A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change

Jian Song, Shiqiang Wan, Shilong Piao, Alan K. Knapp, Aimée T. Classen, Sara Vicca, Philippe Ciais, Mark J. Hovenden, Sebastian Leuzinger, Claus Beier, Paul Kardol, Jianyang Xia, Qiang Liu, Jingyi Ru, Zhenxing Zhou, Yiqi Luo, Dali Guo, J. Adam Langley, Jakob Zscheischler, Jeffrey S. Dukes, Jianwu Tang, Jiquan Chen, Kirsten S. Hofmockel, Lara M. Kueppers, Lindsey Rustad, Lingli Liu, Melinda D. Smith, Pamela H. Templer, R. Quinn Thomas, Richard J. Norby, Richard P. Phillips, Shuli Niu, Simone Fatichi, Yingping Wang, Pengshuai Shao, Hongyan Han, Dandan Wang, Lingjie Lei, Jiali Wang, Xiaona Li, Qian Zhang, Xiaoming Li, Fanglong Su, Bin Liu, Fan Yang, Gaigai Ma, Guoyong Li, Yanchun Liu, Yinzhan Liu, Zhongling Yang, Kesheng Zhang, Yuan Miao, Mengjun Hu, Chuang Yan, Ang Zhang, Mingxing Zhong, Yan Hui, Ying Li, and Mengmei Zheng

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO₂ and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO₂ treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO₂. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in under-represented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.
Local climate mediating warming effects on ecosystem carbon cycling

Across all the terrestrial ecosystems, experimental warming enhanced total, aboveground and root biomass, as well as soil respiration (Fig. 2a). Although belowground net primary productivity slightly increased under warming ($P = 0.066$), net primary productivity and its aboveground component remained unaltered. The root-to-shoot ratios showed a neutral warming response (Fig. 2f). Hence, carbon allocation patterns appeared to be largely unaffected by warming. In addition, gross and net fluxes of CO$_2$ exchange between terrestrial ecosystems and the atmosphere (gross and net ecosystem productivity, and ecosystem respiration) did not show significant changes under warming, partly due to the use of multiple sites and the considerable response variations among the experiments. The observations suggest that the slight enhancement of belowground carbon input could be offset by increased soil carbon release (enhanced decomposition of soil organic matter, accelerated root turnover or stimulated root respiration)11,12. Soil moisture plays a predominant role in regulating plant photosynthesis and carbon allocation13 as well as ecosystem respiration14 under warming. In water-limited ecosystems, warming usually decreases carbon-cycle variables by exacerbating water limitation15. To test such indirect warming effects, we conducted meta-regressions between carbon-cycle variable changes under warming and wetness indices, which are proxies of the water available for plants16. Results demonstrated that the warming responses of net primary productivity (Fig. 3a; $R^2 = 0.20$, $P = 0.027$) and its aboveground component (Fig. 3b; $R^2 = 0.44$, $P = 0.001$), aboveground biomass (Fig. 3c; $R^2 = 0.13$, $P = 0.004$) and ecosystem (Fig. 3d; $R^2 = 0.24$, $P = 0.009$) and soil respiration (Fig. 3e; $R^2 = 0.59$, $P < 0.001$) shifted from negative to positive with increasing wetness indices, suggesting negative and positive warming effects under dry and wet climate conditions, respectively. In contrast, the warming effects on plant root-to-shoot ratios changed from positive to negative with increasing wetness (Fig. 3f; $R^2 = 0.23$, $P = 0.003$), indicating that when exposed to warming, plants growing in dry areas tend to prioritize carbon allocation to roots at the expense of allocation to shoots. Alternatively, decreased root turnover in order to adjust to warming-induced drought may also contribute to this response. Together, these findings indicate that water limitations emerge as a likely indirect response to higher evaporative demand, counterbalancing the direct warming effects on plant growth and productivity17.

Non-uniform influences of precipitation anomalies

Increased precipitation stimulated all ecosystem carbon-cycle variables except litter mass, whereas decreased precipitation generally reduced carbon-cycle variables (Fig. 2b,c). At the ecosystem scale, we tested the first hypothesis (H$_1$) that semi-arid and temperate grasslands are more sensitive to increased precipitation than forests and deserts18. The responses to increased precipitation were normalized to 33% above the mean annual precipitation of each experiment (the median absolute value of precipitation treatments; see Methods for details). In contrast to the H$_1$, the responses of net primary productivity and its belowground component as well as plant biomass (total, aboveground and root biomass) under a 33% precipitation increase were comparable between forests and grasslands (Fig. 2g), although the enhancements of these variables were statistically significant in grasslands only. In addition, the significant stimulations of aboveground net primary productivity under a 33% precipitation increase did not differ among forests, grasslands and deserts (between-group heterogeneity ($Q_B = 2.30$, $P = 0.31$). However, increased precipitation enhanced soil respiration more in grasslands than in forests ($Q_p = 7.90$, $P = 0.02$), but comparably between grasslands and deserts, which partly supported our H$_1$.

We also proposed a second hypothesis (H$_2$), that arid ecosystems would be more sensitive to increased precipitation and less sensitive to decreased precipitation than humid ecosystems19. To test H$_2$, we conducted meta-regressions of carbon-cycle variable responses to normalized increased and decreased precipitation (33% above and below the mean annual precipitation) to examine whether the changes of carbon-cycle variables are related to wetness indices. We found that the positive responses of aboveground net primary productivity (Fig. 3h; $R^2 = 0.04$, $P = 0.013$) and soil respiration (Fig. 3i; $R^2 = 0.30$, $P < 0.001$) under a 33% precipitation increase declined with increasing wetness and the negative impacts of a 33% precipitation decrease on ecosystem respiration were exacerbated with increasing wetness (Fig. 3j; $R^2 = 0.53$, $P = 0.010$). The results suggest that the effects of increased precipitation on aboveground net primary productivity and soil respiration were lower, but the impacts of decreased precipitation on ecosystem respiration were higher in humid areas—a result supporting our H$_2$. No relationship of...
precipitation-induced changes in any other carbon-cycle variables with wetness was detected (Supplementary Figs. 3 and 4). The non-uniform patterns in the dependence of changing precipitation effects upon wetness indices, which are proxies for the current moisture conditions at given sites, among carbon-cycle variables pose a great challenge for robust projections of carbon-cycle responses to changing precipitation regimes in global models\(^{27,28}\).

We calculated the relative precipitation sensitivity as the percentage change of carbon-cycle variables per 10 mm precipitation increase or decrease. All carbon-cycle variables except litter mass...
were more sensitive to increased than to decreased precipitation across all ecosystems (Table 1). The results generalize previous observations on ANPP responses to inter-annual rainfall variation at the Long Term Ecological Research Network sites to all the carbon-cycle processes analyzed here and the larger range of precipitation changes applied in manipulative experiments. All these findings indicate that most terrestrial ecosystems have resistance to drought, which might arise from intrinsic plant physiological adaptation, enhanced water-use efficiency and/or shifts in plant community composition. Increased mortality and decreased vegetation cover in response to water stress under decreased precipitation suggested a temporary mismatch of litter mass and aboveground net primary productivity in response to reduced precipitation, highlighting the non-uniform influence of precipitation anomalies on different carbon-cycle variables and the large variability in the analyzed studies, precluding specific interpretations. The potential connection between production and decomposition processes also suggests avenues for future comparative research, which would reveal novel mechanisms for ecosystem carbon cycling. Furthermore, the sensitivities of gross ecosystem productivity and ecosystem respiration to changing precipitation were generally greater than those of plant productivity, biomass and litter mass.

The greater sensitivity of aboveground than belowground net primary productivity in response to increased precipitation suggests that plants invest less carbon in water acquisition structures to resist drought, and thus there is a higher sensitivity of above-ground net primary productivity and biomass, and litter mass than belowground carbon-cycle variables.
Fig. 3 | Local climate conditions and plant traits affecting carbon-cycle responses to global change drivers. a–f, h–j, n–p. Bubble plots of the meta-regression results between the response ratio (RR) of NPP (a), BNPP (b), AGB (c), ER (d), SR (e) and R/S (f) under W and the wetness indices, between the RR of ANPP (h) and SR (i) under NIP and the wetness indices, between the RR of R/S under eCO2 and root sampling depths (p). Linear meta-regressions are shown as black solid lines and grey dashed lines represent 95% CIs. g, k–m. Single linear regressions showing dependences of W sen of AGB on mean annual temperature (MAT; g), and of IP sen of NPP (k), ANPP (l) and SR (m) on the wetness indices. Linear regression is shown as a black solid line and 95% CIs are in the shaded area. Each point represents the effect size of an individual study. Greater wetness index values correspond to more humid climate conditions. See Figs. 1 and 2 for abbreviations.

Table 1 | Relative sensitivity of ecosystem carbon-cycle variables in response to global change drivers

	W	IP	DP	eCO2	eN	
Whole-plant	NPP	–7.2 [–30.8, 16.5]	1.5 [0.7, 2.3]	–1.1 [–2.3, 0.1]	7.8 [1.4, 14.2]	1.3 [0.6, 2.1]
	TB	16.4 [2.5, 30.2]	2.1 [–0.1, 4.3]	–1.0 [–2.4, 0.3]	11.7 [8.1, 15.2]	5.5 [3.1, 7.9]
Aboveground	ANPP	–1.9 [–13.2, 9.5]	5.4 [15.9, 93]	–1.7 [–3.0, –0.3]	13.0 [61, 19.9]	4.0 [15.6, 6.5]
	AGB	9.2 [4.4, 14.1]	1.9 [0.6, 32]	–1.0 [–1.7, –0.3]	8.2 [5.9, 16.6]	4.0 [31.49]
	Litter	1.4 [–12.4, 15.2]	–0.02 [–0.9, 0.8]	–2.0 [–3.7, –0.2]	8.7 [4.2, 13.1]	7.2 [2.0, 12.4]
Belowground	BNPP	7.1 [–20.9, 35.0]	2.0 [–0.4, 4.5]	–1.6 [–2.5, –0.7]	23.6 [129, 34.3]	1.5 [–15, 4.6]
	RB	19.8 [–1.9, 41.4]	2.1 [–0.01, 4.1]	–0.3 [–1.2, 0.6]	17.9 [10.6, 25.1]	3.1 [1.6, 4.7]
	SR	5.0 [0.4, 9.6]	8.4 [3.8, 12.9]	–1.1 [–1.5, –0.7]	151 [106, 19.6]	0.6 [–11, 2.2]
Carbon fluxes	GEP	8.9 [–3.6, 21.3]	8.0 [21.9, 13.9]	–2.0 [–2.5, –1.6]	5.0 [12, 8.8]	41.5 [–142, 97.2]
	ER	10.8 [1.9, 19.6]	5.9 [21.9, 9.7]	–2.4 [–3.6, –1.2]	7.7 [16, 13.7]	25.6 [–49, 56.2]

The weighted mean sensitivity (means [95% CI]) of whole-plant production (NPP and TB), aboveground (ANPP, AGB and LM) and belowground carbon-cycle variables (BNPP, RB and SR), and ecosystem carbon fluxes (GEP and ER) under W (% +1°C), IP (% +10 mm), DP (% –10 mm), eCO2 (% +100 ppm) and eN (% +1 g N m⁻² yr⁻¹) across all the manipulative experiments. See Figs. 1 and 2 for abbreviations.
(belowground net primary productivity, root biomass and soil respiration) under decreased precipitation (Table 1). However, a previous study on carbon allocation of 14 mature forest stands has found a decreased root-to-leaf biomass ratio under drought, largely due to accelerated root turnover in a drier climate. Therefore, it should be noted that changing precipitation regimes may have differential effects on carbon cycling, depending on other local climate conditions (for example, existing moisture conditions and precipitation timing and intensity). For example, precipitation increase at a dry or mesic site could stimulate biological activity, as opposed to a moist site where responses may be neutral and even negative. Our observations that the sensitivities of net primary productivity (Fig. 3k; \(R^2 = 0.19, P = 0.042 \)) and its aboveground component (Fig. 3l; \(R^2 = 0.29, P < 0.001 \)), and soil respiration (Fig. 3m; \(R^2 = 0.13, P = 0.005 \)) to increased precipitation shifted from positive to negative with increasing wetness indices provided direct evidence supporting this conclusion. Nevertheless, caution should be taken when extrapolating our findings to generate regional and global effects of changing precipitation amount, because rainfall frequency and intensity may be potentially important confounding factors in this meta-analysis.

More carbon allocated to plant belowground tissues under \(\text{eCO}_2 \)

This synthesis demonstrated that, despite large variations among ecosystems, \(\text{eCO}_2 \) significantly stimulated plant productivity, biomass, litter mass and ecosystem carbon fluxes, with the exception of net ecosystem productivity which appeared highly uncertain (Fig. 2d). The observations could have been primarily attributed to increased leaf photosynthesis and water-use efficiency associated with \(\text{eCO}_2 \) fertilization effects and water-saving mechanisms under \(\text{eCO}_2 \) (for example, decreased stomatal conductance and consequent evapotranspiration). We expected (H\(_2\)) that positive \(\text{eCO}_2 \) effects would be greater in drier than humid ecosystems because enhanced water-use efficiency under \(\text{eCO}_2 \) would benefit plants especially under water limitation. However, results of meta-regressions to explore the correlations of the \(\text{eCO}_2 \) effects with mean annual precipitation and wetness indices showed no clear trends of the 12 carbon-cycle variables along mean annual precipitation. Higher wetness did not affect most of the carbon-cycle variables either, but was associated with a larger \(\text{eCO}_2 \) effect on litter mass (Fig. 3n; \(R^2 = 0.53, P = 0.001 \)), contradicting our hypothesis H\(_2\). Nevertheless, ecosystem respiration responses to \(\text{eCO}_2 \) significantly declined with increasing wetness indices (Fig. 3o; \(R^2 = 0.40, P = 0.048 \)), partly supporting our hypothesis H\(_2\). These observations suggest that \(\text{CO}_2 \) fertilization effects may be mediated by not only wetness expressed with a simple percentage change per 100 ppm \(\text{CO}_2 \) increase\(^4^4\). Across all \(\text{eCO}_2 \) experiments, gross ecosystem productivity and net primary productivity showed strongly positive \(\text{CO}_2 \) sensitivity (Table 1). Plants under \(\text{eCO}_2 \) allocated more carbon to roots for uptake of water and N for sustaining growth, at least in young forest/seedling experiments where an increase in plant root-to-shoot ratios was observed across ecosystems (Fig. 2f)—an observation supported by findings of a previous meta-analysis\(^4^5\). Nevertheless, another experimental study has demonstrated that enhanced root carbon allocation in a high \(\text{CO}_2 \) atmosphere generally occurs in a field (free-air \(\text{CO}_2 \) enrichment) but not in a controlled (growth chamber) environment\(^4^6\). In addition, we found that the positive effects of \(\text{eCO}_2 \) on root-to-shoot ratios declined with increasing depths of root sampling (Fig. 3p; \(R^2 = 0.21, P = 0.035 \))—a result more consistent with the proliferation of shallow fine roots for harvesting nutrients rather than of deep roots for water uptake\(^4^7\). In contrast, a previous synthesis on forest ecosystems has revealed that \(\text{eCO}_2 \) stimulates root proliferation in deep soil, likely because the limited resource of topsoil cannot meet the increased demand for production enhancements under \(\text{CO}_2 \) enrichment\(^4^8\). Given that the depths of root sampling are usually greater in forests than grasslands, these observations suggest that root-to-shoot ratios may respond to \(\text{eCO}_2 \) more strongly in grasslands than forests, as shown by our meta-analysis results (Fig. 2h; \(Q_b = 5.70, P = 0.02 \)). Similar to the observed increases in gross ecosystem productivity, ecosystem and soil respiration were also enhanced under \(\text{eCO}_2 \), indicating that \(\text{eCO}_2 \) accelerates ecosystem carbon turnover through belowground processes (for example, microbial decomposition and soil \(\text{CO}_2 \) efflux)\(^4^9\). Root exudation and possibly root litter and organic matter decomposition might be stimulated under \(\text{eCO}_2 \), thus a considerable fraction of increased net primary productivity is in fast-turnover pools that do not lead to carbon sequestration but are released back to the atmosphere. The coupling between net primary productivity and heterotrophic respiration under \(\text{eCO}_2 \) likely depends on the experimental duration. Under long-term exposure to \(\text{eCO}_2 \), the two processes are expected to be closely coupled and net ecosystem productivity should approach zero after a new equilibrium is reached\(^4^7\), although none of the experiments were long enough to verify this assumption.

More carbon allocated to plant aboveground than belowground tissues under \(\text{N} \) addition

Nitrogen addition significantly stimulated plant productivity, biomass, litter mass and ecosystem carbon fluxes, but not belowground net primary productivity or net ecosystem productivity (Fig. 2e). In contrast, \(\text{N} \) addition reduced soil respiration across all the experiments assessed. Presumably, \(\text{N} \) availability limits net primary productivity in many ecosystems\(^5^0\). In contrast to the effects of \(\text{eCO}_2 \), more carbon appeared to be allocated to above- than belowground tissues under \(\text{N} \) addition. Decreased root-to-shoot ratios in response to \(\text{N} \) addition across ecosystems suggest that the sensitivities of aboveground carbon-cycle variables to \(\text{N} \) addition are higher than those of belowground carbon-cycle variables (Fig. 2f and Table 1). The results are consistent with the general observations that plants invest less carbon in constructing nutrient-acquiring structures (that is, roots) when more nutrients are available\(^5^1\). Our findings of substantial variability of plant carbon allocation in responses to different global change drivers are critical in evaluating Earth system models\(^5^2\). The large number of \(\text{N} \) addition experiments compiled in this study (429) provides a unique opportunity to further analyse the effects of \(\text{N} \) addition on aboveground biomass, root biomass and soil respiration. Aboveground biomass increased with increasing levels of \(\text{N} \) addition rates (\(\leq 5, 5–10 \) and \(> 10 \) g N m\(^{-2}\)yr\(^{-1}\); Fig. 2i; \(Q_b = 7.20, P = 0.03 \)). The stimulation of aboveground biomass was greater at \(\text{N} \) addition rates \(> 10 \) g N m\(^{-2}\)yr\(^{-1}\) (32.1%) than \(\leq 5 \) g N m\(^{-2}\)yr\(^{-1}\) (13.6%). However, there was no difference in root biomass responses among the three \(\text{N} \) addition levels, likely due to the lower sensitivity of below- than aboveground biomass and productivity in response to \(\text{N} \) addition (Table 1). By contrast, soil respiration did not respond to the low or medium levels of \(\text{N} \) addition but decreased by 10.2% at...
the high N addition rates of $> 10 \text{g N m}^{-2}\text{yr}^{-1}$, which is partly inconsistent with the findings of a previous meta-analysis that both low (< 5) and high (> 5) N m$^{-2}\text{yr}^{-1}$ additions suppressed soil CO$_2$ efflux in forest ecosystems64. The inclusion of grasslands and tundra in this study makes the conclusions more convincing. High N addition rates may reduce soil heterotrophic respiration due to acidification-induced reduction in microbial activity, and thus suppress soil respiration4,9. Indeed, the decrease in soil pH was exacerbated with higher rates of N addition (Fig. 2i). Clearly, N addition rate is critical in estimating ecosystem carbon-cycle responses to atmospheric N deposition. Yet, given that manipulative experiments generally imposed greater amounts of N than the current global mean rates of atmospheric N deposition (Fig. 1e), the responses of ecosystem carbon cycling in these experiments are likely stronger than those caused by the forecasted levels of atmospheric N deposition.

Nonlinear effects of two-driver pairs were rare

Under current and future conditions, ecosystems will be exposed to concurrently multiple global change drivers (Fig. 1b–e). Nonlinear effects of co-occurring drivers pose challenges for understanding and projecting terrestrial carbon-climate feedbacks2. Two previous syntheses demonstrated that multiplicative influences were rare and ecosystem responses declined with increasing numbers of manipulated factors60,61, suggesting that antagonistic mechanisms are widespread when global change drivers are altered simultaneously. In contrast, other meta-analyses found that multiplicative, rather than synergistic or antagonistic, effects on woody plant biomass, ecosystem carbon storage and soil CO$_2$ efflux were more common$^{65-68}$. These contrasting conclusions leave model predictions of such interactions in question9, especially given that three- and four-factor studies are too scarce to draw general conclusions. We analysed data from 80 two-factor experiments to examine whether the influence of one driver on carbon-cycle variables was modified by a second driver.

Our results showed that nonlinear effects (that is, synergistic or antagonistic) of two-driver pairs—including warming and increased precipitation, warming and decreased precipitation, warming and eCO$_2$, warming and N addition, increased precipitation and N addition, decreased precipitation and eCO$_2$, as well as eCO$_2$ and N addition—on all carbon-cycle variables were rare (Fig. 4a–g). These observations differ from the findings of Leuzinger et al.60 and Dieleman et al.61—a discrepancy that probably resulted from the different analytical methods. For example, Dieleman et al.61 assessed interactions between warming and eCO$_2$ on plant biomass and soil process variables (for example, soil respiration, soil carbon content and net N mineralization) by comparing the slopes of the linear correlations of the combined warming and eCO$_2$ influences with the sum of individual effects with 1:1 line. Leuzinger et al.60 pooled plant biomass and soil process variables together to explore the differences in the response magnitudes under one, two and three global change drivers. When compared with the two previous reviews using Hedges’ d method that concluded predominantly multiplicative effects on ecosystem carbon storage and soil CO$_2$ emissions64,65, our results, obtained with different analytical methods and database, confirm that the nonlinear effects of multiple global change drivers on the carbon-cycle processes analysed are relatively infrequent. Another study using the same methodological approach as ours found that warming and eCO$_2$ multiplicatively affected aboveground biomass of woody plants9, further supporting our conclusion. Moreover, a most recent study reporting a four-factor (temperature, precipitation, CO$_2$, and N) experiment revealed predominantly multiplicative influences among the four global change drivers on ecosystem carbon cycling in a temperate grassland9, providing other lines of supporting evidence. All the above findings indicate that changes in carbon-cycle variables under multiple global change drivers can be under- or overestimated if more antagonistic66,67 or synergistic68,69 effects are assumed. Nevertheless, two experimental studies on N cycling and net primary productivity by manipulating three65 and four9 factors demonstrated that the majority of interactions among multiple factors are antagonistic rather than multiplicative or synergistic, thereby dampening the net effects. From a global perspective, more direct evidence on whether multiplicative effects among global change drivers hold for experimental studies manipulating three or four factors is crucial for convincing projections of future global change terrestrial carbon-cycling feedbacks.

The future of global change manipulative experiments

During the past two decades, meta-analyses have reported ecosystem carbon-cycle responses to warming33,65,69, changing precipitation amount1,23, eCO$_2$ (refs. 1,23,38–72) and N addition57,73,74, but relatively few have examined the combined effects (but see refs. 61–64). The data synthesis presented in this study, encompassing all global change manipulative experiments published to date, revealed global-scale general patterns of the responses and sensitivity of all the terrestrial carbon-cycle processes to multiple global change drivers and their interactions. Further discussion on the discrepancy between our findings and those from previous meta-analyses is provided in Supplementary Text 2. In addition, sensitivity analyses were developed to inform model validation, thus caution should be taken when using our findings to predict the impact magnitudes of global change drivers on carbon-cycle variables at given experiments (Supplementary Fig. 5). While global change research has made tremendous progress in developing manipulative experiments to better simulate climate change scenarios7, our synthesis highlights three key issues that need to be addressed in future experimental studies to better facilitate and assess model projection on terrestrial carbon cycling and its feedback to climate change.

First, although the existing manipulative experiments are critical to understand and disentangle mechanisms (for example, ref. 76), identify thresholds and tipping points of ecosystem responses to global change drivers2, and provide necessary information (input data and process understanding) for the modelling community7, the majority of the experiments have done a poor job of simulating the more complex climate change scenarios. For example, the stochastic nature of precipitation events causes substantial uncertainty in predicting future scenarios and great challenges in designing experiments to capture the full breadth of possibilities inherent in these scenarios. This is made even more difficult if experiments also attempt to capture the impacts of extreme events and exceeded thresholds$^{37,78–80}$.

Second, the majority of existing studies focused on single-factor effects and thus precluded the analysis of nonlinear influences on carbon-cycle feedbacks among multiple global change drivers8. Although the combined treatment effects of two-driver pairs on carbon cycling were mostly multiplicative (Fig. 4), three- and four-factor experiments are still urgently needed to generate multidimensional (that is, multiple factors) response surfaces for carbon-cycle variables aiming to accurately quantify terrestrial carbon-global change feedbacks8. More specifically, changing plant community composition over a long-term scale may also lead to the occurrence of nonlinear effects among multiple factors62,63, indicating the importance of plant competition in regulating ecosystem responses to concurrent global change drivers8.

Finally, the influences of global change on carbon cycling are ecosystem- and climate-specific, suggesting that more experimental data from several hotspot regions are necessary to improve the global perspective. Semi-arid regions, forest ecosystems in the subtropics and tropics, and Arctic tundra are underrepresented in experiments, although they store large quantities of organic carbon and thus have a disproportionate impact on global carbon-cycling and climate change-carbon feedbacks (Fig. 1a)$^{61–15}$. In sum, forecasting terrestrial carbon-cycle responses to ongoing global
change requires future manipulative experiments aiming at knowledge useful to inform mechanistic models (for example, gradient treatments)84, to include multiple driving factors, and to focus on underrepresented arid/semi-arid, subtropical/tropical and tundra ecosystems.

Methods

Data compilation and analysis. Peer-reviewed publications that reported ecosystem manipulative experiments in global change research were collected by searching Web of Science (WoS; 1 January 1900 to 13 December 2016) to construct the dataset of the synthesis during January–May 2017. Databases used for the search in WoS included (1) WoS Core Collection, (2) Inspic, (3) KCI-Korean Journal Database, (4) BIOSIS Previews, (5) Derwent Innovations Index, (6) Russian Science Citation Index, (7) Data Citation Index, (8) Chinese Science Citation Database, (9) MEDLINE and (10) ScIELO Citation Index. Global change drivers considered were climate warming (W), changing precipitation regimes (P), atmospheric CO\textsubscript{2} enrichment (eCO\textsubscript{2}), enriched atmospheric nitrogen (N) deposition (eN), and their combinations, including WP, W\textsubscript{eCO2}, WeN, PeCO\textsubscript{2}, PeN, eCO\textsubscript{2}eN, WPeCO\textsubscript{2}, WP\textsubscript{eN}, PeCO\textsubscript{2}eN and WPeCO\textsubscript{2}eN. Therefore, the keywords for title search used in WoS were: (1) global change (13,053 records), (2) climate change (49,540 records), (3) free-air carbon dioxide enrichment (88 records), (4) free-air CO\textsubscript{2} enrichment (282 records), (5) elevated carbon dioxide (1,228 records), (6) elevated CO\textsubscript{2} (4,169 records), (7) elevated atmospheric CO\textsubscript{2} (681 records), (8) CO\textsubscript{2} enrichment (1,274 records), (9) eCO\textsubscript{2} (14 records), (10) [CO\textsubscript{2}] (113,089 records), (11) warming (90,699 records), (12) elevated temperature (18,336 records), (13) changing precipitation (2,433 records), (14) increased precipitation (434 records), (15) decreased precipitation (93 records), (16) nitrogen deposition (3,777 records), (17) nitrogen addition (2,367 records) and (18) nitrogen application (8,620 records).

First, we identified publications from all 310,177 records through reading each title. In this step, we excluded 202,257 records whose titles showed that these studies were reviews/meta-analyses or conducted in non-terrestrial ecosystems (for example, oceans, Supplementary Fig. 6). The remaining 107,920 publications that might be
In addition, the spatial distributions of single- and multifactor experiments were reviewed/meta-analyses or conducted in non-terrestrial ecosystems. The PDF versions of the remaining 18,741 publications that might be relevant to the synthesis were downloaded. Third, we selected publications by reading the methods of the 18,741 studies to identify which of them met the following inclusion criteria:

- Studies reported results of manipulative experiments conducted in the outdoor environment and having both control and treatment groups. Each group has at least three replicates. In addition, the area of each plot was larger than 1 m². The treatment groups were manipulated artificially to simulate global change drivers. For example, grassland plots of treatment groups were warmed using infrared radiators.70
- Experiments were conducted in terrestrial ecosystems. However, cropland and lab incubation studies were not included in the analysis.71
- Studies examined effects of simulated global change drivers on ecological processes, including carbon (for example, net primary productivity and its above- and belowground components), total, aboveground and root biomass, root-to-shoot ratios, litter mass, gross and net ecosystem productivity, and ecosystem and soil respiration, and so on); nitrogen (for example, soil N content and N mineralization rates) and water-cycle variables (for example, evapotranspiration and water-use efficiency) as well as plant (for example, plant cover, species richness and community temporal stability) and microbial parameters (for example, microbial biomass and microbial community composition and structure).

In the third step, we excluded 17,451 publications which did not meet the above inclusion criteria. After screening this huge number of publications, 1,290 studies met the defined criteria. This list of 1,290 publications was subsequently cross-checked with references cited in the previous review/meta-analysis articles that studied global change influences on ecological processes, as well as publications used in this list to ensure that our publication survey was as inclusive as possible, and 736 additional publications were found. Finally, by searching the websites of ecology laboratories and experiment networks—for example, http://www2.nau.edu/luo-lab/, https://www.msnpruce.ornl.gov/, http://www.nutnet.org/, https://www.ars.usda.gov/plains-area/fort-collins-co-center-for-agricultural-research-resource/rangeland-resources-systems-research/docs/range/prairie-heating-and-co2-enrichment-phase-experiment/research/, http://www.bioscon.unm.edu/profiles/staff/plant-science/blank/Hoverud.html and http://web.ics.purdue.edu/~jsdukes/Dukes.html—and checking the references of the papers downloaded from these websites, another 184 studies were collected. In total, 2,230 publications were included in the synthesis.

Information including publication year, simulated global change drivers, experimental duration, site locations and altitudes, site climate conditions (mean annual temperature (MAT) and precipitation (MAP)), vegetation types and the manipulation magnitudes of global change drivers was extracted from each of the 2,230 publications collected in our literature search to demonstrate the state-of-the-art and analyse the future challenges of ecosystem manipulative experiments in global change research. Based on this information, the 2,230 publications were classified into two groups: (1) publications reporting single-factor experiments having a single control and at least one single-factor treatment (for example, eCO₂ or eN) and (2) publications reporting multifactor experiments using factorial designs having a single control, multiple single-factor treatments (for example, eCO₂ and eN), and combinations of factors (for example, eCO₂-eN). In addition, we identified how many single- and multifactor experiments were documented in the 2,230 publications. If a publication reported several experiments conducted at different sites or in different plant communities, it would be considered as several independent experiments. If a single-factor experiment manipulated several different global change drivers with a same control at the same site, it would be broken up into several independent control-treatment pairs and thus considered as several independent experiments. Values of MAT and MAP were downloaded from Climate Model Intercomparison Project Phase 5 (CMIP5; https://esgf-node.llnl.gov/projects/cmp5/) based on the site locations if individual studies did not report these values for their sites. Ecosystems subjected to manipulative experiments were classified into five typical types: forests (including mature forests and tree plantations), tundra, wetlands (including peatlands, bogs, marshes and fens) and deserts. In this study, 86.5% and 59.6% of single- and multifactor forest experiments were conducted in mature forests, respectively.

We plotted the distributions of MAT and MAP against latitude, and calculated the De Martonne's dryness index of each ecosystem using the data of MAT and MAP as

\[
\text{Wetness index} = \frac{\text{MAP}}{\text{MAT} + 10}
\]

(1)

In addition, the spatial distributions of single- and multifactor experiments were mapped in ArcMAP v.10.0. Moreover, to compare the differences between the manipulation magnitudes of global change drivers extracted from the 2,230 publications and realistic climate change scenarios, we calculated the changes in MAT, MAP and atmospheric CO₂ concentrations at each experimental site as the differences between the periods of 2081–2100 and 1986–2005 using the data reported in the IPCC RCP2.6, 4.5, 6.0 and 8.5. Maximum average N deposition over the world projected in RCP2.6 (1.55 g N m⁻² yr⁻¹), RCP4.5 (1.02 g N m⁻² yr⁻¹) and RCP8.5 (1.32 g N m⁻² yr⁻¹) by the end of the twenty-first century used in the synthesis were reported in Lamarque et al.78

Effects of individual global change drivers on ecosystem carbon-cycle variables: meta-analysis. This study focused on the responses of ecosystem cycling to global change drivers. Data of mean values (X̄), standard deviations (s.d.) or standard errors (s.e.m.) and sample sizes (number of plot replication) of ecosystem carbon-cycle variables (net primary productivity and its above- and belowground components, total, aboveground and root biomass, root-to-shoot ratios, leaf mass, gross and net ecosystem productivity, and ecosystem and soil respiration) in control and treatment groups were extracted from each publication when possible. SigmaScan 5.0 (SPSS, Inc.) was used to digitize the figures and extract the numerical values when a publication presented the data graphically. In our meta-analysis, experimental data were excluded if the experiments were conducted over less than one year/growing season, except for tussock studies for which most of measurements were performed during the growing season (July–August). In total, 4,010 observations from single-factor experiments and 1,013 observations from multifactor experiments were collected (Supplementary Table 2). In addition, experimental data of the last year/growing season were taken at different years/growing seasons in a study, 2,104 observations from single-factor experiments and 392 observations from multifactor experiments in total were used in our meta-analysis (Supplementary Table 3).

The natural log-transformed response ratio (RR) was used to estimate the effect size of global change treatments on ecosystem carbon-cycle variables as

\[
\ln RR = \ln \left(\frac{X_t}{X_c} \right)
\]

(2)

with a variance of:

\[
\text{var}(RR) = \frac{s.d._t^2}{n_c X_c^2} + \frac{s.d._c^2}{n_t X_t^2}
\]

(3)

where X̄_t, s.d._t, and n_t represent the mean, standard deviation and sample size of treatment (T) group, respectively, X̄_c, s.d._c, and n_c are the mean, standard deviation and sample size of control (C) group, respectively. Based on the methods developed by a previous study76, the ln RR was calculated separately for each control-treatment pair and treated as independent data when data extracted from multifactor experiments which had multiple single-factor treatments and a single control were considered.

The metafor package in R software was used to calculate the weighted response ratio (ln RR) and bias-corrected 95% bootstrap-confidence interval (CI) using inverse-variance weighted regressions and random-effects models. Moreover, the publication bias was also evaluated by funnel plots (that is, the scatter plots of the treatment effect sizes against their standard errors)75. If the studies were distributed symmetrically in a funnel shape around a mean effect size, it would indicate the absence of publication bias. Therefore, we further assessed the potential asymmetry of the funnel plots using Egger's regression77. Results of funnel plots and Egger's regressions under the W, increased precipitation (IP), decreased precipitation (DP), eCO₂ and eN treatments are provided in Supplementary Figs. 7–11, respectively. We found that publication bias in our meta-analyses was rare. However, there was also some evidence for publication bias for: for example, the studies examining the eCO₂ effects on GEP (Supplementary Fig. S10; z = 3.84, P < 0.01). Finally, percentage change (%) of treatment effects was evaluated as:

\[
\text{Percentage change} = \left(\frac{X_t - X_c}{X_c} \right) \times 100
\]

(4)

If the 95% CIs of treatment effects did not cover zero, the responses of ecosystem carbon-cycle variables to global change drivers were statistically significant. In addition, responses of ecosystem carbon-cycle variables with different ecosystem types were considered to be significantly different if their 95% CI values did not overlap.

Furthermore, we standardized the effects of IP/DP across the studies that manipulated different levels of precipitation treatments to compare the differences in precipitation influences among ecosystems and wetness indices based on the methods developed in this previous study. All of the precipitation manipulations were converted into a percentage of MAP. Overall, the manipulations in the IP treatments ranged from 1.1% to 151.0% of the MAP, with a median of 35.1%, and the manipulations in the DP treatments ranged from...
5.8% to 100% of the MAP, with a median of 32.3%. We pooled all the studies to determine the absolute values of their manipulation levels, and the median was 32.9% of the MAP for the whole database. The meta-regressions conducted in the meta-analysis indicated that the RR of net primary productivity and its above- and belowground components, total, aboveground and root biomass, root-to-shoot ratios, litter mass, gross and net ecosystem productivity, and ecosystem and soil respiration showed linear responses to precipitation manipulation levels across all of the precipitation studies (Supplementary Fig. 12). Therefore, we performed the following linear transformation to normalize the RR of all the carbon-cycle variables under different treatment/manipulation levels to 32.9% of the MAP:

$$X_{\text{INT}} = X_C + \frac{X_I - X_C}{P} \times 32.9$$ (5)

where X_{INT} is the normalized value under 32.9% above or below the MAP, and P is the precipitation manipulation levels (% of the MAP), with positive values representing the IP treatments and negative values indicating the DP treatments. The normalized $lnRR_{eN}$ and 95% CIs for changing precipitation studies were also calculated using the metafor package in R software. Results of funnel plots and Egger’s regressions under the normalized IP and DP treatments are provided in Supplementary Figs. 13 and 14, respectively. In addition, meta-regressions were conducted to examine the correlations of the normalized lnRR, with wetness indices using the inverse-variance weighted regressions.

To explore which factors could determine the variations of the eCO2 effects (RR) on ecosystem carbon-cycle variables among sites, meta-regressions were also used to examine the correlations of the eCO2 effects with eCO2 levels (ppm), MAP and wetness indices. In addition, we also investigated whether the depths of root biomass sampling affect the responses of root-to-shoot ratios to individual global change drivers using meta-regressions.

Interaction evaluations of multiple global change drivers on ecosystem carbon-cycle variables. Given that there was not enough data available from three- and four-factor experiments to analyse interactions among three and four global change drivers, we only estimated interactive effects of two-driver pairs using 80 two-factor experiments (362 observations in total; Supplementary Table 4). If a two-factor experiment included four treatments (the control, treatment A, treatment B, and treatment A plus B), based on the techniques developed by two previous studies4,10, the interactions were calculated as:

$$\ln(\text{RR}) = \ln\left(\frac{X_{AB}}{X_A}\right) - \ln\left(\frac{X_A}{X_C}\right)$$ (6)

with a variance (the multiplicative property of variances) of:

$$\text{var}(\text{RR}) = \frac{s_d^2 \cdot X_{AB}^2}{n_{AB} \cdot X_A^2} + \frac{s_d^2 \cdot X_B^2}{n_B \cdot X_AB} + \frac{s_d^2 \cdot X_{C}^2}{n_C} \cdot \frac{s_d^2 \cdot X_{AB}^2}{n_{AB} \cdot X_A^2}$$ (7)

where X_{AB}, s_d, and n_{AB}; X_A, s_d, and n_A; X_B, s_d, and n_B; X_C, s_d, and n_C represent the mean, standard deviation and sample size of treatment A plus B, treatment B, treatment A and control, respectively. In the calculation of the interaction term, experimental data of the last year/growing season were used in the metafor package when multiple measurements were taken at different years/growing seasons. Results of funnel plots and Egger’s regressions under the interactions between W and IP (W × IP), W and DP (W × DP), W and eCO2 (W × eCO2), W and eCO2 (eCO2 × eCO2), and eCO2 and eN (eCO2 × eN) are provided in Supplementary Figs. 15–20, respectively. However, caution should be taken when using our datasets, because we used fewer than three studies per group to test for publication bias for some two-driver interactions.

Based on a previous study that defined the calculation of interactions2,4, the interactions between two factors were classified into three types, including multiplication, positive interactions and negative interactions. If the 95% CI of the interaction term overlapped with zero, the interaction effect was considered to be multiplicative. If not, there were positive (the interaction term >0) or negative interactions (the interaction term <0).

Sensitivity of ecosystem carbon-cycle variables in response to global change drivers. Further calculations were performed to analyse sensitivity of ecosystem carbon-cycle variables to global change drivers as a standardized response magnitude per unit change in the global change driver. First, the main effects (E) of global change drivers on ecosystem carbon-cycle variables at each experiment were calculated using formula (4), which gives a percentage change. Second, the sensitivity (S) of ecosystem carbon-cycle variables to W (S_{w}, percentage change per 1°C increase), IP (S_{ip}, percentage change per 10 mm increase), DP (S_{dp}, percentage change per 10 mm decrease), eCO2 (S_{eCO2}, percentage change per 100 ppm increase) and eN (S_{eN}, percentage change per 1 g N m$^{-2}$ yr$^{-1}$ addition) in each experiment was calculated as:

$$S_E = \frac{E}{\text{Increase in temperature (°C)}}$$ (8)

The units of warming (1 °C increase), eCO2 (100 ppm increase) and N addition (1 g N m$^{-2}$ yr$^{-1}$ addition) sensitivities were selected based on two previous studies8,44. Moreover, given that effective rainfall is generally more than 5 mm, we calculated precipitation sensitivities as 10 mm increase or decrease in precipitation. Third, the weighted mean sensitivities of ecosystem carbon-cycle variables to global change drivers at global/ecosystem scales were calculated with the same method as the meta-analysis (bias-corrected 95% bootstrap-confidence interval using inverse-variance weighted regressions and random-effects models).

To investigate whether the local climate conditions influence the sensitivity of ecosystem carbon-cycle variables in response to global change drivers, simple linear regressions with 95% CIs were conducted to examine the dependences of the warming sensitivity of ecosystem carbon-cycle variables on local MAT, and the relationships of the IP and DP sensitivity of ecosystem carbon-cycle variables on local MAP and wetness indices.

We also plotted the observed against their predicted effects of global change drivers on carbon-cycle variables at each experiment, to examine the predictive ability of our sensitivity database. The observed effects of global change drivers on carbon-cycle variables at an experiment are the influences reported directly in publications collected in this study. The predicted effects were calculated as the product of the magnitudes of experimental manipulations (for example, temperature increases in warming experiments) at the experiment and the sensitivity calculated from the other experiments (Supplementary Figure 5).

Reporting Summary. Further information on the research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The data supporting the results can be found in Song, J.; Wan, S.; Ru, J.; Zhou, Z.; Shao, P.; Han, H.; Lei, L.; Wang, J.; Li, X.; Zhang, Q.; Li, S.; Liu, B.; Yang, F.; Ma, G.; Zhang, K.; Hu, M.; Yan, C.; Zhang, A.; Zhong, M.; Hui, Y.; Li, Y.; & Zheng, M. Figshare https://doi.org/10.6084/m9.figshare.7442915.

Received: 23 March 2018; Accepted: 10 July 2019; Published online: 19 August 2019

References

1. Curtis, P. S. & Wang, X. A meta-analysis of elevated CO2 effects on woody plant biomass, form, and physiology. Oecologia 113, 299–313 (1998).
2. Rustad, L. E. et al Meta-analysis of the responses of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).
3. Xia, J. & Wan, S. Global response patterns of terrestrial plant species to nitrogen addition. New Phytol. 179, 428–439 (2008).
4. Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol. 188, 187–198 (2010).
5. Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hugate, B. A. Responses of terrestrial ecosystem to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol. 17, 927–942 (2011).
6. Beier, C. et al. Precipitation manipulation experiments—challenges and recommendations for the future. Ecol. Lett. 15, 899–911 (2012).
7. Knapp, A. K. et al. A reality check for climate change experiments: do they reflect the real world? Ecology 99, 2145–2151 (2018).
8. Kardol, P., De Long, J. R. & Sundqvist, M. K. Crossing the threshold: the power of multi-level experiments in identifying global change responses. New Phytol. 196, 323–332 (2012).
9. Dukes, J. S., Classen, A. T., Wan, S. & Langley, J. A. Using results from global change experiments to inform land model development and calibration. New Phytol. 204, 744–746 (2014).
10. De Kauwe, M. G. et al Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 203, 883–899 (2014).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Peer-reviewed publications that reported ecosystem manipulative experiments in global change research were collected by searching Web of Science (WoS; January 1st, 1900 to December 31th, 2016; Thomson Reuters, New York, NY, USA) to construct the dataset of the synthesis during January-May 2017. Databases used for search in WoS included 1) WoS Core Collection, 2) Inspec®, 3) KCI-Korean Journal Database, 4) BIOSIS Previews, 5) Derwent Innovations Index, 6) Russian Science Citation Index, 7) Data Citation Index, 8) Chinese Science Citation Database, 9) MEDLINE®, and 10) SciELO Citation Index. Details were reported in data collection section of the Methods.

Data analysis

All meta-analyses and meta-regressions were performed using the package ‘metafor’ in R software (version 3.5.1). Details were reported in statistical analysis section of the Methods.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The data supporting the results of this study were archived in Figshare (https://doi.org/10.6084/m9.figshare.7442915).
Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description
- Synthesis study.

Research sample
- In total, we extracted 4010 observations from 850 single factor experiments and 1013 observations from 269 multi-factor experiments for ecosystem carbon-cycle variables including net primary productivity and its above- and below-ground components, total, aboveground, and root biomass, root-to-shoot ratios, litter mass, gross and net ecosystem productivity, and ecosystem and soil respiration (Supplementary Table 2), to perform meta-analysis calculations. We also extracted 362 observations from 80 two-factor experiments for ecosystem carbon-cycle variables (Supplementary Table 4), to estimate the interaction terms among multiple global change drivers.

Sampling strategy
- The peer-reviewed publications were searched (title search) using Web of Science covering studies published between 1900 to 2016 with the keywords including 1) global change, 2) climate change, 3) free-air carbon dioxide enrichment, 4) free-air CO2 enrichment, 5) elevated carbon dioxide, 6) elevated CO2, 7) elevated atmospheric CO2, 8) CO2 enrichment, 9) eCO2, 10) CO2, 11) warming, 12) elevated temperature, 13) changing precipitation, 14) increased precipitation, 15) decreased precipitation, 16) nitrogen deposition, 17) nitrogen addition, and 18) nitrogen application. Details about the inclusion/ exclusion criteria for publications were reported in data collection section of the Method.

Data collection
- Peer-reviewed publications that reported ecosystem manipulative experiments in global change research were collected by searching Web of Science (WoS; January 1st, 1900 to December 31th, 2016; Thomson Reuters, New York, NY, USA) to construct the dataset of the synthesis during January-May 2017. Databases used for search in WoS included 1) WoS Core Collection, 2) Inspec®, 3) KCI-Korean Journal Database, 4) BIOSIS Previews, 5) Derwent Innovations Index, 6) Russian Science Citation Index, 7) Data Citation Index, 8) Chinese Science Citation Database, 9) MEDLINE®, and 10) SciELO Citation Index. Details were reported in data collection section of the Methods.

Timing and spatial scale
- Together, the studies published between 1973 to 2016, covered seven ecosystems including forests, grasslands, wetlands, tundra, and deserts. The mean annual precipitation (MAP) ranged from 52 mm to 4239 mm, and the mean annual temperature (MAT) ranged from less than -19°C to greater than 27°C.

Data exclusions
- We excluded studies that were conducted in aquatic and agriculture ecosystems. In addition, we collected data from field studies, and excluded those from laboratory incubation studies.

Reproducibility
- The methods of data collection and analysis were presented in the Methods section in detail and the data supporting the results of this study were archived in Figshare for reproducibility.

Randomization
- The data were analyzed with a random effect model. Details were reported in statistical analysis section of the Method.

Blinding
- N/A

Did the study involve field work? □ Yes □ No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems
- n/a
- □ Antibodies
- □ Eukaryotic cell lines
- □ Palaeontology
- □ Animals and other organisms
- □ Human research participants
- □ Clinical data

Methods
- n/a
- □ ChIP-seq
- □ Flow cytometry
- □ MRI-based neuroimaging