This data article is related to our recently published article (Hussain et al., in press [1]) where we have proposed a new solar cell model based on n-ZnO as front layer and p-Si as rear region. The ZnO layer will act as an active n-layer as well as antireflection (AR) coating saving considerable processing cost. There are several reports presenting use of ZnO as window/antireflection coating in solar cells (Mansoor et al., 2015; Haq et al., 2014; Hussain et al., 2014; Matsui et al., 2014; Ding et al., 2014 [2–6]) but, here, we provide data specifically related to simultaneous use of ZnO as n-layer and AR coating. Apart from the information we already published, we provide additional data related to growth of ZnO (with and without Ga incorporation) layers using MOCVD. The data related to PC1D based simulation of internal and external quantum efficiencies with and without antireflection effects of ZnO as well as the effects of doping level in p-Si on current–voltage characteristics have been provided.

© 2015 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Type of data	Figures, and optical images
How data was acquired	1. PC1D simulations
	2. Photoluminescence measurements by MiniPL-5.0 system by Photon Systems Inc., USA
	3. Ex-situ thickness and transmission measurements by Filmetrics-205-0509, USA
	4. In-situ reflectance measurements by Filmetrics-205-0034, USA
Data format	Analyzed
Experimental factors	Before ZnO growth by MOCVD, substrates were cleaned with acetone, methanol, and isopropanol subsequently and dried up with nitrogen in clean room
Experimental features	The precursors used for ZnO growth are diethylzinc (DEZn) and pure oxygen (O₂) where nitrogen (N₂) was used as a carrier and dilution gas. The reactor pressure and susceptor rotation speed were kept constant at 4 Torr and 800 rpm respectively. The flow rates of oxygen and carrier gas were 1000 and 100 sccm respectively. The bubbler pressure during growth stayed constant around 180 Torr. The bubbler temperature was kept at 5 °C resulting in vapor pressure of DEZn about 5 Torr which resulted in VI/II ratio around 330 [1].
Data source location	Charlotte, USA Latitude: 35.305373, Longitude: –80.730964
Data accessibility	Data is with this article and in Ref. [1]

1. **Value of the data**

- The specifications for ZnO growth using MOCVD help preparing ZnO films as front n-layer of the solar cell with improved transparency.
- The PC1D simulations give a good explanation of optimization of parameters. The researchers interested in fabrication of the proposed solar cell do not need to do iterative experiments to optimize doping level in absorber (p-Si).
- For the researchers working in ZnO growth using MOCVD (for example [2-6]), the optical pictures of reactor from inside provided in this article give an idea of dynamics of the MOCVD reactor we used. It will help them to compare differences in material quality of the device.

2. **Data, experimental design, materials and methods**

There are several adjustable parameters in PC1D which can be iterated to find an optimized window for solar cell fabrication. Since we are using ZnO only for the front region, the parameters associated with the rear region are almost same as already optimized for Si by the solar cells community. We have used absorption spectrum for ZnO which was measured in our lab for film thickness of ~500 nm. Fig. 1 illustrates internal quantum efficiency (IQE), external quantum efficiency (EQE), and front surface reflection of the solar cell device. The antireflection effects of the ZnO layer were not considered for this simulation. The reflectance and quantum efficiency with incorporation of antireflection in device parameters are depicted in Fig. 2. It is obvious that absorption as well as EQE is significantly improved specially around wavelength of 600 nm (peak of solar spectrum).

The current–voltage (I–V) and power characteristics of the device are shown in Fig. 3 for optimized parameters. The best conversion efficiency achieved was 17.6% with fill factor of 0.808. These values are computed without antireflection incorporation. Integrating antireflection in the simulation increased the conversion efficiency to 19% with almost same value of fill factor. The doping
concentration in ZnO has significant influence on the fill factor. The fill factor reduced quickly for concentrations lower than that of order 10^{17} cm$^{-3}$ as reported elsewhere [7]. Change in ZnO doping concentration does not change short circuit current (I_{SC}) and open circuit voltage (V_{OC}) significantly. The doping concentration in Si does not alter fill factor and V_{OC} prominently but it changes I_{SC} significantly as illustrated in Fig. 4. It can be noted that I_{SC} reduces with increasing p-doping concentration in Si.

A homemade MOCVD system was used to grow ZnO films on Sapphire substrates using previously optimized parameters [8,9] at a range of growth temperature. The cleaned substrates were placed in one of the grooves of the susceptor as shown in Fig. 5. The distribution of gas flows through shower head of the reactor is depicted in Fig. 6. Details about the film growth and characterization across the film surface is reported somewhere else [9,10]. Detailed optical characterization based on Raman spectroscopy can be found in other articles [11–15]. Further work is in progress in our labs to improve

![Fig. 1. Internal quantum efficiency (IQE), external quantum efficiency (EQE), and front surface reflection (R) of the solar cell device. The effects are shown without taking into account antireflection effects of the ZnO layer.](image1)

![Fig. 2. Internal quantum efficiency (IQE), external quantum efficiency (EQE), and front surface reflection (R) of the solar cell device taking into account antireflection effects of the ZnO layer.](image2)
Fig. 3. Current, voltage, and power characteristics of the Si–ZnO single heterojunction solar cell with optimized parameters by simulations.

Fig. 4. Current voltage characteristics of the solar cell with different doping concentrations in p-Si, keeping n-ZnO doping concentration constant at 2.2×10^{19} cm$^{-3}$.

Fig. 5. Optical image of inside of the MOCVD reactor.
uniformity in film quality across the surface and growth/characterization of ZnO films on p-silicon to fabricate the proposed solar cell device [1].

Acknowledgment

The ZnO samples were prepared in MOCVD Lab in Grigg Building at UNC Charlotte.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2015.09.050.

References

[1] B. Hussain, A. Ebong, I. Ferguson, Zinc oxide as an active n-Layer and antireflection coating for silicon based heterojunction solar cell, Sol. Energy Mater. Sol. Cells 139 (2015) 95–100.
[2] M.A. Mansoor, et al., Single phased MnZnO3 solid solution thin films for solar energy harvesting applications, Sol. Energy Mater. Sol. Cells 137 (2015) 258–264.
[3] B.U. Haq, R. Ahmed, S.G. Said, DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications, Sol. Energy Mater. Sol. Cells 130 (2014) 6–14.
[4] B. Hussain, et al., Is ZnO as a universal semiconductor material an oxymoron? Proc. SPIE 8987 (2014) 898718–1–898718–14.
[5] M. Matsui, et al., Performance of new single rhodanine indoline dyes in zinc oxide dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 128 (2014) 313–319.
[6] L. Ding, et al., Tailoring the surface morphology of zinc oxide films for high-performance micromorph solar cells, Sol. Energy Mater. Sol. Cells 128 (2014) 378–385.
[7] B. Hussain, A. Ebong, I. Ferguson, Zinc oxide and silicon based heterojunction solar cell model, in: Proceedings of the 42nd IEEE Photovoltaic Specialists Conference, in press.
[8] B. Hussain, M.Y.A. Raja, N. Lu, I. Ferguson, Applications and synthesis of zinc oxide: an emerging wide bandgap material, In: Proceedings of the IEEE 10th International HONET Conference, 2013, pp. 88–93.
[9] P. Mishra, B. Monroe, B. Hussain, I. Ferguson, Temperature optimization for MOCVD-based growth of ZnO thin films, In: Proceedings of the IEEE 11th International HONET Conference, 2014, pp. 238–242.
[10] P. Mishra et al., Spatial analysis of ZnO thin films prepared by vertically aligned MOCVDI, in: Proceedings of the IEEE 11th International HONET Conference, 2014, pp. 67–70.
[11] T.M. Khan, Into the nature of Pd-dopant induced local phonon modes and associated disorders in ZnO; based on spatial correlation model, J. Mater. Chem. Phys. 153 (2015) 248–255.
[12] T.M. Khan, T. Bibi, B. Hussain, On the synthesis and optical study of heat treated ZnO Nanopowder for optoelectronic applications, Bull. Mater. Sci. (2015), in press.
[13] T.M. Khan, Babar Hussain, Study of UV–green emissions and spectroscopic properties of polycrystalline ZnO thin films, Int. J. Chem. Mater. Sci. 3 (2015) 001–011.

[14] T.M. Khan, M. Irfan, Studies on the complex behaviour of optical Phonon modes in wurtzite (ZnO)$_{1-x}$ (Cr$_2$O$_3$)$_x$, J. Appl. Phys. A 117 (2014) 1275–1282.

[15] T.M. Khan, A comparative study of physical properties of pure and In-doped nanostructured ZnO polycrystalline thin film for optoelectronic applications, J. Mater. Sci.: Mater. Electron. 25 (2014) 1673–1680.