MORE ON ONE CLASS OF FRACTALS (SOME FRACTAL PROPERTIES OF SETS HAVING THE MORAN STRUCTURE)

SYMON SERBENYUK

Abstract. This article is devoted to sets having the Moran structure. The main attention is given to topological, metric, and fractal properties of certain sets whose elements have restrictions on using digits or combinations of digits in own representations.

1. Introduction

In 1977, the notion “fractal” was considered by B. Mandelbrot in [15]. A fractal in the wide sense is a set whose topological dimension does not coincide with the Hausdorff dimension (the fractal dimension), and in the narrow sense it is a set that has the fractional fractal dimension.

Fractals are the most appropriate mathematical models of natural objects. The importance of fractals lies in modeling of physical and biological processes, and also fractal is a strictly mathematical notion that unites various mathematical objects, e.g. continuous nowhere differentiable functions, singular distributions, curves and surfaces that do not have the tangent at any point, etc. (see [10, 11, 13]). Indeed, the following examples are natural examples of fractals: the rings around planets (such fractals have the property of self-similarity), the snow cover in a mountain region, linear lightning, cloud borders, forms of coast lines or rivers. In fact, one can model coast lines and rivers by continuous nowhere differentiable functions. One of the oldest mathematical examples of fractals is the Cantor set

$$C = \left\{ x : x = \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n}, \alpha_n \in \{0, 2\} \right\}.$$

This set was introduced by G. Cantor in 1883. The last fractal is the part of such well-known fractals as the Sierpinski carpet, the Koch snowflake.

Fractal sets are widely applied in computer design, algorithms of the compression to information, quantum mechanics, solid-state physics, analysis and categorizations of signals of various forms appearing in different areas (e.g. the analysis of exchange rate fluctuations in economics), etc. However, for much classes of fractals the problem of the Hausdorff dimension calculation is difficult and the estimate

2010 Mathematics Subject Classification. 28A80, 11K55, 26A09.

Key words and phrases. Fractal, Cantor-like set, Moran structure, Hausdorff dimension, self-similar set, s-adic representation, nega-s-adic representation, alternating Cantor series, mixed s-adic series, nega-s-adic Cantor series.
of parameters on which the Hausdorff dimension of certain classes of fractal sets depends is left out of consideration.

The aim of this survey is to give some local and fractal properties of certain Moran sets. One can note that Moran sets play an important role in multifractal analysis/formalism and especially the refined multifractal formalism (for example, see the papers [1, 42, 43, 45] and references therein).

The multifractal analysis is a natural framework to finely describe geometrically the heterogeneity in the distribution at small scales of the measures on a metric space. The multifractal analysis was proved to be a very useful technique in the analysis of measures, both in theory and applications. Also, the multifractal and the fractal analysis allows one to perform a certain classification of singular measures. One can note that it was proved that singular distributions of probabilities are dominant for many classes of random variables. Possible applications in the spectral theory of self-adjoint operators serve as an additional stimulus for a further investigation of singularly continuous measures [9]. For example, one can note the following researches of singular measures: singularity of Hewitt–Stromberg measures on Bedford–McMullen carpets [2], the mutual singularity of certain measures (see [17, 9, 16, 24, 8] and references therein), dimensions of measures [20, 13, 23].

Olsen [17] introduced a general form of multifractal formalism, to interpret the statistical scaling properties of singular measures where the total mass or energy is spread over regions of phase space in an irregular way. The multifractal formalism aims at expressing the dimensions (the Hausdorff and packing dimensions) of the level sets in terms of the Legendre transform of some free energy function in analogy with the usual thermodynamic theory ([23, 47, 1] and references therein).

The multifractal formalism has been proved rigorously for random and non-random self-similar measures, for self-conformal measures, for self-affine and for-Moran measures (see [1, 7] and references therein). Certain researches are devoted to new multifractal formalism for which the classical multifractal formalism does not hold. For example, the paper [1] deals with a multifractal formalism based on the Hewitt–Stromberg measures and that this formalism is completely parallel to Olsen’s multifractal formalism which is based on the Hausdorff and packing measures.

Among fractal geometrical objects, Moran’s types play an important role in explaining many situations, in pure mathematics as the general context of Cantors, and in applied physics as a suitable context for studying scaling laws. These sets may be understood as attractors for dynamical systems, electrical circuits, and also smart cities where fractals are nowadays sophisticated tools in their modeling. Fractals such as Cantor, and generally Moran’s types are also applied in understanding physical properties at different molecular levels, such as nonmaterial composites, crystal growth, and structure, porous materials, etc. [9]. Finally, one can note some investigations in multifractal analysis of Moran sets: multifractal properties of homogeneous Moran fractals associated with Fibonacci sequence [43], multifractal properties [42, 44].
Consider space \mathbb{R}^n. In [16], P. A. P. Moran introduced the following construction of sets and calculated the Hausdorff dimension of the limit set

$$E = \bigcap_{n=1}^{\infty} \bigcup_{i_1, \ldots, i_n \in A_{0,p}} \Delta_{i_1 i_2 \ldots i_n}.$$

(1)

Here p is a fixed positive integer, $A_{0,p} = \{1, 2, \ldots, p\}$, and sets $\Delta_{i_1 i_2 \ldots i_n}$ are basic sets having the following properties:

- any set $\Delta_{i_1 i_2 \ldots i_n}$ is closed and disjoint;
- for any $i \in A_{0,p}$ the condition $\Delta_{i_1 i_2 \ldots i_n} \subseteq \Delta_{i_1 i_2 \ldots i_n}$ holds;
- \begin{align*}
\lim_{n \to \infty} d(\Delta_{i_1 i_2 \ldots i_n}) &= 0, \text{ where } d(\cdot) \text{ is the diameter of a set};
\end{align*}
- each basic set is the closure of its interior;
- at each level the basic sets do not overlap (their interiors are disjoint);
- any basic set $\Delta_{i_1 i_2 \ldots i_n}$ is geometrically similar to $\Delta_{i_1 i_2 \ldots i_n}$;
- \begin{align*}
\frac{d(\Delta_{i_1 i_2 \ldots i_n})}{d(\Delta_{i_1 i_2 \ldots i_n})} &= \sigma_i,
\end{align*}
where $\sigma_i \in (0, 1)$ for $i = 1, p$.

The Hausdorff-Besicovitch dimension α_0 of the set E is the unique root of the following equation

$$\sum_{i=1}^{p} \sigma_i^\alpha_0 = 1.$$

It is easy to see that set (1) is a Cantor-like set and a self-similar fractal. The set E is called the Moran set.

Let us consider the second definition of the Moran set given by Hua et al. (12).

Definition. (Definition of Hua et al.). Let (n_k) be a sequence of positive integers, $J \in \mathbb{R}^n$ be a compact set with nonempty interior, and (Φ_k) be a sequence of positive real vectors with $\Phi_k = (\sigma_{k,1}, \sigma_{k,2}, \ldots, \sigma_{k,n_k})$, where $k \in \mathbb{N}$ and

$$\sum_{j=1}^{n_k} \sigma_{k,j} < 1.$$

A set of the form

$$E = \bigcap_{k=1}^{\infty} \bigcup_{i_1, \ldots, i_k \in A_{0,n_k}} \Delta_{i_1 i_2 \ldots i_k},$$

where $A_{0,n_k} = \{1, 2, \ldots, n_k\}$, is called the Moran set associated with the collection F. Here

$$F = \bigcup_{k=0}^{\infty} F_k = \bigcup_{k=0}^{\infty} \{J_\sigma := \Delta_{i_1 i_2 \ldots i_k} : k \in \mathbb{N}, i_k \in \{1, 2, \ldots, n_k\}\}.$$

The collection F fulfills the Moran structure provided it satisfies the following Moran Structure Conditions (MSC):
(1) $J_0 = J$.
(2) An arbitrary J_σ is geometrically similar to J.
(3) For any $i, j \in \{1, 2, \ldots, n_{k+1}\}$ such that $i \neq j$, the conditions
\[
\Delta_{i_1i_2\ldots i_k} \subset \Delta_{i_1i_2\ldots i_k}, \quad \Delta_{i_1i_2\ldots i_k} \cap \Delta_{i_1i_2\ldots i_k} = \emptyset
\]
hold.
(4) For any $j \in \{1, 2, \ldots, n_{k+1}\}$,
\[
\frac{d(\Delta_{i_1i_2\ldots i_k})}{d(\Delta_{i_1i_2\ldots i_k})} = \sigma_{k+1,j}.
\]

The elements of F_k are called the basic elements of order k of the Moran set E, and the elements of F are called the basic elements of the Moran set E.

Remark 1. Let us note that the main difference between definitions of Moran and Hua is Property 4 in MSC.

Let $M = M(J, (n_k), (\Phi_k))$ be a class of Moran sets satisfying MSC. It is known that one can define a sequence (α_k), where α_k satisfies the equation
\[
\prod_{i=1}^{k} \sum_{j=1}^{n_i} \sigma_{i,j}^{\alpha_k} = 1.
\]

Also, suppose that
\[
\alpha_* = \liminf_{k \to \infty} \alpha_k, \quad \alpha^* = \limsup_{k \to \infty} \alpha_k;
\]
\[
c_* = \inf_{i,j} \sigma_{i,j}, \quad c^* = \sup_{i,j} \sigma_{i,j}.
\]

Much research has been devoted to Moran-like constructions and Cantor-like sets (for example, see [18, 12, 19, 14, 4, 5] and references therein). For example, in [19], the one parameter family of Cantor sets
\[\Lambda(\lambda) = \left\{ x : x = \sum_{k=1}^{\infty} i_k \lambda^k, i_k \in S \subset \{0, 1, \ldots, s - 1\}, s \in \mathbb{N} \right\}\]
is investigated.

Theorem 1 ([19]). Suppose that the condition $s - 1 < (l - 1)^2$ holds. Here l is the cardinality of the set $S = \{s_1, \ldots, s_l\}$, i.e., $l = |S|$. Then for almost all $\lambda \in \left(\frac{1}{4}, \frac{1}{4}\right)$ (with respect to Lebesgue measure) we have that
\[
\alpha_0(\Lambda(\lambda)) = \frac{\log l}{\log \lambda}.
\]

It is easy to see that we obtain the case of classical s-adic representation [2] whenever $\lambda = \frac{1}{s}$. In this case, we get
\[
\alpha_0(\Lambda(\lambda)) = \log s \cdot l.
\]

The following theorem generalizes the last result.
Let $D = (d_n)$ be a fixed sequence of positive integers such that $d_n > 1$ for all $n \in \mathbb{N}$, $\varepsilon_n \in A_{d_n} = \{0, 1, \ldots, d_n - 1\}$. Series of the form

$$\sum_{n=1}^{\infty} \frac{\varepsilon_n}{d_1 d_2 \cdots d_n}$$

are Cantor series introduced by G. Cantor in [3]. These series are generalizations of s-adic expansion (2), i.e., a Cantor series is the s-adic expansion whenever $d_n = \text{const} = s$ for all $n \in \mathbb{N}$.

Theorem 2 ([14]). Suppose that $D = (d_n)$ be a fixed sequence of positive integer numbers $d_n > 1$, $\lim_{n \to \infty} \frac{\log d_n}{\log d_1 \cdots d_n} = 0$, $I_j \subseteq \{0, 1, \ldots, d_j - 1\}$, $\mathcal{I} = (I_n)$. Then

$$\alpha_0(\mathcal{R}_\mathcal{I}(D)) = \alpha_0\left(\left\{x : x = \sum_{n=1}^{\infty} \frac{\varepsilon_n}{d_1 d_2 \cdots d_n}, \varepsilon_n \in I_n\right\}\right) = \lim\inf_{n \to \infty} \frac{\log \prod_{j=1}^{n} |I_j|}{\log \prod_{j=1}^{n} d_j}.$$

The present survey is devoted to fractal sets, whose elements defined by expansions related with some cases of positive and alternating Cantor series and their images under the action of certain singular distributions. The main attention is given to topological and metric properties of these sets, and also parameters under which depends the Hausdorff dimension of such sets. Sets considered in this paper, are determined by certain restrictions on using combinations of digits in representations of them elements. Also, the main attention is given to results obtained in the papers [28, 29, 30] published into Ukrainian.

Let us remark that, in September 2011 and February 2012, results of [28, 29] were presented by the author in the reports “The main topological, metric properties of one set of numbers such that it is defined by the s-adic representation with restrictions” and “The main topological, metric properties of one set defined by the nega-s-adic and s-adic representation with a parameter, and using this set” at the fractal analysis seminar of the Institute of Mathematics of NAS of Ukraine and the National Pedagogical Dragomanov University (archive of reports is available here: http://www.imath.kiev.ua/events/index.php?seminarId=21&archiv=1). In 2012, results of the papers [28, 29] were presented in the conference abstracts [25, 26, 27]. Also, the main results of these papers were published into English as the preprint [32].

2. Definitions

We begin with definitions of several representations of real numbers and certain series.

Let $1 < s$ be a fixed positive integer, $A = \{0, 1, \ldots, s - 1\}$ be an alphabet of the s-adic or nega-s-adic numeral system, and $A_0 = A \setminus \{0\} = \{1, 2, \ldots, s - 1\}$, and

$$L = (A_0)^{\infty} = (A_0) \times (A_0) \times (A_0) \times \ldots$$

be the space of one-sided sequences of elements of A_0.

An expansion of a real number \(x \in [0, 1] \) in the form
\[
x = \frac{\alpha_1}{s} + \frac{\alpha_2}{s^2} + \cdots + \frac{\alpha_n}{s^n} + \ldots,
\]
where \(\alpha_n \in A \), is called the \(s \)-adic expansion of \(x \). By \(x = \Delta_{\alpha_1\alpha_2\cdots\alpha_n}^s \) denote the \(s \)-adic expansion of \(x \). The notation \(\Delta_{\alpha_1\alpha_2\cdots\alpha_n}^s \) is called the \(s \)-adic representation of \(x \).

Obviously, the notation \(x = \Delta_{\alpha_1\alpha_2\cdots\alpha_n}^{-s} \) is called the nega-\(s \)-adic representation of \(x \). Here
\[
x = \Delta_{\alpha_1\alpha_2\cdots\alpha_n}^{-s} = \frac{\alpha_1}{s} + \frac{\alpha_2}{s^2} + \cdots + \frac{(-1)^n\alpha_n}{s^n} + \ldots,
\]
where \(\alpha_n \in A \).

If \(\{k_n\} \) is a certain fixed sequence of positive integers, then a series of the form
\[
\frac{\alpha_{k_1}}{(-s)^{k_1}} + \frac{\alpha_{k_2}}{(-s)^{k_2}} + \cdots + \frac{\alpha_{k_n}}{(-s)^{k_n}} + \ldots, \alpha_{k_n} \in A,
\]
is a nega-\(s \)-adic series.

Suppose that \(m_1 = k_1, m_2 = k_2 - k_1, m_3 = k_3 - k_2, \ldots, m_n = k_n - k_{n-1}, \ldots \)
Then we obtain the following series
\[
\sum_{n=1}^{\infty} \frac{\alpha_{m_1+m_2+\cdots+m_n}}{(-s)^{m_1+m_2+\cdots+m_n}},
\]
where \(\alpha_{m_1+m_2+\cdots+m_n} \in A \).

Numbers \(x \in \left[-\frac{1}{s+1}, \frac{1}{s+1} \right] \) having a representation in form \([4] \) have the following nega-\(s \)-adic representation
\[
x = \sum_{n=1}^{\infty} \frac{\alpha_{m_1+m_2+\cdots+m_n}}{(-s)^{m_1+m_2+\cdots+m_n}} = \Delta_{0\cdots0\alpha_{m_1}0\cdots0\alpha_{m_2+\cdots+m_n-1}}^s.
\]

Let \(\{d_n\} \) be a fixed sequence of positive integers such that \(d_n > 1 \) for all \(n \in \mathbb{N} \), \(\{A_n\} \) be a sequence of the sets \(A_n = \{0, 1, 2, \ldots, d_n-1\} \), and \(L_n = A_1 \times A_2 \times A_3 \times \ldots \).

A series of the form
\[
-\frac{\varepsilon_1}{d_1} + \frac{\varepsilon_2}{d_1d_2} - \frac{\varepsilon_3}{d_1d_2d_3} + \cdots + \frac{(-1)^n\varepsilon_n}{d_1d_2\cdots d_n} + \ldots,
\]
where \(\varepsilon_n \in A_n \), is called an alternating Cantor series.

In September 2013 (see the presentation (in Ukrainian) and the working paper (in Ukrainian) that available at https://www.researchgate.net/publication/303720347, https://www.researchgate.net/publication/316787375, respectively), the expansion of numbers by an alternating Cantor series was investigated as a numeral system, and presented in the the report “Representations of real numbers by alternating Cantor series” at the fractal analysis seminar of Institute of Mathematics of NAS of Ukraine and the National Pedagogical Dragomanov University. These results were published in [31].
An alternating Cantor series that is a nega-s-adic series is called a nega-s-adic Cantor series. That is
\[-\varepsilon_1 s^{m_1} + \varepsilon_2 s^{m_1+m_2} - \varepsilon_3 s^{m_1+m_2+m_3} + \cdots + (-1)^n \varepsilon_n s^{m_1+m_2+\cdots+m_n} + \ldots, \varepsilon_n \in A. \tag{6}\]

It is easy to see that the following statement is true.

Lemma 1 ([30]). Nega-s-adic series (4) is an alternating Cantor series if and only if for any \(n \in \mathbb{N}\) a sequence \((m_n)\) is a sequence of odd positive integers and \(\varepsilon_n = \alpha_n \in A\) as well.

A series of the form
\[-\alpha_1 s^k_1 + \alpha_2 s^k_2 - \alpha_3 s^k_3 + \cdots + (-1)^n \alpha_n s^{k_n} + \ldots, \alpha_n \in A.\]
is called a mixed s-adic series. Trivially, the last series is an alternating Cantor series.

We note that the case, when sequences \((\alpha_n)\) and \((m_n)\) are interdependent, is interesting, e.g. when \(m_n = \alpha_n \in A_0\) for an arbitrary \(n \in \mathbb{N}\). In particular, we shall describe properties of the set
\[S^- = \left\{ x : x = \sum_{n=1}^{\infty} \frac{(-1)^n \alpha_n}{s^{\alpha_1+\alpha_2+\cdots+\alpha_n}}, (\alpha_n) \in L, s > 2 \right\}\]
in the present article. Also, here the following set is considered:
\[M_{(-D,s)} = \left\{ x : x = \Delta_{m_1+1}^{m_2+1} \ldots \alpha_{m_1} \ldots 0 \alpha_{m_1+m_2} \ldots 0 \ldots 0 \alpha_{m_1+m_2+\cdots+m_n} \ldots \right\},\]
where \(s > 1\) is a fixed positive integer, \(\alpha_{m_1+m_2+\cdots+m_n} \neq 0\) for all \(n \in \mathbb{N}\), and \(m_n \in \{3, 5, 7, \ldots, 2i+1, \ldots\}\).

3. Fractal sets

Let us consider the Cantor set. Any element of the Cantor set has only the digits 0 and 2 in own ternary representation. This set is an uncountable, perfect, and nowhere dense set of zero Lebesgue measure. Also, this is a self-similar fractal whose Hausdorff-Besicovitch dimension is equal to \(\log_3 2\).

One can formulate a general theorem about values of the Hausdorff-Besicovitch dimension of a set whose elements have restrictions on using combinations of digits in own s-adic representation.

Theorem 3 ([29][32]). Let \(E\) be a set whose elements represented by a finite number of fixed combinations \(\sigma_1, \sigma_2, \ldots, \sigma_m\) of s-adic digits in the s-adic numeral system. Then the Hausdorff-Besicovitch dimension \(\alpha_0\) of \(E\) satisfies the following equation:
\[N(\sigma_1^m) \left(\frac{1}{s}\right)^{\alpha_0} + N(\sigma_2^m) \left(\frac{1}{s}\right)^{2\alpha_0} + \cdots + N(\sigma_m^k) \left(\frac{1}{s}\right)^{k\alpha_0} = 1,\]
where \(N(\sigma_m^k) \) is a number of \(k \)-digit combinations \(\sigma_m^k \) from the set \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \), \(k \in \mathbb{N} \), and \(N(\sigma_1^m) + N(\sigma_2^m) + \cdots + N(\sigma_m^m) = m \).

This theorem is interesting since fractal properties of many sets of special types follow from this theorem. For example, the following set, whose elements have a functional restriction on using digits in own the \(s \)-adic representation, was studied in [28]:

\[
S = \left\{ x : x = \sum_{n=1}^{\infty} \frac{\alpha_n}{s^{\alpha_1 + \alpha_2 + \cdots + \alpha_n}}, (\alpha_n) \in L \right\},
\]

where \(s > 2 \) is a fixed positive integer. The last-mentioned set is the set of all numbers whose \(s \)-adic representations contain only the following combinations of \(s \)-adic digits:

\[
1, 02, 003, \ldots, 0 \ldots 0 \underbrace{\ldots 0}_{i-1}, \ldots, 0 \ldots 0 \underbrace{(s-2)}_{s-1}, \ldots, 0 \ldots 0 \underbrace{(s-1)}_{s-1}.
\]

The Hausdorff-Besicovitch dimension \(\alpha_0 \) of the set \(S \) satisfies the equation

\[
\left(\frac{1}{s} \right)^{\alpha_0} + \left(\frac{1}{s} \right)^{2\alpha_0} + \left(\frac{1}{s} \right)^{3\alpha_0} + \cdots + \left(\frac{1}{s} \right)^{(s-1)\alpha_0} = 1.
\]

Suppose \(s > 2 \) be a fixed positive integer number.

Consider a class \(\Upsilon_s \) of sets \(S(s,u) \) represented in the form

\[
S(s,u) = \left\{ x : x = \frac{u}{s-1} + \sum_{n=1}^{\infty} \frac{\alpha_n - u}{s^{\alpha_1 + \alpha_2 + \cdots + \alpha_n}}, (\alpha_n) \in L, \alpha_n \neq u, \alpha_n \neq 0 \right\},
\]

where \(u = 0, s-1, u \) and \(s \) are fixed for the set \(S(s,u) \). That is the class \(\Upsilon_s \) contains the sets \(S(s,0), S(s,1), \ldots, S(s,s-1) \). We say that \(\Upsilon \) is a class of sets such that contains the classes \(\Upsilon_3, \Upsilon_4, \ldots, \Upsilon_n, \ldots \).

It is easy to see that the set \(S(s,u) \) can be defined by the \(s \)-adic representation in the following form

\[
S(s,u) = \left\{ x : x = \Delta_{\alpha_1-1}^{u \cdots u_{\alpha_2-1} \cdots u_{\alpha_n-1}}(\alpha_n) \in L, \alpha_n \neq u, \alpha_n \neq 0 \right\},
\]

Theorem 4 ([29], [32]). For an arbitrary \(u \in A \) the set \(S(s,u) \) is an uncountable, perfect, nowhere dense set of zero Lebesgue measure, and a self-similar fractal whose Hausdorff-Besicovitch dimension \(\alpha_0(S(s,u)) \) satisfies the following equation

\[
\sum_{p_i \neq u, p_i \in A_0} \left(\frac{1}{s} \right)^{p_i \alpha_0} = 1.
\]

To prove the last statement, the auxiliary notion “cylinder” is used. This notion is useful for study of local properties of considered sets (see the following lemma).

By \(x_0 = \Delta_{c_1 \cdots c_n}^{(u,u)} \) denote the equality

\[
x_0 = \frac{u}{s-1} + \sum_{k=1}^{\infty} \frac{c_k - u}{s^{c_1 + \cdots + c_k}}.
\]
That is
\[x_0 = \Delta_{c_1 \ldots c_n}^{(s,u)} = \Delta_{c_{1-1} \ldots c_{n-1}}^{(s,u)} . \]

Definition 1. A cylinder \(\Delta_{c_1 \ldots c_n}^{(s,u)} \) of rank \(n \) with base \(c_1 c_2 \ldots c_n \) is a set of the following form
\[
\Delta_{c_1 \ldots c_n}^{(s,u)} = \left\{ x : x = \left(\sum_{k=1}^{n} \frac{c_k - u}{s^{c_1 + \ldots + c_k}} \right) + \frac{1}{s^{c_1 + \ldots + c_n}} \left(\sum_{i=n+1}^{\infty} \frac{\alpha_i - u}{s^{\alpha_i+1 + \ldots + \alpha_n}} \right) + \frac{u}{s-1} \right\},
\]
where \(c_1, c_2, \ldots, c_n \) are fixed s-adic digits, \(c_n \neq 0 \), \(c_n \neq u \), \(\alpha_n \neq u \), \(\alpha_n \neq 0 \), and \(2 < s \in \mathbb{N}, n \in \mathbb{N} \).

Lemma 2 ([29][32]). Cylinders \(\Delta_{c_1 \ldots c_n}^{(s,u)} \) have the following properties:

1. \(\inf \Delta_{c_1 \ldots c_n}^{(s,u)} = \left\{ \begin{array}{ll}
\tau + \frac{1}{s^{c_1 + \ldots + c_n}} \left(\frac{s-1-u}{s} \right) & \text{if } u \in \{0,1\} \\
\tau + \frac{1}{s^{c_1 + \ldots + c_n}} \frac{1}{s-1} & \text{if } u \in \{2,3,\ldots,s-1\}, \\
\tau + \frac{1}{s^{c_1 + \ldots + c_n}} \frac{1}{s-1} & \text{if } u = 0
\end{array} \right. \\
\sup \Delta_{c_1 \ldots c_n}^{(s,u)} = \left\{ \begin{array}{ll}
\tau + \frac{1}{s^{c_1 + \ldots + c_n}} \left(\frac{1}{s^{n+1}} + \frac{u}{s-1} \right) & \text{if } u \in \{1,2,\ldots,s-2\} \\
\tau + \frac{1}{s^{c_1 + \ldots + c_n}} \left(1 - \frac{1}{s^{n+2}} \right) & \text{if } u = s-1,
\end{array} \right.
\]
where
\[
\tau = \sum_{k=1}^{n} \frac{c_k - u}{s^{c_1 + \ldots + c_k}} + \sum_{k=1}^{n} \frac{u}{s^k}.
\]

2. If \(d(\cdot) \) is the diameter of a set, then
\[
d(\Delta_{c_1 \ldots c_n}^{(s,u)}) = \frac{1}{s^{c_1 + \ldots + c_n}} d(S_{c_1 \ldots c_n});
\]
3. \[
d(\Delta_{c_1 \ldots c_n c_{n+1}}^{(s,u)}) = \frac{1}{s^{c_{n+1}}};
\]
4. \[
\Delta_{c_1 c_2 \ldots c_n}^{(s,u)} = \bigcup_{i=1}^{s-1} \Delta_{c_1 \ldots c_{n+1}}^{(s,u)} \forall c_n \in A_0, n \in \mathbb{N}, i \neq u.
\]
5. The following relationships hold:
 (a) if \(u \in \{0,1\} \), then
 \[\inf \Delta_{c_1 \ldots c_n}^{(s,u)} > \sup \Delta_{c_1 \ldots c_{n+p}}^{(s,u)}; \]
(b) if \(u \in \{2, 3, \ldots, s - 3\} \), then
\[
\begin{cases}
\sup_{c_1 \ldots c_n} \Delta(s, u) < \inf_{c_1 \ldots c_n} \Delta(s, u) & \text{for all } p + 1 \leq u \\
\inf_{c_1 \ldots c_n} \Delta(s, u) > \sup_{c_1 \ldots c_n} \Delta(s, u) & \text{for all } u < p;
\end{cases}
\]
(c) if \(u \in \{s - 2, s - 1\} \), then
\[
\sup_{c_1 \ldots c_n} \Delta(s, u) < \inf_{c_1 \ldots c_n} \Delta(s, u).
\]

The fifth property of the last lemma means the following:
• for any positive integer \(n \) cylinders \(\Delta(s, u) \) are right-to-left situated in the case of the set \(S(s, 0) \) or \(S(s, 1) \);
• let we have the sets \(S(s, 2), S(s, 3), \ldots, S(s, s - 3) \); then cylinders \(\Delta(s, u) \) (\(u = 2, s - 3 \)) are left-to-right situated for all \(c_n \leq 1, c_n \leq 2, \ldots, c_n \leq s - 4 \), respectively, and cylinders \(\Delta(s, u) \) are right-to-left situated for all \(c_n > 2, c_n > 3, \ldots, c_n > s - 3 \), respectively;
• for all positive integers \(n \) cylinders \(\Delta(s, u) \) are left-to-right situated in the case of the set \(S(s, s - 2) \) or \(S(s, s - 1) \);
• for any \(S(s, u) \), \(n \in \mathbb{N} \), and \(c_n \neq s - 1 \) the following condition holds:
\[
\Delta(s, u) \cap \Delta(s, u) \cap \cdots \cap \Delta(s, u) = \emptyset.
\]

For proving the nowhere density of \(S(s, u) \), the last property is used.

Consider the set of all numbers whose s-adic representations contain only combinations of s-adic digits that is using in the s-adic representations of elements of \(S(s, u) \).

By \(\tilde{S} \) denote the set of all numbers whose s-adic representations contain only combinations of s-adic digits from the set
\[
\left\{1, 02, 003, \ldots, (s - 1)_{s - 3}^{s - 2}(s - 1)(s - 2)\right\},
\]
where \(c \in A_0, u \in A, c \neq u \).

Theorem 5 \([29, 32]\). The set \(\tilde{S} \) is:
• an uncountable, perfect, and nowhere dense set of zero Lebesgue measure;
• a self-similar fractal, and its Hausdorff-Besicovitch dimension \(\alpha_0 \) satisfies the following equation
\[
\left(\frac{1}{s}\right)^{\alpha_0} + (s - 1) \left(\frac{1}{s}\right)^{2\alpha_0} + (s - 1) \left(\frac{1}{s}\right)^{3\alpha_0} + \cdots + (s - 1) \left(\frac{1}{s}\right)^{(s - 1)\alpha_0} = 1.
\]
Let us prove the second item. The s-adic representation of an arbitrary element from \(\tilde{S} \) contains combinations of digits from the following tuple:
\[
02, 003, \ldots, 000(s - 1);\text{ for all } p + 1 \leq u.
\]
Here \(s^2 - 3s + 3 \) combinations of \(s \)-adic digits, i.e., the unique 1-digit combination and \(s - 1 \) k-digit combinations for all \(k = 2, s - 1 \). Our statement follows from Theorem 3.

Let us consider some fractal sets defined in terms of the nega-\(s \)-adic representation, a nega-\(s \)-adic Cantor series, and a mixed \(s \)-adic series.

Let \(s > 2 \) be a fixed positive integer.

Theorem 6 \((30)\). The sets

\[
S(-s, 0) = \left\{ x : x = \sum_{n=1}^{\infty} \frac{\alpha_n}{(-s)^{\alpha_1 + \alpha_2 + \cdots + \alpha_n}}, (\alpha_n) \in L \right\},
\]

\[
S^\pm = \left\{ x : x = \sum_{n=1}^{\infty} \frac{(-1)^n \alpha_n}{s^{\alpha_1 + \alpha_2 + \cdots + \alpha_n}}, (\alpha_n) \in L \right\},
\]

are:

- uncountable, perfect, nowhere dense sets of zero Lebesgue measure;
- self-similar fractals whose Hausdorff-Besicovitch dimension \(\alpha_0 \) satisfies the following equation
 \[
 \sum_{i=1}^{s-1} \left(\frac{1}{s} \right)^{\alpha_i} = 1.
 \]

Proof. Let us prove that the sets \(S(-s, 0) \) and \(S^- \) are uncountable.

Let us prove that the sets \(S(-s, 0) \) and \(C[-s, A_0] \) are equivalent. That is, let us consider the mapping

\[
x = \sum_{n=1}^{\infty} \frac{\alpha_n \cdot (-1)^{\alpha_1 + \alpha_2 + \cdots + \alpha_n}}{s^{\alpha_1 + \alpha_2 + \cdots + \alpha_n}} \xrightarrow{f} \sum_{n=1}^{\infty} \frac{\alpha_n}{(-s)^n} = f(x) = y
\]

or (in other words)

\[
x = \Delta_{\alpha_1 \alpha_2 \cdots \alpha_n} = \sum_{n=1}^{\infty} \frac{\alpha_n}{s^{\alpha_1 + \alpha_2 + \cdots + \alpha_n}} \xrightarrow{f} \Delta_{\alpha_1 \alpha_2 \cdots \alpha_n}^{-s} = f(x) = y.
\]
Suppose x_1 and x_2 from $\mathbb{S}_{(-s,0)}$ are such that $x_1 \neq x_2$ and
\[
x_1 = \Delta_{(0,0)\alpha_1,0\alpha_2,0\alpha_3,\ldots,0\alpha_n} \quad x_2 = \Delta_{(0,0)\beta_1,0\beta_2,0\beta_3,\ldots,0\beta_n}
\]
\[
\alpha_1 = 1 \quad \alpha_2 = 1 \quad \alpha_3 = 1 \quad \beta_1 = 1 \quad \beta_2 = 1 \quad \beta_3 = 1
\]
If $f(x_1) = f(x_2)$ is nega-s-adic irrational (i.e., this number has the unique representation). Hence $\alpha_n = \beta_n$ holds for all $n \in \mathbb{N}$. That is, $x_1 = x_2$, It contradicts to the condition.

Assume that $f(x_1) = f(x_2)$ is nega-s-adic rational, but this is not possible because any number from $C[-s, A_0]$ does not have two expansions.

So, f is a bijection. Since $C[-s, A_0]$ is an uncountable set, we see that $\mathbb{S}_{(-s,0)}$ is an uncountable set. Proofs for S^- are similar.

Statements of this theorem follows from properties of the following notions of cylinders. Proofs are similar with proofs of Theorems 1 and 3 in [32] (arXiv:1703.05262).

Definition 2. A cylinder $\Delta_{(-s,0)}^{c_1 c_2 \ldots c_n}$ of rank n with base $c_1 c_2 \ldots c_n$ is a set formed by all numbers of the set $\mathbb{S}_{(-s,0)}$ with nega-s-representations in which the first n non-zero digits coincide with $c_1 c_2 \ldots c_n$ respectively.

Definition 3. A cylinder $\Delta_{(-s,0)}^{c_1, c_2, \ldots, c_n}$ of rank n with base $c_1 c_2 \ldots c_n$ is a subset of S^- with elements for which the following condition holds:

\[
\alpha_1 = c_1, \alpha_2 = c_2, \ldots, \alpha_n = c_n,
\]

where c_1, c_2, \ldots, c_n is an ordered tuple of numbers.

Lemma 3 ([30]). Cylinders $\Delta_{c_1 c_2 \ldots c_n}^{(-s,0)}$ have the following properties:

1. \[
\inf \Delta_{c_1 c_2 \ldots c_n}^{(-s,0)} = \inf \left\{ g_n^{(-s)} \right\} \quad \sup \Delta_{c_1 c_2 \ldots c_n}^{(-s,0)} = \sup \left\{ g_n^{(-s)} \right\}
\]
 where
 \[
g_n^{(-s)} = \sum_{i=1}^{n} c_i (-1)^i / s^{c_1 + c_2 + \ldots + c_i}
\]
2. Suppose $d(\cdot)$ is the diameter of a set. Then
 \[
d \left(\Delta_{c_1 c_2 \ldots c_n}^{(-s,0)} \right) = \frac{d \left(\mathbb{S}_{(-s,0)} \right)}{s^{c_1 + c_2 + \ldots + c_n}}
\]
3. The main metric relationship is following:
 \[
 \frac{d \left(\Delta_{c_1 c_2 \ldots c_n c_{n+1}}^{(-s,0)} \right)}{d \left(\Delta_{c_1 c_2 \ldots c_n}^{(-s,0)} \right)} = \frac{1}{s^{c_{n+1}}}
\]
(4) For any \(n \in \mathbb{N} \) the following condition holds:
\[
\Delta_{c_1c_2\ldots c_n}^{(-s,0)} = \bigcup_{i=1}^{s-1} \Delta_{c_1c_2\ldots c_n}^{(-s,0)}.
\]

(5) For cylinders \(\Delta_{c_1c_2\ldots c_n\{p+1\}}^{(-s,0)} \) of rank \((n+1)\) with base \(c_1c_2\ldots c_n c_{n+1} \) the following relationships hold:
\[
\inf \Delta_{c_1c_2\ldots c_n}^{(-s,0)} > \sup \Delta_{c_1c_2\ldots c_n[p+1]}^{(-s,0)} \text{ whenever } c_1 + c_2 + \cdots + c_n + p \text{ is even},
\]
\[
\inf \Delta_{c_1c_2\ldots c_n[p+1]}^{(-s,0)} > \sup \Delta_{c_1c_2\ldots c_n}^{(-s,0)} \text{ whenever } c_1 + c_2 + \cdots + c_n + p \text{ is odd}.
\]

(6) Let \(T_{c_1c_2\ldots c_n[p]} \) be an interval of the form
\[
T_{c_1c_2\ldots c_n[p]} = \left\{ \begin{array}{ll}
sup \Delta_{c_1c_2\ldots c_n[p+1]}^{(-s,0)} & \text{if } c_1 + \cdots + c_n + p \text{ is even} \\
\inf \Delta_{c_1c_2\ldots c_n[p+1]}^{(-s,0)} & \text{if } c_1 + \cdots + c_n + p \text{ is odd},
\end{array} \right.
\]
where \(1 \leq p < s - 1 \) is a positive integer. Then
\[
T_{c_1c_2\ldots c_n[p]} \cap S_{(-s,0)} = \emptyset.
\]

(7) For any \(p \in \{1, 2, \ldots, s - 2\} \) the following condition holds:
\[
\Delta_{c_1c_2\ldots c_n[p]}^{(-s,0)} \cap \Delta_{c_1c_2\ldots c_n[p+1]}^{(-s,0)} = \emptyset.
\]

(8) If \(x_0 \in S_{(-s,0)} \), then
\[
x_0 = \bigcap_{n=1}^{\infty} \Delta_{c_1c_2\ldots c_n}^{(-s,0)}.
\]

Proof. Properties 1 – 4 follow from the definitions of \(\Delta_{c_1c_2\ldots c_n}^{(-s,0)} \) and \(S_{(-s,0)} \).

Let us prove Property 5. Suppose \(\Delta_{c_1c_2\ldots c_n[p]}^{(-s,0)}, \Delta_{c_1c_2\ldots c_n[p+1]}^{(-s,0)} \) are cylinders, where \(1 \leq p < s - 1 \), and
\[
g_n^{(s)} = \sum_{i=1}^{n} c_i (-s)^{-i}; \quad \varpi_n = c_1 + c_2 + \cdots + c_n.
\]
From the definition of \(\Delta_{c_1c_2\ldots c_n}^{(-s,0)} \), it follows that
\[
\Delta_{c_1c_2\ldots c_n[p]}^{(-s,0)} \subset \left\{ \begin{array}{ll}
g_n^{(-s)} - \frac{p}{(-s)^n} + \frac{(-s+1)}{(s^2-1)(-s)^n+1}; & g_n^{(-s)} + \frac{p}{(-s)^n} + \frac{2}{(s^2-1)(-s)^n+1} \\
g_n^{(-s)} + \frac{p}{(-s)^n} + \frac{2}{(s^2-1)(-s)^n+1}; & g_n^{(-s)} - \frac{p}{(-s)^n} + \frac{(-s+1)}{(s^2-1)(-s)^n+1}
\end{array} \right.,
\]
where \(\varpi_n + p \) is even for the first case, and \(\varpi_n + p \) is odd for the second case.

By analogy, we obtain
\[
\Delta_{c_1c_2\ldots c_n[p+1]}^{(-s,0)} \subset \left\{ \begin{array}{ll}
g_n^{(-s)} - \frac{p+1}{(-s)^n} + \frac{(-s+1)}{(s^2-1)(-s)^n+1} + s(-s)^n+1; & g_n^{(-s)} + \frac{p+1}{(-s)^n} + \frac{2}{(s^2-1)(-s)^n+1} \\
g_n^{(-s)} + \frac{p+1}{(-s)^n} + \frac{2}{(s^2-1)(-s)^n+1} + s(-s)^n+1; & g_n^{(-s)} - \frac{p+1}{(-s)^n} + \frac{(-s+1)}{(s^2-1)(-s)^n+1}
\end{array} \right.,
\]
where \((\varpi_n + p + 1) \) is even for the first case and is odd for the second case.

Let us prove the mentioned inequalities.
Let \(\varpi_n + p = c_1 + c_2 + \ldots + c_n + p \) be an even number. Then

\[
\inf g_{n}(s) - \frac{p + 1}{(-s)^{n+p+1}} - \frac{-(s^2 + 1)}{(s^2 - 1)(-s)^{n+p}} = \frac{1}{s^{n+p+1}} \left(ps + p + 1 - \frac{s^3 + s^2 + s + 1}{s(s^2 - 1)} \right) > 0,
\]

because

\[
\frac{s^3 + s^2 + s + 1}{s(s^2 - 1)} = 1 + \frac{(s + 1)^2}{s(s - 1)} = 1 + \frac{s + 1}{s(s - 1)} < 2.
\]

Let \(\varpi_n + p = c_1 + c_2 + \ldots + c_n + p \) be an odd number. Then

\[
\inf g_{n}(s) - \frac{p}{(-s)^{n+p}} - \frac{-(s^2 + 1)}{(s^2 - 1)(-s)^{n+p}} = \frac{1}{s^{n+p+1}} \left(ps + p + 1 - \frac{s^3 + s^2 + s + 1}{s(s^2 - 1)} \right) > 0.
\]

To prove Property 6, it suffices to prove the following inequalities:

- under the condition that \(c_1 + c_2 + \ldots + c_n + p \) is an even number

\[
\left\{ \begin{array}{l}
\sup \Delta_{c_1 c_2 \ldots c_n(p+1)c_{n+2}} - \sup \Delta_{c_1 c_2 \ldots c_n(p+1)} < 0, \\
\inf \Delta_{c_1 c_2 \ldots c_n p c_{n+2}} - \inf \Delta_{c_1 c_2 \ldots c_n p} > 0.
\end{array} \right.
\]

- under the condition that \(c_1 + c_2 + \ldots + c_n + p \) is an odd number

\[
\left\{ \begin{array}{l}
\sup \Delta_{c_1 c_2 \ldots c_n(p+1)c_{n+2}} - \sup \Delta_{c_1 c_2 \ldots c_n(p+1)} < 0, \\
\inf \Delta_{c_1 c_2 \ldots c_n p c_{n+2}} - \inf \Delta_{c_1 c_2 \ldots c_n(p+1)} > 0.
\end{array} \right.
\]

Suppose

\[
l_0(c_1, c_2, \ldots, c_n, p) = \begin{cases}
\frac{s^2 + 1}{s(s-1)} & \text{whenever } c_1 + c_2 + \ldots + c_n + p \text{ is even} \\
\frac{2}{s^2 - 1} & \text{whenever } c_1 + c_2 + \ldots + c_n + p \text{ is odd}
\end{cases}
\]

\[
l(c_1, c_2, \ldots, c_n, p) = \begin{cases}
\frac{s^2 + 1}{s(s-1)} & \text{whenever } c_1 + c_2 + \ldots + c_n + p \text{ is even} \\
\frac{2}{s^2 - 1} & \text{whenever } c_1 + c_2 + \ldots + c_n + p \text{ is odd}
\end{cases}
\]

Let \(c_1 + c_2 + \ldots + c_n + p \) be an even number. Then

\[
\sup \Delta_{c_1 c_2 \ldots c_n(p+1)c_{n+2}} - \sup \Delta_{c_1 c_2 \ldots c_n(p+1)} = g_{n}(s) + \frac{p + 1}{(-s)^{c_1 \ldots + c_n + p+1}} + \frac{c_{n+2}}{(-s)^{c_1 \ldots + c_n + p+1} + c_{n+2}} +
\]

\[
- \frac{l(c_1, c_2, \ldots, c_n, p + 1, c_{n+2})}{(-s)^{c_1 \ldots + c_n + p + 1 + c_{n+2}}} - g_{n}(s) - \frac{p + 1}{(-s)^{c_1 \ldots + c_n + p+1}} - \frac{l(c_1, c_2, \ldots, c_n, p + 1)}{(-s)^{c_1 \ldots + c_n + p+1}} =
\]

\[
= - \frac{1}{s^{c_1 \ldots + c_n + p+1}} \left(\frac{c_{n+2}}{(-s)^{c_{n+2}}} + \frac{l(c_1, c_2, \ldots, c_n, p + 1, c_{n+2})}{(-s)^{c_{n+2}}} + \frac{s^2 + 1}{s(s^2 - 1)} \right) =
\]
By analogy, we have

\[
\inf \Delta_{c_1\ldots c_n}^{(-s,0)} - \inf \Delta_{c_1\ldots c_n}^{(-s,0)} = \frac{c_{n+2}}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}} + \frac{l_0(c_1, c_2, \ldots, c_n, p, c_{n+2})}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}} - \frac{1}{(-s)^{c_1+\ldots+c_n+p}} \frac{c_{n+2}}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}} + \frac{l_0(c_1, c_2, \ldots, c_n, p, c_{n+2})}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}}
\]

\[
- \frac{1}{(-s)^{c_1+\ldots+c_n+p}} \frac{c_{n+2}}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}} + \frac{l_0(c_1, c_2, \ldots, c_n, p, c_{n+2})}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}}
\]

Let \(c_1 + c_2 + \ldots + c_n + p \) be an odd number. Then

\[
\sup \Delta_{c_1\ldots c_n}^{(-s,0)} - \sup \Delta_{c_1\ldots c_n}^{(-s,0)} = \frac{c_{n+2}}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}} + \frac{l_0(c_1, c_2, \ldots, c_n, p, c_{n+2})}{(-s)^{c_1+\ldots+c_n+p+c_{n+2}}}
\]

Also,

\[
\inf \Delta_{c_1\ldots c_n(c_{n+1})}^{(-s,0)} - \inf \Delta_{c_1\ldots c_n(c_{n+1})}^{(-s,0)} = \frac{c_{n+2}}{(-s)^{c_1+\ldots+c_n(p+1)+c_{n+2}}} + \frac{l_0(c_1, c_2, \ldots, c_n, p + 1, c_{n+2})}{(-s)^{c_1+\ldots+c_n(p+1)+c_{n+2}}}
\]

\[
- \frac{1}{(-s)^{c_1+\ldots+c_n(p+1)}} \frac{c_{n+2}}{(-s)^{c_1+\ldots+c_n(p+1)+c_{n+2}}} + \frac{l_0(c_1, c_2, \ldots, c_n, p + 1, c_{n+2})}{(-s)^{c_1+\ldots+c_n(p+1)+c_{n+2}}}
\]

Property 7 follows from Property 6.

Property 8. From properties of cylinders of \(S_{(-s,0)} \), it follows the following: if \(x_0 \in S_{(-s,0)} \), then

\[
x_0 \in \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \ldots \cap \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \ldots,
\]

where \(x_0 = \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \ldots \). Also,

\[
\inf \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \ldots \cap \Delta_{c_1\ldots c_n}^{(-s,0)} \cap \ldots
\]

So, \(x_0 \) belongs to the following system of closed intervals:

\[
\left[\inf \Delta_{c_1\ldots c_n}^{(-s,0)} ; \sup \Delta_{c_1\ldots c_n}^{(-s,0)} \right] \supset \left[\inf \Delta_{c_1\ldots c_n}^{(-s,0)} ; \sup \Delta_{c_1\ldots c_n}^{(-s,0)} \right] \supset \ldots \supset \left[\inf \Delta_{c_1\ldots c_n}^{(-s,0)} ; \sup \Delta_{c_1\ldots c_n}^{(-s,0)} \right] \supset \ldots
\]
Therefore,

\[x_0 = \bigcap_{n=1}^{\infty} \Delta^{-s}(c_1|c_2|\ldots|c_n). \]

Lemma 4 \[30\]. Cylinders \(\Delta^{-s}(c_1|c_2|\ldots|c_n) \) have the following properties:

1. \[
\Delta^{-s}(c_1|c_2|\ldots|c_n) \subset \begin{cases} \sigma_{2k} + \frac{\inf S^-}{s^2 + s + \cdots + c_k} + \sigma_{2k+1} - \frac{\sup S^-}{s^2 + s + \cdots + c_k} & \text{if } n = 2k \\ \sigma_{2k+1} - \frac{\inf S^-}{s^2 + s + \cdots + c_k} + \sigma_{2k} - \frac{\sup S^-}{s^2 + s + \cdots + c_k} & \text{if } n = 2k + 1, \end{cases}
\]

where \(k \in \mathbb{N} \),

\[
\sigma_n = \sum_{i=1}^{n} c_i, \quad \inf S^- = \frac{s^{-1} - s - 1}{s^2 - 1}, \quad \sup S^- = \frac{s^2 + s + 1}{s^2 - 1}.
\]

2. \[
d(\Delta^{-s}(c_1|c_2|\ldots|c_n)) = \frac{s^2 - 1 - s + 2}{(s^2 - 1) s^2}.
\]

3. \[
\frac{\Delta^{-s}(c_1|c_2|\ldots|c_n|c_{n+1})}{\Delta^{-s}(c_1|c_2|\ldots|c_n)} = \frac{1}{s^2 + 1}.
\]

4. \[
\Delta^{-s}(c_1|c_2|\ldots|c_n|c_{n+1}) \subset \Delta^{-s}(c_1|c_2|\ldots|c_n) \quad \forall c_n \in A_0, \ n \in \mathbb{N}.
\]

5. Cylinders \(\Delta^{-s}(c_1|c_2|\ldots|c_n|c_{n-1}) \) are:

- right-to-left situated whenever \(n \) is even, i.e., \(\forall k \in \mathbb{N} : \sup \Delta^{-s}(c_1|c_2|\ldots|c_{k-1}|c_{k+1}) < \inf \Delta^{-s}(c_1|c_2|\ldots|c_{k-1}|c_{k}|c_{k+1}) \);

- left-to-right situated whenever \(n \) is odd, i.e., \(\forall k \in \mathbb{N} : \sup \Delta^{-s}(c_1|c_2|\ldots|c_{k-1}|c_{k+1}) < \inf \Delta^{-s}(c_1|c_2|\ldots|c_{k-1}|c_{k}|c_{k+1}) \).

Proof. The first, the second, and the third properties follow from the definition of a cylinder \(\Delta^{-s}(c_1|c_2|\ldots|c_n) \).

Let us prove the fourth property.

1. Suppose \(n = 2k, k \in \mathbb{N} \). Then the equality \(\inf \Delta^{-s}(c_1|c_2|\ldots|c_{n+1}) \geq \inf \Delta^{-s}(c_1|c_2|\ldots|c_n) \) can be written in the form

\[
\sum_{m=1}^{2k} \frac{(-1)^m c_m}{s^2 + c_1 + c_2 + \cdots + c_m} - \frac{c_{2k+1}}{s^2 + c_1 + c_2 + \cdots + c_{2k+1}} \geq \sum_{m=1}^{2k} \frac{(-1)^m c_m}{s^2 + c_1 + c_2 + \cdots + c_{2k+1}} + \frac{\inf S^-}{s^2 + c_1 + c_2 + \cdots + c_{2k}}
\]

or

\[
-c_{2k+1} - \sup S^- \geq s^{2k+1} \inf S^-,
\]

\[
(s^2 - 1) + s^{2k+1}(s^2 - 1) - c_{2k+1}(s^2 - 1) \geq 0.
\]
It is easy to see that the last inequality is an equality under the condition $c_{2k+1} = 1$.

In addition, for an even number n, let us consider the inequality $\sup \Delta_{c_1c_2\ldots c_{n+1}} \leq \sup \Delta_{c_1c_2\ldots c_n}$. We have

$$\sum_{m=1}^{2k} \frac{(-1)^m c_m}{s^{c_1+c_2+\ldots+c_m}} - \frac{c_{2k+1}}{s^{c_1+c_2+\ldots+c_{2k+1}}} \leq \sum_{m=1}^{2k} \frac{(-1)^m c_m}{s^{c_1+c_2+\ldots+c_m}} + \sup S^-$$

or

$$(1 + c_{2k+1} + s^{2+c_{2k+1} + s^{-1}}) - s - s^{1+c_{2k+1}} - c_{2k+1}s - s^{c_{2k+1}} \leq 0.$$

The last inequality is an equality when $c_{2k+1} = s - 1$ holds.

2. Suppose $n = 2k + 1, k \in \mathbb{N}$. Then $\inf \Delta_{c_1c_2\ldots c_{n+1}} \geq \inf \Delta_{c_1c_2\ldots c_n}$ and

$$\sum_{m=1}^{2k+1} \frac{(-1)^m c_m}{s^{c_1+c_2+\ldots+c_m}} + \frac{c_{2k+2}}{s^{c_1+c_2+\ldots+c_{2k+2}}} + \inf S^- = \sum_{m=1}^{2k+1} \frac{(-1)^m c_m}{s^{c_1+c_2+\ldots+c_m}} - \sup S^-$$

are equivalent. Hence

$$(s - 1 - c_{2k+2}) - s^{c_{2k+2}}(s^2 - s - 1) + s^{-1}(sc_{2k+2} - 1) \geq 0.$$

If $c_{2k+2} = s - 1$, then the last inequality is an equality.

By analogy, for sup $\Delta_{c_1c_2\ldots c_{n+1}} \leq \sup \Delta_{c_1c_2\ldots c_n}$, we get

$$\sum_{m=1}^{2k+1} \frac{(-1)^m c_m}{s^{c_1+c_2+\ldots+c_m}} + \frac{c_{2k+2}}{s^{c_1+c_2+\ldots+c_{2k+2}}} + \inf S^- \leq \sum_{m=1}^{2k+1} \frac{(-1)^m c_m}{s^{c_1+c_2+\ldots+c_m}} - \sup S^-,$$

and

$$(s - s^2) + (1 - c_{2k+2}) + (s - 1)s^{c_{2k+2}} + s^{-1}(sc_{2k+2} - s^{c_{2k+2}}) \leq 0.$$

It is true for all values of c_{2k+2} and $s > 2$, and is an equality when $c_{2k+2} = 1$.

Let us prove Property 5.

\[\forall k \in \mathbb{N} : \sup \Delta^-_{c_1c_2\ldots c_{k+1}c_{k+1}} - \inf \Delta^-_{c_1c_2\ldots c_{k+1}c_{k+1}} = \]

\[= \frac{c_{2k+1}}{s^{c_1+c_2+\ldots+c_{2k+1}}} + \sup S^- - \frac{c_{2k}}{s^{c_1+c_2+\ldots+c_{2k}}} = \frac{\inf S^-}{s^{c_1+c_2+\ldots+c_{2k}}} = \]

\[= \frac{1}{s^{c_1+c_2+\ldots+c_{2k}}} \left(\frac{1 - s}{s} c_{2k} + \frac{s^2}{s} \frac{s - s^{2 + s}}{s(s^2 - 1)} \right) = \]

\[= \frac{s^2(2 + c_{2k} - sc_{2k}) + s(c_{2k} + 2 - 2s) - c_{2k}}{s(s^2 - 1)} < 0. \]
Corollary 3. For an arbitrary α where $(\sup_{|\alpha|} = 1$ for all α where (\sup_{α}) holds.

It follows from the last-mentioned lemma that the following statements are true.

Corollary 1. For all $c_n \in \{1, 2, \ldots, s - 2\}$ the condition

$$
\Delta_{c_1c_2 \ldots c_{n-1}c_n} \cap \Delta_{c_1c_2 \ldots c_{n-1}[c_n+1]} = \emptyset
$$

holds.

Corollary 2. Intervals of the form

$$
\left(\sup_{c_1c_2 \ldots c_{k-1}} \Delta_{c_1c_2 \ldots c_{k-1}[c_k+1]} \right) \text{ and } \left(\sup_{c_1c_2 \ldots c_{k-1}[c_k+1]} \inf_{c_1c_2 \ldots c_{k-1}[c_k+1]} \Delta_{c_1c_2 \ldots c_{k-1}[c_k+1]} \right),
$$

where $k \in \mathbb{N}$, have the empty intersection with the set $S^-.$

Corollary 3. For an arbitrary $x_0 \in S^-$ the following condition holds:

$$
x_0 = \bigcap_{n=1}^{\infty} \Delta_{c_1c_2 \ldots c_n}.
$$

Let u be a fixed positive integer from $A.$

By $S_{(-s, u)}$ denote the set (a subset of the segment $\left[\frac{-s}{s+1}, \frac{1}{s+1}\right]$) of all numbers x represented by the nega-s-adic expansion such that are of the form

$$
x = \sum_{n=1}^{\infty} \left(\frac{\alpha_n - u}{(-s)^{n+1} + \alpha_n} \right) - \frac{u}{s+1},
$$

where $(\alpha_n) \in L.$

This set is the following set

$$
S_{(-s, u)} = \left\{ x : x = \sum_{n=1}^{\infty} \frac{\alpha_n - u}{(-s)^{n+1} + \alpha_n} - \frac{u}{s+1} \right\},
$$

where $(\alpha_n) \in L, u \neq \alpha_n$ for all $n \in \mathbb{N},$ and u is a fixed number.

It was shown in [30] that the following statement is true.
Theorem 7. Let \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \) be a fixed finite set of combinations (tuples) of nega-s-adic digits, \(E \) be a set whose elements have in own nega-s-adic representation only combinations of digits from the set \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \). Then the Hausdorff-Besicovitch dimension \(\alpha_0(E) \) of the set \(E \) satisfies the equation

\[
N(\sigma_m^1) \left(\frac{1}{s} \right)^{\alpha_0} + N(\sigma_m^2) \left(\frac{1}{s} \right)^{2\alpha_0} + \cdots + N(\sigma_m^k) \left(\frac{1}{s} \right)^{k\alpha_0} = 1,
\]

where \(N(\sigma_m^k) \) is a number of \(k \)-digit combinations from \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \), \(k \in \mathbb{N} \), and \(N(\sigma_m^1) + N(\sigma_m^2) + \cdots + N(\sigma_m^k) = m \).

Proof. Let \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \) be a set of fixed combinations of nega-s-adic digits, and the nega-s-adic representation of any number from \(E \) (\(E \) is a Cantor-like set) contains only such combinations of digits. There exist digit combinations \(e_1e_2\ldots e_r, e_{t_1}e_{t_2}\ldots e_{t_1} \), where \(r, t \in \mathbb{N} \) (they can be represented as one or several combinations from \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \) such that

\[
\inf E = \Delta_{(e_1e_2\ldots e_r)}^{s} \text{ and } \sup E = \Delta_{(e_{t_1}e_{t_2}\ldots e_{t_1})}^{s}.
\]

Also, here

\[
d(E) = \sup E - \inf E, \text{ where } d(\cdot) \text{ is the diameter of the set.}
\]

A cylinder \(\Delta_{(e_1e_2\ldots e_r)}^{(-s,E)} \) of rank \(n \) with the base \(e_1e_2\ldots e_r \) is a set formed by all numbers of \(E \) with \(n \)-digit representations in which the first \(n \) combinations of digits are fixed and are from \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \). It is easy to see that

\[
d(\Delta_{(e_1e_2\ldots e_r)}^{(-s,E)}) = \frac{d(E)}{s^{N(\tau_1+\tau_2+\cdots+\tau_n)}},
\]

where \(N(\tau_1+\tau_2+\cdots+\tau_n) \) is the number of digits in the combination \(\tau_1\tau_2\ldots\tau_n \).

Since

\[
E = C[-s, \{\sigma_1, \sigma_2, \ldots, \sigma_m\}], \quad E \subseteq [\inf E; \sup E], \quad \text{and}
\]

\[
\frac{\Delta_{(e_1e_2\ldots e_r)}^{(-s,E)}}{\Delta_{(e_1e_2\ldots e_r)}^{(-s,E)}} = \frac{1}{s^{N(\tau_{n+1})}},
\]

we have

\[
E = \bigcup_{i=1}^{m} [I_{\tau_i} \cap E] \cup [I_{\tau_1} \cap E] \cap \ldots \cap [I_{\tau_m} \cap E],
\]

where \(I_{\tau_i} = \left[\inf \Delta_{(e_1e_2\ldots e_r)}^{(-s,E)} ; \sup \Delta_{(e_1e_2\ldots e_r)}^{(-s,E)} \right], \quad i = 1, \ldots, m. \)

So,

\[
[I_{\tau_1} \cap E] \sim E, [I_{\tau_2} \cap E] \sim E, \ldots, [I_{\tau_{1}} \cap E] \sim E;
\]

\[
[I_{\tau_1} \cap E] \sim E, [I_{\tau_2} \cap E] \sim E, \ldots, [I_{\tau_{2}} \cap E] \sim E;
\]

\[
[I_{\tau_1} \cap E] \sim E, [I_{\tau_2} \cap E] \sim E, \ldots, [I_{\tau_{n}} \cap E] \sim E,
\]

where \(\tau^k \) is some \(k \)-digit combination from \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \) (\(j = 1, n_k \)), and \(n_k \) is the number of \(k \)-digit combinations from \(\{\sigma_1, \sigma_2, \ldots, \sigma_m\} \).
Hence the set E is a self-similar fractal whose Hausdorff dimension satisfies the equation

$$N(\sigma_m^1) \left(\frac{1}{s} \right)^{\alpha_0} + N(\sigma_m^2) \left(\frac{1}{s} \right)^{2\alpha_0} + \ldots + N(\sigma_m^k) \left(\frac{1}{s} \right)^{k\alpha_0} = 1.$$

\(\square\)

The following statements follow from the last-mentioned theorem.

Theorem 8 ([30]). The set $S(-s,u)$ is:

- an uncountable, perfect, nowhere dense sets of zero Lebesgue measure;
- a self-similar fractal, and its Hausdorff-Besicovitch dimension $\alpha_0(M(-D,s))$ satisfies the equation
 $$\sum_{i \in A_u} \left(\frac{1}{s} \right)^{i\alpha_0} = 1,$$
 where $A_u = \{1, 2, \ldots, s-1\} \setminus \{u\}$.

Let us consider fractal sets whose elements represented by nega-s-adic Cantor series.

Theorem 9 ([30]). Let $s > 1$ be a fixed positive integer, $\alpha_{m_1+m_2+\ldots+m_n} \neq 0$ for all $n \in \mathbb{N}$, and $m_n \in \{3, 5, 7, \ldots, 2i+1, \ldots\}$. Then the set $M(-D,s)$

$$M(-D,s) = \left\{ x : x = \Delta_{m_1-1}^{-s} 0 \ldots 0 \alpha_{m_1-1} \ldots 0 \alpha_{m_1+m_2-1} \ldots 0 \ldots 0 \alpha_{m_1+m_2+\ldots+m_n-1} \right\}.$$

is a self-similar fractal whose Hausdorff-Besicovitch dimension $\alpha_0(M(-D,s))$ is equal to

$$\log_s \left(3 \frac{s-1}{2} + \frac{1}{6} \sqrt{27(s-1)^2 - 4} + \frac{3}{2} \frac{s-1}{2} - \frac{1}{6} \sqrt{27(s-1)^2 - 4} \right).$$

Proof. From (6) and Theorem 7, it follows that the Hausdorff-Besicovitch dimension of the set $M(-D,s)$ under $m_n \in \{3, 5, 7, \ldots, 2i+1, \ldots\}$, $\alpha_{m_1+m_2+\ldots+m_n} \neq 0$, and under fixed $s > 1$, satisfies the equation

$$(s-1) \left(\frac{1}{s} \right)^{3\alpha_0} + (s-1) \left(\frac{1}{s} \right)^{5\alpha_0} + (s-1) \left(\frac{1}{s} \right)^{7\alpha_0} + \ldots + (s-1) \left(\frac{1}{s} \right)^{(2i+1)\alpha_0} = 1, \quad i = 1, 2, \ldots.$$

The last equation is equivalent to the equation

$$s^{3\alpha_0} - s^{2\alpha_0} - (s-1) = 0.$$

Using Cardano’s formula, we get the result.

\(\square\)
Corollary 4. If a sequence \((m_n)\) of odd positive integers is a fixed purely periodic sequence with the period \((m_1m_2\ldots m_t)\), then the set \(M'_{(-D,s,t)}\) of all numbers represented by nega-s-adic Cantor series (6) with the corresponding sequence \((m_n)\) is a self-similar fractal and
\[
\alpha_0\left(M'_{(-D,s,t)}\right) = \frac{t}{m_1 + m_2 + \cdots + m_t}.
\]

Proof. Since elements of this set have periodic nega-s-adic representation, i.e.,
\[M'_{(-D,s,t)} \ni x = \Delta^{-s} \left(\begin{array}{c} 0_0 \alpha_{m_1} 0_0 \alpha_{m_1+m_2} \ldots 0_0 \alpha_{m_1+m_2+\ldots +m_t} \end{array} \right),\]
where \(\{m_1, m_2, \ldots, m_t\}\) is a fixed set of odd numbers and \(\alpha_{m_1}, \alpha_{m_1+m_2}, \ldots, \alpha_{m_1+\ldots+m_t}\) are numbers from the set \(A\), from Theorem 7, it follows that Hausdorff-Besicovitch dimension satisfies the equation
\[
s^t \left(\frac{1}{s}\right) (m_1+m_2+\ldots+m_t) \alpha_0 = 1.
\]

The statement follows from the last equation. \(\square\)

Finally, let us remark that restrictions on using elements of sets \(S_{(+s,u)}\) are new (they occur for the first time).

So, we considered topological, metric, and fractal properties of certain sets whose elements have restrictions on using digits in own expansions. For considered sets, the case of functional restrictions is equivalent to the case of restrictions on using combinations of digits. The simple methods for the calculation of the Hausdorff-Besicovitch dimension of such sets are described. In the case of the s-adic or nega-s-adic representations, the Hausdorff-Besicovitch dimension of a set whose elements have in own representations only combinations of digits from some fixed set of combinations of digits, depends on parameters as a number of \(k\)-digit combinations and numbers \(k\). In addition, note that considered sets have the Moran structure. Similar investigations did not study for the case of generalizations of the s-adic or nega-s-adic representation. These investigations will be discussed by the author of the present article in a further paper.

4. Properties of images

In this section, the main attention is given to images of sets \(S_{(s,u)}\) and \(S_{(-s,u)}\) under the Salem type functions (see [21, 33, 35], the Salem function was introduced in [21]).

Let \(s > 1\) be a fixed positive integer and \(\alpha_n \in A = \{0, 1, \ldots, s-1\}\). Let \(P = \{p_0, p_1, \ldots, p_{s-1}\}\) be a fixed set whose elements satisfy the following properties: \(p_0 + p_1 + \cdots + p_{s-1} = 1\) and \(p_i > 0\) for all \(i = 0, s-1\). Then let us consider the following distribution functions.
Let ζ be a random variable defined by the s-adic representation
\[
\zeta = \sum_{k=1}^{\infty} \frac{\pi_k}{s^k},
\]
where digits \(\pi_k \) \((k = 1, 2, 3, \ldots)\) are random and taking the values 0, 1, \ldots, \(s-1\) with positive probabilities \(p_0, p_1, \ldots, p_{s-1}\). That is, \(\pi_k\) are independent and \(P\{\pi_k = \alpha_k\} = p_{\alpha_k}, \alpha_k \in A\).

Let \(\zeta\) be a random variable defined by the s-adic representation
\[
\zeta = \Delta^s_{\alpha_1, \alpha_2, \ldots, \alpha_k} = \sum_{k=1}^{\infty} \frac{\pi_k}{s^k},
\]
where
\[
\pi_k = \begin{cases} \alpha_k & \text{if } k \text{ is odd} \\ s-1-\alpha_k & \text{if } k \text{ is even} \end{cases}
\]
and digits \(\pi_k \) \((k = 1, 2, 3, \ldots)\) are random and taking the values 0, 1, \ldots, \(s-1\) with positive probabilities \(p_0, p_1, \ldots, p_{s-1}\). That is, \(\pi_k\) are independent and \(P\{\pi_k = \alpha_k\} = p_{\alpha_k}, P\{\pi_k = s-1-\alpha_k\} = p_{s-1-\alpha_k}, \alpha_k \in A\).

Let us consider the distribution function \(f_{\zeta}\) of the random variable \(\zeta\) and the distribution function \(\tilde{F}_x\) of the random variable \(x\):
\[
f_{\zeta}(x) = \begin{cases} 0 & \text{whenever } x < 0 \\ \beta_{\alpha_1}(x) + \sum_{k=2}^{\infty} \left(\beta_{\alpha_k}(x) \prod_{j=1}^{k-1} p_{\alpha_j}(x)\right) & \text{whenever } 0 \leq x < 1 \\ 1 & \text{whenever } x \geq 1, \end{cases}
\]
where \(p_{\alpha_j(x)} > 0\) and
\[
\beta_{\alpha_k} = \begin{cases} \sum_{i=0}^{\alpha_k(x)-1} p_i(x) & \text{whenever } \alpha_k(x) > 0 \\ 0 & \text{whenever } \alpha_k(x) = 0; \end{cases}
\]
also,
\[
\tilde{F}_x(x) = \begin{cases} 0 & \text{whenever } x < 0 \\ \tilde{\beta}_{\alpha_1}(x) + \sum_{k=2}^{\infty} \left(\tilde{\beta}_{\alpha_k}(x) \prod_{j=1}^{k-1} \tilde{p}_{\alpha_j}(x)\right) & \text{whenever } 0 \leq x < 1 \\ 1 & \text{whenever } x \geq 1, \end{cases}
\]
where \(p_{\alpha_j(x)} > 0\),
\[
x = \Delta^s_{\alpha_1, \alpha_2, \ldots, \alpha_k} = \frac{1}{s+1} \Delta_{\alpha_1, \alpha_2, \ldots, \alpha_k} = \frac{1}{s+1} \sum_{k=1}^{\infty} \left(\frac{-1}{s}\right)^k \alpha_k s^k = \sum_{k=1}^{\infty} \frac{\alpha_{2k-1}}{s^{2k-1}} \sum_{k=1}^{\infty} \frac{s-1-\alpha_{2k}}{s^{2k}},
\]
and
\[
\tilde{p}_{\alpha_k} = \begin{cases} p_{\alpha_k} & \text{if } k \text{ is odd} \\ p_{s-1-\alpha_k} & \text{if } k \text{ is even}, \end{cases}
\]
\[
\tilde{\beta}_{\alpha_k} = \begin{cases} \beta_{\alpha_k} & \text{if } k \text{ is odd} \\ \beta_{s-1-\alpha_k} & \text{if } k \text{ is even}. \end{cases}
\]
One can note that the function
\[\tilde{F}(x) = \beta_\alpha(x) + \sum_{n=2}^{\infty} \left(\tilde{\beta}_\alpha(x) \prod_{j=1}^{n-1} \tilde{p}_\alpha(x) \right), \]
is a partial case of the function investigated in [38].

Let \(x \in S_{(s,u)} \). Let us consider properties of the following images of \(S_{(s,u)} \) and \(S_{(-s,u)} \):
\[S_{(P,u)} = \{ y : y = f_\xi(x), x \in S_{(s,u)} \} \]
and
\[S_{(-P,u)} = \{ \tilde{y} : \tilde{y} = \tilde{F} \circ f_1 \circ f_+ (x), x \in S_{(s,u)} \} = \{ z : z = \tilde{F} \circ f_1(x), x \in S_{(-s,u)} \}. \]
Here
\[\tilde{y} = \tilde{F} \circ f_1 \circ f_+ (x), \]
where
\[f_+ : x = \Delta_{\alpha_1,\alpha_2,...,\alpha_n} \rightarrow \Delta_{-\alpha_1,\alpha_2,...,\alpha_n} = y \]
is not monotonic on the domain and is a nowhere differentiable function (33), \(f_1(y) = \frac{1}{s+1} - y \), and \(\tilde{F} \) is the last-mentioned distribution function.

Let us describe properties of the set \(S_{(P,u)} \).

Theorem 10. [39]. The set \(S_{(P,u)} \) is an uncountable, perfect, and nowhere dense set of zero Lebesgue measure and also is a self-similar fractal whose Hausdorff dimension \(\alpha_0(S_{(P,u)}) \) satisfies the following equation
\[\sum_{i \in A_0 \backslash \{u\}} (p_i p_{i-1}^{u-1})^{\alpha_0} = 1. \]

Let \(c_1, c_2, \ldots, c_n \) be an ordered tuple of integers such that \(c_i \in \{0,1,\ldots,s-1\} \) for \(i = 1, n \).

Definition 4. A cylinder of rank \(n \) with base \(c_1 c_2 \ldots c_n \) is a set \(\Delta_{c_1 c_2 \ldots c_n}^{(P,u)} \) of the form:
\[\Delta_{c_1 c_2 \ldots c_n}^{(P,u)} = \left\{ x : x = \Delta_{\alpha_{c_1-1}, \alpha_{c_2-1}, \ldots, \alpha_{c_n-1}, \alpha_{c_n+1-1}, \alpha_{c_{n+1}-1}, \ldots, \alpha_{c_{n+2}-1}} \right\}. \]

By \((a_1 a_2 \ldots a_k) \) denote the period \(a_1 a_2 \ldots a_k \) in the representation of a periodic number.

The following lemma describes local properties of the set \(S_{(P,u)} \).

Lemma 5. [39]. Cylinders \(\Delta_{c_1 \ldots c_n}^{(P,u)} \) have the following properties:
The following relationships are satisfied:

(a) if $u \in \{0, 1\}$, then

\[
\inf \Delta_{c_1 \ldots c_n}^{(P,u)} > \sup \Delta_{c_1 \ldots c_n}^{(P,u)}.
\]

(b) if $u \in \{2, 3, \ldots, s - 3\}$, then

\[
\begin{align*}
\sup \Delta_{c_1 \ldots c_n}^{(P,u)} &< \inf \Delta_{c_1 \ldots c_n}^{(P,u)} \quad \text{for all } p + 1 \leq u \\
\inf \Delta_{c_1 \ldots c_n}^{(P,u)} &> \sup \Delta_{c_1 \ldots c_n}^{(P,u)} \quad \text{for all } u < p.
\end{align*}
\]

(c) if $u \in \{s - 2, s - 1\}$, then

\[
\sup \Delta_{c_1 \ldots c_n}^{(P,u)} < \inf \Delta_{c_1 \ldots c_n}^{(P,u)} \quad \text{(in this case, the condition } p \neq s - 1 \text{ holds)}.
\]
We considered properties of $S(s,u)$ and its image $S(P,u)$ under the Salem function. So, the Salem function preserves the self-similarity, but, in the general case, does not preserve the Hausdorff dimension. This map also preserves the structure of $S(s,u)$ but numerical values change.

Finally, one can note the following theorem.

Theorem 11.\cite{39} Let S be a set whose elements represented in terms of the s-adic representation by a finite number of fixed combinations $\tau_1, \tau_2, \ldots, \tau_m$ of digits from the alphabet A.

Let E be an image of the set S under the Salem function f_ξ. Then the Hausdorff dimension α_0 of E satisfies the following equation:

$$\sum_{j=1}^{m} \left(\prod_{i=0}^{s-1} p_i^{N_i(\tau_j)} \right)^{\alpha_0} = 1,$$

where $N_i(\tau_k)$ ($k = 1, m$) is a number of the digit i in τ_k from the set $\{\tau_1, \tau_2, \ldots, \tau_m\}$.

Now we describe properties of $S(-P,u)$.

Suppose $d(\cdot)$ is the diameter of a set and a cylinder $\Delta_{c_1c_2\ldots c_n}$ is a set whose elements are elements of $S(-P,u)$ and for these elements the condition $\alpha_i = c_i$ holds for all $i = 1, n$ (here c_1, c_2, \ldots, c_n is a fixed tuple).

Theorem 12.\cite{40} An arbitrary set $S(-P,u)$ is an uncountable, perfect, and nowhere dense set of zero Lebesgue measure.

Theorem 13.\cite{40} In the general case, the set $S(-P,u)$ is not a self-similar fractal, the Hausdorff dimension $\alpha_0(S(-P,u))$ of which can be calculated by the formula:

$$\alpha_0 = \liminf_{k \to \infty} \alpha_k,$$

where (α_k) is a sequence of numbers satisfying the equation

$$\left(\sum_{c_1 \text{ is odd}, c_1 \in A} (\omega_{2,c_1})^{\alpha_1} + \sum_{c_1 \text{ is even}, c_1 \in A} (\omega_{4,c_1})^{\alpha_1} \right) \times$$

$$\times \prod_{i=2}^{k} \left(\sum_{c_i \text{ is odd}, c_i \in A} N_{1,c_i} (\omega_{1,c_i})^{\alpha_i} + \sum_{c_i \text{ is even}, c_i \in A} N_{2,c_i} (\omega_{2,c_i})^{\alpha_i} + \sum_{c_i \text{ is even}, c_i \in A} N_{3,c_i} (\omega_{3,c_i})^{\alpha_i} + \sum_{c_i \text{ is even}, c_i \in A} N_{4,c_i} (\omega_{4,c_i})^{\alpha_i} \right) = 1.$$

Here N_{j,c_i} ($j = 1, 4, 1 < i \in \mathbb{N}$) is the number of cylinders $\Delta_{c_1c_2\ldots c_i}$ for which

$$d\left(\Delta_{c_1c_2\ldots c_{i-1}c_i} \right) = \omega_{j,c_i}.$$
Also,

\[\omega_{1,c_i} = \sum_{c_i - 1} p_{s-1-u} \cdots p_{s-1-u} p_{s-1-c_i} \frac{d(S_{(P,u)})}{d(S_{(P,u)})} \text{ for an odd number } c_i, \]

\[\omega_{2,c_i} = \sum_{c_i - 1} p_{u} p_{s-1-u} \cdots p_{u} p_{s-1-u} p_{s-1-c_i} \frac{d(S_{(P,u)})}{d(S_{(P,u)})} \text{ for an odd number } c_i, \]

\[\omega_{3,c_i} = \sum_{c_i - 1} p_{s-1-u} p_{u} \cdots p_{s-1-u} p_{u} p_{s-1-u} p_{s-1-c_i} \text{ for an even number } c_i, \]

\[\omega_{4,c_i} = \sum_{c_i - 1} p_{u} p_{s-1-u} \cdots p_{u} p_{s-1-u} p_{s-1-c_i} \text{ for an even number } c_i. \]

In addition, \(N_{1,c_i} + N_{2,c_i} = l(m+l)^{-1} \) and \(N_{3,c_i} + N_{4,c_i} = m(m+l)^{-1} \), where \(l \) is the number of odd numbers in the set \(\overline{A} = A \setminus \{0,u\} \) and \(m \) is the number of even numbers in \(\overline{A} \).

Auxiliary values can be calculated from the following lemma.

Lemma 6. [10] For the sets \(S_{(P,u)} \) and \(S_{(-P,u)} \), the following equalities hold:

\[
\begin{align*}
\inf S_{(P,u)} &= \begin{cases}
\Delta^P_{[s-2][0(s-3)]} & \text{if } u = 0 \\
\Delta^P_{[s-2][1(s-4)][1(s-3)]} & \text{if } u = 1 \\
\Delta^P_{[s-1-u][2]} & \text{if } u \in \{2,3,\ldots,s-1\}
\end{cases} \\
\sup S_{(P,u)} &= \begin{cases}
\Delta^P_{[s-1-u][2]} & \text{if } u \in \{0,1\} \\
\Delta^P_{[s-2][u(s-3)]} & \text{if } u \in \{2,3,\ldots,s-1\}, \\
\Delta^P_{[s-3]} & \text{if } u \in \{0,1\}
\end{cases} \\
\inf S_{(-P,u)} &= \begin{cases}
\Delta^P_{[1(s-1)][2]} & \text{if } u = 0 \\
\Delta^P_{[s-2][3][1(s-2)[2]} & \text{if } u = 1 \\
\Delta^P_{[u(s-3)]} & \text{if } u \in \{2,3,\ldots,s-1\}
\end{cases}
\end{align*}
\]

Finally, let us consider local properties of \(S_{(-P,u)} \).

Assume

\[\tilde{\alpha}_n = \begin{cases}
\alpha_n & \text{whenever } n \text{ is odd} \\
\frac{s-1 - \alpha_n}{s-1} & \text{whenever } n \text{ is even}
\end{cases} \]

and

\[\tilde{u} = \begin{cases}
u & \text{whenever } u \text{ is situated at an odd position in the representation} \\
\frac{s-1 - u}{s-1} & \text{whenever } u \text{ is situated at an even position in the representation}
\end{cases} \]

Lemma 7. Cylinders \(\Delta_{[1\ldots c_n]}^{(-P,u)} \) have the following properties:
The following relationships are satisfied:

(a) if $u \in \{0, 1\}$, then

$$\inf \Delta_{c_1 \ldots c_n}^{(-P_u)} > \sup \Delta_{c_2 \ldots c_n}^{(-P_u)}$$

whenever $c_1 + \cdots + c_n + c$ is even

$$\inf \Delta_{c_1 \ldots c_n}^{(-P_u)} < \sup \Delta_{c_2 \ldots c_n}^{(-P_u)}$$

whenever $c_1 + \cdots + c_n + c$ is odd

(c ≠ s - 1)
(b) if $u \in \{2,3,\ldots, s-3\}$, then for an odd $c_1 + \cdots + c_n + c$

$$\sup \Delta_{x_1,\ldots,x_n}^{(-P,u)} < \inf \Delta_{x_1,\ldots,x_n}^{(-P,u)} \quad \text{for all } c + 1 \leq u$$

$$\inf \Delta_{x_1,\ldots,x_n}^{(-P,u)} > \sup \Delta_{x_1,\ldots,x_n}^{(-P,u)} \quad \text{for all } u < c;$$

if $u \in \{2,3,\ldots, s-3\}$, then for an even $c_1 + \cdots + c_n + c$

$$\inf \Delta_{x_1,\ldots,x_n}^{(-P,u)} > \sup \Delta_{x_1,\ldots,x_n}^{(-P,u)} \quad \text{for all } u < c$$

$$\inf \Delta_{x_1,\ldots,x_n}^{(-P,u)} > \sup \Delta_{x_1,\ldots,x_n}^{(-P,u)} \quad \text{for all } c + 1 \leq u$$

(c) if $u \in \{s-2, s-1\}$, then

$$\inf \Delta_{x_1,\ldots,x_n}^{(-P,u)} > \sup \Delta_{x_1,\ldots,x_n}^{(-P,u)} \quad \text{whenever } c_1 + \cdots + c_n + c \text{ is odd}$$

$$\inf \Delta_{x_1,\ldots,x_n}^{(-P,u)} > \sup \Delta_{x_1,\ldots,x_n}^{(-P,u)} \quad \text{whenever } c_1 + \cdots + c_n + c \text{ is even}.$$

Remark 2. One can note that if for $S_{(-s,u)}$ and $S_{(s,u)}$, topological, metric, and fractal properties (without some properties of cylinders) are similar, then fractal and some local properties of $S_{(-P,u)}$ and $S_{(P,u)}$ are different. For example, $S_{(P,u)}$ is a self-similar fractal (i.e., this is a Moran set by Moran’s definition, [10]) but $S_{(-P,u)}$ is a non-self-similar set having the Moran structure (i.e., this is a Moran set by the definition of Hua et al. (see the definition in [12]).

5. Certain examples

Let us consider the case of the sets $S_{(P,0)}$ and $S_{(-P,0)}$. That is, the set $S_{(P,0)}$ is a set of the form

$$S_{(P,0)} := \left\{ x : x = \Delta_{\alpha_1,\ldots,\alpha_n}^{P_0} \right\}.$$

In other words, our set is the image of a certain set under the Salem function f_{ξ}, and this certain set is the set whose elements represented in terms of the 3-adic (ternary) representation by using combinations of ternary digits only from $\{1,0,2\}$. So, applying Theorem [10] we obtain that the Hausdorff dimension of $S_{(P,0)}$ satisfies the equation

$$(p_1)^{\alpha_0} + (p_0p_2)^{\alpha_0} = 1. \quad (7)$$

Let us consider the set $S_{(-P,0)}$. That is,

$$S_{(-P,0)} := \left\{ x : x = \Delta_{\alpha_1,\ldots,\alpha_n}^{P_0} \right\}.$$

Since ([10] [11])

$$\Delta_{\alpha_1,\ldots,\alpha_n}^{P_0} \equiv \Delta_{\alpha_1,\ldots,\alpha_n}^{P_0} \equiv \Delta_{\alpha_1,\ldots,\alpha_n}^{P_0} \equiv \Delta_{\alpha_1,\ldots,\alpha_n}^{P_0}$$
and
\[\Delta^{-P_3}_{\alpha_1 \alpha_2 \ldots \alpha_n} \equiv \Delta^{P_3}_{\alpha_1 [2 - \alpha_2] \alpha_3 \ldots \alpha_{2k - 1} [2 - \alpha_{2k}] \ldots} \]
we have that this set is a subset of the set
\[\{ x : x = \Delta^{P_3}_{\alpha_1 \delta_2 \ldots \delta_n} \cdot \delta_n \in \{00, 1, 22\} \} . \]
Really, it is a subset, because, for example,
\[1 = \Delta^{P_3}_{2222222} \not\in S(-P_5, 0) . \]
Using Lemma \[\Box \] we have
\[\inf S(-P_5, 0) = \inf S(P_5, 0) = \Delta^{-P_3}_{020202} = \Delta^{P_3}_{000000} = 0, \]
\[\sup S(-P_5, 0) = \sup S(P_5, 0) = \Delta^{-P_3}_{102020} \not= \Delta^{P_3}_{1222222} = p_0 + p_1 \]
and
\[\inf S(P_5, 0) = \Delta^{P_3}_{100000} = \beta_1 = p_0, \]
\[\sup S(P_5, 0) = \Delta^{P_3}_{222222} = 1. \]
Hence, using Theorem \[\Box \] and Lemma \[\Box \] we obtain (here \(d(\cdot) = \sup(\cdot) - \inf(\cdot) \))
\[d(S(P_5, 0)) = \beta_2 = p_0 + p_1, \]
\[d(S(-P_5, 0)) = 1 - \beta_1 = 1 - p_0, \]
as well as
\[\omega_1 = p_1 p_0 + p_1, \omega_2 = p_1 \frac{p_1 + p_2}{p_0 + p_1}, \omega_3 = p_2^2, \omega_4 = p_0^2. \]
In addition, for any step \(k \in \mathbb{N} \), the following relationships hold:
\[N_{1, c_i} + N_{2, c_i} + N_{3, c_i} + N_{4, c_i} = 2^k \]
and
\[N_{1, c_i} = N_{2, c_i} = N_{3, c_i} = N_{4, c_i} = 2^{k-2} . \]
The local structure our set can be characterized by the following scheme:
\[I_0 \] \[\omega_1 \] \[\omega_2 \] \[\omega_3 \] \[\omega_4 \]
\[\omega_2 \] \[\omega_4 \] \[\omega_1 \] \[\omega_1 \] \[\omega_3 \] \[\omega_1 \]
\[\omega_3 \] \[\omega_3 \] \[\omega_1 \] \[\omega_3 \] \[\omega_2 \] \[\omega_4 \]
Here \(I_0 = [\inf S(-P_5, 0), \sup S(-P_3, 0)] \).
So, the Hausdorff dimension \(\dim_H(S(-P_5, 0)) \) of \(S(P_5, 0) \) is equal to
\[\alpha_* = \liminf_{k \to \infty} \gamma_k , \]
where \((\gamma_k) \) is a sequence of numbers satisfying the equation
\[((\omega_2)^{\gamma_1} + (\omega_3)^{\gamma_1}) \prod_{i=2}^{k} (2^{i-2} ((\omega_1)^{\gamma_i} + (\omega_2)^{\gamma_i} + (\omega_3)^{\gamma_i} + (\omega_4)^{\gamma_i})) = 1. \]

Example 1. Suppose \(p_0 = \frac{1}{4}, p_1 = \frac{2}{5}, p_2 = \frac{1}{4}, \) and \(p_2 = \frac{3}{7}, p_2 = \frac{1}{7} \). Then the set \(S(P_5, 0) \) is a self-similar fractal whose Hausdorff dimension is approximately equal to 0.408985; but the set \(S(-P_5, 0) \) is not a self-similar fractal, its Hausdorff dimension is approximately equal to 0.422592.
Example 2. Suppose $p_0 = p_2 = 0.25$ and $p_1 = 0.5$. Then the sets $S(P_3, 0)$ and $S(-P_3, 0)$ are self-similar fractals and their Hausdorff dimensions approximately equal 0.46496.

REFERENCES

[1] N. Attia and B. Selmi, A Multifractal Formalism for Hewitt-Stromberg Measures, *J. Geom. Anal.* 31 (2021), 825–862.
[2] Najmedine Attia and Bilel Selmi, On the mutual singularity of Hewitt-Stromberg measures, *Analysis Mathematica* 47 (2021), 273-283.
[3] G. Cantor, Ueber die einfachen Zahlensysteme, *Z. Math. Phys.* 14 (1869), 121–128 (in German)
[4] R. DiMartino and W. O. Urbina, On Cantor-like sets and Cantor-Lebesgue singular functions, https://arxiv.org/pdf/1403.6554.pdf
[5] R. DiMartino and W. O. Urbina, Excursions on Cantor-like Sets, https://arxiv.org/pdf/1411.7110.pdf
[6] Zied Douzi and Bilel Selmi, On the mutual singularity of multifractal measures, *Electron. Res. Arch.* 28 (2020), 423-432.
[7] Z. Douzi et al. Another example of the mutual singularity of multifractal measures, *Proyecciones* 40 (2021), 17-33.
[8] Zied Douzi and Bilel Selmi, On the mutual singularity of Hewitt-Stromberg measures for which the multifractal functions do not necessarily coincide, *Ricerche di Matematica*, https://doi.org/10.1007/s11587-021-00572-6
[9] Zied Douzi, Bilel Selmi, and Anouar Ben Mabrouk, The refined multifractal formalism of some homogeneous Moran measures, *Eur. Phys. J. Spec. Top.* https://doi.org/10.1140/epjs/s11734-021-00318-3
[10] K. Falconer *Techniques in Fractal Geometry*, John Willey and Sons, 1997.
[11] K. Falconer *Fractal Geometry: Mathematical Foundations and Applications*, Wiley, 2004.
[12] S. Hua, H. Rao, Z. Wen et al., On the structures and dimensions of Moran sets, *Sci. China Ser. A-Math.* 43 (2000), No. 8, 836–852 doi:10.1007/BF02984183
[13] Liangyi Huang, Qinghui Liu, and Guizhen Wang, Multifractal analysis of Bernoulli measures on a class of homogeneous Cantor sets, *J. Math. Anal. Appl.* 491 (2020), 124362.
[14] B. Mance, Number theoretic applications of a class of Cantor series fractal functions, I, https://arxiv.org/pdf/1310.2377.pdf
[15] B. B. Mandelbrot, *Fractals: Form, Chance and Dimension*, Freeman, San Francisco, 1977.
[16] P. A. P. Moran, Additive functions of intervals and Hausdorff measure, *Mathematical Proceedings of the Cambridge Philosophical Society* 42 (1946), No. 1, 15–23 doi:10.1017/S0305004100022684
[17] L. Olsen, A multifractal formalism, *Adv. Math.* 116 (1995), 82—196.
[18] Yakov Pesin and Howard Weiss, On the Dimension of Deterministic and Random Cantor-like Sets, Symbolic Dynamics, and the Eckmann-Ruelle Conjecture, *Commun. Math. Phys.* 182 (1996), 105–153 doi:10.1007/BF02506387
[19] M. Pollicott and Károly Simon, The Hausdorff dimension of λ-expansions with deleted digits, *Trans. Amer. Math. Soc.* 347 (1995), 967-983 https://doi.org/10.1090/S0002-9947-1995-1290729-0
[20] Mrinal Kanti Roychowdhury and Bilel Selmi, Local Dimensions and Quantization Dimensions in Dynamical Systems, *J. Geom. Anal.* 31 (2021), 6387-6409.
[21] R. Salem, On some singular monotonic functions which are strictly increasing, *Trans. Amer. Math. Soc.* 53 (1943), 423–439.
[22] B. Selmi, The relative multifractal analysis, review and examples, *Acta Scientiarum Mathematicarum* 86 (2020), 635-666.
[23] B. Selmi, A review on multifractal analysis of Hewitt-Stromberg measures *J. Geom. Anal.* 32(1) (2022), 1-44.
[24] B. Selmi, The mutual singularity of multifractal measures for some non-regularity Moran fractals, *Bulletin Polish Acad. Sci. Math.* 69 (2021), 21-35.
[25] S. O. Serbenyuk, Topological, metric and fractal properties of one set defined by using the s-adic representation, XIV International Scientific Kravchuk Conference: Conference materials II, Kyiv: National Technical University of Ukraine “KPI”, 2012. — P. 220 (in Ukrainian), available at https://www.researchgate.net/publication/311665455

[26] S. O. Serbenyuk, Topological, metric and fractal properties of sets of class generated by one set with using the s-adic representation, International Conference “Dynamical Systems and their Applications”: Abstracts, Kyiv: Institute of Mathematics of NAS of Ukraine, 2012. — P. 42 (in Ukrainian), available at https://www.researchgate.net/publication/311415778

[27] S. O. Serbenyuk, Topological, metric and fractal properties of the set with parameter, that the set defined by s-adic representation of numbers, International Conference “Modern Stochastics: Theory and Applications III” dedicated to 100th anniversary of B. V. Gnedenko and 80th anniversary of M. I. Yadrenko: Abstracts, Kyiv: Taras Shevchenko National University of Kyiv, 2012. — P. 13, available at https://www.researchgate.net/publication/292606441

[28] S. O. Serbenyuk, Topological, metric, and fractal properties of one set of real numbers such that it defined in terms of the s-adic representation, Naukovi Chasopys NPU im. M. P. Dragomanova. Seria 1. Phizyko-matematychni Nauky[Trans. Natl. Pedagog. Mykhailo Dragomanov University. Ser. 1. Phys. Math.] 11 (2010), 241–250. (in Ukrainian), available at https://www.researchgate.net/publication/292606546

[29] S. O. Serbenyuk, Functions, that defined by functional equations systems in terms of Cantor series representation of numbers, Naukovi Zapysky NaUKMA 165 (2015), 34–40. (Ukrainian), available at https://www.researchgate.net/publication/292970196

[30] S. O. Serbenyuk, On some sets of real numbers such that defined by nega-s-adic and Cantor nega-s-adic representations, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math. 15 (2013), 168-187, available at https://www.researchgate.net/publication/292970280 (in Ukrainian)

[31] S. Serbenyuk, Representation of real numbers by the alternating Cantor series, Integers 17 (2017), Paper No. A15, 27 pp.

[32] S. Serbenyuk, On one class of fractal sets, https://arxiv.org/pdf/1703.05262.pdf

[33] S. Serbenyuk, On one class of functions with complicated local structure, Síulai Mathematical Seminar 11 (19) (2016), 75–88.

[34] S. O. Serbenyuk, Functions, that defined by functional equations systems in terms of Cantor series representation of numbers, Naukovi Zapysky NaUKMA 165 (2015), 34–40. (Ukrainian), available at https://www.researchgate.net/publication/292606546

[35] S. O. Serbenyuk, Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers, Journal of Mathematical Physics, Analysis, Geometry 13 (2017), No. 1, 57–81.

[36] S. O. Serbenyuk, Non-Differentiable Functions Defined in Terms of Classical Representations of Real Numbers, Journal of Mathematical Physics, Analysis, Geometry 14 (2018), No. 2, 197–213.

[37] S. Serbenyuk, On one fractal property of the Minkowski function, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 112 (2018), No. 2, 555–559.

[38] Symon Serbenyuk, On one application of infinite systems of functional equations in function theory, Tatra Mountains Mathematical Publications 74 (2019), 117-144. https://doi.org/10.2478/tmmp-2019-0024

[39] S. Serbenyuk, One distribution function on the Moran sets, Azerbaijan Journal of Mathematics 10 (2020), No.2, 12–30, arXiv:1808.00095

[40] S. Serbenyuk, Certain singular distributions and fractals, Tatra Mountains Mathematical Publications 79 (2021), No. 2, 163–198. DOI: https://doi.org/10.2478/tmmp-2021-0026 arXiv:2005.02485

[41] Symon Serbenyuk, Nega-Q-representation as a generalization of certain alternating representations of real numbers, Bulletin of the Taras Shevchenko National University
of Kyiv Mathematics and Mechanics 1 (35) (2016), 32–39. Ukrainian. Available at https://www.researchgate.net/publication/308273000.

[42] M. Wu, The multifractal spectrum of some Moran measures, Sci. China. Ser. A Math., 48 (2005), 97–112.

[43] M. Wu, The singularity spectrum \(f(\alpha) \) of some Moran fractals, Monatsh Math., 144 (2005), 141–155.

[44] M. Wu and J. Xiao, The singularity spectrum of some non-regularity Moran fractals, Chaos, Solitons & Fractals 44 (2011), 548-557.

[45] J. Xiao and M.Wu, The multifractal dimension functions of homogeneous Moran measure, Fractals, 16 (2008), 175–185.

[46] J. Xiao and M.Wu, The multifractal dimension functions of homogeneous Moran measure, Fractals 16 (2008), 175-185.

[47] Z. Yuan, Multifractal spectra of Moran measures without local dimension, Nonlinearity 32 (2019), 5060-5086.

45 Shchukina St., Vinnytsia, 21012, Ukraine

Email address: simon6@ukr.net