Influence of past vegetation changes on estimates of ground surface temperature histories GSTH obtained by inversion of borehole temperature logs: Example from the Western Canadian Sedimentary Basin

Jacek Majorowicz1, Jan Šafanda2

1 Department of Physics, University of Alberta, Edmonton, Canada.
2 Institute of Geophysics, Czech Academy of Sciences, Boční II, Praga - Spořilov, Czech Republic.

Email address
majorowi@ualberta.ca

Abstract

Functional space inversions (FSI) of precise temperature logs from 43 wells, located in low conductivity clastic sediments of the Western Canadian Sedimentary Basin, (WCSB), reveal evidence of extensive, recent ground surface temperature (GST) warming. Simultaneous inversion of log data acquired during the period of 1987-2005, as well as averaging of the individual site reconstructions of subsurface temperature signals, indicate evidence of high magnitude of warming of about 2°C (with standard deviations of 0.7°C). Magnitudes of such warning events exceed 3-4 times that of globally averaged continental GST’s for the 20th century and is significantly higher than that of changes in surface air temperatures (SAT) based on instrumental records in the WCSB. Within this region, GST warming in the 20th century could have been at least partially caused by changes in vegetation cover. The temporary or permanent removal of vegetation, through deforestation, forest fires, and grassland conversion for agriculture occurred in the relatively young provinces of WCSB, during centennial long settlement and development programs. This might have significantly changed the surface properties of the area, since changes in surface albedo affects the radiation budget, while changes in the thermal, moisture and aerodynamic characteristics affect the energy balance. The results of our modelling for typical range of bedrock thermal diffusivities and assumed surface warming history for studied areas in WCSB show that a possible jump in ground surface temperature can easily be interpreted in the FSI results as a gradual warming event of large amplitude and attributed to SAT.

1. Introduction

Temperature log data for boreholes in the Alaskan permafrost region has been interpreted as evidences indicative of ground surface warming (Lachenbruch and Marshall, 1986; Lachenbruch et al., 1988). Similar conclusions were reached for areas to the south of continuous permafrost in Canada (Cermak et al., 1992; Lewis, 1992; Lewis, 1998; Lewis and Wang, 1992; Majorowicz, 1993; Majorowicz et al., 2002a, b; Majorowicz et al., 2012; Majorowicz et al., 2014) and elsewhere in the world (Cermak et al., 1992, 2006; Deming, 1995; Pollack and Huang, 2000; Pollack et al., 2000; Harris and Chapman, 2002; Huang 2006, Bodri and Cermak, 2007; Putnam and Chapman, 1996; Šafanda et al., 2003; Hamza and Vieira, 2011). Data sets reported by Huang and Pollack, 1998 for the NOAA 2019/IHFC IASPEI continental well temperature data for borehole temperature inversion compilation of GSTs also reveal similar trends.

It has been argued that GST warming derived from FSI (Shen and Beck, 1991) inversions of temperature logs in boreholes in Western Canada, has been indicative of climate changes. But deforestation has been an ongoing activity especially in previous century. Hence the observed signal is largely affected not just by climatic warming but also by permanent step changes in ground surface temperatures, arising from land surface changes of the past (Majorowicz, 1993; Skinner and Majorowicz, 1999; Majorowicz and Skinner, 1997a, b). Similar observations were made in other places (Blackwell et al., 1980; Cermak et al., 1992; Lewis and Wang, 1992; Lewis and Skinner, 2003). The effect has been an improved understanding of the subsurface
warming signal as superposition of climate warming and more local-to-regional changes in subsurface temperatures due to deforestation. Here, we quantify this effect upon GST warming histories derived by FSI inversions.

The observed increase of temperature of the ground and subsurface in Alberta and Saskatchewan was demonstrated as independent from meteorological records evidence of recent climate warming. Inversions of temperature logs in remote areas of the Prairie Provinces, which underwent large land clearing for agriculture in the 20th century (Figure 1) showed some 2°C GST warming. It was by 1°C (Majorowicz and Šafanda, 1998; 2001) higher than SAT warming based on the meteorological stations’ temperature data evidence (Environment Canada, 1992, 1995).

2. Methodology

The basic hypothesis of borehole paleoclimatology we use in this paper is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature (GST). Time-transient changes in the GST diffuse into the subsurface by a heat conduction creating a disturbance in the T-z profile which can be inverted to determine the timing and magnitude of changes in the GST. Simplifying, we have subsurface gaining heat, diffusively changing with depth in case climate is warming and reverse when climate is cooling (Figure 2).

With inversion of temperature logs we get information about ground surface temperature history (GSTH) smoothed out by a diffusive process. Due to the low thermal diffusivity of rocks, GST changes propagate downward very slowly. Transient perturbations to the steady state temperature field calculated for a surface warming approximated by linear ‘ramp’ model increase, for typical values of the thermal diffusivity of rocks, i.e., about 10^{-6} m²/s² and for an onset of the surface changes 20– 250 years ago, will reach 100-300 m, respectively. (Harris and Chapman, 2002; Eppelbaum et al., 2006). Inversion methods for western Canada sedimentary basin wells (WCSB), (Majorowicz and Šafanda, 1998) used the functional space inversion technique (FSI) developed by Shen and Beck (1991, 1992), Shen et al. (1995) and Beck et al. (1992).

The FSI method is basically the generalized least-squares inversion method. It uses the so-called Bayesian approach, when both the measured temperature profile, the parameters of the physical model and the sought history of the surface temperature are treated as random quantities in the probabilistic model defined by a priori estimates of these quantities and their standard deviations (SDs). The a priori values are modified during the inversion to reach the a posteriori configuration with a maximum probability. As a rule, the short-wave variations of temperature gradient are compensated for by variations in the a posteriori thermal conductivity profile and thus incorporated into the steady-state component of the temperature profile together with an estimate of the surface temperature T_s at time t_0 and the heat flow Q_b at the bottom at depth z_b. Therefore, during inversion, the T-z profile is decomposed into a posteriori steady-state and transient component. The latter component is used for the GST reconstruction.

3. Temperature depth data

The basic data used to reconstruct surface temperature history in the WCSB are unperturbed temperature profiles.
taken in water filled wells in equilibrium (Majorowicz, 1993; Majorowicz et al., 1999; Majorowicz et al., 2006). The logs and, in several cases, relogged temperature depth profiles were carried out in observation wells of Alberta and Saskatchewan Environment agencies of the Canadian Prairie provinces (Majorowicz et al., 1999). An example of such repeated profiles illustrating disturbed temperatures in the upper 100-m, due to surface warming of the 20th-21st century, is shown in Figure 3. The locations of such wells are indicated in the map of Figure 4.

The list of log data for 43 locations in agricultural areas of the Canadian Prairies Provinces in Alberta and Saskatchewan is provided in Table 1 (Majorowicz et al., 2006).

Table 1 - Canadian Prairies boreholes with temperature depth logs in equilibrium.

No.	Well	Province	Latitude	Longitude	Surface	Type
1	TFM2	AB	57.39	-111.82	flat	forested
2	TFM4	AB	56.97	-111.85	flat	forested
3	TFM1A	SK	57.14	-112.24	flat	forested
4	TFM15A	SK	56.77	-112.34	flat	forested
5	Stony Mt.	AB	56.39	-111.27	flat	forested
6	Winagami	AB	55.61	-116.68	flat	pasture
7	Abishley	AB	55.39	-113.13	flat	pasture
8	T962Wian	AB	55.35	-111.04	flat	pasture
9	BPTriad	AB	54.74	-110.75	flat	forested
10	Cold Lake944	AB	54.65	-110.51	flat	forested
11	TCI94	AB	54.62	-110.43	flat	forested
12	TCL1	AB	54.61	-110.25	flat	forested
13	TCL4	AB	54.57	-110.85	flat	forested
14	TCL16Lessard	AB	54.48	-110.62	flat	forested
15	T941	SK	54.5	-109.87	flat	forested
16	Cold Lake4-S	AB	54.06	-110.30	flat	forested
17	Cold Lake3	AB	54.06	-110.43	flat	forested
18	T961	AB	54.01	-113.18	flat	cropland
19	T96otion	AB	53.91	-114.11	flat	cropland
20	Devon	AB	53.41	-113.76	flat	grass
21	T765	AB	53.35	-110.02	flat	cropland
22	T791	AB	53.16	-110.08	flat	cropland
23	Warburg	AB	53.13	-114.36	flat	grass
24	T96GArmley	AB	53.06	-109.95	flat	cropland
25	T966	SK	52.02	-107.12	flat	cropland
26	T967	SK	52.01	-107.11	flat	cropland
27	T9A5A	SK	51.57	-101.43	flat	cropland
28	T9A13	SK	51.01	-113.32	flat	pasture
29	T9A19Rournhust	SK	50.95	-107	flat	pasture
30	T9B1Rournhust	SK	50.88	-106.67	flat	pasture
31	T9A16	AB	49.38	-112.21	flat	pasture
32	T9A110B	AB	49.18	-111.07	flat	grassland
33	T7K7	SK	49.07	-106.25	flat	grassland
34	T5A12	AB	49.02	-110.36	flat	grassland
35	T7A13	AB	49.01	-113.32	flat	pasture
36	WAWANESA	MB	49.6	-99.84	flat	grassland
37	Wood M't	SK	49.4	-106.4	flat	pasture
38	CCDF-K72	MB	49.2	-100.45	gentle slope	pasture
39	T7M6cSft.	AB	52.627	-114.052	flat	grass
40	T767	AB	51.767	-113.968	flat	grass
41	T768	AB	51.828	-114.653	flat	grass

4. GST warming derived from remote well temperatures higher than SAT warming from meteorological stations

Temperature logs in wells of few hundred meters depth done in Alberta and Saskatchewan over period 1992-2005 provide valuable information about ground surface temperature (GST) history for several centuries to a millennium (Majorowicz et al., 2004).

These temperature transients are mainly positive pointing to the surface warming in the last circa two centuries, but their interpretation as a climatic indicator is not always straightforward and SAT warming from meteorological stations is by some 0.5-1°C lower than the GST warming derived from the inversion of well temperature profiles.

5. Experiment - GST warming model - FSI inversion of synthetic logs – GST histories

To simulate the effect in subsurface temperatures, arising from the change in original natural vegetation cover to arable
land during the 20th century, we considered beside the linear increase also its superposition with a step change of 0.5 K to 1 K. Superposed models of such changes occurring at year 1920, 1940 and 1960 are illustrated in Figure 5.

The synthetic transients resulting from these GST models (Skinner and Majorowicz, 1999; Majorowicz et al., 1999) are shown in Figs 6-7. Because most of our temperature-depth profiles were measured around the turn of the millennium, all transients were calculated for the year 2000. The considered alternative thermal diffusivity values of 0.6*10^-6 m^2 s^-1 (Figure 6) and 0.8*10^-6 m^2 s^-1 (Figure 7) represent lower and upper estimates for sedimentary rocks in the studied area.

The FSI inversions of synthetic T-z profiles calculated for the typical range of diffusivities and assumed surface warming history for areas in the WCSB, which turned from forest to farmland, are shown in Figs 8-10. They show that a jump in surface temperature caused by a change of the original vegetation cover can be easily interpreted in the FSI results because of gradual SAT warming with a large amplitude. This would be a standard ‘climatic’ interpretation based on the assumption that the long-term ground-air temperature offset stays constant. In the WCSB, however, this offset has increased due to the vegetation cover changes in the last century. The superposition of both warming events thus results in much larger GST warming derived by FSI inversion of well temperatures than the SAT warming observed by meteorological stations.
Correspondence between the original and reconstructed histories is quite good in the case of the linear increase alone (Figures 10 and 11). However, in the case of the linear increase superposed with a jump, the reconstructed histories approximate the original ones rather poorly (Figure 10 and Figure 12). In this case the reconstructed curves are smoothed and without some a priori information on existence of a step warming in the past, the results would be probably interpreted as a large gradual warming.

Comparison of Figure 8 with Figure 9 documents that consideration of a proper a priori value of thermal diffusivity in the inversions, i.e. 0.6×10^{-6} m2/s in Figure 8 and 0.8×10^{-6} m2/s in Figure 9 yields, as expected, practically identical reconstructions of the corresponding GST histories. However, when a priori estimate differs from the correct value; the reconstructed GST history is biased. A degree of this bias is demonstrated in Figs 11-12. The considered misfit of 0.2×10^{-6} m2/s between the assumed and correct values, that is fully within the uncertainty range, leads to differences of decades in the onset of the reconstructed warming. Use of higher than correct value (here 0.8×10^{-6} m2/s instead of correct value of 0.6×10^{-6} m2/s) delays the onset of the warming, and use of lower than correct a priori diffusivity estimate (here 0.6×10^{-6} m2/s instead of correct value of 0.8×10^{-6} m2/s) accelerates the onset of the warming.

6. Discussion

Deforestation, land clearing or forest fires can significantly change ground surface temperature and influence underground temperature regime. Evidences for such changes has been
pointed out for recently cleared areas of Cuba, and provinces of British Columbia and Alberta in Canada (Cermak et al., 1992; Lewis and Wang, 1992; Lewis and Skinner, 2003; Majorowicz, 1993; Majorowicz and Skinner, 1997a,b; Skinner and Majorowicz, 1999). Such changes observed by well temperature profiles in wells usually in remote regions may not be seen by meteorological stations far from well locations or influence tree ring growth in the far north or tree line extremes of the mountainous regions. Surface air temperature (SAT) observations are mostly located in a grass covered areas, and in many cases unlike the surrounding landscape. The record reflects mainly atmospheric-related temperature changes, and possibly the feedback effect in the regional context (Skinner and Majorowicz, 1999).

The processes such as deforestation, land clearing and land use can lead to positive skewness in normal statistical distribution of GST changes (Skinner and Majorowicz, 1999; Bodri and Cermak, 2007). GST changes as high as 3K - 5K observed in some areas (Cermak et al., 1992; Lewis and Wang, 1992; Lewis, 1998; Lewis and Skinner, 2003; Majorowicz 1993; Skinner and Majorowicz, 1999) can be result of the effects of land clearing giving a net effect of higher ground surface warming. This effect is due to land drying and loss of natural cooling mechanism provided by respiring trees (Skinner and Majorowicz, 1999; Lewis and Skinner, 2003). The transpiration component of the heat budget for the Alberta/Saskatchewan forests biomass, respectively, can be responsible for 0.5-2 K change in specific areas (Skinner and Majorowicz, 1999). These include mainly 20th century deforested areas. More complicated situations are present in naturally burned boreal forest areas in which depleting of biomass by fire results in initial ground surface warming followed by cooling due to natural or induced regrowth of the forest (Majorowicz and Skinner 1997a, b).

An offset between GST and SAT warming is possible due to reasons listed above especially that the SAT stations in standard conditions and wells with temperature logs are commonly in different environmental localities.

7. Conclusions

GST warming interpreted from FSI inversion of borehole temperature logs in WCSB (Western Canadian Sedimentary Basins of Alberta- Saskatchewan - SE Manitoba) is related to a superposition of land clearing and climate warming in the 20th century. Simultaneous FSI inversion of the borehole temperature logs, as well as averaging of the individual site FSI reconstructions, indicate that high magnitude of GST warming in the order of 2 °C, SD 0.7 °C exceeds that of surface air temperature (SAT) warming based on instrumental records of meteorological stations for the same areas. SAT data show that within the WCSB SAT warming in the 20th century was close to 1°C. The model of the step like temperature change related to land clearing and climatic warming (linear increase) shows that this observed 1°C difference in warming (GST vs. SAT) could be explained by the 20th century land clearing for farming (deforestation).

It could also partially explain the observed difference between global continental GST histories derived by inversion of the borehole temperatures and SAT histories from meteorological records. Climate change record in subsurface temperature logs shows in a global perspective that the GST warming in the continents is much higher than SAT based warming (Pollack and Huang, 2000; Pollack et al, 2000; Huang et al, 2000; Huang 2006).

8. Acknowledgments

The first author would like to acknowledge Environment Alberta and Geological Survey of Canada Calgary for support during logging campaign and for allowing access to their observational wells.

The work of the second author was supported by the research infrastructure CzechGeo co-funded by the operational program “Research, Development and Education” (CZ.02.1.01/0.0/0.0/16 _013/0001800) of the Ministry of Education, Youth and Sports of the Czech Republic.

This work benefited from suggestions and modifications by the anonymous Reviewer and editorial staff of IJTHFA.

References

ASTM - American Society for Testing and Materials. 2011. D6432-11: Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation. ASTM International, West Conshohocken, PA.

Blackwell, D.D., Spafford, R.E. 1987. Experimental Methods in Continental Heat Flow, p.189-226, In: Sammis C.G., Henyey T.L. (Eds.) Experimental Methods in Physics, Academic Press, Orlando, Florida, 24, Geophysics; Part B; Field Measurements.

Blackwell, D.D., Steele, J.L., Brott, C.A. 1980. The terrain effect on terrestrial heat flow. J. Geophys. Res., 85, 4757-4772.

Beck, A.E., Shen, P.Y., Beltrami H., Mareshal, J-C., Šafanda, J., Sebagienzi, M.N., Vasseur G., Wang, K. 1992. A comparison of five different analyses in the interpretation of five borehole temperature Data Sets. Global Planet. Change, 98, 101-112.

Bodri, L., Cermak, V. 2007 Borehole Climatology. Elsevier, 335p.

Cermak, V. 1971. Underground temperature and inferred climatic temperature of the past millennium. Paleography, Paleoecoclimatology, Paleoecology, 10, 1-19.

Cermak, V., Šafanda, J., Kresl, M., Dedeeck, P., Bodri, L. 2000. Recent climate warming: surface air temperature series and geothermal evidence. Studia geophys. et geod., 44, 430-441.

Cermak, V., Bodri, L., Šafanda, J. 1992. Recent climate change recorded in the underground: evidence from Cuba. Paleoegogr. Paleoecolim. Paleoecol. (Global and Planet Change), 98, 219-223

Deming, D. 1993. Climatic warming in North America: analysis of borehole temperatures. Science, 268, 1576-1577.

Environment Canada. 1995. The state of Canada’s climate: Monitoring variability and change, SOE (A State of Environment) Report 95, 52.

Environment Canada. 1992. The state of Canada’s climate: Temperature change in Canada 1895-1991, SOE (State of Environment) Report 92-2.
Majorowicz and Šafanda – Influence of past vegetation changes on estimates of ground surface temperature histories GSTH obtained by inversion of borehole temperature logs.

Eppelbaum, L.V., Kutasyov, I., Barak, G. 2006. Ground surface temperature histories inferred from 15 boreholes temperature profiles: Comparison of two approaches. Earth Sciences Research Journal, 10(1),25-34.

Hamza, V.M., Vieira, F.P., 2011, Climate Changes of the Recent Past in the South American Continent: Inferences Based on Analysis of Borehole Temperature Profiles. In Climate Change – Geophysical Foundations and Ecological Effects, Edited by Juan Blanco, Houshang Kheradmand, Chapter 6, 113 – 136.

Harris, R.N., Chapman, D.S. 2002. Mid-latitude (30°N-60°N) climatic warming inferred by combining borehole temperatures with surface air temperatures. Geophys. Res. Let., 29, 16.

Huang, S. 2006. Land warming as part of global warming. Eos, 87(44), 31 October 2006.

Huang, S., Pollack, H.N. 1998. Global borehole temperature database for climate reconstruction (IGBP Pages/World Data Center – A for Paleoclimatology Data Contribution Series No. 1998-044, NOAA/NGDC Paleoclimatology Program, Boulder, Colorado.

Huang, S., Pollack, H.N., Shen, P-Y. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 403, 756-758.

Jessop, A.M. 1990a. Geothermal evidence of climatic change. Eos, 71, (15), 390-391.

Jessop, A.M. 1990b. Thermal Geophysics, Elsevier, 306pp.

Lachenbruch, A.H., Marshall, B.V. 1986. Changing climate: Geothermal evidence from permafrost in Alaska. Science, 234, 689-696.

Lachenbruch, A.H., Cladouhos, T.T., Saltus, R.W. 1988. Permafrost temperature and the changing climate. 5th Int. Permafrost Conf, Proc., Permafrost 3 Tapir Publishers, Trondheim, Norway, 9-17.

Lewis, T.J. 1992. Ed. Climatic change inferred from underground temperatures. Global and Planetary Change, 6, 71-281, Special Issue.

Lewis, T. 1998. The effect of deforestation on ground surface temperatures. Glob. Planet. Change, 18, 1-13.

Lewis, T.J., Skinner, W.R. 2003. Inferring Climate change from underground temperatures: Apparent climatic stability and apparent climatic warming. Earth Interactions 7, Paper No.9, 9p.

Lewis, T. J., Wang, K. 1992. Influence of terrain on bedrock temperatures. Global and Planetary Change, 6, 87-100.

Majorowicz, J.A. 1993. Climate change inferred from analysis of borehole temperatures: first results from Alberta basin, Canada. PAGEOPH, 140, 655-666.

Majorowicz, J.A., Skinner, W. R. 1997a. Anomalous ground warming versus surface air warming in the Canadian Prairie provinces. Climatic change, 35, 485-500.

Majorowicz, J., Skinner, W. 1997b. Potential causes of differences between ground and air surface temperature warming across different eozones in Alberta, Canada. Glob. Planet. Change, 15, 79-91.

Majorowicz, J. A., Šafanda, J. 1998. GST history from inversions of underground temperatures—Case study, Tectonophysics, 291, 287–298.

Majorowicz, J. A., Šafanda, J. 2001. Composite surface temperature history from simultaneous inversion of borehole temperatures in western Canadian plains, Global Planet. Change, 29, 231–239.

Majorowicz, J., Šafanda, J., Skinner, W. 2002a. East to west retardation in the onset of the recent warming across Canada inferred from inversions of temperature logs. J.Geophys.Res(107)(B10).

Majorowicz, J., Šafanda, J., Skinner, W. 2002b. Past surface temperature changes as derived from continental temperature logs—Canadian and some global examples of application of a new tool in climate change studies. Advances in Geophysics, 47, 113-174.

Majorowicz, J., Skinner, W., Šafanda, J. 2012. Western Canadian Sedimentary Basin temperature-depth transients from repeated well logs: evidence of recent decade subsurface heat gains due to climatic warming. J. Geophys. Eng., 9, 127–137

Majorowicz, J., Skinner, W., Šafanda, J., Gosnold, W. 2006. Differences between repeated borehole temperature logs in the southern Canadian Prairies-validating borehole climatology. Clim. Past Discuss, 2, 1075–1104. DOI https://doi.org/10.5194/cp-2-1075-2006.

Majorowicz, J.A., Šafanda, J., Harris, R., Skinner, W. R., 1999. Large ground surface temperature changes of the last three centuries inferred from borehole temperatures in the southern Canadian prairies-Saskatchewan, Global & Planet. Change, 20, 227-241.

Majorowicz, J., Chan, J., Crowell, J., Gosnold, W., Heaman, L., Kuck, J., Nieuwenhuis, G., Schmitt, D., Unsworth, M., Walsh, N., Weides, S., 2014. The first deep heat flow determination in crystalline basement rocks beneath the Western Canadian Sedimentary Basin, Geoph. J. Int., 197, 731–747.

Mareschal, J.C., Beltrami, H. 1992. Evidence for recent warming from perturbed geothermal gradients: Examples from eastern Canada. Clim. Dyn., 6, 135-143.

NOAA - National Oceanic and Atmospheric Administration. 2019. Paleoclimatology Datasets. In: https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets (Accessed 1 July 2019).

Pollack, H.N., Huang, S. 2000. Climate reconstruction from subsurface temperatures. Annu. Rev Earth Planet. Sci., 28, 339-365.

Pollack, H.N, Huang, S., Shen, P-Y. 2000. Climate change record in subsurface temperatures : a global perspective. Science, 282, 279-281.

Putnam, S.N., Chapman, D.S. 1996. A geothermal climate change observatory: first year results from Emigrant Pass in Northwest Utah. J. Geophys. Res., 101, 21877-21890.

Šafanda, J., Correia, A., Majorowicz, J.A., Rajver, D. 2002 Inverse Method for Reconstruction of Ground Surface Temperature History from Borehole Temperatures. In: M.Yamano, T.Nagao, T.Sweda (Eds): Geothermal/Dendrochronological Paleoclimatic Reconstruction across Eastern Margin of Eurasia. Proceedings 2002 International Matsuyama Workshop pp.163-178.

Shen, P.Y., Beck, A.E. 1991. Least squares inversion of borehole temperature measurements in functional space. J. Geophys. Res., 96, 19965-19979.
Shen, P.Y., Beck, A.E. 1992. Paleoclimate change and heat flow density inferred from temperature data in the Superior Province of the Canadian Shield. Global Planet. Change, 6, 143-165.

Shen, P.Y., Pollack, H.N., Huang, S., Wang, K. 1995. Effects of subsurface heterogeneity on the inference of climate change from borehole temperature data: Model studies and field examples from Canada. J. Geophys. Res., 100(B4), 6383-6396.

Skinner, W.R., Majorowicz, J.A. 1999. Regional climatic warming and associated twentieth century land-cover changes in north-western North America, Climate Research, 12, 39-52.

Wang, K. 1992. Estimation of the ground surface temperatures from borehole temperature data. J. Geophys. Res., 97, 2095-2106.