A SETTING FOR HIGHER ORDER DIFFERENTIAL EQUATION FIELDS
AND HIGHER ORDER LAGRANGE AND FINSLER SPACES

IOAN BUCATARU

Abstract. We use the Frölicher-Nijenhuis formalism to reformulate the inverse problem of the calculus of variations for a system of differential equations of order $2k$ in terms of a semi-basic 1-form of order k. Within this general context, we use the homogeneity proposed by Crampin and Saunders in [15] to formulate and discuss the projective metrizability problem for higher order differential equation fields. We provide necessary and sufficient conditions for higher order projective metrizability in terms of homogeneous semi-basic 1-forms. Such a semi-basic 1-form is the Poincaré-Cartan 1-form of a higher order Finsler function, while the potential of such semi-basic 1-form is a higher order Finsler function.

1. Introduction

The Frölicher-Nijenhuis formalism is a very useful tool for developing a differential calculus that provides a geometric setting for studying differential equations fields, [4, 5, 13, 17, 25, 36, 39].

The framework for studying higher order differential equation fields, on a configuration manifold M, is the higher order tangent bundle $T^r M$, for some natural number $r \geq 1$. In Section 2 we discuss some geometric structures that naturally live on higher order tangent bundles: vertical distributions, Liouville vector fields, tangent structures. We use the Frölicher-Nijenhuis formalism associated to these geometric structures to provide a vertical differential calculus, which is very useful for studying higher order differential equation fields. Motivated by the foliated structure of the higher order tangent bundles, we show that vertical vector fields, as well as their dual, semi-basic 1-forms, play an important role in the vertical differential calculus, which we associate to a higher order differential equations field. We will use the formalism developed in Subsection 2.2 and especially Lemma 2.3 in Sections 3 and 4 to characterize those differential equation fields that may be associated to a variational problem of a Lagrange or a Finsler space of higher order.

The inverse problem of the calculus of variations requires to determine the necessary and sufficient conditions such that a system of ordinary differential equations, of order $2k$, may be derived from a variational problem. For $k = 1$, these conditions can be formulated in terms of a multiplier matrix [23, 32, 33, 34, 35], a closed 2-form [21, 10], or a semi-basic 1-form [5]. The approach, based on the existence of a closed 2-form, developed by Crampin in [10], was extended by de León and Rodrigues in [26] for $k > 1$. A deep relationship between variational equations of arbitrary order and closed 2-forms has been found and studied by Krupková in [21, 22]. In Section 5 we use the vertical differential calculus, which we develop in Section 2, to provide global formulations for the geometric structures one can associate to higher order Lagrangians and higher order differential equation fields. In Theorem 5.4 we reformulate the inverse problem of the calculus of variations in terms of a semi-basic 1-form of order k. For the variational case, we show that such a semi-basic 1-form is the Poincaré-Cartan 1-form of a Lagrangian of order k. In Proposition 3.6 we prove

Date: May 1, 2014.
2000 Mathematics Subject Classification. 34A26, 53C60, 70H03, 70H50.
Key words and phrases. Ordinary differential equations, homogeneity, projective metrizability, higher order Finsler spaces.
that some homogeneity properties of a regular Lagrangian transfer to its canonical Euler-Lagrange vector field.

An important case of the inverse problem of the calculus of variations refers to homogeneous systems of ordinary differential equations. For \(k = 1 \), this problem contains what is known as the projective metrizability problem or "the Finslerian version of Hilbert’s fourth problem", [11, 12, 37, 41]. The projective metrizability problem requires to determine if the solutions of a homogeneous system of second order ordinary differential equations coincide with the geodesics of a Finsler metric, up to an orientation preserving reparameterization [7, 8, 38, 41]. For the case \(k > 1 \), an attempt to address and study the projective metrizability problem, requires first a good definition of homogeneity for systems of higher order differential equations as well as for higher order Lagrangians. In this work we use the definitions of homogeneity proposed by Crampin and Saunders in [15] to formulate and study the projective metrizability problem in Section 4. In Subsection 4.1 we introduce and discuss higher order Finsler spaces. We show that the regularity condition, which we propose for a higher order Finsler function, is equivalent to the regularity condition proposed by Crampin and Saunders in [15] for parametric Lagrangians and that it reduces, when \(k = 1 \), to the classic regularity condition of a Finsler function. We show that the variational problem of a higher order Finsler function uniquely determines a projective class of homogeneous differential equation fields. In Theorem 4.5 we characterize the projective metrizability problem of a homogeneous differential equation field of order \(2k \) in terms of a homogeneous semi-basic 1-form of order \(k \). We prove that, similarly with what happens in the case \(k = 1 \), such a semi-basic 1-form is the Poincaré-Cartan 1-form of a Finsler function of order \(k \). Moreover, the potential of such homogeneous semi-basic 1-form is a Finsler function of order \(k \) that metricizes the equation field.

In the last section we discuss some examples of higher order differential equation fields and their relations with higher order Lagrange and Finsler spaces. It has been shown in [9] that biharmonic curves, which are solutions of a fourth order differential equations field, are solutions of the Euler-Lagrange equations for a regular Lagrangian \(L_2 \) of order 2. See also [4] for a different approach. We use the homogeneity properties of the second order Lagrangian \(L_2 \) to obtain some information for the corresponding Euler-Lagrange vector field (biharmonic differential equations field). We provide an example of a second order Finsler functions, which in the Euclidian context reduces to the parametric Lagrangian \(L \), studied by Crampin and Saunders in [15] §6.

2. Vertical differential calculus on higher order tangent bundles

In this section we discuss first some geometric structures that are naturally defined on higher order tangent spaces: vertical distributions, Liouville vector fields, tangent structures, higher order differential equation fields. We use these geometric structures and the corresponding differential calculus induced by the Frölicher-Nijenhuis formalism to develop a geometric setting, which we will use in Sections 3 and 4 to discuss two important problems associated to a (homogeneous) higher order differential equation field.

2.1. Geometric structures on higher order tangent bundles. In this work \(M \) is a real, \(n \)-dimensional and \(C^\infty \)-smooth manifold. We will assume that all objects are smooth where defined. We denote the ring of smooth functions on \(M \) by \(C^\infty(M) \), while the Lie algebra of vector fields on \(M \) is denoted by \(\mathfrak{X}(M) \).

The framework to develop a geometric setting for studying systems of higher order ordinary differential equations on a manifold \(M \) is the higher order tangent bundle \(T^rM = J_r^0M \), for some \(r \in \mathbb{N} \). \(T^rM \) is the jet bundle of order \(r \), of curves \(c \) from a neighborhood of 0 in \(\mathbb{R} \) to \(M \). For a curve \(c : I \to M \), \(c(t) = (x^i(t)) \), consider \(j^rc : I \to T^rM \) its jet lift of order \(r \). If \((x^i) \) are local coordinates on \(M \), the induced local coordinates on \(T^rM \) are denoted by
\((x^i, y^{(1)i}, \ldots, y^{(r)i})\), where
\[
y^{(\alpha)i}(j \partial c) = \frac{1}{\alpha!} \frac{d^\alpha(x^i(c(t)))}{dt^\alpha}\bigg|_{t=0}, \quad \alpha \in \{1, \ldots, r\}.
\]

Let \(y^{(0)i} := x^i\) and denote \(T^0M = M\). The canonical submersion \(\pi^*_0 : T^rM \to T^0M\), for each \(\alpha \in \{0, 1, \ldots, r - 1\}\), induces a natural foliation of \(T^rM\). We will consider also the subbundle \(T^0_0M = \{(x, y^{(1)}, \ldots, y^{(r)}) \in T^rM, y^{(1)} \neq 0\}\). It follows that \(T^0_0M = (\pi^*_1)^{-1}(T^0_0M)\).

A curve \(c : I \to M\) is called a regular curve if \(j^r c(t) \in T^0_0M\) for all \(t \in I\) and some \(r \in \mathbb{N}^+\).

The tangent structure (or vertical endomorphism) of order \(r\) is the \((1, 1)\)-type tensor field on \(T^rM\) defined as
\[
(2.1) \quad J = \frac{\partial}{\partial y^{(1)n}} \otimes dx^i + \frac{\partial}{\partial y^{(2)n}} \otimes dy^{(1)i} + \cdots + \frac{\partial}{\partial y^{(r)n}} \otimes dy^{(r-1)i}.
\]

For each \(\alpha \geq 2\), we will consider \(J^\alpha\), the composition of \(J\), \(\alpha\)-times. The following properties are straightforward: \(J^{r+1} = 0\), \(\text{Im } J^\alpha = \text{Ker } J^{r+\alpha+1}\), \(\alpha \in \{1, \ldots, r\}\).

The foliated structure of \(T^rM\) gives rise to \(r\) regular vertical distributions
\[
(2.2) \quad V_\alpha(u) = \text{Ker } D_u \pi^r_{\alpha-1} = \text{Im } J^\alpha_u = \text{Ker } J^{r-\alpha+1}_u, \quad \text{for } u \in T^rM, \alpha \in \{1, \ldots, r\}.
\]

Each distribution \(V_\alpha\) for \(\alpha \in \{1, \ldots, r\}\), is tangent to the fibers of \(\pi^r_{\alpha-1} : (x^i, y^{(1)i}, \ldots, y^{(r)i}) \to (x^i, y^{(1)i}, \ldots, y^{(r-1)i})\), and hence it is integrable. We have that \(\dim V_\alpha = (r-\alpha+1)n\), \(\alpha \in \{1, \ldots, r\}\) and \(V_\alpha(u) \subset V_{\alpha-1}(u) \subset \cdots \subset V_1(u)\), for each \(u \in T^rM\). We will denote by \(\mathcal{X}^{V_\alpha}(T^rM)\) the Lie subalgebra of vertically valued vector fields.

An important set of vertical vector fields is provided by the Liouville vector fields (or dilation vector fields) \(C_\alpha \in \mathcal{X}^{V_\alpha}(T^rM), \alpha \in \{1, \ldots, r\}\). These vector fields are locally given by:
\[
(2.3) \quad C_\alpha = y^{(1)i} \frac{\partial}{\partial y^{(\alpha)n}} + 2y^{(2)i} \frac{\partial}{\partial y^{(\alpha+1)n}} + \cdots + (r + 1 - \alpha)y^{(r+1-\alpha)i} \frac{\partial}{\partial y^{(\alpha)i}}, \quad \alpha \in \{1, \ldots, r\}.
\]

For the Liouville vector fields, we have the following formulae for their Lie brackets
\[
(2.4) \quad [C_\alpha, C_\beta] = \begin{cases} (\alpha - \beta)C_{\alpha+\beta-1}, & \text{if } \alpha + \beta \leq r - 1, \\ 0, & \text{otherwise}. \end{cases}
\]

We will make use of the Frölicher-Nijenhuis formalism, \([16, 17, 20]\), to develop a differential calculus that will be useful to address various problems associated to a differential equation field, \([4, 5, 18, 39]\).

For a vector valued \(l\)-form \(L\) on \(T^rM\) consider the derivation of degree \(l - 1\), \(i_L : \Lambda^q(T^rM) \to \Lambda^{q+l-1}(T^rM)\) and the derivation of degree \(l\), \(d_L : \Lambda^q(T^rM) \to \Lambda^{q+l}(T^rM)\). These two derivations are related by the following formula
\[
(2.5) \quad d_L = i_L \circ d + (-1)^l d \circ i_L.
\]

For two vector valued forms \(K\) and \(L\) on \(T^rM\), of degree \(k\) and respectively \(l\), consider the Frölicher-Nijenhuis bracket \([K, L]\), which is the vector valued \((k + l)\)-form on \(T^rM\), uniquely defined by
\[
(2.6) \quad [C_\alpha, J^\beta] = \begin{cases} -\beta J^{\alpha+\beta-1}, & \text{if } \alpha + \beta \leq r + 1, \\ 0, & \text{otherwise}. \end{cases}
\]

For \(r = 1\), semi-basic 1-forms have shown their usefulness to address various problems associated to second order differential equation fields, \([6, 7, 17]\). We will see also that for \(r > 1\), semi-basic 1-forms, of some order, are useful to formulate a geometric setting for higher order differential
equation fields. These forms where introduced and discussed in [3] Def 1]. However, in our work a semi-basic 1-form of order \(\alpha \) on \(T^rM \) corresponds to what is called in [3] a semi-basic 1-form of order \(r + 1 - \alpha \).

Definition 2.1. A form on \(T^rM \) is called semi-basic of order \(\alpha \in \{1, \ldots, r\} \) if it is semi-basic with respect to the submersion \(\pi^r_{\alpha - 1} \).

A form \(\theta \) on \(T^rM \) is semi-basic of order \(\alpha \) if it vanishes whenever one of its argument is a vertical vector field in \(\mathfrak{X}^{\alpha_0}(T^rM) \). Therefore, \(\theta \in \Lambda^1(T^rM) \) is semi-basic of order \(\alpha \) if and only if \(i_{j^\alpha} \theta = 0 \). Semi-basic 1-forms of order \(\alpha \) are the dual equivalent of vertical vector fields in \(\mathfrak{X}^{\alpha_0}(T^rM) \). Hence we have that \(\theta \in \Lambda^1(T^rM) \) is semi-basic of order \(\alpha \) if and only if there exists \(\eta \in \Lambda^1(T^rM) \) such that \(\theta = i_{j^\alpha} \eta = \eta \circ j^{r-\alpha+1} \). Locally, a 1-form \(\theta \) on \(T^rM \) is semi-basic of order \(\alpha \) if and only if

\[
\theta = \theta(0)i dx^i + \theta(1)i dy^{(1)i} + \cdots + \theta(\alpha-1)i dy^{(\alpha-1)i},
\]

where the \(\alpha \) components \(\theta(0)i, \ldots, \theta(\alpha-1)i \) are smooth functions defined on domains of local charts on \(T^rM \).

For a function \(f \in C^\infty(T^rM) \) and \(\alpha \in \{1, \ldots, r\} \) we have that \(d_{j^\alpha} f \) is a semi-basic 1-form of order \(r - \alpha + 1 \). For a function \(f \in C^\infty(T^rM) \) we have that \(df \) is a semi-basic 1-form of order \(\alpha \in \{1, \ldots, r\} \) if and only if \(f \) is constant along the fibers of the submersion \(\pi^r_{\alpha-1} \) and hence one can restrict it to \(T^{r-1}M \).

2.2. Higher order differential equation fields.

A system of higher order differential equations, whose coefficients do not depend explicitly on time, can be viewed as a special vector field on some higher order tangent bundle. For such systems, we will use the definition for homogeneous differential equation fields of order \(r \), which was proposed by Crampin and Saunders in [15].

As it happens in the case \(r = 1 \), Liouville vector fields \(C_\alpha \), are important for defining the notion of homogeneity for various geometric structures on \(T^rM \). Whenever we want to consider homogeneous structures, which are not necessarily polynomial in the fibre coordinates, we will consider them defined on the subbundle \(T^r_0M \).

Definition 2.2. Consider a vector field \(S \) on \(T^rM \). We say that \(S \) is a semispray of order \(r \) if it satisfies the condition \(JS = C_1 \).

In induced coordinates for \(T^rM \), a semispray of order \(r \) is given by

\[
S = y^{(1)i} \frac{\partial}{\partial x^i} + 2y^{(2)i} \frac{\partial}{\partial y^{(1)i}} + \cdots + ry^{(r)i} \frac{\partial}{\partial y^{(r-1)i}} - (r + 1) G^i \frac{\partial}{\partial y^{(r)i}},
\]

for some functions \(G^i \) defined on domains of local charts.

Alternatively, we have that a vector field \(S \) on \(T^rM \) is a semispray of order \(r \) if and only if any integral curve of \(S \), \(\gamma : I \to T^r_0M \), is of the form \(\gamma = j^\alpha(\pi^0_0 \circ \gamma) \). For an integral curve \(\gamma : I \to T^r_0M \) of \(S \), we say that curve \(c = \pi^0_0 \circ \gamma \) is a geodesic of \(S \). Therefore, a regular curve \(c : I \to M \) is a geodesic of \(S \) if and only if \(S \circ j^\alpha c = (j^\alpha c)' \). Locally, a regular curve \(c : I \to M \), \(c(t) = (x(t)) \), is a geodesic of \(S \) if and only if it satisfies the system of \((r + 1) \) order ordinary differential equations

\[
\frac{1}{(r + 1)!} \frac{d^{r+1} x^i}{dt^{r+1}} + G^i \left(x, \frac{dx}{dt}, \ldots, \frac{1}{r!} \frac{d^r x}{dt^r} \right) = 0.
\]

Therefore semisprays of order \(r \) describe systems of higher order differential equations which have regular curves on \(M \) as solutions.

We will consider also, \(d_T \), the Tulczyjew differential operator on \(T^rM \), also called the total derivative operator, which is given by [12]

\[
d_T = y^{(1)i} \frac{\partial}{\partial x^i} + 2y^{(2)i} \frac{\partial}{\partial y^{(1)i}} + \cdots + ry^{(r)i} \frac{\partial}{\partial y^{(r-1)i}}.
\]
Using the Tulczyjew operator, a semispray S of order r can be written as follows

\begin{equation}
S = d_T - (r + 1)G^i \frac{\partial}{\partial y^i}.
\end{equation}

Differential operator d_T maps a function $f \in C^\infty(T\alpha M), \alpha \in \{0, ..., r - 1\}$, into a function $d_T f := d_T (f \circ \pi_{k+1}^k) \in C^\infty(T\alpha+1 M)$. The function $d_T f$ is basic with respect to the submersion π_{k+1}^k, therefore we can assume that it is defined on $T\alpha+1 M$ and hence $d_T f \in C^\infty(T\alpha+1 M)$.

In view of formula (2.11), for an arbitrary semispray of order r, $S \in \mathcal{X}(T^r M)$, and a function $f \in C^\infty(T\alpha M), \alpha \in \{0, ..., r - 1\}$, we have that $S f = d_T f \in C^\infty(T\alpha+1 M)$.

The Frölicher-Nijenhuis brackets of an arbitrary semispray S and the vertical endomorphisms J^α are useful to fix a (multi) connection on $T^r M$ \cite{1} \cite{13} \cite{30}. In this work we will use only the vertical valued components of these vector valued 1-forms.

Lemma 2.3. Consider S a semispray of order r and $\alpha \in \{1, ..., r\}$.

\begin{enumerate}
 \item The Lie brackets $[C_\alpha, S]$ are given by
 \begin{equation}
 [C_\alpha, S] = \alpha C_{\alpha-1} + U_\alpha,
 \end{equation}
 where $C_0 = S$ and $U_\alpha \in \mathcal{X}^{V^\alpha}(T^r M)$.
 \item The vertical components of the Frölicher-Nijenhuis brackets $[S, J^\beta]$ are given by
 \begin{equation}
 J^\alpha [S, J^\beta] = \begin{cases}
 -\beta J^\alpha \beta^{-1}, & \text{if } \alpha + \beta \leq r + 1, \\
 0, & \text{otherwise}.
 \end{cases}
 \end{equation}
 \item For a semi-basic 1-form $\theta \in \Lambda^1(T^r M)$, of order α, we have
 \begin{equation}
 i_{[S, J^\beta]} \theta = -\beta i_{J^\beta-1} \theta, \quad \forall \beta \in \{1, ..., r\}.
 \end{equation}
 \item Consider $\theta \in \Lambda^1(T^r M)$ a semi-basic 1-form of order α. Then $L_{C_\alpha} \theta$ is also a semi-basic 1-form of order α, for all $\beta \in \{1, ..., r\}$.
 \item Consider $\theta \in \Lambda^1(T^r M)$ a semi-basic 1-form of order α such that $L_S \theta - df$ is a semi-basic 1-form of order 1, for some function f on $T^r M$. Then the function f can be restricted to $T\alpha M$ and the 1-form θ satisfies the following formulae
 \begin{equation}
 i_{J^\beta} \theta = \gamma! \sum_{\beta = 1}^{\alpha-\gamma} \frac{(-1)^{\beta-1}}{(\beta + \gamma)!} L_{S}^{\beta-1} d_{J^\beta+1} f, \quad \forall \gamma \in \{0, 1, ..., \alpha - 1\}.
 \end{equation}
\end{enumerate}

Proof. For $\beta \in \{1, ..., r\}$ and for every $X \in \mathcal{X}(T^r M)$ we have

\begin{equation}
[S, J^\beta] X - J^\beta [S, X] + \beta J^\beta-1 X = -U_\beta \in \text{Ker} J = \text{Im} J^r,
\end{equation}

which has been shown in \cite{1} (3.27)].

\begin{enumerate}
 \item In formula (2.16) we take $X = S$ and use $J^\beta S = C_\beta$, for all $\beta \in \{1, ..., r\}$. It follows formula (2.13).
 \item By composing in formula (2.16) to the left with J^α, for $\alpha \geq 1$, we obtain formula (2.13).
 \item Consider $\theta \in \Lambda^1(T^r M)$ a semi-basic 1-form of order α. It follows that there exists $\eta \in \Lambda^1(T^r M)$ such that $\theta = i_{J^r-\alpha} \eta$. Using now formula (2.13) we obtain
 \begin{equation}
 i_{[S, J^\beta]} \theta = i_{J^r-\alpha+1} \eta = -\beta i_{J^r-\alpha+\beta} \eta = -\beta i_{J^\beta-1} \theta,
 \end{equation}
 which shows that formula (2.14) is true.
 \item Since $\theta \in \Lambda^1(T^r M)$ is a semi-basic 1-form of order $\alpha \in \{1, ..., r\}$, it follows that $i_{J^\alpha} \theta = 0$. Using the corresponding commutation rules and formulae (2.6) it follows
 \begin{equation}
 i_{J^\gamma} L_{C_\beta} \theta = L_{C_\beta} i_{J^\gamma} \theta + i_{[J^\gamma, C_\beta]} \theta = \alpha i_{J^\beta+\alpha-1} \theta = 0,
 \end{equation}
 which proves that $L_{C_\beta} \theta$ is a semi-basic 1-form of order α.\]
If we apply \(i_{J^0} \) to both sides of formula (2.17) and use the commutation rule we obtain
\[
i_{J^0} \mathcal{L}_S \theta = d_J f.
\]

If we apply \(i_{J^{\alpha-1}} \) to both sides of formula (2.17) and use the commutation rule we obtain
\[
\mathcal{L}_S i_{J^{\alpha-1}} \theta + i_{[J^{\alpha-1}, S]} \theta = df \circ J^\alpha.
\]

Using formula (2.14) it follows that \(i_{[J^{\alpha-1}, S]} \theta = \alpha i_{J^{\alpha-1}} \theta \). From formula (2.15) we have that \(\alpha i_{J^{\alpha-1}} \theta = i_{J^\alpha} df \). Consequently, we have that \(df \circ J^\alpha = 0 \), which means that \(df \in \Lambda^1(T^\alpha M) \) is a semi-basic 1-form of order \(\alpha + 1 \). It follows that \(f \) is constant on the fibres of \(\pi_\alpha^*: T^\alpha M \to T^\alpha M \) and therefore, we can restrict \(f \) to \(T^\alpha M \) and assume that it is a function defined on \(T^\alpha M \).

We will prove now that \(\theta \) satisfies formulae (2.15). We have seen above that
\[
i_{J^{\alpha-1}} \theta = \frac{1}{\alpha} d_{J^\alpha} f,
\]
which is formula (2.15) for \(\gamma = \alpha - 1 \). We apply \(\mathcal{L}_S \) to both sides of this formula, use the commutation rule, and obtain
\[
i_{J^{\alpha-1}} \mathcal{L}_S \theta + i_{[S, J^{\alpha-1}]} \theta = \frac{1}{\alpha} \mathcal{L}_S d_{J^\alpha} f.
\]

We use now formulae (2.17) and (2.14) to obtain
\[
d_{J^{\alpha-1}} f - (\alpha - 1) i_{J^{\alpha-2}} \theta = \frac{1}{\alpha} \mathcal{L}_S d_{J^\alpha} f.
\]

Above formula implies
\[
i_{J^{\alpha-2}} \theta = \frac{1}{\alpha - 1} d_{J^{\alpha-1}} f - \frac{1}{\alpha(\alpha - 1)} \mathcal{L}_S d_{J^{\alpha}} f,
\]
which is formula (2.15) for \(\gamma = \alpha - 2 \). We apply again \(\mathcal{L}_S \) to both sides of the above formula, use the commutation rule, and obtain
\[
i_{J^{\alpha-2}} \mathcal{L}_S \theta + i_{[S, J^{\alpha-2}]} \theta = \frac{1}{\alpha - 2} \mathcal{L}_S d_{J^{\alpha-1}} f + \frac{1}{(\alpha - 1)(\alpha - 2)} \mathcal{L}_S^2 d_{J^\alpha} f,
\]
which is formula (2.15) for \(\gamma = \alpha - 3 \). We continue the process and obtain
\[
i_{J^\alpha} \theta = \frac{1}{2} d_{J^\alpha} f - \frac{1}{2 \cdot 3} \mathcal{L}_S d_{J^\alpha} f + \cdots + \frac{(-1)^{\alpha-2}}{2 \cdots \alpha} \mathcal{L}_S^{\alpha-2} d_{J^\alpha} f.
\]

Formula (2.22) represents formula (2.15) for \(\gamma = 1 \). Now, for the last step we use above formula, formula (2.14) for \(\beta = 1 \), as well as formula (2.17):
\[
\theta = -i_{[S, J]} \theta = i_J \mathcal{L}_S \theta - \mathcal{L}_S i_J \theta = d_J f - \mathcal{L}_S i_J \theta.
\]

It follows that \(\theta \) is given by formula
\[
\theta = \sum_{\beta=1}^{\alpha} \frac{(-1)^{\beta-1}}{\beta!} \mathcal{L}_S^{\beta-1} d_{J^\beta} f,
\]
which represents formula (2.15) for \(\gamma = 0 \).

Formula (2.15) was proven for the case \(\alpha = \beta = 1 \) in [13] Lemma 5.1.

Definition 2.4. A semispray \(S \in \mathfrak{X}(T^\alpha_0 M) \) of order \(r \) is called **homogeneous** if the distribution \(D = \text{span}\{S, C_1, \ldots, C_r\} \) is involutive.
Above definition of homogeneity has been proposed in [15] Definition 3.1. In view of formulae
(2.24), a semispray \(S \in \mathfrak{X}(T^*_0 M) \) of order \(r \), is homogeneous if and only if for the vertical vector fields \(U_\alpha \in \mathfrak{X}^v(T^*_0 M) \), there exist the functions \(P_\alpha \in C^\infty(T^*_0 M) \) such that \(U_\alpha = P_\alpha C_\alpha \), for all \(\alpha \in \{1, \ldots, r\} \). Therefore, a semispray \(S \) of order \(r \) is homogeneous if and only if there exists functions \(P_\alpha \in C^\infty(T^*_0 M) \), \(\alpha \in \{1, \ldots, r\} \), such that
\[
(2.24) \quad [C_1, S] = S + P_1 C_r, \quad [C_\alpha, S] = \alpha C_{\alpha-1} + P_\alpha C_r, \quad \alpha \in \{2, \ldots, r\}.
\]
If we write the Jacobi identities for the vector fields \(S, C_1, \ldots, C_r \), and use the above formulae, we obtain that functions \(P_1, \ldots, P_r \) must satisfy some consistency conditions. Formulae (2.24) and the consistency conditions for functions \(P_1, \ldots, P_r \) were obtained in [15] Prop. 3.2.

For homogeneous higher order differential equation fields, an important concept is that of projective equivalence, which we borrow from [15, Def. 5.1].

Definition 2.5. Consider \(S_1 \) and \(S_2 \) two homogeneous semisprays of order \(r \). We say that \(S_1 \) and \(S_2 \) are **projectively equivalent** if there exists a function \(P \in C^\infty(T^*_0 M) \) such that \(S_1 = S_2 - (r + 1) P C_r \).

Two homogeneous semisprays \(S_1 \) and \(S_2 \), locally given by formula (2.23), are projectively equivalent if and only if the semispray coefficients \(G_1^1 \) and \(G_2^1 \) are related by \(G_1^1 = G_2^1 + P y^{(1)} \), for some function \(P \in C^\infty(T^*_0 M) \).

Definition 2.6. A homogeneous semispray \(S \in \mathfrak{X}(T^*_0 M) \) is called a **spray of order** \(r \) if \([C_1, S] = S \) and \([C_2, S] = 2C_1 \).

Above definition was proposed in [15] for **generalized sprays** and it is motivated by the following arguments. It has been shown in [15] Thm. 5.2 that for two projectively equivalent homogeneous semisprays their geodesics coincide up to an orientation preserving reparameterization. Moreover, according to [15] Thm. 5.2, the projective class of a homogeneous semispray contains a spray, that is a homogenous semispray for which the homogeneity conditions (2.24) hold true with \(P_1 = P_2 = 0 \).

3. **The inverse problem of the calculus of variations for higher order differential equation fields**

The inverse problem of the calculus of variations for a semispray (of order 1) was reformulated in [15] in terms of semi-basic 1-forms. In this section we extend these aspects to the higher order case. In Theorem 3.3 we characterize Lagrangian semisprays of order \(2k - 1 \) in terms of semi-basic 1-forms of order \(k \).

3.1. Higher order Lagrangians

In this subsection we discuss some aspects regarding the geometry of a Lagrangian of order \(k \). In Lemma 3.1 we study these geometric aspects in connection with the Poincaré-Cartan 1-form, which is a semi-basic 1-form of order \(k \).

Consider \(L \), a Lagrangian of order \(k \), which is a function defined on \(T^k M \). The **Poincaré-Cartan 1-form** \(\theta_L \in \Lambda^1(T^{2k-1} M) \) of \(L \) is given by
\[
(3.1) \quad \theta_L = \sum_{\alpha=1}^k \frac{(-1)^{\alpha-1}}{\alpha!} L_{S^\alpha}^{-1} dS^\alpha L,
\]
where \(S \in \mathfrak{X}(T^{2k-1} M) \) is an arbitrary semispray of order \(2k - 1 \). We will see in Lemma 3.1 that \(\theta_L \) does not depend on \(S \). The **Poincaré-Cartan 2-form** \(\omega_L \in \Lambda^2(T^{2k-1} M) \) is given by \(\omega_L = -d\theta_L \).

The **Lagrangian energy function** \(\mathcal{E}_L \in C^\infty(T^{2k-1} M) \) is given by
\[
(3.2) \quad \mathcal{E}_L = \sum_{\alpha=1}^k \frac{(-1)^{\alpha-1}}{\alpha!} L_{S^\alpha}^{-1} C_\alpha(L) - L.
\]
Lemma 3.1. Consider L a Lagrangian of order k.

i) The Poincaré-Cartan 1-form θ_L is a semi-basic 1-form of order k on $T^{2k-1}M$, which does not depend on the semispray S.

ii) The Lagrangian energy function $\mathcal{E}_L \in C^\infty(T^{2k-1}M)$ does not depend on the semispray S and it is related to the Poincaré-Cartan 1-form θ_L by the following formula

\begin{equation}
\mathcal{E}_L = i_S \theta_L - L.
\end{equation}

iii) The Poincaré-Cartan 2-form ω_L is a symplectic 2-form on $T^{2k-1}M$ if and only if the Hessian matrix

\begin{equation}
\mathcal{g}_{ij} = \frac{\partial^2 L}{\partial y^{(k)i} \partial y^{(k)j}},
\end{equation}

has maximal rank n on $T^k M$.

Proof. i) Locally, the Poincaré-Cartan 1-form θ_L can be expressed as follows

\begin{equation}
\theta_L = \theta_{(0)i} dx^i + \cdots + \theta_{(k-1)i} dy^{(k-1)i},
\end{equation}

where

\begin{align*}
\theta_{(0)i} &= \frac{1}{1!} \frac{\partial L}{\partial y^{(1)i}} - \frac{1}{2!} \mathcal{L}_S \left(\frac{\partial L}{\partial y^{(2)i}} \right) + \cdots + \frac{(-1)^{k-1}}{k!} \mathcal{L}_S^{k-1} \left(\frac{\partial L}{\partial y^{(k)i}} \right), \\
\theta_{(1)i} &= \frac{1}{2} \frac{\partial L}{\partial y^{(2)i}} - \frac{1}{2 \cdot 3} \mathcal{L}_S \left(\frac{\partial L}{\partial y^{(3)i}} \right) + \cdots + \frac{(-1)^{k-2}}{2 \cdot 3 \cdots k} \mathcal{L}_S^{k-2} \left(\frac{\partial L}{\partial y^{(k)i}} \right), \\
&\vdots \\
\theta_{(k-2)i} &= \frac{1}{k-1} \frac{\partial L}{\partial y^{(k-1)i}} - \frac{1}{k(k-1)} \mathcal{L}_S \left(\frac{\partial L}{\partial y^{(k)i}} \right), \\
\theta_{(k-1)i} &= \frac{1}{k} \frac{\partial L}{\partial y^{(k)i}}.
\end{align*}

Consider d_T, the Tulczyjew operator (2.40) on $T^{2k-1}M$. L is a Lagrangian on $T^k M$ and $\partial L/\partial y^{(\alpha)i}$ are locally defined on $T^k M$, for all $\alpha \in \{1, \ldots, k\}$. Therefore, we can view

\begin{equation}
\mathcal{L}_S^\beta \left(\frac{\partial L}{\partial y^{(\alpha)i}} \right) = d_T^\beta \left(\frac{\partial L}{\partial y^{(\alpha)i}} \right),
\end{equation}

as locally defined functions on $T^{k+\beta}M$, for all $\beta \in \{1, \ldots, k-1\}$. It follows that all components $\theta_{(\alpha)i}$, $\alpha \in \{0, \ldots, k-1\}$, in formula (3.6), do not depend on the semispray S. From formula (3.5) it follows that θ_L is a semi-basic 1-form of order k, which does not depend on the semispray S.

ii) Since for all $\alpha \in \{1, \ldots, k\}$ the functions $C_\alpha(L)$ are defined on $T^k M$, it follows that we can view the functions

\begin{equation}
\mathcal{L}_S^{\alpha-1} C_\alpha(L) = d_T^{\alpha-1} C_\alpha(L)
\end{equation}

as being defined on $T^{k+\alpha-1}M$. Therefore, the right hand side of formula (3.2), and hence the energy \mathcal{E}_L, is independent of the choice of the semispray S.

In the next Lemma we discuss some geometric aspects for a Lagrangian L of order k in terms of its Poincaré-Cartan forms and the Lagrangian energy function.
If we apply i_S to both sides of formula (3.11) it follows

$$ i_S \theta_L = \sum_{\alpha=1}^{k} \frac{(-1)^{\alpha-1}}{\alpha!} i_S \mathcal{L}^{\alpha-1}_S d\rho^\alpha \omega = \sum_{\alpha=1}^{k} \frac{(-1)^{\alpha-1}}{\alpha!} \mathcal{L}^{\alpha-1}_S i_S d\rho^\alpha \omega $$

$$(3.8)$$

$$ = \sum_{\alpha=1}^{k} \frac{(-1)^{\alpha-1}}{\alpha!} \mathcal{L}^{\alpha-1}_S L^\alpha S L = \sum_{\alpha=1}^{k} \frac{(-1)^{\alpha-1}}{\alpha!} \mathcal{L}^{\alpha-1}_S \mathcal{C}_\alpha L. $$

In the above formula we did use the commutation rule $i_S d\rho^\alpha + d\rho^\alpha i_S = \mathcal{L}^\alpha S + i [J^\alpha, S]$.\cite{A.1}, as well as the fact that $J^\alpha S = C_{\alpha}$. From formula (3.8) we obtain that (3.9) is true.

iii) Using formula (3.5) and the fact that we can view $\theta_{(k-\alpha)i}$ as locally defined functions on $T^{(k+\alpha-1)} M$, it follows that

$$ 2kn \geq \text{rank}(d\theta_L) \geq 2 \sum_{\alpha=1}^{k} \text{rank} \left(\frac{\partial \theta_{(k-\alpha)i}}{\partial y^{(k+\alpha-1)i}} \right). $$

Since $\partial L/\partial y^{(k)i}$ are locally defined functions on $T^k M$, we have

$$ (3.10) \quad \mathcal{L}^\alpha_S \left(\frac{\partial L}{\partial y^{(k)} \rho_\alpha} \right) = (k + 1) \cdots (k + \alpha) y^{(k+\alpha)j} \rho_{ij} + f_\alpha, $$

for f_α locally defined functions on $T^{k+\alpha-1} M$. Using the formulae (3.7) and (3.10) and the components $\theta_{(k)i}$, of the Poincaré-Cartan 1-form θ_L it follows

$$ (3.11) \quad \frac{\partial \theta_{(k-\alpha)i}}{\partial y^{(k+\alpha-1)i}} = (-1)^{\alpha-1} (k + \alpha - 1)(k - \alpha)! \frac{(k)!}{(k)!} \rho_{ij}, \forall (k) \in \{1, \ldots, k\}. $$

Now, from formulae (3.9) and (3.11) it follows that

$$ (3.12) \quad 2kn \geq \text{rank}(d\theta_L) \geq 2k \cdot \text{rank}(g_{ij}). $$

We prove the first implication of part iii) of the lemma by contradiction. We assume that $\omega_L = -d\theta_L$ is a symplectic structure on $T^{2k-1} M$ and also that $\text{rank}(g_{ij}) < n$. It follows that there are locally defined functions X^i such that $g_{ij} X^i = 0$. It follows that the non-zero vector field $X = X^i \partial/\partial y^{(2k-1)i}$ satisfies $i_X d\theta_L = 0$, which contradicts the fact that ω_L is a symplectic structure. The converse implication of the third item of the lemma follows directly from formula (3.12). If rank$(g_{ij}) = n$ we obtain that rank$(d\theta_L) = 2n$ and hence ω_L is a symplectic structure. \qed

The components $\theta_{(k)i}$, $\alpha \in \{0, \ldots, k-1\}$, of the Poincaré-Cartan 1-form θ_L, in formula (3.6), are the Jacobi-Ostrogradski generalized momenta.\cite{24}.

The local expression (3.9) for θ_L can be written in a more compact form as follows

$$ (3.13) \quad \theta_L = \sum_{\alpha=1}^{k} (\alpha - 1)! \left(\sum_{\beta=\alpha}^{k} \frac{(-1)^{\beta-\alpha}}{\beta!} \mathcal{L}^{\beta-\alpha}_S \left(\frac{\partial L}{\partial y^{(\beta)i}} \right) \right) dy^{(\alpha-1)i}. $$

Definition 3.2. A Lagrangian L of order k is said to be regular if the Poincaré-Cartan 2-form ω_L is a symplectic 2-form on $T^{2k-1} M$.

Using part iii) of Lemma 3.1 we have that a Lagrangian L of order k is regular if and only if the Hessian matrix (3.4) has maximal rank n on $T^k M$. These regularity conditions correspond to the regularity conditions for minimal-order Lagrangians proposed by O. Krupková in \cite{23} Chapter 6].
3.2. Lagrangian semisprays. The inverse problem of the calculus of variations for systems of higher order ordinary differential equations can be formulated as follows. Under what conditions the solutions of the system (2.9) of order \(2k\) coincide with the solutions of the Euler-Lagrange equations

\[
\frac{\partial L}{\partial x^i} - \frac{1}{1!} \frac{d}{dt} \left(\frac{\partial L}{\partial y^{(1)i}} \right) + \cdots + \frac{(-1)^k}{k!} \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial y^{(k)i}} \right) = 0,
\]

for some Lagrangian \(L\) of order \(k\)? The equivalence of the two systems (2.9) and (3.14) require that the Hessian matrix (3.4), of the sought after Lagrangian \(L\) of order \(k\), has rank \(n\) and hence the Lagrangian has to be regular.

Definition 3.3. A semispray \(S\), of order \(2k-1\), is called a Lagrangian semispray if its geodesics, which are solutions to the system (2.9), for \(r = 2k-1\), are solutions to the Euler-Lagrange equations (3.14), for some regular Lagrangian \(L\) of order \(k\), defined locally on some open domain in \(T^k M\).

For a given semispray of order \(2k-1\), the Lagrangian to search for can be of order higher then \(k\) and the regularity condition can be more general, see [21, 23]. In this work, we focus our attention on Lagrangians of minimal-order and hence the regularity condition is given in Definition 3.2.

Next theorem provides a characterization for Lagrangian semisprays, in terms of semi-basic 1-forms, extending the results obtained in [5]. In [20, Thm. 3.2], Lagrangian semisprays of order \(2k-1\) are characterized in terms of a closed 2-form, extending the \(k = 1\) case, which was studied in [10]. The relationship between variational equations of an arbitrary order and closed 2-forms has been investigated in [21, 22].

Theorem 3.4. Consider \(S\) a semispray of order \(2k-1\).

i) \(S\) is a Lagrangian semispray if and only if there exists a (locally defined) regular Lagrangian \(L\) of order \(k\) such that either one, of the following equivalent two conditions, is satisfied

\[
\mathcal{L}_S \theta_L = dL, \quad i_S \omega_L = d\xi_L.
\]

ii) \(S\) is a Lagrangian semispray if and only if there exists a (locally defined) semi-basic 1-form \(\theta\) on \(T^{2k-1} M\) of order \(k\) such that \(\text{rank}(d\theta) = 2kn\) and the 1-form \(\mathcal{L}_S \theta\) is closed. In this case \(\theta\) is the Poincaré-Cartan 1-form of some locally defined regular Lagrangian \(L\) of order \(k\).

Proof. i) Using the Euler-Lagrange equations (3.14), it follows that the semispray \(S\) is Lagrangian if and only if it satisfies the equation

\[
\frac{\partial L}{\partial x^i} - \frac{1}{1!} S \left(\frac{\partial L}{\partial y^{(1)i}} \right) + \cdots + \frac{(-1)^k}{k!} S^k \left(\frac{\partial L}{\partial y^{(k)i}} \right) = 0,
\]

for some (locally defined) regular Lagrangian \(L\) of order \(k\).

In view of formula (3.3) we obtain that the two equations (3.15) are equivalent. Therefore, we will have to prove that equation (3.16) and first equation (3.15) are equivalent.
Using expression (3.13) for the Poisson-Cartan 1-form θ and the fact that \(\mathcal{L}_L \alpha dy^{(\alpha-1)i} = \alpha dy^{(\alpha)i} \) it follows
\[
\mathcal{L}_L \theta_L = \sum_{\alpha=1}^k (\alpha-1)! \left\{ \sum_{\beta=1}^k \frac{(-1)^{\beta-\alpha}}{\beta!} \mathcal{L}_S^{\beta-\alpha} \left(\frac{\partial L}{\partial y^{(\beta)i}} \right) \right\} dy^{(\alpha-1)i} + \sum_{\alpha=1}^k \frac{(-1)^{\beta-\alpha}}{\beta!} \mathcal{L}_S^{\beta-\alpha} \left(\frac{\partial L}{\partial y^{(\beta)i}} \right) dy^{(\alpha)i} \]
\[
= \sum_{\beta=1}^k \frac{(-1)^{\beta-1}}{\beta!} \mathcal{L}_S^{\beta} \left(\frac{\partial L}{\partial y^{(\beta)i}} \right) dx^i + \sum_{\alpha=1}^k \frac{\partial L}{\partial y^{(\alpha)i}} dy^{(\alpha)i}.
\]

If we use the above expression for \(\mathcal{L}_S \theta_L \) it follows that
\[
(3.17) \quad dL - \mathcal{L}_S \theta_L = \left\{ \frac{\partial L}{\partial x^i} + \sum_{\beta=1}^k \frac{(-1)^{\beta}}{\beta!} \mathcal{L}_S^{\beta} \left(\frac{\partial L}{\partial y^{(\beta)i}} \right) \right\} dx^i
\]
is a semi-basic 1-form on \(T^{2k-1}M \) of order 1. Formula (3.17) shows that equation (3.16) and first equation (3.14) are equivalent.

ii) For the direct implication of this part, we assume that \(S \) is a Lagrangian semispray. Therefore, semispray \(S \) satisfies first equation (3.14), for some regular Lagrangian \(L \) of order \(k \). We consider \(\theta = \theta_L \in \Lambda^1(T^{2k-1}M) \), its Poisson-Cartan 1-form, which is a semi-basic 1-form of order \(k \) and satisfies first equation (3.14). By Definition 3.2 we have that rank(\(\theta_L \)) = 2kn.

For the converse, let us consider \(\theta \in \Lambda^1(T^{2k-1}M) \), a semi-basic 1-form of order \(k \) such that \(\mathcal{L}_S \theta \) is a closed 1-form. Therefore \(\mathcal{L}_S \theta \) is locally exact and hence there exists \(L \), a locally defined function on \(T^{2k-1}M \), such that
\[
(3.18) \quad \mathcal{L}_S \theta = dL.
\]
We want to prove now that \(L \) is constant on the fibres \(\pi_k^{2k-1} \) and hence we can view it as a function defined on some open domain of \(T^kM \). Moreover, we will prove that \(\theta \) is the Poisson-Cartan 1-form \(\theta_L \) of \(L \). For these, as we have seen in the last part of Lemma 2.3 we need a condition weaker then (3.13), namely we will use the fact that \(\mathcal{L}_S \theta - dL \) is a semi-basic 1-form of order 1. This means that
\[
i_j \mathcal{L}_S \theta = d_j L.
\]
According to part v) of Lemma 2.3 it follows that one can restrict the function \(L \) to some open domain of \(T^kM \) and the semi-basic 1-form \(\theta \) is given by formula (3.13), where \(f = L \) and \(\alpha = k \). It follows that \(\theta \) is given by formula (3.13) and hence it is the Poisson-Cartan 1-form of the function \(L \), which means that \(\theta = \theta_L \). Using the assumption rank(\(\theta_L \)) = 2kn it follows that the Poisson-Cartan 2-form of \(L \), \(\omega_L = -d\theta_L = -d\theta \), is a symplectic structure. Hence \(L \) is a (locally defined) regular Lagrangian of order \(k \). If we replace \(\theta = \theta_L \) in formula (3.18) it follows that the semispray \(S \) satisfies first formula (3.14) for the Lagrangian \(L \). In view of the first part of the theorem it follows that the semispray \(S \) is Lagrangian.

According to Definition 3.2, we have that for a regular Lagrangian \(L \) of order \(k \), second equation (3.14) has a unique solution. This way, to each regular Lagrangian \(L \) on \(T^kM \) it corresponds a unique Lagrangian semispray \(S \in \mathcal{X}(T^{2k-1}M) \). We will refer to this semispray as to the canonical semispray (or the Euler-Lagrange vector field) associated to the Lagrangian \(L \) of order \(k \). Using the terminology introduced by Krupková in [23, Ch. 4] we can say that for a regular Lagrangian its
Euler-Lagrange distribution has a constant rank equal to one and it is spanned by the semispray S.

If we want to determine the local coefficients G^i of a Lagrangian semispray S of order $2k - 1$, we use formula (3.10) and we write equations (3.10) in the following equivalent form

\[
(3.19) \quad (-1)^k \binom{2k}{k} g_{ij} G^j = \frac{\partial L}{\partial x^i} - \frac{1}{1!} \frac{d}{dt} \left(\frac{\partial L}{\partial y^{(1)} i} \right) + \cdots + \frac{(-1)^k}{k!} \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial y^{(k)} i} \right).
\]

It follows that for a regular Lagrangian, the Hessian matrix g_{ij} is invertible and hence equations (3.19) uniquely determine the semispray coefficients G^i.

For a Lagrangian semispray S, its geodesics are solutions of the Euler-Lagrange equations (3.14). Moreover, the geodesic equations (2.9), with $r = 2k - 1$, for the Lagrangian semispray S and the Euler-Lagrange equations (3.14) are related by

\[
(3.20) \quad (-1)^k \frac{1}{k!} g_{ij} \left(\frac{d^{2k-i}}{dt^{2k}} (2k)! G^j \right) = \frac{\partial L}{\partial x^i} - \frac{1}{1!} \frac{d}{dt} \left(\frac{\partial L}{\partial y^{(1)} i} \right) + \cdots + \frac{(-1)^k}{k!} \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial y^{(k)} i} \right)
\]

where g_{ij} is the Hessian matrix (3.4). The two systems of equations (2.9) and (3.14) coincide if the Lagrangian is regular.

Next lemma presents some compatibility conditions between the geometric structures associated to a Lagrangian and the Liouville vector fields. These properties will be useful in the next section to see how the homogeneity properties of a Finsler function transfer to the induced geometric structures.

Lemma 3.5. Consider L a Lagrangian on $T^k M$ and $\theta_L \in \Lambda^1(T^{2k-1} M)$ its Poincaré-Cartan 1-form. The following formulae are true:

\[
\mathcal{L}_{C_i} \theta_L = \theta_{C_i(L)-L},
\]

\[
(3.21) \quad i_{C_i} \theta_L = \alpha! \sum_{\beta=1}^{k-\alpha} \binom{\beta-1}{\alpha} \mathcal{L}_{C_{\alpha+\beta}}(L), \quad \forall \alpha \in \{1, \ldots, k-1\},
\]

\[
i_{C_i} \theta_L = 0, \quad \forall \alpha \in \{k, \ldots, 2k-1\}.
\]

Proof. For the Lagrangian function L consider S a semispray, solution to one of the two equivalent equations (3.19), which means $\mathcal{L}_S \theta_L = dL$. If we apply \mathcal{L}_{C_1} to both sides of this formula and use the commutation rule we obtain

\[
(3.22) \quad \mathcal{L}_S \mathcal{L}_{C_1} \theta_L + \mathcal{L}_{[C_1, S]} \theta_L = dC_1(L).
\]

Using formula (2.12), it follows that $[C_1, S] = S + U_1$, for $U_1 \in \mathfrak{X}^{2k-1}(T^{2k-1} M)$. If we replace $[C_1, S]$ in formula (3.22) we obtain

\[
(3.23) \quad \mathcal{L}_S \mathcal{L}_{C_1} \theta_L = d(C_1(L) - L) - \mathcal{L}_{U_1} \theta_L.
\]

Using the local expression (3.3) of the Poincaré-Cartan 1-form θ_L and the fact that its only component that depends on $y^{(2k-1)} i$ is $\theta_{(0)i}$, which is given in formula (3.4), it follows that

\[
\mathcal{L}_{U_1} \theta_L = \mathcal{L}_{U_1}(\theta_{(0)i}) \, dx^i.
\]

Therefore $\mathcal{L}_{U_1} \theta_L$ is a semi-basic 1-form of order 1. Using formula (3.23) it follows

\[
(3.24) \quad i_J \mathcal{L}_S \mathcal{L}_{C_1} \theta_L = i_J d(C_1(L) - L).
\]

According to part v) of Lemma 2.3 it follows that $\mathcal{L}_{C_i} \theta_L$ is a semi-basic 1-form of order k. We use now part v) of Lemma 2.3 to conclude, from formula (3.24), that the semi-basic 1-form of order k, $\mathcal{L}_{C_i} \theta_L$, satisfies formula (2.23) for $\alpha = k$ and $f = C_1(L) - L$. In view of formula (3.11), this means that $\mathcal{L}_{C_i} \theta_L$ is the Poincaré-Cartan 1-form of the function $C_1(L) - L$, which is first formula (3.21).
Now, we use formula $L_S \theta_L = dL$ and compose both sides with i_J, which means that $i_J L_S \theta_L = d_J L$. Using this formula and part v) of Lemma 2.3 it follows that the semi-basic 1-form of order k, θ_L satisfies formulae (2.15) for $\alpha = k, \gamma \in \{0, ..., k-1\}$ and $f = L$, which can be written as follows

\begin{equation}
(3.25) \quad i_J \alpha \theta_L = \alpha! \sum_{\beta=1}^{k-\alpha} \frac{(-1)^{\beta-1}}{(\alpha + \beta)!} L_S^\beta d_J \alpha + \beta L, \quad \forall \alpha \in \{1, ..., k-1\}.
\end{equation}

We note that both sides in above formulae do not depend on the chosen semispray S. If we compose with i_S in both sides of formulae (3.25), we obtain formulae (3.21) for $\alpha \in \{1, ..., k-1\}$.

Since θ_L is a semi-basic 1-form of order k, it follows that there exists $\eta \in \Lambda^1(T^{2k-1}M)$ such that $\theta_L = i_J \eta$. For $\alpha \in \{k, ..., 2k-1\}$, we have that $J^k(\alpha) = 0$. Therefore, $i_{\alpha, \theta_L} = i_J(\alpha) \eta = 0$ and hence we proved all formulae (3.21). \qed

The 1-forms $i_J \alpha \theta_L \in \Lambda^1(T^{2k-1}M), \alpha \in \{0, ..., k-1\}$ are semi-basic 1-forms of order $k - \alpha$.

We prove in the next proposition that some homogeneity properties of a regular Lagrangian are inherited by its canonical semispray.

Proposition 3.6. Consider L a regular Lagrangian of order k such that $C_1(L) = aL$, for $a \neq 1$, and let S be its canonical semispray of order $2k - 1$. It follows that $[C_1, S] = S$.

Proof. Since L is a regular Lagrangian of order k it follows that the semispray $S \in \mathfrak{X}(T_0^{2k-1}M)$ is the unique solution of the second order system (3.14). Using the fact that $L_S \omega_L = 0$, it follows that

\begin{equation}
(3.26) \quad i_{[C_1,S]} \omega_L = i_{C_1} L_S \omega_L - L_S i_{C_1} \omega_L = L_S i_{C_1} d \theta_L - L_S (C_1 \theta_L - d i_{C_1} \theta_L).
\end{equation}

If we use first formula (3.21) and the homogeneity condition $C_1(L) = aL$ we obtain $L_S i_{C_1} \omega_L = (a - 1) \theta_L$. We replace this and first formula (3.15) in (3.26). It follows

\begin{equation}
(3.27) \quad i_{[C_1,S]} \omega_L = (a - 1) L_S \theta_L - d L_S i_{C_1} \theta_L = (a - 1) dL - d L_S i_{C_1} \theta_L.
\end{equation}

Using second formula (3.21), for $\alpha = 1$, we obtain the following expression for the energy Lagrangian function E_L, which is given by formula (3.2)

\begin{equation}
(3.28) \quad E_L = C_1(L) - L_S i_{C_1} \theta_L - L = (a - 1) L - L_S i_{C_1} \theta_L.
\end{equation}

We replace the expression for $L_S i_{C_1} \theta_L$ from above formula in (3.21) and obtain

\begin{equation}
(3.29) \quad i_{[C_1,S]} \omega_L = d E_L = i_S \omega_L.
\end{equation}

Since ω_L is a symplectic structure it follows that $[C_1, S] = S$. \qed

For the case $k = 1$, above formulae show that the homogeneity of a regular Lagrangian transfers to the canonical Euler-Lagrange vector field, which makes it into a spray.

4. **Projective metrizability for homogeneous higher order differential equation fields**

A particular aspect of the inverse problem of the calculus of variations deals with homogeneous systems of differential equations. For $k = 1$, this problem is known as the projective metrizability problem, or as the Finslerian version of Hilbert’s fourth problem [1, 11, 12, 37, 40]. The most important aspect that is needed to formulate and address the projective metrizability problem for $k > 1$ relies on a correct definition of homogeneity for systems of higher order differential equations and corresponding Lagrangians. We believe that such definition of homogeneity is that proposed by Crampin and Saunders in [13], which we use in this paper. In this section we formulate and discuss some aspects regarding the projective metrizability problem for the case $k > 1$, extending some results obtained in [5, 7] for $k = 1$.

13
4.1. Higher order Finsler spaces. For \(k = 1 \), a Finsler function is characterized by the following important aspect: its variational problem uniquely determines a class of projectively related systems of second order ordinary differential equations. This property is due to the fact that a Finsler function satisfies some homogeneity condition and a regularity condition. Inspired by the work of Crampin and Saunders [15], we propose the following definition for a Finsler function of order \(k > 1 \).

Definition 4.1. A positive function \(F \in C^\infty(T_0^k M) \) is called a {Finsler function of order \(k \)} if

i) it satisfies the Zermelo conditions:

\[
C_1(F) = F, \quad C_\alpha(F) = 0, \quad \forall \alpha \in \{2, \ldots, k\}, \tag{4.1}
\]

ii) the tensor with components

\[
h_{ij} = F^{2k-1} \frac{\partial^2 F}{\partial y^{(k)i} \partial y^{(k)j}} \tag{4.2}
\]

has rank \(n - 1 \) on \(T_0^k M \).

A Lagrangian \(L \) on \(T_0^k M \) that satisfies the Zermelo conditions (4.1) in Definition 4.1 is called ***parametric Lagrangian*** in [15] §4 since the solutions of the corresponding variational problem are invariant under orientation preserving reparameterization. The Zermelo conditions and the invariance under reparameterizations for the integral curves of some higher order differential equations, as well as their relation with the variational equations related to Finsler geometry, has been studied very recently by Urban and Krupka in [43].

Spaces with functions that satisfy the Zermelo conditions (4.1) as well as the regularity condition ii) of Definition 4.1 where studied by Kawaguchi, [18], and also referred to as ***Kawaguchi spaces***.

Definition 4.1 reduces to the classic definition of a Finsler space when \(k = 1 \), and the tensor (4.2) becomes the angular metric tensor [28, §16]. Indeed, if \(k = 1 \), we have that the tensor (4.2) satisfies

\[
h_{ij} = \frac{1}{2} \frac{\partial^2 F}{\partial y^i \partial y^j} = \frac{\partial F}{\partial y^i} \frac{\partial F}{\partial y^j}.
\]

It is well known that rank\((h_{ij}) = n - 1 \) if and only if rank\((\partial^2 F^2/\partial y^i \partial y^j) = n \), [28] §16). Due to a recent result by Lovas [27], the regularity condition rank\((\partial^2 F^2/\partial y^i \partial y^j) = n \) and the positivity of the Finsler function \(F \) is equivalent to the fact that Hessian matrix of \(F^2 \), \(g_{ij} = \partial^2 F^2/\partial y^i \partial y^j \) is positive definite. Using [12] Section 3 or [37] Section 3 the Hessian matrix of \(F^2 \) is positive definite if and only if the Hessian matrix of \(F \) is positive quasi-definite.

Definition 4.2. A 1-form \(\theta \in \Lambda^1(T_0^{2k-1} M) \) is called ***homogeneous*** if it satisfies the formulae

\[
i_{C_\alpha} \theta = 0, \quad \mathcal{L}_{C_\alpha} \theta = 0, \quad \forall \alpha \in \{1, \ldots, 2k - 1\}. \tag{4.3}
\]

Due to the homogeneity conditions of a Finsler function of order \(k \), the energy function \(\mathcal{E}_F \) and the Poincaré-Cartan forms \(\theta_F \) and \(\omega_F = -d\theta_F \) have special properties. These properties are presented in the next lemma.

Last part of the next lemma also shows that the regularity condition ii) in Definition 4.1 is equivalent to rank\((d\theta_F) = 2k(n - 1) \), which is the regularity condition for parametric Lagrangians considered by Crampin and Saunders in [15].

Lemma 4.3. Consider \(F \in C^\infty(T_0^k M) \) a positive function that satisfies the Zermelo conditions (4.1) and \(S \in \mathfrak{X}(T_0^{2k-1} M) \) a semispray, solution of the equation \(\mathcal{L}_S \theta_F = dF \).

i) The Poincaré-Cartan 1-form \(\theta_F \) satisfies the homogeneity conditions (4.3).
ii) The following formulae are true

\begin{align*}
(4.4) \quad i_S \theta_F &= F, \quad \mathcal{E}_F = 0.
(4.5) \quad i_{C_\alpha} \omega_F &= 0, \quad \forall \alpha \in \{1, \ldots, 2k-1\}.
\end{align*}

iii) \textit{F is a Finsler function of order } k \textit{if and only if } \text{rank}(d\theta_F) = 2k(n-1).

\textbf{Proof.} Using second formulae (3.21) it follows \(i_{C_\alpha} \theta_F = 0\) if and only if \(C_{\alpha+1}(F) = 0\) for all \(\alpha \in \{1, \ldots, k-1\}\).

Since \(F\) satisfies the Zermelo conditions (4.1) it follows \(i_{C_\alpha} \theta_F = 0\) for all \(\alpha \in \{1, \ldots, k-1\}\). Last formulae (3.21) show that \(i_{C_\alpha} \theta_F = 0\) for all \(\alpha \in \{k, \ldots, 2k-1\}\).

First formula (3.21) shows that the Zermelo condition \(C_1(F) = F\) implies \(L_{C_1} \theta_F = 0\). \(S \in \mathfrak{X}(T_0^{2k-1}M)\) is a semispray and satisfies the equation \(L_S \theta_F = dF\). For \(\alpha \geq 2\), we apply \(L_{C_\alpha}\) to both sides of this equation. It follows

\begin{equation}
(4.6) \quad L_S L_{C_\alpha} \theta_F + L_{[C_\alpha, S]} \theta_F = d L_{C_\alpha}(F) = 0.
\end{equation}

Using formula (2.12), for each \(\alpha \in \{2, \ldots, 2k-1\}\) there exists \(U_\alpha \in \mathfrak{X}^{V_{2k-1}}(T_0^{2k-1}M)\) such that \([C_\alpha, S] = \alpha C_{\alpha-1} + U_\alpha\). We replace this in formula (4.6) and obtain

\begin{equation}
(4.7) \quad L_S L_{C_\alpha} \theta_F + \alpha L_{C_{\alpha-1}} \theta_F = -L_{U_\alpha} \theta_F, \forall \alpha \in \{2, \ldots, 2k-1\}.
\end{equation}

Using a similar argument that we have used in the proof of Lemma 3.5 it follows that \(L_{U_\alpha} \theta_F\) are semi-basic 1-forms of order 1, for all \(\alpha \in \{2, \ldots, 2k-1\}\). For \(\alpha = 2\), in formula (1.7), it follows that \(L_S L_{C_2} \theta_F\) is a semi-basic 1-form of order 1. Item v) of Lemma 2.3 implies \(L_{C_2} \theta_F = 0\). We continue with \(\alpha \in \{3, \ldots, 2k-1\}\) in formula (1.7), use a similar argument as above, and obtain \(L_{C_\alpha} \theta_F = 0\).

For \(\theta_F\), the Poincaré-Cartan 1-form of a Finsler function \(F\), given by formula (3.21), we use formula (3.21), as well as the Zermelo conditions (4.1), to obtain \(i_S \theta_F = C_1(F) = F\), which is first formula (4.4). These considerations and formula (3.21) imply that second formula (4.4) is true.

The Poincaré-Cartan 1-form is homogeneous, which means that it satisfies formulae (4.3). The two formulae (4.3) imply that formulae (4.5) are true as well.

iii) We have seen already that the \(\{S, C_1, \ldots, C_{2k-1}\} \subset \text{Ker} \omega_F\). Based on this aspect and using a similar argument we did use for the proof of third item in Lemma 3.1 formula (3.9) has the following correspondent

\begin{equation}
(4.8) \quad 2k(n-1) \geq \text{rank}(\omega_F) \geq 2k \cdot \text{rank}(h_{ij}).
\end{equation}

We assume now that \(F\) is a Finsler function of order \(k\), which means that it satisfies the regularity condition ii) of Definition 4.1. From formula (4.8) it follows that \(\text{rank}(\omega_F) = 2k(n-1)\), which is the regularity condition for parametric Lagrangians in [15].

We prove the other implication by contradiction. We assume that \(\text{rank}(\omega_F) = 2k(n-1)\) and that \(\text{rank}(h_{ij}) < (n-1)\). From the Zermelo condition \(C_k(F) = 0\) we obtain that \(h_{ij} y^{(1)j} = 0\). Therefore, in view of our assumption, there exist the functions \(X^j \neq P y^{(1)j}\) that satisfy \(h_{ij} X^j = 0\). It follows that the non-zero vector field \(X = X^j \partial/\partial y^{(2k-1)j}\) satisfies \(i_X \omega_F\), which contradicts the assumption that \(\text{rank}(\omega_F) = 2k(n-1)\). \(\square\)

The homogeneity properties of the Poincaré-Cartan forms \(\theta_F\) and \(\omega_F\) were proven in a different context in Proposition 6.1 and Theorem 6.4 of [14].

4.2. Higher order projective metrizability. In this subsection we formulate and discuss the projective metrizability problem for homogeneous higher order systems. We show first that the variational problem of a Finsler function of order \(k\) uniquely determines a projective class of homogeneous higher order systems. Then, we characterize the metrizability of a homogeneous higher order systems in terms of some homogeneous semi-basic 1-forms.
Lemma 4.3 we have rank \((1)\) is a homogeneous, semi-basic homogeneous semisprays \(S\) are given by

\[
\frac{\partial F}{\partial x^i} - \frac{1}{1!} S \left(\frac{\partial F}{\partial y^{(1)i}} \right) + \cdots + \frac{(-1)^k}{k!} S^k \left(\frac{\partial F}{\partial y^{(k)i}} \right) = 0,
\]

for some (locally defined) Finsler function \(F\) of order \(k\).

The variational problem for a regular Lagrangian on \(T^k M\) uniquely determines a Lagrangian semispray of order \(2k - 1\). In Theorem 3.4, it follows that equation (4.10) is equivalent to first equation (4.9).

Theorem 4.5. Consider \(S\) a homogeneous semispray of order \(2k - 1\).

i) \(S\) is projectively metrizable if and only if it satisfies either one of the following equivalent two equations

\[
\mathcal{L}_S \theta_F = dF, \quad i_S \omega_F = 0,
\]

for some (locally defined) Finsler functions \(F\) of order \(k\).

ii) \(S\) is projectively metrizable if and only if there exists a (locally defined) homogeneous semi-basic 1-form \(\theta\) on \(T^{2k-1} M\) of order \(k\), such \(\text{rank}(d\theta) = 2k(n-1)\) and the 1-form \(\mathcal{L}_S \theta\) is closed.

Proof. i) In view of the two formulae (4.4) we have that the two equations (4.9) are equivalent.

For the direct implication, we assume that \(S\) is projectively metrizable. Then, the semispray \(S\) satisfies the equation

\[
\frac{\partial F}{\partial x^i} - \frac{1}{1!} S \left(\frac{\partial F}{\partial y^{(1)i}} \right) + \cdots + \frac{(-1)^k}{k!} S^k \left(\frac{\partial F}{\partial y^{(k)i}} \right) = 0,
\]

for some Finsler function \(F\) on \(T^k M\). Using similar arguments as we did use in the proof of Theorem 3.4 it follows that equation (4.10) is equivalent to first equation (4.9).

For the converse implication, consider \(F\) a Finsler function of order \(k\). We assume that the semispray \(S\) is a solution of the second equation (4.9). Locally, first equation (4.9) is equivalent to

\[
(−1)^k \left(\frac{2k}{k}\right) h_{ij} G^j = \frac{\partial F}{\partial x^i} - \frac{1}{1!} d_T \left(\frac{\partial F}{\partial y^{(1)i}} \right) + \cdots + \frac{(-1)^k}{k!} d^T \left(\frac{\partial F}{\partial y^{(k)i}} \right).
\]

It follows that two homogeneous semisprays \(S_1\) and \(S_2\) are solutions of either one of the two equations (4.9) if and only if the semispray coefficients \(G^j_1\) and \(G^j_2\) satisfy

\[
h_{ij} (G^j_1 - G^j_2) = 0.
\]

The regularity condition for the Finsler function \(F\) implies that the only solutions of equation (4.12) are given by \(G^j_1 - G^j_2 = P y^{(1)i}\), for some function \(P \in C^\infty(T^k_0 M)\), and hence the two homogeneous semisprays \(S_1\) and \(S_2\) are projectively equivalent. Therefore, equations (4.9) uniquely determine the projective class of a homogeneous semispray \(S\), and this homogeneous semispray is projectively metrizable.

ii) For the first implication we assume that the homogeneous semispray \(S\) is projectively metrizable. Therefore, it satisfies first equation (4.9), for some (locally defined) Finsler function \(F\) of order \(k\). We consider \(\theta = \theta_F\), the Poincaré-Cartan 1-form of \(F\). We have that \(\theta \in \Lambda^1(T^k_0 M)\) is a homogeneous, semi-basic 1-form of order \(k\), the 1-form \(\mathcal{L}_S \theta\) is closed, and according to iii) of Lemma 4.3 we have \(\text{rank}(d\theta) = 2k(n-1)\).
Since \(k \), such \(\text{rank}(d\theta) = 2k(n - 1) \) and \(\mathcal{L}S\theta \) is a closed 1-form.

We will prove first that the condition \(\mathcal{L}S\theta \) is closed implies \(\mathcal{L}S\theta = d\theta \). Since \(S \) is a homogeneous semispray of order \(2k - 1 \) it follows [\(J, S \)]\(S = S + P_1C_{2k-1} \), for some function \(P_1 \in C^\infty(T_0^{2k-1}M) \). Due to the homogeneity of the semi-basic 1-form \(\theta \) it follows that \(\mathcal{L}P_1C_{2k-1} = 0 \). Using the commutation rule and the fact that \(F \) is constant along the fibres of the projection \(\pi_0 \), it follows that its characteristic distribution \(D = \mathcal{L}S\theta \) is involutive and hence \(\mathcal{L}S\theta = d\theta \). Since \(\theta \) is a semi-basic 1-form of order \(k \) it follows that for \(k \geq 2 \) the 1-form \(\mathcal{L}S\theta \) is semi-basic of order \(k + 1 \leq 2k - 1 \). Using formula (2.14) for \(\beta = 1 \) and the commutation rule [17] 1c, p.205 it follows

\[
(4.13) \quad \mathcal{L}S\theta = \mathcal{L}[J,S]\theta = i_Sd[J,S]\theta + d[J,S]i_S\theta + i_{[J,S]}\theta = \theta.
\]

Since \(\theta \) is a semi-basic 1-form of order \(k \) it follows that for \(k \leq 2 \) the 1-form \(\mathcal{L}S\theta \) is semi-basic of order \(k + 1 \leq 2k - 1 \). Using formula (2.14) for \(\beta = 1 \) and the commutation rule (17) 1c, p.205 it follows

\[
(4.14) \quad i_{[J,S]}\theta = i_{[J,S]}\mathcal{L}S\theta - \mathcal{L}i_{[J,S]}\theta = \mathcal{L}S\theta - \mathcal{L}S\theta = 0.
\]

If we replace now formulae (4.14) and the fact that \(dF \) is a closed form, we have to prove now that the function \(F \) is a Finsler function. From the first formula (3.21) and the fact that \(dF \) is a closed form, we obtain \(\mathcal{L}S\theta = d\theta \). Consider the function \(F = i_S\theta \). Above formula shows that the function \(F \) satisfies formula (3.18), for \(L = F \), which means \(\mathcal{L}S\theta = d\theta \). Since \(\mathcal{L}S\theta \in \Lambda^1(T_0^{2k-1}M) \) is semi-basic of order \((k + 1) \), it follows that the function \(F \) is constant along the fibres of the projection \(\pi_0^{2k-1} : T_0^{2k-1}M \to T_0M \) and hence we can assume that \(F \in C^\infty(T_0M) \). Using part v) of Lemma 2.3 we obtain that \(\theta = \theta_F \).

We have to prove now that the function \(F \) is a Finsler function. From the first formula (3.21) it follows that \(i_{\omega_F} = \theta_F = 0 \) and only if \(C_{\alpha+1}(F) = 0 \) for all \(\alpha \in \{ 1, ..., k-1 \} \). Since \(\theta \) is homogeneous, we obtain \(C_2(F) = \cdots = C_k(F) = 0 \). These arguments, the definition of function \(F \) and formula (3.21) imply \(F = i_{\omega_F} = C_1(F) \). It follows that Zermelo conditions are satisfied. Finally, we have that \(\text{rank}(d\theta) = 2k(n - 1) \), and using part iii) of Lemma 1.3 implies that \(F \) is a Finsler function of order \(k \). Now the condition \(\mathcal{L}S\theta_F = d\theta \) says that \(S \) is projectively metrizable.

For \(k = 1 \), second equation (4.18) reduces to Rapcsák equation [40] Rap 1.

We note that for the converse implication of the first part of Theorem 1.5 we do not need the requirement that the semispray \(S \) is homogeneous. The argument is as follows, and it is due to Crampin and Saunders [15] Thm. 4.4]. For a semispray \(S \), solution of second equation (1.9), using formula (4.5) it follows that \(D = \mathcal{L}S\theta_F = \mathcal{L}S\theta = d\theta \). Since the Poincaré-Cartan 2-form \(\omega_F = -d\theta_F \) is closed it follows that its characteristic distribution \(D \) is involutive and hence \(S \) is a homogeneous semispray.

5. Examples

For a Finsler function \(F \), of order \(k \geq 1 \), its variational problem uniquely determines a projective class of homogeneous semisprays, solutions of either one of the two equivalent equations (1.9).

For \(k = 1 \), in this projective class of homogeneous semisprays, we can single out one spray, which is called the geodesic spray. The geodesic spray is the only semispray determined by the variational problem of the regular Lagrangian \(L = F^2 \). Moreover, the geodesic spray is the only spray, in the
projective class determined by the Finsler function F, whose geodesics are parameterized by arc-length.

When $k > 1$, we do not know yet if it is possible, and eventually how, to associate to a Finsler function F of order k, a regular Lagrangian of order k. Therefore, the only option to fix a homogeneous semispray, which was suggested to me by David Saunders, in the projective class determined by the variational problem of F, is to use the arc-length induced by F.

Next we use some examples to discuss the above considerations as well as the results obtained in the previous sections.

For a Riemannian metric $g_{ij}(x)$ on a manifold M, consider the functions $L_1, F_1 : T^2M \to \mathbb{R}$, given by

\[(5.1) L_1(x, y^{(1)}) = \frac{1}{2} g_{ij}(x) y^{(1)i} y^{(1)j} = \frac{1}{2} \|y^{(1)}\|^2, \quad F_1(x, y^{(1)}) = \sqrt{g_{ij}(x) y^{(1)i} y^{(1)j}} = \|y^{(1)}\|_g. \]

L_1 is a regular Lagrangian of order one, its Hessian matrix, given by formula \[5.2\], is just the Riemannian metric $g_{ij}(x)$. The variational problem for L_1 uniquely determines a spray $S_1 \in \mathfrak{X}(T^2M)$, which is the geodesic spray for the Riemannian metric $g_{ij}(x)$. The geodesic spray S_1 is uniquely determined by either one of the two equations \[3.15\], for $k = 1$, and it is given by

\[(5.2) \quad S_1 = y^{(1)i} \frac{\partial}{\partial x^i} - \gamma_{jk}^i(x) y^{(1)j} y^{(1)k} \frac{\partial}{\partial y^{(1)i}}, \]

where $\gamma_{jk}^i(x)$ are the Christoffel symbols of the Riemannian metric $g_{ij}(x)$.

F_1 is a Finsler function of order one, its angular metric tensor, given by formula \[4.2\], is related to the Riemannian metric as follows

\[(5.3) \quad h_{ij}^{(1)}(x, y^{(1)}) = F_1 \frac{\partial^2 F_1}{\partial y^{(1)i} \partial y^{(1)j}} = g_{ij}(x) - \frac{\partial F_1}{\partial y^{(1)i}}(x, y^{(1)}) \frac{\partial F_1}{\partial y^{(1)j}}(x, y^{(1)}). \]

We have that $\text{rank}(h_{ij}^{(1)}) = n - 1$ and the variational problem for F_1 uniquely determines the projective class of the geodesic spray S_1. Within this projective class, S_1 is the only spray whose geodesics are parameterized by the arc-length of the given riemannian metric g.

On the second order tangent bundle T^2M, we consider the locally defined functions

\[z^{(2)i}(x, y^{(1)}, y^{(2)}) = y^{(2)i} + \frac{1}{2} \gamma_{jk}^i(x) y^{(1)j} y^{(1)k}. \]

It follows that $z^{(2)i}$ behave as the components of a vector field on M. These components were interpreted as the covariant form of acceleration in \[6\] (6.5), as half of the components of the tension field in \[9\]. It follows that the function $L_2 : T^2M \to \mathbb{R}$, given by

\[L_2(x, y^{(1)}, y^{(2)}) = \frac{1}{2} g_{ij}(x) z^{(2)i}(x, y^{(1)}, y^{(2)}) z^{(2)j}(x, y^{(1)}, y^{(2)}) = \frac{1}{2} \|z^{(2)}\|^2_g, \]

is a second order regular Lagrangian. The Hessian matrix of L_2, given by formula \[8.4\], is the Riemannian metric g_{ij}. The variational problem for L_2 uniquely determines a semispray of order 3, $S_3 \in \mathfrak{X}(T^2M)$, whose geodesics are biharmonic curves \[9\]. We call S_3 the biharmonic semispray and it is uniquely determined by either one of the two equivalent equations \[8.15\]. The local coefficients of the biharmonic semispray can be determined as in \[4\] (4.6), while the biharmonic equations can be written as in \[4\] (4.8).

For the second order Lagrangian L_2, the following homogeneity properties are true:

\[(5.4) \quad C_1(L_2) = 4L_2, \quad C_2(L_2) = g_{ij}(x) z^{(2)i} y^{(1)j} = \frac{1}{2} S_1(L_1). \]
Using Proposition 3.6 it follows that the biharmonic semispray S_3 satisfies the homogeneity condition $[C_1, S_3] = S_3$. However, the biharmonic semispray S_3 is not a homogenous semispray since it does not satisfy the equation \([28] \) for $\alpha = 3$.

Consider the function $F_2 : T_0^2 M \to \mathbb{R}$,

\[
F_2 = \frac{2F^2_1 L_2 - (C_2(L_2))^2}{F^3_1} = \frac{\|z^{(2)}\|^2 \|y^{(1)}\|^2 - (g_{ij}y^{(1)i}z^{(2)j})^2}{\|y^{(1)}\|^5}.
\]

The numerator of the right hand side of the above formula is $\|z^{(2)}\|^2 \|y^{(1)}\|^2 - (g_{ij}y^{(1)i}z^{(2)j})^2 \geq 0$, and hence $F_2 \geq 0$ on $T_0^2 M$. Using the homogeneity properties \([5.7]\) of the Lagrangian L_2, we obtain that F_2 satisfies the Zermelo conditions \([4.1]\), for $k = 2$. Moreover, the tensor \([5.2]\) that corresponds to F_2 is given by

\[
(5.6) \quad h_{ij}^{(2)} = F_2^3 \frac{\partial^2 F_2}{\partial y^{(2)i} \partial y^{(2)j}} = 2 \left(\frac{F_2}{F_1} \right)^3 h_{ij}^{(1)}.
\]

It follows that $\text{rank}(h_{ij}^{(2)}) = \text{rank}(h_{ij}^{(1)}) = n - 1$ and therefore F_2 is a Finsler function of order 2. Using formulae \([5.3]\), \([5.5]\), and \([5.4]\), it follows that one can recover the Finsler function of order 2, F_2, from either one of the angular metrics $h_{ij}^{(1)}$ or $h_{ij}^{(2)}$ as follows

\[
F_2(x, y^{(1)}, y^{(2)}) = \frac{1}{F_1^3} h_{ij}^{(1)}(x, y^{(1)}) z^{(2)i} z^{(2)j} = \sqrt{\frac{1}{2} h_{ij}^{(2)}(x, y^{(1)}, y^{(2)}) z^{(2)i} z^{(2)j}}.
\]

In the Euclidean context, F_2 reduces to the parametric Lagrangian considered by Crampin and Saunders in \([13]\). The function $F_2/F_1 \in C^\infty(T_0^2 M)$, which connects the angular metrics of the two Finsler functions, is related to the first curvature κ of a curve. Indeed we have $F_2/F_1 = \kappa^2$. See also formula (39) in \([29]\) for $A = 0$.

The variational problem for F_2 uniquely determines a system of fourth order differential equations, which is invariant under orientation preserving reparameterizations. By fixing the parameter to be the arc-length, the system reduces to the dynamical equation of motion \((38)\) studied by Matsyu \([29]\). In the Euclidean context, a homogeneous semispray, in the projective class determined by the variational problem of F_2 was obtained in \([13]\).

Acknowledgement. The author expresses his thanks to the reviewers for their comments and suggestions, especially to those regarding the regularity condition for higher order Lagrange and Finsler functions.

This work has been supported by the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-RU-TE-2011-3-0017.

References

[1] J.C. Álvarez Paiva, Symplectic geometry and Hilbert’s fourth problem, J. Differential Geom., 69(2005), 353–378.
[2] I. Anderson and G. Thompson, The inverse problem of the calculus of variations for ordinary differential equations, Mem. Amer. Math. Soc., 98 (473) (1992), 1–110.
[3] L.C. Andres, M. de León and M. Rodríguez, Connections on tangent bundles of higher order associated to regular Lagrangians, Geom. Dedicata, 39 (1991), 17–28.
[4] I. Bucataru, O.A. Constantinescu and M.F. Dahl, A geometric setting for systems of ordinary differential equations, Int. J. Geom. Methods Mod. Phys., 8 (6) (2011), 1291–1327.
[5] I. Bucataru and M.F. Dahl, M.F, Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations, J. Geom. Mech., 1 (2) (2009), 159–180.
[6] I. Bucataru and R. Miron, The geometry of systems of third order differential equations induced by second order Lagrangians, Mediterr. J. Math., 6 (4) (2009), 483–500.
[39] J. Szilasi, *A setting for spray and Finsler geometry*, in “Handbook of Finsler geometry” (ed. P.L. Antonelli), Kluwer Acad. Publ., Dordrecht, Vol. 2, 2003, 1183–1426.

[40] J. Szilasi, *Calculus along the tangent bundle projection and projective metrizability*, in “Differential Geometry and its Applications”, Proceedings of the 10th International Conference on DGA2007, World Scientific (2008), 527–546.

[41] J. Szilasi and S. Vattamány, *On the Finsler-metrizabilities of spray manifolds*, Period. Math. Hungar., 44 (2002), 81–100.

[42] W.M. Tulczyjew, *The Lagrange differential*, Bull. Acad. Polon. Sci., 24 (1976), 1089–1096.

[43] Z. Urban and D. Krupka, *The Zermelo conditions and higher order homogeneous functions*, Publ. Math. Debrecen, 82(1)(2013), 59–76.

Ioan Bucataru, Faculty of Mathematics, University Alexandru Ioan Cuza, Iași, 700506, Romania

URL: http://www.math.uaic.ro/~bucataru/