The Hirsch conjecture holds for normal flag complexes

Karim A. Adiprasito *
Institut für Mathematik, FU Berlin
Arnimallee 2
14195 Berlin, Germany
adiprasito@math.fu-berlin.de

Bruno Benedetti **
Institut für Informatik, FU Berlin
Takustrasse, 9
14195 Berlin, Germany
bruno@zedat.fu-berlin.de

February 6, 2014

Abstract

Using an intuition from metric geometry, we prove that any flag normal simplicial complex satisfies the non-revisiting path conjecture. As a consequence, the diameter of its facet-ridge graph is smaller than the number of vertices minus the dimension, as in the Hirsch conjecture. This proves the Hirsch conjecture for all flag polytopes, and more generally, for all (connected) flag homology manifolds.

1 Introduction

A natural problem in linear programming is the question how many iteration steps of the simplex method are required in order to solve a linear optimization problem in d variables and given by n linear inequalities.

In other words, given an arbitrary polyhedron of dimension d and with n facets, how far away can two vertices possibly be? The distance between vertices is here measured by counting the number of edges one has to walk along, in order to move from one vertex to the other.

An elegant answer was proposed in the Sixties by Warren Hirsch in a letter to George Dantzig:

Conjecture 1.1 ((Unbounded) Hirsch conjecture [Dan63, Sec. 7.3, 7.4]). Let Q denote a $(d + 1)$-dimensional polyhedron with n facets. Then the diameter of the 1-skeleton of Q is $\leq n - (d + 1)$.

The case of unbounded polyhedra was quickly resolved when a counterexample was given by Klee and Walkup [KW67]. It remained to treat the case of bounded polyhedra (that is, polytopes), the bounded Hirsch conjecture. We state the conjecture in a form dual to the classical formulation.

Conjecture 1.2 ((Bounded) Hirsch conjecture [KW67]). The diameter of the facet-ridge graph of any $(d + 1)$-polytope on n vertices is $\leq n - (d + 1)$.

An equivalent conjecture, the W_v-conjecture, or non-revisiting path conjecture, was introduced in the Sixties by Klee and Wolfe, cf. [Kle65].

Conjecture 1.3 (Non-revisiting path conjecture, or W_v-conjecture). For any two facets of a simplicial polytope R there exists a non-revisiting path connecting them.

The reason why the W_v-conjecture implies the Hirsch conjecture is simple: Any “non-revisiting path” can be at most $n - (d + 1)$ steps long. Here is why: At the beginning of the path we are in some d-face X_0, which has (at least) $d + 1$ vertices. Next, we step into a new facet X_1, and we see a new vertex. From

*Supported by DFG within the research training group “Methods for Discrete Structures” (GRK1408) and by the Romanian NASR, project PN-II-ID-PCE-2011-3-0533.

**Supported by the Swedish Research Council, grant “Triangulerade Mängfaldar, Knutteori i diskrete Morseteori”, by the KTH Math department, and by the DFG grant “Discretization in Geometry and Dynamics”.

1
that moment on at each step we have to see a new vertex, otherwise the path would be revisiting. Since there are \(n \) vertices in total, after \(n - (d + 1) \) steps we have seen all vertices already!

Conversely, Klee and Kleinschmidt [KK87] showed that if there is a polytope \(R \) which violates the \(W_i \)-conjecture, then from \(R \) one can construct a (possibly different) polytope \(P \) that violates the Hirsch conjecture.

Conjectures 1.2 and 1.3 have been disproved recently by Santos [San12]. So the bound \(n - (d + 1) \) for the diameter is not correct. Little do we know about how the correct bound should look like. At the moment, we do not know whether a linear or even a polynomial upper bound exist. Some of the best upper bounds known so far are the bounds \(2^{d-1}n \) by Larman [Lar70] and the bound \(n^{\log d + 2} \) by Kalai [Kal92, KK92].

In this paper, we confirm the validity of the Hirsch conjecture for flag polytopes. Our proof works in the more general context of normal complexes, namely, complexes where all links of faces of codimension \(\geq 2 \) are connected. This is a common setting for the study of abstractions of the Hirsch conjecture, compare also Eisenbrand et al [EHRR10]. All polytope boundaries, all spheres, all triangulated manifolds, and even all Cohen–Macaulay complexes are normal.

Theorem 1.4. Let \(C \) be any flag normal \(d \)-complex with \(n \) vertices. Between any two facets of \(C \) there is a non-revisiting path. Hence, the dual graph of \(C \) has diameter \(\leq n - (d + 1) \).

We provide two proofs of Theorem 1.4: a geometric proof (Section 2), which follows from a result by Gromov on spaces of curvature bounded above, and a combinatorial proof (Section 3), which is more elementary, but also less intuitive.

Here is a sketch of the geometric proof. Any simplicial complex can be turned into a metric length space by assigning the same length \(\pi/2 \) to all edges of \(C \), and interpreting all \(k \)-faces of \(C \) to be equilateral simplices in the unit sphere \(S^k \in \mathbb{R}^{k+1} \). Gromov [Gro87] revealed an interesting connection between geometric properties of this “right-angled” metric and flag complexes:

Let \(C \) be any flag simplicial complex. When we endow \(C \) with the right-angled metric, the star of every vertex of \(C \) is geodesically convex.

![Figure 1.1](image.png)

Figure 1.1: a): If all vertex stars are convex, any segment \(\gamma \) intersect any vertex star in a convex segment (and therefore does not reenter the star of a vertex it has previously left). By following the segment, we obtain our desired facet path. b): A non-example. If some vertex star is not convex, some segment \(\gamma \) revisits it multiple times.

Say we have a flag normal complex and we want to find a non-revisiting path. Our idea is to endow it with the right-angled metric, and then ‘follow’ the segments, that is, the shortest geodesics inside the metric space. In fact, the intersection of any segment with an open convex set is obviously a segment (or the empty set). In particular, any segment intersects the interior of any vertex star in a connected set (possibly empty). In other words, no segment revisits a vertex star it has previously left. If we approximate a segment \(\gamma \) with the dual path formed by the \(d \)-faces crossed by \(\gamma \), the path we obtain is non-revisiting and we are done.
While the ‘flag’ assumption is needed for the convexity of vertex stars, one might wonder whether the
‘normal’ assumption is at all needed in the argument above. The truth is that we have hidden a minor
technical difficulty under the carpet. Namely, a segment might go from a d-face X to a d-face Y by
passing through a face σ of dimension $\leq d - 2$. Even if they share a vertex, X and Y are not (necessarily)
adjacent in the dual graph; so if C is not normal, it is not clear how to find a non-revisiting dual path
from X to Y inside the star of σ. The natural way to “bridge” between X and Y, is to consider the link
of σ and use induction. For this we need C to be normal.

1.1 Consequences

Theorem 1.4 has several interesting consequences. Recall that a simplicial complex is a triangulated
manifold if the union of its faces, as topological space, is homeomorphic to a manifold.

Corollary 1.5. All flag triangulations of connected manifolds satisfy the non-revisiting path property,
and in particular the Hirsch diameter bound.

Recall that a simplicial polytope is flag if its boundary complex is a flag complex. Corollary 1.5
specializes to this class as follows:

Corollary 1.6. Every flag polytope satisfies the non-revisiting path property, and in particular the Hirsch
diameter bound.

Remark 1.7. By a result of Provan and Billera [PB80], every vertex-decomposable simplicial complex
satisfies the Hirsch diameter bound. As a corollary, they obtain the following famous result:

Theorem 1.8 (Provan & Billera [PB80, Cor. 3.3.4.]). Let C be any shellable simplicial d-complex. Then
the barycentric subdivision sdC of C satisfies the Hirsch diameter bound. In particular, if C is the
boundary complex of any polytope, then sdC satisfies the Hirsch diameter bound.

The barycentric subdivision of an arbitrary triangulated manifold, however, is not vertex-decomposable
genral. The reasons are two: There are topological obstructions (all vertex-decomposable manifolds
are spheres or balls) as well as combinatorial obstructions (some spheres have non-vertex-decomposable
vertex stars, cf. [HZ00, BZ11]). That said, the barycentric subdivision of any simplicial
complex is flag. So, by Corollary 1.5, we have the following:

Corollary 1.9. The barycentric subdivision of any triangulation of any connected manifold satisfies the
Hirsch diameter bound.

1.2 Set-up

Recall that an (abstract) simplicial complex is pure if all its inclusion-maximal faces (the facets) have the
same dimension. If C is an abstract simplicial complex on n vertices, any subset of $\{1, \ldots, n\}$ not in C
isa non-face.

Definition 1.10 (Flag complexes). A simplicial complex C is flag if every inclusion minimal non-face is
a 2-element set (that is, an edge).

Definition 1.11 (Diameter of (the dual graph of) a complex). If C is a pure simplicial d-complex on n
vertices, the dual graph or facet-ridge graph of C, denoted by $G^*(C)$, is constructed as follows. The set
of vertices of $G^*(C)$ consists of the facets of C; we connect two vertices by an edge if the corresponding
facets have a $(d - 1)$-face in common. We define diam(C) as the diameter of the graph $G^*(C)$. We say
that C satisfies the Hirsch diameter bound if $\text{diam}(C) \leq n - (d + 1)$.

Recall that if σ is a face of an abstract simplicial complex C, the star $\text{St}(\sigma, C)$ of σ in C is the
collection of faces τ of C with the property that $\tau \cup \sigma \in C$; the link $\text{Lk}(\sigma, C)$ of σ in C is the collection of
faces τ of C such that $\tau \cap \sigma = \emptyset$, but $\tau \cup \sigma \in C$. If σ, τ are two faces of a simplicial complex C that lie
in a common face, then $\sigma \ast \tau$, the join of σ and τ, denotes the minimal face of C containing them both.
Definition 1.12 (Normal complexes). Let C be a pure simplicial d-complex. A pure simplicial complex C is normal if for every face σ of C (including the empty face), $G^*(\text{St}(\sigma, C))$ is connected.

For the next definition, we use the notation $F_k(C)$ to denote the set of faces of C of dimension k (or equivalently, of cardinality $k+1$). By an interval in \mathbb{Z} we mean a set of the type $[a, b] := \{x \in \mathbb{Z} : a \leq x \leq b\}$.

Definition 1.13 (Curves, facet paths and vertex paths). If X is a metric space and I is an interval in \mathbb{R}, an immersion $\gamma : I \to X$ is a curve. If C is a pure simplicial d-complex, and I is an interval in \mathbb{Z}, then a facet path is a map Γ from I to $F_d(C)$ such that for every two consecutive elements $i, i+1$ of I, we have $\Gamma(i) \cap \Gamma(i+1)$ has dimension $d-1$. A vertex path in C is a map γ from I to $F_0(C)$ such that for every two consecutive elements $i, i+1$ of I, the vertices $\gamma(i)$ and $\gamma(i+1)$ are joined by an edge.

All curves and paths are considered with their natural order from the startpoint (the image of min I) to the endpoint (the image of max I). For example, the last facet of a facet path Γ in a subcomplex S of C is the image of the maximal $z \in I$ such that $\gamma(z) \in S$. As common in the literature, we will not strictly differentiate between a curve (or path) and its image; for instance, we will write $\gamma \subset S$ to denote the fact that the image of a curve γ lies in a set S.

If γ and δ are two curves in any metric space such that the endpoint of γ coincides with the starting point of δ, we use the notation $\gamma \cdot \delta$ to denote their concatenation or product (cf. [BBI01, Sec. 2.1.1]). Analogously, if the last facet of a facet path Γ and the first facet of a facet path Δ coincide, we can concatenate Γ and Δ to form a facet path $\Gamma \cdot \Delta$. Concatenations of more than two paths are represented using the symbol \prod.

If i and j are elements in the domain of a facet path Γ, then $\Gamma_{[i, j]}$ is the restriction of Γ to the interval $[i, j]$ in \mathbb{Z}. If a facet path Γ is obtained from a facet path E by restriction to some interval, then Γ is a subpath of E, and we write $\Gamma \subset E$. Two facet paths coincide up to reparametrization if they coincide up to an order-preserving bijection of their respective domains.

Definition 1.14 (W_v-property, cf. [Kle65]). Let C be a pure simplicial complex. The facet path Γ is non-revisiting if for every pair i, j in the domain of Γ such that $\Gamma(i)$ and $\Gamma(j)$ lie in $\text{St}(v, C)$ for some vertex $v \in C$, the subpath $\Gamma_{[i, j]}$ of Γ lies in $\text{St}(v, C)$. We say that C satisfies the non-revisiting path property, or W_v-property, if for every pair of facets of C, there exists a non-revisiting facet path connecting the two.

Lemma 1.15 (cf. [KK87]). Any pure simplicial complex that satisfies the W_v-property satisfies the Hirsch diameter bound.

Finally, if M is a metric space with metric $d : M \times M \to \mathbb{R}$, then the distance between two subsets A, B of X is defined as $d(A, B) := \inf \{d(a, b) : a \in A, b \in B\}$.

2 The geometric proof

In this section, we give a geometric proof of Theorem 1.4. We need some modest background from the theory of spaces of curvature bounded above, which we review here. For a more detailed introduction, we refer the reader to the textbook by Burago–Burago–Ivanov [BBI01].

CAT(1) spaces and convex subsets

A metric space M with metric $d : M \times M \to \mathbb{R}$ is a length space if for every pair of points a and b in the same connected component of M, the value of $d(a, b)$ is also the minimum of the lengths of all rectifiable curves from a to b. A curve that attains the distance $d(a, b)$ is denoted by $[a, b]$, and is a segment connecting a and b. A geodesic $\gamma : I \to M$ is a curve that is locally a segment, that is, every point in I has an open neighborhood J such that γ, restricted to $\text{cl}(J)$, is a segment. A geodesic triangle $[a, b, c]$ in M is given by three vertices a, b, c connected by some three segments $[a, b], [b, c]$ and $[a, c]$, each of length $< \pi$.
A comparison triangle for a geodesic triangle \([a, b, c] \) in \(M \) is a geodesic triangle \([\bar{a}, \bar{b}, \bar{c}] \) in \(S^2 \) such that \(d(\bar{a}, \bar{b}) = d(a, b), d(\bar{a}, \bar{c}) = d(a, c) \) and \(d(\bar{b}, \bar{c}) = d(b, c) \). The space \(M \) is a CAT(1) space if it is a
length space in which the following condition is satisfied:

Triangle condition: For each geodesic triangle \([a, b, c] \) inside \(M \) and for any point \(d \) in the relative interior of \([a, b] \), one has \(d(c, d) \leq d(\bar{c}, d) \), where \([\bar{a}, \bar{b}, \bar{c}] \) is any comparison triangle for \([a, b, c] \) and \(d \) is the unique point on \([\bar{a}, \bar{b}]\) with \(d(\bar{a}, d) = d(\bar{a}, d) \).

Let \(A \) be any subset of a length space \(M \). The set \(A \) is convex if any two points of \(A \) are connected by a segment that lies in \(A \). The set \(A \) is locally convex if every point in \(A \) has an open neighborhood \(U \) such that \(U \cap A \) is convex. We are interested in the following property of CAT(1) spaces.

Proposition 2.1 (cf. [Tie28], [Nak31], [Pap05, Thm. 8.3.3], [BW12]). Let \(M \) denote a compact CAT(1) length space. Let \(A \) be any locally convex subset of \(M \) such that any two points in \(A \) are connected by a rectifiable curve in \(A \) of length \(\leq \pi \). Then \(A \) is convex.

Right-angled simplices and convex vertex-stars

For us, a geometric (spherical) simplex of dimension \(d \), or geometric \(d \)-simplex, is the convex hull of \(d + 1 \) points in general position in \(S^d \). A geometric simplex \(\Delta \) is right-angled if all dihedral angles of \(\Delta \) are equal to \(\pi/2 \). Equivalently, \(\Delta \) is right-angled if it is regular and of diameter \(\pi/2 \). By convention, every 0-simplex is right-angled as well.

Naturally, if \(C \) is a simplicial complex, we can assign to every face \(\sigma \) in \(C \) a right-angled geometric simplex \(\sigma_{geo} \), and subsequently glue the geometric simplices along faces using the combinatorial information given by \(C \). Since right-angled simplices of the same dimension are isometric, we can choose the gluing maps to be isometries. We say the resulting object \(C_{geo} \) is an intrinsic simplicial complex, and the distance between two points \(a, b \) in \(C_{geo} \) is given by the minimum over the length of all rectifiable curves connecting \(a \) to \(b \); this is the natural intrinsic length metric on \(C_{geo} \).

For a more detailed introduction to the intrinsic geometry of simplicial complexes, we refer the reader to [BB10, §3.2], [Cha96] and [DM99, Sec. 2.1]. For the rest of this section we consider every simplicial complex \(C \) to be endowed with its intrinsic length metric \(d \).

If \(C \) is any intrinsic simplicial complex, and \(\sigma \) is any face of \(C \), then the link \(Lk(\sigma, C) \) has a natural geometric structure itself: If \(p \) is any interior point of \(\sigma \), then \(N^1_{(p, \sigma)} C \) is the subset of unit length elements of the tangent space \(T_p(C) \) that are orthogonal to \(\sigma \). The space \(N^1_{(p, \sigma)} C \) is naturally subdivided into (right-angled) simplices itself: if \(\tau \) is any face of \(C \) containing \(\sigma \), then \(N^1_{(p, \sigma) \tau} C \), the subset of elements of \(N^1_{(p, \sigma)} C \) “pointing towards” \(\tau \), is isometric to a simplex in some sphere \(S^d \). The collection \(Lk(p, \sigma, C) \) of spherical simplices obtained this way is an intrinsic simplicial complex that is combinatorially equivalent to the link \(Lk(\sigma, C) \) of \(C \) at \(\sigma \); in this section, we shall identify the two. This is well defined: up to isometry, \(Lk(p, \sigma, C) \) does not depend on the choice of \(P \). For details, see Charney [Cha96] or [DM99, Sec. 2.2].

With this notion, Proposition 2.1 gives the following:

Corollary 2.2. Let \(C \) be a pure simplicial \(d \)-complex such that each face of \(C \) is right-angled and \(C \) is a CAT(1) metric space. Then \(St(v, C) \) is convex in \(C \) for every vertex \(v \) of \(C \).

Proof. The proof is by induction on \(d \); the case \(d = 0 \) is trivial. Assume now \(d \geq 1 \). For every vertex \(w \in C \), the simplicial complex \(Lk(w, C) \) is a CAT(1) complex (cf. [Gro87, Thm. 4.2.A]) all whose faces are right-angled. Thus, \(St(v, C) \) is locally convex since for every \(w \in St(v, C), w \neq v \), we have that \(Lk(w, St(v, C)) = St(Lk(w, w + v), Lk(w, C)) \) is convex in \(Lk(w, C) \) by inductive assumption. Furthermore, since every face of \(C \) is right-angled, every point in \(St(v, C) \) can be connected to \(v \) by a segment in \(St(v, C) \) of length \(\leq \pi/2 \). Application of Proposition 2.1 finishes the proof.

Geometric proof of Theorem 1.4.

Lemma 2.3. Let \(C \) be a normal simplicial \(d \)-complex such that each simplex of \(C \) is right-angled and \(C \) is a CAT(1) metric space. Let \(X \) be any facet of \(C \), and let \(Y \) be any finite set of points in \(C \). Then,
there exists a non-revisiting facet path Γ from the facet X of C to some facet of C containing a point of Y.

Proof. The proof, as well as the construction of the desired facet path, is by induction on the dimension d of C. The case $d = 0$ is easy: If X and Y intersect, the path is trivial of length 0. If not, the desired facet path is given by $\Gamma : \{0, 1\} \mapsto C$, with $\Gamma(0) := X$ and $\Gamma(1) := Y$, where Y is any facet of C intersecting Y. We proceed by induction on d, assuming that $d \geq 1$.

Some preliminaries: If α is any point in C, let us denote by σ_α the minimal face of C containing α. If ω is any second point in C, let S^ω_α denote the set of segments from α to ω. For an element $\gamma \in S^\omega_\alpha$ with $T^\omega_\gamma \cap T^\omega_\sigma \neq \emptyset$, the tangent direction of γ in $Lk(\sigma, C) = Lk(\sigma_\alpha, C)$ at α is defined as the barycenter of $Lk(\sigma_\alpha, T)$, where T is the minimal face of C that contains α and such that $T^\omega_\gamma \cap T^1 T$. Define T^ω_α to be the union of tangent directions in $Lk(\sigma, C)$ at α over all segments $\gamma \in S^\omega_\alpha$. Finally, set

$$S^\Omega_\alpha := \bigcup_{\omega \in \Omega} S^\omega_\alpha \quad \text{and} \quad T^\Omega_\alpha := \bigcup_{\omega \in \Omega} T^\omega_\alpha.$$

for any collection Ω of points in C. Clearly, T^Ω_α is finite.

Returning to the proof, let x_0 denote any point of $X_0 := X$ minimizing the distance to the set $Y_0 := Y$. Set $i := 0$. The construction process for the desired facet path goes as follows:

Construction procedure. If X_i intersects Y, set $\ell := i$ and stop the procedure. If not, consider the face $\sigma_i := \sigma_{x_i}$ of C containing x_i in its relative interior. The simplicial complex $Lk(\sigma, C)$ is a normal CAT(1) complex (cf. [Gro87, Thm. 4.2.A]) all whose faces are right-angled. Now, we use the construction technique for dimension $d - \dim \sigma_i - 1 \leq d - 1$ to find a (non-revisiting) facet path $\Gamma'_{X_i, X_{i+1}}$ in $Lk(\sigma, C)$ from $X'_i := Lk(\sigma_i, X_i)$ to some facet X'_{i+1} of $Lk(\sigma, C)$ that intersects T^Ω_α. We may assume that $\Gamma'_{X_i, X_{i+1}}$ contains T^Ω_α only in the last facet X'_{i+1}. Lift the facet path $\Gamma'_{X_i, X_{i+1}}$ in $Lk(\sigma, C)$ to a facet path $\Gamma_{X_i, X_{i+1}}$ in C from X_i to $X_{i+1} := \sigma_i x_{i+1}$ by join with σ_i, i.e. define

$$\Gamma_{X_i, X_{i+1}} := \sigma_i \ast \Gamma'_{X_i, X_{i+1}}.$$

Let γ_i be any element of $S^\Omega_{\gamma_i}$ whose tangent direction in $Lk(\sigma, C)$ at x_i lies in X'_{i+1}, let γ_i denote the restriction of γ_i to X_{i+1}, and let x_{i+1} be the last point of γ_i in X_{i+1}. Finally, let i_{i+1} denote the subset of points y of γ_i with

$$d(y, x_i) = d(y, x_{i+1}) + d(x_i, x_{i+1}).$$

Now, increase i by one, and repeat the construction procedure from the start.

Define the facet path

$$\Gamma := \prod_{i \in (0, \ldots, \ell-1)} \Gamma_{X_i, X_{i+1}}.$$

Associated to Γ, define the curve

$$\gamma = \prod_{i \in (0, \ldots, \ell-1)} \gamma_i$$

from x to some element y of Y, the necklace of Γ, and define the pearls of Γ to be the faces σ_i. Finally, we denote by χ_i, $0 \leq i \leq \ell$, the element in the domain of Γ corresponding to X_i; with this, the facet paths $\Gamma_{X_i, X_{i+1}}$ coincide up to reparametrization with the subpaths $\Gamma_{[X_i, X_{i+1}]}$ of Γ for each i. For any element $\alpha \neq \chi_i$ in the domain of Γ, let i be chosen so that $\alpha \in [X_i, X_{i+1} - 1]$. We say that α is associated to the pearl σ_i of Γ. By convention, χ_ℓ is associated to the pearl $\sigma_{\ell-1}$.

By Equation $(*)$, γ is a segment. Thus, by Corollary 2.2, if v is any vertex of C, then γ intersects $i_{\text{St}(v, C)}$ in a connected component. We will see that this fact extends to the combinatorial setting. First, we make the following claim.

Let a denote any element in the domain of Γ, and let v be any vertex of $\Gamma(a)$. Let x denote the last point of γ in $\text{St}(v, C)$, and assume that x is not is $\Gamma(a)$. Let σ_i be the pearl associated to a. Then $\Gamma_{[a, X_{i+1}]}$ lies
in \(\text{St}(v, C) \). In particular, \(X_{i+1} \) lies in \(\text{St}(v, C) \).

To prove the claim, we need only apply an easy induction on the dimension:

- If \(v \) is a vertex of the pearl \(\sigma_i \), this follows directly from construction of \(\Gamma \). Since \(v = \sigma_i \) if \(d = 1 \), this in particular proves the case \(d = 1 \).
- If \(v \) is not in \(\sigma_i \), we consider the facet path \(\Gamma' := \text{Lk}(\sigma_i, \Gamma|_{[X_i, X_{i+1}]} \subset \text{Lk}(\sigma_i, C) \). The point \(\hat{x} \) lies in \(\text{St}(v, C) \), which is convex in \(C \) by Corollary 2.2. Thus, the construction of \(\gamma \) and \(\Gamma \) implies that the restriction of \(\gamma \) to the interval \([\gamma^{-1}(x_i), \gamma^{-1}(\hat{x})]\) lies in \(\text{St}(v, C) \): indeed, if \(d(x_i, \hat{x}) < \pi \), then \(x_i \) and \(\hat{x} \) are connected by a unique segment in \(C \), thus, this segment must lie in \(\text{St}(v, C) \). If \(d(x_i, \hat{x}) \geq \pi \), then connecting \(x_i \) to \(v \) and \(\hat{x} \) by segments gives a segment from \(x_i \) to \(\hat{x} \); thus, \(\Gamma(a) \) must contain \(\sigma_{i+1} \) by construction of \(\Gamma \), which contradicts the assumption that \(a \) was associated to \(\sigma_i \).

In particular, since \([\gamma^{-1}(x_i), \gamma^{-1}(\hat{x})]\) lies in \(\text{St}(v, C) \), the tangent direction of \(\Gamma \) in \(\text{Lk}(\sigma_i, C) \) at \(x_i \) is a point in \(\text{St}(v', \text{Lk}(\sigma_i, C)) \), where \(v' := \text{Lk}(\sigma_i, v \ast \sigma_i) \). However, since \(\Gamma(a) \) does not contain \(\hat{x} \), this tangent direction does not lie in \(\Gamma'(a) \). Hence, the path \(\Gamma'[a, \chi_{i+1}] = \text{Lk}(\sigma_i, \Gamma|_{[a, \chi_{i+1}]} \subset \text{St}(v', \text{Lk}(\sigma_i, C)) \) by induction assumption. We obtain

\[
\Gamma'[a, \chi_{i+1}] = \sigma_i \ast \Gamma'[a, \chi_{i+1}] \subset \sigma \ast \text{St}(v', \text{Lk}(\sigma_i, C)) \subset \text{St}(v, C).
\]

We can now use induction on \(d \) to conclude that \(\Gamma \) is non-revisiting. The case \(d = 0 \) is trivial, assume therefore \(d \geq 1 \). Consider any second \(b \) with \(\Gamma(b) \in \text{St}(v, C) \) such that \(b \geq a \). Let \(j, j \geq i \), be chosen such that \(\sigma_j \) is the pearl associated with \(b \). There are two cases to consider:

- If \(i = j \): By induction assumption, the facet path \(\Gamma'_X(X_{i+1}) \) (as defined above) is non-revisiting. Thus, the facet path \(\Gamma|_{X_i, X_{i+1}} \) coincides with \(\Gamma_X(X_{i+1}) = \sigma_i \ast \Gamma'_X(X_{i+1}) \) up to reparametrization, is non-revisiting. Since \(\Gamma[a, b] \) is a subpath of \(\Gamma|_{X_i, X_{i+1}} \), this finishes the proof of this case.

- If \(i < j \): The claim proves that \(\Gamma[a, \chi_{i+1}] \in \text{St}(v, C) \) and that for every \(k, i < k < j \), \(\Gamma|_{[X_k, X_{k+1}]} \in \text{St}(v, C) \). Thus,

\[
\Gamma[a, \chi_i] = \Gamma[a, \chi_{i+1}] \cdot \left(\prod_{k, i < k < j} \Gamma|_{[X_k, X_{k+1}]} \right) \subset \text{St}(v, C).
\]

Since \(\Gamma[a, b] = \Gamma[a, \chi_i] \cdot \Gamma|_{[X_i, b]} \), it only remains to prove that \(\Gamma|_{[X_i, b]} \in \text{St}(v, C) \); this was proven in the previous case.

\[\square\]

Corollary 2.4. Let \(C \) be a normal simplicial \(d \)-complex such that each simplex of \(C \) is right-angled and \(C \) is a CAT(1) metric space. Then \(C \) satisfies the non-revisiting path property.

Proof. If \(X \) and \(Y \) are any two facets of \(C \), apply Lemma 2.3 to the facet \(X \) and the set \(Y = \{ y \} \), where \(y \) is any interior point of \(Y \).

\[\square\]

We can give the first proof of Theorem 1.4.

Proof of Theorem 1.4. We turn \(C \) canonically into a length space, by endowing every face with the metric of a regular spherical simplex with dihedral angles \(\pi/2 \). By Gromov’s Criterion [Gro87, Sec. 4.2.D], the resulting metric space is CAT(1), because \(C \) is flag. By construction, every simplex of \(C' \) is right-angled, so we can apply Corollary 2.4 and conclude that \(C \) satisfies the non-revisiting path property.

\[\square\]

3 The combinatorial proof

In this section, we give a purely combinatorial proof of Theorem 1.4. The proof is articulated into two parts: First we construct a facet path between any pair of facets of \(C \), the so called combinatorial segment, and then we prove that the constructed path satisfies the non-revisiting path property.

Let \(d(x, y) \) denote the (combinatorial) distance between two vertices \(x, y \) in the 1-skeleton of the simplicial complex \(C \). If \(\mathcal{Y} \) is a subset of \(\Gamma_0(C) \), let \(p(x, \mathcal{Y}) \) denote the elements of \(\mathcal{Y} \) that realize the distance \(d(x, \mathcal{Y}) \), and let \(T_\mathcal{Y} \) denote the set of vertices \(y \) in \(\text{Lk}(x, C) \) with the property that

\[
d(y, \mathcal{Y}) + 1 = d(x, \mathcal{Y}).
\]
Construction of a combinatorial segment

Part 1: From any facet X to any vertex set Y.

We construct a facet path from a facet X of C to a subset Y of $F_0(C)$, i.e. a facet path from X to a facet intersecting Y, with the property that Y is intersected by the path Γ only in the last facet of the path.

If C is 0-dimensional, and X and Y intersect, the path is trivial of length 0. Else, the desired facet path is given by $\Gamma: \{0, 1\} \to C$, where $\Gamma(0):=X$ and $\Gamma(1):=Y$, which is any facet of C intersecting Y.

If C is of a dimension d larger than 0, set $X_0:=X$, let x_0 be any vertex of X_0 that minimizes the distance d to Y, set $Y_0:=p(x_0,Y)$ and set $i:=0$. Then proceed as follows:

Construction procedure. If X_i intersects Y, set $\ell:=i$ and stop the construction procedure. Otherwise, use the construction for dimension $d-1$ to construct a facet path $\Gamma'_{X_i,X_{i+1}}$ in $\text{Lk}(x_i,C)$ from the facet $X_i:=\text{Lk}(x_i,X_\ell)$ to the vertex set T_{X_i}. Denote the last facet of the path by X_{i+1}. By forming the join of that path with x_i, we obtain a facet path $\Gamma_{X_i,X_{i+1}}$ from X_i to the facet $X_{i+1}:=x_i * X_{i+1}'$ of C. Denote the vertex of T_{X_i} it intersects by x_{i+1}. Define $Y_{i+1}:=p(x_{i+1},Y_i)$. Finally, increase i by one, and repeat from the start.

The concatenation of these facet paths is a combinatorial segment from X to Y.

Part 2: From any facet X to any other facet Y.

Using Part 1, construct a facet path from X to the vertex set $F_0(Y)$ of $X_{\ell+1}:=Y$. If C is of dimension 0, then this finishes the construction. If C is of dimension d greater than 0, let x_ℓ denote any vertex shared by X_ℓ and $X_{\ell+1}$, and apply the $(d-1)$-dimensional construction to construct a facet path in $\text{Lk}(x_\ell,C)$ from $\text{Lk}(x_\ell,X_\ell)$ to $\text{Lk}(x_\ell,X_{\ell+1})$.

Lift this facet path to a facet path $\Gamma_{X_i,X_{i+1}}$ in C by forming the join of the path with x_ℓ. This finishes the construction: The combinatorial segment from X to Y is defined as the concatenation

$$\Gamma := \prod_{i \in \{0, \cdots, \ell\}} \Gamma_{X_i,X_{i+1}}.$$

The combinatorial segment is non-revisiting

We start off with some simple observations and notions for combinatorial segments in complexes of dimension $d \geq 1$.

- A combinatorial segment Γ comes with a vertex path $(x_0, x_1, \cdots, x_\ell)$. This is a shortest vertex path in C, i.e. it realizes the distance $\ell = \text{d}(F_0(X), Y)$ resp. $\ell = \text{d}(F_0(X), F_0(Y))$. The path γ is the necklace of Γ, the vertices x_i, $0 \leq i \leq \ell$, are the pearls of Γ.
- As in the geometric proof, we denote by χ_i, $0 \leq i \leq \ell+1$, the element in the domain of Γ corresponding to X_i. Let $a \neq \chi_{\ell+1}$ be any element in the domain of Γ. If i is chosen so that $a \in [\chi_i, \chi_{i+1} - 1]$, then x_i is the pearl associated to a in γ. By convention, we say that $\chi_{\ell+1}$ is associated to the pearl x_ℓ.

Lemma 3.1. Assume that $\dim C \geq 1$. If a is an element in the domain of Γ associated with pearl x_i such that $i < \ell$, and v is any vertex of $\Gamma(a)$ such that $x_j, j > i$, lies in $\text{St}(v,C)$, then the subpath $\Gamma|_{[a,\chi_j]}$ lies in $\text{St}(v,C)$. In particular, in this case X_j is a facet of $\text{St}(v,C)$ as well.

Proof. The lemma is clear if v is in γ (i.e. if v coincides with x_i), and in particular it is clear if $\dim C = 1$.

To see the case $v \neq x_i$, we use induction on the dimension of C: Assume now $\dim C > 1$.

Since x_j is connected to $\Gamma(a)$ by an edge, we have $j = i+1$. Indeed, if $j - i > 2$, then the vertex path

$$(x_0, \cdots, x_i, v, x_j, \cdots, x_\ell)$$

is a vertex path that is strictly shorter than the necklace of Γ, which is not possible. If on the other hand $j - i = 2$, then $\Gamma(a)$ contains x_{i+1}, which is consequently the pearl associated to a, in contradiction with the assumption.
Now, consider the combinatorial segment $I' := \text{Lk}(x_i, I_{[x_i, x_{i+1}']})$ in $\text{Lk}(x_i, C)$. Let $v' := \text{Lk}(x_i, v \ast x_i)$. Since the complex $\text{St}(v, C)$ contains x_{i+1} and since C is flag, we obtain that $\text{St}(v', \text{Lk}(x_i, C))$ contains the pearl $\text{Lk}(x_i, x_{i+1} \ast x_i)$ of I'. Furthermore, $I'(a)$ is contained in $\text{St}(v', \text{Lk}(x_i, C))$ since $v \in I'(a)$. Hence, the subpath $I'_{[a, x_{i+1}]}$ of I' lies in $\text{St}(v', \text{Lk}(x_i, C))$ by induction assumption, so

$$I'_{[a, x_{i+1}]} = x_i \ast I'_{[a, x_{i+1}]} \subset x_i \ast \text{St}(v', \text{Lk}(x_i, C)) \subset \text{St}(v, C).$$

Second proof of Theorem 1.4. Again, we use induction on the dimension; a combinatorial segment is clearly non-revisiting if $\dim C = 0$. Assume now $\dim C \geq 1$, and consider a combinatorial segment I that connects a facet X with a facet Y of C, as constructed above. Let a, b be in the domain of I, associated with pearls x_i and x_j, respectively. Assume that both $I'(a)$ and $I'(b)$ lie in the star of some vertex v of C. Then the subpath $I'_{[a, b]}$ of I lies in the star $\text{St}(v, C)$ of v entirely. To see this, there are two cases to consider:

- **If $i=j$:** By the inductive assumption, the combinatorial segment $I'_{[x_i, x_{i+1}]}$ is non-revisiting, since it was obtained from the combinatorial segment $\text{Lk}(x_i, I'_{[x_i, x_{i+1}']})$ in the complex $\text{Lk}(x_i, C)$ by join with x_i. Hence, the subpath $I'_{[a, b]}$ of $I'_{[x_i, x_{i+1}]}$ is non-revisiting, and consequently lies in $\text{St}(v, C)$.

- **If $i<j$:** Clearly, v is connected to x_i and x_j via edges of C, since $\text{St}(v, C)$ contains both $I'(a)$ and $I'(b)$. Thus, we have that $I'_{[a, b]} \subset I'_{[x_i, x_{j+1}]}$, that $I'(a)$ lies in $I'_{[x_i, x_{j+1}]}$ and that $I'(b)$ lies in $I'_{[x_j, x_{j+1}]}$. In particular, since $\text{St}(v, C)$ contains x_i, we have that $I'_{[a, i]}$ lies in $\text{St}(v, C)$ by Lemma 3.1. Furthermore, we argued in the previous case that $I'_{[x_i, j]}$ lies in $\text{St}(v, C)$, so that we obtain

$$I'_{[a, b]} = I'_{[a, i]} \cdot I'_{[i, j]} \cdot I'_{[j, b]} \subset \text{St}(v, C).$$

References

[BZ11] B. Benedetti and G. M. Ziegler, *On locally constructible spheres and balls*, Acta Math. 206 (2011), 205–243.

[BBI01] D. Burago, Y. Burago, and S. Ivanov, *A Course in Metric Geometry*, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001, available at math.psu.edu/petrunin/papers/alexandrov/bbi.pdf.

[BW12] K.-U. Bux and S. Witzel, *Local convexity in CAT(κ)*-spaces, preprint, available online at arXiv:1211.1871.

[Cha96] R. Charney, *Metric geometry: connections with combinatorics*, in “Formal power series and algebraic combinatorics” (New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 24, Amer. Math. Soc., Providence, RI, 1996, pp. 55–69.

[Dan63] G. B. Dantzig, *Linear Programming and Extensions*, Princeton University Press, Princeton, N.J., 1963.

[DM99] M. W. Davis and G. Moussong, *Notes on nonpositively curved polyhedra*, in “Low-dimensional topology” (Eger 1996/Budapest 1998), Bolyai Soc. Math. Stud., vol. 8, János Bolyai Math. Soc., Budapest, 1999, pp. 11–94.

[EHRR10] F. Eisenbrand, N. Hähnle, A. A. Razborov, and T. Rothvöß, *Diameter of polyhedra: Limits of abstraction*, Math. Oper. Res. 35 (2010), 786–794.

[Gro87] M. Gromov, *Hyperbolic groups*, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263.

[HZ00] M. Hachimori and G. M. Ziegler, *Decompositions of simplicial balls and spheres with knots consisting of few edges*, Math. Z. 235 (2000), 159–171.
[Kal92] G. Kalai, *Upper bounds for the diameter and height of graphs of convex polyhedra*, Discrete Comput. Geom. 8 (1992), 363–372, 10.1007/BF02293053.

[KK92] G. Kalai and D. J. Kleitman, *A quasi-polynomial bound for the diameter of graphs of polyhedra*, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 315–316.

[Kle65] V. Klee, *Paths on polyhedra. I*, J. Soc. Indust. Appl. Math. 13 (1965), 946–956.

[KK87] V. Klee and P. Kleinschmidt, *The d-step conjecture and its relatives*, Math. Oper. Res. 12 (1987), 718–755.

[KW67] V. Klee and D. W. Walkup, *The d-step conjecture for polyhedra of dimension $d < 6$*, Acta Math. 117 (1967), 53–78.

[Lar70] D. G. Larman, *Paths on polytopes*, Proceedings of the London Mathematical Society s3-20 (1970), 161–178.

[Nak31] S. Nakajima, *Einige Beiträge über konvexe Kurven und Flächen*, Tohoku Math. J. 33 (1931), 219–230.

[Pap05] A. Papadopoulos, *Metric Spaces, Convexity and Nonpositive Curvature*, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6, European Mathematical Society (EMS), Zürich, 2005.

[PB80] J. S. Provan and L. J. Billera, *Decompositions of simplicial complexes related to diameters of convex polyhedra*, Math. Oper. Res. 5 (1980), 576–594.

[San12] F. Santos, *A counterexample to the Hirsch conjecture*, Annals Math. 176 (2012), 383–412.

[Tie28] H. Tietze, Übers Konvexität im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen, Math. Z. 28 (1928), 697–707.