NEW OSTROWSKI TYPE INEQUALITIES FOR m–CONVEX FUNCTIONS AND APPLICATIONS

HAVVA KAVURMACI▲, M. EMİN ÖZDEMİR♠, AND MERVE AVCI▲

Abstract. In this paper, we establish new inequalities of Ostrowski type for functions whose derivatives in absolute value are m–convex. We also give some applications to special means of positive real numbers. Finally, we obtain some error estimates for the midpoint formula.

1. INTRODUCTION

Let $f : I \subset [0, \infty) \to \mathbb{R}$ be a differentiable mapping on I, the interior of the interval I, such that $f' \in L([a,b])$ where $a, b \in I$ with $a < b$. If $|f'(x)| \leq M$, then the following inequality holds (see [2]):

$$
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq \frac{M}{b-a} \left[\frac{(x-a)^2 + (b-x)^2}{2} \right].
$$

This inequality is well known in the literature as the Ostrowski inequality. For some results which generalize, improve, and extend the above inequality, see [2],[5],[6],[10] and [11], the references therein.

In [12], G. Toader defined m–convexity, an intermediate between the usual convexity and starshaped property, as the following:

Definition 1. The function $f : [0,b] \to \mathbb{R}, b > 0$, is said to be m–convex, where $m \in [0,1]$, if we have

$$
f(tx + m(1-t)y) \leq tf(x) + m(1-t)f(y)
$$

for all $x, y \in [0,b]$ and $t \in [0,1]$.

Denote by $K_m(b)$ the set of the m–convex functions on $[0,b]$ for which $f(0) \leq 0$.

Definition 2. The function $f : [0,b] \to \mathbb{R}, b > 0$ is said to be starshaped if for every $x \in [0,b]$ and $t \in [0,1]$ we have:

$$
f(tx) \leq tf(x).
$$

For $m = 1$, we recapture the concept of convex functions defined on $[0,b]$ and $m = 0$ we get the concept of starshaped functions on $[0,b]$.

The following theorem contains the Hermite-Hadamard type integral inequality (see [8]).

Theorem 1. Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be an M–Lipschitzian mapping on I and $a, b \in I$ with $a < b$. Then we have the inequality:

$$
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq M \frac{(b-a)}{4}.
$$

In [13] E. Set, M.E. Özdemir, M.Z. Sarıkaya established the following theorem.

Theorem 2. Let $f : I^o \subset [0,b^*] \to \mathbb{R}, b^* > 0$, be a differentiable mapping on I^o, $a, b \in I^o$ with $a < b$. If $|f'|^q$ is m–convex on $[a,b]$, $q > 1$ and $m \in (0,1)$, then the following inequality holds:

2000 Mathematics Subject Classification. 26A51, 26D10, 26D15.

Key words and phrases. m–convex function, Starshaped function, Convex function, Ostrowski inequality, Hermite-Hadamard inequality, Hölder inequality, Power Mean inequality, Special means, The Midpoint formula, Lipschitzian mapping.

▲Corresponding Author.

arXiv:1006.1561v1 [math.CA] 8 Jun 2010
(2) \[\left| \frac{f(a+b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq (b-a) \left(\frac{3^{1-\left(\frac{1}{q}\right)}}{8} \right) \left(|f'(a)| + m^{\frac{1}{q}} |f'(b)| \right). \]

where \(\frac{b}{m} < b^* \).

In [14] U. Kirmaci proved the following theorem.

Theorem 3. Let \(f : I^0 \subset \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(I^0 \), \(a, b \in I^0 \) with \(a < b \). If the mapping \(|f'| \) is convex on \([a,b] \), then we have

(3) \[\left| \frac{f(a+b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{8} \left(|f'(a)| + |f'(b)| \right). \]

In [9] S.S. Dragomir and G. Toader proved the following Hermite-Hadamard type inequality for \(m \)-convex functions.

Theorem 4. Let \(f : [0,\infty) \to \mathbb{R} \) be an \(m \)-convex function with \(m \in (0,1] \). If \(0 \leq a < b < \infty \) and \(f \in L^1([a,b]) \) then

(4) \[\frac{1}{b-a} \int_a^b f(x)dx \leq \min \left\{ \frac{f(a) + mf(b)}{2}, \frac{f(b) + mf(a)}{2} \right\}. \]

Some generalizations of this result can be found in [4].

In [3] M.K. Bakula, M.E. Özdemir and J. Pečarić proved the following theorems.

Theorem 5. Let \(I \) be an open real interval such that \([0,\infty) \subset I \). Let \(f : I \to \mathbb{R} \) be a differentiable function on \(I \) such that \(f' \in L([a,b]) \), where \(0 \leq a < b < \infty \). If \(|f'|^q \) is \(m \)-convex on \([a,b] \) for some fixed \(m \in (0,1] \) and \(q \in [1,\infty) \), then

(5) \[\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right), \]

where

\[
\mu_1 = \min \left\{ \frac{|f'(a)|^q + m |f'(\frac{a+b}{2m})|^q}{2}, \frac{|f'(\frac{a+b}{2m})|^q + m |f'(\frac{b}{m})|^q}{2} \right\},
\]

\[
\mu_2 = \min \left\{ \frac{|f'(b)|^q + m |f'(\frac{a+b}{2m})|^q}{2}, \frac{|f'(\frac{a+b}{2m})|^q + m |f'(\frac{b}{m})|^q}{2} \right\}.
\]

Theorem 6. Let \(I \) be an open real interval such that \([0,\infty) \subset I \). Let \(f : I \to \mathbb{R} \) be a differentiable function on \(I \) such that \(f' \in L([a,b]) \), where \(0 \leq a < b < \infty \). If \(|f'|^q \) is \(m \)-convex on \([a,b] \) for some fixed \(m \in (0,1] \) and \(q \in [1,\infty) \), then

(6) \[\left| \frac{f(a+b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{4} \min \left\{ \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right), \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right) \right\} \left(\frac{m |f'(a)|^q + |f'(b)|^q}{2} \right)^{\frac{1}{q}}. \]

The main purpose of this paper is to establish new Ostrowski type inequalities for functions whose derivatives in absolute value are \(m \)-convex. Using these results we give some applications to special means of positive real numbers and we obtain some error estimates for the midpoint formula.
In [1], in order to prove some inequalities related to Ostrowski inequality, M. Alomari and M. Darus used the following lemma with the constant \((b - a)\), but we changed it with the constant \((a - b)\) to obtain an equality in Lemma 7.

Lemma 7. Let \(f : I \subset \mathbb{R} \rightarrow \mathbb{R}\) be a differentiable mapping on \(I^0\) where \(a, b \in I\) with \(a < b\). If \(f' \in L([a, b])\), then the following equality holds:

\[
(7) \quad f(x) - \frac{1}{b - a} \int_a^b f(u)du = (a - b) \int_0^1 p(t)f'(ta + (1 - t)b)dt
\]

for each \(t \in [0, 1]\), where

\[
p(t) = \begin{cases}
 t & , \quad t \in [0, \frac{b - x}{b - a}] \\
 t - 1 & , \quad t \in \left(\frac{b - x}{b - a}, 1\right]
\end{cases},
\]

for all \(x \in [a, b]\).

Theorem 8. Let \(I\) be an open real interval such that \([0, \infty) \subset I\). Let \(f : I \rightarrow \mathbb{R}\) be a differentiable function on \(I\) such that \(f' \in L([a, b])\), where \(0 \leq a < b < \infty\). If \(|f'|\) is \(m\)-convex on \([a, b]\) for some fixed \(m \in (0, 1]\), then the following inequality holds:

\[
(8) \quad \left| f(x) - \frac{1}{b - a} \int_a^b f(u)du \right| \leq (b - a) \min \left\{ \begin{array}{l}
\left[\frac{1}{6} - \frac{1}{2} \left(\frac{b - x}{b - a} \right)^2 + \frac{2}{3} \left(\frac{b - x}{b - a} \right)^3 \right] |f'(a)| \\
+ m \left[\frac{1}{6} - \frac{1}{2} \left(\frac{b - x}{b - a} \right)^2 - \frac{1}{3} \left(\frac{b - x}{b - a} \right)^3 + \frac{1}{3} \left(\frac{a - x}{b - a} \right)^3 \right] |f'(b)| \\
+ m \left[\frac{1}{3} \left(\frac{b - x}{b - a} \right)^2 - \frac{1}{6} \left(\frac{b - x}{b - a} \right)^3 + \frac{1}{6} \left(\frac{a - x}{b - a} \right)^3 \right] |f'(\frac{a}{m})| \end{array} \right\}
\]

for each \(x \in [a, b]\).

Proof. By Lemma 7 we have

\[
\left| f(x) - \frac{1}{b - a} \int_a^b f(u)du \right| \leq (b - a) \int_0^1 t |f'(ta + (1 - t)b)| dt
\]

\[
= (b - a) \int_{\frac{b - x}{b - a}}^{1} (1 - t) |f'(ta + (1 - t)b)| dt
\]

Since \(|f'|\) is \(m\)-convex on \([a, b]\) we know that for any \(t \in [0, 1]\)

\[
|f'(ta + (1 - t)b)| = \left| f'(ta + m(1 - t) \frac{b}{m}) \right| \leq t |f'(a)| + m(1 - t) \left| f'(\frac{b}{m}) \right|,
\]

for some fixed \(m \in (0, 1]\).
Hence
\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u)du \right|
\leq (b-a) \int_0^1 t \left[t |f'(a)| + m(1-t) \left| f'(\frac{b}{m}) \right| \right] dt
\]
\[
+ (b-a) \int_{b-x}^{b-a} (1-t) \left[t |f'(a)| + m(1-t) \left| f'(\frac{b}{m}) \right| \right] dt
\]
\[
= (b-a) \left\{ \left[\frac{1}{6} - \frac{1}{2} \left(\frac{b-x}{b-a} \right)^2 + \frac{2}{3} \left(\frac{b-x}{b-a} \right)^3 \right] |f'(a)| \right\}
\]
\[
+ m \left[\frac{1}{3} \left(\frac{b-x}{b-a} \right)^2 - \frac{1}{3} \left(\frac{b-x}{b-a} \right)^3 + \frac{1}{3} \left(\frac{x-a}{b-a} \right)^3 \right] |f'(\frac{b}{m})| \right\}
\]
where we use the facts that
\[
\int_0^{b-x} t \left[t |f'(a)| + m(1-t) \left| f'(\frac{b}{m}) \right| \right] dt
\]
\[
= \frac{1}{3} \left(\frac{b-x}{b-a} \right)^3 |f'(a)| + m \left[\frac{1}{2} \left(\frac{b-x}{b-a} \right)^2 - \frac{1}{3} \left(\frac{b-x}{b-a} \right)^3 \right] |f'(\frac{b}{m})| \right, \]
and
\[
\int_{b-x}^{b-a} (1-t) \left[t |f'(a)| + m(1-t) \left| f'(\frac{b}{m}) \right| \right] dt
\]
\[
= \left[\frac{1}{6} - \frac{1}{2} \left(\frac{b-x}{b-a} \right)^2 + \frac{1}{3} \left(\frac{b-x}{b-a} \right)^3 \right] |f'(a)| + m\left[\frac{1}{3} \left(\frac{x-a}{b-a} \right)^3 \right] |f'(\frac{b}{m})| \right, \]
and analogously
\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u)du \right|
\leq (b-a) \left\{ \left[\frac{1}{6} - \frac{1}{2} \left(\frac{b-x}{b-a} \right)^2 + \frac{2}{3} \left(\frac{b-x}{b-a} \right)^3 \right] |f'(b)| \right\}
\]
\[
+ m \left[\frac{1}{2} \left(\frac{b-x}{b-a} \right)^2 - \frac{1}{3} \left(\frac{b-x}{b-a} \right)^3 + \frac{1}{3} \left(\frac{x-a}{b-a} \right)^3 \right] |f'(\frac{b}{m})| \right\}
\]
The proof is completed. □

Remark 1. Suppose that all the assumptions of Theorem 8 are satisfied. If we choose \(x = \frac{a+b}{2} \), then we have
\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(u)du \right|
\leq \frac{b-a}{8} \min \left\{ |f'(a)| + m \left| f' \left(\frac{b}{m} \right) \right|, |f'(b)| + m \left| f' \left(\frac{a}{m} \right) \right| \right\}
\]
which is \([\Theta], q=1\).

Remark 2. Suppose that all the assumptions of Theorem 8 are satisfied. Then

(A) If we choose \(m = 1 \) and \(x = \frac{a+b}{2} \), we obtain
\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(u)du \right| \leq \frac{b-a}{8} \left(|f'(a)| + |f'(b)| \right),
\]
which is \((3)\).

(B) In (A). Additionally, if we choose \(|f'(x)| \leq M, M > 0 \)
Theorem 9. Let I be an open real interval such that $[0, \infty) \subset I$. Let $f : I \to \mathbb{R}$ be a differentiable function on I such that $f' \in L([a, b])$, where $0 \leq a < b < \infty$. If $|f'| p \cdot q$ is m-convex on $[a, b]$ for some fixed $m \in (0, 1)$ and $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$, then the following inequality holds:

\[
\left| f \left(\frac{a + b}{2} \right) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq M \frac{(b-a)}{4}
\]

which is (1).

Proof. From Lemma 7 and using the Hölder inequality, we have

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq \frac{1}{(p+1)^{\frac{1}{2}}} \left\{ \begin{array}{l}
\frac{(b-x)^2}{b-a} \left[\min \left\{ \frac{|f'(b)|^q + m |f'(\frac{a+b}{2})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{a+b}{2})|^q}{2} \right\} \right]^{\frac{1}{q}} \\
\frac{(x-a)^2}{b-a} \left[\min \left\{ \frac{|f'(a)|^q + m |f'(\frac{a+b}{2})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{a+b}{2})|^q}{2} \right\} \right]^{\frac{1}{q}}
\end{array} \right\}
\]

for each $x \in [a, b]$.

Proof. From Lemma 7 and using the Hölder inequality, we have

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq (b-a) \left(\int_0^{\frac{b-x}{b-a}} t^p dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{x-a}{b-a}} |f'(ta + (1-t)b)|^q dt \right)^{\frac{1}{q}}
\]

\[
\leq (b-a) \left(\frac{b-x}{b-a} \right)^{\frac{p+1}{p}} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{b-x}{b-a} \right)^{\frac{1}{q}}
\]

\[
\times \left(\min \left\{ \frac{|f'(b)|^q + m |f'(\frac{a+b}{2})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{a+b}{2})|^q}{2} \right\} \right)^{\frac{1}{q}}
\]

\[
\leq (b-a) \left(\frac{x-a}{b-a} \right)^{\frac{p+1}{p}} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{x-a}{b-a} \right)^{\frac{1}{q}}
\]

\[
\times \left(\min \left\{ \frac{|f'(a)|^q + m |f'(\frac{a+b}{2})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{a+b}{2})|^q}{2} \right\} \right)^{\frac{1}{q}}
\]

\[
= \frac{1}{(p+1)^{\frac{1}{2}}} \frac{1}{b-a} \left\{ \begin{array}{l}
\frac{(b-x)^2}{b-a} \left[\min \left\{ \frac{|f'(b)|^q + m |f'(\frac{a+b}{2})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{a+b}{2})|^q}{2} \right\} \right]^{\frac{1}{q}} \\
\frac{(x-a)^2}{b-a} \left[\min \left\{ \frac{|f'(a)|^q + m |f'(\frac{a+b}{2})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{a+b}{2})|^q}{2} \right\} \right]^{\frac{1}{q}}
\end{array} \right\}
\]

where we use the facts that

\[
\int_0^{\frac{b-x}{b-a}} t^p dt = \left(\frac{b-x}{b-a} \right)^{p+1} \frac{1}{p+1},
\]

\[
\int_0^{1} (1-t)^p dt = \left(\frac{x-a}{b-a} \right)^{p+1} \frac{1}{p+1},
\]
and by Theorem 4 we get
\[
\frac{b - a}{b - x} \int_0^{b - x} \left| f'(ta + (1 - t)b) \right|^q dt \\
\leq \min \left\{ \frac{|f'(b)|^q + m |f'(\frac{x}{m})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{b}{m})|^q}{2} \right\},
\]
\[
\frac{b - a}{x - a} \int_{b - x}^{1} \left| f'(ta + (1 - t)b) \right|^q dt \\
\leq \min \left\{ \frac{|f'(a)|^q + m |f'(\frac{x}{m})|^q}{2}, \frac{|f'(x)|^q + m |f'(\frac{b}{m})|^q}{2} \right\}.
\]
The proof is completed.

\[\square\]

Corollary 10. Suppose that all the assumptions of Theorem 9 are satisfied, if we choose $|f'(x)| \leq M$, $M > 0$, then we have
\[
\left| f(x) - \frac{1}{b - a} \int_a^b f(u)du \right| \\
\leq \left(\frac{1}{(p + 1)^{\frac{1}{p}}} \right) \left(\frac{1 + m}{2} \right)^{\frac{1}{q}} M \left[\frac{(b - x)^2 + (x - a)^2}{b - a} \right].
\]

Corollary 11. Suppose that all the assumptions of Theorem 9 are satisfied, if we choose $x = \frac{a + b}{2}$ and \(\frac{1}{2} < \left(\frac{1}{p + 1} \right)^{\frac{1}{p}} < 1 \), then we have
\[
\left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(u)du \right| \leq \frac{b - a}{4} \left(\mu_1^{\frac{1}{2}} + \mu_2^{\frac{1}{2}} \right),
\]
where
\[
\mu_1 = \min \left\{ \frac{|f'(b)|^q + m |f'(\frac{a + b}{2m})|^q}{2}, \frac{|f'(\frac{a + b}{2})|^q + m |f'(\frac{b}{m})|^q}{2} \right\},
\]
\[
\mu_2 = \min \left\{ \frac{|f'(a)|^q + m |f'(\frac{a + b}{2m})|^q}{2}, \frac{|f'(\frac{a + b}{2})|^q + m |f'(\frac{a}{m})|^q}{2} \right\}.
\]

Remark 3. Corollary 11 is similar to inequality, but for the left-hand side of Hermite-Hadamard inequality.

Remark 4. Suppose that all the assumptions of Theorem 9 are satisfied. Then in Corollary 11

(D) $|f'|$ is increasing and $m = 1$ then we have
\[
\left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(u)du \right| \leq \frac{b - a}{2} |f'(b)|,
\]

(E) $|f'|$ is decreasing and $m = 1$ then we have
\[
\left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(u)du \right| \leq \frac{b - a}{2} |f'(a)|,
\]

(F) $|f'(b)| = |f'(a)| = |f'(\frac{a + b}{2})|$ and $m = 1$ then we have
\[
\left| f\left(\frac{a + b}{2} \right) - \frac{1}{b - a} \int_a^b f(u)du \right| \leq \frac{b - a}{2} \left| f'\left(\frac{a + b}{2} \right) \right|.
Theorem 12. Let I be an open real interval such that $(0, \infty) \subset I$. Let $f : I \to \mathbb{R}$ be a differentiable function on I such that $f' \in L([a, b])$, where $0 \leq a < b < \infty$. If $|f'|^q$ is m–convex on $[a, b]$ for some fixed $m \in (0, 1]$ and $q \in [1, \infty)$, $x \in [a, b]$, then the following inequality holds:

\begin{equation}
\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(u) du \right| \\
\leq (b-a) \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \\
\left\{ \begin{array}{l}
\left(\frac{b-x}{b-a} \right)^{2\left(1-\frac{1}{q}\right)} \left[\left(\frac{1}{3} \left(\frac{b-x}{b-a} \right)^{3} |f'(a)|^{q} + m \frac{(b-x)^{2}(b-3a+2x)}{6(b-a)^{3}} |f' \left(\frac{b}{m} \right) |^{q} \right]^{\frac{1}{q}} \right. \\
\left. + \left(\frac{x-a}{b-a} \right)^{2\left(1-\frac{1}{q}\right)} \left[\left(\frac{1}{6} + \frac{(b-x)^{2}(3a-b-2x)}{6(b-a)^{3}} \right) |f'(a)|^{q} + m \frac{1}{3} \left(\frac{x-a}{b-a} \right)^{3} |f' \left(\frac{b}{m} \right) |^{q} \right]^{\frac{1}{q}} \right\}
\end{array} \right.
\end{equation}

for each $x \in [a, b]$.

Proof. By Lemma 7 and using the well known power mean inequality we have

\[\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(u) du \right| \]

\[\leq (b-a) \int_{0}^{1} t |f'(ta + (1 - t)b)| dt \\
+ (b-a) \int_{\frac{b-x}{b-a}}^{1} (1 - t) |f'(ta + (1 - t)b)| dt \\
\leq (b-a) \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left(\int_{0}^{\frac{b-x}{b-a}} t |f'(ta + (1 - t)b)|^{q} dt \right) \\
+ (b-a) \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left(\int_{\frac{b-x}{b-a}}^{1} (1 - t) |f'(ta + (1 - t)b)|^{q} dt \right) \\
\leq (b-a) \left(\frac{1}{2} \right)^{1-\frac{1}{q}} \left\{ \left(\frac{b-x}{b-a} \right)^{2\left(1-\frac{1}{q}\right)} \left[\left(\frac{1}{3} \left(\frac{b-x}{b-a} \right)^{3} \right) |f'(a)|^{q} + m \frac{(b-x)^{2}(b-3a+2x)}{6(b-a)^{3}} |f' \left(\frac{b}{m} \right) |^{q} \right]^{\frac{1}{q}} \right. \\
\left. + \left(\frac{x-a}{b-a} \right)^{2\left(1-\frac{1}{q}\right)} \left[\left(\frac{1}{6} + \frac{(b-x)^{2}(3a-b-2x)}{6(b-a)^{3}} \right) |f'(a)|^{q} + m \frac{1}{3} \left(\frac{x-a}{b-a} \right)^{3} |f' \left(\frac{b}{m} \right) |^{q} \right]^{\frac{1}{q}} \right\}
\]

where we use the facts that

\[\int_{0}^{\frac{b-x}{b-a}} t dt = \frac{1}{2} \left(\frac{b-x}{b-a} \right)^{2}, \]

\[\int_{0}^{\frac{b-x}{b-a}} t |f'(ta + (1 - t)b)|^{q} dt \]

\[\leq \frac{1}{3} \left(\frac{b-x}{b-a} \right)^{3} \left| f'(a) \right|^{q} + m \frac{(b-x)^{2}(b-3a+2x)}{6(b-a)^{3}} \left| f' \left(\frac{b}{m} \right) \right|^{q}. \]

\[\int_{\frac{b-x}{b-a}}^{1} (1 - t) dt = \frac{1}{2} \left(\frac{x-a}{b-a} \right)^{2}, \]
\[
\int_{\frac{a+b}{b-a}}^1 (1-t) \left| f'(ta + (1-t)b) \right|^q dt \\
\leq \left[\frac{1}{6} + \frac{(b-x)^2(3a-2x-b)}{6(b-a)^3} \right] |f'(a)|^q + m \frac{1}{3} \left(\frac{x-a}{b-a} \right)^3 \left| f' \left(\frac{b}{m} \right) \right|^q.
\]

The proof is completed.

Remark 5. Suppose that all the assumptions of Theorem 12 are satisfied. If we choose \(x = \frac{a+b}{2} \), we obtain

\[
\left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq (b-a) \left(3^{1-\frac{1}{q}} \right) \left(|f'(a)| + m^{\frac{1}{q}} \left| f' \left(\frac{b}{m} \right) \right| \right)
\]

which is (2).

3. APPLICATIONS TO SPECIAL MEANS

Let us recall the following means for two positive numbers.

(AM) The Arithmetic mean

\[
A = A(a,b) = \frac{a+b}{2}; \quad a, b > 0,
\]

(p−LM) The p-Logarithmic mean

\[
L_p = L_p(a,b) = \begin{cases}
\frac{a}{b^{p+1}-a^{p+1}} & \text{if } a = b \\
\frac{1}{p} & \text{if } a \neq b; \quad a, b > 0,
\end{cases}
\]

(IM) The Identric mean

\[
I = I(a,b) = \begin{cases}
\frac{a}{\left(\frac{b^p}{a^q} \right)^{\frac{1}{p-q}}} & \text{if } a = b \\
\frac{1}{2} \left(\frac{b}{a} \right)^{\frac{1}{p-q}} & \text{if } a \neq b; \quad a, b > 0.
\end{cases}
\]

The following propositions hold:

Proposition 13. Let \(a, b \in [0, \infty) \), and \(a < b \), \(n \geq 2 \) with \(m \in (0,1] \). Then we have

\[
|A^n(a,b) - L^n_p(a,b)| \leq \frac{b-a}{8} \min \left\{ 2A \left(a^{n-1}, m \left(\frac{b}{m} \right)^{n-1} \right), 2A \left(b^{n-1}, m \left(\frac{a}{m} \right)^{n-1} \right) \right\}.
\]

Proof. The proof follows by Remark 1 on choosing \(f : [0, \infty) \to [0, \infty), \quad f(x) = x^n, \quad n \in \mathbb{Z}, \quad n \geq 2 \) which is \(m \)−convex on \([0, \infty)\).

Proposition 14. Let \(a, b \in [0, \infty), \) and \(a < b \), with \(m \in (0,1] \). Then we have

\[
\left| \ln \frac{I(a+1,b+1)}{A(a,b)+1} \right| \leq \frac{b-a}{4} \left(\eta_1^\frac{1}{q} + \eta_2^\frac{1}{q} \right),
\]

where

\[
\eta_1^\frac{1}{q} = \min \left\{ \left(\frac{1}{b+1} \right)^\frac{1}{q} + m \left(\frac{2m}{a+b+2m} \right)^\frac{1}{q} , \left(\frac{2}{a+b+2} \right)^\frac{1}{q} + m \left(\frac{m}{b+m} \right)^\frac{1}{q} \right\},
\]

\[
\eta_2^\frac{1}{q} = \min \left\{ \left(\frac{1}{a+1} \right)^\frac{1}{q} + m \left(\frac{2m}{a+b+2m} \right)^\frac{1}{q} , \left(\frac{2}{a+b+2} \right)^\frac{1}{q} + m \left(\frac{m}{a+m} \right)^\frac{1}{q} \right\}.
\]

Proof. The proof follows by Corollary 11 on choosing \(f : [0, \infty) \to (-\infty, 0], \quad f(x) = -\ln(x+1) \) which is \(m \)−convex on \([0, \infty), \quad p > 1\).
4. APPLICATIONS TO THE MIDPOINT FORMULA FOR 1–CONVEX FUNCTIONS

Let d be a division $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$ of the interval $[a, b]$ and consider the quadrature formula

$$\int_a^b f(x)dx = M(f, d) + E(f, d),$$

where

$$M(f, d) = \sum_{i=1}^{n-1} (x_{i+1} - x_i) f \left(\frac{x_{i+1} + x_i}{2} \right)$$

is the midpoint formula and $E(f, d)$ denotes the associated approximation error (see [7]).

Here, we obtain some error estimates for the midpoint formula.

Proposition 15. Let I be an open real interval such that $(0, \infty) \subset I$. Let $f : I \to \mathbb{R}$ be a differentiable function on I such that $f' \in L([a, b])$, where $0 \leq a < b < \infty$. If $|f'|^q$ is 1–convex on $[a, b]$ for some fixed $m \in (0, 1]$ and $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$, then in (11), for every division d of $[a, b]$, the midpoint error satisfies

$$|E(f, d)| \leq \frac{1}{4} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \left(\mu_1^q + \mu_2^q \right),$$

where

$$\mu_1 = \min \left\{ \frac{|f'(x_i)|^q + |f'(\frac{x_i+x_{i+1}}{2})|^q}{2}, \frac{|f'(x_{i+1})|^q + |f'(x_i)|^q}{2} \right\} = \frac{|f'(\frac{x_i+x_{i+1}}{2})|^q + |f'(x_i)|^q}{2},$$

$$\mu_2 = \min \left\{ \frac{|f'(x_{i+1})|^q + |f'(\frac{x_i+x_{i+1}}{2})|^q}{2}, \frac{|f'(x_{i+1})|^q + |f'(x_i)|^q}{2} \right\} = \frac{|f'(\frac{x_i+x_{i+1}}{2})|^q + |f'(x_{i+1})|^q}{2}.$$

Proof. On applying Corollary [11] with $m = 1$ on the subinterval $[x_i, x_{i+1}]$ ($i = 0, 1, 2, \ldots, n-1$) of the division, we have

$$\left| f \left(\frac{x_{i+1} + x_i}{2} \right) - \frac{1}{x_{i+1} - x_i} \int_{x_i}^{x_{i+1}} f(x)dx \right| \leq \frac{x_{i+1} - x_i}{4} \left(\mu_1^q + \mu_2^q \right),$$

where

$$\mu_1 = \frac{|f'(\frac{x_i+x_{i+1}}{2})|^q + |f'(x_i)|^q}{2},$$

$$\mu_2 = \frac{|f'(\frac{x_i+x_{i+1}}{2})|^q + |f'(x_{i+1})|^q}{2}.$$

Hence, in (11) we have

$$\left| \int_a^b f(x)dx - M(f, d) \right| = \sum_{i=0}^{n-1} \left| \int_{x_i}^{x_{i+1}} f(x)dx - (x_{i+1} - x_i) f \left(\frac{x_{i+1} + x_i}{2} \right) \right|$$

$$\leq \sum_{i=0}^{n-1} \left| \int_{x_i}^{x_{i+1}} f(x)dx - (x_{i+1} - x_i) f \left(\frac{x_{i+1} + x_i}{2} \right) \right|$$

$$\leq \frac{1}{4} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \left(\mu_1^q + \mu_2^q \right),$$
which completes the proof. □

Proposition 16. Let I be an open real interval such that $[0, \infty) \subset I$. Let $f : I \to \mathbb{R}$ be a differentiable function on I such that $f' \in L([a, b])$, where $0 \leq a < b < \infty$. If $|f'|^q$ is 1–convex on $[a, b]$ for some fixed $m \in (0, 1]$ and $q \in [1, \infty)$, $x \in [a, b]$, then in (11), for every division d of $[a, b]$, the midpoint error satisfies

$$|E(f, d)| \leq \left(\frac{3^{1-\frac{1}{q}}}{8}\right)^{n-1} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \left(|f'(x_i)| + |f'(x_{i+1})|\right).$$

Proof. The proof is similar to that of Proposition 15 and using Remark 5 with $m = 1$. □

References

[1] M. Alomari and M. Darus, Some Ostrowski’s type inequalities for convex functions with applications, *RGMIA Res. Rep. Coll.*, 13(2) (2010), Article 3.

[2] M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski’s inequalities for functions whose derivatives are s–convex in the second sense, *RGMIA Res. Rep. Coll.*, 12(2009), Supplement, Article 15.

[3] M.K. Bakula, M.E. Özdemir and J. Pečarić, Hadamard type inequalities for m–convex and (α, m)–convex functions, *J. Inequal. Pure & Appl. Math.*, 9(2008), Article 96.

[4] M.K. Bakula, J. Pečarić, and M. Ribičić, Companion inequalities to Jensen’s inequality for m–convex and (α, m)–convex functions, *J. Inequal. Pure & Appl. Math.*, 7(2006), Article 194.

[5] N.S. Barnett, P. Cerone, S.S. Dragomir, M.R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of derivatives are convex and applications, *RGMIA Res. Rep. Coll.*, 5(2002), Article 1.

[6] P. Cerone, S.S. Dragomir and J. Roumeliotis, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, *RGMIA Res. Rep. Coll.*, 7(2004), Article 4.

[7] C.E.M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, *Appl. Math. Lett.*, 13(2000) 51-55.

[8] S.S. Dragomir, Y.J. Cho and S.S. Kim, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, *J. of Math. Anal. Appl.*, 245(2000), 489-501.

[9] S.S. Dragomir and G. Toader, Some inequalities for m–convex functions, *Studia Univ. Babeş-Bolyai Math.*, 38(1) (1993), 21-28.

[10] S.S. Dragomir and A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Conference on Modelling and Simulation. November 11-13, 2002. Victoria University, Melbourne, Australia. *RGMIA Res. Rep. Coll.*, 5(2002), Supplement, Article 30.

[11] S.S. Dragomir and S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, *Appl. Math. Lett.*, 11(1998), 105-109.

[12] G. Toader, Some generalizations of the convexity, *Proceedings of The Colloquium On Approximation and Optimization*, Univ. Cluj-Napoca, Cluj-Napoca, 1984, 329-338.

[13] E. Set, M.E. Özdemir and M.Z. Sarıkaya, Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are m–convex, *RGMIA Res. Rep. Coll.*, 13(2010), Supplement, Article 5.

[14] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, *Appl. Math. Comput.*, 147(2004), 137-146.

*ATATÜRK UNIVERSITY, K.K. EDUCATION FACULTY, DEPARTMENT OF MATHEMATICS, 25240, CAMPUS, ERZURUM, TURKEY
E-mail address: havva.kvrmc@yahoo.com

*GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE, AĞRI İBRAHİM ÇEÇEN UNIVERSITY, AĞRI, TURKEY
E-mail address: emos@atauni.edu.tr
E-mail address: merveavci@gmail.com*