Environmental Radiology of Southern Part of Zamfara State, Nigeria

Nuhu Umar
Student, Department of Physics department
Institution: Ahmadu Bello University Zaria, Nigeria

Dr. Nuraddeen Nasiru Garba
Senior Lecturer, Department of Physics department
: Ahmadu Bello University Zaria, Nigeria

Nasiru Rabiu
Professor, Department of Physics department
Institution: Ahmadu Bello University Zaria, Nigeria

Odoh M. Christopher
Lecturer, Department: Physics department
Institution: Federal University, Lafia, Nasarawa State Nigeria

Dr. Muneer Aziz Saleh
Senior Lecturer, Department of Physics department
Universiti Teknologi, Jahor Bahru, Malaysia

Abstract:
The activity concentrations of the naturally occurring radionuclide for the soil samples collected from Southern Zamfara State were measured using Hyper-pure Germanium detector (HPGe). The terrestrial gamma radiation doses were measured using inspector alert, model 35448 manufactured by U.S.A from 250 locations across southern Zamfara. The mean activity concentrations of 226Ra, 232Th and 40K in the soil samples were found to be 55 Bq kg⁻¹, 35 Bq kg⁻¹ and 267 Bq kg⁻¹, respectively. The activity concentration of 232Th, and 40K obtained are within the recommended values of 45 Bq kg⁻¹ and 420 Bq kg⁻¹, while 226Ra concentration 55Bqkg⁻¹ is higher than the world average value of 32 Bq kg⁻¹. The annual effective dose (AED), external (H_e) and internal (H_i) hazard index and Gamma representative index were computed as 0.07 μSv⁻¹, 0.33, 0.98 and 0.81, respectively. The values are within the recommended safe limit of unity. Other parameters such as annual gonadal dose equivalent, radium equivalent activity (Ra_eq) and excess lifetime cancer risk were also computed as 390.61 μSv⁻¹, 123.73 Bq kg⁻¹ and 0.34. The values obtained for annual gonadal dose equivalent and excess lifetime cancer risk are higher than the recommended values of 300 μSv⁻¹ and 0.29, while radium equivalent activity (Ra_eq) is lower than the safe limit 370 Bq kg⁻¹. The result implies that the gonadal values may have some effects on the reproductive organs of the people in the study area. But other radiation hazard parameters show that it is safe to use the soil in the study area for farming and other activities.

Keywords: Natural Radioactivity, radiation hazards parameters. HPGe Detector

1. Introduction
Soils contain radioactive materials naturally [1]. The radionuclides found in soils are mostly primordial radionuclides 226Ra, 232Th and their decay products and 40K[2]. Natural environmental radioactivity and the associated external exposure due to gamma radiation depend primarily on the geological and geographical conditions and appear at different levels in the soils of each region in the world [3,4]. The higher concentrations of radium, thorium and potassium are associated with soil developed from acid intrusive rocks and clay [5,6] and probably, a majority of uranium is associated with the phosphates sands and clays of these formations [7]. Knowing the concentration levels of natural radionuclides in soil and their distribution in the environment is of great interest in several fields of science [8]. Igneous rocks such as granite have higher radiation levels, while lower levels are associated with sedimentary rocks, although some shale and phosphate rocks have a relatively high content of radionuclides[9].
2. Materials and Methods

2.1. Study Area

The study area is Southern part of Zamfara State Nigeria. The region consist of seven local government including Anka, Bukuyum, Bungudu, Gusau, Gummi, Maru and Tsafe bounded by Latitude 0°0′0″ and 12°15′0″ N and Longitude 5°0′0″ and 7°15′0″ E. These coordinates are dominated mostly by the following geological formations: Taloka formation; Gundumillo formation; Younger meta volcano sedimentary series; Older granitolds (Pan African); Older meta-sedimentary rock; Gneiss migmatite as can be seen in Figure 1 and Table 1.

![Figure 1: Geology Map of the Study Area Showing the Six Geological Formations [10]](image)

Geological Level	Geological Name	Composition
A1, A2 and A3	Taloka	Sandstones, silt and shale, clays and shales, tuff with sandstones
B1, B2 and B3	Gundumillo	Clays grits and pebbles, gravels and sand, Agglomerate with sandstone
C1, C2 and C3	Younger meta volcano sedimentary series	Rhyolite
G1, G2 and G3	Older granitolds	Hypersthene quartz diorite, quartz syenite, fine-grained biotite granite, medium-coarse, Grained biotite, biotite-homblende granite, biotite homblende granodiorite quartz, coarse granite, granite-gneiss and migmatite.
M1, M2 and M3	Older metasedimentary Rock	banded irion formation, biotite and muscovite schists, quartzite and quartz schists, slate, phylite meta-siltstone locally homfelsic, undifferentiated muscovite, felspathic schist, metaconglomerate and quartzite
R1, R2 and R3	Gneiss migmatite	Migmatite granite gneiss and silicified and sheared rock

Table 1: The Geological Formations of Zamfara South and Their Corresponding Compositions

2.2. Sample Collection

Soils samples were collected from the study area at 18 different locations across the entire southern part of the state (Figure 2). The surface vegetation and death organic matter from the surface of each sample location were removed before taking each soil sample. The coordinate of each soil sample was located using Global Positioning system (GPS), each soil sample at the collection point was placed in a plastic bag, labeled with date and coordinate for easy identification. The 18 soil samples collected for the study area were transported back to the material science laboratory of Ahmadu Bello University for preparation.
2.2.1. Sample Preparation

Each sample was dried in an oven at a temperature of about 100°C for 24 hours in order to remove the moisture content, each dried sample was crushed to pass through a fine mesh sieve (2mm) to homogenous size. Then, each sample was packed in a plastic container selected based on the detector geometry and carefully sealed using masking tape in order to prevent Radon gas from escaping to the atmosphere. The prepared samples were allowed to attain secular radioactive equilibrium between 226Ra and its daughters by storing it for the period of a month. The activity concentrations of these samples were measured using hyper pure germanium detector (HPGe).

2.3. Experimental Set-Up

HPGe detector of serial and model number 9744 and GC 8023 was used; the detector has a relative efficiency of 80% with an energy resolution of 2.3KeV for 1.33 MeV gamma ray emission of 60Co. the length and end cap diameter of the detector is 69.8mm and 78mm. the set up was connected to a multichannel analyzer and a computer based data acquisition system. Efficiency calibration of the detector was done using 155Eu (60KeV, 86.5KeV and 105.3 KeV), 125Sb (176.3 KeV, 427.9 KeV and 600.6 KeV), 54Mn (834.8 KeV), 65Zn (1115.5 KeV), and 40K (1460.8 KeV). The energy calibration was also done using a standard source of 60Co (1173.2 and 1332.5KeV), 241Am (59.54 KeV), 133Ba (356.1 KeV) 137Cs (661.9 KeV) and 23Na (1368.6 KeV).

2.3.1. Sample Analysis

Each soil sample was set counting time of 10800s. The count rate per second for each radionuclide in each sample was analyzed and the background count was subtracted for every count. The activity concentration of 226Ra was determined from γ-ray energies 609.31 KeV, the activity concentration of 40K was determined from the γ-ray energy of 1460.80 KeV and the activity concentration of 232Th was determined from the γ-ray energy of 911.1 KeV.

2.4. Radiological Hazards Parameters

The mean activity concentrations of 226Ra, 232Th, and 40K measured in the soil samples were used to calculate the Radiological hazards parameters using the following expressions. Where in all the expressions, A_{Ra}, A_{Th} and A_{K} are the activity concentration of 226Ra 232Th and 40K, respectively.

2.4.1. Absorbed Dose Rates

The absorbed dose rate was obtained using the expression below [11]

$$D = (0.462A_{Ra} + 0.604A_{Th} + 0.0417A_{K})$$ (1)

Where D is the absorbed dose rate in mGy.h$^{-1}$.

2.4.2. Annual Effective Dose Rates

The expression used in calculating the annual effective dose rates was given below [12]:

$$AEDE = D \times 8760h \times 0.2 \times 0.7 \times 10^{-6}$$ (2)

Where AEDE is the annual effective dose equivalent in ($mSvyr^{-1}$) and D is the value of absorbed dose rate earlier calculated.
2.4.3. Radium Equivalent Activity
The Radium Equivalent Activity (Ra$_{eq}$), which is the actual activity level of 238U, 232Th and 40K in soil samples [13] was calculated using the expression below.

\[\text{Ra}_{eq} = A_{Ra} + 1.43A_{Th} + 0.077A_{K} \]

(3)

2.4.4. External Hazard Index
To limit the radiation exposure due to natural radionuclides in the samples to a maximum permissible limit of 1 mSv.y$^{-1}$, the External Hazard Index (Hex) was introduced [14]. It was computed by the Equation below [11]:

\[H_{ex} = \left(\frac{A_{Ra}}{370} + \frac{A_{Th}}{259} + \frac{A_{K}}{4810} \right) \]

(4)

2.4.5. Internal Hazard Index
The internal hazard index was calculated using equation (5).

\[H_{in} = \left(\frac{A_{Ra}}{180} + \frac{A_{Th}}{259} + \frac{A_{K}}{4810} \right) \]

(5)

2.4.6. Excess Lifetime Cancer Risk (ELCR)
Equation 6 was used in obtaining the Excess lifetime cancer risk (ELCR) of the study area.

\[\text{ELCR} = AEDE \times (RF) \times (DL) \]

(6)

where AEDE, DL and RF is the annual effective dose equivalent, average duration of life and risk factor.

2.4.7. Gamma Representative Index
The expression used in calculating the Gamma representative index was given in equation (7) below.

\[I_{G} = \frac{A_{Ra}}{150} + \frac{A_{Th}}{100} + \frac{A_{K}}{1500} \]

(7)

2.4.8. Annual Gonadal Equivalent Dose
Equation 8 was used in calculating the annual gonadal dose equivalent of study area.

\[AGDE = 3.09 \ A_{Ra} + 4.18 \ A_{Th} + 0.314 \ A_{K} \]

(8)

3. Results and Discussion

3.1. Activity Concentrations Based on Geological Formation
Activity Concentration for 226Ra, 232Th, and 40K in each geological formation was presented in Figure 3 and Table 2. 232Th concentration in the six geological formations ranges from 45.80 to 26.71 Bqkg$^{-1}$, with a mean value of 34.55 ± 7.99 Bqkg$^{-1}$.226Ra ranges from 77.47 to 37.15 Bqkg$^{-1}$, with a mean value of 54.19±15.47 Bqkg$^{-1}$. While 40K concentration ranges from 75.54 to 394.72 Bqkg$^{-1}$, with a mean value of 260.00 ± 92.62 Bqkg$^{-1}$. Gneiss Migmatite formation has the highest mean concentration of 232Th, 226Ra and 40K, while Older Meta Sedimentary Rock formation has the lowest mean concentration of 226Ra and 40K, the lowest concentration of 232Th was found in Older Granitolds formation. The variation of this activity concentration across the geological formation is due to the variation of the mineral contents present in each geological formation.

\[\text{Figure 3: Activity Concentrations Based on Geological Formation} \]
3.2. Activity Concentrations Based on Local Government

Figure 4 shows that the activity concentration for 232Th in the seven local government of the study area ranges from 26.81 to 41.39 Bq kg$^{-1}$, with a mean value of 39.31 ± 7.34 Bq kg$^{-1}$. That of 226Ra ranges from 39.40 to 63.79 Bq kg$^{-1}$, with a mean value of 51.44 ± 8.38 Bq kg$^{-1}$. 40K concentration ranges from 80.59 to 346.15 Bq kg$^{-1}$ with a mean value of 260.00 ± 70.04 Bq kg$^{-1}$. Based on the results obtained, Bukuyum local government has the highest mean concentration of 40K, 346.15 ± 8.72 Bq kg$^{-1}$ and while the lowest mean concentration of 40K and 232Th was observed in Maru local government. In terms of 226Ra, Gusau local government has the highest mean concentration of 63.79 ± 9.05 Bq kg$^{-1}$ while Tsafe local government has the lowest mean concentration of 226Ra, 39.40 ± 5.20 Bq kg$^{-1}$. The mean concentration of 232Th, was observed to be high in Gummi local government.

![Figure 4: Activity Concentrations Based On Local Government Formation](image)

3.3. Comparison of the Mean Activity Concentration with Other Published Data

The result show that, activity concentration obtained for 40K in the study area is higher than the value obtained in Abeokuta [15] but lower than the values obtained in Bagega [16], Zamfara North [17], Sri lanka [18], Egypt [19], Algeria [20] and Zambia [21]. Table 2. In terms of 226Ra, the values obtained in the study area is lower than the values obtained in Algeria but higher than those obtained in Bagega, Abeokuta, Sri lanka and Zambia. For 232Th, the concentration obtained is lower than the values obtained in Sri lanka, Egypt, Algeria and Zambia. But higher than that obtained in Zamfara North, Bagega Nigeria and Abeokuta Nigeria.

Region	40K	226Ra	232Th	References
study area	260	54	35	This work (2019)
Zamfara North	269	23		Christopher et al. (2018)
Bagega Nigeria	371	18	17	Girigisu et al. (2013)
Abeokuta Nigeria	52	12	23	Gbadebo (2011)
Sri lanka	584	35	72	Hewamannyaet al. (2001)
Egypt	276	54	63	Uosif et al. (2011)
Algeria	675	65	51	Amraniet et al. (2001)
Zambia	412	32	82	Hayambuer et al. (1995)

Table 2: Comparison of the Mean Activity Concentration with Other Published Data

3.4. Radiological Indices

Table 4 and 5 present the results obtained for the hazards parameters. The annual gonadal dose equivalent obtained (390.6 μSv y$^{-1}$) was above the permissible limit of 300 μSv y$^{-1}$, the absorbed gamma dose rate 56 nGy h$^{-1}$ obtained in the study area is below the permissible limit of 59 nGy h$^{-1}$[11]. This implies that the gonadal values may pose some threat to the reproductive organs of the people in the study area. The mean radium equivalent activity found was 123.729 ± 32.166 Bq kg$^{-1}$ lower than 370 Bq kg$^{-1}$ recommended by [11]. Any radium equivalents activity (Ra$_{eq}$) concentration value
that exceeds 370 Bq kg⁻¹ may pose radiation hazards [14]. The radium equivalents activity (Ra eq) ranged from 71.825 to 185.26 Bq kg⁻¹. The annual effective dose rate ranged from 0.037 to 0.105 μSv⁻¹ with an average value of 0.069 ± 0.020 μSv⁻¹. The mean value of external and internal radiation hazard index was found to be 0.33 ± 0.09 and 0.98 ± 0.26, lower than the recommended value of 1 μSv⁻¹ [11]. The average value obtained for excess lifetime cancer risk was 0.34 higher than the world average value of 0.29 [11]. The higher values of ELCR may be attributed to the higher concentrations of radionuclide in the geological formations. Gamma representative index measured ranged from 0.16 to 1.33 with a mean value of 0.81±0.27 for the soil samples. This index must be lower than unity to keep the radiation hazard insignificant. However, a mean value obtained in this study is lower than the reference level of 1 [11].

Sample Code	Hₑₓ	Hᵣ	AEDE	Iᵣ	ELCR (10⁻³)
A1	0.41±0.20	0.56±0.23	0.09±0.06	1.06±0.31	0.32
A2	0.47±0.19	0.51±0.25	0.10±0.06	1.24±0.30	0.35
A3	0.44±0.18	0.58±0.24	0.06±0.06	0.16±0.28	0.21
B1	0.26±0.17	0.35±0.10	0.55±0.06	0.69±0.27	1.93
B2	0.24±0.16	0.33±0.11	0.05±0.06	0.64±0.25	0.18
B3	0.38±0.16	0.50±0.21	0.08±0.06	1.02±0.29	0.28
C1	0.36±0.18	0.47±0.21	0.06±0.06	0.74±0.28	0.28
C2	0.35±0.17	0.46±0.21	0.07±0.06	0.93±0.27	0.25
C3	0.29±0.18	0.41±0.22	0.06±0.06	0.74±0.29	0.21
G1	0.27±0.14	0.39±0.17	0.06±0.05	0.72±0.23	0.21
G2	0.19±0.15	0.27±0.17	0.04±0.05	0.52±0.23	0.14
G3	0.28±0.16	0.37±0.18	0.04±0.05	0.73±0.24	0.14
M1	0.21±0.16	0.29±0.18	0.04±0.05	0.54±0.25	0.18
M2	0.21±0.15	0.30±0.18	0.04±0.05	0.56±0.24	0.14
M3	0.24±0.16	0.44±0.23	0.05±0.06	0.62±0.26	0.18
R1	0.46±0.18	0.82±0.27	0.10±0.06	1.20±0.30	0.35
R2	0.45±0.20	0.77±0.28	0.09±0.06	1.19±0.31	0.32
R3	0.5±0.18	0.86±0.27	0.11±0.06	1.33±0.28	0.39
Range	0.19 to 0.5	0.27 to 0.86	0.04 to 0.11	0.16 to 1.33	0.14 to 0.39
Mean	0.33±0.09	0.98±0.26	0.07±0.02	0.81±0.27	0.34
World average	1	1	1	1	0.29 (10⁻³)

Table 3: Activity concentrations (in Bq kg⁻¹) in soil

Table 4: Radiological Hazards Indices
4. Conclusion

The results obtained show that the activity concentrations of 232Th, and 40K are within the recommended values of 45 Bq kg$^{-1}$ and 420 Bq kg$^{-1}$ [11] while the mean value of 226Ra obtained is higher than the safe limit of 32 Bq kg$^{-1}$. The estimated annual effective dose rates ranged from 0.04 to 0.1 μSv $^{-1}$ with a mean value of 0.07 ± 0.02 μSv $^{-1}$. The radium equivalent activity (Ra$_{eq}$) ranged from 71.83 to 185.0 Bq kg$^{-1}$, with a mean value of 123.73 ± 32.17 Bq kg$^{-1}$ which is lower than the accepted safety limit of 370 Bq kg$^{-1}$[11]. The calculated values of the external and internal hazard index for all soil samples studied varied from 0.19 to 0.5 and 0.27 to 0.86 respectively. The results show that the external and internal hazards indices are below the permissible limit of 1 mSv $^{-1}$ recommended by the International Commission on Radiological Protection (ICRP). Other parameters such as annual gonadal dose equivalent and excess lifetime cancer risk were also computed as 390.61 μSv $^{-1}$ and 0.34. The annual gonadal dose equivalent and excess lifetime cancer risk values obtained are higher than the recommended values of 300 μSv $^{-1}$ and 0.29 [11], the gonadal dose equivalent values may pose some threat to the reproductive organs of the people in the study area. The values of other radiation hazard parameters obtained for the current study are lower than the recommended values, and therefore confirms that it is safe to live in that area. It also shows that the soils from this area can be safely use for construction of houses and other civil engineering structures.

5. Acknowledgement

This work was carried out using hyper pure germanium detector and other radiation monitoring equipment available at the institute radiation detection and protection, University of Ibadan Nigeria. The authors wish to thank the Petroleum Development Trust Fund (PTDF) for funding this research.

6. References

i. Xinwei, L., (2004). Natural radioactivity in some building materials of Shaanxi, China. Journal of Radioanalytical and Nuclear Chemistry, 262: 775-777.

ii. Tzortzis M, Svorakis E and Tsetos H 2004 A Comprehensive Study of Natural Gamma Radioactivity Levels and Associated Dose Rates from Surface Soils in Cyprus. Radiation Protection Dosimetry, 109 (3) 217–224.

iii. Iqbal M, Tufail M and Mirza S M 2000 Measurement of Natural Radioactivity in Marble Found in Pakistan Using a NaI (TI) Gamma-Ray Spectrometer. Technical Note. of Environmental Radioactivity 51 (2) 255–265.

iv. Anagnostakis M J, Hinis E P, Simopoulos S E and Angelopoulos M G 1996 Natural Radioactivity Mapping of Greek Surface Soils Environmental International 22 (1) 3–8.

v. Kogan RM, Nazarov RM, Fridman ShD (1971) Gamma spectrometry of natural environments and formations. KeterPress, Jerusalem

vi. Saleh, M. A., Ramli, A. T., Alajerami, Y., Aliyu, A. S., and Bt Basri, N. A. (2013). Radiological study of Mersing District, Johor, Malaysia. Radiation Physics and Chemistry. 85, 107–117.

Table 5: Radiological hazards indices in the area

Sample ID	DR (nGy h$^{-1}$)	Ra$_{eq}$ (Bq kg$^{-1}$)	AGDE (µSv y$^{-1}$)
A1	69.18 ± 2.52	150.75 ± 3.73	476.38 ± 6.55
A2	80.56 ± 2.47	174.22 ± 3.65	558.40 ± 6.43
A3	51.81 ± 2.28	164.49 ± 3.39	514.84 ± 5.96
B1	44.51 ± 2.18	96.48 ± 3.24	260.69 ± 5.27
B2	41.48 ± 2.06	89.57 ± 3.05	288.90 ± 5.38
B3	65.89 ± 2.38	141.19 ± 3.52	460.44 ± 6.20
C1	61.40 ± 2.34	131.84 ± 3.46	428.59 ± 6.09
C2	59.56 ± 2.22	128.21 ± 3.29	414.56 ± 5.69
C3	48.57 ± 2.34	108.73 ± 3.48	330.62 ± 6.09
G1	46.43 ± 1.85	101.54 ± 2.77	321.93 ± 4.85
G2	32.91 ± 1.89	71.83 ± 2.80	227.28 ± 4.92
G3	29.97 ± 2.01	102.29 ± 2.99	326.95 ± 5.24
M	34.23 ± 2.01	76.55 ± 3.00	235.47 ± 5.25
M	35.76 ± 1.92	79.48 ± 2.86	245.20 ± 5.01
M	40.38 ± 2.11	89.88 ± 3.12	276.91 ± 5.49
R1	77.80 ± 2.41	169.16 ± 3.57	537.85 ± 6.15
R2	76.61 ± 2.53	165.88 ± 3.74	532.68 ± 6.59
R3	85.34 ± 2.39	185.26 ± 3.52	593.78 ± 6.22
Range	29.97 to 185.34	71.83 to 185.26	227.28 to 593.78
Mean	56.02 ± 16.11	123.73 ± 32.17	390.61 ± 5.74

World average: 59 370 300
ii. Roessler CE, Mohammed H, Richards R, Smith DL (1993) Radon source studies in north Florida. In: Proceedings of the 26th midyear topical meeting. Health Physics Society. pp 331–347, 24–28 January

viii. El-Aydarous A. (2007), Radioactivity levels and their corresponding external exposure of some soil samples from Taif Governorate, Saudi Arabia. Global Journal Environmental Resources, 1: 49–53.

ix. NCRP. (1993), Exposure of the population of the United States and Canada from natural background radiation. Report No. 94, National council on radiation protection and measurements, Bethesda, Maryland.

x. NGS, (2013). Kaduna national geo-science research and laboratories center, cartographic unit. Map production team.

xi. United Nations Scientific Committee of the effect of Atomic Radiation (UNSCEAR) 2000: Sources and Effects of Ionizing Radiation. Report on General assembly, United Nations, New York.

xii. Harb S, El-Kamel AH, El-Mageed AA, Abbady A, Wafaa R (2008) Concentration of U-238, U-235, Ra-226, Th-232 and K-40 for some granite samples in eastern desert of Egypt. In proceedings of the 3rd Environmental physics conference, pp. 19-23.