A SIDON-TYPE CONDITION ON SET SYSTEMS

Peter J. Dukes and Jane Wodlinger

May 3, 2014

Abstract. Consider families of k-subsets (or blocks) on a ground set of size v. Recall that if all t-subsets occur with the same frequency λ, one obtains a t-design with index λ. On the other hand, if all t-subsets occur with different frequencies, such a family has been called (by Sarvate and others) a t-adesign. An elementary observation shows that such families always exist for $v > k \geq t$. Here, we study the smallest possible maximum frequency $\mu = \mu(t, k, v)$.

The exact value of μ is noted for $t = 1$ and an upper bound (best possible up to a constant multiple) is obtained for $t = 2$ using PBD closure. Weaker, yet still reasonable asymptotic bounds on μ for higher t follow from a probabilistic argument. Some connections are made with the famous Sidon problem of additive number theory.

1. Introduction

Given a family (which may contain repetition) A of subsets of a ground set X, the frequency of a set $T \subset X$ is the number of elements of A (counting multiplicity) which contain T.

Let $v \geq k \geq t$ be nonnegative integers. A t-design, or $S_\lambda(t, k, v)$, is a pair (V, B) where B is a family of k-subsets of V such that every t-subset has the same frequency λ. Typically, V is called a set of points, B are the blocks, t is the strength (reflecting that t-designs are also i-designs for $i \leq t$) and λ is the index. Repeated blocks are normally permitted in the definition.

There are ‘divisibility’ restrictions on the parameters v, k, t, λ and beyond that very little is known in general about the existence of $S_\lambda(t, k, v)$. There are some trivial cases, such as $t = 0$, $t = k$ or $k = v$, and some mildly interesting ones: $\lambda = t = 1$ leads to uniform partitions; $\lambda = \binom{v-t}{k-t}$ is realized via the complete k-uniform hypergraph of order v. For $t = 2$ and fixed k there is a rich and deep asymptotic existence theory due to R.M. Wilson; see [5]. Spherical geometries and Hadamard matrices lead to some examples for $t = 3$.

In [4], Sarvate and Beam consider an interesting twist on the definition. A t-adesign is defined as a pair (V, A), where V is a ground set of v points and A is a collection of blocks of size k, satisfying the condition that every t-subset of points has a different frequency.

Here, we abbreviate a t-adesign with $A(t, k, v)$. It is easy to see that such families always exist for integers $v > k \geq t \geq 1$: simply assign multiplicities to $\binom{v}{k}$ according to different powers of two.

This begs a more intricate question. Let $\mu(t, k, v)$ denote the smallest maximum frequency, taken over all adesigns $A(t, k, v)$. The main question motivating this article is the following.

Problem. Given t, k, v, determine (or bound) $\mu(t, k, v)$.

This research is supported by NSERC.
In most of the previous investigations on adesigns, the cases of interest have been for \(t = 2 \) and when the different pairwise frequencies are \(1, 2, \ldots, \binom{v}{2} \). It should be noted that here we allow zero as a frequency, although if desired it is not hard to bump up all frequencies to be positive.

From the definitions and easy observations above, we have

\[
(1) \quad \binom{v}{t} - 1 \leq \mu(t, k, v) < 2\binom{v}{k}.
\]

However, the basic upper bound in (1) is unsatisfactory, at least asymptotically in \(v \). Our main goal is a substantial reduction of the upper bound (to something independent of \(k \)).

Theorem 1. For \(k > 2t + 2 \) and sufficiently large \(v \),

\[
\mu(t, k, v) \leq 16tv^{2t+2} \log v.
\]

The constant is surely not best possible; however, we are content until more is known about the exponent.

We can do much better when \(t \leq 2 \). For \(t = 1 \), an elementary argument gives the exact value of \(\mu \). And for \(t = 2 \), Wilson’s theory of PBD closure reduces the upper bound on \(\mu \) to a constant multiple of its lower bound.

Theorem 2. For positive integers \(v > k \),

\[
\mu(1, k, v) = \begin{cases}
 v - 1 & \text{if } 2k \leq v \text{ and } \binom{v}{2} \equiv 0 \pmod{k}, \\
 v & \text{if } 2k \leq v \text{ and } \binom{v}{2} \not\equiv 0 \pmod{k}, \\
 \left\lceil \frac{1}{v-k} \binom{v}{2} \right\rceil & \text{if } 2k > v.
\end{cases}
\]

Theorem 3. There is a constant \(C = C(k) \) such that \(\mu(2, k, v) \leq Cv^2 \).

The proof of Theorem 1 follows a probabilistic argument and occurs in Section 2. The proofs of Theorems 2 and 3 are given in Section 3.

Before beginning our detailed investigations, we should mention some connections with a central topic in additive combinatorics. Briefly, a **Sidon sequence** (or **Golomb ruler**) is a list of positive integers whose pairwise sums are all distinct, up to swapping summands. More generally, a **B\(_r\)-sequence** or **Sidon sequence of order** \(r \) has the property that all its \(r \)-wise sums are distinct. It is known (see [3]) that the largest cardinality \(F_r(n) \) of a Sidon sequence of order \(r \) contained in \([n]\) satisfies

\[
(2) \quad n^{1/r}(1 - o(1)) \leq F_r(n) \leq C(r)n^{1/r}.
\]

Now consider an adesign \(A(t, v-1, v) \), where \(V \) is the ground set of size \(v = k+1 \). Assign multiplicity \(f(x) \), chosen from a Sidon sequence of order \(t \), to the ‘co-singleton’ set \(V \setminus \{x\}, x \in V \). The inherited weight on a \(t \)-subset \(T \) is \(\sum_{x \in T} f(x) \). By construction, this takes distinct values on all \(t \)-subsets. From this and (2), we see that \(\mu(t, v-1, v) \leq Cv^t \), which is best possible up to a constant multiple. However, it is also clear that the exact determination of \(\mu \), even in the case \(v = k + 1 \), is as difficult as the Sidon problem.
2. The general bound

We prove Theorem 1 by employing B_t-sequences along the lines of the discussion concluding Section 1. But here, a probabilistic selection is needed to control the upper bound on μ.

Proof of Theorem 1. Assume $t > 1$, appealing to Theorem 2. Suppose first that v is a prime power. Bose and Chowla [1] construct a B_t-sequence of size v in $[v^t]$. Let V be such a set of integers and consider the family B of all k-subsets of V, where a k-set K is taken with multiplicity

$$f(K) = \sum_{m \in V \setminus K} m.$$

Then the frequency of a t-subset T in B is

$$f(T) = \sum_{K \supseteq T; |K| = k} f(K) = \binom{v-t-1}{k-t} \sum_{m \in V \setminus T} m. \quad (3)$$

By choice of V, these are all distinct frequencies. Observe that $\sum_{m \in V \setminus T} m < v^t(v-t)$, so that $f(T)$ is at most a polynomial of order v^{k+1}.

Consider next a family $A = A(p)$ consisting of each element of B chosen independently with probability p. We claim there is some p guaranteeing an adesign $A(t, k, v)$ of the required form.

Let $f_A(T)$ denote the frequency of T in A. This is a sum of $f(T)$ independent binomial random variables X_i, one for each k-set in B containing T. So $f_A(T)$ has expected value $\mu = pf(T)$ by linearity.

Now let’s invoke a (weak but tidy) two-sided Chernoff bound of the form

$$\mathbb{P}\left[\left| \sum X_i - \mu \right| > 2\sqrt{\mu \log 1/\epsilon} \right] < \epsilon,$$

which holds for $\epsilon > \exp(-\mu/4)$. Taking $\epsilon = \binom{v}{t}^{-1}$, we conclude that there exists (with positive probability) a family A such that

$$|f_A(T) - pf(T)| < \sigma(T), \quad (4)$$

for every t-set T, where $\sigma(T) := 2\sqrt{pf(T) \log \binom{v}{t}}$, and for each p with $pf(T) > 4 \log \binom{v}{t}$.

It remains to check that frequencies $f_A(T)$ remain distinct and appropriately bounded for some choice of p. By (3) and (4), we have distinct frequencies provided that

$$2\sigma(T) < p \binom{v-t-1}{k-t}. \quad (5)$$

Using the definition of $\sigma(T)$ and $\sum_{m \in T} m < v^t(v-t)$, it suffices to have

$$16v^t(v-t) \log \binom{v}{t} < p \binom{v-t-1}{k-t}.$$

The right side of (5) grows faster than the left for $k \geq 2t + 2$; hence, for sufficiently large v, we can choose $p = 16v^{t+1} \log \binom{v}{t} / \binom{v-t-1}{k-t} < 1$ (easily permitting application of the Chernoff bound above.)

For such a choice, we have

$$\max_T f_A(T) < pf(T) + \sigma(T) < (16v^{2t+2} + 8v^{t+1}) \log \binom{v}{t}.$$

3
The bound \(\log \binom{v}{t} \leq t \log v - \log t! \) leaves enough room to eliminate the lower-order term and imply the stated bound.

Finally, if \(v \) is not a prime power, we can simply apply the above argument to a prime \(v' \leq v + o(v) \) to obtain asymptotically the same result. \(\square \)

3. The cases \(t = 1 \) and \(t = 2 \)

When \(t = 1 \), we simply demand that every point is in a different number of blocks. A complete characterization is possible here, following a technique known to Sarvate and Beam in early investigations. To the best of our knowledge, though, Theorem 2 has not been worked out for general \(v \) and \(k \).

The proof strategy is as follows. Suppose \(f(1) < \cdots < f(v) \) are desired pointwise frequencies whose sum \(F \) is divisible by \(k \). Set up \(b = F/k \) blocks, and place element '1' in the first \(f(1) \) blocks, element '2' in the next \(f(2) \) blocks, and so on, with blocks identified modulo \(b \). In other words, the \(i \)th block contains those elements \(x \) such that
\[
\sum_{1 \leq y < x} f(y) < bq + i \leq \sum_{1 \leq y < x} f(y)
\]
for some integer \(q \in \{0, 1, \ldots, k - 1\} \). Care must be taken that the maximum frequency \(f(v) \) does not exceed \(b \), the number of blocks. Ideally, the frequencies are chosen to be consecutive, or almost consecutive integers.

Proof of Theorem 2. We apply the above construction using a run of (almost) consecutive prescribed frequencies. There is a division into two main cases.

Case 1: \(2k \leq v \).

Suppose first that \(k \mid \binom{v}{2} \). Fill \(b = \binom{v}{2}/k \) blocks with pointwise frequencies \(0, 1, \ldots, v - 1 \). Note that \(b \geq v - 1 \) follows from the assumption \(2k \leq v \). On the other hand, if \(\binom{v}{2} = bk - r, \ 0 < r < k \), use \(b \) blocks with frequencies \(0, 1, \ldots, v - r - 1, v - r + 1, \ldots, v \). One has sum of frequencies \(bk = \binom{v+1}{2} - (v - r) = \binom{v}{2} + r \), as required. In either sub-case, the smallest possible maximum frequency is realized and we have
\[
\mu(1, k, v) = \begin{cases}
 v - 1 & \text{if } \binom{v}{2} \equiv 0 \pmod{k}, \\
 v & \text{if } \binom{v}{2} \not\equiv 0 \pmod{k}.
\end{cases}
\]

Case 2: \(2k > v \). We first show that the given value \(\lceil \frac{1}{v-k} \binom{v}{2} \rceil \) is a lower bound on \(\mu(1, k, v) \). Suppose \(m \) is the maximum frequency in an adesign \(A(1, k, v) \). Then
\[
mk \leq bk \leq (m - v + 1) + \cdots + (m - 1) + m = mv - \binom{v}{2}.
\]

In other words, \(m \) is an integer with \(m(v-k) \geq \binom{v}{2} \) and the lower bound follows. Conversely, we must realize the given value \(\mu := \lceil \frac{1}{v-k} \binom{v}{2} \rceil \) as the maximum frequency in an adesign \(A(1, k, v) \). Put \(bk = \mu v - \binom{v}{2} - r \), for some positive integer \(b \) and \(0 \leq r < k \). Again, use the strategy preceding the statement of the theorem, with \(b = \frac{1}{\mu}(\mu v - \binom{v}{2} - r) \) blocks and frequencies
\[
\mu - v, \ldots, \mu - v - r - 1, \mu - v - r + 1, \ldots, \mu.
\]
It remains to check that $\mu \leq b$. However, this follows easily since μ is the least integer with $\mu(v-k) \geq \binom{v}{2}$. Therefore, $\mu k \leq \mu v - \binom{v}{2}$. On the other hand, b is the greatest integer so that $bk \leq \mu v - \binom{v}{2}$. □

We turn now to adesigns with $t = 2$. An important tool here is ‘PBD closure’, which we briefly outline. Let K be a set of positive integers, each at least two. A pairwise balanced design PBD(v, K) is a set of v points, together with a set of blocks whose sizes are in K, having the property that every unordered pair of different points is contained in exactly one block. Wilson’s theorem [5] asserts that the necessary ‘global’ and ‘local’ divisibility conditions on v given K are asymptotically sufficient for the existence of PBD(v, K).

A key observation for the proof of Wilson’s theorem is the ‘breaking up blocks’ construction: a block, say of size u, of a PBD can be replaced with the family of blocks of a PBD on u points. In particular, if there exists a PBD(v, K) and an $S(2, k, u)$ for every $u \in K$, then there exists an $S(2, k, v)$.

It was observed in [2] that t-adesigns actually obey a similar recursion. The basic idea is to place t-adesigns (instead of designs) on the blocks of a PBD. However, each such t-adesign needs to be accompanied with a block design on those points with sufficiently large λ so as to ‘spread out’ the pairwise frequencies. When restated using μ, one obtains the following result.

Lemma 4. Suppose there exists a PBD(v, K) with b blocks having sizes u_1, u_2, \ldots, u_b. Put $M_0 = 0$ and for $0 < i \leq b$,

$$M_i = \min \{ \lambda \geq M_{i-1} : \exists S(2, k, u_i) \} + \mu(2, k, u_i).$$

Then $\mu(2, k, v) \leq M_b$.

Remark. The minimum in (6) is well defined; more generally, $S(2, k, v)$ exists for a smallest positive integer $\lambda = \lambda_{\min}(v, k) \leq \binom{v}{k} - 1$, and such designs can be repeated with arbitrary multiplicity.

We are now ready to prove the quadratic upper bound on $\mu(2, k, v)$.

Proof of Theorem 3. For v large and $K = \{k + 1, k + 2, k + 3\}$, apply Lemma 4 to a PBD$(v, K)$. Note that such PBDs exist for all sufficiently large integers v. This follows easily from Wilson’s theorem since the three consecutive block sizes lead to no ‘divisibility’ restrictions on v (globally, $\gcd(k(k + 1), (k + 1)(k + 2), (k + 2)(k + 3)) = 2$ always divides $\binom{v}{2}$; locally, $\gcd(k, k + 1, k + 2) = 1$ divides $v - 1$).

Put $m = \max\{\mu(2, k, k + j) : j = 1, 2, 3\}$ and $l = \max\{\lambda_{\min}(k + j, k) : j = 1, 2, 3\}$. Observe l and m depend only on k. Also, observe that the number of blocks b of a PBD(v, K) satisfies $b \leq \binom{v}{2}/(k + 1)$, since $k + 1$ is the smallest block size. Combining these facts, it follows that

$$\mu(2, k, v) \leq lb \leq C(k)\binom{v}{2}. \quad \square$$

4. Discussion

There is another noteworthy construction of t-adesigns by combining copies of systems which are nearly designs. The general idea to work from a family \hat{B}_T of k-subsets such that one preferred
A \(t\)-subset \(T\) has frequency \(\lambda_1\) and all other \(t\)-subsets have frequency \(\lambda_2 < \lambda_1\). (Such families can be found, for instance, via a linear algebraic argument upon ‘clearing denominators’.) Then, take copies of \(\hat{B}_T\) with distinct multiplicities over each \(T \in \binom{V}{t}\). The crude bound obtained in this way is \(\mu(t,k,v) \leq C_1 \lambda_1 v^t + C_2 \lambda_2 v^{2t}\). However, we presently see no way of keeping \(\lambda_2\) small enough in general. This would be an interesting problem in its own right. When such families \(\hat{B}_T\) exist with reasonable \(\lambda_2\), it is possible to improve Theorem 1.

The remaining work for \(t = 2\) essentially amounts to a reduction in the multiplicative constant in Theorem 3. There are some ideas which seem promising in this direction. For instance, \(\mu(2,3,v)\) was completely determined in [2] using a blend of PBD closure, group divisible designs, and a variation on ‘anti-magic cubes’. The latter concerns a neat side-problem: place nonnegative integers in the cells of the cube \([n]^3\) so that the \(3n^2\) line sums are distinct and with maximum value as small as possible. Interesting constructions yielding line sums \(\{0,1,\ldots,3n^2-1\}\) were found for \(n = 2,3,5,7,\) and products of these values.

Returning to \(\mu(2,3,v)\), a slightly technical argument shows that the maximum frequency for triples versus pairs in an adesign is best possible.

Theorem 5 ([2]). For all \(v > 3\),

\[
\mu(2,3,v) = \begin{cases}
\binom{v}{3}, & \text{if } v = 4 \text{ or } v \equiv 2 \pmod{3}, \\
\binom{v}{2} - 1, & \text{otherwise.}
\end{cases}
\]

We omit further analysis of \(\mu(2,k,v)\) for \(k > 3\) until better general constructions surface for \(v\) small relative to \(k\). For fixed \(k\), the complete determination of \(\mu(2,k,v)\) can probably be reduced to a finite problem. Quite possibly \(\mu(2,k,v) = \binom{v}{2} - 1 + o(v)\) for each \(k\).

Acknowledgements

The authors are indebted to a referee who suggested the probabilistic method, yielding the present form of Theorem 4.

References

[1] R.C. Bose and S. Chowla, Theorems in the additive theory of numbers. *Comment. Math. Helv.* 37 (1962/1963), 141–147.
[2] P.J. Dukes and J.A. Short-Gershman, A complete existence theory for Sarvate-Beam triple systems. *Australas. J. Combin.* 54 (2012), 261–272.
[3] K. O’Bryant, A complete annotated bibliography of work related to Sidon sequences. *Elec. J. Combin.* #DS11 (2004), 39pp.
[4] D. Sarvate and W. Beam, A new type of block design. *Bull. Inst. Combin. Appl.* 50 (2007), 26–28.
[5] R.M. Wilson, An existence theory for pairwise balanced designs: III, Proof of the existence conjectures. *J. Comb. Theory, Ser. A* 18 (1975), 71–79.

Mathematics and Statistics, University of Victoria, Victoria, Canada

E-mail address: dukes@uvic.ca, jw@uvic.ca

6