Infrastructure Resilience Curves: Performance Measures and Summary Metrics

Craig Poulin *, Michael Kane **

* Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States
** Corresponding author. Email address: michael.kane@northeastern.edu

Abstract

Resilience curves are used to communicate quantitative and qualitative aspects of system behavior and resilience to stakeholders of critical infrastructure. Generally, these curves illustrate the evolution of system performance before, during, and after a disruption. As simple as these curves may appear, the literature contains underexplored nuance when defining “performance” and comparing curves with summary metrics. Through a critical review of 273 publications, this manuscript aims to define a common vocabulary for practitioners and researchers that will improve the use of resilience curves as a tool for assessing and designing resilient infrastructure. This vocabulary includes a taxonomy of resilience curve performance measures as well as a taxonomy of summary metrics. In addition, this review synthesizes a framework for examining assumptions of resilience analysis that are often implicit or unexamined in the practice and literature. From this vocabulary and framework comes recommendations including broader adoption of productivity measures; additional research on endogenous performance targets and thresholds; deliberate consideration of curve milestones when defining summary metrics; and cautionary fundamental flaws that may arise when condensing an ensemble of resilience curves into an “expected” trajectory.

Keywords
Resilience, critical infrastructure, metrics, performance measures, system analysis
1 Introduction

This manuscript adopts the following general definition of *infrastructure resilience*: a system’s ability to withstand, respond to, and recover from disruptions [1]. This ability can be described in terms of both time and system performance [2]. A *resilience curve*, as illustrated in Fig. 1, illustrates changes over time for a selected *performance measure* within a specific scenario. A curve typically begins at a nominal level, decreases due to a disruption, then recovers (ideally back to the nominal level). *Summary metrics* are used to compare curves by quantifying key dimensions of the curves (e.g., residual performance and disruption duration in Fig. 1).

Resilience curves are applied across the critical infrastructure literature. Some implementations are qualitative or conceptual: a context for wider discussion [3]–[7], a justification for a related analysis [8]–[13], or an analysis on a specific curve element [14]–[21]. More commonly, resilience curves are implemented as the basis of quantitative analysis: historical post-disaster recovery review [22]–[32], identification of critical system properties or components [33]–[38], optimization of recovery activities [39]–[50], or comparison of system configurations [51]–[58]. Within this manuscript, *resilience analysis* refers to both modeling and empirical studies, with the former being vastly more common.

![Resilience Curves](image)

Fig. 1. Two resilience curves: (a) typical representation with two potential summary metrics, (b) a curve exemplifying non-idealized system behavior

The resilience curve was first introduced in 2003 by Bruneau et al. [59]. Later termed the “resilience triangle” [60], the initial paradigm included instantaneous performance loss, immediate response, and a relatively linear recovery trajectory. While subsequent literature expanded the resilience triangle to a wider variety of trajectory characteristics [55], [61]–[67], this manuscript adopts a more general view of resilience curves. As in
the “resilience trapezoid” paradigms [52], [53], [68], [69], system behavior may include phases of cascading failure (i.e., “absorb” [70]–[72]) and pre-recovery degraded performance (i.e., “response” [73] or “endure”). Additionally, a recovery phase may be non-increasing [33], [57], [74]–[76] and full restoration might not be possible [77], [78], as in Fig. 1(b). Illustrations within this manuscript do not include all possible variation, but the synthesis and recommendations deliberately encompass all resilience curve forms.

Formally, a resilience curve shows the evolution of a performance measure, \(P(t) \), which itself maps system states \(x \in X \) to a scalar value for all times in the scenario: \(P(t): X \rightarrow \mathbb{R}, t \in [t_0, t_c] \). A summary metric, \(J \), maps an entire resilience curve to a scalar value: \(J: P \rightarrow \mathbb{R} \). Both performance measures and summary metrics should reflect stakeholder interests and goals; analysts have many options for both. It should be noted that a measure or metric that represents stakeholder interest for one system and scenario may not accurately quantify those same interest under a different system or scenario.

Resilience curves can reflect empirical or simulated system behavior. While experimentation is possible for some computer networks [79]–[83], most empirical data comes from historical events. Examples include the 2011 Tohoku earthquake [24], [25], [27], 2010 Chilean earthquake [25], [26], 2003 Italy blackout [29]; Hurricanes Sandy and Irene [30]; and Hurricane Katrina [31], [32]. Simulated resilience curves can be generated through a variety of modeling methods. Examples include stock and flow dynamics [84], [85], network topology [49], [86], agent-based modeling [87], [88], Boolean networks [89], and discrete event simulation [90]. The details specific to each simulation technique are outside the scope of this manuscript; instead, this manuscript aims to provide generally applicable insights and recommendations.

Analysts, designers, and stakeholders should carefully select performance measures and summary metrics, since different measures or metrics can yield significantly different recommendations. Considering two disruption scenarios for a simple system, Henry and Ramirez-Marquez illustrated that different measures suggest different restoration strategies [68]. Cimellaro et al. compared “customers served” and “tank water level” as measures to quantify water system performance, highlighting that they may diverge [76]. Evaluating a traffic simulation, Nieves-Melendez and De La Garza compared threshold-based and cumulative performance-based metrics, finding significantly different results [91]. Highlighting dissimilar curves that provide equal metrics, Bruneau and Reinhorn stressed that singular metrics “should be used with care” [92]. Sharma et al. similarly warned that “a single metric cannot generally replace a curve and capture all of its characteristics” [93]. Despite such examples and caution, the literature lacks clear and general recommendations for selecting appropriate measures based on characteristics of stakeholder values and goals.

Stakeholders include “decision makers, the public, and other end users” [54]. Performance measures could be selected through expert elicitation [48], [94]. Chang and Shinozuku established objectives in consultation with
peers, but acknowledged formal investigation may be warranted [54]. A RAND report describes how deliberate stakeholder engagement informs metric selection [95]. Despite these examples, resilience literature does not often address the selection of measures or metrics, perhaps because their selection is a non-trivial analytical burden. Cimellaro et al. were frank: “the authors do not want to enter the discussion of which [water quality] index is better to adopt” [76]. Additionally, potential measures vary in their subsequent level of analytical effort—either due to model formulation or data collection. Generally underexplored is the connection between types of measures, their applicability, and their consequence on analysis effort. This manuscript aims to clarify these relationships.

This manuscript is a survey of the resilience curve as an analytical tool; wider considerations of infrastructure resilience and general (non-curve) metrics are outside its scope. In this, it is unique among infrastructure resilience surveys, of which there are many. Existing surveys vary in their purpose, such as definitions, domains, methodologies, attributes, and metrics. Some do not include resilience curves [96]–[102]. Others include resilience curves as motivation or one of many conceptual considerations, but without in-depth attention [103]–[114]. Surveys devoted to metrics often summarize curve-derived metrics as one category of many [115]–[117]. In contrast, this survey does not consider non-curve metrics (e.g., network topology or qualitative attributes). Additionally, while this survey is deliberately broad, many others focus on a specific infrastructure domain [97], [99], [105], [109], [111]–[114], [117]. Each survey provides value, but there are limitations to a single publication’s scope. Sun et al. provided an excellent survey of transportation measures and metrics [118], but they adopted the resilience triangle paradigm and omitted fundamental metric types defined herein. Yodo and Wang reviewed curve metrics [119], but they focused on design implications and did not address measures. Finally, many publications summarize existing work when proposing their own framework. Sharma et al. exclusively described integral-based metrics, and their proposed metric presumes instantaneous shocks and non-decreasing recovery [93]. Shen et al. established four metric categories in support of their unifying framework, but did not discuss implementation considerations [120].

In contrast to related work, this manuscript is a broad survey of the critical infrastructure resilience literature, yet with a scope limited to the synthesis and application of resilience curve measures and metrics. Across the literature, resilience curves have demonstrated utility across varied analytical goals—from communicating concepts to post-disaster assessments to simulation-based optimization. This manuscript aims to bring clarity to their adoption and implementation. Section 2 describes the literature review methods and sources. Section 3 defines taxonomies of performance measures and their normalization. Section 4 defines a taxonomy of summary metrics and discusses metrics from ensembles of metric functions, measures, and scenarios. Section 5 synthesizes best practices on the selection of measures and metrics and discusses communication and analytical advancement.
2 Literature Survey

This manuscript synthesizes resilience curve measures and metrics from a “systematic search and review” of critical infrastructure resilience literature. Using broad inclusion criteria and deliberate search methodology, the scope incorporates a variety of existing work. This method allows for flexible synthesis; it is more subjective than other survey approaches, such as a systematic review [121]. As a critical review, the goal is not to consolidate all previous work, but to highlight trends and opportunities.

2.1 Methodology

Publications were selected in a three-step process. First, candidate publications were identified through Web of Science with the query “TOPIC: (critical infrastructure resilience) OR TOPIC: (critical infrastructure resiliency)”. Second, results were filtered to include only those that contained resilience curve illustrations; that is, figures with performance on the vertical axis and time on the horizontal axis. This definition of a resilience curve excludes figures with events, not time, on the horizontal axis (e.g., removal or restoration of network nodes [122]–[124]); non-decreasing accumulation on the vertical axis (e.g., total economic loss over time [125]); and work solely illustrating internal state changes to maintain unillustrated nominal performance (e.g., valve position [126]). Third, during review of the subsequent collection, referenced publications were added when cited as a source for conceptual and qualitative resilience curve approaches.

2.2 Sources

The Web of Science search—executed in April 2020—identified 1,518 candidate publications. Of these candidates, 1,384 (91.2%) were accessible through Northeastern University licenses. Filtering provided 184 publications (13.3% of those accessible). During the review, an additional 89 publications were identified as references, bringing the total survey scope to 273 publications.

Publications spanned infrastructure types, with examples from energy [48], [127], [128], transportation [89], [111], [129]–[131], water [132]–[134], financial [74], [135], information [12], [83], [136]–[138], healthcare [66], [66], supply chains [139], [140], and coupled systems [22], [141]. Disruptions ranged in duration from minutes to hours to days, including both natural [30], [85], [142], [143] and manmade events [144], [145]. Some publications were deliberately generic for systems and/or disruptions [78], [146], [147]. Within the collection, some resilience curve illustrations were conceptual, without specified measures or metrics [70], [72], [106], [148]–[166]. Publication dates ranged from 2003 through 2020, with a steady increase after 2008. Publication types spanned 214 journal articles from 101 journals (see Table 1), 45 conference papers, 8 book sections, 5 magazine articles, and 1 report.
Table 1 Summary of journal publications

Publication	Count
Reliability Engineering & System Safety	26
Journal of Infrastructure Systems	10
Risk Analysis	9
Earthquake Spectra	7
Engineering Structures	5
Sustainability	5
All others (fewer than 5 articles)	152

3 Performance Measures

This section focuses on performance measures—the vertical axis of a resilience curve. First, three categories of measures are defined: availability, productivity, and quality. Second, ensemble measures, derived from multiple candidate measures, are described. Third, performance normalization is discussed and framed with three schemes: static, endogenous, and exogenous normalization.

Performance measures are derived from system states, which may be numerous. Not all states of stakeholder interest are appropriate as performance measures. For example, the number of deployed generators is relevant to post-disaster operations [167], but does not reflect degraded performance. However, candidate measures will likely need to be down-selected before analysis (e.g., Pagano et al. illustrated water deficit from ten variables [57]). Section 3.2 discusses how candidate measures can be combined into an ensemble measure.

This manuscript includes performance measures, $P(t)$, that are continuous (e.g., round-trip delay time [168]) or discrete (e.g., functional edges [87]). The primary requirement is that $P(t)$ must lie in a metric space (i.e., a measure of distance must exist between any two values) which excludes qualitative measures [169], [170]. In this manuscript, $P(t)$ indicates actual values and $p(t)$ indicates normalized values; both are considered within performance measures categorization. Note, this manuscript does not attempt to shed light on the specific formulations of performance measures for each application domain. Instead, it aims to define domain-agnostic characteristics, and provide insights into these characteristics that will facilitate outside discussions on defining performance measures for each application.

3.1 Categorization of Performance Measures

Infrastructure systems exist to provide service [171]. Measures can quantify system availability, system productivity, or service quality. Table 2 summarizes these three categories and their characteristics.
Table 2 Performance measure categories and their typical characteristics

Description	Availability	Productivity	Quality
	Capacity or aggregated functionality of the system	Quantity of service provided by the system	Character of service provided by the system
Units	Often a count; higher values desired	Often flow or rate; higher values desired	Wide variation; lower values may be desired
Nominal	Full function	All service demand met	Typical or steady-state values may provide a reference but not a bound
Examples	Customers with service [23], [24], functional cranes [89], transportation system capacity [94]	Electrical demand met [50], supply chain output [172], water demand satisfied [33]	Average vehicle speed [173], communication delay [174], water rationing level [133]
Normalization	Static reference values may be sufficient	Exogenous performance targets may be needed to represent scenario service-demand	Reference may be static or an endogenous baseline; unnormalized values may be preferred
Analysis Focus	The infrastructure system itself	Provision of infrastructure services	Utilization of infrastructure services
Potential Stakeholders	Utility operators, public works departments	Customers, public officials	Community members, operators of supported systems
Scenario Applicability	Productivity and quality are tightly coupled with availability; no anticipated changes in stakeholder goals within scenario duration	Service demand is expected to change within scenario duration; degraded conditions preclude quality concerns	Service availability and productivity are sufficient, quality is the primary concern within the scenario; comparing tradeoffs with steady-state performance
Modeling Scope	Modeling may be primarily focused on the infrastructure system	Modeling should include representation of service demand	Modeling likely includes representation of service demand; may be primarily focused on non-infrastructure considerations

Availability measures describe capacity or functionality of an infrastructure system. Across literature, this is the most common category. In its simplest implementation, components are functional or non-functional, and the measure describes “number of functional components” (e.g., power buses [69], [175], cranes at a seaport [89], water system nodes [142], [176], population with power [177]). This category also applies to components with partial functionality (e.g., bridge loading capacity [18], [178]) or weighted aggregates (e.g., generation capacity [20], [179], transportation system capacity [94], [180]). Availability measures generally have a nominal value and upper bound, i.e., the assessment when all components are functional.

Varying demand for the service the infrastructure provides (i.e., service demand) may affect availability measures during a scenario. For example, demand for electricity impacts the voltage in electricity distribution.
systems, and as a result of low-voltage cut-offs, could affect households with service. Alternatively, many availability measures can be determined independently of service demand and its dynamics. This includes network topology measures, such as functional edges [87], path availability [181], giant component size [182], average shortest path length [143], [182], and average maximum flow capacity [35]. When the dynamics of service demand can be excluded, availability measures are generally the most straightforward category to model. Thus, availability measures may be appropriate when service demand is constant or independent of system availability. This category is best suited for stakeholders interested in the infrastructure system itself (e.g., utility operators) and not the end-use of the service provided.

Productivity measures describe the quantity of service provided by an infrastructure system. Service quantity is a function of supply, capacity, and demand; all three may need to be modeled. Productivity measures best represent the common definition of infrastructure, systems that “produce and distribute a continuous flow of essential goods and services” [183]. These measures are often described in terms of rate or flow (e.g., electrical load [50], [184], packet delivery ratio [145], gas supplied [185], or water demand satisfied [33]). Alternatively, productivity measures may be framed as the number of customers satisfied (e.g., computing workflows completed [186], ships berthed [187]).

Since engineers often focus on supply, productivity measures are generally expressed relative to demand (e.g., flood volume relative to rainfall [132]) or by quantifying shortfalls directly (e.g., unmet water demand [188], supply chain output [172]). In most cases, the aggregated demand, when quantified, provides an upper bound for performance at any given point in time. Productivity measures may be most appropriate when service demand is dynamic with infrastructure condition. The interests of customers and other end-use stakeholders may be best captured by productivity measures.

Quality measures describe the character of the service provided by an infrastructure system. Examples included hospital patient wait time [90], [189]–[191], networking throughput [79]–[82], [192], sensing coverage [193], average vehicle speed [173], and water quality index [76]. These measures generally incorporate greater context from the environment. Measures may be a proxy for attributes of interest; Cimellaro et al. adopted hospital patient wait time because “quality of care is affected by the level of crowding in the emergency room” [189]. Note, some publications labeled their vertical axis “quality” or $Q(t)$ without any relationship to this taxonomy [32], [59], [162], [194], [195].

Across the literature, a wide variety of units and presentations are used for quality measures. For some quality measures, lower values are desired (e.g., transportation travel time [196]–[199]). Authors implemented such measures with their reciprocal [196], inverted the vertical axes [197], or presented unadjusted values in contradiction to resilience curve conventions [199]. A reference value is often helpful to provide perspective to a
resilience curve; however, for quality measures, this reference may be difficult to define. Reference nominal performance may take the form of typical, average [91], [173], steady-state, or planned performance [30]. Alternatively, reference target performance could reflect ideal or maximum performance, even if such performance is not expected during non-disrupted conditions. Examples include zero patient wait time [90] and communication delay [174].

Quality measures can highlight tradeoffs between steady-state and disrupted performance that may not be apparent from availability or productivity measures. Citing work by Ganin et al. [200], Linkov and Trump illustrated how steady-state traffic in Los Angeles was worse than Jacksonville (as measured by commuter delay), but was more resilient when disrupted [2]. This added analytical power of quality measures, in addition to explicitly quantifying the character of service provided to end-users, could motivate their adoption within an analysis. However, these benefits need to be balanced with the complexity of not only modeling the effect of service supply and demand (as with productivity measures) but with their effect on the quality of the service. Therefore, quality measures are most appropriate when the character of provided service is the overriding consideration.

3.2 Multiple and Ensemble Measures

As highlighted by Bruneau et al. in their foundational work: “dimensions of community resilience…cannot be adequately measured by an single measure of performance” [59]. Every system can have multiple candidate measures (e.g., connectivity, size of giant component, and shortest path length for power, radio, and communication [201]) and subsystem measures can be calculated separately (e.g., subsystems defined by owner or spatial regions [202]). The three categories of measures defined above can provide structure when defining a set or ensemble.

Availability measures, when applied to the same subsystem, are likely to be monotonic transformations of one another. Sequential restoration of network links improves all topology-based measures, just at different rates (e.g. functioning links and maximum flow [87]). Monotonicity reduces, but does not eliminate, the impact of adopting one measure over another. In a simple network, shortest path and total functional length can each recommend different restoration strategies [68]. For non-availability measures or multiple subsystems, candidate measures may not be monotonic transformations of one another. In most disruption-then-recovery scenarios, measures will often parallel one another (e.g., functional cranes, seaport productivity, and servicing time [187]), but some may diverge (e.g., served customers and water tank reserves [76], economic sector recovery [203], [204]). Identifying, interpreting, and balancing diverging performance measures and contradictory recommendations are generally underexplored across the literature.
Multiple measures can be plotted separately [20], [80], [83], [201], [205] or together [25], [27], [133]. In general, there were three approaches to incorporating multiple measures into a resilience assessment. (1) Results of each measure can be left for open-ended interpretation by the stakeholder. (2) Summary metrics can be separately derived for each measure, and those metrics synthesized into an ensemble metric (discussed in Section 4.7). Or, (3) multiple measures can be consolidated into a single ensemble measure.

An ensemble measure may be defined by shared or converted units. Carvalho et al. measured supply chain performance as the sum of production, material, and transportation costs [140]. Economic analyses translated sector “inoperability” to financial impact, providing a system-wide curve [204], [206]–[210]. Unit conversions may not be static. Goldbeck et al. converted transportation and energy to “value of service” with fixed parameters, but acknowledged a need for “more sophisticated” models and data [86]. Brozović et al. incorporated the price elasticity of demand for residential water [133]. To emphasize early restoration, Ulusan and Ergun implemented a “benefit function” that decreases non-linearly over the scenario [49].

Alternatively, an ensemble measure may be determined through unitless mathematical functions. In some cases, constituent measures lacked deliberate weighting. Examples were found across application domains in the literature: for water systems, the ratio of delivery capacity to shortest path length [211]; for petroleum infrastructure, the sum of consumption and storage deficits [212]; for a “power resilience index,” the product of available transformer ratings, percent of undamaged substations, alternative paths, and available generators [213]. Alternatively, constituent measures may be weighted. Cimellaro et al. calculated the weighted sum of normalized flow and service area in a gas network, but asserted that weighting has little impact on recommendations [218]. In contrast, Thekdi and Santos found the value of investment alternatives varied widely with weighting across five stakeholders and five measures [94]. He and Cha implemented an “integrated network” measure as the weighted sum of topology-based measures for power, radio, and communication; they demonstrated that weighting schemes affect restoration decisions [201].

Weighting for ensemble measures should reflect stakeholder values, but weight selection and validation is underexplored. Some publications proposed weighting for customer priority or criticality, but did not recommended values nor methods [14]–[16]. Zhang et al. weighted electricity 2x greater than water [176]; Najafi et al. used a 9x factor, but acknowledged research is warranted [142]. For hospital system performance, Hassan and Mahmoud recommended the weighted sum of functionality and quality, while assuming equal weighting “for simplicity” [190]. Weighting may be established by expert elicitation [48], [202], but values may also vary between and within scenarios. Jacques et al. proposed expert elicitation to determine weighting between hospital services, but assumed equal values in their case study [214]. Ottenburger and Bai asserted that weighting for urban resilience is “highly dependent on local urban circumstances and conditions” [215]. Massaro et al. acknowledged epidemic subpopulation weighting varies with the scenario, system, costs, and stakeholder
perspectives [216]. Weighting parameters may be fixed (i.e., static), driven by external factors (i.e., exogenous), or driven by internal dynamics (i.e., endogenous).

3.3 Performance Normalization

Performance measures are commonly normalized to facilitate comparisons across systems and scenarios. Within this manuscript, $P(t)$ denotes unnormalized performance and $p(t)$ denotes normalized performance, $p = \frac{P}{\mathcal{R}}$, where \mathcal{R} is the reference, target, baseline, or nominal value that may or may not be time varying.

Unnormalized values were observed in the literature for each of the three categories of measures: availability [87], [169], [177], [217], productivity [184], [185], [212], and quality [30], [79]–[82], [90], [173], [191], [193], [218]. Unnormalized values are appropriate when P provides key context or the nominal value is unclear or irrelevant—which is often the case for quality measures. A vast majority of resilience curves are presented in terms of $p(t)$. Such normalization can quickly communicate relative performance to stakeholders in conceptual conversations. For quantitative analysis, normalization enables comparison and optimization across scenarios and systems (e.g. comparing three electric utilities following Hurricane Sandy [219] or recovery of lifeline systems across 12 Japanese prefectures following the 2011 Tohoku Earthquake [23]). However, care should be taken when presenting only normalized values, as normalization can obfuscate important context (e.g., populations within Japanese prefectures vary by nearly an order of magnitude: over 9 million in Kanagawa to less than 1 million in Akita). This disadvantage is easily resolved by presenting both actual and normalized values.

Critically underexplored are the specific functions used to normalize $P(t)$ to $p(t)$. In many cases, normalized measures are assumed or built into proposed frameworks (e.g., the resilience triangle [59], dynamic inoperability input-output model [206]). Some publications did not explicitly state their denominator (especially “fraction of customers with service” [23], [24], [26], [32], [219], [220]). Others adopted a fixed denominator without elaboration (e.g., “usually a constant” [221], “assumed no change” [222]). But analyses should not neglect the normalization reference—when an assessment is based on $p(t)$, changes in the denominator can be as impactful as changes in $P(t)$. This section aims to clarify performance normalization by defining three normalization schemes: static, exogenous, and endogenous.

Across the literature, references (i.e., denominators) for performance normalization were comprised of three types, each of which is illustrated in Fig. 2. A fixed reference value, \mathcal{R}_0, does not change within the scenario; this provides static normalization, $p(t) = \frac{P(t)}{\mathcal{R}_0}$. A time-varying baseline, $\hat{\mathcal{R}}(t)$, changes in time but does not respond to the scenario; this provides exogenous normalization, $p(t) = \frac{P(t)}{\hat{\mathcal{R}}(t)}$. A time-varying performance target, $\mathcal{R}(t)$, changes in time and responds to scenario and system dynamics; this provides endogenous normalization, $p(t) = \frac{P(t)}{\mathcal{R}(t)}$.
Static normalization, illustrated in Fig. 2(a)-(b), incorporates a fixed reference value, \mathcal{R}_0. Availability measures were normalized almost exclusively with this scheme. For availability measures, \mathcal{R}_0 was the nominal value (and generally the upper bound); static normalization emphasized restoration to full function, regardless of the measure [38], [40], [44], [53], [55], [76], [87], [133], [143], [176], [182], [201], [216], [219], [223]–[225]. While the \mathcal{R}_0 reference may change over time (e.g., population growth, infrastructure expansion, and system modification), the time scale of such changes is typically outside analyzed resilience scenarios.

Static normalization was also applied to quality measures, but was less straightforward. When \mathcal{R}_0 describes typical or expected performance, $p(t)$ may exceed one (e.g., normalizing to the speed limit [91]). Alternatively, when \mathcal{R}_0 describes an extreme upper bound, steady-state $p(t)$ may be less than one (e.g., normalizing to zero for patient wait time [90], [190] or communication delay [174]). When lower values of performance are desired (e.g., wait time), the normalized value may be inverted $p(t) = \mathcal{R}_0/p(t)$ [198] or the vertical axis may just be graphically flipped [226] to maintain the intuitive standard “up is good and down is bad”. In cases where the system should not deviate up nor down from nominal, (e.g., electrical bus voltage [227]) the absolute deviation or square could be minimized. None of these considerations are insurmountable, but they make normalization of quality measures distinct from that of availability measures.
Fig. 2. Comparison of normalization schemes used to translate actual performance measures, $\mathcal{P}(t)$, to normalized performance, $p(t)$. Static normalization (a-b) incorporates a fixed reference value, \mathcal{R}_0. Exogenous normalization (c-d) incorporates a time-varying baseline, $\mathcal{R}(t)$, that does not adapt to the scenario. Endogenous normalization (e-f) incorporates a performance target, $\mathcal{R}(t)$, that responds to scenario dynamics. While $\mathcal{R}(t)$ is shown to approach $\mathcal{P}(t)$ in (e), this is not a requirement or expectation of performance targets; modeling $\mathcal{R}(t)$ may be as intensive as modeling $\mathcal{P}(t)$.

Across the literature, static normalization was applied to productivity measures, but its applicability is less clear. Productivity measures describe a rate or flow of service, so a fixed \mathcal{R}_0 implies service demand does not vary in time. Static normalization of productivity measures included packet delivery ratio [145], economic inoperability [203], transported supplies [49], water delivered [205], and electricity provided [143], [228]. Many real-world systems vary service demand over time, under both steady-state and disrupted conditions; flattening such variation affects $p(t)$ and may impact analytical recommendations. In contrast, time-varying references may be either exogenous or endogenous.

Exogenous normalization, illustrated in Fig. 2(c)-(d), incorporates a time-varying baseline $\mathcal{R}(t)$ that does not adapt to the scenario (i.e., the hazard nor the corresponding system response) “without the effects of hazard” [187] or “under no disruption” [51]. No availability measures implemented exogenous normalization; the only quality measure was profit, baselined to cyclical customer demand [21]. Static normalization can be
considered a special case of exogenous normalization: \(\hat{R}(t) = R_0 \forall t \in [t_0, t_c] \). Rose made this connection explicit by abstracting economic growth “for ease of exposition and without loss of generality” [74]. Other authors defined productivity normalization with a time-varying reference but implemented a fixed value in their case study [34], [50], [56], [229], [230]. Despite this connection, the manuscript treats static and exogenous normalization as distinct schemes.

Productivity measures widely implemented exogenous normalization. A time-varying baseline can address natural variations in service demand (e.g., hourly, daily). Examples included typical or historical traffic levels [30], [86], [231], [232], electrical demand [58], [86], [176], and water consumption [75], [176]. Cimellaro et al. illustrated how timing of system failures affects summary metrics due to hourly changes in water demand [76]. However, exogenous normalization does not incorporate dynamics between the scenario and service demand. Often, performance is assumed not to exceed the reference; however, this assumption may be invalidated by exogenous normalization. For example, Shafieezadeh and Ivey Burden normalized seaport offloading to an exogenous baseline; they observed that \(p(t) \) exceeded one as delayed processes were eventually accomplished during a cyclical lull in demand [187]. Such peculiarities need not be a problem, but should be anticipated when adopting exogenous normalization for productivity measures.

Endogenous normalization, illustrated in Fig. 2(e)-(f), is the most general scheme. It incorporates a time-varying performance target, \(R(t) \) that is affected by the hazard and/or the corresponding response of the system or coupled-systems. If \(R(t) \) depends only on the hazard or the open-loop response of a coupled system to the hazard, \(R(t) \) may be decoupled from main-system dynamics, and may even result in a constant value for a given hazard. Generally, implementing \(R(t) \) expands the scope of an analysis. For example, warning events [78] could serve to adjust transportation demand before hurricane landfall [233], [234]. Simulating \(R(t) \) almost certainly requires more effort than \(\hat{R}(t) \) or \(R_0 \) as its underlying mechanisms may differ from those of \(P(t) \). Despite this burden, examples for all three performance measure categories highlight the applicability of endogenous normalization.

Availability measures adopted endogenous normalization when full recovery was not possible or feasible. Examples included discounting “permanently lost customers” in historical utility restoration [26] and isolating deaths “due to health care capacity” following a seismic event [92]. Such targets reflect shifts in stakeholder goals, which may only be clear in hindsight. The distinction can be significant—three years after Hurricane Katrina, some regions had 50% of their pre-hurricane electric customers [235]. In a related technique, some authors normalized to the initial performance drop (e.g., to compare power and communication recovery in the same earthquake [25]). More commonly, this approach is presented as the **restoration ratio** metric described in **Section 4.8**.
Productivity measures are ideal candidates for endogenous normalization. Just as service demand varies in time, service demand may change within a disruption scenario. Service demand could respond to the initiating hazard, such as emergency services after an earthquake [49], [194] or traffic during floods [130]. But even limited dynamics may be challenging to model; some publications highlighted difficulties and implemented a fixed R_0 [37], [196], [199]. Further consideration of $R(t)$ introduces yet more potential dynamics, which each increase modeling complexity. For example, Brozović et al. incorporated customers’ price elasticity to alter their demand in response to water shortages [133]. These dynamics may be relevant to system understanding—Pagano et al. observed that evacuations reduce water demand, increasing short-term performance but stagnating long-term recovery [57]. Additionally, $R(t)$ introduces demand-side opportunities to improve resilience; for example, electrical load management can shed load to avoid overloading transmission infrastructure [84]. Despite these examples, general recommendations for use of endogenously normalized performance measures remain underexplored across the literature.

Endogenous normalization for quality measures may be applied when standards of service vary during distinct phases of the scenario. Although not quantified, Cutts et al. proposed a “resilience prism” that distinguishes post-disaster community goals over days, weeks, and years [236]; specific timing of transitions between survival, safety, and belonging could be driven by emergent system behavior. Additionally, quality measures are likely influenced by dynamic service demand, even if not captured within $R(t)$. For example, calculating travel times requires origin-destination pairs (i.e., transportation demand) [198]—due to modeling challenges, Chang et al. ruled out travel delay as a performance measure [18]. As a general assertion: if service demand dynamics challenge normalization of productivity measures, then quality measures are similarly constrained.

These normalization schemes provide insight into “adaptation” phases of resilience. Within the literature, some resilience curves were illustrated with a post-recovery performance above the baseline [70], [72], [114], [237], [238]. Such a period could reflect rebuilding to higher standard or incorporating new information (e.g. post-hurricane investment [56]). For quantitative analyses, such adaption can only be related to R_0 or $R(t)$. Exceeding $R(t)$ would be impossible or undesired for most productivity measures. For quality measures, R_0 might reflect typical or expected performance, in which case, system adaption would result in a new R_0 in the next scenario. This is not criticism of “adapt” phases but commentary on quantitative limitations, especially if expressed within a summary metric.

4 Summary Metrics

Summary metrics map a resilience curve to a scalar value: $J(P(t))$ or $J(p(t))$. Metrics enable comparison of system behavior across scenarios and configurations. To support the selection and implementation of metrics, this
section defines six categories, provides examples, and synthesizes their best practices. The taxonomy is summarized in Table 3 with key examples shown in Fig. 3. Within the survey, there was no consensus on the “best” metric; instead, metrics were commonly linked to desired attributes. Only one publication specifically compared metrics: Nieves-Melendez and De La Garza evaluated a traffic system with threshold- and integral-based metrics, each providing a different recommendation [91].

Table 3 Summary metric categories

Metric	Examples	Formulation Considerations
Magnitude (§4.2)	Residual performance, depth of impact, restored performance	- Units of performance
- Milestone or criterion for which performance is assessed
- Reference value, if presented as a ratio |
| **Duration** (§4.3) | Disruption duration, resistive duration | - Units of time
- Milestones or criteria that establish endpoints |
| **Integral** (§4.4) | Cumulative impact, cumulative performance* | - Units of performance × time
- Global control time
- Performance target, if normalized |
| **Rate** (§4.5) | Failure rate, recovery rate | - Units of performance over time
- Milestones or criteria that establish endpoints
- Method to address non-linear segments |
| **Threshold** (§4.6) | Threshold adherence*, residual capacity | - Units either binary or modification of another metric
- Generally unitless, expressed as an index
- Weighting between constituent metrics
- Conversion of dissimilar units |
| **Ensemble** (§4.7) | Weighted sum of metrics, weighted product of metrics | - |

for clarity, common “resilience” terminology is not recommended
Fig. 3. Illustrative summary metrics for a resilience curve in terms of (a) actual units, $\mathcal{P}(t)$, and (b) normalized units, $p(t)$. Examples are not definitive; each metric can vary in its definition. In this illustration, the system does not fully recover within the control interval, so disruptive duration may be undefined. The curve does not fall below the critical threshold, so “threshold adherence” is successfully met.

4.1 Notation, Curve Milestones, and Control Times

Metrics may be derived with respect to actual performance, $\mathcal{P}(t)$, as in Fig. 3(a), or normalized performance, $p(t)$, as in Fig. 3(b). Metrics may also incorporate the reference value (\mathcal{R}_0, $\bar{\mathcal{R}}(t)$, $\mathcal{R}(t)$ or 1 if normalized). Many publications implicitly adopted static normalization and defined metrics without distinguishing $p(t)$ from $\mathcal{P}(t)$. Such assumptions may disrupt extension to exogenous baselines and endogenous performance targets. In contrast, other publications specifically defined metrics in terms of $\mathcal{R}(t)$, even if implemented as static throughout the publication [21], [86], [194], [220]. Because normalized measures are most common, this section describes metrics in terms of $p(t)$.

Summary metrics are assessed over or within a scenario’s control time interval, $[t_0, t_c]$. Additionally, metrics were commonly defined in terms of curve milestones, of which five were common in the literature. As illustrated in Fig. 3, each milestone delineates a transition between phases:

- exposure to a hazard, t_h, transitioning from prepare to resist;
- initial system disruption, t_e, transitioning to absorb;
- end of cascading failures, t_d, transitioning to endure;
- the beginning of system recovery, t_s, transitioning to recovery;
- and the completion of system recovery, t_f.

Specific terminology and definitions varied across the literature, but these milestones reflect common reference points (e.g., hazard exposure [58], [238]–[240] and the “resilience trapezoid” [52], [53], [68], [69]). However,
milestones are not necessarily essential, comprehensive, or unambiguous. Some curves lack milestones (e.g., the "resilience triangle" [59], [60]) or have additional milestones (e.g., partial recovery [241], [242]). Some curve trajectories do not provide clear milestones (e.g., temporary performance increases [57], [74], [75], Fig. 1(b)). Resilience analysis must clearly define the milestones used to define metrics, and those definitions should be validated over the range of considered trajectories.

The control interval bounds the period of interest. Many publications established their control interval from curve milestones—e.g. t_e to t_f [59], [92], [143], [194], [215], [241], [243]–[246] or t_s to t_f [14]–[16], [47], [55], [196]. This approach is appropriate in some cases, such as recovery sequencing, but it can provide unclear metrics when comparing dissimilar curves. Some authors established t_0 as the moment of disruption, t_e [24], [142], [205]. This is reasonable when all curves degrade at the same time, but it risks conflating hazard exposure with system disruption, undervaluing attributes of resistance [69], detectability [238] and prediction [146]. This is avoided when t_0 precedes the disruption [76], [187], [216], [247], [248] (i.e., providing prepare and/or resist phases [21], [71]).

The terminal control time, t_c, seeks to provide a “suitability long” [62] duration. Four methods for establishing t_c were common in the literature. Method one: t_c is the expected or mean recovery time [142], [198]. This approach truncates curves that extend beyond the expectation. Method two: t_c is the maximum recovery time. This could be determined post hoc (e.g., from a set of Monte Carlo runs [67]) or with knowledge of underlying dynamics (e.g., “maximum extinction time” in an epidemiological model [216]), but this approach would be undefined for systems that do not fully recover. Method three: t_c reflects scenario-specific stakeholder considerations. Examples included a region’s fresh water reserves [211] or its emergency planning standard [76]. This approach will also truncate curves, but it may assist in communicating results. Method four: t_c is the lifecycle for probabilistic hazards. This approach considers not just a single scenario, but the generation of hazards over time (e.g., 1 year [31], [69], 30 years [189], 100 years [222], or everywhere in between [56], [220], [230]). Such analyses may require additional considerations, such as discount rates and post-recovery adaptation [56], but each disruption scenario could be evaluated using summary metrics like those described in this section.

4.2 Magnitude-based Metrics

Magnitude-based metrics quantify performance at a specific milestone or point in time. These include residual performance, depth of impact, and restored performance, each shown in Fig. 3(b). Magnitude-based metrics can be described with either actual or normalized performance units.

Residual performance metrics describe system performance following the disruption, generally after cascading failures. In Fig. 3, this is indicated by $J = p(t_d)$. Labels included: avoided performance drop [248], minimum performance [89], [219], residual capacity [249], residual functionality [120], [189], [250]–[254],
residual performance [222], [255], resistance index [256], robustness [58], [63], [64], [71], [155], [184], [195], [241], [257] and static resilience [74]. Related forms included performance relative to a critical threshold [248], [249] and the average performance during the period of disruption [248].

Depth of impact metrics are the complement of residual performance: \(J = 1 - p(t_d) \). Labels included: A-metric [52], [53], amplitude [224], [258], consequence [211], depth of failure propagation [77], drop of functionality [189], initial loss [63], [64], lost functionality [250], maximum impact level [69], maximum incurred performance loss [219], peak severity [226], performance attenuation [259], and risk [71]. Residual performance and depth of impact were associated with absorptive capacity [127], [219], survivability [13], [260], vulnerability [261], and, most often, robustness [32], [67], [86], [120], [210], [225], [253], [255], [262].

Residual performance metrics require a clear definition of the milestone of interest, especially in cases like Fig. 1(b). Potential stakeholder interests may include post-hazard performance, post-cascading failure performance, or minimum performance. Dorbritz differentiated hazard impact and subsequent system degradation, distinguishing robustness from resourcefulness and internal stability [182]. Residual performance may be defined as the minimum level of performance within the control interval [86]: \(J = \min p(t), t \in [t_0, t_c] \). Candidate milestones may not align (e.g., stalled recoveries [57], [74], [75]). Additionally, with endogenous performance targets (e.g., post-earthquake hospital demand), the minimum \(p(t) \) could be decoupled from physical degradation, in which case the metric no longer reflects robustness attributes.

Restored performance metrics quantify a system’s performance after recovery efforts are complete. Labels included: degree of return [219], level of recovery [263], magnitude of loss [264], recovery ability [58], [241], and recovery degree [211]. Additional publications included this concept without defining a metric [259], [265], [266]. Metrics were defined relative to the initial performance level: \(J = p(t_f) - p(t_e) \) [219], [263]; \(J = p(t_f)/p(t_e) \) [127], [211]; or \(J = (p(t_f) - p(t_d))/(p(t_e) - p(t_d)) \) [58], [241]. Restored performance metrics may be appropriate for partial recovery (e.g., “permanent outages” after Hurricane Katrina [32]) or post-recovery improvements [58], [127], [241], the calculation of which depends the reference and normalization scheme (discussed in Section 3.3).

4.3 Duration-based Metrics

Duration-based metrics quantify time between milestones. Some authors considered **disruptive duration** (Fig. 3(b)) over the entire period of degraded performance: \(J = t_f - t_e \). Labels included: failure duration [226], interruption duration [184], rapidity [203], [257], recovery time [211], [263], [264], restoration time [30], time to recovery [219], and total length of the disruptions [86]. Others considered the recovery phase, starting from the period of lowest performance: \(J = t_f - t_d \). Labels included rapidity [225], [267], [268], recovery time [63], [64],
Others defined metrics for \([t_e, t_d] \), the absorb phase [193], [259], or \([t_d, t_s] \), the endure phase [52], [53]. Across these forms, duration-based metrics were associated with attributes of *adaptive capacity* [261], *rapidity* [86], [184], [210], [225], [262], [267], *rapidness* [142], [211], and *recoverability* [13], [260].

To compare dissimilar curves, duration-based metrics must clearly specify their starting and ending milestones. For metrics focused on disruption duration, starting milestones were clear and consistent: \(t_e \) [30], [86], [184], [203], [211], [219], [226], [263], [264]. As emphasized by Erol et al., this milestone should be distinct from hazard exposure, \(t_h \) [263]. For metrics focused on recovery duration, milestones were often ambiguous. Some authors conflated the end of cascading failures with the onset of recovery actions, i.e. \(t_d = t_s \) [87], [193], [259]. Others described metrics with the resilience triangle paradigm, i.e. \(t_e = t_d = t_s \) [63], [64], [189], [225], [267], [268]. A resilience curve’s recovery time is undefined if the system never fully recovers, such as in Fig. 3(b). This can be addressed by establishing the duration from specified thresholds [209], [209], [263], such as restoration to 95% of daily transit ridership [30].

For most duration-based metrics, lower values are preferred: shorter disruptions and faster recoveries. In contrast, some forms desire higher values, such as *speed recovery factor* as the ratio of “slack time” to recovery duration [127] or *resilience* as the average percent of “uptime” for electrical loads [269]. While generally underexplored, higher values are also desired for the duration between hazard exposure and system disruption, \([t_h, t_e] \). Labeled *resistive duration* in Fig. 3(a), this metric has been associated with *absorption* [73] and *resistance* [77], [269].

4.4 Integral-based Metrics

Integral-based metrics incorporate both time and performance. There are two common forms, labeled in Fig. 3(a). *Cumulative impact* is the integrated difference between performance and its reference:

\[
J = \int_{t_0}^{t_c} (P(t) - R(t))
\]

Cumulative performance is its complement, generally normalized to the reference:

\[
J = \int_{t_0}^{t_c} \frac{P(t)}{R(t)} = \int_{t_0}^{t_c} p(t)
\]

Although described here with the general \(R(t) \), these metrics were often implemented with fixed \(R_0 \) values. Often perceived as a holistic quantification of system resilience, this category provided the survey’s most frequently adopted metrics, spanning conceptual [242], [270], [271], empirical [24], [30], [235], [247] and simulation [21], [50] applications in system assessment [33], [198] and recovery sequencing [50], [272].

Cumulative impact was proposed in Bruneau et al.’s foundation work as *loss of resilience* [59]. Subsequent terminology includes: *area* [52], [53], *conditional vulnerability* [253], *functional service loss* [243], *impact area* [69], [248], *loss indicator* [224], *loss of resilience* [92], [244], *performance loss* [58], [119], [197],...
Cumulative performance was commonly denoted R and termed resilience [32], [45], [47], [55], [62]–[64], [128], [187], [190], [196], [205], [215], [228], [247], [270], [273], [274], with variations including annual resilience [69], dynamic resilience [221], [275], level of resilience [143], resilience index [22]–[24], [198], [226], [276], and system resilience [56], [220], [230], [277]. Despite this consensus, this manuscript adopts the term cumulative performance for three reasons. One: “resilience” has been used for other metrics [91], [193], [243], [269], [278] and factors not related to resilience curves [279]. Two: rather than associate a broad term with a specific implementation, cumulative performance describes a category of metrics with varied forms (e.g., multiple disruptions [31], weighting by scenario probability [65], limited to recovery [15], [16], subtracting costs [14], [15]). Three: summary metrics inform interpretation of a resilience curve, but they do not fully describe the system. This manuscript also does not label the curve’s vertical axis “resilience,” as in varied alternatives [8], [52], [53], [280]–[285]. Resilience cannot be adequately described as either a single point in time or a singular summary metric—labeling any metric as “resilience” risks constraining an analysis.

Over the control duration $T_c = t_c - t_0$, integral-based metrics may be unnormalized, $\int_{t_0}^{t_c} \mathcal{P}(t)$, or normalized to time, $(1/T_c) \int_{t_0}^{t_c} \mathcal{P}(t)$, performance, $\int_{t_0}^{t_c} p(t)$, or both, $(1/T_c) \int_{t_0}^{t_c} p(t)$. Stakeholders may prefer the clarity of unnormalized metrics (e.g., disruption days [224], lost service days [30]). For power systems, unnormalized values quantify energy directly [14]–[16], [58]. Normalizing only one dimension is uncommon. Normalized time with unnormalized performance provides the average in actual units [47], [58]. Normalized performance with unnormalized time provides odds units like fractional hours [86], even if not explicitly stated. The most common approach was to normalize both performance and time. This provides a unitless metric with $J \in [0,1]$ as the typical range [71], [129], [196], [274].

Definitions most often considered a global control duration: $T_c = t_c - t_0$. However, a large control interval may obscure nuance: if a system recovers, normalized cumulative performance approaches one as the control duration approaches infinity [187]. For clarity, Bao et al. presented the control duration as the metric’s independent variable, i.e. $J(T_c)$ [21]. Alternatively, some publications defined integral-based metrics over curve milestones (e.g., t_e and t_f) [59], [92], [143], [194], [215], [241], [243]–[246]. For some analyses, such as recovery sequencing, this may be acceptable. But, for curves with different milestones, this approach may confuse comparisons; a fixed interval may be preferred (as discussed in Section 4.1).

In the common, straightforward implementation of integral metrics, all units (i.e., performance × time) are assumed to be equally valuable. However, as Green highlighted, this is “open for debate” [242]. Publications
explored potential differences through stakeholder weighting of milestones [51], nonlinear relationships between value and disruption duration [37], [286], an exponentially decaying “benefit function” [49], and separate pre- and post-disruption evaluations [189]. These limited examples illustrate opportunities to extend integral-based metrics to better reflect stakeholder value in across a scenario.

4.5 Rate-based Metrics

Rate-based metrics quantify how system performance changes over time. The resilience curve’s derivative, broadly, has been labeled agility [287], [288] or local resilience [289], [290]. Most commonly, rate-based metrics focus on the failure or recovery phases.

Failure rate, shown in Fig. 3(b), was associated with resistance [291] and adaptive capability during “graceful degradation” [219]. Labels included: Φ-metric [52], [53], disruption speed [269], rapidity [58], [241], rate of departure [249], rate of performance loss [219], reduction rate [173], and robustness [259]. Metrics were calculated using the curve’s derivative [259], [269], linear approximation [249], and piecewise linear approximation [58], [241]. Based strictly on the curve’s negative derivative, higher values—with a lower magnitude—are desired. Some metrics were presented in this way [52], [53], [259], [269], while others used the absolute value, in which lower values are desired [58], [173], [249]. This distinction is relevant if the metric is used in an ensemble.

Recovery rate, shown in Fig. 3(b), was associated with restorative capability [219]. Labels included: Π-metric [52], [53], rapidity [32], [58], [67], [189], [241], [255], recovery efficiency [225], recovery rate [224], [258], recovery speed [120], restoration rate [219], and restoration speed [269]. Like failure rate metrics, recovery rates were evaluated with the derivative of the curve [120], [269], linear approximation [52], [53], [241], and piecewise linear approximation [58], [241], plus two novel extensions: arctan() to the linear approximation, providing \(J \in [0,1] \) [252]; and fitting recovery to an exponential decay curve, then quantifying rapidity as the best-fit decay constant [32]. For recovery rate metrics, higher values are preferred (i.e., steeper recovery).

Rate-based metrics require clearly specified milestones. Failure rate metrics were consistently applied over \([t_o, t_d]\). Recovery rate metrics were specified to span either the recovery phase \([t_s, t_f]\) [52], [53] or the combined endure and recovery phases \([t_d, t_f]\) [252]. Rate-base metrics were often defined and illustrated with curves that begin recovery immediately, i.e. \(t_s = t_d \) [58], [67], [189], [219], [225], [241], [258], [269]. For curves with less clearly defined milestones, as in Fig. 1(b), rate-based metrics may be challenging to implement consistently.
4.6 Threshold-based Metrics

Thresholds describe non-linear transitions in quantitative interpretation. Thresholds could be defined in either the performance or time domains of the curve: critical performance thresholds, below which performance is unacceptable [54], [63], [78], [91], [94], [103], [105], [114], [120], [135], [226], [248], [249], [268], [282], [283], [286]–[288], [292]–[295], and recovery time thresholds, within which the system should achieve specific objectives [54], [63], [65], [78], [91], [103], [120], [127], [135], [185], [271], [286], [295].

There were two categories of threshold-based metrics. Threshold adherence metrics provided categorical assessment of the system. Often termed “resilience,” these were defined as maintaining performance above the critical threshold [282], [283], [287], [288], [293], [296], [297], recovering within the time threshold [185], [228], or remaining within both thresholds [286]. Threshold modified metrics adjusted forms from another category, such as overriding the calculation with zero if below the performance threshold [94], [298]. Shown in Fig. 3(a), Pflanz and Levis defined residual capacity as the difference between residual performance and the critical threshold [249]. Wen et al. incorporated a recovery time threshold in translating cumulative impact to degree of resilience [286]. Reiger defined brittleness as a modification of cumulative impact: the integral below a critical performance threshold [287], [288]. Thresholds indicate a transition in stakeholder value—they may also indicate a discontinuity for the application of summary metrics.

4.7 Ensemble Summary Metrics

Many publications sought a single value to consolidate multiple metrics for a single curve, blend multiple performance measures for the same scenario, or capture possibilities of system behavior across scenarios. Each of these cases provides an ensemble summary metric category: metric ensembles, measure ensembles, and scenario ensembles. These ensemble metrics yield a single value for optimization or succinct communication of results; however, details of each may be easily obscured or misinterpreted.

4.7.1 Ensembles of Summary Metric Functions

A single curve can be described with many metrics, each representing desired attributes (i.e., \(J_1(p(t)) \), \(J_2(p(t)) \), ...). Metrics may be compared in a table [58], [220] or illustrated with contour plots [63], [64], [210]. Alternatively, a metric ensemble metric aims to combine distinct metrics derived from the same curve: \(J = f(J_1(p(t)), J_2(p(t)), ...) \). Constituent metrics generally have different units, so metric ensembles were often (for all intents) unitless. The one exception was conversion to financial units, such as translating cumulative impact and recovery time through contract provisions [20]. This also enables the incorporation of non-curve considerations (e.g. weighted sum of cumulative impact and recovery costs [43], [172], [188], [194]).
For metric ensembles, publications varied in their constituent metrics and combination methods. Cheng et al. summed cumulative performance, residual performance, restored performance, and translations of failure and recovery durations [193]. Najafi et al. summed residual performance, cumulative performance, and recovery time [142]. Francis and Bekera defined resilience factor as the product of residual performance, restored performance, and their duration-based speed factor [127]. Nan and Sansavini multiplied residual performance, recovery rate, restored performance, and the reciprocals of failure rate and cumulative impact [58], [241]. Cai et al. proposed a more complex resilience metric with the product of steady-state, residual, and recovery performance and natural logarithm of disruption time and recovery duration [299], [300]. Across these examples, weighting and form validation was generally underexplored. For example, while sums and products both provide common directionality between constituent metrics and their ensembles, their behavior is different at extremes. For products, any element can drive the metric to zero. This behavior may or may not be desired for a specific resilience analysis—determination lies with the stakeholders and their goals.

4.7.2 Ensembles of Performance Measures

For a specific system within a specific scenario, stakeholders may be interested in multiple performance measures. Section 3.2 described how candidate measures could be consolidated into a single ensemble measure. Alternatively, each candidate measure could provide a distinct curve, each of which is summarized by the same metric. These metrics can be consolidated into a measure ensemble metric: $J = f(J_1(t), J_2(t), ...)$.

Within the literature, every instance evaluated constituent curves with an integral-based metric. With common units, measure ensembles can be a straightforward sum (e.g., “disruption days” [224], financial units [29], [133], [221], [301]). When measures have dissimilar units, normalized metrics provide a basis for combination. Examples included: geometric mean of measures’ cumulative performance [275]; combination with an assumption of independence [255]; and the unweighted product of measures’ cumulative performance [76]. Weighting may be necessary to reflect stakeholder preferences. Zou and Chen proposed three weighting schemes when analyzing interdependent transportation and electric systems, leaving the choice to the “view and judgement of decision-makers” [196]. Reed et al. envisioned a function that “reflects [subsystem] interdependence and connectivity” [32]. Moslehi and Reddy applied time-varying weighting for heating, cooling, and power systems reflecting the season and time of day [243]. Weighting schemes may be estimated from historical data, such as applying time-series cross-correlations functions across sectors [23], [24], [26]. Together, these approaches outline underexplored opportunities for ensemble metrics across performance measures.

4.7.3 Ensembles of Scenarios

Finally, resilience analyses are often interested in a system’s possible responses across a suite of scenarios. Broadly, “scenarios” can reflect differences in system configuration [52]–[55], [58], [127], hazard exposure [57],
[69], [89], [90], [143], [191], or emergent behavior for a given configuration, environment, and hazard exposure (e.g. in Monte Carlo simulation) [86], [87], [90], [196], [252]. Across a set of scenarios, illustrating each resilience curve is not always practical. For example, Barker and Santos illustrated distinct resilience curves for two inventory configurations, but only presented summary metrics in considering five strategies [204], [208].

A **scenario ensemble** provides the summary metrics derived from each enumerated scenario or simulation run: \(J(p(t)|s_1), J(p(t)|s_2), \ldots \). Summary statistics enable quick analysis from such a set. Cimellaro et al. described 12 water disruption scenarios with the minimum and maximum recovery times from 5,000 simulation runs [76]. From 15,000 samples over six hazard intensity levels, Landegren et al. plotted the median, mean, and 5/95 percentile values of cumulative impact [267]. Multiple authors proposed extending binary threshold metrics, quantifying the probability of remaining within both thresholds [54], [91], [120].

Some authors illustrated the scenario ensemble through a histogram or distribution function. Examples included: recovery time and cumulative impact across 500 runs [89]; cumulative performance across 200 runs for each repair crew size option [196]; cumulative impact across multiple strategies and scenarios of 1000 runs [87]; residual performance across 10,000 samples with and without earthquake aftershocks [129]; cumulative performance and recovery rate from 100,000 runs [252]. Despite these examples, this approach is infrequently adopted—it was more common for metrics to be presented as a single value.

Considering emergent behavior for a specific configuration and hazard exposure, many authors produced an “expected trajectory” from the mean performance value at each timestep. Such an “expected trajectory” does not necessarily correspond to any trajectory within the ensemble. When presented alone, such illustrations were occasionally unclear—it was not obvious the resilience curve did not represent a specific trajectory [44], [55], [187], [191], [196]. Illustrations with constituent curves, error bars, or a confidence interval were much more clear [47], [193], [200], [216], [217], [220], [267], [302]. Some publications derived summary metrics from their “expected trajectory” [86], [143], [220].

Fig. 4 illustrates how “expected trajectory” curves can be misleading. In this simple example, only the resistive duration is random. Integral-based metrics derived from the “expected trajectory” may reflect the expected value of metrics applied to constituent curves. However, magnitude-, duration-, rate-, and threshold-based metrics will not. Juul et al. highlights that summary metrics of expected trajectories can wildly differ from those of any single trajectory and suggests two alternatives: curve-based descriptive statistics and likelihoods of specific scenarios of interest [303].
Summary metrics may require special consideration when the scenario ensemble spans multiple hazard events. Hazard events may not be independent. Zhao et al. distinguished between “single-disruption” and “multiple-disruption” scenarios [65]. Zobel and Khansa provided metric adjustments for “partial resilience” [62]. In some cases, metric adjustment is not necessary. Integral-based metrics can extend their control time to encompass probabilistic hazards [31], [56], [69], [189], [220], [222], [230]. Alternatively, some authors enumerated distinct scenarios with probabilities, then weighted the aggregation of summary metrics [54], [65], [127].

4.8 Summary Functions

Within the survey, 21 publications implemented a function that does not map a resilience curve to a scalar value (i.e., the function is not a summary metric). Instead, these summary functions can be evaluated at any point within the scenario. Examples included local resilience as the derivative of the resilience curve [289], [290] and space-time dynamic resilience measure as the normalized cumulative performance since disruption [275]. These functions were often labeled a variation of “resilience” but such terminology is avoided in this manuscript.

Recovery ratio, illustrated in Fig. 3(b), quantifies the improvement of performance at any time relative to the curve’s minimum performance. This was the most common summary function, with implementation across infrastructure sectors [19], [35], [38], [41], [210], [304]–[308]. Orwin and Wardle introduced it as resilience index [26], but Henry and Ramirez-Marquez established its most commonly used form: value of resilience, $\mathcal{Y}(t)$ [68]. Recovery ratio was commonly implemented with a presumption of availability measures and a fixed \mathcal{R}_0 (e.g. restoration of maximum potential network flow [38], [41]), but Thekdi and Santos extended its definition to encompass performance targets, $\mathcal{R}(t)$ [94]. Since the function can be evaluated at any time, recovery ratio can imply that “resilience” is improving over time [38]. The metric provides $\mathcal{Y}(t_0) = 0$ in all scenarios—this is not “zero resilience”. Nor does $\mathcal{Y}(t) = 1$ indicate the system is “fully resilient” [39], only that the system has
recovered. Expressed with these considerations, recovery ratio may be useful for restoration sequencing [40], [41] and component importance estimation [36], [38], [278].

5 Discussion

Infrastructure resilience analyses commonly focus on prioritizing recovery actions, recommending system configurations or interventions, or supporting related analyses. Resilience curves are a useful tool to achieve such objectives; however, incorrectly using this tool can yield incorrect results. The following section discusses four aspects of resilience curves that should be carefully considered before their use: selection and implementation of performance measures, selection and implementation of summary metrics, communication of results, and improving the practice of resilience analysis.

5.1 Performance Measure Selection and Implementation

Each performance measure category can be loosely related to an analytical focus and applicability. While expanding the scope of an analysis can increases its complexity, it may open up additional opportunities for resilience-improving interventions.

- **Availability measures** focus on analysis on the infrastructure system itself. This is appropriate when the infrastructure’s utilization is tightly coupled to its availability or when stakeholders are indifferent to infrastructure utilization. Such analyses will generally not need a model of utilization or service demand.

- **Productivity measures** incorporate both the supply and demand of infrastructure services. This level of analysis is expected for downstream stakeholders (i.e., customers). Analyses likely require a model of both the infrastructure system (i.e., supply) and its utilization (i.e., demand). This scope provides additional opportunities to improve system resilience, such as demand-response management.

- **Quality measures** expand supply and demand considerations into a representation of the service’s character. Within these analyses, modeling effort may be dominated by non-infrastructure considerations (e.g., dynamics of service utilization). This provides a corresponding increase in intervention options. While not appropriate for all systems or scenarios, quality measures can be critical for comparing trade-offs between steady-state and disrupted performance. These measures may also be appropriate for smaller-scale disruptions in which the system is stressed such that quality, but not production, is reduced.

Availability measures focus an analysis on the infrastructure system itself and do not incorporate variation in the system’s provision of service. This may be appropriate when stakeholders are solely interested in the system itself (e.g., utility operators, public works departments) or for scenarios in which full recovery is relatively quick (e.g., when stakeholders are not expected to change service demand or behavior). When availability measures are appropriate and stakeholders are focused on full restoration, a fixed reference, R_0, and static
normalization are reasonable. Modeling an infrastructure system under such assumptions is generally more straightforward than alternatives, but measures and assumptions should seek to reflect stakeholder goals and system realities—not modeling considerations. If inappropriately adopting availability measures and static normalization, analyses risk overvaluing excess capacity and undervaluing dynamic, real-time resilience capabilities.

Analyses should anticipate **productivity measures** as being of primary interest. Such measures parallel the definition of infrastructure: systems that “produce and distribute…essential goods and services” [183]. The ability to provide service is generally dependent on the system’s availability, so productivity measures are often an extension of availability-based analyses. This extension is appropriate for stakeholders that are primarily concerned with the provision of service to users, such as public officials or the customers themselves. Additionally, productivity measures are only understood relative to demand on the system. While some systems are subject to constant service demand, most practical infrastructure supports varying loads (e.g., hourly, daily, and seasonal cycles in energy consumption).

Service demand should be assumed to be dynamic relative to disruption scenarios and system behavior, until demonstrated otherwise. This relates productivity measures to performance targets, $\mathcal{R}(t)$, and endogenous normalization. Starting with this expectation, exogenous, $\mathcal{R}_0(t)$, or constant baselines, \mathcal{R}_0, should only be used when justified. This is in contrast to the existing literature, in which fixed references, \mathcal{R}_0, is often assumed without justification. The benefits of modeling simplicity cannot always be sufficient: when an analysis makes recommendations from p; the numerator, $\mathcal{P}(t)$, and denominator, $\mathcal{R}(t)$, are both relevant. While this increases the complexity of an analysis, it also introduces opportunities for resilience improvements. For example, a system may anticipate and prepare for disruptions, in response to a warning event, and reduce expected demand on an infrastructure, $\mathcal{R}(t)$, to minimize the normalized effect, $p(t)$, of reduced productivity, $\mathcal{P}(t)$. Such opportunities are broadly underexplored within quantitative, scenario-based resilience analyses.

Quality measures may provide the best representation of agent desires within the system (e.g., “how long is my travel time?” instead of “can I reach my destination?”). Such measures may shift analytical focus away from the infrastructure to supported systems, yet quality is still often dependent on both availability and productivity of the infrastructure. Quality measures may not be appropriate for all scenarios. If productivity goals cannot be met, then quality goals may not be relevant. From this perspective, quality measures may be appropriate for systems under less stress than those described with productivity measures. Quality measures may also be applicable when a disruption does not actually affect productivity measures. Performance targets for quality measures are likely to be constant, representing typical or desired levels. Unlike availability and productivity measures, quality measures may not meet their performance target during steady-state conditions (e.g., traffic delay is non-zero on typical
workdays). This provides opportunities to assess resilience improvements as tradeoffs between steady-state and disrupted situations.

It is not always the case that availability measures demand less analytical effort than alternative measures. Consider an availability measure “households with water”. Determining this measure may require modeling service demand—a productivity consideration—and water pressure—a potential quality measure. Ultimately, selection of the measures should be driven by stakeholder goals and capabilities, and analytical effort should follow.

Ensemble measures or indices may be appealing when faced with multiple candidate measures (e.g., the performance at multiple spatial-locations across an infrastructure system), but they are not without challenges. Ensemble measures may obfuscate nuances of constituent measures (e.g., if measures diverge in edges cases). When ensembles are used in software-based analyses, such nuances could be detected with the ensemble measure’s partial derivate across simulated trajectories, which stakeholders could interpret as the marginal benefit for improving the constituent measure. This framing can highlight differences in ensemble measure formulations—specifically between addition and multiplication when a constituent measure nears zero. As an additional consideration, weighting between constituent measures may be endogenous, in a parallel to performance targets. Generally, these considerations are unexplored across the literature, but should be addressed by any analysis incorporating an ensemble performance measure.

5.2 Summary Metric Selection and Implementation

Summary metrics should be selected to best describe stakeholder goals. The taxonomy of metrics presented in this manuscript, with their considerations, seeks to aid analysts and stakeholder in defining metrics. Relevant to all categories are the analysis’s control interval and curve-specific milestones. Integral-based metrics, in particular, must deliberately consider the interval upon which they are calculated. This interval should specifically avoid defining boundaries in terms of curve milestones (e.g., initial system disruption and system recovery) as those milestones could shift across a variety of curve trajectories.

Summary metrics definitions should consider the variety of resilience curve trajectories. Empirical or simulated curves may not match preconceived expectations (e.g., instantaneous performance loss, non-decreasing recovery). Metric calculation will often require criteria for curve milestones (e.g., the interval upon which to calculate failure rate). Some metrics may be undefined for some curves (e.g., recovery duration for unrecoverable systems). If metric definitions are not clearly articulated and validated, unexpected consequences may be hidden within a larger analytical effort—especially when metrics contribute to simulation and optimization. Within the survey, many publications defined metrics with an assumption of static normalization. Such assumptions, if
established early within an analysis, may constrain the overall effort and its applicability. This may be avoided by clearly distinguishing between metrics derived from unnormalized \(\mathcal{P}(t) \) and normalized \(p(t) \).

Ensemble metrics face the same challenges as ensemble measures. The methods to determine and validate \(f(J_1(p(t)), J_2(p(t)), ...) \) and \(f(J(p_1(t)), J(p_2(t)), ...) \) are generally underexplored. Like ensemble measures and performance targets, weighting within such functions may be endogenous.

In general, time and performance thresholds are underexplored with regard to summary metrics. Not only can they provide stand-alone metrics, but they may influence the calculation of other metrics, indicating a non-linear translation in stakeholder value. However, incorporating thresholds introduces another consideration for modeling complexity—time and performance thresholds may be dynamic within an unfolding scenario. Like performance targets and weighting between measures or metrics, modeling endogenous thresholds requires additional focus on the dynamics between infrastructure, stakeholder behavior, and stakeholder goals.

5.3 Communication of Results

Just as analyses should reflect stakeholder goals, communication of results should consider stakeholder interpretation. For this reason, analysts may wish to avoid labeling performance measures and summary metrics as “resilience.” Such terminology was particularly common for ensemble measures and cumulative performance metrics. Resilience cannot be described at a single point in time (i.e., a measure) or from a single resilience curve trajectory (i.e., a metric). Instead, measures and metrics quantifying resilience considerations; descriptive terminology can reflect that role.

When communicating results in tables or illustration, analysts may consider presenting both unnormalized and normalized results. In many cases, analysis was accomplished entirely with normalized values. This is reasonable within the paradigm of availability metrics and static normalization, but it is challenged with the adoption of performance targets and endogenous normalization. Changes in normalized values may reflect changes in the performance measure or its target. Interpretation of results may depend on this distinction. For quality measures, performance targets may represent ideal or typical performance. This slight distinction in “nominal” may be obfuscated when normalized values are presented alone. Finally, comparing multiple performance measures with their normalized values may minimize relative differences in their actual values (e.g., restoration of utilities in communities of vastly different size).

Summary metrics quantify a singular resilience curve. When considering an ensemble of scenarios (e.g., Monte Carlo simulation runs), results may best be described with the distribution of their summary metrics and descriptive statistics. Illustrating such distributions provides opportunities: consideration of overlap when comparing options and more intuitive understanding of variance and skew. Alternatively, despite its relatively frequent implementation, converting an ensemble of curves into an “expected trajectory” provides significant
analytical risks. Such representations are potentially misleading to stakeholders, and metrics derived from the “expected trajectory” may be objectively incorrect.

5.4 Improving the Practice of Resilience Analysis

Infrastructure systems are interdependent, interact with agents and the environment, and operate outside “normal” bounds during the periods of interest. In modeling and simulation, there are very real challenges in balancing complexity, fidelity, tractability, and legibility. This survey has revealed common assumptions to be addressed when expanding resilience analysis efforts.

Performance targets, time and performance thresholds, and weighting between performance measures and metrics may all be endogenous. Understanding each, then representing them within an analysis, requires stakeholder engagement and validation. Modeling mechanisms may lie outside traditional infrastructure disciplines (e.g., linear time-invariant modeling). Candidate representations may require validation with empirical data on element-level interactions and system-wide behavior. In contrast, few of the publications in this survey provided empirical analysis; those that did focused on well-documented historical events.

Empirical analysis and calibration, more generally, warrants additional research. While “stakeholders” is used liberally in this manuscript, most systems have multiple stakeholders, for which goals and values may not fully align. Identifying stakeholders, in and of itself, is a worthy research effort. Each stakeholder may perceive the system through a specific set of measures and metrics. When these assessments contradict between stakeholders, an additional level of complexity is introduced. This topic is generally underexplored, likely due to assumptions of non-decreasing recovery and the common, yet unfounded, use of availability measures and static normalization. Under those assumptions, all resilience curves are monotonic transformations of one another, eliminating the chance of diverging results. If used to compare strategies, options are “less good” than one another, but never “bad”. With deliberate scrutiny, these assumptions may not hold for real-world systems.

These research directions introduce ever-expanding complexity into infrastructure resilience analysis. However, they also provide new opportunities for improving each system’s resilience. If endogenous performance targets are applicable in an analysis, then adjusting performance targets can be used to improve system resilience. If stakeholders’ preferred performance measures diverge, then aligning their interests may support other resilience improvements. These are exciting opportunities for bettering real-world systems. Finally, this survey made clear that new models and metrics are not needed “for illustration purposes”—the field is ready for direct, validated, actionable analysis of practical systems and problems.
6 Conclusion

In reviewing 273 publications, this manuscript supports future critical infrastructure analysis by defining taxonomies for resilience curve performance measures and summary metrics. Recommendations for selecting measures and metrics based on the taxonomy are distilled from a critical review of the literature.

Three categories of performance measures are defined, in order of increasing modeling complexity: availability (capacity or aggregated function of the system), productivity (quantity of service provided by the system), and quality (character of service provided by the system). Spatial variations and/or multiple stakeholders may necessitate the use of multiple measures and their ensembles. Use of performance measures are further clarified by describing normalization schemes as static, exogenous, or endogenous. Static normalization is generally associated with availability measures, for which full system recovery is the goal. In contrast, productivity measures may demand dynamic performance targets, thus requiring models to relate infrastructure states to stakeholder goals and behaviors.

Summary metrics distill a curve to single value to facilitate comparison of multiple curves. This manuscript defines six categories of summary metrics: magnitude, duration, integral, rate, threshold, and ensembles. These metrics should be carefully selected and specified, as preconceived expectations common in the literature (e.g., instantaneous performance loss, non-decreasing recovery) can have a significant effect on the effectiveness of summary metrics to communicate system resilience to stakeholders. For an ensemble of curves, analyses should provide descriptive statistics on the distribution of each curve’s metric—metrics should not be derived from an “expected trajectory” curve.

Throughout this manuscript, examples arise that illustrate that infrastructure systems are socio-technical systems. Existing literature focused on the technical aspects, leaving a need for future research into the social aspects and their interactions with the technical. One clear area where this is relevant is engaging stakeholders in the resilience analysis process, especially in the definition of "performance". Future research could validate analytical interpretations of stakeholder performance definitions, and the effect on resulting resilience recommendations. Resilience curves are just one tool to be used in resilience analysis. This manuscript aims to improve the design and use of this tool as a way to succinctly and effectively communicate resilience analysis methods and results to stakeholders.
Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors thank their colleagues from the Energy Systems Group, Lincoln Laboratory and the Global Resilience Institute at Northeastern University for discussion, comments, and support to this work. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

References

[1] National Research Council, *Disaster Resilience: A National Imperative*. Washington, DC: National Academies Press, 2012. Accessed: Jan. 16, 2019. [Online]. Available: https://www.nap.edu/catalog/13457/disaster-resilience-a-national-imperative

[2] I. Linkov and B. D. Trump, *The Science and Practice of Resilience*. New York, NY: Springer, 2019.

[3] A. Mar, P. Pereira, and J. F. Martins, “A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience,” *Energies*, vol. 12, no. 24, p. 4667, Jan. 2019, doi: 10.3390/en12244667.

[4] R. Sterling and P. Nelson, “City Resiliency and Underground Space Use,” presented at the World Conference of the Associated Research Centers for Urban Underground Space Development (ACUUS), Singapore, Nov. 2012.

[5] S. S. Watson, C. F. Ferraris, and J. D. Averill, “Role of materials selection in the resilience of the built environment,” *Sustainable and Resilient Infrastructure*, vol. 3, no. 4, pp. 165–174, Oct. 2018, doi: 10.1080/23789689.2017.1405656.

[6] N. LaLone, A. Tapia, C. Zobel, C. Caraegh, V. K. Neppalli, and S. Halse, “Embracing human noise as resilience indicator: twitter as power grid correlate,” *Sustainable and Resilient Infrastructure*, vol. 2, no. 4, pp. 169–178, Oct. 2017, doi: 10.1080/23789689.2017.1328920.

[7] J. Xing and E. Zio, “An integrated framework for business continuity management of critical infrastructures,” in *26th European Safety and Reliability Conference - ESREL 2016*, Glasgow, United Kingdom, 2017, pp. 563–570. Accessed: Jan. 02, 2020. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01411321

[8] R. Z. Fanucchi et al., “Stochastic indexes for power distribution systems resilience analysis,” *IET Generation, Transmission & Distribution*, vol. 13, no. 12, pp. 2507–2516, 2019, doi: 10.1049/iet-gtd.2018.6667.

[9] A. Assad, O. Moselhi, and T. Zayed, “A New Metric for Assessing Resilience of Water Distribution Networks,” *Water*, vol. 11, no. 8, p. 1701, Aug. 2019, doi: 10.3390/w11081701.

[10] P. Foytik and R. M. Robinson, “Weighting critical infrastructure dependencies to facilitate evacuations,” *International Journal of Disaster Risk Reduction*, vol. 31, pp. 1199–1206, Oct. 2018, doi: 10.1016/j.ijdrr.2017.11.019.

[11] A. Pagano, R. Giordano, I. Portoghese, U. Fratino, and M. Vurro, “Innovative Approaches for Modeling Resilience of Water Supply Systems,” in *Proceedings of the 36th IAHR World Congress*, 2015, p. 13.

[12] C. Ioannidis, D. Pym, J. Williams, and I. Gheyas, “Resilience in information stewardship,” *European Journal of Operational Research*, vol. 274, no. 2, pp. 638–653, Apr. 2019, doi: 10.1016/j.ejor.2018.10.020.

[13] Z. B. Rad and A. E. Jahromi, “A framework for resiliency assessment of power communication networks,” *Scientia Iranica. Transaction E, Industrial Engineering*, vol. 21, no. 6, pp. 2399–2418, 2014.

[14] A. Kavousi-Fard, M. Wang, and W. Su, “Stochastic Resilient Post-Hurricane Power System Recovery Based on Mobile Emergency Resources and Reconfigurable Networked Microgrids,” *IEEE Access*, vol. 6, pp. 72311–72326, 2018, doi: 10.1109/ACCESS.2018.2881949.

[15] H. Gao, Y. Chen, S. Mei, S. Huang, and Y. Xu, “Resilience-Oriented Pre-Hurricane Resource Allocation in Distribution Systems Considering Electric Buses,” *Proceedings of the IEEE*, vol. 105, no. 7, pp. 1214–1233, Jul. 2017, doi: 10.1109/JPROC.2017.2666548.
[16] H. Gao, Y. Chen, Y. Xu, and C.-C. Liu, “Resilience-Oriented Critical Load Restoration Using Microgrids in Distribution Systems,” *IEEE Transactions on Smart Grid*, vol. 7, no. 6, pp. 2837–2848, Nov. 2016, doi: 10.1109/TSG.2016.2550625.

[17] W. Zhang and N. Wang, “Resilience-based risk mitigation for road networks,” *Structural Safety*, vol. 62, pp. 57–65, Sep. 2016, doi: 10.1016/j.strusafe.2016.06.003.

[18] L. Chang, F. Peng, Y. Ouyang, A. S. Elnashai, and B. F. Spencer, “Bridge Seismic Retrofit Program Planning to Maximize Postearthquake Transportation Network Capacity,” *Journal of Infrastructure Systems*, vol. 18, no. 2, pp. 75–88, Jun. 2012, doi: 10.1061/(ASCE)IS.1943-555X.0000082.

[19] S. Hosseini and K. Barker, “Modeling infrastructure resilience using Bayesian networks: A case study of inland waterway ports,” *Computers & Industrial Engineering*, vol. 93, pp. 252–266, Mar. 2016, doi: 10.1016/j.cie.2016.01.007.

[20] M. das C. Moura, H. H. L. Diniz, E. L. Droguett, B. S. da Cunha, I. D. Lins, and V. R. Simoni, “Embedding resilience in the design of the electricity supply for industrial clients,” *PLOS ONE*, vol. 12, no. 11, p. e0188875, Nov. 2017, doi: 10.1371/journal.pone.0188875.

[21] S. Bao, C. Zhang, M. Ouyang, and L. Miao, “An integrated tri-level model for enhancing the resilience of facilities against intentional attacks,” *Ann Oper Res*, vol. 283, no. 1, pp. 87–117, Dec. 2019, doi: 10.1007/s10479-017-2705-y.

[22] G. P. Cimellaro and D. Solari, “Considerations about the optimal period range to evaluate the weight coefficient of coupled resilience index,” *Engineering Structures*, vol. 69, pp. 12–24, Jun. 2014, doi: 10.1016/j.engstruct.2014.03.003.

[23] G. P. Cimellaro, “The Physical Infrastructure Dimension Taking into Account Interdependencies,” in *Urban Resilience for Emergency Response and Recovery: Fundamental Concepts and Applications*, G. P. Cimellaro, Ed. Cham: Springer International Publishing, 2016, pp. 317–344. Accessed: Jan. 02, 2020. [Online]. Available: https://doi.org/10.1007/978-3-319-30656-8 9

[24] G. P. Cimellaro, D. Solari, and M. Bruneau, “Physical infrastructure interdependency and regional resilience index after the 2011 Tohoku Earthquake in Japan,” *Earthquake Engineering & Structural Dynamics*, vol. 43, no. 12, pp. 1763–1784, 2014, doi: 10.1002/eqe.2422.

[25] V. Krishnamurthy, A. Kwasinski, and L. Dueñas-Osorio, “Comparison of Power and Telecommunications Dependencies and Interdependencies in the 2011 Tohoku and 2010 Maule Earthquakes,” *Journal of Infrastructure Systems*, vol. 22, no. 3, p. 04016013, Sep. 2016, doi: 10.1061/(ASCE)IS.1943-555X.0000296.

[26] L. Dueñas-Osorio and A. Kwasinski, “Quantification of Lifeline System Interdependencies after the 27 February 2010 Mw 8.8 Offshore Maule, Chile, Earthquake,” *Earthquake Spectra*, vol. 28, no. 1_suppl1, pp. 581–603, Jun. 2012, doi: 10.1193/1.4000054.

[27] N. Nojima, “Restoration Processes of Utility Lifelines in the Great East Japan Earthquake Disaster, 2011,” 2012, p. 10.

[28] S. E. Chang, “Urban disaster recovery: a measurement framework and its application to the 1995 Kobe earthquake,” *Disasters*, vol. 34, no. 2, pp. 303–327, 2010, doi: 10.1111/j.1467-7717.2009.01130.x.

[29] O. Jonkeren, I. Azzini, L. Galbusera, S. Ntalampiras, and G. Giannopoulos, “Analysis of Critical Infrastructure Network Failure in the European Union: A Combined Systems Engineering and Economic Model,” *Netw Spat Econ*, vol. 15, no. 2, pp. 253–270, Jun. 2015, doi: 10.1007/s11067-014-9259-1.

[30] R. Chan and J. L. Schofer, “Measuring Transportation System Resilience: Response of Rail Transit to Weather Disruptions,” *Natural Hazards Review*, vol. 17, no. 1, p. 05015004, Feb. 2016, doi: 10.1061/(ASCE)NH.1527-6996.0000200.

[31] E. Minaie and F. Moon, “Practical and Simplified Approach for Quantifying Bridge Resilience,” *Journal of Infrastructure Systems*, vol. 23, no. 4, p. 04017016, Dec. 2017, doi: 10.1061/(ASCE)IS.1943-555X.0000374.

[32] D. A. Reed, K. C. Kapur, and R. D. Christie, “Methodology for Assessing the Resilience of Networked Infrastructure,” *IEEE Systems Journal*, vol. 3, no. 2, pp. 174–180, Jun. 2009, doi: 10.1109/JSYST.2009.2017396.

[33] S. Lee, S. Shin, D. R. Judi, T. McPherson, and S. J. Burian, “Criticality Analysis of a Water Distribution System Considering Both Economic Consequences and Hydraulic Loss Using Modern Portfolio Theory,” *Water*, vol. 11, no. 6, p. 1222, Jun. 2019, doi: 10.3390/w11061222.
[34]X. Liu, E. Ferrario, and E. Zio, “Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis,” Reliability Engineering & System Safety, Apr. 2019, doi: 10.1016/j.ress.2019.04.017.

[35]C. D. Nicholson, K. Barker, and J. E. Ramirez-Marquez, “Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning,” Reliability Engineering & System Safety, vol. 145, pp. 62–73, Jan. 2016, doi: 10.1016/j.ress.2015.08.014.

[36]K. Barker, J. E. Ramirez-Marquez, and C. M. Rocco, “Resilience-based network component importance measures,” Reliability Engineering & System Safety, vol. 117, pp. 89–97, Sep. 2013, doi: 10.1016/j.ress.2013.03.012.

[37]X. He and Y. Yuan, “A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience,” Water Resour Manage, Aug. 2019, doi: 10.1007/s11269-019-02328-2.

[38]Y. Almoghathawi and K. Barker, “Component importance measures for interdependent infrastructure network resilience,” Computers & Industrial Engineering, vol. 133, pp. 153–164, Jul. 2019, doi: 10.1016/j.cie.2019.05.001.

[39]Y. Almoghathawi, K. Barker, and L. A. Albert, “Resilience-driven restoration model for interdependent infrastructure networks,” Reliability Engineering & System Safety, vol. 185, pp. 12–23, May 2019, doi: 10.1016/j.ress.2018.12.006.

[40]E. L. Mooney, Y. Almoghathawi, and K. Barker, “Facility Location for Recovering Systems of Interdependent Networks,” IEEE Systems Journal, vol. 13, no. 1, pp. 489–499, Mar. 2019, doi: 10.1109/JSYST.2018.2869391.

[41]D. B. Karakoc, Y. Almoghathawi, K. Barker, A. D. González, and S. Mohebbi, “Community resilience-driven restoration model for interdependent infrastructure networks,” International Journal of Disaster Risk Reduction, p. 101228, Jul. 2019, doi: 10.1016/j.ijdrr.2019.101228.

[42]Y. Li, C. Zhang, C. Jia, X. Li, and Y. Zhu, “Joint optimization of workforce scheduling and routing for restoring a disrupted critical infrastructure,” Reliability Engineering & System Safety, vol. 191, p. 106551, Nov. 2019, doi: 10.1016/j.ress.2019.106551.

[43]E. D. Vugrin, M. A. Turnquist, and N. J. K. Brown, “Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks,” IJCIS, vol. 10, no. 3/4, p. 218, 2014, doi: 10.1504/IJCIS.2014.066356.

[44]S.-Y. Lin and S. El-Tawil, “Time-Dependent Resilience Assessment of Seismic Damage and Restoration of Interdependent Lifeline Systems,” Journal of Infrastructure Systems, vol. 26, no. 1, p. 04019040, Mar. 2020, doi: 10.1061/(ASCE)IS.1943-555X.0000522.

[45]F. Tantri and S. Amir, “Modeling a Simulation for Sociotechnical Resilience,” Complexity, Dec. 2019, Accessed: Apr. 09, 2020. [Online]. Available: https://www.hindawi.com/journals/complexity/2019/7950629/

[46]W. Yang, F. Shanshan, W. Bing, H. Jinhui, and W. Xiaoyang, “Towards optimal recovery scheduling for dynamic resilience of networked infrastructure,” Journal of Systems Engineering and Electronics, vol. 29, no. 5, pp. 995–1008, Oct. 2018, doi: 10.21629/JSEE.2018.05.11.

[47]S. Nozhati, B. R. Ellingwood, and E. K. P. Chong, “Stochastic optimal control methodologies in risk-informed community resilience planning,” Structural Safety, vol. 84, p. 101920, May 2020, doi: 10.1016/j.strusafe.2019.101920.

[48]C. Rochas, T. Kuzņecova, and F. Romagnoli, “The concept of the system resilience within the infrastructure dimension: application to a Latvian case,” Journal of Cleaner Production, vol. 88, pp. 358–368, Feb. 2015, doi: 10.1016/j.jclepro.2014.04.081.

[49]A. Ulusan and O. Ergun, “Restoration of services in disrupted infrastructure systems: A network science approach,” PLOS ONE, vol. 13, no. 2, p. e0192272, Feb. 2018, doi: 10.1371/journal.pone.0192272.

[50]Y.-P. Fang and G. Sansavini, “Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience,” Reliability Engineering & System Safety, vol. 185, pp. 1–11, May 2019, doi: 10.1016/j.ress.2018.12.002.

[51]M. Ouyang, C. Liu, and M. Xu, “Value of Resilience-based Solutions on Critical Infrastructure Protection: Comparing with Robustness-based Solutions,” Reliability Engineering & System Safety, p. 106506, May 2019, doi: 10.1016/j.ress.2019.106506.
[52] M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou, “Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies,” *Proceedings of the IEEE*, vol. 105, no. 7, pp. 1202–1213, Jul. 2017, doi: 10.1109/JPROC.2017.2691357.

[53] M. Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D. Hatziargyriou, “Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems,” *IEEE Transactions on Power Systems*, vol. 32, no. 6, pp. 4732–4742, Nov. 2017, doi: 10.1109/TPWRS.2017.2664141.

[54] S. E. Chang and M. Shinozuka, “Measuring Improvements in the Disaster Resilience of Communities,” *Earthquake Spectra*, Aug. 2004, doi: 10.1193/1.1775796.

[55] Bocchini Paolo, Frangopol Dan M., Ummenhofer Thomas, and Zinke Tim, “Resilience and Sustainability of Civil Infrastructure: Toward a Unified Approach,” *Journal of Infrastructure Systems*, vol. 20, no. 2, p. 04014004, Jun. 2014, doi: 10.1061/(ASCE)IS.1943-555X.0000177.

[56] M. Ouyang and L. Dueñas-Osorio, “Time-dependent resilience assessment and improvement of urban infrastructure systems,” *Chaos*, vol. 22, no. 3, p. 033122, Aug. 2012, doi: 10.1063/1.4737204.

[57] A. Pagano, I. Pluchinotta, R. Giordano, and M. Vurro, “Drinking water supply in resilient cities: Notes from L’Aquila earthquake case study,” *Sustainable Cities and Society*, vol. 28, pp. 435–449, Jan. 2017, doi: 10.1016/j.scs.2016.09.005.

[58] C. Nan and G. Sansavini, “A quantitative method for assessing resilience of interdependent infrastructures,” *Reliability Engineering & System Safety*, vol. 157, pp. 35–53, Jan. 2017, doi: 10.1016/j.ress.2016.08.013.

[59] M. Bruneau et al., “A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities,” *Earthquake Spectra*, vol. 19, no. 4, pp. 733–752, Nov. 2003, doi: 10.1193/1.1623497.

[60] K. Tierney and M. Bruneau, “Conceptualizing and Measuring Resilience,” *TR News*, no. 250, p. 4, Jun. 2007.

[61] T. D. O’Rourke, “Critical Infrastructure, Interdependencies, and Resilience,” *The Bridge*, vol. 37, no. 1, p. 8, Mar. 01, 2007.

[62] C. W. Zobel and L. Khansa, “Characterizing multi-event disaster resilience,” *Computers & Operations Research*, vol. 42, pp. 83–94, Feb. 2014, doi: 10.1016/j.cor.2011.09.024.

[63] C. W. Zobel, “Representing perceived tradeoffs in defining disaster resilience,” *Decision Support Systems*, vol. 50, no. 2, pp. 394–403, Jan. 2011, doi: 10.1016/j.dss.2010.10.001.

[64] C. W. Zobel, “Comparative Visualization of Predicted Disaster Resilience,” in *Proceedings of the 7th International ISCRAM Conference*, Seattle, Washington, May 2010, p. 6.

[65] S. Zhao, X. Liu, and Y. Zhuo, “Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system,” *Reliability Engineering & System Safety*, vol. 164, pp. 84–97, Aug. 2017, doi: 10.1016/j.ress.2017.02.009.

[66] G. P. Cimellaro, A. Reinhorn, and M. Bruneau, “Seismic Resilience of a Health Care Facility,” in *Proceedings of the 2005 ANCER Annual Meeting, Session III*, Jeju, Korea, Nov. 2005, p. 13.

[67] G. P. Cimellaro, A. M. Reinhorn, and M. Bruneau, “Framework for analytical quantification of disaster resilience,” *Engineering Structures*, vol. 32, no. 11, pp. 3639–3649, Nov. 2010, doi: 10.1016/j.engstruct.2010.08.008.

[68] D. Henry and J. E. Ramirez-Marquez, “Generic metrics and quantitative approaches for system resilience as a function of time,” *Reliability Engineering & System Safety*, vol. 99, pp. 114–122, Mar. 2012, doi: 10.1016/j.ress.2011.09.002.

[69] M. Ouyang, L. Dueñas-Osorio, and X. Min, “A three-stage resilience analysis framework for urban infrastructure systems,” *Structural Safety*, vol. 36–37, pp. 23–31, May 2012, doi: 10.1016/j.strusafe.2011.12.004.

[70] I. Linkov et al., “Changing the resilience paradigm,” *Nature Climate Change*, vol. 4, no. 6, pp. 407–409, Jun. 2014, doi: 10.1038/nclimate2227.

[71] A. A. Ganin et al., “Operational resilience: concepts, design and analysis,” *Scientific Reports*, vol. 6, no. 1, May 2016, doi: 10.1038/srep19540.

[72] J. Rajamäki, J. Nevmerzhitskaya, and C. Virág, “Cybersecurity education and training in hospitals: Proactive resilience educational framework (Prosilience EF),” in *2018 IEEE Global Engineering Education Conference (EDUCON)*, Apr. 2018, pp. 2042–2046. doi: 10.1109/EDUCON.2018.8363488.
[73] S. Slivkova, D. Rehak, V. Nesporova, and M. Dopaterova, “Correlation of Core Areas Determining the Resilience of Critical Infrastructure,” *Procedia Engineering*, vol. 192, pp. 812–817, 2017, doi: 10.1016/j.proeng.2017.06.140.

[74] A. Rose, “Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions,” *Environmental Hazards*, vol. 7, no. 4, pp. 383–398, 2007, doi: 10.1016/j.envhaz.2007.10.001.

[75] B. Zhuang, K. Lansey, and D. Kang, “Resilience/Availability Analysis of Municipal Water Distribution System Incorporating Adaptive Pump Operation,” *Journal of Hydraulic Engineering*, vol. 139, no. 5, pp. 527–537, May 2013, doi: 10.1061/(ASCE)HY.1943-7900.0000676.

[76] G. P. Cimellaro, A. Tinebra, C. Renschler, and M. Fragiadakis, “New Resilience Index for Urban Water Distribution Networks,” *Journal of Structural Engineering*, vol. 142, no. 8, p. C4015014, Aug. 2016, doi: 10.1061/(ASCE)ST.1943-541X.0001433.

[77] R. Filippini and A. Silva, “A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies,” *Reliability Engineering & System Safety*, vol. 125, pp. 82–91, May 2014, doi: 10.1016/j.ress.2013.09.010.

[78] J. Kahan, A. Allen, J. George, and G. Thompson, “Concept Development: An Operational Framework for Resilience,” Homeland Security Studies and Analysis Institute, Arlington, VA, Aug. 2009. Accessed: Sep. 06, 2019. [Online]. Available: https://apps.dtic.mil/docs/citations/ADA533152

[79] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo, “Resilient Intrusion Tolerance through Proactive and Reactive Recovery,” in *13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007)*, Dec. 2007, pp. 373–380. doi: 10.1109/PRDC.2007.52.

[80] B. Genge and C. Siaterlis, “Analysis of the effects of distributed denial-of-service attacks on MPLS networks,” *International Journal of Critical Infrastructure Protection*, vol. 6, no. 2, pp. 87–95, Jun. 2013, doi: 10.1016/j.ijcip.2013.04.001.

[81] B. Genge and P. Haller, “A hierarchical control plane for software-defined networks-based industrial control systems,” in *2016 IFIP Networking Conference (IFIP Networking) and Workshops*, May 2016, pp. 73–81. doi: 10.1109/IFIPNetworking.2016.7497208.

[82] D. Obenshain *et al.*, “Practical Intrusion-Tolerant Networks,” in *2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS)*, Jun. 2016, pp. 45–56. doi: 10.1109/ICDCS.2016.99.

[83] H. Kim, Y. el-Khamra, I. Rodero, S. Jha, and M. Parashar, “Autonomic Management of Application Workflows on Hybrid Computing Infrastructure,” *Scientific Programming*, 2011, Accessed: Jan. 02, 2020. [Online]. Available: https://www.hindawi.com/journals/sp/2011/940242/abs/

[84] S. Lee, M. Park, H.-S. Lee, and Y. Ham, “Impact of Demand-Side Response on Community Resilience: Focusing on a Power Grid after Seismic Hazards,” *Journal of Management in Engineering*, vol. 36, no. 6, p. 04020071, Nov. 2020, doi: 10.1061/(ASCE)ME.1943-5479.0000844.

[85] S. B. Miles and S. E. Chang, “Modeling Community Recovery from Earthquakes,” *Earthquake Spectra*, May 2006, doi: 10.1193/1.12192847.

[86] N. Goldbeck, P. Angeloudis, and W. Y. Ochieng, “Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models,” *Reliability Engineering & System Safety*, vol. 188, pp. 62–79, Aug. 2019, doi: 10.1016/j.ress.2019.03.007.

[87] G. Pumppuni-Lenss, T. Blackburn, and A. Garstenuer, “Resilience in Complex Systems: An Agent-Based Approach,” *Systems Engineering*, vol. 20, no. 2, pp. 158–172, 2017, doi: 10.1002/sys.21387.

[88] T. Zhao and L. Sun, “Seismic resilience assessment of critical infrastructure-community systems considering looped interdependences,” *International Journal of Disaster Risk Reduction*, p. 102246, Apr. 2021, doi: 10.1016/j.ijdrr.2021.102246.

[89] V. N. Balsamara, G. Giannopoulos, S. Argyroudis, and K. Kakderi, “A Boolean Networks Approach to Modeling and Resilience Analysis of Interdependent Critical Infrastructures,” *Computer-Aided Civil and Infrastructure Engineering*, vol. 33, no. 12, pp. 1041–1055, Dec. 2018, doi: 10.1111/mice.12371.

[90] G. P. Cimellaro, “A Model to Evaluate Disaster Resilience of an Emergency Department,” in *Urban Resilience for Emergency Response and Recovery: Fundamental Concepts and Applications*, G. P. Cimellaro, Ed. Cham: Springer International Publishing, 2016, pp. 361–387. Accessed: Jan. 02, 2020. [Online]. Available: https://doi.org/10.1007/978-3-319-30656-8_11
[91] M. E. Nieves-Melendez and J. M. De La Garza, “A Comparison of Two Quantitative Frameworks for Measuring the Resilience of Ground Transportation Systems,” 2016, pp. 1373–1382. doi: 10.1061/9780784479827.138.

[92] M. Bruneau and A. Reinhorn, “Exploring the Concept of Seismic Resilience for Acute Care Facilities,” Earthquake Spectra, vol. 23, no. 1, pp. 41–62, Feb. 2007, doi: 10.1193/1.2431396.

[93] N. Sharma, A. Tabandeh, and P. Gardoni, “Resilience analysis: a mathematical formulation to model resilience of engineering systems,” Sustainable and Resilient Infrastructure, vol. 3, no. 2, pp. 49–67, Apr. 2018, doi: 10.1080/23789689.2017.1345257.

[94] S. A. Thekdi and J. Santos, “Decision-Making Analytics Using Plural Resilience Parameters for Adaptive Management of Complex Systems,” Risk Analysis, vol. 39, no. 4, pp. 871–889, 2019, doi: 10.1111/risa.13209.

[95] A. Narayanan et al., Valuing Air Force Electric Power Resilience: A Framework for Mission-Level Investment Prioritization. RAND Corporation, 2019. Accessed: Jun. 12, 2019. [Online]. Available: https://www.rand.org/pubs/research_reports/RR2771.html

[96] A. Opdyke, A. Javernick-Will, and M. Koschmann, “Infrastructure hazard resilience trends: an analysis of 25 years of research,” Nat Hazards, vol. 87, no. 2, pp. 773–789, Jun. 2017, doi: 10.1007/s11069-017-2792-8.

[97] S. Shin et al., “A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems,” Water, vol. 10, no. 2, p. 164, Feb. 2018, doi: 10.3390/w10020164.

[98] X. Xue, L. Wang, and R. J. Yang, “Exploring the science of resilience: critical review and bibliometric analysis,” Nat Hazards, vol. 90, no. 1, pp. 477–510, Jan. 2018, doi: 10.1007/s11069-017-3040-y.

[99] J. Wang, W. Zuo, L. Rhode-Barbarigos, X. Lu, J. Wang, and Y. Lin, “Literature review on modeling and simulation of energy infrastructures from a resilience perspective,” Reliability Engineering & System Safety, vol. 183, pp. 360–373, Mar. 2019, doi: 10.1016/j.ress.2018.11.029.

[100] R. Bhamra, S. Dani, and K. Burnard, “Resilience: the concept, a literature review and future directions,” International Journal of Production Research, vol. 49, no. 18, pp. 5375–5393, Sep. 2011, doi: 10.1080/00207543.2011.563826.

[101] S. B. Manyena, “The concept of resilience revisited,” Disasters, vol. 30, no. 4, pp. 434–450, 2006, doi: 10.1111/j.0361-3666.2006.00331.x.

[102] A. W. Righi, T. A. Saurin, and P. Wachs, “A systematic literature review of resilience engineering: Research areas and a research agenda proposal,” Reliability Engineering & System Safety, vol. 141, pp. 142–152, Sep. 2015, doi: 10.1016/j.ress.2015.03.007.

[103] C. Curt and J.-M. Tacnet, “Resilience of Critical Infrastructures: Review and Analysis of Current Approaches,” Risk Analysis, vol. 38, no. 11, pp. 2441–2458, 2018, doi: 10.1111/risa.13166.

[104] W. Liu and Z. Song, “Review of studies on the resilience of urban critical infrastructure networks,” Reliability Engineering & System Safety, vol. 193, p. 106617, Jan. 2020, doi: 10.1016/j.ress.2019.106617.

[105] C. Wan, Z. Yang, D. Zhang, X. Yan, and S. Fan, “Resilience in transportation systems: a systematic review and future directions,” Transport Reviews, vol. 38, no. 4, pp. 479–498, Jul. 2018, doi: 10.1080/01441647.2017.1383532.

[106] P. Uday and K. Marais, “Designing Resilient Systems-of-Systems: A Survey of Metrics, Methods, and Challenges,” Systems Engineering, vol. 18, no. 5, pp. 491–510, 2015, doi: 10.1002/sys.21325.

[107] A. Mottahedi, F. Sereshki, M. Ataei, A. N. Qarahasanlou, and A. Barabadi, “The Resilience of Critical Infrastructure Systems: A Systematic Literature Review,” Energies, vol. 14, no. 6, pp. 1–33, 2021.

[108] L. F. Gay and S. K. Sinha, “Resilience of civil infrastructure systems: literature review for improved asset management,” JICIS, vol. 9, no. 4, p. 330, 2013, doi: 10.1504/JICIS.2013.058172.

[109] A. Sharifi and Y. Yamagata, “Principles and criteria for assessing urban energy resilience: A literature review,” Renewable and Sustainable Energy Reviews, vol. 60, pp. 1654–1677, Jul. 2016, doi: 10.1016/j.rser.2016.03.028.

[110] K. Rus, V. Kilar, and D. Koren, “Resilience assessment of complex urban systems to natural disasters: A new literature review,” International Journal of Disaster Risk Reduction, vol. 31, pp. 311–330, Oct. 2018, doi: 10.1016/j.ijdrr.2018.05.015.
[111] N. Bešinović, “Resilience in railway transport systems: a literature review and research agenda,” *Transport Reviews*, vol. 0, no. 0, pp. 1–22, Feb. 2020, doi: 10.1080/01441647.2020.1728419.

[112] B.-J. Jesse, H. U. Heinrichs, and W. Kuckshinrichs, “Adapting the theory of resilience to energy systems: a review and outlook,” *Energ Sustain Soc*, vol. 9, no. 1, p. 27, Jul. 2019, doi: 10.1186/s13705-019-0210-7.

[113] G. Quitana, M. Molinos-Senante, and A. Chamorro, “Resilience of critical infrastructure to natural hazards: A review focused on drinking water systems,” *International Journal of Disaster Risk Reduction*, vol. 48, p. 101575, Sep. 2020, doi: 10.1016/j.ijdrr.2020.101575.

[114] Q. Shuang, H. J. Liu, and E. Porse, “Review of the Quantitative Resilience Methods in Water Distribution Networks,” *Water*, vol. 11, no. 6, p. 1189, Jun. 2019, doi: 10.3390/w11061189.

[115] S. Hosseini, K. Barker, and J. E. Ramirez-Marquez, “A review of definitions and measures of system resilience,” *Reliability Engineering & System Safety*, vol. 145, pp. 47–61, Jan. 2016, doi: 10.1016/j.ress.2015.08.006.

[116] P. Juan-García et al., “Resilience theory incorporated into urban wastewater systems management. State of the art,” *Water Research*, vol. 115, pp. 149–161, May 2017, doi: 10.1016/j.watres.2017.02.047.

[117] M. Mahzarnia, M. P. Moghaddam, P. T. Baboli, and P. Siano, “A Review of the Measures to Enhance Power Systems Resilience,” *IEEE Systems Journal*, pp. 1–12, 2020, doi: 10.1109/JSYST.2020.2965993.

[118] W. Sun, P. Bocchini, and B. D. Davison, “Resilience metrics and measurement methods for transportation infrastructure: the state of the art,” *Sustainable and Resilient Infrastructure*, vol. 5, no. 3, pp. 168–199, May 2020, doi: 10.1080/23789689.2018.1448663.

[119] N. Yodo and P. Wang, “Engineering Resilience Quantification and System Design Implications: A Literature Survey,” *J. Mech. Des.*, vol. 138, no. 11, Nov. 2016, doi: 10.1115/1.4034223.

[120] L. Shen, B. Cassottana, H. R. Heinimann, and L. C. Tang, “Large-scale systems resilience: A survey and unifying framework,” *Quality and Reliability Engineering International*, vol. n/a, no. n/a, 2020, doi: 10.1002/qre.2634.

[121] M. J. Grant and A. Booth, “A typology of reviews: an analysis of 14 review types and associated methodologies,” *Health Information & Libraries Journal*, vol. 26, no. 2, pp. 91–108, 2009, doi: 10.1111/j.1471-1842.2009.00848.x.

[122] L. Sela, U. Bhatia, J. Zhuang, and A. Ganguly, “Resilience Strategies for Interdependent Multiscale Lifeline Infrastructure Networks,” in *Computing in Civil Engineering 2017*, Seattle, Washington, Jun. 2017, pp. 265–272. doi: 10.1061/9780784480847.033.

[123] S. S. Chopra, T. Dillon, M. M. Bilec, and V. Khanna, “A network-based framework for assessing infrastructure resilience: a case study of the London metro system,” *Journal of The Royal Society Interface*, vol. 13, no. 118, p. 20160113, May 2016, doi: 10.1098/rsif.2016.0113.

[124] S. Dunn, G. Fu, S. Wilkinson, and R. Dawson, “Network theory for infrastructure systems modelling,” *Proceedings of the Institution of Civil Engineers - Engineering Sustainability*, vol. 166, no. 5, pp. 281–292, Oct. 2013, doi: 10.1680/ensu.12.00039.

[125] J. Resurreccion and J. Santos, “Developing an inventory-based prioritization methodology for assessing inoperability and economic loss in interdependent sectors,” in *2011 IEEE Systems and Information Engineering Design Symposium*, Apr. 2011, pp. 176–181. doi: 10.1109/SIEDS.2011.5876876.

[126] B. Genge, C. Siaterlis, and M. Hohenadel, “Impact of Network Infrastructure Parameters to the Effectiveness of Cyber Attacks Against Industrial Control Systems,” *International Journal of Computers Communications & Control*, vol. 7, no. 4, pp. 674–687, 2012, doi: 10.15837/ijccc.2012.4.1366.

[127] R. Francis and B. Bekera, “A metric and frameworks for resilience analysis of engineered and infrastructure systems,” *Reliability Engineering & System Safety*, vol. 121, pp. 90–103, Jan. 2014, doi: 10.1016/j.ress.2013.07.004.

[128] G. P. Cimellaro, O. Villa, and M. Bruneau, “Resilience-Based Design of Natural Gas Distribution Networks,” *Journal of Infrastructure Systems*, vol. 21, no. 1, p. 05014005, Mar. 2015, doi: 10.1061/(ASCE)IS.1943-555X.0000204.

[129] Y. Dong and D. M. Frangopol, “Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties,” *Engineering Structures*, vol. 83, pp. 198–208, Jan. 2015, doi: 10.1016/j.engstruct.2014.10.050.
[130] M. Pregnolato, A. Ford, C. Robson, V. Glenis, S. Barr, and R. Dawson, “Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks,” *R. Soc. open sci.*, vol. 3, no. 5, p. 160023, May 2016, doi: 10.1098/rsos.160023.

[131] K. Adjetey-Bahun and B. Birregah, “A simulation-based approach to quantifying resilience indicators in a mass transportation system,” in *Proceedings of the 11th International ISCRAM Conference*, University Park, Pennsylvania, May 2014, p. 6.

[132] E. H. Lee, Y. S. Lee, J. G. Joo, D. Jung, and J. H. Kim, “Investigating the Impact of Proactive Pump Operation and Capacity Expansion on Urban Drainage System Resilience,” *Journal of Water Resources Planning and Management*, vol. 143, no. 7, p. 04017024, Jul. 2017, doi: 10.1061/(ASCE)WR.1943-5452.0000775.

[133] N. Brozović, D. L. Sunding, and D. Zilberman, “Estimating business and residential water supply interruption losses from catastrophic events,” *Water Resources Research*, vol. 43, no. 8, 2007, doi: 10.1029/2005WR004782.

[134] S. Nazif and M. Karamouz, “Algorithm for Assessment of Water Distribution System’s Readiness: Planning for Disasters,” *Journal of Water Resources Planning and Management*, vol. 135, no. 4, pp. 244–252, Jul. 2009, doi: 10.1061/(ASCE)WR.0733-9966(2009)135:4(244).

[135] N. Sahebjamnia, S. A. Torabi, and S. A. Mansouri, “Integrated business continuity and disaster recovery planning: Towards organizational resilience,” *European Journal of Operational Research*, vol. 242, no. 1, pp. 261–273, Apr. 2015, doi: 10.1016/j.ejor.2014.09.055.

[136] S. H. Conrad, R. J. LeClaire, G. P. O’Reilly, and H. Uzunalioglu, “Critical national infrastructure reliability modeling and analysis,” *Bell Labs Technical Journal*, vol. 11, no. 3, pp. 57–71, 2006, doi: 10.1002/bltj.20178.

[137] D. Bruneo, F. Longo, R. Ghosh, M. Scarpa, A. Puliafito, and K. S. Trivedi, “Analytical Modeling of Reactive Autonomic Management Techniques in IaaS Clouds,” in *2015 IEEE 8th International Conference on Cloud Computing*, Jun. 2015, pp. 797–804. doi: 10.1109/CLOUD.2015.110.

[138] Z. Wang, “An elastic and resiliency defense against DDoS attacks on the critical DNS authoritative infrastructure,” *Journal of Computer and System Sciences*, vol. 99, pp. 1–26, Feb. 2019, doi: 10.1016/j.jcss.2017.05.012.

[139] V. L. M. Spiegler, M. M. Naim, and J. Wikner, “A control engineering approach to the assessment of supply chain resilience,” *International Journal of Production Research*, vol. 50, no. 21, pp. 6162–6187, Nov. 2012, doi: 10.1080/00207543.2012.710764.

[140] H. Carvalho, A. P. Barroso, V. H. Machado, S. Azevedo, and V. Cruz-Machado, “Supply chain redesign for resilience using simulation,” *Computers & Industrial Engineering*, vol. 62, no. 1, pp. 329–341, Feb. 2012, doi: 10.1016/j.cie.2011.10.003.

[141] A. Kwasinski and V. Krishnamurthy, “Generalized integrated framework for modelling communications and electric power infrastructure resilience,” Oct. 2017, pp. 99–106. doi: 10.1109/INTLEC.2017.8211686.

[142] J. Najafi, A. Peiravi, and Josep. M. Guerrero, “Power distribution system improvement planning under hurricanes based on a new resilience index,” *Sustainable Cities and Society*, vol. 39, pp. 592–604, May 2018, doi: 10.1016/j.scs.2018.03.022.

[143] Q. Mao and N. Li, “Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems,” *Nat Hazards*, vol. 93, no. 1, pp. 315–337, Aug. 2018, doi: 10.1007/s11069-018-3302-3.

[144] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo, “Highly Available Intrusion-Tolerant Services with Proactive-Reactive Recovery,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 21, no. 4, pp. 452–465, Apr. 2010, doi: 10.1109/TPDS.2009.83.

[145] E. K. Çetinkaya, D. Broyles, A. Dandekar, S. Srinivasan, and J. P. G. Sterbenz, “Modelling communication network challenges for Future Internet resilience, survivability, and disruption tolerance: a simulation-based approach,” *Telecommun Syst*, vol. 52, no. 2, pp. 751–766, Sep. 2011, doi: 10.1007/s11235-011-9575-4.
[146] P. Jain, H. J. Pasman, S. Waldram, E. N. Pistikopoulos, and M. S. Mannan, “Process Resilience Analysis Framework (PRAF): A systems approach for improved risk and safety management,” Journal of Loss Prevention in the Process Industries, vol. 53, pp. 61–73, May 2018, doi: 10.1016/j.jlp.2017.08.006.

[147] R. Filippini and A. Silva, “I(R)ML: An Infrastructure Resilience-Oriented Modeling Language,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 1, pp. 157–169, Jan. 2015, doi: 10.1109/TSMC.2014.2343751.

[148] M. Cutts, D. Todesco, and Y. Wang, “Building Regional Resilience,” The Military Engineer, vol. 107, no. 693, pp. 49–51, 2015.

[149] R. Govindan and T. Al-Ansari, “Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments,” Renewable and Sustainable Energy Reviews, vol. 112, pp. 653–668, Sep. 2019, doi: 10.1016/j.rser.2019.06.015.

[150] L. Hughes, M. de Jong, and X. Q. Wang, “A generic method for analyzing the risks to energy systems,” Applied Energy, vol. 180, pp. 895–908, Oct. 2016, doi: 10.1016/j.apenergy.2016.07.133.

[151] A. Jovanović, K. Øien, and A. Choudhary, “An Indicator-Based Approach to Assessing Resilience of Smart Critical Infrastructures,” in Urban Disaster Resilience and Security: Addressing Risks in Societies, A. Fekete and F. Friedrich, Eds. Cham: Springer International Publishing, 2018, pp. 285–311. Accessed: Jan. 02, 2020. [Online]. Available: https://doi.org/10.1007/978-3-319-68606-6_17

[152] A. Kwasinski, “Field technical surveys: An essential tool for improving critical infrastructure and lifeline systems resiliency to disasters,” in IEEE Global Humanitarian Technology Conference (GHTC 2014), Oct. 2014, pp. 78–85. doi: 10.1109/GHTC.2014.6970264.

[153] L. Labaka, J. Hernantes, E. Rich, and J. M. Sarriég, “Resilience Building Policies and their Influence in Crisis Prevention, Absorption and Recovery,” Journal of Homeland Security and Emergency Management, vol. 10, no. 1, pp. 289–317, 2013, doi: 10.1515/jhsem-2012-0089.

[154] H. K. Lotze, M. Coll, A. M. Magera, C. Ward-Paige, and L. Airoldi, “Recovery of marine animal populations and ecosystems,” Trends in Ecology & Evolution, vol. 26, no. 11, pp. 595–605, Nov. 2011, doi: 10.1016/j.tree.2011.07.008.

[155] T. McDaniels, S. Chang, D. Cole, J. Mikawoz, and H. Longstaff, “Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation,” Global Environmental Change, vol. 18, no. 2, pp. 310–318, May 2008, doi: 10.1016/j.gloenvcha.2008.03.001.

[156] S. Mescherin, I. Kirillov, and S. Klimenko, “Quantitative Model for Dynamic Analysis of Resilience of Interacting Systems,” in 2016 International Conference on Cyberworlds (CW), Sep. 2016, pp. 151–154. doi: 10.1109/CW.2016.31.

[157] S. Mishra, K. Anderson, B. Miller, K. Boyer, and A. Warren, “Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies,” Applied Energy, vol. 264, p. 114726, Apr. 2020, doi: 10.1016/j.apenergy.2020.114726.

[158] H. J. Murdock, K. M. De Bruijn, and B. Gersonius, “Assessment of Critical Infrastructure Resilience to Flooding Using a Response Curve Approach,” Sustainability, vol. 10, no. 10, p. 3470, Oct. 2018, doi: 10.3390/su10103470.

[159] M. Z. Naser and V. K. R. Kodur, “Cognitive infrastructure - a modern concept for resilient performance under extreme events,” Automation in Construction, vol. 90, pp. 253–264, Jun. 2018, doi: 10.1016/j.autcon.2018.03.004.

[160] M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou, “Boosting the Power Grid Resilience to Extreme Weather Events Using Defensive Islanding,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2913–2922, Nov. 2016, doi: 10.1109/TSG.2016.2535228.

[161] J. Rajamäki and R. Pirinen, “Towards the cyber security paradigm of ehealth: Resilience and design aspects,” in AIP Conference Proceedings, Jun. 2017, vol. 1836, p. 020029. doi: 10.1063/1.4981969.

[162] C. Ta, A. V. Goodchild, and K. Pitera, “Structuring a Definition of Resilience for the Freight Transportation System,” Transportation Research Record, vol. 2097, no. 1, pp. 19–25, Jan. 2009, doi: 10.3141/2097-03.
[163] Y. Wang and Q. “Kent” Yu, “A Resilience Engineering Framework: Adapting to Extreme Events,” in Vulnerability, Uncertainty, and Risk, Liverpool, UK, Jul. 2014, pp. 948–957. doi: 10.1061/9780784413609.096.

[164] T. West, S. Miller, T. Zdunek, K. McKibben, R. Paul, and D. Albright, “Intergovernmental Cooperation in Benchmarking a Local Government Continuity-of-Operations Exercise,” Transportation Research Record, vol. 2041, no. 1, pp. 11–18, Jan. 2008, doi: 10.3141/2041-02.

[165] W. Xu, Z. Wang, M. Hu, L. Hong, X. Chen, and S. Wang, “The Resilience Framework for Interdependent Infrastructure Systems Using the Dynamic Inoperability Input-Output Model,” in Intelligence Computation and Evolutionary Computation, Berlin, Heidelberg, 2013, pp. 355–361. doi: 10.1007/978-3-642-31656-2_50.

[166] N. Yodo and P. Wang, “Resilience Modeling and Quantification for Engineered Systems Using Bayesian Networks,” J. Mech. Des., vol. 138, no. 3, Mar. 2016, doi: 10.1115/1.4032399.

[167] D. Mendonça and W. A. Wallace, “Factors underlying organizational resilience: The case of electric power restoration in New York City after 11 September 2001,” Reliability Engineering & System Safety, vol. 141, pp. 83–91, Sep. 2015, doi: 10.1016/j.ress.2015.03.017.

[168] M. Garcia, N. Neves, and A. Bessani, “SieveQ: A Layered BFT Protection System for Critical Services,” IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp. 511–525, May 2018, doi: 10.1109/TDSC.2016.2593442.

[169] H. V. Burton, G. Deierlein, D. Lallemant, and T. Lin, “Framework for Incorporating Probabilistic Building Performance in the Assessment of Community Seismic Resilience,” J. Struct. Eng., vol. 142, no. 8, p. C4015007, Aug. 2016, doi: 10.1061/(ASCE)ST.1943-541X.0001321.

[170] M. W. Mieler and J. Mitrani-Reiser, “Review of the State of the Art in Assessing Earthquake-Induced Loss of Functionality in Buildings,” Journal of Structural Engineering, vol. 144, no. 3, p. 04017218, Mar. 2018, doi: 10.1061/(ASCE)ST.1943-541X.0001959.

[171] J. W. Hall, R. J. Nicholls, A. J. Hickford, and M. Tran, “Introducing National Infrastructure Assessment,” in The Future of National Infrastructure: A System-of-Systems Approach, Cambridge University Press, 2016.

[172] E. D. Vugrin, D. E. Warren, and M. A. Ehlen, “A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane,” Proc. Safety Prog., vol. 30, no. 3, pp. 280–290, Sep. 2011, doi: 10.1002/prs.10437.

[173] T. M. Adams, K. R. Bekkem, and E. J. Toledo-Durán, “Freight Resilience Measures,” Journal of Transportation Engineering, vol. 138, no. 11, pp. 1403–1409, Nov. 2012, doi: 10.1061/(ASCE)TE.1943-5436.0000415.

[174] P. Klimek, J. Varga, A. S. Jovanovic, and Z. Székely, “Quantitative resilience assessment in emergency response reveals how organizations trade efficiency for redundancy,” Safety Science, vol. 113, pp. 404–414, Mar. 2019, doi: 10.1016/j.ssci.2018.12.017.

[175] L. Huang, J. Chen, and Q. Zhu, “Distributed and Optimal Resilient Planning of Large-Scale Interdependent Critical Infrastructures,” in 2018 Winter Simulation Conference (WSC), Dec. 2018, pp. 1096–1107. doi: 10.1109/WSC.2018.8632399.

[176] C. Zhang, J. Kong, and S. P. Simonovic, “Modeling joint restoration strategies for interdependent infrastructure systems,” PLOS ONE, vol. 13, no. 4, p. e0195727, Apr. 2018, doi: 10.1371/journal.pone.0195727.

[177] R. Jamshad, M. U. Qureshi, and S. Grijalva, “Geographic Information Systems (GIS) Image Analysis for Prioritizing Power System Restoration,” in 2018 Clemson University Power Systems Conference (PSC), Sep. 2018, pp. 1–7. doi: 10.1109/PSC.2018.8664080.

[178] J. E. Padgett and R. DesRoches, “Bridge Functionality Relationships for Improved Seismic Risk Assessment of Transportation Networks,” Earthquake Spectra, vol. 23, no. 1, pp. 115–130, Feb. 2007, doi: 10.1193/1.2431209.

[179] D. Mejia-Giraldo, J. Villarreal-Marimon, Y. Gu, Y. He, Z. Duan, and L. Wang, “Sustainability and Resiliency Measures for Long-Term Investment Planning in Integrated Energy and Transportation Infrastructures,” Journal of Energy Engineering, vol. 138, no. 2, pp. 87–94, Jun. 2012, doi: 10.1061/(ASCE)EY.1943-7897.0000067.
V. Cantillo, L. F. Macea, and M. Jaller, “Assessing Vulnerability of Transportation Networks for Disaster Response Operations,” *Netw Spat Econ*, vol. 19, no. 1, pp. 243–273, Mar. 2019, doi: 10.1007/s11067-017-9382-x.

D. Tuzun Aksu and L. Ozdamar, “A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation,” *Transportation Research Part E: Logistics and Transportation Review*, vol. 61, pp. 56–67, Jan. 2014, doi: 10.1016/j.tre.2013.10.009.

R. Dorbritz, “Assessing the resilience of transportation systems in case of large-scale disastrous events,” Vilnius, Lithuania, May 2011.

President’s Commission on Critical Infrastructure Protection, “Critical Foundations: Protecting America’s Infrastructures,” Oct. 1997. Accessed: Jan. 28, 2019. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/1097198X.1998.10856225

I. B. Sperstad, G. H. Kjolle, and O. Gjerde, “A comprehensive framework for vulnerability analysis of extraordinary events in power systems,” *Reliability Engineering & System Safety*, vol. 196, p. 106788, Apr. 2020, doi: 10.1016/j.ress.2019.106788.

M. Carvalho, D. Dasgupta, M. Grimalia, and C. Perez, “Mission Resilience in Cloud Computing: A Biologically Inspired Approach,” in *The Proceedings of the 6th International Conference on Information Warfare and Security*, Washington, DC, Mar. 2011, p. 9.

A. Shafieezadeh and L. Ivey Burden, “Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports,” *Reliability Engineering & System Safety*, vol. 132, pp. 207–219, Dec. 2014, doi: 10.1016/j.ress.2014.07.021.

M. A. Nayak and M. A. Turnquist, “Optimal Recovery from Disruptions in Water Distribution Networks,” *Computer-Aided Civil and Infrastructure Engineering*, vol. 31, no. 8, pp. 566–579, 2016, doi: 10.1111/mice.12200.

G. P. Cimellaro, A. M. Reinhorn, and M. Bruneau, “Seismic resilience of a hospital system,” *Structure and Infrastructure Engineering*, vol. 6, no. 1–2, pp. 127–144, Feb. 2010, doi: 10.1080/15732470802663847.

E. M. Hassan and H. Mahmoud, “Full functionality and recovery assessment framework for a hospital subjected to a scenario earthquake event,” *Engineering Structures*, vol. 188, pp. 165–177, Jun. 2019, doi: 10.1016/j.engstruct.2019.03.008.

G. P. Cimellaro, M. Malavisi, and S. Mahin, “Using Discrete Event Simulation Models to Evaluate Resilience of an Emergency Department,” *Journal of Earthquake Engineering*, vol. 21, no. 2, pp. 203–226, Feb. 2017, doi: 10.1080/13632469.2016.1172373.

F. Casalicchio and E. Galli, “Metrics For Quantifying Interdependencies,” in *Critical Infrastructure Protection II*, 2008, pp. 215–227.

C. Cheng, G. Bai, Y.-A. Zhang, and J. Tao, “Resilience evaluation for UAV swarm performing joint reconnaissance mission,” *Chaos*, vol. 29, no. 5, p. 053132, May 2019, doi: 10.1063/1.5086222.

E. D. Vugrin, D. E. Warren, M. A. Ehlen, and R. C. Camphouse, “A Framework for Assessing the Resilience of Infrastructure and Economic Systems,” in *Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering*, K. Gopalakrishnan and S. Peeta, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 77–116. Accessed: Sep. 06, 2019. [Online]. Available: https://doi.org/10.1007/978-3-642-11405-2_3

T.-D. Nguyen, X. Cai, Y. Ouyang, and M. Housh, “Modeling Infrastructure Interdependencies, Resiliency and Sustainability,” *International Journal of Critical Infrastructures*, vol. 12, no. 24, Apr. 2016.

Q. Zou and S. Chen, “Resilience Modeling of Interdependent Traffic-Electric Power System Subject to Hurricanes,” *Journal of Infrastructure Systems*, vol. 26, no. 1, p. 04019034, Mar. 2020, doi: 10.1061/(ASCE)JS.1943-555X.0000524.

M. Do and H. Jung, “Enhancing Road Network Resilience by Considering the Performance Loss and Asset Value,” *Sustainability*, vol. 10, no. 11, p. 4188, Nov. 2018, doi: 10.3390/su10114188.

R. Twumasi-Boakye, J. O. Sobanjo, S. K. Inkoom, and E. E. Ozguven, “Senior Community Resilience with a Focus on Critical Transportation Infrastructures: An Accessibility-Based Approach to Healthcare,”
[199] R. Faturechi and E. Miller-Hooks, “Travel time resilience of roadway networks under disaster,” *Transportation Research Part B: Methodological*, vol. 70, pp. 47–64, Dec. 2014, doi: 10.1016/j.trb.2014.08.007.

[200] A. A. Ganin, M. Kitsak, D. Marchese, J. M. Keisler, T. Seager, and I. Linkov, “Resilience and efficiency in transportation networks,” *Science Advances*, vol. 3, no. 12, p. e1701079, Dec. 2017, doi: 10.1126/sciadv.1701079.

[201] X. He and E. J. Cha, “Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards,” *Reliability Engineering & System Safety*, vol. 177, pp. 162–175, Sep. 2018, doi: 10.1016/j.ress.2018.04.029.

[202] T. Münzberg, M. Wiens, and F. Schultmann, “A spatial-temporal vulnerability assessment to support the building of community resilience against power outage impacts,” *Technological Forecasting and Social Change*, vol. 121, pp. 99–118, Aug. 2017, doi: 10.1016/j.techfore.2016.11.027.

[203] C. Zhang, J. Kong, and S. P. Simonovic, “Restoration resource allocation model for enhancing resilience of interdependent infrastructure systems,” *Safety Science*, vol. 102, pp. 169–177, Feb. 2018, doi: 10.1016/j.ssci.2017.10.014.

[204] K. Barker and J. R. Santos, “Measuring the efficacy of inventory with a dynamic input–output model,” *International Journal of Production Economics*, vol. 126, no. 1, pp. 130–143, Jul. 2010, doi: 10.1016/j.ijpe.2009.08.011.

[205] X. Zhao, Z. Chen, and H. Gong, “Effects Comparison of Different Resilience Enhancing Strategies for Municipal Water Distribution Network: A Multidimensional Approach,” *Mathematical Problems in Engineering*, 2015, Accessed: Feb. 20, 2020. [Online]. Available: https://www.hindawi.com/journals/mpe/2015/438063/

[206] Y. Y. Haimes, B. M. Horowitz, J. H. Lambert, J. R. Santos, C. Lian, and K. G. Crowther, “Inoperability Input–Output Model for Interdependent Infrastructure Sectors. I: Theory and Methodology,” *Journal of Infrastructure Systems*, vol. 11, no. 2, pp. 67–79, Jun. 2005, doi: 10.1061/(ASCE)1076-0342(2005)11:2(67).

[207] Y. Y. Haimes, B. M. Horowitz, J. H. Lambert, J. Santos, K. Crowther, and C. Lian, “Inoperability Input–Output Model for Interdependent Infrastructure Sectors. II: Case Studies,” *Journal of Infrastructure Systems*, vol. 11, no. 2, pp. 80–92, Jun. 2005, doi: 10.1061/(ASCE)1076-0342(2005)11:2(80).

[208] K. Barker and J. R. Santos, “A Risk-Based Approach for Identifying Key Economic and Infrastructure Systems,” *Risk Analysis*, vol. 30, no. 6, pp. 962–974, 2010, doi: 10.1111/j.1539-6924.2010.01373.x.

[209] O. Jonkeren and G. Giannopoulos, “Analysing Critical Infrastructure Failure with a Resilience Inoperability Input–Output Model,” *Economic Systems Research*, vol. 26, no. 1, pp. 39–59, Jan. 2014, doi: 10.1080/09535314.2013.872604.

[210] R. Pant, K. Barker, and C. W. Zobel, “Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors,” *Reliability Engineering & System Safety*, vol. 125, pp. 92–102, May 2014, doi: 10.1016/j.ress.2013.09.007.

[211] X. Zhao, H. Cai, Z. Chen, H. Gong, and Q. Feng, “Assessing urban lifeline systems immediately after seismic disaster based on emergency resilience,” *Structure and Infrastructure Engineering*, vol. 12, no. 12, pp. 1634–1649, Dec. 2016, doi: 10.1080/15732479.2016.1157609.

[212] T. F. Corbet, W. Beyeler, M. L. Wilson, and T. P. Flanagan, “A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure,” *Reliability Engineering & System Safety*, vol. 169, pp. 451–465, Jan. 2018, doi: 10.1016/j.ress.2017.09.026.

[213] A. Cardoni, G. P. Cimellaro, M. Domaneschi, S. Sordo, and A. Mazza, “Modeling the interdependency between buildings and the electrical distribution system for seismic resilience assessment,” *International Journal of Disaster Risk Reduction*, p. 101315, Sep. 2019, doi: 10.1016/j.ijdrr.2019.101315.

[214] C. C. Jacques, J. McIntosh, S. Giovinaazzi, T. D. Kirsch, T. Wilson, and J. Mitrani-Reiser, “Resilience of the Canterbury Hospital System to the 2011 Christchurch Earthquake:,” *Earthquake Spectra*, Dec. 2019, doi: 10.1193/032013EQS074M.
[215] S. Ottenburger and S. Bai, “Simulation based strategic decision making in humanitarian supply chain management,” in 2017 4th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Dec. 2017, pp. 1–7. doi: 10.1109/ICT-DM.2017.8275683.

[216] E. Massaro, A. Ganin, N. Perra, I. Linkov, and A. Vespignani, “Resilience management during large-scale epidemic outbreaks,” Scientific Reports, vol. 8, no. 1, p. 1859, Jan. 2018, doi: 10.1038/s41598-018-19706-2.

[217] P. Ramuhalli, M. Halappanavar, J. Coble, and M. Dixit, “Towards a theory of autonomous reconstitution of compromised cyber-systems,” in 2013 IEEE International Conference on Technologies for Homeland Security (HST), Nov. 2013, pp. 577–583. doi: 10.1109/THS.2013.6699067.

[218] S. Hussain and Y.-C. Kim, “Simulation studies of resilient communication network architecture for monitoring and control wind power farms,” in 2015 17th International Conference on Advanced Communication Technology (ICACT), Jul. 2015, pp. 653–658. doi: 10.1109/ICACT.2015.7224877.

[219] B. Cassottana, L. Shen, and L. C. Tang, “Modeling the recovery process: A key dimension of resilience,” Reliability Engineering & System Safety, vol. 190, p. 106528, Oct. 2019, doi: 10.1016/j.ress.2019.106528.

[220] M. Ouyang and L. Dueñas-Osorio, “Multi-dimensional hurricane resilience assessment of electric power systems,” Structural Safety, vol. 48, pp. 15–24, May 2014, doi: 10.1016/j.strusafe.2014.01.001.

[221] J. Kong, C. Zhang, and S. P. Simonovic, “A Two-Stage Restoration Resource Allocation Model for Enhancing the Resilience of Interdependent Infrastructure Systems,” Sustainability, vol. 11, no. 19, p. 5143, Jan. 2019, doi: 10.3390/su11195143.

[222] M. Schoen, T. Hawkins, X. Xue, C. Ma, J. Garland, and N. J. Ashbolt, “Technologic resilience assessment of coastal community water and wastewater service options,” Sustainability of Water Quality and Ecology, vol. 6, pp. 75–87, Sep. 2015, doi: 10.1016/j.swaqe.2015.05.001.

[223] S. Esposito, S. Giovinazzi, L. Elefante, and I. Iervolino, “Performance of the L’Aquila (central Italy) gas distribution network in the 2009 (Mw 6.3) earthquake,” Bull Earthquake Eng, vol. 11, no. 6, pp. 2447–2466, Dec. 2013, doi: 10.1007/s10518-013-9478-8.

[224] K. M. de Bruijn et al., “Flood Resilience of Critical Infrastructure: Approach and Method Applied to Fort Lauderdale, Florida,” Water, vol. 11, no. 3, p. 517, Mar. 2019, doi: 10.3390/w11030517.

[225] J. Choi, A. Deshmukh, and M. Hastak, “Seven-Layer Classification of Infrastructure to Improve Community Resilience to Disasters,” Journal of Infrastructure Systems, vol. 25, no. 2, p. 04019012, Jun. 2019, doi: 10.1061/(ASCE)IS.1943-555X.0000486.

[226] S. N. Mugume, D. E. Gomez, G. Fu, R. Farmani, and D. Butler, “A global analysis approach for investigating structural resilience in urban drainage systems,” Water Research, vol. 81, pp. 15–26, Sep. 2015, doi: 10.1016/j.watres.2015.05.030.

[227] D. Ahmad and C. K. Chanda, “A framework for resilience performance analysis of an electrical grid,” in 2016 2nd International Conference on Control, Instrumentation, Energy Communication (CIEC), Jan. 2016, pp. 392–396. doi: 10.1109/CIEC.2016.7513735.

[228] A. M. Annaswamy, A. R. Malekpour, and S. Baros, “Emerging research topics in control for smart infrastructures,” Annual Reviews in Control, vol. 42, pp. 259–270, Jan. 2016, doi: 10.1016/j.arcontrol.2016.10.001.

[229] S. Iloglu and L. A. Albert, “A maximal multiple coverage and network restoration problem for disaster recovery,” Operations Research Perspectives, vol. 7, p. 100132, Jan. 2020, doi: 10.1016/j.orp.2019.100132.

[230] M. Ouyang and Z. Wang, “Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis,” Reliability Engineering & System Safety, vol. 141, pp. 74–82, Sep. 2015, doi: 10.1016/j.ress.2015.03.011.

[231] A. Cox, F. Prager, and A. Rose, “Transportation security and the role of resilience: A foundation for operational metrics,” Transport Policy, vol. 18, no. 2, pp. 307–317, Mar. 2011, doi: 10.1016/j.tranpol.2010.09.004.

[232] B. Evans, A. S. Chen, S. Djordjević, J. Webber, A. G. Gómez, and J. Stevens, “Investigating the Effects of Pluvial Flooding and Climate Change on Traffic Flows in Barcelona and Bristol,” Sustainability, vol. 12, no. 6, p. 2330, Jan. 2020, doi: 10.3390/su12062330.
[233] H. Fu and C. G. Wilmot, “Survival Analysis–Based Dynamic Travel Demand Models for Hurricane Evacuation,” Transportation Research Record, vol. 1964, no. 1, pp. 211–218, Jan. 2006, doi: 10.1177/0361198106196400123.

[234] H. Fu and C. G. Wilmot, “Sequential Logit Dynamic Travel Demand Model for Hurricane Evacuation,” Transportation Research Record, vol. 1882, no. 1, pp. 19–26, Jan. 2004, doi: 10.3141/1882-03.

[235] A. Kwasinski, “Technology Planning for Electric Power Supply in Critical Events Considering a Bulk Grid, Backup Power Plants, and Micro-Grids,” IEEE Systems Journal, vol. 4, no. 2, pp. 167–178, Jun. 2010, doi: 10.1109/JSTY.2010.2047034.

[236] M. Cutts, W. Yumei, and Q. “Kent” Yu, “New Perspectives on Building Resilience into Infrastructure Systems,” Natural Hazards Review, vol. 18, no. 1, p. B4015004, Feb. 2017, doi: 10.1061/(ASCE)NH.1527-6996.0000203.

[237] A. Fekete and J. J. Bogardi, “Considerations About Urban Disaster Resilience and Security—Two Concepts in Tandem?,” in Urban Disaster Resilience and Security: Addressing Risks in Societies, A. Fekete and F. Friedrich, Eds. Cham: Springer International Publishing, 2018, pp. 495–502. Accessed: Jan. 02, 2020. [Online]. Available: https://doi.org/10.1007/978-3-319-68606-6_28

[238] D. Rehak, P. Senovsky, and S. Slivkova, “Resilience of Critical Infrastructure Elements and Its Main Factors,” Systems, vol. 6, no. 2, p. 21, Jun. 2018, doi: 10.3390/systems6020021.

[239] D. Rehak, P. Senovsky, M. Hromada, and T. Lovecek, “Complex Approach to Assessing Resilience of Critical Infrastructure Elements,” International Journal of Critical Infrastructure Protection, Mar. 2019, doi: 10.1016/j.ijcip.2019.03.003.

[240] Y. Sheffi and J. B. J. Rice, “A Supply Chain View of the Resilient Enterprise,” MIT Sloan Management Review, vol. 47, no. 1, pp. 41–48, Fall 2005.

[241] G. Sansavini, “Engineering Resilience in Critical Infrastructures,” in Resilience and Risk, I. Linkov and J. M. Palma-Oliveira, Eds. Dordrecht: Springer Netherlands, 2017, pp. 189–203. Accessed: Feb. 14, 2020. [Online]. Available: http://link.springer.com/10.1007/978-94-024-1123-2_6

[242] S. R. Greene, “Are Current U.S. Nuclear Power Plants Grid Resilience Assets?,” Nuclear Technology, vol. 202, no. 1, pp. 1–14, Apr. 2018, doi: 10.1080/00295450.2018.1432966.

[243] S. Moslehi and T. A. Reddy, “Sustainability of integrated energy systems: A performance-based resilience assessment methodology,” Applied Energy, vol. 228, pp. 487–498, Oct. 2018, doi: 10.1016/j.apenergy.2018.06.075.

[244] Z. Bie, Y. Lin, G. Li, and F. Li, “Battling the Extreme: A Study on the Power System Resilience,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1253–1266, Jul. 2017, doi: 10.1109/JPROC.2017.2679040.

[245] Y. Saadat, B. M. Ayyub, Y. Zhang, D. Zhang, and H. Huang, “Resilience of Metrorail Networks: Quantification With Washington, DC as a Case Study,” ASME J. Risk Uncertainty Part B, vol. 5, no. 4, Dec. 2019, doi: 10.1115/1.4044038.

[246] A. Alsubaie, K. Alutaibi, and J. Martí, “Resilience Assessment of Interdependent Critical Infrastructure,” in CRITIS 2015: Critical Information Infrastructures Security, 2016, pp. 43–55. doi: 10.1007/978-3-319-33331-1_4.

[247] L. Shen and L. Tang, “A resilience assessment framework for critical infrastructure systems,” in 2015 First International Conference on Reliability Systems Engineering (ICRSE), Oct. 2015, pp. 1–5. doi: 10.1109/ICRSE.2015.7366435.

[248] G. Murino, A. Armando, and A. Tacchella, “Resilience of Cyber-Physical Systems: an Experimental Appraisal of Quantitative Measures,” in 2019 11th International Conference on Cyber Conflict (CyCon), May 2019, vol. 900, pp. 1–19. doi: 10.23919/CYCON.2019.8757010.

[249] M. Pflanz and A. Levis, “An Approach to Evaluating Resilience in Command and Control Architectures,” Procedia Computer Science, vol. 8, pp. 141–146, Jan. 2012, doi: 10.1016/j.procs.2012.01.030.

[250] T. McAllister, “Research Needs for Developing a Risk-Informed Methodology for Community Resilience,” Journal of Structural Engineering, vol. 142, no. 8, p. C4015008, Aug. 2016, doi: 10.1061/(ASCE)ST.1943-541X.0001379.
[251] T. Gernay, S. Selamet, N. Tondini, and N. E. Khorasani, “Urban Infrastructure Resilience to Fire Disaster: An Overview,” Procedia Engineering, vol. 161, pp. 1801–1805, Jan. 2016, doi: 10.1016/j.proeng.2016.08.782.

[252] A. Decò, P. Bocchini, and D. M. Frangopol, “A probabilistic approach for the prediction of seismic resilience of bridges,” Earthquake Engineering & Structural Dynamics, vol. 42, no. 10, pp. 1469–1487, 2013, doi: 10.1002/eqe.2282.

[253] Y. Yang, S. T. Ng, F. J. Xu, M. Skitmore, and S. Zhou, “Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework,” Sustainability, vol. 11, no. 16, p. 4439, Jan. 2019, doi: 10.3390/su11164439.

[254] G. Tsionis, A. Caverzan, E. Krausmann, G. Giannopoulos, L. Galbusera, and N. Kourtis, “Modelling of physical systems for resilience assessment,” in Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision, Ghent, Belgium, Oct. 2018, p. 8.

[255] B. M. Ayyub, “Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making,” Risk Analysis, vol. 34, no. 2, pp. 340–355, 2014, doi: 10.1111/risa.12093.

[256] K. H. Orwin and D. A. Wardle, “New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances,” Soil Biology and Biochemistry, vol. 36, no. 11, pp. 1907–1912, Nov. 2004, doi: 10.1016/j.soilbio.2004.04.036.

[257] J. Santos, C. Yip, S. Thekdi, and S. Pagsuyoin, “Workforce/Population, Economy, Infrastructure, Geography, Hierarchy, and Time (WEIGHT): Reflections on the Plural Dimensions of Disaster Resilience,” Risk Analysis, vol. 40, no. 1, pp. 43–67, 2020, doi: 10.1111/risa.13186.

[258] K. M. de Bruijin, “Resilience indicators for flood risk management systems of lowland rivers,” International Journal of River Basin Management, vol. 2, no. 3, pp. 199–210, Sep. 2004, doi: 10.1080/15715124.2004.9635232.

[259] G. Muller, “Fuzzy Architecture Assessment for Critical Infrastructure Resilience,” Procedia Computer Science, vol. 12, pp. 367–372, Jan. 2012, doi: 10.1016/j.procs.2012.09.086.

[260] J.-F. Castet and J. H. Saleh, “On the concept of survivability, with application to spacecraft and space-based networks,” Reliability Engineering & System Safety, vol. 99, pp. 123–138, Mar. 2012, doi: 10.1016/j.ress.2011.11.011.

[261] E. P. Dalziell and S. T. McManus, “Resilience, Vulnerability, and Adaptive Capacity: Implications for System Performance,” Stoots, Switzerland, Dec. 2004, p. 17.

[262] L.-G. Mattsson and E. Jenelius, “Vulnerability and resilience of transport systems – A discussion of recent research,” Transportation Research Part A: Policy and Practice, vol. 81, pp. 16–34, Nov. 2015, doi: 10.1016/j.tra.2015.06.002.

[263] O. Erol, D. Henry, and B. Sauser, “Exploring Resilience Measurement Methodologies,” in INCOSE International Symposium, Chicago, IL, Jul. 2010, vol. 20, pp. 302–322. doi: 10.1002/j.2334-5837.2010.tb01072.x.

[264] M. J. Perkins, T. P. T. Ng, D. Dudgeon, T. C. Bonebrake, and K. M. Y. Leung, “Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?,” Estuarine, Coastal and Shelf Science, vol. 167, pp. 504–515, Dec. 2015, doi: 10.1016/j.ecss.2015.10.033.

[265] V. J. Moseley and S. E. Dritsos, “Achieving earthquake resilience through design for All,” in 2015 International Conference on Interactive Collaborative Learning (ICL), Sep. 2015, pp. 1051–1058. doi: 10.1109/ICL.2015.7318177.

[266] M. Kyriakidis and V. N. Dang, “Human Performance, Levels of Service and System Resilience,” in Exploring Resilience: A Scientific Journey from Practice to Theory, S. Wiig and B. Fahlbruch, Eds. Cham: Springer International Publishing, 2019, pp. 41–49. Accessed: Jan. 02, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-03189-3_6

[267] F. Landegren, M. Höst, and P. Möller, “Simulation based assessment of resilience of two large-scale socio-technical IT networks,” International Journal of Critical Infrastructure Protection, vol. 23, pp. 112–125, Dec. 2018, doi: 10.1016/j.ijcip.2018.08.003.
[268] R. R. Tan, K. B. Aviso, M. A. B. Promentilla, F. D. B. Solis, K. D. S. Yu, and J. R. Santos, “A Shock Absorption Index for Inoperability Input–Output Models,” *Economic Systems Research*, vol. 27, no. 1, pp. 43–59, Jan. 2015, doi: 10.1080/09535314.2014.922462.

[269] A. Kwasinski, “Quantitative Model and Metrics of Electrical Grids’ Resilience Evaluated at a Power Distribution Level,” *Energies*, vol. 9, no. 2, p. 93, Feb. 2016, doi: 10.3390/en9020093.

[270] D. Koren, V. Kilar, and K. Rus, “Proposal for Holistic Assessment of Urban System Resilience to Natural Disasters,” in *IOP Conference Series: Materials Science and Engineering*, Oct. 2017, vol. 245, p. 062011. doi: 10.1088/1757-899X/245/6/062011.

[271] L. Kempner, “Question: What Is an Acceptable Target Reliability for High-Voltage Transmission Lines?,” in *Electrical Transmission and Substation Structures 2018*, Nov. 2018, pp. 281–289. doi: 10.1061/9780784481837.026.

[272] M. Xu, M. Ouyang, Z. Mao, and X. Xu, “Improving repair sequence scheduling methods for postdisaster critical infrastructure systems,” *Computer-Aided Civil and Infrastructure Engineering*, vol. 34, no. 6, pp. 506–522, 2019, doi: 10.1111/mice.12435.

[273] M. Bruneau, G. P. Cimellaro, and A. Reinhorn, “Quantification of Seismic Resilience,” in *Proceedings of the 8th U.S. National Conference on Earthquake Engineering*, San Francisco, CA, Apr. 2006, p. 11.

[274] V. Gisladottir, A. A. Ganin, J. M. Keisler, J. Kepner, and I. Linkov, “Resilience of Cyber Systems with Over- and Underregulation,” *Risk Analysis*, vol. 37, no. 9, pp. 1644–1651, 2017, doi: 10.1111/risa.12729.

[275] S. P. Simonovic and A. Peck, “Dynamic Resilience to Climate Change Caused Natural Disasters in Coastal Megacities Quantification Framework,” *BJECC*, vol. 3, no. 3, pp. 378–401, Sep. 2013, doi: 10.9734/BJECC/2013/2504.

[276] S. A. Argyroudis, S. A. Mitoulis, L. Hofer, M. A. Zanini, E. Tubaldi, and D. M. Frangopol, “Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on transport assets,” *Science of The Total Environment*, vol. 714, p. 136854, Apr. 2020, doi: 10.1016/j.scitotenv.2020.136854.

[277] S. Aljadhai and D. Abraham, “Quantifying the Resilience of Water Supply Infrastructure Systems: The Role of Infrastructure Interdependency,” in *Construction Research Congress 2018*, New Orleans, Louisiana, Apr. 2018, pp. 496–506. doi: 10.1061/9780784481295.050.

[278] Y.-P. Fang, N. Pedroni, and E. Zio, “Resilience-Based Component Importance Measures for Critical Infrastructure Network Systems,” *IEEE Transactions on Reliability*, vol. 65, no. 2, pp. 502–512, Jun. 2016, doi: 10.1109/TR.2016.2521761.

[279] E. Todini, “Looped water distribution networks design using a resilience index based heuristic approach,” *Urban Water*, vol. 2, no. 2, pp. 115–122, Jun. 2000, doi: 10.1016/S1462-0758(00)00049-2.

[280] M. Panteli and P. Mancarella, “The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience,” *IEEE Power and Energy Magazine*, vol. 13, no. 3, pp. 58–66, May 2015.

[281] K. Merrilees, “Natural disasters: an engineer’s perspective in Nepal,” *Proceedings of the Institution of Civil Engineers - Municipal Engineer*, vol. 169, no. 2, pp. 65–73, Oct. 2015, doi: 10.1680/jmuen.14.00018.

[282] A. Mebarki, “Safety of atmospheric industrial tanks: Fragility, resilience and recovery functions,” *Journal of Loss Prevention in the Process Industries*, vol. 49, pp. 590–602, Sep. 2017, doi: 10.1016/j.jlp.2017.06.007.

[283] A. Mebarki, “Resilience: Theory and metrics – A metal structure as demonstrator,” *Engineering Structures*, vol. 138, pp. 425–433, May 2017, doi: 10.1016/j.engstruct.2017.02.026.

[284] M. Panteli and P. Mancarella, “Modeling and Evaluating the Resilience of Critical Electrical Power Infrastructure to Extreme Weather Events,” *IEEE Systems Journal*, vol. 11, no. 3, pp. 1733–1742, Sep. 2017, doi: 10.1109/JSYST.2015.2389272.

[285] H. Zhou, J. Wang, J. Wan, and H. Jia, “Resilience to natural hazards: a geographic perspective,” *Nat Hazards*, vol. 53, no. 1, pp. 21–41, Apr. 2010, doi: 10.1007/s11069-009-9407-y.

[286] M. Wen, Y. Chen, Y. Yang, R. Kang, and Y. Zhang, “Resilience-based component importance measures,” *Int J Robust Nonlinear Control*, p. rnc.4813, Nov. 2019, doi: 10.1002/rnc.4813.
[287] C. G. Rieger, “Resilient control systems Practical metrics basis for defining mission impact,” in 2014 7th International Symposium on Resilient Control Systems (ISRCS), Aug. 2014, pp. 1–10. doi:10.1109/ISRCS.2014.6900108.

[288] K. Eshghi, B. K. Johnson, and C. G. Rieger, “Power system protection and resilient metrics,” in 2015 Resilience Week (RWS), Aug. 2015, pp. 1–8. doi:10.1109/RWEEK.2015.7287448.

[289] S. Enjalbert, F. Vanderhaegen, M. Pichon, K. A. Ouedraogo, and P. Millot, “Assessment of Transportation System Resilience,” in Human Modelling in Assisted Transportation, Milano, 2011, pp. 335–341. doi:10.1007/978-88-470-1821-1_36.

[290] K. A. Ouedraogo, S. Enjalbert, and F. Vanderhaegen, “How to learn from the resilience of Human–Machine Systems?,” Engineering Applications of Artificial Intelligence, vol. 26, no. 1, pp. 24–34, Jan. 2013, doi:10.1016/j.engappai.2012.03.007.

[291] A. K. Raz and C. R. Kenley, “Multi-Disciplinary Perspectives for Engineering Resilience in Systems,” in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Oct. 2019, pp. 761–766. doi:10.1109/SMC.2019.8914180.

[292] S. Enjalbert, F. Vanderhaegen, M. Pichon, K. A. Ouedraogo, and P. Millot, “Assessment of Transportation System Resilience,” in Human Modelling in Assisted Transportation, Milano, 2011, pp. 335–341. doi:10.1007/978-88-470-1821-1_36.

[293] S. Gerasimidis, N. E. Khorasani, M. Garlock, P. Pantidis, and J. Glassman, “Resilience of tall steel moment resisting frame buildings with multi-hazard post-event fire,” Journal of Constructional Steel Research, vol. 139, pp. 202–219, Dec. 2017, doi:10.1016/j.jcsr.2017.09.026.

[294] N. Bhusal, M. Abdelmalak, M. Kamruzzaman, and M. Benidris, “Power System Resilience: Current Practices, Challenges, and Future Directions,” IEEE Access, vol. 8, pp. 18064–18086, 2020, doi:10.1109/ACCESS.2020.2968586.

[295] S. V. Croope and S. McNeil, “Improving Resilience of Critical Infrastructure Systems Postdisaster: Recovery and Mitigation,” Transportation Research Record, vol. 2234, no. 1, pp. 3–13, Jan. 2011, doi:10.3141/2234-01.

[296] H. Hassel and A. Cederberg, “Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety,” Risk Analysis, vol. 39, no. 7, pp. 1503–1519, 2019, doi:10.1111/risa.13263.

[297] A. Mebarki and B. Barroca, “Resilience and Vulnerability Analysis for Restoration After Tsunamis and Floods: The Case of Dwellings and Industrial Plants,” in Post-Tsunami Hazard: Reconstruction and Restoration, V. Santiago-Fandiño, Y. A. Kontar, and Y. Kaneda, Eds. Cham: Springer International Publishing, 2015, pp. 237–258. Accessed: Feb. 05, 2020. [Online]. Available: https://doi.org/10.1007/978-3-319-10202-3_16

[298] A. Mebarki, S. Jerez, G. Prodhomme, and M. Reimeringer, “Natural hazards, vulnerability and structural resilience: tsunami and industrial tanks,” Geomatics, Natural Hazards and Risk, vol. 7, no. sup1, pp. 5–17, May 2016, doi:10.1080/19475705.2016.1181458.

[299] D. Kamissoko et al., “Continuous and multidimensional assessment of resilience based on functionality analysis for interconnected systems,” Structure and Infrastructure Engineering, vol. 15, no. 4, pp. 427–442, Apr. 2019, doi:10.1080/15732479.2018.1546327.

[300] B. Cai, M. Xie, Y. Liu, Y. Liu, and Q. Feng, “Availability-based engineering resilience metric and its corresponding evaluation methodology,” Reliability Engineering & System Safety, vol. 172, pp. 216–224, Apr. 2018, doi:10.1016/j.ress.2017.12.021.

[301] B. Cai, M. Xie, Y. Liu, Y. Liu, R. Ji, and Q. Feng, “A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks,” in AIP Conference Proceedings, Oct. 2017, vol. 1890, p. 040043. doi:10.1063/1.5005245.

[302] C. Lian and Y. Y. Haimes, “Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model,” Systems Engineering, vol. 9, no. 3, pp. 241–258, 2006, doi:10.1002/sys.20051.

[303] D. Kang and K. Lansey, “Post-earthquake Restoration of Water Supply Infrastructure,” in World Environmental and Water Resources Congress 2013: Showcasing the Future, 2013, pp. 913–922. doi:10.1061/9780784412947.087.

[304] J. L. Juul, K. Græsbøll, L. E. Christiansen, and S. Lehmann, “Fixed-time descriptive statistics underestimate extremes of epidemic curve ensembles,” Nature Physics, vol. 17, no. 1, Art. no. 1, Jan. 2021, doi:10.1038/s41567-020-01121-y.
[304] H. Baroud, K. Barker, J. E. Ramirez-Marquez, and C. M. Rocco, “Inherent Costs and Interdependent Impacts of Infrastructure Network Resilience,” *Risk Analysis*, vol. 35, no. 4, pp. 642–662, 2015, doi: 10.1111/risa.12223.

[305] H. Baroud, J. E. Ramirez-Marquez, K. Barker, and C. M. Rocco, “Stochastic Measures of Network Resilience: Applications to Waterway Commodity Flows,” *Risk Analysis*, vol. 34, no. 7, pp. 1317–1335, 2014, doi: 10.1111/risa.12175.

[306] H. Baroud, K. Barker, J. E. Ramirez-Marquez, and C. M. Rocco S., “Importance measures for inland waterway network resilience,” *Transportation Research Part E: Logistics and Transportation Review*, vol. 62, pp. 55–67, Feb. 2014, doi: 10.1016/j.tre.2013.11.010.

[307] R. Pant, K. Barker, J. E. Ramirez-Marquez, and C. M. Rocco, “Stochastic measures of resilience and their application to container terminals,” *Computers & Industrial Engineering*, vol. 70, pp. 183–194, Apr. 2014, doi: 10.1016/j.cie.2014.01.017.

[308] D. Gama Dessavre, J. E. Ramirez-Marquez, and K. Barker, “Multidimensional approach to complex system resilience analysis,” *Reliability Engineering & System Safety*, vol. 149, pp. 34–43, May 2016, doi: 10.1016/j.ress.2015.12.009.