Common and Rare 5’UTR Variants Altering Upstream Open Reading Frames in Cardiovascular Genomics

Omar Soukarieh1*, Caroline Meguerditchian1, Carole Proust1, Dylan Aïssi1, Mélanie Eyries2, Aurélie Goyenvalle3 and David-Alexandre Trégouët1

1 INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France, 2 Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France, 3 UVSQ, Inserm, END-ICAP, Université Paris-Saclay, Versailles, France

High-throughput sequencing (HTS) technologies are revolutionizing the research and molecular diagnosis landscape by allowing the exploration of millions of nucleotide sequences at an unprecedented scale. These technologies are of particular interest in the identification of genetic variations contributing to the risk of rare (Mendelian) and common (multifactorial) human diseases. So far, they have led to numerous successes in identifying rare disease-causing mutations in coding regions, but few in non-coding regions that include introns, untranslated (UTR), and intergenic regions. One class of neglected non-coding variations is that of 5’UTR variants that alter upstream open reading frames (upORFs) of the coding sequence (CDS) of a natural protein coding transcript. Following a brief summary of the molecular bases of the origin and functions of upORFs, we will first review known 5’UTR variations altering upORFs and causing rare cardiovascular disorders (CVDs). We will then investigate whether upORF-affecting single nucleotide polymorphisms could be good candidates for explaining association signals detected in the context of genome-wide association studies for common complex CVDs.

Keywords: open reading frame (ORF), genome wide association analysis (GWAS), Mendelian disease, non-coding mutations, polymorphism

INTRODUCTION

Upstream open reading frames (upORFs) are key regulatory elements located in the 5’untranslated (UTR) region of coding transcripts. UpORFs result from the presence of an upstream translation initiation site (uTIS) located within the 5’UTR and associated with an in-frame stop codon (uStop) located within the 5’UTR or the coding sequence (CDS). Different types of upORFs can be distinguished according to the position of the uStop with respect to the CDS (Figure 1). More precisely, when the uStop (i) is located within the 5’UTR, this results in a fully upstream ORF (uORF), (ii) is located within the CDS and is distinct from the main stop codon of the CDS, the uTIS is at the origin of an overlapping uORF (uoORF), and (iii) is the main stop codon of the CDS, this leads to an elongated CDS (eCDS). Approximately, half of the human transcripts naturally contain upORFs in their 5’UTR (1, 2) and these upORFs can contribute to modulate the production of the main protein encoded by the CDS by disturbing the translation initiation step and then the recognition of the main TIS by the ribosomes (3–5). The functional effect of a given upORF is highly variable and could be influenced by elements including the number of upORFs in the 5’UTR, their length, and the nucleotide context of the upORF as extensively discussed previously (6).
Often, the presence of upORF in general, and uoORF in particular, leads to a decrease of the expression of the main transcript (1). That could happen via the alteration of the translation mechanism (i.e., ribosome dissociation and ribosome stalling) or via transcript degradation by the non-sense-mediated decay process that recognizes the uStop as a premature stop codon (1, 7, 8). Nevertheless, under some conditions (i.e., hypoxia or cell stress), the presence of upORFs in a given transcript could be associated with an increase of the translation efficiency (9, 10). Indeed, upORF can modulate the activity of coexisting internal ribosome entry site (IRES) located on the same 5′UTR (11), thus regulating the IRES-dependent translation initiation in a context dependent manner. For instance, Chen et al., showed that the increase of fibroblast growth factor 9 (FGF9) protein levels under hypoxia happens via an IRES-dependent translation, regulated by the presence of a small upORF upstream to the IRES (12). In normal conditions (i.e., normoxia), FGF9 is present in low levels in human cells, thanks to the upORF-mediated translation inhibition of the CDS. Under hypoxia conditions, ribosomes probably switch from the upORF to IRES, thus activating the IRES-dependent translation and leading to efficient translation of FGF9 (12). That explains the increase of FGF9 under hypoxia conditions in cancer cells. In addition, upORFs could be translated into small-encoded peptides (SEPs) and play a regulatory role in health and disease contexts (13, 14).

High-throughput genomic studies have identified an increasingly number of single nucleotide variations (SNVs) located in 5′UTR and possibly altering upORFs by creating new ones or deleting/modifying existing ones suggesting that this kind of variants has been underestimated (15). Many of these variants have been characterized as disease causing by creating upORF and, thus, altering the production of the canonical protein, but surprisingly this has still not been investigated systematically. In fact, among the ~4,000 disease-associated 5′UTR variants reported in different databases, the most deleterious ones are those creating or deleting uTTS or uStop, responsible of the creation or the disruption of upORFs (15). Whiffin et al. have recently shown that, among all the SNVs reported in the genome aggregation (GnomAD) database to locate in 5′UTR of 18,593 canonical transcripts, on an average of 30 SNVs per gene are variations creating a uAUG canonical initiation codon (15). They also showed that only 39 uAUG-creating and four stop-removing extremely rare variants were reported in Human Gene Mutation Database (HGMD) or likely pathogenic in ClinVar (15). Very interestingly, among these rare variants, nine uAUG-creating variants are located in genes implicated in cystic fibrosis, familial hypercholesterolemia, and hematologic diseases (16–22). Moreover, recent studies have also shown that upORF could be initiated by non-AUG codons and be disease causing (23, 24). Given the diversity of the functional implication of existing upORFs in the regulation of protein expression, the possible functional impacts of upORF-altering variants, hereafter called upSNVs, on protein expression could be highly variable. Up to very recently (25, 26), this type of genetic variants was not easily predicted by available bioinformatics tools. In addition, their functional characterization requires dedicated experimental strategies that have not yet been harmonized in order to demonstrate how they could affect gene expression and how the resulting dysregulations could lead to disease. Nevertheless, a first step in the assessment of the effect of upSNVs on the protein levels can be obtained using in vitro functional assays in which the 5′UTR and CDS of a given transcript are cloned in expression vectors followed by the expression of the produced vectors in human cells, both in the wild-type and upSNV contexts (27). upSNV-associated protein levels could then be evaluated by Western blot in comparison to the wild-type construct. Luciferase assays have also been widely used to study upSNVs. These assays are based on the cloning of the entire promoter of a given transcript before the coding sequence of a luciferase and the evaluation of the promoter activity in wild-type and mutant contexts in vitro by measuring the obtained luciferase luminescence normalized to a control vector. Additional methods used to characterize small ORFs and their potential translation into SEPs has been recently reviewed in (28). Altogether, upSNVs are still a neglected class of non-coding variations, and are often called as Variants of Unknown Significance when they are identified in routine clinical diagnosis, contributing then to medical wandering. In this work, with the aim of putting new light on upSNVs, we first provide a general overview of such type of variants known to cause rare cardiovascular disorders (CVDs). Then, we explore their potential role as candidates for explaining association signals detected in the context of genome-wide association studies (GWASs) for common complex CVDs.

METHODS

Two complementary strategies were adopted to identify rare uAUG-creating variants in CVD genes. First, we selected variants from Supplementary Table 2 of (15) reporting upSNVs from ClinVar and HGMD. Then, we looked for additional variants in ClinVar and HGMD that were not reported in Whiffin et al., and scanned research articles in PubMed using the following keywords: “upstream ORF” and “cardio-vascular.”

To investigate whether some association signals detected in GWAS for CVDs could be explained by upSNVs, we deployed MORFEE on the 1,000 Genome reference dataset (phase 3-v20130502) in order to identify all the common (allele frequency > 1%) predicted upSNVs in 5′UTR regions. In a second step, we checked whether these predicted upSNVs could be in linkage disequilibrium (LD) with lead SNVs identified in GWAS studies for coronary artery disease (CAD), stroke, venous thrombosis (VT), platelets, and lipid traits. LD information was retrieved from the European populations genetic database available through the LDlink web-based tool and from which we considered two SNVs to be in LD when the absolute value of their pairwise D′ was greater than 0.7. For CAD, GWAS loci and lead SNVs were selected from Matsui et al. (29) and Hartila et al. (30), while Malik et al. (31) and

1. https://github.com/daissi/MORFEE
2. https://ldlink.nci.nih.gov/?tab=home
Lindström et al. (32) were used to identify GWAS loci and corresponding lead SNVs for stroke and VT, respectively. For platelets and lipid traits, we selected all the SNVs reported in the Geospatial Resource for Agriculture Species and Pests (GRASP) server3 as of September 2021 to associate at \(p < 5.10^{-8} \) with any of their related quantitative traits, including mean platelet volume, platelet count, platelet aggregation or platelets' response to medication for platelet therapy, and high-density lipoprotein (HDL)/low-density lipoprotein (LDL)/total cholesterol, triglycerides for lipids. Finally, this selection strategy led to a list of 749 CVD traits associated loci scrutinized for harboring common upSNVs.

RESULTS

Rare upSNVs Causing Cardiovascular Disorders

This section describes in detail upSNVs known to cause rare CVDs, most of which have been cataloged in (15). Information is summarized in Table 1.

\(\text{HBB c.-29G}>A \) appeared to be one of the first examples of uAUG-creating variants associated with an inherited blood disorder, \(\beta \)-thalassemia characterized by marked reduce or absence of the beta-chain of hemoglobins (16). The created uAUG generates a uoORF of 42 nucleotides in the NM_000518.5 transcript of the \(\text{HBB} \) and has been shown to be associated with an increased risk of \(\beta \)-Thalassemia (16). Moreover, Calvo and collaborators demonstrated that the c.-29G>A variant is associated with a decrease of the luciferase activity in vitro, suggesting that the presence of the uoORF could alter the levels of the main protein (1).

Disseminated bronchiectasis (DB) is characterized by abnormal dilation of bronchi associated with pulmonary dysfunction. A uAUG-creating variant in the 5' UTR of the \(\text{CFTR} \) gene (NM_000492.3:c.-34C>T) at the origin of a 108 nucleotide overlapping upORF has been described as associated with DB (19). This variant leads to a decrease of the luciferase activity in two different cell lines, in the context of two CFTR isoforms starting at positions c.-132 or c.-69. Moreover, the authors performed additional experiments in vitro confirming the recognition of the created uAUG by the ribosomes at the origin of a normal luciferase activity when the uAUG and its Kozak sequence were cloned in frame with the luciferase. These observations strongly support a role of the c.-34C>T variant on the reduction of the translation efficiency at the main ORF by the presence of the uoORF.

The Endoglin (ENG) gene is one of the main disease-causing genes for hereditary hemorrhagic telangiectasia (HHT), also known as Osler–Weber–Rendu syndrome, a rare vascular disorder causing abnormal vessel formation. ENG can be considered as a special gene with respect to upORFs. Indeed,
four rare 5′UTR variants have been described so far in HHT patients to create uAUGs potentially at the origin of upORFs (18, 34–37, 77). These variants are NM_001114753.3: c.-142A>T, c.-127C>T, c.-10C>T, and c.-9G>A. Functional studies have been conducted for three of them (c.-142A>T, c.-127C>T, and c.-9G>A), bringing out an effect of the analyzed variants on the protein levels in vitro (18, 35–37, 77). Interestingly, a moderate decrease (~20%) of the protein levels has been associated with c.-9G>A variant compared to a drastic reduction observed for c.-142A>T and c.-127C>T (~60% and ~75%, respectively). These studies also indicate that c.-142A>T and c.-127C>T variants are associated with severe phenotypes while patients carrying the c.-9G>A variant exhibited moderate HHT phenotype. At the molecular level, c.-142A>T, c.-127C>T, and c.-10C>T are predicted to be at the origin of uORF (270, 255, and 138 nucleotides, respectively). The only exception holds for the c.-9G>A variant, that creates a uAUG in frame with the CDS, and generates an elongated CDS, probably at the origin of a longer form of the ENG protein carrying three additional amino acids. These molecular findings are in perfect concordance with clinical and familial data, suggesting that uORF-creating variants in ENG are causative of a severe form of HHT. Among these four variants, these variants would be associated with a reduction of the protein level.

Our group recently identified a disease-causing mutation in the 5′UTR of PROS1 in an extended family affected with protein S deficiency (PSD) and familial thrombophilia (27). The identified variant was a never reported C>T substitution at c.-39 position creating a uAUG at the origin of an overlapping ORF of 156 nucleotides (NM_000313.4). Using in vitro assays, we demonstrated that this variant is associated with a total abolition of protein S levels. With the aim of restoring the main open reading frame in presence of the identified variant, we deleted one base pair at the new stop codon associated to the generated uORF and, based on the detected protein weight by western blot, identified a protein probably starting at the c.-39C>T-created uAUG. This result indicated that the created uAUG could be used for translation and thus reduces or completely abolishes the translation rate at the main AUG, which explains null protein S level in vitro in presence of the variant.

Finally, three additional genes coding for proteins involved in CVDs have been highlighted in Whiffin et al. (15) from public databases as harboring rare uAUG-creating variants.

One is the F8 gene coding for the coagulation factor VIII, a known susceptibility gene for venous thrombosis (38). The reported uAUG creating variant is the NM_000132.4:c.-5A>G variant that creates an overlapping upORF of 63 nucleotides (20). Very interestingly, this variant is simultaneously predicted to modify a TAA stop codon into a TGA, in frame with two different non-canonical TIS (CTG) generating fully upstream upORFs of 39 and 123 nucleotides. uORFs ending with TGA have been shown to be associated with less translation efficiency of the main protein comparing to TAA ending ones (5). This variant was identified in a patient with mild FVIII activity, an observation compatible with an inhibitory effect on F8 expression of a variant associated with many upORFs. However, even if this variant is reported in HGMD database, its pathogenicity still needs to be validated.

The second gene is HAMP, coding for hepcidin whose increased plasma levels have recently been reported to associate with the risk of venous thrombosis (39). Whiffin et al., reported one rare variant in the 5′UTR of HAMP at the origin of a uAUG and catalogued in HGMD. While the HAMP variant has been described at the origin of an out of frame uORF in (15) and described by Matthes and collaborators (17) as potentially generating an abnormal protein responsible for juvenile hereditary hemochromatosis, we did not find any stop codon in the transcript NM_021175.4 sequence that could be in frame with this created uAUG. Thus, this uAUG is unlikely at the origin of an ORF. Nonetheless, one cannot exclude a potential competition between the uAUG and the main TIS regarding the affinity of ribosomes. Indeed, no hepcidin was found in the urine of homozygous patient, suggesting that this variant could alter the translation of the main protein. As for F8 c.-5A>G, experimental validation of its possible function impact on the translation of the associated protein is still needed.

The last cited gene is LDLR implicated in familial hypercholesterolemia associated with increased risk of cardiovascular diseases (40). The deletion of the cytosine at position c.-22 in the 5′UTR of the latest version of the LDLR transcript (NM_000527.5) has been identified in a homozygous form in an 8-year-old child diagnosed with familial hypercholesterolemia (22, 41). Interestingly, the c.-22delC is at the origin of an AUG generating an overlapping upORF of 174 nucleotides. This predicted effect could explain the potential pathogenicity of this variant and its association with familial hypercholesterolemia. Nonetheless, the impact of this variant on the LDLR levels still need to be evaluated.

Common upSNVs Associated With Cardiovascular Disorders and Their Quantitative Risk Factors

In this section, we report the few examples where common upSNVs were identified to be in LD with lead GWAS SNVs (Table 2).

F12 rs1801020 (NM_000505.4:c.-4C>T) and Venous Thrombosis

This variant is one of the most well-known and studied common upSNVs. It generates a very small overlapping ORF (nine nucleotides) and has been demonstrated in several independent studies to associate with decreased plasma levels of the clotting factor FXII (42–47). Calvo and colleagues have also demonstrated...
that this polymorphism is associated with a decrease of the protein levels in vitro (1) and that this decrease was due to the creation of the uORF. While this variant has also been found (48, 49) associated with activated partial thromboplastin time, a biomarker for venous thrombosis, its impact on thrombosis risk is highly debated (1, 42, 47, 50, 51), especially as it never emerged from large-scale genetic association studies on arterial, cerebral, nor venous thrombosis. However, keeping in mind that the effect of a given upORF could be dependent on the cellular environment [e.g., hypoxia (12) and stress conditions (9)], it cannot be excluded that the rs1801020 could be associated with decreased triglycerides levels (55). Of note, the latter has also being found to be associated with decreased levels of homocysteine (57), another cardiovascular biomarker.

TABLE 1 | Rare upSNVs in CVD-related diseases.

Gene (orientation)	cDNA position	Predicted effect	Disease	Databases	Classification (ClinVar)	References
HBB (−1)	NM_000518.5 c.-29G>A	uoORF (42 nts)	p-Thalassaemia	ClinVar	Pathogenic	1, 16
CFTR (1)	NM_000492.3 c.-34C>T	uoORF (108 nts)	Disseminated bronchiectasis	HGMD, ClinVar	Conflicting interpretations of pathogenicity	19
ENG (−1)	NM_001114753.3 c.-142A>T	uoORF (270 nts)	Hereditary Haemorrhagic TelangiectasiaT	NA	NA	77
ENG (−1)	NM_001114753.3 c.-127C>T	uoORF (255 nts)	Triglycerides	HGMD	Pathogenic/Likely pathogenic	18, 35, 77
ENG (−1)	NM_001114753.3 c.-10C>T	uoORF (138 nts)	Lipids	HGMD	Likely pathogenic	34
ENG (−1)	NM_001114753.3 c.-9G>A	eCDS (+ 3 nts)	HBB	HGMD	Conflicting interpretations	35
ENG (−1)	NM_001114753.3 c.-79C>T	uoORF (207 nts)	PEAR1	ClinVar	Uncertain significance	NA
PROS1 (−1)	NM_000313.4 c.-99C>T	uoORF (156 nts)	Protein S deficiency	NA	NA	27
F8 (−1)	NM_000132.4 c.-6A>G	uoORF (63 nts)	Hemophilia A	HGMD	NA	20
FRMD5 (1)	NM_021175.4 c.-25G>A	uAUG**	Juvenile Hereditary Hemochromatosis	HGMD	NA	15, 17
LDLR (1)	NM_000527.5 c.-22delC	uoORF (174 nts)	Familial Hypercholesterolaemia	ClinVar	Uncertain significance	22, 41

uORF, upstream overlapping Open Reading Frame; eCDS, elongated coding sequence; nts, nucleotides; NA, non-available.
*This variant is reported in ClinVar without any clinical annotation (https://www.ncbi.nlm.nih.gov/clinvar/variation/618621/?new_evidence=false).

PEAR1 rs75699653 (NM_001353683.2: c.-491C>T) and Platelet Aggregation

PEAR1 was identified as one of the first GWAS loci for platelet aggregation (53) with the intronic rs12566888 (or any polymorphism in strong LD with it) as lead SNP. PEAR1 harbors one upSNV, the rs75699653, in complete negative LD (D’ = −1) with rs12566888. Because of the difference in their allele frequencies, the minor allele frequency of the former being ∼0.02, that of rs12566888 being ∼0.09, their pairwise LD r² is close to null. However, they generate three haplotypes where the rs75699653-T allele, predicted to be at the origin of a uORF of 63 nucleotides, is always carried by the rs12566888-G allele (Supplementary Table 1). Interestingly, the rs12566888-G allele is either positively or negatively associated with platelet aggregation depending on how platelets are stimulated (54). Haplotype association analysis of these two SNVs in relation with platelet aggregation would be mandatory to determine if the original GWAS signal could be (partially) explained by the rs75699653-T carrying haplotype.

SLC18A1 rs58852338 (NM_001135691.3: c.-276G>A) and Triglycerides

SLC18A1 is one of the numerous loci associated with triglycerides levels (55). It harbors in its 5′ UTR one upSNV, rs58852338, whose minor T allele (corresponding to c.-276A on the antisense transcript) with frequency ~1% is predicted to create a uORF of 36 nucleotides. The rs58852338-T allele is always carried by the haplotype carrying the rs55682243-C allele that was observed to associate with decreased triglycerides levels (55). This case is then similar to the PEAR1’s discussed above.

Fibroblast Growth Factor 21 (FGF21) rs2231861 (NM_019113.4: c.-173C>G) and Triglycerides

FGF21 is another locus identified by GWAS as influencing triglycerides levels in plasma (56). The lead SNP is the synonymous rs838133 that does not show strong LD with any other SNVs when one uses the pairwise r² threshold of 0.80. However, it is in complete negative LD (D’ = −1) with rs2231861 upSNV. As a consequence, these two SNVs generate 3 haplotypes. As for the two previously described examples, the rare rs2231861-G allele predicted to create a uORF of 36 nucleotides is always carried by the haplotype harboring the rs838133-G allele associated with decreased triglycerides (56). Of note, the latter has also being found associated with decreased levels of homocysteine (57), another cardiovascular biomarker.
IL1F10 rs3811050 (NM_032556.6:c.-143C>T) and Coronary Artery Disease Risk

One common upSNV is present in the 5′UTR region of the IL1F10 gene, a susceptibility locus for myocardial infarction (MI) (30). This is rs3811050 where the rs3811050-T allele is predicted to create an eCDS of 603 nucleotides while the canonical CDS is of 459 nucleotides. At IL1F10, the rs6761276-T allele of the missense p.Ile44Thr was found to be associated with increased risk of MI (30). According to the variant effect predictor (VEP) tool (58), the predicted pathogenicity of rs6761276 could be transcript-dependent. It makes then sense to hypothesize that the impact on MI of the rs6761276-T allele may be different according whether or not it is present on the eCDS. As a consequence of their LD pattern ($D^* = 0.74, r^2 = 0.06$), the rs6761276 and rs3811050 generate 4 haplotypes among which one (frequency ~ 0.015) is carrying both the rs6761276-T risk allele and the eCDS rs3811050-T creating allele. It would be interesting to determine whether this specific rare haplotype is more at risk of MI than the haplotype carrying the rs6761276-T risk allele but not the eCDS creating allele.

ANGPTL4 rs35137994 (NM_139314.3:c.-140C>T), and Cardiovascular Traits

The ANGPTL4 gene is an interesting locus for CVD as it has been shown to associate with several cardiovascular phenotypes, including CAD risk (59), lipid-related (56, 60), and red blood cells (61, 62) traits, with lead SNV being the UTR region of the ANGPTL4 gene, a susceptibility locus for myocardial infarction (MI) (30). According to the variant effect predictor (VEP) tool (58), the predicted pathogenicity of rs6761276 could be transcript-dependent. It makes then sense to hypothesize that the impact on MI of the rs6761276-T allele may be different according whether or not it is present on the eCDS. As a consequence of their LD pattern ($D^* = 0.74, r^2 = 0.06$), the rs6761276 and rs3811050 generate 4 haplotypes among which one (frequency ~ 0.015) is carrying both the rs6761276-T risk allele and the eCDS rs3811050-T creating allele. It would be interesting to determine whether this specific rare haplotype is more at risk of MI than the haplotype carrying the rs6761276-T risk allele but not the eCDS creating allele.

TABLE 2 | Common upSNVs in GWAS loci for CVDs and associated traits.

upSNV	Gene (orientation)	cDNA position	Genomic position (GRCh38.p13)	Predicted functional effect	GWAS lead SNPs	r^2/D^*	References
rs1801020	F12 (−1)	NM_000605.4	chr5:177409531	AGC→ATG uORF = 9 nts	rs1801020	1.0/1	1
rs492571	FRMD5 (−1)	NM_001286491.2	chr15:43919075	ATA→ATG uORF = 39 nts	rs492571	1.0/1	52
rs75690653	PEAR1 (1)	NM_001353683.2	chr1:156892023	AGC→ATG uORF = 63 nts	rs12566888	0.00/−1	53
rs58852338	SLC18A1 (−1)	NM_001135691.3	chr8:20181901	GTG→ATG uORF = 36 nts	rs55682243	0.00/−1	55
rs2231861	FG21 (1)	NM_019113.4	chr19:48756064	ATC→ATG uORF = 36 nts	rs883133	0.04/−1	56
rs3811050	IL1F10 (1)	NM_032556.6	chr2:113072596	AGC→ATG eCDS = 603 nts	rs6761276	0.06/0.74	50
rs35137994	ANGPTL4 (1)	NM_139314.3	chr19:8364182	AGC→ATG eCDS = 1362 nts	rs118843064	~0.00/−1	56, 59, 60
rs3131003	PSORS1C1 (1)	NM_014068.3	chr6:31125705	GTG→ATG uORF = 183	rs3094205	0.61/0.97	52, 63

uORF, upstream overlapping open reading frame; uORF, fully upstream open reading frame; nts, nucleotides; uStop, upstream stop codon, eCDS, elongated coding sequence.

Pairwise linkage disequilibrium metrics (r^2, D^) between upSNV and lead GWAS SNP.
peptides depends on the competition between the created uAUGs and remains to be elucidated. The rs3131003 is also in nearly complete positive LD ($D' \sim 0.97$, $r^2 \sim 0.60$) with the rs3094205 lead SNV associated with triglycerides, suggesting that the former could be a good candidate for explaining the GWAS signal.

Of note, we did not observe any common upSNVs that exhibit strong LD with stroke- nor VT-associated lead SNVs and that could then explain the GWAS signals observed at their locus.

DISCUSSION/PERSPECTIVES

While there is increasingly awareness of the impact of rare upSNVs in rare Mendelian disorders, there has been so far little initiative to investigate the possible role of such variants in the susceptibility to common diseases and their quantitative risk factors. From a list of ~700 loci identified in GWAS for CVD traits, we only identified a very minor proportion of loci (5: FGF21, FRDM5, PEAR1, PSORS1C1, and SLC18A1) where the GWAS signal could be partially explained by upSNVs. We focused here on CVDs but similar investigations merit to be conducted for other human diseases. Our results were based on *in silico* observations (bioinformatics predictions coupled to LD analyses) and deserve to be further investigated through fine-mapping association analysis and experimental molecular characterization. Several molecular techniques (gene reporter assays, toeprinting, polysome profiling, among others) are available to evaluate the effect of upSNVs on the translation machinery and/or protein expression. Here, we would like to highlight the recent advances in the antisense oligonucleotides (ASOs) strategy targeting upORFs, as it also offers therapeutic perspectives in the context of rare diseases. ASOs are very efficient molecular tools designed to modulate gene expression through Watson–Crick base pairing with specific motifs on target transcripts (65, 66). Initially, ASOs were used to downregulate gene expression or to modify RNA splicing. Recently, ASOs have been proposed to ameliorate gene expression by directly targeting uAUG (67). Liang et al., have shown that this technique depends on many factors on the RNA and on the chemical structure of the used ASOs (67). However, targeting upORF using ASOs seems to be a very innovative and efficient genetic tool to assess *in vitro* the functional impact of upSNVs on protein levels. Beyond their *in vitro* utility, effective ASOs capable of restoring protein levels could be used as a therapeutic approach to treat rare diseases caused by upSNVs. ASOs have indeed demonstrated great potential for treating rare diseases (68–71) due to coding or splice mutations. The antisense field has remarkably progressed over the last few years with the approval of several antisense drugs and with the development of even more potent compounds (72), opening promising perspectives to treat upORF-altering variants.

In this analytic review, we focused on SNVs known, or predicted, to create upORFs. We did not discuss molecular tools that are available to determine whether these upORFs could be at the origin of functional small micropeptides that could have specific physiological roles. This topic has recently been addressed in an independent review (28). Finally, we only examined in this work SNVs that could create uAUG resulting upORFs, the most known class of variants among those that affect non-canonical ORFs. Ribosome profiling data have shown the presence of small ORFs (sORFs) in coding transcripts outside the 5′UTR but also in non-coding RNAs (73, 74). Some of these sORFs have been shown to be translated into small encoded peptides and/or to have a regulatory role on gene expression (75, 76). Thus, one can easily speculate that genetic alterations in such sORFs could also have functional consequences and be involved in human diseases. The next steps would then be to characterize the spectrum of SNVs creating or deleting TIS or Stop in non-coding transcripts.

AUTHOR CONTRIBUTIONS

CM and DA developed and applied the MORFEE bioinformatics tool. OS and D-AT designed the study, conducted the systematic review, and drafted the manuscript. OS and CP performed *in silico* annotations of the predicted upORFs. AG and ME completed the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

OS and CM were financially supported by the GENMED Laboratory of Excellence on Medical Genomics (ANR-10-LABX-0013), and a research program managed by the National Research Agency (ANR) as part of the French Investment for the Future. This study benefited from the financial support “EPIDEMIOM-VTE” Senior Chair (DAT) Initiative of Excellence of the University of Bordeaux and CBiB computing center of the University of Bordeaux. This project was carried out in the framework of the INSERM GOLD Cross-Cutting program.

ACKNOWLEDGMENTS

We are grateful to Eivind Valen and Preeti Kute for numerous discussions about molecular mechanisms associated with upORFs.

REFERENCES

1. Calvo SE, Palgiarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. *Proc Natl Acad Sci USA.* (2009) 106:7507–12. doi: 10.1073/pnas. 0810916106

2. Ye Y, Liang Y, Yu Q, Hu L, Li H, Zhang Z, et al. Analysis of human upstream open reading frames and impact on gene expression. *Hum Genet.* (2015) 134:605–12. doi: 10.1007/s00439-015-1544-7

3. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. *Science.* (2016) 352:1413–6. doi: 10.1126/science.aad9868
4. Silva J, Fernandes R, Romão L. Translational regulation by upstream open reading frames and human diseases. *Adv Exp Med Biol*. (2019) 1157:99-116. doi: 10.1007/978-3-030-19966-1_5

5. Giess A, Torres Cleuren YN, Tjeldnes H, Krause M, Bizuayehu TT, Hiensch S, et al. Profiling of small ribosomal subunits reveals modes of regulation during translation initiation. *Cell Rep*. (2020) 31:107534. doi: 10.1016/j.celrep.2020.107534

6. Wethmar K. The regulatory potential of upstream open reading frames in eukaryotic gene expression. *Wiley Interdiscip Rev. RNA*. (2014) 5:765-78. doi: 10.1002/wrna.1245

7. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. *Nat Genet*. (2004) 36:1073-8. doi: 10.1038/ng1429

8. Barbosa C, Peixeiro I, Romão L. Gene expression regulation by upstream open reading frames and human disease. *PLoS Genet*. (2013) 9:e1003529. doi: 10.1371/journal.pgen.1003529

9. Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 during conditions of cell stress. *Mol Cell*. (2010) 40:228-37. doi: 10.1016/j.molcel.2010.09.028

10. Lacerda R, Menezes J, Romão L. More than just scanning: the importance of upstream open reading frames in a model of neuronal differentiation. *BMC Genomics*. (2019) 20:391. doi: 10.1186/s12864-019-5775-1

11. Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ, Evans DG, et al. Characterising the loss-of-function impact of 5′ untranslated region variants in 15,708 individuals. *Nat Commun*. (2020) 11:2523. doi: 10.1038/s41467-019-10717-9

12. Oner R, Agarwal S, Dimovski AJ, Efremov GD, Petkov GH, Altay C, et al. The G—A mutation at position +22 3′ to the Cap site of the beta-globin gene as a possible cause for a beta-thalassemia. *Hemoglobin*. (1991) 36:159-68. doi: 10.3109/0363026910972485

13. Matthes T, Aguilar-Martinez P, Tizzi-Bossman L, Darbellay R, Rubbia-Brandt L, Giostra E, et al. Severe hemochromatosis in a Portuguese family associated with a new mutation in the 5′-UTR of the HAMP gene. *Blood*. (2004) 104:2181-3. doi: 10.1182/blood-2004-01-0332

14. Kim M-J, Kim S-T, Lee H-D, Lee K-Y, Seo J, Lee J-B, et al. Clinical characterization and molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations. *Atherosclerosis*. (2012) 223:401-8. doi: 10.1016/j.atherosclerosis.2012.05.014

15. Khamis A, Palmen J, Lench N, Taylor A, Badmus E, Leigh S, et al. Functional analysis of four LDLR 5′UTR and promoter variants in patients with familial hypercholesterolemia. *Eur J Hum Genet*. (2015) 23:790-5. doi: 10.1038/ejhg.2014.199

16. Sendelöf A, Dunn JG, Rodrigues EH, Naik S, Gomez NC, Hurwitz R, et al. Translation from unconventional 5′ start sites drives tumour initiation. *Nature*. (2017) 541:494-9. doi: 10.1038/nature21036

17. Kearse MG, Goldman DH, Choi J, Nwaeezupe C, Liang D, Green KM, et al. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. *Genes Dev*. (2019) 33:871-85. doi: 10.1101/gad.324715.119

18. Albiñana V, Zafra MP, Colau J, Zarrabeitia R, Recio-Poveda L, Olavarrieta L, et al. GRASP: analysis of genotype-phenotype correlations, how to find them and determine their function. *Cell Mol Life Sci*. (2019) 20342. doi: 10.1007/s00018-019-1115-x

19. Zhang X, Wakeling M, Ware I, Whiffin N. Annotating high-importance 5′ untranslated region variants with the UTRunnotator. *Bioinformatics*. (2020) 37:1171-3. doi: 10.1093/bioinformatics/bta783

20. Labrouche-Colomer S, Soukarieh O, Proust C, Mouton C, Huguenin Y, Roux L, et al. A novel rare c.-39C>T mutation in the PROS1 5′UTR causing PS deficiency by creating a new upstream translation initiation codon. *Clin Sci (Lond)*. (2020) 134:1181-90. doi: 10.1042/CS20200403

21. Kute PM, Soukarieh O, Tjeldnes H, Trégouët D-A, Valen E. Small open reading frames, how to find them and determine their function. *Front Genet*. (2021) 12:796060. doi: 10.3389/fgene.2021.796060

22. Matsui S, Tatezaki S, Tsuji H, Ochiai H. Isolation and characterization of low- and high-metastatic clones from murine RCT (radiological, Chiba, and Toyama) sarcoma. *J Cancer Res Clin Oncol*. (1989) 115:9-16. doi: 10.1007/BF00391593

23. Hartlala JA, Han Y, Jia Q, Hilser JR, Huang P, Gukasyan J, et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. *Eur Heart J*. (2021) 42:919-33. doi: 10.1093/eurheartj/ehaa1040

24. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. *Nat Genet*. (2018) 50:524-37. doi: 10.1038/s41588-018-0058-3

25. Lindström S, Wang L, Smith EN, Gordon W, van Hylckama Vlieg A, de Andrade M, et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. *Blood*. (2019) 134:1645-57. doi: 10.1182/blood.201900435

26. Bosler AD, Richards J, George C, Godmolw L, Ganguly A. Novel mutations in ENG and ACVRL1 identified in a series of 200 individuals undergoing clinical genetic testing for hereditary hemorrhagic telangiectasia (HHT): correlation of genotype with phenotype. *Hum Mutat*. (2006) 27:667-75. doi: 10.1002/humu.20342

27. Damjanovich K, Langa C, Blanco FJ, McDonald J, Botella LM, Bernabeu C, et al. 5′UTR mutations of ENG cause hereditary hemorrhagic telangiectasia. *Orphanet J Rare Dis*. (2011) 6:85. doi: 10.1186/1750-1172-6-85

28. Albiñana V, Zafra MP, Colau J, Zarrabeitia R, Recio-Poveda L, Olavarrieta L, et al. Mutation affecting the proximal promoter of endoglin as the origin of hereditary hemorrhagic telangiectasia type 1. *BMC Med Genet*. (2017) 18:20. doi: 10.1186/s12881-017-0380-0

29. Ruiz-Llorente L, Gallardo-Vara E, Rossi E, Smadja DM, Botella LM, Bernabeu C. Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. *Expert Opin Ther Targets*. (2017) 21:933-47. doi: 10.1080/14728222.2017.1365839

30. Hinds DA, Buil A, Zieck D, Martinez-Perez A, Malik R, Folkers L, et al. Genome-wide association analysis of self-reported events in 6135 individuals and 5228 control samples identifies 8 loci associated with thrombosis. *Hum Mol Genet*. (2016) 25:1867-74. doi: 10.1038/hmg/2016/307
39. Ellingsen TS, Lappeßård J, Ueland T, Aukrust P, Brakkåen SK, Hansen J-B. Plasma hepcidin is associated with future risk of venous thromboembolism. *Blood Adv.* (2018) 2:1191–7. doi: 10.1182/bloodadvances.2018018465
38. Sharifi M, Rahkht RD, Humphries SE, Nair D. Cardiovascular risk stratification in familial hypercholesterolaemia. *Heart.* (2016) 102:1003–8. doi: 10.1136/heartjnl-2015-308845
37. Sözen MM, Whittall R, Oner C, Tokatli A, Kalkanolu HS, Dursun A, et al. The molecular basis of familial hypercholesterolaemia in Turkish patients. *Atherosclerosis.* (2005) 180:63–71. doi: 10.1016/j.atherosclerosis.2004.01.2042
36. Kanai J, Okamura T, Kuroiwa M, Hasama K, Hamasaki N, et al. A common genetic polymorphism (46 C to T substitution) in the 5′ untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. *Blood.* (1998) 91:2010–4.
35. Endler G, Mannhalter C, Sunder-Plassmann H, Lalouschek W, Kapiotis S, et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. *Am J Clin Nutr.* (2013) 98:668–76. doi: 10.3945/ajcn.112.044545
34. van Leeuwen EM, Sabo A, Bis JC, Huffman JE, Manichakul A, Smith AV, et al. Meta-analysis of 49 549 individuals imputed with the 1000 genomes project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels. *J Med Genet.* (2016) 53:441–9. doi: 10.1136/jmedgenet-2015-103439
33. Keramati AR, Chen MH, Rodriguez BAT, Yanez D, Chiang JY-Y, et al. Common genetic and monogenic basis of blood traits and diseases. *Cell.* (2020) 182:1214–31.e11. doi: 10.1016/j.cell.2020.08.008
32. Oskarsson GR, Oddsson A, Magnusson MK, Kristjansson RP, Haldorsson GH, Feringstad E, et al. Predicted loss and gain of function mutations in AC01 are associated with erythrophagocytosis. *Commun Biol.* (2020) 3:189. doi: 10.1038/s42003-020-09215-1
31. Lee K-Y, Leung K-S, Tang NLS, Wong M-H. Discovering genetic factors for psoriasis through exhaustively searching for significant second order SNP-SNP interactions. *Sci Rep.* (2018) 8:15186. doi: 10.1038/s41598-018-33493-w
30. Bizot F, Vulin A, Goyenvalle A. Current status of antisense oligonucleotide-based therapy in neuromuscular disorders. *Drugs.* (2020) 80:3397–415. doi: 10.1007/s40265-020-01363-3
29. Fertlina A, Goyenvalle A, Muntoni F. RNA-targeted drugs for neuromuscular diseases. *Science.* (2021) 371:29–31. doi: 10.1126/science.ab4515
28. Liang WC, Wong CW-L, Liang P-P, Shi M, Cao Y, Rao S-T, et al. Circulating levels of the circular RNA circlet-enriches promotes liver cancer cell growth following activation of the WNT pathway. *Genome Biol.* (2019) 20:84. doi: 10.1186/s13059-019-1685-4
27. Goyenvalle A, Griffith G, Abbas A, El Andaloussi S, Ezzat K, Arvill A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. *Nat Med.* (2015) 21:270–5. doi: 10.1038/nm.3765
26. Goyenvalle A, Leumann C, Garcia L. Therapeutic potential of tricyclo-DNA antisense oligonucleotides. *J Neuromuscul Dis.* (2016) 3:157–67. doi: 10.3233/JND-160146
25. Rohin V, Griffith G, Carter J-PL, Leumann CJ, Garcia L, Goyenvalle A. Efficient SNM rescue following subcutaneous tricyclo-DNA antisense oligonucleotide treatment. *Mol Ther Nucleic Acids.* (2017) 7:81–9. doi: 10.1016/j.omtn.2017.02.009
24. Reluzi K, Echevarria L, Zarrouki F, Gastaldi C, Dambrune C, Auzy P, et al. Palmitic acid conjugation enhances potency of tricyclo-DNA splice switching oligonucleotides. *Nucleic Acids Res.* (2021) 50:17–34. doi: 10.1093/nar/gkaa1199
23. Roberts TC, Langer R, Wood MJ. Advances in oligonucleotide drug delivery. *Nat Rev Drug Discov.* (2019) 18:673–94. doi: 10.1038/s41573-020-0075-7
22. van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, van Heesch S, Witte F, et al. The translational landscape of the human heart. *Cell.* (2019) 178:242–60.e29. doi: 10.1016/j.cell.2019.05.010
21. Yang Y, Gao H, Zhou H, Liu Q, Qi Z, Zhang Y, et al. The role of mitochondria-derived peptides in cardiovascular disease: recent updates. *Biomed Pharmacother.* (2019) 117:109075. doi: 10.1016/j.biopha.2019.109075
20. Couso J-P, Patrquim P. Classification and function of small open reading frames. *Nat Rev Mol Cell Biol.* (2017) 18:575–89. doi: 10.1038/nrm.2017.58
76. Wu Q, Wright M, Gogol MM, Bradford WD, Zhang N, Bazzini AA. Translation of small downstream ORFs enhances translation of canonical main open reading frames. *EMBO J.* (2020) 39:e104763. doi: 10.15252/embj.2020104763

77. Ruiz-Llorente L, McDonald J, Wooderchak-Donahue W, Briggs E, Chesnutt M, Bayrak-Toydemir P, et al. Characterization of a family mutation in the 5′ untranslated region of the endoglin gene causative of hereditary hemorrhagic telangiectasia. *J Hum Genet.* (2019) 64:333–9. doi: 10.1038/s10038-019-0564-x

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Soukarieh, Meguerditchian, Proust, Aïssi, Eyries, Goyenvalle and Trégouët. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.