On some set-valued iteration semigroups generated by interval-valued functions

GRAŻYNA LYDZIŃSKA

Abstract. Let X be an arbitrary set. We characterize all interval-valued functions $A : X \to 2^\mathbb{R}$ for which a multifunction $F : (0, \infty) \times X \to 2^X$ of the form $F(t, x) = A^- (A(x) + \min\{t, q - \inf A(x)\})$, where $q = \sup A(X)$, is an iteration semigroup. The multifunction F is the set-valued counterpart of the fundamental form of continuous iteration semigroups of single-valued functions on an interval.

Mathematics Subject Classification. 39B12, 39B52, 26E25, 26A18.

Keywords. Iteration theory, set-valued function, iteration semigroup, set-valued iteration semigroup.

Introduction

Let X be an arbitrary set. A multifunction $F : (0, \infty) \times X \to 2^X$ is said to be a set-valued iteration semigroup if

$$F(s + t, x) = F(t, F(s, x)) \quad \text{for } x \in X \quad \text{and } s, t \in (0, \infty).$$

This notion was introduced and investigated by Smajdor [11] (see also e.g. [12]), studied by J. Olko (see e.g. [9, 10]) and by Zdun [15]. In [4, 5] we introduced and studied a family of set-valued functions which now will be denoted by (A) (see Sect. 1) and we showed (see [5, Remarks 1 and 3]) that F given by (A) is a set-valued counterpart of the fundamental form of iteration semigroups for single-valued functions which can be found in [2, Chap. IX, Sec. 1], [14, Theorems 5.1–8.1], [13, p. 98–99], [3, Chap. I, Sec. 1.7] (cf. also [1, Theorem 1]). In [7] we studied a lower semicontinuity of F given by (A).

In [8] we gave the necessary and sufficient conditions under which F given by (A) is an iteration semigroup (see [8, Theorems 2, 4 and 5]) (cf. also Sect. 1: Facts 3, 4 and 5).

In the present paper we will consider the case when the values of the generator A of the multifunction F are intervals. The main aim of this paper is to
show all interval-valued functions A for which F given by (A) is an iteration semigroup.

1. Preliminaries

Fix a set X and a set-valued function $A : X \to 2^\mathbb{R}$ with non-empty values. Put

$$S := A(X) \text{ and } q := \sup S.$$

Throughout this paper we will always assume that A satisfies the following condition:

(H) For every $s, t \in (0, \infty)$ and $x, z \in X$ with $[A(x) + s + t] \cap A(z) \neq \emptyset$ there exists $y \in X$ satisfying the conditions

$$[A(x) + s] \cap A(y) \neq \emptyset$$

and

$$[A(y) + t] \cap A(z) \neq \emptyset.$$

In the following remark we give some properties related to (H).

Remark 1. (i) If S is an interval then (H) holds (see [5, Proposition 1(i)]).

(ii) If at least one of the values of A is a singleton, then (H) holds if and only if S is an interval.

(iii) Assume that all values of A are intervals. If (H) holds then $(\inf S, \sup S) \subset \text{cl} S$ (see [5, Proposition 1(iii)]).

(iv) Assume that all values of A are open sets. If $(\inf S, \sup S) \subset \text{cl} S$ then (H) holds (see [5, Proposition 1(ii)]).

Proof. (ii) Assume that there exist $x \in X$ and $u \in S$ such that $A(x) = \{u\}$. By (i) it is enough to show that if (H) holds then S is an interval. Assume that (H) is satisfied and take $a, b \in S$, $a < b$. Let $c \in (a, b)$. We prove that $c \in S$. Take $w, z \in X$ such that $a \in A(w)$ and $b \in A(z)$. Of course if $c = u$ then $c \in S$, so assume that $c \neq u$.

If $u < c$ then there exist $s, t \in (0, \infty)$ such that

$$A(x) + s = \{c\} \text{ and } A(x) + s + t = \{b\}.$$

Hence $[A(x) + s + t] \cap A(z) \neq \emptyset$. By (H) there exists $y \in X$ such that $[A(x) + s] \cap A(y) \neq \emptyset$, thus $c \in A(y) \subset S$.

Pass to the case $u > c$. We can find $s, t \in (0, \infty)$ such that

$$\{c\} + t = A(x) \text{ and } \{a\} + s + t = A(x).$$

Thus $[A(w) + s + t] \cap A(x) \neq \emptyset$ and by (H) we get

$$A(y) \cap [A(x) - t] \neq \emptyset$$

for some $y \in X$. Since $A(x) - t = \{c\}$, we obtain that $c \in A(y)$. \hfill \Box
For every $x \in X$ define
\[
\tau(x) := q - \inf A(x).
\]

Consider the following condition:

(H1) for every $x, z \in X$ and $s, t \in (0, \infty)$ with $s + t \leq \tau(x)$ if (1) and (2) hold for a $y \in X$ then $[A(x) + s + t] \cap A(z) \neq \emptyset$.

Notice that if A is single-valued then (H1) holds (see also [6, Remark 1]).

Remark 2. (see [8, Remark 2]) Assume that (H1) holds and $q = \infty$. Then for every $x \in X$ either $\text{card } A(x) = 1$ or $\text{diam } A(x) = \infty$.

Prove the following easy remark.

Remark 3. Assume that the condition (H1) holds. Let $x, z \in X$ and $u < w$ for $u \in A(x)$ and $w \in A(z)$.

Then $\text{card } A(y) = 1$ for every $y \in Y$ such that
\[
\sup A(x) \leq \inf A(y) \quad \text{and} \quad \sup A(y) \leq \inf A(z).
\]

Proof. Take $y \in Y$ such that
\[
\sup A(x) \leq \inf A(y) \quad \text{and} \quad \sup A(y) \leq \inf A(z)
\]
and suppose that $\text{card } A(y) > 1$. Let $a, b \in A(y)$ and $a < b$. We can find $s \in (0, \infty)$ satisfying the conditions
\[
\sup A(x) + s < \frac{a + b}{2}
\]
and
\[
a \in A(x) + s.
\]

Similarly there exists $t \in (0, \infty)$ such that
\[
\frac{a + b}{2} < \inf A(z) - t
\]
and
\[
b \in A(z) - t.
\]

Observe that, by (3) and (5), we have
\[
s + t < \inf A(z) - \sup A(x) < q - \inf A(x) = \tau(x).
\]

Moreover, due to (4) and (6), we get
\[
[A(x) + s] \cap A(y) \neq \emptyset
\]
and
\[
A(y) \cap [A(z) - t] \neq \emptyset.
\]

Hence, according to the inequality (7) and the condition (H1),
\[
[A(x) + s] \cap [A(z) - t] \neq \emptyset.
\]
On the other hand, by (3) and (5), we obtain
\[\sup A(x) + s < \inf A(z) - t, \]
whence
\[[A(x) + s] \cap [A(z) - t] = \emptyset. \]
This contradiction completes the proof. \(\square \)

Define the following sets:
\[\mathcal{L} := \{ A(x) : x \in X, \inf A(x) = -\infty \text{ and } \infty \neq q \notin A(x) \}, \]
\[\mathcal{S} := \{ A(x) : x \in X, \text{card } A(x) = 1 \text{ and } q \notin A(x) \}, \]
\[\mathcal{P}_{-\infty} := \{ A(x) : x \in X, \inf A(x) = -\infty \text{ and } q \in A(x) \}, \]
\[\mathcal{P} := \{ A(x) : x \in X, \inf A(x) \in A(x) \text{ and } q \in A(x) \}, \]
\[\mathcal{L}_{-\infty} := \{ A(x) : x \in X, \inf A(x) = -\infty \text{ and } \sup A(x) < q = \infty \}, \]
\[\mathcal{P}_{\infty} := \{ A(x) : x \in X, \inf A(x) > -\infty \text{ and } \sup A(x) = q = \infty \}, \]
\[\mathcal{R} := \{ A(x) : x \in X, \inf A(x) = -\infty \text{ and } \sup A(x) = q = \infty \}. \]

Assume that \(\mathcal{A} \) and \(\mathcal{B} \) are arbitrary families of subsets of \(\mathbb{R} \). We will write \(\mathcal{A} \preceq \mathcal{B} \) if
\[\sup \mathcal{A} \leq \inf \mathcal{B} \]
for every \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \).

Let \(F : (0, \infty) \times X \to 2^X \) be given by the following formula
\[F(t, x) := A^-(A(x) + \min\{t, q - \inf A(x)\}), \tag{A} \]
where \(A^-(V) := \{ x \in X : A(x) \cap V \neq \emptyset \} \) for every \(V \subset \mathbb{R} \).

In [5, Lemma 3] we proved the following fact.

Fact 1. (see [5, Lemma 3]) Let \(F : (0, \infty) \times X \to 2^X \) be given by (A) and let \(t \in (0, \infty) \) and \(x \in X \). If \(t < \tau(x) \) then
\[F(t, x) = A^-(A(x) + t) \neq \emptyset \]
and if \(t \geq \tau(x) \) then
\[
F(t, x) = \begin{cases} A^-(\{q\}), & \text{if } q \in S \text{ and } \inf A(x) \in A(x); \\ \emptyset, & \text{otherwise.} \end{cases}
\]

Fact 2. (see [6, Theorem 3]) Let \(F : (0, \infty) \times X \to 2^X \) be given by (A). If \(A \) is single-valued then \(F \) is an iteration semigroup.

Now we present three theorems which was proved in [8]. We will use them in the proof of the main result of this paper.
Fact 3. (see [8, Theorem 2]) Let $F : (0, \infty) \times X \to 2^X$ be given by (A). Assume that $q = \infty$. Then F is an iteration semigroup if and only if (H1) is satisfied.

Fact 4. (see [8, Theorem 5]) Let $F : (0, \infty) \times X \to 2^X$ be given by (A). Assume that $q \notin S$ and $q \neq \infty$. Then F is an iteration semigroup if and only if (H1) is satisfied and

$$A(x) \in \mathcal{L} \cup S \quad \text{for } x \in X$$

and $\mathcal{L} \preceq S$.

Fact 5. (see [8, Theorem 4]) Let $F : (0, \infty) \times X \to 2^X$ be given by (A). Assume that $q \in S$. Then F is an iteration semigroup if and only if the condition (H1) and all the following conditions hold:

(a) $A(x) \in \mathcal{L} \cup S \cup \mathcal{P}_{-\infty} \cup \mathcal{P}$ for every $x \in X$;
(b) $\mathcal{L} \preceq S \cup \mathcal{P}$;
(c) $S \preceq \mathcal{P}$;
(d) $S = \emptyset$ or $\mathcal{P}_{-\infty} = \emptyset$;
(e) $\mathcal{L} = \emptyset$ or $\mathcal{P}_{-\infty} = \emptyset$ or $\mathcal{P} = \emptyset$;
(f) for every $x, y \in X$ if $A(x) \in \mathcal{P}_{-\infty} \cup \mathcal{P}$, $A(y) \in \mathcal{P}$, $\inf A(x) < \inf A(y)$ and there exists $s \in (0, \inf A(y) - \inf A(x))$ satisfying (1), then for every $P \in \mathcal{P} \cup \mathcal{P}_{-\infty}$ and $t \in [\tau(y), \tau(x) - s)$ the condition

$$[A(x) + s + t] \cap P \neq \emptyset$$

holds;
(g) for every $x, y \in X$ if $A(x) \in \mathcal{L}$, $A(y) \in S \cup \mathcal{P}$ and $s \in (0, \infty)$ satisfies (1), then the condition

$$[A(x) + s + t] \cap P \neq \emptyset$$

holds for every $P \in \mathcal{P}$ and $t \geq \tau(y)$.

Since in this paper we are interested in multifunctions F given by (A) which are generated by interval-valued functions A, below we prove two properties of the multifunction A under this assumption.

Remark 4. Assume that the values of A are intervals and the condition (H1) holds. Let $x, y, z \in X$.

(i) If

$$\sup A(x) \leq \inf A(y) \leq \inf A(z),$$

then $\text{card } A(y) = 1$ or $\inf A(y) = \inf A(z)$.

(ii) If $\sup A(x) \leq \sup A(y) \leq \inf A(z)$, then $\text{card } A(y) = 1$ or $\sup A(x) = \sup A(y)$.

Proof. (i) Assume (8) and suppose that $\text{card } A(y) > 1$ and

$$\inf A(y) < \inf A(z).$$

(9)
Then, by Remark 3, we have
\[\inf A(z) < \sup A(y). \] (10)

Let
\[t := \frac{\inf A(z) - \inf A(y)}{4}, \]
and
\[s := \inf A(y) - \sup A(x) + t. \]

Of course \(s, t \in (0, \infty) \) and
\[\inf A(y) < \inf A(y) + t = \sup A(x) + s. \]

Due to (9) we obtain
\[\inf A(z) - t = \inf A(z) - 2t + t = \frac{\inf A(z) + \inf A(y)}{2} + t \]
\[> \inf A(y) + t = \sup A(x) + s. \] (11)

Hence, by (10),
\[\inf A(y) < \sup A(x) + s < \inf A(z) - t < \sup A(y). \]

Therefore, since the values of \(A \) are intervals, we get
\[[A(x) + s] \cap A(y) \neq \emptyset \text{ and } [A(z) - t] \cap A(y) \neq \emptyset. \]

On the other hand, by (11)
\[[A(x) + s] \cap [A(z) - t] = \emptyset, \]
which, by the following inequality
\[s + t = \frac{\inf A(y) + \inf A(z) - 2 \sup A(x)}{2} < \inf A(z) - \sup A(x) < \]
\[< q - \inf A(x) = \tau(x), \]
contradicts condition (H1) and completes the proof of (i).

The proof of (ii) is similar. It is enough to take
\[s := \frac{\sup A(y) - \sup A(x)}{4} \text{ and } t := \inf A(z) - \sup A(y) + s. \]
Notice that if A is interval-valued then for every $x \in X$ we get

- $A(x) \in \mathcal{L}$ iff $A(x) = (-\infty, a_x)$ for some $a_x \leq q < \infty$ or $A(x) = (-\infty, a_x]$ for some $a_x < q < \infty$,
- $A(x) \in \mathcal{S}$ iff $A(x) = \{a_x\}$ for some $a_x \neq q$,
- $A(x) \in \mathcal{P}_{-\infty}$ iff $A(x) = (-\infty, q]$,
- $A(x) \in \mathcal{P}$ iff $A(x) = [a_x, q]$ for some $a_x \leq q$,
- $A(x) \in \mathcal{L}_{-\infty}$ iff $A(x) = (-\infty, a_x)$ for some $a_x < q = \infty$ or $A(x) = (-\infty, a_x]$ for some $a_x < q < \infty$,
- $A(x) \in \mathcal{S} \iff A(x) = \{a_x\}$ for some $a_x \neq q$,
- $A(x) \in \mathcal{P}_{-\infty}$ iff $A(x) = (-\infty, a_x]$ for some $a_x > q = \infty$ or $A(x) = (-\infty, a_x]$, for some $a_x > q = \infty$,
- $A(x) \in \mathcal{S}$ iff $A(x) = \{a_x\}$ for some $a_x \neq q$,
- $A(x) \in \mathcal{P}_{\infty}$ iff $A(x) = (a_x, \infty)$ for some $a_x \in \mathbb{R}$ or $A(x) = [a_x, \infty)$ for some $a_x \in \mathbb{R}$,
- $A(x) \in \mathcal{R}$ iff $A(x) = \mathbb{R}$.

Lemma 1. Assume that the values of A are intervals, (H1) holds and $q = \infty$. Then all the following conditions are satisfied

(i) $A(x) \in \mathcal{L}_{-\infty} \cup \mathcal{S} \cup \mathcal{P}_{\infty} \cup \mathcal{R}$ for every $x \in X$;
(ii) $\mathcal{L}_{-\infty} \preceq \mathcal{S} \cup \mathcal{P}_{\infty}$;
(iii) $\mathcal{S} \preceq \mathcal{P}_{\infty}$;
(iv) $\mathcal{S} = \emptyset$ or $\mathcal{R} = \emptyset$;
(v) $\mathcal{L}_{-\infty} = \emptyset$ or $\mathcal{R} = \emptyset$ or $\mathcal{P}_{\infty} = \emptyset$.

Proof. Notice that $\tau(x) = \infty$ for every $x \in X$. The condition (i) follows immediately from Remark 2.

Pass to the proof of (ii). Suppose that there exist $x, y, z \in X$ such that $A(x) \in \mathcal{S} \cup \mathcal{P}_{\infty}$, $A(y) \in \mathcal{L}_{-\infty}$ and $\sup A(y) > \inf A(x)$. Take

$$s := \frac{\sup A(y) - \inf A(x)}{2},$$

and $t \in (0, \infty)$, $t > s$. Of course $s, t \in (0, \infty)$ and $s + t < \tau(x)$. Since the values of A are intervals, notice that

$$[A(x) + s] \cap A(y) \neq \emptyset \quad \text{and} \quad [A(y) - t] \cap A(y) \neq \emptyset,$$

but $[A(x) + s + t] \cap A(y) = \emptyset$, which contradicts (H1).

Now we prove (iii) and (iv). Suppose that there exist $x, y \in X$ such that

- $A(x) \in \mathcal{S}$ and $A(y) \in \mathcal{P}_{\infty}$ and $\inf A(y) < \sup A(x)$

or

- $A(x) \in \mathcal{S}$ and $A(y) \in \mathcal{R}$.

Let $s \in (0, \infty)$ and $t \in (0, \sup A(x) - \inf A(y))$. By our assumptions

$$[A(x) + s] \cap A(y) \neq \emptyset \quad \text{and} \quad [A(x) - t] \cap A(y) \neq \emptyset.$$
On the other hand
\[[A(x) + s] \cap [A(x) - t] = \emptyset, \]
which contradicts (H1).

To prove (v) suppose that there exist \(x, y, z \in X \) such that \(A(z) \in \mathcal{L}_{-\infty} \), \(A(y) \in \mathcal{R} \) and \(A(x) \in \mathcal{P}_\infty \). By (ii) we get
\[
\sup A(z) \leq \inf A(x). \tag{12}
\]
For every \(s, t \in (0, \infty) \) we obtain
\[[A(x) + s] \cap A(y) \neq \emptyset \quad \text{and} \quad [A(z) - t] \cap A(y) \neq \emptyset. \]
Due to (12)
\[[A(x) + s] \cap [A(z) - t] = \emptyset, \]
which contradicts (H1) and completes the proof of (v).

\(\square \)

2. Main result

Let \(\mathcal{A}, \mathcal{B} \subset 2^R \). We will say that \(A \) has values of type \(\mathcal{A} \), if \(A(x) \in \mathcal{A} \) for every \(x \in X \).

We will say that \(A \) has values of type \(\mathcal{A}\mathcal{B} \), if \(A(x) \in \mathcal{A} \cup \mathcal{B} \) for every \(x \in X \) and \(\mathcal{A} \neq \emptyset \) and \(\mathcal{B} \neq \emptyset \). Similarly for three classes of sets.

We will say that \(A \) has property \(\mathcal{W} \) and write \(\mathcal{W}(\mathcal{A}) \), if
\[\text{int } \mathcal{P} = \text{int } \mathcal{R}, \quad \text{for every } \mathcal{P}, \mathcal{R} \in \mathcal{A}, \]
(where \(\text{int } \mathcal{P} \) denotes the interior of the set \(\mathcal{P} \)).

Now we present the main result of this paper.

Theorem. Assume that the values of \(A \) are intervals and \(F : (0, \infty) \times X \to 2^X \) is given by (A). Then \(F \) is an iteration semigroup if and only if one of the following conditions holds:

(i) \(A \) has values of type \(\mathcal{P} \);
(ii) \(A \) has values of type \(\mathcal{P}_{-\infty} \);
(iii) \(A \) has values of type \(\mathcal{P}\mathcal{P}_{-\infty} \);
(iv) \(A \) has values of type \(\mathcal{S}\mathcal{P} \) and
\[\mathcal{S} \preceq \mathcal{P} \quad \text{and} \quad \text{card } \mathcal{P} = 1; \]
(v) \(A \) has values of type \(\mathcal{L}\mathcal{P} \) and
\[\mathcal{L} \preceq \mathcal{P} \quad \text{and} \quad \mathcal{W}(\mathcal{L}) \quad \text{and} \quad \text{card } \mathcal{P} = 1; \]
(vi) \(A \) has values of type \(\mathcal{L}\mathcal{P}_{-\infty} \);
(vii) \(A \) has values of type \(\mathcal{L}\mathcal{S}\mathcal{P} \) and
\[\mathcal{L} \preceq \mathcal{S} \preceq \mathcal{P} \quad \text{and} \quad \mathcal{W}(\mathcal{L}) \quad \text{and} \quad \text{card } \mathcal{P} = 1; \]
(viii) \(A \) has values of type \(\mathcal{S} \);
(ix) A has values of type L;
(x) A has values of type LS and
\[
L \preceq S \quad \text{and} \quad W(L);
\]
(xi) A has values of type P_∞;
(xii) A has values of type $L_{-\infty}$;
(xiii) A has values of type R;
(xiv) A has values of type $L_{-\infty}P_\infty$ and
\[
L_{-\infty} \preceq P_\infty \quad \text{and} \quad W(L_{-\infty}) \quad \text{and} \quad W(P_\infty);
\]
(xv) A has values of type SP_∞ and
\[
S \preceq P_\infty \quad \text{and} \quad W(P_\infty);
\]
(xvi) A has values of type $L_{-\infty}R$;
(xvii) A has values of type RP_∞;
(xviii) A has values of type $L_{-\infty}S$ and
\[
L_{-\infty} \preceq S \quad \text{and} \quad W(L_{-\infty});
\]
(xix) A has values of type $L_{-\infty}SP_\infty$ and
\[
L_{-\infty} \preceq S \preceq P_\infty \quad \text{and} \quad W(L_{-\infty}) \quad \text{and} \quad W(P_\infty).
\]

Proof. At first assume that F is an iteration semigroup. Of course, by Facts 3, 4 and 5, condition (H1) is satisfied. We show that one of the conditions (i)–(xix) holds.

First we prove that the multifunction A can have only the values mentioned in conditions (i)–(xix).

Consider the case $q \in S$. Then, by Fact 5, F has the values in the set $L \cup S \cup P_{-\infty} \cup P$. Notice that if all of the values of A belong to the same class, then it can be $P_{-\infty}$ [cf. (ii)] or P [cf. (i)] (because $q \in S$). Assume that A has values in exactly two classes of sets. Then we have 6 possibilities. Since $q \in S$ it cannot be LS, and, by the condition (d) of Fact 5, it cannot be $SP_{-\infty}$. Thus we obtain the types from (iii)–(vi). Notice that if A has values in exactly three classes of sets, then, by Fact 5(d) and (e), it has to be the type LSP [cf. (vii)]. Due to the condition (e) of Fact 5, there does not exist $x \in X$ such that $A(x) \in LSP_{-\infty}P$.

Now pass to the case when $q \notin S$ and $q \neq \infty$. Therefore, according to Fact 4, the values of A can be of the types: L, S or LS (cf. (viii)–(x)).

Assume that $q = \infty$. Then, by Lemma 1, for every $x \in X$
\[
A(x) \in L_{-\infty} \cup S \cup P_\infty \cup R.
\]

If A has only one kind of values then each of the types: $L_{-\infty}$, S, P_∞, R is possible [cf. (viii), (xi)–(xiii)]. If A has values in exactly two classes of sets then by Lemma 1(iv), it cannot be SR. Thus the conditions (xiv)–(xviii) describe all the types of the values in this case. Observe that if A has values in exactly three
classes of sets, then, by Lemma 1[(iv) and (v)], it has to be the type $L_{-\infty}SP_{\infty}$ [cf. (xix)] and according to the condition (v) of Lemma 1, the multifunction A cannot have values of the type $L_{-\infty}SP_{\infty}R$.

The relations “\preceq” between the classes of sets follow immediately from Fact 5 [in the cases (iv), (v) and (vii)], from Fact 4 [in the case (x)] and from Lemma 1 [in the cases (xiv)–(xv) and (xviii)–(xix)].

The conditions relating to the cardinality of sets and property W follow immediately from Remark 4.

Now pass to the proof of the contrary implication. At first notice that if (viii) holds then A is single-valued and, by Fact 2, F is an iteration semigroup. In the cases (i)–(iii), (vi), (ix), (xi)–(xiii) and (xvi)–(xvii) the condition

$$[A(x) + s] \cap A(z) \neq \emptyset$$

is satisfied for all $x, z \in X$ and $s \in (0, \tau(x)] \cap \mathbb{R}$. Hence (H1) holds. Moreover in this cases we have $F \equiv X$, so the multifunction A generates an iteration semigroup F. It easy to observe that also in other cases condition (H1) is satisfied. Of course each of the conditions (xiv)–(xv) and (xviii)–(xix) defines the multifunction A for which $q = \infty$. Therefore by Fact 3 in all these cases F is an iteration semigroup. In the cases (iv), (v) and (vii) we obtain that $q \in S$ and the conditions (a)–(g) of Fact 5 hold, thus F is an iteration semigroup. Now assume (x). Then $q \notin S$ and $q \neq \infty$, so due to Fact 4 we obtain that F is an iteration semigroup.

□

As follows from the above proof if A satisfies one of conditions: (i)–(iii), (vi), (ix), (xi)–(xiii), (xvi) or (xvii) of the Theorem, then $F \equiv X$.

Since in our paper we always assume that A satisfies condition (H), we can ask what it means if one of conditions (i)–(xix) of the Theorem holds. Notice that for an arbitrary interval-valued function A we obtain:

- if A satisfies one of the conditions: (i)–(iii), (vi), (ix), (xi)–(xiii), (xvi), (xvii), then S is an interval, thus by Remark 1 condition (H) holds;
- if at least one of the values of A is a singleton [see (iv), (vii), (viii), (x), (xv), (xviii), (xix)] then by Remark 1 we get: (H) holds if and only if S is an interval;
- if A satisfies (v) then it is easy to see that: (H) holds if and only if S is an interval;
- if A satisfies (xiv) then we can notice that: if at least one of values of A is a closed set, then (H) holds if and only if S is an interval, i.e. $S = \mathbb{R}$; otherwise: (H) holds if and only if card $(\mathbb{R} \setminus S) \leq 1$.
Acknowledgements

This research was supported by the Department of Mathematics, University of Silesia, Katowice, Poland (Discrete Dynamical Systems and Iteration Theory program).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

[1] Guzik, G., Jarczyk, W., Matkowski, J.: Cocycles of continuous iteration semigroups. Bull. Polish Acad. Sci. Math. 51, 187–197 (2003)
[2] Kuczma, M.: Functional equations in a single variable. In: Monografie Mat. vol. 46. PWN, Warszawa (1968)
[3] Kuczma, M., Choczewski, B., Ger, R.: Iterative functional equations. In: Encyclopedia of Math. and its Applications, vol. 32. Cambridge University Press, Cambridge (1990)
[4] Lydińska, G.: Iteration families for which expansion implies collapse. Aequationes Math. 70, 247–253 (2005)
[5] Lydińska, G.: On collapsing iteration semigroups of set-valued functions. Publ. Math. Debr. 64, 285–298 (2004)
[6] Lydińska, G.: On expanding iteration semigroups of set-valued functions. Math. Pannon. 15, 55–64 (2004)
[7] Lydińska, G.: On lower semicontinuity of some set-valued iteration semigroups. Nonlinear Anal. 71, 5644–5654 (2009)
[8] Lydińska, G.: The characterization of some set-valued iteration semigroups. Aequationes Math. (2014). doi:10.1007/s00010-014-0270-x
[9] Olko, J.: Selections of an iteration semigroup of linear set-valued functions. Aequationes Math. 56, 157–168 (1998)
[10] Olko, J.: On indexed families of multifunctions generated by families of functions. Aequationes Math. 88, 125–135 (2014)
[11] Smajdor A.: Iterations of multi-valued functions. Prace Naukowe Uniwersytetu Śląskiego w Katowicach 759 (1985)
[12] Smajdor, A.: On concave iteration semigroups of linear set-valued functions. Aequationes Math. 75, 149–162 (2008)
[13] Targonski, Gy.: Topics in Iteration Theory. Vandenhoeck and Ruprecht, Göttingen (1981)
[14] Zdun, M.C.: Continuous and differentiable iteration semigroups. Prace Naukowe Uniwersytetu Śląskiego w Katowicach 308 (1979)
[15] Zdun, M.C.: On set-valued iteration groups generated by commuting functions. J. Math. Anal. Appl. 398, 638–648 (2013)

Grażyna Lydińska
Institute of Mathematics, University of Silesia
Bankowa 14, 40-007 Katowice, Poland
e-mail: lydzinska@ux2.math.us.edu.pl

Received: November 2, 2014
Revised: February 12, 2015