Interaction effects on dynamical localization in driven helium

Felix Jörder, Klaus Zimmermann, Alberto Rodriguez, and Andreas Buchleitner

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104, Freiburg, Germany

(Dated: Revision : 226, compiled Monday 25th August, 2014, 06:18)

PACS numbers: 32.80.Rm, 05.60.Gg, 32.80.Zb, 72.15.Rn

Dynamical localization prevents driven atomic systems from fast fragmentation by hampering the excitation process. We present numerical simulations within a collinear model of microwave-driven helium Rydberg atoms and prove that dynamical localization survives the impact of electron-electron interaction, even for doubly excited states in the presence of fast autoionization. We conclude that the effect of electron-electron repulsion on localization can be described by an appropriate rescaling of the atomic level density and of the external field with the strength of the interaction.

exp (−|k|/ξ), where |k| is the net number of exchanged photons and ξ is the localization length [17, 22]. The suppression of the excitation process translates into highly enhanced values of the critical field strength F_C needed to ionize the atoms with respect to the classical prediction. This effect has been measured experimentally [18, 19, 23, 24] and is supported by numerical simulations for hydrogen and alkali atoms [22, 25], and also by our results on collinear helium, which show a significant agreement with the experimental data (cp. Fig. 1).

In this letter we approach the problem on how localization is affected by particle-particle interactions. This is a broad-interest question which is currently being intensively investigated in the context of metal-insulator transitions and many-body Anderson localization [26–30]. For two particles in one dimension, short-range interactions can weaken localization leading to an enhancement of the two-particle localization length [31–41]. In the case of the quantum kicked rotor, which can be mapped onto the standard Anderson problem [8], interactions in the form of nonlinearities are known to induce delocalization [42, 43]. While the driven one-electron atom in turn maps onto the quantum kicked rotor [17], the extension of this mapping to the many-particle case is non-trivial. Thus, the study of dynamical localization in the presence of a long-range Coulomb interaction considerably expands the realm of localization phenomena within the area of light matter interaction, where the interelectronic repulsion is essential, e.g., to understand the correlations observed in laser-driven atomic ionization [44, 51]. The helium atom is a fundamental and experimentally accessible system which can be used to shed some light onto this subject.

Field-free helium.— We consider two distinct configurations of collinear helium, namely Zeeman and eZe helium, characterized by whether the electrons are located on the same side or on opposite sides of the nucleus, which is fixed at the origin. The field-free Hamiltonian in atomic units reads

$$H_0 = \frac{1}{2} (p_1^2 + p_2^2) - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{\gamma}{r_{12}},$$

for $Z = 2$, where $r_1, r_2 > 0$ denote the radial coordinates of the electrons, and $r_{12} = |r_1 \mp r_2|$ for Zeeman (−) and eZe(+) helium. The radial momentum operators are $p_j \equiv -i \partial_{r_j}$. The parameter γ, with a physical value $\gamma = 1$, tunes the strength of the electronic interaction. The classical dynamics underlying the two configurations are rather distinct and exhibit complementary features of the three-dimensional problem. While the eZe phase space is fully chaotic [51], leading to fast fragmentation, long-lived ’frozen planet states’ exist for Zeeman helium.
we reduce the dimensionality of our Floquet eigenvalue problem, which enables us to consider processes of very high order (\(> 100 \)) in \(k \).

The interaction term \(\gamma / r_{12} \) in \(H_0 \) induces a coupling of all doubly excited states to the underlying single-ionization continua, and thus turns them into resonances with finite decay (autoionization) rates. The energies \(E_j \), decay rates \(\Gamma_j \) and wavefunctions \(\phi_j \) associated to these resonances can be calculated from the eigenvalues and eigenstates of a non-hermitian Hamiltonian obtained by the method of complex rotation \([58] \), using a basis of Sturmian functions \([54, 59] \). In order to treat exactly all the Coulomb terms in Eq. (1) we work with a regularized \(H_0 \), multiplied by \(r_1 r_2 r_{12} \).

The discrete spectrum of collinear helium can be characterized by quantum numbers \((N, n)\), and it is organized in Rydberg series which converge to single ionization thresholds \(E_N = -Z^2 N^{-2}/2 \) \([57]\). In a typical Rydberg state \((N = 2, n \sim 100)\) we find autoionization rates for \(Zee \)-helium corresponding to long lifetimes \(\tau_{yp} = \Gamma_{yp}^{-1} \sim 300 \mu s \), in accordance with the classical stability of this configuration. For \(eZe \) we obtain two sets of resonances, even and odd with respect to the exchange of \(r_1 \) and \(r_2 \), with \(\tau_{yp} \sim 5 \) ns and 500 ns, respectively.

Driven helium.— We take into account a dipole coupling to an external classical electromagnetic field of strength \(F \) and frequency \(\omega \). The Hamiltonian in velocity gauge reads \(H = H_0 + H_F \), where

\[
H_F = \frac{F}{\omega}(p_1 \pm p_2) \sin(\omega t) = V_F \sin(\omega t),
\]

for \(Zee(+)) \) and \(eZe(-) \). Due to the periodicity of \(H_F \), we may use Floquet theory to solve the time-dependent Schrödinger equation for the complex rotated Hamiltonian. The elementary solutions have the form

\[
\psi_{\epsilon}(t) = e^{-i\epsilon t} \sum_{k=-\infty}^{\infty} e^{-ik\omega t} \psi_k^{\epsilon}, \tag{3}
\]

where the Floquet components \(\psi_k^{\epsilon} \) and quasienergies \(\epsilon \) obey the eigenvalue equation

\[
(H_0 - k\omega)\psi_k^{\epsilon} + \frac{1}{2i} V_F (\psi_{k+1}^{\epsilon} - \psi_{k-1}^{\epsilon}) = \epsilon \psi_k^{\epsilon}. \tag{4}
\]

The Floquet index \(k \) can be effectively related to the number of photons exchanged between atom and field \([60] \). Given a reference state with energy \(E_0 \), we expand the components \(\psi_k^{\epsilon} \) in terms of field-free atomic eigenstates lying inside an energy interval \(\Delta E \), centered at \(E_k = E_0 + k\omega \). The tolerance \(\Delta E \) then corresponds to the maximum allowed detuning of any \(k \)-photon transition. Numerically, we detect convergence of the results by their invariance under a further increase of \(\Delta E \), which is always the case for \(\Delta E < 10\omega \). Using this method, we reduce the dimensionality of our Floquet eigenvalue problem, which enables us to consider processes of very high order (\(> 100 \)) in \(k \).

The field-induced transition probability between atomic levels \(\phi_i \) and \(\phi_j \) after an interaction time \(T \) with the field, is given by \(P_{i\rightarrow j}(T) = |\langle \phi_j | U(T) | \phi_i \rangle|^2 \), where the time evolution operator \(U(T) \) is resolved in terms of the solutions in Eq. (5). The ionization probability of the initial atomic state \(\phi_i \) is then obtained as \(P^{\text{ion}}_{i\rightarrow j}(T) = 1 - \sum_j P_{i\rightarrow j}(T) \).

For comparison with experimental data and theoretical predictions, we calculate ionization yields and critical fields \(F^C \) of \(Zee \) Rydberg states of the second series, \(N = 2 \), for the same parameters as those experimentally considered in Ref. [24]. Due to the low excitation of the inner electron and the slow autoionization, we expect no crucial differences in comparison to driven hydrogen or alkali atoms. We use the scaled variables \(r_0^N = n^4 FC^N, \Omega_0 = n^3 \omega, \) to display the results: \(F_0^N \) is the critical field in units of the average Coulomb field in a hydrogen atom, and \(\Omega_0 \) is the frequency in units of the hydrogen level spacing. As shown in Fig. 1 our calculations for \(Zee \) helium—in spite of the one-dimensional nature of the model—agree with the experimental results of Ref. [24] in the regime \(\Omega_0 \ll 2.5 \) \([61]\). Our data is also consistent with the localization-based prediction of Ref. [22].

Influence of electron-electron interaction on dynamical localization.— The energy of a doubly excited state can be cast into an effective Rydberg form via

\[
E = -\frac{Z^2}{2N^2} - \frac{Z^2_{\text{eff}}}{2n_{\text{eff}}^2}, \tag{5}
\]

where \(Z_{\text{eff}} = Z - \gamma \) and \(\gamma \in [0, 1] \). The effective quantum number \(n_{\text{eff}} \) encodes the influence of the electron-electron interaction on the spectrum. For the \(Zee \) configuration we found that \(n_{\text{eff}} = n + \delta_N \), given by a so-called quantum defect \(\delta_N \), which is only determined by the series index \(N \). The whole spectrum of \(Zee \) helium is described very accurately by \(\delta_N \) and Eq. (5) \([62]\). Following this picture, we argue that the outer electron sees a mean level spacing \(\Delta = n_{\text{eff}}^2 Z_{\text{eff}}^2 \) and experiences a Coulomb field \(f = n_{\text{eff}} Z_{\text{eff}} \). The critical ionization fields \(F_{\text{eff}}^C \) and the driving frequency \(\omega_f \) should then be measured with respect to these fundamental quantities. The appropriately scaled variables in this case are

\[
\tilde{F}_0^C \equiv \frac{F^C}{f} = n_{\text{eff}}^4 Z_{\text{eff}}^{-3} FC^N, \quad \tilde{\Omega}_0 \equiv \frac{\omega_f}{\Delta} = n_{\text{eff}}^3 Z_{\text{eff}}^{-2} \omega_N. \tag{6}
\]

The driving frequency is changed with \(\gamma \) as \(\omega_N = Z_{\text{eff}}^2 \omega_1 \), for \(\omega_1 = 1.508 \times 10^{-6} \) a.u., which is one of the frequencies employed in the experiments by Koch et al. \([19]\). This scaling ensures that for a given value of \(\tilde{\Omega}_0 = n_{\text{eff}}^3 \omega_1 \) the number of photons needed to ionize the outer electron is the same for all \(\gamma \). This latter condition is crucial to compare the occurrence of localization for different interaction strengths.

We first calculate the critical fields \(F_{\text{eff}}^C = F_{\text{eff}}^{20\%} \) yielding 20% ionization after a driving time of 100 ns (\(\sim 10^5 Z_{\text{eff}}^2 \) field periods), of states in the second Rydberg series of \(Zee \) helium \((N = 2)\) for different values of \(\gamma \). The obtained \(F_{\text{eff}}^C \) are shown in the inset of Fig. 2. For a fixed \(\tilde{\Omega}_0 \), the critical field decreases by almost one order of magnitude with increasing...
The quantum defect is negligible whereas the weakening of localization. Nevertheless, as seen in Fig. 2, the ionization process is strongly enhanced due to the electron-electron interaction effects, as indicated by the value of the quantum defect δ_{Ze}. Therefore, the ionization process is strongly enhanced due to the inner electron on the ionization dynamics can again coincide with the data for the low-lying series. The population redistribution of a driven system is determined by the field-induced transitions $P_{i\rightarrow j}(T)$ between atomic levels. The population redistribution of a driven initial state ϕ_i is then visualized in energy space as a function of the excitation energy $\Delta E = E_j - E_i$, measured in multiples $k \in \mathbb{Z}$ of the photon energy. The resulting populations $P(k)$ can thus be correlated to the net number of photons emitted and absorbed. Figure 3 shows these distributions for the second series of Ze and eZe, averaged over initial states $n \in [110,119]$, for several driving times. The chosen field strength, $F = 2 \times 10^{-10}$ a.u., is strong enough to observe a considerable spreading, but still does not lead to ionization of the Ze initial states (see the bar in the inset of Fig. 2). In the Ze case the distribution freezes completely after about 10 ns and approaches an exponentially localized shape. For the eZe states, the distribution also localizes exponentially in k, but its norm decreases with time due to fast autoionization, as seen in the upper inset of Fig. 3. We characterize the width of the normalized distribution $P(k)$ via the Shannon entropy, $I = -\sum_k \hat{P}(k) \log \hat{P}(k)$. As depicted in the lower inset of Fig. 3, I increases rapidly for short times and then fluctuates around some saturated value. Hence, the field-induced transport on the energy axis freezes, and we conclude that localization is still present despite any loss of norm due to autoionization.

In order to carry out a quantitative analysis of the localization behavior, we estimate the localization length ξ of the distributions $P(k) \sim \exp(-|k|/\xi)$ from the limiting value of I, averaged over times between 48 and 97 ns. For the range of initial states considered, ξ seems to be roughly independent of n, apart from fluctuations caused by the local detuning of the field-induced transitions. The estimate of the localization length and its uncertainty are obtained from the average over initial states $n \in [110,119]$. We studied the dependence of ξ on the field strength F for the second Rydberg series of both helium configurations, as well as its dependence on the interaction strength γ for eZe helium. As shown in the inset of Fig. 3, ξ increases with γ, once more demonstrating the enhancement of the excitation process due to the interaction. For a fixed γ the localization length also grows with the field strength F. As discussed above, the critical fields scale with Z_{eff}^3. Therefore, in order to treat different interaction strengths on an equal footing, we should rescale...
the localization mechanism, as we have shown for γing process. We emphasize that dynamical localization in the presence of fast autoionization as a dominant compet-
er on the atomic level density and an appropriate scaling of
the external field with the effective charge. This also holds
for the observation of light localization [66, 67].

We expect our results to hold even for comparable quan-
tum numbers of both electrons. While neighboring Rydberg
series of the unperturbed eZe configuration strongly mix for
N ≳ 20, strong mixing of odd and even states is induced by
the driving field at lower values of N, and does not affect
the localization mechanism, as we have shown for N = 2.

Therefore, we conjecture that localization will persist also for
N > 20, what will have to be verified in future work. An-
other future perspective is the characterization of the fluctua-
tions of the photoionization signal under parameter variations.
The statistics thereof is a sensitive indicator of the underlying
transport mechanism [68] and might allow for a refined as-
essment of the fingerprints of electron-electron interactions.

We thank P. Lugan for fruitful discussions and numer-
sical support during the early stages of this project. The
authors gratefully acknowledge the Deutsche Forschungsge-
meinschaft for financial support, and the computing time
granted by the John von Neumann Institute for Computing,
and provided on the supercomputer JUROPA at Jülich Su-
percomputing Centre. Numerical calculations were also per-
formed on the Black Forest grid (Freiburg).
[20] R. V. Jensen, S. M. Susskind, and M. M. Sanders, Phys. Rev. Lett. 62, 1476 (1989).
[21] A. Schelle, D. Delande, and A. Buchleitner, Phys. Rev. Lett. 102, 183001 (2009).
[22] G. Casati, I. Guarneri, and D. Shepelyansky, IEEE J. Quantum Electron. 24, 1420 (1988).
[23] M. Arndt, A. Buchleitner, R. N. Mantegna, and H. Walther, Phys. Rev. Lett. 67, 2435 (1991).
[24] H. Maeda and T. F. Gallagher, Phys. Rev. Lett. 93, 193002 (2004).
[25] A. Krug and A. Buchleitner, Phys. Rev. Lett. 86, 3538 (2001).
[26] B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio, Nat. Phys. 6, 354 (2010).
[27] L. Pollet, N. V. Prokof’ev, B. V. Svistunov, and M. Troyer, Phys. Rev. Lett. 103, 140402 (2009).
[28] S. Anisimova, S. V. Kravchenko, A. Pumnoose, A. M. Finkelstein, and T. M. Klapwijk, Nat. Phys. 3, 707 (2007).
[29] I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys. 6, 900 (2010).
[30] L. Sanchez-Palencia and M. Lewenstein, Nat. Phys. 6, 87 (2010).
[31] O. N. Dorokhov, Sov. Phys. JETP 71, 360 (1990).
[32] D. L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994).
[33] Y. Imry, Europhys. Lett. 30, 405 (1995).
[34] F. Borgonovi and D. L. Shepelyansky, Nonlinearity 8, 877 (1995).
[35] S. N. Evangelou, S.-J. Xiong, and E. N. Economou, Phys. Rev. B 54, 8469 (1996).
[36] F. von Oppen, T. Wettig, and J. Müller, Phys. Rev. Lett. 76, 491 (1996).
[37] D. L. Shepelyansky and O. P. Sushkov, Europhys. Lett. 37, 121 (1997).
[38] I. V. Ponomarev and P. G. Silvestrov, Phys. Rev. B 56, 3742 (1997).
[39] R. A. Römer, M. Schreiber, and T. Vojta, Phys. Status Solidi B 211, 681 (1999).
[40] P. H. Song and F. von Oppen, Phys. Rev. B 59, 46 (1999).
[41] D. O. Krimer, R. Komeriki, and S. Flach, J. Exp. Theor. Phys. Lett. 94, 406 (2011).
[42] D. L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993).
[43] G. Gligorić, J. D. Bodyfelt, and S. Flach, Europhys. Lett. 96, 30004 (2011).
[44] W. Becker, X. Liu, P. J. Ho, and J. H. Eberly, Rev. Mod. Phys. 84, 1011 (2012).
[45] R. C. Bilodeau, N. D. Gibson, C. W. Walter, D. A. Estevés-Macaluso, S. Schippers, A. Müller, R. A. Phaneuf, A. Aguilar, M. Hoener, J. M. Rost, and N. Berrah, Phys. Rev. Lett. 111, 043003 (2013).
[46] Y. Zhou, C. Huang, Q. Liao, and P. Lu, Phys. Rev. Lett. 109, 055304 (2012).
[47] N. Camus, B. Fischer, M. Kremer, V. Sharma, A. Rudenko, B. Bergues, M. Kübel, N. G. Johnson, M. F. Kling, T. Pfeifer, J. Ullrich, and R. Moshammer, Phys. Rev. Lett. 108, 073003 (2012).
[48] B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 73, 1227 (1994).
[49] T. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staude, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, and R. Dorner, Nature 405, 658 (2000).
[50] R. Moshammer, B. Feuerstein, J. C. López-Urrutia, J. Deipenwisch, A. Dorn, D. Fischer, C. Höhr, P. Neumayer, C. D. Schröter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, Phys. Rev. A 65, 035401 (2002).
[51] G. S. Ezra, K. Richter, G. Tanner, and D. Wintgen, J. Phys. B: At. Mol. Opt. Phys. 24, L413 (1991).
[52] K. Richter, D. Wintgen, Phys. Rev. Lett. 65, 1965 (1990).
[53] A. López-Castillo, M. A. M. de Aguiar, and A. M. O. de Almeida, J. Phys. B: At. Mol. Opt. Phys. 29, 197 (1996).
[54] P. Schlagheck and A. Buchleitner, J. Phys. B: At. Mol. Opt. Phys. 31, L489 (1998).
[55] J. Madroñero, P. Schlagheck, L. Hilico, B. Grémaud, D. Delande, and A. Buchleitner, Europhys. Lett. 70, 183 (2005).
[56] K. Richter, G. Tanner, and D. Wintgen, Phys. Rev. A 48, 4182 (1993).
[57] G. Tanner, K. Richter, and J.-M. Rost, Rev. Mod. Phys. 72, 497 (2000).
[58] E. Balslev and J. Combes, Commun. Math. Phys. 22, 280 (1971).
[59] P. Schlagheck and A. Buchleitner, Eur. Phys. J. D 22, 401 (2003).
[60] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[61] The disagreement observed for larger Ω0 in Fig. 1 might be due to the participation of states with non-vanishing angular momentum in the excitation process in three dimensions.
[62] We derive δΩxe from a semiclassical analysis, after constructing an N-dependent effective potential for the outer electron following Refs. [63, 64]. We find δΩxe ≃ −1/2 + 0.49 N, where the coefficient of N results from the semiclassical quantization for N = 1.
[63] V. N. Ostrovsky and N. V. Prudov, J. Phys. B: At. Mol. Opt. Phys. 28, 4435 (1995).
[64] P. Schlagheck, Ph.D. thesis, TU München (published by Herbert Utz Verlag, München, 1999).
[65] The relation between Ω and I follows by calculating the Shannon information for a perfect exponentially decaying normalized distribution.
[66] N. Cherroret, S. E. Skipetrov, and B. A. van Tiggelen, Phys. Rev. E 82, 056603 (2010).
[67] T. Speirling, W. Buhrer, C. M. Aegerter, and G. Maret, Nat. Photon. 7, 48 (2013).
[68] S. Wimberger and A. Buchleitner, J. Phys. A 34, 7181 (2001).