On direct product of algebraic sets over groups II

A N Shevlyakov

1 Sobolev Institute of Mathematics, Pevtsova 13, Omsk, 644099, Russia
E-mail: a_shevl@mail.ru

Abstract. We consider systems of group equations of the structure $S = S_1(X) \cup S_2(Y)$, where the set of variables X, Y are disjoint. Suppose we know the radicals of the systems S_i. However we prove that the radical of the whole system $\text{Rad}(S)$ may contain equations which are not derived from equations from $\text{Rad}(S_i)$.

1. Introduction
Consider a group G. We say that a set $Y \subseteq G^n$ is algebraic over G if it can be expressed as the solution set of a certain system of equations over G. One easily prove that the direct product of algebraic sets is algebraic again. In other words, the set $Y_1 \times Y_2$ is defined by

$$\{u_{1j}(x_1, x_2, \ldots, x_{n_1}) = 1 \mid j \in J_1\} \cup \{u_{2j}(y_1, y_2, \ldots, y_{n_2}) = 1 \mid j \in J_2\}$$

for $S_i = \{u_{ij}(x_1, x_2, \ldots, x_{n_i}) = 1 \mid j \in J_i\}$.

The direct product of algebraic sets Y_1, Y_2 inherits many properties of the sets Y_i. For example, if both Y_i are irreducible so is $Y = Y_1 \times Y_2$ ([2]). On the other hand, there exist properties of Y which do not follow from the corresponding properties of the sets Y_i.

Also we may consider the following problem: what properties $Y_1 \times Y_2$ are derived from the sets Y_i. In other words, can we describe the radical $\text{Rad}(Y_1 \times Y_2)$ using the sets of equations $\text{Rad}(Y_1), \text{Rad}(Y_2)$ (remind that $\text{Rad}(Y)$ is the maximal system with the solution Y)?

The current paper continues the studies of [1]. We remind the reader the formal statement of the central problem (Problems 1,2 below) and prove that it has a negative solution for free non-abelian groups (Theorem 3.3).

2. Main definitions
Following [2], we give the main definitions of algebraic geometry over groups.

We consider any group G below as an algebraic structure of the language $L = \{\cdot, -1, 1\} \cup \{g \mid g \in G\}$. It is easy to see that every L-term with variables $X = \{x_1, x_2, \ldots, x_n\}$ actually belongs to the free product $G * F(X)$. An equation is said to be an equality $w(X) = 1$, for an L-term $w(X)$. The solution set of a system of equations (system, for shortness) S in a group G is denoted by $V(S) \subseteq G^n$. A pair of equations $w(X) = 1$, $u(X) = 1$ is called equivalent over G if $V(w(X) = 1) = V(u(X) = 1)$. This equivalence relation is denoted by $w(X) \sim u(X)$.

The radical $\text{Rad}(S)$ over a group G is the following set

$$\{w(X) = 1 \mid V(S) \subseteq V(w(X) = 1)\}.$$
Remark 2.1. We know that any group equation has 1 in the right part. Hence we write below $w(X) \in S$ or $w(X) \in \text{Rad}(S)$ for shortness.

Let $[S]$ be the normal closure of a system S (see the definition in [2]). One can directly prove that, $[S] \subseteq \text{Rad}(S)$.

A system S may depend on variables $X = \{x_1, x_2, \ldots, x_n\}$, and it does not depend on a variable set Y. We have $Z = X \cup Y$ and use the denotation

$$V^Z(S) = V(S) \times G^m,$$

$$\text{Rad}^Z(S) = \{ w(Z) = 1 \mid V^Z(S) \subseteq V^Z(w(Z) = 1) \}.$$

Roughly speaking, $V^Z(S)$ is all solutions of $S \cup \{ y_1 y_i^{-1} = 1 \mid 1 \leq i \leq m \}$.

The central problems of our paper is the following:

Problem 1. Fix a group G and disjoint set of variables X, Y. Is the following equality

$$\text{Rad}^Z(S_1(X) \cup S_2(Y)) = \{ [\text{Rad}^Z(S_1(X)), \text{Rad}^Z(S_2(Y))] \}$$

true for arbitrary systems S_1, S_2 and $Z = X \cup Y$?

Problem 2. Under all denotation from Problem 1 is the following equality

$$nf(\text{Rad}^Z(S_1(X) \cup S_2(Y))) = nf([\text{Rad}^Z(S_1(X)), \text{Rad}^Z(S_2(Y))])$$

true for every systems $S_1(X), S_2(Y)$?

Obviously, the negative solution of Problem 2 implies the negative solution of Problem 1.

Let us take a free group G. According to the properties of free product, one can give the natural definition of a normal form in $G * F(X)$.

3. Free groups

Below in this section G is a non-abelian free group and a, b be its free generators.

Lemma 3.1. An equation

$$w(x) = 1, \ w(x) \in G * F(x)$$

is satisfied by all points $g \in G$ iff the word $w(x)$ equals 1 in the group $G * F(x)$.

Proof. Assume that w is the product

$$u_1 x^{n_1} u_2 x^{n_2} \ldots u_k x^{n_k}, \ u_i \in G \setminus \{1\}, \ n_i \in \mathbb{Z} \setminus \{0\}$$

(the proof for other types of the word w is similar).

One can choose a sufficiently large n such that the reduced form of $a^n u_i a^{-n}$ starts with a and finishes with a^{-1} for any u_i which is not a power of a. Let v_i be the reduced form of $a^n u_i a^{-n}$. Obviously, each v_i stats and finishes with $a^\pm 1$. Then the element

$$q = v_1 b^{n_1} v_2 b^{n_2} \ldots v_k b^{n_k}$$

is not 1 in G. We have

$$a^{-n} q a^n = a^{-n} (a^n u_1 a^{-n} b^{n_1} a^n u_2 a^{-n} b^{n_2} \ldots a^n u_k a^{-n} b^{n_k}) a^n = a^n u_k a^{-n} b^{n_k} a^n a^n = w(a^{-n} b a^n) \neq 1$$

that contradicts the condition.
Let $w(x, y) \in G * F(x, y)$. One can write $w(x, y)$ as a product of letters

$$w(x, y) = z_1 z_2 \ldots z_n, \; z_i \in V \cup G,$$

where either $z_i \in \{x^{\pm 1}, y^{\pm 1}\}$ or z_i is a free generator of G.

Lemma 3.2. Suppose

$$w(x, y) \in \text{Rad}^{(x,y)}([x, a] = 1)$$

is of the form (3). Then there exists a set of pairs $M \subseteq \{1, 2, \ldots, n\} \times \{1, 2, \ldots, n\}$ such that

(i) $(i, j) \in M$ if $(j, i) \in M$;

(ii) if $(i, j) \in M$ then $z_i = z_j^{-1}$ and $z_i, z_j \in \{x^{\pm 1}, y^{\pm 1}\}$;

(iii) for any $z_i \in \{x^{\pm 1}, y^{\pm 1}\}$ there exists $z_j = z_i^{-1}$ such that $(i, j) \in M$

(iv) if $(i, k) \in M$, $z_j \in \{x^{\pm 1}, y^{\pm 1}\}$ and $i < j < k$ then there exists l with $(j, l) \in M$ and $i < l < k$.

Proof. The last condition of the set M implies the absence of the following overlappings (an edge between indexes α, β means $(\alpha, \beta) \in M$):

![Forbidden overlappings in M.](image)

Sketch of the proof. By the condition, $w(x, y) = 1$ should satisfy any point (a^m, g), $m \in \mathbb{Z}$, $g \in G$. Let $m = 2 \# a$, where $\# a$ is the total number of occurrences of the letters $a^{\pm 1}$ in $w(x, y)$. Then the letters a from $w(x, y)$ cannot completely cancel any expression $x := a^m$. Thus, for any expression $x := a^m$ in $w(x, y)$ there exists a letter x^{-1} which cancels almost all letters a from x. If such x and x^{-1} are i-th and j-th letters in $w(x, y)$ we put $(i, j) \in M$.

Since the word $w(a^m, y)$ is reduced to 1 for any y, then for any letter $z_i = y^x$ in $w(x, y)$ there exists y^{-x} which cancels y in $w(a^m, y)$ (Lemma 3.1). Thus, it allows to define pairs $(i, j) \in M$ for the letters y.

Finally, M contains the information about the cancellative pairs of the word $w(x, y)$.

Formal proof. Let $m = 2 \# a$, where $\# a$ is the total number of occurrences of the letters $a^{\pm 1}$ in $w(x, y)$. By the condition, the word $w(a^m, g)$ is reduced to 1 in G.

Let us introduce new letters α_m indexed by integers $m \in \mathbb{Z}$. We change z_i to α_m by the following rule:

$$z_i = \begin{cases}
\alpha_m & \text{if } z_i = x, \\
\alpha_m^{-1} & \text{if } z_i = x^{-1}
\end{cases}$$

Thus, the word $w(\alpha_m, \alpha_m^{-1}, y)$ is reduced to 1 if put $\alpha_m = a^m$, $\alpha_m^{-1} = a^{-m}$. Let us fix the pairs of cancellative letters and describe the cancellation process by the following rules.

(i) during the process, a letter α_m (α_m^{-1}) may be changed to a new letter α_k ($k \in \mathbb{Z}$);

(ii) if a constant a^ε ($\varepsilon \in \{-1, 1\}$) cancels with $a^{-\varepsilon}$ from α_k ($k \in \mathbb{Z}$) we denote the result of this cancellation by $\alpha_{k-\varepsilon}$;

(iii) if there cancel constant letters a, a^{-1} from α_k and α_l ($k, l \in \mathbb{Z}$) the cancellation result equals to the following product of constants:

$$\alpha_k \alpha_l = \begin{cases}
qq & \text{if } k - l \geq 0, \\
k - l \text{ times} & a^{-1}a^{-1} \ldots a^{-1} & \text{if } k - l < 0 \\
k - l \text{ times}
\end{cases}$$
Let z_i (z_j) be the letter of $w(x, y)$ which was initially substituted to α_k (respectively, α_l). Then we add a pair (i, j) to M.

Since m is large enough, the third rule above appears for each α_k. Therefore, for any i with $z_i = x^\varepsilon$ there exists a unique j such that $z_j = y^{-\varepsilon}$ and $(i, j) \in M$.

Since for $x := a^m$ the word $w(x, y)$ is reduced to 1 for any $y \in G$, then for any letter $z_i = y^\varepsilon$ in $w(x, y)$ there exists $z_j = y^{-\varepsilon}$ which cancels with y in $w(a^m, y)$ (Lemma 3.1). We add the pair (i, j) to the set M.

The last property of the set M obviously holds, since any set of cancellation pairs clearly has this property.

Applying to M the symmetric closure, we obtain a set of pairs which satisfies the first property in the lemma statement.

Theorem 3.3. Let G be a non-abelian free group and $a \in G$ be a free generator. For

$$S_1 = \{[x, a] = 1\}, \quad S_2 = \{[y, a] = 1\}$$

the equality (2) fails.

Proof. Since the centralizer of any nontrivial element in G is cyclic, the radical of the system $S = S_1 \cup S_2$ contains $[x, y]$.

Assume that

$$nf([x, y]) = [x, y] \in nf([Rad(S_1), Rad(S_2)])$$

In other words, there exist

$$w_i(x, y) \in Rad^Z(S_1) \cup Rad^Z(S_2)$$

such that the product

$$w_1(x, y)w_2(x, y) \ldots w_k(x, y)$$

equals $[x, y]$ in $G \ast F(x, y)$.

Any word w_i is a product of letters

$$w_i = z_jz_{j+1} \ldots z_{j+|w_i|}$$

such that $j = \sum_{\alpha=1}^{i-1} |w_\alpha| + 1$. According to Lemma 3.2, there exist sets M_1, M_2, \ldots, M_k of pairs. Denote

$$M = \bigcup_{i=1}^{k} M_i.$$

Reducing the product (4) in $G \ast F(x, y)$ to $[x, y]$, we fix some order of cancellations in (4).

Suppose we have a cancellation of letters $z_i, z_j \in \{x^{\pm 1}, y^{\pm 1}\}$ from different words w_i, w_j. Hence, there exists pairs

$$(i_0, i), (j, j_0) \in M.$$

We put

$$M := (M \setminus \{(i_0, i), (j, j_0)\}) \cup \{i_0, j_0\}.$$

The transformation (5) is shown at the following figure.
One can directly prove that M satisfies all properties from Lemma 3.2 after every transformation (5). Hence, the normal form of (4) should have the set M which satisfies Lemma 3.2. However, the word $[x, y]$ does not admit any set M with properties from Lemma 3.2. Hence, $[x, y]$ can not be obtained by multiplications and reductions of words from $[\text{Rad}^Z(S_1) \cup \text{Rad}^Z(S_2)]$.

Thus, $[x, y]$ is not a normal form of any equation from $[\text{Rad}^Z(S_1) \cup \text{Rad}^Z(S_2)]$.

References
[1] Shevlyakov A 2021 *Journal of Physics: Conference Series* On direct product of algebraic sets over groups 1791 012086 6pp
[2] Daniyarova E, Myasnikov A and Remeslennikov V 2017 Algebraic geometry over algebraic structures *Novosibirsk: SO RAN*