Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health — A review

Qasim Ali1,2,3, Sen Ma1,2,3,a, Shaokai La1, Zhiguo Guo1, Boshuai Liu1, Zimin Gao1, Umar Farooq4, Zhichang Wang1,2,3, Xiaoyan Zhu1,2,3, Yalei Cui1,2,3, Defeng Li1,2,3, and Yinghua Shi1,2,3,

Abstract: The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.

Keywords: Dietary Fibers; G-protein-coupled Receptors; Gut Microbiota; Histone Deacetylases; Short-chain Fatty Acids

INTRODUCTION

The development of the gastrointestinal tract (GIT) starts at an early embryonic stage where certain factors including dam, diet, and environment affect its formation. During embryonic development, several species of microflora from the hen’s reproductive tract and eggshell moved to the embryo, and soon after birth, they start multiplying rapidly while certain other bacterial species and microorganisms from eggshells, environment, and feed also join existing microbiota and start colonization in certain parts of GIT [1]. Among the bacterial species, many acts as beneficial for the host and play important role in several physiological processes such as nutrient absorption, metabolism, tissue development, immune homeostasis, and maintaining overall health [2]. Microflora regulates these processes by the production of different metabolites such as short-chain fatty acids...
(SCFAs) which are mainly produced by colonic anaerobic bacterial fermentation of dietary fibers (DFs) [3]. The SCFAs are chemically composed of hydrocarbon chains and carboxylic acid moiety [4]. In poultry, the most frequently studied SCFAs are the acetate, propionate, and butyrate with two, three, and four carbon molecules in their chemical structure while their effect on several systems has been accentuated both at cellular and molecular levels [5].

In the past two decades, there has been immense research on optimizing poultry gut health by modulating intestinal microbiota through dietary interventions, and in this regard, DFs seemed important [6]. There is a difference between single and compound stomach animal species for the digestion of fibers. Unlike compound stomach animals, the microbial fermentation of DFs in single stomach animals like chicken mainly takes place in the hindgut though each part of GIT harbors its own specific microbiota. The DFs greatly affect the poultry’s gut physiology by modulating its microbiota and eliminating solid waste products [7]. Previously localization of different microbiome in GIT has been described in chicken [8] however the interaction between DFs and gut microbiota has received little attention [9]. Similarly, there is also a need to focus on interaction between DFs, mucus, and epithelial cells which play a central role in development of physicochemical and immunological barriers to restrain the microbiota and to halt invading pathogens, antigens, microbial populations, and toxins [10].

In this review, we have focused on clear and recent narrations of the microbially-derived SCFAs on host tissues as well as their cellular and molecular mechanisms. For this, we have mainly focused on different sources of DFs, their interrelationship with microbiota, and their influence on mucus. For better understanding, we have summarized the intestinal epithelial cell (IEC) polarity, generation mechanisms, and transportation of microbially-derived SCFAs, and their role in modulating physiophysiological changes in the gut, histone deacetylases (HDACs) inhibition, and pro-and anti-inflammatory consequences on immune cells.

TYPES OF DIETARY FIBERS AND THEIR IMPACT ON GASTROINTESTINAL TRACT

Dietary fibers are homogenous or heterogenous carbohydrate polymers with three or more monomeric units. They are resilient to digestion by host endogenous enzymes and belong to the following three categories: i) present naturally in the foods and available to the farm animals (i.e. cereals, legumes, etc.), ii) acquired from raw food materials via chemical, enzymatic, and physical means and iii) synthetic ones such as polydextrose. The DFs can also be defined based on their chemical composition and nutritional functions such that chemically they are the sum of lignin and non-starch polysaccharides while nutritionally they are the carbohydrates indigestible by host endogenous enzymes [11]. DFs are also categorized depending upon their primary food sources, water-solubility, chemical structure, and degree of fermentation. They are subdivided into resistant starch (RS), resistant oligosaccharides, polysaccharides, soluble and insoluble forms [12]. All types of fiber, however, do not exist in the same category of food such as RS only exists in cereals and legumes, while arabinoxylans and β-glucans are found only in cereals [13]. In the upper part of the GIT, RS withstands enzymatic digestion in pigs, so their digestion takes place in the hindgut where they yield butyrate-producing *Bifidobacterium adolescentis*, *Parabacteroides distasonis*, *Fae­calibacterium prausnitzii*, and total SCFAs [14].

The most useful sources of DFs that modulate the poultry gut microbiota and contribute to poultry health are given in Table 1. Inulin supplementation had been shown to improve host gut inflammatory responses and gut health through promoting *Lactobacilli* and *Bifidobacteria* colonization and increasing SCFAs production largely butyrate, acetate, and propionate in broilers which exert antibacterial properties to combat *Salmonella* infection in chicks [15]. In addition, the intake of dietary fructooligosaccharide enhances the production of SCFAs and reduces the colonization of *Salmonella* spp., *Clostridia perfringens*, and *Escherichia coli* in broiler chickens [16]. Similarly, supplementation of cellulose affects the composition of microbiota at a level of phylum *Bac­teroidetes* and genus *Alistipes* in the cecum of Saanen goats [17], whereas this genus may improve the performance of broilers by producing succinate as an end product [18]. Ara­binosyl utilization by ducks had increased the stimulation of *Megamonas* and *Bifidobacterium* spp., which further resulted in increased concentration of SCFAs (butyrate, acetate, and propionate) and branch-chain fatty acids (isobutyric acids) [19]. The fermentation of DFs in poultry depends on their physico-chemical properties and the matrix. Most of the DFs such as pectin does not cause fecal bulking effect and are gradually fermented by the gut microbes to produce SCFAs however, several insoluble forms such as cellulose, hemicel­lulose, and lignin cause fecal bulking effects and are either partly digested by the gut microbes in intestine or excreted as such. Similarly, some of the soluble non-starch polysaccharides polymers with high molecular weight (i.e. β-glucans, guar gum, psyllium, and pectin) are viscid and form a gel-like structure in the intestinal tract and influence the postprandial metabolism of lipids and delay glucose absorption in humans and pigs [12].

It is suggested that young birds should be fed on low levels of DFs (less than 1.5%) diets because high levels decrease nutrient digestibility in early life period and increase transit speed of digesta [20]. During growing phase, however, inclu-
Mechanisms and action
Ingestion of chitin (1.02 g/d) by hens throughout 21
Derived from inulin hydrol
α-(1,4)-D-glucose and
α-(1,6)-D-galactose
Bifidobacterium
Sources
β-(1,4)-D-mannose
Bifidobacterium
Bifidobacteria
Gum Arabic fermentation in the large intestine of
broiler chickens [104].
The fermentation end products of prebiotic (B-galacto-
mannan) are the acetate, butyrate, and propionates in
humans. B-galactomannan ingestion enhanced mucous
production which halted the access of S. Enteritidis to
the epithelium in chickens [102].

Table 1. Sources, chemical composition, and mechanisms and action of dietary fibers

Dietary fiber	Chemical composition	Fermentation bacteria	Mechanisms and action	Sources
Cellulose	β-(1-4) D-glucose	Alistipes spp. and Bacteroidetes bacteria	The supplementation of cellulose changed the compo-	
sition of microbiota at a level of phylum Bacteroidetes				
particularly the Alistipes genus in the cecum of broilers.				
This genus may improve the performance of broilers by				
producing succinate as an end product [18].	All plants, particularly cot-			
tom, some bacteria, and algae				
Chitin	β-(1-4) N-acetyl D-glucose	Oscillospira	Ingestion of chitin (1.02 g/d) by hens throughout 21	
weeks of age, enhanced the SCFA production and				
decreased the triglyceride content in serum and choles-				
terol content in serum and egg yolks [97].	Shells of crustaceans, in-			
sects, antipodans, yeast, and fungi				
Chitosan	β-(1-4) N-acetyl D-glu-			
cosamine and β-(1,4) D-glucosamine	Bifidobacterium spp. and Lactobacillus spp.	Chitosan oligosaccharides ingestion in mice increased		
SCFAs production that resulted in decreased S. aureus,				
E. coli, non-typhoidal Salmonella, Listeria spp., Vibrio spp.,				
B. Cereus, and Campylobacter spp. [98].	The exoskeleton of			
crustaceans and ceil				
walls of fungus but mostly				
produced by the deacetyl-				
at of chitin				
Lignin	Polymeric p-coumaryl,			
coniferyl, sinapyl, syringyl,				
and guaiacyl alcohols	Bifidobacteria	Application of lignin in in vitro model has resulted in		
phenolic metabolites production along with stable				
bifidobacteria. Furthermore, lignin improved the				
performance by reducing the colonization of E. coli, and				
Enterobacteriaceae in piglets [99].	Seaweeds, breeder’s yeast,			
oats, lentilina (shikimate),				
bark, and maitake (ginro-				
Hemicellulose				
Xyloglucan	β-(1-4) D-glucose	Afla-xylose attached at		
position 6- of β-D-glucose	The bacterial strains such as Clostridia, lactobacilli,			
and bifidobacteria degraded the xyloglucan and generate				
acetate and propionate. The in vivo and in vitro appli-				
cation of xyloglucan restored the mucosal leakage by				
reducing the numbers of E. coli [101].	All vascular plants (i.e.			
gymnosperms, clum-				
bosses, ferns, horsetails,				
and angiosperms) and				
seeds from tamarind and				
nasturtium.				
Arabinoxylan	β-(1-4) D-xylol	S-O-trans-feru-		
loyl-o-(α-arabinose),				
L-Arabinose,				
S-β-o-coumaryl-o-la-				
rabinose at position 2-				
or 3- of D-xylene	Arabinoyxylan utilization by ducks had increased the			
stimulation of Megamonas and Bifidobacterium spp.,				
which further resulted in increased concentration of				
branch-chain fatty acids (isobutyric acids) and SCFAs				
(butyrate, acetate, and propionate) [19].	Seaweeds, breeder’s yeast,			
oats, lentilina (shikimate),				
bark, and maitake (ginro-				
Galactomannan	β-(1,4)D-mannose	α-D-galactose at posi-		
tion 6- of β-D-mannose	The fermentation end products of prebiotic (B-galacto-			
mannan) are the acetate, butyrate, and propionates in				
humans. B-galactomannan ingestion enhanced mucous				
production which halted the access of S. Enteritidis to				
the epithelium in chickens [102].	Guar gum, locust bean			
Oligosaccharides				
Inulin	One terminal α-(1,2)D-			
glucose and β-(2,1)D-				
fructose	-		Seaweeds, breeder’s yeast,	
oats, lentilina (shikimate),				
bark, and maitake (ginro-				
Resistant starch	α-(1,4) D-glucose	α-(1,4) D-glucose and		
α-(1,6) D-glucose	The provision of resistant starch resulted in increased			
number of butyrate-producing Bifidobacterium adoles-				
centis, Parabacteroides distasonis, Faecalibacterium prausnitzii, and total SCFAs in the lumen, small intestine,				
cecum, and colon of pigs [14].	Rye, wheat, barley, onion,			
leek, garlic, and banana				
Galactooligosaccharides	One terminal β-(1,3)D-			
glucose and β-(1,4)D-gal-				
lactose	-		Oatmeal, brown rice, corn,	
lettuce; bananas, potatoes,				
yams, pasta, pear barley,				
and navy beans				
Fructooligosaccharide	Derived from inulin hydrol-			
ysis: one terminal α-(1,2)D-				
glucose and β-(2,1)D-				
fructose,	-		Milk, brains, root vegeta-	
tles, etc.				
Gum Guar (Guar)	β-(1,4)D-mannose	α-(1,6) D-galactose	Bacteroidetes	Bean of guar plant, soy,
wheat, corn, yeast, dairy,				
egg, gluten, and sugar				
Gum Arabic	β-(1,3)D-galactose	β-D-glucuronic acid, β-D-galactose, α-L-rhamnose,		
L-arabinose. Branches attached at position 6-
or 11 of β-(1,3)D-galactose | Gum Arabic fermentation in the large intestine of
human resulted in increased Bifidobacterium spp. In a
latest study, the in vitro application of gum Arabic has
been observed to increase the production of SCFAs and
antimicrobial activity against Clostridium [106]. | Acacia Senegal (Acacia) |

Sorption levels of 2% to 3% DFs are recommended which improve
the gizzard size and feed efficiency in poultry species [21]. For example, the quails fed on a 1.5% wheat bran-based diet
showed increased relative length of intestinal segments, villi
to crypt depth, villi height, and villi thickness [22]. Whereas lignin supplementation in geese decreased villi length but on the contrary, the supplementation of pectin, alfalfa, and rice hulls had a positive effect on villi height [23,24]. Efforts are on to increase fiber inclusion rate in poultry feed by fortification with the extracted non-digestible carbohydrates. A large variety of fortified oligosaccharides and carbohydrate polymers are commercially available in the form of prebiotics which increases the population of beneficial bacteria in the gut [25]. In addition to their natural presence in different foods, DFs-rich ingredients or isolated DFs molecules can be added to the diet by technological means to provide benefits for extra health.

INTERRELATIONSHIP OF MICROBIOTA, DIETARY FIBERS, AND DIGESTION

Feed ingredients differentially affect the bacterial communities and the production of metabolites depending on their particle size, type, and chemical properties. The DFs act as a carrier of feed anti-oxidants (AOXs). Though not reported in chickens yet, the main physiological function of DFs is to convey AOXs across the GIT. Upon reaching the colon, AOXs secrete a fiber matrix to produce an AOX environment and reveal metabolites [26]. The type of fiber reaching the posterior gut is the key in defining the type of bacteria and the metabolites (SCFAs) being produced. Such that supplementation of pigs diet with RS increased SCFAs production by 34% compared with the digestible starch diet [27]. Though corn-soybean meal-based diet increases the concentration of *Lactobacillus* spp. and SCFAs production in duodenum, jejunum, and ileum in broilers of all age groups yet high DFs diets based on corn-soybean meal-dried distillers grains and wheat bran produce even higher SCFAs compared with low DFs diets (i.e. corn-soybean meal) [28]. So increased production of SCFAs by dietary manipulation with DFs reflects that fiber maintains integrity and diversity of the GIT microbiota which further increases the fermentation of complex fibers and release of energy for the host. Chickens, ducks, and geese do not produce enzymes as hosts to break down DFs such as fructooligosaccharides, xylooligosaccharides, and mannan [29]. In these species, DFs are believed to reach the ceca in undigested form and then undergo microbial fermentation. Culture-based studies showed that different bacterial genera i.e. *Clostridium*, *Bacteroides*, and *Bacillus* synthesize mannanases that can unfold β-1,4 mannopyranoside bonds in mannan products [29]. Metagenomics analysis of ceca in chickens showed over 200 non-starch polysaccharides degrading enzymes, oligosaccharide- and polysaccharide-degrading enzymes, and several pathways related to SCFAs production which highlight the functional properties of the cecal microbiota [30]. At present exogenous enzymes including phytases and carbohydrases such as amylases, xylanases, and β-glucanases are used in broilers to degrade complex carbohydrates into their respective sugars or amino acid components [31]. Bacteria can then ferment them into metabolites (i.e. SCFAs), CO₂, H₂, branched-chain fatty acids, ammonia, and other carboxylic acids [32]. However, to reduce the use of exogenous enzymes, future studies need to focus on identifying specific intestinal bacteria that promote different enzymatic reactions to support the fermentation of DFs in poultry species.

INTERACTION OF DIETARY FIBERS WITH GUT MUCUS

The entire surface of the chicken GIT is protected by a layer of mucus. Mucus is a glycoprotein and being a part of innate host, immune response is produced by goblet cells. It protects the IECs from bacterial, mechanical, and chemical injuries [33]. It halts the direct interaction of luminal antigens with the epithelium. The DFs have a significant effect on mucus secretion, cell proliferation, and changing luminal environment thus they are involved directly or indirectly with intestinal health [34]. To maintain the mucus layer, however, the genetic makeup of the host and interaction of intestinal microbiota with DFs are important. The goblet cell numbers are used as an indicator of mucus production in monogastric animals [35]. In golden hamsters feeding different sources of DFs i.e. oat bran and rye bran were found to improve goblet cell numbers in the gut, while pectin was also found to intensify the mucus layer via a high-water holding capacity mechanism (dehydration combat mechanism) [36]. Therefore, they are known as a stimulator of goblet cells proliferation. The role of DFs in increasing the mucin2 gene expression, fecal mucin output, and goblet cell numbers has also been reported recently [37]. A lower level of DFs predisposes redundancy of mucus layer and can lead to infectious susceptibility and the reclamation of chronic inflammatory diseases [38]. A higher level of DFs however, can cause loss of endogenous amino acids. For example, DFs have been found to increase the number of mucin-producing goblet cells. Mucus contains a high concentration of mucin (a threonine-rich glycoprotein) that becomes scarce during high mucus production [39].

The IECs are enclosed by a mucus layer, thus keeping the bacteria away from mucosa deterioration [40]. Intestinal microbiota ferments DFs and produces SCFAs and both stimulate mucus production and regulation. The *Bacteroides thetaiotaomicron* spp. which produces acetate and propionate, also stimulate goblet cell differentiation and expression of mucin-related genes. Moreover, *Faecalibacterium prausnitzii* spp. uses acetate and can produce butyrate, thus stabilizing the proper physiology of the gut epithelium by averting the overprodu-
MECHANISMS TO CONTROL INTESTINAL EPITHELIAL CELL POLARITY, ROLE OF DIETARY FIBERS, AND GUT HEALTH

Introduction of intestinal epithelial cell polarity in intestine

The mammalian GIT consists of distinct layers of cells. It requires precise interaction between each layer or cell type to perform different functions i.e. absorption of dietary nutrients and water, discharge of waste products via peristaltic contractile movements, and maintaining a physical barrier against pathogens. The two most remarkable cell populations of the intestine are the muscle cells and epithelial cells. The intestinal epithelium is distributed into two parts; flask-shaped submucosal invaginations- crypts, and finger-like luminal protrusions- villi [41]. The IECs start their growth from Wnt responsive Lgr5⁺ stem cells (multipotent stem cells), differentiate, and get mature at the base of crypts [42]. While the absorptive Alpi⁺, Lgr5⁻ enterocytes move up toward the villus until they reach the villus tip where they go through apoptosis and shed themselves into the lumen to balance defensive barrier under different physiological conditions [43] (Figure 1). This process of turnover lasts for two to five days followed by a bone morphogenetic protein (BMP) signaling pathway [44].

IECs are organized as a monolayer of columnar-shaped, polarized epithelial cells (Figure 1A). The surface of IECs is divided into two domains; apical domain—facing to the lumen of the gut, and basolateral domain—facing to the intestinal tissue. The basolateral cell-surface domain is further divided into a basal (face basement membrane) and a lateral domain (face neighboring cells) (Figure 1B). The basal surface domain is a home for integrin-based cell-matrix adhesions, through which the cells are interconnected with the basement membrane. While the lateral surface domain is a house for intercellular adhesions such as E-cadherin-based adherens junctions and claudin-based tight junctions (TJs) [45] (Figure 1B). The intestinal tight junction-complex-associated proteins consist of surface membrane proteins (i.e. claudin, occludin, junctional adhesion molecules, the coxsackievirus and adenovirus receptors proteins), and intracellular proteins (i.e. zona occludens [ZO-1, ZO-2, and ZO-3], cingulin, 7H6, symplekin, and ZA-1) [46]. It has been documented that the TJs and polarized intracellular trafficking machinery are the central players in the IECs' polarity and establish communications between gut lumen and bodily tissues to maintain immune tolerance with commensal bacteria and control gastrointestinal pathogens [47]. The adherens junction consists of the E-cadherin-catenin system and nectin-afadin system. The partner of nectin that is known as “afadin” directly or indirectly binds with a number of proteins, including zona occludens proteins. Several studies demonstrated that the modulation of selectively induced Bifidobacterium spp. enhanced barrier function and the function of tight junction-associated proteins [48]. The TJs have further joined with the actin filament-based projections of apical plasma membrane known as microvilli (Figure 1B).

Role of apical plasma membrane microvilli and their protein components in intestinal epithelial cell polarity

The apical plasma membrane microvilli and their protein components such as villin, ezrin, myosin-Vb, myosin-VI, and myosin-Ia play important role in IECs polarity. Villin is an actin-modifying protein situated in the basic subapical terminal web and the apical plasma membrane microvilli (Figure 1C) [49]. Villin expression in IECs represents induced inflammation and related lesions under inflammatory bowel disease, which highlights the dynamics of IECs polarity in gut wound healing, immunopathology, and intestinal epithelial homeostasis. In humans, the depletion of myosin-Vb protein in microvillus due to disease and MYO5B mutations results in inactivation of ezrin protein at apical surface and cause microvillus atrophy in the IECs [50]. The loss of another component of microvilli i.e. myosin-Ia results in tumor development, loss of IECs polarity, and carcinogenesis in mice [51]. The function of myosin-VI and myosin-Ia controls the base-directed movement and microvillus tip of plasma membrane respectively [52]. Both of these myosins regulate the circulation of brush-border enzymes such as intestinal alkaline phosphatase (IAP) and intramicrovillus (microvillus tip and microvillus base). The tips of the apical microvilli produce vesicles that are extruded into the gut lumen [53]. The microvillus-derived vesicles are rich in IAP (Figure 1C). The overexpression of this enzyme under the exposure of IECs to E. coli gives rise to an increased abundance of microvilli-derived vesicles [54].

Role of dietary fibers in controlling intestinal epithelial cell polarity

The DFs such as wheat bran has been used in controlling colonic mucosal proliferation and in preventing proliferative diseases of colon [55]. Thought, specific therapeutic strategies such as DFs, probiotics, and prebiotics supplementation have been used to manage some of the diseases including obesity, type-1 diabetes, and colorectal cancer in mice, and different pathogens causing diseases such as salmonella enteritidis, necrotic enteritis, and clostridium perfringens in broilers [56]. Up to date in poultry, it is not clear yet whether the DFs, probiotics, prebiotics, and the microbial-derived metabolites (i.e. SCFAs) affect polarized intracellular trafficking machinery.
involving proteins such as villin, ezrin, myosin-Vb, myosin-VI, myosin-Ia, and IAP and either their (proteins) expression increase the stimulation of microvilli-derived vesicles, establishing intestinal epithelial homeostasis, wound healing, and tumor suppression or not. There is a need to get insight into the IEC polarity to understand the mechanisms involved in the maintenance of epithelial homeostasis, immune system by commensal bacteria, and balanced communications among gut lumen, body tissues, and gastrointestinal pathogens. Owing to fast differentiation and turnover the IECs have become a focus of the current research. However various factors such as diets, diseases, hormones, and genetics affect IECs turnover and differentiation along crypt-villus axis.

INTERPLAY BETWEEN DIETARY FIBERS AND MICROBIOME GIVES RISE TO METABOLITES (SHORT-CHAIN FATTY ACIDS)

Metabolites are small molecules produced by metabolic reactions, catalyzed by gut enzymes or bacterial fermentation of various foods. Through these small molecules, the gut microbiota communicates and makes a tensile network with the host [57]. The microbial metabolites affect host immune

Figure 1. A depiction of epithelial cell polarity. (A) Turnover of cells in 2-5 days from crypt to villus tip and (B) α-catenin in Figure 1. (C) The box area from panel B describes the single microvillus within its protein components such as villin, ezrin, myosin-Vb, myosin-VI, and myosin-Ia, and the microvillus-derived vesicle with alkaline phosphatase enzyme.
maturation, energy metabolism, immune homeostasis, and mucosal integrity. Variation in the gut microbial metabolites has been illustrated in many studies during salmonellosis, *E. coli* infection, necrotic enteritis condition, and *Campylobacter jejuni* infection [58]. Beneficial microbiota produces SCFAs including acetic acid, propionic acid, and butyric acid which have bacteriostatic ability to destroy campylobacteriosis, salmonellosis, and *E. coli* causing bacteria.

In this context, the composition and particle size of diet not only maintain host health but also modulates the beneficial microbial communities, their richness, and diversity in the digestive tract. The origin, type, and quality of diet modulate the gut microbiota in a time-dependent manner. Long-term dietary regimes particularly plant-based and animal fat or protein-based diets are associated with so-called enterotypes. This dichotomy in the plant-based diet/animal-based diet ratio was also observed in broilers and laying hens arguing that these bacterial communities are driven by a long-term modification in the diet [59].

Gut microbiota can ferment undigested carbohydrates in most parts of the GIT, but in poultry, this process mainly occurs in crop and caecum where bacteria are abundantly populated. The crop and ileum are the main lactic acid-producing repertoires, owing to the presence of a high concentration of *Lactobacillus* spp., as opposed to caeca where the quantity of butyric, acetic, and propionic acids are higher [60]. Furthermore, Jozefiak et al [6] observed that the cereal-type feed ingredients such as wheat, rye, and triticale determine the quantity of acetic acid in the caecum except for the crop and gizzard. This suggests that the application of DFs is a potential way to influence SCFAs concentration. The SCFAs enhance beneficial microbial populations to regulate endogenous enzymatic activities and produce more energy and carbon for IECs [61], thus contributing to maintaining mucosal integrity, immunity, and health of broilers, geese, and ducks [3]. Therefore it is important to highlight the potential role of specific types and sources of DFs that can be used in manipulating the commensal bacterial populations which specifically induce the synthesis of SCFAs. Similar studies in poultry species are warranted to investigate possible involvement of DFs in early postnatal development and microbially modulated DNA methylation.

MECHANISMS INVOLVED BEHIND THE GENERATION AND TRANSPORTATION OF SHORT-CHAIN FATTY ACIDS AND THEIR ROLE IN MODULATING PATHOPHYSIOLOGICAL CHANGES IN THE GUT

Generation of short-chain fatty acids

Microbiota hydrolyze DFs into oligosaccharides and then produce monosaccharides in the hindgut under anaerobic environment conditions and produce SCFAs. This production of SCFAs consists of enzymatic pathways which are regulated by several bacterial species (Figure 2). The prime pathways for SCFAs generation are the Embden-Meyerhof- Parnas pathway (glycolytic pathway) and pentose phosphate pathway driven by *Bifidobacteria* which transform monosaccharides into phosphoenolpyruvate (PEP) [62]. The PEP is then converted into alcohols or organic acids (Figure 2A).

The enzymatic pathways for the synthesis of SCFAs have been previously described. In brief, oxygen-sensitive Wood-Ljungdahl pathway of SCFAs production was detected by radioisotope analysis and in this, propionate production was detected via CO₂ fixation pathway and butyrate by the condensation of acetyl-S coenzyme A [63]. The main bacteria engaged in butyrate production were *Cytophaga* and *Flavobacterium* belonging to *Bacteroidetes* phylum (main bacterial spp; *Coprococcus* species, *Clostridium leptum*, *Faecalibacterium prausnitzii*, and *Roseburia* species belonging to both *Bacteroidetes* and *Firmicutes* phyla) [64] (Figure 2A). The Wood-Ljungdahl pathway is carried out by acetate-producing bacteria namely *Acetogens* (*Firmicutes phylum*) [65] (Figure 2A). Besides this, there are other pathways such as the fructose-6-phosphate phosphoketolase pathway present in the *Bifidobacterium* genus, also known as the *Bifidobacterium* pathway. In this pathway, the *Bifidobacterium* genus uses monosaccharides to produce SCFAs, particularly acetate. Propionate is produced by the acrylate pathway. Reichardt et al [66] described three pathways used by bacteria for the production of propionates such as succinate pathway, acrylate pathway, and propanediol pathway (Figure 2A). In these pathways, two species of *Lachnospiraceae* such as *C. catus* and *R. inulinivorans* have been seen to switch butyrate to propionate production from different substrates.

Transportation of short-chain fatty acids

The epithelial cells of the colon i.e. colonocytes are mostly studied for the transportation of SCFAs (Figure 2B). The apical membrane gains the SCFAs in two ways i.e. active transport of dissociated SCFA anions, and passive diffusion of undisassociated SCFAs. Three mechanisms support the transportation of SCFA anions via the apical membrane of colonocytes. In the first mechanism, the transporter introduces SCFA anions to HCO₃⁻ to form SCFA-HCO₃⁻ exchange in the vesicle and then secret it into the gut lumen. So this exchange is independent of Na⁺ transporter and Cl⁻-HCO₃⁻ exchange [67]. The second mechanism involves the members of family of monocarboxylate transporters that increase the chemical reaction of SCFA anions with cations [68]. The monocarboxylate transporter-1 (MCT-1) transports SCFAs in an H⁺ dependent electroneutral manner in the apical...
membrane of enterocytes. Besides this, MCT-1 shows high expression in the lymphocytes which denotes its role in SCFA transportation. The third mechanism of SCFA anion transportation is carried by the sodium-coupled monocarboxylate transporter-1 (SMCT-1) [69]. In this, the SCFA anions are introduced to Na\(^+\) transporters in a 1:2 stoichiometry to increase water and Cl\(^-\) absorption (Figure 2B).

The SMCT-1 is highly expressed in the large intestine, kidney, and thyroid gland, where it transports butyrate with high affinity as compared to propionate and acetate [70]. The leftover SCFAs, not absorbed by the colonocytes, are transported towards the basolateral membrane. This membrane contains MCT-4 and MCT-5 transporters. The MCT-4 transporter, transports SCFA anions in an H\(^+\)-dependent electroneutral manner, however, MCT-5 transporter, transports SCFA through HCO\(_3^\)\(^-\) exchangers [71] (Figure 2B). The transporters of SCFAs have been observed from duodenum, ileum, ceca, colon, lungs, and liver, however, the transporters for the uptake of SCFAs from the blood are mostly undefined. Organic anion transporters such as organic anion transporter 2 and 7 are involved in the transportation of propionate and butyrate respectively through the sinusoidal membrane of liver cells (hepatocytes) [72]. In the liver, the propionate and acetate can be used as substrates for the energy-producing tricarboxylic acid cycle to produce glucose. For better understanding, the transportation and uptake mechanisms for SCFAs in various tissues should be investigated.

Role of short-chain fatty acids in modulating the pathophysiological changes in the gut

It is known that SCFAs play a key role in modulating the gut health of pigs and poultry species (Table 2). SCFAs undergo antimicrobial pathways and enter the membrane of the pathogenic bacteria. The cytoplasmic pH of bacteria is generally neutral while SCFAs exist in associated or dissociated forms [73]. When SCFAs attack, they dissociate into protons and anions and reduce the pH of a bacterial cell, failing to maintain which, the bacterial cell gets destroyed. Antimicrobial activation of formate, acetate, and propionate has been documented in *in-vitro* studies. The *in-vivo* studies conducted in humans, pigs, and broilers have also shown antimicrobial effects of SCFAs on pathogens. In this regard, supplementation of piglets’ diet with wheat, improved the production of SCFAs and reduced the incidences/infection of *E. coli* [74]. Similarly, supplementation of butyralated high-amylose maize
starch to broilers challenged with necrotic enteritis resulted in the production of ileal acetate and reduction in caecal pH which ameliorated the negative effects of disease [75]. In another study supplementation of wheat bran and arabinoxylol...
FUNCTIONS OF SHORT-CHAIN FATTY ACIDS

The SCFAs regulate the immune system through signaling mechanisms, the understanding of which may help improve immune system and reduce risk of certain diseases. There are two mechanisms by which SCFAs modulate immune cell chemotaxis, cytokines, and reactive oxygen species (ROS) of the host. The first mechanism is the activation of G-protein-coupled receptors (GPCRs) such as free fatty acid receptors (FFAR)-2 and -3 (also known as GPR43 and GPR41 receptors), niacin receptor 1, or GPR109A or hydroxyl-carboxylic acid 2 receptor, and olfactory receptor (Olfr78) [78,79]. Currently, we have reviewed four SCFA-sensing GPCRs which are expressed on IECs, endocrine cells, and leukocytes and play a central role in the regulation of metabolism (Table 3). The second mechanism consists of the direct inhibition of HDACs [80]. To get insight into HDACs inhibition, the mechanisms supporting SCFA-facilitated HDAC inhibition

RECEPTORS, TARGET TISSUES, AND
and their immunological consequences are discussed here.

Pro- and anti-inflammatory effects of short-chain fatty acids in immune cells

The host immune system impedes the pathogens by producing inflammatory cytokines. Though, unnecessary secretion of cytokines gives rise to systemic inflammation. SCFAs modify systemic inflammation by modulating the release of immune cell cytokines, ROS, and chemotaxis (Figure 3). Propionate and butyrate activate FFAR2/3 or GPR109A or inhibit HDACs to decline the nitric oxide synthase and tumor necrosis factor-alpha (TNFa) expression in monocytes. Upon tracheal inflammation, SCFAs activate FFAR2 and FFAR3 from the macrophages and neutrophils which lead to the reduction of interleukin-8 (IL-8) in the trachea [81]. Butyrate acts anti-inflammatory factor in macrophages by activating FFAR3 and reducing interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), TNFa, and inducible nitric oxide synthase [82]. In mononuclear cells of humans and mice, acetate had anti-inflammatory effects and it inhibits lipopolysaccharides (LPS)-induced TNFa production through FFAR2 and FFAR3 activation. Treatment of allergic mice with propionate decreased inflammatory mediators, e.g. interleukin-17A (IL-17A), IL-4, and IL-5 through FFAR3 activation pathway [83]. Similarly, propionate was found useful in treating lungs of allergic mice.

Activation of FFAR2 and FFAR3 down-regulate the expression of nuclear factor kappa B (NF-KB) downstream genes and are linked with the regulation of phosphoinositide 3-kinase, mitogen-activated protein kinases, c-Jun N-terminal genes and are linked with the regulation of phosphoinositide 3-kinase, mitogen-activated protein kinases, c-Jun N-termi

Table 3. Summary of the currently recognized SCFAs-activated GPCRs including their ligands, expression, and functions

Receptor	Ligands	Expression in tissues	Expression in cell types	Functions	References
FFAR2	Acetate, propionate, butyrate, caproate, and valerate	Intestine, immune cells, murine hepatico-pptic tissues, and spleen	Endocrine L-cells, colonocytes, enterocytes, eosinophils, basophils, neutrophils, monocytes, dendritic cells, mucosal mast cells, and bone marrow	Anorexigenic effects through the secretion of peptide YY and glucagon-like peptide-1, development or differentiation of immune cells, anti-inflammatory role in reducing the risk of preterm labor induced by pathogens, decreases cyclic adenosine monophosphate (cAMP) levels and increases cytoplasmic calcium concentrations, inhibits NF-KB, and reduces the expression of pro-inflammatory cytokines, IL-6 and IL-1β.	[78,115]
FFAR3	Acetate, propionate, butyrate, caproate, and valerate	Adipose tissues, spleen, intestine, immune cells, and pancreas	Adipocytes, monocytes, enteroendocrine L-cells, neutrophils, monocyte-derived dendritic cells, and peripheral blood mononuclear cells	Inhibits adenosyl cyclase, reduces the levels of cAMP, and stimulates sympathetic activation by acting on the sympathetic ganglion.	[116]
GPR109A or HCA2 or NIACR1	Butyrate and niacin	Immune cells, intestine, and adipose tissues	Dermal dendritic cells, monocytes, macrophages, neutrophils, and adipocytes	Suppresses lipolysis and plasma-free fatty acid levels and regulates the vascular inflammation in atherosclerosis.	[86]
Olfr78	Acetate and propionate	Kidney, colon, lungs, heart (autonomic nerves), and prostate	Justinaglomerular cells, enteroidsenocrine cells, airway smooth muscle cells, prostate epithelium, and melanocytes	Mediates renin secretion in response to SCFAs and controls blood pressure system.	[79,117]

SCFAs, short-chain fatty acids; GPCRs, G-protein-coupled receptors; IL, interleukin; GRPR43, free fatty acid receptor; GPR109A, G-protein-coupled receptor 109A; HCA2, hydroxycarboxylic acid receptor 2; NIACR1, niacin receptor 1; Olfr78, olfactory receptor.
not. The results showed a significant increase in BP in Olfr78-deficient mice which suggests that propionate and acetate produced by gut microbiota might be involved in controlling BP. Based on current literature, we can say that SCFAs act as a bridge in maintaining gut health (Figure 3). In poultry species, the role of SCFAs receptors and their efficient participation in inhibiting HDACs has not yet been studied. So further research is required to unveil these processes in poultry.

Short-chain fatty acids (SCFAs)-facilitated histone deacetylases (HDACs) inhibition

Many of the HDACs show expression on smooth vascular muscle cells, immune and endothelial cells. Microflora helps SCFA-facilitated HDAC inhibition and protects immune system. The exact mechanism supporting SCFA-facilitated HDAC inhibition is unclear however it is proposed that two mechanisms are involved i.e. the expression of SMCT-1 transporter and the activation of GPCRs. The SMCT-1 mechanism might cause direct inhibition of HDACs by entering into the cells with the help of transporters. The SMCT-1 promotes butyrate- and propionate-induced barrier of a murine dendritic cell which results in induced HDAC inhibition and DNA acetylation [89]. The GPCRs mechanism involves indirect inhibition of HDACs by SCFAs. For example, the stimulation of FFAR3 in Chinese hamster ovary cell lines inhibited HDACs and caused suppression of histone acetylation [90]. Not only FFAR3 but other receptors of SCFAs may involve in the inhibition of HDACs. SCFAs-coupled HDAC inhibition that occurred in the colon was mostly dependent on FFAR2 [91]. Besides this, acetate may have controversial effects in stimulating inflammatory processes in a GPCRs-independent manner by regulating epigenetic modifications. Apart from this, propionate and butyrate may restrain the HDAC activity independent of FFAR3 and FFAR2 [82]. Further research is however required to find how SCFAs inhibit the activation of HDACs directly or indirectly in poultry species.

Immunological consequences of short-chain fatty acids-induced histone deacetylases inhibition

Once SCFA-facilitated HDAC inhibition is developed, it results in a strong anti-inflammatory immune response as briefly described in Figure 3. Previously utilization of butyrate and propionate in the treatment of human peripheral blood mononuclear cells, reduced the production of LPS-induced-TNFα in a similar way to trichostatin A [92]. Similarly, the *in-vitro* use of acetate for the treatment of human macrophages remarkably diminished the HDAC activity and improved histone acetylation with reduced inflammatory cytokines production such as TNFα, IL-6, and IL-8 [93]. It has been observed that NF-kB has a central role in the stimulation of inflammatory cytokines. This suggests that SCFAs might be involved in the modulation of NF-kB by HDAC inhibition. Similarly, treatment of neutrophils and LPS-activated mononuclear cells by butyrate and propionate decreased the NF-kB activity and TNFα production, and subsequently increased the production of anti-inflammatory cytokine interleukin-10 (IL-10) [94]. These results suggest the prominent role of SCFAs in the production of pro-inflammatory cytokines through inhibition of HDAC activity in humans and rodents. HDAC inhibition resulting from SCFAs is not limited to the cell’s innate immune system but it may also affect the white blood cells especially regulatory T cells (Tregs). The inhibition of HDAC9 in mice promotes the expression of forkhead box P3 (Foxp3) transcription factor, which increases proliferation of Tregs [95]. Similarly, butyrate increases the transforming growth factor-beta (TGF-β) and antimicrobial peptides expression in enterocytes [91]. The regulation of TGF-β increases the production of IL-10-generating Tregs in the colon, suggesting its role in restricting the proliferation of effector T cells. Though RNA-Seq analysis revealed that few birds including Falco cherrug, Falco peregrinus, and Parus humilis express Foxp3 [96] yet it is not known whether the gut-derived microbial SCFAs disturb the Tregs in poultry because the Foxp3 has not yet been identified in chickens and turkeys.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

In conclusion, DFs can promote specific SCFA producing bacteria that may present a novel approach for managing *E. coli*, necrotic enteritis, and *Salmonella* in broilers and pigs. Fermentative bacteria mostly target the crop and cecum, whereas impacts of exogenously administered SCFAs may depend on the way of administration and hence diverse from microbially produced metabolites. As an example, oral administration of butyrate may target directly the small intestine and reach the periphery without being consumed by the colonocytes. Tissue-specific impacts of SCFAs have been revealed by propionate, whereby propionate-dependent gluconeogenesis improves metabolic health in the small intestine, whereas hepatic gluconeogenesis is injurious. Considering the expression of SCFA receptors in the blood vessels, small intestine, macrophages, and colonocytes, it can be vital to comprehend SCFA generation.

It is a major challenge to recognize the exact role of imposing opportunities for utilizing SCFAs in host pathophysiology which indispose a good understanding of the mechanisms through which SCFAs exploit their impacts in the animals’ gut, tissues, and organs. Of course, studies with the SCFAs seem to affect health via three main mechanisms; (I) activating GPCRs, (II) increasing histone acetylation and inhibiting HDAC activity, and (III) regulating anti-inflammatory mechanisms because of the first two mechanisms in the tissues and
periphery, which can provide new and exciting possibilities for modulating poultry health.

To sum up, DFs can be considered key ancestral compounds which regulate the macronutrients and preserve host physiology. In brief, we discussed how SCFAs are being generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and improve host physiology and gut health. Finally, screening novel fibers, both extracted and purified from food as well as those synthesized (prebiotics), and defining effective strategies to restore a high amount of fibers aiming at reintroducing the gut microbiome with important omitted SCFAs producing microbes, will be the next question to significantly affect gut microbiota-associated poultry diseases.

CONFLICT OF INTEREST

We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

FUNDING

This research was supported by the Modern Agro-industry Technology Research System of China (CARS-34) and the Science and Technology Innovation Team of Henan Province High Quality Forage and Animal Health (No.22IRTSTHN 022).

ACKNOWLEDGMENTS

We thank teacher Sen Ma (Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University) for his constructive reading and comments.

REFERENCES

1. Maki JJ, Bobeck EA, Sylte MJ, Looft T. Eggshell and environmental bacteria contribute to the intestinal microbiota of growing chickens. J Anim Sci Biotechnol 2020;11:60. https://doi.org/10.1186/s40104-020-00459-w
2. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 2013;14:676-84. https://doi.org/10.1038/ni.2640
3. Qin S, Zhang K, Applegate TJ, et al. Dietary administration of resistant starch improved caecal barrier function by enhancing intestinal morphology and modulating microbiota composition in meat duck. Br J Nutr 2020;123:172-81. https://doi.org/10.1017/S0007114519002319
4. Wu J, Ma N, Johnston LJ, Ma X. Dietary nutrients mediate intestinal host defense peptide expression. Advan Nutr 2020;11:92-102. https://doi.org/10.1093/advances/nxz057
5. Li H, Zhao L, Liu S, Zhang Z, Wang X, Lin H. Propionate inhibits fat deposition via affecting feed intake and modulating gut microbiota in broilers. Poult Sci 2021;100:235-45. https://doi.org/10.1016/j.psj.2020.10.009
6. Jozefiak D, Rutkowski A, Kaczmerek S, Jensen BB, Engberg RM, Højberg O. Effect of β-glucanase and xylanase supplementation of barley-and rye-based diets on caecal microbiota of broiler chickens. Br Poult Sci 2010;51:546-57. https://doi.org/10.1080/00071668.2010.507243
7. Biasato I, Ferrocino I, Biasibetti E, et al. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet Res 2018;14:383. https://doi.org/10.1186/s12917-018-1690-y
8. Prakatur I, Miskulin M, Paciv M, et al. Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals 2019;9:301. https://doi.org/10.3390/ani9060301
9. Mahmood T, Guo Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? Anim Nutr 2020;6:1-8. https://doi.org/10.1016/j.aninu.2019.11.004
10. Goto Y. Epithelial cells as a transmitter of signals from commensal bacteria and host immune cells. Front Immunol 2019;10:2057. https://doi.org/10.3389/fimmu.2019.02057
11. Blank B, Schlecht E, Susenbeth A. Effect of dietary fibre on nitrogen retention and fibre associated threonine losses in growing pigs. Arch Anim Nutr 2012;66:86-101. https://doi.org/10.1080/1745039X.2012.663669
12. Deehan EC, Duar RM, Armet AM, Perez-Munoz ME, Jin M, Walter J. Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microb Spect 2017;S5:5.5.04. https://doi.org/10.1128/microbiolspec.BAD-0019-2017
13. Pellegrini N, Vittadini E, Fogliano V. Designing food structure to slow down digestion in starch-rich products. Curr Opin Food Sci 2020;32:50-7. https://doi.org/10.1016/j.cofo.2020.01.010
14. Haenen D, Zhang J, Souza da Silva C, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 2013;143:274-83. https://doi.org/10.3945/jn.112.169672
15. Song J, Li Q, Everaert N, et al. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. J Anim Sci 2020;98:skz396. https://doi.org/10.1093/jas/skz396
16. Shang Y, Kumar S, Thippareddi H, Kim WK. Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poult Sci 2018;97:3622-34. https://doi.org/10.3382/ps.eyy131
17. Ebrahimih SH, Valizadeh R, Heidarian Miri V. Rumen microbial community of Saanen goats adapted to a high-fiber diet

www.animbusci.org 1473
in the Northeast of Iran. Iran J Appl Anim Sci 2018;8:271-9.
18. De Maeschalck C, Eeckhaut V, Maertens L, et al. Amorphous cellulose feed supplement alters the broiler caecal microbiome. Poult Sci 2019;98:3811-7. https://doi.org/10.3382/ps/pez090
19. Tian D, Xu X, Peng Q, et al. In vitro fermentation of arabinoxylan from oat (Avena sativa L.) by Pekin duck intestinal microbiota. 3 Biotech 2019;9:54. https://doi.org/10.1007/s13205-019-1571-5
20. Nursiam I, Rida M, Hermana W, Nahrowi. Effect of fiber source on growth performance and gastrointestinal tract in broiler chickens. In: IOP Conference Series. Earth Environ Sci 2021;788:012058. https://doi.org/10.1088/1755-1315/788/1/012058
21. Mateos GG, Jiménez-Moreno E, Serrano MP, Lázaro RP. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J Appl Poult Res 2012;21:156-74. https://doi.org/10.3382/japr.2011-00477
22. Rezaei M, Karimi Torshizi M, Wall H, Ivarsson E. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Br Poult Sci 2018;59:422-9. https://doi.org/10.1080/00071668.2018.1460461
23. Chiou PW, Lu T, Hsu J, Yu B. Effect of different sources of fiber on the intestinal morphology of domestic geese. Asian-Australas J Anim Sci 1996;9:539-50. https://doi.org/10.5713/ajas.1996.539
24. Teimouri Yansari A. Chemical composition, physical characteristics, rumen degradability of NDF and NDF fractionation in rice straw as an effective fibre in ruminants. Ir J Appl Anim Sci 1996;9:539-50.
25. Pourabedin M, Guan L, Zhao X. Xylo-oligosaccharides and xylaninycin from oat (Avena sativa L.) by Pekin duck intestinal microbiota. 3 Biotech 2019;9:54. https://doi.org/10.1007/s13205-019-1571-5
26. Rehman H, Vahjen W, Kohl-Parisini A, Ijaz A, Zentek J. Xylo-oligosaccharides and xylaninycin from oat (Avena sativa L.) by Pekin duck intestinal microbiota. 3 Biotech 2019;9:54. https://doi.org/10.1007/s13205-019-1571-5
27. Umu ÖC, Frank JA, Fangel JU, et al. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 2015;3:16. https://doi.org/10.1186/s40168-015-0079-4
28. Rehman H, Vahjen W, Kohl-Parisini A, Ijaz A, Zentek J. Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. World's Poult Sci J 2009;65:75-90. https://doi.org/10.1017/S0043933909000063
29. Umu ÖC, Frank JA, Fangel JU, et al. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 2015;3:16. https://doi.org/10.1186/s40168-015-0079-4
30. Liu G, Zhao Y, Cao S, et al. Relative bioavailability of selenium yeast for broilers fed a conventional corn-soybean meal diet. J Anim Physiol Anim Nutr 2020;104:1052-66. https://doi.org/10.1111/jpn.13262
31. Yang Y, Li J, Wang L, et al. Amorphous cellulose feed supplement alters the broiler caecal microbiome. Poult Sci 2019;98:3811-7. https://doi.org/10.3382/ps/pez090
32. Tian D, Xu X, Peng Q, et al. In vitro fermentation of arabinoxylan from oat (Avena sativa L.) by Pekin duck intestinal microbiota. 3 Biotech 2019;9:54. https://doi.org/10.1007/s13205-019-1571-5
33. Nursiam I, Rida M, Hermana W, Nahrowi. Effect of fiber source on growth performance and gastrointestinal tract in broiler chickens. In: IOP Conference Series. Earth Environ Sci 2021;788:012058. https://doi.org/10.1088/1755-1315/788/1/012058
34. Rezaei M, Karimi Torshizi M, Wall H, Ivarsson E. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Br Poult Sci 2018;59:422-9. https://doi.org/10.1080/00071668.2018.1460461
35. Pourabedin M, Guan L, Zhao X. Xylo-oligosaccharides and xylaninycin from oat (Avena sativa L.) by Pekin duck intestinal microbiota. 3 Biotech 2019;9:54. https://doi.org/10.1007/s13205-019-1571-5
cyte-lineage daughters. Cell Stem Cell 2016;18:203-13. https://doi.org/10.1016/j.stem.2016.01.001
44. Ben-Shahar Y, Abassi Z, Shefer HK, Pollak Y, Bhattacharya U, Sukhotnik I. Accelerated intestinal epithelial cell turnover correlates with stimulated bmp signaling cascade following intestinal ischemia–reperfusion in a rat. Eur J Pediatr Surg 2020;30:64-70. https://doi.org/10.1055/s-0039-1700550
45. Giepmans BNG, van IJzendoorn SCD. Epithelial cell–cell junctions and plasma membrane domains. Biochim Biophys Acta (BBA)-Biomembranes 2009;1788:820-31. https://doi.org/10.1016/j.bbamem.2008.07.015
46. Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol Biosyst 2008;4:1181-5. https://doi.org/10.1039/b800402a
47. Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014;15:225-42. https://doi.org/10.1038/nrm3775
48. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091-103. https://doi.org/10.1136/gut.2008.165886
49. Khurana S, George SP. Regulation of cell structure and function by actin-binding proteins: villin’s perspective. FEBS Lett 2008;582:2128-39. https://doi.org/10.1016/j.febslet.2008.02.040
50. Dhekne HS, Pylpyenko O, Overeem AW, et al. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: a mutation update. Hum Mutat 2018;39:333-44. https://doi.org/10.1002/humu.23386
51. Mazzolani R, Dopofo H, Mateo-Lozano S, Arango D. Brush border myosin la has tumor suppressor activity in the intestine. Proc Natl Acad Sci USA 2012;109:1530-5. https://doi.org/10.1073/pnas.1108411109
52. McConnell RE, Tyska MJ. Myosin-1a powers the sliding of apical membrane along microvillus actin bundles. J Cell Biol 2007;177:671-81. https://doi.org/10.1083/jcb.200701144
53. McConnell RE, Higginbotham JN, Shifrin DA, et al. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 2009;185:1285-98. https://doi.org/10.1083/jcb.200920147
54. Shifrin DA, Jr, Tyska MJ. Ready...aim...fire into the lumen: a new role for enterocyte microvilli in gut host defense. Gut Microbes 2012;3:460-2. https://doi.org/10.4161/gmic.21247
55. Weerasooriya V, Rennie MJ, Anant S, Alpers DH, Patterson BW, Klein S. Dietary fiber decreases colonic epithelial cell proliferation and protein synthetic rates in human subjects. Am J physiol Endocrinol Metab 2006;290:E1104-8. https://doi.org/10.1152/ajpendo.00557.2005
56. Meddings J. The significance of the gut barrier in disease. Gut 2008;57:438-40. https://doi.org/10.1136/gut.2007.143172
57. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020;17:223-37. https://doi.org/10.1038/s41575-019-0258-z
58. Gracia MI, Sánchez J, Millán C, et al. Effect of feed form and whole grain feeding on gastrointestinal weight and the prevalence of campylobacter jejuni in broilers orally infected. PLoS One 2016;11:e0160858. https://doi.org/10.1371/journal.pone.0160858
59. Walugembe M, Hsieh JC, Koszewski NJ, Lamont SJ, Persia ME, Rothschild MF. Effects of dietary fiber onecal shortchain fatty acid and cecal microbiota of broiler and layinghen chicks. Poult Sci 2015;94:2351-9. https://doi.org/10.3382/ps/pev242
60. Jozefiak D, Rutkowski A, Frątczak M, Boros D. The effect of dietary fibre fractions from different cereals and microbial enzyme supplementation on performance, ileal viscosity and short-chain fatty acid concentrations in the caeca of broiler chickens. J Anim Feed Sci 2004;13:487-96. https://doi.org/10.22358/jafs/67618/2004
61. Jamroz D, Jakobsen K, Bach Knudsen KE, Wiliczkiewicz A, Orda J. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp Biochem Physiol A Mol Integr Physiol 2002;131:657-68. https://doi.org/10.1016/s1095-6433(01)00517-7
62. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Ann Rev Physiol 2009;71:241-60. https://doi.org/10.1146/annurev.physiol.010908.163145
63. Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 1996;62:1589-92. https://doi.org/10.1128/aem.62.5.1589-1592.1996
64. Guilloiteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010;23:366-84. https://doi.org/10.1017/s0954422410000247
65. Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta Proteins Proteom 2008;1784:1873-98. https://doi.org/10.1002/jbm.a.20190-0258-z
66. Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 2014;8:1323-35. https://doi.org/10.1038/ismej.2014.14
67. Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM. Role of short-chain fatty acids in colon HCO3 secretion. Am J Physiol Gastrointest Liver Physiol 2005;288:G1217-26. https://doi.org/10.1152/ajpgi.00415.2004
68. Hadjiagapiou C, Schmidt I, Dudka PK, Layden Tj, Ramaswamy K. Mechanism(s) of butyrate transport in Caco-2 cells: role of...
monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 2000;279:G775-80. https://doi.org/10.1152/ajpgi.2000.279.4.G775

69. Takeke K, Nio J, Morimatsu M, et al. Histochemical demonstration of a Na+ -coupled transporter for short-chain fatty acids (Scl5a8) in the intestine and kidney of the mouse. Biomed Res 2005;26:213-21. https://doi.org/10.2220/biomedres.26.213

70. Ganapathy V, Gopal E, Miyauchi S, Prasad PD. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem Soc Trans 2005;33:237-40. https://doi.org/10.1042/bst0330237

71. Halestrap AP, Meredith D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pfuiigers Arch 2004;447:619-28. https://doi.org/10.1007/s00424-003-1067-2

72. Shin HJ, Anzai N, Enomoto A, et al. Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 2007;45:1046-55. https://doi.org/10.1002/hep.21596

73. Sellin JH. SCFAs: The enigma of weak electrolyte transport in the colon. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiology Sciences and the American Physiological Society 1999;14:58-64. https://doi.org/10.1152/physiologyonline.1999.14.2.58

74. Kearney JM, McElhone S. Perceived barriers in trying to eat healthier—results of a pan-EU consumer attitude survey. Br J Nutr 1999;81:S133-S7. https://doi.org/10.1017/S0007114599000987

75. M’Sadeq SA, Wu S, Swick RA, Choct M. Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide. Anim Nutr 2015;1:1-11. https://doi.org/10.1016/j.janimu.2015.02.004

76. Vermeulen K, Verspreet J, Courtin CM, et al. Reduced-particle-size wheat bran is efficiently colonized by a lactic acid-producing community and reduces levels of Enterobacteriaceae in the cecal microbiota of broilers. Appl Environ Microbiol 2018;84:e01343-18. https://doi.org/10.1128/AEM.01343-18

77. Liu H, Ivarsson E, Dickseed J, Lundh T, Lindberg JE. Inclusion of chicory (Cichorium intybus L.) in pigs’ diets affects the intestinal microenvironment and the gut microbiota. Appl Environ Microbiol 2012;78:4102-9. https://doi.org/10.1128/AEM.07702-11

78. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312-9. https://doi.org/10.1074/jbc.M211609200

79. Plzniack J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 2014;5:202-7. https://doi.org/10.4161/gmic.27492

80. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Advan Immunol 2014;121:91-119. https://doi.org/10.1016/b978-0-12-800100-4.00003-9

81. Halnes I, Baines KJ, Berthon BS, MacDonald-Wicks LK, Gibson PG, Wood LG. Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma. Nutrients 2017;9:57. https://doi.org/10.3390/nu9010057

82. Ohira H, Fujioka Y, Katagiri C, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb 2013;20:425-42. https://doi.org/10.5551/jat.15065

83. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014;20:159-66. https://doi.org/10.1038/nm.3444

84. Huang W, Zhou L, Guo H, Xu Y, Xu Y. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 2017;68:20-30. https://doi.org/10.1016/j.metabol.2016.11.006

85. Kim CH. Microbiota or short-chain fatty acids: which regulates diabetes? Cell Mol Immunol 2018;15:88-91. https://doi.org/10.1038/cmi.2017.57

86. Digby JE, Martinez F, Jefferson A, et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler Thromb Vasc Biol 2012;32:669-76. https://doi.org/10.1161/ATVBAHA.111.241836

87. Borthakur A, Priyamvada S, Kumar A, et al. A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1. Am J Physiol Gastrointest Liver Physiol 2012;303:G1126-G33. https://doi.org/10.1152/ajpgi.00308.2012

88. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 2011;343:d6617. https://doi.org/10.1136/bmj.d6617

89. Usami M, Kishimoto K, Ohata A, et al. Butyrate and tricho-
statin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res (New York, NY) 2008;28:321-8. https://doi.org/10.1016/j.nutres.2008.02.012

93. Kendrick SR, O’Boyle G, Mann J, et al. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 2010;51:1988-97. https://doi.org/10.1002/hep.23572

94. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014;111:2247-52. https://doi.org/10.1073/pnas.1322269111

95. Lucas JL, Mirshahpanah P, Haas-Stapleton E, Asadullahb K, Halas D, Hansen CF, Hampson DJ, Mullan BP, Wilson RH. Effects of insoluble dietary fibre differing in lignin on the performance, gut microbiology, and digestibility in weanling piglets. Arch Anim Nutr 2013;67:1837-48. https://doi.org/10.1080/17450390801892617

96. Denyer MP, Pinheiro DY, Garden OA, Shepherd AJ. Missed, not missing: phylogenetic evidence for the existence of avian FoxP3. PLoS One 2016;11:e0150988. https://doi.org/10.1371/journal.pone.0150988

97. Borrelli L, Coretti L, Dipineto L, et al. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. J Food Prot 2010;73:1737-61. https://doi.org/10.4315/0362-028X-73.9.1737

98. Friedman M, Juneja VK. Review of antimicrobial and anti-oxidative activities of chitosans in food. J Food Prot 2010;73:03004.

99. Chen H, Mao X, He J, et al. Dietary fibre affects intestinal morphology of chickens challenged with Salmonella enterica serovar Enteritidis. J Anim Sci 2015;93:238-46. https://doi.org/10.2527/jas.2014-7219

100. De Angelis M, Montemurno E, Vannini L, et al. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol 2015;81:1921-9. https://doi.org/10.1128/AEM.02526-17

101. Pourabedin M, Zhao X. Prebiotics and gut microbiota in chickens. FEMS Microbiol Lett 2015;362:fnv122. https://doi.org/10.1093/femsle/fnv122

102. Fu X, Li R, Zhang T, Li M, Hou M. Study on the ability of partially hydrolyzed guar gum to modulate the gut microbiota and relieve constipation. J Food Biochem 2019;43:e12715. https://doi.org/10.1111/jfbc.12715

103. Ahallil H, Abdullah A, Maskat MY, Sarbini SR. Fermentation of gum arabic by gut microbiota using in vitro colon model. In: AIP Conference Proceedings. AIP Publishing LLC; 2019. p. 050004. https://doi.org/10.1063/1.5111252

104. Bailey JS, Blankenship LC, Cox NA. Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poult Sci 1991;70:2433-8. https://doi.org/10.3382/ps.0702433

105. Kim JC, Mullan BP, Hampson DJ, Pluske JR. Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. Br J Nutr 2008;99:1217-25. https://doi.org/10.1017/S0007114507868462

106. Halas D, Hansen CF, Hampson DJ, Mullan BP, Wilson RH, Pluske JR. Effect of dietary supplementation with inulin and/or benzoic acid on the incidence and severity of post-weaning diarrhea in weaner pigs after experimental challenge with enterotoxigenic Escherichia coli. Arch Anim Nutr 2009;63:267-80. https://doi.org/10.1080/1745039090320414

107. Chen H, Mao X, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr 2013;110:1837-48. https://doi.org/10.1017/S0007114513001293

108. van R, Camandola S, Mattson MP. Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr 2003;133:1921-9. https://doi.org/10.1093/jn/133.6.1921

109. Hansen CF, Phillips ND, La T, et al. Diets containing inulin but not lupins help to prevent swine dysentery in experimentally challenged pigs. J Anim Sci 2010;88:3327-36. https://doi.org/10.2527/jas.2009-2719

110. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoaffectrant receptor GPR43. Nature 2009;461:1282-6. https://doi.org/10.1038/nature08530
116. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013;145:396-406. e10. https://doi.org/10.1053/j.gastro.2013.04.056

117. Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Nat Acad Sci 2013;110:4410-5. https://doi.org/10.1073/pnas.1215927110