Epidemiology and virulence-associated genes of Clostridioides difficile isolates and factors associated with toxin EIA results at a university hospital in Japan

Yuta Okada¹, Yuka Yagihara², Yoshitaka Wakebayaishi¹, Gene Igawa³, Ryoichi Saito³, Yoshimi Higurashi², Mahoko Ikeda², Keita Tatsuno², Shu Okugawa¹,* and Kyoji Moriya¹,²

Abstract

Introduction. Clostridioides difficile is one of the most important nosocomial pathogens; however, reports regarding its clinical and molecular characteristics from Japan are scarce.

Aims. We studied the multilocus sequence typing (MLST)-based epidemiology and virulence-associated genes of isolates and the clinical backgrounds of patients from whom the isolates had been recovered.

Methods. A total of 105 stool samples tested in a C. difficile toxin enzyme immune assay (EIA) were analysed at the University of Tokyo Hospital from March 2013 to July 2014. PCR for MLST and the virulence-associated genes tcdA, tcdB, cdtA, cdtB and tcdC was performed on C. difficile isolates meeting our inclusion criteria following retrospective review of medical records. EIA-positive and EIA-negative groups with toxigenic strains underwent clinical and molecular background comparison.

Results. The toxigenic strains ST17, ST81, ST2, ST54, ST8, ST37 and ST53 and the non-toxigenic strains ST109, ST15 and ST100 were frequently recovered. The prevalence rate of tcdA-negative ST81 and ST37, endemic in China and Korea, was higher (11.4%) than that reported in North America and Europe, and hypervirulent ST1(RT027) and ST11(RT078) strains that occur in North America and Europe were not recovered. The linkage between the EIA results and cdt A/B positivity, tcdC deletion, or tcdA variation was absent among toxigenic strains. Compared with the 38 EIA-negative cases, the 36 EIA-positive cases showed that the patients in EIA-positive cases were older and more frequently had chronic kidney disease, as well as a history of beta-lactam use and proton pump inhibitor therapy.

Conclusion. In Japan, the prevalence rates for tcdA-negative strains are high, whereas the cdtA/B-positive strains are rare. EIA positivity is linked to older age, chronic kidney disease and the use of beta-lactams and proton pump inhibitors.

INTRODUCTION

Clostridioides difficile is an obligate anaerobic, spore-forming, Gram-positive bacterium that causes a range of gastrointestinal syndromes, from mild diarrhoea to severe pseudomembranous colitis, lethal toxic megacolon and sepsis. C. difficile infection (CDI) was reported for the first time in 1978 as a separate clinical entity caused by C. difficile [1]. Currently, CDI is widely recognized as one of the most critical healthcare-associated infections (HAI) linked to exposure to antibiotics. CDI causes significant morbidity and mortality [2, 3]. In the USA and Europe around 15 and 6% of the HAIs are reported to be CDI, respectively [3].

The clinical symptoms of CDI are widely believed to be caused by bacterial toxins, and most pathogenic strains of C. difficile produce both toxin A (TcdA) and toxin B (TcdB). The genes tcdA and tcdB in the ‘PaLoc’ genomic region encode TcdA and TcdB, respectively, and some strains also produce ‘binary toxins’ (CDT) encoded by cdtA and cdtB genes in the CdtLoc
genomic region [4–6]. Pathogenicity is generally defined by the presence of both tcdA and tcdB genes, but there are some exceptions to this relationship because pathogenicity has also been reported for strains with tcdA deletion and those producing only TcdB or CDT [7–9]. Other toxin-related genes, such as tcdC, tcdE and tcdR in the PaLoc region, are also thought to be involved in the regulation of toxin A and toxin B production, and the coexistence of deletions in the tcdC and binary toxin productivity has been reported [10–14]. Since the emergence of hypervirulent strains such as NAP1/RT027 and RT078 producing CDT, the generation of CDT has been strongly associated with increased morbidity, mortality and recurrence rates [13, 15–17]. The circulation of strains with various levels of toxigenicity has been reported worldwide, and trends differ between geographical regions [18–20].

In microbiological epidemiology studies, PCR ribotyping has historically been the more widely used method, but multilocus sequence typing (MLST) has increasingly been recognized as an equally useful molecular typing method with some advantages over PCR ribotyping in terms of ease of interpretation and the lower interlaboratory variability of test results [21]. Kuwata et al. performed the first microbiological epidemiology study using MLST. However, they did not examine the link between microbiological epidemiology and clinical information [22].

On the basis of this background and with the aim of adding to the few reports on the microbiological epidemiology of C. difficile in Japan, we investigated the toxigenicity and MLST-based epidemiology of clinical C. difficile isolates and analysed the clinical and microbiological backgrounds by comparing C. difficile toxin enzyme immunoassay (EIA)-positive and EIA-negative cases in a leading university hospital in Japan.

METHODS

Study design

Molecular genetic analysis of C. difficile isolates recovered from stool samples and tested in the EIA between March 2013 and July 2014 at the University of Tokyo Hospital was conducted. In addition, we performed a retrospective analysis of clinical information in electronic medical records of the patients from whom C. difficile isolates were collected. C. difficile from a previous positive culture in the same diarrhoeal episode and patients without a confirmed record of a diarrhoeal episode or EIA result were excluded. Isolates from patients younger than 18 years old were also excluded due to the possibility of adult and paediatric CDIs having different characteristics [23]. This study was approved by the institutional Ethics Committee.

Isolation of C. difficile strains

During the study period, stool samples submitted to the microbiology laboratory for EIA (C. Diff Quik Chek Complete, TechLab, Inc., Blacksburg, VA, USA) were also anaerobically cultured on cycloserine–cefoxitin–mannitol agar plates (Nissui Pharmaceutical, Co., Ltd, Tokyo, Japan) without any enrichment to enhance bacterial yield for the isolation of C. difficile. Anaerobic culturing was performed at 37 °C for >24 h. C. difficile isolates were identified by colony morphology on agar media and later confirmed by the assessment of the expression of several housekeeping genes as part of the MLST process. Colonies on agar media were routinely inoculated into skim milk and stored at −80 °C.

Molecular assessment of C. difficile isolates

C. difficile colonies on culture agar were inoculated into sterile water and then boiled at 95 °C for 10 min to make DNA templates for subsequent PCR with an Emerald Amp PCR Master Mix kit (Takara Bio, Shiga, Japan). MLST and toxin gene analyses (tcdA, tcdB, tcdC, cdtA, cdtB) were performed using primers described in previous reports (Table 1) [22, 24–26]. As part of the MLST and tcdC analyses, the PCR amplicon underwent DNA sequencing, and the genomic sequence data of the PaLoc region of the C. difficile strain VPI 10463 (GenBank accession number: X92982.1) was used as reference data to detect the presence of tcdC deletion. Sequence types (STs) were determined based on DNA sequencing data using the PubMLST sequence query page (https://pubmlst.org/C.difficile/).

Definition and analyses of clinical cases

The medical records of all the patients tested for the toxin by the EIA test were reviewed. Patients without episodes of unformed stool on electronic clinical records and those younger than 18 years old at the time of testing were excluded. Cases whose anaerobic stool cultures were negative for C. difficile were also excluded, and available C. difficile isolates were used for further molecular analysis. The clinical parameters retrieved for analysis in our study were age, sex, dates of admission and discharge if hospitalized, clinical outcome including death, length of hospitalization at EIA testing, antibiotic administration within 1 month prior to stool testing, presence of comorbidities such as diabetes mellitus, chronic kidney disease, malignancy, chemotherapy within 1 month, neutropenia (<500 µl−1), daily use of immunosuppressive agents within 1 week, history of abdominal surgery, tube feeding status, and daily use of probiotics and proton pump inhibitors. White blood cell counts and serum creatinine [on the day EIA stool sample submitted if available; if not, on the closest (≤2) day after the EIA test], as well as vital signs, were also reviewed to score severity based on the definition of severity in the initial episodes of C. difficile infection shown in the Infectious Diseases Society of America (IDSA) clinical practice guidelines for CDI management, updated in 2017: cases with hypotension, shock, ileus, megacolon were labelled as fulminant cases, and cases with white blood cell counts ≥15,000 µl−1 or serum creatinine levels >1.5 mg dl−1 were labelled as severe cases [27]. Cases not labelled as fulminant or severe were categorized as non-severe. Clinical information for the EIA-positive and EIA-negative groups was compared, and the clinical backgrounds, outcomes and toxigenicity of the C. difficile isolates from the EIA-positive
group were integrated with clinical information and underwent statistical analysis.

Statistical analysis

Statistical analysis was performed using JMP software (JMP Pro 14, SAS Institute Japan, Tokyo, Japan). For categorical data and discrete measurement data analyses, the chi-squared test and Wilcoxon test were used, respectively. The Kaplan–Meier estimate was tested using the log-rank test to analyse potential differences in mortality rates between the groups. All statistical analyses were conducted with a significance level of α=0.05 (P<0.05).

RESULTS

Inclusion criteria of C. difficile isolates and clinical cases

A total of 105 C. difficile isolates from the same number of clinical cases were included in this study after our inclusion criteria had been applied. The 105 isolates underwent MLST.
Table 2. Molecular characteristics and genetic profile of isolated *C. difficile* strains

Sequence types	Clade	No. of samples	tcdA	tcdB	cdtA/B	tcdC deletion
ST17	1	12	+	+	−	No
ST81	4	9	−	+	−	No
ST2	1	7	+	+	−	No
ST15	1	7	NT	NT	NT	NT
ST54	1	7	+	+	−	No
ST109	4	7	NT	NT	NT	NT
ST8	1	4	+	+	−	No
ST3	1	4	+(n=3)	+(n=3)	−	No
ST100	1	4	NT	NT	NT	NT
ST37	4	3	−	+	−	No
ST53	1	3	+	+	−	No
ST35	1	2	+	+	−	No
ST55	1	2	+	+	−	No
ST14	1	2	+	+	−	No
ST5	3	1	+	+	+	54bp del
ST17	1	1	+	+	−	No
ST26	1	1	NT	NT	NT	NT
ST28	1	1	NT	NT	NT	NT
ST33	1	1	+	+	−	No
ST41	2	1	+	+	+	18bp del
ST42	1	1	+	+	−	No
ST48	1	1	+	+	−	No
ST58	1	1	+	+	−	No
ST63	1	1	+	+	−	No
ST123	2	1	+	+	+	18bp del
ST129	1	1	+	+	−	No
ST153	1	1	+	+	−	No
ST159	4	1	NT	NT	NT	NT
ST201	3	1	+	+	+	18bp del
ST205	1	1	NT	NT	NT	NT
ST223	2	1	+	+	+	18bp del
ST243	4	1	NT	NT	NT	NT
ST247	1	1	+	+	−	No
ST278	1	1	+	+	−	No
ST301	1	1	+	+	−	18bp del
ST303	Unknown	1	NT	NT	NT	NT
ST304	Unknown	1	+	+	−	No

Continued
and PCRs aimed at virulence-associated genes (tcdA/tcdB, cdtA/B, tcdC deletion). Of the 105 cases that met our inclusion criteria, 74 cases with toxigenic C. difficile in stool samples were divided into EIA-positive (n=36) and EIA-negative (n=38) groups, and comparative analysis between the two groups was performed.

Microbiological epidemiology of C. difficile isolates

Information about ST distribution, identified clades and toxin gene presence is shown in Table 2. ST17 (n=12), ST81 (n=9), ST2・ST15・ST54・ST109 (n=7) and ST8・ST3・ST100 (n=4) were the most prevalent STs. Clade analysis that is commonly used to view clustering of STs with similar characteristics revealed that clade 1 strains were the most prevalent (n=72), followed by those of clade 4 (n=24). Fewer strains belonged to clades 2 and 3, and some strains could not be categorized by the data available on PubMLST. Major STs belonging to each clade are highlighted in Table 3. The proportions of isolates from EIA-positive and EIA-negative cases are also shown for commonly isolated STs in Table 4.

Relationships between toxigenicity, cdtA/B, tcdA variation and tcdC deletion with ST

As shown in Table 2, out of the 105 isolates studied, 74 were toxigenic and 31 were non-toxigenic. All toxigenic strains were confirmed to possess the tcdC gene, whereas non-toxigenic strains did not express it. The presence of cdtA/ cdtB genes, tcdA deletions and tcdC deletions was confirmed in 5, 12 and 6 isolates, respectively. Of the six isolates with the tcdC deletion, five were cdtA/cdtB-positive, whereas one was tcdA+tcdB+ and cdtA/B-negative. Except for ST3, no discrepancy in toxin gene patterns was observed between isolates in the same ST. In ST3, three isolates were toxigenic strains, whereas one isolate was non-toxigenic.

Toxin EIA test results and tcdC deletion, binary toxin and toxin A variation

A total of 74 clinical cases were confirmed to be toxigenic, and the toxin EIA test was positive in 36 cases and negative in 38 cases. The most frequently found strains in the EIA-positive and EIA-negative groups are listed in Table 4. No significant differences between the two groups regarding the prevalence rates of tcdA-negative variants, cdtA/B-positive
strains and strains with \textit{tdcC} deletion in the EIA-positive and EIA-negative groups were found (Table 5).

\textbf{Comparison of clinical background between EIA-positive and EIA-negative patients}

Of the 74 clinical cases finally included in our clinical analysis, 36 cases were EIA-positive and 38 cases were EIA-negative. The EIA-positive patients were slightly but significantly older than the EIA-negative patients (71.8±12.4 vs 62.4±17.6 years, \(P=0.0106\)) and were significantly more frequently in the hospital for 3 days or longer (97.2% vs 79.9%, \(P=0.0162\)), while a significantly higher proportion of patients in the EIA-positive group had chronic kidney disease (41.7% vs 18.4%, \(P=0.0288\)). The proportion of patients who had used antibiotics within 30 days of the EIA test (100% vs 89.5%, \(P=0.0453\)), and beta-lactams in particular (100% vs 78.9%, \(P=0.0097\)), was also higher in the EIA-positive group than in the EIA-negative group. The proportion of patients who were on a proton pump inhibitor within 1 week before the EIA stool testing date was also higher in the EIA-positive group than in the EIA-negative group (83.3% vs 62.2%, \(P=0.0426\)).

The other clinical factors analysed in our study did not differ significantly between these groups. A complete list of the clinical factors analysed in this study is provided in Table 6.

\textbf{DISCUSSION}

\textbf{Microbiological epidemiology and virulence-associated genes}

This study is one of the most thorough microbiological analyses of the epidemiology and virulence factors of \textit{C. difficile} isolates in Japan, and also provides an insight into the clinical background of cases from which \textit{C. difficile} were isolated through comparisons based on toxin presence revealed by EIA.

Epidemiological analysis of the \textit{C. difficile} isolates in our study is essential as MLST-based reports from Japan are scarce. Our study results are consistent with those from previous studies reporting that ST17 (corresponding to RT018), ST2 and ST54 are prevalent strains in Japan [22, 28–30]. The relatively high prevalence rates for \textit{tcdA-negative/tcdB-positive} strains ST81 and ST37 in our study is in the range of previously reported prevalence rates of 10–30% in Asian countries, including China and Korea [31–34], and higher than that reported in non-Asian regions, where only rare outbreaks of \textit{tcdA-negative/tcdB-positive} strains have been reported [35, 36]. In the USA and Europe, the fractions of \textit{tcdA-negative/tcdB-positive} strains recovered from clinical stool samples were reported to be less than 3–5%, respectively [19, 37].

The rarity of binary toxin-producing strains, including ST1(RT027) or ST11(RT078) in our study, is consistent with reports from Japan’s neighbouring countries showing the same tendency compared with North America or Europe [22, 31–34]. The binary toxin-producing ST41, ST123 and ST223 strains in our study are also reported to cause severe CDI [25, 38]. In previous reports, it was also shown that these strains share \textit{cdaA/B}, 18 bp deletion in \textit{tcdC} and fluoroquinolone resistance with the ST1/RT027 strain in the same clade (2) [25, 38–40], but differences between these strains and the ST1/RT027 strain, such as the structure and cytotoxicity of TcdB and toxin productivity, have also been reported [38, 41]. An outbreak of these strains may have a significant impact in countries where ST1/RT027 strains are rarely found, and further insight into the pathogenicity of these strains is warranted.

With respect to non-toxigenic strains, the relatively high prevalence rate of non-toxigenic strains ST15, ST109 and ST100 was consistent with a previous study performed in Japan [22]. Non-toxigenic strains are of interest because there are reports concerning the protective effect of colonization by non-toxigenic strains against CDI [42], and some preclinical and clinical studies have shown that the administration of certain selected non-toxigenic \textit{C. difficile} strains could play a defensive role against CDI development [43–46]. Our epidemiological data on non-toxigenic strains may contribute to future treatment or prevention measures against CDI.

The discrepancy in toxigenicity is known to be observed among isolates in the same strain, and the discrepancy in toxigenicity in ST3 in our study was also shown previously [33]. Other strains, including ST109 and ST100, have also been shown to encompass both toxigenic and non-toxigenic strains [47, 48], and this issue warrants further evolutionary study [49].

\textbf{Comparison of EIA-positive and EIA-negative groups}

Comparison between EIA-positive and EIA-negative cases was performed as in daily practice. Our hospital and many other hospitals utilize EIA test results for CDI diagnosis and management. Previous studies have shown that EIA positivity is positively linked to the presence of \textit{cdaA/B} [50, 51] and \textit{tdcC} deletion [52]. However, given the limited statistical power of our study, we could only suggest that \textit{cdaA/B} positivity correlates with EIA positivity. The proportion of \textit{tcdA-negative} isolates was not significantly different between the two groups, which is consistent with previous findings [33, 53].

The comparison between the EIA-positive and EIA-negative groups highlighted advanced age, hospital stay of longer than 3 days, chronic kidney disease, and use of beta-lactam

\begin{table}
\centering
\caption{EIA positivity and prevalence of \textit{cdaA/B}, \textit{tdcC} deletion and \textit{tcdA} variant in \textit{C. difficile} isolates}
\begin{tabular}{|c|c|c|c|}
\hline
 & EIA-positive (n=36) & EIA-negative (n=38) & \textbf{\textit{P}} value \\
\hline
\textit{cdaA/B} & 5 (13.9%) & 1 (2.6%) & 0.0762 \\
\textit{tdcC} deletion & 4 (11.1%) & 2 (5.3%) & 0.3570 \\
(18 or 54 bp) & & & \\
\textit{tcdA} variant & 3 (8.3%) & 9 (23.7%) & 0.0734 \\
\hline
\end{tabular}
\end{table}
antibiotics and proton pump inhibitors as factors that correlated with the positive EIA result. These factors are reportedly recognized as critical elements that increase the risk of CDI development [54–58]. Although seemingly contradicting the results of two previous studies [59, 60], in our study, the history of probiotic use was not linked to a higher rate of EIA-positive results.

Limitation

The small number of clinical cases (partly due to the exclusion of paediatric cases) and the limited availability of *C. difficile* isolates due to the nature of our single institution-based study are the limitations of our study.

Conclusion

Our study makes a significant contribution to the field as one of the first MLST-based epidemiological studies performed in Japan. The relatively high prevalence of toxin A-negative/B-positive strains and the low prevalence of hypervirulent binary toxin-producing strains observed in this study were similar to the epidemiological data reported in previous studies in Japan. Older age, recent use of beta-lactam antibiotics and proton pump inhibitors, and more prolonged hospitalization in the EIA-positive group were demonstrated in our study, whereas no correlations between EIA positivity and microbiological virulence-associated factors were found.
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Acknowledgements
This work was presented in part at the ASHMicrobe 2019, June 20–24, 2019, in San Francisco, CA, USA. We would like to thank Editage (www.editage.jp) for English language editing.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
This study was approved by the Institutional Ethics Committee (number 3538). The requirement for written informed consent was waived, due to the observational retrospective nature of the study.

References
1. Bartlett JG, Chang TW, Gurwitz M, Gorbach SL, Onderdonk AB. Antibiotic-Associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med 1978;298:531–534.
2. Cassini A, Plachouras D, Eckmanns T, Abu Sin M, Blank HP et al. Burden of six healthcare-associated infections on European population health: estimating incidence-based Disability-Adjusted life years through a population Prevalence-Based modelling study. PLoS Med 2016;13:e1002150.
3. Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med 2018;379:1732–1744.
4. Braun V, Hundsberger T, Leukel P, Sauerborn M, von Eichel-Streiber C. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 1996;181:29–38.
5. Carter GP, Lytras D, Allen DL, Mackin KE, Howarth PM et al. Binary toxin production in Clostridium difficile is regulated by cdtR, a LytTR family response regulator. J Bacteriol 2007;189:7290–7301.
6. Popoff MR, Rubin EJ, Gill DM, Boquet P. Actin-Specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infection and immunity 1988;56:2299–2306.
7. Drudy D, Fanning S, Kyne L. Toxin A-negative, toxin B-positive Clostridium difficile. Int J Infect Dis 2007;11:5–10.
8. Eckert C, Emirian A, Le Monnier A, Cathala L, De Montcollo H et al. Prevalence and pathogenicity of binary toxin-positive Clostridium difficile strains that do not produce toxins A and B. New Microbes New Infect 2015;3:12–17.
9. King AM, Mackin KE, Lyras D. Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations. Future Microbiol 2015;10:1–4.
10. Govind R, Dupuy B. Secretion of Clostridium difficile toxins A and B requires the Holin-like protein TcdE. PLoS Pathog 2012;8:e1002727.
11. Mani N, Dupuy B. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci USA 2001;98:5844–5849.
12. Matamoros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator tcdC. Mol Microbiol 2007;64:1274–1288.
13. McDonald LC, Killgore GE, Thompson A, Owens RC, Kazakova SV et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 2005;353:2433–2441.
14. Stare BG, Delmee M, Rupnik M. Variant forms of the binary toxin CDT locus and tcdC gene in Clostridium difficile strains. J Med Microbiol 2007;56:329–335.
15. Bacci S, Melbak K, Kjeldsen MK, Olsen KEP. Binary Toxin and Death after Clostridium difficile Infection. Emerg Infect Dis 2011;17:976–982.
16. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD et al. A Predominantly Clonal Multi-Institutional Outbreak of Clostridium difficile—Associated Diarrhea with High Morbidity and Mortality. N Engl J Med Overseas Ed 2006;353:2442–2449.

17. Warzy M, Pepin J, Fang A, Killgore G, Thompson A et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. The Lancet 2005;366:1079–1084.
18. Collins DA, Hawkey PM, Riley TV. Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control 2013;2:21.
19. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL et al. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhea (EUCLID), 2012 and 2013. Euro Surveill. 2016;21.
20. Tickler IA, Goering RV, Whitmore JD, Lynn ANW, Persing DH et al. Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob Agents Chemother 2014;58:4214–4218.
21. Knetsch CW, Lawley TD, Hensgens MP, Corver J, Wilcox MW et al. Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Eurosurveillance 2013;18:20381.
22. Kuwata Y, Tanimoto S, Sawabe E, Shima M, Takahashi Y et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a university teaching hospital in Japan. Eur J Clin Microbiol Infect Dis 2015;34:763–772.
23. McFarland LV, Ozen M, Dinleyici EC, Goh S. Comparison of pediatric and adult antibiotic-associated diarrhea and Clostridium difficile infections. World J Gastroenterol 2016;22:3078–3104.
24. Persson S, Torpdahl M, Olsen KE. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect 2008;14:1057–1064.
25. Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW et al. Multilocus Sequence Typing of Clostridium difficile. J Clin Microbiol 2010;48:770–778.
26. Kato N, Ou CY, Kato H, Bartley SL, Brown VK et al. Identification of toxigenic Clostridium difficile by the polymerase chain reaction. J Clin Microbiol 1991;29:33–37.
27. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the infectious diseases Society of America (IDSA) and Society for healthcare epidemiology of America (Shea). Clin Infect Dis 2018;66:e1–e48.
28. Iwashima Y, Nakamura A, Kato H, Kato H, Wakimoto Y et al. A retrospective study of the epidemiology of Clostridium difficile infection at a university hospital in Japan: genotypic features of the isolates and clinical characteristics of the patients. J Infect Chemother 2010;16:329–333.
29. Kato H, Kato N, Watanabe K, Yamamoto T, Suzuki K et al. Analysis of Clostridium difficile isolates from nosocomial outbreaks at three hospitals in diverse areas of Japan. J Clin Microbiol 2001;39:1391–1395.
30. Sawabe E, Kato H, Osawa K, Chida T, Tojo N et al. Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period. Eur J Clin Microbiol Infect Dis 2007;26:695–703.
31. Chen Y-B, Gu S-L, Shen P, Lv T, Fang Y-H et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. J Med Microbiol 2018;67:52–59.
32. Kim J, Kang JO, Kim H, Seo M-R, Choi TY et al. Epidemiology of Clostridium difficile infections in a tertiary-care hospital in Korea. Clin Microbiol Infect 2013;19:521–527.
33. Luo Y, Zhang W, Cheng JW, Xiao M, Sun GR et al. Molecular epidemiology of Clostridium difficile in two tertiary care hospitals in Shandong Province, China. Infect Drug Resist 2018;11:489–500.
34. Wang B, Lv Z, Zhang P, Su J. Molecular epidemiology and antimicrobial susceptibility of human Clostridium difficile isolates from a single institution in northern China. Medicine 2018;97:e11219.
35. Alfa MJ, Kabani A, Lyerly D, Moncrief S, Neville LM et al. Characterization of a toxin A-negative, toxin B-positive strain of *Clostridium difficile* responsible for a nosocomial outbreak of *Clostridium difficile*-associated diarrhea. J Clin Microbiol 2000;38:2706–2714.

36. Drudy D, Harney N, Fanning S, Hannan M, Kyne L. Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive *Clostridium difficile*. Infect Control Hosp Epidemiol 2007;28:932–940.

37. Lessa FC, Yu Y, Bamberg WM, Beldavs ZG, Dumyati GK et al. Burden of *Clostridium difficile* infection in the United States. N Engl J Med 2015;372:2751–2759.

38. Quesada-Gómez D, de Oliveira Assis T, Ribeiro RA, Silva ROS et al. A MLST clade 2 *Clostridium difficile* strain with a variant tcdB induces severe inflammatory and oxidative response associated with mucosal disruption. Anaerobe 2016;40:76–84.

39. Lim SK, Stuart RL, Mackin KE, Carter GP, Kotsanas D et al. Emergence of a ribotype 244 strain of *Clostridium difficile* associated with severe disease and related to the epidemic ribotype 027 strain. Clin Infect Dis 2014;58:1723–1730.

40. Wehrhahn MC, Keighley C, Kurtovic J, Knight DR, Hong S et al. A series of three cases of severe *Clostridium difficile* infection in Australia associated with a binary toxin producing clade 2 ribotype 251 strain. Anaerobe 2019;55:117–123.

41. Quesada-Gómez D, López-Ureña D, de Oliveira Assis T, Ribeiro RA, Silva ROS et al. Analysis of tcdB proteins within the hypervirulent clade 2 reveals an impact of RhoA glycosylation on *Clostridium difficile* proinflammatory activities. Infect Immun 2016;84:856–865.

42. Shim JK, Johnson S, Samore MH, Bliss DZ, Gerding DN. Primary symptomless colonisation by *Clostridium difficile* and decreased risk of subsequent diarrhoea. The Lancet 1998;351:633–636.

43. Gerding DN, Meyer T, Lee C, Cohen SH, Murthy UK et al. Administration of spores of nonoxigenic *Clostridium difficile* strain M3 for prevention of recurrent *C. difficile* infection: a randomized clinical trial. Jama 2015;313:1719–1727.

44. Nagaro KJ, Phillips ST, Cheknis AK, Sambol SP, Zukowski WE et al. Nonoxigenic *Clostridium difficile* protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile. Antimicrob Agents Chemother 2013;57:5266–5270.

45. Sambol SP, Merrigan MM, Tang JK, Johnson S, Gerding DN. Colonization for the Prevention of *Clostridium difficile* Disease in Hamsters. J Infect Dis 2002;186:1781–1789.

46. Villano SA, Seiberting M, Tatarowicz W, Monnot-Chase L, Gerding DN. Evaluation of an oral suspension of VP20621, spores of nonoxigenic *Clostridium difficile* strain M3, in healthy subjects. Antimicrob Agents Chemother 2012;56:5224–5229.

47. Chen Y-B, Gu S-L, Wei Z-Q, Shen P, Hong H-S et al. Molecular epidemiology of *Clostridium difficile* in a tertiary hospital of China. J Med Microbiol 2014;63:562–569.

48. Wang R, Suo L, Chen HC, Song LJ, Shen YY et al. Molecular epidemiology and antimicrobial susceptibility of *Clostridium difficile* isolated from the Chinese people’s liberation army General Hospital in China. Int J Infect Dis 2018;67:86–91.

49. Dingle KE, Griffiths D, Didelot X, Evans J, Vaughan A et al. Clinical *Clostridium difficile*: clonality and pathogenicity locus diversity. PLoS One 2011;6:e19993.

50. Dubberke ER, Reske KA, Hink T, Kwon JH, Cass C et al. *Clostridium difficile* colonization among patients with clinically significant diarrhea and no identifiable cause of diarrhea. Infect Control Hosp Epidemiol 2018;39:1330–1333.

51. Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL et al. Overdiagnosis of *Clostridium difficile* Infection in the Molecular Test Era. JAMA Intern Med 2015;175:1792–1801.

52. Goldenberg BD, French GL. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic *Clostridium difficile*. J Infect 2011;62:355–362.

53. Kawada M, Annaka M, Kato H, Shibasaki S, Hikosaka K et al. Evaluation of a simultaneous detection kit for the glutamate dehydrogenase antigen and toxin A/B in feces for diagnosis of *Clostridium difficile* infection. J Infect Chemother 2011;17:807–811.

54. Hensgens MPM, Goorhuis A, Dekkers OM, Kuijper EJ. Time interval of increased risk for *Clostridium difficile* infection after exposure to antibiotics. J Antimicrob Chemother 2012;67:742–748.

55. Humphries RM, Uslan DZ, Rubin Z. Performance of *Clostridium difficile* toxin enzyme immunoassay and nucleic acid amplification tests stratified by patient disease severity. J Clin Microbiol 2013;51:869–873.

56. Loo VG, Bourgault A-M, Poirier L, Lamothé F, Michaud S et al. Host and pathogen factors for *Clostridium difficile* infection and colonization. N Engl J Med 2011;365:1693–1703.

57. Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K et al. A large outbreak of *Clostridium difficile* —associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol 2005;26:273–280.

58. Rao K, Micic D, Natarajan M, Winters S, Kiel MJ et al. *Clostridium difficile* ribotype 027: relationship to age, detectability of toxins A or B in stool with rapid testing, severe infection, and mortality. Clin Infect Dis 2015;61:233–241.

59. Lau CS, Chamberlain RS. Probiotics are effective at preventing *Clostridium difficile*-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med 2016;9:27–37.

60. Shen NT, Maw A, Tmanova LL, Pino A, Ancy K et al. Timely use of probiotics in hospitalized adults prevents *Clostridium difficile* infection: a systematic review with meta-regression analysis. Gastroenterology 2017;152:e1889:1889–1900.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.