Modified Jordan-Brans-Dicke theory with scalar current and the Eddington-Robertson γ-parameter

J. W. Moffat*† and V. T. Toth*

*Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
†Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

The Jordan-Brans-Dicke theory of gravitation, which promotes the gravitational constant to a dynamical scalar field, predicts a value for the Eddington-Robertson post-Newtonian parameter γ that is significantly different from the general relativistic value of unity. This contradicts precision solar system measurements that tightly constrain γ around 1. We consider a modification of the theory, in which the scalar field is sourced explicitly by matter. We find that this leads to a modified expression for the γ-parameter. In particular, a specific choice of the scalar current yields $\gamma = 1$, just as in general relativity, while the weak equivalence principle is also satisfied. This result has important implications for theories that mimic Jordan-Brans-Dicke theory in the post-Newtonian limit in the solar system, including our scalar-tensor-vector modified gravity theory (MOG).

PACS numbers: 04.20.Cv, 04.50.Kd, 04.80.Cc, 98.80.-k

Jordan-Brans-Dicke theory [1, 2] is a theory of gravitation in which the gravitational constant G is replaced with the inverse of a dynamical scalar field ϕ. It can be demonstrated by straightforward derivation that this scalar field is effectively sourced by the curvature of space-time (see, e.g., [3]). There is, however, no scalar current: in the Lagrangian formulation, the variation of matter fields with respect to the scalar field is assumed to be zero.

Jordan-Brans-Dicke theory runs into severe observational constraints within the solar system. Notably, the theory predicts that the value of the post-Newtonian γ-parameter, first introduced by Eddington [4] and Robertson [5] and also Schiff [6], and effectively measuring the amount of spatial curvature produced by unit rest mass, will deviate from the standard general relativistic value of 1. Instead, its value will be $\gamma = (\omega + 1)/(\omega + 2)$ [2], where ω is the dimensionless coupling constant of the dynamical field. Constraints established by precision measurements of the Cassini spacecraft [7] require the uncomfortably large value of $|\omega| > 4 \times 10^4$.

Nonetheless, there is no a priori reason to exclude the possibility of a scalar current. A phenomenological matter Lagrangian could be constructed such that it depends explicitly on $G = \phi^{-1}$. The variation of such a Lagrangian with respect to ϕ would be non-zero, introducing a scalar current into the field equations. To demonstrate this, we write the scalar theory Lagrangian as follows:

$$\mathcal{L} = \frac{1}{16\pi} [(R - 2\Lambda)\phi + f(\phi, g^{\mu\nu}\partial_\mu\partial_\nu\phi)] \sqrt{-g} + \mathcal{L}_{O.F.},$$ \hspace{1cm} (1)

where R is the Ricci scalar constructed from the metric $g_{\mu\nu}$, g is the metric determinant, Λ is the cosmological constant, ϕ is a scalar field, f is an arbitrary function, and O.F. stands for terms that represent other fields, which, we assume, depend only on ϕ, not on its derivatives. We set $c = 1$, use the $(+, -, -, -)$ metric signature, and define the Ricci tensor as $R_{\mu\nu} = \partial_\kappa\Gamma^\kappa_{\mu\nu} - \partial_\nu\Gamma^\kappa_{\mu\kappa} + \Gamma^\kappa_{\mu\lambda}\Gamma^\lambda_{\nu\kappa} - \Gamma^\kappa_{\nu\lambda}\Gamma^\lambda_{\mu\kappa}$, where the Γ are the usual Christoffel-symbols.

The field equations of the theory are the Euler-Lagrange equations corresponding to (1):

$$\frac{\partial \mathcal{L}}{\partial g^{\mu\nu}} - \frac{\partial}{\partial \phi}\frac{\partial \mathcal{L}}{\partial (g^{\mu\nu})_{\phi}^{\phi}} + \frac{\partial}{\partial \phi}\frac{\partial \mathcal{L}}{\partial g^{\mu\nu}_{\phi}} = 0,$$ \hspace{1cm} (2)

$$\frac{\partial \mathcal{L}}{\partial \phi} - \nabla_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} = 0,$$ \hspace{1cm} (3)

where ∇_μ is the covariant derivative with respect to x^μ. These equations can be recast in the form,

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda + \frac{1}{\sqrt{-g}} \frac{1}{\phi} \frac{\partial f \sqrt{-g}}{\partial g^{\mu\nu}} - \frac{\partial R}{\partial g^{\mu\nu}} \frac{\partial \phi}{\phi} + \frac{2}{\sqrt{-g}} \frac{\partial}{\partial \phi} \left(\sqrt{-g} g^{\mu\nu}_{\kappa\lambda} \frac{\partial R}{\partial g^{\mu\nu}_{\kappa\lambda}} \frac{\partial \phi}{\phi} \right) = \frac{8\pi}{\phi} T_{\mu\nu},$$ \hspace{1cm} (4)

$$R - 2\Lambda + \frac{\partial f}{\partial \phi} - \nabla_\mu \left(\frac{\partial f}{\partial (\partial_\mu \phi)} \right) = 16\pi J,$$ \hspace{1cm} (5)

1 The other Eddington-Robertson parameter, β, is identically 1 in Jordan-Brans-Dicke theory, just as in general relativity.
where $T_{\mu\nu} = -(2/\sqrt{-g})\partial L_{O.F.}/\partial g^{\mu\nu}$ and $J = -(1/\sqrt{-g})\partial L_{O.F.}/\partial \phi$. The existence of a non-zero variation of matter fields with respect to ϕ represents a significant generalization of the archetypal scalar field theory of Jordan, Brans and Dicke.

Equation (4) can be rewritten using covariant derivatives, yielding

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda + \frac{1}{\sqrt{-g}} \frac{1}{\phi} \left(\frac{\partial f}{\partial \phi} \right) \frac{\nabla \Lambda \phi}{\phi} = \frac{8\pi}{\phi} T_{\mu\nu},$$

which, apart from the presence of $T_{\mu\nu}$, are the equations of Jordan-Brans-Dicke theory in the standard form. To the first order, terms quadratic in derivatives vanish; the second derivative in (12) can, in turn, be eliminated by a suitable gauge choice (for a thorough derivation, see Appendix A of [8]). In the post-Newtonian metric [9], the γ-parameter can be read off as the ratio of the ii and 00 components of (12). In the absence of a cosmological term, $\Lambda = 0$, we get

$$\gamma = \frac{(\omega + 1)T - \phi J}{(\omega + 2)T + \phi J}.$$

If the scalar current vanishes ($J = 0$), we get back the usual post-Newtonian result for Jordan-Brans-Dicke theory:

$$\gamma = \frac{\omega + 1}{\omega + 2}.$$

This result is frequently cited as a reason for rejecting Jordan-Brans-Dicke theory within the solar system, as precision measurements by the Cassini spacecraft yielding $\gamma = 1 = (2.1 \pm 2.3) \times 10^{-5}$, for instance, are consistent with the theory only if $|\omega| \gtrsim 4 \times 10^{15}$ [11]. However, if a scalar current is present, the situation changes. Specifically, we can choose a scalar current in the form

$$\phi J = -\frac{1}{2} T,$$

which is equivalent to

$$-\phi \frac{1}{\sqrt{-g}} \frac{\partial L_{O.F.}}{\partial \phi} = \frac{1}{\sqrt{-g}} \frac{\partial L_{O.F.}}{\partial g^{\mu\nu}} g^{\mu\nu}.$$
This choice can be made, in part, because \(J \) is not a conserved quantity, just as \(T \) is not conserved. In this case, equations (12) and (13) read

\[
R_{\mu\nu} = \frac{8\pi}{\phi} \left(T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu} + \frac{1}{4\pi} \frac{\omega + 1}{2\omega + 3} \phi \Lambda g_{\mu\nu} \right) + \frac{\omega}{\phi^2} \frac{\partial \phi}{\partial \phi} + \frac{\nabla_\mu \nabla_\nu \phi}{\phi},
\]

(18)

\[
\nabla_\mu \nabla^\mu \phi = -\frac{2\phi \Lambda}{2\omega + 3}.
\]

(19)

Considering the trace of the bracketed term in Eq. (18), if

\[
|\Lambda| \ll \left| \frac{2\omega + 3}{\omega + 1} \phi^{-1} T \right|,
\]

(20)

the general relativistic result that is also consistent with solar system data,

\[
\gamma \approx 1,
\]

(21)

is easily satisfied.

The result (15) has been used as an argument against theories that, within the solar system, yield the same solution as Jordan-Brans-Dicke theory to the first post-Newtonian order. We mention in particular our scalar-tensor-vector (STVG) modified gravity theory (MOG) \([10, 11]\), which, according to an extensive analysis by Deng, et al. \([8]\), shows the same behavior in the solar system as Jordan-Brans-Dicke theory. This problem is avoided by a suitable choice of \(J \) yielding (21), as demonstrated above.

Nonetheless, we note that in the case of \(J \neq 0 \), the theory is no longer a metric theory: material particles carry a scalar charge and no longer move along geodesics. To determine the equations of motion for a test particle, we use a test particle Lagrangian in the form

\[
L_{TP} = -m \sqrt{g_{\mu\nu} u^\mu u^\nu} - q\phi,
\]

(22)

where \(q \) is the scalar charge associated with a particle of mass \(m \), moving with four-velocity \(u^\mu = dx^\mu/d\tau \) and \(\tau \) is the proper time along the particle’s world line. Integration of (16) over a three-volume encompassing a test particle gives

\[
q = -\frac{1}{2} \phi^{-1} m,
\]

(23)

and \(\frac{1}{2} \phi^{-1} m \simeq \frac{1}{2} G_N m \) at the present epoch (\(G_N \) is Newton’s constant of gravitation.) The equation of motion obtained by varying (22) contains an extra term when compared to the standard geodesic equation of motion:

\[
m \left(\frac{d^2 x^\kappa}{d\tau^2} + \Gamma^\kappa_{\mu\nu} u^\mu u^\nu \right) - q g^\kappa\lambda \frac{\partial \phi}{\partial x^\lambda} = 0.
\]

(24)

Given (23), we obtain

\[
m \left(\frac{d^2 x^\kappa}{d\tau^2} + \Gamma^\kappa_{\mu\nu} u^\mu u^\nu \right) + mg^\kappa\lambda \frac{1}{2\phi} \frac{\partial \phi}{\partial x^\lambda} = 0.
\]

(25)

We observe that \(m \) cancels out in the equation of motion, hence the theory satisfies the weak equivalence principle.

Finally, we note that equation (19) can be rewritten in the familiar form

\[
(\Box + \mu^2)\phi = 0,
\]

(26)

with \(\Box = \nabla_\mu \nabla^\mu \) and \(\mu \) given by

\[
\mu^2 = \frac{2\Lambda}{2\omega + 3}.
\]

(27)

This last term can be interpreted as the mass \(\mu \) of the scalar field \(\phi \). Using \(\Lambda \simeq 1.2 \times 10^{-52} \text{ m}^{-2} \), we obtain the mass of an ultralight scalar field, \(\mu \simeq 3.9\sqrt{2/(2\omega + 3)} \times 10^{-69} \text{ kg} \).

[1] C. Brans and R. H. Dicke. Mach’s Principle and a Relativistic Theory of Gravitation. *Phys. Rev.*, 124(3):925–935, 1962.
[2] P. Jordan. *Schwerkraft und Weltall, Grundlagen der Theoretische Kosmologie*. Vieweg und Sohn, Braunschweig, 1955.
[3] S. Weinberg. *Gravitation and Cosmology*. John Wiley & Sons, 1972.
[4] A. S. Eddington. *The Mathematical Theory of Relativity*. Cambridge University Press, 1957.
[5] H. P. Robertson. Note on the preceding paper: The two body problem in general relativity. *Ann. Math.*, 39(1):101–104, January 1938.
[6] L. I. Schiff. On experimental tests of the general theory of relativity. *Amer. J. Phys.*, 28(4):340–343, 1960.
[7] B. Bertotti, L. Iess, and P. Tortora. A test of general relativity using radio links with the Cassini spacecraft. *Nature (London)*, 425:374–376, September 2003.
[8] X.-M. Deng, Y. Xie, and T.-Y. Huang. Modified scalar-tensor-vector gravity theory and the constraint on its parameters. *Phys. Rev. D*, 79(4):044014–+, February 2009.
[9] C. M. Will. *Theory and Experiment in Gravitational Physics*. Cambridge University Press, 1993.
[10] J. W. Moffat. Scalar-tensor-vector gravity theory. *Journal of Cosmology and Astroparticle Physics*, 2006(03):004, 2006.
[11] J. W. Moffat and V. T. Toth. Fundamental parameter-free solutions in Modified Gravity. *Class. Quant. Grav.*, 26:085002, 2009.