Rainbow triangles in edge-colored complete graphs

Xiaozheng Chen, Xueliang Li
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: cxz@mail.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a graph of order n with an edge-coloring c, and let $\delta^c(G)$ denote the minimum color-degree of G. A subgraph F of G is called rainbow if any two edges of F have distinct colors. There have been a lot results in the existing literature on rainbow triangles in edge-colored complete graphs. Fujita and Magnant showed that for an edge-colored complete graph G of order n, if $\delta^c(G) \geq \frac{n+1}{2}$, then every vertex of G is contained in a rainbow triangle. In this paper, we show that if $\delta^c(G) \geq \frac{n+k}{2}$, then every vertex of G is contained in at least k rainbow triangles, which can be seen as a generalization of their result. Li showed that for an edge-colored graph G of order n, if $\delta^c(G) \geq \frac{n+1}{2}$, then G contains a rainbow triangle. We show that if G is complete and $\delta^c(G) \geq \frac{n}{2}$, then G contains a rainbow triangle and the bound is sharp. Hu et al. showed that for an edge-colored graph G of order $n \geq 20$, if $\delta^c(G) \geq \frac{n+2}{2}$, then G contains two vertex-disjoint rainbow triangles. We show that if G is complete with order $n \geq 8$ and $\delta^c(G) \geq \frac{n+1}{2}$, then G contains two vertex-disjoint rainbow triangles. Moreover, we improve the result of Hu et al. from $n \geq 20$ to $n \geq 7$, the best possible.

Keywords: edge-coloring; edge-colored complete graph; rainbow triangle; color-degree condition

AMS Classification 2020: 05C15, 05C38.

1 Introduction

In this paper, we consider finite simple undirected graphs. An edge-coloring of a graph G is a mapping $c : E(G) \to \mathbb{N}$, where \mathbb{N} denotes the set of natural numbers. A graph G is called an edge-colored graph if G is assigned an edge-coloring. The color of an edge e
of G and the set of colors assigned to $E(G)$ are denoted by $c(e)$ and $C(G)$, respectively. For subset X of vertices of G, we use $G[X]$ to denote the subgraph of G induced by X. For $V_1, V_2 \subset V(G)$ and $V_1 \cap V_2 = \emptyset$, we set $E(V_1, V_2) = \{xy \in E(G), x \in V_1, y \in V_2\}$, and when $V_1 = \{v\}$, we write $E(u, V_2)$ for $E(\{u\}, V_2)$. The set of colors appearing on the edges between V_1 and V_2 in G is denoted by $C(V_1, V_2)$. When $V_1 = \{v\}$, use $C(v, V_2)$ instead of $C(\{v\}, V_2)$. The set of colors appearing on the edges of a subgraph H of G, is denoted by $C(H)$; moreover if $H = G[V_1]$, we write $C(V_1)$ for $C(G[V_1])$. A subset F of edges of G is called rainbow if no pair of edges in F receive the same color, and a graph is called rainbow if its edge-set is rainbow. In this paper, we only consider rainbow triangles in an edge-colored complete graph.

For a vertex $v \in V(G)$, the color-degree of v in G is the number of distinct colors assigned to the edges incident to v, denoted by $d^c_G(v)$. We use $\delta^c(G) = \min\{d^c_G(v) : v \in V(G)\}$ to denote the minimum color-degree of G. The set of neighbors of a vertex v in a graph G is denoted by $N_G(v)$. Let $N_i(v)$ denote the set of vertices with edges of color i adjacent to v for $1 \leq i \leq d^c(v)$, that is $N_i(v) = \{u \in N_G(v), c(uw) = i\}$. Let $\Delta^\text{mon}(v)$ be the maximum number of incident edges of v with the same color, that is $\Delta^\text{mon}(v) = \max\{|N_i(v)|, 1 \leq i \leq d^c(v)\}$. Then the monochromatic-degree of G is the maximum $\Delta^\text{mon}(v)$ over all vertices v in G, denoted by $\Delta^\text{mon}(G)$. Let ψ be the incidence function that associates with each edge of G an unordered pair of (not necessarily distinct) vertices of G. If e is an edge and u and v are vertices such that $\psi(e) = \{u, v\}$, then e is said to join u and v, and the vertices u and v are called the ends of e. Let R be a subset of $E(G)$. Then $\psi(R)$ denotes the set of all vertices incident with the edges in R, that is $\psi(R) = \cup_{e \in R}\psi(e)$. For other notation and terminology not defined here, we refer to [1].

There have been many results on rainbow triangles in the existing literature. These results can be divided into two parts: local property and global property on rainbow triangles. As for local property, Fujita and Magnant showed the following result.

Theorem 1 ([2]). Let G be an edge-colored complete graph of order n. If $\delta^c(G) \geq \frac{n+1}{2}$, then every vertex of G is contained in a rainbow triangle.

The lower bound on $\delta^c(G)$ in Theorem 1 is sharp. To see this, we obtain the following construction. It will show that v is not contained in any rainbow triangle.

Construction 2. Consider a complete graph $G = K_{2n}$. Let v be a vertex of G such that $d^c(v) = n$. Set $|N_1(v)| = 1$ and $|N_i(v)| = 2$ for $2 \leq i \leq n$. Color the edges between $N_1(v)$ and $N_i(v)$ by i for $2 \leq i \leq n$. For any vertex $u \in N_i(v)$, color two edges between u and $N_j(v)$ by i and j, respectively, for $2 \leq i \neq j \leq n$. Color the edge in $G[N_i(v)]$ by a
new color different from the colors of edges incident with \(v \). Then we get an edge-colored complete graph with \(\delta^c(G) = n \); see Figure 1.

Using Theorem 1 and repeatedly deleting the vertices of rainbow triangles at \(v \), it is easy to obtain the following sufficient condition for the existence of \(k \) edge-disjoint rainbow triangles at \(v \) and the lower bound is sharp.

Fact 3. Let \(G \) be an edge-colored complete graph of order \(n \). If \(\delta^c(G) \geq \frac{n-1}{2} + k \), then every vertex of \(G \) is contained in at least \(k \) edge-disjoint rainbow triangles.

In this paper, we will show the following result, which can be seen as a generalization of Theorem 1.

Theorem 4. Let \(G \) be an edge-colored complete graph of order \(n \). If \(\delta^c(G) \geq \frac{n+k}{2} \), then every vertex of \(G \) is contained in at least \(k \) rainbow triangles.

As for global property on rainbow triangle, there are some results in an edge-colored general graph.

Theorem 5 ([4]). Let \(G \) be an edge-colored graph of order \(n \). If \(\delta^c(G) \geq \frac{n+1}{2} \), then \(G \) contains a rainbow triangle.

Theorem 6 ([6]). Let \(G \) be an edge-colored graph of order \(n \). If \(\delta^c(G) \geq \frac{n}{2} \) and \(G \) contains no rainbow triangles, then \(n \) is even and \(G \) is the complete bipartite graph \(K_{\frac{n}{2}, \frac{n}{2}} \), unless \(G = K_4 - e \) or \(K_4 \) when \(n = 4 \).

Recently, Hu et al. proved the following result in an edge-colored general graph.

Theorem 7 ([3]). Let \(G \) be an edge-colored graph of order \(n \geq 20 \). If \(\delta^c(G) \geq \frac{n+2}{2} \), then \(G \) contains two vertex-disjoint rainbow triangles.
In this paper, we are seeking for sufficient condition for the existence of rainbow triangles in an edge-colored complete graph.

Theorem 8. Let G be an edge-colored complete graph of order n. If $\delta^c(G) \geq \frac{n}{2}$, then G contains a rainbow triangle.

With more effort, we can obtain the following stronger theorem.

Theorem 9. Let G be an edge-colored complete graph of order n. If $\delta^c(G) \geq \frac{n-1}{2}$ and G contains no rainbow triangle, then $V(G)$ can be partitioned into $\frac{n+1}{2}$ parts $\{A_0, A_1, \ldots, A_{\frac{n-1}{2}}\}$ (see Figure 2), such that the following properties hold:

1. n is odd and $d^c(v) = \frac{n-1}{2}$ for all $v \in V(G)$;
2. $|A_0| = 1$ and $|A_i| = 2$ for $1 \leq i \leq \frac{n-1}{2}$;
3. for any vertex $u \in A_i$, $C(u, A_i) = \{i, j\}$ for $1 \leq i \neq j \leq \frac{n-1}{2}$;
4. if $\frac{n-1}{2} \leq 2$, then $C(A_i) \in \{1, 2\}$, $i = 1, 2$; if $\frac{n-1}{2} \geq 3$, then $C(A_i) = \{i\}$, $1 \leq i \leq \frac{n-1}{2}$.

![Figure 2: The structure of G in Theorem 9](image)

Theorem 9 shows that the lower bound on $\delta^c(G)$ in Theorem 8 is tight. Using Theorem 8 and repeatedly deleting the vertices of rainbow triangles it is easy to obtain the following sufficient condition for the existence of k vertex-disjoint rainbow triangles.

Fact 10. Let G be an edge-colored complete graph of order n. If $\delta^c(G) \geq \frac{n-3+3k}{2}$, then G has at least k vertex-disjoint rainbow triangles.

The lower bound on $\delta^c(G)$ is far from tight. We will investigate the minimum color-degree condition that guarantees the existence of two vertex-disjoint rainbow triangles in an edge-colored complete graph.
Theorem 11. Let G be an edge-colored complete graph of order n. If $n \geq 8$ and $\delta^c(G) \geq \frac{n+1}{2}$, then G contains two vertex-disjoint rainbow triangles, and the bound $n \geq 8$ cannot be improved (see Figure 3).

We will also improve the result of Theorem 7 as follows.

Theorem 12. Let G be an edge-colored graph of order n. If $n \geq 7$ and $\delta^c(G) \geq \frac{n+2}{2}$, then G contains two vertex-disjoint rainbow triangles, and the bound $n \geq 7$ cannot be improved (see Figure 4).

As far as short cycles are concerned in an edge-colored complete graph, Li et al. showed the following results.

Theorem 13 (5). Let G be an edge-colored complete graph of order n. If $\Delta^{mon}(G) \leq n - 2$, then G contains a properly colored cycle of length at most 4.

Theorem 14 (5). Let G be an edge-colored complete graph of order n. If $\Delta^{mon}(G) \leq n - 5$, then G contains two disjoint properly colored cycle of length at most 4.

In the following sections, we will give the proofs of our Theorems 4, 8, 9, 11 and 12 separately.
2 Proof of Theorem 4

Proof of Theorem 4: Let \(G \) be a graph satisfying the assumptions of Theorem 4 and \(v \) be a vertex of \(G \), and let \(t = d^c(v) \). Suppose \(|N_1(v)| = \cdots = |N_s(v)| = 1 \) and \(2 \leq |N_{s+1}(v)| \leq \cdots \leq |N_t(v)| \). Clearly \(t - s \leq \frac{n+k-1}{2} \). Let \(N_1 = \bigcup_{1 \leq i \leq s} N_i(v) \) and \(N_2 = \bigcup_{s+1 \leq i \leq t} N_i(v) \). Let \(R(v) \) be a maximum subset of \(E(G) \) such that for any edge \(xy \in R(v) \), \(vxyv \) is rainbow. Then the number of rainbow triangles containing \(v \) is equal to \(|R(v)| \). Now we give an orientation to \(G[N_1] \) in such a way: for an edge \(xy \), if \(c(xy) = c(vx) \), then the orientation of the edge is from \(y \) to \(x \), (if \(c(xy) = c(vx) = c(vy) \), then we give the orientation arbitrarily); if \(xy \in R(v) \), then we give the orientation arbitrarily. The oriented graph is denoted by \(D \). Now we proceed by proving the following claims.

Apparently, all out-arcs from a vertex \(u \in N_1 \) are assigned colors different from \(c(uv) \). Then we can get the following claim.

Claim 2.1. For all \(u \in N_1 \), \(d^c_{N_1 \cup \{v\}}(u) \leq d^+_D(u) + 1 \).

Claim 2.2. \(C(N_i(v), N_j(v)) \setminus R(v) \subseteq \{i,j\} \) for \(1 \leq i \neq j \leq t \).

Claim 2.3. \(\psi(R(v)) \cap N_1 \neq \emptyset \).

Proof. Suppose not, then all in-arcs to \(u \in N_1 \) are assigned color \(c(uv) \) in \(D \). Then from Claim 2.1 there is a vertex \(w \) in \(N_1 \), such that \(d^c_{N_1 \cup \{v\}}(w) \leq \frac{n+k}{2} \). Since there is no edge in \(R(v) \) incident with \(w \), from Claim 2.2 we have \(C(w, N_j(v)) \subseteq \{c(uv), j\} \). Hence, \(d^c(w) \leq \frac{n+k}{2} + t - s \leq \frac{n}{2} \), a contradiction.

Now we proceed the proof of Theorem 4 by induction on \(k \). The case \(k = 1 \) follows from Theorem 4. Let \(k \geq 2 \) and suppose Theorem 4 holds for \(k - 1 \). Suppose to the contrary, that there is a vertex \(v \) such that \(|R(v)| < k \). Since \(\delta^c(G) \geq \frac{n+k}{2} \geq \frac{n+k-1}{2} \), we have \(|R(v)| = k - 1 \). Certainly, \(s \geq k + 1 \) since \(\delta^c(G) \geq \frac{n+k}{2} \). For \(u \in N_1 \), let \(R_u(v) \) be the subset of \(R(v) \) in which each edge is an in-arc to \(u \) and \(\psi(R_u(v)) \subseteq N_1 \) and \(R'_u(v) \) be the subset of \(R(v) \) in which each edge is incident with \(u \) and \(\psi(R'_u(v)) \setminus \{u\} \subseteq N_2 \), that is, \(R_u(v) = \{uw \in R(v) : \hat{u}w \in D\} \) and \(R_u(v) = \{uw \in R(v) : w \in N_2\} \). Hence, from Claims 2.1 and 2.2 we have \(d^c_{N_1}(u) \leq d^+_D(u) + 1 + |R_u(v)| \) and \(|C(u, N_2) \setminus \{c(uv)\}| \leq t - s + |R'_u(v)| \). Then,

\[
d^c(u) \leq d^+_D(u) + 1 + |R_u(v)| + |R'_u(v)| + t - s.
\]

Since \(|R_u(v)| + |R'_u(v)| \leq k - 1 \), if \(d^+_D(u) \leq \frac{s-k}{2} \), we have \(d^c(u) \leq \frac{n+k-1}{2} \), a contradiction. Therefore, \(d^+_D(u) \geq \frac{s-k+1}{2} \) for \(u \in N_1 \). Let \(w \) be a vertex with minimum out-degree in \(D \). Then \(\frac{s-k+1}{2} \leq d^+_D(w) \leq \frac{s-1}{2} \). Assume that \(d^+_D(w) = \frac{s-k+a}{2} \), \(1 \leq a \leq k - 1 \). Then
\[|R_w(v)| + |R'_w(v)| \geq k - \frac{a+1}{2}, \text{ otherwise } d^c(w) < \frac{n+k}{2}. \] Since the edges in \(R_w(v) \) are in-arcs to \(w \), they are out-arcs from the vertices in \(\psi(R_w(v)) \setminus \{w\} \). Then for \(u \in N_1 \setminus \{w\} \), we have \(|R_u(v)| + |R'_u(v)| \leq \frac{a-1}{2} \). So, \(d^+_D(u) \geq \frac{s+k-a}{2} \) for all \(u \in N_1 \setminus \{w\} \). Hence, \[\sum_{u \in N_1} d^+_D(u) \geq (s-1)\frac{s+k-a}{2} + \frac{s-k+a}{2}. \] Since \(s \geq k+1 \) and \(1 \leq a \leq k-1 \), we have \[\sum_{u \in N_1} d^+_D(u) \geq \frac{s(s-1)}{2}, \] a contradiction. \(\square \)

3 Proofs of Theorems 8 and 9

Proof of Theorem 8: Let \(G \) be a graph satisfying the assumptions of Theorem 8 and \(v \) be a vertex of \(G \). Suppose, to the contrary, that \(G \) has no rainbow triangle. Assume that \(|N_1(v)| = \cdots = |N_s(v)| = 1 \) and \(2 \leq |N_{s+1}(v)| \leq \cdots \leq |N_t(v)| \) (\(t = d^c(v) \)). Clearly, \(t-s \leq \frac{n-1-s}{2} \). Let \(N_1 = \cup_{1 \leq i \leq s} N_i(v) \) and \(N_2 = \cup_{s+1 \leq i \leq t} N_i(v) \). Now we proceed by proving the following claims.

Claim 3.1. \(C(N_i(v), N_j(v)) \subseteq \{i, j\}, \) for \(1 \leq i \neq j \leq t \).

Claim 3.2. If \(|N_1| \geq 2 \), then there is a vertex \(u \in N_1 \) such that \(C(u, N_1 \setminus \{u\}) = \{c(vu)\} \).

Proof. Suppose not, let \(u \) be a vertex in \(N_1 \) with minimum color-degree in \(G[N_1] \). Set \(W_1 = \{w \in N_1 \mid c(uw) = c(vu)\} \) and \(W_2 = \{w \in N_1 \mid c(uw) = c(vw)\} \). From Claim 3.1 we have \(N_1 \setminus \{u\} = W_1 \cup W_2 \). For any vertex \(w_1 \in W_1 \) and \(w_2 \in W_2 \), from Claim 3.1 we have \(c(w_1w_2) \in \{c(vw_1), c(vw_2)\} \). According to the definitions of \(N_1 \), \(W_1 \) and \(W_2 \), we have \(c(w_1w_2) \neq c(uw_2) \). Then, \(c(uw_1w_2) = c(uw_2) \), otherwise \(uw_1w_2u \) is a rainbow triangle, a contradiction. Hence, for any vertex \(w \in W_2 \), \(C(w, W_1) = \{c(vu)\} \). Then, there is a vertex \(w \in W_2 \) such that \(d^c_{N_1}(w) < d^c_{N_1}(u) \). Therefore, we can find a vertex \(u \in N_1 \) such that \(C(u, N_1 \setminus \{u\}) = \{c(vu)\} \). \(\square \)

Next we distinguish two cases.

Case 1. \(|N_1| \geq 2 \).

Let \(u \) be a vertex in \(N_1 \) such that \(C(u, N_1 \setminus \{u\}) = \{c(vu)\} \). From Claim 3.1 we have \(C(u, N_j(v)) \subseteq \{c(vu), j\} \) for \(s+1 \leq j \leq t \). Hence, \(d^c(u) \leq t-s+1 \leq \frac{n-1-s}{2} + 1 < \frac{n-1}{2} \), a contradiction.

Case 2. \(|N_1| = 1 \).

Let \(N_1 = \{u\} \). Then \(|N_j(v)| = 2 \) and \(j \in C(u, N_j(v)) \) for \(2 \leq j \leq t \), otherwise \(d^c(u) < \frac{n}{2} \). Assume there is a set \(N_k(v) = \{x, y\} \). W.l.o.g., suppose \(c(ux) = c(vx) = k \). Since \(n \geq 8 \), there exists a vertex \(z \in N_2 \setminus N_k(v) \) such that \(c(xz) = c(vz) \). Hence, \(c(uz) = c(vz) \), otherwise from Claim 3.1 \(uzzu \) is a rainbow triangle. Therefore, \(c(zy) = c(vy) = k \), otherwise \(d^c(z) \leq t-s-2+2 < \frac{n}{2} - 1 \), a contradiction. Hence, \(c(zx) \neq c(zy) \).
Then, \(c(xy) \in \{c(zx), c(zy)\} = \{c(vx), c(vz)\}\), otherwise \(xyzx\) is a rainbow triangle. So,
\[d^c(x) \leq t - s - 1 + 1 \leq \frac{n}{2} - 1,\] a contradiction. \(\Box\)

Proof of Theorem 3.4. Let \(G\) be a graph satisfying the assumptions of Theorem 3.4. Since \(G\) has no rainbow triangle and \(\delta^c(G) \geq \frac{n-1}{2}\), there exist a vertex \(v\) such that \(d^c(v) = \frac{n-1}{2} = t\) in \(G\). Assume that \(|N_1(v)| = \cdots = |N_7(v)| = 1\) and \(2 \leq |N_{s+1}(v)| \leq \cdots \leq |N_t(v)|\). Let \(N_1 = \bigcup_{1 \leq i \leq s} N_i(v)\) and \(N_2 = \bigcup_{s+1 \leq i \leq t} N_i(v)\). Now we proceed by proving the following claims.

Claim 3.3. \(C(N_i(v), N_j(v)) \subseteq \{i, j\}\), for \(1 \leq i \neq j \leq t\).

Claim 3.4. \(N_1 = \emptyset\).

Proof. Suppose not, since \(d^c(v) = \frac{n-1}{2}\), there is a set \(N_k(v), s + 1 \leq k \leq t\), such that \(|N_k(v)| \geq 3\). Thus, \(s - t \leq \frac{n-2-t}{2}\). From Claim 3.3 \(C(u, N_j(v)) \subseteq \{c(vu), j\}\) for \(s + 1 \leq j \leq t\).

If \(|N_1| \geq 2\), as in the proof of Theorem 3.3 there is a vertex \(u \in N_1\) such that \(C(u, N_1 \setminus \{u\}) = \{c(vu)\}\). Then, \(d^c(u) \leq t - s - 1 \leq \frac{n-2-s}{2} - 1 \leq \frac{n}{2} - 1\), a contradiction. If \(|N_1| = 1\), let \(N_1 = \{u\}\), and assume that \(|N_2(v)| = 3\) and \(|N_3(v)| = 2\) for \(3 \leq j \leq t\). Then there must exist a vertex \(x \in N_i(v)\) such that \(c(wx) = c(vx), 3 \leq l \leq t\). Let \(N_l(v) = \{x, y\}\). Then there is a vertex \(z \in N_k(v)\) such that \(c(xz) = c(vz)\), otherwise \(d^c(x) < \frac{n-1}{2}\).

Hence, \(c(zy) = c(vy)\), otherwise \(d^c(z) < \frac{n-1}{2}\). Then \(c(xz) \neq c(zy)\). Therefore, \(c(xy) \in \{c(vz), c(vx)\}\), otherwise \(xyzx\) is a rainbow triangle. Then, \(d^c(x) \leq \frac{n-2-1}{2} < \frac{n-1}{2}\), a contradiction. \(\Box\)

By Claim 3.3 \(|N_i(v)| = 2\) for all \(1 \leq i \leq t\). Thus, \(n\) is odd. Since \(\delta^c(G) \geq \frac{n-1}{2}\), by Claim 3.3 we have that for any vertex \(u \in N_i(v), j \in C(u, N_j(v))\) for \(1 \leq j \neq i \leq t\), that is \(C(u, N_j(v)) = \{c(vu), j\}\). If \(n \leq 5\), it is easy to verify that \(C(N_i(v)) \subseteq \{1, 2\}\). If \(n \geq 7\), then \(C(N_j(v)) = \{j\}\). Otherwise, suppose that there is a set \(N_k(v) = \{x, y\}\) such that \(c(xy) \neq k\). Then there is a vertex \(z \in N_2 \setminus N_k(v)\) such that \(xyzx\) is a rainbow triangle, a contradiction. Therefore, let \(A_0 = \{v\}\) and \(A_i = N_i(v)\) for \(1 \leq i \leq \frac{n-1}{2}\). This completes the proof. \(\Box\)

4 Proofs of Theorems 11 and 12

At first we need the following lemmas.
Lemma 15. Let G be an edge-colored complete graph of order $n \geq 8$. If $\delta^c(G) \geq \frac{n+1}{2}$ and there are two vertices y, z such that $G' = G - \{y, z\}$ has no rainbow triangles, then G has two vertex-disjoint rainbow triangles containing y and z, respectively.

Proof. Since $\delta^c(G) \geq \frac{n+1}{2}$, we have $\delta^c(G') \geq \delta^c(G) - 2 \geq \frac{|G|-1}{2}$. From Theorem 10, $d^c_{G'}(v) = \frac{|G'|-1}{2}$ for $v \in V(G')$ and G' has a partition $\{A_i, 0 \leq i \leq \frac{n-1}{2}\}$. Assume that $A_0 = \{v\}$ and $A_i = N_i(v)$ for $1 \leq i \leq \frac{n-1}{2}$. Since $\delta^c(G) \geq \frac{n+1}{2}$, the edges from every vertex in G' to z and y are assigned two new colors. Let $N_i(v) = \{a_i, b_i\}$. If there is a set $N_k(v)$ such that $c(za_k) \neq c(zb_k)$, then $C(y, G' \setminus (\{v\} \cup N_k(v))) = \{c(vy)\}$. If not, there is a vertex $u \in G' \setminus (\{v\} \cup N_k(v))$ such that $c(uv) \neq c(vy)$, and then uvy is a disjoint rainbow triangle from $xakbyx$. So, $d^c(y) \leq 4$, a contradiction. Hence, for any set $N_i(v)$, $c(za_i) = c(zb_i)$ and $c(ya_i) = c(yb_i)$. Since $d^c(z) \geq \frac{n+1}{2}$, there are two sets $N_i(v)$ and $N_j(v)$, $i \neq j$, such that $c(za_i) \neq c(za_j)$. Then za_ia_jz is a rainbow triangle. Similarly, we can find another rainbow triangle yb/by a contradiction. \qed

Lemma 16. Let G be an edge-colored graph of order $n \geq 7$. If $\delta^c(G) \geq \frac{n+2}{2}$ and there are two vertices y, z such that $G' = G - \{y, z\}$ has no rainbow triangles, then G has two vertex-disjoint rainbow triangles containing y and z, respectively.

Proof. Since $\delta^c(G) \geq \frac{n+1}{2}$, we have $\delta^c(G') \geq \delta^c(G) - 2 \geq \frac{|G|-1}{2}$. According to Theorem 10, we know that G' is a properly colored balanced complete bipartite graph. Since $\delta^c(G) \geq \frac{n+2}{2}$, we have that vz and zy are in $E(G)$ and $d^c(v) = \frac{n+2}{2}$ for every vertex $v \in V(G)$. Thus, we can easily find two vertex-disjoint rainbow triangles containing z and y, respectively, a contradiction. \qed

Proof of Theorem 11: Since $\delta^c(G) \geq \frac{n}{2}$, according to Theorem 8 G has a rainbow triangle xyz. Let $T(G)$ be the set of all rainbow triangles in G. Suppose, to the contrary, that G has no vertex-disjoint rainbow triangles. Then each rainbow triangle in $T(G) \setminus \{xyz\}$ meets at least one of $\{x, y, z\}$. Let $W_1(W_2, W_3)$ denote the subset of vertices in $V(G) \setminus \{x, y, z\}$, in which every vertex is contained in a rainbow triangle together with $x(y, z)$. Now we proceed by proving the following claims.

Claim 4.1. $W_i \neq \emptyset$, for $i = 1, 2, 3$.

Proof. W.l.o.g., suppose $W_1 = \emptyset$. Then each rainbow triangle in $T(G) \setminus \{xyz\}$ meets y or z. From Lemma 15, we can find two vertex-disjoint rainbow triangles in G, a contradiction. \qed

Claim 4.2. For any set W_i, there is a vertex in W_i but not in W_j, $1 \leq i \neq j \leq 3$.
Proof. W.l.o.g., suppose, to the contrary, that $W_1 \subseteq W_2 \cup W_3$. Then there is no rainbow triangle in $G' = G - \{z, y\}$. Therefore, from Lemma 15 we can find two vertex-disjoint rainbow triangles in G, a contradiction.

Claim 4.3. There is a vertex a_0 such that all rainbow triangles in $T(G) \setminus \{xyzx\}$ meet at a_0.

Proof. By Claim 4.2 let $a_i \in W_i \setminus (W_j \cup W_k)$, $1 \leq i \neq j \neq k \leq 3$. Then there is a vertex a_0 such that xa_1a_0x, ya_2a_0y and za_3a_0z are rainbow triangles, otherwise we can easily find two disjoint rainbow triangles. Suppose that there is a rainbow triangle $uvwu$ in $T(G) \setminus \{xyzx\}$ such that $a_0 \notin \{u, v, w\}$. Then we can easily find two vertex-disjoint rainbow triangles, a contradiction.

Let $G'' = G - \{x, a_0\}$. Then $\delta_c(G'') \geq \frac{|G''| - 1}{2}$. From Claim 4.3 there is no rainbow triangle in G''. Hence, from Lemma 15 we can find two vertex-disjoint rainbow triangles in G containing x and a_0, respectively, a contradiction. This completes the proof of Theorem 11.

Proof of Theorem 12: Using Theorems 5 and 6 in [6], and Lemma 16 as well as by an analogue of the proof of Theorem 11 we can get the result of Theorem 12.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer (2008).
[2] S. Fujita, C. Magnant, Properly colored paths and cycles, Discrete Appl. Math. 159 (2011), 1391–1397.
[3] J. Hu, H. Li, D. Yang, Vertex-disjoint rainbow triangles in edge-colored graphs, Discrete Math. 343 (2020), 112–117.
[4] H. Li, Rainbow C_3’s and C_4’s in edge-colored graphs, Discrete Math. 313 (2013) 1893–1896.
[5] R. Li, H. Broersma, S. Zhang, Vertex-disjoint properly edge-colored cycles in edge-colored complete graphs, J. Graph Theory 94 (2020), 476–493.
[6] B. Li, B. Ning, C. Xu, S. Zhang, Rainbow triangles in edge-colored graphs, European J. Combin. 36 (2014), 453–459.