Supplementary Information for
Directionality of light absorption and emission in representative fluorescent proteins

Jitka Myšková¹, Olga Rybakova¹,², Jiří Brynda¹,³, Petro Khoroshyy¹, Alexey Bondar¹,², Josef Lazar¹,²*

*Josef Lazar, Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, phone: +420 723 415 295
**Email: lazar@uochb.cas.cz

This PDF file includes:

- Supplementary text
- Figures S1 to S6
- Tables S1 to S4

-
Supplementary Information Text
Supplementary Methods: Calculating Ratios of Extinction Coefficients ($\varepsilon_\parallel / \varepsilon_\perp$).

Based on Lambert-Beer’s law we can write for light polarized parallel and perpendicular to the long axis of crystal:

$$A_\parallel = \log \frac{I_{0\parallel}}{I_\parallel} = \varepsilon_\parallel \cdot c \cdot l \quad A_\perp = \log \frac{I_{0\perp}}{I_\perp} = \varepsilon_\perp \cdot c \cdot l$$ \hspace{1cm} (1, 2)

The corresponding crystal transmittances can then be described as

$$T_\parallel = \frac{I_\parallel}{I_{0\parallel}} = 10^{-\varepsilon_\parallel \cdot c \cdot l} \quad T_\perp = \frac{I_\perp}{I_{0\perp}} = 10^{-\varepsilon_\perp \cdot c \cdot l}$$

The above relationships were used to determine the values of extinction coefficients $\varepsilon_\parallel, \varepsilon_\perp$. However, in order to make our TDM direction determinations as accurate as possible, we wanted to avoid introducing unnecessary experimental errors (from measurements of crystal thickness and protein concentration) Therefore, for determining TDM directions, we used ratios of extinction coefficients $\varepsilon_\parallel, \varepsilon_\perp$, requiring only measurements of light transmission:

$$\frac{\varepsilon_\parallel}{\varepsilon_\perp} = \frac{\log T_\parallel}{\log T_\perp} = \frac{\log \frac{I_\parallel}{I_{0\parallel}}}{\log \frac{I_\perp}{I_{0\perp}}}$$ \hspace{1cm} (3)

Eq. 3 was used to calculate the values of $\varepsilon_\parallel / \varepsilon_\perp$ for measurements with excitation wavelengths of 545 and 593 nm, whose polarization purity was better than 99.8%. For excitation with 405 nm, 458 nm and 488 nm light, we amended our calculations to include contributions of polarizations perpendicular to the one desired, in the following manner.

If the light polarized parallel to the long axis of crystal contains a fraction $(1 - x_\parallel)$ of perpendicular polarization, we can write:

$$I_\parallel = x_\parallel I_0 10^{-\varepsilon_\parallel \cdot c \cdot l} + (1 - x_\parallel) I_0 10^{-\varepsilon_\perp \cdot c \cdot l}$$ \hspace{1cm} (4)

Similarly, for light polarized perpendicular to the long axis of crystal containing a fraction $(1 - x_\perp)$ of parallel polarization, we write:

$$I_\perp = x_\perp I_0 10^{-\varepsilon_\perp \cdot c \cdot l} + (1 - x_\perp) I_0 10^{-\varepsilon_\parallel \cdot c \cdot l}$$ \hspace{1cm} (5)

By combining equations 4 and 5, we can express the individual extinction coefficients:

$$\varepsilon_\perp = -\frac{1}{c \cdot l} \log \left(\frac{x_\parallel - 1}{x_\perp + x_\parallel - 1} \right) = -\frac{1}{c \cdot l} \log \left(\frac{x_\parallel T_\parallel + x_\perp T_\perp}{x_\perp + x_\parallel - 1} \right)$$ \hspace{1cm} (6)

$$\varepsilon_\parallel = -\frac{1}{c \cdot l} \log \left(\frac{x_\perp I_0 - (1 - x_\parallel) I_0}{x_\parallel + x_\perp - 1} \right) = -\frac{1}{c \cdot l} \log \left(\frac{(x_\parallel - 1) T_\parallel + x_\perp T_\perp}{x_\parallel + x_\perp - 1} \right)$$ \hspace{1cm} (7)
Therefore, if we know the polarization purity ($x_∥, x_⊥$; Table S2), we can calculate $\varepsilon_∥/\varepsilon_⊥$ as follows:

$$\frac{\varepsilon_∥}{\varepsilon_⊥} = \frac{\log \left(\frac{(x_∥ - 1) T_⊥ + x_⊥ T_∥}{x_∥ + x_⊥ - 1} \right)}{\log \left(\frac{(x_⊥ - 1) T_∥ + x_∥ T_⊥}{x_∥ + x_⊥ - 1} \right)}$$

(8)

For light of pure polarization, expression 8 becomes equivalent to expression 3.
Supplementary Methods: Mathematical modeling of light absorption by FP crystals.

At the core of the mathematical model is a simple \cos^2 relationship describing the rate of light absorption as a function of the angle between the xTDM vector and the electric field vector of the incoming light. The model takes into account (i) the distinct molecular orientations present within a crystallographic unit cell, (ii) orientation of this unit cell within a crystal, as well as (iii) orientation of the crystal within the laboratory coordinate frame. Here we illustrate the crucial steps of our approach on crystals of the P2₁2₁2₁ space group, as implemented in the computational software Mathematica. For other space groups, calculations were carried out analogously.

After storing the list of PDB coordinates of the fluorophore atoms in a variable (fluorAtoms), the fluorophore plane was defined by calculating its normal direction (fluoNormal) using singular value decomposition:

\[
\{U, S, V\} = \text{SingularValueDecomposition}[Y = # - \text{Mean}@# &\text{fluorAtoms}[\text{Transpose}]]; \\
\text{fluoNormal} = \text{Normalize}[U[[;;, 3]]];
\]

Coordinates of the aromatic ring centers (ring1center, ring2center) were calculated by averaging the coordinates of the member atoms of each aromatic ring. A vector describing the direction of the line connecting the two ring centers was then calculated as:

\[
\text{centerLineApprox} = \text{ring1center} - \text{ring2center};
\]

Since fluorophore atoms do not lie exactly within a plane, neither does this vector. Its projection into the fluorophore plane (centerLine) was therefore calculated and subsequently used to define the angle τ describing the TDM directions:

\[
\text{centerLine} = \text{Normalize}[ext{Cross}[\text{Cross}[\text{centerLineApprox}, \text{fluoNormal}], \text{fluoNormal}]]];
\]

Coordinates of a unit-sized TDM vector within the fluorophore plane were then defined as a function of an angle τ, describing a rotation of the line connecting the centers of the aromatic rings (centerLine) around the fluorophore plane normal (fluoNormal):

\[
\text{pdbTDM}[\tau_] := \text{RotationMatrix}[\tau, \text{fluoNormal}].\text{centerLine};
\]

TDM vectors for distinct molecules within a crystallographic unit cells can be calculated by applying crystallographic symmetry operations to the coordinates of the TDM for one of the molecules. The symmetry rotations for the P2₁2₁2₁ space group are defined by the matrices:

\[
sym1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad sym2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad sym3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{and} \quad sym4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.
\]

The coordinates of the TDMs (in the crystal coordinate system) for the four molecules within a P2₁2₁2₁ unit cell were therefore defined as:

\[
\text{pdbTDM1}[\tau_] := \text{sym1.pdbTDM}[\tau]; \\
\text{pdbTDM2}[\tau_] := \text{sym2.pdbTDM}[\tau]; \\
\text{pdbTDM3}[\tau_] := \text{sym3.pdbTDM}[\tau]; \\
\text{pdbTDM4}[\tau_] := \text{sym4.pdbTDM}[\tau];
\]

In order to find the TDM coordinates in the laboratory coordinate system, the orientation of the crystallographic unit cell within the crystal was taken in account. In all the P2₁2₁2₁ crystals we investigated, the crystallographic axes B, C coincided with the diagonal directions of the crystal.
cross-section. Therefore, in crystals positioned flat on the glass cover slip, the crystallographic unit cell was rotated with respect to the xy plane of the microscope by an angle (γ). If we define the long axis of the crystal (which in our $P2_12_12_1$ crystals coincides with the crystallographic axis A) to be the laboratory axis x, we can describe the TDM orientations in the laboratory coordinate system:

\[
\text{roll}[\gamma_] := \text{RotationMatrix}[\gamma, \{1, 0, 0\}];
\]

\[
\text{TDM1}[\tau_, \gamma_] := \text{roll}[\gamma].\text{pdbTDM1}[\tau];
\]

\[
\text{TDM2}[\tau_, \gamma_] := \text{roll}[\gamma].\text{pdbTDM2}[\tau];
\]

\[
\text{TDM3}[\tau_, \gamma_] := \text{roll}[\gamma].\text{pdbTDM3}[\tau];
\]

\[
\text{TDM4}[\tau_, \gamma_] := \text{roll}[\gamma].\text{pdbTDM4}[\tau];
\]

For light propagating along the laboratory z-axis (vertically), the electric field vector (elVector) can be defined as a function of an angle (polAngle) with respect to the x-axis (coinciding with the crystal long axis):

\[
elVector[\text{polAngle}_] := \{\text{Cos}[\text{polAngle}], \text{Sin}[\text{polAngle}], 0\};
\]

Combining the above functions allows expressing the absorption rate of a crystal as a function of three variables: τ (TDM orientation within the fluorophore plane), γ (crystal roll angle), and polAngle (direction of excitation light polarization):

\[
\text{absorptionRate}[\tau_, \gamma_, \text{polAngle}_] :=
(\text{elVector}[\text{polAngle}].\text{TDM1}[\tau, \gamma])^2 + (\text{elVector}[\text{polAngle}].\text{TDM2}[\tau, \gamma])^2 + (\text{elVector}[\text{polAngle}].\text{TDM3}[\tau, \gamma])^2 + (\text{elVector}[\text{polAngle}].\text{TDM4}[\tau, \gamma])^2;
\]

In principle, the TDM orientation within the fluorophore (τ) can then be calculated from known values of γ, polAngle, and absorptionRate. However, the absorption rate in this equation is expressed in units of an unknown size. To bypass this issue, we solved for τ an equation using the unitless ratio (or logratio) of absorption rates of light polarized parallel and perpendicular to the long axis of the crystal (polAngle equal to 0 and π/2, respectively):

\[
\text{Solve}[\text{absorptionRate}[\tau_, \gamma_, 0]/\text{absorptionRate}[\tau_, \gamma_, \pi/2] == \text{observedAbsRateRatio}, \tau]
\]

This approach invariably yielded two values of τ (Fig 2, Table 1), of which one (designated as τ_1) was consistent with results of our measurements of crystals of various tilts along their long axis (angles γ), while the other solution (designated as τ_2) varied with crystal tilt, and therefore was not consistent with the physical concept of the transition dipole moment.

Apart from calculating the TDM orientation (angle τ), the above approach also allowed us to generate plots of logratios of extinction coefficients for various TDM orientations (τ) (Fig. S3) and crystal orientations (γ) (Fig. S4), for example:

\[
\gamma = 68.03/180 \pi; \ \tau = ;
\]

Plot[absorptionRate[τ, γ, 0]/absorptionRate[τ, γ, π/2], { τ, -π/2, π/2}]

or

\[
\gamma = ; \ \tau = 3.6/180 \pi ;
\]

Plot[absorptionRate[τ, γ, 0]/absorptionRate[τ, γ, π/2], { γ, -40/180π, 40/180π}]

Fig. S1. Microscopy setups. (A) Setup for measurements of linear dichroism (polarization resolved light absorption); (B) Setup for measurements of fluorescence polarization.
Fig. S2. Atoms used to define the fluorophore plane. (A) mTurquoise2; (B) eGFP, green form of mEos4b; (C) mCherry; (D) red form of mEos4b.
Fig. S3. Mathematical modeling predictions of log₂(ε∥/ε⊥) and log₂(F∥/F⊥) values for various TDM orientations (angle τ) within the fluorophore plane. Experimentally determined values of log₂(ε∥/ε⊥) and log₂(F∥/F⊥) and the corresponding TDM orientations (τ₁, τ₂) are indicated. (A) mTurquoise2; (B) eGFP (pH 7.5); (C) eGFP (pH 3.8); (D) mCherry; (E) mEos4b (green form); and (F) mEos4b (red form)
Fig. S4. Distinguishing between \(\tau \) values by observations of linear dichroism of crystals tilted along their long axis. (A) mTurquoise2; (B) eGFP; (C) mCherry; (D) mEos4b (green form); (E) mEos4b (red form). Points: experimental data from individual crystals. Curves: predictions for the two \(\tau \) values (\(\tau_1, \tau_2 \)) consistent with data obtained from crystals oriented horizontally.
Fig. S5. Fluorescence anisotropy of FP solutions. (A) Fluorescence anisotropy as a function of excitation wavelength for the investigated FPs. Points represent mean values, error bars show 95% confidence intervals. Values of the angle between the xTDM and mTDM (β) corresponding to the observed fluorescence anisotropy are indicated on the right y-axis. (B) Correlation between values of the angle between the xTDM and mTDM determined in FP solutions (β) and in FP crystals ($\Delta\tau_1$; difference between τ_1 values determined for an xTDM and a corresponding mTDM). A linear relationship is apparent (indicated by a dashed line).
Fig. S6. Fluorophore bend in the green form of mEos4b. A stereo view of the structures of the fluorophore of eGFP (green) and of the green form of mEos4b (orange)
Table S1. Diffraction data and structure refinement statistics.

	mTurquoise2	eGFP pH7.5	eGFP pH3.8*
Data collection statistics			
Wavelength (Å)	1.5419	1.5419	1.5419
Space group	$P2_12_12_1$	$P2_12_12_1$	$P2_12_12_1$
Cell parameters (Å, o)	51.15 61.40 68.60	50.940 62.12 68.86	50.97 62.15 68.79
Resolution range (Å)	50.0 - 1.85 (1.90 - 1.85)	50.00 - 1.63 (1.67 - 1.63)	50.00 - 1.55 (1.59 - 1.55)
Number of unique reflections	18997 (1375)	24211 (644)	61255 (4560)
Multiplicity	12.6 (6.8)	5.9 (1.7)	5.8 (2.5)
Completeness (%)	99.9 (99.2)	86.0 (31.6)	99.9 (99.9)
R_{merge}^a	5.2 (190.6)	7.7 (162.3)	5.5 (96.6)
$CC_{1/2}(\%)$	100 (49.6)	99.9 (28.5)	99.9 (37.3)
Average I/σ(I)	29.5 (1.0)	15.3 (0.55)	16.9 (1.0)
Wilson B (Å²)	38.6	26.2	26.1
Refinement statistics			
Resolution range (Å)	39.27 - 1.85 (1.90 - 1.85)	39.39 - 1.65 (1.69 - 1.65)	46.12 - 1.55 (1.59 - 1.55)
No. of reflections in working set	18046 (1299)	22868 (1055)	30780 (2250)
No. of reflections in the test set	950 (68)	1204 (56)	1620 (118)
R_{work} value (%)b	18.4 (34.6)	17.8 (35.8)	18.6 (26.2))
R_{free} value (%)c	21.8 (35.2)	21.6 (30.1)	21.3 (27.0)
RMSD bond length (Å)	0.02	0.014	0.013
RMSD angle (°)	1.7	1.9	1.7
Mean ADP value (Å²)	42.4	24.2	23.1
Ramachandran plot statistics			
Residues in favored regions	98.6 %	98.2 %	98.6 %
Residues in allowed regions	0.0 %	0.5 %	0.0 %
PDB code	6YLN	6YLQ	6YLP
Data collection statistics

	mCherry	mEos4b*				
Wavelength (Å)	1.5419	1.5419				
Space group	C2	P2₁2₁2₁				
Cell parameters (Å, °)						
	107.28	42.92	85.77	38.50	70.47	90.57
	90.00	128.50	90.00	90.00	90.00	90.00
Resolution range (Å)	50.0 - 1.60	50.0 - 1.55				
	1.59 - 1.55	1.63 - 1.55				
Number of unique reflections	39100 (2425)	61581 (1747)				
Multiplicity	6.2 (4.4)	2.5 (1.2)				
Completeness (%)	96.0 (81.8)	89.0 (33.9)				
R_{merge}	6.6 (122.3)	6.5 (32.4)				
CC(1/2) (%)	99.9 (50.6)	99.7 (74.9)				
Average I/σ(I)	14.8 (1.1)	9.2 (1.0)				
Wilson B (Å²)	29.35	21.0				

Refinement statistics

	mCherry	mEos4b*
Resolution range (Å)	67.12 - 1.60	35.44 - 1.55
	1.64 - 1.60	1.59 - 1.55
No. of reflection in working set	37956 (2342)	33203 (1404)
No. of reflection in the test set	1173 (72)	1027 (43)
R_{work} value (%)^b	21.1 (33.0)	18.5 (24.9)
R_{free} value (%)^c	21.6 (39.4)	21.4 (33.2)
RMSD bond length (Å)	0.014	0.014
RMSD angle (°)	1.7	1.8
Mean ADP value (Å²)	28.1	21.1

Ramachandran plot statistics

	mCherry	mEos4b*
Residues in favored regions	98.6 %	99.1 %
Residues in allowed regions	0.0 %	0.5 %
PDB code	6YLM	6YLS

Data in parentheses refer to the highest-resolution shell for data collection statistic.

^a Marks data sets where Friedel's Pairs were not merged.

^b R-value = ∥F_o - |F_c||/∥F_o∥, where F_o and |F_c| are the observed and calculated structure factors, respectively.
Table S2. Polarization purity of the illuminating light.

| Wavelength | 0° (||) | 45° | 90° (⊥) | 135° | 180° (||) |
|------------|--------|-----|---------|------|-----------|
| 405 nm | 99.7% | 99.2% | 98.5% | 98.8% | 99.5% |
| 458 nm | 99.8% | 99.7% | 99.2% | 99.5% | 99.8% |
| 488 nm | 99.8% | 99.8% | 99.5% | 99.5% | 99.8% |
| 543 nm | > 99.9% | 99.9% | 99.8% | 99.8% | > 99.9% |
| 594 nm | > 99.9% | > 99.9% | > 99.9% | > 99.9% | > 99.9% |

Table S3. Molar extinction coefficients derived from FP crystals (in M⁻¹ cm⁻¹). The values listed have been rounded to the nearest hundred. N = 10 for all conditions listed. Information on the red form of mEos4b is not provided, as the concentration of the red form within mEos4b crystals could not be reliably ascertained.

Fluorescent protein	Wavelength	ε₀ (mean ± 95% CI)	ε┴ (mean ± 95% CI)
mTurquoise2	405 nm	23800 ± 3400	5500 ± 600
	458 nm	30300 ± 6800	8800 ± 1200
eGFP, pH 7.5	405 nm	19700 ± 1800	4700 ± 800
	488 nm	28700 ± 7000	10200 ± 2000
eGFP, pH 3.8	405 nm	26900 ± 3200	8100 ± 1600
	488 nm	7700 ± 5500	2100 ± 800
mCherry	543 nm	1500 ± 500	1000 ± 400
	594 nm	2400 ± 700	1500 ± 500
mEos4b	488 nm	30200 ± 700	1900 ± 400
Table S4: PDB coordinates of transition dipole moments.

Fluorescent protein	Wavelength	PDB coordinates
mTurquoise2 (6YN)	405 nm (xTDM)	-0.8502, 0.4115, 0.3283
	458 nm (xTDM)	-0.8482, 0.4091, 0.3365
	489 – 531 nm (mTDM)	-0.8509, 0.4123, 0.3255
eGFP, pH 7.5 (6YLQ)	405 nm (xTDM)	-0.8586, 0.4102, -0.3076
	488 nm (xTDM)	-0.8457, 0.3922, -0.3619
	529 – 555 nm (mTDM)	-0.8642, 0.4191, -0.2783
eGFP, pH 3.8 (6YLW)	405 nm (xTDM)	-0.8648, -0.4213, 0.27309
	488 nm (xTDM)	-0.8422, -0.3859, 0.3766
	529 – 555 nm (mTDM)	-0.8414, -0.3850, 0.3792
mCherry (6YLW)	543 nm (xTDM)	0.4878, -0.5450, -0.6820
	594 nm (xTDM)	0.4628, -0.5466, -0.6979
	600 – 690 nm (mTDM)	0.3240, -0.5469, -0.7720
mEeos4b (green form, 6YLS)	488 nm (xTDM)	0.9678, -0.0094, 0.25153
	529 – 555 nm (mTDM)	0.9491, -0.0660, 0.3081
mEeos4b (red form, 6YLS)	594 nm (xTDM)	0.9221, -0.1258, 0.3659
	600 – 650 nm (mTDM)	0.8746, -0.2049, 0.4395