Understanding the role of active site residues in CotB2 catalysis using a cluster model

Keren Raz¹, Ronja Driller²,³,⁴, Thomas Brück⁵, Bernhard Loll² and Dan T. Major*¹

Abstract

Terpene cyclases are responsible for the initial cyclization cascade in the multistep synthesis of a large number of terpenes. CotB2 is a diterpene cyclase from Streptomyces melanoperspaciens, which catalyzes the formation of cycloocta-9-en-7-ol, a precursor to the next-generation anti-inflammatory drug cyclooctatin. In this work, we present evidence for the significant role of the active site’s residues in CotB2 on the reaction energetics using quantum mechanical calculations in an active site cluster model. The results revealed the significant effect of the active site residues on the relative electronic energy of the intermediates and transition state structures with respect to gas phase data. A detailed understanding of the role of the enzyme environment on the CotB2 reaction cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures.

Introduction

Enzymes catalyze numerous complex biochemical reactions in different cellular compartments [1,2]. More specifically, the enigmatic class of terpene cyclases is responsible for converting linear aliphatic oligoprenyl diphosphates into various chemically complex macrocyclic products. The resulting terpene scaffolds and their functionalized terpenoid analogues comprise the
The first crystal structure of a monoterpene cyclase [18] was reported in 2002. Subsequently, the first crystal structures of a sesquiterpene [19,20] and a triterpene [21] cyclase were published in 1997. Less than a decade ago, the first crystal structure of a diterpene cyclase was reported by Christianson and co-workers [22]. These structures, in conjunction with extensive biochemical work [10,13,14,23], have contributed to the understanding of mechanistic details of terpene cyclases and facilitated rational enzyme design [24]. Theoretical quantum mechanical (QM) investigations on the chemistry of terpenes in the gas phase have provided a detailed understanding of the carbocation mechanisms underlying terpene synthase function [25-27]. Further, we have used multiscale modeling tools to study the effects of the enzyme environment in catalyzing reactions of mono-, sesqui-, and diterpene synthases [28-36].

Diterpenes are generated from the universal aliphatic substrate geranyl geranyl pyrophosphate (GGPP) [4]. In vitro experiments demonstrated that many diterpenes have pharmaceutical applications by featuring anticancer, antibacterial, anti-inflammatory, and antiretroviral activities [37]. Moreover, they are applied in the food industry as antioxidants and sweeteners [4].

CotB2 is a bacterial diterpene cyclase from S. melanosporofaciens, which catalyzes the formation of cyclooctat-9-en-7-ol, representing the first committed step in the biosynthesis of the next-generation anti-inflammatory drug cyclooctatin. The intracellular target of cyclooctatin is an as of yet uncharacterized lysophospholipase, which is involved in early steps of the inflammatory signaling cascade [38-40]. In the last decade, numerous interdisciplinary studies have addressed the chemical mechanism of CotB2 catalysis utilizing different detection and analysis methods.

Meguro and co-workers [41] established the chemical mechanism for the formation of cyclooctatin using isotope labeling experiments (Scheme 1). Recently, Hong and Tantillo [38] and Sato and co-workers [39] investigated the CotB2 mechanism using QM tools. According to Meguro and co-workers [41], the cyclization process commences with the dissociation of the pyrophosphate leaving group of GGPP, forming an allylic carbocation, and two subsequent electrophilic cyclizations to

![Scheme 1: Mechanism for formation of cyclooctat-9-en-7-ol, published similarly in [42].](image-url)
Figure 1: Computed electronic energy profiles (kcal/mol) for the CotB2 cyclase mechanism. The calculations used M062X/6-31+G(d,p).
gas phase profile revealed important information regarding the inherent reactivity [27] of the carbocation species. As the reaction proceeded, π-bonds transformed into σ-bonds, explaining the steady downhill progress of the energy profile. An additional feature was the relatively low energy barrier of less than ca. 10 kcal/mol separating the intermediates. The gas phase mechanism has been discussed extensively by Hong and Tantillo [38] and Sato and co-workers [39]. Herein, we focused on the differences between gas phase and active site model energies. All interaction distances are provided in Table 1, which provided the basis for the following categorization of interactions as π–cation, dipole–cation, and charge–cation. Note, that no attempts to quantify the individual pairwise interactions were made.

intermediate	interacting species	distance (Å)	interaction type	
A				
	W186	C15	4.49	π-cation
	I181	C15	3.80	dipole-cation
B	N103	C6	4.66	dipole–cation (C=O)
	N103	C7	4.72	dipole–cation (C=O)
	N103	C8	4.41	dipole–cation (C=O)
	T106	C6	3.96	dipole–cation (OH)
	T106	C7	4.15	dipole–cation (OH)
	T106	C8	5.33	dipole–cation (OH)
	F107	C6	4.25	π–cation
	F107	C7	5.53	π–cation
	F107	C8	5.88	π–cation
	I181	C6	5.15	π–cation
	I181	C7	4.45	π–cation
	I181	C8	4.14	π–cation
C	O3	C3	4.20	anion–cation
	F107	C3	3.65	π–cation
	I181	C3	4.72	dipole–cation
D	O3	C2	5.03	anion–cation
	F107	C2	4.35	π–cation
E	N103	C6	4.74	dipole–cation (C=O)
	N103	C7	3.81	dipole–cation (C=O)
	N103	C8	3.04	dipole–cation (C=O)
	T106	C6	4.43	dipole–cation (OH)
	T106	C7	4.25	dipole–cation (OH)
	T106	C8	5.32	dipole–cation (OH)
	F107	C6	4.66	π–cation
	F107	C7	5.37	π–cation
	F107	C8	5.54	π–cation
	F149	C6	5.84	π–cation
	F149	C7	6.42	π–cation
	F149	C8	7.75	π–cation
G/H	N103	C7	5.91	π–cation
	T106	C7	5.27	π–cation
	F149	C7	5.35	π–cation
	I181	C7	3.08	π–cation
	W186	C7	6.48	π–cation
I	N103	C10	5.44	dipole–cation
	I181	C10	3.31	dipole–cation (C=O)
	W186	C10	5.87	π–cation
Carbocation A was stabilized through π–cation interaction with W186, while B was stabilized due to dipole–cation interactions of the allylic carbocation at C6–C7–C8 with N103, T106, and I181. These variations in interactions resulted in an energy difference of 14.2 kcal/mol, favoring B, and the barrier was reduced by 2.8 kcal/mol (Figure 1). Another possible reason for
the stabilization was that C7 had a greater proximity to the pyrophosphate group than C15 (6.71 Å vs 7.54 Å, Table 1 and Figure 2). The energy difference between B and C was 15.7 kcal/mol in the active site model, compared to 8.7 kcal/mol in the gas phase. Here, the energy gain was likely due to the fact that the carbocation in intermediate C was located 4.21 Å away from the pyrophosphate group, which stabilized it (Table 1 and Figure 2). Moreover, π-cation interactions with F107 contributed to the stabilization as well. The activation energy for the formation of C was 2.4 kcal/mol in the active site model compared to 4.3 kcal/mol in the gas phase. In the active site model, D was less stable than C by almost 2 kcal/mol, while in the gas phase, D was more stable by ca. 2 kcal/mol. The main reason for this difference was possibly a difference in the conformation of D in the active site model compared to the gas phase. The dihedral angle defined by C3–C2–C6–C7 in D was greater by 53° in the active site model than in the gas phase, while the dihedral angle C10–C9–C8–C7 was smaller by 258° in the active site model than in the gas phase (Figure 4a). Moreover, the dihedral angle C2–C1–C11–C10 was greater by 281° in the active site model than in the gas phase, and the distance between C4 and C13 was significantly greater in the active site model (1.2 Å), indicating a more extended conformation.

Figure 2: Intermediates A–I in the active site model. Interactions are marked by dashed orange lines, the interacting residues are labeled in black, the non-interacting residues are labeled in grey, and plus signs note location of the cations.
very similar in the gas phase and in the enzyme. Carbocation H formed interactions with N103, W186, and especially with I181. The relative energy difference between H and I was also similar in the gas phase and in the enzyme model. However, the activation energy was higher by 3.0 kcal/mol in the active site model, possibly due to steric effects. I was stabilized via inter-
It is well established that the inherent reactivity of carbocations \[27\], as well as correct substrate folding in the active site \[3\], play crucial roles in terpene synthases. The current results highlight the importance of taking into account the active site residues while modeling terpene synthase mechanisms, as we have proposed previously \[28-36,42\]. We found that the energy surface in the active site model was significantly perturbed compared to the gas phase potential. Additionally, structural analysis revealed that each cation was stabilized by noncovalent interactions, such as π–cation and dipole–cation interactions. A comparison of the transition state structures in the gas phase vs the active site model is shown in Table 2. These findings suggest that the rational biosynthesis of novel terpenes might be possible by careful design of CotB2 mutants. Future studies using multiscale techniques to model the enzyme reaction in a complete enzyme environment will allow careful evaluation of the usefulness of such active site theozyme models.

Conclusion

In this work, we compared the energy profiles of the terpene cyclase CotB2 reaction obtained in the gas phase and using an active site model. The calculations used identical QM methods, facilitating a direct comparison. We presented evidence for the important role played by the active site residues in CotB2 on the reaction energetics in an active site cluster model, suggesting that reaction control in terpene synthase is obtained via a combination of inherent reactivity, initial substrate folding, and enzyme environmental effects. Specifically, the results using the active site model revealed the significant effect that the active site residues have on the relative electronic energy of the intermediates and TS structures in comparison with gas phase data due to ionic, π–cation, and dipole–cation interactions. A detailed understanding of the role of the enzyme environment on the reaction cascade in CotB2 can provide important information to derive a synthetic strategy for cyclooctatin and related terpene manufacturing. Future studies using hybrid quantum mechanics and molecular mechanics techniques to model the enzyme reaction in a complete enzyme environment will allow careful evaluation of the usefulness of such active site theozyme models.

Experimental

All calculations were carried out with Gaussian 16 \[47\]. Geometry optimizations, frequency calculations, and intrinsic coordinate calculations were performed using the M062X/6-31+G(d,p) level of theory \[48\]. The gas phase structures were taken from Sato and co-workers \[39\]. The amino acid cage was constructed from six amino acids, which were located around the substrate and constituted part of the catalytic pocket of the enzyme (PDB-ID 6GGI) \[42\]. The chosen amino acids were the ones that we presumed stabilized the carbocations the most during the reaction. The coordinates of the amino acids and the substrate GGPP were taken from the corresponding X-ray structure, with a resolution of 1.8 Å \[42\]. In this approach, geometry optimizations with the “Modredundant” keyword were per-

Table 2: Comparison table of transition state structures in gas phase vs active site model.

TS structure	interaction species	gas phase distance (Å)	active site model distance (Å)
TS_A_B	C_{15} H_{82}	1.21	1.29
	C_{8} H_{82}	1.46	1.34
	C_{8} C_{15}	2.58	2.52
TS_B_C	C_{2} C_{6}	2.44	2.61
TS_C_D	C_{2} H_{2}	1.21	1.44
	C_{3} H_{2}	1.48	1.24
	C_{3} C_{2}	1.41	1.41
TS_D_E	C_{6} H_{6}	1.25	1.38
	C_{2} H_{6}	1.41	1.28
	C_{2} C_{6}	1.41	1.42
TS_E_G/H	C_{6} H_{6}	1.12	1.14
	C_{10} H_{6}	1.74	1.63
	C_{10} C_{6}	2.63	2.49
	C_{8} C_{10}	2.33	2.54
TS_H_I	C_{9} C_{7}	1.71	1.66
	C_{9} C_{10}	1.65	1.69
	C_{10} C_{7}	2.48	2.46

formed, and the active site residues, diphosphate moiety, and magnesium ions were fixed throughout the reaction progress. The entire cage system was treated using the above-mentioned DFT method. In order to find the TS structures, complete TS optimizations using the keywords “QST2”, “QST3”, and “Modredundant” were performed.

A main limitation of the current cluster modeling approach was freezing of the active site residues, which did not allow any accommodation of the active site to the evolving reaction intermediates. Flexible residues were not considered due to the possible perturbation of the active site contour and the rapid fluctuation of the total electronic energy as a function of amino acid residue geometry. An additional obvious limitation were medium and long-range nonbonded interactions beyond the active site cage considered here. These effects could be considerable and will be scrutinized in future work.

The Cartesian coordinates of all species are reported in Supporting Information File 1.

Supporting Information
Supporting Information File 1
Cartesian coordinates for all species.

[https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-16-7-S1.txt]

Funding
This work was supported by the Israeli Science Foundation (Grant no. 1683/18).

ORCID® iDs
Ronja Driller - https://orcid.org/0000-0001-8834-9087
Thomas Brück - https://orcid.org/0000-0002-2113-6957
Bernhard Loll - https://orcid.org/0000-0001-7928-4488
Dan T. Major - https://orcid.org/0000-0002-9231-0676

Preprint
A non-peer-reviewed version of this article has been previously published as a preprint doi:10.3762/bxiv.2019.108.v1

References
1. Knowles, J. R. Nature 1991, 350, 123–124. doi:10.1038/350123a0
2. Warshel, A. Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 5250–5254. doi:10.1073/pnas.75.11.5250
3. Christianson, D. W. Chem. Rev. 2017, 117, 11570–11648. doi:10.1021/acs.chemrev.7b00287
4. Devappa, R. K.; Makkar, H. P. S.; Becker, K. J. Am. Oil Chem. Soc. 2011, 88, 301–322. doi:10.1007/s11746-010-1720-9
5. Singh, B.; Sharma, R. A. 3 Biotech 2015, 5, 129–151. doi:10.1007/s13205-014-0220-2
6. Schwab, W.; Davidson-Rikanati, R.; Lewinsohn, E. Plant J. 2006, 54, 712–732. doi:10.1111/j.1365-313x.2006.03446.x
7. Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed.; John Wiley & Sons: Hoboken, NJ, 2001.
8. Radhakrishna, S.; Kumari, P. S. Adv. Appl. Sci. Res. 2018, 5 (3), 94–101.
9. Rates, S. M. K. Toxicon 2001, 39, 603–613. doi:10.1016/s0041-0100(01)00154-9
10. Gershenzon, J.; Dudareva, N. Nat. Chem. Biol. 2007, 3, 408–414. doi:10.1038/nchembio.2007.5
11. Gonzalez-Burgos, E.; Gomez-Serranillos, M. P. Curr. Med. Chem. 2012, 19, 5319–5341. doi:10.2174/09298671280333335
12. Croteau, R.; Hezari, M.; Hefner, J. K.; Koepp, A.; Lewis, N. G. Paclitaxel Biosynthesis - The Early Steps. In Taxane Anticancer Agents - Basic Science and Current Status; Georg, G. I.; Chen, T. T.; Ojima, I.; Vyas, D. M., Eds.; ACS Symposium Series, Vol. 583; American Chemical Society: Washington, DC, 1994; pp 72–80. doi:10.1021/bk-1995-0583.ch005
13. Cane, D. E. Chem. Rev. 1990, 90, 1089–1103. doi:10.1021/cr00105a002
14. Christianson, D. W. Chem. Rev. 2006, 106, 3412–3442. doi:10.1021/cr050266w
15. Tholl, D. Curr. Opin. Plant Biol. 2006, 9, 297–304. doi:10.1016/j.pbi.2006.03.014
16. Zwenger, S.; Basu, C. Biotecnol. Mol. Biol. Rev. 2008, 3, 1–7.
17. Janke, R.; Gömer, C.; Hirte, M.; Brück, T.; Loll, B. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2014, 70, 1528–1537. doi:10.1107/s1399004714005513
18. Whittington, D. A.; Wise, M. L.; Urbansky, M.; Coates, R. M.; Croteau, R. B.; Christianson, D. W. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15375–15380. doi:10.1073/pnas.232591099
19. Lesburg, C. A.; Zhai, G.; Cane, D. E.; Christianson, D. W. Science 1997, 277, 1820–1824. doi:10.1126/science.277.5333.1820
20. Starks, C. M.; Back, K.; Chappell, J.; Noel, J. P. Science 1997, 277, 1815–1820. doi:10.1126/science.277.5333.1815
21. Wendt, K. U.; Poria, K.; Schulz, G. E. Science 1997, 277, 1811–1815. doi:10.1126/science.277.5333.1811
22. Kiksaal, M.; Jin, Y.; Coates, R. M.; Croteau, R.; Christianson, D. W. Nature 2011, 469, 116–120. doi:10.1038/nature09628
23. Croteau, R. Chem. Rev. 1987, 87, 929–954. doi:10.1021/cr00081a004
24. Brück, T.; Kourtist, R.; Loll, B. ChemCatChem 2014, 6, 1142–1165. doi:10.1002/cctc.201300733
25. Tantillo, D. J. Nat. Prod. Rep. 2011, 28, 1035–1053. doi:10.1039/c1np00006c
26. Hess, B. A., Jr.; Smentek, L.; Noel, J. P.; O’Malley, P. E. J. Am. Chem. Soc. 2011, 133, 12632–12641. doi:10.1021/ja203342p
27. Tantillo, D. J. Angew. Chem., Int. Ed. 2017, 56, 10040–10045. doi:10.1002/anie.201702363
28. Dixit, M.; Weitman, M.; Gao, J.; Major, D. T. ACS Catal. 2017, 7, 812–818. doi:10.1021/acscatal.6b02584
29. Weitman, M.; Major, D. T. J. Am. Chem. Soc. 2010, 132, 6349–6360. doi:10.1021/ja910134x
30. Major, D. T.; Weitman, M. J. Am. Chem. Soc. 2012, 134, 19454–19462. doi:10.1021/ja308295p
31. Gao, J.; Ma, S.; Major, D. T.; Nam, K.; Pu, J.; Truhlar, D. G. Chem. Rev. 2006, 106, 3188–3209. doi:10.1021/cr050293k
