Research Article

Synthesis and Structural Study of Tris(\(\mu\)-pyrazolyl)hexakis(pyrazole)dicobalt(III) Nitrate

Yifan Shi, Atta M. Arif, and Richard D. Ernst

Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake, UT 84112-0850, USA

Correspondence should be addressed to Richard D. Ernst; ernst@chem.utah.edu

Received 17 May 2013; Accepted 27 August 2013

Academic Editors: A. Aydın, A. R. Ibrahim, P. Macchi, P. R. Raithby, and A. M. Romerosa-Nievas

The new (Hpyz)\(_3\)Co(\(\mu\)_2-pyz)\(_3\)Co(Hpyz)\(_3\)\(^{3+}\) complex has been isolated as the nitrate salt through a reaction of Co(II) nitrate, Hpyz (pyrazole), triethylamine, and oxygen. The salt crystallizes in the monoclinic space group \(P\overline{2}_1/m\) with \(a = 12.5977(3)\) Å, \(b = 15.3387(4)\) Å, \(c = 14.0800(3)\) Å, \(\beta = 93.0868(15)^\circ\), and \(D_{\text{calc}} = 1.464\) g/cm\(^3\) at 150(1) K. The complex, with pseudo-octahedral coordination about the equivalent cobalt centers, has shorter Co–N distances for the bridging anionic pyz ligands as compared to the neutral Hpyz ligands, with the averages being 1.918(2) and 1.966(4), respectively. The Co–Co separation is 3.568 Å, reflecting the absence of any significant metal-metal interaction.

1. Introduction

Although numerous approaches for the syntheses of heterobimetallic complexes have been developed, most of these either involve organometallic complexes or utilize ligands such as bridging phosphides, which could be detrimental to potential catalytic applications [1]. It would therefore appear advantageous to construct the heterobimetallic species using more traditional coordination chemistry. Ligands such as 1,8-naphthyridine or pyridazine could potentially be utilized, but their lack of negative charge appears often to lead to the more strongly Lewis acidic metal ion abstracting the ligand from the weaker acid [2, 3]. Hence, more basic species such as the pyrazolyl ion, 1,2-C\(_3\)N\(_2\)H\(_3\)\(^-\) (1, Figure 1), appear more useful for the stabilization of the desired bimetallics. Indeed, we recently reported a cobalt/ruthenium complex [1] in which the two metal centers were united via three \(\mu\)_2-pyrazolyl anions. Though other heterobimetallics had been isolated previously with this same linking agent [4–7], they had all been organometallic complexes. Herein we report a homobimetallic complex involving two cobalt centers, linked by three \(\mu\)_2-pyrazolyl ligands, that was isolated as part of our general bimetallic studies.

2. Materials and Methods

2.1. Synthesis. All reactions were carried out in Schlenk apparatus under a nitrogen atmosphere. THF was dried by distillation from sodium benzophenone ketyl under nitrogen. All reagents were obtained commercially.

Hexakis(pyrazole)tris(\(\mu\)_2-pyrazolyl)dicobalt(III) nitrate, [(Hpyz)\(_3\)Co(\(\mu\)_2-pyz)\(_3\)Co(Hpyz)\(_3\)](NO\(_3\))\(_3\), 2 [NO\(_3\)]\(_3\).

To a solution of 1.00 g (14.7 mmol) of pyrazole and 0.63 mL (4.5 mmol) of NEt\(_3\) in 10 mL of THF was added dropwise 5 mL of a THF solution containing 0.45 g (1.5 mmol) of Co(NO\(_3\))\(_2\)·6H\(_2\)O. Upon mixing, much pink crystalline solid precipitated from the light red solution over the course of several minutes. The mixture was then stirred at room temperature, while oxygen was bubbled through at the rate of 2.2 L/h. After two days, all solids had dissolved into the solution, which became dark red. It was then syringed to one side of an H-shaped tube having diphenylmethane in the other end. The solution slowly evaporated to yield a crop of red, rod-shaped crystals (yield: 0.061 g, 8.9%). Their quality was satisfactory for an X-ray diffraction study.

Anal. Calc. for C\(_{27}\)H\(_{33}\)O\(_9\)N\(_{21}\)Co\(_2\): C, 35.50; H, 3.64; N, 32.20. Found: C, 36.23; H, 3.79; N, 32.07. \(^1\)H NMR (300 MHz,
2.2. X-Ray Crystallography. Single crystals of the compound were examined under Paratone oil, and a suitable crystal was selected for data collection. It was transferred to a Nonius Kappa CCD diffractometer where it was held in place on a glass fiber through the use of a cold nitrogen stream. The programs COLLECT, DENZO-SMN, and SCALEPAC [8] were examined under Paratone oil, and a suitable crystal was selected for data collection. SIR97 [9] was used to solve the structure, while SHELXL-97 [10] was used for refinements, based on published scattering factors [11, 12]. All of the nonhydrogen atoms could be refined anisotropically, except for the two highly disordered THF molecules. Hydrogen atoms were allowed to ride on their attached carbon atoms, and the former were assigned isotropic thermal parameters based upon those of the latter. Key experimental details are given in Table 1, while pertinent bonding parameters are listed in Table 2. An ORTEP representation of the molecule is given in Figure 1.

The CCDC deposition 810359 contains the full crystallographic information for this structure. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

3. Results and Discussion

3.1. Synthesis. The combination of Co(II) nitrate with pyrazole in THF, in the presence of triethylamine as a proton acceptor and oxygen as an oxidizing agent, led to the isolation of the (Hpyz)_2Co(μ_3-pyz)_3(CO(Hpyz))_3 ion, as the nitrate salt. The yield, though unoptimized, was rather low at 8.9%, but conceivably it could be improved with some effort. The diamagnetic complex exhibited a ^1H NMR spectrum consistent with the result of the X-ray diffraction study.

3.2. Structural Description. The structure of the Co_3(μ_3-pyz-C_5N_2H_5)_3(C_5N_2H_5)_6 complex trication (2) is presented in Figures 2 and 3. The complex is diamagnetic and contains two low spin Co(III) centers, each with pseudo-octahedra
Table 2: Selected bond lengths (Å) and angles (°) for \([(Hpyz)\text{Co}(\mu_2\text{-pyz})\text{Co}(Hpyz)_3\text{(NO}_3\text{)}_3\).

Bond	Length (Å)	Angle (°)
Co–N1	1.973(2)	N1–N2 1.345(3)
Co–N3	1.966(2)	N3–N4 1.353(3)
Co–N5	1.960(2)	N5–N6 1.339(3)
Co–N7	1.913(2)	N7–N7’ 1.372(4)
Co–N9	1.919(2)	N8–N8’ 1.369(4)
Co–N11	1.921(2)	N9–N9’ 1.366(4)
N10–O1	1.259(5)	N10–O2 1.232(3)
N11–O3	1.278(5)	N11–O4 1.234(3)
N12–O5	1.268(5)	N12–O6 1.225(3)

Bond angles

Bond	Angle (°)
N1–Co–N3	90.18(9)
N1–Co–N5	92.44(9)
N1–Co–N8	92.76(9)
N1–Co–N9	176.70(9)
N3–Co–N5	92.51(9)
N3–Co–N7	89.27(9)
N3–Co–N8	175.99(9)
N3–Co–N9	92.51(9)
N5–Co–N7	176.42(9)
N5–Co–N8	92.49(9)
N5–Co–N9	87.44(9)
N7–Co–N8	90.54(9)
N7–Co–N9	90.66(9)

Co–Co separation is 3.568 Å, clearly providing no suggestion whatsoever of any metal-metal bonding. A related Co–Ru bimetallic was found to have a separation of 3.666(2) Å [1].

Additional asymmetry about the cobalt ions is induced due to the presence of the differing ligands. The N–Co–N angles involving the neutral ligands coordinating through N1, N3, and/or N5 average 90.4(2)°, while those between the anionic ligands average 90.4(2)°. The nine remaining N–Co–N’ angles fall into three sets, each angle involving one terminal and one bridging ligand. The formally trans values average 176.4(2)°, while the other two sets average 92.5(2)° and 87.4(6)°. The larger three of these involve N1/N7, N3/N9, and N5/N8. The slight differences in angles could possibly be induced by C (or N)–H/π interactions between pyrazoles and/or pyrazolyl ligands.

A more substantial asymmetry may be observed about the coordinated nitrogen atoms of the uncharged pyrazole ligands. Thus, the Co–N–N angles about N(1, 3, and 5) average 122.7(2)°, while the corresponding Co–N–C angles average 131.3(4)°. Such distortions have been observed in related complexes [1].
The three independent nitrate ions are each bisected by a mirror plane passing through the nitrogen atom and one of the oxygen atoms (O2, O4, or O6). As a result, the nitrate ions are rigorously planar. Interestingly, the N–O distances for the bonds residing on the mirror planes are slightly longer relative to the others, with the respective averages being 1.268(6) Å versus 1.230(3) Å. Similarly, the O–N–O angles that are bisected by a mirror plane are slightly larger than the others, with averages of 122.5(5)° and 118.8(3)°. This asymmetry may be attributed to hydrogen bonding interactions that utilize equivalent N–H bonds from pyrazole on opposite cobalt ions. Thus, O1 interacts with N4–H4 and N4′–H4′, O3 interacts with N2–H2 and N2′–H2′, and O5 interacts with N6–H6 and N6–H6′. Each independent half-dimetallic unit is accompanied by an uncoordinated pyrazole and one and a half independent THF molecules, but the THF molecules suffer from an extremely severe disorder, rendering their structural parameters meaningless.

Some useful comparisons may be made with a series of divalent, di- and polymeric analogues derived from substituted pyrazoles. Thus, with 3,5-dimethylpyrazole (Hdmpz), the distance for the bridging anionic ligands is 1.993(3) Å, about 0.075 Å longer than for the six-coordinate Co(III) dimetallic described herein, reflecting the greater importance of hydrogen bonding interactions in determining the relative Co–N bond distances. The longer Co–N distances in the divalent complex lead to an increased Co–Co separation of 3.677 Å, while in a trinuclear Co(II) species, a separation of 3.627 Å was found. An interesting mixed valence (Co(II,III)) complex having six-coordinate metals held together via three trazole/triazolate ligands has a Co–Co separation of 3.653 Å [15]. Conceivably, the polymetallic Co(II) complexes [14] could serve as useful precursors to Co(III) analogues.

Notably, a Co(pyz)₃ species is known in which pseudooctahedral coordination is achieved via the formation of a one-dimensional polymer [16]. The structure was determined from powder data, and thus not all of the bonding parameters could be obtained accurately. Nonetheless, the Co–Co separation of 3.5526(2) Å and the Co–N bond distance of 1.95 Å are in reasonable accord with the values observed herein.

4. Conclusions

The homobimetallic [(Hpyz)₂Co₂(μ₂-pyz)₃]³⁺ complex has been isolated as the nitrate salt from the reaction of Co(II) nitrate with pyrazole, triethylamine, and oxygen in THF solution. The metal-metal separation indicates no significant interaction, as expected. Given the fact that Ru(Hpyz)₂(pyz)₂ can be used to form a heterobimetallic Co/Ru complex, deprotonation of the dicobalt complex could also make it amenable to the introduction of one or more metal ion(s) as well.

References

[1] Y. Shi, A. M. Arif, and R. D. Ernst, “Use of pyrazolyl ligands for the formation of a bimetallic cobalt-ruthenium complex,” Polyhedron, vol. 30, no. 11, pp. 1899–1905, 2011.
[2] B. G. Harvey, A. M. Arif, and R. D. Ernst, “Incorporation of polybasic aromatic amines into ruthenium(II) chloro complexes,” Polyhedron, vol. 23, no. 17, pp. 2725–2731, 2004.
[3] B. G. Harvey, Y. Shi, B. K. Peterson, A. M. Arif, and R. D. Ernst, “Preparation of ruthenium(II) chloride complexes of polybasic amines,” Inorganic Chemistry Acta, vol. 359, no. 3, pp. 839–845, 2006.
[4] G. A. Ardizzi, G. La Monica, A. Maspeso, M. Moret, and N. Masciiocchi, “Pyrazolato metal complexes: synthesis, characterization and X-ray crystal structures of polymeric organometallic Re-Mn derivatives,” European Journal of Inorganic Chemistry, no. 1, pp. 181–187, 2000.
[5] D. Carmona, M. P. Lamata, J. Ferrer et al., “Synthesis, characterization and molecular structure of the hydroperoxo complex [(η⁵-C₅Me₅)Ir(μ-pz),Rh(OOH)(dppe)][BF₄], Hpz = pyrazole, dppe β 1,2-bis(diphenylphosphino)ethane,” Journal of the Chemical Society, Chemical Communications, no. 5, pp. 575–576, 1994.
[6] D. Carmona, F. J. Lahoz, R. Atencio et al., “Synthesis and characterization of heterodinuclear IrCo, RuCo, IrNi and RuNi complexes containing pyrazolylborate ligands,” Inorganic Chemistry, vol. 35, no. 9, pp. 2549–2557, 1996.
[7] R. Contreras, M. Valderrama, E. M. Orellana et al., “Synthesis and characterization of heterodinuclear RuPt and IrPt complexes containing pyrazolate bridging ligands. Crystal structure of [(η⁵-C₅Me₅)Ir(μ-pz),PtMe₃] (pz = pyrazolate),” Journal of Organometallic Chemistry, vol. 606, no. 2, pp. 197–202, 2000.
[8] Z. Otwowski and W. Minor, “Processing of X-ray diffraction data collected in oscillation mode,” Methods in Enzymology, vol. 276, pp. 307–326, 1997.
[9] A. Altmare, M. C. Burla, M. Camalli et al., “SIR97: a new tool for crystal structure determination and refinement,” Journal of Applied Crystallography, vol. 32, no. 1, pp. 115–119, 1999.
[10] G. M. Sheldrick, SHELXL97, Programs for Crystal Structure Analysis, University of Göttingen, Göttingen, Germany, 1997.
[11] D. C. Creagh and W. J. McDougal, in International Tables for Crystallography: Mathematical, Physical and Chemical Tables, A. J. C. Wilson, Ed., vol. C, chapter 4, pp. 206–222, Kluwer Academic, Dordrecht, The Netherlands, 1992.
[12] E. N. Maslen, A. G. Fox, and M. A. O’Keefe, in International Tables for Crystallography: Mathematical, Physical and Chemical Tables, A. J. C. Wilson, Ed., vol. C, chapter 6, pp. 476–516, Kluwer Academic, Dordrecht, The Netherlands, 1992.
[13] M. K. Ehler, S. J. Rettig, A. Storr, R. C. Thompson, and J. Trotter, “Zinc 3, 5-dimethylpyrazolate complexes: synthesis and structural studies. The crystal and molecular structure of [Zn₂(dmmpz)(Hdmmpz)],” Canadian Journal of Chemistry, vol. 68, pp. 1494–1498, 1990.
[14] M. K. Ehler, S. J. Rettig, A. Storr, R. C. Thompson, and J. Trotter, “Oligomeric cobalt 3, 5-dimethylpyrazolate complexes: synthesis, structural, and magnetic studies,” Canadian Journal of Chemistry, vol. 71, pp. 1425–1436, 1993.
[15] L. Antolini, A. C. Fabretti, D. Gatteschi, A. Giusti, and R. Sessoli, “Synthesis, crystal and molecular structure, and magnetic properties of bis(μ-3,5-diamino-1,2,4-triazole-N⁵,N⁷)bis(μ-3,5-diamino-1,2,4-triazolato-N⁵,N⁷)triaquaco-
[15] Balt(II) | cobalt(III) trichloride nonahydrate, “Inorganic Chemistry,” vol. 30, no. 25, pp. 4585–45860, 1991.

[16] N. Masciocchi, G. A. Ardizzoia, S. Brenna et al., “One-dimensional polymers containing strictly collinear metal ions: synthesis and XRPD characterization of homoleptic binary metal pyrazolates,” Inorganic Chemistry, vol. 41, no. 23, pp. 6080–6089, 2002.
