Association of Betel Nut with Carcinogenesis: Revisit with a Clinical Perspective

Rajeshwar N. Sharan¹*, Ravi Mehrotra², Yashmin Choudhury³, Kamlesh Asotra⁴

¹ Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, India, ²Division of Cytopathology, Center for Oral Cancer and Precancer, Moti Lal Nehru Medical College, Allahabad, Uttar Pradesh, India, ³Department of Biotechnology, Assam University, Silchar, Assam, India, ⁴Ganeshiva Consultants, Los Angeles, California, United States of America

Abstract

Betel nut (BN), betel quid (BQ) and products derived from them are widely used as a socially endorsed masticatory product. The addictive nature of BN/BQ has resulted in its widespread usage making it the fourth most abused substance by humans. Progressively, several additives, including chewing tobacco, got added to simple BN preparations. This addictive practice has been shown to have strong etiological correlation with human susceptibility to cancer, particularly oral and oropharyngeal cancers. The PUBMED database was searched to retrieve all relevant published studies in English on BN and BQ, and its association with oral and oropharyngeal cancers. Only complete studies directly dealing with BN/BQ induced carcinogenesis using statistically valid and acceptable sample size were analyzed. Additional relevant information available from other sources was also considered. This systematic review attempts to put in perspective the consequences of this widespread habit of BN/BQ mastication, practiced by approximately 10% of the world population, on oral cancer with a clinical perspective. BN/BQ mastication seems to be significantly associated with susceptibility to oral and oropharyngeal cancers. Addition of tobacco to BN has been found to only marginally increase the cancer risk. Despite the widespread usage of BN/BQ and its strong association with human susceptibility to cancer, no serious strategy seems to exist to control this habit. The review, therefore, also looks at various preventive efforts being made by governments and highlights the multifaceted intervention strategies required to mitigate and/or control the habit of BN/BQ mastication.

Introduction

“...They are always chewing Areca, a certaine Fruit like a Pear, cut in quarters and rolled up in leaves of a Tree called Bettree (or Vettile), like Bay leaves; which having chewed they spit forth. It makes the mouth red. They say they do it to comfort the heart, nor could live without it.” — Pigafetta, in Purchasi. 38. (Circa 1521) [1]

The above quotation gives a vivid description of the Areca nut (AN), which is more commonly referred to as betel nut (BN). BN is masticated or chewed either alone or in combination with a wide variety of additives, which are often wrapped in the leaf of Piper betle (popularly called as betel leaf), giving it the more common name, betel quid (BQ) [2,3]. More significantly, the verse also alludes to the rampant use of BN or BQ as a masticatory product and its probable addictive nature.

BN is normally harvested as unripe (yellow-green) or ripe (orange/red) fruit from the tropical palm, Areca catechu. The Areca fruits may be sun dried for several weeks, fibrous shells removed and the hard, dry nuts, commonly called ‘supari’, are ready for use. Such sun dried variety of BN is very hard, and is cut into small pieces to make it easier to masticate. Alternatively, the ripe BN are boiled for several hours in an aqueous solution containing the bark of the plant Eugenia jambolana, jaggery or brown sugar, and various edible oils, to ‘cure’ it. The cured fruits are sun dried for several weeks, fibrous shell removed and very hard, brown nuts, another variety of ‘supari’, are ready for use. In contrast, ripe, partly ripe or unripe Areca fruits are freshly picked, fibrous shells removed and the relatively soft nuts are ready for mastication (Figure 1). Occasionally, the fruits can be cured by burying them into moist pits for 1–2 weeks for fermentation (maturation) before shelling and use. Such raw and wet variety of BN, widely used particularly in the northeastern part of India, is locally called ‘kwai’ or ‘tamul’. These are relatively soft, and hence, larger pieces of the nut are masticated. Aged people may, at times, even masticate powdered form of the raw/wet or dry variety of BN [2–5].

The BN is consumed either alone or as BQ in which case it is wrapped in a betel leaf along with slaked lime (Calcium oxide and Calcium hydroxide) and additives (Figure 1). The BQ with a variety of additives is commonly referred to as ‘paani’ in India. The components of BQ can vary widely between countries, regions, communities and individuals. However, the major constituents are BN, catechu (Areca catechu), a resinous extract from the wood of the Areca tree, slaked lime, various additives, such as grated coconut, aniseed, pepper mint, cardamom, cloves, perfumes and stimulants wrapped in betel leaf (Figure 1) [2–5]. In India, most...
habitual chewers of BQ add tobacco, while in some countries, such as Papua New Guinea and China, tobacco is normally not added [6]. In northeastern India, kwai or tambul is primarily consumed only with betel leaf and slaked lime (Figure 1) [5]. Betel leaf is perishable and the preparation of BQ is somewhat complex. Hence, over the past few decades, commercial BQ substitutes, a flavored and sweetened dry mixture of BN, catechu and slaked lime either with tobacco (gutkha or khaini) or without tobacco (paan masala), have become increasingly popular [6]. These products are packaged in small, attractive and inexpensive sachets, and are easily advertised and marketed, often claimed to be safe products (Figure 1). Use of gutkha often begins at a very young age. Gutkha contains large amounts of sweeteners to conceal the bitterness of tobacco, and children often consider it as a type of candy. Many people take gutkha to be harmless and mere "mouth freshener" [7]. Gutkha and paan masala are consumed by very young and old alike, particularly in India, and also among migrant populations from these areas worldwide [6]. It has been reported that in the Hunan province of China, the shell of the Areca fruit is not removed before consumption. Three main variants of BQ are prepared - husk without BN (kernel, seed, endosperm) being the most common, husk with other substances e.g. dried grapes, and husk with BN [8].

Several studies have reported the effect of BN and its constituents on human health, especially as a possible cause of oral cancer (OC) [2–5,9]. This review focuses on the consequences of BN chewing with a clinical perspective and seeks to bring into perspective the strategies required as well as those adopted by different countries in order to curb the growing hazards supposed to be ensuing from their usage.

Methods

1. SEARCH STRATEGY

The studies included in this review have been retrieved from the PUBMED database of the National Library of Medicine, National
Institutes of Health, Bethesda, Maryland, by setting limits for papers published only from 1985 to 2012, using the keywords “Betel nut AND cancer”. The search was refined using the operator ‘AND’ in order to retrieve the desired results. This search yielded 675 records (see Figure 2; Flow Chart of included studies).

2. EXCLUSION AND INCLUSION CRITERIA

Criteria for exclusion were reports in languages other than English, reports for which abstract was not available, studies pertaining to association of Areca with studies other than cancer, studies which investigated the association between cancer or cancer risk with other factors such as tobacco chewing, smoking and alcohol consumption only, without considering BN exposure, studies which focused on single or limited cases, studies which delved into the immunological responses to BN chewing, studies which investigated the treatment of OC caused by BN chewing, and studies of general interest featuring BN without showing a clear role of BN in the pathogenesis of cancer/pre-cancerous conditions. Ultimately, a total number of 148 reports indexed in PUBMED were found to satisfy the criteria for inclusion. Several pertinent reports not indexed in PUBMED were obtained by manual searches, and 30 such reports which satisfied the criteria for inclusion were further retrieved. Thus, the total number of reports included in this review is 178 (see details in Figure 2; Flow chart of included studies).

Results

1. HISTORY OF BETEL NUT AND BETEL QUID USAGE

The earliest use of BN as a masticatory object by humans has been mentioned by Theophrastus in scripts dating around 430 BCE (Before Common Era), which described it as a component of the betel morsel. Chinese texts of 150 BCE, also mention BN as “pinlang”. In Persia (modern Iran), it is believed that around 30,000 shops sold BN in the capital town during the reign of Khosrau II, the King of Persia during 590–628 AD. The use of BN by humans has been known since the 4th century AD in different parts of the world, including the South and South-East Asia, several Pacific islands, many regions of the former Soviet Union, parts of North America and Europe [2,5], and is deeply ingrained in many socio-cultural and religious activities [2–5]. A study of the ‘Skull from Bangkok’ collected by Rudolf Virchow (Berlin, Germany) in the late 19th century, as part of an extensive anthropological collection of skeletons and skulls from all over the world, shows brown black stains because of BQ chewing, on the few remaining teeth of the maxilla. In fact, an extensive number of skulls from the South- and Southeast Asia in the collection have been found to show similar betel stains. The Skull from Bangkok is a proof that BQ chewing was prevalent in Siam of the late 19th century [10]. BN is used by both men and women though in some societies the latter predominate, across all age groups, and social
2. DEMOGRAPHICS

It is estimated that currently 10% of the world population or nearly 700 million individuals might be consuming BN in different forms across the globe [2,4,5]. Epidemiological surveys show that in the past 2 to 3 decades, 20–40% of the population in India, Nepal and Pakistan have used BQ. India has the largest BN chewing population in the world. In fact, aggressive marketing, easy availability and reasonable price of gutkha have made it very attractive to youth, and an alarmingly high number of children and teenagers in India. According to one estimate, as many as one in three individuals regularly or occasionally chew gutkha [7].

Although a decreasing trend in the consumption of BQ has been observed in certain countries or regions, such as in Thailand, an alarmingly high chewing prevalence has been found among the Paluans of the West Pacific (72–80% use of BQ with 80% found to be consumers of tobacco-added mixtures) [12]. In China, BQ chewing is largely prevalent in the Hunan province [8]. An inter-country Asian Betel-quinid Consortium study (the ABC study) was conducted for East Asia: Taiwan, Mainland China, Malaysia, Indonesia and South Asia: Nepal and Sri Lanka [12]. Cheewing rates among men (10.7–43.6%) were significantly higher than women (1.8–34.9%) in Taiwan, Mainland China, Nepal and Sri Lanka, while women’s rates (29.5–46.8%) were higher than that in men (9.8–12.0%) in Malaysia and Indonesia. An emerging, large group of new users has been identified in Hunan province in the Mainland China (11.1–24.7%), where chewers have the unique practice of using the dried husk of Areca fruit rather than the solid nut used by others. Although the raw Areca used in Hunan province is imported from Hainan in Mainland China as well as from Thailand, the vast majority of BQ products in China, including commercial forms, are manufactured locally. The Xiangtan city in Hunan province, where BQ chewing was reported to be very common (prevalence 64.5–82.7%), is also where most BQ production factories and workshops are located. The prevalence of BQ chewing in Hunan men was higher in the younger age groups, suggesting that Hunan province is an emerging region of BQ usage. The improving economy and easy access to BQ products there, supplemented by aggressive advertising campaigns, could be the factors responsible for the widespread use of this substance, particularly among young people. Men in the Eastern and South Asian study communities were deemed likely to combine chewing with smoking and drinking (5.6–13.6%). Low level of school education, alcohol drinking and tobacco smoking were identified as factors associated with BQ chewing [12].

South Asian immigrants in Australia, Europe, the United Kingdom, South and East Africa and the Malay Peninsula continue using BN products, including paan and gutkha, long after immigration [7]. The United Kingdom is the leading importer of gutkha outside of Asia, with imports having doubled in the last three decades. The sale and use of paan and gutkha are legal in the United States and they are readily available in ethnic enclaves, widely used by the large and rapidly growing South Asian communities [7].

3. CONSTITUENTS OF BETEL NUT AND ITS ACTIVE PRINCIPLES

The constituents of BN include crude fiber, carbohydrates, fats, polyphenols, alkaloids, tannins, proteins and water. Trace amounts of fluorine, sapogenins (glycosidic derivatives of steroids and triterpenoids) and free amino acids have also been reported in some forms. The relative amounts of these constituents are highly variable in produce of different regions as well as in the dry or raw/wet variety of BN. Geographical and climatic conditions of growth of the Areca palm tree and the methods of curing BN are main factors that contribute to the observed variation in the constituents [5]. The raw and wet variety of BN is relatively rich in all constituents as compared to the dry variety [2,5]. Notwithstanding these variations, the active components of both forms of BN, which produce BN associated effects, are primarily the alkaloids, polyphenols, and tannins (Figure 3). Figure 3 also highlights the outlines of the main events triggered in a living cell upon exposure to BN and/or its components that eventually lead to carcinogenic transformation of the cell (for details see reviews 2–5).

(a) Alkaloids. Alkaloids are reduced pyridines. BN contains several alkaloids, of which arecoline and arecaidine are biologically highly relevant. Arecoline (1,2,4,5-tetrahydro-1-methyl-pyrindinecarboxylic acid; molecular weight 153.19 Da) is the most abundant alkaloid of BN followed by arecaidine (1,2,5,6-tetrahydro-1-methyl-3-pyrindinecarboxylic acid; molecular weight 141.17 Da). Other alkaloids, such as guvacine (methyl ester of arecaidine), guvacoline (methyl ester of guvacine) and arecolidine are also present in small to very small or trace amounts [5].

The amount of alkaloid in BN varies with seasonal and geographical variations. In an aqueous extract of Taiwanese BQ composed of fresh BN, betel infflorescence and red lime paste (80:12:5:7 by weight), arecaidine was the most abundant alkaloid (7.53 mg/g dry weight) and guvacoline the least abundant (0.26 mg/g dry wt.). Cold storage or freeze drying does not bring about alterations in the amount of alkaloids. However, arecoline content is reduced variably following processing of the nut by different methods in different regions of the world. The alkaloids may be converted to several derivatives, each of which can potentially produce even more diazohydroxide derivatives. Presence of most of these derivatives has been demonstrated in the saliva of BN chewers [4,9,13].

(b) Polyphenols. Catechin, flavanones, flavan-3,4-diol, leucoycanidin and hexahydroxyflavans are the prominent polyphenols found in BN [2,5]. Huang et al. have reported that betel nut extract (BNE) contains catechins based procyanidins which range from dimers to decamers and polymers [14]. During mastication, either as BN or BQ, they get oxidized and confer the characteristic red color to saliva, teeth and lips of BN/BQ masticator.

(c) Tannins. Specific types of polyphenols that are capable of precipitating proteins are tannins. The predominant tannin of BN is gallotannic acid, which is present in the outer part of the nut. In addition, minor amounts of gallic acid, D-catechol and phlobatannin are also present in the inner part of the nut [2,5].

(d) Trace elements. BN and paan masala have been reported to contain sodium, magnesium, chlorine calcium, vanadium, manganese, copper and bromine. The copper content in samples of raw and processed BN was analysed and reported to be much higher than that found most frequently in other nuts consumed by humans. The mean concentration of copper in samples of processed, commercially available BN was 18.2±8.7 μg/g. In an Indian Food Report, the copper content of processed BN was found to be 2.5 times that of the raw BN [9].

(e) Reactive oxygen species. Cellular metabolism of BN or BQ components may also generate reactive oxygen species (ROS), such as superoxide anion radicals (O2•−) and hydrogen peroxide (H2O2) at pH greater than 9.5 [15]. While saliva was found to inhibit both O2•− and H2O2 formation from BQ ingredients, ROS
are formed in the alkaline chewing mixture within the saliva of a chowder due to the addition of slaked lime \cite{16,17}.

4. GENERAL EFFECTS AND ADDICTIVE POTENTIAL OF BETEL NUT

In old Indian scripts such as Vaghbata (4th century), and Bhavamista (13th century), BN has also been described as a ‘therapeutic agent’ \cite{5}. BN users report increased well-being and stamina, a soothing effect on the digestion, protection of the mouth and gums, and some euphoria. Its use was recommended in wide ranging human diseases and other disorders, which included vitiligo or leucoderma, leprosy, anemia, digestive disorders and infections, urinary and dental infections as well as obesity. BN is also reported to have aphrodisiac property and has been recommended as a general stimulant. In China, it has been used as a vermifuge since the 6th century \cite{5}.

BQ chewing has been claimed to produce a sense of well-being, euphoria, warm sensation of the body, sweating, salivation, palpitations, heightened alertness, improved concentration and relaxation, diminished hunger, improved digestion and an increased capacity to work \cite{2,18}. BN is also reported to have varied and widespread stimulating effects \cite{2,19,20}. Small scale studies suggest that BN use may result in a dependence syndrome, though large scale studies testing this hypothesis are lacking \cite{21,22}. Using a modified version of the Fagerstrom Test for nicotine dependence, it was found that 7% of the patients exhibited one of the following characteristics: daily chewing, chewing within one hour of awakening, difficulty in avoiding chewing, and increasing the quantity chewed. Patients with these symptoms are categorized as ‘severe’ or ‘heavy’ users of BN. Winstock et al. reported that 10 out of 11 current and former heavy BN users reported cessation withdrawal effects with the mean severity of Dependence Score of 7.3 consistent with the existence of a dependence syndrome among those who use BN products \cite{22}. However 55% among them used tobacco and BN in combination. Benegal et al. reported that about two out of five persons using BN preparations without tobacco additives developed a recognizable pattern of dependent use, satisfying both Diagnostic and Statistical Manual of Mental Disorder, 4th edition (DSM-IV; 38.8% of BN users) as well as International Classification of Diseases, 10th revision (ICD-10; 40.8% of BN users) criteria for current dependence \cite{23}. Given the addiction potential of nicotine, the prevalence of dependence among those using BN preparations with tobacco additives was much higher than among persons using BN alone. Their findings provide support for the concept of an identifiable BN dependence syndrome, which can be diagnosed using criteria very similar to the ones currently used for other substances of abuse.

5. BETEL NUT CONSUMPTION AND ORAL MALIGNANCY

Prolonged as well as excessive usage of BN has been reported to exert significantly adverse effects on human health. There is enough evidence to suggest that BN products, even without tobacco, are associated with increased risk for the development of oral malignancy, such as oral squamous cell carcinoma (OSCC). A vast majority of BN users show precancerous clinical conditions, such as oral leukoplakia (OL) \cite{24} as well as its variant, oral erythroplakia \cite{25} or oral submucous fibrosis (OSF) \cite{26} among others. The risk is reported to be higher for paan masala chewers \cite{24}.

In vitro studies have demonstrated that BN extracts containing arecoline inhibit growth and protein synthesis in cultured human periodontal fibroblasts. These findings suggest that BN may be cytotoxic to periodontal fibroblasts and may exacerbate preexisting periodontal disease as well as impair periodontal reattachment \cite{24}. The use of BQ was also found to be associated with the appearance of lichenoid lesions on the buccal mucosa and, occasionally, on the tongue \cite{27}. These lesions are found at the site of quid placement in BN chewers. Fine wavy keratotic lines...
are seen to radiate from a central red/atrophic area and the keratotic striae are parallel to each other. The histology is suggestive of a lichenoid reaction and the lesion is noted to resolve following cessation of BN use. Thus, such lichenoid lesions are considered to be type-IV contact hypersensitivity-type lesions, which clinically resemble oral lichen planus (OLP) (Figure 5B) [24].

Another condition associated with prolonged BQ use, especially among elderly women, is betel chewer’s mucosa (BCM), which is characterized by a brownish-red discoloration of the oral mucosa (Figure 4D). BCM is often accompanied by encrustation of the affected mucosa with quid particles, which are not easily removed and exhibit a tendency for desquamation and peeling [24]. Several epidemiological studies have shown that the prevalence of BCM varied widely between 0.2% in a Cambodian population in 1995 to 60.0% in the same population in 1996, while a prevalence of 21.9% was reported in a Malaysian population in 1995. Histologically, BCM shows epithelial hyperplasia, which is encrusted with an amorphous deposit. This reacts positively to von Kossa staining suggesting that these granules, which are both intra- and intercellular, may contain calcium from the calcium hydroxide of slaked lime. The presence of the human papilloma virus (HPV) subtypes 11, 16 and 18 have also been demonstrated in BCM but the significance of this is not fully understood. At present BCM is not considered to be potentially malignant, although the condition often coexists with other mucosal lesions such as OL (Figure 4A), OE (Figure 4B) and OSF (Figure 4C), which are well known for their potential for subsequent malignant changes [24].

(a) Betel nut and oral leukoplakia. OL can be defined as a predominantly white patch or plaque on the oral mucosa. Based on clinical appearance, leukoplakia can be divided into several subtypes: homogeneous (white), speckled (red/white), nodular or verrucous leukoplakia [24]. As an early sign of damage to the oral mucosa, chewers of BN or BQ with or without tobacco often develop clinically visible white (leukoplakia) (Figure 4A) or reddish (erythroplakia) (Figure 4B) lesions, which may or may not be accompanied by stiffening of the oral mucosa and OSF (Figure 4C). These manifestations are well-established precancerous lesions and are taken as early and important indicators of OC risk to an individual. Some 2–12% of these lesions have been reported to turn malignant over several years [3]. Although less common than leukoplakia (Figure 4A), erythroplakia (Figure 4B) poses a greater threat of cancer and lesions usually demonstrate significant epithelial dysplasia, carcinoma in situ or invasive squamous cell carcinoma. The presence and degree of epithelial dysplasia is generally accepted as the best indicator of malignant potential of leukoplakia, although some clinicians believe that ploidy analysis may be more reliable. There also appears to be an increased risk of transformation associated with a non-homoge-

Figure 4. Clinical conditions associated with BN mastication. Mastication of BN/BQ, even without tobacco, manifests itself in some preneoplastic alterations in the oral cavity of the masticator. This includes appearance of whitish patches or plaque (arrow) in the buccal mucosa, known as oral leukoplakia (OL) (A), or its variant with reddish patches/plaques, known as oral erythroplakia (OE) (B). In a third clinical manifestation, stiffening of oral mucosa leads to a clinical condition known as oral submucous fibrosis (OSF) characterized by inflammation and reduced fibro-elasticity which limits the opening of the mouth (C). Prolonged usage lead to a typical clinical manifestation known as the betel chewer’s mucosa (BCM). This clinical condition is characterized by brownish-red discoloration of the oral mucosa, especially found in elderly BN chewing women (D).

doi:10.1371/journal.pone.0042759.g004

Figure 5. Potentially malignant and malignant conditions associated with BN mastication. Prolonged mastication of BN/BQ eventually manifest itself in development of cancerous condition in the oral cavity of the masticator. Potentially malignant lesions in the oral cavity include lichenoid lesion(s) in the cheek (arrow) close of the site of mastication (A) or even tongue (not shown). At a late stage, lichenoid lesions lead to formation of Oral lichen planus (OLP) (Figure 5B) [24]. A patient with history of prolonged use of BN alone (without tobacco) eventually shows development of a cancerous condition clinically known as Oral squamous cell carcinoma OSCC (arrow) in his right cheek (C), which was the primary site of BN mastication.

doi:10.1371/journal.pone.0042759.g005
neous leukoplakia, especially one that is clinically erythrolakic, verrucous or nodular [25]. One study in Taiwan indicated that the risks of developing OC after 20 years of follow-up were 42.2% for leukoplakia and 95% for erythrolakia [26]. Biopsies of leukoplakia reveal that in addition to the presence of an amorphous brown staining von Kossa positive layer on the surface, parakeratosis and atrophy of the covering oral epithelium were also observed in BN chewers. In another study, 14% of leukoplakia biopsies obtained from BN chewers demonstrated cellular atypia amounting to epithelial dysplasia [24].

It has been reported that the cessation of BN chewing resulted in resolution of 62% of leukoplakia, suggesting that BN on its own is a significant etiological factor in the development of leukoplakia. Further evidence of its relationship with BN chewing has come from the increased prevalence of this condition in subjects who suffer from OSF, which is associated strongly with the habit of BN chewing [24].

(b) Betel nut and oral submucous fibrosis. OSF is a chronic disorder characterized by fibrosis of the mucosa lining the upper digestive tract involving the oral cavity, oro- and hypopharynx and the upper third of the oesophagus. It was first described by Schwartz in 1952 as a fibrosing condition in five Indian women in Kenya and he called it as atrophicca idiopathic atropia [27]. However, this condition is well established in medical literature since the time of Sushruta, a renowned Indian physician, who lived in 2500–3000 BC and described a condition resembling OSF which he referred to as ‘Vidari’ [27]. There are also descriptions of similar conditions occurring in BN chewers in early texts dating back to 1908 [24]. The fibrosis is characterized by juxta-epithelial inflammatory reaction followed by chronic change in the fibro-elasticity of the lamina propria and is associated with epithelial atrophy. This leads to burning sensation in the oral cavity, blanching, and stiffening of oral mucosa and oropharynx, resulting in restricted mouth opening (Figure 4C). This condition, in turn, causes limited food consumption, difficulty in maintaining oral health, and impairs the ability to speak. The signs and symptoms depend on the evolution of lesions and number of affected sites. The malignant transformation rate of OSF has been reported to be around 7.6% over a 17-year period [24]. OSF has also been reported in several epidemiological studies mainly in the Southern states of India, among Indians living in South Africa, and among Chinese and Taiwanese [24,27]. Other occurrences are from Pakistan, Sri Lanka, Bangladesh, Malaysia, Singapore, Thailand and Saudi Arabia with reports of sporadic incidence among Europeans [27]. OSF is also described among Asians living in Europe and the United States but who continue to chew BN [24].

It is now well accepted that all BN products, even those without tobacco, are associated with OSF, which has been established as a precancerous condition. When a paste made out of an instant BN preparation was painted into the oral cavity of albino rats, biopsies from the oral mucosa revealed mild to moderate loss of keratinocytes as compared to normal fibroblasts. The reason for this augmentation of effects of arecoline on both normal and OSF fibroblasts in culture revealed an augmented collagen synthesis or reduced collagen degradation is the possible mechanism for the development of this condition. Studies have revealed that OSF fibroblasts have marked deficiency in collagen phagocytosis, which may lead to fibrosis. In one study, arecoline was found to elevate the mRNA and protein expression of Cystatin C, a non-glycosylated basic protein consistently upregulated in a variety of fibrotic diseases, in a dose dependent manner in persons with OSF [37]. Another study showed an upregulation of Cystatin C in resident cells of buccal mucosa in OSF patients on exposure to BN. Cystatin C, in turn, inhibited the lysosomal cysteine proteases like Cathepsin B and H, resulting in decreased degradation of collagen [27]. Moreover, arecoline was also found to stimulate Cyr61 synthesis in human gingival epithelial S-G cells. Constitutive overexpression of Cyr61 protein in oral epithelial cells during BN chewing may play a role in the pathogenesis of oral cancer, since Cyr61 is associated with growth and progression of many types of tumors and is an independent poor prognostic indicator for oral cancer patients [38]. Lin et al. assessed the mRNA expression of histone methyltransferases, acetyltransferases, and demethylases in K-562 cells following exposure to arecoline. They observed that arecoline produced changes in the expression of several genes catalyzing histone methylation (Mll, Setdb1, and Suv39h2), acetylation (Atf2), and demethylation (JMJD6). Since H3K9 methylation is involved in maintaining the stability of heterochromatin structures and inactivating euchromatic gene expressions, this study indicates that arecoline-induced epigenetic changes play a role in the mechanisms underlying chemical-mediated cytotoxicity and genotoxicity [39].

In three separate but related studies, interleukin-6 [IL-6], keratinocyte growth factor-1 (KGF-1) and insulin-like growth factor-1 (IGF-1) expressions, which have all been implicated in tissue fibrogenesis, were significantly upregulated in persons with OSF due to BQ chewing and arecoline may be responsible for their enhanced expression [40–42]. Moreover, it was noticed that addition of slaked lime to BN in BQ facilitated hydrolysis of arecoline to arecaidine, which caused amplified fibroblastic proliferation and increased collagen formation. In vivo examination of effects of arecoline on both normal and OSF fibroblasts in culture revealed an augmented collagen synthesis by OSF fibroblasts as compared to normal fibroblasts. The reason for this elevation was thought to reflect the clonal selection of a particular cell population in the altered tissues or normal cells with somatic mutation that persists through several generations. This could be due to upregulation of pro-inflammatory and pro-fibrotic cytokines like interleukins (IL-1, IL-6, IL-8), tumor necrosis factors (TNF-α, TNF-β), platelet-derived growth factors (PDGF), fibro-
Betel Nut and Human Cancer

There exists an accumulated wealth of historical evidences suggesting that the BN may be involved in the development of OSCC (Figure 5C) [24]. Recent research has also generated sufficient evidence to implicate BN as well as BQ, with or without tobacco, as a suspected carcinogen to humans [4,5,9]. In addition to OC, significant increase in the incidence of cancers of the esophagus, liver, pancreas, larynx and lung were seen among BN chewers [56]. A study of esophageal squamous cell carcinoma (ESCC) in Taiwan revealed that subjects who chewed between 1 and 495 BN or more than 495 BN per year had 3.6-fold and 9.2-fold higher risk, respectively, of developing esophageal cancer compared to those who did not chew BN [57].

A causal association between tobacco and BQ chewing habits and oral mucosal diseases such as OL, OSF and OC has been compared to those who did not chew BN [57].

One study assessed the change in salivary MMP-9 protein levels 2 hours after 3-minute BQ chewing stimulation (BQCS) in non-BQ users, and the expression profile of this proteinase in saliva and tumor specimens of OSCC patients with a history of BQ use. MMP-9 was found to be upregulated in response to BQCS and MMP-9 expression was also associated with neck lymph node metastasis, thus implying a significant role of MMP-9 in the progression of OSCC among patients with a history of BQ use in Taiwan [52].

Raised copper concentrations have been shown in products containing BN in comparison to other nut based snacks. It has also been observed that chewing BN for 5–30 min significantly raised the soluble Cu level in saliva. Study of buccal mucosal biopsies from patients with OSF indicated raised Cu level [53]. Addition of CuCl₂ increased the collagen synthesis by the oral fibroblasts. However, the addition of CuCl₂ neither increased the synthesis of non-collagenous proteins by the fibroblasts nor influenced their proliferation rate. These in vitro results support the hypothesis that Cu in BN acts as a mediator of OSF [54]. This has led to the hypothesis that the increased tissue Cu may increase the activity of the enzyme lysyl oxidase, which is a Cu-dependent enzyme that has been implicated in the pathogenesis of several fibrotic disorders, including OSF [24]. Cu salts significantly increased the production of collagen by oral fibroblasts in vitro supposedly by upregulation of activity of a Cu-dependent enzyme, lysyl oxidase, which catalyses the cross linking of collagens and elastin [6]. The collagen cross linked with lysyl oxidase is rendered insoluble and is shown to be ten times more resistant to digestion by mammalian collagenase [27]. Further, a significant gradual increase in serum Cu levels from pre-cancer to advanced cancer in patients has been documented [55], which may have a role in oral fibrosis to cancer pathogenesis (Figure 3).
tobacco, snuff or smoking. The data show that the BN habit with or without tobacco is important in the development of OSCC and it has been suggested that elimination of this habit can reduce the risk in these women substantially (89-91%) if all other factors remained the same [46]. Time-trend analysis of cancers at all sites for the period 1990–1996 showed a decrease in cancers of the oral cavity in Indian population based registries, but an increase in the incidence of OC was reported among those aged <50 years between 1983–1987 and 1995, consistent with the hypothesis of an increase in OC among the young due to increased consumption of the alternative chewing products such as, gutka and paan masala [6]. BN without tobacco was, thus, recognized as a group I carcinogen to human by the International Agency for Research on Cancer (IARC) and World Health Organization (WHO) in 2004 [9]. In addition to human data, there are also a large number of experimental studies, which have reported the carcinogenic potential of BN and its derivatives both in vivo and in vitro [24].

(a) In vivo studies. Several animal studies have confirmed that BN products and derivatives, such as arecoline and BN derived nitrosamines, also referred to as betel specific nitrosamines (BSNA), have the ability to induce neoplastic changes in experimental animals (Figure 3). Alkaloids of BN are suspected to be its main carcinogenic constituent [2–6,9,24,62]. Early studies found that the application of arecaidine to the oral mucosa of experimental animals failed to have any carcinogenic effects unless it was supplemented with a known promoter, such as croton oil [24]. However, arecoline administered by gavage produced lung adenocarcinoma, stomach SCC and liver haemangiomatia in male mice [9]. Cheek pouch application of arecoline following application of slaked lime produced an esophageal papilloma in female hamsters, while local application of arecaidine to the cheek pouch did not produce tumor in male hamsters [9]. To explain the variable observation, it is proposed that the alkaloids first required metabolic activation via nitrosation to develop its carcinogenicity [63]. In vitro data suggest that arecoline is metabolized by carboxylesterase in mouse liver and kidney. Male Swiss albino mice fed BN powder or arecoline showed enhanced levels of the hepatic cytochrome P450 and b5 and decreased levels of hepatic GSH [9]. In fact, human cytochrome P450 was found to be involved in the mutagenic activation of BSNA such as 3-[N-nitrosomethylamino]propionitrile (NMPN), 3-[N-nitrosoethylamino]propionaldehyde (NMPA) and N-nitrosoguavacoline (NG) using genetically engineered Salmonella typhimurium YG7108 expressing each form of human P450 together with NADPH-P450 reductase [64]. Exposure of Swiss albino mice to arecoline was found to lower poly-ADP-ribosylation (PAR) of most cellular and histone proteins and induce relaxation of chromatin, thereby allowing the N-nitrosamines of arecoline easy access to genomic DNA for interaction, while the absence of PAR mediated repair may favour the accumulation of DNA damage [65]. Arecoline induced micronuclei (MN), chromosomal aberrations (CA) and sister chromatid exchange (SCE) in bone marrow cells (BMC) of Swiss albino mice [66,67]. The arecoline induced DNA damage was found to be influenced by endogenous GSH levels with the frequency of CA and SCE increasing when arecoline was given to mice treated with buthioninesulfoximine (BSO), a GSH synthesis inhibitor (Figure 3).

The frequency of SCE was found to be elevated in mouse BMC when mice were exposed to the aqueous extract of betel nut (AEBN) and its tannin [67]. AEBN also induced micromucleated cells (MNC) in BMC of Swiss albino mice [5]. Hamsters fed with powdered diet containing BN or BQ showed significant decrease in the survival rate, body weight, and hyperkeratosis and acanthosis of cheek pouch indicating that BN and BQ components may induce alterations in proliferation and differentiation of oral epithelial cells [60]. When the buccal mucosa of mice was treated regularly with a topical application of water based BNE, the oral epithelium showed progressive changes in epithelial thickness leading to atrophy, increased cellularity of fibroblasts, fibrosis of connective tissue, focal infiltration of inflammatory cells and muscle atrophy [69]. Frequency of all the three cytogenetic endpoints, viz. CA, SCE and MNC, were found to be elevated significantly in a dose dependent manner in cultures exposed to aqueous extracts of paan masala without metabolic activation [70]. The carcinogenic and tumor promoting potentials of an ethanolic paan masala extract (EPME) were determined using the hairless skin of S/RVCre-ba or Bare mice and the forestomach and esophagus of ICRC mice as the target tissues. EPME promoted skin papilloma formation and enhanced the rate of conversion of papilloma to carcinoma. Induction of mild epidermal hyperplasia, dermal edema, increase in epidermal mitotic activity and the rate of epidermal and dermal DNA syntheses by EPME correlated well with its skin tumor promoting potential. In ICRC mice, EPME was inactive as a complete carcinogen, but effectively promoted the development of forestomach and esophageal papilloma and carcinoma in a concentration dependent manner indicating that habitual paan masala use may exert carcinogenic and co-carcinogenic influences [71]. Exposure of male and female mice to paan masala revealed a significant dose dependent increase in lung adenocarcinoma but not in liver and stomach [72].

(b) In vitro studies. BNE was found to decrease cell survival, vital dye accumulation and membrane integrity of cultured human buccal epithelial cells in a dose dependent manner. BNE also caused formation of both DNA single strand breaks and DNA protein cross links [63,73,74]. Different BNE, such as aqueous extract of betel nut (AEBN), acetic acid extract of betel nut (AEABN), HCl extract of betel nut (HEBN) and ethanol extract of betel nut (EENB) as well as arecoline showed different extents of cytostatic and cytotoxic effects, and induced variable levels of dose dependent unscheduled DNA synthesis (UDS) in Hep2 cells in vitro. In manifestation of these effects arecoline, HEBN and EEBN were most potent [73,75]. Cultured normal human oral keratinocytes (NHOK) exposed to ripe BNE also showed significant decrease in population doubling, increase in senescence, cell cycle arrest at G1/S phase and decrease in cell proliferation [76]. It has been reported that BQ may accelerate tumor migration by stimulating MMP-8 expression through MEK pathway in at least some carcinomas of the upper aerodigestive tract. Furthermore, arecoline may be one of the positive MMP-8 regulators among BQ ingredients [77]. Investigation of prostaglandin endoperoxide synthase (PHS) action on the growth of OC in response to BNE exposure of two human oral carcinoma cell lines OEC-M1, and KB, and one normal fibroblast cell line, NF, revealed that BNE significantly inhibited the cell growth of OEC-M1, KB and NF. PHS activity in OEC-M1 and NF was significantly increased by low BNE concentrations but significantly reduced at higher concentrations. The PHS activity in KB, on the other hand, was significantly inhibited by BNE and this effect was intensified as concentration increased [78]. Treatment of human oral mucosal fibroblasts (OMF) with BNE or arecoline induced about 3-fold increase in mRNA levels of the proto- oncogene c-jun independent of GSH depletion [79].

The BNE and inflorescence of Piper betle (IPB) also induced DNA strand breaks. In addition, BNE, IPB, the BN polyphenol, catechin as well as arecoline decreased cell survival and proliferation. In contrast, another component of BQ, the aqueous extract of lime, was found to increase cell proliferation [80]. AEBN was found to reduce endogenous glutathione (GSH) level, induce
CA and delay cell kinetics in mouse BMC with the induction of SCE, probably involving TP53 dependent changes in cell proliferation [81]. Ethyl acetate and 9-butanol extracts of BN as well as betel leaf are reported to induce CA in human lymphocytes and Chinese hamster ovary (CHO) cells [4]. All components of BQ have been shown to individually enhance chromatid breaks and exchanges in the range of 12–37% in human cells in vitro. AEBN also induced DNA strand breaks and enhanced cell proliferation in mouse kidney T1 cells in vitro [73]. BNE exposure to CHO-K1 cells caused increased MN frequency, G2/M arrest, cytokinesis failure and an accumulation of hyperploid/aneuploid cells. These events are associated with an increase in intracellular H2O2 level and actin filament disorganization [82]. BNE also elicited actin reorganization resulting in fibroblastoid morphological change, genesis of lamellipodia, loss of subcortical actin and stress fiber formation in cultivated NHOK cells [83].

Arecoline alone has been reported to inhibit cell attachment, cell spreading and cell migration in a dose dependent manner in cultured human gingival fibroblasts (HGF) [84]. In fact, GSH depletion and reduction of glutathione S-transferase (GST) activity have been demonstrated in cultured human oral keratinocytes and in fibroblasts treated with arecoline [9]. Arecoline was also reported to be cytotoxic to human buccal fibroblasts in a dose dependent manner wherein the cellular GST activity was downregulated in a dose dependent manner without increase in lipid peroxidation. Addition of extracellular nicotine acted synergistically on the arecoline induced cytotoxicity, indicating that arecoline may render human OMF more vulnerable to other reactive agents in cigarettes via GST reduction. These observations could explain why patients who practice the combined habit of BQ chewing and cigarette smoking are at greater risk of contracting OC [85]. Arecoline inhibited growth of human KB epithelial cells in dose- and time-dependent manners by causing cell cycle arrest in late S and G2/M phases due to induction of cyclin B1, Wee-1, and phosphorylated cdc2 proteins and inhibition of p21 protein expression in KB cancer cells. In primary human gingival keratinocyte (HGK) cell line, arecoline effect appeared to be mediated differently. In this case, arecoline induced p21 but inhibited cdc2 and cyclin B1 proteins. This clearly suggests that differential regulation of S and/or G2/M cell cycle related proteins in the HGK and KB cells play crucial roles in different stages of BQ mediated carcinogenesis [86]. Arecoline could also induce γ-H2AX phosphorylation, a sensitive DNA damage marker, in KB, HEP-2, and 293 cells, suggesting that DNA damage was elicited by arecoline. Moreover, the expression of p53 regulated p21 (WAF1) and p53 activated DNA repair were repressed by arecoline [87]. Arecoline was cytotoxic to HGF cells due to depletion of intracellular thiol and inhibition of mitochondrial activity and induced cell cycle arrest in HGF cells at G2/M phase in a dose dependent manner [88]. Global gene expression profiling in HGF exposed to arecoline revealed that four genes related to maintenance of genome stability and DNA repair were repressed by arecoline [89]. They are FANCg, also known as XRCC9 (tumor suppressor capable of correcting CA), CHAF1 and CHAP2 (encoding chromatin assembly factor I or CAF1) and BRCA1 (breast cancer susceptibility gene implicated in DNA damage response and DNA repair). Among them, at least the BRCA1 response was dose dependent. COX-2 and PTGS2, which are involved in cancer initiation and progression, were over expressed in HGF cells. HSPA4L1 and DNAJA1, which belong to the HSP70 family of stress-induced proteins and GDF15/MGC-1, were also upregulated by arecoline in dose dependent manner [89]. Chen et al. established two oral cancer sublines chronically treated with BNE and used methods such as microarray and immunohistochemistry to screen and validate the genes exhibiting altered expressions in BNE sublines or in cancer tissues. They found that a total of 35 genes were differentially expressed in both sublines. Several functional pathways were significantly altered. Six genes were confirmed over 2-fold of changes, including Ches1. Functional analyses showed that overexpression of Ches1 suppressed cell growth and arrested cells in the G2/M phase. They thus concluded that loss of Ches1 may be attributed to BNE-induced oral carcinogenesis [90].

Treatment of normal human oral fibroblasts with BNE was also reported to alter miRNA expression profile. BNE-induced overexpression of miR-23a was found to be correlated with an increase of γ-H2AX, a DNA damage marker. FANCg was confirmed to be a target of miR-23a by ectopic overexpression or knockdown of miR-23a. The correlation between miR-23a overexpression and BQ chewing habit was also reported in oral cancer patients. Thus, BNE-induced miR-23a was correlated with a reduced FANCg expression and DNA double strand break (DSB) repair, which might contribute to BNE-associated human malignancies [91]. Oral fibroblasts with chronic subtoxic BNE treatment were found to exhibit growth arrest and MMP-2 activation. The supernatant of these arrested oral fibroblasts activated the AKT signaling pathway in oral carcinoma cells. Moreover, subcutaneous co-injection of arrested oral fibroblasts into nude mice significantly enhanced the tumorigenicity of xenographic oral carcinoma cells. The investigators therefore concluded that BNE may impair oral fibroblasts and then modulate the progression of oral epithelial oncogenesis via their secreted molecules [92]. Various studies have clearly established the mutagenecity of BN and its components. The major metabolite of arecoline, arecoline N-oxide, is reported to be moderately mutagenic to Salmonella typhimurium tester strains TA 100 and TA 98. But this mutagenicity was potently inhibited by glutathione, N-acetylcysteine, and cysteine [93]. Aqueous extracts of BQ without tobacco induced mutations in Salmonella typhimurium but not in Chinese hamster V79 cells. AEBN, on the other hand, induced mutations in Salmonella typhimurium and in Chinese hamster V79 cells besides inducing gene conversion in Saccharomyces cerevisiae as well as CA in CHO cells. BN tannin fraction induced gene conversion in Saccharomyces cerevisiae [4]. Ames test using Salmonella typhimurium strain TA 1535 revealed that arecoline, AEBN and HEBN were weak mutagens while AAEBN and EEBN were strong mutagens suggesting that the mutagenic potential of arecoline could be significantly enhanced by other constituents of BN [5,94,95]. Exposure to BNE was also found to induce mutation at the hypoxanthine phosphoribosyltransferase (HPRT) locus in human keratinocytes, which also increased frequency of appearance of MN, intracellular levels of reactive oxygen species (ROS) and 8-hydroxyguanosine in the cells suggesting that stress caused by long term BNE exposure enhanced oxidative stress and genetic damage in human keratinocytes [96].

(c) Human studies. Among BN chewers, the possible genomic damage caused by BN without tobacco was confirmed in cytogenetic studies. BNE has been shown to be cytotoxic and genotoxic to human buccal epithelial cells [74]. This may be correlated to its ability to increase DNA strand breaks, MNC formation, gene mutation and CA [16,67]. A study aimed to evaluate the genotoxic effect of BN and tobacco on human peripheral blood lymphocytes revealed anomalies. Binucleated cells with MN, total MN, nucleoplasmic bridge and nuclear buds were higher in chewers whereas elevation in binucleated MN and total MN were significant among subjects with oral submucous fibrosis than nonchewers. Significant positive correlation was also observed between induction of cytokinesis-blocked micronucleus...
and 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage, has been found in human saliva at a 4.6 mM concentration after BQ chewing by individuals with the CYP2E1 c1c1 genotype while chewing less than 20 BQ per day [97].

A study involving patients of HNC suggested that BQ chewing may increase mitochondrial DNA (mtDNA) mutation and the frequency of safrole-DNA adducts formation than those with the CYP2E1 c1c1 genotype, who had chewed BQ for over 32 years [100]. Rooban reviewed the effects of different ways of taking arecoline on salivary flow rates (SRF) and pH of saliva [101]. With an increase in frequency and exposure time of chewing raw BN, both SFR and pH increased. In processed BN chewers, increase in duration and frequency of consumption increased the SFR and decreased the pH, respectively. For chewers taking BN with tobacco, increase in duration was significantly associated with decrease in salivary pH. Similarly, IBP, which contains safrole (4-allyl-1,2-methylenedioxybenzene), a unique ingredient of BQ in Taiwan, forms Safrole–DNA adducts. This has been suggested to play an important role in OC in the population of Taiwan. A high frequency of safrole-like DNA adducts has been reported in BQ associated OSCC and noncancerous matched tissue in contrast to the absence of such adducts in all of non-BQ associated OC. Safrole-DNA adducts are present in oral cancer tissue from patients who have chewed BQ containing high concentration of safrole as well as in peripheral white blood cells. Safrole is classified as a rodent hepatocarcinogen, and chewing BQ may contribute to human exposure to this compound. The saliva of a person chewing BQ contains on average 420 μmol/L of safrole. Interestingly, safrole-DNA adducts were found in liver biopsy specimens of a Taiwanese man suffering from hepatocellular carcinoma, who had chewed BQ for over 32 years. This implies that safrole may be implicated not only in carcinogenesis of the oral cavity of BQ chewers through direct contact, but can also be transported via the oral-digestive tract to distant organs like the liver where it acts a likely cause of liver carcinogenesis [102]. Moreover, individuals with at least one cytotoxic P450 - CYP2E1 c2 allele had a significantly higher frequency of safrole-DNA adducts formation than those with the CYP2E1 c1c1 genotype while chewing less than 20 BQ per day [103]. Hydroxycavicol, a phenolic component of betel leaf, has been found in human saliva at a 4.6 mM concentration after BQ chewing. Hydroxycavicol may induce DNA single strand breaks and 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage, in cultured cells [104].

Hung et al. reported the upregulation of Asb6, a coupling protein to the APS adapter protein, which is involved in insulin signaling for glucose transportation, of normal keratinocytes and oral cancer cells under BNE treatment. They also demonstrated a positive correlation between Asb6 upregulation (cancerous tissues versus adjacent normal tissues) and clinicopathological features such as poor survival status in OSCC patients [105].

In a study pertaining to the contribution of combined BN chewing and cigarette smoking to the risk of OSCC in Taiwan, Wu et al. revealed that the alkaline environment created in the oral cavity of BN chewers by lime may enhance nicotine-related oral carcinogenesis through a synergistic effect of nicotine and the alkalinity in inducing higher expression of phosphorylated AKT [106]. AKT/protein kinase B (PKB) is a serine/threonine kinase which is implicated in mediating a variety of biological responses including cell growth, proliferation and survival. AKT is activated by phosphorylation on two critical residues, namely threonine 308 (Thr308) and serine 473 (Ser473), and several studies have found AKT2 to be amplified or overexpressed at the mRNA level in a number of human malignancies [107].

A study involving patients of HNC suggested that BQ chewing may increase mitochondrial DNA (mtDNA) mutation and the accumulation of mtDNA deletions and subsequent cytoplasmic segregation of these mutations during cell division could be important contributors to the early phase of OC [108]. ZASC1, a zinc finger transcription factor localized on 3q26, is frequently amplified in OSCC. Examination of OSCC patients revealed that increase of ZASC1 gene copy number in recurrent tumors was associated with the consumption of BQ in patients [109]. O(6)-methylguanine-DNA methyltransferase (MGMT) ameliorates mutagenic, carcinogenic and cytotoxic adducts from O(6)-methylguanine in DNA. The absence of MGMT expression associated with promoter hypermethylation has been reported to be related to BQ chewing and, thus, might be a significant event in OC [110]. A high frequency of hypermethylation of p14, p15 and p16 was also detected in the precancerous lesions of BQ chewers in Sri Lanka [111]. Further, it has been proposed that epigenetic silencing of RASSF1A and p16INK4a gene expressions by promoter hypermethylation may play critical roles in BN-associated OC [112].

Alphavbeta6 (αvβ6) integrin is capable of promoting both tissue fibrosis and carcinoma invasion, and has been reported to be markedly up-regulated in OSF [113]. Moutasim et al. investigated the functional role of αvβ6 using oral keratinocyte-derived cells genetically modified to express high αvβ6 (VB6), and also NTERT-immortalized oral keratinocytes, which express low αvβ6 (OKF6/TERT-1). VB6 cells showed significant αvβ6-dependent activation of TGF-β1, which induced transdifferentiation of oral fibroblasts into myofibroblasts and resulted in up-regulation of genes associated with tissue fibrosis. These experimental in vitro findings were confirmed using human clinical samples, which revealed that the stroma of OSF contained myofibroblasts and that TGF-β1-dependent Smad signaling was detectable both in keratinocytes and in myofibroblasts. The investigators also found that arecoline, the major alkaloid of BN, was located at chromosome 11q13.5, a region frequently amplified in human cancers. HSP47 expression was reported to be significantly higher in OSCC specimens than normal epithelium, while lower HSP47 expression was associated with lymph node metastasis. No significant difference in HSP47 expression was observed with
respect to age, sex, tumor category, tumor stage and differentiation. Furthermore, arecoline was found to elevate HSP47 expression in a dose- and time-dependent manner in oral epithelial cell line OC2. This study therefore concluded that HSP47 could be used clinically as a marker for lymph node metastasis of oral carcinogenesis [114].

7. BETEL NUT AND TUMOR SUPPRESSOR GENES

The $p53$ gene is known to be mutated in a variety of human and experimental animal cancers. Similarly, change in cellular level of $p53$ protein is also known to occur. Accumulation of $p53$ protein or its stabilization is an important indicator of the presence of mutant $p53$ protein [115,116]. However, reports pertaining to $p53$ mutation status of cancers associated with BN chewing have been widely contradictory. Exposure to BN and/or BQ with or without tobacco has been reported to result in high incidence of $p53$ mutations in Taiwanese, Thai, Sri-Lankan and North Indian Population; however, similar exposures resulted in low frequency of $p53$ mutations in the populations of India and Papua New Guinea, in other reports. Despite these conflicting observations, a common trend observed among the varying populations was $p53$ overexpression and nuclear accumulation of $p53$ protein (see Table 1) [117–127]. A study on northeastern Indian population also found significant influence of $p53$ codon 72 polymorphism, with interaction between $p53$ genotype and smoking resulting in a significant risk of OC, while interaction of $p53$ genotypes with BQ leading to a significant risk of lung cancer [128]. Another study on cancer patients in northeastern India also found that the subjects with family history of cancer were more likely to develop ESCC if they were BQ users and germ line mutations in the DNA repair gene, BRCA2, played a role in this familial aggregation of ESCC [129].

In previously reported transgenerational studies, 6 week old male and female Swiss albino mice were exposed chronically to AEBN in drinking water at a dose of 2 mg ml$^{-1}$ for 24 weeks. These mice are referred to as the chronically exposed P generation mice. The F1 generation was raised by inbreeding of P generation mice exposed to AEBN for 6 weeks. Similarly, the F2 and F3 generations were raised from AEBN exposed F1 and F2 mice, respectively [130,131]. Thus, the transgenerationally exposed F1, F2 and F3 mice received low dose AEBN prior to and during conception and the entire period of development and maturation. In these studies, exposure to AEBN was found to severely impair the ultrastructure of the nucleus, endoplasmic reticulum and mitochondria with a significant reduction in mitochondrial index from the P through F3 generations. This indicates a progressive loss of apoptosis with progression of generation [132]. It was further observed that the exposure to AEBN resulted in an immediate upregulation of $p53$ protein up to 2–2.5 folds after 6–8 weeks, and Brca1 and Brca2 proteins to 1.4 folds after 2 weeks of exposure. Subsequently, the $p53$ protein declined to control level and the Brca1 and Brca2 proteins to 70% of the control after 16 weeks of exposure concomitant with the appearance of preneoplastic nodules in the liver. In contrast, in the transgenerationally exposed mice, the level of $p53$ protein remained largely invariant, and the levels of Brca1 and Brca2 proteins declined rapidly below control level without recording an initial increase. The appearance of pre-neoplastic nodules of the liver was significantly advanced in the transgenerationally exposed mice; developing in 8 weeks in F1, 6 weeks in F2 and 4 weeks in F3 mice. This clearly exhibits progressively increasing genomic instability due to prolonged AEBN exposure and enhanced cancer predisposition.

DNA sequence analyses revealed no mutation in exons 5 and 7 of the $p53$ gene and the amplified segment (nucleotides 1–257) of exon 27 of the Brca2 gene in P, F1, F2 and F3 mice. In contrast, a mis-sense mutation (G→C) was observed in exon 11 of the Brca1 gene in F1, F2 and F3 mice, but not in P mice. Such a mutation would result in corresponding amino acid replacement Cys→Ser. In silico protein modeling revealed that the amino acid substitution was likely to cause structural alterations in the RAD50 binding domain and the Brca1 protein, which is crucial for its function in error free repair of DNA single and double strand breaks. These observations clearly indicate that the $p53$, Brca1 and Brca2 tumor suppressor genes are intrinsically involved in the process of BN

#	Exposure condition	Effect(s)	$p53$ associated alteration(s)	Reference
1	BQ and alcohol	ESCC in Taiwanese population	A:T→G:C transition and G:C→T:A transversion	117
2	BQ	Atrophic oral lichen planus (OLP) in Taiwanese patients	Higher expressions of $p53$ and proliferating cell nuclear antigen (PCNA)	118
3	BN	Oral cancer in Thailand	Mutations detected in 11.8% (8/68) of betel-related tumors and 7 of 8 mutations were G:C to A:T transitions	119
4	BQ	Leukoplakia and OSCC in North Indian population	$p53$ missense mutations, $p53$ antibodies and $p53$ protein accumulation	120
5	BQ and tobacco	OSCC in Taiwanese population	G:C→A:T transitions	121
6	BQ and tobacco	OSCC in Indian population	Low incidence of $p53$ mutations	122
7	BQ	OSCC in Sri Lankan population	Point, small deletion and addition type of mutations mainly clustered in exon 5 of the $p53$ gene	123
8	BQ and tobacco	OSCC in Taiwanese population	Mutations in codons 273–282 in exon 8 of $p53$, nuclear accumulation and positive $p53$ immunostaining	124
9	BN and tobacco	OSCC in South Indian population	Nuclear $p53$ staining and $p53$ expression	125
10	BQ without tobacco	Oral cancers from Papua New Guinea	Low frequency of $p53$ mutations	126
11	BN	OSCC in Sri Lankan population	Over expressed $p53$	127
12	BQ and tobacco	Lung cancer and oral cancer in North east Indian population	$p53$ codon 72 polymorphism	128

Table 1. $p53$ associated alterations in betel nut (BN) and/or betel quid (BQ) associated human precancerous lesions/cancers.
induced carcinogenesis in mice as well as in the transgenerational transmission of carcinogenic risk following AEBN exposure. The p53, Brca1 and Brca2 responses were abrogated in the mice exposed transgenerationally to AEBN resulting in significantly increased predisposition to cancer [130,131]. The inactivation of the p53 gene, which apparently played a crucial role in BN associated cancer in mice, was not achieved through p53 mutation. The mechanism of p53 inactivation may also involve other routes, which requires to be investigated in the future. One possible alternative mechanism for p53 inactivation in BN induced carcinogenesis may be over expression of MDM2 protein, which has been shown in OSCC [133]. A high prevalence of MDM2 protein was also found in BQ chewing associated OSCC in Taiwan [134]. MDM2 protein has been shown to negatively regulate the function of p53 tumor suppressor protein through two main mechanisms. First, the direct binding of MDM2 to the N-terminal end of p53 inhibits the transcriptional activation function of p53. Second, MDM2 possesses E3 ubiquitin ligase activity that targets p53 for modification and subsequent degradation through the 26S proteasome [135]. Overexpression of MDM2 would therefore lead to carcinogenesis in a p53-dependent manner.

8. BETEL NUT POLYPHENOLS AND TANNINS IN CARCINOGENESIS

Toxicity studies relating to BN specific polyphenols and tannins are not conclusive with both carcinogenic and anti-carcinogenic effects being reported in literature. It is reported that ROS produced during autooxidation of BN polyphenols in the BQ chewer’s saliva might be crucial in the initiation and promotion of OC [63]. However, the polyphenols are primarily known to be strong antioxidants and, thereby, also considered a food supplement that reduces the risk of degenerative diseases. Huang et al. have reported that the antioxidant capacity of the BNE procyanidins increased with the degree of polymerization. Further, they have also demonstrated that BNE which contains catechins based oligomeric and polymeric procyanidins, regulates COX-2 expression in vitro and possess anti-inflammatory potential in vivo [14]. Similarly, incidence of certain cancers, such as esophageal cancer, has been reported to correlate well with the consumption of tannins-rich food, such as BN, suggesting that tannins might also be carcinogenic. However, other reports indicated that the carcinogenic activity of tannins might be related to components associated with tannins such as “flavolans”- the polymers formed by condensation of flavans, referred to as polyflavonoid tannins or condensed tannins, rather than tannins themselves [136]. More research is required to properly understand this aspect.

9. BETEL NUT AND HUMAN GENETIC SUSCEPTIBILITY TO ORAL CANCER

Exposure to BN derived carcinogens, particularly alkaloids, enhance the risk of cancer in BN or BQ chews in general. However, correlation between prevalence of cancer in human populations in different parts of the world and habit of BN/BQ mastication is not absolute. This suggests that the genetic makeup of the masticator has its own influence on the ultimate manifestation of BN induced cancer. It is becoming obvious that the interplay between the genetic constitution and the environmental factor[s], determine the final risk of human cancers, especially OC, following the exposure to BN or BQ alone or in combination with additives, including tobacco. Mere exposure to BN or BQ may not commit the chewer to cancer. For any given level of exposure to BN carcinogens, only a proportion of exposed individuals will develop cancer, indicating the prevalence of interindividual differences in susceptibility [137]. Individual susceptibility to cancer may originate from several factors, including (a) differences in metabolism influencing the metabolic activation of BN derived carcinogens, (b) status of DNA repair pathways and related genes, (c) patterns of expression of proto-oncogenes and tumor suppressor genes and (d) nutritional status of the masticator, etc. Variations in an individual’s metabolic phenotype, i.e., phenotypic polymorphism, have also been detected in a variety of enzymes involved in activation and detoxification of chemical carcinogens. It is becoming clearer now that different phenotypic and/or metabolic variations stem from genetic polymorphisms prevalent in different population groups [138]. A number of genetic polymorphisms have been identified, which seem to be associated with the risk of BN induced preneoplastic lesions or precancers, like OL/OE and OSF, as well as with the development of OC in human subpopulations in different regions of the world. These polymorphisms have been mapped to genes with diverse function. However, polymorphisms in a few genes appear to be more significant; these include the DNA repair genes, XRCC4 in Taiwanese population and XRCC1 and XPD in Indian population, genes encoding detoxifying enzymes such as MTA2 encoding the most important phase II metabolic enzyme for BQ in Taiwanese population, GSTT1 and GSTM1 in Indian and Thai populations, and CYP2A6 in Sri-Lankan population and genes encoding matrix metalloproteinases, such as MMP9 in Taiwanese population and MMP2 in Asian population (see Table 2) [139–165]. This clearly indicates the extremely complex and highly variable influence of the genetic makeup of the population groups on their cancer susceptibility. Further research in this area is also warranted.

10. BETEL NUT EXTRACT AND ROLE OF CYCLOOXYGENASE-2

Cyclooxygenase (COX), an inducible enzyme responsible for prostaglandin synthesis, plays an important role in certain inflammatory diseases and carcinogenesis. Tang et al. reported that COX-2 protein as well as mRNA expression was significantly enhanced in OSCC as compared to non-cancerous matched tissue (NCMT). Hydroxychavicol, a unique ingredient in BQ, also induced COX-2 overexpression in NHOK, indicating the early involvement of COX-2 in BQ associated OC [166]. Tsai et al. also reported that in human BMF, COX2 mRNA increased in a manner dependent upon increase in the dose of arecoline [167]. In addition, pretreatment with the GSH precursor, 2-oxothiazolidine-4-carboxylic acid, led to a decrease in the induction of COX2 mRNA by arecoline and the GSH synthesis inhibitor, buthionine-sulfoximine, led to an increase, suggesting that regulation of COX2 expression induced by arecoline is critically dependent on cellular glutathione concentration [167]. Elevated COX2 protein levels have also been detected by immunohistochemistry in human tissues with moderate submucous fibrosis [9]. BNE was also found to induce COX2 mRNA and protein expression and PGE2 and 6-keto-PGF1α in primary HGK cells [168]. It was suggested that this stimulation of PGE2 production could partly result from the upregulation of COX2 mRNA expression. BN extract also slightly enhanced the activity of COX in the human oral carcinoma cell line, OEC-M1, but inhibited its activity in KB cells at concentrations greater than 50 μg/ml after 24 hours of exposure [169]. Upon treatment with BNE, head and neck carcinoma cells showed an increase of vimentin. The activation of extracellular signal-regulated kinase (ERK)/cyclooxygenase (COX)-2/prostaglandin (PGE)-2 cascade underlay the upregulation. These cells also exhibited the enhancement of migration and invasion. By knocking down COX-2 and vimentin expression, the increase of cell mobility was reversed. Tumors exhibiting extensive vimentin
Table 2. Genetic polymorphisms and their role(s) in betel nut (BN) and/or betel quid (BQ) associated human precancerous lesions/cancers.

#	Gene/region	Genetic polymorphism(s)	Effect(s)	Reference
1	Nuclear factor-kappa B (NF-kB)	Genetic polymorphisms of NFκB1 and NFκB8A	NFκB1 +94 ATTG2, NFκB8A –826 T and –881 G alleles are associated with oral carcinogenesis. The combination of NFκB1 or NFκB8A gene polymorphisms and tobacco and betel consumption appears related to an increased risk of oral cancer. The genetic polymorphism of NFκB8A –919 might be a predictive factor for the distal metastasis of OSCC in Taiwanese patients.	139
2	Survivin gene	Genetic polymorphisms of survivin gene	The survivin −31GG, +9194 GG, and −9809 TT homozygotes exhibited higher risk for oral cancer compared with the corresponding ancestral genotype, and +9809 SNPs combined with betel quid chewing and/or tobacco consumption could robustly elevate susceptibility to oral cancer. The distribution frequency of the −31 G: +9194 A: +9809 T haplotype was significantly higher in oral cancer patients than in control participants, in Taiwanese men.	140
3	Epidermal growth factor receptor 2 gene (EGFR)	Q787Q silent mutation	A high frequency of Q787Q mutation in BN chewing associated Taiwanese OSCC patients.	141
4	Chemokine (C-C motif) receptor 2 gene (CCR2)	V64I CCR2 gene polymorphism	Individuals with GA or at least one A allele had a higher risk for oral cancer, compared to GG genotypes. Moreover, for subjects with GA or at least one A allele of V64I CCR2 gene polymorphism, those exposed to environmental risk factors including alcohol, tobacco and Areca consumptions possessed a significantly higher risk for oral cancer than those unexposed subjects in Chinese population.	142
5	Cytochrome gene, CYP26B1	Genetic polymorphism of CYP26B1	Genetic polymorphism AA of CYP26B1 appeared to correlate with the risk of oral squamous cell carcinoma (OSCC), and chewing BQ multiplicatively interacted with CYP26B1 AA to increase the OSCC risk in Taiwanese population.	143
6	Urokinase plasminogen activator (uPA) gene and plasminogen activator inhibitor (PAI)-1	Genetic polymorphisms of uPA gene. At least one 5G allele or 4G/4G genotype of PAI-1	Combination of uPA system gene polymorphisms and betel nut and tobacco consumption was related to the risk of oral cancer, while patients suffering from oral cancer with at least one 5G allele of PAI-1 gene had a low risk for the development of clinical stage III or IV and lymph node metastasis compared with those with 4G/4G homozygotes in Taiwanese population.	144
7	Tumor necrosis factor-α (TNF-α)	TNFA genetic variants (−308G>A and −238G>A)	G allele and G/G genotype at TNFA −308 were associated with increased risk of cancer as compared to those with A allele or A/A-G/A genotypes. In addition, G allele and G/G genotype at TNF-α −238 were associated with a borderline but statistically significant increased risk oral and pharyngeal squamous cell carcinoma (OPSCC) in Taiwanese population. Interactions between combined genotypes and smoking status were also found to contribute to risk of BQ-related OPSCC.	145
8	Metallothionein 1 (MT-1)	rs8052394, rs11076161, rs8052334, rs964372, rs7191779 and rs708274 genotypes of MT-1	Individuals within Taiwanese population who inherited the MT-1 rs11076161 AA, rs964372 CC, and rs7191779 CC genotypes experienced significant protection against OSCC, whereas individuals carrying the MT-1 rs8052394 An allele seemed exposed to higher risk.	146
9	N-acetyl transferase 2 (NAT-2)	Genetic polymorphism in NAT-2 resulting in slow NAT-2 acetylation haplotypes	The genotypic and allelic type of T341C and C481T in NAT-2 are associated with the risk of OPSCC in Taiwanese population.	147
10	Glutathione-S-transferase (GST) genes	Polymorphism of GSTT1 gene	GSTT1 null genotype was found to be a significant risk factor for oral as well as gastric cancer in tobacco and BN associated cancer patients from Assam region of NE India.	148
11	Microsomal epoxide hydrolase 1 (EPH1)	139His/Arg genotype and 139Arg/Arg genotype	The 139His/Arg genotype was a significant risk factor for esophageal cancer in tobacco chewers and BQ chewers, while patients with the 139Arg/Arg genotype were at significantly higher risk for developing a well differentiated and moderately differentiated grade of tumor in India.	149
12	Lysyl oxidase gene, LOX	G to A polymorphism at nucleotide 473 causing a non-conservative Arg158Gln change in the LOX amino acid sequence	The South Asian male patients of OSF older than 50 years had increased Arg158Gln in LOX.	150
13	MDM2	Single nucleotide polymorphism in the MDM2 promoter (SNP 309)	The MDM2 SNP 309 GG genotype with mutated p35 contribute to early onset of both sporadic and hereditary malignancies in Taiwanese patients of BN associated OSCC.	152
and/or COX-2 expression displayed a significantly worse disease-associated survival than contrast groups. This study thus revealed that BN-modulated vimentin expression enhanced the progression of head and neck carcinoma [170]. In another study, OECM-1 and Fadu cells developed a fibroblastoid morphology and there of head and neck carcinoma [170]. In another study, OECM-1 appeared that there is conclusive evidence to support a role of increased expression of vimentin in BN associated carcinogenesis [170,171]. Involucrin is a key component of the cornified envelope and a differentiation marker of keratinocytes. Non-toxic BNE treatment of normal human oral keratinocyte (NHOK) was reported to induce a downregulation of involucrin and disruption of involucrin distribution and activation of AKT as well as upregulation of COX-2. The BNE associated downregulation of involucrin through AKT pathway could underlie the BN-associated epithelial pathogenesis [172].

11. BETEL NUT IN APOPTOSIS AND AUTOPHAGY

Autophagy is a regulated self cannibalism, classified as type II programmed cell death, and is preceded by the inhibition of the mammalian target of rapamycin (mTOR). The hallmarks of autophagy are the cleavage of the precursor form of microtubule associated protein 1 light chain 3 (LC3-I) (molecular

#	Gene/region	Genetic polymorphism(s)	Effect(s)	Reference
14	XRCC4 intron 3	Ins/del variant	In smoker and BQ chewer groups, the XRCC4 intron 3 deletion variants exhibited 2.57- and 3.03-fold higher risks than the insertion genotype, respectively, in Taiwanese population	153
15	Cyclooxygenase (COX)	Polymorphisms of COX-2 –765G>C	COX-2 –765C allele vs. –765G/G genotype was a protective factor against OSCC development but was a risk factor for malignant potential of OSF in Taiwanese population	154
16	Matrix metallo-proteinase-9 (MMP-9) promoter	1562 C-to-T polymorphism	Enhanced OSCC risk in young Taiwanese male BN chewers	155
17	Matrix metallo-proteinase-3 (MMP-3) promoter	Insertion/deletion (~1171 5A->6A) polymorphisms	5A genotype polymorphism - enhanced risk of OSF but not OSCC among male Asian BN chewers	156
18	Nf-κB1 promoter	Insertion/deletion polymorphism (~94 ins/del ATTG) in Nf-κB1 promoter	NfκB1 insertion and HO-1 L alleles – significantly enhanced risks for different subsets of OSCC in male Asian BN chewers	157
19	DNA repair genes XRCC1 and XPD	Polymorphisms Arg194Trp, Arg280His, and Arg399Gln of the XRCC1 gene and Lys751Gln of the XPD gene	Variant allele of XRCC1 399 codon and XPD – enhanced risk of OC among South Indian BQ chewers and smokers	158
20	Heme oxygenase-1 (HO-1)	Polymorphisms in a (GT)n microsatellite repeat in HO-1 promoter in short (S), medium (M) and long (L) alleles	Longer (GT)n repeat allele L – higher risk of BN related OSCC; (GT)n repeat allele 5 - may be protective for OSCC in Asian population	159
21	Cytochrome gene CYP2A6	CYP2A6*4C mutation-gene deletion type of polymorphism	Deficient CYP2A6 activity due to deletion – reduced risk of oral cancer risk in Sri Lankan BQ chewers	160
22	Cytochrome gene CYP1A1	CYP1A1 A/G genotype (Ile/Val) and G/G genotype (Val/Val) in exon 7	CYP1A1 exon 7 containing G allele - enhanced risk for OSCC and oral precancerous lesion in Chinese BN chewer and smoker	161
23	Collagen related genes: Collagen 1A1 and 1A2 (COL1A1 and COL1A2), Collagenase-1 (COLase), transforming growth factor β1 (TGF-β1), Lysyl oxidase (LYOXase), and Cystatin C (CST3)	Polymorphisms of six collagen related genes, COL1A1, COL1A2, COLase, TGF-β1, LYOXase and CST3	Multigenic mechanisms involving the collagen related genes enhance susceptibility to OSF among Taiwanese BN chewers	162
24	Tumor necrosis factor-α (TNF-α)	Bi-allelic promoter region (~308) polymorphism on the TNF-α gene	The high production allele, TNF2 - significantly lower among individuals with OSF in Taiwanese population	163
25	Glutathione-S-transferase genes GSTM1 and GSTT1	GSTM1 and GSTT1 null genotypes (GSTM1*2 and GSTT1*2)	Null genotypes of either or both GSTM1 and GSTT1 - enhanced risk of development of leukoplakia following exposure to tobacco with or without BQ in South Indian population	164
26	Glutathione-S-transferase genes GSTM1 and GSTT1	Genetic polymorphism of GSTM1 and GSTT1	Homozygous deletion of GSTM1 gene – enhanced risk for oral cancer, which is further compounded by exposure to cigarette smoke, alcohol, and BQ in Thai population	165

doi:10.1371/journal.pone.0042759.t002
weight = 18 kDa) to the active form LC3-II (molecular weight = 16 kDa) and the emergence of autophagic vacuoles (AV) and acidic vesicles [173]. Liu et al. reported that BNE induced (a) rounding cell morphology and nuclear shrinkage in different types of carcinoma cells, (b) the cleavage of LC3-I, and (c) the emergence of AV and acidic vesicles [173]. On the other hand, arecoline triggered (a) caspase-3 activation, (b) perinuclear chromatin condensation and (c) micronucleation, thus inducing atypical apoptosis. This difference is thought to be due to the ability of BNE, but not arecoline, to inhibit the phosphorylation of the mTOR-Ser2448. Lu et al. reported that BNE treatment induced autophagy among oral cancer cells characterized by LC3-II accumulation, genesis of autophagosomes and the appearance of EGFP-LC3 puncta [173]. Significantly, the blockage of BNE induced autophagy increased the proportion of oral cancer cells undergoing apoptotic death indicating that the eventual induction of autophagy was beneficial to cell survival from BNE induced apoptosis [174]. Transmission electron microscopy (TEM) of liver precancerous nodules induced in Swiss Albino mice upon transgenerational exposure to AEBN revealed enhanced cristolysis of mitochondria and formation of AV [132]. Cristolysis would induce deficiency of oxidative ATP production and inhibition of apoptosis. Moreover, the cells would have to meet their nutritional requirements through autophagy, thus, surviving and proliferating in the face of metabolic stress.

12. BETEL NUT AND MALIGNANT LESIONS

Studies and follow-up programmes conducted over the past three decades indicate that the rate of malignant transformation of pre-cancerous lesions shows a population dependent variability. A study conducted in Karachi, Pakistan (1996-90) on 79 cases of OSCC and 149 hospital controls showed that the risk for developing OC was 19 times higher (95% CI, 4.2–87.7) among cases of OSF than among subjects with no precancerous condition [175]. In a study by Shiu et al. conducted in Taiwan, 60 cases of oral and pharyngeal cancers, including lip, tongue, gum, mouth floor, buccal palate, oropharynx and hypopharynx cancers were evaluated by linking a retrospective leukoplakia cohort consisting of 435 patients recruited from hospitals between 1988 and 1998 to a population cancer registry [176]. The risk for malignant transformation increased with time, particularly for BN chewers. Using a Weibull survival model, the adjusted hazard ratio for chewing BN without tobacco was 4.6 (95% CI, 1.3–16.9) after matching for age and sex.

Thus, the presence of pre-cancer lesions appears to correlate well with malignant transformation and eventual development of OC (Figure 5C). Besides OC, individuals who chewed BN or BQ without or with tobacco also reported other aerodigestive cancers. From 1997 to 1998, a hospital based case-control study on oesophageal cancer in Assam, India, included 502 cases (358 men, 144 women) and 994 controls (706 men, 288 women) who were attendants to cancer patients. The risk for oesophageal cancer increased with increasing frequency of chewing BQ without or with tobacco and increased substantially when the chewing habit had lasted 20 years or more. A dose–response relationship was also observed for age at starting the habit, with a higher risk for starting at a younger age [177].

13. EFFORTS TO CONTROL USE OF BETEL NUT, BETEL QUID AND ADDITIVES, INCLUDING PAAN MASAL AND GUTHKA

It is a scientifically established fact that BN or BQ without or with various additives, including tobacco products, are clearly associated with increased risk of HNC, especially OC. In spite of this, it has remained a challenge for governments and policy makers to contain its usage and reduce the deleterious effects of BN or BQ on population due to its socio-cultural heritage and addictive nature. Global data on efforts to control usage of BN or BQ and its additives strongly suggest that no single strategy is likely to succeed in achieving the desired level of control on BN or BQ consumption. A concerted effort involving radical measures is required in this direction. It may involve health care professionals, media, policy makers, law enforcing agencies and the community at large. Even though no unified guideline exists due to variation in the socio-cultural groups, it appears practical to make sustained behavioral interventions, especially adolescents and young adults, for reducing the use of BN or BQ without or with additives. Lack of scientific information on its deleterious effects on health is conspicuous by its absence. In contrast, various advertisements try to glorify the opposite in order to allure most vulnerable section of the society, the adolescents and young adults. Once addicted, they become a long term consumers of BN or BQ. Media may play a very important role in this effort due to its widespread reach in all strata of the society, particularly the lower strata, which appears to be deeply affected by this practice. Governmental and non-governmental health care professionals may routinely assess and record the usage pattern in the society and rigorously inform the individuals, groups of people or patients about its potential hazard. Chang et al. reported that an oral screening program conducted in a tertiary medical centre for detection of oral lesions and oral cancer was effective. The group suggests that individuals aged ≥40 years or who are habitual cigarette smokers, alcohol consumers, and BQ chewers should receive oral screening regularly so that potential oral cancer can be detected as early as possible [178].

Unnecessary glorification of the BN or BQ products in media must be stopped by enacting appropriate laws. Visual representation of the diseases, particularly OC, caused by the use of these products and appropriate warning signs may be effective in this campaign. The industrial policies, including taxation, need revisit in order to limit such industrial activities to discourage marketing of such products. There is need to have strong political commitment towards this aim. Many countries have made some headway in this direction. A brief summary of such efforts is listed below:

(a) India. On 1 August 2002, the Commissioner for Food and Drug Administration and Food (Health) Authority, Maharashtra State, issued a gazette notification banning the manufacture, sale and storage of guthka and paan masala or any similar product containing or not containing tobacco. In India, a warning label is now mandatory on packets of commercial BN and tobacco products, but there are no regulations about the size of the letters. Several states are at various stages of passing laws to ban guthka or are in court after being challenged by the industry. A recommendation that guthka should be banned nationwide has been made to the Government of India by the Central Committee on Food Safety [9]. Recently, a ban on using plastic packing was passed by the Supreme Court of India with effect from March 2011 and is being implemented at the time of writing this review (http://www.tobaccojournal.com/Cheewing_tobacco_plastic_pouches_banned.50432.0.html). On the occasion of World No-Tobacco day on the 31st May 2012, the state of Bihar joined two other states (Kerala and Madhya Pradesh) in banning manufacture, sale, distribution and sale of any form of tobacco and nicotine containing paan masala and guthka for a period of 1 year to begin with (http://indiatoday.intoday.in/story/bihar-bans-sale-of-guthka-for-a-year/1/198289.html).
(b) North America. BN products are used as an alternative to traditional tobacco products. In the USA, the sale of tobacco products has been banned in some places, but there are no specific laws regulating the sale of BN products.

(c) European Union. Within the European Union, the sale of tobacco products is regulated by the Tobacco Products Directive. The directive excludes chewing tobacco and bans the sale of BN products, even when mixed with smokeless tobacco. However, there are no specific laws regulating or restricting the sale of BN products in Sweden, where there is legislation banning the sale of tobacco products for oral use. However, there are no specific laws regulating or banning the sale of BN products, even when mixed with smokeless tobacco, as chewing tobacco is excluded from the directive [9].

(d) United Kingdom. In the United Kingdom, there is no law to regulate the import or sale of products containing BN. Presently numerous BN preparations, with or without tobacco, are commercially available in shops. The Department of Trade and Industry classifies these products as sweets. Labelling and a list of ingredients on the packaging are sometimes non-existent. Several studies have shown that in most outlets the sales are unrestricted to minors and children. Authorities have warned about OSF or potential addiction [9].

(e) Other Countries. In the late 1970s, the Public Services of Papua New Guinea issued a ban on BN chewing in government offices. Possession of BN in the Californian public school system is grounds for suspension. In Singapore, spitting in public places can lead to a fine, indirectly discouraging the practice of BN and BN chewing [9].

Conclusions

BN and other products derived from it are widely used as a masticatory among various communities, and in several countries across the world, as a socially endorsed habit [1–11]. Over a long period, several additives got added to a simple BN preparation, thus, creating the BN and its components, which are considered to be a risk factor for oral cancer. The addictive nature of BN and/or the additives that make it BN, are essentially responsible for its rampant usage among individuals [19–22]. The popularity has lead to industrial preparation of convenient substitutes of the BN/BQ in the form of paan masala, gutkha and the likes in several countries. This review reveals that BN has far reaching consequences on the general health of the masticator, especially in context with the oral health of the users [23–56]. Extensive studies by several workers over the years conclusively prove the role of BN, and its components, primarily the alkaloid arecoline, as a carcinogen [55–61]. These substances not only have general mutagenic, cytotoxic and genotoxic properties, but are also intricately involved in enzymatic, molecular and genetic mechanisms that result in the development of carcinogenesis at various sites, specifically in the oral cavity [58–150]. More research in clearly required to fill many existing gaps in the understanding of the seemingly highly complex interactions of BN with the life process and its manifestation in HNC, particularly OC. Control over human consumption of BN and BQ without or with additives, including tobacco, or its convenient commercial substitutes, such as gutkha and paan masala, is proving to be difficult because the habit is not associated with any social stigma and taboo. In fact, it is a way round in which this practice has largely been given social, religious or other sanctions in different regions of the world. Hence, strong multifaceted intervention is required to discourage or control the habit of BN/BQ mastication. Firstly, legislation against open sale and use of such products should be stricter and more states and countries should bring out such legislations sooner than later. Secondly, public awareness should be created regarding the harmful effects of these products among all sections of society, particularly among children, since the habit starts early in the majority of cases. Lastly, attempts need to be made for harm-reduction of BN/BQ/commercial substitutes. Multi-institutional transnational case controlled studies are also required in order to establish the exact etiopathogenesis and molecular changes of diseases caused by BN/BQ and/or its constituents.

Acknowledgments

RNS thanks his past students and coworkers whose works may have been used in the review. The authors also thank Dr. Vedant Pahlajani for help in acquisition of clinical pictures and Mr. Pinkkiphorlai Malingiang for excellent artwork and photography.

Author Contributions

Conceived and designed the experiments: RNS RM YC. Performed the experiments: RNS RM YC. Analyzed the data: RNS. Contributed reagents/materials/analysis tools: RNS RM YC KA. Wrote the paper: RNS YC RM KA.

References

1. Burnell AC, Yule HA (1903) Hobson-Johnson: A Glossary of Colloquial Anglo-Indian Words. (Ed.) William Crooke.
2. Sharan RN, Choudhury Y (2010) Betel nut and susceptibility to cancer. In: Roy D, Dorak MT, editors. Environment Factors, Genes, and the Development of Human Cancers. Springer Science+Business Media. Part 3, 401–420.
3. Warnakulasuriya S (2002) Areca nut use: an independent risk factor for oral cancer. Br Med J 324: 799–800.
4. IARC (1985) International Agency for Research on Cancer-Tobacco habits of mainland China. Oral Oncol 43: 958–959.
5. Sharan RN (1996) Association of betel nut with carcinogenesis – A review. Cancer J 9: 13–19.
6. Nair U, Bartsch H, Nair J (2004) Alert for an epidemic of oral cancer due to use of the betel nut substitutes gutkha and paan masala a review of agents and causative mechanisms. Mutagenesis 19: 251–262.
7. Changrai J, Gany F (2005) Areca and its derivatives: a review of agents and causative mechanisms. Mutagenesis 19: 251–262.
8. Reichart PA, Zhang X (2007) Misconceptions related to the areca nut chewing habits of mainland China. Oral Oncol 43: 958–959.
9. IARC (2004) International Agency for Research on Cancer (IARC) – Summaries & Evaluations: Betel-qui and areca-nut chewing IARC Monograph Evaluating Carcinogenic Risk from Chemicals to Humans. Lyon: IARC, 85: p39.
10. Reichart PA, Creuz U, Schiele C (2006) The ‘Skull from Bangkok’: a skull of a betel quid chewer in the anthropological collection of Rudolf Virchow (Berlin). J Oral Pathol Med 35:410–412.
11. Norton SA (1998) Betel: consumption and consequences. J Am Acad Dermatol 38: 81–88.
12. Lee C-H, Ko AM, Warnakulasuriya S, Yin B-L, Sunarjo, et al. (2011) Inter-country prevalence and practices of betel-quid use in south, southeast and eastern Asia regions and associated oral preneoplastic disorders: an international collaborative study by Asian betel-quid consortium of south and east Asia. Int J Cancer. DOI: 10.1002/ijc.25809.
13. Nair J, Olohamma H, Friers M, Croisy A, Blode SV, et al. (1983) Tobacco-specific and betel nut-specific N-nitroso compounds: occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. Carcinogenesis 4: 293–303.
14. Huang P-L, Chi G-W, Liu T-Y (2010) Effects of Areca catechu L. containing procyanidins on cyclooxygenase-2 expression in vivo and in vivo. Food Chem Toxicol 48: 306–313.
40. Tsai CH, Yang SF, Chen YJ, Chu SC, Hsieh YS, et al. (2004) Regulation of

34. Jacob BJ, Straif K, Thomas G, Ramadas K, Mathew B, et al. (2004) Betel quid

31. Pandya S, Chaudhary AK, M Singh, Singh M, Mehrotra R (2009) Correlation

29. Amarasinghe HK, Usgodaarachchi US, Johnson NW, Lalloo R, Warnakula-

27. Angadi PV, Rao SS (2010) Areca nut in pathogenesis of oral submucous

26. Yen AM, Chen SC, Chang SH, Chen TH (2008) The effect of betel quid and

23. Benegal V, Rajkumar RP, Muralidharan K (2008) Does areca nut use lead to

19. Chu NS (2002) Neurological aspects of areca and betel chewing. Addict Biol 7:

18. Winstock A (2002) Areca nut-abuse liability, dependence and public health.

by arecoline in human buccal mucosal fibroblasts

interleukin-6 expression by arecoline in human buccal mucosal fibroblasts is

produced by arecoline correlated to epigenetic regulation in human K-562

oral submucosa fibroblasts in vitro by betel-nut alkaloids. Arch Oral Biol 31: 4509.

keratinocyte inflammation in oral cancer: regulating the prostaglandin E2,

metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and

exchange in mouse bone marrow cells in vivo. Mutat Res 33: 274–277.

Chung-Hung T, Shiu-Fa Y, Yu-Chao C (2007) The upregulation of cytatin C

Oncol 37: 477–492.

Ma, Nikrui S, Moradi L, et al. (2010) Influence of areca nut chewing on the levels

of cancer related antigens. Indian J Cancer 47: 320–323.

oral tobacco to markedly reduce exhalation rates with concomitant epithelial hyperplasia of cheek pouch. Oral Oncol 40: 693–697.

oral cancer: A randomised, controlled clinical trial. Head Face Med 2: 33.

oral tumors in Sri Lanka: a case-control study. Oral Oncol 26: 297–301.

oral submucosa fibroblasts: a possible pathogenesis for oral submucous fibrosis.

oropharyngeal cancer in Taiwan. Br J Cancer 105: 650–660.

oral cancer in South African Indians. S Africa Med J 83: 425–429.

Oral Oncol 37: 477–492.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral epithelial cells by areca nut extract. Oral Oncol 43: 557–562.

oral squamous cell carcinoma in South African Indians. Laryngoscope 113: 425–429.

oral submucous fibrosis. Arch Oral Biol 31: 509–510.

oral squamous cell carcinoma in South African Indians. Int J Cancer 82: 1871–1874.

oral premalignant and malignant lesions at a tertiary level hospital in Allahabad, India. Asia Pacific J Cancer Prev 9: 263–266.

oral submucous fibrosis: An unusual disease. JNJ Dent Assoc 11: 73–76.

oral cancer: a multiple-site carcinogen when ingested in the form of "paan". J Cancer Res Clin Oncol 114: 579–582

oral squamous cell carcinoma: manifestation and localization of their activity. J Cancer Res Clin Oncol 131: 340–346.

oral submucous fibrosis. J Oral Pathol Med 35: 367–383.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral premalignant and malignant lesions at a tertiary level hospital in Allahabad, India. Asia Pacific J Cancer Prev 9: 263–266.

oral submucous fibrosis. J Oral Pathol Med 33: 274–277.

oral submucous fibrosis. Cancer Lett 139: 59–65.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: An unusual disease. JNJ Dent Assoc 11: 73–76.

oral squamous cell carcinoma in South African Indians. Laryngoscope 113: 425–429.

oral submucous fibrosis: a randomised, controlled clinical trial. Head Face Med 2: 33.

oral cancer: A randomised, controlled clinical trial. Head Face Med 2: 33.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral epithelial cells by areca nut extract. Oral Oncol 43: 557–562.

oral squamous cell carcinoma in South African Indians. Laryngoscope 113: 425–429.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral squamous cell carcinoma: manifestation and localization of their activity. J Cancer Res Clin Oncol 131: 340–346.

oral submucous fibrosis. J Oral Pathol Med 35: 367–383.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral squamous cell carcinoma in South African Indians. Laryngoscope 113: 425–429.

oral squamous cell carcinoma in South African Indians. Laryngoscope 113: 425–429.

oral squamous cell carcinoma in South African Indians. Laryngoscope 113: 425–429.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.

oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol 37: 101–104.
94. Sharan RN (1994) Biochemical investigation of carcinogenic potency of betel
91. Tsai YS, Lin CS, Chiang SL, Lee CH, Lee KW, et al. (2011) Areca nut induces
88. Chang YC, Hu CC, Lii CK, Tai KW, Yang SH., et al. (2001) Cytotoxicity and
87. Tsai YS, Lee KW, Huang JL, Liu YS, Juo SH et al. (2008) Arecoline, a major
85. Chang YC, Hu CC, Tseng TH, Tai KW, Lii CK, et al. (2001) Synergistic
84. Jeng JH, Lan WH, Hahn LJ, Hsieh CC, Kuo MY (1996) Inhibition of the
79. Ho TJ, Chiang CP, Hong CY, Kok SH, Kuo YS, et al. (2000) Induction of the
78. Yang CY, Meng CL, van der Bijl P, Lee HK (2002) The effect of betel nut
77. Liu SY, Liu YC, Huang WT, Huang GC, Chen TC, et al. (2007) Up-
75. Sharan RN, Wary KK (1992) Study of unscheduled DNA synthesis following
81. Kumpawat K, Deb S, Ray S, Chatterjee A (2003) Genotoxic effect of raw
62. Lin CC, Chang MC, Chang HH, Wang TM, Tseng WY et al. (2009) Areca
79. Wu¨rzburg: Universita¨tsdruckerei H. Stu¨rtz AG. pp 165.
75. Sharan RN, Wary KK (1992) Study of unscheduled DNA synthesis following
69. Ho TJ, Chiang CP, Hong CY, Kok SH, Kuo YS, et al. (2000) Induction of the
61. Pampusung K, Deb S, Ray S, Chatterjee A (2003) Genotoxic effect of raw
82. Lin CC, Chang MC, Chang HH, Wang TM, Tseng WY et al. (2009) Areca
83. Liu SY, Liu YC, Huang WT, Huang GC, Chen TC, et al. (2007) Up-
74. Sundquist K, Liu Y, Nair J, Bartsch H, Arivson K, et al. (1989) Cytotoxic and
genotoxic effects of areca nut-related compounds in cultured human buccal
epithelial cells. Cancer Res 49: 5294–5298.
75. Sharan RN, Wary KK (1992) Study of unscheduled DNA synthesis following exposure of human cells to arecoline and extracts of betel nut in vitro. Mutat Res 278: 271–276.
76. Lu S, Chang K, Liu C, Tseng Y, Lu H, et al. (2006) Ripe areca nut extract induces G1 phase arrests and senescence-associated phenotypes in normal human oral keratinocytes. Carcinogenesis 27: 1273–1294.
77. Chang YC, Hu CC, Lii CK, Tai KW, Yang SH., et al. (2001) Cytotoxicity and arecoline-induced cytotoxicity in human buccal mucosal fibroblasts. J Oral Pathol Med 30: 458–463.
78. Yang CY, Meng CL, van der Bijl P, Lee HK (2002) The effect of betel nut extract on cell growth and prostaglandin D2, E2, and PGE2 synthase in human epidermoid carcinoma cells. Prostagland Other Lipid Mediat 67: 181–195.
79. Wu¨rzburg: Universita¨tsdruckerei H. Stu¨rtz AG. pp 165.
80. Wu HT, Ko SY, Fong JH, Chang KW, Liu TY, et al. (2009) Expression of phosphorylated Akt in oral carcinogenesis and its induction by nicotine and alkaline stimulation. J Oral Pathol Med 38: 206–213.
81. Ciceanu J (2008) The potential role of Akt phosphorylation in human cancers. Int J Biol Markers 23: 1–9.
82. Lin CC, Chang MC, Chang HH, Wang TM, Tseng WY et al. (2009) Areca
83. Liu SY, Liu YC, Huang WT, Huang GC, Chen TC, et al. (2007) Up-
84. Jeng JH, Lan WH, Hahn LJ, Hsieh CC, Kuo MY (1996) Inhibition of the
85. Chang YC, Hu CC, Tseng TH, Tai KW, Lin CK, et al. (2001) Synergistic effects of nicotine on arecoline-induced cytotoxicity in human gingival fibroblasts. J Oral Pathol Med 30: 458–463.
86. Lee P, Chang M, Chang W, Wang T, Yang W (2006) Prolonged exposure to arecoline arrested human KB epithelial cell growth: Regulatory mechanisms of cell cycle and apoptosis. Toxicol 220: 81–90.
87. Tsai YS, Lee KW, Huang JL, Liu YS, Joo SH et al. (2000) Arecoline, a major areca alkaloid, inhibits G1 phase and induces cell cycle arrest in human gingival fibroblasts by arecoline, a major areca alkaloid, in vitro. J Oral Pathol Med 29: 371–375.
88. Chang YC, Hu CC, Lii CK, Tai KW, Yang SH., et al. (2001) Cytotoxicity and arecoline mechanisms in human gingival fibroblasts in vitro. Clin Oral Invest 5: 51–56.
89. Chiang S, Wang S, Wang Y, Chiang H, Chen P, et al. (2007) Characterization of arecoline-induced effects on cytotoxicity in normal human gingival fibroblasts by arecoline, a major areca alkaloid. J Oral Pathol Med 36: 1043–1049.
90. Desai SS, Ghaisas SD, Jakhdi SD, Bhade SV (1996) Cytogenetic damage in exfoliated oral mucosal cells and circulating lymphocytes of patients suffering from precancerous lesions. Cancer Lett 109: 9–14.
91. Rooban T, Mishra G, Elizabeth J, Ranganathan K, Sarawathri TR (2006) Effect of habitual areca nut chewing on resting whole mouth salivary flow rate and pH. Indian J Med Sci 60: 95–105.
92. Desai SS, Ghaisas SD, Jakhdi SD, Bhade SV (1996) Cytogenetic damage in exfoliated oral mucosal cells and circulating lymphocytes of patients suffering from precancerous lesions. Cancer Lett 109: 9–14.
126. Thomas S, Breman J, Martel G (1994) Mutations in the conserved regions of p53 are infrequent in betel-associated oral cancers from Papua New Guinea. Cancer Res 54: 3588–3593.

127. Ranasinghe AW, Warnakulasuriya KAAS, Johnson NW (1993) Low prevalence of expression of p53 oncogene in oral carcinomas from Sri Lanka associated with betel and tobacco chewing. Eur J Cancer B Oral Oncol 29: 147–150.

128. Ihsan R, Devi TR, Yadav DS, Mishra AK, Sharma J, et al. (2011) Investigation on the role of p53 codon 72 polymorphism and interactions with betel quid, and alcohol in susceptibility to cancers in a high-risk population from North East India. DNA Cell Biol 30: 163–171.

129. Kauhal M, Chatterpadiya I, Phukan R, Parvathyaja J, Mahanta J, et al. (2010) Contribution of germ-line BRCA1 gene in alterations to risk of familial esophageal cancer in a high-risk area of India. Dis Esophagus 23: 71–75.

130. Choudhury Y, Sharan RN (2009) Altered p53 response and enhanced transgene expression of cancer risk upon exposure to mice of betel nut. Environ Toxicol Pharmacol 27: 198–203.

131. Choudhury Y, Sharan RN (2010a) Altered BRCA1 and BRCA2 responses and transgeneration transmission of carcinogenic risk upon exposure of mice to betel nut. Environ Toxicol Pharmacol 29: 147–150.

132. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human cancer. Carcinogenesis 19: 409–414.

133. Huang JS, Ho TJ, Chiang CP, Kuo YS, et al. (2001) MDM2 mutation of BRCA1 gene in mice exposed chronically and transgenerationally to aqueous extract of betel nut (AEBN), Environ Toxicol Pharmacol 27: 127–130.

134. Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Gene Dev 24: 1580–1589.

135. Ranasinghe AW, Warnakulasuriya KAAS, Johnson NW (1993) Low frequency of p53 codon 72 polymorphism and interactions with betel quid, and alcohol in susceptibility to cancers in a high-risk population from North East India. DNA Cell Biol 30: 163–171.

136. Choudhury Y, Sharan RN (2010b) Ultrastructural alterations in liver of mice exposed chronically and transgenerationally to aqueous extract of betel nut: Implications in betel-nut induced carcinogenesis. Micros Res Tech 73: 330–339.

137. Shew M, Chigushi G, Yamada S, Nakajima T, Maung KK, et al. (2001) P53 and MDM2 co-expression in tobacco and betel-chewing associated oral squamous cell carcinomas. J Med Dent Sci 48: 113–119.

138. Huang JS, Ho TJ, Chiang CP, Kok SH, Yen YS, et al. (2001) MDM2 expression in quid-chewing-associated oral squamous cell carcinomas in Taiwan. J Oral Pathol Med 30: 53–58.

139. Manfred JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Gene Dev 24: 1580–1589.

140. Chiu CJ, Chiang CP, Chiou KY, Lin Y (1998) Tamoxifen and human cancer: a review. Crit Rev Food Sci Nutr 38: 421–464.

141. Weng CJ, Hsieh YH, Chen MK, Tsai CM, Lin CW, et al. (2012) Survivin SNP-carcinoegen interactions in oral cancer. J Dent Res 91: 338–363.

142. Chou MY, Chang YC, Chang YH, Lee TC, Chang MY, Lin CJ, et al. (2004) Polymorphism in hOGG1 single nucleotide polymorphism in XRCC4 gene is associated with oral cancer susceptibility in Taiwanese oral cancer patients. Oral Oncol 40: 765–772.

143. Yang CY, Meng CL, van der Bijl P, Lee HK (2002) The effect of betel nut extract upregulates vimentin by activating PI3K/AKT signaling in oral keratinocytes. J Oral Pathol Med 31: 57–69.

144. Tang DW, Lin SC, Chang KW, Chung ML, Chen HM, Hahn LJ, et al. (2006) SNP A>C of XPD and its molecular mapping in Indian oral cancer. Oral Oncol 42: 350–352.

145. Chiu CJ, Chang CP, Hahn LJ, Hsieh LL, Chen CJ (2002) Polymorphism of cytochrome P4501A1 and susceptibility to oral squamous cell carcinoma and oral precancer lesions associated with smoking/betel use. J Oral Pathol Med 31: 505–511.

146. Chiu CJ, Chang CP, Hahn LJ, Hsieh LL, Chen CJ (2002) Polymorphism of hOGG1 single nucleotide polymorphism and interactions with tobacco, betel quid, and alcohol in susceptibility to cancers in a high-risk area of India. J Dent Res 80: 2035–2039.

147. Nair UJ, Nair J, Mathew B, Bartsch H (1999) Glutathione S-transferase M1 and T1 null genotypes as risk factors for oral leukoplakia in ethnic Indian betel quid/tobacco chewers. Carcinogenesis 20: 743–749.

148. Kriethubdhew S, Sitphlung H, Au WW (2001) Genetic and environmental interactions on oral cancer in Southern Thailand. Environ Mol Mutagen 37: 111–116.

149. Fang DW, Lin SC, Chang KW, Chi CW, Chang CS, et al. (2003) Elevated expression of cyclooxygenase-2 in oral squamous cell carcinoma—evidence for COX-2 induction by areca quid ingredients in oral keratinocytes. J Oral Pathol Med 32: 522–529.

150. Tsai CH, Chou MY, Chang YC (2003) The upregulation of cyclooxygenase-2 expression in human buccal mucosal fibroblasts by arecoline: one possible role in the pathogenesis of oral squamous fibrosis. J Oral Pathol Med 32: 146–153.

151. Yang CY, Meng CL, van der Bijl P, Lee HK (2002) The effect of betel nut extract on cell growth and prostaglandin endoperoxide synthase in human epidermoid carcinoma cells. Prostagland Other Lipid Mediat 67: 181–195.

152. Tseng YH, Yang CC, Lin SC, Cheng CC, Lin SH, et al. (2011) Areca nut extract upregulates vimentin by activating P53/AKT signaling in oral squamous carcinoma. J Oral Pathol Med 40: 169–166.

153. Tseng YH, Chang KW, Yang CC, Liu CJ, Kao SY, et al. (2012) Association between areca-stimulated vimentin expression and the progression of head and neck cancers. Head Neck 34: 215–233.

154. Liu SY, Lin MH, Hsu YR, Shih YY, Chang WF, et al. (2008) Arecoline and the 30–100 kDa fraction of areca nut extract differentially regulate mTOR and respectively induce apoptosis and autophagy: a pilot study. J Biomed Sci 15: 823–831.

155. Loo HH, Kao SY, Liu TY, Lin ST, Huang WP, et al. (2010) Areca nut extract inhibits 1 gene polymorphisms and agyraxoporin factor leading role to autophagy in oral cancer cells. Autophagy 6: 725–737.

156. Merchant A, Husain SSM, Hossain M, Fikree FF, Pitiphat W, et al. (2000) Contribution of germ-line BRCA2 sequence alterations to risk of familial breast and ovarian cancer. Hum Mol Genet 9: 2083–2089.

157. Shiou MN, Chen THH, Chang SH, Hahn LJ (2000) Risk factors for leukoplakia and malignant transformation to oral carcinoma: A leukoplakia cohort in Taiwan. Br J Cancer 82: 1871–1874.

158. Kamrani Z, Marzban F, Amiri A, Sarrafzadeh A, Malakhshadzadeh A, et al. (2010a) Altered BRCA1 and BRCA2 responses and transgeneration transmission of carcinogenic risk upon exposure of mice to betel nut. Environ Toxicol Pharmacol 29: 147–150.

159. Shanbhag VS, Bulsara MR, El-Hibri M, Hendrich B, Sidransky D (2000) P53 and wild-type p53 3′-untranslated region polymorphisms in the oral cavity. Carcinogenesis 21: 1365–1370.

160. Chang KW, Lee TC, Yeh YF, Chung MY, Lin CJ, et al. (2004) Polymorphism in hOGG1 single nucleotide polymorphism in heme oxygenase-1 is associated with the risk of oral squamous cell carcinoma occurring on male area chewers. Br J Cancer 88: 1551–1555.

161. Topcu Z, Chiba A, Fujieda M, Shibata T, Arivryoshi N, et al. (2002) CYP2A6 gene deletion reduces oral cancer risk in betel quid chewers in Sri Lanka. Carcinogenesis 23: 595–598.

162. Chiu CJ, Chiang CP, Chang ML, Chen HM, Hahn LJ, et al. (2001) Association between genetic polymorphism of tumor necrosis factor-alpha and risk of oral squamous fibrosis, a pre-cancerous condition of oral cancer. J Dent Res 80: 2035–2039.

163. Sung ONg 18: 925–917.

164. Chiu CJ, Chiang CP, Hahn LJ, Hsieh LL, Chen CJ (2002) Polymorphism of hOGG1 single nucleotide polymorphism and susceptibility to betel quid-induced oral squamous carcinoma. Oral Oncol 38: 577–582.

165. Tyrrell DJ (2000) Risk factors for oral cancer. Br J Cancer 82: 1871–1874.
177. Phukan RK, Ali MS, Chetia CK, Mahanta J (2001) Betel nut and tobacco chewing potential risk factors of cancer of oesophagus in Assam, India. Br J Cancer 85: 661–667.

178. Chang IH, Jiang RS, Wong YK, Wu SH, Chen FJ (2011) Visual screening of oral cavity cancer in male population: experience from a medical center. J Chin Med Assoc 74: 561–566.