Wave Breaker Model of Transmission Waves

Phetthanan Sukaphone¹, Buonkun Ounlesy Yaxasiht¹

¹Civil Engineering Department, National University of Laos, Laos

*Corresponding Author: Phetthanan Sukaphone
Email: phettanan.phone@nuol.edu.la

Abstract
This article discusses about wave breaker model of transmission waves, char Deformation of Waves, acteristics of waves, Wave Theory Classification, and Transmission Waves. The wavelength, the wave height, and the depth of the water under which the waves travel are critical criteria for describing water waves. According to previous research, the depth and period of the waves have a significant effect on the propagation and reflection coefficients. The hollow breakwater's varied model is supposed to minimize wave reflection and propagation in addition to reducing wave reflection, due to its capacity to capture and reduce incident wave energy.

Introduction
The breakwater system has evolved significantly; one of the wave-absorbing mechanisms is the perforated and hollow breakwater. The hollow breakwater's varied model is supposed to minimize wave reflection and propagation in addition to reducing wave reflection, due to its capacity to capture and reduce incident wave energy (Wu & Hsiao, 2013; Thorpe, 1999; Brooke, 2003).

According to previous research, the depth and period of the waves have a significant effect on the propagation and reflection coefficients. The transmitting coefficient (kt) decreases with growing wavelength and wave height for the surface location, whereas the reflection coefficient (kr) increases with increasing wavelength and wave height until a certain wavelength value is reached, at which point it decreases for the submerged situation.

Characteristics of Waves
The wavelength, the wave height, and the depth of the water under which the waves travel are critical criteria for describing water waves (Barthelemy et al., 2015). Additional parameters, such as the influence of rpm, can be deduced from the three primary parameters listed previously. The wavelength (L) of a wave is the horizontal interval between two consecutive peaks or highs, or the distance between two troughs. The incident wave height (Hi) is described as the gap between the wave's crest and trough. The wave length (T) is the amount of time required for two consecutive wave crests / valleys to travel through a given point. The celerity (C) of a wave is described as the ratio of its wavelength to its time (L / T). As a water wave moves at C, the water particles do not migrate in the direction of the wave's propagation. Although the coordinate axis used to describe wave motion is located at the depth of calm water. Wave steepness = (H / L) the ratio of the wave height to the wave duration. The disparity in longitudinal wave height at the crest and trough of a wave is called the wave height. Whereas wavelength refers to the separation between two neighboring wave crests.
The relative height (relative height) is equal to the fraction of the wave height that is greater than the depth (H / d). Relative density equals the ratio of depth to wave length (d / L). The amplitude (a) of a wave is described as the vertical distance between its crest / highest point or valley / lowest point and the calm water level (H / 2). The measurements of the wave characteristics are shown schematically in Figure 1 below.

![Wave Parameters](image)

Figure 1. Wave Parameters

Waves are caused by wind flowing over the water's surface. The field where waves are produced is referred to as the wave generation area (Alexander et al., 2004; Synolakis, 1990). The waves that originate inside the generation area are referred to as 'sea', whereas those that originate beyond the generation area are referred to as 'swell'. As a wave propagates, the water waves form a narrow longitudinal circle and stay stationary while the wave's structure and energy progress. At the surface, water particles travel in a broad circle, forming wave crests at the circle's apex and wave troughs at the circle's base. Water flows in ever smaller circles under the atmosphere until it reaches a depth larger than half the wavelength.

As the waves approach the shoreline, they begin to brush against the seabed, resulting in the waves breaking along the shore. This will also have an impact on the beaches and nearby structures.

The six cases are both instances of wave refraction, which occurs when the path of the wave crest motion is reversed. Wave diffraction occurs as energy is transferred along a wave's crest to a protected location (Blue & Johnson, 1949). Wave reflection is a reflection of wave energy that is typically generated by a construction region on a beach (Davies, 1982). Wave shoaling occurs as the wave height rises when it moves to a shallower place. Wave damping is a process that decreases the energy of waves, and is usually induced by contact with the beach's floor (Baldock et al., 2010). Wave breaking is a form of wave breaking that happens more often when the waves reach the shoreline (surf zone) (Baldock, 2012).

Waves falling on the coast are the primary source of shoreline degradation and accretion (deposition). These waves have features that vary according to the wind direction, length, and distance of the wave drag (fetch).

Deformation of Waves

When a wave travels down the shore, it undergoes deformation. Refraction, diffraction, and reflection are also examples of changes, or generally referred to as wave deformations.

Wave refraction is the deflection of the course of waves when they approach shallow waters (Bascom, 1954; Gamito & Musgrave, 2002). This occurs when certain waves are already propagating at the strength of deep sea waves when they reach shallow waters. Apart from its impact on the path of the waves, refraction has a significant effect on the wave height and energy distribution around the coast. In deep waters, where the seabed is quite well below the shore, the seabed has virtually no impact on wave action. As waves originating in the deep
ocean travel to or migrate into deeper seas, where the depth aspect of the sea becomes gradually active in their spreading, where a wave crest line and the crest of the waves in the shallower sea are compared, the shallower sea waves will move slower than at sea. Deeper water causes the wave crest line to curve to attempt to parallel the contour line of the seabed / sand. When incoming waves are diverted by an obstacle, such as a breakwater or tiny islands surrounding it, wave diffraction occurs. As a consequence of being stopped by an approaching wave, it can curve around the obstruction / barrier's end and penetrate the shielded area behind it. There would be a flow of energy perpendicular to the secured region of this situation. Wave diffraction is a critical factor to remember when planning ports and breakwater structures. Wave reflection happens as incoming waves collide with or penetrate a wall or fence, such as a breakwater building. The harbor pond exhibits the reflection phenomenon. Different reflection coefficients for specific shapes and types of buildings may be used to calculate wave reflection.

Wave Theory Classification

Table 1. Boundaries Of Shallow, Transitional and Deep Water Waves

Wave category	d/L	2πd/L	Tanh(2πd/L)
Deep water	> 0.5	> π	≈ 1
Transition water	0.05 – 0.5	0.25 – π	Tanh(2πd/L)
Shallow water	< 0.05	< 0.25	2πd/L

Waves can also be grouped based on the ratio between wave height and wavelength. In this grouping, there are small amplitude waves and finite amplitude waves (Stock, Cnoidal, Solitair). Small amplitude waves were developed by Airy so that it is known as Airy's wave theory. Airy’s wave theory is derived based on the assumption that the ratio between the height of a wave and its length or depth is very small, while the finite amplitude wave theory takes into account the magnitude of the ratio between the wave height to the length and the depth of the water. Determine the wavelength (L) using the following equation:

\[
L = \frac{gT^2}{\pi \text{Tanh}\left(\frac{2\pi d}{L}\right)}
\]

By using the iteration method, equation (1) can be solved to determine the wavelength (L). In equation (1) an initial wavelength (L0) is required using the following equation:

\[
L_0 = 1.56T^2
\]

Transmission Waves

The transmission wave (Ht) is the height of the wave transmitted via an obstruction, as determined by the transmission coefficient (Kt). The transmission coefficient of a wave is described as the ratio of the wave height behind a coastal structure to the incident wave height.

![Figure 2. Transmission Waves](image-url)
Horikawa (1978) described dissipated / muted wave energy (K_d) as the sum of incident wave energy and transmitted and reflexed wave energy.

$$K_d = 1 - K_t - K_r$$

As waves spread in the presence of vibration, the wave height decreases exponentially. In the presence of friction, the wavelength decreases, resulting in a reduction in the speed of wave propagation. As a result, of the Darcy-Weisbach friction coefficient (f) results in a decrease in wave height. The following statement can be used to quantify the difference of water level (η) after one wavelength (L).

$$\eta(x + L) = \eta(x)e^{-kil}$$

Where $ka = kI*A/2$ after reduction; $kI = /(g d)1/2$ after reduction; and $A = f*Um/3d$ after reduction. Um is the ultimate speed of a water molecule.

Water waves do not shift mass; they transfer electricity. The rate at which energy is transferred is referred to as Penergyflux. Energy flux is described in linear wave theory as the rate at which fluids on one side of a vertical piece perform work against the fluid on the other. The energy transmitted (flux energy) is the energy contained or distributed in the path of wave propagation by the wave of time unification. On average, energy is transmitted in a single wave.

This is a parameter that is dependent on the depth and wavelength. For shallow seas, the n rating is equal to 1, and for deep seas, it is equal to $1/2$. Assuming that the value of $n.C$ in the preceding Equation remains unchanged due to the absence of depth variation, the energy flux is essentially a function of wave energy.

When comparing the height of the reflected wave to the height of the arriving wave, the coefficient of reflection is denoted by the symbol K_r, and when comparing the height of the transmitted wave to the height of the arriving wave, the transmission coefficient is denoted by the symbol K_t. While the coeffision, as denoted by the symbol K_d, loses control.

The Model’s Fundamental Laws

The fundamental principle of modeling with a sample scale is to reshape the problems or phenomenon in the simulation on a smaller scale, so that the phenomena occurring in the model are identical (similar) to those occurring in the prototype. The relation manifests itself in three ways: geometric congruence, kinematic congruence, and dynamic congruence. The scale determines the interaction between the standard and the prototype, since each parameter has its own scale and magnitude. Scale can be described as the ratio of the prototype's values to the model's parameter values.

Conformity in terms of geometry

Geometric congruence is a form of congruence in which the model's form is identical to the prototype's shape but the scale may vary. Both duration measurements between the sample and the prototype are same. Geometric similarities may be classified into two types: ideal geometric congruence (without distortion) and skewed geometric congruence. While the horizontal dimension (length scale) and vertical direction (height scale) are identical in a properly geometric build, the length and height scales are not identical in the warped model. Where practicable, the scale should be distortion-free; but, if necessary, the scale should be skewed.

Compose Kinetics

Kinematic congruence is a congruence that meets the geometric congruence requirement and has an equivalent combination of flow velocity and acceleration at two points in the model.
and prototype in the same direction. In a distortion-free model, the ratio of speed and acceleration is constant in both dimensions, while in a distortion-free model, the ratio is constant just in one direction, either the vertical or horizontal direction. As a result, it is preferable to avoid using twisted models of three-dimensional issues.

Compose Adaptable

Dynamic congruence is a congruence that satisfies the geometric and kinematic parameters, and the forces operating on the model and prototype are same with all flows in the same direction. Inertia, strain, gravity, friction, resilience, and surface tension are the powers discussed. Several dynamic structures include the dynamic Reynold number (Reynold number), which is defined as the ratio of inertia to friction, the dynamic froude (froude number), which is defined as the ratio of inertia to gravitational force, and the Cauchy number (Cauchy Number), which is defined as the ratio of inertia to elastic force. The Weiber number (Weiber Number) is the ratio of inertia to surface tension.

For the purpose of studying the reflection and propagation of waves to waves propagating across the floating breakwater, a significant amount of gravitational force is affected, resulting in the usage of the Froud resemblance. Taking into account the laboratory's current equipment, this analysis employs the same duration scale as the undistorted versions and the Froude similarity.

Conclusion

Small amplitude waves were developed by Airy so that it is known as Airy's wave theory. In the presence of friction, the wavelength decreases, resulting in a reduction in the speed of wave propagation. The transmission wave (Ht) is the height of the wave transmitted via an obstruction. Water waves do not shift mass; they transfer electricity. Energy flux is essentially a function of wave energy. Modeling with a sample scale is to reshape problems or phenomenon in the simulation on a smaller scale. The relation between the standard and the prototype determines the interaction between the two. Geometric congruence is a form of congruity in which the model's form is identical to the prototype's shape but the scale may vary. Congruence is a congruence that satisfies the geometric and kinematic parameters. Inertia, strain, gravity, friction, resilience, and surface tension are the powers discussed.

References

Alexander, M. J., May, P. T., & Beres, J. H. (2004). Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. *Journal of Geophysical Research: Atmospheres, 109*(D20).

Baldock, T. E. (2012). Dissipation of incident forced long waves in the surf zone—Implications for the concept of “bound” wave release at short wave breaking. *Coastal Engineering, 60*, 276-285.

Baldock, T. E., Manoonvoravong, P., & Pham, K. S. (2010). Sediment transport and beach morphodynamics induced by free long waves, bound long waves and wave groups. *Coastal Engineering, 57*(10), 898-916.

Barthelemy, X., Banner, M. L., Peirson, W. L., Fedele, F., Allis, M., & Dias, F. (2015). On a unified breaking onset threshold for gravity waves in deep and intermediate depth water. *arXiv preprint arXiv:1508.06002*.

Bascom, W. (1954). The control of stream outlets by wave refraction. *The Journal of Geology, 62*(6), 600-605.
Blue Jr, F. L., & Johnson, J. W. (1949). Diffraction of water waves passing through a breakwater gap. *Eos, Transactions American Geophysical Union*, 30(5), 705-718.

Brooke, J. (2003). *Wave energy conversion*. Elsevier.

Davies, A. G. (1982). The reflection of wave energy by undulations on the seabed. *Dynamics of Atmospheres and Oceans*, 6(4), 207-232.

Gamito, M. N., & Musgrave, F. K. (2002). An accurate model of wave refraction over shallow water. *Computers & Graphics*, 26(2), 291-307.

Synolakis, C. E. (1990). Generation of long waves in laboratory. *Journal of waterway, port, coastal, and ocean engineering*, 116(2), 252-266.

Thorpe, T. W. (1999). *A brief review of wave energy*. London: Harwell Laboratory, Energy Technology Support Unit.

Wu, Y. T., & Hsiao, S. C. (2013). Propagation of solitary waves over a submerged permeable breakwater. *Coastal Engineering*, 81, 1-18.