Data Article

Data on microbial community composition of sludge from high altitude wastewater treatment plants determined by 16S rRNA gene sequencing

Chen Chen a, Xiaochun Peng b, Shan Huang c, *, Yuannan Wang b, Shumei Liao b, Yang Wei a, d

a South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510535, China
b South China Advanced Environmental Technologies Co., LTD, Guangzhou, 51000, China
c Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
d School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China

A R T I C L E I N F O

Article history:
Received 10 December 2018
Received in revised form 1 February 2019
Accepted 1 February 2019
Available online 7 March 2019

A B S T R A C T

This work presented the sequences of activated sludge from two municipal wastewater treatment plants (WWTPs) located in a high altitude Plateau in Tibet, China (~3650 m above the sea level). Sequencing data are the 16S rRNA gene amplicons of V4–V5 region that sequenced on an Illumina HiSeq PE250 platform. Data presented here include detail description and water quality parameters of the WWTPs as well as results of 16S rRNA gene sequences from their active sludges. The core microbial communities in the WWTPs were shown at the taxonomic level of phylum, class, order, family, genus and species. The sequencing data have been deposited in NCBI BioProject PRJNA477990 with the Biosample accessions SAMN09488330-SAMN09488338. The annotation of OTU table at the genus level was assessable on Zenodo (https://zenodo.org/record/2105899#.XAOvQFZuljw).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail address: shanh@princeton.edu (S. Huang).

https://doi.org/10.1016/j.dib.2019.103739
2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

Data on microbial communities of activated sludge from two municipal wastewater treatment plants (WWTPs) located in a high altitude Plateau in Tibet, China (~3650 m above the sea level) are presented. T1 is applied for cyclic activated sludge system (CASS), while T2 is operated at anaerobic-anoxic-aerobic (A2O) process. Locations of the two WWTPs are shown in Fig. 1. Dataset contains several water quality parameters, which including suspended solids (SS), chemical oxygen demand (COD), total nitrogen (TN), total phosphate (TP), ammonium, and pH, collected from in-flow and out-flow of each WWTPs. Data present include 16S rRNA gene amplicons of V4–V5 region that sequenced on an Illumina HiSeq PE250 platform, and then annotated using the 16S-Silva database (Fig. 2). Data of normalized OTU relative number of each sample are presented at the taxonomic levels of phylum, class, order, family, genus and species (Fig. 3 a-f). The raw and filtered dataset are deposited in NCBI Bio-Project PRJNA477990 with the BioSample accession number SAMN09488330 to SAMN09488338. The annotation of OTU table at the genus level was assessable on Zenodo (https://zenodo.org/record/2105899#.XA0vQjZuJyw).

2. Experimental design, materials, and methods

2.1. Description of WWTPs

The WWTPs located in Tibet Plateau, which is called “the Roof of the World”, because it is the world’s highest plateau with an average of 4,500 m above sea level. Two WWTPs are set up beside each other and marked as T1 (91°0′49″E, 29°37′19″N) and T2 (91°0′51″E, 29°37′26″N), respectively. Location of Tibet Plateau and WWTPs are shown in Fig. 1.

These two WWTPs are established to treat the urban wastewater from the city of Lhasa, China (~3650 m), which has the population of 5.59 × 10^6. T1 has the flow of 5.32 × 10^5 m^3 daily, which fixed in its maximum daily capacity. Wastewater is first filtered through roughing and fine grid to remove
particles, then operated with CASS process in the bioreactor, with an intermittent aeration operation as 2 hour aeration in each 4 hour cycle. The parameters of inflow and outflow are determined daily with the recommended methods from Discharge standard of pollutants for municipal wastewater treatment plant [1]. The detection of SS was via gravimetric method [2], CODCr via dichromate method [3], TN via alkaline potassium persulfate digestion-UV spectrophotometric method [4], ammonium via distillation and titration [5], TP via ammonium molybdate spectrophotometric method [6], and pH via glass electrode method [7]. The average of each parameters was listed in Table 1, and the removal efficiencies of SS, CODCr, TN, NH4—N and TP were 95.4%, 90.5%, 89.0%, 93.8%, 56.3%, respectively. T2 has treated 7.76 × 10^5 m^3 wastewater daily, about 60% of its maximum daily capacity. Inflow is also filtered through

Fig. 1. Location of wastewater treatment plants. T1 (91°0’49"E, 29°37’19"N) is applied for cyclic activated sludge system, while T2 (91°0’51"E, 29°37’26"N) is operated at anaerobic-anoxic-aerobic (A2O) process.

Fig. 2. Rarefaction curve analysis in 9 sludge samples, which showed a higher species richness in T1 than T2.
Fig. 3. Top 25 microbial communities in wastewater treatment plants at the taxonomic levels (a: phylum; b: class; c: order; d: family; e: genus; f: species).
roughing and fine grids as in T1, while T2 utilizes A2O process with internal cycle of 100%—200% for the further treatment. The aerobic tank and anaerobic tank were marked as T2AE and T2AN in this study. All parameters of inflow and outflow are determined daily as described above (Table 1). The removal efficiencies of SS, CODcr, TN, NH4–N and TP were 97.9%, 94.2%, 89.0%, 91.4% and 63.5%, respectively.

2.2. DNA extraction, amplification and sequencing

For each bioreactors (T1, T2AE and T2AN), 3 replicates of 50 mL sludge sample were taken and labelled as A, B, and C, which contributed to a total of 9 sludge samples for DNA sequencing. DNA samples were extracted from all 9 collected sludge samples using FastDNA® spin kit for soil (MP Biomedicals, USA) following the manuscript of the manufacture. The 16S rRNA gene of V4–V5 was amplified using primers 515f-926r [8,9] following methods suggested by Caporaso et al. [10]. Each 30 μL PCR mixture was composed of 15 μL of Phusion® High-Fidelity PCR Master Mix (New England Biolabs), 3 μL of each primers (6 μM final concentration), 10 μL of gDNA (5–10 ng) and 2 μL ddH2O. The PCR program was initiated for 1 min at 98 °C; followed by 30 cycles of 10 s at 98 °C, 30 s at annealing temperatures of 50 °C, and 30 s at 72 °C; then a final extension of 5 min at 72 °C. All PCR products were quantified and purified before sequencing. Then, sequencing libraries were generated using TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, USA) following manufacturer’s recommendations. The library quality was assessed on the Qubit® 2.0 Fluorometer (Thermo Scientific, USA) and Agilent Bioanalyzer 2100 system (Agilent Technologies, USA). At last, the library was sequenced on an Illumina PE250 platform and 250–500 bp paired-end reads were generated. All amplicon sequencings were conducted on an Illumina PE250 platform at Novogene Co., Beijing, China. A total of 81,409–99,124 raw sequences was obtained for each sample. The raw and filtered sequencing data have been deposited in NCBI BioProject PRJNA477990, and the SRA accession number of each sample was listed in Table 2.

2.3. Paired-end reads assembly and quality control

Paired-end reads were first assigned to samples, then split and assembled by FLASH (V1.2.7) (overlap minimum of 10 bp, maximum mismatch density of 0.25) [11]. To get high qualified reads, raw tags were filtered by QIIME(V1.7.0) [10], then compared to Gold database [12] as reference database to detect and remove chimeric sequences by UCHIME algorithm (Drive 5) [13]. A total of 71,584–85,487 qualified reads was created for the next annotation step.

Table 1
Characters of wastewater treatment plants T1 and T2.

Treatment process	maximum daily capacity (m³ d⁻¹)	Flow (m³ d⁻¹)	Inflow (mg L⁻¹)	Outflow (mg L⁻¹)				
T1 CASS	5.32 × 10²	5.32 × 10²	144 123	15.5 5.96	1.19 7.02	6.57 11.67	1.70 0.37	0.52 7.08
T2 A²O	13.0 × 10²	7.76 × 10²	102 130	15.5 6.02	0.85 6.86	2.13 7.55	1.70 0.52	0.31 7.12

CASS, cyclic activated sludge system; A²O, anaerobic-anoxic-aerobic process; SS: suspended solids; COD: chemical oxygen demand; TN: total nitrogen; TP: total phosphate.

Table 2
Sample identification and SRA accession number.

Sample identification	Accession Number
T1.A	SAMN09488330
T1.B	SAMN09488331
T1.C	SAMN09488332
T2.A	SAMN09488333
T2.B	SAMN09488334
T2.C	SAMN09488335
T3.A	SAMN09488336
T3.B	SAMN09488337
T3.C	SAMN09488338
2.4. Annotation and OTU abundance

Operational taxonomic units (OTUs) were clustered with a 97% similarity cut-off using the Uparse software (Uparse v7.0.100, http://drive5.com/uparse/) [13]. After dereplication, abundance sort, discarding singleton, clustering, the OTU table was created with 1900–2482 OTUs for each sample.

A representative sequence for each OTU was screened for further annotation. The taxonomy of each 16S rRNA gene sequence was analyzed with Muther (version v.1.30.1) against the 16S-Silva SSU rRNA database using a confidence threshold of 0.8–1, which provides the taxonomic information from kingdom level to species level [14,15]. OTUs abundance information was normalized using a standard of sequence number corresponding to the sample with the least sequences. In this case, the relative number of the microbial community was performed based on the normalized data, which was present at the taxonomic level (phylum to species).

Acknowledgments

This work is supported by National Key Research and Development Program of China (2016YFE0106600), National Natural Science Foundation of China (41501278), Science and Technology Program by Guangdong Financial Department (PM-zx097-201601-024), Science and Technology Program of Guangzhou, China (2016201604030057), and Science and Technology Program of Nansha, China (2016GJ008).

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103778.

References

[1] Ministry of Environmental Protection of the People's Republic of China and General Administration of Quality Supervision, Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant, 2002. GB 18918-2002.
[2] Ministry of Environmental Protection of the People’s Republic of China, Water Quality - Determination of Suspended Substance - Gravimetric Method, 1989. GB 11901–89.
[3] Ministry of Environmental Protection of the People's Republic of China, Water Quality - Determination of the Chemical Oxygen Demand - Dichromate Method, 1989. GB 11914–89.
[4] Ministry of Environmental Protection of the People's Republic of China, Water Quality - Determination of Total Nitrogen - Alkaline Potassium Persulfate Digestion-UV Spectrophotometric Method, 1989. GB 11894-89.
[5] Ministry of Environmental Protection of the People’s Republic of China, Water Quality - Determination of Ammonium - Distillation and Titration Method, 1987. GB 7478–87.
[6] Ministry of Environmental Protection of the People's Republic of China, Water Quality - Determination Of Total Phosphorus - Ammonium Molydate Spectrophotometric Method, 1989. GB 11893–89.
[7] Ministry of Environmental Protection of the People’s Republic of China, Water Quality - Determination of pH Value - Glass Electrode Method, 1986. GB 6920–86.
[8] A.E. Parada, D.M. Needham, J.A. Fuhrman, Every base matters: assessing small subunit rRNA primers for marine micro-biomes with mock communities, time series and global field samples, Environ. Microbiol. 18 (2016) 1403–1414.
[9] W. Walters, E.R. Hyde, D. Berg-Lyons, G. Ackermann, G. Humphrey, A. Parada, J.A. Gilbert, J.K. Jansson, J.G. Caporaso, J.A. Fuhrman, A. Apprill, R. Knight, Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys, mSystems 1 (2016) 1–10.
[10] J.G. Caporaso, J. Kuczynski, Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.J. Gordon, G.A. Hulttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods 7 (2010) 335–336.
[11] T. Magoc, S.L. Salzberg, FLASH: Fast length adjustment of short reads to improve genome assemblies, Bioinformatics 27 (2011) 2957–2963.
[12] S. Mukherjee, D. Stamatis, J. Bertsch, G. Ovchinnikova, H.Y. Katta, A. Mojica, L.M.A. Chen, N.C. Kyprides, T.B.K. Reddy, Genomes OnLine database (GOLD) v.7: updates and new features, Nucleic Acids Res. 47 (2019) D649–D659.
[13] R.C. Edgar, UPARSE: Highly accurate OTU sequences from microbial amplicon reads, Nat. Methods 10 (2013) 996–998.
[14] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F.O. Gloor, The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res. 41 (2013) D590–D596.
[15] P. Yilmaz, L.W. Parfrey, P. Yarza, J. Gerken, E. Pruesse, C. Quast, T. Schweer, J. Peplies, W. Ludwig, F.O. Gloor, The SILVA and “All-species living tree project (LTP)” taxonomic frameworks, Nucleic Acids Res. 42 (2014) D643–D648.