A comparison of stellar populations in galaxy spheroids across a wide range of Hubble types

R.N. Proctor and A.E. Sansom
Centre for Astrophysics, University of Central Lancashire, Preston, PR1 2HE, UK

ABSTRACT
We present line-strengths and kinematics from the central regions of 32 galaxies with Hubble types ranging from E to Sbc. Spectral indices, based on the Lick system, are measured in the optical and near infra-red (NIR). The 24 indices measured, in conjunction with models of the effects of varying abundance ratios, permit the breaking of age/metallicity degeneracy and allow estimation of enhancements in specific light elements (particularly C and Mg). The large range of Hubble types observed allows direct comparison of line-strengths in the centres of early-type galaxies (E and S0) with those in spiral bulges, free from systematic differences that have plagued comparisons of results from different studies. Our sample includes field and Virgo cluster galaxies. For early-type galaxies our data are consistent with previously reported trends of Mg\textsc{ii} and Mgb with velocity dispersion. In spiral bulges we find trends in all indices with velocity dispersion. We estimate luminosity-weighted ages, metallicities and heavy element abundance ratios (enhancements) from optical indices. These show that bulges are less enhanced in light (\(\alpha\)-capture) elements and have lower average age than early-type galaxies. Trends involving age and metallicity also differ sharply between early and late types. An anti-correlation exists between age and metallicity in early types, while, in bulges, metallicity is correlated with velocity dispersion. We consider the implications of these findings for models of the formation of these galaxies. We find that primordial collapse models of galaxy formation are ruled out by our observations, while several predictions of hierarchical clustering (merger) models are confirmed.

Key words: galaxies: abundances - galaxies: evolution - galaxies: formation - galaxies: stellar content.

1 INTRODUCTION
The bulges of spirals, and the spheroidal components of elliptical (E) and S0 galaxies exhibit many similarities. These include their colours and colour gradients (Balcells & Peletier 1994) as well as their morphological and kinematic properties (Bender, Burstein & Faber 1993). The question then arises: do these similarities imply similar formation processes? Attempts to answer this question using morphology and kinematics have so far failed because the observed properties are successfully reproduced by both models proposed for galaxy formation (i.e. primordial collapse, e.g. Carlberg 1984 and hierarchical collapse, e.g. Kauffmann, White & Guiderdoni 1993 and Barnes & Hernquist 1996). On the other hand, the use of photometry to constrain the models is severely hampered by the degeneracy in colours with respect to age and metallicity (Worthey 1994, hereafter W94). Thus, in galaxy populations, the properties above place only weak constraints on formation mechanisms and star formation histories (SFHs).

In order to provide a more sensitive tool for probing composite populations, W94 used the Lick/IDS spectral features (Faber et al. 1985) to estimate pseudo line-strengths (indices), for a range of single age, single metallicity stellar populations (SSPs). W94 demonstrated that, although individual indices are affected by age/metallicity degeneracy, their sensitivities to both age and metallicity vary. Consequently, W94 was able to find combinations of indices that broke the degeneracy. Over the last few years, models of SSPs have been refined and new indices added. Vazdekis et al. (1996; hereafter V96) and Vazdekis (1999a,b; hereafter V99) used more recent (and complete) isochrones for the SSP calculations, as well as including the MgI and Ca triplet indices in the NIR (Diaz, Terlevich & Terlevich 1989). Higher order Balmer absorption lines (H\(\delta\) and H\(\gamma\)) were also included. We shall refer to the collection of indices above as the Lick indices.

Many studies of early-type galaxies have measured small numbers of Lick indices (Worthey, Faber & González...
Few studies have included spiral bulges. However, Jablonka, Martin & Arimoto (1996) and Idiart, de Freitas Pacheco & Costa (1996) observed Lick indices in the centres of bulges. They found correlations of the small number of indices observed with both bulge luminosity and velocity dispersion. Goudfrooij, Gorgas & Jablonka (1999) also report measurements of a small number of indices in bulges and suggest that the Mg and C excess observed in early types is also present in bulges. However, in a previous study (Proctor, Sansom & Reid 2000), we found that a sample of 4 spiral bulges lay closer to the solar abundance ratio SSPs, in the Mg2–<Fe> plane, than do early types. Unfortunately, none of the bulge studies above were emission corrected, and only Goudfrooij et al. (1999) was fully calibrated to the Lick system, making full comparisons with early-type galaxies difficult. This highlights one of the advantages of the present study in which such systematic uncertainties are significantly reduced by the identical instrumentation and reduction procedures used.

While the sensitivities of Lick indices to abundances of individual elements, such as Mg and C, complicate their interpretation, they also provide a powerful tool for probing star formation histories in galaxies, using models of galactic chemical evolution (e.g. Vazdekis et al. 1997, Sansom & Proctor 1998). This is due to the difference between production sites of light elements and those of Fe-peak elements, i.e. while Mg is mainly produced in type II supernovae (SNII), Fe-peak elements are predominantly produced in type Ia supernovae (SNIa). Thus, if reasonable estimates can be made of Mg and Fe abundances, constraints can be placed on possible SFHs. To quantify the effects of individual element abundance enhancements on Lick indices, Tripicco & Bell 1995 (hereafter TB95) modelled the effects of doubling 10 key elements in the synthetic spectra of 3 stellar types. They showed that Lick indices centred on C and Mg features (e.g. CN1, CN2 or their average <CN>, C24668, Mg1, Mg2 and Mg3) are much more sensitive to the abundances of C and Mg than they are to overall metallicity ([Z/H]). These indices are then more sensitive to the abundance ratios of C and Mg (i.e. [C/Fe] and [Mg/Fe]) than to [Z/H]. On the other hand, the sensitivities to individual elements of the Fe indices (Fe4383, Fe4531, Fe5015, Fe5270, Fe5335 or Fe5406) and Ca indices (Ca4227 and Ca4455) are comparable to, or less than, their sensitivity to [Z/H]. It is this range of sensitivities to individual elements and [Z/H] that permits estimation of ages, metallicities and abundance ratios from index values, and thus the constraining of possible SFHs, in galaxy populations.

In this paper we describe the measurement and analysis of 24 Lick indices in the centres of 32 galaxies with Hubble types ranging from E to Sbc. These galaxies were observed in a single observing run, with identical instrumental set-ups. We compare the indices and their correlations with velocity dispersion in early and late-type galaxies. We use V99 SSPs and the data of TB95 to estimate luminosity-weighted ages, metallicities and abundance ratios in our galaxy sample. Finally the overall trends in our data are compared to the predictions of our galactic chemical evolution code for models of galaxy formation.

In Section 2 the observations and data reductions are described, including calibrations and emission corrections. In Section 3 central values of indices and kinematics are presented. Comparison of the trends in our data are made with previous observations. Luminosity-weighted age, metallicity and abundance ratio estimates are described in Section 4. In Section 5 we discuss the interpretation of our results in terms of composite models of possible star formation histories. In Section 6 we give some discussion of our results and draw our conclusions. Appendix A gives details of velocity dispersion corrections. In future papers and in Proctor (PhD thesis - in preparation) the spatially resolved results will be reported and the data further exploited to recover more detail of the SFHs, using galactic chemical evolution models.

2 OBSERVATIONS AND DATA REDUCTIONS

2.1 Sample Selection

The data presented here are from observations made during time awarded for two separate PPARC PATT proposals. The first was to test the prediction that young elliptical galaxies should be devoid of hot gas (e.g. Ciotti et al. 1991), Bright (B† ≤ 13) early-type galaxies (−5 ≤ T ≤ −2), with X-ray emission temperatures and luminosities well constrained by ROSAT observations, were selected. The second proposal detailed an investigation of the stellar popula-
tions along the minor axes of bright (B_T < 13) spiral bulges (0 ≤ T ≤ 4). Highly inclined galaxies (inclination > 75°) were selected to minimise the effects of disc contamination in the outer regions of the bulges. Highly inclined galaxies with prominent dust lanes covering the centre of the bulge were removed from the sample, as these would give little information about the bulge centres. Both studies aimed to use the same range of Lick indices to investigate the SFH of galaxies and to make estimates of luminosity-weighted ages, metallicities and abundance ratios at a number of points across the galaxies, to estimate gradients. Fortunately, the two observation runs were scheduled back-to-back allowing observations to be made with identical instrument set-ups. The two studies result in a sample of 32 galaxies with 24 indices measured (Table 1).

2.2 Observations

Long-slit spectroscopic observations along the minor axes of 11 Es, 6 S0s and 16 spiral bulges (bulges) were obtained between 1998 February 28 and 1998 March 3 with the WHT on La Palma. The double beam spectroscope (ISIS) was used with a 5700 Å dichroic and Tektronix 1024 square CCDs. On the blue arm a 300 line/mm grating was used giving a wavelength coverage of 3995-5495 Å at a dispersion of 0.8 Å per pixel. This range covers 16 indices calibrated by Gorgas et al. (1993) including the extensively observed Mg II and <Fe> indices, as well as the recently calibrated Hα and Hγ indices [Worthey & Ottaviani 1997]. On the red arm a 600 line/mm grating was used, giving a wavelength coverage of 4275 Å to 7075 Å at a dispersion of 0.8 Å per pixel. This range covers the MgII feature at 4070 Å and the highly metallicity-sensitive CaII triplet (Díaz et al. 1989; V96). The plate-scale was 0.36 arcsec per pixel on both red and blue arms. The slit, of length 4 arcmin and width 1.25 arcsec,

Table 1. WHT Observations. T type, Hubble type and half-light radius (r_e) are from de Vaucouleurs et al. 1991 (hereafter RC3). Central velocity dispersion (σ_0) and radial velocity (RV) are the values derived from our blue spectra and are for the central 3.6×1.25 arcsec. Estimated errors are given in brackets (see Section 2.5.1 for details of derived kinematics). Distances are mainly from Tully 1988 with the exception of more distant galaxies where radial velocities from RC3 were used. Exposure times and ISIS slit position angle (PA), which is normally along the minor axis of each galaxy, are given. Group membership is from Tully 1988.

| Galaxy       | T Type | Hubble Type | r_e (kpc) | σ_0 (km s⁻¹) | RV (km s⁻¹) | Distance (Mpc) | Exposure (sec) | PA (deg) | Group               |
|--------------|--------|-------------|-----------|---------------|-------------|----------------|----------------|----------|---------------------|
| NGC2549     | -2     | S0          | 17        | 143(2)        | 1076(2)     | 18.8           | 3600           | 87       | Ursa Major cloud    |
| NGC2683     | 3      | Sb          | 56        | 129(2)        | 427(2)      | 5.7            | 4800           | 134      | Leo spur            |
| NGC2832     | -4     | E           | 25        | 288(5)        | 6899(6)     | 91†            | 3600           | 45*      | Leo cloud           |
| NGC2831     | -5     | E           | 34        | 203(4)        | 1313(3)     | 23.4           | 3600           | 105      | Leo cloud           |
| NGC2524     | 4      | Sbc         | 41        | 119(2)        | 1373(2)     | 23.6           | 5400           | 136      | Leo cloud           |
| NGC3301     | 0      | S0a         | 20        | 114(2)        | 1338(2)     | 23.3           | 2400           | 142      | Leo cloud           |
| NGC3607     | -2     | S0          | 43        | 240(2)        | 930(3)      | 19.9           | 2700           | 30       | Leo cloud           |
| NGC3608     | -5     | E           | 34        | 208(3)        | 1219(3)     | 23.4           | 2700           | 165      | Leo cloud           |
| NGC3623     | 1      | Sa          | 85        | 164(2)        | 801(2)      | 7.3            | 2400           | 84       | Leo spur            |
| NGC3769     | 3      | Sb          | 46        | 708(3)        | 780(2)      | 17.0           | 2400           | 62       | Ursa Major cloud    |
| NGC4157     | 3      | Sb          | 35        | 92(2)         | 780(2)      | 17.0           | 3600           | 156      | Ursa Major cloud    |
| NGC4192     | 2      | Sab         | 95        | 131(2)        | -105(2)     | 16.8           | 2700           | 65       | Virgo cluster       |
| NGC4203     | -2     | S0          | 20        | 193(3)        | 1078(2)     | 9.7            | 1200           | 100      | Coma-Sculptor cloud |
| NGC4216     | 1.5    | Sab         | 41        | 77(5)         | 152(3)      | 16.8           | 1200           | 80       | Virgo cluster       |
| NGC4312     | 1.5    | Sab         | 41        | 77(5)         | 152(3)      | 16.8           | 1200           | 53       | Virgo cluster       |
| NGC4313     | 2      | Sab         | 69(2)     | 1436(2)       | 16.8        | 4800           | 45             | 23       | Virgo cluster       |
| NGC4365     | -5     | E           | 50        | 254(3)        | 1221(3)     | 16.8           | 2700           | 130      | Virgo cluster       |
| NGC4374     | -5     | E           | 51        | 316(5)        | 1019(5)     | 16.8           | 2400           | 45       | Virgo cluster       |
| NGC4419     | 3      | Sa          | 24        | 101(3)        | -206(2)     | 16.8           | 3600           | 43       | Virgo cluster       |
| NGC4526     | -2     | S0          | 44        | 214(3)        | 591(3)      | 16.8           | 1500           | 23       | Virgo cluster       |
| NGC4552     | -4     | E           | 29        | 272(4)        | 323(4)      | 16.8           | 1200           | 0        | Virgo cluster       |
| NGC4636     | -5     | E           | 89        | 243(3)        | 919(3)      | 17.0           | 2400           | 60       | Virgo cluster       |
| NGC4697     | -5     | E           | 67        | 194(2)        | 194(2)      | 23.3           | 2400           | 160      | Virgo cluster       |
| NGC5322     | -5     | E           | 34        | 233(3)        | 1801(3)     | 31.6           | 2400           | 5        | CVC cloud           |
| NGC5354     | -2     | S0          | 18        | 221(3)        | 2580(3)     | 33†            | 1200           | 0        | CVC cloud           |
| NGC5353     | -2     | S0          | 15        | 280(4)        | 2230(4)     | 37.8           | 1200           | 0        | CVC cloud           |
| NGC5746     | 3      | Sb          | 75        | 192(2)        | 1704(2)     | 3600           | 80             | 0        | Virgo-Libra cloud   |
| NGC5908     | 3      | Sb          | 29        | 152(2)        | 3340(2)     | 29.4           | 4800           | 64       | Virgo-Libra cloud   |
| NGC5987     | 3      | Sb          | 177(2)    | 3005(2)       | 40†         | 2400           | 165            |          |                     |

† Distances calculated from radial velocities given in RC3 assuming H0=75 km s⁻¹ Mpc⁻¹.
was placed along the minor axes of the galaxies with the exception of NGC 2831 and NGC 2832 which, being in close proximity on the sky, were observed simultaneously; i.e. with a position angle of 45° in both galaxies. A maximum exposure time of 1500 seconds was adopted to facilitate cosmic ray removal. Multiple exposures of individual galaxies were obtained to achieve the desired signal-to-noise (giving index errors of approximately 5% at \( r_e/2 \)). Seeing was \( \sim 1.5 \) arcsec. The total exposure time and position angle of the slit are given in Table 1. Tungsten lamp exposures, for flat-fielding, were obtained each night on the blue arm. However, due to known fringing effects on the red arm, red tungsten lamp exposures were taken just before or after every object exposure, with the telescope tracking the object. A total of 5 flux calibration standards and 24 stars (from Faber et al. 1985) for calibration of the Lick indices were observed. A neutral density filter (ND1.8) was used in the stellar observations. Observations of faint calibration stars and tungsten lamp exposures were obtained, with and without the neutral density filter, to allow removal of the filter’s spatial and spectral responses. The sample of Lick calibration stars was selected to possess index values spanning the range of values expected in our galaxy sample. The calibration star sample was also chosen for good overlap with stars with \( H_\alpha \) and \( H_\gamma \) measurements reported by Worthey & Ottaviani (1997), as well as stars used in the calibration of the CaII index (Diaz et al. 1989). All calibration stars possess known heliocentric radial velocities.

### 2.3 Basic reductions

Unless otherwise stated, data reductions were carried out using the CCDPACK, FIGARO and KAPPA packages of Starlink software. Bias removal was carried out by the subtraction of an average bias frame, normalised to the average value in the over-scan region, in each object frame. After conversion from electrons to photons, variance arrays were generated and propagated throughout the reductions. In the blue, flat-fielding was achieved by division of target frames by the normalised average of tungsten lamp exposures obtained on the same night. However, on the last night suitable tungsten lamp exposures were not obtained. For this night the flat-field from the first day was used (the day for which arc exposures were most similar). Division of target frames by tungsten lamp exposures leaves the spectra biased by the smooth spectral response of the lamp. This is removed at flux calibration. However, during the flat-fielding procedure, features in the blue tungsten lamp spectra were identified that moved independently of wavelength calibration. The features were in the range 4000 - 4600 \( \AA \) and were identified with features in the dichroic response. The effects of these features are included in our statistical errors as detailed in Section 2.4.2. Flat-fielding of the red data was carried out by division of each target frame by the normalised average of the bracketing tungsten lamp exposures. Stellar frames were divided by the normalised neutral density filter response. Cosmic rays and bad rows were removed by interpolation across the affected areas. Wavelength calibration was carried out by comparison with arc lamp exposures taken just before and/or after each exposure. An accuracy of better than 0.1 \( \AA \) was consistently achieved in both red and blue calibrations. All object frames were extinction corrected using the extinction curve appropriate for La Palma. Flux calibrations derived from multiple observations of single stars varied by less than 1.5% across the region of CCD used, while those derived from differing stars varied by less than \( \sim 5% \). All frames were flux calibrated using the average of the calibration curves of 5 flux calibration stars. Sky estimates were made using the outermost regions of the slit that were not significantly vignetted. After sky subtraction galaxy frames were co-added to form a single frame for each galaxy. The spiral galaxy NGC 4100 was found to be dominated by emission and was excluded from further analysis. Due to the presence of telluric absorption lines above 8920 \( \AA \), reliable NIR indices could not be determined for galaxies with recession velocities above 2200 km s\(^{-1}\) (i.e. NGC 2831, 2832, 5353, 5354, 5908 and 5987).

### 2.4 Calibrations using stellar spectra

The original calibrations of stellar line-strengths with photospheric parameters, upon which the SSPs used here are based, were carried out using data from the Lick/IDS scanner (Faber et al. 1989). This instrument has a spectral resol...
olution that varies with wavelength [Worthey & Ottaviani 1997], the Lick data were also not flux calibrated. Therefore, in order to calibrate our index measurements to the Lick system, it is necessary to compensate for both the differences in flux calibration between our data and that in the calibration data, as well as the differences in spectral resolution achieved.

2.4.1 Correction for spectral resolution

For each index, the value of the Lick spectral resolution ($\sigma_L$) in Table 2 was estimated from Fig. 7 of Worthey & Ottaviani (1997), at the wavelength of the mid-point of the central band. The spectra of our sample of Lick calibration stars were then broadened to the appropriate calibration resolution ($\sigma_L$), for each index, by convolution with a Gaussian of width $\sigma_B$ given by:

$$\sigma_B^2 = \sigma_L^2 - \sigma_I^2. \tag{1}$$

The instrumental broadening for our data ($\sigma_I$) was estimated from arc lines and found to be 1.5 Å in the blue and 0.7 Å in the NIR. After appropriate broadening, stellar indices were evaluated using our own code. Wavelength range definitions supplied by Worthey on his home page were used. For the NIR indices, band definitions and calibration resolution ($\sigma_L$) were taken from Diaz et al. (1989) (after allowing for a typographical error). Our code was tested using the stellar data also provided on Worthey’s home page for this purpose. Differences between the values given by Worthey and those derived by our code from the provided spectra were $\lesssim 0.03$ Å for the line features, and $\lesssim 0.002$ mag for molecular band indices. These discrepancies are smaller than differences caused by re-calibration of Worthey’s data to our wavelength resolution and are probably the result of differences in the handling of partial bins.

2.4.2 Flux calibration correction

In order to compensate for the differences in flux calibration between our data and the stellar calibration spectra, the difference between measured and published values was calculated, for each index, in each of the observed calibration stars. For all indices except G4300, we found no significant correlation between these differences and the measured values. Therefore, for all indices except G4300, the average difference is used as a final correction to the velocity dispersion corrected values. For G4300, the differences between measured (G4300$_{raw}$) and published values exhibited a correlation with G4300$_{raw}$ given by:

$$Offset = 4.340 - 0.749 \times G4300_{raw}. \tag{2}$$

The final correction to the velocity dispersion corrected values of G4300 was, therefore, calculated using this equation. However, for one galaxy (NGC3769), G4300$_{raw}$ lay significantly outside the range of values covered by our stellar sample. Consequently, the value of G4300 in this galaxy, while reported here, was omitted from further analysis. Comparison of the measured indices in the calibration sample with the published data is shown in Table 2. For blue indices with band definitions above 4600 Å, the RMS scatter about the offset in our sample is generally dominated by the RMS error associated with individual Lick observations. However, the scatter in our data is significantly greater than this error for indices with band definitions below 4600 Å (with the exception of Ca4227). This is the wavelength range affected by the poor removal of the dichroic response identified in Section 2.3. For indices in this wavelength range the excess scatter (calculated in quadrature) of our data compared to the Lick error has been included in the error calculations. This turns out to be a conservative error estimate for all indices but Ca4227, whose error we assume is underestimated. For the NIR indices differences between the stellar data of Diaz et al. (1989) and our stellar data were used for flux calibration correction. We note that the scatter in our data is greater than the RMS error per single observation in the Diaz et al. (1989) data (given as typically 5%). However, these indices are not used for the purposes of absolute age/metallicity estimates and this uncertainty has not been included in our errors. For all indices, the error in calibration to the Lick system was calculated as the standard error in the stellar data, i.e. $\frac{\text{RMS}}{\sqrt{N}}$, where $N=24$ is the number of calibration stars.

2.5 Analysis of galaxy spectra

To derive accurate indices from a galaxy spectrum it is first necessary to obtain accurate estimates of recession velocity and velocity dispersion from the spectra. This allows the red-shift to be taken into account and the indices to be corrected for velocity dispersion (using the polynomials detailed in Appendix A). Galaxy data must also be corrected for flux calibration (Section 2.4.2) and emission.

2.5.1 Measurement of galaxy kinematics

Measurements of galaxy kinematics were carried out on both the red and blue data using the Fourier quotient technique within the IRAF software package. This technique was used as the associated statistical errors are significantly less than those associated with the cross-correlation technique at the low velocity dispersions typical of spiral bulges. For the purposes of velocity dispersion analysis, Hβ and [OIII]5007 emission lines were removed by linear interpolation across affected regions in galaxies showing strong emission. Velocity dispersion and recession velocity were estimated using each of the calibration stars. Final values and errors were taken as the average and standard error in the individual estimates. Typical errors for velocity dispersion and recession velocity were found to be $\sim 3.1 \text{ km s}^{-1}$ and $\sim 2.6 \text{ km s}^{-1}$ respectively. A comparison of our results for velocity dispersion with the average values in Prugniel & Simien (1997) is shown in Fig. 2. In this figure the average value and RMS scatter in the individual measurements quoted in Prugniel & Simien (1997) are taken as the velocity dispersion and its error respectively. Despite differences in spectral and spatial sampling, agreement is reasonably good between the data sets, with a one-to-one line having a reduced $\chi^2$ of 1.7. Our galaxy indices were corrected for velocity dispersions as described in Appendix A.
2.5.2 Emission Correction

The Hβ, Hγ and Hδ indices suffer from line-filling in galaxies exhibiting emission. Fe5015 is also affected by [OIII]5007 emission in such galaxies, while Mgb is affected by [NI]5199 emission (Goudhrooij & Emsellem 1990). We estimated [OIII]5007 emission in all galaxy spectra in an effort to compensate for the effects of emission in Hβ, Hγ, Hδ and Fe5015. No attempt was made to estimate the (relatively small) corrections to Mgb. Following a procedure similar to that used by González (1993), each galaxy spectrum was divided by a series of template spectra. These templates were made by red-shifting and broadening each star used in the blue kine-
matic analysis to the measured galaxy values. The aim of dividing the galaxy spectrum by a well matching template is to remove common spectral features around the [OIII] line prior to the measurement of its equivalent width. The band definitions used for our [OIII] line index are as follows:

Side band 1: 4990.0-5001.0 Å
Centre band: 5001.0-5011.0 Å
Side band 2: 5011.0-5022.0 Å

The average of values derived using each stellar template was taken as the [OIII] index for each galaxy. The use of the average of a group of well matching stellar spectra differs from the method used by González of creating individual templates for each galaxy. Also, [OIII] band definitions differ between the two methods. González estimated [OIII] emission in four galaxies common with our sample while three of the galaxies were observed by Kuntschner et al. (2001). Differences in slit width and orientation make direct comparison difficult. However, the results are in reasonable agreement (∼ ± 0.15 Å). The results of our OIII estimates are given in Table 3.1.

Osterbrock ([1989]) shows that the line-strengths of Hδ and Hγ in emission are less than Hβ, with line-intensities relative to Hβ of approximately 0.25 and 0.5 respectively across a large range of conditions. However, the continuum level in the spectra of all our galaxies show a reduction of approximately 50% between Hβ and Hγ. Therefore, using our estimates of [OIII] emission, the González (1993) correlation between [OIII] and Hβ emission, and Osterbrock (1989) data for Hγ and Hδ, we applied the following corrections:

\[
\begin{align*}
\text{Fe5015} &= \text{Fe5015}_{\text{raw}} + \Delta\text{Fe5015}, \\
\text{Hβ} &= \text{Hβ}_{\text{raw}} + \Delta\text{Hβ}, \\
\text{Hγ} &= \text{Hγ}_{\text{raw}} + \Delta\text{Hγ}, \\
\text{Hδ} &= \text{Hδ}_{\text{raw}} + \Delta\text{Hδ},
\end{align*}
\]

\[
\begin{align*}
\Delta\text{Fe5015} &= -[\text{OIII}], \\
\Delta\text{Hβ} &= -0.7[\text{OIII}], \\
\Delta\text{Hγ} &= -0.7[\text{OIII}], \\
\Delta\text{Hδ} &= -0.35[\text{OIII}]
\end{align*}
\]

It can be seen that, due to the reduction in continuum level, Hγ is as sensitive to emission in absolute terms (Å) as Hβ, while the Hδ feature is only half as sensitive. However, due to the range of strengths of both Hδ and Hγ in SSPs, estimates of age and metallicity made using these indices are significantly less affected by emission than those made using the Hβ index.

An Hβ emission index similar to the [OIII] emission index described above was also defined as a check on the [OIII] index. Comparison of [OIII] and Hβ emission indices showed that most galaxies follow the Gonzalez (1993) correlation well. However, six galaxies were noted (all spiral bulges) with significantly aberrant behaviour. Three bulges (NGC 4157, NGC 4217 and NGC 4312) show Hβ emission substantially greater than that expected from the [OIII], while three (NGC 3254, NGC 3769 and NGC 4313) show strong [OIII], but with no detectable Hβ emission. These late-type galaxies do not follow the González correlation. Hβ values for these six galaxies are omitted from our analysis.

3 RESULTS

3.1 Central Values

Central values for velocity dispersion, given in Table 1, are those derived from the central 3.6×1.25 arcsec of the blue observations with centres defined as luminosity peaks. Velocity dispersion values derived using blue spectra are greater than those derived from NIR spectra by an average of ∼ 10 km s⁻¹ with scatter about this of ∼ 20 km s⁻¹. However, velocity dispersion profiles in some galaxies (e.g. NGC 4192) differ significantly between blue and NIR data. This suggests that the two wavelength ranges may be detecting differing kinematic populations.

Central index values and errors for blue indices are given in Table 3.1. Values for Fe5406 in NGC 2831 and NGC 2832 were not determined due to the high recession velocity in these galaxies redshifting the blue side-band of this index outside the observed spectral range. Indices are corrected for both velocity dispersion and emission and converted to the Lick system. Reduction and calibration errors have all been included in the quoted errors. Also included, for indices with band definitions below 4600 Å, are the errors due to poor removal of the dichroic response (Section 2.4.3). Comparison

Figure available from http://www.star.uclan.ac.uk/~rnp/research.htm
Table available from http://www.star.uclan.ac.uk/~rnp/research.html
Table 4. NIR central index values (first line) and errors (second line). All reduction and calibration errors are included in the errors. Omitted galaxies are those whose high recession velocities redshift one side-band of these indices into the region of the spectrum affected by telluric lines.

| Galaxy   | Ca1 (Å) | Ca2 (Å) | Ca3 (Å) | MgI (Å) |
|----------|---------|---------|---------|---------|
| NGC 2549 | 1.774   | 4.528   | 3.878   | 0.759   |
|          | 0.078   | 0.076   | 0.062   | 0.042   |
| NGC 2683 | 1.697   | 4.201   | 3.685   | 0.665   |
|          | 0.101   | 0.092   | 0.079   | 0.057   |
| NGC 2832 | -       | -       | -       | -       |
| NGC 2831 | -       | -       | -       | -       |
| NGC 3226 | 1.737   | 4.242   | 3.483   | 0.910   |
|          | 0.117   | 0.110   | 0.100   | 0.071   |
| NGC 3254 | 1.687   | 4.175   | 3.650   | 0.671   |
|          | 0.116   | 0.106   | 0.097   | 0.068   |
| NGC 3301 | 1.623   | 4.355   | 3.775   | 0.575   |
|          | 0.094   | 0.088   | 0.074   | 0.051   |
| NGC 3607 | 1.639   | 4.169   | 3.552   | 0.806   |
|          | 0.091   | 0.089   | 0.079   | 0.059   |
| NGC 3608 | 1.797   | 4.263   | 3.634   | 0.854   |
|          | 0.100   | 0.096   | 0.086   | 0.060   |
| NGC 3623 | 1.711   | 4.181   | 3.658   | 0.748   |
|          | 0.092   | 0.086   | 0.072   | 0.051   |
| NGC 3769 | 1.745   | 3.965   | 3.561   | 0.550   |
|          | 0.300   | 0.268   | 0.277   | 0.222   |
| NGC 4157 | 1.573   | 4.073   | 3.730   | 0.543   |
|          | 0.188   | 0.167   | 0.161   | 0.131   |
| NGC 4192 | 1.966   | 4.458   | 4.170   | 0.652   |
|          | 0.095   | 0.089   | 0.075   | 0.051   |
| NGC 4203 | 1.797   | 4.276   | 3.573   | 0.864   |
|          | 0.121   | 0.111   | 0.101   | 0.069   |
| NGC 4216 | 1.794   | 4.159   | 3.743   | 0.732   |
|          | 0.086   | 0.082   | 0.070   | 0.046   |
| NGC 4217 | 2.427   | 4.827   | 3.877   | 0.770   |
|          | 0.574   | 0.518   | 0.576   | 0.446   |
| NGC 4291 | 1.652   | 4.197   | 3.429   | 0.679   |
|          | 0.105   | 0.104   | 0.096   | 0.075   |
| NGC 4312 | 1.530   | 3.535   | 3.989   | 0.344   |
|          | 0.596   | 0.518   | 0.523   | 0.331   |
| NGC 4313 | 1.734   | 4.622   | 4.145   | 0.710   |
|          | 0.124   | 0.112   | 0.102   | 0.072   |
| NGC 4365 | 1.900   | 4.430   | 3.699   | 0.723   |
|          | 0.109   | 0.105   | 0.098   | 0.074   |
| NGC 4374 | 1.740   | 4.109   | 3.438   | 0.597   |
|          | 0.104   | 0.102   | 0.095   | 0.075   |
| NGC 4419 | 1.854   | 4.143   | 3.813   | 0.630   |
|          | 0.106   | 0.099   | 0.088   | 0.060   |
| NGC 4526 | 1.910   | 4.311   | 3.793   | 0.823   |
|          | 0.116   | 0.108   | 0.099   | 0.068   |
| NGC 4552 | 1.603   | 3.771   | 3.257   | 0.705   |
|          | 0.111   | 0.105   | 0.097   | 0.074   |
| NGC 4636 | 1.629   | 4.009   | 3.539   | 0.707   |
|          | 0.128   | 0.119   | 0.111   | 0.081   |
| NGC 4697 | 1.660   | 4.343   | 3.625   | 0.703   |
|          | 0.110   | 0.102   | 0.092   | 0.062   |
| NGC 5322 | 1.858   | 4.471   | 3.635   | 0.778   |
|          | 0.110   | 0.105   | 0.097   | 0.072   |
| NGC 5354 | -       | -       | -       | -       |
| NGC 5353 | -       | -       | -       | -       |
| NGC 5746 | 1.882   | 4.403   | 3.852   | 0.812   |
|          | 0.116   | 0.107   | 0.096   | 0.067   |
| NGC 5908 | -       | -       | -       | -       |
| NGC 5987 | -       | -       | -       | -       |

Figure available from
http://www.star.uclan.ac.uk/~rnp/research.htm

Figure 2. Comparison of our results for early-type galaxies to published data from Trager (1998) for commonly quoted indices. Also shown as triangles are results for Fe5270 and Fe5335 from two galaxies from Davies et al. (1993).
Correlations between indices sensitive to \( \alpha \)-elements (e.g. Mg\(_2\) and Mgb) and velocity dispersion have been widely observed in early-type galaxies (Bender et al. 1993; González 1993; Jørgensen 1997; Bernardi et al. 1998; Concannon et al. 2000; Kuntschner 2000; Trager et al. 2000b). Fig. 3 summarises results for Mg\(_2\) and Mgb from these studies. Although there is generally good agreement for the slopes of the correlations, there are offsets between studies. Such offsets may result from differences in calibration to the Lick system, differences in aperture size and/or orientation and systematic differences in velocity dispersion estimates. Values of indices in the early-type galaxies of our sample are also shown in Fig. 4. Correlations from the fully calibrated K00 study of Fornax cluster galaxies (shown as thick lines in Fig. 3), most closely match our results, although our sample covers a significantly narrower range of velocity dispersion than the K00 sample (a result of our selection of bright, nearby ellipticals).

In Fig. 4 we show plots of selected metallicity-sensitive indices from the blue spectra against log velocity dispersion for our galaxy sample. Indices omitted are those most severely affected by the dichroic response problem outlined in Sections 2.3 and 2.4.2. Table 5 details the fits (minimising \( \chi^2 \)) of indices against velocity dispersion for both early and late-type galaxies in our sample. Values given are from fits with y-axis errors only (which dominate in most cases). Errors in slope and intercept are taken as half the difference between the fit using index errors for \( \chi^2 \) minimisation and that using velocity dispersion errors. From Table 5 it can be seen that the mean trend from K00. Thinner lines show trends from other authors as detailed in the text. N.B. Both Trager et al. (2000b) and K00 estimated correlations on a log(index) scale, resulting in the curvatures in these plots.

### Table 5. Correlations between indices and velocity dispersion.

| Index | N | \( dI/d(\log \sigma_0) \) | Intercept | \( r \) | \( \chi^2 \) |
|-------|---|-----------------|-----------|-----|--------|
| **EARLY TYPE GALAXIES** |
| Ca4227 | 17 | 0.22 (0.36) | 0.76 (22.03) | 0.21 | 97 |
| Fe5015 | 17 | -0.50 (30.18) | 7.17 (71.08) | 0.02 | 105 |
| Fe5270 | 17 | -0.84 (3.13) | 5.18 (7.38) | -0.16 | 108 |
| Fe5335 | 17 | -0.62 (3.10) | 4.32 (7.30) | -0.18 | 66 |
| <Fe> | 17 | -0.72 (2.50) | 4.79 (5.90) | -0.19 | 137 |
| Fe5406 | 15 | -0.38 (1.27) | 2.95 (3.00) | -0.21 | 18 |
| CN1 | 17 | 0.086 (0.855) | -0.089 (2.013) | 0.19 | 21 |
| CN2 | 17 | 0.113 (0.741) | -0.107 (1.745) | 0.23 | 26 |
| <CN> | 17 | 0.099 (0.792) | -0.098 (1.866) | 0.21 | 47 |
| C\(_4\)668 | 17 | -1.99 (13.45) | 12.73 (31.68) | -0.12 | 218 |
| Mgb | 17 | 0.066 (0.216) | 0.003 (0.510) | 0.35 | 438 |
| Mg\(_2\) | 17 | 0.114 (0.178) | 0.062 (0.419) | 0.51 | 392 |
| K00 Mg\(_2\) | 13 | 0.191 (0.023) | -0.127 (0.054) | -0.685 |
| K00 Mgb | 17 | 2.68 (1.76) | -1.24 (5.39) | 0.61 | 245 |
| Mg\(_2\) | 17 | 2.60 (0.40) | -1.06 (1.36) | -0.42 |
| H\(_\delta\)A | 17 | -2.11 (20.71) | 2.61 (48.70) | -0.24 | 29 |
| H\(_\delta\)F | 17 | -1.26 (3.32) | 3.05 (7.80) | -0.43 | 40 |
| H\(_\gamma\)A | 17 | -2.83 (44.85) | 1.04 (105.53) | -0.19 | 29 |
| H\(_\gamma\)F | 17 | -1.66 (31.03) | 2.66 (73.04) | -0.21 | 10 |
| H\(_\beta\) | 17 | -1.74 (0.66) | 5.68 (1.56) | -0.71 | 49 |
| CaT | 17 | -2.35 (1.94) | 13.31 (4.51) | -0.53 | 52 |
| MgI | 17 | -0.28 (0.86) | 1.40 (2.00) | -0.51 | 16 |
| **LATE TYPE GALAXIES** |
| Ca4227 | 14 | 1.68 (0.22) | -2.44 (0.48) | 0.90 | 21 |
| Fe5015 | 14 | 4.51 (0.34) | -3.77 (0.75) | 0.95 | 21 |
| Fe5270 | 14 | 3.03 (0.14) | -3.46 (0.30) | 0.93 | 19 |
| Fe5335 | 14 | 2.86 (0.57) | -3.50 (1.26) | 0.92 | 35 |
| <Fe> | 14 | 2.95 (0.24) | -3.49 (0.52) | 0.96 | 40 |
| Fe5406 | 14 | 2.09 (0.23) | -2.65 (0.48) | 0.97 | 24 |
| CN1 | 14 | 0.337 (0.088) | -0.687 (0.190) | 0.92 | 6 |
| CN2 | 14 | 0.347 (0.093) | -0.669 (0.202) | 0.91 | 8 |
| <CN> | 14 | 0.340 (0.089) | -0.683 (0.193) | 0.91 | 10 |
| C\(_4\)668 | 14 | 11.80 (1.53) | -18.78 (3.39) | 0.96 | 84 |
| Mg\(_1\) | 14 | 0.230 (0.042) | -0.377 (0.091) | 0.94 | 155 |
| Mg\(_2\) | 14 | 0.114 (0.027) | -0.063 (0.060) | 0.97 | 170 |
| Mgb | 14 | 0.357 (0.022) | -0.743 (0.48) | 0.98 | 70 |
| H\(_\delta\)A | 14 | -12.34 (1.93) | 25.72 (4.18) | -0.93 | 24 |
| H\(_\delta\)F | 14 | -6.04 (1.63) | 13.80 (3.59) | -0.84 | 10 |
| H\(_\gamma\)A | 14 | -1.26 (3.32) | 3.05 (7.80) | -0.43 | 40 |
| H\(_\gamma\)F | 14 | -1.66 (31.03) | 2.66 (73.04) | -0.21 | 10 |
| H\(_\beta\) | 9 | -1.44 (0.74) | 5.09 (1.64) | -0.81 | 16 |
| CaT | 12 | -1.03 (5.88) | 10.25 (12.06) | 0.28 | 50 |
| MgI | 12 | 0.39 (0.31) | -0.12 (0.63) | 0.78 | 9 |
be seen that in the metallicity sensitive indices of early-type galaxy sample we detect no significant (3σ) slopes. However, our results for Mg$_2$ and Mgb are consistent with the positive trends with velocity dispersion noted by previous studies (Fig. 3). If we compare the scatter of our Mg$_2$ and Mgb data about our best fit lines (0.02 mag and 0.3 Å respectively) with their scatter about the K00 correlations (Fig. 3), we find no significant difference. We tested the fit of the K00 correlations to our early-type galaxy data for all common indices. For the majority of indices our scatter about the K00 correlations is similar to scatter of the K00 data. Consequently, in Fig. 4 we use K00 correlations (shown as thin lines) for all common indices for purposes of comparison to bulges. Most previous authors report weak or no trends in Fe indices (Fisher el al. 1996; Trager et al. 1998; Jørgensen 1999), with velocity dispersion for early-type galaxies. Within the narrow velocity dispersion range covered by our sample, we echo this finding (Fig. 4 and Table 5). However, K00 found correlations for all the metallicity-sensitive indices he observed. We note the possibility that such correlations would have been present in our data had the velocity dispersion range of our study been larger. For Fe5406 we find values consistently above the K00 correlation. However, the side bands of this index lie in a region of our spectra where vignetting effects are beginning to appear. Consequently, it is possible that a small undetected systematic effect may be biasing this index in our results. Previous authors have reported that the calcium indices (Ca4227 and Ca4455) follow similar trends to Fe indices, rather than the trends in enhanced indices such as Mg$_2$ (Vazdekis et al. 1997; Trager et al. 1998). We again echo this finding within the narrow range of velocity dispersions of our sample.

Plots of age sensitive indices with velocity dispersion are shown in Fig. 4. In early-type galaxies no significant trends with velocity dispersion are evident in the Hδ and Hγ indices. However, for the Hβ index a ~3σ correlation is found (Fig. 5 and Table 5). The slope of this weak correlation is steeper than that found by K00 (dHβ/d(log σ)~ -0.4) which is shown as a thin line in Fig. 5. The presence of such a correlation in the highly age sensitive Hβ index, while the more degenerate Hδ and Hγ indices show no correlations, suggests the presence of a trend of increasing age and/or decreasing metallicity with velocity dispersion in the early-type galaxies.

S0 galaxies, shown as open squares in Fig. 4, follow similar trends to elliptical galaxies in all indices. The similarity in indices in E and S0 types can also be seen in Fig. 5 where the values of key indices are compared for all Hubble types.
3.2.2 Late-type galaxies

All metallicity-sensitive indices in the blue spectra of our late-type galaxy sample show strong correlations with velocity dispersion (Fig. 4, Table 5), including those not shown in Fig. 4. One outlier to these trends for late-type galaxies is NGC 4313, which exhibits a strong central depression in log $\sigma$. This galaxy has been omitted from the line fitting procedure. The highest velocity dispersion bulges show index values coincident with those of early-type galaxies. Indeed, for all indices in our sample, early and late types form a continuous locus in the index-velocity dispersion plane. However, the slopes of the correlations in late-type galaxies are significantly steeper than those found by K00 for early-type galaxies (Fig. 4). In general, the scatter about the correlations of late-type galaxies is also smaller than that of early types. Anti-correlations with velocity dispersion are also evident among the late-type galaxies in all age sensitive indices (Fig. 5) with low velocity dispersion bulges having stronger hydrogen absorption lines (aberrant emission galaxies detailed in Section 2.5.2 are omitted from line fitting in the case of H$\beta$). The strong trends of both metallicity and age sensitive indices with velocity dispersion in late-type galaxies suggests that SFH is closely associated with the depth of potential well in the centres of bulges.

Figure 5. Age sensitive indices against log of central velocity dispersion. Symbols and errors as Fig. 4.

Figure 6. Central indices with Hubble (T) type. Open symbols are early types and filled symbols are late types.

In this plot indices show no correlation with Hubble type for spiral bulges.
3.2.3 Red data

CaT (the sum of CaII at 8498 Å and 8542 Å) and MgI are plotted against velocity dispersion in Fig. 7. Trends with velocity dispersion are not as clear in these indices. In early-type galaxies, the MgI index shows behaviour with velocity dispersion different to that of the Mg1, Mg2 and Mgb indices in the blue. However, it is difficult to make direct comparisons because, as previously suggested (Section 3.1), NIR indices may be sampling different stellar populations to those sampled by blue indices.

Table 6. Index values from correlations at log(σ0)=2.0. The percentage difference between the values from the two correlations is also given.

| Index      | K00   | Spirals | %   |
|------------|-------|---------|-----|
| C24668     | 5.37  | 4.81    | -10%|
| Fe5015     | 5.62  | 5.25    | +5% |
| Mg1        | 0.114 | 0.083   | -27%|
| Mg2        | 0.255 | 0.194   | -24%|
| Mgb        | 4.14  | 3.31    | -20%|
| Fe5406     | 1.69  | 1.52    | -10%|
| <Fe>       | 2.69  | 2.40    | -10%|

3.2.4 Potential disc contamination of late-type galaxies

Late and early-type galaxies in our sample exhibit similar index values in the region where their velocity dispersions overlap (150 - 200 km s⁻¹). However, towards lower dispersions, bulges lie systematically further from the K00 trends for early-type galaxies (Fig. 8). It was a concern that this behaviour may be the result of disc contamination. Khosroshahi, Wadadekar & Kembhavi [2000] carried out bulge-disc decomposition of a number of edge-on (i > 50°) spiral galaxies. They show that for Hubble types earlier than Sbc (T<4) the bulge-to-disc central luminosity ratio always exceeds 10; i.e. no more than 10% of the observed light originates in the disc. They also show that this ratio increases to ~1000 in the case of Sa galaxies. The worst-case assumption for metallicity-sensitive indices is that of a smooth continuum contribution from the disc. Under such circumstances, a maximum reduction of ~10% is expected for both line and molecular band indices. We compare the K00 correlations for metallicity-sensitive indices in early-type galaxies with our correlations for late types in Table 6. Values of indices on the correlations are given, for our bulge data and the K00 correlations, at log σ0=2.0 (mid-range value for bulges). Percentage differences between the two correlations can be seen to vary from -27% to +5%. Clearly the difference can not be modelled by the simple addition of continuum to the bulge light. It should also be noted that, for the Mg indices, a minimum bulge contribution of ~25% is required to account for the differences between correlations. This is well in excess of the 10% maximum expected from Khosroshahi et al. [2000], and the difference increases at velocity dispersions less than 100 km sec⁻¹. We also note that there is no evidence that the indices of late-type galaxies correlate with Hubble type (Fig. 6) as might be expected if significant disc contamination were present.

We therefore conclude that while metallicity-sensitive indices could be depressed by as much as 10% by disc contamination, this effect is not evident in our data, nor can it explain the observed differences between correlations in early and late-type galaxies.

3.3 Diagnostic index plots

In this section we compare the results of our index determinations to the values predicted for SSPs. We use V99 SSPs for our analysis. These (web published) SSPs are based on Bertelli et al. [1994] isochrones (as detailed in V96), and Vazdekis [1999a] transformations to the observational plane. We use V99 SSPs rather than those of W94 and Worthey & Ottaviani [1997], as V99 make use of the more up-to-date and complete isochrones of Bertelli et al. [1994]. V99 also includes the CaT and MgI indices in their calculations of SSP index values. Metallicities derived from degeneracy breaking diagnostic plots using V99 SSPs are generally higher by ~0.1 dex than those implied by W94 SSPs. For galaxies older than ~5 Gyr, V99 SSPs also imply ages younger by ~0.15 dex.

The <Fe> vs Mg2 diagnostic plot is shown in Fig. 8. This plot clearly shows the enhancement of the Mg2 index (or, equivalently, the deficiency in the <Fe> index) in early-type galaxies with respect to solar abundance ratio SSPs. The plot also demonstrates the age/metallicity degeneracy.
of these two indices. The grid includes SSPs ranging from 1.5 to 17 Gyr in age and with metallicities ([Fe/H]_{SSP}) covering the range [Fe/H]_{SSP} = -1.7 to +0.5. The good agreement between our data and the correlation of Gorgas et al. (1997) for early-type galaxies is also illustrated. Late-type galaxies seem to span the SSP grid. This echoes the tentative finding of our previous study (Proctor et al. 2000), that late-type galaxies exhibit abundance ratios closer to solar than those found in elliptical galaxies. The 4 bulges observed in Proctor et al. (2000) were not fully calibrated to the Lick system due to a lack of observations of suitable calibration stars. However, we note that most fully calibrated studies find that small positive corrections are required to compensate Mg_{2} for the lack of flux calibration in the Lick observations, while Fe_{5270} and Fe_{5335} require only very small corrections (e.g. Worthey & Ottaviani 1997; K00). The Lick offsets given in Table 2 for the present data set were thus applied to the Proctor et al. (2000) data. The Sa galaxy NGC 3623 was observed in both studies. The two independent values for both Mg_{2} and <Fe> in this galaxy were within errors. Consequently, this galaxy was not included when the results of the Palomar study were added to Fig. 8 (solid squares). Additional errors of 0.01 mag and 0.04 ångstroms have been added in quadrature to Proctor et al. (2000) errors for Mg_{2} and <Fe> respectively to allow for uncertainty in the corrections to the Lick system.

Given the tendency, reported by previous authors, for Ca indices to follow similar trends to Fe indices (Vazdekis et al. 1994, Prager et al. 1997), the NIR CaT and MgI indices allow plotting of a diagnostic plot similar to <Fe> − Mg_{2} in the blue. This diagnostic plot (CaT−MgI) is also shown in Fig. 8. In this figure, early-type galaxies lie within the SSP grid. A simplistic interpretation would be that this indicates [Mg/Ca] = 0 and, assuming that Ca follows the same trends as Fe, a value [Mg/Fe] = 0. However, when these indices are plotted against age sensitive indices (e.g. Hβ) problems with the MgI index become apparent (Section 3.3.1) and this interpretation cannot be sustained.

3.3.1 Breaking the degeneracy

Plots that most clearly break the age/metallicity degeneracy are shown in Figs 9 and 10. These plots show metallicity-sensitive indices against Hβ and compare galaxy values to V99 SSP predictions. We show indices against Hβ since it is the most age sensitive index and other age sensitive indices (Hδ_{A,F}, G4300 and Hγ_{A,F}) are among those affected by the dichroic response problem in our data.

The Hδ and Hγ indices were also not among the indices whose sensitivities to element abundance ratios were modelled by TB95. Fig. 8 shows indices sensitive to Fe on the left, while indices sensitive to abundance ratios are shown on the right. Early-type galaxies in Fig. 8 exhibit different trends in Fe and abundance-ratio-sensitive indices. In these galaxies, the increasing Hβ with line strength in Fe indices contrasts with the decreasing Hβ with line strength in abundance ratio sensitive indices. The trend in Fe indices suggests that Fe abundance is anti-correlated with age in early-type galaxies, while the growing disparity between Fe and abundance ratio sensitive indices suggests increasing abundance enhancement in light elements with age.

In late-type galaxies, Hβ decreases with all metallicity-sensitive indices in the blue (Fig. 11). The position of these galaxies with respect to the SSP grids is also more consistent between plots of Fe indices and those sensitive to abundance ratios. This reflects abundance ratios closer to solar in these objects, as noted in Proctor et al. 2000. The positions of late-type galaxies also suggests that the populations are relatively young (luminosity-weighted ages ≤ 5 Gyr) with a wide range of metallicities.

Fig. 11 shows a plot with Hβ of the blue Ca4227 (top plot). Comparison of this plot with Fig. 8 shows the similarity in behaviour of Ca and Fe indices previously reported...
Figure 9. Metallicity-sensitive indices plotted against Hβ. Symbols as Fig 4. Fe indices are shown on the left, while indices sensitive to Mg and C abundance ratios are shown on the right. Uncertainty in calibration to the Lick system is shown top right of each plot. Short, thick and thinner lines show primordial collapse and merger models respectively. These and the grid lines are as in Fig 8.

Figure available from http://www.star.uclan.ac.uk/~rnp/research.htm
wavelength bands are reasonably small and uniform across our galaxy sample, we attempt to interpret these diagrams.

The CaT index again shows the similarity in behaviour of Ca and Fe indices. That is, the trend of increasing Hβ with CaT, is similar to those exhibited by blue Fe indices. However, in the MgI-Hβ plot, while some galaxies retain the behaviour of blue Mg indices, many galaxies are displaced to extremely low metallicities when compared to the SSP grids. These galaxies tend to be both the oldest, and the highest velocity dispersion. However, MgI is a weak index, prone to measurement problems, therefore further observations of MgI are needed to ascertain its behaviour relative to SSPs. We therefore draw no strong conclusions from either the MgI−Hβ or MgI−CaT plots.

4 ESTIMATION OF AGE, METALLICITY AND ABUNDANCE RATIO ENHANCEMENT

Our aim is to use the indices of solar-neighbourhood abundance ratio SSPs as the basis for estimating luminosity-weighted ages, metallicities and abundance ratios of galaxies. This requires us to estimate the effects on indices of the non-solar abundance ratios observed in many galaxies (e.g. Davies et al. 1993). Thus we aim to construct grids of SSPs with varying age, [Fe/H]_{SSP} and abundance ratio for comparison with observations. This requires knowledge/estimation of:

- The abundance ratio pattern in the local stars used to construct SSPs.
- The difference between the local abundance ratio (SSP) pattern and that in the galaxy populations being studied.
- The effects such a difference would have on photospheric conditions (surface gravity (log g), effective temperature (T_{eff}) and luminosity) in whole populations i.e. the effects on isochrones.
- The effects of differences in abundance ratios on the strength of individual indices in stars, assuming fixed photospheric conditions.

Armed with the above it is possible to estimate corrections to the indices of solar abundance ratio SSPs for non-solar abundance ratios, for comparison to observations. The above points are discussed in turn below.

4.1 The local abundance pattern

Stellar metallicity estimates, used in the construction of both W94 and V99 SSPs, were based on analysis of solar-neighbourhood stars (e.g. Edvardsson et al. 1993 in V99 and Hansen & Kjærgaard 1971, Gustafsson, Kjærgaard & Andersen 1974 in W94). The wavelength ranges used generally contain a large number of Fe lines, thus providing good estimates of iron abundance ([Fe/H]). However, solar-neighbourhood stars possess considerable scatter in the abundance ratios of individual elements. In high metallicity stars ([Fe/H] ≥ solar) abundance ratios show moderate
scatter about solar values (Edvardsson et al. 1993; Feltzing & Gustafsson 1998). Thus for SSPs, the calibration of which averages a large number of local stars, we may assume 

\[ [Z/H]_{\text{SSP}} = [\text{Fe}/\text{H}]_{\text{SSP}} \] for \([\text{Fe}/\text{H}]_{\text{SSP}} \geq 0 \]. On the other hand, solar-neighbourhood stars with \([\text{Fe}/\text{H}] < 0 \) exhibit non-solar abundance patterns, with \(\alpha\)-elements (e.g., O, Ne, Na, Mg, Al, Si, S, Ar, Ca) enhanced with respect to Fe peak elements (e.g., Fe, Ni, Cr) (Ryan Norris & Bessell 1991; Edvardsson et al. 1993; Feltzing & Gustafsson 1998; Idiart & Thevenin 2000). The \(\alpha\)-element abundances are also enhanced with respect to C, which has solar abundance ratio (or below) down to very low metallicities (Ryan et al. 1991). Abundance ratios of \(\alpha\)-elements ([\(\alpha/\text{Fe}\)]) in these stars increase linearly from [\(\alpha/\text{Fe}\)] = 0 at \([\text{Fe}/\text{H}] = 0.0\) to [\(\alpha/\text{Fe}\)] = +0.3 to +0.5 (depending on the element concerned) at \([\text{Fe}/\text{H}] = -1\). Moderate scatter in the abundance ratios of individual elements about these trends is again observed. As SSPs with \([\text{Fe}/\text{H}]_{\text{SSP}} < 0 \) are therefore based on stars with non-solar abundance ratios, we assume that \([\text{Fe}/\text{H}]_{\text{SSP}} \) more closely approximates \([\text{Fe}/\text{H}] \) in the stars than \([Z/H] \). Thus, in low metallicity SSPs (and any other non-solar abundance population) we must assume a relationship between \([Z/H], [\text{Fe}/\text{H}] \) and \([E/\text{Fe}] \) (where \(E\) is the mass of all elements with enhanced abundance ratios - see Table 7, column 3). As non-linear effects are small (Tantalo et al. 1998), and following Trager et al. (2000a; hereafter T00a), we assume a linear relationship:

\[ [Z/H] = [\text{Fe}/\text{H}] + A[E/\text{Fe}] \] (3)

The differential form of which:

\[ \Delta[Z/H] = \Delta[\text{Fe}/\text{H}] + A\Delta[E/\text{Fe}] \] (4)

may be used to derive estimates of the factor \(A\) in low metallicity stars by comparing a solar composition with one in which all \(\alpha\)-elements are doubled in abundance (\([\text{Fe}/\text{H}] = 0, [E/\text{Fe}] = +0.301\)). From the values given in Table 7 it can be seen that \(\alpha\)-elements constitute 70\% of metals at solar abundance ratio. Doubling all these elements therefore gives \([Z/H] = +0.25 \) (assuming \(\Delta Y = 2.2\Delta Z\); Lebreton et al. 1999 and an internally consistent handling of \(H\)). This yields an estimate of \(A = 0.83\). Non-linear effects and uncertainties in the handling of \(H\) result in an uncertainty in the value of \(A\) of approximately ± 0.06. For solar neighbourhood stars we characterise the trend in \([E/\text{Fe}] \) with \([\text{Fe}/\text{H}] \) in the range -1 ≤ \([\text{Fe}/\text{H}] < 0\) by:

\[ [E/\text{Fe}] = -0.45[\text{Fe}/\text{H}] \] (5)

The value 0.45 in Equation 5 is the overall enhancement in \(\alpha\)-element abundances with respect to solar in the data of Salasnich et al. (2000) for low metallicity field stars. Combining Equations 4 and 5 we get:

\[ [Z/H] = 0.63[\text{Fe}/\text{H}] \] (6)

We use this equation to estimate \([Z/H]_{\text{SSP}}\) in SSPs with -1 ≤ \([\text{Fe}/\text{H}]_{\text{SSP}} < 0\).

### 4.2 Abundance ratio patterns in galaxies

Given the well known over-abundance of Mg with respect to Fe in elliptical galaxies (e.g. O’Connell 1976; Worthy et al. 1992) one approach to modelling abundance ratios in galaxies would be to use the pattern observed in low-metallicity, solar-neighbourhood stars which show a similar enhancement in Mg. However, while galaxy studies show Mg sensitive indices (Mg1, Mg2 and Mgb) to be enhanced with respect to Fe indices such as Fe5227, Fe5335 (Gorgas et al. 1997; Vazdekis et al. 1997; K00: Trager et al. 2000a; Fig. 1 this paper), many of these studies show indices centred on Ca features (Ca4227, Ca4455) to be un-enhanced (see also Fig. 1). This is not the only difference between local, low-metallicity stars and galaxy populations. C sensitive indices (CN1, CN2 and C4668) are also enhanced in galaxy populations (Vazdekis et al. 1997; K00: Fig. 1 this paper). The differences between abundance patterns in low-metallicity, solar-neighbourhood stars and that in high-metallicity galaxy populations are interesting, but not surprising given the difference in both metallicity and environment. They do, however, render this approach to modelling galaxy abundance ratios unworkable, as many Lick indices are particularly sensitive to C abundance. Here we make the assumption that enhancement in Mg abundance reflects an equal enhancement in the abundances of all \(\alpha\)-elements in Table 7, with the exception of Ca which is assumed to follow Fe peak element abundances. C is also assumed to be enhanced. For galaxy population abundances we have therefore defined two groups; the ‘Fe-like’ elements (Ca, Cr, Fe and Ni) and the ‘enhanced’ elements (C, N, O, Ne, Na, Mg, Al, Si, S and Ar - see Table 7, column 4) with the abundance of each element, in each group, enhanced by the same factor. This is similar to model 4 of T00a, where a similar analysis was carried out (see Section 1.3). The two groups of elements combined represent 99.86\% of the mass of metals present in

---

**Table 7.** Mass of individual elements as a fraction of total metals \((X_i/Z)_\odot\) in the Sun. Data is from Cox (2000). The total mass fraction of metals in the Sun \((Z_\odot)\) is assumed to be 0.0189. Elements enhanced in low-metallicity, solar-neighbourhood stars and in galaxy populations are identified by a +. These are the elements which are included in the enhanced group (E) in each case. The final column indicates (with Y) the elements modelled by TB95.

| Element | \((X_i/Z)_\odot\) | Low \([\text{Fe}/\text{H}]\) stars | Galaxy populations | Modelled by TB95 |
|---------|-----------------|---------------------|---------------------|------------------|
| C       | 0.1619          | +                   | Y                   |                  |
| N       | 0.0583          | +                   | Y                   |                  |
| O       | 0.5054          | +                   | Y                   |                  |
| Ne      | 0.0921          | +                   |                    |                  |
| Na      | 0.0018          | +                   | Y                   |                  |
| Mg      | 0.0343          | +                   | Y                   |                  |
| Al      | 0.0030          | +                   |                    |                  |
| Si      | 0.0370          | +                   | Y                   |                  |
| S       | 0.0193          | +                   |                    |                  |
| Ar      | 0.0054          | +                   |                    |                  |
| Ca      | 0.0034          | +                   | Y                   |                  |
| Cr      | 0.0009          | Y                   |                    |                  |
| Fe      | 0.0719          | Y                   |                    |                  |
| Ni      | 0.0039          |                    |                    |                  |
| Total   | 0.9986          | 0.7017              | 0.9185              | 0.8749           |

© RAS, MNRAS 000, 1
the solar photosphere (Table 5). Using these assumptions we hope to obtain reasonable estimates of age, metallicity and the degree of enhancement in galaxy populations.

For the 3 galaxies with estimated [Fe/H]<0 it is necessary to compensate for the non-solar abundance ratios in the stars used to calibrate the SSPs. We use Equation 3 to calculate the stellar enhancement. This is added to the estimated enhancement (relative to SSP). Finally, Equation 3 and the new value of [E/Fe] are used to obtain [Z/H].

4.3 Non-solar abundance ratio isochrones

Until recently, understanding of the effects of non-solar abundance ratios on stellar populations was poor. However, desire for a better description of the evolutionary tracks of globular clusters led to the development of theoretical isochrones for α-element enhanced populations. Salarís & Weiss (1998) showed that [Z/H] of α-enhanced isochrones is best modelled by solar abundance ratio isochrones of the same [Z/H]. They showed that, at low metallicities ([Z/H]<0), α-enhanced isochrones are well estimated by solar abundance ratio isochrones of the same [Z/H]. However, they also show that at the highest metallicities in their studies ([Z/H]~0–0.5) they no longer holds. Salasnic et al. (2000) modelled α-enhanced isochrones at metallicities similar to those observed in galaxy centres ([Z/H]~0–0.5). They show that, at these metallicities, due to low atomic numbers and high ionisation potentials, α-elements make relatively small contributions to opacity. Consequently, high metallicity, α-enhanced isochrones possess a higher T_eff than solar abundance ratio isochrones of the same [Z/H]. The resultant isochrones are therefore best approximated by solar abundance ratio isochrones of lower [Fe/H]. Fig. 10 of Salasnic et al. (2000) shows that an isochrone for a 10 Gyr old population, with solar metallicity and an α-enhancement of +0.45 (i.e. [Fe/H]=−0.37, Equation 3), is best modelled by a solar abundance ratio isochrone of metallicity [Fe/H]=−0.25. At [Z/H]=0.6 ([Fe/H]=0.23) the effect becomes even more pronounced such that the α-enhanced isochrone straddles the solar abundance ratio isochrones of [Fe/H]=+0.0 and [Fe/H]=+0.3. Consequently, an approximate use of the Salasnic et al. (2000) isochrones is to assume that the addition of α-elements to high metallicity populations results in no change in the isochrones. Equivalently, the position of the isochrones may be considered to depend upon [Fe/H] in the population rather than [Z/H]. This is clearly only an approximation. However, the Salasnic et al. (2000) isochrones suggest that, at high metallicities, it is better than assuming α-enhanced isochrones to be best modelled by solar abundance ratio with the same [Z/H]. Differences in abundance pattern between metal-poor field stars and galaxy populations are not expected to make a significant difference to the behavior of the isochrones as the majority of significant contributors to opacity are amongst the elements assumed to show similar abundance ratios in both populations (O, Ne, Na, Mg, Al, Si, S, Ar and Ni), while no other individual elements, including C and Ca, contribute significantly to opacity.

As SSP indices are based on empirical relations for line-strengths versus T_eff, log g and [Fe/H] in stars, the results of Salasnic et al. (2000) have a significant impact on the interpretation of SSPs. If it is assumed that isochrone positions (e.g. T_eff, log g) are dependent on [Z/H], then SSPs with [Fe/H]_{SSP}= [Z/H]_{POP} (where [Z/H]_{POP} is [Z/H] in the galaxy) provide the best match to enhanced populations. If, on the other hand, it is assumed that isochrone position is dependent on [Fe/H], then [Fe/H]_{SSP}= [Fe/H]_{POP} provides the best match.

4.4 Estimating indices in non-solar abundance ratio stars

TB95 modelled the effects of individually doubling the abundances of 10 key elements in the synthetic spectra of 3 key stellar types (cool giant, turn-off star and cool dwarf), as well as doubling all elements simultaneously. All models were evaluated at fixed T_eff and log g, with values based on a 5 Gyr, solar metallicity isochrone. TB95 assumed no change in the opacity distribution function when doubling individual elements. This approximation is appropriate as individual elements contribute little to the opacity. For the doubling of all elements, TB95 again assumed fixed T_eff and log g, while an opacity distribution function appropriate for twice solar metallicity was used. The results are presented as variations of the 21 Lick indices modelled, in terms of a standard error, caused by doubling each of the 10 elements. The results of doubling all elements are presented in the same manner. Indices modelled by TB95 include 16 present in our study. TB95 did not, however, model Hδ, Hγ, MgI or CaT. One of the elements modelled by TB95 was Ti. The abundance of this element is enhanced in low metallicity stars while it’s atomic mass lies in the range of the Fe-like elements. Consequently, the decision as to whether to include Ti among the enhanced or Fe-like indices is difficult. We have therefore not included this (low abundance) element in our analysis. TB95 is the only published study of this type to date. The effects of changing abundance ratios can be estimated from the TB95 data by defining R_i,X; the fractional change in the ith index in the TB95 arrays (e.g. CN1, CN2, CaI, MgI or CaT) when the abundance of the element X (e.g. C/H, N/H) is doubled. The value of the enhanced index (I_i') can then be estimated from the solar abundance ratio value (I_i) by (following T00a):

$$I_i' = I_i[(1 + R_i,X_1)E_{X_1}/\log^2(1 + R_i,X_2)E_{X_2}/\log^2]$$

Where E_X is the change in abundance of element X, i.e. E_X=Δ[X/H]. Doubling all elements (column 14 of Table 15; Tables 4 to 6) can be handled in the same way i.e. E_X=Δ[Z/H]. It should be noted that the doubling of all elements in TB95 did not model a simple doubling of the stellar metallicity as the TB95 calculations were made assuming fixed photospheric conditions (T_eff, log g).

4.5 Constructing non-solar abundance ratio SSPs

It is possible to estimate the effects of non-solar abundance ratios in populations by modelling SSPs as combinations of the cool giant/turn-off/cool dwarf stellar types of TB95. The luminosity-weighted sum of the factors in Tables 4 to 6 of TB95 allows estimation of R_i,X values for SSPs. These can then be combined, by use of Equation 3, to estimate
the sensitivities of indices in SSPs to enhancement of elements in the chosen abundance ratio pattern. Trager et al. (2000a, 2000b) used a 53/44/3 percentage luminosity-weighted combination of the three stellar types to simulate SSPs. Although not detailed in their paper, the 53/44/3 combination is consistent with values given by W94 for the relative contributions of these stellar types to 3-17 Gyr SSPs. Although not detailed in their paper, the 53/44/3 percentage luminosity-weighted combination of the three stellar types to simulate 

Table 8. Fractional changes \((R_{i,X})\) in index values of 53/44/3 mix when abundances of individual elements (e.g. C/H) are doubled. These data are derived from Tables 4 to 6 of TB95 and are shown here to illustrate the sensitivities to individual elements.

| Index | C | N | O | Mg | Fe | Ca | Na | Si | Cr | Ti | Z |
|-------|---|---|---|----|----|----|----|----|----|----|---|
| CN1   | 1.75 | 0.54 | -0.46 | -0.13 | -0.03 | -0.07 | -0.03 | 0.11 | -0.10 | 0.03 | 0.40 |
| CN2   | 1.09 | 0.35 | -0.29 | -0.10 | -0.03 | -0.05 | -0.02 | 0.12 | -0.05 | 0.03 | 0.29 |
| Ca4427 | -0.32 | -0.05 | 0.10 | 0.00 | 0.05 | 0.31 | -0.01 | 0.00 | -0.01 | 0.00 | 0.24 |
| G4300 | 0.27 | 0.00 | -0.06 | -0.02 | -0.04 | 0.01 | -0.01 | -0.01 | -0.02 | 0.05 | 0.04 |
| Fe4383 | 0.08 | -0.01 | -0.02 | -0.05 | 0.20 | -0.03 | -0.01 | -0.04 | 0.00 | 0.02 | 0.12 |
| Ca4455 | -0.05 | -0.01 | 0.01 | -0.01 | -0.08 | 0.00 | -0.01 | 0.00 | 0.07 | 0.03 | 0.16 |
| Fe4531 | 0.00 | 0.01 | 0.01 | -0.01 | 0.03 | 0.00 | 0.01 | -0.05 | 0.04 | 0.11 | 0.14 |
| C24668 | 1.90 | 0.00 | -0.27 | -0.06 | 0.03 | -0.01 | -0.01 | -0.12 | -0.02 | 0.04 | 0.36 |
| H/β   | 0.03 | 0.00 | -0.00 | -0.04 | 0.00 | 0.00 | 0.01 | 0.01 | -0.04 | 0.00 | -0.00 |
| Fe5015 | -0.00 | 0.00 | -0.00 | -0.10 | 0.09 | 0.01 | 0.01 | 0.03 | -0.02 | 0.08 | 0.14 |
| Mg1   | 0.78 | -0.00 | -0.11 | 0.26 | -0.10 | -0.01 | -0.01 | -0.05 | -0.01 | 0.02 | 0.21 |
| Mg2   | 0.11 | -0.01 | -0.03 | 0.23 | -0.04 | -0.01 | -0.01 | -0.03 | -0.01 | 0.02 | 0.14 |
| Mgβ   | -0.17 | -0.01 | -0.00 | 0.37 | -0.07 | -0.00 | -0.01 | -0.04 | -0.10 | -0.01 | 0.08 |
| Fe5270 | 0.07 | 0.01 | -0.00 | -0.05 | 0.11 | 0.02 | -0.01 | -0.01 | 0.01 | 0.02 | 0.14 |
| Fe5335 | -0.05 | -0.01 | -0.01 | -0.04 | 0.20 | 0.00 | -0.01 | -0.00 | 0.03 | 0.02 | 0.14 |
| Fe5406 | 0.03 | 0.01 | -0.00 | -0.01 | 0.17 | -0.01 | -0.01 | -0.00 | 0.05 | 0.02 | 0.15 |

The next step in constructing non-solar abundance ratio SSPs is to select the SSP whose isochrone best matches that expected in the population under study. This is to the indices of this SSP that the TB95 corrections for non-solar abundance ratios are applied. On the basis of the isochrone models available at the time (Salaris & Weiss 1998; VandenBerg et al. 2000), T00a assumed that the isochrone position was governed by \([Z/H]\), thus an SSP with \([Fe/H]_{SSP}=[Z/H]_{POP}\) was selected. However, if we accept the implications of the subsequent Salasnich et al. (2000) study that isochrone positions are dependent on \([Fe/H]\) rather than \([Z/H]\) - then we must select an SSP with \([Fe/H]_{SSP}=[Fe/H]_{POP}\). Given the uncertainties in this aspect of the modelling we tested three methods for applying the TB95 data to galaxy observations; the method used by T00a, which assumes isochrone shape to be governed by \([Z/H]\), and two methods designed to be consistent with Salasnich et al. (2000) isochrones.

4.5.1 T00a method

Given the assumption that isochrone positions are governed by \([Z/H]\), T00a pointed out that there is only one way to achieve the required element abundance ratio enhancements. This involves the reduction in the abundance of Fe-like elements, while enhanced element abundances are (marginally) increased to maintain \([Z/H]\). Abundances of elements not modelled by TB95 are assumed to remain constant. T00a used Equation 4 to derive:

\[
\Delta[Fe/H] = -Δ[A][E/Fe], \quad Δ[Z/H] = 0
\]

Where \(E\) now refers to all elements enhanced with respect to Fe-like elements in galaxy populations. The data in Table 8, column 4 leads to a value of \(A = 0.942\) for the galaxy abundance ratio pattern using the T00a method. From Equation 4 this method requires a value of \(E_X\) (in Equation 5) given by:

\[
E_X = (1 - A)Δ[E/Fe], \quad X = C, N, O, Mg, Na, Si
\]

While for Fe-like indices:

\[
E_X = -Δ[A][E/Fe], \quad X = Fe, Ca, Cr
\]

As this method directly estimates age, \([Z/H]\) and \([E/Fe]\), Equation 5 is used to calculate \([Fe/H]\). The difficulty with this method is that it is based on the (now apparently false) assumption that, at the high metallicities observed in galaxy centres, isochrone positions are governed by \([Z/H]\). Nonetheless, we have applied the T00a analysis to our data using V99 SSPs.
4.5.2 Methods based on Salasnich isochrones

In light of the Salasnich et al. (2000) isochrones we chose to test two alternative approaches to the application of TB95 data. As these methods are based on the assertion that, at the high metallicities present in the majority of galaxies, isochrone shape is governed by \([\text{Fe}/\text{H}]\), we select the SSP with \([\text{Fe}/\text{H}]_{\text{SSP}} = [\text{Fe}/\text{H}]_{\text{POP}}\). We then ensure that the applied enhancements involve no change in the abundance of Fe-like elements. We identify two ways of achieving these requirements with the TB95 data. The first is simply to increase the abundance of each of the elements thought to be enhanced in galaxy populations, while keeping other element abundances constant; the E+ method. For this method, the values of \(E_X\) used in Equation (11) are given by:

\[
E_X = \Delta[E/Fe], \quad X = C, N, O, Mg, Na, Si
\]

(11)

For other elements and \(Z\) in Table 5 \(E_X = 0\). As this method is specifically designed to reflect high metallicity isochrones, it is not used for comparisons with observations of three low metallicity \((Z/H)<0\) bulges. Instead, for these galaxies, we use the T00a method which is consistent with the low metallicity isochrones of Salaris & Weiss (1998) and VandenBerg et al. (2000). Metallicities and abundance ratios in these three galaxies are transformed to solar scale as described in Section 4.2.

The second approach is to double all elements \((Z; \text{Ta-}\) and \(E/\text{Fe}\) method. This method effectively doubles all elements except those in the Fe-like group. It should again be noted that doubling \(Z\) in the tables of TB95 does not represent a simple doubling of the metallicity in a real population, as the TB95 calculations were carried out at fixed \(T_\text{eff}\) and \(\log g\), i.e. with no movement of the isochrone. However, this is exactly the requirement of this method, as it assumes that addition of elements whose abundances are enhanced in galaxy populations leaves isochrone positions unchanged. For the Fe− method, the values of \(E_X\) used in Equation (12) are given by:

\[
E_X = \Delta[E/Fe], \quad X = Z
\]

(12)

and

\[
E_X = -\Delta[E/Fe], \quad X = \text{Fe, Ca, Cr}
\]

(13)

Again we have used the T00a method for three bulges with \((Z/H)<0\). Despite the differences between T00a and Fe− methods, there are strong similarities, as the fractional changes calculated for both methods are dominated by the reduction in Fe-like elements. However, the assumptions regarding isochrones do result in significant differences between estimated ages, as we shall see in Section 4.5.3.

As both E+ and Fe− methods are based on SSPs of known \([\text{Fe}/\text{H}]\), rather than \([Z/H]\), we must re-write Equation (11) as:

\[
\Delta[Z/H] = A \Delta[E/Fe], \quad \Delta[\text{Fe}/\text{H}] = 0
\]

(14)

The data in Table 5, column 4 yields \(A = 0.941\) for both E+ and Fe− methods. As both these methods directly estimate age, \([\text{Fe}/\text{H}]\) and \([E/\text{Fe}]\), Equation (11) is used to calculate \([Z/H]\).

### Table 9. Comparison of Fe−, E+ and T00a methods for modelling non-solar abundance ratio SSPs. Mean deviations from the best fit enhanced SSP models are given (see text for details).

| Index | N   | Fe− Mean | \(\chi^2\) Mean | E+ Mean | \(\chi^2\) Mean | T00a Mean | \(\chi^2\) |
|-------|-----|---------|-----------------|--------|-----------------|----------|--------|
| HδA   | 32  | 1.1     | 74              | 1.9    | 160             | 2.1      | 179    |
| HδF   | 32  | 1.0     | 81              | 2.2    | 228             | 2.1      | 212    |
| CN1   | 32  | 0.5     | 32              | 0.4    | 25              | 0.1      | 21     |
| CN2   | 32  | 0.7     | 53              | 0.5    | 38              | 0.4      | 38     |
| Ca4227| 32  | -2.8    | 378             | -3.3   | 485             | -1.7     | 194    |
| G4300 | 32  | 0.2     | 52              | 0.1    | 49              | 0.1      | 51     |
| HγA   | 32  | 0.6     | 49              | 1.1    | 79              | 1.0      | 80     |
| HγF   | 32  | 0.3     | 22              | 0.6    | 32              | 0.5      | 29     |
| Fe4383| 32  | 0.6     | 26              | 0.4    | 19              | 0.5      | 21     |
| Ca4455| 32  | -1.0    | 50              | -0.6   | 22              | -1.0     | 44     |
| Fe4531| 32  | 0.2     | 16              | 0.3    | 18              | 0.4      | 20     |
| Ca4668| 32  | -0.3    | 50              | -0.9   | 74              | -0.1     | 39     |
| Hβ    | 32  | -1.4    | 141             | 0.5    | 128             | -1.2     | 139    |
| Fe5015| 32  | -0.6    | 139             | 1.2    | 127             | -0.1     | 109    |
| Mg1   | 32  | -0.1    | 102             | -2.1   | 212             | -0.1     | 97     |
| Mg2   | 32  | 1.2     | 128             | 1.8    | 187             | 1.4      | 152    |
| Mgβ   | 32  | -0.7    | 89              | 6.2    | 1792            | -0.8     | 98     |
| Fe5270| 32  | 0.4     | 67              | -1.4   | 198             | 0.7      | 72     |
| Fe5335| 32  | 0.2     | 55              | -1.6   | 163             | -0.5     | 70     |
| Fe5406| 32  | 1.9     | 165             | -0.3   | 24              | 1.3      | 91     |
| CaT†  | 26  | -3.2    | (507)           | -2.8   | (376)           | -5.5     | (1189) |
| MgF   | 26  | 6.8     | (1374)          | 6.5    | (1287)          | 6.4      | (1229) |

Total \(1769\), \(4060\), \(1756\)

† Not included in \(\chi^2\) minimisations.

4.5.3 Comparison of results from different methods

For all three methods, grids of non-solar abundance ratio SSPs were generated for \([E/\text{Fe}]\) ranging from \(-0.3\) to \(+0.6\) in steps of 0.025 dex. Grid spacings of 0.0125 dex were used for \(0.175\leq \log(\text{age})\leq 1.225\) and 0.025 dex for \(-0.5 \leq [\text{Fe}/\text{H}] \leq 0.75\). Linear extrapolation of the V99 data from \([\text{Fe}/\text{H}]=+0.4\) to \(+0.75\) was necessary due to the high Fe index values of a single S0 galaxy (NGC 2549). Indices not modelled by TB95 (HδA, HδF, HγA and HγF, Mg1 and CaT) were assumed to have no sensitivity to abundance ratio. The best fit (minimum \(\chi^2\)) was found for each galaxy, for each method. For the 6 galaxies observed to have aberrant emission (Section 2.5.3), Hβ was omitted from the minimisation procedure. The Mg1 and CaT indices were also omitted.

Table 9 shows the average deviation (difference between observed and best fit non-solar abundance ratio SSP indices, as a multiple of our observational error) and \(\chi^2\) values for each index, over all observed galaxies, using each of the three methods. Comparison of best fits for E+ and Fe− methods shows the Fe− method to have a significantly lower total \(\chi^2\). We therefore dismiss the E+ method as too unrealistic. The T00a method has marginally lower total \(\chi^2\) than the Fe− method. However, this difference hinges on a single index (Ca4227) whose error is underestimated (Section 4.4.2). If this index is excluded the Fe− method possesses a total \(\chi^2\) value \(\sim 12\%\) lower than the T00a method. Comparison of the results for estimates of luminosity-weighted \log(\text{Age}), [\text{Fe}/\text{H}], [Z/H] and [E/\text{Fe}] from T00a and Fe− methods are shown in Fig. 1. It can be seen that for [\text{Fe}/\text{H}], [Z/H] and
[E/Fe] the results for the two methods are in good agreement. However, the T00a method gives values of log(Age) significantly lower (by $\leq 0.25$ dex) than those derived by the Fe$-$ method. This is a direct result of the difference in assumptions about the effects of non-solar abundance ratios on isochrone positions detailed in Section 4.5. The log(Age) ordering agrees fairly well, to within $\sim 0.1$ dex. Table 10 presents results derived by the Fe$-$ method for all galaxies with $[Z/H] > 0$, to be consistent with the recent Salasnich et al. (2000) isochrones. For galaxies with $[Z/H] < 0$ the T00a method has been applied in line with the low metallicity isochrones of Salaris & Weiss (1998) and VandenBerg et al. (2000).

As a check on our decision to include all Balmer line indices ($H_\beta$, H$\gamma_{AF}$ and H$\delta_{AF}$) in the derivation of the values given in Table 10, estimates were also made with differing combinations of these 5 indices excluded from the fitting procedure. Table 11 details the comparisons of these age/metallicity estimates with those given in Table 10. Also shown are the scatter of the derived values about key correlations identified in Section 4. Offset and scatter in the derived values, when combinations of Balmer lines are excluded from the fitting procedure, are small, with values $< 0.05$ dex in cases when H$\beta$ is not omitted. Indeed, even when all Balmer line indices are omitted, agreement with the values in Table 11 is relatively good. The comparisons presented in Table 11, therefore, show that our results are robust to the choice of Balmer lines to include in the fitting procedure. The results even suggest that, with a large number of indices, reasonable estimates can be made without the Balmer lines. As many studies have been based on combinations of indices such as H$\beta$, Mg$\delta$ and $<$Fe$>$, we have also compared results from this combination in Table 11. We find only modest offsets. However, the scatter is large ($\sim 0.15$ dex). Scatter about the key correlations are also found to be increased in this case. These results emphasise the advantage of the large number of indices included in this study.

The effects on the results of ignoring enhancements are also shown in Table 11. To obtain this comparison, the best fits of our data (all 20 indices) to un-enhanced SSP index values were found. It was assumed that $[Fe/H]_{SSP}$ of the best fit SSP best represents the value of $[Z/H]$ for the population. Comparison of the values of log(Age) and $[Z/H]$, estimated in this way, to the values given in Table 10 (derived by the Fe$-$ method), show that the average difference between values are $< 0.05$ dex in both parameters. Scatter about these differences are similarly $\lesssim 0.05$ dex. We also tested the method employed by some authors (e.g. Gonzalez 1993; Kuntschner & Davies 1998) of combining the Mgb and $<$Fe$>$ indices by taking their geometric mean ($\sqrt{Mgb \times <Fe >}$) to make a new index ($[MgFe]$). Age and metallicity estimates are then made using this index and an age sensitive index; normally H$\beta$. Results of the comparison between log(Age) and $[Z/H]$ values derived using this method, and those derived from the Fe$-$ method, are also shown in Table 11. The average differences between the two sets of values is similar in magnitude to those found above for all 20 indices (without enhancement). However, the scatter in the differences is significantly greater ($\sim 0.15$ dex). This result again emphasises the benefit of including a large number of indices in the fitting procedure.

4.6 Results from blue indices

Values for luminosity-weighted log(Age), $[Fe/H]$, $[Z/H]$ and $[E/Fe]$ derived by the Fe$-$ method detailed above, are given in Table 11. Plots of $[Fe/H]$, $[Z/H]$ and $[E/Fe]$ against log(Age) are shown in Fig. 12. To avoid confusion points with errors $> 0.2$ dex, or limits, (see Table 10) have been omitted from these plots. Confidence contours (1 $\sigma$, allowing for 3 interesting parameters) are plotted on the right of Fig. 12 as quadrilaterals with vertices at extremes projected onto the plane presented. The alignment of the contours in plots of $[Z/H]$ and $[Fe/H]$ against log(Age) clearly show the age/metallicity degeneracy. However, the size of the contours suggests that, for the majority of galaxies, the degeneracy has been broken.

It can be seen in Fig. 12 that the ages of spiral bulges, S0s and Es form a continuous, overlapping sequence of increasing luminosity-weighted age, with bulges ranging from 1.5 to 6 Gyr old, while S0s and Es range from 2 to 7 Gyr and 4 to 13 Gyr respectively. S0s also appear more Fe rich than Es. This is reflected in the strong central Fe features seen in S0s (e.g. Figs 1 and 3).

We fitted lines (by $\chi^2$ minimisation) to both the early and late-type data plotted in Fig. 12. The four galaxies identified by asterisks in Table 11 were omitted from the fitting procedure. Table 12 gives the results of our fits. These have been calculated as the average of the fits obtained when y-axis and x-axis deviations are minimised separately. Errors quoted in Table 12 are half the difference between the values from these two fits. Significant correlations are shown as lines in Fig. 12. We find a strong anti-correlation between $[Fe/H]$ and luminosity-weighted log(Age) in early-type galaxies. However, it was a concern that this may be heavily influenced by the low age, S0 galaxy (NGC 2549). We therefore re-calculated the correlation omitting this galaxy.
Stellar populations in galaxy spheroids.

Figure 12. Luminosity-weighted [Fe/H], [E/Fe] and [Z/H] are plotted against log(Age). Recall E represents the enhanced element group (Table 7, column 4). Data identified with an asterisk in Table 10 are omitted from this plot. Correlations for early-type galaxies are shown as lines. Key: •=bulges, ◊=S0, ○=E, ×=Virgo cluster galaxies. 1 σ confidence contours from our fits are shown on the right. © RAS, MNRAS 000, 1–27

Figure available from http://www.star.uclan.ac.uk/~rnp/research.html
Table 10. Central values of luminosity-weighted log(Age), [Fe/H], [E/Fe] and [Z/H] for the 32 galaxies in our sample. Extent of 1σ confidence contours are given as errors (in brackets). Data points with an asterisk are omitted from Fig. 12.

| Galaxy      | Log(Age) | [Fe/H] | [E/Fe] | [Z/H] |
|------------|----------|--------|--------|------|
| Ellipticals |          |        |        |      |
| NGC2832    | 0.875(0.069) | 0.175(0.050) | 0.300(0.025) | 0.457(0.074) |
| NGC2831    | 0.613(0.069) | 0.075(0.050) | 0.250(0.038) | 0.310(0.085) |
| NGC3226    | 1.025(0.056) | -0.075(0.038) | 0.425(0.025) | 0.325(0.061) |
| NGC3608    | 0.950(0.044) | 0.125(0.025) | 0.275(0.013) | 0.384(0.037) |
| NGC4291    | 1.013(0.050) | 0.000(0.038) | 0.300(0.025) | 0.282(0.061) |
| NGC4365    | 0.988(0.044) | 0.175(0.025) | 0.250(0.013) | 0.410(0.037) |
| NGC4374    | 1.138(0.056) | 0.000(0.038) | 0.300(0.025) | 0.282(0.061) |
| NGC4552    | 0.988(0.044) | 0.150(0.038) | 0.325(0.025) | 0.456(0.061) |
| NGC4636    | 0.913(0.063) | 0.175(0.038) | 0.275(0.025) | 0.434(0.061) |
| NGC4697    | 0.712(0.075) | 0.300(0.025) | 0.200(0.025) | 0.488(0.049) |
| S0s         |          |        |        |      |
| NGC2549    | 0.313(0.113) | 0.600(0.075) | 0.150(0.013) | 0.741(0.087) |
| NGC3607    | 0.750(0.056) | 0.250(0.025) | 0.250(0.025) | 0.485(0.049) |
| NGC4203    | 0.813(0.063) | 0.225(0.038) | 0.300(0.025) | 0.507(0.061) |
| NGC4526    | 0.587(0.038) | 0.325(0.038) | 0.175(0.025) | 0.490(0.061) |
| NGC4626    | 0.688(0.113) | -0.025(0.050) | 0.200(0.038) | 0.460(0.098) |
| NGC4697    | 0.712(0.075) | 0.300(0.025) | 0.200(0.025) | 0.488(0.049) |
| NGC5322    | 0.625(0.056) | 0.250(0.025) | 0.150(0.025) | 0.391(0.049) |
| Bulges      |          |        |        |      |
| NGC2683    | 0.675(0.088) | -0.025(0.050) | 0.200(0.038) | 0.163(0.085) |
| NGC3254    | 0.587(0.056) | 0.250(0.025) | 0.250(0.025) | 0.485(0.049) |
| NGC3301    | 0.338(0.050) | 0.225(0.038) | 0.300(0.025) | 0.507(0.061) |
| NGC3623    | 0.600(0.025) | 0.200(0.025) | 0.200(0.025) | 0.588(0.049) |
| NGC4157    | 0.463(0.213) | -0.449(0.213) | 0.227(0.237) | -0.235(0.436) |
| NGC4312    | 0.313(0.044) | 0.050(0.050) | 0.175(0.038) | 0.215(0.085) |
| NGC5746    | 0.750(0.125) | 0.250(0.050) | 0.175(0.025) | 0.415(0.074) |
| NGC5908    | 0.475(0.069) | 0.350(0.075) | 0.125(0.025) | 0.468(0.099) |
| NGC5987    | 0.500(0.056) | 0.350(0.075) | 0.150(0.025) | 0.491(0.099) |

A slope of 0.672±0.193 was found indicating that this point is not having an excessive influence (cf Table 2). We also detect a strong correlation between [E/Fe] and log(Age) in early-type galaxies. These trends are reflected in the index-index plots of Fig. 8 (Section 3.3.1). The anti-correlation between [Z/H] (calculated by Equation 3) and log(Age) is a natural consequence of the somewhat stronger correlations with [Fe/H] and [E/Fe]. Both the (relatively young) S0s and the 5 Virgo cluster, ellipticals (which are amongst the oldest in our sample) appear to follow the same trends as the early-type sample as a whole. We find that elliptical galaxies tend to be older and more metal-poor than S0 galaxies. No significant correlations were found in late-type galaxies. However, the [E/Fe]−log(Age) plot shows that the data for early and late types form a continuous monotonic locus. This correlation may then be common to both Hubble types.

Luminosity-weighted log(Age), [Fe/H], [Z/H] and [E/Fe] are plotted against log of central velocity dispersion in Fig. 13. Fits to these data (minimising χ²) are given in Table 13. Values given are from fits with y-axis errors only (which dominate in most cases). However, errors given are half the difference between the quoted fit and x-axis error only fit. Correlations with ≥3σ significance are shown as lines in Fig. 13. There is a trend for luminosity-weighted age to increase with central velocity dispersion in our early-type galaxy sample. This trend is also consistent with the late-type data. However, we find no significance in the correlation of age versus velocity dispersion in late types (Table 13). The trend of increasing [E/Fe] with velocity dispersion for early-type galaxies suggested by Fig. 13 also has very low significance particularly when compared to the strength of the correlation of [E/Fe] with log(Age) in early-types. Our data therefore suggest that, in the early-type galaxies in our sample, the stronger correlations of both [E/Fe] and velocity dispersion with log(Age) are the cause of the apparent trend of [E/Fe] with velocity dispersion. Bulges, on the other hand, while showing no significant correlations with age, show strong correlations of [Fe/H] and [Z/H] with veloc-
Stellar populations in galaxy spheroids.

4.7 Results from red indices

Estimation of age and metallicity from the NIR data is difficult, as the only age sensitive indices are in the blue wavelength range. We must therefore combine indices from populations that may differ, e.g. Hβ – CaT in Fig. 14. The NIR indices were also not modelled by TB95, so abundance ratio effects can not be estimated. We have nonetheless derived log(Age) and [Fe/H] estimates from the calcium triplet in Fig. 14. The MgI index was excluded as, contrary to expectation, the positions of values of this index with respect to the SSP grids imply lower metallicities than do values of Hα.

Thus our results suggest that while the principle parameter controlling abundances and abundance ratios in early-type galaxies is age, in bulges it is central velocity dispersion.

Table 11. Comparison of results of age/metallicity estimates omitting differing groupings of indices. Average offset and RMS scatter about offset (in brackets) are given for each of the derived parameters. Also shown (where appropriate) are the scatters about the most significant correlations detected (see Tables 2 and 13). N. B. 6 galaxies with aberrant emission (Section 2.5.2) were excluded from this analysis.

Table 12. Correlations with log(Age). The number of galaxies fitted (N) and best fit slopes and intercepts (errors in brackets) are given. Also shown are the (unweighted) correlation coefficient (r) and $\chi^2$ values.

Table 13. Correlations with log(σ0). The number of galaxies fitted (N) and best fit slopes and intercepts (errors in brackets) are given. Also shown are the (unweighted) correlation coefficient (r) and $\chi^2$ values.
observe that these estimates are, qualitatively, in line with our results from blue indices, we make no further attempt at interpretation of these NIR data.

5 COMPARISON WITH COMPOSITE MODELS

In this section we generate models with composite SFHs and compare the predictions with our observations in an effort to understand galaxy histories. The composite model code was first described in Sansom & Proctor (1998), where we assumed solar abundance ratios. Here we extend the models to incorporate non-solar abundance ratios. Fourteen elements (listed in Table 7) are followed self-consistently. These cover most of the heavy element mass loss from SNII, SNIa and intermediate mass stars. Our models can allow for inflow of gas (enriched to the current level of the ISM or of primordial composition) into a single zone. The lowest metallicity modelled by W94 is for \( Z = Z_\odot/100 \). Therefore we start the models with \( 10^6 M_\odot \) of gas containing this small amount of metals (\( Z = 2 \times 10^{-4} \) by mass fraction), assuming solar abundance ratios within this initial metallicity. Low metallicity stars in our Galaxy have an increasing excess of \( \alpha \)-element abundances (as described by Equation 5). We allow for this in the composite models via the denominator in the exponent of Equation 7 which is varied by up to a factor of 3 for \( \alpha \)-elements in the SSP stars. Allowance for \( \alpha \)-enhanced SSPs at low metallicity did not produce large effects in the predicted line-strengths in galaxies, which are dominated by higher metallicity stars. We use V99 SSPs and the T00a method to allow for non-solar abundance ratios in the composite models, calling on predictions of line-strength changes modelled by TB95. The rate of SNIa is a parameter in our models. In the current models we use a rate of \( 3.8 \times 10^{-5} \text{ SNIa Gyr}^{-1} M_\odot^{-1} \). This is approximately that inferred in our Galaxy (Timmes, Woosley & Weaver 1995) which has an uncertainty of about a factor of two. Larger SNIa rates will produce stronger iron sensitive lines. We assume a Schmidt law with index of one for the star formation rate (SFR=\( C \times \text{gas density} \)), and a Salpeter initial mass function (IMF).

5.1 Primordial Collapse

For the primordial model we started with \( C=4.0 \text{ Gyr}^{-1} \), and a rapid, enriched inflow rate of \( 10^7 M_\odot \text{ Gyr}^{-1} \), going down to a more steady rate of \( C=0.2 \text{ Gyr}^{-1} \) and zero inflow after 0.4 Gyr. Star formation is followed up to 1.5 Gyr ago. In a previous paper (Proctor et al. 2000) we showed that (assuming solar abundance ratios) rapid collapse and star formation in a primordial gas cloud does not produce strong enough metal absorption lines when compared with observations of early-type galaxies and spiral bulges. We confirm this result here with our non-solar ratio models. This is shown in Figs 8 and 9 where the thickest, short line indicates our predictions for such a primordial collapse model, for times ranging from 10 to 17 Gyr after the start of star formation. These primordial models include a higher rate of \( 7.6 \times 10^{-5} \text{ SNIa Gyr}^{-1} M_\odot^{-1} \). The predicted metal line-strengths are too low to account for the observed line-strengths. Thus the conventional picture of spheroid formation through rapid,
early collapse, followed by passive evolution, is ruled out by the observed strong lines. A similar conclusion was found for nearby spheroids by Worthey, Dorman & Jones (1996) and is analogous to the well known G-dwarf problem in our own Galaxy, where there are insufficient low metallicity stars compared to predictions of closed box models with stars generated with a Salpeter IMF.

### 5.2 Models with extended inflow

In Proctor et al. (2000) we found that observations of spiral bulges could be explained with extended inflow models, with gas inflow over several Gyr enriched to the current level of the ISM. This assumed solar abundance ratios. Allowing for non-solar ratios we find that such models tend to under-produce Fe sensitive features. This is because the early feedback from SNII is extremely Mg rich compared to Fe (several 10s of times solar ratios - see the SNII models of Woosley and Weaver 1995). To produce models which can simultaneously explain Fe and Mg sensitive spectral features a delayed burst of star formation seems to be needed to allow the ISM to first become enriched with Fe peak products from SNII. Such models are preliminarily explored in the next section.

### 5.3 Merger Models

With a delayed burst of star formation we begin to be able to produce models which can simultaneously explain the strengths of several spectral features. A full exploration of SFH parameter space is beyond the scope of this paper and will be the subject of future work. However, in Figs 6 and 9 we illustrate predictions of line-strengths for merger models with an associated burst of star formation several Gyr after the start of the SFH (delayed burst models - medium thick short line). Present day predictions (at 17 Gyr) for models with a burst ranging from 3 Gyr to 13 Gyr delay are shown. The parameters used to describe the composite merger model shown here are C=4.0 Gyr$^{-1}$ initially, with low, enriched inflow rate of $1 \times 10^4$ M$_\odot$ Gyr$^{-1}$, increasing to $10^7$ M$_\odot$ Gyr$^{-1}$ during the star-burst. This rapid star-burst lasts for 0.4 Gyr after which the inflow is set to zero, so the remaining gas is rapidly used up in star formation. We see that these examples reach the regions populated by early-type galaxies, for most Fe and Mg sensitive line-strengths.

An exception is Fe5406 (but see Fig. 1 and Section 3.2.1). Interestingly, we find that the models tend to under-predict carbon sensitive features (--CN>, C$_2$4668). This may indicate that all the sources of carbon enrichment have not been accounted for in our models. Indeed, carbon enhancements in some very low metallicity stars in our own Galaxy are hard to explain (Norris, Ryan & Beers 1997) and dredge-up models for the contributions of carbon from intermediate mass stars are uncertain. Stars produced in the delayed burst have lower overall [E/Fe] than the earlier star formation, since SNII have had time to accumulate Fe in the ISM.

Thus these model predictions tend to support the idea of ellipticals forming by mergers of galaxies, with enriched gas inflow and enhanced star formation during the merger.

There are few predictions of detailed galaxy properties from hierarchical merger models. However, Kauffmann (1996) used a semi-analytic model of galaxy formation in both field and cluster environments to make testable predictions for the ages of various Hubble types in differing environments. In these models early-type galaxies form by the merger of two, roughly equal mass, progenitor galaxies, while spiral galaxies form by accretion of a disc onto a pre-formed elliptical galaxy. Kauffmann (1996) found luminosity-weighted ages for early types between 8 and 12.5 Gyr, in good agreement with our findings. Kauffmann (1996) also found cluster ellipticals to be $\sim$ 4 Gyr older than ellipticals in low density environments. This is again consistent with our findings, as the five Virgo cluster ellipticals are amongst the oldest in our sample. The positive correlation between age and velocity dispersion in elliptical galaxies is qualitatively consistent with the relationship proposed by Forbes & Ponman (1999) for $\sigma$ versus merger redshift. Consequently, while both primordial collapse and extended inflow models fail to reproduce the main features of our data without recourse to additional physics (a biased IMF or Population III stars), the hierarchical model of early-type galaxy formation by merger agrees well.

For the bulges of spirals, Kauffmann (1996) predicts ages significantly lower than those in ellipticals, in agreement with our findings. However, Kauffmann (1996) also predicts a correlation between bulge ages and the luminosity of their discs. Inspecting the distribution of Hubble types (indicated by solid symbol sizes in Figs 12 and 13) we find no evidence of a trend in age with spiral Hubble type. Therefore, this prediction is at odds with our findings. Kauffmann (1996) does point out, however, that the correlation may be hidden if there is significant inflow of gas from the disc, perhaps due to the formation of bars. Many of the bulges in our sample show strong evidence for kinematic sub-structure and on-going star formation (i.e. emission). Our bulges also possess [Mg/Fe] values too low to have been formed in a single primordial burst (see Fig. 9). These observations, and the absence of a correlation between age and Hubble type, support the idea that disc inflow must play an important role in the star formation histories in bulges.

### 6 CONCLUSIONS

We have derived luminosity-weighted log(Age), iron abundance, abundance ratios and metallicity (log(Age), [Fe/H], [E/Fe] and [Z/H] respectively) in the centres of 32 galaxies, ranging in Hubble type from E to Sbc. We used 20 indices for which V99 modelled SSPs, plus their sensitivities to individual elements as tabulated in TB95, to model the effects of non-solar abundance ratios in these galaxies. We find that ignoring such enhancements leads to reasonably accurate age and metallicity estimates, but that using many fewer indices (e.g. 3) leads to larger errors in derived values (see Table 1). By using many indices and modelling abundance ratios we are able to probe correlations between derived parameters much more accurately.

Our sample of early-type galaxies spans a wide range of ages (2 to 13 Gyr) with the 5 Virgo cluster ellipticals amongst the oldest. These E/S0 galaxies show correlations of both velocity dispersion ($\sigma$) and [E/Fe] with age, while [Fe/H] and [Z/H] both show anti-correlations with age. [Fe/H], [Z/H] and [E/Fe] show no significant correlation with
σ over the small range in σ covered by our E/S0 galaxies. These results are at odds with the predictions of primordial collapse models, which predict uniformly-old, early-type galaxies and increasing [Z/H] with σ. However, the correlations suggest that the main parameter controlling the metal content of our bright, early-type galaxies is age. Our results are consistent with the predictions of hierarchical merger models of galaxy formation (e.g. Kauffmann 1996) which predict the observed E, S0 (and bulge) age sequence. The observed correlation between age and velocity dispersion is in qualitative agreement with the relationship proposed by Forbes & Ponman (1999) for merger remnants. The strong correlation of [E/Fe] with log(Age) and anti-correlation of [Fe/H] with log(Age) are qualitatively reproduced by our merger models of galaxy formation (Section 3 and Fig. 4). In our models these trends are the result of the shortening interval (in which SNIa can produce Fe) between the commencement of star formation and the final merger event. Thus we find several observational results which agree with the predictions of merger models for early-type galaxies.

The correlations outlined above in turn call for careful interpretation of Lick index versus σ correlations. For instance, high Mgσ may in fact, reflect an increasing age and enhancement ([E/Fe]) with velocity dispersion (indicating mass) not, as is usually assumed, a metallicity-mass relation (see also related comments in the conclusion of Trager et al. 2000b).

The anti-correlations of [Fe/H] and of [Z/H] with log(Age) could also have implications for the interpretation of colour-magnitude diagrams of these objects. This can be illustrated by the extremely narrow range of optical colours (∆(U-V) ~ 0.08 for SSPs ranging in age from 3 to 17 Gyr) predicted for SSPs that follow the age-[Fe/H] anti-correlation shown by our early-type galaxy sample. Colour-magnitude correlations have also been interpreted as metallicity-mass relations on the basis of monolithic collapse models for the formation of elliptical galaxies (e.g. Kodama et al. 1998). Our results from line-strengths suggest that merger models must be considered before this interpretation of the observed correlations can be relied on.

We detect significant differences between early-type galaxies and spiral bulges. Es, S0s and bulges in our sample form a continuous overlapping sequence of decreasing luminosity-weighted age, with bulges typically 2 Gyr younger than S0s, and 5 Gyr younger than Es. This is again in line with the predictions of Kauffmann (1996), for galaxies in low density environments. We find no significant correlation with age in bulges. However, correlations of [Fe/H] and [Z/H] with σ are strong. Thus the main parameter controlling the metal content of bulges is σ. Kauffmann (1996) predicts a correlation between bulge-to-disc ratio and age in spiral galaxies. We detect no such correlation in our data. However, Kauffmann (1996) also points out that if significant inflow from the disc occurs, after a merger, this correlation may be lost. The relatively low values of [E/Fe] (∼ 0.15) in bulges and the strong correlations of metals with σ are consistent with such a model of bulge formation. The correlations of [Fe/H] and [Z/H] with σ in spiral bulges means that we interpret the correlations of Lick indices with σ found in this work (Figs 3 and 4 and Table 3) as a metallicity-mass relation, in contrast to our finding for early-type galaxies.

In conclusion, we have shown that primordial collapse models of galaxy formation are unable to reproduce the line-strengths observed in the spheroids of galaxies, while merger models can. Derived ages and correlations between derived parameters differ significantly between early and late-type galaxies, suggesting that, at least at some point in their evolution, the star formation histories in these objects must have differed significantly. We therefore contend that the similarities in morphology and photometric properties in these objects, noted in the introduction, are the result of the various degeneracies at work rather than indicating similar formation processes.

ACKNOWLEDGEMENTS

The authors acknowledge the data analysis facilities provided by the Starlink Project which is run by CCLRC on behalf of PPARC. In addition, the IRAF software package was used. IRAF is distributed by the National Optical Astronomy Observatories, which is operated by AURA, Inc., under cooperative agreement with the National Science Foundation. This work is based on observations made with the William Herschell Telescope, operated on the island of La Palma, by the Isaac Newton Group in the Spanish Observatorio del Instituto de Astrofísica, Roque de los Muchachos de Canarias. Travel funds were provided by PPARC and the University of Central Lancashire. Thanks go to our colleagues G. Bromage and C. Haines for comments on this paper prior to submission. Thanks also to the referee, Scott Trager, for careful reading and improvement of this paper.

REFERENCES

Baldick M., Peletier R.F., 1994, AJ, 107, 135
Barnes J.E., Hernquist L., 1996, ApJ, 471, 115
Bender R., Burstein D., Faber S.M., 1993, ApJ, 411, 153
Bender R., Saglia R.P., Ziegler B., Belloni P., Greggio L., Hopp U., Bruzual G., 1998, ApJ, 493, 529
Bernardi M., Renzini A., da Costa L.N., Wegner G., Alonso M.V., Pellegrini P.S., Rité C., Willmer C.N.A., 1998, ApJ, 508, L143
Bertelli G., Bressan A., Chiosi C., Fagotto F., Nasi E., 1994, A&AS, 106, 275
Carlborg R.G., 1984, ApJ, 286, 403
Ciotti L., D’Ercole A., Pellegrini S., Renzini A., 1991, ApJ, 376, 380
Concannon K.D., Rose J.A., Caldwell N., 2000, ApJ, 536, L19
Cox A.N., 2000, Allen’s Astrophysical Quantities 4th ed. p.290, AIP Press, Springer-Verlag, New York
Davies R.L., Sadler E.M., Peletier R.F., 1993, MNRAS, 262, 650
de Vaucouleurs G., de Vaucouleurs A., Corwin H.G., Buta R.J., Paturel G., Fouqué P., 1991, Third Reference Catalogue of Bright Galaxies. Springer-Verlag, New York (RC3)
Diaz A.I., Terlevich E., Terlevich R., 1989, MNRAS, 239, 325
Edvardsen B., Andersen J., Gustafsson B., Lambert D.L., Nissen P.E., Tomkin J., 1993, A&AT, 275, 101
Faber S.M., 1973, ApJ, 179, 731
Faber S.M., Friel E.D., Burstein D., Gaskell C.M., 1985, ApJS, 57, 711
Feitzinger S., Gustafsson B., 1998, A&AS, 129, 237
Fisher D., Franx M., Illingworth G., 1996, ApJ, 459, 110
Forbes D.A., Ponman T.J., 1999, MNRAS, 309, 623
González J.J., 1993, PhD Thesis, Univ. California.
Stellar populations in galaxy spheroids.

Gorgas J., Faber S.M., Burstein D., González J.J., Courteau S., Prosser C. 1993, ApJS, 86, 153
Gorgas J., Pedraz S., Guzmán R., Cardiel N., González J.J., 1997, ApJ, 481, L19
Goudfrooij P., Emsellem E., 1996, A&A, 306, L45
Goudfrooij P., Gorgas J., Jablonka P., 1999, Ap&SS, 269, 109
Gustafsson B., Kjærgaard P., Andersen S., 1974, A&A, 34, 99
Greggio L., 1997, MNRAS, 285,151
Hansen L., Kjærgaard P., 1971, A&A 15,123
Henry R.B.C., Worthey G., 1999, PASP, 111, 919
Idiart T., Thévenin F., 2000, ApJ, 541, 2071
Idiart T., de Freitas Pacheco J.A., Costa R.D.D., 1996, AJ, 112, 2541
Jablonka P., Martin P., Aromoto N., 1996, AJ, 112, 1415
Jørgensen I., 1997, MNRAS, 288, 161
Jørgensen I., 1999, MNRAS, 306, 607
Kauffmann G., 1996, MNRAS, 281, 487
Kauffmann G., White S.D.M., Guiderdoni B., 1993, MNRAS, 264, 201
Khosroshahi H.G., Wadadekar Y., Kembhavi A., 2000, ApJ, 533, 162
Kodama T., Arimoto N., Barger A.J., Aragón-Salamanca A., 1998, A&A, 334, 99
Kuntschner H., 2000, MNRAS, 315, 184 (K00)
Kuntschner H., Davies R.L., 1998, MNRAS, 295, L29
Kuntschner H., Lucey J.R., Smith R.J., Hudson M.J., Davies R.L., 2001, MNRAS, 323, 615
Lebreton Y., Perrin M.-N., Cayrel R., Baglin A., Fernandes J., 1999, A&A, 350, 587
Norris J.E., Ryan S.G., Beers T.C., 1997, ApJ 488, 350
O’Connell R.W., 1976, ApJ, 206, 370
Osterbrock D.E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University Science Books, Mill Valley
Prugniel P., Simien F., 1997, Web site, ftp://ftp-obs.univ-lyon1.fr/pub/galaxies/data/kinematics/sigma97.txt
Proctor R.N., Sansom A.E., Reid I.N., 2000, MNRAS, 311, 37
Ryan S.G., Norris J.E., Bessell M.S., 1991, AJ, 102, 303
Sansom A.E., Proctor R.N., 1998, MNRAS, 297, 953
Salaris M., Girardi L., Weiss A., Chiosi C., 2000, A&A, 361, 1023
Salaris M., Weiss A., 1998, A&A, 335, 943
Tantalo R., Chiosi C., Bressan A., 1998, A&A, 333, 419
Timmes F.X., Woosley S.E., Weaver T.A., 1995, ApJS, 98, 617
Trager S.C., 1998, PhD Thesis, University of California
Trager S.C., Worthey G., Faber S.M., Burstein D., González J.J., 1998, ApJS 116, 1
Trager S.C., Faber S.M., Worthey G., Gonzalez J.J., 2000a, AJ, 119, 1645 (T00a)
Trager S.C., Faber S.M., Worthey G., Gonzalez J.J., 2000b, AJ, 120, 165
Tripicco M.J., Bell R.A., 1995, AJ, 110, 3035 (TB95)
Tully R.B., 1988, Nearby Galaxies Catalogue, Camb. Univ. Press, Cambridge
VandenBerg D.A., Swenson F.J., Rogers F.J., Iglesias C.A., Alexander D.R., 2000, ApJ, 532, 439
Vazdekis A., 1999a, ApJ, 513, 224
Vazdekis A., 1999b, http://www.iac.es/galeria/vazdekis/collision.html (V99)
Vazdekis A., Casuso E., Peletier R. F., Beckman J. E., 1996, ApJS, 106, 307 (V96)
Vazdekis A., Peletier R. F., Beckman J. E., Casuso E., 1997, ApJS, 111, 203
Woosley S.E., Weaver T.A., 1995, ApJS, 95, 107 (W94)
Worthey G., 1998, PASP, 110, 888
Worthey G., Ottaviani D.L., 1997, ApJS, 111, 377
Worthey G., Faber S.M., González J.J., 1992, ApJ, 398, 69

© RAS, MNRAS 000, 27
**APPENDIX A: VELOCITY DISPERSION CORRECTIONS**

A1 Characterisation of stellar indices with spectral broadening

For accurate calibration, indices in galaxy spectra require correction to account for the effects of internal stellar velocity dispersion. Consequently, the indices of a sub-sample of Lick calibration stars were measured after convolving their spectra with Gaussians of a range of widths. 15 stars (spectral types G8 to K3), which best matched the spectral energy distributions of the galaxies, were used for the blue indices. In the red, all 24 Lick calibration stars were found to match galaxy spectra well. For each index a correction factor was calculated at each value of broadening. For most line indices, the correction factor was calculated as the ratio \( C_i \) of the index value at the Lick resolution to that at each value of broadening, i.e:

\[
C_i = \frac{I_L}{I_{Meas}} \quad (A1)
\]

Where \( I_L \) is the index value at the calibration resolution and \( I_{Meas} \) is the index value in the broadened spectrum.

For molecular band indices (CN1, CN2, Mg\(_2\) and Mg\(_1\)) and indices with ranges spanning zero (H\(\delta\) and H\(\gamma\) indices), correction factors were calculated as the difference between the measured index and that at the calibration resolution at each value of broadening, i.e:

\[
C_i = I_L - I_{Meas} \quad (A2)
\]

The appropriate correction factor was calculated for each index, at each value of broadening, by averaging values from the stellar sub-samples. A polynomial fit of order 3 was found such that:

\[
C_i = x_0 + x_1 \sigma_C + x_2 \sigma_C^2 + x_3 \sigma_C^3. \quad (A3)
\]

Where \( \sigma_C \) is the width of the Gaussian (in km s\(^{-1}\)) convolved with the stellar spectrum at \( \sigma_L \). Behaviours of the indices of the stellar sample with broadening above the Lick resolution are shown in Fig. [A1] as lines. These are in good agreement with the behaviours of indices measured by previous authors (e.g. Kuntschner 2000).

The correction factors are dependent on the *excess* broadening of the galaxy with respect to \( \sigma_L \) the value \( \sigma_C = \sigma_V \) is entered into the polynomials in Table [A1] to obtain the correction factor \( C_i \).

**Technique 1.**

The first technique (which is generally used by other authors) is to broaden all galaxy spectra by a Gaussian of a width \( \sigma_B \), given by Equation [A4], prior to measurement of indices. The resultant spectrum of a galaxy with velocity dispersion \( \sigma_V \), then has a total broadening \( (\sigma_C) \) given by:

\[
\sigma_C^2 = \sigma_V^2 + \sigma_B^2
\]

\[
= \sigma_V^2 + \sigma_B^2 \quad (A4)
\]

As the correction factors are dependent on the excess broadening of the galaxy with respect to \( \sigma_L \) the value \( \sigma_C = \sigma_V \) is entered into the polynomials in Table [A1] to obtain the correction factor \( C_i \).

**Technique 2.**

In the second technique, if the total broadening of the galaxy \( (\sigma_C^2+\sigma_V^2)^{1/2} \) is less than the target calibration resolution \( \sigma_L \), the galaxy spectrum is broadened up to the Lick resolution by convolution with a Gaussian of width \( \sigma_B \) given by:

\[
\sigma_B^2 = \sigma_L^2 - \sigma_C^2 - \sigma_V^2 \quad (A5)
\]

Consequently, as the spectrum has been broadened to the calibration resolution, the final index values can be measured directly from the broadened galaxy spectrum with no need for correction.

If, on the other hand, the total galaxy broadening is greater than \( \sigma_L \), then the spectra are left un-broadened and \( \sigma_C = (\sigma_V^2+\sigma_C^2)^{1/2} \) is substituted into the polynomials to calculate the appropriate value of \( C_i \).

It should be noted that, for some indices (e.g. H\(\delta\)), the second technique involves no use of the polynomials as all galaxies in our sample have \( \sigma_L^2 > \sigma_L^2 + \sigma_V^2 \). The two techniques agree well over our whole velocity dispersion range. This is true for all indices measured. Comparisons of the results from the two techniques can be found in Proctor (PhD thesis - in preparation). In this paper the second technique is used since it involves smaller corrections, thus minimising the effects of systematic differences in the behaviour of the stellar and galaxy spectra with broadening.

A2 Application to galaxies

To gain confidence in these polynomials, galaxy spectra were also broadened by convolution with Gaussians of a range of widths. The behaviour of the galaxies was then compared to that of the stellar sub-sample (Fig. [A1]). For most indices the galaxy data lie within the scatter of the stellar data. However, for a few indices, large scatter and/or small systematic differences in the behaviour of galaxies compared to the stellar data were observed. These indices (most noticeably H\(\delta\), Ca4227 and Ca4455) are among those affected by the poor removal of the dichroic response. The scatter in the stellar data has been allowed for in our errors as described in Sections 2.4.3. However, to test the possible impact of differences in behaviour between our samples of stars and galaxies, two velocity dispersion correction techniques were tested.

Technique 1.

The first technique (which is generally used by other authors) is to broaden all galaxy spectra by a Gaussian of a width \( \sigma_B \), given by Equation [A4], prior to measurement of indices. The resultant spectrum of a galaxy with velocity dispersion \( \sigma_V \), then has a total broadening \( (\sigma_C) \) given by:

\[
\sigma_C^2 = \sigma_V^2 + \sigma_B^2
\]

\[
= \sigma_V^2 + \sigma_B^2 \quad (A4)
\]

As the correction factors are dependent on the *excess* broadening of the galaxy with respect to \( \sigma_L \) the value \( \sigma_C = \sigma_V \) is entered into the polynomials in Table [A1] to obtain the correction factor \( C_i \).

**Technique 2.**

In the second technique, if the total broadening of the galaxy \( (\sigma_C^2+\sigma_V^2)^{1/2} \) is less than the target calibration resolution \( \sigma_L \), the galaxy spectrum is broadened up to the Lick resolution by convolution with a Gaussian of width \( \sigma_B \) given by:

\[
\sigma_B^2 = \sigma_L^2 - \sigma_C^2 - \sigma_V^2 \quad (A5)
\]

Consequently, as the spectrum has been broadened to the calibration resolution, the final index values can be measured directly from the broadened galaxy spectrum with no need for correction.

If, on the other hand, the total galaxy broadening is greater than \( \sigma_L \), then the spectra are left un-broadened and \( \sigma_C = (\sigma_V^2+\sigma_C^2)^{1/2} \) is substituted into the polynomials to calculate the appropriate value of \( C_i \).

It should be noted that, for some indices (e.g. H\(\delta\)), the second technique involves no use of the polynomials as all galaxies in our sample have \( \sigma_L^2 > \sigma_L^2 + \sigma_V^2 \). The two techniques agree well over our whole velocity dispersion range. This is true for all indices measured. Comparisons of the results from the two techniques can be found in Proctor (PhD thesis - in preparation). In this paper the second technique is used since it involves smaller corrections, thus minimising the effects of systematic differences in the behaviour of the stellar and galaxy spectra with broadening.
Figure A1. Behaviour of indices with broadening. Stellar correlations are shown as lines. Galaxy data are shown as points. Only galaxies with total observed broadening below $\sigma_L$ are plotted.
Table A1. Polynomial coefficients relating the velocity dispersion correction factor \( C_i \); see text) to the correction velocity \( \sigma_C \).

| Index | (A)dditive or (M)ultiplicative | Polynomial Coefficients \( (C_i \text{ versus } \sigma_C \text{ in } \text{km s}^{-1}) \) | Uncertainty in correction at \( \sigma_C=200 \text{ km s}^{-1} \) |
|-------|-------------------------------|---------------------------------|-----------------------------------------------|
|       | \( x_0 \) | \( x_1 \) (x \( 10^{-3} \)) | \( x_2 \) (x \( 10^{-6} \)) | \( x_3 \) (x \( 10^{-9} \)) |
| H\( \delta \) A | A | 0.0 | -0.058 | -5.195 | 3.894 | 0.029A |
| H\( \delta \) F | A | 0.0 | -0.005 | 0.704 | -0.077 | 0.019A |
| CN1 | A | 0.0 | 0.002 | 0.097 | -0.081 | 0.001mag |
| CN2 | A | 0.0 | 0.003 | 0.225 | -0.201 | 0.001mag |
| Ca4227 | M | 1.0 | 0.231 | 1.246 | 13.400 | 3.3% |
| G4300 | M | 1.0 | 0.021 | 0.480 | 0.133 | 0.4% |
| H\( \gamma \) A | A | 0.0 | 0.006 | 1.181 | -8.883 | 0.053A |
| H\( \gamma \) F | A | 0.0 | -0.079 | -2.751 | 4.096 | 0.054A |
| Fe4383 | M | 1.0 | 0.037 | 2.334 | -0.811 | 1.7% |
| Ca4455 | M | 1.0 | 0.086 | 3.941 | 1.424 | 4.1% |
| Fe4531 | M | 1.0 | 0.033 | 1.608 | 0.628 | 1.4% |
| C\( \beta \) 4668 | M | 1.0 | -0.001 | 0.851 | 0.284 | 0.5% |
| H\( \beta \) | M | 1.0 | 0.031 | 0.213 | 0.384 | 1.0% |
| Fe5015 | M | 1.0 | 0.040 | 3.025 | -2.443 | 1.1% |
| Mg\( k \) 1 | A | 0.0 | 0.002 | 0.067 | -0.073 | 0.001mag |
| Mg\( k \) 2 | A | 0.0 | 0.004 | 0.035 | -0.008 | 0.001mag |
| Mg\( b \) | M | 1.0 | -0.003 | 2.129 | 0.307 | 0.4% |
| Fe5270 | M | 1.0 | 0.024 | 3.027 | -2.352 | 0.5% |
| Fe5335 | M | 1.0 | 0.059 | 4.748 | 1.522 | 0.6% |
| Fe5406 | M | 1.0 | 0.050 | 3.927 | 3.565 | 1.2% |
| Ca1 | M | 1.0 | -0.053 | 1.892 | 2.526 | 0.1% |
| Ca2 | M | 1.0 | 0.004 | 1.248 | 2.339 | 0.1% |
| Ca3 | M | 1.0 | 0.028 | 1.592 | 0.909 | 0.1% |
| Mg\( I \) | M | 1.0 | -0.082 | 11.286 | -1.443 | 0.1% |