Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision

ALIGN (A Large-scale Image and Noisy-text embedding)

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig

Google Research
Representative Datasets in training large-scale vision, language and vision+language models

- State-of-the-art models have large sizes and are trained on huge amounts of data!
- Unlike language models, the datasets for vision & multimodal learning are usually smaller, proprietary, or dependent on expensive models / annotators for cleaning

Dataset Name	Modality	Size	Generation
JFT	vision	300M - 3B	web + user + complex models + annotators
Conceptual Captions	vision + language	3M - 12M	web + complex models
C4	language	150B tokens	web + heuristics
Ours (ALIGN)	vision + language	1.8B	web + heuristics
Dataset

Raw image+alt-text data from web pages

Remove porn/too-small images

Minimal frequency-based text filtering

Remove Images

- pornographic images
- images that were too small (shorter dimension ≤ 200 pixels)
- images with irregular shape (aspect ratio ≥ 3)
- images associated with more than 1000 alt-texts
Dataset

- Raw image+alt-text data from web pages
- Remove porn/too-small images
- Minimal frequency-based text filtering

Remove Texts
- Associated with > 10 images (e.g., “1920x1080”, “alt_img”, “cristina”)
- Out-of-vocab (top 100M unigrams & bigrams)
- Too short (<3 unigrams) or too long (>20 unigrams)
Text-based filtering – overly frequent alt-texts

- Alt-texts shared by more than 10 images were discarded
- Examples: “1920x1080”, “alt img”, “cristina”, etc.
Text-based filtering – rare tokens

- Vocabulary: top 100M unigrams and bigrams
- Kept alt-texts with in-vocabulary rate == 1

In-vocabulary rate	Example alt-text
== 1	senior gentleman reading a newspaper and leaning against a wall stock image
[0.8, 1)	special friends day always good for the soul being poolside is too kinder calmer racv summer breathe
[0.4, 0.8)	shoulder bags travelcomputerbag star luggageampbag
[0.0, 0.4)	image_tid 25&id mggqpuweqpd&cache 0&lan_code 0
Text-based filtering – alt-text length

Exclude text that:
1. Too short (<3 unigrams)
2. too long (>20 unigrams)
Dataset

Final training data: 1.8B noisy image-text pairs
Contrastive Learning on Noisy Image-Text Data

- Data is noisy but can provide cross-modality supervision
- Contrastive learning is data-efficient and scales easily
- Text caption prediction has proven to be effective in learning vision models

Applications
- Visual classification
- Image-text matching/retrieval

Compared to concurrent work CLIP
- ALIGN data: minimal frequency-based filtering on raw web
- CLIP data: data balancing + controlled source blending (e.g. YFCC100M)
A Two-Tower Model

Positives: paired image-text data
Negatives: all others in the same batch

Contrastive loss higher similarity (dot product) for matched pairs and lower similarity for unmatched pairs

$$L_{t2i} = -\frac{1}{N} \sum_{i}^{N} \log \frac{\exp(x_i^T y_i/\sigma)}{\sum_{j=1}^{N} \exp(x_i^T y_j/\sigma)}$$

$$L_{i2t} = -\frac{1}{N} \sum_{i}^{N} \log \frac{\exp(y_i^T x_i/\sigma)}{\sum_{j=1}^{N} \exp(y_i^T x_j/\sigma)}$$
The Evolution of the Two-Tower Model

- **Text Tower**: BERT transformer
- **Image Tower**: EfficientNet

Other Key technicals:
- Optimizer
- Softmax temperature
- Embedding dims

Positives: paired image-text data
Negatives: all others in the same batch

Negatives beyond a single batch
The Evolution of the Two-Tower Model

Flickr30k image retrieval recall@1 and Flickr30k text retrieval recall@1

- ResNet101+BagOfWords + 50k text neg
- Transformer
- Cross-Replica negatives
- EfficientNet-B7
- LAMB
- English Data Only
- Initial Model
Image-Text Tasks

- **Image-Text Retrieval Tasks from Image Captioning Dataset**
 - MSCOCO
 - 5 captions per image
 - 112k training pairs, 5k test pairs
 - Flickr30k
 - 5 captions per image
 - 29k training pairs, 1k test pairs
 - **Metrics**
 - Recall@K

- **CrissCrossed Captions (CxC)**
 - Graded human judgments for MSCOCO caption-caption, image-caption and image-image pairs. Total ~270k pair
 - **Metrics**
 - Recall@K
 - Spearman’s Correlation Coefficient
Configurations

- **Pre-training**
 - BERT-Large + EfficientNet-L2
 - 16384 effective batch size (on 1024 cloud TPUv3 cores)
 - LAMB optimizer with weight decay ratio 1e-5,
 - Trained 1.2M steps with learning rate 1e-3, 10k warm up, linear decay to 0

- **Fine-tuning**
 - 2048 effective batch size.
 - 1e-5 initial learning rate with linear decay.
 - 3k/6k steps (MSCOCO, Flickr30k).
Image-Text Retrieval Results

Model	Flickr30K (1K test set) R@1	MS-COCO (5K test set) R@1		
	image → text	text → image	image → text	text → image
Zero-shot				
ImageBERT	70.7	54.3	44.0	32.3
UNITER	83.6	68.7	-	-
CLIP	88.0	68.7	58.4	37.8
ALIGN	88.6	75.7	58.6	45.6
Fine-tuned				
GPO	88.7	76.1	68.1	52.7
UNITER	87.3	75.6	65.7	52.9
ERNIE-Vil	88.1	76.7	-	-
VILLA	87.9	76.3	-	-
Oscar	-	-	73.5	57.5
ALIGN	95.3	84.9	77.0	59.9

Image-text retrieval results (recall@1) on Flickr30K and MS-COCO datasets (both zero-shot and fine-tuned).

ALIGN significantly outperforms existing methods including the cross-modality attention models that are too expensive for large-scale retrieval applications.
CxC Results

Retrieval Eval R@1

	image->text	text->image	text->text	image->image
VSE++	43.1	32.5	38.7	36.4
VSRN	52.4	40.1	41	44.2
DE_{I2T}	53.9	39.8	26	38.3
DE_{I2T+T2T}	55.9	41.7	42.4	38.5
ALIGN	78.1	61.8	45.4	49.4

Correlation Eval

	STS	SIS	SITS	Mean Avg
VSE++	**74.4±0.4**	73.3±0.9	55.2±1.5	**67.7**
VSRN	73.0±0.4	70.1±1.0	60.4±1.3	67.8
DE_{I2T}	50.9±0.6	**81.3±0.7**	61.6±1.4	64.6
DE_{I2T+T2T}	74.2±0.2	74.5±0.9	61.9±1.3	70.2
ALIGN	72.9±0.4	77.2±0.8	**67.6±1.2**	**72.6**

Retrieval:
- ALIGN is better across the board. More than +20% R@1 on i->t and t->i.

Correlation:
- Training objective is aligned with the image-text correlation (SITS). Intermodal performance is stronger.
- Intramodal performance (STS, SIS) is relatively lower.
Multimodal Retrieval

Text -> Image

“Van Gogh Starry Night ...”
- “details”
- “in black and white”
- “on a canvas”
- “in dark wood frame”

“Lombard street ...”
- “view from bottom”
- “view from top”
- “bird’s eye view”
- “in heavy rain”

“seagull in front of ...”
- “Golden Gate Bridge”
- “London Tower Bridge”
- “Sydney Harbour Bridge”
- “Rialto Bridge”

Candidates pool:
160M CC-BY licensed images that are separate from our training set.
Multimodal Retrieval

Image + Text -> Image
Multimodal Retrieval

Image - Text -> Image

- “cars” - “trees” - “houses”

- “flowers” - “orange” + “rose”

- “bridge” - “waterfall” - “mountain”

- “tree” - “red” - “snow”
Visual Classification

Classification layers trained with a set of training data (could be expensive to obtain)

Supervised visual classification with an image representation model
Visual Classification -- Zero-shot

A image-to-text retrieval problem with the pre-trained image & text encoders

ALIGN data covers almost all visual concepts -- **No additional training data is needed.**
Visual Classification -- Zero-shot

Same text prompt ensembling as in CLIP: averaging embedding of templates like “A photo of a {classname}”. +2.9% ImageNet top-1 accuracy

	ImageNet	ImageNet-R	ImageNet-A	ImageNet-V2
CLIP	76.2	88.9	77.2	70.1
ALIGN	76.4	92.2	75.8	70.1

Classnames → ALIGN training images retrieval: large amount of non-natural training images
Visual Classification -- Supervised learning

- Train classification head → Fine-tune all variables
- InceptionNet cropping + FixRes
- SGD w/ momentum = 0.9

Methods	Frozen feature	Top-1	Top-5
Instagram (ResNext-101 32x4d)	83.6	85.4	97.6
CLIP (ViT-L/14)	85.4	n/a	n/a
BiT (ResNet152x4)	n/a	87.54	98.46
Vision Transformer (ViT-H/14)	n/a	88.4	98.7
Noisy Student (EfficientNet-L2)	n/a	88.44	98.7
Meta Pseudo Labels (EfficientNet-L2)	n/a	90.2	98.8
ALIGN (EfficientNet-L2)	85.5	88.64	98.67

Fine-grained tasks

Methods	Oxford Flowers	Oxford Pets	Stanford Cars	Food 101
BiT-L (ResNet-152 x4)	99.63	96.62	n/a	n/a
SAM-baseline (EfficientNet-L2)	99.60	96.92	95.07	96.03
SAM-final (EfficientNet-L2)	99.65	97.10	95.96	96.18
ALIGN (EfficientNet-L2)	99.65	96.19	**96.13**	95.88
Visual Classification -- VTAB

- 19 Tasks w/ three groups
 - Natural: Caltech101, CIFAR-100, etc.
 - Specialized: Resisc45, Diabetic Retinopathy, etc.
 - Structured: Clevr, dSprites, etc.
- Few shot: Fine-tuned on 1000 samples
- Hyper-param sweep for each task for 50 trials (800 train + 200 val)

	All tasks	Natural	Specialized	Structured
BiT-L	78.72	-	-	-
ALIGN	**79.99±0.15**	83.38	87.56	73.25
Ablation Study -- Modal Capacity

- Image encoder quality relies more on image encoder capacity (not surprising)
- Vision Transformer backbone? (on-going work)
 - ViT-H outperforms EfficientNet-L2 (model quality is not saturated yet)
 - More robust to optimizer choices: Adam / Adafactor works well
Ablation Study -- Dataset Size

Large models can overfit on small datasets

When dataset is sufficiently large, large models scale better

Model + Data	MSCOCO I2T R@1	MSCOCO T2I R@1	ImangeNet KNN R@1
B7 + BERT-base			
+ ALIGN full data	55.4	41.7	69.3
+ ALIGN 10% data	52.0	39.2	68.8
+ CC-3M data	18.9	15.5	48.7
B7 + BERT-mini			
+ ALIGN full data	37.4	24.5	56.5
+ ALIGN 10% data	36.7	24.4	55.8
+ CC-3M data	22.1	17.3	48.9

Model + Data	MSCOCO I2T R@1	MSCOCO T2I R@1	ImangeNet KNN R@1
B7 + BERT-base			
+ ALIGN 12M data	23.8	17.5	51.4
+ ALIGN 6M data	15.8	11.9	47.9
+ ALIGN 3M data	8.1	6.3	41.3
+ CC-3M data	18.9	15.5	48.7

4x noisy data (12M ALIGN samples) outperforms clean data (3M Conceptual Captions)
Multilingual

Adding another text "cute cat" in Swahili

Adding text in Chinese

Adding another picture of a cute cat
Multilingual Dataset

- Flickr30K
 - One of the earliest; Images from Flickr
 - Multi30K (Translations/Human Generations in cs, de, fr)

- MS-COCO
 - STAIR (Human generations in ja)

- XTD
 - Test set for 7 well-resourced languages in es, it, ko, pl, ru, tr, zh

- WIT: Wikipedia-based Image-Text Dataset
 - Combines scale of Wikipedia with Human annotations
 - First time ever in 108 languages
Multilingual Dataset

Name	Train-I	Train-T	Dev-I	Dev-T	Test-I	Test-T	#Langs	
Multi30k	29k	145k	1k	5k	1k	5k	4	
MS-COCO	82k	410k	5k	25k	5k	25k	1	
STAIR	82k	410k	5k	25k	5k	25k	1	
WIT	11.4m	16m	5/3/1k	5/3/1k	5/3/1k	5/3/1k	108	
XTD	-	-	-	-	-	1k	1k	7
Multilingual Model

- Lift language constraint and match the size of English training data
- Same architecture and training params as EN model (Vocab size: 100K → 250K)
- Evaluated on Multi30K dataset
 - mean Recall: avg R@1, R@5, R@10 on img-to-txt & txt-to-img retrieval

	EN	DE	FR	CS
zero-shot				
M³P	57.9	36.8	27.1	20.4
ALIGN\textsubscript{EN}	92.2	--	--	--
ALIGN\textsubscript{mling}	90.2	84.1	84.9	63.2
with fine-tuning				
M³P	87.7	82.7	73.9	72.2
UC2	88.2	84.5	83.9	81.2
Multilingual ALIGN Data

~52% data is from English
LaBSE – Learning Multilingual From Text

LaBSE: Language-agnostic BERT Sentence Embedding: https://arxiv.org/abs/2007.01852
Combining the best of two worlds

- Added balanced text-text paired data.
- Shared Text encoder between two tasks (image-text and text-text)
- Task-specific Projection layer on Text encoder

Data:
- 1.8 Billion ALIGN data
- 6 Billion translation pairs
Summary and Future Work

Summary

- Large-scale image-text data from the web with minimal frequency-based filtering.
- Scale up model sizes with simple dual-encoder & contrastive learning
- SOTA results on visual classification and image-text retrieval

Future work

- Responsible AI: harmful data and unfair bias in multimodal models
- Quality improvement on low-resourced languages
- Limitations on model scaling with contrastive learning (negative sample size)