Differential Incorporation and Removal of Antiviral Deoxynucleotides by Human DNA Polymerase γ*

Received for publication, February 5, 2001, and in revised form, April 9, 2001
Published, JBC Papers in Press, April 23, 2001, DOI 10.1074/jbc.M101114200

Susan E. Lim and William C. Copeland‡
From the Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709

Mitochondrial toxicity can result from antiviral nucleotide analog therapy used to control human immunodeficiency virus type 1 infection. We evaluated the ability of such analogs to inhibit DNA synthesis by the human mitochondrial DNA polymerase (pol γ) by comparing the insertion and exonucleolytic removal of six antiviral nucleotide analogs. Apparent steady-state K_m and k_{cat} values for insertion of 2',3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZT-TP), 2',3'-dideoxy-CTP (ddCTP), 2',3'-dideoxy-hydro-TTP (D4T-TP), (-)-2',3'-dideoxy-3'-thiacytidine (3TC-TP), and carbocyclic 2',3'-dideoxy-hydro-ddGTP (CBV-TP) indicated incorporation of all six analogs, albeit with varying efficiencies. Dideoxynucleotides and D4T-TP were utilized by pol γ in vitro as efficiently as natural deoxynucleotides, whereas AZT-TP, 3TC-TP, and CBV-TP were only moderate inhibitors of DNA chain elongation. Inefficient excision of dideoxynucleotides, D4T, AZT, and CBV from DNA predicts persistence in vivo following successful incorporation. In contrast, removal of 3'-terminal 3TC residues was 50% as efficient as natural 3' termini. Finally, we observed inhibition of exonuclease activity by concentrations of AZT-monophosphate known to occur in cells. Thus, although their greatest inhibitory effects are through incorporation and chain termination, persistence of these analogs in DNA and inhibition of exonucleolytic proofreading may also contribute to mitochondrial toxicity.

More than 36 million people are infected by the human immunodeficiency virus worldwide, where 5.3 million new infections occurred during 2000 (1). Although antiviral therapy effectively extends the life of individuals, the death toll continues to rise; 3 million people, the highest number since the epidemic began, died from AIDS in 2000 (1). Nucleoside analogs utilized in antiviral therapy are the dideoxynucleoside analogs ddI and ddC. These chain terminators also cause toxic side effects by inhibiting mitochondrial function. The use of 2'-3'-dideoxythymidine (ddC) causes a reversible peripheral neuropathy in many patients (7). Treatment of human Molt-4 cells with ddC results in delayed cytotoxicity with a concomitant loss of mitochondrial DNA (8), indicating the cellular target is likely mitochondrial DNA replication. Treatment of human CEM cells with ddC, D4T, and ddI results in a significant decrease of mtDNA and ultrastructural changes of the mitochondria (9). Both AZT and ddC treatment result in depletion of mitochondrial DNA, and both drugs have been shown to cause an increase in mtDNA deletions (10).

Mitochondrial DNA is replicated by an assembly of proteins and enzymes including DNA polymerase γ, single-stranded DNA-binding protein, DNA helicase, multiple transcription factors, and a number of accessory proteins (11). In vitro analysis from several laboratories has demonstrated that among the cellular replicative DNA polymerases, the mitochondrial DNA polymerase γ is the enzyme most sensitive to the antiviral nucleotide analogs currently approved to control HIV-1 infection (12–21).

As a thymidylate analog, AZT-TP is a competitive inhibitor for dTTP with pol γ (16). Partially purified human DNA pol γ is strongly inhibited by dideoxynucleotide triphosphates and D4T-TP, whereas AZT-TP, 3TC-TP, and CBV-TP inhibit pol γ to a lesser but significant degree (13). Purified recombinant yeast pol γ can readily incorporate dideoxynucleotides and dideoxyCTP, but this enzyme is less efficient in the incorporation of AZT (18). 3TC-TP has also been shown to be a substrate for human DNA pol γ as well as for HIV-RT (22). These results clearly show that pol γ is a primary cellular target for analog-induced mitochondrial toxicity. This acquired mitochondrial toxicity may be caused by 1) direct inhibition of DNA pol γ without incorporation, 2) chain termination by incorpora-
reration of these analogs into mitochondrial DNA by DNA pol γ, 3) alteration of the fidelity of DNA synthesis by pol γ, 4) the persistence of these analogs in mtDNA due to inefficient excision, or 5) any combination thereof. To understand the mechanism of this acquired mitochondrial toxicity, a thorough understanding of the interaction of nucleotides and analogs with pol γ is needed. Such information may help in the design of nucleotide analogs that selectively inhibit the HIV reverse transcriptase without inducing mitochondrial dysfunction.

We and others have cloned and overproduced the catalytic subunit of human DNA polymerase γ in insect cells via a recombinant baculovirus (23–25). In this report, we have determined the insertion efficiency of the currently approved anti-HIV analogs into DNA by purified recombinant human DNA polymerase γ, and we have investigated the efficiency of removing these analogs from DNA by the intrinsic 3'-5' exonuclease activity of pol γ.

EXPERIMENTAL PROCEDURES

Materials—Poly(rA)oligo(dT)12-18, deoxyxynucleoside triphosphates, dNTPs, and radioisotopes ([γ-32P]dATP, [γ-32P]dGTP, [γ-32P]dTTP, and [γ-32P]dCTP) were from Amersham Pharmacia Biotech. Oligonucleotides were purchased from Oligos Etc. or Life Technologies, Inc. dTMP and dTDP were purchased from United States Biochemical Corp. AZT-MP, dTTP analog primer-template set: 18-mer: 5'-GCA CAA TTT ACC AGA GAG-3' 36-mer: 3'-ACT GGT ACA TTT CTC AAT CTC TCT TCT TCT-5' dCTP analog primer-template set: 18-mer: 5'-TGAA CCA TCG ATT CGA AGA-3' 36-mer: 3'-ACT GGT ACA TTT CTC AAT CTC TCT TCT TCT-5' dGTP analog primer-template set: 18-mer: 5'-TGA CCA TGG ATT AGA GAG-3' 36-mer: 3'-ACT GGT ACA TTT CTC CAC TGT ATC TCT-5'

Enzymes—The recombinant wild type histidine-tagged human DNA polymerase γ (wild type pol γ) was purified from baculovirus-infected insect cells as described (24). To make the histidine-tagged exonuclease-deficient DNA pol γ (Exo pol γ), the wild type Bam-HindIII fragment of pHuPolQ (29) was replaced with BamHI-HindIII fragment of Exo/100/3Hspu yt.pol. The EcoRI-HindIII fragment of the resulting plasmid was then inserted into the baculovirus transfer vector pVL1393 and resulting recombinant baculovirus, Exo pQVSL11.4, selected. The Exo pol γ was purified from Exo pQVSL11.4 baculovirus infected cells like the wild type pol γ.

Polymerase Assays—Reverse transcriptase activity of pol γ was determined using poly(rA)oligo(dT)12-18 in reactions (50 μl) containing 25 mM Hepes-OH, pH 8.0, 1 mM 2-mercaptoethanol, 50 μg/ml acetylated bovine serum albumin, 25 mM MgCl2, 5 μM [γ-32P]dTTP (2000 cpm/ pmol), 50 mM NaCl, 50 μg/ml poly(rA)oligo(dT)12-18, and 2.5 ng of pol γ as described (24). One unit is the amount of enzyme required to catalyze the incorporation of 1 pmol of dTTP into trichloroacetic acid-precipitable DNA in 1 h at 37 °C using poly(rA)oligo(dT). Inhibition of reverse transcriptase activity of pol γ by antiviral nucleotides was determined in this standard assay in the presence of 0.2–1000 nm ddTTP or dATP, or 0.2–438 nm AZT-TP.

Exonuclease activity was determined by incubating 0.5 pmol of 5'-32P-end-labeled 18-mer with 0, 10, 40, or 120 ng of wild type pol γ or Exo pol γ in 25 mM Hepes-OH, pH 7.5, 5 mM 2-mercaptoethanol, 1 μg of acetylated bovine serum albumin, and 5 mM MgCl2 at 37 °C for 30 min. Reaction was terminated at 90 °C for 3 min in 10 μl of formamide loading dye (95% deionized formamide, 0.1% sodium dodecyl sulfate, 0.1% bromphenol blue, and 0.1% xylene cyanol). The reaction products were separated on a 20% polyacrylamide-urea gel, and products were visualized and quantified with a Molecular Dynamics PhosphorImager Storm860 and NIH Image 1.61 software.

Incorporation of Antiviral Nucleotide Analogs into DNA by pol γ—The kinetics of antiviral nucleotide analog insertion into DNA by Exo pol γ was measured using the gel-based oligonucleotide extension assay (28, 27) as modified for incorporation of antiviral nucleoside analogs (17). The primer-template sets used for each type of analog follow.

Inhibition of Single Nucleotide Incorporation by pol γ with Antiviral Nucleotide Analogs—The inhibition of a single nucleotide incorporation was performed with the primer-template sets described above in the same buffer conditions but with 100 mM [γ-32P]dATP, [γ-32P]dGTP, or [γ-32P]dCTP. Antiviral nucleotide analog triphosphate was added to these reactions as indicated. The products were separated on a 15% polyacrylamide-urea gel and visualized as described above. Ten femol of 32P-end-labeled 38-mer was added to all reactions and used to normalize the products from gel loading error.

Exonucleolytic Removal of Antiviral Analogs from the 3'-Termini of DNA—To produce single-stranded substrates for exonuclease assay with various antiviral analogs at the 3'-terminus, the 18-mer primer was labeled on the 3'-terminus with T4 polynucleotide kinase and then extended at the 3'-terminus with the different analogs using terminal deoxynucleotidyltransferase (TdT) in one-Phor-all buffer (Amersham Pharmacia Biotech). The products of the reaction were desalted and purified on a Sephadex G-25 column followed by centrifugation in a Microcon-3 microcentrator. Purified HIV-RT was used to label the 3'-termini of the 18-mer in the 18/36-mer duplex with analog by incubating with 1 μl of the indicated analog triphosphate for 1 h at 37 °C. The reactions were heat-inactivated and duplex DNA purified on a Sephadex G-25 spin column and washed in a Microcon-3 microcentrator with six volumes of distilled H2O. To examine pol γ exonuclease activity with these analog-containing primer-templates, 0.2 pmol of 32P-end-labeled oligonucleotide containing the designated analog at the 3'-end was incubated with 70–840 fmol of wild type pol γ, as indicated. The exonuclease activity was carried out in 33 mM Hepes-OH, pH 7.5, 13 mM KCl, 1.3 mM DTT, and 3.3 mM MgCl2 at 37 °C for 30 min. The products were separated by denaturing PAGE and visualized as described above.

RESULTS

We sought to identify the mechanisms by which AZT-TP, ddCTP, 3TC-TP, d4T-TP, and carbovir-TP inhibit the human DNA polymerase γ. All of these analogs lack the 3' hydroxyl group and consequently act as chain terminators once incorporated into DNA. For comparison and reference the structures of these analogs are shown in Fig. 1. We used the purified recombinant human DNA polymerase γ overproduced in baculovirus-infected insect cells. This recombinant DNA polymerase γ and an exonuclease-deficient catalytic subunit has been characterized previously in our laboratory and shown to possess polymerase properties identical to the native catalytic subunit of DNA polymerase γ (24). To simplify the analysis of analog incorporation into DNA, we took advantage of the proofreading, we generated a histidine-tagged exonuclease-deficient DNA polymerase. The specific polymerase activity of both the wild type and exonuclease-deficient histidine-tagged pol γ was 32 units/ng in the poly(rA)oligo(dT) assay (data not shown). We first addressed the inhibition and incorporation of these antiviral nucleotide analogs into DNA, and then we tested the efficiency of excising analogs from DNA by the 3'-5' exonuclease activity.
Inhibition of Human DNA pol γ by Antiviral Nucleotide Analogs—As a first approximation, the IC\textsubscript{50} values for inhibiting DNA synthesis were determined with two different assays. We designed these assays to specifically measure the ability of analogs to inhibit the incorporation of the cognitive nucleotide. First, the incorporation of a single normal α-32P-labeled dNMP into an 18/36-mer primer-template was assayed in the presence of increasing concentrations of competing antiviral nucleotide analog. Inhibition was monitored by gel electrophoresis and quantified to determine the IC\textsubscript{50} concentrations. Graphical results for all five analogs are shown in Fig. 2A. These results demonstrated that both dideoxycytidine and D4T-TP had strong inhibition profiles, whereas AZT-TP, 3TC-TP, and CBV-TP showed modest inhibition. The IC\textsubscript{50} for ddNTP and D4T-TP was 8 and 20 \textmu M, respectively, while 3TC-TP and CBV-TP had an IC\textsubscript{50} of 80 \textmu M. The analog AZT-TP had an IC\textsubscript{50} of 130 \textmu M.

The severity of inhibition is better demonstrated in the second assay, which measures multiple incorporation events. Inhibition by the thymidine analogs was determined here in our standard poly(rA)-oligo(dT) assay using 25 \textmu M dTTP. On this substrate pol γ has a K\textsubscript{m} for ddTTP of 4.5 \textmu M (28). Results are shown in Fig. 2B and demonstrate that ddTTP and D4T-TP are potent inhibitors \textit{in vitro} while AZT-TP required higher levels to inhibit pol γ. Addition of AZT-TP resulted in an IC\textsubscript{50} of \textasciitilde 25 \textmu M, which was also the concentration of normal dTTP in this assay. Dideoxythymidine triphosphate and D4T-TP showed IC\textsubscript{50} at \textasciitilde 15 and 150 nm, respectively, more than 2 orders of magnitude lower than AZT-TP. Given this relative ranking as inhibitors, we wanted to determine the mode of inhibition for each analog. We specifically wanted to determine whether chain termination was the primary mechanism of inhibition or whether inhibition of polymerase activity could occur prior to incorporation of the analog into DNA. Additionally, once incorporated into DNA how efficiently could the analogs be removed by the 3’-5’ exonuclease activity of pol γ?

Incorporation of Antiviral Nucleotide Analogs into DNA by DNA Polymerase γ—To determine relative efficiencies with which these analogs could be incorporated into DNA, we performed primer extension reactions and analyzed the products by gel electrophoresis. We used the exonuclease-deficient DNA polymerase γ in this assay to avoid degradation of the primer by the proofreading function and to simplify interpretation of results. This strategy became imperative due to the relatively high amount of enzyme and the longer incubation times required to detect incorporation with some of these analogs. Fig. 3 depicts the incorporation of dTMP, ddTMP, AZT-MP, and D4T-MP into DNA. Rate was determined as the fraction of primer extended by one nucleotide per unit time, and Michaelis-Menten kinetic constants were determined by plotting the rate as a function of nucleotide analog concentration (26). Human pol γ displayed high affinity (low apparent K\textsubscript{m}) for normal nucleotides (Tables I–III), which is in agreement with other kinetic studies of pol γ (13–15, 18). All the analogs could be incorporated into our DNA substrate, but different concentrations of the analog were required. The dideoxynucleotide analogs ddCTP and ddTTP were the easiest to incorporate and had
k_{cat} values similar to their normal nucleotide counterpart (Tables I–II). The apparent K_m was 2–5-fold higher than the normal nucleotide. The effect of these analogs on competitive incorporation can be assessed by taking the ratio of the kinetic constants, f_{in}. This value is equivalent theoretically to measurements made using competing substrates. Thus, ddTTP would get incorporated one in four incorporation events if the concentration of TTP and ddTTP were equal (Table I). The apparent K_m for D4T-TP incorporation was similar to dideoxynucleotides but had a slightly decreased k_{cat} (Table I).

These results predict D4T to be as inhibitory as the dideoxynucleotides. The f_{in} values for these analogs determined with pol γ followed the general trend of inhibition observed in Fig. 2. Pol γ exerted most of its discrimination through K_m effects, whereas the k_{cat} was only modestly reduced for most of these analogs. Incorporation of AZT-TP, 3TC-TP, and CBV-TP required much higher concentrations than ddNTP or D4T-TP. However, apparent K_m values were still in the micromolar range (Tables I–III), indicating AZT, 3TC, and CBV are only moderately incorporated as compared with
Mechanism of Nucleotide Selectivity by DNA Polymerase γ

Table I

Nucleoside triphosphate	K_m	k_{cat}	k_{cat}/K_m	f_m
TTP	0.038	2.9	76	0.001
ddTTP	0.060	1.1	18	0.003
AZT-TP	94	0.56	0.006	12,700
D4T-TP	0.05	0.65	13	6

$^a f_m = (k_{cat}/K_m)_{(TTP)}/(k_{cat}/K_m)_{(analog)}$.

Table II

Nucleoside triphosphate	K_m	k_{cat}	k_{cat}/K_m	f_m
dCTP	0.025	2.9	116	0.001
ddCTP	0.130	2.1	16	7
3TC-TP	10.8	0.11	0.011	11,300

$^a f_m = (k_{cat}/K_m)_{(dCTP)}/(k_{cat}/K_m)_{(analog)}$.

Table III

Nucleoside triphosphate	K_m	k_{cat}	k_{cat}/K_m	f_m
dGTP	0.020	2.8	143	0.056
CBV-TP	4.3	0.24	0.056	2550

$^a f_m = (k_{cat}/K_m)_{(dGTP)}/(k_{cat}/K_m)_{(CBV)}$.

dideoxynucleotides and D4T. The dCTP analog, 3TC-TP, had the lowest k_{cat} as well as a high apparent K_m (Table II).

Exonucleolytic Removal of Antiviral Analogs from DNA by DNA Polymerase γ—The inhibitory effect of a chain terminator is limited by its ability to persist in DNA once incorporated. The persistence of all of these analogs in DNA has largely been observed in vitro. Since DNA polymerase γ has an intrinsic 3′-5′ exonuclease activity, we investigated whether human DNA polymerase γ could remove these antiviral nucleotide analogs from DNA termini. Single-stranded DNA substrates bearing the analog at the 3′ terminus were constructed with TdT. Since TdT did not effectively add AZT-MP to the ends of DNA, we used HIV-1 reverse transcriptase to insert AZT-MP onto the 3′ end of the 18/36-mer substrate. The exonuclease activity by pol γ on this dsDNA substrate was compared with the degradation of the normal 18/36-mer substrate, as well as a 19/36-mer dsDNA bearing either D4T-TP or ddTMP. An equal molar ratio of wild type pol γ and either ssDNA or dsDNA, we observed efficient exonucleolytic removal of normal nucleotides, but very little detectable removal of the analogs with the exception of 3TC. At this stoichiometric level of polymerase and substrate, 10–20% of the 3TC was removed from the 3′ terminus as compared with the control. Pol γ did not remove detectable amounts of the other analogs at these enzyme concentrations (data not shown). However, when enzyme concentrations exceeded substrate concentrations, we detected removal of the analogs from the 3′ terminus (Fig. 4A). A 1.3-fold molar excess of enzyme was only able to remove 10% or the terminally incorporated analogs for single or double-stranded substrate. The exception was 3TC, where >50% of the analog was removed in 30 min (Fig. 4B). The remaining terminally incorporated analogs required a 3–4-fold molar excess of pol γ to remove >50% in 30 min.

AZT-monophosphate Inhibits pol γ Exonuclease Function—Through uptake and phosphorylation, AZT-MP is known to accumulate in millimolar concentrations in cells (29, 30). Since normal deoxynucleoside monophosphates inhibit the 3′-5′ exonuclease activity by product inhibition, we tested the ability of the mono- and diphosphate forms of AZT to inhibit the exonuclease activity of pol γ. Inhibition of exonuclease digestion of the 18-mer by increasing concentrations of TMP, AZT-MP, TDP, or AZT-DP was monitored by gel electrophoresis. The fraction of 18-mer was plotted for the indicated concentration of each analog (Fig. 5). The TMP inhibited the human pol γ exonuclease activity at similar concentrations to what has been observed for the inhibition of *Drosophila* pol γ by AMP (31). AZT-MP and TMP inhibited pol γ exonuclease at similar concentrations, indicating an IC$_{50}$ of 2.5 m.M. AZT-DP and TDP caused some inhibition of exonuclease but only at high concentrations. AZT-TP and TTP did not inhibit the exonuclease activity in this assay (data not shown). Thus, the inhibition of exonuclease activity was specific to either dTMP or AZT-monophosphate and occurred at concentrations similar to those observed in vitro (29, 30).

DISCUSSION

Antiviral nucleoside analogs have been implicated to cause mitochondrial toxicity in patients being treated for the HIV-1 viral infection. The cause of this toxicity is the inhibition or perturbation of mitochondrial DNA synthesis. We sought to determine the mode of inhibition of DNA polymerase γ, the only known polymerase in animal cell mitochondria. We found that all of the currently approved antiviral nucleoside analogs that we tested were incorporated into DNA by pol γ, and all inhibited DNA synthesis by pol γ in vitro to varying degrees. The dideoxynucleoside triphosphates and D4T-TP were incorporated most readily into DNA by pol γ and also exerted the strongest inhibition.

Pol γ was able to incorporate the analogs in the following order of efficiency: ddNTP > D4T-TP > CBV-TP > 3TC-TP > AZT-TP. Our data indicate that 3TC-TP was one of analogs least likely to be incorporated and yet was one of those most efficiently removed. Taken together, this may explain the low
with a glutamic acid side chain (Glu-200 in human pol)

the exonucleolytic mechanism by forming a hydrogen bond
the 3'-OH group of the terminal nucleotide plays a key role in
release of the terminal nucleoside monophosphate. We sought
ester bond, inverting the configuration of the phosphate to

cated analog substrate, respectively). B

for wild type with either double-stranded
templates were normalized to wild type
stranded and double-stranded primer-
substrates. Activities on the single-
stranded and double-stranded primer-
templates were normalized to wild type
polymerase contains an intrinsic 3'-5' exonuclease active site show that
required for incorporation can be obtained in vivo (29, 30).

Exonucleolytic Removal of Analogs from DNA—Human DNA
polymerase contains an intrinsic 3'-5' exonuclease active site in the 140-kDa polypeptide (23, 24). DNA polymerase γ is a family A polymerase, which is best typified by the \textit{Escherichia coli} pol I (32). Mutagenesis studies and the three-dimensional structure of the \textit{E. coli} pol I exonuclease active site show that the 3'-OH group of the terminal nucleotide plays a key role in the exonucleolytic mechanism by forming a hydroxide bond with a glutamic acid side chain (Glu-200 in human pol γ) facilitating this residue to makes an ionic bond to the catalytic Mg^{2+} and a hydroxide anion (33–35). Stabilized by the metal cation, the activated hydroxide anion attacks the phosphodiester bond, inverting the configuration of the phosphate to release of the terminal nucleoside monophosphate. We sought
to determine if the absence of the hydroxyl group in these chain
terminators would affect their excision. We found that the pol γ exonuclease was inefficient at removing these chain terminators at molar equivalents and removal required a 3–4-fold molar excess of polymerase over 3' termini. Excision of ddNMP and other analogs from the 3’ terminus by yeast and porcine DNA pol γ has also been shown to be inefficient when enzyme is the limiting component in the reaction (18, 36). The exception was the excision of 3TC, which was only 2-fold less efficient than a normal nucleotide with our highly active pol γ. Gray and colleagues (22) have also demonstrated that 3TC-MP can be removed from the 3’ terminus of DNA, but only after 2 h of incubation. 3TC is in the (−)-enantiomer form; therefore, the possibility exists for the ribose oxygen to maintain hydrogen bonding with the active site glutamic side chain through a water molecule, accounting for its efficient excision. Due to the role of the 3’ OH in the exonucleolytic catalysis, the inefficient excision of chain terminators by polymerases with intrinsic exonucleases may be a general phenomena. Indeed, the nuclear DNA polymerases δ and ε have also been shown to remove AZT-MP inefficiently from the 3’ termini (19). Clearly, the 3’-azido group in AZT cannot substitute for the 3’-OH group in H-bonding Glu-200. The monophosphate inhibition experiment shown in Fig. 5 suggests, at least with AZT, that these analogs bind with similar affinity in the exonuclease active site. Thus, the 3’-azido group may interfere sterically with the ability of
the exonuclease-deficient yeast and mouse DNA polymerase
20-fold decrease in replication fidelity
inactivation of exonuclease activity results in as much as a

Open or diphosphate.
9
submitted for publication.

DNA polymerase
AZT-MP has been shown to inhibit the exonuclease function of
DNA polymerase and possibly lower its fidelity. Although
expected to inhibit the exonuclease activity of mitochondrial
ing efficient catalysis. Thus, intracellular levels of AZT-MP are
found that AZT-MP inhibited the exonuclease function as effi-
ciently as its normal counterpart, dTMP. This was surprising,
since AZT was the least favored substrate to be removed from
DNA, and suggests that free AZT-MP or terminally incorpo-
ration, and persistence in DNA. If all of the analogs we studied
showed equivalent cellular adsorption, phosphorylation and
transport, then we could draw a direct correlation with cellular
toxicity. However, the intramitochondrial concentration and
phosphorylation state of these analogs is unclear. One of these
analogs, 3TC, may not be transported efficiently into the mito-
chondria and may even block transport of other dCTP analogs
(58–61). For carbovir, no mitochondrial toxicity has been ob-
progresses in mitochondrial DNA synthesis (57). Our present study focused only on
the latter steps leading to toxicity: the incorporation, inhibi-
tion, and persistence in DNA. If all of the analogs we studied
inhibited analog into the cell, conversion to the triphosphate form, trans-
port into the mitochondria, incorporation into mitochondrial
DNA, and persistence in mitochondrial DNA. The transport of
these analogs into the mitochondria may occur before or after
phosphorylation, but one study suggests that intramitochon-
drally phosphorylated analogs are preferentially incorporated into
dNA (56). In contrast to this finding, another study sug-
gests that ddC is phosphorylated in the cytoplasm and trans-
ported into mitochondria prior to exerting its inhibitory effect
on mtDNA synthesis (57). Our present study focused only on
the mitochondria and may even block transport of other dCTP analogs
(58–61). For carbovir, no mitochondrial toxicity has been ob-

measured the
intracellular levels of AZT-MP are
expected to inhibit the exonuclease activity of mitochondrial
dNA polymerase and possibly lower its fidelity. Although
AZT-MP has been shown to inhibit the exonuclease function of
DNA polymerase δ (38) and SV40 replication in vitro (37), it
was not shown to increase the mutation frequency in the SV40
replication-fidelity assay (37). However, this assay was not
specific for pol γ and did not score mutations in mitochondrial
DNA. Inhibition of pol γ proofreading by monophosphates or
inactivation of exonuclease activity results in a 20-fold decrease in replication fidelity in vitro (39, 40).² In vivo,
the exonuclease-deficient yeast and mouse DNA polymerase γ transgenes have conferred a mutant phenotype in mitochondrial
DNA (41, 42). Thus, inhibition of pol γ exonuclease function by
AZT-MP is likely to result in mutations within the
mitochondrial DNA. Mutations in mitochondrial DNA cause a
wide range of mitochondrial diseases due to the resulting de-
fects in oxidative phosphorylation (43, 44). When oxidative
phosphorylation is disrupted electrons can leak into the mito-
chondria matrix, react with oxygen, forming reactive oxygen
species (45). We find it intriguing that both an increase in
reactive oxygen species and oxidative DNA damage have been
noted in patients treated with AZT (46, 47). AZT incorporation and chain termination may also produce reactive oxygen
species as a result of mtDNA depletion and loss of oxidative-
phosphorylation function. Interestingly, AZT has been shown to
be mutagenic in animal and cellular models (48–54). Future
studies of the fidelity of pol γ in the presence of nucleoside
monophosphate analogs may offer insight into the mechanism
of AZT induced mitochondrial toxicity seen in treated patients.

Relevance to Clinical Symptoms and Observed Mitochondrial
Toxicity—Acquired mitochondrial toxicity in patients taking antiviral nucleoside analogs is generally accepted to occur as a
consequence of incorporation into mitochondrial DNA and/or
inhibition of mitochondrial DNA replication (55). This toxicity
requires five steps to present a clinical phenotype: uptake of
analog into the cell, conversion to the triphosphate form, trans-
port into the mitochondria, incorporation into mitochondrial
DNA, and persistence in mitochondrial DNA. The transport of
these analogs into the mitochondria may occur before or after
phosphorylation, but one study suggests that intramitochon-
drally phosphorylated analogs are preferentially incorporated into
dNA (56). In contrast to this finding, another study sug-
gests that ddC is phosphorylated in the cytoplasm and trans-
ported into mitochondria prior to exerting its inhibitory effect
on mtDNA synthesis (57). Our present study focused only on
the mitochondria and may even block transport of other dCTP analogs
(58–61). For carbovir, no mitochondrial toxicity has been ob-

REFERENCES

1. UNAIDS (2000) AIDS Epidemic Update, pp. 1–28, World Health Organization,
Geneva, Switzerland
2. Kakuda, T. N. (2000) Clin. Ther. 22, 685–708
3. Panel on Clinical Practices for the Treatment of HIV Infection (2001) Guide-
delines for the Use of Antiretroviral Agents in HIV-infected Adults and Ado-
lescents, http://www.hivatis.org/trgdlns.html#AdultAdolescent
4. Dalakas, M. C., Illa, I., Pezeshkpour, G. H., Laukaitis, J. P., Cohen, B., and
Griffin, J. L. (1990) N. Engl. J. Med. 322, 1098–1105
5. Arnaudo, E., Dalakas, M., Shanske, S., Moraes, C. T., DiMauro, S., and Schon,
E. A. (1991) Lancet 337, 508–510
6. Peters, B. S., Winer, J., Landon, D. N., Stotter, A., and Pinching, A. J. (1993)
Q. J. Med. 86, 5–15
7. Yarchoan, R., Perno, C. F., Thomas, R. V., Klecker, R. W., Allain, J. P., Wills,
R. J., McAtee, N., Fischl, M. A., Dubinsky, R., McNeely, M. C., Fluda, M. C.,
Leuther, M., Collins, J. M., and Broder, S. (1998) Lancet 1, 76–81
8. Chen, C. H., and Cheng, Y. C. (1989) J. Biol. Chem. 264, 11934–11937
9. Medina, D. J., Tsai, C. H., Hsiung, G. D., and Cheng, Y. C. (1994) Antimicrob.

² M. J. Longley, D. Nguyen, T. A. Kunkel, and W. C. Copeland, submitted for publication.
Mechanism of Nucleotide Selectivity by DNA Polymerase γ

23623

10. Wang, H., Lemire, B. D., Cass, C. E., Weiner, J. H., Michalak, M., Penn, A. M., and Fliter, L. (1996) *Biochem. Biophys. Acts* **1316**, 51–59

11. Shadel, G. S., and Clayton, D. A. (1997) *J. Biol. Chem.* **272**, 13938–13942

12. Bridges, E. G., Faraj, A., and Sommadossi, J. P. (1993) *Biochem. Pharmacol.* **45**, 1571–1576

13. Kunkel, T. A., and Soni, A. (1988) *J. Biol. Chem.* **263**, 4450–4459

14. Bridges, E. G., Faraj, A., and Sommadossi, J. P. (1993) *Biochem. Pharmacol.* **45**, 1571–1576

15. Parker, W. B., White, E. L., Shaddix, S. C., Ross, L. J., Buckheit, R. W., Jr., Lewis, W., Simpson, J. F., and Meyer, R. R. (1994) *J. Biol. Chem.* **269**, 1754–1762

16. Lewis, W., Simpson, J. F., and Meyer, R. R. (1994) *J. Biol. Chem.* **269**, 1754–1762

17. Bebenek, K., Thomas, D. C., Roberts, J. D., Eckstein, F., and Kunkel, T. A. (1996) *Science* **274**, 2717–2720

18. Bridges, E. G., Faraj, A., and Sommadossi, J. P. (1993) *Biochem. Pharmacol.* **45**, 1571–1576

19. Huang, P., Farquhar, D., and Plunkett, W. (1990) *J. Biol. Chem.* **265**, 11914–11918

20. Huang, P., Farquhar, D., and Plunkett, W. (1992) *J. Biol. Chem.* **267**, 2817–2822

21. Huang, P., Farquhar, D., and Plunkett, W. (1992) *J. Biol. Chem.* **267**, 2817–2822

22. Gray, N. M., Marr, C. L., Penn, C. R., Cameron, J. M., and Bethell, R. C. (1995) *J. Biol. Chem.* **270**, 14689–14696

23. Ropp, P. A., and Copeland, W. C. (1996) *Genomics* **31**, 25–33

24. Sussman, H. E., Olivero, O. A., Poirier, M. C., Anderson, L. M., Kasprzak, K. S., and Sipowicz, M. A. (2000) *Carcinogenesis* **21**, 1059–1062

25. Beene, L. S., and Steitz, T. A. (1988) *Science* **240**, 199–201

26. Longley, M. J., Ropp, P. A., Lim, S. E., and Copeland, W. C. (1998) *Biochem. Pharmacol.* **56**, 2817–2822

27. Derb肴hory, V., Grindley, N. D., and Joyce, C. M. (1991) *EMBO J.* **10**, 17–24

28. Bridges, E. G., Faraj, A., and Sommadossi, J. P. (1993) *Biochem. Pharmacol.* **45**, 1571–1576

29. Beene, L. S., and Steitz, T. A. (1988) *Science* **240**, 199–201

30. Bridges, E. G., Faraj, A., and Sommadossi, J. P. (1993) *Biochem. Pharmacol.* **45**, 1571–1576

31. Beene, L. S., and Steitz, T. A. (1988) *Science* **240**, 199–201

32. Bridges, E. G., Faraj, A., and Sommadossi, J. P. (1993) *Biochem. Pharmacol.* **45**, 1571–1576