}} \varepsilon^3 \left(a^3 + 9ab^2 - 2abc + 9ac^2 + 23a^2d - 3b^2d - 26bcd - 3c^2d + 11ad^2 + 5d^3 \right)
\]

\[+ O(\varepsilon^4) \]

It is interesting to notice that the Taylor expansion of \(F \) around the identity matrix is invariant under the substitutions \(a \leftrightarrow d \) and \(b \leftrightarrow c \) only up to second order. More
precisely
\[
48F(I + \varepsilon N) = \frac{10}{\sqrt{3}} + \frac{20}{\sqrt{3}} \varepsilon \text{trace}(N) + \frac{1}{\sqrt{3}} \varepsilon^2 \left(14 \text{det}(N) + 10 \text{trace}(N)^2 + 3 \text{trace}(N^T N)\right) + O(\varepsilon^3).
\]

6. Stability and asymptotic convergence for small perturbations

In this section we use a perturbative approach to study stability properties of the energy functional \(\mathcal{F}(X) \) around the identity.

Following formula (4.1), we consider the PDE defining the gradient flow of \(\mathcal{F} \) in the form
\[
\partial_t X(t, x) = \text{div}_x(\nabla F(\nabla_x X(t, x)));
\]
with \(X(0, x) = X^{in}(x) \).

We assume that \(X^{in} \) satisfies properties (a-c), and we seek a (weak) solution of the Cauchy problem (6.1) such that
\[
\int_{\Pi} \text{div}_x(Y(x))dx = \int_{\Pi} F(I + \varepsilon \nabla_x Y(x))dx = \int_{\Pi} F_0(I + \varepsilon \nabla_x Y(x))dx
\]
since
\[
\int_{\Pi} \text{div}_x(Y(x))dx = 0 \quad \text{and} \quad \int_{\Pi} \text{det}(\nabla_x Y(x))dx = 0.
\]

The first equality is obvious since \(Y \) is \(\mathcal{L} \)-periodic, while the second follows from Lemma 3.1.

With formula (5.8), we see that
\[
F_0(I + \varepsilon N) = \frac{5}{24\sqrt{3}} + \frac{5}{24\sqrt{3}} \varepsilon^2 \text{trace}(N)^2 + \frac{1}{16\sqrt{3}} \varepsilon^2 \text{trace}(N^T N) + O(\varepsilon^3).
\]

Formula (6.2) shows that \(F_0 \in C^\infty(GL_2(\mathbb{R})) \) since \(F \in C^\infty(GL_2(\mathbb{R})) \). Then, formula (6.3) implies that
\[
\nabla^2 F_0(I) \cdot (N, N) \geq \frac{1}{8\sqrt{3}} \text{trace}(N^T N).
\]

Henceforth we denote by \(\| \cdot \|_2 \) the Frobenius norm on \(M_2(\mathbb{R}) \), defined by the formula
\[
\| A \|_2 = \text{trace}(A^T A)^{1/2}.
\]
The inequality (6.4) implies that there exists three positive constants \(0 < \lambda \leq \Lambda \) and \(\rho_0 \) such that
\[
\lambda\| N \|_2^2 \leq \nabla^2 F_0(A) \cdot (N, N) \leq \Lambda\| N \|_2^2, \quad \text{for all } A \text{ such that } \| A - I \|_2 < \rho_0.
\]
Choose $G \in C^2(M_2(\mathbb{R}))$ such that
\[
\|A - I\|_2 < \rho_0/2 \Rightarrow G(A) = F_0(A)
\]
while
\[
\frac{1}{4}\lambda \|N\|_2^2 \nabla^2 G(A) \cdot (N, N) \leq 2\Lambda \|N\|_2^2 \quad \text{for all } A, N \in M_2(\mathbb{R}).
\]
Instead of (6.1), consider the Cauchy problem
\begin{equation}
\partial_t X(t, x) = \text{div}_x(\nabla G(\nabla_x X(t, x))), \quad X(0, x) = X^{\text{in}}(x).
\end{equation}
Let X be the solution of this Cauchy problem.

Step 2: Stability in L^2.

Multiplying both sides of (6.1) by $X(t, x) - x$ and integrating over Π, one finds that
\[
\frac{d}{dt} \frac{1}{2} \int_\Pi |X(t, x) - x|^2 dx = -\int_\Pi \text{trace}(\nabla G(\nabla_x X(t, x))^T (\nabla_x X(t, x) - I)) dx.
\]
Since $\nabla G(I) = 0$, for each $M \in M_2(\mathbb{R})$, one has
\[
\nabla G(M) = \int_0^1 \text{trace}((\nabla G(I + s(M - I) - \nabla G(I))^T (M - I)) ds \geq \int_0^1 \int_0^s \nabla^2 G(I + s(M - I) \cdot (M - I, M - I)) ds \geq \frac{1}{4}\lambda \|M - I\|_2^2.
\]
Hence
\[
\frac{d}{dt} \frac{1}{2} \int_\Pi |X(t, x) - x|^2 dx \leq -\frac{1}{4}\lambda \int_\Pi \|\nabla_x X(t, x) - I\|_2^2 dx.
\]
Since $x \mapsto X(t, x) - x$ is \mathcal{L}-periodic by property (a), we deduce from the Poincaré-Wirtinger inequality that
\[
\int_\Pi |X(t, x) - x|^2 dx \leq C_P \int_\Pi \|\nabla_x X(t, x) - I\|_2^2 dx
\]
(denoting by C_P the best constant in the Poincaré-Wirtinger inequality). Therefore
\[
\frac{d}{dt} \frac{1}{2} \int_\Pi |X(t, x) - x|^2 dx \leq -\frac{1}{4}\lambda C_P \int_\Pi |X(t, x) - x|^2 dx,
\]
so that
\begin{equation}
\int_\Pi |X(t, x) - x|^2 dx \leq e^{-C_P\lambda t/2} \int_\Pi |X^{\text{in}} - x|^2 dx.
\end{equation}

Step 3: Uniform stability.

Next we prove that the solution X of he Cauchy problem (6.6) remains close enough to the identity map so that G existence and uniqueness for the gradient flow of F by showing that, for initial data sufficiently close to the identity, it coincides with the gradient flow of G.

Assume that
\[
\|X^{\text{in}} - \text{id}\|_{W^{s,p}(\Pi)} \leq \varepsilon_0
\]
with $p > 2$ and $1 + 2/p < \sigma < 2$. By the Theorem on page 192 in [1], there exists $t_0 > 0$ such that the solution X of the Cauchy problem (6.6) satisfies\footnote{Theorem on page 192 in [1] considers solutions in bounded domains. However, this result is based on abstract results on evolution equations that apply also to the periodic case.}

$$
\|X(t, \cdot) - \text{id}\|_{W^{\sigma, \sigma}(\Pi)} \leq 2\varepsilon_0 \quad \text{for all } t \in [0, t_0].
$$

Since $(\sigma - 1)p > 2$, by Sobolev embedding on the 2-dimensional torus Π one has

\begin{equation}
\|X(t, \cdot) - \text{id}\|_{C^{1,0}(\Pi)} \leq C\varepsilon_0 \quad \text{for all } t \in [0, t_0],
\end{equation}

for some positive $\alpha \equiv \alpha(\sigma, p)$ and $C \equiv C(\alpha, \sigma, p)$.

Next consider (\hat{x}, \bar{t}) with $\bar{t} \geq t_0$, together with the parabolic cylinder

$$
Q_{t_0}(\hat{x}, \bar{t}) := \{(x, t) \in \Pi \times \mathbb{R} \text{ s.t. } t \in [\bar{t} - t_0, \bar{t}] \text{ and } |x - \hat{x}| \leq \sqrt{t_0}\}.
$$

Let us now compute

$$
\int_{Q_{t_0}(\hat{x}, \bar{t})} |X(t, x) - x|^2 \, dx \, dt \leq \int_{t - t_0}^{\bar{t}} \int_{\Pi} |X(t, x) - x|^2 \, dx \, dt.
$$

By (6.7)

$$
\int_{t - t_0}^{\bar{t}} \int_{\Pi} |X(t, x) - x|^2 \, dx \, dt \leq \int_{t - t_0}^{\bar{t}} \int_{\Pi} e^{-C_p\lambda t} \|X^{in}(x) - x\|^2 \, dx \, dt
$$

$$
\leq \frac{1}{C_p\lambda} \|X^{in} - \text{id}\|^2_2.
$$

In particular,

$$
\frac{1}{|Q_{t_0}(\hat{x}, \bar{t})|} \int_{Q_{t_0}(\hat{x}, \bar{t})} |X(t, x) - x|^2 \, dx \, dt \leq \frac{1}{C_p\pi t_0^2} \|X^{in} - \text{id}\|^2_2 \leq \frac{\varepsilon_0^2}{C_p\pi t_0^2}.
$$

Thus, in the parabolic cylinder $Q_{t_0}(\hat{x}, \bar{t})$, the map X is L^2-close to the identity map, and we seek to improve this result into a similar statement with the $C^{1,\alpha}$ space instead of L^2 topology. This is done by appealing to the local regularity theory of parabolic equations. Specifically, we apply the A-caloric approximation argument in [8]. Since t_0 is fixed and ε_0 can be chosen arbitrarily small, given any point $(\hat{x}, \bar{t}) \in Q_{t_0/2}(\hat{x}, \bar{t})$ we can apply [8, Lemma 7.3] with $M = 2$, $\rho = t_0/2$, and $\ell_\rho = 0$, to deduce that there exists a vector $\Gamma_{\hat{x}, \bar{t}} \in \mathbb{R}^2$ and a positive constant c that is independent of \hat{x} and \bar{t} such that

$$
\frac{1}{|Q_r|} \int_{Q_r(\hat{x}, \bar{t})} |\nabla X(t, x) - \Gamma_{\hat{x}, \bar{t}}|^2 \, dx \, dt \leq cr^{2\beta}, \quad \text{for all } r \in (0, t_0/4).
$$

This means that ∇X belongs to a Campanato space, which is known to coincide with the classical H"older space [7]. Thus

$$
\|\nabla X - I\|_{C^{0,\beta}(Q_{t_0/2}(\hat{x}, \bar{t}))} \leq \bar{c},
$$

with \bar{c} independent of \hat{x} and \bar{t}.

By localization, interpolation with (6.7) and Sobolev embedding, we see that

$$
\|X(t, \cdot) - \text{id}\|_{L^\infty(B(\hat{x}, \sqrt{\pi}t_0/2))} \leq C_S(\theta)\varepsilon_0^{\theta}e^{-(1-\theta)C_p\lambda t_0^{1/4}}\varepsilon_0^{-1-\theta}, \quad t \in [\bar{t} - t_0, \bar{t}].
$$
for all $\theta \in (\frac{2}{3}, 1)$, where $C_S(\theta)$ denotes the Sobolev constant for the embedding $W^{0,4/(2-\theta)}(B(\bar{x}, \sqrt{t_0}/2) \subset L^\infty(B(\bar{x}, \sqrt{t_0}/2)$. (Indeed, applying Theorem 6.4.5 (7) in [3] with $s_0 = 0$, $p_0 = 2$, $s_1 = 1$ and $p_1 = 4$ shows that

$$
\|X(t, \cdot) - \text{id}\|_{W^{0,4/(2-\theta)}(B(\bar{x}, \sqrt{t_0}/2) \leq \epsilon^\theta e^{-(1-\theta)C_P \lambda t^\theta/4} \epsilon_0^{1-\theta},
$$

and $W^{0,4/(2-\theta)}(B(\bar{x}, \sqrt{t_0}/2) \subset L^\infty(B(\bar{x}, \sqrt{t_0}/2)$ provided that $\theta > 1 - \theta/2$ by Sobolev’s embedding theorem.)

By a classical argument\(^2\)

$$
\|\nabla X(t, \cdot) - I\|_{L^\infty(B(\bar{x}, \sqrt{t_0}/2)} \leq \left(\frac{2}{\beta}\right)^{\frac{\beta}{\beta+1}} C_S(\theta) e^{\frac{\theta}{\beta+1}} e^{-(1-\theta)C_P \lambda t^\theta/4} \epsilon_0^{1-\beta}, \quad |t-\bar{t}| \leq t_0.
$$

With (6.8), this implies that, for all $t \geq 0$, one has

$$
\|\nabla X(t, \cdot) - I\|_{L^\infty(\Omega)} \leq \max \left(C\epsilon_0, \left(\frac{2}{\beta}\right)^{\frac{\beta}{\beta+1}} C_S(\theta) e^{\frac{\theta}{\beta+1}} e^{-(1-\theta)C_P \lambda t^\theta/4} \epsilon_0^{1-\beta}\right).
$$

Step 4: Conclusion.

By choosing ϵ_0 small enough, we conclude that

$$
\|\nabla X(t, \cdot) - I\|_{L^\infty(\Omega)} \leq \rho_0/2, \quad t \geq 0,
$$

so that

$$
\nabla G(\nabla_x X(t, x)) = \nabla F_0(\nabla_x X(t, x)), \quad t \geq 0, \quad x \in \Omega.
$$

Hence X satisfies

$$
\partial_t X(t, x) = \text{div}_x(\nabla F_0(\nabla_x X(t, x)), \quad t > 0, \quad x \in \Omega.
$$

On the other hand, (6.2) implies that

$$
(\nabla F(M) - \nabla F_0(M)) \cdot N = \frac{1}{8\sqrt{3}} \text{trace}(N) + \frac{7}{24\sqrt{3}} \det(M) \text{trace}(M^{-1}N)
$$

so that

$$
\nabla F(\nabla_x X(t, x)) - \nabla F_0(\nabla_x X(t, x)) = \frac{1}{8\sqrt{3}} I + \frac{7}{24\sqrt{3}} JX(t, x)(\nabla_x X(t, x)^{-1})^T.
$$

Since

$$
JX(\nabla_x X^{-1})^T = \begin{pmatrix} \partial X_2/\partial x_2 & -\partial X_2/\partial x_1 \\ -\partial X_1/\partial x_2 & \partial X_1/\partial x_1 \end{pmatrix}
$$

one has \text{div}_x(JX(\nabla_x X^{-1})^T) = 0, so that

$$
\text{div}_x(\nabla F(\nabla_x X(t, x))) = \text{div}_x(\nabla F_0(\nabla_x X(t, x))).
$$

In other words, X is in fact the solution of (6.1).

Finally, for each $\theta \in (\frac{2}{3}, 1)$, one has

$$
|X(t, \bar{x}) - \text{id}| \leq \max(2, C_S(\theta) e^{\theta} e^{-(1-\theta)C_P \lambda t^\theta/4} \epsilon_0^{1-\theta}), \quad t > 0,
$$

\(^2\)Let $f \in C^{1,\beta}(B(0, R))$ for some $\beta \in (0, 1)$. Then

$$
\|\nabla f\|_{L^\infty(B(0, R))} \leq \left(\frac{2}{\beta}\right)^{\frac{\beta}{\beta+1}} \|f\|_{C^{1,\beta}(B(0, R))}^{1/(\beta+1)} \|f\|_{L^\infty(B(0, R))}^{\beta/(\beta+1)}.
$$

Indeed, by the Mean Value Theorem

$$
f(x+h) - f(x) = \nabla f(x) \cdot h + (\nabla f(x+h) - \nabla f(x)) \cdot h
$$

for some $s \in (0, 1)$, so that

$$
|\nabla f(x)| \leq \frac{2\|f\|_{L^\infty(B(0, R))}}{|h|} + |h|^{1+\beta}\|\nabla f\|_{C^{0,\beta}(B(0, R))}.
$$

Optimizing in $|h|$ leads to the conclusion.
and the proof is complete.

Acknowledgments: The first author is grateful to Riccardo Salvati Manni for useful discussions on section 5. The third author is grateful to Giuseppe Mingione for useful suggestions about regularity theory. Moreover, the third author would like to acknowledge the L’Oréal Foundation for partially supporting this project by awarding the author with the L’Oréal-UNESCO For Women in Science France fellowship.

REFERENCES

[1] H. Amann; Quasilinear evolution equations and parabolic systems Trans. Amer. Math. Soc. 293 (1986), no. 1, 191–227
[2] L. Ambrosio, N. Gigli, and G. Savaré; Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.
[3] J. Bergh, J. Löfström; Interpolation Spaces. An Introduction. Springer-Verlag, Berlin, Heidelberg, 1976.
[4] J. Bucklew and G. Wise; Multidimensional Asymptotic Quantization Theory with r-th Power Distortion Measures. IEEE Inform. Theory 28 (2) (1982), 239–247.
[5] E. Caglioti, F. Golse, M. Iacobelli; A gradient flow approach to quantization of measures. Math. Models Methods Appl. Sci. 25 (2015), 1845–1885.
[6] R.E. Caflisch; Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7 (1998), 1–49.
[7] S. Campanato; Proprietà di holderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 175–188.
[8] F. Duzaar, G. Mingione; Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 705–751.
[9] G. Fejes Tóth; Lagerungen in der Ebene, auf der Kugel und im Raum. Springer-Verlag, Berlin, 1953, 2nd ed. 1972.
[10] A. Gersho, R. M. Gray; Vector Quantization and Signal Processing. The Springer International Series in Engineering and Computer Science 1. Springer, New York, 1992.
[11] P. M. Gruber; Optimal configurations of finite sets in Riemannian S-manifolds. Geom. Dedicata 84 (2001), no. 1-3, 271–320.
[12] S. Graf, H. Luschgy; Foundations of Quantization for Probability Distributions. Lecture Notes in Math. 1730, Springer-Verlag, Berlin Heidelberg, 2000.
[13] M. Iacobelli; Asymptotic quantization for probability measures on Riemannian manifolds. ESAIM Control Optim. Calc. Var., to appear.
[14] F. Morgan, R. Bolton; Hexagonal economic regions solve the location problem. Amer. Math. Monthly 109 (2002), 165–172.
[15] G. Pagès, H. Pham and J. Printems; Optimal quantization methods and applications to numerical problems in finance. Handbook on Numerical Methods in Finance 253–298. Birkhäuser, Boston, 2004.
[16] C. Villani. Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58 American Mathematical Society, Providence, RI, 2003.