RESEARCH ARTICLE

An Adenoviral Vector Based Vaccine for Rhodococcus equi

Carla Giles1, Olasumbo Ndi1, Mary D. Barton1, Thiru Vanniasinkam2*

1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia, 2 School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia

*tvanniasinkam@csu.edu.au

Abstract

Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.

Introduction

Rhodococcus equi (Prescottella equi) [1,2], is a Gram positive, aerobic coccobacillus which primarily infects foals under 6 months of age, causing suppurative bronchopneumonia and pyogranulomatous lesions [3–5]. R. equi is also known to infect pigs [6] and immunocompromised humans[7]. This bacterium is a common soil saprophyte, has a worldwide distribution and causes an estimated 3% of all foal deaths and has a mortality rate of approximately 50%[8,9]. Virulence and intracellular survival of R. equi within the macrophage is regulated by the plasmid bound virulence associated proteins (Vaps) designated A-I and X which are located within a pathogenicity island[10]. VapA is the primary protein involved in the bacterial pathogenicity and virulence and is further regulated by the virR and orf8 genes [11,12].

Current treatment for R. equi infection consists of combination antimicrobial therapy using rifampin and macrolides[13]; however, recent reports of resistance in the USA [14]and China [15] indicate that the need for prevention rather than reliance on treatment of this infection is becoming critical. For decades researchers have been attempting to find an effective vaccine for use in foals that is safe, immunogenic and efficacious[16]. However, understanding of the foal immune system is limited and this has slowed vaccine development [17] although recent findings have demonstrated the importance of both humoral and cell mediated immune responses.
to effectively combat *R. equi* infection[18,19]. By approximately 3–4 months of age the foal is capable of producing an immune response sufficient against *R. equi*[20, 21], making a vaccine that is effective in early life imperative.

R. equi vaccine candidates based upon the traditional vaccine platforms such as live[22], killed [23, 24] and attenuated [25] have not been successful. Modern molecular based vaccines for example DNA[26, 27], subunit [28] and genetically attenuated *R. equi* [29, 30], have shown some potential, however, these vaccines have not conferred protection. More recently bacterial vector vaccines utilising the *vapA* gene have been tested and have shown some promise [31,32] but are yet to be developed further.

Adenoviral vector vaccines have been shown as an effective vaccine modality capable of generating strong CD8⁺ T cell and B cell responses with low pathogenicity and are safe and stable [33]. Notably, the adenoviral vector has proven itself to be a suitable candidate for use in infant mammals such as puppies[34], piglets [35] and mice [36, 37]. Amongst the *R. equi* related bacteria, *Mycobacterium tuberculosis* is one example of an intracellular pathogen for which the adenoviral vector platform has been used successfully and one such vaccine is currently being tested in clinical trials in human infants[38]. In this study an adenoviral vector vaccine based upon the human adenovirus serotype 5 (HAdV5) containing the *R. equi vapA* gene [23, 39] was developed and tested in mice for safety, immunogenicity and efficacy.

Materials and Methods

Vaccine construct

The AdenoX HAdV-vapA vaccine construct, utilised a HAdV5 vector (Clontech, USA) and the *R. equi vapA* gene was inserted into the viral construct using the methods described by the manufacturer. VapA primers were forward 5’ gtaactataacggtcatgaagactcttca caagacggt 3’ and reverse 5’ attacctctttctccctaggcgttgtgccagcta 3’ with the tagged sequence for vector insertion underlined. The product was 570bp in size and was confirmed via Sequencing (Flinders sequencing, Adelaide, Australia) for ligation. HAdV-vapA Virus was grown on HEK 293 cells, with cells maintained on complete DMEM (Life Sciences, Australia), 10% Foetal Bovine Serum (Sigma-Aldrich, Australia), 2% L-glutamine (Life Sciences, Australia) and 2% penicillin/streptomycin (Life Sciences, Australia). The developed HAdV-vapA was verified for transcription and translation by Reverse transcriptase-PCR and Western Blot using anti-rabbit VapA polyclonal antibody (dilution 1:5000) (SAHMRI, Adelaide, Australia). Virus was purified and quantitated using the AdEasy virus purification and titration kit (Agilent, USA).

Animals, experiments and design

All animal work conducted was approved by the SA Pathology Animal Ethics Committee, approval numbers 187a/12 and 72b/13. Female C3H/HeJ (Animal resource Centre, Perth, Australia), aged 6–8 weeks were distributed randomly into individual ventilation cages (n = 3–5). Animals were monitored daily throughout the trial and after challenge animals were monitored twice daily. Clinical records sheets were maintained and animal health was recorded and scaled according to different clinical signs, if the total score was equal to or over 4 mice were to be euthanised immediately. Of the mice involved in this trial only one unexpected death was experienced and upon post mortem by a veterinarian, the cause of death was due to cancerous tissue in the lung. Stress was minimised in this trial by ensuring animals were first grouped with other mice of similar sizes to minimise bullying; handling was kept to a minimum with mice weighed weekly and given fresh food water and cages at this time and bleeding and vaccination by intramuscular (IM) injection occurred every other week at the time of weighing. Cheek vein
bleeding was used in order to avoid the use of further anaesthetics required for other venipuncture methods. Cheek vein junction bleeding allows for clotting to occur as soon as the skin is released. If at any time the mice displayed excessive stress the bleeding was ceased and animals placed into their new cage and the experience was recorded on the clinical records sheet. Animals were humanely killed by first undergoing anaesthesia by isofluorane, cardiac puncture and cervical dislocation before organs were harvested for culture.

Mice were bled by the cheek vein junction in trial 1 at days 0, 14, 28, 42 and 49 or trial 2 at endpoint days 31, 33 or 35. Mice were vaccinated at day 0 and 14, and challenged at day 28 by aerosol with 1x10^8 CFU/ml of ATCC 33701 \textit{R. equi}.

Two sets of studies were conducted; the first contained four vaccine regimes of 6 mice in each. The vaccines administered were administered by IM injection, 50 \textmu l of vaccine administered into each quadriceps muscle group with a total dose of 100 \textmu l per mouse. The vaccines administered were Live \textit{R. equi} ATCC 33701 (100\textmu l of 1x10^5 CFU/ml) in a prime dose only, empty vector HAdV (100\textmu l of 1x10^6 ifu/ml) prime dose only, HAdV-vapA (100\textmu l of 1x10^9 ifu/ml) prime dose only and HAdV-vapA (100\textmu l of 1x10^9 ifu/ml) in a prime/boost regime 14 days apart.

The second trial again consisted of four vaccine regimes all administered in a prime/boost regime 14 days apart; Live \textit{R. equi} ATCC 33701 (100\textmu l of 1x10^6 CFU/ml), empty vector HAdV (100\textmu l of 1x10^6 ifu/ml) prime only; HAdV-vapA high dose (100\textmu l of 1x10^10 ifu/ml) and HAdV-vapA low dose (100\textmu l of 1x10^9 ifu/ml) again administered by IM.

Enzyme Linked Immunosorbert Assay (ELISA) to detect VapA total IgG and IgG subclasses

ELISA to detect VapA specific total IgG and IgG subclasses (IgG2a, IgG2b, Ig1) were conducted using standard protocols and all wash steps were performed 3 times. Briefly, the plate (Nunc Maxisorp, Nunc, USA) was first coated in a VapA protein extraction that was undertaken according to previously published protocols utilising the Triton X 114 phase partitioning \textit{R. equi} based protocol\cite{40, 41}. Plate wells were coated with 100 \textmu l/well of 3.5 \mu g/ml APTX VapA antigen in a calcium carbonate coating buffer and incubated overnight at 4°C. Followed by a washing step, whereby contents was decanted, wells were each filled with approximately 200\textmu l of washing buffer (PBS/Tween 20, 0.05\% v/v), and again decanted and plates tapped onto absorbent towel to remove residue and repeated 3 times. The plates were then blocked with 150 \textmu l/well of blocking buffer 1% bovine serum albumin (BSA) (Sigma-Aldrich) in PBS and incubated at room temperature for 1 hour. Plate was washed, and serum samples, diluted 1:100–1:1600 in a 2 fold fashion were added at 100 \textmu l/well and incubated at 37°C for 1 hour. Again plates were washed, and 100 \textmu l/well of anti-mouse HRP antibody at and plates were incubated for 1 hour at room temperature. Secondary antibody concentrations were Total IgG-1:10 000 (Sigma, Australia), IgG1- 1:5 000 (Genetex, USA), IgG2a- 1:5000 (Genetex, USA) and IgG2b- 1:5000 (Genetex, USA). Plates were again washed and 100 \textmu l/well of blocking buffer 1% bovine serum albumin (BSA) (Sigma-Aldrich) in PBS and incubated at room temperature for 15 min. Finally, the reaction was stopped with 1 M Hydrochloric acid (HCl) and absorbance read at 450 nm.

Empty Vector ELISA was conducted with the same protocol as the VapA total IgG ELISA with the antigen being a 100 \textmu l/well of 1x10^5 ifu/ml HAdV empty vector virus, inactivated by heat inactivation at 56°C for 30 minutes.

An Adenoviral Vector Vaccine for \textit{Rhodococcus equi}
Total VapA IgG serum levels were tested in trial 1 and 2 utilising murine serum pooled per group which were: *R. equi* prime only, HAdV empty vector prime only, the developed HAdV-vapA vaccine vector prime only and the HAdV-vapA prime and boost.

Mouse lung cell culture

Isolation of lung cells was performed as described by [28, 42] with minor modifications with cytokine analysis only performed on trial 2 mice. This was due to the background levels of cytokines present in trial 1 at day 49 (5 weeks post challenge). The pooled lungs for each vaccine group according to their euthanasia day (n = 6 day 35) were diced and the supernatant discarded and the tissue suspended in 3 ml of RPMI 1640 media containing 1 mg/ml Collagenase XI (Sigma-Aldrich) and 30 μg/ml DNAse (Sigma-Aldrich) and placed in 10 ml tube shaken at 37°C for 45 min. Supernatant was collected and 7 ml of sterile PBS was added and the tube was centrifuged at 200 g for 10 min. The supernatant was discarded and the cells resuspended in 2.5 ml of complete RPMI media (Sigma-Aldrich, Australia). A concentration of 1 ml of 1x10⁶ cells/ml in complete RPMI media or with the stimulant ConA were cultured in triplicate on 24 well plates, with 1ml of cells per well and incubated at 37°C, 5% CO₂ for 5 days, cell culture supernatant was collected and stored at -20°C until assayed for cytokine levels.

Cytokine detection from stimulated lung cells

The Luminex xMAP system was used to detect presence of cytokines- IL-2, IL-4, IL-10 and IFN-γ from both stimulated lung cell culture assays using the Milliplex Map Kit (Millipore, Australia) and the procedure was completed following the manufacturer’s directions and read on the Luminex 200, HTS, FLXMAP 3D MAGPIX with xPONENT software. Samples were prepared according to the requirements of the kit. Cell culture supernatant samples were pooled according to vaccine treatment group and centrifuged to remove any cell debris and particulate matter.

Challenge studies

Mice were infected with 1x10⁹ CFU/ml of aerosolised *R. equi* using a nebuliser pump therapy kit (Ventalair forte II, Allersearch, Australia) and the protocol was conducted as described by Phumoonna et al., (2005). Briefly, the entire cage of mice (5 or 4 depending on the cage), was placed for 20 min in a sealed plastic chamber which measured 265 mm x 235 mm x 120 mm and had a removable sealed lid for ease of access. The 3 ml bacterial suspension was aerosolised using a nebuliser kit (Ventalair forte II), an inlet port on the bottom of the chamber allowed for attachment of the nebuliser bowl inside the chamber and allowed for the attachment to the pump outside of the chamber[28]. Due to the positive pressure the nebuliser pump generated there was a small sealed outlet port on the side of the chamber, connecting to a hose which in turn was connected to a stoppered flask containing 70% (v/v) ethanol as a safety measure, to ensure no bacteria leaked into the environment. Mice were placed in the chamber for a total of twenty minutes with the nebuliser pump on for 15 min to allow for the nebuliser bowl to be emptied and then for a further 5 min with the nebuliser pump switched off to ensure mice received a full dose of *R. equi*.

Immediately after the 20 min aerosol *R. equi* challenge, one randomly selected mouse was euthanised from each treatment. One lung from each mouse was harvested for bacterial culture where the lung was first weighed and then homogenised with scalpel blades in 500 μl of saline and vigorously mixed. The suspension was then serially diluted 10 fold (10⁰–10⁹) in saline and in duplicate 100 μl of suspension were plated onto M3T media [43, 44] to select for *R. equi*.

PLOS ONE | DOI:10.1371/journal.pone.0152149 March 23, 2016 4 / 15
Plates were incubated for 48 hr at 37°C and then counted. Bacterial counts were calculated in CFU/g to allow for a more accurate determination of the retained bacterial dose.

Histological studies

Histological sections of lungs were preserved in formalin buffer and sectioned in paraffin wax. Slides were stained with Haematoxylin and Eosin, and Grams tissue stain using standard techniques described[45]. Lung sections were examined by a veterinary pathologist. Both haematoxylin and eosin (H & E), and Gram stained sections showed the effects of the challenge on the lung and the presence of *R. equi* respectively. The H & E stain was scored on a scale of 0–10 with 0 = no changes (normal pathology) and 10 = multiple granulomata in every field.

Western Blot to detect VapA expression

Western blots were conducted utilizing standard methods [46] with the primary antibody used a rabbit anti-VapA polyclonal antibody (SAMHRI, Australia) at 1:500. Secondary antibody 1:5000 anti-rabbit HRP (Sigma-Aldrich, Australia) imaged immediately on the ImageQuant LAS 4000 (GE Healthcare Life Sciences).

Detection of HAdV vector in mouse faeces

RNA extraction of mouse faeces to detect HAdV was undertaken according to the protocol of the viral RNA extraction kit (Invitrogen). Reverse transcriptase PCR (RT-PCR) was undertaken using the kit and protocol of the ProtoScript® Taq RT-PCR kit (New England Biolabs). PCR amplification of the cDNA was then performed with using *vapA* PCR primers *vapA* forward, 5′ gtaactataacggtcatgaagactcttcacaaggt 3′; *vapA* reverse 5′ attacctctttctcctagacgtgtgctgagc 3′.

Statistical analysis

Statistical analysis was generated by the GraphPad Prism 6 for Windows (GraphPad Software, La Jolla California USA, www.graphpad.com); tests undertaken, were the t test unpaired analysis with 95% confidence.

Results

Trial 1

Trial 1 was undertaken to determine the safety and immunogenicity of the newly developed HAdV-*vapA* vaccine. Mouse faecal samples were collected and reverse transcriptase PCR (RT-PCR) was performed on these samples to determine if virus was shed by the mice following vaccination.

VapA specific antibody response. The HAdV-*vapA* prime boost elicited a strong VapA specific IgG response (Fig 1), while the empty vector HAdV vaccine regime did not produce a VapA specific antibody response. The *R. equi* vaccine did not produce a detectable total VapA specific IgG antibody response. The dose rate 1x10^5 CFU/ml of live virulent *R. equi* may have been cleared too rapidly from the mice to enable generation of an antibody response.

The HAdV-*vapA* prime only did not elicit a total IgG antibody response that was detectable. However, the HAdV-*vapA* prime and boost regime produced a strong VapA specific total IgG response, with these levels sustained until day 49 (5 weeks post boost).
Trial 2

Trial 2 was conducted to determine the efficacy of the HAdV-vapA vaccine and further validate the immunogenicity of this vaccine.

VapA specific antibody responses. IgG responses to VapA were not seen in the empty vector or the R. equi vaccine groups (Fig 2). However, both HAdV-vapA prime and boost (low and high dose treatments) stimulated a high antibody response at day 28 pre challenge and a slightly higher ELISA absorbency at day 35, 7 days post challenge.

VapA specific IgG1 responses were seen in the R. equi prime/boost positive control group, with a strong IgG1 antibody response at day 28 and a potent antibody response at day 35 was seen. The HAdV-vapA prime/boost high dose regime elicited a stronger IgG1 response than that seen in the R. equi vaccinated positive control mice at days 28 and 35, with a slightly higher IgG1 response post challenge at titre 100 (Fig 2).

VapA specific IgG2b antibody response was not generated in the R. equi positive control or the empty vector negative control vaccinated groups. Both the HAdV-vapA prime/boost high and low dose regimes generated a significant IgG2b response (Fig 2).

VapA specific IgG2a antibody (Fig 2) was detected in both HAdV-vapA low and high dose vaccinated groups, with a potent antibody response seen at days 28 and 35 post vaccination. While the R. equi prime and boost vaccinated group and the empty vector prime and boost
vaccinated mice did not demonstrate a significant VapA specific IgG2a responses and this outcome is consistent with other results from this trial.

HAdV capsid specific total IgG response. Total IgG responses to the HAdV capsid showed that there were no detectable levels of IgG antibodies present in the R. equi vaccinated groups and a strong antibody response to the HAdV-vapA prime/boost regimes. The empty vector produced low level of IgG response which was considered weakly positive (ELISA OD obtained was 3 times higher than the assay negative control) (Fig 3). The reason for this in unclear but this result was not seen in any of the other trials conducted with all other results showing a negative VapA specific IgG antibody response to the vector alone.

Cytokine response in mouse lung samples. A mixed Th1/Th2 response was seen in the cytokines tested (Figs 4 and 5) from mouse lung cell culture supernatant that was stimulated with ConA. There was an extremely high IFN-γ response in the live R. equi, HAdV-vapA high and low dose vaccinated mice at day 35, while the empty vector negative controls gave lower
levels of IFN-γ. The compared responses of IL-4 and INF-γ demonstrates IFN-γ has a stronger response and are significantly higher than the IL-4. This indicates a bias towards a Th1 type response which was further supported by the stronger IL2 response than IL-10 response (P = 0.0001) in HAdV-vapA vaccine groups (Fig 5).

Bacterial clearance Trial 2. Bacterial clearance was difficult to monitor, and *R. equi* was rapidly cleared from the mice following aerosolised challenge. As used by others [28, 47] multiple end points (days 28, 31, 33 and 35) were used to monitor the clearance of the *R. equi* from the mouse and to determine if any histological difference was seen over this period of time. As Fig 6 indicates a minor enhancement in clearance was seen between HAdV-vapA vaccinated groups and the empty vector vaccine group. No significance between the negative control (empty vector vaccine group) and the treated groups was seen (p > 0.05). However, comparison within the treatment groups over time demonstrates significance (Fig 6).

Histological findings. Lung sections were examined by a veterinary pathologist. Both haematoxylin and eosin (H & E), and Gram stained sections showed the effects of the challenge on the lung and the presence of *R. equi* respectively. The H & E stain was scored on a scale of 0–10 with 0 = no changes (normal pathology) and 10 = multiple granulomata in every field.

Granulomata, cellular aggregations indicating resolving lesions or mild increased interstitial cellularity were detected in 4/13 mice in each of the positive control *R. equi* vaccination groups, the high and low dose HAdV-vapA vaccine groups, while the 6/14 negative control mice demonstrated granulomas or cellular aggregations. The presence of granulomas does support the
validity of the mouse model, particularly the C3H/HeJ model for \textit{R. equi} trials. The resolving nature of many of these granulomas also indicates the presence of an effective immune response to the \textit{R. equi}, whether the vaccines tested in study contributed this recovery is unclear and further investigation is required to determine this. The gram stained sections showed relatively low numbers of bacteria in the lung tissues; however, this may have been due to bacteria already being cleared by the time the mice were humanely killed in this study. Two thirds (34/51) of the samples showed the presence of \textit{R. equi}; some of these were engulfed within macrophage cells and some bacteria were in the interstitial spaces.

Discussion

The studies in trials 1 and 2 demonstrated that the HAdV-\textit{vapA} vaccine is capable of inducing a significant immune response when used in a homologous vaccine regime. A strong total IgG response and a mixed IgG subclass response to VapA, with a Th1 bias were observed. In addition, clearance of \textit{R. equi} was seen to be more rapid in the lung of mice vaccinated with the HAdV-\textit{vapA} vaccine.

\textbf{Fig 4. Comparison of lung INF-\gamma and IL-4 ConA treated cells at and day 35 collection.} The mean and SD of INF-\gamma and IL-4 cytokines produced by lung cells from the four groups; \textit{R. equi}, empty vector, HAdV-\textit{vapA} high dose (High dose) and HAdV-\textit{vapA} low dose (Low dose). Cytokine response was determined in culture collected at day 35 post vaccination (7 days post challenge), and were subsequently cultured and stimulated with ConA for 5 days which are represented across the X axis. Statistical analysis by the unpaired t test demonstrated significance when INF-\gamma to IL-4 were analysed within a treatment *P = 0.0172, **P = 0.0024, ***P = 0.0009, ****P < 0.0001

doi:10.1371/journal.pone.0152149.g004
A strong VapA IgG antibody response was seen in both the low and high dose HAdV-vapA vaccinated groups. This strong response was also maintained with high antibody levels at day 49, (5 weeks post boost), which is potentially indicative of a longer term antibody response being generated. An increase in VapA specific antibody post challenge has been seen in R. equi vaccine studies conducted in mice elsewhere[26, 48].

The lack of VapA antibody response in the R. equi positive control vaccine group in both trials 1 and trial 2 was somewhat surprising; it is possible that the antibody levels in these mice were below the detection limit of the ELISA used. The dose used here was 1 x10^5 CFU/ml of fresh R. equi ATCC 33701, a dose that has been used elsewhere. Takai and co-workers used ATCC 33701 at 1x10^6 CFU/ml by intravenous administration and demonstrated rapid clearance by the liver by 4 days post vaccination and an ELISA antibody OD of 1.8 at 16 days post vaccination at a sera dilution of 1:100[23]. Whereas another study by this group using mice vaccinated intravenously with 1x10^5 CFU/ml R. equi ATCC 33701 demonstrated a strong antibody response in R. equi vaccinated mice, 5 days post vaccination[24]. This lack of antibody response seen here may be due to the rapid clearance of R. equi by the innate immune system before detectable antibody levels could be generated.
The HAdV whole capsid IgG antibody response was strong in the HAdV-vapA vaccinated mice while the negative control, empty vector vaccine group did not demonstrate an antibody response. This suggests that the HAdV vector itself is not highly immunogenic, which could be an advantage if this vector is to be used in a vaccine as it is not recognised by the immune system when administered without antigen, in this case VapA.
The cytokine data indicated a Th1 bias in the immune response to the HAdV vaccine and it is an approach used by other investigators[31, 32, 49]. It should be noted that a mixed Th1/Th2 immune response is present in R. equi infections in foals. A Th1 bias produced the most desirable immune response [50, 51] for the prevention of rhodococcal pneumonia in foals which typically have a Th2 predominating immune system in their early life which limits the Th1 intracellular microbicidal cytokines from being present, thus allowing R. equi to persist [52–55]. The IgG isotypes and cytokine data were useful in determining Th1/Th2 bias of the immune response to the vaccines. In future studies it would also be useful to include T cell assays to support the IgG isotype and cytokine data.

Bacterial clearance is difficult to monitor in the mouse due to the rapid natural clearance of R. equi from the mouse lung following challenge Upon R. equi aerosol challenge the vaccinated treatment groups showed some enhanced clearance, however, the difference between HAdV-vapA vaccinated groups and the negative control empty vector vaccine group was not significant. This is likely due to the natural rapid clearance of the R. equi from the mouse that has been observed by others[23].

A heterologous vaccine regime (HAdV-vapA and DNA-vapA as prime or boost), may be a useful to investigate in future studies as it may improve the efficacy of the vaccine developed in this study. Previous studies have shown DNA and adenoviral vector vaccines-based heterologous vaccine regimens to be effective against other intracellular bacterial pathogens such as Mycobacterium tuberculosis[56, 57]. Generally, researchers advocate the use of mixed modality vaccine regimes as there is reduced risk of the development of neutralising antibodies to the vector as could potentially occur when homologous vaccines are used[33]. In future studies other immunogenic antigens such as GroEL2 the other virulence associated proteins should be investigated as potential vaccine candidates and these should be also be evaluated in heterologous prime boost regimes with various routes of vaccine administration require investigation including oral, nasal and intra peritoneal.

The results of this study show that the HAdV-vapA can potentially be developed further as an efficacious vaccine for R. equi vaccine. However, while this study is an important step in determining safety and efficacy of this novel vaccine candidate the trialling of this vaccine candidate in foals is crucial to determine if the HAdV-vapA vaccine candidate is effective in foals. Future studies will be designed to look at the safety and efficacy of this vaccine candidate in foals.

Author Contributions

Conceived and designed the experiments: CG ON MDB TV. Performed the experiments: CG ON MDB. Analyzed the data: CG MDB TV. Contributed reagents/materials/analysis tools: CG ON MDB TV. Wrote the paper: CG MDB TV.

References

1. Jones A, Sutcliffe I, Goodfellow M. Prescottia equi gen. nov., comb. nov.: a new home for an old pathogen. Antonie van Leeuwenhoek. 2013; 103(3):655–71. doi:10.1007/s10482-012-9850-8 PMID: 23161262

2. Jones AL, Sutcliffe IC, Goodfellow M. Proposal to replace the illegitimate genus name Prescottia Jones et al. 2013 with the genus name Prescottella gen. nov. and to replace the illegitimate combination Prescottia equi Jones et al. 2013 with Prescottella equi comb. nov. Antonie van Leeuwenhoek. 2013; 103 (6):1405–7. doi: 10.1007/s10482-013-9924-2 PMID: 23616198

3. Bowersock TL, Salmon SA, Portis ES, Prescott JF, Robison DA, Ford CW, et al. MICs of oxazolidinones for Rhodococcus equi strains isolated from humans and animals. Antimicrobial agents and chemotherapy. 2000; 44(5):1367. PMID: 10770781
An Adenoviral Vector Vaccine for Rhodococcus equi

1. Prescott JF, Johnson J, Markham R. Experimental studies on the pathogenesis of Corynebacterium equi infection in foals. Canadian Journal of Comparative Medicine. 1980; 44(3):280. PMID: 7427776

2. Takai S, Madarame H, Matsumoto C, Inoue M, Sasaki Y, Hasegawa Y, et al. Pathogenesis of Rhodococcus equi infection in mice: roles of virulence plasmds and granulomagenic activity of bacteria. FEMS Immunology & Medical Microbiology. 1995; 11(3):181–90.

3. Giguère S, Cohen ND, Chaffin KM, Hines SA, Hondalus MK, Prescott JF, et al. Rhodococcus equi: Clinical manifestations, virulence, and immunity. Journal of veterinary internal medicine. 2011; 25(6):1221–30. doi: 10.1111/j.1939-1676.2011.00804.x PMID: 22092609

4. Giguère S, Cohen ND, Chaffin KM, Hines SA, Hondalus MK, Prescott JF, et al. Rhodococcus equi: Clinical manifestations, virulence, and immunity. Journal of veterinary internal medicine. 2011; 25(6):1221–30. doi: 10.1111/j.1939-1676.2011.00804.x PMID: 22092609

5. Prescott JF. Rhodococcus equi: an animal and human pathogen. Clinical Microbiology Reviews. 1991; 4(1):20. PMID: 2004346

6. Takai S, Fukunaga N, Ochiai S, Imai Y, Sasaki Y, Tsubaki S, et al. Identification of intermediately virulent Rhodococcus equi isolates from pigs. Journal of clinical microbiology. 1996; 34(4):1034. PMID: 8815079

7. Yamshchikov AV, Schuetz A, Lyon GM. Rhodococcus equi infection. The Lancet infectious diseases. 2010; 10(5):350–9. doi: 10.1016/S1473-3099(10)70068-2 PMID: 20417417

8. Takai S, Obiishi S, Koi K, Tsubaki S, Oishi H, Kamada M. Prevalence of virulent Rhodococcus equi in isolates from soil and feces of horses from horse-breeding farms with and without endemic infections. Journal of clinical microbiology. 1991; 29(12):2887. PMID: 1757567

9. Muscatafel G. Rhodococcus equi pneumonia in the foal—Part 1: Pathogenesis and epidemiology. The Veterinary Journal. 2012; 192(1):20–6. doi: 10.1016/j.tvjl.2011.08.014 PMID: 22015138

10. Letek M, Ocampo-Sosa AA, Sanders M, Fogarty U, Buckley T, Leadon DP, et al. Evolution of the Rhodococcus equi vap pathogenicity island seen through comparison of host-associated vapA and vapB virulence plasmids. Journal of Bacteriology. 2008; 190(17):5797. doi: 10.1128/JB.00468-08 PMID: 18606735

11. Ren J, Prescott JF. Analysis of virulence plasmid gene expression of intra-macrophage and in vitro grown Rhodococcus equi ATCC 33701. Veterinary Microbiology. 2003; 94(2):167–76. PMID: 12781484

12. Russell DA, Byrne GA, O’Connell EP, Boland CA, Meijer WG. The LysR-type transcriptional regulator VirR is required for expression of the virulence gene vapA of Rhodococcus equi ATCC 33701. Journal of Bacteriology. 2004; 186(17):5576. PMID: 15317761

13. Giguère S, Cohen ND, Chaffin KM, Slovis NM, Hondalus MK, Hines SA, et al. Diagnosis, treatment, control, and prevention of infections caused by Rhodococcus equi in foals. Journal of veterinary internal medicine. 2011; 25(6):1209–20. doi: 10.1111/j.1939-1676.2011.00835.x PMID: 22092608

14. Burton AJ, Giguère S, Sturgill TL, Berghaus LJ, Slovis NM, Whitman JL, Macrolide and rifampin-resistant Rhodococcus equi on a horse breeding farm, Kentucky, USA. Emerging infectious diseases. 2013; 19(2):282. doi: 10.3201/eid1902.121210 PMID: 23347878

15. Liu H, Wang Y, Yan J, Wang C, He H. Appearance of multidrug resistant virulent Rhodococcus equi clinical isolates obtained in China. Journal of clinical microbiology. 2014; 52(2):703-. doi: 10.1128/JCM.02925-13 PMID: 24478520

16. Giles C, Vanniasinkam T, Ndí S, Barton M. Rhodococcus equi (Prescottella equi) vaccines, the future of vaccine development. Equine Veterinary Journal. 2015; 47(5):510–8. doi: 10.1111/evj.12310 PMID: 24945608

17. Dawson T, Horohov DW, Meijer WG, Muscatafel G. Current understanding of the equine immune response to Rhodococcus equi. An immunological review of R. equi pneumonia. Veterinary Immunology and Immunopathology. 2010; 135(1–2):1–11. doi: 10.1016/j.vetimm.2009.12.004 PMID: 2064668

18. Sturgill TL, Giguère S, Berghaus LJ, Hurley DJ, Hondalus MK. Comparison of antibody and cell-mediated immune responses of foals and adult horses after vaccination with live Mycobacterium bovis BCG. Vaccine. 2014; 32(12):1362–7. doi: 10.1016/j.vaccine.2014.01.032 PMID: 24486362

19. Sturgill TL, Giguère S, Franklin RP, Cohen ND, Hagen J, Kalyuzhny AE. Effects of inactivated parapoxvirus ovis on the cumulative incidence of pneumonia and cytokine secretion in foals on a farm with endemic infections caused by Rhodococcus equi. Veterinary Immunology and Immunopathology. 2011; 140(3–4):237–43. doi: 10.1016/j.vetimm.2010.12.012 PMID: 21255847

20. Berghaus LJ, Giguère S, Sturgill TL. Effects of age and macrophage lineage on intracellular survival and cytokine induction after infection with Rhodococcus equi. Veterinary immunology and immunopathology. 2010; 160(1–2):41–50. doi: 10.1016/j.vetimm.2014.03.010 PMID: 24736188

21. Harris SP, Hines MT, Mealey RH, Alperin DC, Hines SA. Early development of cytotoxic T lymphocytes in neonatal foals following oral inoculation with Rhodococcus equi. Veterinary Immunology and Immunopathology. 2011; 141(3–4):312–6. doi: 10.1016/j.vetimm.2011.03.015 PMID: 21481947

22. Prescott J, Johnson J, Markham R. Experimental studies on the pathogenesis of Corynebacterium equi infection in foals. Canadian Journal of Comparative Medicine. 1980; 44(3):280. PMID: 7427776
24. Takai S, Kobayashi C, Murakami K, Sasaki Y, Tsubaki S. Live virulent Rhodococcus equi, rather than killed or avirulent, elicits protective immunity to R. equi infection in mice. FEMS Immunology & Medical Microbiology. 1999; 24(1):1–9.

25. Chirino-Trejo J, Prescott J, Yager J. Protection of foals against experimental Rhodococcus equi pneumonia by oral immunization. Canadian Journal of Veterinary Research. 1987; 51(4):444. PMID: 3453264

26. Vanniasinkam T, Barton MD, Heuzenroeder MW. Immune response to vaccines based upon the VapA protein of the horse pathogen, Rhodococcus equi, in a murine model. International journal of medical microbiology. 2005; 294(7):437–45. PMID: 15715172

27. Haghighi HR, Prescott JF. Assessment in mice of vapA-DNA vaccination against Rhodococcus equi infection. Veterinary Immunology and Immunopathology. 2005; 104(3–4):215–25. PMID: 15734542

28. Phumoonna T, Barton MD, Vanniasinkam T, Heuzenroeder MW. Chimeric vapA/groEL2 DNA vaccines enhance clearance of Rhodococcus equi in aerosol challenged C3H/He mice. Vaccine. 2008; 26(20):2457–65. doi: 10.1016/j.vaccine.2008.03.015 PMID: 18423949

29. Pei Y, Nicholson V, Woods K, Prescott JF. Immunization by intrabronchial administration to 1-week-old foals of an unmarked double gene disruption strain of Rhodococcus equi strain 103–. Veterinary Microbiology. 2007; 125(1–2):100–10. PMID: 17560744

30. Whitehead AE, Parreira VR, Hewson J, Watson JL, Prescott JF. Development of a live, attenuated, potential vaccine strain of R. equi expressing vapA and the virR operon, and virulence assessment in the mouse. Veterinary Immunology and Immunopathology. 2012; 145(1–2):479–84. doi: 10.1016/j.vetimm.2011.10.011 PMID: 22088674

31. Oliveira AF, Ruas LP, Cardoso SA, Soares SG, Roque-Barreira MC. Vaccination of mice with Salmella expressing VapA: mucosal and systemic Th1 responses provide protection against Rhodococcus equi infection. PloS One. 2010; 5(1):e8644. doi: 10.1371/journal.pone.0008644 PMID: 20072623

32. Cauchard S, Bermúdez-Humarán L, Blugeon S, Laugier C, Langella P, Cauchard J. Mucosal co-immunization of mice with recombinant lactococci secreting VapA antigen and leptin elicits a protective immune response against Rhodococcus equi infection. Vaccine. 2011; 30(1):95–102. doi: 10.1016/j.vaccine.2011.10.026 PMID: 22019740

33. Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Micro. 2010; 8(1):62–73.

34. Fischer L, Tronel JP, Pardo-David C, Tanner P, Colombel G, Minke J, et al. Vaccination of puppies born to immune dams with a canine adenovirus-based vaccine protects against a canine distemper virus challenge. Vaccine. 2002; 20(29–30):3485–97. PMID: 12297394

35. Hammond JM, McCoy RJ, Jansen ES, Morrissy CJ, Hodgson ALM, Johnson MA. Vaccination with a recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus. Journal of virology. 1997; 71(5):3677–83. PMID: 9094641

36. Xiang Z, Prescott JF, Patterson MC, Nicholson VM. Molecular characterization of a lipid-modified virulence-associated protein of Rhodococcus equi and its potential in protective immunity. Canadian Journal of Veterinary Research. 1995; 59(1):1–5. PMID: 7704843

37. González-Juarrero M, Turner J, Basaraba RJ, Belisle JT, Orme IM. Florid pulmonary inflammatory responses in mice vaccinated with Antigen-85 pulsed dendritic cells and challenged by aerosol with Mycobacterium tuberculosis. Cellular immunology. 2002; 220(1):13–9. PMID: 12718935

38. Barton MD, Hughes KL. Comparison of three techniques for isolation of Rhodococcus Corynebacterium equi from contaminated sources. Journal of clinical microbiology. 1981; 13(1):219–21. PMID: 7007424
44. Rowbotham T, Cross T. Ecology of Rhodococcus coprophilus and associated actinomycetes in fresh water and agricultural habitats. Journal of general microbiology. 1977; 100(2):231–40.

45. Woods AE, Ellis RC. Laboratory histopathology: a complete reference. Churchill Livingstone; 1994.

46. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: Cold spring harbor laboratory press New York; 1989.

47. González-Iglesias P, Scotti M, MacArthur I, Hapeshi A, Rodríguez H, Prescott JF, et al. Mouse lung infection model to assess Rhodococcus equi virulence and vaccine protection. Veterinary microbiology. 2014; 172(1):256–64.

48. Prescott JF, Patterson MC, Nicholson VM, Morein B, Yager JA. Assessment of the immunogenic potential of Rhodococcus equi virulence associated protein (VapA) in mice. Veterinary Microbiology. 1997; 56(3–4):213–25. PMID: 9226836

49. Lopez AM, Hines MT, Palmer GH, Knowles DP, Alperin DC, Hines SA. Analysis of anamnestic immune responses in adult horses and priming in neonates induced by a DNA vaccine expressing the vapA gene of Rhodococcus equi. Vaccine. 2003; 21(25–26):3815–25. PMID: 12922115

50. Kanaly ST, Hines SA, Palmer GH. Cytokine modulation alters pulmonary clearance of Rhodococcus equi and development of granulomatous pneumonia. Infection and immunity. 1995; 63(8):3037. PMID: 7622227

51. Kanaly ST, Hines SA, Palmer GH. Transfer of a CD4+ Th1 cell line to nude mice effects clearance of Rhodococcus equi from the lung. Infection and immunity. 1996; 64(4):1126. PMID: 860068

52. Giguere S, Wilkie BN, Prescott JF. Modulation of cytokine response of pneumonic foals by virulent Rhodococcus equi. Infection and immunity. 1999; 67(10):5041–7. PMID: 10496876

53. Patton KM, McGuire TC, Hines MT, Mealey RH, Hines SA. Rhodococcus equi-specific cytotoxic T lymphocytes in immune horses and development in asymptomatic foals. Infection and immunity. 2005; 73(4):2083. PMID: 15784549

54. Darrah PA, Monaco MCG, Jain S, Hondalus MK, Golenbock DT, Mosser DM. Innate immune responses to Rhodococcus equi. The Journal of Immunology. 2004; 173(3):1914. PMID: 15265925

55. Berger A. Th1 and Th2 responses: what are they? BMJ: British Medical Journal. 2000; 321(7258):424-. PMID: 10938051

56. Abel B, Tameris M, Mansoor N, Geldenhuys H, Hughes J, Abrahams D, et al. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. American journal of respiratory and critical care medicine. 2010; 181(12):1407–17. doi: 10.1164/rccm.200910-1484OC PMID: 20167847

57. Kagina BMN, Tameris MD, Geldenhuys H, Hatherill M, Abel B, Hussey GD, et al. The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine. 2014; 32(45):5908–17. doi: 10.1016/j.vaccine.2014.09.001 PMID: 25218194