RESEARCH ARTICLE

Rickettsia felis identified in two fatal cases of acute meningoencephalitis

Arthur H. P. Mawuntu, Edison Johar, Riane Anggraeni, Feliana Feliana, Janno B. B. Bernadus, Dodi Safari, Frilasita A. Yudhaputri, Rama Dhennio, Yora P. Dewi, Cecilia Kato, Ann M. Powers, Ronald Rosenberg, Amin Soebandrio, Khin S. A. Myint

1 Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia, 2 Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia, 3 Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America

khinsawying@hotmail.com

Abstract

Background

Rickettsia felis has recently emerged worldwide as a cause of human illness. Typically causing mild, undifferentiated fever, it has been implicated in several cases of non-fatal neurological disease in Mexico and Sweden. Its distribution and pathogenicity in Southeast Asia is poorly understood.

Methodology/Principal findings

We retroactively tested cerebrospinal fluid (CSF) or sera from 64 adult patients admitted to hospital in North Sulawesi, Indonesia with acute neurological disease. *Rickettsia felis* DNA was identified in the CSF of two fatal cases of meningoencephalitis using multi-locus sequence typing semi-nested PCR followed by Sanger sequencing. DNA from both cases had 100% sequence homologies to the *R. felis* reference strain URRWXCal2 for the 17-kDa and *ompB* genes, and 99.91% to *gltA*.

Conclusion/Significance

The identification of *R. felis* in the CSF of two fatal cases of meningoencephalitis in Indonesia suggests the distribution and pathogenicity of this emerging vector-borne bacteria might be greater than generally recognized. Typically *Rickettsia* are susceptible to the tetracyclines and greater knowledge of *R. felis* endemicity in Indonesia should lead to better management of some acute neurological cases.

Author summary

Rickettsia felis is a flea-borne bacteria that has recently emerged worldwide as a cause of disease. Little is known about its distribution or details of transmission but typically it has been described as causing mild, self-limiting, febrile illness. It has, however, been...
incriminated in Mexico and Sweden of causing acute neurological disease. We report from North Sulawesi, Indonesia evidence that *R. felis* caused or contributed to the death of two adult men admitted to hospital with progressive meningoencephalitis. One case was a farmer and the other was an itinerant urban salesman. DNA unique to *R. felis* was identified in the patients’ cerebrospinal fluid using Sanger sequencing techniques. No other potential pathogens were found. These appear to be the first possible cases of fatal *R. felis* reported. Because rickettsial infections can usually be quickly, cheaply, and effectively treated with doxycycline and related tetracylines, it is important for clinicians in the region to consider using these antibiotics to treat suspect cases presumptively.

Introduction

Rickettsia felis was first identified as a *R. typhi*-like organism in the midgut epithelium of a commercial colony of cat fleas, *Ctenocephalides felis* [1]. Although reactive to *R. typhi* antibody, it was subsequently shown to be genomically distinct [2, 3]. It is naturally passaged generationally in fleas and has been found in a variety of other arthropods, including mosquitoes, but the exact mechanisms of transmission, including the possible role of vertebrate reservoirs, are still unclear [4].

Since the description of the first human case in 1994 [5] *R. felis* has been increasingly identified worldwide as a cause of disease [6–8]. Typically, it presents as a mild, febrile illness that can be syndromically confused with many other undifferentiated fevers, especially in Africa and Asia, where diagnostic resources are limited. Neurological involvement has been reported in several cases in Mexico [9] and Sweden [10, 11] but not deaths. In this report we describe the identification of *R. felis* from the cerebrospinal fluid (CSF) of two fatal cases of acute neurological disease in North Sulawesi, Indonesia.

Materials and methods

Ethical approvals

This study was approved by the Medical Research Ethics Committee of R.D. Kandou General Hospital (Ethical Approval No. 066/EC-UPKT/III/2016) and Eijkman Institute for Molecular Biology Research Ethics Commission (Ethical Approval No. 127). All patients or guardians provided written informed consent.

Case characterization and specimen collection

Testing for *Rickettsia* was done retroactively on specimens collected from cases of acute neurological disease suspected to have infectious etiologies. Criteria for case enrollment and specimen collection have been detailed earlier [12]. Briefly, CSF or serum samples were tested from 64 patients aged >15 years admitted to R. D. Kandou General Hospital, Manado, North Sulawesi, Indonesia—a tertiary referral hospital—during August 2015 to February 2017 with suspected central nervous system (CNS) infection. There were 10 patients with CSF and serum samples, 28 with CSF only, and 26 with serum only. Enrollees had acute onset (≤7 days) of fever (axillary temperature >37.5°C) prior to admission and at least one of the following: altered mental state, seizures, focal neurological findings, or neck stiffness. Human immunodeficiency virus (HIV) status was determined at admission. CSF samples were tested for *Cryptococcus neoformans* (CrAg LFA, IMMY, USA) and Gram stain positive/negative bacteria. In previously reported testing, 14 of 74 cases had molecular or serological evidence of viral
infection, including herpes simplex, Epstein-Barr, cytomegalovirus, enterovirus, dengue, and Japanese encephalitis [12].

Molecular testing and interpretation

Cryopreserved samples of CSF and serum were tested for *Leptospira* spp., *O. tsutsugamushi*, and *Rickettsia* spp. DNA was extracted from 38 CSF and 36 serum samples using QIAamp DNA Blood mini kit (QIAGEN, Germany), according to manufacturer instructions. Elution volume was 60 μL. Samples were screened for *Leptospira*, *O. tsutsugamushi*, and *Rickettsia* using real-time PCR (qPCR) targeting *lipL32*, 47-kDa and 23S rRNA genes, respectively [13–15]. For *Leptospira* qPCR, a 25 μL qPCR reaction, containing 1x PerfeCTa qPCR ToughMix (QuantaBio, USA), 0.9 μM primers, 0.15 μM probe, and 5 μL template DNA. The thermal cycling conditions were incubation for 3 minutes at 95˚C, followed by 45 cycles of two-step amplification at 95˚C for 15 seconds, and 60˚C for 1 minute. For *O. tsutsugamushi* and *Rickettsia* qPCR, a 25 μL qPCR reaction, containing 1x PerfeCTa MultiPlex qPCR SuperMix (QuantaBio, USA), 0.1 μM primers, 0.2 μM probe, and 5 μL template DNA. The thermal cycling conditions were incubation for 8 minutes at 95˚C, followed by 45 cycles of two-step amplification at 95˚C for 15 seconds, and 60˚C for 1 minute. Fluorescence intensity was read during the 60˚C annealing/extension step. A C_t value ≤ 40 was considered positive for *Leptospira*, *O. tsutsugamushi*, or *Rickettsia*. All qPCR experiments were run on 7500 Fast Real-Time PCR System with the fast ramp speed feature enabled (Applied Biosystems, USA).

Rickettsia positive specimens were confirmed using multi-locus sequence typing semi-nested PCR targeting the 17-kDa (R17k31F, R17k469R, R17k2608R), *ompB* (RompB3503F, RompB4293R, RompB4246R), and *gltA* (CS49F, CS1234R, CS1273R) genes [16–18]. No positive control was included in the semi-nested PCR to avoid specimen contamination. First amplification round was performed on a 25 μL reaction containing 1x GoTaq Green Master Mix (Promega, USA), 0.3 μM primers, and 3 μL template DNA. The thermal cycling conditions were 2 minutes at 95˚C followed by 40 cycles of amplification at 95˚C for 30 seconds, 54˚C for 30 seconds, and 72˚C for 1.5 minutes, and final extension at 72˚C for 5 minutes. Two microliters of the resulting product was used for second round amplification in a 25 μL reaction containing 1x GoTaq Green Master Mix and 0.3 μM primers. The thermal cycling conditions were the same as the first round amplification for each gene, except the amplification cycle were reduced to 35 cycles for the reaction with 17-kDa or *gltA* specific primer, and 25 cycles for the reaction with *ompB* specific primer. Reactions were run on agarose gels and DNA fragments that were excised and purified using QIAquick gel extraction kit according to manufacturer instruction (QIAGEN, Germany).

DNA sequencing was performed using BigDye[™] Terminator v3.1 cycle sequencing kit, following manufacturer protocol (Applied Biosystems, USA) on 3500XL genetic analyzer (Applied Biosystems, USA), and compared to banked specimens using NCBI BLAST. Sequences were deposited in GenBank: 17-kDa (Accession no. MK820604, MK820607), *ompB* (Accession no. MK820606, MK820609), and *gltA* (Accession no. MK820605, MK820608).

Sequence alignment and phylogenetic analysis were performed using CLC Genomics Workbench version 9.5.2 (QIAGEN, Germany). Phylogenetic tree construction was started using neighbor joining algorithm. Kimura 80 was used as the nucleotide substitution model. Maximum likelihood model with 1,000 bootstrap replications was used to estimate genetic relationships.

Results

Molecular testing

Thirty-eight CSF and 36 serum samples met volume and condition criteria for PCR testing. All CSF and serum samples were negative for *Leptospira* and *O. tsutsugamushi* by qPCR. Two of
38 CSF samples (patients E-059 and E-063) were, however, positive for *Rickettsia* DNA as determined by genus-specific 23S rRNA qPCR. Insufficient sera were available from these two cases for *Rickettsia* PCR. In order to determine the species of *Rickettsia*, semi-nested PCR targeting the 17-kDa, *ompB*, and *gltA* genes in the CSF samples was done. Results were consistent with only *Rickettsia felis* (Table 1). Amplicons were confirmed to be *R. felis* by Sanger sequencing (Figs 1–3). Sequence homologies between Case 1 (patient E-059) and Case 2 (patient E-063) of 17-kDa, *ompB*, and *gltA* were, respectively, 100%, 100%, and 99.91%. The 17-kDa and *ompB* sequences were 100% identical to the *R. felis* reference strain URRWXCal2 [3], and *gltA* was 99.91% homologous.

Case histories

Both patients positive for *R. felis* DNA were males > 30 years who lived in or near Manado (Coordinates: 1°29’35” N and 124°50’29” E). Detailed clinical manifestations and laboratory data are presented in Table 2. Both presented at admission with acute onset of high-grade fever. Case 1 was an itinerant urban salesman; and Case 2 was a farmer with pre-existing HIV and tuberculosis, *Mycobacterium tuberculosis* (TB) infections. Case 1 had 4 days history of decreased consciousness preceded by a week of fluctuating bilateral headache. A computerized tomography scan indicated meningeal enhancement and he was found to have CSF mononuclear pleocytosis. Chest x-ray was normal. Case 2 presented initially with normal consciousness and was treated for a lung infection and polyneuropathy; his consciousness began to decrease 2 days post-admission and his fever spiked. This patient was negative for *Cryptococcus* using the lateral flow immunoassay. His chest radiography indicated pleural infiltrations. Computerized tomography scan of his brain was not done. There was no clinical evidence at his admission for either increased intracranial pressure or cranial palsies. Blood cultures were negative for both cases. TB meningitis was initially suspected for both cases but neither CSF was positive by acid-fast bacilli stain and neither responded to presumptive TB treatment. Capacity to culture TB at the hospital was not available. Neither patient was noted on the charts to have skin rash, eschar, or regional lymphadenopathy. No pre-admission histories were available for antibiotic administration or exposure to fleas or ticks. Retroactive testing for virus was negative for both [12].

Discussion

Rickettsia felis is increasingly recognized as a human pathogen, often causing febrile illness clinically indistinguishable from many viral or bacterial infections [6]. In this study, CSF and serum specimens preserved from 64 hospitalized patients with apparent CNS infections were screened for *Rickettsia* DNA; and *R. felis* DNA was recovered from the CSF specimens of two fatal cases. Although no other pathogens were detected in the CSF or blood, we cannot definitively incriminate *R. felis* as the sole cause of death. Case 2 had a history of treatment for HIV and TB; both cases were presumptively treated for TB after admission. CSF from both were negative by acid-fast bacilli staining; culture and molecular testing for TB were not available at the hospital. Because neither case responded to standard TB therapy for the region, the
possibility of an alternate etiology was considered. Hypoglycorrhachia, present in both cases, as well as lymphocytic pleocytosis and increased protein, in Case 1, have been noted in rickettsial infections [19].

R. felis has been reported as a cause of neurological disease in Mexico [9] and Sweden [10, 11], where it has been identified from CSF. It has also been identified from the CSF of three cases in Laos, each of whom had significant comorbidities, which could have been the principal causes of symptoms [20]. Those cases survived, but fatal neuropathogenicity can be a complication of murine typhus (*R. typhi*) and scrub typhus (*O. tsutsugamushi*) [19, 21]. Clinically, rickettsial infections can be difficult to distinguish from other causes of acute fever. Platelet counts are often normal [10, 22] and classical signs, such as rash or eschar, are often absent or difficult to detect [11, 21]. Diagnosis is further complicated by the limitations of laboratory assays. Because *Rickettsia* invade endothelial cells, DNA is typically scarce in sera or CSF [23]. Complete pre-admission treatment histories were not known for any of the cases tested.

Although pathogenic *Rickettsia* species are typically vector-borne and *R. felis* was originally isolated from cat fleas, its mode of transmission to humans is not certain. It has been found in

Fig 1. Phylogenetic tree comparing 17-kDa gene fragment of *Rickettsia* from patients to other *Rickettsia* species. Gene fragment size was 381 bp. Bootstrap percentages (≥60%) are shown on internal branches. Label indicates *Rickettsia* species / accession number. The scale bar represents the number of nucleotide substitution per site.

https://doi.org/10.1371/journal.pntd.0007893.g001

a variety of arthropod species, including some, like book lice, that are not blood-feeding and others, like mosquitoes, not proven to transmit *Rickettsia* [4, 24]. It is unknown if vertebrate reservoirs contribute to its transmission cycle; the bacterium is transovarially and transstadially maintained in fleas. Taxonomically, *R. felis* does not fit neatly into either the traditional TG or SFG and is now considered to be part of a third, transitional group [6–8]. It has a large, complex genome and phylogenetically forms a cluster with a number of recently described “*R. felis*-like organisms”, not all of whose members may be pathogens [8]. The Indonesian amplicons were, however, 100% identical to the *R. felis* type genome, URRWXCal2, at the 17-kDa (*Rickettsia* genus-specific external membrane) and *ompB* (outer membrane B) genes, and at all but one base at the *gltA* (citrate synthase) gene. The conditions of testing make it unlikely the positives were the result of contamination. Testing was done in a laboratory that had never previously worked with *R. felis* or arthropods; no positive controls were present. There has been a report of *R. felis* being detected on the skin of healthy West Africans [25]; regardless of how this could be, our procedures for lumbar puncture and testing would make skin contamination from the patients or medical personnel highly unlikely.

Until more is known about the epidemiology of *R. felis*, little useful can be surmised about relative risk. Scrub typhus, murine typhus, and *R. felis* have been described in Indonesia,
Fig 3. Phylogenetic tree comparing gltA gene fragment of *Rickettsia* from patients to other *Rickettsia* species. Gene fragment size was 1,060 bp. Bootstrap percentages (≥60%) are shown on internal branches. Label indicates *Rickettsia* species / accession number. The scale bar represents the number of nucleotide substitution per site.

https://doi.org/10.1371/journal.pntd.0007893.g003

Table 2. Clinical characteristics of patients with suspected *Rickettsia* infection.

Parameter	E-059	Patient ID	E-063
Clinical manifestations and outcome			
Age (years)	32		38
Sex	Male		Male
High grade fever (duration in days)	Yes (6)		Yes (7)
Day of illness at admission	6		14
Duration of hospital stay (days)	18		7
Headache (duration in days)	Yes (7)		No (0)
Seizure (duration in days)	No (0)		No (0)
Altered consciousness (duration in days)	Yes (4)		Yes (2)
Skin rash	No		No
Meningeal sign	Positive		Negative
Funduscoppy	Normal		Normal
Myalgia	No		No
Focal neurologic signs	No		Yes
Glasgow coma scale	12		15
Cognitive impairment	No		No

(Continued)
mostly from vertebrates and arthropods [26]. One of the positive Indonesian cases was a farmer and the other dwelt in the city; both are environments that could be conducive to flea-borne transmission. Rickettsial disease, in general, appears to be substantially underreported in Southeast Asia [21, 27] and the relative importance of *R. felis*, specifically, is unknown. In localities where incidence is suspected to be high the possibility of rickettsial infection in acute neurological disease should be included in clinical evaluations, especially considering the benefits of early empirical treatment. Until capacity for accurate diagnostic testing is much more widespread, however, patient care in the endemic areas will be seriously hindered.

Acknowledgments

We thank the patients and their families for agreeing to participate, the staff of R. D. Kandou Hospital for their support, and Daniel Pastula for reviewing the manuscript. We would also like to thank Ungke Anton Jaya and Ida Chung for their support in rickettsial disease testing.
The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Author Contributions

Conceptualization: Arthur H. P. Mawuntu, Ronald Rosenberg, Khin S. A. Myint.

Data curation: Riane Anggraeni, Feliana Feliana, Rama Dhenni.

Formal analysis: Arthur H. P. Mawuntu, Edison Johar, Frilasita A. Yudhaputri, Khin S. A. Myint.

Funding acquisition: Ann M. Powers, Ronald Rosenberg, Khin S. A. Myint.

Investigation: Edison Johar, Yora P. Dewi, Khin S. A. Myint.

Methodology: Frilasita A. Yudhaputri, Cecilia Kato, Khin S. A. Myint.

Project administration: Arthur H. P. Mawuntu, Edison Johar, Riane Anggraeni, Feliana Feliana, Janno B. B. Bernadus, Dodi Safari, Frilasita A. Yudhaputri, Khin S. A. Myint.

Resources: Arthur H. P. Mawuntu, Riane Anggraeni, Feliana Feliana, Khin S. A. Myint.

Supervision: Arthur H. P. Mawuntu, Janno B. B. Bernadus, Dodi Safari, Frilasita A. Yudhaputri, Amin Soebandrio, Khin S. A. Myint.

Validation: Edison Johar, Yora P. Dewi, Khin S. A. Myint.

Writing – original draft: Edison Johar, Ann M. Powers, Ronald Rosenberg, Khin S. A. Myint.

Writing – review & editing: Arthur H. P. Mawuntu, Edison Johar, Riane Anggraeni, Feliana Feliana, Janno B. B. Bernadus, Dodi Safari, Frilasita A. Yudhaputri, Rama Dhenni, Yora P. Dewi, Cecilia Kato, Ann M. Powers, Ronald Rosenberg, Amin Soebandrio, Khin S. A. Myint.

References

1. Adams JR, Schmidtmann ET, Azad AF. Infection of colonized cat fleas, *Ctenocephalides Felis* (Bouché), with a *Rickettsia*-like Microorganism. Am J Trop Med Hyg. 1990; 43(4):400–9. https://doi.org/10.4269/ajtmh.1990.43.400 PMID: 2240368

2. Azad AF, Sacci JB, Nelson WM, Dasch GA, Schmidtmann ET, Carl M. Genetic characterization and transovarial transmission of a typhus-like *Rickettsia* found in cat fleas. Proc Natl Acad Sci U S A. 1992; 89(1):43–6. https://doi.org/10.1073/pnas.89.1.43 PMID: 1729713

3. Ogata H, Renesto P, Audic S, Robert C, Blanc G, Fournier PE, et al. The genome sequence of *Rickettsia felis* identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 2005; 3(8):e248. https://doi.org/10.1371/journal.pbio.0030248 PMID: 15984913

4. Legendre KP, Macaluso KR. *Rickettsia felis*: a review of transmission mechanisms of an emerging pathogen. Trop Med Infect Dis. 2017; 2(4):64.

5. Schriefer ME, Sacci JB, Dumler JS, Bullen MG, Azad AF. Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. J Clin Microbiol. 1994; 32(4):949–54. PMID: 8027348

6. Brown LD, Macaluso KR. *Rickettsia felis*, an emerging flea-borne rickettsiosis. Curr Trop Med Rep. 2016; 3(2):27–39.

7. Blanton LS, Walker DH. Flea-Borne Rickettsioses and Rickettsiae, Am J Trop Med Hyg. 2017; 96 (1):53–6. https://doi.org/10.4269/ajtmh.16-0537 PMID: 27799640

8. Angelakis E, Mediannikov O, Parola P, Raoult D. *Rickettsia felis*: the complex journey of an emergent human pathogen. Trends Parasitol. 2016; 32(7):554–64. https://doi.org/10.1016/j.pt.2016.04.009 PMID: 27155905

9. Zavala-Velázquez JE, Ruiz-Sosa JA, Sánchez-Elias RA, Becerra-Carmona G, Walker DH. *Rickettsia felis* rickettsiosis in Yucatán. Lancet. 2000; 356(9235):1079–80. https://doi.org/10.1016/S0140-6736 (00)02735-5 PMID: 11009147
10. Lindblom A, Severinson K, Nilsson K. *Rickettsia felis* infection in Sweden: Report of two cases with subacute meningoencephalitis. Scand J Infect Dis. 2010; 42(11–12):906–9. https://doi.org/10.3109/00365548.2010.508466 PMID: 20735330

11. Nilsson K, Wallménius K, Hartwig S, Norlander T, Pålsson C. Bell’s palsy and sudden deafness associated with *Rickettsia* spp. infection in Sweden. A retrospective and prospective serological survey including PCR findings. Eur J Neurol. 2014; 21(2):206–14. https://doi.org/10.1111/ejn.12218 PMID: 23790098

12. Mawuntu AHP, Bernardus JBB, Dhenni R, Wiyatno A, Anggreani R, Feliana, et al. Detection of central nervous system viral infections in adults in Manado, North Sulawesi, Indonesia. PLoS ONE. 2018; 13(11):e0207440. https://doi.org/10.1371/journal.pone.0207440 PMID: 30444898

13. Kato CY, Chung IH, Robinson LK, Austin AL, Dasch GA, Massung RF. Assessment of real-time PCR assay for detection of *Rickettsia* spp. and *Rickettsia rickettsii* in banked clinical samples. J Clin Microbiol. 2013; 51(1):314–7. https://doi.org/10.1128/JCM.01723-12 PMID: 23159335

14. Jiang J, Chan TC, Temenak JJ, Dasch GA, Ching WM, Richards AL. Development of a quantitative real-time polymerase chain reaction assay specific for *Oriental tsutsugamushi*. Am J Trop Med Hyg. 2004; 70(4):351–6. PMID: 15100446

15. Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR. Detection of pathogenic *Leptospira* spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis. 2009; 64(3):247–55. https://doi.org/10.1016/j.diagmicrobio.2009.03.014 PMID: 19395218

16. Maina AN, Klein TA, Kim HC, Chong ST, Yang Y, Mullins K, et al. Molecular characterization of novel mosquito-borne *Rickettsia* spp. from mosquitoes collected at the Demilitarized Zone of the Republic of Korea. PLoS ONE. 2017; 12(11):e0188327. https://doi.org/10.1371/journal.pone.0188327 PMID: 29155880

17. Jiang J, Maina AN, Knobel DL, Cleaveland S, Laudoisot A, Wamburu K, et al. Molecular detection of *Rickettsia felis* and Candidate *Rickettsia asemboensis* in fleas from human habitats, Asembo, Kenya. Vector Borne Zoonotic Dis. 2013; 13(8):550–8. https://doi.org/10.1089/vbz.2012.1123 PMID: 23675818

18. Jiang J, Blair PJ, Felices V, Moron C, Cespedes M, Anaya E, et al. Phylogenetic analysis of a novel molecular isolate of spotted fever group rickettsiae from Northern Peru: Candidate *Rickettsia andeaeae*. Ann N Y Acad Sci. 2005; 1063(1):337–42.

19. Rajapakse S, Weeratunga P, Sivayogananthan S, Fernando SD. Clinical manifestations of scrub typhus. Trans R Soc Trop Med Hyg. 2017; 111(2):43–54. https://doi.org/10.1093/trstmh/trx017 PMID: 28449088

20. Dittrich S, Phommasone K, Anantatat T, Panyanivong P, Slesak G, Blacksell SD, et al. *Rickettsia felis* infections and comorbid conditions, Laos, 2003–2011. Emerg Infect Dis. 2014; 20(8):1402–4. https://doi.org/10.3201/eid2008.131308 PMID: 25061919

21. Dittrich S, Rattanavong S, Lee SJ, Panyanivong P, Craig SB, Tulsiani SM, et al. *Orientalia, Rickettsia*, and *Leptospira* pathogens as causes of CNS infections in Laos: a prospective study. Lancet Glob Health. 2015; 3(2):e104–12. https://doi.org/10.1016/S2214-109X(14)70289-X PMID: 25617190

22. Edouard S, Bhengsri S, Dowell SF, Watt G, Parola P, Raoult D. Two human cases of *Rickettsia felis* infection by *Rickettsia andeaeaes* in fleas from human habitats, Asembo, Kenya. Vector Borne Zoonotic Dis. 2015; 15(8):815–26. https://doi.org/10.1089/vbz.2015.1840 PMID: 26771425

23. Paris DH, Dumler JS. State of the art of diagnosis of rickettsial diseases: the use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsiosis, and murine typhus. Curr Opin Infect Dis 2016; 29:808–93. https://doi.org/10.1097/QCO.0000000000000298 PMID: 27429138

24. Dieme C, Bechah Y, Socolovschi C, Audoly G, Berenger JM, Faye O, et al. Transmission potential of *Rickettsia felis* infection by *Anopheles gambiae* mosquitoes. Proc Natl Acad Sci U S A. 2015; 112(26):8088–93. https://doi.org/10.1073/pnas.1413835112 PMID: 26056256

25. Medianikov O, Socolovschi C, Million M, Sokhma C, Bassene H, Diatta G, et al. Molecular identification of pathogenic bacteria in eschars from acute febrile patients, Senegal. Am J Trop Med Hyg. 2014; 91(5):1015–9. https://doi.org/10.4269/ajtmh.13-0629 PMID: 25200258

26. Widjaja S, Williams M, Winoto I, Farzelli A, Stoops CA, Barbara KA, et al. Geographical assessment of rickettsioses in Indonesia. Vector Borne Zoonotic Dis. 2016; 16(1):20–5. https://doi.org/10.1089/vbz.2015.1840 PMID: 26771425

27. Shrestha P, Roberts T, Hornsana A, Myat TO, Crump JA, Lubell Y, et al. Febrile illness in Asia: gaps in epidemiology, diagnosis and management for informing health policy. Clin Microbiol Infect. 2018; 24(8):815–26. https://doi.org/10.1016/j.cmi.2018.03.028 PMID: 29581051