SMALL FEEDBACK VERTEX SETS
IN PLANAR DIGRAPHS

LOUIS ESPERET, LAETITIA LEMOINE, AND FRÉDÉRIC MAFFRAY

Abstract. Let G be a directed planar graph on n vertices, with no directed cycle of length less than $g \geq 4$. We prove that G contains a set X of vertices such that $G - X$ has no directed cycle, and $|X| \leq \frac{2n-5}{g}$ if $g = 4$, $|X| \leq \frac{2n-5}{5}$ if $g = 5$, and $|X| \leq \frac{2n-6}{g}$ if $g \geq 6$. This improves recent results of Golowich and Rolnick.

A directed graph G (or digraph, in short) is said to be acyclic if it does not contain any directed cycle. The digirth of a digraph G is the minimum length of a directed cycle in G (if G is acyclic, we set its digirth to $+\infty$). A feedback vertex set in a digraph G is a set X of vertices such that $G - X$ is acyclic, and the minimum size of such a set is denoted by $\tau(G)$. In this short note, we study the maximum $f_g(n)$ of $\tau(G)$ over all planar digraphs G on n vertices with digirth g. Harutyunyan [1, 4] conjectured that $f_3(n) \leq \frac{2n}{5}$ for all n. This conjecture was recently refuted by Knauer, Valicov and Wenger [5] who showed that $f_g(n) \geq \frac{n-1}{g-1}$ for all $g \geq 3$ and infinitely many values of n. On the other hand, Golowich and Rolnick [3] recently proved that $f_4(n) \leq \frac{7n}{17}$, $f_5(n) \leq \frac{8n}{15}$, and $f_g(n) \leq \frac{3n-6}{g}$ for all $g \geq 6$ and n. Harutyunyan and Mohar [4] proved that the vertex set of every planar digraph of digirth at least 5 can be partitioned into two acyclic subgraphs. This result was very recently extended to planar digraphs of digirth 4 by Li and Mohar [6], and therefore $f_4(n) \leq \frac{n}{2}$.

This short note is devoted to the following result, which improves all the previous upper bounds for $g \geq 5$ (although the improvement for $g = 5$ is rather minor). Due to the very recent result of Li and Mohar [6], our result for $g = 4$ is not best possible (however its proof is of independent interest and might lead to further improvements).

Theorem 1. For all $n \geq 3$ we have $f_4(n) \leq \frac{5n-5}{9}$, $f_5(n) \leq \frac{2n-5}{4}$ and for all $g \geq 6$, $f_g(n) \leq \frac{2n-6}{g}$.

In a planar graph, the degree of a face F, denoted by $d(F)$, is the sum of the lengths (number of edges) of the boundary walks of F. In the proof of Theorem 1 we will need the following two simple lemmas.

Lemma 2. Let H be a planar bipartite graph, with bipartition (U, V), such that all faces of H have degree at least 4, and all vertices of V have degree at least 2. Then H contains at most $2|U| - 4$ faces of degree at least 6.

Proof. Assume that H has n vertices, m edges, f faces, and f_6 faces of degree at least 6. Let N be the sum of the degrees of the faces of H, plus...
twice the sum of the degrees of the vertices of V. Observe that $N = 4m$, so, by Euler’s formula, $N \leq 4n + 4f - 8$. The sum of degrees of the faces of H is at least $4(f - f_6) + 6f_6 = 4f + 2f_6$, and since each vertex of V has degree at least 2, the sum of the degrees of the vertices of V is at least $2|V|$. Therefore, $4f + 2f_6 + 4|V| \leq 4n + 4f - 8$. It follows that $f_6 \leq 2|U| - 4$, as desired.

\[\square \]

Lemma 3. Let G be a connected planar graph, and let $S = \{F_1, \ldots, F_k\}$ be a set of k faces of G, such that each F_i is bounded by a cycle, and these cycles are pairwise vertex-disjoint. Then $\sum_{F \in S}(3d(F) - 6) \geq \sum_{i=1}^{k}(3d(F_i)+6)-12$, where the first sum varies over faces F of G not contained in S.

Proof. Let n, m, and f denote the number of vertices, edges, and faces of G, respectively. It follows from Euler’s formula that the sum of $3d(F) - 6$ over all faces of G is equal to $6m - 6f = 6n - 12 \geq 6\sum_{i=1}^{k}d(F_i) - 12$. Therefore, $\sum_{F \in S}(3d(F) - 6) \geq 6\sum_{i=1}^{k}d(F_i) - 12 - \sum_{i=1}^{k}(3d(F_i) - 6) = \sum_{i=1}^{k}(3d(F_i)+6)-12$, as desired. \[\square \]

We are now able to prove Theorem 1.

Proof of Theorem 1. We prove the result by induction on $n \geq 3$. Let G be a planar digraph with n vertices and digirth $g \geq 4$. We can assume without loss of generality that G has no multiple arcs, since $g \geq 4$ and removing one arc from a collection of multiple arcs with the same orientation does not change the value of $\tau(G)$. We can also assume that G is connected, since otherwise we can consider each connected component of G separately and the result clearly follows from the induction (since $g \geq 4$, connected components of at most 2 vertices are acyclic and can thus be left aside). Finally, we can assume that G contains a directed cycle, since otherwise $\tau(G) = 0 \leq \min\{\frac{2n-5}{3}, \frac{2n-5}{4}, \frac{2n-6}{5}\}$ (since $n \geq 3$).

Let C be a maximum collection of arc-disjoint directed cycles in G. Note that C is non-empty. Fix a planar embedding of G. For a given directed cycle C of C, we denote by \overline{C} the closed region bounded by C, and by \mathring{C} the interior of \overline{C}. It follows from classical uncrossing techniques (see 2 for instance), that we can assume without loss of generality that the directed cycles of C are pairwise non-crossing, i.e. for any two elements $C_1, C_2 \in C$, either $\overline{C_1}$ and $\overline{C_2}$ are disjoint, or one is contained in the other. We define the partial order \preceq on C as follows: $C_1 \preceq C_2$ if and only if $\overline{C_1} \subseteq \overline{C_2}$. Note that \preceq naturally defines a rooted forest \mathcal{F} with vertex set C: the roots of each of the components of \mathcal{F} are the maximal elements of \preceq, and the children of any given node $C \in \mathcal{F}$ are the maximal elements $C' \preceq C$ distinct from C (the fact that \mathcal{F} is indeed a forest follows from the non-crossing property of the elements of C).

Consider a node C of \mathcal{F}, and the children C_1, \ldots, C_k of C in \mathcal{F}. We define the closed region $R_C = \overline{C} - \bigcup_{1 \leq i \leq k} C_i$. Let ϕ_C be the sum of $3d(F) - 6$, over all faces F of G lying in R_C.

Claim 4. Let C_0 be a node of \mathcal{F} with children C_1, \ldots, C_k. Then $\phi_{C_0} \geq \frac{3}{2}(g - 2)k + \frac{3}{2}g$. Moreover, if $g \geq 6$, then $\phi_{C_0} \geq \frac{3}{2}(g - 2)k + \frac{3}{2}g + 3$.

Assume first that the cycles C_0, \ldots, C_k are pairwise vertex-disjoint. Then, it follows from Lemma 2 that $\phi_{C_0} \geq (k + 1)(3g + 6) - 12$. Note that since $g \geq 4$, we have $(k + 1)(3g + 6) - 12 \geq \frac{3}{2}(g - 2)k + \frac{3}{2}g$. Moreover, if $g \geq 6$, $(k + 1)(3g + 6) - 12 \geq \frac{3}{2}(g - 2)k + \frac{3}{2}g + 3$, as desired. As a consequence, we can assume that two of the cycles C_0, \ldots, C_k intersect, and in particular, $k \geq 1$.

Consider the following planar bipartite graph H: the vertices of the first partite set of H are the directed cycles C_0, C_1, \ldots, C_k, the vertices of the second partite set of H are the vertices of G lying in at least two cycles among C_0, C_1, \ldots, C_k, and there is an edge in H between some cycle C_i and some vertex v if and only if $v \in C_i$ in G (see Figure 1). Observe that H has a natural planar embedding in which all internal faces have degree at least 4. Since $k \geq 1$ and at least two of the cycles C_0, \ldots, C_k intersect, the outerface also has degree at least 4. Note that the faces F_1, \ldots, F_t of H are in one-to-one correspondence with the maximal subsets D_1, \ldots, D_t of R_{C_0} whose interior is connected. Also note that each face of $G \cap R_{C_0}$ is in precisely one region D_i and each arc of $\bigcup_{i=0}^k C_i$ (i.e. each arc on the boundary of R_{C_0}) is on the boundary of precisely one region D_i. For each region D_i, let ℓ_i be the number of arcs on the boundary of D_i, and observe that $\sum_{i=1}^t \ell_i = \sum_{j=0}^k \vert C_j \vert$. Let ϕ_{D_i} be the sum of $3d(F) - 6$, over all faces F of G lying in D_i. It follows from Lemma 3 (applied with $k = 1$) that $\phi_{D_i} \geq 3\ell_i - 6$, and therefore $\phi_{C_0} = \sum_{i=1}^t \phi_{D_i} \geq \sum_{i=1}^t (3\ell_i - 6)$.

![Figure 1. The region R_{C_0} (in gray) and the planar bipartite graph H.](image)

A region D_i with $\ell_i \geq 4$ is said to be of type 1, and we set $T_1 = \{1 \leq i \leq t \mid D_i \text{ is of type 1}\}$. Since for any $\ell \geq 4$ we have $3\ell - 6 \geq \frac{3\ell}{2}$, it follows from the paragraph above that the regions D_i of type 1 satisfy $\phi_{D_i} \geq \frac{3\ell}{2}$. Let D_i be a region that is not of type 1. Since G is simple, $\ell_i = 3$. Assume first that D_i is bounded by (parts of) two directed cycles of C (in other words, D_i corresponds to a face of degree four in the graph H). In this case we say that D_i is of type 2 and we set $T_2 = \{1 \leq i \leq t \mid D_i \text{ is of type 2}\}$. Then the boundary of D_i consists in two consecutive arcs e_1, e_2 of some directed cycle C^+ of C, and one arc e_3 of some directed cycle C^- of C. Since $g \geq 4$, these three arcs do not form a directed cycle, and therefore their orientation is transitive. It follows that $\vert C^+ \vert \geq g + 1$, since otherwise
the closed region obtained from C^+ by replacing e_1, e_2 with e_3 would have length $g - 1$, contradicting that G has digirth at least g. Consequently, $\sum_{i=0}^k |C_i| \geq (k + 1)g + |T_2|$. If a region D_i is not of type 1 or 2, then $\ell_i = 3$ and each of the 3 arcs on the boundary of D_i belongs to a different directed cycle of C. In other words, D_i corresponds to some face of degree 6 in the graph H. Such a region D_i is said to be of type 3, and we set $T_3 = \{1 \leq i \leq t \mid D_i$ is of type 3\}. It follows from Lemma 2 that the number of faces of degree at least 6 in H is at most $2(k + 1) - 4$. Hence, we have $|T_3| \leq 2k - 2$.

Using these bounds on $|T_2|$ and $|T_3|$, together with the fact that for any $i \in T_2 \cup T_3$ we have $\phi_{D_i} \geq 3\ell_i - 6 = \frac{3k}{2} - \frac{3}{2}$, we obtain:

$$\phi_{C_0} = \sum_{i \in T_1} \phi_{D_i} + \sum_{i \in T_2} \phi_{D_i} + \sum_{i \in T_3} \phi_{D_i} \geq \sum_{i=1}^t \frac{3k}{2} - \frac{3}{2}|T_2| - \frac{3}{2}|T_3| \geq \frac{3}{2}\sum_{i=0}^k |C_i| - \frac{3}{2}|T_2| - \frac{3}{2}(2k - 2) \geq \frac{3}{2}(k + 1)g - 3k + 3 = \frac{3}{2}(g - 2)k + \frac{3}{2}g + 3,$$

as desired. This concludes the proof of Claim 4. \qed

Let $C_1, \ldots, C_{k_\infty}$ be the k_∞ maximal elements of \preceq. We denote by $R_{k\infty}$ the closed region obtained from the plane by removing $\bigcup_{i=1}^{k\infty} \hat{C}_i$. Note that each face of G lies in precisely one of the regions R_C ($C \in \mathcal{C}$) or $R_{k\infty}$. Let $\phi_{k\infty}$ be the sum of $3d(F) - 6$, over all faces F of G lying in $R_{k\infty}$. A proof similar to that of Claim 4 shows that $\phi_{k\infty} \geq \frac{3}{2}k\infty(g - 2) + 3$, and if $g \geq 6$, then $\phi_{k\infty} \geq \frac{3}{2}k\infty(g - 2) + 6$.

We now compute the sum ϕ of $3d(F) - 6$ over all faces F of G. By Claim 4,

$$\phi = \phi_{k\infty} + \sum_{C \in \mathcal{F}} \phi_C \geq \frac{3}{2}k\infty(g - 2) + 3 + (|C| - k\infty)\frac{3}{2}(g - 2) + |C| \cdot \frac{3}{2}g \geq (3g - 3)|C| + 3.$$

If $g \geq 6$, a similar computation gives $\phi \geq 3g|C| + 6$. On the other hand, it easily follows from Euler’s formula that $\phi = 6n - 12$. Therefore, $|C| \leq \frac{2n - 5}{g - 1}$, and if $g \geq 6$, then $|C| \leq \frac{2n - 6}{g}$.

Let A be a set of arcs of G of minimum size such that $G - A$ is acyclic. It follows from the Lucchesi-Younger theorem \cite{LucchesiYounger} (see also \cite{Golumbic}) that $|A| = |C|$. Let X be a set of vertices covering the arcs of A, such that X has minimum size. Then $G - X$ is acyclic. If $g = 5$ we have $|X| \leq |A| = |C| \leq \frac{2n - 5}{g}$ and if $g \geq 6$, we have $|X| \leq |A| = |C| \leq \frac{2n - 6}{g}$, as desired. Assume now that $g = 4$.

In this case $|A| = |C| \leq \frac{2n - 5}{3}$. It was observed by Golowich and Rolnick \cite{GolowichRolnick} that $|X| \leq \frac{1}{3}(n + |A|)$ (which easily follows from the fact that any graph on
n vertices and m edges contains an independent set of size at least $\frac{2n - m}{3}$, and thus, $|X| \leq \frac{5n - 3}{9}$. This concludes the proof of Theorem 1. □

Final remark

A natural problem is to determine the precise value of $f_g(n)$, or at least its asymptotical value as g tends to infinity. We believe that $f_g(n)$ should be closer to the lower bound of $n - \frac{1}{g}$, than to our upper bound of $\frac{2n - 6}{g}$.

For a digraph G, let $\tau^*(G)$ denote the the infimum real number x for which there are weights in $[0,1]$ on each vertex of G, summing up to x, such that for each directed cycle C, the sum of the weights of the vertices lying on C is at least 1. Goemans and Williamson [2] conjectured that for any planar digraph G, $\tau(G) \leq \frac{3}{2} \tau^*(G)$. If a planar digraph G on n vertices has digirth at least g, then clearly $\tau^*(G) \leq \frac{n}{g}$ (this can be seen by assigning weight $1/g$ to each vertex). Therefore, a direct consequence of the conjecture of Goemans and Williamson would be that $f_g(n) \leq \frac{3n}{2g}$.

References

[1] A. Harutyunyan, *Brooks-type results for coloring of digraphs*, PhD Thesis, Simon Fraser University, 2011.
[2] M.X. Goemans and D.P. Williamson, *Primal-Dual Approximation Algorithms for Feedback Problems in Planar Graphs*, Combinatorica 17 (1997), 1–23.
[3] N. Golowich and D. Rolnick, *Acyclic Subgraphs of Planar Digraphs*, Electronic J. Combin., 22(3) (2015), #P3.7.
[4] A. Harutyunyan and B. Mohar, *Planar Digraphs of Digirth Five are 2-Colorable*. J. Graph Theory 84(4) (2017), 408–427.
[5] K. Knauer, P. Valicov, and P.S. Wenger, *Planar Digraphs without Large Acyclic Sets*, J. Graph Theory 85(1) (2017), 288–291.
[6] Z. Li and B. Mohar, *Planar digraphs of digirth four are 2-colourable*, Manuscript, 2016. http://arxiv.org/abs/1606.06114
[7] C. Lucchesi and D. H. Younger, *A minimax theorem for directed graphs*, J. London Math. Society 2 (1978), 369–374.

Laboratoire G-SCOP (CNRS, Univ. Grenoble-Alpes), Grenoble, France

E-mail address: {louis.esperet,laetitia.lemoine,frederic.maffray}@grenoble-inp.fr