Introduction

- The LHC’s future is one of a dramatic increase in luminosity rather than energy
 - Large amount of collision data with complex events expected in future LHC running
 - High-scale physics can lead to observable, but subtle, kinematic effects in (HL-)LHC data

- We want to make full use of this data by incorporating and correlating all of the available information within each event
 - Methods that employ machine learning are widely used in this context
 - Alternative: *Matrix Element Method* (MEM)
Matrix Element (ME) Method

Ab initio calculation of an approximate probability density function \(P_\xi(x|a) \) for an event with observed final-state particle momenta \(x \) to be due to a process \(\xi \) with theory parameters \(a \)

\[
P_\xi(x|\alpha) = \frac{1}{\sigma_\xi(\alpha)} \int d\Phi(y_{\text{final}}) \, dx_1 \, dx_2 \, \frac{f(x_1)f(x_2)}{2sx_1x_2} \, |M_\xi(y|\alpha)|^2 \, \delta^4(y_{\text{initial}} - y_{\text{final}}) \, W(x, y)
\]

Dynamics from QFT → Correlations from physics

\(P_\xi(x|a) \) can be used in a number of ways to search for new phenomena at particle colliders

Sample Likelihood
(e.g. \(a \) measurements via max. likelihood)

\[
L(\alpha) = \prod_i \sum_k f_k P_{\xi_k}(x_i|\alpha)
\]

Neyman-Pearson Discriminant
(e.g. process search, hypothesis test)

\[
p(S|x) = \frac{\sum_i \beta_{S_i} P_{S_i}(x|\alpha_{S_i})}{\sum_i \beta_{S_i} P(x|\alpha_{S_i}) + \sum_j \beta_{B_j} P(x|\alpha_{B_j})}
\]

For the purpose of this talk: \(P_\xi(x|a) \) is a function that can be computed numerically and provides physics-driven information useful for measurements, hypothesis tests and searches
Matrix Element Method: Pros and Cons

- The ME Method has been used for many physics results from collider experiments
- The ME Method has several advantages over machine learning methods
 - Does not require training
 - Incorporates all of the available final state kinematic information, including correlations
 - Has a clear physical meaning in terms of transition probabilities within QFT
- The main limitation of the ME method: \textit{computationally intensive}
 - E.g. calculating $P_{E} (\mathbf{x} |\mathbf{a})$ for the process:

 $pp \rightarrow t\bar{t}H \rightarrow W^{+}bW^{-}bb \rightarrow \ell\nu + 6j$

 involves high-dimensional integration and can take minutes per event [2]

From Ref. [1]
The use of deep learning for fast and sustainable Matrix Element method calculations was first proposed in [3] (c.f. [4], [5], [6]).

MEM Model Development

Simulated events (x) → **Model Development** → Processes of interest (ξ, α) → **Learn Map**: $x \rightarrow P_\xi(x|\alpha)$ → DeepMEM models for each process of interest (ξ, α)

Use in Analysis

DeepMEM models for signal and background processes → Optimization, systematics, sensitivity, … → **Final Pass** → Full MEM calculations
Current ME Method Calculation Pipeline

- **LHE (MadGraph5)**
- **HEPMC (Pythia)**
- **Delphes**
- **ROOT**
- **MoMEMta**

- **MadGraph5**
- **Pythia**
- **LHAPDF**
- **Python3**

Particle level/interaction simulation

Detector level simulation

Delphes/ROOT files

Event selection

Full MEM calculations

ROOT TTrees

- **34 Minutes (200 workers)**
- **45 Minutes (200 workers)**

For 300k events of $p + p \rightarrow l + \bar{l} + X$

	Parallel Time	Serial Time
Entire Pipeline	45 Minutes	150 Hours
MoMEMta	34 Minutes	113 Hours

Using the BlueWaters Supercomputer @ UIUC

Dockerized Container Data Flow
DeepMEM Objectives

- Address challenges of the ME Method while retaining the benefits:
 - Retain the transparency and accuracy of the ME method calculations, while at the same time dramatically reducing their computational time.
 - Exploit Deep Neural Networks (DNNs) which are arbitrary function approximators that scale well with data → DeepMEM Ref [8]
 - Replace the calculations performed by ME method frameworks like MadWeight and MoMEMta with DNNs trained to learn these calculations (i.e. learn maps such as: $x \mapsto P_\xi (x|\alpha)$ or $x \mapsto \frac{P_{\xi_1} (x|\alpha)}{P_{\xi_2} (x|\alpha)}$).
 - Final calculations used in an analysis would be performed using the full pipeline for publication-quality accuracy → DeepMEM expedites calculations during research and development, and for quick studies.
- Make MEM pipeline open and easy to use (e.g. via containerization) toward MEMaaS [3] & FAIR AI models.
MEM Pipeline using DNN Approximations

Using the BlueWaters Supercomputer @ UIUC

For 300k events of $p + p \rightarrow l + \bar{l} + X$

	Parallel Time	Serial Time
Full Pipeline	45 Minutes	150 Hours
MoMEMta	34 Minutes	113 Hours

	Inference Time	Training Time†
DeepMEM	2 Minutes	18 Mins*

* Trained for 100 epochs † Training needs to be done only once for a particular final state
As a proof of principle, we studied the simple Drell-Yan process:

\[pp \rightarrow \ell + \ell + X \]

Parsing the ROOT Trees produced after event selection, we use the 4-momentum of the final state particles and MET.

Mass is a very good discriminant, so we keep the neural network blind to mass by excluding it (following the approach of [6]).

- **Inputs:**
 - \(p_T, \eta, \phi \) of leptons & jets
 - Magnitude, \(\phi \) of MET
 - \(\rightarrow 14 \) input parameters

- **Outputs:**
 - Log-transformed MoMEMta weight values for each hypothesis

Final dataset contains \(\sim 300k \) events
Multiprocessing Data Loader

- PyTorch built-in Data Loader is designed for image/computer vision data - loads individual data based on use mappings
 - Inefficient for contiguous, tabular data
- No out-of-the-box Data Loader that can address the issues
- Data Managing and Loading Module
 - Parse ROOT Trees based on user input
 - Use Python Multiprocessing library constructs for data “cache”
 - Spawn processes using PyTorch to load data from the cache
 - Load next chunk of data and replace “cache”
- We get significantly faster data loading for our application than built-in Data Loader

Load times are for 100 epochs of the MoMEMtta test dataset
In-Built
Our Implementation
Network Architecture

- We use a fully-connected Deep Neural Network with 5 deep (200 nodes) layers
- Adam optimizer with learning rate = 0.001
- We split the data 8:1:1 for training, validation, and testing purposes
- The output is the approximate transformed MoMEMta weights for N ~ 270k training and validation events
- The network is trained for 100 epochs on an NVIDIA DGX A100
Results using DNN

- Testing on unseen data gives a good by-eye fit between the DeepMEM predictions and the MoMEMta test data.
- Mean Absolute % Error = 1.6%

\[
MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|
\]

- However, we see that the neural network does not generalize well on bins that do not contain a lot of events.
Residual Networks

- Residual networks (ResNets) are neural network architectures that incorporate skip connections into the network architecture.

- Eases training for deep networks by providing shortcuts for backpropagation, while gaining accuracy from the depth of the network (see ref [7]).

- ResNets have empirically shown to perform well for aggressively deep networks (ILSVRC'15) [7].

- **Why do ResNets work?**
 - Address vanishing gradient problem
 - Smaller loss values can successfully transmit through a deep network and be used to update the precursor layers.
Residual Network Architecture

Weight Layer 1: 200 Nodes

Weight Layer 2: 200 Nodes

Weight Layer 5: \(N_p\) Nodes

Weight Layer 6: 1 Node

We include a skip connection into the original DNN A while retaining Depth

(This Network is less complex than DNN A)

ResNet A: 5 Deep Layers followed by a skip connection

Weight Layer 6: \(N_p\) Nodes

Weight Layer 7: 1 Node

We include a skip connection into the original DNN A by adding an extra layer to the depth

(This Network is more complex and deeper than DNN A)

ResNet B: 6 Deep Layers followed by a skip connection
Results using Residual Network A

- We see better generalization as compared to the original DNN with this architecture

- Mean Absolute % Error = 1.4%

\[
\text{MAPE} = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|
\]

- We argue that adding a skip connection improved the results since ResNet A is less complex than the original DNN
Results using Residual Network B

- We see better generalization as compared to the original DNN and similar to ResNet A with this architecture.
- Mean Absolute % Error = 1.2%

\[
MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|
\]

- A more complex network with a skip connection gives us slightly better results by leveraging its depth.
Generalization in Kinematic Phase Space

- We checked the modeling (ResNet B) on different kinematic subsets of the test data (No Retraining!)

 $p_T(\text{leading lepton}) > 30 \text{ GeV}$

 Ratio: 0.97
 Threshold = 30GeV

 $p_T(\text{leading lepton}) > 40 \text{ GeV}$

 Ratio: 0.77
 Threshold = 40GeV

 $p_T(\text{leading lepton}) > 50 \text{ GeV}$

 Ratio: 0.28
 Threshold = 50GeV

- Good modeling retained → DeepMEM modeling of MEM weights robust against subsamples defined by leading lepton p_T cut

 Similar good results observed for subsamples through jet p_T cuts
Summary

- Implemented deep learning methods to approximate ME Method calculations and demonstrated the viability of this approach
- Implemented a Residual Network for better generalization; showed the model to be robust against kinematics variations w/o retraining

Future Work

- Study processes with more complex decays and final state particles
- Explore other ML architectures, include adding physics constraints
- Generate simulated data and models adhering to FAIR principles and exploit novel tools developed for AI model interpretability

➢ See CHEP23 talks: FAIR AI Models in HEP, FAIR4UFO Models, Interpretability for DNN Top Taggers

DeepMEM is an open-source python library distributed on PyPI that available for similar studies: python -m pip install deepmem
Acknowledgements

- The key ideas were developed through discussions with Philip Chang.
- This work was performed by Mihir Katare and Matthew Feickert, with guidance from Avik Roy.

This work was supported through grants from the National Science Foundation under IRIS-HEP (OAC-1836650) and SCAILFIN (OAC-1841456).
References

[1] ATLAS Collaboration, “Evidence for single top quark production in the s-channel in pp collisions at $\sqrt{s}=8$ TeV with ATLAS using the Matrix Element Method”, *PLB* 756, 228 (2016)

[2] A. Bayse, “A search for the $ttH (H\rightarrow bb)$ channel at the LHC with the ATLAS detector using a matrix element method”, Ph.D. Thesis, UIUC (2015)

[3] P. Chang, S. Gleyzer, M. Neubauer, D. Zhong, “Sustainable Matrix Element through Deep Learning”, HSF-CWP-018, 10.5281/zenodo.4008241 (2017)

[4] Albrecht, J. *et al.* (The HEP Software Foundation), “A Roadmap for HEP Software and Computing R&D for the 2020s”, *Comput. Softw. Big. Sci.* (2019) 3, 7

[5] F. Bury, C. Delaere, “Matrix Element Regression – Breaking the CPU Barrier”, *JHEP* 20 (2021)

[6] A. Butter, T. Heimel, T. Martini, S. Peitzsch, T. Plehn, “Two Invertible Networks for the Matrix Element Method” (2022)

[7] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, ILSVRC 2015, arXiv:1512.03385 [cs.CV] (2015)

[8] DeepMEM Github repository

[9] M. Katare, M. Neubauer, M. Feickert, A. Roy, “Deep Learning for the Matrix Element Method”, *Proceedings of Science* ICHEP2022, 246 (2022)