Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca\(^{2+}\) release, and activation of protein kinase C

Kailash N. Pandey*
Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA

Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca\(^{2+}\), and inositol triphosphate (IP\(_3\)) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca\(^{2+}\), and IP\(_3\); however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca\(^{2+}\), and IP\(_3\) in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca\(^{2+}\), and IP\(_3\) in different cells and tissue systems.

Keywords: natriuretic peptides, natriuretic peptide receptors, membrane guanylyl cyclases, cGMP, cAMP, Ca\(^{2+}\), inositol triphosphate

INTRODUCTION

Atrial natriuretic factor/peptide (ANF/ANP) is produced and secreted in the specific granules of cardiac atrial myocytes, which participate in the control of extracellular fluid volume, electrolyte balance, and mean arterial pressure, thus, it plays a central role in the maintenance and regulation of cardiovascular homeostasis (de Bold et al., 1981; de Bold, 1985; Brenner et al., 1990; Anand-Srivastava and Trachte, 1993; Pandey, 2005, 2011). In addition to its natriuretic, diuretic, vasorelaxant, antimitogenic, anti-hypertrophic, and anti-inflammatory activities, ANP inhibits the release of renin from the kidneys, aldosterone from the adrenal glands, vasopressin from posterior pituitary, and progesterone from Leydig tumor (MA-10) cells, while stimulating the synthesis and release of testosterone from normal Leydig cells in the testes, progesterone from granulosa-luteal cells, and luteinizing hormone from anterior pituitary gland (Inagami, 1989; Brenner et al., 1990; Levin et al., 1998; Pandey, 2005). A number of studies have documented that ANP has always been found to increase the intracellular accumulation of cGMP, however, to decrease the levels of cAMP, Ca\(^{2+}\), and inositol triphosphate (IP\(_3\)) in agonist hormone-treated cells and tissues (Waldman et al., 1984; Pandey et al., 1985, 1988; Khurana and Pandey, 1993, 1996; Pandey, 2005; Turovsky et al., 2013). It has also been suggested that ANP decreases the cAMP levels by stimulating the cGMP-specific phosphodiesterases; however, in certain cells and tissue types, ANP did not decrease or change the cAMP concentrations. Several studies have indicated that ANP diminishes the Ca\(^{2+}\) signals probably by activating the Ca\(^{2+}\) extrusion processes by protein kinase G (PKG) specifically in endothelial and vascular smooth muscle cells (VSMCs; Rashatwar et al., 1987; Zolle et al., 2000; Pandey, 2005).

Among the natriuretic peptides (NPs) hormone family, ANP is the first described member, later, two other members of NP family; brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were identified and characterized, which also exhibited biochemical and structural properties similar to ANP; however, each prepro NP hormone is encoded from a separate gene (Rosenzweig and Seidman, 1991; Levin et al., 1998). Although, all three NPs (ANP, BNP, and CNP) have highly homologous structure, they bind to specific NP receptors and elicit discrete biological...
ANP suppresses Na+$^+$-reabsorption at the collecting duct of the kidneys, inhibits renin synthesis and release, and stimulates natriuresis and diuresis; thereby, lowers blood pressure and blood volume and maintains cardiovascular homeostasis (de Bold, 1985; Brenner et al., 1990; Levin et al., 1998; Pandey, 2005). In the vasculature, ANP relaxes VSMCs thus causing the immediate vasorelaxant effect in the vascular bed (Levin et al., 1998; Pandey, 2005).

The expression and activity of NPRA is regulated by various hormonal agents, including its ligand ANP (Pandey, 1993, 2005; Cao et al., 1995; Pandey et al., 2002). The studies detailing the Npr1 (coding for NPRA) gene-disruption in mice have revealed the functional significance of NPRA in the control of blood pressure and cardiovascular disease states (Oliver et al., 1997; Shi et al., 2001; Holtwick et al., 2002; Vellaichamy et al., 2005; Kishimoto et al., 2011; Pandey, 2011; Yoshihara et al., 2014). Mice lacking NPRA develop high blood pressure and severe cardiac hypertrophy, fibrosis, and disorders that are reminiscent of heart disease as seen in untreated human hypertensive patients (Vellaichamy et al., 2007, 2014; Zhao et al., 2013). The regulated expression of CNP is derived from endothelial cells, which targets NPRB on the adjacent smooth muscle cells (Suga et al., 1992). Thus, the principal role of CNP is considered as a direct vasodilator involved in the regulation of vascular tone through activation of GC-B/NPRB on smooth muscle cells in the vascular beds (Hama et al., 1994). The objective of this current review is to summarize and document the findings and discoveries with particular emphasis of cellular signaling and physiological and pathological significance of ANP/NPRA in relation to the increased production of intracellular second messenger cGMP and inhibition of the phosphoinositide (IP$_3$) hydrolysis, Ca$^{2+}$ release, and protein kinase C (PKC) activity in target cells.

HISTORICAL BACKGROUND

Thirty-three years ago, the pioneer discovery by de Bold and his coworkers established that atrial extracts contained natriuretic and diuretic activity which led to the isolation and nomenclature of ANF, usually referred to as ANP (de Bold et al., 1981; de Bold, 1985). Now, it is considered that ANP is primarily synthesized and secreted in the granules of heart atrium and BNP is largely synthesized in the heart ventricle and displays most variability in the primary structure. Although, the atrium is the primary site of synthesis for ANP, however, ventricle also produces ANP but at the levels of 100-fold to 1000-fold lower than that of the atrium, respectively (Kojima et al., 1989). CNP was isolated from the porcine brain, however, is mostly present in the endothelial cells of the vasculature and is highly conserved among the mammalian species (Rosenzweig and Seidman, 1991). The primary structure deduced from cDNA synthesis, suggested that ANP is synthesized first as the 152-amino acid prepro-ANP molecule that contains sequences of active peptide in its carboxyl-terminal region (Maki et al., 1984). The biologically active ANP is released by proteolytic cleavage of pro-ANP molecule into predominantly 28-amino acid active (residues 99–126) and the 98 amino acid inactive (residues 1–98) molecules. The active form of ANP has a disulfide-bonded loop between cysteine 105 and 121, which seems to be essential for the biological activity (Brenner et al., 1990). Initially, different lengths of sequences of ANP were identified and synthesized for the studies of structure-activity relationship, and it was suggested that the ring structure of ANP with a disulfide-bonded loop is essential for its biological activities (Rosenzweig and Seidman, 1991). All three NPs contain highly conserved amino acid sequences with a 17-residues disulfide-bonded ring but deviate from each other in the N-terminal and C-terminal flanking amino acid sequences. Furthermore, the C-terminal sequence extending from the ring structure to Asn-Phe-Arg-Tyr is essential for the biological activity of ANP. The amino acid sequence of ANP is almost identical across the mammalian species, except at the position 10, which is substituted with isoleucine in rat, mouse, and rabbit, however, in human, dog, and bovine, ANPs have methionine in this position (Misono et al., 1984). Subsequently, BNP and CNP were both isolated and characterized from the porcine brain extracts (Sudoh et al., 1988, 1990). BNP is predominantly synthesized and secreted from the heart ventricle (Phillips et al., 1991). Similarly, CNP is predominantly localized in the central nervous system and endothelial cells and is considered as a non-circulatory peptide hormone (Suga et al., 1992).

NATRIURETIC PEPTIDES SYNTHESIS AND SECRETION

It has been suggested that the processing of preprohormone to prohormone molecule and the cleavage and secretion of biologically active mature 28-residue ANP molecule occurs predominantly in response to atrial distension (de Bold, 1985; Brenner et al., 1990). Usually, ANP concentration ranges from 50 to 100-fold higher than BNP; however, the expression of both ANP and BNP increases dramatically in the atrium and ventricle in the condition of cardiac disorders and heart failure (Mukoyama et al., 1991). During the disease states, the ventricle becomes the primary site of synthesis and release for BNP. In congestive heart failure (CHF) patients, the concentrations of both ANP and BNP increase greater than the control values, however, the BNP concentration increases 10-fold to 50-fold higher than a comparative increases in the ANP levels (Mukoyama et al., 1991). Those previous findings indicated that ANP and BNP elicit distinct physiological and pathophysiological effects, nevertheless, both hormones show similar hemodynamic responses, but BNP exerts a longer duration of action and causes enhanced natriuretic responses as compared.
with ANP (Yoshimura et al., 1991; Omland et al., 1996). It has been suggested that the cardiac atrium expresses almost 50-fold to 100-fold or even higher levels of ANP mRNA as compared with extra-cardiac tissues (Gardner et al., 1986). Interestingly, higher ventricular ANP levels have been found in the developing embryos and fetuses; however, both mRNA and peptide levels of ANP decline rapidly during the prenatal period (Cameron et al., 1996). On the other hand, CNP does not seem to behave as a cardiac hormone and its concentration is extremely low in the circulation (Igaki et al., 1996). It is believed that CNP is largely localized in the central nervous system and in the vascular endothelial cells (Ogawa et al., 1992; Suga et al., 1992, 1993; Tamura et al., 1996; Chen and Burnett, 1998). Another class of NPs is the D-type natriuretic peptide (DPN) that represents an additional member in the NP hormone family and is largely present in the venom of the green mamba (Dendroaspis angusticeps) as a 38-amino acid peptide molecule (Schweitz et al., 1992; Lisy et al., 1999). In addition, a 32-amino acid peptide termed as urodilatin (URO) is identical to C-terminal sequence of pro-ANP, which is largely present only in the urine (Schulz-Knappe et al., 1988). Initially, URO was purified from the human urine and is considered to be synthesized only in the kidneys (Saxenhofer et al., 1990). The immunohistochemical staining indicated that URO is largely present in the cortical tubules around the collecting ducts of the kidneys (Meyer et al., 1996; Doust et al., 2005).

In the circulation, the half-life of BNP is greater than ANP, thus the evaluation of the diagnostic importance of the NPs have mostly favored BNP. The inactive N-terminal fragment of BNP (NT-proBNP) has even a greater half-life than the BNP. The plasma levels of both BNP and NT-proBNP are markedly elevated under the pathophysiological conditions of cardiac dysfunction, including diastolic dysfunction, CHF, and pulmonary embolism (Felker et al., 2008; Czucz et al., 2011; Ganem et al., 2011). The previous studies using cross-linking and photoaffinity labeling procedures, have shown the existence of NP receptors with a wide range of molecular weight (M₀) of the 60–180 kDa (Misono et al., 1985; Schenk et al., 1985; Vandlen et al., 1985; Meloche et al., 1986; Pandey et al., 1986). Initially, NP receptors were identified with varying receptor density in different cells and tissue types (Table 1). Subsequently, high affinity ANP binding sites were with GC activity were co-purified (Kuno et al., 1986; Paul et al., 1987; Takayanagi et al., 1987; Meloche et al., 1988) On the basis of biological activity of different ANP analogs, NP receptors were classified and characterized as biologically active and clearance or silent receptors (Maack et al., 1987). Subsequently, three distinct subtypes of NP receptors were identified, which appeared to be specific to different cells and tissues (Pandey et al., 1988). Based on the cellular, biochemical, and molecular biological studies, the NPs and their receptors are quite widespread in cell and tissue distributions (Leitman et al., 1988; Pandey et al., 1988; Brenner et al., 1990; Marala et al., 1992; Levin et al., 1998; Pandey, 2005). Molecular cloning and expression of cDNA from mouse, rat, and human, led to identify and characterize the primary structure of three distinct subtypes of NP receptors, which are currently designated as GC-A/NPRA, GC-B/NPRB, and NPRC (Fuller et al., 1996).

Table 1 | ANP-dependent binding parameters of GC-A/NPRA and intracellular accumulation of cGMP in different cell types.

Cell type	ANP-dependent Intracellular cGMP (fold stimulation)	Ligand binding parameters of NPRA	
	kd value (Molar)	B_{max} (receptor site/cell)	
Endothelial cells	15	10–100 pM	0.5 x 10⁵
Granulosa cells	30	10–100 pM	0.5 x 10⁵
Glomerulosa cells	50	100–1 pM	2 x 10⁵
MA-10 cells	1,500	100–1 nM	1 x 10⁶
MDCK cells	50	10–100 pM	0.5 x 10⁵
N4TG1 cells	30	1–100 pM	0.5 x 10⁵
Primary Ledig cells	60	10–100 pM	0.5 x 10⁵
RTASM cells	10	1–100 pM	0.2 x 10⁵

HEK-293 cells, human embryonic Kidney-293 cells; kd, dissociation constant; B_{max}, receptor density; MA-10 cells, Leydig tumor cells; MDCK cells, Maiden-Darby kidney epithelial cells; N4TG1 cells, neuroblastoma cells; RTASM, rat thoracic aortic smooth muscle cells.
Table 2 | The distribution of natriuretic peptide receptors (NPRA, NPRB, and NPRC) and their gene-knockout phenotype.

Receptor	Ligand	Tissue-specific distribution	Cell-specific distribution	Gene-knockout phenotype
NPRA (Npr1)	ANP/BNP	Kidney, adrenal glands, brain, heart, liver, lung, olfactory, ovary, pituitary gland, placenta, testis, thymus, vascular beds, liver, ileum	Renal epithelial and mesangial cells, vascular smooth muscle cells, endothelial cells, Leydig cells, granulosa cells, fibroblasts, Neuroblastoma, LLC-PK1, MDCK cells	High blood pressure, hypertension, cardiac hypertrophy and fibrosis, inflammation, volume overload, reduced testosterone
NPRB (Npr2)	CNP	Adrenal glands, brain, cartilage, fibroblast, heart, lung, ovary, pituitary gland, placenta, testis, thymus, vascular beds	Vascular smooth muscle cells, fibroblasts, chondrocytes	Dwarvism, decreased adiposity, female sterility, seizures, vascular complication
NPRC (Npr3)	ANP, BNP, CNP	Kidney, heart, brain liver, vascular bed, intestine	Vascular smooth muscle cells, endothelial cells, mesangial cells, fibroblasts	Bone deformation, skeletal over-growth, long bone overgrowth
GC-D	Guanyln/uroguanyln	Olfactory neuroepithelium		
GC-E/(ROS-GC-1)	Ca^{2+}-binding proteins	Retina, pineal gland		
GC-F/(ROS-GC-2)	Ca^{2+}-binding proteins	Retina, rod outer segment		
GC-G	Orphan	Skeletal muscle, lung, intestine, and kidney		
GC-YX1	Orphan	Sensory neurons of C. elegans		

NPRA, natriuretic peptide receptor-A; Npr1, coding for guanylyl cyclase/natriuretic peptide receptor-A; NPRB, natriuretic peptide receptor-B; Npr2, coding for guanylyl cyclase/natriuretic peptide receptor-B; NPRC, natriuretic peptide receptor-C; Npr3, coding for natriuretic peptide clearance receptor.
The carboxyl-terminal deletion mutation has shown that the specific sites in the GC catalytic domain and KHD of NPRA, play critical roles in the endocytosis and sequestration of the receptor (Pandey et al., 2000a). Previous studies have also indicated that after prolonged treatment of cultured cells with ANP, both the receptor density and GC activity were decreased with simultaneous reduction in mRNA of levels NPRA (Fujio et al., 1994; Cao et al., 1995, 1998; Hum et al., 2004). In addition, transforming growth factor-β1 (TGF-β1), angiotensin II (ANG II), and endothelin (ET-1) have also been shown to reduce mRNA levels of NPRA in various types of cultured cells (Fujio et al., 1994; Chen and Gardner, 2003; Garg and Pandey, 2003; Arise and Pandey, 2006). Those previous studies demonstrated that a decrease in mRNA levels of GC-A/NPRA correlated with the repressed transcriptional activity of the receptor. On the other hand, mRNA levels of NPRA are greatly increased by retinoic acid and histone deacetylase inhibitor treatments (Kumar et al., 2010, 2014a,b). It has been suggested that NPRA exists in the phosphorylated state and the addition of treatments (Kumar et al., 2010, 2014a,b). It has been suggested that KHD represses the GC catalytic activity of NPRA (Airhart et al., 2003).

Deletion of the KHD of GC-A/NPRA and GC-B/NPRB has been suggested that KHD represses the GC catalytic activity of these receptors (Chinkers et al., 1989). At the same time, another model was proposed indicating that KHD was not a repressor; however, ATP was required to activate the catalytic domain of NPRA (Goraczniak et al., 1992; Sharma, 2002). Both NPRA and NPRB contain a glycine-rich ATP binding motif within the KHD, which is known as glycine-rich consensus sequence (Duda et al., 1991, 1993; Goraczniak et al., 1992). The juxtamembrane hinge structure of NPRA undergoes a significant conformational change in response to ligand binding, and it may play an important role in transmembrane signaling process (Huo et al., 1999). The amino acid sequence near the transmembrane region is well conserved in GC-A/NPRA that contains several closely located proline residues and a pair of cysteine residues. The mutation of one of the proline in this region renders the receptor to bind the ligand and but blocks GC catalytic activity (Huo et al., 1999). Similarly, in the juxtamembrane hinge region, the elimination of disulfide bond of cysteine residues resulted in constitutive activation of NPRA. Those previous findings suggested that juxtamembrane hinge region of NPRA may play a critical role in receptor activation and signal transduction mechanisms of GC-coupled receptors.

The glycosylation of the receptor seems to be essential for ligand binding activity of GC-A/NPRA (Lowe and Fendly, 1992; Fenrick et al., 1997). However, it has also been suggested that glycosylation may not be required for ligand binding of NPRA (Miyagi et al., 2000). The mutational analyses of N-linked glycosylation consensus sites in guanylyl cyclase-C (GC-C) have indicated that certain amino acid residues might be important for receptor stability (Hesegawa et al., 1999). The glycosylation sites onto the GC-A/NPRA binding domain have been found to be scattered on the surface of the receptor with the exception of the hormone binding site and dimer interface (van den Akker, 2001). The glycosylation sites have been implicated to function in proper folding and stability of NPRA (Lowe and Fendly, 1992; Koller et al., 1993; Heim et al., 1996). Nevertheless, the glycosylation of the extracellular domain of NPRA can be considered of significant importance for receptor orientation and packaging on the cell surface similar to that of other plasma membrane receptor proteins (Wormald et al., 1996).
and Dwek, 1999). Nevertheless, it should be noted that there is no appreciable conservation of the precise position of the glycosylation sites within the members of GC-receptor family. Clearly, more studies are needed to confirm the functional roles of glycosylation in the transmembrane signaling processes of both GC-A/NPRA and GC-B/NPRB protein molecules.

ANP/NPRA SIGNALING INHIBITS PHOSPHOINOSITIDE HYDROLYSIS, Ca\(^{2+}\) RELEASE, AND PKC ACTIVITY

Previous studies have demonstrated that ANP significantly decreased the hydrolysis of phosphoinositide in murine Leydig tumor (MA-10) cells in a dose-dependent manner and the H-8, a specific inhibitor of PKG, reversed the inhibitory effect of ANP on the generation of inositol phosphates, supporting the involvement of PKG in this process (Khurana and Pandey, 1995). ANP has also been shown to inhibit both autophosphorylation and enzymatic activity of PKC in different cell systems (Pandey, 1989, 1994a,b; Kumar et al., 1997). It is not yet clear if the ANP-dependent inhibitory effects on the phosphoinositide metabolism and PKC autophosphorylation and/or enzyme activity are exerted in a composite manner to negatively regulate the phosphoinositide, Ca\(^{2+}\), and PKC involving ANP/NPRA/cGMP/PKG cascade. It is also possible that the effect of ANP is transmitted to block the IP\(_3\) and Ca\(^{2+}\) signaling pathways independently in response to particular agonist stimulation. It has been suggested that potassium channels can be stimulated by ANP through the activation of PKGs, which require ATP and G-proteins (White et al., 1993). However, the possible involvements of potassium channels in the ANP-dependent inhibitory responses on the generation of inositol phosphates are not yet clearly understood. ANP has also been shown to stimulate the formation of inositol phosphates in cultured VSMCs, however, in the inner medullary collecting duct cells and smooth muscle tissues, ANP stimulated the production of inositol phosphates at lower dosages, and inhibited the formation of these metabolites at higher dosages, which increase intracellular generation of cGMP (Resink et al., 1988; Hirata et al., 1989; Tietelbaum et al., 1990; Berl et al., 1991). Thus the heterogeneity of NP receptors and their diverse cellular distribution suggest that different mechanisms might be involved in the cellular action of ANP/NPRA/cGMP (Anand-Srivastava and Trachte, 1993; Pandey, 2001, 2002, 2011). It has also been shown that ANP inhibits the thombin-induced synthesis and release of endothelin in cultured rat aortic endothelial cells by blocking the phosphoinositide breakdown (Emori et al., 1993).

In addition to the stimulatory effect of ANP on GC activity, it has also been shown to reduce adenylyl cyclase and phospholipase C activities, sodium influx, and Ca\(^{2+}\) concentrations (Brenner et al., 1990; Anand-Srivastava and Trachte, 1993; Pandey, 2005). The increased production of cGMP in response to ANP correlates with the effects of dibutylryl-cGMP. The most compelling evidence supporting a role for cGMP effects was obtained with selective NPRA antagonists, A71915 and HS-121-1 in the kidneys (von Geldern et al., 1990; Sano et al., 1992). Those previous studies established that ANP effect is largely mediated by cGMP through the activation of GC-A/NPRA. In general, evidence suggests that biological activity of ANP/NPRA enhances the generation of the intracellular second messenger cGMP and decreases the levels of cAMP, Ca\(^{2+}\), and IP\(_3\) along with the antagonistic effects on PKC and mitogen-activated protein kinases (MAPKs) in target cells (Figure 1). ANP has been reported to induce cGMP-dependent acrosomal reaction in both capacitated and non-capacitated spermatozoa (Anderson et al., 1994). Furthermore, the acrosome reaction was essentially equal in magnitude when induced with ANP or Ca\(^{2+}\) ionophore A23187. However, higher concentrations of ANP were required to induce acrosomal reaction in capacitated as compared with non-capacitated spermatozoa. Those previous findings indicated that ANP-induced human acrosomal reaction does not require physiological concentrations of extracellular Ca\(^{2+}\). Acrosomal reaction is known to involve various extracellular signals, including cAMP (Anderson et al., 1992), cGMP (Komatsu et al., 1990), prostaglandins, Ca\(^{2+}\) and IP\(_3\) (Thomas and Meizel, 1989), and diacylglycerol (Breitbart et al., 1992).

The established biochemical and cellular effects of ANP in the adrenal glomerulosa cells showed the activation of GC activity and K\(^+\) channel conductance; whereas T-type Ca\(^{2+}\) channels conductance and adenylyl cyclase activity are suppressed (Anand-Srivastava and Trachte, 1993). The correlative evidence between ANP-induced cGMP accumulation and vasodilation has suggested the role of cGMP as the intracellular second messenger of dilator responses to ANP (Brenner et al., 1990; Anand-Srivastava and Trachte, 1993; Cao et al., 1995; Pandey, 2005). ANP as well as cGMP analogs have been found to reduce the agonist-induced increases in cytosolic Ca\(^{2+}\) concentrations (Hassid, 1986; Lincoln et al., 1994; Pandey, 2005). It has been suggested that cGMP activates sarcolemmal Ca\(^{2+}\)-ATPase, and this mechanism seems to be important in the ANP-induced decreases in cytosolic Ca\(^{2+}\) in VSMCs (Rashidwar et al., 1987; Cornwell and Lincoln, 1989; Levin et al., 1998; Pandey, 2005). Nevertheless, it is anticipated that the ultimate effect of ANP in VSMCs could be due to production of cGMP and the activation of PKG (Lincoln et al., 1994; Kumar et al., 1997). However, more studies are needed to define the biochemical and molecular basis of NP actions in vasculature, including VSMCs and endothelial cells.

Initial studies from our laboratory and data published from others have also shown that both ANP and cGMP inhibited the autophosphorylation and enzymatic activity of PKC in the plasma membrane preparations of various target cells (Rogers et al., 1988; Sauro and Fitzpatrick, 1990; Pandey, 1994a,b; Kumar et al., 1997). The activation of PKC triggers the agonist-dependent phosphorylation and activity of numerous cellular proteins causing alteration in many physiological and pathophysiological conditions, including hypertension, cardiac hypertrophy, ischemia, atherosclerosis, stroke, and neurological disorders (Louis et al., 1988; Turla et al., 1990; Komuro et al., 1991; Kumar et al., 1997). PKC is believed to be a multigenic family, consisting of at least 12 isoenzymes that can be classified into classical, novel, and atypical forms (Hug and Sarre, 1993; Dekker and Parker, 1994). These PKC isoenzymes are multifunctional serine/threonine kinases that are largely activated by Ca\(^{2+}\)/phospholipids and phorbol esters. However, some of these isoforms (ε, δ, η, and ϕ) do not require Ca\(^{2+}\), while other isoforms (γ and ε) do not require Ca\(^{2+}\) or phospholipid for PKC enzymatic activity. Previous studies have indicated that vasoconstrictive agents, including ANG II and...
Pandey Signaling mechanisms of GC-A/NPRA

FIGURE 1 | Diagram represents the ligand specificity and physiological function(s) of GC-A/NPRA. The ligand binding to NPRA generates second messenger cGMP from the hydrolysis of GTP. An increased level of intracellular cGMP is produced, which activates three known cGMP effector molecules namely; cGMP-dependent protein kinases (PKGs), cGMP-dependent phosphodiesterases (PDEs), and cGMP-dependent ion-gated channels (CNGs). The ANP/NPRA/cGMP signaling may antagonize a number of pathways including; intracellular formation of cAMP, Ca\(^{2+}\), IP\(_3\); cytokine expression; and the activation of protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs). The resulting signaling cascade can mimic the physiological responses of ANP/NPRA. LBD, ligand binding domain; TM, transmembrane region; protein-KHD, protein kinase-like homology domain; and GCD, guanylyl cyclase catalytic domain; DD, dimerization domain of NPRA and NPRB. The ligand binding region, transmembrane domain, and small intracellular tail region of NPRC are indicated.

ET-1, were able to activate several-fold PKC activity in cultured VSMCs, however, ANP potently antagonized the ANG II- and ET-1-stimulated PKC activity in the ANP/NPRA-dependent manner (Kumar et al., 1997; Pandey, 2005). The inhibitory effect of ANP was greatly amplified if cells were transfected with both PKC-\(\alpha\) and NPRA cDNAs. The pretreatment of cells with NPRA agonist A-71915, significantly blocked the production of cGMP as well as the inhibitory effect of ANP on PKC activity (Kumar et al., 1997). The results of those previous studies provided strong evidence that ANP antagonizes the PKC activation involving ANP/NPRA/cGMP signaling cascade. Agonists that activate PKC also produce two distinct second messengers, IP\(_3\), which activates cytosolic free Ca\(^{2+}\) and diacylglycerol, which stimulates PKC activity (Berridge and Irvine, 1989; Exton, 1990; Rasmussen et al., 1995; Kumar et al., 1997). Our previous studies have suggested that ANP inhibits the formation of IP3 in a cGMP-dependent manner in the intact cells, suggesting that the inhibitory effect of ANP on PKC activity might be linked with its antagonistic action on IP3 formation, however, more studies are needed to support these observations in various ANP-responsive cell and tissues systems.

EFFECT OF NPRA ON THE INHIBITION OF MAPKs ACTIVITY AND CELL PROLIFERATION

It has been shown that cGMP analogs mimicked the antiproliferative action of ANP, indicating that it exerts the antimitogenic effects largely through the intracellular second messenger cGMP (Lincoln et al., 1994; Hutchinson et al., 1997; Pandey et al., 2000b; Sharma et al., 2002). ANP has been shown to inhibit collagen synthesis in cardiac fibroblasts and also it inhibits hypertrophy of cardiac myocytes (Calderone et al., 1998; Masciotra et al., 1999; Silberbach et al., 1999; Horio et al., 2000; Gopi et al., 2013). Similarly, PKG has been shown to suppress extracellular matrix production in VSMCs (Dey et al., 1998). Both NPRA and NPRC, have been suggested to play a role in ANP-dependent antimitogenic responses (Prins et al., 1996; Hutchinson et al., 1997; Pandey et al., 2000b; Sharma et al., 2002; Tripathi and Pandey, 2012). ANP has been shown to act as a growth suppressor in a variety of cell types including; kidney, heart, neurons, thymus, vasculature, and fibroblasts (Levin et al., 1998; Pandey, 2005). Previous studies have demonstrated that ANP inhibits ANGII- and platelet-derived growth factor (PDGF) -dependent MAPK activity in different tissues and cell types (Sugimoto et al., 1993; Prins...
et al., 1996; Pandey et al., 2000b; Sharma et al., 2002; Tripathi and Pandey, 2012). However, in astroglial cells, ANP was shown to inhibit extracellular-regulated MAPK (Erk1/2) activity through NPRC (Prins et al., 1996). In contrast, recent findings have indicated that des- (Cys105–Cys121)-ANP, a ligand selective to NPRC, did not inhibit basal or serum-stimulated MAPK, however, CNP, which acts through NPRC, potently inhibited MAPK activity in fibroblasts in a cGMP-dependent manner (Chrisman and Garbers, 1999).

It has been postulated that cGMP-dependent signaling mechanisms of GC-A/NPRA are initiated probably at the level of gene transcription; however, the exact mechanism of this activation remains to be elucidated. A previous report also indicated that cGMP/PKG signaling was able to increase the MAPK activity in contractile rat VSMCs (Komalavilas et al., 1999). However, the process by which cGMP/PKG leads to the activation of MAPKs is unclear. Similarly, cAMP- and PKG have also been shown to inhibit as well as to activate MAPKs pathways, depending on the cell types and culture conditions (Bornfeldt and Krebs, 1999). However, the involvement of specific ANP receptor subtypes in the inhibitory effects of ANP on the agonist-stimulated MAPKs activity is controversial. Indeed, more studies are needed to establish the underlying mechanisms of the antiproliferative effect of ANP in target cells. ANP has also been shown to induce apoptosis in cultured VSMCs and in neonatal rat cardiac myocytes (Trindade et al., 1995; Wu et al., 1997). The apoptotic effect of ANP was mimicked by 8-bromo-cGMP, a membrane-permeable analog of cGMP, and also by nitroprusside, an activator of soluble guanylyl cyclase. Furthermore, the effect of ANP was greatly potentiated by a cGMP-specific phosphodiesterase inhibitor zaprinast. It has been indicated that norepinephrine, a myocyte growth and proliferative effector molecule, inhibited ANP-induced apoptosis via activation of β-adrenergic receptor and elevation of cAMP (Wu et al., 1997). The existence of a complementary ANP-mediated mechanism to inhibit cell growth and proliferation is not anticipated. Nevertheless, the inhibition of cell proliferation is often accompanied by an increased probability of apoptosis, whereas, growth-promoting agents and agonist hormones tend to promote cell growth and proliferation. For instance, ANG II inhibits apoptosis, in contrast, ANP and nitric oxide, both potently inhibit cell growth and proliferation and induce apoptosis (Pollman et al., 1996; Wu et al., 1997). It has been suggested that the anti-apoptotic molecule Bcl-2 homolog Mcl-1 might serve as an important target in ANP-induced apoptosis. Intriguing was the finding that the Bcl-2 homolog Mcl-1 was initially identified as a protein marker, which was up-regulated during the differentiation of the monocytoid cell line ML-1 cells (Kozopas et al., 1993; Kiefer et al., 1995; Wu et al., 1997).

GENE-TARGETING OF Nppa AND Npr1

Genetic-targeting strategies in mice have provided novel approaches to study the physiological responses corresponding to gene-dosage in vivo (Takahashi and Smithies, 1999; Kim et al., 2002). Genetically modified mice carrying Npr1 gene-disruption or gene-duplication have provided strong support for the physiological roles of NPs and their receptors in the intact animals (John et al., 1995; Lopez et al., 1995; Kishimoto et al., 1996; Oliver et al., 1997, 1998; Matsukawa et al., 1999; Pandey et al., 1999; Shi et al., 2001, 2003; Holtwick et al., 2002; Vellaichamy et al., 2005; Das et al., 2012; Zhao et al., 2013). Numerous studies have examined the quantitative contributions and possible mechanisms mediating the responses of Npr1 gene copies by determining the renal plasma flow (RPF), glomerular filtration rate (GFR), urine flow, and sodium excretion following blood volume expansion in Npr1 homozygous null mutant (Npr1+/−; 0-copy), wild-type (Npr1+/++; 2-copy), and gene-duplicated (Npr1+++/++; 4-copy) mice in a Npr1 gene-dose-dependent manner (Shi et al., 2003). Although, the blood volume expansion stimulated the release of ANP in all three Npr1 genotypes of mice, significant functional responses (RPF, GFR, and sodium excretion) occurred only in Npr1+/− and Npr1+++/++ mice but not in Npr1−/− mice. These findings demonstrated that the ANP/NPRA axis is primarily responsible for mediating the renal hemodynamic and sodium excretory responses to intravascular blood volume expansion. ANP responses to volume expansion led to the significantly lesser excretion of Na+ and water in 0-copy null mutant mice and significantly greater excretory responses along with reduced tubular reabsorption in 4-copy mice as compared with 2-copy wild-type mice. Similarly, during the volume expansion, urinary cGMP concentration was significantly lower in null mutant mice and greater in gene-duplicated mice. Our previous findings have established that NPRA is a hallmark receptor, which plays a critical role in mediating the natriuresis, diuresis, and renal hemodynamic responses to acute blood volume expansion (Shi et al., 2003).

Genetic mouse models with disruption of both Nppa and Npr1 genes have provided strong support for the role of this hormone-receptor system in the regulation of blood pressure, cardiac hypertrophy, and other physiological functions (John et al., 1995; Lopez et al., 1995; Oliver et al., 1997, 1998; Melo et al., 1999; Pandey et al., 1999; Shi et al., 2001, 2003; Holtwick et al., 2002; Vellaichamy et al., 2005; Kishimoto et al., 2011; Pandey, 2011). Therefore, the genetic defects that reduce the activity of ANP and its receptor system can be considered as candidate contributors to essential hypertension and CHF (John et al., 1995; Pandey et al., 1999; Zhao et al., 1999; Knowles et al., 2001; Holtwick et al., 2002; Shi et al., 2003; Vellaichamy et al., 2005). Interestingly, complete absence of NPRA causes hypertension in mice and leads to altered renin and ANG II levels, cardiac hypertrophy, and lethal vascular events similar to those seen in untreated human hypertensive patients (Oliver et al., 1997; Shi et al., 2001, 2003; Zhao et al., 2007). In contrast, increased expression of Npr1 reduces the blood pressures and inflammatory responses, protects heart, and increases the intracellular second messenger cGMP concentrations corresponding to the increasing number of Npr1 gene copies (Oliver et al., 1998; Pandey et al., 1999; Shi et al., 2003; Vellaichamy et al., 2007, 2014; Zhao et al., 2013). Recent evidence also indicates that CNP and its receptor NPRB can play important role in regulating the cardiac hypertrophy and remodeling as a potential drug target for the treatment of cardiovascular diseases (Del Ry, 2013).

CONCLUSION

The field of NPs has been advanced to examine the function and signaling mechanisms of their receptors and the role of
second messenger cGMP in physiology and pathophysiology of hypertension, renal hemodynamics, cardiovascular functions, and neural plasticity. The development of gene-knockout and gene-duplication mouse models along with transgenic mice have provided a framework for understanding both the physiological and pathophysiological functions of NPs and their receptors in the intact animals

| REFERENCES |

Airhart, N., Yang, Y. F., Roberts, C. T. Jr., and Silberbach, M. (2003). Atrial natriuretic peptide receptor-coupled guanylate cyclase. Biochem. Biophys. Res. Commun. 301, 53–61. doi: 10.1016/S0006-291X(03)00326-0

Anand-Srivastava, M. B. (2000). Down-regulation of atrial natriuretic peptide ANP receptor-coupled guanylate cyclase. J. Biol. Chem. 275, 8229–8233. doi: 10.1074/jbc.275.13.8229

Anwaruddin, S., Lloyd-Jones, D. M., Baggh, A., Chen, A., Krauser, D., Tung, R., et al. (2006). Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement: results from the proBNP investigation of dyspnea in the emergency Department (PRIDE) study. J. Am. Coll. Cardiol. 47, 91–97. doi: 10.1016/j.jacc.2005.08.051

Arise, K. K., and Pandey, K. N. (2006). Inhibition and down-regulation of gene transcription and guanylin cyclase activity of NPRA by angiotensin II involving protein kinase C. Biochem. Biophys. Res. Commun. 349, 131–135. doi: 10.1016/j.bbrc.2006.08.003

Beg, T., Mansour, J., and Teitelbaum, I. (1991). ANP stimulates phospholipase C in cultured RIMC cells: roles of protein kinases and G proteins. Am. J. Physiol. 260, F590–F595.

Berridge, M. J., and Irvine, R. F. (1989). Inositol phosphates adn cell signaling. Nature 341, 197–205. doi: 10.1038/341197a0

Bonnifield, K. E., and Krebs, E. G. (1999). Crosstalk between protein kinase A and growth factor receptor signaling pathways in arterial smooth muscle. Cell Signal. 11, 465–477. doi: 10.1016/S0898-6568(99)00020-0

Bovy, P. R. (1990). Structure activity in the atrial natriuretic peptide (ANP) family. Med. Res. Rev. 10, 115–142. doi: 10.1002/med.2610100105

Brezinski, H., Lax, J., Rotem, R., and Naor, J. (1992). Role of protein kinase C in the acute reaction of mammalian spermatozoon. Biochem. J. 281, 473–476.

Brenner, B. M., Ballermann, B. J., Gunning, M. E., and Zeidel, M. L. (1990). Diverse biological actions of atrial natriuretic peptide. Physiol. Rev. 70, 665–699.

Calderone, A., Thaik, C. M., Takahashi, N., Chang, D. L. F., and Colucci, W. S. (1998). Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J. Clin. Invest. 101, 812–818. doi: 10.1172/JCI19883

Cameron, V. A., Aitken, G. D., Ellmers, L. J., Kennedy, M. A., and Espiner, E. A. (1996). The site of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology 137, 817–824.

Cao, L., Chen, S. C., Humphreys, M. H., and Gardner, D. G. (1998). Ligand-dependent regulation of NPR-A gene expression in inner medullary collecting duct cells. Am. J. Physiol. 275, F119–F125.

Cao, L., Wu, J., and Gardner, D. G. (1995). Atrial natriuretic peptide suppresses the transcription of its guanylyl cyclase-linked receptor. J. Biol. Chem. 270, 24891–24897. doi: 10.1074/jbc.270.42.24891

Chang, C., Kohse, K. P., Chang, B., Hirata, M., Jiang, B., Douglas, J. E., et al. (1990). Characterization of ATP-stimulated guanylyl cyclase activation in rat lung membranes. Biochim. Biophys. Acta 1052, 159–165. doi: 10.1016/0167-4889(90)90071-K

Chen, H. H., and Burnett, J. C. Jr. (1998). C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. J. Cardiovasc. Pharmacol. 32(Suppl. 3), S22–S28. doi: 10.1093/cjfp.32.3.S22

Chen, Y. O., and Gardner, D. G. (2003). Endothelin inhibits NPR-A and stimulates eNOS gene expression in rat IMCD cells. Hypertension 41, 675–681. doi: 10.1161/01.HYP.0000047204.72286.34

Chinkers, M., Garbers, D. L., Chang, M. S., Lowe, D. G., Chinkers, M., and Garbers, D. L. (1991). Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J. Biol. Chem. 266, 4088–4093.

Chrisman, T. D., and Garbers, D. L. (1999). Reciprocal antagonism coordinates C-type natriuretic peptide and mitogen-signaling pathways in fibroblasts. J. Biol. Chem. 274, 4293–4299. doi: 10.1074/jbc.274.7.4293

Cohen, D., Koh, G. Y., Nikoanova, L. N., Porter, J. G., and Maack, T. (1996). Molecular determinants of the clearance function of type-C receptor of natriuretic peptides. J. Biol. Chem. 271, 9863–9869. doi: 10.1074/jbc.271.16.9863

Cornwell, T. L., and Lincoln, T. M. (1989). Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells. Reduction of Ca2+ by arachidonate and 8-bromo-cyclic GMP is mediated by cyclic GMP-dependent protein kinase. J. Biol. Chem. 264, 1146–1155.

Cuccia, L., Cervenak, L., Forhecz, Z., Gombos, T., Pozsonyi, Z., Kunde, J., et al. (2011). Serum soluble E-selectin and NT-proBNP levels additively predict mortality in diabetic patients with chronic heart failure. Clin. Res. Cardiol. 100, 587–594. doi: 10.1007/s00392-011-0383-6

Das, S., Periyasamy, R., and Pandey, K. N. (2012). Activation of IKK/NF-kappaB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice. Physiol. Genomics 44, 430–442. doi: 10.1152/physiogenomics.00147.2011

de Bold, A. J. (1985). Atrial natriuretic factor: a hormone produced by the heart. Science 230, 767–770. doi: 10.1126/science.2932797
Dey, N. B., Boerth, N. J., Murphy-Ullrich, J. E., Chang, P. L., Prince, C. W., and Doust, J. A., Pietrzak, E., Dobson, A., and Glasziou, P. (2005). How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ 330, 625. doi: 10.1136/bmj.330.7492.625

Drewett, J. G., and Garbers, D. L. (1994). The family of guanylyl cyclase receptors and their ligands. Endocrinol. Rev. 15, 135–162. doi: 10.1210/edrv-15-2-135

Duda, T., Goraczniak, R. M., and Sharma, R. K. (1990). Regulation of guanylate cyclase activity by atrial natriuretic factor and protein kinase C. J. Biol. Chem. 265, 93–101. doi: 10.1016/0021-9290(90)90992-P

Duda, T., Sharma, R. K., and Kowal, A. J. (1991). Site-directed mutational analysis of a membrane guanylate cyclase C-domain reveals the atrial natriuretic factor signaling. Proc. Natl. Acad. Sci. U.S.A. 88, 7882–7886. doi: 10.1073/pnas.88.17.7882

Duda, T., Goraczniak, R. M., and Sharma, R. K. (1993). Core sequence of ATP regulatory module in receptor guanylyl cyclase. FEBS Lett. 315, 143–148. doi: 10.1016/0014-5793(93)80151-O

Duda, T., and Sharma, R. K. (1990). Regulation of guanylyl cyclase activity by atrial natriuretic factor and protein kinase C. Mol. Cell. Biochem. 93, 179–184. doi: 10.1007/BF00226190

Emori, T., Hirata, Y., Imai, T., Eguchi, S., Kanno, K., and Marumoto, F. (1993). Cellular mechanism of natriuretic peptides-induced inhibition of endothelin-1 biosynthesis in rat endothelial cells. Endocrinology 133, 2474–2480.

Exton, J. H. (1990). Signaling through phosphorylcholine breakdown. J. Biol. Chem. 265, 1–4.

Felker, G. M., Petersen, J. W., and Mark, D. W. (2006). Natriuretic peptides in the diagnosis and management of heart failure. CMAJ 171, 611–617. doi: 10.1503/cmaj.060236

Fenrick, R., Bouchard, N., Mcnicoll, N., and De Lean, A. (1997). Glycosylation of asparagines 24 of the natriuretic peptide receptor-B is crucial for the formation of a competent ligand binding domain. Mol. Cell. Biochem. 173, 25–32. doi: 10.1023/A:100685522272

Freestone, B., Gustafsson, E., Chong, A. Y., Corell, P., Hildebrandt, W., Tammik, R., et al. (2008). Influence of atrial fibillation on plasma von willebrand factor, soluble E-selectin, and N-terminal pro B-type natriuretic peptide levels in systolic vascular smooth muscle cells. Circ. Res. 102, 830–838. doi: 10.1161/CIRCRESAHA.107.170707

Fujio, N., Gossard, F., Bayard, F., and Tremblay, J. (1994). Regulation of natriuretic peptide receptor A and B expression by transforming growth factor beta 1 in cultured aortic smooth muscle cells. Hypertension 23, 908–913. doi: 10.1161/01.HYP.23.6.908

Fuller, F., Porter, J. G., Artisen, A. E., Miller, J., Schilling, J. W., Scarborough, R. M., et al. (1988). Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J. Biol. Chem. 263, 9395–9401.

Ganem, F., Serrano, C. V., Jr., Fernandes, J. L., Blotta, M. H., Souza, J. A., and Garbers, D. L. (2002). Left but not right cardiac hypertrophy in atrial natriuretic peptide receptor knockout mice. J. Cardiovasc. Pharmacol. 40, 725–734. doi: 10.1097/00005344-200211000-00010

Horio, T., Nishikimi, T., Yoshihara, F., Matsuho, T., Takishita, S., and Kangawa, K. (2000). Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Hypertension 35, 19–24. doi: 10.1161/01.HYP.35.1.19

Hug, H., and Sarre, T. F. (1993). Protein kinase C isoenzymes: divergence in signal transduction. Biochem. J. 291, 329–343.

Hughes, R. J., Struthers, R. S., Fong, A. M., and Insel, P. A. (1987). Regulation of the atrial natriuretic peptide receptor on a smooth muscle cell. Am. J. Physiol. 253, C809–C816.

Hugnir, R. I., and Greengard, P. (1990). Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5, 555–567. doi: 10.1016/0896-6273(90)90211-W

Hum, D., Besnard, S., Sanchez, R., Devost, D., Gossard, F., Hamet, P., et al. (2004). Characterization of a cGMP-response element in the guanylyl cyclase/natriuretic peptide receptor A gene promoter. Hypertension 43, 1270–1278. doi: 10.1161/01.HY.0000126920.93207.53

Huo, X., Abe, T., and Misono, K. S. (1999). Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide junctional hinge structure essential for transmembrane signal transduction. Biochemistry 38, 16941–16951. doi: 10.1021/bi9919448

Hutchinson, H. G., Trinadad, P. T., Cunanan, D. B., Wu, C. F., and Pratt, R. E. (1997). Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Circ. Res. 85, 547–556. doi: 10.1161/01.RES.82.13.547

Igaki, T., Itoh, H., Shirakami, G., Suga, S., Komatsu, Y., Yoshimasa, T., et al. (1994). Detection of C-type natriuretic peptide in human circulation and marked increase of plasma CNP level in septic shock patients. Biochem. Biophys. Res. Commun. 198, 1177–1182. doi: 10.1016/brc.1994.1166

Hama, N., Itoh, H., Shirakami, G., Suga, S., Komatsu, Y., and Yoshimasa, T. (1994). Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267, 679–681. doi: 10.1126/science.7839143
of heart failure: an analysis from the breathing not properly multinational study.
Am. J. Kidney Dis. 41, 571–579. doi: 10.1016/S0272-6386(03)50118-7
Melo, L. G., Veres, A. T., Ackermann, U., Steinhelper, M. E., Pang, S. C., Tse, Y., et al. (1999). Chronic regulation of arterial blood pressure in ANP transgenic and knockout mice: role of cardiovascular sympathetic tone. Cardiovasc. Res. 43, 437–444. doi: 10.1016/S0008-6363(99)00104-2
Meloche, S., Mencicoli, N., Liu, B., Ong, H., De Lean, A. (1988). Atrial natriuretic factor R1 receptor from bovine adrenal zona glomerulosa: purification, characterization, and modulation by amiloride. Biochemistry 27, 8151–8158. doi: 10.1021/bi00421a025
Meloche, S., Ong, H., Cantin, M., and De Lean, A. (1986). Affinity cross-linking of atrial natriuretic factor to its receptor in bovine adrenal zona glomerulosa. J. Biol. Chem. 261, 1525–1528.
Meyer, M., Richter, R., Brunkhorst, R., Wrenger, E., Schulz-Knappe, P., Kist, A., et al. (1999). Chronic regulation of arterial blood pressure in ANP transgenic and knockout mice: role of cardiovascular sympathetic tone. J. Am. Soc. 41, 571–579. doi: 10.1016/S0272-6386(03)50118-7
Miyagi, M., Zhang, X., and Misono, K. S. (2000). Glycosylation sites in the atrial natriuretic peptide receptor oligosaccharide structures are not required for hormone binding. Eur. J. Biochem. 267, 5758–5768. doi: 10.1046/j.1432-1327.2000.01647.x
Mukoyama, M., Nakao, K., Hosoda, K., Suga, S., Saito, Y., Ogawa, Y., et al. (1991). Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Invest. 87, 1402–1412. doi: 10.1172/JCI115146
Murphy, K. T., Thibault, G., and Cantin, M. (1989). Binding and intracellular degradation of atrial natriuretic factor by cultured vascular smooth muscle cells. Mol. Endocrinol. 3, 195–206. doi: 10.1210/mend-3-3-195
Miyagi, M., Zhang, X., and Misono, K. S. (2000). Glycosylation sites in the atrial natriuretic peptide receptor oligosaccharide structures are not required for hormone binding. Eur. J. Biochem. 267, 5758–5768. doi: 10.1046/j.1432-1327.2000.01647.x
Nakaya, K., Nakagawa, O., Komatsu, Y., Hosoda, K., Suga, S., et al. (1992). Human C-type natriuretic peptide characterization of the gene and peptide. Hypertension 19, 809–813. doi: 10.1161/01.HYP.19.6.809
Oliver, P. M., Fox, J., Kim, R., Rockman, H. A., Kim, H. S., Redick, R. L., et al. (1997). Hypoxia-induced cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc. Natl. Acad. Sci. U.S.A. 94, 14730–14735. doi: 10.1073/pnas.94.26.14730
Paul, A. K., Marala, R. K., and Sharma, R. K. (1987). Coexistence of cardiac natriuretic factor and atrial natriuretic factor in plasma membranes of bovine adrenal cortical membranes. Biochem. Biophys. Res. Commun. 130, 594–1001. doi: 10.1016/S0006-291X(86)83191-9
Prins, B. A., Weber, M. J., Hu, R.-M., Pedram, A., Daniels, M., and Levin, E. R. (1996). Vasopressin with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide inhibits autophosphorylation of protein kinase C and A 240-kDa protein in plasma membranes of bovine adrenal glomerulosa cells: involvement of cGMP-dependent and independent signal transduction mechanisms. Mol. Cell. Biochem. 141, 103–111. doi: 10.1007/BF00926173
Pandey, K. N. (1989b). Atrial natriuretic factor inhibits the phosphorylation of protein kinase C in plasma membrane preparations of cultured Leydig tumor cells. J. Androl. 15, 100–109. doi: 10.1007/BF00926173
Pandey, K. N. (2001). Dynamics of internalization and sequestration of guanylyl cyclase/atrial natriuretic factor receptor-A. Can. J. Physiol. Pharmacol. 79, 631–639. doi: 10.1139/y01-035
Pandey, K. N. (2002). Intracellular trafficking and metabolic turnover of ligand-bound guanylyl cyclase/atrial natriuretic factor receptor-A into subcellular compartments. Mol. Cell. Biochem. 230, 61–72. doi: 10.1023/A:1014240006767
Pandey, K. N. (2005). Biology of natriuretic peptides and their receptors. Peptides 26, 901–932. doi: 10.1016/j.peptides.2004.09.024
Pandey, K. N. (2011). The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: perspectives and paradigms. FEBS J. 278, 1792–1807. doi: 10.1111/j.1742-4658.2011.08081.x
Pandey, K. N., Inagami, T., and Misono, K. S. (1986). Atrial natriuretic factor receptor on cultured Leydig tumor cells: ligand binding and photoaffinity labeling. Biochemistry 25, 8467–8472. doi: 10.1021/bi00374a022
Pandey, K. N., Kovacs, W. J., and Inagami, T. (1985). The inhibition of progesterone secretion and the regulation of cyclic nucleotides by atrial natriuretic factor in gonadotropin responsive murine Leydig tumor cells. Biochem. Biophys. Res. Commun. 133, 800–806. doi: 10.1016/0006-291X(85)90975-1
Pandey, K. N., Nguyen, H. T., Sharma, G. D., Shi, S. J., and Kriegl, A. M. (2002). Ligand-regulated internalization, trafficking, and down-regulation of guanylyl cyclase/atrial natriuretic factor receptor-A in human embryonic kidney 293 cells. J. Biol. Chem. 277, 4618–4627. doi: 10.1074/jbc.M106436200
Pandey, K. N., Oliver, P. M., Maeda, N., and Smithies, O. (1999). Hypertension associated with decreased testosterone levels in natriuretic peptide receptor-A gene-knockout and gene-duplicated mutant mouse models. Endocrinology 140, 5112–5119.
Pandey, K. N., Pavlov, S. N., and Inagami, T. (1988). Identification and characterization of three distinct atrial natriuretic factor receptors. Evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth muscle, kidney tubular epithelium, and Leydig tumor cells by ligand binding, photoaffinity labeling, and tryptic proteolysis. J. Biol. Chem. 263, 13406–13413.
Pandey, K. N., and Singh, S. (1990). Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cDNA. J. Biol. Chem. 265, 12342–12348. Paul, A. K., Marala, R. B., Jaiswal, R. K., and Sharma, R. K. (1987). Coexistence of guanylate cyclase and atrial natriuretic factor in a 180-kD protein. Science 235, 1224–1226. doi: 10.1126/science.2813152
Phillips, R. A., Ardeljan, M., Shimabukuro, S., Goldman, M. E., Garbowitz, D. L., Eison, H. B., et al. (1991). Normalization of left ventricular mass and associated changes in neurohormones and atrial natriuretic peptide after 1 year of sustained nifedipine therapy for severe hypertention. J. Am. Coll. Cardiol. 17, 1595–1602. doi: 10.1016/S0735-1097(91)90654-R
Pollman, M. J., Yamaeda, T., Horiuchi, M., and Gibbons, G. H. (1996). Vasoadaptive substances regulate vascular smooth muscle cell apoptosis. Circ. Res. 79 748–756. doi: 10.1161/01.RES.79.4.748
Potter, L. R., and Garbers, D. L. (1992). Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J. Biol. Chem. 267, 14531–14534.
Prins, B. A., Weber, M. J., Hu, R.-M., Pedram, A., Daniels, M., and Levin, E. R. (1996). Atrial natriuretic peptide inhibits mitogen-activated protein kinase through the
Rathinavelu, A., and Isom, G. E. (1991). Differential internalization and precessing
Rogers, J., Hughes, R. J., and Mathes, E. K. (1988). cGMP inhibits protein kinase
Resink, T. J., Scott-Burden, T., Baur, U., Jones, C. R., and Buhler, F. R. (1988).
Rasmussen, H., Isales, C. M., Calle, R. A., Throckmorton, D., Anderson, M., Gasalla-
Rosenzweig, A., and Seidman, C. E. (1991). Atrial natriuretic factor and
Sharma, R. K. (2002). Evolution of the membrane guanylate cyclase transduction
Sharma, R. K., and Duda, T. (2010). ROS-GC subfamily membrane guanylate
Sibley, D. R., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1987). Regulation
Shi, S. J., Nguyen, H. T., Sharma, G. D., Navar, L. G., and Pandey, K. N.
Sorkin, A., and von Zastrow, M. (2002). Signal transduction and endocytosis
Sudoh, T., Minamino, N., Kangawa, K., and Matsuo, H. (1988). Brain natriuretic
Sugimoto, T., Kikkawa, R., Haneda, M., and Shigeta, Y. (1993). Atrial natriuretic
Suga, S., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., Yoshimasa, T., et al. (1993).
Suga, S., Nakao, K., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., et al. (1992).
Stenlund, S., and Smith, P. (1988). Identification of the atrial natriuretic factor
Sutherland, W. G. (1988). Isolation and structural analysis of “urodilatin”, a new peptide of
Sved, A. (1988). Identification of vasopressin- and angiotensin II binding sites in
Sved, A. (1990). Selective and overlapping actions of vasopressin and angiotensin II
Sureda, A., and Palacios, J. (1992). Characterization of guanylyl cyclase activity in rat
Suquet, C., Hayot, C., Dunach, M., Froment, A., and Letarte, M. (1993). Multiple
Takayanagi, R., Snajdar, R. M., Imada, T., Tamura, M., Pandey, K. N., Misono,
Takayanagi, R. H., and Smithies, O. (1997). Gene targeting approaches to analyzing
Takayanagi, R. H., and Smithies, O. (1999). Gene targeting approaches to analyzing
Takayanagi, R. H., and Smithies, O. (2001). Gene targeting approaches to analyzing
Takayanagi, R. H., and Smithies, O. (2002). Gene targeting approaches to analyzing
Takayanagi, R. H., and Smithies, O. (2003). Gene targeting approaches to analyzing
Takekawa, K., and Shibasaki, K. (1992). cGMP-dependent protein kinase activity
Takahashi, N., and Smithies, O. (1999). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (1999). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2001). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2002). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2003). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2004). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2005). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2006). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2007). Gene targeting approaches to analyzing
Takahashi, N., and Smithies, O. (2008). Gene targeting approaches to analyzing
Telender, L., Antal, T., Kupferszegi, T., Gulyas, A., and Ban, L. (2000). Gene
Teitelbaum, L., Strasheim, A., and Berg, T. (1990). Epidermal growth factor
Tencu, D. L., and Balsamo, S. (1987). Identification of guanylyl cyclase activity in rat
Teo, K. Y., and Leong, W. P. (1988). Characterization of vasopressin- and angiotensin II
Tena-Sempere, M., and Pardas, F. (1990). Cardiac natriuretic peptides: from
8674(89)90513-8
The primary structure of a plasma membrane guanylate cyclase demonstrates
diversity within this new receptor family. Cell 58, 1153–1162. doi: 10.1016/0022-
Suckling, T. M., and Lincoln, T. M. (1987). Effect of 8-bromo cGMP on Ca2+
Sudoh, T., Minamino, N., Kangawa, K., and Matsuo, H. (1988). Brain natriuretic
Sudoh, T., Minamino, N., Kangawa, K., and Matsuo, H. (1990). C-type natriuretic
Sugimoto, T., Kikkawa, R., Haneda, M., and Shigeta, Y. (1993). Atrial natriuretic
Suga, S., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., Yoshimasa, T., et al. (1993).
Suga, S., Nakao, K., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., et al. (1992).
Sorcin, A., and von Zastrow, M. (2002). Signal transduction and endocytosis close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614. doi: 10.1038/nrm8883
Sodium, P. J., Streyer, P. S., and Roberts, C. T. J. (1999). Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes. J. Biol. Chem. 274, 24858–24864. doi: 10.1074/jbc.274.35.24858
sodium-lowering effect of the guanylyl cyclase inhibitor 8-bromo cGMP. Biochem.
Biophys. Res. Commun. 203, 229–255. doi: 10.1016/S0006-291X(99)81482-7
Sorcin, A., and von Zastrow, M. (2002). Signal transduction and endocytosis close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614. doi: 10.1038/nrm8883
Sodium, P. J., Streyer, P. S., and Roberts, C. T. J. (1999). Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes. J. Biol. Chem. 274, 24858–24864. doi: 10.1074/jbc.274.35.24858
Signaling mechanisms of GC-A/NPRA

Frontiers in Molecular Neuroscience www.frontiersin.org

August 2014 | Volume 7 | Article 75 | 13

Pandey
peptide receptor-A exhibit the cardiac expression of proinflammatory mediators in a gene-dose-dependent manner. Endocrinology 155, 1045–1056. doi: 10.1210/en.2013-1416

Vellaichamy, E., Khurana, M. L., Fink, J., and Pandey, K. N. (2005). Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J. Biol. Chem. 280, 19230–19242. doi: 10.1074/jbc.M411373200

Vellaichamy, E., Zhao, D., Somanna, N., and Pandey, K. N. (2007). Genetic disruption of guanylyl cyclase/natriuretic peptide receptor-A upregulates ACE and AT1 receptor gene expression and signaling: role in cardiac hypertrophy. Physiol. Genomics 31, 193–202. doi: 10.1152/physiolgenomics.00079.2007

von Geldern, T. W., Budzik, G. P., Dillon, T. P., Holleman, W. H., Holst, M. A., Ksio, Y., et al. (1990). Atrial natriuretic peptide antagonists biological evaluation and structural correlations. Mol. Pharmacol. 38, 771–778

Waldman, S. A., Rapoport, R. M., and Murad, F. (1984). Atrial natriuretic factor gene-dosage and salt diets on cardiac angiotensin II, aldosterone and pro-inflammatory cytokines levels in mutant mice. J. Hypertens. 31, 134–144. doi: 10.1097/HJH.0b013e32835ac15f

Zhao, D., Vellaichamy, E., Somanna, N. K., and Pandey, K. N. (2007). Guanylyl cyclase/natriuretic peptide receptor-A gene disruption causes increased adrenal angiotensin II and aldosterone levels. Am. J. Physiol. 293, F121–F127. doi: 10.1152/ajprenal.00478.2006

This article was submitted to the journal Frontiers in Molecular Neuroscience. Citation: Pandey KN (2014) Guanylyl cyclase/natriuretic peptide receptor-A signaling mechanisms of GC-A/NPRA. 10.1038/361263a0

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 10 April 2014; accepted: 05 August 2014; published online: 22 August 2014.

Copyright © 2014 Pandey. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.