NAAS: Neural Accelerator Architecture Search

Yujun Lin*
MIT

Mengtian Yang*
SJTU

Song Han
MIT

https://tinyml.mit.edu

Abstract—Data-driven, automatic design space exploration of neural accelerator architecture is desirable for specialization and productivity. Previous frameworks focus on sizing the numerical architectural hyper-parameters while neglect searching the PE connectivities and compiler mappings. To tackle this challenge, we propose Neural Accelerator Architecture Search (NAAS) that holistically searches the neural network architecture, accelerator architecture and compiler mapping in one optimization loop. NAAS composes highly matched architectures together with efficient mapping. As a data-driven approach, NAAS rivals the human design Eyeriss by 4.4× EDP reduction with 2.7% accuracy improvement on ImageNet under the same computation resource, and offers 1.4× to 3.5× EDP reduction than only sizing the architectural hyper-parameters.

I. INTRODUCTION

Neural architecture and accelerator architecture co-design is important to enable specialization and acceleration. It covers three aspects: designing the neural network, designing the accelerator, and the compiler that maps the model on the accelerator. The design space of each dimension is listed in Table I with more than 10^{300} choices for a 50-layer neural network. Given the huge design space, data-driven approach is desirable, where new architecture design evolves as new designs and rewards are collected. Recent work on hardware-aware neural architecture search (NAS) and auto compiler optimization have successfully leverage machine learning algorithms to automatically explore the design space. However, these works only focuses on off-the-shelf hardware [1]–[6], and neglect the freedom in the hardware design space.

The interactions between the neural architecture and the accelerator architecture is illustrated in Table I. The correlations are complicated and vary from hardware to hardware: for instance, tiled input channels should be multiples of #rows of compute array in NVDLA, while #rows is related to the kernel size in Eyeriss. It is important to consider all the correlations and make them fit. A tuple of perfectly matched neural architecture, accelerator architecture, and mapping strategy will improve the utilization of the compute array and on-chip memory, maximizing efficiency and performance.

The potential of exploring both neural and accelerator architecture has been proven on FPGA platforms [7]–[10] where HLS is applied to generate FPGA accelerator. Earlier work on accelerator architecture search [11]–[13] only search the architectural sizing while neglecting the PE connectivity (e.g., array shape and parallel dimensions) and compiler mappings, which impact the hardware efficiency.

We push beyond searching only hardware hyper-parameters and propose the Neural Accelerator Architecture Search (NAAS), which fully exploits the hardware design space and compiler mapping strategies at the same time. Unlike prior work [11] which formulate the hardware parameter search as a pure sizing optimization, NAAS models the co-search as a two-level optimization problem, where each level is a combination of indexing, ordering and sizing optimization. To tackle such challenges, we propose an encoding method which is able to encode the non-numerical parameters such as loop order and parallel dimension chosen as numerical parameters for optimization. As shown in Figure 1, the outer loop of NAAS optimizes the accelerator architecture while the inner loop optimizes the compiler mapping strategies.

Combining both spaces greatly enlarges the optimization space: within the same #PEs and on-chip memory resources as EdgeTPU there are at least 10^{11} hardware candidates and 10^{17} mapping candidates for each layer, which composes $10^{11+50+17} = 10^{861}$ possible combinations in the joint search space for ResNet-50, while there are only 10^4 hardware candidates in NASAIC’s design space. To efficiently search

Parameter Space	Input Channels	Output Channels	Kernel Size	Feature Map Size
Array #rows	N	N	N	N/E
Array #cols	N/E	N/E	N/E	N/E
IBUF Size	N/E	N/E	N/E	N/E
WBUF Size	N/E	N/E	N/E	N/E
OBUF Size	N/E	N/E	N/E	N/E

* Equally contributed to this work.
NAAS explores the design space of accelerators, and compiler’s mappings simultaneously.

II. NEURAL ACCELERATOR ARCHITECTURE SEARCH

Figure 1 shows the optimization flow of Neural Accelerator Architecture Search (NAAS). NAAS integrates with NAS. NAAS explores the design space of accelerators, and compiler’s mappings simultaneously.

A. Accelerator Architecture Search

a) Design Space: The accelerator design knobs can be categorized into two classes:

1) Architectural Sizing: the number of processing elements (#PEs), private scratch pad size (L1 size), global buffer size (L2 size), and memory bandwidth.
2) Connectivity Parameters: the number of array dimensions (1D, 2D or 3D array), array size at each dimension, and the inter-PE connections.

Most state-of-art searching frameworks only contains architectural sizing parameters in their design space. These sizing parameters are numerical and can be easily embedded into vectors during search. On the other hand, PE connectivity is difficult to encode as vectors since they are not numerical numbers. Moreover, changing the connectivity requires redesigning the compiler mapping strategies, which extremely increase the searching cost. In NAAS, besides the architectural sizing parameters which are common in other frameworks, we introduce the connectivity parameters into our search space, making it possible to search among 1D, 2D and 3D array as well, and thus our design space includes almost the entire accelerator design space for neural network accelerators.

b) Encoding: We first model the PE connectivity as the choices of parallel dimensions. For example, parallelism in input channels (C) means a reduction connection of the partial sum register inside each PE. Parallelism in output channels means a broadcast to input feature register inside each PE. The most straight-forward method to encode the parallel dimension choice is to enumerate all possible parallelism situations and choose the index of the enumeration as the encoding value. However, since the increment or decrement of indexes does not convey any physical information, it is hard to be optimized.

To solve this problem, we proposed the “importance-based” encoding method for choosing parallelism dimensions in the dataflow and convert the indexing optimization into the sizing optimization. For each dimension, our optimizer will generate an importance value. To get the corresponding parallel dimensions, we first collect all the importance value, then sort them in decreasing order, and select the first k dimensions as the parallel dimensions of a k-D compute array. As shown in the left of Figure 3, the generated candidate is a 2D array with size 16 × 16. To find the parallel dimension for this 2D array candidate, The importance values are first generated for 6 dimensions in the same way as other numerical parameters in the encoding vector. We then sort the value in decreasing order and determine the new order of the dimensions. Since the importance value of “C” and “K” are the largest two value, we finally select “C” and “K” as the parallel dimensions of this 2D array. The importance value of the dimension represents the priority of the parallelism: a larger value indicates a higher priority and a higher possibility to be paralleled in the computation loop nest, which contains higher relativity with accelerator design compared to indexes of enumerations.

For other numerical parameters, we use the straight-forward encoding method. The whole hardware encoding vector is over the large design space, NAAS leverages the biologically-inspired evolution-based algorithm rather than meta-controller-based algorithm to improve the sample efficiency. It keeps improving the quality of the candidate population by ruling out the inferior and generating from the fittest. Thanks to the low search cost, NAAS can be easily integrated with hardware-aware NAS algorithm by adding another optimization level (Figure 1), achieving the joint search.

Extensive experiments verify the effectiveness of our framework. Under the same #PE and on-chip memory constraints, the NAAS is able to deliver 2.6×, 4.4× speedup and 2.1×, 1.4× energy savings on average compared to Eyeriss [14], NVDLA [15] design respectively. Integrated with Once-For-All NAS algorithm [4], NAAS further improves the top-1 accuracy on ImageNet by 2.7% without hurting the hardware performance. Using the similar compute resources, NAAS achieves 3.0×, 1.9× EDP improvements compared to Neural-Hardware Architecture Search [12], and NASAIC [11] respectively.
Mapping Encoding Vector

1000

Evolution Search

Hardware Description

Mapping Encoding Vector

Mapping Description

Hardware Design

To/From DRAM

Shared Buffer (L2 Scratch Pad)

Network-On-Chip (NoC)

Private Buffer (L1 Scratch Pad)

ALU (MAC Unit)

Pure-For

Parallel-For in range(16):

Parallel-For in range(16):

For _R in range(R / R):

For _C in range(C / T_C):

For _Y’ in range(Y’ / T_Y’):

Mapping

temporalMap (Sz(R), Sz(R)) R;

temporalMap (Sz(S), Sz(S)) S;

temporalMap (T_C, T_C) C;

temporalMap (T_Y’, T_Y’); SpatialMap (1, 1) K;

Cluster(16, P)

For _S in range(1):

For _C in range(C / T_C):

For _Y’ in range(Y’ / T_Y’):

SpatialMap (1, 1) X;

Parallel-For in range(16):

Parallel-For in range(16):

c = c + S + C + _c + 16;

k = k + 16;

y’ = y’ + X’ + X + _x’;

y = y’ + r - R;

x = x’ + s - S;

psum(b, k, y’, x’) += acts[b, x, y, x]

+ wgt[s[k, c, y, x]];

Input Row (Output Row)

K

Input Channel

C

Kernel Row

R

Kernel Column

S

Fig. 2: Encoding the accelerator design and compiler mapping into vectors. An accelerator design is described by architectural

Table Dimension

Notation

Batch \(N \)

Output Channel \(K \)

Input Channel \(C \)

Input Row (Output Row) \(Y’ \)

Input Column (Output Column) \(X’ \)

Kernel Row \(R \)

Kernel Column \(S \)

Fig. 4: The average of EDP decreases as NAAS is learning.

distribution in \([0, 1]^{16}\). Each candidate is represented as a

\[\theta\]-dimension vector. These candidates are then projected to

hardware encoding vectors and decoded into accelerator design.

We rule out the invalid accelerator samples and keep sampling

until the candidate set reaches a predefined size (population

size) in our experiments. To evaluate the candidate performance,

we need to perform mapping strategy search in Section II-B on

each benchmark and adopt the best searched result as the EDP

reward of this candidate. After evaluating all the candidates on

the benchmarks, we update the sampling distribution based on

the relative ordering of their EDP. Specifically, we select the top

solutions as the “parents” of the next generation and use their

center to generate the new mean of the sampling distribution.

We update the covariance matrix of the distribution to increase

the likelihood of generating samples near the parents \[17\]. We

then repeat such sampling and updating process.

Figure 4 shows the statistics of energy-delay products of

hardware candidates in the population. As the optimization

continues, the EDP mean of NAAS candidates decreases while

that of random search remains high, which indicates that NAAS

shown in Figure 2 which contains all of the necessary parameters to represent an accelerator design paradigm.

c) Evolution Search: We leverage the evolution strategy \[17\] to find the best solution during the exploration. In order to take both latency and energy into consideration, we choose the widely used metric Energy-Delay Product (EDP) to evaluate a given accelerator configuration on a specific neural network workload. At each evolution iteration, we first sample a set of candidates according to a multivariate normal
gradually improves the range of hardware selections.

B. Compiler Mapping Strategy Search

The performance and energy efficiency of deep learning accelerators also depend on how to map the neural network task on the accelerator. The search space of compiler mapping strategy is much larger than accelerator design, since different convolution layers may not share the same optimal mapping strategy. Hence we optimize the mapping for each layer independently using the similar evolution-based search algorithm to accelerator design search in Section II-A0c.

The compiler mapping strategy consists of two components: the execution order and the tiling size of each for-loop dimension. Similar to the accelerator design search, the order of for-loop dimensions is non-trivial. Rather than enumerating all of the possible execution orders and using indexes as encoding, we use the similar “importance-based” encoding methods in Section II-A0b. For each dimension of the array (corresponding to each level of for-loop nests), the mapping optimizer will assign each convolution dimension with an importance value. The dimension with the highest importance will become the outermost loop while the one with the lowest importance will be placed at the innermost in the loop nests. The right of Figure 3 gives an example. The optimizer firstly generates the importance values for 6 dimensions, then sort the value in decreasing order and determine the corresponding order of the dimensions. Since “C” and “R” dimension have largest value 5, they will become the outermost loops. “S” dimension has the smallest value 1, so it is the innermost dimension in the loops. This strategy is interpretable, since the importance value represents the data locality of the dimension: the dimension labeled as most important has the best data locality since it is the outermost loop, while the dimension labeled as least important has the poorest data locality therefore it is the innermost loop.

As for tiling sizes, since they are highly related to the network parameters, we use the scaling ratio rather than the absolute tiling value. Hence, the tiling sizes are still numerical parameters and able to adapt to different networks. The right part of figure 3 illustrates the composition of the mapping encoding vector. Note that for PE level we need to ensure that there is only one MAC in a PE, so we only search the loop order at PE level. For each array level, the encoding vector contains both the execution order and tiling size for each for-loop dimension.

C. Integrated with Neural Architecture Search

Thanks to the low search cost, we can integrate our framework with neural architecture search to achieve neural-accelerator-compiler co-design. Figure 1 illustrates integrating NAAS with NAS. The joint design space is huge, and in order to improve the search efficiency, we choose and adapt Once-For-All NAS algorithm for NAAS. First, NAAS generates a pool of accelerator candidates. For each accelerator candidate, we sample a network candidate from NAS framework which satisfies the pre-defined accuracy requirement. Since each subnet of Once-For-All network is well trained, the accuracy evaluation is fast. We then apply the compiler mapping strategy search for the network candidate on the corresponding accelerator candidate. NAS optimizer will update using the searched EDP as a reward. Until NAS optimizer reaches its iteration limitations, and feedback the EDP of the best network candidate to accelerator design optimizer. We repeated the process until the best-fitted design is found. In the end, we obtain a tuple of matched accelerator, neural network, and its mapping strategy with guaranteed accuracy and lowest EDP.

III. Evaluation

We evaluate Neural Accelerator Architecture Search’s performance improvement step by step: 1) the improvement from applying NAAS given the same hardware resource; 2) performance of NAAS which integrates the Once-For-All to achieve the neural-accelerator-compiler co-design.

A. Evaluation Environment

a) Design Space of NAAS: We select four different resource constraints based on EdgeTPU, NVDLA [15], Eyeriss [14] and Shidiannao [18]. When comparing to each baseline architecture, NAAS is conducted within corresponding computation resource constraint including the maximum #PEs, the maximum total on-chip memory size, and the NoC bandwidth. NAAS searches #PEs at stride of 8, buffer sizes at stride of 16B, array sizes at stride of 2.

b) CNN Benchmarks: We select 6 widely-used CNN models as our benchmarks. The benchmarks are divided into two sets: classic large-scale networks (VGG16, ResNet50, UNet) and light-weight efficient mobile networks (MobileNetV2, SqueezeNet, MNasNet). Five deployment scenarios are divided accordingly: we conduct NAAS for large models with more hardware resources (EdgeTPU, NVDLA with 1024 PEs), and for small models with limited hardware resources (ShiDianNao, Eyeriss, and NVDLA with 256 PEs).

c) Design Space in Once-For-All NAS: When integrating with Once-For-All NAS, the neural architecture space is modified from ResNet-50 design space following the open-sourced library [4]. There are 3 width multiplier choices (0.65, 0.8, 1.0) and 18 residual blocks at maximum, where each block consists of three convolutions and has 3 reduction ratios (0.2, 0.25, 0.35). Input image size ranges from 128 to 256 at stride of 16. In total there are 10^{13} possible neural architectures.

B. Improvement from NAAS

Figure 5 shows the speedup and energy savings of NAAS using the same hardware resources compared to the baseline architectures. When running large-scale models, NAAS delivers 2.6×, 2.2× speedup and 1.1×, 1.1× energy savings on average compared to EdgeTPU and NVDLA-1024. Though NAAS tries to provide a balanced performance on all benchmarks by using geomean EDP as reward, VGG16 workload sees the highest gains from NAAS. When inferencing light-weight models, NAAS achieves 4.4×, 1.7×, 4.4× speedup and 2.1×, 1.4×, 4.9× energy savings on average compared to Eyeriss, NVDLA-256, and ShiDianNao. Similar to searching for large
models, different models obtain different benefits from NAAS under different resource constraints.

Figure 7 demonstrates three examples of searched architectures. When given different computation resources, for different NN models, NAAS provides different solutions beyond numerical design parameter tuning. Different dataflow parallelisms determine the different PE micro-architecture and thus PE connectivities and even feature/weight/partial-sum buffer placement.

Figure 8 illustrates the benefits of searching connectivity parameters and mapping strategy compared to searching architectural sizing only. NAAS outperforms architectural sizing search by $3.52 \times$, $1.42 \times$ EDP reduction on VGG and MobileNetV2 within EdgeTPU resources, as well as $2.61 \times$, $1.62 \times$ improvement under NVDLA-1024 resources.

Figure 9 further shows the EDP reduction using different encoding methods. Importance-based encoding method significantly improves the performance of optimization by reducing EDP from $1.4 \times$ to $7.4 \times$.

C. More Improvement from Integrating NAS

Different from accelerator architectures, neural architectures have much more knobs to tune (e.g., network depths, channel
numbers, input image sizes), providing us with more room to optimize. To illustrate the benefit of NAAS with NAS, we evaluate on ResNet50 with hardware resources similar to Eyeriss. Figure 10 shows that NAAS (accelerator only) outperforms Neural-Hardware Architecture Search (NAAS) (which only searches the neural architecture and the accelerator architectural sizing) by 3.01× EDP improvement. By integrating with neural architecture search, NAAS achieves 4.88× EDP improvement in total as well as 2.7% top-1 accuracy improvement on ImageNet dataset than Eyeriss running ResNet50.

 wysokości

Fig. 8: Compared to searching the architectural sizing only [11], [12], searching the connectivity parameters and mapping strategies as well achieves considerable EDP reduction.

Fig. 9: Compared to index-based encoding, importance-based encoding achieves better EDP reduction.

IV. RELATED WORKS

a) Accelerator Design-Space Exploration: Earlier work focuses on fine-grained hardware resource assignment for deployment on FPGAs [7], [10], [13], [20]–[22]. Several work focuses on co-designing neural architectures and ASIC accelerators. Yang et al. (NASAIC) devise a controller that simultaneously predicts neural architectures as well as the selection policy of various IPs in a heterogeneous accelerator. Lin et al. [12] focuses on optimizing the micro architecture parameters such as the array size and buffer size for given accelerator design while searching the quantized neural architecture. Besides, some work focuses on optimizing compiler mapping strategy on fixed architectures. Chen et al. [23] (TVM) designed a searching framework for optimizing for-loops execution on CPU/GPU or other fixed platforms. Mu et al. [24] proposed a new searching algorithm for tuning mapping strategy on fixed GPU architecture. On the contrary, our work explores not only the sizing parameters but also the connectivity parameters and the compiler mapping strategy. We also explore the neural architecture space to further improve the performance. Plenty of work provides the modeling platform for design space exploration [25]–[28]. We choose MAESTRO [28] as the accelerator evaluation backend.
TABLE IV: We achieve much lower search cost on ImageNet (Gds: GPU days. N: number of development scenarios.)

Approach	Co-Search Cost (Gds)	NN Training Cost (Gds)	Total Cost (Gds)	AWS Cost (lbs)	CO2 Emission
NASAC	$500 + 12N + 6000N	$16N + 6000N	$441000N + 41000N lbs	$150000N lbs	41000N lbs
NHAS	$12 + 4N	$16N + 12 + 20N	$150000N lbs		
Ours	< 0.25N	50	< 50 + 0.25N	< 18N	< 2N lbs

| * | NASAC’s search cost is an optimistic projection from Cifar10. |
| * | AWS cost $75/Gd and CO2 Emission is 7.5 lbs/Gd. |

b) **AutoML and Hardware-Aware NAS**: Researchers have looked to automate the neural network design using AutoML. Grid search [28], [29] and reinforcement learning with meta-controller [3], [11], [30] both suffer from prohibitive search cost. One-shot-network-based frameworks [1], [2], [3] achieved high performance at a relatively low search cost. These NAS algorithms require retraining the searched networks while Cai et al. [4] proposed Once-For-All network of which the subnets are well trained and can be directly extracted for deployment. Recent neural architecture search (NAS) frameworks started to incorporate the hardware into the search feedback loop [1], [4], [8], [9], though they have not explored hardware accelerator optimization.

V. CONCLUSION

We propose an evolution-based accelerator-compiler co-search framework, NAAS. It not only searches the architecture sizing parameters but also the PE connectivity and compiler mapping strategy. Integrated with the Once-for-All NAS algorithm, it explores the search spaces of neural architectures, accelerator architectures, and mapping strategies together while reducing the search cost by 120× compared with previous work. Extensive experiments verify the effectiveness of NAAS. Within the same computation resources as Eyeriss [14], NAAS provides 4.4× energy-delay-product reduction with 2.7% top-1 accuracy improvement on ImageNet dataset compared to directly running ResNet-50 on Eyeriss. Using the similar computation resources, NAAS integrated with NAS achieves 3.0×, 1.9× EDP improvements compared to NHAS [12], and NASAC [11] respectively.

Acknowledgements. This work was supported by NSF CAREER Award #1943349 and SRC GRC program under task 2944.001. We also thank AWS Machine Learning Research Awards for the computational resource.

REFERENCES

[1] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,” in *ICLR*, 2019.
[2] Q. Lu et al., “On neural architecture search for resource-constrained hardware platforms,” 2019.
[3] K. Wang et al., “HAQ: Hardware-aware automated quantization with mixed precision,” in *CVPR*, 2019, pp. 8612–8620.
[4] H. Cai et al., “Once for all: Train one network and specialize it for efficient deployment,” in *ICLR*, 2020.
[5] T. Chen et al., “Learning to optimize tensor programs,” in *NeurIPS*, 2018, pp. 3389–3400.
[6] S.-C. Kao and T. Krishna, “Gamma: Mapping space exploration via genetic algorithm,” in *ICCAD*, 2020.
[7] C. Hao et al., “FPGA/DNN co-design: An efficient design methodology for IoT intelligence on the edge,” in *DAC*, 2019, pp. 1–6.
[8] Y. Li et al., “EED: Efficient differentiable dnn architecture and implementation co-search for embedded ai solutions,” in *DAC*, 2020.
[9] X. Zhang et al., “Skynet: a hardware-efficient method for object detection and tracking on embedded systems,” 2020.
[10] S.-C. Kao et al., “Conflucia: Autonomous hardware resource assignment for dnn accelerators using reinforcement learning,” in *MICRO*, 2020.
[11] L. Yang et al., “Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks,” 2020.
[12] Y. Lin et al., “Neural hardware architecture search,” in *NeurIPS WS*, 2019.
[13] W. Jiang et al., “Hardware/software co-exploration of neural architectures,” in *TCAD*, 2020.
[14] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” in *IJSSC*, vol. 52, no. 1, 2016.
[15] NVIDIA, “NVIDIA deep learning accelerator,” 2017. [Online]. Available: http://nvidia.org.
[16] I. Albericio et al., “Covlution: Inefffectual-neuron-free deep neural network computing,” in *ACM SIGARCH*, vol. 44, no. 3, pp. 1–13, 2016.
[17] N. Hansen, “The CMA evolution strategy: a comparing review,” in *Towards a new evolutionary computation*. Springer, 2006, pp. 75–102.
[18] Z. Du et al., “Shidiannao: Shifting vision processing closer to the sensor,” in *ISCA*, 2015, pp. 92–104.
[19] E. Strubell et al., “Energy and policy considerations for deep learning in nlp,” in *ACL*, 2019, pp. 3645–3650.
[20] M. Motamedie et al., “Design space exploration of fpga-based deep convolutional neural networks,” in *ASP-DAC*. IEEE, 2016, pp. 575–580.
[21] G. Zhong et al., “Design space exploration of fpga-based accelerators with multi-level parallelism,” in *DATE*. IEEE, 2017, pp. 1141–1146.
[22] Y. Chen et al., “Cloud-dnn: An open framework for mapping dnn models to cloud fpgas,” in *FPGA*, 2019, pp. 73–82.
[23] T. Chen et al., “(TVM): An automated end-to-end optimizing compiler for deep learning,” in *13th USENIX Symposium on Operating Systems Design and Implementation (OSDI) 18*, 2018, pp. 578–594.
[24] J. Mu et al., “A history-based auto-tuning framework for fast and high-performance dnn design on fpgas,” in *2020 57th ACM/IEEE Design Automation Conference (DAC)*. IEEE, 2020, pp. 1–6.
[25] Y. S. Shao et al., “The aladdin approach to accelerator design and modeling,” in *IEEE Micro*, vol. 35, no. 3, pp. 58–70, 2015.
[26] Y. N. Wu and V. Sze, “Accelerly: An architecture-level energy estimation methodology for accelerator designs,” in *TCAD*, 2019.
[27] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator evaluation,” in *ISPASS*. IEEE, 2019, pp. 304–315.
[28] H. Kwon et al., “Understanding reuse, performance, and hardware cost of dnn dataflow: A data-centric approach,” in *ISCA*, 2019, pp. 754–768.
[29] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in *ICML*, 2019, pp. 6105–6114.
[30] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in *ICLR*, 2017.
[31] Z. Guo et al., “Single path one-shot neural architecture search with uniform sampling,” *arXiv preprint*, 2019.