Invasive species in phytocenosis of Sterlitamak town (Republic of Bashkortostan, Russia)

Ya M Golovanov¹, L M Abramova¹ and S S Petrov²

¹ Botanical Garden-Institute Ufa Scientific Centre RAS, Ufa, Russia
² Sterlitamak Branch of Bashkir State University, Sterlitamak, Russia

E-mail: jaro1986@mail.ru, abramova.lm@mail.ru

Abstract. There were 69 invasive and potentially invasive species in the flora of Sterlitamak in the Bashkortostan Republic (Russia). Eight are in the most dangerous types of invasive species. The greatest danger is represented by: Acer negundo, Ambrosia trifida, Elodea canadensis and Xanthium albinum. Within the boundaries of Sterlitamak, 21 syntaxa (13 associations and 8 derivated communities) are invasive species. This phytocenosis in an urban environment can be prime targets for plant quarantine actions.

1. Introduction
Invasions of alien species have long been a global ecological problem, and therefore interest in the study of invasion processes has increased in the whole world. Papers dedicated to penetration of invasive species are numerous and diverse [1, 2, 3, 4, 5]. The dispersal of alien plants is one of indicators of a drastic change in the ecological situation in the modern period and the result of anthropogenic transformation of the natural vegetation [6]. As Ch. S. Elton [7] stressed, the main cause of mass distribution of invasive species is anthropogenic disturbance of self-regulation processes of ecosystems in the absence of antagonist species. In recent years, research of invasions of alien species in Russia has increased [8, 9, 10, 11], and intensification of invasions of aggressive new species, mainly of North American origin, has been noted.

Currently in the Republic of Bashkortostan (South Urals), expansion and naturalization has been observed of North American invasive species of the family Asteraceae Dumort, from genera Ambrosia L., Xanthium L., Bidens L., Galinsoga Ruiz & Pav., Cyclachaena (Iva) Fresen, and others [8, 12, 13]. Naturalization, i.e. the introduction of new plant species into communities, is considered the highest degree of acclimatization and adaptation to a new habitat.

Cities are the first and largest locations of invasion by new species, which leads to «floristic pollution of the territory». Big cities, such as Sterlitamak in the Republic of Bashkortostan (RB), with their developed transport network and large areas of disturbed territories occupied by ruderal communities, are the locations for introduction and fixing of new synanthropic species, from which they extend further into agricultural ecosystems [14, 15].

2. Material and methods
We studied the flora and vegetation of Sterlitamak during 2014–2016. Sterlitamak is located in the south of Cisurals of the Republic of Bashkortostan in the fluvial plain of the Belaya River. The
territory of the town is characterized by a continental climate. The average temperature in January is –14.7°C, the average temperature of July – +19.2°C, and the average annual amount of precipitation is 410–460 mm. A large branch of a federal highway from Ufa to Orenburg passes through Sterlitamak. The town also possesses a developed industrial complex.

During the research, areas of invasive species were noted, and vegetation plots of these communities were analyzed. Data were sampled according to the methods of Zürich-Montpellier school [16].

Invasive plants of the «black list» of flora of RB, were maintained in a regional «Black book», as recommended, and divided into 4 groups of different invasive status.

Status 1. Species that actively penetrate natural and semi-natural communities, change the shape of ecosystems, disturb syngenetic communications, act as dominants, form homotypical thickets of area, and force out and/or interfere with reproduction of natural flora species.

Status 2. Alien species that actively settle and naturalize in disturbed semi-natural and natural habitats.

Status 3. Alien species that settle and naturalize in disturbed habitats and after further naturalization some of them, apparently, will be able to penetrate semi-natural and natural communities.

Status 4. Potentially invasive species capable of reproduction and demonstrated to drift into adjacent regions as invasive species [17].

3. Result and discussions
In the flora of Sterlitamak, several invasive and potentially invasive species of plants (table 1) are noted. Eight species are placed in the most dangerous types of new invasive status. Mostly similar species penetrate various floodplain habitats, frequently meeting on the shores of reservoirs, and they are characteristic of disturbed habitats. The greatest danger, currently, to ecosystems of the town comes from Acer negundo, Ambrosia trifida, Elodea canadensis and Xanthium albinum. The first 3 species belong to priority species for research and control [18], and Ambrosia trifida for plant quarantine in all territory of the Russian Federation.

The second group (10 species) of invasive species of plants are in Status 2. Similar species commonly occur in various disturbed habitats and are less widely found in natural, undisturbed habitats. The highest invasive potential in Sterlitamak is possessed by Echinochloa crusgalli and Fraxinus pennsylvanica, which are commonly found in disturbed habitats.

The third group (24 species) contains species commonly found in various ruderal habitats and not naturalized in undisturbed plant communities. Most of the species of this group are the widespread weeds often forming a monodominant phytocenosis. These are such species as: Atriplex tatarica, Conyza canadensis, Kochia scoparia, Lactuca serriola, etc.

The most numerous group contains potentially invasive species of plants – 27 species. In the future, these species can occupy Status 1 – 3 in their danger of invasiveness.

Analysis of occurrence of invasive species in the highest levels of disturbed habitats (table 2) has shown that 2 invasive species are the most widespread: Acer negundo and Conyza canadensis which occur in almost all sinantropic vegetation classes. The most significant fact is presence of juvenile individuals and young growth of Acer negundo in practically all investigated coenofloras. That speaks about the very strong invasive potential of this species in anthropogenic transformed coenofloras [19].

Often, invasive species of plants are not only a component of coenofloras, but also form monodominant communities. Currently, 21 syntaxa (13 associations and 8 derivated communities) have been identified in the territory of Sterlitamak, with domination by the above-named species. Similar communities are easily identified by the characteristic invasive species acting in a role of dominant. Similar phytocenosis in the urban environment can be prime targets for phytoquarantine actions.
Table 1. Invasive and potentially invasive species in Sterlitamak town.

N	Species	Family	Invasive status	Occurrence	Habitat
1.	Acer negundo	Aceraceae	1	Frequent	Disturbed habitats, afforestation, floodplains
2.	Ambrosia trifida	Asteraceae	1	Occasional	Disturbed habitats, floodplains
3.	Bidens frondosa	Asteraceae	1	Occasional	Banks of rivers, disturbed habitats
4.	Xanthium albinum	Asteraceae	1	Occasional	Banks of rivers, disturbed habitats
5.	Cyclachaena xanthifolia	Asteraceae	1	Occasional	Disturbed habitats
6.	Echinocystis lobata	Cucurbitaceae	1	Frequent	Banks of rivers, osiers
7.	Elytrigia juncea	Poaceae	1	Frequent	Rivers, ponds
8.	Hordeum jubatum	Poaceae	1	Occasional	Road borders, railways
9.	Carda acaenoides	Asteraceae	2	Common	Disturbed habitats
10.	Solidago canadensis	Asteraceae	2	Frequent	Abandoned gardens
11.	Alyssum turkestanicum	Brassicaceae	2	Very rare	Disturbed steppe
12.	Cardaria draba	Brassicaceae	2	Occasional	Road borders
13.	Lupinus polyphyllus	Fabaceae	2	Rare	Abandoned gardens
14.	Fraxinus pennsylvanica	Oleaceae	2	Frequent	Floodplains, disturbed habitats
15.	Echinocystis crusgalli	Poaceae	2	Frequent	Banks of rivers, disturbed habitats
16.	Collomia linearis	Polemoniaceae	2	Very rare	Railways
17.	Portulaca oleracea	Portulacaceae	2	Occasional	Flower gardens, railways
18.	Saponaria officinalis	Caryophyllaceae	2	Occasional	Meadows, disturbed habitats
19.	Amaranthus albus	Amaranthaceae	3	Occasional	Railways, disturbed habitats
20.	A. bidentis	Amaranthaceae	3	Occasional	Disturbed habitats
21.	A. retroflexus	Amaranthaceae	3	Common	Disturbed habitats
22.	Artemisia sieversiana	Asteraceae	3	Occasional	Disturbed habitats
23.	Conyza canadensis	Asteraceae	3	Frequent	Disturbed habitats
24.	Galinsoga ciliata	Asteraceae	3	Rare	Flower gardens
25.	G. parviflora	Asteraceae	3	Rare	Flower gardens, disturbed habitats
26.	Helianthus tuberosus	Asteraceae	3	Occasional	Abandoned gardens, flower gardens
27.	Lactuca serriola	Asteraceae	3	Common	Disturbed habitats
28.	Lepidium densiflorum	Brassicaceae	3	Occasional	Trampled habitats
29.	Onopordum acanthium	Asteraceae	3	Rare	Disturbed habitats
30.	Senecio vernalis	Asteraceae	3	Rare	Road borders
31.	S. viscosus	Asteraceae	3	Rare	Railways
32.	Lepidium densiflorum	Brassicaceae	3	Occasional	Trampled habitats
33.	Atriplex tatarica	Chenopodiaceae	3	Common	Disturbed habitats
34.	Kochia scoparia	Chenopodiaceae	3	Frequent	Disturbed habitats
35.	Cuscuta campestris	Cuscutaceae	3	Occasional	Disturbed habitats
36.	Hippophae rhamnoides	Elaeagnaceae	3	Rare	Abandoned gardens
N	Species	Family	Invasive status	Occurrence	Habitat
----	------------------	-----------	-----------------	------------	----------------------------
37	*Medicago sativa*	Fabaceae	3	Occasional	Disturbed habitats
38	*Elsholtzia ciliata*	Lamiales	3	Very rare	Road borders
39	*Bromus japonicus*	Poaceae	3	Occasional	Disturbed habitats
40	*B. squarrosus*	Poaceae	3	Frequent	Disturbed habitats
41	*Setaria japonica*	Poaceae	3	Occasional	Disturbed habitats
42	*S. viridis*	Poaceae	3	Frequent	Disturbed habitats
43	*Acroptilon repens*	Asteraceae	4	Very rare	Disturbed habitats
44	*Phalacroloma septentrionale*	Asteraceae	4	Very rare	Road borders
45	*Symphyotrichum novi-belgii*	Asteraceae	4	Occasional	Abandoned gardens
46	*S. × salignum*	Asteraceae	4	Rare	Abandoned gardens
47	*Impatiens glandulifera*	Balsaminaceae	4	Rare	Banks of streams
48	*I. parviflora*	Balsaminaceae	4	Very rare	Flower gardens
49	*Symphytum caucasicum*	Boraginaceae	4	Rare	Flower gardens
50	*Armoracia rusticana*	Brassicaceae	4	Occasional	Abandoned gardens, dumps, meadows
51	*Sisymbrium volgense*	Brassicaceae	4	Very rare	Road borders
52	*Sambucus racemosa*	Caprifoliaceae	4	Rare	Riparian forests
53	*Bryonia alba*	Cucurbitaceae	4	Rare	Abandoned gardens
54	*Caragana arborescens*	Fabaceae	4	Occasional	Afforestation, road borders, railways
55	*Galega orientalis*	Fabaceae	4	Rare	Road borders, railways, abandoned gardens
56	*Epilobium pseudorubescens*	Onagraceae	4	Very rare	Moist habitats
57	*Xanthoxalis stricta*	Oxalidaceae	4	Very rare	Lawns
58	*Anisantha tectorum*	Poaceae	4	Rare	Railways
59	*Digitaria sanguinalis*	Poaceae	4	Rare	Railways, flower gardens
60	*Lolium perenne*	Poaceae	4	Frequent	Lawns
61	*Aquilegia vulgaris*	Ranunculaceae	4	Occasional	Abandoned gardens
62	*Amelanchier alnifolia*	Rosaceae	4	Rare	Afforestation, railways
63	*Cerasus vulgaris*	Rosaceae	4	Frequent	Abandoned gardens, railways
64	*Malus domestica*	Rosaceae	4	Rare	Abandoned gardens
65	*Rosa pimpinellifolia*	Rosaceae	4	Occasional	Abandoned gardens, afforestation, railways
66	*Populus balsamifera*	Salicaceae	4	Occasional	Afforestation, disturbed habitats
67	*Typha laxmannii*	Typhaceae	4	Very rare	Moist habitats
68	*Ulmus pumila*	Ulmaceae	4	Occasional	Road borders, railways, afforestation
69	*Parthenocissus quinquefolia*	Vitaceae	4	Occasional	Abandoned gardens, riparian forests, disturbed habitats
Table 2. Representation of invasive species in units of vegetation of the disturbed habitats of Sterlitamak town.

Species/Syntaxa	S. m.	Art.	P-	G-	Bid.		
	Sis.	A-C.	A.	On.	Ag.	P.	U.
Xanthium albinum	I	-	I	-	-	-	V
Bidens frondosa	I	-	-	-	-	-	IV
Acer negundo	I	-	IV	II	I	-	III
Ambrosia trifida	I	-	-	-	-	-	II
Conyza canadensis	I	II	II	I	I	-	II
Echinocystis lobata	I	I	-	-	-	-	II
Cuscuta campestris	I	-	I	-	I	-	II
Cyclachaena xanthiifolia	I	-	-	-	-	-	I
Lepidiothea suaveolens	I	-	I	-	-	-	I
Hordeum jubatum	-	-	-	I	-	-	I
Anisantha tectorum	-	-	-	I	-	-	I
Galinsoga ciliata	I	-	-	-	-	-	-
G. parviflora	I	II	-	-	-	-	-
Lepidium densiflorum	I	-	-	-	-	-	-
Fraxinus lanceolata	I	-	-	-	-	-	-
Portulaca oleracea	I	-	I	-	-	-	-
Impatiens glandulifera	-	-	-	-	-	-	I
Total	13	4	2	5	2	6	7

Note. I–V — Classes of constancy.

Classes of vegetation: S.m. — *Stellarietea mediae* (Orders: Sis. — *Sisymbrietalia*, A-C. — *Atriplici-Chenopodietalia albi*, Art. — *Artemisietea vulgaris* (Orders: A. — *Artemisietalia vulgaris*, On. — *Onopordetalia acanthii*, Ag. — *Agropyretalia repens*), P-P. — *Polygono arenastri–Poëtea annuae*, P-A. — *Polygono-Artemisietea austriacae*, G-U. — *Galio–Urticetea*, Bid. — *Bidentetea tripartitae*.

Table 3. Sytaxis with dominating invasive and potentially invasive species in Sterlitamak town.

Syntaxa	Occurrence
Sytaxis with dominating of 1 group species	
Association *Elodeetum canadensis* Nedelcu 1967	Frequent
Association *Chelidonio-Aceretum negundi* Ishbirdina et Ishbirdin 1989	Frequent
Association *Polygonetum hydropiperis* Passarge 1965 variant *Bidens frondosa*	Occasional
Association *Salici-Populetum* (R. Tx. 1931) Meijer Drees 1936 variant *Acer negundo*	Occasional
Derivated community *Xanthium albinum* [Potentillion anserinae/Bidentetea tripartitae]	Occasional
Derivated community *Ambrosia trifida* [Potentillion anserinae]	Occasional
Association *Ivaetum xanthiifoliae* Fijałkowski 1967	Rare
Association *Polygono avicularis–Hordeetum jubati* Abramova, Golovanov 2016	Rare
Sytaxis with dominating of 2 group species	
Association *Carduetum acanthoidis* Felföldy 1942	Frequent
Derivated community *Cardaria draba* [Artemisietea vulgaris]	Occasional
Association *Setario pumilae–Echinochloëtum crus-galli* Felföldy 1942 corr. Mucina in Mucina et al. 1993	Rare
Sytaxis with dominating of 3 group species	
Association *Conyzo canadensis–Lactucetum serriolae* Lohmeyer in Oberdorfer 1957	Frequent
Association *Convolvulo arvensis–Amaranthetum retroflexi* Abramova et Sakhapov in Ishbirdin et al. 1988	Frequent

Syntaxa	Occurrence
Association *Atriplicetum tataricae* Ubryszy 1949 | Frequent
Association *Kochietum densiflorae* Gutte et Klotz. 1985 | Occasional
Derived community *Cuscuta campestris* [Polygono arenstri–Poëtea annuae] | Rare
Derived community *Bromus squarrosus* [Sisymbrietalia/Onopordetalia acanthii] | Rare
Derived community *Galinsoga ciliata* [Stellarietea mediae/Molinio-Arrhenatheretea] | Rare
Derived community *Galinsoga parviflora* [Stellarietea mediae/Molinio-Arrhenatheretea] | Rare

Sytaxa with dominating of 4 group species

Derived community *Digitaria sanguinalis* [Stellarietea mediae] | Rare
Association *Calystegio sepium–Impatientetum glanduliferae* | Rare

4. Conclusions
The intensification of anthropogenic impact within the urban area leads to the formation of a greater number of habitats, favorable for invasions, and active penetration and naturalization of aggressive invasive species of plants. The most vulnerable to this process are areas near railway stations and, in general, railways, highways with adjacent habitats, elevators and banks of water bodies (especially the banks of the Ashkadar and Belaya rivers).

But practically all phytocenoses within city lines contain up to 74% of the alien species [19] which can become further invasive. Therefore, territories of the large cities have to be objects of continuous monitoring of penetration and formation of invasion centers of aggressive, new plant introductions, and these areas demand measures to decrease their numbers by using all suppression methods possible.

Acknowledgment
The reported study was funded by RFBR according to the research project № 17-04-0037.

References
[1] Lonsdale M 1999 *Ecology* **80** (5) 1522–36
[2] Richardson D M and Pysek P 2006 *Progr. Phis. Geogr* **30** (3) 409–431
[3] Chytry M, Maskell L, Pino J, Pyšek P, Vila M, Font X and Smart S 2008 *J. Appl. Ecol.* **45** (2) 448–458
[4] Lambdon P W et al. 2008 *Preslia* **80** 101–149
[5] Pyšek P et al. 2009 *Diversity and Distributions* **15** 891–903
[6] Burda R I 1991 *Anthropogenic Transformation of Flora* (Kiev: Naukova Dumka)
[7] Elton C 1958 *The Ecology of Invasions by Animals and Plants* (London: Methuen)
[8] Abramova L M 2012 *Russian Journal of Ecology* **43** (5) 352–357
[9] Abramova L M 2014 *Bull. Acad. Sci. Rep. Bashk.* **19** (4) 16–27
[10] Vinogradova Yu K, Mayorov S R and Horun L V 2010 *Black book of flora of Central Russia* (Moscow: GEOS)
[11] Panasenko N N 2014 *Ross. Zhurn. Biol. Invas.* **2** 127–132
[12] Abramova L M 1997 *Bot. Journ.* **82** (1) 66–74
[13] Abramova L M 2003 *Bot. Journ.* **88** (4) 67–76
[14] Golovanov Ya M and Abramova L M 2011 *Bull. Voronezh State Univ.* **1** 173–176
[15] Golovanov Ya M and Abramova L M 2013 *Bull. Altai State Univ.* **1** (3) 27–30
[16] Braun-Blanquet J 1964 *Pflanzensociologie* (Wien)
[17] Abramova L M and Golovanov Ya M 2016 *Proc. Ufa Sci. Center RAS* **2** 54–61
[18] Dgebuadze Y Y 2014 *Ross. Zhurn. Biol. Invas.* **1** 2–8
[19] Golovanov Ya M and Abramova L M 2016 *Vegetation of Russia* **28** 28–36