Dose-Dependent Effects of Endotoxin on Neurobehavioral Functions in Humans

Jan-Sebastian Grigoleit¹, Jennifer S. Kullmann¹,², Oliver T. Wolf³, Florian Hammes⁴, Alexander Wegner⁴, Stephanie Jablonowski¹, Harald Engler¹, Elke Gizewski³, Reiner Oberbeck⁴, Manfred Schedlowski¹*

¹ Institute of Medical Psychology and Behavioral Immunobiology, University of Duisburg-Essen, Essen, Germany, ² Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany, ³ Department of Cognitive Psychology, Ruhr-University Bochum, Bochum, Germany, ⁴ Department of Trauma Surgery, University Hospital Essen, Essen, Germany

Abstract

Clinical and experimental evidence document that inflammation and increased peripheral cytokine levels are associated with depression-like symptoms and neuropsychological disturbances in humans. However, it remains unclear whether and to what extent cognitive functions like memory and attention are affected by and related to the dose of the inflammatory stimulus. Thus, in a cross-over, double-blind, experimental approach, healthy male volunteers were administered with either placebo or bacterial lipopolysaccharide (LPS) at doses of 0.4 (n=18) or 0.8 ng/kg of body weight (n=16). Pro- and anti-inflammatory cytokines, norepinephrine and cortisol concentrations were analyzed before and 1, 1.75, 3, 4, 6, and 24 h after injection. In addition, changes in mood and anxiety levels were determined together with working memory (n-back task) and long-term memory performance (recall of emotional and neutral pictures of the International Affective Picture System). Endotoxin administration caused a profound transient physiological response with dose-related elevations in body temperature and heart rate, increases in plasma interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)–α and IL-1 receptor antagonist (IL-1ra), salivary and plasma cortisol, and plasma norepinephrine. These changes were accompanied by dose-related decreased mood and increased anxiety levels. LPS administration did not affect accuracy in working memory performance but improved reaction time in the high-dose LPS condition compared to the control condition. In contrast, long-term memory performance was impaired selectively for emotional stimuli after administration of the lower but not of the higher dose of LPS. These data suggest the existence of at least two counter-acting mechanisms, one promoting and one inhibiting cognitive performance during acute systemic inflammation.

Introduction

The release of pro-inflammatory cytokines during infection and inflammation can affect behavior, mood, and functioning of the central nervous system (CNS) [1,2,3]. Behavioral changes induced by immune activation include symptoms such as psychomotor slowing, social withdrawal, anhedonia, depressed mood, and disturbed sleep architecture, collectively termed “sickness behavior” [4,5,6]. In addition, there is growing experimental and clinical evidence implicating systemic inflammation to be involved in the pathophysiology of neuropsychiatric diseases such as depression and schizophrenia as well as age-related cognitive decline [7,8,9,10,11,12,13,14]. Animal and human studies suggest that pro-inflammatory cytokines such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)–α play a pivotal role in mediating sickness-related behavior and cognitive impairments by communicating peripheral inflammation to the brain [1,3,15,16,17]. Studies in experimental animals demonstrated that systemic immune activation by viral, bacterial, or parasitic infections result in impaired memory functioning [18,19,20,21,22,23]. Experimental approaches in humans, employing lipopolysaccharide (LPS)-induced immune activation to investigate the effects of a peripheral inflammatory response on learning and memory reported either increased [24], no [25,26,27] or decreased [28] cognitive performance after LPS administration. Reasons for these discrepancies might be the different quality and concentrations of LPS administered together with distinct time intervals of testing memory performance and the different memory processes analyzed [25].

Therefore, the current study analyzed memory performance before and after administration of two different dosages of LPS in healthy humans in a double blinded, cross-over, placebo-controlled design (Fig. 1). Subjects either received an injection of 0.4 ng/kg (n=18) or 0.8 ng/kg (n=16) LPS or placebo, respectively, and were tested for working memory and long-term memory performance. Furthermore, self reported mood, attention, and anxiety was assessed. Blood samples were drawn before and 1, 1.75, 3, 4, 6, and 24 hours after LPS or placebo administration and analyzed for plasma levels of pro- and anti-inflammatory cytokines as well as cortisol and norepinephrine concentrations.

Materials and Methods

Ethics Statement

The study was approved by the local ethics committee of the University of Duisburg-Essen and follows the rules stated in the
Declaration of Helsinki. Study participants were informed about the study design, and were only enrolled in the experiment after written informed consent had been obtained.

Subjects

Thirty-four male subjects participated in the study. They were randomly allocated to two different groups (see below). All subjects underwent an extensive physical and psychiatric screening. The physical examination included a complete blood cell count, liver enzymes, renal parameters, electrolytes, coagulation factors, and C-reactive protein (CRP). An interview was conducted to exclude the presence or history of any physical or psychiatric disorder. The groups did not differ in age, years of education or body weight, nor in any of the physical or psychological screening parameters, and there was no detectable influence of these parameters on any of the outcome measures. Subjects and investigators where blinded with respect to the study condition.

Experimental design

In this placebo-controlled, double-blind, crossover study, participants were randomly allocated to two different groups: the high-dose group ($n = 16$; mean age: 25.3 ± 3.3 years; range: 19–29 years; mean body mass index (BMI): 23.0 ± 2.5; range: 19.4–27.2) received a dose of 0.8 ng LPS per kg of body weight on one occasion and placebo (0.9% saline) on another occasion in balanced order; in the low-dose group ($n = 18$; mean age: 26.4 ± 3.2 years; range: 20–33 years; BMI: 24.6 ± 2.6; range: 20.3–30.5), subjects received 0.4 ng LPS per kg and placebo on two different occasions. Between the two experimental conditions was a rest period of 10 to 14 days. The experiments were conducted in a medically equipped room and were supervised by emergency physicians of the Department of Trauma Surgery. An intravenous cannula was inserted into the antecubital forearm vein for intermittent blood sampling and drug injection. Saline and LPS injections were always performed around noon. The LPS injections were always performed around noon. The experiments were conducted in a medically equipped room and were supervised by emergency physicians of the Department of Trauma Surgery. An intravenous cannula was inserted into the antecubital forearm vein for intermittent blood sampling and drug injection. Saline and LPS injections were always performed around noon.

Cytokine and hormone determinations

Plasma cytokine concentrations were quantified using multiplexed bead-based assays (Bio-Plex Cytokine Assays, Bio-Rad Laboratories GmbH, Munich, Germany). Samples were prepared according to the manufacturer’s instructions and were analyzed on a triple-laser FACSCanto II flow cytometer using FACSDiva software (BD Immunocytometry Systems, Heidelberg, Germany). Absolute cytokine levels were calculated based on the mean fluorescence intensity of cytokine standard dilutions with a 4 Parameter Logistics (4PL) curve model using GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA, USA). The detection limit of the assays was 60 pg/ml for IL-1α, 0.2 pg/ml for IL-6, 0.4 pg/ml for IL-10, and 3 pg/ml for TNF-α. Plasma levels of cortisol and norepinephrine and salivary levels of cortisol were determined using enzyme-linked immunosorbent assays (ELISA; Labor Diagnostika Nord, Nordhorn, Germany [cortisol] and IBL International, Hamburg, Germany [norepinephrine]) according to the test protocol of the manufacturer, and were analyzed on a Fluostar OPTIMA Microplate Reader (BMG Labtech, Offenbach, Germany). The detection limits were 50 pg/ml (norepinephrine) and 0.83 nmol/l (cortisol), respectively.

Mood and Anxiety Questionnaires

Subjects had to complete two standardized self-report questionnaires immediately before and 3 or 6 h after LPS or saline injection.

Figure 1. Experimental design. Volunteers arrived 1 h prior to the experiment. Thirty minutes before the injection, an intravenous cannula was inserted into the antecubital forearm vein for intermittent blood sampling and drug injection. Before and 1, 1.75, 3, 4, and 6 h after the injection blood samples (B) were collected and vital parameters were assessed. Before as well as 3 and 6 h after the injection the subjects completed mood and anxiety questionnaires (M). After the 1.75 h blood collection the n-back task was performed, and before the 3 h collection the acquisition for the long-term memory test took place. When showing no signs of inflammation or any other kind of illness, subjects were discharged and returned on the following day for follow-up examination and completing the long-term memory task. The whole procedure was repeated on another study day with a 10–14 days delay. Every participant received the higher or lower dose of LPS during one and saline during the other test session in a balanced, randomized manner.

doi:10.1371/journal.pone.0028330.g001

Endotoxin and Human Neurobehavioral Functions
injection: 1. The multidimensional mood questionnaire (Multi-
dimensionaler Befindlichkeitsfragebogen, MDBF), which is a well-
established and -validated scale in German language. The MDBF
provides sub-scales for positive vs. negative mood, alertness vs.
fatigue and calmness vs. uneasiness [29,30]. 2. The State Trait
Anxiety Inventory (STAI, state version), a widely used scale to
quantify anxiety in health research [31,32]. The STAI consists of
twenty items with four answer choices each.

Memory tests
Between the blood withdrawals at 1.75 and 3 h, the n-back task
(2-back version) for working memory performance and the first part
of the long-term memory task took place. The n-back task is a
common and well-established continuous performance test for
measurements of working memory performance [33,34]. After a
training block, which was not assessed, a sequence of 155 letters,
divided into 5 blocks of 31 letters was presented on a screen. Within
a block each letter was presented for 1 second directly followed by
the next. After each block there was a break of 30 seconds. The
subjects were told to press a button whenever the current letter
shown was the same as the last but one (Fig. S2). Overall the test
included 25 of those adequate stimuli, which were distributed
randomly over the entire sequence. The software (n-Back fmri) v0.93
by Frank Schulte used on a Sony Vaio laptop computer) allows
accessing the number of false and correct reactions as well as the
reaction time that is needed to press the button after the appearance
of an adequate stimulus. To evaluate the subjects’ working memory
performance, accuracy was calculated by subtracting the number of
reactions to adequate stimuli (false alarms) from the number of
correct reactions to the adequate stimuli.

In order to analyze long-term memory performance, subjects
were presented a randomized sequence of 72 pictures from the
International Affective Picture System (IAPS, see Fig. S1 for
examples). The images were presented back to back for three
seconds, respectively on a laptop computer screen. Whereas 50% of
pictures had neutral content and were reported to elicit medium
levels of valence and low levels of arousal, 50% of pictures
consisted of highly emotional pictures known to elicit high arousal
and low valence values [35]. 24 h after the administration of LPS
or placebo, respectively, participants were presented a second
sequence of 40 pictures containing 20 of those they were presented
the day before and 20 new ones of similar content, again with 50% of
emotional and 50% of neutral content, respectively. Subjects
were asked to indicate every recognized picture. For evaluation of
memory performance accuracy was calculated by subtracting the
number of new pictures remembered by mistake (false alarms)
from the number of correctly recognized stimuli (correct hits) for
every subject. Since all subjects participated in two experimental
days (receiving LPS or saline as a control condition) we employed
two counter-balanced, randomly applied sets of IAPS pictures.

Statistics
Statistical analyses were performed using SPSS 17 (SPSS Inc.,
Chicago, IL) and GraphPad Prism 5 (GraphPad Software, Inc.,
San Diego, CA). For the analyses of temperature, heart rate,
cytokines, hormones, and mood parameters differences between
experimental and control condition were analyzed using repeated
measures analysis of variance (ANOVA) with ‘treatment’ as
between-subjects factor (LPS/placebo) and ‘time’ as repeated
variables within-subject factor. In case of a significant time×
treatment interaction, Bonferroni post hoc tests were computed to
assess mean differences between the control and endotoxin
condition for specific time points. Absolute changes in body
temperature, heart rate, cytokine concentrations, hormone
concentrations, and mood following endotoxin administration
were calculated by subtracting the control values of each
individual from the corresponding values of the experimental
condition. To compare those changes between the low-dose and the
high-dose groups, repeated measures ANOVA followed by Bonferroni
post hoc test was used. Differences in the n-back task for
working memory were calculated using ANOVA with group as
between subjects and treatment as within subject factor followed
by Bonferroni post hoc tests. Differences in the long term memory
task were computed by ANOVA with group as between subject
factor and treatment and stimulus-quality (emotionality) as
between-subject factors, followed by Bonferroni corrected paired
and unpaired t-tests. In all statistical analyses p<0.05 was
considered significant.

Most of the data reported here were normally distributed
(Kolmogorov-Smirnov and the D’Agostino and Pearson omnibus
normality test). We observed non-normal distributions for TNF-α
levels (4–24 h, both groups), IL-6 levels (4 h, high-dose group), IL-
1ra levels (1.75 h, both groups), and saliva cortisol levels (high-dose
group at 4 and 24 h). Psychological variables showed non-normal
distributions for calmness (3 h and 6 h) and anxiety (3 h). In
contrast, all memory data were normally distributed. However, re-
calculation with log-transformed data to restore normal distribu-
tion confirmed the reported results.

Pearson correlation analyses were performed to analyze possible
associations between the neuropsychological outcome measures
and the immunological, physiological, and neuroendocrine
parameters. Changes in neuropsychological and mood variables
which were significantly affected by the endotoxin treatment were
correlated with changes in cytokines, neuroendocrine, and vital
parameters. The alpha level was adjusted according to the
respective number of comparisons (Bonferroni correction).

Results
Body temperature and heart rate
Both, low-dose and high-dose LPS treatment significantly increased
body temperature (Fig. 2A; low-dose: F = 13.18, p<0.001; high-dose:
F = 14.11, p<0.001) and heart rate (Fig. 2B; low-dose: F = 10.49,
p<0.001, high-dose: F = 9.12, p<0.001) without significant differ-
ences between LPS doses.

Cytokine levels
Endotoxin administration induced significant increases in plasma
concentrations of the pro-inflammatory cytokines IL-6
(low-dose: F= 31.11, p<0.001, high-dose: F = 17.74, p<0.001) and
TNF-α (low-dose: F = 12.05, p<0.001, high-dose: F = 21.26,
p<0.001) with most pronounced increases 1.75 h after LPS
injection (Fig. 3). Plasma TNF-α levels were significantly higher in
the high-dose compared to the low-dose group (F = 5.02, p<0.001;
Fig. 3B), whereas IL-6 levels did not significantly differ between
doses (Fig. 3A). The anti-inflammatory cytokine IL-10 was
significantly increased in both endotoxin groups (low-dose:
F= 25.47, p<0.001; high-dose: F = 12.90, p<0.001) with signifi-
cantly more pronounced elevations in the high-dose group 3 h post
injection (F = 5.02, p<0.001; Fig. 3C). The most pronounced
differences in cytokine levels between the two groups were
observed for IL-1 receptor antagonist (IL-1ra) (F = 13.39,
p<0.001, low-dose vs. high-dose: F = 33.45, p<0.001, high-dose vs.
control; F = 21.01, p<.001, low-dose vs. control; Fig. 3D).

Neuroendocrine measures
Activation of the innate immune response by endotoxin
increases the activity of HPA axis and sympathetic nervous
system. Thus, we analyzed plasma and saliva cortisol concentrations as well as plasma norepinephrine levels. The neuroendocrine response to LPS injection was reflected by marked increases in the levels of total cortisol in plasma (low-dose: $F_{6} = 19.44, p < 0.001$; high-dose: $F_{6} = 29.99, p < 0.001$; Fig. 4A) and free cortisol in the saliva (low-dose: $F_{6} = 24.80, p < 0.001$; high-dose: $F_{6} = 20.40, p < 0.001$; Fig. 4B) as well as plasma norepinephrine (low-dose: $F_{6} = 8.12, p < 0.001$; high-dose: $F_{6} = 5.17, p < 0.001$; Fig. 4C). The rise of free cortisol in saliva was significantly higher in the high-dose group than in the low-dose group ($F_{6} = 2.27, p < 0.05$).

Mood & Anxiety

The effects of endotoxin treatment on mood and anxiety were analyzed with two standardized questionnaires (MDBF, STA1) at baseline as well as 5 h and 6 h after LPS injection (Fig. 5). Self-reported positive mood (low-dose: $F_{6} = 6.21, p = 0.01$; high-dose: $F_{6} = 25.97, p < 0.001$), calmness (low-dose: $F_{6} = 6.42, p < 0.01$; high-dose: $F_{6} = 5.52, p < 0.01$), and alertness (low-dose: $F_{6} = 5.07, p < 0.01$; high-dose: $F_{6} = 7.09, p < 0.01$), were significantly decreased 3 h after endotoxin injection in both groups. The decrease in positive mood was significantly more pronounced ($-6.00 vs. -2.06 at 3 h$) in the high- compared to the low-dose group ($F_{6} = 7.22, p = 0.01$). State anxiety significantly increased after endotoxin administration in both groups (low-dose: $F_{6} = 4.13, p < 0.05$; high-dose: $F_{6} = 6.47, p < 0.01$).

Memory

Working memory was assessed 2 h after LPS injection with the n-back task. Whereas the accuracy, represented by the number of correct responses minus the number of 'false alarms' (i.e. a response to an inadequate stimulus), remained unaffected by endotoxin in both groups (Fig. 6A; $F_{6} = 0.20, p > 0.05$; low-dose group: 15.9 ± 5.4 vs. 15.2 ± 5.0), there was a significant group x treatment interaction for the mean reaction time (Fig. 6B; $F_{6} = 4.72, p < 0.05$), which was significantly reduced by 27.6 ms after endotoxin administration exclusively in the high-dose group (304.9 ± 71.5 ms) compared to the placebo condition (322.5 ± 59.3 ms; $t_{3.21}, p = 0.01$; low-dose group: 530.7 ± 58.2 vs. 532.6 ± 60.3 ms).

Long term memory performance for neutral and affective contents was analyzed with standardized stimuli of the International Affective Picture System (IAPS) (see methods section, examples given in Fig. S1). In general, subjects recognized emotional stimuli better compared to stimuli with neutral content indicated by a pronounced emotionality effect ($F_{6} = 26.26, p < 0.001$, emotionality x treatment x group ANOVA) (Fig. 7). In addition, we observed a significant treatment effect ($F_{6} = 7.36, p < 0.05$) due to a decreased memory performance for emotional (6.4 ± 2.4 vs. 7.8 ± 2.4) but not for neutral content (5.3 ± 2.4 vs. 5.6 ± 2.5) after endotoxin administration in the low-dose group ($t_{2.88}, p < 0.05$, Bonferroni corrected t-test). In contrast, a higher dose of LPS did not significantly affect memory performance neither for emotional (8.5 ± 1.8 vs. 8.5 ± 1.3) nor for neutral stimuli (5.9 ± 2.0 vs. 6.8 ± 1.7; $F_{6} = 1.29, p > 0.05$), although there was a trend towards decreased memory performance for neutral stimuli after high-dose LPS treatment ($t_{2.09}, p = 0.10$). Moreover, ANOVA did not reveal significant treatment x group, emotionality x group, or treatment x emotionality effects, however showed a significant treatment x emotionality x group interaction effect ($F_{6} = 6.14, p < 0.05$) indicating a specific effect depending on the quality of memory content and the employed dose of LPS.

Correlation analyses

In the high-dose group correlation analyses corrected for 8 comparisons revealed a negative association between changes in IL-6 levels and positive mood ($r = -0.654, p < 0.01$), calmness ($r = -0.654, p < 0.01$) as well as a positive correlation between IL-6 and state anxiety ($r = 0.762, p < 0.005$). A correlation between IL-6 and mood in the low-dose group, however, failed to reach the adjusted alpha level. In the low-dose group mood changes were negatively correlated with the changes in plasma cortisol ($r = -0.739, p < 0.005$) and saliva cortisol ($r = -0.652, p < 0.01$), which was also seen in the high-dose group but failed to reach statistical significance after alpha correction. Furthermore, changes in plasma cortisol were associated with changes in state anxiety within the low-dose group ($r = 0.715, p < 0.005$).

Discussion

We employed a human endotoxemia model in healthy subjects and analyzed the effects on circulating cytokines, neuroendocrine parameters as well as mood and memory performance by either administering lower (0.4 ng/kg) or higher (0.8 ng/kg) doses of LPS. We observed significant, dose-dependent increases in body temperature, heart rate, levels of pro- (IL-6, TNF-z) and anti-inflammatory (IL-10, IL-1ra) cytokines, cortisol, and norepinephrine. Significant, dose-related increases in negative mood and
anxiety confirmed that the transient inflammatory response was sensed and processed by the CNS. LPS administration did not affect accuracy in working memory, however induced a significant improvement in reaction time in the high-dose LPS condition. In contrast, long term-memory for emotional but not for neutral stimuli was significantly impaired by the administration of low-dose LPS, whereas in the high-dose LPS condition memory remained unaffected.

The alterations in cytokines and cortisol levels observed in this study resemble those reported in other studies employing comparable amounts (0.4 ng/kg) of intravenously administered LPS [36]. In addition, higher LPS concentration (0.8 ng/kg) further increased TNF-α, IL-10 and IL-1ra plasma concentrations, but not plasma levels of IL-6, cortisol, or norepinephrine. We also observed a pronounced and dose-dependent impact of LPS on self-reported mood with increased anxiety levels and impaired calmness and alertness. Studies in experimental animals together with clinical observations in humans suggest a cytokine-mediated modulation of memory functions as a consequence of acute peripheral inflammatory processes [3,37]. However, data in humans so far reported inconsistent results of experimental endotoxemia with a significant improvement [24] or no effect on working memory [25,27]. These conflicting results might be either due to the different experimentally induced grades of inflammation or the neuropsychological tools (Digit Span Forward, Backward Test by Wechsler) employed in these studies to assess working memory performance. These measures might not be sensitive enough to detect small changes induced by experimental manipulations in young, healthy subjects [38,39,40]. Thus, in the current study we employed a computerized n-back paradigm (2-back version), a well-evaluated sensitive tool to analyze working memory functions [34,41,42]. We did not find any effect on accuracy in the n-back test, reflected by the number of correct responses minus the number of false reactions, neither in the low- nor high-dose LPS condition.

Figure 3. Cytokine response to LPS administration. Absolute changes in plasma concentrations of pro- (IL-6, TNF-α) and anti-inflammatory (IL-10, IL-1ra) cytokines after administration of 0.4 (solid lines, n = 18) or 0.8 ng/kg E. coli endotoxin (dashed lines, n = 16). Data are presented as means ± SEM. Significant differences between experimental condition and respective saline control: *p < 0.05, **p < 0.01, ***p < 0.001; significant differences between changes in high- and low-dose condition: ###p < 0.01, ####p < 0.001 (Bonferroni post hoc test).

doi:10.1371/journal.pone.0028330.g003
mechanisms [44]. However, this effect appears to be rather short lived [45]. In humans, experimental or pharmacological stress studies have reported inconsistent effects with impairments as well as enhancements being reported [42, 46, 47]. Of interest for the current experiments is a recent functional magnetic resonance (fMRI) study reporting that several hours after cortisol intake DLPFC activity during an n-back task was enhanced with a similar trend being observed at the behavioral level. These authors suggest that slow genomic effects of cortisol enhance PFC functioning [48]. In line with this conclusion are recent findings in rodents showing that acute stress enhanced working memory via an enhancement of glutamatergic neurotransmission [49].

Interestingly, the profound decrease in self-reported alertness clearly contrasts the improvement in reaction time measured with the n-back test. Although the reasons for this discrepancy remain unclear, it underlines the basic independency of these two processes and might fortify the view on sickness behavior as an adaptive response rather than a simple impairment by the inflammatory challenge [4].

In parallel to working memory functions long term memory performance was analyzed employing a picture-recognition test consisting of neutral as well as emotional stimuli. Subjects were exposed to the stimuli 3 h after LPS injection (acquisition) and were asked to recall the stimuli 24 h later (Fig. 1). Under placebo conditions, we observed improved memory performance for emotionally arousing compared to neutral stimuli, confirming earlier observations [50]. This effect reflects the modulatory role of the amygdala on hippocampus based declarative and episodic memory [51].

Administration of low-dose LPS 3 h before acquisition impaired memory performance for emotional but not for neutral stimuli. Surprisingly, this effect was not observed after administration of the higher LPS dose, which did not significantly affect long term memory performance neither for neutral nor for emotional stimuli.

Animal data suggest detrimental effects of acute systemic inflammation on long term memory [3, 19, 21, 22, 23]. However, experimental data in humans are controversial, either reporting impaired [24, 28] or unaffected declarative memory performance [25, 26, 27] after LPS administration. Since data on dose dependent effects of LPS-induced inflammation on neural responses are completely lacking, one can only hypothesize about the underlying neurobiological mechanisms responsible for these differential effects.

Two classes of soluble factors are most often discussed to modulate cognitive functions during an inflammatory reaction: cytokines and stress hormones. Under physiological conditions cytokines have a beneficial role on learning and memory, e.g. by promoting long term potentiation (LTP), neural plasticity and neural excitability [3, 52, 53]. Administered in higher doses or during acute inflammation cytokines demonstrated detrimental effects on learning and memory [3, 54, 55]. A possible explanation for this phenomenon was given by Yirmiya and Goshen, who proposed a model of adaptive down-regulation of neural excitability to prevent potentially dangerous hyper-excitability and proneness to errors by the “price” of impairments of learning.
and memory [3]. Thus, the impaired memory performance following low-dose LPS administration might reflect this down-regulation of neural excitability. The abrogation of this impairment in the high-dose LPS group might either reflect a balanced state between cytokine induced increased neural excitability and the counter-acting regulatory mechanisms, or might be due to increased stress exposure: Behavioral and pharmacological studies in humans showed enhanced long-term memory consolidation for emotional stimuli after stress or glucocorticoid (GC) treatment directly before or after encoding, while impairing the consolidation of neutral material [56,57,58]. Thus, the absence of a memory impairment of emotional stimuli in the high-dose LPS group together with a trend towards impaired memory performance for neutral stimuli might be due to actions of the higher and more sustained cortisol response observed after high-dose LPS administration. In addition, greater effects on mood and anxiety than after low-dose stimulation, together with reduced reaction time in the working memory test also might indicate an elevated stress reaction and an “alarmed state” of the organism probably going along with increased attention.

However, the exact nature of possible compensatory mechanisms and in particular the question whether the compensatory effect on memory performance is paralleled by or due to increased attention need to be addressed in future studies.

The observation that in this study only memory performance for emotional stimuli was impaired by LPS administration together with the pronounced effects on mood and anxiety indicate that predominantly limbic structures like the amygdala are affected by an acute peripheral inflammatory response. This hypothesis is supported by recent work in rodents, which demonstrated enhanced neural activity in the amygdala after peripheral LPS-administration [59,60]. However, a recent fMRI study also employing endotoxin application in humans did not report changes of neural activations in the amygdala [61]. In this study, we focused on LPS-effects on the acquisition phase of the memory process with differential and dose-dependent effects on short and long term memory. However, the distinct effects of peripheral transient inflammatory responses on memory processes such as consolidation and retrieval are still unknown and might, as a target for future studies, help to further complete the puzzle of immune-to-brain communication.

Correlation analyses revealed strong associations between the increases in anxiety and negative mood and circulating IL-6 levels in the high-dose and concentrations of cortisol in the low-dose LPS
associations between circulating IL-6 levels and negative mood have been reported previously \[28,62\] and IL-6 frequently has been discussed as a potential modulator of mood during sickness behavior and even depression and other neuropsychological diseases \[2,3,9\]. HPA system activation with increased levels of cortisol and corticotropin releasing hormone have also been suggested to play a role in depressive symptoms and in mediating inflammatory effects on mood and anxiety \[6,28,37,63\]. Our results confirm earlier observations which suggested both circulating cytokines as well as cortisol to be involved in mediating the effects on emotions \[28\]. The data in the current study show an association between cortisol and mood parameters at a lower grade of inflammation in contrast to a more pronounced inflammatory effect where mood parameters are predominantly associated to IL-6 levels.

In summary, LPS administration in healthy male subjects induced a transient, dose-dependent inflammatory response characterized by increases in body temperature and heart-rate, plasma concentrations of pro- and anti-inflammatory cytokines, cortisol, and norepinephrine. In parallel, we observed dose-dependent increases in negative mood and anxiety. There was a significant improvement in reaction times during a working memory performance task after high-dose LPS stimulation, whereas accuracy in the same test remained unaffected under both conditions. The innate immune response resulted in impaired memory performance for emotionally arousing material within the low-dose LPS condition. This study demonstrates that sub-septic systemic inflammation in humans along with the release of pro- and anti-inflammatory cytokines does dose-dependently affect neurobehavioral functions in humans reflecting an adaptive response as a consequence of a refined immune-to-brain communication.

Supporting Information

Figure S1 Stimuli examples for long-term memory task. Emotional stimuli rated with high arousal and low valence score (A) and neutral stimuli rated with low arousal and medium valence score (B).

(TIF)

Figure S2 Illustration of the n-back task paradigm. After a training phase a consecutive sequence of 155 letters was presented on a computer screen with a presentation time of 1 second for each letter and a 30 seconds break after every 31 letters. The participants were instructed to press a button whenever the letter currently presented was identical to the penultimate. Stimuli were presented 25 times throughout the whole sequence in a randomized manner. Reaction time and the numbers of correct reactions (cr) and false alarms (fa) were assessed and accuracy (cr - fa) was calculated.

(TIF)

Acknowledgments

We would like to thank Christina Banner, Saima Dadger, Alexandra Kornowski, Eva Steiner, Anne Winkelhaus, Dr. Sven Benson, Dr. Philipp Kobbe, and Dr. Philipp Lichte for their technical assistance and their skilled and friendly help. Further we thank Bettina Loschner and Dr. Thomas Montag-Lessing from the Paul-Ehrlich-Institute in Langen,
Germany for drug safety testing and their technical advice. Finally we thank Dr. Christina Rosenberger, Armin DeGriff, and Frank Schulte for their technical help and for providing the n-back test software.

References

1. Besekevsky HO, del Rey A (1996) Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine Reviews 17: 64–102.
2. Deltenre N, Hannestad J (2010) A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev 34: 130–143.
3. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25: 181–213.
4. Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain, Behavior, and Immunity 15: 7–24.
5. Mullington J, Korth C, Hermann DM, Orth A, Galanos C, et al. (2000) Dose-dependent effects of endotoxin on human sleep. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 278: R947–R953.
6. Turnbull AV, Rivier C (1995) Regulation of the HPA axis by cytokines. Brain, Behavior, and Immunity 9: 253–275.
7. Alvarez LA, Franco A, Fernandez-Novoa L, Caballos R (1996) Blood levels of histamine, H1–beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. Mol Chem Neuropharmacol 29: 237–252.
8. Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56: 819–824.
9. Drevets WC, Knut JM, Bradesi B, Huizenga L, Beumer W, et al. (2010) The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Review of Neurotherapeutics 10: 59–76.
10. Engelhardt MJ, Gehrings MI, Meijer J, Kiliaan A, Ruitenberg A, et al. (2004) Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol 61: 660–672.
11. Krahbe MS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39: 687–699.
12. Meyer JM, McEvoy JP, Davis VG, Goff DC, Nasrallah HA, et al. (2009) Selective effects of peripheral lipopolysaccharide administration on contextual memory in C57BL/6 mice in the Morris water maze. Brain Res 856: 129–134.
13. Miller AH, Malenic V, Raison CL (2005) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological Psychiatry 63: 732–741.
14. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends in Immunology 27: 24–31.
15. Dantzer R, Kompan JP, Blute RM, Kelley KW (2000) Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 85: 60–65.
16. Dunn AJ (2006) Effects of cytokines and infections on brain neurotransmitter. Clin Neurosci Res 6: 52–68.
17. Trauce KL (2002) The inflammatory reflex. Nature 429: 833–839.
18. Cunningham CM, Campion S, Lannon K, Murray CL, Woods JF, et al. (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65: 304–312.
19. Giberini M, Newton C, Klein TW, Friedland H (1995) Legionella pneumophila-induced visual learning impairment reversed by anti-interleukin-1 beta. Proc Soc Exp Biol Med 210: 7–11.
20. Lee B, English JA, Paul IA (2000) LP-BM5 infection impairs spatial working memory in C57BL/6 mice in the Morris water maze. Brain Res 856: 129–134.
21. Pugh CR, Kumagawa K, Heathcote M, Watkins LR, Maier SF, et al. (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain, Behavior, and Immunity 12: 212–229.
22. Shaw KN, Commins S, O’Marra SM (2001) Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 124: 47–54.
23. Sparkman NL, Kohman RA, Garcia AK, Boehm GW (2005) Peripheral lipopolysaccharide induces active avoidance conditioning in C57BL/6J mice. Physiol Behav 85: 278–280.
24. Czech O, Reichenberg A, Perry C, Günzberg D, Pollmacher T, et al. (2003) Endotoxin-induced changes in human working and declarative memory associated with cleavage of plasma “readthrough” acetylcholinesterase. Journal of Molecular Neuroscience 21: 199–212.
25. Grigolits JS, Oberheek JR, Lichte P, Kobbe P, Wolf OT, et al. (2010) Lipopolysaccharide-induced experimental immune activation does not impair memory function in humans. Neurouroli Learn Mem 9: 861–867.
26. Krahbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK, et al. (2005) Low-dose endotoxemia and human neuropsychological functions. Brain, Behavior, and Immunity 19: 453–460.
27. van den Boogaard M, Ramakers BP, van Alfen N, van der Werf SP, Kick FW, et al. (2010) Endotoxemia-induced inflammation and the effect on the human brain. Curr Opin Immunol 22:R11.
28. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, et al. (2001) Cytokine-associated emotional and cognitive disturbances in humans. Archives of General Psychiatry 58: 445–452.
29. Pollock V, Choo DW, Reker D, Yolacik J (1979) Profile of Mood States: the factors and their physiological correlates. J Nerv Ment Dis 167: 612–614.
30. Steyer R, Schwenkmezger P, Notz P, Eid M (1997) Der Mehrdimensionale Befindlichkeitsfragebogen (MBSF). Göttingen: Hogrefe.
31. Krechell PF, Saubde RP (1996) What do anxiety scales measure? Acta Psychiatr Scand 93: 177–180.
32. Spielberger CD (1983) Manual for the State-Trait Anxiety Inventory (Form Y). Palo Alto: Consulting Psychologist Press.
33. Kirschner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychol 55: 352–358.
34. Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping 24: 46–59.
35. Lang RJ, Bradley MM, Cuthbert BN (1999) International affective picture system (IAPS): Technical manual and affective ratings. Gainesville: University of Florida, Center for Research in Psychophysiology.
36. Babadide M, Cross AS (2007) From therapy to experimental model: a hundred years of endotoxin administration to human subjects. Journal of Endotoxin Research 13: 251–279.
37. Kullmann JS, Grigoleit J-S, Schellhammer M (2011) Effects of an Acute Inflammation on Memory Performance. Psychoneuroendocrinology 36: 1303–1315.
38. Wechsler D (1981) Wechsler Adult Intelligence Scale-Revised. New York: Harcourt Brace Jovanovich.
39. Amsten AF (2009) Stress signaling pathways that impair prefrontal cortex function. Endocrine Reviews 13: 251–279.
40. Kullmann JS, Grigoleit J-S, Schellhammer M (2011) Effects of an Acute Inflammation on Memory Performance. Psychoneuroendocrinology 36: 1303–1315.
41. Arnsten AF (2009) Stress signalling pathways that impair prefrontal cortex function. Endocrine Reviews 13: 251–279.
42. Meyers CA (1999) Mood and cognitive disorders in cancer patients receiving endotoxin. J Cancer Educ 14: R11.
43. Wrote the paper: JSG MS. Performed the experiments: JSG JSK FH AW SJ. Analyzed the data: JSG JSK HE EG RO. Conceived and designed the experiments: JSG JSK OTW HE EG RO. Performed the experiments: JSG JSK FH AW SJ. Analyzed the data: JSG JSK HE EG RO. Wrote the paper: JSG MS.

Author Contributions

Conceived and designed the experiments: JSG JSK OTW HE EG RO. Performed the experiments: JSG JSK FH AW SJ. Analyzed the data: JSG. Contributed reagents/materials/analysis tools: OTW HE EG RO. Wrote the paper: JSG MS.

Endotoxin and Human Behavior Functions

December 2011 | Volume 6 | Issue 12 | e28330
55. Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition–the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50: 2041–2056.
56. Cahill L, Gorski L, Le K (2003) Enhanced human memory consolidation with post-learning stress: interaction with the degree of arousal at encoding. Learning and Memory 10: 270–274.
57. Kuhlmann S, Wolf OT (2006) Arousal and cortisol interact in modulating memory consolidation in healthy young men. Behav Neurosci 120: 217–223.
58. Payne JD, Jackson ED, Houchesit S, Ryan L, Jacobs WJ, et al. (2007) Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learning and Memory 14: 861–868.
59. Doenlen R, Krugel U, Wirth T, Riether C, Engler A, et al. (2011) Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B. Proceedings Biological sciences, The Royal Society 278: 1864–1872.
60. Engler H, Doenlen R, Engler A, Riether C, Prager G, et al. (2011) Acute amygdaloid response to systemic inflammation. Brain, Behavior and Immunity 25: 1384–1392.
61. Eisenberger NI, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2009) An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage 47: 881–890.
62. Wright CE, Strike PC, Brydon L, Steptoe A (2005) Acute inflammation and negative mood: mediation by cytokine activation. Brain, Behavior, and Immunity 19: 345–350.
63. Holsboer F (1999) The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. Journal of Psychiatric Research 33: 181–214.