SYNTHESIS OF ANTIBACTERIAL ACTIVE SUBSTANCES 1-METHYL-2-PHENYL/O-TOLYL-6-SUBSTITUTEDPHENYL 1H-BENZO[d]-IMIDAZOLE DERIVATIVES

Havale Shrikant Hanumantappa¹,², Bhavani Singh¹, Dharma Kishore¹, S. Venkat Rao² and Jaya Dwivedi¹
¹Department of Chemistry Banasthali Vidyapith, Banasthali, Rajasthan, India-304022
²Department of Chemistry, SMS Research Center (A DSIR approved Facility), SMS Pharmaceuticals Ltd; Hyderabad, Telangana, India 500043
*Corresponding Author: shrikanthavale@yahoo.com

ABSTRACT
A novel series of 1-methyl-2,6-diphenylbenzoimidazole and 1-methyl-phenyl(o-tolyl)benzo[d]imidazole derivatives were synthesized from 4-bromobenzene-1,2-diamine and benzoic acid using palladium (II) acetate. The synthesized compounds were evaluated for their anti-bacterial activity against Gram-positive S. aureus and Gram-negative E. coli bacteria by using broth-dilution method.

Keywords: Synthesis, Characterization, Suzuki coupling, Biology, Antibacterial Activity.

INTRODUCTION

The formation of new carbon-carbon bond is of central importance in organic chemistry and is pre-requisite for all life on earth.¹ Heterocyclic nucleus, such as the pyrrole, indole, imidazole, pyrimidine, pyridine, quinazoline, quinoline carbazole, are most ubiquitous structural motifs which have consistently proven to be the valuable privileged scaffolds for drug discovery and developmental efforts in pharmaceutical industries.²,³ The palladium catalyzed Carbon-Carbon bond forming reactions which the aryl boronic acids (or esters) undergo through Suzuki-Miyaura coupling (1979) with triflates, alkenyl and aryl halides have emerged as the reaction of a widespread application in organic synthesis. Its attraction lies in the fact that in this process the competitive homo coupling of the aryl halide is usually minimal. Over the years the Suzuki cross coupling reaction has established into a very powerful and simple method for the formation of carbon-carbon bonds.⁴,⁵ In last few decades, the imidazole moiety has attracted the researchers and scientist around the globe, due to its high potential biological and chemical properties.⁶,⁷ Imidazoles are interesting group of heterocyclic compound having diverse biological activities such as antimicrobial,⁸,⁹ antibacterial,¹⁰,¹¹ anticancer,¹²-¹⁵ analgesic and anti-inflammatory,¹⁶-¹⁷ antiviral,¹⁸ anti-HIV,¹⁹ anticonvulsant,²⁰ antitulcer,²¹ anti antifungal activity²² etc. A new research has revealed that several natural products,²³,²⁴ contains this imidazolium nucleus in their structures in the form the of essential amino-acid histidine or in alkaloids exhibiting anti-cancer (dacarbazine), anti-parasitic (metronidazole) anti-tumoral, antihypertensive (losartan), anti-bacterial and antihistaminic (cimetidine), activities.²⁵-²⁷

EXPERIMENTAL

Material and Methods
Melting points of synthesized materials were estimated using manual POLMON electro thermal apparatus (Range 0–300°C) and glass capillary tubes. IR spectra were captured using Perkin- Elmer FT IR. Bruker-400 MHz spectrometer was employed to record ¹H and ¹³C NMR spectra. NMR results were correlated with TMS as internal reference. Moreover, reactions performed in the experiment were monitored by thin layer chromatography. Pre-coated silica gel plates, UV lamp, iodine vapors or KMnO₄ spray as developing agents are ingredient parts of thin layer chromatography. Synthesized products were purified by column chromatography (obtained from Merck) with a suitable eluting system with various polarity mobile phase ratio’s, e.g. hexane:ethylacetate, hexane:chloroform, DCM: methanol.

Rasayan J. Chem., 14(2), 943-949(2021)
http://dx.doi.org/10.31788/ RJC.2021.1426186
This work is licensed under a CC BY 4.0 license.
Scheme-1: Synthesis of 1-methyl-diphenyl-benzoimidazole derivatives from 4-bromobenzene-1,2-diamine and benzoic Acid

Scheme-2: Synthesis of 1-methyl-6-phenyl-(o-tolyl)-benzo[\textit{d}]imidazole

General Procedure for 6-bromo-phenyl-benzo-imidazole (3 and 8)

In a 250 ml round RBF a mixture of 4-bromobenzene-1,2-diamine (1.0 mmol), benzoic acid or 2-methylbenzoic acid (1.1 mmol), and polyphosphoric acid (PPA) was taken at RT. The temperature was raised slowly to 180 °C and the reaction mass was stirred for 4-5 hours, after completion of reaction, the reaction mass was cooled to room temperature then quenched with 5 volumes of water and pH was adjusted with sodium carbonate. The resulting off-white solid material was filtered and dried to afford compound 3 and 8 in good yields (70-90%).

General procedure for 6-bromo-methyl-phenyl-benzo[\textit{d}]imidazole (4 and 9)

Compound 3 or 8 (1.0 mol) was added in to a mixture of DMS (1.0 mol), potassium carbonate (3.0 mol) in acetone (8 volumes) and heated to reflux for 8 hours. The reaction mass was cooled to room temperature once reaction was completed, and the potassium carbonate filtered off. The mother liquor was distilled to remove acetone and the resulting residue was extracted with isopropyl alcohol to afford compound 4 or 9 in fair yields (60-70%).

General Procedure for 1-methyl-2-phenyl-6-substituted phenyl 1\textit{H}-benzo[\textit{d}]imidazole derivatives 6 and 10 (Ha-Ho)

In 500 ml round bottom flask compound 4 or 9 (1.0 mol) was added in to a mixture of potassium carbonate (1.8 mol), substituted phenyl boronic acid (1.2 mol), Pd(OAc)$_2$ (0.6 mol) and water (0.5 vol.) in isopropyl alcohol (10 volumes) and heated to reflux for 4 to 5 hours. After confirmation of completion of reaction,
solvent stripped off completely under vacuum from the reaction mass and then sufficient quantity of methylene chloride and water added to the reaction mass. After stirring the reaction mass for some time, separated the organic layer as well as aqueous layer and organic layer was distilled off under vacuum to get crude desired product, which was further triturated with solvent hexane to achieve free flowing pure compound 6 and 10 in good yields (65-80%).

RESULTS AND DISCUSSION

Bromo-phenyl-benzo-imidazole (3 and 8) were formed by the reaction of 4-bromobenzene-1,2-diamine (1) and benzoic acid (2 and 7) in the presence of PPA, respectively (Scheme-1 and 2). Formation of bromo-phenyl-benzo-imidazole (3 and 8) were confirmed by their 1H NMR spectra, which showed downfield at δ 5.56 for one proton of imidazole N-H and one sharp singlet of CH3 group attached with benzene ring. Bromo-methyl-phenyl-benzo-imidazole (4 and 9) were formed by the reaction of bromo-phenyl-benzo-imidazole (3 and 8) with dimethyl sulfide, respectively. The formation of 4 and 9 were established on the basis of one sharp singlet at δ 3.21 for three proton of CH3 in imidazole ring. The cycloaddition of bromo-methyl-phenyl-benzo-imidazole 4 and 9 with substituted phenyl boronic acid by using palladium acetate catalyst induced a series of C-C cross-coupling to afford methyl-diphenyl-benzo-imidazole derivatives (6 and 10), in moderate to good yields respectively, as shown in Scheme-1 and 2. The palladium catalyst was used to increase the yield of the product. A peak at 1675 cm⁻¹ in the IR spectrum of compound 6 and 10 indicated C=O of imidazole ring. Multiplet signal in 1H NMR spectrum confirms the presence of phenyl ring. Similarly, the derivatives of compound 6 and 10 was confirmed (Table-1).

S. No.	Chemical Name	Code	Chemical Structure	Mol. Wt.	Spectral Characterization
1	1-methyl-2,6-diphenyl-1H-benzo[d]imidazole	Ha	![Chemical Structure](attachment)	284.35	1H NMR (DMSO-D6): δ 7.85 (d, 2H), δ 8.56 (S, 1H), δ 7.45 (m, 2H), δ 7.50 (t, 3H), δ 6.68 (d, 2H), δ 7.37 (t, 1H), δ 7.30 (t, 1H), δ 7.09 (d, 2H), δ 4.22 (d, 2H), δ 6.18 (t,1H), 13C NMR: 153.3, 152.8, 150.7, 147.4, 139.4, 138.8, 132.8, 131.8, 129.9, 127.9, 126.1, 122.6, 119.6, 118.5, 113.6, 38.1, MASS: 359.85 (m+), 358.29 (m-H)
2	6-(4-fluorophenyl)-methyl-phenyl-benzo-imidazole	Hb	![Chemical Structure](attachment)	302.34	1H NMR (DMSO-D6): δ 8.06 (d, 2H), δ 7.93 (d, 1H), δ 8.13 (s, 1H), δ 7.86 (m, 2H), δ 7.88 (t, 2H), δ 7.58 (m, 2H), δ 7.76 (d, 1H), δ 7.28 (t, 2H), δ 4.06 (m, 3H), δ 6.51 (s, 1H), MASS: 303.1 (m+)
3	6-(3-methoxyphenyl)-1-methyl-2-phenyl-1H-benzo[d]imidazole	Hc	![Chemical Structure](attachment)	314.38	1H NMR (DMSO-D6): δ 7.93 (d, 1H), δ 8.01 (s, 1H), δ 7.71(d, 1H), δ 7.88 (d, 1H), δ 7.33 (m, 3H), δ 7.57 (m, 3H), δ 6.93 (m, 1H), δ 7.23 (t, 1H), 3.95 (d,2H), δ 7.03 (t, 1H), δ 3.73 (d, 2H), δ 6.29 (m, 1H), δ 3.84 (d, 2H), MASS: 315.1 (m+)
SYNTHESIS OF IMIDAZOLE DERIVATIVES

H. S. Hanumantappa et al.

Vol. 14 | No. 2 | 943-949 | April - June | 2021

1H NMR (DMSO-D6): δ 7.82 (d, 2H), 8.45 (s, 1H), 7.49 (t, 3H), 7.94 (d, 1H), 3.77 (s, 2H), 7.25 (m, 5H), 2.83 (t, 2H), 2.92 (t, 2H), MASS: 398.46 (m+), 397.2(m-H)

1H NMR (DMSO-D6): δ 7.66 (m, 1H), 7.56 (m, 2H), 7.27 (m, 3H), 7.85 (m, 2H), 6.92 (d, 1H), 7.13 (d, 1H), 3.31 (m, 2H), 6.63 (d, 1H), 1.50 (m, 2H), 2.35 (m, 2H), 0.86 (m, 3H), 1.22 (m, H), 6.92 (d, 1H), 7.13 (d, 1H), MASS: 299.1 (m+)

1H NMR (DMSO-D6): δ 7.64 (m, 4H), 7.89 (m, 2H), 0.86 (m, 3H), 7.50 (m, 1H), 7.21 (t, 1H), 7.30 (t, 1H), MASS: 353.0 (m+)'
Anti-bacterial Activity Assay

The anti-bacterial activity was studied by selecting Gram-positive *S. aureus* and Gram-negative *E. coli* bacteria by using agar well diffusion method. The anti-bacterial study of the synthesized compounds shows good to excellent activity against tested Gram-positive and Gram negative bacteria. Among these...
compound Hg, and Hk were the most effective against *E. coli* and *S. aureus* bacteria of all the tested compounds (Fig.-1).

CONCLUSION

A novel series of 1-methyl-2,6-dipheny-l-benzo-imidazole and 1-methyl-6-phenyl-(o-tolyl)-benzo-imidazole derivatives have been synthesized from 4-bromobenzene-1,2-diamine and benzoic acid using palladium (II) acetate. The synthesized compounds evaluated for their anti-bacterial activity against Gram-positive *S. aureus* and Gram-negative *E. coli* bacteria by using broth-dilution method. Among these compound Hg, and Hk were the most effective against *S. aureus* and *E. coli* bacteria of all the tested compounds.

ACKNOWLEDGEMENT

The authors are grateful to Prof. Aditya Shastrist, Vice Chancellor, Banasthali Vidyapith for their continuous support in carrying out present research work. Additionally, we are grateful to Synteny lifesciences Pvt. Ltd. and SMS Pharmaceuticals Ltd for their valuable support for antibacterial study.

REFERENCES

1. T. Vlaar, E. Ruijter, B.U. Maes and R.V. Orru, *Angewandte Chemie International Edition*, 52, 7084(2013), DOI:10.1002/anie.201300942
2. G. Hervé, G. Sartori, G. Enderlin, G. Mackenzie and C. Len, *RSC Advances*, 4, 18558(2014), DOI:10.1039/C3RA47911K
3. J. Soloducho, K. Olech, A. Swist, D. Zajac and J. Cabaj, *Advances in Chemical Engineering and Science*, 3,19 (2013), DOI:10.4236/aces.2013.33A1003
4. T. Hattori, A. Tsubone, Y. Sawama, Y. Monguchi and H. Sajiki, *Catalysts*, 5, 18(2015), DOI:10.3390/catal5010018
5. S. Sain, S. Jain, M. Srivastava, R. Vishwakarma and J. Dwivedi, *Current Organic Synthesis*, 16, 1105(2019), DOI:10.2174/1570179416666191104093533
6. B. Narasimhan, S. Deepika and P. Kumar, *Medicinal Chemistry Research*, 20, 1119(2011), DOI:10.1007/s00044-010-9472-5
7. M. Botta, F. Corelli, F. Gasparrini, F. Messina and C.J. Mugnaini, *Journal of Organic Chemistry*, 65, 4736 (2000), DOI:10.1021/jo991937p
8. A.M. Vijesh, A.M. Isloor, S. Telkar, S.K. Peethambar, S. Rai and N. Isloor, *European Journal of Medicinal Chemistry*, 46, 3531(2011), DOI:10.1016/j.ejmech.2011.05.005
9. V. Padmavathi, C.P. Kumari, B.C. Venkatesh and A. Padmaja, *European Journal of Medicinal Chemistry*, 46, 5317 (2011), DOI:10.1016/j.ejmech.2011.08.032
10. X, Lu, X. Liu and B. Wan, *European Journal of Medicinal Chemistry*, 49, 164(2012), DOI:10.1016/j.ejmech.2012.01.007
11. A.K. Jain, V. Ravichandran, M. Sisodiya and R.K. Agrawal, *Asian Pacific Journal of Tropical Medicine*, 3, 471(2010), DOI:10.1016/s1995-7645(10)60113-7
12. H.M. Alkahtani, A.Y. Abbas and S. Wang, *Bioorganic and Medicinal Chemistry Letters*, 22, 1317(2012), DOI:10.1016/j.bmcl.2011.12.088
13. Y. Özkay, I. Işıkdağ, Z. Inci, Z. Akalin, *European Journal of Medicinal Chemistry*, 45, 3320(2010), DOI:10.1016/j.ejmech.2010.04.015
14. X. Wang, L. Liu and Y. Li, *European Journal of Medicinal Chemistry*, 62, 111(2013), DOI:10.1016/j.ejmech.2012.12.040
15. M. Camacho-Espinoza, J.G. Penieres-Carrillo, H. Rios-Guerra, S. Lagunas-Rivera, and F. Ortega-Jiménez, F, *Journal of Organometallic Chemistry*, 880, 386(2019), DOI:10.1016/j.jorganchem.2018.11.016
16. Ü. Uçucu, N.G. Karaburun and I. İşikdag, *Farmaco*, 56, 285(2001), DOI:10.1016/s0014-827x(01)01076-x
17. S. Kankala, R.K, Kankala and G. Prasad, *Bioorganic and Medicinal Chemistry Letters*, 23, 1306(2013), DOI:10.1016/j.bmcl.2012.12.101
18. M. Gaba, D. Singh, S. Singh, V. Sharma and P. Gaba, *European Journal of Medicinal Chemistry*, 45, 2245(2010), DOI:10.1016/j.ejmech.2010.01.067
19. P. Zhan, X. Liu and J. Zhu, *Bioorganic and Medicinal Chemistry*, **17**, 5775(2009), DOI:10.1016/j.bmc.2009.07.028
20. Ç. Ünsal, D. Sevim, E. Mevlüt and S. Rümeysa, *Archiv der Pharmazie*, **321**, 841(1988), DOI:10.1002/ardp.19883211203
21. Y. Katsura, S. Nishino and H. Takasugi, *Chemical and Pharmaceutical Bulletin*, **39**, 2937(1991), DOI:10.1248/cpb.39.2937
22. K.F. Ansari and C. Lal, *European Journal of Medicinal Chemistry*, **44**, 4028(2009), DOI:10.1016/j.ejmech.2009.04.037
23. C.J. Brown, *Molecular Biological Evolution*, **15**, 931(1998), DOI:10.1093/oxfordjournals.molbev.a026009
24. E.F. Antonio and M. Stephen, *Biomechanics and Modeling in Mechanobiology*, **16**, 907(2017), DOI:10.1007/s10237-016-0860-8
25. Z. Jin, *Natural Product Reports* **23**, 464(2006), DOI:10.1039/b502166a
26. P. Molina, A. Tárraga and F. Otón, *Organic and Biomolecular Chemistry*, **10**, 1711(2012), DOI:10.1039/c2ob06808g
27. Z. Jin, *Natural Product Reports*, **30**, 869 (2013), DOI:10.1039/c3np70006b

[RJC-6186/2020]