NON-LINEAR FOURIER TRANSFORMS AND THE BRAVERMAN-KAZHDAN CONJECTURE

TSAO-HSIEN CHEN

Abstract. In this article we prove a conjecture of Braverman-Kazhdan in [BK] on the acyclicity of gamma sheaves in the de Rham setting. The proof relies on the techniques developed in [BFO] on Drinfeld center of Harish-Chandra bimodules and character D-modules. As an application, we show that the functors of convolution with gamma D-modules, which can be viewed as a version of non-linear Fourier transforms, commute with induction functors and are exact on the category of admissible D-modules on a reductive group.

1. Introduction

Let k be an algebraic closure of a finite field. The Fourier-Deligne transform

$$F_V : D_c^b(V, \mathbb{Q}_\ell) \to D_c^b(V, \mathbb{Q}_\ell)$$

on the derived category of ℓ-adic sheaves on a vector space V over k had found remarkable applications to number theory and representation theory. The Fourier-Deligne transform has the following remarkable properties: (1) F_V is exact with respect to the perverse t-structure on $D_c^b(V, \mathbb{Q}_\ell)$ (see [KL]) and (2) when $V = g$ is a reductive Lie algebra, the functor F_V commutes with induction functors (see [L]).

Let G be a reductive group over k and \breve{G} be the dual group of G over \mathbb{C}. In their work [BK] [BK1], Braverman and Kazhdan associated to each representation $\rho : \breve{G} \to \text{GL}(V_\rho)$ of the dual group \breve{G}, satisfying some mild technical conditions, a perverse sheaf $\Psi_{G,\rho}$ on G called gamma sheaf and study the functor

$$F_{G,\rho} := (-) \ast \Psi_{G,\rho} : D_c^b(G, \mathbb{Q}_\ell) \to D_c^b(G, \mathbb{Q}_\ell)$$

of convolution with $\Psi_{G,\rho}$. The functor $F_{G,\rho}$ can be thought as a non-linear analogue of the Fourier-Deligne transform and they conjectured the following properties parallel to the properties (1) and (2) above:

Conjecture 1.1. (1) $F_{G,\rho}$ is exact with respect to the perverse t-structure. (2) $F_{G,\rho}$ commutes with induction functors.

It is shown in loc. cit. that the property (2) of the conjecture above follows from the following acyclicity of gamma sheaves:

Tsao-Hsien Chen was supported in part by the AMS-Simons travel grant.
Conjecture 1.2 (Conjecture 9.2 [BK]). Let B be a Borel subgroup and consider the quotient map $\pi_U : G \to G/U$, where U is the unipotent radical of B. Then $(\pi_U)_{!*}\Psi_{G,\rho}$ is supported on $T = B/U \subset G/U$. In other words, for any $g \in G - B$ we have $H^*_c(gU, i^*\Psi_{G,\rho}) = 0$. Here $i : gU \to G$ denotes the inclusion map.

In [CN], Cheng and Ngô established Conjecture 1.2 for $G = GL_n$ by generalizing the argument in [BK] for GL_2.

The gamma sheaf $\Psi_{G,\rho}$ has an obvious analogue in the D-modules setting, which we call it gamma D-module, and the goal of this paper is to study D-modules analogue of Conjecture 1.1 and Conjecture 1.2.

We now state our main results. Fix a Borel subgroup B and a maximal tours $T \subset B$. We begin with a construction, due to Braverman and Kazhdan, of gamma D-module $\Psi_{G,\lambda}$ attached to a collection of co-characters $\lambda = \{\lambda_1, ..., \lambda_r\}$ of the maximal torus T. The relation between $\Psi_{G,\lambda}$ and the gamma D-module attached to a representation of the dual group \check{G} will be explained in §4.6. Let $\lambda = \{\lambda_1, ..., \lambda_r\}$ be a collection of co-characters of T. Consider the following maps $pr_{\lambda} := \prod \lambda_i : G^r_m \to T$, $tr : G^r_m \to G_a, (x_1, ..., x_r) \to \sum x_i$. Assume pr_{λ} is stable under the action of the Weyl group W and each $\lambda_i \in \lambda$ is σ-positive (see Definition 4.1), then Braverman and Kazhdan showed that

$$\Psi_{\lambda} := (pr_{\lambda})_{!*}tr^*(\mathbb{C}[x]e^x),$$

where $\mathbb{C}[x]e^x$ is the exponential D-module on $G_a = \text{Spec}(\mathbb{C}[x])$, is a (de Rham) local system on the image of pr_{λ} equipped with a natural W-equivariant structure. Assume further that pr_{λ} is onto. Then Ψ_{λ} is a W-equivariant local system on T. Moreover, the W-equivariant structure on Ψ_{λ} induces a W-action on the induction $\text{Ind}^G_T_{\check{C}B}(\Psi_{\lambda})$ and the gamma D-module $\Psi_{G,\lambda}$ is defined as the W-invariant factor of $\text{Ind}^G_T_{\check{C}B}(\Psi_{\lambda})$:

$$\Psi_{G,\lambda} := \text{Ind}^G_T_{\check{C}B}(\Psi_{\lambda})^W.$$

We prove the following equivalent form of Conjecture 1.2 in the D-module setting:

Theorem 1.3. (see Theorem 5.2) $\text{Av}_U(\Psi_{G,\lambda}) := (\pi_U)_{!*}\Psi_{G,\lambda}$ is supported on $T = B/U \subset G/U$.

In view of exactness property in Conjecture 1.1 we establish the following result. We call a holonomic D-module on G admissible if the action of the center Z of the universal enveloping algebra $U(g)$, viewing as invariant differential operators, is locally finite. We denote by $\mathcal{A}(G)$ the abelian category of admissible D-modules on G and $D(\mathcal{A}(G))$ be the corresponding derived category. Denote by $D(G)_{\text{hol}}$ the derived category of holonomic D-modules on G. Consider the functor $F_{G,\lambda} := (-) \ast \Psi_{G,\lambda} : D(G)_{\text{hol}} \to D(G)_{\text{hol}}$ of convolution with gamma D-module $\Psi_{G,\lambda}$.

Theorem 1.4. (see Theorem 6.5) The functor $F_{G,\lambda}$ restricts to a functor

$$F_{G,\lambda} : D(\mathcal{A}(G)) \to D(\mathcal{A}(G))$$
which is exact with respect to the natural t-structure. That is, we have $F_{G,\Lambda}(M) \in \mathcal{A}(G)$ for $M \in \mathcal{A}(G)$.

The proofs of Theorem 1.3 and Theorem 1.4 make use of certain remarkable character D-module M_{θ} on G with generalized central character $\theta \in \hat{T}/W$ and the results in [BFO] on the equivalence between Drinfeld center of Harish-Chandra bimodules and character D-modules. In more details, we construct for each $\theta \in \hat{T}/W$ a W-equivariant local system \mathcal{E}_{θ} on T and consider the character D-module $M_{\theta} := \text{Ind}_{T \subset B}^{G}(\mathcal{E}_{\theta})^{W}$ (see §3.4 §3.5). Using the results in [BFO], we prove the acyclicity of M_{θ} similar to Conjecture 1.2 (see Theorem 3.8) and compute the convolution of M_{θ} with the gamma D-module $\Psi_{G,\Lambda}$ (see Theorem 4.5). A key step in the proof of the acyclicity of M_{θ} is the identification of the global section of \mathcal{E}_{θ} with certain element in the Drinfeld center of Harish-Chandra bimodules (see §3.6). Those results together with some simple vanishing lemmas (see §5.1) imply Theorem 1.3. Theorem 1.4 follows from a computation of the convolution of Ψ_{Λ} with certain (pro-) local system on T (see Lemma 4.6) and the exactness property of the (twisted) Harish-Chandra functor in [BFO, Corollary 3.4] (see also [CY]).

It seems that our methods may be applicable to the setting of ℓ-adic sheaves. A new ingredient needed is an appropriate version of the results in [BFO] in the ℓ-adic setting.

The paper is organized as follows. In Section 2 we recall some facts about algebraic groups and D-modules. In Section 3 we introduce the character D-module M_{θ} and prove the acyclicity of it using [BFO]. In Section 4 we recall the construction of gamma D-modules $\Psi_{G,\Lambda}$ and compute the convolution of $\Psi_{G,\Lambda}$ with M_{θ}. In Section 5 we prove Theorem 5.2: the acyclicity of gamma D-module $\Psi_{G,\Lambda}$. In Section 6 we consider the functor $F_{G,\Delta} := (-) \ast \Psi_{G,\Lambda}$ of convolution with the gamma D-module and we prove that $F_{G,\Delta}$ commutes with induction functors (see Theorem 6.1) and is exact on the category of admissible D-modules on G (see Theorem 6.5).

Acknowledgement. The author would like to thank R.Bezrukavnikov and Z.Yun for useful discussions. He also thanks the Institute of Mathematics Academia Sinica in Taipei for support, hospitality, and a nice research environment.

2. Notations

2.1. Group data. Let G be a reductive group over \mathbb{C}. Let $B \subset G$ be a Borel subgroup and $T \subset B$ be a maximal torus. Let by Λ be the weight lattice. Let Φ be the root system determined by (G, T) and Φ^+ be the set of positive roots determined by (G, B) and Π be the set of simple roots. We denote by W be the Weyl group and $W_{a} = W \rtimes \Lambda$ the affine Weyl group.

We denote by \hat{G} the dual group of G and \hat{T} the dual maximal torus. We fix a non-degenerate W-invariant form (\cdot, \cdot) on t and use it to identify t^* with \mathfrak{t}.

1The author learned the existence of \mathcal{E}_{θ} from R.Bezrukavnikov.
We denote by $\mathcal{B} = G/B$ the flag variety, $X = G/N$ the basic affine space, and $Y = X \times X$.

We denote by $\mathfrak{g}, \mathfrak{b}, \mathfrak{t}$ (resp. $\tilde{\mathfrak{g}}, \tilde{\mathfrak{b}}, \tilde{\mathfrak{t}}$) the Lie algebras of G, B, T (resp. $\tilde{G}, \tilde{B}, \tilde{T}$). For any $\xi \in \tilde{T}$ (resp. $\mu \in \tilde{t}$) we write $[\xi] \in \tilde{T}/W$ (resp. $[\mu] \in \tilde{T} = \tilde{t}/\Lambda$) for its image in \tilde{T}/W (resp. \tilde{T}).

We denote by G_{rs} (resp. T_{rs}) be the open subset consisting of regular semi-simple elements in G (resp. T).

2.2. D-modules. For any smooth variety X over \mathbb{C} we denote by $\mathcal{M}(X)$ the abelian category of D-modules on X and $\mathcal{M}(X)_{hol}$ the full subcategory of holonomic D-modules. We write $D(X)$ for the bounded derived category D-modules on X and $D(X)_{hol}$ for the bounded derived category of holonomic D-modules on X. We denote by Θ_X and \mathcal{D}_X the sheaf of functors on X and the sheaf of differential operators on X respectively. For a $\mathcal{F} \in D(X)$, we denote by $\mathcal{H}^i(\mathcal{F}) \in \mathcal{M}(X)$ its i-th cohomology D-module.

Let $f : X \to Y$ be a map between smooth varieties. Then we have functors $f_*, f^!$ between $D(X)$ and $D(Y)$ and functors $f^*, f_!$, f_* between $D(X)_{hol}$ and $D(Y)_{hol}$. Note all functors above are understood in the derived sense. We denote by \mathcal{D} the duality functor on $D(X)_{hol}$. We define $f^0 := f^![\dim Y - \dim X]$. When $Y = \text{Spec}(\mathbb{C})$ is a point we sometimes write $R\Gamma_{\text{dr}}(\mathcal{M}) := f_*(\mathcal{M})$ and $H^i_{\text{dr}}(\mathcal{M}) := \mathcal{H}^i(f_*(\mathcal{M}))$.

For $\mathcal{M}, \mathcal{M}' \in D(X)_h$, we define $\mathcal{M} \otimes \mathcal{M} = \Delta^*(\mathcal{M} \boxtimes \mathcal{M}')$ and $\mathcal{M} \boxtimes^! \mathcal{M} = \Delta^!(\mathcal{M} \boxtimes \mathcal{M}')$ where $\Delta : X \to X \times X$ is the diagonal embedding.

For a D-module \mathcal{M} on X we denote by $\Gamma(\mathcal{M})$ (resp. $R\Gamma(\mathcal{M})$) the global sections (resp. derived global sections) of \mathcal{M} regrading as quasi-coherent \mathcal{O}_X-module.

By a local system on X we mean a \mathcal{O}_X-coherent D-module on X, a.k.a. a vector bundle on X with a flat connection.

Assume $f : X \to Y$ is a principal T-bundle. A D-module \mathcal{F} on X is called T-monodromic if it is weakly T-equivariant (see [BB1, Section 2.5]). We denote by $\mathcal{M}(X)_{mon}$ the category consisting of T-monodromic D-modules on X. A object $\mathcal{F} \in D(X)$ is called T-monodromic if $\mathcal{H}^i(\mathcal{F}) \in \mathcal{M}(X)_{mon}$ for all i. We denote by $D(X)_{mon}$ the full subcategory consisting of T-monodromic objects. Let $\mathcal{F} \in \mathcal{M}(X)_{mon}$. For any $\mu \in \tilde{t}$ (or $\mu \in \mathfrak{t}$) we denote $\Gamma^\mu(\mathcal{F})$ (resp. $R\Gamma^\mu(\mathcal{F})$) the maximal summand of $\Gamma(X, \mathcal{F})$ (resp. $R\Gamma(X, \mathcal{F})$) where $U(\mathfrak{t})$ (acting as infinitesimal translations along the action of T) acts with the generalized eigenvalue μ.

3. Drinfeld center and Character D-modules \mathcal{M}_θ

In this section we attach to each $\theta \in \tilde{T}/W$ a W-equivariant local system \mathcal{E}_θ on T and use it to construct a character D-module \mathcal{M}_θ on G. The main result of this section is
an acyclicity property of M_θ (see Theorem 3.8). The proof uses the results of Drinfeld center of Harish-Chandra bimodules and character D-modules in [BFO].

3.1. Functors between equivariant categories. Let H be a smooth algebraic group acting on a smooth variety Z. We denote by $\mathcal{M}_H(Z)$ (resp. $\mathcal{M}_H(Z)_{hol}$) the category of H-equivariant D-modules (resp. holonomic D-modules) on Z. We denote by $D_H(Z)$ the H-equivariant derived category of D-modules on Z and $D_H(Z)_{hol}$ the H-equivariant derived category of holonomic D-modules on Z.

Let $f : Z \to Z'$ be a map between two smooth varieties. Assume H acts on Z and Z' and f is compatible with those H-actions. Then the functors $f^*, f^!; f_*, f_!$ lift to functors between $D_H(Z)$ and $D_H(Z')$.

For any closed subgroup $H' \subset H$ the forgetful functor $\text{obl}_H^{H'} : D_H(Z) \to D_{H'}(Z)$ admits a right adjoint

\[\text{Ind}_H^{H'} : D_{H'}(Z) \to D_H(Z) \]

Consider the quotient map $\pi_U : G \to X = G/U$. It induces functors

\[\text{Av}_U : D_B(G) \to D_B(G) \xrightarrow{\text{obl}_B^G} D_B(\pi_U)^* \to D_B(X) \]

\[\text{Av}_U^! : D_B(G)_{hol} \to D_B(G)_{hol} \xrightarrow{\text{obl}_B^G} D_B(X)_{hol} \]

between equivariant derived categories. Here G acts on G by the conjugation action. We call Av_U (resp. $\text{Av}_U^!$) star averaging functor (resp. shriek averaging functor). The functor Av_U admits a right adjoint

\[\text{Av}_G := \text{Ind}_B^G \circ \pi_U^* : D_B(X) \to D_B(G) \to D_G(G). \]

We shall recall Lusztig’s induction and restriction functors. Consider

\[T = B/U \xleftarrow{\tilde{c}} B \xrightarrow{u} G \]

We define

\[\text{Ind}_{T \subset B}^G := \text{Ind}_B^G \circ u_* \circ r' : D_T(T) \to D_G(G), \quad \text{Res}_{T \subset B}^G := r_* \circ u' : D_G(G) \to D_T(T). \]

Here is an equivalent definition of $\text{Ind}_{T \subset B}^G$: consider the Grothendieck-Springer simultaneous resolution:

\[\begin{array}{ccc}
\tilde{G} & \xrightarrow{\tilde{c}} & T \\
\downarrow{\tilde{q}} & & \downarrow{q} \\
G & \xrightarrow{c} & T/W
\end{array} \]

where \tilde{G} consists of pairs $(g, hB) \in G \times G/B$ such that $h^{-1}gh \in B$, the map \tilde{c} is given by $\tilde{c}(x, hB) = h^{-1}gh \mod U$, and \tilde{q}, q are the natural projection maps. The group G acts
on \tilde{G} by the formula $x(g, hB) = (xgx^{-1}, xhB)$ and \tilde{q} (resp. \tilde{c}) is G-equivariant where G acts on G (resp. T) via the conjugation action (resp. trivial action). We have

\begin{equation}
(3.4) \quad \text{Ind}_{T \subset B}^G \simeq \tilde{q}_* c^* : D_T(T) \to D_G(G).
\end{equation}

Consider the following maps

$G \xleftarrow{p} G \times G/B \xrightarrow{q} Y/T = (G/U \times G/U)/T$

where $p(g, xB) = g$ and $q(g, xB) = (gxU, xU)$ mod T. The group G acts on G, $G \times B$ and Y/T by the formulas $a \cdot g = aga^{-1}$, $a \cdot (g, xU) = (aga^{-1}, axB)$, $a(xU, yU) = (axU, ayU)$. One can check that p and q are compatible with those G-actions.

Following [MV], we consider the functor

\begin{equation}
(3.5) \quad \text{HC} = q_* p^![−\dim G/B] : D(G) \to D(Y/T).
\end{equation}

The functor above admits a right adjoint $\text{CH} = p_* q^*[\dim G/B] : D(Y/T) \to D(G)$. We use the same notations for the corresponding functors between G-equivariant derived categories $D_G(G)$ and $D_G(Y/T)$. Following [G], we call HC the Harish-Chandra functor.

Recall the following well-known fact:

Lemma 3.1 (Theorem 3.6 [MV]).

1. Let $\sigma : \mathcal{N} \to \mathcal{N}$ be the Springer resolution of the nilpotent cone \mathcal{N} and let $Sp := \sigma_0 \mathcal{N}$ be the Springer D-module. For any $F \in D(G)$ there is canonical isomorphism

$\text{CH} \circ \text{HC}(F) \simeq F \ast Sp$.

2. We have a canonical isomorphism $\text{CH} \circ \text{HC} \simeq \text{Av}_G \circ \text{Av}_U[−]$.

3. The identity functor is a direct summand of $\text{CH} \circ \text{HC} \simeq \text{Av}_G \circ \text{Av}_U[−]$.

We will need the following properties of induction functors.

Proposition 3.2 (Theorem 2.5 and Proposition 2.9 in [BK1]).

1. For any local system F on T, we have $\text{Ind}_{T \subset B}^G(F) \in M_G(G)$.

2. Let F be a local system on T. For any $w \in W$, there is a canonical isomorphism

$\text{Ind}_{T \subset B}^G(F) \simeq \text{Ind}_{T \subset B}^G(w^*F)$.

3. Let $W' \subset W$ be a subgroup and F be a W'-equivariant local system on T. There is a canonical W'-action on $\text{Ind}_{T \subset B}^G(F)$.

4. Let $F \in D(T)$ and $\mathcal{G} \in D_G(G)$. Assume $\mathcal{F}' := \text{Av}_U(\mathcal{G})$ is supported on $T = B/U$. There is an isomorphism

$\text{Ind}_{T \subset B}^G(F) \ast \mathcal{G} \to \text{Ind}_{T \subset B}^G(F \ast \mathcal{F}')$.
3.2. **Hecke categories.** Consider the left G and right $T \times T$ actions on $Y = G/U \times G/U$. For any $\xi, \xi' \in \hat{T} \simeq i/\Lambda$ we denote by $M_{\xi, \xi'}$ the category of G-equivariant D-modules on $G/U \times G/U$ which are $T \times T$-monodromic with generalized monodromy (ξ, ξ'), that is, $U(t) \otimes U(t)$ (acting as infinitesimal translations along the right action of $T \times T$) acts locally finite with generalized eigenvalues in (ξ, ξ'). Consider the quotient Y/T where T acts diagonally from the right. The group T acts on Y/T via the formula $t(xU, yU) \mod T = (xU, ytU) \mod T$. To every $\xi \in \hat{T}$ we denote by M_ξ the category of G-equivariant T-monodromic D-modules on Y/T with generalized monodromy ξ. We write $D(M_{\xi, \xi'})$ and $D(M_\xi)$ for the corresponding G-equivariant monodromic derived categories.

The groups B and $T \times T$ act on $X = G/U$ by the formula $b(xU) = bxb^{-1}U$, $(t,t')(xU) = txt'U$. For any $(\xi_1, \xi_2) \in \hat{T} \times \hat{T}$ we write H_{ξ_1, ξ_2} for the category of U-equivariant $T \times T$-monodromic D-modules on X with generalized monodromy (ξ_1, ξ_2). For any $\xi \in \hat{T}$ we write H_ξ for the category of B-equivariant T-monodromic D-modules on X with generalized monodromy ξ, where B acts on X by the same formula as before and T acts on X by the formula $t(xU) = txU$. We denote by $D(H_\xi)$ (resp. $D(H_{\xi_1, \xi_2})$) the corresponding B-equivariant (resp. U-equivariant) monodromic derived category.

Consider the embedding $i : X \to Y, gU \to (eU, gU)$.

Lemma 3.3. [MV]

1. The functor $i^0 = i^![\dim X] : D_G(Y) \to D_U(X)$ is an equivalence of categories with inverse given by $(i^0)^{-1} := \text{Ind}_B^G \circ i_*[\dim G - \dim B]$.

2. We have $i^0 HC \simeq Av_U$.

We have the convolution product $D_G(Y) \times D_G(Y) \to D_G(Y)$ given by $(\mathcal{F}, \mathcal{F}') \to (p_{13}_* (p_{12}^* \mathcal{F} \otimes p_{23}^* \mathcal{F}'))$. Here $p_{ij} : G/U \times G/U \times G/U \to Y = G/U \times G/U$ is the projection on the (i, j)-factors. The convolution product on $D_G(Y)$ restricts to a convolution product on $D(M_{\xi, \xi'-1})$. The equivalence $i^0 : D_G(Y) \simeq D_U(X)$ above induces convolution products on $D_U(X)$ and $D(H_\xi)$. In addition, there is an action of $D_U(X)$ on $D(X)$ by right convolution. The convolution operation will be denoted by \ast.

We will need the following lemma. Let X be an algebraic variety with an action of an affine algebraic group G. Denote the action map by $a : G \times X \to X$.

Lemma 3.4 (Lemma 2.1 [BFQ]). For any $A \in D(G)$, $\mathcal{F} \in D(X)$ We have a canonical isomorphism

$$R\Gamma(a_*(A \boxtimes \mathcal{F})) \simeq R\Gamma(A) \otimes_{U(\mathfrak{g})} L R\Gamma(\mathcal{F}).$$

3.3. **Character D-modules.** We denote by $CS(G)$ the category of finitely generated G-equivaraint D-modules on G such that the action of the center $Z \subset U(\mathfrak{g})$, embedding as left invariant differential operators, is locally finite. To every $\theta \in \hat{T}/W = \hat{i}/W_a$, we denote by $CS_\theta(G)$ the category of finitely generated G-equivaraint D-modules on
modules on G such that the action of the center $Z \subset U(\mathfrak{g})$ is locally finite and has generalized eigenvalues in θ. We denote by $D(CS(G))$ (resp. $D(CS_\theta)$) the minimal triangulated full subcategory of $D_G(G)$ containing all objects $\mathcal{M} \in D_G(G)$ such that $\mathcal{M}(\mathfrak{m}) \in CS(G)$ (resp. $\mathfrak{m}(\mathfrak{m}) \in CS_\theta(G)$). We call $CS(G)$ and $CS_\theta(G)$ (resp. $D(CS(G))$ and $D(CS_\theta)$) the category (resp. derived category) of character D-modules on G and character D-modules on G with generalized central character θ.

We have the following:

Proposition 3.5. (1) Let $\xi \in \tilde{T}$ be a lifting of θ. Then $D(CS_\theta(G))$ is generated by the image of $D(H_\xi)$ (resp. $D(M_\xi)$) under the functor $\text{Av}_G : D_B(X) \to D_G(G)$ (resp. $\text{CH} : D_G(Y/T) \to D_G(G)$).

(2) Let $\mathfrak{g} \in CS(G)_\theta$. We have

$$HC(\mathfrak{g}) \in \bigoplus_{\xi \in \tilde{T}, \xi \rightarrow \theta} D(M_\xi), \quad (\text{resp. } \text{Av}_U(\mathfrak{g}) \in \bigoplus_{\xi' \tilde{T}, [\xi'] = \theta} D(H_\xi).)$$

(3) The functors $\text{Ind}_{T \subset B}^G$ and $\text{Res}_{T \subset B}^G$ preserve the derived categories of character D-modules. Moreover, the resulting functors $\text{Ind}_{T \subset B}^G : D(CS(T)) \to D(CS(G))$, $\text{Res}_{T \subset B}^G : D(CS(G)) \to D(CS(T))$ are independent of the choice of the Borel subgroup B and t-exact with respect to the natural t-structures on $D(CS(G))$ and $D(CS(T))$.

(4) Let $CS_{T}(G) \subset CS(G)$ be the full subcategory generated by the image of $\text{Ind}_{T \subset B}^G : CS(T) \to CS(G)$. For any $\mathfrak{g} \in CS_{T}(G)$, the local system $\mathcal{F} = \text{Res}_{T \subset B}^G(\mathfrak{g}) \in CS(T)$ carries a canonical W-equivariant structure, moreover, there is a canonical isomorphism

$$\text{Ind}_{T \subset B}^G(\mathcal{F})^W \simeq \mathfrak{g}.$$

Here $\text{Ind}_{T \subset B}^G(\mathcal{F})^W$ is the W-invariant factor of $\text{Ind}_{T \subset B}^G(\mathcal{F})$ for the W-action constructed in Proposition 3.2.

Proof. Part (1), (2), (3) are proved in [G, L]. We now prove part (4). We first show that $\mathcal{F} = \text{Res}_{T \subset B}^G(\mathfrak{g})$ is canonically W-equivariant. Let $x \in N(T)$ and $w \in N(T)/T = W$ be its image in the Weyl group. Denote $B_x := \text{Ad}_x B$. Consider the following commutative diagram

$$\begin{array}{ccc}
T & \xrightarrow{w} & B \\
\downarrow & & \downarrow \text{Ad}_x \\
T & \xleftarrow{B_x} & G \\
\end{array}$$

where $w : T \to T$ the natural action of $w \in W$ on T and the horizontal arrows are the natural inclusion and projection maps. The base change theorems and the fact that the functors $\text{Res}_{T \subset B}^G$ and $\text{Res}_{T \subset B}^{G_x}$ are canonical isomorphic (see part (3)) imply

$$(3.6) \quad \text{Res}_{T \subset B}^G(\text{Ad}_x^* \mathfrak{g}) \simeq w^* \text{Res}_{T \subset B}^G(\mathfrak{g}) \simeq w^* \text{Res}_{T \subset B}^G(\mathfrak{g}).$$
Since \mathfrak{g} is G-conjugation equivariant, we have a canonical isomorphism $c_x : \mathfrak{g} \simeq \text{Ad}_x^* \mathfrak{g}$. Applying $\text{Res}^G_{T_C B}$ to c_x and using (3.6) we get

$$
(3.7) \quad \mathcal{F} = \text{Res}^G_{T_C B}(\mathfrak{g}) \simeq \text{Res}^G_{T_C B}(\text{Ad}_x^* \mathfrak{g}) \simeq w^* \text{Res}^G_{T_C B}(\mathfrak{g}) = w^* \mathcal{F}.
$$

We claim that the isomorphism above depends only the image w and we denote it by

$$
(3.8) \quad c_w : \mathcal{F} \simeq w^* \mathcal{F}.
$$

To prove the claim it is enough to check that for $x \in T$ the restriction of the isomorphism (3.7) to T_{rs} is equal to the identity map. By [G], the restriction $\mathcal{F}|_{T_{rs}}$ is canonically isomorphic to $\mathfrak{g}|_{T_{rs}}$ and the map in (3.7) is equal to the restriction of c_x to T_{rs}. Since the adjoint action $\text{Ad}_x : G \to G$ is trivial on T, the claim follows from the fact that any T-equivariant structure of a local system on T is trivial. The G-conjugation equivariant structure on \mathfrak{g} implies $\{c_w\}_{w \in W}$ satisfies the required cocycle condition, hence, the data $(\mathcal{F}, \{c_w\}_{w \in W})$ defines a W-equivariant structure on $\mathcal{F} = \text{Res}^G_{T_C B}(\mathfrak{g})$. We shall prove $\text{Ind}^G_{T_C B}(\mathcal{F})^W \simeq \mathfrak{g}$. Let $j : G_{rs} \to G$ the natural inclusion and $c_{rs} : G_{rs} \to T_{rs}/W$ the restriction of the Chevalley map $c : G \to T/W$ to G_{rs}. Note that we have $\mathfrak{g} \simeq \text{Ind}_{G_{rs}}^{G} (\mathfrak{g}|_{G_{rs}})$ and $\text{Ind}^G_{T_C B}(\mathcal{F})^W \simeq j_{rs}(q^*_{rs}(\mathcal{F}))$, where $\mathcal{F} \in \text{Loc}(T_{rs}/W)$ is the descent of $\mathcal{F}|_{T_{rs}}$ along the map $q_{rs} : T^{rs} \to T^{rs}/W$. So we reduce to show $\mathfrak{g}|_{G_{rs}} \simeq c_{rs}^* (\mathcal{F})$ and this follows again from the fact that $\mathfrak{g}|_{T_{rs}} \simeq \mathcal{F}|_{T_{rs}} \in \text{Loc}(W(T_{rs}))$.

\[\square \]

3.4. Local systems L_ξ, \tilde{L}_ξ, E_ξ, and E_θ. Let $\xi \in \tilde{T}$. It defines an one dimensional representation χ_ξ of $\pi_1(T)$ via $\tilde{T} \simeq \text{Hom}(\pi_1(T), \mathbb{G}_m)$, and the corresponding local system on T, denoted by L_ξ, is called the Kummer local system on T associates to ξ. Let W_ξ be the stabilizer of ξ in W. Let $S := \text{Sym}(t)$ and S_\pm denote the argumentation ideal of S. Define $S_n := S/S^n$, $n \in \mathbb{Z}_{\geq 0}$ and $S_\xi := S/S \cdot S^W_\xi$. Note the natural action of W on S induces an action of W_ξ on S_ξ. We view S_n and S_ξ as t-module by restricting the natural $S = \text{Sym}(t)$-actions on S_n and S_ξ to t. Obviously, the t-actions are nilpotent.

Consider the following representations ρ_n of $\pi_1(T)$ in the space S_n, by identifying $\pi_1(T)$ with a lattice in t and defining

$$
(3.9) \quad \rho_n(t) \cdot s = \exp(t) \cdot s
$$

where $t \in t$, $s \in S_n$. Similarly, we consider the representation ρ^uni_ξ of $W_\xi \ltimes \pi_1(T)$ in the space S_ξ by setting

$$
(3.10) \quad \rho^\text{uni}_\xi(w,t) \cdot u = w(\exp(t) \cdot u)
$$

where $(w,t) \in W_\xi \ltimes \pi_1(T)$, $u \in S_\xi$.

Since the character χ_ξ is fixed by W_ξ, it extends to a character of $W_\xi \ltimes \pi_1(T)$ which we still denote by χ_ξ. We define the following representation of $W_\xi \ltimes \pi_1(T)$:

$$
(3.11) \quad \rho_\xi := \rho^\text{uni}_\xi \otimes \chi_\xi.
$$
The induction $\text{Ind}_{W_{\xi} \ltimes \pi_1(T)}^{W \times \pi_1(T)} \rho_\xi$ of ρ_ξ depends only on the image $\theta = [\xi] \in \check{T}/W_\xi$ and we denote the resulting representation by

$$\rho_\theta := \text{Ind}_{W_{\xi} \ltimes \pi_1(T)}^{W \times \pi_1(T)} \rho_\xi.$$

Definition 3.6.
1. We denote by \mathcal{E}_θ the W-equivariant local systems on T_{θ} corresponding to the representation ρ_θ.
2. We denote by \mathcal{E}_ξ and $\mathcal{E}_{\xi}^{\text{uni}}$ the W_ξ-equivariant local systems on T corresponding to the representation ρ_ξ and ρ_ξ^{uni}.
3. We denote by \mathcal{L}_n (resp $\mathcal{L}_n^{\text{uni}}$) the local systems on T corresponding to the representation ρ_n (resp. $\rho_n \otimes \chi_\xi$). Consider the projective system

$$\mathcal{L}_\xi^1 \leftarrow \mathcal{L}_\xi^2 \leftarrow \mathcal{L}_\xi^3 \cdots$$

and we define the following (pro-)local system on T

$$\hat{\mathcal{L}}_\xi = \varprojlim (\mathcal{L}_\xi^n).$$

3.5. **Character D-module M_θ.** Let $\theta \in \check{T}/W$ and let \mathcal{E}_θ be the W-equivaraint local system constructed in §3.3. Consider $\text{Ind}_{T \subset B}(\mathcal{E}_\theta)$ which is a G-equivariant D-module on G. The W-equivariant structure on \mathcal{E}_θ defines a W-action on $\text{Ind}_{T \subset B}(\mathcal{E}_\theta)$.

Definition 3.7. We define M_θ to be the W-invariant factor of $\text{Ind}_{T \subset B}(\mathcal{E}_\theta)$

$$M_\theta := \text{Ind}_{T \subset B}(\mathcal{E}_\theta)^W.$$
3.6. Drinfeld center of Harish-Chandra bimodules. In this section we construct certain elements in the Drinfeld center of Harish-Chandra bimodules and identify them with the local systems \mathcal{E}_ξ under the global section functor.

We first recall facts about Harish-Chandra bimodules following [BG, BFO]. Let $U = U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. Let $Z = Z(U)$ be the center of U. Consider the dot action of W on \mathfrak{t}, $w \cdot t = w(t + \rho) - \rho$, where ρ is the sum of of positive roots. We have the Harish-Chandra isomorphism $hc : Z \simeq \mathcal{O}(\mathfrak{t})^W$ such that for any $\lambda \in \mathfrak{t}$ the center Z acts on the Verma module associated to λ via $z \mapsto hc(z)(\lambda)$. For any $\lambda \in \mathfrak{t}$ we write m_λ for the corresponding maximal ideal and denote by I_λ the maximal ideal of Z corresponding to m_λ under the Harish-Chandra isomorphism.

Consider the extended universal enveloping algebra $\widetilde{U} = U \otimes_{\mathbb{Z}} \mathcal{O}(\mathfrak{t})$, where Z acts on $\mathcal{O}(\mathfrak{t})$ via the Harish-Chandra isomorphism. We denote by $\widetilde{U}_\lambda = \widetilde{U} / \widetilde{U} m_\lambda$ and $\widetilde{U}_\lambda = \lim_{\to}(\widetilde{U} / \widetilde{U} m_\lambda)$.

We denote by \mathcal{HC}_λ the category of finitely generated Harish-Chandra bimodules over \widetilde{U}_λ, that is, finitely generated continuous \widetilde{U}_λ-bimodules such that the diagonal action of \mathfrak{g} is locally finite. We denote by $D(\mathcal{HC}_\lambda)$ the corresponding derived category. The tensor product $M \otimes M' := M \otimes_{\widetilde{U}_\lambda} M'$, $M, M' \in HC_\lambda$ (resp. $M \otimes^L M' := M \otimes^L_{\widetilde{U}_\lambda} M'$, $M, M' \in D(\mathcal{HC}_\lambda)$) defines a monoidal structure on \mathcal{HC}_λ (resp. $D(\mathcal{HC}_\lambda)$).

Proposition 3.9 (BG, BFO). Let $\xi \in \mathfrak{t} = \mathfrak{g}/\Lambda$ and $\lambda \in \mathfrak{t}$ be a dominate regular lifting of ξ. The functor
$$R\Gamma^{\mathfrak{t}, -\lambda - 2\rho} : (D(M_{\xi, \lambda}^{-1}), \ast) \simeq (D(\mathcal{HC}_\lambda), \otimes^L)$$
is an equivalence of monoidal categories.

Let $\xi \in \mathfrak{t}$ and $\lambda \in \mathfrak{t}$ a dominant regular lifting of ξ. By Proposition 3.9 we have an equivalence of monoidal categories

(3.13) $M : (D(H_{\xi, \lambda}), \ast) \simeq (D(M_{\xi, \lambda}^{-1}), \ast) \simeq (D(\mathcal{HC}_\lambda), \otimes^L)$.

Consider the following full abelian subcategory $H_{\xi, \lambda}^t := M^{-1}(\mathcal{HC}_\lambda) \subset D(H_{\xi, \lambda})$. For any $M, M' \in H_{\xi, \lambda}^t$ we define
$$M \ast^t M' := M^{-1}(M(M) \otimes M(M')) \in H_{\xi, \lambda}^t.$$ One can check that \ast^t defines a monoidal structure on $H_{\xi, \lambda}^t$ and the functor M induces an equivalence of abelian monoidal categories

(3.14) $M^t : (H_{\xi, \lambda}^t, \ast^t) \simeq (\mathcal{HC}_\lambda, \otimes)$.

For each $\lambda \in \mathfrak{t}$ we consider the following S-module S^λ_{ξ}: we have $S^\lambda_{\xi} = S_{\xi}$ as vector spaces and the S-module structure is given by $s \cdot m = a_{\lambda}(s)m$, $s \in S, m \in S^\lambda_{\xi}$, where $a_{\lambda} : S \to S, f \mapsto (x \mapsto f(x + \lambda))$. We define

(3.15) $Z_{\lambda} := \widetilde{U}_\lambda \otimes_S S^\lambda_{\xi} \in \mathcal{HC}_\lambda$.
where S acts on \tilde{U}_λ via the the map $p_\lambda : S \simeq Z(\tilde{U}) \to Z(\tilde{U}_\lambda)$.

We denote by $Z(\mathcal{H}_\lambda, \otimes)$ (resp. $Z(H^i_{\xi} \otimes)$) the Drinfeld center of the monoidal category $Z(\mathcal{H}_\lambda, \otimes)$ (resp. $Z(H^i_{\xi} \otimes)$). Recall an element in $Z(\mathcal{H}_\lambda, \otimes)$ consists of an element $\mathcal{M} \in \mathcal{H}_\lambda$ together with family of compatible isomorphisms $b_{\mathcal{M}} : \mathcal{M} \otimes \mathcal{F} \simeq \mathcal{M} \otimes \mathcal{F}$ for $\mathcal{F} \in \mathcal{H}_\lambda$.

Proposition 3.10. Let $\lambda \in \hat{\xi}$ be a dominant regular weight and $\xi \in \hat{T}$ be its image.

1. To every $\mathcal{M} \in \mathcal{H}_\lambda$ there is a canonical isomorphism
 \[b_\mathcal{M} : Z_\lambda \otimes \mathcal{M} \simeq \mathcal{M} \otimes Z_\lambda \]
 such that the data $(Z_\lambda, b_\mathcal{M})_{\mathcal{M} \in \mathcal{H}_\lambda}$ defines an element in the Drinfeld center $Z(\mathcal{H}_\lambda, \otimes)$.

2. We have $\mathcal{M}(\mathcal{E}_\xi) \simeq Z_\lambda$.

Proof. Proof of (1). Consider the map $m_\lambda : S \otimes S \xrightarrow{a_\lambda \otimes a_\lambda = \lambda^2} S \otimes S \xrightarrow{\rho \otimes \rho = \lambda^2} Z(\tilde{U}_\lambda \otimes \tilde{U}^{-\lambda}_{\lambda - 2\rho})$. To every $\mathcal{M} \in \mathcal{H}_\lambda$, the map above defines an action of $S \otimes S$ on \mathcal{M} and the result in [3] implies that this action factors through $S \otimes S \to S \otimes S_{W_\xi} S$. Therefore, for every $\mathcal{M} \in \mathcal{H}_\lambda$, we have a canonical isomorphism $b_\mathcal{M} : Z_\lambda \otimes \mathcal{M} \simeq S/S \cdot S_{W_\xi} \otimes_S \mathcal{M} \simeq Z_\lambda \otimes \mathcal{M} \otimes S/S \cdot S_{W_\xi} \simeq Z_\lambda \otimes \mathcal{M}$. One can check that those isomorphisms satisfy the required compatibility conditions and the data $(Z_\lambda, b_\mathcal{M})$ defines an element in $Z(\mathcal{H}_\lambda, \otimes)$.

Proof of (2). Let $\tilde{E}_\xi \in M_\xi$ be the image of E_ξ under the equivalence $(\iota^0)^{-1} : H_\xi \simeq M_\xi$ in Lemma 3. Theorem 3. Then by definition we have $\mathcal{M}(E_\xi) \simeq RT\Gamma^{\hat{\lambda}, \hat{-\lambda}}(\xi^+ \xi)$, where $\pi : Y \to Y/T$. Consider the map
 \[a : T \times (G/U \times G/U)/T \to (G/U \times G/U)/T, \quad (t, gU, g'U) \to (gt^{-1}U, g'U). \]

Then it follows from the definition of $(\iota^0)^{-1}$ that we have $\tilde{E}_\xi = a_*(E_\xi \boxtimes \Delta_\xi \xi / G/B)$, here $\Delta : G/B \to (G/U \times G/U)/T$ is the embedding $gB \to (gU, g'U)$ mod T. Note that $RT(\Delta \xi \xi / G/B \otimes p_2^* \xi / G/B) \simeq \tilde{U} (p_2$ is the right projection map $(G/U \times G/U)/T \to G/B$) hence by Lemma 3.4 we get
 \[RT\Gamma^{\hat{\lambda}, \hat{-\lambda}}(\xi^+ \xi) \simeq RT\Gamma^{\hat{\lambda}}(\tilde{E}_\xi \boxtimes p_2^* \xi / G/B) = RT\Gamma^{\hat{\lambda}}(a_*(\xi \boxtimes (\Delta \xi \xi / G/B \otimes p_2^* \xi / G/B)) \simeq \tilde{U} \boxtimes Sym(\xi) \Gamma^{\hat{\lambda}}(\xi_\xi) \]
 Since $\Gamma^{\hat{\lambda}}(\xi_\xi) \simeq S_\xi^\lambda$, part (2) follows.

Corollary 3.11.

1. We have $\mathcal{E}_\xi \in H^1_{\xi \xi}$.

2. To every $\mathcal{M} \in H^1_{\xi \xi}$ there is a canonical isomorphism
 \[b_\mathcal{M} : \mathcal{E}_\xi \ast \mathcal{M} \simeq \mathcal{M} \ast \mathcal{E}_\xi \]
 such that the data $(\mathcal{E}_\xi, b_\mathcal{M})_{\mathcal{M} \in H^1_{\xi \xi}}$ defines an element in the Drinfeld center $Z(H^1_{\xi \xi}, \ast^i)$.

Proof. This follows immediately from above proposition and [3.14].
3.7. Proof of Theorem 3.8. Recall the notion of translation functor \(\theta^\mu_\lambda : \mathcal{H}c_\lambda \to \mathcal{H}c_\mu \) where \(\mu \in \lambda + \Lambda \). In \([BFO]\), they proved the following:

(1) There is a lifting \(\theta^\mu_\lambda : Z(\mathcal{H}c_\lambda, \otimes) \to Z(\mathcal{H}c_\mu, \otimes) \) such that the functor \(F : Z(\mathcal{H}c_\lambda, \otimes) \to Z(\mathcal{H}c_\xi, \otimes), L \to \bigoplus_{\mu \in (\lambda + \Lambda)/W} \theta^\mu_\lambda(L) \) define an equivalence of braided monoidal categories.

(2) For any \(\mathcal{M} \in \mathcal{M}_G(G) \) the global section \(\Gamma(\mathcal{M}) \) is naturally a Harish-Chandra bimodule, with a canonical central structure and the resulting functor \(\Gamma : \mathcal{M}_G(G) \to Z(\mathcal{H}c, \otimes) \) is an equivalence of abelian categories. Moreover, the equivalence above restricts to an equivalence \(CS_\theta \simeq Z(\mathcal{H}c_\xi, \otimes) \) and the composed equivalence

\[
CS_\theta \simeq Z(\mathcal{H}c_\xi, \otimes) \overset{F^{-1}}{\longrightarrow} Z(\mathcal{H}c_\lambda, \otimes)
\]

is isomorphic to \(R\Gamma^{\lambda, -\lambda-2\rho} \circ \pi^0 \mathcal{H}C \). Here \(\pi : Y \to \mathcal{Y}/T \) is the projection map.

Let \(Z_\lambda \in Z(\mathcal{H}c_\lambda, \otimes), \tilde{E}_\xi \in M_\xi \) be as in Proposition 3.10. Define \(\tilde{E}_\theta \simeq \bigoplus_{\xi \in T, \xi \to \theta} \tilde{E}_\xi \in \mathcal{M}_G(Y) \). By the discussion above there exists a character \(D \)-module \(M_\theta \in CS_\theta \) such that

\[
R\Gamma^{\lambda, -\lambda-2\rho} \circ \pi^0 \mathcal{H}C(M_\theta) = Z_\lambda.
\]

Hence by Proposition 3.10, we have

\[
R\Gamma^{\lambda, -\lambda-2\rho} \circ \pi^0 \mathcal{H}C(M_\theta) \simeq R\Gamma^{\lambda, -\lambda-2\rho}(\pi^0 \tilde{E}_\xi)
\]

for any regular dominant \(\lambda \in \mathfrak{t} \) mapping to \(\xi \). Since \(\pi^0 \mathcal{H}C : D(CS_\theta) \to \bigoplus_{\xi \in T, \xi \to \theta} D(M_\xi - \lambda) \) and \(R\Gamma^{\lambda, -\lambda-2\rho} : D(M_\xi - \lambda) \simeq \mathcal{H}c_\lambda \) is an equivalence of category for regular dominant \(\lambda \), this implies \(\mathcal{H}C(M_\theta) \simeq \tilde{E}_\theta \). Applying the equivalence \(i^0 : D(M_\xi) \simeq D(H_\xi) \) on both sides and using Lemma 3.3, we get

\[
(3.16) \quad \text{Av}_{\mathcal{U}}(M_\theta) = i^0(\mathcal{H}C(M_\theta)) \simeq i^0 \tilde{E}_\theta \simeq \mathcal{E}_\theta.
\]

The isomorphism above implies \(\mathcal{E}_\theta \simeq \text{Av}_{\mathcal{U}}(M_\theta) \simeq \text{Res}_{T \subset B}(M_\theta) \), hence by part (4) of Proposition 3.5, there is canonical \(W \)-equivariant structure on \(\mathcal{E}_\theta \) such that \(M_\theta \simeq \text{Ind}_{T \subset B}(\mathcal{E}_\theta)^W \). In the lemma below we will show that this \(W \)-equivariant structure on \(\mathcal{E}_\theta \) coincides with the one in Definition 3.6; therefore we have \(M_\theta \simeq M'_\theta \simeq \text{Ind}_{T \subset B}(\mathcal{E}_\theta)^W \) and the theorem follows from (3.16).

Lemma 3.12. The \(W \)-equivariant structure on \(\mathcal{E}_\theta \simeq \text{Res}_{T \subset B}(M'_\theta) \) constructed in Proposition 3.5 coincides with the one in Definition 3.6.

Proof. We give a proof in the case when \(\theta = [\xi] \in \mathfrak{t}/W \). The proof for the general cases are similar. By construction we have \(Z_\theta = U_0 \otimes (S/S_n^W) \), \(M_\theta \simeq \bigoplus_{\mu \in \Lambda \cap W} \theta^\mu_\theta(Z_\theta) \), and \(\mathcal{E}_\theta = \mathcal{E}_\xi = \mathcal{E}_e^{\text{sep}} \). Let \(x \in N(T) \) and \(w \in W \) its image in the Weyl group. Let

\[
c_x : M_\theta \simeq \text{Ad}^*_x M'_\theta
\]

be the isomorphism coming from the \(G \)-conjugation equivariant structure on \(M'_\theta \) and

\[
c_w : \mathcal{E}_\theta \simeq \text{Res}_{T \subset B}^G M'_\theta \simeq \text{Res}_{T \subset B}^G \text{Ad}^*_w M'_\theta \simeq w^* \mathcal{E}_\theta
\]

13
the induced map in (3.8). By Lemma 3.4 we have
\[R\Gamma^0(\mathbb{A}^0 U(M'_{\theta})) \simeq (U(\mathfrak{g})/U(\mathfrak{g}) n) \otimes_S S^{S/W}_+, \quad R\Gamma^0(\mathbb{A}^0 U(\text{Ad}^*_s M'_{\theta})) \simeq (U(\mathfrak{g})/U(\mathfrak{g}) n_x) \otimes_S S^{S/W}_+. \]
Here in the right isomorphism \(n_x = \text{Ad}_x n \) and the \(S \)-module structure on \(S^{S/W}_+ \) is given by \(s \cdot m = \text{Ad}_x(s)m, \) \(s \in S, m \in S^{S/W}_+ \). Since the map \(c_x \) comes from the adjoint \(G \)-action on \(Z_0 \), under the isomorphisms in (3.17), the map
\[R\Gamma^0(\mathbb{A}^0 U(c_x)) : R\Gamma^0(\mathbb{A}^0 U(M'_{\theta})) \simeq R\Gamma^0(\mathbb{A}^0 U(\text{Ad}^*_s M'_{\theta})) \]
becomes
\[(U(\mathfrak{g})/U(\mathfrak{g}) n) \otimes_S S^{S/W}_+ \to (U(\mathfrak{g})/U(\mathfrak{g}) n_x) \otimes_S S^{S/W}_+, \quad v \otimes s \to \text{Ad}_x(v) \otimes s. \]
This implies the map
\[a_w : S^{S/W}_+ \simeq R\Gamma^0(\mathcal{E}_{\theta}) \xrightarrow{R\Gamma^0(c_w)} R\Gamma^0(w^* \mathcal{E}_{\theta}) \simeq S^{S/W}_+ \]
induced by \(c_w \) is equal to the natural \(W \)-action map \(s \to \text{Ad}_x s = w(s) \). Notice that the assignment \(w \to a_w \) is the representation of \(W \) on \(S^{S/W}_+ \simeq \mathcal{E}_{\theta}\) coming from the \(W \)-equivariant structure \(\{c_w\}_{w \in W} \) on \(\mathcal{E}_{\theta} \). Since the \(W \)-equivariant structure on \(\mathcal{E}_{\theta} \) constructed in Definition 3.6 uses the same representation of \(W \) on \(S^{S/W}_+ \), the lemma follows.

\[\square \]

4. Gamma \(D \)-modules

In this section we recall the definition of gamma \(D \)-modules on a reductive group due to D.Kazhdan and A.Braverman. We compute the convolution of gamma \(D \)-modules with the \(D \)-modules \(\mathcal{E}_\xi \) and \(M_{\theta} \) introduced in (3.5) (see Proposition 4.3 and Theorem 4.5). Those computations play important roles in §5 for the proof of the acyclicity of Gamma \(D \)-modules and in §6 for the proof of exactness properties of non-linear Fourier transforms.

4.1. Gamma \(D \)-modules on \(T \). For any \(c \in \mathbb{C}^\times \) we consider the corresponding exponential \(D \)-module \(\mathbb{C}[x]e^{cx} := \{ f e^{cx} | f \in \mathbb{C}[x] \} \) on \(\mathbb{G}_a = \text{Spec} \mathbb{C}[x] \) with generator \(e^{cx} \) and \(\partial_x(f e^{cx}) = (f' + c) e^{cx}, \ f \in \mathbb{C}[x] \). For each nontrivial cocharacter \(\lambda : \mathbb{G}_m \to T \) we define \(\Psi(\lambda, c) := \lambda_*(j^* \mathbb{C}[x]e^{cx}) \) where \(j : \mathbb{G}_m \to \mathbb{G}_a \) is the natural inclusion. Note that since \(\lambda \) is finite we have
\[\Psi(\lambda, c) = \lambda_*(j^* \mathbb{C}[x]e^{cx}) \simeq \lambda_!(j^* \mathbb{C}[x]e^{cx}). \]
Recall the convolution product \(\ast \) (resp. \(\ast \)) on \(D(T)_{\text{hol}} \)
\[\mathcal{F} \ast \mathcal{F}' = m_*(\mathcal{F} \boxtimes \mathcal{F}'), \ (\text{resp. } \mathcal{F} \ast \mathcal{F}' = m_!(\mathcal{F} \boxtimes \mathcal{F}')) \]
Here \(m : T \times T \to T, (x, y) \to xy \) is the multiplication map. For every collection of possibly repeated nontrivial cocharacter \(\Delta = (\lambda_1, ..., \lambda_r) \) we define
\[\Psi_{\Delta, c} := \Psi(\lambda_1, c) \ast \cdots \ast \Psi(\lambda_r, c) \]
\[\Psi_{\Delta_c} := \Psi(\lambda_1, c) \ast \cdots \ast \Psi(\lambda_r, c). \]

Following [BK1], we call \(\Psi_{\Delta_c} \) and \(\Psi'_{\Delta_c} \) gamma \(D \)-modules on \(T \).

Let \(\text{pr}_\Delta : G_m^r \to T, (x_1, \ldots, x_r) \to \prod_{i=1}^r \lambda_i(x_i) \) and \(\text{tr} : G_m^r \to G, (x_1, \ldots, x_r) \to \sum x_i \). Then using base changes one can show that \(\Psi_{\Delta_c} = \text{pr}_\Delta^* \text{tr}^*(\mathbb{C}[x]e^{cx}) \) and \(\Psi'_{\Delta_c} = \text{pr}_{\Delta'} \text{tr}^*(\mathbb{C}[x]e^{cx}) \).

Definition 4.1. Let \(\sigma : T \to G_m \) be a character. A co-character \(\lambda \) is called \(\sigma \)-positive if \(\sigma \circ \lambda : G_m \to G_m \) has the form \(t \to t^n \) for some positive integer \(n \).

We have the following properties of gamma \(D \)-modules:

Proposition 4.2. Let \(\Delta = \{\lambda_1, \ldots, \lambda_r\} \) be a collection of \(\sigma \)-positive co-characters.

1) Then the natural map \(\Psi'_{\Delta,c} \to \Psi_{\Delta,c} \) is an isomorphism. Moreover, \(\Psi_{\Delta,c} \) is a local system on the image \(T_\Delta := \text{Im}(\text{pr}_\Delta) \subset T \).

2) We have \(\mathbb{D}(\Psi_{\Delta,c}) \simeq \Psi_{\Delta,-c} \).

3) Let \(\mathcal{L} \) be a Kummer local system on \(T \). We have
\[
H^i_{dR}(\Psi_{\Delta,c} \otimes \mathcal{L}) = 0
\]
for \(i \neq 0 \) and \(\dim H^0_{dR}(\Psi_{\Delta,c} \otimes \mathcal{L}) = 1 \). Moreover, we have a canonical isomorphism
\[
\Psi_{\Delta,c} \ast \mathcal{L} \simeq H^0_{dR}(\Psi_{\Delta,c} \otimes \mathcal{L}^{-1}) \otimes \mathcal{L}.
\]

4) Consider the functor of right convolution with \(\Psi_{\Delta,c} \in D_U(X) \):
\[
(-) \ast \Psi_{\Delta,c} : D(X) \to D(X).
\]
The functor above preserves the \(T \)-monodromic subcategory \(D(X)_{\text{mon}} \subset D(X) \), where \(T \) acts on \(X = G/U \) from the right.

Proof. Part 1), 2), 3) are proved in [BK1, Theorem 4.2, Theorem 4.8]. Part 4) follows from part 3). \(\square \)

Let \(\Delta = (\lambda_1, \ldots, \lambda_r) \) be a collection of \(\sigma \)-positive cocharacters. Recall that the Weyl group \(W \) acts naturally on \(X(T) \) and we assume that the set \(\{\lambda_i\}_{i=1, \ldots, r} \) are invariant under this action. Following [BK] (see also [CN]), we shall construct a \(W \)-equivariant structure on \(\Psi_{\Delta} \). Let \((\lambda_{i_1}, \ldots, \lambda_{i_k}) \) be the distinct cocharacters appearing in \(\Delta \) and \(m_i \) be the multiplicity of \(\lambda_{i_i} \in \Delta \). Let \(A_i = \{\lambda_i| \lambda_i = \lambda_{i_i}\} \). Then we have \(\{\lambda_1, \ldots, \lambda_r\} = A_1 \cup \ldots \cup A_k \). The symmetric group on \(r \)-letters \(S_r \) acts naturally on \(\{\lambda_1, \ldots, \lambda_r\} \) and we define \(S_\Delta = \{\sigma \in S_r| \sigma(A_i) = A_i\} \). There is a canonical isomorphism
\[
S_\Delta \simeq S_{m_1} \times \cdots \times S_{m_k}.
\]
Define \(S'_\Delta = \{\eta \in S_r| \text{such that } \eta(A_i) = A_{r(i)} \text{ for } \tau \in S_k\} \). We have a natural map \(\pi_k : S'_\Delta \to S_k \) sending \(\eta \) to \(\tau \). The kernel of \(\pi_k \) is isomorphic to \(S_\Delta \) and its image, denote
by Σ_k, consists of $\tau \in \Sigma_k$ such that $m_i = m_{r(i)}$. In other words, there is a short exact sequence

$$0 \to S \to S' \xrightarrow{\pi_k} \Sigma_k \to 0.$$

Notice that the Weyl group W acts on $\{\lambda_i, \ldots, \lambda_n\}$ and the induced map $W \to \Sigma_k$ has image Σ_k. So we have a map $\rho : W \to \Sigma_k$. Pulling back the short exact sequence above along ρ, we get an extension of W' of W by S

$$0 \to S \to W' \to W \to 0$$

where an element in $w' \in W'$ consists of pair $(w, \eta) \in W \times S'$ such that $\rho(w) = \pi_k(\eta) \in \Sigma_k$.

The group W' acts on G_m (resp. T) via the composition of the action of S_r (resp. W) with the natural projection $W' \to S'_r \subset S_r$ (resp. $W' \to W$) and the map $pr'_\Lambda : G_m \to T$ and $tr' : G_m \to G_a$ is W'-equivaraint where W' acts trivially on G_a.

Since $\Psi_{\Lambda, c} \simeq (pr'_\Lambda)_! tr'((C[x]e^{tx}))$, the discussion above implies for each $w' = (w, \eta) \in W'$ there is an isomorphism

$$i_{w'} : \Psi_{\Lambda, c} \simeq w'\Psi_{\Lambda, c}.$$

We define

$$i_{w'} = \text{sign}_w(\eta) \text{sign}_W(w) i_{w'} : \Psi_{\Lambda, c} \simeq w'\Psi_{\Lambda, c}$$

where sign$_w$ and sign$_W$ are the sign characters of S_r and W. According to [BK1], the isomorphism $i_{w'}$ depends only on w. Denote the resting isomorphism by i_w, then the data $(\Psi_{\Lambda, c}, \{i_w\}_{w \in W})$ defines a W-equivariant structure on $\Psi_{\Lambda, c}$.

4.2. **Mellin transform.** Let $x_i \in \Lambda$ be a basis and consider the regular function $\Theta(T) \simeq C[x_i^{\pm 1}]$ and the algebra of differential operators $\Gamma(D_T) \simeq C[x_i^{\pm 1}] / \{v_i x_j - x_j (\delta_{ij} + v_i)\}$ where $v_i = x_i \partial_k$ and t are a basis for the T-invariant vector fields. The Mellin transform functor

$$M : M(T) \to C[v_i] \text{mod}^{\Lambda}, \quad N \to \Gamma(N)$$

defined by considering $\Gamma(D_T)$ as algebra of difference operators $C[v_i][x_i^{\pm 1}] / \{v_i x_j - x_j (\delta_{ij} + v_i)\}$, is an equivalence of abelian categories between D-modules on T and Λ-equivariant $C[v_i]$-modules. Consider the derived category of Λ-equivariant $C[v_i]$-modules $\mathbf{D}(C[v_i] \text{-mod}^{\Lambda})$ with the monoidal structure given by the derived tensor product over $C[v_i]$. We have $M(M \star N) \simeq M(M) \otimes^L_{C[v_i]} M(N)$.

Let $W' \subset W$ be a subgroup. Consider the category $M_{W'}(T)$ (resp. $C[v_i] \text{-mod}^{W' \ast \Lambda}$) of W'-equivariant D-module on T (resp. $W' \ast \Lambda$-equivariant $C[v_i]$-modules). Then the functor M extends naturally to an equivalence of categories

$$M_{W'} : M_{W'}(T) \to C[v_i] \text{-mod}^{W' \ast \Lambda}.$$

Note that we have a canonical equivalence $C[v_i] \text{-mod}^{\Lambda} \simeq \text{QCoh}(t^*)^\Lambda$ (resp. $C[v_i] \text{-mod}^{W' \ast \Lambda} \simeq \text{QCoh}(t)^{W' \ast \Lambda}$) where $\text{QCoh}(t)^\Lambda$ (resp. $\text{QCoh}(t)^{W' \ast \Lambda}$) is the category of Λ-equivariant...
(resp. $W' \times \Lambda$-equivariant) quasi-coherent sheaves on \mathfrak{t}. We write $\mathcal{M} : \mathcal{M}(T) \to \text{Qcoh}(\mathfrak{t}^* \Lambda)$ (resp. $\mathcal{M}_W : \mathcal{M}_W(T) \to \text{Qcoh}(\mathfrak{t}^* W' \times \Lambda)$) for the composition of \mathcal{M} (resp. \mathcal{M}_W) with the equivalence above.

Let $(N, c_w : N \simeq w^* N) \in \mathcal{M}_W(T)$. Then the W'-equivariant structure on $\mathcal{M}_W(N)$ is determined by the following W'-action on $\mathcal{M}(N)$:

$$a_w : \mathcal{M}(N) = \Gamma(N) \overset{\Gamma(c_w)}{\rightarrow} \Gamma(w^* N) \simeq \Gamma(N) = \mathcal{M}(N), \ w \in W'.$$

4.3. Mellin transform of $\Psi_{\Delta,c}$

We describe the Mellin transform of $\Psi_{\Delta,c}$. Recall

$$\Psi_{\Delta,c} \simeq (\text{pr}_{\Delta})_* \text{tr}^*(\mathbb{C}[x]e^{cx}) \simeq (\mathbb{C}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}]e^{\sum cx_i} \otimes_{O_{G_m}} \omega_{G_m}) \otimes_{O_{\mathbb{G}_m}} D_{G_m} \rightarrow T \otimes_{\mathbb{G}_m} \omega_T^{-1}.$$

Fix a nowhere vanishing G_m^r-invariant (resp. T-invariant) section $r_1 \in \Gamma(\omega_{G_m})$ (resp. $r_2 \in \Gamma(\omega_T)$). Then the trivialization $O_{G_m} \simeq \omega_{G_m}$ (resp. $O_T \simeq \omega_T$) induced by r_1 (resp. r_2) defines an isomorphism

$$t_{\Delta} : \mathcal{M}(\Psi_{\Delta,c}) \simeq \mathbb{C}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}]e^{\sum cx_i} \otimes_{O_{[v_1, \ldots, v_r]}} S$$

where $v_i = x_i \partial_{x_i}$ and the $\mathbb{C}[v_1, \ldots, v_r]$-module structure on $S = \text{Sym}(\mathfrak{t})$ is given by $v_i \cdot s = d\lambda_i(v_i)s, \ s \in S$, here $d\lambda_i : \mathbb{C}[v_i] \rightarrow S$ is the differential of the cocharacter λ_i.

Recall the W-action on $\mathcal{M}(\Psi_{\Delta,c})$:

$$a_w : \mathcal{M}(\Psi_{\Delta,c}) = \Gamma(\Psi_{\Delta,c}) \overset{\Gamma(c_w)}{\rightarrow} \Gamma(w^* \Psi_{\Delta,c}) \simeq \Gamma(\Psi_{\Delta,c}) = \mathcal{M}(\Psi_{\Delta,c}), \ w \in W.$$

Let $w' = (w, \eta) \in W'$. We have $\eta^*(r_1) = \text{sign}(\eta)r_1$ (resp. $w^* r_2 = \text{sign}(w)r_2$) and the construction of $t_{w'}$ (see (4.1)) implies the following description of a_w: the following diagram commutes

$$\begin{array}{ccc}
\mathcal{M}(\Psi_{\Delta,c}) & \overset{t_{\Delta}}{\rightarrow} & \mathbb{C}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}]e^{\sum cx_i} \otimes_{O_{[v_1, \ldots, v_r]}} S \\
& a_w & \downarrow b_{w'} \\
\mathcal{M}(\Psi_{\Delta,c}) & \overset{t_{\Delta}}{\rightarrow} & \mathbb{C}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}]e^{\sum cx_i} \otimes_{O_{[v_1, \ldots, v_r]}} S
\end{array}$$

where $b_{w'} : \mathbb{C}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}]e^{\sum cx_i} \otimes_{O_{[v_1, \ldots, v_r]}} S \rightarrow \mathbb{C}[x_1^{\pm 1}, \ldots, x_r^{\pm 1}]e^{\sum cx_i} \otimes_{O_{[v_1, \ldots, v_r]}} S, f \otimes s \rightarrow \eta(f) \otimes w(s)$.

4.4. Mellin transform of \mathcal{E}_ξ and $\mathcal{L}_n^\mathfrak{t}$

We describe the Mellin transforms of \mathcal{E}_ξ and $\mathcal{L}_n^\mathfrak{t}$. To every $\mu \in \mathfrak{t}$ let $l_\mu : \mathfrak{t} \rightarrow \mathfrak{v}, v \rightarrow v - \mu$. Recall the S-module $S_\xi = S/S_{n, \mathfrak{t}}$, $S_n = S/S_n^n$ introduced in (3.4). Let $S_\xi := O_{\mathfrak{t}} \otimes S_\xi$, $S_n := O_{\mathfrak{t}} \otimes S_n$ be quasi-coherent sheaves on \mathfrak{t} corresponding to $S_\xi = S/S_{n, \mathfrak{t}}$ and $S_n = S/S_n^n$. We define $S_\xi^\mu := l_\mu^* S_\xi, S_n^\mu := l_\mu^* S_n$ and write $S_\xi^\mu = \Gamma(S_\xi^\mu)$, $S_n^\mu = \Gamma(S_n^\mu)$. Note that the S-module S_ξ^μ here agrees with the one in (3.15). Clearly we have $l_\lambda^* S_\xi^\mu \simeq S_\xi^\mu \Lambda$ (resp. $l_\lambda^* S_n^\mu \simeq S_n^\mu + \Lambda$) for $\lambda \in \mathfrak{t}^*$. Consider the projection map $\pi_\xi : \mathfrak{t} \rightarrow \mathfrak{t}/\mathfrak{w}_\xi$. We have $S_\xi \simeq \pi_\xi^* \delta$, where δ the the skyscraper sheaf supported at $0 \in \mathfrak{t}^*/\mathfrak{w}_\xi$, and the equality $\pi_\xi \circ l_\mu \circ w = \pi_\xi \circ l_\mu$ defines an isomorphism $S_\xi \simeq w^* S_{\xi}^\mu$. 17
The isomorphisms \(l_\lambda^* S_n^\mu \simeq S_n^{\mu+\lambda} \) for \(\lambda \in \Lambda \) defines a \(\Lambda \)-equivariant structure on \(\bigoplus_{\mu \in t^*, \mu = \xi} \mathcal{S}_{\lambda}^\mu \) and we have

\[
\mathcal{M}(\mathcal{L}_\xi^n) \simeq \bigoplus_{\mu \in t^*, \mu = \xi} S_n^\mu \in \text{Qcoh}(\hat{t})^\Lambda, \quad (\text{resp. } \mathcal{M}(\mathcal{L}_\xi^n) \simeq \bigoplus_{\mu \in t^*, \mu = \xi} S_n^\mu \in S^\text{-mod}_\Lambda).
\]

Similarly, the isomorphisms \(S_n^{\mu+\lambda} \simeq l_\lambda^* S_n^\mu, \lambda \in \Lambda \) and \(S_n^\mu \simeq l^w S_n^w(\mu) \) define a \(W_\xi \times \Lambda \)-equivariant structure on \(\bigoplus_{\mu \in t^*, \mu = \xi} \mathcal{S}_{\lambda}^\mu \) and we have

\[
\mathcal{M}_{W_\xi}(\mathcal{E}_\xi) \simeq \bigoplus_{\mu \in t^*, \mu = \xi} \mathcal{S}_{\xi}^\mu \in \text{Qcoh}(\hat{t})^{W_\xi \times \Lambda}, \quad (\text{resp. } \mathcal{M}_{W_\xi}(\mathcal{E}_\xi) \simeq \bigoplus_{\mu \in t^*, \mu = \xi} \mathcal{S}_{\xi}^\mu \in S^\text{-mod}_{W_\xi \times \Lambda}).
\]

Let

\[
\mathcal{u}_w^\mu : S_n^\mu = \Gamma(S_n^\mu) \to \Gamma(w^* S_n^w(\mu)) \simeq \Gamma(S_n^w(\mu)) = S_n^w(\mu)
\]

be the map induced by the isomorphism \(S_n^\mu \simeq w^* S_n^w(\mu) \). Then the \(W_\xi \)-action on \(\mathcal{M}(\mathcal{E}_\xi) \), defined in (4.2), decomposes as

\[
(4.4) \quad \mathcal{u}_w = \bigoplus u_w^\mu : \mathcal{M}(\mathcal{E}_\xi) = \bigoplus_{\mu \in t^*, \mu = \xi} S_n^\mu \to \bigoplus_{\mu \in t^*, \mu = \xi} S_n^w(\mu) = \mathcal{M}(\mathcal{E}_\xi), \quad w \in W_\xi.
\]

4.5. We have the following key proposition whose proof will be given in section 4.7.

Proposition 4.3. There is an isomorphism

\[
\Psi_{\Delta, e} \ast \mathcal{E}_\xi \simeq \mathcal{E}_\xi
\]

of \(W_\xi \)-equivariant local systems on \(T \).

4.6. **Gamma \(D \)-modules on \(G \).** We preserve the setup in 4.1. Let \(\Delta = (\lambda_1, ..., \lambda_r) \) be a collection of \(W \)-invariant \(\sigma \)-positive co-characters. By Proposition 3.2, the \(W \)-equivariant structure on \(\Psi_{\Delta, e} \) defines a \(W \)-action on \(\text{Ind}_{T \subset B}^G(\Psi_{\Delta, e}) \).

Definition 4.4. The gamma \(D \)-module attached to \(\Delta \) is the \(W \)-invariant factor of the \(D \)-module \(\text{Ind}_{T \subset B}^G(\Psi_{\Delta, e}) \)

\[
\Psi_{G, \Delta, e} := \text{Ind}_{T \subset B}^G(\Psi_{\Delta, e})^W.
\]

Giving a representation \(\rho : \hat{G} \to GL(V_\rho) \), its restriction \(\rho|_{\hat{T}} \) is diagonalizable, i.e. there exist a collection of co-characters \(\Delta_\rho = \{ \lambda_1, ..., \lambda_r \} \) such that \(V_\rho = \bigoplus V_{\lambda_i} \) where \(\hat{T} \) acts on \(V_{\lambda_i} \) by the \(\lambda_i \in \text{Hom}(G_m, T) \simeq \text{Hom}(\hat{T}, G_m) \). Note that \(\Delta_\rho \) is automatically \(W \)-stable. Assume each \(\lambda_i \in \Delta_\rho \) is \(\sigma \)-positive and \(\text{pr}_{\Delta_\rho} \) is onto, then the gamma \(D \)-module (or rather, the corresponding gamma sheaf) \(\Psi_{G, \rho, e} := \Psi_{G, \Delta_\rho, e} \) attached to \(\Delta_\rho \) is the one studied in [BK, BK1].
The following property of gamma D-module follows from Proposition 4.2
(4.5) \[D(\Psi_{G_\Delta c}) \simeq \Psi_{G_\Delta -c}. \]

Recall the character D-module M_θ in (3.5)

Theorem 4.5. There is an isomorphism
\[\Psi_{G_\Delta c} \ast M_\theta \simeq M_\theta. \]

Proof. Fix a lifting of $\xi \in \hat{T}$ of θ. Then we have $A\nu_U(M_\theta) \simeq E_\theta \simeq \text{Ind}^W_{\nu_\xi} E_\xi$, which is supported on $T = B/U$. Thus by Proposition 3.2 and Proposition 4.3 we have
\[\text{Ind}^G_{T \subset B}(\Psi_{\Delta c}) \ast M_\theta \simeq \text{Ind}^G_{T \subset B}(\Psi_{\Delta c} \ast E_\theta) \simeq \text{Ind}^W_{\nu_\xi}(\text{Ind}^G_{T \subset B}(\Psi_{\Delta c} \ast E_\xi)) \simeq \text{Ind}^W_{\nu_\xi}(\text{Ind}^G_{T \subset B}(E_\xi)). \]

Now taking W-invariant on both sides of the isomorphism above and using (3.12), we arrive
\[\Psi_{G_\Delta c} \ast M_\theta \simeq (\text{Ind}^G_{T \subset B}(\Psi_{\Delta c}) \ast M_\theta)^W \simeq (\text{Ind}^G_{T \subset B}(\Psi_{\Delta c} \ast E_\xi))^W \simeq \text{Ind}^G_{T \subset B}(E_\xi)^W \simeq M_\theta. \]

\[\square \]

4.7. **Proof of Proposition 4.3.** We shall construct an isomorphism $\Psi_{\Delta c} \ast E_\xi \simeq E_\xi$. For this we will first construct an isomorphism $\Psi(\lambda, c) \ast E_\xi \simeq E_\xi$ for $\lambda \in \hat{T}$. For simplicity, we will write Ψ_Δ (resp. $\Psi(\lambda)$) for $\Psi_{\Delta c}$ (resp. $\Psi(\lambda, c)$). By (4.2 and 4.4) we have
\[M(E_\xi) = \bigoplus_{\mu \in \nu_U, [\mu] = \xi} S^\mu_\xi \] and
(4.6) \[M(\Psi(\lambda) \ast E_\xi) \simeq M(\Psi(\lambda)) \otimes S M(E_\xi) \simeq \bigoplus_{\mu \in \nu_U, [\mu] = \xi} C[x^{\pm1}]^{\nu_U} \otimes_{C[v]} S^\mu_\xi, \]
here x is a coordinate of G_m, $v = x \partial_x$, and $C[v]$ acts on S^μ_ξ via the map $d\lambda : C[v] \to S$. Write $\lambda(\mu) = a_{\lambda, \mu} + n_{\lambda, \mu}$, with $a_{\lambda, \mu} \in [0, 1)$, $n_{\lambda, \mu} \in \mathbb{Z}$, and consider the free $C[v]$-submodule
\[E_{\lambda, \mu} := C[v] \cdot x^{n_{\lambda, \mu}} e^{cx} \subset C[x^{\pm1}]^{\nu_U} \]

generated by $x^{n_{\lambda, \mu}} e^{cx}$. From the relation $v \cdot x^n e^{cx} = (nx^n + cx^{n+1}) e^{cx}$, we deduce that $C[x^{\pm1}]^{\nu_U} e^{cx} / E_{\lambda, \mu}$, as a quasi-coherent sheaf on Spec$C[v] \simeq C$, is supported away from $\lambda(\mu)$. Since S^μ_ξ is supported on $\lambda(\mu)$, we deduce that $(C[x^{\pm1}]^{\nu_U} e^{cx} / E_{\lambda, \mu}) \otimes_{C[v]} S^\mu_\xi = 0$ and
(4.7) \[C[x^{\pm1}]^{\nu_U} \otimes_{C[v]} S^\mu_\xi \simeq E_{\lambda, \mu} \otimes_{C[v]} S^\mu_\xi \simeq S^\mu_\xi. \]

Combining (4.6) and (4.7) we get
\[M(\Psi(\lambda) \ast E_\xi) \simeq \bigoplus_{\mu \in \nu_U, [\mu] = \xi} E_{\lambda, \mu} \otimes_{C[v]} S^\mu_\xi \simeq \bigoplus_{\mu \in \nu_U, [\mu] = \xi} S^\mu_\xi \simeq M(E_\xi) \]
and this gives
(4.8) \[\Psi(\lambda) \ast E_\xi \simeq E_\xi. \]

The isomorphism above defines an isomorphism
(4.9) \[\kappa : \Psi_\Delta \ast E_\xi \simeq \Psi(\lambda_1) \ast \cdots \ast \Psi(\lambda_r) \ast E_\xi \simeq E_\xi. \]
We shall show that κ is compatible with the W_ξ-equivariant structures on both sides. According to (4.2), it suffices to show that the map $M(\kappa) : M(\Psi_\Delta \ast E_\xi) \simeq M(E_\xi)$ is compatible with the W_ξ-actions on both sides. Denote $x_{\Delta,\mu} := \prod_{i=1}^n x_i^{n_{\lambda_i,\mu}}$ and consider the free $\mathbb{C}[v_1, ..., v_r]$-submodule
\[E_{\Delta,\mu} := \mathbb{C}[v_1, ..., v_r] : x_{\Delta,\mu} e^{\sum c_i} \subset \mathbb{C}[x_1^{\pm 1}, ..., x_r^{\pm 1}] e^{\sum c_i} \]
generated by $x_{\Delta,\mu} e^{\sum c_i}$. It follows from (4.7) that
\[M(\Psi_\Delta \ast E_\xi) \simeq \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} \mathbb{C}[x_1^{\pm 1}, ..., x_r^{\pm 1}] e^{\sum c_i} \otimes \mathbb{C}[v_1, ..., v_r] S_\xi^\mu \simeq \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} E_{\Delta,\mu} \otimes \mathbb{C}[v_1, ..., v_r] S_\xi^\mu. \]
Moreover, under the isomorphism above, the map $M(\kappa)$ becomes
\[(4.10) \quad \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} E_{\Delta,\mu} \otimes \mathbb{C}[v_1, ..., v_r] S_\xi^\mu \simeq \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} S_\xi^\mu, \quad x_{\Delta,\mu} \otimes s \mapsto s. \]

We now describe the W_ξ-action on $M(\Psi_\Delta \ast E_\xi)$. Let $w' = (w, \eta) \in W'$ with $w \in W_\xi$. Consider the map
\[a_\eta : \mathbb{C}[x_1^{\pm 1}, ..., x_r^{\pm 1}] e^{\sum c_i} \rightarrow \mathbb{C}[x_1^{\pm 1}, ..., x_r^{\pm 1}] e^{\sum c_i}, \quad f \mapsto \eta(f) e^{\sum c_i}. \]
Since
\[a_\eta(x_{\Delta,\mu} e^{\sum c_i}) = \left(\prod_{i=1}^n x_i^{n_{\lambda_i,\mu}} \right) e^{\sum c_i} = \left(\prod_{i=1}^r x_i^{n_{\lambda_i,w(\mu)}} \right) e^{\sum c_i} = \left(\prod_{i=1}^r x_i^{n_{\lambda_i,w(\mu)}} \right) e^{\sum c_i} = x_{\Delta,\mu} e^{\sum c_i} \]
the map a_η restricts to a map $a_\eta : E_{\Delta,\mu} \rightarrow E_{\Delta,w(\mu)} \subset \mathbb{C}[x_1^{\pm 1}, ..., x_r^{\pm 1}] e^{\sum c_i}$. Consider the W_ξ-action on $M(\Psi_\Delta \ast E_\xi) : a_w : M(\Psi_\Delta \ast E_\xi) \rightarrow M(\Psi_\Delta \ast E_\xi), \quad w \in W_\xi$. It follows from the description for the \tilde{W}_ξ-action on $M(\Psi_\Delta)$ in (4.3) that we have the following commutative diagram
\[(4.11) \quad \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} E_{\Delta,\mu} \otimes \mathbb{C}[v_1, ..., v_r] S_\xi^\mu \xrightarrow{a_w} M(\Psi_\Delta \ast E_\xi) \]
\[\bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} E_{\Delta,w(\mu)} \otimes \mathbb{C}[v_1, ..., v_r] S_\xi^{w(\mu)} \xrightarrow{a_w} M(\Psi_\Delta \ast E_\xi) \]
where
\[(4.12) \quad u_w = \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} S_\xi^\mu \mapsto \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} S_\xi^{w(\mu)} = M(E_\xi), \quad w \in W_\xi \]
is map in (4.1) describing the W_ξ-action on $M(E_\xi)$. Since the map in (4.10) satisfies the following commutative diagram
\[\bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} E_{\Delta,\mu} \otimes \mathbb{C}[v_1, ..., v_r] S_\xi^\mu \xrightarrow{\oplus a_\eta \otimes u_w} \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} S_\xi^\mu \]
\[\bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} E_{\Delta,w(\mu)} \otimes \mathbb{C}[v_1, ..., v_r] S_\xi^{w(\mu)} \xrightarrow{\oplus a_\eta \otimes u_w} \bigoplus_{\mu \in \mathbb{T}, [\mu] = \xi} S_\xi^{w(\mu)} \]
we deduce from (4.11) and (4.12) that $M(\kappa) : M(\Psi \ast \xi) \simeq M(\xi)$ is compatible with the W_ξ-action on both sides. This finishes the proof of the proposition.

4.8. Recall the local systems L_ξ in §3.4. We have $M(L_\xi) = \bigoplus_{\mu \in \hat{t}, [\mu] = \xi} S^n_\mu$ (see (4.1)). Using the relation $v \cdot a^e = (nx^n + cx^{n+1})e^x$ and the fact that S^n_μ, viewing as $C[v]$-module via $d\lambda : C[v] \to S$, is supported on $\lambda(\mu)$, the same argument as in the proof of (4.9) gives:

Lemma 4.6. There exists a projective system of isomorphisms $\Psi \ast L_\xi \simeq L^n_\xi$.

5. **Kazhdan-Braverman conjecture**

In [BK, Conjecture 9.2] A.Braverman and D.Kazhdan conjectured the following vanishing property of gamma D-module:

Conjecture 5.1. $Av_U(\Psi) \simeq T = B/U \subset G/U$. Here $Av_U : D_B(G)_{hol} \to D_B(G/U)_{hol}$ is the shriek averaging functor in (3.7).

Since $D(\Psi) \simeq Av_U(D(\Psi)) \simeq Av_U(\Psi_{G,\lambda})$ (see (4.5)), the conjecture above is equivalent to the following:

Theorem 5.2. $Av_U(\Psi) \in D_B(G/U)$ is supported on $T = B/U \subset G/U$.

Proof. It suffices to show that the natural map $r : \text{Res}_{T \subset B}^{G}(\Psi_{G,\lambda}) \to Av_U(\Psi_{G,\lambda})$ is an isomorphism. We claim that the convolution

$$r : \text{Res}_{T \subset B}^{G}(\Psi_{G,\lambda}) \ast \xi \to Av_U(\Psi_{G,\lambda}) \ast \xi$$

of r with ξ is an isomorphism for all $\theta \in \hat{T}/W$. For this, it is enough to show that $Av_U(\Psi_{G,\lambda}) \ast \xi$ is supported on T and this follows from Theorem 3.8 and Theorem 4.5. Indeed, we have $Av_U(\Psi_{G,\lambda}) \ast \xi \simeq Av_U(\Psi_{G,\lambda}) \ast Av_U(M_{\xi}) \simeq Av_U(\Psi_{G,\lambda} \ast M_{\xi}) \simeq \text{Ind}_{W_\xi}^{W} \xi$. Note $\xi \simeq \text{Ind}_{W_\xi}^{W} \xi$ and (5.1) implies that cone(r), the cone of r, satisfies cone(r) $\ast \xi = 0$ for all $\xi \in \hat{T}$. Since ξ is a local system on T with generalized monodromy $\xi \in \hat{T}$, Lemma 5.4 and Lemma 5.5 below imply cone(r) = 0. The theorem follows.

Corollary 5.3. We have $Av_U(\Psi) \simeq \Psi_{\lambda}$.

Proof. Indeed, by [BK, Theorem 6.6] we have $\text{Res}_{T \subset B}^{G}(\Psi_{G,\lambda}) \simeq \Psi_{\lambda}$. Thus the theorem above implies $\text{Res}_{T \subset B}^{G}(\Psi_{G,\lambda}) \simeq \Psi_{\lambda}$. □
5.1. Vanishing lemmas. Let X be a smooth variety with a free T action $a : T \times X \to X$. For $\mathcal{L} \in D(T)$ and $\mathcal{F} \in D(X)$ we define $\mathcal{L} * \mathcal{F} := a_*(\mathcal{L} \boxtimes \mathcal{F}) \in D(X)$.

Lemma 5.4. Let \mathcal{L} be a local system on T with generalized monodromy $\xi \in \hat{T}$, that is, $\mathcal{L} \otimes \mathcal{L}_{\xi}$ is an unipotent local system. Let $\mathcal{F} \in D(X)_{\text{hol}}$ and assume $\mathcal{L} * \mathcal{F} = 0$. Then we have $\mathcal{L}_{\xi} * \mathcal{F} = 0$.

Proof. There is a filtration $0 = \mathcal{L}^{(0)} \subset \mathcal{L}^{(1)} \subset \cdots \subset \mathcal{L}^{(k)} = \mathcal{L}$ such that

$$0 \to \mathcal{L}^{(i-1)} \to \mathcal{L}^{(i)} \to \mathcal{L}^{(i)} / \mathcal{L}^{(i-1)} \simeq \mathcal{L}_{\xi} \to 0.$$

Assume $\mathcal{L}_{\xi} * \mathcal{F} \neq 0$ and let m be the smallest number such that $H^{\geq m}(\mathcal{L}_{\xi} * \mathcal{F}) = 0$. An induction argument, using above short exact sequence, shows that $H^{\geq m}(\mathcal{L}^{(i)} * \mathcal{F}) = 0$ for $i = 1, \ldots, k$. Now since $\mathcal{L} * \mathcal{F} = 0$, the distinguished triangle

$$\mathcal{L}^{(k-1)} * \mathcal{F} \to \mathcal{L} * \mathcal{F} \to \mathcal{L}_{\xi} * \mathcal{F} \to \mathcal{L}^{(k-1)} * \mathcal{F}[1]$$

implies

$$\mathcal{L}_{\xi} * \mathcal{F} \simeq \mathcal{L}^{(k-1)} * \mathcal{F}[1].$$

Therefore we have $H^{m-1}(\mathcal{L}_{\xi} * \mathcal{F}) \simeq H^{m-1}(\mathcal{L}^{(k-1)} * \mathcal{F}[1]) = H^m(\mathcal{L}(k-1) * \mathcal{F}) = 0$ which contradicts to the fact that m is the smallest number such that $H^{m}(\mathcal{L}_{\xi} * \mathcal{F}) = 0$. We are done.

Lemma 5.5. Let $\mathcal{F} \in D(X)_{\text{hol}}$. If $\mathcal{L}_{\xi} * \mathcal{F} = 0$ for all $\xi \in \hat{T}$, then $\mathcal{F} = 0$.

Proof. Since T acts freely on X we have an embedding $o_x : T \to X, t \to t \cdot x$. Moreover, by base change, we have

$$R\Gamma_{\text{dr}}(T, \mathcal{L}_{\xi} \boxtimes ! o_x^! \mathcal{F}) \simeq i^!_x (\mathcal{L}_{\xi} * \mathcal{F}) = 0$$

for all $\xi \in \hat{T}$. Here $i : x \to X$ is the natural inclusion map. By [GL, Proposition 3.4.5] it implies $o_x^! \mathcal{F} = 0$ for all $x \in X$. The lemma follows.

□

6. Non-linear Fourier transforms

In this section we fix a $c \in \mathbb{C}^\times$ and write $\Psi_{G,\Delta} = \Psi_{G,\Delta,c}, \Psi_{\Delta} = \Psi_{\Delta,c}$. Following Braverman-Kazhdan, we consider the functor of convolution with gamma D-module:

$$F_{G,\Delta} := (-) * \Psi_{G,\Delta} : D(G)_{\text{hol}} \to D(G)_{\text{hol}}, \mathcal{F} \to \mathcal{F} * \Psi_{G,\Delta}.$$

The result in [BK1] (see, for example, [BK1, Theorem 5.1]) suggests that the functor $F_{G,\Delta}$ can be thought as a version of non-linear Fourier transform on the derived category of holonomic D-modules.

2 In [GL] they proved the vanishing result in the setting of ℓ-adic sheaves, but the same proof works for the setting of D-modules.
The following property of $F_{G,\Delta}$ follows from Proposition 3.2, Proposition 4.2, and Theorem 5.2:

Theorem 6.1. ($F_{G,\Delta}$ commutes with induction functors) For every $\mathcal{F} \in D(T)_{\text{hol}}$ we have

$$F_{G,\Delta}(\text{Ind}^G_{T\subset B}(\mathcal{F})) \cong \text{Ind}^G_{T\subset B}(F_{T,\lambda}(\mathcal{F})).$$

Here $F_{T,\lambda}(\mathcal{F}) := \mathcal{F} \ast \Psi_{\lambda}$. In particular, for any Kummer local system L_ξ on T we have

$$F_{G,\Delta}(\text{Ind}^G_{T\subset B}(L_\xi)) \cong V_{\Delta,\xi} \otimes \text{Ind}^G_{T\subset B}(L_\xi).$$

Here $V_{\Delta,\xi} := H^0_{dR}(\Psi_{\lambda} \otimes L^{-1}_\xi)$.

We have the following conjecture:

Conjecture 6.2 (see Conjecture 6.8 in [BK1]). $F_{G,\Delta}$ is an exact functor.

We shall prove a weaker statement which says that $F_{G,\Delta}$ is exact on the category of admissible D-modules. We first recall the definition of admissible modules following [G].

Definition 6.3. A holonomic D-module \mathcal{F} on G is called admissible if the action of the center $Z(U(G))$ of $U(G)$, viewing as invariant differential operators, is locally finite. We denote by $\mathcal{A}(G)$ the abelian category of admissible D-modules on G and $D(\mathcal{A}(G))$ be the corresponding derived category.

Remark 6.4. We do not require admissible D-modules to be G-equivariant with respect to the conjugation action. So the definition of admissible modules here is more general than the one in [G].

We have the following characterization of admissible modules: a $\mathcal{F} \in \mathcal{M}(G)_{\text{hol}}$ is admissible if and only if $HC(\mathcal{F}) \in D(Y/T)$ is monodromic with respect to the right T-action, or equivalently, $Av_U(\mathcal{F}) \in D(X)$ is monodromic with respect to the right T-action.

To every $\theta \in \breve{T}/W$, let $\mathcal{A}(G)_\theta$ be the full subcategory of $\mathcal{A}(G)$ consisting of holonomic D-modules on G such that $Z(U(G))$ acts locally finitely with generalized eigenvalues in θ. The category $\mathcal{A}(G)$ decomposes as

$$\mathcal{A}(G) = \bigoplus_{\theta \in \breve{T}/W} \mathcal{A}(G)_\theta.$$

Theorem 6.5. The functor $F_{G,\Delta} : D(G)_{\text{hol}} \rightarrow D(G)_{\text{hol}}$, $\mathcal{F} \mapsto \mathcal{F} \ast \Psi_{G,\Delta}$ preserves the subcategory $D(\mathcal{A}(G))$ and the resulting functor

$$F_{G,\Delta} : D(\mathcal{A}(G)) \rightarrow D(\mathcal{A}(G))$$

is exact with respect to the natural t-structure. That is, we have $F_{G,\Delta}(\mathcal{F}) \in \mathcal{A}(G)$ for $\mathcal{F} \in \mathcal{A}(G)$.

23
Proof. We show that $F_{G \Delta}$ preserves $D(A(G))$. Using the characterization of admissible modules above we have to show that $A\nu_U(F_{G \Delta}(\mathcal{M}))$ is monodromic for $\mathcal{M} \in D(A(G))$. Since $A\nu_U(\Psi_{G \Delta}) \simeq \Psi_{\Delta}$ by Corollary 5.3 we have

$$A\nu_U(F_{G \Delta}(\mathcal{M})) \simeq A\nu_U(\mathcal{M}) \ast A\nu_U(\Psi_{G \Delta}) \simeq A\nu_U(\mathcal{M}) \ast \Psi_{\Delta}$$

which is T-monodromic by Proposition 6.2. The claim follows.

We show that $F_{G \Delta}$ is exact on $A(G)$. Let \mathcal{O}_Y (resp. \mathcal{O}_X) be pre-image of the open G-orbit (resp. B-orbit) in $B \times B$ (resp. $X \to B$) under the projection map $Y \to B \times B$ (resp. $X \to B$). The quotient $G \setminus \mathcal{O}_Y$ (resp. $U \setminus \mathcal{O}_X$) is a torsor over T, choosing a trivialization of the torsor, we get a map $p_Y : \mathcal{O}_Y \to T$ (resp. $p_X : \mathcal{O}_X \to T$). We denote by $j_Y : \mathcal{O}_Y \to Y$ (resp. $j_X : \mathcal{O}_X \to X$) the natural embedding. Consider the following pro-object in $M_{\xi,w_0(\xi^{-1})}$ (resp. $H_{\xi^{-1},w_0(\xi^{-1})}$):

$$I_Y := j_Y!(p_Y^0 \hat{\mathcal{L}}_{w_0(\xi^{-1})}) := \varprojlim \ j_Y!(p_Y^0 \hat{\mathcal{L}}_{w_0(\xi^{-1})}) \quad (\text{resp.} \ I_X := j_X!(p_X^0 \hat{\mathcal{L}}_{w_0(\xi^{-1})}) := \varprojlim \ j_X!(p_X^0 \hat{\mathcal{L}}_{w_0(\xi^{-1})}))$$

Recall the notion of intertwining functor (see [BB] [BG])

$$(-) \ast I_Y : D(Y)_{\xi^{-1}} \to D(Y)_{\xi,w_0(\xi^{-1})} \quad (\text{resp.} \ (-) \ast I_X : D(X)_{\xi^{-1},\xi^{-1}} \to D(X)_{\xi^{-1},w_0(\xi^{-1})})$$

According to [BFO, Corollary 3.4], the assignment $\mathcal{M} \to HC(M) \ast I_Y := \varprojlim HC(M) \ast j_Y!(p_Y^0 \hat{\mathcal{L}}_{\xi})$, $\mathcal{M} \in D(G)_{\text{hol}}$ restricts to a functor

$$HC(-) \ast I_Y : D(A(G)_{[\xi)}) \to D(Y)_{\xi,w_0(\xi^{-1})}$$

which is t-exact and conservative.

So to prove the exactness of $F_{G \Delta}$ it suffices to show that

$$HC(F_{G \Delta}(\mathcal{M})) \ast I_Y \in M(Y)_{\xi,w_0(\xi^{-1})}$$

for all $\mathcal{M} \in A(G)_{[\xi]}$. We claim that there is an isomorphism of pro-objects

$$HC(\Psi_{G \Delta}) \ast I_Y \simeq I_Y.$$

Thus

$$HC(F_{G \Delta}(\mathcal{M})) \ast I_Y \simeq HC(M \ast \Psi_{G \Delta}) \ast I_Y \simeq HC(M) \ast HC(\Psi_{G \Delta}) \ast I_Y \simeq HC(M) \ast I_Y$$

which is in $M(Y)_{\xi,w_0(\xi^{-1})}$ by the exactness of the functor $HC(-) \ast I_Y$. We are done.

Proof of the claim. Applying the equivalence $i^0 : D_G(Y) \sim D_U(X)$ to (6.1) and using $i^0(HC(\Psi_{G \Delta})) \simeq A\nu_U(\Psi_{G \Delta}) \simeq \Psi_{\Delta}$, $i^0(I_Y) \simeq I_X$, we reduce to show that there is an isomorphism of pro-objects $\Psi_{\Delta} \ast I_X \simeq I_X$. Note that we have $\hat{\mathcal{L}}_{\xi^{-1}} \ast I_X \simeq I_X$ hence by Lemma 4.6

$$\Psi_{\Delta} \ast I_X \simeq \Psi_{\Delta} \ast \hat{\mathcal{L}}_{\xi^{-1}} \ast I_X \simeq \hat{\mathcal{L}}_{\xi^{-1}} \ast I_X \simeq I_X.$$

The claim follows.

3The definition of intertwining functor here is different from that of [BFO], though one can show that the two definition are equivalent. In [BFO], the intertwining functor is described as a shriek convolution with certain G-equivariant D-module on Y.

4Indeed, it follows from the fact that the functor $\hat{\mathcal{L}}_{\xi}(-) : D_U(X) \to \text{pro}(D_U(X))$ (here pro$(D_U(X))$ is the category of pro-objects in $D_U(X)$), when restricts to the subcategory $D(H_{\xi,X})$ consisting of $T \times T$-monodromic complexes with generalized monodromy (ξ,ξ'), is isomorphic to the identity functor.
REFERENCES

[BB] A. Beilinson, J. Bernstein, A generalization of Casselman’s submodule theorem, Progr. Math. 40 (1983), 35-52.
[BB1] A. Beilinson, J. Bernstein, A Proof of Jantzen conjectures, Advances in Soviet Mathematics 16, Gelfand Seminar, 1983, 1-59.
[BFO] R. Bezrukavnikov, M. Finkelberg, V. Ostrik, Character D-modules via Drinfeld center of Harish-Chandra bimodules, Ann. of Math. Stud. 124(1900), 1-430.
[BG] A. Beilinson, V. Ginzburg, Wall-crossing functors and D-modules, Representation Theory, Volume 3, 1999, 1-31.
[BK] A. Braverman and D. Kazhdan, γ-functions of representations and lifting (with an appendix by V. Vologodsky), Geom. Funct. Anal., Special Volume (2002), Part I, 237-278.
[BK1] A. Braverman, D. Kazhdan, γ-sheaves on reductive groups, Studies in memory of Issai Schur (Chevaleret/Rehovot 2000), Progr. Math., 210 (2003), 27-47.
[CN] S. Cheng, B.C. Ngô, On a conjecture of Braverman and Kazhdan, arXiv:1602.05688.
[CY] T-H. Chen, A. Yom din, A formula for the geometric Jacquet functor and its character sheaves analogue, arXiv:1507.00606.
[G] V. Ginzburg, Admissible modules on symmetric spaces, Astérisque 173-174 (1989), 199-256.
[GL] O. Gabber, F. Loeser, Faisceaux pervers ℓ-adiques sur un tore, Duke Math. J. 83 (1996), no. 3, 501-606.
[K] N. Katz, Exponential sums and differential equations, Ann. of Math. Stud. 124(1900), 1-430.
[KL] N. Katz, G. Laumon, Transformation de Fourier et majoration de sommes exponentielles, Publications Mathématiques de IHÉS (62): 361-418.
[L] G. Lusztig, Fourier transforms on a semisimple Lie algebra over F_q, Algebraic Groups, Utrecht 1986, Lecture Notes in Math., Vol. 1271, 1987, 177-188.
[L1] G. Lusztig, Character sheaves, I, Adv. Math. 56 (1985), 193-237; II, Adv. Math. 57 (1985), 226-265; III, Adv. Math. 57 (1985), 266-315; IV, Adv. Math. 59 (1986), 1-63; V, Adv. Math. 61 (1986), 103-155.
[MV] I. Mirkovic, K. Vilonen, Characteristic varieties of character sheaves, Invent. math. 93, 405-418 (1988).
[S] W. Soergel, Kategorie O, perverse Garben, und Moduln ber den Koinvarianten zur Weylgruppe, Journal of the AMS 3, 421-445 (1990),

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, IL 60637, USA.

E-mail address: chenth@math.uchicago.edu