Is there an association between Anti-Citrullinated Peptide Antibodies and the Severity of Rheumatoid Arthritis Parameters in Algerian Patients?

Siheme OUALI1,2*, Khalida ZEMRI1, Feriel SELLAM4, Noria HARIR1,2, Zahira BENAISSA1, Sid Tadj HEBRI3, Ouassini BENSABER4, Doniazaad ELMEHADJI1, Zouaoui NADJI3, Karima KAROUBI5

1. Department of Biology, Djillali Liabes University of Sidi Bel Abbes, (Ex ITMA), Algeria
2. Laboratory of Molecular Microbiology, Proteomics and Health, Algeria
3. Department of Internal Medicine, CHU Sidi Bel Abbes, Algeria
4. Department of Functional Rehabilitation, CHU Sidi Bel Abbes, Algeria
5. Department of internal medicine, EPH Beni-af- AinTemouchent, Algeria
6. National Research Center of Biotechnology, CRBT, Algeria

ABSTRACT

Objectives: The aim of this study was to demonstrate the relationships between anti-citrullinated peptide/protein antibodies status and clinical characteristics, disease severity, radiological damages and laboratory assessment in Algerian patients with Rheumatoid arthritis, as well as their importance like a predictive factor for the diagnosis of Rheumatoid arthritis (RA).

Methods: 281 patients diagnosed with RA according to ACR 1987 criteria in the internal medicine and Functional Rehabilitation departments (the University Hospital of Sidi Bel Abbes) were enrolled in the study based on medical records including age, gender, disease duration, disease activity score (DAS28), joint damages, laboratory tests and treatment. All data were processed and analyzed via SPSS 22.0.

Results: 86.5% of patients were females with a mean age and disease duration of respectively 52.665±12.3477, 4.19±4.050. Patients with Anti-CCP positive (79.7%) presented a high disease activity (p<0.0001), a long disease duration (p=0.016) and an erosion damages (p<0.0001). We did not found any significant relation between gender, hands damages and CRP. A logistic regression showed that the presence of Anti-CCP was associated with Erosion, disease activity, age and RF presence.

Conclusion: There was a strong relation between Anti-CCP antibodies status and the development of RA in Algerian patients. It could be considered as a useful predictor of disease severity.

Keywords: Rheumatoid Arthritis, Algerian Patients, Anti-Citrullinated Peptide/Protein Antibodies, Disease activity, Erosion, Severity.

Article Info: Received 11 April 2020; Review Completed 14 June 2020; Accepted 22 June 2020; Available online 15 July 2020

Cite this article as:

Ouali S, Zemri K, Sellam F, Harir N, Benaisa Z, Hebri ST, Bensaber O, Elmehadji D, Nadji Z, Karoubi K. Is there an association between Anti-Citrullinated Peptide Antibodies and the Severity of Rheumatoid Arthritis Parameters in Algerian Patients?. Journal of Drug Delivery and Therapeutics. 2020; 10(4):17-24

http://dx.doi.org/10.22270/jddt.v10i4.4201

*Address for Correspondence:

Sihene OUALI, PhD Candidate in Biochemistry-Immunology, Department of Biology, Djillali Liabes University of SidiBel Abbes, (Ex ITMA), Algeria

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
INTRODUCTION:
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease and sometimes extra-articular, characterized by irreversible destruction of joints and bones, disability and loss of function.1-3 With a prevalence of 0.5% among adults in Western countries, and 0.13% in north Africa (Algeria in particular),4-5 reliable clinical research with the use of specific tests would be very useful for the early diagnosis of rheumatoid arthritis and therapeutic protocol6.

Several studies prove that anti-CCP (anti-citrullinated peptide/protein antibodies) and Rheumatoid Factors (RF), have been regarded as major factors in joint destruction7. Anti-CCP is a more specific marker compared to RF, due to their high specificity to RA8.

Recently, the Anti-CCP became a major test of disease course, joints erosion, severity and early diagnosis9-11. It may be detectable before the onset of RA symptoms12, which proves their importance in the pathophysiology of RA13. Furthermore, Anti-CCP antibodies has been involved in criteria for ACR/EUR10 classification (the American College of Rheumatology/European League Against Rheumatism)14.

The aim of this study was to investigate Anti-CCP status in western Algeria population and their association with clinical feature and medical managements (Disease activity, radiographic damages, erosion ...) of Algerian patients with RA as well as their importance in the diagnosis of RA.

PATIENTS AND METHODS:

The population:
We carried out a cross study based on medical records over 281 patients with RA aged of 14 years or over; diagnosed between 2016 and 2019 at the level of Internal Medicine in partnership with Functional Rehabilitation Departments of the University Hospital of Sidi Bel Abbes. Patients were diagnosed according to ACR 1987 criteria15. The local Ethics Committee of University Hospital has approved our study.

We recorded the demographic characteristic such as: sex; age; and clinical and managements like: Disease duration, Disease activity score (DAS28) (running from 0 to 10), Erosion, Radiologic Joint damage, Laboratory assessment and Medication.

Concerning DAS28, the threshold values are over 5.1 for high activity, from 5.1 to 3.2 for moderate activity, between 3.2 and 2.6 for low activity and less than 2.6 for remission16.

Statistical Analysis:
Patients’ characteristics were presented as means and standard deviation for continuous variables and as frequencies and percentages for categorical variables.

For descriptive analysis we present the results as Mean ± standard deviation and frequency (%). For the cross study, the categorical variables were tested using Pearson’s \(\chi^2\) and T test for continuous variables. Logistic regression was used to estimate the independent effects of some RA characteristics on the presence of anti-CCP.

All data were processed and analyzed via SPSS 22.0 (Statistical Package for the Social Sciences, IBM Corporation; Chicago, IL. August 2013). The level of significance was <5%.

RESULTS:
A total of 281 patients with rheumatoid arthritis were included in our cross study (86.5% were women; females/males ratio 7.3947). The mean age was 52.665±12.3477 (range 14-80); The most affected age group was ≥46 years with a rate of 74.4%, 8.2% of males were smokers, More than half of our patients were affected in hands joints (68.3%) followed by wrists (60.1%). The mean disease duration and DAS28 of the enrolled participants were 4.19±4.050 and 4.5128±1.23452 respectively. Concerning the disease activity, 1.1% of patients in the remission status, 13.5% with a low activity, 54.4% with a moderate activity and 31% with a high activity. Positive anti-ccp and RF were noted in 79.7% and 80.4% of patients respectively (Table 1).

Table 2 demonstrate a comparison of various factors such as gender; age; disease duration; erosion; tobacco status; joint damage; ESR; CRP and medication in two rheumatoid arthritis groups (positive and negative Anti-CCP groups). We noted a high significance between the erosion; DAS 28, high activity; shoulders joints and the positive Anti-CCP group (p<0.0001). We reported also a significance between Anti-CCP status and tobacco (p=0.047), ESR (p=0.001), Methotrexate use (p=0.003).

Table 3 indicates an analysis of the characteristics of RA such as age; DAS 28, joint damage, erosion, ESR in accordance with RF and Anti-CCP status.

We noticed a mutual association of Anti-CCP rate with DAS28 (Figure 1) and Disease duration (Figure 2).

The Binary logistic regression illustrated that the Anti-CCP status was significantly associated with age; disease duration; DAS28; ESR and RF (Table 4).
Figure 1: linear correlation between Anti-CCP titer and disease activity score (DAS28)

Figure 2: linear correlation between Anti-CCP titer and Disease duration
Table 1: Characteristics of RA patients

Characteristics (Mean±SD) or n(%)	Rheumatoid arthritis n=281
Female gender	243 (86.5%)
Age (years)	
≤ 45	72 (25.6%)
≥46	209 (74.4%)
Disease duration (years)	4.19±4.050
Comorbidity	
Type 2 diabetes	40 (14.2%)
Hypertension	114 (40.6%)
active tobacco (males)	23 (8.2%)
Radiologic Joint damage	
Hands	192 (68.3%)
Wrists	169 (60.1%)
Knees	158 (56.2%)
Elbows	109 (38.8%)
Shoulders	100 (35.6%)
Feet	86 (30.6%)
Ankle	44 (15.7%)
Erosion	67 (23.8%)
DAS28	4.5128±1.23452
Disease activity	
Remission	3 (1.1%)
Low	38 (13.5%)
Moderate	153 (54.4%)
High	87 (31%)
Anti-CCP titer (U/l/ml)	191.1977±164.87025
Positive Anti-CCP	224 (79.7%)
RF titer (U/l/ml)	68.5438±76.30074
Positive RF	226 (80.4%)
ESR titer (mm/h)	43.434±24.8095
Accelerated ESR	230 (81.9%)
CRP titer	17.9390±28.69422
Positive CRP	184 (65.5%)
Medication	
Methotrexate	226 (80.4%)
Leflunomide	45 (16%)
Hydroxychloroquine	4 (1.4%)
Glucocorticoid	159 (56.6%)
Table 2: Data based on Anti-CCP status in RA patients

Characteristics	RA patients n=281	P value	
	Positive Anti-CCP	Negative Anti-CCP	
	n=224	n=57	
Female gender	32(11.39%)	6(2.14%)	0.459
Age (years)	51.19±12.940	58.45±11.287	<0.0001
Disease duration (years)	4.48±4.280	3.04±2.712	0.016
Erosion	64(22.78%)	3(1.07%)	<0.0001
Active tobacco (males)	22(7.83%)	1(0.36%)	0.047
Disease activity			
Remission	1(0.36%)	2(0.71%)	0.045
Low	18(6.41%)	20(7.12%)	<0.0001
Moderate	123(43.77%)	30(10.68%)	0.758
High	82(29.18%)	5(1.78%)	<0.0001
DAS28	4.71±1.19±0.56	3.71±1.07±54	<0.0001
Joint damage			
Hands	158(56.23%)	34(12.10%)	0.115
Wrist	144(51.25%)	25(8.90%)	0.005
Knees	126(44.84%)	32(11.39%)	0.988
Elbows	94(33.45%)	15(5.34%)	0.030
Shoulders	93(33.10%)	7(2.49%)	<0.0001
Feet	71(25.27%)	15(5.34%)	0.431
Ankle	39(13.88%)	5(1.78%)	0.109
Laboratory assessment			
ESR (mm/h)	45.87±25.0779	33.84±21.3473	0.001
CRP (UI/ml)	19.08±31.27544	13.44±13.99±490	0.186
Drugs use			
Methotrexate	188(66.90%)	38(13.52%)	0.003
Leflunomide	35(12.46%)	10(3.56%)	0.724
Hydroxychloroquine	3(1.07%)	1(0.36%)	0.813
Glucocorticoid	132(46.98%)	27(9.61%)	0.116
Table 3: Characteristics of RA patients according to Anti-CCP and RF status.

Characteristics	RA patients n=281					P value
	Anti-CCP- FR-	Anti-CCP- FR+	Anti-CCP+ RF+			
	N=55	N=2	N=224			
Female gender	50(17.79%)	1(0.36%)	192(68.33%)	0.191		
Age (years)						
≤ 45	6(2.14%)	00	66(23.49%)	0.013		
≥46	49(17.44%)	2(0.71%)	158(56.23%)			
Disease duration (years)						
<4	41(14.59%)	1(0.36%)	124(44.13%)	0.033		
5-11	13(4.63%)	1(0.36%)	86(30.60%)	0.112		
12-18	1(0.36%)	00	5(1.78%)	0.961		
>18	00	00	9(3.20%)	0.306		
Erosion	2(0.71%)	1(0.36%)	64(22.78%)	<0.0001		
Active tobacco (males)	00	1(0.36%)	22(7.83)	0.006		
Disease activity						
Remission	2(0.71%)	00	1(0.36%)	0.118		
Low	20(7.12%)	00	18(6.41%)	<0.0001		
Moderate	28(9.96%)	2(0.71%)	123	0.373		
High	5(1.78%)	00	82(29.18%)	<0.0001		
Joint damage						
Hands	33(11.74%)	1(0.36%)	158(56.23%)	0.276		
Wrist	23(8.19%)	2(0.71%)	144(51.25%)	0.005		
Knees	31(11.03%)	1(0.36%)	126(44.84%)	0.948		
Elbows	14(4.98%)	1(0.36%)	94(33.45%)	0.075		
Shoulders	6(2.14%)	1(0.36%)	93(33.10%)	<0.0001		
Feet	14(4.98%)	1(0.36%)	71(25.27%)	0.558		
Ankle	4(1.42%)	1(0.36%)	39(13.88%)	0.073		
Accelerated ESR	39(13.88%)	2(0.71%)	189(6.26%)	0.054		
Positive CRP	32(11.39%)	1(0.36%)	151(53.74%)	0.391		
Methotrexate intake	36(12.81%)	2(0.71%)	188(66.90%)	0.007		

Table 4: Binary regression for the presence of Anti-CCP

Factors	RA Patients n= 281			P value	
	OR	95% IC			
Age (years)	0.945	0.919-0.973		<0.0001	
Disease duration (years)	1.159	1.023-1.313		0.021	
DAS28	2.230	1.648-3.017		<0.0001	
ESR(mm/h)	1.024	1.009-1.039		0.001	
CRP (Ul/ml)	1.014	0.995-1.034		0.146	
RF (Ul/ml)	1.158	1.112-1.206		<0.0001	
DISCUSSION:

Positive anti-CCP status is primarily associated with bone loss, disability, disease duration and disease activity in RA patients. Our cross study showed this relationship between clinical characteristics, disease activity, joints damages and Anti-CCP status in Algerian RA patient from western Algeria (Sidi Bel Abbes region in particular).

BARRAL et al illustrated that positive Anti-CCP group were younger (p<0.0001) with a longer disease duration. Moreover, ARA et al reported a similar results regarding the duration of the disease and Anti-CCP (p=0.003). Orsolini G et al reported as well a correlation between disease duration and Anti-CCP status (p=0.014). Anti-CCP negative patients were older with less disease activity.

There is a strong association between Anti-CCPs and radiological joint damages. Ghodzani et al confirmed the influence of anti-CCPs status on radiological erosion (p=0.001). Furthermore, Yang et al noted a high correlation between Anti-CCP positive and severe joint damage (<0.005). Another study by Tan et al showed a significant association between erosion and Anti-CCP positive (p=0.0024). Barra et al conclude the same result in 160 patients (p=0.0058). However, the results of Silmani et al disagreed with previous investigations, they did not find any relation between erosion and Anti-CCP status.

In RA there is a significant association between RF, anti-CCP and disease severity. However, patients positive for anti-CCP and RF both had a high risk of disease progression. In addition, Forslind et al showed that anti-CCP appeared to be an important predictor in early RA. Nonetheless, Barra et al did not find any significant association between RF positivity and erosive disease.

A significant relation between radiologic assessment of wrist, hands and positive Anti-CCP was observed in the Serdaroglu et al data. In our investigation, we found a significant correlation between wrist radiologic damages and positive Anti-CCP patients (p=0.005).

According to another investigation, our study demonstrated a high association between Anti-CCP status and DAS28 (p<0.0001). These results were in contradiction with some studies from Tunisia, Thailand, Egypt and Italy. There was no significant correlation between the analyses of laboratory assessment and positive Anti-CCP. Forslind et al reported a high significant association between Anti-CCP status and smoking. Our data demonstrate a significant association (p=0.047). Other studies were paradoxical with previous results that showed no significant difference between tobacco status and positive Anti-CCP.

Smoking increases the high secretion of anti-CCP antibodies in RA patients with shared epitope. Forslind et al reported a high significant association between Anti-CCP status and smoking. Our data demonstrate a significant association (p=0.047). Other studies were paradoxical with previous results that showed no significant difference between tobacco status and positive Anti-CCP.

Likewise, the most common received drug in our data was Methotrexate with a significant different with Positive Anti-CCP patients (p=0.003). Nevertheless, some studies did not find any correlation between Methotrexate use and Anti-CCP positive.

CONCLUSION:

Our data showed that Algerian RA patients with positive Anti-CCP antibodies have an active high disease activity and long disease duration. Anti-CCP was considered as a predictor factor for, radiologic erosion joint progression and as a prognostic factor of RA to predict the course of disease activity and the effectiveness of the treatment. Further studies on larger numbers of patients are needed to confirm our findings.

Acknowledgements:

We would like to thank the patients for their participation and staff at the Internal Medicine of the Departments of Internal Medicine and Functional Rehabilitation of the University Hospital of Sidi-bel-Abbes for their invaluable support, guidance, and educational insight.

Conflict of interest:

The authors declare no conflicts of interest

REFERENCES

1. American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines. Guidelines for the management of rheumatoid arthritis: 2002 Update. Arthritis & Rheumatism, 2002; 46(2):328-46.
2. Töböl GJ, Youinou P, Saraux A. The environment, geography, and autoimmune disease: Rheumatoid arthritis. Journal of Autoimmunity, 2010; 35(1):10-4.
3. Avouac J. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. Annals of the Rheumatic Diseases, 2005; 65(7):845-51.
4. Alamanos Y, Voulgaris PV, Drosos AA. Incidence and Prevalence of Rheumatoid Arthritis. Based on the 1987 American College of Rheumatology Criteria: A Systematic Review. Seminars in Arthritis and Rheumatism, 2006; 36(3):182-8.
5. Silmani S, Ladjouze-Rezig A. Prevalence of rheumatoid arthritis in an urban population of Algeria: a prospective study. Rheumatology, 2014; 53(3):571-3.
6. Kirwan JR, Quilty B. Prognostic criteria in rheumatoid arthritis: can we predict which patients will require specific anti-rheumatic treatment? Clin Exp Rheumatol, 1997; 15 Suppl 17:S15-25.
7. Haugeberg G, Bøyesen P, Helgevåg K, Proven A. Clinical and Radiographic Outcomes in Patients Diagnosed with Early Rheumatoid Arthritis in the First Years of the Biologic Treatment Era: A 10-year Prospective Observational Study. J Rheumatol, 2015; 42(12):2279-87.
8. Nishimura K, Sugiyama D, Kogata Y, Tsuji G, Nakazawa T, Kawano S, et al. Meta-analysis: Diagnostic Accuracy of Anti-Cyclic Citrullinated Peptide Antibody and Rheumatoid Factor for Rheumatoid Arthritis. Ann Intern Med, 2007; 146(11):797.
9. Svärd A, Kastbom A, Recker-Ölsson Å, Skogh T. Presence and utility of IgA-class antibodies to cyclic citrullinated peptides in early rheumatoid arthritis: the Swedish TIRA project. Arthritis Res Ther, 2008; 10(4):R75.
10. van Venrooij WJ, Zendman AJW, Pruin J. Autoantibodies to citrullinated antigens in (early) rheumatoid arthritis. Autoimmunity Reviews, 2006; 6(1):37-41.
11. van Gaalen FA, Linn-Rasker SP, van Venrooij WJ, de Jong BA, Breedveld FC, Verweij CL, et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: A prospective cohort study. Arthritis & Rheumatism, 2004; 50(3):709-15.
12. Rantapää-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wadell G, Stenlund H, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis: Anti-CCP Antibody and IgA-RF Predict RA. Arthritis & Rheumatism, 2003; 48(10):2741-9.
13. Im CH, Kang EH, Ryu HJ, Lee JH, Lee EY, Lee YJ, et al. Anti-cyclic citrullinated peptide antibody is associated with radiographic erosion in rheumatoid arthritis independently of shared epitope status. Rheumatol Int, 2009; 29(3):251-6.
14. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum, 2010; 62(9):2569-81.
15. Saraux A, Berthelot JM, Châlès G, Le Henaff C, Thorel JB, Hoang S, et al. Ability of the American College of Rheumatology 1987 criteria to predict rheumatoid arthritis in patients with early arthritis and classification of these patients two years later. Arthritis Rheum, 2001; 44(11):2485-91.
16. Prevoeo MLL, Van’T Hof MA, Kuper HH, Van Leeuwen WA, Van De Putte LBA, Van Riel PLCM. Modified disease activity scores that include twenty-eight-joint counts development and validation in a prospective longitudinal study of patients with rheumatoid arthritis: MODIFIED DISEASE ACTIVITY SCORE. Arthritis & Rheumatism, 1995; 38(4):44-8.
17. Cheng T-T, Yu S-F, Su F-M, Chen Y-C, Su BY-J, Chiu W-C, et al. Anti-CCP-positive patients with RA have a higher 10-year probability of fracture evaluated by FRAX®: a registry study of RA with osteoporosis/fracture. Arthritis Research & Therapy, 2018; 20(1):16.
18. Barra L, Bykerk V, Pope JE, Harauyi RP, Highton CA, Throne JC, et al. Anticitrullinated protein antibodies and rheumatoid factor fluctuate in early inflammatory arthritis and do not predict clinical outcomes. J Rheumatol, 2013; 40(9):1259-67.
19. Arnab B, Biswasd G, Arindam P, Shyamash M, Anirban G, Rajan P. Anti-CCP antibody in patients with established rheumatoid arthritis: Does it predict adverse cardiovascular profile? J Cardiovasc Dis Res, 2013; 4(2):102-6.
20. Orsolin G, Caimmi C, Viapiana O, Idolazzi L, Gatti D, et al. Titer-Dependent Effect of Anti-Citrullinated Antibodies On Systemic Bone Mass in Rheumatoid Arthritis Patients. Calcif Tissue Int, 2017; 101(1):17-23.
21. Slimani S, Abbas A, Ben Ammar A, Kebali D, Ali EH, Rahal F, et al. Characteristics of rheumatoid arthritis in Algeria: a multicenter study. Rheumatol Int, 2013; 34(9):1235-9.
22. Forslind K, Ablmén M, Eberhardt K, Hafström I, Svensson B, BARFOT Study Group. Prediction of radiological outcome in early rheumatoid arthritis in clinical practice: role of antibodies to citrullinated peptides (anti-CCP). Ann Rheum Dis, 2004; 63(9):1090-5.
23. Ghizani I, Mounach A, Ghazi M, Kherrab A, Niamane R, El Maghraoui A. Influence of anti-cyclic citrullinated peptide on disease activity, structural severity, and bone loss in Moroccan women with rheumatoid arthritis. The Egyptian Rheumatologist, 2018; 46(2):73-8.
24. Kim HH, Kim J, Park S-H, Kim S-K, Kim O-D, Choe J-Y. Correlation of anti-cyclic citrullinated antibody with hand joint erosion score in rheumatoid arthritis patients. Korean J Intern Med, 2010; 25(2):201-6.
25. Mb H, S M, N K, H M, F F, A R, et al. Anticyclic citrullinated peptide antibody and rheumatoid factor in south Tunisian patients with rheumatoid arthritis: association with disease activity and severity. J Clin Lab Anal, 2013; 28(1):21-6.
26. Søyersen SW, Gaarder PI, Goll GL, Ødegård S, Haavardsholm EA, Moewinckel P, et al. High anti-cyclic citrullinated peptide levels and an algorithm of four variables predict radiographic progression in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann Rheum Dis, 2008; 67(2):212-7.
27. Serdarolu M, Çakırbay H, Değer O, Cengiz S, Kul S. The association of anti-CCP antibodies with disease activity in rheumatoid arthritis. Rheumatol Int, 2008; 28(10):965-70.
28. Bodur H, Ataman S, Akbulut L, Evcik D, Kavuncu V, Kaya T, et al. Characteristics and medical management of patients with rheumatoid arthritis and ankylosing spondylitis. Clin Rheumatol, 2008; 27(9):1119-25.
29. Önder B, Kurtaran A, Kimyon S, Seçük B, Akyüz M. Association of anti-CCP positivity with serum ferritin and DAS-28. Rheumatol Int, 2009; 30(2):223-7.
30. Yanichapun M, Phuefon P, Suwannalai P, Verasertniyom O, Nantiruj K. Janewayanuitt S. Are anti-citrulline autoantibodies better serum markers for rheumatoid arthritis than rheumatoid factor in Thai population? Rheumatol Int, 2010; 30(6):755-9.
31. Alexiou I, Germenis A, Zogas A, Theodoridou K, Sakkas LI. Diagnostic value of anti-cyclic citrullinated peptide antibodies in Greek patients with rheumatoid arthritis. BMC Musculoskelet Disord, 2007; 8(1):37.
32. Abdel-Nasser AM, Mahmoud MH, El Mansoury TM, Osman AM. Anti-CCP2 is an adjunct to, not a surrogate for, rheumatoid factor in the diagnosis of rheumatoid arthritis: diagnostic utility of anti-CCP2 antibodies in Egyptian patients with rheumatoid arthritis. Scandinavian Journal of Rheumatology, 2008; 37(5):329-36.
33. Showman O, Gilbard B, Zandman-Godder G, Sherer Y, Orbach H, Gerli R, et al. The Diagnostic Utility of Anti-cyclic Citrullinated Peptide Antibodies, Matrix Metalloproteinase-3, Rheumatoid Factor, Erythrocyte Sedimentation Rate, and C-reactive Protein in Patients with Erosive and Non-erosive Rheumatoid Arthritis. Clinical and Developmental Immunology, 2005; 12(3):197-202.
34. Im Yacoub, Y, Amine, B, Laatiris, A. et al. Rheumatoid factor and antibodies against citrullinated peptides in Moroccan patients with rheumatoid arthritis: association with disease parameters and quality of life. Clin Rheumatol, 2012; 31:329-334.
35. González‑Flebas J, Rodríguez‑Lozano B, Sánchez‑Piedra C, Garnier‑Rodríguez J, Bustabad S, Hernández‑González M, et al. Association between periodontitis and anti-citrullinated protein antibodies in rheumatoid arthritis patients: a cross-sectional study. Arthritis Res Ther, 2020; 22(1):27.
36. Linn‑Rasker SP. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Annals of the Rheumatic Diseases, 2006; 65(3):366-71.
37. Van Doornum S, McColl G, Wicks IP. Accelerated atherosclerosis: An extraarticular feature of rheumatoid arthritis? Arthritis & Rheumatism, 2002; 46(4):862-73.
38. García de Veas Silva JL, González Rodríguez C, Hernández Cruz B. Asociación del epítopo compartido, el tabaquismo y la interacción entre ambos con la presencia de autoanticuerpos (anti-PCC y FR) en pacientes con artritis reumatoide en un hospital de Sevilla, España. Reumatología Clínica, 2019; 15(5):289-95.