Instructions for use

Title

Fetal stem cell transplantation: Past, present, and future

Author(s)

Ishii, Tetsuya

Citation

World Journal of Stem Cells, 6(4), 404-420
https://doi.org/10.4252/wjsc.v6.i4.404

Issue Date

2014-09-26

Doc URL

http://hdl.handle.net/2115/56999

Rights(URL)

http://creativecommons.org/licenses/by/4.0/

Type

article

File Information

404.pdf
Abstract
Since 1928, human fetal tissues and stem cells have been used worldwide to treat various conditions. Although the transplantation of the fetal midbrain substantia nigra and dopaminergic neurons in patients suffering from Parkinson's disease is particularly noteworthy, the history of other types of grafts, such as those of the fetal liver, thymus, and pancreas, should be addressed as there are many lessons to be learnt for future stem cell transplantation. This report describes previous practices and complications that led to current clinical trials of isolated fetal stem cells and embryonic stem (ES) cells. Moreover, strategies for transplantation are considered, with a particular focus on donor cells, cell processing, and the therapeutic cell niche, in addition to ethical issues associated with fetal origin. With the advent of autologous induced pluripotent stem cells and ES cells, clinical dependence on fetal transplantation is expected to gradually decline due to lasting ethical controversies, despite landmark achievements.

Core tip: Based on the history of fetal stem cell transplantation since 1928, this article discusses strategies for transplantation, with a focus on donor cells, cell processing, and the therapeutic cell niche, in addition to ethical issues associated with fetal origin. We described the streamline to current clinical trials using fetal and embryonic stem cells based on Clinical Trials.gov. Finally, we discussed the perspective of fetal stem cell transplantation.

INTRODUCTION
In 1988, an article reported the hopeful results of a clinical trial in which the fetal mesencephalic substantia nigra was transplanted in patients with Parkinson's disease (PD)\(^1\). In the preceding year, 1987, a Chinese team had reported similar findings of fetal tissue transplantation conducted in August 1985\(^2\). Following the publication of these reports, similar neural tissue transplantation procedures became widespread. Most notably, a double-blind, sham surgery controlled study of transplantation of fetal dopaminergic neurons in PD patients was reported in 2001\(^3\), which provided convincing data regarding the efficacy of fetal tissue transplantation for treating this condition. Since then, fetal tissue transplantation has advanced to include the clinical development of isolated fetal cells, particularly neural stem cells in business entities.

Although many review articles have focused on the application of neural tissue and/or cells in fetal tissue transplantation\(^4\)-\(^14\), the clinical use of fetal cells is not new or simply confined to the field of neurological field. The rationale of fetal tissue transplantation lies in the potential for fetal cell proliferation and differentiation,
and fetal grafts may be integrated into the host without inducing immune rejection. These features of fetal tissue are well known, as is the established clinical use of transplants derived from cadaveric fetuses in the history of transplantation therapy. For example, early as 1928, a form of fetal tissue transplantation in Italy was documented in a medical journal as a treatment for diabetes mellitus\(^\text{[15]}\). Subsequently, the indications for fetal tissue transplantation expanded to other subjects with therapeutic efficacy in conditions other than diabetes. Since the early 1960’s, a tremendous number of fetal liver and thymus transplantations have been performed worldwide to treat immunodeficiency and hematological disorders.

In this article, the authors offer a discussion of the progression from previous applications of fetal tissue transplantation to current uses of stem cell transplantation. In humans, the product of conception after implantation in the uterine wall through the eighth week of development is referred to as the embryo. From the ninth week to birth, the embryo is called a fetus. The authors largely follow this nomenclature.

![Diagram of fetal tissue transplantation procedures](image)

In vivo

In vitro

In vivo

Cadaveric fetus

(Aprox. 6-12 wk)

Recovery of tissue

Cell culture

Recovery of tissue

Donor cells

Transplantation

Final testing

\textit{e.g.},

Cytogenetic testing

Biochemical assay

Immunoassay

Quantitative PCR

DNA microarray

Pyrosequencing

Patient

Administration of immunosuppressive drugs

Rehabilitation

Evaluation of symptom

Figure 1 Fetal tissue transplantation procedures. Fetal tissue can be obtained from cadaveric fetuses for medical and non-medical reasons in obstetrics and gynecology hospitals. Procured fetal tissue, which was donated with consent for research, is processed in vitro, confirming cell function without contamination and genetic abnormality. After careful examination, donor cells are used for grafts primarily in the form of a cell suspension, which is usually intravenously or intraperitoneally injected or, otherwise, transplanted into predefined implant sites during surgery. Although fetal tissue cells are less likely to be rejected by transplant recipients, immunosuppressive drugs are administered in some cases. PCR: Polymerase chain reaction.

In order to gain new perspectives on future clinical application of stem cells, it is worth considering the history of fetal tissue transplantation, taking into account an overview of current fetal stem cell research. In this report, the authors examine the history of fetal tissue transplantation, as well as many associated complications including procuring and processing fetal tissue, selecting appropriate diseases and subjects, developing new transplantation strategies, assessing graft survival and integrity \textit{in vivo}, providing long-term monitoring of patients treated with fetal grafts for adverse events. Moreover, important ramifications of ES cell research are addressed and transplantation strategies are considered from the viewpoint of donor cells, cell processing and the therapeutic cell niche, in addition to ethical concerns. Finally, the authors provide future perspectives on fetal stem cell transplantation.

FETAL TISSUE TRANSPLANTATION PROCEDURES

Fetal tissue contains a sufficient number of stem cells and progenitor cells for development, making it valuable for some treatments. Namely, fetal tissue cells are easier to culture and proliferate more readily than comparable adult tissue cells\(^\text{[16-24]}\), with the exception of pancreatic cells\(^\text{[25,26]}\). Fetal tissue cells are also less likely to be rejected by transplant recipients, as these cells are less antigenic, expressing HLA-G for immune tolerance during pregnancy\(^\text{[27]}\). This fact and the findings of animal experiments suggested a reduced need for an exact tissue match, which is frequently difficult to obtain\(^\text{[28]}\). Collectively, the features of fetal tissue cells facilitate engraftment \textit{in vivo} and may provide beneficial effects against diseases difficult to treat.

Fetal tissue can be obtained from cadaveric fetuses following spontaneous abortion, stillbirth, or surgery due to ectopic pregnancy in obstetrics and gynecology hospitals (Figure 1). In addition, such tissue may be derived
from elective abortions. The obtained fetal tissue is ordinarily processed and used for grafts in the form of a cell suspension, which is usually intravenously or intraperitoneally injected or, otherwise, transplanted into predefined implant sites during surgery.

PREVIOUS FETAL TISSUE TRANSPLANTATION PROCEDURES

Early attempts
A bibliographic survey revealed the use of fetal pancreatic transplantation to treat insulin-dependent diabetes mellitus, as well as an attempt to treat human cancer in Italy as early as 1928[13]. The applied tissues were acquired from three human fetuses. Prior to this period, a diabetic dog experiment was conducted in Canada in 1921, the result of which suggested that injections of insulin, a hormone secreted from the pancreas may be used to treat diabetic patients. The following year, a clinical trial involving a 14-year-old boy with diabetes was performed; the boy recovered from his condition following insulin injections[20]. This therapeutic achievement was awarded the Nobel Prize in Physiology or Medicine in 1923 and provided a background for the development of fetal pancreatic transplantation in Italy, as the fetal transplants may be used to circumvent the need of repeated insulin injections while offering the potential for curative therapy for diabetes. Nonetheless, this attempt eventually failed, due to a lack of treatment. Meanwhile, the first fetal pancreatic transplantation in the United States was carried out in 1939[29]. In the clinical setting, pancreatic tissue removed from an aborted fetus was transplanted into a diabetic patient twice, albeit in vain. Subsequently, in 1959, two United States physicians reported the transplantation of fetal tissue derived from six stillborn fetuses into their diabetic mothers[30]. However, only a transitory reduction in the need for insulin was observed in one case. Although fetal tissues are less likely to be rejected due to their reduced antigenicity, allotransplantation remained difficult until the availability of immunosuppressive drugs, such as azathioprine, in the early 1960s.

In contrast, fetal tissue was frequently used in biomedical research at that time. For instance, fetal kidney cell cultures were applied to produce large quantities of viruses, leading to the development of the polio vaccine, which was awarded the Nobel Prize in Physiology or Medicine in 1954. The application of fetal tissue cultures also contributed to the development of the rubella vaccine.

1960's to mid-1980's
The first bone marrow transplantation to treat fatal leukemia was reported by United States researchers in 1957[33]. However, the results of marrow transplantation achieved in six patients, after first destroying their marrow with radiation, was disappointing; none of the patients survived beyond 100 d. It was not until the late 1970's when the marrow transplantation consistently resulted in successful outcomes due to tissue matching, thus controlling both infectious complications and graft-vs-host disease (GvHD). These experiences in marrow transplantation simultaneously facilitated the development of fetal tissue transplantation, which ultimately became a frequently used therapeutic option in cases where no histocompatible donor was available for marrow transplantation.

In adult humans, hematopoiesis normally occurs in the bone marrow; however, a succession of organs sustains blood cell production during human embryogenesis[32]. The process of hematopoiesis is initiated in the yolk sac during the third week of development, then subsequently relayed to the liver, thymus, and bone marrow at the 11th week, at which time stabilization of definitive post-natal hematopoiesis begins. Most elective abortions are performed during the first trimester. In this era, clinical availability of fetal liver and thymus tissue has encouraged researchers to performed transplantation to treat hematological disorders and cases of severe immunodeficiency.

In 1958, it was reported that a devastated immune system in rodents was restored by inoculating fetal hematopoietic tissue following lethal total body X-irradiation[33]. In 1961, a United Kingdom group reported the results of transplantation of fresh or stored fetal liver cells (1×10^7/case, gestational age unknown) via intravenous injection to treat aplastic anemia, stating that remission was achieved in two of 14 patients (18 mo to 55 years of age)[34]. Similar findings were subsequently reported from China[35-36], Hungary[5], India[38-41], Italy[42-44], and United States[45-49].

In 1975, a United States group reported successful fetal liver transplantation in a male infant (3 mo of age) with adenosine-deaminase (ADA) deficiency, which causes severe combined immunodeficiency (SCID)[45]. In that case, an 8.5-wk-old embryo was obtained, with permission from a mother undergoing termination of pregnancy and sterilization with hysterectomy. A suspension containing 2.5×10^6 liver cells was injected into the recipient intraperitoneally, who developed immunocompetent T and B cells in an orderly manner until one year after the procedure, when he died of fatal nephrotic disease. Soon after that case, a United States group reported the results of transplantation of fresh fetal liver cells (obtained from 8-, 9-, and 10-wk-old fetuses) in two infants with SCID in 1976[46]. Although no functional immunological improvements were achieved in the first infant, both clinical and functional immunological improvements were noted in the other patient, who was monitored for 19 mo after transplantation. In that case, the engraftment of fetal cells, as confirmed by chimerism in the recipient's lymphocytes, reversed the patient's immunodeficiency. Similar treatment of ADA-SCID was also reported by a Japanese group in 1985[49]. In addition, according to a case report published in 1985, a patient with X-linked SCID whose parents and siblings were not suitable HLA-compatible bone marrow donors underwent, embryonic liver cells were transplanted intravenously in 3 stages $(6 \times 10^7 - 9 \times 10^7)$[50]. Although the procedure resulted in T-cell recon-
stition in addition to the initiation of immune globulin production, the child died at five months of age due to respiratory failure. In another SCID case reported by a French group in 1979, an infant who received two separate grafts of both hepatic and thymus cells recovered from the same fetus exhibited a partially restored immune system.

Fetal liver transplantation has also been attempted to treat leukemia. In 1982, an Italian group reported the use of fetal liver transplantation in two patients with acute leukemia following the administration of a conditioning regimen consisting of cyclophosphamide and total body irradiation. Although each patient achieved remission with a hematopoietic recovery, the survival time after transplantation was only 153 and 30 d, respectively. A similar transplantation procedure was subsequently conducted to treat acute myeloid leukemia in India. In 1986, a Chinese group reported the results of fetal liver transplantation in 10 patients with malignant tumors. The authors prepared fetal liver cells using 3.5-6-mo-old fetuses and observed $1.8 \times 10^7 - 4 \times 10^{12}$ fetal liver cells in a fetus over five mo of age, in which most of the cells were CFU-Cs (granulocyte progenitor cells). These findings suggest that fetal liver transplantation improves the peripheral blood profile and stimulates the production of bone marrow.

In February 1986, a symposium on fetal liver transplantation was held in New-Delhi, India. A relevant review article critically analyzed progress in the field at that time and reported that over 300 individuals had received fetal liver transplants for a spectrum of disorders, including immunodeficiency, aplastic anemia, leukemia and genetic conditions. Additionally, in a review article published in 1987, a United States researcher, Gale, examined the results of fetal liver transplantation in patients with hematological disorders. With respect to aplastic anemia, 122 two patients received transplants, with engraftment reported in four patients and GvHD in no cases. Although complete and partial responses were reported in half of the patients, the majority displayed no evidence of engraftment. Meanwhile, 39 patients with leukemia received transplants; transient engraftment was reported in 40% of cases, and two patients developed GvHD. In that report, the survival was extended to more than two years. The relatively high rate of engraftment also suggested the efficacy of pretransplant immune suppression. Therefore, the risk of GvHD appears to be low, despite complete HLA-mismatching.

Regarding thymus transplantation, two cases were reported in 1968, in which fetal thymus tissue was transplanted into neonates suffering from DiGeorge syndrome, which is characterized by the absence or incomplete development of the thymus with varying degrees of T-cell immunodeficiency. In addition, August et al. reported the case of a 21-mo-old male with DiGeorge syndrome who underwent transplantation of thymus fragments derived from a 16-wk-old female fetus. In that case, abnormalities in the patient’s lymphocyte function were promptly ameliorated. Cleveland et al. also reported the implantation of three thymus fragments derived from a 13-wk fetus into a 7-mo-old male infant. Although no XX cells were identified in the host, the infant’s immunological data and ability to resist infection suggested that his immunological function was reconstituted by the fetal transplants. Another article reported that the combined transplantation of the fetal thymus and liver resulted in effective immunological reconstitution in a presumed case of DiGeorge syndrome. Two similar thymus transplantation procedures were performed in Japan.

During this period, various cases of fetal tissue transplantation were reported in medical journals. However, the clinical results and patient survival rates were largely dismal. At that time, most fetal tissue transplants were conducted based on previous experience with bone marrow transplantation in which irradiation-based or chemical conditioning is performed prior to transplantation in order to facilitate post-transplantation engraftment following the administration of immunosuppressive drugs. However, cellular characteristics of fresh or preserved fetal tissue were insufficient in most cases, with total cell count usually being the only parameter reported, while the cell functions was not thoroughly assessed. Moreover, in general, precautious measures to prevent infectious diseases were not taken. For example, fetal tissue donors were not carefully screened, and testing of fetal tissue prior to transplantation was largely insufficient. Despite clinical success in some cases, the use of fetal liver and/or thymus transplantation should have been based on sufficient data from preclinical research using disease model animals, as is common in current stem cell research.

Mid 1980’s to early 2000’s

Around the mid-1980’s, the application of fetal neural transplantation to treat neurological diseases began to receive significant attention. In this era, clinical trials using fetal cerebral tissue were conducted worldwide primarily in patients with Parkinson’s disease (PD), a progressive disorder of the central nervous system that affects movement. PD is characterized by the death of dopaminergic neurons, the substantia nigra in the brain for unknown reasons. Langston et al. identified a chemical, MPTP (1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine), that selectively damages cells in the substantia nigra, resulting in the development of marked parkinsonism in monkeys and humans, and the injection of MPTP can be used to create an animal model of PD. Preclinical research using such animals has demonstrated that transplanting the fetal substantia nigra significantly improves movement symptoms. Although L-Dopa therapy has been applied to PD since the 1960’s, this medication induce troublesome side effects, such as hypotension and a variety of abnormal involuntary movements. Therefore, the transplantation of fetal neural tissue, including dopaminergic neurons, is thought to be an alternative treatment for PD.

In addition to preclinical research using animal dis-
Ishii T et al. Fetal stem cell transplantation

case models, fetal neural tissue transplantation was performed based on preclinical data, including the impact of cryopreservation \[67\], and screening for infection and cytogenetic abnormalities \[68\]. Regarding the in vivo survival of fetal tissues and cells, Freeman et al. \[69\] reported the implantation of human mesencephalic dopaminergic neurons in a rat model and suggested that the upper age limit should be postconception (PC) day 56 for suspension grafts and PC day 65 for solid implants.

In September 1986, a Mexican group conducted a renowned clinical trial in which the fetal mesencephalic substantia nigra procured from a 13-wk-old fetus of spontaneous abortion, was transplanted in the caudate nucleus in two PD patients. The cases were subsequently reported in 1988 \[70\], and the results of monitoring at three months showed a dramatic improvement in symptoms; in particular both rigidity and dyskinesia disappeared \[71\]. In the preceding year, 1987, however, a Chinese team had already reported the transplantation of similar fetal tissue in a PD patient in August 1985, the first clinical trial in which brain tissue was transplanted from one human being to another \[72\]. In that case, a suspension containing substantia nigra fragments was implanted into the striatal caudate nucleus to which a collateral projection extends from the substantia nigra. The case involved a 54-year-old male patient whose HLA status was determined prior to transplantation, although the fetal HLA status was not tested. The transplanted tissue was obtained from a 5-mo-old fetus, as the authors considered the clinical use of the substantia nigra derived from fetuses of 4.5-5.5 mo of age to be appropriate based on the stage of tissue development at that age. However, this presumption was inaccurate compared to the evidence (in embryos up to nine weeks of age) provided by Freeman et al. \[69\]. However, the Chinese team reported a reduction in limb tremors and rigidity on the third day after the surgery, with satisfactory control of parkinsonism confirmed after eight months of diagnostic monitoring. Moreover, a United Kingdom group published a case report of fetal tissue transplantation for PD in 1988 \[73\]. The authors stated that two patients (a 60-year-old female and 41-year-old male) with early and late parkinsonism, respectively, showed immediate improvements in motion symptoms following the administration of a mesencephalic cell suspension (fetal age unknown). These cases, with the exception of the China case, made worldwide headlines, commanding considerable attention from patients and their families. However, all three cases lacked comprehensive, long-term results, including the findings of behavioral, biochemical, psychological, physiological, and motor assessments.

Subsequently, a Swedish group demonstrated that deep brain transplantation of fetal brain tissue could be used to restore local dopamine production and relieve symptoms \[74\]. According to their report published in 1990, mesencephalic dopamine neurons derived from embryos of eight to nine weeks of gestation exhibited survival in the recipient. The grafts, which were implanted unilaterally into the putamen via stereotactic surgery, restored dopamine synthesis and storage in the grafted area, as assessed on positron emission tomography with 6-L-[18F]fluorodopa. These neurochemical changes resulted in a significant reduction in severe rigidity and bradykinesia, with marked diminution of fluctuations in the patient's condition under optimal medication. Following this achievement, long-term (up to 46 mo) stable improvements and graft integrity were reported in various cases \[75-78\]. Stable integration and the persistence of fetal grafts have also been confirmed on functional imaging as well as postmortem analyses \[76-79\]. Such clinical results have encouraged many researchers worldwide to apply this therapeutic approach as a treatment for PD. Namely, fetal brain tissue transplantation, which began in China \[28\], has been attempted in Canada \[80\], Cuba \[81\], the Czech Republic \[82\], France \[83\], Mexico \[84\], Poland \[85\], Slovakia \[86\], Spain \[87-89\], United States \[90,91\], and USSR (current Russia) \[92\]. Moreover, the Network of European CNS Transplantation and Restoration (NECTAR) was founded in 1990 to bring together European groups who share the common goal of protecting, repairing and restoring the central nervous system damage resulting from degenerative diseases and/or injury \[93\].

Fetal tissue transplantation for PD has also been conducted using fetal adrenal medullary tissue \[4,80\] other than the substantia nigra, and several clinical trials have assessed the efficacy of fetal neural transplantation for neurological conditions other than PD. For instance, patients suffering from Huntington's disease (HD) have been evaluated in the United Kingdom \[94\]. In the report, cell suspensions of fetal ganglionic eminence were transplanted unilaterally into the striatum in four patients with early to moderate HD, all of whom received immunotherapy with cyclosporin A, azathioprine, and prednisolone for at least six months postoperatively. During the six month post-transplantation period, the only adverse events related to the procedure were associated with the immunotherapy regimen. Magnetic resonance imaging demonstrated the presence of tissue at the implantation site, although no signs of tissue overgrowth were detected. The United Kingdom team concluded that the unilateral transplantation of fetal striatal tissue in patients with HD is safe and feasible. Meanwhile, an Indian group issued a report in which human fetal neuroretinal cells were transplanted in patients with advanced retinitis pigmentosa \[95\]. The results of a long-term phase I safety study (12-40 mo) prompted the initiation of phase II trials.

Notably, in 2001, a United States group reported the results of a double-blind, sham surgery controlled-study of transplantation of fetal dopamine neurons in PD patients \[96\]. The neural tissues were recovered from 7- to 8-wk-olds embryos, and the tissue cell culture, in which dopamine production was monitored according to homovanillic acid concentration in the medium, was transplanted up to four weeks after recovery. Consequently, a reduction in motor symptoms was observed in the patients 60 years of age or younger, but not in the older
patients. This study provided the first direct evidence that fetal grafts can be used to improve the condition of some PD patients, separate from the placebo effect. Another United States group reported the results of a similar double-blind controlled trial in which, approximately half of the patients treated with solid mesencephalic grafts derived from 6- to 9 wk-old embryos developed dyskinesia, with no significant overall treatment effect. Moreover, postmortem analyses revealed the subjects who displayed significant improvements had at least 100000 dopaminergic neurons per sides with organotypic reinnervation of the striatum. In these cases, four 6- to 9-wk-old fetuses were required to obtain the requisite number of cells for a graft. Therefore, some research groups have introduced a temporal moratorium on such procedures since 2003 owing to the uncertainty and difficulty in conducting clinical trials.

ETHICAL ISSUES AND POLITICAL RESPONSES

As mentioned above, the results of fetal brain tissue transplantation for PD have received significant attention, making worldwide headlines in the news media since the late 1980’s. Such advancements have simultaneously raised profound ethical concerns and objections against the medical use of cadaveric fetal tissue, which is frequently derived from cases of elective abortion. This report briefly addresses this issue and associated political responses. The ethical debate in the United States, which involves anti-abortion movement, led to a moratorium on federal funding (1987-1992) of fetal tissue transplantation research. There are five issues related to fetal tissue transplantation. First, females may be advised or persuaded to undergo induced abortion on the grounds that it may help others by donating fetal tissue. Second, the widespread use of fetal tissue transplantations may result in an increase in the number of abortions. Third, the successful use of fetal tissue may make such procedures more socially acceptable. Fourth, the abortion procedure may be changed based on medical needs. Most notably, the question as to whether rightful informed consent for the use of fetal tissue can be obtained in cases of induced abortion is the most controversial issue. Ideally, the decision to undergo induced abortion should be completely separate from the consent to fetal tissue donation (i.e., the "principle of separation").

In the United Kingdom, the Department of Health and Social Security issued a report by their advisory group (the Peel report) regarding the use of fetuses and fetal material for research in 1972. The Department subsequently reviewed their guidelines on the research and use of fetuses and fetal material in the Polkinghorne report in 1989. The main issue in that report was the consistent application of the “principle of separation” in different groups. In contrast, the British Medical Association (BMA) dissented from the Polkinghorne report in their guidelines on the use of fetal tissue and United Kingdom social philosophers expressed concerns about the fetal tissue economy from the abortion clinic to the stem cell laboratory.

In 1994, NECTAR considered the ethical issues and published guidelines for the use of human embryonic or fetal tissue for research and clinical use. In Japan, discussions in the Ministry eventually resulted in the development of guidelines on clinical research using human stem cells, in which the clinical use of fetal cells is intentionally excluded due to potential, profound ethical issues.

Thus, fetal tissue transplantation has raised ethical controversy worldwide. The “principle of separation” suggests fetal tissue can be procured if informed consent is separately obtained from females who underwent spontaneous abortion and still birth in Europe and the United States. It is also suggested that fetal tissues may be obtained if the induced abortion is conducted for a clear medical reason (e.g., ectopic pregnancy). However, if the informed consent is obtained from females who will undergo induced abortion only for a social reason, some would query the validity of the informed consent. The difficulty in the ‘principle of separation’ in some cases is likely to lead to the exclusion of fetal cells in stem cell transplantation, as in Japan if future results of fetal tissue transplantation are overhyped.

CHANGES WITHIN THE LAST DECADE

Since 2000, fetal cell transplantation has advanced to the clinical development of isolated fetal stem cells. As mentioned above, there are hundreds of investigator-initiated clinical trials of fetal transplantation in the academic setting. In addition, several companies have developed or are developing fetal stem cell products via the use intracerebral or spinal transplantation.

A wide variety of conditions have been assessed using fetal stem cell transplantation. Recently, evaluated conditions can be categorized into six groups: neurological diseases, central nervous system (CNS) injury, heart failure, diabetes, skin wounds, and osteogenesis imperfecta. Neurological diseases include amyotrophic lateral sclerosis (ALS), cerebral palsy (CP), cerebral atrophy, Huntington’s Disease, and PD. With respect to CNS injury, spinal cord injury (SCI) and traumatic brain injury (TBI) have been recent topics in the setting of fetal cell transplantation. Some of these reports are described below.

Olfactory ensheathing cells (OECs) are radial glia with a variety of functions. These cells phagocytose axonal debris and dead cells in the olfactory system. OECs are also known to secrete many neurotrophic factors. A Chinese group, Chen et al. conducted a randomized controlled clinical trial among 33 patients in order to confirm the feasibility of OEC transplantation for treating CP in children and adolescents. In that report, OECs were isolated from aborted human fetal olfactory bulbs, cultured and propagated for two to three weeks and then characterized using immunostaining with Abs against p75. OECs derived from one to two fetuses, representing...
two million cells, were transplanted in each patient, and HLA-DR-matching analyses ensured histocompatibility between the donors and recipients. The trial ultimately demonstrated that fetal OEC transplantation is effective for obtaining functional improvements in children and adolescents with CP, without obvious side effects. Another Chinese group, Wu et al.\(^\text{[127]}\) followed patients with complete chronic SCI for an average of 14 mo after OEC transplantation. Consequently, both sensation and spasticity improved moderately, whereas the recovery in locomotion recovery was minimal. In contrast, Piepers and den BerG asserted that there are no benefits from experimental treatment with fetal OECs in patients with ALS\(^\text{[119]}\). The authors carried out a prospective study of seven patients who underwent fetal OEC treatment in China\(^\text{[130]}\), following the subjects for four months to one year after treatment, and found no objective improvements, while the outcome measurements gradually declined in all patients. Two patients experienced severe side effects. Therefore, although careful examination is needed, fetal OEC transplantation is likely to be effective against trauma-induced neurological conditions, but not ALS or the selective degeneration of motor neurons. These findings highlight the significance of selecting appropriate diseases and conditions for each type of stem cell transplantation.

Regarding fetal neural progenitor cells (NPCs) and neural stem cells (NSCs), a Chinese group, Luan et al.\(^\text{[131]}\) performed fetal NPC transplantation in 45 patients with severe CP by injecting NPCs derived from aborted fetal tissue into the lateral ventricle. The NPCs were isolated from aborted human fetal forebrain tissue and likewise propagated. The cells used for transplantation were characterized as nestin-positive and microbe-free with normal karyotype, viability of over 95%, and endotoxin level below 2 EU/mL. After one year, the developmental level for each functional sphere (gross motor, fine motor, and cognition) was significantly higher in the treatment group than in the control group, with no delayed complications. Therefore, both fetal NPC and OEC transplantation appear to be efficacious against CP\(^\text{[139,129]}\). A United States group, Grass et al.\(^\text{[137]}\), consequently reported the results of a phase I trial of the intraspinal injection of fetal NSCs in patients with ALS. This study was a first-in-human clinical trial with the goal of assessing the safety and tolerability of introducing stem cells into the spinal cord, in association with the administration of immunosuppressants. Twelve patients received either five unilateral or five bilateral (10 total) injections into the lumbar spinal cord at a dose of 100000 cells per injection. Clinical assessments ranging from six to 18 mo after transplantation demonstrated no evidence of acceleration of disease progression due to the intervention; therefore, the goal of the clinical trial was attained. Hence, ALS may be treated with fetal NSC transplantation, but not fetal OEC transplantation\(^\text{[137,138]}\).

In addition to the above bibliographic survey, relevant trials were searched on ClinicalTrials.gov in order to provide an overview of recent clinical trials of fetal transplants (Table 1). Consequently, 11 trials were identified, most of which (7/11) were sponsored by business entities. In addition, fetal neural stem cells were used in most trials (8/11), focusing on ischemic stroke, SCI, age-related macular degeneration, and neurological disorders, including ALS and Pelizaeus-Merzbacher disease (an inherited dysmyelination disorder). Meanwhile, fetal mesencephalic tissue or dopamine neuronal precursor cells were used for transplantation in PD patients in two trials and fetal liver cells were used in one trial. Most of these studies (7/11) were sponsored by private companies, including Stem Cell, Inc. (California, United States), Neuralstem Inc. (Maryland, United States), and ReNeuron Ltd. (United Kingdom). Stem Cell Inc. has developed a neural stem cell product for use in Batten’s disease (neuronal ceroid lipofuscinosis) and obtained approval for a new investigational drug (IND) from the FDA, although a phase I trial was terminated due to difficulties in recruiting an adequate number of patients. Instead, the company opted to focus on thoracic SCI, age-related macular degeneration, connatal Pelizaeus-Merzbacher disease for clinical development. Other companies are currently developing neural stem cell products to treat stable ischemic stroke (ReNeuron) as well as ALS and chronic SCI (Neuralstem Inc.).

Among the above companies, Stem Cell, Inc. is the most active developer of fetal neural stem cells. For example, it has generated unique mAbs and isolated neural stem cells derived from fetal brain tissue using cell sorters. The company has identified and enriched CD133\(^+\)/CD24\(^-\)/lo progenitor cells derived from aborted fetal liver tissues and demonstrated that these cells can be clonally isolated to result in specific engraftment in numerous sites, according to the levels of brain markers. The researchers therefore concluded that human central nervous system (CNS) stem cells can be clonally isolated\(^\text{[139]}\). Using CNS stem cells, the company is currently developing stem cell products for use in patients with SCI, macular degeneration, and Pelizaeus-Merzbacher disease. In most cases, de novo neurogenesis is not the goal, but rather the treatment of enzyme deficiencies, as well as remyelination, or the modulation of endogenous repair via neoangiogenesis and/or neuroprotection\(^\text{[131-134]}\). Moreover, the company has isolated fetal liver progenitor cells and developed a unique co-culture system with endothelial cells in a three-dimensional matrix\(^\text{[119]}\). These liver cells are studied for the future application of transplantation therapy and drug discovery assay systems.

Recent fetal stem cell transplantation procedures have used isolated and well-characterized fetal tissue cells designed in a sufficiently rationale manner. Clinical trial results also allow researchers to be optimistic about the future of fetal stem cell transplantation. Nevertheless, uncertainties abound in the clinical settings. Amariglio et al.\(^\text{[136]}\) reported an adverse event following NSC trans-
Table 1 Ongoing clinical trials of fetal stem cell transplantation

Clinical Trials.gov	Start (yr)	Sponsor	Status	Title	Interventions	Cell source
NCT 01033194	2007	The Mediterranean Institute	Unknown	Human fetal liver cell Transplantation in chronic liver failure	Human fetal liver cell transplantation	Fetal liver cells derived from fetuses between the 16th and 26th week of gestation
NCT 01151124	2010	ReNeuron Limited.	Active, not recruiting	Pilot Investigation of Stem Cells in Stroke	Surgical delivery of a neural stem cell line to the damaged area of the brain	HuCNS-SC cells (Human Central Nervous System Stem Cells)
NCT 01321333	2011	StemCells, Inc.	Active, not recruiting	Study of HuCNS-SC in patients with thoracic spinal cord injury	Intramedullary spinal cord transplantation of human CNS stem cells	HuCNS-SC cells
NCT 01348451	2009	Neuralstem Inc.	Active, not recruiting	Human neural stem cell Transplantation for the Treatment of Amyotrophic lateral sclerosis	Surgical implantation of human neural stem cells	Human spinal cord derived neural stem cells
NCT 01391637	2011	StemCells, Inc.	Active, not recruiting	Long-term follow-up study of human stem cells transplanted in subjects with Pelizaeus-Merzbacher disease	HuCNS-SC transplantation	HuCNS-SC cells
NCT 01632527	2012	StemCells, Inc.	Recruiting	Study of HuCNS-SC in age-related macular degeneration	Transplanting HuCNS-SC cells directly into the subretinal space of one eye.	HuCNS-SC cells (Human Central Nervous System Stem Cells)
NCT 01640067	2011	Azienda Ospedaliera Santa Maria	Recruiting	Human neural stem cell Transplantation in Amyotrophic Lateral Sclerosis	Surgical microinjection of human neural stem cells	Human foetal neural stem cells suspension
NCT 01730716	2013	Neuralstem Inc.	Enrolling by invitation	Dose escalation and safety study of neural stem cell transplantation for the treatment of amyotrophic lateral sclerosis	Human spinal cord stem cell implantation	Human spinal cord derived neural stem cells
NCT 01772810	2014	Neuralstem Inc.	Not yet recruiting	Safety study of human spinal cord-derived neural stem cell transplantation for the treatment of Chronic SCI	Human Spinal Cord-derived Neural Stem Cell Transplantation	Human spinal cord derived neural stem cells
NCT 01860794	2013	Bundang CHA Hospital	Recruiting	Evaluation of safety and tolerability of fetal mesencephalic dopamine neuronal precursor cells for Parkinson’s disease	Transplantation of fetal mesencephalic dopamine neuronal precursor cells	Fetal mesencephalic dopamine neuronal precursor cells
NCTI01898390	2012	University of Cambridge	Enrolling by invitation	TRANSEURO open label transplant study in Parkinson’s disease	Neural allo-transplantation with fetal ventral mesencephalic tissue	Fetal ventral mesencephalic tissue

The survey was conducted in ClinicalTrials.gov using key words “fetal + transplantation, or fetus + transplantation”. The status is on June 24, 2014. The description of the table is based on the database. See also the details by entering the identifier No. into the database website. Additional investigation confirmed that the neural stem cells’ are derived from first trimester human fetal cortical cells, the central nervous system stem cells’ from fetal brain tissue, and the spiral cord derived neural stem cells’ from a single eight-week-old fetus.

RAMIFICATIONS OF EMBRYONIC STEM CELL RESEARCH

The results of previous fetal neural transplantation therapy for PD have indicated that the use of more biologically defined and clinically reliable sources of dopaminergic neurons is required in future clinical trials. For this reason, other stem cell sources are often investigated in parallel with clinical trials of fetal stem cell transplantation.

Pluripotent ES cells are established from preimplantation, not implantation, embryos. ES cells possess self-renewal properties and almost infinitely proliferate in petri dishes. In addition, under appropriate differentiation protocols, ES cells exhibiting pluripotency can be differ-
entiated into any lineages of the ectoderm, mesoderm, or endoderm. Therefore, ES cells can be used to obtain the number of cells required for transplantation therapy for various diseases.

Two reports regarding the establishment of mouse ES cell lines were published in 1981[137,138]. The first derivation of human ES cell lines was based on knowledge obtained via the establishment of non-human primate ES cells, first attained in 1993[139,140]. It took a considerable amount of time to transition from mouse to human ES cells due to differences in molecular and cellular mechanisms between mice and humans that hampered the technical establishment of the culture method. For instance, human ES cells, unlike their mouse counterparts, do not appear to require leukemia inhibitor factor (LIF) for propagation or the maintenance of pluripotency[146,147]. Instead, fibroblast growth factor (FGF) signaling has a central role in the self-renewal of human ES cells. It has been previously demonstrated that basic FGF (bFGF) stimulates the clonal growth of human ES cells on fibroblasts in the presence of a commercially available serum replacement[142]. In addition, while the expression of many markers is similar in mouse and human ES cells, significant differences are noted in the expression levels of vimentin, β-III tubulin, alpha-fetoprotein, comodulin, HEB, ARNT, FoxD3, and the LIF receptor complex LIFR/IL6ST (gp130)[143]. Furthermore, focused microarray analyses have identified significant differences in cell cycle and apoptosis regulation as well as cytokine expression[144].

Human ES cells which were first reported in 1998 were established from surplus in vitro fertilization (IVF) embryos, a byproduct of assisted reproduction treatment. The creation of embryos for research purposes, which is associated with ethical issues and requires rigorous reviews in many countries even if legally permitted[146,147], was not conducted to establish the ES cells. Nonetheless, an ethical debate ensured, as some regard preimplantation genetic diagnosis and somatic cell nuclear transfer procedures as being unsafe for research purposes[146,147]. Clinical success rates of transplantation using autologous ES cell-derived cells would be expected to increase, although there are a potential ethical issue when procuring oocytes from females.

Another type of pluripotent stem cell, embryonic germ (EG) cells, can be established from cultured human primordial germ cells (PGCs) derived from early embryos. The first establishment of human EG cells from 5-to 9-wk-old embryos obtained as a result of the therapeutic termination of pregnancy, was reported in 1998[148], followed by other reports[149]. However, knowledge of human PGCs and EG cells is insufficient, as these cells are difficult to study in the gonadal ridge during the fifth and sixth week of development, with further PGCs often being detected in the gut mesentery, most likely during transit[149]. To our knowledge, there have been no clinical trials of human EG cells.

FUTURE DIRECTIONS OF STEM CELL TRANSPLANTATION

In the 20th century, clinical issues abounded in the field of fetal tissue transplantation and many lessons were learned from such practices. After reflecting on the history of fetal tissue cell transplantation, this report will now consider the future direction of stem cell transplantation based on issues related to donor cells, cell processing, and therapeutic cell niche.

Donor cells

Earlier fetal tissue cell transplantation procedures required careful screening of maternal donors and testing of fetal tissues in order to prevent infectious diseases as well as match histocompatibility; however, such analyses...
were often not conducted sufficiently. In addition, mouse transplantation experiments showed that the immunogenicity of first-trimester human fetal pancreatic grafts (6- and 9-wk-old embryos) is less than that of older, second-trimester human fetal pancreatic grafts. This reduced immunogenicity is insufficient to completely circumvent the need for immunosuppressive conditioning in the recipient. Such precautions are now common sense for assuring safety in present-day stem cell transplantation.

The authors emphasize the need for sufficient implementation of cyrogenetic testing, such as karyotyping and CGH arrays, in order to attain the therapeutic goal (Figure 1). Fetal tissue can be obtained from cadaveric fetuses following spontaneous abortion, stillbirth, or surgery due to ectopic pregnancy, in addition to elective abortion. Among these types of cells, fetal tissues derived from spontaneous abortion and stillbirth are more likely to induce adverse events after transplantation, and frequent chromosomal or genetic causes of spontaneous abortion and stillbirth are likely to affect the pre- and post-transplantation behavior of donor cells. In addition, genetic changes may occur during cell culture. Therefore, cyogenetic testing is required to confirm the therapeutic validity of stem cells for transplantation. From this viewpoint, fetal tissue derived from cases of elective abortion or ectopic pregnancy is more likely to be an appropriate source for transplantation. However, the use of such cells remains still ethically, and socially controversial, primarily mainly due to the difficulty in consistently applying the “principle of separation” in cases of elective abortion. For these reasons, the procuring of the required amount of fetal tissue for transplantation is
challenging. In contrast, adult tissue stem or progenitor cells, or terminally differentiated cells derived from non-fetal, adult tissues are more likely to be candidates for transplantation. In addition, the clinical use of human pluripotent stem cells recently became realistic (Table 2). As mentioned above, ES cells have been established from a more ethical source, surplus IVF embryos\[144]\#. Compared with adult tissue stem cells, ES cells proliferate more readily \textit{in vitro}, and the directed differentiation of human ES cells can be used to produce a desired lineage, with some types of differentiated cells currently being applied as grafts in clinical trials (Table 2). Furthermore, a far more ethical source, induced pluripotent stem (iPS) cells, which are established from reprogramming the patient's own somatic cells \textit{via} ectopic expression of defined factors, is now available\[155]\#. Human iPS cells can be likewise differentiated and used for autologous transplantation. Recently, the Japanese Ministry of Health, Labour, and Welfare approved a clinical research application for the use of iPS cell-derived retinal pigment epithelium cells in patients with age-related macular degeneration\[158]\#. Therefore, with the exception of fetal stem cells, a variety of human pluripotent stem cells are available for study in clinical trials.

\textbf{Cell processing}

A few weeks of culture has frequently been applied to expand fetal cells prior to transplantation\[3,119,120,153]\#. Close monitoring during cell culture is needed to assess whether the culture changes the cell population and/or function. If a change in cell population is detected, the population intended for use in transplantation must be isolated \textit{via} methods such as a cell sorting\[156]\#, as the presence of a remaining unintentional cell population in the culture may cause side effects. Notably, the effects of intermingled serotonergic neurons in part explain the onset of graft-induced dyskinesia in the setting of fetal neural transplantation\[158]\#. Such caution should also be applied to cell cultures resulting from the directed differentiation of pluripotent stem cells. In addition, culture additives, such as serum replacement and bFGF, must be carefully tested to avoid contamination with viruses or other microorganisms as well as potential epigenetic effects. Therefore, cell processing requires sufficient optimization in preclinical research.

Again, cell-processing also requires cytogenetic testing to confirm that the absence of karyotype or genetic changes during cell culture. Regarding application of human pluripotent stem cells, there remain still technical obstacles. For example, human ES cells and iPS cells exhibit a progressive tendency to acquire genetic changes during prolonged culture\[158]\#. In addition, it is necessary to take precautions against genetic instability (in the nucleus and mitochondria) of iPS cells, which may occur regardless of the reprogramming method used\[157]\#. However, future advances in stem cell research would overcome such obstacles.

\textbf{Therapeutic cell niche}

The selection of appropriate diseases and symptoms largely constitutes successful transplantation therapy, subsequently requiring the systematic consideration of autonomous or non-autonomous cell pathology, the localization of the affected tissue, and the assessment of progressive vs chronic disease.

Although only cell transplantation is considered to be efficacious in the setting of autonomous pathology, non-autonomous conditions are more likely to require extrinsic cues (cytokines, growth factors, inflammatory mediators, etc.) for proper use in stem cell transplantation. Although the therapeutic intervention requires only NSCs in the two identified pipelines developed for a CNS injury, including SCI (Table 1), the application of extrinsic cues may facilitate graft integration at the site of implantation, thus maximizing the therapeutic efficacy. Hepatocyte growth factor (HGF), a mitogen for mature hepatocytes and mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the CNS. In addition, the intrathecal administration of human HGF in non-human primates has been demonstrated to have therapeutic efficacy in cases of SCI\[158]\#. Therefore, combined treatment with HGF and NSCs may improve the outcomes of therapy for SCI.

The localization of affected tissue defines the required number of cells and transplantation methodology. A survey of current clinical trials indicated that macular degeneration is a major subject of current studies using ES cell-derived cells (Table 2). For instance, four cohorts, ranging from 50000 to 200000 MA09-RPE cells, were designed in the NCT01344993 trial. These numbers are relatively small, as the cells are confined to application at the affected site in patients with retinal disease. With respect to fetal neuronal transplantation for PD, significant motion improvements require the integration of at least 100000 dopaminergic neurons into the striatum\[97,98]\#. However, graft-induced dyskinesia may occur in the setting of cell transplantation in the striatum\[96]\#. The development of a new transplantation procedure to construct dopamine projections from the substantia nigra to the striatum may eliminate the occurrence of dyskinesia.

Presumed pathological changes must be sufficiently considered in patients undergoing stem cell transplantation for progressive diseases. Notably, fetal neural tissue transplantation for in cases of PD has been reported to be efficacious in young and earlier-phase patients, but not old or later-phase patients\[15\#. This finding implies that the efficacy of cell transplantation depends on the condition of the recipient. Such indications are represented by a key concept, the therapeutic cell niche, the local environment surrounding the cell graft that makes the graft functional \textit{in vivo}. The therapeutic cell niche may vary based on symptoms depending on the disease.

Currently, researchers are able to differentiate stem cells into the desired lineage \textit{in vitro} to obtain highly specified, isolated differentiated cells. Many pipelines are
sponsored by business entities (Tables 1 and 2). However, current stem cell transplantation procedures may lack firm evidence regarding the therapeutic cell niche in vivo. Therefore, it is necessary to provide proof of the therapeutic concept in disease model animals and subsequently confirm the safety and efficacy of the treatment in clinical trials, consistently paying attention to the therapeutic cell niche. Otherwise, similar side effects to the adverse events caused by NSC transplantation1[16] may occur in clinical trials. It is thus vital to continue to take a cautious approach to designing stem cell transplantation protocols for various conditions.

CONCLUSION

This report considered perspectives on fetal stem cell transplantation. To date, hundreds of clinical trials using various types of fetal transplants have been performed worldwide. Although success has been observed in some cases, most cases of fetal tissue or cell transplantation have been hastily implemented, and research groups must take into account their knowledge and experience. Meanwhile, research communities have learned many important lessons through these experiences and continue to improve transplantation strategies, leading to clinical trials of isolated fetal stem cells and ES cell-derived cells (Tables 1 and 2).

Although there remain still ethical and social issues with respect to the clinical use of fetal tissue, ongoing clinical trials of fetal transplants should proceed as fetal transplantation may be currently the sole benchmark for other types of stem cell transplantation. Indeed, the decade-long moratorium on cell transplantation for PD was recently lifted[9], and European, United States and Japanese research groups recently formed the Parkinson’s Disease Global Force to assess fetal transplant protocols for ES and iPSC cell-derived dopaminergic neurons. In this process, essential issues, including those associated with the therapeutic cell niche, donor cells, and cell processing, should be sufficiently considered in order to develop more successful transplantation therapies.

Finally, clinical dependence on fetal transplantation, despite its landmark achievements, is expected to gradually fade in the setting of stem cell research owing to lasting ethical controversies and the advent of autologous iPSC cells and ES cells.

REFERENCES

1 Madrazo I, León V, Torres C, Aguilera MC, Varela G, Alvarez F, Fraga A, Drucker-Colín R, Ostrosky F, Skurovich M. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N Engl J Med 1988; 318: 51 [PMID: 3336384 DOI: 10.1056/nejm198801073180115]

2 Jiang NJ, Tang Z, Zhang F, Li S, Jiang D. Human foetal brain transplant trials in the treatment of Parkinsonism. Acta Acad Med (Shanghai) 1987; 14: 77

3 Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Parkinson’s disease. N Engl J Med 2001; 344: 710-719 [PMID: 11236774 DOI: 10.1056/nejm200103083441002]

4 Mehta V, Spears J, Mendez I. Neural transplantation in Parkinson’s disease. Can J Neurol Sci 1997; 24: 292-301 [PMID: 9308975]

5 Brundin P, Karlsson J, Engård M, Schierle GS, Hansson O, Peterén A, Castilho RF. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 2000; 9: 179-195 [PMID: 10811392]

6 Dunnett SB, Björklund A, Lindvall O. Cell therapy in Parkinson’s disease – stop or go? Nat Rev Neurosci 2001; 2: 365-369 [PMID: 11331920 DOI: 10.1038/35072572]

7 Geraerts M, Krylyshkina O, Debyser Z, Baekelandt V. Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells 2007; 25: 263-270 [PMID: 17082225 DOI: 10.1634/stemcells.2006-0364]

8 Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 2009; 87: 2183-2200 [PMID: 19100431 DOI: 10.1002/jnr22054]

9 Lindvall O, Hagell P. Role of cell therapy in Parkinson disease. Neurology Focus 2002; 13: e2 [PMID: 15769071]

10 Lindvall O, Kokai Z. Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 2010; 120: 29-40 [PMID: 20051634 DOI: 10.1172/jci40453]

11 Daley GQ. The promise and perils of stem cell therapeutics. Cell Stem Cell 2012; 10: 740-749 [PMID: 22704514 DOI: 10.1016/j.stem.2012.05.010]

12 Lindvall O. Stem cells for cell therapy in Parkinson’s disease. Pharmacol Res 2003; 47: 279-287 [PMID: 12644384]

13 Lindvall O, Björklund A. Cell therapy in Parkinson’s disease. NeuroRx 2004; 1: 382-393 [PMID: 15717042 DOI: 10.1602/neurorx.1.4.382]

14 Winkler C, Kirik D, Björklund A. Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 2005; 28: 86-92 [PMID: 15667931 DOI: 10.1016/j.tins.2004.12.006]

15 Fichera G. Implantation omoplastico foto-umanli nel cancro e nel diabete. Tumori 1928; 14: 434-477

16 Oda D, Dale BA, Bourereis G. Human oral epithelial cell culture. II. Keratin expression in fetal and adult gingival cells. In Vitro Cell Dev Biol 1990; 26: 596-603 [PMID: 1694168]

17 Hill DJ. Relative abundance and molecular size of immunoreactive insulin-like growth factors I and II in human fetal tissues. Early Hum Dev 1990; 21: 49-58 [PMID: 2311550]

18 Kover K, Moore WV. Development of a method for isolation of islets from human fetal pancreas. Diabetes 1989; 38: 917-924 [PMID: 2544473]

19 Scarpini E, Kreider BQ, Lisak RP, Meola G, Veligomea MC, Baron P, Beretta S, Busaglia M, Ross AH, Scarlato G. Cultures of human Schwann cells isolated from fetal nerves. Brain Res 1988; 440: 261-266 [PMID: 2833992]

20 Rutka JT, Giblin JR, Balkissoon R, Wen D, Myatt CA, McCulloch JR, Rosenblum ML. Characterization of fetal human brain cultures. Development of a potential model for selectively purifying human glial cells in culture. Dev Neurosci 1987; 9: 154-173 [PMID: 3678106]

21 Ballard PL, Ersey R, Gonzales LK, Liley HG, Williams MC. Isolation and characterization of differentiated alveolar type II cells from fetal human lung. Biochim Biophys Acta 1986; 883: 335-344 [PMID: 3527277]

22 Seldin DC, Caulfield JP, Hein A, Osathanondh R, Nabel G, Schlossman SF, Stevens RL, Austen KF. Biochemical and phenotypic characterization of human basophilic cells derived from dispersed fetal liver with murine T cell factors. J Immunol 1986; 136: 2222-2230 [PMID: 2419426]

23 Bauer EA, Kronberger A, Stricklin GP, Smith LT, Holbrook KA. Age-related changes in collagenase expression in cultured embryonic and fetal human skin fibroblasts. Exp Cell Res 1985; 161: 484-494 [PMID: 2998039]
Ishii T et al. Fetal stem cell transplantation

Sells MA, Chernoff J, Cerda A, Bowers C, Shafritz DA, Kase N, Christman JK, Acs G. Long-term culture and passage of human fetal liver cells that synthesize albumin. In Vitro Cell Dev Biol 1985; 21: 216-220 [PMID: 4089435]

Lopez AD, Kavali AG, Hayek A, King CC. Isolation, culture, and imaging of human fetal pancreatic cell clusters. J Vis Exp 2014; (87) [PMID: 24895054 DOI: 10.3791/5076]

McEvoy RC, Thomas NM, Bowers C, Ginsberg-Fellner F. Maintenance of fetal human pancreatic beta cells in tissue culture. Med Biol 1986; 64: 271-276 [PMID: 3027465]

Hunt JS, Petroff MG, McIntire RH, Ober C. HLA-G and pregnancy. Immunol Today 1991; 12: 61-69 [PMID: 1961056 DOI: 10.1016/0167-5699(91)90127-D]

Brands K, Colvin E, Williams LJ, Wang R, Lock RB, Tuch BE. Reduced immunogenicity of first-trimester human fetal pancreas. Diabetes 2008; 57: 627-634 [PMID: 1806519 DOI: 10.2377/db07-0720a]

Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic Extracts in the Treatment of Diabetes Mellitus. Can Med Assoc J 1922; 12: 141-146 [PMID: 2031406]

Vawter DE, Kearney W, Gervais KG, Caplan AL, Garry D, Tauer C. The use of human fetal tissue: scientific, ethical, and policy concerns (January 1990). J Int Bioethique 1991; 2: 189-196 [PMID: 1165490]

Thomas ED, Locht HL, Lu WC, Ferreeee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257: 491-496 [PMID: 13464965 DOI: 10.1056/nejm195709122571102]

Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol 2005; 49: 243-250 [PMID: 15906238 DOI: 10.1387/jdb.041957mt]

Uphoff DE. Perfusion of secondary phase of irradiation syndrome by inoculation of fetomaternal hematopoietic tissue following lethal total-body x-irradiation. J Natl Cancer Inst 1958; 20: 625-632 [PMID: 13539613]

Scott RB, Matthews QQ, Constandoulakism PF, Whiteside JD. Hypoplastic anemia treated by transfusion of foetal haemopoietic cells. Br Med J 1961; 2: 1385-1388 [PMID: 13909975]

Ye GY. Fetal liver transfusion (FLT) in the treatment of aplastic anemia. Zhonghua Nei Ke Za Zhi 1983; 22: 71-73 [PMID: 6347561]

Lou FD, Lui HC, Wang YZ. [Short-term and multiple fetal liver transplantations for the treatment of aplastic anemia: report of 15 cases]. Zhonghua Nei Ke Za Zhi 1985; 6: 65-71, 124 [PMID: 3836238]

Narumi A, Manna A, Sparaventi G, Giardini C, Angelucci E. Fetal liver transplantation in aplastic anemia patients. Prog Clin Biol Res 1985; 193: 251-265 [PMID: 2688460]

Kochupillai V, Sharma S, Francis S, Mehra N, Nanu A, Kalra V, Menon PS, Bhargava M. Bone marrow reconstitution following human fetal liver infusion (FLI) in sixteen severe aplastic anemia patients. Prog Clin Biol Res 1985; 193: 103-108 [PMID: 3324391]

Izzi T, Polchi P, Galimberti M, Delfini C, Moretti L, Porcellini A, Manna A, Sparaventi G, Giardini C, Angelucci E. Fetal liver transplantation in aplastic anemia and acute leukemia. Prog Clin Biol Res 1985; 193: 237-249 [PMID: 3911211]

Lucarelli G, Izzi T, Delfini C, Grilli G. Fetal liver transplantation in severe aplastic anemia. Haematologica 1978; 63: 93-94 [PMID: 417979]

Lucarelli G, Izzi T, Porcellini A, Delfini C. Infusion of fetal liver cells in aplastic anemia. Haematol Blood Transfus 1979; 24: 167-170 [PMID: 396172]

Gale RF. Fetal liver transplantation in hematologic disorders. Prog Clin Biol Res 1985; 193: 293-297 [PMID: 3911214]

Gale RF. Fetal liver transplantation in aplastic anemia and leukemia. Thymus 1987; 10: 89-94 [PMID: 3324406]

Keightley RG, Lawton AR, Cooper MD, Yinus EJ. Successful fetal liver transplantation in a child with severe combined immunodeficiency. Lancet 1975; 2: 850-853 [PMID: 53353]

Buckley RH, Whisnant KJ, Schiff RJ, Gilbertsen RB, Huang AT, Platt MS. Correction of severe combined immunodeficiency by fetal liver cells. N Engl J Med 1976; 294: 1076-1081 [PMID: 3737 DOI: 10.1056/nejm19760512257102]

Seto S, Miyake T, Hirao T. Reconstitution of cell-mediated immunity in severe combined immunodeficiency following fetal liver transplantation. Tohoku J Exp Clin Med 1985; 20: 233-238 [PMID: 3914746]

Bühredel F, Rosenkranz M, Schwenke H, Kühndel K, Thierbach V. Transplantation of stem cells of embryonic liver in a patient with severe combined immunodeficiency. Acta Paediatr Hung 1985; 26: 233-240 [PMID: 2417611]

Béndet B, Touraine JL, Hernier M, François R. [Restoration of mixed and severe immunologic deficiency, by fetal liver and thymus graft]. Arch Fr Pediatr 1979; 36: 995-1005 [PMID: 398203]

Lucarelli G, Izzi T, Porcellini A, Delfini C, Galimberti M, Moretti L, Polchi P, Agostinelli F, Andreani M, Manna M, Dallapiccola B. Fetal liver transplantation in 2 patients with acute leukaea after total body irradiation. Scand J Haematol 1982; 28: 65-71 [PMID: 6122263]

Kochupillai V, Sharma S, Francis S, Mehra N, Nanu A, Verma IC, Dakar D, Kumar S, Gokhale U. Fetal liver infusion: an adjuvant in the therapy of acute myeloid leukemia (AML). Prog Clin Biol Res 1985; 193: 607-627 [PMID: 3911212]

Xue LF, Zhang XW, Yang L, Liu YX. [Fetal liver cell transfusion in chemotherapy of malignant tumors and blood diseases]. Zhonghua Zhong Liu Za Zhi 1986; 8: 367-369 [PMID: 3552535]

Gale RP, Touraine JL, Kochupillai V. Synopsis and perspectives on fetal liver transplantation. Thymus 1987; 10: 1-4 [PMID: 3324398]

August CS, Rosen FS, Filler RM, Janeway CA, Markowski B, Kay HE. Implantation of a foetal thymus, restoring immunological competence in a patient with thymic aplasia (Digeorge’s syndrome). Lancet 1968; 2: 1210-1211 [PMID: 4177204]

Cleveland WW, Fogel BJ, Brown WT, Kay HE. Foetal thymic transplant in a case of Digeorge’s syndrome. Lancet 1968; 2: 1211-1214 [PMID: 4177205]

Pahwa R, Pahwa S, Good RA, Incery GS, O’Reilly R. Rationale for combined use of fetal liver and thymus for immunological reconstitution in patients with variants of severe combined immunodeficiency. Proc Natl Acad Sci USA 1977; 74: 3002-3005 [PMID: 331324]

Hisashita H, Heike T Miyamae T, Kimata H, Suehiro Y, Hosoi S, Mayumi M, Shinomiya K, and McKawa H. [A case of DiGeorge syndrome in which fetal thymus transplant was engrafted] (in Japanese). J Jpn Pediatr Soc 1987; 91: 374

Higuchi S, Yabane Y Nakamura N Akaboshi I, Tsuchiya H, Nunez Y, Matsukan I, Goto Y, Sakaguchi M, Takagi K, Takamura M, Udaka K,Ota Y, and Uda M Matsuda I. [Therapeutic efficacy of engraftment of thymus hormone and irradiated fetal thymus in a male infant case of combined immunodeficiency with predominant T-cell defect](in Japanese). Pediatrics of Japan 1991; 32: 851-858

Langston JW, Ballard P, Tetrad JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219: 979-980 [PMID: 6823561]
Fetal stem cell transplantation

Ishii T "et al."
The Ministry of Health, Labour, and Welfare; Hirsh-Burri N, Raffoul W, Scaletta C, Pio, Chen T, Zhong N, Li ZC, Yin F, Liu S. Clinical fetal-cell revival for Parkinson's. ANGELL M. The use of fetal tissue in research. Ethics, public policy, and human fetal tissue. Rosenstein JM, Collier TJ, Burke MA, Chen 1995; 1996; 1989; 2009; 2012; 1994; Mason SL, Harrower TP, Swain RA, Ho AK, September 26, 2014; Heshmat R, Amoli M, Keshtkar AA, Arjmand, Thakar RG, Lomax G, Gibbons D. Clinical transplantation of human fetal neuroretinal cells in advanced retinitis pigmentosa patients: results of a long-term safety study. EXP NEUR 1999; 157: 58-68 [PMID: 10222108 DOI: 10.1016/exnr.1998.6992] OLANOW CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003; 54: 403-414 [PMID: 12953276 DOI: 10.1002/ana.10720] KORDOWER JH, Freeman TB, Snowden J, Vingerhoets FJ, Mufson EJ, Sanberg PR, Hauser RA, Smith DA, Nauert GM, Perl DP. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995; 332: 1118-1124 [PMID: 770284 DOI: 10.1056/nejm199504233221702] KORDOWER JH, Rosensten JM, Collier TJ, Burke MA, Chen EY, Li J, Martel L, Levey AE, Mufson EJ, Freeman TB, Olanow CW. Functional fetal nigral grafts in a patient with Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol 1996; 370: 203-230 [PMID: 8808731 DOI: 10.1002/sjc.1096624370) ANNAS GJ, Elias S. The politics of transplantation of human fetal tissue. N Engl J Med 1989; 320: 1079-1082 [PMID: 2927486 DOI: 10.1013/jnag18904203201610] CHILDRESS JF. Ethics, public policy, and human fetal tissue transplantation research. Kennedy Inst Ethics J 1991; 1: 93-121 [PMID: 11645701] KASSIER JP, Angell M. The use of fetal tissue in research on Parkinson’s disease. N Engl J Med 1992; 327: 1591-1592 [PMID: 1343087 DOI: 10.1056/nejm199211263227210] VAWTER DE, Caplan A. Strange brew: the politics and ethics of fetal tissue transplant research in the United States. J Lab Clin Med 1992; 120: 30-34 [PMID: 1631324] KEOWN J. The Polkington Report on Fetal Research: nice recommendations, shame about the reasoning. J Med Ethics 1993; 19: 114-120 [PMID: 8331636] DHSS. Department of Health and Social Security: Review of the guidance on the research and use of fetuses and fetal material (the Polkington report). London, Cm762: Her Majesty's Stationary Office, 1989 BMA guidelines on the use of fetal tissue. Lancet 1988; 1: 1119 [PMID: 11644349] KENT J. The fetal tissue economy: from the abortion clinic to the stem cell laboratory. Soc Sci Med 2008; 67: 1747-1756 [PMID: 18955320 DOI: 10.1016/j.socscimed.2008.09.027] KENT J. Pfeffer N. Regulating the collection and use of fetal stem cells. BMJ 2006; 332: 866-867 [PMID: 16613940 DOI: 10.1136/bmj.332.7546.866] BOER GJ. Ethical guidelines for the use of human embryonic or fetal tissue for experimental and clinical neurotransplantation and research. Network of European CNS Transplantation and Restoration (NECTAR). J Neurol 1994; 242: 1-13 [PMID: 789744]
2006; 1981, Hirshberg A, Scheithauer BW, Cohen Y, Reginensi D, Garcia S, Carulla P, Moreno-Montes EJ, Matsumoto SG, Sherman LS, Kroenke CD, Back SA. Hu man neural stem cells induce functional myelination in mice with severe dysmyelination. Cell Mol Life Sci 2013; 70(4-5): 617-634 DOI: 10.1007/s00018-012-1018-2

126 Wu J, Sun T, Ye C, Yao J, Zhu B, He H. Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell Transplant 2012; 21 Suppl 1: S33-S37 DOI: 10.3727/096368912x591743

127 Seledtsov VI, Rabinovich SS, Parlyuk OV, Kafanova MY, Astrakov SV, Seledtsova GV, Samarín DM, Poveschenko OV. Cell transplantation therapy in re-animerating severely head-injured patients. Biomed Pharmacother 2005; 59: 415-420 DOI: 10.1016/j.biopha.2005.01.012

128 Nocentini S, Reginensi D, Garcia S, Carulla P, Moreno-Flores MT, Wandosell F, Trepat X, Bribian A, del Río JA, Trepat X, Bribian A, del Río JA. Nocentini S, Bribian A, del Río JA. In vitro and in vivo properties of two human embryonic germ cell lines. Cell Stem Cell 2012; 10: 777-780 DOI: 10.1016/j.stem.2012.05.007

129 Chen L, Huang H, Zhang J, Fang Z, Liu Y, Xi H, Wang H, Gu Z, Song Y, Li Y, Tan K. Short-term outcome of olfactory ensheathing cells transplantation for treatment of amyotrophic lateral sclerosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2011; 21: 961-966 DOI: 10.1016/j.j.hubio.2009.09.055

130 Tamaki SJ, Ueda Y, Dohse M, Calapa A, Cooper JD, Reitsma M, He D, Tushinski R, Belichenko PV, Salehi A, Mobley W, Gage FH, Huhn S, Tsukamoto AS, Weissman IL, Uchida N, Martin GR. Neuroprotection of host cells by human central nervous system transplanted cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell 2009; 5: 310-319 DOI: 10.1016/j.stem.2009.05.022

131 Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 2009; 4: e45871 DOI: 10.1371/journal.pone.00045871

132 Gupta N, Henry RG, Strobe R, Jang SM, Lim DA, Bucci M, Caverzasi E, Gaetano L, Mandelli ML, Ryan T, Perry R, Farrell J, Jeremy RJ, Ulman M, Huhn SL, Barkovich AJ, Swiergiej JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocystcs. Science 1998; 282: 1145-1147 DOI: 10.1056/58000.9112

133 Ginis I, Luo Y, Miura T, Thies S, Brandenberg R, Gerechter-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS. Differences between human and mouse embryonic stem cell lines. Dev Biol 2004; 269: 360-380 DOI: 10.1016/j.ydbio.2003.12.034

134 Ishii T, Pera RA, Greely HT. Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells. Cell Stem Cell 2013; 13: 145-148 DOI: 10.1016/j.stem.2013.07.005

135 Hayden EC. Funding windfall rescues abandoned stem-cell trial. Nature 2014; 510: 18 DOI: 10.1038/510018a

136 Tachibana M, Amato P, Sarmann M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton F, Gokhale S, Stouffer RL, Wolf D, Mitalipov S. Human embryonic stem cells derived from somatic cell nuclear transfer. Cell 2013; 153: 1228-1238 DOI: 10.1016/j.cell.2013.05.006

137 Chung YG, Eun JH, Lee JE, Shim SH, Sepilian H, Hong SW, Lee Y, Trefl NR, Choi YH, Kimbrel EA, Dittman RE, Lanza R, Lee DR. Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 2014; 14: 777-780 DOI: 10.1016/j.stem.2014.03.015

138 Shamblott MJ, Akeson J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998; 95: 13726-13731 DOI: 10.1073/pnas.9811868

139 Turnpenny L, Spalluto CM, Perrett RM, O’Shea M, Hanley KP, Cameron IT, Wilson DJ, Hanley NA. Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells 2006; 24: 212-220 DOI: 10.16147
Ishii T et al. Fetal stem cell transplantation

DOI: 10.1634/stemcells.2005-0255

Fousteri G, von Herrath M. First-trimester human fetal pancreas transplantation for type 1 diabetes treatment: an alternative approach for achieving long-term graft survival? *Diabetes* 2008; 57: 525-526 [PMID: 18305145 DOI: 10.2337/db07-1409]

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell* 2007; 131: 861-872 [PMID: 18035408 DOI: 10.1016/j.cell.2007.11.019]

Cyranoski D. iPS cells in humans. *Nat Biotechnol* 2013; 31: 775 [DOI: 10.1038/nbt.2077]

Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL. Direct isolation of human central nervous system stem cells. *Proc Natl Acad Sci USA* 2000; 97: 14720-14725 [PMID: 11121071 DOI: 10.1073/pnas.97.26.14720]

Lindvall O. Dopaminergic neurons for Parkinson’s therapy. *Nat Biotechnol* 2012; 30. 56-58 [PMID: 22231097 DOI: 10.1038/nbt.2051]

Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P. Graft-induced dyskinesias in Parkinson’s disease: High striatal serotonin/dopamine transporter ratio. *Mov Disord* 2011; 26: 1997-2003 [PMID: 21611977 DOI: 10.1002/mds.23743]

Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, Chiao E, Choi YM, Choo AB, Collins D, Colman A, Crook JM, Daley GQ, Dalton A, De Sousa PA, Denning C, Downie J, Dvorak P, Montgomery KD, Feki A, Ford A, Fox V, Fraga AM, Frumkin T, Ge L, Gokhale P, Golan-Lev T, Gourabi H, Gropp M, Lu G, Hampl A, Harron K, Healy L, Herath W, Holm F, Hovatta O, Hyllner J, Inamdar MS, Irwanto AK, Ishii T, Jacobi M, Jin Y, Kimber S, Kiselev S, Knowles BB, Kopper O, Kukharenko V, Kuliev A, Lagarkova MA, Laird PW, Lako M, Laslett AL, Lavon N, Lee DR, Lee JE, Li C, Lim LS, Ludwig TE, Ma Y, Maltby E, Mateisel I, Mayshar Y, Mileikovsky M, Minger SL, Miyazaki T, Moon SY, Moore H, Mummery C, Nagy A, Nakatsuji N, Narwani K, Oh SK, Oh SK, Olson C, Otonkoski T, Pan F, Park IH, Pells S, Penaforte LV, Qi O, Raj GS, Reubinoff B, Robins A, Robson P, Rossant J, Salekdeh GH, Schulz TC, Sermon K, Sheikh Mohammad J, Shen H, Sherrr E, Sidhu K, Sivarajah S, Skottman H, Spits C, Stacey GN, Strehl R, Strelenko N, Suemori H, Sun B, Suuronen R, Takahashi K, Tuuri T, Venn P, Verlinsky Y, Ward-van Oostwaard D, Weisenberger DJ, Wu Y, Yamanaka S, Young L, Zhou Q. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. *Nature biotechnology* 2011; 29: 1132-1144 [PMID: 22119741 DOI: 10.1038/nbt.2051]

Ronen D, Benvenisty N. Genomic stability in reprogramming. *Curr Opin Genet Dev* 2012; 22: 444-449 [PMID: 23040504 DOI: 10.1016/j.gde.2012.09.003]

Kitamura K, Fujiyoshi K, Yamane J, Toyota F, Hikishima K, Nomura T, Funakoshi H, Nakamura T, Aoki M, Toyama Y, Okano H, Nakamura M. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. *PLoS One* 2011; 6: e27706 [PMID: 22140549 DOI: 10.1371/journal.pone.0027706]
