R753Q Polymorphism Inhibits Toll-like Receptor (TLR) 2 Tyrosine Phosphorylation, Dimerization with TLR6, and Recruitment of Myeloid Differentiation Primary Response Protein 88*§

Yanbao Xiong, Chang Song, Greg A. Snyder, Eric J. Sundberg, and Andrei E. Medvedev

From the Department of Microbiology and Immunology, Institute of Human Virology, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201

Background: TLR2 SNPs are linked to tuberculosis, but the mechanisms by which they alter TLR signaling are unclear.

Results: R753Q TLR2 showed impaired tyrosine phosphorylation, dimerization with TLR6, MyD88 recruitment, and induction of NF-κB and cytokines upon mycobacterial challenge.

Conclusion: R753Q polymorphism blocks TLR2 tyrosine phosphorylation and signalosome assembly.

Significance: Deciphering how SNPs alter TLR signaling advances TLR immunobiology and facilitates design of new therapeutic strategies.

The R753Q polymorphism in the Toll-IL-1 receptor domain of Toll-like receptor 2 (TLR2) has been linked to increased incidence of tuberculosis and other infectious diseases, but the mechanisms by which it affects TLR2 functions are unclear. Here, we studied the impact of the R753Q polymorphism on TLR2 expression, hetero-dimerization with TLR6, tyrosine phosphorylation, and recruitment of myeloid differentiation primary response protein (MyD) 88 (MyD88) and MyD88 adapter-like (Mal). Complementation of HEK293 cells with transfected WT or R753Q TLR2 revealed their comparable total levels and only minimal changes in cell surface expression of the mutant species. Notably, even a 100-fold increase in amounts of transfected WT or R753Q TLR2 revealed their comparable total levels and only minimal changes in cell surface expression of the mutant species. Notably, even a 100-fold increase in amounts of transfected WT versus WT variant did not overcome the compromised ability of the mutant TLR2 to activate nuclear factor κB (NF-κB), indicating that a minimal decrease in cell surface levels of the R753Q TLR2 cannot account for the signaling deficiency. Molecular modeling studies suggested that the R753Q mutation changes the electrostatic potential of the DD loop and results in a discrete movement of the residues critical for protein-protein interactions. Confirming these predictions, biochemical assays demonstrated that R753Q TLR2 exhibits deficient agonist-induced tyrosine phosphorylation, hetero-dimerization with TLR6, and recruitment of Mal and MyD88. These proximal signaling deficiencies correlated with impaired capacities of the R753Q TLR2 to mediate p38 phosphorylation, NF-κB activation, and induction of IL-8 mRNA in transfected HEK293 cells challenged with inactivated Mycobacterium tuberculosis or mycobacterial components. Thus, the R753Q polymorphism renders TLR2 signaling-incompetent by impairing its tyrosine phosphorylation, dimerization with TLR6, and recruitment of Mal and MyD88.

Innate immune cells, such as macrophages, dendritic cells, and neutrophils, detect conserved structures of microbial pathogens via pattern recognition receptors, including membrane-associated Toll-like receptors (TLRs)1–3. TLRs are type I glycoproteins expressed on the cell surface (TLR1, TLR2, TLR4–6, TLR11) or intracellularly in the endoplasmic reticulum and endosomes (TLR3, TLR7–9). They contain an ectodomain involved in ligand recognition and co-receptor interactions, a transmembrane region, and an intracellular signaling Toll-IL-1R (TIR) domain. TLRs expressed on the cell surface recognize bacterial lipids (e.g., LPS detection by TLR4) and proteins (flagellin detection by TLR5) (6), whereas endosomal TLRs sense viral dsRNA (TLR3) (7), ssRNA (TLR7/8) (8, 9), and hypomethylated CpG motifs present in microbial DNA (TLR9) (10–14). TLR2 cooperates with TLR1 or TLR6 to sense tri- or diacylated lipoproteins, respectively, expressed by Gram-positive bacteria, mycobacteria, mycoplasma, and fungi (15–18).

Ligand recognition initiates TLR2 dimerization with TLR1 or TLR6 that brings together their TIR domains and triggers TLR2 tyrosine phosphorylation (15, 17, 19, 20), forming docking platforms to enable recruitment of myeloid differentiation primary response protein (MyD) 88 (4, 5). MyD88 interacts

Received for publication, April 25, 2012, and in revised form, September 16, 2012. Published, JBC Papers in Press, September 19, 2012, DOI 10.1074/jbc.M112.375493

© 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
R753Q Polymorphism Alters TLR2 Signalosome Assembly

with MyD88 adapter-like (Mal) and TLR2 via TIR-TIR domain interactions (21, 22), forming a scaffold to recruit interleukin-1 (IL-1) receptor-associated kinases (IRAK) 4, IRAK1, and IRAK2 (23, 24) that associate with the intermediate and death domains of MyD88 (25). Clustered IRAK4 molecules undergo autophosphorylation and kinase activation, leading to IRAK4 → IRAK1/2 phosphorylation and induction of kinase activity (23, 26), recruitment, and Lys-63-linked ubiquitination of TNF receptor-associated factor (TRAF) 6 (4, 5, 27). IRAK1 also undergoes Lys-63-linked ubiquitination via recruitment of Pellinos and TRAF6, resulting in direct recruitment of Ικβ kinase (ΙΚΚ)→γ to IRAK1 (28), whereas ubiquitinated TRAF6 recruits TGF-β-activated kinase (TAK) 1 by engaging ubiquitin recognition domains within inhibitor of NF-κB (Ικβ) kinase (ΙΚΚ)→γ and TAK-interacting proteins (29). These processes activate TAK1 and the ΙΚΚ complex and place them into close proximity, promoting TAK1-mediating activation of mitogen-activated protein kinases (MAPKs) and ΙΚΚ→β, resulting in nuclear translocation of transcription factors that induce transcription of inflammatory genes (28, 30).

Mycobacterium tuberculosis is a causative agent of tuberculosis, one of the most ancient and devastating diseases (31). TLR2 detects *M. tuberculosis* and its structural components and plays an important role in host defense against *M. tuberculosis* infection (15, 32–35). Genome-wide association studies have identified several TIR domain-localized SNPs within *M. tuberculosis* and plays an important role in host defense against *M. tuberculosis* infection (36–39). Peripheral blood mononuclear cells isolated from patients expressing TLR2 SNPs had impaired NF-κB activation and cytokine secretion in response to *M. tuberculosis* infection (30). However, the molecular basis of compromised functions of polymorphic TLR2 variants is unclear.

To determine mechanisms by which the R753Q polymorphism affects TLR2 signaling, we used transfection-based complementation of HEK293 cells with WT or R753Q YFP-TLR2 to study TLR2 signalosome assembly, induction of MAPKs, transcription factors, and cytokines. This study shows that compromised signaling capacity of R753Q TLR2 is not due to lower expression of the mutant receptor species but instead results from their deficient tyrosine phosphorylation, compromised TLR2-TLR6 assembly, and impaired recruitment of Mal and MyD88 to R753Q TLR2. These findings provide a novel mechanistic insight into how the R753Q polymorphism deregulates TLR2 signaling.

EXPERIMENTAL PROCEDURES

Reagents and Cell Culture—Recombinant human TNF-α, anti-GFP, and AU1 antibodies (Abs) were from Invitrogen, and Abs against TLR2, Ικβ-α, and tubulin were from Santa Cruz Biotechnology. Anti-phospho-p38 Ab was from Promega, and anti-phospho-tyrosine Ab PY20 was from BD Biosciences. S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-Cys-Ser-Lys(4)-OH (Pam2Cys), S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmiti-

—Confocal microscopy was performed as described previously (43). In brief, cells were seeded (4 × 10^6 cells) on poly-1-lysine-coated coverslips (Fischer Scientific) in phenol-free complete DMEM and cultured for 20 h. Transfection was performed using Lipofectamine 2000 (Invitrogen)
transfection reagent followed by gentle washing and recovery for 48 h. Cells were fixed with 2% paraformaldehyde and mounted onto glass slides using a 1:4 diazabicyclo[2.2.2]octane-based antifade fluorescent mounting medium. Images were acquired using an Olympus Fluoview 500 laser scanning confocal microscope (Olympus). Sequential scans were taken for CFP, YFP, and Cherry fluorophores, using excitation wavelengths at 458, 514, and 633 nm, respectively, as reported (44).

Isolation of RNA and Real-time Quantitative PCR Analysis—Total RNA was isolated using TRIzol (Invitrogen), residual genomic DNA was digested with DNase, and RNA was purified as recommended by the manufacturer. cDNA was prepared from 1 µg of total RNA using the reverse transcription system (Promega) and examined by real-time quantitative PCR with primers for human IL-8, 5‘-CACCGGAAAGACCATCCTCACT-3’ (forward) and 5‘-TGCAACCTACACAGAGCTGC-3’ (reverse); human hypoxanthine phosphoribosyltransferase (HPRT) 5‘-ACCACTGCAACGGGACATAAAAG-3’ (forward) and 5‘-GTCTGACTTGTGTGCGATGTC-3’ (reverse); mouse hypoxanthine phosphoribosyltransferase 5‘-GCTGACCTGCTGGATTACATT-3’ (forward) and 5‘-GGTTAGAGATCATCTCCACCA-3’ (reverse); mouse TNF-α 5‘-GCCAGCTCAGCTGACACTG-3’ (forward) and 5‘-GGTTGAGGGTTTGCTACAACATG-3’ (reverse); and human IL-8, 5‘-GCTTGAGGGTTTGCTACAACATG-3’ (reverse). The data were analyzed by the 2-ΔΔCT method (45).

Co-immunoprecipitation and Immunoblotting—Cell lysates were prepared as described previously (46) and precleared with protein G-agarose beads (Roche Applied Science) for 4 h at 4°C upon rotation. Precleared cell extracts were incubated overnight at 4°C with the respective Abs in lysis buffer containing 20 mM HEPES (pH 7.4), 0.5% Triton X-100, 150 mM NaCl, 12.5 mM β-glycerophosphate, 50 mM NaF, 1 mM DTT, 1 mM sodium orthovanadate, 2 mM EDTA, 1 mM PMSF, and protease inhibitor mixture (Roche Applied Science). Protein G-agarose beads were added (45 µl/sample), and incubation continued for 4 h. Beads were washed five times with lysis buffer and resuspended in Laemmlil sample loading buffer (50 mM Tris-Cl, pH 6.8, 10% glycerol, 2% SDS, 0.1% bromphenol blue, 5% 2-mercaptoethanol). Proteins were separated by SDS-PAGE on 4–20% mini-gels (Invitrogen), electrotransferred to Immobilon-P membranes, blocked, and probed with the respective Abs, as described (46, 47). Densitometric quantification was performed using the Quantity One program (Bio-Rad).

NF-κB Reporter Assays—Reporter assays were performed as reported previously (46–48). In brief, cells were transfected with plasmids, using SuperFect, recovered for 24 h, and treated for 5 h with medium or stimuli. Cells were lysed in a passive lysis buffer (Promega), and firefly luciferase versus Renilla luciferase activities were measured using the Dual-Luciferase reporter assay system (Promega) on a Berthold LB 9507 luminometer (Berthold Technologies).

Molecular Modeling Studies—Structural models of the WT and R753Q-containing TIR domains of TLR2 were built using the WT TLR2 structure (Protein Data Bank (PDB) accession code 1FYW) and the 3D-JIGSAW Protein Comparative Modeling Server (version 2.0) and visualized and analyzed using the Cn3D 4.3 macromolecular structure viewer (National Center for Biotechnology Information (NCBI), www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml) and PyMOL. Selenomethionine and dimethylarsenic cysteines modified residues from the TIR2 structure (1FYW) were stripped of modifications and replaced with Met and Cys, whereas retaining original conformations. Rosetta_backrub (49, 50) was used to evaluate 20 models for the impact of the R753Q mutation. Resulting models were visualized using PyMOL, and energy surface representations were calculated using the APBS (51, 52) plug-in in PyMOL.

Statistical Analysis—Statistical analysis was performed using the GraphPad Prism 5 program for Windows (GraphPad Software Inc.). Statistical differences were evaluated by the Student’s t test with the level of significance set at p < 0.05. Data are expressed as mean ± S.D.

RESULTS

R753Q Polymorphism Does Not Significantly Diminish Expression Levels of TLR2 but Drastically Impairs TLR2-elicited NF-κB Activation—Because the magnitude of TLR signaling correlates with receptor expression (53, 54), we examined the impact of the R753Q polymorphism on TLR2 levels. To optimize detection, we transfected HEK293 cells with vectors encoding WT or R753Q TLR2 fused at the C terminus with YFP (42), which does not alter TLR cellular localization or functions (40, 44, 55). Fluorescent microscopy and FACS revealed similar YFP fluorescence in HEK293 cells transfected with WT or R753Q YFP-TLR2 (Fig. 1A, A and B), and comparable levels of WT and R753Q YFP-TLR2 were immunoblotted with anti-GFP Ab (Fig. 1C) that cross-reacts with YFP (44, 55, 56). FACS analyses of 293/YFP-TLR2 stable transfectants expressing WT or R753Q variants and stained with PE-conjugated anti-TLR2 Ab showed minimal changes (<20%) in cell surface expression of WT versus R753Q TLR2 (Fig. 1B, right). To determine whether increasing levels of R753Q TLR2 overcomes its signal deficiencies, HEK293T cells were transfected with different input amounts of plasmids encoding WT or mutant TLR2, and Pam3Cys-induced NF-κB transactivation was determined. Fig. 1D shows that ~12-fold higher input amount of R753Q TLR2-expressing plasmid was required to achieve NF-κB reporter activation similar to that caused by vector encoding WT TLR2. Importantly, the plateau of NF-κB activation elicited by WT TLR2 was ~3-fold higher when compared with the maximal response caused by the R753Q variant (Fig. 1D). Thus, drastic differences in signaling between WT and the R753Q TLR2 cannot be accounted for by minor differences in expression.

Transfected R753Q TLR2 Elicits Diminished Phosphorylation of p38, Activation of NF-κB, and Expression of IL-8 Gene—To study how the R753Q polymorphism affects TLR2 signaling, we transiently transfected HEK293T cells with vectors encoding WT or mutant YFP-TLR2 and determined TLR2-driven activation of p38 and NF-κB and induction of IL-8 mRNA. Treatment of 293/WT YFP-TLR2 transfectants with Pam3Cys and LAM, TLR2-TLR1 and TLR2-TLR6 agonists, respectively (34, 57), led to marked phosphorylation of p38 (Fig. 2, A and C) and activation of the NF-κB luciferase reporter (Figs. 1D and 3B), whereas cells expressing R753Q YFP-TLR2 exhibited significantly blunted responses. In contrast to WT TLR2-expressing
cells, 293/R753Q YFP-TLR2 transfectants failed to phosphorylate and degrade IkB-α (Fig. 2, B and C) and showed inhibited NF-κB reporter activation (Fig. 3A) when stimulated with irradiated M. tuberculosis, heat-killed Staphylococcus aureus, or M. smegmatis-derived LAM. Exposure of 293/R753Q YFP-TLR2 cells to M. tuberculosis-derived CW and culture filtrate fractions or LAM led to <2-fold NF-κB reporter induction when compared with robust (4.1–4.3-fold) activation elicited by WT TLR2 (Fig. 3B).

Because MAPKs and NF-κB control expression of pro-inflammatory mediators (5, 30), we next determined the impact of the R753Q mutation on TLR2-induced IL-8 gene expression.
Although treatment of 293/WT YFP-TLR2 stable transfectants with Pam3Cys or M. tuberculosis-derived CW resulted in 42- and 15-fold induction of IL-8 mRNA levels in cells expressing R753Q TLR2 (Fig. 4A). TNF-α induced comparable IL-8 gene expression in 293 cells expressing WT or R753Q TLR2 (Fig. 4A), indicating that the inhibitory impact of R753Q mutation is restricted to TLR signaling.

We next sought to confirm our data in cells with the macrophage phenotype. To this end, we determined the effect of nucleofection-based complementation of TLR2−/− iBMDMs with human WT or R753Q YFP-TLR2 on Pam3Cys-mediated TNF-α gene expression. iBMDM cell lines replicates TLR responses of primary macrophages (58) and have been extensively used by several groups, including ours (43, 58, 59). As shown in Fig. 4B, Pam3Cys induced 9.2-fold induction of TNF-α mRNA in WT iBMDMs, whereas TLR2−/− iBMDMs showed no responsiveness. Nucleofection of expression vector encoding human WT YFP-TLR2 endowed Pam3Cys sensitivity, leading to ~4-fold induction of TNF-α mRNA levels, whereas only 1.9-fold increase was seen in cells nucleofected with R753Q YFP-TLR2 (Fig. 4B). Quantitative real-time PCR analyses revealed similar relative levels of human TLR2 mRNA in TLR2−/− iBMDMs complemented with WT versus D299G TLR2 (supplemental Fig. S1), indicating comparable expression of transfected YFP-TLR2 species. Thus, the R753Q polymorphism reduces the capacity of TLR2 to activate p38 and NF-κB and induce IL-8 gene expression in response to Pam3Cys, inactivated M. tuberculosis, and mycobacteria-derived CW, culture filtrate, or LAM, whereas not affecting TNF-α-driven expression of IL-8 mRNA.

Molecular Modeling of the Impact of the R753Q Mutation on the Structure of the TIR Domain of TLR2—The TIR2 structure (PDB code 1FYW) was used as a template structure to model the point mutation R753Q using Rosetta backrub (49). Analysis of 20 modeled Gln-753 TIR2 structures showed no gross conformational changes in nearby or distant main chain atoms with respect to the WT TIR2 (Fig. 5, A–C). However, we noted discrete main and side chain differences, affecting residues Pro-746, Arg-748, and Lys-751 and the R753Q mutation itself (Fig. 5D), thought to be involved in TIR2 interactions with TIR1 (Arg-748 and Arg-753) and TIR6 (Arg-748 and Lys-751) (61). We also observed a notable change in the electrostatic potential within the DD loop and αD region resulting from the R753Q mutation, with a relative decrease in the net positive charge (Fig. 5, E and F). Thus, the R753Q mutation is likely to change the interaction surface within the TIR domain via altered electrostatic potential of or conformational effects on the DD loop, possibly affecting TLR2 dimerization with TLR1 and/or TLR6 and recruitment of adapter proteins Mal and MyD88.

Impact of R753Q Polymorphism on TLR2 Tyrosine Phosphorylation upon Stimulation with Pam3Cys and Irradiated M. tuberculosis—Previous studies from our group and other laboratories demonstrated a critical role of tyrosine phosphorylation of TLR2 for initiating signal transduction (20, 40). Because the R753Q polymorphism may alter conformation and the electrostatic potential of the TIR domain (Fig. 5), it is possible that such changes could affect recruitment of protein-tyrosine kinases (PTKs) or accessibility of tyrosine residues for PTKs. Therefore, we studied agonist-inducible tyrosine phosphorylation of WT versus R753Q YFP-TLR2 immunoprecipitated with anti-GFP (Fig. 6A) or anti-TLR2 (Fig. 6B) Abs from 293/TLR2 stable cell lines. Immunoblotting of YFP-TLR2 immune complexes with anti-phospho-tyrosine Ab revealed marked induction of tyrosine phosphorylation of WT, but not R753Q, YFP-TLR2 in HEK293 transfectants stimulated with Pam3Cys or irradiated M. tuberculosis (4.8- and 7.5-fold, respectively, Fig. 6, A–D). Immunoprecipitation and immunoblotting with anti-GFP Ab revealed comparable total levels of WT and R753Q YFP-TLR2 (Fig. 6, A and B), indicating that different tyrosine phosphorylation was not due to lower expression of the mutant TLR2. Our data indicate that the R753Q polymorphism blocks the ability of TLR2 to undergo tyrosine phosphorylation upon stimulation with Pam3Cys or irradiated M. tuberculosis.

R753Q Polymorphism Interferes with Agonist-inducible TLR2 Hetero-Dimerization with TLR6—Given that TLR2 senses M. tuberculosis and M. tuberculosis-associated lipids in cooperation with TLR6 (15, 16, 33), we studied whether the R753Q polymorphism affects TLR2-TLR6 assembly. To this end, 293/
YFP-TLR2 stable cell lines expressing WT or R753Q species were transfected with plasmids encoding CFP-TLR6, and Pam2Cys-inducible TLR2-TLR6 hetero-dimerization was assessed by co-immunoprecipitation and Western blot analyses. Pam2Cys stimulation resulted in 5.9–8-fold increases in the accumulation of TLR2-associated TLR6 proteins in 293/WT YFP-TLR2 transfectants, whereas significantly impaired TLR2-TLR6 hetero-dimerization was observed in cells expressing the R753Q species (Fig. 7, A and B). Comparable total levels of CFP-TLR6, WT, and R753Q YFP-TLR2 were observed (Fig. 7A), indicating that differences in dimerization with TLR6 exhibited by WT versus R753Q TLR2 variants were not due to variations in the total levels of the interacting proteins. These results suggest that changes in conformation and/or electrostatic potential of the TIR domain imposed by the R753Q polymorphism (Fig. 5) contribute to deficient agonist-inducible TLR2-TLR6 association.

R753Q TLR2s Show Impaired Recruitment of Mal and MyD88—Upon ligand recognition, TLR2 hetero-dimerize with TLR1 or TLR6, resulting in docking platform assembly within their TIR domains to enable recruitment of adapter proteins Mal and MyD88 (4, 5, 22, 30, 62, 63). In our next series of experiments, we examined whether compromised ability of R753Q TLR2 to hetero-dimerize with TLR6 affects the ability of TLR2 to associate with Mal and to recruit MyD88. 293/YFP-TLR2 stable cell lines expressing WT or R753Q TLR2 were co-transfected with plasmids encoding Flag-Mal or AU1-MyD88, and agonist-mediated recruitment of epitope-tagged adapters to YFP-TLR2 was determined by co-immunoprecipitation. Pam3Cys stimulation for 10 and 30 min up-regulated the amounts of Flag-Mal associated with WT YFP-TLR2, whereas it failed to increase Flag-Mal interactions with the R753Q YFP-TLR2 species over basal levels seen in medium-treated cells (Fig. 8A). Exposure to irradiated M. tuberculosis
induced robust recruitment of AU1-MyD88 to WT YFP-TLR2 evident within 15 min of stimulation followed by its rapid dissociation (Fig. 8B). In contrast, irradiated *M. tuberculosis* failed to induce AU1-MyD88 recruitment to the R753Q TLR2 within the time course analyzed (Fig. 8B). Similar amounts of total transfected WT and R753Q YFP-TLR2 proteins Flag-Mal and AU1-MyD88 were seen in all samples (Fig. 8), indicating that differences in MyD88 recruitment to WT versus R753Q TLR2 cannot be attributed to variations in total expression of the interacting transfected proteins. To confirm our results obtained by immunoprecipitation, we used confocal microscopy as an alternative approach to study co-localization of transfected YFP-TLR2, mCherry-Mal, and CFP-MyD88. Pam3Cys induced increased co-localization of mCherry-Mal and CFP-MyD88 with WT YFP-TLR2, whereas the R753Q YFP-TLR2 species showed deficient co-localization (supplemental Figs. S2 and S3). Taken collectively, these results demonstrate impaired capacities of R753Q TLR2 to associate with Mal and to recruit MyD88 after stimulation with Pam3Cys or irradiated *M. tuberculosis*.

DISCUSSION

The R753Q TLR2 polymorphism has been associated with increased prevalence of leprosy and tuberculosis (36–38, 64).
More than 10% of patients with atopic dermatitis express the TLR2 R753Q SNP and exhibit severe eczema (65, 66). Furthermore, patients with liver transplants expressing this mutation exhibited a trend toward a higher rate of CMV infection (67), recurrence of Gram-positive infections, and septic shock (68). Studies with peripheral blood mononuclear cells obtained from patients with leprosy or tuberculosis expressing the R753Q polymorphism and experiments with HEK293 cells transfected with the corresponding mutant TLR2 revealed attenuated NF-κB activation and cytokine release in response to stimulation with M. tuberculosis and defined TLR2 agonists (38, 39, 42, 69). However, the molecular basis by which the R753Q polymorphism compromises TLR2-mediated host innate defense, promoting bacterial infections, remains poorly understood.

In this study, we employed overexpression of WT and mutant YFP-TLR2 in HEK293 cells to determine the impact of the R753Q polymorphism on TLR2 expression, tyrosine phosphorylation, and signalosome assembly, information that has not been reported previously. Because the magnitude of TLR signaling depends on relative TLR protein levels (53), we first determined the impact of the R753Q polymorphism on TLR2 expression. Using fluorescent microscopy, immunoprecipitation, and immunoblot analyses, we found comparable total levels of WT and R753Q TLR2 proteins and only slightly (~20%) reduced cell surface expression of the mutant species. Our dose-response experiments showed that even transfection of ~100-times higher amount of the R753Q TLR2-encoding vector failed to elicit the magnitude of NF-κB activation and cytokine release comparable with the plateau of WT TLR2-inducible response. These results indicate that impaired signaling via R753Q TLR2 cannot be attributed to its slightly diminished cell surface expression. Under conditions of comparable expression of WT and mutant TLR2s, we observed significant deficiencies of the R753Q TLR2 species to activate p38 and NF-κB and to induce IL-8 gene expression upon stimulation with inactivated M. tuberculosis and M. tuberculosis-derived cell wall and culture filtrate fractions, LAM and Pam3Cys. Nucleofection-based complementation of TLR2−/− iBMDMs with human WT TLR2 partially restored their responsiveness to Pam3Cys, whereas the R753Q TLR2 version failed to impart Pam3Cys sensitivity, confirming our results in cells with the macrophage background. In contrast, TNF-α induced comparable levels of IL-8 mRNA in 293/TLR2 transfectants that express WT or R753Q TLR2, demonstrating the specific impact of the R753Q mutation on TLR2 signaling.

Very little and controversial information has been reported in the literature regarding the impact of the R753Q polymorphism on TLR2 expression. One study showed no significant changes in expression levels of TLR2 in healthy volunteers and patients with familial Mediterranean fever expressing WT and R753Q TLR2 (70). In contrast, another group found lower α-CD3 Ab-inducible expression of R753Q versus WT TLR2 in T cells obtained from healthy volunteers or patients with atopic dermatitis, with distinct modulation of WT and R753Q TLR2 levels upon stimulation with lipoteichoic acid (69). Of note, two other loss-of-function TIR2 domain mutations, P681H and P631H, do not affect TLR2 expression levels (50, 71). Our data support findings showing the lack of the impact of the TIR2 mutations on TLR2 expression levels. However, we cannot exclude that the R753Q polymorphism could affect TLR2 trafficking and localization, an important regulatory mechanism of TLR2 signaling (72), analogous to the reported effect of the P6531H mutation (71).

To gain initial insights into how the R753Q mutation could interfere with TLR2 signaling, we undertook molecular modeling of the secondary structures of WT- and R753Q-containing TIR domains. These studies suggested significant changes in the electrostatic potential of the DD loop and R753Q-containing TIR domains. We observed significant differences in the DD loop and R753Q-containing TIR domains. Interestingly, according to our molecular modeling, changes in the electrostatic potential and discrete main and side chain differences in the DD loop region of the TIR2 and the BB loops of TIR1 or TIR6 (61). Interestingly, according to our molecular modeling, changes in the electrostatic potential and discrete main and side chain differences in the DD loop and R753Q-containing TIR domains. These studies suggested significant changes in the electrostatic potential of the DD loop and R753Q-containing TIR domains. We observed significant differences in the DD loop and R753Q-containing TIR domains.

\[\text{R753Q Polymorphism Alters TLR2 Signalosome Assembly} \]

A	IP: α-Flag or IgG	Western	IgG WT	WT R753Q
Pam3Cys (min):	0	10	30	10
YFP-TLR2	+	+	+	+
Flag-Mal	+	+	+	+
YFP-WESTERN	Flag-Mal	+	+	+
YFP-TLR2	+	+	+	+
YFP-AU1	+	+	+	+
tubulin	+	+	+	+

B	YFP-TLR2:	Western	IgG WT	WT R753Q
AU1-MyD88	+	+	+	+
Flag-Mal	+	+	+	+
YFP-TLR2	+	+	+	+
AU1-AU1	+	+	+	+
YFP-TLR2	+	+	+	+
YFP-AU1	+	+	+	+
tubulin	+	+	+	+

[FIGURE 8. R753Q TLR2 shows deficient capacity to recruit Mal and MyD88 in response to agonist stimulation. HEK293T cells were transiently transfected with pEFBOS-Flag-Mal (A) or pcDNA3-AU1-MyD88 (B) in combination with pcDNA3-WT YFP-TLR2 or pcDNA3-R753Q YFP-TLR2, and control cells were transfected with pcDNA3. IP, immunoprecipitation; IB, immunoblot. After recovery for 24h, cells were treated with medium or stimulated with 100 ng/ml Pam3Cys (A) or irradiated M. tuberculosis (Mt) (inactivated M. tuberculosis/HEK cell ratio 50:1) (B) for the indicated time points, and cell lysates were prepared and subjected to immunoprecipitation with anti-TLR2 Ab. Flag-Mal and TLR2 immune complexes were examined by Western blotting with anti-GFP and anti-AU1 Abs. Whole cell lysates were subjected to immunoblotting with anti-AU1 and anti-tubulin Abs to analyze total AU1-MyD88 expression and to control for protein loading, respectively. The results of a representative (n = 2) experiment are shown.]

38334 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 287 • NUMBER 45 • NOVEMBER 2, 2012
initial step required for cell activation in response to *M. tuberculosis* and *M. tuberculosis*-derived lipids (15, 32–35), we sought to obtain direct biochemical evidence on whether the R753Q polymorphism affects agonist-inducible TLR2-TLR6 assembly. Using co-immunoprecipitation and Western blot analyses, we found a significantly lower ability of the R753Q TLR2 to associate with TLR6 upon stimulation with Pam2Cys, a defined TLR2-TLR6 agonist (73), confirming the direct impact of the mutation of TLR2-TLR6 hetero-dimerization predicted by molecular modeling.

The molecular basis by which the R753Q mutation interferes with TLR2-TLR6 dimerization is unclear. TLR2 hetero-dimerization with TLR6 is initiated via ligand recognition by leucine-rich repeat-containing receptor ectodomains (17, 74, 75) and is thought to involve subsequent cooperative engagement of their respective TIR domains (17). Because the R753Q polymorphism is localized to the TIR domain and spaced at a significant distance from the ligand-recognition interface in the ectodomain, direct impacts of the mutation on ligand recognition are unlikely. It is tempting to speculate that the R753Q mutation affects cooperative TIR2-TIR6 interactions due to changes in the electrostatic potential and conformation within the DD loop region imposed by the mutation. Further structural and biochemical studies are required to determine the precise molecular mechanism of R753Q-mediated interference.

Agonist-mediated dimerization of the TLR2 TIR domains is thought to form a scaffold to which TIR domain containing adaptor proteins (TIRAP/Mal and MyD88 adapters) and different kinases, including PTKs and IRAKs, are recruited (4, 5, 21, 22, 30, 63, 76). Previous studies by us and others demonstrated the importance of agonist-inducible tyrosine phosphorylation of TLR2, TLR3, TLR4, and TLR9 for enduring signaling competence (20, 40, 60, 76–78). They revealed c-Src as a likely PTK candidate phosphorylating TLR3 (60) and members of the Src kinase and Bruton tyrosine kinase families as putative PTKs that phosphorylate TLR4 (40). However, the identity of PTKs involved in tyrosine phosphorylation of TLR2 is unknown. Because the R753Q polymorphism inhibits TLR2-TLR6 hetero-dimerization that assembles a scaffold TIR interface to which PTKs are recruited, this could translate into the failure of the mutant TLR2 to become tyrosine-phosphorylated. Indeed, this study demonstrates for the first time that in contrast to WT TLR2, the R753Q TLR2 fails to undergo tyrosine phosphorylation upon stimulation with Pam2Cys or irradiated *M. tuberculosis* mRNA in 293/TLR2 transfectants stimulated with irradiated *M. tuberculosis*, *M. tuberculosis*-derived components, and Pam3Cys. It is plausible that deficient signal transduction of R753Q TLR2 could promote *M. tuberculosis* replication in infected macrophages, underlying a decreased resistance of R753Q carriers to *M. tuberculosis* infection and increased incidence of tuberculosis.

In summary, this study shows for the first time that the R753Q mutation renders TLR2 signaling-deficient by impairing TLR2-TLR6 hetero-dimerization, tyrosine phosphorylation, and recruitment of Mal and MyD88, whereas not affecting TLR2 expression. We also provide important and novel mechanistic insights into R753Q-mediated disruption of TLR2 signaling. Furthermore, our data suggest that peptide mimics or small molecule components promoting TLR2-TLR6 hetero-dimerization may overcome the signaling deficiency of the R753Q TLR2 and could serve as an important therapeutic modality for treatment of TLR2-deficient patients.

Acknowledgments—We are grateful to Drs. Katherine Fitzgerald and Douglas T. Golenbock (University of Massachusetts Medical School, Worcester, MA) for providing us with cell lines and expression vectors, to Dr. Gregory Melkiian (Emory University School of Medicine, Atlanta, GA) for providing pcDNA3-mCherry, and to Dr. Adam Puche (University of Maryland School of Medicine) for guidance and advice with confocal microscopy analyses.

REFERENCES

1. Janeway, C. A., Jr., and Medzhitov, R. (2002) Innate immune recognition. *Ann. Rev. Immunol.* 20, 197–216
2. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., and Beutler, B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. *Science* 282, 2085–2088
3. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the *Drosophila* Toll protein signals activation of adaptive immunity. *Nature* 388, 394–397
4. Beutler, B. (2009) Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. *Immunol. Rev.* 227, 248–263
5. Doyle, S. L., and O’Neill, L. A. (2006) Toll-like receptor 3. Inhibition of TLR3 signaling. *J. Immunol.* 177, 725–733
6. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J., and Madara, J. L. (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. *J. Immunol.* 167, 1882–1888
7. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. *Nature* 413, 732–738
8. Diebold, S. S., Kisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C. (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. *Science* 303, 1529–1531
9. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. *Science* 303, 1526–1529
10. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsunami, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. *Nature* 408, 740–745
11. Nakamura, K., Miyazato, A., Xiao, G., Hatta, M., Inden, K., Aoyagi, T., Shiratori, K., Takeda, K., Akira, S., Saito, I., Ikawara, Y., Adachi, Y., Ohno, N., Suzuki, K., Fujita, J., Kaku, M., and Kawakami, K. (2008) Deoxyxynucleic
acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway. J. Immunol. 180, 4067–4074

12. Krug, A., French, A. R., Barchet, W., Fischer, J. A., Dzioniak, A., Pingel, J. T., Orihuela, M. M., Akira, S., Yokoyama, W. M., and Colonna, M. (2004) TLR9-dependent recognition of MCMV by IFN and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119

13. Abe, T., Hemmi, H., Miyamoto, H., Moriguchi, K., Tamura, S., Takei, H., Akira, S., and Matsushita, Y. (2005) Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J. Virol. 79, 2847–2858

14. Guggemoos, S., Hangel, D., Hamm, S., Heit, A., Bauer, S., and Adler, H. (2008) TLR9 contributes to antiviral immunity during gamma-herpesvirus infection. J. Immunol. 180, 438–443

15. Bulut, Y., Faure, E., Thomas, L., Equils, O., and Arditi, M. (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol. 167, 987–994

16. Lien, E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R., Radolf, J. D., and Golenbock, D. T. (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419–33425

17. Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., and Ademir, A. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. U.S.A. 97, 13766–13771

18. Takeuchi, O., Sato, S., Horiiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L., and Akira, S. (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipopolysaccharines. J. Immunol. 169, 10–14

19. Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S. G., Lee, H., Kim, H. M., and Seol, J. Y. (2008) IRAK4 in TLR/IL-1R signaling: possible clinical applications. J. Immunol. 180, 438–443

20. O'Neill, L. A. (2008) When signaling pathways collide: positive and negative regulation of Toll-like receptor signal transduction. Immunity 29, 12–20

21. Kaufmann, S. H. (2006) Tuberculosis: back on the immunologists’ agenda. Immunity 24, 351–357

22. Bowdish, D. M., Sakamoto, K., Kim, M. J., Kroos, M., Mukhopadhyay, S., Leifer, C. A., Tryggvason, K., Gordon, S., and Russell, D. G. (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog. 5, e1000474

23. Drape, M. G., Pecora, N. D., Hise, A. G., Febbraio, M., Silverstein, R. L., Golenbock, D. T., and Harding, C. V. (2009) TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipopolysaccharides of Mycobacterium tuberculosis. Cell. Immunol. 258, 29–37

24. Means, T. K., Wang, S., Lien, E., Yoshimura, A., Golenbock, D. T., and Fenton, M. J. (1999) Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927

25. Brenn, M. B., Nicolle, D., Queniaux, V. J., Jacobs, M., Allie, N., Mpapi, J., Frédond, C., Wagner, H., Kirschning, C., and Ruffe, B. (2004) Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am. J. Pathol. 164, 49–57

26. Ogus, A. C., Yoldas, B., Ozdemir, T., Uguz, A., Olen, S., Keser, I., Coskun, M., Cilli, A., and Yegin, O. (2004) The Arg53Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 23, 219–223

27. Ben-Ali, M., Barbourche, M. R., Bousnina, S., Chabour, A., and Dellagi, K. (2004) Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin. Diagn. Lab. Immunol. 11, 625–626

28. Kang, T. J., and Chae, C. G. T. (2001) Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol. 31, 53–58

29. Kang, T. J., Lee, S. B., and Chae, C. G. T. (2002) A polymorphism in the Toll-like receptor-2 is associated with IL-12 production from monocytes in lepromatous leprosy. Cytoimmunology 20, 56–62

30. Medvedev, A. E., Piao, W., Shoenfelt, J., Rhee, S. H., Chen, H., Bassa, S., Wahl, L. M., Fenton, M. J., and Vogel, S. N. (2007) Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J. Biol. Chem. 282, 16042–16053

31. Medvedev, A. E., Thomas, K., Awomoyi, A., Kuhns, D. B., Gallin, J. I., Li, X., and Vogel, S. N. (2005) Cutting edge: expression of IL-1 receptor-associated kinase-4 (IRAK-4) proteins with mutations identified in a patient with recurrent bacterial infections alters normal IRAK-4 interaction with components of the IL-1 receptor complex. J. Immunol. 174, 6587–6591

32. Quevedo-Diaz, M. A., Song, C., Xiong, Y., Chen, H., Wahl, L. M., Radulovic, S., and Medvedev, A. E. (2010) Involvement of TLR2 and TLR4 in cell responses to Rickettsia akari. J. Leukoc. Biol. 88, 675–685

33. Figueroa, L., Xiong, Y., Song, C., Piao, W., Vogel, S. N., and Medvedev, A. E. (2012) The Asp299Gly polymorphism alters TLR4 signal transduction by interfering with recruitment of MyD88 and TRIF. J. Immunol. 188, 4506–4515

34. Visintin, A., Latz, E., Monks, B. G., Espevik, T., and Golenbock, D. T. (2003) Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J. Biol. Chem. 278, 48313–48320

35. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-DeltaDeltaCt} method. Methods 25, 402–408

36. Piao, W., Song, C., Chen, H., Wahl, L. M., Fitzgerald, K. A., O'Neill, L. A., and Medvedev, A. E. (2008) Tyrosine phosphorylation of MyD88 adapter-like (Mal) is critical for signal transduction and blocked in endotoxin tolerance. J. Biol. Chem. 283, 3109–3119

37. Xiong, Y., Qiu, F., Piao, W., Song, C., Wahl, L. M., and Medvedev, A. E. (2011) Endotoxin tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF-beta activated kinase 1 activation, K63-linked polyubiquitination...
R753Q Polymorphism Alters TLR2 Signaling scaffolds Assembly

uitation and assembly of IRAK1, TNF receptor-associated factor 6, and IkB kinase y and increases A20 expression. *J. Biol. Chem.* **286**, 7905–7916

48. Piao, W., Song, C., Chen, H., Diaz, M. A., Wahl, L. M., Fitzgerald, K. A., Li, L., Medvedev, A. E. (2009) Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-β-dependent pathways and increases expression of negative regulators of TLR signaling. *J. Leukoc. Biol.* **86**, 863–875

49. Smith, C. A., and Kortemme, T. (2008) Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. *J. Mol. Biol.* **380**, 742–756

50. Xu, Y., Tao, X., Shen, B., Horgn-T., Medzhitov, R., Manley, J. L., and Tong, L. (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. *Nature* **408**, 111–115

51. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., McCammon, J. A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. *Proc. Natl. Acad. Sci. U.S.A.* **98**, 10037–10041

52. Grell, L., Parkin, C., Slatset, L., and Craig, P. A. (2006) EZ-Viz, a tool for simplifying molecular viewing in PyMOL. *Biochem. Mol. Biol. Educ.* **34**, 402–407

53. Du, X., Poltorak, A., Silva, M., and Beutler, B. (1999) Analysis of Tlr4-deficient mice for cytokine production. *J. Immunol.* **162**, 742–756

54. Heggelund, L., Müller, F., Lien, E., Yndestad, A., Ueland, T., Kristiansen, J. Leukoc. Biol. **25**, 2574–25748

55. Latz, E., Visintin, A., Lien, E., Fitzgerald, K. A., Monks, B. G., Kurt-Jones, E. A., Golenbock, D. T., and Espevik, T. (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the Toll-like receptor-4 MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. *J. Biol. Chem.* **277**, 47834–47843

56. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J., and Gusovsky, F. (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. *J. Biol. Chem.* **274**, 10689–10692

57. Aliprantis, A. O., Yang, R. B., Mark, M. R., Suggett, S., Devaux, B., Radolf, J. D., Klimpel, G. R., Godowski, P., Zychlinsky, A. (1999) Cell activation and apoptosis by bacterial lipopolysaccharides through Toll-like receptor-2. *Science* **285**, 736–739

58. Nagpal, K., Plantinga, T. S., Wong, J., Monks, B. G., Gay, N. J., Netea, M. G., Fitzgerald, K. A., and Golenbock, D. T. (2009) A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. *J. Biol. Chem.* **284**, 25742–25748

59. Hayes, M. W., Carrion, R., Jr., Nunneley, J., Medvedev, A. E., Salvato, M. S., Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K., and Akira, S. (2002) Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. *Nature* **420**, 324–329

60. Johnsen, I. B., Nguyen, T. T., Tryggestad, A. M., Bakke, O., Lien, E., Espevik, T., and Anthonsen, M. W. (2006) Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling. *EMBO J.* **25**, 3335–3346

61. Basith, S., Manavalan, B., Govindaraj, R. G., and Choi, S. (2011) In silico approach to inhibition of signaling pathways of Toll-like receptors 2 and 4 by ST2L. *PLoS One* **6**, e23989

62. Yamamoto, M., Sato, S., Hemin, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K., and Akira, S. (2002) Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. *Nature* **420**, 324–329

63. Kagan, J. C., and Medzhitov, R. (2006) Phosphoinositide-mediated adapt-