Abstract. Algebraic and combinatorial properties of a monomial ideal and its radical are compared.

1. Introduction

There are simple examples of Cohen-Macaulay ideals whose radical is not Cohen-Macaulay. The first such example is probably due to Hartshorne [5], who proved that in positive characteristic the toric ring $K[s^4, s^3t, st^3, t^4]$ is a set theoretic complete intersection. With CoCoA or other computer algebra systems many other examples, also in characteristic zero, can be constructed. The following example due Conca was computed with CoCoA: let $S = K[x_1, x_2, x_3, x_4, x_5]$ and $J = (x_2^2 - x_4x_5, x_1x_3 - x_3x_4, x_3x_4 - x_1x_5) \subset S$. Then S/J is a 2-dimensional Cohen-Macaulay ring, $\sqrt{J} = (x_1x_3 - x_1x_5, x_3x_4 - x_1x_5, x_2^3 - x_4x_5, x_1^2x_2 - x_4x_5, x_1x_2x_4, x_2x_3^2 - x_2x_3x_5)$ and S/\sqrt{J} is not Cohen-Macaulay. Indeed, the depth of S/\sqrt{J} equals 1. On the other hand it is well-known that the Cohen-Macaulay property of a monomial ideal is inherited by its radical. The reason is that the radical of a monomial ideal is essentially obtained by polarization and localization. This observation, was communicated to the third author by David Eisenbud. Both operations, polarization and localization, preserve the Cohen-Macaulay property. An explicit proof of this fact can be found in [11]. The purpose of this paper is to exploit this idea and to show that many other nice properties are inherited by the radical of a monomial ideal.

2. The comparison

For the proof of the main result of this paper we need some preparation. We begin with the following extension [10, Theorem 1.1] of Hochster’s formula [11, Theorem 5.3.8] describing the local cohomology of a monomial ideal.

Let K be a field, $S = K[x_1, \ldots, x_n]$ the polynomial ring and $I \subset S$ a monomial ideal. The unique minimal monomial system of generators of I is denoted by $G(I)$. For $i = 1, \ldots, n$ we set

$$t_i = \max \{\nu_i(u) : u \in G(I)\},$$

where for a monomial $u \in S$, $u = x_1^{a_1} \cdots x_n^{a_n}$ we set $\nu_i(u) = a_i$ for $i = 1, \ldots, n$.

For $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$, we set

$$G_a = \{i : 1 \leq i \leq n, \ a_i < 0\},$$

1991 Mathematics Subject Classification. 13D02, 13P10, 13D40, 13A02.
and define the simplicial complex $\Delta_a(I)$ whose faces are the sets $L \setminus G_a$ with $G_a \subset L$, and such that L satisfies the following condition: for all $u \in G(I)$ there exists $i \notin L$ such that $\nu_i(u) > a_i > 0$.

Notice that the inequality $a_i \geq 0$ in the definition of $\Delta_a(I)$ follows from the condition $i \notin L \supset G_a$. It is included only for the reader’s convenience.

With the notation introduced one has

Theorem 2.1 (Takayama [10]). Let $I \subset S$ be a monomial ideal. Then the Hilbert series of the local cohomology modules of S/I with respect to the \mathbb{Z}^n-grading is given by

$$\text{Hilb}(H^i_m(S/I), t) = \sum_{F \in \Delta} \sum_a \dim_K \bar{H}_{i-|F|-1}(\Delta_a(I); K) t^a$$

where Δ is the simplicial complex corresponding to the Stanley-Reisner ideal \sqrt{I}, and the second sum is taken over all $a \in \mathbb{Z}^n$ such that $a_i \leq t_i - 1$ for all i, and $G_a = F$.

As a first application of this theorem we have

Corollary 2.2. Let $I \subset S$ be a monomial ideal. Then

$$a(S/I) \leq \sum_{i=1}^n t_i - n,$$

where $a(S/I)$ is the a-invariant of S/I.

Proof. By Theorem 2.1 we know that $H^i_m(R)_a = 0$ for all i and for all $a \in \mathbb{Z}^n$ such that $a_i > t_i - 1$ for some i. Thus in particular, if $d = \dim R$, then $H^d_m(R)_j = 0$ for $j \geq \sum_{i=1}^n t_i - n$. □

We say that S/I has maximal a-invariant if the upper bound in Corollary 2.2 is attained, that is, if $a(S/I) = \sum_{i=1}^n t_i - n$.

For our main theorem the next corollary is important.

Corollary 2.3. Let $I \subset S$ be a monomial ideal. Then we have the following isomorphisms of K-vector spaces

$$H^i_m(S/I)_a \cong H^i_m(S/\sqrt{I})_a$$

for all $a \in \mathbb{Z}^n$ with $a_i \leq 0$ for $1 \leq i \leq n$.

Proof. Consider the multigraded Hilbert series of $H^i_m(S/I)$ and $H^i_m(S/\sqrt{I})$. Let $a \in \mathbb{Z}^n$ be such that $a_i \leq 0$ for all $1 \leq i \leq n$. Then by Theorem 2.1 we have

$$\dim_K H^i_m(S/I)_a = \dim_K \bar{H}_{i-|F|-1}(\Delta_a(I); K), \quad \text{and}$$

$$\dim_K H^i_m(S/\sqrt{I})_a = \dim_K \bar{H}_{i-|F|-1}(\Delta_a(\sqrt{I}); K).$$

For a monomial u we set $\text{supp}(u) = \{i : x_i \text{ divides } u\}$. Now since for every $u \in G(I)$ there exists $v \in G(\sqrt{I})$ such that $\text{supp}(u) \supset \text{supp}(v)$, and since for every $v \in G(\sqrt{I})$ there exists $u \in G(I)$ such that $\text{supp}(v) = \text{supp}(u)$, it follows that $\Delta_a(I) = \Delta_a(\sqrt{I})$. Thus we have $\dim_K H^i_m(S/I)_a = \dim_K H^i_m(S/\sqrt{I})_a$. □
Let M be a graded S-module. For the convenience of the reader we recall the following two concepts which generalize the Cohen-Macaulay property and non-pure shellability of simplicial complexes.

The following definition is due to Stanley [9, Section II, 3.9]:

Definition 2.4. Let M be a finitely generated graded S-module. The module M is sequentially Cohen-Macaulay if there exists a finite filtration

$$0 = M_0 \subset M_1 \subset M_2 \subset \ldots \subset M_r = M$$

of M by graded submodules of M such that each quotient M_i/M_{i-1} is CM, and $\dim M_1/M_0 < \dim M_2/M_1 < \ldots < \dim M_r/M_{r-1}$.

It is known (see for example [6, Corollary 1.7]) that if M is sequentially Cohen-Macaulay, then the filtration given in the definition is uniquely determined. We call it the attached filtration of the sequentially Cohen-Macaulay module M.

The uniqueness of the filtration is seen as follows: suppose $\text{depth } M = t$, then M_1 is the image of the natural map $\text{Ext}_S^{n-t}(\text{Ext}_S^{n-t}(M, \omega_S), \omega_S) \to M$. Here $\omega_S = S(-n)$ is the canonical module of S. Then one notices that M/M_1 is again sequentially Cohen-Macaulay and uses induction on the length of the attached sequence.

In case M is a cyclic module, say, $M = S/I$, with attached filtration $0 = M_0 \subset M_1 \subset M_2 \subset \ldots$, each of the the modules M_i is an ideal in S/I, and hence is of the form I_i/I for certain (uniquely determined) ideals $I_i \subset S$. Thus S/I is sequentially Cohen-Macaulay, if and only of there exists a chain of graded ideals

$$I = I_0 \subset I_1 \subset I_2 \subset \ldots \subset I_r = S$$

such that each factor module I_{i+1}/I_i is Cohen-Macaulay with

$$\dim I_{i+1}/I_i < \dim I_{i+2}/I_{i+1}$$

for $i = 0, \ldots, r - 2$. Moreover if this property is satisfied, then this chain of ideals is uniquely determined.

In the particular case that I is a monomial ideal, the natural map

$$\text{Ext}_S^{n-t}(\text{Ext}_S^{n-t}(S/I, \omega_S), \omega_S) \to S/I$$

is a homomorphism of multigraded S-modules. This implies that the attached chain of ideals of the sequentially Cohen-Macaulay module S/I is a chain of monomial ideals.

Now let us briefly describe the other concept which was introduced by Dress [4]:

Definition 2.5. Let M be a finitely generated graded S-module. A filtration

$$0 = M_0 \subset M_1 \subset M_2 \subset \ldots \subset M_r = M$$

of M by graded submodules of M is called clean if for all $i = 1, \ldots, r$ there exists a minimal prime ideal P_i of M such that $M_i/M_{i-1} \cong S/P_i$. The module M is called clean if it has a clean filtration.

Again, if $M = S/I$ is cyclic, then S/I is clean if there exists a chain of ideals $I = I_0 \subset I_1 \subset I_2 \subset \ldots \subset I_{r-1} \subset I_r = S$ such that $I_{i+1}/I_i \cong S/P_i$ with P_i a minimal prime ideal of I. In other words, for all $i = 0, \ldots, r - 1$ there exists $f_{i+1} \in I_{i+1}$ such
that \(I_{i+1} = (I_i, f_{i+1}) \) and \(P_i = I_i : f_{i+1} \). In case \(I \) is a monomial ideal we require that all \(f_i \) are monomials.

Dress [4] shows that a Stanley-Reisner ideal \(I_\Delta \) is clean if and only if the simplicial complex \(\Delta \) is non-pure shellable in the sense of Björner and Wachs [3].

In the proof of our main theorem we use polarization, as indicated in the introduction. Let \(I = (u_1, \ldots, u_m) \) with \(u_i = x_1^{a_{1i}} \cdots x_n^{a_{ni}} \). We fix some number \(i \) with \(1 \leq i \leq n \), introduce a new variable \(y \), and set \(v_k = x_1^{a_{1i}} \cdots x_{i-1}^{a_{(i-1)i}} y x_{i+1}^{a_{i(i+1)}} \cdots x_n^{a_{ni}} \) if \(a_{ki} > 1 \), and \(v_k = u_k \) otherwise. We call \(J = (v_1, \ldots, v_m) \) the 1-step polarization of \(I \) with respect to the variable \(x_i \). The element \(y - x_i \) is regular on \(S[y]/J \) and \((S[y]/J)/(y - x_i)(S[y]/J) \cong S/I \), see [1] Lemma 4.2.16.

Let as above \(t_i = \max \{ \nu_i(u_j) : j = 1, \ldots, m \} \), and set \(t = \sum_{i=1}^n t_i - n \). Then it is clear that if we apply \(t \) suitable 1-step polarizations, we end up with a squarefree monomial ideal \(I^p \), which is called the complete polarization of \(I \).

Now we are ready to present the main result of this section.

Theorem 2.6. Let \(K \) be a field, \(S = K[x_1, \ldots, x_n] \) the polynomial ring over \(K \), and \(I \subset S \) a monomial ideal. Suppose that \(S/I \) satisfies one of the following properties: \(S/I \) is (i) Cohen-Macaulay, (ii) Gorenstein, (iii) sequentially Cohen-Macaulay, (iv) generalized Cohen-Macaulay, (v) Buchsbaum, (vi) clean, or (vii) level and has maximal a-invariant. Then \(S/\sqrt{T} \) satisfies the corresponding property.

Proof. We first use the trick, mentioned in the introduction, to show that the Betti-numbers \(\beta_i(I) \) of \(I \) do not increase when passing to \(\sqrt{T} \).

We denote by \(I^p \) the complete polarization of \(I \). Let \(T \) be the polynomial ring in the variables that are needed to polarize \(I \). Then \(I^p \) is a squarefree monomial ideal in \(T \) with \(\beta_i(I^p) = \beta_i(I) \) for all \(i \). It is easy to see that if we localize at the multiplicative set \(N \) generated by the new variables which are needed to polarize \(I \), one obtains \(I^p T_N = (\sqrt{T}) T_N \). Since localization is an exact functor, the localized free resolution will be a possibly non-minimal free resolution of \((\sqrt{T}) T_N \). Since the extension \(S \to T_N \) is flat, the desired inequality follows.

Proof of (i) and (ii): The inequality \(\beta_i(\sqrt{T}) \leq \beta_i(I) \) implies that \(\text{depth} S/\sqrt{T} \geq \text{depth} S/I \). On the other hand, \(\dim S/I = \dim S/\sqrt{T} \). This implies that \(S/\sqrt{T} \) is Cohen-Macaulay, if \(S/I \) is so.

Suppose now that \(S/I \) is Gorenstein. Then \(\beta_q(S/I) = 1 \) where \(q \) is the codimension of \(I \), see [1] Theorem 3.3.7 and Corollary 3.3.9]. Therefore, \(\beta_q(S/\sqrt{T}) \leq 1 \). Since \(I \) and \(\sqrt{T} \) have the same codimension, we see that \(\beta_q(S/\sqrt{T}) > 0 \), and hence \(\beta_q(S/\sqrt{T}) = 1 \). Again using [1] Theorem 3.3.7 and Corollary 3.3.9] we conclude that \(S/\sqrt{T} \) is Gorenstein. This fact follows also from [2] Corollary 3.4.]

Proof of (iii): Since \(S/I \) is sequentially Cohen-Macaulay there exists a chain of monomial ideals

\[
I = I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_k = S
\]
such that \(I_{j+1}/I_j \) is Cohen-Macaulay for all \(j = 0, \ldots, k-1 \) and such that \(\dim I_1/I_0 < \dim I_2/I_1 < \ldots < \dim I_k/I_{k-1} \).
Suppose \(x_1^a \) with \(a > 1 \) divides a generator of \(I \). Then we apply a 1-step polarization for \(x_1 \) to all the ideals \(I_i \), and obtain a chain of ideals \(J = J_0 \subset J_1 \subset J_2 \subset \cdots \subset J_k = \tilde{S} \) where \(\tilde{S} = \bar{S} \) where \(\bar{S} = S[y] \). It follows that \(y - x_1 \) is \(\tilde{S}/J_i \)-regular and \((\tilde{S}/J_i)/(y - x_1)(\tilde{S}/J_i) \cong S/I_i \) for all \(i \). Therefore \(y - x_1 \) is \(J_{i+1}/J_i \)-regular, and \((J_{i+1}/J_i)/(y - x_1)(J_{i+1}/J_i) \cong I_{i+1}/I_i \). Thus \(J \) is sequentially Cohen-Macaulay.

Since the complete polarization \(I_i^p \) of the ideals \(I_i \) for \(i = 1, \ldots, k \), is obtained by a sequence of 1-step polarizations, it follows that \(I^p \) is sequentially Cohen-Macaulay. As \(I_i^p/J_{i+1}^p \) is Cohen-Macaulay, we conclude as in the proof of (i) that \(\sqrt{I_{i+1}}/\sqrt{I_i} \) is Cohen-Macaulay of the same dimension as \(I_{i+1}/I_i \). This shows that \(\sqrt{T} \) is sequentially Cohen-Macaulay.

Proof of (iv) and (v): Assuming that \(S/I \) is generalized Cohen-Macaulay or Buchsbaum, one has that \(S/I \) is equidimensional and that \(H^i_m(S/I)_j = 0 \) for all \(i < \dim S/I \), and all but finitely many \(j \). Since \(I \) and \(\sqrt{T} \) have the same minimal prime ideals, it follows that \(\sqrt{T} \) is again equidimensional.

Let \(Z^n_a \) be the set of all \(a \in \mathbb{Z}^n \) such that \(a_i \leq 0 \) for \(i = 1, \ldots, n \). By Corollary 2.3, \(H^i_m(S/I)_a = H^i_m(S/\sqrt{T})_a \) for all \(a \in Z^n_a \). Moreover, by Hochster’s formula, \(H^i_m(S/\sqrt{T})_a = 0 \) for all \(a \notin Z^n_a \). Therefore, \(\dim_K H^i_m(S/\sqrt{T})_j \leq \dim_K H^i_m(S/I)_j \) for all \(j \leq 0 \) and \(H^i_m(S/I)_j = 0 \) for \(j > 0 \). It is known [8] that a squarefree monomial ideal is Buchsbaum if and only if it is generalized Cohen-Macaulay. Thus (iv) and (v) follow.

Proof of (vi): Assuming that \(S/I \) is clean, there exists a chain of monomial ideals \(I = I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_{r-1} \subset I_r = S \) such that \(I_{i+1}/I_i \cong S/P_i \) with \(P_i \) a minimal prime ideal of \(I \). We claim that \(\sqrt{I_{i+1}}/\sqrt{I_i} = S/P_i \), if \(\sqrt{I_{i+1}} \neq \sqrt{I_i} \). This then implies that \(S/\sqrt{T} \) is clean, since the prime ideals \(P_i \) are also minimal prime ideals of \(\sqrt{T} \).

In order to prove this claim we introduce some notation: let \(u = x_1^{a_1}x_2^{a_2} \cdots x_n^{a_n} \) and \(v = x_1^{b_1}x_2^{b_2} \cdots x_n^{b_n} \) be two monomials. Then we set

\[
\begin{align*}
 u : v &= \prod_{i=1}^{n} x_i^{\max\{a_i-b_i,0\}}, & u_{\text{red}} &= \prod_{a_i>0} x_i.
\end{align*}
\]

We then have

\[
(u : v)_{\text{red}} = (u_{\text{red}} : v_{\text{red}}) \prod_{a_i>b_i>0} x_i.
\]

Note that if \(I \) is a monomial ideal with monomial generators \(u_1, \ldots, u_m \), then

\[
\sqrt{T} = ((u_1)_{\text{red}}, \ldots, (u_m)_{\text{red}}) \quad \text{and} \quad I : v = (u_1 : v, \ldots, u_m : v).
\]

Back to the proof of our claim, our assumption implies that for all \(i = 0, \ldots, r-1 \) there exists a monomial \(v_{i+1} \in I_{i+1} \) such that \(I_{i+1} = (I_i, v_{i+1}) \) and \(P_i = I_i : v_{i+1} \). Suppose \(P_i = (x_{i_1}, \ldots, x_{i_s}) \). Then \(P_i \) is a prime ideal if and only if

(a) for all \(j = 1, \ldots, s \) there exists \(u \in I_i \) such that \(u : v_{i+1} = x_{i_j} \), and
(b) for all monomial generators \(w \in I_i \) there exists an integer \(j \) with \(1 \leq j \leq s \) such that \(x_{ij}|w : v_{i+1} \).

We need to show that \(P_i = \sqrt{T_i} : (v_{i+1})_{\text{red}} \), if \((v_{i+1})_{\text{red}} \not\in \sqrt{T_i} \), and prove this by checking (a) and (b) for the pair \(\sqrt{T_i} \) and \((v_{i+1})_{\text{red}} \).

Let \(j \) be an integer with \(1 \leq j \leq s \). Then there exists \(u \in I_i \) such that \(u : v_{i+1} = x_{ij} \). Suppose \(u = \prod_{k=1}^{n} x_k^{a_k} \) and \(v_{i+1} = \prod_{k=1}^{n} x_k^{b_k} \), then (1) implies that \(x_{ij} = (u : v_{i+1})_{\text{red}} = (u_{\text{red}} : (v_{i+1})_{\text{red}})w \) where \(w = \prod_{k, a_k > b_k} x_k \). Suppose \(x_{ij} \) divides \(w \), then \(u_{\text{red}} : (v_{i+1})_{\text{red}} = 1 \). This implies that \((v_{i+1})_{\text{red}} \in \sqrt{T_i} \), a contradiction. Therefore \(u_{\text{red}} : (v_{i+1})_{\text{red}} = x_{ij} \), and this proves (a). The argument also shows that \(b_{ij} = 0 \) for \(j = 1, \ldots, s \).

For the proof of (b), let \(w \in I_i \) be a monomial generator. Then there exists an integer \(j \) with \(1 \leq j \leq s \) such that \(x_{ij}|w : v_{i+1} \). It follows that \(x_{ij} \) divides \((w : v_{i+1})_{\text{red}} \).

Let \(w = \prod_{k=1}^{n} x_k^{c_k} \). Then (1) implies that \(x_{ij} \) divides \((w_{\text{red}} : (v_{i+1})_{\text{red}}) \prod_{k, c_k > b_k} x_k \). However, \(b_{ij} = 0 \), as we have seen in the proof of (a). Therefore, \(x_{ij} \) divides \((w_{\text{red}} : (v_{i+1})_{\text{red}}) \). Since \(\sqrt{T_i} \) is generated by the monomials \(w_{\text{red}} \) where the monomials \(w \) are the generators of \(I_i \), condition (b) follows.

Proof of (vii): By assumption \(S/I \) is level. This means that \(S/I \) is Cohen-Macaulay and that all generators of the canonical module \(\omega_{S/I} \) of \(S/I \) have the same degree, say \(g \). In this situation the \(a \)-invariant \(a(S/I) \) of \(S/I \) is just \(-g \), see [11 Section 3.6]. Suppose \(d = \dim S/I \); then \(I \) has a graded minimal free resolution \(F \) of length \(q = n - d - 1 \) with \(F_q = S^b(-c) \). Since \(\omega_{S/I} \) may be represented as the cokernel of \(F^*_q \rightarrow F^*_q \), which is dual of the map \(F_q \rightarrow F_{q-1} \) with respect to \(S(-n) \), it follows that \(a(S/I) = c - n \).

For \(i = 1, \ldots, n \) we set again
\[
t_i = \max\{v_i(u) : u \in G(I)\}.
\]

By Corollary 222 one has the upper bound \(a(S/I) \leq \sum_{i=1}^{n} t_i - n \). Since we assume that \(S/I \) has maximal \(a \)-invariant, the upper bound is reached. Let \(I^p \subset T \) the complete polarization of \(I \). This polarization requires precisely \(t = \sum_{i=1}^{n} t_i - n \) 1-step polarizations. It follows that \(S/I \) is obtained from \(T/I^p \) as a residue class ring modulo a regular sequence of linear forms of length \(t \). From the above description of the \(a \)-invariant we now conclude that \(a(T/I^p) = a(S/I) - t = 0 \). Let \(G \) be the multigraded minimal free resolution of the squarefree monomial ideal \(I^p \). Since \(\operatorname{proj} \dim I^p = \operatorname{proj} \dim I = q \), and since \(a(T/I^p) = 0 \), we see that \(G_q = T(-m)^b \), where \(m = n + t = \dim T \). This implies that \(G_q \) as a multigraded module is isomorphic to \(T(-e)^b \) where \(e = (1, 1, \ldots, 1) \).

For \(i = 1, \ldots, m \) let \(e_i \) be the \(i \)-th canonical basis vector of \(\mathbb{Z}^m \). Then \(e = \sum_{i=1}^{m} e_i \), and we may assume that \(\deg x_i = e_i \) for \(i = 1, \ldots, n \), while the new variables have the multidegrees \(e_i \) with \(i = n + 1, \ldots, m \). We define a new multigrading on \(T \) and \(T/I^p \): for an element \(f \) of multidegree \(a \) we set \(\deg f = \pi(a) \), where \(\pi : \mathbb{Z}^m \rightarrow \mathbb{Z}^n \) is the projection onto the first \(n \) components of \(\mathbb{Z}^m \).

As above, let \(N \) be the multiplicative set generated by the \(t \) new variables which are needed to polarize \(I \). Then \(I^pT_N = \sqrt{T_N} \), and localization with respect to \(N \) preserves the new multigrading since \(\deg f = 0 \) for all \(f \in N \). Therefore \(G_N \) is,
with respect to the new grading, a multigraded free T_N-resolution of \sqrt{TT} with $(G_q)_N = T_N(-1, \ldots, -1)^b$ and $(-1, \ldots, -1) \in \mathbb{Z}^n$.

Let \mathbb{H} be the multigraded minimal free S-resolution of \sqrt{T}. Then $\mathbb{H}T_N$ is the minimal multigraded free T_N-resolution of \sqrt{TT}. A comparison with the (possibly non-minimal) graded free T_N-resolution G_{T_N} shows that H_q is a direct summand of copies of $S(-1, \ldots, -1)$. Since S/I and S/\sqrt{T} are Cohen-Macaulay of the same dimension, we see that $q = \text{proj dim } I = \text{proj dim } \sqrt{T}$. Therefore all summands in the last step of the resolution \mathbb{H} of S/\sqrt{T} have the same shift. This show that S/\sqrt{T} is level. □

Remark 2.7. In Theorem 2.6(i) (or (iv)), it suffices to require that I is an arbitrary homogeneous (generalized) Cohen-Macaulay ideal whose radical \sqrt{T} is a monomial ideal, i.e. we do not need to require that I itself is a monomial ideal.

Indeed it is enough to prove that there is a surjective homomorphism $H^i_m(S/I) \rightarrow H^i_m(S/\sqrt{T})$ for all i. The natural surjective map $S/I \rightarrow S/\sqrt{T}$ induce for all i commutative diagrams

$$
\begin{array}{ccc}
\text{Ext}^i(S/\sqrt{T}, S) & \longrightarrow & \text{Ext}^i(S/I, S) \\
\downarrow & & \downarrow \\
H^i_{\sqrt{T}}(S) & \longrightarrow & H^i_I(S).
\end{array}
$$

Since $H^i_{\sqrt{T}}(S) \cong H^i_I(S)$ and since $\text{Ext}^i(S/\sqrt{T}, S) \longrightarrow H^i_{\sqrt{T}}(S)$ is an essential extension (see [12]), it follows that $\text{Ext}^i(S/\sqrt{T}, S) \longrightarrow \text{Ext}^i_I(S/I, S)$ is injective for all i. Hence the desired conclusion follows by local duality.

On the other hand, as for the Gorenstein property, we must assume that I is a monomial ideal. For example, $I = (xy + yz, xz)$ is a complete intersection, hence, a Gorenstein ideal, while $\sqrt{T} = (xy, yz, xz)$ is not Gorenstein.

3. The inverse problem

The results of the previous section indicate the following question: for a subset $F \subseteq [n]$, let P_F be the prime ideal generated by the x_i with $i \in F$. The minimal prime ideals of a squarefree I are all of this form, and since I is a radical ideal it is the intersection of its minimal prime ideals, say, $I = \bigcap_{i=1}^r P_{F_i}$ with $F_i \subseteq [n]$.

Suppose I is Cohen-Macaulay. For which exponents a_{ij} is the ideal

$$J = \bigcap_{i=1}^r (x_j^{a_{ij}} : j \in F_i)$$

again Cohen-Macaulay?

Of course if we raise the x_i uniformly to some power, say x_i is replaced by $x_i^{a_i}$ everywhere in the intersection, then the resulting ideal J is the image of the flat map $S \rightarrow S$ with $x_i \mapsto x_i^{a_i}$ for all i. Thus in this case J will be Cohen-Macaulay, if I is so. On the other hand, if we allow arbitrary exponents, the question seems to be quite delicate, and we do not know a general answer. However, if we require that for all choices of exponents the resulting ideal is again Cohen-Macaulay, a complete answer is possible.
We need a definition to state the next result. Let \(L \) be a monomial ideal. Lyubeznik \[7\] defines the size of \(L \) as follows: let \(L = \bigcap_{j=1}^{r} Q_j \) be an irredundant primary decomposition of \(L \), where the \(Q_j \) are monomial ideals. Let \(h \) be the height of \(\sum_{j=1}^{r} Q_j \), and denote by \(v \) the minimum number \(t \) such that there exist \(j_1, \ldots, j_t \) with \(\sqrt{\sum_{i=1}^{t} Q_{j_i}} = \sqrt{\sum_{j=1}^{r} Q_j} \). Then size \(L = v + (n - h) - 1 \).

Since for monomial ideals the operations of forming sums and taking radicals can be exchanged, the numbers \(v \) and \(h \), and hence the size of \(L \) depends only on the associated prime ideals of \(L \).

We shall need the following result of Lyubeznik \[7, Proposition 2\]:

Lemma 3.1. Let \(L \) be a monomial ideal in \(S \). Then \(\text{depth} \ S/L \geq \text{size} \ L \).

Now we can state the main result of this section.

Theorem 3.2. Let \(I \subset S = K[x_1, \ldots, x_n] \) be a Cohen-Macaulay squarefree monomial ideal, and write

\[
I = \bigcap_{i=1}^{r} P_{F_i},
\]

where the sets \(F_i \subset [n] \) are pairwise distinct, and all have the same cardinality \(c \). For \(i = 1, \ldots, r \) and \(j = 1, \ldots, c \) we choose integers \(a_{ij} \geq 1 \), and set

\[
Q_{F_i} = (x_j^{a_{ij}} : j \in F_i) \quad \text{for} \quad i = 1, \ldots, r.
\]

Then the following conditions are equivalent:

(a) for all choices of the integers \(a_{ij} \) the ideal

\[
J = \bigcap_{i=1}^{r} Q_{F_i}
\]

is Cohen-Macaulay;

(b) for each subset \(A \subset [r] \), the ideal \(I_A = \bigcap_{i \in A} P_{F_i} \) is Cohen-Macaulay;

(c) height \(P_{F_i} + P_{F_j} = c + 1 \) for all \(i \neq j \);

(d) for \(r \geq 2 \) either \(\left| \bigcup_{i=1}^{r} F_i \right| = c + 1 \), or \(\left| \bigcap_{i=1}^{r} F_i \right| = c - 1 \);

(e) after a suitable permutation of the elements of \([n]\) we either have

\[
F_i = \{1, \ldots, i-1, i+1, \ldots, c, c+1\} \quad \text{for} \quad i = 1, \ldots, r,
\]

or

\[
F_i = \{1, \ldots, c-1, c-1+i\} \quad \text{for} \quad i = 1, \ldots, r;
\]

(f) size \(I = \dim S/I \);

(g) \(S/L \) is Cohen-Macaulay for any monomial ideal \(L \) such that \(\text{Ass} \ L = \text{Ass} \ I \).

Proof. (a) \(\Rightarrow \) (b): Let \(Q_{F_i} = (x_j^{2^i} : j \in F_i) \) if \(i \in A \), and \(Q_{F_i} = P_{F_i} \) if \(i \notin A \). By assumption, \(J = \bigcap_{i=1}^{r} Q_{F_i} \) is Cohen-Macaulay. Hence the complete polarization \(J^p \) of \(J \) is again Cohen-Macaulay. We have \(J^p = \bigcap_{i=1}^{r} Q_{F_i}^p \) with \(Q_{F_i}^p = (x_j y_j : j \in F_i) \) if
$i \in A$, and $Q^p_{F_i} = P_{F_i}$ if $i \notin A$. Let N be the multiplicative set generated by all the variables x_i. Then J^p_N is Cohen-Macaulay, and hence

$$J^p_N = \bigcap_{i \in A} (y_j : j \in F_i).$$

This shows that $I_A = \bigcap_{i \in A} P_{F_i}$ is Cohen-Macaulay.

(b) \Rightarrow (c): Consider the exact sequence

$$0 \rightarrow S/(P_{F_i} \cap P_{F_j}) \rightarrow S/P_{F_i} \oplus S/P_{F_j} \rightarrow S/(P_{F_i} + P_{F_j}) \rightarrow 0.$$

The rings S/P_i and S/P_j are Cohen-Macaulay of dimension $n - c$, while $S/(P_{F_i} + P_{F_j})$ is Cohen-Macaulay of dimension $n - d$ where d is the height of $P_{F_i} + P_{F_j}$. The exact sequence yields that $S/(P_{F_i} \cap P_{F_j})$ is Cohen-Macaulay if and only if $d = c + 1$.

Since by assumption $S/P_{F_i} \cap P_{F_j}$ is Cohen-Macaulay for all $i \neq j$, the assertion follows.

(c) \Rightarrow (d): We must show: given a collection of subsets $F_1, \ldots, F_r \subset [n]$ with

(i) $|F_i| = c$ for all i;
(ii) $|F_i \cup F_j| = c + 1$ for all $i \neq j$.

Then either $|\bigcup_{i=1}^r F_i| = c + 1$, or $|\bigcap_{i=1}^r F_i| = c - 1$.

Suppose this is not the case. Then, since $|F_i \cap F_j| = c - 1$ and $|F_i \cup F_j| = c + 1$, there exist integers i and j such that $F_i \cap F_j \neq F_i$, and $F_j \neq F_i \cup F_j$. The conditions (i) and (ii) then imply that there exists an element $x \in F_i \cap F_j$ such that $F_i \cup F_j \setminus \{x\} = F_i$, and an element $y \in F_j \setminus (F_i \cup F_j)$ such that $F_j = \{y\} \cup (F_i \cap F_j)$. It follows that $F_i \cup F_j = (F_i \cup F_j) \cup \{y\}$. This contradicts (ii).

(d) \Rightarrow (e): Assume that $|\bigcup_{i=1}^r F_i| = c + 1$. After a suitable permutation of the elements of $[n]$ we may assume that $\bigcup_{i=1}^r F_i = \{1, \ldots, c + 1\}$. Since $|F_i| = c$, there exists $j_i \in \{1, \ldots, c + 1\}$ such that $F_i = \{1, \ldots, c + 1\} \setminus \{j_i\}$. Since the sets F_i are pairwise distinct it follows that $j_i \neq j_k$ for $i \neq k$. Thus after applying again suitable permutation we may assume that $j_i = i$ for $i = 1, \ldots, r$.

The second statement follows similarly.

(e) \Rightarrow (f): In the first case, $v = 2$ and $h = (c + 1)$, while in the second case, $v = r$ and $h = c - 1 + r$. Thus in both cases size $I = n - c = \dim S/I$.

(f) \Rightarrow (g): By Lemma 3.1 and the remark preceding the lemma, we have

$$\text{depth } S/L \geq \text{size } L = \text{size } I = \dim S/I = \dim S/L.$$

Hence S/L is Cohen-Macaulay.

Finally the implication (g) \Rightarrow (a) is trivial. \hfill \square

Corollary 3.3. With notation as above, the following conditions are equivalent:

(a) J is a Gorenstein ideal for all choices of the integers a_{ij};
(b) $r = 1$ or $c = 1$.

Proof. If $r = 1$ or $c = 1$, then J is complete intersection for all choices of the integers a_{ij}. Thus (b) implies (a).

Conversely suppose condition (b) is not satisfied. We assume that $c > 1$, and have to show that $r = 1$. By Theorem 3.2 we have $|\bigcap_{i=1}^r F_i| = c - 1$ or $|\bigcup_{i=1}^r F_i| = c + 1$.

In the first case we may assume that \(F_i = \{1, \ldots, c - 1, i + c - 1\} \) for \(i = 1, \ldots, r \). Assume \(r > 1 \), and let \(Q_{F_1} = (x_1^2, x_2, \ldots, x_c) \) and \(Q_{F_i} = P_{F_i} \) for \(i \geq 2 \). Then \(J = \bigcap_{i=1}^{r} Q_{F_i} = (x_1^2, x_1 x_2, \prod_{i=0}^{r-1} x_{c+i}) \) is not Gorenstein, a contradiction.

In the second case suppose that \(r \geq 3 \). With the same argument as in the proof of Theorem 3.2 it follows that \(I_A = \bigcap_{i \in A} P_{F_i} \) is a Gorenstein ideal for all subsets \(A \subset [r] \). Therefore \(P_{F_1} \cap P_{F_2} \cap P_{F_3} \) is Gorenstein. We may assume that \(F_1 = \{1, 2, \ldots, c\}, F_2 = \{2, 3, \ldots, c + 1\} \) and \(F_3 = \{1, 3, 4, \ldots, c + 1\} \). Then \(P_{F_1} \cap P_{F_2} \cap P_{F_3} = (x_1 x_2, x_1 x_{c+1}, x_2 x_{c+1}, x_3, \ldots, x_c) \) is not Gorenstein, a contradiction.

On the other hand, if \(r = 2 \), then \(|\bigcap_{i=1}^{r} F_i| = c - 1 \), and we are again in the first case. Thus we must have that \(r = 1 \). □

Remark 3.4. From a viewpoint of Stanley-Reisner rings, the ideal \(I \) in the first case of condition (e) in Theorem 3.2 corresponds to an iterated cone of a 0-dimensional simplicial complex. In this case it is known that \(S/I \) itself is Gorenstein if the corresponding 0-dimensional simplicial complex consists of at most 2 points, see [9, Theorem 5.1(e)]. The corollary also follows from this fact.
References

[1] W. Bruns and J. Herzog, “Cohen-Macaulay rings” (Revised edition), Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998.
[2] W. Bruns and J. Herzog, On multigraded resolutions, Math. Proc. Camb. Phil. Soc. 118 (1995), 245–257.
[3] A. Björner and M.L. Wachs, Shellable non-pure complexes and posets II, Trans. AMS 349 (1997) 3945–3975.
[4] A. Dress, A new algebraic criterion for shellability, Beiträge zur Algebra und Geometrie 34 (1993), 45–55.
[5] R. Hartshorne, Complete intersections in characteristic $p > 0$, Amer. J. Math. 101 (1979), 380–383.
[6] J. Herzog and E. Sbarra, Sequentially Cohen-Macaulay modules and local cohomology, “Algebra, arithmetic and geometry, Part I, II” (Mumbai, 2000), 327–340, Tata Inst. Fund. Res. Stud. Math., 16, Tata Inst. Fund. Res. Res., Bombay, 2002.
[7] G. Lyubeznik, On the arithmetic rank of monomial ideals, J. Alg. 112 (1988), 86–89.
[8] P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z. 178 (1981), 125–142.
[9] R.P. Stanley, “Combinatorics and commutative algebra”, Birkhäuser, second edition, 1996.
[10] Y. Takayama, A generalized Hochster’s formula for local cohomologies of monomial ideals, preprint 2004.
[11] A. Taylor, The inverse Groebner basis problem in codimension two, J. Symb. Comp. 33 (2002), 221–238.
[12] N. Terai, Local cohomology modules with respect to monomial ideals, preprint 1998.

JÜRGEN HERZOG, FACHBEREICH MATHEMATIK UND INFORMATIK, UNIVERSITÄT DUISBURG-ESSEN, CAMPUS ESSEN, 45117 ESSEN, GERMANY
E-mail address: juergen.herzog@uni-essen.de

YUKIHIDE TAKAYAMA, DEPARTMENT OF MATHEMATICAL SCIENCES, RITSUMEIKAN UNIVERSITY, 1-1-1 NOJIHIGASHI, KUSATSU, SHIGA 525-8577, JAPAN
E-mail address: takayama@se.ritsumei.ac.jp

NAOKI TERAI, DEPARTMENT OF MATHEMATICS, FACULTY OF CULTURE AND EDUCATION, SAGA UNIVERSITY, SAGA 840-8502, JAPAN
E-mail address: terai@cc.saga-u.ac.jp