Classification of Subsets in Finite Projective Line Over Galois Field of Order Twenty-Seven

M. M. Ibrahim¹ and E B Al-Zangana²

Department of Mathematics - College of Science, Mustansiriyah University, Baghdad, Iraq

E-mail: ¹mahamajeed8200@gmail.com, ²e.b.abdulkareem@uomustansiriyah.edu.iq

Abstract. The principle objective in this paper is to computed the projectively inequivalent \(k \)-sets, \(k = 4, \ldots, 14 \) in the projective line \(PG(1,27) \) and then classified these \(k \)-set into \((k-1)\)-subsets and. Also, the group of projectivities of each \(k \)-set has been founded.

Keywords: Finite field, Finite projective line.

1. Introduction

Throughout the paper, let \(p \) be a prime and \(F_q \) be the Galois field with \(q = p^h \) elements and \(F_q^+ \) be \(F_q \) union infinity point, \(\infty \).

A \(k \)-set in the projective line over the Galois field of order \(q \), \(F_q \), is just a subset of the with \(k \) elements. A classification of a \(k \)-set or description means the types of the \(k \) of \((k-1)\)-subsets. For small \(q \), Hirschfeld in [1], the classification of \(PG(1,q) \) for \(2 \leq q \leq 13 \) have been summarized, where a full classification of \(PG(1,11) \) has been done by Sadeh in [2] and of \(PG(1,13) \) has been done by Ali in [3].

In recent years, new researches on the classification of a projective line have done over different fields, \(F_q \) for example: Hirschfeld and Al-seraji in [4], gave a full classification of \(k \)-sets in \(PG(1,17) \). Al-seraji in [5,6] gave the inequivalent \(k \)-sets only in \(PG(1,16) \) and \(PG(1,23) \). Al-Zangana and Hirschfeld in [7], studied the geometry of line of order nineteen with its relation to the conic, where a full classification and its application to error correcting codes have been given. Al-Zangana in [8] using the relation between conic and projective line the spectrum sizes of \(k \)-sets on \(PG(1,23) \) are given as a direct results from this relation. Al-Zangana and Shehab in [9], investigated the geometry of \(PG(1,25) \) with its relation to the conic, where a full classification have been given.

The main objective of this paper is to classify the \(k \)-sets in the projective line over \(F_{27} \), where \(k = 4, \ldots, 14 \).
Notations:
\(G \times H \): the direct product of \(G \) and \(H \)
\(N \triangleright H \): a semi-direct product of \(H \) with \(N \) a normal subgroup of \(N \triangleright H \)

1: single group
\(S_n \): symmetric group of degree \(n \)
\(A_n \): alternating group of degree \(n \)
\(D_n \): dihedral group of order \(2n \)
\(F_0 \): the cross-ratio is another value.

2. Projective Line Structure Over \(F_q \)
The \(q + 1 \) points \(P(t_0, t_1), t_i \in F_q \) of \(PG(1, q) \) are determined by the non-homogeneous coordinate \(t_0/t_1 \). The coordinate for \(P(1, 0) \) is infinity, so the points of \(PG(1, q) \) can be represented by the set \(F_q \cup \{ \infty \} = \{ \infty, \lambda_1, \lambda_2, \ldots, \lambda_q \mid \lambda_i \in F_q \} \). A projectivity \(T = M(A) \) of \(PG(1, q) \) which takes a point \(X \) to \(Y \) is given by a \(2 \times 2 \) non-singular matrix \(A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \). If put \(s = y_0/y_1 \) and \(t = x_0/x_1 \), then its projective equation is \(s = (at + b)/(ct + d) \).

Definition 2.1: The cross-ratio \(\lambda = \{ P_1, P_2, P_3, P_4 \} \) of four ordered distinct points \(P_1, P_2, P_3, P_4 \in \) \(PG(1, q) \) with coordinates \(t_1, t_2, t_3, t_4 \) is

\[
\lambda = \{ P_1, P_2, P_3, P_4 \} = \{ t_1, t_2; t_3, t_4 \} = (t_1 - t_2)(t_2 - t_3)(t_3 - t_4)(t_4 - t_1).
\]

The cross-ratio of the 24 permutations of \(\{ P_1, P_2, P_3, P_4 \} \) takes just six values \(\lambda, 1/\lambda, 1 - \lambda, 1/(1 - \lambda), (\lambda - 1)/\lambda, \lambda/(\lambda - 1) \) and no one of these values are \(\infty, 0 \) or 1.

Definition 2.2: An unordered set of four distinct points is called a tetrad. Let \(\lambda \) be the cross ratio of a given order, the tetrad is called

(i) harmonic, denoted by \(H \), if the cross-ratio are \(-1, 2, 1/2\).

(ii) equianharmonic, denoted by \(E \), if \(\lambda^3 + 1 = 0 \) has three solutions in \(F_q \) or \(\lambda = -1 \) is a unique solution of

\[
\lambda^2 - \lambda + 1 = 0 \text{ in } F_q
\]

(iii) neither harmonic nor equianharmonic, denoted by \(N \), if the cross-ratio is another value.

The points of the standard frame, \(\Gamma_q(3) \), of \(PG(1, q) \) are \(P(1, 0), P(0, 1), P(1, 1) \) which can represented as \(\infty, 0 \) and 1. The cross-ratio \(\lambda \) of any 4-set through \(\Gamma_q(3) \) say \(\{ \infty, 0, 1, t \} \) is always \(\in F_q^+ \setminus \Gamma_q(3) \). Hence, there are three classes of 4-sets:

\[\chi_1 = \{ \text{tetrads of type } H \}, \chi_2 = \{ \text{tetrads of type } E \}, \chi_3 = \{ \text{tetrads of type } N \}. \]

The two classes \(\chi_1 \) and \(\chi_2 \) are equal if \(p = 3 \) and the class \(\chi_3 \) can be partition into more classes depending on the value of \(q \).

Theorem 2.3 [1]: (The Fundamental Theorem of Projective Geometry)

If \(\{ P_1, \ldots, P_{n+2} \} \) and \(\{ P'_1, \ldots, P'_{n+2} \} \) are sets of \(n + 2 \) points of \(PG(n, q) \) such that no \(n + 1 \) points chosen from the same set lie in a hyperplane, then there exists a unique projectivity \(\delta \) such that \(P_i \delta = P'_i \) for \(i = 1, \ldots, n + 2 \). For \(n = 1 \), then there is a unique projectivity transforming any three distinct points on a line to any other three.
The fundamental theorem of projective geometry in the case of line determine the matrix structure of the projectivity which can diagnosed by given two 4-sets having the same cross-ratio. Thus, projectivity is determined by the images of three points. If \(Q_i = P_i \) for \(i = 2,3,4 \) and \(P_i \) and \(Q_i \) have the respective coordinates \(t_i \) and \(s_i \), then \(T \) is given by

\[
\frac{(s - s_3)(s_2 - s_4)}{(s - s_4)(s_2 - s_3)} = \frac{(t - t_3)(t_2 - t_4)}{(t - t_4)(t_2 - t_3)}
\]

Therefore, it is enough to start with standard frame \(\Gamma_q(3) \), which has the symmetric group of order three, \(S_3 \) as a stabilizer, to construct a \(k \)-set, \(k \geq 4 \). The strategy that used to extension the \(k \)-set \(\mathcal{K} \) is by adding points from each orbit that comes from the action of stabilizer group of \(\mathcal{K} \) on \(\mathcal{K} \) itself. The classification of each \(k \)-set \(Q = \{a_1, ..., a_k\} \) means the type of the \(k \) of \((k - 1) \)-subsets in the following order:

\[
\{a_1, ..., a_{k-1}\}, \{a_1, ..., a_{k-2}, a_k\}, ..., \{a_1, a_3, ..., a_{k-1}, a_k\}, \{a_2, ..., a_{k-1}, a_k\}.
\]

The main computing tool that was used in this thesis is the mathematical programming language GAP [10]. The main reference that used to know the stabilizer group is [11].

In the case of 4-set the number of distinct 4-set of each class \(\chi_i \) and the stabilizer group type are known as in the following theorem.

Theorem 2.4 [1]: In \(PG(1, q) \), \(q = p^h \)

(i) the number of harmonic tetrads \(n_H \) and the stabilizer group type, SG-type, of each one are given below:

\(p \)	\(n_H \)	SG-type
\(p = 3 \)	\(q(q^2 - 1)/24 \)	\(S_4 \)
\(p > 3 \)	\(q(q^2 - 1)/8 \)	\(D_4 \)

(ii) the number of equianharmonic tetrads \(n_E \) and the stabilizer group type, SG-type, of each one are as in the following table.

\(p \)	\(n_E \)	SG-type
\(p = 3 \)	\(q(q^2 - 1)/24 \)	\(S_4 \)
\(p \equiv 1(\text{mod} 3) \)	\(q(q^2 - 1)/12 \)	\(A_4 \)

3. **The projective line over \(F_{27} \)**

The projective line \(PG(1, 27) \) has 28 points and these points identified with \(F_{27}^+ = \{\infty, 0,1, \alpha, \alpha^2, ..., \alpha^{25}\} \) where \(\alpha \) is the primitive element of \(F_{27} \). A 4-set of type \(E \) and \(H \) are equal when \(q = 27 \) since, \(-1 \) is the unique solution to (1).

Let \(S \) be the set of all different 4-sets in \(PG(1, 27) \). Then the order of \(S \) is

\[
|S| = \binom{28}{4} = 20475.
\]

The order of each class is \(|z_1| = 819 \) and \(|z_2| = 19656/4 = 4914 = |z_3| = |z_4| = |z_5| \).
There are five classes, χ_i, of 4-sets which form twenty-five 4-sets:

Symbol	Class of $E = H$ tetrads	Elements of class
χ_1	$I_{27}(3)U[a^{13}]$	
χ_2	$I_{27}(3)U[a_1^1], a_1 = a, a^2, a^{10}, a^{16}, a^{24}, a^{25}$	
χ_3	$I_{27}(3)U[a_2^1], a_2 = a^2, a^{14}, a^6, a^{20}, a^{22}, a^{24}$	
χ_4	$I_{27}(3)U[a_3^1], a_3 = a^3, a^7, a^{11}, a^{15}, a^{19}, a^{21}$	
χ_5	$I_{27}(3)U[a_4^1], a_4 = a^4, a^9, a^{12}, a^{14}, a^{17}, a^{18}$	

The number of projectively inequivalent 4-sets has been computed as summarized in the following theorem.

Theorem 3.1: On $PG(1,27)$, there are precisely five projectively distinct tetrads given with their stabilizer group in Table 1.

Type	4-sets	SG-type
H	$I_{27}(3)U[a^{13}]$	$S_n = (1/t + 1, a^{13}t)$
N_1	$I_{27}(3)U[a]$	$V_4 = ((a^{13}/a^{13}t), (a^{13}t + a)/(a t + a))$
N_2	$I_{27}(3)U[a^3]$	$V_4 = ((a^{16}/a^{13}t), (t + a^{13})/(t + a^{13}))$
N_3	$I_{27}(3)U[a^5]$	$V_4 = ((a^{18}/a^{13}t), (t + a^{10})/(t + a^{13}))$
N_4	$I_{27}(3)U[a^8]$	$V_4 = (a^{21}/a^{13}t, (t + a^{21})/(t + a^{13}))$

From the five 4-sets in Theorem 3.1, twenty-eight 5-sets are computed and then the inequivalence ones have been founded.

Theorem 3.2: On $PG(1,27)$, there are precisely eight distinct 5-sets, P_i, given with their stabilizer groups in Table 2.

Type	5-sets	SG-type	Types of 4-sets
P_1	$HN[\alpha]$	I	$HN_1N_1N_1N_1$
P_2	$N_1U[\alpha^2]$	$Z_2 = (a^{15}/a t)$	$N_1N_1N_1N_1N_1N_1$
P_3	$N_1U[\alpha^3]$	$Z_2 = (a^{13}t + a)$	$N_1N_1N_1N_1N_1N_2$
P_4	$N_1U[\alpha^6]$	$Z_2 = ((a^{19}t + a^6)/(a^{13}t + a^6))$	$N_1N_1N_1N_1N_1N_3$
P_5	$N_1U[\alpha^4]$	I	$N_1N_1N_1N_1N_1N_4$
P_6	$N_1U[\alpha^{12}]$	$Z_2 = ((t + a^{14})/(t + a^{13}))$	$N_1N_1N_1N_1N_1N_4$
P_7	$N_2U[\alpha^2]$	$Z_2 = ((a^{10}t)/(a^{14}t + a^{23}))$	$N_1N_1N_1N_1N_1N_3$
P_8	$N_2U[\alpha^3]$	$Z_2 = ((a^{12}t + a^5))$	$N_1N_1N_1N_1N_1N_4$

Adding the one point from the eight orbits of action the group G_{P_1} on P_1, gave 102 distinct 6-sets. The projectively inequivalent 6-sets are computed and the results summarized below.

Theorem 3.3 On $PG(1,27)$, there are 34 inequivalent 6-sets. Stabilizer group type and type of pentads are given in Table 3 and Table 4.
Table 3. Classification of 6-sets

Type	6-sets	Types of 5-sets
H₁	\(P_1 \cup \{\alpha^2\}\)	\(P_1 P_2 P_3 P_6 P_7 P_8\)
H₂	\(P_1 \cup \{\alpha^3\}\)	\(P_1 P_2 P_3 P_6 P_7 P_8\)
H₃	\(P_1 \cup \{\alpha^4\}\)	\(P_1 P_3 P_4 P_6 P_8\)
H₄	\(P_1 \cup \{\alpha^5\}\)	\(P_1 P_3 P_4 P_6 P_8\)
H₅	\(P_1 \cup \{\alpha^6\}\)	\(P_1 P_4 P_5 P_6 P_8\)
H₆	\(P_1 \cup \{\alpha^7\}\)	\(P_1 P_4 P_5 P_6 P_8\)
H₇	\(P_1 \cup \{\alpha^8\}\)	\(P_1 P_5 P_6 P_8\)
H₈	\(P_1 \cup \{\alpha^9\}\)	\(P_1 P_5 P_6 P_8\)
H₉	\(P_1 \cup \{\alpha^{10}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₀	\(P_1 \cup \{\alpha^{11}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₁	\(P_1 \cup \{\alpha^{12}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₂	\(P_1 \cup \{\alpha^{13}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₃	\(P_1 \cup \{\alpha^{14}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₄	\(P_1 \cup \{\alpha^{15}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₅	\(P_1 \cup \{\alpha^{16}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₆	\(P_1 \cup \{\alpha^{17}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₇	\(P_1 \cup \{\alpha^{18}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₈	\(P_1 \cup \{\alpha^{19}\}\)	\(P_1 P_5 P_6 P_8\)
H₁₉	\(P_1 \cup \{\alpha^{20}\}\)	\(P_1 P_5 P_6 P_8\)
H₂₀	\(P_1 \cup \{\alpha^{21}\}\)	\(P_1 P_5 P_6 P_8\)
H₂₁	\(P_1 \cup \{\alpha^{22}\}\)	\(P_1 P_5 P_6 P_8\)
H₂₂	\(P_1 \cup \{\alpha^{23}\}\)	\(P_1 P_5 P_6 P_8\)
H₂₃	\(P_1 \cup \{\alpha^{24}\}\)	\(P_1 P_5 P_6 P_8\)
H₂₄	\(P_1 \cup \{\alpha^{25}\}\)	\(P_1 P_5 P_6 P_8\)

Table 4. Stabilizer group types of 6-sets

Type	SG-type
\(H_1\)	\(I\)
\(H_2\)	\(I\)
\(H_3\)	\(I\)
\(H_4\)	\(Z_2 = (\alpha^{13}t/t + 1, (\alpha^{14} + \alpha/\alpha^{16}t + \alpha))\)
\(H_5\)	\(Z_2 = (t + 1)/(t + \alpha^{15})\)
\(H_6\)	\(Z_2 = (t + \alpha^{15})/(\alpha^{13}t + \alpha^{15})\)
\(H_7\)	\(I\)
\(H_8\)	\(I\)
\(H_9\)	\(Z_2 = (1/\alpha^{15})\)
\(H_{10}\)	\(Z_2 = ((\alpha^{13}t/\alpha^{14} + \alpha)(\alpha^{14}t + \alpha))\)
\(H_{11}\)	\(I\)
\[
\begin{array}{l}
H_{12} & z_2 = ((\alpha^{13} t + 1), (\alpha^{22} t + \alpha^{10} / \alpha^9 t + \alpha^9)) \\
H_{13} & I \\
H_{14} & Z_2 = ((\alpha^{13} t + \alpha^{13}), (t + \alpha^{14} / t + \alpha^{13})) \\
H_{15} & Z_2 = ((t / t + \alpha^{14}), (\alpha^{20} t + \alpha^{20} / \alpha^{19} t + \alpha^9)) \\
H_{16} & Z_2 = ((\alpha^{13}/\alpha^{13} t), (\alpha^{22} t + \alpha^{9} / \alpha^{21} t + \alpha^9)) \\
H_{17} & Z_2 = ((\alpha^{16}/\alpha^{13} t)) \\
H_{18} & I \\
H_{19} & Z_2 = ((\alpha^{24} t + \alpha^{13}) / (\alpha^{17} t + \alpha^{11})) \\
H_{20} & Z_2 = ((\alpha^{14} t + \alpha) / (\alpha^{13} t + \alpha)) \\
H_{21} & S_3 = ((\alpha^{13} / (t + \alpha^{13})), (\alpha^{24} t + \alpha^{17}) / (at + \alpha^{15})) \\
H_{22} & I \\
H_{23} & S_3 = ((\alpha^{14} t + 1) / (\alpha^{9} + 1), (\alpha^{17} / \alpha^{13} t)) \\
H_{24} & Z_2 = ((\alpha^{16} t + \alpha^3) / (\alpha^{15} t + \alpha^3)) \\
H_{25} & Z_2 = ((\alpha^{11} t + \alpha) / (\alpha^{10} t + \alpha^{24})) \\
H_{26} & I \\
H_{27} & Z_2 = ((\alpha^{20} / \alpha^{13} t)) \\
H_{28} & Z_2 = ((t + \alpha^{14}) / (t + \alpha^{13})) \\
H_{29} & Z_2 = ((\alpha^{15} t + \alpha^3) / (\alpha^{24} t + \alpha^3)) \\
H_{30} & S_3 = ((\alpha^{7} t + \alpha^{21}) / (t + \alpha^{13}), (\alpha^{21} / \alpha^{13} t)) \\
H_{31} & Z_2 = ((\alpha^{20} t + \alpha^7) / (\alpha^{13} t + \alpha^7)) \\
H_{32} & Z_2 = ((t + \alpha^2) / (t + \alpha^{13})) \\
H_{33} & Z_2 = ((t + \alpha^{14}) / (t + \alpha^{13})) \\
H_{34} & S_3 = ((\alpha^{4} t + 1) / (at + 1), (\alpha^{25} / \alpha^{13} t)) \\
\end{array}
\]

From the thirty-four projectively 6-sets, 326 7-sets formed. The projectively inequivalent 7-sets are computed and the results summarized in next theorem.

In the following theorem the parameters \([a_1, a_2, a_3, a_4, a_5, a_6, a_7]\) will write instead of the seven 6-subsets of each 7-set, where \(a_i\) refer to the index of the 6-set \(H_{a_i}\).

Theorem 3.3 On \(PG(1,27)\), there are 73 inequivalent 7-sets. Stabilizer group type and type of pentads are given in Table 5.

Table 5. Classification of 7-sets

Type	7-sets	Type of 6-sets	SG-type
\(\Gamma_1\)	\(H_1 \cup \{a^1\}\)	[1, 2, 3, 17, 22, 34, 33]	I
\(\Gamma_2\)	\(H_1 \cup \{a^2\}\)	[1, 4, 12, 13, 26, 34, 13]	I
\(\Gamma_3\)	\(H_1 \cup \{a^3\}\)	[1, 5, 2, 8, 11, 22, 13]	I
\(\Gamma_5\)	\(H_1 \cup \{a^5\}\)	[1, 6, 3, 19, 28, 26, 18]	I
\(\Gamma_6\)	\(H_1 \cup \{a^6\}\)	[1, 7, 10, 11, 31, 3, 28]	I
\(\Gamma_7\)	\(H_1 \cup \{a^7\}\)	[1, 2, 9, 20, 32, 26, 31]	I
\(\Gamma_9\)	\(H_1 \cup \{a^{10}\}\)	[1, 1, 1, 21, 1, 1, 1]	\(S_3\)
\(\Gamma_9\)	\(H_1 \cup \{a^{11}\}\)	[1, 8, 6, 22, 20, 26, 31]	I
\(\Gamma_{10}\)	\(H_1 \cup \{a^{12}\}\)	[1, 9, 8, 22, 28, 26, 25]	I
\(\Gamma_{11}\)	\(H_1 \cup \{a^{14}\}\)	[1, 10, 11, 16, 9, 13, 6]	I
\(\Gamma_{12}\)	\(H_1 \cup \{a^{15}\}\)	[1, 11, 4, 1, 11, 33, 33]	\(Z_2\)
\(\Gamma_{13}\)	\(H_1 \cup \{a^{16}\}\)	[1, 12, 16, 22, 14, 2, 3]	I
\(\Gamma_{14}\)	\(H_1 \cup \{a^{17}\}\)	[1, 11, 7, 22, 27, 32, 26]	I
Γ_15	$H_4 \cup \{\alpha^{18}\}$	$[1, 8, 2, 21, 20, 17, 18]$	I
Γ_16	$H_4 \cup \{\alpha^{19}\}$	$[1, 13, 11, 20, 22, 22, 29]$	I
Γ_17	$H_4 \cup \{\alpha^{20}\}$	$[1, 13, 14, 11, 31, 32, 6]$	I
Γ_18	$H_4 \cup \{\alpha^{21}\}$	$[1, 3, 8, 19, 32, 17, 25]$	I
Γ_19	$H_4 \cup \{\alpha^{22}\}$	$[1, 14, 7, 8, 27, 13, 28]$	I
Γ_20	$H_4 \cup \{\alpha^{23}\}$	$[1, 7, 13, 2, 9, 3, 26]$	I
Γ_21	$H_4 \cup \{\alpha^{24}\}$	$[1, 15, 12, 18, 8, 2, 10]$	I
Γ_22	$H_4 \cup \{\alpha^{25}\}$	$[1, 16, 15, 17, 8, 4, 3]$	I
Γ_23	$H_2 \cup \{\alpha^4\}$	$[2, 3, 8, 23, 17, 26, 24]$	I
Γ_24	$H_2 \cup \{\alpha^8\}$	$[2, 4, 11, 7, 22, 32, 9]$	I
Γ_25	$H_2 \cup \{\alpha^9\}$	$[2, 5, 8, 24, 19, 22, 27]$	I
Γ_26	$H_2 \cup \{\alpha^7\}$	$[2, 6, 3, 25, 18, 33, 29]$	I
Γ_27	$H_2 \cup \{\alpha^8\}$	$[2, 7, 11, 24, 22, 17, 19]$	I
Γ_28	$H_2 \cup \{\alpha^9\}$	$[2, 2, 2, 2, 2, 2, 30]$	S_3
Γ_29	$H_2 \cup \{\alpha^{15}\}$	$[2, 11, 16, 8, 21, 22, 11]$	I
Γ_30	$H_2 \cup \{\alpha^{17}\}$	$[2, 11, 13, 17, 20, 26, 32]$	I
Γ_31	$H_2 \cup \{\alpha^{18}\}$	$[2, 8, 6, 18, 11, 3, 7]$	I
Γ_32	$H_2 \cup \{\alpha^{19}\}$	$[2, 13, 7, 18, 17, 33, 25]$	I
Γ_33	$H_2 \cup \{\alpha^{22}\}$	$[2, 14, 10, 3, 8, 4, 26]$	I
Γ_34	$H_2 \cup \{\alpha^{23}\}$	$[2, 7, 15, 23, 18, 3, 7]$	I
Γ_35	$H_2 \cup \{\alpha^{24}\}$	$[2, 15, 13, 25, 11, 26, 6]$	I
Γ_36	$H_2 \cup \{\alpha^{25}\}$	$[2, 16, 7, 18, 19, 13, 5]$	I
Γ_37	$H_3 \cup \{\alpha^{6}\}$	$[3, 5, 8, 18, 32, 28, 22]$	I
Γ_38	$H_3 \cup \{\alpha^{8}\}$	$[3, 7, 13, 26, 33, 26, 27]$	I
Γ_39	$H_3 \cup \{\alpha^{11}\}$	$[3, 8, 9, 24, 22, 18, 27]$	I
Γ_40	$H_3 \cup \{\alpha^{16}\}$	$[3, 12, 13, 7, 4, 6, 5]$	I
Γ_41	$H_3 \cup \{\alpha^{17}\}$	$[3, 11, 12, 8, 13, 29, 28]$	I
Γ_42	$H_3 \cup \{\alpha^{19}\}$	$[3, 13, 11, 25, 26, 31, 18]$	I
Γ_43	$H_3 \cup \{\alpha^{20}\}$	$[3, 13, 15, 24, 3, 13, 24]$	Z_2
Γ_44	$H_3 \cup \{\alpha^{21}\}$	$[3, 3, 3, 3, 34, 3, 3]$	S_3
Γ_45	$H_3 \cup \{\alpha^{23}\}$	$[3, 7, 10, 25, 13, 29, 5]$	I
Γ_46	$H_5 \cup \{\alpha^7\}$	$[5, 6, 9, 27, 29, 28, 31]$	I
Γ_47	$H_5 \cup \{\alpha^8\}$	$[5, 7, 12, 5, 24, 24, 7]$	Z_2
Γ_48	$H_5 \cup \{\alpha^{15}\}$	$[5, 11, 11, 27, 20, 19, 30]$	I
Γ_49	$H_5 \cup \{\alpha^{22}\}$	$[5, 14, 15, 8, 9, 7, 11]$	I
Γ_50	$H_6 \cup \{\alpha^8\}$	$[6, 7, 17, 30, 29, 25, 24]$	I
Γ_51	$H_6 \cup \{\alpha^{14}\}$	$[6, 10, 13, 13, 6, 33, 33]$	Z_2
Γ_52	$H_7 \cup \{\alpha^1\}$	$[7, 8, 13, 29, 19, 18, 22]$	I
Γ_53	$H_7 \cup \{\alpha^5\}$	$[7, 11, 8, 31, 18, 18, 24]$	I
Γ_54	$H_7 \cup \{\alpha^{16}\}$	$[7, 12, 9, 27, 11, 8, 19]$	I
Γ_55	$H_7 \cup \{\alpha^{25}\}$	$[7, 16, 8, 20, 20, 7, 8]$	Z_2
Γ_56	$H_8 \cup \{\alpha^{18}\}$	$[8, 8, 8, 8, 8, 23, 8]$	S_3
Γ_57	$H_9 \cup \{\alpha^{17}\}$	$[9, 11, 14, 20, 9, 20, 11]$	Z_2
Γ_58	$H_9 \cup \{\alpha^{19}\}$	$[9, 13, 13, 31, 32, 30, 33]$	I
Γ_59	$H_9 \cup \{\alpha^4\}$	$[17, 18, 23, 18, 17, 26, 26]$	Z_2
Γ_60	$H_9 \cup \{\alpha^{11}\}$	$[17, 22, 18, 18, 21, 17, 22]$	Z_2
Γ_61	$H_9 \cup \{\alpha^{12}\}$	$[17, 22, 26, 17, 22, 34, 26]$	Z_2
Γ_62	$H_9 \cup \{\alpha^{16}\}$	$[18, 19, 18, 29, 24, 29, 19]$	Z_2
Γ_63	$H_9 \cup \{\alpha^{19}\}$	$[18, 20, 18, 28, 24, 25, 27]$	I
Γ_64	$H_9 \cup \{\alpha^{22}\}$	$[18, 22, 26, 22, 18, 26, 30]$	Z_2
Using the same technique, the projectively inequivalent k-sets, $k = 8, ..., 14$ have been founded and also the stabilizer groups of these k-sets are computed. The results are given in the following theorem.

Let n_e denote the number of projectively inequivalent k-set.

Theorem 3.4: On $PG(1,27)$, the number of projectively inequivalent k-sets are as follows:

k	n_e
8	196
9	383
10	745
11	1142
12	1665
13	1976
14	2170

Table 6. 8-Set details

SG-type	No.
I	128
Z_2	54
V_4	11
D_4	3

Table 7. 9-Set details

SG-type	No.
I	323
Z_2	54
Z_3	4
$(Z_3 \times Z_3) \rtimes Z_2$	1

Table 8. 10-Set details

SG-type	No.
I	600
Z_2	125
Z_3	4
V_4	15
$(Z_3 \times Z_3) \rtimes Z_2$	1

Table 9. 11-Set details

SG-type	No.
I	1043
Z_2	99

Table 10. 12-Set details

SG-type	No.
I	1449
Z_2	182
Z_3	3
V_4	21
S_3	5
D_4	3
A_4	1
In the following examples, some k-sets have been chosen where $k = 9, 10, 12, 13, 14$ with unique largest size of stabilizer group.

Let $\zeta(n)$ be a subset of $PG(1, 27)$ of length n.

Example 3.5:

(i) There is unique 9-set

$$\zeta(9) = \{\infty, 0, 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^{12}, \alpha^{18}\} = H_{17} \cup \{\alpha^4, \alpha^{12}, \alpha^{18}\}$$

with stabilizer group of type $(Z_3 \times Z_3) \rtimes Z_2 = \langle \alpha^7 / (\alpha^{16} t + \alpha^5), (\alpha^{13} t + \alpha^2) \rangle$.

(ii) There is a unique 10-set

$$\zeta(10) = \{\infty, 0, 1, \alpha^{13}, \alpha, \alpha^2, \alpha^{10}, \alpha^{16}, \alpha^{24}, \alpha^{25}\} = H_1 \cup \{\alpha^{10}, \alpha^{16}, \alpha^{24}, \alpha^{25}\}$$

with stabilizer group of type $(Z_3 \times Z_3) \rtimes Z_2 = \langle \alpha^{13} / (t + \alpha^{13}), (\alpha^{13} t + 1) \rangle$.

(iii) There is a unique 12-set

$$\zeta(12) = \{\infty, 0, 1, \alpha^{13}, \alpha, \alpha^2, \alpha^3, \alpha^6, \alpha^{21}, \alpha^{25}, \alpha^{11}, \alpha^{17}\} = H_1 \cup \{\alpha^3, \alpha^6, \alpha^{11}, \alpha^{17}, \alpha^{21}, \alpha^{25}\}$$

with stabilizer group of type $A_4 = \langle \alpha^{21} / (\alpha^{22} t + \alpha^{15}), (t + \alpha^8) / (t + \alpha^{13}) \rangle$.

(iv) There is a unique 13-set

$$\zeta(13) = \{\infty, 0, 1, \alpha^{13}, \alpha, \alpha^2, \alpha^3, \alpha^8, \alpha^9, \alpha^{10}, \alpha^{23}, \alpha^5, \alpha^7\} = H_1 \cup \{\alpha^3, \alpha^8, \alpha^9, \alpha^{10}, \alpha^{23}, \alpha^5, \alpha^2\}$$

with stabilizer group of type $D_{13} = \langle (\alpha^{21} / \alpha^{24} t + \alpha^{14}), (\alpha^{13} t + \alpha^3) \rangle$.

(vi) There is a unique 14-set

$$\zeta(14) = \{\infty, 0, 1, \alpha^{13}, \alpha, \alpha^2, \alpha^3, \alpha^6, \alpha^{14}, \alpha^{15}, \alpha^{10}, \alpha^{16}, \alpha^{19}, \alpha^{23}\} = H_1 \cup \{\alpha^3, \alpha^6, \alpha^{10}, \alpha^{14}, \alpha^{15}, \alpha^{16}, \alpha^{19}, \alpha^{23}\}$$

with stabilizer group of type $D_{14} = \langle (\alpha^{13} t, (\alpha^9 t + \alpha^{12}) / (\alpha^9 t + \alpha^9) \rangle$.

4. **Conclusion**

In this section, the results of the paper have been summarized in Table 12, which presents the number of all inequivalent k-sets in $PG(1, 27)$, $3 \leq k \leq 14$, and the type of their stabilizer groups. A cell $G : m$ means that m of k-sets stabilized by the group of type G; n_k means the number of inequivalent k-sets.

SG-type	No.
I	1840
Z_2	125
Z_3	4
S_3	6
D_{13}	1

SG-type	No.
I	1924
Z_2	224
V_4	19
Z_3	1
D_7	1
D_{14}	1
Table 13. Results summary

k	\tilde{n}_k	$G : m$						
3	1	$S_3 : 1$						
4	5	$S_4 : 1$	$V_4 : 4$					
5	8	$I : 2$	$Z_2 : 6$					
6	34	$I : 6$	$Z_2 : 14$	$V_4 : 6$	$S_3 : 4$			
7	73	$I : 51$	$Z_2 : 17$	$S_3 : 4$	$D_7 : 1$			
8	196	$I : 128$	$Z_2 : 54$	$V_4 : 11$	$D_4 : 3$			
9	382	$I : 323$	$Z_2 : 54$	$Z_3 : 4$	$(Z_2 \times Z_3) \rtimes Z_2 : 1$			
10	745	$I : 600$	$Z_2 : 125$	$Z_3 : 4$	$V_4 : 15$	$(Z_2 \times Z_3) \rtimes Z_2 : 1$		
11	1142	$I : 1043$	$Z_2 : 99$					
12	1665	$I : 1449$	$Z_2 : 182$	$Z_3 : 3$	$V_4 : 21$	$S_3 : 6$	$D_4 : 3$	$A_4 : 1$
13	1976	$I : 1840$	$Z_2 : 125$	$Z_3 : 4$	$S_3 : 6$	$D_4 : 1$		
14	2170	$I : 1924$	$Z_2 : 224$	$V_4 : 19$	$Z_3 : 1$	$D_7 : 1$	$D_{14} : 1$	

It is worth noting that the k-set, $\zeta(k)$, which stabilizer group type of large order appeared when classification of $\zeta(k)$ to its $(k - 1)$-sets, all of them are projectively equivalent to a unique type of $(k - 1)$-set. And a k-set, $\zeta(k)$, with single identity, I, most of the $(k - 1)$-subsets are projectively distinct. For example:

(i) The 6-sets H_{21}, H_{30} and H_{34} in Theorem 3.3 have six 5-subsets in one type with stabilizer group of type S_3.

The 6-sets $H_1, H_2, H_3, H_7, H_{19}, H_{11}, H_{13}, H_{19}, H_{22}$ and H_{26} in Theorem 3.3 the most of the six 5-subsets are projectively distinct with stabilizer group of type I.

(ii) The unique 7-set, $\Gamma_7 = H_{28} \cup \{\alpha^{12}\}$, in Theorem 3.3 with stabilizer group of type D_7 has seven 6-subsets all of them are projectively equivalent to H_{28}. But, the 7-set, $\Gamma_7 = \{\infty, 0, 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7\}$ has a single group as a stabilizer group and all the seven 6-subsets of it are projectively distinct.

(iii) The unique 9-set, $\zeta(9)$, in Example 3.5(i) with stabilizer group of type $(Z_3 \times Z_3) \rtimes Z_2$ has nine 8-subsets all of them are projectively equivalent to $H_{17} \cup \{\alpha^4, \alpha^{12}\}$.

The 9-set, $\zeta(9) = \{\infty, 0, 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7\}$ has a single group as a stabilizer group and all the nine 8-subsets of it are projectively distinct.

(iv) The unique 10-set, $\zeta(10)$, in Example 3.5(ii) with stabilizer group of type $(Z_3 \times Z_3) \rtimes Z_2$ has ten 9-subsets of it projectively equivalent to $H_{17} \cup \{\alpha^{10}, \alpha^{16}, \alpha^{24}\}$, and one of them is projectively equivalent to $H_{17} \cup \{\alpha^4, \alpha^{12}, \alpha^{18}\}$.

The 10-set, $\zeta(10) = \{\infty, 0, 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7\}$ has a single group as a stabilizer group and all the ten 9-subsets of it are projectively distinct.

Backed to the all previous works on the classification of projective lines the same idea will be deduced.

Acknowledgements
The author thanks the University of Mustansiriya for their supported; also, thanks the Department of Mathematics at College of Science for provide a good environment to do this research.
References

[1] Hirschfeld J W P 1998 Projective geometries over finite fields 2nd ed (New York: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press) p 576.

[2] Sadah A R 1984 The classification of k-arcs and cubic surfaces with twentyseven lines over the finite field of eleven elements Ph.D. Thesis (University of Sussex, UK) p 238.

[3] Ali A H 1993 Classification of arcs in the Galois plane of order thirteen Ph.D. Thesis (University of Sussex, UK) p 110.

[4] Hirschfeld J W P and Al-seraji N A 2013 The geometry of the line of order seventeen and its application to error-correcting codes Mustansiriyah J. Sci. 24(5) pp 217-230.

[5] Al-Seraji N A 2014 Classification of the projective line over Galois field of order sixteen Al-Mustansiriyah J. Sci. 25(1) pp 119-128.

[6] Al-Seraji N A 2015 Classification of the projective line over Galois field of order 23 Journal of college of education, Al-Mustansiriyah University 3 pp 231-252.

[7] Al-Zangana E B and Hirschfeld J W P 2016 Classification of the projective line of order nineteen and its application to error-correcting codes in 2nd International conference of mathematics and its applications, Al-Basra University Iraq 2013 34 pp 196-211.

[8] Al-Zangana E B 2016 Results in projective geometry $PG(r, 23), r = 1, 2$ Iraqi Journal of Science, 57(2A) pp 964-971.

[9] Al-Zangana E B and Shehab E Abdul Satar 2018 Classification of k-sets in $PG(1, 25)$ for $k = 4, \ldots, 13$ Iraqi Journal of Science 59(1B) pp 360-368.

[10] The GAP Group 2020 GAP Reference manual [Online] https://www.gap-system.org/ p 905.

[11] Thomas A D and Wood G V 1980 Group tables (Shiva Mathematics Series; 2, UK: Shiva Publishing Ltd) p 248.