Method for estimating soil carbon stock changes in Finnish mineral cropland and grassland soils

Taru Palosuo¹*, Jaakko Heikkinen² and Kristiina Regina²

¹ Natural Resources Institute Finland (Luke), 01370 Vantaa, Finland;
² Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland

*Corresponding author. Email: taru.palosuo@luke.fi

Carbon Management 2016
Figure S1

Figure S1 Literature review of 14 studies and 68 sites in Finland (references listed below) was conducted to estimate the share of SOC in soil layers below 15 cm. Sites were classified based on the soil type for clay (clay content>30%, n=30), fine (dominant particle size <0.06mm, n=22) and coarse soils (dominant particle size>0.06mm, n=16). Soil C concentration within the profile (black line) was modelled using linear mixed effect model, in which soil type, soil layer (in 10 cm interval) and their interaction were as fixed-effects and the site as a random effect. Soil C concentrations were log-transformed. SOC concentrations were taken as a proxy for SOC amounts by assuming constant bulk density over the depth profile. The estimated share of SOC below 15 cm were 63%, 57% and 59% for clay, fine and coarse soils, accordingly. Grey lines show the original measurements.

References:

Alakukku, Laura. 1996a. "Persistence of Soil Compaction due to High Axle Load Traffic. I. Short-Term Effects on the Properties of Clay and Organic Soils." *Soil and Tillage Research* 37 (4): 211-222.

———. 1996b. "Persistence of Soil Compaction due to High Axle Load Traffic. II. Long-Term Effects on the Properties of Fine-Textured and Organic Soils." *Soil and Tillage Research* 37 (4): 223-238.
Alakukku, Laura, Visa Nuutinen, Elise Ketoja, Harri Koivusalo, and Maija Paasonen-Kivekäs. 2010. "Soil Macroporosity in Relation to Subsurface Drain Location on a Sloping Clay Field in Humid Climatic Conditions." *Soil and Tillage Research* 106 (2): 275-284.

Joukainen, Sirpa and Markku Yli-Halla. 2003. "Environmental Impacts and Acid Loads from Deep Sulfidic Layers of Two Well-Drained Acid Sulfate Soils in Western Finland." *Agriculture, Ecosystems & Environment* 95 (1): 297-309.

Kaasalainen, Marika and Markku Yli-Halla. 2003. "Use of Sequential Extraction to Assess Metal Partitioning in Soils." *Environmental Pollution* 126 (2): 225-233.

Paasonen-Kivekäs, Maija and Markku Yli-Halla. 2008. "A Comparison of Nitrogen and Carbon Reserves in Acid Sulphate and Non Acid Sulphate Soils in Western Finland." *Agricultural and Food Science* 14 (1): 57-69.

Peltovuori, Tommi, Risto Uusitalo, and Tommi Kauppila. 2002. "Phosphorus Reserves and Apparent Phosphorus Saturation in Four Weakly Developed Cultivated Pedons." *Geoderma* 110 (1): 35-47.

Räty, Mari, Rainer Horn, and Kimmo Rasa. 2008. "Compressive Behaviour of the Soil in Buffer Zones Under Different Management Practices in Finland." *Agricultural and Food Science* 19 (2): 160-172.

Turtola, Eila and Erkki Kemppainen. 2008. "Nitrogen and Phosphorus Losses in Surface Runoff and Drainage Water After Application of Slurry and Mineral Fertilizer to Perennial Grass Ley." *Agricultural and Food Science* 7 (5-6): 569-581.

Turtola, Eila and Arja Paajanen. 1995. "Influence of Improved Subsurface Drainage on Phosphorus Losses and Nitrogen Leaching from a Heavy Clay Soil." *Agricultural Water Management* 28 (4): 295-310.

Turtola, Eila and Markku Yli-Halla. 1999. "Fate of Phosphorus Applied in Slurry and Mineral Fertilizer: Accumulation in Soil and Release into Surface Runoff Water." *Nutrient Cycling in Agroecosystems* 55 (2): 165-174.

Yli-Halla, Markku, D. L. Mokma, T. Peltovuori, and Jouko Sippola. 2000. *Suomalaisia Maaprofiileja [Agricultural Soil Profiles in Finland and their Classification], in Finnish.* Jokioinen: Maatalouden tutkimuskeskus.

Yli-Halla, Markku and Delbert L. Mokma. 2008. "Soils in an Agricultural Landscape of Jokioinen, South-Western Finland." *Agricultural and Food Science* 10 (1): 33-43.

Yli-Halla, Markku, Delbert L. Mokma, and Lawrence P. Wilding. 2008. "Formation of a Cultivated Spodosol in East-Central Finland." *Agricultural and Food Science* 15 (1): 12-22.
Figure S2. Simulated dynamics of the SOC stock [Mg C ha\(^{-1}\)] for *Cropland remaining cropland* as the national mean (large cell) and separately for each regional ELY Centres (small cells). These simulations were done using mean climate data of the period 1961-2013 and annual litter and manure C inputs. The initialisation was done using the same mean climate data and litter input of 1990-1999 to run the model to steady state.
Figure S3. SOC stocks and stock changes of CRC for Southern and Northern Finland calculated based on ELY Centre level simulations (black line) and simulations done based on aggregated input for these subnational regions (grey lines).
Figure S4 Comparison of SOC stocks at ELY centres in 2009. The open black squares show the observed mean stocks to the depth of 15 cm with 95% confidence intervals based on the national soil monitoring network (Heikkinen et al. (2013). The black boxes show the same observations scaled to the layer of 1 m depth with the help of SOC density functions in Fig. S1. The red and blue triangles mark the simulated SOC stocks to the depth of 1 m calculated using initialisation with agricultural litter input and initialisation with estimated SOC stock of forests for 1900 and pre-running the model for a period of 90 years with agricultural litter input, accordingly.