Transcript Profiling Reveals Novel Marker Genes Involved in Fruiting Body Formation in *Tuber borchii*†

Silvia Gabella,1‡ Simona Abba,1‡ Sebastien Duplessis,2 Barbara Montanini,3§ Francis Martin,2 and Paola Bonfante1*

Dipartimento di Biologia Vegetale dell’Università di Torino and IPP-CNR-Sezione di Torino, Viale Mattioli 25, 10125 Turin, Italy; UMR INRA-Université Henri Poincaré 1136, Interactions Arbres/Micro-organismes, INRA, Nancy, 54280 Champenoux, France; and Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco delle Scienze, 43100 Parma, Italy

Received 23 March 2005/Accepted 6 July 2005

cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle *Tuber borchii*. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.

Irrespective of their nutritional strategies, most saprotrophic and mycorrhizal fungi produce conspicuous fruiting bodies where hyphae aggregate, produce pseudotissues with differentiated compartments, develop specialized structures, and eventually differentiate meiotic spores. Among them, the ectomycorrhizal truffles (*Tuber* spp.) produce hypogeous ascocarps which are highly appreciated and commercialized for their delicate organoleptic properties. Since truffle fruiting bodies cannot yet be obtained under controlled conditions, our knowledge of the morphogenetic events leading to ascomarp development and maturation (3), as well as their underlying molecular bases (1, 4, 8, 12), is quite limited. Elucidating the spatiotemporal control of gene expression during the successive stages of the truffle life cycle will improve our knowledge of processes that initiate and coordinate the formation of hypogeous truffles. Here, we describe changes in gene expression during the formation of the ascomata of *Tuber borchii*.

Unripe (CF05; 0 to 5% mature spores) and ripe (CF70; 70 to 100% mature spores) *T. borchii* fruiting bodies were collected under hazelnut trees from a natural truffle ground near Alba in Piedmont (Italy) during the 2000 to 2001 production seasons. RNA was extracted as described by Lacourt et al. (4). cDNA libraries were constructed using the PCR–based SMART cDNA library construction kit in λTriplEx2 (Clontech, Palo Alto, CA) (2). A cDNA array containing 2,041 elements was prepared from two CF05 ascomata, two CF70 ascomata, and vegetative mycelium (4). During fruiting body development, the vast majority of genes were not significantly regulated among the different stages. However, comparisons between fruiting bodies and mycelium indicated that 69 nonredundant transcripts (i.e., 3%) showed significant changes in expression (analysis of variance, *P* < 0.01) (Table 1). In addition, inferences were only made from genes showing a differential expression ratio above 2.5 (below 0.4) between any two stages.

Genes showing the strongest changes in expression coded for homologs of proteins involved in stress metabolism (Hsp12, sterigmatocystin biosynthesis monooxygenase), lipid metabolism (isopentenyl diphosphate isomerase, acyl-coenzyme A [CoA]-dehydrogenase, hydroxyethylglutaryl [HMG]-CoA synthase) and Hmp1, which encodes a cruciform DNA binding protein. Several transcripts (34) with a differential expression coded for hypothetical proteins. Eight transcripts (Table S1 in the supplemental material) showed an increased synthesis (≥2.5) in unripe (CF05) compared to ripe (CF70) fruiting bodies, while none was more expressed in CF70 than CF05. These genes are highly similar to fungal hypothetical proteins of unknown function from other ascomycete species, e.g., *Aspergillus nidulans*, *Gibberella zeae*, and *Magnaporthe grisea*. They likely belong to a set of genes of unknown function involved in sexual development in ascomycetous fungi.

Differential expression of four differentially expressed genes representing genes related to lipid metabolism (HMG-CoA synthase, acetyl-CoA acetyltransferase [ACAT], isopentenyl diphosphate isomerase [IPPI]), and stress response (Hsp12) was validated by RNA blot analysis (Fig. S1 in the supplemental material). ACAT was selected because it operates upstream of the HMG-CoA synthase and isopentenyl diphosphate isomerase in the isoprenoid synthesis pathway. Isoprenoids are involved in the synthesis of ergosterol, related isoprenoid compounds, and several terpenic volatile aromas, which are thought to be modified during truffle formation and plant interactions (6). The observed changes in expression rates were comparable to those detected in cDNA array analysis. In addition, HMG-CoA synthase and IPPI showed an increased expression in the last stage of maturation. Similarly, the analysis of the putative ACAT showed that it was also expressed more in the mature fruiting body, whereas cDNA array anal-

Accession no.	Clone no.	CF05/M expression ratio	CF70/M expression ratio	Similarity (species) BLASTX	BLASTX E-value
DN601500	M6G10	163.6	103.1	Predicted protein (Neurospora crassa)	3.0E-35
CN488330	P3D05	58.9	97.8	Hypothetical protein an6633.2 (Aspergillus nidulans)	2.0E-09
CN488328	P1H01	41.1	15.5	Hypothetical protein fg09972.1 (Gibberella zeae)	1.0E-23
CN488002	M1F02	39.4	60.0	Induced by heat shock entry into stationary phase depletion of glucose, and addition of lipids (fatty acids); HSP12p (Saccharomyces cerevisiae)	3.0E-09
CN488054	M9E05	38.0	29.2	Hmp1 (Usitago maydis)	6.0E-08
CN487953	M12B01	28.9	35.9	Ferredoxin-like iron-sulfur protein (Paracoccidioides brasiliensis)	6.0E-09
CN488043	M8B12	27.0	43.5	Hypothetical protein fg09972.1 (Gibberella zeae)	7.0E-23
CN488323	P12H03	24.7	7.2	Hypothetical protein fg05397.1 (Gibberella zeae)	7.0E-16
CN488039	M4H04	23.3	15.0	Predicted protein (Neurospora crassa)	9.0E-26
CN487923	M1I1E2	22.5	34.4	Predicted protein (Neurospora crassa)	9.0E-26
CN488178	SA1F07	19.3	20.4	Hypothetical protein fg09455.1 (Gibberella zeae)	6.0E-17
CN488171	SA1E03	18.9	7.1	Hypothetical protein fg09455.1 (Gibberella zeae)	6.0E-17
CN488042	M5B09	18.7	28.7	Predicted protein (Neurospora crassa)	9.0E-26
CN488158	SA1C03	18.1	11.5	Hypothetical protein fg09455.1 (Gibberella zeae)	6.0E-17
CN487854	M1I1E0	18.4	12.7	Predicted protein (Neurospora crassa)	9.0E-26
CN488363	SA2E04	10.0	2.9	Hypothetical protein mg08059.4 (Magnaporthe grisea)	3.0E-15
CN488383	SA2G07	9.8	8.0	TIP1-related; Tir3p (Saccharomyces cerevisiae)	2.0E-09
CN488160	SA1C02	8.7	6.2	Zinc-dependent alcohol dehydrogenase, putative (Aspergillus fumigatus)	1.0E-24
CN487903	M1I1D0	8.6	3.8	Hypothetical protein fg05397.1 (Gibberella zeae)	7.0E-16
CN488167	SA1D09	8.1	6.5	Cytochrome c oxidase polypeptide II (Neurospora crassa)	2.0E-25
CN488780	M1I1E1	7.8	9.7	Hypothetical protein fg05397.1 (Gibberella zeae)	7.0E-16
CN487930	M1I1F0	7.6	6.1	Hypothetical protein fg05397.1 (Gibberella zeae)	7.0E-16
CN487922	M1I1E1	7.6	5.3	Hypothetical protein fg05397.1 (Gibberella zeae)	7.0E-16
CN488311	P12D04	7.2	2.1	UPF0057 family protein; possible stress response protein	6.0E-14
CN488364	SA2E05	6.5	2.0	(Schizosaccharomyces pombe)	4.0E-11
CN488024	M3H08	6.1	5.1	Myosin heavy chain (Lethenteron japonicum)	2.0E-06
CN488353	SA2C08	5.8	4.2	Hypothetical protein an5614.2 (Aspergillus nidulans)	3.0E-36
CN488320	P12G07	5.2	3.3	Hypothetical protein an5614.2 (Aspergillus nidulans)	3.0E-36
CN488056	M9E10	5.2	2.4	Hypothetical protein an5614.2 (Aspergillus nidulans)	3.0E-36
CN488012	MB90	5.1	7.4	Probable acyl-CoA dehydrogenase (Glomus intraradices)	8.0E-09
CN487857	M9D09	4.9	5.6	Probable hydroxymethylglutaryl-CoA synthase (Neurospora crassa)	1.0E-15
CN488026	M3H11	4.2	2.5	Hypothetical protein fg05615.1 (Gibberella zeae)	1.0E-14
CN488027	M4A12	3.8	6.5	Hypothetical protein fg05615.1 (Gibberella zeae)	1.0E-14
CN488390	SA2H06	3.4	2.1	DNA topoisomerase III (Schizosaccharomyces pombe)	2.0E-39
CN488384	SA2G08	3.1	2.2	Possible mannosylphosphorylation protein Mnp4 protein (Aspergillus fumigatus)	2.0E-44
CN487921	M1I1E0	2.9	3.9	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN488390	SA2H06	2.9	1.9	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN488381	SA2G05	2.7	1.4	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN488394	SA2H11	2.7	4.1	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN487966	M12D01	2.7	2.5	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN488343	SA2B04	2.5	2.7	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN488048	M6H04	2.5	2.1	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN488049	M6H10	2.4	2.6	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
CN487944	M1I1H06	−2.5	−1.4	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
BM260217	VA72	−2.5	−1.4	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35
BM260253	VL16	−3.4	−2.3	Putative C2H2 zinc finger protein (Podpora anserina)	4.0E-35

Continued on following page
ysis showed no change in expression levels. This discrepancy can be explained by the fact that the Northern blot probe was highly specific to the analyzed ACAT, while the complex probe hybridized to the cDNA array may cross-hybridize with transcripts of other members of the ACAT gene family.

The observed increased expression of ACAT, HMG-CoA synthase, and IPP synthase provides a molecular support for the observed changes in the concentration of specific volatile organic compounds synthesized during *T. borchii* fruiting body development (11). These three enzymes are also involved in the synthesis of ergosterol, a major fungal membrane component (10). The expression pattern of the stress protein Hsp12 observed by cDNA array was fully confirmed by Northern blot analysis. The high Hsp12 expression levels detected during the reproductive stage of *T. borchii* and its absence during the mycelial stage suggest that this gene could be considered a potential marker for the maturation of truffle fruiting bodies, as suggested for *Pleurotus ostreatus* (5). Moreover, Stone et al. (9) demonstrated that Hsp12 was strongly induced upon glucose deprivation and further enhanced by the addition of fatty acids. These novel results, together with our previous work on differentially expressed genes in mycelium and fruiting body of *Tuber borchii* (4), confirmed that lipid metabolism plays a key role during the reproductive stage.

The global gene expression analyses presented here add new information to existing models of fruiting body development in edible fungi (5, 7). Expression profiling showed that a moderate developmental reprogramming takes place during the time course of fruiting body formation. A marked change in gene expression was observed during fruiting body formation at multiple levels: (i) a striking induction of transcripts coding for enzymes of the isoprenoid metabolism and (ii) an activation of stress proteins. Characterization of genes that are regulated during fruiting body development is an initial step towards understanding this complex developmental mechanism. Transcript profiles provide a strong point of reference and are highly valuable for systems that have not been extensively characterized at the molecular level, such as truffles. The current data set of activated genes contains several genes coding for unknown proteins, and functional analysis of these genes will provide insights into the regulation and processes involved in truffle formation.

Nucleotide sequence accession numbers

The nucleotide sequence data reported in this paper have been submitted to the DDBJ/EMBL/GenBank databases under accession numbers CN487736 to CN488394, DN601486 to DN601509, and DN604789.

We thank Simone Ottonello (Dipartimento di Biochimica e Biologia Molecolare, Università di Parma) for assistance in the Northern blot experiments; Christine Delaruelle (UMR IaM, INRA, Nancy) for expressed sequence tag sequencing; and Annegret Kohler for cDNA array analysis.

This work was supported by grants to P.B. from the National Research Council of Italy, from the Ministry of Education, University and Research (FIRB project “Plant/Microbe Interactions” and CEBIOVEM), as well as from the CRT of Cuneo (Italy) and the Compagnia di San Paolo (Turin). The DNA sequencing and functional genomics facilities at INRA-Nancy are funded by INRA, the Federative Research Institute No. 110, and the Region Lorraine.

REFERENCES

1. Balestrini, R., D. Mainieri, E. Swaghi, L. Garnero, S. Rollino, A. Viotti, S. Ottonello, and P. Bonfante. 2000. Differential expression of chitin synthase III and IV mRNAs in ascomata of *Tuber borchii* Vittad. Fungal Genet. Biol. 31:219–232.

2. Duplessis, S., P. E. Court, D. Tagu, and F. Martin. 2005. Transcript patterns associated with ectomycorrhiza development in *Eucalyptus globulus* L. and *Pisolithus microcarpus*. New Phytol. 165:599–611.

3. Hall I. R., W. Yun, and A. Amicucci. 2003. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 21:433–438.

4. Lacourt, L., S. Duplessis, S. Abbà, P. Bonfante, and F. Martina. 2002. Isolation and characterization of differentially expressed genes in the mycelium and fruit body of *Tuber borchii*. Appl. Environ. Microbiol. 68:5788–5788.

5. Lee, S. H., B. G. Kim, K. J. Kim, J. S. Lee, D. W. Yun, J. H. Hahn, G. H. Kim, K. H. Lee, D. S. Suh, S. T. Kwon, C. S. Lee, and Y. B. Yoo. 2002. Comparative analysis of sequences expressed during the liquid-cultured mycelia and fruit body stages of *Pleurotus ostreatus*. Fungal Genet. Biol. 35:115–134.

6. Menotta, M., A. M. Gioacchini, A. Amicucci, M. Buffalini, D. Sisti, and V. Stocchi. 2004. Headspace solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomycorrhiza synthesis system. Rapid Commun. Mass Spectrom. 18:206–210.

7. Ospina-Giraldo, M. D., P. D. Colloly, C. P. Romaine, and D. J. Royse. 2000. Classification of sequences expressed during the primordial and basidiose stages of the cultivated mushroom *Agaricus bisporus*. Fungal Genet. Biol. 29:81–94.

8. Pieraletti, R., M. Buffalini, L. Vallorani, C. Guidi, S. Zeppa, C. Sacconi, P. Pucci, A. Amoresano, A. Casbarra, and V. Stocchi. 2004. *Tuber borchii* fruit body: 2-dimensional profile and protein identification. Phytochemistry 65: 813–820.

9. Stone, R. L., V. Matarese, B. B. Magee, P. T. Magee, and DA Bernlohr. 1990. Cloning, sequencing and chromosomal assignment of a gene from *Saccharomyces cerevisiae* which is negatively regulated by glucose and positively by lipids. Gene 2:171–176.
10. Weete, J. D., and S. R. Gandhi. 1996. Biochemistry and molecular biology of fungal sterols, p. 421–438. In R. Brambl and G. Marzluf (ed.), The mycota III, biochemistry and molecular biology. Springer, Berlin, Germany.

11. Zeppa, S., A. M. Gioacchini, C. Guidi, M. Guescini, R. Pierleoni, A. Zambonelli, and V. Stocchi. 2004. Determination of specific volatile organic compounds synthesized during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 18:199–205.

12. Zeppa, S., C. Guidi, A. Zambonelli, L. Potenza, L. Vallorani, R. Pierleoni, C. Sacconi, and V. Stocchi. 2002. Identification of putative genes involved in the development of Tuber borchii fruiting body by mRNA differential display in agarose gel. Curr. Genet. 42:161–168.