A Highly Reactive β-Galactosidase (Escherichia coli) Resulting from a Substitution of an Aspartic Acid for Gly-794*

(Received for publication, February 22, 1990)

Mercedes Martinez-Bilbao, Rosalind E. Holdsworth‡, Lois A. Edwards§, and Reuben E. Huber¶

From the Division of Biochemistry, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4

The β-galactosidases of several mutagenized strains of Escherichia coli K12 which grew on lactobionate were found to be heat labile. Sequence analysis of the lacZ gene (ligated into Bluescript®) of one of these strains (E. coli REH4) showed that the only change in the amino acid sequence was a substitution of an Asp for Gly-794. This change caused a dramatic increase in the activity when lactose was the substrate. The \(k_{cat} \) of the purified enzyme from E. coli REH4 (G794D-β-galactosidase) with lactose as the substrate was five to six times as large as the \(k_{cat} \) of the normal enzyme with lactose. Purified G794D-β-galactosidase was, however, less stable to heat and also to chymotrypsin (which cleaves next to Trp-585) than was normal β-galactosidase. G794D-β-Galactosidase bound substrates and substrate analog inhibitors less well than did normal β-galactosidase while planar transition state analog inhibitors were more strongly bound. The ability to bind 2-amino-D-galactose (a positively charged transition state analog inhibitor) was either unaltered or was decreased somewhat. The data showed that the alteration in structure caused an increase in the value of \(k_2 \) (the rate constant for the step in which the glycosidic bond is cleaved) with each substrate tested (the increase was at least 25-fold when lactose was the substrate) while \(k_3 \) was decreased about 4-fold (\(k_3 \) is the rate constant for the common hydrolysis step with each substrate). Since \(k_2 \) is rate determining when lactose is the substrate of the normal enzyme, the increase in \(k_3 \) resulted in a large increase in rate despite the fact that the value of \(k_3 \) decreased. Large rate increases were not found with the other two substrates because the \(k_3 \) values were not increased by large factors and because the decrease in the value of \(k_3 \) negated the effects of the increased \(k_2 \) values. The destabilization of the substrate binding coupled with a stabilization of the binding of a planar transition state is a possible cause of the significant increase in the value of \(k_2 \) and of the enhanced activity with lactose.

β-Galactosidase (EC 3.2.1.23) is the first product of the lac operon of Escherichia coli and is coded for by the lacZ gene. The primary structures of both the protein and the lacZ gene have been determined (Fowler and Zabin, 1978; Kalnins et al., 1983). The natural substrate of the enzyme is lactose, and the enzyme can carry out two reactions (hydrolytic and transgalactosylic) with this substrate (Wallenfels and Weil, 1972; Huber et al., 1976). In the transgalactosylotic reaction, the β-(1→4) linkage is broken and a β-(1→6) linkage is formed to give allolactose (the natural inducer of the lac operon (Muller-Hill et al., 1964)). The enzyme also hydrolyzes other β-galactosides. β-Galactosidase is activated by Na+ or K+ and has a requirement for Mg\(^2+\) or Mn\(^2+\) (Wallenfels and Weil, 1972). Work has shown that the enzyme mechanism proceeds through a galactosyl intermediate which alternates between a carboxylation and a covalently bound form (Sinnott and Souchar, 1973; Rosenberg and Kirsh, 1981; Cupples et al., 1990). The formation of the galactosyl intermediate is probably aided by binding effects (stabilization of the transition state, solvent entropy effects, etc.), but it is thought that acid catalysis also plays a significant role. Studies have shown that Tyr-503 probably acts as a general acid in the first step of the catalysis and later as a general base catalyst (Ring et al., 1985, 1988; Ring and Huber, 1990) while Glu-461 is probably involved in stabilizing the galactosyl intermediate of the enzymatic reaction (Herrchen and Legler, 1984; Bader et al., 1988; Cupples and Miller, 1988; Cupples et al., 1990).

Planar derivatives of β-galactose have been found to be strong competitive inhibitors of β-galactosidase (Lee, 1969; Lehmann and Schroder, 1972; Wentworth and Wolfenden, 1974; Huber and Brockbank, 1987). These planar derivatives probably bind strongly because they resemble the transition state of β-galactosidase. There is evidence that β-galactosidase brings strain and other such forces into play for catalytic efficiency and, thus, if a substrate is such that strain or similar forces can have an effect, the reaction will go more rapidly (Sinnott and Souchar, 1973; Sinnott and Withers, 1974).

Langridge (1968a, 1968b, 1968c, 1968d) and Langridge and Campbell (1968) mutated E. coli and isolated mutants with modulated β-galactosidase activity. Of particular interest for this study were mutations that allowed growth on lactobionic acid. Lactobionic acid does not induce the lac operon and is very poorly metabolized by E. coli. Langridge (1969) was able to obtain three mutants of E. coli which grew on lactobionic acid and which contained β-galactosidase which was less stable to heat than the rest. The β-galactosidases of the three mutants were able to hydrolyze lactose and lactobionic acid at very rapid rates. The enzymes were not purified and the molecular changes which caused the activity changes were not identified.

In this study we report the formation and isolation of mutants similar to those described by Langridge (1969) as well as studies of the properties of a β-galactosidase purified from one of the mutants with greatly enhanced activity with lactose as the substrate. The lacZ gene from the mutant was cloned into Bluescript® and its entire sequence was deter-

\(^*\) This work was supported by grants from the Natural Sciences and Engineering Research Council (Canada) and from the Alberta Heritage Fund for Medical Research. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to identify this fact.

‡ Recipient of Alberta Heritage Fund for Medical Research Summer Studentships.

§ Recipient of an Alberta Heritage Fund for Medical Research Fellowship.

¶ To whom correspondence should be addressed.
MINERED. THE RESULTS SHOW THAT THE ENHANCED ACTIVITY WITH
LACTOSE RESULTS FROM A SINGLE SUBSTITUTION (OF GLY-794 BY AN
ASP) AND IS PROBABLY A RESULT OF DIFFERENT BINDING INTERACTIONS
WITH THE SUBSTRATE AND WITH A TRANSITION STATE INTERMEDIATE OF
THE β-GALACTOSIDASE REACTION.

MATERIALS AND METHODS

**ENZYMES AND CHEMICALS—RESTRICTION ENDONUCLEASES (NarI, BstBI,
AccI, HinCII, Rsal, Clal, KpnI, EcoRI, EcoRV, SacI, PstI, BssHII)
WERE FROM FISHER OR SIMILAR SOURCES, AND THE PUREST GRADES AVAILABLE
WAS COUNTED IN ORDER TO DETERMINE THE PERCENT SURVIVAL.

**GROWTH CONDITIONS—BACTERIOLOGICAL MEDIA WERE FROM DIFCO. CELL
PASTEURIZED MEDIUM CONCENTRATED BY FREEZE-DRYING AND
DISTRIBUTED IN 10-MILLILITER AMOUNTS.

**BACTERIAL STRAINS—E. coli K12, inducible wild-type strain; E. coli
ML308, constitutive wild-type strain; E. coli B, inducible mutant
strain (lacZΔ1351) (Ghiorso et al., 1984); Hfr 3000 X74, F Φ C608, Δ (lac)74, rel
A1, spo T1, thi-1, λ (Beckwith and Singer, 1966).

**GROWTH CONDITIONS—BACTERIOLOGICAL MEDIA WERE FROM DIFCO.
CELL GROWTH ON LIQUID OR SOLID MEDIA WAS ALWAYS AT 37 °C. AMPICILLIN,
WHEN USED, WAS AT 100 µg/ml, X-GAL AT 50 µg/ml, AND IPTG AT A FINAL
CONCENTRATION OF 0.2 mM.

**MUTAGENESIS AND SELECTION—FOR MUTAGENESIS, E. coli K12 WAS
GROWN TO LOG PHASE IN 200 ML OF M63 MEDIUM. SIX ALIQUOTS OF 30 ML
EACH WERE CENTRIFUGED TO REMOVE THE MEDIUM AND THEN RESUSPENDED
in 30 ML OF 0.1 M SODIUM ACETATE BUFFER, pH 5.5. ONE SAMPLE WAS USED
as a control, and five of the aliquots contained the mutagen, nitro-
soguanidine (53.6 µg/ml). AT APPROXIMATELY 15-MIN INTERVALS (STARTING
at 30 MIN), 1 ML OF EACH OF THE SUSPENSIONS WERE MICRO-CENTRIFUGED TO
REMOVE THE MUTAGEN AND THEN RESUSPENDED IN 1 ML OF M63 MEDIUM.
FROM EACH OF THESE SUSPENSIONS, 0.1 ML WAS PLATED ON AGAR PLATES
CONTAINING LB BROTH AND INCUBATED AT 37 °C. THE NUMBER OF COLONIES
WAS COUNTED IN ORDER TO DETERMINE THE PERCENT SURVIVAL.

**MUTAGENESIS AND SELECTION—FOR MUTAGENESIS, E. coli K12 WAS
GROWN TO LOG PHASE IN 200 ML OF M63 MEDIUM. SIX ALIQUOTS OF 30 ML
EACH WERE CENTRIFUGED TO REMOVE THE MEDIUM AND THEN RESUSPENDED
in 30 ML OF 0.1 M SODIUM ACETATE BUFFER, pH 5.5. ONE SAMPLE WAS USED
as a control, and five of the aliquots contained the mutagen, nitro-
soguanidine (53.6 µg/ml). AT APPROXIMATELY 15-MIN INTERVALS (STARTING
at 30 MIN), 1 ML OF EACH OF THE SUSPENSIONS WERE MICRO-CENTRIFUGED TO
REMOVE THE MUTAGEN AND THEN RESUSPENDED IN 1 ML OF M63 MEDIUM.
FROM EACH OF THESE SUSPENSIONS, 0.1 ML WAS PLATED ON AGAR PLATES
CONTAINING LB BROTH AND INCUBATED AT 37 °C. THE NUMBER OF COLONIES
WAS COUNTED IN ORDER TO DETERMINE THE PERCENT SURVIVAL.

**ALIQUOT FROM EACH OF THE SAMPLES WHICH HAD BEEN EXPOSED TO
THE MUTAGEN WERE ALSO PLATED ON AGAR PLATES WHICH CONTAINED LACTOBIOTANE
(0.2% w/v) as a carbon source. MANY COLONIES WERE OBSERVED. IN
ADDITION, CONTROL MEDIUM (UNTREATED E. coli K12) WAS PLATED TO
DEMONSTRATE THAT WILD-TYPE E. coli WOULD NOT GROW IN THIS MEDIUM.

**LIQUID CULTURES OF 25 RANDOMLY CHOOSEN COLONIES FROM AN ALIQUOT
WITH ABOUT 40% SURVIVAL WERE EACH GROWN TO MID-LOG PHASE IN 25 ML OF
MEDIUM CONTAINING LACTOBIOTANE FOR A CARBON SOURCE. OF THE 25
SUSPENSIONS, 25 Grew well, AND THESE WERE MICRO-CENTRIFUGED AND RESUS-
PENDED IN pH 7.5 PHOSPHATE BUFFER. THE CELLS WERE BROKEN WITH A
FRESEIN MILLILITRE OF THE SAMPLING WERE BROUGHT TO EQUAL ACTIVITY
MILLILITRE BY DIGLUTION WITH THE PHOSPHATE BUFFER, AND A THERMOSTABILITY
TEST WAS PERFORMED ON THE β-GALACTOSIDASE OF EACH OF THESE 23 MUTANT
SAMPLES BY FIRST DOING ASSAYS IN TRIPlicate AND THEN PLACING THEM IN
A WATER BATH AT 55 °C FOR 10 MIN AND ASSAYING IN TRIPlicate AGAIN. THE
THERMOSTABILITY TEST WAS ALSO DONE ON THE β-GALACTOSIDASE FROM
THE WILD-TYPE E. coli (ML-308) TREATED IN THE SAME WAY AS WERE THE MUTANT
CELLS.

**PURIFICATION OF THE β-GALACTOSIDASES—BOTH THE NORMAL β-
GALACTOSIDASE (FROM E. coli ML308) AND THE β-GALACTOSIDASE FROM ONE OF
THE MUTANT E. coli (NAMED E. coli REH4) WERE PURIFIED BY A PREVIOUSLY
REPORTED METHOD (KING ET AL., 1985). THE CONCENTRATIONS OF THE
β-GALACTOSIDASES WERE DETERMINED BY USING THE ESTABLISHED EXTINCTION
COEFFICIENT OF 2.09 cm⁻¹ mg⁻¹, AN AVERAGE OF THE VALUES REPORTED IN
THE LITERATURE (WALLENFELD WEIT, 1972).

**ISOLATION AND CLONING OF THE MUTATED lacZ GENE—CHROMOSOMAL
DNA FROM E. coli REH4 (THE MUTANT SELECTED FOR STUDY) WAS PREPARED
BY THE METHOD OF THOMAS ET AL. (1966) AND DIGESTED WITH NarⅠ AND
BstBI WHICH SHOULD YIELD A 3.8-KB FRAGMENT (PREDICTED FROM THE
SEQUENCE OF THE lac operon FROM E. coli). AFTER 1% AGAROSE GEL
ELECTROPHORESIS, THE DNA IN THE REGION OF THE GEL WHICH WOULD HAVE
studies, several concentrations of inhibitor were used (some below and some above the K_v value). For routine assay during purification 1 mm ONPG was used.

Methanol and 2-Mercaptoethanol Effects on β-Galactosidase from E. coli REH4—Various alcohol and sugar compounds bind to the “galactosyl” form of β-galactosidase and react with the galactosyl component to form a galactosyl adduct (Deschavanne et al., 1978; Huber et al., 1984). If the reaction with the compounds (“acceptors”) is faster than the reaction with water and if the step involving the addition of water (or acceptor) is rate determining, there will be an increase in the overall rate of reaction. For normal β-galactosidase this occurs if ONPG is the substrate (for several acceptors) but not with PNPG because the step involving water (or acceptor) is not rate determining with PNPG. It has also been shown that if one plots $appk_n$ versus $(k_n - appk_w)/[A]$ (where the $appk_w$ values are the k_n values obtained at various concentrations of acceptor and where [A] is the concentration of acceptor), the intercept will be $k_p(k_n + k_q)$ (Deschavanne et al., 1978; Huber and Gaunt, 1982; Huber et al., 1984). With the enzyme from E. coli REH4, an increase in rate was found with methanol (in a parallel experiment using a series of different possible acceptors), and the methanol increased the rate of both ONPG and PNPG hydrolysis (although the effect on ONPG was greater). Therefore, a series of Michaelis analyses with various concentrations of methanol (0.1-1.6 M) were carried out. The data from the intercepts of the $appk_n$ versus $(k_n - appk_w)/[A]$ plots, and the k_n values of reaction of the enzyme with ONPG, PNPG, and lactose allowed us to obtain good estimates of the values of k_2 (rate constant for the step in which the glycosidic bond is cleaved) and k_k (rate constant for the hydrolysis step). In order to confirm that the values were correct, the effect of 2-mercaptoethanol (1-100 mM) on the Michaelis kinetics was also tested.

Assays with Lactose— Enzyme was incubated in the TES assay buffer with 50 mM lactose. Glycerol (50 mM) was also added to prevent the free glucose product which accumulated in the assay tube from acting as a transgalactosyl acceptor (and, thereby, significantly decreasing the amount of glucose present (Huber et al., 1976)). Aliquots were taken at various times and the amounts of allolactose and of glucose produced/minute were measured by gas chromatography methods which have been described earlier (Huber and Hurlburt, 1986).

Stability in the Presence of Chymotrypsin— Two chymotrypsin hydrolysis reactions were set up with the normal enzyme and with the enzyme from E. coli REH4. In the case of each enzyme, one study was done in the absence of IPTG while the other was done in the presence of 50 mM IPTG. The concentration of β-galactosidase in these reaction mixtures was 3 mg/ml while the concentration of chymotrypsin was 0.02 mg/ml. Aliquots were removed periodically and added to a solution of 0.5 mM phenylmethylsulfonyl fluoride at 2 °C which stopped the chymotrypsin reaction. These aliquots were assayed for enzyme activity and samples of the aliquots were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

RESULTS

Mutagenesis and Selection— All of the E. coli K12 cultures which had been treated with nitrosoguanosine showed a significant reduction in colony growth on LB medium. A culture in which the percent survival was near 40% when compared with the untreated control was chosen for isolation of mutants. Samples from that culture were plated on media containing lactobionate. A control culture, which had not been exposed to the mutagen, was also plated to demonstrate that wild-type colonies could not use lactobionate as a carbon source and, indeed, there was no growth of wild-type cells on the lactobionate plates. A very large number of colonies from the mutagenized culture were, however, observed to grow on the lactobionate medium, indicating that mutants had formed. Langridge (1969) showed that mutants such as these, which grow on lactobionate, can arise from two causes. Either more normal enzyme is formed (called quantitative mutants) or the same amount of enzyme is formed, but the enzyme that is present is more active (called qualitative mutants). He was able to select for qualitative mutants by the fact that they were heat sensitive. The same technique was used in this study. Of the 25 mutant colonies, 23 grew well in liquid medium, and a crude homogenate of each of these mutant lines was tested for temperature sensitivity of the β-galactosidase. Six of the 23 crude homogenates had β-galactosidase with reduced temperature stability and two (labeled REH4 and REH6) were particularly sensitive. The average percent activity remaining in the thermostensitivity test for the 23 homogenates was 58.2%. The activity remaining in REH4 was 24.1% and in REH6 was 17%. The REH4 strain was arbitrarily chosen for further study. There was 60.9% activity remaining when wild-type E. coli (ML308) was subjected to the thermostest.

Purification— Fig. 2 (unreacted lanes, 0-min reaction times) shows that the purified normal β-galactosidase (from E. coli ML308) and the purified β-galactosidase from E. coli REH4 were >98% pure.

Kinetics— Fig. 3 shows Hofstee (1959) plots of the activity of normal β-galactosidase and of the β-galactosidase from E. coli REH4 with PNPG as the substrate. The maximum velocity of the β-galactosidase from E. coli REH4 was a little higher

FIG. 2. Gels (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of β-galactosidase purified from wild-type E. coli ML308 and of β-galactosidase purified from E. coli REH4 (0-min reaction lanes) and of the same enzymes after treatment for various times with chymotrypsin.

FIG. 3. Hofstee (1959) plots (V_0 versus $V_0/[S]_0$) of normal β-galactosidase and of β-galactosidase purified from E. coli REH4 with PNPG as the substrate and in the presence and absence of IPTG. ■ — ■, PNPG-normal enzyme; O—-O, PNPG with 0.4 mM IPTG-normal enzyme; □—□, PNPG-enzyme from REH4; △—△, PNPG with 0.4 mM IPTG-enzyme from REH4. The V_0 data are represented as observed rate constants (s⁻¹). The [PNPG] concentration is in mM.
than that of the normal enzyme while the K_m value was several-fold higher (note the much steeper slope for the enzyme from *E. coli* REH4). Also shown on the plot are the effects of IPTG on the rates. The graph shows that IPTG inhibits the normal enzyme much more strongly than the β-galactosidase from *E. coli* REH4 (in relative terms the slope became steeper when IPTG inhibited the normal enzyme than was the case when IPTG inhibited the enzyme from *E. coli* REH4). Table I shows the k_{cat} and K_m values calculated from these plots. Table II gives the K_m values for IPTG and for other inhibitors. The K_m values were used in the studies for k_{cat}, because the inhibitor concentration was not limiting. The enzymes from wild-type *E. coli* and the two mutant strains were tested with L-ribose and 2-amino-D-galactopyranose as acceptors.

The rate of glucose production with lactose as the substrate when determined by gas-liquid chromatography was about 33% higher for the enzyme from wild type. Since this ratio is very similar to the rate differences between the enzymes for the hydrolysis of lactose (production of glucose), the rate of transgalactosylis (Huber *et al.*, 1976) must be largely unaffected by the mutation.

The addition of methanol (various concentrations from 0.1 to 1.6 mM) increased the rate of reaction with both ONPG and PNPG as the substrates. The increases with ONPG were greater than they were with PNPG. The values of the intercepts of k_{cat} versus (k_{cat} - $appk_{cat}$)/[A] lines with methanol as acceptor are shown on Table I along with the standard errors of the intercept values. The addition of 2-mercaptoethanol (various concentrations from 1 to 100 mM) caused a decrease of the rates with both substrates and the values of the intercepts of k_{cat} versus (k_{cat} - $appk_{cat}$)/[A] plots for 2-mercaptoethanol are also shown on Table I along with the standard errors of these intercept values. The slopes were fitted by the method of least squares, and in each case (with both substrates and with both acceptors) the regression coefficient (R) was greater than 0.95. The enzyme from the mutant was also tested to determine if the methanol or the mercaptoethanol caused any irreversible inactivation. The enzyme (1 mg/ml) was incubated at the highest concentrations of methanol (1.6 mM) and of mercaptoethanol (100 mM) used in the studies for 3 h (a time much longer than the 5-min maximum time used in any of the assays). The enzymes in these high concentrations of acceptor were then diluted 1,000-fold for assay, and they were found to have the same activity that they had at the beginning of the incubation period and the same activity that a control without the presence of the acceptors had. Thus, the acceptors did not cause any irreversible denaturation.

Table I

	k_{cat}	K_m	k_i	k_o	Methanol intercept	Mercaptoethanol intercept
ONPG						
Wild type	750 ± 30	0.12 ± 0.02	2,100	1,200	ND	ND
REH4	285 ± 15	0.16 ± 0.03	2,320–2,990	315–325	640 ± 2	92 ± 0.7
					(R = 0.95)	(R = 0.98)
PNPG						
Wild type	90 ± 5	0.030 ± 0.003	90	1,200	ND	ND
REH4	120 ± 10	0.16 ± 0.01	190–195	315–325	190 ± 3	66 ± 0.6
					(R = 0.96)	(R = 1.00)
Lactose						
Wild type	60 ± 10	1.4 ± 0.3	60	1,200	ND	ND
REH4	315 ± 40	2.7 ± 0.2	>1,500	315–325	ND	ND

*From Tenu *et al.*, 1971.
mining the thermal stability of the enzyme, and 4) determining the K_m of the β-galactosidase for PNPG. In every aspect, this testing confirmed that the properties of the enzyme expressed were the same as those from E. coli REH4.

DNA Sequencing Results—Two base changes were found in the entire DNA sequence of the lacZ gene from the E. coli REH4 strain. In one of them a G was substituted for an A at position 309 of the lacZ, which corresponds with the third base of the codon for Val-103. This new codon, however, still codes for Val. The important change was a substitution of an A for a G at position 2382 of lacZ, and this codes for Asp when mutated (Edwards et al., 1987) better than does normal β-galactosidase.

DISCUSSION

This report describes the identification and properties of a purified β-galactosidase with a substitution of an Asp for Gly-794. The substituted enzyme (G794D-β-galactosidase) has much higher activity than normal for lactose. The kinetic data clearly show that G794D-β-galactosidase bound substrates and the substrate analog inhibitor IPTG less well than did normal β-galactosidase while it bound planar transition state analogs (Lee, 1969; Lehmann and Schroter, 1972; Wentworth and Wolfenden, 1974; Huber and Brockbank, 1987) better than does normal β-galactosidase.

The following is the generally accepted β-galactosidase mechanism for synthetic nitrophenol substrates in the presence of acceptor molecules.

![Scheme 1](image1)

where $E = \beta$-galactosidase; NPG = nitrophenol substrate; GAL = galactose; A is the acceptor (methanol or 2-mercaptoethanol); dots indicate that a complex of some type is formed. The k_3 step is the glycosidic bond cleavage step while the step represented by k_2 is the hydrolytic step (addition of water). For this mechanism the values of k_{cat} and k_m are described by the following equations (Tenu et al., 1971).

$$k_{cat} = k_2 k_3 (k_h + k_b)$$
$$K_m = k_2 K_h (k_h + k_b)$$

When k_2 is rate determining (as with PNPG for the normal enzyme (Tenu et al., 1971)) the constants become

$$k_{cat} = k_2$$
$$K_m = K_h$$

The following equation has been shown to describe the reaction rates of β-galactosidase in the presence of an acceptor (Deschavanne et al., 1978; Huber and Gaunt, 1982; Huber et al., 1984).

$$\frac{\text{app} k_{cat}}{[\text{A}]} = \frac{\text{app} k_{cat} k_3 + k_b}{k_2 + k_4} K_h + k_2 k_4 (k_2 + k_4)$$

The k_i value represents the rate at which the acceptor reacts with the galactosyl form of the enzyme. The k_{cat} describes the maximum rate in the absence of acceptor while appk_{cat} is the maximum rate in the presence of acceptor. The intercept of a plot of appk_{cat} versus $(k_{cat} - \text{app} k_{cat})/\text{[A]}$ will be equal to $k_2 k_4 / (k_2 + k_4)$, and it follows (from simple analysis) that both k_2 and k_4 must have values larger than that of the intercept. In
the same way, each k_2 value and also, the k_5 value, has to be greater than the k_{cat} values ($k_{cat}/(k_2 + k_5)$) of the substrates involved (ONPG, PNPG, or lactose). Using this information, the following statements can be made. The value of k_0 (PNPG) is >190 s$^{-1}$ (because $k_0/k_2/(k_2 + k_5)$ with methanol and ONPG was 190 s$^{-1}$). The value of k_2(ONPG) is >640 s$^{-1}$ (because $k_2/k_5/(k_5 + k_6)$ with methanol and ONPG was 640 s$^{-1}$). The value of k_3 is >315 s$^{-1}$ (because $k_3/k_6/(k_6 + k_5)$ for lactose was 315 s$^{-1}$). In the case of k_5, it should be remembered that k_5 has the same value for every substrate because the hydrolysis step is common for each substrate. The k_{cat} for the G794D-β-galactosidase was the largest when lactose was the substrate and it, therefore, follows that the value of k_5 has to be higher than the lactose k_{cat}. One can go back and refine the values of the rate constants obtained. If k_0(PNPG) were exactly 190 s$^{-1}$, the value of k_0 would be 325 s$^{-1}$ (i.e. calculated using the fact that the k_{cat} for PNPG is $k_0/k_2/(k_2 + k_5)$ and is equal to 120 s$^{-1}$). Any value of k_0(PNPG) higher than 190 s$^{-1}$ would give a lower value for k_0. Thus, $k_0 = 315–325$ s$^{-1}$. One can use this range of k_0 values to obtain a better estimate of the value of k_0(ONPG). If the value of 315 s$^{-1}$ is substituted into the equation for k_{cat} (i.e. $k_{cat} = k_0/k_2/(k_2 + k_5) = 285$ s$^{-1}$), the value for k_0(ONPG) works out to be 2,990 s$^{-1}$. If the value of 325 s$^{-1}$ is substituted, the value for k_0(ONPG) works out to be 2,320 s$^{-1}$. Thus, k_0(ONPG) = 2,320–2,990 s$^{-1}$. Then also, if the lower value for k_5 (315 s$^{-1}$) is substituted into the k_{cat} equation for PNPG, a value of 195 s$^{-1}$ for k_0(PNPG) is obtained. Any higher k_0 value would give a lower value for k_0(PNPG). This, taken together with the fact that the k_0(PNPG) is >190 s$^{-1}$ (as established above) shows that k_0(PNPG) = 190–195 s$^{-1}$. The k_{cat}(lactose) value is impossible to accurately calculate. However, since the k_{cat} value for lactose is approximately equal to the k_0 value, it follows that k_0(lactose) must be much greater than k_5. A conservative estimate of the lower limit could be 1,500 s$^{-1}$. Thus, k_0(lactose) $>1,500$ s$^{-1}$. All of these calculated values are shown on Table 1. Except for the value of k_0(lactose) (for which there is only a lower limit), the values all fall within a relatively narrow range. It should, however, be strongly emphasized here that the standard errors involved in the determinations of the k_{cat} and $appk_{cat}$ values (Table 1) were between 5 and 10% and, therefore, these values are undoubtedly less accurate than implied by the short ranges of values. We feel, however, that they are reasonably good estimates of the true values since they were determined without any assumptions as to rate-determining effects. Also, the standard errors of the intercepts with methanol as the acceptor were really quite small (Table 1) and since the estimated values of k_2 and k_5 depend to a significant extent on the estimated values of those intercepts, the errors involved in them would also be small. In addition, if the two intercepts (with PNPG and with ONPG) of the plots of $appk_{cat}$ versus (k_{cat} – $appk_{cat}$)/[A] with 2-mercaptoethanol as the acceptor are used (66 ± 0.6 s$^{-1}$ for PNPG and 92 ± 0.7 s$^{-1}$ for ONPG) and the range of values for k_0(PNPG) and k_0(ONPG) are substituted into the equations of the intercepts (i.e. $k_0/k_2/(k_2 + k_5)$), the value for k_0(2-mercaptoethanol) works out to 97–99 s$^{-1}$ with PNPG and 94–96 s$^{-1}$ with ONPG. These values compare very well and show that the calculated values of k_0(PNPG) and k_0(ONPG) are essentially correct.

It should be pointed out here that the data obtained did not result from a denaturing effect that either methanol or mercaptoethanol might have on the enzyme. Even at the highest concentrations of these acceptors used, there was no evidence of denaturation even after a period of 3 h (a much longer period of time than was used in any of the assays).

The data with methanol as the acceptor would not be expected to be as accurate as those with mercaptoethanol because, with methanol, the K_0 value was higher than the highest concentration of acceptor used while, with mercaptoethanol, the K_0 was in the middle of the concentrations used. This follows from an analysis of the slopes of $appk_{cat}$ versus (k_{cat} – $appk_{cat}$)/[A] plots. These slopes are mathematically equivalent to $K_0/(k_0 + k_5)/(k_2 + k_5)$. If k_0 is smaller than k_5, the slope should be larger than k_0 whereas if k_3 is smaller than k_0, the slope should be smaller than K_0. Actual values of k_5 were not obtained in these studies but the relative magnitudes of k_5 and k_0 were. Since mercaptoethanol slows down the rate of reaction, k_0 is smaller than k_3 and the slope is, therefore, larger than K_0. The slopes for the reactions of mercaptoethanol with ONPG and PNPG were approximately 9 and 12 mM, respectively, and thus, K_0 must be less than 9 mM. Concentrations below and well above that level were used in the study with mercaptoethanol. On the other hand, the rate increased as a function of the concentration of methanol and, therefore, k_0 with methanol must be higher than k_0. So the slope for k_0(methanol) is smaller than the K_0 value. The values obtained were approximately 1.1 and 1.7 M, respectively, for ONPG and PNPG. Thus, the K_0 value must be greater than 1.7 M. The highest concentration of methanol used was 1.6 M (higher concentrations were not used in order to avoid the possibility of irreversible denaturation). Even though the data would not be expected to be as accurate as one would like because only concentrations of methanol lower than the K_0 were used, the R value was large (showing good linearity) and the standard error of the intercept was very small. More importantly, the slope was finite indicating K_0 has a value of less than infinity. If the K_0 value were infinite (an infinite K_0 value would indicate that no binding of acceptor is taking place and that the methanol is reacting directly with the galactosyl-enzyme intermediate without binding) the slope would also be infinite (a vertical line would be obtained). There are, however, other possible ways of obtaining a slope with a finite value even if the acceptor is not binding. It is possible that the acceptor is reacting directly with the galactosyl-enzyme complex but that the acceptor, when it is present at high concentrations, also denatures the enzyme. It would, thus, make it appear that the methanol is binding because the total enzyme activity remaining would decrease as the methanol concentration was increased. This is a definite theoretical possibility considering the high concentrations of methanol used here. However, the enzyme was incubated for 3 h with the highest concentrations of acceptors used and was found not to have lost any activity upon dilution, and this essentially rules out the possibility that denaturation is the reason for the finite slope. Another possible explanation of the results is that the rate increase found is solvent related and that the methanol only acted by changing the structure of G794D-β-galactosidase (making it more active). This has been ruled out by gas-liquid chromatograph studies in our laboratory which showed that methyl-galactose is formed as a product in these reactions and that the amount formed depends on the concentration of methanol added in exactly the same way as does the rate of reaction.

If k_0 is rate limiting, the value of K_0 will be essentially equal to K_0. (Tenu et al., 1971). Although k_0 was not the sole rate-limiting step for any of the substrates, k_0(PNPG) was lower than the value of k_0 while k_0(ONPG) was substantially higher than k_0. Thus, it would be expected that changes in binding would be reflected much more in the K_0 values of PNPG than in the changes in the K_0 values of ONPG. The K_0 of PNPG is 4-fold higher in the β-galactosidase from the
mutant than it is with normal enzyme but only about 33% higher with ONPG as the substrate (this was, however, within experimental error of the K_v value for normal enzyme despite being 33% higher in value). Over and above this, the fact that the increase in K_v for PNPG is somewhat equivalent to the increases in the K_v values of IPTG and lactose is a further indication that the values of k_2 and k_b which were determined above are correct.

Analysis of the k_b data shows that the value was increased as a result of the mutation for every substrate tested. The value with ONPG had the smallest relative increase. For PNPG the k_v value was essentially doubled in G794D-β-galactosidase as compared with normal β-galactosidase. The most dramatic effect of the substitution was with lactose. There was an increase in the k_v value of at least 25-fold.

The k_b was about 4-fold lower for G794D-β-galactosidase than for normal β-galactosidase, and this accounts for the fact that the k_{cat} with ONPG was smaller for G794D-β-galactosidase than for normal β-galactosidase even though the k_v value was higher. In the case of lactose the k_b value was at least 25-fold greater, but the k_{cat} was only 5-6-fold higher.

The reason for this is that the k_v value is rate limiting in G794D-β-galactosidase with lactose as the substrate and the overall increase is, therefore, limited by the k_b value of G794D-β-galactosidase.

Binding destabilization for the G794D-β-galactosidase (compared with the normal enzyme) occurred for each substrate and substrate analog inhibitor tested (ONPG, PNPG, lactose, IPTG) as noted by the increases in the K_m and K_v values. The binding of each of the two planar transition state analog inhibitors tested (β-galactal and L-ribose), on the other hand, was stabilized by the enzyme from the mutant. (β-Galactal is also a poor substrate of β-galactosidase, but when its inhibitory ability is measured it approximates the binding of a transition state intermediate (Huber and Brockhenk, 1987).) The destabilization of substrate binding and a stabilization of binding of a planar transition state is probably responsible for the increase in k_b for every substrate (when G794D-β-galactosidase was compared with the normal enzyme) even though the increase in k_b was not of the same magnitude for each substrate. Such a result is not unexpected since strain (or another similar effect) does not always result in an equal increase in rate (Deneckes, 1975) because the product of such effects depends upon the structure of the substrate. It is thought that strain (or another similar effect) plays a greater role with some substrates of β-galactosidase than with others (Sinnott and Souchard, 1973; Sinnott and Withers, 1974). Overall, these studies strongly support the theory that strain (or other similar interactions) are important in β-galactosidase action in general and that, in this specific case, they are responsible for the rate differences found.

The finding that k_b decreased as a result of the mutation is not surprising since the tighter binding of the transition state could cause a difference in positioning of the intermediates and, if precise positioning is highly important for hydrolysis, one could expect the k_b value to be decreased.

Contrary to what might be expected for a change of this type, where an increase in activity results from the introduction of a negative charge in place of a residue with no charge, the binding of 2-amino-β-D-galactopyranose appears to be unaffected. 2-Amino-β-D-galactopyranose and other amino sugars that are similar to β-galactose bind tightly to β-galactosidase because of the negative charge (Glu-461) present at the active site (Huber and Gaunt, 1982; Legler and Herrchen, 1983; Cupples et al., 1989). The extra negative charge which results from the new Asp here does not appear to increase the binding ability of this positively charged inhibitor, showing that the charge must be far enough removed from the active site so that it does not influence the binding of this inhibitor. However, if this inhibitor binds essentially as the substrate does, one would expect that its binding would be weakened in the enzyme from the mutant (as occurred with the substrate and with IPTG). Since there was no change in the binding capacity, there is a possibility that the substitution of Asp at position 794 does increase the binding capacity.

The fact that chymotrypsin hydrolyzes a peptide bond (at the carboxyl side of Trp-585) at a more rapid rate with G794D-β-galactosidase than with normal enzyme, indicates that the mutation at position 794 has, in some way, made the bond cleaved by chymotrypsin more accessible. Susceptibility of protein structures to cleavage by proteases is a highly sensitive method of determining changes in protein conformation and, thus, the region around Gly-794 must somehow affect the conformation around Trp-585. Other studies have shown that Tyr-50 at the active site (Ring and Huber, 1989) is also linked to the region around Trp-585 and it is logical, therefore, to suggest that Gly-794 may be located near to the active site.

The decreased stability of G794D-β-galactosidase to heat (relative to the normal β-galactosidase) is also an indication that Gly-794 could be near to the active site. Indeed, the fact that binding is so dramatically affected is also, of course, strong evidence that the group is near to the active site.

The substitution of an Asp for a Gly at position 794 introduces a carboxyl group into an area of β-galactosidase which is already rich in carboxyl groups.

Highly Reactive β-Galactosidase

It is possible that this negatively charged area of the enzyme is involved in binding Mg$^+$, Mn$^{2+}$, Na$^+$, or K$^+$. Alternatively (since the area around Gly-794 conforms to a predicted β-sheet structure, as noted by calculations of the Chou and Fasman (1974a, 1974b) type), it may be involved in a salt linkage with some other part of the β-galactosidase structure which is positively charged. If this sequence were in a β-sheet structure the carboxyls would mainly point in the same direction and could, thus, interact with some area having positive charges (e.g. another β-sheet with alternating positive charges or a positive side of an α-helix).

It is of interest that the substitution is located in a region of β-galactosidase that Langridge and Campbell (1968) and Langridge (1968a) thought, on the basis of their genetic studies, might be important for substrate binding.

Normal β-galactosidase may represent a compromise in evolution where activity with lactose and stability of the enzyme are optimized with respect to each other. Thus, although an enzyme which is much more reactive toward lactose could have evolved, it would have been less stable.

The hydrolysis of the lactose in milk or whey is important commercially because of the lactose intolerance experienced by some individuals and because of problems of industrial disposal of whey. Since the lactose of milk or whey could be more efficiently hydrolyzed by this enzyme and thus less enzyme would be needed for the process, this highly reactive enzyme could be of biotechnological significance.

REFERENCES

Bader, D. E., Ring, M., and Huber, R. E. (1988) Biochem. Biophys. Res. Commun. 153, 301–306

Beckwith, J. R., and Singer, E. R. (1966) J. Mol. Biol. 19, 254–265

Chou, P. Y., and Fasman, G. D. (1974a) Biochemistry 13, 211–222
Highly Reactive β-Galactosidase

Chou, P. Y., and Fasman, G. D. (1974b) *Biochemistry* **13**, 222–245
Cohen, S. N., Chang, A. C. Y., and Hsu, L. (1972) *Proc. Natl. Acad. Sci. U. S. A.* **69**, 2110–2114
Cornish-Bowden, A. (1976) *Principles of Enzyme Kinetics*, pp. 168–189, Butterworths & Co., Ltd., London.
Cuppers, C. G., and Miller, J. H. (1988) *Genetics* **120**, 637–644
Cuppers, C. G., Miller, J. H., and Huber, R. E. (1990) *J. Biol. Chem.* **265**, 5512–5518
Deschavanne, P. J., Viratelle, O. M., and Yon, J. M. (1978) *J. Biol. Chem.* **253**, 833–837
Edwards, L. A., Tian, M. R., Huber, R. E., and Fowler, A. V. (1988) *J. Biol. Chem.* **263**, 1845–1854
Fowler, A. V., and Zabin, I. (1978) *J. Biol. Chem.* **253**, 5521–5525
Gibson, T. J. (1984) *Studies on the Epstein-Barr Virus Genome*. PhD. thesis, University of Cambridge
Herrchen, M., and Legler, G. (1984) *Eur. J. Biochem.* **138**, 527–531
Hofstee, B. H. J. (1959) *Nature* **184**, 1296–1298
Huber, R. E., and Brockbank, R. L. (1987) *Biochemistry* **26**, 1526–1531
Huber, R. E., and Gaunt, M. T. (1982) *Can. J. Biochem.* **60**, 608–612
Huber, R. E., and Hurlburt, K. L. (1986) *Arch. Biochem. Biophys.* **246**, 411–418
Huber, R. E., Gaunt, M. T., Sept, R. L., and Babiuk, M. J. (1983) *Can. J. Biochem. Cell Biol.* **61**, 198–206
Huber, R. E., Gaunt, M. T., and Hurlburt, K. L. (1984) *Arch. Biochem. Biophys.* **234**, 151–160
Huber, R. E., Kurz, G., and Wallenfels, K. (1976) *Biochemistry* **15**, 1994–2001
Jencks, W. P. (1975) *Adv. Enzymol.* **39**, 219–410
Kalnin, A., Otto, K., Ruther, U., and Muller-Hill, B. (1983) *EMBO J.* **2**, 583–587
Langridge, J. (1968a) *Proc. Natl. Acad. Sci. U. S. A.* **60**, 1290–1297
Langridge, J. (1968b) *J. Bacteriol.* **96**, 1711–1717
Langridge, J. (1968c) *Mol. Gen. Genetics* **103**, 116–126
Langridge, J. (1969) *Mol. Gen. Genetics* **105**, 74–83
Langridge, J., and Campbell, J. (1968) *Mol. Gen. Genetics* **103**, 339–347
Lee, Y. C. (1969) *Biochem. Biophys. Res. Commun.* **35**, 161–167
Legler, G., and Herrchen, M. (1983) *Carbohydrate Res.* **116**, 95–103
Lehmann, J., and Schroeter, E. (1972) *Carbohydrate Res.* **23**, 359–368
Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY pp. 75–96
Muller-Hill, B., Rickenberg, H. V., and Wallenfels, K. (1964) *J. Mol. Biol.* **10**, 303–318
Ring, M., and Huber, R. E. (1990) *Arch. Biochem. Biophys.* **283**, 342–350
Ring, M., Armitage, I. M., and Huber, R. E. (1985) *Biochem. Biophys. Res. Commun.* **131**, 675–680
Ring, M., Bader, D. E., and Huber, R. E. (1988) *Biochem. Biophys. Res. Commun.* **152**, 1050–1055
Rosenberg, S., and Kirsch, J. F. (1981) *Biochemistry* **20**, 3189–3196
Sinnott, M. L., and Withers, S. G. (1974) *Biochem. J.* **133**, 89–98
Sinnott, M. L., and Withers, S. G. (1974) *Biochem. J.* **143**, 751–762
Tenu, J.-P., Viratelle, O. M., Garnier, J., and Yon, J. (1971) *Eur. J. Biochem.* **20**, 363–370
Thomas, C. A., Berns, K. L., and Kelly, T. J. (1966) *Procedures in Nucleic Acid Research*, pp. 535–540, Harper and Row, New York
Vogelstein, B., and Gillespie, P. (1979) *Proc. Natl. Acad. Sci. U. S. A.* **76**, 615–619
Wallenfels, K., and Weil, R. (1972) *The Enzymes*, Vol. VIII, 617–663, Academic Press, New York
Wentworth, D. F., and Wolfenden, R. (1974) *Biochemistry* **13**, 4715–4720