Ингоси Перез-Позуэло, Димитрис Спатис, Джордан Гиффрод-Муэр, Джессика Морли и Йош Кольс

Медицинская эпидемиология, школа медицинских наук, Кембридж, Великобритания, 2Институт Алан Тирун, Лондон, Великобритания, 3Университет Кембридж, департамент компьютерного инженеринга и технологий, Кембридж, Великобритания, 4Университет Оксфорд, юридический факультет, Оксфорд, Великобритания, 5Институт Интернета, Оксфорд, Великобритания, 6Кембридж, Кембридж, Великобритания, и 7Олффи Филд департамент первичной медицины, Оксфорд, Великобритания

Корреспондирующая автор: Игнасио Перез-Позуэло, Медицинская эпидемиология, школа медицинских наук, Кембридж, Великобритания, Кембридж, CB2 2QQ, Великобритания (ip325@cam.ac.uk)

Принято 5 ноября 2020 года; Рецензия 14 января 2021 года; Редакционное решение 15 января 2021 года; Принято 21 января 2020 года

Абстракт

В этом перспективном обзоре мы хотим подчеркнуть важность того, что мы называем “цифровым фенотипированием” или инференсинг о здоровье и поведении людей через их цифровые устройства и данные, и вызовы, которые это представляет. Да, сбор, обработка и хранение данных сопряжены с серьезными этическими, безопасными и вопросами управления данными. СARS-CoV-2 пандемия наглядно показала важность научных данных и моделирования, как для разобраться в природе и распространении болезни, так и для развития лечения. Но цифровые устройства сыграли (прахолистический) роль, с прокруткой и следовую систем и все больше “иммунные паспорта” были введен для помощи обществам открыть снова. Эти системы иллюстрируют шире и более длительную тенденцию к видению почти любой формы персональных данных как потенциальной медицинской информации, особенно с ростом потребительских фитнес-трекеров и других гаджетов. Здесь, мы предложены обзором рисков, которые это вводит, основываясь на предыдущей революции в геномике, и предлагаем руководства для защиты конфиденциальности, при помощи персональных данных, чтобы помочь обществу снова подняться.

Мобильные и носимые устройства, такие как умные часы и фитнес-трекеры, все больше позволяют непрерывной сбор информации о физическом и поведении данных, что позволяет сделать инференсинг о физическом и психическом здоровье. Растущее потребление этих технологий уменьшило стоимость получения клинически значимых данных. Это может помочь сократить медицинские исследования и помогать большие-масштабные исследования. Однако, сбор, обработка и хранение данных сопряжены с серьезными этическими, безопасными и вопросами управления данными. Ярко-особых, потребность в сотрудничестве среди исследователей, здравоохранения, и широкий спектр организаций в общественных и частных секторах, некоторые из которых не традиционно связаны с здравоохранением. Здесь, мы используем набор вопросов инференсинг о фенотипировании, которые ведут к новым формам геномных исследований, будучи ведущими в области геномики, а подчеркивая области в которой цифровые технологии требуют новых форматов управления данными.

Существуют глобальные данные о здоровье

Фенотипические признаки определены как наблюдаемые характеристики индивидуума, которые возникают из совокупности его генома и окружающей среды. Анализ фенотипов дает...
important insights across many fields of research, including human evolution and cultural history, the identification of the genetic basis of disease and health-related traits, drug repurposing, and pharmacogenomics. Building on developments made through the collection and analysis of extended phenotypic data through the growth and evolution of digital products, digital phenotyping can be defined as the “moment-by-moment quantification of the individual-level human phenotype using data from personal digital devices.” This process is often passive and allows for the quantification of the individual-level behavioral phenotype through personal devices such as mobile phones and wearable technologies. Advances in these data collection tools have accelerated across both academia and industry, along with diverse applications in clinical and public health settings. While passive data generated and collected through mobile or wearable devices are not without limitations, for instance, with regard to causality or the ability to match its outcomes to that of clinical outcomes or diagnoses, its use can overcome some of the issues associated with traditional survey-based methods. For instance, the ability to obtain in situ data offers significant opportunities to mitigate the well-documented issues of self-reporting inaccuracies, inconsistent classification and recording of phenotypic data, and behavior modification in some contexts due to participation in an observed environment. Further, these tools enable, at an unprecedented scale, long-term phenotyping in free-living conditions with the potential for reduced subject attrition.

Early examples of digital phenotyping studies include large-scale involuntary hand tremor analysis via mouse cursor movement and the use of Microsoft Bing search queries to detect neurodegenerative conditions. Despite improvements in the collection and classification of data, digital phenotyping poses its own unique risks for users. Given the multidisciplinary nature of the field and the different levels of sensitivity of the data being collected, digital phenotyping interacts with a broad range of laws and governance regimes, ranging from medical and research ethics to contract law and data protection regulation. The international adoption of consumer devices allowing digital phenotyping research adds additional complexity in determining the applicable regulatory framework for data collection, sharing, and analysis. Although there are established processes in medical research for international data sharing, the longitudinal and dynamic nature of digital phenotyping can itself create ongoing obligations across different jurisdictions and spheres of regulation. As such, there is a risk that consumers will be insufficiently protected if they are exposed to digital phenotyping technologies that do not fall neatly within any existing consumer protection regime with an effective enforcement framework.

As devices enabling digital phenotyping research are often consumer electronics, in scenarios outside of institutional research frameworks an important dichotomy arises between consumers’ motivation to use these technologies and technology providers’ incentives to collect, analyze, share, or monetize data produced by users. Advances in consumer electronics sensors and trends in wellness technologies has brought health and lifestyle data that might traditionally have been governed by medical research ethics and regulations outside of these institutional settings. Data that permit inferences about users’ health or lifestyle through digital phenotyping are now increasingly available for collection by commercial hardware and software vendors, which are not typically healthcare providers. A broad range of harms related to the collection of health data online has been highlighted in the academic and policy literature, including unethical data collection and provision of inaccurate clinically relevant data. As digital phenotyping becomes more prevalent and is used by commercial providers of other services, or to generate diagnoses, there is also the potential for discriminatory use of sensitive data, such as exclusionary insurance, employment discrimination, or unfair credit scoring. While a number of existing data protection, consumer protection, and antidiscrimination laws may help safeguard the use of personal health data in various contexts, the efficacy of these laws have not been fully tested in the array of novel contexts in which health data may be used. Similarly, a lack of regulatory clarity and oversight may also fail to provide commercial providers and researchers with the certainty required for ethical scientific research and innovation and shift the burden of screening digital health technologies onto patients and clinicians. Further, digital phenotyping must move toward the development of standards that identify sources of bias and enforce the development of models that are robust to skews and incompleteness associated to this type of data.

Digital phenotyping at scale

While genotyping has become more widely accessible during the past 20 years due to falling costs of sequencing and consumer-focused providers, many of the benefits of digital phenotyping arise from technologies developed first for mass consumer adoption. From a regulatory perspective, one difficulty posed by digital phenotyping is the use of data collected outside of a traditional healthcare context to make health- and wellness-related inferences. This expands the circumstances in which health data are collected, and also importantly allows for health-related analysis of types of data that may previously have been considered less sensitive. While academic research using consumer technologies remains subject to existing frameworks on ethical research, the increasing functionality of consumer electronics means that digital phenotyping can also be conducted in a commercial context. There is already some scope for supervision by consumer protection agencies with relatively broad remit, such as data protection authorities, in Europe under the General Data Protection Regulation (GDPR), and to an extent the Federal Trade Commission (FTC) in the United States, for deceptive or unfair practices regarding data governance. Omnibus data protection regulation such as the GDPR provides a baseline level of protections for data processed outside of a healthcare setting. This is essential for securing data rights in circumstances in which consumer devices are actively designed or can be repurposed to engage in digital phenotyping. However, frameworks such as the U.S. Health Insurance Portability and Accountability Act (HIPAA) place greater emphasis on the context of processing and the parties involved, with consumers relying either on more general state law such as the California Consumer Privacy Act (CCPA) or the FTC as a backstop to pursue data governance rights outside of a HIPAA context. As U.S. policymakers react to the growth of digital phenotyping and there are state and federal attempts to introduce broader regulatory frameworks akin to the CCPA, there will be opportunities to learn from the EU experience with the GDPR. Where digital phenotyping allows health-related insights to be drawn from an increasingly diverse range of data, greater regulatory clarity on the categorization and treatment of digital phenotyping data in different contexts, for example, on the scope of EU GDPR definition of personal data concerning health, would allow agencies such as data protection authorities to better allocate scarce resources. While the FTC in the United States has continued to emphasize its supervision of health-related data, even when not covered by HIPAA, there remains no general concept of sensitive data in U.S. general law to
provide ex ante guidance to consumers of their rights. For U.S.
policymakers, this creates the opportunity to improve on the GDPR
in this respect and provide greater clarity around the use of data for
digital phenotyping. While governing digital phenotyping at scale
may require new models of resource allocation and oversight, initial
steps could focus on developing enforceable industry standards,
such as approved GDPR codes of conduct, to act as certifications of
specific data governance standards for consumers. Given the import-
ance of international collaboration in medical research, it will be es-
sential for policymakers across jurisdictions to consider the
obstacles reported by medical researchers in complying with sub-
stantially different local data regulations.

Although reforms to existing regulatory frameworks are re-
quired, there also remains underenforcement of regulations which
are already in force. Even where digital phenotyping is covered by
data protection regulations that apply outside of institutional re-
search studies, given the potential scale of the field due to wide-
spread adoption of consumer electronics, regulators lack the
resources required to provide comprehensive oversight. A 2019
study found that numerous mobile health apps still regularly failed
to disclose processing of special category health data under the
GDPR, instead providing only the more basic protections required
for less sensitive data. Even among prominent apps more prone to
regulatory scrutiny, the complexity of terms and applicable regu-
lations can prevent consumers from understanding the nature of their
data being processed. For example, the Fitbit Privacy Policy treats
the activity and fitness data that it directly collects as if they were
nonhealth data, while noting that for any health data obtained from
other sources, or other special category data under the GDPR, Fitbit
will notify users and request separate explicit consent to process that
data. However, the same Privacy Policy separately informs users
of the possibility that a broad range of collected data, including ex-
cessive sleep, biometric, geolocation, and personally identi-
fying information, may be collected. The result is that data subjects
may be unclear when accepting the Privacy Policy what forms of
data Fitbit classifies as “health data” at that time and must trust
that Fitbit will seek additional explicit consent to process this type
of data. While participants in certain forms of institutional research
or employer-sponsored programs may benefit from Fitbit, or equal-
ent hardware providers’ research conduct guidelines or HIPAA-
compliant offerings, these are unavailable to consumers using the
same device outside of the settings contemplated by institutional re-
search or HIPAA. While legislation such as the CCPA provides more
explicit guidance on which forms of data are subject to certain rights
and goes beyond the FTC’s narrower remit, the CCPA itself has no
dedicated enforcement agency that can issue engage with issues of
interpretation or conduct investigations. It has been argued that this
sector-specific approach without a designated regulatory contact
point created obstacles to rapid U.S. public–private sector collabora-
tion in responding to coronavirus disease 2019 (COVID-19) in
2020.

Moreover, despite initially being developed as a consumer de-
vice, Fitbit and similar wearable devices are increasingly used to gen-
erate health-related insights in both research and consumer settings.
However, there are few agreed standards and minimal regulatory
oversight over the necessary reliability of outputs for research and
clinical purposes. Although classification as a “medical device”
introduces requirements regarding the validity of results, longitu-
dinal reporting, notification to users of serious health concerns, and
improved reporting, only some device manufacturers have elected to
seek classification as a medical device (eg, Apple Watch’s electrocar-
diogram app obtained de novo Food and Drug Administration clear-
ance in the United States, and is classified as a class II medical
device), and often only for some device functions. The methodol-
gy for classification as a medical device differs across jurisdictions,
and the distinction between a medical device and a “wellness
device” can depend on the manufacturer’s intended uses for the de-
vice. Particularly for software products, manufacturers can en-
counter difficulties navigating complex regulation, and products
that require classification as a medical device may still be available
for public access without appropriate oversight. As a result, con-
sumers may be under the impression that a product has been subject
to a greater degree of regulatory scrutiny with regard to the quality
of its data measurement and analysis than is necessarily the case.

The Fitbit Research Pledge is an example of a consumer device
provider explicitly applying aspects of institutional research frame-
works to the use of their device, but it is not yet clear that new bind-
ing obligations are imposed or that this applies outside of formal
studies and published research. Although the FTC has broad juris-
diction over similar forms of representations to consumers, the
Research Pledge appears to apply only in institutional research settings
where those rights would already be provided as part of the institu-
tional review board process. Particularly when outside of an institu-
tional research setting, digital phenotyping is vulnerable to many of
the common problems in mobile health. Companies collecting sensi-
tive health data regularly make unilateral changes to their terms of
service, and privacy disclosures are frequently inadequate, under-
score a lack of protection for personal data and user privacy. Un-
disclosed sharing of digital phenotyping data, including linkable
identifiers, is prevalent. Inconsistent regulatory oversight, unclear
terms and conditions, and failure to disclose data sharing and sec-
ondary use can limit the ability for healthcare professionals to rec-
ommend otherwise beneficial apps in fields such as mental health
care. In the research context, the GDPR adopts lower protections
for data subjects in which the purpose of processing is solely for sta-
tistical or scientific research purposes. Despite submissions from
some concerned groups, such as the BioMolecular Resources Re-
search Infrastructure–European Research Infrastructure Consortium
regarding the need to define “scientific research” to exclude some
forms of commercial processing, the GDPR was passed to also al-
low commercial providers to use this research exemption to process
sensitive personal data without consent (though still subject to EU
Member State law, technical safeguards, and research ethical stan-
ards). Clear policy guidance on data sharing practices in these
instances is critical to maintaining public trust in scientific digital
phenotyping research and enabling the use of these methods for clin-
cal care.

THE RISKS OF DIGITAL PHENOTYPING: LESSONS FROM GENETICS

When considering improvements to the framework for digitalphe-
notyping, there are also valuable precedents from an earlier wave of
health technology innovation. Advances in genotyping techniques,
particularly from the 1990s onward, created an extraordinary op-
portunity to better understand human health. At the same time, the
sharing of the sensitive individual-level health data required for sci-
entific advances created the need to develop new standards, policies,
and regulations for genetics and bioinformatics research. This
allowed policymakers in some jurisdictions to enact measures such as obligatory genetic counseling, requirements for validity of results, informed consent, and chain of custody procedures, which built on iterative resources such as the Bermuda Principles, Oviedo Convention, genetic testing protocols, and Council for International Organizations of Medical Sciences guidelines.

To advance human health and infectious disease research, cross-border data sharing has become essential in genomics, leading to the creation of a variety of genomic data resources. These databases are mainly constructed by and for publicly funded scientific and medical researchers and their institutions. They range from being completely open, like the BRCA exchange, ClinVar, and Genome Aggregation database, to having regulated access like the European Genome-Phenome Archive, the dbGaP (database of Genotypes and Phenotypes), and the Human Gene Mutation database. Potentially instructive models to draw on for digital phenotyping data include controlled- or managed-access models, data access committees, data safe havens, dynamic and tiered consent, differential access, explicit open-access consent, and portable legal consent. In particular, dynamic and tiered consent models are readily applicable to areas of digital phenotyping, in which the sensors for data collection tend to be associated with a consumer device, such as a mobile phone, which could more easily support a user-friendly interface for dynamic consent models. Through collaboration across researchers, commercial providers, and regulators, it may be possible to leverage these technology platforms to further improve the delivery and application of data management solutions developed in genomics.

A series of studies have demonstrated the challenges for researchers of fully anonymizing data (including in controlled-access databases such as the dbGaP), observing data subjects’ bounded consent on collected data, and delivering clinically valid and meaningful data in a direct-to-consumer setting. While the lessons learned from genomics in these areas can assist with approaching digital phenotyping data governance, we must also be mindful of the important differences between genotypic and phenotypic data. While genotypic data solely comprise genetic code, digital phenotyping data are extremely diverse. As a result, the data collected under the umbrella of digital phenotyping may give rise to a broader range of possible harms.

Though there are a number of differences between genotyping and digital phenotyping data (see Figure 1), the disparity is especially apparent in the manner of collection. The negligible costs of most types of digital phenotyping data collection after initial investments in infrastructure means that it is efficient to aggregate large datasets from different users who may be unaware of their inclusion in a dataset where personal devices upload data by default to a centralized data controller. Even in cases in which explicit agreement is sought in terms of service for data collection, the terms may not reflect the nature of consent for research or secondary use, and complex terms and conditions can result in user fatigue and a “tick-box” approach, meaning that users are less likely to provide truly informed consent. Moreover, the vast majority of digital phenotyping data arise from commercial products, in which the role of these data and the associated research is at least in part to support a business model. Most of these data are therefore not used to produce pure public goods or knowledge and are not freely available under existing governance frameworks for proprietary data.

The current fragmented approach to regulatory oversight, classification of data for the purpose of identifying the applicable laws, and varying data governance practices lowers user trust in digital phenotyping and limits potential medical research. While precedents of considered regulation and multistakeholder collaboration in genomics should inform developments in this field, it is also important to improve on these models where possible, and address aspects of digital phenotyping that require novel solutions.

While genetics databases have generally tended toward releasing aggregate data, the unique collection and delivery platforms of digital
Table 1. Building on developments in genetics to establish a path for digital phenotyping

Data governance	Lessons From Genetics	Digital Phenotyping
	• Open, tiered, and managed data access	• Federated learning and zero-knowledge proofs could allow secure data sharing even between competing organizations
	• Innovative consent models	• Differential privacy (adding noise to individual datapoints) can be applied, especially where location/GPS data is recorded
Informed consent	• Culture of research ethics and oversight	• Transparent presentation of terms, employing modern UX practices
	• Clear classification of consent to participation in secondary data use and explanation of the implications	• Innovation in dynamic consent and user interfaces for research
Research methods	• Developing standards for the reliability of results in clinical settings	• FACT AI and models that actively adjust for demographic parity
	• Leveraging data-sharing practices for genome-wide association studies	• Provision of reliable outputs and contextualizing clinically relevant information
Supervision and governance models	• Multistakeholder input into applicable guidelines and regulatory frameworks	• Enabling regulatory oversight through allocation of resources and cross-domain expertise to existing consumer protection regulators
	• Scope for public–private collaboration and research exemptions included in applicable laws	• Developing practical industry codes, guidance, and oversight mechanisms (eg, an enforceable GDPR code)
Ongoing challenges	• Direct-to-consumer models and collaboration among clinicians, commercial providers, and researchers	• Diverse potential harms from data collection and processing due to heterogeneous data
	• Anonymization of individual-level data	• Heightening the differences and disparities of historically marginalized groups
	• Biobanks that balance the values and rights of participants while ensuring their long-term sustainability.	• Transparency regarding the validity of inferences and associated behavioral interventions
		• Commercially led approach to traditionally public research

AI: artificial intelligence; FACT AI: Fairness, Accountability and Transparency in AI; GDPR: General Data Protection Regulation; UX: user experience.

tal phenotyping may offer new models for data management and informed research participation (see Table 1). For instance, these technologies include the means to reduce the current practice of centralized data consolidation for the purposes of extracting value. Through privacy-preserving, decentralized methods like federated learning and zero-knowledge proofs, users could maintain sole custody of their data. These methods also enable model sharing, as opposed to data sharing, which could allow for more seamless cooperation between corporations and academic or public sector institutions. Advances in general techniques that are applicable beyond digital phenotyping such as differential privacy techniques could also address this issue by collecting and aggregating information about groups of users’ habits and behaviors while not sharing data from individual users. Similarly, from a consumer-facing perspective, digital phenotyping technologies could enable innovation in dynamic consent and through modern user interfaces and devices. These techniques remain the subject of ongoing academic research and improvement in their application to digital phenotyping. For example, differential privacy techniques have been found to be difficult to apply in practice by some healthcare researchers and dynamic consent models can lead to underproduction of data for secondary studies. These trade-offs demonstrate the complex challenges posed by the field and indicate that regulatory frameworks ought to clearly prescribe the forms of digital phenotyping data to which they apply, while remaining principles-based and technology neutral in their requirements for data governance.

The COVID-19 pandemic has further complicated the ethics and governance of the collection and use of digital phenotyping data. For example, in some jurisdictions, anyone who carries a smartphone can now be considered a potential transmitter of COVID whose location and contacts with other smartphone users can be traced. This rapid expansion of the types of data that can be considered “health-related” may become entrenched after the pandemic, as forms of behavior that were previously seen as unrelated to health, such as an individual’s movement through physical space and their contact with others, are increasingly considered to be relevant for analysis of public health crises such as infectious disease spread.

Given the nature of the data collected, laying the foundations for responsible data governance and providing reliable, well-validated, and contextualized outputs will be critical to building trust and enabling the development of the digital phenotyping field. Mobile and wearable technologies have the potential to transform healthcare by providing low-cost, objective measurements of physical, cognitive, emotional, and social behaviors at unprecedented scale. Nonetheless, several limitations must be overcome if this potential is to be realized, particularly as the development and deployment of digital phenotyping technologies for mobile health has vastly outpaced that of the methodology to evaluate its validity and safeguard
users’ rights. Several complex issues must first be resolved, such as around who owns, controls, and can use personal health data to derive wider insights; the formats and standards that should underpin how these data are shared; and how the range of potential uses of personal data are explained and justified to data subjects.

FUNDING

IP-P is supported by GlaxoSmithKline and Engineering and Physical Sciences Research Council through an iCASE fellowship (17T00053). DS is supported by the Embiricos Trust Scholarship of Jesus College Cambridge and the Engineering and Physical Sciences Research Council through grant DTP (EP/N509620/1). JC is the recipient of a doctoral scholarship from The Alan Turing Institute. JM is supported by the Wellcome Trust.

AUTHOR CONTRIBUTIONS

IP-P, DS and JC developed the initial concept of the article. IP-P led the manuscript writing and finalized the article. JM and JC led the digital ethics discussion. IP-P and DS led the technical considerations, and JGM led the legal scholarship, while all authors provided edits to the contents of this manuscript. IP-P and DS created the figure and table with inputs from all other authors. The final manuscript was approved by all authors.

CONFLICT OF INTEREST STATEMENT

The authors declare no competing interests.

DATA AVAILABILITY

No new data were generated or analyzed in support of this research.

REFERENCES

1. Dove E, Chen J. Should consent for data processing be privileged in health research? A comparative legal analysis. *Int Data Privacy Law* 2020; 10 (2): 117–31.
2. Omnela JP, Rauch SL. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. *Neuropsychopharmacology* 2016; 41 (7): 1691–6.
3. Jain SH, Powers BW, Hawkins JB, Brownstein JS. The digital phenotype. *Nat Biotechnol* 2015; 33 (5): 462–3.
4. Torous J, Kiang MV, Lorne J, Omnela JP. New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. *JMIR Ment Health* 2016; 3 (2): e16.
5. Bauhoff S. Systematic self-report bias in health data: impact on estimating cross-sectional and treatment effects. *Health Serv Outcomes Res Method* 2011; 11 (1–2): 44–53.
6. Girdha M, Dumitruc S, Fiume M, et al. Pheno tips: patient phenotyping software for clinical and research use. *Hum Mutat* 2013; 34 (8): 1057–65.
7. McCambridge J, Witton J, Elbourne DR. Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. *J Clin Epidemiol* 2014; 67 (3): 267–77.
8. Omnela JP. Opportunities and challenges in the collection and analysis of digital phenotyping data. *Neuropsychopharmacology* 2021, 46: 45–54.
9. White RW, Horvitz E. Population-scale hand tremor analysis via anonymized mouse cursor signals. *NPJ Digit Med* 2019; 2 (1): 93.
10. White RW, Doraiswamy PM, Horvitz E. Detecting neurodegenerative disorders from web search signals. *NPJ Digit Med* 2018; 1 (1): 8.
11. Pasquale F. Grand bargains for big data: The emerging law of health information. *MD L Rev* 2012; 72: 682.
12. Toumaino A. Wearables and personal health data: putting a premium on your privacy. *Brooklyn Law Rev* 2017; 82 (4): 6.
13. Wang R, Blackburn G, Desai M, et al. Accuracy of wrist-worn heart rate monitors. *JAMA Cardiol* 2017; 2 (1): 104–6.
14. Ajunwa I. Algorithms at work: productivity monitoring applications and wearable technology as the new data-centric research agenda for employment and labor law. *Louis ULJ* 2018; 63: 21.
15. Montgomery K, Chester J, Kopp K. Health wearables: ensuring fairness, preventing discrimination, and promoting equity in an emerging Internet-of-Things environment. *J Information Policy* 2018; 8: 34–77.
16. Mathews SC, McShea MJ, Hanley CL, Ravitz A, Labrique AB, Cohen AB. Digital health: a path to validation. *NPJ Digit Med* 2019; 2 (1): 38.
17. Zu J, Schiebinger L. (2018). AI can be sexist and racist—it’s time to make it fair. *Nature* 2018; 559: 324–6.
18. Mitchell M, Wu S, Zaldivar A, et al. Model cards for model reporting. In: *FAT19: Proceedings of the Conference on Fairness, Accountability, and Transparency*, 2019: 220–9.
19. Solove DJ, Hartog W. The FTC and the new common law of privacy. *Colum L Rev* 2014; 114: 583.
20. 45 C.F.R. § 160.103. https://www.govinfo.gov/content/pkg/CFR-2014-title45-vol1/pdf/CFR-2014-title45-vol1-sec160-103.pdf Accessed October 18, 2020.
21. See, eg, U.S. Department of Health & Human Services, ‘Health App Use Scenarios & HIPAA’ (February 2016) https://www.hhs.gov/sites/default/files/ocr-health-app-developer-scenarios-2-2016.pdf.
22. Rich JL. Prepared Statement of the Federal Trade Commission on Opportunities and Challenges in Advancing Health Information Technology. 2016. https://www.ftc.gov/system/files/documents/public_statements/941063160322commtestimonyhealthinfo.pdf. Accessed October 18, 2020.
23. Schwartz PM, Solove DJ. Reconciling personal information in the United States and European Union. *Calif L Rev* 2014; 102: 877.
24. Bovenberg J, Pelosiin D, Bierer B, Barnes M, Knoppers BM. How to fix the GDPR’s frustration of global biomedical research. *Science* 2020; 370 (6512): 40–2.
25. Huckvale K, Torous J, Larsen ME. Assessment of the data sharing and privacy practices of smartphone apps for depression and smoking cessation. *JAMA Netw Open* 2019; 2 (4): e192542.
26. Fisher Legal Privacy Policy. https://www.fitbit.com/us/legal/privacy-policy. Accessed March 20, 2020.
27. Bradford LR, Aboy M, Liddell K. COVID-19 contact tracing apps: a stress test for privacy, the GDPR and data protection regimes. *J Law Biosci* 2020; 7 (1): Issaa034.
28. Piwek L, Ellis DA, Andrews S, Joinson A. The rise of consumer health monitors. *PLoS Med* 2013; 10 (2): e1001953.
29. Thorogood A, Touré SB, Ordish J, Hall A, Knoppers B. Genetic database software as medical devices. *Hum Mutat* 2018; 39 (11): 1702–12.
30. van Drooge A, de Bruijn A, Roszek B, Vonk R. Apps under the medical model. *NPJ Digit Med* 2016; 3 (2): e16.
31. Schwartz PM, Solove DJ. Reconciling personal information in the United States and European Union. *Calif L Rev* 2014; 102: 877.
32. Viertler C, Zatloukal K. Biobanking and biomolecular resources research infrastructure (BBMRI). Implications for pathology. *Pathologe* 2018; 9 (2): 117–32.
33. Kalokairinou L, Howard HC, Slokenberga S, et al. Genetic database software as medical devices. *Hum Mutat* 2018; 39 (11): 1702–12.
34. van Drooge A, de Bruijn A, Roszek B, Vonk R. Apps under the medical model. *NPJ Digit Med* 2016; 3 (2): e16.
35. European Convention for the Protection of Human Rights and Dignity of the Human Being with regard to Application of Biology and Medicine: Convention on Human Rights and Biomedicine. CETS No 164. 1997.
36. Lwoff L. Council of Europe adopts protocol on genetic testing for health purposes. *Eur J Hum Genet* 2009; 17 (11): 1374–7.

37. World Health Organization and Council for International Organizations of Medical Sciences. *International Ethical Guidelines for Health-Related Research Involving Humans*. Geneva, Switzerland: WHO Press; 2016.

38. Cline MS, Liao RG, Parsons MT, BRCA Challenge Authors, et al. BRCA challenge: BRCA exchange as a global resource for variants in BRCA1 and BRCA2. *PLoS Genet* 2018; 14 (12): e1007752.

39. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. *Nucleic Acids Res* 2018; 46 (D1): D1062–D1067.

40. Karczewski K, Francioli L. (2017). The genome aggregation database (gnomAD). MacArthur Lab. https://macarthurlab.org/2017/02/27/the-genome-aggregation-database-gnomad/. Accessed July 17, 2020.

41. Lappalainen I, Almeida-King J, Kumanduri V, et al. The European Genome-Phenome archive of human data consented for biomedical research. *Nat Genet* 2015; 47 (7): 692–5.

42. Tryka KA, Hao L, Steurke A, et al. NCBI’s database of genotypes and phenotypes: dbGaP. *Nucleic Acids Res* 2014; 42 (D1): D975–D979.

43. Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. *Hum Genet* 2014; 133 (1): 1–9.

44. Bot BM, Suver C, Neto EC, et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. *Sci Data* 2016; 3: 160011.

45. Arias J, Pham-Kanter G, Campbell E. The growth and gaps of genetic data sharing policies in the United States. *J Law Biosci* 2015; 2 (1): 56–68.

46. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: Concept and applications. *ACM Trans Intell Syst Technol* 2019; 10 (2): 1–19.

47. Sheller MJ, Edwards B, Reina GA, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. *Sci Rep* 2020; 10 (1): 12598.

48. Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. *NPJ Digit Med* 2020; 3 (1): 119.

49. Zhang P, Schmidt DC, White J, Lenz G. Blockchain technology use cases in healthcare. *Ad Hoc Comput* 2018; 111: 1–41.

50. Dankar FK, El Emam K. Practicing differential privacy in health care: A review. *Trans Data Priv* 2013; 6 (1): 35–67.

51. Wilbanks JT. Electronic informed consent in mobile applications research. *J Law Med Ethics* 2020; 48 (1_suppl): 147–53.

52. Morley J, Cowls J, Taddeo M, Floridi L. Ethical guidelines for COVID-19 tracing apps. *Nature* 2020; 582(7810): 29–31.

53. Perez-Pozuelo I, Spathis D, Clifton EA, Mascolo C. Wearables, smartphones, and artificial intelligence for digital phenotyping and health. In: Syed-Abdul S, Zhu X, Fernandez-Luque L, eds. *Digital Health: Mobile and Wearable Devices for Participatory Health Applications*. Netherlands: Elsevier; 2020: 33–54.

54. Spathis D, Servia-Rodriguez S, Farrahi K, Mascolo C, Rentfrow J. Passive mobile sensing and psychological traits for large scale mood prediction. In: *Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare*; 2019: 272–281; Trento, Italy.