A Vector Supersymmetry Killing the Infrared Singularity of Gauge Theories in Noncommutative Space

Daniel N. Blaschke*, François Gieres‡, Olivier Piguet† and Manfred Schweda*

*Institute for Theoretical Physics, Vienna University of Technology
Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria)
‡Institut de Physique Nucléaire, Université Claude Bernard (Lyon 1),
4 rue Enrico Fermi, F - 69622 - Villeurbanne (France)
†Departamento de Física, CCE, Universidade Federal do Espírito Santo (UFES),
Av. Fernando Ferrari, 514, BR-29075-910 - Vitória - ES (Brasil)

E-mail: blaschke@hep.itp.tuwien.ac.at, gieres@ipnl.in2p3.fr,
opiguet@yahoo.com, mschweda@tph.tuwien.ac.at

Abstract

We show that the "topological BF-type" term introduced by Slavnov in order to cure the infrared divergences of gauge theories in noncommutative space can be characterized as the consequence of a new symmetry. This symmetry is a supersymmetry, generated by vector charges, of the same type as the one encountered in Chern-Simons or BF topological theories.

Work presented by O. Piguet at the Fifth International Conference on Mathematical Methods in Physics, 24 - 28 April 2006, Rio de Janeiro, Brazil

1 Introduction

The idea of noncommuting position and time coordinates [1] has been first introduced in the literature in Ref. [2]. In flat space-time, this amounts to postulate that the coordinates obey commutation relations

\[[x^\mu, x^\nu] = i\theta^{\mu\nu}, \]

1

*work supported by “Fonds zur Förderung der Wissenschaftlichen Forschung” (FWF) under contract P15015-N08.
†work supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq – Brazil.
for some antisymmetric matrix \(\theta^{\mu\nu} = -\theta^{\nu\mu} \). Classical fields \(\varphi(x) \) thus become noncommuting because of the noncommutativity of the \(x^\mu \). An equivalent implementation of noncommutativity is given by the Moyal product, which is associative, but noncommutative:

\[
\varphi_1(x) \ast \varphi_2(x) = e^{\frac{i}{2} \theta^{\mu\nu} \partial_{\mu} \partial_{\nu} (\varphi_1(x) \varphi_2(y))} \bigg|_{y=x},
\]

where the coordinates are considered as commuting\(^1\). We consider a \((1+3)\)-dimensional space-time with Minkowski metric \((\eta_{\mu\nu}) = \text{diag} (1, -1, -1, -1)\).

The field theory under consideration contains a \(U(1) \) gauge field \(A_\mu \) and a scalar field \(\lambda \) (Slavnov’s field), with infinitesimal gauge transformations

\[
\delta A_\mu = \partial_\mu \varepsilon - ig[A_\mu, \varepsilon], \quad \delta \lambda = -ig[\lambda, \varepsilon].
\]

Notice the presence of commutators, \([X, Y] = X \ast Y - Y \ast X\), due to the noncommutativity of the Moyal product.

It is well known\([4, 5, 6, 1]\) that such gauge theories in noncommutative space-time – which are renormalizable in commutative space-time – suffer from infrared (IR) singularities mixed with the usual ultraviolet (UV) divergences. Indeed, a gauge invariant action such as

\[
S_{\text{Maxwell}} = -\frac{1}{4} \int d^4 x \ F_{\mu\nu} F^{\mu\nu},
\]

possibly coupled with matter fields, with

\[
F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - ig[A_\mu, A_\nu],
\]

leads to infrared (IR) singularities associated with ultraviolet (UV) divergent Feynman diagrams. Typically, vacuum polarization graphs have IR singular parts

\[
\Pi_{\text{IR}}^{\mu\nu}(k) = \frac{2g^2}{\pi^2} \frac{\tilde{k}^\mu \tilde{k}^\nu}{(\tilde{k}^2)^2}, \quad \text{with} \quad \tilde{k}^\mu = \theta^{\mu\nu} k_\nu,
\]

and graphs with this insertion, such as the one shown in Fig.\(^2\) are IR divergent.

![Figure 1: IR divergent graph with vacuum polarization insertion.](image)

Only special gauge theories are known to be free from these divergences (see e.g. the review\([7]\)). Among them, let us mention Chern-Simons topological theory with particular couplings to matter\([8]\), BF theories\([9]\) and some supersymmetric Yang-Mills theories\([10]\). These theories are or topological\([11]\), or supersymmetric\([12]\). A relevant question to ask is whether nontopological gauge theories on noncommutative space need to be supersymmetric in order to be free of IR singularities. A partial answer to this question is the object of the rest of this talk, which summarizes results presented in Ref.\([13]\).

1From now on, all field products will be Moyal ones, and the symbol \(\ast \) will be omitted.

2Remember that all products are Moyal.
2 Slavnov’s modification of the noncommutative U(1) theory

Slavnov [14, 15] has proposed a modification of the theory, adding to the action (4) the term
\[\frac{1}{2} \int d^4x \lambda \theta^{\mu\nu} F_{\mu\nu} , \] (7)
which involves the scalar field \(\lambda \) as a Lagrange multiplier. This term looks like a topological \(\text{BF} \) action. It reduces the degrees of freedom of a spin 1 gauge boson to those of a spin 0 particle – whereas the suppression of the local degrees of freedom is complete in a true topological theory. Slavnov has shown by a power-counting argument that IR singularities are absent in the theory obtained by adding the term (7) to the Maxwell action (4) – see also [16]. We shall point out that the absence of IR singularities is in fact a consequence of the invariance of the theory under a vector supersymmetry.

In the following we shall choose the noncommutativity tensor to be space-like, in order to avoid problems with unitarity hence, without loss of generality, in the (1,2)–plane:
\[\theta^{ij} = \theta \varepsilon^{ij} , \quad i, j = 1, 2 \quad (\theta^{12} = -\theta^{21} = 1) . \]
We use the notation \(i, j, \cdots = 1, 2 \) and \(I, J, \cdots = 0, 3 \).

The gauge invariant action thus reads
\[S_{\text{inv}}[A, \lambda] = \int d^4x \left(-\frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x) + \frac{1}{2} \lambda(x) \theta^{ij} F_{ij}(x) \right) \] (8)
with \(F_{\mu\nu} \) given by (5).

3 Gauge fixing and BRST symmetry

Gauge fixing will conveniently be chosen axial, in the plane of the noncommutative coordinates. It is characterized by a vector \((n^\mu) = (0, 1, 0, 0) \), a Lagrange multiplier field \(B(x) \) and Faddeev-Popov ghosts \(\bar{c}(x), c(x) \). The complete action is
\[S = S_{\text{inv}}[A, \lambda] + S_{\text{gf}}[A, B, c, \bar{c}] , \] (9)
with \(S_{\text{gf}}[A, B, c, \bar{c}] = \int d^4x \left(B(x)n^i A_i(x) - \bar{c}(x)n^i D_i c(x) \right) \) ,
where
\[D_\mu c = \partial_\mu c - ig[A_\mu, c] . \]
This action is invariant under the BRST transformations
\[sA_\mu = D_\mu c , \quad s\bar{c} = B , \]
\[s\lambda = -ig[\lambda, c] , \quad sB = 0 , \]
\[sc = \frac{ig}{2} [c, c] , \] (10)
the BRST operator \(s \) being nilpotent: \(s^2 = 0 \). All commutators are assumed to be graded with respect to the ghost-number.
4 Vector supersymmetry, superalgebra and generalized BRST operator

We note that the Slavnov term, together with the gauge-fixing terms, have the form of a 2-dimensional gauge fixed topological BF model, \(\lambda \) playing the role of the “B” field. Topological models of this kind (“Schwarz type” topological models) are known to possess a symmetry generated by a fermionic vector charge, called vector supersymmetry (VSUSY), responsible for their UV finiteness \cite{17, 18, 19}. It turns out that this is also true here: the total gauge-fixed action is invariant under the VSUSY transformations

\[
\delta_i A_J = 0, \quad \delta_i A_j = 0, \quad \delta_i \lambda = \frac{\varepsilon_{ij}}{\theta} n^j \bar{c}, \quad \delta_i c = A_i, \quad \delta_i \bar{c} = 0, \quad \delta_i B = \partial_i \bar{c}.
\]

(11)

In the pure topological theories, the BRST and VSUSY generators form a closed algebra together with the translation generators. Here, in order to have a closed algebra, we must invoke an additional vector symmetry of the gauge-fixed action, peculiar to the present theory:

\[
\hat{d}_i A_J = -F_{ij}, \quad \hat{d}_i \lambda = -\frac{\varepsilon_{ij}}{\theta} D_K F^{Kj}, \quad \hat{d}_i \Phi = 0 \text{ for all other fields}.
\]

(12)

The algebra involving \(s, \delta_i, \hat{d}_i \) and the (1-2)-plane translation generators \(\partial_i \) is closed – modulo equations of motion:

\[
[s, \delta_i] = [\partial_i, \partial_j] = [\hat{d}_i, \hat{d}_j] = 0,
\]

\[
[s, s] = [s, \delta_j] = [\partial_i, \partial_j] = [\hat{d}_i, \hat{d}_j] = 0,
\]

\[
[\delta_i, \delta_j] = [\hat{d}_i, \hat{d}_j] = 0,
\]

\[
[\delta_i, \hat{d}_j] = \varepsilon_{ij} \theta \delta S \delta \lambda, \quad \hat{d}_i \Phi = 0 \text{ for } \Phi \in \{ A_J, c, \bar{c}, B \}.
\]

(13)

The various symmetries will be combined into a single generalized BRST operator \(\Delta \), with the introduction of the constant ghosts \(\xi^i, \varepsilon^i, \mu^i \) playing the role of the infinitesimal parameters of the symmetries \(\partial_i, \delta_i, \hat{d}_i \). The statistics of these constant ghosts is fermionic, bosonic and fermionic, respectively. The generalized BRST operator thus reads

\[
\Delta = s + \xi^i \partial_i + \varepsilon^i \delta_i + \mu^i \hat{d}_i.
\]

(16)
and its action on the various fields and on the constant ghosts is given by

\[
\Delta A_i = D_i c + \xi^j \partial_j A_i, \\
\Delta A_J = D_J c + \xi^i \partial_i A_J + \mu^i F_{ji}, \\
\Delta \lambda = -i g [\lambda, c] + \xi^i \partial_i \lambda + \epsilon^i \frac{\varepsilon_{ij}}{\theta} n^i \bar{c} + \mu^i \frac{\varepsilon_{ij}}{\theta} D_K F_{jK}, \\
\Delta c = \frac{i g}{2} [c, c] + \xi^i \partial_i c + \epsilon^i A_i, \\
\Delta \bar{c} = B + \xi^i \partial_i \bar{c}, \\
\Delta B = \xi^i \partial_i B + \epsilon^i \partial_i \bar{c}, \\
\Delta \xi^i = \Delta \mu^i = -\epsilon^i, \quad \Delta \epsilon^i = 0.
\]

\(\Delta\) is nilpotent, but only on-shell:

\[
\Delta^2 A_i = \epsilon^j \frac{\varepsilon_{ij}}{\theta} \frac{\delta S}{\delta \lambda}, \\
\Delta^2 A_J = \frac{\mu^i \mu^j}{2} \frac{\varepsilon_{ij}}{\theta} D_J \frac{\delta S}{\delta \lambda}, \\
\Delta^2 \lambda = \frac{\mu^i \mu^j}{2} \frac{\varepsilon_{ij}}{\theta} D_J \frac{\delta S}{\delta A_i} + \epsilon^i \frac{\varepsilon_{ij}}{\theta} \frac{\delta S}{\delta A_J} - \epsilon^i \frac{\mu^i}{\theta} D_i \frac{\delta S}{\delta \lambda}, \\
\Delta^2 c = \Delta^2 \bar{c} = \Delta^2 B = 0.
\]

5 Slavnov identity and ghost equations

Useful Ward identities are consequences of the Slavnov-Taylor identity describing the invariance of the theory under the transformations (17). In order to write this identity, we associate an external field \(\Phi^*\) – an “antifield” in the terminology of the authors of Ref. [20] – to the \(\Delta\)-variation of each of the fields \(\Phi = A, \lambda, c\), respectively. The action \(S_{\text{tot}}\) depending on the fields and antifields is a solution of the Slavnov-Taylor identity

\[
S(S_{\text{tot}}) \equiv \int d^4x \left(\sum_{\Phi \in \{A, \lambda, c\}} \delta S_{\text{tot}} \frac{\delta S_{\text{tot}}}{\delta \Phi^*} + (B + \xi^i \partial_i \bar{c}) \frac{\delta S_{\text{tot}}}{\delta \bar{c}} + (\xi^i \partial_i B + \epsilon^i \partial_i \bar{c}) \frac{\delta S_{\text{tot}}}{\delta B} \right)
- \epsilon^i \left(\frac{\delta S_{\text{tot}}}{\delta \xi^i} + \frac{\partial S_{\text{tot}}}{\partial \mu^i} \right) = 0.
\]

The solution reads

\[
S_{\text{tot}}[A, \lambda, c, \bar{c}, B; A^*, \lambda^*, c^*; \xi, \mu, \epsilon] = \int d^4x (B + \xi^i \partial_i \bar{c}) n^i A_i + \bar{S}[A, \lambda, c; \bar{A}^*, A^*, \lambda^*, c^*; \xi, \mu, \epsilon],
\]

where \(\bar{A}^* = A^{*i} - n^i \bar{c}\), and

\[
\bar{S} = \int d^4x \left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{\theta}{2} \lambda \epsilon^{ij} F_{i j} \\
+ \bar{A}^* (D_i c + \xi^j \partial_j A_i) + A^* J (D_J c + \xi^i \partial_i A_J + \mu^i F_{ji}) \\
+ \lambda^* \left(-i g [\lambda, c] + \xi^i \partial_i \lambda + \mu^i \frac{\varepsilon_{ij}}{\theta} D_K F_{jK} \right) + c^* \left(\frac{i g}{2} [c, c] + \xi^i \partial_i c + \epsilon^i A_i \right) \\
+ \left(\frac{\mu^i \mu^j}{2} \frac{\varepsilon_{ij}}{\theta} (D_J A^* J) + \epsilon^i \frac{\varepsilon_{ij}}{\theta} \bar{A}^* j - \epsilon^i \frac{1}{2 \theta^2} (D_i \lambda^*) \right) \lambda^* \right).
\]
Due to the axial gauge fixing, the field equations for c and \bar{c} take the form of local functional equations, namely, the antighost equation:

$$\frac{\delta S_{\text{tot}}}{\delta c} + ig \left[\bar{c}, \frac{\delta S_{\text{tot}}}{\delta B} \right] = -n^i \partial_i \bar{c} + D_\mu A^{*\mu} - ig [\lambda, \lambda^*] + ig [c, c^*] + \xi^i \partial_i c^*, \tag{22}$$

and the ghost equation:

$$\frac{\delta S_{\text{tot}}}{\delta \bar{c}} + ig \left[c, \frac{\delta S_{\text{tot}}}{\delta B} \right] - \xi^i \partial_i \frac{\delta S_{\text{tot}}}{\delta B} = -n^i \partial_i c - \epsilon^i \frac{\epsilon_{ij}}{\theta} n^j \lambda^*. \tag{23}$$

Note that both right hand sides are linear in the quantum fields. This fact expresses the well-known freedom of the ghost fields in axial gauges [21].

6 Ward identities of vector supersymmetry

Interesting Ward identities may be extracted from the Slavnov-Taylor identity and from the ghost and antighost equations. E.g., a Ward identity for VSUSY is obtained by differentiating the Slavnov-Taylor identity (19) with respect to the VSUSY ghost ϵ^i. The result is

$$\mathcal{W}_i S_{\text{tot}} = \Delta_i, \tag{24}$$

with

$$\mathcal{W}_i S_{\text{tot}} = \int d^4 x \left(\partial_i \bar{c} \frac{\delta S_{\text{tot}}}{\delta B} + A_i \frac{\delta S_{\text{tot}}}{\delta c} + \frac{\epsilon_{ij}}{\theta} \left(n^j \bar{c} - A^{*j} \right) + \frac{1}{g^2} D_i \lambda^* \right) \frac{\delta S_{\text{tot}}}{\delta \lambda}$$

$$+ \lambda^* \frac{\epsilon_{ij}}{\theta} \frac{\delta S_{\text{tot}}}{\delta A_j} + \left(c^* + \frac{ig}{g^2} \lambda^* \lambda^* \right) \frac{\delta S_{\text{tot}}}{\delta A^{*i}},$$

and

$$\Delta_i = \frac{\partial S_{\text{tot}}}{\partial \xi^i} + \frac{\partial S_{\text{tot}}}{\partial \mu^i} + \int d^4 x \frac{\epsilon_{ij}}{\theta} n^j \left(B + \xi^i \partial_i \bar{c} \right) \lambda^*. $$

We note that the breaking term Δ_i vanishes at vanishing antifields.

Knowing that the total action $S_{\text{tot}}[\Phi, \Phi^*, \cdots]$ is the functional generator of the vertex functions (1-particle irreducible amputated graph contributions) in the tree graph approximation, and that the Legendre transform

$$Z^c[J_\Phi, \Phi^*, \cdots] = S_{\text{tot}}[\Phi, \Phi^*, \cdots] + \sum_\Phi \int d^4 x J_\Phi \Phi, \quad \text{with} \quad J_\Phi = -\frac{\delta S_{\text{tot}}}{\delta \Phi},$$

yields the functional generator of the connected Green functions, we obtain Ward identities for the connected Green functions – here in the tree approximation. The Ward identity for VSUSY at vanishing antifields, which reads, for the vertex functions, as

$$\int d^4 x \left(\partial_i \bar{c} \frac{\delta S_{\text{tot}}}{\delta B} + A_i \frac{\delta S_{\text{tot}}}{\delta c} + \frac{\epsilon_{ij}}{\theta} n^j \bar{c} \frac{\delta S_{\text{tot}}}{\delta \lambda} \right) = 0, \tag{25}$$

yields, for the connected Green functions,

$$\int d^4 x \left(j_B \partial_i \frac{\delta Z^c}{\delta j_{\bar{c}}} - j_{\bar{c}} \frac{\delta Z^c}{\delta j_\lambda} + \frac{\epsilon_{ij}}{\theta} n^j \lambda \frac{\delta Z^c}{\delta j_{\bar{c}}} \right) = 0.$$
Differentiating, e.g. with respect to j_c and to j_{A_i}, yields, for the gauge field propagator, the condition

$$\Delta_{A_i A_i} = 0.$$ \hfill (26)

Other consequences of VSUSY are obtained from the Ward identity for vertex functions \hfill (25) by differentiating with respect to A_{μ} and A_J, or A_i and A_j:

$$\Gamma_{\lambda A_i A_j}(x, y, z) = 0,$$ \hfill (27)

and

$$\Gamma_{\lambda A_i A_j}(x, y, z) = ig\theta^k l K(x, y, z),$$ \hfill (28)

where

$$K(x, y, z) = e^{i\frac{\theta}{2} \epsilon^{ij}} \partial_x^j \partial_y^i (\delta(x - y) - \delta(u - z) - \delta(x - z) - \delta(u - y))|_{u=x}.$$

If we assume the latter result, which coincides with the tree vertex deduced from the classical action S_{tot}, to be valid for the quantized theory, we could conclude that the vertex $\Gamma_{\lambda A_i A_j}$ does not acquire radiative corrections.

7 Cancellation of the IR singularities

Let us now show by a graphical analysis how the IR singularities are cancelled as a consequence of the VSUSY Ward identities. We first see, from Fig. 2, that the λAA-vertex contracted with a photon propagator vanishes because of (26). Secondly, looking at Fig. 3, we observe that one cannot build a Feynman loop graph containing a λAA-vertex without the presence of at least one AA-propagator. Thus, it follows that loop corrections to the $\lambda\lambda$ and λA propagators vanish.

More generally, we can conclude that all loop graphs involving a λAA vertex vanish. In particular, dangerous vacuum polarization insertions as in Fig. 1 cancel. Finally, contributions of IR singular parts of vertices $\Gamma_{A_{\mu_1} \ldots A_{\mu_N}}$ ($N \geq 2$) connected to AA-propagators.
in loop graphs vanish, too, since these singularities are present in vertices with indices \(i = 1, 2 \) only. E.g. in the singular part of the vacuum polarization, the indices \(\mu \) and \(\nu \) take the values 1 or 2 due to our choice of the noncommutativity matrix \(\theta \).

In conclusion, no IR singularities are left.

8 Conclusions and outlook

We can conclude from our analysis that Poincaré supersymmetry is not needed in order to cure the problem of IR-UV mixing in gauge theories constructed in noncommutative space.

However the concept of supersymmetry, manifest in the form of VSUSY, seems to play a decisive role in theories which are not Poincaré supersymmetric. Indeed, as we have seen in such a case, the Ward identities of VSUSY yield exactly the propagator and vertex properties which are needed for cancelling the IR singularities.

What is the role of VSUSY with respect to the IR-UV mixing in topological gauge theories in general remains an open question.

Finally, the study of more general theories, based on a rigorous quantization scheme (perturbative or not) seems desirable.

References

[1] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory,
Rev. Mod. Phys. 73 (2001) 977;
R.J. Szabo, Quantum field theory on noncommutative spaces,
Phys. Rep. 378 (2003) 207.
[2] H.P. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38.
[3] H.J. Groenewold, On the principles of elementary quantum mechanics, Physica (Utrecht) 12 (1946) 405;
J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil. Soc. 45 (1949) 99.
[4] T. Filk, Divergences in a field theory on quantum space, Phys. Lett. B376 (1996) 53.
[5] A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the noncommutative gauge theories, JHEP 12 (2000) 002, [hep-th/0002075].
[6] M. Attems, D. N. Blaschke, M. Ortner, M. Schweda, S. Stricker and M. Weiretmayr, Gauge independence of IR singularities in non-commutative QFT - and interpolating gauges, JHEP 07 (2005) 071, [hep-th/0506117];
M. Hayakawa, Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on \(\mathbb{R}^4 \), [hep-th/9912167];
F. R. Ruiz, Gauge-fixing independence of IR divergences in non-commutative \(U(1) \), perturbative tachyonic instabilities and supersymmetry, Phys. Lett. B502 (2001) 274, [hep-th/0012171].
[7] M. Gomes, Remarks on noncommutative field theories, Braz. J. Phys. 34 (2004) 1330.
[8] A. A. Bichl, J. M. Grimstrup, V. Putz and M. Schweda, Perturbative Chern-Simons theory on noncommutative \(\mathbb{R}^3 \), JHEP 07 (2000) 046, [hep-th/0004071].
[9] A. Blasi, N. Maggiore and M. Montobbio, Instabilities of noncommutative two-dimensional BF model, Mod. Phys. Lett. A20 (2005) 2119, [hep-th/0504218];
A. Blasi, N. Maggiore and M. Montobbio, Noncommutative two-dimensional BF model, Nucl. Phys. B740 (2006) 281, [hep-th/0512006].
[10] E. A. Asano, L. C. T. Brito, M. Gomes, A. Y. Petrov and A. J. da Silva, Consistent interactions of the 2+1 dimensional noncommutative Chern-Simons field, Phys. Rev. D71 (2005) 105005, [hep-th/0410257].

[11] D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological Field Theory, Phys. Rep. 209 (1991) 129.

[12] J. Wess and J. Bagger, Supersymmetry and Supergravity, 2nd Rev.Ed., Princeton Series in Physics, Princeton Univ Press (1992).

[13] D. N. Blaschke, F. Gieres, O. Piguet and M. Schweda, A vector supersymmetry in non-commutative U(1) gauge theory with the Slavnov term, JHEP 0605 (2006) 059, [hep-th/0604154].

[14] A. A. Slavnov, Consistent noncommutative quantum gauge theories?, Phys. Lett. B565 (2003) 246, [hep-th/0304141].

[15] A. A. Slavnov, Gauge-invariant U(1) model in the axial gauge on the noncommutative plane, Teor. Mat. Fiz. 140N3 (2004) 388.

[16] D. N. Blaschke, S. Hohenegger and M. Schweda, Divergences in non-commutative gauge theories with the Slavnov term, JHEP 11 (2005) 041, [hep-th/0510100].

[17] F. Delduc, F. Gieres and S. P. Sorella, Supersymmetry of the d = 3 Chern-Simons action in the Landau gauge, Phys. Lett. B225 (1989) 367;
F. Delduc, C. Lucchesi, O. Piguet and S. P. Sorella, Exact scale invariance of the Chern-Simons theory in the Landau gauge, Nucl. Phys. B346 (1990) 313;
E. Guadagnini, N. Maggiore and S. P. Sorella, Supersymmetric structure of four-dimensional antisymmetric tensor fields, Phys. Lett. B255 (1991) 65.

[18] A. Blasi, O. Piguet and S. P. Sorella, Landau gauge and finiteness, Nucl. Phys. B356 (1991) 154.

[19] S. Emery, M. Kruger, J. Rant, M. Schweda and T. Sommer, Two-dimensional BF model quantized in the axial gauge, Nuovo Cim. A111 (1998) 1321, [hep-th/9609240];
O. M. Del Cima, K. Landsteiner and M. Schweda, Twisted N = 4 SUSY algebra in topological models of Schwarz type, Phys. Lett. B439 (1998) 289, [hep-th/9806137];
O. M. Del Cima, J. M. Grimstrup and M. Schweda, On the finiteness of a new topological model in D = 3, Phys. Lett. B463 (1999) 48, [hep-th/9906146];
F. Gieres, J. Grimstrup, T. Pisar and M. Schweda, Vector supersymmetry in topological field theories, JHEP 06 (2000) 018, [hep-th/0002167].

[20] I. A. Batalin and G. A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B102 (1981) 27;
I. A. Batalin and G. A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D28 (1983) 2567.

[21] W. Kummer, Eichtransformation und Quantelung des freien elektromagnetischen Feldes, Acta Phys. Austriaca 14 (1961) 149;
W. Kummer, Ghost free nonabelian gauge theory, Acta Phys. Austriaca 41 (1975) 315.

[22] O. Piguet and S. P. Sorella, Algebraic Renormalization: Perturbative Renormalization, Symmetries and Anomalies, Lect. Notes Phys. M28 (Springer, 1995); A. Boresch, S. Emery, O. Moritsch, M. Schweda, T. Sommer and H. Zerrouki, Applications of Noncovariant Gauges in the Algebraic Renormalization Procedure (World Scientific, 1998).