IN PERSPECTIVE

Tumor-derived exosomes: Key players in non-small cell lung cancer metastasis and their implication for targeted therapy

Maryam Noor Rizwan1 | Yunxia Ma1 | Miljana Nenkov1 | Lai Jin2 | Desiree Charlotte Schröder1 | Martin Westermann3 | Nikolaus Gaßler1 | Yuan Chen1

1Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
2Department of Hematology, Zhejiang Provincial People’s Hospital, Hangzhou, China
3Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University, Jena, Germany

Correspondence
Yuan Chen, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany.
Email: yuan.chen@med.uni-jena.de

Abstract
Exosomes represent extracellular vesicles of endocytic origin ranging from 30 to 100 nm that are released by most of eukaryotic cells and can be found in body fluids. These vesicles in carrying DNA, RNA, microRNA (miRNA), Long non-coding RNA, proteins, and lipids serve as intercellular communicators. Due to their role in crosstalk between tumor cells and mesenchymal stroma cells, they are vital for tumor growth, progression, and anticancer drug resistance. Lung cancer is a global leading cause of cancer-related deaths with 5-year survival rates of about 7% in patients with distant metastasis. Although the implementation of targeted therapy has improved the clinical outcome of nonsmall cell lung cancer, drug resistance remains a major obstacle. Lung tumor-derived exosomes (TDEs) conveying molecular information from tumor cells to their neighbor cells or cells at distant sites of the body activate the tumor microenvironment (TME) and facilitate tumor metastasis. Exosomal miRNAs are also considered as noninvasive biomarkers for early diagnosis of lung cancer. This review summarizes the influence of lung TDEs on the TME and metastasis. Their involvement in targeted therapy resistance and potential clinical applications are discussed. Additionally, challenges encountered in the development of exosome-based therapeutic strategies are addressed.

KEYWORDS
exosome, lung cancer, metastasis, microRNA, targeted therapy, the tumor microenvironment

Abbreviations: TDEs, tumor-derived exosomes; TME, the tumor microenvironment; NSCLC, non-small cell lung cancer; SCLC, small cell lung carcinoma; EMT, epithelial-to-mesenchymal transition; EVs, extracellular vesicles; MVB, multivesicular body; ILVs, intraluminal vesicles; miRNA, microRNA; ESCRT, Cryo-TEM, cryo-transmission electron microscopy; endosomal sorting complex required for transport; ECM, extracellular matrix; CAFs, cancer-associated fibroblasts; HBECs, human bronchial epithelial cells; MMP, matrix metalloproteinase; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Molecular Carcinogenesis published by Wiley Periodicals LLC.
Exosomes are defined as extracellular vesicles (EVs) which play a vital role in cellular communication and disease. The lipid bilayered vesicles are secreted by virtually all types of mammalian cells and carry biomolecules. They were first reported in 1983 by Harding et al. who depicted the recycling of the transferrin receptor in reticulocytes via endocytosis. In the same year, another group delineated the kinetics and internalization of transferrin receptor in a human hematoma cell line. The term ‘exosomes’ was first coined by Johnstone et al. in 1987 when this group also described the isolation of vesicles from sheep reticulocytes by ultracentrifugation.

Studies in the past decade have shown a more multifaceted role of exosomes. The functions of exosome are dependent on the cell types that secrete them, but almost all exosomes have some common physical characteristics. Electron microscopy analysis reveals that they are cup-shaped spheres surrounded by a lipid bilayer and range between 30 and 100 nm in diameter. Exosomes are found in numerous body fluids including plasma, semen, urine, saliva, breast milk, amniotic fluid, ascites fluid, cerebrospinal fluid, and bile. As intercell communicators, exosome vesicles are a source of genetic material along with proteins and lipids. Exosomes carry DNA, messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNAs that can be taken up by recipient cells. The content of exosomes is specific to the cell of origin, which enables signals transmitted from parent cells to the neighboring ones without direct cell–cell contact.

Exosomes are released by a variety of eukaryotic cell types including cancer cells. Tumor-derived exosomes (TDEs) influence tumor invasion and metastasis. Consequently, exosomes have a pivotal role in cancer progression, and they can be used not only as biomarkers for cancer diagnosis and prognosis but also as drug delivery vehicles and reconfigurable therapeutic systems.

Lung cancer is one of the most frequently diagnosed cancers worldwide. Despite progress in our understanding of risk factors, pathogenesis, diagnostic markers, and therapeutic strategies for lung cancer, it remains the leading cause of cancer-related death in both males and females. The 5-year survival of lung cancer is among the worst of all tumor types, varying from 4% to 17%, depending on different tumor stages and regions. At the time of diagnosis, lung carcinomas are most often in an advanced/metastatic stage. A better understanding of the molecular mechanisms for lung cancer progression and identification of potential therapeutic targets for curtailing metastasis will help to achieve a survival benefit for patients with this fatal disease.

Histologically lung cancer is classified into two main groups: small cell lung carcinoma (SCLC), accounting for 15% of all lung cancers, and nonsmall cell lung cancer (NSCLC), containing 85% of all lung cancers. NSCLC are subclassified into adenocarcinoma (ADC), squamous cell carcinoma, and large cell lung carcinoma.

Tumor metastasis is a hallmark of cancer. Metastases are responsible for more than 90% of cancer-related deaths. The most frequently metastatic sites of lung cancer are bone 34.3%, lung 32.1%, brain 28.4%, adrenals 16.7%, and liver 13.4%. The metastatic cascade depicts the process in which malignant tumor cells reach distant organs from their primary site via hematogenous or/and lymphatic circulation. In these complicated processes, migration, invasion, angiogenesis, hypoxia, and epithelial-to-mesenchymal transition (EMT) are involved, which are tightly controlled by gene expression signatures, along with the interaction between tumor cells and the tumor microenvironment (TME). In addition, TDEs and exosomes derived from the components of the TME have been considered as key players in tumor metastasis network recently.

This review briefly summarizes the role of TDEs in lung cancer progression and metastasis, related to the activation of the TME. Also, the involvement of TDEs in NSCLC targeted therapy resistance is addressed, and the potential application of TDEs in lung cancer treatment is discussed.
proteins ALIX, clathrin, and TSG101. In addition, an ESCRT-independent pathway exists which mostly relies on tetraspanins. In this respect, absence of CD9 can cause defective exosome secretion from bone marrow dendritic cells. In another study, CD63 was shown to be directly involved in the formation of lysosome related organelles.

Intracellular vesicle trafficking is primarily regulated by Rab GTPases which are associated with intracellular membranes. Using an RNA interference screen, Ostrowski et al. identified several Rab GTPases which promote exosome secretion including Rab2b, Rab5a, Rab9a, Rab27a, and Rab27b. Most of these Rab proteins have been previously associated with endocytic functions, consistent with the postulated endosomal origin of exosomes.

After release, exosomes then bind to recipient cells and get internalized. In binding to surface receptors, they can trigger intercellular signaling. The internalization of exosomes can be conducted by clathrin-mediated endocytosis and macropinocytosis or clathrin-independent pinocytosis. Alternatively, exosomes can also be taken up by caveolae formation and lipid rafts. Visualizing of the cellular uptake of exosomes by live-cell microscopy revealed that exosome vesicles can be directly endocytosed by cells and their contents internalized.

3.1 Lung TDEs influence the TME

The functional role of exosomes released by most mammalian cells is to allow crosstalk between the cells and their microenvironment. Exosomes carry many biological active molecules and can transfer them from cell to cell to establish intercellular communication. Cancer cells, like other cells, also secrete exosomes, called tumor-derived exosomes (TDEs). TDEs are widely studied to understand the immune activities surrounding a tumor and the interaction between tumor cells and their microenvironment. Recently TDEs have gained much attention. Research on TDEs can help to gain insights into tumor metastasis, progression, and antitumor immune responses. Lung cancer is the most frequently diagnosed form of cancer worldwide causing the greatest number of deaths up to date. It turned out that TDEs are potential diagnostic and prognostic biomarkers of lung cancer, and they can be applied to comprehend the mechanisms responsible for antitumor therapy resistance.

3.2 Tumor-Derived Exosomes

TDEs can induce immune suppression and change the TME to favor tumor progression. Studies have shown that lung TDEs can suppress maturation of immune cells, impair NK cell activation, and induce myeloid-derived suppressor cells. Lung TDEs can be taken up by macrophages and facilitate tumor progression and immune suppression. TDEs can release transforming growth factor beta (TGF-β) to enhance regulatory T cell proliferation and induce effector T cell apoptosis by interacting with Fas/Fasl. Lung TDEs may also regulate tumor cell migration via TGF-β and interleukin (IL)10. Drug-induced COX-2 overexpression could be transferred from lung cancer cells to neighboring cells via exosomes, which resulted in TDE-induced upregulation of PGE2 and VEGF in TDE-binding cells, and induction of inflammatory reactions.

CAFs also secrete exosomes that can alter cellular metabolism. These exosomes can inhibit mitochondrial oxidative phosphorylation and shifting the cancer cell metabolism to glycolysis and glutamine-dependent reductive carboxylation. Moreover, exosomes can carry and supply amino acids, lipids, and tricarboxylic acid cycle intermediates to cancer cells for metabolism.
NSCLC cells inhibit apoptosis and enhance cell proliferation by delivering alpha smooth muscle actin in normal lung fibroblasts and NSCLC cells.61

Activation of the microenvironment is closely associated with EMT. Exosomes derived from highly metastatic lung cancer can induce vimentin expression and EMT in human bronchial epithelial cells (HBECS) and in addition, these TDEs enhance cell migration, proliferation, invasion, and metastasis.62 ZEB1, a master EMT transcription factor, can induce a mesenchymal phenotype in normal cells. It was observed that exosomes derived from transformed mesenchymal HBECS increased ZEB1 expression in parental HBECs, thereby stimulating a mesenchymal phenotype and rendering the HBECs chemoresistant.63 A study by Wu et al.64 showed that TGF-β-mediated exosomal Inc-MMP2-2 promotes lung cancer cell migration and invasion through upregulation of matrix metalloproteinase (MMP2) which is involved in degradation of the extracellular matrix. Exosomes from irradiated lung cancer cells can increase the expression of glycolytic enzymes and glycolytic activity in recipient cells, which in turn controls the motility of these cells via signaling proteins ALDOA and ALDH3A1.65

Accumulating evidence indicates that lung cancers produce more exosomes under hypoxic conditions compared to normoxic ones.66,67 Hypoxic lung cancer-secreted exosomal miRNAs influence the TME and promote tumor metastasis. Hypoxic lung-cancer-derived exosomal miR-103a increases the oncogenic effects of macrophages by enhancing M2 polarization and targeting the tumor suppressor gene PTEN.68 Hypoxic lung cancer-derived exosomal miR-23a inhibits the tight junction protein ZO-1 and induces accumulation of HIF1α in endothelial cells, thus increasing vascular permeability and facilitating tumor cell spread.69 Hypoxic lung tumor-derived exosomal miR-150 decreases anticancer activity of NK cell by targeting CD226,70 a member of the immunoglobulin superfamily. Collectively, these data suggest that lung TDEs, interacting with the TME, have a tremendous impact on tumor progression and development (Figure 2).

3.2 | Tumor-derived exosomal miRNAs in lung cancer metastasis

miRNAs are small noncoding RNAs with length between 21 and 24 nucleotides that have a key role as regulators of gene expression at posttranscriptional level.71 Exosome-derived miRNAs (exosomal miRNAs) are associated with many pathophysiological processes in lung cancer like EMT, proliferation, migration, invasion, and angiogenesis, which ultimately lead to tumor progression and metastasis.72

As already discussed, crosstalk between tumor cells and the TME plays a critical role in tumor progression. A study by Fang et al.73 showed that liver cancer derived exosomal miR-1247-3p activated CAFs to facilitate formation of a premetastatic niche in the lung.72 It was found that exosomal miR-1247-3p directly targeted B4GALT3, resulting in activation of the β1-integrin-nuclear factor kappa B pathway in CAFs.73 Lung ADC-derived exosomal miR-21 was involved in bone metastasis through facilitating osteoclastogenesis via targeting Pdcd4, a known regulator of osteoclastogenesis.74 miR-192 was identified as a repressor of tumor metastasis by comparative transcriptomic profiling using an in vivo murine model of bone metastasis.75 Treatment of NSCLC cell line A549 with miR-192-enriched exosome-like vesicles abrogates angiogenesis by inhibition of IL-8, ICAM, and CXCL1 in vitro and reduces the metastatic burden and tumor colonization in the bone in vivo.75 NSCLC-derived exosomal miR-619-5p promotes metastasis through modulation of angiogenesis and inhibition of the regulator of calcineurin 1 gene

![Figure 2](wileyonlinelibrary.com)
a tumor suppressor in various cancer cells. Exosomal miR-494 and miR-542-3p derived from metastatic rat ADC BSp73ASML modulate draining lymph nodes and lung tissue to support tumor spread via targeting cadherin-17 and upregulation of MMP2, MMP3, and MMP14. Recently accumulating research data have implied that exosomal miRNAs influence NSCLC progression and metastasis through interacting with the Wnt/β-catenin signaling pathway. Liu et al. observed that the plasma exosomal miR-433 level was lower in NSCLC patients with chemoresistance compared to patients with chemosensitive NSCLC, which was negatively associated with distant metastasis. Furthermore, it shown that miR-433 inhibited NSCLC progression via incremental infiltration of CD4 and CD8 cells and inactivation of the Wnt/β-catenin signaling pathway. Exosomal miR-1260b derived from NSCLC promotes tumor metastasis via targeting homeodomain-interacting protein kinase-2, and previously, this miR-1260b was found to be able to promote tumor cell invasion in lung ADC through activation of Wnt/β-catenin signaling pathway. Analysis of the association between exosomal microRNA clusters and bone metastasis from NSCLC revealed that miR-574-5p, a suppressor of Wnt/β-catenin pathway, was downregulated in NSCLC patients with bone metastasis. Evidence supporting the notion that TDEs facilitate metastasis in the context of lung cancer is still coming. For example, miR-499a-5p promotes lung ADC cell proliferation and EMT and, therefore, facilitates tumor cell metastasis via mTOR signaling. Exosomal miR-106b acts as a novel biomarker for lung cancer and promotes cancer metastasis through inhibition of the tumor suppressor gene PTEN. Chen et al. found that exosomal mir-3180-3p inhibits proliferation and metastasis of non-small cell lung cancer by downregulating FOXP4. Breast cancer-derived exosome transfected with miR-126.
migration through interrupting the PTEN/PI3K/AKT pathway and suppress lung tumour metastasis in vivo. Exosomal miRNAs from hypoxic bone marrow-derived mesenchymal stem/stromal cells enhance lung cancer metastasis via STAT3-induced EMT.86

3.3 The role of tumor-derived exosomal proteins in lung cancer metastasis

It is widely believed that TDE proteins carrying oncogenic proteins are involved in lung cancer progression and metastasis. Taverna et al.87 observed that NSCLC-derived exosomes containing amphiregulin activated the EGFR pathway in preosteoclasts that in turn fostered bone metastasis by upregulation of RANKL. Another study showed that exosomes derived from the highly metastatic lung cancer cell line 95D promoted metastasis in the lung cancer cell line A549, the lung fibroblast cell line MRC-5, and the poorly metastatic cell line 95C through activation of the HGF/c-Met pathway. Additionally, quantitative proteomics analysis revealed that 268 exosomal proteins differentially expressed in 95D cells might contribute to the enhanced metastatic behavior.88 Wnt proteins have been identified as exosomal cargoes, contributing to tumorigenesis and metastasis. Golgi phosphoprotein 3 was found to be interacted with cytoskeleton-associated protein 4, which enhanced the secretion of exosomal WNT3A and promoted NSCLC cell metastasis.89 Tumor metastasis is closely associated with EMT. The main features of EMT related to tumor invasiveness and metastasis are the loss of epithelial cell properties and gain of mesenchymal phenotype.90 A study by Kim et al.91 reported that the exosomal β-catenin protein was upregulated in A549, stimulated by the EMT inducer TGF-β, and autologous treatment of exosomes led to a significantly increased TCF/LETS transcriptional activity in A549 cells, indicating that exosomes might induce phenotypic switches via autocrine signaling. In addition, exosomes derived from highly metastatic lung cancer cells and advanced stage patient serum induced a mesenchymal phenotype alteration and increased expression of the mesenchymal marker protein vimentin in normal HBECs.62

Exosomes from nonmalignant cells also affect lung metastasis. For example, exosomes derived from adipocytes increase MMP activity by transferring MMP3 to lung cancer cells, thereby promoting lung cancer metastasis.92 Recently, it was found that exosomal PD-L1 could promote tumor growth through immune escape in NSCLC.93 The main findings of tumor-derived exosomal proteins in lung cancer metastasis are summarized in Table 2.

The potential role of tumor-derived exosomal proteins in diagnosis of metastatic lung cancer was revealed by several studies.94,95 The concentration of exosomes isolated from metastatic NSCLC was found to be significantly higher in comparison with those from healthy individuals, and additionally, the exosomal levels of alpha-2-HS-glycoprotein and ECM1 increased significantly in the metastatic NSCLC patients.95 In a study by Wang et al.,96 tandem mass tags combined with multidimensional liquid chromatography and mass spectrometry analysis were applied for screening the proteomic profiles of serum samples from metastatic, non-metastatic NSCLC patients, and healthy individuals. It turned out that the lipopolysaccharide-binding proteins were highly expressed in serum exosome from metastatic patients. These data suggest that tumor-derived exosomal proteins might be predictive biomarker for NSCLC metastasis.

3.4 Exosomes in lung cancer molecular diagnosis: current developments

Exosomes are found stable in most body fluids and their contents share common features to the parental cells. These features make them a great tool for liquid biopsy to detect various diseases including cancer.97 In contrast to tissue biopsy requiring surgery, liquid biopsy provides a noninvasive approach.98 Decades of scientific research have led to the identification of predictive

Exo-protein	Origin of exosomes	Receptant cell	Target/mechanism	Function	Ref
amphiregulin	plasma of NSCLC patients	primary osteoclasts	EGFR	triggering osteolytic bone metastasis	87
268 differentially expressed	NSCLC cells 95D	A549, MRC-5	HGF/c-Met	promoting metastasis	88
exosomal proteins					
exosomal-WNT3A	GOLPH3 overexpressing	A549 and H460	Wnt/β-catenin	promoting metastasis	89
proteins involved in EMT	TGF-β1 treated A549 cells	A549, MRC-5	β-catenin	promoting metastasis via EMT	91
proteins involved in EMT	serum from NSCLC patients	HBEC	EMT	enhancing migration and invasion	61
MMP3	3T3-L1 adipocyte	3LL NSCLC cells	MMP9	promoting lung cancer metastasis	92
PD-L1	NSCLC cells H460, H1975	T cell	immune escape	promoting tumor growth	93

Abbreviations: EMT, epithelial-to-mesenchymal transition; HBEC, human bronchial epithelial cells; MRC-5, lung fibroblast cells; NSCLC, nonsmall cell lung cancer; TGF, transforming growth factor.
molecular markers including EGFR-activating mutations, EML4-ALK rearrangements, and PD-L1 expression for targeted therapy with EGFR-tyrosine kinase inhibitors (EGFR-TKIs), ALK inhibitors, and immune therapy with PD-L1 inhibitors, respectively, in patients with NSCLC. However, in some cases, no adequate tumor tissues are available for molecular analysis. Since TDEs containing biological information from the parental cells are found in almost all body fluids and are more representative than cell-free DNA, they can be applied as liquid biopsy in clinical settings, and they may also contribute to novel biomarker discovery in drug resistance. Indeed, exosome-based detection of EGFR-activating and resistance mutations from plasma of NSCLC patients has been successfully performed.97,100

3.5 TDEs in NSCLC-targeted therapy resistance

Molecular mechanism analyses revealed targetable driver mutations including EGFR, ALK, c-met, BRAF, and reactive oxygen species in metastatic NSCLC.101 These molecular features provide the basis for personalized targeted therapy and lead to development of FDA-approved EGFR-TKIs, c-met-TKIs, BRAF-TKIs, and TRK-TKIs for treatment of patients with metastatic NSCLC. However, drug resistance remains an obstacle and is a main limitation for targeted therapy. Despite the initially great response to therapy, most of the NSCLC patients ultimately develop drug resistance within 9–12 months.102 Therefore, better understanding of the molecular mechanisms for drug resistance and identification of predictive biomarkers for targeted therapy are essential to improve the clinical outcome of NSCLC.

A growing body of evidence demonstrates that TDEs are involved in drug resistance to EGFR-TKIs via transfer of active cargoes, particularly exosomal miRNAs. Jing et al.103 reported that exosomes released by EGFR-TKI-resistant H827R cells decreased the sensitivity of the NSCLC HCC827 cells to gefitinib. Moreover, miR-21 inhibition abrogated exosome-mediated drug resistance in HCC827 cells,104 consistent with the previously reported role of miR-21 in EGFR-TKI-resistant NSCLC cells.103 Treatment of the EGFR-TKI gefitinib-sensitive cell line PC-9 with exosomes from a gefitinib-resistant cell line PC-9/ZD led to an increased proliferation of the PC-9 cells, and a microRNA array analysis showed that exosomal miRNAs including miR-564, miR-658, miR-3652, miR-3126-5p, and miR-6810-5p were significantly upregulated in PC-9/ZD compared to PC-9.105 Liu et al.106 observed that exosomes derived from the NSCLC cell line H1975 containing a secondary T790M mutation of EGFR could induce drug resistance in the EGFR-TKI-sensitive PC-9 cells in vitro and in vivo through activating the PI3K/AKT signaling pathway, and this process was accompanied by an enhanced expression of exosomal miR-3648 and miR-522-3p. Similarly, miR-214 was found to be upregulated in gefitinib-resistant PC-9GR cells compared to gefitinib-sensitive PC-9 cells, and inhibition of exosomal miR-214 with antagonim was able to reverse gefitinib resistance conferred by PC-9GR-derived exosomes.107 Exosomes derived from gefitinib-treated PC-9 cells decreased the antitumor effects of cisplatin by induction of autophagy and reduction of apoptosis. This observation might partially explain the reason why combination of EGFR-TKIs with chemotherapy agents failed to improve clinical outcome in metastatic NSCLC patients, as revealed by several clinical trials.108 Besides exosomal miRNAs, exosomal...

Abbreviations
- miR, microRNA
- NSCLC, nonsmall cell lung cancer
- Ref, reference
- TKI, tyrosine kinase inhibitor

Table 3: Tumor-derived exosomal miRNAs (Exo-miRNAs) in NSCLC TKI targeted therapy resistance

Exo-miRNA	NSCLC cells	Therapy	Role of Exo-miRNAs in therapy resistance	Ref
miR-21	HCC827, HCC827R	EGFR-TKI	upregulation of exo-miR-21 is related to gefitinib resistance	103
miR-564	PC-9 and PC-9/ZD	EGFR-TKI	PC-9 cells transfected with miR-564 or miR-658	105
miR-658	showed gefitinib resistant phenotypes			
miR-3652	PC-9 and PC-9/ZD	EGFR-TKI	these miRNAs were upregulated	105
miR-3126-5p	PC-9 and PC-9/ZD		in gefitinib resistant PC-9/ZD cells	
miR-3682-3p	PC-9 and PC-9/ZD			
miR-6810-5p	PC-9 and PC-9/ZD			
miR-3648	PC cells treated with	EGFR-TKI	upregulation of Exo-miR-3648 or Exo-miR-522-3p	106
miR-522-3p	H1975-derived exosomes		is linked to gefitinib resistance	
miR-214	Exosomal transfer of miR-214		mediates gefitinib resistance	107
miR-21-5p	ALK-Translocated cells FA34	ALK-TKI	miR-21-5p and miR-486-3p levels were	110
miR-486-3p	and FA121		significantly increased in crizotinib resistant subclones	
mRNAs also contribute to drug resistance. As exemplified by the study of Yu et al.,109 upregulation of the oncogene MET was found in exosomes released by EGFR-TKI ictitinib-resistant NSCLC cells and exosomes isolated from metastatic NSCLC patients.

TDEs also participate in ALK-TKI resistance. A study by Kwok et al.110 showed that exosomes from an ALK-TKI-resistant NSCLC subclone could induce drug resistance in the originally sensitive subclone, and miRNAs including miR-21-5p and miR-486-3p, as well as lncRNAs such as MEG3 and XIST were found to be differentially expressed in the exosomes secreted by the resistant subclones. The role of TDEs in NSCLC targeted therapy resistance is summarized in Table 3.

4 | THE POTENTIAL APPLICATION OF TDES IN THE PERSONALIZED THERAPY OF NSCLC

As mentioned above, an increasing number of studies revealed that TDEs participate in progression, metastasis, and drug resistance of NSCLC, which implies potential application in targeted therapy of NSCLC using exosomes.

Exosomes have characteristics that make them suitable for drug delivery. Recombinant proteins and siRNA can degrade before reaching the target cells and can also elicit immune responses, while EVs can overcome this. Drugs delivered by exosomes can be protected from biodegradation, since exosomes at the nanoscale contain lipid bilayer membranes.111 Additionally, exosomes carrying cargoes like RNA, DNA, and miRNA are well-tolerated, have low immunogenicity and a longer circulating half-life in human body, and can cross the biological barrier, for example, the blood-brain barrier.72,112,113 Exosomes can be engineered to deliver anticancer drugs by different approaches. Electroporation/lipofection can be applied to transfer molecules and proteins of interest into cells secreting exosomes.114 Loading of anticancer drugs can also be achieved by simple incubation with exosomes. Aqil et al. observed that celastrol, a plant-derived triterpenoid, loaded into exosomes enhanced its anticancer effects with reduced dose-related toxicity.115 It was found that exosomes carrying doxorubicin exhibited potent anticancer activity in the NSCLC cell lines H1299 and A549.116 Treatment of the lung cancer cell line A549 with the anticancer drug taxol delivered by mesenchymal stem cell-derived exosomes resulted in a significantly reduced proliferation in vitro and organ metastasis in vivo.117 Besides, studies demonstrated that chemotherapeutics including anthocyanidins and paclitaxel encapsulated in exosomes were able to inhibit lung cancer metastasis in nude mice.118,119

Since TDEs are closely associated with tumor progression and metastasis, they may be potential targets for anticancer therapy. Suppression of exosome release can be achieved by blood purification, changing the pH values of the tumor environment, and application of drugs.120 Compounds targeting exosomal proteins and different stages of the exosome biogenesis process can serve as potential exosome inhibitors.121 For example, GW4869, the first sphingomyelinase inhibitor, has been used to inhibit the production of exosomes. Inhibition of exosome secretion by GW4869 reversed the antagonistic effects of gefitinib and cisplatin in NSCLC cells when TKIs and chemotherapeutic agents are co-administered, implying a feasible and promising strategy for NSCLC treatment.122 Additionally, recent studies showed the therapeutic efficiency of anti-CD9 and anti-CD63 monoclonal antibodies (mAbs), in gastric cancer and breast cancer.122,123 Treatment with these two antibodies significantly decreased metastasis to the lungs in mice.123

The significant role of exosomal cargo including miRNA and proteins in regulation of NSCLC metastasis and induction of drug resistance also provides targets for potential therapeutic intervention. A study by Li et al.103 depicted that miR-21 was overexpressed in the EGFR-TKI-resistant cell line PC9R, and inhibition of miR-21 induced tumor cell apoptosis in vitro and suppressed tumor growth in vivo. Downregulation of miR-let-7e was found in serum-derived exosomes from NSCLC patients, and miR-let-7e overexpression in serum-derived exosomes inhibited metastasis of NSCLC nude mice.124 These findings imply a potential application of the exosomal miRNAs. Collectively, the potential application of TDEs in treatment of NSCLC can be considered in three aspects: (1) loading of anticancer drugs, (2) suppressing TDEs release, (3) targeting exosomal miRNA and proteins.

5 | MAJOR CHALLENGES AND ASPECTS

Exosomes are the natural carriers of biomolecules which make them ideal for therapy of complex diseases including lung cancer. Exosomes have emerged as key players in nanomedicine, but certain challenges still remain.

The first step in any study regarding exosomes is the isolation procedure which is challenging. Exosomes can be isolated from body fluids or in vitro cell cultures by different techniques, but a standardized protocol is still missing. The amount of exosomes obtained is also variable and differs in every experiment.125 The primarily used isolation technique is ultracentrifugation as it is cost-effective, but it has many drawbacks as well. It is time-consuming, bears low yield of exosomes, and therefore is not suitable for clinical use.126 Other methods including differential centrifugation, size exclusion chromatography, immunoaffinity capture, precipitation, and microfluidics techniques also have their own disadvantages.127 Additionally, absence of suitable exosomal markers together with technical challenges makes it difficult to purify specific exosomes from a mixture of different cells and vesicle types.127

Second, the storage conditions, which may affect the stability of exosomes, are not yet fully understood. It is reported that storage of exosomes at 4°C or −80°C may destabilize the surface characteristics, morphological features, and protein content of
Exosome-based therapeutics can only be realized in a clinical setting if the barriers of improper isolation and storage approaches have been overcome. Thirdly, challenges remain regarding application of functional exosomes as therapeutic cargo. So far, there is no sufficient data about the efficiency and safety of the exosome miRNA/protein delivery system in cancer. Cellular toxicity of imported exosomal miRNAs could be a major problem for clinical application. Moreover, exosomes contain heterogeneous components and may exhibit immunogenicity effects based on the nature of parent donor cells. Therefore, improving delivery efficiency and therapeutic potential is required for the development of exosomes for clinical applications.

6 | CONCLUSION

In this review, recent developments of TDE in lung cancer progression, metastasis, their interactions with the TME, and their potential therapeutic applications have been discussed. Currently, the application of exosome in diagnosis and cancer therapy is still at the early stage. In the near future, intensive research, particularly in vivo studies on exosomes, will improve our knowledge on exosome biogenesis, sorting mechanisms of miRNAs and proteins into exosomes, and precise procedure of exosomal cargo delivery. Additionally, developments of standardized exosome isolation technique, storage conditions, and delivery system are largely required for a successful application of exosomes in clinical settings.

ACKNOWLEDGMENTS

The study was supported by University Hospital Jena Germany. The application of the lung tissue for exosome isolation was approved by the ethical committee of University Hospital Jena (nr.: 2020-1987-Material). Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659-1668.
2. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329-339.
3. Ciechanover A, Schwartz AL, Dautry-Varsat A, Lodish HF. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983;258(16):9681-9689.
4. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412-9420.
5. Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol. 2015;81(1):2-10.
6. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569-579.
7. Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161-1172.
8. Masyuk AI, Huang BQ, Ward CJ, et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol. 2010;299(4):G990-G999.
9. Caby M-P, Lankar D, Vincendeau-Schererer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879-887.
10. Aalberts M, van Dissel-Emiliani FMF, van Adrichem NPH, et al. Identification of Distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in Humans. Biol Reprod. 2012;86:3.
11. Ogawa Y, Miura Y, Harazono A, et al. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 2011;34(1):13-23.
12. Pisitkun T, Shen R-F, Kneppe MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101(36):13368-13373.
13. Admyre C, Johansson SM, Qazi KR, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179(3):1969-1978.
14. Park K-H, Kim B-J, Kang J, et al. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci Signal. 2011;4(173):ra31.
15. Asea A, Jean-Pierre C, Kaur P, et al. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol. 2008;79(1):12-17.
16. Andre F, Schartz NE, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes. The Lancet. 2002;360(9329):295-305.
17. Mittelbrunn M, Sánchez-Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012;13(5):328-335.
18. Li X, Corbett AL, Taatizadeh E, et al. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol. 2008;79(1):12-17.
19. Andre F, Schartz NE, Movassagh M, et al. Malignant effusions and immunogenic tumour-derived exosomes. The Lancet. 2002;360(9329):295-305.
20. Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297-303.
21. Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71(11):3792-3801.
22. Luga V, Zhang L, Viloria-Petit AM, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542-1556.
23. Zhou J, Li X-L, Chen Z-R, Chng W-J. Tumor-derived exosomes in colorectal cancer progression and their clinical applications. Oncotarget. 2017;8(59):100781-100790.
24. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.
25. Fan H, Shao ZY, Xiao YY, et al. Incidence and survival of non-small cell lung cancer in Shanghai: a population-based cohort study. BMJ Open. 2015;5(12):e009419.
25. Hirsch FR, Scaglioni GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299-311.

26. Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016;35(1):75-91.

27. Herbst RS, Heymach JV, Lippman SM. Lung Cancer. N Engl J Med. 2008;359(13):1367-1380.

28. Dillekàs H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8(12):5574-5576.

29. Wu SG, Chang TH, Liu YN, Shih JY. MicroRNA in Lung Cancer Metastasis. Cancers. 2011;3:12.

30. Adem B, Vieira PF, Melo SA. Decoding the biology of exosomes in lung cancer metastasis. Cancers. 11. Basel; 2019:2.

31. Zarà M, Guidetti GF, Camera M, et al. Biology and role of extracellular vesicles (EVs) in the pathogenesis of thrombosis. Int J Mol Sci. 2019;21(12):2840.

32. Boulanger CM, Loyer X, Rautou P-E, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. 2017;14(5):259-272.

33. Maas SLN, Breakfeild XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172-188.

34. Cocco E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364-372.

35. Schmidt O, Teis D. The ESCRT machinery. Curr Biol. 2012;22(4):R116-R120.

36. Williams RL, Urbé S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol. 2007;8(5):355-368.

37. Chen R, Xu X, Qian Z, et al. The biological functions and clinical applications of exosomes in lung cancer. Cell Mol Life Sci. 2019;76(23):4613-1247.

38. Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244-1247.

39. Chaionrungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol. 2010;190(6):1079-1091.

40. van Niel G, Charrin S, Simoes S, et al. Extracellular vesicles in the immune response to cancer. Dev Cell. 2011;21(4):708-721.

41. Ma Y, Schröder DC, Renkov M, et al. Epithelial membrane protein 2 suppresses non-small cell lung cancer cell growth by inhibition of MAPK pathway. Int J Mol Sci. 2021;22(6):2944.

42. Hutagalung AH, Novick PJ. Role of Rab GTases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119-149.

43. Ostrowski M, Carmon NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19-30.

44. Zeigerer A, Gilleron J, Bogorad RL, et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature. 2012;485(7399):465-470.

45. Stenmark H. Rab GTases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513-525.

46. Miyaniushi M, Tada K, Koido M, Uchiyama Y, Kitamura T, Nogawa S. Identification of Tim4 as a phosphatidylserine receptor. Nature. 2007;450(7168):435-439.

47. Denzer K, van Eijk M, Kleijmeer MJ, Jakobsen E, de Groot C, Geuze J H. Follicular dendritic cells carry MHC Class II-expressing microvesicles at their surface. J Immunol. 2000;165(3):1259-1265.

48. Tian T, Zhu Y-L, Zhou Y-Y, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289(32):22258-22267.

49. Damke H, Baba T, van der Bieke AM, Schmid SL. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant ofdynamin. J Cell Biol. 1995;131(1):69-80.

50. van Niel G, D’Angeolo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-228.

51. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem. 2010;111(2):488-496.

52. Alipoor SD, Mortaz E, Varahram M, et al. The potential biomarkers and immunological effects of tumor-derived exosomes in lung cancer. Front Immunol. 2018;9:819.

53. Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov. 2014;13(7):497-512.

54. Chow V, Toh HC, Abastado JP. Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol. 2012;2012:608406.

55. Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology. 2015;4(9):e1027472.

56. Pritchard A, Tousif S, Wang Y, et al. Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells. 2020;9:5.

57. Chen W, Jiang J, Xia W, Huang J. Tumor-related exosomes contribute to tumor-promoting microenvironment: an immunological perspective. J Immunol Res. 2017;2017:1073947.

58. Wang Y, Yi J, Chen X, Zhang Y, Xu M, Yang Z. The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10. Oncol Lett. 2016;11(2):1527-1530.

59. Kim J, Hong SW, Kim S, et al. Cyclooxygenase-2 expression is induced by celecoxib treatment in lung cancer cells and is transferred to neighbor cells via exosomes. Int J Oncol. 2018;52(2):613-620.

60. Zhao H, Yang L, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife. 2016;5:e10250.

61. Huang J, Ding Z, Luo Q, Xu W. Cancer cell-derived exosomes promote cell proliferation and inhibit cell apoptosis of both normal lung fibroblasts and non-small cell lung cancer cells through delivering alpha-smooth muscle actin. Am J Transl Res. 2019;11(3):1711-1723.

62. Rahman MA, Barger JF, Lovat F, Gao M, Ottersen GA, Nana-Sinkam P. Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget. 2016;7(24):54852-54866.

63. Lobb RJ, van Amerongen R, Wiegmans A, Ham S, Larsen JE, Möller A. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int J Cancer. 2017;141(9):614-620.

64. Wu DM, Deng SH, Liu T, Han R, Zhang T, Xu Y. TGF-β-mediated exosomal Inc-MMP-2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP-2 expression. Cancer Med. 2018;7(10):5118-5129.

65. Wang C, Xu J, Yuan D, et al. Exosomes carrying ALDOA and ALDH3A1 from irradiated lung cancer cells enhance migration and invasion of recipients by accelerating glycolysis. Mol Cell Biochem. 2020;469(1-2):77-87.

66. Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J. Hyaluronic acid interacts with exosomal miR-1265 in osteosarcoma cells to inhibit tumor growth. Onco Targets Ther. 2019;12:6.

67. Kim Y, Hong SW, Kim S, et al. Cyclooxygenase-2 expression is induced by celecoxib treatment in lung cancer cells and is transferred to neighbor cells via exosomes. Int J Oncol. 2018;52(2):613-620.

68. Wang C, Xu J, Yuan D, et al. Exosomes carrying ALDOA and ALDH3A1 from irradiated lung cancer cells enhance migration and invasion of recipients by accelerating glycolysis. Mol Cell Biochem. 2020;469(1-2):77-87.

69. Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J. Hyaluronic acid interacts with exosomal miR-1265 in osteosarcoma cells to inhibit tumor growth. Onco Targets Ther. 2019;12:6.

70. Shao C, Yang F, Miao S, et al. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17(1):120.

71. Hsu YL, Hung JY, Chang WA, et al. Hypoxic lung cancer-derived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN. Mol Ther. 2018;26(2):568-581.

72. Hsu YL, Hung JY, Chang WA, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular...
permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36(34):4929-4942.

70. Hsu Y-L, Hung J-Y, Jian S-F. Hypoxic lung cancer-derived exosome decreases anticancer activity of NK cell by targeting CD226. Eur Respir. 2019;54:PA4056.

71. Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20-51.

72. Zheng H, Zhan Y, Liu S, et al. The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J Exp Clin Cancer Res. 2018;37(1):226.

73. Fang T, Lv H, Lv G, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9(1):191.

74. Xu Z, Liu X, Wang H, et al. Lung adenocarcinoma cell-derived exosomal miR-21 facilitates osteoclastogenesis. Gene. 2018;666:116-122.

75. Valencia K, Luis-Ravelo D, Boyo N, et al. miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 2014;8(3):689-703.

76. Kim DH, Park S, Kim H, et al. Tumor-derived exosomal miR-619-5p promotes tumor angiogenesis and metastasis through the inhibition of RCAN1.4. Cancer Lett. 2020;475:2-13.

77. Rana S, Malinowska K, Zöller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 2013;15(3):281-295.

78. Liu X, Huang S, Guan Y, Zhang Q. Long noncoding RNA OSER1-A51 promotes the malignant properties of non-small cell lung cancer by sponging microRNA-433-3p and thereby increasing Smad2 expression. Oncol Rep. 2021;44(2):599-610.

79. Kim DH, Park H, Choi YJ, et al. Exosomal miR-1260b derived from non-small cell lung cancer promotes tumor metastasis through the inhibition of HIPK2. Cell Death Dis. 2021;12(8):747.

80. Xia Y, Wei K, Hu LQ, et al. Exosome-mediated transfer of miR-1260b promotes cell invasion through Wnt/beta-catenin signaling pathway in lung adenocarcinoma. J Cell Physiol. 2020;235(10):6843-6853.

81. Yang XR, Pi C, Yu R, et al. Correlation of exosomal microRNA clusters with bone metastasis in non-small cell lung cancer. Clin Exp Metastasis. 2021;38(1):109-117.

82. He S, Li Z, Yu Y, et al. Exosomal miR-499a-5p promotes cell proliferation, migration and EMT via mTOR signaling pathway in lung adenocarcinoma. Exp Cell Res. 2019;379(2):203-213.

83. Sun S, Chen H, Xu C, et al. Exosomal miR-106b serves as a novel marker for lung cancer and promotes cancer metastasis via targeting PTEN. Life Sci. 2020;244:117297.

84. Chen T, Liu Y, Chen J, Zheng H, Chen Q, Zhao J. Exosomal miR-3180-3p inhibits proliferation and metastasis of non-small cell lung cancer by downregulating FOXP4. Thorac Cancer. 2021;12(3):372-381.

85. Nie H, Xie Y, Zhang D, et al. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale. 2020;12(2):877-887.

86. Zhang X, Bai B, Wang F, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18(1):40.

87. Taverna S, Pucci M, Giolambardo M, et al. Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Sci Rep. 2017;7(1):3170.

88. Qiao Z, Zhang Y, Ge M, et al. Cancer cell derived small extracellular vesicles contribute to recipient cell metastasis through promoting HGF/c-met pathway. Mol Cell Proteomics. 2019;18(8):1619-1629.

89. Song JW, Zhu J, Wu XX, et al. GOLPH3/CKAP4 promotes metastasis and tumorigenesis by enhancing the secretion of exosomal WNT3A in non-small-cell lung cancer. Cell Death Dis. 2021;12(11):976.

90. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-890.

91. Kim J, Kim TY, Lee MS, Mun JY, Ihm C, Kim SA. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochem Biophys Res Commun. 2016;478(2):643-648.

92. Wang J, Wu Y, Guo J, Fei X, Yu L, Ma S. Adipocyte-derived exosomes promote lung cancer metastasis by increasing MMP9 activity via transferring MMP3 to lung cancer cells. Oncotarget. 2017;8(47):81880-81891.

93. Kim DH, Kim H, Choi YJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med. 2019;51(8):1-13.

94. Jakobsen KR, Paulsen BS, Baek R, Varming K, Sorensen BS, Jørgensen MM. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles. 2015;4:26659.

95. Niu L, Song X, Wang N, Xue L, Song X, Xie L. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci. 2019;110(1):433-442.

96. Wang N, Song X, Liu L, et al. Circulating exosomes contain protein biomarkers of metastatic non-small-cell lung cancer. Cancer Sci. 2018;109(5):1701-1709.

97. Soung YH, Ford S, Zhang V, Chung J. Exosomes in Cancer Diagnosis. Cancers. 9. Basel; 2017(8).

98. Zhou Q, Huang X, Zhang F, et al. MicroRNAs: a novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif. 2017;50(6):e12394.

99. Castellanos-Rizaldos E, Zhang X, Tadigota VR, et al. Exosome-based detection of activating and resistance EGFR mutations from plasma of non-small cell lung cancer patients. Oncotarget. 2019;10:2911-2920.

100. Krug AK, Enderle D, Karlovich C, et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann Oncol. 2018;29(3):700-706.

101. Yuan M, Huang L-C, Chen J-H, Wu J, Xu Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther. 2019;4(1):61.

102. Ricordel C, Frisoul S, Lucchiotti F, Soria JC. Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Ann Oncol. 2018;29:i28-i37.

103. Li B, Ren S, Li X, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83(2):146-153.

104. Jing C, Cao H, Qin X, et al. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett. 2018;15(6):9811-9817.

105. Azuma Y, Kobayashi A, Mogi A, et al. Cancer exosomal microRNAs from gefitinib-resistant lung cancer cells cause therapeutic resistance in gefitinib-sensitive cells. Surg Today. 2020;50(9):1099-1106.

106. Liu X, Jiang T, Li X, et al. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J Cell Mol Med. 2020;24(2):1529-1540.

107. Zhang Y, Li M, Hu C. Exosomal transfer of miR-214 mediates gefitinib resistance in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;507(1-4):457-464.

108. Li Y, Liu X-J, Fan L-L, et al. Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via upregulating autophagy. Oncotarget. 2016;7(17):24585-24595.

109. Yu Y, Abudula M, Li C, Chen Z, Zhang Y, Chen Y. Icotinib-resistant HCC827 cells produce exosomes with mRNA MET oncogenes and mediate the migration and invasion of NSCLC. Respir Res. 2019;20(1):217.
110. Kwok H-H, Ning Z, Chong PW-C, et al. Transfer of extracellular vesicle-associated-RNAs induces drug resistance in ALK-translocated lung adenocarcinoma. *Cancers.* 11. Basel; 2019:104(1).

111. Syn NL, Wang L, Chow EK, Lim CT, Goh BC. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. *Trends Biotechnol.* 2017;35(7):665-676.

112. Banks W, Sharma P, Bullock K, Hansen K, Ludwig N, Whiteside T. Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. *Int J Mol Sci.* 2020;21:4407.

113. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. *Cells.* 2019;8:7.

114. Lai RC, Yeo RWY, Tan KH, Lim SK. Exosomes for drug delivery—a novel application for the mesenchymal stem cell. *Biotech Adv.* 2013;31(5):543-551.

115. Aqil F, Kausar H, Agrawal AK, et al. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. *Exp Mol Pathol.* 2016;101(1):12-21.

116. Srivastava A, Amreddy N, Babu A, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. *Sci Rep.* 2016;6(1):38541.

117. Melzer C, Rehn V, Yang Y, Bähre H, Ohe J, Hass R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. *Cancers.* 11. Basel; 2019:798.

118. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. *Nature.* 2015;527(7578):329-335.

119. Munagala R, Aqil F, Jeyabalan J, et al. Exosomal formulation of anthocyanidins against multiple cancer types. *Cancer Lett.* 2017;393:94-102.

120. Federici C, Petrucci F, Caimi S, et al. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. *PLoS One.* 2014;9:e88193.

121. Zhang H, Lu J, Liu J, Zhang G, Lu A. Advances in the discovery of exosome inhibitors in cancer. *J Enzyme Inhib Med Chem.* 2020;35(1):1322-1330.

122. Murayama Y, Oritani K, Tsutsui S. Novel CD9-targeted therapies in gastric cancer. *World J Gastroenterol.* 2015;21(11):3206-3213.

123. Nishida-Aoki N, Tominaga N, Takeshita F, Sonoda H, Yoshioka Y, Ochiya T. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. *Mol Ther.* 2017;25(1):181-191.

124. Xu S, Zheng L, Kang L, Xu H, Gao L microRNA-let-7e in serum-derived exosomes inhibits the metastasis of non-small-cell lung cancer in a SUV39H2/LSD1/CDH1-dependent manner. *Cancer Gene Therapy.* 2020.

125. Srivastava A, Amreddy N, Razaq M, et al. Exosomes as theranostics for lung cancer. *Adv Cancer Res.* 2018;139:1-33.

126. Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease. *Int J Mol Sci.* 2019;20(19):4684.

127. He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. *Theranostics.* 2018;8(1):237-255.

128. Maroto R, Zhao Y, Jamaluddin M, et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. *J Extracell Vesicles.* 2017;6(1):1359478.

129. Sun Z, Shi K, Yang S, et al. Effect of exosomal miRNA on cancer biology and clinical applications. *Mol Cancer.* 2018;17:147.

130. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. *Acta Pharm Sin B.* 2016;6(4):287-296.

131. Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. *Biol Pharm Bull.* 2018;41(6):835-842.

How to cite this article: Rizwan MN, Ma Y, Nenkov M, et al. Tumor-derived exosomes: Key players in non-small cell lung cancer metastasis and their implication for targeted therapy. *Molecular Carcinogenesis.* 2022;61:269-280.
doi:10.1002/mc.23378.