(Super)Oscillator on \mathbb{CP}^N and Constant Magnetic Field

Stefano Bellucci1 and Armen Nersessian2,3

1 INFN-Laboratori Nazionali di Frascati, P.O. Box 13, I-00044, Italy
2 Yerevan State University, Alex Manoogian St., 1, Yerevan, 375025, Armenia
3 Yerevan Physics Institute, Alikhanian Brothers St., 2, Yerevan, 375036, Armenia

Abstract

We define the “maximally integrable” isotropic oscillator on \mathbb{CP}^N and discuss its various properties, in particular, the behaviour of the system with respect to a constant magnetic field. We show that the properties of the oscillator on \mathbb{CP}^N qualitatively differ in the $N > 1$ and $N = 1$ cases. In the former case we construct the “axially symmetric” system which is locally equivalent to the oscillator. We perform the Kustaanheimo-Stiefel transformation of the oscillator on \mathbb{CP}^2 and construct some generalized MIC-Kepler problem. We also define a $N = 2$ superextension of the oscillator on \mathbb{CP}^N and show that for $N > 1$ the inclusion of a constant magnetic field preserves the supersymmetry of the system.

PACS numbers: 03.65-w, 11.30.Pb

1 Introduction

The harmonic oscillator plays a distinguished role in theoretical and mathematical physics, due to its overcomplete symmetry group. The wide number of hidden symmetries provides the oscillator with unique properties, e.g. closed classical trajectories, the degeneracy of the quantum-mechanical energy spectrum, the separability of variables in a few coordinate systems. The overcomplete symmetry allows one to preserve the exact solvability of the oscillator, even after some deformation of the potential breaking the initial symmetry of the system. Particular, the oscillator remains exactly solvable after coupling to a constant magnetic field, though the latter removes the hidden symmetries of the system. The reduction of the oscillator to low dimensions allows one to construct new integrable systems with hidden symmetries (in fact, almost all integrable systems of classical and quantum mechanics are related with either the free particle case, or the oscillator) [1]. There is a nontrivial relation between oscillator and Coulomb systems: the $(N + 1)$-dimensional Coulomb problem can be obtained from the $2N$-dimensional oscillator by the so-called Levi-Civita (or Bohlin), Kustaanheimo-Stiefel and Hurwitz transformations, when $N = 1, 2, 4$ [2]. The transformations correspond to the reduction of the oscillator by the actions of Z_2, $U(1)$ and $SU(2)$ groups, respectively, and are based on the Hopf maps $S^1/Z_2 = S^1$, $S^3/U(1) = \mathbb{CP}^1 \cong S^2$, $S^7/SU(2) = \mathbb{HP}^1 \cong S^4$ (relating the the angular parts of the oscillator and Coulomb problems). Indeed, reducing the oscillators we get some parametric families of Coulomb-like systems, specified by the presence of a magnetic flux for $N = 1$; by a Dirac monopole for $N = 2$ (the MIC-Kepler system); and by a Yang monopole1 for $N = 4$ (see, respectively, [4, 5, 6]). It could be checked easily, that the MIC-Kepler system, initially introduced by Zwanziger for the description of the relative motion of two Dirac dyons, also describes the scattering of two well-separated BPS monopoles and dyons. The latter problem was considered in a well-known paper by Gibbons and Manton [7], where the existence of a hidden Coulomb-like symmetry was established (see also [8]). Let us mention also the key role of the Hurwitz transformation (and of the second Hopf map) in the recently proposed higher-dimensional quantum Hall effect [9] (see also [10, 11]).

The oscillator is a distinguished system, also with respect to supersymmetrization. A supersymmetric oscillator is specified by the splitting of fermionic and bosonic degrees of freedom. Thus, it inherits the hidden symmetries of the initial system. We notice that the construction of integrable supersymmetric mechanics is interesting not only in a field-theoretical context. Being in deep connection with the factorization problem, the supersymmetrization of integrable systems could yield a new set of integrable systems with isospectral potentials. Since the list of references on supersymmetric mechanics is enormous, we refer to the introductory reviews [12] (mostly devoted to the connection of supersymmetric quantum mechanics with the factorization problem) and [13] (containing the most complete list of references on field-theoretical aspects of supersymmetric mechanics).

1Under “Yang monopole” we mean a five-dimensional $SU(2)$ generalization of a Dirac monopole [3].
Recent progress in string theory inspired interest for noncommutative field theories [14] and, in particular, for noncommutative quantum mechanics [15]. The oscillator was found to be a distinguished case in noncommutative quantum mechanics too: at the moment it is the only exactly solved (even in the presence of a constant magnetic field) noncommutative quantum mechanical system with a non-zero potential [16].

There is nontrivial generalization of the oscillator on the sphere and the two-sheet hyperboloid (pseudo-sphere) [17] given by the potential

\[U_{osc} = \frac{\omega^2 r_0^2}{2} \frac{x^2}{x_{d+1}}. \]

(1.1)

Here \(x, x_{d+1} \) are the (pseudo)Euclidean coordinates of the ambient space \(\mathbb{R}^{d+1}(\mathbb{R}^{d+1}) \): \(\epsilon x^2 + x_{d+1}^2 = r_0^2 \), with \(\epsilon = +1 \) for the sphere, \(\epsilon = -1 \) for the pseudosphere.

This system has a nonlinear hidden symmetry algebra, providing it with properties similar to those of a conventional oscillator. Applying to the oscillator on the (pseudo)sphere the standard Levi-Civita, Kustaanheimo-Stiefel and Hurwitz transformations, one can obtain the generalization of flux-Coulomb, MIC-Kepler and Yang-Coulomb systems on the (pseudo)sphere [18].

In the present paper we define the oscillator on complex projective spaces \(\mathbb{C}P^N \), from the requirement that it possesses hidden symmetries generalizing those of the planar oscillator, and consider its behaviour with respect to the coupling to a constant magnetic field.

The oscillator on \(\mathbb{C}P^1 = S^2 \) coincides with the Higgs oscillator on the sphere \(S^2 \) (note that \(\mathbb{C}P^1 = S^2 \)). The oscillator on \(\mathbb{C}P^N \), \(N > 1 \) is defined by the potential

\[U(z \bar{z}) = \omega^2 r_0^2 z \bar{z}, \]

(1.2)

where \(z^a, \bar{z}^a \) are inhomogeneous coordinates of \(\mathbb{C}P^N \), corresponding to the Fubini-Study metric

\[g_{ab} dz^a d\bar{z}^b = r_0^2 \frac{dz \bar{dz}}{1 + z \bar{z}} - r_0^2 \frac{(z \bar{z})^2}{(1 + z \bar{z})^2}. \]

(1.3)

In contrast to the case of the oscillator on \(\mathbb{C}P^1 = S^2 \) which is defined on the disk \(|z| < 1 \), the oscillator on \(\mathbb{C}P^N \), \(N > 1 \) is defined on the whole chart. The transition to another chart of \(\mathbb{C}P^N \) transforms the oscillator into the system with the potential

\[U = \omega^2 r_0^2 \left(\frac{1}{z_1 \bar{z}_1} + \frac{z^2 \bar{z}^2 + \ldots + z^N \bar{z}^N}{z_1 \bar{z}_1} \right), \]

which has the oscillator symmetry algebra.

The Kustaanheimo-Stiefel transformation of the oscillator on \(\mathbb{C}P^2 \) yields a generalization of the MIC-Kepler system, which can be transformed into the MIC-Kepler system on the three-dimensional hyperboloid.

The oscillator on \(\mathbb{C}P^N \) admits, because of its Kähler structure, a simple coupling to a constant magnetic field. This can be achieved by carrying out the following replacement of the symplectic structure: \(\Omega_0 \rightarrow \Omega_0 + i B g_{ab} dz^a \wedge d\bar{z}^b \). The coupling to a constant magnetic field preserves all symmetries of the oscillator, including kinematical and hidden ones, when \(N > 1 \), but kinematical symmetries only, when \(N = 1 \).

Below, we construct the \(\mathcal{N} = 2 \) supersymmetric oscillator on \(\mathbb{C}P^N \) and study its behaviour, with respect to the coupling to a constant magnetic field (the oscillator on \(\mathbb{C}P^N \), in contrast with the one on \(\mathbb{C}N \), does not admit the \(\mathcal{N} = 4 \) supersymmetrization). We show that, in contrast with the \(\mathcal{N} = 2 \) superoscillator on \(\mathbb{C}P^1 = S^2 \), the \(\mathcal{N} = 2 \) superoscillator on \(\mathbb{C}P^N \), \(N > 1 \) allows coupling to a constant magnetic field, without breaking supersymmetry.

2 Oscillator on \(\mathbb{C}P^N \)

This section is devoted to the construction of the oscillator system on the complex projective space \(\mathbb{C}P^N \). Our consideration essentially exploits the fact that the complex projective space is a constant curvature Kähler \(^2\)

\[U_C = \frac{\gamma}{r_0} \frac{x_{d+1}}{|x|}. \]

Quantum mechanics of the oscillator and Coulomb system on the \(D \)-dimensional sphere and pseudosphere is considered in detail in Ref. [20].

2
where, the real functions \(h \) in the form manifold. Hence, our model could be easily adopted for the formulation of the oscillator system on the other spaces of that sort.

Let us remind that the Kähler manifold \(M \) is equipped with the metric, which could be locally represented in the form

\[
g_{ab}dz^a dz^b = \frac{\partial^2 K}{\partial z^a \partial \bar{z}^b} dz^a dz^b , \tag{2.1}\]

and with the associated Poisson bracket

\[
\{ f, g \} = i \frac{\partial f}{\partial z^a} g_{\bar{a}b} \frac{\partial g}{\partial z^b} - i \frac{\partial g}{\partial z^a} g_{\bar{a}b} \frac{\partial f}{\partial z^b} , \quad g_{\bar{a}b} g_{\bar{a}c} = \delta_{\bar{a}}^\bar{c} . \tag{2.2}\]

The local real function \(K(z, \bar{z}) \) is called the Kähler potential.

The complex projective space \(\mathbb{CP}^N \) could be equipped with the Fubini-Study metric, given by the Kähler potential

\[
K = r_0^2 \log(1 + z \bar{z}) . \tag{2.3}\]

The scalar curvature of \(\mathbb{CP}^N \) is related with the parameter \(r_0^2 \) as follows: \(R = N(N+1)/r_0^2 \).

The isometries of the Kähler structure are generated by the \textit{holomorphic Hamiltonian vector fields}

\[
V_\mu = V_\mu^a(z) \frac{\partial}{\partial z^a} + \bar{V}_\mu^\bar{a}(\bar{z}) \frac{\partial}{\partial \bar{z}^\bar{a}} , \quad [V_\mu, V_\nu] = C_{\mu \nu}^\lambda V_\lambda , \tag{2.4}\]

where

\[
V_\mu = \{ h_\mu \}, \quad \{ h_\mu, h_\nu \} = C_{\mu \nu}^\lambda h_\lambda , \quad \frac{\partial^2 h_\mu}{\partial z^a \partial \bar{z}^b} - \Gamma_{ab}^c \frac{\partial h_\mu}{\partial z^c} = 0 . \tag{2.5}\]

The real functions \(h_\mu \) are called Killing potentials.

The symmetry algebra of \(\mathbb{CP}^N \) is \(su(N+1) \). This algebra is defined by the Killing potentials

\[
h_T = T^{\bar{a}b} h_{\bar{a}b} - \text{tr} \, \bar{T} , \quad h_\alpha = h_\alpha^a + h_\alpha^b , \quad h_\alpha^a = i(h_\alpha^a - h_\alpha^\bar{a}) , \tag{2.6}\]

where

\[
h_{\bar{a}b} = r_0^2 \frac{z^a z^b}{1 + z \bar{z}} , \quad h_a = r_0^2 \frac{z^a}{1 + z \bar{z}} , \quad h_a^b = r_0^2 \frac{z^a}{1 + z \bar{z}} , \tag{2.7}\]

and \(\bar{T} \) are \(N \times N \) Hermitean matrices: \(T^{\bar{a}b} = T^{\bar{b}a} \).

The algebra of \(h_{\bar{a}b}, h_a^b \) reads:

\[
\{ h_{\bar{a}b}, h_{\bar{c}d} \} = i \delta_{\bar{a}c} h_{\bar{b}d} - i \delta_{\bar{b}d} h_{\bar{a}c} , \quad \{ h_a^+, h_b^- \} = 0 , \quad \{ h_a^+, h_b^+ \} = \mp i h_b^+ \delta_{ab} . \tag{2.8}\]

Let us equip the cotangent bundle \(T^* \mathbb{CP}^N \) with the symplectic structure

\[
\Omega_B = dz^a \wedge d\pi_a + d\bar{z}^a \wedge d\bar{\pi}_a + i B g_{ab} dz^a \wedge d\bar{z}^b , \tag{2.9}\]

which defines, together with the Hamiltonian

\[
\mathcal{D} = g^{\bar{a}b} \pi_\bar{a} \pi_b , \tag{2.10}\]

the dynamics of a free particle on \(\mathbb{CP}^N \), in the presence of a constant magnetic field \(B \). The isometries of a Kähler structure define the Noether’s constants of motion of a free particle

\[
\mathcal{J}_\mu \equiv J_\mu + B h_\mu = V_\mu^a \pi_a + \bar{V}_\mu^\bar{a} \bar{\pi}_\bar{a} + B h_\mu : \quad \{ \mathcal{D}, J_\mu \} = 0 , \quad \{ J_\mu, J_\nu \} = C_{\mu \nu}^\lambda J_\lambda . \tag{2.11}\]

Explicitly, we have

\[
J_{ab} = -i z^b \pi_a + i \bar{\pi}_b z^a , \quad i J_a^+ = \pi_a + \bar{z}^a(\bar{z} \bar{\pi}), \quad -i J_a^- = \bar{\pi}_a + z^a(z \pi) . \tag{2.12}\]

Notice that the vector fields generated by \(J_\mu \) are independent on \(B \)

\[
\bar{\mathcal{V}} = V^a(z) \frac{\partial}{\partial z^a} - V^b_{\bar{a}} \pi_\bar{a} \frac{\partial}{\partial \pi_a} + \bar{V}^{\bar{a}}(\bar{z}) \frac{\partial}{\partial \bar{z}^\bar{a}} - V^{\bar{a}}_{\bar{b}} \bar{\pi}_\bar{b} \frac{\partial}{\partial \bar{\pi}_\bar{a}} . \tag{2.13}\]
Hence, the inclusion of a constant magnetic field preserves the whole symmetry algebra of a free particle moving in a Kähler space.

Now, let us consider the \(u(N) \)-invariant Hamiltonian

\[
\mathcal{H} = g^{\bar{a}b} \pi_a \bar{\pi}_b + U(z \bar{z}),
\]

(2.14)

and require it to have the hidden symmetry (similar to one of the oscillator) given by either one of the constants of motion

\[
i) \quad I_{ab}^+ = J_a^+ J_b^+ + f_+(z \bar{z}) z^a \bar{z}^b,
\]

\[
ii) \quad I_{ab}^- = J_a^- J_b^- + f_0(z \bar{z}) z^a \bar{z}^b.
\]

(2.15)

Straightforward calculations immediately yield the following constraints:

\[
i) \quad B = 0 \quad N = 1 \quad U(x) = c_1 x/(1-x)^2 + c_0 \quad f_+ = c_1/(1-x)^2,
\]

\[
ii) \quad \text{for any value of } B \quad N = 1, 2 \ldots \quad U(x) = c_1 x + c_0 \quad f_0 = c_1.
\]

(2.16)

Taking into account that \(\mathcal{H} = \text{Tr} \hat{J}^2/2r_0^2 \), we get the following generalizations of the oscillator on \(\mathbb{CP}^N \).

- \(\mathbb{CP}^1 \). The oscillator is defined by the Hamiltonian system

\[
\mathcal{H} = \left(\frac{1 + z \bar{z}}{r_0^2} \right)^2 \pi \bar{\pi} + \frac{\omega^2 r_0^2 z \bar{z}}{(1-z \bar{z})^2}, \quad \Omega_0 = dz \wedge d\pi + d\bar{z} \wedge d\bar{\pi}.
\]

(2.17)

The symmetry algebra is given by the \(U(1) \) generator \(J \) and the complex (or vectorial) constant of motion \(I_{\pm} \)

\[
J = i(\pi z - \bar{\pi} \bar{z}), \quad I_+ = \frac{J^2}{r_0^2} - \frac{\omega^2 r_0^2 z \bar{z}}{(1-z \bar{z})^2} \quad \{J, I_{\pm}\} = \pm 2i I_{\pm}, \quad \{I_- , I_+ \} = 4i \left(\omega^2 J + \frac{\mathcal{H}}{r_0^2} - \frac{J^3}{2r_0^4} \right).
\]

(2.18)

This is nothing but the well-known Higgs oscillator on the sphere \(S^2 = \mathbb{CP}^1 \) [17].

- \(\mathbb{CP}^N, N > 1 \). The oscillator is defined by the Hamiltonian system

\[
\mathcal{H} = g^{\bar{a}b} \pi_a \bar{\pi}_b + \omega^2 r_0^2 z \bar{z}, \quad \Omega_0 = dz \wedge d\pi_a + d\bar{z} \wedge d\bar{\pi}_a.
\]

(2.19)

Its symmetries are given by the constants of motion

\[
J_{ab} = i(z^b \pi_a - \bar{\pi}_b z^a), \quad I_{ab} = \frac{J_{a}^+ J_{b}^-}{r_0^2} + \omega^2 r_0^2 z^a \bar{z}^b,
\]

(2.20)

which define the nonlinear (quadratic) algebra

\[
\{J_{ab}, J_{cd}\} = i \delta_{ad} J_{bc} - i \delta_{cb} J_{ad}, \quad \{J_{ab}, J_{cd}\} = i \delta_{cb} J_{ad} - i \delta_{ad} J_{cb}
\]

\[
\{I_{ab}, I_{cd}\} = i \omega^2 \delta_{cb} J_{ad} - i \omega^2 \delta_{ad} J_{cb} + i I_{ab} (J_{ad} + J_0 \delta_{ad})/r_0^2 - i I_{ad} (J_{cb} + J_0 \delta_{cb})/r_0^2.
\]

(2.21)

It is convenient to introduce the generators

\[
J_i = T^{ab}_{ij} J_{ab}, \quad J_0 = \text{Tr} \hat{J}, \quad I_i = T^{a \bar{b}}_{ij} I_{ab}, \quad I_0 = \text{Tr} \hat{I},
\]

(2.22)

where \(T_i \) are traceless \(N \times N \) Hermitian matrices (the generators of the \(su(N) \) algebra). The above generators belonging to the center of algebra read:

\[
J_0 = i(z \pi - \bar{\pi} \bar{z}), \quad \mathcal{H}_{N>1} = I_0 + \frac{\text{Tr} \hat{J}^2 + J_0^2}{2r_0^2}.
\]

(2.23)

Also the following equality holds

\[
\text{Tr} \hat{J}^2 + \omega^2 \text{Tr} \hat{J}^2 = I_0^2 + \omega^2 J_0^2.
\]

(2.24)

We have got the “maximally integrable” generalization of the oscillator on complex projective spaces, i.e. the system with the highest possible number of functionally independent constants of motion.\(^3\)

We established the following essential properties of the latter system.

\(\text{In the theory of integrable systems such systems are called “maximally superintegrable systems”. We prefer to suppress the prefix “super” in this context, in order to avoid any confusion with supersymmetric systems.} \)
• The oscillator on CPN, \(N > 1 \) is well-defined on the whole chart of the complex projective space, \(0 < |z| < \infty \). The oscillator on CP1 \(\sim S^2 \) (as well as on higher-dimensional spheres) is defined on the disc \(|z| < 1 \) only. The constant magnetic field preserves the hidden symmetries of the oscillator on CPN, for \(N > 1 \).

• The above construction could be easily extended for the noncompact version of CPN, provided by the Lobachevski space \(\mathcal{L}^N = SU(1.N)/U(1) \times SU(N) \). For this purpose, we should replace the Fubini-Study metric with the one generated by the Kähler potential \(K = -i2r_0 \log(1 - z\bar{z}) \), and subsequently replace the Killing potentials and Noether constants of CPN with the ones of \(\mathcal{L}^N \). The Killing potentials of \(\mathcal{L}^N \) are defined by the functions

\[
\begin{align*}
\hbar_{ab} &= -r_0^2 \frac{z^az^b}{1 - z\bar{z}}, & \hbar_{a} &= -r_0^2 \frac{z^a}{1 - z\bar{z}}, & \hbar_{+} &= -r_0^2 \frac{\bar{z}^a}{1 - z\bar{z}}.
\end{align*}
\](2.25)

Globally, the complex projective space CPN is covered by \(N + 1 \) charts, marked by the indices \(\hat{a} = 0, a \).

The transition functions from the \(\hat{b} \)-th chart to the \(\hat{c} \)-th one are of the form

\[
z_{(c)}^{\hat{a}} = \frac{z_{(b)}^\hat{a}}{z_{(b)}^{\hat{c}}}, \quad \text{where} \quad \frac{\hat{a}}{z_{(b)}^{\hat{a}}} = 1.
\](2.26)

On CP1 the transition functions take the simple form \(z \rightarrow 1/z \), corresponding to the transition from one hemisphere to the other. The respective transformation of the momenta is \(\pi \rightarrow -z^2\pi \). The Hamiltonian of the oscillator on CP1 is obviously invariant under the above transformation. In higher-dimensions we get a rather different picture, since the potential term is not covariant under the transition (2.26).

The transition functions (2.26) define the following canonical transformation, which is singular on the \(z^1 = 0 \) “axes”:

\[
z^1 \rightarrow 1/z^1, \quad \pi_1 \rightarrow -z^1(z\pi), \quad \hat{z}^\hat{a} \rightarrow z^\hat{a}/z^1, \quad \pi_{\hat{a}} \rightarrow z^1\pi_{\hat{a}} \quad \hat{a} = 2, \ldots N.
\](2.27)

The kinetic term is covariant with respect to the above transformation, while the potential term is not. As a result, we get the integrable system on CPN, \(N > 1 \) defined by the Hamiltonian

\[
\mathcal{H}_{\text{Back}} = \sigma^a_{\hat{a}} \pi_{\hat{a}} - \omega^2r_0^2 \left(\frac{1}{z^1z^1} + \frac{z^2z^2 + \ldots + z^Nz^N}{z^1z^1} \right).
\](2.28)

This system inherits the whole symmetry algebra of the oscillator, i.e. it is a “maximally integrable” system. Its constants of motion can be obtained by a straightforward transformation of those of the oscillator, given in (2.20). Note that, in spite of its “maximal integrability”, the system is not invariant under “spatial” \(u(N) \) rotations.

On the Lobachevski space \(\mathcal{L}^N, \ N > 1 \) there is no analog of this system. The “ambient” space for the Lobachevski plane is CP1.N. The transitions (2.26) transform the oscillator on \(\mathcal{L}^N \) into a system on the space with the signature \((-, -, +, \ldots, +) \).

\textbf{CP2: Kustaanheimo-Stiefel transformation}

As we mentioned in the Introduction, the oscillator on two-, four-, and eight- dimensional planes and spheres could be reduced to the two- , three- and five- dimensional Coulomb systems, and their generalizations specified by the presence of monopoles. Particularly, the oscillator on \(S^2 = \text{CP}^1 \) and AdS\textsubscript{2} = \(\mathcal{L} \) can be reduced, by the so-called Levi-Civita transformation, to the Coulomb systems on two-dimensional hyperboloid (Lobachevski plane) \(\mathcal{L} \). Similarly, the Kustaanheimo-Stiefel transformation of the oscillator on a four-dimensional sphere and a four-dimensional two-sheet hyperboloid leads to the generalization of the MIC-Kepler problem on a three-dimensional two-sheet hyperboloid [18].

Let us consider the behavior of the oscillator on CP2, with respect to the Kustaanheimo-Stiefel transformation. The constants of motion of the oscillator on CP2 are given by the generators

\[
I = \frac{J_+\sigma J_+}{r_0^2} + \omega^2r_0^2z\sigma\bar{z}, \quad I = iz\sigma\pi - i\bar{\pi}\sigma\bar{z}, \quad J_0 = iz\pi - i\bar{\pi}\bar{z},
\](2.29)
where σ denotes standard Pauli matrices.

Their algebra reads:

\[
\{J_0, I_k\} = \{J_0, J_k\} = 0, \quad \{J_k, J_l\} = 2\epsilon_{kim}J_m, \quad \{I_k, I_l\} = \epsilon_{kim} \left(2\omega^2J_m - 3I_mJ_0/r_0^2 + I_0J_m/r_0^2\right).
\]

(2.30)

In order to reduce this system by the Hamiltonian action of J_0, we have to fix its value

\[
J_0 = 2s,
\]

(2.31)

and then factorize the level surface by the $U(1)$ group action. The resulting six-dimensional phase space T^*M^{red} can be parameterized by the following $U(1)$-invariant functions:

\[
x = z\sigma\bar{z}, \quad p = \frac{z\sigma\pi + \bar{z}\sigma\bar{\pi}}{2z\bar{z}} : \quad \{x, J_0\} = \{p, J_0\} = 0.
\]

(2.32)

In these coordinates the reduced symplectic structure and the generators of the angular momentum are given by the expressions

\[
\Omega_{\text{red}} = dp \wedge dx + s \frac{x \times dx \times dx}{|x|^3}, \quad J_{\text{red}} = J/2 = p \times x + s \frac{x}{|x|}.
\]

(2.33)

Thus, the reduced system is specified by the presence of a Dirac monopole.

The reduced Hamiltonian is given by the expression

\[
H_{\text{red}} = \frac{(1 + x)^2}{r_0^4} \left[p^2 + \frac{(xp)^2}{x}\right] + s^2 \frac{(1 + x)^2}{r_0^2x} + \omega^2r_0^2x, \quad \text{where} \quad x \equiv |x|.
\]

(2.34)

Let us fix the constant energy surface

\[
H = E_{\text{osc}}.
\]

(2.35)

Then, dividing by $2r_0^2x$, we can represent it in the form

\[
H_{\text{MIC}} = \mathcal{E}, \quad H_{\text{MIC}} = \frac{(1 + x)}{2r_0^4} \left[p^2 + \frac{(xp)^2}{x}\right] + s^2 \frac{(1 + x)^2}{r_0^2x^2} - \frac{\gamma}{r_0^2x},
\]

(2.36)

where we introduced the notation

\[
\gamma = E_{\text{osc}}/2 - s^2/r_0^2, \quad -2\mathcal{E} = \omega^2 + \frac{s^2}{r_0^4}.
\]

(2.37)

The Hamiltonian H_{MIC} can be interpreted as the Hamiltonian of some generalized MIC-Kepler problem. Notice that its potential energy term has the same form, as the one of the conventional (flat) MIC-Kepler problem. The hidden symmetries of the system are given by the reduced generators I_k.

Let us perform the canonical transformation $(x, p) \to (\tilde{x}, \tilde{p})$, going to the coordinates where the metric takes a conformally-flat form:

\[
\tilde{x} = f(x)x, \quad \tilde{p} = f\tilde{p} + f'\frac{(x\tilde{p})}{x}x,
\]

(2.38)

where

\[
f(x) = \frac{1}{x}\sqrt{1 + x^2 - 1}\frac{1}{x\sqrt{1 + x^2 + 1}}.
\]

(2.39)

In this case, the reduced Hamiltonian reads:

\[
H_{\text{red}} = \frac{x(1 + x)^2}{4r_0^2}\tilde{p}^2 + s^2 \frac{(x + 1)^4}{4r_0^2x(1 - x)^2} + \frac{4\omega^2r_0^2x}{(1 - x)^2}, \quad x < 1,
\]

(2.40)

while the Hamiltonian of the above obtained generalization of MIC-Kepler problem (2.36) takes the form

\[
H_{\text{MIC}} = \frac{(1 - x^2)^2}{32r_0^4} \left(p^2 + \frac{s^4}{x^2}\right) - (\gamma + \frac{s^2}{2r_0^2}) \frac{1 + x^2}{4r_0^2x} - \frac{s^2}{4r_0^4}.
\]

(2.41)

This is nothing but the Hamiltonian of the MIC-Kepler problem on the three-dimensional hyperboloid [18] constructed by the Kustaanheimo-Stiefel transformation of the oscillator on a four-dimensional sphere.
Performing the Kustaanheimo-Stiefel transformation of the system (2.28) on $\mathbb{C}P^2$, we get the following expression for the reduced Hamiltonian:

$$
\mathcal{H}_{\text{Back}} = \frac{(1 + x)}{r_0^2} \left[x \mathbf{p}^2 + (x \mathbf{p})^2 \right] + s^2 \frac{1 + x}{r_0^2 x} + 2 \omega r_0^2 \frac{1 + x}{x + 3} - \omega^2 r_0^2, \quad x_3 \neq x.
$$

(2.42)

In conformal coordinates (2.38) the latter takes the form

$$
\mathcal{H}_{\text{Back}} = \frac{x(1 + x)^2 \mathbf{p}^2}{4r_0^2} + s^2 \frac{(x + 1)^4}{4r_0^2 x(x - 1)^2} + \omega^2 r_0^2 \frac{(1 + x)^2}{2(x + x_3)} - \omega^2 r_0^2.
$$

(2.43)

3 $\mathcal{N} = 2$ supersymmetric oscillator on $\mathbb{C}P^N$

In this Section we construct the $\mathcal{N} = 2$ superextension of the oscillator on $\mathbb{C}P^N$ coupled to a constant magnetic field. It is well known that any Hamiltonian system of the form

$$
\mathcal{H}_0 = g^{ij}(p_i p_j + W_i W_j), \quad \Omega^{\alpha \beta} = dp_i \wedge dx^i
$$

(3.1)

could be easily extended to the system with exact $\mathcal{N} = 2$ supersymmetry

$$
\{Q^+, Q^- \} = \mathcal{H}, \quad \{Q^\pm, Q^\pm \} = 0.
$$

(3.2)

The function $W(x)$ is called superpotential. The oscillator on a sphere S^D belongs to the above class of systems. Its superpotential is given by the expression

$$
W = \frac{1}{2} \log \frac{2 + x^2}{2 - x^2},
$$

where x denotes the conformal coordinates of the sphere S^D.

For the supersymmerization of the system (3.1), we have to define the supersymplectic structure

$$
\Omega = dp_i \wedge dx^i + \frac{1}{2} R_{ijkl} \theta^i \theta^j dx^i \wedge dx^k + g_{ij} D \theta^i \wedge D \theta^j, \quad D \theta^i = d\theta^i + \Gamma^i_{kl} \theta^k dx^l, \quad \alpha = 1, 2
$$

and the supercharges $Q_\pm = (p_i \pm iW_i) \theta^i \pm$, which obey the condition $\{Q_\pm, Q_\pm \} = 0$. Then, we immediately get the $\mathcal{N} = 2$ supersymmetric Hamiltonian

$$
\mathcal{H} = \{Q_+, Q_- \} = \mathcal{H}_0 + W_i \theta^i \theta^j + R_{ijkl} \theta^i \theta^j \theta^k \theta^l.
$$

The inclusion of a magnetic field $\Omega \rightarrow \Omega + F_{ij} \theta^i \theta^j$ breaks the $\mathcal{N} = 2$ supersymmetry of the system

$$
\{Q_\pm, Q_\pm \} = F_{ij} \theta^i \theta^j, \quad \{Q_+, Q_- \} = \mathcal{H} + iF_{ij} \theta^i \theta^j.
$$

For the construction of the supersymmetric oscillator on $\mathbb{C}P^N$, let us represent the initial (bosonic) Hamiltonian in the form

$$
\mathcal{H} = g^{ij}(\pi_a \pi_b + \partial_a W \partial_b W).
$$

(3.4)

If the superpotential can be represented in the form $W(z, \bar{z}) = W_+(z) + W_-(\bar{z})$, then one can construct the $\mathcal{N} = 4$ supergeneralization of the system on Kähler space [21]. Otherwise, the system can be endowed with $\mathcal{N} = 2$ supersymmetry. Hence, we can construct the $\mathcal{N} = 4$ supersymmetric oscillator on \mathbb{C}^N choosing the superpotential $2W = \omega z^2 + \omega \bar{z}^2$. However, we cannot construct the (anti)holomorphic superpotential for the oscillator on $\mathbb{C}P^N$ and, consequently, obtain its $\mathcal{N} = 4$ superextension. On the other hand, for the oscillators on \mathbb{C}^N and $\mathbb{C}P^N$, one can find the superpotentials with explicit $su(N)$ symmetry,

$$
W = \omega K = \omega z \bar{z} \quad \text{for} \quad \mathbb{C}^N
$$

$$
2W = \omega r_0 \log(1 - z \bar{z})/(1 + z \bar{z}) \quad \text{for} \quad \mathbb{C}P^1
$$

$$
W = \omega K = \omega r_0 \log(1 + z \bar{z}) \quad \text{for} \quad \mathbb{C}P^N, \quad N > 1.
$$

(3.5)

By using such functions, we shall construct the $\mathcal{N} = 2$ supersymmetric oscillators on $\mathbb{C}P^N$. We shall see that the linear dependence of the superpotential W on the Kähler potential K leads to an interesting behaviour.
of the supersymmetric system, with respect to a constant magnetic field. Thus, the superoscillator on $\mathbb{C}\mathbb{P}^N$, $N > 1$ has more similarities with the planar one, than the oscillator on $\mathbb{C}\mathbb{P}^1$.

Let us consider a $(2N,2N)$-dimensional phase space equipped with the symplectic structure

$$
\Omega = d\pi_a \wedge dz^a + d\bar{\pi}_a \wedge d\bar{z}^a + i(Bg_{ab} + iR_{abcd}\eta^d_a\eta^b_c)dz^a \wedge d\bar{z}^b + g_{ab}D\eta^a_{\alpha} \wedge D\bar{\eta}^b_{\dot{\alpha}},
$$

where $D\eta^a_{\alpha} = d\eta^a_{\alpha} + \Gamma^a_{b\alpha}\eta^b_a dz^a$, $\alpha = 1, 2$, and $\Gamma^a_{b\alpha}$, R_{abcd} are, respectively, the connection and curvature of the Kähler structure. The corresponding Poisson brackets are defined by the following non-zero relations (and their complex-conjugates):

$$
\{\pi_a, z^b\} = \delta^b_a, \quad \{\pi_a, \eta^b_{\alpha}\} = -\Gamma^b_{a\alpha}, \quad \{\pi_a, \bar{\pi}_b\} = i(Bg_{ab} + iR_{abcd}\eta^d_a\eta^b_c), \quad \{\eta^a_{\alpha}, \eta^b_{\dot{\beta}}\} = g^{ab}\delta_{\alpha\dot{\beta}}.
$$

The symplectic structure (3.6) becomes canonical in the coordinates (p_a, χ^k)

$$
p_a = \pi_a - \frac{i}{2}\partial_a g, \quad \chi^m = e^m_a\eta^b_k, \quad \Omega_{Scan} = dp_a \wedge dz^a + d\bar{\pi}_a \wedge d\bar{z}^a + iBg_{ab}dz^a \wedge d\bar{z}^b + d\chi^m_a \wedge d\bar{\chi}^m_a, \quad (3.7)
$$

where e^m_a are the einbeins of the Kähler structure: $e^m_a\delta_m^n\bar{e}^n_k = g_{ab}$.

So, in order to quantize the system, one chooses

$$
p^a = \pi_a - i\partial_a \Omega_{Scan} = \frac{i}{2}\partial_a g, \quad \chi^m = e^m_a\eta^b_k, \quad \Omega_{Scan} = dp_a \wedge dz^a + d\bar{\pi}_a \wedge d\bar{z}^a + iBg_{ab}dz^a \wedge d\bar{z}^b + d\chi^m_a \wedge d\bar{\chi}^m_a, \quad (3.7)
$$

In order to construct the system with the exact $\mathcal{N} = 2$ supersymmetry (3.2), we have to find the appropriate candidates for Q^\pm, which obey the equations $\{Q^+, Q^+\} = 0$. Let us search the realization of supercharges among the functions

$$
Q^\pm = \cos \lambda \Theta^\pm_1 + \sin \lambda \Theta^\pm_2, \quad (3.8)
$$

where

$$
\Theta^+_1 = \pi_a\eta^a_1 + i\partial_a W\eta^a_2, \quad \Theta^+_2 = \bar{\pi}_a\eta^a_1 + i\partial_a W\eta^a_2, \quad \Theta^-_1 = \Theta^-_2 = \Theta^+_1, \quad (3.9)
$$

and λ is some parameter. Calculating the Poisson brackets of the functions, we get

$$
\{Q^+, Q^+\} = i\sin 2\lambda Bg_{ab} + 2\lambda \sin 2\lambda W_{ab}\eta^a_1\eta^b_2, \quad \{Q^-, Q^-\} = \mathcal{H}^0_{SUSY} + 2\lambda B F_3/2 - \sin 2\lambda Z_3. \quad (3.10, 3.11)
$$

Here and in the following, we use the notation

$$
\mathcal{H}^0_{SUSY} = \mathcal{H} - R_{abcd}\eta^a_1\eta^b_1\eta^c_1\eta^d_1 - iW_{a;\dot{b}}\eta^a_1\eta^b_2 + i\bar{W}_{a;\dot{\alpha}}\bar{\eta}^a_1\bar{\eta}^b_2 + dB_{a;\dot{b}}\eta^a_1\bar{\eta}^b_2, \quad (3.12)
$$

where \mathcal{H} denotes the oscillator Hamiltonian on $\mathbb{C}\mathbb{P}^N$ (see the expressions in (2.17), (2.19)), and

$$
F_3 = i\mathcal{G}_{ab}(\eta^a_1\eta^b_2 - \eta^a_2\eta^b_1), \quad Z_3 = i\mathcal{G}_{ab}(\eta^a_1\bar{\eta}^b_2 - \eta^a_2\bar{\eta}^b_1), \quad (3.13)
$$

In what follows, we will also need the generators

$$
F_+ = i\mathcal{G}_{ab}\eta^a_1\bar{\eta}^b_2, \quad F_- = F_+, \quad (3.14)
$$

which obey the commutation relations

$$
\{F_\pm, F_\mp\} = \mp 2iF_\pm, \quad \{F_+, F_-\} = iF_3, \quad \{\Theta^\pm_\alpha, F_\mp\} = \pm i\Theta^\pm_\alpha, \quad \{\Theta^\pm_\alpha, F_3\} = \mp i\Theta^\pm_\alpha. \quad (3.15, 3.16)
$$

Comparing (3.10), (3.11) with (3.2), we can construct the $\mathcal{N} = 2$ supersymmetric oscillator on $\mathbb{C}\mathbb{P}^N$.

Superoscillator on $\mathbb{C}\mathbb{P}^1$. Consider the supersymmetrization of the oscillator on the complex projective plane $\mathbb{C}\mathbb{P}^1$. Comparing the equation (3.10) with (3.2), we get

$$
\{Q^\pm, Q^\pm\} = 0 \Rightarrow B = 0, \quad \cos 2\lambda = 0, \quad \sin 2\lambda = \pm 1. \quad (3.17)
$$
Let us introduce the parameter λ. Hence, we get the following supercharges:

$$Q^\pm_\alpha = \frac{\Theta^\pm_\alpha - (-1)^{\alpha} \Theta^\pm_2}{\sqrt{2}}, \quad \{Q^+_\alpha, Q^-_\alpha\} = \mathcal{H}_\alpha = \mathcal{H}^0_{SUSY} + (-1)^\alpha Z_3, \quad \alpha = 1, 2. \quad (3.18)$$

We constructed two copies of the $\mathcal{N} = 2$ supersymmetric oscillator on \mathbb{CP}^1. The inclusion of a constant magnetic field B breaks their $\mathcal{N} = 2$ supersymmetry down to $\mathcal{N} = 1$.

Note that

$$\{Q^+_\alpha, Q^-_\beta\} = 2\epsilon_{\alpha\beta} Z_\pm, \quad Z_\pm = A(z\bar{z}) F_\pm, \quad Z_3 = A(z\bar{z}) F_3,$$

where $A(z\bar{z}) = \omega \frac{1 + (z\bar{z})^2}{(1-z\bar{z})^2}$. Hence, in the planar limit, one has $A \to \omega$, so that the generators $Q^\pm_\alpha, Z_\pm, Z_3, \mathcal{H}$ form a closed Lie superalgebra.

Superoscillator on \mathbb{CP}^N, $N > 1$. On higher-dimensional complex projective spaces one has

$$W_{ab} = \omega g_{ab}, \quad \Rightarrow \{Q^\pm, Q^\pm\} = 0 \Leftrightarrow B \sin 2\lambda + 2\omega \cos 2\lambda = 0. \quad (3.19)$$

Let us introduce the parameter λ_0

$$\cos 2\lambda_0 = \frac{B/2}{\sqrt{\omega^2 + (B/2)^2}}, \quad \sin 2\lambda_0 = -\frac{\omega}{\sqrt{\omega^2 + (B/2)^2}}, \quad (3.20)$$

so that

$$\lambda = \lambda_0 + (\alpha - 1)\pi/2, \quad \alpha = 1, 2. \quad (3.21)$$

Hence, we get the following supercharges:

$$Q^\pm_\alpha = \cos \lambda_0 \Theta^\pm_1 + (-1)^\alpha \sin \lambda_0 \Theta^\pm_2, \quad (3.22)$$

and the pair of corresponding $\mathcal{N} = 2$ supersymmetric Hamiltonians

$$\mathcal{H}^0_{SUSY} = \{Q^+_\alpha, Q^-_\alpha\} = \mathcal{H}^0_{SUSY} - (-1)^\alpha \sqrt{\omega^2 + (B/2)^2} F_3. \quad (3.23)$$

We constructed, on higher-dimensional complex projective spaces, two copies of exact $\mathcal{N} = 2$ supersymmetric oscillators coupled to a constant magnetic field.

Calculating the commutators of Q^\pm_1 and Q^\pm_2 we get

$$\{Q^+_1, Q^-_2\} = 2\omega F_\pm, \quad \{Q^+_1, Q^-_1\} = 0 \quad (3.24)$$

where the Poisson brackets between F_\pm, and Q^\pm_α look as follows:

$$\{Q^\pm_\alpha, F_\pm\} = 0, \quad \{Q^\pm_\alpha, F_\mp\} = \pm \epsilon_{\alpha\beta} Q^\pm_\beta, \quad \{Q^\pm_\alpha, F_3\} = \pm i Q^\pm_\alpha. \quad (3.25)$$

Hence, these two systems form the superalgebra

$$\{Q^\pm_\alpha, Q^\pm_\beta\} = 2\epsilon_{\alpha\beta} F_\pm, \quad \{Q^\pm_\alpha, Q^\mp_\beta\} = \delta_{\alpha\beta} \mathcal{H}^0_{SUSY} - \sigma^3_{\alpha\beta} \omega^2 F_3, \quad (3.26)$$

$$\{Q^\pm_\alpha, F_\pm\} = 0, \quad \{Q^\pm_\alpha, F_\mp\} = \pm \epsilon_{\alpha\beta} Q^\pm_\beta, \quad \{Q^\pm_\alpha, F_3\} = \pm i Q^\pm_\alpha, \quad \{F_\pm, F_\pm\} = i F_3, \quad \{F_\pm, F_\mp\} = \pm i F_\mp.$$

The symmetry superalgebra of the oscillator on \mathbb{CP}^N coincides with the above one in any dimension, i.e., once again, we find a quite different behaviour for the oscillators on \mathbb{CP}^1 and \mathbb{CP}^N, $N > 1$ spaces, respectively.

Finally, we give the explicit expression of the Noether constants of motion corresponding to the $su(N)$ symmetry

$$\mathcal{F}^{SUSY}_{ab} = \mathcal{F}_{ab} + \frac{\partial^2 h_{ab}}{\partial z^c \partial \bar{z}^d} \sigma^c \tilde{\eta}^d. \quad (3.27)$$
4 Conclusion

We proposed an integrable system on \mathbb{CP}^N, with $4N - 1$ functionally independent constants of motion, which could be viewed as the generalization of a $2N$-dimensional oscillator. On the complex projective plane $\mathbb{CP}^1 = S^2$ this system coincides with the Higgs oscillator; the Kustaanheimo-Stiefel transformation of the system on \mathbb{CP}^2 leads to the three-dimensional Coulomb-like system, which is equivalent to the MIC-Kepler problem on the three-dimensional hyperboloid obtained by the Kustaanheimo-Stiefel transformation of the oscillator on S^4. On the other hand, while the spherical oscillator remains unchanged upon transition from one hemisphere to another, the oscillator on \mathbb{CP}^N, $N > 1$, after transition to another chart, yields a system which, in spite of the absence of a rotational symmetry, remains “maximally integrable”.

The oscillators on \mathbb{CP}^3 and \mathbb{CP}^4, in our opinion, deserve a separate study due to their relevance to the higher-dimensional quantum Hall effect [9]. This theory, based on the quantum mechanics of the particle on S^4 interacting with a $SU(2)$ monopole field, lately has been extended to \mathbb{CP}^N spaces in the presence of a constant $U(1)$ (magnetic) field [10]. Since \mathbb{CP}^3 can be viewed as a fiber bundle of S^4 with S^2 in the bundle, the four-dimensional quantum Hall system can be formulated as a system on \mathbb{CP}^3 [10, 11]. Performing the Hurwitz transformation of the oscillator on \mathbb{CP}^4, we will get the five-dimensional Coulomb-like system with a $SU(2)$ Yang monopole. This system will have a degenerate ground state, hence it will be suitable for the developing of the five-dimensional quantum Hall effect in the Coulomb field (in the present versions of higher-dimensional quantum Hall theory, the potential field is used for the reduction to lower dimensions).

The Kähler structure makes the study of the coupling of a constant magnetic field to the oscillator on \mathbb{CP}^N much simpler than on 2N-dimensional sphere. In particular, we have shown that the oscillators on \mathbb{CP}^N, $N > 1$ and on \mathbb{CP}^N, $N > 1$ coupled with a constant magnetic field behave similarly, with respect to $\mathcal{N} = 2$ supersymmetrization. While a constant magnetic field breaks the $\mathcal{N} = 2$ supersymmetry of the oscillator on sphere (and on the $\mathbb{CP}^1 = S^2$), it preserves the $\mathcal{N} = 2$ supersymmetry of the oscillators on \mathbb{CP}^N, $N > 1$ and \mathbb{CP}^N. On the other hand, in the absence of a magnetic field, the oscillator on \mathbb{CP}^N allows us to introduce $\mathcal{N} = 4$ supersymmetry, while the oscillators on spheres and \mathbb{CP}^N admit only $\mathcal{N} = 2$ superextensions. It is easy to see, that the similarity of the oscillators on \mathbb{CP}^N and \mathbb{CP}^N, $N > 1$, in their behaviour with respect to supersymmetrization, is due to the special form of the Hamiltonian

$$\mathcal{H} = g^{ab} (\pi_a \bar{\pi}_b + \omega^2 \partial_a \bar{\partial}_b K \bar{K}),$$

where K is a Kähler potential of the metric.

Therefore, from the viewpoint of $\mathcal{N} = 2$ supersymmetry, the above Hamiltonian could be viewed as the generalization of the oscillator on an arbitrary Kähler manifold. In that case, the existence of hidden symmetries of the oscillator on \mathbb{CP}^N could be viewed as an “accidental” one. Simultaneously, it is clear that the oscillators on other symmetrical Kähler spaces, say, on the Lobachewski spaces \mathcal{L}, or Grassmanians $\text{Gr}_{N,M}$, will have hidden symmetries, due to the translational invariance of the above spaces.

Acknowledgments

We thank Erni Kalnins for stimulating questions that prompted us to undertake this study, Pierre-Yves Casteill for checking the relations (2.21), (2.30) on MATHEMATICA and Anton Galajinsky for the interest in this work. The work of S.B. was supported in part by the European Community’s Human Potential Programme under contract HPRN-CT-2000-00131 Quantum Spacetime, the INTAS-00-0254 grant and the NATO Collaborative Linkage Grant PST.CLG.979389. The work of A.N. was supported by grants INTAS 00-00262 and ANSEF PS124-01. A.N. thanks INFN-LNF for hospitality during the completion of this work.

References

[1] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Birkhauser, 1990

[2] T. Levi-Civita, Opere Mathematiche, 2, 411 (1906); P. Kustaanheimo, E. Stiefel, J. Reine Angew Math., 218, 204 (1965); A. Hurwitz, Mathematische Werke, Band II, 641 (Birkhauser, Basel, 1933)

[3] C. N. Yang, J. Math.Phys. 19, 320 (1978)
[4] A. Nersessian, V. Ter-Antonian, M. M. Tsulaia, Mod. Phys. Lett. A 11, 1605 (1996); A. Nersessian, V. M. Ter-Antonian, Phys. Atom. Nucl. 61, 1756 (1998)

[5] D. Zwanziger, Phys. Rev. 176, 1480 (1968); H. V. McIntosh, A. Cisneros, J. Math. Phys. 11, 896 (1970); T. Iwai, Y. Uwano, J. Math. Phys. 27, 1523 (1986); A. Nersessian, V. Ter-Antonian, Mod. Phys. Lett. A 9, 2431 (1994); Mod. Phys. Lett. A 10, 2633 (1995)

[6] T. Iwai, J. Geom. Phys. 7, 507 (1990); L. G. Mardoyan, A. N. Sissakian, V. M. Ter-Antonyan, Phys. Atom. Nucl. 61, 1746 (1998)

[7] G. W. Gibbons, N. S. Manton, Nucl. Phys. B274, 183 (1986)

[8] L. G. Feher and P. A. Horvathy Phys. Lett. B 182, 183 (1987) B. Cordani, L. G. Feher and P. A. Horvathy, Phys. Lett. B 201, 481 (1988); J. Math. Phys. 31, 202 (1990)

[9] S. C. Zhang, J. P. Hu, Science 294, 823 (2001)

[10] D. Karabali, V. P. Nair, Nucl. Phys. B B641, 533 (2002)

[11] B. A. Bernevig, C. H. Chern, J. P. Hu, N. Toumbas, S. C. Zhang, Annals Phys. 300, 185 (2002)

[12] F. Cooper, A. Khare, U. Sukhatme, Phys. Rept. 251, 267 (1995)

[13] R. de Lima Rodrigues, “The quantum mechanics SUSY algebra: An introductory review,” arXiv:hep-th/0205017.

[14] A. Connes, M. R. Douglas, A. Schwarz, JHEP 9802, 003 (1998); N. Seiberg, E. Witten, JHEP 9909, 032 (1999)

[15] M. Chaichian, M. M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 86, 2716 (2001); J. Gamboa, M. Loewe, J. C. Rojas, Phys. Rev. D 64, 067901 (2001); B. Morariu, A. P. Polychronakos, Nucl. Phys. B 610, 531 (2001); R. Iengo, R. Ramachandran, JHEP 0202, 017 (2002); P. M. Ho, H. C. Kao, Phys. Rev. Lett. 88, 151602 (2002); S. Bellucci, A. Nersessian, Phys. Lett. B 542, 295 (2002); P. A. Horvathy, Annals Phys. 299, 128 (2002); A. A. Deriglazov, Phys. Lett. B530, 235 (2002); arXiv:hep-th/0208201.

[16] V. P. Nair, A. P. Polychronakos, Phys. Lett. B505, 267 (2001); S. Bellucci, A. Nersessian, C. Sochichiu, Phys. Lett. B522, 345 (2001); C. Duval, P. A. Horvathy, J. Phys. A 34, 10097 (2001); A. Smialagie, E. Spallucci, Phys. Rev. D65, 107701 (2002); R. Banerjee Mod. Phys. Lett. A17, 631 (2002)

[17] P. W. Higgs, J. Phys. A: Math. Gen. 12, 309 (1979); H. I. Leemon, J. Phys. A: Math. Gen. 12, 489 (1979)

[18] A. Nersessian, G. Pogosyan, Phys. Rev. A63, 020103(R) (2001); A. Nersessian, Phys. Atom. Nucl. 65, 1070 (2002)

[19] E. Schrödinger, Proc. Roy. Irish Soc. 46, 9 (1941); 46, 183 (1941); 47, 53 (1941)

[20] E. G. Kahins, W. Miller, G. S. Pogosyan, J. Math. Phys. 41, 2629 (2000); Phys. Atom. Nucl. 65, 1086 (2002)

[21] S. Bellucci, A. Nersessian, Phys. Rev. D 64, 021702 (2001); Nucl. Phys. Proc. Suppl. 102, 227 (2001)