Single-chain fragment variable (scFv) with medical potential

Birgit Hülseweh*
Bundeswehr Research Institute for Protective Technologies and NBC Protection, Germany

Today generation of single-chain fragment variable (scFv) by phage display has become an established technique and could be used to select a completely functional antigen-binding fragment. Detailed overviews about this in vitro selection technology are given in different reviews [1-3]. A scFv is a molecule of about ~30 kDa and consists of the variable heavy (V\textsubscript{H}) and variable light (V\textsubscript{L}) chain joined together by a flexible peptide linker of about 15 amino acids. It is half the size of the antigen-binding (Fab) fragment and retains the specificity of the parent immunoglobulin.

Most often E. coli is the bacterial host for expression of the scFvs and the molecule is secreted directly into the periplasm space. There, due to the oxidizing environment of this bacterial compartment the antigen is either nonimmunogenic or toxic. The small size of antibody fragments permits this type of molecules easier tissue and blood brain barrier penetration. Moreover, the low cost and ease of production is often an argument for screening of specific binders by phage display. However, besides high hopes and enthusiasm, half life, improper folding, aggregation of the peptide and a missing modification are often setbacks during the development of a therapeutic antibody.

Progress in recombinant DNA technology and antibody engineering allows researchers today to express antibodies not only in E. coli but also in diverse mammalian cells, yeast and plant.

Each expression system has its advantages and disadvantages and requires special vectors [21]. Depending on the scFv expression system, the ability to fold and secrete varies.

Continued effort has been made to express scFvs in different formats. Sometimes a constant (C) domain or fragment crystallizable region (Fc) of an IgG is added to the variable (V) regions of the scFv to generate either a Fab fragment [fragment, antigen-binding] or scFv-Fc-fusion. Other formats include disulfide-bond stabilized scFv (ds-scFv) as well as di- and multimeric antibody formats.

A trend seems to be emerging towards the use of human or humanized antibody formats (scFv-Fc-fusion) due to their compatibility with the human immune system. In addition, their application reduces the risk of serum sickness and anaphylactic shock.

*Correspondence to: Birgit Hülseweh, Bundeswehr Research Institute for Protective Technologies and NBC Protection, Humboldtsstraße 100, D-29633 Munster, Germany, Tel: +49 (0) 5192 136 598, E-mail birgithuelseweh@bundeswehr.org

Received: May 13, 2018; Accepted: May 22, 2018; Published: May 25, 2018
Moreover, the fragments or fusions can be genetically modified to enhance desirable pharmacokinetic properties like multivalency, slower blood clearance and higher affinity.

Outlook to the future

To my personal opinion antibody fragments like scFvs are going to be the next important class of protein-based therapeutics after monoclonal antibodies. Today, their special value for medical treatment is demonstrated by the high number of phage display-derived antibodies in clinical investigation. In addition, expiration of technology patents will open the market for this class of therapeutics.

References

1. Hoet RM, Cohen EH, Kent RB, Rookay K, Schoonbroodt S, et al. (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23: 344-8.
2. Dübel S, Stoevesandt O, Taussig MJ, Hust M (2010) Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 28: 333-9.
3. Bradbury ARM, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245-54.
4. Meyer T, Schirrmann T, Frenzel A, Miehe S, Stratmann-Selke J, et al. (2012) Identification of immunogenic proteins and generation of antibodies against Salmonella typhimurium using phage display. BMC Biotechnol.: 15: 29.
5. Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury AR, et al. (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS One: 6(12): 27756, Erratum in: PLoS One. 2012.
6. Rasetti-Escargueil C, Avril A, Chahboun S, Tierney R, Bak N, et al. (2015) Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B. MABS 7(9): 1161-77.
7. Wang H, Yu R, Fang T, Yu T, Chi X et al. (2016) Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library. Toxins 8 (9): 266.
8. Rülker T, Voll L, Thullier P, O’ Brien LM, Pelat T, et al. (2012) Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One 7(5):37242.
9. Hülseweh B, Rülker T, Pelat T, Langermann C, Frenzel A, et al. (2014) Human-like antibodies neutralizing Western equine encephalitis virus. MABS 6 (3): 718-727.
10. Sengupta D, Shaikh A, Bhatia S, Pateriya AK, Khandia R, et al. (2014) Development of single-chain Fv against the nucleoprotein of type A influenza virus and its use in ELISA. J Virol Methods 208: 129-37.
11. Bagheri V, Nejatollahi F, Esmaeil SA, Mutai AA, Motamedifar M, et al. (2017) Neutralizing human recombinant antibodies against herpes simplex virus type 1 glycoproteins B from a phage-displayed scFv antibody library. Life Sci. 169: 1-5.
12. Ringe R and Bhattachary J (2013) Preventive and therapeutic applications of neutralizing antibodies to Human Immunodeficiency Virus Type 1 (HIV-1). Ther Adv Vaccines 1(2): 67-80.
13. Steinhardt JJ, Guenaga J, Turner HI., McKee K, Louder MK, et al. (2018) Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nat Commun. 9(1): 877.
14. Frenzel A, Schirrmann T and Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MABS 8: 1177-1194.
15. Monnier PP, Vigouroux RJ and Tassew NG (2013) Review, In Vivo Applications of Single Chain Fv (Variable Domain) (scFv) Fragments. Antibodies 2(2): 193-208.
16. Ahmad ZA, Yeap SK, Ali AM, Ho WY Alitheen NBM, et al. (2012) scFv Antibody: Principles and Clinical Application. Clinical and Developmental Immunology: 980250.
17. Zhou SJ, Wei J, Su S, Chen FJ, Qiu YD, et al. (2017) Strategies for Bispecific Single Chain Antibody in Cancer Immunotherapy. J Cancer 8(8): 3689-3696.
18. Reichert JM (2016) Therapeutic monoclonal antibodies approved or in review in the European Union or the United States [Internet]. The Antibody Society 2016.
19. Reichert JM (2016) Antibodies to watch in 2016. MAbs8 (2): 197–204.
20. Kaplon H and Reichert JM (2018) Antibodies to watch in 2018. MABS 10(2): 183-203.
21. Laustsen AH, Maria Gutiérrez J, Knuds C, Johansen KH, Bermúdez-Méndez E, et al. (2018) Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 146: 151-175.