CONVERGENCE OF CLOCK PROCESSES IN RANDOM ENVIRONMENTS
AND AGEING IN THE p-SPIN SK MODEL

ANTON BOVIER AND VÉRONIQUE GAYRARD

ABSTRACT. We derive a general criterion for the convergence of clock processes in random dynamics in random environments that is applicable in cases when correlations are not negligible, extending recent results by Gayrard [15, 16], based on general criterion for convergence of sums of dependent random variables due to Durrett and Resnick [13]. We demonstrate the power of this criterion by applying it to the case of random hopping time dynamics of the p-spin SK model. We prove that on a wide range of time scales, the clock process converges to a stable subordinator almost surely with respect to the environment. We also show that a time-time correlation function converges to the arcsine law for this subordinator, almost surely. This improves recent results of Ben Arous et al. [1] that obtained similar convergence result in law with respect to the random environment.

1. INTRODUCTION AND MAIN RESULTS

Over the last decades, random motion in random environments have been one of the main foci of research in applied probability theory and mathematical physics. This is due to the wide range of real life systems that can be modeled in this way, but also to the exciting, unforeseen and often counter-intuitive effects they exhibit. In fact, the early works of Solomon [24] and Sinai [23] on random walks in one-dimensional random environment were already striking examples of this feature.

While the most straightforward model class, the random walk in random environments on the lattice \mathbb{Z}^d, received the bulk of attention in the probability community, over the last decade the study of the dynamics of spin glass models has attracted considerable attention in connection with the concept of ageing. See e.g. [6] for a review. The dynamics of these models is expected to show very slow convergence to equilibrium, measurable in the anomalous behaviour of certain time-time correlation functions.

Interesting models of the dynamics of spin glasses are Glauber dynamics on state spaces $\Sigma_n = \{-1, 1\}^n$ reversible with respect to Gibbs measures associated to random Hamiltonians given by correlated Gaussian processes indexed by the hypercube Σ_n. Even on the non-rigorous level, predictions on their behaviour were mostly based on the basis of drastically simplified trap models [10, 12, 20, 21, 11], based in turn on the ideas of Goldstein [19] to describe dynamics on long times scales in terms of thermally activated barrier crossings.

Date: August 24, 2010.
2000 Mathematics Subject Classification. 82C44, 60K35, 60G70.
Key words and phrases. random dynamics, random environments, clock process, Lévy processes, spin glasses, ageing.

This work was written while A.B. was holding a Lady Davies visiting professorship at the Technion, Haifa, Israel. The kind hospitality of Dima Ioffe and of the William Davidson Faculty of Industrial Engineering and Management is gratefully acknowledged. A.B. is supported by the DFG through SFB 611 and the Hausdorff Center of Mathematics. V.G. thanks the IAM, Bonn University, the Hausdorff Center, the SFB 611, and the Technion for kind hospitality.
A rigorous analysis of many variants of such models was carried out over the last years \cite{5 9 8 7}. A striking feature that emerged in these works was the universal recurrence of the α-stable Lévy subordinators as basic random mechanisms in the description of the asymptotic properties of their dynamics. Another line of research tried to give a rigorous justification of the connection between spin glass dynamics and trap models. This was successful for the Random Energy Model (REM) of Derrida under a particular variant of the Glauber dynamics (the random hopping time dynamics, see below), first on times scales close to equilibrium \cite{2 3 4} and later also on shorter time scales \cite{8}. These results were partially extended to spin glasses with non-trivial correlations, the so-called p-spin SK models, by Ben Arous, Bovier, and Černý \cite{1}. Their results cover a limited range of times scales (in fact one expects a change of behaviour at longer scales), and only in law with respect to the random environment, which in this case appears unnatural.

The recurrent appearance of stable subordinators in such a large variety of model systems asks for a simple and robust explanation. Such an explanation was given in a limited context of trap models by Ben Arous and Černý \cite{7}.

A more direct and general view on this problem was presented in a recent paper by one of us \cite{15} and applied to more complicated situations in \cite{16} and \cite{17}. It emerges that the entire problem links up directly to a classical and well studied field of probability theory, the convergence of sums of random variables to Lévy processes. The case of independent random variables is well known since the work of Gnedenko and Kolmogorov \cite{18}, but a lot of work was done for the case of dependent random variables as well. In particular, there is a very amenable and useful criterion due to Durrett and Resnick \cite{13}, that we will rely on here.

Before entering in more details, let us briefly describe the general setting of Markov jump processes in random environments that we consider here. Our arena is a sequence of loop-free graphs, $G_n(V_n, L_n)$ with set of vertices, V_n, and set of edges, L_n.

A random environment is a family of positive random variable, $\tau_n(x), x \in V_n$, defined on some abstract probability space, $(\Omega, \mathcal{F}, \mathbb{P})$. Note that we do not assume independence.

Next we define discrete time Markov processes, J_n, with state space V_n and non-zero transition probabilities along the edges, L_n. We denote by μ_n its initial distribution and by $p_n(x, y)$ the elements of its transition matrix. Note that the p_n may be random variables on the space $(\Omega, \mathcal{F}, \mathbb{P})$. We assume that the process J_n admits a unique invariant measure π_n.

We construct our process of interest, X_n, as a time change of J_n. To this end we set
\begin{equation}
\lambda_n(x) \equiv \pi_n(x)/\tau_n(x),
\end{equation}
and define the clock process
\begin{equation}
\tilde{S}_n(k) = \sum_{i=0}^{k-1} \lambda_n^{-1}(J_n(i))e_{n,i}, \quad k \in \mathbb{N},
\end{equation}
where $(e_{n,i}, n \in \mathbb{N}, i \in \mathbb{N})$ is a family of independent mean one exponential random variables, independent of J_n.

We now define our continuous time process of interest, X_n, as
\begin{equation}
X_n(t) = J_n(i), \quad \text{if } \tilde{S}_n(i) \leq t < \tilde{S}_n(i + 1) \quad \text{for some } i.
\end{equation}

\footnote{One can consider more general situations when $e_{n,i}$ have different distributions as well, leaving the setting of Markov processes.}
One can readily verify that \(X_n \) is a continuous time Markov process with infinitesimal generator \(\lambda_n \), whose elements are

\[
\lambda_n(x, y) = \lambda_n(x)p_n(x, y),
\]

and whose unique invariant measure is given by

\[
\pi_n(x)\lambda_n^{-1}(x) = \tau_n(x).
\]

Note that the numbers \(\lambda_n^{-1}(x) \) play the rôle of the mean holding time of the process \(X_n \) in a site \(x \).

For future reference, we refer to the \(\sigma \)-algebra generated by the variables \(J_n \) and \(X_n \) as \(\mathcal{F}^J \) and \(\mathcal{F}^X \), respectively. We write \(P_{\mu_n} \) for the law of the process \(J_n \), conditional on the \(\sigma \)-algebra \(\mathcal{F} \), i.e. for fixed realisations of the random environment. Likewise we call \(P_{\mu_n} \) the law of \(X_n \) conditional on \(\mathcal{F} \).

This construction brings out the crucial rôle played by the clock process. If the chain \(J_n \) is rather fast mixing, convergence to equilibrium can only be slowed through an erratic behaviour of the clock process. This process, on the other hand, is a sum of positive random variables, albeit in general dependent ones. The approach of [15] (and already [1]) is to abstract from all other issues and to focus on the analysis of the asymptotic behaviour of the clock process. From that point onward, it is not surprising that stable subordinators will emerge as a standard class of limit processes; the universality appearing here is simply linked to the universal appearance of stable processes in the theory of sums of random variables.

In this paper we are mainly concerned with establishing criteria for the convergence of processes like (1.2) under suitable scaling, i.e. we will ask when there are constants, \(a_n, c_n \), such that the process

\[
S_n(t) \equiv c_n^{-1}S_n([a_n t]) = c^{-1} \sum_{i=1}^{[a_n t]} \lambda_n^{-1}(J_n(i))e_{n,i}, \quad t > 0,
\]

converges in some sense to a limit process. Note that in physical terms, the constants \(c_n \) correspond to the time scale on which we observe our continuous time Markov process \(X_n \), while \(a_n \) corresponds to the number of steps the underlying process \(J_n \) makes during that time.

Due to the doubly stochastic nature of our processes, convergence can be considered in various modes, that is under various laws. The physically most desirable one is refereed to as quenched, that is to say \(\mathbb{P} \)-almost sure convergence (to a deterministic or random process) under the law \(P_{\mu_n} \). In [1] another point of view was taken, namely \(P_{\mu_n} \)-almost sure convergence under the law of the random medium and the exponential random variables \(e_{n,i} \). Both imply the weakest form of convergence in law under the joint law of all random variables involved, often misleadingly referred to as annealed. The method used in [1] was based on the analysis of the Laplace transform of the clock process and the use of Gaussian comparison theorems. This left no way to deal with a fixed random environment. We will see, however, that we are to use heavily the computations from that paper.

1.1. **Key tools and strategy.** This approach is based on a powerful and illuminating method developed by Durrett and Resnick [13] to prove functional limit theorems for dependent variables. We state their theorem in a specialised form suitable for our applications, which is taken from [15] (see Theorem 2.1).
Theorem 1.1. Let Z_i^n be a triangular array of random variables with support in \mathbb{R}_+ defined on some probability space (Ω, \mathcal{F}, P). Let ν be a sigma-finite measure on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$, such that $\int_0^\infty (x \wedge 1) \nu(dx) < \infty$. Assume that there exists a sequence a_n, such that for all continuity points, $t < \infty$, of the distribution function of ν, in P-probability,

\[
\lim_{n \to \infty} \sum_{i=1}^{|a_n t|} P(Z_i^n > x | F_{n,i-1}) = t \nu(x, \infty),
\]

and

\[
\lim_{n \to \infty} \sum_{i=1}^{|a_n t|} [P(Z_i^n > x | F_{n,i-1})]^2 = 0,
\]

where $F_{n,i}$ denotes the σ-algebra generated by the random variables $Z_{n,j}$, $j \leq i$. If, moreover,

\[
\lim_{\varepsilon \to 0} \lim sup_{n \to \infty} c_n^{-1} \sum_{i=1}^{|a_n t|} \mathcal{E}_{\mu_n} 1_{Z_i^n \leq c_n \varepsilon} Z_i^n = 0,
\]

then

\[
\sum_{i=1}^{|a_n t|} Z_{n,i} \to S_\nu,
\]

where S_ν is the Lévy subordinator with Lévy measure ν and zero drift. Convergence holds in law on the space $D([0, \infty))$ equipped with the Skorokhod J_1-topology.

Remark. The condition (1.9) ensures that “small” terms in the sum do not contribute to the limit. It is almost a consequence of Assumption (1.7) and the hypothesis on the limiting measure ν. However, in the general context of triangular arrays, one can easily construct counterexamples if (1.9) is not imposed.

Remark. We emphasize that the result holds in the (usual) J_1-topology, since this is crucial for applications to correlation functions. See [25] for an extensive discussion of topologies on càdlàg spaces.

The straightforward idea is to apply this theorem with $Z_{n,i} \equiv c_n^{-1} \lambda_n^{-1}(J_n(i)) e_{n,i}$. This was done in [15] (see Theorem 1.3.) and applied to the case of Bouchaud’s trap models [15] and in the random energy model [16, 17] where it allowed to extend all previously know results in a very elegant way.

In models with strong local correlations, such as the p-spin SK model, one cannot, however, expect that with this choice the conditions of the theorem will be satisfied. In fact, one easily convinces oneself that contributions to the sum in (1.10) can only come from singly widely separated points i, but that such contributing terms form clusters due to the correlations.

In this paper we show that a good way to proceed in such a situation is to use a suitable blocking. Introduce a new scale, θ_n, and use Theorem 1.1 with the random variables

\[
Z_{n,i} \equiv \sum_{j=\theta_n i+1}^{(i+1)\theta_n} c_n^{-1} \lambda_n^{-1}(J_n(i)) e_{n,i}.
\]

The purpose of this procedure is that if J_n is rapidly mixing, we can hope to choose $\theta_n \ll a_n$ such that the random variables $J_n(\theta_n i)$, $i \in \mathbb{N}$ are close to independent and distributed according to the invariant distribution π_n. But then, under the law P_{μ_n}, also the random variables $Z_{n,i}$ are close to independent and uniformly distributed (although with a
Writing \(Q_n^y(y) \equiv P_y \left(\sum_{j=1}^{\theta_n} \lambda_n^{-1}(J_n(j)-1)e_{n,j-1} > c_nu \right) \) (1.12)
be the tail distribution of the aggregated jumps when \(X_n \) starts in \(y \). Note that \(Q_n^y(y) \), \(y \in V_n \), is a random function on the probability space \((\Omega, F, P)\), and so is the function \(F_n^y(y), y \in V_n \) defined through
\[
F_n^y(y) \equiv \sum_{x \in V_n} p_n(y, x)Q_n^x(x) .
\] (1.13)
Writing \(k_n(t) \equiv \lfloor \frac{a_n t}{\theta_n} \rfloor \), we further define
\[
\nu_n^{J,t}(u, \infty) \equiv \sum_{i=1}^{k_n(t)} F_n^u(J_n(\theta_n(i-1))) ,
\] (1.14)
and
\[
(\sigma_n^{J,t})^2(u, \infty) \equiv \sum_{i=1}^{k_n(t)} \left[F_n^u(J_n(\theta_n(i-1))) \right]^2 .
\] (1.15)
Finally, we set
\[
\tilde{S}_n(k) \equiv \sum_{i=1}^{k} \left(\frac{\theta_n^i}{\theta_n(i-1)+1} \right) \left(\sum_{j=\theta_n(i)\leq n,j} \lambda_n^{-1}(J_n(j))e_{n,j} \right) + c_n^{-1}\lambda_n^{-1}(J_n(0))e_{n,0} .
\] (1.16)
and
\[
S_n^b(t) \equiv \left(\frac{\theta_n}{\theta_n(t)+1} \right) \left(\sum_{j=\theta_n(t)\leq n,j} \lambda_n^{-1}(J_n(j))e_{n,j} \right) + c_n^{-1}\lambda_n^{-1}(J_n(0))e_{n,0} .
\] (1.17)
We now formulate four conditions for the sequence \(S_n \) to converge to a subordinator. Note that these conditions refer to given sequences of numbers \(a_n \), \(c_n \), and \(\theta_n \) as well as a given realisation of the random environment.

Condition (A1). There exists a \(\sigma \)-finite measure \(\nu \) on \((0, \infty)\) satisfying the hypothesis stated in Theorem 1.1 and such that, for all \(t > 0 \) and all \(u > 0 \),
\[
P_{\mu_n}\left(\left| \nu_n^{J,t}(t, \infty) - t\nu(t, \infty) \right| < \varepsilon \right) = 1 - o(1), \quad \forall \varepsilon > 0 .
\] (1.18)

Condition (A2). For all \(u > 0 \) and all \(t > 0 \),
\[
P_{\mu_n}\left((\sigma_n^{J,t})^2(t, \infty) < \varepsilon \right) = 1 - o(1), \quad \forall \varepsilon > 0 .
\] (1.19)

Condition (A3). For all \(u > 0 \) and all \(t > 0 \),
\[
\lim_{n \uparrow \infty} \limsup_{n \uparrow \infty} E_{\mu_n} \sum_{i=1}^{[a_n t]} \mathbb{1}(\lambda_n^{-1}(J_n(i))e_i \leq c_n \varepsilon) c_n^{-1}\lambda_n^{-1}(J_n(0))e_i = 0 .
\] (1.20)

Condition (A0).
\[
\sum_{x \in V_n} \mu_n(x)e^{-\varepsilon c_n \lambda_n(x)} = o(1) .
\] (1.21)
Theorem 1.2. For all sequences of initial distributions μ_n and all sequences a_n, c_n, and $1 \leq \theta_n \ll a_n$ for which Conditions (A0'), (A1), (A2), and (A3) are verified, either \mathbb{P}-almost surely or in \mathbb{P}-probability, the following holds w.r.t. the same convergence mode: Let $\{(t_k, \xi_k)\}$ be the points of a Poisson random measure of intensity measure $dt \times d\nu$. We have,

$$S_n^b(\cdot) \Rightarrow S_\nu(\cdot) = \sum \xi_k$$

(1.22)
in the sense of weak convergence in the space $D([0, \infty))$ of càdlàg functions on $[0, \infty)$ equipped with the Skorokhod J_1-topology.

Remark. Note that (Condition (A0')) is there to ensure that that last term in (1.17) converges to zero in the limit $n \uparrow \infty$.

Remark. The result of this theorem is stated for the blocked process $S_n^b(t)$. It implies immediately that under the same hypothesis, the original process $S_n(t)$ (defined in (1.6)) converges to S_ν in the weaker M_1-topology (see [25] for a detailed discussion of Skorokhod topologies). However, the statement of the theorem is strictly stronger than just convergence in M_1, and it is this form that is useful in applications.

Remark. To extract detailed information on the process X_n, e.g. the behaviour of correlation functions, from the convergence of the blocked clock process, one needs further information on the typical behaviour of the process during the θ_n steps of a single block. This is a model dependent issue and we will exemplify how this can be done in the context of the p-psin SK model.

We now come to the key step in our argument. This consists in reducing Conditions (A1) and (A2) of Theorem 1.2 to (i) a mixing condition for the chain J_n, and (ii) a law of large numbers for the random variables Q_n.

Again we formulate three conditions for given sequences a_n, c_n and a given realisation of the random environment.

Condition (A1-1). Let J_n is a periodic Markov chain with period q. There exists an integer sequence $\ell_n \in \mathbb{N}$, and a positive decreasing sequence ρ_n, satisfying $\rho_n \downarrow 0$ as $n \uparrow \infty$, such that, for all pairs $x, y \in V_n$, and all $i \geq 0$,

$$\sum_{k=0}^{q-1} P_{\pi_n}(J_n(i + \ell_n + k) = y, J_n(0) = x) \leq (1 + \rho_n)\pi_n(x)\pi_n(y).$$

(1.23)

Condition (A2-1) There exists a measure ν as in Condition (A1) such that

$$\nu_n^t(u, \infty) \equiv k_n(t) \sum_{x \in V_n} \pi_n(x)Q_n^u(x) \to \nu(u, \infty),$$

(1.24)

and

$$(\sigma_n^t)^2(u, \infty) \equiv k_n(t) \sum_{x \in V_n} \sum_{x' \in V_n} \pi_n(x)p_n^2(x, x')Q_n^u(x)Q_n^u(x') \to 0.$$

(1.25)

Condition (A3-1) For all $u > 0$ and all $t > 0$,

$$\lim_{\varepsilon \downarrow 0} \lim_{n \uparrow \infty} \sup_{t \in \varepsilon} k_n(t) \mathbb{E}_{\pi_n} \mathbb{1}_{(\lambda_n^{-1}(J_n(1))e_1 \leq c_n \varepsilon)} c_n^{-1} \lambda_n^{-1}(J_n(1))e_1 = 0.$$

(1.26)

Remark. The limiting measure ν may be deterministic or random.

Remark. The second condition in Condition (A2-1) is in most cases a direct consequence of the first one, together with some condition on the chain J_n. For instance, if $\sup_{x \in V_n} \sum_{x' \in V_n} p_n(x, x')^2 \to 0$, then (1.25) follows from (1.24).
Theorem 1.3. Assume that for a given initial distribution, \(\mu_n \), and constants \(a_n, c_n, \theta_n \), Conditions (A2-1), (A2-1), (A3-1) and (A0') hold \(\mathbb{P} \)-a.s., resp. in \(\mathbb{P} \)-probability. Then the sequence of random stochastic process \(S^b_n \) converges to the process \(S^s_n \), weakly on the Skorokhod space \(D([0, \infty)) \) equipped with the \(J_1 \)-topology, \(\mathbb{P} \)-almost surely, resp. in \(\mathbb{P} \)-probability.

1.2. Application to the \(p \)-spin SK model. Theorem 1.3 is the central result of this paper. It provides a very nice tool to prove convergence results of clock processes almost surely with respect to the random environment, i.e. the physically desirable mode. It is capable of dealing with correlations that have an effect, such as are present in the \(p \)-spin SK model. In this model, the underlying graphs \(\mathcal{V}_n \) are the hypercubes \(\Sigma_n = \{-1, 1\}^n \). The random environment is given by a Gaussian, \(H_n \), indexed by \(\Sigma_n \), with zero mean and covariance

\[
\mathbb{E} H_n(x) H_n(x') = n R_n(x, x')^p,
\]

where \(R_n(x, x') \equiv \frac{1}{n} \sum_{i=1}^n x_i x'_i \). The mean holding times, \(\tau_n(x) \), are given in terms of \(H_n \) by

\[
\tau_n(x) \equiv \exp(\beta H_n(x)),
\]

with \(\beta \in \mathbb{R}_+ \) the inverse temperature. The Markov chain, \(J_n \), is chosen as the simple random walk on \(\Sigma_n \), i.e.

\[
p_n(x, x') = \begin{cases} \frac{1}{n}, & \text{if } \|x - x'\|_2 = 2, \\ 0, & \text{else}, \end{cases}
\]

Theorem 1.4. For any \(p \geq 3 \), there exist a constant \(K_p > 0 \) and \(\zeta(p) \) such that for all \(\gamma \) satisfying

\[
0 < \gamma < \min \left(\frac{\beta^2}{\beta^2}, \zeta(p) \beta \right),
\]

the law of the stochastic process

\[
S^b_n(t) \equiv e^{-\gamma N} S_n \left(\left[t n^{1/2} e^{n \gamma^2 / 2 \beta^2} \theta_n^{-1} \right] \right), \quad t \geq 0,
\]

with \(\theta_n = \frac{3 \ln n}{n^2} \), defined on the space of càdlàg functions equipped with the Skorokhod \(J_1 \)-topology, converges to the law of \(\gamma / \beta^2 \)-stable subordinator \(V_{\gamma / \beta^2}(K_p t), t \geq 0 \). Convergence holds \(\mathbb{P} \)-a.s. if \(p > 4 \), and in \(\mathbb{P} \)-probability, if \(p = 3, 4 \).

The function \(\zeta(p) \) is increasing and it satisfies

\[
\zeta(3) \simeq 1.0291 \quad \text{and} \quad \lim_{p \to \infty} \zeta(p) = \sqrt{2 \log 2}.
\]

Remark. This result implies the weaker statement that

\[
S_n(t) \equiv e^{-\gamma N} S_n \left(\left[t n^{1/2} e^{n \gamma^2 / 2 \beta^2} \right] \right), \quad t \geq 0,
\]

converges in the same way in the \(M_1 \)-topology.

In [11] an analogous result is proven, with the same constants \(\zeta(p) \) and \(K_p \), but convergence there is law with respect to the random environment (and almost sure with respect to the trajectories \(J_n \)). Being able to obtain convergence under the law of the trajectories for fixed environments, as we do here, is a considerable conceptual improvement.

Finally, one must ask whether the convergence of the clock process in the form obtained here is useful for deriving ageing information in the sense that we can control the behaviour of certain correlation functions. One may be worried that a jump in limit of the coarse-grained clock process refers to a period of time during which the process still may make
n^2 steps, and our limit result tells us nothing about how the process moves during that time. We will, however, show that essentially all this time is spent in a a single visit to a quite small “trap”, within which the process does not make more than o(n) steps.

In this way we prove the almost-sure version of Theorem 1.2 of [1].

Theorem 1.5. Let \(A_n^\varepsilon(t, s) \) be the event defined by
\[
A_n^\varepsilon(t, s) = \left\{ R_n \left(X_n \left(t e^\gamma_n \right), X_n \left((t + s) e^\gamma_n \right) \right) \geq 1 - \varepsilon \right\}. \tag{1.34}
\]
Then, under the hypothesis of Theorem 1.4 for all \(\varepsilon \in (0, 1) \), \(t > 0 \) and \(s > 0 \),
\[
\lim_{N \to \infty} P_{\pi_n} \left(A_n^\varepsilon(t, s) \right) = \sin \alpha \pi \frac{1}{t} \int_0^{t/(t+s)} u^{-\alpha - 1} (1 - u)^{-\alpha} \, du, \quad \mathbb{P} - \text{a.s.} \tag{1.35}
\]

The remainder of the paper is organised as follows. In the next section we prove Theorems 1.2 and 1.3. In Section 3 we apply our main theorem to the \(p \)-spin SK model and prove Theorem 1.5.

2. PROOF OF THE MAIN THEOREMS

We now prove our main theorem. The first step is the proof of Theorem 1.2.

2.1. Proof of Theorem 1.2

Proof. The proof of Theorem 1.2 closely follows the proof of Theorem 1.4 of [15]. We set
\[
\hat{S}_n(t) \equiv S_n(t) - c_n^{-1} \lambda_n^{-1}(J_n(0)) \epsilon_{n,0}. \tag{2.1}
\]
Condition (A0’) ensures that \(S_n - \hat{S}_n \) converges to zero, uniformly. Thus we must show that under Conditions (A1) and (A2),
\[
\hat{S}_n(\cdot \ (t) = S(\cdot). \tag{2.2}
\]
This is a simple corollary of Theorem 1.1 set
\[
k_n(t) \equiv \left[\lfloor a_n t \rfloor / \theta_n \right] \tag{2.3}
\]
and, for \(i \geq 1 \), define
\[
Z_{n,i} \equiv \sum_{j=\theta_n(i-1)+1}^{\theta_n i} c_n^{-1} \lambda_n^{-1}(J_n(j)) \epsilon_{n,j}. \tag{2.4}
\]
Finally, set
\[
\hat{Z}_n(t) \equiv \sum_{j=\theta_n(k_n(t)-1)+1}^{\lfloor a_n t \rfloor} c_n^{-1} \lambda_n^{-1}(J_n(j)) \epsilon_{n,j}. \tag{2.5}
\]
Then \(\hat{S}_n(0) = 0 \) and, for \(t > 0 \),
\[
\hat{S}_n(t) = k_n(t)-1 \sum_{i=1}^{Z_{n,i}} Z_{n,i} + \hat{Z}_n(t). \tag{2.6}
\]
Let us now assume that \(\omega \in \Omega \) is fixed. We want to apply Theorem 1.1 first to the partial sum process, \(\hat{S}_n \), where \(\hat{S}_n(0) = 0 \) and \(\hat{S}_n(t) = \sum_{i=1}^{k_n(t)} Z_{n,i}, t > 0 \).

Let \(\{F_{n,i}, n \geq 1, i \geq 0\} \) be the array of sub-sigma fields of \(F^X \) defined by (with obvious
notations) \(\mathcal{F}_{n,i} = \sigma (\cup_{j \leq \theta_{ni}} \{ J_n(j), e_{n,j} \}) \), for \(i \geq 0 \). Clearly, for each \(n \) and \(i \geq 1 \), \(Z_{n,i} \) is \(\mathcal{F}_{n,i} \) measurable and \(\mathcal{F}_{n,i-1} \subset \mathcal{F}_{n,i} \). Next observe that

\[
P_{\mu_n} \left(Z_{n,i} > z \mid \mathcal{F}_{n,i-1} \right) = \sum_{x \in \mathcal{V}_n} P_{\mu_n} \left(J_n(\theta_n(i-1) + 1) = x, Z_{n,i} > z \mid \mathcal{F}_{n,i-1} \right),
\]

and that

\[
P_{\mu_n} \left(J_n(\theta_n(i-1) + 1) = x, Z_{n,i} > z \mid \mathcal{F}_{n,i-1} \right) = P_{\mu_n} \left(J_n(\theta_n(i-1) + 1) = x, Z_{n,i} > z \mid J_n(\theta_n(i-1)) \right)
\]

\[
= p_n(\theta_n(i-1), x) P_{\mu_n} \left(\sum_{j=1}^{\theta_n} \lambda_n^{-1}(J_n(j-1)) e_{n,j-1} > z \mid \theta_n \right) = x.
\]

In view of (1.12), (1.13), (1.14), and (1.15), it follows from (2.7) and (2.9) that

\[
\sum_{i=1}^{k_{n}(t)} P_{\mu_n} \left(Z_{n,i} > z \mid \mathcal{F}_{n,i-1} \right) = \sum_{i=1}^{k_{n}(t)} \sum_{x \in \mathcal{V}_n} p_n(\theta_n(i-1), x) Q_n^{u}(x)
\]

\[
= \sum_{i=1}^{k_{n}(t)} F_n^{u}(J_n(\theta_n(i-1)))
\]

\[
= \nu_n^{J,t}(u, \infty).
\]

Similarly we get

\[
\sum_{i=1}^{k_{n}(t)} \left[P_{\mu_n} \left(Z_{n,i} > \epsilon \mid \mathcal{F}_{n,i-1} \right) \right]^2 = \sum_{i=1}^{k_{n}(t)} \left[F_n^{u}(J_n(\theta_n(i-1))) \right]^2 = (\sigma_n^{J,t})^2(u, \infty).
\]

From (2.9) and (2.10) it follows that Conditions (A2) and (A1) of Theorem 1.2 are exactly the conditions from Theorem 1.1 Condition (A3) is Condition 1.9 Therefore the conditions of Theorem 1.1 are verified, and so \(\tilde{S}_n^{b} \Rightarrow S^{b} \) in \(D([0, \infty)) \) with \(S \) is given by (1.22) To arrive at the same conclusion for the process \(\tilde{S}_n^{b} \), note that these differ only in the last term. In particular the conditions for the process \(\tilde{S}_n^{b} \) differ only in the last term, and this satisfies

\[
0 \leq P_{\mu_n} \left(\tilde{Z}_n > z \mid \mathcal{F}_{n,k_{n}(t)-1} \right) \leq P_{\mu_n} \left(Z_{n,k_{n}(t)} > z \mid \mathcal{F}_{n,k_{n}(t)-1} \right).
\]

But Condition (A2) implies that each single term in the sum tends to zero, and hence in particular that the right-hand side in (2.11) tends to zero. Thus our conditions also hold for the process \(\tilde{S}_n^{b} \). Therefore \(\tilde{S}_n \Rightarrow S \) in \(D([0, \infty)) \), and from what we already explained, the same holds for \(S_n^{b} \). This result holds true for each fixed \(\omega \in \Omega \). The probabilistic convergence statements then follow readily, as explained in the proof of Theorem 1.3 of [15].

Note that Condition (A0') of Theorem 1.2 is Condition (A0) of Theorem 1.4 of [15] specialized to the case where \(F(v) = 1, v \geq 0 \). The random variable with this distribution simply is the constant \(\sigma = 0 \). Now the proof of Theorem 1.2 follows from the claim (2.2) and Condition (A0') exactly as Theorem 1.4 of [15] follows from Theorem 1.3 of [15] and Condition (A0').
2.2. **Proof of Theorem 2.3** The proof of Theorem 2.3 comes in two steps. In the first we use the ergodic properties of the chain \(J_n \) to pass from sums along a chain \(J_n \) to averages with respect to the invariant measure of \(J_n \).

We assume from now on that the initial distribution \(\mu_n \) is the invariant measure \(\pi_n \) of the jump chain \(J_n \).

Proposition 2.1. Let \(\mu_n = \pi_n \). Assume that Condition (AI-1) is satisfied. Then, choosing \(\theta_n \ge \ell_n \), the following holds: for all \(t > 0 \) and all \(u > 0 \) we have that, for all \(\varepsilon > 0 \),

\[
P_{\pi_n} \left(|\nu_n^{J,t}(u, \infty) - \nu_n^t(u, \infty)| \ge \varepsilon \right) \le \varepsilon^{-2} \left[\rho_n \left(\nu_n^t(u, \infty) \right)^2 + (\sigma_n^t)^2(u, \infty) \right], \tag{2.12}
\]

and

\[
P_{\pi_n} \left((\sigma_n^{J,t})^2(u, \infty) \ge \varepsilon \right) \le \varepsilon^{-1}(\sigma_n^t)^2(u, \infty). \tag{2.13}
\]

Proof. To simplify notation, we only give the proof for the case when the chain \(J_n \) is aperiodic, i.e. \(q = 1 \). Details of how to deal with the general periodic case can be found in the proof of Proposition 4.1. of [15].

Let us first establish that

\[
E_{\pi_n} \left[\nu_n^{J,t}(y) \right] = \nu_n^t(u, \infty), \tag{2.14}
E_{\pi_n} \left[(\sigma_n^{J,t})^2(u, \infty) \right] = (\sigma_n^t)^2(u, \infty). \tag{2.15}
\]

To this end set

\[
\pi_n^{J,t}(x) = k_n^{-1}(t) \sum_{j=1}^{\ell_n(t)} \mathbb{1}_{\{J_n(\theta_n(j-1))=x\}}, \quad x \in \mathcal{V}_n. \tag{2.16}
\]

Then, Eqs. (2.14) and (2.15) may be rewritten as

\[
\nu_n^{J,t}(u, \infty) = k_n(t) \sum_{y \in \mathcal{V}_n} \pi_n^{J,t}(y) F_n^u(y), \tag{2.17}
(\sigma_n^{J,t})^2(u, \infty) = k_n(t) \sum_{y \in \mathcal{V}_n} \pi_n^{J,t}(y) (F_n^u(y))^2. \tag{2.18}
\]

Since by assumption the initial distribution is the invariant measure \(\pi_n \) of \(J_n \), the chain variables \((J_n(j), j \ge 1)\) satisfy \(P_{\pi_n}(J_n(j) = x) = \pi_n(x) \) for all \(x \in \mathcal{V}_n \), and all \(j \ge 1 \). Hence

\[
E_{\pi_n} \left[\pi_n^{J,t}(y) \right] = \pi_n(y), \tag{2.19}
E_{\pi_n} \left[\nu_n^{J,t}(u, \infty) \right] = k_n(t) \sum_{x \in \mathcal{V}_n} \pi_n(x) F_n^u(x), \tag{2.20}
E_{\pi_n} \left[(\sigma_n^{J,t})^2(u, \infty) \right] = k_n(t) \sum_{x \in \mathcal{V}_n} \pi_n(x) (F_n^u(x))^2. \tag{2.21}
\]

Using (2.13) and reversibility, Eqs. (2.14) and (2.15) follow readily from these identities.

We are now ready to prove the proposition. In view of (2.15), (2.13) is nothing but a first order Chebyshev inequality. To establish (2.12) set

\[
\mathbb{D}_{ij}(x, y) = P_{\pi_n}(J_n(\theta_n(i-1)) = x, J_n(\theta_n(j-1)) = y) - \pi_n(x)\pi_n(y). \tag{2.22}
\]
A second order Chebychev inequality together with the expressions (2.21) of

\[E_{\pi_n} \left[\nu_{n,t}^l(u, \infty) \right] \] yields

\[P_{\pi_n} \left(\left| \nu_{n,t}^l(u, \infty) - E_{\pi_n} \left[\nu_{n,t}^l(u, \infty) \right] \right| \geq \varepsilon \right) \leq \varepsilon^{-2} E_{\pi_n} \left[k_n(t) \sum_{y \in V_n} (\pi_{n,t}^l(y) - \pi_n(y)) F_n^u(y) \right]^2 \]

\[= \varepsilon^{-2} \sum_{x \in V_n} \sum_{y \in V_n} F_n^u(x) F_n^u(y) \sum_{i=1}^{k_n(t)} \sum_{j=1}^{k_n(t)} \mathbb{D}_{ij}(x, y). \]

Now \(\sum_{i=1}^{k_n(t)} \sum_{j=1}^{k_n(t)} \mathbb{D}_{ij}(x, y) = (T) + (TT) \) where

\[(T) \equiv \sum_{i=1}^{k_n(t)} \sum_{j=1}^{k_n(t)} \mathbb{D}_{ij}(x, x) \mathbb{1}_{\{j \neq i\}} \leq \rho_n k_n^2(t) \pi_n(x) \pi_n(y), \]

as follows from Assumption (A1-1), choosing \(\theta_n \geq \ell_n \), and

\[(TT) \equiv \sum_{1 \leq i \leq k_n(t)} \mathbb{D}_{ii}(x, x) \mathbb{1}_{\{x = y\}} \]

\[= k_n(t) \left[P_{\pi_n} \left(J_n(\theta_n(i - 1)) = x \right) - \pi_n^2(x) \right] \mathbb{1}_{\{x = y\}} \]

\[= k_n(t) \pi_n(x)(1 - \pi_n(x)) \mathbb{1}_{\{x = y\}}. \]

Inserting (2.25) and (2.24) in (2.23) we obtain, using again (2.15) and (2.21), that

\[P_{\pi_n} \left(\left| \nu_{n,t}^l(u, \infty) - E_{\pi_n} \left[\nu_{n,t}^l(u, \infty) \right] \right| \geq \varepsilon \right) \leq \varepsilon^{-2} \left[\rho_n \nu_n^l(u, \infty) + (\sigma_n^2)^2(u, \infty) \right]. \]

Proposition 2.1 is proven. \(\square \)

Proof. (of Theorem 1.3) The proof of Theorem 1.3 is now immediate: combine the conclusions of Proposition 2.1 with Condition (A2-1) to get both conditions (A1) and (A2). Finally, Condition (A3) is Condition (A3-1), since we are starting from the invariant measure. \(\square \)

3. Application to the p-spin SK model

In this section we show how the Conditions (A1-1) and (A2-1) can be verified the case of the random hopping time dynamics of the p-spin SK model.

The proof contains four steps, two of which are quite immediate.

Conditions (A1-1) for simple random walk has been established, e.g., in [1] and [16]. The following lemma is taken from Proposition 3.12 of [16].

Lemma 3.1. Let \(P_{\pi_n} \) be the law of the simple random walk on the hypercube \(\Sigma_n \) started in the uniform distribution. Let \(\theta_n = \frac{3\ln n}{2} - n^2 \). Then, for any \(x, y \in \Sigma_n \) and any \(i \geq 0 \),

\[\left| \sum_{k=0}^{i} P_{\pi_n} \left(J_n(\theta_n + i + k) = y, J_n(0) = x \right) - 2\pi_n(x) \pi_n(y) \right| \leq 2^{-3n+1}. \]

Clearly this implies that Condition (A1-1) holds.

Next, the second part of Condition (A2-1) will follow immediately once we have proven the first, as follows from the remark after the statement of Condition (A2-1).

Thus, all what is left to do is to show that

\[\nu_n^l(u, \infty) \to \nu^l(u, \infty) = K_p u^{-\gamma/\beta^2}, \]
almost surely, resp. in probability, as \(n \uparrow \infty \).

3.1. **Laplace transforms.** Instead of proving the convergence of the distribution functions \(\nu_n^t \) directly, we pass to their Laplace transforms, prove their convergence and then use Feller’s continuity lemma to deduce convergence of the original objects.

For \(v > 0 \), consider the Laplace transforms

\[
\hat{\nu}_n^t(v) = \int_0^\infty du e^{-uv} \nu_n^t(u, \infty) \tag{3.3}
\]

\[
\hat{\nu}^t(v) = \int_0^\infty du e^{-uv} \nu^t(u, \infty).
\]

With \(Z_n \equiv \sum_{j=0}^{\theta_n - 1} e_n^{-1} \lambda_n^{-1}(J_n(j)) \epsilon_{n,j} \), we have, by definition of \(\nu_n^t(u, \infty) \),

\[
\nu_n^t(u, \infty) = k_n(t) \sum_{x \in V_n} \pi_n(x) Q_n^u(x) = k_n(t) \mathcal{P}_{\pi_n}(Z_n > u).
\]

Hence

\[
\hat{\nu}_n^t(v) = \int_0^\infty du e^{-uv} \nu_n^t(u, \infty) \tag{3.4}
\]

\[
= k_n(t) \int_0^\infty du e^{-uv} \mathcal{P}_{\pi_n}(Z_n > u)
\]

\[
= k_n(t) \frac{1 - \mathcal{E}_{\pi_n}(e^{-vZ})}{v},
\]

where the last equality follows by integration by parts.

3.2. **Convergence of** \(\mathbb{E}\hat{\nu}_n^t(v) \). The following Lemma is an easy consequence of the results of [1]:

Lemma 3.2. Let \(c_n = e^{\gamma n} \), \(a_n = n^{1/2} e^{\gamma n^2/2\beta^2} \). For any \(p \geq 3 \), and \(\beta, \gamma > 0 \) such that \(\gamma/\beta^2 \in (0, 1) \), there exists a finite positive constant, \(K_p \), such that, for any \(v > 0 \),

\[
\lim_{n \uparrow \infty} k_n(t) \mathbb{E} \left[1 - \mathcal{E}_{\pi_n}(e^{-vZ_n}) \right] = K_p tv^{\gamma/\beta^2}. \tag{3.5}
\]

Proof. We rely essentially on the results of [1]. In that paper the Laplace transforms \(\mathbb{E}e^{-vZ_n} \) were computed even for \(\theta_n = a_n t \). We just recall the key ideas and the main steps.

The point in [1] is to first fix a realisation of the chain \(J_n \), and to define, for a given realisation, the one-dimensional normal Gaussian process

\[
U^0(i) \equiv n^{-1/2} H_n(J_n(i)), \tag{3.6}
\]

with covariance

\[
\Lambda_{ij}^0 = n^{-1} \mathbb{E} H_n(J_n(i)) H_n(J_n(j)) = n^{-1} R_n(J_n(i), J_n(j))^p. \tag{3.7}
\]

Moreover, they define a comparison process, \(U^1 \), as follows. Let \(\nu \) be an integer of order \(N^\rho \), with \(\rho \in (1/2, 1) \). Then \(U^1 \) has covariance matrix

\[
\Lambda_{ij}^1 = \begin{cases}
1 - 2pN^{-1}|i - j|, & \text{if } \lfloor i/\nu \rfloor = \lfloor j/\nu \rfloor \\
0, & \text{else}
\end{cases}
\tag{3.8}
\]

Finally they define the interpolating family of processes, for \(h \in [0, 1] \),

\[
U^h(i) \equiv \sqrt{h} U^1(i) + \sqrt{1 - h} U^0(i). \tag{3.9}
\]
For any normal Gaussian process, U, indexed by N, define the function
\[
E_{\pi_n}(F(U, v, k) \mid F^J) \equiv G(U, v, k) = \exp \left(-\sum_{i=0}^{k-1} g(vc_n^{-1}e^{\beta \sqrt{n}U_i}) \right), \tag{3.10}
\]
with $g(x) = \ln(1 + x)$.

Then the Laplace transforms we are after can be written as
\[
E_{E_{\pi_n}}e^{-vZ_n} = E_{E_{\pi_n}}(E_{\pi_n}(e^{-vZ_n} \mid F^J)) = E_{\pi_n}E_G(U_0, v, \theta_n). \tag{3.11}
\]

Here we used that the conditional expectation, given F^J, is just the expectation with respect to the variables $e_{n,i}$ which can be computed explicitly and gives rise to the function G.

The idea is now that U_1 is a good enough approximation to U_0, for most realisation of the chain J, to allow us to replace U_0 by U_1 in the last line above.

More precisely, we have the following estimate.

Lemma 3.3. With the notation above we have that, for all $p \geq 3$
\[
k_n(t)E_{\pi_n}\left|\mathbb{E}G(U_0, v, \theta_n) - \mathbb{E}G(U_1, v, \theta_n)\right| \leq tCN^{1/2}/\nu. \tag{3.12}
\]

Remark. In [1] (see Proposition 3.1) it is proven that E_{π_n}-almost surely,
\[
\mathbb{E}G(U_0, v, \lfloor a_n t \rfloor) - \mathbb{E}G(U_1, v, \lfloor a_n t \rfloor) \to 0. \tag{3.13}
\]

This result would not be expected for our expression, but we do not need this. The proof of Proposition 3.1 of [1], however, directly implies our Lemma 3.3.

The computation of the expression involving the comparison process U_1 is fairly easy. First, note that by independence,
\[
\mathbb{E}G(U_1, v, \theta_n) = \left[\mathbb{E}G(U_1, v, \nu)\right]^{\theta_n/\nu} = \left[1 - (1 - \mathbb{E}G(U_1, v, \nu))\right]^{\theta_n/\nu} \tag{3.14}
\]

But in [1], Proposition 2.1, it is shown that
\[
a_n v^{-1} \left(1 - \mathbb{E}G(U_1, v, \nu)\right) \to K_p v^{\gamma/\beta^2}. \tag{3.15}
\]

This implies immediately that
\[
k_n(t) \left[1 - (1 - \mathbb{E}F(U_1, v, \nu))\right]^{\theta_n/\nu} \to K_p v^{\gamma/\beta^2} t, \tag{3.16}
\]
as desired. Combining this with Lemma 3.3 the assertion of Lemma 3.2 follows. \qed

3.3. Concentration of ν^t_n. To conclude the proof, we need to control the fluctuations of ν^t_n.

Lemma 3.4. Under the same hypothesis as in Lemma 3.2, there exists an increasing function, $\zeta(p)$, such that for all $p \geq 3$, $\zeta(p) > 1$, and $\zeta(p) \uparrow \sqrt{2 \ln 2}$, such that, if $\gamma/\beta^2 < \min(1, \zeta(p)/\beta)$,
\[
\mathbb{E}(\nu^t_n(v) - \mathbb{E}\nu_n(v))^2 \leq Cn^{1-p/2}. \tag{3.17}
\]
Proof. The proof is again very similar to the proof of Proposition 3.1 in [1]. We have to compute

\[\mathbb{E} \left(\mathcal{E}_\pi e^{-vZ_n} \right)^2 = \mathbb{E} \mathcal{E}_\pi, \mathcal{E}'_\pi \left(e^{-v(Z_n + Z'_n)} \mid \mathcal{F}^j \times \mathcal{F}'^j \right). \]

(3.18)

To express this as in the previous proof, we introduce the Gaussian process \(V^0 \) by

\[V^0(i) \equiv \begin{cases}
 n^{-1/2} H_n(J_n(i)), & \text{if } 0 \leq i \leq \theta_n - 1 \\
 n^{-1/2} H_n(J'_n(i)), & \text{if } \theta_n \leq i \leq 2\theta_n - 1.
\end{cases} \]

(3.19)

Then, with the notation of (3.10)

\[\mathcal{E}_\pi, \mathcal{E}'_\pi \left(e^{-v(Z_n + Z'_n)} \mid \mathcal{F}^j \times \mathcal{F}'^j \right) = G(V^0, v, 2\theta_n). \]

(3.20)

Next we define the comparison process \(V^1 \) with covariance matrix

\[\Lambda^2_{ij} \equiv \begin{cases}
 \Lambda^0_{ij}, & \text{if } i \wedge j < \theta_n \text{ or } i \vee j \geq \theta_n, \\
 0, & \text{else}.
\end{cases} \]

(3.21)

The point is that

\[E_{\pi_n} E'_{\pi_n} \mathbb{E} G(V^1, v, 2\theta_n) = (E_{\pi_n} \mathbb{E} G(V^0, v, \theta_n))^2 = (\mathbb{E} \mathcal{E}_\pi e^{-vZ_n})^2. \]

(3.22)

On the other hand, using the standard Gaussian interpolation formula, we obtain the representation

\[\mathbb{E} G(V^0, v, 2\theta) - \mathbb{E} G(V^0, v, \theta) = \frac{1}{2} \int_0^1 \sum_{\theta_n \leq i < \theta_n \leq 2\theta_n} \Lambda^0_{ij} \mathbb{E} \frac{\partial^2 G(V^h, v, 2\theta_n)}{\partial v_i \partial v_j} dh + (i \leftrightarrow j). \]

(3.23)

The second derivatives of \(G \) were computed and bounded in [1], (see Eq. (3.7) and Lemma 3.2). We recall these bounds:

Lemma 3.5. With the notation above and the assumptions of Lemma 3.2

\[\left| \frac{\partial^2 G(V^h, v, 2\theta_n)}{\partial v_i \partial v_j} \right| \leq v^2 c_n^{-2} \beta^2 N e^{\beta\sqrt{\pi} (V^h(i) + V^h(j))} \times \exp \left(-2g \left(c_n^{-1} v e^{\beta\sqrt{\pi} V^h(i)} \right) - 2g \left(e_n^{-1} v e^{\beta\sqrt{\pi} V^h(i)} \right) \right) \equiv \Xi_n(\Lambda^h_{ij}). \]

(3.24)

Moreover, for \(\lambda > 0 \) small enough,

\[\Xi_n(c) \leq \overline{\Xi}_n(c) = \begin{cases}
 C \left((1 - c)^{-1/2} \wedge \sqrt{n} \right) e^{-\frac{c^2 n}{\beta^2(1+c)}}, & \text{if } 1 > c > \gamma/\beta^2 + \lambda - 1, \\
 C N e^{-n(\beta^2(1+c) - 2\gamma)}, & \text{if } c \leq (\gamma/\beta^2) + \lambda - 1,
\end{cases} \]

(3.25)

where \(C(\gamma, \beta, v, \lambda) \) is a suitably chosen constant independent of \(n \) and \(c \).

Remark. Notice that, since \(\gamma/\beta^2 < 1 \) under our hypothesis, we can always choose \(\lambda \) such that the top line in (3.25) covers the case \(c \geq 0 \).

Note that, for \(c \geq 0 \), (see Eq. (3.25) in [1])

\[\int_0^1 \Xi_n((1 - h)c) dh \leq 2C \exp \left(-\frac{\gamma^2 n}{\beta^2(1 + c)} \right). \]

(3.26)
The terms with negative correlation are in principle smaller than those with positive one, but some thought reveals that one cannot really gain substantially over the bound
\[\int_0^1 \Xi_n((1-h)c)dh \leq C \exp\left(-\frac{\gamma^2 n}{\beta^2}\right), \] (3.27)
that is used in \cite{1} (See Eq. 3.24)).

Next we must compute the probability that \(\Lambda_0^{ij} \) takes on a specific value. But since \(\Lambda_0^{ij} \) is a function of \(R_n(J_n(i), J'_n(j)) \), this turns out to be very easy, namely, since both chains start in the invariant distribution:
\[
\mathbb{E}_{\pi_n} E'_{\pi_n} \mathbb{1}_{nR_n(J_n(i), J'_n(j))=m} = t^2 \sum_{x,y \in S^n} P_{\pi_n}(J_n(i) = x) P'_{\pi_n}(J'_n(i) = y) \mathbb{1}_{nR_n(x,y)=m}
= 2^{-n} \sum_{x \in S^n} \mathbb{1}_{nR_n(x,1)=m} = 2^{-n} \left(\frac{n}{(n-m)/2} \right). \] (3.28)

Putting all things together, we arrive at the bound
\[
k_n(t)^2 \left| \mathbb{E}G(V^0, v, 2\theta) - \mathbb{E}G(V^0, v, \theta) \right| \leq \sum_{m=0}^{n} 2^{-n} \left(\frac{n}{(n-m)/2} \right) \left(\frac{m}{n} \right)^p n e^{n\gamma^2/\beta^2} C \exp\left(-\frac{n\gamma^2}{\beta^2 +(m/n)^p}\right)
+ \sum_{m=0}^{n} 2^{-n} \left(\frac{n}{(n-m)/2} \right) \left(\frac{m}{n} \right)^p n e^{n\gamma^2/\beta^2} C \exp\left(-\frac{n\gamma^2}{\beta^2}\right), \] (3.29)
where we did use that \(k_n(t)\theta_n = t \sqrt{n e^{n\gamma^2/\beta^2}} \). Clearly the second term is smaller than the first, so we only need to worry about the latter. But this term is exactly the term (3.28) in \cite{1}, where it is shown that this is smaller than
\[
C' t^2 n^{1-p/2}, \] (3.30)
provided \(\gamma < \zeta(p) \). This provides the assertion of our Lemma 3.4 and concludes its proof. \(\square \)

Remark. The estimate on the second moment we get here allows to get almost sure convergence only if \(p > 4 \). It is not quite clear whether this is natural. We were tempted to estimate higher moments to get improved estimates on the convergence speed. However, any straightforward application of the comparison methods used here does produce the same order for all higher moments. We have not been able to think of a tractable way to improve this result.

3.4. Verification of Condition (A3-1). To show that condition (A3-1) holds, we again first prove that the average of the right hand side vanishes as \(\varepsilon \downarrow 0 \), and then we prove a concentration result.

Lemma 3.6. Under the Assumptions of the theorem, there is a constant \(K < \infty \), such that
\[
\limsup_{n \uparrow \infty} a_n c_n^{-1} E_{\pi_n} \lambda_n^{-1}(x)e_1 \mathbb{1}_{\lambda_n^{-1}(x)e_1 \leq \varepsilon \leq c_n} \leq K \varepsilon^{1-\alpha}. \] (3.31)
Proof. The proof is through explicit estimates. We must control the integral
\[
\int_0^\infty x e^{-x} dx \int_{-\infty}^\infty e^{-\frac{z^2}{2}} \mathbb{1}_{xe^\beta \sqrt{n} \leq \epsilon c_n} e^{\beta \sqrt{n} z} dz
\]
(3.32)
\[
= \int_0^\infty x e^{-x} dx \left[\int_{-\infty}^{\ln c_n + \ln(\epsilon/x)} e^{-\frac{z^2}{2} + \beta \sqrt{n} z} dz \right]
\]
\[
= \int_0^\infty x e^{-x} dx \left[e^{\beta n/2} \int_{-\infty}^{\ln c_n + \ln(\epsilon/x) - \beta \sqrt{n}} e^{-\frac{z^2}{2}} dz \right]
\]
Now for our choice \(c_n = \exp(\gamma n)\), the upper integration limit in the \(z\)-integral is
\[
\ln c_n + \ln(\epsilon/x) - \beta \sqrt{n} = \sqrt{n} \left(\frac{\gamma}{\beta} - \beta \right) + \frac{\ln \epsilon - \ln x}{\beta \sqrt{n}}.
\]
(3.33)
Thus, for any \(\gamma < \beta^2\), this tends to \(-\infty\) uniformly for, say, all \(x \leq n^2\). We therefore decompose the \(x\)-integral in the domain \(x \leq n^2\) and its complement, and use first that
\[
\int_0^n x e^{-x} dx \int e^{-\frac{z^2}{2}} x e^\beta \sqrt{n} \leq c_n e^{\beta \sqrt{n} z} dz \leq \epsilon n^2 c_n e^{-n^2},
\]
(3.34)
which tend to zero, as \(n \uparrow \infty\). For the remainder we use the bound
\[
\int_u^\infty e^{-z^2/2} \leq \frac{1}{u} e^{-u^2/2}.
\]
(3.35)
This yields
\[
e^{\beta^2 n/2} \int_{-\infty}^{\ln c_n + \ln(\epsilon/x) - \beta \sqrt{n}} e^{-\frac{z^2}{2}} dz
\]
\[
\leq e^{\beta^2 n/2} \exp \left(-\frac{1}{2} \left(\beta - \frac{\gamma}{\beta} \right) - \frac{\ln \epsilon - \ln x}{\beta \sqrt{n}} \right)^2 \right) \left(\beta - \beta^{-1} \gamma \right) \sqrt{n} - \frac{\ln \epsilon - \ln x}{\beta \sqrt{n}}
\]
\[
= \exp \left(-\frac{n^2 \gamma}{2 \beta^2} + n \gamma \right) \exp \left(-(\gamma/\beta^2 - 1) \ln(\epsilon/x) + O(n^{-1/2}) \right)
\]
\[
= c_n a_n^{-1} \exp \left(-(\gamma/\beta^2 - 1) \ln(\epsilon/x) + O(n^{-1/2}) \right).
\]
Hence
\[
\limsup_{n \uparrow \infty} a_n c_n^{-1} \int_0^\infty x e^{-x} dx \int_{-\infty}^\infty e^{-\frac{z^2}{2}} x e^\beta \sqrt{n} \leq c_n e^{\beta \sqrt{n} z} dz
\]
(3.37)
\[
\leq \frac{1}{\beta - \gamma/\beta} e^{1-\alpha} \int_0^\infty x^\alpha e^{-x} dx.
\]
where \(\alpha = \gamma/\beta^2\). This yields the assertion of the lemma. \(\square\)

To conclude the proof, we need a concentration estimate. The first step is a simple Gaussian bound.

Lemma 3.7. Let \(X_1, X_2\) be centered normal Gaussian random variables with covariance
\[
\mathbb{E} X Y = c.
\]
(3.38)
Then, with the previous notation, there exists a constant C, independent of n and c, such that
\[
\mathbb{E}\left(e^{\beta \sqrt{n} X} 1_{e^{\beta \sqrt{n} X} \leq c e^{\gamma_n}}\right) - \mathbb{E}\left(e^{\beta \sqrt{n} X} 1_{e^{\beta \sqrt{n} X} \leq c' e^{\gamma_n}}\right) \\
\leq \left(c^2 e^{\frac{\gamma_n}{2(1+c)}} - 1\right) \left(\mathbb{E}e^{\beta \sqrt{n} X} 1_{e^{\beta \sqrt{n} X} \leq c e^{\gamma_n}}\right) \left(\mathbb{E}e^{\beta \sqrt{n} X} 1_{e^{\beta \sqrt{n} X} \leq c' e^{\gamma_n}}\right). \tag{3.39}
\]

Proof. The left hand side of (3.39) equals (we assume $c \geq 0$ below, but the same estimate with c replaced by $-c$ can be obtained for $c < 0$)
\[
\frac{1}{2\pi} \int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} \int_{-\infty}^{\frac{\gamma_n - \ln x'}{\beta' \sqrt{n}}} \left(1 - e^{-\frac{x^2 + x'^2 + 2x x'}{2(1-c^2)}}\right) e^{\beta \sqrt{n} (z_1 + z_2)} \, dz_1 \, dz_2
\]
\[
= \frac{1}{2\pi} \int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} \int_{-\infty}^{\frac{\gamma_n - \ln x'}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} (z_1 + z_2)} e^{-\frac{x^2 + x'^2}{2}}
\]
\[
\times \left(1 - e^{-(z_1 - z_2)^2 - e^{(1-c)/2(1+c)}}\right) \, dz_1 \, dz_2
\]
\[
\leq \frac{1}{2\pi} \int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} \int_{-\infty}^{\frac{\gamma_n - \ln x'}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} (z_1 + z_2)} e^{-\frac{x^2 + x'^2}{2}}
\]
\[
\times \left(1 - e^{-(z_1 - z_2)^2} e^{e^{(1+c)/2(1+c)}}\right) \, dz_1 \, dz_2
\]
\[
= \frac{1}{2\pi \sqrt{1 - c^2}} \left(\int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z^2}{2(1+c)}}} e^{-z^2} \, dz\right) \left(\int_{-\infty}^{\frac{\gamma_n - \ln x'}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z'^2}{2(1+c)}}} e^{-z'^2} \, dz\right)
\]
\[
- \left(\int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z^2}{2}}} \, dz\right) \left(\int_{-\infty}^{\frac{\gamma_n - \ln x'}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z'^2}{2}}} \, dz\right). \tag{3.40}
\]

Now the integrals in the first term can be written as
\[
\int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z^2}{2}}} \, dz = \sqrt{1 + c} \int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z^2}{2}}} \, dz,
\tag{3.41}
\]
with $\beta' = \sqrt{1 + c},$ resp. with ε replaced by ε'. Using the formula obtained in the preceding lemma, we see that indeed
\[
\int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z^2}{2}}} \, dz = \int_{-\infty}^{\frac{\gamma_n - \ln x}{\beta' \sqrt{n}}} e^{\beta \sqrt{n} e^{-\frac{z^2}{2}}} \, dz \times e^{\frac{\gamma_n}{2\beta^2(1+c)}} (1 + O(c)). \tag{3.42}
\]

From here the claim of the lemma follows. \hfill \Box

We will now use Lemma 3.7 to prove the desired concentration estimate.

Lemma 3.8. With the notation above,
\[
\mathbb{E}\left(\mathcal{E}_{\pi_n} \lambda_n^{-1}(J_n(1)) e_1 1_{\lambda_n^{-1}(J_n(1)) e_1 \leq \varepsilon_n}\right)^2 - \left(\mathbb{E}\mathcal{E}_{\pi_n} \lambda_n^{-1}(J_n(1)) e_1 1_{\lambda_n^{-1}(J_n(1)) e_1 \leq \varepsilon_n}\right)^2 \\
\leq C n^{1-p/2} \left(\mathbb{E}\mathcal{E}_{\pi_n} \lambda_n^{-1}(J_n(1)) e_1 1_{\lambda_n^{-1}(J_n(1)) e_1 \leq \varepsilon_n}\right)^2. \tag{3.43}
\]
Proof. Writing out everything explicitly, we have
\[
\mathbb{E}\left(\mathcal{E}_{\pi_n} \mathbb{1}_{\lambda_n^{-1}(J_n(1))e_1 \geq \epsilon_n} \mathbb{1}_{\lambda_n^{-1}(J_n(1))e_1 \leq \epsilon_n} \right)^2 = 2^{-2n} \sum_{x_1, x_2 \in \Sigma_n} \int dy_1 dy_2 e^{-y_1 - y_2} y_1 y_2
\]
\[
\times \left(\mathbb{E}\left(e^{\beta H_n(x) + H_n(x')} \mathbb{1}_{e^{\beta H_n(x)} \leq \epsilon_n / y_1} \mathbb{1}_{e^{\beta H_n(x')} \leq \epsilon_n / y_2} \right) - \mathbb{E}\left(e^{\beta H_n(x)} \mathbb{1}_{e^{\beta H_n(x)} \leq \epsilon_n / y_1} \right) \mathbb{E}\left(e^{\beta H_n(x')} \mathbb{1}_{e^{\beta H_n(x')} \leq \epsilon_n / y_2} \right) \right). \tag{3.44}
\]
Now the last terms depend only on the covariance of \(H_n(x) \) and \(H_n(x') \), i.e. on \(R_n(x, x') \). Using Lemma 3.7, we get, when \(R_n(x, x') = c \),
\[
\int dy_1 dy_2 e^{-y_1 - y_2} y_1 y_2 \tag{3.45}
\]
\[
\times \left(\mathbb{E}\left(e^{\beta H_n(x) + H_n(x')} \mathbb{1}_{e^{\beta H_n(x)} \leq \epsilon_n / y_1} \mathbb{1}_{e^{\beta H_n(x')} \leq \epsilon_n / y_2} \right) - \mathbb{E}\left(e^{\beta H_n(x)} \mathbb{1}_{e^{\beta H_n(x)} \leq \epsilon_n / y_1} \right) \mathbb{E}\left(e^{\beta H_n(x')} \mathbb{1}_{e^{\beta H_n(x')} \leq \epsilon_n / y_2} \right) \right)
\leq \left(e^{c^2 \pi^2 (1 + e)} - 1 \right) \left(\mathbb{E}\mathcal{E}_{\pi_n} e^{\beta H_n(\sigma)} \mathbb{1}_{e^{\beta H_n(\sigma)} \leq \epsilon} \right)^2 (1 + O(c)).
\]
Thus we have to control
\[
2^{-2n} \sum_{m=-1}^{1} \sum_{x, x' \in \Sigma_n} \mathbb{1}_{R_n(x, x') = m} \left(e^{c^2 \pi^2 (1 + e)} - 1 \right) \tag{3.46}
= \sum_{m=-1}^{1} 2^{-n} \frac{n}{(m + 1/2)} \left(e^{c^2 \pi^2 (1 + e)} - 1 \right) .
\]
The analysis of the last sum can be carried out in the same way as was done in [1] for a very similar sum. It yields that
\[
\sum_{m=-1}^{1} 2^{-n} \frac{n}{(m + 1/2)} \left(e^{c^2 \pi^2 (1 + e)} - 1 \right) = C n^{1-p/2} . \tag{3.47}
\]
\]
\]
3.5. Conclusion of the proof. Consider first the case \(p > 4 \). Lemmata 3.2 and 3.4, together with Chebychev’s inequality and the Borel-Cantelli lemma, establish that, for each \(v > 0 \),
\[
\lim_{n \to \infty} \hat{\nu}_n^1(v) = \hat{\nu}^1(v) = K_p v^{\gamma / \beta^2 - 1} , \quad \mathbb{P} \text{ a.s.} \tag{3.48}
\]
Together with the monotonicity of \(\hat{\nu}_n^1(v) \) and the continuity of the limiting function \(\hat{\nu}^1(v) \), this implies that there exists a subset \(\Omega_1 \subset \Omega \) of the sample space \(\Omega \) of the \(\tau \)'s with the property that \(\mathbb{P}(\Omega_1) = 1 \), and such that, on \(\Omega_1 \),
\[
\lim_{n \to \infty} \hat{\nu}_n^1(v) = \hat{\nu}^1(v), \quad \forall v > 0 . \tag{3.49}
\]
Finally, applying Feller’s Extended Continuity Theorem for Laplace transforms of (not necessarily bounded) positive measures (see [14], Theorem 2a, Section XIII.1, p. 433) we conclude that, on \(\Omega _1 \),
\[
\lim _{n \to \infty } \nu _n^t(u, \infty) = \nu ^t(u, \infty) = K_p u^{-\gamma /\beta^2}, \quad \forall u > 0. \tag{3.50}
\]

In the cases \(p = 3, 4 \), where our estimates give only convergence in probability, we obtain convergence of \(\nu _n^t(u, \infty) \) in probability, e.g. by using the characterisation of convergence of probability in terms of almost sure convergence of sub-sequences (see e.g. [22], Sect. II. 19).

Thus we have established Conditions (A1-1), (A2-1), and (A3-1) under the stated conditions on the parameters \(\gamma, \beta, p \), and Theorem [1.4] follows from Theorem [1.3].

3.6. Consequences for correlation functions

We now turn to the proof of Theorem 1.5.

Proof. The proof of this theorem relies on the following simple estimate. Let us denote by \(R_n \) the range of the coarse grained and rescaled clock process \(S_n^b \). The argument of [11] in the proof of Theorem 1.2 that the event \(A_n^c(s, t) \cap \{ R_n \cap (s, t) \neq \emptyset \} \) has vanishing probability carries over unaltered. However, while in their case, \(A_n^c(s, t) \subset \{ R_n \cap (s, t) = \emptyset \} \), was obvious due to the fact that the coarse graining was done on a scale \(o(n) \), this is not immediately clear in our case, where the number of steps within a block is of order \(n^2 \). What we have to show is that if the process spends the whole time from \(s \) to \(t \) within one bloc, then almost all of this time is spent, without interruption, within a small ball of radius \(\varepsilon n \).

To do this, we need some simple facts about correlated Gaussian processes.

Lemma 3.9. Let \(X, Y \) be standard Gaussian variables with covariance \(\text{Cov}(X, Y) = 1 - c \), \(0 < c < 1/4 \). Then for \(a \gg 1 \),
\[
\mathbb{P}(X > a, Y > a(1 - c/4)) \leq \frac{1}{a^2 2\pi c} e^{-a^2/2} \left(e^{-a^2/32} + e^{-3ac^2/8} \right). \tag{3.51}
\]

Proof. Note that the variables \(X, Y \) have the joint density
\[
\frac{1}{2\pi(2c - c^2)} e^{-x^2/2} \frac{(y-(1-c)x)^2}{4c - 2c^2}. \tag{3.52}
\]

Next,
\[
\mathbb{P}(X > a, Y > a(1 - c/2)) \leq \mathbb{P}(X > a, |Y - (1-c)X| > ac/4) + \mathbb{P}(X > a \frac{1-c/2}{1-c}). \tag{3.53}
\]

The result is now a trivial application of the standard tail estimates for Gaussian integrals.

\(\square \)

This lemma has the following corollary:

Corollary 3.10. Let \(H_n(\sigma) \) be the Gaussian process defined in (1.27). Let \(\mathcal{M}_n \subset \Sigma_n \) be arbitrary. Then
\[
\mathbb{P}(\exists x, x' \in \mathcal{M}_n : R_n(x, x') < 1 - \varepsilon \text{ and } H_n(x) \geq an \wedge H_n(x) \geq an(1 - p\varepsilon/4))
\leq |\mathcal{M}_n|^2 e^{-na^2/2} e^{-na^2p\varepsilon/40} \tag{3.54}
\]

This lemma implies that if in a set of size, say, \(n^2 \) there is a point, \(x \), where \(H_n(x) > na \), then with overwhelming probability, all points where \(H_n(x) > na(1 - c/4) \) is of comparable size are within a small ball of radius \(o(n) \). All points for which \(H_n(x) \leq na(1 - c/4) \) do not give a perceptible contribution to the total time.
This means the following: within a block of θ_n steps of the chain J_n, that gives a contribution to a jump, there is only a very small ball which contributes to the time. It remains to show that these contributions come in one “block”, i.e. the process will not return to this region once it left it within θ_n steps. But this is an elementary property of the random walk on the hypercube.

Let us make this precise. As remarked above,

$$P_{\pi_n}(A^c_n(s, t)) = P_{\pi_n}(A^c_n(s, t) \cap \{R_n \cap (s, t) = \emptyset\})$$

(3.55)

where the second term tends to zero. Next we observe that

$$P_{\pi_n}(A^c_n(s, t) \cap \{R_n \cap (s, t) = \emptyset\}) = P_{\pi_n}(R_n \cap (s, t) = \emptyset) - P_{\pi_n}((A^c_n(s, t))^c \cap \{R_n \cap (s, t) = \emptyset\})$$

(3.56)

Here the first term is what we want. To show that the second term tends to zero, we proceed as follows.

For any $N < \infty$, we clearly have

$$P_{\pi_n}((A^c_n(s, t))^c \cap \{R_n \cap (s, t) = \emptyset\})$$

(3.57)

where convergence is almost sure with respect to the environment. The last probability can be made as small as desired by choosing N sufficiently large. It remains to deal with the first sum on the right-hand side of (3.57).

Define the event

$$G_\rho(k) \equiv \bigcup_{k\theta_n \leq i < j < (k+1)\theta_n} \left\{ \lambda_n^{-1}(J_n(i))c_{n,i} \geq \frac{c_n}{\theta_n}(t - s) \right\} \cap \left\{ \lambda_n^{-1}(J_n(j))c_{n,j} \geq \frac{c_n}{\theta_n}n^{-1} \right\}.$$

(3.59)

Note that Corollary 3.10 implies that the probability of this event with respect to the law P is bounded uniformly in the variables J.

On the other hand, on the event $G_\rho(k)^c \cap (A^c_n(s, t))^c \cap \{(s, t) \subset (S_n(k), S_n(k + 1))\}$, the following must be true: First, there still must exist some i such that $\lambda_n^{-1}(J_n(i))c_{n,i} \geq c_n(t - s)\theta_n^{-1}$, and second, the random walk must make a loop, i.e. it the event

$$W_{\rho,\varepsilon}(k) \equiv \bigcup_{k\theta_n \leq i < j < (k+1)\theta_n} \left\{ R_n(J_n(i), J_n(j)) > 1 - \varepsilon \wedge R_n(J_n(i), J_n(\ell)) \leq 1 - \rho \right\}.$$

(3.60)

The probability of this event is generally bounded by

$$P_{\pi_n}(W_{\rho,\varepsilon}(k)) \leq n^4 e^{-n(I(1-\rho)-I(1-\varepsilon))},$$

(3.61)
where \(I \) is Crámer’s rate function.

By these considerations, we have the bound

\[
E \left(\sum_{k=0}^{k_n(N)} \mathcal{P}_{\pi_n} \left((A_n^c(s, t))^c \cap \{(s, t) \in (\bar{S}_n(k), \bar{S}_n(k + 1))\} \right) \right) \leq \sum_{k=0}^{k_n(N)} \mathcal{E} (\mathcal{P}_{\pi_n}(\mathcal{G}_\rho(k)) + \mathcal{P}_{\pi_n} \left(\{ \exists k_{\theta_n} \leq i < (k+1) \theta_n \lambda^{-1} \b_{J_n} e_{n_i} > c_n \theta_n^{-2} \} \cap \mathcal{W}_{\rho, \varepsilon}(k) \right)).
\]

Now

\[
E \mathcal{P}_{\pi_n} (\mathcal{G}_\rho(k)) \leq a_n^{-1} e^{-\delta n},
\]

for some \(\delta > 0 \) depending on the choice of \(\rho \). The simplest way to see this is to use that the probability that one of the \(e_{n,i} \) is larger than \(n^2 \) is smaller than \(\exp(-n^2) \), and then use the bound from Corollary 3.10.

Finally, the two events in \(\{ \exists k_{\theta_n} \leq i < (k+1) \theta_n \lambda^{-1} \b_{J_n} e_{n_i} > c_n \theta_n^{-2} \} \cap \mathcal{W}_{\rho, \varepsilon}(k) \) are independent, and hence

\[
E \mathcal{P}_{\pi_n} \left(\{ \exists k_{\theta_n} \leq i < (k+1) \theta_n \lambda^{-1} \b_{J_n} e_{n_i} > c_n \theta_n^{-2} \} \cap \mathcal{W}_{\rho, \varepsilon}(k) \right) = \mathcal{P} \left(\{ \exists k_{\theta_n} \leq i < (k+1) \theta_n \lambda^{-1} \b_{J_n} e_{n_i} > c_n \theta_n^{-2} \} \right) \mathcal{P}_{\pi_n} (\mathcal{W}_{\rho, \varepsilon}(k))
\]

\[
\leq \theta_2 \mathcal{P} \left(e^{\beta H_n(x)} > c_n n^{-\delta} e^{-n(I(1-\rho)-I(1-\varepsilon))} + \theta_n e^{-n^2} \right)
\]

\[
\leq \theta_2 \mathcal{P} (e^{\beta H_n(x)} > c_n n^{-\delta} e^{-n(I(1-\rho)-I(1-\varepsilon))} + \theta_n e^{-n^2})
\]

Combining all this, we see that

\[
E \left(\sum_{k=0}^{k_n(N)} \mathcal{P}_{\pi_n} \left((A_n^c(s, t))^c \cap \{(s, t) \in (\bar{S}_n(k), \bar{S}_n(k + 1))\} \right) \right) \leq C N e^{-\delta n},
\]

for some positive \(\delta \), whatever the choice of \(\varepsilon \). But this estimate implies that the term (3.56) converges to zero \(P \)-almost surely, for any choice of \(N \). Hence the result is obvious from the \(J_1 \) convergence of \(\bar{S}_n \).

\[\square \]

REFERENCES

[1] G. Ben Arous, A. Bovier, and J. Černý. Universality of the REM for dynamics of mean-field spin glasses. Comm. Math. Phys., 282(3):663–695, 2008.

[2] G. Ben Arous, A. Bovier, and V. Gayrard. Aging in the random energy model. Phys. Rev. Letts., 88(8):087201, 2002.

[3] G. Ben Arous, A. Bovier, and V. Gayrard. Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Comm. Math. Phys., 235(3):379–425, 2003.

[4] G. Ben Arous, A. Bovier, and V. Gayrard. Glauber dynamics of the random energy model. II. Aging below the critical temperature. Commun. Math. Phys., 236(1):1–54, 2003.

[5] G. Ben Arous and J. Černý. Bouchaud’s model exhibits two aging regimes in dimension one. Ann. Appl. Probab., 15(2):1161–1192, 2005.

[6] G. Ben Arous and J. Černý. Dynamics of trap models. In École d’Été de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics”, pages 331–394. Elsevier, 2006.

[7] G. Ben Arous and J. Černý. Scaling limit for trap models on \(\mathbb{Z}^d \). Ann. Probab., 35(6):2356–2384, 2007.

[8] G. Ben Arous and J. Černý. The arcsine law as a universal aging scheme for trap models. Comm. Pure Appl. Math., 61(3):289–329, 2008.

[9] G. Ben Arous, J. Černý, and T. Mountford. Aging in two-dimensional Bouchaud’s model. Probab. Theory Related Fields, 134(1):1–43, 2006.

[10] J.-P. Bouchaud. Weak ergodicity breaking and aging in disordered systems. J. Phys. I (France), 2:1705–1713, september 1992.
[11] J.-P. Bouchaud, L. Cugliandolo, J. Kurchan, and M. Mézard. Out of equilibrium dynamics in spin-glasses and other glassy systems. In A. P. Young, editor, Spin glasses and random fields. World Scientific, Singapore, 1998.
[12] J.-P. Bouchaud and D. S. Dean. Aging on Parisi’s tree. J. Phys I(France), 5:265, 1995.
[13] R. Durrett and S. I. Resnick. Functional limit theorems for dependent variables. Ann. Probab., 6(5):829–846, 1978.
[14] W. Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons Inc., New York, 1971.
[15] V. Gayrard. Aging in reversible dynamics of disordered systems. I. Emergence of the arcsine law in Bouchaud’s asymmetric trap model on the complete graph. preprint, LAPT, Univ. Marseille, 2010.
[16] V. Gayrard. Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM. preprint, LAPT, Univ. Marseille, 2010.
[17] V. Gayrard. Aging in reversible dynamics of disordered systems. III. Emergence of the arcsine law in the Metropolis dynamics of the rem. preprint in preparation, LAPT, Marseille, 2010.
[18] B. V. Gnedenko and A. N. Kolmogorov. Predel ‘nye raspredeleniya dlya summ nezavisimykh slučaïnych veličin. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad., 1949.
[19] M. Goldstein. Viscous liquids and the glass transition: A potential energy barrier picture. The Journal of Chemical Physics, 51(9):3728–3739, 1969.
[20] C. Monthus and J.-P. Bouchaud. Models of traps and glass phenomenology. J. Phys. A, 29:3847–3869, 1996.
[21] B. Rinn, P. Maass, and J.-P. Bouchaud. Multiple scaling regimes in simple aging models. Phys. Rev. Lett., 84:5403–5406, 2000.
[22] L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. I. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. Foundations, Reprint of the (1994) edition.
[23] Y. G. Sinai. The limit behavior of a one-dimensional random walk in a random environment. Teor. Veroyatnost. i Primenen., 27(2):247–258, 1982.
[24] F. Solomon. Random walks in a random environment. Ann. Probability, 3:1–31, 1975.
[25] W. Whitt. Stochastic-process limits. Springer Series in Operations Research. Springer-Verlag, New York, 2002.

A. BOVIER, INSTITUT FÜR ANGEWANDTE MATHEMATIK, RHEINISCHE FRIEDRICH-WILHELM-UNIVERSITÄT, ENDENICHER ALLEE 60, 53115 BONN, GERMANY
E-mail address: bovier@uni-bonn.de

V. GAYRARD, CMI, LAPT, UNIVERSITÉ DE PROVENCE, 39, RUE F. JOLIOT CURIE, 13453 MARSEILLE CEDEX 13, FRANCE
E-mail address: veronique@gayrard.net