Supporting Information

Constructing antifouling hybrid membranes with hierarchical hybrid nanoparticles for oil-in-water emulsion separation

Xueting Zhaoa,c,d,1,*, Ning Jiaa,1, Lijuan Chengb, Ruoxi Wangb, Congjie Gaoa,c,d

a Center for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, No. 18 Chaowang Road, 310014 Hangzhou, China.

b College of Chemical Engineering, Zhejiang University of Technology, No. 18 Chaowang Road, 310014 Hangzhou, China.

c Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, No. 18 Chaowang Road, 310014 Hangzhou, China.

d Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water Treatment, Zhejiang University of Technology, No. 1366 Hongfengxi Road, 313000 Huzhou, China.

*Corresponding author.

\textit{E-mail address:} zhaoxt@zjut.edu.cn (X.T. Zhao)

Center for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou 310014, CHINA.

Tel: 86-571-88324325. Fax: 86-571-88332580.

1 These authors contributed equally to this work.
Figure S1. Stress-strain curve of the PVDF membrane and PVDF/TPTi-10 hybrid membrane.
Figure S2. 1 g/L emulsion oil separated by PVDF/TPTi-10 membrane: photographs and microscope images of oil-in-water emulsion before (a) and after (b) filtration.
Figure S3. (a) Photos of 1 g/L emulsified oil, (b) Particles size distribution of 1 g/L emulsified oil, (c) Particles size distribution of 5 g/L emulsified oil, (d) Photos of 5 g/L emulsified oil.